Math 325K - Lecture 20 Section 7.4 Cardinality and size of infinity

Bo Lin

November 13th, 2018

Outline

- Cardinality of sets.
- Countable size \aleph_0 .
- Uncountable size \aleph_1 and more.

Motivation

Exercise

Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{a, b, c, d, e\}$. Do the two sets have equal number of elements?

Motivation

Exercise

Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{a, b, c, d, e\}$. Do the two sets have equal number of elements?

Solution

They do, as they both have 5 elements.

Motivation

Exercise

Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{a, b, c, d, e\}$. Do the two sets have equal number of elements?

Solution

They do, as they both have 5 elements.

Remark

There is an alternative way to check: one can map 1 to a, 2 to b, and so on. In fact there exists a bijection between elements in X and Y.

Definition

Definition

Let A and B be two sets. They have the **same cardinality** if and only if there exists a one-to-one correspondence from A to B.

Definition

Definition

Let A and B be two sets. They have the **same cardinality** if and only if there exists a one-to-one correspondence from A to B.

Proposition

For finite sets A and B, they have the same cardinality if and only if they have the same number of elements.

Theorem

For all sets A, B and C, we have the following properties:

- (reflexive) A and A have the same cardinality;
- (symmetric) if A and B have the same cardinality, then B and A have the same cardinality;
- (transitive) if A and B have the same cardinality and B and C have the same cardinality, then A and C have the same cardinality.

Theorem

For all sets A, B and C, we have the following properties:

- (reflexive) A and A have the same cardinality;
- (symmetric) if A and B have the same cardinality, then B and A have the same cardinality;
- (transitive) if A and B have the same cardinality and B and C have the same cardinality, then A and C have the same cardinality.

Proof.

Reflexive: I_A works.

Theorem

For all sets A, B and C, we have the following properties:

- (reflexive) A and A have the same cardinality;
- (symmetric) if A and B have the same cardinality, then B and A have the same cardinality;
- (transitive) if A and B have the same cardinality and B and C have the same cardinality, then A and C have the same cardinality.

Proof.

Reflexive: I_A works. Symmetric: let $f:A\to B$ be a one-to-one correspondence, then f^{-1} is also a one-to-one correspondence from B to A.

Theorem

For all sets A, B and C, we have the following properties:

- (reflexive) A and A have the same cardinality;
- (symmetric) if A and B have the same cardinality, then B and A have the same cardinality;
- (transitive) if A and B have the same cardinality and B and C have the same cardinality, then A and C have the same cardinality.

Proof.

Reflexive: I_A works. Symmetric: let $f:A\to B$ be a one-to-one correspondence, then f^{-1} is also a one-to-one correspondence from B to A. Transitive: let $f:A\to B$ and $g:B\to C$ be the one-to-one correspondences, then $g\circ f$ is also one-to-one and onto, so it is a one-to-one correspondences from A and C.

Infinite sets and finite sets do not have the same cardinality

Proposition

Let A be an infinite set and B be a finite set, then A and B do not have the same cardinality.

Infinite sets and finite sets do not have the same cardinality

Proposition

Let A be an infinite set and B be a finite set, then A and B do not have the same cardinality.

Remark

Then we would like to study the cardinality of infinite sets. A natural question would be: do all infinite sets have the same cardinality?

Example

Our first example of infinite sets would be sets of integers. Consider the following map: $f: \mathbb{N} \to \mathbb{N}, f(x) = 2x$.

Example

Our first example of infinite sets would be sets of integers. Consider the following map: $f: \mathbb{N} \to \mathbb{N}, f(x) = 2x$. This f is one-to-one, so it induces a bijection between its domain and range. In addition, the range of f is the set of all positive even integers $2\mathbb{N} = \{2k \mid k \in \mathbb{N}\}$. So we have a result.

Example

Our first example of infinite sets would be sets of integers. Consider the following map: $f: \mathbb{N} \to \mathbb{N}, f(x) = 2x$. This f is one-to-one, so it induces a bijection between its domain and range. In addition, the range of f is the set of all positive even integers $2\mathbb{N} = \{2k \mid k \in \mathbb{N}\}$. So we have a result.

Proposition

 \mathbb{N} and $2\mathbb{N}$ have the same cardinality.

Example

Our first example of infinite sets would be sets of integers. Consider the following map: $f: \mathbb{N} \to \mathbb{N}, f(x) = 2x$. This f is one-to-one, so it induces a bijection between its domain and range. In addition, the range of f is the set of all positive even integers $2\mathbb{N} = \{2k \mid k \in \mathbb{N}\}$. So we have a result.

Proposition

 \mathbb{N} and $2\mathbb{N}$ have the same cardinality.

Corollary

An infinite set and a proper subset of it can have the same cardinality.

Countable sets

Definition

The infinite cardinality of \mathbb{N} is called "aleph zero", denoted \aleph_0 . (\aleph is the first letter in Hebrew alphabet)

Countable sets

Definition

The infinite cardinality of \mathbb{N} is called "aleph zero", denoted \aleph_0 . (\aleph is the first letter in Hebrew alphabet)

Note that we can count all elements of $\mathbb N$ one by one, we have the following definition.

Definition

If a set and \mathbb{N} have the same cardinality, then it is **countably infinite**. A set is **countable** if it is either finite or countably infinite.

Then an important question is: what infinite sets are countable?

Exercise: \mathbb{Z} is countable

Exercise

Show that $\mathbb Z$ is countable by constructing a bijection between $\mathbb N$ and $\mathbb Z$.

Exercise: \mathbb{Z} is countable

Exercise

Show that \mathbb{Z} is countable by constructing a bijection between \mathbb{N} and \mathbb{Z} .

Proof.

Suppose we can write all integers in a sequence such that every integers appears exactly once in the sequence, then we are done. Because we can let $f:\mathbb{N}\to\mathbb{Z}$ be a function such that f(n) is the n-th term in the sequence. One example of the sequence is:

$$0, 1, -1, 2, -2, 3, -3, \cdots$$

\mathbb{Q}^+ is countable

Next set to consider is \mathbb{Q} . It seems that there are much more rational numbers than integers, however, we have the following theorem.

\mathbb{Q}^+ is countable

Next set to consider is \mathbb{Q} . It seems that there are much more rational numbers than integers, however, we have the following theorem.

Theorem

The set of positive rational numbers \mathbb{Q}^+ is countable.

\mathbb{Q}^+ is countable

Next set to consider is \mathbb{Q} . It seems that there are much more rational numbers than integers, however, we have the following theorem.

Theorem

The set of positive rational numbers \mathbb{Q}^+ is countable.

Proof.

Theorem

The following types of sets are countable:

- the subset of a countable set;
- the union of a countable set and a finite set;
- the union of finitely many countable sets;
- the union of countably many countable sets, which means it is the union of an infinite family of sets S_1, S_2, \cdots such that each S_i is a countable set.

Proof.

(i) Let A be a countable set and $B \subset A$. If B is finite, we are done. If B is infinite, so is A and we can list all elements in A as $a_1, a_2, \ldots, a_n, \ldots$ Now we need show that B is countably infinite. We recursively define a function $q: \mathbb{N} \to B$. Let $S_1 = \{n \in \mathbb{N} \mid a_n \in B\}$. Since B is nonempty, so is S_1 . By the well-ordering principle for the integers, S_1 contains a least element i_1 , and we let $g(1) = a_{i_1}$. For $k \geq 2$, suppose g(k-1) is already defined, let $S_k = \{n \in \mathbb{N} \mid n > i_{k-1}, a_n \in B\}$. Since B is nonempty, so is S_k . Once again S_k has a least element i_k and we let $g(k) = a_{ik}$. Then this function g is a bijection between N and B.

Proof.

(ii)(iii) Note that they are both subsets of the union of countably many countable sets, they follow from (iv) and (i).

Proof.

- (ii)(iii) Note that they are both subsets of the union of countably many countable sets, they follow from (iv) and (i).
- (iv) This is very similar to the proof of \mathbb{Q}^+ being countable. Let S_1, S_2, \cdots be countably many sets, each one is countable. Then we may assume that $S_n = \{a_{n,1}, a_{n,2}, a_{n,3}, \cdots\}$ for each $n \in \mathbb{N}$. We can list them in s sequence like

$$a_{1,1}, a_{1,2}, a_{2,1}, a_{1,3}, a_{2,2}, a_{3,1}, \dots$$

Then delete redundant elements if necessary, we prove that

$$\bigcup_{i=1}^{N} S^{i}$$

is countable too.

Definition

A set is called uncountable if it is not countable.

Definition

A set is called uncountable if it is not countable.

Remark

Then a natural question is to find an uncountable set.

Definition

A set is called uncountable if it is not countable.

Remark

Then a natural question is to find an uncountable set.

In 1874, German mathematician Georg Cantor managed to prove the following theorem:

Theorem

The set of all real numbers between 0 and 1 is uncountable.

Definition

A set is called uncountable if it is not countable.

Remark

Then a natural question is to find an uncountable set.

In 1874, German mathematician Georg Cantor managed to prove the following theorem:

Theorem

The set of all real numbers between 0 and 1 is uncountable.

Corollary

 \mathbb{R} is uncountable.

Proof.

Suppose we can list all real numbers between 0 and 1 in a sequence r_1, r_2, r_3, \ldots Let the decimal presentation of r_i be

$$0.a_{i1}a_{i2}a_{i3}...$$

Here each a_{ij} is an integer between 0 and 9.

Proof.

Suppose we can list all real numbers between 0 and 1 in a sequence r_1, r_2, r_3, \ldots Let the decimal presentation of r_i be

$$0.a_{i1}a_{i2}a_{i3}...$$

Here each a_{ij} is an integer between 0 and 9. Now we consider another real number between 0 and 1 whose decimal presentation is

$$b=0.b_1b_2b_3\ldots$$

such that each b_i is different from a_{ii} (there are 10 possible choices of the digit, so this is always doable).

Proof.

Suppose we can list all real numbers between 0 and 1 in a sequence r_1, r_2, r_3, \ldots Let the decimal presentation of r_i be

$$0.a_{i1}a_{i2}a_{i3}\ldots$$

Here each a_{ij} is an integer between 0 and 9. Now we consider another real number between 0 and 1 whose decimal presentation is

$$b=0.b_1b_2b_3\ldots$$

such that each b_i is different from a_{ii} (there are 10 possible choices of the digit, so this is always doable). Since b is also a real number between 0 and 1, it belongs to the sequence above and thus there exists $n \in \mathbb{N}$ such that $b = r_n$. However, the n-th decimal digit of r_n is a_{nn} , while the n-th decimal digit of b is $b_n \neq a_{nn}$, a contradiction!

Proof.

Suppose we can list all real numbers between 0 and 1 in a sequence r_1, r_2, r_3, \ldots Let the decimal presentation of r_i be

$$0.a_{i1}a_{i2}a_{i3}\ldots$$

Here each a_{ij} is an integer between 0 and 9. Now we consider another real number between 0 and 1 whose decimal presentation is

$$b=0.b_1b_2b_3\ldots$$

such that each b_i is different from a_{ii} (there are 10 possible choices of the digit, so this is always doable). Since b is also a real number between 0 and 1, it belongs to the sequence above and thus there exists $n \in \mathbb{N}$ such that $b = r_n$. However, the n-th decimal digit of r_n is a_{nn} , while the n-th decimal digit of b is $b_n \neq a_{nn}$, a contradiction!

Intervals have cardinality \aleph_1

Definition

The cardinality of \mathbb{R} is called \aleph_1 , which is greater than \aleph_0 .

Intervals have cardinality \aleph_1

Definition

The cardinality of \mathbb{R} is called \aleph_1 , which is greater than \aleph_0 .

Proposition

For any real numbers a < b, the interval

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$$
 has cardinality \aleph_1 .

Intervals have cardinality \aleph_1

Definition

The cardinality of \mathbb{R} is called \aleph_1 , which is greater than \aleph_0 .

Proposition

For any real numbers a < b, the interval $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$ has cardinality \aleph_1 .

Proof.

The trigonometric function $\tan(x)$ gives a bijection between $(-\frac{\pi}{2},\frac{\pi}{2})$ and \mathbb{R} . And a bijection between (a,b) and $(-\frac{\pi}{2},\frac{\pi}{2})$ could be easily established by a linear function.

Note that Cantor's diagonalization process works when there are at least 2 choices for the digits.

Note that Cantor's diagonalization process works when there are at least 2 choices for the digits.

Theorem

Suppose the cardinality of a set S is \aleph , then $\mathcal{P}(S)$ has a greater cardinality (usually denoted 2^{\aleph}).

Note that Cantor's diagonalization process works when there are at least 2 choices for the digits.

Theorem

Suppose the cardinality of a set S is \aleph , then $\mathcal{P}(S)$ has a greater cardinality (usually denoted 2^{\aleph}).

Remark

There is no largest cardinality of sets.

Proof.

It suffices to show that there is no bijection between S and $\mathcal{P}(S)$. Suppose a function $\phi:S\to\mathcal{P}(S)$ is a bijection. We consider the following subset of S:

$$T = \{ x \in S \mid x \notin \phi(x) \}.$$

Since $T \in \mathcal{P}(S)$, there exists $y \in S$ such that $T = \phi(y)$. Now we check whether $y \in T$.

Proof.

It suffices to show that there is no bijection between S and $\mathcal{P}(S)$. Suppose a function $\phi:S\to\mathcal{P}(S)$ is a bijection. We consider the following subset of S:

$$T = \{ x \in S \mid x \notin \phi(x) \}.$$

Since $T\in \mathcal{P}(S)$, there exists $y\in S$ such that $T=\phi(y)$. Now we check whether $y\in T$. If $y\in T$, by the definition of T, y is an element of S such that $y\notin \phi(y)=T$, a contradiction! Conversely, if $y\notin T$, by the definition of T, y is an element of S such that $y\notin \phi(y)$ does not hold, so $y\in \phi(y)=T$, still a contradiction!

The continuum hypothesis

There is a notoriously hard conjecture which was one reason that Cantor and Austrian mathematician Kurt Gödel became deranged in the end.

The continuum hypothesis

There is a notoriously hard conjecture which was one reason that Cantor and Austrian mathematician Kurt Gödel became deranged in the end.

Conjecture (Continuum hypothesis)

There is no other cardinality between \aleph_0 and \aleph_1 .

The continuum hypothesis

There is a notoriously hard conjecture which was one reason that Cantor and Austrian mathematician Kurt Gödel became deranged in the end.

Conjecture (Continuum hypothesis)

There is no other cardinality between \aleph_0 and \aleph_1 .

Remark

After hard work by several generations of scholars, it turned out that under our system of axioms, the continuum hypothesis can neither be proved nor disproved, so we can add it or its negation as a new axiom.

HW # 10 of this section

Exercise 5, 15, 17.