4	T .	1	1 .			
1.	In t	he	bine	omial	expansion	ot

$$\left(1 + \frac{12n}{5}x\right)^n$$

the coefficients of x^2 and x^3 are equal and non-zero.

(a) Find the possible values of n.

(4)

(b) State, giving a reason, which value of *n* gives a valid expansion when $x = \frac{1}{2}$

(2)

(Total 6 marks)

2. (a) For |y| < 1, write down the binomial series expansion of $(1 - y)^{-2}$ in ascending powers of y up to and including the term in y^3 .

(1)

(b) Hence, or otherwise, show that

$$1 + \frac{2x}{1+x} + \frac{3x^2}{(1+x)^2} + \ldots + \frac{rx^{r-1}}{(1+x)^{r-1}} + \ldots$$

can be written in the form $(a + x)^n$. Write down the values of the integers a and n.

(4)

(c) Find the set of values of x for which the series in part (b) is convergent.

(3)

3	(a) (i)	Write down	the binomial	ceriec	evnancion	αf
J.	(a) (1)	WIIIC GOWII	the omomia	SCITCS	CAPansion	ΟI

$$\left(1+\frac{2}{n}\right)^n \qquad n \in \mathbb{N}, n > 2$$

in powers of $\left(\frac{2}{n}\right)$ up to and including the term in $\left(\frac{2}{n}\right)^3$

(ii) Hence prove that, for
$$n \in \mathbb{N}$$
, $n \ge 3$

$$\left(1+\frac{2}{n}\right)^n \geqslant \frac{19}{3}-\frac{6}{n}$$

(3)

(b) Use the binomial series expansion of
$$\left(1 - \frac{x}{4}\right)^{\frac{1}{2}}$$
 to show that $\sqrt{3} < \frac{7}{4}$

(4)

$$f(x) = \left(1 + \frac{2}{x}\right)^x - 3^{\frac{x}{6}}$$
 $x \in \mathbb{R}, x > 0$

Given that the function f(x) is continuous and that $\sqrt[6]{3} > \frac{6}{5}$

(c) prove that
$$f(x) = 0$$
 has a root in the interval [9, 10]

(5)

(+S1)

4. (a) Find the binomial series expansion for $(4 + y)^{\frac{1}{2}}$ in ascending powers of y up to and including the term in y^3 . Simplify the coefficient of each term.

(3)

(b) Hence show that the binomial series expansion for $(4+5x+x^2)^{\frac{1}{2}}$ in ascending powers of x up to and including the term in x^3 is

$$2 + \frac{5x}{4} - \frac{9x^2}{64} + \frac{45x^3}{512} \tag{3}$$

- (c) Show that the binomial series expansion of $(4+5x+x^2)^{\frac{1}{2}}$ will converge for $-\frac{1}{2} \leqslant x \leqslant \frac{1}{2}$ (6)
- (d) Use the result in part (b) to estimate

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{4 + 5x + x^2} \, \mathrm{d}x$$

Give your answer as a single fraction.

(3)

(Total 15 marks)