i概述: 本规约采用 Modbus 规约的 RTU 模式。

NE-NW-8000

1. 字元结构(10-bit 子元框)和波特率

资料格式 8.N.1

波特率: 110, 300, 1.2K, 2.4K, 4.8K, 9.6K, 19.2K, 38.4K bps

2.通信资料结构

2.1 资料格式框

Z I I I I I I I I I I I I I I I I I I I	
START	保持无输入讯号 〉 = 20ms
Adress	通信位址:8-bit 二进制位址
Function	功能码: 8-bit 二进制位址
DATA(n-1)	资料内容:
	n×8-bit 资料,n<=13
DATA 0	
CRC CHK Low	CRC 检查码:
CRC CHK High	16 bit CRC 检查码由 2 个 8-bit 二进制组合
END	保持无输入讯号 〉 = 20ms

2.2 通信位置 (Adress)

00H: 所有控制器广播 (Broadcast)

01H: 对第 01 位址控制器

0FH: 对第 15 位址控制器

10H: 对第 16 位址控制器

以此类推。。。。。, 最大可到 254 (FEH)。

2.3 功能码(Function)与资料内容(Data Characters)

03H: 读出控制器暂存器内容

06H: 写入控制器暂存器内容

08H: 回路侦测

2.3.1 功能码 03H: 读出暂存器内容。

例如:对控制器位址 01H,读出两个连续于暂存器内的资料内容如下表示;起始暂存器位址为 0000H

询问讯息格式:

Address	01H
Function	03H
Starting data address	00H
	00H
Number of data	00H
(count by word)	02H
CRC CHK Low	C4H
CRC CHK Hight	0BH

回应讯息格式

Address	01H
Function	03H
Number of data	04H
(count by byte)	
Content of data	03H
address 0000h	E8H
Content of data	00H
address 0001h	09H
CRC CHK Low	BAH
CRC CHK Hight	45H

说明:读出的测量值为100.0,输出1指示灯和报警1指示灯亮。

2.3.2 功能码 06H: 写入一个 WORD 至暂存器。

例如:对控制器位址 01H,写入 100.0(03E8H)至控制器暂存器位址 0004H(SV 设定值)。

询问讯息格式:

* * * * * * * * * * * * * * * * * * * *	
Address	01H
Function	06H
Data address	00H
	04H
Data content	03H
	E8H
CRC CHK Low	C8H
CRC CHK Hight	В5Н

回应讯息格式:

Address	01H
Function	06H
Data address	00H
	04H
Data content	03H
	E8H
CRC CHK Low	С8Н
CRC CHK Hight	В5Н

2.3.3 功能码 08H: 回路侦测。

例如:对控制器位址 01H 做回路侦测,询问讯息字串内容与回应讯息字串内容相同,其格式如下表示:询问讯息格式: 回应讯息格式:

Address	01H
Function	08H
Sub-function Hi	00H
Sub-function Lo	00H
Data content	12H
	ABH
CRC CHK Low	ADH
CRC CHK Hight	14H

Address	01H
Function	08H
Sub-function Hi	00H
Sub-function Lo	00H
Data content	12H
	ABH
CRC CHK Low	ADH
CRC CHK Hight	14H

2.4 RTU 模式的检查码 (CRC Check)

检查码由 Address 到 Data content 结束。其运算规则如下:

步骤 1: 令 16-bit 暂存器 (CRC 暂存器) =FFFFH。

步骤 2: Exclusive OR 第一个 8-bite byte 的讯息指令与低位元 16-bite CRC 暂存器, 做 Exclusive OR, 将结果存入 CRC 暂存器内。

步骤 3: 右移位 CRC 暂存器,将 0 填入高位元处。

步骤 4: 检查右移的值,如果是 0,将步骤 3 的新值存入 CRC 暂存器内,否则 Exclusive OR A001H 与 CRC 暂存器,将结果存入 CRC 暂存器内。

步骤 5: 重复步骤 3~步骤 4,将 8-bit 全部运算完成。

步骤 6: 重复步骤 2~步骤 5,取下一个 8-bit 的讯息指令,直到所有讯息指令运算完成。最后,得到的 CRC 暂存器的值,即是 CRC 的检查码。值得注意的是 CRC 的检查码必须交换放置於讯息指令的检查码中。

以下为用 c 语言所写的 crc 检查码运算范例:

```
unsigned char *data;
unsigned char length;
    unsigned int crc_chk(unsigned char *data,unsigned char length)
 {
   int j;unsigned int reg_crc=0xffff;
   while(length--){
      reg_crc^=*data++;
    for(j=0;j<8;j++){
         if(reg_crc&0x01){
             reg_crc=(reg_crc>>1)^0xa001;}
           else{
             reg_crc=reg_crc>>1;
               }
           }
     }
  return reg_crc;
}
```

3 控制器的参数位址定义:

名字	暂存器位址	数据范围		出厂值	属性
测量值 (PV)	0000H	量程范围	注 1		R
指示灯输出状态	0001H	1: 亮 0: 灭	注 2		R
输出百分比	0002H	0~100			手 R/W 自动: R
(输出1)					
手动/自动状态	0003H	0~1		0	R/W
设定值(SV)	0004H	量程范围		0	R/W
输出限幅	0005H	0-100		100	R/W

自整定	0006Н	0-1	0 (nO)	R/W
报警值1	0007Н	根据功能 AL1	50	R/W
报警值 2	0008H	根据功能 AL2	100	R/W
报警不灵敏区 1	0009Н	根据功能 AH1	0	R/W
报警不灵敏区 2	000AH	根据功能 AH2	0	R/W
报警方式1	000BH	根据功能 SA1	1	R/W
报警方式 2	000CH	根据功能 SA2	1	R/W
比例带设置	000DH	P	30	R/W
积分设置	000EH	Ι	240	R/W
微分设置	000FH	D	60	R/W
积分限幅设置	0010H	AR	100	R/W
输出周期设置	0011H	Т	20	R/W
测量值修正	0012H	PB	0	R/W
整定限幅设置	0013H	ATU	100	R/W
输入分度号	0014H	SN	0 K	R/W
小数点设置	0015H	DP	0	R/W
滤波系数	0016H	FILT	200	R/W
测量量程上限	0017H	RH	400	R/W
测量量程下限	0018H	RL	0	R/W
传感器故障时间	0019H	Ddt 0255 分钟	0	R/W
故障温度判断	001AH	DKt 1—25.0 度	0	R/W
温度单位选择	001BH	CTR 0-2	0 (C)	R/W

注 1*: 7FFFH:上溢出; 8001H:下溢出。

注 2*: bit0:输出 1 指示灯 bit1:输出 2 指示灯 bit2:自整定指示灯 bit3: 报警 1 指示灯 bit4:报警 2 指示灯 bit5:报警 3 指示灯 bit6:手动输出指示灯 bit7: 程序指示灯

注 3*: 读: bit0-3 位为段号, bit4-bit7 为组号, bit8-bit15 无效。

写: bit0=1:启动程序运行;bit1=1:停止程序运行;bit2=1:暂停程序运行;bit3=1:运行下一段

4. 错误通信时的额外回应:

当控制器做通信连接时,如果产生错误,此时控制器会回应错误码且将 Function code AND 80H 回应给主控系统,让主控系统知道有错误产生。参考错误通信时错误码的意义。

RTU 模式:

D + - +	
Address	01H
Function	86H
Exception code	02H
CRC CHK Low	СЗН

CRC CHK Hight AIH	CRC CHK Hight	A1H
---------------------	---------------	-----

错误码的意义:

旧灰門门心力	<·
错误码	说明
01	功能码错误;
	控制器可以辨识的功能码为 03H,06H,08H
02	资料位址错误;
	资料的位址控制器无法辨识
03	资料内容值错误
	资料内容值太大或者太小,不是控制器所能辨识的内容值
04	控制器无法处理;
	控制器对此命令,无法执行
06	控制器忙线中;
	控制器正在处理资料中,请将指令字串间隔放宽
09	检查码错误
	指令子串中的检查码是错误的。
11	Frame error:字元 frame 错误
12	指令字串中的讯息字节太短
13	指令字串中的讯息字节太长。

上海亚泰仪表有限公司

公司地址:上海市宝山城市工业园区振园路128号

电话: 021-66186368, 66186369(原021-51053127,51053128)

传真:66186226 技术咨询:021-36160962