Foundations of Computing Lecture 3

Arkady Yerukhimovich

January 24, 2023

Outline

- 1 Lecture 2 Review
- Regular Languages
- 3 Non-determistic Finite Automata (NFA)
- 4 Example NFAs

Lecture 2 Review

- Building DFAs
- Proving Correctness of DFAs
- Regular Languages

Outline

- 1 Lecture 2 Review
- 2 Regular Languages
- 3 Non-determistic Finite Automata (NFA)
- 4 Example NFAs

Regular Language

Definition

A language L is regular if it is accepted (recognized) by a finite automaton.

Observations:

- All languages we have seen thus far are regular
- To prove that a language is regular just need to show DFA that recognizes it
- We will prove that regular languages correspond to regular expressions

Something to think about

Are all languages regular?

Closure under Complement

If L is a regular language, then \overline{L} is also regular

 \overline{L} is the language that consists of all strings not in L.

Intuition: Swap the accept and not accept states

Closure under Complement

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ recognize L

Construct $M' = (Q', \Sigma', \delta', q', F')$ that recognizes \overline{L}

- Q' = Q
- $\Sigma' = \Sigma$
- $\delta' = \delta$
- q' = q
- $F' = Q \setminus F$

Observe:

- If $w \in L \iff w \notin \overline{L}$ then M(w) stops in some $q \in F$, so $q \notin (Q \setminus F)$
- If $w \notin L \iff w \in \overline{L}$ then M(w) stops in some $q \notin F$, so $q \in (Q \setminus F)$

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

 $L_1 \cup L_2$ is the language consisting of all strings either in L_1 or L_2

Intuition: Run both machines in parallel and accept if either of them stops in an accept state

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ recognize L_1 , and $M_2=((Q_2,\Sigma,\delta_2,q_2,F_2)$ recognize L_2

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

- **3** δ is as follows. For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$

$$\delta((r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a))$$

- $q_0 = (q_1, q_2)$
- **5** $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Closure Under Intersection

If L_1 and L_2 are both regular languages then $L_1 \cap L_2$ is also regular

 $L_1 \cap L_2$ is the language consisting of all strings in both L_1 and L_2

Intuition: Run both machines in parallel (same as for union) and accept if BOTH of them stop in an accept state

Closure Under Concatenation

If L_1 and L_2 are both regular languages then $L_1 \circ L_2$ is also regular

$$L_1 \circ L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$$

Outline

- 1 Lecture 2 Review
- 2 Regular Languages
- 3 Non-determistic Finite Automata (NFA)
- 4 Example NFAs

Nondeterminism

Deterministic Finite Automaton

- For every state q and every symbol x, exactly one value $\delta(q,x)$ is defined
- State transitions only on an input symbol
- Execution of DFA is fully determined

Nondeterministic Finite Automaton

- Allow multiple transitions for same state and symbol (e.g., $\delta(q1,1)=\{q2,q3\}$)
- ullet Allow empty (ϵ) transitions transitions not requiring an input

What is going on here?!?

What does non-determinism mean?

An Example NFA

Input: 010 Input: 010110

Question: What language does this recognize?

Understanding Nondeterminism

Interpretation 1: Try all paths in parallel

Understanding Nondeterminism

Interpretation 2: Guess and verify

- M stays in q₁ until it "guesses" next input is 11 or 101
- Verifies that this guess was correct on path to q_4

Understanding Nondeterminism

Interpretation 3: Verifying a proof vs. finding a solution

Consider the execution of a finite automaton

- DFA execution on input *x*:
 - A DFA must follow an exact path to an accept state
 - Input x must specify path to an accept state if $x \in L(M)$
- NFA execution on input x
 - Input x alone does not necessarily take you to an accept state
 - Need to somehow choose which edge to take whenever there is a choice
 - Can view this sequence of nondeterministic choices as a "witness" w that allows you to verify that $x \in L(M)$

Important

For any $x \notin L$, there must be no path to an accepting state – no possible "witness" works

Nondeterministic Finite Automaton – Formal Definition

Nondeterministic Finite Automaton (NFA)

An NFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:

- Q is a finite set of states
- ullet Σ is a finite input alphabet
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow P(Q)$ is the transition function
- $ullet q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Recall:

P(Q) is the power set of Q, i.e., the set of all subsets of Q

Changes:

- **1** Transition function allows empty symbol (ϵ)
- ② Output of transition function is a set of states $\in P(Q)$, not a single state in Q

Outline

- 1 Lecture 2 Review
- 2 Regular Languages
- 3 Non-determistic Finite Automata (NFA)
- 4 Example NFAs

NFA Example 1

Question: What is L(M)?

Answer: Strings in $\{0,1\}^*$ with a 1 as third from the end

How does it work?

- ullet M waits in q_1 until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end
- DFA doing the same thing would have to track the last three bits seen requires 8 states

Example 2 – OR statement

 $L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains } \}$

- the substring 101, or
- 2 the substring 010}

DFA for prop. (1)

DFA for prop. (2)

NFA for L