

Semana 10

TICS413: SEGURIDAD TI

Unidad Seguridad en redes y comunicaciones

PAQUETES REDES

ELEMENTOS

2025 © TICS-413: SEGURIDAD TI. FACULTAD DE INGENIERÍA Y CIENCIAS

WAN más de 10 km

LAN menos de 10 km

PAN (Personal Area Network)
Distancias cortas 10-20 m o menos.

Ejemplo redes combinadas - ¿dónde podría ser?

2025 © TICS-413: SEGURIDAD TI. FACULTAD DE INGENIERÍA Y CIENCIAS

Comunicación entre 2 equipos

Microsoft TechNet, "Data flow in the OSI Model"

PROTOCOLOS

- Computadores necesitan lenguaje común para comunicarse
- Hoy la mayoría habla al menos uno estándar
 - TCP Protocolo de control de transmisión
 - ► IP Protocolo de Internet

- Protocolo: conjunto de reglas que gobiernan el formato de mensajes que los computadores intercambian
 - Gobierna como el equipamiento de red interactúa para entregar la data cruzando la red

TCP/IP

No es solo un protocolo sino un conjunto de protocolos

2025 © TICS-413: SEGURIDAD TI.

PUERTOS COMUNES

PORT 20	SERVICE/USE FTP data transfer
21	FTP control
22 23	Secure Shell (SSH) Telnet
25 25	Simple Mail Transfer Protocol (SMTP)
53	Domain Name System (DNS)
67/68	Dynamic Host Configuration Protocol (DHCP)
80	Hypertext Transfer Protocol (HTTP)
88	Kerberos
110	Post Office Protocol v3 (POP3)
139	Network Basic Input/Output System (NetBIOS) Session Service
143	Internet Message Access Protocol (IMAP)
161	Simple Network Management Protocol (SNMP)
162	SNMP Trap
443	HTTP over Secure Sockets Layer/Transport Layer Security (SSL/TLS)
445	Simple Message Block (SMB) over IP
3389	Terminal Server

2025 © TICS-413: SEGURIDAD TI.

ENRUTAMIENTO/TRANSFORMACIONES

2025 © TICS-413: SEGURIDAD TI. FACULTAD DE INGENIERÍA Y CIENCIAS

PAQUETE

IPV4 HEADER, WIRESHARK VIEW

Caso

- Trabaja como analista de seguridad para una agencia de seguros.
- Los empleados de la empresa acceden periódicamente a la página web de ventas de la empresa para buscar seguros que pueden gustar a sus clientes.
- Una tarde, recibe una alerta automática de su sistema de monitoreo que indica un problema con el servidor web.
- Intenta visitar el sitio web de la empresa, pero recibe un mensaje de error de tiempo de espera de conexión en su navegador.

Sección 1: Identifique el tipo de ataque que pudo haber causado esto interrupción de la red

Una posible explicación para el mensaje de error de tiempo de espera de conexión del sitio web es:

Los registros muestran que:

Este evento podría ser:

NECESITA MÁS INFORMACIÓN ¿DE DONDE O CÓMO PODEMOS OBTENERLA?

¿Cómo obtener más información?

 Utilice un rastreador de paquetes para capturar paquetes de datos en tránsito hacia y desde el servidor web.

0

HIPÓTESIS: SI OBSERVA UNA GRAN CANTIDAD DE SOLICITUDES TCP SYN PROVENIENTES DE UNA DIRECCIÓN IP DESCONOCIDA - EL SERVIDOR WEB PODRÍA ESTAR ABRUMADO POR EL VOLUMEN DE TRÁFICO ENTRANTE Y ESTAR PERDIENDO SU CAPACIDAD DE RESPONDER A LA CANTIDAD ANORMALMENTE GRANDE DE SOLICITUDES SYN.

Una transacción normal entre un visitante de un sitio web y el servidor web sería como

No.	Tiempo	Fuente	Destino	Protocol o	Información
47	3.144521	198.51.100.23	192.0.2.1	tcp	42584->443 [SYN] <u>Sec</u> =0 Win=5792 Len=120
48	3.195755	192.0.2.1	198.51.100.23	tcp	443->42584 [SYN, ACK] Sec=0 Win-5792 Len=120
49	3.246989	198.51.100.23	192.0.2.1	tcp	42584->443 [ACK] Sec=1 Win-5792 Len=120
50	3.298223	198.51.100.23	192.0.2.1	HTTP	OBTENER /sales.html HTTP/1.1
51	3.349457	192.0.2.1	198.51.100.23	HTTP	HTTP/1.1 200 OK (texto/html)

Los actores maliciosos pueden aprovechar el protocolo TCP inundando un servidor con solicitudes de paquetes SYN

REDES - CAPA 4 - TCP

•

•

•

SFRV	IDOR WEB	192 0 2 1

Destino	Fuente
192.0.2.1	198.51.100.23
198.51.100.23	192.0.2.1
192.0.2.1	198.51.100.23

Protoc olo			Información
tcp	42584->4	13 [SYN] Sec=0 Win-	5792 Len=120
-	443-	>42584 [SYN, ACK] \$	ec=0 Win-5792
tcp			Len=120
tcp	42584->4	13 [ACK] Sec=1 Win-	5792 Len=120

Caso – Identificación

rojo	52	3.390692	203.0.113.0	192.0.2.1	tcp	54770->443 [SYN] <u>Sec</u> =0 Win=5792 Len=0
rojo	53	3.441926	192.0.2.1	203.0.113.0	tcp	443->54770 [SYN, ACK] <u>Sec</u> =0 Win-5792 Len=120
rojo	54	3.493160	203.0.113.0	192.0.2.1	tcp	54770->443 [ACK Seq=1 Win=5792 Len=0
verde	55	3.544394	198.51.100.14	192.0.2.1	tcp	14785->443 [SYN] <u>Sec</u> =0 Win-5792 Len=120
						443->14785 [SYN, ACI verde 71

El atacante sigue enviando más solicitudes SYN, lo cual es anormal.

rojo	54	3.493160	203.0.113.0	192.0.2.1	tcp	Win=5792 Len=0			SYN, lo cual es anormal.					rmal.
verde	55	3.544394	198.51.100.14	192.0.2.1	tcp	14785->443 [SYN] Sec Win-5792 Len=120	4785->443 [SYN] Sec=0							
verde	56	3.599628	192.0.2.1	198.51.100.14	tcp	443->14785 [SYN, ACI Win-5792 Len=120	verde	71	6.228728	198.51.100.5	192.0.2.1	HTTP	OB ⁻	ENER /sales.html HTTP/1 1
rojo			203.0.113.0	192.0.2.1	tcp	54770->443 [SYN] <u>Se</u> Win=5792 Len=0	rojo	72	6.229638	203.0.113.0	192.0.2.1	tcp		O->443 [SYN] <u>Sec</u> =0 :5792 Len=0
verde		3.730097	198.51.100.14	192.0.2.1	tcp	14785->443 [ACK] Se Win-5792 Len=120	amarill o	73	6.230548	192.0.2.1	198.51.100.16	tcp		>32641 [RST, ACK] Sec= 0 5792 Len=120
rojo	59	3.795332	203.0.113.0	192.0.2.1	tcp	54770->443 [SYN] <u>Se</u> Win-5792 Len=120	rojo	74	6.330539	203.0.113.0	192.0.2.1	tcp		0->443 [SYN] Sec=0
verde	60	3.860567	198.51.100.14	192.0.2.1	HTTP	OBTENER /sales.html	vordo	75	4 22000E	100 E1 100 7	102 0 2 1	ton		84->443 [SYN] <u>Sec</u> =0
rojo	61	3.939499	203.0.113.0	192.0.2.1	tcp	54770->443 [SYN] <u>Se</u> Win-5792 Len=120	verde	15	6.330885	198.51.100.7	192.0.2.1	tcp		=5792 Len=0 70->443 [SYN] Sec=0
verde	62	4.018431	192.0.2.1	198.51.100.14	HTTP	HTTP/1.1 200 OK (text	rojo	76	6.331231	203.0.113.0	192.0.2.1	tcp	Win	=5792 Len=0
						amarill o	77	7.330577	192.0.2.1	198.51.100.5	tcp	esp	P/1.1 504 Tiempo de era de puerta de enlace to/html)	
2025 © TICS-413: SEGURIDAD TI.						rojo	78	7.331323	203.0.113.0	192.0.2.1	tcp		70->443 [SYN] <u>Sec</u> =0 =5792 Len=0	

Sección 1: Identifique el tipo de ataque que pudo haber causado esto interrupción de la red

Una posible explicación para el mensaje de error de tiempo de espera de conexión del sitio web es:

Los registros muestran que:

Este evento podría ser:

Ataque de denegación de servicio (DoS) a nivel de red, denominado ataque de inundación SYN, que tiene como objetivo el ancho de banda de la red para realentizar el tráfico.

¿Qué hacer por mientras?

- Desconecta el servidor temporalmente para que la máquina pueda recuperarse y volver a un estado operativo normal.
- También configura el firewall de la empresa para bloquear la dirección IP que estaba enviando la cantidad anormal de solicitudes SYN.
- Usted sabe que su solución de bloqueo de IP no durará mucho, ya que un atacante puede falsificar otras direcciones IP para sortear este bloqueo (spoofing).
- Debe alertar a su equipo sobre este problema rápidamente y discutir los próximos pasos para detener a este atacante y evitar que este problema vuelva a ocurrir.

Sección 2: Explique cómo el ataque está provocando el mal funcionamiento del sitio web.

Cuando los visitantes del sitio web intentan establecer una conexión con el servidor web, se produce un protocolo de enlace de tres vías utilizando el protocolo TCP. Explique los tres pasos del apretón de manos:

1.

2.

3.

Explique qué sucede cuando un actor malintencionado envía una gran cantidad de paquetes SYN a la vez:

Como solo hay una dirección IP que ataca el servidor web, puede asumir que se trata de un ataque directo de inundación DoS SYN.

Explique qué indican los registros y cómo afecta eso al servidor:

Sección 1: Identifique el tipo de ataque que pudo haber causado esto interrupción de la red

ataque DoS es Una posible explicación para la caída del sitio web dado el error de tiempo de espera de conexión. Los registros muestran que el servidor web deja de responder después de sobrecargarse con solicitudes de paquetes SYN. Este evento podría ser un tipo de ataque DoS llamado inundación SYN.

Sección 2: Explique cómo el ataque está provocando el mal funcionamiento del sitio web.

Cuando los visitantes del sitio web intentan establecer una conexión con el servidor web, se produce un protocolo de enlace de tres vías utilizando el protocolo TCP. El apretón de manos consta de tres pasos:

- 1. Se envía un paquete SYN desde el origen al destino, solicitando conectarse.
- 2. El destino responde al origen con un paquete SYN-ACK para aceptar la solicitud de conexión. El destino reservará recursos para que la fuente se conecte.
- 3. Se envía un paquete ACK final desde el origen al destino reconociendo el permiso para conectarse.

En el caso de un ataque de inundación SYN, un actor malintencionado enviará una gran cantidad de paquetes SYN a la vez, lo que abruma los recursos disponibles del servidor para reservar para la conexión. Cuando esto sucede, no quedan recursos del servidor para solicitudes de conexión TCP legítimas.

Los registros indican que el servidor web se ha visto abrumado y no puede procesar las solicitudes SYN de los visitantes. El servidor no puede abrir una nueva conexión para nuevos visitantes que reciben una mensaje de error de tiempo de espera.

PREGUNIAS