iFLYTEK 多语种文本挖掘挑战赛

团队: 肉蛋葱鸡

赵嘉豪¹,赵达达²
¹中科院自动化所
²西安电子科技大学
zhaojiahao2019@ia.ac.cn
ddzhao@stu.xidian.edu.cn
2020年10月

- 团队
- 整体方案
- ■后续优化
- ■总结

- ■团队
- 整体方案
- ■后续优化
- ■总结

团队简介

- 队伍名: 肉蛋葱鸡
 - □梗
 - □ 肉蛋冲击 → 肉蛋葱鸡
 - □ 网络环境下语言的变化性

■成员

- □ 赵嘉豪,中科院自动化所,直博二年级
- □ 赵达达,西安电子科技大学,硕士二年级

游戏主播:芜湖大司马[1]

[1] https://h.bilibili.com/93000131

- 团队
- ■整体方案
- ■后续优化
- ■总结

赛题任务

- 从多个语种的单语网页原始语料, 抽取双语平行句对
 - □任务
 - 初赛: (中文,日语) 复赛: (中文,意大利语)
 - □数据
 - 初赛: 86GB 复赛: 20GB
 - □要求
 - 禁止使用任何其他数据,禁止使用任何机器翻译模型或API
 - 句子为完整句子,至少包含4个以上汉字
 - □ 评价
 - 句对 BLEU 值

整体思路

■ 无监督跨语言句对抽取任务 $D \rightarrow (S_{source}, S_{target})$

$$D \rightarrow (S_{source}, S_{target})$$

整体思路

- 从文档中抽取候选句子
 - $\square D \rightarrow S$
- 句子映射到语义空间
 - $\square S \rightarrow V$
- 在句子语义空间搜索最近邻

抽取候选句子

- ■观察数据
 - □ 原始网页噪声多
 - □数据量大

- ■方法
 - □数据清洗
 - □ 手工规则
- 候选句
 - □ 中文: 1241279句
 - □ 意大利语: 2922320句


```
<!doctype html>
<html>
<head>
<script src="/js/m.js"></script>
<script type="text/javascript">var mi='/wap/yidalizhongwenxinwen/yihui/20
19/1105/148325.html';m_qingtiancms_com(mi)</script>
<meta charset="utf-8" />
<title>时隔11年,罗马斗兽场门票涨价了,门票有效期也缩短了!_意大利新闻网</
title>
<meta name="keywords" content="时隔,11年,罗马,斗兽场,门票,涨价,了,有效期,</pre>
" />
<meta name="description" content="(内容来自: 意烩 oushitalia) 11月1日起>
,罗马斗兽场的基本门票从之前的12欧元上涨至16欧元,并且有效期从之前的连续2
日内有效,缩短为1日内有效。 罗马斗兽场的基本门票为3个景点联"/>
<link rel="stylesheet" href="/templets/default/css_mubanzhijia_com/layout</pre>
.css" type="text/css" />
```

Fig. 原始网页样例

映射句子到语义空间

- 难点
 - □ 候选句子数量大
 - □ 多语种映射到相同的语义空间
- 方法
 - □ 多语种语言模型
 - 基于 BERT 的语言模型
- 句子的特征向量
 - □ 512/768 维

Fig. Transformer [1]

- [1] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.
- [2] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv. 2018.

搜索语义空间最近邻

- 难点
 - □ 搜索复杂度高(暴力搜索M×N)

- ■方法
 - Scann [1]
 - 量化
 - GPU 并行
 - □ 搜索用时: 25分钟

$$(V_{query}, V_{dataset}) \rightarrow (S_{source}, S_{target})$$

V_{query}: 中文候选句,1241279句

 V_{dataset} : 意大利语候选句, 2922320句

^[1] Guo Ruiqi, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic Vector Quantization. In ICML.

- 团队
- 整体方案
- ■后续优化
- ■总结

优化

- 句子抽取
 - □ 抽取规则:句长,语种,正则, overlap, n-gram
- 特征映射
 - □ 尝试不同预训练模型(结构,预训练任务,预训练语料)
 - \square xlm-roberta^[1], m-USE^[2], LaBSE^[3]
- 最近邻搜索
 - Partitioning(tree_leaves)
 - Scoring(brute-force/hashing, 12/cosine)
 - Rescoring: top-1, top-3, top-5
- [1] Conneau, Alexis, et al. "Unsupervised cross-lingual representation learning at scale." arXiv preprint arXiv:1911.02116 (2019).
- [2] Yang, Yinfei, et al. "Multilingual universal sentence encoder for semantic retrieval." arXiv preprint arXiv:1907.04307 (2019).
- [3] Feng, Fangxiaoyu, et al. "Language-agnostic BERT Sentence Embedding." arXiv preprint arXiv:2007.01852 (2020).

后续优化

结果

■初赛

■复赛

排名	参赛团队	分数	提交次数
1	(名) 肉蛋葱鸡	5034.2432	22
2	====baseline====	4294.36807	39
3	HNwaz8j8x	3613.77159	7
排名	参赛团队	分数	提交次数
1	肉蛋葱鸡	7562.11126	57
2	====baseline====	6694.19942	42
3	HNwaz8j8x	2394.87172	15

- 团队
- 整体方案
- ■后续优化
- ■总结

总结

- 理解赛题+观察数据
- ■数据预处理
- 数据量大 → 并行、缓存
- 大规模预训练模型的潜力
- 阅读论文、开源项目(我们的代码将在1024节后开源)
- ▶比赛实践
- 快速迭代
 - □勤写测试
 - □解耦

Thank you. Q&A