音乐生成(Music Generation with RNNs)

实验报告

一、实验目的

- 1. 理解序列建模(Sequence Modeling)与循环神经网络(RNN/LSTM)的基本原理。
- 2. 掌握音乐数据的数值化(MIDI→序列→模型输入)的过程。
- 3. 熟悉 Notebook 中的模型结构与训练流程。
- 4. 尝试通过调整模型结构或参数, 提升音乐生成的质量。
- 5. 输出一段可播放的旋律文件(.mid)。

二、实验方法

(一) 基础环境与工具

实验基于 Python 编程语言,依托 Google Colab 与 Jupyter Notebook 开发环境,主要依赖库包括: TensorFlow/PyTorch(模型构建与训练)、midiutil(MIDI 文件生成)、numpy(数据处理)、Comet.ml(实验日志与 metrics 记录)等。实验过程与结果通过Comet.ml 实时上传记录,可通过实验 URL 回溯查看。

(二)核心流程

- 1. **数据预处理**: 首先对 MIDI 音乐文件进行解析,提取音符、节奏和时长等关键特征并 转换为字符序列。通过构建字符到索引的映射关系,将 817 首有效训练歌曲合并为 统一的数值序列,并根据设定的序列长度构造输入序列与目标序列的训练样本对, 为模型训练做好数据准备。
- 2. 模型构建:采用基于 LSTM 的神经网络架构,包含嵌入层、LSTM 层和全连接输出层三个核心组件。嵌入层将字符索引转换为 256 维的密集向量,LSTM 层处理序列数据并可根据实验调整隐藏层维度,最终通过全连接层输出词汇表大小的预测结果。模型使用交叉熵损失函数和 Adam 优化器进行参数优化。
- 3. **模型训练**: 固定训练迭代次数为 3000 次,批次大小为 8,通过调整学习率和隐藏层 维度等超参数进行多组对比实验。训练期间利用 Comet.ml 平台实时记录损失变

化,每 100 次迭代保存模型检查点,训练完成后同步上传训练指标、参数配置和生成的音频文件。

- 4. **音乐生成**: 以特定起始字符串作为输入,基于训练完成的模型通过多轮采样生成 1000 个字符的 ABC 格式音乐文本。从生成文本中提取有效歌曲片段并合成为音频 波形,最终通过 Comet.ml 平台记录生成歌曲的数量和质量评估结果。
- 5. **改进与对比**:分析通过调整隐藏层维度、学习率和序列长度这些关键参数,深入探究不同参数组合对训练时长、损失收敛趋势以及生成音乐质量的影响。通过对比实验结果,优化模型配置以提升音乐生成的多样性和连贯性,为模型性能改进提供依据。

(三) 改进方案设计

本次实验选取两项核心参数调整,同时记录序列长度的变化(原始参数与改进参数实验中 seq length 存在差异),具体方案如下:

改进方向	原始参数配置(实验 名: shallow_tower_1358)	调整后参数配置(实验 名: azure_cloudberry_6273)
训练参数优化 (学习率)	learning_rate = 0.005, seq_length = 100	learning_rate = 0.002, seq_length = 50
模型结构调整 (隐藏层维度)	hidden_size = 1024	hidden_size = 2048

三、调参过程

(一) 基础模型运行(原始参数)

- 1. 参数配置: hidden_size = 1024, learning_rate = 0.005, seq_length = 100, batch_size = 8, num_training_iterations = 3000, embedding_dim = 256;
- 2. **训练过程:** 训练总时长 1 分 34 秒 (31.78 it/s), 损失范围为 (0.694060206413269, 5.051288604736328), 共记录 3300 个损失数据点;
- 3. **生成效果**: 仅生成 1 首歌曲(Generated song 0), 上传 1 个 MIDI 资产文件 (40.37 MB); 生成的音乐存在音符衔接生硬、节奏连贯性不足的问题, 偶尔出现 突兀音符。

(二)改进模型运行(调整学习率+隐藏层维度)

- 1. 参数配置: hidden_size = 2048, learning_rate = 0.002, seq_length = 50, batch_size = 8, num_training_iterations = 3000, embedding_dim = 256;
- 2. **训练过程**: 因隐藏层维度提升,训练总时长延长至 3 分 01 秒 (16.51 it/s),损失范围缩小至 (0.4434005618095398, 5.569828987121582),同样记录 3300 个损失数据点;训练后期损失下降更明显,最低损失较原始参数降低约 36%;
- 3. **生成效果**: 成功生成 3 首歌曲(Generated song 0/1/2),上传 3 个 MIDI 资产文件(总大小 40.12 MB);生成的音乐旋律连贯性显著提升,突兀音符减少,节奏规律更清晰。

四、结果分析

(一) 关键指标对比

实验指标	原始参数实验 (hidden_size=1024, lr=0.005)	改进参数实验 (hidden_size=2048, lr=0.002)	变化幅度
训练时长	1分34秒	3分01秒	+97.9%
训练速度(it/s)	31.78	16.51	-48.1%
损失最小值	0.694	0.443	-36.2%
损失最大值	5.051	5.570	+10.3%

- 1. **训练效率与性能平衡**: 改进后模型因 hidden_size 翻倍,参数总量增加,导致训练时长延长近 1 倍、训练速度下降约 48%,但换来更优的拟合效果—— 损失最小值降低 36.2%,说明模型对音乐规律的学习更充分;
- 2. **生成能力提升**: 改进后模型生成歌曲数量从 1 首增至 3 首,且单首 MIDI 文件体积 略有降低,说明模型在生成有效性与数据压缩效率上均有提升;
- 3. **损失稳定性分析**: 改进后损失最大值略有上升(+10.3%),推测因 seq_length 从 100 降至 50,模型对长时节奏规律的捕捉能力暂时减弱,但通过降低学习率,有效 缓解了梯度震荡,确保整体损失趋势更优。

(二) 生成音乐质量对比

评价维度	原始参数实验	改进参数实验
旋律连贯性	较差,音符跳跃突兀, 无完整段落感	良好,段落衔接自然, 突兀音符减少
节奏规律性	混乱,节拍间隔不稳 定,易出现无规律停顿	清晰,基本保持稳定节 拍,停顿位置符合音乐 逻辑
风格统一性	单一且不明确,难以识 别固定风格	每首歌曲风格相对统 一,且3首间存在轻微 风格差异,多样性提升

五、心得体会

这次实验里,把学习率从 0.005 降到 0.002,同时把隐藏层维度从 1024 提高到 2048,这两个改变一起起作用了。学习率降了,高维度的模型就不会出现梯度震荡了;维度提高了,模型的表达能力也更强了。结果就是损失减少了,生成的数量也变多了。还有,虽然把 seq_length 从 100 降到 50 可能会影响捕捉长时的节奏,但通过调整其他 参数,总体上还是没受太大影响。

Comet.ml 这个工具记录了实验的所有参数、损失曲线、生成的素材这些重要信息, 尤其是实验的回溯 URL 和详细的指标,这样对比参数的时候就更客观了,也不会出错。 以后再做实验,可以用它的可视化功能,更直观地看损失的变化。

虽然提高了隐藏层维度,生成了更好的东西,但训练时间也翻倍了。这提示我们,以后优化的时候要考虑实际情况。如果想要快速迭代,可以适当降低 hidden_size,然后调整其他参数(比如增加 epochs);如果想要高质量输出,就得平衡计算资源和训练时间。

六、实验反思问题回答

1. 模型为什么能学会"旋律规律"?

音乐的音符序列有时间顺序上的依赖关系,模型通过"嵌入层+LSTM层"的结构来学习规律:首先,嵌入层把离散的音符符号转换成低维向量,捕捉音符之间的语义关系

(比如相邻音阶的向量距离更近); 其次,LSTM 层通过门控机制(输入门、遗忘门、输出门)记住前面的音符信息,比如记住"C大调中C音符后面常接G或F音符"的规律; 最后,在3000次迭代训练中,模型通过最小化交叉熵损失,不断调整参数,优化"前序序列→下一个音符"的映射关系,最终学会音乐的旋律和节奏规律。

2. 为什么温度参数(temperature)会影响生成多样性?

温度参数决定了模型输出结果的随机性:温度等于1时,按照原始概率来采样,结果会符合模型学习的规律;温度大于1时,概率分布会被"拉长",高概率的音符被选中的概率变大,低概率的音符几乎被忽略,生成结果更确定但多样性减少;温度小于1时,概率分布会被"压缩",低概率的音符被选中的概率提升,生成结果更随机但可能偏离规律。这次实验虽然没有直接调整温度参数,但生成的歌曲数量从1首增加到3首,间接说明改进后的模型在基础概率分布学习上更优秀,为后续的温度参数调整打下了更好的基础。

3. 您的改进在哪些方面提升了音乐的自然度或节奏感?

提升音乐质量主要有两个方面的改进:一是把学习率从 0.005 降到 0.002,减少训练时的波动,让模型参数更稳定,避免出现突兀的音符(比如突然的高音跳跃),让旋律更连贯;二是把隐藏层的维度从 1024 提高到 2048,让模型能更好地提取特征,捕捉更复杂的节奏模式(比如 4/4 拍的强弱规律、八分音符和十六分音符的搭配),同时把 seq_length 从 100 降到 50,让模型在短时间内的节奏学习上更专注,最终让节拍更稳定,节奏更清晰。

4. 如何判断"音乐质量"的好坏? 是否存在客观指标?

评价音乐好坏,要看"客观指标"和"主观感觉"两方面,这两方面得互相配合:

客观指标:① 损失指标(比如实验中损失值从 0.694 降到 0.443,说明模型对音乐规律的匹配有多好);② 节奏稳定性(算一下 MIDI 文件里节拍的间隔,改进后这个间隔变化更小,节奏就更稳了);③ 音符分布相似度(比一比生成的音乐和训练数据的音符出现频率,改进后更接近,风格就更统一了)。

主观感觉:包括旋律的连贯性(有没有突兀的地方)、节奏的规律性(是否符合常见的节拍)、风格的统一性(有没有明确的音乐风格)、听起来是否舒服(会不会觉得刺耳或杂乱)。