The TRAPEZOIDAL RULE

The idea: Linearise the function of over each subintured separately.

One interval:
$$\int_{x_{j-1}}^{x_j} f(x) dx \simeq \ln \frac{y_{j-1} + y_j}{2},$$

$$x_{j-1} \qquad 1 \leq j \leq n.$$

Definition

$$T_{n}[f;a,b] = h(\frac{1}{2}y_{0} + y_{1} + y_{2} + \dots + y_{n-1} + \frac{1}{2}y_{n})$$

$$= \frac{2}{2} \left(y_0 + 2y_1 + 2y_2 + \ldots + 2y_{n-1} + y_n \right)$$

Weights:
$$\frac{h}{2} + \frac{h}{2} + (n-1)2\frac{h}{2} = nh = b-a$$

Example
$$I = \int_{1}^{2} \frac{dx}{x}$$
; $T_{4} = ?$

$$\mathcal{L} = \frac{2-1}{4} = \frac{1}{4}$$

$$T_{4} = \frac{1}{4} \left(\frac{1}{2} \cdot 1 + \frac{4}{5} + \frac{2}{3} + \frac{4}{7} + \frac{1}{2} \cdot \frac{1}{2} \right)$$

In detail: The quadrature points xi:

$$T_{4}[\frac{1}{x}; 1,2]$$
, $x_{6} = a = 1$
 $x_{4} = b = 2$

$$x_1 = \frac{5}{4}$$
, $x_2 = \frac{6}{4} = \frac{3}{2}$, $x_3 = \frac{7}{4}$

Data: y; = f(x;)

$$y_{0} = 1$$
 $y_{1} = \frac{1}{2}$ $y_{2} = \frac{3}{3}$ $y_{3} = \frac{4}{7}$ $y_{4} = \frac{1}{2}$

$$M_n[f;a,b]$$
: THE MIDPOINT RULE

Let $h = \frac{b-a}{n}$.

Points
$$m_j = a + (j - \frac{1}{2})h$$
, $1 \leq j \leq n$

Definition
$$M_n[f; a, b] = h \sum_{j=1}^{n} f(m_j)$$

(Special Riemann Jum!
$$\frac{1}{2}$$
 = m_{R})

Example
$$I = \int_{1}^{2} f(x) dx$$
; $M_{y} = ?$

$$M_{1} = \frac{1}{4} \left[\frac{8}{9} + \frac{8}{11} + \frac{8}{13} + \frac{8}{15} \right]$$

$$m_1 = 1 + (1 - \frac{1}{2}) \frac{1}{2} = \frac{9}{8}$$

$$I = ln 2 \approx 0.693$$

THEOREM The error estimates

Let f'' be continuous and bounded over [a,b], that is, $|f''(x)| \leq K$ (= constant).

Then, with $h = \frac{b-a}{n}$, we have $|\int_{a}^{b} f(x) dx - \int_{n}^{\infty} | \leq \frac{K(b-a)}{12} dx$ $= \frac{K(b-a)^{3}}{12n^{2}}$ $|\int_{a}^{b} (b-a)^{3} dx - \int_{n}^{\infty} | \int_{n}^{\infty} |$

 $\left| \int_{a}^{b} f(x) dx - M_{n} \right| \leq \frac{K(b-a)}{24} \ell^{2}$ $= \frac{K(b-a)^{3}}{24n^{2}}$

Both methods are quadratic, i.e., for the error $\sim \Theta\left(\frac{1}{n^2}\right)$.

PROOF (TRAPEZOID)

$$y = A + B(x - x_0)$$

$$y = f(x)$$

the error
$$g(x) = f(x) - A - B(x - x_0)$$

= $f(x) - y_0 - \frac{1}{k}(y_1 - y_0)(x - x_0)$

$$\lambda_{0} = \int_{0}^{1} f(x) dx = \int_{0}^{1} f(x) dx - \lambda_{0} =$$

$$g''(x) = f'(x), g(x_0) = g(x_1) = 0$$

$$\int_{x_1}^{x_1} (x - x_0)(x_1 - x_1)g''(x) dx = -2 \int_{x_1}^{x_1} g(x) dx$$

$$\int_{x_{i}}^{x_{i}} f(x) dx - \lambda \frac{y_{o} + y_{i}}{2} = \int_{x_{i}}^{x_{i}} g(x) dx$$

$$= \int_{x_{i}}^{1} \frac{1}{2} \int_{x_{i}}^{x_{i}} (x - x_{o}) (x_{i} - x) f'(x) dx$$

$$\leq \frac{1}{2} \int_{-\infty}^{\infty} (x - x) |f'(x)| dx$$

$$\leq \frac{\kappa}{2} \int_{-\infty}^{\infty} \left(-x^2 + (x_0 + x_1) \times -x_0 \times \right) dx$$

$$= \frac{k}{12} (x_1 - x_0)^3 = \frac{k}{12} k^3$$

The whole interval: $\left| \int_{0}^{\infty} f(x) dx - \int_{0}^{\infty} \int_{0}^{\infty} \left(\int_{0}^{\infty} f(x) dx - \int_{0}^{\infty} \int_{0}^{\infty} \left(\int_{0}^{\infty} f(x) dx - \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \left(\int_{0}^{\infty} f(x) dx - \int_{0}^{\infty} \int_$

$$\leq \sum_{j=1}^{n} \int_{x_{j-1}}^{x_j} f(x) dx - \lambda \int_{x_{j-1}}^{y_{j-1}+y_j} \int_{x_{j-1}}^{x_j} f(x) dx$$

$$= \sum_{j=1}^{n} \frac{K(b-a)}{12} = \frac{K(b-a)}{12} L^{2}$$

Special case |xl=y

The triangle inequality for sums extends to definite integrals?

If a = b, then