100 學年度指定科目考試數學甲選擇(填)題答案

題號		答案
1		5
2		2
3		4
4		3
5		1,3
6		1,4
7		2
A	8	1
	9	0
В	10	3
	11	0
С	12	2
	13	7
D	14	1
	15	3

100 學年度指定科目考試數學甲非選擇題考生作答情形分析

第一處 朱惠文

每年指考成績單寄發後,總有些考生認為自己的數學甲非選擇題,答案明明正確,為何無法得到該題的滿分,甚至1分未得?本文就此一疑問,說明本年度數學甲非選擇題僅得到部分題分或是1分未得的可能情形,以及數學科非選擇題給分的大原則,希望能藉此廓清部分考生的疑惑。以下各題將從兩方面進行分析,(一)是正確的解題步驟,(二)是考生解題的錯誤概念或解法。至於各題的參考解法可詳見二、參考解法示例。

一、正確解題步驟及錯誤解法說明

第一題

題目:已知實係數三次多項式函數 y = f(x) 的最高次項係數為 12, 其圖形與水平線 y = 25 交於相異的三點 (0,25),(1,25) 及 (2,25)。

- (1) 試求曲線 y = f(x) 圖形上的反曲點坐標。(6分)
- (2) 試求定積分 $\int_0^2 f(x)dx$ 之值。(6分)

分析:

第(1)小題

(一)正確解題步驟

本題評量多項式函數微分與積分的概念與應用,試題分為兩小題,題幹提供一實係數三次多項式的首項係數,及其圖形與一水平線的交點坐標。第(1)小題為求此圖形的反曲點坐標,第(2)小題則求定積分 $\int_0^2 f(x)dx$ 的值。第(1)小題多數人採用的解法有兩種:一是找出多項式,另一個是利用多項式圖形的性質。採第一種解法者,需先根據題意列出多項式,例如 f(x)=12x(x-1)(x-2)+25,或設 $f(x)=12x^3+bx^2+cx+d$,由試題所給條件推得 f(x)。再由反曲點與二階導函數的關係,即 f''(x)=12(6x-6),與 f''(x)=0,得反曲點坐標為 (1,25)。第二種解法則將題意所求的多項式圖形 y=f(x) 視為 y=12x(x-1)(x-2)的圖形上移 25 單位,所以兩者的反曲點之 x 坐標相同,且 y=12x(x-1)(x-2)的圖形對稱於點 (1,0),故反曲點坐標為 (1,25)。

(二)錯誤概念或解法

以下依據上述的解題概念,分析此小題得部分分數或未得分的幾種情形。

- (A1) 列錯多項式方程式:例如誤以為首項係數為 1;或解聯立方程組錯誤;或誤解題意為 y=12x(x-1)(x-2)的圖形下移 25 單位,而誤為 f(x)=12x(x-1)(x-2)-25。
- (A2) 理由不夠充分:例如只說 y=12x(x-1)(x-2) 反曲點的 x坐標為 1,並未提及所求圖形與 y=12x(x-1)(x-2) 圖形的關係,也未提及所求圖形對稱於點 (1,25)。或誤以為極值發生在 $x=\frac{3}{2}$ 與 $x=\frac{1}{2}$ 處,而據以說反曲點的 x坐標為兩者的平均值。
- (A3) 完整寫出作答過程,但計算錯誤:例如寫出正確的 f(x),但微分過程錯誤,如 f''(x) = 72x + 72,或寫出正確的 f''(x),但求解 f''(x) = 0時,得 x = -1,等等。

以上這些情形,有些雖寫出了正確的反曲點坐標 (1,25),但解題概念錯誤或 未提正確理由;或解題概念正確,但計算錯誤,以至於只能得到部分分數,甚或 無法得分。

第(2)小題

(一)正確解題步驟

根 據 第 (1) 小 題 , 得 出 $f(x) = 12x^3 - 36x^2 + 24x + 25$ 。 故 $\int_0^2 f(x)dx = \int_0^2 (12x^3 - 36x^2 + 24x + 25) dx = 3x^4 - 12x^3 + 12x^2 + 25x \Big|_0^2 = 50$ 或因為 y = f(x)的圖形對稱於點 (1,25),所以 $\int_0^2 f(x)dx = 25 \times 2 = 50$ 。

(二)錯誤概念或解法

以下依據上述的解題概念,分析此小題得部分分數或未得分的幾種情形。

- (B1) 反導函數算錯或圖形概念錯誤:例如能寫出正確的 f(x),但反導函數寫成 $3x^4-12x^3+12x^2+25\Big|_0^2$;或誤以為求 $\int_0^2 [12x(x-1)(x-2)] dx$ 等等;或誤認為三次多項式函數圖形對稱於反曲點 (1,25),而得到錯誤的 $\int_0^2 f(x) dx = 2 \int_0^1 f(x) dx$ 。
- (B2) 說明理由不夠充分: 例如直接寫 $\int_0^2 f(x)dx = 50$,未說明任何理由。
- (B3) 完整寫出作答過程,但計算錯誤:例如反導函數正確,但計算錯誤,如 $\int_{0}^{2} f(x)dx = 3x^{4} 12x^{3} + 12x^{2} + 25x\Big|_{0}^{2} = 96$ 。

本題出自高三選修數學(II)的範圍,而且解題概念各版本均提及,例如三次函數圖形的性質、二階導函數的概念、多項式函數的積分等。對考生而言,應不難正確作答。不過數學科非選擇題主要評量用數學式清楚表達解題過程的能力,因此列式、推理過程是否正確、邏輯判斷是否合理,均為評定分數的重要依據,並非僅看答案而已。

第二題

題目:(1) 試求所有滿足 $\log(x^3-12x^2+41x-20)\ge 1$ 的 x 值之範圍。(6分)

(2) 試證:當 $\frac{3\pi}{2} \le \theta \le 2\pi$ 時, $3^{\cos\theta} \ge 3^{1+\sin\theta}$ 。(6分)

分析:

第(1)小題

(一)正確解題步驟

本題評量指數與對數單元,試題分為二小題,第(1)小題根據題幹所給算式,求解 x 值之範圍。解題可分為以下三個步驟:

- (1) 根據對數定義,可得 $x^3-12x^2+41x-20>0$ 且 $x^3-12x^2+41x-20\geq 10$ 。由於第二式成立時,第一式必成立,故僅需求 $x^3-12x^2+41x-20\geq 10$ 之解。
- (2) 移項分解因式得 $(x-1)(x-5)(x-6) \ge 0$
- (3) 推得 x 值之範圍為 $x \ge 6$ 或 $1 \le x \le 5$ 。

(二)錯誤概念或解法

以下依據上述的解題概念,分析此小題得部分分數或未得分的幾種情形。

- (C1) 不清楚對數定義:例如誤以為 $1 = \log 0$;或 $x^3 12x^2 + 41x 20 \le 10$;或 $x^3 12x^2 + 41x 20 \le 10$ 。另一錯誤為以為只要求解 $x^3 12x^2 + 41x 20 > 0$ 。
- (C2) 移項因式分解錯誤:例如誤為 $x^3-12x^2+41x-10\ge 0$ 或 $(x+1)(x+5)(x+6)\ge 0$ 等等。
- (C3) 範圍判斷錯誤:例如誤以為 x 值之範圍為 $x \le 1$ 或 $6 \ge x \ge 5$;或 $x \ge 6$ 或 $1 \ge x \ge 5$;或 x > 6或 1 < x < 5等等。
- (C4) 完整寫出作答過程,但計算錯誤:例如因式分解正確,但範圍寫成 $x \ge -1$ 或 $-6 \le x \le -5$ 等等。

以上這幾種情形,有些不清楚基本數學概念,例如;對數的性質;有些寫 出完整的作答過程,可是計算錯誤,例如移項錯誤,以至於僅能得到部分分數或 無法得分。

第(2)小題

(一)正確解題步驟

本小題為一證明題,過程所引用的條件與算式,其前後關係需說明清楚,且 邏輯判斷需正確,方能拿到分數,此題可從不同的角度(解法)證明,其過程大致 可分為三個步驟:

- (1) 利用指數的性質,推得 $3^{\cos\theta} \ge 3^{1+\sin\theta}$ 等價於 $\cos\theta \ge 1+\sin\theta$ 。
- (2) 確定所要採用的方法,例如和角公式、半角公式、三角形兩邊長的和大 於第三邊、正弦與餘弦函數圖形、平方關係等。
- (3) 根據第(2)步驟所採用的解法,連結題意所給角度的限制,正確寫出所應用的條件,完整說明論證過程。

(二)錯誤概念或解法

以下依據上述的解題概念,分析此小題得部分分數或未得分的幾種情形。

- (D1) 所採用的解法不正確:例如欲採用和角公式作答,但公式錯誤,如誤寫 $\cos\theta \sin\theta = \sqrt{2}\cos(\theta \frac{\pi}{4}) \; ; \; 或採半角公式,但誤以為 \cos^2\theta = 2\cos^2\frac{\theta}{2} 1 \; 等 \; \circ$
- (D2) 所引用的條件不足以證明:例如採和角解法,但未說明角度範圍,如寫出 $\cos\theta \sin\theta = \sqrt{2}\cos(\theta + \frac{\pi}{4})$,直接得證 $\cos\theta \sin\theta \ge 1$,並未說明因 $\frac{7}{4}\pi \le \theta + \frac{\pi}{4} \le \frac{9}{4}\pi$,故 $\sqrt{2}\cos(\theta + \frac{\pi}{4}) \ge 1$;或只畫出正、餘弦函數圖形,並不足以 證明原題成立,需再說明正、餘弦函數在 $\frac{3\pi}{2}$, 2π 的值相同,且當 $\frac{3\pi}{2} \le \theta \le 2\pi$ 時, $\cos\theta$ 圖形凹向下, $1 + \sin\theta$ 圖形凹向上,才能得到 $\cos\theta \ge 1 + \sin\theta$ 的結論。

以上這幾種情形,有的不清楚或記錯公式,例如半角公式、和角公式等;有些未檢驗條件的充分性與一致性,例如只寫 $\cos\theta \ge 0$,並不能得到 $2\sin\theta(1+\sin\theta) \le 0$ 的結論,需再說明 $\sin\theta \le 0$ 才能得證。

數學甲與數學乙的題型有選擇、選填與非選擇題。選擇題與選填題,只要答案正確,即可得到全部分數。但非選擇題主要評量考生是否能夠清楚表達推理過程,答題時應將推理或解題過程說明清楚,且得到正確答案,方可得到滿分。如果計算錯誤,則酌給部分分數。如果只有答案對,但觀念錯誤,或過程不合理,則無法得到分數。本文說明正確的解題概念與步驟,以及得部分分數與無法得分的可能情形,期能有助於老師教學或學生平常練習。

二、參考解法示例

數學科試題的解法不只一種,故以下提供多數考生可能採用的解法,未列的解法,只要推論或解題過程正確,仍可得分。

第一題

(1) 【法一】

由函數 y = f(x)的最高次項係數為 12,且 f(0) = f(1) = f(2) = 25,可推得 $f(x) = 12x(x-1)(x-2) + 25 = 12x^3 - 36x^2 + 24x + 25$ 。

或設
$$f(x) = 12x^3 + bx^2 + cx + d$$
 , 由 $f(0) = f(1) = f(2) = 25$ 得

$$\begin{cases} d = 25 \\ 12 + b + c + d = 25 \\ 96 + 4b + 2c + d = 25 \end{cases}$$

解得b = -36、c = 24、d = 25。

故
$$f'(x) = 12(3x^2 - 6x + 2)$$
 , $f''(x) = 12(6x - 6)$

令 f''(x) = 0,得函數 y = f(x) 圖形上的反曲點坐標為 (1, 25)

【法二】

因為 y=f(x)的圖形為將 y=12x(x-1)(x-2)的圖形上移 25 單位,所以兩者的反曲點之 x 坐標相同,而 y=12x(x-1)(x-2)的圖形對稱於點 (1,0)。

故 y = f(x) 圖形的反曲點坐標為 (1, 25)

(2) 【法一】

$$\int_{0}^{2} f(x)dx = \int_{0}^{2} 12(x^{3} - 3x^{2} + 2x) + 25 dx$$

$$= 3x^{4} - 12x^{3} + 12x^{2} + 25x \Big|_{0}^{2}$$

$$= 3 \times 2^{4} - 12 \times 2^{3} + 12 \times 2^{2} + 25 \times 2 = 50$$

【法二】

因為 (1,0) 是 g(x)=12x(x-1)(x-2) 的反曲點,以及 y=g(x) 的圖形對稱於反曲點,

故
$$\int_0^2 g(x) dx = \int_0^1 g(x) dx + \int_1^2 g(x) dx = \int_0^1 g(x) dx - \int_0^1 g(x) dx = 0$$
 \circ

因此
$$\int_0^2 f(x) dx = \int_0^2 (g(x) + 25) dx = \int_0^2 g(x) dx + \int_0^2 25 dx = 0 + 25x \Big|_0^2 = 50$$

所以 $\int_0^2 f(x) dx = 25 \times 2 = 50$

第二題

(1) 由題意得 $\log(x^3 - 12x^2 + 41x - 20) \ge 1$

$$\Leftrightarrow x^{3} - 12x^{2} + 41x - 20 \ge 10 \quad \exists x^{3} - 12x^{2} + 41x - 20 > 0$$

$$\Leftrightarrow x^{3} - 12x^{2} + 41x - 30 \ge 0$$

$$\Leftrightarrow (x - 1)(x - 5)(x - 6) \ge 0$$

因此,滿足 $\log(x^3 - 12x^2 + 41x - 20) \ge 1$ 的 x範圍為 $1 \le x \le 5$ 或 $x \ge 6$

(2) 因為 $3^{\cos\theta} \ge 3^{1+\sin\theta}$ 等價於 $\cos\theta \ge 1+\sin\theta$,故僅需證明當 $\frac{3\pi}{2} \le \theta \le 2\pi$ 時, $\cos\theta \ge 1+\sin\theta$ 。

【法一】

$$\cos\theta - \sin\theta = \sqrt{2}\cos(\theta + \frac{\pi}{4})$$

因
$$\frac{7}{4}\pi \le \theta + \frac{\pi}{4} \le \frac{9}{4}\pi$$
,所以 $\sqrt{2}\cos(\theta + \frac{\pi}{4}) \ge 1$

得 $\cos \theta - \sin \theta \ge 1 \Leftrightarrow \cos \theta \ge 1 + \sin \theta \Leftrightarrow 3^{\cos \theta} \ge 3^{1 + \sin \theta}$,得證

【法二】

$$\sin\theta - \cos\theta = \sqrt{2}\sin(\theta - \frac{\pi}{4})$$

因
$$\frac{5}{4}\pi \le \theta - \frac{\pi}{4} \le \frac{7}{4}\pi$$
,所以 $\sqrt{2}\sin(\theta - \frac{\pi}{4}) \le -1$

得 $\sin \theta - \cos \theta \le -1 \Leftrightarrow \cos \theta \ge 1 + \sin \theta \Leftrightarrow 3^{\cos \theta} \ge 3^{1 + \sin \theta}$, 得 證

【法三】

$$(\cos\theta - \sin\theta)^2 = 1 - 2\cos\theta\sin\theta$$

當
$$\frac{3}{2}\pi \le \theta \le 2\pi$$
 , $\sin \theta \le 0$, $\cos \theta \ge 0$, 推得 $-2\sin \theta \cos \theta \ge 0$

$$1 - 2\cos\theta\sin\theta \ge 1 \Leftrightarrow (\cos\theta - \sin\theta)^2 \ge 1$$

$$\cos\theta \ge 1 + \sin\theta \Leftrightarrow 3^{\cos\theta} \ge 3^{1+\sin\theta}$$
 ,得證

【法四】

【法五】

當
$$\frac{3}{2}\pi \le \theta \le 2\pi$$
 , $\sin \theta \le 0$, 故 $-\sin \theta = \sqrt{1-\cos^2 \theta}$
 $\sin^2 \theta - (1-\cos \theta)^2 = -2\cos^2 \theta + 2\cos \theta = -2\cos \theta(\cos \theta - 1)$ 因 為 $\cos \theta \ge 0$,所以 $-2\cos \theta(\cos \theta - 1) \ge 0$
 $-\sin \theta \ge 1 - \cos \theta \Leftrightarrow 3^{\cos \theta} \ge 3^{1+\sin \theta}$, 得 證

【法六】

【法七】

當
$$\frac{3}{2}\pi \le \theta \le 2\pi$$
 , $\sin \theta \le 0$, 故 $\cos \theta \le 1 - \sin \theta$ 因 $\cos \theta \cos \theta = (1 - \sin \theta)(1 + \sin \theta)$ 且 $\cos \theta \ge 0$ 所以 $\cos \theta \ge \sin \theta + 1$

【法八】

$$\cos\theta$$
, $1+\sin\theta$ 在 $\frac{3\pi}{2}$, 2π 的值相同,且當 $\frac{3}{2}\pi \le \theta \le 2\pi$, $\cos\theta$ 圖形凹向下, $1+\sin\theta$ 圖形凹向上,所以 $\cos\theta \ge 1+\sin\theta$ 。 $\cos\theta \ge 1+\sin\theta \Leftrightarrow 3^{\cos\theta} \ge 3^{1+\sin\theta}$,得證。

【法九】

設 $(\cos \theta, \sin \theta)$ 為單位圓上一點(如右圖),且 $\frac{3}{2}\pi \le \theta \le 2\pi$ 。 根據三角形兩邊差小於第三邊,推得 $|\cos \theta| \ge 1 - |\sin \theta|$ 因 $\cos \theta \ge 0$, $\sin \theta \le 0$, 所以 $\cos \theta \ge 1 + \sin \theta$ $3^{\cos \theta} \ge 3^{1+\sin \theta}$,得證。

