Gramáticas Regulares

.)

EDUARDO FREIRE NAKAMURA

Instituto de Computação Universidade Federal do Amazonas nakamura@icomp.ufam.edu.br

¹Este material utiliza conteúdo das aulas fornecidas pelo Prof. Vilar da Câmara Neto (disponível em http://prof.vilarneto.com). ²Permissão de uso fornecida pelos autores.

 $^{^3}$ As figuras utilizadas neste material são de domínio público, disponíveis na Internet sem informações de direitos autorais.

- Os métodos de formalização e as operações básicas (repetição, fecho de Kleene, união, etc.) são uma ferramenta poderosa para a representação de linguagens formais
- No entanto, essas ferramentas podem não ser muito adequadas para a construção de linguagens
 - O Requerem experiência, intuição e inspiração
 - É fácil esquecer de certos detalhes (por exemplo, a presença ou ausência da palavra na linguagem)
 - Linguagens complexas são complicadas de se representar
 - É difícil de verificar se a descrição está 100% correta

- Gramáticas são formalismos especialmente designados para facilitar a construção de linguagens
 - A descrição pode ser feita a partir dos elementos básicos da linguagem (ex.: comandos, expressões, literais, estruturas)
 - A descrição é quebrada em diversas regras, e não montada em uma única expressão difícil de se ler
 - Acrescentar novos elementos à linguagem em geral é simples
 - É bem mais fácil verificar se a formalização está correta

Como é a cara de uma gramática?

4

 Eis um exemplo de uma gramática simples, capaz de gerar números binários inteiros (positivos, negativos e zero):

$$P \rightarrow SB$$

$$S \rightarrow \lambda \mid -$$

$$B \rightarrow 0B \mid 1B \mid 0 \mid 1$$

- Uma sequência de derivação começa com a sequência "P"
- Pode-se transformar qualquer pedaço da sequência atual em outros pedaços de acordo com as regras descritas
- Pode-se parar a qualquer momento quando a sequência só possui símbolos do alfabeto

Elementos de uma gramática

5

- Uma gramática constitui-se de três elementos principais:
 - Um conjunto de terminais, que são os símbolos que formam a linguagem (isto é, o alfabeto)
 - Um conjunto de variáveis ou não terminais, que são símbolos que não fazem parte da linguagem
 - Um conjunto de regras, que definem as transformações possíveis entre uma sequência de terminais e variáveis em outra sequência

Formas sentenciais

- Convenção adotada
 - As variáveis são letras maiúsculas (A, C, etc.)
 - Os demais símbolos são os terminais (a, b, etc.)
- Uma sequência de terminais e variáveis é chamada de forma sentencial
 - ACabCb
 - \circ P
 - aabbcc
 - AAcB

Regras

- Cada regra estabelece possíveis transformações para trechos de formas sentenciais. São escritas na forma seq₁ → seq₂
- Por exemplo, dada seguinte regra

$$A \rightarrow aB$$

- Isto é, ocorrências da variável A podem ser substituídas por aB
- Exemplos
 - o abAc pode ser transformada em abaBc
 - AccA pode ser transformada em aBccA ou em AccaB
 - o aBccA, por sua vez, pode ser transformada em aBccaB
 - o aB não pode ser transformada por esta regra

Regras

- 8
- Cada passo de transformação é chamado de derivação e é designado por forma₁ => forma₂
- Mantendo o exemplo anterior

$$A \rightarrow aB$$

as seguintes derivações são válidas

$$abAc \Rightarrow abaBc$$

$$AccA \Rightarrow aBccA$$

$$AccA \Rightarrow AccaB$$

$$aBccA \Rightarrow aBccaB$$

- Outros exemplos
 - \circ A $\rightarrow \lambda$ (sequência nula)
 - \circ $A \rightarrow aA$ (recursiva)
 - O $A \rightarrow OA \mid 1A \mid \lambda$ (multiplas regras para a mesma sequência)
- O objetivo de uma gramática é partir de uma forma sentencial contendo apenas uma variável, chamada de variável de partida, e utilizar as regras em sequência para gerar sentenças
- Cada sentença que pode ser gerada por uma gramática é uma palavra
- A linguagem gerada por uma gramática é o conjunto de todas as palavras que podem ser geradas pela gramática

Formalização

- Uma gramática G é uma quádrupla (V,Σ,R,P) , onde
 - **V** é o conjunto de variáveis;
 - Σ é o conjunto de terminais (isto é, o alfabeto das palavras geradas)
 - R é o conjunto de regras
 - P pertencente a V é a variável de partida

Gramática regular

- Uma Gramática Regular, ou GR, é uma gramática que possui certas restrições na forma de suas regras
- Em uma GR, as regras podem ter apenas uma das formas
 - \circ $A \rightarrow aB$
 - \circ $A \rightarrow a$
 - $\circ A \rightarrow \lambda$
- onde A e B são variáveis da gramática e $a \in \Sigma$
- Uma característica importante das GRs é que a qualquer momento a forma sentencial possui no máximo uma variável, e esta se encontra sempre no fim da forma sentencial

12

 Números binários inteiros não negativos

13

 Números binários inteiros não negativos

$$P \Rightarrow 0P$$
 (r1)
 $\Rightarrow 01P$ (r2)
 $\Rightarrow 011P$ (r2)
 $\Rightarrow 0110$ (r3)

14

 Números binários inteiros não negativos

$$\Rightarrow 0P \qquad (r1)$$

$$\Rightarrow 01P \qquad (r2)$$

$$\Rightarrow 011P \qquad (r2)$$

$$\Rightarrow 0110 \qquad (r3)$$

 Números binários inteiros não negativos

$$\Rightarrow 0P \qquad (r1)$$

$$\Rightarrow 01P \qquad (r2)$$

$$\Rightarrow 011P \qquad (r2)$$

$$\Rightarrow 0110 \qquad (r3)$$

16

 Números binários inteiros não negativos

$$P \Rightarrow 0P$$
 (r1)
 $\Rightarrow 01P$ (r2)
 $\Rightarrow 011P$ (r2)
 $\Rightarrow 0110$ (r3)

17

 Números binários inteiros não negativos

Como gerar a palavra 0110?

$$P \Rightarrow 0P$$
 (r1)

$$\Rightarrow 01P$$
 (r2)

$$\Rightarrow$$
 011 P (r2)

$$\Rightarrow$$
 0110 (r3)

$$P \Rightarrow 1P$$
 (r2)

$$\Rightarrow 10P$$
 (r1)

$$\Rightarrow$$
 101 P (r2)

$$\Rightarrow$$
 1011 (r4)

Transformando GRs em AFNs

- Antes de mais nada, vejamos a intuição por trás da transformação de GRs em AFNs, revendo as formas possíveis de regras
 - \circ $A \rightarrow aB$

Uma transição de um estado A para um estado B consumindo o símbolo a

 \circ $A \rightarrow a$

Uma transição de um estado A para um estado final Z sem saídas, consumindo o símbolo a

 \circ $A \rightarrow \lambda$

O estado A é final

A variável de partida é o estado inicial

19

 Dada a seguinte GR, gerar um AFN correspondente

$$P \rightarrow 0A \mid 0B \mid 1$$

$$A \rightarrow 0B \mid \lambda$$

$$B \rightarrow 0B \mid 1P$$

Conjunto de estados

- O Há uma regra que gera apenas um terminal $(P \rightarrow 1)$,
- Então temos que criar um estado final especial Z

20

 Dada a seguinte GR, gerar um AFN correspondente

$$P \rightarrow 0A \mid 0B \mid 1$$

 $A \rightarrow 0B \mid \lambda$
 $B \rightarrow 0B \mid 1P$

- Conjunto de estados
 - O Há uma regra que gera apenas um terminal $(P \rightarrow 1)$,
 - Então temos que criar um estado final especial Z

Transformando AFNs em GRs

21

 O processo contrário — transformar AFNs em GRs — é mais simples

- Os passos são
 - Os estados do AFN original representam as variáveis da GR gerada
 - A variável de partida será o estado inicial
 - Cada estado final A gera uma regra do tipo $A \rightarrow \lambda$
 - Cada transição de um estado A para um estado B consumindo um símbolo a gera uma regra do tipo $A \rightarrow aB$

- Variável de partida: A
- Conjunto de regras:

- Variável de partida: A
- Conjunto de regras:
 - $A \rightarrow$
 - $R \rightarrow$
 - $C \rightarrow$
 - $D \rightarrow$
 - $F \rightarrow$
 - *F* →

- Variável de partida: A
- Conjunto de regras:

$$A \rightarrow \lambda \mid 0B \mid 1D \mid 2D$$

$$B \rightarrow$$

$$C \rightarrow$$

$$D \rightarrow$$

- Variável de partida: A
- Conjunto de regras:

$$A \rightarrow \lambda \mid 0B \mid 1D \mid 2D$$

$$B \rightarrow 0B \mid 1C \mid 0D \mid 1D$$

$$D \rightarrow$$

- Variável de partida: A
- Conjunto de regras:

$$A \rightarrow \lambda \mid 0B \mid 1D \mid 2D$$

$$B \rightarrow 0B \mid 1C \mid 0D \mid 1D$$

$$C \rightarrow \lambda \mid 0E$$

$$D \rightarrow$$

$$E \rightarrow$$

- Variável de partida: A
- Conjunto de regras:

$$A \rightarrow \lambda \mid 0B \mid 1D \mid 2D$$

$$B \rightarrow 0B \mid 1C \mid 0D \mid 1D$$

$$C \rightarrow \lambda \mid 0E$$

$$D \rightarrow 0E \mid 2E$$

$$E \rightarrow$$

$$F \rightarrow$$

- Variável de partida: A
- Conjunto de regras:

$$A \rightarrow \lambda \mid 0B \mid 1D \mid 2D$$

$$B \rightarrow 0B \mid 1C \mid 0D \mid 1D$$

$$C \rightarrow \lambda \mid 0E$$

$$D \rightarrow 0E \mid 2E$$

$$E \rightarrow \lambda \mid 1B \mid 2F$$

$$F \rightarrow$$

- Variável de partida: A
- Conjunto de regras:

$$A \rightarrow \lambda \mid 0B \mid 1D \mid 2D$$

$$B \rightarrow 0B \mid 1C \mid 0D \mid 1D$$

$$C \rightarrow \lambda \mid 0E$$

$$D \rightarrow 0E \mid 2E$$

$$E \rightarrow \lambda \mid 1B \mid 2F$$

$$F \rightarrow 0E \mid 1C \mid 2F$$

Exercícios

30

- Faça uma GR que gere
 - 1. Palavras sobre {0,1} que terminem em 101
 - 2. Palavras sobre {0,1} que começam com 0 e terminam com 1
 - 3. Palavras sobre {0,1} que terminam em 0 ou 11
 - 4. Palavras sobre {0,1} que tenham um número par de 0s
 - 5. Palavras sobre {0,1} que tenham um número par de 0s e ímpar de 1s
- Converta as GRs acima em AFNs