SONY

CXA2571N

RF Matrix Amplifier

Description

The CXA2571N is an IC developed for the RF signal processing of compact disc players.

Features

- Wide band RF signal processing
- RF system VCA circuit
- RF system equalizer (supports CAV mode)
- Supports pickups with built-in RF summing amplifier
- Low power consumption mode (EQ Pass mode)
- RW/ROM switching mode
- Center error amplifier
- Output DC level shift circuit

Functions

- RFAC summing amplifier, equalizer, VCA
- RFDC summing amplifier
- Focus error amplifier
- Tracking error amplifier
- · Automatic power control
- VC buffer amplifier (analog system, digital system)

Applications

CD-ROM/RW compatible systems

Structure

Bipolar silicon monolithic IC

Absolute Maximum ratings

 Supply voltage 	Vcc	7	V
• Operating temperature	Topr	-20 to +75	°C
Storage temperature	Tstg	-65 to +150	°С
 Allowable power dissipation 	ation		

PD

620

mW

Operating Conditions

 Supply voltage 	Vcc – GND	3.0 to 5.5	V
 Operating temperature 	Topr	-20 to +75	°C

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Connected Circuit Diagram

Pin Description

Pin NO.	Symbol	I/O	Description
1	LD	Out	APC amplifier output.
2	PD	In	APC amplifier input.
3	EQ_IN	In	RFAC system VCA block and EQ block input.
4	AC_SUM	Out	RFAC system RF SUM output.
5	GND	In	Ground.
6	А	In	A signal input.
7	В	In	B signal input.
8	С	In	C signal input.
9	D	In	D signal input.
10	Е	In	E signal input.
11	F	In	F signal input.
12	SW	In	Mode switching signal input.
13	CET	In	CE system hold time constant adjustment.
14	CEP	_	CE amplifier non-inverted input.
15	DVcc	In	DVcc.
16	RFAC	Out	RFAC signal output.
17	DVC	Out	DVC output.
18	FE	Out	Focus error signal output.
19	FEI	_	FE amplifier virtual ground.
20	TE	Out	Tracking error signal output.
21	CE	Out	Center error signal output.
22	CEM	_	CE amplifier virtual ground.
23	Vcc	In	Vcc.
24	RFG	In	RFAC system VCA block low-frequency gain adjustment.
25	BST	In	EQ boost amount adjustment range.
26	VFC	In	EQ cut-off frequency adjustment.
27	RFC	In	EQ cut-off frequency adjustment.
28	VC	Out	VC voltage output.
29	RFDCO	Out	RFDC signal output.
30	RFDCI		RFDC amplifier virtual ground.

Pin Description and Equivalent Circuit

Pin No.	Symbol	I/O	Equivalent circuit	Description
1	LD	0	10k \$ 10k \$ 1k mm	APC amplifier output.
2	PD	I	20k × 20k × 7/1/1	APC amplifier input.
3	EQ_IN	I	1.1k \$\frac{1}{8} \tau_1.1k \$\frac{1}{8} \tau_1.1k \$\frac{1}{8} \tau_1.2k \$\tau_1.2k \$\tau_1.2k \$\tau_1.2k \$\tau_1	Equalizer circuit input.
4	AC_SUM	0	1.6k 1.6k 4	RFAC summing amplifier output.
5	GND	_	_	Ground.

Pin No.	Symbol	I/O	Equivalent circuit	Description
6	А	I		
7	В	I	6 100μA 100μA 30k 7/7	RF summing amplifier and
8	С	I	8 100µA 100µA 47k	focus error amplifier input.
9	D	I	9	
10	E	I	27k 27k 27k	Tracking error amplifier input.
11	F	I		3
20	TE	0		Tracking error amplifier output.
12	SW	I	200k W 200k 200k W 200k W	CD-ROM/RW switching input. RW when connected to Vcc, ROM when connected to GND.
15	Vcc	_	_	Power supply.
16	RFAC	0	2mA W 16	RFAC amplifier output.
17	DVC	0	150k 25 17 150k 17	(DVcc + GND)/2 voltage output.

Pin No.	Symbol	I/O	Equivalent circuit	Description
18	FE	0	50k	Focus error amplifier output.
19	FEI	I	50k 	Focus error amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 18.
13	CET	I	76k 124 13 4k W 13	Center error amplifier time constant adjustment.
14	CEP	I	22 ± 124	Center error amplifier non-inverted input.
21	CE	0	40k 124 W 21	Center error amplifier input.
22	СЕМ	I		Center error amplifier inverted input.
23	Vcc	_	_	Vcc. (AVcc)
24	RFG	I	20k × VC VC 100μA	Sets the RFAC low-frequency gain.
25	BST	I	25 20k VC VC	Input for adjusting the equalizer circuit boost amount.
26	VFC	I	20k × VC VC 100μA	Input for adjusting the equalizer circuit boost frequency with the control voltage.

Pin No.	Symbol	I/O	Equivalent circuit	Description
27	RFC	I	27 124 1.0V	Input for adjusting the equalizer circuit boost frequency with external resistance.
28	VC	0	150k 25 A 28 150k 25 M 28	(Vcc + GND)/2 voltage output.
29	RFDC	0	1mA A	RFDC amplifier output. This pin serves as the eye pattern check point.
30	RFDCI	ı	1.5k VC W (29) 124 777 30 777 777	RFDC amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 29.

(AVcc = 1.9V, AVee = -1.9V, DVcc = 1.9V, DVee = -1.9V)

Electrical Characteristics

1	noit	No.	4				Swit	ch cc	Switch conditions	sus				Bia	Bias conditions	dition	s			Measure-	Measurement	2	_			
Meas ment	Ennc	Measurement item	Symbol	S 1S	S2 S3	S S4	SS	9S	S7 S	88 89	9 \$10 \$11		S12 V1 amplitude V1 frequency	frequency	E1	E2	E3	E4	E5	ment pin	conditions	i E			Max.	
-		Current consumption (Active, EQ On)	lcc_Aeqon												00	00	8	۸0	70	23	Pin current	30	20	20	mA	
7		Current consumption (Active, EQ Off)	lcc_Aeqoff															1.9V		23	Pin current	15	8	45	шA	
က		Current consumption (DVcc)	lcc_DVcc															8		15	Pin current	0.2	9.0	1.0	ш	
4		Current consumption (Sleep)	lcc_Slp								Hi-Z									23	Pin current	3.5	2	7.5	шA	
2		SUM offset voltage	ACSUM_Ofst																	4	Pin voltage	-1.2	9.0-	0	>	
9	M∩	SUM frequency gain	Gsum				0	0	0	0		0	0.1Vp-p	100kHz						4	20 log (Vout/Vin)	14.0	16.0	18.0	쁑	
~	C S	SUM frequency response	Fsum				0	0	0	0		0	0.1Vp-p	30MHz	-					4	20 log (Vout/Vin) – Gsum	-3.0	-1.5	-0.5	쁑	
ω	BF/	SUM maximum output voltage H	Vsum_H				0	0	0	0					0.3V					4	Pin voltage	0.9	1.25	ı	>	
6		SUM maximum output voltage L	Vsum_L				0	0	0	0					-0.3V					4	Pin voltage	ı	-0.5	-0.3	>	
10		Offset voltage ROM	AC_OfstROM												Λ0					16	Pin voltage	-0.3	0	0.3	>	
7		Offset voltage RW	AC_OfstRW								0						-			16	Pin voltage	-0.3	0	0.3	>	
12		Low-frequency gain ROM_min	Gac_ROM1		0							1.	1.6Vp-p	100kHz			-1.0V			16	20 log (Vout/Vin) – Gac_ROM2	-11.0	-8.0	-5.0	дB	
13		Low-frequency gain ROM_cnt	Gac_ROM2		0							0	0.8Vp-p 100kHz	00kHz			0			16	20 log (Vout/Vin)	-1.0	2.0	5.0	дB	
4		Low-frequency gain ROM_max	Gac_ROM3		0							0.	0.3Vp-p 100kHz	00kHz			1.0V			16	20 log (Vout/Vin) – Gac_ROM2	5.0	8.0	11.0	В	
15		Low-frequency gain RW_min	Gac_RW1		0						0	0.	0.4Vp-p 100kHz	00kHz			-1.0V			16	20 log (Vout/Vin) – Gac_RW2	-11.0	-8.0	-5.0	dВ	
16	C EG	Low-frequency gain RW_cnt	Gac_RW2		0						0	0.	0.2Vp-p 100kHz	00kHz			8			16	20 log (Vout/Vin) – Gac_ROM2	9.0	12.0	15.0	В	
17)A H	Low-frequency gain RW_max	Gac_RW3		0						0	92	75mVp-p 100kHz	00kHz			1.0V			16	20 log (Vout/Vin) – Gac_RW2	5.0	8.0	11.0	dВ	
18	l	Low-frequency gain EQ_off	Gac_EQoff		0							0.	0.8Vp-p 100kHz	00kHz			8		>	16	20 log (Vout/Vin)	-1.0	2.0	5.0	В	
19		Frequency response Min_L	Fac_MinL		0							0	0.2Vp-p	10MHz					-1.9V	16	20 log (Vout/Vin) – Gac_ROM2	3.5	0.9	8.5	쁑	
20		Frequency response Min_H	Fac_MinH		0							0	0.2Vp-p 3	30MHz				>	1.9V	16	20 log (Vout/Vin) – Gac_ROM2	3.5	0.9	8.5	쁑	
21		Frequency response EQ_OFF	Fac_ECoff		0							0	0.8Vp-p	30MHz	-			1.9V	8	16	20 log (Vout/Vin) – Gac_EQoff	-2.0	-1.0	-0.5	용	
22		Maximum output voltage H	Vac_H		0	0									2			8		16	Pin voltage – AC_OfstROM	9.0	0.8	1.0	>	
23		Maximum output voltage L	Vac_L		0	0									-2N					16	Pin voltage – AC_OfstROM	-1.0	-0.8	9.0-	>	
24		Offset voltage ROM	DC_OfstROM												00					58	Pin voltage	-150	0	150	/m	
25	DC	Offset voltage RW	DC_OfstRW								0									58	Pin voltage	-150	0	150	Λm	
26	ВЕ	Low-frequency gain ROM	Gdc_ROM				0	0	0	0		0.	0.1Vp-p 100kHz	00kHz						29	20 log (Vout/Vin)	16.5	19.5	22.5	dB	
27		Low-frequency gain RW	Gdc_RW				0	0	0	0	0	25	25mVp-p 100kHz	00kHz	-	\	-	-	-	29	20 log (Vout/Vin)	29.0	32.0	33.0	ВB	

:±		쁑	8	>	>	٦ ٧	\ \	용	용	æ	용	용	дB	В	용	>	>	\ \	m/	dB	дB	дB	дB	dВ	В	В	В	>	>
+id I	Max.	-0.5	-3.0	1	9.0-	150	150	19.5	19.5	31.0	31.0	0	0	-0.5	-0.5	8.	7.	150	150	23.0	23.0	35.0	35.0	1.5	1.5	-0.5	-0.5	ı	1.
		-1.5	-7.0	1.6	-1.0	0	0	16.5	16.5	28.0	28.0	-2.0	-2.0	-2.0	-2.0	1.7	-1.5	0	0	20.0	20.0	32.0	32.0	0	0	-2.0	-2.0	1.7	-1.5
Z.		-3.0	-9.0	1.3	1	-150	-150	13.5	13.5	25.0	25.0	-3.0	-3.0	-4.0	-4.0	1.2	ı	-150	-150	17.0	17.0	29.0	29.0	-1.5	-1.5	-4.5	-4.5	1.2	ı
Measurement	conditions	20 log (Vout/Vin) – Gdc_ROM	20 log (Vout/Vin) – Gdc_RW	Pin voltage	Pin voltage	Pin voltage	Pin voltage	20 log (Vout/Vin)	20 log (Vout/Vin)	20 log (Vout/Vin)	20 log (Vout/Vin)	20 log (Vout/Vin) – Gfe_ROM1	20 log (Vout/Vin) – Gfe_ROM2	20 log (Vout/Vin) – Gfe_RW1	20 log (Vout/Vin) – Gfe_RW2	Pin voltage	Pin voltage	Pin voltage	Pin voltage	20 log (Vout/Vin)	20 log (Vout/Vin)	20 log (Vout/Vin)	20 log (Vout/Vin)	20 log (Vout/Vin) – Gte_ROM1	20 log (Vout/Vin) – Gte_ROM2	20 log (Vout/Vin) – Gte_RW1	20 log (Vout/Vin) – Gte_RW2	Pin voltage	Pin voltage
Measure-	ment pin	29	59	59	59	18	18	18	18	18	18	18	18	18	18	18	18	20	20	20	20	20	20	20	20	20	20	20	20
	E5	0																											-
	E4	8																											-
	E3	70																											-
litions	E2	>0																											-
Bias conditions	E1	8	-	0.25V	-0.25V	70									-	0.3V	-0.37	70									-	0.3V	-0.3V
Bias			10MHz	0	7			10kHz	10kHz	10kHz	10kHz	ZHXC	100kHz	50kHz	50kHz	0	T			10kHz	10kHz	10kHz	10kHz	200kHz	ZHXC	ZHXC	ZHXC	0	Г
	S12 V1 amplitude V1 frequency	0.1Vp-p 10MHz	25mVp-p 10I					0.1Vp-p 10	0.1Vp-p 10	25mVp-p 10	25mVp-p 10	0.1Vp-p 100kHz	0.1Vp-p 100	25mVp-p 50	25mVp-p 50					0.1Vp-p 10	0.1Vp-p 10	25mVp-p 10	25mVp-p 10	0.1Vp-p 200	0.1Vp-p 200kHz	25mVp-p 200kHz	25mVp-p 200kHz		
	2 V1 an	0.1	25rr					0.1	0.1	25m	25m	0.1	0.1	25m	25m					0.1	0.1	25m	25m	0.1	0.1	25m	25m		
			_											_								_	_			_	_		
	S10 S11		0				0			0	0			0	0				0		0	0	0		0	0	0	0	
	S 6S																			0		0		0		0			0
suo	88	0	0	0	0				0		0		0		0	0													
Switch conditions	S7	0	0	0	0			0		0		0		0			0												
itch c	Se	0	0	0	0				0		0		0		0	0													
Sw	4 S5	0	0	0	0			0		0		0		0			0												
	S3 S4																												
	S2 S																												
	S1																												
loden, o	Symbol	Fdc_ROM	Fdc_RW	Vdc_H	Vdc_L	FE_OfstROM	FE_OfstRW	Gfe_ROM1	Gfe_ROM2	Gfe_RW1	Gfe_RW2	Ffe_ROM1	Ffe_ROM2	Ffe_RW1	Ffe_RW2	Vfe_H	Vfe_L	TE_OfstROM	TE_OfstRW	Gte_ROM1	Gte_ROM2	Gte_RW1	Gte_RW2	Fte_ROM1	Fte_ROM2	Fte_RW1	Fte_RW2	Vte_H	Vte_L
Most transmission	ואפסטו פוופוו ופווו	Frequency response ROM	Frequency response RW	Maximum output voltage H	Maximum output voltage L	Offset voltage ROM	Offset voltage RW	Low-frequency gain ROM1	Low-frequency gain ROM2	Low-frequency gain RW1	Low-frequency gain RW2	Frequency response ROM1	Frequency response ROM2	Frequency response RW1	Frequency response RW2	Maximum output voltage H	Maximum output voltage L	Offset voltage ROM	Offset voltage RW	Low-frequency gain ROM1	Low-frequency gain ROM2	Low-frequency gain RW1	Low-frequency gain RW2	Frequency response ROM1	Frequency response ROM2	Frequency response RW1	Frequency response RW2	Maximum output voltage H	Maximum output voltage L
<u> </u>	ment Fund			RFI	Ι_	ري ا		-		··		IH H	_			ري ا		<u> </u>	10	(0	_	~		ΙΤ		ري ا		-	
-earne	Meas	28	29	30	31	32	33	34	35	36	37	38	39	40	4	42	43	44	45	46	47	48	49	20	51	52	53	54	22

1 "	uoita	o design				Ś	witch	Switch conditions	tions					Ϊ́Θ	Bias conditions	dition	Si			Measure-	Measurement	Z	É	Mox	-	
un∃	Measurement nem	Symbol	S	S2 S	S3 S	S4 S!	S5 S6	3 S7	88	8 88	310 S1	11 S12	S10 S11 S12 V1 amplitude V1 frequency	V1 frequency	<u> </u>	E2	E3	E4	E5	ment pin	conditions	<u>:</u> ∑	Min. Typ. Max. Onin	Max.		
	Offset voltage ROM	CE_OfstROM													70	00	8	8	8	21	Pin voltage	-200	0	200	۳ ک	
	Offset voltage RW	CE_OfstRW									0				70					21	Pin voltage	-200	0	200	m/	
	I/O characteristics ROM1	Vce_ROM1				٥	0		0				0.2Vp-p	1MHz	0.17					21	Pin voltage – CE_OfstROM	-1.0	-0.65	-0.3	>	
	I/O characteristics ROM2	Vce_ROM2					0	0					0.2Vp-p	1MHz	0.17					21	Pin voltage – CE_OfstROM	0.3	0.65	1.0	>	
	I/O characteristics ROM3	Vce_ROM3				0	0	0	0				0.2Vp-p	1MHz	0.17					21	Pin voltage – CE_OfstROM	9.1	0	0.1	>	
	UO characteristics RW1	Vce_RW1					0		0		0		50mVp-p	1MHz	25mV					21	Pin voltage - CE_OfstRW		-1.0 -0.65 -0.3	-0.3	>	
	I/O characteristics RW2	Vce_RW2					0	0			0		50mVp-p	1MHz	25mV					21	Pin voltage – CE_OfstRW	0.3	0.65	1.0	>	
	I/O characteristics RW3	Vce_RW3				0	0	0	0		0	_	50mVp-p	1MHz	25mV					21	Pin voltage – CE_OfstRW	9.7	0	0.1	>	
	Maximum output voltage H	Vce_H					0	0							0.5V					21	Pin voltage	1.1	1.7	ı	>	
	Maximum output voltage L	Vce_L				0			0						0.5V					21	Pin voltage	ı	-1.7	-1.1	>	
	Output voltage 1	Vapc1		0											۸0	-				1	Input where output voltage = 0V	110	160	210	Λm	
	Output voltage 2	Vapc2		0												∆m0£—				1	Pin voltage	0.7	1.0	1.4	>	
Juv	Output voltage 3	Vapc3		0												30mV				1	Pin voltage	-1.4	-1.0	-0.7	>	
	APC OFF voltage	Vapc_off		0							Hi-Z	Z-				0V				1	Pin voltage	1.4	1.6	I	>	
	Maximum output current	lapc_max	0	0																1	Pin voltage	-0.2	0	9.0	>	
J/\∇	S Output voltage	Vavc										0								28	Pin voltage	-100	0 (100	mV	
JAU	S Output voltage	NdVC													-	-	-	-	-	17	Pin voltage	-100	0	100	/m	

Electrical Characteristics Measurement Circuit

Application Circuits

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Description of Functions

• RFAC

The RF signal input by connecting capacitance to the EQ_IN pin is equalized, arithmetically amplified and then output from the RFAC pin.

The EQ can be bypassed by connecting the BST control pin (Pin 25) to Vcc. In this case only the EQ block enters sleep mode and the low power consumption mode (slim mode) is activated. The low-frequency gain is the same value as for EQ ON mode.

The RF_SUM input dynamic range is VC ± 300mV (typ.).

If RF (summing signal) is present at the pickup output pin, input the addition output signal to the EQ_IN pin (Pin 3) coupled by capacitance.

When using a pickup without a summing output function, perform addition with the AC SUM block and then input the signal to the EQ_IN pin coupled by capacitance.

RW/ROM switching is done by the VCA block, so either input method can be used without problem.

The RW gain is 12dB higher than the ROM gain.

The VCA low-frequency gain can be adjusted by the RFG pin (Pin 24) voltage.

The control voltage vs. low-frequency gain characteristics are shown in the graph to the right.

The RFAC pin (Pin 16) is an NPN transistor emitter follower output.

The maximum drive current is approximately 2mA.

If the load capacitance distorts the output waveform, increase the drive current.

Connect resistance between Pin 16 and GND.

SONY CXA2571N

• EQ

The diagram to the left shows the EQ internal block diagram.

The EQ consists of a combination of HPF and LPF. The HPF and LPF transmittance is the Bessel function. The boost gain can be adjusted by adjusting the HPF gain.

Out The boost frequency is adjusted by the RFC external resistance value and the VFC control voltage value.

RFC resistance value: The cut-off frequency fo of each

filter is adjusted by the Pin 27 external resistance value.
The VFC voltage can be varied using this fo as the reference.

VFC voltage: fo can be changed by the voltage

applied to Pin 26.

The boost gain can be adjusted by the BST pin control voltage.

The control characteristics are shown in the graph below.

Pin 25 voltage

The cut-off frequency control characteristics are shown in the graph below.

• APC (Automatic Power Control)

When the laser diode is driven by a constant current, the optical power output has extremely large negative temperature characteristics. Therefore, the current must be controlled to maintain the monitor photodiode output at a constant level. This control is performed by the APC function.

Focus Error

The signals input to the A and C pins and the B and D pins are arithmetically amplified and the focus error signal is output.

This circuit has RW/ROM switching, low-frequency gain adjustment and offset addition functions.

$$FE = Gain \{ (B + D) - (A + C) \}$$

Low-frequency gain ROM: 16dB

RW: 28dB

Cut-off frequency fc (typ.) ROM: 400kHz

RW: 300kHz

Tracking Error

The signals input to the E and F pins are arithmetically amplified and the tracking error signal is output. This circuit has RW/ROM switching and offset addition functions.

VC Buffer

This outputs the VC ((1/2) Vcc) voltage.

The maximum output current is approximately ±3mA. Use this voltage as the analog system VC voltage.

DVC Buffer

This outputs the 1/2 DVcc voltage.

The maximum output current is approximately ±3mA. Use this voltage as the digital system DC voltage. The output DC voltage of each system is level shifted using the DVC voltage as the reference.

SONY CXA2571N

• RFDC

The signals input via the A, B, C and D pins are added, amplified and the RFDC signal is output. RW/ROM switching and low-frequency gain adjustment are possible.

RFDC = Gain (A + B + C + D)

Low-frequency gain ROM: 20dB (17MHz)

RW: 32dB (5.5MHz)

fc (Typ.) ROM: 12MHz

RW: 5MHz

The gain can be adjusted by the external resistance connected between Pins 29 and 30.

The output voltage offset can be adjusted by the R (OFST) resistance.

• Center Error

The signals input to the A and D pins and the B and C pins are arithmetically amplified and the center error signal is output.

RW/ROM switching, low-frequency gain adjustment and offset adjustment are possible.

The bottom hold time constant can be adjusted by the CET (Pin 13) external resistance value.

The (B + C) - (A + D) signal is arithmetically amplified.

Low-frequency gain ROM: 14dB

RW: 26dB

Output Offset Shift

The RFDC, FE, TE and CE output DC voltages are level shifted to the digital VC voltage (DVC).

The reference voltage of this IC is the VC voltage, and only the output reference voltage changes.

The maximum output voltage of each output signal should be kept to the digital Vcc voltage (DVcc) or less in order to protect the DSP_IC.

The AVC and DVC voltages are arithmetically amplified and output as the VOFST voltage.

The VOFST voltage serves as the level shift reference voltage, and is distributed to each system.

• SW

This controls the laser (APC) on/off, active/sleep mode, and RW/ROM mode switching. Switching is controlled by the voltage applied to the SW pin (Pin 12).

The VC buffer is kept active even in sleep mode.

In the function block, BGR and MODE_SW are always set to active mode.

Item Control voltage	APC	Active/Sleep	RW/ROM
Vcc	ON	Active	RW
VC or Hi-Z	OFF	Sleep	_
GND	ON	Active	ROM

Notes on Operation

[RFAC signal]

Stabilizing the RFAC signal

The RFAC system (RFSUM + EQ) is comprised entirely of non-inverted function blocks.

This is in order to support pickups with built-in RFSUM.

Therefore, if the voltage gain of each block is increased, a feedback loop is formed over the entire RFAC system causing the RFAC signal to become unstable (oscillate).

In these cases, it is recommended to lower the EQ frequency response and the boost gain. This has a large effect on the board (power supply, I/O signal cross talk, etc.) loop. The RFAC signal easily becomes unstable if the VCA gain is increased, the EQ boost frequency is set to a high frequency, the EQ boost amount is increased, etc.

The VCA gain is low in ROM mode, so the RFAC signal is stable.

The area where the RFAC signal becomes unstable is thought to vary for each set, as this is greatly affected by the board loop as noted above.

Proposed stabilization measures

The board and other loop characteristics can be changed by adding external capacitance as noted below.

This has a particularly large effect on the stabilization when using RFSUM.

Add capacitance of 10pF to 20pF

[Limiter circuit]

This IC has a limiter circuit to protect the input range of the rear-end IC (DSP) during excessive voltage output for each signal (RFDC, FE, TE, CE).

When the limiter circuit operates, the maximum output voltage is limited to the DVcc voltage or less.

However, when limiting the excessive voltage output, the ON/OFF operation of the limiter circuit causes the maximum output side (clipped portion of the output waveform) to oscillate slightly.

Example of Representative Characteristics

SONY CXA2571N

Package Outline Unit: mm

PACKAGE STRUCTURE

SONY CODE	SSOP-30P-L01
EIAJ CODE	SSOP030-P-0056
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER/PALLADIUM PLATING
LEAD MATERIAL	42/COPPER ALLOY
PACKAGE MASS	0.1g

NOTE: PALLADIUM PLATING

This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).