Pressure Measurement

Prof. A. Agrawal IIT Bombay

Introduction

- Pressure is not a fundamental quantity (rather derived from force and area)
- However, very accurate instruments are available for calibration of less accurate instruments
- Standards are (as per the range):
 - Several hundred MPa to medium vacuum (~0.1 mm Hg):
 Precision Hg column (manometer)/ Deadweight piston gauge
 - Low vacuum (10⁻¹ to 10⁻³ mm Hg): McLeod gauge
 - Very low to ultra-low vacuum (< 10⁻³ mm Hg): Several accurate orifices + McLeod gauge

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Various forms of manometer

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

3

Manometer

- Unlike deadweight gauge, manometer is deflection type (and not null-type) gauge
- It has continuous (and not step) output
- · However, they have comparable accuracies
- Manometers tend to become very long at large pressures, and therefore become unwieldy
- Here, h = $(p_1-p_2)/\rho g$ where h is difference in height, ρ is density of manometer fluid
- Water and Hg are the most common manometer fluids

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Refinements/Corrections in Manometer

For high accuracy:

- · Thermal expansion of scale needs to be considered
- Variation of manometer fluid density with temperature needs to be considered
- Local value of g should be determined and employed

Additional sources of error include:

- Non-verticality of the tubes
- Difficulty in reading h due to meniscus formed by capillarity

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

5

Various forms of manometer (contd.)

- Well-type manometer
 - Well area very large compared to the tube
 - Small change in zero-level is suitably compensated
 - However, compensation is dependent on the variation in cross-sectional area
 - Less accurate as compared to U tube manometer

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Various forms of manometer (contd.)

- Barometer
 - Here h gives the absolute pressure, as the inside pressure is essentially zero (actually equals the vapor pressure of Hg, about 0.7 Pa absolute at 21 °C)
- Inclined manometer
 - Increased sensitivity by inclining
 - Thus, greater motion of liquid for a given change in vertical-height

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Pirani Gauge (Thermal Conductivity Gauge)

- Basic Idea: Change in gas pressure will affect heat loss from a heated wire (because of change in density of the surrounding gas). Heat loss affects the wire temperature and therefore its electrical resistance. Pick-up change in electrical resistance by using a resistance bridge.
- <u>Construction</u>: Platinum filament enclosed in a chamber. Change in wire resistance calibrated in terms of chamber pressure. A compensating arm used to minimize variations due to ambient temperature changes, etc.

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Thermal Conductivity Gauge

Two variants possible of thermal conductivity gauge possible:

- Resistance change picked up by a resistance bridge Pirani gauge
- Temperature gauge picked up thermocouples welded on the wire – Thermocouple-type conductivity gauge
- Capable of measuring pressures in the range of 1 to 1000 torr (10² – 10⁵ Pa)
- 1 torr = 1/760 of atmospheric pressure = 133.3 Pa

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

11

Triode

- Air is removed from tube, so electrons can move freely
- Electrons are attracted to positively charged plate (P)
- Magnitude of current can be controlled by a voltage applied between cathode and grid (G) (made of wiremesh). The grid acts like a gate for the electrons.
- Note: a low power varying (AC) signal applied to the grid can control a much more powerful plate current, resulting in amplification

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Ionization Gauges

- Consists of heated filament, positively biased grid, negatively biased plate in an envelope evacuated by the pressure to be measured
- Grid draws current from the heated filament; collision between electrons and gas molecules cause ionization of molecules
- Positively charged molecules are attracted to the plate of the tube
- This causes current flow in the external circuit
- Magnitude of current depends on gas pressure

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

13

Ionization Gauges

- Used for measuring extremely low pressures (1 – 10⁻⁶ torr or 100 – 10⁻⁴ Pa)
- · Disadvantages of ionization gauge:
 - Pressure of more than 1 torr causes rapid deterioration of filament, resulting in short life
 - Electron bombardment is a function of filament temperature, which therefore requires careful control of filament current

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Elastic Transducers for Pressure Measurement

- Flexible metallic elements of the form Bourdon tube, diaphragm, bellow is used as the sensitive element in pressure transducer
- Deflection of the element is connected to pointer/ scale readout through linkages/gears

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

15

Elastic Transducers for Pressure Measurement (contd.)

- Bourdon tube has a tube of non-circular cross-section
- Pressure difference causes the tube to attempt to attain a circular cross-section
- This leads to distortion, and curvilinear translation/ rotation of the free end

- · Motion of the free end gives the desired output
- Spiral/helical configurations give more output motion for a given pressure
- Twisted tube is soft in rotation, but stiff in radial direction (reduces sensitivity to shock and vibration)

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Elastic Diaphragm Based Pressure Gauges

- Many dynamic pressure measuring gauges use an elastic diaphragm as primary pressure transducer
- Diaphragm can be flat or corrugated

- Flat type together with a secondary electrical transducer allows measurement of very small diaphragm deflections
- · Corrugated type used when deflections are large
- (Secondary) Electrical transducer can be resistance, capacitance, inductance or piezo based.

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

17

Flat Diaphragm Pressure Gauges

- Generally, maximum deflection is limited to 30% of diaphragm thickness
 - To either maintain linear pressure-displacement relation or stress consideration
- Resistance strain gauge can be used to measure strain in terms of pressure
 - Note, small area available for mounting
 - Gauge with small lengths used
 - Change in resistance measured using a Wheatstone bridge

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Relevant formula

Pressure difference versus deflection:

$$p = \frac{16Et^4}{3R^4(1-v^2)} \left[\frac{y_c}{t} + 0.488 \left(\frac{y_c}{t} \right)^3 \right]$$

- p: pressure difference across the diaphgram; E modulus of elasticity; t: thickness; R: radius
- The deflection at any point is given as:

$$y = \frac{3p(1-v^2)(R^2-r^2)^2}{16Et^3}$$

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

19

Corrugated Diaphragm Pressure Gauges

- Corrugated diaphragm used in larger diameter than flat types
- Convolutions to diaphragm however increases complexity of theoretical design
- Corrugation permits increased linear deflections and reduced stresses
- However, large size and deflections reduce the dynamic response
 - Employed mostly in static applications

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Differential pressure cell with inductancetype secondary transducer

- Variable inductance has been successfully used as a form of secondary transducer
- Flexing of the diaphragm due to applied pressure causes it to move toward one pole piece and away from the other
 - Causes change in relative inductances
 - An inductance bridge circuit used to pick up this change
- Typical range: 0-7 bar

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

21

Deadweight Gauge

 The gauge to be calibrated (less accurate gauge) is connected to a chamber filled with liquid

- The chamber pressure is adjusted by pump and bleed valve
- · Weights applied on piston-cylinder
- When the piston and weights appear to float, the gauge pressure equals the weight applied divided by piston area

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay

Refinements/Corrections in Deadweight Gauge

- Frictional force between piston-cylinder must be reduced to a minimum
- Small clearance between piston-cylinder leads to axial flow of fluid from high-pressure end to low-pressure end. This movement leads to viscous shear force, which tends to support part of the deadweight
- Small clearance also means that the area to be employed in pressure calculation is not clear
- · Corrections needed for:
 - Temperature effect on areas of piston and cylinder
 - Local gravity condition
 - Buoyancy effect

Prof. A. Agrawal, ME226, Mechanical Measurements, IIT Bombay