Models of Computation

Tutorial Exercises 2

1. Give regular expressions for each of the following subsets of $\{a, b\}^*$.

- (i) $\{x : x \text{ contains an even number of } a$'s $\}$
- (ii) $\{x : x \text{ contains an odd number of } b$'s $\}$
- (iii) $\{x : x \text{ contains an even number of } a$'s or an odd number of b's $\}$

2. Give NFAs accepting the sets of strings denoted by the following regular expressions:

- (i) $(000^* + 111^*)^*$
- (ii) (01+10)(01+10)(01+10)
- (iii) (0+1(01*0)*1)*

Try to simplify as much as possible.

3. Use the procedure given in the lectures to convert the following NFA

$$N = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, \{q_0\}, \{q_0\})$$

to a regular expression where δ is given by:

4. Prove or disprove each of the following:

- (i) $(E+F)^* \equiv E^* + F^*$
- (ii) $(EF + E)^*E \equiv E(FE + E)^*$
- (iii) $E(FE+E)^*F \equiv EE^*F(EE^*F)^*$

5. Prove that if L is a regular language, so is $L^R = \{ w \mid \text{the reversal of } w \text{ is in } L \}.$

6. Show that the regular languages are closed under the following operations:

- (i) $min(L) = \{ w \mid w \text{ is in } L \text{ but no proper prefix of } w \text{ is in } L \}.$
- (ii) $max(L) = \{ w \mid w \text{ is in } L \text{ and for no } x \text{ other than } \epsilon \text{ is } wx \text{ in } L \}$
- (iii) $init(L) = \{ w \mid \text{for some } x, wx \text{ is in } L \}.$

[Hint: Start with a DFA for L and perform an appropriate construction.]

Tom Melham, Trinity 2009

Adapted from materials by Hanno Nickau and Luke Ong