งานประชุมวิชาการ และนวัตกรรม กฟภ. ปี 2564

Data Driven Business in Digital Utility Era ขับเคลื่อนธุรกิจด้วยฐานข้อมูลในยุค Digital Utility

การวิเคราะห์ความคุ้มค่าทางการเงินในการลงทุนสับเปลี่ยนหม้อแปลงไฟฟ้าระบบจำหน่าย 33 kV ของการไฟฟ้าส่วนภูมิภาค

นายกิตติศักดิ์ ไชยสุวรรณ¹, ดร.ธนาวุธ แสงกาศนีย์²

¹กองบริการลูกค้า การไฟฟ้าส่วนภูมิภาคเขต 3 (ภาคใต้) จังหวัดยะลา kittisak.cha@pea.co.th

²สาขาวิชาบริหารธุรกิจ คณะวิทยาการจัดการ มหาวิทยาลัยสงขลานครินทร์ thanawut.sa@psu.ac.th

าเทคัดย่อ

การวิจัยนี้มีวัตถุประสงค์เพื่อวิเคราะห์ความคุ้มค่าทาง การเงินในการสับเปลี่ยนหม้อแปลงไฟฟ้าระบบจำหน่าย 33 kV ที่มีอายุการใช้งานมา 20 ปี ด้วยหม้อแปลงไฟฟ้าเครื่องใหม่ เทียบกับการติดตั้งหม้อแปลงไฟฟ้าต่อไปจนชำรุด ซึ่งมีการ พิจารณาแบ่งเป็น 2 โครงการ ระยะเวลาของทั้ง 2 โครงการ อยู่ที่ 40 ปี รายละเอียดคือ โครงการที่ 1 เป็นการลงทุน สับเปลี่ยนหม้อแปลงไฟฟ้าใหม่ แรกเริ่มโครงการหรือปีที่ 0 และ 20 ของโครงการ โครงการที่ 2 เป็นการลงทุนสับเปลี่ยน หม้อแปลงไฟฟ้าใหม่ในปีที่ 10 ของโครงการ ข้อมูลที่นำมา ศึกษาเก็บรวบรวมจากการสัมภาษณ์ ข้อมูลการเงิน และข้อมูล ทางสถิติ มีการวิเคราะห์ความคุ้มค่าทางการเงินที่อัตรา ผลตอบแทนที่คาดหวัง 6.54%

ผลการศึกษาความคุ้มค่าทางการเงินของทั้ง 2 โครงการ พบว่า โครงการที่ 2 มีความคุ้มค่าทางการเงินมากกว่าโครงการ ที่ 1 เนื่องจากโครงการที่ 2 มีมูลค่าปัจจุบันสุทธิ (NPV) และ ผลตอบแทนภายในแบบปรับค่า (MIRR) อยู่ที่ 44.44 ล้านบาท และ 13.64% ตามลำดับ ซึ่งมีค่ามากกว่าโครงการที่ 1 ที่มี มูลค่าปัจจุบันสุทธิ (NPV) และผลตอบแทนภายในแบบปรับค่า (MIRR) อยู่ที่ 42.62 บาท และ 12.35% ตามลำดับ

คำสำคัญ: ความคุ้มค่าทางการเงิน หม้อแปลงไฟฟ้าระบบ จำหน่าย

1. บทนำ

หม้อแปลงไฟฟ้าถือเป็นอุปกรณ์ที่มีความสำคัญอย่างมาก ต่อระบบกำลังไฟฟ้าและระบบจำหน่ายพลังงานไฟฟ้า^{[9][10]} ทั้ง ยังเป็นอุปกรณ์ไฟฟ้าที่มีราคาสูง ประกอบกับหม้อแปลงไฟฟ้า ในระบบจำหน่ายมีจำนวนที่ติดตั้งใช้งานเป็นจำนวนมาก ย่อม ส่งผลให้เกิดต้นทุนในการบำรุงรักษาและช่อมแซม หม้อแปลง ไฟฟ้ามากขึ้นตามไปด้วย^[7] อีกทั้งการเสื่อมสภาพหรือการชำรุด ที่เป็นต้นทุนของการบำรุงรักษาและช่อมแซมมักแปรผัน เพิ่มขึ้นตามอายุการใช้งาน^[4] ซึ่งหากหม้อแปลงไฟฟ้าชำรุด เสียหาย จะส่งผลกระทบรายได้จากขายพลังงานไฟฟ้าและ คุณภาพการให้บริการของการไฟฟ้าส่วนภูมิภาค

ดังนั้น เพื่อให้เกิดการใช้งบประมาณที่มีอยู่อย่างจำกัด เกิดความคุ้มค่ามากที่สุด ผู้วิจัยได้เห็นถึงความสำคัญของ งบประมาณในการบำรุงรักษาและซ่อมแซมหม้อแปลงไฟฟ้า การลงทุนในหม้อแปลงไฟฟ้าใหม่ และคุณภาพการให้บริการ ผู้ใช้ไฟฟ้าของการไฟฟ้าส่วนภูมิภาค จึงมีความสนใจที่จะศึกษา และวิเคราะห์หาความคุ้มค่าทางการเงินในการลงทุนสับเปลี่ยน หม้อแปลงไฟฟ้าระบบจำหน่าย 33 kV ของการไฟฟ้าส่วน ภูมิภาค ที่มีอายุการใช้งานมาแล้ว 20 ปี ซึ่งมีต้นทุนในการ บำรุงรักษาและซ่อมแซมที่สูงตามอายุการใช้งาน ด้วย หม้อแปลงไฟฟ้าเครื่องใหม่ เทียบกับการใช้งานเฉลี่ยอยู่ที่ 30 ปี โดยประมาณ

2. วัตถุประสงค์

เพื่อวิเคราะห์ความคุ้มค่าทางการเงินในการสับเปลี่ยน หม้อแปลงไฟฟ้าระบบจำหน่าย 33 kV ที่มีอายุการใช้งานมา 20 ปี ด้วยหม้อแปลงไฟฟ้าเครื่องใหม่ เทียบกับการติดตั้ง ใช้งานหม้อแปลงไฟฟ้าเครื่องเดิมต่อไปจนชำรุด โดยที่ หม้อแปลงไฟฟ้าจะมีอายุการใช้งานเฉลี่ยอยู่ที่ 30 ปี โดยประมาณ

3. ประโยชน์ที่คาดว่าจะได้รับ

สามารถนำผลที่ได้จากการศึกษาไปใช้ในการ ประกอบการตัดสินใจในการลงทุนสับเปลี่ยนหม้อแปลงไฟฟ้า ระบบจำหน่าย 33 kV ที่มีอายุการใช้งาน 20 ปี เพื่อเพิ่ม คุณภาพการให้บริการผู้ใช้ไฟฟ้าของการไฟฟ้าส่วนภูมิภาค และเป็นแนวทางการใช้งบประมาณในการบำรุงรักษา และ ซ่อมแชมหม้อแปลงไฟฟ้าให้มีประสิทธิภาพมากที่สุด

4. ทฤษฎีที่เกี่ยวข้อง

4.1 การศึกษาความเป็นไปได้ในการลงทุน

การศึกษากิจกรรมที่เกิดขึ้นของโครงการทั้งในด้าน การตลาด ด้านเทคนิค ด้านการเงิน จากข้อมูลหรือเอกสาร ต่าง ๆ เพื่อประเมินหรือตัดสินใจในการลงทุนโครงการ มีความ เป็นไปได้มากน้อยเพียงใดซึ่งแบ่งเป็น 3 ระยะ ได้แก่ ระยะ ก่อ น ล ง ทุ น (Pre-investment Phase) ระ ย ะ ล ง ทุ น (Investment Phase) และระยะดำเนินการ (Operation Phase)^[3]

4.2 ทฤษฎีการจัดการการเงินและการวิเคราะห์ความ เป็นไปได้ทางการเงิน

การเก็บรวบรวมข้อมูลในด้านต่าง ๆ ของโครงการ เพื่อนำมาประมาณการต้นทุน ผลตอบแทนที่คาดว่าจะได้รับ งบการเงิน และพิจารณาความคุ้มค่าทางการเงินในการลงทุน ตามที่กิจการหรือผู้ลงทุนคาดหวัง และมีเงินทุนหมุนเวียนเพียง พอที่จะใช้ในการดำเนินงานตลอดโครงการ [3] โดยมีเครื่องมือที่ ใช้ในการประเมินความเป็นไปได้ทางการเงินจากการศึกษา จำนวน 6 เครื่องมือ [1][5][8] ได้แก่ วิธีระยะเวลาคืนทุน (Payback Period Method: PB) วิธีระยะเวลาคืนทุนที่มีการ ปรับลด (Discount Payback Period Method: DPB) วิธี มูลค่าเงินปัจจุบัน (Net Present Value Method: NPV) วิธี ดัชนีกำไร (Profitability Index Method: PI) วิธีอัตราผลตอบแทนของโครงการ (Internal Rate of Return Method: IRR) และวิธีการปรับอัตราผลตอบแทนของโครงการ (Modified Internal Rate of Return Method: MIRR)

4.3 การวิเคราะห์ความอ่อนไหวของการลงทุน

การลงทุนในแต่ละโครงการย่อมมีความเสี่ยงเกิดขึ้นได้ โครงการที่มีความเสี่ยงสูง ย่อมส่งผลให้ต้นทุนของเงินลงทุน สูงขึ้นตามไปด้วย การประเมินความเสี่ยงของโครงการสามารถ แยกประเภทความเสี่ยงของโครงการได้ 3 ประเภท^[8] ดังนี้

- Stand-alone risk เป็นความเสี่ยงเฉพาะตัวของ โครงการแต่ละโครงการ สามารถวิเคราะห์ได้จากความไม่ แน่นอนของกระแสเงินสดของโครงการ และลักษณะการ กระจายตัวของกระแสเงินสดในแต่ละรายการ
- With-in firm risk หรือ Corporate risk เป็น ความเสี่ยงของโครงการที่มีผลกระทบต่อกิจการ เนื่องมาจาก ความเสี่ยงของโครงการใดโครงการหนึ่งหรือเพียงส่วนหนึ่งของ โครงการทั้งหมด อาจจะกระจายความเสี่ยงมายังกิจการ ซึ่ง ส่งผลต่อความไม่แน่นอนของรายได้กิจการในอนาคต
- Market risk หรือ Beta risk เป็นความเสี่ยงของ โครงการซึ่งเป็นผลมาจากการเปลี่ยนแปลงของราคา หรือ มูลค่าการลงทุนจากการเปลี่ยนแปลงอัตราดอกเบี้ยในตลาด อัตราการแลกเปลี่ยน
- 4.4 แนวคิดเกี่ยวกับการเพิ่มประสิทธิภาพและความ เชื่อถือได้ในระบบจำหน่ายไฟฟ้า

ความสามารถของระบบจำหน่ายไฟฟ้าในการจัดส่ง พลังงานไฟฟ้าสนองต่อความต้องการผู้ใช้ไฟฟ้าได้อย่าง เพียงพอในช่วงเวลาที่กำหนด โดยการประเมินความเชื่อถือได้ ของระบบจำหน่ายไฟฟ้าสามารถวิเคราะห์ได้จากดัชนีความ เชื่อถือได้ที่เกี่ยวข้องต่าง ๆ เป็นการใช้งานหม้อแปลงไฟฟ้าไป ระยะหนึ่ง ย่อมทำให้เกิดการเสื่อมสภาพของวัสดุหรือ ส่วนประกอบต่าง ๆ ของหม้อแปลงไฟฟ้า ที่ทำให้เกิด เหตุการณ์ชำรุดหรือล้มเหลวได้ ส่งผลกระทบต่อการทำงาน โดยรวมของระบบจำหน่ายไฟฟ้า จึงต้องรีบแก้ไขให้ระบบ ไฟฟ้าสามารถจ่ายกระแสไฟฟ้าได้ตามปกติโดยเร็ว ซึ่งการ บำรุงรักษาซ่อมแซมดังกล่าว เป็นการบำรุงรักษาเชิงแก้ไข ที่ทำให้ใช้ระยะเวลาค่อนข้างนาน เกิดความเสียหายสูง เนื่องจากไม่ได้มีการวางแผนล่วงหน้า ส่งผลให้ประสิทธิภาพ และความเชื่อถือได้ของระบบจำหน่ายไฟฟ้าลดลง

วิธีดำเนินการวิจัย

กลุ่มหม้อแปลงไฟฟ้าตัวอย่างที่ใช้ในการวิจัยครั้งนี้ ประกอบด้วยหม้อแปลงไฟฟ้าที่มีอายุการใช้งานมาแล้ว 20 ปี ขนาด 100 kVA จำนวน 18 เครื่อง ขนาด 160 kVA จำนวน 15 เครื่อง และขนาด 250 kVA จำนวน 10 เครื่อง เก็บ รวบรวมข้อมูลแบบปฐมภูมิ เกี่ยวกับค่าใช้จ่ายในการ บำรุงรักษา ซ่อมแซม และการสับเปลี่ยนหม้อแปลงไฟฟ้า ราคาการรับซื้อหม้อแปลงไฟฟ้าเก่าสภาพชำรุดและใช้งานได้ จากการสัมภาษณ์พนักงานแก้ไขไฟฟ้าขัดข้องจำนวน 5 ราย พนักงานบำรุงรักษาหม้อแปลงไฟฟ้าจำนวน 3 ราย และผู้รับ ซื้อหม้อแปลงไฟฟ้าจำนวน 2 ราย และเก็บข้อมูลประเภท ข้อมูลทุติยภูมิ จากบทความทางวิชาการ งานวิจัยที่เกี่ยวข้อง กับการวิเคราะห์ความคุ้มค่าทางการเงิน ข้อมูลราคาหม้อแปลง ไฟฟ้า อุปกรณ์สำหรับบำรุงรักษาและซ่อมแซม หม้อแปลง ไฟฟ้า และงบทางการเงินของการไฟฟ้าส่วนภูมิภาค

กำหนดอายุของทั้ง 2 โครงการเท่ากันอยู่ที่ 40 ปี เพื่อให้ ทั้ง 2 สามารถเปรียบเทียบผลการประเมินการลงทุนได้ โดยมี ลักษณะโครงการที่ 1 และ 2 เป็นดังรูปที่ 1 และ 2 ตามลำดับ

รูปที่ 1 ลักษณะของโครงการที่ 1

รูปที่ 2 ลักษณะของโครงการที่ 2

ต้นทุนทางการเงิน (WACC) หรืออัตราผลตอบแทนที่ คาดหวังอยู่ที่ 6.54% โดยกำหนดจากต้นทุนทางการเงินที่ คำนวณได้จากงบการเงินของการไฟฟ้าส่วนภูมิภาคปี 2563 และกำหนดให้มีค่าคงที่ตลอดอายุโครงการทั้ง 2 โครงการ ทั้งนี้ การวิจัยมีกรอบแนวคิดของการดำเนินการตามรูปที่ 3

รูปที่ 3 กรอบแนวคิดการวิจัย

6. ผลการวิจัย

ผลการประเมินโครงการลงทุนและวิเคราะห์ความ อ่อนไหวทั้ง 2 โครงการในส่วนที่เกี่ยวข้องกับการลงทุน สับเปลี่ยนหม้อแปลงไฟฟ้า การปรับราคาหม้อแปลงไฟฟ้าใหม่ การปรับราคาอุปกรณ์สำหรับงานบำรุงรักษา ซ่อมแซม และ สับเปลี่ยนหม้อแปลงไฟฟ้า การปรับอัตราค่าแรงบำรุงรักษา ซ่อมแซม และสับเปลี่ยนหม้อแปลงไฟฟ้า และการปรับอัตรา ผลตอบแทนที่คาดหวัง ด้วยวิธีมูลค่าปัจจุบันสุทธิ (NPV) และ วิธีอัตราผลตอบแทนภายในแบบปรับค่า (MIRR) ได้ผล การศึกษาดังนี้

1. ผลการศึกษากระแสเงินสดสุทธิของทั้ง 2 โครงการ สามารถรวมกระแสเงินสดที่เกิดขึ้นตลอดอายุโครงการ 40 ปี ซึ่งกำหนด ได้ตารางที่ 1 ดังนี้

ตารางที่ 1 กระแสเงินสดของโครงการที่ 1

ปีที่	กระแสเงินสตรับ (บาท)		กระแสเงินสด	กระแสเงินสดสุทธิ	
	รายรับขายไฟฟ้า	รายรับขายหม้อแปลง	ลงทุนหม้อแปลงใหม่	บำรุงรักษา -ซ่อมแซม	(บาท)
0	-	-	5,076,463.00	-	- 5,076,463.00
1	2,807,434.00	-	-	74,041.00	2,733,393.00
2	2,857,969.00	-	-	75,569.00	2,782,400.00
3	2,909,412.00	-	-	77,129.00	2,832,283.00
4	2,961,781.00	-	-	78,723.00	2,883,058.00
5	3,015,094.00	-	-	80,350.00	2,934,744.00
6	3,069,366.00	-	-	82,010.00	2,987,356.00
7	3,124,615.00	-	-	83,704.00	3,040,911.00
8	3,180,857.00	-	-	85,434.00	3,095,423.00
9	3,238,113.00	-	-	87,199.00	3,150,914.00
10	3,296,398.00	-	-	157,608.00	3,138,790.00
11	3,355,733.00	-	-	90,841.00	3,264,892.00
12	3,416,137.00	=	-	92,719.00	3,323,418.00
13	3,477,626.00	=	-	94,636.00	3,382,990.00
14	3,540,223.00	=	-	96,593.00	3,443,630.00
15	3,603,947.00	-	-	98,591.00	3,505,356.00

ตารางที่ 1 กระแสเงินสดของโครงการที่ 1 (ต่อ)

ปีที่	กระแสเงินสดรับ (บาท)		กระแสเงินสดจ่าย (บาท)		กระแสเงินสดสุทธิ	
บท	รายรับขายไฟฟ้า	รายรับขายหม้อแปลง	ลงทุนหม้อแปลงใหม่	บำรุงรักษา -ซ่อมแซม	(บาท)	
16	3,668,818.00	-	-	100,629.00	3,568,189.00	
17	3,734,856.00	-	-	102,710.00	3,632,146.00	
18	3,802,084.00	-	-	104,834.00	3,697,250.00	
19	3,870,521.00	-	-	107,002.00	3,763,519.00	
20	3,943,559.00	413,516.00	2,533,053.00	-	1,824,022.00	
21	4,011,114.00	-	=	111,475.00	3,899,639.00	
22	4,083,313.00	-	-	113,780.00	3,969,533.00	
23	4,156,814.00	-	=	116,133.00	4,040,681.00	
24	4,231,636.00	-	-	118,537.00	4,113,099.00	
25	4,307,806.00	-	=	120,990.00	4,186,816.00	
26	4,385,346.00	-	-	123,495.00	4,261,851.00	
27	4,464,282.00	-	=	126,049.00	4,338,233.00	
28	4,544,639.00	-	-	128,657.00	4,415,982.00	
29	4,626,442.00	-	-	131,321.00	4,495,121.00	
30	4,709,719.00	-	-	240,055.00	4,469,664.00	
31	4,794,495.00	-	-	136,814.00	4,657,681.00	
32	4,880,796.00	-	-	139,646.00	4,741,150.00	
33	4,968,651.00	-	-	142,537.00	4,826,114.00	
34	5,058,087.00	-	-	145,488.00	4,912,599.00	
35	5,149,133.00	-	-	148,500.00	5,000,633.00	
36	5,241,817.00	-	-	151,575.00	5,090,242.00	
37	5,336,169.00	-	-	154,714.00	5,181,455.00	
38	5,432,220.00	-	-	157,919.00	5,274,301.00	
39	5,530,000.00	-	-	161,189.00	5,368,811.00	
40	5,636,671.00	276,042.00	-	22,665.00	5,890,048.00	
รวม	165,185,023.00	689,558.00	7,609,516.00	4,461,861.00	151,041,874.00	

ตารางที่ 2 กระแสเงินสดของโครงการที่ 2

ซีที่	กระแสเงินสดรับ (บาท)		กระแสเงินสดจ่าย (บาท)		กระแสเงินสดสุทธิ	
บท	รายรับขายไฟฟ้า รายรับขายหม้อแปลง		ลงทุนหม้อแปลงใหม่	บำรุงรักษา -ซ่อมแซม	(บาท)	
0	-	-	619,434.00	941,500.00	- 1,560,934.00	
1	2,807,434.00	-	-	74,041.00	2,733,393.00	
2	2,857,969.00	-	-	75,569.00	2,782,400.00	
3	2,909,412.00	-	-	77,129.00	2,832,283.00	
4	2,961,781.00	-	-	78,723.00	2,883,058.00	
5	3,011,236.00	-	-	160,700.00	2,850,536.00	
6	3,069,366.00	-	-	82,010.00	2,987,356.00	
7	3,124,615.00	-	-	83,704.00	3,040,911.00	
8	3,176,791.00	-	-	170,868.00	3,005,923.00	
9	3,238,113.00	-	-	87,199.00	3,150,914.00	
10	3,292,377.00	479,784.00	5,562,489.00	89,001.00	- 1,879,329.00	
11	3,355,733.00	-	-	90,841.00	3,264,892.00	
12	3,416,137.00	-	=	92,719.00	3,323,418.00	
13	3,477,626.00	-	-	94,636.00	3,382,990.00	
14	3,540,223.00	-	-	96,593.00	3,443,630.00	
15	3,603,947.00	-	=	98,591.00	3,505,356.00	
16	3,668,818.00	-	-	100,629.00	3,568,189.00	
17	3,734,856.00	-	-	102,710.00	3,632,146.00	
18	3,802,084.00	-	=	104,834.00	3,697,250.00	
19	3,870,521.00	-	-	107,002.00	3,763,519.00	
20	3,940,191.00	-	-	194,499.00	3,745,692.00	
21	4,011,114.00	-	-	111,475.00	3,899,639.00	
22	4,083,313.00	-	-	113,780.00	3,969,533.00	
23	4,156,814.00	-	-	116,133.00	4,040,681.00	
24	4,231,636.00	-	-	118,537.00	4,113,099.00	
25	4,307,806.00	-	-	120,990.00	4,186,816.00	
26	4,385,346.00	-	-	123,495.00	4,261,851.00	
27	4,464,282.00	-	-	126,049.00	4,338,233.00	
28	4,544,639.00	-	-	128,657.00	4,415,982.00	
29	4,626,442.00	-	-	131,321.00	4,495,121.00	
30	4,715,699.00	-	-	1,801,736.00	2,913,963.00	

ตารางที่ 2 กระแสเงินสดของโครงการที่ 2 (ต่อ)

ปีที่	กระแสเงินสดรับ (บาท)		กระแสเงินสดจ่าย (บาท)		กระแสเงินสดสุทธิ	
	รายรับขายไฟฟ้า	รายรับขายหม้อแปลง	ลงทุนหม้อแปลงใหม่	บำรุงรักษา -ซ่อมแซม	(บาท)	
31	4,794,495.00	-	-	136,814.00	4,657,681.00	
32	4,880,796.00	-	-	139,646.00	4,741,150.00	
33	4,968,651.00	-	-	142,537.00	4,826,114.00	
34	5,058,087.00	-	-	145,488.00	4,912,599.00	
35	5,142,604.00	-	-	297,000.00	4,845,604.00	
36	5,241,817.00	-	-	151,575.00	5,090,242.00	
37	5,336,169.00	-	-	154,714.00	5,181,455.00	
38	5,425,336.00	-	-	315,838.00	5,109,498.00	
39	5,530,000.00	-	-	161,189.00	5,368,811.00	
40	5,629,539.00	261,681.00	-	818,833.00	5,072,387.00	
รวม	165,155,145.00	741,465.00	4,533,739.00	8,359,305.00	150,242,236.00	

2. ผลการประเมินการลงทุนและวิเคราะห์ความอ่อนไหว ของทั้ง 2 โครงการ ด้วยวิธีมูลค่าปัจจุบันสุทธิ (NPV) ซึ่ง สามารถคำนวณได้จากสมการ^[1]

$$NPV = \left(\frac{R_1}{(1+k)^1} + \frac{R_2}{(1+k)^2} + \frac{R_3}{(1+k)^3} + \dots + \frac{R_n}{(1+k)^n}\right) - A_0$$
 (1)

กำหนดให้

 A_0 = เงินลงทุน ณ ปีที่ 0

 R_1 = เงินสดรับ ณ ปีที่ 1

 R_2 = เงินสดรับ ณ ปีที่ 2

 R_3 = เงินสดรับ ณ ปีที่ 3

 R_n = เงินสดรับ ณ ปีที่ n

k = อัตราผลตอบแทนที่คาดหวัง หรือต้นทุน

ของเงินลงทุน ซึ่งมีค่าอยู่ที่ 6.54%

และวิธีอัตราผลตอบแทนภายในแบบปรับค่า (MIRR) ซึ่ง สามารถคำนวณได้จากสมการ^[8]

$$\sum_{t=1}^{n} \frac{R_{t} (1+r)^{n-t}}{(1+MIRR)^{n}} = A_{0}$$
 (2)

กำหนดให้

 A_0 = เงินลงทุน ณ ปีที่ 0

 R_t = เงินสดรับ ณ ปีที่ 1 ถึงปีที่ n

r = อัตราคิดลดที่ทำให้มูลค่าปัจจุบันของ
 กระแสเงินสดรับเท่ากับเงินลงทุน หรืออัตราผลตอบแทนของ
 โครงการ

n = อายุของโครงการ

t = ระยะเวลาปีที่ 1 ถึงปีที่ n

จากการศึกษาและการวิเคราะห์ความอ่อนไหวของ โครงการกรณีปรับราคาหม้อแปลงไฟฟ้าใหม่จากลดลง 11% ต่อ 3 ปี เป็น 5% และเพิ่มขึ้น 1 % ต่อ 3 ปี กรณีปรับค่า อุปกรณ์ของหม้อแปลงไฟฟ้าจากเพิ่มขึ้น 2.2% ต่อปี เป็น 4.2% และ 6.2% ต่อปี กรณีปรับค่าแรงของหม้อแปลงไฟฟ้า จากเพิ่มขึ้น 2% ต่อปี เป็น 4% และ 6% ต่อปี (การวิเคราะห์ ความอ่อนไหวปรับเพิ่ม 2% จากข้อมูลที่ได้จากการศึกษาตาม อัตราการเงินเฟ้อเฉลี่ย 2% ต่อปี ^[2] และกรณีปรับอัตรา ผลตอบแทนจาก 6.54% เป็น 8.54 และ 4.54% มีผล การศึกษาตามตารางที่ 3 และ 4

ตารางที่ 3 การประเมินผลการลงทุนด้วยวิธีมูลค่าปัจจุบันสุทธิ (NPV)

	ಡ	2
หนวย	เปน	ลานบาท

			ผลต่าง
การประเมิน	โครงการที่1	โครงการที่ 2	โครงการ
			(2-1)
จากการศึกษา	42.62	44.44	1.82
ราคาหม้อแปลงลดลง 5% ต่อ 3 ปี	42.28	44.03	1.75
ราคาหม้อแปลงเพิ่มขึ้น 1% ต่อ 3 ปี	41.82	43.57	1.75
ราคาอุปกรณ์เพิ่มขึ้น 4.2% ปี	42.43	43.92	1.49
ราคาอุปกรณ์เพิ่มขึ้น 6.2% ปี	42.13	43.12	0.99
ค่าแรงเพิ่มขึ้น 4% ปี	42.31	44.07	1.76
ค่าแรงเพิ่มขึ้น 6% ปี	41.83	43.50	1.67
อัตราผลตอบแทน 8.54%	31.91	34.03	2.12
อัตราผลตอบแทน 4.54%	59.30	60.70	1.4

ตารางที่ 4 การประเมินผลการลงทุนด้วยวิธีอัตราผลตอบแทนภายใน แบบปรับค่า (MIRR)

การประเมิน	โครงการที่ 1	โครงการที่ 2	ผลต่าง โครงการ
			(2-1)
จากการศึกษา	12.35 %	13.64 %	1.29 %
ราคาหม้อแปลงลดลง 5% ต่อ 3 ปี	12.19 %	13.34 %	1.15 %
ราคาหม้อแปลงเพิ่มขึ้น 1% ต่อ 3 ปี	11.98 %	13.03 %	1.05 %
ราคาอุปกรณ์เพิ่มขึ้น 4.2% ปี	12.34 %	13.59 %	1.25 %
ราคาอุปกรณ์เพิ่มขึ้น 6.2% ปี	12.32 %	13.51 %	1.19 %
ค่าแรงเพิ่มขึ้น 4% ปี	12.33 %	13.62 %	1.29 %
ค่าแรงเพิ่มขึ้น 6% ปี	12.30 %	13.58 %	1.28 %
อัตราผลตอบแทน 8.54%	13.48 %	15.34 %	1.86 %
อัตราผลตอบแทน 4.54%	10.92 %	12.03 %	1.11 %

7. สรุปผลและอภิปรายผล

การสรุปผลการวิเคราะห์ความคุ้มค่าทางการเงินในการ ลงทุนสับเปลี่ยนหม้อแปลงไฟฟ้าของทั้ง 2 โครงการ โดยการ นำกระแสเงินสดที่ได้รับตั้งแต่ปีที่ 0 – 40 ของแต่ละโครงการ มาคิดมูลค่าปัจจุบันสุทธิ (NPV) ในอัตราผลตอบแทน 6.54% และอัตราผลตอบแทนภายในแบบปรับค่า (MIRR) ซึ่งมีการ ปรับค่าอุปกรณ์สำหรับบำรุงรักษาและซ่อมแซมหม้อแปลง ไฟฟ้าเพิ่มขึ้น 2.2% ต่อปี ค่าแรงสำหรับบำรุงรักษา ซ่อมแซม และสับเปลี่ยนหม้อแปลงไฟฟ้าเพิ่มขึ้น 2% ต่อปี และราคา หม้อแปลงไฟฟ้าใหม่ลดลง 11% ต่อ 3 ปี ตามตารางที่ 3 จาก การศึกษาพบว่ามูลค่าปัจจุบันสุทธิ (NPV) ของโครงการที่ 1 มี ค่าอยู่ที่ 42.62 ล้านบาท และโครงการที่ 2 มีค่าอยู่ที่ 44.44 ล้านบาท และตามตารางที่ 4 จากการศึกษาพบว่าอัตรา ผลตอบแทนภายในแบบปรับค่า (MIRR) ของโครงการที่ 1 มี ค่าอยู่ที่ 12.35% และโครงการที่ 2 มีค่าอยู่ที่ 13.64% จึง ยอมรับโครงการที่ 2 กล่าวคือ ใช้หม้อแปลงไฟฟ้าที่มีอายุใช้ งานมาแล้ว 20 ปี ต่อไปแล้วสับเปลี่ยนหม้อแปลงไฟฟ้าในปีที่ 10 ของโครงการ หรือมีการสับเปลี่ยนหม้อแปลงไฟฟ้าใหม่เมื่อ มีการชำรุด เนื่องจากโครงการที่ 2 มีมูลค่าปัจจุบันสุทธิ (NPV) มากกว่าโครงการที่ 1 ซึ่งมีค่ามากกว่าอยู่ที่ 1.29 ล้านบาท และอัตราผลตอบแทนภายในแบบปรับค่า (MIRR) ของ โครงการที่ 2 สูงกว่าโครงการที่ 1

การวิเคราะห์ความอ่อนไหวของทั้ง 2 โครงการ โดยการ ปรับค่าอุปกรณ์สำหรับบำรุงรักษาและช่อมแชมหม้อแปลง ไฟฟ้าเพิ่มขึ้นจาก 2.2% ต่อปี เป็น 4.2% และ 6.2% ค่าแรง สำหรับบำรุงรักษา ช่อมแชม และสับเปลี่ยนหม้อแปลงไฟฟ้า เพิ่มขึ้นจาก 2% ต่อปี เป็น 4% และ 6% ต่อปี และราคา หม้อแปลงไฟฟ้าใหม่ลดลงจาก 11% ต่อ 3 ปี เป็น 5% ต่อ 3 ปี และ เพิ่มขึ้นเป็น 1 % ต่อ 3 ปี และการปรับอัตรา ผลตอบแทน (อัตราคิดลด) จาก 6.54% เป็น 8.54% และ 4.54% ยังพบว่าโครงการที่ 2 มีความคุ้มค่าทางการเงิน มากกว่าโครงการที่ 1 เนื่องจากโครงการที่ 2 มีมูลค่าปัจจุบัน สุทธิ (NPV) และอัตราผลตอบแทนภายในแบบปรับค่า (MIRR) สูงกว่าโครงการที่ 1

การอภิปรายผลการศึกษาการลงทุนสับเปลี่ยนหม้อแปลง ไฟฟ้าของทั้ง 2 โครงการ พบว่า การปรับราคาหม้อแปลงไฟฟ้า ใหม่ลดลงจาก 11% ต่อ 3 ปี เป็น 5% ต่อ 3 ปี และปรับ เพิ่มขึ้นเป็น 1% ต่อ 3 ปี หรือการปรับต้นทุนทางการเงินหรือ

อัตราผลตอบแทนที่คาดหวังจาก 6.54% เป็น 8.54% ทำให้ ความคุ้มค่าทางการเงินของโครงการที่ 2 เพิ่มขึ้น หรือส่วนต่าง ของมูลค่าปัจจุบันสุทธิ (NPV) และอัตราผลตอบแทนภายใน แบบปรับค่า (MIRR) ของโครงการที่ 2 กับ โครงการที่ 1 เพิ่มขึ้น เนื่องจากโครงการที่ 1 เป็นโครงการที่มีการลงทน หม้อแปลงไฟฟ้าทุก ๆ 20 ปี ซึ่งมีจำนวนครั้งในการลงทุนสูง กว่าโครงการที่ 2 ที่มีการลงทุนทุก ๆ 30 ปี โดยประมาณ ทำให้โครงการที่ 1 มีการใช้งบประมาณในการลงทุนมากกว่า โครงการที่ 2 การปรับราคาหม้อแปลงไฟฟ้า ดังกล่าว เป็นการ เพิ่มจำนวนเงินทุนให้กับโครงการ อีกทั้งต้นทุนทางการเงินที่ เพิ่มขึ้นย่อมส่งผลต่อต้นทุนเงินของเงินลงทุนและความเสี่ยง ของโครงการที่เพิ่มขึ้น^[6] ในทางกลับกันการปรับค่าอุปกรณ์ สำหรับบำรุงรักษาและซ่อมแซม หม้อแปลงไฟฟ้าจาก 2.2% ต่อปี เป็น 4.2% และ 6.2% ต่อปี หรือการปรับค่าแรงสำหรับ บำรุงรักษา ซ่อมแซม และสับเปลี่ยนหม้อแปลงไฟฟ้าจาก 2% ต่อปี เป็น 4% และ 6%ต่อปี และการปรับต้นทุนทางการเงิน หรืออัตราผลตอบแทนที่คาดหวังจาก 6.54% เป็น 4.54% ทำ ให้ความคุ้มค่าทางการเงินของโครงการที่ 2 ลดลง หรือส่วน ต่างของมูลค่าปัจจุบันสุทธิ (NPV) และอัตราผลตอบแทน ภายในแบบปรับค่า (MIRR) ของโครงการที่ 2 กับ โครงการที่ 1 ลดลง เนื่องจากโครงการที่ 2 มีการใช้งานหม้อแปลงไฟฟ้าที่ อายุที่มาก ซึ่งมีค่าใช้จ่ายในการบำรุงรักษา ซ่อมแซม มากกว่า โครงการที่ 1 ซึ่งเป็นผลมาจากการเสื่อมสภาพของหม้อแปลง ไฟฟ้าที่มีอายุการใช้งานมาก ย่อมทำให้มีต้นทุนการบำรุงรักษา ที่เพิ่มขึ้น^[7]

ทั้งนี้ จากการศึกษาความคุ้มค่าทางการเงินของทั้ง 2 โครงการยังอีกพบว่า ผลการประเมินความคุ้มค่าทางการเงิน (NPV, MIRR) มีความใกล้เคียงกัน ซึ่งหากพิจารณาทางด้าน การเงินในการใช้งบประมาณให้เกิดความคุ้มค่าเพียงอย่างเดียว จึงควรตัดสินใจเลือกโครงการที่ 2 หรือใช้งานหม้อแปลงไฟฟ้า ต่อไปจนชำรุด แต่หากพิจารณาถึงความเชื่อถือได้และ ประสิทธิภาพของระบบจำหน่ายไฟฟ้าร่วมด้วยโครงการที่ 1 เป็นอีกลักษณะที่ควรพิจารณาตัดสินใจ เนื่องจากเป็นการ บำรุงรักษาเชิงป้องกัน ที่สามารถวางแผนล่วงหน้า ส่งผลให้ ประสิทธิภาพและความเชื่อถือได้ของระบบจำหน่ายไฟฟ้าแก่ ผู้ใช้ไฟฟ้าเพิ่มขึ้น ซึ่งควรหาช่วงเวลาที่เหมาะสมสำหรับการ สับเปลี่ยนหม้อแปลงไฟฟ้าต่อไป

เอกสารอ้างอิง

- [1] ทิพย์วรรณ เรื่องกิตติสกุล. (2548). การบริหารการเงิน 1 (Financial Management 1). สงขลา: ภาควิชา บริหารธุรกิจ คณะวิทยาการจัดการ มหาวิทยาลัยสงขลานครินทร์.
- [2] ธนาคารแห่งประเทศไทย. (2562). EC_EI_027 เครื่องชื้ เศรษฐกิจมหภาคของไทย 1/. ค้นจาก https.//www.bot .or.th/App/BTWS_STAT/statistics/BOTWEBSTAT.as px?reportID=409&language=TH
- [3] ประสิทธิ์ ตงยิ่งศิริ. (2545). การวางแผนและการวิเคราะห์ โครงการ. กรุงเทพฯ: ห้างหุ้นส่วนจำกัด เม็ดทราย พริ้นติ้ง.
- [4] ไฟโรจน์ วงษ์วิบูลย์สิน. (2548). การประเมินอายุของ หม้อแปลงไฟฟ้าขนาดเล็กโดยอาศัยการทดสอบเร่งด้วย อุณหภูมิ. (วิทยานิพนธ์ปริญญาวิศวกรรมศาสตร มหาบัณฑิต). จุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพฯ.
- [5] เพชรี ขุมทรัพย์. (2538). หลักการบริหารการเงิน (พิมพ์ ครั้งที่ 1). กรุงเทพ: โรงพิมพ์มหาวิทยาลัยธรรมศาสตร์.
- [6] ศิรประภา ศรีวิโรจน์. (2561). โครงสร้างเงินทุน หนึ่ง องค์ประกอบสำคัญในการสร้างมูลค่าของธุรกิจ. วารสารวิชาการมหาวิทยาลัยอีสเทิร์นเอเชีย, 8(2), 91-102.
- [7] สิทธิพร ตระกูลไทย. (2559). การจัดสรรงบประมาณแบบ เหมาะสมที่สุดสำหรับการบำรุงรักษาแบบป้องกันของ ระบบจำหน่ายไฟฟ้า. (วิทยานิพนธ์ปริญญาวิศวกรรม ศาสตรมหาบัณฑิต). จุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพฯ.
- [8] Brigham, F. E., Houston, F. J., (2544). การจัดการ การเงิน Fundamentals of Financeial Management (เริงรัก จำปาเงิน, ผู้แปล). กรุงเทพฯ: บุ๊คเน็ท.
- [9] Omar M. Elmabrouk, Farag A. Masoud and Naji S. Abdelwanis., "Diagnosis of Power Transformer Faults using Fuzzy Logic Techniques Based on IEC Ratio Method", ICEMIS'20: Proceedings of the 6th International Conference on Engineering & MIS, September, 2020.
- [10] David Granados-Lieberman et al., "Harmonic PMU and Fuzzy Logic for Online Detection of Short-Circuited Turns in Transformers", Electric Power System Research, vol 190, pp 1-11, 2021.