

AD No. DDC. FILE COPY

DISTRIBUTION TATEMENT A

Approved for public release

Distribution Unlimited

17) SR 0090111

SECURITY CLASSIFICATION OF THIS PAGE (When Date Antered) READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DUCUMENTATION PAGE REPORT NUMBER ESSION NO. 3. RECIPIENT'S CATALOG NUMBER 2. GOVT A TITLE (and Subtitle) TYPE OF REPORT & PERIOD COVERED An Experimental Investigation of Wall Effects Thesis 6. PERFORMING ORG. REPORT NUMBER on Supercavitating Hydrofoils of Finite Span. 7. AUTHOR(a) B. CONTRACT OR GRANT NUMBER(s) Michael Rex MAIXNER 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS PERFORMING ORGANIZATION NAME AND ADDRESS Massachusetts Institute of Technology Cambridge, MA 02139 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE AUG 77 Naval Postgraduate School NUMBER OF PAGES Monterey, CA 93940 211 15. SECURITY CLASS. (of this report) 14 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) UNCLASS 154. DECLASSIFICATION DOWNGRADING 16 DISTRIBUTION STATEMENT (of this Report) A. Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) Wall effects, supercavitating, hydrofoils 20 ASSTRACT (Continue on reverse side if necessary and identify by block number) A geometrically similar family of three supercavitating hydrofoils was tested in the M.I.Ton variable pressure water tunnel. The half-span foils were of elliptical planform; the ratio of foil half-span to tunnel height was 1/4 for the small foil, 1/2 for the medium foil, and 3/4 for the largest foil. The tunnel was of square cross section. Lift, drag, mement, tunnel speed, ambient pressure, and cavity pressure were measured for attack angles from 8 to 21 degrees and a variety of ambient pressure

DD 1 JAN 73 1473 (Page 1)

S/N 0102-014-6601 | Security Classification This age han Date Entered)

(Cont'd)

> settings; cavity length measurements were obtained from photographs.) Results were compared with theoretical results obtained by Leehey, and also with a more detailed numerical lifting surface procedure developed by Jiang and Leehey. > For the small and medium foils, it was sufficient to correct only for the effect on downwash of the images of the trailing vortices. The large foil data, however, required further correction; upon application of the came corrections which were applied to the data for the two smaller foils, the force and moment data for the large foil plotted slightly lower than did the data for the two smaller foils, while the cavity length data for the large foil indicated cavity lengths significantly larger than for either of the theoretical predictions or the cavity length data for the two smaller foils. Through the application of existing two-dimensional corrections, the force data for the large foil were brought into close agreement with the force data for the two smaller foils, but no suitable correction factors exist for the cavity length data.

The state of the s

AN EXPERIMENTAL INVESTIGATION OF WALL EFFECTS ON SUPERCAVITATING HYDROFOILS OF FINITE SPAN

by

MICHAEL REX MAIXNER

B.S., United States Naval Academy (1972)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREES OF
OCEAN ENGINEER

AND

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY (September 1977)

Signature of	Author MR Marine Department of Ocean Engineering
Certified by	Tatula Leehan. Thesis Supervisor
Accepted by	Chairman, Departmental Committee on Graduate Students

AN EXPERIMENTAL INVESTIGATION OF WALL EFFECTS ON SUPERCAVITATING HYDROFOILS OF FINITE SPAN

by

MICHAEL REX MAIXNER

Submitted to the Department of Ocean Engineering on 12 August 1977 in partial fulfillment of the requirements for the Degrees of Ocean Engineer and Master of Science in Mechanical Engineering.

ABSTRACT

A geometrically similar family of three supercavitating hydrofoils was tested in the M.I.T. variable pressure water tunnel. The half-span foils were of elliptical planform; the ratio of foil half-span to tunnel height was 1/4 for the small foil, 1/2 for the medium foil, and 3/4 for the largest foil. The tunnel was of square cross section. Lift, drag, moment, tunnel speed, ambient pressure, and cavity pressure were measured for attack angles from 8 to 21 degrees and a variety of ambient pressure settings; cavity length measurements were obtained from photographs. Results were compared with theoretical results obtained by Leehey, and also with a more detailed numerical lifting surface procedure developed by Jiang and Leehey. For the small and medium foils, it was sufficient to correct only for the effect on downwash of the images of the trailing vortices. The large foil data, however, required further correction; upon application of the same corrections which were applied to the data for the two smaller foils, the force and moment data for the large foil plotted slightly lower than did the data for the two smaller foils, while the cavity length data for the large foil indicated cavity lengths significantly larger than for either of the theoretical predictions or the cavity length data for the two smaller foils. Through the application of existing two-dimensional corrections, the force data for the large foil were brought into close agreement with the force data for the two smaller foils, but no suitable correction factors exist for the cavity length data.

Thesis Supervisor: Patrick Leehey, Ph.D.

Title: Professor of Naval Architecture and

Applied Mechanics

ACKNOWLEDGMENTS

This research was carried out under the Naval Sea Systems Command, General Hydromechanics Research Program, Subproject SR 009 01 01, administered by the David W. Taylor Naval Ship Research and Development Center, Contract Number N00014-76-C-0358. The author is exceedingly grateful to Professor Patrick Leehey of the Department of Ocean Engineering at the Massachusetts Institute of Technology for his inspiration, suggestions, and guidance. Special thanks are also due to S. Dean Lewis and C. W. Jiang, also from M.I.T., who rendered valuable assistance in the performance of the experiments, and to Miss Cheryl Gibson for typing the various drafts and for enduring countless errors. Finally, the author is indebted to his wife, Gretchen, for her unfailing support and encouragement and for the many sacrifices endured by her during the preparation of this report.

TABLE OF CONTENTS

	Page
TITLE PAGE	1
ABSTRACT	2
ACKNOWLEDGMENTS	3
TABLE OF CONTENTS	4
LIST OF FIGURES	5
NOMENCLATURE	7
INTRODUCTION	10
EXPERIMENTAL APPARATUS AND PROCEDURE	12
Apparatus	12
Procedure	14
RESULTS	17
Lift	18
Drag	19
Moment	19
Cavity Length	20
Cavitation Number	21
Influence of Static Pressure Controller	23
DISCUSSION	26
CONCLUSIONS	34
REFERENCES	36
APPENDIX I	73
APPENDIX II	75
APPENDIX III	77
APPENDIX IV	81

LIST OF FIGURES

Figure	Page
1	M.I.T. Test Facility 38
2	Foil Dimensions 39
3	Static Pressure Measurement 40
4	C_L/α_T vs. σ_c/α_T , $\alpha = 8.0^{\circ}$
5	$\alpha = 9.5^{\circ}$
6	$\alpha = 11.0^{\circ} \dots 43$
7	$\alpha = 12.0^{\circ} \dots 44$
8	$\alpha = 14.0^{\circ} \dots 45$
9	$\alpha = 16.0^{\circ} \dots 46$
10	$\alpha = 18.0^{\circ} \dots 47$
11	$\alpha = 21.0^{\circ}$
12	C_D/α_T^2 vs. σ_C/α_T , $\alpha = 8.0^{\circ}$
13	$\alpha = 9.5^{\circ} \dots 50$
14	$\alpha = 11.0^{\circ} \dots 51$
15	$\alpha = 12.0^{\circ} \dots 52$
16	$\alpha = 14.0^{\circ} \dots 53$
17	$\alpha = 16.0^{\circ} \dots 54$
18	$\alpha = 18.0^{\circ} \dots 55$
19	$\alpha = 21.0^{\circ} \dots 56$
20	C_{M}/α_{T} vs. σ_{C}/α_{T} , $\alpha = 8.0^{\circ}$
21	$\alpha = 9.5^{\circ} \dots 58$
22	$\alpha = 11.0^{\circ} \dots 59$

Figure	1	Page
23	C_{M}/α_{T} vs. σ_{C}/α_{T} , $\alpha = 12.0^{\circ}$	60
24	α = 14.0°	61
25	α = 16.0°	62
26	α = 18.0°	63
27	α = 21.0°	64
28	$\sigma_{\mathbf{C}}/\alpha_{\mathbf{T}}$ vs. L/c, Small Foil	65
29	Medium Foil	66
30	Large Foil	67
31	Comparison of Cavity Lengths	68
32	σ _C vs. σ _V , Small Foil	69
33	Medium Foil	70
34	Large Foil	71
35	Large Foil: Comparison of Cavity Pressure Measurement Techniques	72

NOMENCLATURE

a	foil leading edge bevel length; see Fig. 2
A	aspect ratio = 2s ² /S
c	foil mean chord, measured at centroid position
С	foil root chord
δ	tunnel correction factor for influence of images of trailing vortex system
c _D	drag coefficient = $\frac{\text{total drag}}{(1/2) \rho U^2 S} = C_{\text{Duncor}} + \Delta C_{\text{Di}}$
C _{Duncor}	uncorrected drag coefficient, as calculated from
uncor	the raw experimental data = $\frac{\text{measured drag}}{(1/2) \rho U^2 S}$
C'D	<pre>drag coefficient, corrected for blockage; see equation (1)</pre>
Δc_{D_i}	change in induced drag due to effect of images of trailing vortex system
C _L	lift coefficient = $\frac{\text{measured lift}}{(1/2) \rho U^2 S}$
C _{L2D}	<pre>two-dimensional lift coefficient; see equation (II-5)</pre>
C _M	moment coefficient about the midchord
	$point = \frac{moment}{(1/2) \rho U^2 Sc}$
н	tunnel height = 51 cm
l (z)	cavity length as a function of spanwise position; measured from leading edge
L	cavity length at centroid position; measured from midchord
Pb	minimum pressure along tunnel wall in vicinity of cavity

Pc	measured cavity pressure
p_{∞}	upstream tunnel static pressure at the spanwise position of the foil centroid
P _V	vapor pressure of water
p̃	tunnel static pressure controller setting
P _{U,D}	static pressure signal to controller from upstream, downstream tunnel static pressure taps; see Fig. 3
q _{ij}	<pre>strength of discrete source located in the (i,j)-th element</pre>
q(x,z)	source strength at (x,z)
s	foil half-span
Δs _{ij}	element length for (i,j)-th element
S	planform area of half-span model
s _o	tunnel test section cross-sectional area
t	thickness of hydrofoil
u,v	perturbation velocities in the x,y-directions
U	water velocity one meter upstream of dynamometer shaft axis
v	maximum water velocity (at point of minimum pressure, p _b) in vicinity of cavity
x _l (z)	chordwise coordinate of leading edge as a function of spanwise position
x _T	distance of cavity pressure tap from midchord
x,y,z	foil coordinates; see Fig. 2
^z c	distance of centroid of half-span foil model from midspan
z _T	distance of cavity pressure tap from midspan

α	geometric angle of attack with reference to tunnel side wall; when used in Appendices II and III, α indicates angle of attack in a free stream $$
$\alpha_{\mathbf{T}}$	"true" angle of attack, as corrected for effects of images of trailing vortices = α + $\Delta\alpha_i$
$\Delta \alpha_{\mathbf{i}}$	change in angle of attack due to effect of images of trailing vortices
Υ	$arctan (2\alpha/\sigma_c)$
Y _{ij} .	strength of discrete vortex located in (i,j)-th element
γ(x,z)	vortex strength at (x,z)
λ	<pre>ratio of foil frontal width to tunnel width; see equation (3)</pre>
^λ 3D	ratio of foil frontal area to tunnel cross- sectional area (without foil); see equation (4)
ξ,ζ	dummy variables in the x,z-directions
ρ	density of water
σc	cavitation number based on measured cavity.
	pressure = $\frac{p_{\infty}-p_{C}}{(1/2)\rho_{U}^{2}}$
$^{\sigma}\mathbf{v}$	cavitation number, based on vapor
	$pressure = \frac{p_{\infty} - p_{V}}{(1/2) \rho U^{2}}$
σ'	cavitation number, corrected for blockage; see equations (2) and (5)
σ"	cavitation number, based on p_b , p_c , and V ,
	the maximum water velocity = $\frac{p_b - p_c}{(1/2) \rho V^2}$

And the second second

INTRODUCTION

Corrections for water tunnel wall effects during the testing of subcavitating hydrofoils are essentially the same corrections developed fifty years ago for use in wind tunnel testing of airfoils; references [1] and [2] are standard texts in this area. Only within the last twenty years have wall effects been considered in the case of supercavitating hydrofoils, with the majority of theoretical and experimental work concentrated on two-dimensional hydrofoils. The problem of blockage can be significant; the shape of the foil and cavity combination must be known in order to apply a blockage correction of the type utilized in subcavitating flow. Unfortunately, this proves to be an area of great difficulty in the various theories. Corrections to drag coefficient and cavitation number for the two-dimensional pure-drag case are given in references [3] through [7]; a nonlinear theoretical model of the two-dimensional lifting problem is formulated in reference [6]. In reference [8], Baker converts this model into a computer program which numerically calculates the wall effect on two-dimensional hydrofoils of arbitrary shape. It was hoped by Baker that these results would prove adequate for application to flows over high aspect ratio hydrofoils. Prior to the current research, a systematic series of experiments which exhibit

wall effects on a geometrically similar family of hydrofoils had not been carried out in either the two- or three-dimensional case. The purpose of the present research is to make available data on a geometrically similar family of three supercavitating hydrofoils of finite span, and to apply existing two-dimensional corrections in an attempt to bring the data into agreement with three-dimensional, unbounded flow theory.

EXPERIMENTAL APPARATUS AND PROCEDURE

Apparatus

The experiments were conducted in the M.I.T. recirculating, variable pressure water tunnel (Fig. 1). The test section is 51 cm square in cross-section, and 147 cm long. Test section velocity was continuously variable between 0 and 9.1 m/sec; a manometer indicated the difference in pressure across a contraction in the tunnel one meter upstream of the dynamometer axis. This manometer had been previously calibrated using a pitot tube in the test section. The assumption was made that the blockage caused by the foil and cavity combination did not affect the manometer appreciably. Test section static pressure was variable between 60 mm Hg absolute and atmospheric pressure; static pressure readings were taken using a mercury manometer connected to either or both of two taps on the centerline of a side wall of the test section. These taps were located 62 cm upstream and downstream of the hydrofoil dynamometer, which was located at the center of the test section.

Foil dimensions are given in Fig. 2. The three half-span, aspect ratio five foils had sharp leading edges.

Geometrically similar elliptical planforms were chosen even though foils of this type were more difficult to fabricate than, for example, foils of rectangular planform; elliptical

planform foils exhibit less tip loading effect than do rectangular planform foils, thereby rendering them more amenable to analysis. Each foil was drilled with a hole terminating in a pressure tap on the cavity side of the foil. The medium-sized foil was the aspect ratio five foil utilized by Leehey and Stellinger [9], except that the cavity pressure tap was relocated to a position nearer the tip. The composition of the medium foil was of type 304 stainless steel, while that of the small and large foils was of type 614 aluminum bronze. Each foil was welded to its own 10.16 cm diameter mounting plate; the mounting plates, in turn, were bolted to the dynamometer so that the small, medium, and large foils protruded 1/4, 1/2, and 3/4 of the way, respectively, downward from the top window into the test section.

The dynamometer was capable of measuring three moment and three force components, but only the moment about midchord and the forces tangential to and perpendicular to the span and chord were measured. Zero geometrical angle of attack was set by aligning the flat (wetted) side of each foil with the test section side wall. Upon alignment, a sighting telescope, which was attached to the dynamometer, was aligned with a scale on the laboratory wall; this scale, graduated in increments of 0.05 degree, was utilized in setting the geometrical angle of attack.

Walter Street Control

Procedure

Before test runs were begun on any one day, the tunnel was operated at medium velocity for twenty minutes at a pressure of 300 mm Hg absolute; this removed almost all of the air trapped in remote locations of the tunnel. Prior to each test run, the bubble chamber shown in Fig. 3 was utilized to collect and draw off any gases or air which may have been trapped in the static pressure sensing line; once cleared of gases, the bubble chamber was merely a reservoir of common pressure. On the other hand, small amounts of air were bled intermittently into the cavity pressure sensing line during testing in order to keep it free of moisture.

Each foil was tested at a variety of attack angles from 8 to 21 degrees. The lower limit of 8 degrees was chosen so that the cavities would not terminate on the foil. For all test runs, the test section velocity was set at 8.5 m/sec, whereupon static pressure was reduced until a cavity covered the entire planform. Readings were taken of lift, drag, moment, static pressure (with pressure taps U and D open; see Fig. 3), cavity pressure, and velocity. A Polaroid photograph was taken of the foil and cavity from the wetted side of the foil, utilizing an exposure time of 1/40 second with bottom flood lighting. Pressure tap D was then closed, and the same readingstaken; reopening pressure tap D and closing pressure tap U, the same series of readings was repeated once more. (Photographs were not

taken for these last two pressure tap combinations since hardly any variation in cavity shape or length was noted when compared to the situation where both pressure taps were open.) This completed the measurement of three data points at one controller setting. Both pressure taps were then opened, and the static pressure was reduced by 20 to 30 mm Hg, whereupon the above procedure was repeated. The static pressure was reduced in this fashion until an excessive number of recirculated cavitation bubbles resulted in either extremely poor conditions for photography or rapidly fluctuating instrument readings. Prior to and immediately following a run of this type, the room and water temperatures were recorded, as were the tares on the instrumentation.

A computer program was utilized in the data reduction. Wetted surface frictional drag (for each foil and its mounting plate) and dynamometer shaft twist were taken into account, and test section static pressure readings were modified for static head difference to give the static pressure at the vertical position of the foil centroid. (Gravity effects were otherwise neglected.) Cavitation number was computed using measured cavity pressure, and also by using vapor pressure at the ambient water temperature (computed using equation (2) on page 151 of reference [10]). Lift, drag, and moment coefficients

were also calculated. Standard wind tunnel corrections

(as described in Appendix I) were applied to the data to
account for the effect of the images of the trailing

vortices; this resulted in an increase in drag coefficient
and also in an increase in effective angle of attack.

Utilizing the photographs, cavity lengths were measured

from the midchord at the centroid position.

RESULTS

Experimental results were compared with predictions from Leehey's linearized theory [11], which utilizes the method of matched asymptotic expansions; the theory is valid to first order in angle of attack, and to second order in the reciprocal of aspect ratio. Comparisons were also made with a more detailed linear lifting surface calculation developed by Jiang and Leehey [12]. This numerical theory is expected to be more accurate at the lower values of $\sigma_{\rm C}/\sigma_{\rm T}$, where the cavity length is the same size as the foil span or longer; it should also be more accurate, in general, for prediction of moment coefficients. Synopses of the theories developed in references [11] and [12] are given in Appendices II and III, respectively; the experimental data are given in Appendix IV, both in raw form and with standard wind tunnel corrections (Appendix I) applied.

The wall boundary layer momentum thickness was approximately 1.9 mm, as inferred from measurements by Stellinger under similar conditions [9]. Since less than two percent of the wetted surface area of the small foil was within 1.9 mm of the upper wall, the upper wall boundary layer was assumed to have negligible effect on the force and moment coefficients of all three of the foils tested.

It should be noted that the only correction for wall effect which has been applied to the data in Figs. 4 through 30 is the correction for the effects of the images of the trailing vortices (Appendix I). Also worthy of note is the fact that the supercavitating condition was never achieved for the small foil at an angle of attack of 8 degrees. This fact bears upon the lack of scaling evident in the force and moment data of Figs. 4, 12, and 20 for this foil. This matter will be considered again in the subsequent discussion section.

Lift (Figs. 4 through 11)

There was very good agreement, overall, between theoretical predictions and the experimental data. For small values of the similarity parameter $\sigma_{\rm c}/\alpha_{\rm T}$ (i.e., for long cavities), there was much better agreement with the numerical theory than with the asymptotic theory; in this case, the foil and cavity combination no longer has a large aspect ratio. For the higher values of $\sigma_{\rm c}/\alpha_{\rm T}$, Leehey's theory appears to underpredict, especially at the higher angles of attack. This is in apparent contradiction with Fig. 4 of reference [9]; it should, however, be noted that the data of reference [9] were based on cavitation numbers calculated with vapor pressure rather than with measured cavity pressure. It can be seen from Figs. 32

through 35 of the present work that, when based on measured cavity pressure, the cavitation number will be smaller, so that the above contradiction is only apparent. The small and medium foil data plotted almost on top of one another, whereas the large foil data plotted lower than did the small and medium foil data, especially at attack angles greater than 11 degrees.

Drag (Figs. 12 through 19)

When the effects of streamwise foil or flow curvature are negligible, linear theory predicts $C_D = \alpha_T^2 C_L$, so that the drag data are plotted as C_D/α_T^2 vs. σ_C/α_T . C_D/α_T^2 plotted somewhat higher than the theoretical predictions except for very long or for very short cavities. As with the lift data, the small and medium foil data plotted together, with the large foil data plotting somewhat below these, the effect becoming more pronounced at the higher angles of attack.

Moment (Figs. 20 through 27)

The moment coefficient was taken about the midchord consistent with the right-hand rule. As pointed out by Leehey and Stellinger [9], Leehey's matched asymptotic expansion theory neglects lifting surface corrections (third order in the reciprocal of aspect ratio) for the moment coefficient. It is not surprising, therefore, that

a distribution

the current experimental data agreed best with the more detailed lifting surface theory of Jiang and Leehey [12]. The load cell utilized for moment measurements on the small foil was of inadequate sensitivity, and consequently, much of the small foil data at the smaller attack angles may be less accurate than the data for the medium and large foils; comparisons must therefore be made between the large and the medium foil data. Once again, the large foil data plotted below that of the medium foil, especially at the larger attack angles.

Cavity Length (Figs. 28 through 31)

As mentioned previously, cavity lengths were measured from midchord at the centroid position rather than from the leading edge, since this convention was utilized by Leehey [11]. Cavity length (L) was nondimensionalized on the foil mean chord (c). The cavity length data for the small and medium foils plotted on top of one another (Figs. 28 and 29); in both cases, the cavity lengths were slightly less than those predicted by theory, but the overall agreement with theory was good. In contrast, there was a marked deviation in the large foil cavity length (Fig. 30) and shape (Fig. 31), especially at the root, where local blockage was the worst. The tip vortices seen in the photographs had no evident effect upon the force or moment coefficients. Neither

Leehey's matched asymptotic expansion theory nor the numerical lifting surface theory developed by Jiang and Leehey accounts for the roll-up effects which produced these isolated trailing vortices in the wake.

Representative photographs of the large, medium, and small foils at the same angle of attack and at approximately the same cavitation number are shown in Fig. 31. The cavity shapes shown were averaged over the exposure time of 1/40 second; visual observations showed that the instantaneous cavity shape was highly unsteady. For the small and medium foils, the general outline of the cavity was elliptical, as predicted by theory; the cavity length was undoubtedly reduced toward the tip due to the hydrostatic pressure gradient existing in the tunnel.

Cavitation Number (Figs. 32 through 35)

Below a cavitation number of approximately 0.4, there was almost no difference between cavitation number calculated with measured cavity pressure or with vapor pressure. It should be noted that in this region there exists a large variation in cavity length from very short to very long. This indicates that for even short cavities, where ram effects of the re-entrant jet from the cavity end have heretofore been thought to have a pronounced effect on measured cavity pressure, the actual cavity pressure was approximately equal to the vapor pressure of the water.

Above a cavitation number of 0.4, the disparity between σ_{v} and σ_{c} increased with increasing cavitation number; the data in this region, however, were only for large angles of attack and small cavity lengths, indicating that there may indeed have been some effect caused by the impinging of the re-entrant jet on the cavity pressure tap.

After the series of basic experiments was completed, ram effects were further investigated on the large foil by Jiang and Leehey, this time utilizing a total head tube for cavity pressure measurement. The L-shaped total head tube protruded downwards into the cavity from the upper tunnel wall so that it was parallel to the foil wetted surface and pointed towards the leading edge and away from the impinging re-entrant jet. Cavity pressure readings were taken with both the standard foil surface pressure tap previously utilized and the total head tube, and vapor pressure was calculated as was done previously; results are shown in Fig. 35. For the larger attack angles and shorter cavities (higher cavitation numbers), use of the total head tube significantly reduced re-entrant jet effects; the result was that cavitation numbers calculated with total head tube data were as much as 5 to 8 percent higher than cavitation numbers calculated with data obtained from the previously used foil surface tap. Although a similar check was not made on the small and medium foils, it can be assumed that the same general trend would occur. It should

be noted, however, that data points in Figs. 32 and 33 exhibit a more pronounced downward "hook" at higher cavitation numbers than do the large foil data (Figs. 34 and 35), a fact which accounts for the noticeable "hooks" in the lift and moment data at the higher angles of attack (see, for example, Figs. 10, 11, 26, and 27). If the total head tube had been utilized throughout the entire series of experiments, these deviations from theory at high attack angles and short cavities would probably have been less.

Influence of Static Pressure Controller

As stated earlier, readings were taken for the various combinations of the two static pressure taps; this was done in order to determine the effect of blockage on pressure and velocity at the two different tap positions. It was anticipated that this variation in static pressure tap combination would have no effect on the forces and moments experienced by the foil. Due to the location within the system of the static pressure controller (Fig. 3) (which was inadvertently overlooked), the forces and moments varied significantly when the combination of static pressure taps was changed. The explanation for this is as follows. Before data were taken, both static pressure taps were opened and the controller setting reduced to \tilde{p} ; the actual static pressure in the tunnel was decreased by the control system

until the combined signal from both taps was p. When the instrument readings settled out, data were taken. downstream static pressure tap was then closed, so that the only signal to the controller was \mathbf{p}_{U} , which was greater than the controller setting, p. The controller therefore lowered the actual static pressure in the tunnel until p_{TI} equaled \tilde{p} . Consequently, the effective cavitation number (as seen by the foil) decreased, causing the cavity to grow. This reduced the effective camber of the foil and cavity combination; this loss of effective camber resulted in a reduction of the force and moment coefficients from their previous values. On the other hand, the measured cavitation number increased slightly due to a small decrease in measured cavity pressure; the presence of the controller prevented the measured static pressure from changing significantly. The opposite effect was observed with the upstream tap open and the downstream tap closed (i.e., an increase in force and moment coefficients, an increase in effective cavitation number, and a slight decrease in measured cavitation number when compared to the case when both pressure taps were open); there were only a few of these data points taken.

Although the desired pressure readings were not obtained in the current experiment (i.e., the actual tunnel static pressure was different for each of the tap combinations), the results do show the significance of the blockage. When

comparing the results obtained with the different tap combinations for the small and medium foils, there was very little change in the plotted data points; the increased blockage in the case of the large foil resulted in significantly different force and moment data. For the sake of clarity, the data for the different tap combinations are shown only for the large foil at an angle of attack of 14 degrees. Unless otherwise specified, further remarks concerning foil data will be for the data obtained with both static pressure taps open.

The general trend of the data agrees with the experimental results obtained by Kermeen (see page 37 of reference [13]); he observed that the longer the cavity in supercavitating flow, the smaller the force coefficients. The same conclusion follows from the theoretical results of Leehey, as may be seen from Fig. 4 of reference [9].

At a later time, the system indicated by the dashed lines in Fig. 3 will be utilized to obtain data on the large foil; the present system would be operated with only tap U open to provide an indication of static pressure at "infinity" to the controller. This configuration will allow pressure measurements to be made without affecting the input signal to the static pressure controller.

DISCUSSION

For the small and medium foils, it appears to be necessary to correct only for the effects of the images of the trailing vortices in accordance with standard wind tunnel procedure. These corrections to drag coefficient and effective angle of attack brought the data into good agreement with theory; the lift, moment, and cavity length data also agreed well with theoretical predictions. For the most part, the plots for the small and medium foils were very close to each other.

Upon application of the same corrections to the large foil data, good agreement with theory was seen for the force and moment coefficients; they were, however, generally lower than the data for the smaller foils, especially at higher attack angles. The plot of cavity length for the large foil, however, showed substantially longer cavities than predicted by either of the two theoretical models used for comparison. The most pronounced deviations in cavity length occurred for the long cavity (lower $\sigma_{\rm c}/\alpha_{\rm T}$) data.

When compared with the data obtained from the two smaller foils, the general trend of the large foil data is in agreement with Baker's predictions for wall effects on two-dimensional supercavitating hydrofoils [8]. Baker makes the point that the wall effect is negligible for tunnel

height-to-foil chord ratios (H/c) greater than 10 for cambered foils. Although he makes no such generalizations concerning supercavitating flat plates, (i.e., the case applicable to the current research), it is seen from Figs. 4 through 27 that the effect of blockage on the force and moment coefficients is not exceedingly large. following line of reasoning explains why the force and moment data for the large foil were somewhat lower than for the two smaller foils. For the three foils at the same cavitation number and at the same angle of attack, the magnitude of the velocity on the cavity wall of all three foils is o/2 (from linearized theory); consequently, all three foils have identical pressure coefficients on the cavity. The largest foil experiences significantly more blockage than does either of the smaller foils, so that the velocity on the wetted surface of the large foil is much higher than for either of the smaller foils; the pressure coefficient on the wetted surface of the largest foil is therefore the least of all three foils, resulting in smaller lift, drag, and moment coefficients than for either of the smaller foils. It is interesting to note that this overall effect is contrary to blockage effects experienced in subcavitating water tunnel or wind tunnel testing, where force and moment coefficients are increased.

Baker also questions the sharp increase in wall effect predicted Wu, Whitney, and Lin [6] for thin symmetric wedges or for small attack angles in the lifting flow case. The results of the present work do not show a marked increase in wall effect on force and moment coefficients at the lower angles of attack, in agreement with Baker.

Conversely, Baker's results indicate that the wall effect on the cavity plus wake can be tremendous. In the current research, this is, in fact, the most significant departure of the large foil data from the theoretical predictions and from the data of the two smaller foils (Figs. 28 through 30).

Several attempts were made to bring the large foil data into closer agreement with the small and medium foil data by using existing two-dimensional blockage corrections. Wu, Whitney, and Brennen [4] derive wall effect corrections for the two-dimensional pure-drag (wedge) case, employing the open-wake and Riabouchinsky models. Wu, Whitney, and Lin [6] consider wall effects in two-dimensional lifting cavity flows, a situation more applicable to the current research; Baker [8] utilizes a computer program to translate this into information which could be readily applied to correct experimental data.

The pure-drag, open-wake model employs corrections to both drag coefficient and cavitation number. The drag coefficient corrected for blockage, C_D ', can be expressed as

$$c_{D'} = \left[\frac{1+\sigma'}{1+\sigma_{C}}\right] c_{D} + o(\lambda^{2}), \qquad (1)$$

where σ' , the cavitation number corrected for blockage, is given by

$$\sigma' = \sigma_{c} - \left[\frac{1+\sigma_{c}}{\sigma_{c}}\right] C_{D}^{\lambda} + O(\lambda^{2}), \qquad (2)$$

where $\sigma_{\mathbf{C}}$ is the measured cavitation number, $C_{\mathbf{D}}$ is the drag coefficient as defined in the nomenclature, and λ is the ratio of foil frontal width to tunnel width, which may be expressed as

$$\lambda = \frac{(\text{mean chord}) \times \sin(\alpha)}{\text{tunnel width}}.$$
 (3)

For the large foil with λ defined in this fashion, $\lambda \cong 0.30$ sin (a). Application of the above corrections to the large foil data shifted the data points down and to the left on the plots of C_D/α_T^2 vs. σ_C/α_T (Figs. 12 through 19) but did not bring the data into any closer agreement with the small and medium foil data. When the cavity length data for the

large foil were replotted using the corrected cavitation numbers, the data points in Fig. 30 were moved downward; this downward movement was not sufficient, however, to bring the large foil cavity lengths into agreement with either theory or the small and medium foil data.

Actually, the straightforward application of such a two-dimensional correction to the case of a finite-span wing should overcorrect for blockage, making λ much larger than it should be. Perhaps a better representation of λ for the finite-span case would be

$$\lambda_{3D} = \frac{\text{foil frontal area}}{\text{tunnel cross-sectional area (without foil)}}$$

$$= \frac{\text{(foil planform area) x sin (a)}}{\text{tunnel cross-sectional area (without foil)}}.$$

Recalculating the corrections using λ_{3D} in place of λ in equations (1) and (2) would make the corrections even smaller than previously calculated. Since the previous corrections proved to be inadequate, there is no reason to believe that the modified corrections should be any better.

To correct measured cavitation number and measured drag coefficient utilizing the Riabouchinsky model, it is necessary to obtain p_b , the minimum pressure reading along the wall in the region of the cavity. Equation (1) is again

used to correct the drag coefficient, but now the corrected cavitation number is calculated as

$$\sigma' = (2/3)\sigma_C + (1/3)\sigma''$$
 (5)

where $\sigma^{\text{''}}$ is the cavitation number based on $\textbf{p}_{\text{c}},~\textbf{p}_{\text{b}},~\text{and}$ maximum velocity, V, and where σ_{c} is the cavitation number based on p_c , p_{∞} , and upstream velocity, U. It had originally been hoped that a reasonably close measurement of the minimum pressure could be obtained by using only the downstream tap (tap D in Fig. 3); as was shown earlier, the interaction of the static pressure controller precluded making this measurement accurately. In an attempt to apply the correction based on the Riabouchinsky model, the gross assumption was made that the maximum frontal area of the cavity was approximately the same as the frontal area of the foil; utilizing a continuity argument and the steady-flow Bernoulli equation, the pressure minimum was estimated, thus allowing application of the wall effect correction based on the Riabouchinsky model. Unfortunately, this procedure gave results which were comparable to those obtained using the open-wake model. The failure of both models in the current application should not be surprising since they were designed for twodimensional, pure-drag cavity flows, and not for threedimensional, lifting cavity flows.

Whereas the pure-drag wall effect corrections changed both drag coefficient and cavitation number, the results of Baker's computerization of the two-dimensional Wu, Whitney, and Lin [6] lifting case wall effect model are presented in terms of a change to the force coefficients (i.e., drag and lift coefficients in this case), referenced to the uncorrected measured cavitation number, og. Accordingly, Baker's corrections to the lift and drag coefficients are expressed as a percentage difference from the free stream condition. He presents data for only one ratio of tunnel height-to-arclength (i.e., chord length), H/c = 4. Calculating this ratio using the mean chord of the large foil gives H/c = 3.33; recalculating H/c as the ratio of tunnel cross-sectional area to foil area, H/c = 4.48 is obtained. It was concluded, therefore, that the H/c = 4 corrections given by Baker should be suitable for correction of the large foil data. Upon application of these additive corrections to both lift and drag data, it was found to bring the large foil data into close agreement with the small and medium foil data.

Because an infinite wake model is utilized in reference [8], Baker's results give no correction for the extremely large cavity lengths recorded for the large foil. His results do show, however, that as blockage increases,

the nondimensional cavity thickness increases. This was borne out nicely when the cavitation characteristics of the three foils utilized in the current research were compared at an angle of attack of 8 degrees. On the small foil, which produced the least blockage, supercavitation was never totally achieved, no matter how low the static pressure was brought. For the medium and large foils, which produced more blockage than did the small foil, cavity termination was achieved behind the foil over a range of static pressures.

CONCLUSIONS

As a general rule, the agreement of the experimental data with unbounded flow theory was good for the small and medium foils, whose ratios of half-span to tunnel width were 1/4 and 1/2, respectively, and whose ratios of tunnel height to mean chord were approximately 10 and 5, respectively. It appeared that in order to bring the small foil and medium foil data into agreement with theory, it was necessary to apply only standard wind tunnel procedures in correcting for the effects of the images of the trailing vortices.

Of the three geometrically similar aspect ratio five foils, the largest foil, which protruded 3/4 of the way into the tunnel, and which had a ratio of tunnel height to mean chord of approximately 3.33, had force and moment data which were close to the small and medium foil data, although slightly lower; the cavity length data for the large foil differed greatly from the small and medium foil data, showing much longer cavities for the same ratio of cavitation number to angle of attack. It is evident that blockage corrections are required in addition to the standard wind tunnel downwash corrections.

Application and modification of blockage corrections based on various two-dimensional pure-drag cavity flow models failed to bring the large foil data into agreement with the

data for the two smaller foils. It was found, however, that corrections based on a two-dimensional lifting cavity flow model brought the large foil force coefficient data into much closer agreement with the small and medium foil data. While these force coefficient corrections were found to give an "engineering order of accuracy," no corrections have been found which give adequate corrections to the large foil cavity length data; it is clearly evident that further analytical work is necessary in this area.

It is recommended that for future experiments, a static pressure measuring system similar to that depicted in Fig. 3 be utilized.

REFERENCES

- Pope, A., and Harper, J.J., Low Speed Wind Tunnel Testing. Wiley, New York, 1969.
- Pankhurst, R.C., and Holder, D.W., <u>Wind-Tunnel Technique</u>.
 Sir Isaac Pitman & Sons, Ltd., London, 1965.
- Whitney, A.K., "A Simple Correction Rule for Wall Effect in Two Dimensional Cavity Flows," <u>Cavitation State of</u> <u>Knowledge</u>, ASME, New York, 1969, p. 138.
- Wu, T.Y., Whitney, A.K., and Brennen, C., "Cavity-Flow Wall Effects and Correction Rules," <u>Journal of Fluid Mechanics</u>, Vol. 49, Part 2, 1971, p. 223.
- 5. Wu, T.Y., Whitney, A.K., and Brennen, C., "Wall Effects in Cavity Flows and Their Correction Rules," Non-Steady Flow of Water at High Speeds, Proceedings of the IUTAM Symposium in Leningrad, June 22-26, 1971, Nauka Publishing House, Moscow, 1973, p. 461.
- 6. Wu, T.Y., Whitney, A.K., and Lin, J.D., "Final Report: Wall Effects in Cavity Flows," Calif. Inst. of Tech. Div. of Eng. & App. Sci. Report No.E-111A.5, 1969.
- 7. Whitney, A.K., Brennen, C., and Wu, T.Y., "Experimental Verification of Cavity-Flow Wall Effects and Correction Rules," Calif. Inst. of Tech. Div. of Eng. & App. Sci. Report No. E-97A-18, 1970.
- Baker, E., "Analytical Prediction of Wall Effect on Fully Cavitating Lifting Foils, Using Nonlinear Theory," NSRDC Report 3688, 1972.
- Leehey, P. and Stellinger, T.S., "Force and Moment Measurements of Supercavitating Hydrofoils of Finite Span with Comparison to Theory," <u>Journal of Fluids</u> <u>Engineering</u>, Vol. 97, No. 4, December 1975, p. 453.
- 10. Smith, L.B., Keyes, F.G., and Gerry, H.T., "The Vapor Pressure of Water, Part II, Steam Research Program," Proceedings of the American Academy of Arts and Sciences, published by the Society, Boston, Vol. 69, 1934, p. 137.
- 11. Leehey, P., "Supercavitating Hydrofoil of Finite Span," Non-Steady Flow of Water at High Speeds, Proceedings of the IUTAM Symposium in Leningrad, June 22-26, 1971, Nauka Publishing House, Moscow, 1973, p. 277.

- 12. Jiang, C.W., and Leehey, P., "A Numerical Method for Determining Forces and Moments on Supercavitating Hydrofoils of Finite Span," Proceedings of the Second International Conference on Numerical Ship Hydrodynamics, September 1977 (to be published).
- 13. Kermeen, R.W., "Experimental Investigations of Three-Dimensional Effects on Cavitating Hydrofoils," Journal of Ship Research, Vol. 5, No. 2, September 1961, p. 22.

FOIL	O	С	s	a	S(cm²)	Zc	Z _T	Хт	t
LARGE	19.50	15.33	38.10	7.65	580. 6	16.17	12.55	2.54	1.60
MEDIUM	13.00	10. 22	25 . 40	5.10	258.1	10.78	8.18	3.18	1.20
SMALL	6.50	5.11	12.70	2.55	64.5	5.39	4.67	1.43	.65

FIG. 2: FOIL DIMENSIONS (cm)

FIG. 3 : STATIC PRESSURE MEASUREMENT

FIG. 4: C_L/α_T vs σ_c/α_T , $\alpha = 8.0°$

FIG. 5: C_L/α_T vs σ_e/α_T , $\alpha = 9.5^\circ$

FIG. 6: C_L/α_T vs σ_e/α_T , $\alpha = 11.0^\circ$

FIG. 7: C_L/α_T vs σ_e/α_T , $\alpha = 12.0°$

FIG. 9: C_L/α_T vs σ_e/α_T , α = 16.0°

FIG. 10: CL /QT VE OC/QT, Q = 18.0°

FIG. II : C_L/α_T vs σ_e/α_T , α = 21.0°

FIG. 13: C_D/α_T^2 vs σ_c/α_T , $\alpha = 9.5^\circ$

. 1

FIG. 15: C_D/α_T^2 vs σ_c/α_T , $\alpha = 12.0^\circ$

The first the state of the stat

Vanishing Committee Committee

(d) SMALL FOIL: Q=12°, 0= .3545, L/c=1.3

(b) MEDIUM FOIL: α=12°, σ= 3473, L/c=1.55

(c) LARGE FOIL : Q : 12°, 0 = 3265, L/c = 2 1

FIG. 31: COMPARISON OF CAVITY LENGTHS

Vicinity Committee Committ

Visital Control of Control

Maria Committee

APPENDIX I

Standard Wind Tunnel Corrections for Effects of Images of Trailing Vortices

The experimental data shown in Figs. 4 through 30 are corrected for the apparent upwash due to the interference of the tunnel walls, in accordance with standard wind tunnel practice. The boundary condition of zero normal velocity at the tunnel walls is satisfied in the analytical treatment of the problem by introducing a doubly infinite system of image vortices; the interference due to the presence of the tunnel walls is then calculated to be the interference caused by the series of vortex images on the flow at the model. The net result is an additive correction to the induced drag and the angle of attack (to be perfectly correct, there is also a slight negative correction to the measured lift, but this is usually neglected). Upon application of the correction factor, the flow about the model is transformed to the flow which would be seen if the foil were in an infinite stream.

Since the hydrofoils tested in the square tunnel were only of half-span, a full-span model would require a duplex tunnel (that is, one whose ratio of height to width is 1/2). The ratio of model span to tunnel width for the small, medium, and large foils is 1/4, 1/2, and 3/4, respectively. Entering Fig. 6.34 of Pope and Harper [1], δ , the tunnel correction

factor for the influence of the images of the trailing vortex system was found to be 0.126 for the small, 0.104 for the medium, and 0.092 for the large foil. If the ratio of the foil area to tunnel cross-sectional area is S/S_O , then the change in angle of attack is

$$\Delta \alpha_i = \delta \frac{S}{S_0} C_L.$$
 (radians) (I-1)

The maximum value for $\Delta\alpha_i$ encountered in the experiments was 1.47 degrees. When $\Delta\alpha_i$ is added to the measured geometrical angle of attack, α , the "true" angle of attack is obtained

$$\alpha_{\rm T} = \alpha + \Delta \alpha_{\rm i}$$
 (I-2)

(In addition to the above correction, the data reduction program accounted for the dynamometer shaft twist, which never exceeded 0.06 degree.) The change in induced drag is

$$\Delta C_{D_{i}} = \delta \frac{S}{S_{o}} C_{L}^{2}$$

$$= \Delta \alpha_{i} C_{L} \qquad (I-3)$$

so that the total drag coefficient is

$$C_{D} = C_{D_{uncor}} + \Delta C_{D_{i}}$$
 (I-4)

where C_D is the uncorrected drag coefficient calculated uncor from the raw experimental data.

APPENDIX II

Leehey's Matched Asymptotic Solution for Supercavitating Hydrofoils of Large Aspect Ratio

A synopsis of Leehey's theoretical results, as derived in references [9] and [11], is given.

Leehey's linearized steady-flow theory, which utilizes the method of matched asymptotic expansions, is valid to first order in angle of attack, and to second order in the reciprocal of the aspect ratio. Gravitational effects were neglected in the derivation. The analysis shows that the lift, drag, and moment coefficients, and non-dimensional cavity length (measured from midchord) are given by the following relationships:

$$C_{L} = \frac{\pi \alpha}{\sin \gamma (1 + \sin \gamma)} \left\{ 1 - \frac{2 \sin \gamma - 1}{A (1 + \sin \gamma)} \right\}, \quad (II-1)$$

$$C_{D} = \alpha C_{L} = \frac{\pi \alpha^{2}}{\sin \gamma (1 + \sin \gamma)} \left\{ 1 - \frac{2 \sin \gamma - 1}{A (1 + \sin \gamma)} \right\}, \quad (II-2)$$

$$C_{M} = \frac{-4\alpha}{\pi (1+\sin \gamma)^{2}} \left\{ 1 - \frac{1-2\sin \gamma + 2\sin^{2} \gamma}{A \sin \gamma (1+\sin \gamma)} \right\}, \quad (II-3)$$

and

$$L/c = \sec^2 \gamma - 1/2 - \frac{8}{\pi \alpha A} \left[\frac{\alpha}{\sigma_c} \right]^2 C_{L_{2D}}, \qquad (II-4)$$

where $C_{L_{2D}}$, the two-dimensional lift coefficient may be expressed as

$$C_{L_{2D}} = \frac{\pi \alpha}{\sin \gamma (1 + \sin \gamma)}, \qquad (II-5)$$

and where

$$\gamma \equiv \arctan \left(\frac{2\alpha}{\sigma_c}\right),$$
 (II-6)

and

$$\sigma_{\mathbf{C}} = \frac{\mathbf{p}_{\infty} - \mathbf{p}_{\mathbf{C}}}{(1/2) \rho \mathbf{U}^2}. \tag{II-7}$$

Experiments performed by Leehey and Stellinger [9] showed that the above predictions for lift and drag coefficients and for cavity lengths were good; it was evident from the experimental results, however, that lifting surface corrections would be needed to improve the moment coefficient prediction.

APPENDIX III

Numerical Lifting Surface Theory for Supercavitating Hydrofoils of Finite Span

A brief description of the numerical lifting surface theory developed by Jiang and Leehey [12] for supercavitating hydrofoils of finite span will be given.

The steady flow theory is linearized for application to thin wings at small attack angles. Discrete sources and vortices are utilized in the representation of the physical model, and the coupled integral equations are reduced to a set of simultaneous algebraic equations. The cavity closure condition is applied stripwise on the cavity in an iterative process to obtain the desired cavitation number over the supercavitated planform.

This numerical theory should prove to be more accurate than the asymptotic theory of Leehey [11]; an implicit assumption in the latter theory is that the cavity length is less than the span, so that for small $\sigma_{\rm C}/\alpha$ (i.e., long cavities), the numerical theory should indeed give better predictions. It should be noted, also, that for the $\sigma/\alpha_{\rm T}=1.0$ curves in Figs. 4, 5, 7, and 8 of reference [9], there is an ever-present difference between the experimental data and Leehey's asymptotic theoretical predictions for lift and drag coefficients. For long and short cavities, however, there is an even stronger disagreement between data

and Leehey's predictions for moment coefficient (Figs. 9 and 10 of reference [9]). The numerical lifting surface theory was developed in an attempt to overcome these difficulties.

The foil-cavity surface is collapsed to become a region in the (x-z) plane of the foil. The relationships for the jump in the tangential and normal components of the perturbation velocity upon crossing the foil surface and cavity projection surface are:

$$u(x,z,^{+}0) - u(x,z,^{-}0) = -\gamma(x,z),$$
 (III-1)

$$v(x,z,^{+}0) - v(x,z,^{-}0) = q(x,z),$$
 (III-2)

where γ and q are the vortex and source distributions, respectively. The boundary conditions are:

$$v(x.z, 0) = \frac{dy(x,z,0)}{dx}$$
 on the foil wetted surface (III-3)

$$u = \sigma_c/2$$
 on the cavity boundary (III-4)

$$\begin{cases} \chi(z) & \text{cavity closure} \\ \chi(z) & \text{condition,} \end{cases}$$

where $\ell(z)$ is the cavity length, measured from the leading edge as a function of spanwise position, and $x_{\varrho}(z)$ is the

chordwise coordinate of the leading edge as a function of spanwise position.

The discrete vortex and source method is utilized in the formulation of a series of simultaneous equations.

Upon subdividing the projected surface into small elements, a discrete bound vortex, a trailing vortex, and a source are located within each of these elements. The bound vortex is situated on the quarter-chord line of each element, and induced velocities are calculated for all elements at their midspan, three-quarter chord positions. The concentrated source is taken to be a constant distribution across each element at its three-quarter chord position.

The boundary condition of fixed cavity pressure is imposed on each element at its midspan, quarter-chord position.

Utilizing these boundary conditions, the following equations are obtained:

$$\frac{1}{4\pi} \sum_{i,j} a_{ijk} \frac{\gamma_{ij}}{\alpha} - \frac{1}{2} \frac{q_{k}}{\alpha} = -1, \quad i = 1, ..., M1 \quad (III-6)$$

$$- \frac{\gamma_{k} \ell}{\alpha} + \frac{1}{2\pi} \sum_{i,j} b_{ijk} \ell \frac{q_{ij}}{\alpha} - \frac{\sigma_{c}}{\alpha} = 0, \quad i = 1, ..., M \quad (III-7)$$

$$\gamma_{k} \ell = 0 \text{ for } k > M1$$

$$\sum_{i} \frac{q_{ij}}{\alpha} \Delta s_{ij} = 0, \qquad j = 1, ..., N, \quad (III-8)$$

where a ijkl and b ijkl are the v and u velocities at the (k, l)

The state of the s

-th control point induced by the unit strength vortex and source at element (i,j). For the (i,j)-th element, Δs_{ij} is the element length, γ_{ij} the discrete vortex strength, and q_{ij} the discrete source strength. Ml and N are the number of elements on the foil along the chord and span, respectively. M is the number of elements along the chord in the cavity.

APPENDIX IV

Data Reduction Program and Data Printout

Beginning on p. 82, a listing is given of the FORTRAN IV computer program utilized in the reduction of the experimental data.

The program output is also given, beginning on p. 92.

For each foil at each angle of attack, a complete printout

of the experimental data is given in raw form, with corrections

for instrument tares, in reduced form, in nondimensional form

without any corrections for wall effect, and finally in

nondimensional form with corrections for the effects of the

images of the trailing vortex system.

```
PROM KERWIN/LEWIS/OPPENHEIM MKS RUDDER DYNAMOMETER DATA REDUCTION PROGRAM
MAINNER SUPERCAVITATING HYDROPOIL DATA REDUCTION PROGRAM JUN 77, DERIVED
                                                                                                                                                                        DIMENSION IDENT(24), ZH(2), ZI(7,2,2), ZP(2), HTAP(40), HFLD(40), ABOH(4
10), ABGL(40), S(40,7), R(40,7), DZI(7,2), CL(40), CD(40), CH(40), CPL(40),
2CY(40), CAP(40), VC(5), VE(6), PM(3), C(14), CLD(40), CLSQ(40), RH(40), SI(
340), CO(40), VKEEP(40), TT(2), RUNNBR(40,2), PINP(40), PCAV(40), TEMP(40)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IDENT (19) / CL '/, IDENT (20) / CD '/, IDENT (21) / CH '/, IDENT (23) / CPL'/, IDENT (24) / CT '/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DATA VC/4. 18934, 2.60088, 0.81646, 0.6214, 4.7381/, VE/. 49386,.5,.46526
                                                                                                                                                                                                                                                                                                                     4, CDL (40), SIGMAC (40), SIGMAY (40), SIGVON (40), SIGCON (40), CLON (40), CDON
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          READ (KI, 100) DF, NRT, NTT, AREA, SPAN, MAC, XMAC, ZMAC, AZL, DYCOR, VELINC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (C(N), N=1, 14), THIST, SHAPT, ANWAPA, DDDQ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SIGMA (X1, X2, X3, X4) = (X2-X1) *288. *. 01934/(X4*X3*X3)
                                                                                                                                            REAL HY, MIO, MIO, MZ, MZO, MPLAP, MAC, LDMAX, LDVAL, MY
                                                                                                                                                                                                                                                                                                                                                                                          DIMENSION TAPS (40), CAVLEN (40), COMENT (40,3)
                                                                     JU 73 AND PROM STRLLINGER PROGRAM JULY 74
                                                                                                                                                                                                                                                                                                                                                          5 (40) ,NTAG (40) ,CHOA (40) ,CDOASQ (40)
                                                                                                                                                                                                                                                                                                                                                                                                                        DIMENSION A (15,4), RHS (4), ANGD (40)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1,0.50638,.5,1.0/. RS/'R'/, BLANK/"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             READ (KI, 103) (IDENT (N), N=1, 18)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IP (SPAN.LT.14.) GO TO 85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF (SPAN.LT.9.) GO TO 86
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IP (AREA.LE.O) GO TO 99
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      PORMAT (P5.2, 215, 8P5.2)
                                                                                                            INTEGER RS, S, BLANK
                                                                                                                                                                                                                                                                                                                                                                                                                                                               DATA KI/5/.KO/6/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PORMAT (7P10.5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     READ (KI, 104)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PORMAT (18A4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        PUDGE= 10.71
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PUDGE=14.66
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PUDGE=6.76
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DELTA=. 104
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DELTA=. 126
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DELTA=.092
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             98
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   104
    UU
                                                                       U
```

```
19SEP73
                                                                                                                                                                                                                                                                                                                                 19SEP73
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ZERO READINGS AND TUNNEL TEMP BEPORE AND AFTER' / BAND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         212 PORMAT (* CELL LBS/CT (NORMAL/REV) #1=',P7.5, #2=',P7.5, #3=',P7.1, 15/" TWIST=',P7.1, SHAPT DIA.=',P5.2,'IN')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           204 PORMAT (P4.0,1X, P5.1,1X, P5.1,1X, F5.1,1X, P5.1,1X, P5.1,1X, P5.1,1X, P5.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    WRITE (KO, 204) (ZM (K), ((ZI (M.L,K),L=1,2),M=1,3), TT(K), K=1,2)
                                                                                                                                                     TI
                                                                                                                                                                                                                                                                                                                                                                                                           READ (KI, 101) (ZK (K), ((ZI (M, L, K), L=1,2), M=1,3), TT (K), K=1,2)
                                                                                                                                                   PORMAT ('1', 11, 18A4//81, HYDROPOIL INPUT DATA' / 61, TR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    202 PORMAT (25x, **INPUT DATA AS RECORDED**'/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (C(N),N=1,3),TWIST,SHAPT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3-R
                                                                                                                                                                                                     HRITE (KO, 150) NRT, NTT, ABEA, SPAN, HAC
                                                                                                                          WRITE (KO, 200) (IDENT(N), N=1, 18)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FORMAT (/, ZERO READINGS AND 1M 1-N 1-R 2-N 2-R 3-N
                       SCAL E=1. 000952-13. 3E-6*NRT
                                                                                                                                                                                                                                                                                                        IP (DYCOR.LT. 10.0) GC TO 30
                                                                                                                                                                                                                            FORMAT (4X, 214, 2P6.1, F6.2)
                                                                        PH (2) =24.5054-. 00236*NRT
                                                 PH (1)=1.474-.00071*NBT
RHO= 1.9574-0.00028*NTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             15/ TWIST= . P7. 1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               WRITE (KO, 212)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ZI (H, L,K) =0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                 PORMAT (8P5. 1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                             WRITE (KO, 201)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           WRITE (KO, 202)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DO 69 L=1,2
DO 69 M=4,7
                                                                                                                                                                                                                                                                                 DYCOH=DYCOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DO 69 K=1,2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DO 2 J=1,40
                                                                                                                                                                             1SPAN MAC.
                                                                                                   PH (3)=1.0
                                                                                                                                                                                                                                                                                                                                                           DYCOR=0.0
                                                                                                                                                                                                                                                                                                                                  DYCOH=99.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2 PCAV')
                                                                                                                                                                                                                                                                                                                                                                                  MYCOR=2
                                                                                                                                                                                                                                                      MYCOR=0
                                                                                                                                                                                                                             150
```

```
HRITE (KO, 203) (RUNNBR (J, N), N= 1, 2), TAPS (J), ANOM (J), (S (J, M), R (J, M), R=
                                    READ (KI, 102) (RUHNBR (J, N), N=1, 2), NTAP (J), NPLD (J), ANOH (J), ANGL (J), (
                                                                      15 (J, H), B (J, H), N=1, 3), PINP (J), PCAT (J), NTAG (J), TAPS (J), CAVLEN (J), (CO
                                                                                                                                                                102 POBHAT (2A4, 2X, 211, 2X, F6. 0, 1X, F4. 1, 3 (2X, A1, 1X, F7. 1) , 2X, 2F5. 0, I3/A1,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  444 HRITE (KO,944) (RUNNBR (J,N),N=1,2),TAPS (J), ANOM (J), (S(J,H),R (J,H),N=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        445 HRITE (KO, 945) (RUNNBR (J,N),N=1,2), IAPS (J), ANOM (J), (S(J,M),R (J,M),H=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            945 PORMAT (1X, ZA4, A1, 4X, F5.0, 4X, 3 (A1, P7.1, 4X), P4.0, 4X, '---', 4X, 'PC (TH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          446 WRITE (KO,946) (RUNNBR (J,N),N=1,2), TAPS (J), ANOM (J), (S (J,M),R (J,M),M=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         946 PORMAT (1X, 2A4, A1, 4X, P5.0, 4X, 3 (A1, P7.1, 4X), P4.0, 4X, '---', 4X, 'PH')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 944 FORMAT (1X, ZA4, A1, 4X, P5.0, 4X, 3 (A1, P7. 1, 4X), 2 (P4.0, 4X), 'PC')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              938 PORMAT (2X, 'LEGEND', 3X, 'TR ROOM TEMPER (DEG FAHR) ', 20X,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3 9X, AREA HALF-SPAN HODEL PLANFORM APEA (SQ IN) ', 15X,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              203 FORMAT (1x, 2A4, A1, 4x, P5.0, 4x, 3(A1, P7.1, 4x), 2 (P4.0, 4x))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2. #2 HOMENT ABOUT MIDCHORD (COUNTS) "
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             " )',31X,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1 LOAD CELL #1 LIPT (COUNTS) "/
                                                                                                                                                                                                                                                                                           IP (NTAG (J) . EQ. 1) GO TO 444
IP (NTAG (J) . EQ. 2) GO TO 645
                                                                                                                                                                                                                                                                                                                                                                          IP (MIAG (J) . PQ. 3) GO TO 446
                                                                                                                                                                                                                                                    IF (ANON (3) - LE. 0. 0) GO TO 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      11,3), PINP (J), PCAV (J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            11,3) ,PINF (J) ,PCAV (J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3. #3 DRAG (COUNTS) ./
                                                                                                                     2RRMT (3, N), N=1,3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   211X, TT TUNNEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    BUG=1.0/(JT-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    WRITE (KO, 938)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  11, 3) , PINP (J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     11,3), PINF (J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GO TO 99
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GO TO 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GO TO 2
                                                                                                                                                                                                               144,344)
JT=J-1
```

```
6 BI, "HABOR VELOCITY HANOMETER READING (MM) ", 17X, 6 BUN NO Q-XXX-YY: Q=POIL TESTED (S=SHALL, H=MBD, L=LARGE) "/
                                                     STOY, "MAC MEAN CHORD, MEAS. & BODEL CENTROID (IN)", 121,
                                                                                                                                                                                                                                  8121, 'S LOAD CELL POLARITY (N=NORGAL, R=REVERSE) ',271,
                                                                                                                                                                        7 81, THIST SHAPT THIST (DEGREES/IM-LB) ', 371,
                                                                                                                                                                                                                                                              8 . YY = RUN NUMBER, THIS POIL & THIS ANGLE")
                                                                                                                                                                                                     7 . XXI = GEOMETRIC ATTACK ANGLE (DEGREES) "/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          R (J, H) = R (J, H) -ZI (H, 1, 1) - BUG * DZI (H, 1)
4 9X, SPAN POIL BALP-SPAN (IN) ', 31X,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IP(S(J,M). EQ. BLANK) S(J, M) = S(J-1,M)
IP(S(J,M). BQ.RS) GO TO 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DZI (M,L) = (ZI (M,L,2) -2I (M,L,1)) *BUG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              IP (NTAP (J) . EQ. 0) NTAP (J) = NTAP (J-1)
IP (NPLD (J) . EQ. 0) NPLD (J) = NPLD (J-1)
                        4. PINF STATIC PRESSURE (MM BG) . /
                                                                                  S.PCAV CAVITY PRESSURE (MM HG) "
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ANOM (J) = ANOM (J) - ZM (1) - BUG*DZM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IP(S(1,H).EQ.BLANK) GO TO 27
                                                                                                                                                                                                                                                                                                                                                                                                                                           DZM= (ZM (2) -ZM (1)) +BUG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DZT= (TT (2) -TT (1)) *BUG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PINP (J) =PINP (J) -PUDGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     TEMP (J) = TT (1) +BUG*DZT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ANGL (J) = ANGL (J) - AZL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF (J. EQ. 1) GO TO
                                                                                                                                                                                                                                                                                             DO 72 3=1,40
                                                                                                                                                                                                                                                                                                                                                   S (J. H) = BLANK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         J=1,JT
                                                                                                                                                                                                                                                                                                                        DO 72 N=4,7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       7,1=H L 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DO 4 L=1,2
                                                                                                                                                                                                                                                                                                                                                                                   R (3, H) = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DO 4 M=1,7
                                                                                                                                                                                                                                                                                                                                                                                                            CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            BUG=J-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         7 00
                                                                                                                                                                                                                                                                                                                                                                                                              72
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3
```

R (J, H) =-R (J, H) +ZI (H, 2, 1) +BUG*DZI (H, 2)

8

```
195EP73
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                19SEP73
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            19SEP73
                                                                                 19SEP73
                                                                                                                                                                                                                                                                                   WRITE (KO, 991) (RUNNBR (J.N), N=1,2), ANOM (J), (R (J.M), N=1,3), PINF (J), P
                                                                                                                                       705 PORMAT (' IMPUT DATA CORRECTED POR ZERO READINGS, SIGNS, AND HYDROS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IP (NTAP (J) . PQ. 6) V=.039*ANOM (J) +.0103*ANOM (J) * EIP (-ANOM (J) /50.0)
                                                                                                                                                                                                                                                                                                                                                                                               882 WRITE(KO,765) (RUNNBR (J,N),N=1,2),ANON (J), (R (J,N),N=1,3),PINP (J)
765 PORMAT (1x,2A4,5x,F5.0,5x,2(P7.1,5x),P7.1,4x,F4.0,4x,'---')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IP (NTAP (J) . NE. 6) V= (ANOM (J) *PM (K) *SCALE/ (VC (I) *RHO)) **BUG*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    MOM-INLB VEL-FPS')
                                                                                                                                                                                                                                                                                                                                          991 PORBAT (1X, 2A4, 5X, P5.0, 5X, 2 (P7.1, 5X), P7.1, 2 (4X, P4.0))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      707 PORMAT (15x, * **HYDROPOIL DATA REDUCTION ** * //
                                                                                                                                                                     BANOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            BEAR=MAC/(12*3.9739*EXP(67.6832/NTT))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DRAG-LB
B (J, N) =B (J, N) -ZI (N, 1, 1) -DZI (N, 1) +BUG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3 WRITE (KO, 207) (IDENT(N), N=1, 18)
207 FORMAT (*1*, 11, 18A4//)
                                                    BRITE (KO, 205) (IDENT (N), N=1, 18)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IP (I.LT. 1.0R.I.GT.6) GO TO 99
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IP (K.LT.1.0R.K.GT.3) GO TO 99
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ALPHA LIPT-LB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PYHAPT=0.00327*SHAPT**2*V**2
                                                                                                                                                                                                                                                       IF (NTAG (J) .GT. 1) GO TO 882
                                                                                                                                                                   RUN NO
                                                                                                                                                                                                   PCAV.)
                                                                              205 PORMAT ("1", 1X, 18A4//)
                                                                                                                                                                 TATIC PRESSURE' //*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FBOX 1=C (1) *R (J, 1)
                                                                                                                                                                                                     PINE
                                                                                                                                                                                                                       DO 883 J=1,JT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            607 WRITE (KO, 707)
                                                                                                             WRITE (KO, 705)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (1.0+VELINC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TC,1=C 6 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     VKEEP (J) =V
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RUN NO
                                                                                                                                                                                                                                                                                                                                                                      GO TO 883
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             K=NPLD (J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     BUG=VE(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                          883 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         I=NTAP (J)
                             CONTINUE
                                                                                                                                                                                                                                                                                                                    ICAV (J)
```

```
HRITE (KO, 206) (RUNNBR (J.H), H=1,2), ANGD (J), PZO, PXO, HYO, V
FORMAT (1X, 2A4, 3X, P5. 2, 1X, P7. 2, 2X, P7. 2, 1X, P9. 2, 4X, P5. 2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                             M2=17.034*PBOX6-4.725*PBOX3-3.5* (PBOX4+PBOX5)
                                                                                                                                                                                                                                                                                                                                                                                                     BX=4.725*(PBOX1+PBOX2)+6.062*(PBOX5-PPOX4)
                                                                                                                                                                       .LT. 0.0) PBOX4=C (11) *R (J.4)
                                                                                                                                                                                                                                                         PBOX6=C(6) *8 (3,6) *FIHAFT*0.17045
IF (R(3,6) .LT. 0.0) FBOX6=C(13) *R(3,6)
0.0) FBOX1=C ( 8) *8 (J.1)
                                                         .LT. 0.0) PBOX2=C( 9) *R (J,2)
                                                                                                                                                                                                                               IP (R(J,5) .LT. 0.0) PBOX5=C (12) *B (J,5)
                                                                                                               .LT. 0.0) PBOX3=C (10) *R (J,3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RAT= (ANGL (J) + AZL-DYCOR) * 0.0174532
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SIEZ=SIN (ANGD (J) *3.14159*0.5/180.)
                                                                                                                                                                                                 PBOX5=C (5) *8 (3,5) +FYBAFT*0. 41477
                                                                                                                                         PBOX4=C (4) *R (3,4) +FTHAFT*0. 41477
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SIE=SIN (ANGD (3) *3.14159/180.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           COE=COS (ANGD (J) +3.14159/180.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RVS=0.5*RHO*AREA*V**2/144.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ANGD (J) = ANGL (J) + HYO/THIST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RAT=0.0 FOR FIXED AXIS
                                                                                                                                                                                                                                                                                                                                             PY=-PBOX4-PBOX5-PBOX6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PX0=FX*CO(J) +PZ*SI(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             M20=H2*CO(3)-HX*SI(3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           720= F2+C0 (J) -FX+SI (J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        MXO= HX *CO(3) +HZ *SI(3)
                                                                                   PBOX 3=C (3) *B (3, 3)
                             PBOI 2=C (2) *R (3,2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          MPLAP=R (J,7) *C (7)
                                                                                                                                                                                                                                                                                                                                                                           PZ=- PBOX 1- PBOX 2
                                                                                                                                                                                                                                                                                                                                                                                                                                   MY=- 18. 0*FBOX2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             SI (J) = SIN (RAT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CO (J) =COS (RAT)
                                                                                                                                                                         (P (B (J,4)
   IP (R(J, 1)
                                                         IF (8 (3,2)
                                                                                                                 IP (8 (3,3)
                                                                                                                                                                                                                                                                                                                     PX=- PBOX 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RAT=0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PYO= PY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    NYO= NY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    206
```

```
19SEP73
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  195EP73
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         195EP73
                                                                                                                                                                                                                                                                                                                         CM (J) =MYO/RVS/MAC+ (CL (J) +COE+CD (J) +SIE) *XMAC/MAC+ (CL (J) *COE-CD (J) *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               708 PORMAT (5x, * * * HYDROPOIL DATA IN NONDIMPNSIONAL PORM (NO CORRECTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1, CDL (J), BN (J), J=1,JT)
209 PORMAT (1X, ZA4, ZX, P5. 2, 3X, P6. 4, 4X, P6. 4, 4X, P6. 4, 3X, P7. 4, 4X, P6. 4, F10.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   WRITE (KO, 209) ((RUNNBR (J, H), H=1,2), ANGD (J), CL (J), CD (J), CM (J), CLD (J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORMAT ("0", 1x, 'LEGEND', 8x, 'VEL UPSTREAM VELOCITY (U) ')
WRITE (KO, 208) (IDENT (N), N=1, 18)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CDUNC
                                                                                                                                                                                                                                                                                                                                                                                SIGMAV (J) = SIGMA (PV (TEMP (J)), PINF (J), V, RHO)
                                                                                                                                                                                                                                                                                                                                                                                                               SIGNAC (J) = SIGNA (PCAV (J), PINP (J), V, RHO)
                                                                                                                                                                            PRICTN=. 0303* (RH (J) *1.E6) ** (-1./7.)
                            CL (J) = P20/BVS+DDDQ+SIE2+144.0/ABEA
COE2=COS (AMGD(J) #3.14159#0.5/180.)
                                                                                                                                                                                                                                    CD (J) = PXO/RVS-DDDQ*COB2*144/AREA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ALPHA
                                                                                                                                                RVSTAR=. S*RHO*TAREA*V**2/144.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      RN+10**-6*)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1S APPLIED *** // RUN NO
                                                                                                                                                                                                                                                                                                                                                                                                                                            IP (BXO. NE. 0.) GO TO 501
                                                                                                                     TAREA= AREA+4. + 3. 14159
                                                                                                                                                                                                         PRO=PRO-RVSTAR*PRICTN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CPL (J) = (MXO/PZO) /SPAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CHF (J) =- HPLAP/RVS/HAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     208 FORMAT ('1', 1X, 18A4//)
608 WRITE (KO, 708)
                                                                                                                                                                                                                                                                   CTD (1) = CT (1) /CD (1)
                                                                                                                                                                                                                                                                                                CDT (1) = CD (1) /CT (1)
                                                         CLSQ (J) =CL (J) **2
                                                                                                                                                                                                                                                                                                                                                         SIE) *ZHAC/HAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CY (J) = PYO/RVS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  WRITE (KO, 939)
                                                                                        RN (7) = A + BEAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DO 15 J=1,JT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GO TO 502
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CPL (3) =0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             939
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            502
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  501
```

```
195RP73
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           7161, "CM MOMENT COEPPICIENT, NONDIMENSIONALIZED ON UPSTREAM VELOCIT
                                                                                                                                                                                                                                                                                                                                                                                                                       940 PORMAT ("0", 1X, "LEGEND", 5X, "ALPHA GEOMETRIC ANGLE OF ATTACK CORRECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   711 PORMAT ( 23x, *** PRIOR DATA CORRECTED FOR EFFECTS OF IMAGES OF TRAIL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1, CDL (J), SIGVOA (J), SIGCOA (J), CLOA (J), CDOASQ (J), CHOA (J), SIGHAV (J), SI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (D/L) SIGV/AT SIGC/AT CL/A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            WRITE (KO, 963) (RUNNBR (J, M), M=1, 2), TAPS (J), ANGD (J), CL (J), CD (J), CM (J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             216x, CL LIPT CORPPICIENT, NONDIMENSIONALIZED ON UPSTREAM VELOCITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           413X, 'CDUNC CD (UNCORRECTED), THE UNCORRECTED DRAG COPPLICIENT AS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SIGC CAVLTH COMMENTS/REMARKS")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SOMPUTED PROM MEASURED DRAG, AND NONDIMENSIONALIZED'/
ANGD (J) = ANGD (J) + DELTA + 180. + AREA + CL (J) / (400. + 3.14159)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   619X, ON UPSTREAM VELOCITY AND MODEL PLANFORM AREA'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               216X, "RN REYNOLDS NUMBER, BASED ON HEAN CHORD")
                                                                        SIGVOA (J) = SIGMAY (J) *180. / (ANGD (J) *3. 14159)
                                                                                                              SIGCOA (J) = SIGNAC (J) +180. / (ANGD (J) +3.14159)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BY, HODEL PLANFORM AREA, AND HEAN CHORD'/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      915x, "L/D LIFT-TO-DRAG RATIO = CL/CDUNC"/
                                                                                                                                                                                                                                                                                                       CDOASQ (J) = CDOA (J) * 180. / (ANGD (J) * 3. 14159)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       115x, . D/L DRAG-TO-LIPT RATIO = CDUNC/CL'
                                     CD (J) =CD (J) + DELTA*ARBA*CL (J) *CL (J) /400.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E
                                                                                                                                            CLOA (J) =CL (J) +180. / (ANGD (J) +3. 14159)
                                                                                                                                                                                                                                                                    CHOA (J) =CH (J) *180./ (ANGD (J) *3.14159)
                                                                                                                                                                                         CDOA (J) =CD (J) +180. / (ANGD (J) +3.14159)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WRITE (KO, 211) (IDENT (N), N=1, 18)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GO TO 789
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (NTAG (J) . EQ. 1) GO TO 787
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GO TO 788
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3AND MODEL PLANFORM AREA"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1ING VORTEX SYSTEM**'//
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CD/AT2 CH/AT SIGV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          211 PORMAT ("1", 1X, 18A4//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                          1RD POR SHAPT THIST'/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ALPHAT
                                                                                                                                                                                                                                 CDT (1) =CD (1) /CT (1)
                                                                                                                                                                                                                                                                                                                                               CTD (1) =CT (1) /CD (1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF (NTAG (J) . EQ. 3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (NTAG (J) . PQ. 2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WRITE (KO, 711)
                                                                                                                                                                                                                                                                                                                                                                                    WRITE (KO, 940)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DO 63 J=1,JT
                                                                                                                                                                                                                                                                                                                                                 15
```

2GHAC (J) ,CAVLEM(J) , (COHENT (J, M) ,N=1,3) 963 PORHAT (11,2A4,A1,11,P5.2,5 (21,P5.3),11,4 (21,P5.3),11,2 (P5.3,21),11 1, 14, 10X, 344)

1, CDL (J), SIGWOA (J), SIGCOA (J), CLOA (J), CDOASQ (J), CHOA (J), SIGHAY (J), SI 787 WRITE (KO, 387) (RUNNBR (J, M), N=1, 2), TAPS (J), ANGD (J), CL (J), CD (J), CH (J)

2GHAC (J), CAVLEN (J), (COMENT (J, N), N=1,3)
387 PORHAT (11,2A4,A1,11,P5.2,5(2x,P5.3),1x,4 (2x,P5.3),1x,2 (P5.3,2x),1x 1, A4, PC', 6X, 3A4) 788 WRITE(KO, 388) (BUNNBR (J, H), N=1,2), TAPS (J), ANGD (J), CL (J), CD (J), CH (J)
1, CDL (J), CLOA (J), CDOASQ (J), CHOA (J), CAVLEN (J), (COMENT (J, N), N=1,3)
388 PORHAT (11,2A4,A1,11,F5.2,4 (2x,F5.3),2x,"----,31,"----,3 (2x,F5.

13), 1X, "----, ZX, "----, 3X, A4, PC (TW) ", 3A4)

789 WRITE (KO, 389) (RUNNBR (J, M), M=1,2), TAPS (J), ANGD (J), CL(J), CD (J), CM (J)
1, CDL (J), CLOA (J), CDOASQ (J), CHOA (J), CAVLEN (J), (COMENT (J,N), N=1,3)
389 PORHAT (1x,2A4,A1,1x,P5.2,4 (2x,P5.3),2x,"----,3X,"-----,3(2x,P5. FW. ,6X, 3A4)

13),1X,'----',2X,'----',3X, A4,'

HRITE (KO, 439) 63 CONTINUE

1.1. SUPERCAVITATING PLOW. 19X, 2. BOTH STATIC PRESSURE TAPS OPE 2N. 1/1X, ' LEGEND', 10X, '+ ONLY UPSTREAM STATIC PRESSURE TAP UTILIZE 3D'/18X, ** ONLY DNSTREAM STATIC PRESSURE TAP UTILIZED'/17X, PC PART 439 PORMAT ('0', 1X, 'UNLESS OTHERWISE INDICATED, ALL DATA ARE POR: '/19X, 4IALLY CAVITATING . / 13x, PC (TW) PARTIALLY CAVITATING (TAP WETTED) '/ 517x, .PW PULLY WETTED

815X, SIGC CAVITATION NUMBER COMPUTED WITH MEASURED CAVITY PRESSURE 9'/15X, 'SIGV CAVITATION NUMBER COMPUTED WITH CALCULATED VAPOR PRESS THAGES OF TRAILING VORTICES' /16x, 'AT2 ALPHAT**2'

68X,'AT (ALPHAT) (TRUE) ANGLE OF ATTACK, CORRECTED FOR EPFECTS OF

217x, CD DRAG CORPLICIENT, CORRECTED FOR BFFECTS OF IMAGES OF TRAIL BING VORTICES.

513X, CAVLTH CAVITY LENGTH MEASURED PROM MIDCHORD AT CENTROID POSIT 414x, ' (D/L) CORRECTED DRAG-TO-LIPT RATIO = CD/CL'/

610N, NONDIMENSIONALIZED ON MEAN CHORD"/ 720X, (OBTAINED PRON PHOTOGRAPHS)") GO TC 1

STOP

66

FUNCTION PV(T)
GIVES VAFOR PRESSURF IN MMHG FOR TEMPERATURES BFTWPEN 50 AND 300 DEGREES
(SEE EQUATION (2) ON PAGE 151 OF "THE VAPOR PRESSURE OF WATER:
PART II: STEAM RESEARCH PROGRAM," BY SMITH, KRYES, AND GERRY IN
THE PROC. AM. AC. ARTS & SCI., VOL 69, 1934, P. 137, REPERENCE (10)) A=3.2438+(5.8682E-3)*X+(1.1702R-8)*X*X*X DEG= (5.* (T-32.) /9.) +273.16 CRUD=218.167/(10.**F00P) PV=14.6959*CRUD/.01934 B=1.+(2.1378E-3) *X FOOP=X * A / (DEG * B) X=647.27-DEG

ပပ

00

RIPER LEVIS OF WALL EPPECTS OF SUPERCAVITATING REDROPOLLS OF PINITE SPAN

RE TE AREA SPAN BAC 79 96 10.0 5.0 2.01

-				03-0.04030	TRIST= 7200.0 SEAPT DIA. # 1.501M
171	L	94.6	97.0	.02090	0.000
1 2 10	3-8	100.0	101.0	0 12=0.	1.* 1.50IM
126 4H	-	0.0	0.0	0.1000	1.501#
BEL TE	7-1	100.0	99.5	-11	DIA
80 TUE	7-1	0.0	0.0	BALIE	SKAPT
I BCS A	-	0.0	9.5	1011	0.00
BEAL	-	0.0	0.0	185/	12 12
2880	BABOS			CELL	TRIS

	47.	.94	45.		::	40.	. ##		. 64					.90		IL 61 LIPT (COUNTS)	12 HONENT ABOUT KIDCHORD (COUNTS)	e3 DRAG (COUNTS)	PINE STATIC PRESSURE (BB HG)	PCAY CAVITY PRESSURE (BM BG)	ALL, B.RI		II-RON BURBER, THIS FOLL & THIS ANGLE
PINP	194-	194.	181.	169.	158.	149.	138.	130.	119.	110.	100.	90.	108.	-66	99.	LOAD CKLL					Ξ		
=	218.0	219.0	219.0	213.0	207.0	200.0	191.0	182.0	174.0	166.0	158.0	150.0	160.0	150.0	144.0					(II)			(28)
S	«	~	~	~	-	•	~	~	26	•	~	a	-	~	~			(SQ IN)		RO ID			REVER
12	111.2	===	110.4	109.2	108.3	107.6	107.5	107.3	106.9	106.4	106.1	105.1	105.1	104.6	104.7			M AREA		BL CRNT	ING (RR)	-18)	RHAL, R.
S	at	~	85	~	~	~	æ	•	•	~	~	-	•	=	~	HR)		MPOR		BOD	BEAD	11/S	2
: 5	-234.0	-230.0	-216.0	-200.0	-180.0	-160.0	-142.0	-128.0	-112.0	-100.0	-86.0	-74.0	-90.0	-74.0	-68.0	CHPRB (DEG FA		PAS HODEL PLANFORM AREA	OIL HALF-SPAS (IB)	EAN CHORE, MEAS. & HODRE CRUTROI	BLOCITY MANORETER READING	SHAFT TWIST (DEGREES/IN-LB	CAL CELL POLARITY (#-WORMAL, R-REVERSE
BAROR	1439.	1433.	1422.	1420.	1404.	1397.	1400.	1392.	1385.	1391.	1397.	1840.	1218.	953.	957.	ROOM TERPER	THREE	HALF-SPA	FOIL H	BEAB C	VELOCIT	٠.	TOAD C
CH NON	5-8.0-31	5-8.0-02+	5-8.0-03	.5-8.0-04+	5-8.0-05	8-9.0-06	5-8.0-07	8-9-0-08	8-9.0-09	8-8.0-10	5-8.0-110	5-8.0-12	5-0.0-13	5-8.0-14	5-8.0-15	LEGRED TR	11	ABEA	SPAN	RAC	RABOR	TRIST	N

RIPER INVES OF UALL RPPECTS OF SUPERCAVITATING STOROFOLLS OF PINITE SPAN

PRESSURE	PCAV	.7.	.94	15.	:	:	:	:		:	:	15.	#6.	.94		.94
STATIC	PIBP	179.	179.	166.	154.	143.	134.	123.	115.	104.	95.	85.	75.	93.		
AND RYDROSTATIC	:	-118.0	-118.9	-118.9	-112.8	-106.7	-99.6	-90.6	-81.5	-73.4	-65.4	-57.3	-49.2	-59.1	-49.1	-43.0
BEADISCS, SIGES,		-11.2	-1:1-	-10.5	-9.3	.8.	0.0-	-1.1	-7.6	-1.2	-6.7	-6.5	-5.5	-5.5	-5.1	-5.2
POR EERO BEA	=	-23%.0	-230.0	-216.0	-200.0	-180.0	-160.0	-142.0	-128.0	-112.0	-100.0	-86.0	-74.0	-90.0	-74.0	-68.0
CORRECTED	808 88	1439.	1433.	1422.	1420.	1404.	1397.	1400-	1392.	1385.	1391.	1397.	5840.	1218.	953.	957.
INFOR DATA	808 80	8-8.0-01	5-8-0-02	5-0-0-0-8	8-0-04	5-8-0-05	8-8.0-06	5-0.0-07	8-8.0-08	8-0-0-8	8-8.0-10	5-8.0-11	5-8.0-12	. 5-0.0-13	5-8.0-10	5-8-0-15

EXPER LATES OF MALL RPPECTS ON SUPRECAVITATING HIDROPOILS OF PIGITE SPAR

•	
5	
REDUCTION.	
-	
¥	
2	
2	
=	
4	
2	
417	
_	
-	
=	
2	
5	
ě	
0	
=	
Ξ	
** HYDROPOLL	

08 80		3	DRAG-LB	BOR-IBLE	7
10-0-1	00	23.63	4.76	1.21	28.05
1.0-02	8	23.23	4.79	1.19	5
1.0-03		21.82	4.79	3.94	
1.0-04	00	20.19	1.55	3.50	w.
8.0-05	00.	18.18	4.30	3.18	
90-0-8	8	16.17	4.02	3.00	9
1.0-07	00.	14.36	3.65	2.90	27.69
6	00.	12.96	3.28	2.84	9
1-0-09		11.35	2.96	2.70	5
1.0-10		10.14		2.53	9
1.0-11	8.00	8.73	2.31	2.43	27.66
3.0-12			1.98	2.07	0
1.0-13			2.38	2.08	
1.0-14		7.51	1.98	1.91	-
8.0-15	8.00		1.73	1.96	23.20
LECKED	111	UPSTREAM	VELOCITY	6	

RIPER LATES OF MALL RPRETS ON SUPERCAVITATING HIDROPOLLS OF PINITE SPAN

.. HIDROPOIL DATA IN HOSDINENSIONAL PORM (SO CORRECTIONS APPLIAB) ..

9-001088	0.5841	0.5830	0.5809	0.5805	0.5775	0.5762	0.5767	6.5752	0.5738	0.5750	0.5762	0.5843	0.5405	0.4822	0.4832	FUIST
1/4	0.1783	0.1831	0.1950	0.1386	0.2075	0.2158	0.2174	0.2129	0.2146	0.2079	0.2039	0.1919	0.2101	0.2130	0.1958	SHAFT T
2	5.6080	5.4617	5.1285	5.0355	4.8201	4.6346	4.6005	4.6970	4.6599	4.8094	₩.9038	5.2115	4.7601	4.6952	5.1078	CORRECTED FOR
85	0.0397	0.0397	0.0376	0.0334	0.0307	0.0291	0.0281	0.0276	0.0264	0.0246	0.0236	0.0195	0.0229	0.0264	0.0270	ATTACK
CDUBC	0.0799	0.0810	0.0816	0.0770	0.0732	0.0680	0.0607	0.0540	0.0479	0.0413	0.0347	0.0273	0.0424	0.0445	0.0375	ABGLE OF
1	0.4482	0.4423	0.4183	0.3877	0.3527	0.3151	0.2794	0.2534	0.2230	0.1985	0.1703	0.1424	0.2019	0.2088	0.1915	GEORETRIC
ALPBA	8.00	8.00	8.00	00-	8.00	8.00	8.00	8.00	8.00	8.00	9.00	9.00	8.00	8.00	9.00	ALPHA
08 808	5-8.0-01	8-8.0-02	5-8.0-03	8-3.0-04	5-8-0-05	8-8.0-06	5-8.0-07	8-8.0-08	8-8.0-09	8-8.0-10	5-8.0-11	5-8.0-12	. 5-8.0-13	5-8.0-14	5-8-0-15	116210

ALPHA GEORETRIC ANGLE OF ATTACK CORRECTED FOR SHAFT FUIST

CL LIFT COEFFICIENT, HONDINENSIONALIZED ON UPSTREAM VELOCITY AND HODEL PLANFORS AREA

CL LIFT COEFFICIENT, HONDINENSIONALIZED ON UPSTREAM VELOCITY AND HODEL PLANFORM AREA, AND HORDINENSIONALIZED

ON UPSTREAM VELOCITY AND HODEL PLANFORM AREA

CH HONELT COEFFICIENT, HONDINENSIONALIZED ON UPSTREAM VELOCITY, HODEL PLANFORM AREA, AND HEAN CHORD

L/D LIFT-TO-DRAG BATIO = CLYCOUNG

D/L DRAG-TO-LIFT RATIO = CDUNC/CL

RR RETUOLDS BUBBER, BASED ON HEAN CHORD

RIPER INVES OF BALL RPRECTS ON SUPERCAVITATING STEROPOLLS OF PINITE SPAN

112
•
TST ER
×
-
2
=
•
-
OFFEE
Ξ
=
=
2
_
29
=
=
-
=
2
-
S OF TRAILIBG
-
8
_
-
ы
ä
-
0
6
S OF INACES
TS OF
CTS OF
BCTS OF
PECTS OF
PPECTS OF
BPFECTS
BPFECTS
BPFECTS
BPFECTS
FOR BPPECTS OF
BPFECTS
D FOR BPPECTS
DATA CORRECTED FOR BPFECTS
D FOR BPPECTS

COATT 1884 NS S S S S S S S S S S S S S S S S S S	QUESTIONABLE	CHORD
	sevië i	20
·	0.203 1.65 0.203 1.65 0.206 1.60	RTICES
916 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.214	OBLI DESTREAM STATIC PRESSURE TAP UTILIZED PRETACLI CAVITATING FROM ACTION ACTION PRESSURE CAVITATION BUMBER COMPUTED BITH REASURED CAVITY PRESSURE CAVITATION BUMBER COMPUTED BITH CALCULATED VAPOR PRESSURE COMPUTED DANG-TO-LIFT BATIO = CD/CL CAVITATION BUMBER CANDINGS PROB HIDCHORD AT CRATROLD POSITION, MOUDINGUISIONALIZED ON HEAR (OBTAINED PROR PUOTOGRAPHS)
ANTZ CULAT 02 0.281 03 0.281 04 0.231 06 0.237 08 0.207 09 0.198 00 198		AGES OF TI SSURE ESSURE FEALLING
CLAT CDAR? 3.177 CDAR? 3.136 %.103 2.268 %.133 2.262 3.908 1.988 3.988 1.589 2.438 1.589 2.438		CTS OF IM AVITY PRE VAPOR PRI INGRS OF
	1.45	DMII DESTREAM STATIC PRESSURE TAP UTILIZED PRATIALLY CAVITATING PRESSURE TAP UTILIZED PRATIALLY CAVITATING FULLY LATIALLY CAVITATING FULLY WETTED (TAULY ANGLE OF ATTACK, CORRECTED FOR EPPECTS OF INAGRS OF ALPHATO-2 CAVITATION WURBER COMPUTED WITH REASONED CAVITY PRESSURE CAVITATION WURBER COMPUTED WITH CALCULATED VAPOR PRESSURE CAVITATION BUGGER CORPOTED POR REPECTS OF INAGRS OF TRAIL CORRECTED DAGG-TO-LIPT BATIO = CD/CL CORRECTED DAGG-TO-LIPT BATIO = CD/CL CAVITY LEAGTH MASSURED PROM HIDCHORD AT CRATROID POSITION (OBTAINED PROM PUOTOGRAPHS)
9	1.496 1.525 1.511 FOR:	PRESSURE TAP PRESSURE TAP (TAP WETTED) K, CORRECTED PUTED WITH HI PUTED WITH CI RECTED FOR EI TRECTED FOR EI T
CB (D/L) 0.040 0.180 0.040 0.184 0.038 0.196 0.031 0.209 0.029 0.217 0.026 0.218 0.026 0.218	0.019 0.192 0.023 0.211 0.026 0.214 0.027 0.196 I. DATA ARE F. IATING FLOW.	STATIC PRI AATIG TATIG (TATING (T) TATACK, PATACK, PER CORPUJ SER CORPUJ SER CORPUJ SER CORPUJ SER CORPUJ SER CORPUJ SER CORPUJ SER SER SER SER SER SER SER SER SER SER
00000000000000000000000000000000000000	424	OMIT DESTREAM STATIC PRESSURE TAP UT OMIT DESTREAM STATIC PRESSURE TAP UT PARTIALLY CAVITATING (TAP WETTED) FULLY WETTED (TRUE) ANGLE OF ATTACK, CORRECTED FO ALPHATOW MURBER COMPUTED WITH REAS CAVITATION MURBER COMPUTED WITH CALC CAVITATION MURBER CORPUTED FOR EFFE COMMECTED DRAG-TO-LIFT MATIO = CD/CL CAVITY LENGTH MARSURED FOR MITHER COMMECTED DRAG-TO-LIFT MATIO = CD/CL CAVITY LENGTH MARSURED FOR HIDCHORD (OBTAINED FROM PUOTOGRAPHS)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.202.	
100 000 000 000 000 000 000 000 000 000	200	2
		A M D M

EIPER LEVES OF WALL RPPECTS ON SUPERCAVITATING HIDROPOILS OF PINITE SPAN

HIDDOPOIL IMPUT DATA TH IT AMER SPAN MAC. 75 91 10.0 5.0 2.01

	PCAV	39.	39.	39.	39.	39.	39.	38.	38.	38.	38.	38.	38.	38.	.0.	.0.	11 LIPT (C	12 HORENT	B3 DRAG (C	BP STATIC	AV CAVITY	NO Q-EXE-1		
	PIAP	189.	188.	171.	173.	159.	148.	136.	121.	===	.66	99.	90.	87.	115.	126.	LOLD CRLL			Id	2	NON		
•	13	235.0	234.0	232.0	229.0	225.0	220.0	210.0	200.0	188.0	176.0	173.0	169.0	163.0	180.0	198.0			IB)		(11)		1430	1000
	S	0.	6.	.3	. 0.	0.	8.	.0	.3	8.	.8	.2	8.	.9	.2	114.7 B			AREA (SQ IN)		HODEL CENTROID (I)	(HR)	S-Prypore	
PINEUT DATA AS RECORDED	S •2	B 122	121	B 120	B 119	B 119	111	B 117	B 116	#CC #	113	R 113	B 112	B 111	R 112	114	=	_	FORM A		HODEL C	READING	S/IN-LB)	
10487	2 2	-298.0	-298.0	-272.0	-270.0	-252.0	-228.0	-202.0	-176.0	-154.0	-132.0	-126.0	-114.0	-110.0	-150.0	-178.0	IPEP (DEG PARI		N HODEL PLA	P-SPAR (III)	CHORD, MEAS. 8	NA HOBETER	TWIST (DEGREES/IN-LB)	
	BABOR	1429.	1427.	1420.	1406.	1400.	1399.	1394.	1390.	1385.	1385.	1394.	1404.	1407.	.046	1213.	1 BOOR 1	TORREL I	I BALP-SPI	POIL BAI	BEAN CH		SEAFT	-
	808 BO	5-9.5-01	5-9.5-02+	5-9.5-03	. 5-9.5-04+	8-9.5-05	8-9.5-06	2-9.5-07	8-9.5-08	8-9.5-09	5-9.5-10	5-9.5-110	5-9.5-12	8-9.5-13	5-9.5-14	8-9.5-15	T GRESTO II	=	7717	SPAL	BAC	BON NO	18711	

The same of the last

CELL 01 LIFT (COUNTS)
02 NOREST ABOUT RIDCHORD (COUNTS)
03 DRAG (COUNTS)
PIRF STATIC PRESSORE (RR BG)
PCAN CAVITY PRESSORE (RR BG)
ROB BO Q-IXI-IT: Q-FOLL FESTED(S-SAALL, H-RED, L-LARGE)
ROB BO Q-IXI-IT: XXX GEORETRIC ATTACK A MGLE (DEGREES)
TY-EUN NUBBER, THIS POIL & THIS ANGLE

RIPER INVES OF BALL RPECTS OF SUPRICAVITATING STOROPOLLS OF PINITE SPAR

PRESSURE	PCAV	39.	39.	39.	39.	39.	39.	36.	38.	30.	38.	38.	38.	38.	*0	•0•
HYDROSTATIC	PIN	178.	173.	156.	158.	=	133.	121.	106.	96	8		75.	72.	100	=
AND STORO	2	-135.0	-133.9	-131.9	-128.8	-124.7	-119.6	-109.6	-99.5	-87.4	-75.4	-72.3	-68.2	-62.1	-79.1	-97.0
PLADINGS, SIGNS,	17	-22.0	-22.0	-20.6	-19.4	-19.6	-18.5	-17.9	-17.3	-15.9	-15.1	-14.6	-11.1	-13.6	-18.1	-16.7
POR ZERO REA	=	-298.0	-296.0	-272.0	-270.0	-252.0	-228.0	-202.0	-176.0	-154.0	-132.0	-126.0	-114.0	-110.0	-150.0	-178.0
CORRECTED	808 48	1429.	1627.	1020-	1406.	1400.	1399.	1394.	1390.	1365.	1385.	1394.	1004.	1407.	940.	1213.
IMPUT DATA	08 101	5-9.5-01	5-9.5-02	5-9.5-03	8-9.5-04	5-9.5-05	3-9.5-06	5-9.5-07	8-9-5-08	8-9.5-09	8-9.5-10	8-9.5-11	5-9.5-12	5-9-5-13	5-9.5-11	3-9.5-15

EIPES LAVES OF SALL RPPECTS OF SUPERCAVITATISG STONOPOLLS OF FISITE SPAN

## Property Property			HIDBORDIE	DATA REDUCTION.	*****	
1 9.50 30.26 5.44 0.28 27. 2 9.50 27.41 5.19 7.31 27. 3 9.50 27.41 5.19 7.31 27. 5 9.50 25.41 5.03 7.36 27. 6 9.50 28.51 4.42 6.37 27. 8 9.50 17.96 4.01 6.51 27. 9 9.50 17.96 4.01 6.51 27. 9 9.50 13.52 3.04 5.50 27. 1 9.50 11.70 2.75 5.41 27. 1 9.50 11.70 2.75 5.41 27. 1 9.50 11.28 2.50 5.41 27. 1 9.50 11.20 2.75 5.41 27. 2 9.50 11.28 2.50 5.29 27. 3 9.50 16.15 3.91 6.28	2	ALPEA	1-141	1-94	BOS-INLE	TRL-PPS
2 9.50 30.26 5.40 6.29 27. 3 9.50 27.41 5.31 7.74 27. 5 9.50 22.41 5.31 7.74 27. 5 9.50 22.41 5.03 7.31 27. 6 9.50 22.19 4.82 6.97 27. 8 9.50 15.73 3.52 6.00 27. 9 9.50 15.73 3.52 6.00 27. 1 9.50 12.51 2.91 5.50 27. 2 9.50 11.20 2.75 5.41 27. 2 9.50 11.20 2.75 5.41 27. 2 9.50 11.20 2.75 5.41 27. 2 9.50 11.20 2.75 5.41 27. 2 9.50 11.20 2.75 5.41 27. 2 9.50 11.20 2.75 5.41 27. 2 9.50 11.20 2.75 5.41 27.	-01	9.50	7	S		
9.50 27.61 5.11 7.74 27. 9.50 27.41 5.19 7.31 27. 5 9.50 22.61 5.19 7.31 27. 1 9.50 20.57 4.42 6.72 27. 1 9.50 17.96 4.01 6.51 27. 9.50 17.96 4.01 6.51 27. 9.50 17.9 2.91 5.50 27. 2 9.50 11.29 2.91 5.50 27. 2 9.50 11.28 2.50 5.12 27. 5 9.50 16.15 3.91 6.28 27.	-07				6.29	
9.50 27.41 5.19 7.31 27.61 6 9.50 22.61 5.03 7.36 27.6 7 9.50 20.51 4.42 6.72 27. 8 9.50 17.96 4.01 6.51 27. 9 5.0 17.96 4.01 6.51 27. 27. 9 5.0 18.73 3.52 6.00 27. 27. 1 9.50 18.52 3.91 5.60 27. 1 9.50 11.70 2.75 5.41 27. 1 9.50 11.20 2.75 5.41 27. 1 9.50 13.28 2.50 5.41 27. 2 9.50 15.29 3.91 6.28 25. 3 9.50 16.15 3.91 6.28 25.	2-03				7.74	27.89
5 9.50 25.61 5.03 7.36 27. 8 9.50 23.19 4.82 6.97 27. 8 9.50 23.19 4.82 6.32 27. 8 9.50 17.96 4.01 6.51 27. 9 9.50 15.73 3.52 6.00 27. 1 9.50 12.51 2.91 5.68 27. 1 9.50 11.70 2.75 5.41 27. 1 9.50 11.28 2.50 5.41 27. 1 9.50 11.28 2.50 5.41 27. 2 9.50 11.28 2.50 5.41 27. 3 9.50 16.15 3.91 6.28 25.	2-04				1.31	27.76
06 9.50 23.19 4.82 6.97 27. 08 9.50 17.96 4.01 6.51 27. 09 9.50 13.52 3.04 5.68 27. 11 9.50 13.51 2.91 5.50 27. 12 9.50 11.70 2.75 5.41 27. 14 9.50 15.29 3.91 5.29 27. 14 9.50 16.15 3.91 6.28 25.	-05				-	27.71
01 9.50 20.57 4.42 6.72 27.6 09 9.50 17.96 4.01 6.51 27.6 10 9.50 13.52 3.04 5.68 27.5 11 9.50 12.91 2.91 5.50 27.5 12 9.50 11.70 2.75 5.41 27.7 14 9.50 15.9 3.91 6.28 25.0 15 9.50 15.9 3.91 6.28 25.0	90-					27.70
06 9.50 17.96 4.01 6.51 27. 09 9.50 15.73 3.52 6.00 27. 11 9.50 12.51 2.91 5.50 27. 12 9.50 11.70 2.75 5.41 27. 14 9.50 15.29 2.50 5.12 27. 14 9.50 15.29 3.91 6.28 25.				4.42	6.72	
0.9 9.50 15.73 1.52 6.00 27. 10 9.50 12.51 2.01 5.56 27. 11 9.50 11.70 2.75 5.41 27. 14 9.50 11.28 2.50 5.12 27. 14 9.50 15.29 3.91 6.28 25.	-08			10.4	6.51	27.62
10 9.50 13.52 3.04 5.68 27. 11 9.50 12.91 2.91 5.50 27. 12 9.50 11.70 2.75 5.41 27. 14 9.50 15.29 3.19 5.29 23. 15 9.50 16.15 3.91 6.28 25.	60			3.52	6.00	27.57
11 9.50 12.91 2.91 5.50 27. 12 9.50 11.70 2.75 5.41 27. 13 9.50 11.28 2.50 5.12 27. 14 9.50 15.29 3.91 6.28 25.	-10			3.04	5.68	27.57
12 9.50 11,70 2.75 5.41 27. 13 9.50 11,28 2.50 5.12 27. 14 9.50 15,29 3.91 6.28 25.	::			2.91	5.50	
56 11.28 2.50 5.12 27. 50 15.29 3.19 5.29 23. 50 16.15 3.91 6.28 25.	-13			2.75	5.41	
50 15.29 3.19 5.29 23.	17			2.50	5.12	
50 18.15 3.91 6.28	-14			3. 19	5.29	
	-15			3.91	6.28	25.92

TRE OPSIBERS VELOCITY (8)

TRCEBD

The same of the same with

RIPER INTES OF MALL EPPECTS ON SUPERCAPITATING BYDROPOLLS OF PINITE SPAN

3	0.1619	0.1605	5.7864 0.1728 0.5588	0.1699	0.1755	0.1850	0.1889	0.1938	0.1904	0.1857	0.1846	0.1893	0.1746	
4000	1010.0	0.0787	0.0738	0.0703	0.0711	0.0673	0.0651	0.0633	0.0595	0.0554	0.0534	0.0521	0.0492	0.0740
CEORC	0.0933	0.0926	0.0915	0060-0	0.0872	0.0833	0.0757	0.0640	0.0588	0.0492	4940-0	0.0429	0.0381	0.0190
ฮ	0.5764	0.5772	0.5294	0.5300	0.4972	0.4505	0.4010	0.3511	0.3085	0.2659	0.2516	0.2266	0.2181	0.4302
ALPEA	9.50	9.50	9.50	9.50	9.50	9.50	9.50	9.50	9.50	9.50	9.53	9.50	9.50	9.50
02 204	5-9.5-01	5-9.5-02	5-9.5-03	5-9.5-04	5-9.5-05	2-9.5-06	5-9-5-37	8-4.5-08	8-9.5-09	5-9.5-10	8-9-5-11	5-9.5-12	.5-9-5-13	8-9.5-11

ALPHA GEORETRIC ANGLE OF ATTACK CORRECTED FOR SHAFT TRIST
CL LIFT CORPFICIENT, HONDINENSIONALIZED ON UPSTREAM TELOCITY AND HODEL PLANFORM AREA
OR UPSTREAM FLOCITY AND MODEL PLANFORM AREA
CR SOMET CORFFICIENT, WONDINENSIONALIZED ON UPSTREAM VELOCITY, HODEL PLANFORM AREA, AND MEN CHOND
L/D LIFT-TO-DRAG BATIO = CL/COUNC
D/L DRAG-TO-LIFT RATIO = CL/COUNC

B/L DRAG-TO-LIFT RATIO = CDUSC/CL

RE RETROLDS MURBER, BASED ON BEAM CHORD

LEGEND

BIPER INVES OF BALL RPRETS OF SUPERCAVITATING MIDBOPOLLS OF PINITE SPAN

STSTEROS
S VORTER
TRAILIBO
INAGES OF
EPPECTS OF INAGES OF TRAILING
2
A CORRECTE
PPRIOR DATA
•

	COLIBITS/REALERS				EAST CROED
PRIOR DATA CORRECTED FOR RFRECTS OF IRAGES OF PRAILING FORTER STSTER	9.61 0.576 0.094 0.079 0.164 3.038 2.974 3.438 3.357 0.468 0.509 0.499 0.68 9.61 0.577 0.094 0.079 0.162 3.016 2.956 3.443 3.333 0.469 0.506 0.896	2.653 2.596 3.161 3.293 0.441 0.444 2.719 2.665 3.164 3.241 0.420 0.455 2.413 2.363 2.970 3.142 0.425 0.404 2.166 2.120 2.694 3.002 0.403 0.362 1.901 1.880 2.103 2.731 0.390 0.318 1.565 1.548 2.103 2.455 0.379 0.261	9.56 0.369 0.059 0.059 0.191 1.340 1.327 1.650 2.123 0.351 0.224 0.221 9.55 0.265 0.049 0.055 0.187 1.064 1.055 1.590 1.780 0.332 0.177 0.176 9.55 0.252 0.047 0.053 0.185 1.054 1.069 1.590 1.780 0.332 0.177 0.176 9.54 0.227 0.047 0.052 0.190 0.342 0.342 1.360 1.360 1.353 0.313 0.140 0.140 9.54 0.218 0.099 0.079 0.175 0.789 0.771 1.310 1.378 0.296 0.128 0.128 9.58 0.430 0.090 0.074 0.165 2.020 1.963 2.573 2.646 0.443 0.336 0.326 9.57 0.403 0.007 0.065 0.191 1.672 1.832 2.410 2.751 0.415 0.313 0.306	UBLESS OTHERWISE INDICATED, ALL DATA ARE POR: 1. SUPPRCATITATING PLOW. 2. BOTH STATIC PRESSURE TAPS OPEN. 4. OULY UPSTREAM STATIC PRESSURE TAP UTILIZED 5. OULY DUSTREAM STATIC PRESSURE TAP UTILIZED 6. OULY DUSTREAM STATIC PRESSURE TAP UTILIZED 7. POLLY UPSTREAM STATIC PRESSURE TAP UTILIZED 7. POLLY UPSTREAM STATIC PRESSURE TAP UTILIZED 7. POLLY UPSTREAM STATIC 7. POLLY WITHEN ANGLE CAPITATING (TAP WITTED)	SIGC SIGC SIGC CD (D/L)
			•		

																									COURTS)	*		(S-SHALL, N-BED, L-	HIX-GROMETRIC ATTACK ANGLE (DEGR
																								1 LIFT (COUNTS)	2 HOREST ABOUT RIDCHORD (COURTS)	DRAG (COURTS)	PCAV CAVITY PRESSURE (BR BG)	Q-III-II: Q-POIL TESTED(S-SHALL, N-BED, L-	XXX-GEOMETRIC A
		PCA.													10. 37.								85. 40.	•	92 80		PCAV C	BUN NO O-	
	0000	114	260.0 20	260.0 204.		260.0 197.	257.0 185.		_				226.0 137.					-	-				175.0 8	LOAD CELL					
	12 E	8	B 260	B 260	B 260	260	250	R 250	B 250	R 240	8 241	B 229	# 226	210	¥ 200	B 196	B 192	R 187	# 186	- 18	180	17	B 175			(17 0	(BI) GI		
	ZERO READINGS AND TUBBLE TEAP DEPORE AND AFTER 0. 0.0 0.0 0.0 0.0 100.0 0.0 100.0 07.0 0. 0.0 0.0 0.0 0.0 110.5 0.0 104.0 90.0 CELL RAS/CT(HORBAL/MET) 01=0.10000 f2=0.02090 03=0.04030 THIST= 7200.0 SEAFT DIA.= 1.501M AS PECORDED**	12	128.2	127.9	127.0	126.6	125.1	120.0	:23.5	122.5	122.5	121.2	120.9	110.6	119.0	118.7	118.4	118.0	118.0	117.8	117.5	116.5	116.1			DOTE WILL COME PLANFORM AREA (SQ LE)	BULK BALK-SEAM (12) BEAN CHORD, MEAS. & HODEL CRETROID(IN)	MG (88)	
	3-11 3-12 0.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 12-0.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 1		~	-	-	-		. ~	~	~	~	-		• •		-	-	~	-	-	~	*	~	FAHR)	•	LARFORN	a RODE	REOCITY MANORETER READING (NH)	
75.	10688, TEAP 1-5 2- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3-		7	-348.0	-338.0	-336.0	-318.0	-290.0	-284.0	-252.0	-258.0	-218.0	-212.0	0.781-	- 160.0	-154.0	-146.0	-138.0	-142.0	-132.0	-126.0	-116.0	-114.0	930) H	-	Tagos	SEAS.	IA BORET	CUAPP PUTCE INFCBERG/TH-IBI
11 SPAT	2-6 2-8 3-8 0.0 100.0 0.0 0.0 110.5 0.0 10.4 110.5 0.0 SMAF DIA. 1.5018	S ROLL		340.	333.	335.		327.	324.	325.	324.	323.	323.	323.	323.	318.	320.	323.	320.	323.	13.	370.	365.	ROOM TERPER (DEG FAHR)	TORNEL	14-SPA	HEAD CHORD, HEAS. A	OCITY !	
TT AREA SPAN EAC 89 10.0 5.0 2.0	1-8 1-8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	AR	=	-	-				-	-	-	-	_			-	_	-	_	-	_	-	_	_	-	AKEA HAL			PUT COL
= = =	ZERO READIBGS 1. 0.0 0.0 0. 0.0 0.0 CRLL 1.15/CT [R	0 10	5-1101	5-11020	5-1103	5-1104	5-11-05	5-1107	5-1108.	5-1109.	5-1110	5-11110	5-1112	5-11-15	5-11150	5-1116	5-11170	5-1118	5-1119.	5-1120	5-1121	8-1122	5-11230	TEGEND		•		3	

RIPER INVES OF WALL RPPECTS OF SUPERCAVITATING MIDROPOLLS OF PINITE SPAN

### CONTRECTED FOR ERSO READINGS, SIGHS, AND HYDDOSTATIC PRESSURE ### HO																									
CORRECTED FOR REDO BLADINGS, SIGUS, AND HIDDOST 1340. 1340. 1350. 13	PRESSUR	PCAV	39.	39.	38.	39.	39.	39.	36.	36.	36.	36.	36.	37.	36.	36.	37.	36.	36.	36.	37.	37.	36.	37.	.0
CORRECTED FOR READ READ 13 02 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 135 136 136 136 137	STATIC	PIBP	189.	189.	182.	182.	170.	170.	155.	156.	100	140.	121.	122.	105.	168.	95.	95.	85.	.98	85.	75.	75.	69	70.
### CORRECTED FOR ERRO BEADINGS. ###################################	AND STORE		-160.0	-159.8	-159.6	-159.5	-157.3	-156.1	-148.9	-148.7	-138.5	-139.4	-127.2	-124.0	-110.8	-107.6	-97.5	-95.3	-89.1	-83.9	-84.7	-80.5	-76.4	-70.2	-71.0
13.00 CORECTED FOR 13.10 CORECTE			-28.2	-27.4	-26.0	-25.2	-23.2	-22.6	-21.1	-20.2	-18.7	-18.2	-16.4	-15.6	-11.5	-13.4	-12.3	-11.5	-10.8	6.6-	-9.4	-8.7	-8.0	-6.5	-5.6
8	POR TEBO REA	=	-350.0	-348.0	- 338.0	-336.0	-318.0	-312.0	-290.0	-284.0	-252.0	-258.0	-218.0	-212.0	-182.0	-176.0	-160.0	-154.0	-146.0	-138.0	-142.0	-132.0	-126.0	-116.0	-114.0
\$-11.00 \$-11.0	CORRECTED	80848	1336.	1340.	1333.	1335.	1328.	1330.	1327.	1324.	1325.	1324.	1323.	1323.	1323.	1319.	1323.	1316.	1320.	1323.	1320.	1323.	1333.	1370.	1365.
	ISPOT DATA	08 808	10-11-5	5-1102	5-1103	5-1104	5-1105	5-1106	5-1107	8-1138	8-1109	5-1110	5-1111	5-1112	.5-1113	5-1114	5-1115	5-1116	5-1117	5-1118	8-1119	5-1120	5-1121	5-1122	5-1123

RIPER LEVES OF WALL RPRETS OF SUPERCAVITATING STDROFOLLS OF PINITE SPAN

		-	-	0	-	0	0	0	0	0	0	9	9	0	9	0	9	9	9	9	0	0	27.43	27.38
****	HOS-INLS	10.61	10.32	9.80	9.17	8.72	8.51	7.95	7.58	7.03	6.85	6.18	5.89	5.44	5.04	4.63	4.34	4.05	3.72	3.54	3.28	1.99	2.44	2.11
CATA SEDUCTION	DEAG-LB	6.45		6.43	6.13	6.34	6.29	00.9	5.99	5.58	5.62	5.13	2.00	4.17	4.34	3.93	3.84	3.59	3.38	3.41	3.25	3.08	2.83	2.86
HEDROSOIT	11PT-18	35.59	35.37	34.34	34.13	32.28	31.67	29.34	28.82	25.59	26.18	22.14	21.53	18.50	17.88	16.26	15.64	14.82	14.01	14.40	13.38	12.77	11.74	11.52
:	ALPRA	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11,00	11,00	11.00	11,00	11.00
	BUR NO	11	5-1102	5-1103	5-1104	5-1105	5-1106	5-1107	5-1108	5-1109	5-1110	-	5-1112	-11-	5-1114		5-1116	8-1117	11.	11	5-1120	5-1121	\$-1122	\$-1123

TEL UPSTREAM VELOCIFI (8)

AIPER LEVES OF BALL PPECTS ON SUPERCAVITATING STOROFOLLS OF FLUITE SPAN

_
:
S APPLIED) .
8
=
•
3
2
5
H
-
×
=
=
2
_
(80 CORRECTION
=
_
=
ō
~
-
4
7
Ħ
5
-
Ħ
=
0
-
-
DATA IN BOUDINERSIONAL
3
-
-
TOPOGOTI
Z
2
=
-

V 08 808	TEAT	ដ	CDONC	5	27	74	BB-10.
	1.00	0.7207	0.1202	0. 1069	5.9966	0.166	0.5345
	1.00	0.7153	0.1199	0.1038	5.9682	0.1676	0.5349
	1.00	0.6979	0.1203	0.0991	5.1995	0.1724	0.5336
	1.00	0.6925	0.1200	0.0956	5.770\$	0.1733	0.5339
	1.00	0.6584	0.1189	0.0885	5.5393	0. 1605	0.5326
	1.00	0.6450	0.1177	0.0862	5.4797	0, 1625	0.5330
	1.00	0.6038	0.1121	0.0807	5.3612	0.1865	0.5324
	1.00	0.5894	0.1122	0.0772	5.2543	0.1903	0.5319
	11.00	0.5229	0.1037	0.0715	5.0428	0.1983	0.5321
	1.00	0.5354	0.1045	0.0697	5.1255	0.1951	0.5319
	1.30	0.4531	0.0945	0.0629	4.7957	0.2085	0.5317
	1.00	0.4405	0.0919	0.0599	4.7954	0.2085	0.5317
	1.00	9.3786	0.0810	0.0554	4.6749	0.2139	0.5317
	1.00	0.3669	0.0766	0.0515	4.6672	0.2143	0.5310
	1.00	0.3327	0.0700	0.0472	4.7546	0.2103	0.5317
	1.00	0.3212	0.0684	0.0444	4.6928	0.2131	0.5308
	1.00	0.3040	0.0632	0.0413	4.8082	0.2080	0.5311
	1.33	3.2866	0.0588	0.0379	4.8745	0.2051	0.5317
	1.00	0.2952	0.0596	0.0361	4.9517	0.2619	0.5311
	1.00	0.2739	0.0560	0.0334	4.8879	0.2046	0.5317
	1.00	0.2594	0.0521	0.0303	4.9751	0.2010	0.5336
	1.00	0.2325	0.0457	0.0240	5.0920	0.1964	0.5404
	1.00	0.2289	0.0465	0 0 0 B	4 9213	1 505 0	0.5395

ALPHA GECRETAIC ANGLE OF ATTACK CORRECTED FOR SHAPT THIST
CL LIFT COEPPICIENT, HONDINENSIONALIZED ON UPSTREAM VELOCITY AND HODEL PLANFORM AREA
CDUAC CD (UNCORRECTED), THE UNCORRECTED DRAG COEPTICIENT AS COMPUTED FROM MEASURED DRAG, AND MODINENSIONALIZED
ON UPSTREAM VELOCITY AND MODEL PLANFORM AREA
CH HOHENT COEPTICIENT, HONDINENSIONALIZED ON UPSTREAM VELOCITY, HODEL PLANFORM AREA, AND HEAM CHORD
L/D LIFT-TO-DRAG BATIO = CL/COUNC
D/L DRAG-TO-LIFT RATIO = CDUAC/CL
RM REYNOLDS HUMBER, BASED ON REAM CHORD

RIPER LEVES OF GALL RPPECTS OF SUPRECAVITATING STDROPOILS OF PIRITE SPAN

٠
:
1
STSTEB
E
VORTER
ř
FRAILING
7
F
•
_
i
IBAGES
=
6
*
RPPECT
Ξ
2
2
E
2
S
=
CORRECTE
-
DATA
•
5
OIN
ī
•

COURSTS/2641 BES		GUESTIONABLE	EA CROED
CAVLE 0.73	0.88 1.10 1.25 1.90 2.00	6 8 9 9 9 9 9 9 9 9 9	51 S1
SIGC 0.589 0.588 0.567 0.563	0.518 0.471 0.476 0.412 0.338 0.274 0.231	0.199 0.192 0.152 0.155 0.128	VORTICE CES SIONALEZ
+0.00	0.456 0.540 0.444 0.539 0.398 0.488 0.369 0.420 0.369 0.420 0.310 0.348 0.287 0.280 0.230 0.240		CHIT UPSTREAL STATIC PRESSURE TAP UTILIZED JHLI BUYDREAL STATIC PRESSURE TAP UTILIZED JRITIALIT CAVITATING (TAP WETTED) FULLY WETTED FULLY
	3.45 2.25 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3		CALT UPSTREAM STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING PARTIALLY CAVITATING FARTIALLY FARTIALLY FARTIALLY FARTIALLY FARTIAL
	3.392 3.026 3.026 2.760 2.760 2.363 1.960 1.960 1.960		ZED ZED ZED ZED CAVITY TED VAPO OF IMAG
316C/AT 3.031 2.921 2.921	2,669 2,459 2,459 2,459 2,131 1,747 1,464 1,404 1,204		P UTILI P UTILI D FOR EI CALCULA CALCULA EPPECTA PORD AT HORD AT
CR (D/L) SIGVAT SIGC/AT 0.107 0.169 3.155 3.031 0.109 0.175 3.013 2.997 0.096 0.175 3.013 2.897	2,783 2,776 2,476 2,499 2,199 1,799 1,240 1,240	0.064 0.041 0.209 1.031 0.059 0.038 0.205 1.047 0.060 0.036 0.203 1.025 0.056 0.033 0.205 0.815 0.052 0.030 0.202 0.805 0.046 0.024 0.197 0.664 0.047 0.021 0.204 0.683 CATED, ALL DATA ARE FOR: SUPERCAVITATING FLOW.	CHIT UPSTREAM STATIC PRESSURE TAP UTILIZED PRETIALLY CAVITATING PRESSURE TAP UTILIZED PRETIALLY CAVITATING (TAP USTIED) FULLY BETTED (TRUE) AMGINE OF ATTACK, CORRECTED FOR RFPECTIFFHALLY CAVITATION MURBER COMPUTED WITH GLECULATED CAVITATION MURBER CORPUTED WITH GLECULATED FAR CORRECTED FOR RFPECT OF SECTED URAGETO-LIFT EATIO, CD/CL. CAVITY LEMGTH REASURED PROM HIDCHORD AT CRM (OBTAIRED FROM HIDCHORD AT CRM
9.169 9.169 9.175 9.175	0.183 0.188 0.192 0.203 0.210 0.215 0.215 0.215	104 0.064 0.041 0.209 1 187 0.059 0.038 0.206 1 195 0.060 0.038 0.205 0 174 0.055 0.033 0.205 0 189 0.052 0.030 0.202 0 189 0.052 0.030 0.202 0 189 0.052 0.030 0.202 0 189 0.052 0.030 0.202 0 189 0.052 0.030 0.204 0 189 0.052 0.031 0.204 0 180 0.052 0.052 0.052 0.052 0 180 0.052 0.052 0.052 0 180 0.052 0.052 0.052 0 180 0.052 0.052 0.052 0 180 0.052 0.052 0.052 0 180 0.052 0.052 0 180 0.052 0.052 0 180 0.052 0.052 0 180 0.052 0.052 0 180 0.052 0.052 0 180 0.052 0.052 0 180 0.052 0.052 0 180 0.052 0.052 0 180 0.052 0.052 0 180 0.052 0.052 0 180 0.052 0.052 0 180 0.052 0.052 0 180 0.052 0.052 0 180 0.	**************************************
	0.086 0.086 0.071 0.071 0.073 0.063 0.063 0.055	0.064 0.041 0.209 0.059 0.038 0.206 0.060 0.036 0.205 0.052 0.031 0.205 0.052 0.031 0.202 0.045 0.031 0.202 CATED, ALL DATA ARE F SUPERCAVITATING FLOW.	CHI UPSTREAM STATIC DHI DASTREAM STATIC PARTIALLI CAVITATING TULL WEITED THE
	0.120 0.113 0.113 0.105 0.095 0.095 0.079 0.079	0.059 0.059 0.050 0.050 0.050 0.047 0.047 0.047 0.047 0.047	MALT DESTREA MALT DESTREA MALT DESTREA MATTALLY CA MATTALLY MAN MAN COPPIC MANTALLY MAN MANTALLY MAN MANTALLY MANTALLY MANTALLY MANTALLY MANTALLY MANTALLY MANTALLY MANTALLY MANTALLY MANTALLY MANTALLY MANTALLY MANTALY MANTALLY MANTALLY MANTALY MANTALLY MANTALLY MANTALLY MAN
	0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	11.08	11.05 11.05 11.05 11.05 11.04	3
S-1101 S-1102 S-1103 S-1103	6 - 1 - 1 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	S-1117+ 11.06 S-1118 11.95 S-1119+ 11.05 S-1120 11.05 S-1121+ 11.05 S-1121+ 11.05 G-1123+ 11.04	THE CENT

BIPER INVES OF MALL RPPECTS OF SUPRECAVITATING STOROPOILS OF FIRITE SPAR

							04030		
			=				0 13=0-		DED
				E		90.0	.0209		BECOR!
			2 × 2 × 2 × 2 × 2		100.0	106.0	0 -2-0		INPUT DATA AS RECORDED.
		_	128 JI	-		0.0	. 1000	1.50IE	TO DA
2770	BAC	2.01	121 78	7-1	0.00	99.3		14.= 1	
1 2061	SPAR	5.0		7-1	0.0	•	11/11	1177 0	
OFOIL	AREA	77 69 10.0 5.0 2.01	GS ABI	=	0.0	0.0	THOM)	.0	
8408	=	3	IOV	•			S/CT	7200	
	=	11	2600	-I BORTH		010.	CB11 18	THIST= 7200.0 SHAPT DIA.= 1.50IN	

																2					1 LIPT (COUNTS)	ROMENT ABOUT MIDCHORD (COUNTS)	DRAG (COUNTS)	STATIC PERSSURE (AR BG)	PRE.	Q-IXX-IY: Q-POIL TESTED (S-SHALL, M-NED, L-LARGE)	TACK ANGLE (DEGRE	TI-ROB BORDER, THIS FOIL & THIS ANGLE
PCAV	46.	\$	į	į	•	42.	39.	36.	36.	36.	36.	36.	37.	39.	39.	!	38.	38.	18	:	11 LIP	82 NOR	#3 DRA	HP STA	PCAV CAV			
PINE	199.	199.	187.	178.	165.	154.	141.	130.	119.	110.	103.	103.	96	90.	83.	662.	118.	102.	91.	769.	LOAD CRLL			2	Ā	BOR RO		
=	282.0	282.0	279.0	275.0	266.0	257.0	242.0	232.0	223.0	211.0	203.0	200.0	194.0	188.0	184.0	250.0	219.0	188.0	188.0	155.0			=		•		1	SE)
v	-	~	=	-	-	~	-	-	~	-	~	-	=	~	*	-	=	~	-	~			(SO II		OID			EVERSE)
13	122.0	121.5	120.6	119.8	119.0	118.4	117.6	116.9	115.9	115.3	114.4	114.3	114.1	113.5	112.9	134.0	115.9	111.2	106.2	110.0			PLANFORM AREA (SQ IN)		HODEL CENTROID(IN	ING (NB)	(81-	POLARITY (S-TORGAL, E-
×	~	=	-	=	*	~	*	-	-	-	-	-	-	-	~	-	-	-	-	-	ARRI		AMPOR	•	9 BOD	BEADING	1-11/53	
=	-354.0	-356.0	-332.0	-312.0	-284.0	-260.0	-230.0	-206.0	-192.0	-170.0	-158.0	-152.0	-144.0	-138.0	-130.0	-340.0	- 182. 0	-140.0	-78.0	- 130.0	IR (DEG PARR	:	HODEL PL	HALP-SPAN (IN	J, BEAS.	A BORETER	1 (0208	POLARITA
S BONAR	1284.	1281.	1286.	1287.	1286.	1286.	1289.	1238.	1283.	1279.	1287.	1286.	1289.	1297.	1317.	1288.	1281.	839.	.20.	419.	ROOM TEMPE	TUNEEL "	HALF-SPAN	FOIL	REAM CHORD,	VELOCITY	2	TOTAL CELL
08 808	5-1201	5-1202+	5-1203	. 5-1204	5-1205	5-1206	5-1207	5-1208	5-1209	5-1210	5-1211	5-1212+	5-1213	5-1214	5-1215	5-1216	5-1217	5-1218	5-1219		=	F	AREA	SPAR	BAC	80 PP	TRIST	•

V1.15.16.17052.61

RIPER INVES OF WALL REPECTS ON SUPRICAVITATING NYDROPOLLS OF PINITE SPAN

PPESSURE	PCAV	46.	45.	:	:	43.	.2.	39.	36.	36.	36.	36.	36.	37.	39.	39.	-	38.	38.	.8	-
BIDBOSTATIC	PINE	184.	184.	172.	163.	150.	139.	126.	115.	104.	95.	88.	98		75.	68.	647.	103.	87.	76.	754.
ABD BTDBO	2	-182.0	-181.7	-178.4	-174.1	-164.7	-155.4	-140.1	-129.8	-120.5	-108.2	-99.8	-96.5	-90.2	-83.9	-79.6	-145.3	-113.9	-82.6	-42.3	-49.0
PRADINGS, SIGHS,	2	-22.0	-21.5	-20.7	-19.9	-13.1	-18.6	-17.8	-17.2	-16.2	-15.6	-14.6	-16.7	-14.5	-14.0	-13.4	-34.6	-16.5	-11.8	-6.9	-10.7
OR ERRO BEAD	:	-346.0	-347.9	- 323.8	-303.7	-275.6	-251.5	-221.4	-197.3	-183.2	-161.1	-148.9	-102.8	-134.7	-128.6	-120.5	-330.4	-172.3	-130.2	-68.1	-120.0
CORRECTED	20 208	1284.	1281.	1286.	1287.	1286.	1286.	1289.	1288.	1283.	1279.	1207.	1286.	1289.	1297.	1317.	1288.	1281.	839.	420.	.13.
ISPOT DATA	202 20	5-1201	5-1202	5-1203	8-1204	5-1205	5-1206	5-1207	5-1208	8-1709	5-1210	5-1211	5-1212	.5-1213	5-1211	5-1215	8-1216	5-1217	5-1218	8-1219	8-1220

RIPER LEVES OF TALL EFPECTS OF SUPERCAVITATING REDROPOLLS OF FIRITE SPAN

-		•	
-			
í			
-			
-	•		

	36.60		26.57	26.62	26.63	26.62	26.62	26.65	26.64	26.59	26.55	26.63	26.62	26.65	26.73	26.92	26.64	26.57	21.82	15.82	15.80	
	2 0	•	2.2	1.78	7.49	7.20	6.33	6.10	6.15	60.9	5.88	5.56	5.53	5.47	5.26	5.05	13.00	6.20	4.45	2.58	4.03	
B1-574			7. 32	7.19	7.01	6.64	6.26	5.65	5.23	4.86	4.36	4.02	3.89	3.64	3.38	3.21	5.85	4.59	3, 33	1.71	1.97	
	36.05		35.24	32.81	30.78	27.96	25.54	22.51	20.08	18.65	16.43	15.20	14.59	13.78	13.16	12.33	33.76	17.58	13.27	6.95	12.22	
****												12.00										
00 ×00	8-12-01		2-1707	5-1203	5-1204	5-1205	8-1206	5-1207	5-1204	5-1209	5-1210	5-1211	5-1212	5-1213	5-1214	8-1215	5-1216	5-1217	8-1218	5-1219	8-1220	

VEL OPSTREAM VELOCITY (U)

TECEND

SIRES INVES OF BALL RPRETS OF SUPERCAVITATING MIDBOPOILS OF PINITE SPAN

:
APPLIED) .
1
-
10
Ç
8
(BO COPPECTION
2
=
1510
IS SOPRIBERSIORAL
8
_
E
110
9
- A TDBOPOL
•

B- 100 - 1	0.5241	0.5235	0.5245	0.5247	0.5245	0.5245	0.5250	0.5249	0.5239	0.5231	0.5247	0.5245	0.5250	0.5266	0.5303	0.5249	0.5235	0.4300	0.3116	0.3113
1/0	0.1951	0.1938	0.2040	0.2117	0.2197	0.2259	0.2288	0.2357	0.2338	0.2353	0.2320	0.2326	0.2278	0.2191	0.2190	0.1587	0.2332	0.2252	0.2181	0.1462
1/0	5.1258	5. 1609	4.9024	4.7226	4.5508	4.4271	4.3708	4.2423	4.2778	4.2507	4.3094	4.2984	4.3890	4.5648	4.5655	6.3016	4.2886	4.4412	4.5842	6.8414
5	0.0867	0.0651	0.0814	0.0783	0.0754	0.0732	0.0100	0.0674	0.0639	0.0618	0.0581	0.0579	0.0571	0.0546	0.0517	0.1358	0.0651	0.0693	0.0765	0.1196
	0.1441	0.141	0.1408	0.1370	0.1292	0.1213	0.1081	0.0994	9.0919	0.0817	0.0741	0.0714	0.0659	0.0601	0.0556	0.1125	0.0865	0.0935	₩060.0	0.1067
J	0.7304	0.7436	0.6901	0.6470	0.5880	0.5371	0.4724	0.4216	0.3932	0.3473	0.3195	0.3069	0.2891	0.2745	0.2537	0.7091	0.3710	0.4152	0.4143	0.7299
11511	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	17.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
04 85	5-1201	5-1202	5-1203	5-1204	5-1205	5-1206	5-1207	5-1208	5-1209	5-1210	5-1211	5-1212	5-1213	5-1214	5-1215	5-1216	5-1217	5-1218	5-1219	5-1220

ALPHA GEORETRIC ANGLE OF ATTACK CORRECTED FOR SGAPT TFIST
CL LIFT CORPTICIENT, MOMBINESIGNALIZED ON UPSTREAM VELOCITI AND MODEL PLANFORM AREA
CDUNC CE (UNCORRECTED), THE UNCORPECTED DRAG CORPTICIENT AS COMPUTED FROM HEASURED DRAG, AND MODEL BLANFORM AREA
CH MOMENT CORPTICIENT, MOMBINESIGNALIZED ON UPSTREAM VELOCITY, HODEL PLANFORM AREA, AND MEAN CHORD
L/D LIFT-TO-DRAG BATIO = CL/COUNC
D/L DRAG-TO-LIFT RATIO = CDUNC/CL
AN RETROLDS HUNDER, BASE ON BRAN CHORD

RIPER LEVES OF SALL RPPECTS ON SUPERCAVITATING STOROFOLLS OF PIRITE SPAN

-	
-	
-	
-	
-	
-	
_	
-	
-	
41	
STST MO	
_	
-	
~	
-	
VORTEX	
-	
-	
-	
-	
0	
_	
_	
•	
-	
_	
-	
-	
-	
_	
-	
-	
-	
=	
•	
-	
-	
~7	
-	
-	
29	
-	
-	
-	
•	
-	
_	
-	
6	
6	
OF IRAGES OF TRAILING	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
EFFECTS OF	
EFFECTS	
-	
EFFECTS	
EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
POP EFFECTS	
EFFECTS	
POP EFFECTS	
POP EFFECTS	
CORRECTED POP EFFECTS	
CORRECTED POP EFFECTS	
CORRECTED POP EFFECTS	
CORRECTED POP EFFECTS	
CORRECTED POP EFFECTS	
CORRECTED POP EFFECTS	
POP EFFECTS	
CORRECTED POP EFFECTS	
CORRECTED POP EFFECTS	
BATA CORRECTED POP EFFECTS	
BATA CORRECTED POP EFFECTS	
BATA CORRECTED POP EFFECTS	
BATA CORRECTED POP EFFECTS	
BATA CORRECTED POP EFFECTS	
BATA CORRECTED POP EFFECTS	
BATA CORRECTED POP EFFECTS	
BATA CORRECTED POP EFFECTS	
CORRECTED POP EFFECTS	

	9	
CON BESTS/BESS BK S	DE DEOPPIE	DRIFT OFFTREAN STATIC PRESSORE TAP UTILIZED PARTIALLY CAVITATING PARTIALLY
CAVITA 0.82 0.93 1.00 1.10 1.10 1.10 1.10 1.10 1.10 1.1		5 8
SIGC 0.564 0.564 0.564 0.354 0.354 0.273 0.243 0.243 0.243	0.147	VORTICE CRS
A SIGN 6413 660 6613 660 6613 660 6613 660 6613 660 662 662 662 662 662 662 662 662 662		HALT DESTREAS STATIC PRESSURE TAP UTILIZED HALT DESTREAS STATIC PRESSURE TAP UTILIZED HARTIALLY CAVITATING (TAP WETTED) VILT WETTED VILT WETTED VILT WETTED VILT WETTED VILT WETTED VILT WETTED VARIANCE OF ATTACK, CORRECTED FOR EFFECTS OF INAGES OF TRAILING VORTICES INPHATION HUBBER COMPUTED WITH GLOULATED VAPOR PRESSURE ANYTATION HUBBER COMPUTED WITH CALCULATED VAPOR PRESSURE NAG COPPLICIENT, CORRECTED FOR EFFECTS OF INAGES OF TRAILING VORTICES ORRECTED DRAG-TO-LIFT RATIO = CD/CL. ANYTAT LERGER HASSORED FROM HIDCHORD AT CENTROID POSITION, BOUDINERSIONALIZE OBSTANDED FROM PROPEGRAPHS)
		AGES OF SSURE ESSURE F TRAIL
		IS OF IM TIT PRE TAPOR PR MAGES O
2.661 3.407 2.661 3.407 2.666 3.512 2.466 3.512 2.293 3.059 2.066 2.783 1.875 2.343 1.529 2.001 1.322 1.650 1.152 1.650 1.011 1.518 0.055 1.458	1.266	UTILIZED UTILIZED FOR EFFECT ASSURED CAVILCULATED FECTS OF 1 CCL.
2.094 2. 2.094 2. 2.097 2. 2.657 2. 2.233 2. 2.233 2. 2.233 2. 2.233 1. 1.365 1. 1.365 1. 1.365 1. 1.029 1.	2.207 11.310 11.478 11.22.207 11.310 11.478	R TAP UT RETED) RETED) RETED RETED FO R
(0/1) 31 00.197 2.197 2.196 2.197 2.196 2.	0.060 0.055 0.220 0.767 0.056 0.055 0.220 0.200 0.101	NALT DESTREAS STATIC PRESSORE TAP UTILIED DRIT DESTREAS STATIC PRESSORE TAP UTILIED PARTIALLY CAVITATING PARTIALLY PARTIALLY PARTIALLY PARTIALLY PARTIAL
	74 0.060 0.055 0.220 0.059 0.114 0.136 0.161 0.136 0.161 0.115 0.094 0.065 0.226 115 0.094 0.065 0.226 116 0.091 0.077 0.219 2.19 0.100 0.100 0.120 0.140 0.120 0.140 0.120 0.140 0.120 0.140 0.120 0.140 0.120 0.140 0.120 0.140 0.120 0.140 0.	CHLT DESTREAS STATIC PRESSONNEL DASTREAG STATIC PRESSONNEL DASTREAG STATIC PRESSONNEL DASTREAG STATIC PRESSONNEL CAVITATING (TAP WILLY RETED ATTACK, CONFIDENCY OF ATTACK, CONFIDENCY CORPUTED DAG COPPUTED DAG COPPU
0.122 0.132 0.132 0.132 0.002 0.002 0.002	CA TE STATE OF STATE	NALT OPSTREAM STAT PARTIALLY CAVITATI PARTIALLY CAVITATI PARTIALLY CAVITATI PARTIALLY CAVITATI PARTIALLY OPTICE OF AT MITHATON WORDER CAVITATION WORDER CAVITATION WORDER PARTICENT, CAVITY LENGTH MEAS
	12.1.1.1 H-N	
APPE 12.13 12.13 12.13 12.13 12.09 12.09 12.06 12.06 12.06		PC (TH) AT (ALPHAT) AT (ALPHAT) SIGN SIGN CD (D/L)
5-1201 5-1201 5-1201 5-1201 5-1205 5-1206 5-1206 5-1210 5-1210	8-12-16 8-12-15 8-12-17 8-12-18 8-12-19 8-12-20	

RIPER INVES OF BALL RPPECTS ON SUPERCAVITATING BIBBOPOILS OF PINITE SPAN

TE AREA SPAR HAC 77 92 10.0 5.0 2.01

.. INPUT BATA AS RECORDED. EERO READINGS AND TOWNEL TERP DEPO 0. 0.0 0.0 0.0 0.0 0.0 0.0 0. -2.0 0.0 0.0 0.0 0.0 CELL LUS/CE(MORRAL/MEY) F1-0.10000 FUIST- 7200.0 SHAFT DIA.= 1.50IP

PIN' PCAT			-	:	•	73.			204. 52.	188. 50.	_	•	159. 45.		130. 40.		109. 40.			94.	67. 40.	151. 14.	126. 44.	105. 42.	89. 42.	LOAD CELL #1 LIPT (COUNTS)	-	DEAG (CC	STATIC	CATITY PRE	TON TO Q-III-II: Q-FOIL TESTED (S-SBALL, G-SED), L-LAGE	Constant of the state of the st	
S 13	173.0	₹ 235.0	■ 300.0	■ 300.0	■ 325.0	B 350.0	B 348.0	B 343.0	₩ 332.0	R 319.0	B 300.0	₩ 300.0	R 287.0	270.0	256.0	244.0	1 231.0	R 223.0	B 217.0	8 207.0				R 188.0	R 155.0	191		(11)		(MI) di			· ·
\$ 12	116.0	131.0	148.0	149.0	R 142.0	R 132.0	127.6	125.2	R 123.5	R 122.3	R 121.2	R 121.2	R 120.4	119.5	R 118.2	B 117.9	117.0	R 116.8	R 116.0	R 115.5	R 115.0	R 120.1	114.1	111.1	A 107.6			PLANFORM AREA (SQ IN)		HODEL CENTROID (IN)	ADING (RR)	10000	
2 11	-158.0	-282.0	-418.0		-460.0	-460.0	-432.0	-400.0	-358.0	-324.0	-290.0	-286.0	-262.0	-230.0	-204.0	-190.0	-172.0	-164.0	-158.0	-146.0	-138.0	-246.0	-174.0	-130.0	-82.0		·	TROC	PAR (IE)	EEAS. 8	THE BANGBETER READING		
BONA	.76.	893.	1376.	1361.	1351.	1348.	1337.	1328.	1323.	1324.	1319.	1316.	1313.	1312.	1309.	1309.	1304.	1302.	1301.	1308.	1334.	1300.	870.	.169	450.	TR ROOM TI	IT TUBBEL	EN HALP-SE	IN POIL BY	IC BEAN CI	OR VELOCITY BA	5	-
208 80	5-1401	5-1402	5-1403	5-1404	5-1405	5-1406	5-1407	5-1408	5-1409	5-1410	5-1011	5-14120	5-1413	5-1414	5-1415	5-1116	5-1017	5-1418+	5-1419	5-1420	5-1421	5-1022	5-1423	5-1424	5-1125	TEGEND			SPI	7	HON THE		

The second live of the second second second

SIPER LEVES OF SALL RPPECTS OF SEPERCAVITATING STDROPOLLS OF PIETTE SPAN

	-			•	-	~	~	7	0	5		6	6			8	8		-			0	-	~		7
TION	BOR-IBLE		-	÷	19.41	š	7	6			8.33							•								2.71
DATA RESCRIOS.	DEAG-LB	2.98	5.00																							2.22
** STDBOPOLT !	11-1417	16.13	28.84	\$2.79	45.40	26.85	46.63	43.72	40.47	36.22	32.79	29.36	28.95	26.52	23.29	20.66	19.24	17.42	16.60	15.98	14.76	13.94	24.84	17.50	13.03	8.15
:	ALPHA				14.00	•	•																			
	=	-11.0	-140	-100	5-1404	-10-0	-140	-143	-140	-140	-141	-141	-141	-141	-14	-141	-141	-141	-141	-141	-142	-112	-142	-142	=	5-1425

WAL OPSTREAM VELOCITY (U)

TREBAD

LIPER LEVES OF GALL RPENCES ON SUPERCAVITATING RIDBOPOLLS OF PINITE SPAN

-	:	
-	APPLIED!	
-		
-	1	
-		
1	t	
1		
1	6	
-		
-		
-		
-		į
-	į	
The state of the s		
The same		
W. C. C.	i	,
1		•
-	DATA TE BORDINERSTORE	į
	TOGORDA HOL	
	Š	
	•	

901-11	0.3367	0.4538	0.5549	0.5521	0.5502	0.5497	0.5476	0.5459	0.5449	0.5451	0.5441	0.5436	0.5430	0.5428	0.5422	0.5422	0.5412	0.5409	0.5407	0.5420	0.5470	0.5405	0.4484	0.4036	0.3299
る	0.1694	0.1762	0.1761	0.1661	0. 1826	0.2051	0.2169	0.2295	0.2442	0.2537	0.2574	0.2610	0.2652	0.2725	0.2801	0.2755	0.2744	0.2685	0.2639	0.2582	0.2526	0.2655	0.2631	0.2499	0.2475
5	5.9040	5.6766	5.6770	6.0197	5.4772	4.8767	4.6104	4.3580	4.0957	3.9411	3.6854	3.8308	3.7708	3.6691	3.5707	3.6296	3.6438	3.7244	3.7894	3.8725	3.9596	3.7664	3.8012	4.0017	0.0403
5	0.1586	0.1712	0.1773	0.1628	0.1577	0.1203	0.1044	0.0958	0.0896	0.0849	0.0809	0.0010	0.0780	0.0745	9690.0	0.0683	0.0650	0.0643	0.0611	0.0588	0.0558	0.0770	0.0778	0.0749	0.0753
	0.1449	0.1500	0.1480	0.1505	0.1716	0.1925	0. 1924	0.1895	0.1812	0.1703	0.1552	0.1556	0.1451	0.1311	0.1197	0.1097	0.0992	0.0927	0.0877	0.0789	0.0716	0.1373	0.1393	0.1216	0.1127
t	0.856	9.8216	0.0450	9.9058	0.9410	0.9386	0.8869	0.8260	0.7420	0.6712	0.6030	0.5959	9.5471	0.4809	0.4274	0.3961	0.3616	0.3452	0.3324	0.3056	0.2834	0.5172	0.5296	9980	0.4554
ALPHA	14.00	14.00	19.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	10.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00
	-1801	-1402	5-1403	-1404	-1405	-1406	-1407	-1408	-1409	-1410	-1411	-1412	-1413	-1414	-1415	-1416	-1417	-1418	-1419	-1420	-1421	-1422	-1423	1-1424	-1425

ALPHA GEORFIELC ANGLE OF ATTACK CORRECTED FOR SHAFT THIST
CL LIFT COEFFICIENT, HOMDIRENSIONALIZED ON UPSIPERA VELOCITY AND HOBEL PLANFORM AREA
ON UPSIREAM VELOCITY AND HOMBLE PLANFORM AREA
CH HOMENT COEFFICIENT, USUDIRENSIONALIZED ON UPSIREAM VELOCITY, HOMEL PLANFORM AREA
L/D LIFT-TO-DEAG RATIO = CL/COBEC
D/L DRAG-TO-LIFT RATIO = CDUC/CL
RM REVHOLDS HUMBER, DASED ON HEAM CROED

LEGEED

RIPER LEVES OF MALL RPPECTS ON SUPRECAVITATING MIDROPOLLS OF PINITE SPAN

	COURERTS/REBARKS		2		FC (TU)	rc (rr)																					CHIT UPSTREAM STATIC PRESSURE TAP UTILIZED CHIT UPSTREAM STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING (TAP USTREAM) STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING (TAP USTATING (TAP USTRED) FULL WETTED FULL WETTEL FULL WETTEL FULL FULL FULL FULL FULL FULL FULL FULL FULL
	CAVLTB	!	-			2	0.78	0.88	0.91	1.03	1.30		1.60		2. 18	2.60		4.10	4.80	04-9	!	1.40	1.55	1.30			
STSTER	3160	-	-			0 600	0.653	0.605	0.544	0.488	0.434	0.435	0.396	0. 101	0.265	0.218	0.219	0.186	0.158	0.127	0.372	0.394	0.349	0.343			VORTICE CRS
TORTER													0.425				2 0.224						5 0.367				TRAILING TO WORTH
11186	CH/AT	0.643	0.693	0.738	0.139	, a	0.422	0.388	0.363	0.344	0.328	0.329	0.37	0.283	0.278	0.265	0.262	0.249	0.240	0.228	0.313	0.316	0.305	3			10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OF TRE	CD/152	2.412	2.495	2.476	2.504	3.192	3. 190	3.143	3.005	2.827	2.578	2.584	2.412	1.992	1.826	1.653	1.545	1.463	1.316	1.198	2.283	2.316	2.024				PRESSUITE OF THE
IBAGES	-	3.463	3.61	3.420	3.663	3.00	3.588	3.345	3.008	2.723	2.449	2.420	2.223	1,739	1.621	1.473	1.406	1,355	1.246	1.155	2. 102	2. 153	1.979	1.833			ED PECTS O AVITE BD VAPO OF IRAG
ICTS OF	SIGC/AT	-	-	-		2 792	2.640	2.451	2.205	1.981	1.764	1.768	1.61	1, 227	1.081	0.889	0.890	0.760	0.642	0.518	1.512	1.602	1.420	774-1			OTILIZED OTILIZED TORRESORED ALCULATED ALCULAT
101	SIGVAR	-		-		3 361	3.022	2.753	2.442	2.184	1.933	1.935	1.727	1.257	1.109	0.915	0.914	0.781	0.660	0.534	1.591	1.713	1.434	976-1	:	APS OPEN	SCORE TAR SCORE
RE PC TED	250	0.172	0.179	0.179	0.169	200	0.220	0.232	0.246	0.256	0.259	0.263	0.267	0.281	0.277	0.276	0.270	0.265	0.259	0.253	0.267	0.265	0.251	657.0	ARE PO	SSURE T	TACK, CONPUTE
11 CO	5	. 159		0.177	0. 183	120	100	.096	0.000	0.085	0.081	0.081	0.078	070	0.068	.065	0.064	0.061	0.029	0.056	0.077	0.078	0.075	56	DATA	CPRE	5141 5141 11411 11411
PRIOR DATA CORRECTED FOR EFFECTS OF IBAGES OF TRAILING VORTEE SYSTEM			0.152			25.0							9.10										0.122		INDICATED, ALL DATA ARE FOR:	BOTH STATIC PRESSURE TAPS OPEN	ONLY UPSTREAM STATIC PRESSURE TAP UTILIZED CHAIN DUSTREAM STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING (TAP NETTED) FOLLY RETTED FOLLY CORRECTED FOR EPPECTS OF INAGES OF TRAILING VORTICES CARTITATION MUMBER COMPUTED WITH CALCULATED VAPOR PRESSURE CORRECTED BRAGG-TO-LLYT RATIO = CD/CL CAVITY LENGTH MEASURED FROM ATCHIRDID POSITION, MONDINBUSIONALIZE (OBTAILED FROM PROTOGRAPHS)
•	2	. 156	0.852	. 645	906		0.037	. £26	0.742	.63	. 603	. 596			0.398	0.362	. 345	0.332	0.306	0.283	0.517	0.530	0.487		INDIC		
	TABLATA	=	•			12	. 9	15	:	2	=:		14.10		14.07							2 2	14.09				PC(TW) (ALPHAT) SIGO SIGO (D/CD) (D/CD) CAVITH
	00 808	5-14,-01	2-1402	5-1403	5-1404	S-1405	5-1407	8-1408	5-1409	5-14,-10	5-14,-11	5-14120	5-1413	5-14-15	5-1416	5-1417	5-1418+	5-1419	5-1420	5-1421	5-1422	5-1423	5-1424	67-141-6	UNITED OTHERNIS		170210

																						=	62 HORENT ABOUT HIDCHORD (COUNTS)	#3 DRAG (COUNTS)	PIEF STATIC PRESSURE (MM RG)	CAVITY PRE	0-III-II:	AAA-BIR HIRBRE SHIR BOLL & GE	- 1102
	9	PT	236	217	216	201	192	182	17	163	153	=	143	131	119	109	102	92	88	105	100	OAD C							
	126 00 63=0.0403		₽ 376.0	8 372.0	8 368.0	8 357.0	B 348.0	B 337.0	330.0	318.0	B 307.0	₽ 294.0	B 291.0	R 278.0	R 261.0	R 248.0	R 237.0	B 225.0	R 219.0	R 212.0	•	-		SQ IN)		(II) QI		180	SVEEDS)
	3-8 TT 0.0 92.0 12-0.0209	2	124.2	122.6	122.4	121.8	121.1	120.6	119.7	119.5	118.9	117.9	118.0	117.1	116.4	115.9	115.2	114.6	113.9	110.9	108.4			M AREA (S		EL CENTRO	[BC (BB)	-10)	HALL, K-EL
	5 2	•	-	-	~	-	-	~	~	-	•	~	4	~	æ	~	~	~	-	~	~	AHE)	-	ANFOR	=	9 800	677	13/11	21-11
91 PATA 21 14C	2-8 3 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-370.0	-362.0	-340.0	-318.0	-300.0	-284.0	-262.0	-242.0	-224.0	-220.0	-202-0	- 184.0	-168.0	-158.0	-146.0	-138.0	-130.0	-110.0	PER (DEG P		H HODEL PI	P-SPAH (IN	BD, HEAS.	NA BORETE	121 (0201	L FULLARATI
AREA SP. 19.0 5.01	2	MANOA	1193.	1189.	1190.	1189.	1188.	1186.	1188.	1183.	1184.	1180.	1181.	1178.	1179.	1176.	1172.	1181.	1195.	121.	485.	BOOR TER				_			15. CE
## ##	AND 1-9 0. 0.0 0. 0.0 CELL 185/CT	OR ADA	5-1601	5-1602	5-1603+	. 5-1604	5-1605	8-1606	2-1607	8-1608	8-1609	5-1610	5-16110	5-1612	5-1613	5-1614	5-1615	8-1616	5-1617	8-1618	8-1619	LEGEND TR	11	7287	SPAN	BAC	101 TR	ICTAL	•
	TT AREA SPAR 11 AREA SPAR 93 10.0 5.0	HIS TI AREA SPAR 17 93 10.0 5.0 BRAILES AND THREE 1-1 1-2 2.0 0.0 0.0 0.0 99 1.85/CT (MORAL, PRY) 1-7200.0 SRAP!	REALISES AND THENT DATA REALISES AND THENE TEME DEFORE AND AFTER 1-W 1-R 2-B 2-B 3-B 7-F 0.0 0.0 0.0 0.0 0.0 100.0 94.0 1.BS/CT[WORMAL/FRE] 0.100.0 02.0 1.BS/CT[WORMAL/FRE	TI AREA SPAR MAC 91 10.0 S.0 2.01 10.0 S.0 2.01 11.0 2.0 2.01 11.0 2.0 2.0 3.0 3.0 3.0 17 11.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	TI AREA STAN MAC 93 10.0 5.0 2.01 11.0 2.0 2.01 1-0 2.0 2.0 3.0 3.0 3.0 3.0 10.0 0.0 0.0 100.0 0.0 100.0 92.0 10.0 0.0 0.0 99.4 0.0 100.0 92.0 10.0 0.0 0.0 99.4 0.0 100.0 92.0 1200.0 SHAPT DIA.= 1.50IN 1200.0 SHAPT DIA.= 1.50IN 1193400.0 R 122.6 R 372.0 235. 1189370.0 R 122.6 R 372.0 275.	TT AREA SPAN MAC 93 10.0 5.0 2.01 FINES AND TREEL FOR DEFORE AND AFTER 1-R 2-B 2-R 3-B 3-R TT 0.0 0.0 0.0 9.0 0.0 100.0 92.0 0.0 0.0 0.0 92.4 0.0 100.0 92.0 0.0 0.0 0.0 92.4 0.0 100.0 94.0 200.0 SMAT DIA.= 1.50IM 0.1RPUT DATA AS RECORGEDO** 1193400.0 R 122.4 R 375.0 217. 1199370.0 R 122.4 R 368.0 216.	TI AREA STAR MAC 9. 10.0 S.0 2.01 1. 10.0 S.0 2.01 1. 10.0 S.0 2.01 1. 0.0 0.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0	TI AREA SPAR MAC 9.10.0 5.0 2.01 10.0 5.0 2.01 10.0 5.0 2.01 10.0 0.0 0.0 0.0 100.0 0.0 100.0 10.0 0.0 0.0 99.0 0.0 100.0 99.0 10.0 0.0 0.0 99.0 0.0 100.0 99.0 10.0 0.0 0.0 99.0 0.0 100.0 99.0 10.0 0.0 0.0 99.0 0.0 100.0 99.0 10.0 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0	TI AREA SEAR MAC. 93 19.0 \$5.0 2.01 10.0 \$5.0 2.01 10.0 \$0.0 2.0 10.0 \$0.0 3.0 3.0 10.0 \$0.0 99.4 \$0.0 100.0 99.0 10.0 \$0.0 99.4 \$0.0 100.0 99.0 10.0 \$0.0 \$0.0 99.0 10.0 \$0.0 \$0.0 \$0.0 \$0.0 10.0 \$0.0 \$0.0 \$0.0 10.0 \$0.0 \$0.0 \$0.0 10.0 \$0.0 \$0.0 \$0.0 10.0 \$0.0 \$0.0 \$0.0 10.0 \$0.0 \$0.0 \$0.0 10.0 \$0.0 \$0.0 \$0.0 10.0 \$0.0 \$0.0 10.0 \$0.0 \$0.0 10.0 \$0.0 \$0.0 10.0 \$0.0 \$0.0 10.0 \$0	TI AREA STAR MAC. 9.10.0 5.0 2.01 1.0.0 5.0 2.01 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 94.0 1.0.0 0.0 0.0 100.0 94.0 1.0.0 0.0 0.0 100.0 94.0 1.0.0 0.0 0.0 100.0 94.0 1.0.0 0.0 0.0 100.0 94.0 1.0.0 0.0 0.0 100.0 94.0 1.0.0 0.0 0.0 100.0 94.0 1.0.0 0.0 0.0 100.0 94.0 1.0.0 0.0 0.0 100.0 94.0 1.0.0 0.0 0.0 100.0 94.0 1.0.0 0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	TT AREA STAR MAC 9. 10.0 S.0 2.01 1.0 0 0.0 0.0 100.0 0.0 100.0 92.0 1.0 0.0 0.0 0.0 100.0 92.0 1.0 0.0 0.0 0.0 100.0 94.0 1.0 0.0 0.0 0.0 100.0 94.0 1.0 0.0 0.0 0.0 100.0 94.0 1.0 0.0 0.0 0.0 100.0 94.0 1.0 0.0 0.0 0.0 100.0 94.0 1.0 0.0 0.0 0.0 100.0 94.0 1.0 0.0 0.0 0.0 100.0 94.0 1.0 0.0 0.0 0.0 100.0 94.0 1.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 100.0 1.0 0.0 0.0 0.0 100.0 1.0 0.0 0.0 0.0 100.0 1.0 0.0 0.0 0.0 100.0 1.0 0.0 0.0 0.0 100.0 1.0 0.0 0.0 0.0 100.0 1.0 0.0 0.0 0.0 0.0 100.0 1.0 0.0 0.0 0.0 0.0 0.0 100.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TI AREA SEAR MAC. 93 19.0 \$5.0 2.01 10.0 \$5.0 2.01 10.0 \$0.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	TI AREA STAR MAC. 93 10.0 5.0 2.01 10.0 5.0 2.01 10.0 0.0 0.0 100.0 0.0 100.0 92.0 10.0 0.0 0.0 92.4 0.0 100.0 92.0 10.0 0.0 0.0 92.4 0.0 100.0 92.0 1200.0 SHAPT DIA.= 1.50IN 1200.0 SHAPT DIA.= 1.50IN 1193900.0 N 120.2 N 376.0 236. 1189370.0 N 122.4 N 308.0 192. 1189310.0 N 122.4 N 300.0 192. 1189310.0 N 121.6 N 300.0 174. 1189262.0 N 119.5 N 300.0 174. 1189262.0 N 119.5 N 300.0 153. 1189262.0 N 119.5 N 307.0 153. 1189262.0 N 119.5 N 204.0 143.	TI AREA STAR MAC 9.10.0 5.0 2.01 1.0.0 6.0 99.4 0.0 100.0 92.0 1.0.0 6.0 99.4 0.0 100.0 94.0 1.0.0 6.0 99.4 0.0 100.0 94.0 1.0.0 8.0 100.0 0.20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TI AREA SEAR MAC. 9.1 10.0 5.0 2.01 10.0 5.0 2.01 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 94.0 10.0 0.0 0.0 100.0 94.0 10.0 0.0 0.0 100.0 94.0 10.0 0.0 0.0 100.0 94.0 10.0 0.0 0.0 100.0 94.0 10.0 0.0 0.0 100.0 94.0 10.0 0.0 0.0 100.0 94.0 10.0 0.0 0.0 100.0 94.0 10.0 0.0 0.0 100.0 94.0 10.0 0.0 0.0 100.0 94.0 1199370.0 8 122.4 8 368.0 216. 1189362.0 8 112.4 8 348.0 192. 1189380.0 8 122.4 8 348.0 192. 1189380.0 8 112.0 8 337.0 174. 1189262.0 8 119.5 8 310.0 174. 1181220.0 8 118.9 8 294.0 143. 1181220.0 8 118.0 8 294.0 143.	TI AREA SEAR MAC. 93 10.0 5.0 2.01 10.0 5.0 2.01 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 92.0 1193400.0 R 122.6 R 372.0 277. 1190362.0 R 122.4 R 346.0 192. 1180300.0 R 121.0 R 337.0 182. 1181262.0 R 119.7 R 310.0 174. 1181262.0 R 119.7 R 310.0 163. 1181262.0 R 117.9 R 294.0 143. 1181262.0 R 117.9 R 294.0 143. 1181262.0 R 117.9 R 294.0 143.	TI AREA STAR MAC. 9.10.0 5.0 2.01 10.0 5.0 2.01 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 10.0 0.0 0.0 0.0 100.0 10.0 0.0 0.0 0.0 100.0 10.0 0.0 0.0 0.0 100.0 10.0 0.0 0.0 0.0 100.0 10.0 0.0 0.0 0.0 100.0 10.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0	TI AREA STAR MAC 9.10.0 5.0 2.01 1.0.0 6.0 99.4 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 102.0 92.0 1.0.0 0.0 0.0 102.0 102.0 1.0.0 0.0 0.0 102.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 102.0 1.0.0 0.0 0.0 0.0 1.0.0 0.0 0.0 0.0 1.0.0 0.0 0.0 0.0 1.0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0	TI AREA STAN MAC. 93 19.0 \$5.0 2.01 10.0 5.0 2.02 10.0 0.0 0.0 99.4 0.0 100.0 99.0 10.0 0.0 0.0 99.4 0.0 100.0 99.0 10.0 0.0 0.0 99.4 0.0 100.0 99.0 1200.0 SRAFT DIA. = 1.50IN 1199370.0 R 122.6 R 375.0 236. 1199370.0 R 122.6 R 375.0 201. 1199370.0 R 122.6 R 377.0 201. 118936.0 R 122.4 R 368.0 192. 118936.0 R 121.8 R 357.0 201. 1189284.0 R 119.7 R 310.0 153. 1189224.0 R 119.9 R 307.0 153. 1189220.0 R 119.9 R 294.0 143. 1179184.0 R 115.9 R 294.0 143. 1179184.0 R 115.2 R 279.0 119. 1177168.0 R 115.2 R 279.0 119.	TI AREA STAR MAC. 93 10.0 5.0 2.01 10.0 5.0 2.01 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 92.0 10.0 0.0 0.0 100.0 92.0 1193900.0 R 122.6 R 372.0 277. 1190362.0 R 122.6 R 337.0 236. 1180310.0 R 121.8 R 348.0 192. 1181262.0 R 119.7 R 310.0 174. 1181262.0 R 119.7 R 310.0 153. 1181224.0 R 117.9 R 291.0 143. 1181224.0 R 117.9 R 291.0 143. 1181220.0 R 115.9 R 291.0 143. 1172168.0 R 115.9 R 291.0 192. 1181220.0 R 115.9 R 291.0 193. 1171202.0 R 115.9 R 291.0 193. 1171202.0 R 115.9 R 291.0 193. 1172168.0 R 115.9 R 291.0 193.	THE AREA SEAR MAC S. 0 2.01 S. 0 2.0	THE AREA STAR MAC 10.0 5.0 2.01 10.0 5.0 2.01 10.0 5.0 2.01 10.0 5.0 2.01 10.0 5.0 2.01 10.0 2.01	TI AREA SPAR MAC 93 10.0 5.0 2.07 1.0 0 5.0 2.07 1.0 0 0.0 0.0 104.0 92.0 0.0 0.0 0.0 0.0 104.0 94.0 1.0 0.0 0.0 0.0 104.0 94.0 1.0 0.0 0.0 0.0 104.0 94.0 1.0 0.0 0.0 0.0 104.0 94.0 1.0 0.0 0.0 0.0 104.0 94.0 1.0 0.0 0.0 0.0 104.0 94.0 1.0 0.0 0.0 0.0 104.0 94.0 1.0 0.0 0.0 0.0 104.0 94.0 1.0 0.0 0.0 0.0 104.0 94.0 1.0 0.0 0.0 0.0 104.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 104.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 104.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 104.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 104.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 104.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 104.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 104.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 104.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 0.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 0.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 0.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 0.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 0.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 0.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 0.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 0.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 0.0 104.0 104.0 104.0 1.0 0.0 0.0 0.0 0.0 104.0 104.0 104.0	THE A SPAN MAC S. C. 2.07 S. C. 0.07 S. C. 0.07	TI AREA SPAR MAC 9.10.0 5.0 2.01 1.0.0 5.0 2.01 1.0.0 5.0 2.01 1.0.0 0.0 0.0 100.0 92.0 0.0 0.0 0.0 100.0 92.0 0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 100.0 92.0 1.0.0 0.0 0.0 122.0 8 122.0 192.0 192.0 1.0.0 0.0 0.0 0.0 100.0 192.0 192.0 1.0.0 0.0 0.0 0.0 100.0 192.0 193.0 1.0.0 0.0 0.0 0.0 100.0 192.0 193.0 1.0.0 0.0 0.0 0.0 100.0 193.0 1.0.0 0.0 0.0 0.0 100.0 193.0 1.0.0 0.0 0.0 0.0 100.0 193.0 1.0.0 0.0 0.0 0.0 100.0 193.0 1.0.0 0.0 0.0 0.0 100.0 193.0 1.0.0 0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 0.0 100.0 1.0.0 0.0 0.0 0.0 0.0 1.0.0 0.0 0.0 0.0 1.0.0 0.0 0.0 0.0 1.0.0 0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.0 0.0 1.0.0 0.	TI AREA SPAR MAC 93 10.0 5.0 2.0 1 10.0 5.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0	The state of the	The Area Span add The	The state of the

RIPRE LEVES OF WALL RPFECTS OF SUPRECAVITATISC HYDROPOLLS OF PIFITE SPAN

:
5
2
CTION
2
200
-
-
DATA
9
-
=
2
2
* STDROPOLL
•

0	ALPRA	LIPT-LB	DE VG-FB	8781-90B	VEL-PPS
-01	16.00	40.51	11.12	9.10	25.71
-03	16.00	37.47	10.95	8.51	25.67
-03	16.00	36.67	10.78	1.45	25.68
-0-	16.00	31.16	10.33	1.24	25.67
05	16.00	32.24	9. 96	7.99	25.66
90	16.00	30.43	9.51	7.81	25.64
07	16.00	28.82	9.22	7.49	25.66
08	16.00	26.61	8.72	7.42	25.61
08	16.00	24.60	8.27	7.21	25.62
10	16.00	22.78	7.74	6.85	25.58
=-	16.00	22.38	7.61	6.90	25.59
12	16.00	20.57	7.07	6.57	25.56
5-1613	16.00	18.75	6.38	6.32	25.57
=-	16.00	17.14	5.85	6.14	25.54
15	16.00	16.13	5.40	5.89	25.50
16	16.00	14.92	4.90	5.68	25.59
-11	16.00	14.10	1.65	5.43	25.73
-18	16.00	13.24	4.35	4.31	20.34
-119	16.00	11.19	3.39	3.39	16.92
LEGEND	YEL	OPSTREAM	VELOCITY	(0)	

RIPER ISSUES OF WALL RPPACTS ON SUPRECAVITATING HYDROPOLLS OF PINITE SPAN

	BE-106	0.5235	0.5226	0.5228	0.5226	0.5224	0.5220	0.5224	0.5214	0.5216	0.5208	0.5210	0.5204	0.5206	0.5200	0.5192	0.5210	0.5239	0.4141	0.3446
S APPLIED .	7/9	0.2632	0.2900	0.2815	0.2864	0.2946	0.2373	0.3338	0.3105	0.3.175	0.3196	0.3194	0.3218	0.3159	0.3145	0.3064	0.2980	0.2971	8906.0	0.2836
CORRECTIONS	27	3.7995	3.5716	3.5528	3.4913	3.3907	3.3641	3.2914	3.2203	3,1493	3.1292	3.1306	3.1075	3.1656	3.1793	3.2642	3,3555	3.3658	3.2591	3.5261
FORE (80	80	1.1022	0.0958	0.0951	1.0927	0060-	1.0881	0.0843	0.0840	0.0815	0.0776	1.0781	9.0.0	0.0717	6690.0	0.0672	0.0643	9090.	0.0773	9.0878
BOUDINESSIONAL	CDONC	0.2404	0.2374	0.2333 0	0.2233 0	0.2151	0.2052 0	0.1982 0	0.1879	0.1774 0	0.1659 0	0.1628 0	0.1510	0.1351 0	0.1232 0	0.1133 0	0.1012	0.0943 0	0.1464 0	0.1654 0
PATA 11 BA	đ	0.9136	0.8478	0.8290	9.77%	0.7301	0.6902	0.6525	0.6049	0.5588	0.5191	0.5096	0.4693	0-4276	0.3918	0.3698	0.3396	0.3176	0.4771	0.5831
- TIDEOLOTE	ALPEA	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	15.00	16.00	16.00	16.00	16.00	16.00	16.00
	08 808	1091-5	5-1602	5-1603	5-1604	5-1605	3-1606	8-1607	8-1608	8-1609	5-1610	5-1611	5-1612	5-1613	5-1614	5-1615	5-1616	5-1617	5-1618	5-1619

ALPHA GEORETRIC ANGLE OF ATTACK CORRECTED FOR SHAFT THIST
CL LIFT COEFFICIENT, HOWDIRERSIONALIZED ON UPSIFIERA VELOCITI AND HOBEL PLANFORM AREA
ON UPSIFIERA PLOCITI AND HOUDEL PLANFORM AREA
CR HORET COEFFICIENT, HOWDIRENSIONALIZED ON UPSIFIERA VELOCITY, HODEL PLANFORM AREA, AND MEAN CROED
L/D LIFT-TO-DRAG RATIO = CL/COUNC
D/L DRAG-TO-LIFT RATIO = CDUSC/CL
RM RETHOLDS HUMBER, BASED ON MEAN CHORD

LEGEND

RIPER INVES OF WALL RPPECTS OF SUPERCAVITATING MIDROPOLLS OF PINITE SPAR

	COMBETS/BEBANES		DE CHORD
	CAVITY 0.90 0.90 1.02 1.03 1.35 1.35 1.35	7.000	S2 22
PRIOR DATA CORRECTED FOR EPPECTS OF TRAGES OF TRAILING VORTEE SYSTEM	SIGC 0.605 0.609 0.523 0.523 0.406 0.406 0.373 0.374	0.275 0.231 0.136 0.136 0.137	CHIT DESTREAG STATIC PRESSURE TAP UTILIZED CHLT DESTREAG STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING (TAP WETTED) PARTIALLY CAVITATING (TAP WETTED) FULLY WETTED FULLY WETTED FULLY WETTED CANTON BUILDER COMPUTED WITH MEASURED CAVITY PRESSURE CAVITATION WUMBER COMPUTED WITH CALCULATED VAPOR PRESSURE DAG CORPICIENT, CORRECTED FOR BFPCTS OF IRAGES OF TRAILING VORTICES CORRECTED DRAG-TO-LIFT BATIO = CD/CL CAVITY LEBGTH MEASURED FROM RIDCHORD AT CENTROID POSITION, WONDINENSIONALIZED ON MEAN (OBTAINED FROM PHOTOGRAPHS)
TORTEX	S16V 0.79% 0.79% 0.6627 0.6627 0.6523 0.676 0.476 0.438		RAILING IG VORTI
11110	0.346 0.362 0.346 0.329 0.329 0.299 0.276 0.276	0.256 0.275 0.275 0.275	S OF 1
1 TE	CD/AT2 3.053 3.053 2.964 2.964 2.953 2.159 2.159 2.113 2.014	1.723 1.292 1.205 1.866 2.106	PIRCE PRESSU R PRESSU ES OF TI
IBAGES	Ommananan	1.524 1.397 1.319 1.699 2.074	BD PECTS O CAVITY CAVITY OF LAAG
ECTS OF	2.309 2.309 2.309 2.309 1.962 1.962 1.963 1.655 1.655 1.653	•	PORFICED C ALCOLATED C ALCOLAT
TO EPP	2.613 2.613 2.528 2.279 2.279 2.140 1.986 1.536 1.384 1.384	1.005 0.007 0.507 1.230 1.594	PRESSORE TAP (TAP WETTED) K, CORRECTED PUTED WITH CI RECTED FOR BATIO ERATIO = CD FROM MIDCHC RAPHS)
PRECTED	(P/L) 0.264 0.283 0.297 0.297 0.397 0.397 0.397 0.397 0.397	-426 0.136 0.072 0.317 1.005 -392 0.124 0.070 0.316 0.049 -340 0.114 0.067 0.308 0.577 -316 0.095 0.061 0.299 0.577 -316 0.095 0.061 0.299 0.577 -477 0.147 0.077 0.308 1.230 -593 0.166 0.080 0.285 1.594 IMPICATED, ALL DATA ARE POR: 1. SUPERCATITHING FLOW.	CHIT DESTREAS STATIC PRESSURE TAP UTILIZED CHIT DESTREAS STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING (TAP WETTED) PARTIALLY CAVITATING (TAP WETTED) FARTIALLY CAVITATING (TAP WETTED) (TRUE) ANGLE OF ATTACK, CORRECTED FOR RFFR(TS OF INAGES OF TRAILING WO ALPRAYS - 2 CAVITATION NUMBER COMPUTED WITH MEASURED CAVITY PRESSURE CAVITATION NUMBER COMPUTED WITH CALCULATED WADOR PRESSURE DRAG CORPICIENT, CORRECTED FOR RFPECTS OF INAGES OF TRAILING WORTICES CORRECTED DRAG - TO - LIFT BAYIO - CD/CL CAVITY LENGTH MEASURED FROM MIDCHORD AT CENTROID POSITION, WONDINENSIO (OBTAINED FROM PHOTOGRAPHS)
DATA CO	0.00933 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093	0.136 0.072 0.316 0.124 0.070 0.316 0.114 0.064 0.316 0.102 0.064 0.299 0.095 0.061 0.299 0.197 0.077 0.309 0.166 0.295 ccareb, all data are P	COLI DESTREAS STATIC CULI DESTREAS STATIC CULI DESTREAS STATIC PARTALLY CAVITATING FARTALLY CAVITATING FULLY UETTED CAVITATION NUMBER CON CAVITATION NUMBER CON DRAG CORPICIENT, CON CANTY LENGTH MEASURE CAVITY LENGTH MEASURE (OBTAINED FROM PHOTOG
PPRIOR		0.136 0.124 0.124 0.102 0.102 0.147 0.166 SUPERCAL	ONLY DESTREA CHIT DESTREA CHIT DESTREA FARTIALLY CA FULLY WEYTED (TRUE) ANGLE CAVITATION M CAVITATION M CAVITATION M CAVITATION M CAVITATION M CAVITATION M CAVITATION M CAVITATION M CONTRACTOR M (OBTAINED FR
		00.172 00.374 00.374 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		16.07 16.07 16.07 16.06 16.06 16.11 16.11	2 41
	N	S-1613 16.08 S-1614 16.07 S-1615 16.06 S-1617 16.06 S-1619 16.11 UBLESS OTHERWISE	

			-			UT NIDCHORD (COUNTS) SSURE (AM MG) SSURE (AM MG)
		CA V 89. 86.	5	\$ \$ \$ \$ \$ \$ \$ \$ \$		46. 1 LIFT (COURTS) 2 MONERT ABOUT MIDCHORD (COURTS) 3 DRAG (COURTS) 19 STATIC PRESSURE (MM MG) 10 CAVITT PRESSURE (MM HG) 10 CAVITT PRESSURE (MM HG)
		•				LOAD CELL 61 10 62 P 62 P 63 P 63 P 63 P 63 P 63 P 63 P
	E ABD AFTER 3-R TT 6-0 96-0 11-0 93-0 82-6.02090 83-0.04030 AS RECORDED.	S 506.0	# # # # # # # # # # # # # # # # # # #	# #18.0 # 392.0 # 377.0 # 363.0	331.0 313.0 313.0 313.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 3	R 252.0 SQ IH OID(IH
		S 62 R 133.9 B 132.4 R 131.2	H 130.1 H 129.1 H 128.6 H 128.0 R 127.2	# 126.7 # 125.3 # 124.9 # 124.0	122.5 122.0 122.0 121.1 121.0 120.5 120.5 130.5	R 113.9 R) FORB AREA (
PUT DATA PAB BAC 5.0 2.01	# 55EB	542.0 -542.0 -534.0 -500.0	- 452.0 - 452.0 - 428.0 - 400.0 - 378.0	- 154.0 - 316.0 - 216.0 - 276.0 - 256.0	- 24 4.0 - 226.0 - 214.0 - 209.0 - 178.0 - 172.0 - 166.0	2. 2.0
10-01 10.01	4	1455. 1455. 1454. 1454.	1466. 1486. 1437. 1438.	1435. 1430. 1427. 1425. 1417.	1415. 1410. 1404. 1406. 1406. 1403.	
212	2E20 EEADIGS 1ABOR 1-2 1-0 0. 0.0 0.0 0. 0.0 0.0 CRL 125/CT (#	S-1601 S-1802+ S-1803+ S-1803	\$ -1605 \$ -1806 \$ -1807 \$ -1808 \$ -1809 \$ -1610	5-1811 5-1812 5-1813 5-1914 5-1815 5-1816	5-1618 5-1619 5-1820 5-1821 5-1823 5-1824 5-1825 5-1825 5-1825	LEGEND TR LEGEND TR TT AREA SPAN SPAN SPAN

RIPER INVES OF WALL RPPECTS ON SUPRECAVITATING HYDROPOLLS OF FINITE SPAN

VEL-PPS				:	28.11	.0			:	9.0	:	-	6.2	2.9	7.8	7.8	7.8	7.8	1.7	7.7	1.7	7.6	7.7	7.7	7.9	1.7	1.8
					11.28																						
87-978Q					15.61																						
ווע-נו	54.91	54.11	52.64	50.65	48.03	45.81	43,39	40.58	36.36	37.76	35.95	34.14	32.12	30.11	28.09	26.07	25.47	24.85	23.05	21.83	21.23	20.42	18.79	18. 18	17.57	16.96	21.54
77687					18.00																						
02 30	5-1801	5-1802	5-1603	5-1004	5-1805	8-1806	5-1807	-18.		-18	-18.	=	-18.	- 18.	-18.	-18.	- 18.	-18.	-18.	-18.	-18.	18	- 18.	-18.	-18.	-118.	- 18.

VEL OPSTREAM VELOCITY (U)

EIPER INVES OF BALL RPPECTS OF SUPRECAVITATING REDBOPOILS OF PINITE SPAR

•
•
9
=
7
=
-
5
=
Ħ
7
×
=
Q
0
0
3
2
0
•
-
=
5
=
=
=
=
2
9
L DATA IN HONDINERSTONAL PORM (NO CONSECTIONS APPLIED)
=
_
=
=
•
-
BYDROPOL
2
2
ā
=
=

9-++OL+H4	0.5694	0.5692	0.5692	0.5692	0.5678	0.5674	0.5678	0.5672	0.5661	0.5663	0.5658	0.5648	0.5643	0.5639	0.5632	0.5624	0.5619	0.5621	0.5612	0.5600	0.5595	0.5591	0.5604	0.5604	0.5636	0.5608	0.4422	0.3894
1/4	0.2850	0.2903	0.2961	0.3027	0.3137	0.3186	0.3264	0.3295	0.3616	0.3410	0.3451	0.3497	0.3546	0.3586	0.3648	0.3643	0.3624	0.3621	0.3597	0.3565	0.3616	0.3510	0.3499	0.3490	0.3478	0.3448	0.3483	0.3294
2	3.4728	3.4451	3.3770	3.3041	3.1883	3.1386	3.0635	3.0348	2.9273	2.9325	2.8976	2.6593	2.8204	2.7885	2.7410	2.7451	2.7594	2.7616	2.1798	2.8047	2.7651	2.8487	2.8582	2.8654	2.8751	2.9003	2.8712	3.0357
5	0.1190	0.1190	0.1136	0.1093	0.1059	0.1024	0.0997	0.0983	0.0958	0.0952	0.0939	0.0916	0.0892	0.0878	9.80.0	0.0815	0.0812	0.0793	0.0776	0.0745	0.0742	0.0724	0.0672	0.0660	0.0634	0.0621	0.0945	0.0983
	0.2966	0.2948	0.2928	0.2877	0.2842	0.2757	0.2672	0.2528	0.2487	0.2442	0.2358	0.2276	0.2175	0.2065	0.1965	0.1826	0.1778	0.1733	0.1601	0.1509	0.1492	0.1394	0.1273	0.1229	0.1170	0.1131	0.2333	0.2493
5	1.0300	1.0156	0.9887	0.9507	0.9061	0.8653	0.8186	0.7671	0-7280	0.7161	0.6831	0.6508	0.6135	0.5759	0.5387	0.5013	0.4907	0.4786	0.4452	0.4233	0.4124	0.3972	0.3638	0.3521	0.3365	0.3280	6699.0	0.7569
TELLE	10.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00
04 408	-1801	-1802	-1803	-1804	-1605	-1806	-1807	-1808	5-1809	-1816	-1811	-1812	-1013	-1814	-1815	-1016	-1017	-1818	-1819	-1820	-1821	-1822	-1823	-1824	-1825	-1826	-1827	-1826

ALPRA GEORETPIC ANGLE OF ATTACK CORRECTED FOR SHAFT TRIST
CL LIFT COEFFICIENT, BORDINERSIONALIZED ON UPSTREAM VELOCITY AND HODRE PLANFORM AREA
CDUNC CD (UNCORRECTED), THE UNCORRECTED DRAG CORFICIENT AS COMPUTED FROM REASURED DRAG, AND MORDINERSIONALIZED
ON UPSTREAM VELOCITY AND MODRE PLANFORM AREA
CH HOMEN'S PROPERTIENT, BORDINERSIONALIZED ON UPSTREAM VELOCITY, HODEL PLANFORM AREA, AND MEAN CHORD
L/D LIFT-TO-DRAG BATIO = CL/COUNC
D/L DRAG-TO-LIFT RATIO = CDUNC/CL
NU RETWOLDS HUMBER, DASED ON MEAN CHORD

EIPER LEVES OF WALL EFFECTS OR SUPERCAVITATING HYDROPOLLS OF FINITE SPAN

	COLDERS / DEGARKS			REAN CHORD
:	CAVL 0.099 0.992 1.20 1.20 1.20 2.00 2.00		2	
SYSTER	516C 6.749 6.749 6.749 6.749 6.749 6.550 6	0.15245	POBETC	CES
**PRIOR DATA CORRECTED FOR RPPECTS OF INAGES OF TRAILING VORTER SYSTEMS	CE/AT SIGN 0.315 0.940 0.315 0.940 0.315 0.941 0.315 0.941 0.315 0	189719938	BDICATED, ALL DATA ARE FOR: SOPRIGATING FILES BOTH STATIC PRESSUR TAPS OPEN. BUTH UBSTREAM STATIC PRESSURE TAP UTILIZED FARTIALLY CANTEATING (TAP RETTED) PARTIALLY CANTEATING (TAP RETTED) FOR THE BOTH STATIC (TAP RETTED)	CAVITATION NUMBER CORPOTED NITE REASONED CAVITY PRESSURE CAVITATION NUMBER COMPOTED WITE CALCULATED VAPOR PRESSURE DRAG COZPECIENT, CORRECTED FOR REPECTS OF IRAGES OF TRALLING VORTICES CORRECTED DRAG-TO-LIFT BATIO = CD/CL CAVITY LENGTH ALS SURED PROM AIDCHORD AT CERTROID POSITION, NONDIMENSIONALIZED ON (OBTAINED FROM PROTOGREMES)
OF TRAIL	CDATE 2 999 2 999 2 999 2 999 2 999 2 999 2 999 3 999		P IMAGES O	COMPUTED WITH ARASORED CAVITY PRESSURE COMPUTED WITH CALCULATED TAPOR PRESSURE INTEGRAL OF LANGES OF TRAILIFT BATTO - CD/CL SURED POM MIDCHORD AT CEMTROID POSITION 100GRAMES)
OF INACES	7A7 CL/A7 35 3.245 56 3.245 56 3.245 57 2.916 57 2.916 57 2.92 57 2.92 57 2.92 58 2.92 58 2.92 58 2.92 58 3.92 58 3.92		PIERD FIRED	LATED CAVITY LATED VAPOR IS OF IRAG
R PPECTS	2.963 2.355 2.355 2.356 2.360		OPEN. E TAP UTII E TAP UTII TTED) ECTED FOR	ITH REASU ITH CALCU FOR EPPEC CD/CL MIDCHORD
INECTED PO	6/2/2 6/		** SUPERCATED, ALL DATA ARE POR: ** SUPERCATTATING PLON*. ** BOTH STATIC PRESSURE TAP UTILIZED CULT DESTREAM STATIC PRESSURE TAP UTILIZED FARTIALLY CAVITATING (TAP RETTED) PURITY SETTED (TRUE) AUGIE OF ATTACK, CORRECTED FOR SFFE (TRUE) AUGIE OF ATTACK, CORRECTED FOR SFFE	CAVITATION NUMBER CORPOTED WITH MEASURED CAVITY PRESSURE CAVITATION NUMBER COMPOTED WITH CALCULATED TAPOR PRESSUR CORRECTED FOR EFFECTS OF LAAGES OF TRACORRECTED DRAG-TO-LIFT BATIO = CD/CL CAVITY LENGTH MEASURED PROM HIDCHORD AT CENTROID POSITIO (OBTAINED FROM PROTOGRAMS)
DATA CO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMDICATED, ALL DATA ARE POR: 1. SOPERCATTATING FLOW. 2. BOTH STATIC PRESSUR TAP OULT UPSTREAM STATIC PRESSU CULT DESTREAM STATIC PRESSU PARTIALLY CAVITATING (TAP 8 POLLY RETRED (TRUE) AUGIE OF ATTACK, COR	CAVITATION NUBBER CORPUTED CAVITATION NUBBER CORPUTED DRAG CORPUTED CORRECTED TAGGER CAVIT LENGTH MEASURED PROFOGENORS PROBINED PROFOGENORS PROFOGENORS CORTILED PROFOGENORS PROFOGENORS CORTILED PROF
0184.	CD 0.294 0.229 0.220 0.229 0.220 0.229 0.229 0.220 0.229 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.2		HDICATED, AL SOPRACIAL SOPRACIAL BOTH STAT ONLY DESTRA CHIT DESTRA PARTIALLY CA PARTIALLY CA PARTIALLY CA PARTIALLY CA APATIALLY CA APATIALLY CA APATIALLY CA APATIALLY CA APATIALLY CA APATIALLY CA APATIALLY CA APATIALLY CA	TTATION TTATION G COEFI BECTED TTE LED
	C. C			E-94U
	######################################		OTHERNISE PCTY PC(TY PC(TY PAT (ALPHAT AT	SIG SIG (D/L) CAVLI
	S - 18 - 13 - 18 - 18 - 18 - 18 - 18 - 18	S-1826 S-1821 S-1822 S-1822 S-1823 S-1825 S-1825 S-1825 S-1826	DELESS OTHERHISS LEGEND PC(T) AT (ALPHA)	

																												LIFF (COURTS)	BOBENT ABOUT MIDCHORD (COUNTS)	SEAST DEPOSITE AND	3 M	1	TI-BUN MUMBER, THIS FOLL & 1	
ITE SPA				PCAV	151.	138.	109.	99.		80.	75.	75.	: :	28.	56.	53.	6		:	÷	:	::	.3.	:	:	ż	: :	11 LIFE	12 BOBEN	THE COLUMN				
S OF PIE				PINE	375.	359.	324.	304.	284.	270.	256.	255.	241.	211.	211.	198.			185.	139.	130	130		106.	100.	ż	124.	TOVD CELL		•	: 2	BCB 80		
TDBOPOIL		E AND AFTER 1-B TT 10.0 93.0 18.0 95.0 82-0.02090 83-0.04030	•	13	602.0	598.0	584.0	573.0	564.0	557.0	543.0	543.0	528.0	495.0	493.0	477.0	159.0	0.00	0.00	385.0	372.0	365.0	346.0	331.0	324.0	315.0	265.0	3		-	•			
TING R		AFTER FT 93.0 95.0	DRDED	w	- 4	~ •		~	~ .			=	~ •		-	-	-	= 6	. ~	-	-			-	-		. ~		** 0-7	17 75)	E) QX ON		RVERS	
AVITA		44666	3 880	2	36.8	135.2	71.	130.1	128.9	128.7	128.1	128.1	127.8	126.6	126.4	126.0	125.5	124.6	123.1	122.9	122.	27.5	121.2	120.4	119.6	119.1	13.1				CENT	9	11,1	
SUPERC		2 2 2	DATA S	s i			.	-	= 6	× a		~	~ .		-	-	-			-	-			_	-		. ~	HN)	-	FORE	RODE	READE	108	
PECTS OF	2.01	2-F 3	**IMPUT DATA AS RECORDED.		-560.0	-548.0	-512.0	-488.0	-466.0	-452.0	-432.0	-432.0	-412.0	-364.0	-358.0	-342.0	-316.0	-298.0	-266.0	-254.0	-240.0	-236.0	-220.0	-208.0	- 198.0	-194.0	-156.0			SOURCE PLANFORM AREA (SQ IN)	CHORD, HEAS. & HODEL CENTROID(IN)	MANORETER READING (BR)	POLARITY (· · · · · · · · · · · · · · · · · · ·
OF WALL ET	AREA SPAN 10.0 5.0	2-E			1653.	1052.	16.39.	1436.	1434.	1422.	1418.	1016.	1411.	1012.	1406.	1408.	1405.	1400.	1397.	1395.	1394.	1389.	1390.	1390.	1394.	1396.	602.	ROOM TEMPER	. Tanna		BEAR CHORD	PELOCITY	SGAFT TWIST (DECREES/IN-LW) LOAD CRLL POLARITY (W-WORRAL, N-MRVERSE)	
RIPER LIVES OF VALL EPPECTS OF SUPERCAVITATING REDROPOLLS OF PINITE SPAN	TH TT AREA 76 94 10.0	28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2	5-21020	5-21030	8-2105		5-2107.	5-2109	5-2110			5-2114	1150				5-2120			5-21230			27	8-2128	5-2130	=	-	1287			18101	

EIPER LEVES OF WALL EPPECTS OF SUPERCAVITACIUG STDROFOLLS OF FIBITE SPAR

BESSORE	PCAV	153.	151.	138.	122.	169.	99.	.68	81.	80.	75.	75.	71.	. 69	58.	56.	53.	.64	47.	45.	. ++	43.	43.	43.	43.	#3.	•3.	4 3.	. 3.	43.	:
STATIC 1	PIBP	360.	360.	344.	327.	309.	289.	269.	255.	255.	241.	240.	226.	211.	196.	196.	183.	168.	155.	145.	130.	124.	115.	115.	107.	101.	91.	85.	79.	79.	109.
AND RTDBO	2	-505.0	-502.1	-498.1	-493.2	-484.3	-473.3	-464.4	-459.5	-457.6	-443.6	-443.7	-428.8	-415.8	-395.9	-394.0	-378.0	-360.1	-341.2	-321.2	-301.3	-286.4	-273.4	-266.5	-261.6	-247.7	-232.7	-225.8	-216.9	-138.9	-167.0
PRIMINGS, SIGHS,	13	-37.2	-36.0	-35.2	-33.3	-31.3	-30.0	-28.8	-28.7	-28.5	-27.9	-27.9	-27.5	-26.8	-26.3	-26.1	-25.6	-25.1	-24.2	-23.2	-22.6	-22.4	-21.9	-26.8	-21.4	-20.6	-19.8	-19.0	-18.4	-11.5	-12.4
FOR TERO REA	=	-564.0	-560.0	-548.0	-532.0	-512.0	-488.0	-466.0	-448.0	-452.0	-432.0	-432.0	-412.0	-388.0	-364.0	-358.0	-342.0	-316.0	-298.0	-282.0	-266.0	-254.0	-240.0	-236.0	-230.0	-220.0	-208.0	-198.0	-194.0	-126.0	-156.0
CORRECTED	-	1457.	1453.	1452.	1942.	1439.	1436.	1434.	1429.	1422.	1418.	1416.	111.	14 10.	1412.	1408.	1408.	1405.	1400.	1399.	1397.	1395.	1394.	1389.	1388.	1390.	1390.	1394.	1396.	780.	602.
ISPUT DATA	02 808	5-2101	5-2102	\$-2103	5-2104	5-2105	2-2106	5-2107	5-2108	5-2109	5-2110	5-2111	5-2112	. 5-2113	5-2114	5-2115	5-2116	5-2117	5-2118	8-2119	5-2120	5-2121	5-2122	5-2123	5-2124	5-2125	8-2126	5-2127	S-2128	5-2129	5-2130

EIPER INVES OF SALL RPPECTS ON SUPRECAVITATING HYDROPOLLS OF FISITE SPAN

5-2101 21.00 57.10 20.35 113 5-2102 21.00 56.77 20.23 133 5-2104 21.00 55.53 20.07 13.1 5-2105 21.00 51.85 19.68 17.1 5-2106 21.00 49.43 19.08 17.1 5-2106 21.00 45.80 18.52 19.08 5-2107 21.00 45.80 18.52 19.08 5-2119 21.00 45.80 18.52 19.08 5-2110 21.00 45.80 18.42 19.08 5-2110 21.00 45.80 18.42 19.08 5-2112 21.00 45.80 18.42 19.08 5-2113 21.00 34.74 17.28 19.58 5-2114 21.00 34.74 15.23 9.52 5-2125 21.00 24.46 11.54 8.52 5-2127 21.00 24.46 11.54 8.52	3	3	TIPE-LB		÷	VEL-PPS
2102 21.00 56.77 20.23 -2104 21.00 53.53 20.07 -2105 21.00 51.95 19.58 -2105 21.00 49.43 19.08 -2107 21.00 47.20 18.72 -2109 21.00 45.40 18.72 -2110 21.00 43.78 17.88 -2111 21.00 41.78 17.88 -2114 21.00 41.78 17.88 -2115 21.00 39.36 16.76 -2116 21.00 36.34 15.23 -2120 21.00 28.69 12.76 -2121 21.00 28.69 11.54 -2122 21.00 28.46 11.54 -2123 21.00 28.46 11.54 -2124 21.00 28.46 11.54 -2125 21.00 28.46 11.54 -2126 21.00 28.46 11.54 -2127 21.00 28.46 11.54 -2128 21.00 28.46 11.54 -2128 21.00 28.46 11.54 -2129 21.00 28.46 11.54	11-0	:	2	20.3		
-2103 21.00 55.53 20.07 -2105 21.00 51.90 19.88 -2105 21.00 49.43 19.08 -2106 21.00 49.43 19.08 -2106 21.00 47.20 18.72 -2106 21.00 43.78 17.88 -2112 21.00 43.78 17.88 -2114 21.00 39.36 15.95 -2115 21.00 34.74 15.28 -2116 21.00 34.74 15.28 -2117 21.00 34.74 15.28 -2120 21.00 22.45 11.54 -2122 21.00 22.45 11.54 -2125 21.00 24.46 11.54 -2125 21.00 24.46 11.54 -2125 21.00 24.46 11.54 -2126 21.00 22.45 11.54 -2127 21.00 22.45 11.54 -2128 21.00 22.45 10.54 -2129 21.00 22.21 9.38 -2129 21.00 22.21 9.38 -2129 21.00 12.44 5.73	-210	្ទ		~		
-2104 21.00 53.90 19.88 -2105 21.00 51.85 19.52 -2106 21.00 47.20 18.52 -2106 21.00 47.20 18.52 -2106 21.00 47.20 18.52 -2110 21.00 45.80 18.44 -2111 21.00 43.78 17.28 -2115 21.00 43.78 17.28 -2115 21.00 36.35 15.23 -2116 21.00 36.36 15.23 -2117 21.00 36.36 15.23 -2117 21.00 28.60 12.95 -2121 21.00 22.43 9.30 -2125 21.00 22.43 9.30 -2125 21.00 22.43 9.30 -2125 21.00 22.43 9.30 -2125 21.00 22.43 9.30 -2125 21.00 22.43 9.30 -2125 21.00 22.43 9.30 -2125 21.00 12.84 5.60 -2127 21.00 15.86 6.73	11	:	3	9	~	
2106 21.00 49.43 19.52 -2106 21.00 49.43 19.08 -2107 21.00 49.43 19.08 -2107 21.00 49.43 19.08 -2107 21.00 49.43 19.08 -2109 21.00 45.40 18.72 18.72 18.72 18.72 18.72 19.22 -2116 21.00 41.78 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.28 17.00 22.43 17.28	11-0	:	-	•	S	9.0
-2106 21.00 49.43 19.08 -2107 2108 21.00 45.20 18.72 -2108 21.00 45.80 18.72 -2108 21.00 45.80 18.72 -2110 21.00 45.80 18.72 -2111 21.00 43.78 17.88 -2113 21.00 43.78 17.88 17.88 -2114 21.00 39.36 16.76 -2115 21.00 34.74 15.28 -2118 21.00 34.74 15.28 -2122 21.00 28.69 11.54 -2122 21.00 28.46 11.54 -2123 21.00 28.46 11.54 -2123 21.00 28.46 11.54 -2123 21.00 28.46 11.54 -2125 21.00 28.46 11.54 -2125 21.00 28.46 11.54 -2125 21.00 28.46 11.54 -2125 21.00 28.46 11.54 -2125 21.00 28.46 11.20 -2126 21.00 27.21 9.38 -2126 21.00 27.21 9.38 -2127 21.00 27.21 9.38 -2128 21.00 12.48 5.73 -2128 21.00	17-0	2	_:	S		8.0
-2107 21.00 47.20 18.72 -2108 21.00 45.40 18.52 -2110 21.00 43.78 17.88 -2111 21.00 43.78 17.28 -2112 21.00 43.78 17.28 -2114 21.00 36.95 15.95 -2116 21.00 36.95 15.95 -2117 21.00 36.95 15.23 -2117 21.00 37.34 15.88 -2120 21.00 28.60 12.95 -2121 21.00 28.46 11.54 -2122 21.00 22.43 9.30 -2125 21.00 22.43 9.30 -2126 21.00 22.43 9.30 -2128 21.00 22.43 9.30 -2129 21.00 12.84 5.60	11-0	2	-	۰.	11.28	28.02
-2108 21.00 45.40 18.52 -2110 21.00 43.78 17.88 -2111 21.00 43.78 17.28 -2115 21.00 39.36 16.76 -2115 21.00 36.34 15.88 -2116 21.00 36.34 15.89 -2117 21.00 36.34 15.89 -2117 21.00 36.34 15.89 -2120 21.00 28.60 12.95 -2121 21.00 28.60 12.95 -2122 21.00 24.46 11.54 -2125 21.00 22.43 9.30 -2125 21.00 22.43 9.30 -2125 21.00 22.43 9.30 -2127 21.00 22.43 9.30 -2128 21.00 12.84 5.60 -2129 21.00 12.84 5.60	11-0	2	2	-		8.0
-2109 21.00 45.80 18.44 -2110 21.00 43.78 17.88 17	-210	2		S	-	7.9
-2110 21.00 43.78 17.88 -2111 21.00 43.78 17.88 17.88 -2113 21.00 39.36 16.76 16.76 -2114 21.00 39.36 16.76 16.76 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.89 17.8	11-0	2		•	-	7.9
-2111 21.00 43.78 17.88 -2112 21.00 41.78 17.28 -2113 21.00 36.95 15.95 15.95 -2114 21.00 36.95 15.95 15.95 -2116 21.00 36.35 15.95 15.95 -2116 21.00 32.32 17.815.23 -2118 21.00 32.32 17.815.23 -2120 21.00 22.43 19.96 -2125 21.00 22.43 9.38 -2125 21.00 22.43 9.38 -2125 21.00 22.43 9.38 -2125 21.00 22.43 9.38 -2125 21.00 21.21 9.38 -2125 21.00 12.84 5.60 -2129 21.00 15.86 6.73	11	្ន			•	7.8
-2112 21.00 41.70 17.20 -2113 21.00 36.36 16.76 -2114 21.00 36.36 16.76 -2115 21.00 36.36 16.76 -2115 21.00 36.36 16.76 -2117 21.00 36.36 17.28 -2117 21.00 36.36 17.51 13.52 -2121 21.00 22.43 19.51 13.52 -2122 21.00 22.43 19.54 -2125 21.00 22.43 9.30 -2125 21.00 22.43 9.30 -2125 21.00 22.23 9.30 -2125 21.00 22.23 9.30 -2125 21.00 12.04 5.00 -2127 21.00 12.04 5.00 -2127 21.00 12.04 5.00 -2127 21.00 12.04 5.00 -2127 21.00 12.04 5.00 -2127 21.00 12.04 5.00 -2120 21.00 21.00 2120 21.00 2120 21.00 2120 21.00 2120 21.00 2120 21.00 2120 21.00 2120 2120 2120 2120 2120 2120 2120 2120 2120 2120 2120 2120 2120 2120 21	-211	:		~	•	7.8
-2113 21.00 39.36 16.76 -2115 21.00 36.34 15.95 -2115 21.00 34.74 15.23 -2118 21.00 34.74 15.23 -2120 21.00 28.69 12.75 -2121 21.00 27.07 11.54 -2122 21.00 24.46 11.54 -2123 21.00 24.46 11.54 -2124 21.00 24.36 10.54 -2125 21.00 22.43 9.38 -2126 21.00 22.43 9.38 -2127 21.00 22.43 9.38 -2128 21.00 12.44 5.60 -2129 21.00 12.44 5.60	-211	:		~	~	7.8
-2114 21.00 36.95 15.95 -2115 21.00 36.34 15.88 -2116 21.00 38.74 15.23 -2116 21.00 38.74 15.23 -2116 21.00 30.31 13.75 -2120 21.00 27.07 11.95 -2120 21.00 24.46 11.02 -2124 21.00 22.43 9.98 -2125 21.00 22.43 9.38 -2125 21.00 22.43 9.38 -2127 21.00 22.43 9.38 -2127 21.00 12.84 5.60 -2129 21.00 15.86 6.73	11	2		-	0	7.7
-2115 21.00 36.34 15.88 -2116 21.00 34.74 15.23 -2117 21.00 32.32 14.51 -2120 21.00 28.60 12.95 -2121 21.00 27.07 12.14 -2122 21.00 24.46 11.54 -2124 21.00 24.46 11.54 -2125 21.00 22.43 9.90 -2125 21.00 22.43 9.30 -2127 21.00 21.21 9.30 -2129 21.00 12.04 5.60 -2129 21.00 15.04 5.73	-211	:		٠.		7.8
-2116 21.00 34.74 15.23 -2117 21.00 32.32 14.51 -2119 21.00 28.69 12.95 -2121 21.00 27.07 12.14 -2123 21.00 24.46 11.56 -2124 21.00 24.46 11.02 -2125 21.00 22.43 9.99 -2125 21.00 22.43 9.99 -2125 21.00 22.43 9.39 -2127 21.00 21.21 9.39 -2127 21.00 12.04 5.60 -2129 21.00 12.04 5.60	11	:				1.7
-2117 21.00 32.12 14.51 -2118 21.00 30.31 13.75 -2120 21.00 27.07 12.14 -2121 21.00 27.07 12.14 -2122 21.00 24.46 11.02 -2124 21.00 24.16 10.02 -2125 21.00 23.45 10.54 -2125 21.00 22.21 9.36 -2127 21.00 27.21 9.36 -2129 21.00 12.44 5.70 -2127 21.00 12.44 10.54 -2127 21.00 27.21 9.36 -2129 21.00 12.44 5.60 -2129 21.00 12.44 5.70	11	:		~	9	1.7
-2118 21.00 30.31 13.75 -2120 21.00 28.68 12.95 -2121 21.00 27.07 12.14 -2122 21.00 24.46 11.02 -2123 21.00 24.16 10.74 -2124 21.00 22.43 9.98 -2125 21.00 22.43 9.38 -2125 21.00 21.21 9.38 -2127 21.00 12.04 5.60 -2129 21.00 12.04 5.60 -2130 21.00 15.06 6.73	-211	2		Š	•	1.7
-2119 21.00 28.60 12.95 -2121 21.00 27.07 12.14 -2122 21.00 24.46 11.54 -2124 21.00 24.46 11.54 -2125 21.00 22.43 10.54 -2125 21.00 22.43 9.98 -2127 21.00 21.21 9.38 -2127 21.00 21.21 9.30 -2129 21.00 12.04 5.60 -2130 21.00 15.06 6.73	112-	0:		-	-	7.7
-2120 21.00 27.07 12.14 -2121 21.00 24.46 11.54 -2123 21.00 24.46 10.24 -2124 21.00 22.45 10.54 -2125 21.00 22.43 9.98 -2125 21.00 22.23 9.98 -2127 21.00 20.20 9.10 -2129 21.00 12.44 5.60 -2129 21.00 15.86 6.73	-211	:		•	-	7.6
-2121 21.00 25.87 11.54 -2122 21.00 24.46 11.02 -2124 21.00 24.16 10.74 -2125 21.00 22.43 9.96 -2126 21.00 21.21 9.36 -2126 21.00 21.21 9.36 -2129 21.00 12.84 5.60 -2129 21.00 12.84 5.60 -2130 21.00 15.86 6.73	-218-2	:		-	S	7.6
-2122 21.00 24.46 11.02 -2123 21.00 24.16 10.74 -2125 21.00 22.43 9.98 -2126 21.00 21.21 9.38 -2127 21.00 21.21 9.38 -2129 21.00 19.79 8.79 -2129 21.00 12.04 5.60 -2130 21.00 15.06 6.73	-212	:		S	-	7.6
-2123 21.00 24.16 10.74 -2124 21.00 22.43 90.86 -2125 21.00 21.21 9.38 -2127 21.00 21.21 9.38 -2129 21.00 12.04 5.60 -2129 21.00 12.04 5.60	-212	:		•	~	7.6
-2124 21.00 23.45 10.54 -2125 21.00 22.43 9.99 -2127 21.00 21.21 9.36 -2128 21.00 12.79 9.10 -2128 21.00 12.44 5.60 -2130 21.00 15.86 6.73	11			-	0	7.5
-2125 21.00 22.43 9.98 -2126 21.00 21.21 9.38 -2127 21.00 20.20 9.10 -2129 21.00 12.84 5.60 -2130 21.00 15.86 6.73	11	:		S	9	7.5
-2126 21.00 21.21 9.36 -2127 21.00 20.20 9.10 -2129 21.00 19.79 8.74 -2130 21.00 15.84 5.60	11	:		•	-	7.6
-2127 21.00 20.20 9.10 -2128 21.00 19.79 9.74 -2129 21.00 12.04 5.60 -2130 21.00 15.06 6.73	-212	:		~		7.6
-2128 21.00 19.79 0.74 -2129 21.00 12.04 5.60 -2130 21.00 15.06 6.73	-211-2	:		-	-	7.6
-2129 21.00 12.84 5.60 -2130 21.00 15.86 6.73	-517-	2.0			•	7.6
-2130 21.00 15.86 6.73	-212	:		9	m	:
	-213	:		-		1.1

VEL UPSTREAM VELOCITY (0)

LEGEED

BIPER INTES OF MALL RPPECTS OR SUPRECAVITATING STDWOPOLLS OF PINITE SPAN

L PORM (NO CORRECTIONS APPLIED) .	
2	
=	
-	
=	
Ξ	
4	
-	
-	
5	
Б	
ä	
=	
=	
8	
_	
2	
5	
=	
7	
Z	
-	
2	
3	
=	
2	
3	
=	
2	
-	
IS SOUDISERSIONAL	
-	
1	
-	
IL MTA .	
=	
- TIBBOPOL	
ō	
=	
-	
•	
•	

04 15	ALPEA	5	COUNC	5	3	る	Be 1000-6	
5-2101	21.00	1.0712	0.3710	0.1304	2.8873	0.3463	0.5788	
2102	21.00	1.0663	0.3698	0.1293	2.8837	0.3468	0.5781	
2103	21.00	1.0430	0.3670	0.1237	2.8438	0.3516	0.5779	
2104	21.00	1.0195	0.3657	0.1180	2.7878	0.3587	0.5761	
2105	21.00	0.9828	0.3596	0.1110	2.7329	0.3659	0.5755	
2106	21.00	0.9386	0.3520	9-1066	2.6668	0.3755	0.5750	
2107	21.00	0.1975	0.3456	0.1023	2.5970	9.3851	0.5746	
2108	21.00	0.8661	0.3429	0.1026	2.5253	0.3960	0.5736	
2109	21.00	0.176	0.3431	0.1022	2.5581	0.3909	0.5723	
2110	21.00	0.0412	0.3332	0. 1003	2.5246	0.3961	0.5716	
2111	21.00	0.8423	0.3337	0.1003	2.5241	0.3962	0.5712	
2112	21.00	0.8064	0.3232	0.0995	2.4947	0.4008	0.5703	
2113	21.00	0.7603	0.3134	0.0969	2.4259	0.4122	0.5701	
1114	21.00	1211.0	0.2975	0.0949	2.3960	0.4174	0.5705	
1115	21.00	0.1029	0.2968	0.0943	2.3686	0.4222	0.5697	
2116	21.00	0.6718	0.2844	0.0928	2.3626	0.4233	0.5697	
11-17	21.00	0.6226	0.2709	0.0911	2.2978	0.4352	0.5691	
1118	21.00	0.5892	0.2570	0.0880	2.2925	0.4362	0.5682	
1119	21.00	0.5581	0.2416	0.0844	2.3101	0.4329	0.5680	
1120	21.00	0.5274	0.2263	0.0826	2.3311	0.4290	0.5676	
1121	21.00	0.5037	0.2133	0.0819	2.3489	0.4257	0.5673	
1122	21.00	0.4774	0.2048	0.0800	2.3310	0.4290	0.5671	
1123	21.00	0.4732	0.2001	0.0981	2.3652	0.4228	0.5661	
1124	21.00	0.4596	0.1963	0.0787	2.3410	0.4272	0.5659	
1125	21.00	0.4391	0.1850	0.0755	2.3726	0.4215	0.5663	
1126	21.00	0.4152	0.1733	0.0725	2,3964	0.4173	0.5663	
1127	21.00	0.3943	0.1673	0.0693	2.3562	0.4244	0.5671	
1128	21.00	0.3857	0.1601	0.0673	2.4096	0.4150	0.5674	
1129	21.00	0.4303	0.1769	0.0723	2.4323	0.4111	0.4328	
1130	21.00	0.6763	0.2761	0.0000	2.4494	0.4083	0.3837	

ALPHA GEOMPTRIC ANGLE OF ATTACK CORRECTED FOR SHAFT TRIST
CL LIFT COEFFICIENT, HOMDIRENSIONALIZED ON UPSTREAM TELOCITY AND GODEL PLANFORM AREA
CL LIFT COEFFICIENT, HOMDIRENSIONALIZED ON UPSTREAM TELOCITY AND GODEL PLANFORM AREA
ON UPSTREAM FLOCITY AND MODEL PLANFORM AREA
CH BOMET COMPTICIENT, HOMDINENSIONALIZED ON UPSTREAM VELOCITY, GODEL PLANFORM AREA, AND BEAN CHOND
L/D LIFT-TO-DRAG BATIO = CL/CODUC
D/L DRAG-TO-LIFT RATIO = CDUNC/CL
BH BETWOLDS HUMBER, BASED ON REAM CRORD

LEGEND

EIPER LEVES OF SALL EPPECTS OF SUPERCAVITATING SIDROPOLLS OF PIRITE SPAN

5-2101	21.20	16	9.33	. C.	6.350	SICV/AT	SIGC/AT 2.031	2.896	CD/AT2	CH/AT 0.353	SIGV	SIGC 0.751	CAVLTE 0.83	COMMENTS/REMARKS
		1.066	0.373	0. 129	0.350		2.056	2.083	2.728	0.350	1.165	0.760	•	
5-2193.	21. 19	1.04	0.370	0.124	0.355	2.993	2.020	2.822	2.708	0.334	1.107	0.750	0.80	
5-21040	21.19	1.020	0.369	- 1	0.362	2.844	2.032	2.757	2.699	0.319	1.052	0.751	0.85	
-2105.	21.15	0.983	0.363	-	0.70	2.671	1.987	5.659	2.654	0.30	0.987	0.734	0.95	
-2106.	21.12	0.939	9.35	0. 10	20.0	2.478	7-892	2.540	2.598	0.288	0.916	0.699	0.98	
		999	2 2 2	36	300	797-7	783	2.430	2007	0.27	100	2000	200	
			200			2 160	360	375	2.53.5	27.0	707	2000		
5-21-10			0.335	9	300	2.022	1.674	2.279	2.461	0.272	0.747	0.618	91.1	
-2111	21.15	0.642	0.336	0.100	0.399	2.014	1.666	2.282	2.465		0.744	0.615	1. 18	
-2112	21.15	908.0	0.325	0.08	0.403	1.879	1.571	2. 185	2.388		0.693	0.580	1.19	
8-2113	21.14	0.760	0.315	0.097	0.415	1.728	1.492	2.061	2.316		0.638	0.550	1.35	
-2114	21.13	0.713	0.299	0.095	0.420	1.574	1.399	1.933	2.199		0.580	0.516	1.40	
-2115.	21.13	0. 703	0.298	0.00	0.424	1.577	1.424	1.906	2. 194		0.582	0.525	1	
-2116	21.12	0.672	0.286	0.093	0.425	1.445	1. 322	1.822	2.103	0.252	0.533	0.48	1.50	
-2117	21.12	0.623	0.272	0.091	0.437	1.295	1.214	1.689	2.004	0.247	0.477	0.00	1.65	
21 - 10	21 10	0 . CO	0.250	0.00	420	1.064	1 025	1 515	1 788	0.239	303	378	2 25	
-2120	21.10	0.527	0.227	0.083	0.43	0.911	0.884	133	1.675	0.224	0.336	0.325	2.60	
5-2121	21.09	0.505	0.216	0.082	0.427	0.850	0.834	1.371	1.591	0.222	0.313	0.307	3.10	
		0.477	0.206	0.080	0.430	0.758	0.742	1.297	1.517	0.217	0.279	0.273	3.00	
		0.473	0.201	0.098	0.424	0.760	0.745	1.286	1.482	0.267	0.280	0.274	!	
5-2124	21.08	0.460	0.197		0.429	0.677	0.663	1.249	1.455	0.214	0.249	0.244	3.90	
		0.439	0.186	0.076	0.423	0.614	0.600	1. 193	1.372	0.205	0.226	0.221	2.80	
5-2126	2 5	0.0	97.0	0.073	0.419	0.510	0.497	1.129	1.285	0.197	991.0	0.183	9.0	
21 - 28	3	386	191	200	0 416	DAY O	273		147		181	137		
-2129	80	0.430	0.177	0.072	0.412	0.657	0.640	1.170	1.31	0. 196	0.242	0.236	5.30	
5-21,-30	21.12	0.676	0.278	0.099	0.410	1.503	1.529	1.63	2.042	0.268	0.554	0.564	1.25	
OBLESS OTHERUS	REBUISE	1. Si	INDICATED, ALL DATA ARE FOR: 1. SUPPRICALITATING FLOW. 2. BOTH STATIC PRESSURE TAP	LL DATA	FLOW.	CATED, ALL DATA ARE FOR: SUPERCAVITATING PLOW. BOTH STATIC PRESSURE TAPS OPEN								
TEGEND	PCCT		CALT UPSTREAM STATIC OMIT DESTREAM STATIC PARTIALLY CAVITATING PARTIALLY CAVITATING PARTIAL CAVITATING MATCH WATCH	AM STAT	IC PRES	CMLT UPSTREAM STATIC PRESSURE TAP OMLY DESTREAM STATIC PRESSURE TAP PARTIALLY CAVITATING (TAP WETTED)	P UTILITED P UTILITED	22						-
=	(ALPHAT	T2 (TBU	(TBUE) ANGL	E OF AT	TACK, C	PORRECTE.	(TRUE) ANGLE OF ATTACK, CORRECTED FOR REPRECTS OF IMAGES OF TRAILING VORTICES ALPHATACOLOGICAL CORRECTED THE CORRECTION OF THE CORP. THE CORP. THE CORRECTION OF THE CORP. THE CORRECTION OF THE CORP. THE COR	FECTS O	P IMAGE	1 00 1	ATLING	VORTIC	2	
	810		COEFFICE BU	ILENT,	CORPUTE CORPECT	CATTATION MONBER CORPUTED WITH CALCING INAC CORPUTED FOR EFFE CORRECTED FOR EFFE CORRECTED FOR EFFE	CATTATION BUNDER CORPUTED WITH CALCULATED WAYOR PRESSURE INAC CORPLCIENT, CORRECTED FOR EFFECTS OF IBAGES OF TRAILING VORTICES CORRECTED DRAG-TO-LIFT RATIO = CD/CL	ED VAPO	ES OF T	RATLING	VORTI	S		
	CAVL		CAVITY LENGTH SEASORED PROH	FE BEAS	URED 71	CAVITY LENGTH REASURED PROB RIDCHORD AT	HORD AT	CRITIOI	D POSIT	101	HDIRE	STORVET	B HO GES	CRUTROID POSITION, HONDINERSTONALIZED ON BEAN CHORD
				DEL HOI	LOGRAFI	13)								

RIPER ISSUES OF SALL RPRETS OF SUPERCAVITATING BYDROFOLLS OF PIRITE SPAN

HIDDOPOLL IMPUT DATA THE TE AREA SPAH MAC 73 61 40.0 10.0 4.02 SESO BEADINGS AND TUBBEL TEAP BEFORE AND AFTER
BANCH 1-8 1-8 2-8 3-8 3-8 TT
6. 0.0 0.0 100-0 0.0 0.0 100-0 80.0
0. 0.0 0.99-0 0.0 0.0 100.0 82.0
CELL LBS/CT (KORBAL/REY) 01-0.20000 02-0.20000 03-0.00030
THIST- 7200.0 SHAFT DIA.= 1.5018
IMPUT DATA AS RECORDED

-0-0-	BORNE		9	2 2		s i	=	7114	PCAV	
•	./191	- 200		98	•	-	0.110	.77	78.	
7	1396.	-500	. 0.	87	s.	=	530.0	157.	28.	
-8.0-03	1376.	-430		88	•	-	505.0	=======================================	28.	
-0-0-0-	13-70.	-362.0	. 0.	88	.5	-	167.0	124.	28.	
-8.0-05	1367.	-303	. 0.	8	0.	-	123.0	109.	28.	
-8.0-06	1373.	-236	•	8	•	~	370.0	90.	29.	
-8.0-07	1385.	-212	. 0.	8	5	-	347.0	81.	29.	
=	BOOM TEAPE	E (DE	G PARE)				_	LOAD CRLL	et LIPT (COURTS)	
H	TONNEL "	-							82 HOMENT ABOUT MIDCHORD (COUNTS)	
AREA	HALP-SPAR	PAR HODEL F	PLANFORM AREA (SQ IN	MA BE	BA (S	O IN			83 DRAG (COUNTS)	
SPAN		SPAI	(11)					I	STATIC PRESSURE	
BAC	NEAN CHORD, MEAS. & MODEL CENTROID (IN)	ARA:	S. a MOD	2 13C	ENTRO	ID (I	=	24	PCAV CAVITY PRESSURE (MM RG)	
BLROR	VELOCITY NABONETER !	IN BONE	TER REAL	READING (MM)	(88)			202	UN NO Q-XXX-YY: Q=POIL TESTED (S=SMALL, N=NED, L=LARGE	LARGE)
TRIST	SHAPT THIST (DEGREES/IN-LB)	1 (DE	GREES/II	1-19					XXX=GZOH STRIC ATTACK ANGLE (DEGREE	RES)
•	TO CELL P	POLA	111 (1-10	TENE		VERS	•		II-FUE BURBER, TRIS FOIL & THIS	S ARGLE

BIPER ISVES OF SALL EPPECTS OF SUPERCAVITATING BIDROPOLLS OF PIRITE SPAR

PRESSURE	PCAV	28.	28.	28.	28.	28.	29.	30
STATIC	PIRF	161.	146.	130.	113.	98.	79.	30
ARD RYDROSTATIC	2	-443.0	-430.0	-405.0	-367.0	-323.0	-270.0	-247 0
READINGS, SIGHS,	24	-13.5	-12.3	-11.7	-11.0	-10.3	-9.2	2 8-
FOR ZERO RE	:	-566.0	-200-0	-430.0	-362.0	-303.0	-236.0	-212 0
CORRECTED	NA NOB	1417.	1396.	1376.	1370.	1367.	1373.	1745
ISPUT DATA	CX NOS	B-6.0-01	N-8.0-02	M-1.0-03	1-0-0-	B-8.0-05	8-8-0-06	N-8-0-07

RIPER INVES OF BALL EPPECTS OF SUPERCATIFACIES HYDROPOLLS OF PLEITE SPAN

DUCTIO	
2	
POIL DATA	
DBOPO	
1	

ALPHA		=	87-L	DEAG-LB	HOR-INLB	
10.0		115	.90	17.85	48.60	27.86
1.01		201		17.33	00	27.67
8.01		8	.33	16.32	\$2.00	27.48
8-01		=	.60	14.79	39.60	27.43
M-8-0-05 8.01 62		62	.67	13.02	37.20	27.40
8.00		5	.03	10.88	33.80	27.45
8.00		7	44.10	9.95	30.60	27.57
TECERO ART OF	an 184	N.	STREAM	UPSTREAM VELOCITY	e	

EIPER LEVES OF BALL RPPECTS ON SUPERCAVITATING HTDROPOLLS OF PIUTE SPAN

									GEGRÉTRIC ANGIE OF ATTACE CORRECTED FOR SMATT THISY LIFT CORPICERT, HONDIARDISOMALIZED ON UPSTREAM VELOCITY AND MODEL PLANFORM AREA CD (UNCORRECTED), THE UNCORRECTED DRAG CORPICERT AS COMPUTED FROM BRASURED BRAG, AND WONDIARDISOMALIZED ON UPSTREAM VELOCITY AND RODEL PLANFORM AREA HONERY CORFFICIENT, MODDIARDISOMALIZED ON UPSTREAM VELOCITY, NODEL PLANFORM AREA, AND BRAN CHORD BRAG-TO-LIPT RATIO = CUUNC/CL BRIGOLDS MUMBER, BASED ON GRAF CHORD
									DIREESION E CHORD
									5 4
									1 1
									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
									PLABFOR I EASURD
									PODEL PODEL P
	9-6	84	:	9	25	115	36	176	00.11
:	9-0001-88	1.0184	1.011	1.0046	1.0025	1.0015	1.0036	1.0076	AS COLUMN
IRD	=								THE TAIL
AZPL	1/4	0.1341	1580	1721	1833	0.1899	1991	0.2001	PICI PICI BA UPST
580		0	0	0	0	•	0	0	
HONDIBERSIONAL PORB (NO CORRECTIONS APPLIED)	9	193	611	117	69	95	34	89	
8	1/0	6.9	6.3279	5.81	5.45	5.26	5.02	4.9968	CHO CHO
3		_				_			COR SION SION SION SION SION SION SION SION
80	5	0.0580	0.0537	0515	0487	0.0459	040	0373	
1		ö	•	ó	ö	ö	ö	ö	A
1810	380	50	187	611	376	969	182	32	TO THE PARTY OF TH
1881	CDDMC	0.0801	0.0	0.0749	0.0676	0.0590	9.0	0.0432	A TE
0				_				_	00-00-00-00-00-00-00-00-00-00-00-00-00-
=	t	5557	4981	0.4352	3691	3107	202	2160	14 C C C C C C C C C C C C C C C C C C C
DATE		ė	ó	ė	ė	ė	ė	ö	
** STDROPOIL DATA IN	ALPHA	.01	.03	.01	.03	.03	.00	8.00	12 CD CC
4110	8 UN 80	B-8.0-01	M-0.0-02	E-0-03	1-0-0-	1-P. 0-05	8-8.0-06	1-0-0-	91001

RIPER 1892S OF BALL SPRETS OF SUPERCAVITATING HIDDOPOLLS OF FIBITE SPAS

**PRIOR DATA CORRECTED FOR RPPICTS OF LEAGES OF TRAILING TONTER STSTESS*

		•
COUNTETTS/REALTES		CHLT DESTREAM STATIC PRESSURE TAP UTILIZED CHLT DESTREAM STATIC PRESSURE TAP UTILIZED CHLT DESTREAM STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING (TAP RETIPD) FOLLY WEITED (INUE) ANGIE OF ATTACK, CORRECTED FOR REPECTS OF INAGES OF TRAILING WORTICES (ADBATTON MUNDER COMPUTED WITH URASURED CAVITY PRESSURE CAVITATION MUNDER COMPUTED WITH CALCULATED VAPOR PRESSURE CAVITATION MUNDER CORPUTED FOR REPECTS OF INAGES OF TRAILING WORTICES CAVITATION MUNDER CORPUTED FOR REPECTS OF INAGES OF TRAILING WORTICES CAVITATION MUNDER CORPUTED FOR REPECTS OF MAGINE WORDINESSIONALIZED OF BRANCHORD CORRECTED PROGRAMMAN AND CORPUTED FORM AIDCHORD AT CRUTCH POSITION, WORDINESSIONALIZED OF BRANCHORD CANAIT LEMETH MASSURED PROGRAMMANS
0.60 0.62 0.75 0.75 1.16 1.75		8 8
 SIGC 0.494 0.390 0.390 0.270 0.192		. VORTIC CES
5167 0.501 0.395 0.330 0.272 0.197		AILING FORTI
CB/AT 0.398 0.371 0.357 0.321 0.265		S OF THE
CD/AF2 CB/AF SIGV 3.933 0.396 0.501 3.672 0.371 0.451 3.694 0.337 0.395 3.351 0.339 0.330 2.936 0.321 0.272 2.413 0.265 0.197 2.169 0.263 0.160		PRESSU PRESSU R PRESS ES OF T
2.571 2.571 2.571 1.702 1.702		FECTS O CAVITI ED VAPO OF IRAGE
3.397 3.397 3.070 2.703 2.274 1.866 1.351		TOP EF EASURED ALCULAT EFECTS ACCLAT ORD AT
(b/l) SIGVAR SIGC/AR CL/AR 0.150 3.443 3.397 3.619 0.163 3.109 3.070 3.438 0.177 2.296 2.274 2.571 0.193 1.903 1.886 2.173 0.202 1.386 1.351 1.702 0.202 1.310 1.102 1.522	INDICATED, ALL DATA ARE POR: 1. SUPERCAVITATING PLOW. 2. BOTH STATIC PRESSURE TAPS OPER.	CHLY DESTREAM STATIC PRESSURE TAP UTILIZED ONLY DESTREAM STATIC PRESSURE TAP UTILIZED ONLY DESTREAM STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING (TAP BETTED) PARTIALLY CAVITATING (TAP BETTED) PARTIALLY CAVITATING (TAP BETTED) PULLY BETTED (TRUE) ANGLE OF ATTACK, CORRECTED FOR EFFECTS OF INAGES OF TRAILING WORTICES CAVITATION HUMBER COMPUTED WITH GRASURE CAVITY PRESSURE CAVITATION HUBBER COMPUTED WITH CALCULATED VAPOR PRESSURE CAVITATION HUBBER COMPUTED BY COMPUTED STREAM CANTICES CAVITY LENGTH MEASURED FROM MIDGRORD AT CERTROID POSITION, BONDIMERSIONALIZE (DREATED PROM PROFOGRAPHS)
0.150 0.150 0.163 0.163 0.187 0.202 0.202	IBDICATED, ALL DATA ARE FOR: 1. SUPERCAVITATING PLOW. 2. BOTH STATIC PRESSURE TAR	CHLY DESTREAM STATIC PRESSURE DESTREAM STATIC PRESSURE DESTREALLY CAVITATING (TAP BELLY BETTED CAVITATING (TAP BELLY BETTED ANGLE OF ATTACK, CORLESTON BUNDER CONPUTED CAVITATION BUNDER CONPUTED DAG CORPUTED CORRECTED
0.058 0.058 0.069 0.049	IL DATA	CHLT DESTREAM STATIC DARTALLY CAVITATING PARTIALLY CAVITATING PARTIALLY CAVITATING FOLLY BETTED (IBUT) ANGLE OF ATTA- ALPRATO** UNBER COL CAVITATION BUNBER COL CAVITATION BUNBER COL CAVITATION BUNGER CONSECTED DRAC-TO-LI
0.069 0.069 0.069 0.069	OPERCA TOPERCA TH ST	CHLT DESTREA OHLT DESTREA OHLT DESTREA PARTIALLY CA PARTIALLY CA (TRCE) ANGLE (TRCE) ANGLE CAVITATION H CAVITATION H CAVITATION H CAVITATION H CAVITATION H CAVITATION H CAVITATION H CAVITATION H
26.25.25.25.25.25.25.25.25.25.25.25.25.25.		CONSTRUCTION OF THE CONTRACT O
14464555	TREBUTS	+ CH + OH + OH
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ULLESS OTRENISE	

RIPES INVES OF WALL EPPECTS OF SUPERCAVITATING MYDROPOLLS OF FINITE SPAN

11 ABEA SPAB BAC 72 76 40.0 10.0 4.02 1880 BILLINGS AND TUBBL TERP BRODE AND AFTER
0. 0.0 0.0 0.0 0.0 100.0 0.0 100.0 76.0
0. 0.0 0.0 0.0 0.0 99.0 0.0 105.0 00.0
CELL LBS.CT.(BORBAL/ART) 8190.20000 82-0.20000 83-0.04030
TBIST- 7200.0 SEAFT DIA. = 1.5018

..IFPUT DATA AS RECORDED..

									COURTS		HI ABOUT HINCHORD (COURTS)	(courts)	STATIC PERSONE (AM AC)	CATTO PRESCUE (NA HE)	Control of the second of the s	(MANUAL MANUAL M	ALL DESCRIPTION OF THE PROPERTY OF THE PROPERT	TIPER STREET THIS LOTE & THIS PROPER
102		36	36.	32.	30	90	30.	9			BOB 74	63 DRAC	INP STA	PCAY CAV				
114		163.	145.	132.	116.	103	87.	80.	LOAD CELL				~	Ă				
69	645.0	625.0	590.0	551.0	500.0	0.094	113.0	398.0	, –			-		=			-	
	-	-	=	•	-	-	~	-			-	20 1		OID				
117.0	115.0	114.5	114.0	113.0	112.0	111.0	110.0	109.5				DEEA (IL CEBTR	MG (AR)	181	101	
	-	-	-	-	~	-	-	-	2					000	PADT	S/II-	0	
1363715.0 w 117.0 p 660.	-640.0	-580.0	-505-0	-440.0	-370.0	-322.0	-265.0	-250.0	(DEG PA			TORE LEV	PAT (IE)	BEAS. 8	HORETER	(DEGREE	DEART TY (
									REER				5-17	JONE,	A A	BIST	ILL P	
1363.	1360.	1357.	1359.	1353.	1346.	1346.	1353.	1355.	BOOR TE	TOBBEL		Hate a	1102	HEAN CL	VELOCIT	SHAFT 1	LOAD CE	
									=	1			SPA	HAC	1308	TIST	*	
808 BO	M-9.5-02	1-9.5-03	. H-9.5-04	B-9.5-05	8-9.5-06	B-9.5-07	M-9.5-08	8-9.5-09	TEGEND						=	=		

RIPER INVES OF WALL RPRECTS OR SUPERCAVITATING BYDNOFOLLS OF FIRITE SPAR

PPESSURE	PCAV	34.	38.	38.	36.	32.	30.	30.	30.	30.
STATIC	PIBP	182.	166.	152.	134.	121.	105.	92.	76.	69
ALD EYDROSTATIC	:	-560.0	-544.4	-523.7	-488.1	-448.5	-396.9	-356.2	-308.6	-293.0
IRABIBES, SIGES,		-17.0	-15.1	-14.8	-18.6	-13.5	-12.6	-11.8	-10.9	-10.5
FOR SEED REAL	:	-715.0	-640.0	-580.0	-505.0		-370.0	-322.0	-265.0	-250.0
CORRECTES	BA BOR	1363.	1360.	1357.	1359.	1353.	1346.	1346.	1353.	1355.
IRPOT DATA	OE 808	1-9.5-01	1-9.5-02	1-9.5-03	8-9.5-0¢	B-9.5-05	1-9.5-06	1-9.5-07	B-9.5-08	B-9.5-09

RIPER INVES OF MALL RPPECTS OF SUPERCAVITATING RIDROPOLLS OF PIBLIE SPAR

:
2
S
REDUCTION
27.70
** RYBBOPOIL
è
Ē
:

	6	PRE UPSTREAM VELOCITY	UPSTREAM	111	LEGEND
	37.80	1.8	52.10		9.5-09
	39.15	12.44	55.17		9.5-06
	42.30	14.36	66.75		9-5-07
	45.45	15.99	76.52		9.5-06
27.27	48.60	18.07	50.70	9.51	9.5-05
	51.15	19.67	103.87		9.5-04
	53.10	21.11	118.95		9.5-03
	54.45	21.94	131.02		B-9.5-02
	61.20	22.57	106.40		9.5-01
	HOW-INTE	DE 46-LB	11-11T		08 80

RIPER LEVES OF WALL RPPECTS OF SUPERCAVITATING RIDROPOLLS OF FIBITE SPAR

											IOWALIZED D
											IDED REKS
											100 H
											PLANFORM A
											120 120 120
											99 .
::	RB+ 10++-6	9896.0	0.9676	9996.0	0.9672	0.9652	0.9629	0.9629	0.9652	0.9659	VELOCITY A VELOCITY A VELOCITY A VELOCITY
1214	1/0	591	583		98/	170	54	985	153	53	TT TE
IS VE	9	0.1465	0.1589		0.1786	0.1870	0.1345		0.2153	0.2353	SHA DEST OF G
COPPECTIO	3	6.8254	6.2927	5.9497	5.5980	5.3469	5.1402	5.0376	4.8715	4.8715	RECTED FOR TALIZED OF TRD DRAG C. PLANFOR COMALIZED
2		99	:	69	=	25		62	11	2	CORESTO DE LA SENTION DE LA SE
20	5	0.0756	0.0674	0.0659	0.0641	0.06	0.0568	0.05	0.0487	0.0470	TTACE OF CENTER
SIDBOPOIL DATA IN SOUDINERSIONAL PORT (NO CORRECTIONS APPLIED)	CDONC	9.1066	0.1037	0.0997	0.0924	0.0849	0.0748	9990-0	0.0567	0.0534	ALPHA GRONETRIC ANGLE OF ATTACK CORRECTED FOR SHA'T THIST CL LIFT COEFFICIENT, NOBDIRERIONALIZED ON OPSTREAG VELOCITY AND HODEL PLANFORM AREA CDUNC CD (UNCORRECTED), THE UNCORRECTED DRAG COUFFICIENT AS COMPUTED FROM MEASORED DRAG, AND MOMBINESIONALIZED ON UPSTREAG VILOCITY AND MODIL PLANFORM AREA CE HOMEST COEFFICIENT, MONDIGENSIONALIZED ON UPSTREAM VELOCITY, HODEL PLANFORM AREA, AND HEAR CHORD L/D LIFT-TO-DRAG BATIO = CL/COBEC D/L DRAG-TO-LIFT RATIO = CDUSC/CL RH RENOLDS NUMBER, BASED ON HEAN CHORD
0					2	1		2	0	•	7 E CO E F CO E F CO E F CO E E E E E E E E E E E E E E E E E E
	ฮ	0.727	0.652	0.593	0.517	0.453	0.384	0.335	0.276	0.2603	CECON LIFT CD (UN BOACH BRAG-
DE TIOLO	ALPEA	9.51	9.51	9.51	9.51	9.51	9.51	9.51	9.51	9.51	TEGE CDUSC CBUSC C
	08 808	N-9.5-01	1-9-5-02	8-9-5-03	B-9.5-04	B-9.5-05	1-9.5-06	1-9.5-07	8-8-8-B	8-9-5-09	TREEF

RIPER INVES OF WALL RPPECTS OF SUPERCAVITATING HIDBOPOILS OF PIBLTE SPAN

	COMBSTS/BEBLES	AN CHORD	
	CALLE 1 1	* SOFERCANTESTING FLOW. * BOTH STATIC PRESSURE TAP OFFLIRED OULT DESTREAM STATIC PRESSURE TAP OFFLIRED OULT DESTREAM STATIC PRESSURE TAP OFFLIRED OULT DESTREAM STATIC PRESSURE TAP OFFLIRED PARTIALLY CANTAINED PARTIALLY CANTAINED PRINCE CANTAINED FULL ARTIES OF TRAILING VORTICES CANTAINED ANGLE OF ATTACK, CORRECTED FOR EFFECTS OF IRACES OF TRAILING VORTICES CANTAATION HUMBER COMPUTED WITH CALCULATED TAPOR PRESSURE CANTAATION HUMBER COMPUTED FOR EFFECTS OF IRACES OF TRAILING VORTICES CANTAATION BRAG-TO-LIFT BATIO = CD/CL CANTAATION HUMBER COMPUTED FOR EFFECTS OF IRACES CANTAATION BRAG-TO-LIFT BATIO = CD/CL CANTAATION BRAG-TO-LIFT BATIO = CD/CL CANTAINED RAG-TO-CANTAINED FOR HIDCHORD AT CERTROID POSITION, HORDIREDSIONALIZED OF BALF CHORD GESTRIKED FROM PROTOGRAPHS)	
STSTEE	916C 0.570 0.510 0.387 0.387 0.242 0.242 0.179	FORTICES STORALL	
10872	810 0 198 0	TRAILLING BG VORT	
111 86	100.00 10	S OF	
1 0F TEA	CD/AT2 3.722 3.623 3.491 3.245 2.988 2.968 2.362 2.017	PRESSOR PRESSO	
I WAGES	2. 559 2. 256 2. 256 3. 559 3. 559 3. 559 3. 559 3. 559	PECTS OF TRACE CENTROL	
ects of	31.265 2.950 2.653 2.256 2.256 1.723 1.430 1.961	OTILIS OTILIS POR EF RASCURE ALCOLA OFFI OFFI OFFI OFFI OFFI OFFI OFFI OFF	
PRIOR DATA CORRECTED FOR EFFECTS OF IMAGES OF TRAILING TOPTEL SISTER	3104/4 1.529 3.187 2.083 2.194 1.536 1.536 1.536 1.536	1. SUPERCAVITATING FLOW. 2. BOTH STATIC PRESSURE TAPS OPER. + OBLY UPSTREAM STATIC PRESSURE TAP UTILISED • OBLY DUSTREAM STATIC PRESSURE TAP UTILISED • OBLY DUSTREAM STATIC PRESSURE TAP UTILISED • OBLY DESTINILY CAVITATING (TAP WITTED) FOR PAINTALLY CAVITATING (TAP WITTED) FOR TOLLY SITTED ATA ALEXATOR BUMBER CORPUTED WITH MEASURED CAVITY PRESSURE SIGG CAVITATION BUMBER CORPUTED WITH GALCULATED VAPOR PRESSURE SIGG CAVITATION BUMBER CORPUTED FOR STRECTS OF IBAGES OF TRAILING VORTICES (DAG COEFFICIENT, CORRECTED FOR STRECTS OF IBAGES OF TRAILING VORTICES (DAG COEFFICIENT, CORRECTED FOR MIDCHORD AT CENTROLD POSITION, MONDINERSIONALIZER (ORALL CAVITY LEMGTH HEASURED FROM MIDCHORD AT CENTROLD POSITION, MONDINERSIONALIZER (ORALL RAYSITY LEMGTH HEASURED FROM MIDCHORD AT CENTROLD POSITION, MONDINERSIONALIZER (ORALL RAYSITY LEMGTH HEASURED FROM MIDCHORD AT CENTROLD POSITION, MONDINERSIONALIZER	
BRECTE	20000000000000000000000000000000000000	SUPERCAVITATING FLOW. BOTH STATIC PRESSURE TAL BOTH STATIC PRESSURE TAL BOTH DESTREAM STATIC PRESSURE PRITALLY CAVITATING (TAP IN TALLY CAVITATING (TAP IN TALLY CAVITATING (TAP IN TALLY ANTATOM HUMBER COMPUTED ANTATIOM HU	
DATA C	0.0000000000000000000000000000000000000	SUPERCAVITATING FLOU. BOTH STATIC PRESSURE DHLY DESTREAM STATIC PRE PARTIALLY CAVITATING (TA PASTIALLY CORPUT CAVITATION HUMBER CORPUT CAVITATION	
-	0.112 0.112 0.103 0.095 0.095 0.095	SUPERCAVI BOTH STAT BOTH STAT DHLT UPSTREA DHLT UPSTREA DHLT UPSTREA DHLT UPSTREA DHLT UPSTREA DHLT UPSTREA CAUTH UBSTREA DHAGE CANTARD H DHAGE CANTARD H CANTARD	
	60.00 55 55 55 55 55 55 55 55 55 55 55 55 5	P. OBLI	
		PC(T') PC(T') PC (ALPAN) AT (ALPA	
	100 100 100 100 100 100 100 100 100 100	LEGRED + OULT UPSTREAM STATIC PRESSURE TARE. OULT DUSTREAM STATIC PRESSURE TARE. POLIT DUSTREAM STATIC PRESSURE POLIT DUSTREAM STATIC PRESSURE POLIT DUSTREAM STATIC PRESSURE PUTLY STATIC PRESSURE AT ALEATO ANGLE OF ATTACK, CORNATED SIGG CAVITATION HUNDER COMPUTED SIGG CAVITATION HUNDER CO	

SIPER INVES OF MALL EPPECTS ON SUPERCAVITATING MYDROPOLLS OF PINITE SPAN		9.			-		228. 48.						137. 33.				32.	:	511, PU (TE)	-	:	LOAD CELL #1 LIPT (COUNTS)	~	BALL COUNTS)		ROW NO Q-XXX-TT: Q=POIL TESTED(S=SMALL, N=MED,L=LARGE) XXX=GROMETRIC AFFACE ANGLE (DEGRESS)	TT-RUE BURBER, TRIS POIL & TRIS ANGLE
TDEOPO		-0.040		:	728.0	775.0	826.0	825.0	803.0	767.0	723.0	677.0	617.0	568.0	\$25.0	482.0	466.0	675.0	0 0 0 0 0	410.0	265.0			_	•		
9		11.000 7.0 1000	92080	s	~	4	* *	-	-	~	-	œ	~	~	•	~	~			. ~	~			30 1	I) GI OI		RVERS
BCAVITA'		3-8 1T 00.0 83.0 03.0 87.0 82-0.2000	** 1.50IH **IMPUT DATA AS RECORDED**	77	134.3	129.0	123.5	119.5	118.5	118.0	117.0	116.0	115.5	114.5	114.0	113.0	112.8	135.0		117.0	110.0			4 4 4 4 4 4	EL CENTI	ING (MR)	BAL, B-
SUPE		3-8 3-8 3-8 0.0 100.0 0.0 103.0 22=0	DATA	s	~	=			~	•	-	æ	4	~	•	-	•	~ (~	(HR)	-	101	HOD	READ!	OR - R)
BCTS OF	1.02	READINGS AND TURNEL TERP BEFORE AND 1-H 1-E 2-B 2-B 3-B 3-B 3-B 0.0 0.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0	SGAPT DIA 1.50IN	=	-810.0	-856.0	-886.0	-790.0	-724.0	-654.0	-576.0	-512.0	-446.0	-386.0	-346.0	-306.0	-290.0	-746.0	0.00	-366.0	-194.0	HOOR TEMPER (DEG PAHR)		JALF-SPAN RODZL PLANFORR ARRA (SQ IN)	BEAN CRORD, NEAS. & NODEL CENTROID (IN)	VELOCITI MAHOMETER READING (MR) SMAPT TRIST (DEGREES/IN-LB)	LOAD CELL POLARITY (H-HORBAL, R-REVERSE)
18807	20 A E	2-8 2-8 0.0 0.0 100.0 0.0 101.0 0.0 101.0 0.0 101.0	14	•																		FIRPER		2 - 4 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BOBD	TRIET	111
TARE OF BE	10.0	0.0 0.0 0.0		BORTE	1447.	1439.	18.25	14 16	1407.	1430.	1397.	1390.	1388.	1383.	1377.		1380			692.	360.	ROOM	•		-	-	_
22 MI 18 428	==	2250 READINGS AND TUNNEL TERP BEFORE AND AFTER SANDA 1-E 1-E 2-E 2-B 3-B 3-B TT 0. 0.0 0.0 0.0 100.0 0.0 100.0 03.0 0. 2.0 0.0 0.0 101.0 0.0 103.0 07.0 CELL LES/CT (SORGAL/SET) 01=0.20000 02-0.20000 03-0.00030	181ST- 7200.0	BUR NO	B-1101	3-1102	H-1103	E-1105	A-1106	B-1197	8-1108	H-1103	3-1110	8-1111	H-1112	8-11-13	-11-16	51-11-1	111111	1-11,-18	4-1119	LEGBUD TR	=	1115	278	TRIST	•

RIPER INVES OF WALL RPRECTS ON SUPERCAVITATING BYDROPOLLS OF PINITE SPAN

PERSSORE	PCAV	191.	82.	52.	.8	.5	:	.3.		39.	33.	33.	32.	32.	32.	-	-	:	:	:
STATE	PIRE	261.	246.	232.	217.	203	188.	172.	155.	139.	126.	113.	101.	86.	80.	277.	306.	647.	734.	774.
ASD STOROSTATIC	2	-628.0	-674.8	-725.7	-732.5	-724.3	-702.2	-666.0	-621.8	-575.7	-515.5	-466.3	-423.2	-380.0	-363.8	-572.7	-579.5	-577.3	-307.2	-162.0
TEALLIES, SIGHS,	13	-34.3	-28.9	-23.4	-20.8	-19.3	-18.2	-11.7	-16.6	-15.6	-15.0	-13.9	-13.4	-12.3	-12.1	-34.2	-33.7	-31.1	-16.1	-9.0
	=	-810.0	-856.1	-886.2	-346.3	-190.4	-724.6	-654.7	-576.8	-512.9	-447.0	-397.1	-347.2	-307.3	-291.4	-747.6	-727.7	8.669-	-367.9	-196.0
-	E08 78	1447.	1439.	1430.	1425.	14 16.	1407.	1400.	1397.	1390.	1388.	1363.	1377.	1111.	1380.	1377.	1378.	1373.	692.	360.
*****	BUN NO	A-1101	8-1102	1-1103	A-1104	A-1105	1-1106	B-1107	B-1108	M-1109	3-1110	B-1111	M-1112	B-1113	-11-1	B-1115	A-1116	4-1117	N-1118	M-1119

RIPER INVES OF UALL EPPECTS OF SUPERCAUTHS HIDDOPOLLS OF PINITE SPAN

í
í
i
•
ı
í
•
۱
i
i
i
۱

2	ALPBA	FIFT-LB	81-97 86	HON-IKLE	PEL-PPS
-	11.02	168.86	25.31	123.46	20.13
-	11.01	177.01	27.20	~	28.06
9-	=	181.92	29.24	-	28.05
	11.01	173.43	29.52	75.00	27.93
	11.01	161.94	29. 19		27.85
	11.01	148.56	28.30	-	27.77
	11.01	134.47	26.84	63.60	27.71
	11.01	118.68	25.06	59.80	27.68
	11.01	105.69	23.20	26.00	27.61
	11.01	92.40	20.77	24.00	27.59
=	11.01	12.21	16.79	50.20	27.55
1-11-12	11.01	72, 12	17.05	46.20	27.49
==	11.01	63.93	15.31	***	27.49
==	11.01	60.70	14.66	43.48	27.52
-15		156.36	23.08	123.20	27.49
91-		152.27	23.35	121.20	27.50
-11		146.18	23.27	112.00	27.46
-18	11.01	16.79	12.38	57.80	19.96
-18		41.00	6.53	32.40	14.73

VEL SPSTREAM VELOCITY (G)

7.00

RIPER 1878S OF BALL RPPECTS OF SUPERCAVITATING BYDROPOLLS OF FIULTE SPAN

-
•
_
3
•
-
-
_
APPLIED!
-
=
_
=
0
-
-
u
-
=
-
=
0
U
-
(NO COPPECTIONS
0
-
_
•
_
=
-
=
v
100
-
-
3
₫
1
170
TOBOT
HOL
SIONAL
SIOUAL
RETORAL
ENSIONAL
RESIDEAL
INEUS TORAL
TAROI SUSTA
DIRESTORAL
BOISESIONE
DEDICE STORY
ONDINENSIONAL
HORDINERSIONAL
HORDI RESIDEAL
I BORDIARESTORAL
BOTOLARISIONAL
TH ROBDINGRESIONY
IN HORDINERSIONAL
DATA

9-001-11	1.0697	1.0669	1.0666	1.0621	1.0589	1.0558	1.0533	1.0523	1.0498	1.0491	1.0474	1.0453	1.0453	1.0463	1.0453	1.0456	1.0438	0.7589	0.5599
7/2	0.1430	0.1471	0.1544	0.1636	0.1732	0.1828	0.1912	0.2016	0.2089	0.2127	0.2150	0.2210	0.2221	0.2231	0.1405	0.1460	0.1516	0.1532	0.1507
2,	0.66.9	6.7986	6.4774	6.1132	5.7740	5.4696	5.2306	4.9594	4.7879	4.7021	4.6518	4.5253	1.5030	4.4819	7.1192	6.8474	6.5985	6.5280	6.6360
5	0.1445	0.1226	0.0991	0.0890	0.0829	0.0788	0.0767	0.0723	0.0680	0.0657	0.0613	0.0591	0.0544	0.0532	0.1510	0.1484	0.1376	0.1344	0.1384
CDONC	0.1136	0.1231	0.1329	0.1354	0.1346	0.1311	0.1247	0.1163	0.1078	0.0961	0.0867	0.0785	0.0699	9990.0	0.1082	0.1095	0.1094	0.1099	0.1061
t	0.7944	0.8370	0.860	0.8276		6.7173	0.6523	0.5769	0.5161	0.4519	0.4034	0.3553	0.3150	0.2985	0.7703	0.7496	0.7221	0.7176	0.7038
11.	11.02	11.01	11.01	11.01	11.01	11.01	11.01	11.01	11.01	11.01	11.01	11.01	11.01	11.01	11.02	11.02	11.02	11.01	11.00
08	1-1101	8-1102	B-1103	1-11-04	1-1105	A-1106	A-1107	N-1108	A-1109	N-1110	11-11-1	8-1112	1-11-13	1-11-14	1-11-15	1-11-16	1-1117	A-1118	1-1119

ALPRA GEORIFIC ANGLE OF ATTACK CORRECTED FOR SHAPT THIST
CL LIFT COEFFICIENT, MONDIRENSIONALIZED ON UPSTREAM WELOCITY AND MODEL PLANFORM AREA
CH LIFT COEFFICIENT, MONDIRENSIONALIZED ON UPSTREAM WELOCITY AS COMPUTED PROM MEASURED DRAG, AND MODIMENSIONALIZED
ON UPSTREAM WELOCITY AND MODEL PLANFORM AREA
CH MOMENT COEFFICIENT, MONDIRENSIONALIZED ON UPSTREAM WELOCITY, MODEL PLANFORM AREA, AND MEAN CROND
L/D LIFT-TO-DRAG RAILO = CL/CDUNC
D/L DRAG-TO-LIFT RAILO = CDUNC/CL

BM REMODES HUMBER, BASED ON MEAN CHORD LEGEND

EIPER INVES OF BALL RPPECTS ON SUPERCAVITATING HTDROPOILS OF PIRITE SPAN

** PRIOR DATA CORRECTED FOR EFFECTS OF IMAGES OF TRAILING FORTER SYSTER**

		•	NOINA.	DATA CO	RECIED	rok Err	***PRIOR DATA CORRECTED FOR EFFECTS OF IMAGES OF TFALLING VORTEE SYSTEM**	LANGES	OF TFA.	TEING A	ORTEL	I STER.		
BUN NO	ALPSAT	10	CD	CA	(D/L)	SIGVANT	SIGC/AT	CLIAT	CD/AT2	CEAAT	SIGN	SIGC	CAVLTE	CORRESTS/REMARKS
M-1101	11.49	0.754	0.120	0.145		4.217	1.276	3.961	2.987		9.846	0.256	99.0	PC
M-1102	11.51	0.837	0.130	0.123	0.156	3.954	2.991	4.166	3.230		0.795	0.601	0.65	
8-1103		0. 861	0.141	0.099	0.163	3.694	3.281	4.280	3.475	0.493	0.743	0.660	0.63	
B-1104		0.828	0.143	0.089	0.172	3.452	3.113	4.122	3.535	0.443	0.693	0.625	19.0	
A-1105		111.0	0.141	0.083	0.181	3.219	2.935	3.882	3.514		0.644	0.588	99.0	
3-1106	11.44	0.717	0.137	0.079	0.190	2.963	2.700	3.594	3.426		0.591	0.539	99.0	
N-1107		0.652	0.129	0.077	0.198	2.681	2.439	3.279	3.263		0.533	0.485	0.72	
A-1138		0.577	0.120	0.072	0.208	2.371	2,169	2.912	3.051		0.470	0.430	0.79	
N-1109	11. 32	0.516	0.111	0.068	0.214	2.079	1.919	2.614	2.835	0.344	0.411	0.379	0.93	
B-1110		0.452	0.098	990.0	0.217	1.835	1.793	2.296	2.536		0.361	0.353	1.10	
8-1111		0.403	0.088	0.061	0.219	1.591	1.553	2.055	2.294		0.312	0.305	1.40	
M-1112		0.355	0.033	0.059	0.225	1.363	1.349	1.815	2.082		0.267	0.264	1.75	
. N-1113		0.315	0.071	0.054	0.225	1.069	1.059	1.612	1.860	0.279	0.209	0.207	2.80	
N-1114	11.13	0.296	990.0	0.053	0.226	0.947	0.941	1.529	1.772	0.272	0.185	0.184	3.25	
N-1115	11.43	0.770	0.114	0.151	0.146	:	-	3.846	2.851	0.754	-			PC (TW)
a-1116	11.46	0.750	0.115	0.148	0.154		-	3.747	2.881	0.742				PC (TW)
8-1117	11.45	0.722	0.115	0.138	0.159	!	!	3.615	2.878	0.689		:	:	
A-1118	11.44	0.718	0.115	0.134	0.161		-	3.596	2.894	0.673	-	:	:	2
8-11-19	11.42	0.704	0.11	0.138	0.158	:	!	3.530	2. 198	0.694	:	-	:	2
UNLESS OTHERNIS	THEEKISI	I MDIC	UPERCAV	INDICATED, ALL DATA ABE FOR:	PLOW.	ä								
		Z. B	OTH STA	TIC PRE	SSURE T	BOTH STATIC PRESSURE TAPS OPEN	•							
LEGEND		· ONET	UPSTRP	ONLY UPSTREAM STATIC	IC PRES	SURE TAR		9						
		* ONLY	DNSTRE	DARTE ONSTREAM STATIC		PRESSURE TAP	OTILIZED	9						
	Dr. 14	. :	1111	SELECTION CANTERING		Castan arti								
		: =	FOLLY WETTED	0		7001138								
11	RdTV)		E) ANGL	E OF AT	TACK, C	ORRECTE	(TAUE) ANGLE OF ATTACK, CORRECTED FOR RFFECTS OF IMAGES OF TRAILING VORTICES	ECTS 0	P IMAGE	S OF TR	AILING	VORTICE	S	
		71	7 I WHAT											
	SIC	2 2	TATION	HOMBER .	COMPUTE	HILL	CAVITATION NUMBER COMPUTED WITH MEASURED CAVITY PRESSURE	CAVITY	PRESSU	32				
	;	9	COEPPI	CIENT.	CORRECT	ED POR	CRAG COEPPICIENT, CORRECTED FOR REFRCTS OF INAGES OF TRAILING WORTHCRS	INAG	ES OF T	RALLING	VORTIC	SE		
	1/0)		ECTED D	RAG-TO-	LIFT BA	CORRECTED DRAG-TO-LIFT RATIO = CD/CL	15/0							
	CAVLTH		TY LPNG	TH MPAS	URED FR	OH RIDCE	ORD AT	ENTRO!	D POSIT	ION, NO	NDINEN	LOWALIZ	NO QZ	CAVITY LENGTH HPASURED FROM MIDCHORD AT CENTROID POSITION, MONDINENSIONALIZED ON MEAN CHORD
		THO)	AINED P	(OBIALNED PROM PHOTOGRAPHS)	TOGBAPH	5)								

EXPER INVES OF WALL EFFECTS ON SUPERCAVITATING HYDROPOILS OF FINITE SPAN

			and and distributed the state and the
MIN	HAC	4.02	
INPUT	TI AREA SPAN MAC	2.0	4388
POIL	AREA	40.0	
HIDE	11	95	10
	18	78	9 000

ZEBO READINGS AND TONEL TENP BEFORE AND AFTER
MANGH 1-N 1-R 2-N 2-R 3-N 3-R TT
C. 0.0 0.0 0.0 100.0 94.0
0. 0.0 0.0 0.0 0.100.5 0.0 100.0 96.0
CELL L85/CT(N38.AL/FEV) 01=0.20000 62=0.20000 03=0.04030
TWIST= 7200.0 SHAFT DIA.= 1.50IN
INPUT DATA AS RECORDED

uu.	B9.	480.0	«	112.5	HE R	-292.0	EMPE	1273. BOOM T	18	-1214. LEGEND
. **	90.	470.0	~	112.3	œ	-282. C		1278.		1213
	101.	483.0	œ	112.5	Œ	-292.C		1275.		-1212
. 22	103.	523.0	æ	113.2	æ	320.0		1257.		1211.
. 44	109.	487.0	æ	112.5	œ	.296.0		1274.		-1210+
43.	109.	507.0	æ	113.0	~	.312.0		1272.		-1739
¥3.	119.	547.0	æ	113.8	œ	348.0		1272.		-1208
43.	133.	594.0	4	114.5	æ	405.0		17.70.		-1707
. 77	146.	638.0	æ	115.0	æ	434.0		1771		-1706
49.	161.	708.0	æ	116.0	œ	. 208.0		1276.		-1205
53.	181.	770.0	æ	117.0	œ	.280.0		1277.		-1204
55.	203.	832.0	~	118.0	œ	682.0		1282.		-1203
.65	220.	870.0	æ	119.0	œ	746.0		1287.		-1202
63.	235.	830.0	æ	121.0	æ	830.0		1297.		-1231
PCAV	PINF	3	s	62	S	=	S	BONYH		BUN NO

COUNTS ## COUNTS ## COUNTS ## COUNTS ## COUNTS ## DRAG (COUNTS)
DRAG (COUNTS)
DRAG (COUNTS)
PATIC PRESSURE (MM HG)
PCAV CAVITY PROBLET ## PCAVITY POLL ## PLIS ANGLE
PCAVITY PURSSURE ## PCAVITY POLL ## PLIS ANGLE TT TURNEL " " ")

APEA HALF-SPAN HODEL PLANFORM AREA (SQ IN)

SPAN POIL HALF-SPAN (IN)

MAC MAAN CHORE, MEAS. @ MODEL CENTROID (IN)

BANDS VELOCITY HANOMETER READING (MM)

THIST SHAPT THIST (DEGREES/IN-LB)

SLOAD CELL POLARITY (H=NORBAL, N=BEVERSE)

ERPER INVES OF MALL EPPECTS ON SUPERCAVITATING BIOROPOILS OF PINITE SPAN

PRESSURE	PCAV	63.	59.	55.	53.	49.	44.	43.		43.	***	***	* 77	. 44	4
HYDROSTATIC	PINE	224.	209.	192,	170.	150.	135.	122.	108.	98.	98	97.	90.	79.	7.0
AND HYDRO	=	-790.0	-770.0	-732.0	-670.0	-608.0	-538.0	-498.0	-447.0	-407.0	-387.0	-423.0	-383.0	-370.0	- 380 0
READINGS, SIGNS,	1.5	-21.0	-19.0	-17.9	-16.9	-15.8	-14.8	-14.3	-13.5	-12.7	-12.2	-12.8	-12.1	-11.8	-12.0
POR ZERO READING	=	-830.0	-748.0	-682.0	-590.0	- 508.0	-434.0	-402.0	-348.0	-312.0	-296.0	-326.0	-292.0	-282.0	-292.0
CORRECTED	BANOR	1297.	1287.	1282.	.1171	1276.	1771.	1270.	1272.	1272.	1274.	1267.	1275.	1278.	1273.
INPUT DATA	BUR NO	A-1201	N-1202	A-1203	A-1204	8-1205	A-1206	A-1207	R-1208	8-1509	A-1210	A-1211	8-1212	4-1213	8-1214

BIP28 IBVES OF GALL UPPECTS OF SUPERCAVITATING HYDROPOLLS OF FIBITE SPAN

٠
•
₹
9
REDUCTIONS
ឥ
ä
N
æ
2
DATA
2
_
FOIL
-
ō
≈
ä
3
-
CHOLBOO
•
•

01 61.63 15.60 01 67.76 17.05 01 69.02 15.43 01 50.00 15.31 VEL OPSTREAM VELOCITY
12.01 12.01 12.01 12.01 12.01
8-1209 8-1210 8-1211 8-1212 8-1214

RIPER INTES OF WALL REPRETS OR SUPERCIVITATING BYDROPOLLS OF PINITE SPAN

	S APPLIED)
	CORRECTIONS
	PORB (MO
	L DATA IN HOMDINENSIONAL PORM (NO CORRECTIONS
-	DATA IN
	TIOLOGIES.

ALPHA GEOMETRIC ANGLE OF ATTACK CORRECTED FOR SHAFT TWIST
CL LIFT COEFFICIENT, MOMDIRENSIGNALIZED ON UPSTREAM VELOCITY AND MODEL PLANFORM AREA
CDUMC CL(UNCORRECTED), THE UNCORRECTED DRAG COEFFICIENT AS COMPUTED FROM HEASURED DRAG, AND MOMDIMENSIONALIZED
ON UPSTREAM VELOCITY AND MODEL PLANFORM AREA
CM GOMENT COEFFICIENT, MOMDIMENSIONALIZED ON UPSTREAM VELOCITY, MODEL PLANFORM AREA, AND HEAN CHORD
L/D LIFT-TO-DRAG RATIO = CL/CEUKC
D/L DRAG-TO-LIFT RATIO = CDUKC/CL
RM RETHOLDS WUMBER, BASED ON MEAN CHORD

. . .

EIPER INVES OF SALL PPECTS ON SUPERCIVITATING BIDNOPOILS OF PINITE SPAN

٠	COSESTS/PERANS						
•		0.69	1.12	2.63			
SYSTEM	SIGC 0.651	0.560	0.376	0.268	0.220		
VORTER					0.225		
PITING					0.269		
10 1					1.708		
IRAGES					1.594		
BCTS OF	\$16C/AT	2.579	1.928	1.257	0.679		
PRIOR DATA CORRECTED FOR RPPECTS OF IRAGES OF TRAILING FORTEX SYSTEM	3.384	2.837	1.792	1.27	0.910	R: APS OPEN	
BRECTED	(0/L) 0.190	0.204	0.230	0.239	0.240	IMDICATED, ALL DATA ARE FOR: 1. SUPERCATIATING PLOM. 2. BOTH STATIC PRESSURE TAPS	
DATA CO	0.098	0.089	0.075	0.064	0.061	CATED, ALL DATA ARE SUPERCAVITATING FLOW	
	0.169	0.164	0.128	0.093	0.087	OPERCAY OTH STA	20000
•	d:	0.439	0.555	0.384	0.322	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	****
	12. 54	12.45	12.29		22.22	S1882R1	
	BUS BO	8-1202 8-1203 8-1204	B-1206 B-1206	6-1208 6-1209 6-1210•	1-1213 1-1212	DELESS OTHERSISE	

+ CHIT DESTREAR STATIC PRESSURE TAP UTILIZED

CHIT DESTREAR STATIC PRESSURE TAP UTILIZED

PC (THI DESTREAR STATIC PRESSURE TAP UTILIZED

PC (THI DESTREAR STATIC CAVITATING (TAP SETTED)

PURCHARIALLY CAVITATING (TAP SETTED)

ATZ ALPHATO-STATIC ANGLE OF ATTACK, CORRECTED FOR EFFECTS OF IRAGES OF TRAILING WORTICES

ATZ ALPHATO-SIGNE OF ATTACK, CORRECTED FOR EFFECTS OF IRAGES OF TRAILING WORTICES

SIGN CAVITATION NUMBER COMPUTED WITH REASURED FOR EFFECTS OF IRAGES OF TRAILING WORTICES

(D.L.) CORRECTED DRAG-TO-LIFT RATIO = CD/CL

(D.L.) CORRECTED DRAG-TO-LIFT RATIO = CD/CL

CAVIT LEMETH REASURED FROM MIDCHORD AT CERTROID POSITION, MONDIMERSIONALIZED ON REAF CRORD

(DATAIRED FROM PROTOGRAPHS) LEGEND

EIPER INVES OF BALL RPPECTS ON SUPERCAVITATING MYDROPOLLS OF PINITE SPAN

DATA	PAC	4.02
TUGET	2742	10.0
POPOLL	1111	0.0
MIDE	t	6
	2	11

100 0 0 0 0 0 0 0 0	0 87-0
0. 0.0 0.0 0.0 99.5 0.0 110.0 92.0	0 92.0
ELL LBS/CT(MORMAL/REV) 01=0.20000 02	-0.20000 03-0.04030

-	-		•	• • •	•	•			
200	5000		0	7.	0	:			
B-1401	802.	-550.0	-	127.0	•	617.0	722.	•	2
B-1402	1183.	-790.0	~	139.0	~	0.988	676.	!	2
1-1403	1526.	-996.0	~	149.5	~	1045.0	638.	!	2
8-1404	1430.	-956.0	-	147.5	~	988.0	449.	:	2
4-1405	1413.	-968.0	-	146.5	-	984.0	395.	!	2
8-1406	1409.	-1000.0	-	143.0	-	1045.0	357.	!	2
B-1407	1397.	-1062.0	-	133.4	~	1175.0	318.	136.	
B-1408	1380.	-1042.0	-	127.4	-	1204.0	293.	87.	
H-1409	1381.	-1004.0	~	125.0	~	1209.0	279.	.11.	
3-1410	1375.	-950.0	-	123.0	*	1195.0	264.	.69	
8-1411	1372.	-830.0	~	122.0	•	1170.0	248.	. 49	
H-1412	1366.	-828.0	-	121.0	-	1135.0	234.	62.	
H-1413	1361.	-754.0	~	120.0	~	1075.0	216.	55.	
B-1414	1362.	-696.0	~	119.5	-	1025.0	203.	53.	
1-1415	1358.	-640.0	-	118.6	*	973.0	189.	50.	
1-1416	1359.	-578.0	-	118.0	=	912.0	173.	.94	
1-1417	1357.	-534.0	-	117.5	-	860.0	160.	:	
8-1418	1353.	-452.0	-	116.0	~	762.0	136.	39.	
1-1419	1352.	-396.0	-	115.0	•	688.0	118.	39.	
8-1420	1353.	-366.0	~	114.5	*	650.0	109.	39.	
1-1421	455.	-260.0	=	107.0	-	113.0	110.	45.	
A-1822	988.	-600.0	-	115.6	•	0.830	185.	55.	
1-1023	992.	-664.0	-	132.6	~	735.0	704.	!	84
414000									

LOAD CELL # 1 LIFT (COUNTS)
#2 HONEST ABOUT NIDCHORD (COUNTS)
#3 DRAG (COUNTS)
#10 PATIC PRESSORE (AN HG)
#6AY CAVITY FRESSORE (AN HG)
#6AY CAVITY CAVITY OF THE CAVITY OF THIS ANGLE TR BOOM TEMPER (DEG FAME)

AREA HALP-SPAH MODEL PLABFORM AREA (SQ IN)

SPAM FOIL BAIF-SPAH (IN)

RAC RAN CHORD, MEAS. B HODEL CENTROID (IN)

RAND WELOCITY RANGEPTER READING (NN)

THEST SHAPT THIST (DEGRESS/IN-IN)

S LOAD CELL POLANITY (#-MORRAL, R-PEPRESE)

-152-

19785 OF MALE BPPECTS ON SUPERCAVITATING MIDDOPOLIS OF PINITE SPAN MIDD TO TAKE THE SPAN MIDDOPOLIS OF PINITE SPAN MIDD TO TAKE THE SPAN MIDDOPOLIS OF PINITE SPAN MIDD TO TAKE THE SPAN MIDD TO TAKE THE SPAN MIDDOPOLIS OF PINITE SPAN MIDD TO TAKE THE SPAN MIDDOPOLIS OF PINITE SPAN MIDD TO TAKE THE SPAN MID TAKE THE SPAN MID TO TAKE THE SPAN MID TAKE THE SPAN MID TAKE THE

RIPED LEVES OF BALL RFPECTS OF SUPERCAVITATING NIDEOPOILS OF FIELTE SPAR

9
~
5
BDBCT108+
ā
_
2
5
PATA
-
=
9
=
×
** STEBOPOLL DA
-

VEL-PP	21.37	25.61	28.83	27.97	27.81	27.76	27.67	27.51	27.52	27.86	27.44	27.38	27.33	27.34	27.30	27.31	27.30	27.26	27.25	27.26	16.42	23.55	23.59
BON-THE.	97.20		178.36	~	-	155.21	120.73	99.21	90.65	13.54	80.02	76.50	72.98	71.26	69.11	66.03	64.31	58.99	55.47	53.75	26.84	57.86	119.16
BRAG-LB	20.84	30.05	36.05	35.73	35.55	37.99	13.21	44.36	44.55	43.96	42.94	41.51	39.67	37.04	34.93	32. 15	30, 33	26.37	23.37	21.82	13.46	30.20	25.19
	115.40	165.00	209.11	200.71	262.92	206.62	219.11	213.91	205.04	194.64	102.65	169.85	154.85	183.16	131.76	119.27	110.37	93.69	62.28	76.19	53. 49	~	139.42
ALPEA	14.01	14.02	14.02	14.02	14.02	14.02	14.02	19.01	18.01	14.01	14.01		10.01	10.01	14.01	14.01	10.01	14.01	14.01	14.01	14.00	14.01	14.02
04 888	1-1601	1-1402	1-1403	8-1404	1-1405	1-1406	1-1007	1-10-00	1-1409	1-1410	-18-1	B-1012	. 1-1413	1-10-10	1-1415	F-1416	1-1417	1-14-1	M-1419	1-1420	1-1421	1-1422	1-1423

VEL OPSTREAM VELOCIFY (8)

2227

SIPER 1872S OF BALL EPPECTS OF SUPRICAVITATING BIDBOPOLLS OF PINITE SPAN

•
. PORR (NO CORRECTIONS APPLIED) .
ē
=
-
=
=
-
=
9
2
6
=
=
8
•
2
5
_
2
6
Ñ
-
•
8
×
5
~
3
8
=
2
_
=
BATA IS HORDIRPRSIONAL
2
=
-
=
- I LD BO FOLL
9
=
=
=
•

3	CDONC			7/4	
3	0.1643	0.1973	5. 7296	0.1745	0.8493
22	0.1652	0.1986	5.7028	0.1754	1.0176
36	0.1652	0. 1989	5.6767	0.1762	1.1456
19	0.1648	0.2029	5.8031	0.1723	1.1115
3	0.1658	0.2010	5.8954	0.1696	1.1053
35	0.1780	0.1865	5.6595	0.1767	1.1039
3	0.2049	0.1462	5.2055	0.1921	1.0995
=	0.2130	0.1215	4.9455	0.2022	1.0932
	0.2137	9.1110	4.7386	0.2-10	1.0936
	0.2117	0.1027	4.5416	0.2202	1.0914
~	0.2071	0.0935	4.3612	0.2:93	1.0903
-	0.2009	0.0946	4.2032	0.2379	1.0881
_	0.1894	9.0000	4.0776	0.21.52	1.0862
	0.1792	0.0884	3.9830	0.2511	1.0866
-	0.1391	0.0847	3.8953	0.2567	1.0851
-	0.1566	0.0820	3.8039	0.26.29	1.0855
	0.1462	0.0800	3.7745	0.26.49	1.0847
	0.1268	0.0736	3.7061	0.26.98	1.0832
	9.1116	0.0693	3.6936	9.2707	1.0829
_	0.1039	0.0671	3.6758	0.2720	1.0832
9	0.1802	0.0923	4.1048	0.2436	0.6524
	0.1974	0.0967	4.1950	0.2384	0.9358
2	0.1610	1001	6. 724 B	1717	0.9376

ALPEA GEOBRITIC ANGLE OF ATTACK CORRECTED FOR SHAFT THIST

CL LIFT COTFFICIENT, KONDIMERSIONALIZED ON UPSTREAM TRIOCITY AND HODEL PLANFODS ARKA

CL LIFT COTFFICIENT, KONDIMERSIONALIZED ON UPSTREAM TRIOCITY AND HODEL PLANFORS AREA

CH GORENT TELOCITY AND SODEL PLANFORM AREA

CH ROWENT COEFFICIENT, HOUDINESSIONALIZED ON UPSTREAM VELOCITY, HODEL PLANFORM AREA, AND ARAN CHORD

L/D LIFT-TO-BARG BATIO = CL/CEDNC

B/L BRAG-TO-LIFT BATIO = CDUSC/CL

RM REFEALDS HURBER, DASED ON MEAN CHORD 126 550

EIPER LEVES OF GALL EPPECTS ON SUPERCAVITATING REDNOPOLLS OF PIGITE SPAN

	COARESTS /REALES																															0.00	
	CORR			2	TC (TE	E CE	PC (TE																2									EAN CI	
	CAPLTE		•	:	:	:		0.65	0.62	0.63	0.6	0.0		8	0.00	1.15	1.30	1.75	3.65	3.50	0.15	0.75	1						2			7 70 021	
STSTER	SIGC			-	-			0.645	0.744	0.728	0.10	0.664	20.0	0.517	964.0	0.449	0.419	0.335	0.265	0.230	0.581	0.620	!						VORTICE		3	SIONALI	
OBTET	3167		-	!	-	-		1.028	0.944	0.889	0.03	0.774	77.0	0.602	0.549	0.486	0.435	0.342	0.272	0.335	0.657	0.108							AILING		VORTE	BOINE	
98171	24/17	_		0.782	0.797	0.788	0.731	0.572	0.476	0.435	0.403	0.388	25.0	151	0.337	0.327	0.320	0.295		0.270	0.366	0.382	0.180						10 1	:	ATE STATE	08, 80	
OF TRA	CB/172	2.682	2.694	2.691	2.686	2.704	2.896	3.3	3.438	3.	3.416	7.7		2.906	2.748	2.550	2.386	2.075	1.835	1.709	2. 924	3. 192	2.660						F KRAGE	-	PR 855	POSTE	
INACES	CL/17	3.701	3.702	3.68	3.754	3.834	3.938	1.13	4. 122	3.970	3.778	3,557	1.050	2.032	2.620	2.376	2.206	1.884	1.660	1.538	2.934	3.271	3.670			22			PCTS OI	******	TAPO TAPO	EBTBOIL	
ECTS OF	S19C/11		-	-	-		-	2.522	2.911	2.154	2.767	2.616	300	2.13	1.973	1.792	1.674	1.342	1.066	0.926	2.303	2.450				DTILIS			FOR BP		ALCOLATI	AC. AT. C	
PRIOR DATA CORRECTED FOR RPPECTS OF IRACES OF TRAILING VORTEE SYSTEM	SIGTANT			-				4.020	3.693	3.484	3.277	3.007	2 690	2,191	2.184	1.938	1.739	1.372	1.092	0.947	2.605	2.196	:	=	BUPERCATIATING PLON. BOTH STATIC PRESSURE TAPS OPER	OMET BESTREAM STATIC PRESSUR TAP BTILISED CHIY BESTREAM STATIC PRESSUR TAP BTILIZED		STTE D	(TRUE) ANGLE OF ATTACK, CORRECTED FOR BFFECTS OF ISAGES OF TRAILING VORTICES	-	CAVITATION NUMBER CORPUTED WITH MEASURED CAVITY TRESSURE CAVITATION NUMBER COMPUTED WITH CALCULATED TAPOR PRESSURE BRAG CORPUTCHEY, CORRECTED WOR EPPECTS OF TAMERS OF TRAILING VORTICES	CORRECTED DRAG-TO-LIFT BATIO - CD/CL CAVITY LEGGH MRASGRED PROM MIDCHORD AT CRUTOID POSITION, BOMDIMENSIONALITED ON MEAN CHORD	2
PRC 410	(0/1)		0. 185	0.106	0. 182	0. 180	0.187	0.203	0.213	0.222	0.530	0.239		0.258	0.264	0.269	0.271	0.275	0.275	0.276	0.251	0.247	0.184	INDICATED, ALL DATA ARE POR:	FLOY.	IC PRESS	9	PARTIALLY CAVITATING (TAP WETTED)	FACK, CO			11 PT 847	COSTAINED PROB PROTOGRAPHS)
DATA CO	5	0-197	. 13	0.133	0. 203	0.201	0.186	0.186	0.122	:	0.103	0.03		0.08	0.005	0.082	0.080	0.074	0.069	0.067	0.035	0.097	0.198	LL CATA	SUPERCATITATING PLON. BOTH STATIC PRESSUR	AN STAT	BARTIALLY CAVITATING	AVITATI	E OF AT		10000	RAG-TO-	NOB 120
PRIOR	8	0.174	9.174	0.174	0.17	0.176	0. 189	0.217	0.225	0.224	0.221	9.57	100	181	0.174	0.160	0.149	0.129	9.11	0.105	0.186	0-204	0.172	A .dati	PERCAT TH STA	DESTRE	TALLY C	PARTIALLY CA) ARGE	ALPHATON.	CORPE	CTED D	THED P
•	8	0.942	0.942	. 930	0.956	0.977	1.00	1.067	1.053	-63	0.962			7.	0.659	0. 596	0.552	0.470	0.113	0.382	0.740	0. 128	0.933	I FRDICE	~ . z z	1100 .	PC FARTI	D PARTI				CONT	100
	ALPEAT	14.57	14.56	14.50	14.59	19.61	14.62					25											14.57	BERNISE			~	FC (18	(ALPHAT			2115	
	BUE 80	1-1601	F-1602	1-1403	1-1404	1-1405	B-1406	1-1607	B- 1408	B-1809	10-10			- 101	1-14-15	1-1416	1-10-17	8-1418	B-12-19	8-1420	1-1021	A-1622	1-1623	UBLESS OTHERWIS		116110			*				

-	
2	
=	
3 25	
••	
-	
=	
THE	
=	
2	
_	
=	
•	
-	
3	
=	
=	
2	
=	
2	
SE SUPERCAVITATING MYDROPOLLS OF	
=	
=	
-	
2	
=	
-	
=	
=	
-	
•	
u	
ž	
=	
-	
8	
•	
0	
8	
PPECTS	
u	
~	
~	
-	
-	
-	
•	
-	
-	
9	
22	
=	
=	
-	
-	
=	
~	
2	
-	

HIDBOPOIL IMPUT DATA TR TT AREA SPAN MAC 75 92 40.0 10.0 4.02

1	3-8 3-8 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0	FT FT		293.		231.	216.	1 1192.0 203. 46.	179.	161.	1 401.0 141. 40.	129.		1329.0 237. 63.	238.	1353.0 236. 62.		137.	159.	1161.6 216. 61.	253.	.0 642	:	LOAD CRIL #1 LIFT (COGRES)	:3	PCAV CATITY PAR	ROW NO Q-IXI-TI: Q=POIL TRSTED(S=SAALL, N=RED,L=LARGE) IXE-GROWTHIC ATTACK ARGIR (DEGREES)
1 1 100	2-8 2-8 3- 5-01000 0 5-01000 0 5-01000 0 5-01000 0 19200 1 1	#00 N	62 S	26.5 R	28.7	23.5	122.9 B	22.0	121.0 B	120.0	18.5	18.0	17.0	22.0 R	122.9 B	23.4	0.90	0.11	13.9	21.0	25.0 R	125.2	127.0 B		ABEA (50	CRETEOID	(HE) (F
2-8 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		200 E	~=			-	-			~ (-		. ~	_			_			-	-	-	(AXPORE		12/11/21
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-1 2-8 3 -0 100.0 0 -0 101.0 0 -2 101.0 0 -2 101.0 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5	-1106.0	-1042.0	-928.0	-814.0	-756.0	-678.0	-612.0	-552.0	-222.0	-450.0	-410.0	-830.0	-810.0	-850.0	-178.0	-380.0	-168.0	-752.0	-912.0	-1058.0		.	=	ILF-SPAN (IN	IT HA KOHETER IVIST (DEGRE

The second of th

EIPER IMPES OF SALL EPPECTS ON SUPERCATITATING HYDROPOILS OF PINITE SPAN

RUM NO	BONAR	=	1.5	13	PINF	PCA
1-1601	1450.	-1106.0	-28.2	-1436.0	298.	89.
1-1602	1451.	-1042.0	-26.5	-1414.0	282,	79.
1-1603	1448.	-994.0	-25.4	-1386.0	268.	73.
1-1604	1432.	-928.0	-24.6	-1336.0	250.	67.
-1605	1422.	-876.0	-23.9	-1286.0	236,	61.
1-1606	1413.	-814.0	-23.3	-1218.0	220,	57.
1-1607	1408.	-756.0	-22.7	-1157.0	207.	54.
1-1608	1391.	-706.0	-21.7	-1092.0	192.	46.
1-1609	1385.	-678.0	-21.7	-1059.0	184.	64
1-1610	1379.	-612.0	-20.7	-974.0	168.	45.
1-1611	1173.	-552.0	-19.6	-883.0	150.	42.
1-1612	1371.	-522.0	-18.6	-841.0	141.	:
1-1613	1369.	-484.0	-18.1	-791.0	130,	9
1-1614	1369.	-450.0	-17.5	-137.0	118.	4.1.
1-1615	1367.	-410.0	-16.5	-675.0	100.	42.
1-1616	1196.	-672.0	-20.7	-1056.0	183.	42.
1-1617	1395.	-830.0	-22.2	-1229.0	226.	63.
1-1618	1396.	-810.0	-22.3	-1208.0	227.	62.
1-1619	1391.	-850.0	-22.7	-1253.0	227.	62.
1-1620	619.	-222.0	-8.6	-370.0	82.	
1-1621	279.	-178.0	-5.3	-254.0	83.	. 7.9
1-1622	550.	-380.0	-10.2	-535.0	126.	55.
1-1623	123.	-488.0	-13.1	-695.0	148.	57.
1-1624	.996	-630.0	-16.6	-907.0	175.	61.
1-1625	1181.	-752.0	-20.1	-1093.0	207.	63.
1-1626	1433.	-912.0	-24.1	-1322.0	242.	65.
1-1627	1429.	-1058.0	-24.2	-1124.0	631.	-
1-1628	111.	0.095-	-26.8	-59B. 0	716	

RIPSD LEVES OF BALL EPPECTS OF SUPERCAVITATING STONOPOLLS OF FIRITE SPAN

	VEL-PPS	:	7	-	0	•	•			S	S	•	•	*	-	-	9	9	9.			٥.		7	7	9	9		2
******	ī	S	5.2	ď	ď	•	•	•	~	-	•	*	•	•	٠.	~	9	0	-					-	•		9	87.25	-
DATA BEBOCTION.	01-914Q	57.	56.98	55.86	53.84	51.83	49.09	46.63	10.44	42.68	39.25	35.58	33.89	31.88	29.70	27.20	12.56	19.53	#B.68	50.50	14.91	10.24	21.56	28.01	36.55	44.05	53.28	45.30	24.10
HIDDOLGIE -	1177-11	226.84	213.69	203.69	190.52	179.97	167.46	155.74	145.55	139.94	126.53	114,33	168.12	100.41	93.50	15,30	138.55	170.44	166.45	174.55	46.12	36.65	18.04	100.22	129.33	154.42	187.21	216.45	117.36
:	ALPEA	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	0	16.01	0	0	0	0	0	0	0	0	0	16.01	0	16.01	16.01	16.01	16.01
		160	1-1602	•	•	160	9	9	°	1-1609	2	7	161	7	161	161	7			-16	-16	-16	-16	1-1623	H-1624	B-1625	A-1626	B-1627	M-1628

VEL UPSTREAM VELOCITY (U)

RIPER INVES OF BALL EPPECTS OF SUPERCAVITATING HYDROPOLLS OF PINITE SPAN

. BB+10++-6	1.1378	13 1.1382	1761.1 61			1.1242																					
2	0.250	0.26	0.26	0.276	0.28	0.2864	0.292	0.29	0.297	0.30	0.30	0.30	0.306	0.30	0.306	0.299	0.284	0.285	0.282	0.311	0.27	0.269	0.27	0.276	0.279	0.276	0.204
27	3.9997	3.8277	3.7273	3.6153	3.5505	3.4921	3.4228	3.3934	3.3667	3.3172	3.3155	3.2972	3.2625	3.2693	3.2676	3.3435	3.5208	3.4996	3.5347	3.2123	3.6807	3.7058	3.6609	3.6188	3.5846	3.5912	4.9019
5	0.1186	0.1113	0.1071	0.1047	0.1022	0. 1005	0.0961	0.0951	0.0953	0.0911	0.0869	0.0824	0.0801	0.0778	0.0732	0.0904	0.0969	0.0971	0.0994	0.0799	0.1025	0.1060	0.1052	0, 1022	0.1024	0.1024	0. 10 34
CEONC	0.2664	0.2621	0.2573	0.2505	0.2425	0.2308	0.2197	0.2094	0.2038	0.1878	0.1704	0.1623	0.1525	0.1417	0.1295	0.2017	0.2358	0.2315	0.2411	0.1489	0.2168	0.2438	0.2457	0.2450	0.2450	0.2476	0.2103
t	1.0657	1.0033	0.9591	0.9055	0.8610	0.8059	0.7519	0.7107	0.6861	0.6229	0.5651	0.5351	9.4976	0.4634	0.4233	0.6743	0.8301	0.8101	0.8523	0.4784	0.7981	0.9036	0.8997	99860	0.8781	0.8892	1.0307
ALPHA	16.91	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.01	16.00	16.00	16.01	16.01	16.01	16.01	16.01	16.01
08 808	1-1601	1-1602	B-1603	1-1604	1-1605	1-1606	1-1607	1-1608	1-1609	1-1610	1-1611	1-1612	H-1613	A-1614	1-1615	A-1616	1-1617	H-1618	H-1619	1-1620	1-1621	1-1622	1-1623	1-1624	1-1625	B-1626	1-1627

ALPBA GEONETRIC ANGLE OF ATTACK CORRECTED FOR SHAFT TWIST
CL LIFT COEFFICIENT, MONDINENSIONALIZED ON UPSTREAM VELOCITI AND GODEL PLANFORM AREA
CL LIFT COEFFICIENT, MONDINENSIONALIZED ON UPSTREAM VELOCITI AND GODEL PLANFORM AREA
ON UPSTREAM VELOCITI AND GODEL PLANFORM AREA
CM GOMENT COEFFICIENT, MONDINENSIONALIZED ON UPSTREAM VELOCITY, HODEL PLANFORM AREA, AND REAM CHORD
L/D LIFT-TO-DRAG RATIO = CLYCOUNC
D/L DRAG-TO-LIFT RATIO = CEUNC/CL
RM RETWOLDS WUNDER, DASED ON MEAN CHORD

RIPED INVES OF MALL RPPECTS ON SUPERCAVITATING RIDROPOLLS OF PINITE SPAN

	CORRESTS/RESERVES		22	Q COOR
	0.69 0.72 0.72	0.96 0.96 0.96 0.96 1.10 1.15 1.62 1.62 1.62		# # # # # # # # # # # # # # # # # # #
STSTER	SIGC 0.761 0.738 0.711	0.000000000000000000000000000000000000	0.652 0.652 0.652 0.653 0.653 0.653 0.653	VORTICE :ES
BG VORTER S		0.354 0.787 0.354 0.740 0.341 0.686 0.331 0.586 0.305 0.438 0.282 0.395 0.282 0.395	000000000011	**SUPERCATED, ALL DATA ABE POR: ** SUPERCATED, ALL DATA ABE POR: ** SUPERCATATING FLOW.** ** BOTH STATIC PRESSURE TAP UTILIZED ** BOTH STATIC PRESSURE TAP UTILIZED ** PARTIALLY CAVITATING (TAP WETTED) ** PARTIALLY CAVITATING TOWED WITH CALCULATED TAPOR PRESSURE ** CAVITATION WUMBER COMPUTED WITH CALCULATED TAPOR PRESSURE CANITATION WORDEN, CORRECTED FOR REPECTS OF TRAILING WORTICES ** CORPICTED DRAG-TO-LIFT RATIO ** CD/CL CAVITY LEBETH WEASURED FROM HIDCHORD AT CENTROID POSITION, MOUDINEWSIONALIZED ON WEAM CHORD (OBTAINED FROM PHOTOGRAPHS)
**PRIOR DATA CORRECTED FOR RPPECTS OF IMAGES OF TRAILING VORTEX	_	3.103 3.103 2.863 2.733 2.541 2.341 2.341 3.135 3.		#ESCATED, ALL DATA ABE POR: SUPERCAVITATING PLOW. SUPERCAVITATING PLOW. SUPERCAVITATING PLOW. OUT DESTREAM STATIC PRESSURE TAP UTILIZED CULT DESTREAM STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING (TAP WETTED) FULLY WETTED (TRUE) ANGLE OF ATTACK, CORRECTED FOR RFFECTS OF INAGES OF ALPHATO-2 CAVITATION WUNDER COMPUTED WITH HEASURED CAVITY PRESSURE CAVITATION WUNDER CORPUTED WITH CHOLATED VAPOR PRESSURE CORPUTED DAGG-TO-LIFT RATIO = CD/CL CAVITY LEWGIB HEASURED FROM HIDCHORD AT CENTROLD POSITION (OBTAINED FROM PHOTOGRAPHS)
P INAGES		2, 995 2, 690 2, 690 2, 690 2, 690 1, 981 1, 981 1, 981 1, 981		ZED ZED ZED CATIT TEED TAPOL OF IRAG
PECTS 0	2.618 2.618 2.547 2.455	2.333 2.249 2.112 1.993 1.993 1.662 1.451 1.216	2.155 2.162 2.162 1.081 2.213 2.213 2.196 2.174 2.200 2.256	P UTILIZED P UTILIZED P UTILIZED C TOR EFFE STEASURED C CALCULATED EFFECTS OF
108 BP	SIGY/AT 3.286 3.088 2.920	2.725 2.375 2.375 2.015 2.04 1.944 1.507 1.239	2. 4455 2. 4455 2. 4556 2. 658 2. 558 2. 558 2. 558	** SUPERCATED, ALL DATA ABE POR: ** SUPERCAUTATING FLOW. ** BOTH STATIC PRESSURE TAP UT. ** CALL DESTREAM STATIC PRESSURE TAP UT. ** CALL DESTREAM STATIC PRESSURE TAP UT. ** PARTIALLY CAVITATING (TAP WETTED) ** FOLLY WETTED ** FALLY WETTED ** CAVITATION WURBER CONPUTED WITH HEAS! ** CAVITATION WURBER CONPUTED WITH CALC. CAVITATION WURBER CONPUTED WITH CALC. ** CAVITATION WURBER CONPUTED WITH HEAS! ** CAVITATION WURBER CONPUTED WITH CALC. ** CAVITATION WURBER CONPUTED WITH CA
BRECTED	(0/L) 0.261 0.272 0.278	0.295	0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.298 0.298	PECON- TACK, C TACK, C TACK, C TACK, C TACK, C TACK, C TACK, C
DATA CO	0.119 0.119 0.107	0.098 0.098 0.098 0.098 0.098 0.080	0.099 0.099 0.099 0.103 0.102 0.102 0.102 0.103	1. SUPERCATED, ALL DATA ABE POR: 1. SUPERCANTATING FLOW. 2. BOTH EATIC PRESENT ORLY DASTRAM STATIC PRESENT ORLY DASTRAM STATIC PRESENT OR DASTRAM STATIC PRESENT OR DASTRAM STATIC PRESENT OR THE ORLY OR THAT OR WHERE COMPUTED CANITATION WHERE COMPUTED CANITATION WHERE COMPUTED CANITATION WHERE COMPUTED DASTRAM OR THAT OR WHERE COMPUTED DASTRAM OR THAT OR TH
10184.	0.278 0.278 0.267	0.259 0.250 0.226 0.226 0.174 0.174	0.254 0.253 0.253 0.253 0.254 0.255 0.255	ECICATED, AL SUPERCAVI BOTH STAT ONLY UPSTREA CHIT DNSTREA CHIT DNSTREA CHIT WETTED AFPHATE ON CAVITATION WE CAVITATION WE CAVITATION WE CAVITATION WE CAVITATION WE CAVITATION WE CAVITATION WE CAVITATION WE
•	1.066 1.003 0.959	6.65 6.55 6.55 6.55 6.55 6.55 6.55 6.55	000000000000	E-044005-000
	16.65 16.65 16.51	22522222222 22522222222222222222222222	16.52 16.52 16.53 16.53 16.54 16.54 16.53	PC (TW) PC
	8-1601 8-1602 8-1603	40000000000000000000000000000000000000	# - 16 18 16 18 - 16 18 - 18	TY ON THE SE ON

RIPER INVES OF MALL RPPECTS ON SUPERCAVITATING SYDROPOLLS OF PINITE SPAN

_	383. 170.																	-	113. 43.	13. 43.	LOAD CELL #1 LIFT (COUNTS)	#2 MONENT ABOUT MIDCHORD (COUNTS)	#3 DRAG (COUNTS)	PINE STATIC PRESSURE (RR HG)		BON NO Q-XXI-YY: Q=POIL TESTED (S=SMALL, N=BED, L=LANGE)	MANAGE MINDRE TAIN BOLL & THIS AND	4101 0 4102 7407 (Edgins 10417)
S 13 P	R 1820.0 3																	R 812.0 1			TOAD		(11)		D(IN)		(ASGA)	facua
S #2	R 135.5	113.7	131.5	R 129.0	8 128.0	R 126.8	R 126.0	B 125.2	R 124.2	R 123.4	R 122.6	R 122.0	B 121.2	R 120.6	R 120.0	R 119.5	R 119.0	R 115.5	R 115.1	R 116.0			ORB ABEA (SC		ODEL CENTROI	ADING (MM)	IN-LB)	
2 5	-1230.0	-1212.0	-1186.0	-1140.0	-1106.0	-1060.0	-1004.0	-930.0	-852.0	-190.0	-730.0	-666.0	-618.0	-568.0	-520.0	-492.0	0.974-	-394.0	-366.0	-402.0	ROOM TERPER (DEG FARR)	(· ·) · ·	HALF-SPAN HODEL PLANFORM ABEA (SQ IN)	FOIL HALF-SPAN (IN)	REAM CHORD, HEAS. & HODEL CENTROID (IN)	FLOCITY NAMONETER READING (NA	SHAFT THIST (DEGREES/IN-LB)	
~	11 1521.		-								11 1462.					1439.			_		TB	TT TUNNEL	AREA HALF-S				TAIST SHAFT	2 2040
B 80	A-1801	R-1802	A-1803	M-1804	M-1805	A-1806	B-1607	A-1808	H-1609	A- 1810	N-1811	1-1012	8-18-13	3-1014	A-1815	8-18-16	8-1817	M-1818	N-1819+	M-1820*	CHEST							

IRPUT DATA	COSSECTES	POR 2280	BEADINGS,	SIGBS.	AND BYDRO	BIDBOSTATIC	PRESSURE	
BOR 80	SOE AN	=			:	1114	PCAV	
1-1801	1521.	-1230.0		.5	-1720.0	372.	170.	
4-1802	1522.	-1212.0			-1717.8	357.	153.	
1-1803	1512.	-1186.0		•	-1717.7	341.	133.	
A-1604	1509.	-1140.0		6.	-1708.5	320.	114.	
4-1805	1499.	-1106.0		6.	-1689.4	304	.101	
8-1806	1491.	-1060.0		9.	-1669.2	284.	82.	
A-1807	1484.	-1004.0			-1614.1	265.	74.	
8-180B	1478.	-930.0		•	-1542.9	243.	65.	
8-1809	1468.	-862.0		6.	-1467.7	223.	61.	
N-1810	1459.	- 790.0		-	-1371.6	205.	56.	
8-1811	1462.	-730.0		•	-1290.4	187.	.7.	
R-1812	1456.	-666.0			-1188.3	169.	.7.	
8-1613	1049.	-618.0	•		-1104.1	153.	. 44	
A-1614	1448.	-568.0	•	.2	-1015.9	137.	43.	
8-1815	14 39.	-520.0		9.	-939.8	120.	.3.	
8-1816	1439.	-492.0		0.	-899.6	110.	1 3.	
8-1817	1437.	-476.0		.5	-866.5	102.	•3.	
8-1818	1137.	-394.0	•	0.	-709.3	102.	43.	
8-1819	1127.	-366.0	-14.5	.5	-685.2	102.	.3.	
M-1820	1154	-402.0		•	-711 0	102	A 2	

KIPER INVES OF WALL RPPECTS OF SUPERCAVITATING HTDROPOLLS OF FIRITE SPAN

	4	۱	١	
	4	ı	,	
		į	į	۱
	ĺ		į	۱
	٥	į	į	
	ı	þ		
	ĺ		į	۱
	Ì		į	
	í	i	ì	١
	0	ľ	ı	ļ
	ı		į	ı
	4	į	ı	
		ŀ	į	ı
	ě	į	į	
	í	١	١	۱
	ı	į	ı	۱
	١		į	ı
	ĺ		ĺ	
	ı	١	i	,
	¢		١	
	d	Ī	į	
1	í		۱	
		í	į	
	ı	į	į	İ
	ė	١	ĺ	
	ĕ	١		

08 808	71617	1177-18	DRAG-LB		VEL-72
-1801	18.02	253.10	69.32		28.78
-1602	18.02	249.13	69.23		28.79
-1603	18.02	243.49	69.22	113.17	28.71
-1801	18.01	233.78	68.85		28.68
-1805	18.01	226.77	68.08		28.59
-1906	18.01	217.33	67.27		28.52
-1807	16.01	205.96	65.05	92.92	28.46
-1808	16.31	191.00	62.18	89.92	28.10
-2-409	18.01	177.19	59.15	86.21	28.31
-1810	18.01	162.62	55.27	83.22	28.23
-1811	18.01	150.46	52.00	80.22	28.26
-1612	18.01	137.53	47.89	11.95	28.21
-1813	18.01	127.76	44.50		28.14
-1814	18.01	117.64	₩0.94	72.68	28.13
-1415	18.01	107.91	37.87	70.41	28.05
-1816	18.01	102.21	36.26		28.05
-1817	18.01	98.90	34.92		28.03
-1818	19.01	61.79	28.59		25.14
-1819	18.01	76.11	27.61	52.31	25.04
-1820	18.01	83.48	29.50	100	25. 21

VEL OPSTREAM VELOCITY (U)

RIPER INVES OF GALL RFECTS ON SUPERCAVITATING MIDROPOLLS OF FINITE SPAN

.. SIDEOPOIL DATA IN HONDIRESIONAL PORM (NO CORRECTIONS APPLIED) ..

90	=	_																		
	1.1	1.1814	1.1778	1.1767	1.1731	1.1702	1.1676	1.1654	1.1618	1.1584	1,1595	1,1573	1.1547	1.1544	1,1510	1.1510	1.1503	1.0315	1.0273	1.0387
77	0.2691	0.2731	0.2794	0.2894	0.2950	0.3041	0.3101	0.3194	0.3273	0.3328	0.3379	0.3398	0.3393	0.3383	0.3404	0.3435	0.3415	0.3381	0.3506	0.3425
2	3.7158	3.6622	3.5792	3.4552	3.3900	3.2884	3.2247	3.1307	3.0558	3.0051	2.9592	2.9430	2.9477	2.9563	2.9380	2.9109	2.9281	2.9580	2.8520	2.9195
5	0.1431	0.1356	0.1274	0.1173	0.1139	0.1094	0.1064	0.1034	0.0997	0.0968	0.0932	0.0909	0.0878	0.0852	0.0830	0.0807	0.0786	0.0791	0.0774	0.0802
CDONC	0.3065	0.3059	0.3078	0.3067	0.3051	0.3030	0.2941	0.2820	0.2697	0.2531	0.2374	0.2190	0.2041	0.1875	0.1740	0.1664	0.1602	0.1631	0.1587	0.1664
ฮ	1.1390	1.1204	1.1018	1.0598	1.0344	6,9963	0.9483	0.8827	0.8241	0.7607	0.7024	9749-0	0.6015	0.5542	0.5113	0.4843	0.4692	0.4925	0.4527	0.4857
ALPBA	18.02	18.02	18.02	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	18.01	16.91	18.01	18.01	18.01	18.01	18.01	18.01	18.01
00 00	8-1801	H-1802	R-1803	8-1804	A-1805	90-180	B-1807	A-1808	N-1809	N-1810	B-1811	A-1812	8-18-13	A-1814	A-1815	M-1816	A-1817	H-1818	M-1819	B-1820

ALPHA GEOMETRIC ANGLE OF ATTACK CORRECTED FOR SHART THIST
CL LIFT COFFICIENT, MONDIMENSIONALIZED ON OPSTREAM VELOCITY AND HODEL PLANFORM AREA
CL LIFT COFFICIENT, MONDIMENSIONALIZED ON OPSTREAM VELOCITY AND HODEL PLANFORM AREA
ON OPSTREAM VELOCITY AND HODEL PLANFORM AREA
CM HOMEN COFFICIENT, MONDIMENSIONALIZED ON OPSTREAM VELOCITY, HODEL PLANFORM AREA, AND HEAN CRORD
L/D LIFT-TO-DEAG RAITO = CL/CODNC
D/L DEAG-TO-LIFT BATIO = CDUBC/CL
RM RETHOLDS WUNBER, BASED ON HEAN CHORD

TECEND

EIPER LAVES OF GALL RPPECTS ON SUPRECAVITATING MYDROPOILS OF PINITE SPAN

	CORREUTS/BBRARS	449 0.169 0.081 0.349 0.791 0.772 1.516 1.655 0.253 0.273 3.50 448 0.163 0.079 0.346 0.698 0.682 1.470 1.595 0.246 0.223 0.273 3.50 448 0.163 0.079 0.346 0.698 0.682 1.470 1.595 0.246 0.223 0.273 3.50 488 0.161 0.077 0.355 0.870 0.885 1.419 1.655 0.231 0.277 0.277 3.50 486 0.169 0.060 0.348 0.888 0.888 0.885 1.419 1.655 0.251 0.277 0.267 486 0.169 0.060 0.348 0.888 0.888 0.885 1.419 1.655 0.251 0.277 0.267 486 0.169 0.060 0.348 0.888 0.888 0.885 1.419 1.655 0.251 0.277 0.267 486 0.169 0.060 0.348 0.888 0.888 0.885 1.419 1.655 0.251 0.277 0.267 486 0.169 0.060 0.348 0.888 0.888 0.885 1.410 0.895 1.410 0.277 0.267 486 0.169 0.060 0.348 0.888 0
	CDVL+1 0-72 0-75 0-75 0-75 0-75 0-89 0-89 1-15 1-15 1-15 3-28	20 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SYSTRH	SIGC 0.704 0.729 0.729 0.717 0.681 0.584 0.584 0.584 0.398 0.398	0.247 0.271 0.273 0.267 0.267 Ces
VORTER		0.223 0.223 0.276 0.271 0.271 G VORTI
ILIBG		0.250 0.246 0.246 0.253 0.253 0.253 0.263
0F TR	CD/A12 3.005 3.005 3.007 2.991 2.991 2.654 2.455 2.455 2.455 1.672 1.862 1.862	P I MAGE PRESSU PRES
INACES		1.516 1.470 1.516 1.521 1.521 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
SCTS OF	SIGC/LT 2.158 2.179 2.237 2.223 2.209 2.209 1.970 1.676 1.576 1.576 1.242 1.242 1.242	0.815 0.817 0.817 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816
PEIOR BATA CORRECTED FOR ZPPECTS OF IRAGES OF TRAILING VORTEL SYSTEM	SIGULA 3.562 3.562 3.562 3.562 3.033 3.033 2.043 2.043 1.650 1.278 1.078	469 0.169 0.081 0.349 0.791 0.772 1.516 1.655 0.253 0.253 0.247 469 0.163 0.079 0.346 0.698 0.682 1.470 1.595 0.253 0.253 0.247 469 0.163 0.079 0.346 0.698 0.682 1.470 1.595 0.246 0.223 0.218 483 0.164 0.077 0.355 0.876 0.887 1.511 1.624 0.294 0.276 0.271 486 0.169 0.080 0.348 0.888 0.885 1.419 1.581 0.278 0.278 0.277 486 0.169 0.080 0.348 0.888 0.885 1.419 1.581 0.278 0.277 487 0.161 0.077 0.355 0.876 0.876 0.876 1.591 1.665 0.251 0.277 488 0.164 0.077 0.355 0.889 0.886 0.885 1.419 1.581 0.278 0.278 481 0.164 0.077 0.355 0.889 0.888 0.889 0.889 0.278 481 0.164 0.077 0.355 0.878 0.878 481 0.164 0.077 0.355 0.878 0.889 0.889 0.889 0.278 0.278 482 0.164 0.077 0.355 0.878 0.878 483 0.164 0.077 0.355 0.878 0.878 484 0.165 0.289 0.289 0.889 0.889 0.889 0.889 0.278 0.278 0.279 485 0.164 0.077 0.355 0.878 0.878 487 0.164 0.077 0.355 0.878 0.878 487 0.164 0.077 0.355 0.878 0.878 488 0.164 0.244 0.248 0.278 0.878 488 0.164 0.167 0.278 489 0.167 0.278 489 0.267 0.288 0.889 0.889 0.898 0.898 489 0.267 FICLED BARCTED FOR EPPECTS OF TRAILING VORFICES CAVITATION BURDER COMPUTED WITH REASURED FROM RIDCHORD AT CEMTROID POSITION, MONDIMBUSIONALIZE (OBTAILED FROM RIDCHORD AT CEMTROID POSITION, MONDIMBUSIONALIZE (OBTAILED FROM RIDCHORD AT CEMTROID POSITION, MONDIMBUSIONALIZE
BECTED	(974) (9.28) (9.28) (9.30) (9.30) (9.32) (9.34) (9.34) (9.34) (9.34)	0.346 0.346 0.346 0.348 0.348 0.348 0.348 INC PRES IC
DATA CO	CH 0.143 0.143 0.143 0.114 0.114 0.114 0.114 0.114 0.104 0.104 0.093 0.093 0.093 0.093 0.093 0.093	1484 0.169 0.081 0.349 0.469 0.169 0.079 0.349 0.483 0.161 0.077 0.355 0.486 0.169 0.000 0.348 0.161 0.077 0.355 0.486 0.169 0.060 0.348 0.187 0.060 0.348 0.187 0.060 0.348 0.187 0.060 0.348 0.187 0.060 0.348 0.187 0.060 0.348 0.187 0.060 0.348 0.187 0.060 0.348 0.187 0.087 0
	CD 6.320 0.319 0.319 0.316 0.316 0.313 0.279 0.259 0.283 0.283	469 0.169 469 0.163 469 0.163 469 0.163 466 0.163 486 0.169
•	CL 1.139 1.120 1.060 1.080 0.996 0.983 0.761 0.761 0.561 0.551	#-04Une Ke U ++ U - 00000
	ALLEAN 186.70 186.65 186.65 186.65 186.58 186.58 186.48 186.46 186.48 186.48 186.48 186.48	18.39 0.18.39 0.18.39 0.18.39 0.18.39 0.18.39 0.18.30
		# 1816 18.30 # -1817 18.29 # -1819 18.29 # -1820 18.30 # -18.

PIPER LIVES OF WALL RPPECTS ON SUPERCAVITATING MYDROPOLLS OF PIRITE SPAN

THE TT AREA SPAN MAC 78 96 40.0 10.0 4.02

PINP PCAV 396. 177.														163. 47.	151. 47.	143. 47.	138. 47.	LOAD CRLL #1 LIFT (COUNTS)	DE HORENT ABOUT MIDCHORD (COURTS)	es DRAG (COURTS)	PINE STATIC PRESSURE (NR BG)	PCAV CAVITY PRESSURE (MM HG)	RUM NO Q-IIX-II: Q=FOIL TESTED(S=SHALL, N=RED, L=LARGE)	XXX=GEOMETRIC ATTACK ANGLE (DEGREES)	THEOR MURBER, THIS FOIL & THIS ANGLE
S 63	8 2075.0	R 2052.0	R 2020.0	8 1980.0	B 1965.0	R 1995.0	R 1910.0	B 1850.0	R 1793.0	B 1712.0	R 1603.0	B 1502.0	R 1434.0	R 1378.0	R 1320.0	R 1268.0	R 1247.0			II)		D(IN)			(asa)
	8.	9:	9.9	-:	9.1	2.5	7.1	9.1	7:	6.	.5	0.	6.	.5	••	9.0	.5			1EA (50		ZHTRO I	(HR)		., R- BEV
129	12	126	125	125	124	125	124	123	123	122	122	122	121	121	121	120	120			87 B		D Ta	T MG	(BT-	BBAL
v =	•	•	-	~	~	&	~	~	a	~	•	~	6	25	æ	as	æ	AHR)	-	ANPO	_	BOI 6	REAL	ES/11	-
14561102.0 R 129.5 R 2109.	1076.0	1042.0	1020.0	-974.0	-960.0	-990.0	-920.0	-866.€	-824.0	-768.0	-718.0	-666.0	-634.0	-608.0	-576.0	-550.0	-540.0	(CEG P	:_	IN TAGO	PAN (IN	HEAS.	NOMETER	(DEGRE	OLARITY
"	•	•	•															ERPER		PAN B	ALP-S	HORD,	IT HA	THIST	111
BANDS 1456.	1439.	1434.	1429.	1424.	1412.	1420.	1422.	1415.	1420.	1423.	1420.	1423.	1423.	1415.	1411.	1405.	1401.	ROOM T	TONNEL	BALP-S	FOIL H	BEAN C	VELOCI	SHAPT	TOYD C
B-2101	B-2102	B-2103	.B-2104	4-2105	B-2106+	H-2107€	8-2108	8-2109	3-2110	A-2111	8-2112	H-2113	N-2114	8-2115	8-2116	B-2117	8-2118	LEGEND TR	11	AREA	SPAN	RAC	EANOR	THIST	

EIPER INVES OF WALL EPPECTS OF SUPERCAVITATING STOROFOLLS OF PIBITE SPAR

INPUT DATA	CORRECTED	POR 1280	PEADINGS, SIGHS,	AND BYDROSTATIC	TATIC	PRESSORE
208 80	24 808	=		:	PIRE	PCAV
M-2101	1456.	-1102.0	-29.5	-2009.0	385.	177.
M-2102	1439.	-1076.0	-27.8	-1974.4	362.	150
E-2103	1636.	-1042.0	-26.5	-1950.8	339.	133.
B-2104	1429.	-1020.0	-25.1	-1918.2	316.	115.
B-2105	1824.	-978.0	-25.0	-1877.6	297.	99.
8-2106	1412.	-960.0	-24.7	-1862.1	294.	93.
M-2107	1420.	-990.0	-25.0	-1891.5	295.	93.
A-2108	1422.	-920.0	-24.0	-1805.9	271.	85.
B-2109	1419.	-866.C	-23.4	-1745.3	247.	75.
A-2110	1420.	-824.0	-23.0	-1687.7	229.	65.
1-5111	1423.	-768.0	-22.6	-1606.1	211.	59.
1-21-12	1420.	-718.0	-22.2	-1496.5	193.	54.
.8-2113	1423.	-666.0	-21.6	-1394.9	173.	50.
8-2114	1423.	-634.0	-21.5	-1326.4	161.	67.
8-2115	1415.	-608.0	-21.1	-1269.8	152.	17.
A-2116		-576.0	-20.6	-1211.2	140	17.
1-51-17	1405.	-550.0	-20.1	-1158.6	132.	47.
8-2118	1001	-540.0	-20.0	-1117.0	127	47

RIPER INVES OF SALL EPPECTS ON SUPERCAVITATING STOROFOLLS OF FINITE SPAN

RECETION
0
-
\mathbf{v}
믔
=
=
-
-
=
BATA
-
-
9
~
2
** AYDROPOIL
=
=
=

WEL UPSTREAM VELOCITY (U)

CRECEND

RIPER INVES OF WALL EPPECTS OR SUPERCAVITATING BYDBOFOLLS OF PIBITE SPAR

.. MIDBOPOIL DATA IN BORDINENSIONAL POSS (NO COPPECTIONS APPLIED) ..

901-88	1.1750	1.1686	1.1667	1.1648	1.1629	1,1583	1.1614	1.1621	1.1610	1.1614	1.1625	1.1614	1.1625	1.1625	1.1595	1.1579	1.1556	1.1541
る	0.3527	0.3553	0.3625	0.3642	0.3731	0.3753	0.3699	0.3795	0.3891	0.3948	0.4022	0.3998	0.4005	0.3391	0.3978	0.3997	0.3997	0.3992
22	2.8355	2.8148	2.7582	2.7457	2.6805	2.6642	2.7032	2.6351	2.5702	2.5328	2.4864	2.5014	2.4967	2.5058	2.5140	2.5019	2.5021	2.5053
5	0.1238	0.1170	0.1130	0. 1098	0.1070	0.1065	0.1075	0.1029	0.100	0.0990	0.0969	0.0953	0.0928	0.0923	0.0909	0.0888	0.0873	0.0870
CDANC	0.3740	0.3716	0.3683	0.3633	0.3566	0.3565	0.3603	0.3433	0.3322	0.3209	0.3045	0.2839	0.2637	0.2505	0.2409	0.2301	0.2208	0.2172
ฮ	1.0606	1.0460	1.0159	0.9974	0.9560	0.9497	0.9739	0.5045	0.8539	0.8127	0.7571	0.7102	0.6585	0.6277	0.6056	0.5758	0.5524	0.5341
MEPAL	21.01	21.01	21.01	21.01	21.01	21.01	21.01	21.01	21.01	21.01	21.01	21.01	21.01	21.01	21.01	21.01	21.01	21.01
08 80	1-2101	B-2102	1-2103	B-2100	8-5105	1-2106	B-2107	A-2108	8-2109	B-2110	8-2111	1-2112	1-5113	B-2110	A-2115	1-21-16	1-21-11	8-2118

ALPEA GFORTRIC ANGLE OF ATTACK CORRECTED FOR SHAFT THIST
CL LIFT COEFFICIENT, MONDINERSIONALIZED ON UPSTREAM VELOCITY AND MODEL PLANFORM AREA
ON UPSTREAM VELOCITY AND NODEL PLANFORM AREA
CN GORENT COEFFICIENT, WONDINERSIONALIZED ON UPSTREAM VELOCITY, HODEL PLANFORM AREA, AND MONDINERSIONALIZED
L/D LIFT-TO-DRAG BATIO = CL/CDDMC
D/L DRAG-TO-LIFT RATIO = CDUMC/CL
RM RETHOLDS WUMBER, BASED ON MEAN CHORD

RIPRO INVES OF MALL REPECTS ON SUPERCAVITATING HYDROPOLLS OF PINITE SPAN

•
TSTER.
E
-
-
2
ORTE
۲
9
Ξ
Ξ
TRAILIB
-
ō
2
BAGES
3
-
ō
2
2
PPECT
=
0
-
2
CORRECTE
2
8
U
DATA
3
-
=
:

γ α Α	
Computs/rebarks	MOTGATED, ALL DATA ARE POR: SUPPRIATIVE FLOW. BOTH STATIC PRESSURE TAPS OPEN. CULT DESTREAM STATIC PRESSURE TAP UTILIZED OULT DASTREAM STATIC PRESSURE TAP UTILIZED OULT DASTREAM STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING (TAP WETTED) FULLY WETTED (TRUE) ANGLE OF ATTACK, CORRECTED FOR EPPECTS OF INAGES OF TRAILING WOMTICES CAVITATION NUMBER COMPUTED WITH REASURED CAVITY PRESSURE CAVITATION WUMPER COMPUTED FOR EPPECTS OF INAGES OF TRAILING WORTICES CAVITATION MUMPER COMPUTED FOR EPPECTS OF INAGES OF TRAILING WORTICES CORRECTED DAG-TO-LIPT BATIO = CD/CL CAVITY LEMOTH REASURED FROM HIDGROUND AT CEMTROID POSITION, NONDIMENSIONALIZED ON MEAN CHORD (OBTAINED FROM PHOTOGRAPHS)
CAPLTE 0.85 0.85 0.85 0.96 0.96 1.03 1.10 1.42 1.42 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	S 20 20 20 20 20 20 20 20 20 20 20 20 20
\$160 0.753 0.753 0.753 0.754 0.754 0.640 0.640 0.640 0.517 0.423 0.320 0.320	DECATES, ALL DATA ARE POR: SUPERCAVITATING PLOY. BOTH STATIC PRESSURE TAP UTILIZED MAIN STATIC PRESSURE TAP UTILIZED MAIN UNSTREM STATIC PRESSURE TAP UTILIZED MAIN ARTIALLY CAVITATING TARTIALLY CAVITATING (TAP WETTED) TOLLY WETTED TARTIALLY CAVITATING (TAP WETTED) TOLLY WETTED TARTIAL CAVITATION NUMBER CORPUTED WITH RESSURE TAVITATION NUMBER COMPUTED WITH CALCULATED VAPOR PRESSURE TAVITATION NUMBER COMPUTED FOR EFFECTS OF IMAGES OF TRAILING VORTICES TOWNSECTED DAGG-TO-LIFT WAID = CD/CL TAVITI LEMGTH REASOURD FROM MIDCHORD AT CENTROLD POSITION, NOWDINENSIONALIZE (OBTAINED FROM PHOTOGRAPHS)
\$100 1.246 1.1094 1.009 1.009 0.938 0.938 0.620	BALLING S VORTI
0.338 0.244 0.291 0.291 0.291 0.291 0.255 0.256 0.244 0.238	S OF THE STATE OF
CD/AT2 2.702 2.702 2.686 2.662 2.652 2.539 2.108 2.212 2.212 1.922 1.928 1.759 1.682	P INACE PRESSU PRESS PRESS ES OF T
CL/AT 2.8077 2.700 2.5070 2.508 2.508 2.508 2.508 2.508 2.508 2.508 3.60	ED ED PECTS O CAVITY ED VAPO OF IMAG
SIGC/AT 1.999 2.022 2.022 2.022 1.999 1.969 1.994 1.994 1.703 1.625 1.506 1.322 1.122 1.134 1.051 0.858	TILITED UTILITED UTILITED PRECES OF ALCELATED CALCULATED CALCULATE
SIGVA 3. 299 3. 299 2. 699 2. 506 2. 506 2. 251 1. 680 1. 680 1. 1680 0. 960 0. 960 0. 960	**SUPERCAVITATING PLON: *** SUPERCAVITATING PLON: *** SUPERCAVITATING PLON: *** SUPERCAVITATING PRESSURE TAP UTILIZED GULT DASTREAM STATIC PRESSURE TAP UTILIZED GULT DASTREAM STATIC PRESSURE TAP UTILIZED GULT DASTREAM STATIC PRESSURE TAP UTILIZED FARTIALLY CAVITATING (TAP WETTED) FULLY WETTED FULLY WETTED GAVITATION NUMBER COMPUTED WITH REASURED CAVITY PRESSURE CAVITATION WUMPER COMPUTED WITH CALCULATED VAPOR PRESSURE CAVITATION WUMPER COMPUTED FINE CALCULATED VAPOR PRESSURE CONTEXTUD DANG-TO-LIPT BATIO = CD/CL CAVITAT LEMCTH REASURED FROM WIDGROUPD AT CENTROLD POSITION, NOWDINERSIO (OBTAINED PROM PHOTOGRAPHS)
0.14.00 0.14.0	1. SUPERCAVITATING FOR: 1. SUPERCAVITATING FLOW. 2. BOTH STATIC PRESSURE TAPE ONLY DASTREAM STATIC PRESSUR ONLY DASTREAM STATIC PRESSUR EARTIALLY CAVITATING FRAILY METTED (TRUE) ANCIE OF ATTACK, COR ALPHATON NUMBER CORPUTED CAVITATION NUMBER COMPUTED DAG COEFFICIENT, CORPUTED DAG COEFFICIENT, CORPUTED CAVITATION MUMBER COMPUTED CAVITATION MUMBER COMPU
Ca 0, 124 0, 113 0, 113 0, 103 0, 097 0, 097 0, 097 0, 097 0, 087 0, 087 0, 087	MDICATED, ALL DATA ARE P. SOPERCAVITATING PLON. BOTH STATIC PRESCHEE CWLT DUSTREAM STATIC PRE CWLT DUSTREAM STATIC PRE FATTALLY CAVITATING (TA PARTIALLY CAVITATING (TA PARTIALLY CAVITATING (TA PARTIALLY CAVITATING FULLY WETTED CAVITATION NUMBER COMPUT COMMENTARIAM NUMBER NUMBER CAVITATION NUMBER COMPUT COMMENTARIAM NUMBER COMPUT COMMENTARIAM NUMBER NUMBER CAVITATION NUMBER NUMBER COMMENTARIAM NUMBER NUMBER CAVITATION NUMBER NUMBER CAVITATION NUMBER NUMBER COMPUT COMMENTARIAM NUMBER COMPUT COMMENTARIAM NUMBER COMPUT COMMENTARIAM NUMBER COMPUT COMPUT COMMENTARIAM NUMBER COMPUT COMPUT COMPUT COMMENTARIAM NUMBER COMPUT CO
0.126 0.126 0.136 0.136 0.128 0.128 0.228	MONCATED, AL SUPERCAVI SUPERCAVI OMIL DESTREA CALL DESTREA PARTIALLY CA PARTIALLY CA PARTIALLY CA PARTIALLY CA PARTIALLY CA PARTIALLY CA CAVITATION W CAVITATION C CAVITATION C CAVITATION C CAVITATION C CAVITATION C CAVITATION C CAVITATION C CAVITATION C CAVITATION
	H-N
ALPRA 21.68 21.68 21.68 21.59 21.58 21.59 21.50 21.50 21.40 21.40 21.40 21.40 21.38 21.38	PC (TB) PC (TB
## 21 - 01 10 10 10 10 10 10 1	LECEND PC (TU) AT (ALPHAT) AT A

ILS OF FIRITE SPAN	2	PINF PCAV 172. 48. 154. 47. 153. 48. 153. 48. 1134. 46. 1137. 46. 1103. 46. 104. 46. 105. 47. 102. 47. 93. 47. 90. 53. LOAD CELL # LIFT (COUNTS) # OF THE COUNTS (COUNTS) #
MG STOROPO	0 03=0.040	00000000000
MALL REPECTS OF SUPERCAVITATING STOROPOLLS OF PINITE SPANIL INPUT DATA 12 SPAN MAC 10 15.0 6.03	ZERO REALINGS AND TUNES. TEAP BEFORE AND AFTER 18408 1-8 1-8 2-8 2-8 3-8 3-8 1T 0. 0.0 0.0 0.0 100.0 0.0 100.0 95.5 0. 0.0 0.0 0.0 100.0 0.0 100.0 95.5 0. 0.0 0.0 0.0 100.0 0.0 100.0 97.0 0. ELL LBS/CT(MORBAL/REV) #1=0.2000 #2=0.20000 #3=0.04030 TWIST- 7200.0 SMAPT DATA = 1.5018 **IRPUT DATA AS BECORDED***	RAMON S 61 S 62 S 63 12131218.0 R 141.0 R 980. 1204968.0 R 137.5 R 914. 12041662.0 R 137.0 R 932. 12011662.0 R 135.0 R 932. 1205648.0 R 135.0 R 912. 1207548.0 R 126.9 R 576. 1207548.0 R 126.9 R 576. 1207498.0 R 126.9 R 576. 1200498.0 R 126.9 R 576. 1200498.0 R 129.5 R 639. 1201498.0 R 126.9 R 576. 1193552.0 R 128.4 R 606. 1193652.0 R 128.4 R 606. 1193672.0 R 128.4 R 606.
EIPER INVES OF WAR TO TE TE AREA 79 96 90.0	2280 REALINGS AN MANOR 1-8 1-8 0.0 0.0 0.0 0.0 CELL US/CT (NORM TRIST: 7260.0 S	EUE EO L-8.0-01 1213 L-8.0-02 L-8.0-03 L-8.0-03 L-8.0-05 L-8.0-05 L-8.0-07 1207 L-8.0-07 1-8.0-07 1-8.0-17 1-8.

RIPER INVES OF GALL RPFECTS ON SUPERCAVITATING RIDROPOLLS OF PINITE SPAN

Pressur	PCAV	8	47.	8 8	. 88	1	y V		.99	17.		17.	5
STATIC	4114	165	147	146	186	127	110	97.	96	95.	86.	95.	
AME RYDROSTATIC	:	-880.0	-813.6	-791.3	-830.9	-710.5	-603.2	-516.8	-473.5	-536.1	-479.7	-041.0	-502.0
RIADINGS, SIGUS,								-28.8					
POS 22RO	=	-1218.0	-1022.0	-968.0	-1062.0	-818.0	-648.0	-548.0	-486.0	-566.0	-498.0	-452.0	-522-0
CORRECTED	808 48	1213.	1204.	1204.	1201.	1205.	1207.	1207.	1185.	1207.	1200.	1080.	1193.
IMPUT DATA	08 404	10-0-0-7	L-8.0-02	1-0.0-03	1-8.0-04	7-9.0-05	1-6.0-06	1-8.0-07	F-8.0-08	F-8.0-09	L-8.0-10	1-0-0-7	L-8.0-12

RIPER INVES OF BALL RPECTS ON SUPERCAVITATING HYDROPOILS OF PINITE SPAN

9	ALPHA	LIPT-LA	DEAG-LB	HON-INLE	VPL-PPS
-01		251.80	35.46	147.60	25.91
0-02		211.90	32.79	135.00	25.82
10-0		201.00	31.89	133.20	25.82
-0-0		220.00	33.49	136.80	25.79
90-0		170.60	28.63	126.00	25.83
90-0		136.00	24.31	115.20	25.85
1-8.0-07	10.8	115.36	20. 83	103.68	25.85
80-0		102.98	19.08	96.84	25.63
60-0		119.10	21.60	106.20	25.85
0-10		105.16	19.33	100.08	25.78
-11		95.20	17.79	86.40	24.54
0-12		110.08	20.23	102.24	25.71
CEGEND	111	OPSTREAM	VELOCITY	e	

RIPER LIFES OF GALL RPRECTS OF SUPERCAVITATING STDROPOILS OF FISITE SPAS

ALPHA	t	CDUNC	20	1/9	1/4	BF-10**-6
8.02	0.6219	0.0831	0.0605	7.4828	0.1336	1.6185
8.02	0.5270	0.0771	0.0557	6.8382	0.1462	1.6129
0.03	0.4999	0.0748	0.0549	6.6807	0. 1497	1.6129
8.02	0.5484	0.0190	0.0566	6.9428	0. 1440	1.6111
8.02	0.4240	0.0667	0.0519	6.3581	0.1573	1.6136
8.03	0.3375	0.0558	0.0474	6.0438	0.1655	1.6148
8.01	0.2863	0.0472	0.0427	6.0645	0.1649	1.6148
8.01	0.2599	0.0437	0.0405	5.9516	0.1680	1.6010
9.01	0.2955	0.0491	0.0437	6.0155	0.1662	1.6148
8.01	0.2624	0.0438	0.0414	5.9967	0.1668	1.6104
8.01	0.2620	0.0444	0.0394	5.8960	0. 1696	1.5334
10.0	0.2761	0.0463	0.0425	5.9686	0.1675	1.6061
ALPHA	GEORETRIC	ANGLE	OF ATTACK CO	CORRECTED FOR	SHAPT	TRIST

ALPHA GEORETRIC ANGLE OF ATTACK CORRECTED FOR SRAFT THIST
CL LIFT COEFFICIENT, MONDIMENSIONALIZED ON UPSTREAM VELOCITY AND HODEL PLANFORM AREA
ON UPSTREAM VELOCITY AND BODEL PLANFORM AREA
CR MOVER CETOLOGITY AND BODEL PLANFORM AREA
CR MOVER COPPLICIENT, NONDIMENSIONALIZED ON UPSTREAM VELOCITY, MODEL PLANFORM AREA, AND MEAN CHORD
L/D LIFT-TO-DRAG RATIO = CL/CODNC
D/L DRAG-TO-LIFT RATIO = CDUNC/CL
RE REFNOLDS WOMBER, BASED ON REAM CHORD

MAPLE LEVES OF MALL EPPECTS OR SUPERCAVITATING BYDROFOLLS OF PINITE SPAN

**PRIOR DATA CORRECTED FOR BFFECTS OF INAGES OF TRAILING VORTER SYSTEMS*

C STSTER®®		0.231	CALT DESTRIAS STATIC PRESSURE TAP UTILIZED SALY DASTREAM STATIC PRESSURE TAP UTILIZED FARTIALLY CAVITATING TO STATIC PRESSURE TAP UTILIZED FRATIALLY CAVITATING (TAP WETTED) TRULY WITTED TRULY WITTED TRULY WITTED TRULY WITTED TRULY WITTED TO PRESCUED FOR PRESCUE OF TRAILING WORTICES LEPHATOON WORDER CORPUTED WITH CALCULATED VAPOR PRESSURE TAY ITATION WURBER CORPUTED WITH CALCULATED VAPOR PRESSURE TAY ITATION WURBER CORPUTED WITH CALCULATED VAPOR PRESSURE TO STATILING TO STATICES T
LING VORTE	CB/AT SIGV 0.396 0.526 0.366 0.446 0.374 0.446 0.374 0.446 0.379 0.392 0.293 0.229 0.279 0.229	0.292 0.168	OP TRAILINE E RE RE AILING VORT
S OF TRAI	CD/AT2 3.900 3.639 3.542 3.184 2.697 2.300 2.137 2.137	2.257	OF IBAGES T PRESSUB GES OF TRE
OF INAGE	7AT CL/AT 97 4.069 376 3.493 30 3.326 31 2.625 63 2.297 18 1.963 20 1.790 20 1.790		LIZED LIZED LIZED RPECTS RPE CAVIT LATRO VAP TS OF IMA
PRIOR DATA CORRECTED FOR BFFECTS OF INACES OF TRAILING VORTER SYSTEM.	3.444 3.297 2.987	. 152 . 152 S OPPH.	CALL TESTREAL STATIC PRESSURE TAP UTILIZED SALY DASTREAM STATIC PRESSURE TAP UTILIZED ARTIALLY CAVITATING (TAP WETTED) FOLLY WETTED FOLLY WETTED FOLLY ANGLE OF ATTACK, CORRECTED FOR EPPECTS OF INAGES OF TRAILING WO LIPHITON MURBER COMPUTED WITH REASURE ANYITATION MURBER COMPUTED WITH CALCULATED WAPOR PRESSURE CAVITATION MURBER COMPUTED FOR EPPECTS OF INAGES OF TRAILING WORTICES CORRECTED DRAG-TO-LIPT RATIO = CD/CL ANYITY LENGTH REASURED FROM BIDCHORD AT CEMTROID POSITION. MONDIMENSION
PRECTED P	(b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	90 4	CALL DESTREAT STATIC PRESSURE TAP UT BARITALL CAVITATING FARITALLY CAVITATING FARITALLY CAVITATING FOLLY WETTED FOLLY WETTED (TRUE) ANGLE OF ATTACK, CORRECTED FO (TRUE) ANGLE OF ATTACK, CORRECTED FO ANTITATION NUMBER CONDUTED WITH CALC ANTITATION NUMBER CORPUTED WITH CALC GORRECTED DRAG-TO-LIPT RATIO = COPCL CORRECTED DRAG-TO-LIPT RATIO = COPCL
DATA CO	0.050 0.055 0.057 0.067 0.043	0.046 0.039 0.175 0.048 0.043 0.173 CATED, ALL DATA ARE F SUPERCAVITATING FLOW.	EAR STAI CAVITATI CAVITATI CAVITATI ED OF AI WURBER WURBER ICLENT,
MOING	CD 0.091	CATED, SUPERCA BOTH ST	CNLI DESTREAS STATIC SNLY DNSTREAM STATIC FARITALLY CAVITATING FOLLY WETTED (TRUE) ANGLE OF ATTA LIPHATOOL NUMBER CO CAVITATION NUMBER
	0.527 0.527 0.527 0.528 0.286 0.286	1 H- N	
	100000000000000000000000000000000000000	-6.0-11: 8.12 -8.0-12: 8.14 ONLESS OTHERNISE	PC (TW) AT (ALPHAT) ATS SIGN SIGN (D/L) (D/L)
		L-0.0-11 L-0.0-12	LEGEND

41. PC
38. PC
4. 37. PC
6. 37. PC
6. 37. PC
7. DEAT COUNTS)
93 DEAG (COUNTS)
93 DEAG (COUNTS)
93 DEAG (COUNTS)
PCAY CAVITY PRESSURE (AN HG)
PCAY CAVITY CAV 72 72 74 75 (TW) RIPER INVES OF WALL REPECTS ON SUPERCAVITATING HYDROPOLLS OF PINITE SPAN #35.0 1114.0 1114.0 1114.0 1114.0 1150.0 11295.0 11295.0 11295.0 11295.0 11295.0 1181. TUBBEL " (" ")
HALF-SPAN HODEL PLANFORN AREA (SQ IN)
FOIL HALF-SPAN (IN)
REAS CHORD, REAS. & HODEL CENTROID (IN)
VELOCITY HAROHTTER READING (NN)
SHAFT THIST (DEGREES/IN-LB)
LOAD CPLL POLARITY (N-NORMAL, N-REVERSE) 192.2 192.2 193.2 193.2 193.2 193.2 193.2 193.2 193.2 193.2 193.2 193.2 193.2 193.2 193.2 193.2 193.2 1100.0 1130.0 1130.0 1130.0 1150.0 1150.0 1150.0 1150.0 1160.0 11 HTDROPOIL IMPUT DATA TT AREA SPAR MAC 85 90.0 15.0 6.03 ZERO REALINGS AND TUBBEL MANOB 383. 383. 383. 1252. 1252. 1245. 1227. 1227. 1227. 1255. 1256. 1256. 1257. 1257. 1257. 1257. 1257. 1257. 1257. 1257. 1.9 5-01 1.9 5-01 1.9 5-01 1.9 5-01 1.9 5-01 1.9 5-08 1.9 5-08 1.9 5-13 1.9 5-13 1.9 5-13 1.9 5-13 1.9 5-21 1.9

RIPER INVES OF WALL PPRICTS ON SUPERCAVITATING HYDROPOLLS OF PIRITE SPAN

-
ō
=
=
REDUCTION
\mathbf{z}
R
=
=
-
-
•
DATA
۵
-
-
0
L
6
Z
=
* BYDROPOLL
=
•

3	15.1	23.5	26.2	26.3	26.2	26.2	26.17	26.0	26.0	26.0	26.1	26.1	26.2	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.1	25.5	26.2	22.6	19.7	
-	9.0	7.9		0.0	3.4	8.	220.82	6.	6.1	5.7	3.6	8.3	5.8	1.1	9.9	9.0	6.1	1.8		1.9		5.2	-	0:	:		
	.50			40.82	39.57	42.31	47.88	48.16	47.88	46.55	45.82	43.56	42.60	39.49	38. 16	39.70	34.25	33.13	31.72	29. 18	27.89	26.92	25.03	17.72	34.17	26.88	
LIPT-LB	:	_	~	2	-		342.27		-	-	-	š	-	=	=	5	-	6		-		-	-	-	-	:	
ALPHA		S	5	9.55	8	9.54	9.53	S	S	5	'n	S	S	S	S	S	S	S	S	3	5	9	5	S	'n	S	
5	-9.5-0	9.5-0	-9.5-0	.5-0	9.5-0	-9.5	9.5-0	-9.5-0	-9.5-0	-9.5	-9.5-1	-9.5-1	-9.5-1	-9.5-1	-9.5-1	-9.5-1	9.5-1	9.5-1	9.5	-3.5-2	9.5-2	9.5-2	9.5-2	9.5-2	5-2	9.5-2	

VEL UPSTREAM VELOCITY (U)

RIPER LRVES OF BALL EFFECTS ON SUPERCAPITATING BYDROPOILS OF PIRITE SPAN

0.8639	1.3444	1.4989	1.5000	1.4989	1.4950	1.4922	1.4866	1.4849	1.4843	1.4883	1.4939	1.4967	1.5006	1.5006	1.5011	1.5011	1.5017	1.5022	1.5017	1.5006	1.4933	1.4593	1.4995	1.2888	1.1283
0.1358	0.1377	0.1371	0.1307	0.1225																					
7.3628	7.2612	7.2963	7.6493	8.1635	8.0898	7.4403	6.8374	6.6729	6.3406	6.2255	5.8953	5.8267	5.6282	5.5667	4.9092	5.4776	5.4268	5.3049	5.2685	5.2295	5.2452	5.2593	7.4971	7.7306	7.2369
0.1292	0.1323	0.1317	0.1385	0.1404	0.1230	0.0885	0.0767	0.0749	0.0712	0.0100	0.0673	0.0661	0.0629	0.0621	0.0597	0.0574	0.0561	0.0554	0.0522	0.0509	0.0501	0.0495	0.0854	0.0963	0.0815
0.0925	0.0963	0.0959	0.0931	0.0903	0.0974	0.1112	0.1128	0.1123	0.1092	0.1068	0.1005	0.0978	0.0899	0.0867	0.0903	0.0773	0.0745	0.0711	0.0651	0.0621	0.0604	0.0587	0.1097	0.1061	0.1089
0.6809	0.6995	0.6996	0.7124	0.7370	0.7877	0.8274	0.7710	0.7496	0.6922	0.6650	0.5927	0.5700	0.5059	0.4826	0.4433	0.4234	0.4045	0.3773	0.3431	0.3249	0.3171	0.3088	0.8224	0.8203	0.7883
9.51	9.54	9.55	9.55	9.55	9.54	9.53	9.53	9.53	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.53	9.52	9.52
5-01	-5-02	.5-03	.5-04	.5-05	90-5-	.5-07	.5-08	-5-09	.5-10	11-5-	.5-12	.5-13	.5-14	.5-15	.5-16	.5-17	.5-18	.5-19	L-9.5-20	.5-21	.5-22	.5-23	.5-24	.5-25	.5-26
	9.51 0.6809 0.0925 0.1292 7.3628 0.1358	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1323 7.2612 0.1377	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1323 7.2612 0.1377 9.55 0.6996 0.0959 0.1317 7.2963 0.1371	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1323 7.2612 0.1377 9.55 0.6996 0.0959 0.1337 7.2963 0.1371 9.55 0.7124 0.0931 0.1385 7.6493 0.1307	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1323 7.2612 0.1377 9.55 0.6996 0.0959 0.1317 7.2963 0.1371 9.55 0.6996 0.0931 0.1385 7.6493 0.1307 9.55 0.7370 0.0903 0.1004 8.1635 0.1225	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1323 7.2612 0.1377 9.55 0.6996 0.0959 0.1317 7.2963 0.1371 9.55 0.7124 0.0931 0.1387 7.6493 0.1307 9.55 0.7370 0.0901 0.1864 8.1635 0.1225 9.54 0.7877 0.0974 0.1230 8.0898 0.1236	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1377 7.2963 0.1377 9.55 0.7124 0.0959 0.1377 7.2963 0.1377 9.55 0.7124 0.0931 0.1365 7.6493 0.1377 9.55 0.7370 0.0931 0.1364 8.1635 0.1225 9.54 0.7877 0.0974 0.1230 8.0698 0.1236 9.53 0.8274 0.1112 0.0885 7.4403 0.1344	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1323 7.2512 0.1377 9.55 0.6996 0.0959 0.1337 7.2963 0.1377 9.55 0.7724 0.0959 0.1385 7.6493 0.1377 9.55 0.7770 0.0931 0.1865 7.6493 0.1307 9.55 0.7770 0.0974 0.1204 8.1635 0.1225 9.54 0.7770 0.1112 0.0885 7.4403 0.1344 9.53 0.7770 0.1128 0.0767 6.8374 0.1463	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1323 7.2612 0.1377 9.55 0.6995 0.0959 0.1323 7.2612 0.1377 9.55 0.7724 0.0959 0.1385 7.6493 0.1377 9.55 0.7724 0.0931 0.1385 7.6493 0.1377 9.55 0.7370 0.0901 0.1864 8.1635 0.1225 9.54 0.7877 0.0974 0.1230 8.0898 0.1236 9.53 0.7710 0.1128 0.0867 7.4403 0.1344 9.53 0.77496 0.1128 0.0767 6.8374 0.1463 9.53 0.7496 0.1128 0.0769 6.6729 0.1499	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1329 7.3628 0.1358 0.1358 9.55 0.6995 0.0995 0.1317 7.2963 0.1377 9.55 0.7124 0.0959 0.1317 7.2963 0.1377 9.55 0.7124 0.0931 0.1985 7.6493 0.1377 9.55 0.7877 0.0974 0.1809 0.1809 0.1225 9.54 0.8274 0.112 0.0885 7.4403 0.1244 9.53 0.7710 0.1128 0.0767 6.8374 0.1463 9.53 0.7795 0.1128 0.0779 6.6729 0.1463 9.52 0.6922 0.1092 0.07712 6.3406 0.1577	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1379 7.262 0.1377 9.55 0.6996 0.0995 0.1377 7.2963 0.1377 9.55 0.7124 0.0959 0.1387 7.2963 0.1377 9.55 0.7124 0.0931 0.1385 7.6493 0.1377 9.55 0.7370 0.0974 0.1385 7.6493 0.1225 9.54 0.7877 0.0974 0.129 0.1809 0.1236 9.53 0.7710 0.112 0.0885 7.4403 0.1344 9.53 0.7740 0.112 0.0767 6.8374 0.1463 9.52 0.6650 0.1062 0.0072 6.2255 0.1699 9.52 0.6650 0.1068 0.0070 6.2255 0.1606	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0951 0.1323 7.2562 0.1377 9.55 0.6996 0.0953 0.1337 7.2963 0.1377 9.55 0.7724 0.0959 0.1387 7.2963 0.1377 9.55 0.7724 0.0931 0.1367 7.6493 0.1307 9.55 0.7770 0.0974 0.126 8.1635 0.1225 9.53 0.7770 0.1112 0.0885 7.4403 0.1344 9.53 0.7770 0.1128 0.0767 6.8374 0.1463 9.52 0.6550 0.1092 0.0770 6.5729 0.1499 9.52 0.6550 0.1068 0.0770 6.2255 0.1506 9.52 0.5927 0.1005 0.0673 5.8953 0.1606	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1323 7.2612 0.1377 9.55 0.6995 0.0959 0.1323 7.2612 0.1377 9.55 0.7724 0.0959 0.1387 7.2963 0.1377 9.55 0.7724 0.0911 0.1385 7.6493 0.1307 9.55 0.7770 0.0974 0.180 8.1635 0.1225 9.53 0.7710 0.1112 0.0885 7.4403 0.1344 9.53 0.7710 0.1128 0.0777 6.8374 0.1463 9.52 0.6922 0.1092 0.0779 6.6729 0.1499 9.52 0.6922 0.1005 0.0078 6.2255 0.1606 9.52 0.5927 0.1005 0.0661 5.8953 0.1606 9.52 0.5700 0.0978 0.0661 5.8267 0.1716	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1329 7.3628 0.1358 0.1358 9.55 0.6995 0.0995 0.1377 7.2963 0.1377 9.55 0.7124 0.0951 0.1387 7.2963 0.1377 9.55 0.7770 0.0974 0.1369 7.6493 0.1377 9.54 0.7877 0.0974 0.1809 0.0895 7.4403 0.1225 9.53 0.7710 0.1128 0.0767 6.8374 0.1463 9.53 0.7710 0.1128 0.0767 6.8374 0.1463 9.53 0.7966 0.1098 0.0771 6.377 9.55 0.1968 0.0770 6.2255 0.1606 9.52 0.5927 0.1005 0.0673 5.8953 0.1606 9.52 0.5700 0.0978 0.0673 5.6267 0.1777	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1379 7.3628 0.1358 9.55 0.6995 0.0995 0.1377 7.2963 0.1377 9.55 0.6996 0.0959 0.1317 7.2963 0.1377 9.55 0.7124 0.0974 0.1367 7.6493 0.1377 9.55 0.7770 0.0974 0.126 0.1865 7.4403 0.1225 9.53 0.7710 0.1112 0.0885 7.4403 0.1236 9.53 0.7710 0.1128 0.0767 6.8374 0.1463 9.53 0.7795 0.1092 0.0077 6.8374 0.1693 9.52 0.6650 0.1068 0.0070 6.2255 0.1696 9.52 0.5059 0.0878 0.0673 5.8953 0.1696 9.52 0.5059 0.0879 0.0621 5.5667 0.1776	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0951 0.1323 7.2528 0.1377 9.55 0.6995 0.0953 0.1337 7.2963 0.1377 9.55 0.7724 0.0959 0.1387 7.2963 0.1377 9.55 0.7724 0.0974 0.1367 7.6493 0.1307 9.55 0.7770 0.0974 0.126 8.1635 0.1225 9.53 0.7710 0.112 0.0885 7.4403 0.1246 9.53 0.7710 0.1128 0.0767 6.8374 0.1463 9.52 0.6550 0.1092 0.0775 6.8374 0.1463 0.1577 9.52 0.6550 0.1092 0.0770 6.6729 0.1499 9.52 0.6550 0.1092 0.0073 5.8953 0.1696 9.52 0.5700 0.0978 0.0673 5.8953 0.1696 9.52 0.5700 0.0978 0.0673 5.8953 0.1696 9.52 0.4433 0.0978 0.0629 5.5667 0.1777 9.52 0.4433 0.0903 0.0527 4.9092 0.2037	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1329 7.3628 0.1358 9.55 0.6995 0.0995 0.1317 7.2963 0.1377 9.55 0.7124 0.0959 0.1317 7.2963 0.1377 9.55 0.7124 0.0931 0.1317 7.2963 0.1377 9.55 0.7877 0.0974 0.1309 8.0898 0.1225 9.54 0.8274 0.1123 0.0885 7.4403 0.1326 9.53 0.7710 0.1123 0.0767 6.8374 0.1463 9.53 0.7710 0.1123 0.0779 6.6729 0.1463 9.52 0.6922 0.1092 0.0772 6.3406 0.1577 9.52 0.6927 0.1005 0.0671 6.2255 0.1606 9.52 0.5700 0.0978 0.0673 5.8267 0.1777 9.52 0.4826 0.0899 0.0629 5.6282 0.1777 9.52 0.4826 0.0867 0.0629 5.6282 0.1777 9.52 0.4826 0.0867 0.0621 5.5667 0.1777 9.52 0.4826 0.0867 0.0574 5.4776 0.1826	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0963 0.1377 7.2963 7.3628 0.1377 9.55 0.6996 0.0995 0.1377 7.2963 0.1377 9.55 0.7124 0.0951 0.1387 7.2963 0.1377 9.55 0.7124 0.0974 0.1385 7.6493 0.1377 9.55 0.7770 0.0974 0.1290 8.0898 0.1225 9.54 0.7770 0.1123 0.0789 0.0789 0.1236 9.53 0.7770 0.1128 0.0767 6.8374 0.1463 9.53 0.7770 0.1128 0.0767 6.8374 0.1463 9.52 0.6952 0.1092 0.0772 6.2374 0.1463 9.52 0.6952 0.1092 0.0772 6.2355 0.1695 9.52 0.6959 0.0978 0.0673 5.6267 0.1716 9.52 0.4826 0.0867 0.0629 5.6282 0.1716 9.52 0.4834 0.0978 0.0597 4.9092 0.2037 9.52 0.4834 0.0773 0.0597 5.4776 0.1843	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0951 0.1377 7.2963 0.1377 9.55 0.6996 0.0953 0.1317 7.2963 0.1377 9.55 0.7124 0.0974 0.1387 7.2963 0.1377 9.55 0.7124 0.0974 0.1385 7.6493 0.1377 9.55 0.7770 0.0974 0.128 0.1865 7.4403 0.1225 9.53 0.7770 0.112 0.0885 7.4403 0.1236 9.53 0.7770 0.112 0.0088 7.4403 0.1344 9.53 0.7796 0.1123 0.0767 6.8374 0.1463 9.52 0.6650 0.1092 0.0074 6.8374 0.1696 9.52 0.6650 0.1005 0.0073 5.8953 0.1696 9.52 0.5059 0.0899 0.0661 5.8953 0.1696 9.52 0.5059 0.0899 0.0661 5.5667 0.1777 9.52 0.4826 0.0903 0.0597 4.9092 0.2037 9.52 0.4033 0.0773 0.0574 5.4268 0.1845 9.52 0.4034 0.0773 0.0574 5.4268 0.1845 9.52 0.4034 0.0773 0.0554 5.3049 0.1845	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6895 0.0951 0.1377 7.2612 0.1377 9.55 0.6996 0.0951 0.1377 7.2963 0.1377 9.55 0.7724 0.0951 0.1387 7.2963 0.1377 9.55 0.7724 0.0974 0.1387 7.6493 0.1377 9.55 0.7727 0.0974 0.1285 7.6493 0.1225 9.53 0.7710 0.112 0.0885 7.4403 0.1236 9.53 0.7710 0.112 0.0885 7.4403 0.1244 9.53 0.7710 0.112 0.0767 6.8374 0.1463 9.52 0.6550 0.1092 0.0775 6.8374 0.1463 9.52 0.6550 0.1092 0.0777 6.8374 0.1463 9.52 0.6550 0.1092 0.0777 6.8374 0.1696 9.52 0.5070 0.0978 0.0673 5.8953 0.1696 9.52 0.5070 0.0978 0.0673 5.8953 0.1696 9.52 0.4826 0.0867 0.0597 4.9092 0.2777 9.52 0.4826 0.0867 0.0597 4.9092 0.2037 9.52 0.4433 0.0973 0.0574 5.4776 0.1826 9.52 0.4733 0.0773 0.0574 5.4776 0.1843 9.52 0.4733 0.0773 0.0554 5.2685 0.1898 9.52 0.3773 0.0775 5.2685 0.1898	9.51 0.6809 0.0925 0.11292 7.3628 0.1358 9.54 0.6995 0.0951 0.1377 7.2963 0.1377 9.55 0.7124 0.0951 0.1317 7.2963 0.1377 9.55 0.7124 0.0951 0.1387 7.2963 0.1377 9.55 0.7710 0.0974 0.1369 7.6493 0.1377 9.54 0.7877 0.0974 0.1939 8.0898 0.1225 9.53 0.7710 0.1128 0.0786 7.4403 0.1248 9.53 0.7710 0.1128 0.0787 6.8374 0.1463 9.53 0.7710 0.1128 0.0787 6.8374 0.1463 9.52 0.6922 0.1092 0.0772 6.3174 0.1463 9.52 0.6922 0.1098 0.0673 5.8267 0.1506 9.52 0.6559 0.0689 0.0673 5.6282 0.1506 0.1577 9.52 0.6826 0.0887 0.0673 5.6282 0.1777 9.52 0.4826 0.0887 0.0573 5.667 0.1776 9.52 0.4826 0.0773 0.0574 5.4268 0.1843 9.52 0.4014 0.0773 0.0574 5.4268 0.1843 9.52 0.4014 0.0773 0.0554 5.2665 0.1885 9.52 0.3713 0.0651 0.0554 5.2665 0.1895 9.52 0.3713 0.0651 0.0554 5.2665 0.1895	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0951 0.1377 7.2963 0.1377 9.55 0.7124 0.0951 0.1317 7.2963 0.1377 9.55 0.7124 0.0951 0.1317 7.2963 0.1377 9.55 0.7124 0.0974 0.1385 7.6493 0.1377 9.55 0.7124 0.0974 0.1385 7.6493 0.1325 9.54 0.7770 0.0974 0.128 0.0767 6.8374 0.1236 9.53 0.7710 0.1123 0.0767 6.8374 0.1463 9.53 0.7749 0.1123 0.0767 6.8374 0.1463 9.52 0.5922 0.1092 0.0772 6.3406 0.1567 9.52 0.6650 0.1092 0.0073 6.2255 0.1696 9.52 0.5659 0.1097 0.0673 5.8953 0.1696 9.52 0.5059 0.0887 0.0673 5.8953 0.1696 9.52 0.5059 0.0887 0.0673 5.6262 0.1776 9.52 0.4433 0.0973 0.0673 5.5667 0.1796 9.52 0.4433 0.0773 0.0574 5.476 0.1826 9.52 0.4043 0.0773 0.0574 5.476 0.1826 9.52 0.4045 0.0773 0.0554 5.3049 0.1885 9.52 0.3773 0.0651 5.2685 0.1898 9.52 0.3773 0.0651 5.2685 0.1898 9.52 0.3773 0.0651 5.2685 0.1898 9.52 0.3773 0.0651 5.2685 0.1997	9.51 0.6809 0.0925 0.1292 7.3628 0.1358 9.54 0.6995 0.0951 0.1377 7.2963 0.1377 9.55 0.6996 0.0953 0.1317 7.2963 0.1377 9.55 0.7124 0.0974 0.1387 7.2963 0.1377 9.55 0.7724 0.0974 0.1385 7.6493 0.1377 9.55 0.7727 0.0974 0.136 0.1869 0.1225 9.53 0.7749 0.1112 0.0885 7.4403 0.1236 9.53 0.7749 0.112 0.00885 7.4403 0.1344 0.136 9.53 0.7749 0.1123 0.0767 6.8374 0.1463 9.52 0.6550 0.1092 0.0074 6.8374 0.1463 9.52 0.6550 0.1092 0.0073 5.8953 0.1696 9.52 0.6559 0.0899 0.0673 5.8953 0.1696 9.52 0.5959 0.0899 0.0673 5.8953 0.1696 9.52 0.6826 0.0878 0.0671 5.5677 0.1777 9.52 0.4826 0.0973 0.0574 5.476 0.1826 9.52 0.4834 0.0773 0.0574 5.476 0.1826 9.52 0.4834 0.0773 0.0574 5.476 0.1826 9.52 0.4834 0.0773 0.0574 5.476 0.1826 9.52 0.4834 0.0773 0.0559 5.2685 0.1898 9.52 0.3773 0.0621 5.2685 0.1898 9.52 0.3173 0.0651 0.0559 5.2295 0.1907 9.52 0.3374 0.0651 5.0559 5.2295 0.1907 9.52 0.3374 0.0587 5.2593 0.1907	9.51 0.6809 0.0925 0.11292 7.3628 0.1358 9.54 0.6995 0.0951 0.1323 7.2963 0.1377 9.55 0.7124 0.0959 0.1317 7.2963 0.1377 9.55 0.7124 0.0959 0.1317 7.2963 0.1377 9.55 0.7710 0.0974 0.1329 7.6493 0.1377 9.53 0.7877 0.0974 0.1309 8.0898 0.1225 9.54 0.7877 0.01128 0.0786 7.4403 0.1225 9.53 0.7710 0.1128 0.0787 6.8374 0.1463 9.53 0.7495 0.1128 0.0779 6.6729 0.1463 9.52 0.6952 0.1066 0.07712 6.3406 0.1599 9.52 0.6952 0.1066 0.00712 6.3406 0.1599 9.52 0.6550 0.1068 0.06713 5.8257 0.1606 9.52 0.5700 0.0978 0.06713 5.8257 0.1506 9.52 0.4826 0.0897 0.0621 5.6282 0.1777 9.52 0.4826 0.0867 0.0621 5.6667 0.1777 9.52 0.4826 0.0973 0.0574 5.4776 0.1843 9.52 0.4831 0.0773 0.0574 5.4776 0.1843 9.52 0.4831 0.0773 0.0574 5.4268 0.1843 9.52 0.3173 0.0551 5.2655 0.1843 9.52 0.3173 0.0551 5.2595 0.1907 9.52 0.3171 0.0551 0.0572 5.2655 0.1895 9.52 0.3171 0.0551 0.0572 5.2593 0.1907 9.53 0.3088 0.0577 0.0097 5.2295 0.1907 9.53 0.3088 0.0577 0.0977 0.0977 0.0077 0.	\$-01 9.51 0.6809 0.0925 0.1292 7.3628 0.1358 0.8639 0.5020 9.50 0.6936 0.0959 0.1373 7.2612 0.1373 1.4949 0.0959 0.0959 0.1313 7.2613 0.1373 1.4949 0.137 7.2963 0.1371 1.4969 0.1371 0.1344 0.136 0.1363 0.1371 1.4969 0.1371 0.1344 0.1371 1.4969 0.1371 0.1344 0.1371 0.1371 1.4969 0.1371 0.1371 0.1371 1.4969 0.1371 0.1371 0.1371 1.4969 0.1371 0.1371 0.1371 1.4969 0.1371 0.1

ALPHA GEOBETRIC ANGLE OF ATTACK CORRECTED FOR SHAPT TRIST
CL LIFT CORFFICIENT, NOMDIMENSIONALIZED ON UPSTREAM VELOCITI AND NODEL PLANFORN AREA
CDUNC CD (UNCORRECTED), THE UNCORRECTED DRAG COPPLICIENT AS COMPUTED FROM HEASURED DRAG, AND MONDIMENSIONALIZED
ON UPSTREAM VELOCITI AND MODEL PLANFORN AREA
CH HOMENT CORFFICIENT, NOMDIMENSIONALIZED ON UPSTREAM VELOCITY, HODEL PLANFORN AREA, AND HEAM CHORD
L/D LIFT-TO-DRAG RATIO = CL/COBUC
D/L DRAG-TO-LIFT RATIO = CDUNC/CL
RM RETHOLDS MUMBER, BASED ON REAM CHORD

PIPER INVES OF BALL PPPECTS ON SUPERCAVITATING BYDROPOLLS OF PINITE SPAN

	CORRESTS/RESARES																																					2
	CONNEN	2	2	2	PC (TW)	PC (TW)	PC (TW)																				2	PC PC										EAN CHO
	CATLER	-	-	-	!	!	!	!	:	0.10	-	0.74	:	0.82		-:-		1.20	:	1.68		2.28		3.80	!	-	•	•						S				E 0 02
STSTER	SIGC	-	-	-	!	-	-	0.678	0.611	0.617	0.545	0.542	0.471	694.0	0.405	0.413	0.359	0.363	0.317	0.317	0.267	0.271	0.232	0.252	0.672	0.684	0.649	0.591						VORTICE			2	SIONALIZ
PRIOR BATA CORRECTED FOR EFFECTS OF LAAGES OF TRAILING VORTER SYSTEM	P SIGF	•				2																						0.634						(TRUE) ANGLE OF ATTACK, CORRECTED FOR RPPECTS OF IMAGES OF TRAILING VORTICES			DRAG CORFFICIENT, CORRECTED FOR EFFECTS OF IRAGES OF TRAILING VORTICES CORRECTED DRAG-TO-LIFT RATIO = CD/CL	CAVITT LENGTH MASSURED FROM MIDCHORD AT CRMTROID POSITION, MONDIMERSIONALIZED ON MEAN CHORD (OBTAINED FROM PHOTOGRAPHS)
11186			_	0.727	0.763	0.772	0.672	0.482	0.421	0.412	0.394	0.389	0.377	0.371	0.356	0.353	0.340	0.328	0.322	0.319	0.301	0.294	0.290	0.287	0.466	0.525	0.447	0.399						1 00	:			101,
OF TRA	CD/AT2	3. 145	3.252	3,233	3.149	3.068	3.296	3.725	3.766	3.752	3.653	3.580	3.384	3.300	3.050	2.949	3.069	2.647	2.559	2.448	2.251	2. 153	2.097	2.040	3.680	3.576	3.660	3.671						P IMAGES	Dersen	P PRESS	ES OF T	D POSIT
INACES		3.779	3.866	3.863	3.927	4.051	4.308	4.510	4.231	4. 124	3.834	3.694	3.321	3.202	2.863	2.739	2.528	2.420	2.318	2.169	1.980	1.880	1.836	1.790	1.486	1.477	4.322	4.127		ED	20			PECTS 0	CANTER	ED VAPO	OF IRAG	CENTROL
ECTS OF	SIGC/AT	-		-	-		-	3.698	3.356	3.395	3.020	3.014	2.640	2.637	2.290	2.344	2.045	2.074	1.815	1.819	1.541	1.570	1.34	1.460	3.664	3.732	3.560	3.255		UTILIZED				FOR RP	RASHRED	ALCULAT	/cr	080
POR EFF	SIGVAR	-	-	-	-	!	!	3.938	3.573	3.588	3.188	3.178	2.802	2.797	2.424	2.428	2.103	2.129	1.868	1.870	1.589	1.592	1.363	1.477	3.904	4.022	3.814	3.495	CATED, ALL DATA ARE FOR: SUPERCAVITATING FLOW. BOTH STATIC PRESSURE TAPS OPEN	OHLY OPSTREAM STATIC PRESSURE TAP	PRESSURE TAP UTILITED	(TAP WETTED)		DERECTED	ALPHATOR'S MINEPER COMPOSED WITH MERSONED CANTER DEESSIDE	CAVITATION BURBER COMPUTED WITH CALCULATED WAFOR PRESSURE	DRAG CORPLICIBAT, CORRECTED FOR EFFE CORRECTED DRAG-TO-LIFI RATIO = CD/CL	ON MIDCH S)
RRECTED	(1/0)	0.150	0.152	0.152	0.145	0.138	0-140	0.152	0.162	0.165	0.172	0.174	0. 182	0.183	0.188	0. 190	0.213	0.191	0.193	0.196	0.197	0.198	0.197	0.197	0.150	0.146	0.154	0.161	IMDICATED, ALL DATA ARE POR: 1. SUPERCAVITATING PLOW. 2. BOTH STATIC PRESSURE TAP	IC PRES	IC PRES			TACK, CO	CORPITE	COMPUTE	LIFT RA	(ABTAINED PROM PHOTOGRAPHS)
DATA CO	5	0.129	0. 132	0.132	0.138	0. 140	0.123	0.089	0.077	0.075	0.071	0.00	0.067	990.0	0.063	0.062	090.0	0.057	0.056	0.055	0.052	0.051	0.050	0.050	0.085	960.0	0.081	0.072	CATED, ALL DATA ARE P. SUPERCAVITATING PLOS. BOTH STATIC PRESSURE	AR STAT	CHLY DUSTREAM STATIC	PARTIALLY CAVITATING	٥	E OF AT	MARRE	MUMBER	RAG-TO-	TH MEAS
	8	0.102	0.106	901.0	0.10	0. 302	9.110	0.125	0.125	0.124	0.119	0.116	0. 108	0.105	0.095	0.092	0.09	0.081	0.078	0.074	0.068	0.064	0.063	0.061	0.124	0.120	0.122	0.121	TATED, A	UPSTRE	DESTRE	IALLY	PULLY WETTED	E) ANGL	CAVITATION	TATION	ECTED D	TT LENG
	t	0.681	0.699	0. 700	0.712	0.737	0. 788	0. 627	0.771	0.750	0.692	0.665	0.593	0.570	9.506	0.483	0.443	0. 423	0. 405	0.377	0.343	0.325	0.317	0.309	0.655	0.870	0.788	0.749	1. S 2. B	+ OBL		C PART					-	-
	ALPHAT						10.48		10.44	10.01	10.35	10.31	10.23	10.20	10.12	10.09	10.05				9.93	9.90	6.83	9.88	10.51				BEBUISE			PC (TE)		(ALPHATA)	SIGC	SIG	(a)	CAVLT
	BUS 80	L-9.5-01	1-9.5-02	1-9.5-03	1-9.5-04	1-9.5-05	1-9.5-06	1-9.5-07	1-9.5-08	L-9.5-09+	1-9.5-10	1-9.5-110	1-9.5-12	. L-9.5-13+	1-9.5-14	1-9.5-15	1-9.5-16	1-9.5-17	1-9.5-18	1-9.5-19+	1-9.5-20	L-9.5-210	1-9.5-22	1-9.5-23+	1-9.5-24	1-9.5-25	1-9.5-26	1-9.5-27	UNLESS OTHERNISE	LEGEND				=				

RIPER INVES OF WALL RPPECTS ON SUPRECAVITATING STONOPOLLS OF PINITE SPAN			30	٩	219. 41.		165. 35.	165. 35.		154. 35.					122. 29.			103. 29.	94. 29.		123. 31.	124. 30.	LOAD CELL #1 LIFT (COUNTS)	61 DRAG (COURTS)	PINE STATIC PRESSURE (MR HG)		BUN NO Q-XXI-YT: Q=POIL TESTED (S=SHALL, N=HE	TAISCEOURING ATTACK ANGER	B TTO 2 CTUT PUTGUNE HOR=II
S SYDBOPO			63=0.040 ED**	3	R 1665.0	1634.0	1470.0	R 1434.0	R 1506.0	8 1388.0	1346.0	R 1272.0	1234.0	1140.0	1103.0	1074.0	1018.0	933.0	950.0	1 862.0	1085.0	1059.0		110		(II)		1850	ISCHA
OR SUPERCAVITATIE		3-W 3-R II 0.0 100.0 81.0 0.0 95.0 82.5	0 62-0. TA AS I	v	~	~ •	151.8	-	~	~	-	•	•	~	_	-	142.7			~	~	0 B 140.6	(DEC FAHR)	TOWARL () HALP-SPAN MODEL PLANFORM AREA (SO IN)	18)	MEAN CHORD, NEAS. & HODEL CENTROID (IN)	ER READING (RR)	SHAFT THIST (DEGREES/IN-18)	TARGETT PARTIES IN
HALL BPPECTS	HYDROPOLL IMPUT DATA TT AREA SPAR MAC 82 90.0 15.0 6.03	1-K 1-R 2-H 2-R 3-H 3-R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 101.5 0.0 95.0 8	SHAPT DIA. = 1.50IN	S		12271620.0	12311316.0						•		1243858.0		1243774.0						=	TALF-SPAN MODEL	POIL HALF-SPAN (IN)	AN CHORD, HEAS	VELOCITY MANONETER BEADING	SHAFT THIST (DEGREES/IN-LB)	AD CEPT FORMER
RIPER ISVES OF	18 11 ABI 75 82 90.	2280 BEADINGS	TUIST- 7200.0				. L-1104 12			-		_						1-11-16			-	L-11200 10.	-	AREA HAI				HE TELET	
							•																						

RIPER INVES OF UALL RPPECTS ON SUPERCAVITATING HYDROPOLLS OF PINITE SPAN

PCAT	-	39.	37.	35.	35.	35.	35.	34.	30.	29.	29.	29.	29.	29.	29.	29.	29.	29.	31.	30.
PIRP	212.	191.	174.	158.	158.	158.	147.	147.	133.	132.	115.	115.	106.	106.	96	95.	87.	90.	116.	117.
13	-1565.0	-1534.3	-1465.5	-1370.8	-1335.1	-1407.3	-1289.6	-1247.8	-1174.1	-1136.4	-1042.6	-1005.9	-977.2	-921.4	-890.7	-836.9	-854.2	-766.5	-989.7	0.496-
2	-63.0	-56.9	-54.0	-51.6	-50.9	-52.2	-50.0	-48.9	-17.4	-46.8	-44.0	-43.6	-42.9	-41.7	-40.8	-38.8	-39.7	-34.9	-39.5	-39.1
=	-1796.0	-1620.0	-1466.0	-1316.0	-1256.0	-1358.0	-1196.0	-1140.0	-1048.0	- 1008.0	-916.0	-858.0	-830.0	-774.0	-748.0	-696.0	-710.0	-638.0	-882.0	-860.0
87 BOB	1227.	1227.	1225.	1231.	1229.	1229.	1238.	1237.	1237.	1240.	1240.	1243.	1241.	1243.	1246.	1239.	1238.	1105.	1026.	1028.
RUB BO	L-1101	L-1102	1-1103	1-1104	L-1105	1-1106	L-1107	L-1108	L-1109	L-11-10	11-11-1	£-1112	1-11-13	1-11-1	1-1115	1-1116	L-1117	L-1118	1-1119	L-1120
	MA BOR 61 62 63 PINT	12271796.0 -63.0 -1565.0 212.	1227 -1796.0 -63.0 -1565.0 212. 1227 -1620.0 -56.9 -1534.3 191.	12271796.0 -63.0 -1565.0 212. 12271620.0 -56.9 -1534.3 191. 12251466.0 -54.0 -1465.5 174.	12271796.0 -63.0 -1565.0 212. 12271620.0 -56.9 -1534.3 191. 12251466.0 -54.0 -1465.5 174. 12311316.0 -51.6 -1370.8 158.	12271796.0 -63.0 -1565.0 212. 12271620.0 -56.9 -1534.3 191. 12251466.0 -54.0 -1465.5 174. 12311316.0 -51.6 -1370.8 158.	12271796.0 -63.0 -1565.0 212. 12271620.0 -56.9 -1534.3 191. 12251466.0 -54.0 -1465.5 174. 12311116.0 -51.6 -1370.8 156. 12291358.0 -52.2 -1407.3 158.	12271796.0 -63.0 -1565.0 212. 12271620.0 -56.9 -1534.3 191. 12251466.0 -56.0 -1465.5 174. 12391316.0 -51.6 -1370.8 156. 12291256.0 -50.9 -1335.1 158. 12391366.0 -50.0 -1895.1 158.	12271796.0 -63.0 -1565.0 212. 12271620.0 -56.9 -1534.3 191. 12251466.0 -54.0 -1465.5 174. 12291256.0 -50.9 -1335.1 150. 12291358.0 -52.2 -1407.3 158. 12391196.0 -56.9 -1289.6 147.	12271796.0 -63.0 -1565.0 212. 12271620.0 -56.9 -1534.3 191. 12251466.0 -54.0 -1465.5 174. 12291256.0 -50.9 -1350.8 156. 12291358.0 -52.2 -1407.3 156. 12391196.0 -50.9 -1289.6 147. 12371048.0 -48.9 -1247.8 147.	12271796.0 -63.0 -1565.0 212. 12271620.0 -56.9 -1534.3 191. 12251866.0 -58.0 -1465.5 174. 12311316.0 -51.6 -1370.8 158. 12291256.0 -50.9 -1335.1 158. 12391196.0 -50.0 -1289.6 187. 12371196.0 -48.9 -1289.6 187. 12371008.0 -40.8 -1136.1 132.	12271796.0 -53.0 -1565.0 212. 12271620.0 -56.9 -15534.3 191. 12251666.0 -56.9 -1465.5 170. 12291256.0 -50.9 -1370.8 158. 12291256.0 -50.9 -1370.8 158. 12391196.0 -50.9 -1247.8 147. 12371048.0 -40.9 -1247.8 147. 12401068.0 -40.8 -1174.1 133.	12271796.0 -63.0 -1565.0 212. 12271620.0 -56.9 -1554.3 191. 12251466.0 -54.0 -1465.5 174. 12291256.0 -56.9 -135.1 150. 12291256.0 -50.9 -135.1 150. 1239136.0 -56.9 -1249.6 147. 12371140.0 -48.9 -1247.8 147. 12401048.0 -47.4 -1174.1 133. 1240968.0 -43.6 -1062.6 115.	12271796.0 -63.0 -1565.0 212. 12271520.0 -56.9 -1534.3 191. 12251466.0 -54.0 -1465.5 174. 12291316.0 -51.6 -1370.8 158. 12291356.0 -50.9 -1356.8 158. 12291356.0 -52.2 -1407.3 158. 12391196.0 -46.9 -1247.8 147. 123711048.0 -46.8 -1136.4 132. 1240916.0 -46.8 -1136.4 132. 1240916.0 -42.9 -977.2 115. 1243930.0 -42.9 -977.2 106.	12271796.0 -53.0 -1565.0 212. 12271796.0 -56.9 -1565.0 212. 12271866.0 -56.9 -1565.0 212. 12271866.0 -56.9 -1965.1 191. 12291256.0 -59.9 -1370.8 156. 12291256.0 -50.9 -1315.1 159. 12391196.0 -50.9 -1247.8 147. 12371196.0 -46.9 -1247.8 147. 12371008.0 -46.9 -1136.4 132. 1240916.0 -40.0 -1005.9 115. 1241858.0 -43.6 -1005.9 115. 1241858.0 -42.9 -977.2 106. 1241.	1227.	12271796.0 -63.0 -1565.0 212. 12271660.0 -56.9 -1554.3 191. 12251666.0 -56.9 -1554.3 191. 12291356.0 -56.9 -1355.1 150. 12291356.0 -56.9 -1355.1 150. 12291356.0 -50.9 -135.1 150. 12301366.0 -50.9 -1247.8 147. 12371048.0 -40.8 -1174.1 133. 1240916.0 -40.8 -1174.1 133. 1241830.0 -42.9 -977.2 106. 1242774.0 -42.9 -977.2 106. 1246774.0 -42.9 -977.2 106. 1246786.0 -48.6 -890.7 96.	1227. 1796.0 -156.0 212. 1227. 122	1227.	Name Name

VEL UPSTBEAM VELOCITY (U)

RIPER INVES OF GALL RPPECTS OF SUPERCAVITATING STDROPOLLS OF PINITE SPAR

-
•
-
-
=
0
1108
-
-
v
•
-
-
PEDOC
_
_
_
-
277
-
-
•
0
-
-
-
•
•
_
•
_
_
•
- HIDDOGGIE
_
-

FPS	*0	*	05		90	90	15	-	74	.17	11	20	18	20	23	16	15	81	96	66	
-724	56.	56.	26.	26.	26.	26.	26.	26.	26.	26.	26.	26.	26.	26.	56.	26.	26.	24.	23.	23.	
BOR-IELB	226.80	204.92	194.55	185.63	183.18	187.94	180.09	176.21	170.53	168.44	158.44	157.07	154.27	150.03	146.86	139.74	143.05	125.49	142.12	140.76	
DEAG-LB	63.07	61.83	59.06	55.24	53.80	56.71	51.97	50.29	47.32	\$5.80	42.02	40.54	39.38	37. 13	35.89	33.73	34.42	30.89	39.89	38.85	
1111-18	371.80	335.38	304.01	273.51	261.38	282.04	249.21	237.79	219.07	210.96	192.00	180.33	174.57	163, 13	157.76	146.96	149.95	134.57	164.30	179.82	
ALPHA	1.03	11.03	11.03	11.03	11.03	11.03	11.03	11.02	11.02	11.02	11.02	11.02	11.02	11.02	11.02	11.02	11.02	11.02	11.02	11.02	
BUB 80	1-11,-01	L-1102	£-1103	1-1104	L-11,-05	L-1106	L-1107	L-1108	L-11,-09	L-1110	1-11-1	1-1112	1-11-13	1-11-1	1-11-15	1-11-16	1-111	L-1118	F-11-19	1-1120	
	_	_	_		_		_	_	_	_	_	_	7	_	_	_	_		-	_	

RIPES INVES OF BALL EFFECTS ON SUPERCAVITATING NIBBOPOILS OF PINITE SPAN

•• faz	B# 10 **-6	1.0427	1.4427	1.4416	1.4449	1.4438	1.4438	1.4487	1.4481	1.4481	1.4498	1.4498	1.4514	1.4503	1.4514	1.4530	1.4492	1.4487	1.3741	1.3274	1.3287
APPLIED	1/0	. 1646	. 1788	.1881	1981.	. 1987	1945	. 29 10	.2036	.2074	.2082	.2090	.2113	.2148	.2160	.2155	.2167	.2170	.2169	1.2077	. 2071
CORRECTIONS		Ĭ	٠	•	٠	_	٠	٠	٠	•	Ŭ	Ĭ	Ĭ	_	Ĭ	٠	Ĭ	Ĭ	٥	4.8136 0.	•
T PORE (BO	5	0.0917	0.0829	0.0788	0.0748	0.0740	0.0759	0.0722	0.0707	0.0684	0.0675	0.0635	0.0628	0.0617	0.0599	0.0586	0.0560	0.0574	0.0559	0.0679	0.0671
HORDINERSTORY	CDUNC	0.1493	0.1462	0.1397	0.1298	0.1265	0.1335	0.1211	0.1172	0.1100	0.1060	0.0969	0.0931	0.0905	0.0849	0.0817	0.0770	0.0787	0.0785	0.1103	0.1071
DATA IN	ដ	0.9067	0.8179	0.7425	0.6650	0.6365	0.6868	0.6027	0.5755	0.5302	0.5094	0.4637	0.4345	0.4213	0.3931	0.3793	0.3552	0.3627	9.3618	0.5309	0.5170
-HIDBOROLT	ALPHA	11.03	11.03	11.03	11.03	11.03	11.03	11.03	11.02	11.02	11.02	11.02	1:.02	11.02	11.02	11.02	11.02	11.02	11.02	11.02	11.02
	BUR BO	L-1101	L-1102	1-1103	1-1104	L-1105	L-1106	L-1107	£-1108	1-1109	1-1110	1-11-11	1-1112	L-1113	1-11-1	1-11-15	1-1116	1-11-17	L-1118	L-1119	L-1120

ALPHA GEORETRIC ANGLE OF ATTACK CORRECTED FOR SHAPT TWIST
CL LIPT COEFFICIENT, MCHDINESSIONALIZED ON UPSTREAM VELOCITY AND HODEL PLANFORM AREA
CD LIPT COEFFICIENT, MCORRECTED DRAG COEFFICIENT AS COMPUTED FROM REASURED DRAG, AND MONDINESSIONALIZED
ON UPSTREAM VELOCITY AND HODEL PLANFORM AREA
CEN MONEYT COEFFICIENT, MONDIAMANIAMALIZED ON UPSTREAM VELOCITY, MODEL PLANFORM AREA, AND MEAN CHORD
L/D LIFT-TO-DAG RATIO = CL/CDUNC
D/L DRAG-TO-LIFT BATIO = CDUNC/CL
RUBBER, BASED ON MEAN CHORD

TEGEND

VILLE TO SUBJECT

RIPER INVES OF MALL RPRECTS ON SUPERCAVITATING HIDROPOLLS OF PINITE SPAN

	CONNEUTS/BENANKS	10 0.116 0.056 0.224 1.451 1.434 1.811 2.034 0.280 0.287 3.12 0.287 3.14 0.16 0.056 0.2287 1.451 1.451 1.451 1.451 1.451 2.034 0.280 0.290 0.297 3.15 0.287 3.16 0.16 0.056 0.219 2.167 2.102 2.611 2.809 0.334 0.441 0.427 4.10 0.0287 4.10 0.056 0.219 2.167 2.150 2.611 2.809 0.331 0.444 0.437 11 0.115 0.056 0.219 2.167 2.150 2.547 2.732 0.331 0.444 0.437 12 0.113 0.056 0.224 1.451 1.451 1.451 1.811 2.809 0.334 0.441 0.427 4.10 0.
	CAVLTH 00.72 00.92 00.92 11.08 11.08 11.68 11.68	
SYSTER	SIGC 0.127 0.583 0.583 0.522 0.522 0.435 0.435 0.324 0.324 0.324	VORTICE CES
PRIOR DATA CORRECTED FOR EPPECTS OF IRAGES OF TRAILING VORTEE SYSTEM	S S S S S S S S S S S S S S S S S S S	16.2 0.081 0.056 0.224 14.51 14.34 1811 2.034 0.280 0.280 0.287 0.18 0.08 0.280 0.280 0.280 0.280 0.281 0.116 0.056 0.219 2.167 2.102 2.611 2.809 0.33 0.441 0.427 0.427 0.115 0.068 0.219 2.167 2.102 2.611 2.809 0.33 0.441 0.427 0.427 0.116 0.068 0.219 2.167 2.150 2.547 2.732 0.331 0.444 0.437 0.427 0.116 0.068 0.219 2.167 2.150 2.547 2.732 0.331 0.444 0.437 0.427
AILIBG	2 CA/AT 0.434 0.379 0.379 0.360 0.376 0.376 0.317 0.317 0.317 0.317 0.317 0.317	ES OF TI
07 TR	CD/A12 3.724 3.656 3.656 3.656 3.656 3.656 3.666 2.806 2.806 2.806 2.806 2.806 2.806 2.806 2.806 2.806 3.606	F INAGE R PRESSU
IBAGES	CLAR # 291 # 291 # 291 # 291 # 201 # 2	2.547 2.547 2.547 2.547 2.547 2.547 2.547 2.547 3.547
ECTS OF	3.440 3.440 3.440 2.808 2.808 2.808 2.908 2.908 2.908 2.908 1.796 1.796 1.406	1.434 2.102 2.102 2.102 2.102 4.102 4.102 4.102 4.102 4.102 4.102 4.102 4.103
POR 2P1	3.720 3.720 3.720 3.720 3.720 2.688 2.688 2.467 2.165 1.820 1.820 1.830 1.425	322 0.081 0.056 0.224 1.453 1.434 1.811 2.039 0.531 0.116 0.066 0.219 2.167 2.102 2.611 2.039 0.531 0.116 0.066 0.219 2.167 2.102 2.611 2.039 0.531 0.116 0.066 0.219 2.167 2.102 2.611 2.039 0.531 0.116 0.066 0.219 2.167 2.102 2.611 2.039 0.517 0.113 0.067 0.218 2.169 2.150 2.547 2.732 0.518 0.
BRECTED	(9/L) 0.183 0.196 0.209 0.209 0.213 0.213 0.223 0.223 0.223	1.35.2 0.081 0.056 0.224 1.517 0.116 0.068 0.219 2.517 0.116 0.068 0.219 2.517 0.116 0.068 0.219 2.517 0.118 0.067 0.219 2.517 0.118 0.067 0.219 2.517 0.118 0.067 0.219 2.517 0.118 0.067 0.219 2.517 0.118 0.067 0.219 2.517 0.118 0.067 0.118 0.067 0.067 0.118 0.067
DATA CO	C. 6. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.056 0.068 0.068 0.068 1.006 1.106
	CD 0.124 0.115 0.124 0.1	10.116 0.056 0.219 10.116 0.056 0.219 10.117 0.056 0.219 10.118 0.068 0.219 10.118 0.068 0.219 10.118 0.068 0.219 10.118 0.068 0.219 11.018 TATIC PRESSURB
•	CC. 90.9079	
	ALCO 11. 91 11. 54 11.	HERNISE (ALPHAI) A 17.65 0 FC (TW) A 17.5 SIGC SIGC CD (D/L)
		LEGEND L-1119 11.65 0 L-1120+ 11.65 0 LEGEND PC(TW) PC(TW) ATZ SIGG SIGG SIGC CD(L) CD(L)

ILS OF PINITE SPAN		0.00		PINE PCAT	1	29h PW	1	'	216. 52.			202. 47.				168. 42.	154. 41.			130. 36.		121. 36.			104. 36.			93. 40.		#3 DRAG (COUNTS)	PCAV CAVITY PRESSURE (AM BG)	ANX STRUCTURE AND THE CONTROL OF THE	03988 CTUT B 3701 CTUT 4630008 ENG-17
MG BYDROPO		0 83-0.040		S 63.0	B 1004.0	B 1420.0	# 1670.0	R 1797.0	1839.0	B 1819.0	B 1807.0	8 1770.0	R 1670.0	B 1630.0	B 1560.0	R 1518.0	1457.0	B 1335.0	B 1285.0	R 1241.0	R 1170.0	B 1127.0	R 1031.0	R 1032.0	R 950.0	# 1320.0	R 905.0	R 643.0		O IN)	ID (IN)	18348	(TERTE
BCAVITATI		1-8 3-8 ff 1-0 100.0 85.5 1-0 107.0 88.0 1-0 107.0 88.0	AS RECOR	151.6	181.8	219.6	197.5	180.5	164.1	159.7	158.2	156.0	153.0	152.1	150.8	149.9	2 2 2 2 2	146.2	145.5	143.4	142.9	142.0	139.5	139.5	136.0	140.9	127.5	118.2		H ABEA (S	EL CENTRO	(uu) -18)	MAL, K- AD
RIPER INVES OF WALL SPECTS ON SUPRECAVITATING NYDROFOLLS OF PINITE SPAN	TT AREA SPAR MAC 86 90.0 15.0 6.03	2-8 2-8 3-8 3-0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0	•	A76698.0 P	•	1601628.0 B			1671830.0 %			1661594.0 8					1691100.0 8		170980.0 B	169874.0 R		170810.c B	171728.0 R		160662.0 B			388 498.0 R	TOWNEL " (" ")	HALF-SPAN HODEL PLANFORM AREA (SQ IN)	FOLL BALL-SPAR (18) JEAR CRORE, REASOLD (18)	SHAPT TWIST (DEGREES/IN-LB)	COAD CELL POLANIII (NEBORNAL, NERBERSE)
RIPEL ISVES OF	118 11 A81 76 86 90	ZERO FEATINGS AND		L-1201		1-1203	_	-	1-1208+ 11	-		1-12-11 11		-	-	•	1-12-18- 11		•	L-1221	-	-	L-1226+ 11	_	1-1228+ 11			L-1232 3	: ::		SAC SE	-	3

RIPER INVES OF SALL PPPECTS OR SUPERCAVITATING STOROFOLLS OF PIRITE SPAN

PCAV	!	:	!	!	1	!	52.	52.	.63	.84	.7.	.98	. 5.4	48.	43.	42.	41.	39.	36.	36.	36.	36.	36.	36.	36.	36.	36.	36.	45.	42.	.04	*0*
PINF	753.	715.	668.	287.	265.	248.	229.	229.	211.	211.	195.	195.	177.	177.	161.	161.	147.	147.	134.	134.	123.	122.	114.	114.	104.	105.	94.	97.	177.	144.	106.	86.
13	-565.0	-903.8	-1319.5	-1417.3	-1569.1	-1695.9	-1738.6	-1737.4	-1717.2	-1705.0	-1667.7	-1642.5	-1567.3	-1527.1	-1456.8	-1414.6	-1353.4	-1309.2	-1230.9	-1180.7	-1136.5	-1093.3	-1065.0	-1021.8	-978.6	-925.4	-926.1	-843.9	-1550.7	-1213.5	-798.2	-536.0
13	-51.6	-81.8	-119.6	-115.0	-97.6	-80.6	-67.6	-64.2	-59.8	-58.3	-56.2	-55.2	-53.2	-52.3	-51.0	-50.1	6.89-	1.84-	-46.5	-45.8	-44.3	-43.7	-43.3	-42.4	-41.3	-39.9	-39.9	-36.4	-52.9	-41.4	-28.0	-18.7
=	-698.0	-1110.0	-1628.0	-1786.0	- 1884. 0	-1934.0	-1870.0	- 1830.0	-1730.0	-1680.0	-1594.0	-1542.0	-1414.0	-1364.0	-1276.0	-1220.0	-1150.0	-1100.0	-1022.0	-980.0	-934.0	-874.0	-850.0	-810.0	-780.0	-728.0	-728.C	-662.0	-1410.0	-1096.0	-708.0	0.864-
RANOR	.76.	178.	1160.	1165.	1163.	1167.	1166.	1167.	1166.	1166.	1166.	1166.	1165.	1167.	1168.	1169.	1169.	1169.	1169.	1170.	1171.	1169.	1171.	1170.	1171.	1171.	1171.	1160.	1164.	.006	612.	388.
BUR 80	1-1501	L-1202	L-1203	1-1204	L-1205	1-1206	L-1207	L-1208	L-1209	L-1210	L-1211	1-1212	L-1213 ·	L-1214	1-1215	L-1216	1-17-17	L-1218	1-1719	L-1220	L-1221	L-1222	L-1223	L-1224	1-1225	L-1226	L-1227	L-1228	L-1229	1-1230	1-1231	L-1232
	MANOR 61 62 63	NAMON 81 82 83 476698.0 -51.6 -565.0	476698.0 -51.6 -565.0 7741110.0 -81.8 -903.8	476698.0 -51.6 -565.0 7741110.0 -81.8 -903.8 11601628.0 -119.6 -1319.5	### ### ### ### ### ### ### ### ### ##	### 192 63 63 63 64.6 698.0 -51.6 -565.0 7741110.0 -81.8 -903.6 11601628.0 -115.6 -1319.5 11631884.0 -97.6 -1569.1	### ### ### ### ### ### ### ### ### ##	#76690.0 -51.6 -565.0 7537741110.0 -81.8 -903.8 71511651786.0 -115.0 -117511651984.0 -97.6 -1559.1 26511671934.0 -80.6 -1738.6 229.	## ## ## ## ## ## ## ## ## ## ## ## ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	## ## ## ## ## ## ## ## ## ## ## ## ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	116. -690.0 -51.6 -565.0 753. 774. 1110.0 -115.0 -130.2 668. 1160. -130.2 715. 1160. -130.2 715. 1160. -1864.0 -115.0 -1417.3 267. 1167. -1804.0 -67.6 -1736.5 229. 1167. -1810.0 -67.6 -1736.5 229. 1166. -1830.0 -68.2 -1737.4 229. 1166. -1830.0 -59.8 -1777.2 211. 1166. -1594.0 -59.8 -1777.4 229. 1166. -1594.0 -56.2 -1667.7 195. 1166. -1594.0 -55.2 -1667.7 195. 1167. -1814.0 -53.2 -1667.7 195. 1167. -1814.0 -53.2 -1667.7 197. 1169. -1120.0 -48.1 -130.2 147. 1169. -1150.0 -48.1 -130.2 147. 1170. -980.0 -48.1 -130.2 114. 1170. -870.0 -49.3 -1065.0 114. 1171. -728.0 -49.3 -925.4 105. 1171. -728.0 -49.3 -925.4 105. 1171. -728.0 -93.9 -925.4 105. 1171. -728.0 -93.9 -925.4 105. 1171. -728.0 -93.9 -925.4 105. 105. 1171. -728.0 -93.9 -925.4 105. 105. 1171. -728.0 -93.9 -925.4 105. 105. 1171. -728.0 -93.9 -925.4 105. 105. 1171. -728.0 -93.9 -925.4 105. 105. 1171. -728.0 -93.9 -925.4 105. 105. 105. 1171. -728.0 -93.9 -925.4 105.	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	PUB IO MANON 01 02 03 03 04 04 05 05 05 05 05 05

Established Andrew

EIPER INVES OF WALL RFFECTS ON SUPERCAVITATING SYDBOPOLLS OF PINITE SPAN

	1	6.7	:	5.3	5.0	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.3	5.4	5.5	18.84	5.2
TION.	1	5.76	1.5	9.0	:	1.2	0.0	3.3	:	5.3	0:0	2.7	9.6	1.5	8.3	3.6	0.5	5.8	3.0		6.1	3.5	:	5.7	2.5	3.6	9.6	7.7	3	3.2	9.9	:	
DATA REDUCTION	6	2.7	3	7.	:	3.2	8.3	0.0	0.0	9.2	8.7	7.2		3.1	1.5	8.7	7.0	4.5	2.7	9.6	7.5	5.8		2.9	:	9.4	7.2	7.3	0.1	2.4	8.9	~	9
	171	19.92	38.3	.6	80.2	56.3	02.9	87.5	78.8	57.9	17.6	30.0	19.4	93.4	83.2	65.4	54.0	39.7	29.6	13.7	1.50	95.€	83.5	78.6	70.4	£4.2	53.5	53.5	39.6	32.5	27.4	147.20	33.3
:	3	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	5.0	2.0	2.0	5.0	2.0	5.0	5.0	2.0	2.0	5.0	2.0	12.01	2.0
	-	-120	-120	-120	-120	-120	-120	-120	-120	-120	-121	-121	-121	-121	-121	-121	-121	-121	-121	-171	-122	-122	-122	-12:-2	-122	-122	-122	-122	-122	-122	-123	123	-12-

VEL OPSTREAM VELOCITY (0)

REPER LEVES OF GALL REPECTS OF SUPRECAUTATING STOROPOILS OF PISITE SPAN

					CORRECTIONS		A PPLIED)
08 8		10	CDUNC	80	1/0	7/0	RH+10**-6
1301		0.6829	0.1293	0-1814	6.8399	0. 1464	0.9650
202		0.8929	0.1318	0.1830	6.1764	9.1476	1.2099
203		0.8986	0.1322	0. 1836	6.7988	0.1471	1.4605
204		0.9736	0.1417	0.1759	6.8700	0.1456	1.4634
1205	12.05	1.0164	0.1576	0.1494	6.4480	0.1551	1.4623
206		1.0301	0.1702	0.1230	6.0528	0.1652	1.4646
207		3.9915	0.1747	0. 1033	5.6745	0.1762	1.4640
208		0.9685	0.1745	0.0980	5.5516	0.1801	1.4646
1239		0.9159	0.1725	0.0914	5.3089	0.1884	1.4640
1210		0.8895	0.1713	0.0891	5.1942	0.1925	1.4640
1711		0.8444	0.1674	0.0858	5.0437	0.1983	1.4640
1212		0.8173	0.1648	0.0843	4.9588	0.2017	1.4640
1213		0.7514	0.1572	0.0813	4.7801	0.2092	1.4634
1714		0.7242	0.1528	0.0798	4.7397	0.2110	1.4646
1215		0.6780	0.1454	0.0778	4.6618	0.2145	1.4652
31 2		0.6484	0.1410	0.0764	4.5995	0.2174	1.4658
L-1217		0.5120	0.1347	0.0745	4.5444	0.2200	1.4658
1218		0.5851	0.1301	0.0733	4.5041	0.2220	1.4659
1719		0.5455	0.1221	0.0708	4.4682	0.2238	1.4658
1220		0.5232	0.1168	0.0697	4.4794	0.2232	1.4664
1221		0.4986	0.1122	0.0674	4.4451	0.2250	1.4669
1312		0-4685	0.1079	0.0667	4.3414	0.2303	1.4658
1223		0.4553	0.1048	0.0658	4.3427	0.2303	1.4669
1224		0.4343	6. 1005	0.0045	4.3270	0.2311	1.4664
1225		0.4136	0.0960	0.0628	4.3622	0.2292	1.4669
1226		3.3914	0.0905	0.0607	4.3251	0.2312	1.4669
12 27		0.3914	0.0936	0.0607	4.3214	0.2314	1.4669
1228		0.3591	0.0829	0.0559	4.3326	0.2308	1.4605
L-1229		0.7497	0.1556	0.0809	4.8184	0.2075	1.4629
230	12.02	0.7406	0.1546	0.0804	4.7907	0.2087	1.2979
-1231	12.01	0.6861	0 1052	0770	1 7757	2000	4 000.7
			35.1.0		6671.5	2.7.0	

ALPRA GECRETAIC ANGLE OF ATTACK CORRECTED FOR SHAFT THIST
CL LIFT COEFFICIENT, MONDIANSISDAALIZED ON UPSTREAM VELOCITY AND MODEL PLANFORM AREA
CDUGCORRECTED, THE UNCONNECTED DRAG CONFFICIENT AS COMPUTED FROM MEASURED DRAG, AND MONDIANESIONALIZED
ON UPSTREAM VELOCITY AND MODEL PLANFORM AREA
CD MOMENT COEFFICIENT, MONDIANESIONALIZED ON UPSTREAM VELOCITY, MODEL PLANFORM AREA, AND MEAN CHORD
LVD LING-TO-DRAG BATIO = CL/CDUG/CL

BY RETHOLDS BUNBER, BASED ON MEAN CHORD

EIPER LEVES OF WALL EPPECTS ON SUPERCAVITATING MIDNOPOLLS OF PINITE SPAN

	STATERES	-
ľ	A VOBTRE	
	P TRATILIES	
	TRACER	-
	TO STATEMENT	
	The Part of the Pa	-
	acted of	-

		-	-	מידו כם	RECTED		ECTS OF	INAGES	10 10			STSTER			
1-12-01	13.07	0.883	9 185	0.181	0.165	19/401	3107/11	3.870	2,793	295		3 1	-	Tan Dan Dan	CONGESTS/REMERS
L-1202	13.10	0.893	0.148	0.163	0.166	!	-	3.906	2.837	0.800	-	-		. 2	
L-1203	13.13	0. 839	0.149	0.184	0.166	-	-	3.922	2.837	0.802	-	-	-	2	
L-1204	13.21	0.97	0.161	0.176	0. 166	-	-	4.222	3.034		-	-	-	PC (TW)	
L-1205	13.25	9.0	9.13	9.1	0.176			1.394	3.345	0.0				2 (18)	
L-1207	13.21	0.991	0.195	. 103	0.197	3.814	3.424	4.300	3.670	0.48	0.879	0.789	-	1	
L-1208+	13.18	0.969	0.194	0.098	0.200	3.818	3.428	4.210	3.663		0.878	0.789	0.61		
1-1709	13.12	0.916	0.190	0.091	0.207	3.488	3. 156	4.001	3.623		0.798	0.723	!		
1-1210+	13.08	0.890	0.188	0.089	0.211	3.495	3.183	3.895	3.598	0.390	0.798	0.727	0.64		
1-12120	200	0.817	0.179	0.084	0.219	3.201	2.930	3.603	3.472	0.372	0.726	0.665	0.74		
. 1-1213	12.92	0.751	0.169	0.081	0.225	2.866	2.634	3,333	3.322		0.646	0.594			
1-12-14	12.89	0.724	0.164	0.000	0.226	2.867	2.636	3.220	3.236	0.355	0.645	0.593	1.00		
	12.79	0.648	0.150	0.076	0.231	2.561	2.372	2.904	3.002		0.572	0.530	1.05		
1-1217	12.75	0.612	0.142	0.074	0.233	2.288	2.121	2.750	2.876		0.509	0.472	!		
1-1218+	12.72	0.586	0.137	0.073	0.234	2.292	2. 166	2.640	2.785	0.330	0.509	0.481	1.18		
L-1220+	12.63	0.523	0.122	0.070	0.234	2.039	1.976	2,371	2.515		0.450	0.436	1.30		
1-1221	12.61	0. 490	0.117	0.067	0.235	1.819	1.758	2.265	2.421		004.0	0.387			
L-1222.	12.58	0.468	0.112	0.067	0.240	1.805	1.745	2.134	2.334		0.396	0.383	1.73		
1-1223	12.56	0.455	0.109	990.0	0.240	1.641	1.583	2.077	2.270	0.300	0.360	0.347			
L-1225	12.52	0.419	0.100	0.063	0.238	1.440	1.386	1.916	2.087	0.288	0.315	0.303	2		
L-1226+	12.48	0.391	0.094	0.061	0.239	1.463	1.410	1.796	1.973		0.319	0.307	3.55		
1-1227	12.48	0.391	0.094	0.061	0.240	1.237	1.186	1.796	1.975		0.270	0.258	!		
L-1228+	12.44	0.359	0.086	0.056	0.238	1.312	1.262	1.653	1.814	0.257	0.285	0.274	4.10		QUESTIONABLE
1-1229	12.92	0.750	0.167	0.081	6.223	2.842	2.617	3.326	3.291	0.359	0.641	0.593			
L-1231	12.83	0.686	0.155	0.020	0.226	2.625	2.400	3.065	3.091	0.348	0.588	0.537	!		
1-1232	12.88	0.736	0.160	0.080	0.218	2.886	2.550	3.274	3.169	0.354	649.0	0.573	-		
ONLESS OF	OTHERVISE	1	MDICATED, ALL SUPERCAVITA . BOTH STATIC	LL DATA ITATING TIC PRES	PLOW.	CATED, ALL DATA ARE FOR: SUPERCAVITATING PLOW. BOIN STATIC PRESSURE TAPS OPEN									
LEGEND	PC (TE)		UPSTRE DESTRE IALLY C	ONLY UPSTREAM STATIC PRESSURE TA ONLY DUSTREAM STATIC PRESSURE TA PARTIALLY CAVITATING (TAP RETTED)	IC PRES	PRESSURE TAP (TAP BETTED)	UTILIZED UTILIZED	88							
4	(ALP		(TRUE) ANGLE ALPHAT ** 2	TA 90 3	PACK, C	FOLE: METER DE ATTACK, CORRECTED FOR EPPECTS OF INAGES OF TRAILING VORTICES ALPHAT++2	POR EP	RCTS OF	P INAGE	1 10	ATLING	VORTICE	so.		
	SIGC		TATION	NUBBER NUMBER CIENT,	COMPUTE	CAVITATION NUMBER COMPUTED WITH MEASURED CAVITY PRESSURE CAVITATION NUMBER COMPUTED WITH CALCULATED VAPOR PRESSURE DRAG CORPFICIENT, CORRECTED FOR RPPECTS OF IRAGES OF TRAILING VORTICES	ALCULATI PECTS	CATITY SD VAPOI OF IRAGI	PRESSU PRESS IS OF TE	RE JRE LAILING	VORT IC	2			
	CATLTH CATLTH		ECTED C	CORRECTED CRAG-TO-LIFT RATI CAVITY LENGTH BEASURED FROM (OBTAINED FROM PHOTOGRAPHS)	LIFI RA	CORRECTED GRAG-TO-LIFT RATIO = CD/CL CAVITY LENGTH BEASURED FROM MIDCHORD (OBTAINED FROM PROTOGRAPHS)	7CT 080	BUTBOIL	POSITI	. 101	FDINBUS	TOBALLY	10 01	CORRECTED DRAG-TO-LIFT RATIO = CD/CL CAVITY LENGTE BEASURED PROR HIDCHORD AT CRETROID POSITION, WORDINGESIONALISED ON REAN CHORD (OBTAINED PROR PROTOGRAPHS)	•

		PINF PCAV		214. 49.			182. 41.							121. 31.				106. 30.			LOAD CRLL #1 LIFT (COUNTS)	#2 HORENT ABOUT RIDCHORD (COURTS)	PIET STATIC PRESSURE (RE HG)	CAVITY PRE	MOM NO Q-KXI-11: Q=POIL IESTED[S=SMBLL, N=SED, L=LATCZ]	TY-BUN BURBER, THIS POIL & THIS ANGLE	
SIPER INVES OF VALL EPPECTS ON SOPRICAVITATING MEDWOPOLLS OF FIRITE SPAN HIPPOPOLL IMPUT DATA TH TI AREA SPAN BAC 75 63 90.0 15.0 6.03	ERRO MEADINGS AND NUMBEL TERP BEFORE AND AFTER 0. 0.0 0.0 0.0 0.0 100.0 0.0 100.0 82.5 0. 0.0 0.0 0.0 100.9 0.0 100.0 84.0 CELL LS/CY (GORBAL/REY) \$1-0.2000 \$2-0.2000 83-0.04030 THIST- 7200.0 SHAFT DIA. = 1.50IR	EUR WO SANOR S 01 S 02 S 03	+ 10341758.0 R 161.8 B	L-1403 10331700.0 R 159.8 R 2085.0	10341582.0 g 156.8 g	+ 10341528.0 B 155.5 B	L-1407 10351426.0 g 153.6 g 1925.0	10391304.0 R 152.0 R	. 10401258.0 R 151.2 B	10411194.0 B 150.0 R	. 10421140.0 R 149.0 R	10431062.0 B 147.6 B 1	· 10431018.0 B 147.3 B	 1045892.C B 145.5 B	. 1044836.0 B 144.5 B	1047834.0 R 144.4 B 1	. 1043776.0 B 142.9 B 1	L-1621 1044792.0 B 143.0 R 1235.0	687712.0 B 133.0 B	· 687694.0 B 132.4 R	INPER (DEG PARR)	TATOS TATOS MODERN DE LA COLUMNIA COLUM			TRIST SHAFT TRIST (DEGRES/IM-LB)		

Vs. Sales of the participant

EIPER LEVES OF SALL RPPCTS OR SUPERCAVITATING BYDROPOLLS OF PLHITE SPAN

PRESSORE	PCAV	53.	51.	.63	.04	45.	:	:	*0	39.	38.	37.	36.	32.	31.	31.	30.	31.	30.	30.	30.	30.	30.	32.	23
STATIC	PIBE	222.	222.	207.	207.	193.	193.	175.	174.	162.	162.	149.	149.	.134.	134.	120.	120.	114.	114.	107.	107.	99.	. 66	103.	101
ASD STDB0	:	-2025.0	-2000.0	-1985.0	-1967.0	-1934.0	-1895.0	-1825.0	-1780.0	-1717.0	-1674.0	-1605.0	-1555.0	-1465.0	-1406.0	-1336.0	-1294.0	-1275.0	-1204.0	-1193.0	-1121.0	-1135.0	-1045.0	-1000.0	-958-0
PRADIUGS, SIGHS,	20	-64.5	£1.6	-59.7	-58.1	-56.6	-55.3	-53.4	-52.7	-51.7	-50.8	-49.6	-48.6	-47.1	-46.8	-46.1	-41.9	-44.9	-43.8	-43.7	-42.2	-42.2	-39.5	-32.1	-31.5
POR SERO RE	=	-1816.0	-1758.0	- 1700.0	-1648.0	-1582.0	-1528.0	-1426.0	-1372.0	-1304.0	-1258.0	-1194.0	-1140.0	-1062.0	-1018.0	-962.0	-908.0	-892.0	-836.0	-834.0	-176.0	-192.0	-724.0	-732.0	-694.0
CORRECTED	BAROR	1034.	1034.	1033.	1034.	1034.	1034.	1035.	1036.	1039.	1040.	1041.	1042.	1043.	1043.	1044.	1044.	1045.	1044.	1047.	1043.	1044.	1034.	687.	687.
INPUT DATA	04 104	1-1401	L-1402	1-1403	L-1404	L-1405	1-1406	1-1407	1-1408	L-1409	1-1410	1-1411	L-1412	.L-1413	1-1414	1-1415	1-1416	L-1417	1-1418	L-1419	L-1420	L-1421	L-1422	1-1123	L-1624

RIPER INVES OF MALL RPPECTS OF SUPRECAVITATING STDROPOLLS OF PINITE SPAN

	2	:	:	:	:	24.05		:	:	1.	:	:	:	:	:	3	-	4:1	:	-	:	4.0	9.8	9.6	
1-1	2.2	2.3	5.0		3.9	199.10	2.1	9.8		3.0	8.5	:	9.6		5.7	1.6	1.5	7.8	7.3	7.7	1.9	2.1	5.7	3.	
1	3.5	9.0	:	9.2	7.9	76.37	3.5	1:7	9.2	7.4		2.6	9.0	6.6	3.8	2.1	3	8.5	8.0	5.1	5.7	2.1	6.3	3	
1	36.	53.	51.	÷	27.	316.66	95.	i	7.	5	;	37.	21.	5	=	ė	17.	75.	75.	63	66.	52.	25	15.1	
2	•	9	9	0	9	14.03	0	٩,	•	0	0	0	۰,	0	0	0	9	0	0	0	0	9	0	0	
5	-140	-140	1-1403	-140	-140		-14.0	-140	-14.0	-141	-14:-1	-18-1		-141	-141	-141	-141	-141	-141	-142	-142	-142	-142	-142	

VEL OPSTREAM VELOCITY (U)

LEGEND

Victor Commence of the

LIPER 1872S OF SALL RPRCTS OF SUPRECAVITATING STDROPOILS OF PIFITE SPAN

:
S APPLIEDS .
=
3
2
=
8
8
Ē
ũ
2
=
ຽ
•
=
5
. PORM (NO CORRECTIONS
=
=
×
2
=
₩
=
2
_
L DATA IN SOUDINBUSIOSAL
-
=
3
-
7
*** TPROFOL
2
2
•

2 1	11.71	13	CDUBC	5	1/0	1/0	9-**01-88
10	14.03	1.0755	0.2288	0.1101	4.7013	0.2127	1.3457
402	14.03	1.0408	0.2259	0.1054	8.6075	0.2170	1.3457
03	14.03	1.0074	0.2244	0.1021	4.4897	0.2227	1.3451
0+	14.03	0.9758	0.2221	0.0992	4.3936	0.2276	1.3457
405	14.03	0.9372	0.2183	0.0967	4.2935	0.2329	1.3457
901	14.03	0.9056	0.2138	0.0344	4.2357	0.2361	1.3457
407	14.03	0.8454	0.2055	0.0910	4.1129	0.2431	1.3463
L-1400	14.03	0.8134	0.2002	0.0899	1.0635	0.2061	1.3469
409	14.03	0.7719	0.1924	0.0878	4.0121	0.2492	1.3487
110	14.03	0.7446	0.1873	0.0863	3.9755	0.2515	1.3493
	14.02	0.7068	0.1792	0.0842	3.9440	0.2536	1.3499
412	14.02	0.6749	0.1733	0.0823	3.8939	0.2568	1.3505
1-13	14.02	0.6293	0.1629	0.0798	3.8633	0.2588	1.3511
114	14.02	0.6041	0.1561	0.0792	3.8690	0.2585	1.3511
415	14.02	0.5714	0.1480	0.0179	3.8608	0.2590	1.3517
116	14.02	0.5402	0.1432	0.0160	3.7719	0.2651	1.3517
11-11	14.02	0.5306	0.1409	0.0759	3.7656	0.2656	1.3523
418	14.02	0.4987	0.1329	0.0742	3.7520	0.2665	1.3517
419	14.02	0.4962	0.1313	0.0737	3.7789	0.2646	1.3535
420	14.02	0.4642	0.1236	0.0714	3.7568	0.2662	1.3511
421	14.02	0.4729	0.1250	0.0714	3.7817	0.2644	1.3517
1-22	14.02	0.4367	0.1158	0.0674	3.7698	0.2653	1.3457
423	18.02	0.6394	0.1639	0.0803	3.9016	0.2563	1.1126
1-20	14.02	0.6070	0.1561	0.0787	T. AAA.	0.2572	1.1126

ALPHA GPORETRIC ANGLE OF ATTACK CORRECTED FOR SHAPT TWIST
CL LIFT CORPFICIENT, BONDINENSIONALIZED ON UPSTREAM VELOCITY AND RODEL PLANFORM AREA
CDUNC CD (UNCORRECTED), THE UNCORRECTED BRAG COEPPICIENT AS COMPUTED FROM HEASURED DRAG, AND ROWDINENSIONALIZED
ON UPSTREAM VELOCITY AND MODEL PLANFORM AREA
CH AGHETT COEPPICIENT, WOULDINEUSIONALIZED ON UPSTREAM VELOCITY, HODEL PLANFORM AREA, AND BEAN CHORD
L/D LIFT-TO-DRAG BATIO = CL/COUNC
D/L DRAG-TO-LIFT RATIO = CDUNC/CL
RESERVOLDS BUNDER, BASED ON REAM CHORD

TEGEND

RIPER INVES OF ULL RPPECTS ON SUPERCAUTAITING MIDROPOLLS OF PINITE SPAN

			.PRIOR	DATA CO	BRECTED	** PRIOR DATA CORRECTED FOR RPPECTS OF LUAGES OF THAILING VONTEE SYSTEM**	ECTS OF	INGES	111 10	TEING T	ONTER :	STSTER		
08 808	ALPHAT	מ	8	5		SIGVANT	SIGC/AT	CL/AT	CD/AT2		SIGN	SIGC	CATLTE	CORBENTS/REBARKS
1-14-01	15.31		0.253	5.0	0.235	3.611	3. 153	4.026	3.540		0.965	0.842		
70-11-7	15.27	-	9.7.0	9.00	0.239	3.620	3. 199	3.906	3. 498		96.0	0.852	0.70	
	-	200	25.0	70.0	7	3.550	200		2.47	0.384	0.830	20.78		
1-14 -05			236		25.2	100	2 707	2 547	7 387		0.000	45.7	0.00	
1-1406	15. 10	906	0.231	0.09	0.255	3.107	2.818	3.4.36	1. 122		0.819	0.783	0.83	
1-1407	15		0.220	0.091	0.261	2.777	2.545	3.223	3.202		0.728	0.668		
L-1408.	=		0.214	0.00	0.263	2.761	2.549	3.109	3.124		0.722	0.667	0.92	
L-1409	=		0.205	0.088	0.265	2.534	2.342	2.960	3.011		0.661	0.611		
1-1410	Ė		0.199	9.000	0.267	2.536	2.364	2,862	2.936		099.0	0.615	0.95	
1-14-1	Ė		0.130	0.084	0.268	2.292	2.140	2.725	2.817		0.595	0.555	:	
L-14120			0.183	0.082	0.271	2.295	2.163	2.609	2.730		0.594	0.560	1.10	
1-11-17	Ė		0.171	0.080	0.272	2.013	1.958	2.441	2.575		0.519	0.505	:	
1-14-14	ż		0. 164	0.03	0.271	2.016	1.982	2.348	2.473		0.519	0.510	1.43	
L-1415	=		0.155	0.078	0.271	1.749	1.716	2.227	2.351	0.304	0.449	0.4.0	-	
L- 14 16.			0.189	0.076	0.276	1.752	1.740	2.111	2.279	0.297	0.449	0.445	1.80	
1-1417	14.65		0.147	0.016	0.277	1.635	1.604	2.075	2.244	0.297	0.418	0.410	1.88	
1-1418	19.61	•	0.138	0.074	0.277	1.640	1.629	1.955	2.123	0.291	0.418	0.416	2.20	
1-14-19	:		0.136	0.074	0.275	1.499	1.490	1.946	2.098		0.382	0.380	-	
L-1420+	14.57		0.128	0.071	0.276	1.508	1.500	1.825	1.979		0.383	0.381	2.95	
1-14-21	=	0.473	0.130	0.071	0.274	1.349	1.342	1.858	2.00.2		0.343	0.342	!	
L-1022.	=	0.437	0.120	0.067	0.274	1.364	1.358	1.721	1.861		0.346	0.345	4.50	QUESTIONABLE
F-1423	14.11	0.639	0.172	0.080	0.270	2.075	2.012	2.480	2.592		0.535	0.519	!	
L-1424.	14.70	0.607	0.164	0.079	0.270	2.078	2.017	2.360	2.476		0.535	0.519	-	
0 553788	OTBERUISE	1.5	CATED, ALL DATA ARE P SUPERCAVITATING FLOW. BOTH STATIC PRESSURE	LL DATE	BDICATED, ALL DATA ARR POS: SUPERCATTATING FLOW. BOTH STATIC PRESSURE TAR	CATED, ALL DATA ARR POR: SUPERCAVITATING FLOW. BOTH STATIC PRESSURE TAPS OPER								
186880		+ OBLY	UPSTRE	AN STAT	IC PRES	OBLY UPSTREAM STATIC PRESSURE TAP UTILIZED	DTILIZ	9						
			BET DUSTREAM STATIC	AR STAT	IC PRES	PRESSURE TAP UTILIZED	UTILIZI	9						
		•	ARTIALLY CAVITATING	AVITATI										
	(11)	-	MATIALLY CAVITATING	D		(TAP SETTED)								
*	3		E) ANGL	E OF AT	TACK, C	(TRUE) ANGLE OF ATTACK, CORRECTED FOR EFFECTS OF INAGES OF TRAILING YORTICES	FOR EP	ECTS OF	IMAGES	S OF TR	AILING	VORTICE	S	
	7	- 1	T. PHATO											
	115	•	TATION	SOM BER	CORPUTE	TAILTATION SUREE CORPOTED WITH SEASORED CAVITY PRESSURE	EASURED	CAVITY	PRESSUI	2				
	976	, -	COPPE	CIPAT	CORPOIL	-ATTITUDE BONDER COMPUTED BLIG CALCULATED WATCH FRESSORE BRAG CORPETCIBLE, COMPUTED DOM REPRESES OF TRACKS OF TRAILING WORTHCRA	PPECTO	THAG	I PRESSU	ATLING	VORTE			
	1/4)		ECTED D	RAG-T0-	LIFT BA	CORRECTED DRAG-TO-LIFT BATTO = CD/CL	7					1		
	CAVLTE	•	TT LENG	TH HEAS	UR ED PR	N RIDCH	ORD AT	RETROIL	POSTT1	OR . NO	SHAUIGH	TOWALI?	H RO 02	SATT LENGTH REASONED FROM MIDCHORD AT CRATROID POSITION, MONDINENSIONALIZED ON HEAN CHORD
		100	ALRED P	BOE PRO	CONTAINED PROS PROTOGRAPHS)	6								

				21		200																	•						LIFT (COUNTS)	BOREST ABOUT BIDCHORD (COURTS)	DRAG (COURTS)	CAVITY PRESSURE (NA MG)	Q-XXX-YY: Q=POIL TESTED(S=SMALI	TACK	TARBUN MUNDAR - THE P
A P		PCAT	:	-		117.	90.	90.	81.	75.	. 89		27.	52.	50.	.7.	46.	*	£2.		38.	38.	38.	9, 9	98.	. 84	45.	.42.	=		DAN CALL		RUM NO Q-X		
11.5 of 71	8	PINE	764.	733.		296	277.	277.	255.	255.	233.	233.	214	197.	197.	178.	178.	161.	161.	147.	135.	135.	126.	125.		182	139.	102.	LOAD CELL		•		202		
040404	EE AND AFTER 3-E TT 00-0 66-0 07-0 90-0 82-6.20000 83-0.04030 A AS RECORDED+	=	1103.0	1598.0	2130.0	2395.0	24 15.0	2420.0	2445.0	2425.0	2385.0	2365.0	2290.0	2233.0	2190.0	2075.0	2015.0	1930.0	1855.0	1708 0	1655.0	1597.0	1555.0	1480.0	0.74	2115.0	1538.0	925.0			(1)	(11)			250
v i ta ti ng	AND AFTER 1.0 60.0 1.0 90.0 12-0.20000 83-	2 8	154.0 .	179.0	198.0	189.5	179.0	17.5	170.8	167.8 B	163.0	160.0	156.0	154.0	153.0	151.8 #	150.9 B	149.2	148.3	147.9	146.5	146.0	145.6 B	744.5	1 V 14	2.5	137.5 B	21.5 B			100 V21	CERTROID	(88)		LABRUE
SUPERCE	0	•	15	7 7	2 2		17	1 17	R 17	R 16	. 16	2 4			B 15	R 15	R 15	2	= :	= =	-	=======================================	=	= :	1 4		= 13	-	AHR)	-	A BRUNE A	A HODEL	READING	ES/IN-18	VHEOREK)
TPECTS OF BATA			-888-0	-1316.0	1936	-1930.0	-1900.0	-1870.0	-1830.0	-1794.0	-1710.0	-1612.0	-1550.0	-1478.0	-1418.0	-1314.0	-1260.0	-1180.0	-1124.0	-1012.0	-978.0	-926.0	-900.0	-850.0	0.250	-1150.0	-954.0	-554.0	ROOM TERPER (DEG FANR)		DOTE LANGE BOOKE PLANTONG AREA (SQ LE)	HEAR CHORD, HEAS, & RODEL CREEDIDING	VELOCITY HANORETER READING (MB)	SHAFT THIST (DEGREES/IN-LB	POLARITY
POIL IMPUT ABEA SPAN 90.0 15.0	-	BAROR	463.	696.	.776	967.	966	963.	961.	962.	963.	962.	464	964.	970.	971.	971.	973.	976.	974.	976.	977.	981.	979.	977	977.	708.	363.	BOOR TERP	TORREL	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HEAK CHOR	VELOCITY	INT LAVES	LOAD CPLL POLARITY (MENORMAL, REPRESE)
HERE HATS OF TALL EFFECTS ON SUPRECLATING MYDNOFOLLS OF FINITE SPAN HYDNOFOLL IMPUT DATA TR TT AREA SPAN BAC 75 49 90.0 15.0 6.03	3880 2121565 AED ARON 1-8 1-8 0. 0.0 0.0 0. 0.0 0.0 0. 0.0 0.0 CZLL LES/CT (WOREA) EWIST- 7200.0 SRI	02 304	L-1601	L-1602	10.00	- 1605	7-16,-06	L-1607+	F-1608	1-1609.	L-1610	1-16-110	-16 -13	-1614	L-1615e	1-1616	L-1617.	-1618	-1619.	-16 -21	- 16 22	L-16230	-1624	1-1625	16 - 27	1-1628	-1629	1-1630	LEGEND TR		2 2 2 2	BAC	MANOR	TVIST	

The same

RIPER LEVES OF HALL RPPECTS OF SUPERCAVITATING HIDROPOLLS OF PINITE SPAN

12
т
2
ь
ч
•
-
-
ь,
٠
- 7
ĸ.
ь.
•
ľ
4

3 9	5 9		9		
	2	2	,	8	
0	16.05	9	90.04	52.8	3.2
-16-		5	2.	22.2	3.3
16-		95.	3.2	8	3.3
-16-		3	3.4	79.0	3.2
16-		90	:	54.8	3.2
16	•	72.	3.6	44.0	3.2
-10-1		:	2.0	26.8	3.2
-161		.9	:	16.0	3.2
-161	0	32.	8.9	8.80	3.2
=		21.	8.1	01.6	-
L-1614		90	5.8	94.4	3.2
-161	0	94.		90.8	3.3
-161	9	73.	9.4	86.4	3.3
-161		62.	7.0	83.2	3.3
-161	0	15	3.5	1	3.3
-161	0	34.	0.5	73.8	3.4
-162	0	21.	7.2	72.4	3.4
-162	0	=	4.6	3.01	3.3
-162			2.4	67.4	3.4
162	0	94.	:	65.6	3.4
L-1624		.69		64.1	3.
-162	0	78.	5.3	60.2	3.4
-162		7.	5.0	58.7	3.4
-162	0	77.	5.2	60.2	3.6
-162	0	8	6.0	89.0	3.4
-16	0	98.	7.6	35.0	-
-163	0	15.	5.9	7.	-
4.000	1				

PIPER 1892S OF BALL RPRECTS OF SUPERCAVITATING ATDROPOILS OF PIHITE SPAN

-
=
•
PPLIED
=
-
-
=
-
-
-
•
0
-
u
-
-
4
COFFECTIONS
6
•
2
×
=
_
-
=
_
20.0
-
-
-
0
2
-
•
=
0
=
IS BORDINERSIONAL
-
=
-
-
-
170
-
-
=
9
TENDROPO!
0
-

07 20	ALCIA	5	CDANCO	5	5	1/4	
1601	16.03	1.1380	0.2393	0.1947	4.7547		0.9787
1602	16.04	1. 1532	0.2448	0.1950	4.7107		1.1831
1603	16.05	1.1499	0.2456	0.1953	4.6816		1.3820
1604	16.05	1.2418	0.2703	0.1786	4.5945		1.3766
1-1605	16.04	1.2294	0.2768	0.1626	4.4412	0.2252	1.3786
1606	16.04	1.2059	0.2795	0. 1437	4.3143		1.3780
1607	16.04	1.1902	0.2809	0.1414	4.2366		1.3760
1608	16.04	1.1639	0.2845	0.1294	4.0905		1.3747
1609	16.03	1.1389	0.2818	0.1238	4.0421		1.3753
1610	16.03	1.0835	0.2765	0.1149	3.9183		1.3760
1611	16.03	1.0595	0.2743	9.1096	3.8625		1.3753
1612	16.03	1.0145	0.2672	0.1058	3.7962		1.3760
1613	16.03	0.9805	0.2645	0.1021	3.7073		1.3766
1614	16.03	0.9353	0.2574	0.0984	3.6333		1.3766
1615	16.03	0.8929	0.2506	0.0960	3.5626		1.3806
1616	16.03	0.8283	0.2363	0.0938	3.5049		1.3813
1617	16.03	0.7950	0.2290	0.0921	3.4722		1.3813
1618	16.02	0.7440	0.2181	0.0889	3.4111		1.3826
1619	16.02	0.7075	0.2083	0.0970	3.3963		1.3846
1620	16.02	0.6712	0.1986	0.0865	3.3796		1.3833
1621	16.02	0.6412	0.1909	0.0856	3.3582		1.3826
1622	16.02	0.6183	0.1839	0.0838	3.3621		1.3846
1623	16.02	0.5861	0.1767	0.0828	3.3176		1.3853
1624	16.02	0.5680	0.1709	0.0818	3.3244		1.3879
1625	16.02	0.5383	0.1621	0.0799	3.3217		1.3866
1626	16.02	0.5348	0.1614	0.0795	3.3131		1.3846
1627	16.02	0.5345	0.1618	0.0801	3.3029		1.3853
1628	16.03	0.8457	0.2394	0.0945	3.5317		1.3853
1629	16.02	0.8067	0.2300	0.0911	3.5079		1.1925
0191	16 01	0174	0 2440	00000	3 6603	0000	

ALPHA GEOMETRIC ANGLE OF ATTACK CORRECTED FOR SHAFT TRIST
CL LIFT COEFFICIENT, HONDINEMSIGNALIZED ON UPSTREAM VELOCITY AND HODEL PLANFORM AREA
ON UPSTREAM VELOCITY AND HOUSE PLANFORM AREA
CH BOMEN COEFFICIENT, HONDINEMSIGNALIZED ON UPSTREAM VELOCITY, HODEL PLANFORM AREA, AND BEAM CHORD
L/D LIFT-TO-DEAG RAILO = CL/COUNC
D/L DRAG-TO-LIFT RATIO = CL/COUNC
BARRINOLDS HUMBER, BASED ON NEAM CHORD LEGEND

RIPLE LEVES OF GALL RPPSCTS ON SUPERCAVITATING HTDROPOLLS OF PIMITE SPAN

		٠	10184.	DATA CO	RECTED	POR KPP	**PRIOR DATA CORRECTED FOR EFFECTS OF IBAGES	IBAGES		OF TRAILING VORTEE		STSTEB		
DE 808	ALPSAT	ಕ	8	5		SIGUALT	SIGC/AT	CLANT	CD/AT2	_	SIGN	SIGC	CAVLTH	COSHESTS/RESARK
1-1601			9.266	0.195	0.234		-	3.752	2.894	0.642	-		:	2
L-1602	17.41	1.153	0.272	0. 195	0.236		-	3.796	2.951	0.642			:	2
1-1603		1.150	0.273	0.195	0.237	-	-	3.783	2.954	0.643				2
		1-242	0.302	0.179	0.243		-	4.061	3,231	0.584	-			PC (ff v)
		1.229	0.308	0.163	0.251	4.423	2.987	4.024	3.302	0.532	1.351	0.913		. 2
		1.206	0.310	6.144	0.257	1.104	3.135	3.555	3,330	0.471	1.251	0.956		
		1. 190	0.310	0.141	0.261	4.120	3.148	3.908	3.345	0.464	1.255	0.959	0.60	
		1. 164	0.313		0.269	3.749	2.932	3.829	3, 383	0.426	1.139	0.891	:	
	17.38	1. 139	0.309	0.124	0.271	3.750	3.040	3.754	3.352	904.0	1.138	0.922	0.69	
		1.094	0.301	0.115	0.278	3.373	2.785	3.585	3.293	0.380	1.019	0.842	:	
		1.059	0.298	0.110	0.281	3.381	2.863	3.512	3.269		1.020	0.864	0.85	
	17.23	1.01	0.289	0.106	0.284	3.051	2.604	3.373	3.190		0.918	0.783	:	
		0.981	0.284	0.102	0.290	3.054	2.661	3.268	3, 159		0.916	0.798	0.86	
L-1614		0.935	0.276	0.098	0.295	2.760	2.456	7.127	3.080		0.826	0.735		
L-1615.	17.09	0.693	0.267	0.096	0.299	2.751	2.484	2.994	3.004		0.820	0.741	0.85	
T-1616		0.828	0.251	0.094	0.305	2.422	2.209	2.790	2.843		0.719	959.0		
L-1617		0. 195	0.242	0.092	0.304	2.426	2.232	2.684	2.760		0.719	0.661	0.95	
F-1618		0. 744	0.230	0.089	606 .0	2.126	1.968	1.521	2.636		0.627	0.581		
T-1619.		9. 768	0.219	0.087	0.309	2.124	2.003	2.404	2.525		0.625	0. 290	1.40	
L-1620		0.671	0.208	0.086	0.310	1.881	1.797	2.286	2.413		0.552	0.528		
T-16214		1.641	0.199	0.086	0.311	1.885	1.821	2. 189	2. 324		0.552	0.533	1.71	
L- 1622	16.76	0.618	0.192	0.084	C. 310	1.666	1.621	2.114	2.243		0.487	0.474		
L-1623+		3. 586	0. 184	0.083	0.314	1.667	1.623	5.000	2.158		0.486	0.474	2.17	
T-1624		995.0	0.178	0.082	0.313	1.500	1.457	1.949	2.091		0.437	0. 425	!!	
1-1625+		0.538	0.168	0.080	0.312	1.487	1.445	1.851	1.988		0.432	0.420	2.94	
1-1626		0.535	0.167	0.079	0.313	1.291	1.251	1.840	1.980		0.375	0.364		
		0.00	891.0	0.080	0.314	1.288	1. 250	1.839	1.985		0.375	0. 303	7.98	
8791-7		0.846	0.254	0.094	10.00	2.459	7.247	2.845	2.878		157.0	0.668		
10-10-13		750	0.243	2000	200	2.500	2 360	2000	2.00		000	0.00	-	
T-1630	17.04	0.872	0.261	0.097	0.299	7.621	7.360	2.931	2.944	0.327	0.780	0.702		
UNLESS OTHERSI	BERRISE	INDICA	INDICATED, ALL DATA ARE POR:	LL DATA	ARE PO	::								
		2. Se 80	SUPERCAVITATING FLOW. BOTH STATIC PRESSURE	TATING TIC PRE:	FLOW.	SUPERCAVITATING FLOW. BOTH STATIC PRESSURE TAPS OPEN								
LEGEND			DESTRE	IN STAT	STAR OF	ONLY DESTREAM STATIC PRESSURE TAP	UTILIZED	88						
	PC (TW)		PARTIALLY CAVITATING PARTIALLY CAVITATING (TAP BETTED)	VITATI	IG (TAP	BETTED)								
=	(ALPHAT)		(TRUE) ANGLE	OF AT	FACK, C	BRECTED	FOLLY METTED (TRUE) ANGLE OF ATTACK, CORRECTED FOR EFFECTS OF IMAGES OF TRAILING VORTICES	BCTS OF	P INAGE:	0 TR	AILING	VORTICE	×	
	172		ALPHAT											
	SIGO		TATION I	TRAIL	CORPUTE	D WITH C	CAVITATION MUNBER COMPUTED WITH REASORED CAVITY PRESSORE CAVITATION MURBER COMPUTED WITH CALCUTED WAFOR PRESSORE DRAG COEFFICIENT, CORPUTED FOR EFFECTS OF LRAGES OF TRAILING WORTICES	CAVITY SD VAPO	PRESSUR PRESS ES OF TI	IR IRE	VORT IC	ĸ		
	CAVLTS CAVLTS		ECTED DI	H BEAS	HED PRO	CORRECTED DRAG-TO-LIFT RATIO - CD/CL CAVITY LENGTH MEASURED PROM MIDCHORD	CORRECTED DRAG-TO-LIFT RATIO = CD/CL CATTI LEGGH BRASHED FROM MIDCHORD AT CENTROID POSITION,	Z# TROI	POSIT	101, 10	HDIRBES	TORALI	# #0 QZ	HONDINGKSIONALIZED ON NEAR THORD
		ZEO)	(OBTAIRED PROB PHOTOGRAPHS)	Dud BOI	TOG BAPE	6								

RIPER LUTES OF MALL REPECTS ON SUPERCAVITATING MIDROPOLLS OF PIBLIR SPAN

ERRO REALINGS AND TOWNEL THE REPORT AND AFTER
BASON 1-8 1-8 2-8 3-8 3-8 TT
0. 0.0 0.0 0.0 100.0 0.0 100.0 0.5.5
0. 0.0 0.0 0.0 100.5 0.0 109.0 05.5
CELL INS/CT (MORNAL, MEY) 91-0.20000 \$2-0.20000 \$3-0.04030
THIST 7200.0 SHAPI DIA. 1.5018

•		f. 80.						-					5. #4.						0. 32.			2. 33.		3. 33.			=	\$2 HOMENT ABOUT MIDCHORD (COUNTS)	DRAG (COUNTS)	STATIC	SOR NO CANTY PRESSURE (AM RG)	IXX-GROW	TT-RUB BURBER, THIS POIL & THIS ANGLE
_				•	_					B 2625.0 215.			R 2450.0 185.	R 2390.0 185					_	-	R 2027.0 142.	R 1960.0 142		_	B 1873.0 126.	R 1708.0 127.	TOND CELL		Q IN)		ID (III)		(VERSE)
2 12	R 177.3	B 174.5	174.2	B 172.0	171.2	R 169.0	167.5	167.2	R 158.5	B 158.0	R 156.3	R 155.8	R 155.3	R 153.6	R 152.5	151.5	R 151.3	R 151.0	B 150.8	R 150.3	B 150.2	R 150.2	R 150.0	R 149.5	149.5	147.0			ORB AREA (S		HODEL CENTROID (IN	185/18-18)	HORKAL . B= RE
= =	-2054.0	-2020.0	-1990.0	-1942.0	-1916.0	-1870.0	-1825.0	-1790.0	-1585.0	-1536.0	-1504.0	-1464.0	-1376.0	-1320.0	-1284.0	-1220.0	-1200.0	-1142.0	-1124.0	-1084.0	-1080.0	-1036.0	-1016.0	0-996-	-984.0	-884.0	ER (DEG PARR		MODEL PLANFORM AREA (SQ IN)	-SPAN (IN)	D, HEAS. & B	ST (DEGREES/	D CPLI. POLARTTY (HEHORKAL, RERVERSK)
BANOR	1154.	1154.	1152.	1151.	1150.	1146.	1143.	1139.	971.	971.	971.	971.	.696	972.	.696	972.	972.	973.	973.	972.	972.	973.	972.	976.	976.	958.			HALP-SPAH	FOIL HALP		SHA	101
02 202	1-1801	L-1802.	L-1803	.L-1804.	L-1805	L-1806+	L-1907	L-1808+	L-1809	L-1810.	L-1811	L-1812+	1-1813	L-1818+	L-1815	1-1816+	L-1817	L-1818+	L-1619	L-1820+	L-1821	L-1822+	1-1823	L-1824+	L-1825	L-1826+	LEGRED T	F	ALE	SPA	4	TRIST	

And the state of the state of the

RIPER INVES OF BALL EPPECTS ON SUPERCAVITATING STDROFOLLS OF PINITE SPAN

	MANOR	=	7	•	PINE	PCAV
	1154.	-2054.0	-77.3	-3175.0	278.	. 40
L-1002	1154.	-2020.0	-74.5	-3139.6	277.	.08
	1152.	-1990.0	-78.2	-3109.3	264.	76.
	1151.	-1942.0	-11.9	-3073.9	265.	72.
	1150.	-1916.0	-71.1	-3048.6	251.	67.
	1148.	-1870.0	-68.9	-3028.2	251.	65.
	1103.	-1825.0	-67.4	-2967.8	235.	58.
	1139.	-1790.0	-67.1	-2927.5	235.	57.
	971.	-1585.0	-58.3	-2577.1	209.	54.
	971.	-1536.0	-57.8	-2521.8	208.	53.
	971.	-1504.0	-56.1	-2501.4	196.	51.
	971.	-1464.0	-55.6	-2436.0	196.	.8.
	969.	-1376.0	-55.1	-2345.7	178.	:
	972.	-1324.0	-53.3	-2285.3	178.	45.
	969.	-1284.0	-52.2	-2225.0	164.	43.
	972.	-1220.0	-51.2	-2149.6	164.	41.
	972.	-1200.0	-51.0	-2119.2	153.	40
	973.	-1142.0	-50.7	-2028.9	152.	37.
	973.	-1124.0	-50.4	-2005.5		32.
	972.	-1084.0	-49.9	-1928.2	143.	34.
	972.	-1080.0	-49.8	-1919.8	135.	35.
	973.	-1036.0	-49.8	-1852.4	135.	33.
	972.	-1016.0	-49.6	-1820.1	126.	33.
	976.	0.996-	-49.0	-1741.7	126.	33.
	976.	-984.0	-49.0	-1764.4	119.	33.
	95.0					

And Short Self Const

EXPER LEVES OF UALL EPPECTS ON SUPERCAVITATING STOROPOLLS OF PIBITE SPAN

Variable Committee Committ

RIPER INVES OF GALL RPPECTS ON SUPRECAVITATING HIDDOPOLLS OF PINITE SPAN

•
:
IN BOUDINESSIORAL PORK (NO CORRECTIONS APPLIED) .
Ę
Z
-
_
2
2
F
2
=
5
O
2
=
=
2
3
8
Ä
ä
=
H
5
2
-
Ħ
-
3
-
** STDBOPOL
Ĕ
2
2
-
•

L-1601 16.04 L-1802 16.04 L-1803 16.04 L-1404 18.04		78007	5	?	2/6	HE 1000
	1011	0.3260	0.1192	3.3780	0-2960	1.4298
	0821	0.3223	0.1149	3.3575	0.2978	1.4298
	2090	0.3197	0.1146	3.3416	0.2993	1.4286
	0430	0.3162	0.1112	3.2983	0.3032	1.4280
	9300	0.3138	0.1100	3.2819	0.3047	1.4275
	9900	0.3122	0.1068	3.2240	0.3192	1.4263
	1986	0.3072	0. 1048	3.2114	0.3114	1.4234
	9712	0.3039	0.1047	3.1954	0.3129	1.4211
	9970	0.3104	0.1057	3.2116	0.3114	1,3194
	9670	0.3037	0.1047	3.1842	0.3140	1.3194
	5986	0.3012	0.1016	3.1426	0.3182	1.3194
	9219	0.2932	0.1007	3.1444	0.3180	1.3194
•	6698	0.2827	0.0999	3.0771	0.3250	1.3181
	0.8346	0.2745	0.0965	3.0413	0.3288	1.3200
	8122	0.2679	0.0948	3.0317	0.3298	1.3181
	2011	0.2579	0.0926	2.9873	0.3348	1.3200
_	7582	0.2542	0.0922	2.9827	0.3353	1.3200
	2221	0.2429	0.0916	2.9727	0.3364	1.3207
	2112	0.2401	0.0912	2.9620	0.3376	1.3207
	6873	0.2309	0.0903	2.9768	0.3359	1.3200
	8888	0.2299	0.0901	2.9792	0.3357	1.3200
	6575	0.2214	0.0900	2.9694	0.3368	1.3207
	6599	0.2177	0.0897	2.9670	0.3370	1.3200
	6129	0.2073	0.0884	2.9565	0.3382	1.3226
	6237	0.2101	0.0884	2.9694	0.3368	1.3226
	1115	0.1933	0.0853	2.9569	0.3382	1.3111

ALPRA GEORETRIC ANGLE OF ATTACK CORRECTED FOR SRAFT TRIST
CL LIFT CORPFICIENT, MONDIRENSIONALIZED ON UPSTREAM VELOCITY AND MODEL PLANFORM AREA
CL LIFT CORPFICIENT, MONDIRENSIONALIZED ON UPSTREAM VELOCITY AND MONDIRENSIONALIZED
ON UPSTREAM VELOCITY AND GODEL PLANFORM AREA
CA HOMENT CORPFICIENT, MONDIRENSIONALIZED ON UPSTREAM VELOCITY, MODEL PLANFORM AREA, AND BEAN CHORD
L/D DRAG-TO-LIFT RATIO = CLUCKONG
D/L DRAG-TO-LIFT RATIO = CDUCK/CL
RESINOLDS WURDER, BASED ON REAM CHORD

RIPER INVES OF MALL RPPRCTS OF SUPERCAVITACING STOROFOLLS OF PILLTE SPAN

G VORTER S	
INACRS OF TRAILING	
P INAGES	
EFFECTS 0	
CORRECTED FOR	
DATA COR	
POINT	

COARESTS/RESA DES	QUESTIONABLE	SUPERCAVITATING PLOW. SUPERCAVITATING PLOW. SUPERCAVITATING PLOW. SUPERCAVITATING PLOW. LY DESTREAM STATIC PRESSURE TAP UTILIZED LY DESTREAM STATIC PRESSURE TAP UTILIZED RITALLY CAVITATING (TAP WETTED) LY WETTED RITALLY CAVITATING (TAP WETTED) RITALLY CAVITATING (TAP WETTED) LY WETTED RITALLY CAVITATING (TAP WETTED) RITALLY CAVITATING (TAP WETTED) LY DESTREAM OF A THACK, CORRECTED FOR EPPECTS OF INAGES OF TRAILING VORTICES VITATION WUMBER COMPUTED WITH CALCULATED VAPOR PRESSURE AG CORPICIENT, CORRECTED FOR EFPECTS OF INAGES OF TRAILING VORTICES RECTED DAGSORED FOR EFPECTS OF LAGES OF TRAILING VORTICES RECTED FOR THE BEATTO = CD/CL RITTLEMETER PROGRAPHED FOR REPECTS OF LAGES OF TRAILING VORTICES RECTED FOR PROJUCTORNAMES BEALWED FROM PROJUCTORNAMES
0.92 1.10	0.92 0.92 0.95 1.20 1.82 1.82 2.70 3.90	21 B
\$16C 0.873 0.687 0.848	0.820 0.820 0.820 0.767 0.783 0.597 0.590 0.590 0.590 0.590	VORTICE CES
	1.000 1.0000 1.0	SUPERCAVITATING PROPERSONS TAPE POR: SUPERCAVITATING FLOW. BOTH STATIC PRESSURE TAP UTILIZED LLY UPSTREAM STATIC PRESSURE TAP UTILIZED LLY UPSTREAM STATIC PRESSURE TAP UTILIZED LLY UPSTREAM STATIC PRESSURE TAP UTILIZED RETALLY CAVITATING (TAP WETTED) LLY WETTED LLY WETTED LLY WATTED THOUGH BUTHER COMPUTED WITH REASONED CAVITY PRESSURE VETATION WUMBER COMPUTED WITH CALCULATED VAPOR PRESSURE VETATION WUMBER CORPUTED WITH CALCULATED VAPOR PRESSURE VETATION WUMBER COMPUTED WITH CALCULATED VAPOR PRESSURE VAPOR V
~	0.313 0.313 0.313 0.313 0.302 0.302 0.286 0.286 0.273 0.273 0.274 0.273	ES OF 1
3.080 3.080 3.086 3.086 2.998	2.22.23.36.23.36.23.36.39.36.39.36.39.36.39.36.39.36.39.36.39.36.39.36.39.36.39.36.39.36.39.36.39.36.39.36.39.39.39.39.39.39.39.39.39.39.39.39.39.	T T T T T T T T T T T T T T T T T T T
	25	ED ED PECTS O CAVIET ED VAPO OF IRAG
2.587 2.587 2.630 2.516 2.516	2.000 2.000 2.000 2.000 2.000 2.000 2.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	F UTILIZED P UTILIZED P UTILIZED C TOR EPPE C TALCULATED C TALCULATED C TALCULATED C TALCULATED C TORD AT CE
3.314 3.314 3.304 3.138 3.158	2.993 2.993 2.993 2.993 2.624 2.624 2.354 2.354 1.996 1.996 1.680 1.680 1.680 1.680	E POR: OU TAPS OPEN. PRESSURE TAP PRESSURE TAP (TAP WETTED) K, CORRECTED PUTED WITH RIPUTED WITH
(b/L) 0.319 0.321 0.321	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PECON. SEURE TO PRESIDE TO PRESIDE PRESIDENTS OFFICE COMPUTE COMPUTE COMPUTE COMPUTE PRESIDENTS SEURE PRESID
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090	**SOPERCAVITATING PLON** ** SUPERCAVITATING PLON** ** BOTH STATIC PRESSURE TAPS OPEN.* ** OULY UPSTREAM STATIC PRESSURE TAP UTILIZED OULY UPSTREAM STATIC PRESSURE TAP UTILIZED OULY UPSTREAM STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING (TAP UETTED) PULLY WETTED (TRUE) ANGLE OF ATTACK, CORRECTED FOR EPPECTS OF INAGES OF CAVITATION WUBBER COMPUTED WITH CALCULATED VAPOR PRESSURE CAVITATION WUBBER CORPUTED WITH CALCULATED VAPOR PRESSURE CAVITATION MUBBER CORRECTED FOR EPPECTS OF LAGES OF TRAI CANITY LENGTH ANSOMED FROM NIDCHORD AT CENTROID POSITION (OBTAINED FROM PROJOGRAPHS)
9.33	0.114 0.127 0.127 0.127 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128	BDICATED, AL SUPERCALI BOTH STATI OBLY DESTRA OBLY DESTRA OBLY DESTRA PATIALLY CA CAVITATION W CAVITATI
1.000	1.000 0.9871 0.9871 0.9877 0.9877 0.9870 0.9870 0.770	SE INDIC 1. S 2. S 3. S 4. OBLY 6. OBLY 7.
19.34 19.32 19.30	19-23 19-23 19-23 19-23 19-23 19-23 19-34 19-35 19-75	PC (TW) PC (TW
[-16.02]		1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.

	PINP PCAV	278. 91.	278. 88.			243. 69.										180. 39.							16.		LL 11			PINE STATIC PRESSURE (NA NG)	PCAY CAVITY PRESSORE (AN HG) BUR HO O-III-Y: O=POIL TESTED(S=SHALL, H=HED, L=Lange)	XXX=GEOMBTRIC ATTACK ANGLE (II-ROM NOBBER, THIS FOIL & THIS ANGLE
D AFTER 81.0 83.0 .20000 63-0.04030 RECORDED**	S 13	R 3445.0	B 3415.0	B 3405.0	₽ 3370.0	B 3335.0	B 3295.0	R 3250.0	B 3185.0	R 3155.0	B 3105.0	R 3100.0	B 3035.0	■ 3005.0	R 2930.0	₽ 2910.0	R 2815.0	R 2790.0	R 2695.0	R 2685.0	R 2585.0	B 2580.0	2430.0	0.0000			(SQ IN)		lo Ib (14)		REVERSE)
100 1058EL TEMP BEFORE AN 2-8 2-8 3-8 3-8 0-0 100-0 0.0 100-0 0-0 102-0 0.0 105-0 BAL/RET) 81-0.20000 62-0 SMAPT DIA.= 1.50/8	NOA S 81 S 62	571760.0 R 168.5	591740.0 R 167.3	-1730.0 R	-1712.0 R	711676.0 B 164.6	-1632.0 R	-1592.0 R	-1540.0 B	-1530.0 B	-1488.0	-1482.0 B	781442.0 B	801428.0 R	791374.0 R	831360.0 R	831308.0 R	861300.0 # 1	821250.0 R	821250.0 R	821188.0 B	871194.0 B	85.	20.	ON TERPER (DEG PARK)		4	IL HALF-SPAH (IW)	AB CHORD, MEAS. 6 HODEL CESTROID(IN) LOCITY MANORETER READING (MM)		AD CPLL POLABITY (N=HORBAL, N=REVERSE)
2180 RADINGS N. 1-8 1-8 1-8 1-8 1-8 1-8 1-8 1-8 1-8 1-8	BUS BO BA	1-2101	•	•	•	•	•	•	•	•	L-2110.	•	2.		:		•		•	1-21-19			•	•	2	71 10			MARON VEL		9 0

RIPER LEVES OF GALL RPPECTS OF SUPERCAVITATING BIDDOPOLLS OF PINITE SPAN

SPAR SPAR BAC 76 62 90.0 15.0 6.03

P DATA	ISPUT DATA CORRECTED	POR KREO	BEADISCS, SIGES,	ABD STDROSTATIC	STATIC	PRESSURE
9	MANOR			=	4114	PCAT
10	957.	-1760.0		-3345.0	271.	
-05	959.	-1740.0		-3314.0	271.	
-	966.	-1730.0		-3304.6	255.	
0	967.	-1712.0		-3269.3	254.	77.
-05	971.	-1676.0		-3234.1	236.	.63
90-	973.	-1632.0		-3193.9	236.	63.
-07	972.	-1592.0		-3148.7	217.	59.
-00	972.	-1540.0		-3083.5	217.	3
-00	974.	-1530.0		-3053.3	204.	
-10	974.	-1488.0		-3003.0	204.	
=	978.	-1482.0		-2997.8	195.	:
-12	978.	-1442.0		-2932.6	195.	:
-13	980.	-1428.0		-2902.4	162.	13.
	979.	-1374.0		-2827.2	163.	.0.
-15	983.	-1360.0		-2807.0	173.	39.
-16	983.	-1308.0		-2711.7	173.	37.
-11	986.	-1300.0		-2686.5	162.	36.
-18	982.	-1250.0		-2591.3	162.	32.
-19	992.	-1250.0		-2581.1	152.	31.
-20	982.	-1188.0		-2480.9	152.	31.
-21	987.	-1194.0		-2475.7	141.	31.
L-2122	985.	-1114.0	-54.5	-2325.4	142.	31.
-53	750.	-1056.0		-2165.2	142.	31.

EIPER INVES OF BALL RFFECTS OF SUPERCAVITATING UTDROPOLLS OF FIRITE SPAN

•	
2	,
	:
PROPERTY	
3	
1000	:
2	
1	֡
è	;
TOPOPOTE	
	•

7	~	~	~	~	~	~	23.36	~	~	~	"	-	•	•		•	S	=	*	*	S	S		-
1		_	=	-	-	-	223.12		:	=	-	_:	=	.:	:	-	-	-	-	.:	-:	:	~	-
3	2	4	-	_	-		126.89	-	-	=	4	ä		-	-	-		-	:	-	-	-	2	-
-							330.80																	
Z	7	۹	۹	٩	•	3	21.03	٠.	9	۰.	٠,	۰.	•	۰.	0	۰	•	0	0	•	0	0	•	•
	210	10	210	210	210	210	L-2107	210	210	211	11.1	211	11	211	11	11.11	111	111	11.11	212	112	212	212	212

WEL OPSTREAM VELOCITY (U)

ESPER 1872S OF WALL RPPECTS ON SUPERCAPITATING MEDROPOLLS OF PINITE SPAN

1.124						
	1	CDONC	5	2	1/0	B- 10 6
	244	0.4099	0.1257	2.7435	0.3645	1.2848
	092	0.4053	0.1231	2.7366	0.3554	1.2861
	. 056	0.4013	0.1207	2.7288	0.3665	1.2904
	822	9.3966	0.1181	2.7288	0.3665	1.2911
	558	0.3907	0.1164	2.7020	0.3701	1.2935
	364	0.3851	0.1140	2.6655	0.3752	1.2948
	920	0. 1799	0.1121	2.6386	0.3790	1.2942
	698	0.3720	0.1085	2.6072	0.3836	1.2942
	919	0.3676	0.1075	2.6161	0.3823	1.2954
	157	0.3614	0. 1060	2.5888	0.3863	1.2954
	288	0.3594	0.1064	2.5841	0.3870	1.2979
	110	0.3515	0.1055	2.5729	0.3387	1.2979
21.03 0.8	937	0.3472	0. 1039	2.5745	0.3884	1.2991
	616	0.3384	0.1026	2.5464	0.3927	1.2985
	864	0.3346	0.1016	2.5397	0.3938	1.3010
	185	0.3231	0.1015	2.5333	0.3947	1.3010
	113	0.3191	0.1007	2.5419	0. 3934	1.3028
	944	0.3089	9, 1015	2.5398	0.3937	1,3003
	***	0.3076	0.1015	2.5501	0.3921	1,3003
	471	0.2955	0. 1010	2.5281	0.3955	1.3003
	471	0.2935	0.1005	2.5460	0.3928	1.3034
	995	0.2759	0.0973	2.5354	0.39#4	1.3022
	495	0.3319	0.1038	2.5595	0.3907	1.1471
	1.8	0.3202	0.1029	2.5450	0.3929	1.1485

The second second

ALPHA GPONETRIC ANGLE OF ATTACK CORRECTED FOR SHAPT THIST
CL LIFT COEFFICIENT, HOMDINERSIONALIZED ON UPSTREAM VELOCITY AND HODEL PLANFORM AREA
ON UPSTREAM VELOCITY AND MODEL PLANFORM AREA
CH MOMENT COEFFICIENT, HONDINERSIONALIZED ON UPSTREAM VELOCITY, HODEL PLANFORM AREA, AND HEAR CHOND
L/D LIFT-TO-DAKE RAILO = CL/CEBKC
D/L DRAG-TO-LIFT RAILO = CDUKC/CL
RA REMODELS HUNDER, BASED ON REAM CHORD

RIPER INVES OF WALL RPPECTS ON SUPERCAVITATING UTDEOFOLLS OF PINITE SPAN

	Comberts/redaines		CHIT UPSTRAIN STATIC PRESSURE TAP UTILIZED OHIT UPSTRAIN STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING (TAP WETTED) FARTIALLY CAVITATING (TAP WETTED) FULLY WETTED FULLY WETTED FULLY WETTED CAVITATION WONDER COMPUTED WITH MEASURED CAVITY PRESSURE CAVITATION WONDER COMPUTED WITH CALCULATED VAPOR PRESSURE CAVITATION WONDER COMPUTED WITH CALCULATED VAPOR PRESSURE CONFICTED WINGER COMPUTED WITH CALCULATED VAPOR PRESSURE CONFICTED PROGRAPHED WITH CALCULATED VAPOR PRESSURE CONFICTED PROGRAPHED WITH CALCULATED OF INACES OF TRAILING VORTICES CONFICTED PROGRAPHED WITH CALCULATED VAPOR AT CENTROID POSITION, HONDIMENSIONALIZED ON MEAN CHORD (OPTAINED FROM PROTOGRAPHS)
	CAVLT	1.565	
STSTEB**	SHOOT OF SHOT OF SHOT OF SHOT OF SHOT OF SHOT OF SHOOT OF SHOOT OF SHOOT OF SHOOT OF SHOOT OF SHOOT OF	0.580 0.580 0.683 0.683 0.683 0.580 0.580 0.380	. VORTIC CES SIONALI
OF TRAILING TORTEL		64 0.647 65 0.757 65 0.697 65 0.697 65 0.647 65 0.646 65 0.647 66 0.757	CHILD DESTRUM STATIC PRESSURE TAP UTILIZED OHIT DESTRUM STATIC PRESSURE TAP UTILIZED PARTIALLY CAVITATING (TAP WETTED) PARTIALLY CAVITATING (TAP WETTED) FULLY WETTED (FULL) ANGLE OF ATTACK, CORRECTED FOR RFFECTS OF INAGES OF TRAILING WORTICES ALPHAT++2 CAVITATION WUMBER COMPUTED WITH CALCULATED WAPOR PRESSURE CAVITATION WUMBER CORPUTED WITH CALCULATED WAPOR PRESSURE CONFECTED DARG-TO-LIPT RAILO = CDVCL CANITY LENGTH HEASURED FROM MIDCHORD AT CENTROID POSITION, HORDINERSIONALIZE (OPTAIRED FROM PROTOGRAPHS)
TRAILER	-	65 0.255 0.255 66 66 66 66 66 66 66 66 66 66 66 66 6	AGES OF SSURE ESSURE P TRAIL
		2.23 2.23 2.23 2.210 2.210 2.210 2.047 2.047 2.047 2.047 2.047 2.047 2.189 2.085 2.181 2.209 2.346 2.326 2.326 2.326 2.346	TS OF IB
12 00 ET	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	25 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TILITED THE SEPECTURATED CA THE SEPCTURATED CA THE SEPECTURATED CA THE SEPCTURATED CA TH
POR EPPECTS OF INABES		2.112 1.969 1.969 1.825 1.687 1.687 1.550	RETAPO RETED) RECTED PO ITH REASE FOR EPPI FOR EPPI FOR EPPI MIDCHORI
		2	THE SSURE TA (TAP WETTED) (CK, CORRCTE MPUTED WITH MRUTED WITH RECTED FOR
BATA CORRECTED		662 0.354 0.103 0.411 2.112 650 0.350 0.102 0.411 1.969 619 0.337 0.102 0.412 1.971 611 0.333 0.101 0.410 1.816 747 0.307 0.101 0.410 1.825 747 0.307 0.101 0.410 1.669 747 0.305 0.101 0.409 1.550 619 0.347 0.103 0.409 1.551 619 0.334 0.103 0.409 1.961 619 0.334 0.103 0.410 1.961 619 0.334 0.103 0.410 1.961 619 0.347 0.103 0.410 1.961 619 0.347 0.103 0.410 1.961 619 0.347 0.103 0.410 1.961 619 0.347 0.103 0.410 1.961 619 0.347 0.103 0.410 1.961 619 0.347 0.103 0.410 1.961 619 0.347 0.103 0.410 1.961 619 0.347 0.103 0.410 1.961 619 0.347 0.103 0.410 1.961	CHIT UPSTRAN STATIC PRESSORE TAP UTILIZED CHIT UPSTRAN STATIC PRESSORE TAP UTILIZED PARTIALLY CAVITATING PARTIALLY CAVITATING PARTIALLY CAVITATING (TAP WETTED FULL WETTED (THUE) ANGLE OF ATTACK, CORRECTED FOR EFFECTS OF INAGES OF ALPHAT-0.2 CAVITATION NUMBER COMPUTED WITH MEASURED CAVITY PRESSORE CAVITATION NUMBER COMPUTED WITH CALCULATED VAPOR PRESSORE DAG COEFFICIANT, CORRECTED FOR EFFECTS OF INAGES OF TRAI CORRECTED DRAG—TO-LIFT RATIO — CD/CL CAVITY LEMGTH MEASURED FROM MIDCHORD AT CENTROID POSITION (OBTAINED FROM PROGRAPHS)
10714		0.150 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137	CRIT DESTRING DARTIALLY CA PARTIALLY CA FRICT ANGLE (TRUE) ANGLE CAVITATION N CAVITATION N CAVITATION N CAVITY LENGTI
		• • • • • • • • • • • • • • • • • • • •	***********
	25.25.25.25.25.25.25.25.25.25.25.25.25.2		PC (T
		1.21.15 1.21.15 1.21.15 1.21.15 1.21.23 1.21.23 1.21.23 1.21.23	