Resumo 1.0

sexta-feira, 10 de setembro de 2021 22:19

MEMORIA

Memória de 4 GiB

0x00000000	<i>B</i> ₁	<i>B</i> ₂	<i>B</i> ₃	<i>B</i> ₄
0x00000004	<i>B</i> ₅	B ₆	<i>B</i> ₇	<i>B</i> ₈
:	:	:		:
0xFFFFFF8	B_{n-7}	B _{n-6}	B_{n-5}	B_{n-4}
0xFFFFFFC	B_{n-3}	B_{n-2}	B_{n-1}	B _n

32 bits (4 bytes)

CISC tem operando de memoria RISC só usa resgistradores

Arquitetura Poxim

Complexity-Reduced Instruction Set Processor (CRISP)

Didática, hipotética e simples com 32 bits

► Memória Von Neumann de 32 KiB

3 formatos de instruções

Registrador

Propósito geral (R0-R25)

R0 possui valor constante 0 e os demais registradores podem armazenar valores de 32 bits com ou sem sinal

	31	0		0	
		R0			
-2.147.483.648 ↔	2.147.483.647	or		$0 \leftrightarrow 4.294.967.295$	
31 R1-R2	25 0		31	R1-R25	0

Controle e status (IR, PC, SP, SR)

· (IR): armazena a instrução carregada da memória e em execução

· (PC): controla o fluxo de execução da aplicação apontando para as instruções

· (SP): referencia o topo da pilha na memória (alocação estática e subrotinas)

· (SR): controle de configurações e status das operações do processador

Registrador de status (SR) $R31 = SR$							
_	ZN	ZD	SN	OV	IV	_	

- ► ZN (zero): igual a 0
- ightharpoonup ZD (divisão por zero): divisor B=0
- ► SN (sinal): sinal negativo
- OV (overflow): extrapolação de capacidade
- IV (instrução inválida): código de operação inválido
- CY (carry): vai a um aritmético

Capacidade × Custo × Latência

CUST0

Tipo	Capacidade	Custo	Latência
Imediato	$1 \leftrightarrow 3$ bytes	-	-
SRAM	2 KiB ↔ 32 Mbit	≈US\$ 5.000 / GiB	0,20 ↔ 2 ns
DRAM	1 ↔ 16 GiB	≈US\$ 3 / GiB	≈10 ns

OPERATIONS

- ▶ 6 bits para operação (OP)
- ► 5 bits para operandos (Z, X, Y)
- ► Formato U (OP, Z, X, Y, L)
 - ▶ 11 bits para uso livre (L)
 - ► 6 bits para operação (OP)
 - ▶ 5 bits para operandos (Z, X)
- ► Formato F (OP, Z, X, I16)

 16 bits para imediato (I16)

	_			To bite para il Trodiato (110)				
(OP		Z		Χ		116	
31	26	25	21	20	16	15		0

► 6 bits para operação (OP) ► Formato S (OP, I26) ► 26 bits para imediato (I26)

Tipo **F**:

ADIÇÃO IMEDIATA:

		N-1 DI-1	16	$ZN \leftarrow (R[z] = 0)$
(subi)	I	P[z] = R[x]	- I ₁₅ : I	$SN \leftarrow (R[z]_{31} = 1)$
010011	$z_4 z_3 z_2 z_1 z_0$	$x_4x_3x_2x_1x_0$		$OV \leftarrow (R[x]_{31} \neq i_{15}) \land (R[z]_{31} \neq R[x]_{31})$
31 26	25 21	20 16		$CY \leftarrow (R[z]_{32} = 1)$

Tipo **U**:


```
(mov) ► R[z] = 0 : x : y : l ► Sem extensão de sinal
    R[z] = X_4 : x : y : I  Com extensão de sinal
    000001
                             X_4X_3X_2X_1X_0 \mid y_4y_3y_2y_1y_0 \mid
com registradores:
adição:
                                                       ZN \leftarrow (R[z] = 0)
  (add)

ightharpoonup R[z] = R[x] + R[y]
                                                        SN \leftarrow (R[z]_{31} = 1)
  000010
              z_4 z_3 z_2 z_1 z_0  x_4 x_3 x_2 x_1 x_0  y_4 y_3 y_2 y_1 y_0
                                                        OV \leftarrow (R[x]_{31} = R[y]_{31} \land R[z]_{31} \neq R[x]_{31})
                                                        CY \leftarrow (R[z]_{32} = 1)
0b00010..
>> 1 = 0b00001...
int instruçao;
inteiro = a_1a_2a_3z_1z_2z_3m_1m_2
zr = a_1a_2a_3z_1z_2z_3m_1m_2 \& 00011100
 a_1a_2a_3z_1z_2z_3m_1m_2
 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0
zrmask = 0 \ 0 \ 0 \ z_1 \ z_2 \ z_3 \ 0 \ 0
= 000 0 z_1 z_2 z_3 0 0 \gg 2
rz = 0 \ 0 \ 0 \ 0 \ z_1 \ z_2 \ z_3
opmask =11100000
op = (instrução & opmask) >> 26
rz = (instrução & rzmask) >> 21
rx = (instrução & rxmask) >> 16
add, sub
if op == 0b001: // add
   print("ADD, regitrador{rz}, regitraso rx{rx}")
1 \text{ and } 0 = 0
int op = instrução >> 21
if (OP == 0b00010)
    add(z,x,y)
subtração
                                                        ZN \leftarrow (R[z] = 0)
SN \leftarrow (R[z]_{31} = 1)
   (sub) \triangleright R[z] = R[x] - R[y]
  OV \leftarrow (R[x]_{31} \neq R[y]_{31} \land R[z]_{31} \neq R[x]_{31})
                                                        CY \leftarrow (R[z]_{32} = 1)
multiplicação
                  R[I_{4:0}]: R[z] = R[x] \times R[y] Sem sinal
    (mul)
                                                                           ZN \leftarrow (R[I_{4:0}]:R[z]=0)
                           x_4x_3x_2x_1x_0 | y_4y_3y_2y_1y_0
                                                                           CY \leftarrow (R[I_{4:0}] \neq 0)
                R[I_{4:0}]:R[z]=R[x]\times R[y] Com sinal
   (muls)
```

I Operações de controle de fluxo I

Desvio condicional:

(bae, bat, bbe, bbt, beq, bge, bgt, biv, ble, blt, bne, bni, bnz, bzd)

Desvio incondicional:

(**bun**) I Interrupção (**int**)

Desvio Condicional:

Tipo S:

Condição AE (sem sinal)

(bae)
$$PC = PC + 4 + \left\lceil \binom{6}{l_{25}:i} \right\rceil \ll 2 \right\rceil$$

$$\frac{101010}{^{31}} \frac{l_{25}l_{24}l_{23}l_{22}l_{21}l_{20}l_{19}l_{18}l_{17}l_{16}l_{15}l_{14}l_{13}l_{12}l_{11}l_{10}l_{9}l_{8}l_{7}l_{6}l_{5}l_{4}l_{3}l_{2}l_{1}l_{0}}{A \ge B \to A - B \ge 0} = AE \leftarrow CY = 0$$

Condição AT (sem sinal)

$$\begin{array}{c|c} \hline \text{(bat)} & PC = PC + 4 + \left[\binom{6}{i_{25}} : i \right] \ll 2 \right] \\ \hline \hline 101011 & i_{25}i_{24}i_{23}i_{22}i_{21}i_{20}i_{19}i_{18}i_{17}i_{16}i_{15}i_{14}i_{13}i_{12}i_{11}i_{10}i_{9}i_{8}i_{7}i_{6}i_{5}i_{4}i_{3}i_{2}i_{1}i_{0}} \\ \hline A > B \to A - B > 0 \equiv AT \leftarrow (ZN = 0 \land CY = 0) \end{array}$$

Condição BE (sem sinal)

[(bbe)]
$$PC = PC + 4 + \left[\binom{\circ}{i_{25}} : i \right] \ll 2 \right]$$

$$\boxed{\begin{array}{c|c} 101100 & i_{25}i_{24}i_{23}i_{22}i_{21}i_{20}i_{19}i_{18}i_{17}i_{16}i_{15}i_{14}i_{13}i_{12}i_{11}i_{10}i_{9}i_{8}i_{7}i_{6}i_{5}i_{4}i_{3}i_{2}i_{10}}{0} \\ A \leq B \rightarrow A - B \leq 0 \equiv BE \leftarrow (ZN = 1 \lor CY = 1) \end{array}}$$

Condição BT (sem sinal)

$$\begin{array}{c|c} PC = PC + 4 + \left[\begin{pmatrix} 6 \\ l_2 5 : I \end{pmatrix} \ll 2 \right] \\ \hline 101101 & l_{25}l_{24}l_{23}l_{22}l_{21}l_{20}l_{19}l_{18}l_{17}l_{16}l_{15}l_{14}l_{13}l_{12}l_{11}l_{10}l_{18}l_{16}l_{5}l_{4}l_{3}l_{2}l_{1}l_{0}} \\ \hline A < B \rightarrow A - B < 0 \equiv BT \leftarrow CY = 1 \end{array}$$

Condição EQ

(beq)
$$PC = PC + 4 + \left[\begin{pmatrix} i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$101110 \quad i_{25}i_{24}i_{23}i_{22}i_{21}i_{20}i_{19}i_{18}i_{17}i_{16}i_{15}i_{14}i_{13}i_{12}i_{11}i_{10}i_{9}i_{8}i_{7}i_{6}i_{5}i_{4}i_{5}i_{14}i_{5}i_{14}i_{1$$

Condição GE (com sinal)

(bge)	$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$
101111	1251241231221211201191181171161151141131121111101918116151413121110
31 26	25 0
$A \geq 1$	$B \rightarrow A - B \ge 0 \equiv GE \leftarrow SN = OV$

Condição GT (com sinal)

 $A > B \rightarrow A - B > 0 \equiv GT \leftarrow (ZN = 0 \land SN = OV)$

 $\frac{0100}{\frac{2}{6}} \frac{z_4 z_3 z_2 z_1 z_0}{\frac{25}{21}} \frac{x_4 x_3 x_2 x_1 x_0}{\frac{20}{16}} \frac{y_4 y_3 y_2 y_1 y_0}{\frac{15}{11}} \frac{010 - - l_4 l_3 l_2 l_1 l_0}{\frac{10}{10}} = \frac{2N}{10} \leftarrow (R[l_{4:0}] : R[Z] = 0)$

divisão:

										$ZN \leftarrow (R[z] = 0)$
0001	00	$Z_4Z_3Z_5$	₂ Z ₁ Z ₀	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	2 <i>X</i> 1 <i>X</i> 0	<i>Y</i> 4 <i>Y</i> 3 <i>Y</i>	∕2 <i>Y</i> 1 <i>Y</i> 0	110	1413121110	$ZD \leftarrow (R[y] = 0)$
31	26	25	21	20	16	15	11	10	0	$OV \leftarrow (R[I_{4:0}] \neq 0)$

Deslocamento:

Esquerda lógico:

Esquerda aritmetico:

(sla)	. [R[z] : I	R[x] =	=(R[z]	: <i>R</i> [<i>y</i>	']) × 2	214:0+1	Aritmético (c	com sinal)	7N (D[=] D[x] O)
00010	00	$Z_4Z_3Z_2$	₂ Z ₁ Z ₀	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	$x_2 x_1 x_0$	<i>y</i> ₄ <i>y</i> ₃ !	<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$011 l_4 l_1$		$ZN \leftarrow (R[z] : R[x] = 0)$ $OV \leftarrow (R[z] \neq 0)$
31	26	25	21	20	16	15	11	10	0	$CV \leftarrow (N[2] \neq 0)$

Direito lógico

Direito artimetico

$$\begin{array}{c|c} \hline \text{(sra)} & R[z]: R[x] = (R[z]: R[y]) \div 2^{l_{4:0}+1} \text{Aritmético (com sinal)} \\ \hline 000100 & z_4 z_3 z_2 z_1 z_0 & x_4 x_3 x_2 x_1 x_0 & y_4 y_3 y_2 y_1 y_0 & 111 - - - l_4 l_3 l_2 l_1 l_0 \\ \hline 31 & 26 & 25 & 21 & 20 & 16 & 15 & 11 & 10 & 0 \\ \hline \end{array}$$

Comparação

[(cmp)]
$$CMP = R[x] - R[y]$$
 $N \leftarrow (CMP = 0)$ $N \leftarrow (CMP_{31} = 1)$ $N \leftarrow (R[x]_{31} \neq R[y]_{31}) \land (RP_{31} \neq R[x]_{31})$ $N \leftarrow (CMP_{31} = 1)$ $N \leftarrow (CMP_{31} = 1)$

BIT A BIT:

FlowControl

(push)

i = v, w, x, y, z $i \neq 0 \rightarrow MEM[SP] = R[i], SP = SP - 4$

```
Condição IV
                  PC = PC + 4 +
(biv)
  110001
                 12512412312212112011911811711611511411311211111019181716151413121110
                 Condição LE (com sinal)
(ble)
  110010 656246362616019181716151413121110618766643616
A \le B \to A - B \le 0 \equiv LE \leftarrow (ZN = 1 \lor SN \ne OV)
               Condição LT (com sinal)
               PC = PC + 4 + \left[ \begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]
(blt)
  110011 | 12512412312212112011911811711611511411311211111019181716151413121110
         A < B \rightarrow A - B < 0 \equiv LT \leftarrow SN \neq OV
                     Condição NE PC = PC + 4 + \left[ \begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]
(bne)
  110100 6564636261601918171615141312111066876543616
        A \neq B \rightarrow A - B \neq 0 \equiv NE \leftarrow ZN = 0
                    Condição NI PC = PC + 4 + \left[ \left( i_{25}^6 : i \right) \ll 2 \right]
(bni)
  110101 25242322212019181716151413121110618761514132110
                            NI \leftarrow IV = 0
                     Condição NZ PC = PC + 4 + \left[ \begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]
(bnz)
 Desvio Incondicional:
(bun)
           1 25/24/23/22/21/20/19/18/17/16/15/14/13/12/11/10/9/8/7/6/5/4/3/2/10
                         Condição ZD
PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2\right]
(bzd)
  111000 | 12512412312212112011911811711611511411311211111019181716151413121110
|(int)| interrupção\triangleright Se i=0, a execução é finalizada
  MEM[SP] = PC + 4, SP = SP - 4
(call)
               25/24/23/22/21/20/19/18/17/16/15/14/13/12/11/10/9/8/7/6/5/4/3/2/1/0
```

(0.0)									
0010	10	Z ₄ Z ₃ Z ₂ Z	1 <i>Z</i> ₀ <i>x</i>	₄ x ₃ x ₂ x ₁ x	6 <i>y</i> 4	<i>Y</i> 3 <i>Y</i> 2 <i>Y</i> 1 <i>Y</i> 0	V ₄ V;	3 V ₂ V ₁ V ₀ - W ₄ W ₃ W ₂ W ₁ W	6
31	26	25	21 2	0 10	6 15	11	10	(<u>כ</u>
q									
	,			i =	V, W,	X, y, Z			
(pop)				$i \neq 0$	$0 \rightarrow 3$	SP = S	P + 4	4, R[i] = MEM[SP]	']
0010)11	Z ₄ Z ₃ Z	$Z_2 Z_1 Z_0$	S121/8/1/2	2 <i>X</i> 1 <i>X</i> 0	<i>Y</i> ₄ <i>Y</i> ₃ <i>Y</i> ₂	<i>y</i> ₁ <i>y</i> ₀	$v_4v_3v_2v_1v_0-w_4w_3$	w ₂ v
31	26	25	21	20	16	15	11	10	