Constant delay enumeration for FO queries and nowhere dense graphs

Alexandre Vigny¹

Join work with: Nicole Schweikardt² and Luc Segoufin³

¹Université Paris Diderot, Paris

²Humboldt-Universität zu Berlin

³ENS Ulm, Paris

June 1, 2018

Modelization

- Query q
- Database D
- Compute q(D)

small

huge

gigantic

Examples :

query q first order logic

$$q(x,y) := \exists z (B(x) \land E(x,z) \land \neg E(y,z))$$

database D

relational structure

solutions q(D)

set of tuples

$$\{(1,2) \ (1,3) \ (1,4) \ (1,6) \ (1,7) \ \cdots \ (3,1) \ (3,2) \ (3,4) \ (3,6) \ (3,7) \ \cdots$$

Too many solutions!

A given store that contains 50 items for less than 1€

Query: What can I buy with 10€?

For practical reasons:

 50^{10} solutions is not easy to store / display!

For theoretical reasons:

The time needed to compute the answer does not reflect the hardness of the problem!

Enumeration

Input : ||D|| := n & |q| := k (computation with RAM)

Goal: output solutions one by one (no repetition)

• STEP 1: Preprocessing

Prepare the enumeration : Database $D \longrightarrow \operatorname{Index} I$

Preprocessing time : $f(k) \cdot n \rightsquigarrow O(n)$

• STEP 2 : Enumeration

Enumerate the solutions : Index $I \longrightarrow \overline{x_1}$, $\overline{x_2}$, $\overline{x_3}$, $\overline{x_4}$, \cdots

Delay: $O(f(k)) \rightsquigarrow O(1)$

Constant delay enumeration after linear preprocessing

```
Input:
```

```
- Database D := \langle \{1, \dots, n\}; E \rangle ||D|| = |E| \quad (E \subseteq D \times D)
- Query q(x,y) := \neg E(x,y)
          (1,1)
          (1,2)
          (1,6)
          (i,j)
        (i, j+1)
        (i,j+3)
```

(n,n)

Input:

- Database
$$D := \langle \{1, \dots, n\}; E \rangle$$
 $||D|| = |E| \quad (E \subseteq D \times D)$

- Query
$$q(x,y) := \neg E(x,y)$$

D Index
$$(1,1) \qquad (1,1) \qquad (1,2) \qquad (1,3)$$

$$(1,6) \qquad \vdots \qquad \vdots \qquad \vdots$$

$$(2,3) \qquad \vdots \qquad \vdots \qquad \vdots$$

$$(i,j) \qquad (i,j+1) \qquad (i,j+1) \qquad (i,j+2)$$

$$(i,j+3) \qquad (i,j+3) \qquad (k,l)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$(n,n) \qquad (n,n) \longrightarrow \text{NULL}$$

Input:

- Database $D := \langle \{1, \dots, n\}; E \rangle$ $||D|| = |E| \quad (E \subseteq D \times D)$
- Query $q(x,y) := \neg E(x,y)$

Input:

- Database $D := \langle \{1, \dots, n\}; E_1; E_2 \rangle$ $||D|| = |E_1| + |E_2|$ $(E_i \subseteq D \times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

Input:

- Database $D := \langle \{1, \dots, n\}; E_1; E_2 \rangle \quad ||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

$$B$$
: Adjacency matrix of E_2

C: Result matrix

A: Adjacency matrix of E_1

Input:

- Database
$$D := \langle \{1, \dots, n\}; E_1; E_2 \rangle \quad ||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$$

- Query
$$q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$$

$$B$$
: Adjacency matrix of E_2

$$E_2(1,1)$$
 ... $E_2(1,y)$... $E_2(1,n)$
 \vdots \ddots \vdots \vdots
 $E_2(z,1)$... $E_2(z,y)$... $E_2(z,n)$
 \vdots \ddots \vdots \vdots
 $E_2(n,1)$... $E_2(n,y)$... $E_2(n,n)$

Compute the set of solutions

=

boolean matrix multiplication

A: Adjacency matrix of E_1

C: Result matrix

Input:

- Database $D:=\langle\{1,\cdots,n\};E_1;E_2\rangle$ $\|D\|=|E_1|+|E_2|$ $(E_i\subseteq D\times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

$$\begin{pmatrix} E_2(1,1) & \dots & E_2(1,y) & \dots & E_2(1,n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ E_2(z,1) & \dots & E_2(z,y) & \dots & E_2(z,n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ E_2(n,1) & \dots & E_2(n,y) & \dots & E_2(n,n) \end{pmatrix}$$

- ▶ Linear preprocessing: $O(n^2)$
- ▶ Number of solutions: $O(n^2)$
- ▶ Algorithm for the boolean matrix multiplication in O(n²)
- Conjecture: "There are no algorithm for the boolean matrix multiplication working in time O(n²)."

C: Result matrix

Input:

- Database $D:=\langle\{1,\cdots,n\};E_1;E_2\rangle$ $\|D\|=|E_1|+|E_2|$ $\big(E_i\subseteq D\times D\big)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

This query cannot be enumerated with constant delay¹

 $^{^{1}}$ Unless there is a breakthrough with the boolean matrix multiplication.

Input:

- Database $D:=\langle\{1,\cdots,n\};E_1;E_2\rangle$ $\|D\|=|E_1|+|E_2|$ $(E_i\subseteq D\times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

This query cannot be enumerated with constant delay¹

We need to put restrictions on queries and/or databases.

¹Unless there is a breakthrough with the boolean matrix multiplication.

Which restrictions?

No restriction on the database part

Only works for queries are conjunctive, acyclic and free-connex

> Bagan, Durand, Grandjean

Highly expressive queries (MSO queries)

Only works for trees (Graphs with bounded tree width)

Courcelle, Bagan, Segoufin, Kazana FO queries

This talk !

Other problems

For FO queries over a class $\mathscr C$ of databases.

Model-Checking : Is this true ? O(n)

Enumeration : Enumerate the solutions $O(1) \circ O(n)$

Counting : How many solutions ? O(n)

Testing : Is this tuple a solution ? $O(1) \circ O(n)$

Evaluation : Compute the entire set O(n+m)

Other problems

For FO queries over a class $\mathscr C$ of databases.

Model-Checking : Is this true ? O(n)

Enumeration : Enumerate the solutions $O(1) \circ O(n)$

Counting : How many solutions ? O(n)

Testing : Is this tuple a solution ? $O(1) \circ O(n)$

Evaluation : Compute the entire set O(n+m)

Our results

Theorem (Schweikardt, Segoufin, V. 18')

Over *nowhere dense* classes of graphs, for every FO query, after a pseudo-linear preprocessing, we can:

- enumerate every solution with constant delay.
- test in constant time whether a given tuple is a solution.

Pseudo-linear?

Definition

A function f is pseudo linear if and only if:

$$\forall \epsilon > 0, \quad \exists N_{\epsilon} \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n > N_{\epsilon} \implies f(n) \leq n^{1+\epsilon}$$

$$n \ll n \log^i(n) \ll \text{pseudo-linear} \ll n^{1,0001} \ll n \sqrt{n}$$

"Pseudo-linear $\approx n \log^i(n)$ "

"Pseudo-constant $\approx \log^i(n)$ "

The game characterization

Definition : (ℓ, r) -Splitter game

A graph *G* and two players, Splitter and Connector.

Each turn:

- Connector picks a node c
- Splitter picks a node s
- $G' = N_r^G(c) \setminus s$

If in less than ℓ rounds the graph is empty, Splitter wins.

The game characterization

Definition : (ℓ, r) -Splitter game

A graph *G* and two players, Splitter and Connector.

Each turn:

- Connector picks a node c
- Splitter picks a node s
- $G' = N_r^G(c) \setminus s$

If in less than ℓ rounds the graph is empty, Splitter wins.

Theorem

 $\mathscr C$ is nowhere dense if and only if there is a function $f_\mathscr C$ such that for every $G\in\mathscr C$ and every $r\in\mathbb N$:

Splitter has a wining strategy for the $(f_{\mathscr{C}}(r), r)$ -splitter game on G.

How to play the (ℓ, r) -Splitter game on a graph G?

- If G is a star, Splitter wins in 2 rounds.
- If G is a path, Splitter wins in log(r) rounds.
- If G is a tree, Splitter wins in r rounds.
- If G has degree d, splitter wins in d^r rounds.

• If G is a clique of size $> \ell$, Splitter looses the (ℓ, r) -splitter game.

Neighborhood cover

A neighborhood cover is a set of "representative" neighborhoods.

 $\mathscr{X} := X_1, \dots, X_n$ is a (r, 2r) neighborhood cover if it has the following properties:

- $\forall a \in G$, $\exists X \in \mathcal{X}$, $N_r(a) \subseteq X$
- $\forall X \in \mathcal{X}$, $\exists a \in G$, $X \subseteq N_{2r}(a)$
- $\forall a \in G$, $|\{i \mid a \in X_i\}|$ is pseudo-constant (smaller than $|G|^{\epsilon}$)

The examples queries

- $q_1(x,y) := \exists z \ E(x,z) \land E(z,y)$ (The distance two query)
- $q_2(x,y) := \neg q_1(x,y)$ (Nodes that are far apart)

How to use the game 1/2

G is now fixed

Goal : Given a node a we want to enumerate all b such that $q_1(a,b)$. (Here r=2)

• Base case: If Splitter wins the (1, r)-Splitter game on G.

Then G is edgeless and there is no solution!

• By induction: assume that there is an algorithm for every G' such that Splitter wins the (ℓ, r) -Splitter game on G'.

How to use the game 2/2

Here, Splitter wins the $(\ell + 1, r)$ -game on G.

Idea:

- **1** Compute some new graphs on which Splitter wins the (ℓ, r) game.
- Apply the induce algorithm for a particular query.
- Enumerate those solutions.

How to use the game 2/2

Here, Splitter wins the $(\ell+1,r)$ -game on G.

Idea:

- **①** Compute some new graphs on which Splitter wins the (ℓ, r) game.
- Apply the induce algorithm for a particular query.
- Enumerate those solutions.

For every bags X of the (2,4)-neighborhood cover, $X' := X \setminus \{s\}$.

For every $(a,b) \in G^2$ we have:

$$G \models q_1(a,b) \iff \bigvee_{X \in \mathcal{X}} X \models q_1(a,b) \iff \mathcal{X}(a) \models q_1(a,b)$$

How to use the game 2/2

Here, Splitter wins the $(\ell+1,r)$ -game on G.

Idea:

- **①** Compute some new graphs on which Splitter wins the (ℓ, r) game.
- Apply the induce algorithm for a particular query.
- Enumerate those solutions.

For every bags X of the (2,4)-neighborhood cover, $X' := X \setminus \{s\}$.

For every $(a,b) \in G^2$ we have:

$$G \models q_1(a,b) \iff \bigvee_{X \in \mathcal{X}} X \models q_1(a,b) \iff \mathcal{X}(a) \models q_1(a,b)$$

The new graph is $\mathcal{X}(a)$ Then, Splitter delete a node!

The new queries

when there is still a 2-path not using s

the new query is: $q_1(x, y)$

when s is on the only short path from a to b

the new query is: $R_1(x) \wedge R_2(y)$

when a = s (similarly for b = s)

the new query is: $R_2(y)$

The second query

$$q_2(x,y) := \operatorname{dist}(x,y) > 2$$

Two kinds of solutions:

- $b \in \mathcal{X}(a)$ (similar to the previous example)
- $b \notin \mathcal{X}(a)$ We need something else!

The second query

$$q_2(x,y) := \operatorname{dist}(x,y) > 2$$

Two kinds of solutions:

- $b \in \mathcal{X}(a)$ (similar to the previous example)
- $b \notin \mathcal{X}(a)$ We need something else!

Goal: given a bag X, enumerate all $b \notin X$

Given X we want to enumerate all b such that $b \notin X$.

Given X we want to enumerate all b such that $b \notin X$.

$$NEXT(b,X) := \min\{b' \in G \mid b' \ge b \land b' \not\in X\}$$

Given X we want to enumerate all b such that $b \notin X$.

$$NEXT(b,X) := \min\{b' \in G \mid b' \ge b \land b' \not\in X\}$$

For all $X \in \mathcal{X}$ with $b_{max} \in X$, we have $NEXT(b_{max}, X) = NULL$

Given X we want to enumerate all b such that $b \notin X$.

$$NEXT(b,X) := \min\{b' \in G \mid b' \ge b \land b' \notin X\}$$

$$b \in X$$

For all
$$X \in \mathcal{X}$$
 with $b_{max} \in X$, we have $NEXT(b_{max}, X) = NULL$
 $NEXT(b, X) \in \{b+1, NEXT(b+1, X)\}$

Given X we want to enumerate all b such that $b \notin X$.

$$NEXT(b,X) := \min\{b' \in G \mid b' \ge b \land b' \not\in X\}$$

For all $X \in \mathcal{X}$ with $b_{max} \in X$, we have $NEXT(b_{max}, X) = NULL$ $NEXT(b, X) \in \{b+1, NEXT(b+1, X)\}$

Recap

We use:

- A new Hanf normal form for FO queries.¹
- The algorithm for the model checking.²
- Neighbourhood cover.²
- Game characterization of nowhere dense classes.²
- Short-cut pointers dedicated to the enumeration.³

We can:

- Enumerate with constant delay after pseudo-linear preprocessing.
- Test in constant time after pseudo-linear preprocessing.

¹Grohe, Schweikardt '18

²Grohe, Kreutzer, Siebertz '14

³Segoufin, V. '17

Future work

- Classes of graphs that are not closed under subgraphs
- Enumeration with update:
 What happens if a small change occurs after the preprocessing?

 Existing results for: words, graphs with bounded tree-width or bounded degree.

Future work

- Classes of graphs that are not closed under subgraphs
- Enumeration with update:
 What happens if a small change occurs after the preprocessing?

 Existing results for: words, graphs with bounded tree-width or bounded degree.

Thank you!

Questions?