

A. Statement of the Problem

Given the plant as

$$\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k)$$
,

the output relation as

$$y(k) = Cx(k)$$
,

the performance index as

$$J(k_0) = \frac{1}{2} \left[\mathbf{C} \mathbf{x}(k_f) - \mathbf{z}(k_f) \right]' \mathbf{F} \left[\mathbf{C} \mathbf{x}(k_f) - \mathbf{z}(k_f) \right]$$

$$+\frac{1}{2}\sum_{k=k_0}^{k_f-1}\left\{\left[\mathbf{C}\mathbf{x}(k)-\mathbf{z}(k)\right]'\mathbf{Q}\left[\mathbf{C}\mathbf{x}(k)-\mathbf{z}(k)\right]+\mathbf{u}'(k)\mathbf{R}\mathbf{u}(k)\right\}$$

and the boundary conditions as

 $\mathbf{x}(k_0) = \mathbf{x}_0$, $\mathbf{x}(k_f)$ is free, and k is fixed,

find the optimal control and state.

B. Solution of the Problem

Step 1	Solve the matrix difference Riccati equation
	$\mathbf{P}(k) = \mathbf{A}'\mathbf{P}(k+1)\left[\mathbf{I} + \mathbf{E}\mathbf{P}(k+1)\right]^{-1}\mathbf{A} + \mathbf{V}$
	with $P(k_f) = C'FC$, where $V = C'QC$ and
	$\mathbf{E} = \mathbf{B}\mathbf{R}^{-1}\mathbf{B}'$.
75.	73 3 13

Step 2 Solve the vector difference equation

 $\mathbf{g}(k) = \mathbf{A}' \left\{ \mathbf{I} - \left[\mathbf{P}^{-1}(k+1) + \mathbf{E} \right]^{-1} \mathbf{E} \right\} \mathbf{g}(k+1) + \mathbf{W} \mathbf{z}(k)$ with $\mathbf{g}(k_f) = \mathbf{C}' \mathbf{F} \mathbf{z}(k_f)$, where, $\mathbf{W} = \mathbf{C}' \mathbf{Q}$.

Step 3 Solve for the optimal state $\mathbf{x}^*(k)$ as

 $\mathbf{x}^*(k+1) = [\mathbf{A} - \mathbf{BL}(k)] \mathbf{x}^*(k) + \mathbf{BL}_g(k)\mathbf{g}(k+1)$ where, $\mathbf{L}(k) = [\mathbf{R} + \mathbf{B'P}(k+1)\mathbf{B}]^{-1} \mathbf{B'P}(k+1)\mathbf{A}$,

 $\mathbf{L}_{q}(k) = [\mathbf{R} + \mathbf{B}'\mathbf{P}(k+1)\mathbf{B}]^{-1}\mathbf{B}'.$

Step 4 Obtain the optimal control as $\mathbf{u}^*(k) = -\mathbf{L}(k)\mathbf{x}^*(k) + \mathbf{L}_g(k)\mathbf{g}(k+1).$