

Université Claude Bernard Lyon 1 Licence Math-Informatique 1ère année

Partie 5

Olivier Glück

Université LYON 1 / Département Informatique Olivier.Gluck@univ-lyon1.fr

http://perso.univ-lyon1.fr/olivier.gluck

Copyright

- Copyright © 2017 Olivier Glück; all rights reserved
- Ce support de cours est soumis aux droits d'auteur et n'est donc pas dans le domaine public. Sa reproduction est cependant autorisée à condition de respecter les conditions suivantes :
 - Si ce document est reproduit pour les besoins personnels du reproducteur, toute forme de reproduction (totale ou partielle) est autorisée à la condition de citer l'auteur.
 - Si ce document est reproduit dans le but d'être distribué à des tierces personnes, il devra être reproduit dans son intégralité sans aucune modification. Cette notice de copyright devra donc être présente. De plus, il ne devra pas être vendu.
 - Cependant, dans le seul cas d'un enseignement gratuit, une participation aux frais de reproduction pourra être demandée, mais elle ne pourra être supérieure au prix du papier et de l'encre composant le document.
 - Toute reproduction sortant du cadre précisé ci-dessus est interdite sans accord préalable écrit de l'auteur.

Plan du cours

- CM1 : Internet, les réseaux et le web
- CM2 : Pages HTML et feuilles de styles CSS
- CM3: Web interactif, formulaires, pages dynamiques et PHP
- CM4 : Protocole HTTP, méthodes GET et POST
- CM5 : Les applications d'Internet
- CM6 : La couche transport : les protocoles TCP et UDP
- CM7 : Le protocole IP
- CM8 : Les protocoles Ethernet, ARP et ICMP. Synthèse des échanges entre un client et serveur Web

CM5: Les applications d'Internet

Le web (rappels)
La connexion à distance (telnet et ssh)
Le courrier électronique (SMTP, POP, IMAP, Webmail)
La résolution des noms (DNS)
Les autres applications (FTP, NFS, LDAP...)

Plan du CM5

Le web (rappels)

Qu'est-ce que le web ? Format d'une URL, Navigateur et serveur web, Requête/Réponse HTTP, Méthodes GET/POST

- La connexion à distance (telnet, ssh et X)
 Connexion locale et distante, L'application telnet, ssh, et X
- Le courrier électronique (SMTP, POP, IMAP, Webmail)
 Composants et transmission du courriel, Configuration d'un client mail, Protocoles SMTP, POP et IMAP, Webmail
- La résolution des noms (DNS)
 - Les services fournis par le DNS, Un système distribué, Qu'est-ce qu'un domaine ? Les serveurs racine, Les messages DNS, host
- Les autres applications (FTP, NFS, LDAP...)

Le Web (rappels)

Qu'est-ce que le web ?
Format d'une URL
Navigateur et serveur web
Requête/Réponse HTTP
Méthodes GET/POST

Qu'est-ce que le web? (1)

 Une application d'Internet qui permet le partage de documents liés entre eux et appelés "pages web"

• Une page web peut contenir du texte, des images, des programmes, des liens vers d'autres pages web...

Fonctionne en mode Client/Serveur au dessus de

l'architecture TCP/IP

L'application est répartie sur le client et le serveur qui dialoguent selon un protocole applicatif spécifique

Format d'une URL

```
proto://host_name:port/path?arguments
```

la racine "/" de path est définie par la configuration du serveur Web

(Attention : à ne pas confondre avec la racine du système de fichiers sur le serveur)

/path peut contenir une étiquette (point d'ancrage)

http://www.monsite.fr/projet/doc.html#label

 arguments permettent de passer des informations à des programmes s'exécutant sur le serveur

Par exemple, ?action-joueur=gauche dans le jeu 2048

Le navigateur web

- Analyse l'URL demandée et récupère le nom du serveur
- Demande au DNS l'adresse IP de la machine serveur
- Etablit une connexion TCP vers le numéro de port de l'URL (80 par défaut)
- Fabrique la requête HTTP et l'envoie au serveur
- Réceptionne la réponse HTTP
- Interprète le code HTML reçu : commandes de formatage et de mise en forme (police, gras, couleurs...)
- Demande les objets incorporés au serveur et affiche la page correctement formatée
- Exécute les programmes Javascript s'il y en a

Le serveur web

- Il est en permanence à l'écoute des requêtes formulées par les clients (qui peuvent être très nombreux !)
- Il vérifie la validité de la requête...
 - Le document demandé peut ne pas exister
 - L'accès a un document peut être restreint (authentification possible)
- ... et y répond si la requête est valide : envoi du texte, des images, de la feuille de styles, du code à exécuter sur le client (Javascript).
- Il peut renvoyer un message d'erreur, une demande d'authentification...
- Il peut exécuter un programme localement (PHP) qui va générer une réponse HTML (pages dynamiques) en fonction des arguments transmis par le navigateur.

Interactions navigateur/serveur web

Poste client Site serveur demande du formulaire recherche de la page **Navigateur** HTML sur le disque client **Serveur Web Démon HTTP** DD Affichage du envoi du formulaire formulaire l'utilisateur remplit le formulaire envoi des données du transmission des données **Formulaire** formulaire (soumission) au CGI / lancement de son **Serveur Web** rempli exécution **Démon HTTP** exécution du CGI **Programme** CGI **SGBD** requête à la SGBD **Serveur Web Démon HTTP** réponse en HTML du CGI renvoyée au démon Affichage de **HTTP** la réponse envoi de la page HTML résultat

Une requête/réponse HTTP

```
🗶 xterm
  ogluck@lima:~$ telnet localhost 80
  Trying 127.0.0.1...
  |Connected to localhost.
  Escape character is '^]'.
  GET /~ogluck/index2.html HTTP/1.1
  Host: localhost
  Accept: */*
  HTTP/1.1 200 OK
  Date: Sun, 23 May 2004 17:46:01 GMT
  Server: Apache/1.3.28 (Debian GNU/Linux) PHP/3.0.18
  Last-Modified: Sun, 23 May 2004 17:42:12 GMT
  ETag: "a805a-5a-40b0e274"
  |Accept-Ranges: bytes
  |Content-Length: 90
  |Content-Type: text/html; charset=iso-8859-1
|www|<html><head><title>
  lindex2.html
  </title></head><body>
  <h1>Bienvenue !</h1>
  </body></html>
  Connection closed by foreign host.
∭ogluck@lima:~$ ▮
```

Méthodes GET/POST (1)

Voici le code d'un petit script CGI en shell

```
#! /bin/sh
# Get_Post.cgi
echo 'Content-type: text/plain'
echo ' '
echo "QS=$QUERY_STRING"
read DATA
echo "Data=$DATA"
```

Les résultats de l'exécution avec la méthode GET puis
 POST sont montrés dans les deux transparents suivants

Méthodes GET/POST (2)

```
_ | D | X
🗶 xterm
  ogluck@lima:~$ telnet localhost 80
  Trying 127.0.0.1...
 Connected to localhost.
 Escape character is '^]'.
 GET /~ogluck/cgi-bin/Get_Post.cgi?email=toto@site.fr&pass=toto&s=login HTTP/1.1
 |Host: localhost
 Accept: */*
 HTTP/1.1 200 OK
 |Date: Sun, 23 May 2004 18:25:26 GMT
 Server: Apache/1.3.28 (Debian GNU/Linux) PHP/3.0.18
  Transfer-Encoding: chunked
 |Content-Type: text/plain; charset=iso-8859-1
 |QS=email=toto@site.fr&pass=toto&s=login
  Data=
 Connection closed by foreign host.
∭ogluck@lima:~$ ■
```

Méthodes GET/POST (3)

```
🗶 xterm
 ogluck@lima:~$ telnet localhost 80
 Trying 127.0.0.1...
 Connected to localhost.
 Escape character is '^]'.
 POST /~ogluck/cgi-bin/Get_Post.cgi HTTP/1.1
 Accept: */*
 |Host: localhost
 Content-type: application/x-www-form-urlencoded
 |Content-length: 36
 email=toto@site.fr&pass=toto&s=login
 HTTP/1.1 200 OK
 Date: Sun, 23 May 2004 18:29:52 GMT
 Server: Apache/1.3.28 (Debian GNU/Linux) PHP/3.0.18
 Transfer-Encoding: chunked
 Content-Type: text/plain; charset=iso-8859-1
 QS=
 Data=email=toto@site.fr&pass=toto&s=login
 Connection closed by foreign host.
∭ogluck@lima:~$
```

Méthodes GET/POST (4)

Avec la méthode GET

- les données relatives aux champs du formulaire sont transmises via l'URL (dans le type de la requête)
- le programme CGI les récupère dans la variable d'environnement QUERY_STRING
- il est possible de cliquer sur "Actualiser" pour retransmettre les données et de définir un bookmark

Avec la méthode POST

- les données relatives aux champs du formulaire sont transmises dans le corps de la requête HTTP
- Content-type et Content-length sont positionnés
- le programme CGI les récupère sur l'entrée standard
- "Actualiser" et bookmark impossibles, données du formulaire non visibles dans les logs du serveur

La connexion à distance (telnet, ssh et X)

Connexion locale et distante
L'application telnet
L'application ssh
L'application X

Qu'est-ce qu'une connexion à distance ?

- Application permettant à un utilisateur de se connecter à une machine distante pour en prendre partiellement le contrôle c'est à dire exécuter des commandes autorisées
 - à partir d'un terminal local et à condition que cet utilisateur dispose d'un accès autorisé à cette machine (login, mot de passe...)
- Les commandes saisies localement au clavier s'exécutent sur la machine distante

Les environnements local et distant peuvent être hétérogènes (windows-->unix, ...).

Connexion à distance :

Serveur = machine distante

Logique

Données

La connexion à distance

- Plusieurs protocoles
 - telnet: le standard (existe sur de nombreuses plate-formes)
 - rlogin : uniquement entre machines unix
 - ssh : sécurisé (authentification + chiffrement), peut transporter le DISPLAY c'est à dire gérer des fenêtres distantes
- La connexion à distance a besoin d'interactivité
 - Tout ce qui est tapé au clavier sur le client est envoyé au serveur à travers la connexion puis exécuté par lui.
 - Tout ce qui est envoyé par le serveur au client s'affiche dans le terminal sur l'écran de la machine cliente.

Fonctionnement d'une connexion locale

Fonctionnement d'une connexion distante

Telnet: un protocole ET une application

TELecommunication NETwork protocol

- Un des premiers standard de l'Internet : RFC 854,855 (1983)
- Le serveur attend sur son port 23 les demandes de connexion TCP qui arrivent des clients
- Authentification par login/mdp sur le shell distant (attention : le mot de passe est transmis en clair)
- Quand un caractère est tapé au clavier, il est envoyé au serveur qui renvoie un "écho" du caractère ce qui provoque son affichage dans le terminal local
- Prise en compte de l'hétérogénéité entre le système local et le système distant
 - telnet d'une machine Windows vers une machine Unix

Le client telnet

- Les différentes exécutions possibles (côté client)
 - sans argument (paramétrer sa connexion distante)

telnet

par le nom de la machine distante (DNS+port 23)

```
telnet nom du serveur
```

par l'adresse IP de la machine distante (port 23)

```
telnet adr IP du serveur
```

accès à un autre service (connexion sur un autre port)

```
telnet adr_IP_du_serveur numéro_port
```

telnet utilisé comme client web

```
_ | D | X
' lima
ogluck@lima:~$ telnet www.ens-lyon.fr 80
Trying 140.77.167.3...
                                 L'application telnet est
Connected to pingouin.ens-lyon.fr
Escape character is '^]'.
                                 utilisée mais pas le protocole
HEAD /index.html HTTP/1.0
                                 Telnet car il ne s'agit pas
HTTP/1.1 200 OK
                                 d'une connexion à distance
|Date: Mon, 01 Mar 2004 18:37:42 G
|Server: Apache/1.3.26 (Unix) Debian GNU/Linux PHP/4.1.2
|Last-Modified: Tue, 23 Oct 2001 08:59:37 GMT
|ETag: "3fa02b-100e-3bd53179"
Accept-Ranges: bytes
|Content-Length: 4110
|Connection: close
|Content-Type: text/html; charset=iso-8859-1
Connection closed by foreign host.
ogluck@lima:~$
```

SSH: un shell distant sécurisé

Secure SHell

- Les communications sont cryptées
- Authentification à base de clés
- Un des seuls protocoles de connexion à distance qui passe les pare-feux de nos jours
- Permet de transporter des fenêtres graphiques via le tunnel SSH avec ssh -X
- Le serveur attend sur son port 22 les demandes de connexion TCP qui arrivent des clients
- Pas encore de RFC (ietf-internet-draft)

Olivier Glück

Les commandes ssh et scp

Connexions à distance

```
ssh -l user hostname
ssh user@hostname
```

Exécution de commande à distance

```
ssh -l user hostname cmd
ssh user@hostname cmd
```

Copie de fichiers à distance

```
scp file1 file2 user@hostname:
scp -r dir user@hostname:/tmp
```

Principe du chiffrement

- La qualité de la sécurité dépend
 - du secret de la clé
 - de la longueur de la clé (plus il y a de bits, plus il est difficile d'essayer toutes les clés)
 - de la difficulté d'inversion de l'algorithme de chiffrement

X : une application qui gère les fenêtres

- Système de multi-fenêtrage sous Unix
 - appelé X ou X Window System ou X11
 - ensemble de programmes réalisant l'interface Homme/ Machine basé sur l'utilisation des périphériques (clavier, souris, écran, ...)
- X est constitué de plusieurs entités
 - un serveur X : gère le matériel (clavier, écran, ...) et leur utilisation par les applications graphiques
 - des clients X : applications graphiques qui nécessitent un serveur X pour afficher les fenêtres (xemacs, xterm, xcalc, xv, ...)
 - le protocole X : fait communiquer les clients et le serveur

Olivier Glück

X : une application qui gère les fenêtres

- Système réparti : permet de travailler sur plusieurs machines simultanément
 - les clients X peuvent s'exécuter sur des machines distantes (3 connexions TCP dans l'exemple)

Olivier Glück

SSH -X: X11 forwarding

ssh -X station2

Station1 (client ssh)

Station2 (serveur ssh)

Le courrier électronique (SMTP, POP, IMAP, webmail)

Les composants du courrier électronique
La transmission d'un courriel
Configuration d'un client mail
Les types MIME
Les protocoles SMTP, POP et IMAP
Qu'est-ce qu'un Webmail ?
Format d'une adresse mail

Les composants du courrier électronique

4 composants principaux :

- des agents utilisateurs
- des serveurs de mail
- un protocole de transfert de mail : Simple Mail Transfer Protocol (SMTP)
- un protocole d'accès à la boîte aux lettres (POP, IMAP, ...)

Les agents utilisateurs :

- composition, édition, lecture du courrier électronique
- ex : Eudora, Outlook, elm, pine, Thunderbird
- un agent utilisateur dialogue avec un serveur pour émettre/ recevoir des messages

Les composants du courrier électronique

- Les messages entrants et sortants sont stockés sur le serveur
- La boîte aux lettres de chaque utilisateur contient les messages entrants (à lire)
- File d'attente des messages mail sortants (à envoyer)
- Protocole SMTP entre les serveurs de mail pour l'envoi des messages
 - modèle C/S : Client (serveur de mail émetteur) - Serveur (serveur de mail récepteur)
 - le client se connecte sur le port 25/TCP du serveur pour transférer son message

La transmission d'un courrier électronique

- Les protocoles d'accès : consultation de sa boîte aux lettres (après authentification)
 - POP3 : Post Office Protocol v3 [RFC 1939]
 - autorisation (agent <--> server) et téléchargement
 - IMAP4 : Internet Message Access Protocol v4 [RFC 3501]
 - plus de caractéristiques, plus complexe, plus récent
 - manipulation de messages stockés sur le serveur
 - HTTP (Webmail): Hotmail, Yahoo! Mail, ...

Analogie avec le courrier "postal"

Configuration d'un client mail

L'identité permet de renseigner une partie de l'en-tête des messages envoyés

Configuration d'un client mail

Paramètrage du serveur sortant

Configuration d'un client mail

Configuration d'un client mail

IMAP : les messages restent sur le serveur sauf s'ils sont supprimés, déplacés, ...

Les types MIME [RFC 2045, 2056]

Content-Type: type/subtype; parameters

- Lignes supplémentaires dans l'en-tête du message pour déclarer un type MIME et un encodage
- Content-type est généralement positionné à partir de l'extension du document demandé (/etc/mime.types)

```
MIME version

Méthode utilisée pour coder les données

Type MIME des données

Type MIME des données multimédias

Données codées en base64

From: olivier_gluck@yahoo.fr

To: olivier_gluck@ens-lyon.fr

Subject: Voici une belle image !

MIME-Version: 1.0

Content-Transfer-Encoding: base64

Content-Type: image/jpeg

H4sICGwcwDsfXuT2ziS59+DT4Gd27a7/T

[...]

8jpLnCdTi6RTu8+FRqs2i/FR870inde==
```

Un mail avec pièce jointe : type Multipart

```
From: olivier gluck@yahoo.fr
To: olivier.gluck@ens-lyon.fr
Subject: Voici une belle image mais avec du texte!
MTME-Version: 1.0
Content-Type: multipart/mixed; boundary=98766789
--98766789
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain
Cher Olivier,
Voici une photo de nos dernieres vacances !
--98766789
Content-Transfer-Encoding: base64
Content-Type: image/jpeg
H4sICGYRMTQAA3NsaWRlcy5wcwDsfXuT2ziS59+DT4Gd275a
5607LlqSJbFNiWpSqsfw6rvLxPqSxIlVnk64i54ftRKi67/T
Γ...1
8jpLnCdTi6RTu8+FRqs2i/RTuy56plYbYVsa1fdvUjHrtV6q
RTf4/hy67fqIIVDfeR+rtYuNFR870inde==
--98766789--
```

Les commandes SMTP

Commande	Description
HELO nom client	identifie le client SMTP ; établit la connexion
MAIL From: <@exp>	identifie l'expéditeur du message
RCPT To: <@dest>	désigne le destinataire du message
DATA	indique le début du message (en-tête+corps)
QUIT	termine la connexion
NOOP	pas d'opération ; force le serveur à répondre
RSET	réinitialisation de la saisie de données (DATA)

```
_ | _ | ×
🗶 xterm
 ogluck@lima:~$ telnet localhost 25
 Trying 127.0.0.1...
 Connected to localhost.
 Escape character is '^]'.
 220 lima.cri2000.ens-lyon.fr ESMTP Exim 3.35 #1 Mon, 22 Mar 2004 11:57:58 +0100
 |HELP
 214-Commands supported:
 214-
         HELO EHLO MAIL RCPT DATA AUTH
 214
         NOOP QUIT RSET HELP
 louit
 221 lima.cri2000.ens-lyon.fr closing connection
 Connection closed by foreign host.
 ogluck@lima:~$
```

Un échange SMTP

"Nice to meet you !"
... sender OK
... receiver OK

Début de l'en-tête (DATA)

Fin de l'en-tête (DATA) —

Fin du message (<CR><LF>.<CR<LF>)


```
xterm
ogluck@lima:~$ telnet mailhost.ens-lyon.fr 25
Trying 140.77.1.22...
Connected to oceanite.ens-luon.fr.
Escape character is '^]'.
220 oceanite.ens-lyon.fr ESMTP Postfix
HELO limalens-luon[fr
250 oceanite.ens-luon.fr
MAIL FROM: ogluck
250 Ok
RCPT TO: <olivier.gluck@ens-lyon.fr>
250 Ok
RCPT TO: Kogluck@bat710.univ-lyon1.fr>
DATA
354 End data with <CR><LF>.<CR><LF>
From: olivier_gluck@yahoo.fr
To: Olivier <ogluck@bat710.univ-lyon1.fr>
Cc: GLUCK <olivier.gluck@ens-lyon.fr>
Subject: un dailoque SMTP
|Voici un exemple d'echange !
250 Ok: queued as 119F332015D
MAIL FROM: ogluck
250 Ok
RCPT TO: <olivier_gluck@yahoo.fr>
250 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
From: olivier.gluck@ens-lyon.fr
To: olivier_gluck@yahoo.fr
Un deuxieme mail a envoyer...
250 Ok: queued as 1A18A3200F6
Ιουιτ
221 Bue
∥Gogngotásogagkoseduby/doreign host.
                                          43
ogluck@lima:~$
```

Exemple d'en-têtes

Exemple de contenu d'une bal

glucko@**ducas** [SunOs] ~> |

```
SunOs:/users/cao/glucko
 glucko@ducas [SunOs] "> cat /var/mail/glucko
 From Olivier.Gluck@numericable.fr Mon Mar 22 20:04:51 2004
 Return-Path: <Olivier.Gluck@numericable.fr>
 Received: from isis.lip6.fr (isis.lip6.fr [132.227.60.2])
         by asim.lip6.fr (8.11.6p3/8.11.6) with ESMTP id i2MJ4pM14034
         for <Olivier.Gluck@asim.lip6.fr>; Mon, 22 Mar 2004 20:04:51 +0100 (CET)
 Received: from oughtred.numericable.net (oughtred.numericable.net [80.236.0.153])
           by isis.lip6.fr (8.12.11/jtpda-5.4+victor) with ESMTP id i2MJ4p13032651
           for <Olivier.Gluck@lip6.fr>: Mon, 22 Mar 2004 20:04:51 +0100
 X-pt: isis.lip6.fr
 Received: (qmail 15060 invoked from network): 22 Mar 2004 19:04:45 -0000
 Received: from unknown (HELO numericable.fr) ([81.220.146.234])
           (envelope-sender <0livier.Gluck@numericable.fr>)
           by oughtred.numericable.net (qmail-ldap-1.03) with SMTP
           for <Olivier.Gluck@lip6.fr>; 22 Mar 2004 19:04:45 -0000
 Message-ID: <405F38D6.7020804@numericable.fr>
 Date: Mon, 22 Mar 2004 20:04:54 +0100
 From: Olivier GLUCK <Olivier.Gluck@numericable.fr>
 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; fr-FR; rv:1.0.2) Gecko/20030208 Netscape/7.02
 X-Accept-Language: fr-fr, fr
 MIME-Version: 1.0
                                                            Une BAL n'est rien de plus
 To: Olivier Gluck <Olivier.Gluck@lip6.fr>
 Subject: Cours SMTP
                                                            qu'un fichier!
 Content-Type: text/plain; charset=ISO-8859-15; format=flowed
 Content-Transfer-Encoding: 8bit
 X-Scanned-But isis.lip6.fr
                                                            (généralement / var/mail/
 ∭Voilà le contenu d'une BAL contenant 1 seul message !
                                                            user login)
```

Le protocole POP3 [RFC 1939]

Phase d'autorisation

Commandes client :

user: déclare username

pass: password

Deux réponses possible du serveur :

+OK

-ERR

Phase de transaction

list: liste les numéros de messages et leur taille

retr: rapatrie un message à partir de son numéro

dele: efface un message

quit

```
S: +OK POP3 server ready
C: user alice
S: +OK
C: pass hungry
S: +OK user successfully logged on

C: list
S: 1 498
```

```
S: 1498
S: 2912
S: .
C: retr 1
S: <contenu du message 1>
S: .
C: dele 1
C: retr 2
S: <contenu du message 2>
S: .
C: dele 2
C: quit
```

S: +OK POP3 server signing off

Le protocole POP3 [RFC 1939]

- POP3 est extrêmement simple
 - permet uniquement de télécharger des messages depuis le serveur en laissant éventuellement une copie de ceux-ci dans la BAL de l'utilisateur
 - pas adapté aux utilisateurs nomades
 - impossible de gérer des répertoires sur le serveur
 - impossible de gérer les messages en les laissant sur le serveur

IMAP répond à cette problématique au prix d'un protocole beaucoup plus complexe

Le protocole IMAP [RFC 3501]

- IMAP permet la gestion distante des messages
 - Associe un message à un répertoire distant sur le serveur
 - Permet à l'utilisateur de faire une recherche dans les messages sur le serveur
 - Permet de ne consulter que des extraits de messages (par exemple que l'en-tête ou que la partie texte d'un message multipart...)
 - Contrairement à POP3, IMAP conserve des informations d'état sur chaque utilisateur (noms des répertoires, listes des messages qu'ils contiennent...)

Plus d'infos: https://tools.ietf.org/html/rfc3501

Olivier Glück

48

Qu'est-ce qu'un Webmail?

- L'utilisateur utilise un navigateur Web comme agent utilisateur pour consulter/envoyer ses courriers
- Le navigateur fait des requêtes HTTP (ou HTTPS) vers un serveur Web qui s'interface avec les serveurs SMTP/IMAP

Le serveur HTTP exécute des scripts qui font des requêtes

- IMAP pour communiquer avec le serveur IMAP qui stockent les messages reçus par l'utilisateur
- SMTP pour envoyer les messages de l'utilisateur
- Avantages du Webmail
 - adapté aux utilisateurs itinérants
 - pas besoin d'un agent utilisateur particulier, seule une connexion Internet avec Navigateur Web est nécessaire

Format d'une adresse mail

- Adresse d'un destinataire : bal@nom domaine
- Problème :
 - bal n'est pas forcément le login de l'utilisateur : souvent de la forme prenom. nom qui est un alias vers le login
 - nom_domaine n'est pas forcément le nom du serveur de mail contenant la boîte aux lettres pour avoir des adresses plus courtes et plus faciles à retenir
 - bal peut représenter plusieurs destinataires (liste de mail)
- Exemple: Olivier.Gluck@ens-lyon.fr
 Olivier.Gluck est un alias vers /var/mail/ogluck
 ens-lyon.fr pointe vers mailhost.ens-lyon.fr
 (enregistrement de type MX dans le DNS)

Architecture d'un serveur MAIL

La résolution des noms (DNS)

Les services fournis par le DNS
Un système distribué
Qu'est-ce qu'un domaine DNS?
Les serveurs racine
Les messages DNS
La commande host

DNS: Domain Name System

- Les personnes ont plusieurs identifiants
 - Le nom mais aussi #sécu, #Passeport, #téléphone
- Les machines et les routeurs aussi
 - L'adresse IP (32 bits ou 128 bits) est l'équivalent du numéro de téléphone
 - Le nom de la machine est ce que l'on utilise dans l'URL par exemple :

```
www.univ-lyon1.fr
www.education.gouv.fr
```

 Le DNS fait le lien entre les adresses IP utilisées pour acheminer les paquets et les noms de machine utilisés par les utilisateurs ou les applications

DNS: Domain Name System

- C'est une base de données distribuée
 - Il y a plein de serveurs de noms dans le monde. Chaque serveur stocke les noms et les adresses IP dont il est responsable.
- C'est un protocole applicatif comme HTTP, SMTP...
 - Les machines clientes et les serveurs de noms communiquent pour effectuer la traduction d'un nom en adresse IP.
 - Le DNS est utilisé par les applications clientes pour trouver les adresses IP des serveurs mais n'est pas utilisé directement par l'application comme SMTP...
 - Le DNS fonctionne selon le modèle Client/Serveur comme les autres applications.
 - Le serveur utilise le port 53/UDP (ou 53/TCP mises à jour)
 - RFC 1034, 1035, 2181, ...

Les services fournis par le DNS

Le service principal : obtenir l'adresse IP d'un serveur

```
Requête DNS: Quelle est l'adresse IP de www.univ-lyon1.fr ?
Réponse DNS: 134.214.126.72
olivier.gluck@lifasr2:~$ host www.univ-lyon1.fr
www.univ-lyon1.fr is an alias for ksup.univ-lyon1.fr.
ksup.univ-lyon1.fr has address 134.214.126.72
```

- Autres exemples de services fournis par le DNS
 - Donner plusieurs noms à une machine (Alias)
 - Donner plusieurs adresses IP à un serveur (Répartition de la charge)
 - Trouver le nom d'un serveur mail (Mail server aliasing)

```
olivier.gluck@lifasr2:~$ host univ-lyon1.fr | grep mail univ-lyon1.fr mail is handled by 5 smtpbv.univ-lyon1.fr. olivier.gluck@lifasr2:~$ host smtpbv.univ-lyon1.fr smtpbv.univ-lyon1.fr
```

Pourquoi le DNS est un système distribué?

- Pour l'utilisateur, le DNS n'est qu'une boîte noire mais en réalité très compliquée
 - Une requête DNS peut impliquer plusieurs serveurs de noms répartis dans le monde entier
- Pourquoi pas de DNS centralisé ? Un seul serveur contiendrait toutes les correspondances requises par les applications de l'Internet
 - Dimension de l'Internet : trop de correspondances à gérer, nombre de requêtes au serveur trop important
 - Tolérance aux pannes : si le serveur DNS tombe, tout l'Internet aussi !
 - Volume de trafic impossible à supporter par un seul serveur
 - Délais de réponse : il faut faire en sorte que la réponse soit la plus proche possible du demandeur
 - Problème lié à la maintenance et aux mises à jour perpétuelles de la base

Un système distribué

- Aucun serveur ne peut connaître toutes les correspondances nom <--> adresse IP
 - Si un serveur ne connaît pas une correspondance, il interroge un autre serveur jusqu'à atteindre le serveur détenant l'information souhaitée
- Trois types de serveur DNS
 - Les serveurs de noms locaux : c'est au serveur local que les applications clientes envoient toutes leurs requêtes
 - Les serveurs de noms racine : si un serveur local n'a pas la réponse, il transmet la requête à un serveur racine ; un serveur de noms racine connaît au moins les serveurs de source autorisée du premier niveau (.fr., ...)
 - Les serveurs de noms de source autorisée : un serveur de source autorisée contient les informations "officielles" de sa zone DNS ; il a autorité sur sa zone

Un système distribué

Qu'est-ce qu'un domaine DNS?

Un domaine est un sous-arbre entier de l'espace de nommage

Les serveurs racine

DNS Root Servers

1 primaire et12 secondaires

Designation, Responsibility, and Locations

Principe d'une résolution de nom

Les messages DNS [RFC 1034, 1035]

Les enregistrements stockés par les serveurs

- **Type=A** (val=1): sert à décrire une correspondance Nom=nom d'hôte (canonique), Value=@IPv4
- Type=AAAA (val=28, RFC 1886): idem mais adresse IPv6
 Nom=nom d'hôte, Value=@IPv6
- Type=PTR (val=12): sert à la résolution inverse

 Nom=un nom de la zone arpa, Value=nom canonique (valeur pointée)
- **Type=NS** (val=2) : sert à associer un nom de domaine à un serveur de noms de source autorisée
 - Nom=domaine, Value=nom du serveur de noms
- **Type=CNAME** (val=5): sert à définir un alias pour un hôte Nom=un alias, Value=nom canonique (le vrai nom)

Les enregistrements stockés par les serveurs

- Type=MX (val=15): alias réservés aux serveurs mail permettant d'associer plusieurs serveurs de mail avec différentes priorités à une même adresse (RFC 974)

 Nom=un alias, Value=nom canonique d'un serveur de mail
- **Type=SOA** (val=6): sert à donner des infos sur la zone Nom=nom d'une zone, Value=informations sur la zone
- **Type=ANY** (val=255) : utilisé dans les requêtes pour indiquer n'importe quel type (*)
- **Type=AXFR** (val=252): utilisé dans les requêtes pour demander le transfert d'une zone entière (mise à jour d'un serveur secondaire...)
- **Type=HINFO** (val=13) : sert à indiquer les CPU et OS du serveur interrogé

Les enregistrements stockés par les serveurs

Exemples:

```
ssh.ens-lyon.fr.
                                 fulmar.ens-lyon.fr.
                         CNAME
ens-lyon.fr.
                                 cri.ens-lyon.fr.
                         NS
ens-lyon.fr.
                                 ens.ens-lyon.fr.
                         NS
                                 140.77.1.32
cri.ens-lyon.fr.
                         A
relaissmtp.ens-lyon.fr.
                         CNAME
                                 pluvier.ens-lyon.fr.
ens-lyon.fr.
                                 20 pluvier.ens-lyon.fr.
                         MX
ens-lyon.fr.
                                 30 pluvier2.ens-lyon.fr.
                         MX
                                 20 pluvier.ens-lyon.fr.
listes.ens-lyon.fr.
                         MX
                                 140.77.167.6
fulmar.ens-lyon.fr.
                         Α
6.167.77.140.in-addr.arpa. PTR
                                 fulmar.ens-lyon.fr
```

La commande host

```
_ | _ | × |
🗶 xterm
 ogluck@lima:~$ host
  Usage: host [-aCdlrTwv] [-c class] [-n] [-N ndots] [-t type] [-W time]
              [-R number] hostname [server]
         -a is equivalent to -v -t *
         -c specifies query class for non-IN data
         -C compares SOA records on authoritative nameservers
         -d is equivalent to -v
         -1 lists all hosts in a domain, using AXFR
         -n Use the nibble form of IPv6 reverse lookup
         -N changes the number of dots allowed before root lookup is done
         -r disables recursive processing
         -R specifies number of retries for UDP packets
         -t specifies the query type
         -T enables TCP/IP mode
         -v enables verbose output
         -w specifies to wait forever for a reply
         -W specifies how long to wait for a reply
  ogluck@lima:~$
```

```
ogluck@lima:~$ host ssh.ens-lyon.fr
ssh.ens-lyon.fr is an alias for fulmar.ens-lyon.fr.
fulmar.ens-lyon.fr has address 140.77.167.6
```

```
Trying "etu.univ-lyon1.fr"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8179
;; flags: gr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 3, ADDITIONAL: 7
:: OUESTION SECTION:
;etu.univ-lyon1.fr.
                                 TN
                                         ANY
:: ANSWER SECTION:
etu.univ-lyon1.fr.
                                                 134.214.126.72
                        432000
                                 IN
                                         A
                                                 5 smtpbv.univ-lyon1.fr.
etu.univ-lyon1.fr.
                                         MX
                        3600
                                 IN
:: AUTHORITY SECTION:
univ-lyon1.fr.
                        432000
                                 IN
                                         NS
                                                 dnsi.univ-lyon1.fr.
univ-lyon1.fr.
                                         NS
                                                 dns2.univ-lyon1.fr.
                        432000
                                 IN
univ-lyon1.fr.
                                                 dns.univ-lyon1.fr.
                        432000
                                 IN
                                         NS
:: ADDITIONAL SECTION:
smtpbv.univ-lyon1.fr.
                        1800
                                 IN
                                         A
                                                 134.214.126.92
dns.univ-lyon1.fr.
                                                 134.214.100.6
                        432000
                                 IN
                                         A
dns.univ-lyon1.fr.
                        432000
                                 IN
                                         AAAA
                                                 2001:660:5001:100::6
dns2.univ-lyon1.fr.
                        432000
                                                 134.214.100.245
                                 IN
                                         A
dns2.univ-lyon1.fr.
                        1800
                                 IN
                                         AAAA
                                                 2001:660:5001:100::245
dnsi.univ-lyon1.fr.
                        432000
                                 IN
                                                 134.214.100.9
dnsi.univ-lyon1.fr.
                        432000
                                 IN
                                         AAAA
                                                 2001:660:5001:100::9
```

Received 278 bytes from 10.10.10.10#53 in 2 ms olivier.gluck@lifasr2:~\$

Configuration d'un poste de travail

Les autres applications (FTP, NFS, LDAP...)

Le transfert de fichiers (FTP)
L'accès aux fichiers distants (NFS, SMB)
LDAP: un annuaire fédérateur

Le transfert de fichiers

- Copie intégrale d'un fichier d'un système de fichiers vers un autre en environnement hétérogène
 - copie de fichiers à distance : rcp, scp
 - protocole de transfert de fichiers avec accès aux systèmes de fichiers local et distant : ftp, tftp, sftp
- Ne pas confondre avec les protocoles d'accès aux fichiers distants : NFS (RPC), SMB (Microsoft)
- Le serveur FTP maintient un "état" : répertoires courants local et distant, username

Requêtes du protocole FTP

RETR <filename>

Déclanche la transmission par le serveur du fichier <filename> sur le canal de données.

STOR <filename>

Déclanche la réception d'un fichier qui sera enregistré sur le disque sous le nom <filename>. Si un fichier avec le même nom existe déjà il est remplacé par un nouveau avec les données transmisses.

APPE <filename>

Déclanche la réception d'un fichier qui sera enregistré sur le disque sous le nom <filename>. Si un fichier avec le même nom existe déjà, les nouvelles données lui sont concaténée.

REST <offset>

Redémarrage en cas d'échec d'un transfert précédent. L'offset précise le numéro du dernier octet reçu.

ABOR: abandon d'un transfert en cours.

72

Requêtes du protocole FTP

```
PWD : impression du répertoire courant.

LIST : catalogue du répertoire courant (canal donnée).
```

NLST: catalogue succint (canal donnée).

CWD <repname> : changement de répertoire courant pour < repname>.

MKD <repname> : création du nouveau répertoire < repname>.

RMD < repname > : suppression du répertoire < repname > .

DELE <filename>: suppression du fichier <filename>.

RNFR <filename1> : définit le nom actuel d'un fichier à renommer.

RNTO <filename2> : définit le nouveau nom d'un fichier à renommer.

STAT: status courant de la session FTP.

STAT <repname> : équivalent à LIST mais réponse sur le canal de contrôle.

HELP: affiche l'aide sur les opérations du site.

NOOP: no operation.

Exemples de réponses FTP

- 125 Data connection already open
- 150 Opening BINARY mode data connection
- 200 Command successful
- 214 Help message
- 220 lima.cri2000.ens-lyon.fr FTP server (Version 6.4/OpenBSD/Linux-ftpd-0.17) ready
- 226 Transfer complete
- 230 User ogluck logged in
- 331 Passwd required for ogluck
- 425 Can't open data connection
- 452 Error writing file
- 500 Command not understood
- 550 No files found

L'accès aux fichiers distants

- Différences avec le transfert de fichiers
 - L'accès aux fichiers distants est complètement transparent pour l'utilisateur
 - Tout se passe comme si le système de fichiers distant était local
 - L'utilisateur peut éditer le fichier, le modifier, ...; les modifications seront répercutées sur le système de fichiers distant
- Les deux principaux protocoles
 - NFS : Network File System (Unix/Sun-RPC)
 - SMB : Server Message Block (issu du monde Microsoft)

Olivier Glück

NFS: principe de fonctionnement

SMB: Server Message Block

 Protocole de Microsoft et Intel permettant le partage de ressources (disques, imprimantes...) à travers un réseau (1987)

LDAP: un annuaire fédérateur

- Permettre la fusion de multiples BD dans un unique annuaire informatique
 - base Microsoft Excel du personnel administratif
 - base Microsoft Access du personnel enseignant
 - base Microsoft Excel des numéros de téléphone
 - base /etc/passwd des comptes Unix des utilisateurs
 - base /etc/aliases (ou Sympa) de listes de Mail
 - base Samba des utilisateurs Windows
 - autres bases MySQL, Oracle, maps NIS,...
- Comment envoyer un mail à l'ensemble du personnel administratif sachant que l'administrateur système recevra uniquement une liste de (Nom, Prénom) ?

Olivier Glück

LDAP : les objets stockés

```
ou=Hosts ou=People ou=Group cn=admin
uid=ogluck
```

dn: uid=ogluck,ou=People,dc=lip,dc=ens-lyon,dc=fr

objectClass: top

objectClass: account

objectClass: posixAccount

objectClass: shadowAccount

uid: ogluck

uidNumber: 44132

gidNumber: 200

homeDirectory: /home/ogluck

cn: Olivier GLUCK

loginShell: /bin/bash

Les URLs LDAP [RFC 1959]

ldap://lip-ldap-master.ens-lyon.fr:389/dc=lip,dc=ens-lyon,dc=fr?uid,cn?sub?(cn=Olivier*)

LDAP: liens avec les autres applications

Recompiler Samba avec --with-ldapsam

Récupérer samba.schema

Modifier smb.conf pour paramètrer l'accès au serveur LDAP

libpam-ldap

libnss-ldap

Modifier /etc/pam.d/login
Paramétrage des connexions LDAP: /etc/

libnss-ldap.conf et /etc/
pam ldap.conf

Modifier /etc/nsswitch.conf

Gestion dynamique de mailing-listes

Module auth_ldap intégré à Apache Permet l'authentification des accès via LDAP

Voir http://www.rudedog.org/

http://www.apache.org/