

Justin Davis & Andrew Depke

Introduction

What is object tracking?

- Creating labels and/or bounding boxes around targets of interest
- Continuous tracking of targets throughout movement

Why is it useful?

- Autonomous driving
- Doorbell notifications
- Snapchat filters

Background

Two general approaches to object tracking:

Traditional:

- Often simpler algorithms, cheaper detection and tracking
- Usual not very versatile (not multi-object, not scale or rotation invariant)

Neural networks:

- Deep convolutional networks, expensive inference for high accuracy
- Multi-object and highly versatile tracking
- Capable of higher accuracy than traditional algorithms

Motivation

Why not just use DNNs?

- Edge devices
 - Neural networks are hardware demanding
 - We might not even have a GPU, neural nets infeasible
 - o Battery life?
- Low latency
 - High accuracy tracking neural nets are composed of many layers... long inference time
- Predictable tracking
 - If our targets are consistent and uniform, we don't need the versatility of CNNs

Implementation Background

OpenCV

- Industry standard for computer vision tasks
- Open source modules, allows us to create our own module and seamlessly integrate
- o Provides built-in tooling for working with hardware acceleration

CUDA

- Nvidia's platform for hardware acceleration on the GPU
- Closely integrated with host C++ code, straight forward to write and deploy kernels

OpenMP

- Powerful CPU multithreading with minimal work from the user
- Mark up loops and let the framework's scheduling handle threading for us

Our Approach

Various implementations of the KCF algorithm:

Baseline

Baseline + OpenCL FFTs (OpenCV built-in)

Baseline + CUDA

Baseline + OpenMP

Baseline + OpenMP + FFTW Just-in-time FFTs

Baseline + CUDA + OpenMP

Optimizations

= CPU Multithreaded

= GPU Accelerated

Example Optimization

```
/* Convert BGR to ColorNames
                                       void FastTracker::extractCN(Mat patch data, Mat & cnFeatures) const {
 0.02% 0.00
                                         Vec3b & pixel = patch data.at<Vec3b>(0,0);
                                         unsigned index;
                                         if(cnFeatures.type() != CV 32FC(10))
                                           cnFeatures = Mat::zeros(patch data.rows,patch data.cols,CV 32FC(10));
Time, IPC, BranchMiss, CacheMiss
                                         for(int i=0;i<patch data.rows;i++){</pre>
 0.04% 0.00
 1.58% 1.58 7.6% 3.9% 565
                                           for(int j=0;j<patch data.cols;j++){</pre>
                                             pixel=patch data.at<Vec3b>(i,j);
 3.09% 1.07
                              a11
                    7.2% 566
                                             index=(unsigned)(floor((float)pixel[2]/8)+32*floor((float)pixel[1]/8)+32*32*floor((float)pixel[0]/8));
41.42% 0.44
                     100% 567
                                             //copy the values
                                             for(int k=0; k<10; k++){
15.81% 1.44 100% 41.2% 570
38.05% 1.33
                   92.8% 571
                                               cnFeatures.at<Vec<float,10> >(i,j)[ k]=ColorNames[index][ k];
```

Example Optimization

if(cnFeatures.type() != CV 32FC(10))

```
cnFeatures = Mat::zeros(patch_data.rows,patch_data.cols,CV_32FC(10));
                                         // perform the loops in parallel using OpenMP
                                        // and collapsed the loops to avoid overhead
                                         // for loop variables
                                         const int batch size = 2;
Time, IPC, BranchMiss, CacheMiss
                                         const int patch area = patch data.rows*patch data.cols;
                                         #pragma omp parallel for
  0.01%
                    0.5% 674 @22
                                         for(int idx=0;idx<patch area;idx+=batch size){</pre>
                                           for(int offset=0; offset<batch size; offset++){</pre>
                    0.5% 676
  1.48% 1.68 100%
  0.72% 1.03 14.7% 0.2% 677
                                             if(idx+offset >= patch area) break;
                                             int h = idx+offset;
  0.54% 0.27
 10.81% 0.80
                                             int i = h/patch data.cols;
                   10.0% 679 a7
 3.34% 0.12
                   4.8% 680 a7
                                             int i = h%patch data.cols:
  1.85% 0.62
                    3.2% 681 @12
                                             Vec3b pixel = patch data.at<Vec3b>(i,j);
                                             unsigned index=(unsigned)(floor((float)pixel[2]/8)+32*floor((float)pixel[1]/8)+32*32*floor((float)pixel[0]/8));
36.18% 0.80
                    100% 682 a43
                                             // for(int k=0;k<10;k++)
                                                 cnFeatures.at<Vec<float,10> >(i,j)[k] = ColorNames[index][k];
                                             //auto t = cnFeatures.at<Vec<float, 10> >(i, j);
  1.03% 0.00
                    0.6% 686 @3
                                             Vec<float, 10> t;
                                             t[0] = ColorNames[index][0];
  4.01% 1.00
                   16.7% 687 a15
  3.03% 1.58
                    8.1% 688 @15
                                             t[1] = ColorNames[index][1];
                                             t[2] = ColorNames[index][2];
  3.22% 1.87
                    7.7% 689 a15
  3.84% 1.57
                                             t[3] = ColorNames[index][3];
                    7.7% 690 a15
  4.10% 1.38
                    7.9% 691 a15
                                             t[4] = ColorNames[index][4];
  3.91% 1.36
                    5.1% 692 a15
                                             t[5] = ColorNames[index][5]:
                                             t[6] = ColorNames[index][6];
  3.51% 1.64
                    3.4% 693 @15
  3.81% 1.83
                                             t[7] = ColorNames[index][7];
                    2.3% 694 @15
  3.73% 1.63
                    1.6% 695 a15
                                             t[8] = ColorNames[index][8];
                                             t[9] = ColorNames[index][9];
  4.25% 1.47
                    2.0% 696 a15
  6.64% 0.98
                    3.6% 697 @17
                                             cnFeatures.at<Vec<float,10> >(i,j) = t;
```

Evaluation

We ran our models on a collection of videos and sampled the following metrics:

- Initialization time (ms)
- Tracking time (per frame) (ms)

Used special tracking dataset called Got10K

This was run on the following hardware:

- CPU: i7-7700k @ 4.5GHz
 - RAM: 16GB 3600MHz
- GPU: Nvidia GTX 1080
- OS: Ubuntu 20.04 LTS
- All standard programs still open such as Spotify, Chrome, Slack, etc...
 - (which accounts for some variance)

Class Hierarchy

Initialization Results

Aggregated Initialization Results

Update Results

Aggregated Update Results

Tabular Results

	Baseline	MP	CUDA	MP + FFTW	MP + CUDA
Init Speedup	0.42	0.42	0.30	0.01	0.65
Update Speedup	0.67	1.59	0.88	1.29	1.58
Max Update Speedup	1.19	2.06	1.44	1.65	2.35
Min Update Speedup	0.39	0.76	0.47	0.72	0.54

Conclusion

Takeaways

- 1. 5 Different tracker versions were made outside of OpenCV
- 2 Trackers showed promising optimization results compared to the OpenCV optimized version
- 3. Performance increases significantly came from multithreading and CPU optimizations rather than GPU leveraging

