

Pós-Graduação em Ciência da Computação

ETL4NOSQL: UM FRAMEWORK DE ETL PARA BDS NOSQL

Por

CARINE CALIXTO AGUENA

Dissertação de Mestrado

Universidade Federal de Pernambuco posgraduacao@cin.ufpe.br www.cin.ufpe.br/~posgraduacao

RECIFE/2017

Ca	rine Calixto Aguena
ETL4NOSQL: UM FR	AMEWORK DE ETL PARA BDS NOSQL
	Trabalho apresentado ao Programa de Pós-graduação em
	Ciência da Computação do Centro de Informática da Universidade Federal de Pernambuco como requisito parcial para
	obtenção do grau de Doutor em Ciência da Computação.
Orientador: Valéria Cesário Times	

Carine Calixto Aguena

ETL4NoSQL: Um framework de ETL para BDs NoSQL/ Carine Calixto Aguena. – RECIFE, 2017-

64~p.:il.~(algumas~color.); 30~cm.

Orientador Valéria Cesário Times

Dissertação de Mestrado - Universidade Federal de Pernambuco, 2017.

1. Palavra-chave1. 2. Palavra-chave2. I. Orientador. II. Universidade xxx. III. Faculdade de xxx. IV. Título

CDU 02:141:005.7

Dissertação de Mestrado apresentada por **Carine Calixto Aguena** ao programa de Pós-Graduação em Ciência da Computação do Centro de Informática da Universidade Federal de Pernambuco, sob o título **ETL4NoSQL: Um framework de ETL para BDs NoSQL**, orientada pelo **Prof. Valéria Cesário Times** e aprovada pela banca examinadora formada pelos professores:

Prof.	
Centro de Informática/UFPE	
Prof.	
Centro de Informática/UFPE	
Prof.	
Departamento de Ciência da Computação/UFF	3A
Prof.	
Instituto de Computação/UFF	
Prof.	
Departamento de Estatística e Informática/UFR	RPE

Agradecimentos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Resumo

O gerenciamento eficiente de solicitações de mudança (SM) é fundamental para o sucesso das atividades de manutenção e evolução de software. Entretanto, a atribuição de SMs a desenvolvedores de software é um aspecto custoso desse gerenciamento, pois demanda tempo e requer conhecimento apropriado do projeto de software. Com o propósito de diminuir esse custo, várias pesquisas já propuseram métodos de atribuição automática de SMs. Embora representem avanços na área, existem vários fatores inerentes a atribuição de SMs que não são considerados nessas pesquisas e são essenciais para a automação.

Como demonstrado nesse trabalho, a atribuição automática deve, por exemplo, considerar a carga de trabalho, a experiência e o conhecimento dos desenvolvedores, a prioridade e a severidade das SMs, a afinidade dos desenvolvedores com os problemas descritos nas SMs, e até mesmo os relacionamentos interpessoais. Para tornar esse cenário ainda mais complexo, esses fatos podem variar de acordo com o projeto de software que está sendo desenvolvido. Assim, uma solução para o problema de atribuição de SMs depende de informações contextuais.

Assim, esse trabalho propõe, implementa e valida uma solução arquitetural sensível ao contexto para atribuição automática de SMs. Dado o aspecto contextual da solução, a arquitetura enfatiza a necessidade de considerar as diversas fontes de informações presentes na organização, assim como a necessidade de se desenvolver algorítimos que implementem diferentes estratégias de atribuição. A proposta e implementação dessa solução é embasada em resultados de duas pesquisas quantitativas: um estudo de mapeamento sistemático da literatura, e uma pesquisa de questionário com desenvolvedores de software. Esse último forneceu um conjunto de requisitos que a solução automatizada deve satisfazer para que as estratégias de atribuição sejam atendidas, enquanto o mapeamento da literatura identificou técnicas, algoritmos, e outros requisitos necessários a automação.

A implementação da arquitetura segue uma estratégia de automação, também elaborada nesse trabalho, que possui dois componentes principais: um sistema especialista baseado em regras (SEBR); e um modelo de recuperação de informação (MRI) com técnicas de aprendizagem. Em nossa estratégia, esses dois componentes são executados alternadamente em momentos diferentes a fim de atribuir uma SM automaticamente. O SEBR processa regras simples e complexas, considerando informações contextuais do projeto de software e da organização que o desenvolve. O MRI é utilizado para fazer o casamento entre SMs e desenvolvedores de acordo com o histórico de atribuições.

Palavras-chave: ETL, Frameworks, NoSQL, Data Warehouse, Estudo Experimental de Software

Abstract

Keywords: Software Engineering, Software Maintenance and Evolution, Change Request Management, Automatic Change Request Assignment

Lista de Figuras

2.1	Inversão de controle em <i>framework</i> . (Adaptado de SOMMERVILLE (2013)) .	14
2.2	Exemplo da Ferramenta ARKTOS II em uso (Adaptado de VASSILIADIS et al.	
	(2005))	16
2.3	Fluxo de dados ETL no framework MapReduce (Adaptado de LIU; THOMSEN;	
	PEDERSEN (2011))	17
2.4	Arquitetura do CloudETL (Adaptado de LIU; THOMSEN; PEDERSEN (2013))	18
2.5	Interface de configuração do P-ETL (Adaptado de BALA (2014))	19
3.1	Modelo conceitual do ETL4NoSQL	26
3.2	Diagrama de Estado do ETL4NoSQL	27
3.3	Definição de interfaces do modelo de negócio do ETL4NoSQL	33
3.4	Especificação da arquitetura do componente de ETL4NoSQL	34
3.5	Diagrama de colaboração para conectar à base de fonte de dados	34
3.6	Diagrama de colaboração para verificar a estrutura de dados	35
3.7	Diagrama de colaboração para verificar se existe permissão de escrita na base de	
	dados destino	35
4.1	Questionário de Funcionalidades	45
4.2	Quantidade de Presença para cada funcionalidade	46
4.3	Níveis de utilidade para cada funcionalidade	46
4.4	Necessidade de melhoria para cada funcionalidade	47
15	Parfil das Farramentas de ETI	18

Lista de Quadros

3.1	Requisitos do ETL4NoSQL	25
3.2	Modelo de Casos de Uso do ETL4NoSQL	26
4.1	Descrição da Instrumentação	40
4.2	Métricas	41
4.3	Questionário do Perfil da Ferramenta de ETL	44
4.4	Instrumentação para aplicar o questionário	44
4.5	Resultado do Perfil dos participantes	47
4.6	Legenda	47
4.7	Estatística Descritiva da Presença de Funcionalidades	48
4.8	Estatística Descritiva da Melhoria de Funcionalidades	49
4.9	Estatística Descritiva da Utilidade de Funcionalidades	49
4.10	Funcionalidade presente e parcialmente útil	49
4.11	Funcionalidade presente e é útil	49
4.12	Funcionalidade presente e necessita melhorar	50
4.13	Funcionalidade presente e não necessita melhoria	50
4.14	Quadro de resultado do valor observado de existência da funcionalidade	50
4.15	Quadro do resultado de χ^2	51
4 16	Funcionalidades não oferecidas pelo ETL4NoSOL	52

Lista de Acrônimos

DW	Data Warehouse	2
ETL	Extract, Transform and Load	. 2
RDBMS	Relational Database Management System	2

Sumário

I	IIItr	odução		1
	1.1	Contextua	lização	2
	1.2	Motivação)	3
	1.3	Objetivos		4
		1.3.1 Ol	ojetivo Específico	4
	1.4	Contribuiç	gões	4
	1.5	Organizaç	ão do Trabalho	5
2	Fun	damentaçã	o Teórica	7
	2.1	Conceitos	Básicos	8
		2.1.1 ET	TL	8
		2.1.2 Ba	ancos de Dados NoSQL	1
		2.	1.2.1 Banco de dados Orientados à Documentos	1
		2.	1.2.2 Banco de dados Famílias de Colunas	1
		2.	1.2.3 Banco de dados Baseado em Grafos	2
		2.	1.2.4 Banco de dados Chave-Valor	2
		2.1.3 De	esenvolvimento Baseado em Componentes e Frameworks	2
		2.1.4 Es	tudo Experimental de Software	5
	2.2	Trabalhos	Correlatos	5
		2.2.1 Al	RKTOS II	6
		2.2.2 Py	gramETL	6
		2.2.3 ET	ГLMR	6
		2.2.4 Cl	oudETL	7
		2.2.5 P-	ETL	8
		2.2.6 Bi	g-ETL	9
		2.2.7 Fr	amETL	0
		2.2.8 O	utras Ferramentas	0
		2.2	2.8.1 Pentaho	0
		2.2	2.8.2 Talend Studio	0
		2.2	2.8.3 CloverETL	0
		2.2	2.8.4 Oracle Data Integrator (ODI)	1
	2.3	Considera	ções Finais	1
3	O F	ramework !	ETL4NoSQL 23	3
	3.1	Requisitos	de software do ETL4NoSQL	4
	3.2	Modelage	m do Domínio de ETL4NoSQL	5

		3.2.1	Modelo Conceitual	25
		3.2.2	Modelo de Casos de Uso	26
		3.2.3	Modelo Comportamental	27
	3.3	Model	agem da Especificação do ETL4NoSQL	28
		3.3.1	Identificação de Componentes	28
		3.3.2	Interfaces de Sistemas	28
		3.3.3	Interfaces de Negócio	33
		3.3.4	Especificação da Arquitetura do Componente	33
	3.4	Interaç	gão entre Componentes	34
		3.4.1	Operações da interface de negócio	34
	3.5	Especi	ficação de Componentes	35
	3.6	Consid	derações Finais	35
4	Estu	ıdo Exp	perimental de Software	37
	4.1	Objeti	vos do experimento	38
		4.1.1	Objetivo da Medição	38
		4.1.2	Objetivos do Estudo	38
		4.1.3	Questões	38
	4.2	Planej	amento	39
		4.2.1	Definição das Hipóteses	39
		4.2.2	Descrição da instrumentação	40
		4.2.3	Métricas	41
		4.2.4	Seleção do contexto	41
		4.2.5	Seleção dos indivíduos	41
		4.2.6	Variáveis	42
		4.2.7	Análise Qualitativa	42
		4.2.8	Validade	42
	4.3	Opera	ção	43
		4.3.1	Questionário do Perfil da Ferramenta de ETL	43
		4.3.2	Questionário de Funcionalidades	43
		4.3.3	Resultado do Estudo	46
	4.4	Anális	e e interpretação dos resultados	47
		4.4.1	Estatística descritiva	47
		4.4.2	Aplicação do teste estatístico	48
			4.4.2.1 Análise quantitativa	51
		4.4.3	Análise qualitativa	51
		4.4.4	Verificação das hipóteses	52
	4.5	Consid	lerações Finais	53

5	Conclusão				
	5.1	Principais Contribuições	55		
	5.2	Discussão	56		
	5.3	Resultados	56		
	5.4	Trabalhos Futuros	57		
Re	ferên	cias	59		
Ap	êndio	ee	63		

1

Introdução

Este capítulo contextualiza os principais assuntos abordados neste trabalho de dissertação, apresenta as motivações que levaram à escolha do tema, os objetivos gerais e específicos da proposta desta pesquisa, bem como a justificativa para conduzir uma investigação no assunto debatido e suas principais contribuições.

2 INTRODUÇÃO

1.1 Contextualização

Desde a década de 1970, com a criação do modelo relacional por Edgar Frank Codd, a estrutura de armazenamento adotada por muitos desenvolvedores de sistemas da área de tecnologia da informação tem se baseado no conceito de entidade e relação proposto por Codd. A maioria dos sistemas gerenciadores de banco de dados que possui aceitação no mercado fazem uso desse modelo, por exemplo o MySQL, Oracle e Microsoft SQL Server. Porém, os requisitos para o desenvolvimento de ferramentas de software modernas têm mudado significativamente, especialmente com o aumento das aplicações Web (NASHOLM (2012)). Este segmento de aplicações exige requisitos com alta escalabilidade e vazão, onde sistemas que utilizam um armazenamento com esquema relacional não conseguem atender satisfatoriamente. Em resposta a isso, novas abordagens de armazenamentos de dados utilizando o termo de NoSQL tornaram-se popular (SILVA (2016)).

O termo NoSQL é constantemente interpretado como "Not Only SQL", cujo SQL referese a linguagem de manipulação de dados dos gerenciadores de armazenamento de dados relacionais - Relational Database Management Systems (RDBMSs) (NASHOLM (2012)). O grande propósito das abordagens NoSQL é oferecer alternativas onde os esquemas relacionais não apresentam um bom desempenho. Esse termo abrange diferentes tipos de sistemas. Em geral, banco de dados NoSQL usam modelo de dados não-relacionais, com poucas definições de esquema, são executados em clusters e aplicados a alguns bancos de dados recentes como o Cassandra, o Mongo, o Neo4J e o Riak (FOWLER; SADALAGE (2013)).

Muitas empresas coletam e armazenam milhares de gigabytes de dados por dia, no qual a análise desses dados torna-se uma vantagem competitiva no mercado. Por isso, há uma grande necessidade de uma nova arquitetura para o gerenciamento de suporte à decisão que possa alcançar melhor escalabilidade e eficiência (LIU; THOMSEN; PEDERSEN (2013)). Para auxiliar no processo de gerenciamento de suporte à decisão uma das formas mais utilizadas é a criação de um ambiente data warehousing, que é responsável por providenciar informações estratégicas e esquematizadas a respeito do negócio (CHAUDHURI; DAYAL (1997)).

Segundo a definição de KIMBALL; ROSS (2002), Data Warehouses (DWs) é uma coleção de dados para o processo de gerenciamento de suporte à decisão orientado a assunto, integrado, variante no tempo e não volátil. Os dados de diferentes fontes de sistemas são processados em um data warehouse central através da Extração, Transformação e Carga - Extract, Transform and Loads (ETLs) de maneira periódica. Os processos de ETL consistem em um conjunto de técnicas e ferramentas para transformar dados de múltiplas fontes de dados para fins de análise de negócio (SILVA (2016)). Ferramentas de ETL são sistemas de software responsáveis por extrair dados de diversas fontes, transformar e customizar os dados e inserilos no data warehouse. Comumente, esses processos são executados periodicamente, onde a otimização do seu tempo de execução torna-se importante (VASSILIADIS et al. (2005), SILVA (2016)).

O projeto de ETL consome cerca de 70% dos recursos de implantação de um DW, pois desenvolver esse projeto é crítico e custoso, tendo em vista que gerar dados incorretos pode acarretar em más decisões. Porém, por algum tempo pouca importância foi dada ao processo de ETL pelo fato de ser visto somente como uma atividade de suporte aos projetos de DW. Apenas a partir do ano 2000, a comunidade acadêmica passou a dar mais importância ao tema(SILVA (2012)).

Tradicionalmente, o DW é implementado em uma base de dados relacional, onde o dado é armazenado nas tabelas fato e tabelas dimensões, na qual forma um esquema em estrela (KIMBALL; ROSS (2002)). Por isso, é comum que as ferramentas de ETL utilizadas no mercado atualmente demonstrem mais importância aos esquemas relacionais. Para oferecer suporte aos sistemas que necessitem utilizar um esquema não relacional de BDs NoSQL em DW, a proposta desse trabalho é especificar um framework programável, flexível e integrado para modelagem e execução de processos ETL em BDs NoSQL.

1.2 Motivação

A integração de dados e os processos de ETL são procedimentos cruciais para a criação de data warehouses e sistemas BI (*business intelligence*). Porém, os sistemas para ETL e integração de dados são tradicionalmente desenvolvidos para dados estruturados em modelos relacionais que representam apenas uma pequena parte dos dados mantidos por muitas empresas (DARMONT et al. (2005), RUSSOM; MADSEN (2007), THOMSEN; PEDERSEN (2009)). Dessa forma, existe uma demanda crescente para integrar os dados não estruturados e semi estruturados em um repositório unificado. Devido a complexidade desses dados, novos desafios estão surgindo quando lidamos com dados heterogêneos e distribuídos no ambiente de integração (SALEM; BOUSSAïD; DARMONT (2012)).

Além disso, muitas empresas encontram dificuldades para lidar com as ferramentas ETL disponíveis no mercado. Aprender a lidar com essas ferramentas pode ser muito custoso em termos financeiros e de tempo, e por isso, acabam optando desenvolver os seus processos por meio de uma linguagem de programação de propósito geral (AWAD; ABDULLAH; ALI (2011), MUÑOZ; MAZÓN; TRUJILLO (2009)).

Portanto, este trabalho propõe um framework programável para desenvolvimento de sistemas de ETL que possibilita a integração de dados estruturados, não estruturados e semi estruturados armazenados em bases relacionais ou NoSQL. O framework possui um ambiente integrado para a importação e mapeamento dos dados, além da modelagem e customização dos processos de ETL. Os processos de importação e mapeamento do framework integram dados estruturados, não estruturados e semi estruturados. Esses processos possibilitam a leitura e manipulação de dados de bases NoSQL, e também o armazenamento desses dados em bases deste tipo, oferecendo uma alternativa não relacional para a construção de DWs.

Uma alternativa para organizar e manipular grandes volumes de dados sem utilizar um

4 INTRODUÇÃO

modelo relacional e ainda processá-los e armazená-los de maneira distribuída é fazer o uso de BDs NoSQL (CARVALHO SCABORA (2016)). Com isso, surge a necessidade de se promover meios para o uso desses BDs em DWs.

As pesquisas presentes na literatura sobre extração de dados em BDs NoSQL mostram que não há uma ferramenta que seja integrada para o uso de BDs NoSQL, as ferramentas existentes no mercado apenas oferecem a possibilidade para alguns SGBDs NoSQL, ficando a cargo da equipe de implantação do projeto de DW todo o trabalho de modelagem e programação ao se utilizar BDs NoSQL (SILVA (2016), CHEVALIER et al. (2015), LIU; THOMSEN; PEDERSEN (2013)).

SILVA (2012) aponta em sua pesquisa que muitas empresas evitam ferramentas de ETL disponíveis no mercado, e adotam o desenvolvimento dos processos a partir de uma linguagem de programação de propósito geral, pelo fato dessas ferramentas terem uma longa curva de aprendizagem e grande complexidade no seu uso.

O aumento do uso de banco de dados com esquemas não relacionais baseados no paradigma NoSQL e a falta de uma ferramenta programável, flexível e integrada, independente de plataforma que dê suporte à extração, transformação e carga em data warehouses para esses esquemas é a grande motivação deste trabalho.

Dessa forma, encontrar uma solução que seja programável, flexível e integrada para extração, transformação e carga dos dados em BDs NoSQL é a proposta deste trabalho.

1.3 Objetivos

O objetivo principal desta pesquisa é especificar um framework programável, flexível e integrado para modelagem e execução de processos ETL de banco de dados estruturados, não estruturados e semi estruturados sob os modelos relacionais e NoSQL. Os objetivos específicos são detalhados a seguir.

1.3.1 Objetivo Específico

Este trabalho de dissertação tem como um dos objetivos específicos apresentar os componentes do framework ETL4NoSQL, bem como suas funcionalidades. Outro objetivo deste trabalho é realizar um estudo experimental de software a fim de caracterizar as principais funcionalidades das ferramentas de ETL na manipulação de dados estruturados, semi estruturados e não estruturados. O estudo experimental poderá comparar o framework proposto, suas vantagens e desvantagens, em relação às ferramentas de ETL encontradas na literatura.

1.4 Contribuições

Uma das contribuições deste trabalho é fornecer um framework programável, flexível e integrado que auxilia na modelagem e execução dos processos de ETL em bases de dados

estruturadas, semi estruturadas e não estruturadas, denominado ETL4NoSQL. Assim, é possível extrair, integrar e carregar dados que estão armazenados em diversas estruturas como é o caso dos bancos de dados NoSQL, ou até mesmo, repositórios de dados textuais e banco de dados relacionais em um único repositório. O ETL4NoSQL é um recurso valioso, principalmente para os desenvolvedores responsáveis pela fase de ETL, onde muitos encontram dificuldades para lidar com as ferramentas ETL disponíveis no mercado.

Outra contribuição desta pesquisa é apresentar, por meio de um estudo experimental, as principais características, de acordo com algumas ferramentas de ETL presentes na literatura, bem como possíveis melhorias, vantagens e desvantagens, em suas funcionalidades.

1.5 Organização do Trabalho

Este trabalho está organizado de acordo com a seguinte estrutura:

- Fundamentação Teórica: apresenta uma revisão de literatura dos principais assuntos abordados neste trabalho. São tratados temas a respeito de ETL, banco de dados NoSQL, Frameworks, estudo experimental de software e descreve os trabalhos correlatos encontrados na literatura a respeito de ferramentas de ETL.
- O Framework ETL4NoSQL: descreve os requisitos, arquitetura e componentes do framework exposto neste trabalho.
- Estudo Experimental de Software: expõe o roteiro da experimentação de software para ferramentas de ETL. Define o objetivo, planejamento, operação e resultado do estudo.
- Considerações Finais: expressa as limitações e ameaças à validade do trabalho, considerações finais e sugere de trabalhos futuros.

2

Fundamentação Teórica

Neste capítulo são apresentados os conceitos relacionados ao desenvolvimento desta pesquisa, bem como o embasamento teórico necessário para o entendimento do estudo. Os temas abordados são: ETL, Banco de Dados NoSQL, Frameworks, Estudo Experimental de Software e trabalhos correlatos ao tema deste trabalho.

2.1 Conceitos Básicos

Conceitos de ETL, banco de dados NoSQL, *frameworks* e estudo experimental de software são essenciais para esta pesquisa. Dessa forma, os princípios básicos desses conceitos são apresentados nesta seção. Ainda que estudo experimental de software não seja o tema principal deste trabalho, seus conceitos são essenciais para avaliar e medir nossa proposta, sendo assim é fundamental entender seus conceitos.

2.1.1 ETL

ETL sigla para *Extraction, Transform and Load* (Extração, Limpeza/Transformação e Carga) é conhecido na literatura por definir processos que permitem a integração de dados, centralizando-os numa base destino facilitando o gerenciamento e análise dos dados (KIMBALL; CASERTA (2004), RUD (2009)). O fluxo do processo de ETL inicia-se com extração dos dados a partir de uma fonte, que podem ser arquivos textuais, banco de dados relacionais ou banco de dados NoSQL. Os dados são propagados para uma Área de Processamento de Dados onde são executadas a limpeza e transformação por meio de mecanismos de ETL definidos como agregação, junção, filtro, união, entre outros. Finalmente, os dados são carregados em estruturas que podem ser data warehouses ou repositórios analíticos (SILVA (2016)).

KIMBALL; CASERTA (2004) definem ETL em 4 macroprocessos, com 34 subsistemas listados a seguir.

- a) Extração: Busca os dados dos sistemas de origem e grava na área de processamento de dados antes de qualquer alteração significativa. Esta etapa possui 3 subsistemas.
 - **Data Profiling:** Explora uma origem de dados para determinar seu ajuste para inclusão como uma fonte associado à limpeza e ajuste de requisitos.
 - Change Data Capture: Isola as mudanças ocorridas nos sistemas de origem de forma a reduzir os processos de ETL Carga Incremental.
 - Sistema de Extração: Extração e movimentação dos dados de origem para dentro do DW para processamento futuro.
- b) Limpeza e Transformação: Envia os dados de origem, por meio de várias etapas de processamento no sistema ETL; melhora a qualidade dos dados recebidos da fonte; mescla dados de duas ou mais fontes; cria dimensões; e aplica métricas. Esta etapa possui 5 subsistemas.
 - Data Cleasing System Sistema de Limpeza de Dados: Implementa processos de qualidade para identificar violações nos dados.
 - Criação de Dimensão de auditoria: Junta metadados para cada tabela fato como uma dimensão. Estes metadados estarão disponíveis para a geração de aplicações de BI que visualizem a qualidade dos dados.

- Deduplication Tirar a duplicidade de dados: Elimina dados redundantes de dimensões como clientes ou produtos. Pode requerer integração cruzada entre múltiplas origens e a aplicação de regras para identificar qual a versão mais correta de uma linha duplicada.
- Data Conformance conformidade de dados: Força o uso de atributos comuns entre as principais Conformed Dimensions versus as métricas comuns nas tabelas fato relacionadas.
- c) Entrega ou Carga: Estrutura fisicamente e carrega os dados conforme desejado em DWs ou repositórios analíticos. Esta etapa possui 13 subsistemas.
 - Slowly Changing Dimension (SCD) Manager: Implementa a lógica para os atributos SCD.
 - Surrogate Key Generator: Cria as chaves substitutas (chaves de negócio)
 surrogate keys independentes para cada dimensão.
 - Hierarchy Manager: Entrega múltipla e simultânea de estruturas hierárquicas na dimensão.
 - Special Dimensions Manager: Cria locais placeholders na estrutura de ETL para sustentar os processos repetitivos específicos da organização, no desenho de dimensões específicas como as Junk Dimensions, Mini Dimensions e indicadores de comportamento.
 - Fact Table Builders: Construção dos três tipos básicos de tabela fato: Transacional, Periódico e Cumulativo (transaction grain, periodic snapshot e accumulating snapshot).
 - Surrogate Key Pipeline: Substitui, nas dimensões, a chave natural operacional das tabelas de origem pelas chaves substitutas (Surrogate Key) que serão utilizadas para o relacionamento com as tabelas fato.
 - Multi-Valued Bridge Table Builder: Construção e manutenção das tabelas ponte (bridge tables) para suportar os relacionamentos multi-valorados.
 - Late Arriving Data Handler: Aplica modificações especiais nas *procedures* do processo padrão para lidar com tabelas fato recém definidas (*late-arriving*) e dimensões.
 - **Dimension Manager:** Centraliza a autoridade para preparar e divulgar as dimensões conforme (*conformed dimensions*) para a comunidade do *data warehouse*.
 - Fact Table Provider: Detém a administração de uma ou mais tabelas fato, e a responsabilidade de criação, manutenção e uso.

- Aggregate Builder: Construção e manutenção de agregações que serão usadas de forma continua com tecnologias de navegação agregada para melhorar a performance das consultas.
- OLAP Cube Builder: Selectiona os dados do esquema dimensional para popular os cubos OLAP.
- Data Propagation Manager: Prepara dados conformados e integrados no servidor de apresentação do data warehouse, para entrega em outros ambientes, para propósitos especiais.
- **d**) **Gerenciamento**: Gerencia os sistemas e processos relacionados ao ambiente ETL de forma coerente. Esta etapa possui 13 subsistemas.
 - **Job Scheduler:** A estratégia de gerenciamento da execução dos ETLs deve ser confiável, incluindo os relacionamentos e dependências entre os ETLs.
 - Backup System: Mantem cópia do ambiente de ETL para propósito de recuperação, restart e arquivamento.
 - Version Control: Mantem arquivadas versões dos ETLs, para eventual recuperação das lógicas e metadados do 'ETL pipeline'.
 - Version Migration: Migração de uma versão completa do 'ETL pipeline' a partir do ambiente de desenvolvimento para um ambiente de testes e, finalmente, para o ambiente de produção.
 - Workflow Monitor: Garante que os processos de ETL estão sendo eficientemente executados e que as cargas iniciem precisamente nas janelas de tempo estipuladas.
 - Sorting: Garante a fundamental alta performance nos grupos de processos de ETLs.
 - Lineage and Dependency: Identifica a origem dos dados, as localizações intermediarias, as transformações e o dado final, permitindo acompanhar de forma estruturada, a trajetória dos dados até a sua carga no *data warehouse*.
 - **Problem Escalation:** Estrutura de suporte que encaminha os problemas encontrados nos processos de ETLs (erros) para o nível de solução apropriado.
 - Paralleling and Pipelining: Habilita ao sistema de ETL a potencializar automaticamente o uso de recursos como múltiplos processadores ou computação em grade (*grid computing*) para entregas dentro dos prazos restritos.

- **Security:** Garante o acesso autorizado aos ETLs e Metadados, de forma individual ou em grupos, mantendo um histórico dos acessos.
- Compliance Manager: Suporta os requerimentos organizacionais de conformidade, através, tipicamente, da manutenção da custódia da cadeia de dados e do acompanhamento dos acessos aos dados (quem teve o acesso autorizado ao dado).
- Metadata Repository: Captura os metadados do ETL, incluindo os metadados de processo, metadados técnicos e metadados do negócio que significam todos os metadados do ambiente de DW/BI.

2.1.2 Bancos de Dados NoSQL

Consistem em bancos de dados não relacionais projetados para gerenciar grandes volumes de dados e que disponibilizam estruturas e interfaces de acesso simples (Lima; Mello, 2015). Cada SGBD (Sistema Gerenciador de Banco de Dados) NoSQL possui um esquema de modelagem diferente, nos quais são divididas pela literatura em quatro categorias amplamente usadas: Chave-Valor, Orientado a Documentos, Famílias de Colunas e Baseado em Grafos [FOWLER; SADALAGE (2013), KAUR (2013)].

As principais características dos banco de dados NoSQL são: distribuído, escalabilidade horizontal, construído para grande volume de dados, BASE ao invés de ACID, modelo de dados não relacional, não suporta SQL [FOWLER; SADALAGE (2013), NASHOLM (2012)].

2.1.2.1 Banco de dados Orientados à Documentos

Banco de dados orientados a documentos são capazes de armazenar documentos como dado. Esses documentos podem ser em qualquer formato como XML (eXtensible Markup Language), YAML (Yet Another Markup Language), JSON (JavaScript Object Notation), entre outros. Os documentos são agrupados na forma de coleções. Comparando com banco de dados relacional, as coleções são como tabelas e os documentos como os registros. Porém, a diferença entre eles é que cada registro na tabela do banco relacional tem o mesmo número de campos, enquanto que na coleção do banco de dados orientado a documentos, podem ter campos completamente diferentes [KAUR (2013)].

Existem mais de 15 banco de dados orientados a documentos disponíveis e os mais utilizados são MongoDB, CouchDB e o RavenDB [KAUR (2013)].

2.1.2.2 Banco de dados Famílias de Colunas

Banco de dados baseados em Famílias de Colunas são desenvolvidos para abranger três áreas: número enorme de colunas, a natureza esparsa dos dados e frequentes mudanças no esquema. Os dados em Famílias de colunas são armazenados em colunas de forma contínua,

enquanto que em bancos de dados relacionais as linhas é que são contínuas. Essa mudança faz com que operações como agregação, suporte para ad-hoc e consultas dinâmicas se tornem mais eficientes [KAUR (2013)].

A maioria dos bancos de dados baseados em Famílias de Colunas são também compatíveis com o framework MapReduce, no qual acelera o processamento de enorme volume de dados pela distribuição do problema em um grande número de sistemas. Os bancos de dados de Família de Colunas open-source mais populares são Hypertable, HBase e Cassandra [KAUR (2013)].

2.1.2.3 Banco de dados Baseado em Grafos

Bancos de dados baseado em Grafos são como uma estrutura de rede contendo nós e arestas, onde as arestas interligam os nós representando a relação entre eles. Comparando com o modelo Entidade-Relacionamento, o nó corresponde à entidade, a propriedade do nó à um atributo, a relação entre as entidades ao relacionamento entre os nós. Nos bancos de dados relacionais as consultas requerem atributos de mais de uma tabela resultando numa operação de junção, por outro lado, bancos de dados baseado em Grafos são desenvolvidos para encontrar relações dentro de uma enorme quantidade de dados rapidamente, tendo em vista que não é preciso fazer junções, ao invés disso, ele fornece indexação livre de adjacência KAUR (2013).

2.1.2.4 Banco de dados Chave-Valor

Em Bancos de dados Chave-Valor os dados são organizados como uma associação de vetores de entrada consistindo em pares de chave-valor. Cada chave é única e é usada para recuperar os valores associados a ele. Esses bancos de dados podem ser visualizados como um banco de dados relacional contendo múltiplas linhas e apenas duas colunas: chave e valor. Buscas baseadas em chaves resultam num baixo tempo de execução, além disso, os valores podem ser qualquer coisa como objetos, hashes, entre outros [KAUR (2013)].

Os bancos de dados Chave-Valor mais populares são Riak, Voldemort e Redis [KAUR (2013)].

2.1.3 Desenvolvimento Baseado em Componentes e Frameworks

A engenharia de software baseada em componentes é uma abordagem fundamentada em reuso para desenvolvimento de sistemas de software, ela envolve o processo de definição, implementação e integração ou composição de componentes independentes não firmemente acoplados ao sistema. Os componentes são independentes, ou seja, não interferem na operação uns dos outros e se comunicam por meio de interfaces bem definidas, os detalhes de implementação são ocultados, de forma que as alterações de implementação não afetam o restante do sistema (SOMMERVILLE (2013)). Segundo SAMETINGER (1997), componentes são uma parte do sistema de software que podem ser identificados e reutilizados, onde descrevem ou executam

funções específicas e possuem interfaces claras, documentação apropriada e a possibilidade de reuso bem definida. Ainda de acordo com o autor, um componente deve ser autocontido, identificável, funcional, possuir uma interface, ser documentado e ter uma condição de reuso.

Para CHEESMAN; DANIELS (2001), o processo de desenvolvimento baseado em componentes baseia-se na separação entre modelagem de domínio e especificação.

A modelagem do domínio consiste no entendimento do contexto de um negócio ou situação, o seu propósito é compreender os conceitos do domínio, seus relacionamentos e suas tarefas. Os resultados da modelagem de domínio são um modelo de casos de uso, um modelo conceitual e um modelo de comportamento (SOUZA GIMENES; HUZITA (2005)).

Por outro lado, a modelagem da especificação do software é dividida em três etapas: a etapa de identificação dos componentes, onde produz uma especificação e arquitetura inicial; interação entre componentes, nesta etapa descobre-se as operações necessárias e aloca responsabilidades; e finalmente, a etapa de especificação de componentes, que cria uma especificação precisa das operações, interfaces e componentes.

O objetivo da modelagem de especificação é definir, em alto nível de abstração, os serviços oferecidos pelos componentes vistos como caixas pretas. É nela que a arquitetura é definida e os componentes especificados (SOUZA GIMENES; HUZITA (2005)).

Frameworks podem ser considerados aglomerados de softwares, onde estes são capazes de serem estendidos e adaptados para utilidades específicas [TALIGENT (1994)]. PREE; SIKORA (1997), consideram que *frameworks* são aplicações semi-completas e que podem ser reutilizadas para especializar produtos de software customizados. SOMMERVILLE (2013), ressalta que *framework* é uma estrutura genérica estendida com o intuito de criar uma aplicação mais específica e SCHIMIDT; GOKHALE; NATARAJAN (2004) define como sendo um conjunto de artefatos de software (como classes, objetos e componentes) que colaboram para fornecer uma arquitetura reusável.

Os *frameworks* possibilitam a reusabilidade de projeto, bem como ao reúso de classes específicas, pois fornecem uma arquitetura de esqueleto para a aplicação, que é definida por classes de objetos e suas interações. As classes são reusadas diretamente e podem ser estendidas usando-se recursos, como a herança SOMMERVILLE (2013).

FAYAD; SCHMIDT (1997), separam os *frameworks* em três principais classes: de infraestrutura de sistema, de integração de *middleware* e de aplicações corporativas. *Frameworks* de infraestrutura de sistema apoiam o desenvolvimento de infraestruturas, como comunicações, interfaces de usuários e compiladores. Já os *frameworks* de integração de *middleware* são um conjunto de normas e classes de objetos associados que suportam componentes de comunicação e troca de informações. E finalmente, os *frameworks* de aplicações corporativas estão relacionados com domínios de aplicação específicos, como sistemas financeiros. Eles incorporam conhecimentos sobre o domínios de aplicações e apoiam o desenvolvimento para o usuário final.

Muitas vezes, os *frameworks* são implementações de padrões de projeto, como por exemplo o *framework* MVC (Model-View-Control). A natureza geral dos padrões e o uso de

classes abstratas e concretas permitem a extensibilidade SOMMERVILLE (2013).

Para estender um *framework* não é necessário alterar o seu código, apenas é preciso adicionar classes concretas que herdam operações de classes abstratas. Ademais, há a possibilidade de definir *callbacks*, que são métodos chamados em resposta a eventos reconhecidos pelo *framework*. Esses métodos são reconhecido como 'inversão de controle' (SCHIMIDT; GOKHALE; NATARAJAN (2004)). A figura 2.1 expressa o funcionalidade da inversão de controle. Os responsáveis pelo controle no sistema são os objetos do *framework*, ao invés de serem objetos específicos de aplicação. E em resposta aos eventos de interface do usuário, banco de dados, entre outros, esses objetos do *framework* invocam 'métodos hook' que, em seguida, são vinculados à funcionalidade fornecida ao usuário. A funcionalidade específica de aplicação responde ao evento de forma adequada. Por exemplo, um *framework* terá um método que lida com um toque em uma tecla a partir do ambiente. Esse método chama o método *hook*, que deve ser configurado para chamar os métodos de aplicação adequada para tratar o toque na tecla (SOMMERVILLE (2013)).

Figura 2.1 Inversão de controle em framework. (Adaptado de SOMMERVILLE (2013))

O *framework* ETL4NoSQL encaixa-se na categoria de aplicações corporativas, pois serve como base para aplicações de ETL, incorporando conhecimentos sobre a área de domínio para apoiar o desenvolvimento ao usuário final.

2.1.4 Estudo Experimental de Software

Esta pesquisa de dissertação considera a execução do estudo experimental de software para caracterizar, avaliar e propor melhorias ao framework ETL4NoSQL. O objetivo principal da aplicação do experimento é definir se o *framework* proposto é uma ferramenta adequada para auxiliar no desenvolvimento de processos de ETL em dados estruturados, semi estruturados e não estruturados. Os participantes escolhidos foram as principais ferramentas de ETL encontradas na literatura. Os questionários utilizados para a coleta de dados são baseadas nos requisitos mínimos considerados pela literatura para ferramentas de ETL.

Segundo TRAVASSOS; GUROV; AMARAL (2002), a experimentação é o centro do processo científico, por meio dos experimentos que é possível verificar teorias, explorar fatores críticos e formular novas teorias. O autor reforça ainda a necessidade de avaliar novas invenções e sugestões em comparação com as existentes.

Para WOHLIN et al. (2000), existem quatro métodos relevantes para experimentação em Engenharia de Software: científico, de engenharia, experimental e analítico.

O paradigma indutivo, ou método científico, observa o mundo, pode ser utilizado quando se quer entender o processo, produto de software, ambiente. Ele mede e analisa, verifica as hipóteses do modelo ou teoria. Já o método de engenharia observa as soluções existentes, é uma abordagem baseada na melhoria evolutiva, modifica modelos de processos ou produtos de softwares existentes com propósito de melhorar os objetos de estudo. O método experimental é uma abordagem baseada na melhoria revolucionária. Ela sugere um modelo, não necessariamente baseado em um existente, aplica o método qualitativo e/ou quantitativo, faz a experimentação, analisa e repete o processo. Por fim, o método analítico sugere uma teoria formal, é um método dedutivo que oferece uma base analítica para o desenvolvimento de modelos (TRAVASSOS; GUROV; AMARAL (2002)).

TRAVASSOS; GUROV; AMARAL (2002) sugere que a abordagem mais apropriada para a experimentação na área de Engenharia de Software seja o método experimental, pois considera a proposição e avaliação do modelo com os estudos experimentais.

Os principais objetivos relacionados à execução de um estudo experimental de software são: caracterização, avaliação, previsão, controle e melhoria a respeito de produtos, processos, recursos, modelos e teorias.

Os elementos principais do experimento são: as variáveis, os objetos, os participantes, o contexto do experimento, hipóteses e o tipo de projeto do experimento.

2.2 Trabalhos Correlatos

Esta seção apresenta os principais *frameworks* correlatos a este trabalho encontrados na literatura, bem como os descreve demonstrando suas características, seus pontos positivos e negativos.

2.2.1 ARKTOS II

O principal objetivo do ARKTOS II é facilitar a modelagem dos processos de ETL, de forma que o usuário define a fonte dos dados e o destino, os participantes e o fluxo de dados do processo. Como ilustrado na figura 2.2, o usuário pode desenhar atributos e parâmetros, conectá-los ao seu esquema de dados, criar relacionamentos e desenhar arestas de um nó para outro de acordo com a arquitetura do grafo (VASSILIADIS et al. (2005)).

Figura 2.2 Exemplo da Ferramenta ARKTOS II em uso (Adaptado de VASSILIADIS et al. (2005))

A customização no ARKTOS II é oferecida pela reusabilidade de seus *templates*. Os processos são armazenados em um repositório implementado em um banco de dados relacional. Os autores do ARKTOS II ainda pretendem melhorar a ferramenta permitindo mais formatos de dados como XML e orientado a objetos.

2.2.2 PygramETL

PygramETL é um *framework* programável para desenvolvedores de ETL. Ele oferece a funcionalidade para desenvolver ETL demonstrando como deve-se iniciar um projeto. O propósito da ferramenta é facilitar a carga dos dados no DW gerenciado por banco de dados relacionais (RDBMS). Focando nos RDBMS como destino torna o desenvolvimento simples, não considerando outros tipos de estrutura de dados e a integração deles. Dessa forma, o PygramETL oferece suporte apenas a bancos de dados relacionais (THOMSEN; PEDERSEN (2009)).

2.2.3 ETLMR

ETLMR é um framework de ETL que utiliza *MapReduce* para atingir escalabilidade. Ele suporta esquemas de DW como o esquema estrela, o *snowflake*, e o *slowly changing dimensions* LIU; THOMSEN; PEDERSEN (2011).

A figura 2.3 ilustra o fluxo de dados usando o ETLMR usando MapReduce. O processamento da dimensão é feito em uma tarefa do MapReduce, e o processamento do fato é feito por

Figura 2.3 Fluxo de dados ETL no framework MapReduce (Adaptado de LIU; THOMSEN; PEDERSEN (2011))

outra tarefa MapReduce. A tarefa MapReduce gera um número de tarefas map/reduce paralelas para processar a dimensão ou o fato. Cada tarefa consiste em inúmeros passos, incluindo a leitura dos dados no sistema de arquivos distribuído (DFS - distributed file system), execução da função de mapeamento, particionamento, combinação do mapeamento de saída, execução da função reduce e escrita dos resultados(LIU; THOMSEN; PEDERSEN (2011)).

O ETLMR possui inúmeras contribuições, ele permite construir dimensões de ETL em alto nível processando os esquemas estrela, snowflake, SCDs e dimensões de dados intensivos. Pelo fato dele utilizar MapReduce, ele pode automaticamente processar mais de um nó enquanto ao mesmo tempo fornece a sincronização dos dados através dos nós. Além da escalabilidade, ele oferece alta tolerância à falhas, possui código aberto, e é fácil de usar com um único arquivo de configuração executando todos os parâmetros.

O principal objetivo do ETLMR é otimizar o tempo de processamento dos processos de ETL por meio do framework MapReduce. Porém, não há nada a respeito de como deve ser feita a modelagem dos processos de ETL.

2.2.4 CloudETL

O framework CloudETL é uma solução para processos de ETL que usa *Hadoop* para paralelizar fluxos de ETL e *Hive* para processar os dados de forma distribuída. Para o CloudETL o *Hadoop* é a plataforma de execução dos processos de ETL e o *Hive* é o sistema de armazenamento. Conforme a figura 2.4, os componentes do CloudETL são as APIs (interfaces de programação de aplicação), um conjunto de elementos para efetuar as transformações nos dados identificados

como ETL *transformers*, e um gerenciador de tarefas que controla a execução das tarefas submetidas ao *Hadoop*.

CloudETL fornece suporte de alto nível em ETL para construção de diferentes esquemas de DW, como esquema estrela, *snowflake* e SCD (*slowly changing dimensions*). Ele facilita a implementação de processos de ETL em paralelo e aumenta a produtividade do programador significativamente. Esta abordagem facilita as atualizações de SCDs em um ambiente distribuído LIU; THOMSEN; PEDERSEN (2013).

Figura 2.4 Arquitetura do CloudETL (Adaptado de LIU; THOMSEN; PEDERSEN (2013))

O CloudETL é uma alternativa quando o problema é o processamento de um grande volume de dados por possuir a propriedade de processamento distribuído, porém não oferece nenhum suporte para modelagem de processos de ETL ficando a cargo do programador ou da equipe responsável pelo projeto de DW.

2.2.5 P-ETL

P-ETL (Parallel - ETL) foi desenvolvido utilizando o *framework* Hadoop com o paradigma MapReduce. Ele oferece duas maneiras de ser configurado: por meio de uma GUI (*graphical user interface*) ou um arquivo de configuração XML. A figura 2.5 mostra a interface gráfica de configuração do P-ETL, ela é organizada em três abas: *Extract, Transform, Load* e uma parte para parâmetros avançados.

O processo de ETL do *framework* inicia-se na aba *Extract*, as configurações fornecidas pelas outras abas dependem desta primeira, principalmente o formato dos dados da fonte e sua estrutura. O primeiro passo da fase de extração é localizar a fonte de dados. O arquivo base do P-ETL é no formato "csv"(*Comma Separated Values*). Ele converte a fonte para o formato "csv"permitindo a entrada dos dados em vários formatos. Para acelerar a carga dos dados da fonte no HDFS (formato utilizado pelo *Hadoop*), o P-ETL permite o usuário comprimi-los. A respeito da partição, o usuário pode escolher o tipo de partição (*single, Round Robin, Round Robin by block*) e o número de dados por partição, além disso, ele pode configurar a extração pela quantidade de tuplas (por linhas ou blocos). A aba *Transform* permite o usuário escolher um lista de funções para transformação, cada função deve ser especificamente configurada (condições, expressões, entradas, etc.), assim, as funções são executadas na ordem que foram inseridas. E finalmente, a aba *Loading* permite configurar as tarefas de carga e incluir o destino dos dados

(data warehouse, datamart, etc.), os dados são comprimidos antes de serem carregados no HDFS e o separados no formato "csv"(BALA (2014)).

Figura 2.5 Interface de configuração do P-ETL (Adaptado de BALA (2014))

O P-ETL usa principalmente dois módulos do *framework* Apache Hadoop: (i) HDFS para o armazenamento distribuído e a alta vazão para o acesso aos dados das aplicações, e (ii) MapReduce para processar paralelamente. Futuramente, o P-ETL pretende adicionar outras funções de transformação para realizar processos mais complexos, e oferecer um ambiente na nuvem, mais precisamente, virtualizar e transformá-lo numa arquitetura orientada à serviço (SOA - *Service Oriented Architecture*) (BALA (2014)).

2.2.6 Big-ETL

BALA; BOUSSAID; ALIMAZIGHI (2015) propõe em seu trabalho uma abordagem chamada Big-ETL, no qual define que funcionalidades de ETL podem ser executadas em *cluster* utilizando o paradigma MapReduce (MR). O Big-ETL permite paralelizar e distribuir o processo de ETL em dois níveis: o processo de ETL (nível de granularidade maior), e a funcionalidade de ETL (nível de granularidade menor); dessa forma, melhorando o desempenho. Para testar a abordagem proposta, o autor utilizou o P-ETL com intuito de melhorar a ferramenta definindo o processo de ETL (nível de granularidade maior), e a funcionalidade de ETL (nível de granularidade menor) como níveis para o experimento, demonstrando ser uma boa alternativa para melhorar o desempenho nos processos de ETL.

Futuramente os autores pretendem apresentar um *benchmark* no qual comparará quatro abordagens: processo de ETL centralizado; processo de ETL distribuído, Big-ETL e uma abordagem híbrida.

2.2.7 FramETL

O FramETL é um *framework* para desenvolvimento de aplicações ETL. Ele oferece um ambiente programável e integrado para modelagem e execução de processos de ETL utilizando uma linguagem de programação. O autor utilizou conceitos de *frameworks* como flexibilidade, extensibilidade, reuso e inversão de controle para o desenvolvimento do FramETL. Por meio desses conceitos, utilizando o *framework*, o autor pode aplicar sua solução para construções de duas aplicações de ETL. Porém, SILVA (2012) não fez uso de BDs NoSQL, e o foco de sua ferramenta não era em dados *Big Data*.

2.2.8 Outras Ferramentas

Esta seção apresenta outras ferramentas de ETL presentes no mercado e na literatura, mas que não possuem um foco em BDs NoSQL e *Big Data*.

2.2.8.1 Pentaho

Pentaho Data Integration (conhecido também por *Kettle*) é uma ferramenta *open source* para aplicações de ETL. Ela é composta basicamente por quatro elementos: extração de diferentes fontes, transporte de dados, transformação dos dados e carga no *data warehouse*. O *Kettle* pode ser implementado em um único nó, bem como na nuvem, ou em *cluster*. Ele pode carregar e processar *big data* de várias formas oferecendo flexibilidade e segurança (MALI; BOJEWAR (2015), INFORMATION (2017), INTEGRATION (2017)). Porém, por ser uma ferramenta genérica ela é de difícil customização.

2.2.8.2 Talend Studio

Talend Open Studio é uma plataforma de integração de dados que possibilita processos de integração, seu monitoramento e opera como um gerador de código, produzindo scripts de transformação. Ele possui um repositório de metadados no qual fornece os dados (definições e configurações relacionados a cada tarefa) para todos os seus componentes. O Talend Studio é comumente utilizado para migração de dados, sincronização ou replicação das bases de dados (MALI; BOJEWAR (2015), INFORMATION (2017)).

2.2.8.3 CloverETL

Clover é uma ferramenta ETL de código aberto considerada para transformação e integração, limpeza e distribuição de dados em aplicações, banco de dados e data warehouses.

Ela é baseada em Java e pode ser utilizada em linha de comando e é independente de plataforma (MALI; BOJEWAR (2015)).

2.2.8.4 Oracle Data Integrator (ODI)

Oracle Data Integrator é uma plataforma de integração de dados que atende diversos requisitos de integração, desde grandes volumes de dados até o carregamento em batch. As bases de dados de origem e destino podem incluir base de dados relacionais, arquivos XML, tabelas Hive, Hbase, arquivos HDFS, entre outros. Os usuários podem inserir filtros, junções, agregações, e outros componentes de transformação (SILVA (2016)). Porém, o ODI é uma ferramenta comercial e não permite a customização de suas aplicações.

2.3 Considerações Finais

Este capítulo discorreu a respeito das ferramentas de ETL encontradas na literatura. A maioria foca no desempenho ao lidar com *Big Data*, nenhuma delas apresentou uma solução alternativa para modelagem de BDs NoSQL ficando a cargo do desenvolvedor encontrar meios para esquematizar os dados. A ferramenta P-ETL (BALA (2014)) apresentou um arquivo "csv"como alternativa para obter diversos tipos de dados, porém não há um enfoque em BDs NoSQL. A abordagem PygramETL (THOMSEN; PEDERSEN (2009)) facilita a carga de dados, mas lida apenas com banco de dados relacionais. Para suportar processos de ETL em BDsNoSQL, propomos um *framework* integrado, flexível e programável de ETL para BDs NoSQL que permite o uso do processamento distribuído/paralelo e a integração das diversas bases de dados existentes por se tratar de um *framework* baseado em componentes.

3

O Framework ETL4NoSQL

Neste capítulo são apresentados os conceitos do framework ETL4NoSQL, que consiste numa plataforma de software para desenvolvimento de sistemas de ETL, mais especificamente uma ferramenta que auxilia a construção de processos de ETL buscando apoiar a modelagem e o desempenho dos processos.

O ETL4NoSQL oferece um ambiente integrado para modelar processos de ETL e implementar funcionalidades utilizando uma linguagem de programação independente de uma GUI (*Graphical User Interface* - Interface Gráfica do Usuário).

Para a especificação do *framework* proposto foram elencados os requisitos de software, utilizada a abordagem de desenvolvimento baseado em componentes fundamentada no estudo de CHEESMAN; DANIELS (2001), onde tem-se a separação entre modelagem do domínio e da especificação. A modelagem de domínio consiste na definição dos casos de uso, do modelo conceitual e do modelo comportamental. Já a modelagem de especificação é segmentada em três partes, a parte de identificação de componentes, de interação entre os componentes e a especificação de componentes.

A seguir, são detalhados os requisitos de software, os modelo de domínio, os modelos de especificação e as especificações dos componentes do ETL4NoSQL

3.1 Requisitos de software do ETL4NoSQL

Requisitos de software são descrições de como o sistema deve se comportar, definidos durante as fases iniciais do desenvolvimento do sistema como uma especificação do que deveria ser implementado (SOMMERVILLE (2013)). Os requisitos podem ser divididos em funcionais e não funcionais, onde o primeiro descreve o que o sistema deve fazer, ou seja, as transformações a serem realizadas nas entradas de um sistema a fim de que se produzam saídas, já o outro expressa as características que este software vai apresentar (SOMMERVILLE (2013)).

O ETL4NoSQL é um *framework* que tem como principal objetivo auxiliar na criação de processos de ETL ao se utilizar diversas estruturas de armazenamento de dados. Um sistema de software pode ter seus dados armazenados em bases relacionais, que seguem o modelo entidade e relacionamento, ou não relacionais, onde esta possui pouca definição de esquema, não segue um modelo específico e são regularmente chamados de NoSQL (FOWLER; SADALAGE (2013)). As bases NoSQL possuem quatro paradigmas frequentemente utilizados: Chave-Valor, Família de Colunas, Documentos e Grafo (FOWLER; SADALAGE (2013)).

As bases de dados relacionais utilizam uma linguagem de gerenciamento de dados padrão conhecida por SQL (Structure Query Language) (REFERENCIA), porém as bases de dados NoSQL não possuem uma linguagem em comum, como as relacionais, cada estrutura de armazenamento possui sua própria linguagem de gerenciamento de dados (REFERENCIA). Por isso, é essencial que haja um componente que seja capaz de fazer a leitura diretamente da fonte de dados e um componente que também possa carregar esses dados diretamente no seu destino, independente do seu tipo, saber se é um arquivo texto, um arquivo XML, RDBMS, NoSQL, entre outros. Um componente tem como uma de suas definições ser uma unidade de *software* independente, que encapsula a sua implementação, e oferece serviços por meio de suas interfaces (SOUZA GIMENES; HUZITA (2005)).

Outra importante características para especificar o uso do ETL4NoSQL são os processos de ETL, que possuem quatro etapas básicas: extração, limpeza/transformação e carga (KIMBALL; CASERTA (2004)). O fluxo do processo de ETL inicia-se com a extração dos dados a partir de uma fonte. A partir da extração, é possível que um componente passe os dados para uma Área de Processamento de Dados (APD), onde é possível modelar os dados executando processos de limpeza e transformação por meio de mecanismos de junção, filtro, união, agregação e outros. Finalmente, os dados podem ser carregados em estrutura de dados.

Dessa forma, o ETL4NoSQL possui um componente que permite a leitura dos dados de diversos SGBDs NoSQL, de arquivos textuais, além dos SGBDs relacionais. Outro componente que permite a execução dos mecanismos de ETL, este componente também faz uso de componentes para o gerenciamento da execução dos processos, bem como a construção e sequência dos processos de ETL e a escolha do tipo de processamento. O ETL4NoSQL é composto também de um componente que permite carregar diretamente os dados no destino independente do seu tipo. No quadro 3.1 é apresentado os principais requisitos elencados do

ETL4NoSQL. Foi definido como importante as prioridades que são imprescindíveis para o desenvolvimento e funcionamento do framework, e desejável as funcionalidades que aprimoram o uso do framework, porém não interferem no seu principal objetivo.

Quadro 3.1 Requisitos do ETL4NoSQL

Funcionalidade	Requisito	Prioridade
Suporte à plata- forma	Ser independente de plataforma	Importante
Suporte à fonte	Ser capaz de ler diretamente da fonte de dados, independente do seu tipo, saber se é uma fonte RDBMS, arquivo de texto, XML ou NoSQL.	Importante
Suporte ao des- tino	Ser capaz de carregar diretamente os dado no destino, independente do seu tipo, saber se o destino é RDBMS, arquivo de texto, XML ou NoSQL.	Importante
Suporte à modela- gem	Apoiar na extração de dados de múltiplas fontes, na limpeza dos dados, e na transformação, agregação, reorganização e operações de carga.	Importante
Paralelismo	Apoiar as operações de vários segmentos e execução em paralelo, internamente. A ferramenta deve ser capaz de distribuir tarefas entre múltiplos servidores.	Importante
Programável	Apoiar o agendamento de tarefas de ETL e ter suporte para programação em linha de comandos usando programação externa.	Importante
Reutilização	Apoiar a reutilização dos componentes do framework e da lógica das transformações para evitar a reescrita.	Importante
Apoio ao nível de debugging	Apoiar o tempo de execução e a limpeza da lógica de transformação. O usuário deve ser capaz de ver os dados antes e depois da transformação.	Desejável
Implementação	Suportar a capacidade de agrupar os objetos ETL e implementá-los em ambiente de teste ou de produção, sem a intervenção de um administrador de ETL.	Desejável
Garantia de Quali- dade	Ser capaz de estabelecer processos, métricas e avaliações que possibilitem e garantam a qualidade de software.	Desejável

3.2 Modelagem do Domínio de ETL4NoSQL

A modelagem do domínio de ETL4NoSQL é exposta a seguir através de seus três modelos: modelo conceitual, modelo de casos de uso e modelo de comportamento.

3.2.1 Modelo Conceitual

Os conceitos de aplicações ETL, identificados para o ETL4NoSQL, são: Fonte, Destino, Modelagem, Processamento, Operações, ProcessamentoDistribuído e ProcessamentoCentralizado. O modelo conceitual pode ser visualizado na figura 3.1.

Figura 3.1 Modelo conceitual do ETL4NoSQL

3.2.2 Modelo de Casos de Uso

Um conjunto de casos de uso pode ser identificado tal como: Ler fonte de dados, Escrever no destino, Modelar dados, Executar operação, Processar operações. O quadro 3.2 mostra a descrição sucinta de cada caso de uso.

Quadro 3.2 Modelo de Casos de Uso do ETL4NoSQL

Nome: Ler fonte de dados

Objetivo: Fazer a leitura de qualquer tipo de dados a partir de uma fonte de dados. **Pré-condição:** os parâmetros para permissão de conexão com a fonte de dados devem estar disponíveis.

Ação: ler (Fonte)

Nome: Escrever no destino

Objetivo: Fazer a escrita de qualquer tipo de dado a partir do modelo processado pelo ETL4NoSQL em uma base de destino.

Pré-condição: os parâmetros para permissão de conexão e escrita com o destino devem estar disponíveis.

Ação: escrever (Destino)

Nome: Modelar dados

Objetivo: Permitir a modelagem dos dados por meio de mecanismos de junção, filtro, união, agregação e outros.

Pré-condição: os mecanismos de transformação e limpeza devem estar disponíveis para executar a modelagem.

Ação: modelar (Modelagem, Operação)

Nome: Executar operação

Objetivo: Armazenar, gerenciar e executar as operações criadas pela ação de mode-

Pré-condição: as operações devem ser criadas previamente pela ação de modelar.

Ação: executar (Operação, Processamento)

Nome: Processar operações

Objetivo: Processar as operações armazenadas de forma centralizada ou distribuída. **Pré-condição:** as operações precisam estar disponíveis para o processamento.

Ação: processar (Processamento, Operação)

3.2.3 Modelo Comportamental

Ao construir o modelo comportamental é possível identificar os conceitos com comportamentos mais relevantes para o negócio, bem como os estados e eventos que disparam transições de estados (SOUZA GIMENES; HUZITA (2005)). Dessa forma, o diagrama de estados do ETL4NoSQL é apresentado na figura 3.2, nele podemos ver as transições de leitura da fonte, validação e identificação dos dados, assim como o tratamento caso os dados não possam ser identificados, subsequente a isso, o armazenamento dos dados para o processamento, a criação dos processos de ETL, a escolha da forma de processamento, execução das operações, e também o tratamento para operações que não puderem ser executadas, e finalmente, a carga dos dados na base destino seguido de uma mensagem de tratamento caso haja sucesso ou não da execução.

Figura 3.2 Diagrama de Estado do ETL4NoSQL

3.3 Modelagem da Especificação do ETL4NoSQL

A modelagem de especificação visa definir, em um nível alto de abstração, os serviços oferecidos pelos componentes SOUZA GIMENES; HUZITA (2005). Dessa forma, é possível determinar a arquitetura e especificar os componentes. É importante dar ênfase a especificação das interfaces, pois isso contribui para uma clara separação entre os componentes, e também, para assegurar o princípio de encapsulamento de dados e comportamento SOUZA GIMENES; HUZITA (2005). CHEESMAN; DANIELS (2001) divide a modelagem da especificação em três estágio, sendo assim, os estágios da modelagem de especificação do ETL4NoSQL são apresentados a seguir.

3.3.1 Identificação de Componentes

Seguindo o modelo de conceitos do negócio e do modelo de casos de uso foi possível identificar as interfaces para os componentes de negócio, as interfaces de sistema para os componentes de sistema e gerar a arquitetura de componentes inicial. As interfaces de negócio são reconhecidas por meio do modelo conceitual e as interfaces de sistema e operações a partir dos casos de uso.

3.3.2 Interfaces de Sistemas

As interfaces de sistemas do ETL4NoSQL identificadas, por meio do modelo de casos de uso apresentado no quadro 3.2, foram: IReadData, IWriteData, IModelData, IExeOp e IProcOp. Para especificar as interfaces foi utilizado OCL (WARMER; KLEPPE (1998)).

```
context System :: IReadData (source : Fonte)
```

pre:

- A fonte é reconhecida, a conexão foi estabelecida Fonte.allInstances@includes(Fonte) Fonte.connection = estabelecido
- Se não for possível estabelecer conexão
 Fonte.allInstances@includes(Fonte) Fonte.connection =
 retorna mensagem de erro
- A estrutura de dados da fonte é reconhecido
 Fonte.allInstances@includes(Fonte) Fonte.structureType =
 reconhecido

- Se a estrutura não puder ser reconhecida
Fonte.allInstances@includes(Fonte)Fonte.structureType =
retorna mensagem de erro

post:

- Um novo objeto f do tipo Fonte foi criado Fonte. allInstances@includes (f: Fonte | not Fonte.allInstances@pre@includes (f) and
- Os atributos do objeto f foram inicializados)

A partir da especificação foram identificadas as operações: Interface IReadData(Connection(connect), structureType())

context System :: IWriteData (load : Destino)

pre:

- O repositório destino estabeleceu conexão
 Destino.allInstances@includes(Destino) Destino.connection =
 estabelecido
- Se não for possível estabelecer conexão
 Destino.allInstances@includes(Destino) Destino.connection =
 retorna erro
- A estrutura de dados de destino é reconhecida
 Destino.allInstances@includes(Destino) Destino.structureType =
 reconhecido
- Se a estrutura não puder ser reconhecida

 Destino.allInstances@includes(Destino)Destino.structureType = retorna erro
- A estrutura de dados de destino permite a escrita dos dados Destino.allInstances@includes(Destino) Destino.structureType = permissão de escrita

- Se a estrutura não permitir a escrita

Destino.allInstances@includes(Destino)Destino.structureType = retorna erro

post:

- Um novo objeto d do tipo Destino foi criado Fonte. allInstances@includes (d: Destino | not Destino.allInstances@pre@includes (d) and
- Os atributos do objeto d foram inicializados)

As operações identificadas foram:

Interface IWriteData (connection(connect), structureType(), allowWrite())

context System :: IModelData (model : Modelagem; source: Fonte; operation: Operação)

pre:

- O repositório fonte e sua estrutura são reconhecidas Fonte.allInstances@includes(Fonte) Fonte.connection = estabelecido and Fonte.structureType = reconhecido
- Se não for possível estabelecer conexão
 Fonte.allInstances@includes(Destino) Fonte.connection =
 retorna erro
- Verifica se a operação existe
 Operação.allInstances@includes(Operação)
 Operação.mecanismo = existe
- Se a operação não existirOperação.allInstances@includes(Operação)Operação.mecanismo = retorna erro
- Cria a operação Modelagem.allInstances@includes(Modelagem)

Modelagem.operacao(dados)

post:

- Um novo objeto m do tipo Modelagem foi criado

Modelagem. allInstances@includes (m: Modelagem | not Destino.allInstances@pre@includes (m) and

- Os atributos do objeto m foram inicializados
- m foi ligado ao objeto f
- f.Fonte = Fonte
- m foi ligado ao objeto o
- o.Operação = Operação
- Todas as operações de modelagem foram criadas e armazenadas em um APD)

As operações identificadas foram:

Interface IModelData (readData(CodFonte), createOp(CodOperação, data))

```
context System :: IExeOp (model : Modelagem; operation:
Operação, processing: Processamento)
```

pre:

- As operações foram modeladas
 Modelagem.allInstances@includes(Modelagem)
 Modelagem.operações = existem
- Se não houver operações para executar
 Operação.allInstances@includes(Operação)
 Operação.executa = retorna erro
- As operações devem ser colocadas em ordem de execução Operação.allInstances@includes(Operação) Operação.manage(operações)

post:

- Um novo objeto o do tipo Operação foi criado

Operação. allInstances@includes (o: Operação | not
Operação.allInstances@pre@includes (o) and

- Os atributos do objeto o foram inicializados
- o foi ligado ao objeto m

- o foi ligado ao objeto m

m.Modelagem = Modelagem

- o foi ligado ao objeto p

p.Processamento = Processamento

- Todas as operações escalonadas e estão pronta para

o processamento)

As operações identificadas foram:

Interface IExeOp (modelOperation(CodModelagem), operationManagement())

```
context System :: IProcOp (operation: Operação,
processing: Processamento)
```

pre:

- As operações devem estar na ordem para execução
 Operação.allInstances@includes(Operação) Operação.toExec = pronto
- O tipo de processamento foi escolhido Processamento.allInstances@includes(Processamento) Processamento.typeProc(tipoProcessamento)

post:

- Um novo objeto p do tipo Processamento foi criado

Processamento. allInstances@includes (m: Processamento | not Destino.allInstances@pre@includes (p) and

- Os atributos do objeto p foram inicializados
- p foi ligado ao objeto o
- o.Operação = Operação
- É gerado o processamento das operações de acordo

com o tipo escolhido)

As operações identificadas foram:

Interface IProcOp (process(CodOperação), typeProc(tipoProcessamento))

3.3.3 Interfaces de Negócio

Para definir as dependências no modelo CHEESMAN; DANIELS (2001), identificam o conceito de tipos principais, sendo estes tipos que possuem existência independente. No ETL4NoSQL foi possível identificar quatro tipos principais: Fonte, Modelagem, Operação e Processamento. Para cada tipo principal foi possível definir uma interface de negócio, como é apresentado na figura 3.3.

Figura 3.3 Definição de interfaces do modelo de negócio do ETL4NoSQL

3.3.4 Especificação da Arquitetura do Componente

SOMMERVILLE (2013), define o projeto de arquitetura como um processo criativo em que se tenta organizar o sistema de acordo com os requisitos funcionais e não funcionais. Um estilo de arquitetura é um padrão de organização de sistema (SHAW; GARLAN (1996), SOMMERVILLE (2013)), como uma organização cliente-servidor ou uma arquitetura em camadas. Porém, a arquitetura não necessariamente utilizará apenas um estilo, a maioria dos sistemas de médio e grande porte utilizam vários estilos. Para SHAW; GARLAN (1996), há três questões a serem definidas na escolha do projeto de arquitetura, a primeira é a escolha da estrutura,

cliente-servidor ou em camadas, que permita atender melhor aos requisitos. A segunda questão é a respeito da decomposição dos subsistemas em módulos ou em componentes. E por fim, deve-se tomar a decisão de sobre como a execução dos subsistemas é controlada. A descrição da arquitetura pode ser representada graficamente utilizando modelos informais e notações como a UML (CLEMENTS et al. (2002), SOMMERVILLE (2013)). Para o ETL4NoSQL, cada componente foi associado à sua interface de negócio identificada e uma interface de gerenciamento foi separada das outras interfaces de negócio, como pode ser visto na figura 3.4.

Figura 3.4 Especificação da arquitetura do componente de ETL4NoSQL

3.4 Interação entre Componentes

Esta etapa é detalhada, em termos de interações, utilizando diagramas de colaboração. Dessa forma, apresentamos os diagramas de colaboração para as interações do ETL4NoSQL na seção a seguir.

3.4.1 Operações da interface de negócio

As operações de negócio são identificadas quando as interações forem analisadas para cada interface do sistema. Analisando as pré e pós-condições das operações de interface do sistema identificadas anteriormente foi possível detalhar usando diagramas de colaboração as interações necessárias para efetuar as operações do ETL4NoSQL. Os diagramas de cada operação podem ser visto nas figuras 3.5, 3.6, 3.7.

A conexão com a fonte de dados é estabelecida:

Figura 3.5 Diagrama de colaboração para conectar à base de fonte de dados

A estrutura de dados da fonte é reconhecido:

Figura 3.6 Diagrama de colaboração para verificar a estrutura de dados

A escrita na base de dados destino é permitida:

Figura 3.7 Diagrama de colaboração para verificar se existe permissão de escrita na base de dados destino

3.5 Especificação de Componentes

Descrição das operações Diagrama de especificação da interface

3.6 Considerações Finais

4

Estudo Experimental de Software

Este capítulo provê o roteiro de experimentação de software para ferramentas de ETL utilizando dados estruturados, semi estruturados e não estruturados. A Engenharia de Software Experimental tem como objetivo aprimorar métodos, técnicas e ferramentas de Engenharia de Software a partir de métodos experimentais (SOUZA et al. (2015)). As etapas definidas no processo de experimentação em Engenharia de Software proposto por SOUZA et al. (2015) consiste em etapas de definição, planejamento, operação, interpretação dos dados e empacotamento que serão melhor detalhados nas seções a seguir.

4.1 Objetivos do experimento

O objetivo principal da aplicação deste experimento é definir se o framework proposto por esta pesquisa de dissertação é uma ferramenta adequada para auxiliar no desenvolvimento de processos de ETL em dados estruturados, semi estruturados e não estruturados.

4.1.1 Objetivo da Medição

Tendo como base as ferramentas de ETL existentes na literatura, caracterizar:

- 1. Quais as principais funcionalidades que as ferramentas de ETL oferecem:
 - (a) essas funcionalidades manipulam dados estruturados, semi estruturados e não estruturados.
 - (b) essas funcionalidades não manipulam dados estruturados, semi estruturados e não estruturados.
- 2. Quais funcionalidades podem ser consideradas fundamentais para a produtividade na criação de processos de ETL:
 - (a) quais necessitam manipular dados em grande escala.
 - (b) quais não manipulam grande volume de dados.
- 3. Quais funcionalidades poderiam aprimorar as ferramentas de ETL.

4.1.2 Objetivos do Estudo

- Analisar as ferramentas de ETL para dados estruturados, semi estruturados e não estruturados;
- Com o propósito de caracterizar;
- Com respeito à intersecção das ferramentas de ETL existente;
- Do ponto de vista da literatura;
- No contexto de comparativo entre as ferramentas mais conhecidas no mercado atual.

4.1.3 Questões

Q1. Existem funcionalidades listadas pelas ferramentas pesquisadas que não estão presentes no ETL4NoSQL?

Métrica: A lista de funcionalidades que não estão presentes no ETL4NoSQL.

Q2. Existem funcionalidades listadas pelas ferramentas pesquisadas que estão presentes no ETL4NoSQL, mas são consideradas pouco úteis?

Métrica: A lista de funcionalidades que estão presentes nas ferramentas da literatura e no ETL4NoSQL e são consideradas inúteis.

Q3. Existem funcionalidades que estão presentes nas ferramentas de ETL da literatura e no ETL4NoSQL, consideradas úteis, e que poderiam ser melhoradas?

Métrica: A lista de funcionalidades que estão presentes nas ferramentas de ETL da literatura e no ETL4NoSQL, consideradas úteis e que necessitam melhorar.

Q4. Existem funcionalidades que estão presentes nas ferramentas de ETL da literatura que não estão presentes no ETL4NoSQL, mas que são consideradas úteis?

Métrica: A lista de funcionalidades que estão presentes nas ferramentas de ETL da literatura que não estão presentes no ETl4NoSQL e que são consideradas úteis.

4.2 Planejamento

Na etapa de planejamento são definidas as hipóteses do estudo, a descrição da instrumentação, as métricas, seleção do contexto e dos indivíduos, as variáveis, a análise qualitativa e a validade do experimento. Todas elas serão descritas nas seções seguintes.

4.2.1 Definição das Hipóteses

Hipótese nula (H0): As funcionalidades oferecidas pelo ETL4NoSQL são similares às funcionalidades oferecidas pelas ferramentas presentes na literatura.

Fp - Funcionalidades do ETL4NoSQL;

Fl - Funcionalidades das ferramentas da literatura.

H0: Fl - (Fp
$$\cap$$
 Fl) = \emptyset

Hipótese alternativa (H1): A lista de funcionalidades oferecidas pelo ETL4NoSQL é diferente da lista de funcionalidades oferecidas pelas ferramentas presentes na literatura.

Fp - Funcionalidades do ETL4NoSQL;

Fl - Funcionalidades das ferramentas da literatura.

H1: Fl - (Fp
$$\cap$$
 Fl) $\neq \emptyset$

Hipótese alternativa (H2): Na lista de funcionalidades oferecidas pelo ETL4NoSQL e pelas ferramentas de ETL da literatura possuem funcionalidades consideradas pouco úteis.

Fpl - Funcionalidades presentes no ETL4NoSQL e nas ferramentas da literatura;

Fplu - Funcionalidades presentes no ETL4NoSQL e nas ferramentas da literatura que são consideradas úteis.

H2: Fpl - (Fpl ∩ Fplu)
$$\neq$$
 ∅

Hipótese alternativa (H3): Na lista de funcionalidades oferecidas pelo ETL4NoSQL e pelas ferramentas de ETL da literatura possuem funcionalidades consideradas pouco úteis, cujo necessita de melhorias.

Fplu - Funcionalidades presentes no ETL4NoSQL e nas ferramentas da literatura que são consideradas úteis;

Fplun - Funcionalidades presentes no ETL4NoSQL e nas ferramentas da literatura que são consideradas úteis, cujo necessita melhorias.

H3: Fplu - (Fplu
$$\cap$$
 Fplun) ≠ \emptyset

Hipótese alternativa (H4): A lista de funcionalidades que estão presentes nas ferramentas da literatura e não estão presentes no ETL4NoSQL que são consideradas úteis.

Fpn - Funcionalidades de ETL4NoSQL não presentes (Fpn \equiv Fl - (Fp \cap Fl))

Fo - Funcionalidades não presentes no ETL4NoSQL, mas que são consideradas úteis.

H4: Fpn - (Fpn
$$\cap$$
 Fo) \neq ∅

4.2.2 Descrição da instrumentação

Para cada funcionalidade presente nas ferramentas apresentada na literatura que são consideradas fundamentais para o funcionamento dos processos de ETL pode ser encontrada no quadro 4.1:

Quadro 4.1 Descrição da Instrumentação

Presença da Funcionalidade	Melhoria da Funcionalidade	Utilidade da Funcionalidade
(P)	(M)	(U)
 Não está presente Está presente parcialmente Está presente 	 Necessita melhorar Não há necessidade de melhoria Pode melhorar, mas não necessidade 	 É útil Não é útil É parcialmente útil

Para cada funcionalidade aplicar teste estatístico qui-quadrado para definir:

se pode considerar que essa funcionalidade é fornecida;

se pode considerar que essa funcionalidade é útil;

se pode considerar que essa funcionalidade necessita de melhoria.

Resultado: N funcionalidades com valores (P; M; U) onde P - presença 0 - não presente; 1 - presente; U - utilidade 0 - não é útil; 1 - é útil; melhoria 0 - não necessita melhorar; 1 -

necessita melhorar.

4.2.3 Métricas

Na tabela 4.2 são apresentadas as métricas utilizadas neste experimento.

Quadro 4.2 Métricas

Nο	P	M	U	Descrição da Funcionalidade	Questões
1	0	0	0	Não está presente, não necessita melhorar, não é útil	Q1, Q4
2	0	0	1	Não está presente, não necessita melhorar, é útil	Q1, Q4
3	0	1	0	Não está presente, necessita melhorar, não é útil	N/A
4	0	1	1	Não está presente, necessita melhorar, é útil	Q1, Q4
5	1	0	0	Está presente, não necessita melhorar, não é útil	Q2
6	1	0	1	Está presente, não necessita melhorar, é útil	Q3
7	1	1	0	Está presente, necessita melhorar, não é útil	Q2
8	1	1	1	Está presente, necessita melhorar, é útil	Q3

4.2.4 Seleção do contexto

De acordo com Travassos (2002), o contexto pode ser caracterizado conforme quatro dimensões:

• o processo: on-line / off-line;

os participantes: ferramentas de ETL;

■ realidade: o problema real / modelado;

■ generalidade: específico / geral.

Nosso estudo supõe o processo off-line porque as ferramentas não estão sendo testadas durante todo o tempo da utilização, mas em certo instante. Os participantes são as ferramentas de ETL encontradas na literatura. O estudo é modelado porque as funcionalidades das ferramentas não são caracterizadas durante a resolução do problema real, mas utilizando parâmetros subjetivos (ex. presença, utilidade e necessidade). As funcionalidades do ETL4NoSQL são comparadas com as ferramentas presentes na literatura, então, o contexto possui o caráter específico.

4.2.5 Seleção dos indivíduos

Como participantes para o estudo propõe-se utilizar as ferramentas encontradas na literatura. Assume-se que esses indivíduos estão presente em diversos estudos realizados e avaliados no meio acadêmico.

Para a escolha das ferramentas utilizadas neste estudo foi levado em consideração a semelhança da finalidade do uso com a ferramenta proposta. Seria conveniente utilizar para o

estudo ferramentas que tem o objetivo de auxiliar processos de ETL em diversas estruturas de dados. Dessa forma, a seleção baseou-se nas características das ferramentas.

4.2.6 Variáveis

Variável independente: A lista de funcionalidades das ferramentas encontradas na literatura.

Variáveis dependentes:

1. A similaridade entre as funcionalidades oferecidas pela ferramenta proposta e as funcionalidades encontradas nas ferramentas da literatura.

Pode receber os valores: Igual, quando todas as funcionalidades tem o valor PMU = $\{1, X, X\}$ (métricas 5-8); Diferente, quando todas as funcionalidades tem o valor PMU = $\{0, X, X\}$ (métricas 1-4) Similar, quando não se cumprem as condições de "Igual"e "Diferente". O grau de similaridade pode ser avaliado como: $\{1, X, X\}$ / $\{0, X, X\}$ + $\{1, X, X\}$ * 100%

- 2. A utilidade das funcionalidades similares. Mostra a parte útil das funcionalidades oferecidas pela ferramenta proposta: Parte útil: { 1, X, 1 } / { 1, X, X } * 100% Parte inútil: { 1, X, 0 } / { 1, X, X } * 100%
- 3. A melhoria das funcionalidades similares. Mostra a necessidade de melhoria nas funcionalidades oferecidas pela ferramenta proposta: Não necessita melhorar: { 1, 0, X } / { 1, X, X } * 100% Necessita melhorar: { 1, 0, X } / { 1, X, X } * 100%

4.2.7 Análise Qualitativa

Para analisar a informação referente às funcionalidades não oferecidas no ETL4NoSQL, mas que poderiam ser implementadas, propõe-se aplicar a análise qualitativa. Essa análise deve apresentar a lista de funcionalidades presentes nas ferramentas da literatura, que não estão presentes na ferramenta proposta, mas que são consideradas necessárias para facilitar a manipulação de dados estruturados, semi estruturados e não estruturados. Assim, essa análise deve considerar funcionalidades com valor PMU = 0, X, X (métricas 1-4) e a opção "É útil" para "utilidade da funcionalidade".

4.2.8 Validade

Validade interna: como mencionado na parte "Seleção dos indivíduos" para o estudo se propõe a utilizar ferramentas presentes na literatura, que são validadas pelo meio acadêmico. Assim, assume-se que elas são representativas para a população de ferramentas de ETL.

4.3. OPERAÇÃO 43

Além disso, para redução da influência dos fatores que não são interesse do nosso estudo e, portanto, para aumento da validade interna do estudo supõe-se utilizar dados das ferramentas mais populares da literatura, cuja a validação já tenha passado por diversas avaliações.

Validade de conclusão: para receber os valores da presença, utilidade e melhorias o teste binomial será utilizado. A verificação de hipótese será feita por meio de simples demonstração de presença ou não de funcionalidades nas listas que representam as variáveis independentes.

Validade de construção: esse estudo está caracterizado pela conformidade das funcionalidades listadas na ferramenta proposta com as funcionalidades reais necessárias para a utilização de ferramentas de ETL. As características das ferramentas de ETL presentes na literatura representa a lista de funcionalidades que uma ferramenta de ETL deve apresentar para mostrar o desempenho adequado do ponto de vista da literatura. As funcionalidades, que tem o maior relacionamento com as ferramentas de ETL do ponto de vista dos pesquisadores, foram escolhidas do conjunto total de funcionalidades das ferramentas de ETL presentes na literatura.

Validade externa: como foi mencionado nas partes "Seleção dos indivíduos"e "Validade interna"os participantes do estudo em geral podem ser considerados representativos para a população da literatura apresentada pela academia. Para avaliação do nível de importância das funcionalidades analisadas foi levada em consideração a frequência que a funcionalidade apareceu nas ferramentas da literatura.

Os materiais utilizados no estudo podem ser considerados representativos e "em tempo" para o problema sob análise, porque se compõem das funcionalidades de ferramentas de ETL presentes na literatura atual.

4.3 Operação

A etapa de operação ocorre após a etapa de planejamento do estudo experimental. Nela é exercido o monitoramento do experimento para garantir que ele esteja ocorrendo conforme foi planejado (Souza Isaque, 2015). Nesta seção serão apresentados os questionários do perfil da ferramenta de ETL e o de Funcionalidades.

4.3.1 Questionário do Perfil da Ferramenta de ETL

O quadro 4.3 mostra as questões usadas para definir o perfil das ferramentas utilizadas como indivíduos deste experimento.

4.3.2 Questionário de Funcionalidades

Sob o ponto de vista das características das ferramentas e considerando a finalidade da ferramenta indicada acima, avalie as colunas correspondentes segundo as escalas abaixo, a presença, utilidade e melhorias quanto às funcionalidades das ferramentas apresentadas nos seus respectivos trabalhos de pesquisa, das funcionalidades listadas no questionário:

Quadro 4.3 Questionário do Perfil da Ferramenta de ETL

Quality 4.5 Questionario do l'erin da l'erramenta de ETE							
Nome da ferramenta de ETL:							
Possui código aberto?	Sim () Não ()						
Possui uma marca reconhecida no mercado?	Sim O Não O						
Tem como finalidade utilizar bancos de dados	Sim O Não O						
NoSQL?							
Possui interface gráfica?	Sim () Não ()						
É programável?	Sim () Não ()						
É integrada?	Sim () Não ()						
Qual o tipo de processamento que a ferramenta	Distribuído (Centralizada (Híbrido ()						
executa?							
É extensível?	Sim O Não O						
Para qual finalidade a ferramenta procura auxi-	Modelagem () Desempenho () Ambos ()						
liar melhor os processos de ETL?							

Quadro 4.4 Instrumentação para aplicar o questionário

Quadro 4.4 Instrumentação para aplicar o questionario										
Presença da Funcionalidade	Melhoria da Funcionalidade	Utilidade da Funcionalidade								
(P)	(M)	(U)								
 Não está presente Está presente parcialmente Está presente 	 Necessita melhorar Não há necessidade de melhoria Pode melhorar, mas não necessidade 	 É útil Não é útil É parcialmente útil 								

N	Funcionalidade	Descrição	Pres	ença		Utilio	dade		Melhoria		
			1	2	3	1	2	3	1	2	3
	Processo										
1	Suporte à plataforma	Ser independente de plataforma.									
2	Suporte à fonte	Ser capaz de ler diretamente da fonte de dados, independente do seu tipo, saber se é uma fonte RDBMS, arquivo de texto, XML ou NoSQL.									
3	Suporte ao destino	Ser capaz de carregar diretamente os dado no destino, independente do seu tipo, saber se o destino é RDBMS, arquivo de texto, XML ou NoSQL.									
4	Suporte à modelagem	Apoiar na extração de dados de múltiplas fontes, na limpeza dos dados, e na transformação, agregação, reorganização e operações de carga.									
5	Paralelismo	Apoiar as operações de vários segmentos e execução em paralelo, internamente. A ferramenta deve ser capaz de distribuir tarefas entre múltiplos servidores.									
6	Apoio ao nível de debugging	Apoiar o tempo de execução e a limpeza da lógica de transformação. O usuário deve ser capaz de ver os dados antes e depois da transformação.									
7	Programável	Apoiar o agendamento de tarefas de ETL e ter suporte para programação em linha de comandos usando programação externa.									
8	Implementação	Suportar a capacidade de agrupar os objetos ETL e implementá-los em ambiente de teste ou de produção, sem a intervenção de um administrador de ETL.									
9	Reutilização	Apoiar a reutilização dos componentes do framework e da lógica das transformações para evitar a reescrita.									
10	Garantia da qualidade	Ser capaz de estabelecer processos, métricas e avaliações que possibilitem e garantam a qualidade de software.									

Figura 4.1 Questionário de Funcionalidades

4.3.3 Resultado do Estudo

A figura 4.2 apresenta o gráfico da quantidade de presença para cada funcionalidade de acordo com cada ferramenta de ETL. Já a figura 4.3 mostra o nível de importância que as ferramentas dão para cada funcionalidade e a figura 4.4 indica necessidade de melhorar funcionalidade em cada ferramenta.

Figura 4.2 Quantidade de Presença para cada funcionalidade

Figura 4.3 Níveis de utilidade para cada funcionalidade

O perfil dos participantes é apresentado no quadro 4.5, bem como a legenda para leitura é exibida no quadro 4.6. Na figura 4.5 é possível comparar por meio do gráfico os perfis das ferramentas analisadas por este estudo experimental.

Das onze ferramentas de ETL apresentadas neste estudo dez possuem código aberto, sete não possui uma marca reconhecida no mercado, nenhuma foi desenvolvida para suportar BDs NoSQL, seis possuem uma GUI, apenas quatro não são programáveis, duas não são integradas, nove delas oferece alguma alternativa para o processamento distribuído, um pouco mais da metade são extensíveis e a finalidade da maioria é modelagem tentando aliar ao desempenho.

Figura 4.4 Necessidade de melhoria para cada funcionalidade

Quadro 4.5 Resultado do Perfil dos participantes

Ferramenta	Código Fonte	Marca de mercado	Para NoSQL	GUI	Programável	Integrada	Processamento	Extensível	Finalidade
PygramETL	1	2	2	2	1	1	2	1	2
ARKTOSII	1	2	2	1	2	1	3	2	1
Big-ETL	1	2	3	2	1	2	1	1	3
ETLMR	1	2	2	2	1	1	1	1	2
CloudETL	1	2	3	2	1	1	1	1	2
P-ETL	1	2	3	1	2	1	3	2	3
FramETL	1	2	2	2	1	1	2	1	1
Talend Studio	1	1	3	1	1	1	3	2	3
Pentaho Kettle	1	1	3	1	2	1	3	2	1
CloverETL	1	1	3	1	1	2	3	2	3
Oracle (ODI)	2	1	3	1	2	1	3	2	3

Quadro 4.6 Legenda

Código Fonte	Marca de mercado	Para NoSQL	GUI	Programável	Integrada	Processamento	Extensível	Finalidade
1-Aberto	1-Reconhecido	1-Sim	1-Possui	1-Sim	1-Sim	1-Distribuído	1-Sim	1-Modelagem
2-Fechado	2-Não reconhecido	2-Não	2-Não possui	2-Não	2-Não	2-Centralizado	2-Não	2-Desempenho
		3-Possui, mas não é o foco				3-Híbrido		3-Ambos

4.4 Análise e interpretação dos resultados

Nesta seção é apresentada a análise e interpretação dos resultados conforme as regras estatísticas escolhidas para serem aplicadas neste estudo.

4.4.1 Estatística descritiva

As medidas de tendência central como os valores "Presença", "Melhoria" e "Utilidade" são da escala ordinal, por isso é possível definir as métricas de "moda" e "mediana". As métricas de presença estão no quadro 4.7, as métricas de utilidade são apresentadas no quadro 4.9 e as métricas de melhoria podem ser vistas no quadro 4.8.

Considerando as respostas recebidas durante o estudo e utilizando os resultados de estatística descritiva podemos dividir as perguntas em 4 grupos. O primeiro grupo são as funcionalidades que estão presente, mas são parcialmente úteis; já o segundo grupo são as funcionalidades presentes e úteis; o terceiro grupo consiste na presença da funcionalidade com

Figura 4.5 Perfil das Ferramentas de ETL

Quadro 4.7 Estatística Descritiva da Presença de Funcionalidades

Presença										
Funcionalidades	1	2	3	4	5	6	7	8	9	10
Mediana	3	2	2	3	2	3	2	3	3	3
Moda	3	2	2	3	3	3	3	3	3	3

necessidade de melhoria; e finalmente, o quarto grupo que representa as funcionalidades que estão presentes e não necessitam de melhoria. Todos os grupos podem ser analisados nos quadros 4.10, 4.11, 4.12 e 4.13.

Os valores na tabela significam P - presente:não presente; M - necessita melhoria:não necessita melhoria; U - útil;inútil.

4.4.2 Aplicação do teste estatístico

Para cada funcionalidade foi aplicado o teste de associação Qui-quadrado, com o objetivo de verificar se existe associação entre a ferramenta e a presença da sua funcionalidade. O teste do qui-quadrado pode ser usado em pesquisas de amostras independentes com a variável de resposta qualitativa (categórica) (BARBETTA (2012)). O quadro 4.14 mostra os resultados da quantidade de funcionalidades presentes nas ferramentas do estudo.

Dessa forma, calculamos o valor esperado para cada funcionalidade através da fórmula de frequências esperadas:

E = (total da linha) x (total da coluna) / (total geral)

 $E = 63 \times 11 / 110 = 6.3$

 $E = 47 \times 11 / 110 = 4.7$

Quadro 4.8 Estatística Descritiva da Melhoria de Funcionalidades

Melhoria										
Funcionalidades	1	2	3	4	5	6	7	8	9	10
Mediana	2	1	1	2	1	3	2	3	3	2
Moda	2	1	1	{1,3}	1	3	{1,2}	3	3	1

Quadro 4.9 Estatística Descritiva da Utilidade de Funcionalidades

Utilidade										
Funcionalidades	1	2	3	4	5	6	7	8	9	10
Mediana	1	1	1	1	1	3	1	1	1	1
Moda	1	1	1	1	1	3	1	1	1	1

Quadro 4.10 Funcionalidade presente e parcialmente útil

N.	Funcionalidade	Р	M	II	Característica
		10.1	0.11	0.2	
6	Apoio ao nível de de-	10:1	0:11	8:3	- A funcionalidade existe na maioria das
	bugging				ferramentas, mas não dão o enfoque nela.
					- É uma funcionalidade trivial, pois é pos-
					sível comparar os dados da fonte e destino
					mesmo sem debugging.
					- Pode ser útil para evitar o trabalho de
					fazer a comparação da fonte com o destino,
					além de poder dar uma resposta em tempo
					de execução.

Quadro 4.11 Funcionalidade presente e é útil

N	Funcionalidade	P	M	U	Características
2	Suporte à fonte	10:1	8:3	11:0	- As ferramentas oferecem algum suporte em relação à leitura e carga da fonte e destino, porém muitas apenas lidam com RDBMS. - Deve haver um enfoque nas novas soluções
3	Suporte ao destino	10:1	8:3	11:0	de BDs como os BDs NoSQL. - Algumas ferramentas não oferecem a opção para utilizar linha de comando, o qual é considerado importante para ter maior liberdade
5	Paralelismo	7:4	6:5	10:1	na implementação de processos de ETL. -Dependendo do foco da ferramenta, alguma delas não dão importância ao processamento em paralelo, porém em se tratando de Big Data,
7	Programável	7:4	4:7	11:0	o processamento em paralelo é fundamental para possibilitar a execução de processos de ETL em grandes volumes de dados.

Para a frequência das funcionalidades existentes o valor esperado é E=6,3 e para frequência não existentes o valor esperado é E=4,7.

A fórmula estatística para o teste qui-quadrado é definida por:

N	Funcionalidade	P	M	U	Características
4	Suporte à modelagem	9:2	5:6	11:0	- A maioria das ferramentas dão suporte à modelagem dos processos de ETL, porém algumas focam apenas no
10	Garantia de qualidade	10:1	5:6	11:0	desempenho necessitando melhoria no processo de modelagem Poucas ferramentas dão importância para garantir qualidade aos processos de ETL ou ao seu desempenho.

Quadro 4.12 Funcionalidade presente e necessita melhorar

Quadro 4.13 Funcionalidade presente e não necessita melhoria

N	Funcionalidade	P	M	U	Características
1	Suporte à plataforma	11:0	2:9	11:0	- As ferramentas demonstraram ser independentes de plataforma por terem características como código compilável e serem programáveis Criar processos de ETL demonstrou ser
8	Implementação	8:3	5:6	10:1	complexo, necessitando de algum tipo de experiência na área. Dessa forma, não é de fundamental importância que haja suporte à implementação para usuários não administradores.
9	Reutilização	10:1	3:8	11:0	- A maioria das ferramentas, por serem de código aberto e programáveis, oferecem a possibilidade de reutilização de código ou algumas até mesmo oferecem possibilidade de reusar os processos de ETL já criados.

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

onde: a soma se estende a todas as células da tabela de contingência; O representa a frequência observada na célula; e E representa a frequência esperada na célula.

Somando os valores das parcelas do χ^2 , temos:

$$\chi^2 = 20,765$$

com

$$gl = (l - 1) \cdot (c - 1) = (2 - 1)(10 - 1) = 9$$

Ouadro 4.14 Ouadro de resultado do valor observado de existência da funcionalidade

Zunaro III. Zunar	0 40 1	Court	uc uc	, , aio	. 0050	1 1 440	40 01	1100011	ora aa	1 61101	omanada
Funcionalidade	1	2	3	4	5	6	7	8	9	10	Total
Existe	10	3	3	8	5	10	5	6	6	7	63
Não existe	1	8	8	3	6	1	6	5	5	4	47
Total	11	11	11	11	11	11	11	11	11	11	110

2,31

2,31

2,91

10 0,077

0,1

Quadro 4.13 Quadro do resultado de χ										
Funcionalidade	1	2	3	4	5	6	7	8	9	Ī
Existe	2,17	1,72	1,72	0,45	0,26	2,17	0,26	0,014	0,014	Ī

0,61

Ouadro 4.15 Ouadro do resultado de γ^2

0,36

2,91

0,36

0,02

0,02

Pela tabela de distribuição qui-quadrado, verificamos que a probabilidade de significância ρ é inferior a 0,01. Então, para qualquer nível usual de significância ($\alpha=0,05$), o teste detecta associação entre as funcionalidades e as ferramentas (pois, $\rho<\alpha$). Em outras palavras, o teste qui-quadrado mostrou que as ferramentas em estudo são diferentes quanto às suas funcionalidades.

4.4.2.1 Análise quantitativa

Não existe

Para verificar a similaridade entre as funcionalidades existentes nas ferramentas de ETL na literatura e as funcionalidades do ETL4NoSQL é necessário calcular o valor de variável dependente.

1. A mediana dos conjuntos de funcionalidades existentes nas ferramentas de ETL da literatura e as funcionalidades do ETL4NoSQL não podem ser consideradas iguais (a quantidade de funcionalidades com valor PMU { 1, X, X } 7 < 10), nem diferentes (a quantidade de funcionalidades com valor PMU { 0, X, X } 3 < 10). Assim, precisamos calcular o grau de similaridade segundo a fórmula do variável dependente 1:</p>

grau de similaridade = 7 / 10 * 100% = 70%

2. Para verificar a utilidade das funcionalidades similares, é necessário calcular o valor da variável dependente 2:

parte útil das funcionalidades similares = 6 / 7 * 100% = 85,71%parte inútil das funcionalidades similares = 1 / 7 * 100% = 14,29%

3. Para verificar a necessidade de melhoria das funcionalidades similares é necessário calcular o valor de variável dependente 3:

parte que necessita de melhoria das funcionalidades similares = 3 / 7 * 100% = 42,85%

parte que não necessita de melhoria das funcionalidades similares = 4/7*100% = 57,15%

4.4.3 Análise qualitativa

Para verificar as funcionalidades que não estão presentes no ETL4NoSQL neste trabalho de pesquisa, mas que são consideradas úteis para melhoria dos processos de ETL, foi feita a

análise qualitativa apresentada no quadro 4.16.

Quadro 4.16 Funcionalidades não oferecidas pelo ETL4NoSQL

			_
Funcionalidade	6	8	10
Quantidade total de ferramentas que não possuem ou possuem parcialmente a funcionalidade	4	5	4
Quantidade de ferramentas que considera útil	2	6	9

Assim, podemos concluir que as funcionalidades 8 (implementação) e 10 (garantia de qualidade) despertam maior interesse à serem implantadas nas ferramentas de ETL. Isso pode ser explicado pelas características e aplicabilidade que as funcionalidades oferecem. As funcionalidades de implementação e garantia de qualidade, provavelmente, não estão presentes em geral ou são oferecidas de forma parcial, não sendo o foco de boa parte das ferramentas de ETL detalhadas neste trabalho. Porém, essas funcionalidades melhorariam o desempenho geral dos processos de ETL. Outras funcionalidades, não oferecidas pelas ferramentas de ETL demonstradas, e que, possivelmente são conhecidas pela literatura, mas a falta de exemplos ou aplicabilidade dessas funcionalidades reduzem o interesse ao implementá-las.

4.4.4 Verificação das hipóteses

Para verificar o hipótese nula (H0) precisamos responder a questão Q1 (Existem funcionalidades listadas pelas ferramentas pesquisadas que não estão presentes no ETL4NoSQL?) utilizando a métrica M2. O resultado do teste Qui-quadrado mostra que 3 das 10 funcionalidades analisadas não podem ser consideradas como oferecidas pela ferramenta apresentada. Assim, podemos concluir que a lista de funcionalidades oferecidas pelas ferramentas de ETL da literatura é diferente das funcionalidades oferecidas pelo ETL4NoSQL, ou seja, "As funcionalidades oferecidas pelo ETL4NoSQL são diferentes das funcionalidades oferecidas pelas ferramentas da literatura" (hipótese alternativa H1).

Podemos dizer ainda que existe uma funcionalidade considerada pouco útil para as ferramentas de ETL analisadas (hipótese alternativa H2), pois respondendo a questão Q2 utilizando a métrica M5, o resultado do teste Qui-quadrado mostra que a funcionalidade 6 (Apoio ao nível de debugging) é considerada pouco útil para a realização de processos de ETL.

Por conseguinte, para funcionalidades presentes no ETL4NoSQL e nas ferramentas da literatura, que são úteis e necessitam melhoraria (hipótese H3), respondendo a questão Q3 com a métrica M8 o resultado de Qui-quadrado mostra que 3 funcionalidades necessitam melhoria (2, 3, 5) e outras 3 podem melhorar, mas não tem necessidade (6, 8, 9).

Finalmente, para realizar conclusões relevantes sobre a hipótese alternativa (H4) foi feita a análise qualitativa. Os resultados da análise apresentou 2 funcionalidades (8 e 10) não presentes no ETL4NoSQL e que são úteis. Assim, podemos concluir que existem funcionalidades não presentes no ETL4NoSQL, mas que são úteis e poderiam ser implementadas futuramente como melhoria para a ferramenta.

4.5 Considerações Finais

5

Conclusão

5.1 Principais Contribuições

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea

56 CONCLUSÃO

dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

5.2 Discussão

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

5.3 Resultados

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat

a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

5.4 Trabalhos Futuros

Referências

AWAD, M. M. I.; ABDULLAH, M. S.; ALI, A. B. M. Extending ETL framework using service oriented architecture. **Procedia Computer Science**, [S.l.], v.3, p.110 – 114, 2011. World Conference on Information Technology.

BALA, M. P-ETL: parallel-etl based on the mapreduce paradigm. IEEE, [S.l.], Nov. 2014.

BALA, M.; BOUSSAID, O.; ALIMAZIGHI, Z. Big-ETL: extracting-transforming-loading approach for big data. **Int'l Conf. Par. and Dist. Proc. Tech. and Appl.**, [S.l.], 2015.

BARBETTA, P. A. Estatística aplicada às Ciências Sociais. [S.l.]: Editora da UFSC, 2012.

CARVALHO SCABORA, L. de. **Avaliação do Star Schema Benchmark aplicado a bancos de dados NoSQL distribuídos e orientados a colunas**. 2016. Dissertação (Mestrado em Ciência da Computação) — USP - São Carlos.

CHAUDHURI, S.; DAYAL, U. An overview of data warehousing and OLAP technology. **SIG-MODRecord,v.26,n.1,p.65–74**, [S.l.], 1997.

CHEESMAN, J.; DANIELS, J. **UML components, a simple process for specifying component-based software**. [S.l.]: Addison-Wesley Professional, 2001.

CHEVALIER, M. et al. Implementing Multidimensional Data Warehouses into NoSQL. Proceedings of the 17th International Conference on Enterprise Information Systems, p.172-183, April 27-30, [S.l.], 2015.

CLEMENTS, P. et al. **Documenting Software Architectures**: views and beyond. [S.l.]: Pearson Education, 2002.

DARMONT, J. et al. An architecture framework for complex data warehouses. 7th International Conference on Enterprise Information Systems (ICEIS'05), Miami, USA, pages 370–373, [S.1.], 2005.

FAYAD, M. E.; SCHMIDT, D. C. Object-Oriented Application Frameworks. Communications of the ACM 40 (10): 32–38, [S.l.], 1997.

PRATES, R. (Ed.). **NoSQL Essencial Um guia conciso para o mundo emergente de Persistência Poliglota**. [S.l.]: Novatec, 2013. Primeira Edição.

HEINEMAN, G. T. Component-Based Software Engineering: putting pieces together. [S.l.]: Addison-Wesley, 2001.

INFORMATION, E. T. URL: http://etl-tools.info/en/pentaho/kettle-etl.htm.

INTEGRATION, P. D. URL: http://www.pentaho.com/product/data-integration.

KAUR, K. Modeling and querying data in NoSQL databases. **Big Data, 2013 IEEE International Conference on**, [S.l.], 2013.

ELLIOT, R. (Ed.). The Data Warehouse ETL ToolKit. [S.l.]: Robert Ipsen, 2004.

ELLIOT, R. (Ed.). The Data Warehouse Toolkit. [S.1.]: Robert Ipsen, 2002. Second Edition.

60 REFERÊNCIAS

LIU, X.; THOMSEN, C.; PEDERSEN, T. B. ETLMR: a highly scalable dimensional etl framework based on mapreduce. **DB Tech Reports**, [S.l.], Aug. 2011.

LIU, X.; THOMSEN, C.; PEDERSEN, T. B. CloudETL: scalable dimensional etl for hive. **DB Tech Reports**, [S.l.], July 2013.

MALI, N.; BOJEWAR, S. A Survey of ETL Tools. **International Journal of Computer Techniques**, [S.l.], Oct. 2015.

MUÑOZ, L.; MAZÓN, J.-N.; TRUJILLO, J. Automatic Generation of ETL Processes from Conceptual Models. In: ACM TWELFTH INTERNATIONAL WORKSHOP ON DATA WAREHOUSING AND OLAP, New York, NY, USA. **Proceedings...** ACM, 2009. p.33–40. (DOLAP '09).

NASHOLM, P. Extracting Data From NoSQL Databases. 2012. Tese (Doutorado em Ciência da Computação) — Chalmers University of Technology, SE-412 96 Goteborg Sweeden.

PREE, W.; SIKORA, H. **Design Patterns for Object Oriented Software Development.** [S.l.: s.n.], 1997.

WILEY, J.; SONS (Ed.). **Business Intelligence Success Factors**: tools for aligning your business in the global economy. EUA: Inc, 2009.

RUSSOM, P.; MADSEN, M. Data Integration Tools: comparison and market analysis. **TDWI Technology Market Report**, [S.1.], 2007.

SALEM, R.; BOUSSAïD, O.; DARMONT, J. An Active XML-based Framework for Integrating Complex Data. **27th Annual ACM Symposium On Applied Computing (SAC 12), Riva del Garda (Trento), Italy, March 2012; ACM, New York**, [S.l.], 2012.

SAMETINGER, J. Software Engineering with Reusable Componets. [S.l.]: Springer, 1997.

SCHIMIDT, D. C.; GOKHALE, A.; NATARAJAN, B. Leveraging Application Frameworks. **ACM Queue, v. 2**, [S.1.], 2004.

SHAW, M.; GARLAN, D. **Software Architecture**: perspectives on an emerging discipline. [S.l.]: Prentice Hall, 1996. Prentice Hall Ordering Information.

SILVA, L. M. M. **ETL na era do Big Data**. 2016. Dissertação (Mestrado em Ciência da Computação) — Técnico Lisboa.

SILVA, M. S. da. **Um Framework para Desenvolvimento de Sistemas ETL**. 2012. Dissertação (Mestrado em Ciência da Computação) — Universidade Federal de Pernambuco.

SOMMERVILLE, I. Engenharia de Software. [S.l.]: Pearson, 2013.

SOUZA GIMENES, I. M. de; HUZITA, E. H. M. **Desenvolvimento Baseado em Componentes**: conceitos e técnicas. [S.l.]: Editora Ciência Moderna Ltda., 2005.

SOUZA, I. E. et al. TESE - Um Sistema de Informação para Gerenciamento de Projetos Experimentais em Engenharia de Software. **XI Brazilian Symposium on Information System, Goiânia, May 26-29**, [S.l.], 2015.

TALIGENT, I. Building Object-Oriented Frameworks. [S.l.: s.n.], 1994.

REFERÊNCIAS 61

THOMSEN, C.; PEDERSEN, T. B. pygrametl: a powerful programming framework for extract-transform-load programmers. **DB Tech Reports**, [S.1.], 2009.

TRAVASSOS, G. H.; GUROV, D.; AMARAL, E. A. G. Introdução à Engenharia de Software Experimental. **Programa de Engenharia de Sistemas e Computação COPPE/UFRJ**, [S.l.], 2002.

VASSILIADIS, P. et al. A generic and customizable frameworkfor the design of ETL scenarios. Information Systems - Special issue: The 15th international conference on advanced information systems engineering 30 (7): 492–525, [S.l.], 2005.

WARMER, J.; KLEPPE, A. The object constraint language, precise modeling with UML. [S.l.]: Addison-Wesley, 1998.

WOHLIN, C. et al. Experimentation in Software Engineering: an introduction. **Kluwer Academic Publishers, USA**, [S.1.], 2000.

