כל הנחיות המטלות הקודמות תקפות גם כאן, פרט לתאריך ההגשה המופיע בתיבת ההגשה עצמה.

1. נתונות השפות הבאות:

$$L_{1} = \{a^{2n}b^{3n}|n \ge 1\}, \qquad L_{2} = \{ww^{R}ww^{R}|w \in \{a,b\}^{*}\},$$

$$L_{3} = \{a^{n}b^{m}c^{m}d^{l}|0 \le n \le l, m \ge 1\}$$

$$L_{4} = \{a^{n}b^{2n} \cup a^{2n}b^{n}|1 \le n\}$$

א. (10 נקודות) הראו כי L_1 חסרת הקשר ע"י בניית דח"ה.

פתרון מוצע:

 L_1 א. נבנה דח"ה לשפה

:כאשר כללי הגזירה מוגדרים כך כאשר כללי הגזירה מוגדרים כך $G = \{(a,b),(S),S,P\}$ $S \rightarrow aaSbbb|aabbb$

. ב. (10 נקודות) הראו כי L_2 אינה חסרת הקשר ע"י למת הניפוח לשפות חסרות הקשר ב.

פתרון מוצע:

 $z=a^nb^nb^na^na^nb^nb^na^n$ נניח בשלילה כי L_2 שפה ח"ה ויהי n הקבוע המובטח מהלמה. תהי בשלילה כי $|z|=8n\geq n$ ולכן קיים פירוק z=uvwxy ולכן קיים פירוק

?vwx היכן נמצא

$$a_1^{n^9}b_2^{n^{10}}b_3^{n^{11}}a_4^{n^{12}}a_5^{n^{13}}b_6^{n^{14}}b_7^{n^{15}}a_8^n$$

 $z^i=a^{n+|vx|}b^nb^na^nb^na^nb^na^nb^n\notin L_2$ עבור מקרה 1: נבחר נבחר ונקבל ונקבל

מקרים 2,3,4,5,6,7,8 זהים (עד כדי החלפת המיקום והאות).

עבור מקרה 9: נבחר i=0 ונקבל

$$z^0 = a^l b^k b^n a^n b^n a^n a^n a^n b^n
otin L_2$$
עבור $k < n$ ו/או $k < n$ ו

מקרים 10,11,12,13,14,15 זהים (עד כדי החלפת המיקום).

. אוטומט מחסנית המקבל ע"י מצב מקבל ע"י בניית אוטומט חסרת בניית אוטומט מחסנית הראו כי L_3

ניקח את האוטומט שבנינו בהרצאה לשפה המקבלת על ידי ריקון, ניצור מצב q_0 חדש שמכניס תחתית ניקח את האוטומט שבנינו בהרצאה לשפה מסע ϵ שמרוקן את bot3). השקילות ביקשה שמכל מצב נמתח מסע ϵ שמרוקן את bot3). השקילות ביקשה שמכל מצב נמתח מסעי ϵ רק מהם (זו אנחנו יודעים שרק ממצבים q_2 והלאה יש סיכוי שהמחסנית תתרוקן, ולכן נמתח מסעי ϵ רק מהם (זו לא טעות למתוח מכולם, פשוט שיפור קטן):

. אוטומט מחסנית המקבל ע"י ריקון חסרת L_4 ססרת הקשר ע"י בניית אוטומט חסנית המקבל ע"י ריקון.

פתרון מוצע:

תחילה נבצע מסע ϵ כדי לבחור בצורה אי-דטרמיניסטית לאיזה כיוון הולכים באוטומט. למעלה נטפל ב תחילה נבצע מסע ϵ כדי לבחור בצורה אי-דטרמיניסטית לאיזה כיוון הולכים באוטומט. למעלה נטפל כל a^nb^{2n} : על כל שני a^nb^{2n} מוודא כי מרוקנים את המחסנית דווקא ב a^nb^n : למטה נטפל ב $a^{2n}b^n$ החץ האחרון $a^{2n}b^n$ מוודא כי מרוקנים את המחסנית דווקא ב a^nb^n : ולא ב a^nb^n אכן נרוקן שני a^nb^n

2. (15 נקודות) בנו דח"ה (G) לשפה הבאה:

$$L = \{ w \in \{a, b\}^* | |w| \equiv 1 \; (mod \; 3) \land w = w^R \}$$

פתרון מוצע:

:ה"ה L_1 נבנה ל

$$G = \{(S, X), (a, b), S, P\}$$

כאשר כללי הגזירה מוגדרים כך:

 $S \to aaaSaaa|aabSbaa|abaSaba|baaSaab|abbSbba|babSbab|bbaSabb|bbbSbbb|X|a|bX \to aaaa|abba|babb|bbbb$

הסבר קל:

.1 $(mod\ 3)$ גוזר שישיות המקיימות $w=w^R$, ולבסוף גוזר אות בודדת כדי להגיע ל $mod\ 3$ אבל פרט ל $mod\ 6$ אפשר גם לעצור ב $mod\ 6$ ולכן צריך את המשתנה $mod\ 5$ שיגזור ארבע אותיות. ואז אנחנו נוחתים ב $mod\ 3$ באות בודדת ($mod\ 6$) באות בודדת (מילה באורך 1).

3. יהיו שתי השפות הבאות:

$$L_4 = \{a^i b^j c^k | i \neq j \ Or \ j \neq k\}$$

$$L_5 = \{a^n b^m | 0 < n \le m \le 3n\}$$

א. (15 נקודות) בנו לאחת מהן דח"ה.

פתרון מוצע:

 $(L_f(M)$ נבנה א"מ ל $:L_4$ (מקבל

:הסבר קצר

.(החצי התחתון) $j \neq k$ בין לבין (החצי העליון) (החצי בורה א"ד בין $i \neq j$

בכל חלק כזה יש (בה"כ) או i>j או i>j בהם בהתאם.

 $:L_4$ נבנה דח"ה ל

:באשר כללי הדקדוק הם כאשר כללי הדקדוק הם $G = (\{S, M, N, A, B, C\}, \{a, b, c\}, S, P)$

$$S \to MC | AN$$

$$M \rightarrow aMb|aA|bB$$

$$N \rightarrow bNc|bB|cC$$

$$A \rightarrow aA | \epsilon$$

$$B \to bB | \epsilon$$

$$C \to cC | \epsilon$$

:הסבר קצר

נבחר בהתחלה בצורה האם הולכים לכיוון של $i \neq j$ או לכיוון של $j \neq k$. המשתנים MC גורמים לאי-שיוויון בין j,k. המשתנים AN גורמים לאי-שיוויון בין

ב. (10 נקודות) בנו לשנייה מהן אוטומט מחסנית.
$$(L_5 = \{a^n b^m | 0 < n \le m \le 3n\})$$

פתרון מוצע:

 $:L_5$ נבנה דח"ה לשפה

$$G_5 = \{(S), (a,b), S, P\}$$

 $S \to aSb|aSbb|aSbb|ab|abb|abbb$

b יש לגזור b בודד או שני b או שלושה a הסבר: על כל

 $:(L_{\epsilon}(F))$ נבנה א"מ לשפה L_{5} , המקבל לפי ריקון

הסבר: בכל צעד בוחרים בצורה אי-דטרמיניסטית האם להכניס A או AA או AA, ועל כל b מוציאים בכר: בכל צעד בוחרים בצורה אי-דטרמיניסטית האם להכניס A בודד. כשהמחסנית ריקה, יש השוואה בין הכמויות.

- עם שתי מחסנית אוטומט (כלומר, אוטומט $\widetilde{M}=(Q,\Sigma,q_0,\delta,F,\Gamma_1,\Gamma_2,\perp_1,\perp_2)$.4 מחסניות). קבלה ע"י מצב מקבל כרגיל, או ע"י ריקון שתי המחסניות.
 - א. L_2 משאלה 1 ממודל אוטומט ממודל השפה בנו אוטומט ממודל אועבור השפה L_2
 - ב. (10 נקודות) בנו אוטומט ממודל זה עבור השפה

$$L_6 = \{a^n b^n c^n d^n e^{2n} | n \ge 1\}$$

מסקנה: מודל זה חזק יותר מאוטומט מחסנית רגיל.

פתרון מוצע:

תחילה נגדיר כיצד מתקדמים באוטומט מחסנית כזה:

$$\delta$$
: $(Q \times \Sigma \times \Gamma \times \Gamma)$ $-> 2^{Q \times \Gamma^* \times \Gamma^*}$

 $L_2 = \{ww^Rww^R|w \in a, b^*\}$ נבנה אוטומט מהמודל החדש לשפה

 $\sigma, \sigma_1, \sigma_2 \in \{a, b\}$ בשלל השורות הבאות מתקיים

$$\delta(q_0, \sigma, \bot_1, \bot_2) = (q_0, \sigma \bot_1, \bot_2)$$

$$\delta(q_0, \sigma_1, \sigma_2, \bot_2) = (q_0, \sigma_1\sigma_2, \bot_2)$$

$$\delta(q_0,\epsilon,\sigma,\bot_2)=(q_1,\sigma,\bot_2)$$

$$\begin{split} &\delta(q_1,\sigma_1,\sigma_1,\bot_2) = (q_1,\epsilon,\sigma_1\,\bot_2) \\ &\delta(q_1,\sigma_1,\sigma_1,\sigma_2) = (q_1,\epsilon,\sigma_1\sigma_2) \\ &\delta(q_1,\epsilon,\bot_1,\sigma) = (q_2,\bot_1,\sigma) \\ &\delta(q_2,\sigma_1,\bot_1,\sigma_1) = (q_2,\sigma_1,\epsilon) \\ &\delta(q_2,\sigma_1,\sigma_2,\sigma_1) = (q_2,\sigma_1\sigma_2,\epsilon) \\ &\delta(q_2,\epsilon,\sigma,\bot_2) = (q_3,\sigma,\bot_2) \\ &\delta(q_3,\sigma_1,\sigma_1,\bot_2) = (q_3,\epsilon,\bot_2) \\ &\delta(q_3,\epsilon,\bot_1,\bot_2) = (q_4,\epsilon,\epsilon) \end{split}$$

הסבר: במצב q_0 נכניס את w למחסנית הראשונה. עם סיום המילה, בצורה אי-דטרמיניסיטית, נעבור מבר: במצב q_1 נוודא כי המשך המילה הוא אכן w^R ע"י השוואה עם תוכן המחסנית, ובמקביל נמניס את q_1 למחסנית השנייה. עם סיום w^R נעבור במסע אפסילון למצב q_2 . במצב זה נקרא את w^R ע"י השוואה מול המחסנית השנייה, וגם נכניס למחסנית הראשונה. עם סיום w^R נעבור במסע אפסילון למצב q_3 שבו נוודא שהחלק האחרון הוא אכן w^R ע"י השוואה מול המחסנית הראשונה.

לבסוף נעבור במסע אפסילון שירוקן את שתי התחתיות למצב q_4 (אפשר להגדיר אותו כמצב מקבל, ואז לא צריך לרוקן את שתי התחתיות, ואפשר לא להגדיר מצב מקבל אלא פשוט לסיים ע"י ריקון שתי התחתיות).

$$M'=(\{q_0,q_1,q_2,q_3,q_4\},\{a,b\},q_0,\delta,\{a,b\},\bot_1,\bot_2)$$
ב. (10 נקודות) בנו אוטומט ממודל זה עבור השפה $L_6=\{a^nb^nc^nd^ne^{2n}|n\geq 1\}$

פתרון מוצע:

כל שצריך לוודא כאן הוא השוואת הכמויות, ולכן יספיק להשתמש בסוג אחד של אותיות למחסנית.

$$\begin{split} &\delta(q_0,a,\bot_1,\bot_2) = (q_0,\bot_1 \ A,\bot_2) \\ &\delta(q_0,a,A,\bot_2) = (q_0,AA,\bot_2) \\ &\delta(q_0,b,A,\bot_2) = (q_1,\epsilon,A\ \bot_2) \\ &\delta(q_1,b,A,A) = (q_1,\epsilon,AA) \\ &\delta(q_1,c,\bot_1,A) = (q_2,A,\epsilon) \\ &\delta(q_2,c,A,A) = (q_2,AA,\epsilon) \\ &\delta(q_2,d,A,\bot_2) = (q_3,\epsilon,AA) \\ &\delta(q_3,d,A,A) = (q_3,\epsilon,AAA) \\ &\delta(q_3,e,\bot_1,A) = (q_4,\bot_1,\epsilon) \\ &\delta(q_4,\bot_1,A) = (q_4,\bot_1,\epsilon) \\ &\delta(q_4,\bot_1,\bot_2) = (q_4,\epsilon,\epsilon) \end{split}$$

הסבר קצר: בכל מצב ממלאים מחסנית אחת ומרוקנים את השנייה. כאשר מגיעים לאות d, מכניסים כמות כפולה בכל הפעלת של d, שכן צריך להשוות מול e^{2n} .

Exercise) (ארבעת האלגוריתמים!) (ארבעת ההלגוריתמים!) (10 נקודות) שאלה 59 מחוברת התרגילים של הטכניון (ארבעת האלגוריתמים!) (Booklet

פתרון מוצע:

$$S \rightarrow ab \mid BBa$$

 $A \rightarrow CB \mid C$
 $B \rightarrow CCa \mid A \mid ab$
 $C \rightarrow Ba \mid A \mid \epsilon$

הפעלת האלגוריתם לסילוק משתנים שאינם טרמינליים לא משנה, כי כל המשתנים הם טרמינליים.

.S-הפעלת האלגוריתם לסילוק סימנים לא ישיגים גם לא רלוונטי כרגע – לכל הסימנים ניתן להגיע מ

 $: \underline{\epsilon}$ לכן נתחיל מהפעלת האלגוריתם לסילוק כללי

. המשתנה $\mathcal{C} \to \epsilon$ אפיס שכן הוא אחד מכללי הגזירה המשתנה \mathcal{C}

 $A o C o \epsilon$ גם המשתנה A אפיס שכן קיימת סדרת הגזירה

 $B o A o \mathcal{C} o \epsilon$ גם המשתנה B אפיס שכן קיימת סדרת הגזירה

 $.N \coloneqq \{A, B, C\}$ ולכן

כעת נעבור על כללי הגזירה כשם שלמדנו באלגוריתם:

 $S \rightarrow Ba \mid BBa \mid a$ מוחלף בכללים הבאים: $S \rightarrow BBa$

 $A \rightarrow C \mid B \mid CB$ מוחלף בכללים הבאים: $A \rightarrow CB$

 $(A
ightarrow \epsilon$ נשאר (לא יוצרים את הכלל $A
ightarrow \mathcal{C}$

 $B \to CCa \mid Ca \mid a$ מוחלף ב $B \to CCa$

 $(B
ightarrow \epsilon$ נשאר (לא יוצרים את הכלל B
ightarrow A

 $C \rightarrow Ba \mid a \mid a$ מוחלף ל $C \rightarrow Ba$

 $(\mathcal{C} \to \epsilon$ נשאר (לא יוצרים את הכלל $\mathcal{C} \to A$

לכן הדקדוק כרגע מכיל את הכללים הבאים:

$$S \to Ba|BBa|a$$
, $A \to C|B|CB$, $B \to CCa|Ca|a|A$, $C \to Ba|a|A$

כעת נפעיל את האלגוריתם לסילוק כללי יחידה.

$$P' \coloneqq \{A \to \alpha | \alpha \neq V^+ \land A \to \alpha \in P\} \cup \{A \to \alpha | \alpha \neq V^+ \land A \to^+ B \land B \to \alpha\}$$

בין כל המשתנים יש מעגלים (פרט ל-(S)). נבדוק מהם הכללים בהם משתנה גוזר משהו שאינו משתנה:

$$C \rightarrow Ba|a$$
, $B \rightarrow CCa|Ca|a$

ולכן נקבל את הכללים הבאים:

 $A \rightarrow Ba|a|CCa|Ca|BaCCa|BaCa|Baa|aCCa|aCa|aa$

 $B \to CCa|Ca|a|Ba$

 $C \rightarrow Ba|a|CCa|Ca$

S. נשארו ללא שינוי, שכן אין כלל יחידה מ-S

לכן כרגע הדקדוק מכיל את הכללים הבאים:

 $A \rightarrow Ba|a|CCa|Ca|BaCCa|BaCa|Baa|aCCa|aCa|aa$

 $S \to Ba|BBa|a$, $B \to CCa|Ca|a|Ba$, $C \to Ba|a|CCa|Ca$

נפעיל את האלגוריתם לסילוק סימנים שאינם ישיגים:

$$V = \{S\}, \qquad T = \phi$$
 $V = \{S, B\}, \qquad T = \{a\}$
 $V = \{S, B, C\}, \qquad T = \{a\}$
 $V = \{S, B, C\}, \qquad T = \{a\}$

ולכן האלגוריתם עצר. המשתנה A אינו ישיג, ולכן מוחקים גם את כל כללי הגזירה שלו.

נותרו עם הדקדוק המפושט הבא:

$$G = (\{S, B, C\}, \{a\}, S, P)$$

P:
$$S \rightarrow Ba|BBa|a$$
. $B \rightarrow CCa|Ca|a|Ba$, $C \rightarrow Ba|a|CCa|Ca$

. כל המשתנים טרמינליים, כל הסימנים ישיגים, אין כללי אין כללי יחידה. כל המשתנים טרמינליים, כל המימנים ישיגים, אין

שימו לב: קיבלנו $B=\mathcal{C}$. זה לא מפריע. לא למדנו אלגוריתם שבו נצמצם אותם לכלל יחיד, ולכן זוהי התשובה הסופית.