Dillan Marroquin MATH 331.1001 Lecture Notes

LECTURE 6

- $[k] \cdot [l] = [kl]$ is well-defined on \mathbb{Z}/nn with respect to choice of n.
- Unlike $(\mathbb{Z} \{0\}, \cdot, [1])$, $(\mathbb{Z}/nn \{0\}, \cdot, [1])$ is NOT necessarily a monoid!

Example. $\mathbb{Z}/n4 - \{[0]\} \ni [2]$, but $[2] \cdot [2] = [0] \notin \mathbb{Z}/n4 - \{[0]\}$.

Example. $\mathbb{Z}/n3 - \{[0]\} := ([1],[2])$ and $[2] \cdot [2] = [1]$. This is stronger than a monoid; it's a group! (This is actually an "avatar" of the cyclic group of order 2)

• Q: What's going on??

Congruence and gcd

Lemma (6.1). Let n > 1. If $k \equiv l \pmod{n}$ and gcd(k, n) = 1, then gcd(l, n) = 1.

Theorem (6.2). Let n > 1. Define $(\mathbb{Z}/n)^{\times}n := \{[k] \in \mathbb{Z}/nn - \{[0]\}| \gcd(k,n) = 1\}$. Then $((\mathbb{Z}/n)^{\times}n, \cdot, [1])$ is an abelian group called the **Group of Units mod** n.

Proof.

- 1. If [k], $[l] \in (\mathbb{Z}/n)^{\times}n$, then $[kl] \in (\mathbb{Z}/n)^{\times}n$ by Lem 6.3. Hence, \cdot is a well-defined binary operator.
- 2. (Check Group Axioms):
 - (a) Associativity (easy)
 - (b) Left/Right Identity (easy)
 - (c) Left/Right Inverse: Let $[a] \in (\mathbb{Z}/n)^{\times} n$. WTS $\exists [u] \in (\mathbb{Z}/n)^{\times} n$ such that [a][u] = [1] = [u][a]. Well, $\exists u, v \in \mathbb{Z}$ such that $au + nv = 1 \implies ua + nv = 1 \implies \gcd(u, n) = 1 \implies [u] \in (\mathbb{Z}/n)^{\times} n$. Moreover, $au + nv = 1 \implies n|au 1$. Therefore, [au] = [1]. Hence, [u] is the inverse of [a]. Similar proof gives $[u] \cdot [a] = [1]$.
- 3. Show abelian: $\forall [a], [b] \in (\mathbb{Z}/n)^{\times} n$, $[a] \cdot [b] = [b] \cdot [a]$. This is obvious due to commutativity of integers.

Remark.

- 1. $(\mathbb{Z}/n)^{\times}n$ is well-defined by Lem 6.1.
- 2. We are "discarding" elements from $(\mathbb{Z}/n)^{\times}n \{[0]\}$ to get a group.

Lemma (6.3). Let $a, b \in \mathbb{Z}$ with n < 1. If gcd(a, n) = 1 and gcd(b, n) = 1, then gcd(ab, n) = 1.

Proof. There exist $u, u', v, v' \in \mathbb{Z}$ such that au + nv = 1 and bu' + nv' = 1. Therefore $(au + nv)(bu' + nv') = 1 \implies ab(uu') + n(\cdots) = 1$. Thus gcd(ab, n) = 1 by Thm 2.2.

Corollary (6.4). Let $p \in \mathbb{Z}$ be prime.

- 1. $(\mathbb{Z}/n)^{\times} n = \mathbb{Z}/np \{[0]\} = \{[1], [2], \dots, [p-1]\}.$
- 2. Every non-0 element of \mathbb{Z}/np has a multiplicative inverse.

Comparing Groups

Definition (6.5). The <u>order |G| of a group G is the cardinality of G as a set. G is <u>finite</u> iff $|G| < \infty$. e.g. $|\mathbb{Z}/nn| = n$, $|\mathbb{Z}| = \infty$, $|GL_2(\mathbb{Z}/np)| = (p^2 - 1)(p^2 - p)$ </u>

Definition (6.6). Let $(G, *_G, e_G)$ and $(H, *_H, e_H)$ be groups. A **group homomorphism** between G and H is a function $\rho : G \to H$ such that $\forall a, b \in G$, $\rho(a *_G b) = \rho(a) *_H \rho(b)$.

Definition. A function $\rho: G \to H$ is **group isomorphic** iff ρ is a bijection and also a homomorphism. We say G, H are **isomorphic** iff there exists a group isomorphism $\rho: G \to H$. We say $G \cong H$.

Example (Basic Examples).

- 1. Let *G* be a group. Then $id_G : G \to G$ is a group isomorphism.
- 2. Let $n \in \mathbb{Z}$. Define $n\mathbb{Z} := \{nk | k \in \mathbb{Z}\}$. Define $\rho : n\mathbb{Z} \to \mathbb{Z}$, $\rho(na) := na$. Observe that ρ is a homomorphism, but not a group isomorphism since ρ is not surjective.
- 3. Let $\mathbb{R}^{\times} := \mathbb{R} \{0\}$, where $(\mathbb{R}^{\times}, \cdot, 1)$ is a group. Then det : $GL_2 \to \mathbb{R}^{\times}$. Observe that this is a homomorphism, but not an isomorphism since it is not injective.
- 4. Let n > 1 and $\pi : \mathbb{Z} \to \mathbb{Z}/_n$, $\pi(a) := [a]$. This is a group homomorphism, but not an isomorphism (not injective).

Example (Non-Examples). Let $f, g : \mathbb{Z} \to \mathbb{Z}$.

Define f(a) := a+1. This is not a homomorphism: $f(a+b) = a+b+1 \neq a+b+2 = f(a)+f(b)$. Define $g(a) := a^2$. This is also not a homomorphism: $g(a+b) = a^2 + 2ab + b^2 \neq a^2 + b^2 = g(a) + g(b)$.

Abstract Properties of Group Homomorphisms

Proposition (7.1). Let $(G, *_G, e_G)$ and $(H, *_H, e_H)$ be groups. Let $\rho : G \to H$ be a group homomorphism.

- i. $\rho(e_G) = e_H$.
- ii. $\forall g \in G$, if g^{-1} is the inverse of g, then $\rho(g^{-1})$ is the inverse of $\rho(g) \in H$.

Proposition (7.2). If $\rho: G \to H$ for G, H groups is a group isomorphism, then

- i. |G| = |H|.
- ii. *G* is abelian iff *H* is abelian.

LECTURE 8

Definition (8.1). Let $(G, *_G, e_G)$ be a group. A <u>subgroup</u> of G is a subset $H \subseteq G$ (sometimes denoted $H \le G$) such that

- i) $e_g \in H$.
- ii) $\forall h, h' \in H, h *_G h' \in H$.
- iii) $\forall h \in H, h^{-1} \in H$.

Remark. If $H \leq G$, then $(H, *_G, e_G)$ is a group.

Examples/Non-Examples

- 1. For any $n \in \mathbb{Z}$, $n\mathbb{Z} \leq \mathbb{Z}$.
- 2. Let $2\mathbb{Z} + 1 := \{2k + 1 | k \in \mathbb{Z}\}$. This is NOT a subgroup since $e = 0 \notin 2\mathbb{Z} + 1$.
- 3. Let $G = \mathbb{Z}/n4$, $H := \{[0], [2]\}$. Indeed, H is a subgroup of G.
- 4. Let n > 1. Define $SL_n(\mathbb{R}) := \{A \in GL_n(\mathbb{R}) | \det A = 1\}$. $SL_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$. Observe that this is easy to prove: For i), $\det(I_n) = 1$, therefore $I_n \in SL_n(\mathbb{R})$. For ii), let $A, B \in SL_n(\mathbb{R})$. Then $\det(AB) = \det A \cdot \det B = 1 \cdot 1 = 1$. For iii), let $A \in SL_n(\mathbb{R})$. To show $A^{-1} \in SL_n(\mathbb{R})$, observe that $\det(AA^{-1}) = \det A \cdot \det(A^{-1}) = \det(A^{-1})$. But $\det(AA^{-1}) = \det(I_n) = 1$, therefore $\det(A^{-1}) = 1$.

5. Let $H := \{A \in GL(n(\mathbb{R}) | \det A = -1\}$. Observe that $H \not\leq GL_n(\mathbb{R})$ since, for one, $I_n \notin H$.

Remark.

- 1. Every group G has at least 1 subgroup: the trivial group $\{e_G\}$.
- 2. If |G| > 1, then G has at least 2 subgroups: $\{e_G\}$ and G.

Definition (8.2).

- 1. Let H be a subgroup of G. Then...
 - i) *H* is **proper** iff $H \subset G$, i.e. $H \neq G$.
 - ii) *H* is **non-trivial** iff $H \neq \{e_G\}$.
- 2. An abelian group *G* is **simple** iff it has no non-trivial proper subgroup.
- From now on, $(G, *_G, e_G)$ will be written as G, e_G will be $e, a *_G b$ will be ab, and $a *_G a *_G \cdots *_G a$ will be a^n .
- If *G* is abelian, $a *_{q} B$ is often written as a + b, $a *_{G} a *_{G} \cdots *_{G} a$ is written na, and a^{-1} is written -a.

Here is a useful tool for proving a group is a subgroup:

Proposition (8.3). Let *G* be a group, and $H \subseteq G$ a subset. Then *H* is a subgroup iff $H \neq \emptyset$ and $\forall a, b \in H$, $ab^{-1} \in H$.

Proposition (8.4). If $H, K \subseteq G$ are subgroups, then $H \cap K \subseteq G$ is also a subgroup.

Lecture 9

Let *G* be a finite group. How many subgroups does *G* have?

- If |G| = n, then G has 2^n subsets.
- In particular, G has subsets of cardinality 0, 2, ..., n, but not all of these subsets will be subgroups!

Generalization of $\equiv \pmod{n}$

• Let *G* be a group, $H \subseteq G$ a subgroup. *H* defines a relation on *G*: for all $x, y \in G$, $x \sim_H y$ iff $x^{-1}y \in H$.

Proposition (9.1). \sim_H is an equivalence relation.

Definition (9.2). The equivalence classes for \sim_H are the <u>left cosets</u> of H in G. $G/_H$ is the set of left cosets. Define $[G:H] := |G/_H|$ to be the <u>index</u> of H in G (H has finite if H in H

Example.

1. Let $G = \mathbb{Z}$, n > 1, $H = n\mathbb{Z}$. Then

$$a \sim_H b \iff -a + b \in H$$

 $\iff n|b - a$
 $\iff a \equiv b \pmod{n}.$

- 2. $\mathbb{Z}/_n\mathbb{Z} := \{[0], [1], \dots, [n-1]\}$ (the set of left cosets).
- 3. $[\mathbb{Z} : n\mathbb{Z}] = n$.

Remark.

- 1. *H* can have finite index even if *G*, *H* have infinite order.
- 2. In general, $G/_H$ will not be a group.

Characterization of Left Coset

Proposition (9.3). Let $H \subseteq G$ be a subgroup, $x \in G$, [x] be the left coset represented by x, and define $xH := \{xh | h \in H\}$. Then [x] = xH.

Corollary (9.4).

- 1. For all $x, y \in G$, we have xH = yH iff $x^{-1}y \in H$.
- 2. If $y \in H$, then yH = xH.
- 3. For all $h \in H$, hH = H, i.e. eH = H.

Lecture 10

Remark. If $x \in G$, $x \notin H$, then xH is only a subset of G, not a subspace!

Why? If it were a subspace, then $e \in xH$ and so $\exists h \in H$ such that e = xh. Then $h^{-1} = xhh^{-1} \implies x = h^{-1} \in H$. Contradiction.

Proposition (10.1). Let $H \subseteq G$ be a subspace, $x \in G$. Then the set-theoretic function $f : H \to xH$, f(h) := xh is a bijection. In particular, |xH| = |H|.

Theorem (10.2 Lagrange). Let G be a finite group, $H \subseteq G$ be a subgroup. Then |G| = [G : H]|H|. In particular, the order of H must divide the order of G.

Simple Remarks about Equivalence Classes

- Let *S* be a finite set, \sim be an equivalence relation on *S*. Denote S/\sim to be the set of equivalence classes on *S*.
- Choose a labeling for elements of $S = \{s_1, s_2, ..., s_n\}$.
 - 1. Each equivalence class $[s_i]$ is a finite subset and so is $S/\sim := \{[s_i]|i=1,...,n\}$.
 - 2. We may have $[s_i] = [s_j]$ even if $s_i \neq s_j$. So let m equal the number of distinct equivalence classes. Then $|S/\sim| = m$ and we can write $S/\sim = \{[s_{j_1}], [s_{j_2}], ..., [s_{j_m}]\}$.
 - 3. Prop. 5.1 implies that $S = \bigcup_{s_i \in S} [s_i]$. Hence $S = \bigcup_{k=1}^m [s_{j_k}]$.
 - 4. If $k \neq k'$, then $[s_{j_k}] \neq [s_{j'_k}]$. Therefore $|s_{j_k} \cup s_{j'_k}| = |s_{j_k}| + |s_{j'_k}|$.

Proof (Lagrange). Let n = |G| and label the elements of $G = \{g_1, \dots, g_2\}$. Let m be the number of distinct left cosets of H (e.g. $g_{i_1}H, g_{i_2}H, \dots, g_{i_m}H$). This implies that [G:H] = m. Then $G = g_{i_1}H \cup g_{i_2}H \cup \dots \cup g_{i_m}H$. Remark 4 implies that $|G| = |g_{i_1}H| + |g_{i_2}H| + \dots + |g_{i_m}H|$ and Prop 10.1 implies $|G| = |H| + |H| + \dots + |H|$ (m times) which equals m|H| and thus |G| = [G:H]|H|.

Corollary (10.3). If |G| = p prime, then G has no non-trivial proper subgroups. In particular, the only subgroup of \mathbb{Z}/p are $\{[0]\}$ and \mathbb{Z}/p .

Lecture 11

Finitely Generated Groups

Motivation: In linear algebra, to describe every vector in \mathbb{R}^2 , you only need 2 basis vectors along with a scalar (e.g. we can write $\begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix} = a \vec{e_1} + b \vec{e_2}$.

For a group G, we can sometimes find a finite subset $\{x_2,\ldots,x_n\}\subseteq G$ such that $\forall g\in G,\ \exists \{x_{i_1},\ldots,x_{i_k}\}\subseteq \{x_1,\ldots,x_n\}$ and $n_1,\ldots,n_k\in\mathbb{Z}$ such that $g=x_{i_1}^{n_1}x_{i_2}^{n_2}\cdots x_{i_k}^{n_k}$.

In this case, we say G is **finitely generated** and that $\{x_1, ..., x_n\}$ is a set of **generators** of G and we write $G = \langle x_1, ..., x_n \rangle$.

If G is Abelian and we're using additive notation, then we write elements of $G = \langle x_1, \dots, x_n \rangle$ as $g = n_1 x_{i_1} + \dots + n_k x_{i_k}$.

<u>WARNING</u>: The analogy between bases for a vector space and generators for a group is not perfect. Notions of linear independence, scalar multiples, and dimension do not make sense for groups in general.

Examples of Finitely Generated Groups

- 1. The abstract cyclic group of order 2: $G = \{e, \tau\}$ is finitely generated. We have $G = \langle \tau \rangle$ because $\tau = \tau^1$ and $e = \tau^0 = \tau^2$.
- 2. The Klein 4-group $V = \{e, a, b, c\}$ is finitely generated. We have $G = \langle a, b \rangle$ because $e = a^0 = b^0$, $a = a^1$, $b = b^1$, and $c = a^1b^1$.
- 3. Any finite group *G* is finitely generated because $G = \langle G \rangle$.

Remark. If $|G| = \infty$, then it can be finitely generated.

- 4. The group $(\mathbb{Z}, +, 0)$ is finitely generated. We have $\mathbb{Z} = \langle 1 \rangle$ because $\forall n \in \mathbb{Z}, n = n \cdot 1$. (Note that $\mathbb{Z} = \langle -1 \rangle$ also!)
- 5. The group \mathbb{Z}/n is finitely generated. Just like for \mathbb{Z} , we have $\mathbb{Z}/n = \langle [1] \rangle$.

Proposition (11.1). Let n > 1. Then $\mathbb{Z}/n = \langle [a] \rangle$ iff $\gcd(a, n) = 1$. Particularly, the elements of the group of units $(\mathbb{Z}/n)^{\times}$ are precisely the set of all possible generators!

Example (Non-Abelian Example). Let $S_3 := \{f : 1, 2, 3 \to 1, 2, 3 | f \text{ is bijective}\}$ where the group operation is function composition. We can write $f \in S_3$ as a table:

$$f = \begin{pmatrix} 1 & 2 & 3 \\ f(1) & f(2) & f(3) \end{pmatrix}$$

with the 6 elements of S_3 being:

$$\left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}.$$

One can check that $S_3 = \langle \sigma, \tau \rangle$, where $\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ and $\tau = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}$. Indeed, $S_3 = \{e = \sigma^0 \tau^0, \sigma, \sigma^2, \tau, \sigma \circ \tau, \sigma^2 \circ \tau\}$.

Example (Non-Example). Any group that is not finitely generated must be infinite.

Proposition (11.2). The group $(\mathbb{Q}, +, 0)$ is NOT finitely generated.

Lecture 12

Cyclic Groups

i.e. groups that can be generated by 1 element.

Lemma (12.1).

- 1. Let *G* be a subgroup and $a \in G$. Then $\forall k, l \in \mathbb{Z}$, $a^k \cdot a^l = a^{k+l}$.
- 2. Let (G, +, 0) be an Abelian group and let $a \in G$. Then
 - i. $\forall k, l \in \mathbb{Z}$, ka + la = (k + l)a and
 - ii. $\forall k, l \in \mathbb{Z}, l(ka) = lka$.

Proposition (12.2). Let *G* be a group and $a \in G$.

- 1. The subset $\langle a \rangle := \{a^k | k \in \mathbb{Z}\} = \{\dots, a^{-1}, a^0, a^1, \dots\}$ is a subgroup of *G* called the **cyclic subgroup** generated by *a*.
- 2. If $H \le G$ is any subgroup of G containing $a \in H$, then $\langle a \rangle \le H$. That is, a is the "smallest" subgroup of G containing a.

Definition (12.3). A group is **cyclic** iff $a \in G$ such that $G = \langle a \rangle$.

Examples of Cyclic Groups/Subgroups

- 1. $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$ is cyclic.
- 2. Let n > 1. $n\mathbb{Z} := \{nk | k \in \mathbb{Z}\} = \langle n \rangle$ is a cyclic subgroup of \mathbb{Z} .
- 3. The trivial group $\{e\} = \langle e \rangle$ is cyclic.
- 4. The abstract cyclic group $G = \{e, \tau\} = \langle \tau \rangle$ is obviously cyclic.
- 5. $\mathbb{Z}/n = \langle [1] \rangle$.
- 6. Let $\mathbb{R}^{\times} := (\mathbb{R} \{0\}, \cdot, 1)$. Let $H = \{1, -1\}$. Then $H = \langle 1 \rangle$.
- 7. Let $\mathbb{C}^{\times} := (\mathbb{C} \{0\}, \cdot, 1)$ and let $H = \{1, i, -1, -i\}$. Then $H = \langle i \rangle$.

Definition (12.4). Let *G* be a group, $a \in G$. The <u>order of a, |a|, is the smallest positive integer such that $a^n = e$. If no such integer exists, then $|a| = \infty$.</u>

Proposition (12.5). Let *G* be a group, $a \in G$. If |a| = n, then $\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$. In particular, $|\langle a \rangle| = |a|$.

Corollary (12.6). Let G be a finite group. Then...

- 1. Every element of *G* has finite order and
- 2. $\forall a \in G, |a| |G|$.

Lecture 13

Classifying Cyclic Groups

Goal: To show that every cyclic group is isomorphic to either \mathbb{Z} or \mathbb{Z}/n (for a particular n).

Question: Given a group *G*, can we determine if *G* is cyclic?

Answer: This is hard to answer in general.

Theorem (13.1). If |G| = p for p prime, then G is cyclic. In particular, $\forall a \in G - \{e\}$, $G = \langle a \rangle$.

Abstract Properties of Cyclic Groups

<u>Idea:</u> If *G* does NOT have all of these following properties, then *G* cannot be cyclic. (Note that the converse is M E G A false!)

Proposition (13.2). Every cyclic group is abelian.

Theorem (13.3). Every proper subgroup of a cyclic group is cyclic.

Remark (13.4). The converse of Theorem 13.3 is false.

LECTURE 14

The converse of Theorem 13.3 from last lecture is NOT true: If every proper subgroup G is cyclic, it is not guaranteed that G is cyclic. Here are two counter-examples:

- 1. Consider $S_3 := \{\text{bijections from } \{1,2,3\} \rightarrow \{1,2,3\}\}$. The order of S_3 is 6, so by Lagrange's Theorem any proper subgroup of S_3 has order 1,2, or 3. For a subgroup $H \le S_3$ with |H| = 1, then $H = \{e\} = \langle e \rangle$ and is cyclic. By Theorem 13.1, if |H| = 2 or 3, H is cyclic. Therefore every proper subgroup is cyclic, but obviously S_3 is not cyclic since it is not abelian.
- 2. Now consider $G = \mathbb{Z}/3 \times \mathbb{Z}/3$ with $([a_1], [b_1]) + ([a_2], [b_2]) = ([a_1 + a_2], [b_1 + b_2])$. Then |G| = 9. The same argument as above implies that every proper subgroup is cyclic because it must have order 1 or 3. Note G is abelian. We can check by hand that every element of G has order 1 or 3, NOT 9. Therefore G is not cyclic. For example, 3([a], [b]) = (3[a], 3[b]) = ([0], [0]).

Corollary (14.1).

- 1. Let $H \leq \mathbb{Z} = \langle 1 \rangle$ be a subgroup. Then $\exists m > 0$ such that $H = \langle m \rangle = m\mathbb{Z}$.
- 2. If $H \leq \mathbb{Z}/m$ is a subgroup, then $\exists [m] \in \mathbb{Z}/n$ such that $H = \langle [m] \rangle = \{[0], [m], [2m], \ldots \}$.

Finding the Order of a Subgroup of a Cyclic Group

Theorem (14.2). Let $G = \langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$ be a finite cyclic group of order n. Let $a^k \in G$. Then $|a^k| = \frac{n}{\gcd(n,k)}$.

Lemma (14.3). If $G = \langle a \rangle$ has order n and $l \in \mathbb{Z}$, l > 0 such that $a^l = e$, then n|l.

Lemma (14.4). Given $k, n \in \mathbb{Z} \setminus \{0\}$, let m_k, m_n be unique integers such that $k = dm_k$ and $n = dm_n$, where $d = \gcd(n, k)$. Then $\gcd(m_k, m_n) = 1$.

Lecture 15

Converse to Lagrange's Theorem for Cyclic Groups

Corollary (15.1). If $G = \langle a \rangle$ is a cyclic group of order n and l is a positive divisor of n, then there exists a subgroup $H \leq G$ with |H| = l.

Classification of Cyclic Groups

<u>Recall:</u> Let G, H be groups. A function $\Phi : G \to H$ is a group homomorphism iff $\forall x, y \in G, \Phi(xy) = \Phi(x)\Phi(y)$. Also, Φ is an isomorphism iff it is bijective and a homomorphism.

Remark. " \cong " gives an equivalence relation on the "set" of group implies $G \cong H$ iff $H \cong G$.

Theorem (15.2). If $G = \langle a \rangle$ is a cyclic group of infinite order, then $G \cong \mathbb{Z}$.

Proof. By the above Remark, it suffices to construct a group isomorphism $\Phi: \mathbb{Z} \to G$. Observe that $G = \{a^k | k \in \mathbb{Z}\}$. Define $\Phi(k) := a^k$. To show Φ is a group homomorphism, let $k, l \in \mathbb{Z}$. Then $\Phi(k+l) = a^{k+l} = a^k a^l = \Phi(k)\Phi(l)$. To show Φ is a bijection, we first prove surjectivity. Consider the image of Φ : $\Phi(\mathbb{Z}) = \{\Phi(k) | k \in \mathbb{Z}\} = \{a^k | k \in \mathbb{Z}\}$. But $\{a^k | k \in \mathbb{Z}\} = G$, so Φ is surjective.

To show Φ is injective, suppose $\Phi(k) = \Phi(l)$. Then $a^k = a^l$ in G which implies $a^k a^l = e$ and thus $a^{k-l} = e$. Since a has infinite order, $a^{k-l} = e$ iff k-l = 0. Therefore k = l and Φ is injective.

Theorem (15.3). If $G = \langle a \rangle$ is cyclic order n, then $G \cong \mathbb{Z}/n$.

Looking Ahead: Getting Subgroups from Group Homomorphisms

Definition (15.4). Let $\Phi : G \to H$ be a group homomorphism.

- 1. The **image** of Φ is the subset of H where $\operatorname{im}\Phi = {\Phi(x)|x \in G}$.
- 2. The **kernel** of Φ is the subset of G where $\ker \Phi = \{x \in G | \Phi(x) = e_H\}$.

Lecture 16

Proposition (16.1). Let φ be a group homomorphism.

- 1. $im \varphi$ is a subgroup of H.
- 2. $\ker \varphi$ is a subgroup of G.

Proof. (1.) Use Proposition 8.3, which tells how to find a subgroup, and Proposition 7.1 (which states that for $\varphi: G \to H$, $\varphi(e_G) = e_H$ and $\varphi(x^{-1}) = \varphi(x)^{-1} \, \forall x \in G$). Since $\varphi(e_G) = e_H$, we have $e_H \in \operatorname{im} \varphi \neq \emptyset$ and so $\operatorname{im} \varphi$ is not empty. Let $a,b \in \operatorname{im} \varphi$. We want to show that $ab^{-1} \in \operatorname{im} \varphi$. By definition of $\operatorname{im} \varphi$, $\exists x,y \in G$ such that $\varphi(x) = a$ and $\varphi(y) = b$. Then $ab^{-1} = \varphi(x)\varphi(y)^{-1} = \varphi(x)\varphi(y^{-1}) = \varphi(xy^{-1})$ by definition of group homomorphism. Thus, $ab^{-1} \in \operatorname{im} \varphi$.

(2.) We will use the same previous propositions. By Proposition 7.1, $\varphi(e_G) = e_H$ which implies that $e_H \in \ker \varphi \neq \emptyset$. Let $x,y \in \ker \varphi$. We want to show $xy^{-1} \in \ker \varphi$. Note that $\varphi(y) = e_H$ which implies $\varphi(y)^{-1} = e_H$. Then by definition of group homomorphism, $\varphi(xy^{-1}) = \varphi(x)\varphi(y^{-1})$, and since $x \in \ker \varphi$, $\varphi(x)\varphi(y^{-1}) = e_H\varphi(y^{-1}) = e_H^2 = e_H$. Thus $\varphi(xy^{-1}) = e_H \in \ker \varphi$.

Lecture 17

Proposition (17.1). Let $\varphi : G \to H$ be a group homomorphism. Then φ is injective iff $\ker \varphi = \{e_G\}$, i.e. iff $\ker \varphi$ is the trivial subgroup.

Proof. Suppose φ is injective. We want to show $x = e_G$. Let $x \in \ker \varphi$. Then $\varphi(x) = e_H$ by definition, and by Proposition 7.1, $\varphi(e_G) = e_H$. Since φ is injective, $\varphi(x) = e_H$ and $\varphi(e_G) = e_H$ implies $e_G = x$ and thus $\ker \varphi = \{e_G\}$. Conversely, suppose $\ker \varphi = \{e_G\}$. Assume $\varphi(x) = \varphi(y)$. Then $\varphi(x)\varphi(y)^{-1} = e_H$. By Proposition 7.1, $\varphi(x)\varphi(y)^{-1} = \varphi(x)\varphi(y)^{-1}$ and by definition of group homomorphism $= \varphi(xy^{-1}) = e_H$. Thus $xy^{-1} \in \ker \varphi$, but since $\ker \varphi = \{e_G\}$, $xy^{-1} = e_G$ and by multiplying each side by y on the right, we obtain x = y as desired.

Corollary (17.2). Let $\varphi : G \to H$ be a group homomorphism. Then φ is a group isomorphism iff $\ker \varphi = \{e_G\}$ and $\operatorname{im} \varphi = H$.

Normal Subgroups

(Which, by the way, the term "normal" sucks!)

Idea: Recall given a subgroup $H \le G$, we can define an equivalence relation on G, $x \sim_H y$, iff $x^{-1}y \in H$. The equivalence classes are the left cosets of H: $[x] = xH := \{xh|h \in H\}$. We denote the set of lefts cosets as $G/H = \{xH|x \in G\}$. Consider the groups $\mathbb{Z}/n\mathbb{Z}$ and \mathbb{Q}/\mathbb{Z} .

Remark (17.3). In the above groups, *G* induces a group operation (and identity) on G/H such that the function $\pi: G \to G/H$, $x \mapsto [x] = xH$ is a group homomorphism!

Example. Let $G = S_3$, $H = \langle \sigma \rangle$, $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. Note that |G/H| = [G:H] = 2 by Lagrange's Theorem.

Then $G/H = \{eH, \tau H\} = \{H, \tau H\}$ for $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$. The goal is to put a group structure on G/H as in Remark 17.3.

That is, we want $xH \cdot yH \stackrel{?}{=} xyH$ and $e_{G/H} \stackrel{?}{=} e_{S_3}H = H$. This works! Verify by hand: e.g. $\tau H \cdot \tau H = \tau^2 H = eH = H$. $\tau H = \{\tau, \tau\sigma, \tau\sigma^2\} = \tau\sigma H$.

Example. Let $G = S_3$, $H = \langle \tau \rangle$. Then $G/H = \{H, \sigma H, \sigma^2 H\}$ (we can verify this is correct by hand). Again, we want to define a group operation on G/H. BUUUT it does not work!

Lecture 18

Example (Non-Example). (Continuation from last lecture) Let $G = S_3$, $H = \langle \tau \rangle$, where $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ and $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. Then $G/H = \{eH = H, \sigma H, \sigma^2 H\}$ and $\sigma H = \{\sigma e = \sigma, \sigma \tau\}$.

If G/H is indeed a group, we must have that $\sigma H * \tau H = \sigma H$ and $\tau H * \sigma H = \sigma H$ because $\tau H = H$ is our identity element.

- 1. By definition of *, $\sigma H * \tau H = \sigma \tau H = \{\sigma \tau, \sigma \tau \circ \tau = \sigma\} = \sigma H$. Therefore, 1. is true. Note: $xH \cap yH \neq \emptyset$ implies xH = yH because left cosets are equivalence classes of an equivalence relation.
- 2. $\tau H * \sigma H = \tau \sigma H = \{\tau \sigma, \tau \sigma \tau\}$ by definition of *. But $\tau \sigma \neq \sigma$ and $\tau \sigma \neq \sigma \tau$, therefore $\tau \sigma H \neq \sigma H$ and thus we conclude $G/H = S_3 \langle \tau \rangle$ is not a group.

But what went wrong?? We will see that this happened because $\langle \tau \rangle$ is not a normal subgroup.

Definition (18.1). A subgroup $H \le G$ is <u>normal</u> iff for all $g \in G$, the set $gHg^{-1} := \{ghg^{-1} | h \in H\}$ is equal to H. We write $G \triangleleft H$

Remark. If $H \subseteq G$, then

- 1. For all $g \in G$ and for all $h \in H$, $ghg^{-1} \in H$. i.e. $\exists h' \in H$ such that $ghg^{-1} = h'$ (since $gHg^{-1} \subseteq H$), but in general $h' \neq h$.
- 2. Let $h \in H$. Then $\forall g \in G$, $\exists h' \in H$ such that $h = gh'g^{-1}$ (since $H \subseteq gHg^{-1}$.

Proposition (18.2 USEFUL). Let $H \le G$ be a subgroup. Assume $\forall g \in G, \forall h \in H$, we have $ghg^{-1} \in H$. Then

- 1. $\forall g \in G, gHg^{-1} \leq H$ and
- 2. $\forall g \in G, H \leq gHg^{-1}$.

i.e. H is normal.

1st Examples/Non-Examples

Proposition (18.3). Let G be abelian. Then every subgroup of G is normal.

Proof. Let H be a subgroup, $g \in G$, and let $h \in H$. Since G is abelian, $ghg^{-1} = hgg^{-1}$. Therefore, $ghg^{-1} = h \in H$.

Proposition (18.4). A subgroup $H \le G$ is normal iff $\forall x \in G$, xH = Hx.

Corollary (18.5). If $H \le G$ is a subgroup and [G:H] = 2, then H is normal.

Example. $H = \langle \sigma \rangle$ is normal in $G = S_3$ since $[S_3 : H] = 2$.

Example (Non-Example). $H := \langle \tau \rangle$ is not normal in $G = S_3$. Observe that $\sigma \tau \sigma^{-1} \notin H$.

Lecture 19

Theorem (19.1). Let $H \subseteq G$ be a normal subgroup.

- 1. The set of left cosets G/H is a group with binary operation xH * yH = xyH and identity element $e_{G/H} := e_G H = H$.
- 2. The group structure from 1. makes $\pi: G \to G/H$, $\pi(g) := gH$ a surjective group homomorphism.

Proof.

- 1. The main point is to check that the binary operation is well-defined (since all group axioms will follow immediately from those on G). Suppose x'H = xH and y'H = yH. WTS x'y'H = xyH. The first two equalities imply $\exists h, \tilde{h} \in H$ such that x' = xh and y' = yh. WTS $\exists h'$ such that x'y' = xyh. Consider $x'y' = xhy\tilde{h} = xehy\tilde{h} = xyy^{-1}hy\tilde{h}$. Since $H \subseteq G$, $ghg^{-1} \in H$, where $g := y^{-1}$. Therefore $\exists h' \in H$ such that $y^{-1}hy = h'$ which implies that the RHS= $xyh'\tilde{h} \in xyH$. Thus $x'y' \in xyH$.
- 2. This is straightforward: $\pi(xy) = xyH = xH * yH = \pi(x) * \pi(y)$. This is surjective vacuously.

Basic Examples of Quotient Groups

Remark. Groups of the form *G/H* are called **Quotient/Factor Groups**.

Example. Let $G = S_3$, $H = \langle \sigma \rangle$. Note $G/H = \{H, \tau H\}$ is a group of order [G : H] = 2. So $G/H \cong \mathbb{Z}/2$ by theorem 15.2.

Proposition (19.2). Let $\varphi: G \to G'$ be a group homomorphism. Then $\ker \varphi$ is a normal subgroup of G.

Remark. Proposition 19.2 implies that if $H \le G$ is a subgroup and there exists a function $\varphi : G \to G'$ such that $H = \ker \varphi$, then $H \triangleleft G$.

Proposition (19.3). Let $H \subseteq G$ be a normal subgroup. Then the kernel of $\pi : G \to G/H$ is H.

<u>Notation:</u> Let *G* be abelian, $H \le G$ a subgroup. If we write *G* additively, then we write cosets of *H* as a + H = aH. We write the group operation in G/H as x + H + y + H := (x + y) + H. i.e. \mathbb{Z}/n : $k + n\mathbb{Z}$ and for \mathbb{Q}/\mathbb{Z} : $\frac{a}{b} + \mathbb{Z}$.

Example of Analyzing *G/H* via Proposition 19.2/19.3

- Consider $\det: GL_2(\mathbb{R}) \to \mathbb{R}^{\times}$. $\ker(\det) = \{A \in GL_2 | \det A = 1\} := SL_2(\mathbb{R})$. Proposition 19.2 implies $\ker(\det) \subseteq GL_2$. Note: SL_2 is not abelian.
- We will be analyzing $GL_2/SL_2 := \{ASL_2 | A \in SL_2\}.$
- We will also analyze left cosets:

Lemma (20.1). Let $H \le G$ be a subgroup. Then xH = yH iff $x^{-1}y \in H$.

Proof. This will be #1 on PS 5. He tricked us!

Observations:

- 1. By the above Lemma, $ASL_2 = BSL_2$ iff $A^{-1}B \in SL_2$ iff $\det(A^{-1}B) = 1$ iff $\det A^{-1} \det B = 1$ iff $\det A = \det B$.
- 2. $\forall A \in GL_2$, $ASL_2 = \begin{bmatrix} \det A & 0 \\ 0 & 1 \end{bmatrix} SL_2$ which implies that as a set, $GL_2/SL_2 := \left\{ \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix} SL_2 | r \in \mathbb{R} \setminus \{0\} \right\}$.
- 3. Note: $\begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix} SL_2 = \begin{bmatrix} r' & 0 \\ 0 & 1 \end{bmatrix} SL_2$ iff r = r'.

But what about the group operation? By definition,

 $\begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix} SL_2 * \begin{bmatrix} s & 0 \\ 0 & 1 \end{bmatrix} SL_2 = \begin{bmatrix} rs & 0 \\ 0 & 1 \end{bmatrix} SL_2 = \begin{bmatrix} sr & 0 \\ 0 & 1 \end{bmatrix} SL_2 = \begin{bmatrix} s & 0 \\ 0 & 1 \end{bmatrix} SL_2 * \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix} SL_2.$ Therefore, GL_2/SL_2 is abelian! This is AMAZINGLY important because G and H are non-abelian, thus G, H being non-abelian does NOT imply

This is AMAZINGLY important because G and H are non-abelian, thus G, H being non-abelian does NOT imply that G/H is non-abelian.

Observation 1 implies that we have a well-defined function $\overline{\det}: GL_2/SL_2 \to \mathbb{R}\setminus\{0\}, \overline{\det}\left(\left[\begin{smallmatrix} r & 0 \\ 0 & 1 \end{smallmatrix}\right]SL_2\right) := r = \det\left(\left[\begin{smallmatrix} r & 0 \\ 0 & 1 \end{smallmatrix}\right]\right).$

 $\overline{\det}$ is a group homomorphism. Also, it is surjective since $\det: GL_2 \to \mathbb{R}^{\times}$ is surjective. It is also injective by Observation 3. Therefore, $\overline{\det}$ is a group isomorphism and thus $GL_2/SL_2 \cong \mathbb{R}^{\times}$.

1st Isomorphism for Groups

Theorem (20.2). Let $\varphi : G \to G'$ be a group homomorphism. Then the function $\overline{\varphi} : G/\ker \varphi \to \operatorname{im} \varphi$, $\overline{\varphi}(x \ker \varphi) := \varphi(x)$ is a group isomorphism.

Proof. (See Paulin).

Example. Let $\varphi : \mathbb{Z} \to S_3$, $\varphi(k) := \sigma^k$ be a group homomorphism such that $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. Hence, $\operatorname{im} \varphi = \langle \sigma \rangle = \{e, \sigma, \sigma^2\}$. Then $\ker \varphi = \{k \in \mathbb{Z} | \sigma^k = e\}$. Lemma 14.3 says if $\sigma^k = e$, then $|\sigma| | k$ which implies $k \in 3\mathbb{Z}$. By Theorem 20.2, $\mathbb{Z}/3 \cong \langle \sigma \rangle$ on $\overline{\varphi}$.

Q: 2 subgroups from $\varphi : G \to H$: $\ker \varphi \leq G$ and $\operatorname{im} \varphi \leq H$. We've already seen that $\ker \varphi$ is always normal, but what about $\operatorname{im} \varphi$ in H??

Lecture 21

Q: Is the image of a group homomorphism $\varphi : G \to H$ a normal subgroup of H?

<u>A:</u> Nope! As an example, take $G = \mathbb{Z}$, $H = S_3$, $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$. Then $\operatorname{im} \varphi = \{\varphi(k) | k \in \mathbb{Z}\} = \{\tau^k | k \in \mathbb{Z}\} = \langle \tau \rangle$. We know from past lectures that $\langle \tau \rangle \leq S_3$ is not a normal subgroup.

Permutation Groups

Definition (21.1). Let X be a set. The **permutation group of** X is the set $\Sigma(X) := \{f : X \to X | f \text{ is a bijection}\}$ with binary operator being function composition, \circ , and identity element e(x) = x, $\forall x \in X$.

Most important example: $X = \mathbb{n} = \{1, ..., n\}, n \ge 1$. Then $\Sigma(X) = S_n$ is the **symmetric group on n-letters** (Sym_n, Σ_n).

Proposition (21.2). Let $X = \{x_1, ..., x_n\}$ be an *n*-element set. Then $\Sigma(X) \cong S_n$.

Permutation Group of a Group: $\Sigma(G)$

Remark. Paulin uses the idea of a "group action." This is important, but we'll ignore it.

Let *G* be a group. Then $\Sigma(G) := \{f : G \to G | f \text{ is a set-theoretic bijection} \}$.

Let $g \in G$. Define a function $L_g : G \to G$, $L_g(x) := gx$, $\forall x \in G$. Note that L_g is not a group homomorphism if $g \neq e_G$, but it is a bijection.

Example. Let $G = \mathbb{Z}$. Then $L_g(a) = g *_G a = a + n$ (translation by n).

Lemma (21.3). Let G, H be groups and let $\varphi : G \to H$ be a group homomorphism. If φ is injective, then φ induces a group isomorphism $G \cong \operatorname{im} \varphi \leq H$.

Theorem (21.4 Cayley's Theorem). Let G be a group, $\Sigma(G)$ be the permutation group of the SET G. Let $\varphi: G \to \Sigma(G)$ be the function $\varphi(g) \coloneqq L_g$. Then

- 1. φ is a group homomorphism and
- 2. φ induces a group isomorphism between G and the subgroup im $\varphi \leq \Sigma(G)$.

Corollary (21.5). Every finite group is isomorphic to a subgroup of S_n .

Lecture 22

Proof of Theorem 21.4. 1. Want to show $\forall g, g' \in G$, $\varphi(gg') = \varphi(g) \circ \varphi(g')$ i.e. we want to show $L_{gg'} = (L_g \circ L_{g'})(x)$. The left-hand side = gg'x and the right-hand side $= L_g(L_{g'}(x)) = L_g(g'x) = gg'x$.

2. Suffices to show $\varphi: G \to \operatorname{im} \varphi$ is injective since any function is surjective onto its image (Lemma 21.3). By Prop. 17.1, we want to show $\ker \varphi = \{e_G\}$. Suppose $g \in \ker \varphi$. Then $\varphi(g) = \operatorname{id}_G$, i.e. $\forall x \in G$, $L_g(x) = \operatorname{id}_G(x) = x$. Since $x \in G$, $x^{-1} \in G$. Therefore gx = x implies $g = e_G$. Thus injective.

Corollary (21.5). Every finite group *G* of order *n* is isomorphic to a subgroup of $S_n = \Sigma(\{1, 2, ..., n\})$.

Structure of Symmetric Group S_n

 S_n is B I G! $|S_n| = n!$, so it's too hard to write the elements of S_n as $\begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1 & 6 & 1 & \dots & 7 \end{pmatrix}$.

Definition (22.1). Let $i_1, i_2, ..., i_k$ be distinct elements of $\mathbb{n} = \{1, ..., n\}$ with $1 \le k \le n$. Then $(i_1, i_2, ..., i_k) \in S_n$ denotes the function $i_1 \mapsto i_2, i_2 \mapsto i_3, ..., i_{k-1} \mapsto i_k, i_k \mapsto i_1$. Every other element of \mathbb{n} gets mapped to itself. $(i_1, ..., i_k)$ is a **k-cycle**. 2-cycles are **transpositions**.

Example. 1. Our friends σ , $\tau \in S_3$, where $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$. \odot In cycle notation we have $\sigma = (1 \ 2 \ 3)$ and $\tau = (2 \ 3)$

- 2. Let $\rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \in S_4$. Then $\rho = (1 \ 4 \ 3 \ 2)$.
- 3. $id_m \in S_n$ and $id_m = (1) = (2) = (3) = \cdots$.

Remark. 1. Example 3 shows there are multiple ways to express cycles- Ex 1: $\sigma = (3\ 1\ 2) = (2\ 3\ 1)$, $\tau = (2\ 3) = (3\ 2)$.

2. Without context, it's unclear where these cycles live. e.g. (1 2 3) could be in S_3 or S_4 corresponding to $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$.

Proposition. Let $\sigma = (i_1 \ i_2 \ ... \ i_k) \in S_n$ be a k-cycle. Then:

- 1. $|\sigma| = k$ and
- 2. $\sigma^{-1} = (i_k \ i_{k-1} \ \dots \ i_2 \ i_1)$.

Lecture 23

Remark. This is important! Not every element in S_n is a cycle!

Example. $\eta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \in S_4$. Note that $|\eta| = 2$. Prop. 22.1(1) implies $\eta = (i_1 \ i_2)$. So η leaves 2 elements of $\{1, 2, 3, 4\}$ fixed, which is false.

Composition of Cycles: "Important" Group Operation in S_n into Cycle Notation

Example. 1. Let $\sigma = (1 \ 3 \ 5 \ 2)$, $\tau = (2 \ 5 \ 6) \in S_6$. Then $\sigma \circ \tau = \sigma \tau = (1 \ 3 \ 5 \ 2)(2 \ 5 \ 6) = (1 \ 3 \ 5 \ 6)$.

2. Let $\sigma = (1\ 3\ 5\ 2), \tau = (1\ 6\ 3\ 4) \in S_6$. Then $\sigma\tau = (1\ 3\ 5\ 2)(1\ 6\ 3\ 4) = (1\ 6\ 5\ 2)(3\ 4)$ which is NOT a cycle!

Observation: $\alpha = (1 \ 6 \ 5 \ 2), \beta = (3 \ 4)$ commute: $\alpha \beta = \beta \alpha$.

Definition (23.1). 2 cycles $(i_1 \ i_2 \ \dots \ i_r)$ and $(j_1 \ j_2 \ \dots \ j_s)$ are **disjoint** iff $\forall k = 1, \dots, r, \ i_k \neq j_l, \ \forall l = 1, \dots, s$.

Proposition (23.2). If σ , $\tau \in S_n$ are disjoint cycles, $\sigma \tau = \tau \sigma$.

Proof. We want to show $\forall m \in \mathbb{n}$, $\sigma \tau(m) = \tau \sigma(m)$. Let $I := \{i_1, \dots, i_r\}$, $J := \{j_1, \dots, j_k\}$. Let $m \in \mathbb{n}$. We observe 3 different cases:

<u>Case 1:</u> $m \notin I$, $m \notin J$. By definition of cycle, $\tau(m) = m$ and $\sigma(m) = m$. Therefore $\sigma\tau(m) = m = \tau\sigma(m)$.

<u>Case 2:</u> $m \in I$. Consider $\sigma \tau(m)$. Since $m \in I$, $m \notin J$ and therefore $\tau(m) = m$ which implies $\sigma \tau(m) = \sigma(m)$. Consider $\tau \sigma(m)$. Then $\sigma(m) \in I$ which implies $\sigma(m) \notin J$ and therefore $\tau \sigma(m) = \sigma(m)$.

Case 3: $m \in J$. Same as Case 2, just swap the roles of I, J.

Remark. Let $\sigma = (1\ 2\ 3)$ and $\tau = (2\ 3) \in S_3$. Then $\sigma \tau = (1\ 2\ 3)(2\ 3) = (1\ 2) \neq (1\ 3) = (2\ 3)(1\ 2\ 3) = \tau \sigma$.

Corollary (23.3). Let $\alpha \in S_n$ be the product of disjoint cycles $\sigma_1, \sigma_2, ..., \sigma_k \in S_n$. Then $|\sigma| = \text{lcm}\{|\sigma_1|, |\sigma_2|, ..., |\sigma_k|\}$.

Lecture 24

We will begin with a proof of Corollary 23.3 from last lecture...

Proof Cor 23.3. By Proposition 23.2, all σ commute with one another. Thus $\alpha^l = \sigma_1^l \sigma_2^l \cdots \sigma_k^l \ \forall l \geq 1$. As $\{\sigma_i\}$ is disjoint for all i, σ_i^{-1} and $\sigma_{j\neq 1}^l$ are disjoint also. Then $\alpha^m = e$ iff $\sigma_i^m = e \ \forall i = 1, ..., k$. Lemma 14.2 implies $|\sigma_i||m$. Thus $\alpha^m = e$ iff m is a multiple of $|\sigma_1|, |\sigma_2|, ..., |\sigma_k|$. By definition of order, $|\alpha|$ must be the smallest such that $\alpha^m = e$, so $|\alpha^m| = e$, so $|\alpha| = \text{lcm}\{|\sigma_i|\}_{i=1}^k$.

Generators of S_n

Here, we are looking for the set of elements of $\{\sigma_1, \ldots, \sigma_n\} \subseteq S_n$ such that every element of S_n can be written as $\sigma_1^{k_1}, \ldots, \sigma_n^{k_n}$ for $k_1, \ldots, k_n \in \mathbb{Z}$.

Proposition (24.1). Let $n \ge 2$ and $\sigma = (i_1 \dots i_k) \in S_n$ be a k-cycle. Then σ can be written as a product of transpositions. In particular, $\sigma = (i_1 \ i_k)(i_1 \ i_{k-1}) \dots (i_1 \ i_2)$ (i.e. k-1 transpositions).

Remark (Ex 24.2). Consider $\sigma = (1 \ 2 \ 3 \ 4) \in S_4$. Then $(1 \ 4)(1 \ 3)(1 \ 2) = (1 \ 2 \ 3 \ 4)$. Note that $1 \mapsto 2$, $2 \mapsto 1 \mapsto 3$, and $3 \mapsto 1 \mapsto 4$.

Note: Decompositions into transpositions are note unique! For example, $(1\ 2)(2\ 3)(1\ 2)(3\ 4)(1\ 2) = (1\ 2\ 3\ 4)$ as well.

Theorem (24.3). Every non-identity element of S_n is uniquely (up to rearrangement) a product of disjoint cycles, each of length 2.

This is how we define our cycle notation: $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 1 & 5 & 6 & 4 \end{pmatrix} \in S_6 = (1 \ 3)(4 \ 5 \ 6).$

Corollary (24.4). For all $n \ge 2$, S_n is generated by the set of transpositions $\{(ij) \in S_n | 1 \le i < j \le n\}$.

Remark. We also know that S_3 is generated by $\sigma = (1\ 2\ 3)$ and $\tau = (2\ 3)$. We can also show that $S_{n>3}$ is generated by $\sigma = (1\ 2\ 3\ ...\ n-1\ n)(n-1\ n)$.

Lecture 25

Sign of Permutation

Definition (25.1). Let $\sigma \in S_n$. We say σ is <u>even/odd</u> iff σ can be written as an even/odd number of transpositions. We write $sgn(\sigma) := +1$ if σ is even or -1 if σ is odd.

Example. If $\sigma = (i_1 \ i_2 \dots i_k) \in S_n$ is a k-cycle, then σ is even if k is odd, or odd if k is even. Proposition 24.1 implies $\sigma = (i_1 \ i_k)(i_1 \ i_{k-1}) \cdots (i_1 \ i_2)$.

Theorem (25.2). A permutation can't be both odd and even. In particular, sgn : $S_n \rightarrow \{\pm 1\}$ is well-defined.

Evidence for Theorem 25.2: Let $\vec{e_1}, \dots, \vec{e_n}$ be a standard basis of \mathbb{R}^n . So $\vec{e_1} = [1 \ 0 \ 0 \ \cdots \ 0], \vec{e_2} = [0 \ 1 \ 0 \ \cdots \ 0], \dots$ To each $\sigma \in S_n \mapsto n \times n$ matrix P_{σ} : $P_{\sigma} := [\vec{e_{\sigma(1)}}, \vec{e_{\sigma(2)}}, \dots, \vec{e_{\sigma(n)}}].$

Example. 1. $S_2 = \{(1), (1\ 2)\}$. We have $(1) \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, (1\ 2) \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

2. $\sigma = (1 \ 2 \ 3) \in S_3 \mapsto P_{\sigma} = \begin{pmatrix} 0 \ 0 \ 1 \ 0 \ 0 \\ 1 \ 0 \ 1 \end{pmatrix}$. Note that $\det(P_{\sigma}) = 1 = \operatorname{sgn}(\sigma)$ since σ is a 3-cycle.

Fact: $S_n \to \operatorname{GL}_n(\mathbb{R})$ is a group homomorphism.

If an $n \times n$ matrix $A = [\vec{a_1} \ \vec{a_2} \dots \ \vec{a_n}]$, then swapping any 2-columns changes the sign of the determinate.

<u>Fact:</u> $\operatorname{sgn}(\sigma) = \det(P_{\sigma}).$

Lecture 26

Paulin Chapter 4: Rings!

Idea: Study objects like $(\mathbb{Z}, +, 0, *, 1)$, develop an abstract notion of primes and the fundamental theorem of arithmetic.

Definition (26.1). A <u>ring</u> (\mathbf{R} , +, $\mathbf{0}$, *, $\mathbf{1}$) is a set R equipped with binary operators +, * : $R \times R \to R$ and elements $0, 1 \in R$ such that

- 1. (R, +, 0) is an abelian group,
- 2. (R,*,1) is a monoid (i.e. a group where multiplicative inverses may not exist),
- 3. Left/Right distributive law holds: $\forall a, b, c \in R$, (a+b)*c = a*c + b*c and a*(b+c) = a*b + a*c.

Notation: ab := a * b and $\forall n \ge 0 \in \mathbb{Z}$, $na := a + a \cdots + a$ (n times) and $a^n := a * a * \cdots * a$ (n times). Note that $na \ne a^n$ in general.

Definition (26.2). A ring *R* is commutative iff $\forall a, b \in R$, a * b = b * a.

Basic Examples of Rings

- 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} . Commutative.
- 2. $(\mathbb{Z}/n, \overline{+}, \overline{0}, \overline{*}, \overline{1})$. Commutative.
- 3. The Zero Ring $R = \{0_R\}$, where $1_R = 0_R$. Commutative.
- 4. $M_n(\mathbb{R}) := \{n \times n \text{ matrices with entries in } \mathbb{R}\}, (M_n(\mathbb{R}), +, 0_n, *, I_n). \text{ Non-commutative for } n \ge 2.$
- 5. $\mathcal{C}([0,1]) := \{f : [0,1] \to \mathbb{R} | f \text{ is continuous} \}$. In this ring, (f+g)(x) := f(x) + g(x), (fg)(x) := f(x)g(x), $0(x) := 0 \in \mathbb{R}$, $1(x) := 1 \in \mathbb{R} \ \forall x \in [0,1]$.

Abstract Properties of Rings

Proposition (26.3). Let R be a ring.

- 1. $\forall n, m \ge 1$, let $a_1, ..., a_n \in R$ and $b_1, ..., b_m \in R$. Then $\left(\sum_{i=1}^n a_i\right) \cdot \left(\sum_{j=1}^m b_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j$.
- 2. $\forall a \in R, a * 0 = 0 = 0 * a$.
- 3. $\forall a,b \in R$, a(-b) = -a(b) = -ab, where -b,-a are the additive inverses of b,a respectively. In particular, (-a)(-b) = ab.

Important Example: Polynomial Rings

Let R be a commutative ring. Then

$$R[x] := \{a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} + a_nx^n | \forall n \ge 0 \ a_i \in R\} = "R \text{ adjoin } x".$$

Let $f, g \in R[x]$. Write $f = \sum_{i=0}^{n} a_i x^i$, $g = \sum_{j=0}^{m} b_j x^j$. WLOG, assume $m \le n$. Define $b_{m+1} = b_{m+2} = \cdots = b_n = 0 \in R$, then $f + g := \sum_{i=0}^{n} (a_i + b_i) x^i$. Also, $fg := \sum_{k=0}^{m+n} c_k x^k$, where $c_k := \sum_{l=0}^{k} a_l b_{k-l}$.

Lecture 27

Additive Identity: $0 := \sum_i a_i x^i$, $a_i = o \in R \ \forall i \ge 0$.

Multiplicative Identity: $1 := \sum_i a_i x^i$, $a_0 = 1 \in R$, $a_i = 0 \in R \ \forall i \ge 1$.

Proposition (27.1). R commutative implies R[x] is commutative.

Remark. R[x][y]. This is just a polynomial in 2 variables.

Definition (27.2). Let $f = \sum a_k x^k \in R[x]$, where $\sum a_k x^k$. Then the <u>degree</u> of f, $\deg(f) \in \mathbb{N}$ is the largest $n \in \mathbb{Z}$ such that $a_n \neq 0$. Often, $\deg(0) := -\infty$.

Basic Constructions

Definition (27.3). Let *R* be a ring. A subset $S \subseteq R$ is a **subring** iff

- 1. $(S, +, 0_R) \le (R, +, 0_R)$ is a subgroup with respect to +.
- 2. $\forall x, y \in S$, $x * y \in S$. i.e. *S* is closed under multiplication.
- 3. $1_R \in S$.

We write $S \leq R$ to denote that S is a subring of R.

Example. 1. We have $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$.

2. Let *R* be commutative. Then $R \le R[x]$.

3. (Non-Commutative Examples): Let $R = M_2(\mathbb{R})$ and $S = \left\{ A \in R | A = \alpha = \begin{pmatrix} a_1 & a_2 \\ 0 & 3 \end{pmatrix} \right\}$. Then $S \leq R$.

CAUTION!!! Some authors...

1. don't require a ring to have 1 (multiplicative identity)

2. don't require subrings to have $1_R \in S$ (no Axiom 3).

Basic Constructions

1. $n\mathbb{Z} \not\leq \mathbb{Z}$, n > 1 since $1 \notin \mathbb{Z}$.

2. If $R \neq \{0_R\}$, then $\{0_R\} \not\leq R$ since $1_R \notin \{0_R\}$.

3. Take $S = \{ f = \sum a_i x^2 \in R[x] | a_0 = 0 \} \le R[x] \text{ since } 1 \notin R[x].$

Lecture 28

Ring Homomorphisms

Definition (28.1). Let R, S be rings. A **ring homomorphism** from R to S is a function $\varphi : R \to S$ such that $\forall a,b \in R$,

1. $\varphi(a+b) = \varphi(a) + \varphi(b)$,

2. $\varphi(ab) = \varphi(a)\varphi(b)$, and

3. $\varphi(1_R) = 1_S$. A **ring isomorphism** is a ring homomorphism φ such that φ is a bijection.

Example. 1. id: $R \rightarrow R$ is a ring isomorphism. BOOOORING!!!

2. Let n > 1. Then $\pi : \mathbb{Z} \to \mathbb{Z}/n$, $\pi(a) := [a]$ is a ring homomorphism.

3. (NON-EXAMPLE) Let det: $M_2(\mathbb{R}) \to \mathbb{R}$ be a function. Then Axioms 2 and 3 are satisfied, but not Axiom 1 since det(A + B) \neq det(A) + det(B) in general.

Proposition (28.2). Let $r \in R$. The function $ev_r(f) := f(r)$ is a ring homomorphism ("evaluation at r").

In general, elements of R[x] "aren't functions."

Example. $\mathbb{Z}/2[x]$.

$$deg(-\infty): \overline{0} \qquad \qquad deg(1): x, x + \overline{1}$$

$$deg(0): \overline{1} \qquad \qquad deg(2): x^2, x^2 + x, x^2 + \overline{1}, x^2 + x + \overline{1}.$$

The number of ev homomorphisms is 2: $ev_{\overline{0}}$, $ev_{\overline{1}} : \mathbb{Z}/2[x] \to \mathbb{Z}/2$.

Let
$$f := x^2 + x + \overline{1}$$
, $g := \overline{1}$. Then $\operatorname{ev}_{\overline{0}}(f) = \overline{1}$, $\operatorname{ev}_{\overline{1}}(f) = \overline{1}^2 + \overline{1} + \overline{1} = \overline{1}$.
Also, $\operatorname{ev}_{\overline{0}}(g) = \overline{1}$, $\operatorname{ev}_{\overline{1}}(g) = \overline{1}$, BUT $f \neq g$.

Definition (28.3). Let $\varphi : R \to S$ be a ring homomorphism. The **<u>kernel</u>** of φ is the subset $\ker(\varphi) := \{r \in R | \varphi(r) = 0_S \}$ of R.

The **image** of φ is the subset $\operatorname{im}(\varphi) := {\{\varphi(r) | r \in R\}}$ of S.

Proposition (28.4). 1. $im(\varphi) \le S$ is a subgroup of S.

2. $\ker(\varphi) \le R$ is a subring of R iff $S = \{0_S\}$ is the trivial ring.

- *Prop 28.4.* 1. Want to show $1_S \in \text{im}\varphi$. By definition of φ , $\varphi(1_R) = 1_S$ which implies $1_S \in \text{im}\varphi$. (The rest of this proof is similar to the proof of Proposition 16.1 for groups.
 - 2. (\Longrightarrow) Suppose $\ker \varphi$ is a subring. By definition of subring, $1_R \in \ker \varphi$. Therefore $\varphi(1_R) = 0_S$. On the other hand, $\varphi(1_R) = 1_S$ by definition of ring homomorphism. Let $s \in S$. Then $s = s \cdot 1_S = s \cdot \varphi(1_R) = s \cdot 0_S$. Thus by Proposition 26.3, $s = 0_S$ and therefore $S = \{0_S\}$.
 - (\Leftarrow) Suppose $S = \{0_S\}$. Then $\forall r \in R$, $\varphi(r) = 0_S$. Therefore $\ker \varphi = R$. Every ring is a subring of itself.

Definition (29.1). Let *R* be a ring. A subset $I \subseteq R$ is an **ideal** iff

- 1. *I* is an additive subgroup of *R*, i.e. $(I, +, 0_R) \le (R, +, 0_R)$ and
- 2. $\forall a \in I \text{ and } \forall r \in R, ra \in I \text{ and } ar \in I.$

We write $I \triangleleft R$.

Examples

- 1. Let *R* be a ring. Then $0 = \{0_R\}$ and *R* are both ideals of *R*.
- 2. Let $n \ge 1$. Then $n\mathbb{Z} \le \mathbb{Z}$ is an ideal.
- 3. Let $R = \mathbb{R}[x]$, let $g \in \mathbb{R}[x]$, and let $I := \{ f \in \mathbb{R}[x] : g | f \text{ i.e. } \exists h \in \mathbb{R}[x] \text{ such that } f = gh \}$. Then $I \subseteq \mathbb{R}[x]$.

Lecture 30

Non-Examples of Ideals

- 1. None of $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.
- 2. Let *R* be commutative. Then $R \le R[x]$ is not an ideal (Axiom 2 does not hold).
- 3. Let $R = \mathbb{Z}$, $C = 2\mathbb{Z} \cup 3\mathbb{Z}$. In this case, Axiom 2 holds, but Axiom 1 fails since $3(1) + 2(-1) = 1 \notin C$.

Proposition (30.1). Let *R* be commutative, $I, J \subseteq R$ be ideals.

- 1. $I \cup J$ is not, in general, an ideal of R. However, $I \cap J \subseteq R$.
- 2. The subset $I + J := \{a + b \in R | a \in I, b \in J\}$ is an ideal of R.
- 3. The subset $IJ := \{a_1b_1 + a_2b_2 + \cdots + a_nb_n | n \in \mathbb{N}, a_i \in I, b_i \in J\}$ is an ideal of R.

Kernels Revisited

Proposition (30.2). Let $\varphi : R \to S$ be a ring homomorphism. Then...

- 1. $\ker \varphi \subseteq R$
- 2. $\ker \varphi = 0$ iff φ is injective.
- *Proof.* 1. Since $\varphi(a+b) = \varphi(a) + \varphi(b) \ \forall a,b \in R$, φ is an additive group homomorphism. Therefore $\ker \varphi$ is an additive subgroup of $(R,+,0_R)$ by Proposition 16.2.
 - 2. This follows directly from Proposition 17.1.

Quotient Rings

Let $I \subseteq R$ be an ideal. Forgot about multiplication for a moment. We know $(I, +) \le (R, +)$ is a subgroup. Let $r \in R$. The left cosets of I are of the form $r + I := \{r + a | a \in I\}$. Recall that $R/I := \{r + I | r\}inR\}$ is the set of left cosets. This is a group with respect to addition since (R, +) is abelian.

Generalize Construction of Z/nZ as a Ring

Theorem (31.1 PROVE ON EXAM!).

- 1. The binary operation $\overline{*}: R/I \times R/I \to R/I$, $(r_1 + I)\overline{*}(r_2 + I) := r_1r_2 + I$ is well-defined.
- 2. $(R/I, \overline{+}, 0_{R/I}, \overline{*}, 1_{R/I})$ is a ring, where $1_{R/I} := 1_R + I$.
- 3. The surjective function $\pi: R \to R/I$, $\pi(r) := r + I$ is a ring homomorphism.

Proof. 1. Suppose $r_1 + I = r_1' + I$ and $r_2 + I = r_2' + I$ (1). Want to show $r_1 r_2 + I = r_1' r_2' + I$. Since $r_1 ∈ r_1 + I$, $r_2 ∈ r_2 + I$, (1) implies $\exists a_1, a_2 ∈ I$ such that $r_1 = r_1' + a_1$, $r_2 = r_2' + a_2$. Therefore $r_1 r_2 = (r_1' + a_1)(r_2' + a_2) = r_1' r_2' + r_1' a_2 + a_1 r_2' + a_1 a_2$. By Axiom 2 of Definition 29.1 of ideal, $r_1' a_2$, $a_1 r_2'$, $a_1 a_2 ∈ I$. Axiom 1 implies $r_1 r_2 - r_1' r_2' ∈ I$. Therefore by PS5 #1, $r_1 r_2 + I = r_1' r_2' + I$.

- 2. Straightforward. Skip because this is LONG.
- 3. Check the axioms of ring homomorphism:
 - (a) $\pi(r_1 + r_2) = (r_1 + r_2) + I = (r_1 + I) + (r_2 + I) = \pi(r_1) + \pi(r_2)$.
 - (b) $\pi(r_1r_2) = r_1r_2 + I = (r_1 + I)\overline{*}(r_2 + I) = \pi(r_1)\overline{*}\pi(r_2).$
 - (c) $\pi(1_R) = 1_R + I = 1_{R/I}$.

Example (Non-Example). (Replace ideal with a subring in R/I). Consider: $\mathbb{Z} \leq \mathbb{Q}$ and the quotient group \mathbb{Q}/\mathbb{Z} $(q_1+\mathbb{Z})\overline{+}(q_2+\mathbb{Z})=(q_1+q_2)+\mathbb{Z}$. Then $(\frac{1}{2}+\mathbb{Z})\overline{+}(\frac{1}{3}+\mathbb{Z})=\frac{1}{6}+\mathbb{Z}$. Note that $\frac{1}{2}+\mathbb{Z}=\frac{3}{2}+\mathbb{Z}$. Then $(\frac{3}{2}+\mathbb{Z})\overline{+}(\frac{1}{3}+\mathbb{Z})=\frac{1}{2}+\mathbb{Z}\neq\frac{1}{6}+\mathbb{Z}$.

1st Isomorphism Theorem for Rings

Theorem (31.2). let $\varphi: R \to S$ be a ring homomorphism. Then the function $\overline{\varphi}: R/\ker \varphi \to \operatorname{im} \varphi$, $\overline{\varphi}(r+\ker \varphi) \coloneqq \varphi(r)$ is a well-defined ring isomorphism.

Lecture 32

Properties of Elements in Rings

Recall from Lecture 6 the following:

Theorem (6.2). $(\mathbb{Z}/n^{\times}, *, [0])$, where $\mathbb{Z}/n^{\times} := \{[k] \in \mathbb{Z}/n - \{[0]\}| \gcd(k, n) = 1\}$ for n > 1 is a group.

Example. We have $\mathbb{Z}/4^{\times} = \{[1],[3]\}$. Here, [1] * [1] = [1] and [3] * [3] = [8] = [1]. Therefore, every element has a multiplicative inverse. Also, if you have $[a],[b] \in \mathbb{Z}/4$ such that [a] * [b] = [0], then [a],[b] need not be [0]: [2] * [2] = [4] = [0]. On the other hand, if n = p prime, then $(\mathbb{Z}/p^{\times}) = \mathbb{Z}/p - \{[0]\}$. Every non-zero element of \mathbb{Z}/p has a multiplicative inverse.

Definition (32.1). Let R be a ring. An element $a \in R$ is a <u>unit</u> iff it has a multiplicative inverse. i.e. $\exists u \in R$ such that $au = ua = 1_R$. Define $R^{\times} := \{a \in R | a \text{ is a unit}\}.$

Proposition (32.2). Let $(R, +, 0_R, *, 1_R)$ be a ring. Then...

- 1. $(R^{\times}, *, 1_R)$ is a group.
- 2. If $a \in \mathbb{R}^{\times}$, its inverse is unique.
- 3. If $1_R \neq 0_R$, $0_R \notin R^{\times}$.

Proof. 1. Definition of a ring implies $(R, *, 1_R)$ is a monoid. This implies * is associative and 1_R is the identity element. Now we need to show R^{\times} is closed with respect to *. Let $a, b \in R^{\times}$, and let u, w be the inverses, respectively. WTS $a * b \in R^{\times}$. We have $a * u = 1_R = u * a$ and $b * w = 1_R = w * a$. Now consider $(w * u) * (a * b) = w * (u * a) * b = w * 1_R * b = w * b = 1_R$. So $(a * b) * (w * u) = a * (b * w) * u = a * 1_R * u = a * u = 1_R$. Therefore $a * b \in R^{\times}$.

- 2. By 1. above, R^{\times} is a group which implies that the inverse of any element in the group is unique.
- 3. Use the contrapositive. Suppose $0_R \in R^{\times}$. By definition, $\exists u \in R$ such that $0_R u = 1_R$. Thus, $0_R u = 0_R$ by 26.3.

Definition (32.3). A ring R is a <u>division ring</u> iff $R^* = R - \{0_R\}$. A <u>field</u> is a commutative division ring. Fields are denoted \mathbb{K} .

Examples of fields: \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{F}_p := \mathbb{Z}/p$.

Another example: $\mathbb{K}(x) := \left\{ \frac{p(x)}{q(x)} \middle| p, q \in \mathbb{K}[x], q \neq 0 \right\}$. These are rational functions in 1 variable.

Lecture 33

Example (A division ring, but not a field). The quarternions: $\mathbb{H} := \{a+ib+jc+kd | a,b,c,d \in \mathbb{R}\}$, where $i*i=j*j=k*k=-1 \in \mathbb{R}$, i*j=k, j*i=-k (non-commutative). If q=a+ib+jc+kd, then $\overline{q}:=a-ib-jc-kd$ is the conjugate of q and $q*\overline{q}=a^2+b^2+c^2+d^2$.

For $q \neq 0 \in \mathbb{H}$, $q^{-1}q = qq^{-1} = 1$, $q^{-1} = \frac{\overline{q}}{q\overline{q}}$.

Subrings: $\mathbb{R} \leq \mathbb{C} \leq \mathbb{H}$. Group of Units: $\mathbb{R}^{\times} \leq \mathbb{C}^{\times} \leq \mathbb{H}^{\times}$ subgroups. "Norm 1 integer units": $\{\pm 1\} \leq \{\pm 1, \pm i\} \leq \{\pm 1, \pm i, \pm i, \pm i, \pm k\}$.

Definition (33.1). Let $R \neq 0$ be a ring. An element $a \neq 0 \in R$ is a **zero divisor** if $\exists b \neq 0$ such that ab = 0 or ba = 0.

Example. 1. $[3] \in \mathbb{Z}/6$ is a zero divisor since $[3] \cdot [2] = [6] = [0]$, but $[3] \neq [0]$, $[2] \neq [0]$.

- 2. Let *R* be a non-trivial ring: $R \times R$. Then an element $(1,0) \cdot (0,1) = (0,0)$ is a zero divisor.
- 3. For the integers \mathbb{Z} , there exists no such zero divisor.

Definition (33.2). A ring R is an **integral domain** iff

- 1. $R \neq 0$
- 2. *R* is commutative
- 3. R has no zero divisors

Proposition (33.3). A field \mathbb{K} is an integral domain.

Remark. An **entire ring** as defined in Paulin's notes is a ring $R \neq 0$ that has no zero divisors.

Polynomial Rings and Zero Divisors

Suppose $f, g \in \mathbb{R}[x] - \{0\}$. Then $\deg(f) = m$, $\deg(g) = n$, and $\deg(fg) = m + n$. On the other hand, $f = [3]x^3$, $g = [2]x^2 + x \in \mathbb{Z}6[x]$. So $\deg(f) = 3$, $\deg(g) = 2$, and $\deg(fg) = [3]x^4 < \deg(f) + \deg(g)$.

Theorem (33.4). Let R be an integral domain. Then...

- 1. If $f, g \in R[x] \{0_R\}$, then $\deg(fg) = \deg(f) + \deg(g)$.
- 2. $\mathbb{R}[x]$ is an integral domain.

Lecture 34

Proof (Thm 33.4). 1. Let $\deg f = n \ge 0$, $\deg g = m \ge 0$. Then $f = \sum_{i=0}^n a_i x^i$, $g = \sum_{j=0}^m b_j x^j$ for a_i , $b_j \in R$. By definition of degree, $a_n \ne 0$ and $b_m \ne 0$. Consider $fg = a_n b_m x^{n+m} + (a_n b_{m-1} + a_{n-1} b_m) x^{n+m-1} + \dots + a_0 b_0$. Note that $a_n b_m \ne 0$ since R is an integral domain and $a_n \ne 0$, $b_n \ne 0$. So $\deg fg = n + m = \deg f + \deg g$.

2. Let f, $g \in R[x] - \{0\}$. WTS $fg \ne 0$. Therefore deg $f = n \ge 0$, deg $g = m \ge 0$. Therefore as in 1. above, we have $fg = a_n b_m x^{n+m} + \cdots$ with $a_n \ne 0$ and $b_m \ne 0$. Thus $a_n b_m x^{n+m} \ne 0$ implies $fg \ne 0$.

Corollary (34.1). If \mathbb{K} is a field, then $\mathbb{K}(x)$ is an integral domain.

Remark. If *R* is an integral domain and we have ac = bc in *R* with $c \ne 0$, then a = b.

Principal and Prime Ideals in Commutative Rings

From here on, R is assumed to be a non-trivial commutative ring (so $0_r \neq 1_r$).

Proposition (34.2). Let $a \in R$. The subset $(a) := \{ra | r \in R\} \subseteq R$ is an ideal called the **principal ideal** generated by a.

Example. We have $n\mathbb{Z} = (n)$ when $R = \mathbb{Z}$.

Definition (34.3). An ideal $I \subseteq R$ is **principal** iff $\exists a \in I$ such that I = (a).

Theorem (34.4). Every ideal in \mathbb{Z} is principal.

Proof. Suppose $I \subseteq \mathbb{Z}$ is an ideal. By definition of ideal, $(I,+,0) \le (\mathbb{Z},+,0)$ is a subgroup. Recall \mathbb{Z} is a cyclic (additive) group. In particular, $\mathbb{Z} = \langle 1 \rangle$. Theorem 13.3 says every subgroup of a cyclic group is cyclic. Therefore $\exists n \in I$ such that $I = \langle n \rangle = n\mathbb{Z}$. As an ideal, $n\mathbb{Z} = \langle n \rangle$.

Lecture 35

An ideal $I \subseteq R$ is **principal** iff $\exists a \in I$ such that $I = (a) = \{ra | r \in R\}$.

Example. 1. Let $R = \mathbb{Z}$, $I = n\mathbb{Z} = (n)$.

2. For every ring, the zero ideal is principal and R is a principal ideal (i.e. $\{0_R\} = (0)$), R = (1).)

Definition (35.1). A ring *R* is a **principal ideal ring (PIR)** iff every ideal of *R* is principal.

R is a **principal ideal domain (PID)** iff R is an integral domain and R is a PIR.

Recall Theorem 34.4 which stated that \mathbb{Z} is a PID (wasn't worded like this).

Proposition (35.2). $\forall n > 1$, $\mathbb{Z}/n/Z$ is a PIR.

Proposition (35.3). A field \mathbb{K} has exactly 2 ideals: the zero ideal and \mathbb{K} .

Corollary (35.4). 1. A field is a PID.

- 2. If \mathbb{K} is a field and $\varphi : \mathbb{K} \to S$ is a ring homomorphism, then φ is injective OR S is the zero ring.
- 3. $\mathbb{Z}/n\mathbb{Z}$ is a PID if *n* is prime.

Remark (35.5). 1. Nice Theorem in Paulin: "If R is a finite integral domain, then R is a field." So, $\mathbb{Z}/n\mathbb{Z}$ being an integral domain implies $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{[k]|\gcd(k,n)=1\} = \{[1],[2],\ldots,[n-1]\}$ since this is a field. Therefore if d|n and d < n, then d = 1. Thus n is prime and we conclude $\mathbb{Z}/n\mathbb{Z}$ is a PID iff $\mathbb{Z}/n\mathbb{Z}$ is a field iff n = p prime.

2. $\mathbb{Z}[x]$ is an integral domain by Theorem 33.4, but is not a PID.

How to Get More Examples of PIDs?

Recall in Theorem 13.3 (wayyyy back then), we showed that every subgroup of a cyclic group is cyclic. Crucial in our proof was the division algorithm in \mathbb{Z} .

Definition (35.6). Let *R* be a commutative ring such that $0 \neq 1$.

- 1. A <u>Euclidean function</u> on *R* is a set-theoretic function $N: R \{0_R\} \to \mathbb{N} \cup \{0\}$ such that
 - (a) $\forall a \in R, \forall b \in R \{0_R\}, N(a) \leq N(ab).$
 - (b) $\forall a \in R \text{ and } \forall b \neq 0 \in R, \exists q, r \in R \text{ such that } a = bq + r \text{ with either } r = 0 \text{ OR } N(r) < N(b).$
- 2. An integral domain is the **Euclidean domain** iff *R* admits a Euclidean function.

Theorem (35.7). The following are Euclidean domains:

- 1. \mathbb{Z} with $N(m) := |m| \ \forall m \neq 0$ (absolute value).
- 2. Any field \mathbb{K} with $N(a) := 1 \ \forall a \neq 0 \in \mathbb{K}$.
- 3. $\mathbb{Z}[i]$ with $N(k+ib) := a^2 + b^2 \forall a+ib \neq 0$.
- 4. Polynomial Ring $\mathbb{K}[x]$ with coefficients in a field \mathbb{K} , $N(f) := \deg(f) \ \forall f \neq 0$.

Proposition (36.1). Every ED is a PID.

Example.

Definition (36.2). A deg(n) polynomial is **monic** iff its leading coefficient is 1_R i.e. $f = x^n + a_{n-1}x^{n-1} + \cdots + a_0$.

Corollary (36.3). If \mathbb{K} is a field and $I \subseteq \mathbb{K}[x]$ is a non-trivial ideal, then $\exists f \neq 0 \in I$ such that I = (f), f is monic, and $\deg(f) \leq \deg(g) \ \forall g \in I - \{0\}$.

Primes and Irreducibles

Definition (36.4). 1. An element $a \in R$ divides $b \in R$ iff $\exists r \ inR$ such that b = ra. Write a|b.

- 2. An element $p \in R$ is **prime** iff
 - (a) $p \neq 0$ and p is not a unit (i.e. p has no multiplicative inverse).
 - (b) Whenever p|ab, then p|a or p|b.
- 3. An element $c \in R$ is **irreducible** iff
 - (a) $c \neq 0$ and c is not a unit.
 - (b) If c = ab, then either a or b is a unit.

Proposition (36.5). If *R* is an integral domain, then prime is irreducible.

Lecture 37

Example. Claim: Let $q = \pm \in \mathbb{Z}$ with p a prime number. Then

- q is a prime element of \mathbb{Z} and
- q is an irreducible element of Z.

Example. Recall that a non-constant polynomial $f \in \mathbb{K}[x]$ is irreducible if it can't be factored into 2 non-constant polynomials, i.e. if f = gh, then $\deg(g) = 0$ or $\deg(h) = 0$.

<u>Fact:</u> Units of $\mathbb{K}[x]$ = non-zero constants = \mathbb{K}^{\times} . Hence f an irreducible polynomial implies f is an irreducible element in $\mathbb{K}[x]$.

Example. $\forall a \in \mathbb{K}, x-a$ is irreducible in $\mathbb{K}[x]$. Note that $x^2 + 1$ is irreducible in $\mathbb{R}[x]$, but $x^2 + 1$ is NOT irreducible in $\mathbb{K}[x]$ if $\sqrt{-1} \in \mathbb{K}$.

Example. Let $R = \mathbb{Z}[\sqrt{-5}] = \{a+b\sqrt{-5}|a,b\in\mathbb{Z}\}$. Note that $a+b\sqrt{-5}$ is a unit in R iff $a^2+5b^2=1$. Also, $3=3+0\sqrt{-5}\in R$ is irreducible. BUT 3 is not prime!! Let $a=2+\sqrt{-5}$, $b=2-\sqrt{-5}\in R$. Then ab=4+5=9. Therefore, 3|ab, but in $\mathbb{Z}[\sqrt{-5}]$, $3\nmid 2+\sqrt{-5}$ and $3\nmid 2-\sqrt{-5}$. Therefore, irreducible element does not imply prime element.

Example. Claim: Let $n \ge 2 \in \mathbb{N}$ be composite, p be a prime number such that p|n. Then $[p] \in \mathbb{Z}/n\mathbb{Z}$ is a prime element.

Lecture 38

Remark. Recall in \mathbb{Z} , $q = \pm p$ with p a prime number. Then in q is prime and irreducible $\mathbb{Z}^{\times} = \{\pm 1\}$. Slogan: "Primeness doesn't care about multiplying by units."

Definition (38.1). Let *R* be a commutative ring not equal to 0.

- 1. An ideal $P \subseteq R$ is **prime ideal** iff for $P \ne R$ whenever, $ab \in P$, then either $a \in P$ or $b \in P$.
- 2. An ideal $M \subseteq R$ is **maximal** iff $M \ne R$ and whenever $J \subseteq R$ is an ideal with $M \subseteq J$, then either J = R or J = M.

Example (38.2). \mathbb{K} is a field, $f \in \mathbb{K}[x]$ irreducible polynomial (e.g. f = x - 1). Claim: $(f) \subseteq \mathbb{K}[x]$ is maximal.

- 1. Note $1 \notin (f)$ since $\deg 1 = 0$ and $\deg f \ge 1$.
- 2. Suppose $J \subseteq \mathbb{K}[x]$ such that $(f) \subseteq J$. Proposition 36.1 implies $\exists g \in J$ such that J = (g). $(f) \subseteq J$ implies $f \in (g)$. Therefore $\exists h \in \mathbb{K}[x]$ such that f = gh. f irreducible implies either g or h is a non-zero constant.
 - (a) If g is a unit, then $J = (g) = (1) = \mathbb{K}[x]$.
 - (b) If h is a unit, then $\exists h^{-1} \in \mathbb{K}^{\times}$ such that $h^{-1}h = 1$ which implies $g = h^{-1}f$. Therefore $J = (g) = (h^{-1}f) = (f)$.

Theorem (38.3). Let *R* be a commutative non-trivial ring, and $I \subseteq R$ be an ideal. Then

- 1. I is a prime ideal iff R/I is an integral domain.
- 2. I is maximal ideal iff R/I is a field.

Remark (38.4). Since every field is an integral domain, Theorem 38.3 implies every maximal ideal is a prime ideal.

Theorem (38.5). Let *R* be a PID. Then $p \in R$ is prime iff *p* is irreducible.