

School of Information Technology, KMUTT

Huntington Postulates

- 1a) closure w.r.t. + __1b) closure w.r.t. •
- 2a) x + 0 = x 2b) $x \cdot 1 = x$
- 3a) x + y = y + x 3b) xy = yx
 - commutative
- 4a) x(y+z) = xy + xz 4b) x+yz = (x+y)(x+z)
 - distributive
- 5a) x + x' = 1 5b) $x \cdot x' = 0$
- 6) Let B be a set of Boolean elements, there exist at least two elements x, y ∈ B s.t. x≠y

Duality

- Every algebraic expression deducible from the postulates of Boolean algebra remains valid if the operators and identity elements are interchanged.
 - O AND ⇔ OR
 - o 0 ⇔ 1
- Example:
 - O Postulate 2a) x + 0 = x, thus 2b) $x \cdot 1 = x$
 - Postulate 4a) x(y+z) = xy + xz, thus by duality \rightarrow 4b) x+yz = (x+y)(x+z)

Other Basic Theorems

Theorem 1: Idempotent

(a)
$$x + x = x$$

(b)
$$x \cdot x = x$$

Theorem 2

(a)
$$x + 1 = 1$$

(b)
$$x \cdot 0 = 0$$

■ Theorem 3: Involution $\rightarrow (x')' = x$

Theorem 4: Associative

(a)
$$x+(y+z) = (x+y)+z$$

(b)
$$x(yz) = (xy)z$$

Theorem 5: DeMorgan

(a)
$$(x+y)' = x'y'$$

(b)
$$(xy)' = x' + y'$$

Theorem 6: Absorption

(a)
$$x + xy = x$$

(b)
$$x(x+y) = x$$

Boolean to Gate Mapping

- When a Boolean expression is implemented with logic gates
 - Each term requires a gate
 - Each variable in a term becomes an input to the gate
 - We call a variable within a term a "literal"
 - Example: xy' + x'z
 - Number of terms =
 - Number of variables = ______
 - Number of literals = ______

Simplifying Boolean Expressions

Recall $f_2 = x'y'z + x'yz + xy'$, which can be simplified as

=
$$x'z(y'+y) + xy'$$
 \rightarrow Post. 4a)—distributive
= $x'z(1) + xy'$ \rightarrow Post. 5a)
= $x'z + xy'$

Consensus Theorem

$$XY + X'Z + YZ = XY + X'Z$$

- Given a pair of terms for which a variable appears in one term and its complement in another, the consensus term is formed by multiplying the two original terms together, leaving out the selected variable and its complement.
 - the consensus of ab and a'c is bc
 - o abd and $b'de' \rightarrow (ad)(de') \rightarrow ade'$
 - o ab'd and $a'bd' \rightarrow (b'd)(bd') \rightarrow 0$
- In using the consensus theorem to simplify Boolean expressions, the consensus term is the eliminated term

Simplify a'b' + ac + bc' + b'c + ab (using Consensus Theorem)

Simplification by Adding Redundant Terms

- Often, redundant terms can be inserted into a Boolean expression so as to eliminate and/or combine with other terms simplifying the expression as a result
- Redundant terms...
 - Adding xx'
 - Multiplying (x+x')
 - Adding consensus term
 - o etc.

Simplify wx + xy + x'z' + wy'z'

$$wx + xy + x'z' + wy'z'$$

$$= wx + xy + x'z' + wy'z' + \dots$$

$$\Rightarrow \text{ by consensus theorem}$$

$$=$$

$$=$$

$$=$$

$$= wx + xy + x'z'$$

Minterms and Maxterms

- Minterms—a minterm of n variables is a product of n literals in which each variable appears exactly once in either true or complemented form, but not both
 - Each minterm consists of n variables with an AND operation
 - For n variables, there exist a total of 2ⁿ possible minterms
- Maxterms—similar to minterms, but combined with an OR operation instead

Min/Maxterms for three variables

L			Minterms		Maxterms	
X	У	Z	Term	Designation	Term	Designation
0	0	0	ХУZ	m_0	X+y+z	M_{O}
0	0	1	x'y'z	m_1	x+y+z'	<i>M</i> ₁
0	1	0	x'yz'	m_2	X+y'+Z	M_2
0	1	1	Хуz	m_3	x+y'+z'	M_3
1	0	0	xy'z'	m_4	x'+y+z	M_4
1	0	1	xy'z	m_5	X'+y+Z'	M_5
1	1	0	xyz'	m_6	x'+y'+z	M_6
1	1	1	xyz	m ₇	X+Y+Z	M_7

Note: 1. There are 8 minterms and maxterms (because n = 3)

- 2. Each variable in a minterm is primed when the corresponding bit is 0
- 3. Each variable in a maxterm is primed when the corresponding bit is 1
- 4. $m_i = (M_i)'$

Canonical Form

- Boolean functions expressed as
 - a sum of minterms, or
 - a product of maxterms

are said to be in canonical form

- To express a Boolean function in canonical form, simply
 - OR all minterms that produce a '1' in the function, or
 - AND all maxterms that produce a '0'

From the truth table, write f_1 , f_2 in canonical form

Using minterms:

$$f_1 =$$

$$f_2$$
=

Using maxterms:

$$f_1 =$$

$$f_2 =$$

X	У	Z	f ₁	f_2
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
/1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Minterm Expansion

Express f(a,b,c) = a + b'c in a sum of minterms a is missing b and c, thus

- a = a(b+b') = ab + ab'
- ab(c+c')+ab'(c+c') = abc+abc'+ab'c+ab'c'

b'c is missing a, thus

b'c(a+a') = ab'c+a'b'c

Answer:

$$f = a'b'c + ab'c' + abc' + abc' + abc'$$

$$= () = \sum()$$

Maxterm Expansion

- Express f = xy + x'z in a product of maxterms
 - O Distributive law $\rightarrow a+bc = (a+b)(a+c)$

$$= (xy+x')(xy+z) = (x'+x)(x'+y)(x+z)(y+z)$$

$$= (x'+y)(x+z)(y+z)$$

Each OR term is missing one variable

$$(x'+y) = (x'+y+zz') = (x'+y+z)(x'+y+z')$$

- (y+z) =

Answer:

$$f = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')$$
= () = \(\Pi(x)\)

Conversion between Canonical Forms

For a Boolean function *f* expressed in one canonical form, the other canonical form may be obtained by:

- \circ m \Leftrightarrow M or $\Sigma \Leftrightarrow \Pi$
- present indices missing indices

Examples:

$$f = m_1 + m_4 + m_5 + m_6 + m_7 = M_0 M_2 M_3$$

$$g = \prod (0,2,4,5) = \sum (1,3,6,7)$$

$$h(x,y) = \sum (0,1) = \prod ($$

Standard Forms

- A canonical form requires that
 - 1) the expression be written as a
 - sum of products, or
 - product of sums
 - 2) each product/sum term has the same number of literals, and each variable appears exactly once
- When Requirement (2) does not hold true, a canonical form becomes a standard form
- Examples:
 - o $f_1 = y' + xy + x'yz'$ → sum of products (sop)
 - o $f_2 = x(x'+z)(x'+y+z')$ > product of sums (pos)
 - o $f_3 = ab + c(d+e) \rightarrow$ why is it not in a standard form?

Other Logic

- So far, we have focused on AND, OR, NOT
- Other logic operators also exist, e.g.
 - NAND, NOR, XOR, XNOR, Buffer
- NAND—AND followed by NOT (Inverter)

NAND
$$f = (xy)^r$$
 $f = (xy)^r$ $f = (xy)^r$

NOR—OR followed by NOT (Inverter)

XOR, XNOR, Buffer

XOR—Exclusive OR

Exclusive-OR (XOR)
$$x \longrightarrow F$$
 $F = xy' + x'y$ $0 \ 0 \ 0$ 0 0 0 0 1 1 1 0 1 1 1 0 1

XNOR—Exclusive NOR or Equivalence

Exclusive-NOR or equivalence
$$y = F = xy + x'y'$$
 $x = (x \oplus y)'$ $x = (x \oplus y)'$

Buffer—A transfer function

Buffer
$$x \longrightarrow F \quad F = x$$

$$\begin{array}{c|c} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$$