Manual for Package: physics Revision 1:4M

Karl Kästner

October 29, 2019

Contents

1	@Cons	stant
	1.1	Constant
	1.2	celsius_to_kelvin
	1.3	$depth_to_pressure \dots \dots \dots \dots \dots$
	1.4	kelvin_to_celsius
	1.5	optical_attenuation
	1.6	pressure_to_depth
	1.7	saturation_vapor_pressure
	1.8	sound_absorption_air
	1.9	sound_absorption_water
	1.10	sound_velocity_water
${f 2}$	physic	${f s}$
	2.1	test_sound_absorption_air

1 @Constant

1.1 Constant

Constant and physical standard quantities

1.2 celsius_to_kelvin

convert temperature from degree Celsius to Kelvin function $t_K = celsius_to_kelvin(t_C)$

1.3 depth_to_pressure

convert depth to pressure in fresh water at standard temperature $% \left(1\right) =\left(1\right) \left(1\right) \left($

$$z = (p - p0)/(rho g)$$

=> p = rho g z + p0

input :

p0 : nx1 or scalar, pressure at water surface in BAR

d : depth in metre

output :

p : nx1, pressure at measurement depth in BAR

1.4 kelvin_to_celsius

convert temperature degree Kelvin to Celsius

1.5 optical_attenuation

1.6 pressure_to_depth

convert pressure to depth in fresh water at standard temperature

$$z = (p - p0)/(rho*g)$$

input:

p : nx1, pressure at measurement depth in BAR

 ${\tt p0}$: ${\tt nx1}$ or scalar, pressure at water surface in BAR

output:

d : depth in metre

1.7 saturation_vapor_pressure

1.8 sound_absorption_air

1.9 $sound_absorption_water$

```
sound absrobption in water
following Francois and Garrison, 1982
function alpha = sound_absorption(f,S,D,T)
input:
f : frequency (Hz)
S : salinity
D : depth (m)
T : temperature (degree C)
output:
alpha = sound attenuation in dB/m (not dB/km)
function alpha = sound_absorption(f,S,D,T,model)
1.10 sound_velocity_water
```

```
sound velocity in water
following Lubbers and Graaff (1998)
this formula does not include depth and salinity effects
```

$\mathbf{2}$ physics

${\bf 2.1} \quad test_sound_absorption_air$