Lecture #1.2

Chemical Reaction Engineering (CHE331A, 9 credits) Pre-req ESO201A

- Course Policy
- Course content

GOUTAM DEO CHEMICAL ENGINEERING

e-mail: goutam@iitk.ac.in

Tel: 0512-679-7363

Goals of Chemical Reaction Engineering

- Design Reactors by studying the rate and mechanisms of chemical reactions
- Conduct Chemical Reactions at controlled conditions to:
 - Maximize selectivity (multiple products: D and U)
 - Maximize yield (get the most out of the conversion)
 - Maximize energy efficiency
 - Minimize impact to the environment
- Develop quantitative understanding of the reaction
- Selecting appropriate reactions and executing them in a controlled fashion

A chemical reaction has occurred!

- Molecules of one or more species have lost their identity and are present in a new form
 - Change in kind or number of atoms in the compound, and/or
 - Change in structure or configuration of these atoms

- Three basic ways a species may lose its identity
- ○ Decomposition $H_3C-CH_3 \rightarrow H-H + H_2C=CH_2$
- -- Combination $N_2 + O_2 \rightarrow 2NO_1$
- _ o Isomerization $C_2H_5CH=CH_2 \rightarrow H_2C=C(CH_3)_2$

"Chemical Engineering" Thermodynamics set the stage

- ► $aA + bB \rightarrow cC + dD$
- Why did A react with B?
- \circ Think thermo $\rightarrow \Delta G$
- ▶ What is the extent of reaction?
 - Think equilibrium → extent of reaction
- Was there any heat evolved or required?
 - \circ Think energies \rightarrow Q, W and Δ H
- ► How quickly did they react?
 - Think rate → time required conversion

Time/Residence time

Reaction rate is the rate at which the species looses their identity

- ► Reaction rate (rate) is expressed as:
 - Rate of formation
 - Rate of disappearance
 - Net rate (Multiple reactions)
 - $_{\circ}$ Typical units are: $\frac{mot}{dm^3}$

- ► For example A → P (isomerization)
 - \circ r_{A} is the rate of formation of A
 - $_{\circ}$ $-r_{A}$ is the rate of disappearance of A
 - $\circ \; r_P$ is the rate of formation of P, $r_P = -r_A$

In general, r_j , is the rate of formation of species 'j'

 r_j is

- a function of temp, press, conc and type of catalyst (if used)
- Independent of the type of Reactor used
- An algebraic equation, e.g., $r_j = -k \cdot C_i C_j^2$
 - Other forms of the equation are possible
- Not a differential equation, e.g., rate is not $\frac{dC_A}{dt}$ $\frac{dC_A}{dt} = -r_A$ used to calculate the rate for certain conditions

