Resolvent and Spectrum

Definition: Resolvent and Spectrum

Let E be a normed space and let A be an operator on E. The *resolvent* of A, denoted A_{λ} , is given by:

$$A_{\lambda} = (A - \lambda I)^{-1}$$

Note that λ is an eigenvalue of A iff A_{λ} is not defined.

To say that λ is a *regular value* of A means $A_{\lambda} \in \mathcal{B}(E)$.

The resolvent set of A, denoted $\rho(A)$, is the set of all regular values of A.

The *spectrum* of A, denoted $\sigma(A)$, is given by:

$$\sigma(A) = \mathbb{C} \setminus \rho(A)$$

The *spectral radius* of A, denoted r(A), is given by:

$$r(A) = \sup\{|\lambda| \mid \lambda \in \sigma(A)\}$$

If λ is an eigenvalue of A then $\lambda \in \sigma(A)$. But note that the spectrum can contain non-eigenvalues and no eigenvalues.

Lemma

Let E be a Banach space and let $A \in \mathcal{B}(E)$ such that $\|A\| < 1$:

1). I - A is invertible.

2).
$$(I-A)^{-1} = \sum_{n=0}^{\infty} A^n$$

Proof

Let
$$S_n = \sum_{k=0}^n A^k$$
.

AWLOG: n > m.

$$||S_n - S_m|| = \left\| \sum_{k=m+1}^n A^k \right\| \le \sum_{k=m+1}^n ||A^k|| = \sum_{k=m+1}^n ||A||^k \to 0$$

And so (S_n) is Cauchy.

But E Banach $\Longrightarrow \mathcal{B}(E)$ Banach.

And
$$A \in \mathcal{B}(E) \implies S_n \in \mathcal{B}(E)$$
.

Thus (S_n) converges to $S \in \mathcal{B}(E)$ where $S = \sum_{n=0}^{\infty} A^n$.

$$S(I - A) = \left(\sum_{n=0}^{\infty} A^n\right)(I - A) = \sum_{n=0}^{\infty} A^n - \sum_{n=0}^{\infty} A^{n+1} = A^0 = I$$
$$(I - A)S = (I - A)\left(\sum_{n=0}^{\infty} A^n\right) = \sum_{n=0}^{\infty} A^n - \sum_{n=0}^{\infty} A^{n+1} = A^0 = I$$
$$\therefore S = (I - A)^{-1} = \sum_{n=0}^{\infty} A^n$$

Corollary

Let E be a Banach space and $T \in \mathcal{B}(E)$ such that ||I - T|| < 1:

1). T is invertible.

2).
$$T^{-1} = \sum_{n=0}^{\infty} (I - T)^n$$

Proof

$$T^{-1} = [I - (I - T)]^{-1} = \sum_{n=0}^{\infty} (I - T)^n$$

Theorem

Let E be a Banach space and let $A \in \mathcal{B}(E)$ and $||A|| \leq |\lambda|$:

1).
$$A_{\lambda} = -\sum_{n=0}^{\infty} \frac{1}{\lambda^{n+1}} A^n$$

2).
$$||A_{\lambda}|| \le \frac{1}{|\lambda| - ||A||}$$

Thus, $A_{\lambda} \in \mathcal{B}(E)$.

Proof

Let
$$B = \frac{A}{\lambda}$$
.
$$||B|| = \frac{||A||}{|\lambda|} < 1$$

$$\sum_{n=0}^{\infty} B^n = (I - B)^{-1}$$

$$\sum_{n=1}^{\infty} \left(\frac{A}{\lambda}\right)^n = \left(I - \frac{A}{\lambda}\right)^{-1} = -\frac{1}{\lambda}(A - \lambda I)^{-1}$$

$$\therefore A_{\lambda} = (A - \lambda I)^{-1} = -\sum_{n=0}^{\infty} \frac{1}{\lambda^{n+1}} A^n$$

$$||A_{\lambda}|| = \left\| -\sum_{n=0}^{\infty} \frac{1}{\lambda^{n+1}} A^{n} \right\| \leq \sum_{n=0}^{\infty} \left\| \frac{1}{\lambda^{n+1}} A^{n} \right\| = \frac{1}{|\lambda|} \sum_{n=1}^{\infty} \left(\frac{||A||}{|\lambda|} \right)^{n} = \frac{1}{|\lambda|} \left(\frac{1}{1 - \frac{||A||}{|\lambda|}} \right)$$
$$\therefore ||A_{\lambda}|| \leq \frac{1}{|\lambda| - ||A||}$$

Thus, if λ is an eigenvalue of A, then $|\lambda|<\|A\|$ and $r(A)\leq\|A\|$ and $\sigma(A)$ is an open set.

