ÁRBOLES BINARIOS

CONTENIDO

- **INTRODUCCIÓN**
 - **ARBOLES**
 - CONCEPTOS GENERALES
- **ÁRBOLES BINARIOS**
- **RECORRIDOS**
- ÁRBOLES BINARIOS DE BÚSQUEDA
- **ÁRBOLES AVL**

¿QUÉ MÉTODO DE BÚSQUEDA ES MÁS EFICIENTE ENTRE EL SECUENCIAL Y EL BINARIO?"

EL PROBLEMA DE LAS BÚSQUEDAS

- LA BÚSQUEDA BINARIA ES MÁS EFICIENTE.
- EL PROCESO DE MANTENER UN ARREGLO O LISTA ORDENADO LUEGO DE INSERCIONES O ELIMINACIONES PUEDE SER MUY COMPLEJO.

4

ÁRBOLES BINARIOS DE BÚSQUEDA

CONCEPTO Y OPERACIONES

ÁRBOLES BINARIOS DE BÚSQUEDA

- TAMBIÉN LLAMADO "ÁRBOL BINARIO CLASIFICADO", "BINARY SEARCH TREE"
 O "ABB".
- LOS ELEMENTOS PUEDEN SER EFICAZMENTE LOCALIZADOS, INSERTADOS O BORRADOS.
- IDEAL CUANDO SE TIENEN QUE MANEJAR GRAN NÚMERO DE OPERACIONES.

ÁRBOLES BINARIOS DE BÚSQUEDA

EL DATO QUE CONTENDRÁ EL ÁRBOL DEBE PERMITIR COMPARARSE PARA DETERMINAR SI UN VALOR ES MAYOR, MENOR O IGUAL A OTRO.

ÁRBOLES BINARIOS DE BÚSQUEDA

EN ESTE TIPO DE ÁRBOLES EL RECORRIDO IN-ORDEN SIEMPRE RECORRERÁ LOS VALORES DE FORMA ORDENADA

OPERACIONES DE UN ABB - BÚSQUEDA

- NO ES MÁS QUE UNA BÚSQUEDA BINARIA.
- SE UTILIZA AL NODO PADRE COMO CENTRO, EN LUGAR DE CALCULAR UNO NUEVO.
- SI NO SE ENCUENTRA EL ELEMENTO, NOS MOVEMOS HACIA EL SUBÁRBOL IZQUIERDO O DERECHO SEGÚN CORRESPONDA.
- LA CONDICIÓN DE TERMINACIÓN ES LLEGAR A UN NODO HOJA O ENCONTRAR EL ELEMENTO BUSCADO.

- SE RECORRE EL ÁRBOL BUSCANDO LA POSICIÓN IDEAL PARA INSERTAR EL ELEMENTO.
- SE EVALÚA EL PADRE, SI ES NULO SE INSERTA EN ESTA POSICIÓN.
- SI NO ES NULO SE EVALÚA SI CORRESPONDE INSERTARLO A LA IZQUIERDA O A LA DERECHA.
- SE REALIZA UNA LLAMADA RECURSIVA AL MÉTODO DE INSERCIÓN PARA EL SUBÁRBOL CORRESPONDIENTE.

CONSTRUYA EL ÁRBOL BINARIO DE BÚSQUEDA PARA LA SIGUIENTE SECUENCIA DE ENTRADAS.

DFEBACG

CONSTRUYA EL ÁRBOL BINARIO DE BÚSQUEDA PARA LA SIGUIENTE SECUENCIA DE ENTRADAS.

DFEBACG

CONSTRUYA EL ÁRBOL BINARIO DE BÚSQUEDA PARA LA SIGUIENTE SECUENCIA DE ENTRADAS.

4 19 -7 49 100 0 22 12

- ES LA OPERACIÓN MÁS COMPLICADA.
- SE DEBE CONSERVAR EL ORDEN DE LOS ELEMENTOS DEL ÁRBOL.
- SE CONSIDERAN DIFERENTES CASOS SEGÚN LA POSICIÓN DEL NODO EN EL ÁRBOL:
 - SI ES UNA HOJA
 - SI SOLO TIENE UN DESCENDIENTE
 - ➢ SI TIENE LOS DOS DESCENDIENTES

CUANDO ES UNA HOJA, SIMPLEMENTE SE SUPRIME.

EJEMPLO: ELIMINAR C

- CUANDO TIENE SOLAMENTE UN HIJO, SE BORRA EL PADRE Y SE SUSTITUYE POR EL HIJO.
- **EJEMPLO: ELIMINAR F**

- CUANDO TIENE LOS DOS HIJOS, SE SUSTITUYE POR EL ELEMENTO SITUADO LO MÁS A LA DERECHA DEL SUBÁRBOL IZQUIERDO O MÁS A LA IZQUIERDA DEL SUBÁRBOL DERECHO.
- **EJEMPLO: ELIMINAR B O D**

EJERCICIO

REALIZAR UN ALGORITMO EN PSEUDOCÓDIGO PARA LOS PROCESOS DE BÚSQUEDA, INSERCIÓN Y ELIMINACIÓN