

SMPS MOSFET

IRF7463

HEXFET® Power MOSFET

Applications

 High Frequency DC-DC Converters with Synchronous Rectification

V _{DSS}	R _{DS(on)} max	I _D
30V	0.008Ω	14A

Benefits

- Ultra-Low R_{DS(on)} at 4.5V V_{GS}
- Low Charge and Low Gate Impedance to Reduce Switching Losses
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	14	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	11	A
I _{DM}	Pulsed Drain Current ①	110	
P _D @T _A = 25°C	Power Dissipation ⑦	2.5	W
P _D @T _A = 70°C	Power Dissipation	1.6	
	Linear Derating Factor	0.02	W/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	50	°C/W

Typical SMPS Topologies

• Telecom 48V Input Converters with Logic-Level Driven Synchronous Rectifiers

Notes ① through ⑤ are on page 7 www.irf.com

Static @ $T_J = 25$ °C (unless otherwise specified)

·	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		0.029		V/°C	Reference to 25°C, I _D = 1mA
			0.0063	0.0080	Ω	V _{GS} = 10V, I _D = 14A ④
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.0074	0.0095	22	$V_{GS} = 4.5V, I_D = 12A$ ④
			0.0105	0.020		$V_{GS} = 2.8V, I_D = 3.5A$ ④
V _{GS(th)}	Gate Threshold Voltage	0.6		2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
1	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 24V, V_{GS} = 0V$
I _{DSS}				100	μΑ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 100^{\circ}C$
	Gate-to-Source Forward Leakage			200	Л	V _{GS} = 12V
I _{GSS}	Gate-to-Source Reverse Leakage			-200	nA	V _{GS} = -12V

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9 _{fs}	Forward Transconductance	31			S	$V_{DS} = 24V, I_{D} = 14A$
Qg	Total Gate Charge		34	51		I _D = 14A
Q _{gs}	Gate-to-Source Charge		7.5	11	nC	$V_{DS} = 24V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		13	20		$V_{GS} = 5.0V, \ \ \textcircled{4}$
t _{d(on)}	Turn-On Delay Time		20			$V_{DD} = 15V$,
t _r	Rise Time		16		ns	$I_D = 1.0A$
t _{d(off)}	Turn-Off Delay Time		41			$R_G = 6.0\Omega$
t _f	Fall Time		44			V _{GS} = 4.5V ④
C _{iss}	Input Capacitance		3110			$V_{GS} = 0V$
Coss	Output Capacitance		850			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		130		pF	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		320	mJ
I _{AR}	Avalanche Current①		14	Α
E _{AR}	Repetitive Avalanche Energy®		0.25	mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current (Body Diode)	2.5		Α	MOSFET symbol showing the		
I _{SM}	Pulsed Source Current (Body Diode) ①			110	Α	integral reverse p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25$ °C, $I_S = 2.5$ A, $V_{GS} = 0$ V ④	
t _{rr}	Reverse Recovery Time		64	96	ns	$T_J = 25^{\circ}C, I_F = 2.5A$	
Q _{rr}	Reverse Recovery Charge		99	150	nC	di/dt = 100A/µs ④	

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

Ci 0.0080

Boundary 0.0075

Co SG = 4.5V

Co SG = 4.5V

Co SG = 10V

Co SG = 10V

ID , Drain Current (A)

Fig 5. Normalized On-Resistance Vs. Temperature

Fig 6. On-Resistance Vs. Drain Current

Fig 8. On-Resistance Vs. Gate Voltage www.irf.com

4

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

IRF7463

International TOR Rectifier

SO-8 Package Details

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- [5] DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.006).
- (6) DIMENSIONS IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE..

	INC	HES	MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
Α1	.0040	.0098	0.10	0.25	
В	.014	.018	0.36	0.46	
С	.0075 .0098		0.19	0.25	
D	.189 .19		4.80	4.98	
Е	.150	.157	3.81	3.99	
е	.050 I	BASIC	1.27 BASIC		
e1	.025 I	BASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.011	.019	0.28	0.48	
L	0.16 .050		0.41	1.27	
θ	0° 8°		0°	8°	

RECOMMENDED FOOTPRINT

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101

SO-8 Tape and Reel

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- 1. CONTROLLING DIMENSION : MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_1 = 25$ °C, L = 3.3mH $R_G = 25\Omega$, $I_{AS} = 14A$.
- $\ensuremath{ \Im \ } I_{SD} \leq 14A, \ di/dt \leq 93A/\mu s, \ V_{DD} \leq V_{(BR)DSS},$ $T_J \le 150^{\circ}C$
- 4 Pulse width \leq 300µs; duty cycle \leq 2%.
- ⑤ Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS
- © When mounted on 1 inch square copper board, t<10 sec

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTER: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN: 16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 3/00