Importing Libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import warnings
   import seaborn as sns
```

```
In [2]: %matplotlib inline
warnings.filterwarnings('ignore')
```

Loading the Dataset

```
In [3]: df = pd.read_csv('student.csv')
```

First 5 rows of dataframe

```
In [4]: df.head()
```

Out[4]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

Data Summary

In [5]: df.describe()

Out[5]:

	math score	reading score	writing score
count	1000.00000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000
std	15.16308	14.600192	15.195657
min	0.00000	17.000000	10.000000
25%	57.00000	59.000000	57.750000
50%	66.00000	70.000000	69.000000
75%	77.00000	79.000000	79.000000
max	100.00000	100.000000	100.000000

Datatypes in Dataframe

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	gender	1000 non-null	object
1	race/ethnicity	1000 non-null	object
2	parental level of education	1000 non-null	object
3	lunch	1000 non-null	object
4	test preparation course	1000 non-null	object
5	math score	1000 non-null	int64
6	reading score	1000 non-null	int64
7	writing score	1000 non-null	int64

dtypes: int64(3), object(5) memory usage: 62.6+ KB

Column Names

```
In [7]: df.columns
Out[7]: Index(['gender', 'race/ethnicity', 'parental level of education',
```

```
'lunch',

'test preparation course', 'math score', 'reading score',

'writing score'],

dtype='object')
```

Numerical Columns

```
In [8]: df.columns[df.dtypes=='int'].to_list()
Out[8]: ['math score', 'reading score', 'writing score']
```

Object Columns

Count-Plot for gender

```
In [10]: sns.countplot(data=df, x='gender')
```

Out[10]: <AxesSubplot:xlabel='gender', ylabel='count'>

Distribution of Maths Score

```
In [11]: sns.distplot(x = df['math score'], color = '#f29195')
```

Out[11]: <AxesSubplot:ylabel='Density'>


```
In [12]: sns.boxplot(x = 'math score', data=df, color='#edb4c6')
```

Out[12]: <AxesSubplot:xlabel='math score'>

Observation: The distribution for Maths Score in the dataset is little left-skewed hence some of the students has performed poor.

Distribution of Reading Score

In [13]: sns.distplot(x = df['reading score'], color = '#8c6799')

Out[13]: <AxesSubplot:ylabel='Density'>


```
In [14]: sns.boxplot(x = 'reading score', data=df, color="#c7bfc9")
```

Out[14]: <AxesSubplot:xlabel='reading score'>

Distribution of Writing Score

```
In [15]: sns.distplot(x = df['writing score'], color = '#8c6799')
```

Out[15]: <AxesSubplot:ylabel='Density'>


```
In [16]: sns.boxplot(x = 'writing score', data=df)
```

Out[16]: <AxesSubplot:xlabel='writing score'>

Pairplot for numerical features in the dataset wrt Gender

In [17]: sns.pairplot(data=df, diag_kind="kde", palette="plasma", hue='gende

Out[17]: <seaborn.axisgrid.PairGrid at 0x156c8cb50>

Count Plot for Race/Ethinicity

In [18]: sns.countplot(data=df, x='race/ethnicity', palette="twilight")

Out[18]: <AxesSubplot:xlabel='race/ethnicity', ylabel='count'>

Count Plot for Parental Education

In [19]: plt.figure(figsize=(10, 7))
 sns.countplot(data=df, x='parental level of education', palette="pa")

Out[19]: <AxesSubplot:xlabel='parental level of education', ylabel='count'>

Count Plot for Lunch

In [20]: sns.countplot(data=df, x='lunch', palette="plasma", lw=4)

Out[20]: <AxesSubplot:xlabel='lunch', ylabel='count'>

Count Plot for Test Preparation Course

```
In [21]: sns.countplot(data=df, x='test preparation course', palette="Paired")
```

Out[21]: <AxesSubplot:xlabel='test preparation course', ylabel='count'>

Creation of new column - Average Score

First 5 Lines of dataset

In [23]: df.head()

Out[23]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	A
0	female	group B	bachelor's degree	standard	none	72	72	74	72.
1	female	group C	some college	standard	completed	69	90	88	82.
2	female	group B	master's degree	standard	none	90	95	93	92.
3	male	group A	associate's degree	free/reduced	none	47	57	44	49.
4	male	group C	some college	standard	none	76	78	75	76.

Test preapration and Average Score analysis

In [24]: sns.displot(data = df, x = "Average Score", hue = 'test preparation

Out[24]: <seaborn.axisgrid.FacetGrid at 0x15725d4e0>

Average Score wrt Gender

In [25]: sns.displot(data = df, x = "Average Score", col = 'gender', aspect=

Out[25]: <seaborn.axisgrid.FacetGrid at 0x1572b7ca0>

Correlation HeatMap

Out[26]:

	math score	reading score	writing score
math score	1.000000	0.817580	0.802642
reading score	0.817580	1.000000	0.954598
writing score	0.802642	0.954598	1.000000

Maths Score wrt Gender

In [27]: sns.set_style('darkgrid')
sns.kdeplot(x = df['math score'], hue=df['gender'], palette="plasma")

Out[27]: <AxesSubplot:xlabel='math score', ylabel='Density'>


```
In [28]: sns.set_style('dark')
sns.violinplot(data = df, y = "math score", x="gender", hue='race/e
```

Out[28]: <AxesSubplot:xlabel='gender', ylabel='math score'>

Count of Race wrt to gender

```
In [29]: sns.set_style('dark')
sns.countplot(data=df, x = 'race/ethnicity', hue="gender", color="#
```

Out[29]: <AxesSubplot:xlabel='race/ethnicity', ylabel='count'>

In []: