COMPSCI 4CR3 - Applied Cryptography

Jake Doliskani
McMaster
University

Public-Key Schemes Based on the

Discrete Logarithm Problem

This lecture

- The Diffie-Hellman key exchange
- Cyclic groups
- The discrete logarithm problem
- Security of the Diffie-Hellman Key Exchange
- The Elgamal encryption scheme

The Diffie-Hellman Key Exchange

- Proposed by Whitfield Diffie and Martin Hellman in 1976
- The first asymmetric scheme published in the open literature
- Widely used, e.g., SSH, TLS, IPSec.

Set-up:

- 1. Choose a large prime p
- 2. Choose $\alpha \in \{2, 3, ..., p-2\}$
- 3. Publish p, α

The Diffie-Hellman Key Exchange

The shared key is k_{AB}

The DH Key Exchange (example)

The shared key is $2\in\mathbb{Z}_{31}$

Groups

A group G is a set of elements equipped with a binary operation \ast that satisfies the following properties:

- 1. Closure: for every $a, b \in G$ it holds that $a * b \in G$.
- 2. Associativity: $a, b, c \in G$ it holds that (a * b) * c = a * (b * c).
- 3. Neutral element: there exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$.
- 4. For every $a \in G$, there exists an element $a \in G$ such that a * b = b * a = e; b is called the inverse of a and is denoted by a^{-1} .

A group G is called abelian if a*b=b*a for all $a,b\in G$.

Groups (examples)

- $(\mathbb{Z}, +)$: The group of integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$ with the usual addition operations. The neutral element is e = 0, and -a is the inverse of a.
- (\mathbb{C}^{\times} , \times): The set of nonzero complex numbers under multiplication. The identity element is e=1.
- The set of invertible 2×2 matrices over the real numbers under matrix multiplication:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ such that } ad - bc \neq 0, \quad e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad a,b,c,d \in \mathbb{R}$$

The first two groups are abelian, but the last one is not.

Groups

Let \mathbb{Z}_n^{\times} be the set of all integers $x \in \{1, 2, \dots, n-1\}$ that are coprime to n, i.e., $\gcd(x, n) = 1$. Then \mathbb{Z}_n^{\times} is an abelian group under multiplication modulo n. The identity element is e = 1.

Example: multiplication table for \mathbb{Z}_8^{\times}

×	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Cyclic groups

A group G is finite if it has a finite number of elements. We denote by |G| the cardinality (or the order) of G.

Example: The order of \mathbb{Z}_n^{\times} is $\varphi(n)$. So, \mathbb{Z}_8^{\times} has $\varphi(8)=4$ elements.

The order ord(a) of an element $a \in G$ is the smallest integer $k \ge 1$ such that

$$a^k = \underbrace{a * a * \dots * a}_{k \text{ times}} = 1.$$

Example: The order of $5 \in \mathbb{Z}_8^{\times}$ is 2.

Cyclic groups

A group G that contains an element α with order $\operatorname{ord}(\alpha) = |G|$ is called cyclic. In this case, α is called a primitive element (or a generator).

Example: The group \mathbb{Z}_{11}^{\times} is cyclic:

 $|\mathbb{Z}_{11}^{\times}| = 10$

ord(2) = 10, so, 2 is a primitive element.

Theorem

For every prime p, the group \mathbb{Z}_p^{\times} us cyclic.

Order of elements

Theorem

Let G be a finite group. For every $a \in G$

- 1. $a^{|G|} = 1$.
- 2. $\operatorname{ord}(a)$ divides |G|.

Example: \mathbb{Z}_{11}^{\times}

```
ord(1) = 1, ord(6) = 10, 

ord(2) = 10, ord(7) = 10, 

ord(3) = 5, ord(8) = 10, 

ord(4) = 5, ord(9) = 5, 

ord(5) = 5, ord(10) = 2.
```

Order of elements

Theorem

Let G be a finite cyclic group. Then

- 1. The number of primitive elements of G is $\varphi(|G|)$,
- 2. If |G| is prime, then all elements $a \neq 1$ in G are primitive.

Example 2: the group $H=\{1,3,4,5,9\}$ with multiplication modulo 11 $\varphi(|H|)=\varphi(5)=4$ Primitive elements: 3,4,5,9.

Subgroups

A subgroup H of a group G is a subset of G that is itself a group.

Example: the subgroup $H=\{1,3,4,5,9\}$ of \mathbb{Z}_{11}^{\times} . Multiplication is done modulo 11, the same as in \mathbb{Z}_{11}^{\times}

Lagrange's Theorem

For every subgroup H of a group G, |H| divides |G|.

Subgroups

Let G be a cyclic group of order n with generator α . Then

- For every integer k that divides n there is exactly one cyclic subgroup $H \leq G$ of order k.
- The subgroup H is generated by $\alpha^{n/k}$
- There are exactly k element $a \in G$ that satisfy $a^k = 1$.

Example: \mathbb{Z}_{11}^{\times}

- has order n=10, and is generated by $\alpha=8$.
- There is exactly one subgroup of order 2 generated by

$$\alpha^{n/k} = 8^{10/2} = 32768 = 10 \mod 11$$

The Discrete Logarithm Problem (DLP)

DLP in \mathbb{Z}_p^{\times} :

Let $\alpha \in \mathbb{Z}_p^{\times}$ be a generator. Given any $\beta \in \mathbb{Z}_p^{\times}$, the DLP is the problem of finding an integer $1 \le x \le p-1$ such that

$$\alpha^x = \beta \bmod p.$$

- The integer x is called the discrete logarithm of β to the base α .
- We write $x = \log_{\alpha} \beta \mod p$
- \bullet Example: in \mathbb{Z}_{47}^{\times} : $\log_5 41 = 11 \bmod 47$, and $\log_2 36 = 17 \bmod 47$

Generalized DLP

DLP in any cyclic group:

Let G be a cyclic group of order n and let $\alpha \in G$ be a generator. Given any $\beta \in G$, the DLP is the problem of finding an integer $1 \le x \le n$ such that

$$\alpha^x = \beta$$
.

- Here $\alpha^x = \alpha * \cdots * \alpha \ (x \text{ times})$
- Example: in \mathbb{Z}_{47}^{\times} : $\log_5 41 = 11 \mod 47$, and $\log_2 36 = 17 \mod 47$

Is DLP hard in all groups?

- \mathbb{Z}_p^+ is cyclic of order p.
- The operation is normal addition mod p.
- A generator $\alpha \in \mathbb{Z}_p^+$ is an element such that every $\beta \in \mathbb{Z}_p^+$ is a repeated sum of α .
- DLP: given $\beta \in \mathbb{Z}_p^+$, find $1 \le x \le p-1$ such that

$$x\alpha = \underbrace{\alpha + \dots + \alpha}_{x \text{ times}} = \beta.$$

Solution: compute $x = \alpha^{-1}\beta$

Computing inverses $\bmod p$ is easy.

Is DLP hard in all groups?

(Hard) DLP groups that have been proposed for cryptography:

- The multiplicative group \mathbb{Z}_p^{\times}
 - Classical DHKE, Elgamal encryption, the Digital Signature Algorithm
- The cyclic group formed by an Elliptic Curve.
- The multiplicative subgroups of the Galois Field $Gal(2^n)$
 - Not as popular as \mathbb{Z}_p^{\times} , because attacks against them are more efficient
- Hyperelliptic Curves or algebraic varieties
 - Generalization of elliptic curves

Attacks against DLP

- Generic algorithms
 - Brute-Force Search
 - Shanks' Baby-Step Giant-Step Method
 - ► Pollard's Rho Method
 - Pohlig-Hellman Algorithm
- Nongeneric algorithms
 - ► The Index-Calculus Method

Brute-Force Search: try all values of $1 \le x \le n$ until you find an x such that

$$\alpha^x = \beta$$

Shanks' Baby-Step Giant-Step method

Let
$$n=|G|$$
 and $m=\lfloor \sqrt{n} \rfloor$. To find x such that $\alpha^x=\beta$, we write
$$x=x_qm+x_b, \quad \text{ for } \ 0 \le x_q, x_b < m.$$

Then

$$\beta = \alpha^{x_g m + x_b} \Rightarrow \beta \cdot (\alpha^{-m})^{x_g} = \alpha^{x_b}$$

- 1. Compute $\gamma = \alpha^{-m}$
- 2. Compute all the values γ^i for $i=0,1,\ldots,m-1$, and store them. (Giant step)
- 3. For each value $0 \le x_b < m$ check if there is an i such that

$$\beta \cdot \gamma^i = \alpha^{x_b}$$
 (Baby step)

Complexity: $O(\sqrt{n})$ time, and $O(\sqrt{n})$ memory

Pollard's Rho method

- 1. Let n = |G|. Consider the sequence $\{x_i\}$ given by $x_i = \alpha^{a_i} \beta^{b_i}$, where the pairs (a_i, b_i) are computed in a way that the sequence "looks random".
- 2. Use a cycle finding algorithm to find (a,b) and (c,d) such that

$$\alpha^a \beta^b = \alpha^c \beta^d.$$

- 3. Substituting $\beta = \alpha^x$ gives $a + bx = c + dx \mod n$.
- 4. The discrete logarithm is

$$x = \frac{a-c}{d-b} \bmod n$$

- Complexity: $O(\sqrt{n})$ time, and O(1) memory
- Much better than Shanks' Baby-Step Giant-Step Method

Pohlig-Hellman algorithm

- 1. Let n=|G|. Factor n into prime factors: $n=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}$.
- 2. Compute the discrete logarithm in the subgroups $G_i \leq G$ of size $|G_i| = p_i^{e_i}$.
- 3. Use the Chinese Remainder Theorem to recover the discrete logarithm in G.

- Efficient only when the prime factors p_i are not too large.
- ullet The discrete logarithm in the G_i can be computed using the Pollard's Rho Method.
- Complexity: $O(\sum_{i=1}^{k} (\log n + \sqrt{p_i})e_i)$

The Index-Calculus method

- Nongeneric algorithm, i.e., works for specific groups.
- Has subexponential running time for the groups \mathbb{Z}_p^{\times} and $\mathrm{Gal}(2^m)^{\times}$
- Idea: use the property that a non-negligible fraction of the elements of *G* can be expressed as products of elements of a small subset of *G*.
- Using this subset we can collect some linear relations and solve a linear system of equations.

Complexity: $L_n[1/2, \sqrt{2} + o(1)]$, where L_n refers to the L-notation.

Better algorithms: Number Field Sieve, Function Field Sieve

Security of Diffie-Hellman Key Exchange

- Active attaks: the basic version of DHKE is not secure against MITM
- Passive attacks: the security is based on the Diffie-Hellman Problem

The Diffie-Hellman Problem (DHP): Let G be a finite cyclic group and let $\alpha \in G$ be a generator. Given α^a and α^b for some unknown integers a,b, compute α^{ab} .

- If Trudy knows how to solve DLP, then he can solve DHP.
- In general, we don't know if DLP and DHP are equivalent.

The Elgamal encryption scheme

The Elgamal encryption scheme

Security (passive attacks)

- Security relies on the Diffie-Hellman problem
- The only known attack is through solving DLP
- 1. Find Bob's secrete key by solving DLP:

$$b = \log_{\alpha} k_B \mod p$$

2. Compute the shared key using Alice's k_A

$$k_{AB} = k_A^b \mod p$$

3. Recover the message:

$$x = y \cdot k_{AB}^{-1} \bmod p$$

Security (active attacks)

- MITM (like any other public-key scheme), public keys should be authenticated
- Alice's secrete exponent should not be reused.
- 1. Alice reuses the exponent a, then there are two ciphertexts $(y_1, k_A), (y_2, k_A)$ over the channel.
- 2. If Trudy knows the first message x_1 , he can compute

$$k_{AB} = y_1 x_1^{-1} \bmod p$$

- Like plain RSA, plain Elgamal is malleable
- 1. Trudy can replace (k_A, y) with (k_A, sy) .
- 2. Bob decrypts $sy \cdot k_{AB}^{-1} = s \cdot (x \cdot k_{AB}) \cdot k_{AB}^{-1} = sx \mod p$