EXAMEN

Jeudi 21 décembre 2017 - Durée : 2h

Exercice 1 (Question de cours):

- 1. En oncer le Théorème du point fixe concernant les fonctions contractantes sur un intervalle fermé I.
- 2. Démontrer ce théorème.

Exercice 2: Etudier la limite de $(x+1)\exp\left(\frac{1}{x+1}\right)-x\exp\left(\frac{1}{x}\right)$ quand $x\to +\infty$. On pourra s'aider de l'égalité des accroissements finis (en justifiant son utilisation). Correction: Soit la fonction définie sur $]0,+\infty[$ par $f(x)=x\exp\left(\frac{1}{x}\right)$. Soit x>0 fixé. f est continue sur [x,x+1] et dérivable sur]x,x+1[. Donc par égalité des accroissements finis, il existe $c_x\in]x,x+1[$ tel que $f(x+1)-f(x)=f'(c_x)(x+1-x)=f'(c_x)$. Or, pour tout x>0, $f'(x)=\exp\left(\frac{1}{x}\right)\left(1-\frac{1}{x}\right)$. Comme x>0, and x>0 quand x>0. Ainsi, x>0 quand x>0 et donc x>0 quand x>0.

Exercice 3 : Soit a < b et f une fonction de [a, b] à valeurs dans \mathbb{R} , supposée de classe C^2 sur [a, b] et trois fois dérivable sur]a, b[. Le but de cet exercice est de montrer qu'il existe au moins un réel $c \in]a, b[$ tel que

$$f(b) = f(a) + (b-a)\frac{f'(a) + f'(b)}{2} - \frac{(b-a)^3}{12}f^{(3)}(c).$$
 (1)

Pour $\lambda \in \mathbb{R}$ fixé, soit la fonction

$$\varphi_{\lambda}(x) = f(b) - f(x) - (b - x) \frac{f'(x) + f'(b)}{2} + \lambda (b - x)^{3}.$$

1. Que peut-on dire de la régularité de φ_{λ} sur l'intervalle [a,b] (continuité, dérivabilité, etc.)?

Correction: La fonction φ_{λ} est de classe \mathcal{C}^1 sur [a,b] et deux fois dérivable sur [a,b].

- 2. Montrer qu'il est possible de choisir $\lambda \in \mathbb{R}$ (que l'on déterminera) pour lequel on peut montrer l'existence de $u \in]a,b[$ tel que $\varphi'_{\lambda}(u)=0$. Cette constante λ est fixée dans la suite de cet exercice.
 - Correction: La fonction φ_{λ} est continue sur [a,b] et dérivable sur [a,b]. De plus, on a $\varphi_{\lambda}(b) = 0$. Posons $\lambda = \frac{1}{(b-a)^3} \left(f(a) f(b) + (b-a) \frac{f'(a) + f'(b)}{2} \right)$. Pour cette valeur de λ , on a $\varphi_{\lambda}(a) = 0$. Pour cette valeur de λ , par application du théorème de Rolle, il existe $u \in]a,b[$ tel que $\varphi'_{\lambda}(u) = 0$.
- 3. Calculer $\varphi'_{\lambda}(x)$ pour tout $x \in [u, b]$ et en déduire l'existence d'un $c \in]u, b[$ tel que $\varphi''_{\lambda}(c) = 0$.

Correction: La fonction φ_{λ} est dérivable sur [a,b] et on a $\varphi'_{\lambda}(x) = \frac{f'(b)-f'(x)}{2} - (b-x)\frac{f''(x)}{2} - 3\lambda(b-x)^2$. La fonction φ'_{λ} est continue sur [u,b] et dérivable sur [u,b] et vérifie $\varphi'_{\lambda}(u) = \varphi'_{\lambda}(b) = 0$. Par application du théorème de Rolle, il existe $c \in]u,b[$ tel que $\varphi''_{\lambda}(c) = 0$.

- 4. En déduire (1).
 - Correction: Dérivons encore une fois φ'_{λ} sur $]a,b[:\varphi''_{\lambda}(x)=-(b-x)\frac{f^{(3)}(x)}{2}+6\lambda(b-x)$. Ainsi pour x=c, il vient $\lambda=\frac{f^{(3)}(c)}{12}$. Remplaçant cette valeur dans la définition de φ_{λ} et en prenant x=a pour lequel on a $\varphi_{\lambda}(a)=0$, on obtient le résultat demandé.
- 5. Interpréter graphiquement l'égalité (1) dans le cas où f est une fonction polynomiale de degré 2.

Correction: Pour une fonction polynomiale de degré 2, l'identité devient $\frac{f(b)-f(a)}{b-a} = \frac{f'(a)+f'(b)}{2}$. Géométriquement, cela signifie que la pente de la corde entre a et b est égale à la moyenne des pentes des tangentes en a et b.

Exercice 4: Soit $0 = t_0 < t_1 < t_2 < \ldots < t_{p-1} < t_p = 1$ une subdivision de [0,1] et $\varphi : [0,1] \to \mathbb{R}$ une fonction définie sur [0,1]. On dit que φ est une fonction en escalier adaptée à la subdivision $(t_i)_{0 \le i \le p}$ si, pour tout $i = 1, \ldots, p$, φ est une fonction constante sur $]t_{i-1}, t_i[$.

Soit f une application continue sur [0,1]. Le but de cet exercice est de montrer que pour tout $\varepsilon > 0$, il existe des fonctions en escalier φ et ψ telles que

$$\forall x \in [0, 1], \ \varphi(x) \le f(x) \le \psi(x), \tag{2}$$

$$\forall x \in [0, 1], \ 0 < \psi(x) - \varphi(x) < \varepsilon. \tag{3}$$

Dans tout cet exercice, $\varepsilon > 0$ est fixé.

- 1. Pour tout $i=0,\ldots,n-1$, justifier l'existence de $m_i:=\inf_{t\in\left[\frac{i}{n},\frac{i+1}{n}\right]}f(t)$ et $M_i:=\sup_{t\in\left[\frac{i}{n},\frac{i+1}{n}\right]}f(t)$ et de $x_i,y_i\in\left[\frac{i}{n},\frac{i+1}{n}\right]$ tels que $f(x_i)=m_i$ et $f(y_i)=M_i$. Correction: La fonction f est continue sur le segment $\left[\frac{i}{n},\frac{i+1}{n}\right]$. Elle est donc bornée sur ce segment et y atteint ses bornes.
- 2. En s'aidant de la question précédente, construire deux fonctions en escalier φ et ψ adaptées à la subdivision $(0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1)$ qui vérifient l'encadrement (2). Correction: Pour tout $i = 0, \dots, n-1$, pour tout $x \in \left[\frac{i}{n}, \frac{i1+}{n}\right[$, on définit $\psi(x) = M_i$ et $\varphi(x) = m_i$. De plus on pose $\psi(1) = f(1)$ et $\varphi(1) = f(1)$. Par construction, ces deux fonctions vérifient $\varphi(x) \leq f(x) \leq \psi(x)$ pour tout $x \in [0, 1]$.
- 3. Montrer qu'il existe $n_0 \geq 1$ tel que pour tout $n \geq n_0$, pour tout $i \in \{0, \ldots, n-1\}$ et pour tout $x, y \in \left[\frac{i}{n}, \frac{i+1}{n}\right]$, $|f(x) f(y)| < \varepsilon$. Correction: La fonction f est continue sur le segment [0,1] donc uniformément continue, par théorème de Heine. Ainsi, pour le $\varepsilon > 0$ donné en début d'énoncé, il existe $\eta > 0$ tel que pour tout $x, y \in [0,1]$, si $|x-y| < \eta$ alors $|f(x) f(y)| < \varepsilon$. Posons $n_0 = \lfloor \frac{1}{\eta} \rfloor + 1$. Pour tout $n \geq n_0$, on a $n > \frac{1}{\eta}$ et donc $\frac{1}{n} < \eta$. Ainsi, pour tout $i = 0, \ldots, n-1$, pour tout i = 0
- 4. Déduire des questions précédentes l'inégalité (3). Correction: Appliquant la question précédente à $x = x_i$ et $y = y_i$, il vient $|f(x_i) - f(y_i)| < \varepsilon$. Or $f(x_i) = m_i = \varphi(x)$ pour tout $x \in [i/n, (i+1)/n[$ et $f(y_i) = M_i = \psi(x)$ pour tout $x \in [i/n, (i+1)/n[$. Ceci implique donc que $0 \le \psi(x) - \varphi(x) < \varepsilon$ pour tout $x \in [0, 1[$ et l'inégalité est triviale pour x = 1.

Exercice 5 : Soit l'équation différentielle suivante :

$$x^{2}y'(x) + (1 - 2x)y(x) = x^{2}.$$
 (4)

- 1. Résoudre cette équation sur $]-\infty,0[$ et sur $]0,+\infty[$. Correction: Résolvons tout d'abord l'équation homogène : $x^2y'(x)+(1-2x)y(x)=0$. Sur ces deux intervalles, ceci est équivalent à $y'(x)+\frac{1-2x}{x^2}y(x)=0$. Une primitive de $x\mapsto \frac{1-2x}{x^2}$ est donnée par $x\mapsto -\frac{1}{x}-2\ln(|x|)$. Ainsi, toutes les solutions de l'équation homogène sont de la forme $y(x)=\lambda x^2e^{\frac{1}{x}}$. Cherchons maintenant une solution particulière de l'équation avec second membre : on la cherche par la méthode de variation de la constante sous la forme $y_0(x)=\lambda(x)x^2e^{\frac{1}{x}}$. Mettant y_0 dans l'équation, il vient $\lambda'(x)=\frac{1}{x^2}e^{-\frac{1}{x}}$ et donc $\lambda(x)=e^{-\frac{1}{x}}$ convient. Ainsi, $y_0(x)=x^2$ fournit une solution particulière à l'équation. Toute solution de l'équation est donc de la forme $y(x)=\lambda x^2e^{\frac{1}{x}}+x^2$ pour λ une constante réelle quelconque.
- 2. Existe-t-il des solutions définies sur $\mathbb R$ tout entier? Si oui, lesquelles? Vous justifierez précisément votre réponse.

Correction : On procède par analyse/synthèse. Analyse : si une telle solution y existe, elle est nécessairement de la forme $y(x) = \lambda x^2 e^{\frac{1}{x}} + x^2$ pour x < 0 et $y(x) = \mu x^2 e^{\frac{1}{x}} + x^2$ pour x > 0, pour deux constantes réelles λ et μ . Une telle fonction est nécessairement continue en 0. Pour x > 0, $\mu x^2 e^{\frac{1}{x}} + x^2$ diverge pour $x \to 0$ si $\mu \neq 0$. Donc nécessairement $\mu = 0$ et dans ce cas $y(x) \to 0$ quand x > 0 et $x \to 0$. De plus, pour tout λ , $y(x) \to 0$ pour $x \to 0$ et $x \to 0$. Dans ce cas, définir y(0) = 0 donne une fonction continue sur $\mathbb R$ tout entier. Vérifions maintenant qu'une telle fonction est dérivable sur $\mathbb R^*$, il suffit donc d'étudier la dérivabilité en 0. On forme le taux d'accroissement : $\frac{y(x)-y(0)}{x-0} = x$ pour x > 0 et vaut $\lambda x e^{\frac{1}{x}} + x$ pour x < 0. Dans les deux cas, cette quantité tend vers 0 pour $x \to 0$ et donc y est dérivable en 0 de dérivée nulle.

Synthèse : Soit λ une constante quelconque et la fonction définie par $y(x) = \lambda x^2 e^{\frac{1}{x}} + x^2$, pour x < 0, y(0) = 0 et $y(x) = x^2$ pour x > 0. Une telle fonction est dérivable sur \mathbb{R} et vérifie bien l'équation initiale, par construction.

Fin de l'épreuve.