

E210 Engineering Cyber-Physical Systems (Spring 2021)

Flask

Weekly Focus	Reading	Monday	Wed	Lab
Exam/CPS Introduction	Ref 1 Chapter 1	3/8: Exam 1	3/10: CPS Introduction	Project 5 Raspberry PI Setup
Raspberry Pi	Ref 2 Chapter 1-	3/15: Pi Intro/UART Bus	3/17: Git/Github	
I2C Bus	Ref 3	3/22: I2C Bus	3/24: Wellness Day	Project 6 I2C Pressure Sensor
Python/Sensor	Ref 4, Ref 5	3/29: Classes/Modules	3/31: Pressure Sensor	
SPI	Ref 6	4/5: SPI Bus Overview	4/7: SPI HDL Design	Project 7 GPIO Connected I/O
SPI	Ref 7 Chapter 1	4/12: SPI HDL Design	4/14: Networking Overview	
Network Interface	Ref 7 Chapter 1	4/19: MQTT	4/21: Flask II	Project 8 MQTT
MQTT/Flask	Ref 7 Chapter 2-	4/26: Flask II	4/29: Open Topic	

Final Exam Wed 5/5 7:45-9:45

Weekly Focus	Reading	Monday	Wed	Lab
Exam/CPS Introduction	Ref 1 Chapter 1	3/8: Exam 1	3/10: CPS Introduction	Project 5 Raspberry PI Setup
Raspberry Pi	Ref 2 Chapter 1-	3/15: Pi Intro/UART Bus	3/17: Git/Github	
I2C Bus	Ref 3	3/22: I2C Bus	3/24: Wellness Day	Project 6 I2C Pressure Sensor
Python/Sensor	Ref 4, Ref 5	3/29: Classes/Modules	3/31: Pressure Sensor	
SPI	Ref 6	4/5: SPI Bus Overview	4/7: SPI HDL Design	Project 7 GPIO Connected I/O
SPI	Ref 7 Chapter 1	4/12: SPI HDL Design	4/14: Networking Overview	
Network Interface	Ref 7 Chapter 1	4/19: MQTT	4/21: Flask II	Project 8 MQTT
MQTT/Flask	Ref 7 Chapter 2-	4/26: Flask II	4/29: Open Topic	

Final Exam Wed 5/5 7:45-9:45

Raspberry PI/Basys3 Link

Project 8 Overview

Project 8

1. Utilize classes and hardware created in P5, P6 and P7.

- lps331
- Basys3 LEDSW
- 2. Publish MQTT Sensor Data
- 3. Subscribe to MQTT LED messages

P8 **MQTT**

Template Code

```
#!/usr/bin/env python3
import paho.mqtt.client as mqtt
import time
# White Bar Code Label Number on Each Raspberry Pi
sensor_id = 986304
temperature = 21
pressure = 31
switch = 0
```

Template Code

```
client = mqtt.Client()
client.on_message=on_message
client.on_connect=on_connect
client.connect("pivot.iuiot.org")
client.loop_start()
```

```
while(1):
    print("Publish Temperature, Pressure, and Switch Data")
    client.publish(f"sensors/{sensor_id}/temperature",f"{temperature}")
    client.publish(f"sensors/{sensor_id}/pressure",f"{pressure}")
    client.publish(f"sensors/{sensor_id}/switch",f"{switch}")
    time.sleep(15)
```

Sending and Receiving MQTT

- 1. Data will published from your sensor every 15 seconds
 - To view Data
 - mosquitto_sub -h pivot.iuiot.org -t sensors/<sensorid>/#
 - Replace <sensorid> with the serial number of your sensor
 - To actuate LEDs:
 - mosquito_pub –h pivot.iuiot.org –t sensors/<sensorid>/led –m <0-7>
 - Replace <sensorid> and <0-7> with actual data

Flask Discussion

System Architecture


```
from flask import Flask
app = Flask(__name__)
@app.route('/')
def index():
    return 'Hello world'
if __name__ == '__main__':
    app.run(debug=True, port=55346, host='0.0.0.0')
```

Connecting P5-P8 to CPS

CPS Use Cases

Remote Patient Monitoring

- 1. Low Latency
- 2. Security
- 3. Scalability
 - Topics organized by patient

Home Energy Monitoring and Control

Surveillance Systems

Agriculture

Automotive

By 2020, there will be **250 Million** connected vehicles on the road globally – Gartner & Connected Vehicle Trade Association

Vehicle Sensors

75% of new cars shipped in 2020 will have internet connectivity
- Business Intelligence

Vehicles currently on the road have **60 – 100** sensors onboard. This number is projected to increase to **200+** by the year 2020.

Front object CCD camera Front airbag Cross traffic computer Nightime pedestrian warning Rear object laser radar Drowsiness sensors Front object Collision sensor laser radar Side airbag SRS Adaptive cruise control Nightime pedestrian warning IR sensor Steering Angle sensor Active park assist Automatic brake actuator Tire pressure sensor Wheel speed sensor

Rear object monitor

CCD camera

- Sources: Gartner, Strategy&, Mems Journal

Logistics

Existing Backend System

- OAuth Server
- · Oracle DB
- · Apache Kafka

Public or private cloud (AWS, MS Azure...) or on-premise

Military Application

Enabling Technologies

Wireless Networks

Cloud Computing

Edge Computing

Advanced Hardware

to the Internet will exceed PCs and smartphones. Tablets Mobile phones Connected devices (billions) **Edge Computing GW and IoT Solution:** Architecture 20 15 **FPGA** Hardware Offload SoC FPGA (ex. IP-Core, OpenCL', Original Logic) Digital Factory Smart Energy Medical Device Network Poster Data Data Interface (Cloud Service Conversion Connector) Security **Analysis** Protocol /Cleansing Machine Vision ZYNQ MOTT USB Cloud VPNI Web HTTP RS-232C Storage Robotics Server Web Socket Bluetooth' (ex. Embedded SQL) Transportation Surveillance Embedded Linux*

Machines Go Online

The number of everyday objects, or "things," connecting

Things

■ PCs & laptops

EnergyTechnologies

Al Technology

