

ŘADA B – PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU ROČNÍK XLII/1993 ● CÍSLO 4

V TOMTO SEŠITĚ

Samsung se představuje 121

OPERAČNÍ ZESILOVAČE neien podle pana Sociofa

Řešené úkoly pro obvody s OZ	123
Neinvertující zesilovač	123
Invertující zesilovač	123
Rozdílový zesilovač	123
Součtový zesilovač	124
Převodník proud-napětí	124
Převodník napětí-proud	124
Aktivní dolní propust	124
Horní propust	125
Přesný dvoucestný usměrňovač	125
Přesný vrcholový detektor	125
Logaritmický převodník	126
Exponenciální převodník	126
Proudový integrátor	126
Schmittův klopný obvod	126
Stabilizátor napětí	127
Zdroj konstatního proudu	127
Zdroje proudu	128
Zesilovače s regulací zesílení	128
a další (celkem 85) řešené úloh	ıy.

Měření střídy srovnávací osciloskopickou metodou

Akustické výstupní zařízení Tele-153 aram

Technické údaje vybraných operačních zesilovačů

Linear Technology 154

Inzerce 160

AMATÉRSKÉ RADIO ŘADA B

AMATERSKE RADIO RADA B

Vydavatel: Vydavatelství MAGNET-PRESS, s. p.,
135 66 Praha 1, Vladislavova 26, tel. 26 06 51.

Redakce: 113 66 Praha 1, Jungmannova 24, tel.
26 06 51. Šérredaktor L. Kalousek, OK1FAC, linka
354, sekretariát linka 355.

Tiskne: Naše vojsko, tiskárna, závod 08, 160 05 Praha
6, Vlastina ulice č. 889/23.
Rozšířuje Magnet Press a PNS, informace o předplatném
podá a objednávky přijímá každá administrace PNS, pošta,
doručovatel a předplatitelské středisko. Objednávky předjatného přijímá i redakce. Velkoodběratelé a prodejci si
mohou objednat tento titul za výhodných podmínek přímo
na oddělení velkoobchodu Vydavatelství MAGNET Press
(tel. 26 06 51 – 9, linka 386).

na oddelení velkodochodu vydavatelství MAGNE i Přess (tel. 26 05 1 – 9, linka 386). Podávání novinových zásilek povoleno Reditelstvím pošt. přepravy Praha čj. 348/93 ze dne 2. 2. 1993. Pololetní předplatné 29,40 Kčs. Objednávky do zahraničí vyřízuje ARTIÁ, a.s., Ve smečkách 30, 11 27 Praha 1.

vyhtzuje ARTIA, a.s., Ve smeckach 30, 11 27 Přana 1. Inzercí přijímá osobně i poštou vydavatelství MAGNET-PRESS, inzertní oddělení, Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-9, linka 294 i redakce AR. Za původnost a správnost příspěvku odpovídá autor. Nevyžádané rukopisy nevracíme. ISSN 0139-7087. číslo indexu 46 044. Toto číslo má vyjit podle plánu 16. 7. 1993.

© Vydavatelstvi MAGNET-PRESS 1993

DO SAMSUNG

V našich přehledech historie a současnosti předních světových firem z oblasti elektroniky a výpočetní techniky chyběla zatím fir-ma z Korejské republiky. Přitom přední korejské firmy jsou dnes na světových trzích důstojnými partnery předních světových firem, jimž úspěšně v mnoha oblastech konkurují.

Vedoucí obchodní společností v Korejské republice je v současné době firma Samsung, která oslavila před několika lety 50. výročí svého založení. Samsung rozvíjí své aktivity především ve třech oborech techniky: v elektronice, inženýrství a v chemii. Pokud jde o elektroniku je snahou firmy stát se vedoucím výrobcem jak v oblasti spotřební elektroniky, tak v oblasti průmyslové elektroniky. Jméno Samsung má v Koreji velmi dobrý zvuk a je spojováno s pojmy jako neustálé inovace, jakost a stálý rozvoj výro-by. Navíc, jak říká předseda společnosti Samsung, Lee, Kun Hee, "pracovali jsme na naší dobré reputaci dlouho a tvrdě, nyní, a více než kdy jindy, musíme navíc pracovat tak, abychom přispěli k zajištění uspokojivěj-šího a šťastnějšího života pro lidi na celém světě."

Z historie

Historie společnosti Samsung začala v roce 1938, kdy zakladatel firmy, Lee, By-ung-Chull, začal v Taegu svoji činnost s počátečním kapitálem asi \$ 2000 a zhruba 40 zaměstnanci. Firma spolupracovala s partnery v tehdejším Mandžusku a v dalších sousedních oblastech a rychle se rozvíjela. V roce 1948 bylo sídlo firmy přeneseno do

Soulu a současně firma začala vyvíjet aktivity v celé jihovýchodní Asii i ve Spojených státech, čímž se transformovala na meziná-

rodní obchodní společnost.

V 60. letech byla společnost Samsung na čele ekonomické rekonstrukce korejského průmyslu. Rekonstrukce začala po skončení korejské války a Samsung již v roce 1953 realizoval domácí technologií vybavenou velkou stavbu – rafinerii cukru. V příštím roce se společnost začala zabývat i zpracováním vlny s využitím nejmodernější technologie a kontroly jakosti. Koncem 50. let je Samsung již největší korejskou společností s širokými zájmy v obchodě, lehkém průmyslu a bankovnictví.

V šedesátých letech se korejský průmysl V šedesátých letech se korejský průmysl rozvíjel bouřlivým tempem. V této době se stal Samsung např. největším výrobcem hnojiv na světě (produkce 330 000 tun za rok), což kromě jiného umožnilo splnit jeden z plánů Korejské republiky té doby – stát se soběstačnou ve "výrobě" rýže. Další aktivity společnosti byly zaměřeny do těžkého a chemického průmyslu, od roku 1969 i do elektrotechnického průmyslu. V této době elektrotechnického průmyslu. V této době prvním cílem společnosti bylo získat moderní technologie a druhým cílem proniknout na světové trhy.

Rozvoj korejského průmyslu neskončil ani v 70. letech, pozadu nezůstávala ani společnost Samsung. V roce 1974 rozšířila své aktivity i do těžkého průmyslu, stavby lodí, petrochemie, přesného strojírenství a "kosmického" průmyslu. Pokud jde o elektroni-ku, např. křemíkové plátky začal Samsung vyrábět v roce 1974, ve stejném roce začala výroba elektronových trysek pro osciloskopy. Ještě koncem 70. let vyráběl Samsung vídeorekordéry, integrované obvody pro televizní přijímače a telefonní ústředny

V 80. letech se stal Samsung pionýrskou společností v tzv. high-tech, investoval velké

SE PŘEDSTAVUJE

prostředky do projektu VLSI (integrované obvody s velkou hustotou integrace). Vyvinul a vyráběl polovodičový čip DRAM 4 M (v roce 1989) a v roce 1990 dokázal na DRAM 16 M, že jím používané technologie dosáhly mezinárodně uznávané úrovně. Také vlastní technologie pouzdření používané firmou Samsung se ukázaly jako velmi dobré a umožnily výrobu speciálních integrovaných obvodů (ASIC) a mikroprocesorů pro širokou oblast výrobků spotřební i průmyslové elektroniky. Samsung dosáhl vynikajících výsledků i při vývoji dalších technologických postupů, v genetickém inženýrství je toho důkazem např. vývoj tzv. interferonů (z roku 1982) a dále např. vývoj a výroba průmyslo-vých robotů (v roce 1984). V 80. letech byl také založen první zahraniční závod Samsung v Portugalsku na výrobu zařízení pro spotřební elektroniku.

V 90. letech pak rozvoj firmy pokračoval a byl zaměřen především na elektroniku, strojírenství a chemický průmysl. U společnosti Samsung proběhla a stále ještě probí-há změna řízení, která je založena na třech klíčových konceptech: na řízení orientované klíčových konceptech: na rizem onemovane na "člověka" (human-oriented manage-ment), na řízení, orientované na moderní techniku (technology-oriented manage-ment) a na řízení, které se samo "seřizuje" (self-regulating management). Výsledky (self-regulating management). Výsledky všech změn by měly být zárukou toho, že i v 21. století bude Samsung jednou z vedoucích světových průmyslových společností, přitom devíza společností zůstává stejná jako v minulosti: plně uspokojovat potřéby zákazníků zbožím i službamí co nejvyšší jakosti. Přitom se počítá, že roční obrat společnosti bude kolem roku 2000 asi 200 miliard dolarů.

Vedoucí roli firmy Samsung Electronics Co. v Koreji dokumentuje to, že v roce 1991 dosáhla jako první ve vývozu zboží do zahra-ničí za jeden rok sumy 4 miliard dolarů, což

Zakladatel firmy Samsung, Lee, Byung - Chull

Porada kontrolorek jakosti výroby

bylo celkem 2 % celkového ročního vývozu všech korejských elektronických výrobců. Důležitost celé společnosti Samsung pro korejskou společnost dokumentuje kromě jiného i skutečnost, že v roce 1991 bylo mezi stovkou předních korejských firem (pokud jde o objem celkových obchodů) všech 12 firem, sdružených ve společnosti. Než si uvedeme pro zajímavost seznam firem, sdružených ve společnosti Samsung, ještě jedna zajímavost – moderní řízení společnosti je zajištěno i sítí VAN (value-added network), instalovanou mezi Samsung a subdodavatele, což umožňuje přesnou a operativní informovanost o všem, co je k řízení tak rozsáhlého kolosu třeba.

Společnost Samsung tvoří tyto firmy: Samsung Electronics Co., má své poboční závody v USA a v SRN, ve Střední a Jižní Americe a v Asii. Firma investuje především do výroby a výzkumu polovoličových součástek a do vývoje nových výrobků. Výsledkem bylo např. zavedení výroby přehrávačů CD, televizních přijímačů s velkou rozlišovací schopností a velkoplošnou obrazovkou atd. Kromě TVP, videomagnetofonů a přehrávačů CD vyrábí firma i digitální kazetové magnetofony, "barevné" tiskárny, rozhlasová zařízení, zařízení pro domácí automatizaci, notebooky (ve spolupráci s firmou Motorola), automatizační zařízení pro kanceláře, faxy a kopírky. Firma má čtyři hlavní závody: Consumer Electronics Business (audio/video, zařízení pro domácnost,

chladicí a topná zařízení, kancelářské stroje, průmyslová automatizační zařízení), Computer a Systems Business (PC, přenosná PC, mikro/minipočítače, LAN, VAN, CTS, IBS, multimedia atd.), Semiconductor Business (paměti, lineární IO, logické IO, spotřebitelské IO, mikroprocesory, MOSFET, LCD atd.), Information Systems Business (komunikační systémy s vláknovou optikou, telekomunikační zařízení, integrované telekomunikační systémy, automatizační zařízeníatd)

Samsung Electron Devices Co. vyrábí barevné obrazovky, obrazovky pro speciální účely, ploché panelové displeje a informační panely. Tato firma spolupracuje kromě jinéno i s firmou Hewlett-Packard, má kancelář např. i ve Frankfurtu.

Samsung Electro-mechanics Co. byla založena v roce 1973 a vyrábí hlavy pro magnetofony (audio/video), mikromotory pro kamkordéry, zařízení pro kabelovou televizi a zařízení pro průmyslové účely.

Další firmy společnosti jen stručně: Samsung Corning Co, vyrábí speciální skleněné výrobky (např. baříky pro obrazovky) a technickou keramiku, Samsung Medical Systems Co. ve spolupráci s General Electric vyrábí např. rentgenové přístroje, monitorovací systémy atd., Samsung Data Systems Co. se zabývá vývojem software pro SI (system integration), VAN, CIM (computerintegrated manufacturing), POPS (practical office publishing software) atd., Samsung Hewlett-Packard Co. je distribuční firmou počítačů a měřicích přístrojů.

Ostatní firmy společnosti Samsung se zaháváli výrobou v oblasti těžkého průmyslu

Ostatní firmy společnosti Samsung se zabývají výrobou v oblasti těžkého průmyslu, petrochemického, chemického, potravinářského a jiného průmyslu, včetně např. hodinářského, společnost má i vlastní pojišťovnu, poskytuje finanční a informační služby.

Budova výzkumného ústavu Samsung (Advanced Institute of Technology)

OPERAČNÍ ZESILOVAČE nejen podle pana Sociofa

Ing. Josef Punčochář

V roce 1988 jsem si koupil ruský překlad knihy [1] Sidney Soclofa: Analog Integrated Circuits, Prentice-Hall, Inc. 1985. Operačním zesilovačům je věnováno asi 130 stran textu. Z toho 33 stran tvoří zadání příkladů, které nejsou vyřešeny. Při jejich řešení jsem zjistil, že soubor tvoří příkladný výběr různých principů, které jsou při aplikacích operačních zesilovačů využívány. Způsob řešení příkladů je užitečným přehledem postupů, které lze používat při analýze obvodů s operačními zesilovači.

Proto základní osnovou této publikace budou příklady podle "pana Sociofa" s doplněním podle vlastních zkušeností a běžně dostupné literatury.

Základní definice rozdílového operačního zesilovače je uvedena například v [2]. Je definován ideální operační zesilovač, jsou definovány parametry neideálních zesilovačů, jsou odvozeny základní vlastnosti neinvertujícího a invertujícího zapojení operačního zesilovače.

Pokud nebude uvedeno jinak, uvažujeme, že operační zesilovač je ideální, s nekonečně velkým zesílením bez zpětné vazby – A_{0L}. Do neinvertujícího vstupu neteče žádný proud, vstupní odpor zapojení na obr. 1 je nekonečně velký.

ÚKOL 2: Dokažte, že *zesílení invertujícího zesilovače na obr. 2 je*

 $A_{IN} = u_o/u_i = -(Z_2/Z_1)/[1 + (1 + Z_2/Z_1)/A_{OL}].$

Obr. 2. Zapojení invertujícího zesilovače

ÚKOL 1: Dokažte, že *zesílení neinvertující-ho zesilovače* na obr. 1 je popsáno vztahem $A_N = u_o/u_i = (1 + Z_2/Z_1)/[1 + (1 + Z_2/Z_1)/A_{0L}].$

ŘEŠENÉ ÚKOLY

Pro reálný zesilovač platí $u_o = u_d.A_{OL}$,

u_o - u_d.A_{oL},

kde uo je výstupní napětí,

u_d rozdílové (diferenční) napětí na vstupu, A_{oL} zesílení bez zpětné vazby

Zanedbáme-li vstupní proudy operačního zesilovače, platí

$$u_i = u_d + u_- = u_o/A_{OL} + u_-$$

 $u_{-} = u_{0}. Z_{1}/(Z_{1} + Z_{2})$

u_ je napětí na invertujícím vstupu.

Řešením posledních dvou rovnic snadno určíme

$$A_{N} = u_{o}/u_{i} = (1 + Z_{2}/Z_{1})/[1 + (1 + Z_{2}/Z_{1})/A_{0L}]$$
(1).

Pro ideální operační zesilovač je $A_{0L} = \infty$ $(u_d = 0)$ a

 $(u_d = 0) a$ $A_N = 1 + Z_2/Z_1$ (1a).

Zesílení určují pouze zpětnovazební impedance Z₁ a Z₂, operační zesilovač nemá vliv.

Obr. 1. Zapojení neinvertujícího zesilovače

Úbytek napětí na impedanci Z_1 je roven součtu napětí u_i a u_d . Proto

 $i_i = (u_i + u_d)/Z_1.$

Zanedbáme-li vstupní proudy operačního zesilovače, platí

 $u_2 = Z_2 i_1$

Dále platí

 $\mathbf{u_o} = -\mathbf{u_d} - \mathbf{u_2}.$

Dosadíme-li za $u_d = u_o/A_{0L}$, Ize z uvedeného souboru vztahů snadno určit, že

$$u_0 = -u_0/A_{0L} - (Z_2/Z_1).(u_i + u_0/A_{0L}).$$

Po jednoduché úpravě dostaneme
$$A_{IN}=u_o/u_i=-(Z_2/Z_1)/\big[1+(1+Z_2/Z_1)/A_{0L}\big]$$

Pro ideální operační zesilovač je $A_{OL} = \infty$

 $(u_d = 0) a$ $A_{IN} = -Z_2/Z_1$ (2a)

zesílení opět určují pouze zpětnovazební impedance obvodu.

Vstupní proud je určen napětím u_i a impedancí Z_1 , proto vstupní impedance zapojení na obr. 2 je rovna přímo impedanci Z_1 .

ÚKOL 3: Rozdílový zesilovač (obr. 3) – dokažte, že zesílení je popsáno vztahem

 $u_0 = R_F/R_A$. $(u_B - u_A)$.

 \check{R} ešení 1: Předpokládáme, že $A_{OL} = \infty$, $u_d = 0$. Platí:

Obr. 3.a) Zapojení rozdílového zesilovače, b) určení "přispěvku" napěti u_A, c) určení "příspěvku" napětí u_B

 $u_+ = u_B R_F / (R_A + R_F)$ je napětí na neinvertují-

 $i_A = (u_A - u_o)/(R_A + R_F),$

 $u_-=u_A-R_Ai_A=u_A-R_A$. $(u_A-u_o)/(R_A+R_F)$. Pro ideální operační zesilovač platí

 $u_{+} - u_{-} = u_{d} = 0,$

proto $u_+ = u_-$. Odsud Ize určit

 $u_B R_F / (R_A + R_F) = u_A - R_A \cdot (u_A - u_o) / (R_A + R_F)$. Úpravou dostaneme

u_o = (u_B-u_A). R_F/R_A (3). *Řešení 2:* Pomocí principu superpozice – počítáme "příspěvek" každého signálu

 počítáme "přispěvek" každého signálu zvlášť, přičemž ostatní signály jsou nulové (ostatní vstupy připojíme na zem).

Napětí u_A je zesilováno "invertující cestou". Při $u_B=0$ je "příspěvek" napětí u_A k výstupnímu napětí možno počítat podle vztahu (úkol $\mathbf{2}$ – obr. 3b)

 $\begin{array}{l} u_{oA} = - \ u_A R_F/R_A. \\ \text{Napětí} \ u_B \ \text{je zesilováno ,,neinvertující cestou". Nejdříve je ovšem děleno děličem } R_A, \\ R_F, \ u_+ = u_B R_F/(R_A + R_F). \end{array}$

Při u_A = 0 (obr. 3c) je "příspěvek" napětí u_B k výstupnímu napětí možné určit podle vztahu (úkol 1)

$$u_{oB} = u_{+} (1 + R_{F}/R_{A}) = \frac{u_{B}R_{F}}{R_{A} + R_{F}}$$
$$\cdot \frac{R_{A} + R_{F}}{R_{A}} = u_{B}R_{F}/R_{A}.$$

Pokud pracuje zesilovač v lineární oblasti, platí pro "celkové" výstupní napětí princip superpozice, jednotlivé "příspěvky" lze se $u_o = u_{oA} + u_{oB} = (u_B - u_A) R_F/R_A$.

Pomocí principu superpozice můžeme snadno určit i zesílení pro neideální operačni zesilovač, použijeme-li vztahy (1) a (2) z úkolů 1 a 2

$$u_o = (U_B - u_A) (R_F/R_A)/[1 + (1 + R_F/R_A)/A_{0L}]$$
 (3a).

ÚKOL 4: Součtový zesilovač (obr. 4) - dokažte, že

$$u_0 = -5u_1 - 5u_2 - 10u_3 - 20u_4 + 40u_5.$$

Obr. 4.a) Součtový zesilovač, b) určení "příspěvku" napětí u1, c) určení "přispěvku" napětí us

Řešení 1: Předpokládáme ideální operační zesilovač, $u_d = 0$.

Platí $u_{-} = u_{+}$

 $u_+ = u_5.100/(100 + 2.5),$

 $i_1 = (u_1-u_+)/20 \text{ k}\Omega, i_2 = (u_2-u_+)/20 \text{ k}\Omega,$

 $i_3 = (u_3 - u_+)/10 \text{ k}\Omega, i_4 = (u_{4-} u_+)/5 \text{ k}\Omega.$

Přes zpětnovazební rezistor musí protéci proud

 $i_z = i_1 + i_2 + i_3 + i_4$

a platí

 $u_0 = u_- - i_z$.100 k $\Omega = u_+ - i_z$.100 k $\Omega = u_+$ - 100 kΩ $[(u_1-u_+)/20 \text{ k}\Omega + (u_2-u_+)/20 \text{ k}\Omega]$ + $(u_3-u_+)/10 \text{ k}\Omega + (u_4-u_+)/5 \text{ k}\Omega$ = $\pi-5\mu_1$ $-5u_2 - 10u_3 - 20u_4 + 41u_+ = -5u_1 - 5u_2$ $-10u_3 - 20u_4 + 40u_5$

Řešení 2: Pomocí principu superpozice - obdobně jako v úkolu 3.

"Příspěvek" napětí u1 (obr. 4b) je

 $u_{01} = -u_1.100k/20k = -5u_1$

ostatní rezistory připojené z invertujícího vstupu proti zemi se neuplatňují, protože je na nich nulové napětí a proto jimi neprotéká žádný proud.

Analogicky určíme "příspěvky" napětí u2, u₃ a u₄ k výstupnímu napětí u_o:

 $u_{02} = -u_2.100k/20k = -5u_2,$

 $u_{o3} = -u_3.100k/10k = -10u_3,$

 $u_{04} = -u_4.100 \text{k/5k} = -20 u_4.$

Situace pro napětí u5 je na obr. 4c. Paralelně řazené odpory 20k, 20k, 10k a 5k tvoří ekvivalentní odpor 2k5 a proto

$$u_{05} = u_{+} \cdot (1 + 100k/2k5) = \frac{u_{5} \cdot 100k}{100k + 2k5}$$
$$\cdot \frac{2k5 + 100k}{2k5} = 40u_{5}.$$

Pokud pracuje zesilovač v lineární oblasti, lze jednotlivé složky vystupního napěti se-

$$u_0 = u_{01} + u_{02} + u_{03} + u_{04} + u_{05}$$

= $-5u_1 - 5u_2 - 10u_3 - 20u_4 + 40u_5$.

ÚKOL 5: Převodník proud – napětí (obr. 5) – dokažte, že

a) výstupní napětí je $u_0 = -l_i R_F/(1 + 1/A_{0L})$

b) vstupní odpor R_i je určen vztahem $R_i = R_F/$ $(1 + A_{OL}) \doteq R_F/A_{OL}.$

Obr. 5. Převodník proud - napětí

Zanedbáme-li vstupní proud operačního zesilovače, platí pro výstupní napětí

 $u_o = -R_F I_i - u_d$

Dále platí u_d = u_o/A_{OL} a proto po úpravě dostaneme

 $u_0 = -I_i R_F / (1 + 1/A_{0L})$

Je zřejmé, že pro A_{OL}>>1 lze výraz 1/A_{OL} proti 1 zanedbat.

Pň dané orientaci proudu li a napětí ud je vstupní odpor Ri určen vztahem (mínus proto, že šipka proudu jde proti směru u_d)

$$\begin{split} R_i &= -u_d/I_i = -u_o/(A_{OL}I_i) = \\ &= \frac{-I_i R_F/(1+1/A_{OL})}{A_{OL}I_i} = R_F/(1+A_{OL}) \;. \end{split}$$

Pro ideální operační zesilovač (A_{ot} → ∞) tedy výstupní napětí odpovídá pouze vstupnímu proudu l_i a vstupní odpor převodníku je nulový.

ÚKOL 6: Převodník napětí – proud (obr. 6) dokažte, že

a) pro $A_{0L}>>1 + R_L/R_1$ platí $I_L = u_i/R_1$, b) obecně platí $I_L = u_i/\{R_1[1 + (1+R_L/R_1)/R_1]\}$

Obr. 6.a.) Převodník napětí – proud, b) náhradní schéma s ideálním zdrojem proudu, c) s neideálním zdrojem proudu

Řešení a: Předpokládáme ideální operační zesilovač, $A_{0L} = \infty$. Potom platí přímo u_d = 0 a $u_1 = u_i$. Rezistorem R_1 proto protéká proud $i_1 = u_1/R_1 = u_i/R_1$ a jsou-li vstupni proudy zesilovače zanedbatelné, platí

 $I_{\underline{L}}=i_1=u_i/R_1$ Řešení b: Není-li A_{OL} = ∞, musíme uvažovat

i rozdílové napětí $u_d = u_o/A_{OL}$ a musíme proto určit i velikost uo.

Pro i1 = IL zřejmě platí

 $u_o = R_L I_L + R_1 I_L,$ $u_i = u_d + R_1 I_L = u_o / A_{0L} + R_1 I_L$ Dosadíme-li do druhé rovnice za uo, dosta-

 $u_i = I_L(R_L + R_1)/A_{0L} + R_1I_L$ a úpravou snadno určíme, že $I_L = u/R_1[1 + (1 + R_L/R_1)/A_{OL}]$ (7.). Vztah (7) přejde ve vztah (6), je-li (1 + R_L/ $R_1)/A_{0L} << 1.$

Nevýhodou ovšem je, že žádný vývod zátěže R_L není připojen na zemní svorku. Lze určit i výstupní odpor převodníku napětí-proud - ideální situace je znázorněna na obr. 6b. Pro výstupní napětí platí u_L = i_L.R_L. Neideální zdroj proudu s výstupním odporem R_o je na obr. 6c. Snadno určíme, že u = $u_i \cdot (R_L/R_1)/(1 + R_L/R_0)$. Použijeme-li nyní pro i_L na obr. 6b vztah (7), dostaneme $u_L = u_i \cdot (R_L/R_1)/[1 + (1 + R_L/R_1)/A_{0L}].$ Srovnáním vztahů pro obr. 6b a obr. 6c zjistíme, že odpovídající výstupní odpor je dán vztahem

 $R_o = A_{0L}.R_1R_L/(R_1 + R_L).$ Pro ideální operační zesilovač je výstupní odpor vždy nekonečně velký a proud i není závislý na velikosti výstupního napětí.

ÚKOL 7: Aktivní dolní propust 1. řádu (integrátor, obr. 7) dokažte, že

a) pro zesílení harmonického signálu platí

$$A = u_o/u_i = -\frac{R_F}{R_A} \cdot \frac{1}{1 + j\omega R_F C_F} ;$$

b) je-li u, jednotkový skok s amplitudou U, platí pro výpočet napětí vztah $u_o = -U_i(R_F/R_A) \{1 - \exp[-t/(R_FC_F)]\}$ a pro t<0,1R_FC_F je $u_0 \doteq -U_i t / (R_A C_E)$.

Obr. 7. Dolní propust 1. řádu

Při řešení úkolu a vyjdeme ze vztahu (2a) (úkol 2), přičemž $Z_1 = R_A$ a

$$Z_2 = \frac{R_F \cdot 1/(j\omega C_F)}{R_F + 1/(j\omega C_F)} = \frac{R_F}{1 + j\omega C_F R_F}$$

Potom dostaneme přímo

$$-A = u_0/u_1 = -Z_2/Z_1 = -\frac{R_F}{R_A} + \frac{1}{1 + j\omega C_F R_F}$$
 (8).

Řešení úkolu b je poněkud obtížnější, ale lze je nalézt například s pomocí 3. Použije-li se Laplaceovy transformace, lze získat obrazový přenos (impedanci), nahradíme-li výraz 1/(jωC) výrazem 1/(pC) a výraz jωL výrazem pL (j $\omega \rightarrow p$). Vztah (8) potom přejde ve vztah

$$A(p) = U_{o}(p)/U_{i}(p) = -\frac{R_{F}}{R_{A}}.$$

$$\frac{1}{1 + pC_{F}R_{F}}$$
(9),

který plati pro Laplaceovu transformaci. Proto platí také

$$U_o(p) = - \ \frac{R_F}{R_A} \quad \frac{1/\tau}{1/\tau + p} \cdot U_i(p) \quad \ (10).$$

 $kde \ \tau = R_F C_F,$

U_o(p) je obrazem výstupního a U_i (p) vstupního napětí. Obraz jednotkového skoku o amplitudě U_i (t=0) v Laplaceově transformaci ie

Obraz výstupního napětí je potom popsán vztahem (odezva na jednotkový skok)

$$U_o(p) = -\frac{R_F}{R_A} U_i \frac{1/\tau}{p(p+1/\tau)}$$

Odezva na jednotkový skok v časové oblasti se musí určit pomocí zpětné Laplaceovy transformace

$$\begin{split} u_o(t) &= L^{-1} \cdot \left[-\frac{R_F}{R_A} \ U_i \ \frac{1/\tau}{p \left(p + 1/\tau\right)} \right] = \\ &- \frac{R_F}{R_A} \ \frac{U_i}{\tau} \ L^{-1} \left[\frac{1}{p \left(p + 1/\tau\right)} \right]. \end{split}$$

Pomocí slovníku Laplaceovy transformace např. [3] - str. 312] snadno zjistíme, že

$$L^{-1}\left[\frac{1}{(p+a)(p+b)}\right] = \frac{1}{a-b}.$$

$$(exp(-bt) - exp(-at))$$

pro náš případ je a = 0 a b = $1/\tau$, proto

$$u_{o}(t) = -\frac{R_{F}}{R_{A}} \frac{U_{i}}{\tau} \frac{\exp(-t/\tau) - \exp(0)}{o - 1/\tau} - \frac{R_{F}}{R_{A}} U_{i} [1 - \exp(-t/\tau)]$$
(11).

Ke stejnému výsledku musíme ovšem dospět i klasickou metodou. Pro ideální operační zesilovač platí

$$\begin{split} &i_{A} = U_{i}/R_{A}, \, u_{o} = -u_{C}, \\ &i_{A} = i_{C} + i_{R}, \\ &U_{i}/R_{A} = C_{F} \, \frac{du_{C}}{dt} \, + \, \frac{u_{C}}{R_{c}} = -\, C_{F} \, \frac{du_{o}}{dt} \, - \, \frac{u_{o}}{R_{c}} \end{split}$$

Úpravou dostaneme diferenciální rovnici

$$\frac{du_o}{dt} + \frac{u_o}{C_E R_E} = -\frac{U_i}{R_A C_E}$$
 (12).

Tuto rovnici můžeme řešit rovněž pomocí Laplaceovy transformáce. Jestliže

 $\mathsf{L}[\mathsf{u}_{\mathsf{i}}(\mathsf{t})] = \mathsf{U}_{\mathsf{i}}(\mathsf{p}),$

 $L[u_o(t)] = U_o(p),$

 $L du_o/dt = p.U_o(p),$

potom dostaneme ($\tau = C_F R_F$)

 $p.U_o(p) + U_o(p)/\tau = [-U_i(p)/\tau]. (R_F/R_A).$

$$U_o(p) = - \frac{R_F}{R_A} \frac{1/\tau}{p + 1/\tau} U_i(p) ,$$

což je výraz identický se vztahem (10) a další postup řešení je proto zcela stejný.

Člen exp $(-t/\tau)$ lze rozvinout v řadu [4]

$$\exp(-t/\tau) = 1 - \frac{t/\tau}{1!} + \frac{(t/\tau)^2}{2!} - \frac{(t/\tau)^3}{3!} + \cdots =$$

 $= |t/\tau <<1| = 1 - t/\tau.$

Ze vztahu (11) potom dostaneme

$$u_{o}(t << t/\tau) = -\frac{R_{F}}{R_{A}}U_{i}(1-1+t/\tau) =$$

$$= -U_i t/(R_A C_F)$$
 (13).

Podmínka t/τ<<1 je vždy splněna, je-li $R_F = \infty$. Potom i $C_F R_F = \infty$ a z rovnice (12) snadno určíme, že

$$u_{o}\left(t\right)=-\ \frac{1}{R_{A}C_{F}}\int U_{i}\,dt\;,$$

obvod se chová jako integrátor.

ÚKOL 8: Horní propust (derivátor, obr. 8) - dokažte, že

a) pro zesílení harmonického signálu platí vztah

 $A = u_o/u_i = -j\omega C_A R_F/(1 + j\omega R_A C_A);$ b) je-li u, jednotkový skok s amplitudou U,, je výstupní napětí $u_o(t) = -U_i(R_E/R_A) \exp \left[-t/(R_AC_A)\right].$

Obr. 8. Horní propust 1. řádu

Při řešení úkolu a vyjdeme opět ze vztahu (2a), úkol **2**, přičemž $Z_2 = R_F a Z_1 = R_A + 1/$ (jωCA). Snadno určíme

$$A = u_o/u_i = -Z_2/Z_1 =$$

= $-j\omega C_A R_F/(1 + j\omega C_A R_A)$. (14)

Při řešení úkolu b postupujeme analogicky s úkolem 7. Obrazový přenos (jω ->p) získáme ze vztahu (14)

 $A(p) = U_0(p)/U_i(p) = -pC_AR_F/(1 + pC_AR_A)$ Odsud dostaneme

 $U_o(p) = - pC_A R_F U_i(p)/(1 + pC_A R_A). \label{eq:uo}$ Je-li přiveden na vstup jednotkový skok, je $U_i(p) = U_i/p$ a platí

$$U_{o}(p) = -\frac{pC_{A}R_{F}}{1 + pC_{A}R_{A}} \frac{U_{i}}{p} = \frac{1}{R_{A}} \frac{1}{p + 1/(C_{A}R_{A})}.$$

Zpětnou transformací získáme odezvu na jednotkový skok v časové oblasti

$$u_o'(t) = L^{-1} \left[-\frac{U_i R_F}{R_A} \frac{1}{p + 1/(C_A R_A)} \right] =$$

$$= -\frac{U_{i}R_{F}}{R_{A}} \cdot \exp\left[-t/(R_{A}C_{A})\right] \quad (15).$$

Ze vztahu (15) je zřejmé, že pro t<<RACA je $u_o(t) = -U_i R_F / R_A$.

Předpokládáme-li R_A = 0, platí u_i = u_C a proto $i_i = C_A du_i/dt$. Dále platí $u_o = -i_i R_F$, tedy $u_o = -C_A R_F du_i / dt$. Takový obvod se chová jako ideální derivátor. Při RA = 0 je ovšem zesílení na vysokých kmitočtech velmi velké - není omezeno zpětnou vazbou - mohou vznikat problémy se stabilitou a šumy. Proto se odpor R_A zařazuje vždy, i když je potom derivátor méně ideální.

ÚKOL 9: Jednocestný usměrňovač (obr. 9) -dokažte, že $u_0 = u_i$ pro $u_i > 0$ (přesněji pro u_i > U_D/A_{0L}, kde U_D je úbytek napětí na diodě D v propustném směru) a $u_0 = 0$ pro $u_i < 0$.

Aby dioda D vedla, musí přibližně platit $U_D = u_1 - u_0 > 500 \text{ mV}.$

Potom platí

$$u_i = u_d + \dot{u}_o,
 u_1 = U_D + u_o,$$

$$u_i = u_d + u_o,$$

 $u_1 = U_D + u_o,$
 $u_d = u_1/A_{0L} = U_D/A_{0L} + u_0/A_{0L}.$

Obr. 9. Jednocestný usměrňovač

Snadno nyní určíme, že $u_i = U_D/A_{0L} + u_o/A_{0L} + u_o.$ Jednoduchou úpravou dostaneme $u_0 = (u_i - U_D/A_{OL})/(1 + 1/A_{OL})$ (16).Napětí $u_o = u_i$ pro $u_i \gg U_D/A_{0L}$ a $1 \gg 1/A_{0L}$.

Pro $u_i < 0$ je $u_1 < 0$, dioda D je rozpojena. napětí na rezistoru R_L může být vytvořeno pouze vstupním proudem invertujícího vstupu. Ten je ovšem u ideálního operačního zesilovače nulový. Proto lze uvažovat, že pro $u_i < 0$ je výstupní napětí u_o nulové.

ÚKOL 10: Precizní dvoucestný usměrňovač (obr. 10) - dokažte, že pro zapojení na obr. 10 platí $u_o = |u_i|$.

Obr. 10.a) Precizní dvoucestný usměrňovač se třemi OZ, b) se dvěma operačními zesilovači

Operační zesilovač OZ₁ tvoří sledovač (vstupní odpor stovky MΩ), který zajišťuje, že výstupní odpor zdroje signálu Rs se "nepřidává" k odporu R₁ a neovlivňuje přenos zesilovače OZ2. Pokud je výstupní odpor -zdroje signálu zanedbatelný (R_s << R₁) nebo konstantní, lze použít zapojení podle obr. 10b a jeden operační zesilovač ušetřit.

Je-li u_i > 0, je na výstupu OZ₂ záporné napětí, dioda D je rozpojena (nevede proud). Napětí u, "projde" přímo přes oba rezistory R₁ na neinvertující vstup OZ₃, což je rovněž sledovač. Proto platí pro $u_i > 0$, že $u_+ = u_i$ a proto také $u_o = u_i$.

Je-li $u_i < 0$, je na výstupu OZ $_2$ kladné napětí, dioda D se sepne, zpětná vazba "okolo" OZ2 je uzavřena. OZ2 tvoří zesilovač se zesílením -1. Pro $u_i < 0$ je tedy $u_{o} = u_{+} = -u_{i} > 0.$

Výstupní napětí je proto vždy kladné a jeho velikost odpovídá absolutní hodnotě napětí u_i – lze psát

$$u_{o} = |u_{i}| = u_{i} \text{ pro } u_{i} > 0$$

$$-u_{i} \text{ pro } u_{i} < 0$$

$$(17)$$

Významné je, že pro správnou funkci obvodu stačí nastavit shodu pouze dvou rezisto-

ÚKOL 11: Precizní vrcholový detektor (obr. 11) – dokažte, že výstupní napětí uo je rovno meznímu kladnému napětí u_i. Jaký význam má druhý operační zesilovač, OZ₂?

Obr. 11.a) Precizní vrcholový detektor, b) průběhy napětí u_i, u_C = u_o

Pro $u_i < u_C$ je rozdílové napětí $u_d = u_i - u_C$ < 0 a výstup OZ₁ je v záporné saturaci. Kondenzátor si "pamatuje" své předchozí napětí, protože dioda D je rozpojena – je vybíjèn pouze vlastními svodovými proudy a vstupním proudem sledovače OZ₂ (vstupní odpor stovky $M\Omega$ nebo větší).

Při dosažení rovnosti $u_i = u_C$ se dioda D otevírá a napětí u_C na kondenzátoru C sleduje napětí u_i . Při poklesu u_i se dioda D opět zavírá – obr. 11b.

Sledovač OZ_2 zajišťuje to, že kondenzátor C není vybíjen následujícími obvody. Obnovení výchozího stavu lze zajistit vybitím kondenzátoru C přes rezistor R_v – obr. 11a.

ÚKOL 12: Logaritmický převodník (obr. 12) – dokažte, že při pokojové teplotě 25 °C platí $\mathbf{u}_0 = (1 \text{ V})$. log $[(\mathbf{u}_2\mathbf{R}_1)/(\mathbf{u}_1\mathbf{R}_2)]$.

Obr. 12. Logaritmický zesilovač (převodník)

Předpokládejte, že tranzistory T₁ a T₂ mají stejné vlastnosti.

Při ideálních operačních zesilovačích OZ₁ a OZ₂ platí i₁ = u₁/R₁ a i₂ = u₂/R₂. Operační zesilovač OZ₃ tvoří diferenční zesilovač, jehož výstupní napětí je

 $u_o = (U_{BE2} - U_{BE1}). 167/10 =$

 $= 16,7. (U_{BE2} - U_{BE1}).$

Kolektorový proud tranzistoru je určen vztahem

 $i_K \doteq I_{KO}$. exp(U_{BE}/U_T),

kde je teplotní napětí $U_T = k.T/q = 26 \text{ mV při}$ 25 °C (298 K),

k Boltzmannova konstanta,

g náboj elektronu,

U_{BE} napětí mezi bází a emitorem,

I_{KO} závěrný proud tranzistoru (konstanta).

Dále platí, že $10^{1/2,3} = e$ (základ přirozeného logaritmu), proto

 $\begin{array}{ll} i_{K} = I_{KO}.10^{U_{BE}/(2,3U_{T})}.\\ Snadno Ize nyní odvodit, že\\ U_{BE} = 2,3U_{T}.log (i_{K}/I_{KO}).\\ Protože kolektorové proudy i_{1} a i_{2} jsou určeny napětími u_{1} a u_{2}, platí\\ U_{BE1} = 2,3U_{T}.log(i_{1}/I_{KO}) =\\ = 2,3U_{T}.log[u_{1}/(R_{1}I_{KO})],\\ analogicky\\ U_{BE2} = 2,3U_{T}.log[u_{2}/(R_{2}I_{KO})].\\ Pro výstupní napětí platí\\ u_{o} = 16,7.2,3.U_{T} \cdot [log[u_{2}/(R_{2}I_{KO})] - log \cdot [u_{1}/(R_{1}I_{KO})]) =\\ = |T=298 \text{ K}; U_{T} = 26 \text{ mV }|=998,7 \text{ mV} .log[u_{2}R_{1}/(u_{1}R_{2})] \end{array}$

tranzistorů se bude měnit i napětí U_T a tedy i převodní konstanta 998,7 mV. **ÚKOL 13:** Exponenciální převodník (zesilo-

Je ovšem zřejmé, že se změnou teploty

vac, obr. 13)

Dokažte, že výstupní napětí $u_o = U_R \cdot 10^{-\omega_l R} 2^{NR} 1^{l}$,

kde K je konstanta o rozměru volt.

Obr. 13. Exponenciální zesilovač (převodník)

Budeme-li předpokládat, že $u_0>0$, musí vždy platit $u_i<0$. Zesilovač OZ_2 tvoří sledovač, který by ani nemusel být zapojen, pokud by logaritmický převodník $Y=K.\log(X/U_B)$ měl zanedbatelný výstupní odpor. Pro ideální operační zesilovač musí platit $i_2=-i_1$, přitom

$$i_1 = u_i/R_1$$

$$i_2 = Y/R_2 = (K/R_2). \log(u_o/U_R).$$

Platí tedy

 $- u_i/R_1 = (K/R_2). \log(u_o/U_R)$

a jednoduchou úpravou zjistíme, že $u_0 = U_{R'} \cdot 10^{-u_{R_2}^{R} \bar{\kappa}_{R_1}}$

Je zřejmé, že logaritmický zesilovač Y = K. log(X/U_R) nesmí obracet fázi, aby zpětná vazba "přes" OZ₁ zůstala stále záporná.

ÚKOL 14: Proudový integrátor – nábojový zesilovač – obr. 14

Obr. 14. Proudový integrátor – nábojový zesilovač

Dokažte, že

a snadno určíme

$$u_o = -(1/C) \int_{-\infty}^{t} I_i dt = -Q_i/C .$$

Pro ideální operační zesilovač musí platit $i_C = C du_C/dt = I_i$. Dále zřejmě platí $u_o = -u_C$ a proto $- C du_O/dt = I_i$. Proto rovněž platí $du_o = -1/C$. I_i . dt

$$u_o = -(1/C) \int_{-\infty}^{t} I_i \cdot dt = -Q_i/C$$
 (20),

protože integrálu proudu odpovídá celkový náboj Q_i dodaný do kapacity do okamžiku t.

Nepříznivě může působit vstupní napěťová nesymetrie U_{IO} operačního zesilovače. Vytváří na výstupu nenulové napětí u_{o} i při $I_{i}=0$. To si může "vynutit" zapojení paralelního rezistoru R_{F} k C, i když se tím integrátor stane "méně ideálním".

ÚKOL 15: Schmittův klopný obvod - obr. 15

Obr. 15.a) Schmittův klopný obvod, b) převodní charakteristika, c) vyloučení vlivu změn napájecího napětí

Dokažte, že obvod na obr. 15a má převodní charakteristiku podle obr. 15b; U_{sat} je mezní kladné výstupní napětí, U_{sat} je mezní záporné napětí OZ.

Pomocí principu superpozice určíme hodnotu napětí U₊ na neinvertujícím vstupu OZ (obvod kladné zpětné vazby):

 $U_{+} = U_o R_1/(R_1 + R_2) + U_{ref} R_2/(R_1 + R_2)$. a) Předpokládejme, že $U_o = U_{sat}^+$. Potom je na neinvertujícím vstupu napětí

 $U_{+a} = U_{sat}^{+} R_1/(R_1 + R_2) + U_{ref} R_2/(R_1 + R_2)$

Pro $U_i < U_{+a}$ stále platí $U_o = U_{sat}^+$. Pro $U_i > U_{+a}$ přechází výstup do záporné saturace, $U_o = U_{sat}^-$.

b) Předpokládejme, že U_o = U_{sat}. Potom je na neinvertujícím vstupu napětí

 $U_{+b} = U_{sat}^{-} R_1/(R_1 + R_2) + U_{ref} R_2/(R_1 + R_2)$ (22)

Pro $U_i > U_{+b}$ stále platí $U_o = U_{sat}^-$. Pro $U_i < U_{+b}$ přechází výstup do kladné saturace, $U_o = U_{sat}^+$.

Hystereze obvodu U_H je dána rozdílem napětí U_{+a} a U_{+b}

 $U_H = U_{+a} - U_{+b} = (U_{sat}^+ - U_{sat}^-)R_1/(R_1 + R_2)$ (23).

Omezuje-li operační zesilovač symetricky, platí $U_{sat}^+ = -U_{sat}^- = \mid U_{sat} \mid \ a \ hystereze$ obvodu je určena vztahem $U_H = 2 \mid U_{sat} \mid .R_1/(R_1 + R_2)$.

Saturační napětí OZ je funkcí napájecího napětí U_{CC} . Proto i hodnoty U_{+a} a U_{+b} jsou

funkcí napájecího napětí. Tuto závislost Ize vyloučit zařazením omezovače na výstup OZ například podle obr. 15c. Odvozené vztahy (21), (22) a (23) platí s tím, že $U_{sat}^+ = -U_{sat}^- = \mid U_{sat} \mid = U_Z + 2U_D$, kde U_D je úbytek na diodě v propustném směru (asi 0,5 až 0,6 V) a U_Z je napětí stabilizační diody D_5 .

ÚKOL 16: Stábilizátor napětí (obr. 16) - do-

Obr. 16. Stabilizátor napětí

kažte, že pro výstupní napětí platí $U_0 = U_z R_2/(R_1 + R_2)$, kde U_7 je napětí stabilizační diody.

Pokud jsou správně navrženy proudové poměry rezistorů R_3 , R_1 a R_2 , je na stabilizační diodě D_1 napětí U_Z a na neinvertujícím vstupu OZ je napětí

 $U_{+} = U_{Z}R_{2}/(R_{1} + R_{2})$ (24). Pro ideální operační zesilovač (sledovač) to znamená, že i na výstupu je napětí $U_{0} = U_{+}$ = $U_{Z}R_{2}/(R_{1} + R_{2})$.

ÚKOL 17: Stabilizátor napětí (obr. 17) - do-

Obr. 17.a) Stabilizátor napětí, b) ochrana proti změně polarity výstupního napětí

kažte, že pro výstupní napětí platí $U_0 = U_Z(1 + R_2/R_1)$.

Pro ideální operační zesilovač musí být napětí na rezistoru R_1 rovno napětí \dot{U}_Z , aby diferenční napětí $u_d=0$. Platí proto, že $i_1=U_Z/R_1$. Pro výstupní napětí potom platí

$$U_o = (R_1 + R_2).i_1 = U_z(1 + R_2/R_1)$$
 (25).

Stabilizační diodou protéká konstantní proud i_3 nezávislý na napájecím napětí. Platí totiž, že $U_+ = R_2.i_1 = U_ZR_2/R_1$. Toto napětí je i na rezistoru R_3 , kterým protéká proud

$$i_3 = U_+/R_3 = U_Z R_2/(R_1 R_3)$$
 (26).

Při symetrickém napájecím napětí hrozí ovšem u zdroje nebezpečí změny výstupniho napětí. Představme si, že při impulsní poruše se objeví na výstupu U_o záporná napěťová špička. Na diodě D_1 vznikne napětí $U_Z \doteq -0,7$ V a to je druhý stabilní stav. Výstupní napětí se může ustálit na hodnotě $U_o = -0,7.(1+R_2/R_1).$ což nemusí následujícím obvodům vyhovo-

vat. Jevu lze zamezit zapojením diody D_2 (obr. 17b), platí ovšem $U_Z = U_{D1} + U_{D2} = U_{D1} + 0,7$ V. Diody D_1 a D_2 je vhodné vybrat tak, aby byly spolu teplotně kompenzovány. Při záporném impulsu na výstupu se díky diodě D_2 zpětná vazba zcela rozpojí a po odeznění poruchy se obnoví žádoucí stav.

ÚKOL 18: Stabilizátor napětí (zvětšený výstupní proud, omezení proudu; obr. 18) – do-

Obr. 18.a) Stabilizátor napětí s proudovým omezením, b) zatěžovací charakteristika stabilizátoru

kažte, že platí a) $U_o = U_{REF}(1 + R_2/R_1)$, b) $U_{omax} \doteq U_{sat} - 1,4 V$, U_{sat} je mezní výstupní napětí OZ, c) $I_{omax} \doteq 0,6 \ V/R_i$, d) pro $U_N = 20 \ V$ a tranzistor T_2 s povolenou mezní kolektorovou ztrátou $P_{cmax} = 50 \ W$ určete dovolený proud I_{omax} . Operační zesilovač spolu s tranzistory T_1

a T_2 v Darlingtonově zapojení tvoří výkonový operační zesilovač. V ideálním případě platí $U_{R1} = U_{REF}$. Proud zpětnovazebním děličem je proto $I_d = U_{REF}/R_1$ a výstupní napětí je

$$U_o = I_d(R_1 + R_2) = U_{REF}(1 + R_2/R_1),$$
 (27)

jde vlastně o neinvertující výkonový zesilovač napětí U_{REF}. Darlingtonovo řazení tranzistorů T₁ a T₂ zajišťuje proudový zesilovací činitel větší než 800 (běžně), což umožňuje řídit i několikaampérové proudy zátěží při přijatelných proudech výstupu OZ.

Saturační napětí (mezní výstupní napětí) OZ je odvozeno od napájecího napětí U_N . Běžně platí $U_{sat} = U_N - (1 \text{ až } 2) \text{ V. Jestliže je napětí na bázi } T_1 rovno <math>U_{sat}$. je na zátěži R_Z napětí menší o úbytek mezi bází T_1 a emitorem T_2 , což je asi 0.9 až 1.1 V. Dále musíme odečíst úbytek na snímacím rezistoru R_I , který může být maximálně $U_{BE3} = 0.5$ V. Platí proto

$$U_{omax} \doteq U_{sat} - 0.9 - 0.5 = U_{sat} - 1.4 \text{ V} \doteq U_{N} - (1 \text{ až 2}) \text{ V} - 1.4 \text{ V};$$

 $U_{omax} \doteq U_N - (2,4 \text{ až } 3,4 \text{ V}).$

Snímacím rezistorem R_l je převáděn výstupní proud l_o na napětí $U_l = R_l l_l$. Pro běžné poměry platí $R_Z << R_1 + R_2$ a proto $l_d << l_o$. Potom $U_l \doteq R_l l_o$. Jakmile dosáhne napětí U_l asi 0,5 V, otevírá se tranzistor T3 a "odbudí" bázi tranzistoru T1. Situace je znázorněna na obr. 18b. Platí proto, že

$$I_{omax}$$
 = (0,5 až 0,7 V)/R₁ (28).
Je-li napětí U_N = 20 V a P_{cmax} = 50 W, nesmí být tato ztráta ani v nejhorším případě

překročena. Nejhorší situace nastává při zkratu na výstupu – na tranzistoru T_2 je celé napětí U_N a ztráta je rovna

 $P_{cmax} = U_{n} \cdot I_{cmax}$. Po dosazení dostaneme $I_{cmax} = P_{cmax}/U_{N} = 50/20 = 2,5 \text{ A}$.

ÚKOL 19: Zdroj konstantního proudu (obr. 19) – dokažte, že $I_0 = U_{REF}/R_1$, pokud napětí U_C na kolektoru T_2 je větší než $U_{REF} + 0.9$ V.

Obr. 19. Zdroj konstantního proudu

Pro ideální operační zesilovač je napětí U_1 na rezistoru R_1 rovno přímo napětí U_{REF} . Pro proud I_B platí $I_B = I_o/(\beta_1\cdot\beta_2)$, kde β_1 , β_2 jsou proudové zesilovací činitele tranzistorů T_1 a T_2 . Platí tedy $U_1/R_1 = I_0 + I_B = I_0 \mid 1 + 1/(\beta_1\beta_2) \mid$. Jednoduchou úpravou dostaneme

$$I_{0} = \frac{U_{1}}{R_{1}} \frac{1}{1 + 1/(\beta_{1}\beta_{2})} \doteq$$

$$= |\beta_{1}\beta_{2} >> 1| = \frac{U_{1}}{R_{1}} [1 - 1/(\beta_{1}\beta_{2})]$$
(29)

Ze vztahu (29) jasně plyne význam zařazení dvou tranzistorů. Uvažujeme-li $\beta_1=\beta_2=100$, je $I_o=(U_1/R_1).(1-10^4)$, což představuje odchylku pouze $10^{-2}\%$ proti ideálnímu vztahu $I_o=U_1/R_1$. Pokud bychom jeden tranzistor vypustili (např. zkrat báze – emitor T_1), bude platit $I_o=(U_1/R_1).(1-1/\beta_2)=(U_1/R_1).(1-10^2)$, což už představuje chybu 1 % proti ideálu.

Vztah (29) platí pouze tehdy, jsou-li oba tranzistory v aktivní pracovní oblasti. Musí platit, že napětí U_C na kolektoru T₂ je U_C > U_{REF} + U_{BE1} + U_{BE2} = U_{REF} + 0,9 V. Při menším napětí mezi kolektorem a emitorem již není schopna dvojice tranzistorů pracovat.

Zanedbejme nyní proud do báze T₁, budeme uvažovat vstupní napěťovou nesymetni U_{IO} a vstupní proud invertující svorky I_{B--}. Pro napětí U₁ nyní platí

$$\begin{array}{l} U_1 = U_{REF} + I_{IO}. \\ D\'ale plat\'i \\ I_o - I_{B-} = (U_{REF} + U_{IO})/R_1. \\ Lze proto ur\'cit, \'ze \\ I_o = (U_{REF} + U_{IO})/R_1 + I_{B-}, \\ po \'uprav\'e dostav\'ame \\ I_o = (U_{REF}/R_1).(1 + U_{IO}/U_{REF} + I_{B-}R_1/U_{REF}) \end{array}$$

Aby bylo možné použít ideální vztah I_o = U_{REF}/R_1 , musí platit $U_{IO}/U_{REF} << 1$ a $I_{B-} << U_{REF}/R_1$.

Mějme například $U_{IO}=2\,\text{mV},\ I_{B-}=0,5\,\mu\text{A},\ U_{REF}=5\,\text{V},\ R_1=10\,\text{k}\Omega.$ Podle ideálního vztahu dostaneme $I_o=5\,\text{V}/10\text{k}=0,5\,\text{mA}.$ Podle vztahu (30) dostaneme $I_o=(0,5\,\text{mA}).(1+2.10^{-3}/5+0,5.10^{-6}.10^{4}/5)=(0,5\,\text{mA})(1+1,4.10^{-3}).$

Chyba je tedy 0,14 %.

Bude-li za jinak stejných podmínek R₁ 100 kΩ, bude ideálně $l_0 = 5/100k$ 50 μA. Podle vztahu (30) ovšem Io $(50 \mu A)(1 + 2.10^{-3}/5 + 0.5.10^{-6}.10^{5}/5)$ = $(50 \mu A)(1 + 1,04.10^{-2})$.

Chyby již překročí 1 %.

Z uvedeného plyne, že pro malé požadované proudy lo musíme volit OZ s tranzistory FE na vstupu, aby proudy IB- byly zanedbatelné. Proudový zesilovací činitel tranzistorů T₁ a T₂ musí být co největší.

Ani zdroj proudu na obr. 19 však neumožňuje připojit zátěž proti zemi.

ÚKOL 20: Zdroj proudu s uzemněnou zátěží (obr. 20) - dokažte, že pro výstupní proud lo

 $I_o = U_{REF}R_2/(R_1R_3).$

Obr. 20. Zdroj proudu s uzemněnou zátěží

Předpokládáme ideální operační zesilovač OZ₁, OZ₂ a nekonečně velké proudové zesilovací činitele tranzistorů T1 a T2. Potom

 $I_1 = U_{REF}/R_1$

OZ₁ tvoří zdroj proudu podle úkolu 19. Proud I₁ vytvoří na rezistoru R₂ úbytek napětí $U_2 = R_2 I_1 = U_{REF} R_2 / R_1$.

Současně musí platit $U_2 = U_3 = R_3I_0$, tedy $U_{REF}R_2/R_1 = R_3I_0$.

Po úpravě dostaneme

 $I_o = U_{REF}R_2/(R_1R_3).$

(31).Operační zesilovač OZ2 tvoří opět zdroj proudu, který je řízen napětím U2, "opřeným" o napájecí napětí +U_N.

Diskuse vlivu napěťové nesymetrie U_{IO}, vstupních proudů operačních zesilovačů a konečné hodnoty proudových zesilovacích činitelů tranzistorů T_1 a T_2 je shodná s diskusí v úkolu 19.

Je-li nutné zcela zavřít tranzistor To (malé proudy lo), musíme zajistit na výstupu OZ2 napětí téměř U_N. Kladné napájecí napětí pro OZ₂ by potom mělo být o 1 až 2 V větší než napětí U_N.

ÚKOL 21: Zdroj proudu pro malé výstupní proudy (obr. 21)

Dokažte, že platí $I_0 = U_{REF}/R_1$

pokud napětí na D je $U_D > U_{REF} + U_p$ kde Up je prahové napětí tranzistoru JFET.

Amatérské? AD 10 B/4

Předpokládejme, že tranzistor T₁ pracuje v aktivní oblasti a chová se jako sledovač. Potom pro ideální OZ platí:

 $U_1 = U_{REF}$

а

(32). $I_0 = U_{REF}/R_1$

Pro běžné tranzistory JFE je proud do řídicí elektrody (hradla) G menší než 1 nA. Vliv vstupních proudů operačního zesilovače (IB-) a napěťové nesymetrie UIO je stejný jako u úkolu 19 vztah (30). Mají-li být proudy lo malé a dostatečně přesné, musí se použít operační zesilovač kvalitní (U_{IO} malé) s tranzistory JFE na vstupu.

Na obr. 21b je výstupní charakteristika tranzistoru JFE s kanálem typu n. Aktivní oblast tranzistoru je při UGS=0 vymezena právě prahovým napětím U_p ; pro $U_{DS} > U_p$ je tranzistor v aktivní oblasti. Pro U_{GS} < 0 se aktivní oblast rozšiřuje. Přibližně platí, že tranzistor je v aktivní oblasti pro napětí

 $U_{DS}>U_{DSA} \doteq U_{p}-|U_{GS}|$, proud ID v aktivní oblasti se s poklesem UGS ovšem zmenšuje.

Na obr. 21 a ie $U_D = U_{DS} + U_{REF}$ tedy $U_{DS} = U_D - U_{REF}$

Požadujeme-li aktivní pracovní oblast tranzistoru (a té je pro dobrou funkci zdroje proudu zapotřebí), platí i v nejhorším přípa-

 $U_{DS} = U_D - U_{REF} > U_p$ odsud $U_D > U_p + U_{REF}$.

ÚKOL 22: Zesilovač s elektronickou regulaci zesileni (obr. 22)

Obr. 22. Zesilovač s elektronickou regulací zesileni

 a) Dokažte, že pro u_i < U_p platí pro zesílení zesilovače

 $A = u_o/u_i = 1 + (R_F/r_{DSO}).$ $[1-(|U_{GS}|/U_{p})^{\frac{1}{2}}],$

Up je prahové napětí tranzistoru JFE. b) Najděte A_{min} a A_{max} , je-li $r_{DSO} = 1000 \ \Omega$.

Pro ideální operační zesilovač platí uDS $= u_i$. Je-li $u_i < U_p$, pracuje JFET v "odporové" oblasti – obr. 21b. Dynamický odpor r_D = $\Delta u_{DS}/\Delta i_{D}$ je zde popsán vztahem $\begin{bmatrix} 5 \end{bmatrix} r_{D}$ $= r_{DSO} / [1 - (|U_{GS}|/U_p)^{1/2}],$ r_{DSO} je r_{D} při $U_{GS} = 0$ V.

Obr. 21.a) Zdroj proudu pro malé výstupní proudy, b) výstupní charakteristiky tranzistorú JFE (typ kanálu – n)

Pro u_i < U_p proto můžeme považovat strukturu za neinvertující zesilovač se zesílením

 $A = u_0/u_i = 1 + R_F/r_D =$ = 1 + (R_F/r_{DSO}) . 1- $(|U_{GS}|/U_p)^{\frac{1}{2}}$ (33). Je-li $r_{DSO} = 1 \text{ k}\Omega$ a $U_{GS} = 0 \text{ V}$, je $r_D = r_{DSO}$ a maximální zesílení A_{max} = 1 + 100k/1k = 101.

Je-li $U_{GS} = -U_p$, je $r_D = \infty$ a $A_{min} = 1$. Lze doplnit, že pro malé $U_{DS} < 0$ a $u_i << U_p$ se JFET chová jako lineární odpor. Lze proto zpracovávat i velmi malé vstupní střídavé

ÚKOL 23: Zesilovač s nastavitelným zesílením lineárně závislým na řídicím napětí - obr. 23.

Obr. 23.a) Zesilovač se zesílením lineárně závislým na řídicím napětí, b) "odporová" oblast tranzistoru JFE

a) Je-li $U_{\textrm{R}} < U_{\textrm{p}}$ a $U_{\textrm{s}} < U_{\textrm{p}}$ ($U_{\textrm{p}}$ – prahová napětí JFET), dokažte, že $r_{DS} = R_1(U_R/U_C)$ pro oba tranzistory (shodných vlastností); b) dokažte, že za podmínek bodu a) platí $U_o/U_s = 1 + (R_2/R_1).(U_C/U_R);$

c) je-li $r_{DSO} = 100 \Omega$, určete R_2 , které zaručuje změnu zesílení od 1 do 500;

d) při $U_R = 2 V a U_C = 10 V (maximum)$ zjistěte R₁, které umožní dosáhnout r_{DSO}

Je-li $U_B < U_p$ a $U_s < U_p$, jsou oba tranzistory FE v odporové oblasti - obr. 21b a platí úvahy v úkolech 21 a 22. Pro ideální operační zesilovač zřejmě platí l₁ = U_C/R₁, napětí U_{DS1} = U_R. Pracovní bod tranzistoru T₁ je tedy zcela přesně definován - obr. 23b. Dynamický odpor $r_{DS1} = \Delta U_{DS1}/\Delta I_{D1} = U_R/I_1$, protože pro $U_R < U_p$ je odpor r_{DS1} nezávislý na U_{DS1} a s dostatečnou přesností platí $\Delta U_{DS1}/\Delta I_{D1} = U_R/I_1$. Platí tedy

 $r_{DS} = R_1 \cdot (U_R/U_C)$. Výstup operačního zesilovače OZ₁ nastaví UGS1 tak, aby platil již uvedený vztah (zpětnovazební smyčka)

 $r_{DS1} = R_1 U_R / U_C =$ $= r_{DSO} / [1 - (|U_{GS1}| / U_p)^{\frac{1}{2}}].$ Jestliže jsou tranzistory T₁ a T₂ identické a platí $U_{GS2}=U_{GS1}$, musí pro $U_s < U_p$ platit, že $r_{DS2} = r_{DS1} = R_1 U_R / U_C$

Dynamický odpor obou tranzistorů je přímo úměrný napětí U_R.

Nyní již není obtížné určit, že OZ₂ tvoří neinvertující zesilovač se zesílením

 $A = 1 + R_2/r_{DS2} = 1 + (R_2/R_1).(U_C/U_R)$ (35). Pokud je tranzistor T2 plně "sepnut", je $r_{DS2} = r_{DSO} = 100 \ \Omega$. Aby bylo dosaženo zesílení A_{max} = 500, musí platit

 $A_{max} = 500 = 1 + R_2/100.$

Snadno určíme, že $R_2 \ge 500.100 = 50 \ k\Omega$. Aby bylo dosaženo zesílení 1, musí se tranzistor T_2 zcela zavřít, $r_{DS2} = \infty$. To bude možné pouze tehdy, bude-li prahové napětí U_p menší než je absolutní hodnota saturačního napětí (záporného) operačního zesilovače OZ_1 (U^-_{sat}). Budeme-li mít například JFET s $U_p = 8 \ V$, musí být zapojení (napájení) navrženo tak, aby výstup OZ_1 mohl dosáhnout úrovně –8 V, protože při $U_{GS} = -8 \ V$ se FET zcela zavřou a bude dosaženo stavu $A_{min} = 1 + R_2/\infty = 1$.

Požadujeme-li při $U_R=2~V~a~U_C=10~V~odpor~r_{DS}=100~\Omega=R_1U_R/U_C,~musí~platit~R_1=100U_C/U_R=500~\Omega.$

ÚKOL 24: Vlečný (sledovací) stabilizátor napěti (obr. 24)

Obr. 24. Vlečný (sledovací) stabilizátor napětí

Dokažte, že výstupní napětí stabilizátoru jsou

 $U_{o1} = U_{REF} \cdot (1 + R_2/R_1),$ $U_{o2} = -U_{o1}, \text{ je-li } R_3 = R_4.$

Je samozřejmé, že OZ_1 tvoří neinvertující zesilovač napětí U_{REF} , přičemž výstup je proudově "posílen" tranzistorem T_1 . Platí proto

 $U_{o1} = U_{REF} \cdot (1 + R_2/R_1)$ (36).

Operační zesilovač OZ₂ tvoří invertující zesilovač napětí U_{o1}. Proto

 $\begin{array}{lll} U_{o2} = -U_{o1}R_4/R_3 = & |R_4 = R_3| = -U_{o1}. \\ \text{Při uspořádání zdrojů podle obr. 24 vede} \\ \text{zkratování výstupu } U_{o1} \text{ i k výpadku napětí} \\ U_{o2}. \text{ Zkratování výstupu } U_{o2} \text{ ovšem napětí} \\ U_{o1} \text{ neovlivní.} \end{array}$

ÚKOL 25: Precizní invertor s velkým vstupním a malým výstupním odporem – obr. 25

Obr. 25. Precizní invertor s vysokým vstupním a malým výstupním odporem

Dokažte, že

$$U_{o1} = -U_{o2} = (1 + R_2/R_1).U_i.$$

Operační zesilovač OZ_1 tvoří neinvertující zesilovač, jehož vstupní odpor může být běžně větši než 100 M Ω (pro bipolární OZ). Platí

 $U'_0 = (1 + R_2/R_1).U_i$

Operační zesilovač OZ_2 tvoří sledovač s přenosem 1 (neinvertující zesilovač, $R_2=0$, $R_1=\infty$) a velkým vstupním odporem. Ten zde ovšem není důležitý, protože výstupní odpor OZ_1 je nepatrný. Platí proto $U_{o1}=U'_{o}=(1+R_2/R_1)$. U_{i} .

Operační zesilovač OZ₃ tvoří invertující zesilovač se zesílením –1 (vstupní odpor R).

Platí proto

$$U_{o2} = -U'_{o} = -(1 + R_2/R_1) \cdot U_{i}$$

Rezistor R/2 zapojený z neinvertujícího vstupu kompenzuje proudovou nesymetrii operačního zesilovače OZ₃.

Na výstupech jsou tedy signály se stejnou amplitudou a opačnou fází.

ÚKOL 26: Měřicí zesilovač s velkým vstupním odporem (obr. 26)

Obr. 26. Měřicí zesilovač s velkým vstupním odporem

Dokažte, že

$$U_0 = (R_4/R_3)(1 + 2R_2/R_1)(U_2 - U_1).$$

Operační zesilovače OZ_1 , OZ_2 tvoří diferenční zesilovač s plovoucím výstupem U_A . Jsou-li ideální, jsou diferenční napětí na vstupech OZ_1 a OZ_2 nulová a napětí U_{R1} na rezistoru R_1 je $U_{R1} = U_1 - U_2$. Proto lze určit snadno proud I_1 rezistorem I_2 .

 $i_1 = U_{R1}/R_1 = (U_1 - U_2)/R_1$.

Proud i₁ protéká i oběma rezistory R₂ a platí proto

 $U_A = U_{R2} + U_{R1} + U_{R2} = (2R_2 + R_1) \cdot i_1$ = $(U_1 - U_2) \cdot (1 + 2R_2/R_1)$.

Toto napětí je zesíleno diferenčním zesilovačem OZ_3 , proto $U_o = -U_A R_4/R_3$.

Celkový přenos struktury na obr. 26 je $U_0 = (R_4/R_3).(1 + 2R_2/R_1).(U_2 - U_1)$ (37

Vstupní proudy jsou určeny pouze proudy neinvertujících vstupů OZ₁ a OZ₂, vstupní odpor je proto velký.

Setkat se můžeme i se strukturou, kde je rezistor R_1 vypuštěn $(R_1 = \infty)$. Potom platí $U_0 = (R_4/R_3)(U_2 - U_1)$.

ÚKOL 27: Exponenciální převodnik (antilog. zesilovač, obr. 27)

Obr. 27. Exponenciální převodník

a) Dokažte, že

 $U_0 = R_3I_{REF} \exp \{-U_iR_2/|U_T(R_1+R_2)|\}.$ b) Pro $I_{REF} = 10 \mu A$, $R_3 = 100 kΩ$, $R_1 = 160 kΩ$ a $R_2 = 10 kΩ$ je $U_0 = (1,0 V)$

Postup řešení bude obdobný jako v úkolu **12.** Tranzistor T_1 má definován proud kolektoru proudovým zdrojem I_{REF} . Proto $U_{BE1} = U_T.ln(I_{REF}/I_{Ko}) = 2,3U_T.log(I_{REF}/I_{Ko})$. Analogicky

 $U_{BE2} = U_{T}.ln(I_{9}/I_{KO}) = 2,3U_{T}.log(I_{9}/I_{KO}).$ Pro ideální operační zesilovač OZ_{1} a OZ_{2} je napětí na neinvertující a invertující vstupní svorce stejné. Platí proto pro OZ_{1} , že $U_{+} = U_{BE1} - U_{BE2}$ a pro operační zesilovač OZ_{2}

je $I_3 = U_o/R_3$. Současně musí u OZ_1 platit $U_+ = U_i R_2/(R_1 + R_2)$. Srovnáním výrazů pro napětí neinvertující svorky U_+ a po dosazení za napětí báze-emitor dostáváme

 $U_iR_2/(R_1 + R_2) =$

 $= U_T.ln(I_{REF}/I_{Ko}) - U_T.ln \mid U_o/(I_{Ko}R_3) \mid.$ Jednoduchými úpravami dospějeme ke vztahu

 $\begin{array}{ll} U_{o} &=& I_{REF}R_{3}.exp \left\{ -U_{i}R_{2}/\left| \; U_{T}(R_{1}+R_{2}) \; \right| \right\} \\ &=& I_{REF}R_{3}.10^{-U_{i}R_{2}}/\left| \; ^{2,3U_{T}(R_{1}+R_{2})} \right| \end{array} \tag{38}.$

Při pokojové teplotě je $U_T = 26$ mV. Pro R_3 = 100 kΩ, R_1 = 160 kΩ a R_2 = 10 kΩ dostaneme při I_{REF} = 10 μA U_o = (1 V) · 10^{-LN(1,0166 V)}

Vstupní napětí U_i může být kladné i záporné polarity. Výstupní napětí U_o je vždy kladné. Pro $U_i=0$ V a uvedené poměry je $U_o=1$ V, pro $U_i=1$ V je $U_o=0,1$ V, pro $U_i=-1$ V je $U_o=10$ V.

Je nutno doplnit, že člen U_T je závislý na teplotě přechodů tranzistorů – stejně jako v úloze **12.**

ÚKOL 28: Obvod umocňování napětí (obr. 28)

Obr. 28. Obvod umocňování napětí

Pro logaritmický převodník platí $U_o=(1\ V)$. log($U_i/1\ V$), pro antilogaritmický převodník platí $U_o=(1\ V).10^{-U/1\ V}$. Dokažte, že platí $U_o=U_i^{(R_F/R_i)}$.

Pro logaritmický převodník lze použít zapojení úkolu **12.** Pokud bude například $R_1 = R_2$ a $U_1 = 1$ V, dostaneme požadovaný převod. Pro antilogaritmický převodník lze použít zapojení z úkolu **27.** Pokud budou všechny čtyři tranzistory na společném čipu s teplotní stabilizací, bude vyloučena i teplotní závislost.

Při daném uspořádání platí

 $U_1 = (1 \text{ V}) \cdot \log(U_i/1 \text{ V}).$

Operační zesilovač tvoří invertující zesilovač se zesílením-R_F/R_L. Proto pro výstupní napětí U₂ platí

 $U_2 = -(R_F/R_L) \cdot U_1 = (-R_F/R_L) \cdot \log U_i$ = $\log(U_i)^{-R_F/R_L}$.

Toto napětí vedeme na vstup převodníku antilogaritmického, pro výstupní napětí celé struktury U_o platí

 $U_0 = 10^{-U_2} = 10^{-\log(U_i)^{(L_i)} F^{R_i} L^{1}} = 10^{\log(U_i)^{(R_i)} F^{R_i} L^{1}}$ Z definice dekadického logaritmu je zřejmé,

že

U_o = (U_i)^(R_F/R_L)

Pomocí rezistorů R_F, R_L tak lze nastavit libovolný poměr, nikoliv jen celočíselný.

ÚKOL 29: Zesilovač s exponenciálním řízením zesílení (obr. 29)

Obr. 29. Zesilovač s exponenciálním řízením

Tranzistory T₁ a T₂ jsou shodných vlastností. a) Dokažte, že $U_0 = U_1 \cdot (R_2/R_1) \cdot \exp(U_R/U_T)$

a zesílení tedy závisí na U_R. b) Najděte rozsah zesílení při R₁ = R₂ = 10 M Ω a pro $U_R = 0$ až 200 mV.

Postup řešení je obdobný jako u úkolů 12 a 27. Pro ideální operační zesilovače OZ₁ a OZ_2 platí $I_1 = U_i/R_1$ a $I_2 = U_o/R_2$. Současně

 $U_{R}=U_{BE2}-U_{BE1}=U_{T}\ln(I_{2}/I_{Ko})-U_{T}\ln(I_{1}/I_{CO})$

Jednoduchou úpravou dostaneme $U_{R} = U_{T} \ln(I_{2}/I_{1}) = U_{T} \ln(U_{0}R_{1}/U_{i}R_{2})$

a poté

 $U_0 = U_i \cdot (R_2/R_1) \cdot exp(U_R/U_T)$. Při teplotě 25 °C (tj. 273 + 25 = 298 °K) je $U_T \doteq 26 \text{ mV}.$

Je-li $R_1 = R_2 = 10 \text{ M}\Omega$, platí pro $U_R = 0$, že $U_0 = U_i$ a pro $U_B = 0.2 \text{ V je } U_B/U_T = 7.692.$ Potom $U_o = 2191U_i$.

Volíme-li R_1 a R_2 10 $M\Omega$, je zřejmé, že vstupní proudy operačních zesilovačů musí být nepatrné. Je vhodné použít operační zesilovače s tranzistory JFE na vstupu. Dále je zřejmé, že malé změny napětí U_R vedou k velkým změnám zesílení obvodu na obr. 29.

ÚKOL 30: Funkční generátor (obr. 30)

Obr. 30. Funkční generátor

Dokažte, že pro f(u) = a.uⁿ platí pro výstupní napětí $U_o = \left[-R_2 U_i/(aR_1) \right]^{1/n}$.

Úkol je v podstatě shodný s úkolem 13. Ani zde nesmí převodník f(u) obracet fázi, aby zpětná vazba "okolo" OZ₁ byla záporná. Platí i ostatní úvahy z úkolu 13:

 $i_1 = U_i/R_1$, $i_2 = f(u_o)/R_2$. Současně musí platit i₁ = -i₂, po dosazení tedy dostáváme $U_1/R_1 = -f(u_0)/R_2$

Pokud platí $f(u_0) = a.u_0^n$, dostaneme $-U_i \cdot (R_2/$ R_1) = a.U₀ⁿ a po úpravě

 $U_0 = \left[-U_1 R_2 / (a R_1) \right]^{1/n}$ Funkční závislost Uo = f(Ui) je inverzní funkcí bloku f(u), který je zapojen v obvodu Bude-li například vazby. a = 1 a n = 2, bude platit $U_0 = \sqrt{-U_1R_2/R_1}$.

ÚKOL 31: Integrační obvod s "vybitím" obr. 31

Tranzistor T₁ je před začátkem integrace sepnut a vybije kondenzátor C. Poté se tranzistor zavře a začíná integrace.

a) Dokažte, že

$$U_o = -\frac{1}{RC} \ \int \ U_i dt.$$

b) Pro $U_i = +10 \text{ V}$, $R_1 = 1 \text{ k}\Omega$ najděte C tak, aby v době t = 1 ms bylo výstupní napětí Uo = -10 V.

c) Prošetřete vliv konečné hodnoty AOL, napěťové nesymetrie U_{IO} a vstupního proudu I_B na přesnost integrátoru.

Obr. 31a) Integrační obvod s "vybitím", b) znázornění vlivu U_{IO}, c) znázornění vlivu vstupního proudu I_B_

Pro ideální operační zesilovač platí u_d = 0, $i_1 = U_i/R_1 a u_0 = -u_C$

Proud i1 může protékat pouze přes kondenzátor C, proto $i_1 = i_C = C du_C/dt = -C du_O/dt$. Protože velikost proudu i1 známe, lze snadno určit, že $u_i/R_1 = -C du_o/dt$ a po úpravě

$$u_o = -\frac{1}{R_1 C} \int U_i dt$$
 (42)

jestliže v čase t = 0 je kondenzátor vybit na nulové napětí. Je-li U_i = konstanta, dostaneme ze vztahu (42), že

$$U_o = -\frac{1}{R_1 C} U_i t$$
 (42a).

Je-li $U_i = 10 \text{ V}, R_1 = 1 \text{ k}\Omega$ a má platit $U_o(1 \text{ ms}) = -10 \text{ V}$, dostaneme ze vztahu (42a)

 $C = 10.10^{-3}/(10^3.10) = 10^{-6} = 1 \mu F.$

Vliv konečné hodnoty AOL zavedeme prostřednictvím nenulového diferenčního napětí $u_d = U_o/A_{OL}$. Nyní platí $i_1 = (U_i + u_d)/R_1$ $= (U_i + U_0/A_{Ol})/R_1$

Za této situace určíme, že pro výstupní na-

$$U_o = -\frac{1}{R_1 C} \int (U_i + U_o / A_{OL}) dt .$$

Derivací obou stran rovnice a úpravou dostaneme diferenciální rovnici

$$dU_o/dt + 1/(CR_1A_{OL})U_o = -U_i/(R_1C) \qquad (43).$$

Pro ideální operační zesilovač je člen CR₁A_{OL} vždy nekonečně velký a rovnice (43) vede opět ke vztahu (42).

Řešení diferenciální rovnice (43) je relativně snadné. Lze použít obdobného postupu jako v úkolu 7, výsledné výstupní napětí popisuje vztah (44):

 $u_o(t) = -U_i.A_{OL}\left\{1-exp\big[-t/(CR_1A_{OL})\big]\right\}(44).$ Souvislost se vztahem (42) odhalíme snadno, rozvineme-li člen exp [-t/(CR₁A_{OL})] v řadu. Platí totiž 4

 $\exp(-x) = -x^{1}! + x^{2}/2! - X^{3}/3! + \dots$

Pro x <<1, tedy pro $t/(CR_1A_{OL}) <<1$, stačí vzít první dva členy rozvoje a ze vztahu (44)

$$u_{o}(t) \doteq -U_{i}A_{OL} \left[1 - 1 + t/(CR_{1}A_{OL}) \right] =$$

= $-U_{i}t/(CR_{1})$.

Není-li podmínka pro t/(CR1AOL) splněna, musíme brát v úvahu více členů rozvoje například první tři. Dostaneme

 $u_o(t) = -U_i t/(CR_1) \cdot [1 - t/(2CR_1A_{OL})]$ (45). Ze vztahu (45) je vliv konečné hodnoty AOL očividný.

Vliv napěťové nesymetrie snadno určíme pomocí obr. 31b. Napěťová nesymetrie je reprezentována napětím U_{IO} v neinvertujícím vstupu operačního zesilovače. Je zřejmé, že nyní platí vztah $U_{R1} = U_i - U_{IO}$ a proto i i₁ = (U_i - U_{iO})/R₁. Stejným postupem jako u vztahu (42) dostaneme pro výstupní napětí

$$u_o(t) = -\frac{1}{R_1C} \int_0^t (U_i - U_{IO}) dt$$
 (46)

Protože napětí U_{IO} lze považovat za konstantu, dostaneme

$$\label{eq:uo} u_o(t) = U_{IO} \cdot t/(R_{\uparrow}C) - \quad \frac{1}{R_{\uparrow}C} \int\limits_{-\infty}^{t} U_i \, dt \ .$$

Je-li konstantní i napětí U_i, dostaneme ze vztahu (46) $u_0(t) =$

 $= -U_i t/(R_1 C). (1 - U_{IO}/U_i)$

Chyba je velmi výrazná pro malá vstupní napětí U_i. Výstupní napětí se bude měnit i tehdy, je-li U_i = 0. Ideální stav proto je: U_{IO}

Vliv vstupního proudu posoudíme pomocí obr. 31c. Vstupní proud považujeme za konstantní. Proud i_C je součtem proudu i₁ a vstupního proudu invertujícího vstupu iB-: $i_C = i_1 + i_{B-} = -C du_o/dt$. Platí proto

$$\underline{u}_{o} = -\frac{1}{C} \int (i_{1} + i_{B-})dt.$$

 $\begin{array}{l} \underline{u_o} = -\frac{1}{C_-} \int \int (i_1 + i_{B-}) dt. \\ \\ \text{Pro konstantni napětí } U_i \text{ je } i_1 = U_i / R_1 \text{ a po} \end{array}$ integraci je $u_0 = -U_i t/CR_1$) $-i_{B-}t/C =$ $= -U_i t/(CR_1).(1 + R_1 i_B / U_i)$ Chyba proti "ideálu" je dána poměrem R₁i_B_/U_i. Opět se mění napětí u_o i v případě, že vstupní napětí je nulové. Ideální stav je i_{B-}

Z rozborů je zřejmé, že nároky na operační zesilovač jsou při zpracování malých signálů poměrně značné. Přednost by měla být dána operačnímu zesilovači s malými vstupními proudy, malou napěťovou nesymetrií a velkým zesílením bez zpětné vazby AoL.

ÚKOL 32: Precizní omezovač (řízený napětim - obr. 32)

a) Nakreslete převodní charakteristiku Uo = $f(U_i)$ a dokažte, že $U_0 = U_i$ pro $U_i \le U_{BFF}$ a $U_o = U_{REF}$ pro $U_i \ge U_{REF}$.

b) Zopakujte zadání bodu a) pro obrácenou polaritu diody D₁.

c) Nakreslete schéma oboustranného omezovače s úrovněmi omezení U_{REF1} a U_{REF2} (uvažte možnost kaskádního řazení).

d) Proč jde o precizní omezovač - jaký vliv má úbytek napětí na diodě D1.

Pro napětí U_i ≦ U_{REF} je napětí na výstupu OZ, kladné, dioda D, je rozpojena. Napětí U+ na neinvertujícím vstupu OZ2 je rovno napětí U_i, protože sledovač s OZ₂ má velmi velký vstupní odpor (větší než 100 $M\Omega$). Na rezistoru R1 tedy nevznikne prakticky žádný napěťový úbytek. Současně platí pro ideální OZ_2 , že $U_0 = U_+ = U_i$.

Je-li napětí U, větší než napětí UREF, je napětí na výstupu OZ₁ záporné, dioda D₁ spíná, zpětná vazba pro OZ1 je uzavřena. Diferenční napětí u_d je nulové a platí U₊ = U_{REF} a proto i U_{o} = U_{REF} . Úbytek napětí na diodě D₁ je potlačen zesílením operačního

Obr. 32.a) Precizní omezovač řízený napětím U_{REF}, b) převodní charakteristiky při zapojení diody D1, c) převodní charakteristiky při zapojení diody D2, d) precizní oboustranný omezovač, e) převodní charakteristika oboustranného omezovače

e)

- Ui

zesilovače OZ_1 , chyba je proto jen velice malá – asi $0.6\ V/A_{OL}$.

Převodní charakteristika pro různé úrovně U_{REF} je znázorněna na obr. 32b.

Otočíme-li diodu D_1 (dioda D_2 v závorce – obr. 32a), situace na výstupu OZ_1 se nemění, ale dioda spíná "opačně". Pro napětí U_i menší než napětí U_{REF} je na výstupu OZ_1 opět kladné napětí, dioda D_2 nyní ovšem vede. Proto je napětí $U_+ = U_{REF}$ a také $U_0 = U_{REF}$. Pro napětí $U_i \geqq U_{REF}$ je na výstupu OZ_1 záporné napětí, proto dioda D_2 nevede a platí $U_+ = U_i = U_0$. Převodní charakteristika je na obr. 32c.

Kaskádním řazením můžeme dosáhnout omezení z "obou stran" – obr. 32d. Převodní charakteristika obvodu z obr. 32d je na obr. 32e. Pro $U_i \geq U_{REF1} \geq U_{REF2}$ je D_1 sepnuta, $U_A = U_{REF1}$. Dioda D_2 nevede a proto $U_o = U_B = U_{REF1}$.

Pro $U_{REF2} \le U_i \le U_{REF1}$ D_1 nevede, $U_i = U_A$, dioda D_2 rovněž nevede a proto $U_o = U_B = U_i$.

Pro $U_i \leq U_{REF2} \leq U_{REF1}$ dioda D_1 nevede, $U_A = U_i$. Dioda D_2 nyní ovšem vede, $U_B = U_{REF2}$ a proto pro výstupní napětí platí $U_o = U_B = U_{REF2}$. Podmínkou správné funkce obvodu je dodržení vztahu $U_{REF1} > U_{REF2}$, polarita referenčních napětí může být libovolná.

ÚKOL 33: Precizní obnovitel stejnosměrné složky řízený napětím – obr. 33

Obr. 33.a) Precizní obnovitel stejnosměrné složky, b) znázornění závislosti u_i(t), U_{C1ss}, u_o(t), c) varianta obnovitele ss složky, d) a znázornění průběhů napětí

a) Dokažte, že střídavá složka výstupního napětí u_o je rovna střídavé složce vstupního napětí u_i a úroveň u_o se nikdy nezmenší pod napětí $U_{\rm REF}$.

- b) Je-li $u_i = 1$. $sin(\omega t) \mid V \mid a \mid U_{REF} = 5 \mid V$, najděte $u_o(t)$.
- c) Řešte úkol z bodu b) pro $U_{REF}=0$ V. d) Dokažte, že při otočení diody D_1 výstupní napětí $u_o(t)$ nikdy nepřekročí úroveň U_{REF} .
- e) Řešte úkol z bodu b) při otočené diodě D₁.
 f) Proč je zapojení precizní. Jak ovlivňuje úbytek na diodě D₁ přesnost obvodu? Může být napětí U_{REF} libovolné polarity?

Předpokládejme, že na vstupu OZ₁ je připojena právě nejmenší úroveň signálu – tedy –U₁. U₁ je amplituda vstupního signálu. Napětí na invertujícím vstupu OZ₂ U₋ je menší než napětí U_{REF}. Výstupní napětí OZ₂ je kladné, dioda D₁ je sepnuta a zpětná

vazba "přes" OZ₂ je uzavřena. Znamená to, že pro ideální OZ_2 musí platit i $U_- = U_{RFF}$. Kondenzátor C₁ se proto nabije z OZ₂ na napětí $U_{C1ss} = U_i + U_{REF}$. Dále se napětí $u_i(t)$ zvětšuje. Pokud je výstupní odpor OZ₁ nulový (a to prakticky při stoprocentní zpětné vazbě je) a zatěžovací odpor na výstupu u_o je mnohonásobně větší než impedance kapacity (1/ωC₁), nevzniká na C₁ prakticky žádný úbytek napětí. Vstupní napětí u¡(t) "posunuje" celé stejnosměrné napětí U_{C1ss} = U_i + U_{REF} nahoru, ve shodě se změnou u (t). Napěti U_ je stále větší než napětí U_{REF}, dioda D₁ nevede, operační zesilovač OZ₂ se neuplatňuje. Výstupní napětí uo(t) tak sleduje napětí vstupní s tím, že je superponováno na stejnosměrné napětí U_i + U_{REF}. Platí tedy $u_o(t) = u_i(t) + U_i + U_{ref} = U_i sin(\omega t) + U_i$ + U_{REF} kde Ui je amplituda vstupního signálu.

Výstupni napětí se nikdy nezmenší pod napětí U_{REF}. Situace je znázorněna na obr. 33b.

Je-li $U_i = 1,0 \text{ V}$ a $U_{REF} = 5 \text{ V}$, dostaneme podle vztahu (49)

 $\begin{array}{l} u_o(t) = 1.sin(\omega t) + 1 + 5 = 6 + 1.sin(\omega t) \bigm| V \Big]. \\ \text{Je-li } U_i = 10 \ V \ a \ U_{\text{REF}} = 0 \ V, \ \text{dostaneme} \\ u_o(t) = 10.sin(\omega t) + 10 \ \bigm| V \Big]. \end{array}$

Je-li $U_i = 10 \text{ V a } U_{REF} = -5 \text{ V, je}$ $u_o(t) = 10.\sin(\omega t) + 5 \text{ V}$.

Pokud se v časovém intervalu t_o až t_1 (obr. 33b) zmenší U_{C1ss} pod velikost $U_{REF}+U_i$ (díky svodům C_1 , vstupním proudům OZ_2), zmenší se v okolí $t_1 \mid u_i(t_1) = -U_i \rfloor$ napětí $U_- = u_o(t_1)$ pod velikost U_{REF} . V tom případě se opět spíná D_1 a OZ_2 obnoví stav $U_{C1ss} = U_{REF}+U_i$. Chyba, která vzniká, je úměrná pouze napětí U_{D1} sepnuté diody D_1 a nepřímo úměrná zesílení OZ_2 bez zpětné vazby. Je tedy přibližně rovna hodnotě $U_{D1}/A_{OL}-$ detail na obr. 33b.

Když otočíme diodu D₁ - obr. 33c - dochází k sepnutí D₁ a uzavření zpětné vazby při U_ > U_{REF}. To podstatně mění situaci. Výstupní napětí nikdy nepřekročí napětí U_{REF}. Předpokládejme, že na výstupu OZ₁ je právě největší úroveň signálu tedy amplituda U_i. Napětí U_− je větší než napětí U_{REF}, dioda D₁ (obr. 32c) je sepnuta, zpětná vazba je uzavřena. Napětí U. se ustálí na velikosti U_{REF}. Zřejmě platí, že napětí na kondenzátoru C1 je nyní UC1ss = U_{REF} - U_i. Dále se zmenšuje napětí u_i(t) a proto se zmenší i napětí U_ pod napětí UREF. Dioda D1 se zavírá a napětí ui(t) superponované na napětí UREF - Ui je přenášeno přímo na výstup. Platí (obr. 33c), že $u_o(t) = U_i.sin(\omega t) + U_{REF} - U_i$

Situace v ustáleném stavu je znázorněna na obr. 33d. Pro $U_{REF}=5$ V a $U_i=1$ V dostaneme $u_o(t)=1.sin(\omega t)+4$ V.

Referenční napěti může mít v obou případech libovolnou polaritu. Musíme si pouze vuvědomit, že výstupní napětí u_o(t) nesmí překročit saturační úrovně operačního zesilovače OZ₂.

Vstupní signál tedy prochází přes zesilovač OZ₁ a superponuje se na stejnosměrné napětí kondenzátoru C₁. To se ustálí na U_{REF} + U_i pro obr. 33a a na U_{REF} – U_i pro obvod na obr. 33c. Operační zesilovač OZ₂ pouze "hlídá" nastavení U_{C1ss} a dobíjí kondenzátor pro U₋ < U_{REF} (obr. 33a) nebo pro U₋ > U_{REF}

(obr. 33c), přičemž maximální přesah hranice U_{REF} odpovídá hodnotě U_{D1}/A_{OL}.

ÚKOL 34: Přepínač polarity zesílení obr. 34

Obr. 34. Přepínač polarity zesílení

a) Dokažte, že zesílení obvodu je $A = -(1 + R_2/R_1),$ je-li tranzistor T₁ sepnut a $A = 1 + R_2/R_1$ je-li tranzistor T₁ rozepnut.

Předpokládá se, že odpor tranzistoru v sepnutém stavu r_{DSO} je mnohonásobně menší než odpor rezistoru R4.

b) Je-li $r_{DSO} = 100 \Omega$, najděte R₄ takové, aby se absolutní hodnoty zesílení nelišily o více

Operační zesilovač OZ₁ tvoří neinvertující zesilovač, platí

 $U_1 = U_i \cdot (1 + R_2/R_1).$

Je-li tranzistor T_1 rozepnut ($U_G < -U_p$, U_p prahové napětí), je napětí U+ na neinvertujícím vstupu rovno napětí U1. Pro ideální operační zesilovač OZ2 musí rovněž platit U_ $= U_+ = U_1$. Znamená to, že přes rezistory R_3 neprotéká žádný proud a to bude splněno pouze tehdy, bude-li i U₀ = U₁. Ke stejnému výsledku dospějeme pomocí principu super-

$$U_{o} = U_{+}.(1 + R_{3}/R_{3}) - U_{1}R_{3}/R_{3} =$$

$$= 2U_{+} - U_{1}$$

$$\text{neinvertující invert.}$$

$$\text{cesta}$$

$$(51).$$

Je-li tranzistor T_1 rozepnut, je $U_+ = U_1$ a výstupní napětí

 $U_0 = U_1 = U_1(1 + R_2/R_1)$ Je-li tranzistor T_1 sepnut, je $U_+ = U_1.r_{DSO}/(R_4$

 $+r_{DSO}$).

Po dosazení do vztahu (51) dostaneme $U_o = -U_i(1 + R_2/R_1).[1 - 2r_{DSO}/(R_4)]$ + r_{DSO}) Pro R₄ mnohonásobně větší než r_{DSO} lze vztah dále zjednodušit:

 $U_o = -U_i(1 + R_2/R_1).(1 - 2r_{DSO}/R_4)$ Má-li být chyba zesílení absolutní hodnoty menší než 1 %, musí platit 2r_{DSO}/R₄ < 0,01 a odsud pro uvažované poměry dostáváme $R_4 > 2r_{DSO}.100 = 20 \text{ k}\Omega.$

ÚKOL 35: Kapacitní násobič řízený napětím obr. 35

a) Dokažte, že (za předpokladu $A_2 = -A$, A je kladné číslo) vstupní impedance obvodu je $Z_i = u_i/i_i = Z_F/(1 + A).$

b) Jestliže Z_F je kapacita, platí pro vstupní kapacitu obvodu $C_i = C_F.(1 + A)$.

Operační zesilovače OZ₁ a OZ₂ jsou zapojeny jako sledovače, zaručují tak velké

Obr. 35. Kapacitní násobič řízený napětím

vstupní i malé výstupní odpory. Pokud by zesilovač A2 zajišťoval sám velký vstupní odpor a malý výstupní odpor, není třeba OZ₁ a OZ₂ vůbec zapojovat.

Jsou-li použity ideální operační zesilovače, platí v zapojení na obr. 35 pro výstupní napětí zřejmě u_o = A₂.u_i. Dále platí pro vstupní proud $i_i = (u_i - u_o)/Z_F$. Nyní snadno určíme, že ekvivalentní vstupní impedance (55). je dána vztahem

 $Z_i = u_i / l_i = Z_F / (1 - A_2)$ (55).

Je-li zesilovač A2 invertující a platí A2 = -A (kde A > 0), dostáváme pro vstupní impedanci vztah

$$Z_i = Z_F/(1 + A)$$
 (56).

Je-li zpětnovazební impedance ZF tvořena kapacitou C_F , určíme snadno $Z_F = 1/(j\omega C_F)$ a ze vztahu (56) získáme

$$Z_I = 1/[j\omega C_F.(1+A)].$$

Proto je ekvivalentní vstupní kapacita C_I popsána vztahem

$$C_i = C_{F} \cdot (1 + A)$$
 (57).

Vztah (57) popisuje vliv kapacity C_F, která ie zapojena mezi invertující vstup a výstup zesilovače. Jedná se o klasický Millerův jev, který byl popsán již u elektronek (vliv kapacity anoda - mřížka na vstupní impedanci).

ÚKOL 36: Analogový spínač s nulovým výstupním odporem (obr. 36)

Obr. 36. Analogový spínač s malým výstupním odporem

Dokažte, že $u_o = 0$, je-li tranzistor T_1 sepnut (r_{DSO} << R₄) a že pro T₁ rozepnutý platí $u_0 = U_{i}.(1 + R_2/R_1).$

Situace je téměř shodná se situací v úkolu 34. Stejným způsobem lze odvodit, že ub = 2U+ - U1. Při rozepnutém T1 je stav naprosto stejný jako v úkolu 34 a proto uo $= U_1 = U_i (1 + R_2/R_1).$

Při sepnutí T₁ ovšem platí $U_{+} = R_4 U_1 / (R_4 + R_s + r_{DSO}).$

Zajistíme-li platnost rovnosti $R_s + r_{DSO} = R_4$, dostaneme U+ = U1/2 a výstupní napětí je nulové, protože

$$u_o = U_1 - U_1 = 0.$$

Operační zesilovač OZ2 je v této situaci zapojen do diagonály vyváženého odporového můstku.

ÚKOL 37: Syntetická indukčnost – obr. 37

Obr. 37. Syntetická indukčnost

a) Dokažte, že vstupní impedance obvodu je

$$Z_i = u_i/i_i = R_2R_3/Z_F.$$

b) Je-li $Z_F = 1/(j\omega C_F)$, je ekvivalentní vstupní indukčnost

 $L_e = R_2R_3C_F$

c) Zesílení zesilovače OZ₁ s rezistory R₁, R₁ je 2. Odvoďte Z_i pro obecnější případ, kdy zpětnovazební rezistory u OZ1 jsou různé a zesílení je K.

d) Požadujeme $L_e = 1 \text{ mH}, R_1 = R_2 = R_3$ 1 kΩ, jaká je kapacita C_F ?

Budeme přímo vycházet z obecné situace, kdy Ra ≠ R1. Zesílení OZ1 je potom $K = 1 + R_a/R_1$. Na výstupu OZ_1 je napětí u_1 = Ku_i. Výstupní napětí zesilovače OZ₂ lze určit pomocí principu superpozice: $u_0 = -u_1 Z_F/R_2 + u_i.(1 + Z_F/R_2),$

> neinv. cesta inv. cesta

R₃ samotný přenos neovlivňuje, svým "druhým" koncem je totiž připojen do místa s nulovou imedancí - výstup OZ2. Ke stejnému výsledku dospějeme i ze "základního předpokladu" $u_d = 0$. Platí potom $i_2 = (u_1$ $-U_i$ / R_2 a $u_o = u_i - Z_F \cdot l_2 = -u_1 Z_F / R_2 + u_i \cdot (1)$ + Z_F/R₂). Dosadíme za u₁ a dostaneme $u_0 = u_i [1 + (1 - K)Z_F/R_2].$

Jsou-li oba OZ ideální, musí protékat vstupní proud i pouze přes rezistor R₃. Potom

$$\begin{split} i_i &= (u_i - u_0)/R_3 = \\ &= u_i. \big\{ 1 - \big[1 + (1 - K) \; Z_F/R_2 \big] \big\}/R3. \end{split}$$
Základní úpravou nyní dostaneme $Z_i = u_i/i_1 = R_2R_3/\lceil (K-1)Z_F \rceil$ $Je-liR_a = R_1$, $jeK = 2aZ_i = R_2R_3/Z_F$. $Je-liZ_F$ = $1/(j\omega C_E)$, je $Z_i = j\omega C_E R_2 R_3$. Této impedanci odpovídá ekvivalentní vstupní indukčnost. $L_0 = R_2 R_3 C_F$ Pro $R_2 = R_3 = 1 \text{ k}\Omega$ a požadovanou L_e = 1 mH musí ze vztahu (59) platit $C_F = L_e/(R_2R_3) = 10^{-3}/10^6 = 10^{-9}F = 1 \text{ nF}.$

ÚKOL 38: Multiplexor (přepínač) analogových signálů (obr. 38)

a) Nechť prahové napětí Up tranzistorů JFE s kanálem typu n je 5 V, r_{DSO} je mnohonásobně menší než R_1 a $x_1, x_2, \ldots x_n$ jsou časově se nepřekrývající impulsy s aktivní úrovní -10 V (základní úroveň 0 V). Dokažte, že v době trvání úrovně -10 V na vstupu xk je výstupní napětí

 $U_o = -U_{ik}R_3/R_2,$

kde x_k je libovolný ze vstupů 1 až n.

b) Pro $r_{DSO} = 100 \Omega$ určete R_1 tak, aby chyba vnesená spínačem nepřesáhla 1 %. c) Určete význam sledovačů napětí.

Tranzistor T_k na jehož vstupu je aktivní úroveň $x_k = -10 \text{ V je rozepnutý} - ostatní$ tranzistory jsou sepnuté. Pokud jsou odpory v sepnutém stavu zanedbatelné, jsou příObr. 38.a) Multiplexor analogových signálů, b) dokonalejší spínač (sériově-paralelní)

slušná výstupní napětí $u_1, u_2, \ldots, u_{k-1}, u_{k+1}, \ldots, u_n$ nulová. Pro výstupní napětí aktivovaného vstupu (T_k rozepnut) platí $u_k = u_{ik}$. Vliv rezistoru R_1 je zanedbatelný, protože sledovač napětí má běžně vstupní odpor větší než 100 $M\Omega$ a jeho výstupní odpor je prakticky nulový. Proto i pro výsledné výstupní napětí lze v tomto ideálním případě použít velmi jednoduchý vztah

$$u_0 = -u_{ik}R_3/R_2$$

Zesilovač OZ_s je totiž zapojen jako součtový (invertující) zesilovač (viz úkol 4, je-li $u_5 = 0$).

Uvažujeme-li, že tranzistory T_1 až T_n mají v sepnutém stavu stejný odpor r_{DSO} , je na výstupech sledovačů ve skutečnosti napětí $r_{DSO}u_i/(r_{DSO}+R_1) \doteq u_ir_{DSO}/R_1$ a nikoli nula. Je-li rozepnutý tranzistor T_k , platí pro výstupní napětí u_o přesnější vztah:

$$\begin{array}{lll} u_o = -u_{ik}R_3/R_2 - \left(u_{i1} + u_{i2} + \ldots + u_{i(k-1)} + u_{i(k+1)} + \ldots + u_{in}\right)r_{DSO}/R_1 & (60). \end{array}$$

Chyba jednoho kanálu je zřejmě určena poměrem r_{DSO}/R_1 . Je-li $r_{DSO}=100~\Omega$ a chyba má být menší než 1 %, musí platit r_{DSO}/R_1 < 0,01, tedy $R_1 > 100 r_{DSO} = 10~k\Omega$. Ze vztahu (60) však plyne, že chyba ze všech zbývajících vstupů se sečítá. Proto se v praxi používají spínače složitější – princip je na obr. 38b. Musí platit, že "kontakt a" je pro $x_k=0~V$ rozepnut a "kontakt b" je sepnut ($r_b=r_{DSO}$). Odpor r_a rozepnutého kontaktu a může dosahovat jednotek $M\Omega$. Pro výstupní napěti u_k bude za této situace platit ($x_k=0$) $u_k=u_{ik}r_{DSO}/(R_1+r_a+r_{DSO})=u_{ik}r_{DSO}/(r_1+r_a)$. Vztah (60) se nyní změní na

$$\begin{aligned} u_o &= -u_{ik} R_3 / R_2 - (u_{i1} + \ldots + u_{i(k-1)} + \\ &+ u_{i(k+1)} + \ldots + u_{in}). r_{DSO} / (R_1 + r_a) \end{aligned} \tag{61}.$$

Je-li například r_{DSO} = 100 Ω a r_a = 1 M Ω , je zlepšení situace podstatné.

U zvoleného kanálu je $x_k = -10 \text{ V}$, kontakt a je sepnut, $r_a = r_{DSO}$; kontakt b je rozepnut, r_b je řádově $M\Omega$. Opět platí, že $u_k = u_{ik}$, protože odpor r_{DSO} je proti vstupnímu odporu sledovače skutečně zanedbatelný, zanedbatelný je i proti odporu rozepnutého kontaktu r_b .

Ovládací úrovně x_k mohou být obecně libovolné, bude záležet pouze na skutečné realizaci "spínačů a, b" na obr. 38b.

ÚKOL 39: Oboustranný omezovač – obr. 39 Napětí obou stabilizačních diod D_1 a D_2 je $U_{Z1}=U_{Z2}=9,4$ V; úbytek 0,6 V v předním směru.

a) Nakreslete závislost Uo = f(Ui)

b) Nakreslete závislost $U_0 = f(U_i)$, je-li $U_{Z1} = 9.4 \text{ V a } U_{Z2} = 4.4 \text{ V}.$

Pro $U_o > 0$ ($U_i < 0$) a $U_o < U_{Z1} + 0,6$ V jsou obě diody rozpojeny a pro výstupní napětí

Obr. 39a) Oboustranný omezovač, b) převodní charakteristiky pro $U_{Z1} = U_{Z2} = 9,4$ $V \ a \ U_{Z1} = 9,4 \ V \ a \ U_{Z2} = 4,4 \ V$

platí

 $U_o = -R_2/R_1 \cdot U_i,$

jedná se o běžné zapojení invertujícího zesilovače. Jakmile dosáhne napětí U_o U_{Z1} + 0,6 V, diody se "spínají" a uzavírá se silná záporná zpětná vazba (stoprocentní). Platí proto

$$U_{omax} = U_{Z1} + 0.6 V.$$

Pro $U_o < 0$ ($U_i > 0$) a $U_o > -U_{Z2} - 0.6$ V platí rovněž

 $U_o = -U_i R_2 / R_1.$

K omezení dochází až pro výstupní napětí $U_{omin} = -U_{Z2} - 0,6 \text{ V}.$

Platí-li $U_Z = U_{Z1} = U_{Z2}$ (výběr diod), je omezení symetrické.

$$U_{\text{omax}} = |U_{\text{omin}}| = U_{\text{Z}} + 0.6 \text{ V}.$$

Převodní charakteristiky jsou na obr. 39b pro $U_{Z1}=U_{Z2}=9,4\ V$ a pro $U_{Z1}=9,4\ V$ a $U_{Z2}=4,4\ V$.

ÚKOL 40: Symetrický omezovač – obr. 40 a) Dokažte, že schéma na obr. 40 symetricky omezuje výstupní napětí.

b) Posuďte vliv nestejných úbytků napětí U_D na diodách D_1 až D_4 .

Na rozdíl od úkolu **39** není nutné vybírat dvě stabilizační diody. Je-li napětí u_o kladné, spínají diody D_4 , D_3 a D_5 ; úbytek napětí $U_{omax} = U_Z + 2U_D$. Pro výstupní napětí záporné dojde k omezení při úrovni napětí $U_{omin} = -U_Z - 2U_D$; sepnuty jsou diody D_5 , D_2 a D_1 .

V ideálním případě (který byl uvažován) je možné předpokládat splnění rovnosti $U_{D1} = U_{D2} = U_{D3} = U_{D4}$, proto

$$U_{omax} = -U_{omin}$$

omezení je symetrické.

V reálném případě je například $U_{D1}=630$ mV, $U_{D2}=620$ mV, $U_{D3}=600$ mV, $U_{D4}=630$ mV a $U_Z=4,8$ V. Potom lze určit U_{omax}

Obr. 40.a) Symetrický omezovač, b) převodní charakteristika

+ $U_{omin}=6,03$ V -6,05 V =-20 mV. Pro běžné účely není proto třeba diody D_1 až D_4 vybírat, relativní chyba na úrovni asi 6 V je většinou zanedbatelná.

ÚKOL 41: Fázovací článek 0 až −180° – obr. 41

Obr. 41. Fázovací článek (a) a jeho přenos v komplexní rovině (b)

a) Je-li operační zesilovač ideální, dokažte, že přenos je $A_1 = 1,0 < -2 \ \text{arctg}(\omega C_2 R_2)$ absolutní hodnota stále rovna jedné, fáze $\phi = -2 \text{arctg}(\omega C_2 R_2)$.

b) Určete A₁ při R₁ = 2 k Ω , R₂ = 1 k Ω , C₂ = 10 nF a f = 10 kHz.

Pro odvození přenosu bude opět nejvhodnější použít principu superpozice. Příspěvek invertující cesty k výstupnímu napětí je $u_{oin} = -u_i R_1/R_1 = -u_i$. Příspěvek neinvertující cesty je $u_{onein} = u_+$. $(1 + R_1/R_1) = 2u_+$, přičemž u_+ je určeno děličem R_2 , C_2 , tudíž

$$u_{_{+}} = \frac{u_{_{1}} \cdot 1/(j \omega C_{_{2}})}{R_{_{2}} + 1/(j \omega C_{_{2}})} = u_{_{1}}/(1 + j \omega C_{_{2}}R_{_{2}}) \ .$$

Nyní snadno určíme celkové výstupní napětí $u_o=u_{oin}+u_{onein}=$ $=u_i.~(1-j\omega C_2R_2)/(1+j\omega C_2R_2).$ Přenos (zesílení) obvodu tedy je $A_1=u_o/u_i=(1-j\omega C_2R_2)/(1+j\omega C_2R_2)=(1-\omega^2R_2^2C_2^2-2j\omega R_2C_2)/(1+\omega^2R_2^2C_2^2)~~(62).$

Absolutní hodnoty čitatele i jmenovatele jsou stejné:

 $\sqrt{1 + \omega^2 C_2^2 R_2^2}$

Fázi čitatele φ_c lze určit ze vztahu tg $\varphi_c = \text{Im}/$ $Re = -\omega C_2 R_2. \ \text{Odsud} \ \phi_c = \text{arctg} \ (-\omega C_2 R_2)$ = – arctg (ωC₂R₂). Fázi jmenovatele určíme stejným postupem: tg $\phi_j=$ Im/Re = ωC_2R_2 ; proto $\phi_j=$ arctg (ωC_2R_2). Vztah (62) lze nyní přepsat do tvaru

$$\begin{array}{l} A_1 = \sqrt{1 + \omega^2 C_2^2 R_2^2}.e^{j\phi c}/\sqrt{11 + \omega^2 C_2^2 R_2^2}.e^{j\phi j} \\ = 1.e^{j(\phi_c - \phi_j)} = e^{j\phi^1} \end{array} \tag{62a}.$$

Absolutní hodnota přenosu je stále rovna jedné, výsledná fáze přenosu $\phi_1 = \phi_c - \phi_i$:

$$\begin{split} \phi_1 &= -\text{arctg}(\omega C_2 R_2) - \text{arctg}(\omega C_2 R_2) = -2. \\ \text{arctg}(\omega C_2 R_2) \end{split} \tag{63}$$

Znázornění přenosu v komplexní rovině je na obr. 41b. Na kruhové frekvenci $\omega_o = 1/$ (C₂R₂) je fáze právě -90°. Možný formální zápis přenosu je $A_1 = 1 < -2.arctg(\omega C_2R_2)$.

Pro $R_1 = 2 k\Omega$, $R_2 = 1 k\Omega$, $C_2 = 10 nF$ 10 kHz je φ_1 = -2.arctg $(2\pi 10^4.10^3.10^{-8})$ $-2.arctg(0,2\pi)$ $= -64,28^{\circ}.$

ÚKOL 42: Fázovací článek +180° až 0° - obr. 42

Obr. 42.a) Fázovací článek, b) znázornění změny znaménka Re a Im složky, c) jeho přenos v komplexní rovině

Dokažte, že přenos obvodu je $A_2 = 1.0 < [180^{\circ} - 2.arctg(\omega C_2 R_2)].$

Zapojení je jakýmsi doplňkem k zapojení na obr. 41a. I zde je optimálním postupem využití principu superpozice. Platí (invertující cesta): uoin = -uiR1/R1 = -ui. Dále (neinvertující cesta): $u_{onein} = u_+$. (1 + R_1/R_1) = 2.u₊, přičemž u₊ = $u_i R_2 / [R_2 + 1/(j\omega c_2)]$ $= u_i j \omega C_2 R_2 / (1 + j \omega C_2 R_2).$ Celkové výstupní napětí je

 $u_o = u_{oin} + u_{onein} =$ = u_i . (-1 + $j\omega C_2 R_2$)/(1 + $j\omega C_2 R_2$).

Po úpravě dostáváme pro přenos $A_2 \,=\, u_o/u_i \,=\, (-1 \,+\, j\omega C_2 R_2)/(1 \,+\, j\omega C_2 R_2)$ $= (-1 + \omega^2 C_2^2 R_2^2 + 2j\omega C_2 R_2)/(1 + \omega^2 C_2^2 R_2^2)$

I zde platí, že absolutní hodnoty čitatele a imenovatele isou si rovny, celkový přenos je stále roven jedné. Při srovnání vztahů (62) a (64) zjistíme, že se pouze změnila znaménka reálné (Re) a imaginární složky (lm), velikosti zůstaly stejné. To nám umožní snadno určit fázi ϕ_2 – obr. 42b. Platí ϕ_2 + $| \phi_1 | = 180^{\circ}$, přičemž ϕ_1 je určena vztahem (63).

Pro fázi zapojení na obr. 42a platí
$$\phi_2=180^\circ-2.\mathrm{arctg}(\omega C_2R_2)$$
 (65). Celý přenos lze popsat vztahem $A_2=1.$ $e^{j.100^\circ-2\mathrm{arctg}(\omega C_2R_2)]}=1<[180^\circ-2\mathrm{arctg}(\omega C_2R_2)]$ (66) Přenos je -1 pro $f=0$, $+j$ pro $f=1/(2\pi C_2R_2)$ a $+1$ pro $f=\infty$ (obr. 42c).

ÚKOL 43: Fázovací článek 0° až 360° - obr.

Obr. 43. Fázovací článek 0 až 360°

a) Dokažte, že kaskádním řazením dvou obvodů z obr. 41a dostaneme fázovací článek s posuvem fáze 0° až 360°.

b) Dokažte, že stejné tvrzení platí i pro kaskádní řazení dvou obvodů z obr. 42a.

Řadíme-li kaskádně dva zesilovače, je výsledný přenos roven součinu přenosů. Platí totiž

 $A = u_0/u_i = (u_1/u_i).(u_0/u_1) = A_1.A_2.$ Přenos struktury na obr. 43 lze proto určit pomocí vztahu (62a) $A = e^{j\phi^1} \cdot e^{j\phi^1} = e^{2j\phi^1} = e^{j\phi^v}$

platí $R_2 = R$ a $C_2 = C$ (obr. 43, obr. 41). Proto

 $\varphi_{v} = 2.[-2.\operatorname{arctg}(\omega CR)] = -4.\operatorname{arctg}(\omega CR)$ (67).

Pro f = 0 je φ_v = 0, pro f = 1/(2 π CR) je φ_v = −180°, pro f = ∞ je ϕ_{V} = 360°.

Pomocí vztahu (66) určíme chování dvou kaskádně řazených obvodů z obr. 42a: $A = e^{2j\varphi^2} = e^{j\varphi^v}.$

Po dosazení dostáváme

 $\varphi_{V} = 2$. $|180 - 2.arctg(\omega CR)| = 360$ -4.arctg(ω CR) = -4.arctg(ω CR) (68). Vidíme, že výsledná fáze je v obou případech stejná, protože úhel 360° lze zanedbat (celá perioda).

ÚKOL 44: Fázovací článek + 180° až - 180° obr. 44

Obr. 44. Fázovací článek - 180° až + 180°

Dokažte, že zapojení ná obr. 44 pracuje s fázovým posuvem -180° až +180°.

Z obr. 44 je zřejmé, že se jedná o kaskádní zapojení článků z obr. 42a. a obr. 41a. Stačí proto opět určit součin známých přenosů (úkol 43):

 $A = u_0/u_i = e^{j_{\phi^2}} \cdot e^{j_{\phi^1}} = e^{j_{(\phi^1 + \phi^2)}} = e^{j_{\phi^0}},$ kde ϕ_2 je dáno vztahem (65) a ϕ_1 vztahem

Pro výslednou fázi dostáváme vztah

 $\varphi_v = 180^{\circ} - 2.arctg(\omega CR) - 2.arctg(\omega CR)$ = $180^{\circ} - 4.arctg(\omega CR)$ Pro f = 0 je φ_v = 180°, pro f = 1/(2 π CR)je $\varphi_{v} = 180 - 4.45 = 0^{\circ}$, pro $f = \infty$ je $\varphi_{v} = 180^{\circ}$ $-360^{\circ} = -180^{\circ}$.

ÚKOL 45: Můstkový zesilovač – obr. 45

Obr. 45. Zapojení můstkového zesilovače

a) Dokažte, že $U_o = (1 + G_1/G_2) [(-\Delta G.U_N)/(2G_3 + \Delta G)].$ b) Je dáno $R_1 = 1 k\Omega$, $R_2 = 9 k\Omega$, $G_3 + \Delta G$ rezistor s teplotním koeficientem 0,2 %/°C, G₃ - rezistor nastavitelný - nastavuje se (zde) tak, aby při $U_N = 10 \text{ V a T}_0 = 25 \,^{\circ}\text{C}$ bylo výstupní napětí Uo = 0 V. Najděte teplotní závislost výstupního napětí $U_0 = f(T)$.

Nejdříve odvodíme napětí U+ na neinvertujícím vstupu (R = 1/G): $U_{+} = U_{N}.R_{T}/(R_{3} + R_{T}) = (U_{N}/R_{3})/(1/R_{T} + 1/R_{T})$ R_3) = $U_NG_3/(G_T + G_3)$ (A). Pro ideální operační zesilovač musí platit $U_{+} = U_{-}$. Lze určit $i_1 = U_-/R_1 = U_+G_1$ (B). Dále platí $U_0 = -i_2R_2 + U_+ = U_+ -i_2/G_2$ (C).

Musí platit $[G_1 + G_2 = 1/R_1]$ 1/R₂ $= (R_1 + R_2)/(R_1 R_2)$: $i_a = (U_N - U_+).(G_1 + G_2) = i_2 + i_1$ (D). Nyní určíme z rovnice (B) a (D), že

 $i_2 = U_N(G_1 + G_2) - U_+G_2 - 2U_+G_1$ Dosazením do (C) dostaneme $U_0 = U_+ - [U_N(G_1 + G_2) - U_+G_2 - 2U_+G_1]/G_2.$ Dosazením z (A) a úpravami dostaneme pro

výstupní napětí vztah $U_0 = U_N \cdot (1 + G_1/G_2) \cdot (G_3 - G_T)/(G_3 + G_T)$ (70).

Platí-li $G_T = G_3 + \Delta G$, kde G_3 je hodnota G_T při teplotě T_o a $\Delta G = G_3.k.(T - T_o)$, potom $U_0 = U_N \cdot (1 + G_1/G_2) \cdot (-\Delta G)/(2G_3 + \Delta G)$

Je-li $\Delta G \ll 2G_3$ (tedy k \ll 1), dostaneme $U_o = -U_N \cdot (1 + G_1/G_2) k \cdot (T - T_o)/2$ Mění-li se vodivost o 0,2 %/°C, znamená

to, že k = 0,002 a dostaneme $G_1 = 0,001$ S, $G_2 = (1/9).10^{-3} \text{ S a T}_0 = 25 \,^{\circ}\text{C}$ $U_0 = -10.(1 + 9). 0,002.(T -25 °C)/2$ = - (0,1 V/°C).(T - 25 °C).

Je-li nám milejší popis pomocí odporů a ne vodivostí, lze vztah (70) snadno upravit pomocí základního vztahu 1/R = G. Po úpravách dostaneme pro výstupní napětí modifikovaný vztah

 $U_0 = U_{N} \cdot (1 + R_2/R_1) \cdot (R_T - R_3) / (R_T + R_3)$ (70)c.

Musíme si uvědomit, že vodivosti G₁ + G₂ odpovídá paralelní řazení rezistorů R₁ a R₂.

ÚKOL 46: Pásmová propust (invertující zesilovač s nekonečným zesílením) – obr. 46 a) Dokažte, že pro zesílení obvodu na obr. 46 platí

 $A = u_0/u_1 = -Y_1Y_3/(Y_1 + Y_2 + Y_3 + Y_4)$ $(Y_5 + Y_3Y_4].$ b) Určete zesílení, je-li $Y_1 = G_1$, $Y_2 = G_2$, Y_3

 $= j\omega C_3$, $Y_4 = j\omega C_4$ a $Y_5 = G_5$.

c) Určete kruhovou frekvenci ω_o, na které je přenos maximální a určete zde velikost zesílení

d) Určete R₁, R₂ a R₅; požaduje se f₀ = 100 Hz, šířka pásma B = 10 Hz, $|A_{max}| = 10$ (volte $C_3 = C_4 = 1 \mu F$).

Obr. 46. Invertující pásmová propust (Y $= G_1, Y_2 = G_2, Y_3 = j\omega C_3, Y_4 = j\omega C_4, Y_5$ = G_5)

Pro ideální operační zesilovač OZ₁ lze snadno sestavit následující soubor jednoduchých rovnic:

$$i_1 = (u_i - u_A) Y_1$$

$$i_2 = u_A Y_2 \tag{II),}$$

$$i_3 = -u_A Y_3 \tag{III},$$

$$\begin{aligned} i_4 &= (u_o - u_A) Y_4 \\ i_5 &= u_o Y_5 \end{aligned} \tag{IV)},$$

$$i_1 + i_3 + i_4 = i_2$$
 (VI),

$$i_3 = i_5 \tag{VII},$$

Tento soubor vztahů stačí k vyřešení předloženého úkolu. Ze vztahů (VII), (III), (V) určí-

$$\begin{split} &u_{A}=-u_{o}Y_{5}\!/Y_{3} &\text{(VIII)},\\ &\text{Ze vztahů (V), (VII), (VI), (II), (I) a (IV) určíme,} \end{split}$$

 $\check{z}e u_0 = i_5/Y_5 = i_3/Y_5 = (i_2 - i_1 - i_4)/Y_5 = u_A Y_2/Y_5$ $Y_5 - (u_1 - u_A)Y_1/Y_5 - (u_0 - u_A)Y_4/Y_5$

Po dosazení za uA ze vztahu (VIII) a úpravách dostaneme

$$\begin{array}{l} A = u_o/u_i = -Y_1Y_3/[(Y_1 + Y_2 + Y_3 + Y_4)Y_5 \\ + Y_3Y_4] \end{array} \eqno(71).$$

Je-li $Y_1 = G_1 = 1/R_1$, $Y_2 = G_2 = 1/R_2$, $Y_3 =$ $= j\omega C_3 = pC_3$, $Y_4 = j\omega C_4 = pC_4$ a $Y_5 = G_5$ = 1/R5, stačí dosadit do vztahu (71) a upravit přenos do normovaného tvaru:

$$\begin{array}{lll} \dot{A} &=& -(pG_1/C_4)/\left[p^2 + pG_5(1/C_3 + 1/C_4) + G_5(G_1 + G_2)/C_3C_4)\right] \end{array} \tag{72}$$

Srovnáním s normovaným polynomem 2. řádu $p^2 + p\omega_0/Q + \omega_0^2$ snadno zjistíme, že frekvence maximálního přenosu je

$$\omega_0^2 = G_5 (G_1 + G_2)/(C_3 C_4) =$$
= 1/[R₅C₃C₄ R₁R₂/(R₁ + R₂)] (73).

Maximální hodnotu přenosu určíme ze vztahu (72) a (73);

$$p = j\omega_0$$
, $p^2 = -\omega_0^2$:

 $A(\omega_0) = -G_1/\big[G_5(1 + C_4/C_3)\big] = -R_5/\big[R_1(1$ $+ C_4/C_3)$ Q je činitel jakosti obvodu. Platí Q = f_o/B, kde $f_o = \omega_o/(2\pi)$ a B je pásmo propustnosti v Hz pro pokles přenosu o 3 dB. Srovnáme-li vztah (72) s normovaným tvarem, zjistíme, že platí

$$\omega_0/Q = G_5(1/C_3 + 1/C_4).$$

Dosadíme-li ve vztahu (73) za ω_{o} , dostaneme po úpravách

$$Q = \sqrt{(G_1 + G_2)/[\sqrt{C_4/C_3} + \sqrt{C_3/C_4}]} = \sqrt{R_5/R_1 + R_5/R_2/[\sqrt{C_4/C_3} + \sqrt{C_3/C_4}]}$$

Je zřejmé, že se jedná o pásmovou propust s maximálním přenosem na kruhové frekvenci ω_o (73), a činitelem jakosti Q (75) a tomu odpovídající šířkou pásma B = f_o/Q. V obvodu na obr. 46 je nutno určit pět pasívních prvků a k dispozici jsou pouze tři rovnice: (73), (74) a (75). Proto dva prvky volíme, nejčastěji se volí C = C₃ = C₄, zde Potom se vztahy zjednoduší:

$$\omega_o^2 = G_5(G_1 + G_2)/C^2 =$$
= $(1/R_1 + 1/R_2)/(R_5C^2)$ (73a),

$$\begin{array}{ll} A\left(\omega_{o}\right) = -R_{5}(2R_{1}) & (74a), \\ Q = \sqrt{R_{5}/R_{1} + R_{5}/R_{2}}/2 & (75a). \end{array}$$

Máme systém tří rovnic pro tři neznámé (je-li C zvolena). Tento svstém se ovšem musí dále upravit, aby nám umožnil pohodlný návrh pásmové propusti podle zadaných požadavků.

$$\sqrt{R_5/R_1 + R_5//R_2} = 2Q$$
.

Vztah (73a) lze upravit do tvaru $\omega_0^2 = (R_5/R_1 + R_5/R_2)/(R_5^2C^2).$

Nyní již snadno určíme, že

$$R_5 = \sqrt{R_5/R_1 + R_5/R_2}/(\omega_o C) = 2Q/(\omega_o C)$$
(76)

Ze vztahu (74a) plyne (77). $R_1 = R_5/(2 \mid A(\omega_0) \mid)$ Úpravou vztahu $R_5/R_1 + R_5/R_2 = 4Q^2$ dosta-

$$\begin{array}{lclcrcl} R_2 & = & R_5/(4Q^2 & - & R_5/R_1) & = & R_5/(4Q^2 \\ -2. & | & A(\omega_o) & | &). & & & (78) \end{array}$$

Vztahy (76), (77), (78) jsou návrhovými vztahy za předpokladu, že volíme C₃ = C₄ = C. Je-li tedy zvoleno C = 1 μF a požadujeme $f_0 = 100 \text{ Hz}$, B = 10 Hz ($Q = f_0/B = 10$) a $A(\omega_0) = -10$, dostaneme ze vztahu (76): $R_5 = 20/(2\pi 100.10^{-6}) = 31,83 \text{ k}\Omega.$

$$R_1 = 31,83/(2.10) = 1,59 \text{ k}\Omega.$$

$$R_2 = 31.83/(400 - 20) = 83.8 \Omega.$$

Vztah (78) ovšem definuje doplňkový požadavek. Reálný smysl má pouze odpor R2 kladných hodnot. Je proto jasné, že volba C3 = C₄ = C vede automaticky k požadavku $4Q^2 - 2 \mid A(\omega_0 \mid > 0,$ musí proto platit

$$Q^2 \ge |A(\omega_0)|/2 \tag{79}.$$

Volíme-li právě hraniční hodnotu Q_{min} = $\sqrt{|A(\omega_0)|/2}$, lze R₂ vypustit, protože R₂ $= R_5/0 = \infty.$

ÚKOL 47: Dolní propust 2. řádu (zesilovač neinvertující - s konečným zesílením K - filtr Sallen - Key) - obr. 47

Obr. 47.a) Dolní propust 2. řádu (Y1 = G1 $1/R_1$, $Y_2 = G_2 = 1/R_2$, $Y_3 = j\omega C_3$, = $j\omega C_4$), b) přenos dolní propusti DP

a) Dokažte, že přenos (zesílení) obvodu je $A = u_0/u_1 = KY_1Y_2/|Y_1Y_2 + Y_4(Y_1 + Y_2 + Y_3)$ $+ Y_2Y_3(1 - K)$.

b) Dokažte, že pro $Y_1 = G_1$, $Y_2 = G_2$, Y_3 = $j\omega C_3$ a $Y_4 = j\omega C_4$ jde o dolní propust.

c) Určete přenos dolní propusti na frekvenci

d) Určete frekvenci ω_{m} , na níž je přenos maximální a určete zde velikost přenosu

Ideální operační zesilovač tvoří neinvertující zesilovač se zesílením 1 + (K - 1) R_a/R_a K, s malým výstupním a nekonečným vstupním odporem. Proto platí

$$u_o = Ku_B$$
 (I),

$$i_1 = (u_i - u_A)Y_1$$
 (II),
 $i_2 = (u_B - u_A)Y_2$ (III),

$$i_3 = (u_0 - u_A)Y_3 \tag{IV},$$

$$i_4 = u_B Y_4 \tag{V},$$

$$i_2 + i_4 = 0$$
 (VI),

$$i_1 + i_2 + i_3 = 0$$
 (VII),

a (V) Ize určit, že

$$i_2 = -u_0Y_4/K$$
 (VIII).

Ze vztahů (VII), (II), (III), (IV) a (I) lze určit, že
$$u_A = |u_iY_1 + u_o(Y_2/K + Y_3)|/(Y_1 + Y_2 + Y_3)$$

Pomocí (III), (I), (VIII) a (IX) dostaneme $A = u_0/u_1 = KY_1Y_2/|Y_1Y_2 + Y_4(Y_1 + Y_2Y_3)$ $+ Y_2Y_3(1-K)$ Je-li $Y_1 = G_1$, $Y_2 = G_2$, $Y_3 = j\omega C_3$ a $Y_4 = j\omega C_4$ $(j\omega = p)$ dostaneme ze vztahu (80) po úpravách

$$A = K \frac{G_1G_2/(C_3C_4)}{p^2 + p|G_1/C_3 + G_2/C_3 + G_2(1-K)/C_4| + G_1G_2}$$
(81)

Obecný normovaný tvar zesílení pro dolní propust 2. řádu je

$$A_{DP} = K\omega_o^2/(p^2 + p\omega_o/Q + \omega_o^2)$$
 (82),

přičemž rovněž platí

$$1/(2Q) = \xi$$
,

kde ξ je logaritmický dekrement útlumu.

Pro p = $j\omega$ = 0 je A_{DP} = K, pro p = $j\omega$ _o je p² = $-\omega$ _o² a A_{DP}(ω _o) = K ω _o²/($j\omega$ _o²/Q) = –jK·Q, pro ω = ∞ je přenos dolní propusti nulový.

Vztahy (81) a (82) se formálně shodují. Srovnáním lze určit

$$\omega_0^2 = G_1 G_2 / (C_3 C_4) = 1 / (R_1 R_2 C_3 C_4)$$
(83),

$$\omega_0/Q = G_1/C_3 + G_2/C_3 + G_2(1 - K)/C_4$$

Po úpravách dostaneme

 $\begin{array}{l} 1/Q = 2\xi = \sqrt{C_4/C_3} \left| \sqrt{G_1/G_2} + \sqrt{G_2/G_1} \right| \\ + (1-K) \sqrt{G_2C_3} \sqrt{G_1C_4} \end{array} \tag{84}.$ Užitečné je vyšetřit průběh absolutní hodnoty přenosu podle vztahu (82). Maximum přenosu je na frekvenci ω_m, kde nabývá derivace absolutní hodnoty jmenovatele nulové

hodnoty. Tato podmínka je splněna pro
$$\omega_{\rm m}^2 = \omega_{\rm o}^2 \left(1 - 2\xi^2\right) \tag{85}.$$

Dosadíme-li ze vztahu (85) do vztahu (82), dostaneme pro absolutní hodnotu přenosu po úpravách

 $|A_{DP}(\omega_m)| = K/|2\xi\sqrt{1-\xi^2}|$ Průběh přenosu je znázorněn na obr. 47b. Absolutní hodnota jmenovatele pro ω>> ω_o vzroste na každé zdvojení frekvence (o oktávu) na čtyřnásobek. Tomu odpovídá pokles přenosu -12 dB/okt.

Požadujeme-li obecně K, ωo a Q, vycházejí návrhové vztahy velmi "nepohodlné". Proto se obvykle volí jedna z následujících možností:

a) K = 1, tedy $R_b = 0$ a $R_a = \infty$;

 $G_1 = G_2 = G = 1/R \text{ se voli};$

dopočítává se C3 a C4 tak, aby se realizovalo potřebné Q a ω_o .

Pro zvolené poměry dostaneme ze vztahu

$$\omega_0^2 = 1/(R^2C_3C_4)$$
,

ze vztahu (84) dostaneme $1/Q = 2\xi = 2.\sqrt{C_4/C_3}$.

Řešením těchto dvou rovnic o dvou neznámých dostaneme:

$$C_3 = 2Q/(R\omega_0) \tag{87}$$

 $C_4 = 1/(2QR\omega_0)$

což jsou návrhové vztahy pro předpokláda-

b) Platí $G_1 = G_2 = G = 1/R$, $C_3 = C_4 = C$. Volíme 1/R a podle požadovaných hodnot ω_o a Q dopočítáme C a K.

Ze vztahu (83) platí pro uvedenou volbu ω_o = 1/(RC), ze vztahu (84) dostaneme 1/Q = 3 - K. Snadno nyní určíme:

$$C = 1/(R\omega_o)$$

$$C = 1/(R\omega_o)$$
 (89),
 $K = 3 - 1/Q$ (90).

Poté se volí Ra a dopočítá

$$R_b = (K-1)R_a = (2-1/Q)R_a$$
 (91),

c) Výhodné je zvolit K = 2 (tedy $R_a = R_b$) $a C_3 = C_4 = C.$

Hodnotu C zvolíme, dopočítáme G1 a G2 tak, abychom dostali požadované hodnoty Q a ω_o.

Ze vztahu (83) dostaneme ω_0^2 $1/(R_1R_2C^2)$, ze vztahu (84) $1/Q = \sqrt{G_1/G_2} = \sqrt{R_2/R_1}$. Řešením dvou rovnic o dvou neznámých jsou vztahy návrhové

$$R_1 = Q/(\omega_0 C) \tag{92},$$

$$R_2 = 1/(\omega_0 CQ) \tag{93}.$$

ÚKOL 48: Butterworthova dolní propust 2. řádu - obr. 48

Obr. 48. Butterworthova dolní propust 2. řádu

a) Navrhněte C3 a C4 tak, aby dolní propust měla stále klesající modul přenosu (maximálně plochý modul).

b) Určete pokles přenosu na frekvenci fo.

c) Určete R, C_3 a C_4 tak, aby $f_o = 1$ kHz.

d) Určete R, C_3 a C_4 tak, aby $f_o = 10$ kHz.

Požadavky určené v bodě a) platí pro Butterworthovu dolní propust. Srovnáním s úkolem 47 zjistíme, že jde o případ a) (K = 1, $R_a = \infty$, $R_b = 0$), kdy platí návrhové vztahy (87) a (88). Má-li být modul přenosu maximálně plochý, musí být maximum přenosu právě na frekvenci $\omega_m = 0$, aby již nikde nemohlo dojít k ""převýšení". Ze vztahu (85) zjistíme, že musí platit 1 – 2 ξ_B^2 = 0, tedy ξ_B = 1/ $\sqrt{2}$. Tomu odpovídá činitel jakosti Q_B =

= $1/(2\xi_B)$ = $1/\sqrt{2}$. Ze vztahu (87) nyní určíme

 $C_3 = \sqrt{2}/(R\omega_0) = 1.414/(2\pi f_0 R);$ ze vztahu (88)

 $C_4 = 1/(\sqrt{2} R\omega_o) = 0.7071/(2\pi f_o R).$

Poměr kapacit je $C_3/C_4 = 2$.

Absolutní hodnota přenosu na frekvenci ω_{o} je $|A_{DP}(\omega_{o})| = 1/(2\xi_{B}) = 1/\sqrt{2}$; pokles přenosu je právě 3 dB.

Zvolme R = 10 k Ω . Pro I_0 = i kHz ted snadno určíme

 $= 1,414/(6,28.10^3.10^4) = 2,25.10^8$ = 22,5 nF,

 $C_4 = C_3/2 = 11,25 \text{ nF}.$

Z návrhových vztahů plyne, že pro fo = 10 kHz stačí pouze desetkrát zmenšit kapacitu kondenzátorů, ponecháme-li $R = 10 \text{ k}\Omega$. Dostaneme poté C₃ = 2,25 nF a C₄ = 1,125 nF.

ÚKOL 49: Horní propust 2. řádu – obr. 49

Obr. 49.a) Horní propust 2. řádu, b) přenos horní propusti

- a) Dokažte, že se jedná o horní propust.
- b) Navrhněte R₃ a R₄ tak, aby se jednalo o Butterworthovu horní propust.

c) Určete C, R₃, R₄ tak, aby f_o = 1 kHz.

Využijeme obecného vztahu (80) pro přenos z úkolu 47. Ze srovnání plyne, že K = 1, $Y_1 = Y_2 = j\omega C = pC, Y_3 = 1/R_3 a Y_4 = 1/R_4.$ Po dosazení do vztahu (80) a úpravách dostáváme

$$A = \frac{p^2}{p^2 + p \cdot 2/(CR_4) + 1/(R_3R_4C^2)}$$
(94)

Obecný normovaný tvar přenosu pro horní propust je

$$A_{HP} = p^2/(p^2 + p\omega_0^2 + \omega_0^2)$$
 (95)

Pro p = 0 je $A_{HP}(0) = 0$, pro p = $j\omega_0$ je $A_{HP}(\omega_0) = 1/(2\xi)$ a pro $p = \infty$ je $A_{HP} = 1$. Srovnáním vztahu (94) a (95) zjistíme, že pro obvod na obr. 49a platí (1/Q = 25)

$$\omega_o^2 = 1/(R_3 R_4 C^2)$$
 (96),
 $2\xi \omega_o = 2/(CR_4)$.

Dosazením za ω_o a úpravou dostaneme $1/Q = 2\xi = 2\sqrt{R_3/R_4}$

Z rovnic (96) a (97) lze určit návrhové vztahy pro požadované Q a ω_{o} , C zvolíme. Dostaneme

$$R_3 = 1/(2QC\omega_0)$$
 (98).
 $R_4 = 2Q/(C\omega_0)$ (99).

Postupem obdobným postupu v úkolu 47 lze vyšetřit maximum přenosu podle vztahu (95). Pro absolutní hodnotu přenosu obdržíme vztah ($p = j\omega$):

$$\mid A_{HP} \mid = 1/\sqrt{(1-\omega_0^2/\omega^2)^2 + 4\xi^2\omega_0^2/\omega^2}$$
 (100).

Nyní lze zjistit, na které kruhové frekvenci ω_m je přenos maximální. Musíme derivovat jmenovatel a určit, pro které $\omega = \omega_m$ nabývá derivace nulové hodnoty. Dospějeme k výsledku, že přenos je maximální na frekvenci $\omega_{\rm m} = \omega_{\rm o} / \sqrt{1 - 2\xi^2}$ Dosadíme-li za ω_{m} do vztahu (100), určíme i velikost maximálního přenosu

 $|A_{HP}(\omega_{m})| = 1/2\xi\sqrt{1-\xi^{2}}$ Situace je patrná z obr. 49b. Pro $\omega \ll \omega_0$, lze ze vztahu (98) určit, že pro každé zdvojení frekvence (oktáva) vzroste přenos čtyřikrát to ie strmost nárůstu + 12 dB/okt.

Má-li se jednat o Butterworthovu horní propustnost, musí být maximum přenosu v nekonečnu, tedy ω_m→∞. Ze vztahu (101) potom musí platit

$$1-2\,\xi_{R}^{2}=0$$
 .

Nyní už snadno určíme, že musí být splněna podmínka

$$1/Q_B = 2\xi_B = \sqrt{2}$$
.

Návrhové vztahy nabudou za této situace podoby:

$$R_3 = 0.7071/(\omega_o C),$$

 $R_4 = 1,414/(\omega_0 C)$.

Platí $R_4/R_3 = 2$.

Zvolme nyní C = 10 nF. Pro $f_0 = 1 \text{ kHz je}$ $\omega_0 = 2\pi.10^3$ a proto dostaneme $R_3 = 0.7071/(2\pi.10^3.10^8) = 11,25 \text{ k}\Omega$

 $R_4 = 2R_3 = 22,5 \text{ k}\Omega.$

ÚKOL 50: Pásmová zádrž – obr. 50

Obr. 50.a) Pásmová zádrž, b) syntetická indukčnost se sériovým odporem, c) přenos pásmové zádrže; čára 1 – U₁ vyhovuje vztahu (110), čára 2 – nevyhovuje vztahu (110)

- a) Dokažte, že se obvod na obr. 50a chová jako pásmová zádrž na frekvenci ω_o = 1/√LC.
- b) Určete činitele jakosti obvodu Q.
- c) Dokažte, že impedanci ZA lze nahradit zapojením na obr. 50b
- d) Určete C_L a C tak, aby $f_o = 1 \text{ kHz a } Q = 10$. e) Určete maximální povolené vstupní napětí pro správnou funkci obvodu.

Vstupní signál u, je zesilován invertující cestou i neinvertující cestou. Zesílení neinvertující cesty je

 $A_{ne} = Z/(R + Z).(1 + R_1/R_1) = 2Z/(R + Z),$ kde (p = $j\omega$)

 $Z = Z_A + 1/(pC),$

 $Z_A = R + pL$.

Zesílení invertující cesty je A_{in} = -R₁/R₁

Pro celkové zesílení platí podle principu superpozice v lineární pracovní oblasti

 $A = A_{in} + A_{ne} = 2Z/(R + Z) - 1 = (Z - R)/$ /(Z + R).

Dosadíme-li za Z a ZA, dostaneme po úpravách

$$A = [p^2 + 1/(LC)]/[p^2 + p2R/L + 1/(LC)]$$
(103).

Formální popis všech pásmových zádrží je definován vztahem

$$\begin{array}{lll} A_{PZ} &= (p^2 + \omega_o^2)/(p^2 + 2\xi\omega_o p + \omega_o^2) \;. \\ \text{Pro } p &= 0 \; \text{je} \; A_{PZ}(0) = 1 , \; \text{pro } p = \infty \\ \text{je} \; A_{PZ}(\infty) = 1 , \; \text{pro } p = \text{j}\omega_o \; \text{je} \; A_{PZ}(\omega_o) = (-\omega_o^2 + \omega_o^2)/(2\xi \text{j}\,\omega_o^2) = 0. \end{array}$$

Srovnáním zjistíme, že platí

 $\omega_o = 1/\sqrt{CL}$ (104).

Po dalších úpravách zjistíme i to, že $1/Q = 2\xi = 2R\sqrt{C/L}$ (105).

Z fyzikálního hlediska to znamená, že na rezonanční frekvenci sériového obvodu RLC jsou vstupy operačního zesilovače zapojeny do diagonály vyváženého můstku, na výstup neprochází žádný signál

Pro ideální operační zesilovač na obr. 50b musí platit, že i na výstupu je napětí uA. Pro poměry uvedené na obrázku proto platí

 $i_A = (u_A - u_B)/R_2,$

 $i_C = (u_A - u_B)pC_L$

 $i_2 = u_B/R_2,$

 $i_A + i_C = i_2$

Z tohoto souboru vztahů lze určit, že vstupní impedance svorky A je popsána vztahem

$$Z_A = u_A/i_A = 2R_2 + j\omega R_2^2 C_L$$
 (106).

Je zřejmé, že se jedná o ekvivalentní indukěnost L_e = C_LR₂² se sériově řazeným odporem 2R2. Má-li obvod na obr. 50a "spolupracovat" s obvodem na obr. 50b, musí platit podmínka R = 2R₂,

pro uvedené poměry tedy R = 9k4. Potom ze vztahu (104) dostaneme

$$\begin{split} &\omega_{\rm o} = 1/\sqrt{C \cdot R_2^2 \cdot C_L} = 1/(R_2 \sqrt{C \cdot C_L} \\ &\text{ve vztahu (105)} \\ &1/Q = 2\xi = 2 \cdot 2R_2 \sqrt{C/(R_2^2 C_L)} = \\ &= 4 \sqrt{C/C_L} \end{split}$$

Ze vztahů (104b) a (105b) lze již určit přijatelné "návrhové" vztahy pro pásmovou zádrž. Odpor R₂ volíme (potom R = 2R₂), dopočítáme C_L a C. Řešením dvou rovnic o dvou neznámých dostaneme

$$C_{L} = 4Q/(\omega_{o}R_{2}) \tag{107},$$

$$C = 1/(4Q\omega_0R_2)$$
 (108),

nebo lze použít vztah

(109).

 $C = C_L/(4Q)^2$ Požadujeme-li Q = 10 a f_o = 1 kHz, stačí určit ($R_2 = 4k7$, R = 9k4):

 $C_L = 40/(2\pi.10^3.4,7.10^3) = 1,355 \,\mu\text{F},$

 $C = C_L/(4Q)^2 = 1,355 \,\mu\text{F}/(40)^2 = 846,6 \,\text{pF}.$ Ze vztahu (106) určíme, že ekvivalentní indukčnost L_e je L_e = 1,355.10⁻⁶.(4,7.10³)² = 29,9 H.

Podle vztahu (104) můžeme zkontrolovat fo $= 1/(2\pi\sqrt{LC}) = 1/(2\pi\sqrt{2,534.10^{-6}}) = 999.8$ Hz. Podle vztahu (105) $1/Q = 2.9,4.10^3$ $\sqrt{846,6.10^{-12}/29,932} = 0,0998$, odsud Q = 10.002.

Aby odvozené vztahy platily, nesmí žádný operační zesilovač limitovat na výstupu napětí, musí být stále v lineární pracovní oblasti. Situace pro samotný OZ₁ by byla celkem snadná. Zkoumat spíš musíme napětí v bodě A - a to v "okolí" rezonančního kmitočtu ω_o. Platí zde

 $u_A = u_i(R + j\omega_o L)/[2R + j\omega_o L + 1/(j\omega_o C)].$ Je však zřejmé, že imaginární složka jmenovatele je na frekvenci ωo právě nulová a po jednoduché úpravě dostáváme u_A (ω_o) = $u_i | 0.5 + j/(CR\sqrt{C/L}) | = u_i(0.5 + jQ)$. Toto napětí je i na výstupu OZ2. Proto absolutní hodnota uA nesmí přesáhnout nikdy saturační napětí (mezní výstupní napětí) operačního zesilovače: $|u_A(\omega_0)| < U_{sat}$ Z této úvahy už snadno dostaneme podmínku, kterou musí splňovat amplituda vstupního napětí Ui:

 $U_i < U_{sat}/\sqrt{0.25 + Q^2} \doteq U_{sat}/Q$ (110)pro Q > 1.

Pro podmínky uvedené v příkladu bylo Q = 10. Je-li U_{sat} = 12 V (běžná hodnota při napájení 15 V), nesmí amplituda vstupního napětí překročit U_i = 1,2 V, aby odvozené vztahy platily. Situace je znázorněna na obr. 50c. Čára 1 vyznačuje správný stav, kdy U, vyhovuje podmínce (110). Přerušovaná čára 2 znázorňuje chování obvodu při U_i > U_{sat}/Q. Zesilovač OZ2 se již "nestačí chovat" pro dané U, jako indukčnost Le, "nestačí" mu výstupní napětí v okolí ω_o.

ÚKOL 51: Generátor obdélníkového napětí - obr. 51

Obr. 51.a) Generátor obdélníkového napětí. b) průběhy napětí u_o a u_{C1} (1) – naznačen postup nabíjení C_1 bez uvažování změny stavu OZ)

a) Dokažte, že f_o = 1/(2R₁C₁ln3), jsou-li saturační napětí na výstupu operačního zesilovače co do amplitudy stejná

$$(U_{sat} = -U_{\overline{s}at} = U_{sat}) a R_a = R_b$$
.

b) Nakreslete průběh napětí uo(t) a uc(t).

Operační zesilovač OZ₁ tvoří Schmittův klopný obvod (úkol 15, $U_{REF}=0$). Horní rozhodovací úroveň U+H = U+at·Ra/(Ra + R_b). Napětí na kondenzátoru C₁ se mění mezi úrovněmi U+H a U+D - obr. 51b.

Předpokládejme, že v čase t = 0 je u_{c} (0) právě rovno hodnotě U+D a napětí uo(0) právě "přešlo" do stavu + Usat (proto i napětí na neinvertujícím vstupu U+ přešlo na hodnotu U+H). Kondenzátor C1 se nabíjí přes R1 a v čase t₁ dosahuje úrovně U+H. Proto se změní úroveň výstupu, $u_o = -U_{sat}$; napětí U_+

přejde na úroveň U_{+D} , kondenzátor C_1 se vybíjí (přes R₁ "do -U_{sat}") z hodnoty U_{+H}. V čase t₂ dosáhne u_{C.}(t₂) hodnoty U_{+D}. Napětí uo přejde do +Usat, děj se cyklicky opakuje. Chceme-li určit intervaly T1 a T2, musime zjistit, za jakou dobu se nabije C₁ z U_{+D} na U_{+H} a za jakou dobu se vybije C₁ z U+H na U+D.

Nabíjení kondenzátoru v intervalu T1 (u_o > 0) lze popsat rovnicí $u_{C1}(t) = K.(1 - e^{-t/\tau}) + U_{C1}(0)$ kde $\tau = R_1C_1$ a $U_{C1}(0) = U_{+D}$ je výchozí napětí (počáteční) na kondenzátoru C1. Konstantu K určíme ze skutečnosti, že pro $t = \infty$ by se kondenzátor nabil na $+U_{sat}$ (viz 1 - obr. 51 b). Proto $+U_{sat} = K + U_{+D}$ a odsud dostaneme $K = U_{sat} - U_{+D}$ Nabíjení kondenzátoru lze v intervalu T₁ popsat rovnicí $U_{C1}(t) = (U_{sat} - U_{+D}) \cdot (1 - e^{-t/\tau})$

+ U_{+D}. Z předchozího popisu víme, že $u_{C1}(t = T_1)$ $= U_{+H}$, dosud $U_{+H} = (U_{sat} - U_{+D}) \cdot (1 - e^{-T_1/\tau})$ + U_{+D}.

Základními úpravami zjistíme, že T₁ $= \left. \tau.ln \right| (U_{sat} - U_{+D})/(U_{sat} - U_{+H}) \left| \right. = \left. R_1 C_1.$ $ln(1 + 2R_a/Rb)$ (112).

"Vybíjení" kondenzátoru v intervalu T₂ (u_o < 0) lze opět popisovat rovnicí (111), jiné budou pouze počáteční podmínky. V čase t₁ je $U_{C_1}(t_1) = U_{+H}$, v čase $t = \infty$ je $u_{C_1} = -U_{sat}$ $= K + U_{+H}, K = -(U_{sat} + U_{+H}).$

Vybíjení kondenzátoru C₁ v intervalu T₂ je popsáno vztahem $\dot{u}_{C_1}(t) = -(U_{sat} + U_{+H}).$ $(1 - e^{(t_1-t)/\tau}) + U_{+H}.$

Pro účel výpočtu T₂ se nic nezmění, posuneme-li časovou osu do okamžiku t₁. Potom t₁ = 0 a rovnice se zjednoduší do tvaru $U_{C}(t) = -(U_{sat} + U_{+H}) \cdot (1 - e^{-t/\tau}) + U_{+H}$

V čase t = t2 platí podle předchozích úvah $u_{C}(T = T_2) = U_{+D}.$

Odsud dostaneme

 $U_{+D} = -(U_{sat} + U_{+H}).(1 - e^{-T_2/\tau}) + U_{+H}.$ Po úpravě dospějeme ke vztahu $T_2 = \tau.\ln[(U_{sat} + U_{+H})/(U_{sat})]$ + U_{+D})| $= R_1C_1 \cdot \ln(1 + 2R_a/R_b)$ Obě půlperiody jsou shodné. Pro celou periodu platí $T = T_1 + T_2 = 2R_1C_1 \cdot \ln(1 + 2R_a/R_b)$ (114)

a pro frekvenci kmitů platí $f = 1/T = 1/|2R_1C_1.(ln 1 + 2R_a/R_b)|$ (115),

pro R_a = R_b proto dostáváme vztah $f = 1/(2R_1C_1.ln3)$ (115a).

ÚKOL 52: Generátor obdélníkového napětí s nastavitelnou střídou - obr. 52

Obr. 52. Generátor obdélníkového napětí s nastavitelnou střídou

Dokažte, že $u_0 > 0$ po dobu $T_1 = R_x C_1.ln(1$ $+ 2R_a/R_b$) a $u_o < 0$ po dobu $T_2 = R_vC_1.in(1)$ $+ 2R_a/R_b$).

Plně lze využít řešení z úkolu 51. Pro uo > 0 je sepnuta dioda D1 a zanedbáme-li

její úbytek napětí, musí platit vztah (112) s tím, že $R_1 = R_x$. Proto je napětí u_o kladné po dobu

 $T_1 = R_x C_1 . ln(1 + 2R_a/R_b)$ Pro $u_0 < 0$ je sepnuta dioda D_2 , platí $R_1 = R_v$ a tudíž $T_2 = R_v C_1 \cdot \ln(1 + 2R_a/R_b)$. (117). Platí-li $R_x + \dot{R}_y = R$, lze pro celou periodu

$$T = T_1 + T_2 = RC_1.ln(1 + 2R_a/Rb)$$
 (118)

 $T_1/T_2 = R_x/R_v$ (119).Ze vztahu (118) je zřejmé, že změnou odporu rezistoru Ra lze měnit periodu T (a tedy

i frekvenci f), aniž se mění střída T₁/T₂. Změnou poměru R_x/R_y lze měnit střídu, aniž se mění celková perioda T.

ÚKOL 53: Precizní generátor trojúhelníkového napětí - obr. 53

Obr. 53.a) Precizní generátor trojúhelníkového napětí, b) průběhy napětí, c) zajištění shody $U_{1H} = -U_{1D} d$) připojení symetrizačního napětí Us

Nechť je maximální výstupní napětí operačního zasilovače OZ₁ rovno U_{1H} a minimální napětí U_{1D}.

a) Dokažte, že výstupní napětí uo má trojúhelníkovitý průběh a má rozkmit

 $\Delta U_o \, = \, (U_{1H} - \, U_{1D}).R_5/(R_5 \, + \, R_4).$

b) Dokažte, že perioda impulsů je určena vztahem

 $T = R_1C_1.(R_2/R_3).\Delta U_0(1/U_{1H} - 1/U_{1D}).$ c) Pro $U_{REF} = 0$, $U_{1H} = 10 \text{ V}$, $U_{1D} = -10 \text{ V}$, R_4 = R_5 , R_2 = R_3 , R_1 = 10 k Ω a C_1 = 5 nF určete

d) Jaký vliv má změna napětí U_{REF} na výstupní napětí Uo?

Operační zesilovač OZ₁ tvoří Schmittův klopný obvod (úkol 15). Operační zesilovač OZ_2 je integrátor, pro který platí $U_2 = -(U_1/V_2)$

/R₁).t/C₁. Operační zesilovač OZ₃ je zapojen jako invertující zesilovač. Pro jeho výstupní napětí platí

$$u_{o}(t) = -(R_{3}/R_{2}) \cdot U_{2} = \frac{R_{3}}{R_{2}} \cdot \frac{U_{1}}{R_{1}} \cdot \frac{t}{C_{1}}$$

Operační zesilovače OZ2 a OZ3 se chovají celkově jako neinvertující integrátor. Je-li U1 = konst. > 0, napětí u_o v čase lineárně vzrůstá. Pro U1 < 0 lineárně klesá.

Horní rozhodovací úroveň komparátoru U+H lze určit z principu superpozice. Při U1 $= \, U_{1H} \, \, plati: \,$

 $U_{+H} = U_{REF} R_4 / (R_4 + R_5) + U_{1H} R_5 / (R_4)$ + R₅).

Dolní rozhodovací úroveň lze stanovit stejným postupem při $U_1 = U_{1D}$:

 $U_{+D} = U_{REF}.R_4/(R_4 + R_5) + U_{1D}.R_5/(R_4)$ + R₅).

Napětí Uo na výstupu se bude měnit v rozmezí úrovní U_{+H} až U_{+D} , viz obr. 53b. Snadno určíme, že rozkmit napětí je $\Delta U_o = U_{+H} - U_{+D} = (U_{1H} - U_{1D}).R_5/(R_4 + R_5)$

(120).

Předpokládejme, že v čase t = 0 je U_o právě rovno U+D, napětí U1 přechází do stavu $U_{1H} > 0$, U_{+} přechází na úroveň U_{+H} . Napětí uo(t) začíná narůstat podle vztahu (i1

$$u_{o}(t) = U_{+D} + \frac{R_{3}U_{1H} \cdot t}{R_{2}R_{1}C_{1}}$$

V okamžiku $t = T_1$ platí $u_0(T_1) = U_{+H}$, stav komparátoru se mění. Napětí U1 přejde na úroveň U_{1D} < 0; napětí U_+ přejde na úroveň U+D. Výstupní napětí uo(t) začíná klesat z hodnoty U_{+H} podle vztahu ($i_1 = U_{1D}/R_1$)

$$\label{eq:uo} \boldsymbol{u}_{o}\left(t\right) = \boldsymbol{U}_{+H} + \; \frac{\boldsymbol{R}_{3}\boldsymbol{U}_{1D}\cdot\boldsymbol{t}}{\boldsymbol{R}_{2}\boldsymbol{R}_{1}\boldsymbol{C}_{1}} \; .$$

V okamžiku, kdy $t = T_2$, platí $u_o(T_2) = U_{+D}$ napětí U₁, přechází do stavu U_{1H}, děj se cyklicky opakuje.

Z podmínek uvedených v textu musí platit

$$U_{+H} = U_{+D} + \frac{1}{R_1 C_1} \frac{R_3}{R_2} U_{1H} \cdot T_1 ,$$

$$U_{+D} = U_{+H} + \frac{1}{R_1 C_1} \frac{R_3}{R_2} U_{1D} \cdot T_2 ,$$

Nyní již není obtížné určit, že $T_1 = (U_{+H} - U_{+D}).(R_1C_1).(R_2/R_3)/U_{1H}$ (121), $T_2 = (U_{+D} - U_{+H}).(R_1C_1).(R_2/R_3)/\bigcup_{1D}$ (122). Celková perioda kmitů proto jè

 $T = T_1 + T_2 =$ $= R_1 C_1 . (R_2/R_3) \, \Delta U_o (1/U_{1H} - 1/\!/U_{1D}) \quad (123).$ Po dosazení za ΔU_o ze vztahu (120) dostaneme

 $T = R_1C_1.(R_2/R_3).(2 - U_{1H}/U_{1D} - U_{1D}/U_{1D})$ (123a). U_{1H}). $R_5/(R_4 + R_5)$

Pro $R_4 = R_5$, $R_2 = R_3$, $R_1 = 10 \text{ k}\Omega$, C_1 = 5 nF, U_{1H} = $-U_{1D}$ = 10 V dostaneme ze vztahu (123a) $T = 2R_1C_1 = 2.10^4.5.10^{-9}$ = 10⁻⁴ s. Tomu odpovídá frekvence f = 1/T = 10 kHz.

Vliv změny napětí U_{REF} je zřejmý z obr. 53.b. Perioda T se nemění, mění se pouze úrovně U_{+H} a U_{+D} , mezi kterými je "posazeno" pilové napětí. Střední hodnota napětí pilovitého průběhu Uos je určena vztahem

$$\begin{array}{l} U_{os} = (U_{+H} + U_{+D})/2 = U_{REF}R_4/(R_4 + R_5) \\ + \left| (U_{1H} + U_{1D})/2 \right| R_5/(R_4 + R_5) \end{array} \tag{124}.$$

Pro poměry zvolené v příkladu dostaneme $U_{os} = U_{REF}/2$.

Podmínka U_{1H} = -U_{1D} bude nejspíš splněna při symetrickém napájecím napětí. Odvození vztahů je zcela obecné a je zřejmé, že tato speciální podmínka nemusí být vždy dodržena. V zásadě je nutno dodržovat, že U_{1H} je kladné a U_{1D} je záporné, aby se napětí na výstupu integrátoru zvětšovalo a zmenšovalo podle předpokladů.

Pouze při $U_{1H} = -U_{1D}$ bude ovšem platit $T1=T2 - viz vztahy (121), (122). Pro U_{1H}$ ≠ -U_{1D} nebude trojúhelník rovnoramenný. Shodu $U_{1H} = -U_{1D}$ lze v případě potřeby vyřešit např. zapojením podle obr. 53c. Jinou možností je zavedení symetrizačního napětí U_s do integrátoru podle obr. 53d. Stačí si pouze uvědomit, že nyní je i₁ = $= (U_{1H} - U_{S})/R_{1}$ nebo $i_{1} = (U_{1D} - U_{S})/R_{1}$. Vztahy pro U+H a U+D se nemění, protože se nezměnilo ani U_{1H} a U_{1D}. Vztahy (121) a (122) tak přejdou ve vztahy

 $T_1 = (U_{+H} - U_{+D}) \cdot R_1 C_1 \cdot (R_2/R_3) \cdot [1/(U_{1H})]$ $-U_s)],$ $T_2 = (U_{+D} - U_{+H}) \cdot R_1 C_1 \cdot (R_2/R_3) \cdot [1/(U_{1D})]$ − U_s)].

Pro $T_1 = T_2$ potom musí platit $U_{1H} - U_s$ $= - (U_{1D} - U_s)$, tedy $U_s = (U_{1H} + U_{1D})/2$.

ÚKOL 54: Jednoduchý generátor trojúhelníkového napětí – obr. 54

Obr. 54.a) Jednoduchý generátor trojúhelníkového napětí, b) změna střídy, c) časové průběhy napětí Uo, Ut

Nechť je maximální hodnota výstupního napětí $OZ_2U_{oH}>0$ a minimální hodnota $U_{oD}<0$. a) Dokažte, že napětí Ut má trojúhelníkovitý průběh a rozkmit $\Delta U_t = 2U_{sat}R_1/R_2$.

b) Dokažte, že perioda kmitů při $U_{oH} = -U_{oD}$ je T=4RCR₁/R₂.

c) Dokažte, že pro zapojení na obr. 54b platí $T_1 = 2R_aCR_1/R_2 \text{ a } T_2 = 2R_bCR_1/R_2.$

Operační zesilovač OZ₁ tvoří integrátor, jehož výstupní napětí Ut se mění podle hodnoty napětí Uo. Operační zesilovač OZ2 tvoří komparátor (neinvertující) napětí U+. Je-li $U_{+}>0$, je $U_{o}=U_{oH}>0$, je-li $U_{+}<0$, je $U_o = U_{oD} < 0.$

Podle principu superpozice platí

 $U_{+} = U_{t}R_{2}/(R_{1} + R_{2}) + U_{o}R_{1}/(R_{1} + R_{2}).$ Předpokládejme, že U_o=U_{oH}, potom pro U+=0 dostaneme minimální hodnotu Utmin, při které se změní stav OZ₂: $U_{tmin} = -U_{oH}R_1/R_2$

Předpokládejme, že U_o=U_{oD}<0, potom pro U+=0 dostaneme maximální hodnotu U_{tmax}, při které se změní stav OZ₂: $U_{tmax} = -U_{oD}R_1/R_2.$

Platí-li $U_{oH} = -U_{oD} = U_{sat}$, dostaneme $U_{tmax} = -U_{tmin} = U_{sat}R_1/R_2$.

Rozkmit napětí Ut je

 $\Delta U_t = U_{tmax} - U_{tmin} = 2U_{sat}R_1/R_2$ (125).Časové průběhy napětí jsou znázorněny na obr. 54c.

V časovém intervalu T₁ je kondenzátor C nabíjen přes rezistor R z napětí + Usat, platí $I=U_{sat}/R$; výchozí napětí $U_t(0) = U_{sat}R_1/R_2$. Proto platí

 $U_t(t) = U_{sat}R_1/R_2 - U_{sat}t/(RC)$.

V čase $t=T_1$ právě platí $U_t(T_1) = -U_{sat}R_1/R_2$, OZ₂ mění svůj stav, U_o = -U_{sat}. Proud I bude I=-U_{sat}/R; výchozí napětí U_t=-U_{sat}R₁/R₂. V časovém intervalu T2 proto platí

 $U_t(t) = -U_{sat}R_1/R_2 + U_{sat}t(RC).$

V čase $T=T_2$ platí právě $U_t(T_2) = +U_{sat}R_1/$ R₂, výstup OZ₂ přechází do stavu +U_{sat}, děj se cyklicky opakuje. Z podmínek uvedených v textu je zřejmé, že

 $U_{sat}R_1/R_2 - U_{sat}T_1/(RC) = -U_{sat}R_1/R_2$ $-U_{sat}R_1/R_2 + U_{sat}T_2/(RC) = +U_{sat}R_1/R_2$. Snadno zjistíme, že

 $T_1=T_2=2RCR_1/R_2$ (126). Celková perioda

 $T=T_1+T_2=4RCR_1/R_2$ (127).

Důležitou podmínkou správné činnosti tohoto jednoduchého obvodu je R₁<R₂. Pouze tak je zaručeno, že mezních výstupních napětí OZ₁ (U_{tmin}, U_{tmax}) je dosaženo dříve, než je OZ₁ v saturaci (U_{sat}, -U_{sat}) a může tak vždy dojít k překlopení OZ₂ (kde je na výstupu také k "dispozici" jen napětí + Usat, -Usat).

Situaci na obr. 54b lze snadno popsat z následující úvahy. V intervalu T₁ je U_o=+U_{sat} a je sepnuta dioda D₁, proto stačí ve vztahu (126) udělat záměnu R→R_a a T₁=2R_aCR₁/R₂. V intervalu T₂ je sepnuta dioda D2 (Uo<0) a stačí udělat záměnu R→R_b. Pro každou polaritu výstupního napětí Uo "platí jiná hodnota odporu R": T2 2R_bCR₁/R₂. Celková perioda je

 $T=T_1+T_2=2(R_a+R_b)CR_1/R_2$.

ÚKOL 55: Vzorkovací zesilovač - obr. 55

Obr. 55.a) Vzorkovací zesilovač a řídicí napětí U_s (b); model spínače H(c)

Tranzistor JFE má v sepnutém stavu odpor r_{DSO}=300 Ω, prahové napětí U_p=3 V, svodový proud I_{DSO}<500 pA. Operační zesilovač má vstupní proud IIB<500 pA, napájecí napětí ±15 V. Frekvence vzorkování je 100 kHz, doba vzorkování je 200 ns.

a) Najděte kapacitu kondenzátoru C. při které dosáhne napětí U_C za dobu vzorkování T_s hodnoty 0.98 Ui a toto napětí v době "pamatování" T_H neklesne o více než 0,1 mV. b) Jaký význam mají prvky R_G, D₁, OZ₁ a OZ₂?

V době T_S (vzorkování) je napětí

U_S=+15 V, dioda D₁ je při jakémkoliv napětí na výstupu OZ₁ (v rozsahu ±15 V) rozpojena. Rezistor R_G zajišťuje v tomto připadě úplné sepnutí T_1 , r_{DSO} <300 Ω. V době T_H je U_S=-15 V, dioda D₁ je sepnuta a tranzistor T_1 je spolehlivě rozpojen, je-li $U_G > U_p = 3 \text{ V}$. Vzhledem k tomu, že platí $U_1=U_G+U_D-15 V$, Ize určit, že $U_G = U_1 - U_D + 15 > 3 \text{ V a odsud}$ $U_1>3-15+U_D=3,6-15=-11,4 \text{ V}.$ Pro napětí $U_1 > -11,4$ (při $U_S = -15$ V) je tranzistor T₁ rozpojen. Operační zesilovače jsou zapojeny jako sledovače. OZ1 zajišťuje zanedbatelný výstupní odpor pro nabíjení C, nerozhoduje výstupní odpor zdroje signálu ui. OZ₂ zajišťuje velký vstupní odpor a tím velmi malý vybíjecí proud C v režimu "pamatování" (interval TH).

Poměry v obvodu jsou zjednodušeně modelovány na obr. 55c, odpor 300 Ω je odporem sepnutého kanálu tranzistoru T1; kontakt spínače S představuje již pouze ideální spínač, který sepne v čase t=0. Zajímá nás průběh napětí u_c(t) na kondenzátoru C. Po sepnutí spínače platí

 $U_i = r_{DSO} \cdot i_C + u_C(t)$,

současně

ic=C.duc/dt.

Řešením diferenciální rovnice dospějeme k běžně uváděnému vztahu

 $u_{\mathbf{C}}(t) = U_{\mathbf{i}} \left[1 - \exp(-t/\tau) \right]$ (128).

kde τ=r_{DSO}.C je časová konstanta při nabíje-

Zajímá nás doba T98, za kterou dosáhne uc(t) hodnoty 0,98Ui. Platí proto $u_C(t)/U_i = 1 - exp (-T_{98}/\tau) = 0.98.$

určíme, Snadno že $(-T_{98}/$ τ)=1-0,98=0,02 a odsud T_{98} = $\tau.ln50$ $= 3,912 r_{DSO}.C.$

Protože k dispozici je pouze doba $T_s=200$ ns, musí platit $T_s>T_{98}=3,912$ r_{DSO}.C, aby se kondenzátor nabil alespoň na 98 % hodnoty U_i. Odsud

$$C < T_S/(3,912r_{DSO}) = 2.10^{-7}/(3,912.300) =$$

= 170 pF.

V době "pamatování" TH budeme uvažovat nejhorší případ, kdy kondenzátor C je vybíjen proudem IDSO i vstupním proudem I_{IB}=500 pA operačního zesilovače, tedy celkovým vybíjecím proudem l_v=1 nA. Pro změnu náboje kondenzátoru platí v tomto triviálním případě $\Delta Q = I_v.T_H = \Delta U_C.C.$ Musí proto platit

C>I_v.T_H/ Δ U_C,

kde ΔU_C je požadovaný (zaručovaný) pokles napětí v době TH. Při dosazení dostáváme C>10-0.10-5/10-4=100 pF.

Je tedy zřejmé, že pro dané požadavky musi platit 100 pF<C<170 pF. Zvolime střední kapacitu asi 130 pF. Rovněž je zřejmé, že za určitých okolností by nešlo oba požadavky splnit. Bude-li například vybíjecí proud I_V=2 nA, dospějeme k podmínce C>2.10-9.10-5/10-1=200 pF. Bud' se spokojime s větším zmenšením ΔU_C a dodržime T_S>T₉₈ (C<170 pF) nebo zvětšíme C nad 200 pF a bude platit T_S<T₉₈, chyby vzorkování budou však větší než 2 %. Nebo musíme zvolit tranzistor T₁ s menším odporem r_{DSO} a dobu T₉₈ zkrátíme i při zvětšení C. Nebo musime zajistit OZ₂ i T₁ s menšími proudovými "odběry" ve stavu "pamatování". To už souvisí s konkrétním technickým řešením problému.

ÚKOL 56: Zdroj proudu s uzemněnou zátěží (Howlanduv. obr. 56)

Obr. 56. Howlandův zdroj proudu

a) Dokažte, že výstupní proud je definován vztahem $I_L=(U_1-U_2)/R_1$.

b) Nechť $R_1=1 \ k\Omega, \ R_2=250 \ \Omega, \ U_2=0 \ V,$ výstupní napětí operačního zesilovače může být v rozmezí ±10 V. Jaký může být rozsah napětí na zátěži R_I, aby nebyl překročen rozsah výstupních napětí operačního zesilovače.

c) Je-li napětí U₁ měnitelnė v rozsahu ±10 V, určete rozsah I_L pro stejné poměry jako v bodu b).

Pro ideální zesilovač platí U₊=U₋ (U_d=0), přičemž napětí U+ je současně napětím na zátěži R_L. Zřejmě platí:

 $U+ = R_{L}I_{L}$

 $I_L = I_1 - I_2,$

 $I_1 = (U_1 - U_+)/R_1$

 $I_2 = (U_+ - U_0)/R_2$

 $I_n = (U_2 - U_0)/(nR_1 + nR_2).$

Je-li U_d = 0, dostaneme pro "vstupní smyč-

 $ku'' U_2 = nR_1I_n - I_1R_1 + U_1.$ Pro ideální OZ musí rovněž platit

 $nR_2I_n = R_2I_2,$

napětí na rezistorech nR2 a R2 musí být stejná. Platí tedy nln=l2 a lze určit, že

 $U_1 - U_2 = R_1(I_1 - I_2) = R_1I_L$

a proto i

 $I_1 = (U_1 - U_2)/R_1$ (129). Výstupní proud l není závislý na velikosti

R_L, jde o zdroj proudu.

Výstupní napětí Uo lze určit ze skutečnosti, že musí platit $U_0 = U_+ - R_2 I_2 = U_+ - R_2 (I_1 - I_L)$. Po dosazení za I₁ a za I_L dostaneme po úpravách

 $U_0 = U_+ (1 + R_2/R_1) - U_2R_2/R_1$ Tento vztah jsme mohli získat i přímo použitím principu superpozice "na napětí U+

a U₂"

Pro R₁=1000 Ω a R₂=250 Ω je R₂/R₁ = 1/4. Při $U_2=0$ je $U_0=U_+.5/4$. Je-li tedy možné využít Uo v rozmezí -10 V až +10 V, může být $U_+=U_0.4/5$ v rozmezí –8 V až +8 V. Je-li U₁ v rozmezí -10 V až +10 V, je za uvedených podmínek I_L=U₁/R₁ v rozmezí -10 mA až +10 mA.

Obr. 57. Lineární převodník teploty na napětí

Obr. 58. Dvoudrátový snímač (čidlo)

Dokažte, že pro výstupní napětí Uo platí vztah

 $U_0 = [(R_3/R_2).(k/q)ln2]T = (1 mV/°C). T,$ T je teplota přechodu ve stupních K(Kelvina). Předpokládejte, že všechny tranzistory mají shodné vlastnosti a vliv proudů "do rezistorů" R₂ je zanedbatelný.

Proud tranzistorem T₁ určuje odpor R₁:1₁ = (U_N-U_{BE1})/R₁. Protože na bázích identických tranzistorů T2, T3, T4 je vždy napětí U_{BE1}, protékají jejich kolektory stejné proudy I1. Při daném uspořádání to znamená, že proud I₅ tranzistorem T₅ je 2I₁, kdežto proud I₆ tranzistorem T₆ je pouze I₁. Proto musí pro tranzistor T₅ platit (viz úkol 12)

 $I_5 = 2I_1 = I_0 \exp(U_{BE5}/U_T),$

kde U_T=kT/q.

Pro tranzistor T₆ bude platit

 $I_6 = I_1 = I_0 \exp(U_{BE6}/U_T)$.

Po logaritmování a úpravách dostaneme

 $U_{BE5} = U_{T}.ln(2l_1/l_0),$

 $U_{BE6}=U_{T}.ln(I_1/I_0).$

Pro napětí U_D platí U_D=U_{BE6}-U_{BE5}. Toto napětí je zesíleno diferenčním zesilovačem v poměru odporů R₃/R₂, platí U_o=-U_DR₃/ $R_2 = (U_{BE5} - U_{BE6}).R_3/R_2.$

Dosadime-li za U_{BE5} a U_{BE6}, dostganeme $U_o = (R_3/R_2) \cdot [\ln(2I_1/I_o) - \ln(I_1/I_o)] \cdot U_T = [(R_3/R_o) - \ln(I_1/I_o)] \cdot U_T = [(R_3/R_o) \cdot \ln(I_0/R_o)] \cdot U_T = [(R_3/R_o)$ (130).

R₂).(k/q)ln2 .T kde k = 1,38.10⁻²³ je Boltzmannova konstan-

q = 1,602,10⁻¹⁹ je náboj elektronu,

T je teplota ve °K

Pro $R_3 = 167.4 \text{ k}\Omega$ a $R_2 = 10 \text{ k}\Omega$ dostaneme $U_o = (167,4/10).(1,38.10^{-23}/1,602.10^{-8}).ln2.T$ = (0.9995 mV/°C). T.

Je zřejmé, že výstupní napětí odpovídá teplotě přechodů tranzistorů T₅ a T₆, o které se předpokládá, že je stejná. Uspořádání na obr. 57 by nejlépe vyhovoval integrovaný obvod, kde tranzistory T1 a T6 jsou na společné podložce.

Při podrobné analýze by bylo nutné uvažovat i odběr proudu do rezistorů R2. Za uvedených poměrů je však proud oběma rezistory praktiky stejný a proto udělané úvahy podstatně neovlivní.

ÚKOL 58: Dvoudrátový snímač (čidlo, obr.

a) Dokažte, že výstupní napětí Uo na rezistoru R_L je popsáno vztahem

 $U_o = (I_o + g_m U_i)R_L$

kde Io jsou klidové proudy struktury a transkonduktance g_m je dána vztahem $g_m = (R_1 + R_2 + R_3)/(R_1R_3).$

b) Určete význam trimru R₅ a ostatních prvků obvodu.

Dioda D₁ zabraňuje zničení obvodu při nežádoucím přepólování napájecího zdroje obvodu. Tranzistor T3 tvoří zdroj proudu, který udržuje konstatní proud ID stabilizační diodou D₃. Na rezistoru R₅ je napětí U₅=U_Z+U_D-U_{BE2}, teplotní závislost U_{BE} a UD je jednoduchým způsobem částečně kompenzována. Umělý střed je vytvořen diodami D3 a D4. Tím je zajištěno správné napájení zesilovače OZ1, který je zapojen jako nejnvertující zesilovač napětí čidla Ui. Zesilovač je proudově "posílen" tranzistorem T₁. Kondenzátor C_B zlepšuje frekvenční stabilitu systému - blokování napáječů. Platí $U_3 = U_i(1 + R_2/R_1)$.

Rezistorem R₃ proto protéká proud $I_3 = U_3/R_3 = U_i(R_1 + R_2)/(R_1R_3)$.

Rezistorem R₁ protéká (pro ideální OZ₁) proud $I_1 = U_i/R_1$.

Nyní již lze snadno určit, že napájecí proud I je roven součtu všech proudů: $I = I_1 + I_3 + I_5 + I_D + I_{CC}^- = I_0 + U_1/R_1 + U_1(R_1 + R_2)/R_1 + U_2(R_1 + R_2)$ (R₁R₂).

kde $l_0 = l_5 + l_D + l_{CC}$.

Úpravou dostaneme

 $I = I_o + U_i(R_1 + R_2 + R_3)/(R_1R_3) = I_o + g_mU_i(131)$ kde transkonduktance g_m je dána vztahem $g_m = (R_1 + R_2 + R_3)/(R_1 R_3).$

Je zřejmé, že napětí na snímacím odporu R_i je dáno vztahem

 $U_o = IR_L = (I_o + g_m U_i)R_L$ a jednoznačně odpovídá snímané veličině U_{i}

Dvouvodičové snímače se obvykle navrhují tak, že I=I_{min}=4 mA při U_i=0 a I=I_{max}=20 mA při U_i=U_{imax}. Někdy se také volí hranice 10 a 50 mA. Je zřejmé, že Imin lze nastavit snadno změnou proudu I5, tedy rezistorem R₅. Proud I_{max} při daném U_{imax} Ize nastavit změnou transkonduktance g_m, tedy změnou R₁ nebo R₂ nebo R₃.

Zapojení na obr. 58 umožňuje "dálkově" snímat napětí U_i pomocí minimálního počtu vodičů – tedy dvou. Změny napájecího proudu l odpovídají lineárně změnám napětí Ui a lze je snadno vyhodnotit na snímacím rezistoru R_I.

Úkol 59: Lineární převodník teploty na napětí – obr. 59

Dokažte, že výstupní napětí $U_0 = (1 + R_4/R_3) \cdot \left[U_{REF} + (kT/q) \cdot \ln(R_1/R_2) \right]$ jsou-li tranzitory T₁ a T₂ identických vlastnos-

Pro ideální operační zesilovač je diferenční napětí nulové a proto jsou na odporech R₁ a R₂ stejná napětí U_x. Proto platí (zaned-

Obr. 59. Lineární převodník teplota - napětí

báme vstupní proudy OZ), že I₁=U_x/R₁ a $I_2 = U_x/R_2$. Současně platí $I_1 = I_0 \exp(U_{BE1}/U_T)$ $I_2 = I_0 \exp(U_{BE2}/U_T)$. Nyní lze určit (viz úkol 57): $U_{BE1} = U_T \ln(I_1/I_0) = U_T \ln[U_x/(R_1I_0)],$ $U_{BE2}=U_T \ln(I_2/I_o)=U_T \ln[U_X/(R_2I_o)],$ $U_T = kT/q$. Rovněž musí platit $U_0.R_3/(R_3+R_4)=U_{BE2}-U_{BE1}+U_{REF}$ Po dosazení a úpravách dostaneme $U_o = (1 + R_4/R_3).[U_{REF} + (kT/q).ln(R_1/R_2)]$

Lineární závislost výstupního napětí na teplotě T je očividná. Pomocí napětí UREF<0 lze nastavit požadovaný počátek stupnice.

ÚKOL 60: Stabilizátor napětí - obr. 60

Obr. 60. Stabilizátor napětí (a), b) náhradní schéma pro posouzení vlivu výstupního odporu, c) přenos OZ bez zpětné vazby

a) Požadujeme R_a+R_b=10 kΩ, určete R_a a R_b tak, aby výstupní napětí U_o bylo 10 V. b) Zesílení OZ bez zpětné vazby na f=0 Hz $A_{OL}(0) = 10^4$ tranzitní frekvence

 f_T =1 MHz, výstupní odpor bez zpětné vazby je R_O =50 Ω . Určete výstupní odpor pro f=0 Hz a výstupní impedanci pro f=10 kHz. c) Teplotní koeficient referenčního napětí TK_{UREF} =10 μ V/°C, určete teplotní koeficient výstupního napětí U_O - TK_{UO} .

d) Určete změnu výstupního ΔU_o při změně výstupního proudu z hodnoty $I_{omin} = 0$ na $I_{omax} = 10$ mA.

Řešení bodu a: Vzhledem k napětí U_{REF} se obvod chová jako neinvertující zesilovač. Proto platí

 $U_0 = U_{BEF} \cdot (1 + R_a/R_b)$.

Má-li být $U_o = 10 \text{ V}$ a $U_{REF} = 1.8 \text{ V}$, je $(R_a + R_b)/R_b = 10/1.8$.

Požadujeme-li $R_a+R_b=10 \text{ k}$, dostaneme $R_b=1 \text{ k} 8 \text{ a } R_a=8 \text{ k} 2.$

Řešení bodu *b*: Jde o určení vlivu zpětné vazby na výstupní odpor zesilovače. Znázorněme si situaci na obr. 60b. Operační zesilovač (neideální) má výstupní odpor R_o, zesílení A_{OL}.

Platí u₁=A_{OL}.u_d. Nejdříve uvažujeme, že výstup není vůbec zatížen. Potom platí

 $u_+ = u_i$

 $u_{-}=u_{1}.R_{1}/(R_{1}+R_{2}+R_{o}).$

Dále platí

$$u_d {=} u_+ {-} u_- {=} u_i {-} u_1 R_1 / (R_1 {+} R_2 {+} R_o) \tag{I},$$

$$u_o = u_1 - u_1 R_o / (R_1 + R_2 + R_o)$$
 (II),

$$u_1 = u_d A_{OL}$$
 (III).

Ze vztahů (I) a (III) lze určit, že

 $u_1 = u_1/[R_1/(R_1 + R_2 + R_o) + 1/A_{OL}]$ (IV)

Dosadime-li (IV) do (II), dostaneme po úpravách, že napětí naprázdno (bez zatížení) je $u_o = (1 + R_2/R_1)u_iA_{OL}/[A_{OL} + (R_1 + R_2 + R_o)/R_1]$ (134).

Dokážeme-li určit zkratový proud (proud do zkratu na výstůpu), můžeme již určit výstupní odpor struktury. Zkratujeme-li výstup, je zpětná vazba rozpojena, u_=0 a napětí u_d=u_i. Potom musí platit, že

 $u_1=u_iA_{OL}$ a zkratový proud je omezen pouze odporem R_o ". Platí tedy $I_s=u_iA_{OL}/R_o$ (135).

Pozn. 1: Platí pochopitelně pouze teoreticky, pro jinak ideální zesilovač – tedy výstupní proudy ani napětí nejsou omezeny jinak, než odporem R_o.

Nyní již lze určit, že výstupní impedance Z_{OUT} (Theveninův teorém) je určena vztahem

 $Z_{OUT} = u_o/l_s$

kde u_o je napětí naprázdno podle vztahu (134).

Po úpravě dostaneme pro R_o<<R₂ známý vztah

 $Z_{OUT} = R_o/(1 + \beta A_{OL})$ (136), kde $\beta = R_1/(R_1 + R_2)$ je činitel zpětné vazby,

kde $β=R_1/(R_1+R_2)$ je činitel zpětné vazby, který udává přenos napětí u_o (zpětnovazební sítí) na invertující vstup operačního zesilovače (záporná zpětná vazba napěťová).

Ve většině případů je pro f=0 zesílení $A_{OL}(0)$ velké a vztah (1) (úkol 1) lze pro f=0 upravit do podoby ($Z_1=R_1,\ Z_2=R_2$)

 $A_N(0) = 1 + R_2/R_1 = 1/\beta$. Proto lze i vztah (136) upravit do jiné často uváděné podoby

 $Z_{OUT} = R_o / [1 + A_{OL} / A_N(0)] = R_o . A_N(0) / A_{OL}$

(136a), A_N(0) je "ideální" zesílení struktury při

A_N(0) je "ideaini" zesileni struktury pri f=0 Hz, R_o je výstupní odpor použitého OZ,

A_{OL} je vystupní odpor pouziteno OZ A_{OL} je zesílení bez zpětné vazby. Pro uvedené poměry ($R_1=R_b=1k8$, $R_2=R_a=8k2$) dostaneme pro f=0 Hz $\left\lceil A_o=A_{0L}(0)=10\ 000\right\rceil$

 $Z_{OUT} = 50.(1+8,2/1,8)/10~000 = 28~\text{m}\Omega.$

Pro vyšší frekvence je situace poněkud složitější. Přenos operačního zesilovače bez zpětné vazby je na obr. 60c. Situaci na obr. 60c odpovídá matematický popis $A_{OL} = A_o/(1+jf/f_1)$

Pro $f/f_1 \gg 1$ potom stačí přibližný popis $A_{OL} = A_o/(jf/f_1) = -jA_of_1/f = -jf_T/f$ (137), kde f_T je tranzitní kmitočet (extrapolovaný), kde právě platí, že

 $A_{OL}(f_T)=1$

přenos je právě 0 dB.

Nyní již můžeme "prozkoumat" i výstupní impedanci Z_{OUT} při f=10 kHz; platí $(f_T=1 \text{ MHz})$

 $Z_{OUT} \doteq R_o.A_N(0)/(-jf_T/f) = 50.(1+8,2/1,8)/(-j10^6/10^4) = j.2,78.$

Řešení bodu *c*: Je zřejmé, že teplotní koeficient výstupního napětí TK_{Uo} je úměrný teplotnímu koeficientu TK_{UREF} a zesílení: TK_{Uo}=A_N(0).TK_{UREF}=(1+8,2/1,8).10 μV/°C=55,6 μV/°C.

Řešení bodu d:

Předpokládejme, že změna proudu je pomalá a proto lze použít vypočítané hodnoty Z_{OUT} při frekvenci f=0 Hz. Platí, že změna výstupního napětí ΔU_o je popsána vztahem $\Delta U_o = Z_{OUT}(0).\Delta I_o = 28.10^{-3}.(0-10.10^{-3}) = -280 \ \mu V.$

Představuje to procentuální změnu –280.10-6.100/10=–0,0028 %.

ÚKOL 61: Číslicově řízený zdroj napětí – obr. 61

Obr. 61. Číslicově řízený zdroj napětí

Dokažte, že výstupní napětí obvodu je

 $U_o = (1 + R_2/R_1) \cdot M \cdot U_{REF} \cdot \left(\begin{array}{c} \prod_{i=1}^{n} b_i/2^i \\ 1 \end{array} \right)$ jestliže výraz

$$M \cdot U_{REF} \cdot \left(\begin{array}{c} \sum\limits_{1}^{n} b_{i}/2^{i} \\ \end{array}\right)$$

b_i = 1 pro aktivovaný číslicový vstup,
 b_i = 0 pro neaktivovaný číslicový vstup (bit),
 n - "počet" bitů převodníku.

Zapojení na obr. 61 je vlastně shodné se zapojením na obr. 18 (úkol **18**). Platí proto $U_0=U_+(1+R_2/R_1)$,

kde napětí \mathbf{U}_+ je vytvořeno převodníkem číslo – napětí a proto

$$U_{\downarrow} = M \cdot U_{REF} \cdot \left(\begin{array}{c} \sum_{i=1}^{n} b_{i}/2^{i} \\ 1 \end{array} \right).$$

Proto platí pro výstupní napětí

$$U_{o} = M \cdot U_{REF} \cdot \left(\begin{array}{c} n \\ \sum_{i} b_{i} / 2^{i} \end{array} \right) \cdot (1 + R_{2} / R_{1}) \ . \tag{138} \label{eq:uo}$$

Je-li například n=8, U_{REF} =10 V, M=1, je U_{o} =(10 V).(b_{1} /2+ b_{2} /4+ b_{3} /8+...+ b_{8} /256) . (1+ R_{2} / R_{1}).

Je-li aktivován pouze nejvýznamnější bit b_1 (MSB), platí $b_1=1$ a $b_2=b_3=\ldots=b_8=0$. Potom $U_+=(10V).(1/2)=5$ V a $U_o=5V$). $(1+R_2/R_1)$. Je-li aktivován pouze nejméně významný bit b_8 (LSB), platí $b_1=b_2=\ldots=b_7=0$, $b_8=U_+=(10V)$. $(1/2^8)=(10/256)=0,03906$ V a $U_o=(10/256).(1+R_2/R_1)$.

Toto je nejmenší napěťový krok, o který lze změnit výstupní napětí U_o – tím je určena i "přesnost" zdroje napětí. Je-li například $b_1=b_2=b_4=1$ a ostatní bity nejsou aktivovány, je

$$U_{+} = (10 \text{ V}).(1/2+1/4+1/16) = (130/16) \text{ V a } U_{0} = (130/16).(1+R_{2}/R_{1}).$$

Aby bylo v praxi dosaženo vlastní přesnosti převodníku DAC, je vhodné jeho kladné napájecí napětí dobře stabilizovat (odděleně od U_N), aby případné změny U_N se změnou zátěže neovlivnily přesnost převodníku. Záporné napájecí napětí je vhodné použít i pro operační zesilovač (stabilní odběr bez větších změn), protože to umožní dosahovat na výstupu OZ i záporných výstupních napětí a tím i výstupní napětí U_o v okolí nuly.

ÚKOL 62: Číslicově (napěťově) řízený generátor napětí pilovitého tvaru – obr. 62

Dokažte, že pro zapojení platí při R_b<<R_a

$$\mathbf{f} = \frac{\mathbf{R_2M} \cdot \mathbf{U_{REF}}}{2\mathbf{R_1R_aC(U_Z + U_D)}} \cdot \left(\frac{\sum\limits_{1}^{n} \mathbf{b_i/2^i}}{1}\right)$$

$$\text{je-li } \boldsymbol{U}_1 = \boldsymbol{M} \cdot \boldsymbol{U}_{\text{REF}} \left(\begin{array}{c} \boldsymbol{\Sigma} \\ \boldsymbol{1} \end{array} \boldsymbol{b}_i / 2^i \right),$$

viz úkol 61.

popisuje výstupní napětí převodníku číslonapětí (DAC), M je převodní konstanta (běžně M=1)

U_{REF} je referenční napětí na referenčním vstupu převodníku,

Zapojení na obr. 62 je vhodné porovnat se zapojením na obr. 54 (úkol **54**). Vidíme, že funkce OZ₁ a OZ₂ je naprosto stejná. Místo napětí U_{sat} operačního zesilovače zde bude figurovat napětí na stabilizační diodě (U_Z+2U_D), lze tedy formálně přiřadit U_{sat}=U_Z+2U_D. Rozhodovací úrovně pro napětí U_t budou U_{sat}R₁/R₂ a -U_{sat}R₁/R₂.

V časovém intervalu T_1 ($U_o = U_{sat} > 0$) je dioda D_1 rozpojena a integrátor pracuje pouze s proudem $I_c = I_a = U_1/R_a$, proto $U_t(t) = U_{sat}R_1/R_2 - U_1.t/(R_aC)$.

 $U_1(I) = U_{sat}R_1/R_2 = U_1.0(R_aU)$. V době $t = T_1$ bude právě platit $U_1(T1) = -U_{sat}R_1/R_2$, tedy $-U_{sat}R_1/R_2 = U_{sat}R_1/R_2 = U_1T_1/(R_aC)$.

Po úpravě dostaneme

 $T_1=2R_1R_aCU_{sat}/(R_2U_1)$ (139). V okamžiku $t=T_1$ přechází výstup do stavu $U_o=-U_{sat}<0$ a dioda D_1 spíná. Integrátor pracuje s proudem (U_1 se neodpíná) $I_c=U_1/R_a-U_{sat}/R_b$.

Pro $U_{sat}/R_b >> U_1/R_a$ Ize vliv napětí U_1 zanedbat a $I_c = -U_{sat}/R_b$. Pro výstupní napětí U_t platí

 $U_t(t) = -U_{sat}R_1/R_2 + U_{sat}.t/(R_bC).$

V době t= T_2 bude právě platit $U_t(T_2)=U_{sat}R_1/R_2$. Z této podmínky jednoduše určíme, že $U_{sat}R_1/R_2=-U_{sat}R_1/R_2+U_{sat}T_2/(R_bC)$ a po úpravě dostaneme

 $T_2=2R_1R_bC/R_2$. (140) Nyní již lze určit celkovou periodu kmitů $T=T_1+T_2=2R_1R_aC(U_{sat}/U_1+R_b/R_a)/R_2$.

Pro $U_{sat}/U_1 \gg R_b/R_a$ se vztah zjednodží, $T \doteq (2R_1R_aC/R_2).(U_{sat}/U_1).$ (141b) Pro frekvenci platí

f=1/T=U₁R₂/(2R₁R_aCU_{sat}). (142) Zapojení se chová jako zdroj pilového napětí na výstupu U₁ (a obdélníkového na U_o) s frekvencí řízenou napětím U₁. Vztah (142) platí pro T₂<<T₁, tedy pro (U_z+U_D)/R_b mnohoná-

sobně větší než podíl U₁/R_a.

Dosadíme-li za U₁ a U_{sat}, dostaneme

$$f = \frac{R_2 M U_{REF}}{2R_1 R_a C (U_z + U_D)} \cdot \left(\sum_{1}^{n} b_i / 2^i \right),$$
(143)

frekvence f je řízena převodníkem číslo – napětí.

Je-li k dispozici přímo převodník číslo – proud a proud převodníku má orientaci proudu I_a (jde z výstupu "ven"), stačí vypustit rezistor R_a a nahradit poměr M.U_{REF}/R_a pouze proudem I_{FS} (max. proud převodníku, jsou-li sepnuty všechny bity). Vždyť rezistor R_a jen převáděl napětí U₁ na proud I_a. Potom

$$f = \frac{R_2 I_{FS}}{2R_1 C (U_Z + U_D)} \qquad \left(\frac{\sum_{j=1}^{n} b_j / 2^j}{1 + 2^j} \right)$$
 (144)

ÚKOL 63: Číslicově řízená dolní propust – obr. 63.

Dokažte, že mezní frekvence fo dolní propusti je určena vztahem

$$\label{eq:fourier} \boldsymbol{f}_o = \boldsymbol{M} \cdot \left(\begin{array}{c} \sum_1^n \boldsymbol{b}_i / 2^i \\ \end{array} \right) / \left(2 \pi \; \boldsymbol{R}_2 \boldsymbol{C} \right) \,.$$

Amatérské: AD 10 B/4

Obr. 63. a) Číslicově řízená dolní propust, b) náhradní schéma obvodu

Předpokládáme, že přenos mezi vstupem U_{REF} a výstupem převodníku DAC je popsána vztahem

$$A_{DAC} = u_o/u_{REF} = M \cdot \left(\sum_{1}^{n} b_i/2^i\right),$$

jak plyne i z popisu v úkolu **61**. Přitom musí platit, že M>0, aby zpětná vazba operačního zesilovače OZ₁ byla skutečně záporná a zapojení bylo frekvenčně stabilní (nekmitalo).

Zapojení z obr. 63a lze "překreslit" podle obr. 63b. Obvod na obr. 63b lze považovat za invertující součtové zapojení zesilovače OZ₁, takže snadno určíme, že

 $u_{REF} = -u_i Z_c / R_1 - A_{DAC} u_{REF} Z_c / R_2$, kde $Z_c = 1/(j\omega C) = 1/(pC)$.

Současně platí u_o=u_{REF}.A_{DAC}, takže po dosazení platí

 $\begin{array}{lll} u_o/A_{DAC} = -u_i/(pR_1C) - u_o/(pR_2C). \\ Další jednoduchou úpravou získáme pro přenos dolní propusti na obr. 63a vztah \\ A_{DP} = -(R_2/R_1).\left[\, 1/(1+pR_2C/A_{DAC}) \, \right] \end{array} \eqno(145).$

Pro přenos dolní propusti platí obecně vztah

 $\begin{array}{l} A_{DP}{=}H\omega_o/(p+\omega_o){=}H/(1{+}p/\omega_o),\\ \text{kde H je zesílení (přenos) pro }\omega{<}\omega_o.\\ \text{Srovnáním se vztahem (145) určíme, že}\\ H{=}{-}R_2/R_1 \text{ a mezní frekvence je} \end{array}$

$$\omega_o = A_{DAC}/(R_2C) = M \cdot \left(\sum_{1}^{n} b_i/2^i\right)/(R_2C)$$
(146).

Požadovaný výraz pro f_0 dostaneme snadno ze vztahu $\omega_0 = 2\pi f_0$.

Jestliže použijeme osmibitový převodník, jehož M=1, lze nastavit f_o v 256 krocích. Pro $b_1=b_2=\ldots=b_8=1$ je $f_o=(255/256)/(R_2C.2\pi)$. Pro $b_1=b_2=\ldots=b_7=0$ a $b_8=1$ je $f_o=(1/256)/(R_2C.2\pi)$. Mezi těmito krajními body můžeme nastavit ostatní frekvence f_o . Změna přenosu A_{DAC} neovlivňuje přenos dolní propusti A_{DP} na frekvencích $f < f_o$. Přenos A_{DAC} je totiž "uzavřen" v dominantní zpětné vazbě rezistorů R_2 a R_1 .

Jak bylo uvedeno, musí pro převodník platit M>0, aby zpětná vazba byla stále záporná. Aby zapojení pracovalo podle odvozených vztahů, musí převodník DAC pracovat s kladnými i zápornými napětími na vstupu u_{RER} (s oběma polaritami napětí U_{REF}), protože při odvození se všude předpokládaly střídavé signály.

ÚKOL 64: Číslicově řízená horní propust – obr. 64

a) Dokažte, že přenos obvodu je $A_{HP}=u_o/u_i=(-R_b/R_a).p/(p+\omega_o),$ kde ω_o je určeno vztahem (146), je-li jako DP

Obr. 64. Číslicově řízená horní propust

zapojen obvod z úkolu **63** a jeho přenos H je -1.

b) Jak zajistíte ADP (obr. 63) rovno -1?

Operační zesilovač OZ_2 tvoří invertující součtové zapojení, takže platí $u_o = -u_i R_b / R_a - u_1 R_b / R_a = -(u_i + u_1) . R_b / R_a$ Pro dolní propust DP prvního řádu s přenosem -1 platí

 $\begin{array}{l} A_{DP} = u_1/u_i = - \, \omega_o/(p + \, \omega_o). \\ \text{Potom dostaneme pro strukturu na obr. 64} \\ u_o = -(R_b \, /R_a). \, \left[u_i - u_i.\omega_o/(p + \, \omega_o) \, \right] \\ \text{a po úpravě} \end{array}$

 $\dot{A}_{HP} = \dot{u}_o/u_i = -(R_b/R_a). p/(p + \omega_o)$ (147), což odpovídá přenosu horní propusti; pro $p=j\omega=0$ je $A_{HP}(0)=0$, pro $p=j\omega=\infty$ je $A_{HP}(\infty)=-R_b/R_a$. Pro $f<< f_o$ totiž platí $u_1=-u_i$ a u_1 s u_i se "zruší" na vstupu OZ_2 . Pro $f>>f_o$ již platí $u_1=0$ a je zesilován pouze signál u_i .

Použijeme-li jako DP zapojení z obr. 63a, je zřejmé, že i zde platí pro ω_o vztah (146). Jednotkový přenos zajistíme volbou $R_1 = R_2$ – obr. 63a.

ÚKOL 65: Číslicově řízená pásmová propust a dolní propust 2. řádu – obr. 65.

Obr. 65. Číslicově řízená pásmová propust (výstup 1) a dolní propust 2. řádu (výstup 2)

a) Dokažte, že výstup u_{o1} je výstupem pásmové propusti a že činitel jakosti

$$\begin{split} Q &= a\,\sqrt{\,M\cdot\,\left(\,\,\sum_{1}^{n}b_{i}/2^{i}\right),} \\ f_{o} &= \left[1/(2\pi\,C\,R)\right]\cdot\sqrt{\,M\cdot\,\left(\,\,\sum_{1}^{n}b_{i}/2^{i}\right)}. \end{split}$$

b) Dokažte, že výstup u_{o2} je výstupem dolní propusti 2: řádu. Použitý převodník DAC má stejné vlastnosti jako v úkolu 63.

Operační zesilovač OZ₁ má dvě zpětnovazební smyčky. Jedna je tvořena impedancí aR.[1/(pC)]/[aR+1/(pC)]=aR/(1+paCR), druhá je tvořena operačním zesilovačem OZ₃, převodníkem číslo/analog a integrátorem (OZ₂). Aby i tato smyčka měla charakter záporné zpětné vazby, je zapojen OZ₃ jako invertor se zesílením – 1 (umožňuje-li převodník DAC i funkci v invertujícím režimu, lze OZ₃ vypustit).

Operační zesilovač OZ_1 lze považovat za invertující součtové zapojení napětí u_i a u_{o2} , to nám velmi zjednoduší odvození. Platí potom

$$\begin{split} u_{o1} &= -\frac{aR/(1+paCR)}{R} \\ u_i &- \frac{aR/(1+paCR)}{R} \cdot u_{o2} \; . \end{split}$$

Přitom pro uo2 snadno určíme, že

$$u_{o2} = -u_{o1}.A_{DAC}.$$
 $\left[-1/(pCR)\right] = A_{DAC}u_{o1}/(pCR).$

Po dosazení za u_{o2} a úpravě dostaneme

$$A_{pp} = u_{o1}/u_i = -\frac{p/(CR)}{p^2 + p/(aCR) + A_{DAC}/(C^2R^2)}$$
(148).

Je zřejmé, že (viz úkol 46)

$$\omega_o^2 = A_{DAC}/(C^2 R^2) = M \cdot \left(\sum_{1}^{n} b_i/2^i\right)/(C^2 R^2)$$
(149),

přenos
$$A_{PP}$$
 na $\omega=\omega_o\,[p^2=+\,(j\omega_o)^2=$ = $\omega_o^2]$ je $A_{PP}(\omega_o)=-a$ (150).

Dále platí $\omega_o/Q=1/(aRC)$, po úpravách dostaneme

$$Q = \omega_o a C R = a \cdot \sqrt{A_{DAC}} =$$

$$= a \cdot \sqrt{M \cdot \left(\sum_{i=1}^{n} b_i / 2^i \right)}$$
 (151).

Při nastavování pásmové propusti binárním údajem b_1 až b_n bude šířka pásma propustnosti B

B=
$$ω_o$$
/Q=1/(aCR) (152) stále konstantní.

Přenos u_{o2}/u_i snadno určíme ze znalosti přenosu u_{o1}/u_i. Platí totiž

 $A_{DP} = u_{o2}/u_i = (u_{o2}/u_{o1}).(u_{o1}/u_i) =$ = $[A_{DAC}/(pCR)].A_{PP}.$

Po velmi jednoduché úpravě dostaneme pro přenos A_{DP} vztah

$$A_{DP} = -\frac{A_{DAC}/C^2R^2)}{p^2 + p/(aCR) + A_{DAC}/(C^2R^2)}$$
(153),

jedná se o dolní propust 2. řádu s frekvencí ω_o určenou vztahem (149); činitel jakosti Q je i zde určen vztahem (151).

ÚKOL 66: Napětím řízená pásmová propust a dolní propust 2. řádu – obr. 66

- a) Dokažte, že výstup u_{o1} je výstupem pásmové propusti a stanovte činitel jakosti Q a frekvenci ω_{o} .
- b) Dokažte, že výstup u_{o2} je výstupem dolní propusti 2. řádu.

Srovnáním obr. 66a s obr. 65 zjistíme, že rozdíl spočívá pouze v použití analogové násobičky, pro niž platí

 $u_B = u_X.u_Y/10 = -u_{o1}.U_{REF}/10.$

Snadno určíme, že pro U_{REF} kladné stačí v úkolu **65** udělat přiřazení $A_{DAC} \rightarrow U_{REF}/10$. Proto platí všechny úvahy a vztahy z úkolu **65** s tím, že

$$\omega_0^2 = U_{RFF}/(10C^2R^2)$$
 (154),

Q =
$$a\sqrt{U_{REF}}/10 = \sqrt{U_{REF}}.a^2/10$$
 (155),
A_{PP}(ω_0) = $-a$.

V zapojení podle obr. 66a musí vždy platit, že U_{REF} je kladné. Pro U_{REF} záporné by násobička invertovala signál, smyčka zpětné vazby by byla "kladná", obvod by kmital.

Chceme-li použít pro řízení záporné napětí ($U_{REF}<0$), musíme vypustit operační zesilovač OZ $_3$ – invertor – obr. 66b. V bodě B je napětí u $_B=U_{REF}$. u $_{o1}/10=-$ | U_{REF} | .u $_{o1}/10$. Nyní je již záporná zpětná vazba v "pořádku", pro zapojení podle obr. 66b platí

$$\omega_o^2 = |U_{REF}| / (10C^2R^2)$$
 (156),
 $Q = \sqrt{|U_{REF}| \cdot a^2/10}$ (157).

Pochopitelně v zapojení na obr. 66b nesmí být napětí U_{REF} kladné.

ÚKOL 67: Stabilizátor napětí s omezením výkonové ztráty – obr. 67

Obr. 67.a) Stabilizátor napětí s omezením výkonové ztráty, b) zatěžovací charakteristika zdroje

- a) Dokažte, že omezení proudu se řídí vztahem
- $I_oR_1R_2/(R_1+R_2) U_oR_1/(R_1+R_2) = 0,6 \text{ V.}$ b) Určete I_{omax} pro $U_o=10 \text{ V}$ a $U_o=0 \text{ V}$. Povolený ztrátový výkon P_{cmax} tranzistoru T_2 je 5 W, napájecí napětí $U_N=15 \text{ V.}$
- c) Určete R₁, R₂ a R₁ pro podmínky bodu b), volte R₂ + R₂ = 1 kO

e) Určete R_3 a R_4 tak, aby U_o =10 V; předpokládejte, že U_{REF} =1,8 V a R_3 + R_4 =2 k Ω .

Operační zesilovač OZ $_1$ spolu s tranzistory T $_1$, T $_2$ tvoří běžný neinvertující zesilovač napětí U $_{\text{REF}}$ s proudovým posílením výstupu. "Snímací" rezistor proudu I $_0$ –R $_1$ – je "uzavřen" smyčkou zpětné vazby R $_3$, R $_4$ a proto je jeho vliv potlačen (viz úkol **60**, vliv výstupního odporu R $_0$, zde R $_0$ =R $_1$) Proto platí

 $U_o = U_{REF} \cdot (1 + R_3/R_4)$.

Zanedbáme-li příčný proud zpětnovazebního děliče R_3 , R_4 , lze tvrdit, že na snímacím rezistoru R_i je úbytek napětí R_i -l_o, kde R_i -l_o je výstupní proud do zátěže. Současně platí, že napětí R_i -na emitoru tranzistoru R_i -je R_i -l_o a úbytek napětí na rezistoru R_i -je a úbytek napětí na rezistoru R_i -je

 $\begin{array}{l} U_E = U_o + R_i I_o \\ a \text{ úbytek napětí na rezistoru } R_1 \text{ je} \\ U_1 = U_E R_1 / (R_1 + R_2) = (U_o + R_i I_o) . R_1 / (R_1 + R_2). \\ \text{Nyní již není obtížné určit, že pro napětí ve smyčce "R_i, R_1, U_{BE3}" platí } \\ U_1 + U_{BE3} = R_i I_o. \end{array}$

Po dosazení a úpravě dostaneme vztah

$$I_oR_1R_2/(R_1+R_2) - U_oR_1/(R_1+R_2) = U_{BE3}$$
 (158).

Pokud je napětí U_{BE3} menší než asi 0,6 V, tranzistor T3 neovlivňuje funkci obvodu, výstupní napětí U_o je konstantní. Pro $U_{BE3} \doteq 0,6$ V tranzistor T_3 "odbuzuje" bázi T_1 , výstupní proud I_o je omezen, U_o se zmenšuje. Lze tedy určit ze vztahu (158), že v oblasti limitace proudu platí

$$I_{OL} = \left[U_{BE3}(1 + R_1/R_2) + U_o R_1/R_2 \right] / R_I (159),$$

limitovaný proud I_{OL} závisí i na výstupním napětí U_o , přičemž $U_o = R_z I_{OL}$, kde R_z je zatěžovací odpor.

Maximální hodnoty I_{OLmax} je dosaženo při $U_o = U_{omax}$, to je při jmenovitém požadovaném výstupním napětí. Mezní kolektorová ztráta T2 je dána jednoduchým vztahem $P_{cmax} = (U_N - U_{oo}) I_{OLmax}$,

kde U_{op} je požadované výstupní napětí U_{REF} (1+ R_3/R_4).

Je-li $U_N = 15 \text{ V a } U_{op} = 10 \text{ V a } P_{cmax} = 5 \text{ W},$ lze určit, že

 $I_{OLmax} = 5/(15 - 10) = 1 A.$

Minimální hodnoty I_{OLmin} dosahuje proud I_{OL} při U_o =0 V. Ani zde nesmí být překročena kolektorová ztráta T_2

P_{cmax}=U_NI_{OLmin}.

Proto musí za uvedených poměrů platit l_{OLmin}=5/15=0,333 A.

Z rovnice (158) lze získat při dosazení podmínek (I_{OLmax}, U_{op}) a (I_{OLmin}, U_o=0) dvě rovnice

 $I_{OLmax}R_1R_2/(R_1+R_2) - U_{op}R_1/(R_1+R_2)=0,6,$ $I_{OLmin}R_1R_2/(R_1+R_2) = 0,6.$

Určit však musíme R_1 , R_2 a R_1 , proto získáme třetí rovnici stanovením doplňkového požadavku $R_1 + R_2 = K$ (zde K = 1 k Ω). Nyní již lze snadno určit, že

$$\begin{split} R_1 &= (R_1 + R_2).0.6. (I_{OLmax}/I_{OLmin} - 1)/U_{op}(160), \\ R_2 &= (R_1 + R_2) - R_1 \\ R_1 &= (R_1 + R_2).0.6/(R_2I_{OLmin}) \end{split} \tag{162}$$

Zvolíme-li $R_1+R_2=1$ k Ω , dostaneme pro uvedené poměry $R_1=1$ k.0,6. $\frac{1}{(1/3)}$ -1 $\frac{1}{(10)}$ =120 Ω ,

 $R_2 = 1000 - 120 = 880 \Omega$

 $R_1 = 1000.0,6/(880/3) = 2,0455 \Omega.$

volte $R_1+R_2=1~k\Omega.$ d) Nakreslete závislost $U_o(I_o)$ odpovídající zadaným podmínkám.

Obr. 66.a) Pásmová propust a dolní propust 2. řádu řízená kladným napětím U_{REF}, b)

úprava zapojení pro řízení záporným napětím $U_{REF} < 0$.

Požadujeme-li $U_{op}=10$ V a $U_{REF}=1,8$ V a zvolíme-li $R_3+R_4=2$ k Ω , platí 10=1,8. (R_3+R_4)/ R_4 , tedy $R_4=1,8$. (R_3+R_4)/10 = 360 Ω , $R_3=2000-360=1640$ Ω . Zatěžovací charakteristika zdroje pro uvedené poměry je na obr. 67 b.

ÚKOL 68: Analogová násobička – obr. 68

Obr. 68.a) Základní obvod pro analogové násobičky, b) čtyřkvadrantová násobička, c) jednokvadrantová dělička

a) Všechny tranzistory jsou stejných vlastností, OZ jsou ideální. Dokažte, že pro l_1 , l_2 , l_3 , $l_4>0$ platí na obr. 68a l_1 , $l_2=l_3$, l_4 (čtveřice tranzistorů – například RC4200 fy Raytheon).

b) Dokažte, že pro obvod na obr. 68b platí (čtyřkvadrantová násobička):

 $U_0 = (U_X.U_Y/U_R).R_2R_0/R_1^2.$

Pro $\rm R_1=R_2=R_o=20~k\Omega$ a $\rm U_R=10~V$ najděte $\rm U_o$. Jestliže je povolen proud $\rm I_1,~I_2,~I_3,~I_4>0$ a maximálně je 1 mA, jaké podmínky musí splňovat napětí $\rm U_x, \rm U_y?$. Proč se obvod nazývá čtyřkvadrantová násobička?

c) Jednokvadrantová dělička – obr. 68c, dokažte, že pro U_X , U_Y , $U_Z > 0$ platí $U_o = (U_X/U_Z).U_R.R_4R_o/(R_1R_2).$

d) Obvod odmocniny – dokažte, že na obr. 68c platí

 $U_0 = [U_X U_B R_0 R_4/(R_1 R_2)]^{1/2}$, platí-li $U_Z = U_0$ (propojíme výstup se vstupem Z).

Vyjdeme ze základního vztahu (úkol 12) platného pro proud I_k tranzistoru a napětí báze – emitor U_{BE} $I_k = I_{ko}$ -exp (U_T/U_{BE}) ,

tedy $U_{BE} = U_T \ln(I_k/I_{ko})$.

Pro ideální operační zesilovače OZ_1 až OZ_4 platí $U_{BE1} + U_{BE2} = U_{BE3} + U_{BE4}$, tedv

 $U_{T}.ln(I_{1}/I_{ko}) + U_{T}.ln(I_{2}/I_{ko}) = U_{T}.ln(I_{3}/I_{ko}) + U_{T}.$ $ln(I_{4}/I_{ko}).$

Je zřejmé, že

 $ln(l_1, l_2/l_{k0}^2) = ln(l_3, l_4/l_{k0}^2),$

tedy rovněž platí

 $I_1.I_2 = I_3.I_4$ (163).

Všechny proudy musí být vzhledem k nakresleným orientačním šipkám kladné. Důležitá je skutečnost, že zmizí teplotní závislost – teplotní napětí U_T se "vykrátilo". Všechny tranzistory ovšem musí mít stejnou teplotu – to zaručuje například integrovaný obvod RC4200 – obr. 68b. V obvodu jsou zahrnuty i operační zesilovače OZ₁, OZ₂ a OZ₄.

Na obr. 68b jsou do vstupů X, Y, Z a O zavedeny referenční proudy $I_R = U_R/R_2$. To umožní zajistit kladné velikosti proudů I_1 , I_2 , I_3 a I_4 i pro napětí U_X a U_Y záporná. Stačí si uvědomit, že vstupy X, Y, Z jsou pro ideální operační zesilovač na nulovém potenciálu (virtuální nula, zem), u výstupu O zajistí tutéž vlastnost operační zesilovač OZ₃. Platí proto

$$\begin{aligned} &\mathbf{I}_1 = \mathbf{I}_X + \mathbf{I}_R = \mathbf{U}_X/R_1 + \mathbf{U}_R/R_2, \\ &\mathbf{I}_2 = \mathbf{I}_Y + \mathbf{I}_R = \mathbf{U}_Y/R_1 + \mathbf{U}_R/R_2, \\ &\mathbf{I}_4 = \mathbf{I}_R = \mathbf{U}_R/R_2, \\ &\mathbf{I}_3 = \mathbf{I}_1.\mathbf{I}_2/\mathbf{I}_4, \\ &\mathbf{I}_R + \mathbf{I}_X + \mathbf{I}_Y + \mathbf{I}_0 = \mathbf{I}_3. \end{aligned}$$

$$\mathbf{Lze \ proto \ urcit, \ ze}$$

$$\mathbf{L} = \mathbf{I}_2 - \mathbf{I}_3 - \mathbf{I}_3 - \mathbf{I}_4 - \mathbf{I}_3 - \mathbf{I}_4 - \mathbf{I}_$$

 $I_0 = I_3 - I_X - I_Y - I_R = I_1 I_2 / I_4 - I_X - I_Y - I_R = I_X I_Y / I_R$ (164).

Nyní již lze určit, že pro výstupní napětí platí $U_o = R_o I_o = R_o I_x I_y / I_R = (U_x U_y / U_R)$. $R_o R_2 / R_1^2$ (165).

Pro $R_1=R_2=R_o$ a $U_R=10~V$ dostaneme ze vztahu (165), že $U_o=U_X.U_Y/10$.

Je-li povolen mezní proud $I_{1max}=1$ mA, musí být splněna podmínka $U_{\rm R}/R_2+U_{\rm Xmax}/R_1=1$ mA. Po úpravě dostaneme podmínku v upravené podobě.

 $U_{Xmax}=R_1.1 \text{ mA} - U_RR_1/R_2.$

Pro $R_1=R_2=20~k\Omega$ a $U_R=10~V$ dostaneme $U_{Xmax}=20.10^{+3}.10^{-3}-10~V=10~V$. Současně musí být vždy zaručeno, že I_1 je kladné, tedy $U_R/R_2+U_{Xmin}/R_1=0$.

Z této podmínky dostaneme úpravou vztah pro minimální možné vstupní napětí U_{Xmin}: U_{Xmin}=-U_RR₁/R₂.

Pro R₁=R₂ tak dostáváme podmínku U_{Xmin}=-10 V. Stejná úvaha platí i pro vstup Y. Protože lze použít napětí v rozmezí -10 V až + 10 V, využíváme všech čtyř kvadrantů v souřadnicích x, y – hovoříme proto o čtyř-kvadrantové násobičce.

Na obr. 68c je zjednodušené zapojení z obr. 68 b. Platí $I_1=U_X/R_1$, $I_2=U_R/R_2$, $I_4=U_Z/R_3$, $I_3=I_1$, I_2/I_4 a $U_o=R_o$, I_3 . Snadno odvodíme, že

 $U_o = (U_X/U_o).U_R.R_4R_o/(R_1.R_2),$ (166), protože však musí platit I_1 , $I_2 > 0$, musí platit i U_X , $U_Y > 0$ a pohybujeme se tedy pouze v jednom kvadrantu roviny X, Y.

Spojíme-li výstup U_o se vstupem U_z , platí $U_o = (U_x/U_o).U_R.R_4R_o/(R_1\cdot R_2)$, odsud snadno určíme, že $U_o = [U_xU_RR_4R_o/(R_1R_2)]^{1/2} =$

Výstupní napětí je úměrné odmocnině napětí vstupního.

 $= |R_0 = R_1 = R_2 = R_4, U_R = 10 \text{ V} | = \sqrt{10U_X}$

ÚKOL 69: Generátor s fázovým posuvem 180° ve zpětnovazební smyčce – obr. 69

a) Dokažte, že oscilátor kmitá na frekvenci $f_o=1/(2\pi\sqrt{3}$ CR).

b) Pro vznik oscilací musí platit $R_b/R_a>8$. c) Pro $R=R_a=10 \text{ k}\Omega$ a C=1 nF určete f_0

 c) Pro R=R_a=10 kΩ a C=1 nF urcete t_o a minimální odpor R_b, nutný pro vznik oscilací.

 d) Jestliže bude celkové zesílení smyčky nepatrně větší než 1, bude sinusové napětí zkresleno jen nepatrně. Navrhněte úpravu obvodu, která zajistí tuto podmínku.

Operační zesilovač OZ_1 je zapojen jako invertující zesilovač se zesílením $-R_b/R_a$; OZ_2 , OZ_3 , OZ_4 jsou zapojeny jako oddělovací zesilovače (sledovače), takže přenosy členů RC se navzájem neovlivňují. Tři členy RC mohou vytvořit maximální fázový posuv $3\times90^\circ=270^\circ$. K oscilacím dojde na frekvenci ω_o , kde je celkový fázový posuv členů RC právě 180° a "okolo" OZ_1 je tak celkové kladná zpětná vazba. Je zřejmé, že fázový posuv jednoho členu RC musí být právě 60° – jsou-li shodné.

Přenos A_{RC} jednoho členu RC určíme jako přenos děliče

 $A_{RC}=u_2/u_1=R/[R+1/(j\omega C)].$ Po úpravě dostaneme

 $A_{RC} = (\omega^2 C^2 R^2 + j\omega CR)/(1 + \omega^2 C^2 R^2)$

a pro úhel φ platí

tg $\varphi = Im(A_{RC})/Re(A_{RC}) = 1/(\omega CR)$.

Protože platí, že tg 60 °= $\sqrt{3}$, bude mít obvod se třemi stejnými články posuv 180° právě na frekvenci $1/(\omega_{\rm o} RC) = \sqrt{3}$,

odsud dostaneme $\omega_o=1/(\sqrt{3}\,\text{CR})$

(168).

Aby obvod kmital, nestačí splnit pouze fázovou podmínku. Musí být současně zajištěna i amplitudová podmínka, přenos celé smyčky musí být na frekvenci ω_o větší než 1. Pouze tak jsou ztráty na pasívních členech kompenzovány zesílením zesilovačů. Musíme proto určit absolutní hodnotu přenosu $|A_{CR}(\omega_o)|$

Obr. 69.a) Generátor s fázovým posuvem 180° ve zpětnovazební smyčce, b) jednodušší verze generátoru, c) modifikace zapojení z obr. 69a pro snížení požadovaného zesílení v jednom stupni

Platí ω_o CR= $\left[1/(\sqrt{3}\text{ CR})\right]$.CR= $1/\sqrt{3}$, potom $\left|A_{RC}\left(\omega_o\right)\right| = \sqrt{(1/3)^2+(1/\sqrt{3})^2}$ / $\left[1+(1/3)\right]=1/2$. Přenos celé zpětnovazební smyčky pro $\omega=\omega_o$ je (absolutní hodnota) R_b/R_a . $\left|A_{RC}\left(\omega_o\right)\right|^3$ a musí být větší než 1. Proto dostaneme podmínku $R_b>8\,R_a$ (169).

Je-li R_a =R=10 k Ω a C= 1 nF, musí být R_b větší než 8.10 k Ω , tj. 80 k Ω , frekvence oscilací bude f_o =1/(2 π √3 RC) = 9,19 kHz.

Jestliže chceme udržovat automaticky amplitudu oscilací v "blízkosti" minimálního zkreslení, musíme udržovat i amplitudovou podmínku oscilací těsně nad hodnotou 1. V nejjednodušším případě stačí zapojit místo rezistoru R_b vhodný termistor R_t, jehož odpor se s teplotou zmenšuje (NTC). Nutnou podmínkou je, aby za běžných teplotních podmínek platilo R_t>R_a/ | A_{RC}(ω_o) | ³. V okamžiku zapnutí tak oscilátor "tvrdě nasadí" kmity a napětí na výstupu OZ₁ "ohřívá" termistor R_t. Ustálí se právě taková amplituda kmitů, kdy platí

 $R_t \doteq R_a / |A_{RC}(\omega_o)|^3$, zpětná vazba není příliš "silná", výstupní signál má jen malé nelineární zkreslení.

Jednodušší obdobou zapojení na obr. 69a je zapojení bez oddělovacích zesilovačů na obr. 69b. Jednotlivé členy RC nejsou navzájem odděleny zesilovači, navzájem se ovlivňují a proto musíme zjistit přenos u_1/u_2 celé struktury a zjistit frekvenci ω_o , na které je fázový posuv 180°. Musíme také určit absolutní hodnotu přenosu na této frekvenci, aby bylo možné stanovit potřebný poměr R_b/R_a .

Pro přenos A_{RC} = u₂/u₁, na obr. 69b lze stanovit (např. metodou smyčkových proudů), že

$$A_{RC} = - \omega^3 R^3 C^3 / [\omega CR.(5 - \omega^2 C^2 R^2) + -i(1 - 6 \omega^2 C^2 R^2)].$$

Je zřejmé, že přenos bude mít fázi 180°, bude-li platit

$$1 - 6\omega_0^2 C^2 R^2 = 0 ,$$

tedy
$$\omega_{o}{=}\,1/\!(\sqrt{6}\,RC) \tag{170}.$$

Velikost přenosu na frekvenci ω_o je (ω_o RC = 1/ $\sqrt{6}$)

$$A_{RC}$$
 (ω_o) = $[-1/(6.\sqrt{6})]/[(5 -1/6)/\sqrt{6}]$ = $-1/29$.

Obvod na obr. 69b tedy osciluje na frekvenci ω_o určené vztahem (170) pouze tehdy, je-li splněna podmínka

$$R_b > 29R_a$$
 (171).

Jakou výhodu má vlastně zapojení na obr. 69a proti zapojení na obr. 69b. Odpověď nám umožní úkol 73. Na obr. 69a požadujeme u OZ₁ zesílení asi –8, na obr. 69b již zesílení asi –29. Znamená to, že při použití stejného operačního zesilovače můžeme v zapojení podle obr. 69a pracovat s frekvencemi f_o asi třikrát vyššími než v zapojení na obr. 69b – přesně jde o poměr 29/8 =3,625, aniž začnou degradovat vlastnosti použitého operačního zesilovače vzhledem k jejich frekvenční závislosti. Dokonce lze modifikovat dále zapojení na obr. 69a a dosáhnout ještě dalšího zmenšení požadovaného zesílení "na jeden operační zesilovač".

Lze zapojit operační zesilovače OZ₂, OZ₃ a OZ₄ podle obr. 69c. Každý takto upravený stupeň má nyní vlastní zesílení 2, oscilační podmínky se nezměnily, co do fáze i co do

"amplitudy" jsou stejné. Stačí proto, aby OZ₁ měl zesílení mírně nad 1 a oscilátor bude pracovat (přesněji řečeno menší než –1, R_b>R_a). Protože nyní požadujeme maximální zesílení na jeden operační zesílovač asi 2, může v zapojení podle obr. 69c pracovat s frekvencemi f_o asi čtyřikrát vyššími než v zapojení na obr. 69a, použijeme-li zesilovače jinak stejných vlastností. Počtem operačních zesilovačů tedy "platíme" za možnost podstatného zvýšení oscilační frekvence f_o při použití konkrétního operačního zesilovače.

ÚKOL 70: Wienův oscilátor - obr. 70

Obr. 70. Wienův oscilátor

a) Dokažte, že obvod kmitá na frekvenci $f_o=1/[2\pi(R_1R_2C_1C_2)^{n_2}]$ a musí být splněna podmínka $R_3/R_4>R_1/R_2+C_2/C_1$. b) Pro $R_1=R_2=R_4=10~\mathrm{k}\Omega$ a $C_1=C_2=1~\mathrm{nF}$ najděte f_o a R_3 nutné pro oscilaci.

Vůči napětí u_+ na neinvertujícím vstupu se chová OZ_1 jako neinvertující zesilovač se zesílením $1+R_3/R_4$. Pro přenos Wienova členu $A_W=u_+/u_o$ lze odvodit základními postupy vztah $(p=j\omega)$:

 $A_W = pC_1R_2/[p^2R_1R_2C_1C_2 + p(C_1R_1 + C_2R_2 + R_2C_1) + 1].$

$$\omega^2 = \omega_0^2 = 1/(R_1 R_2 C_1 C_2) \tag{172},$$

je přenos $A_W(\omega_0) = C_1R_2/(C_1R_1 + C_2R_2 + C_1R_2) > 0$ (173)

Zpětná vazba je tedy kladná a aby oscilátor kmital na frekvenci ω_o , stačí aby A_W (ω_o).(1+ R_3/R_4) > 1.

Po dosazení ze vztahu (173) a úpravách zjistíme, že obvod kmitá, je-li splněna podmínka

$$R_3/R_4 > R_1/R_2 + C_2/C_1$$
 (174).

Pro R = R₁ = R₂ = R₄ = 10 kΩ a C = C₁ = C₂ = 1 nF dostaneme f_0 =1/ (2πRC)=15,92 kHz. Dále musí platit R₃>R₄ (10/10 +1/1) = 2 R₄ = 20 kΩ.

Amplitudu oscilátoru lze v nejjednodušším případě stabilizovat stejně jako v ukolu **69** – rezistor R₃ nahradit termistorem NTC.

ÚKOL 71: Optoelektronický převodník – obr. 71

Fotodioda na obr. 71a má aktivní plochu $S_A=10~\text{mm}^2~\text{a}$ převodní konstantu $k_i=0,5~\text{A/W}$ (výstupní proud ku energii dopadajícího světla). Najděte výstupní napětí U_o , jestliže intenzita světla je $\emptyset=100~\text{nW/cm}^2$.

Zvětšuje-li se výkon světla dopadajícího na diodu, zvětšuje se úměrně i proud diodou v závěrném směru – $I_z.$ Výkon dopadající na diodu je $P\!=\!\varnothing.S_A\!=\!100~nW/cm^2$. 10 mm² = 1 nW/mm².10 mm² = 10 nW . Proud I_z diodou je proto

Obr. 71. a) Optoelektronický převodník, b) charakteristiky fotodiody

 $I_z = P k_I = \emptyset S_A k_I = 10 \text{ nW } .0,5 \text{ A/W} = 10.10^{-9} \text{ W.0,5 A/W} = 5 \text{ nA}.$

Operační zesilovač pracuje jako převodník proud – napětí a platí

$$U_o = R_F I_z = \emptyset S_A k_1 R_z = 5.10^{-9}.10^6 = 5 \text{ mV}$$
(175)

Je zřejmé, že pro použitý operační zesilovač musí platit, že jeho vstupní proudy jsou řádově menší než proudy I_z – přesněji řečeno, musí být řádově menší než nejmenší vyhodnocovaný proud I_z. V praxi to vede k volbě operačního zesilovače s tranzistory řízenými polem na vstupu a s velmi malou vstupní napěťovou nesymetrií.

ÚKOL 72: Vliv souhlasné vstupní impedance na přenos – obr. 72

Obr. 72. Vliv souhlasné vstupní impedance

Tranzitní kmitočet operačního zesilovače je $f_T=1$ MHz, $A_o=106$ dB (200 000 viz úkol **60**, obr. 60c), souhlasná vstupní impedance je tvořena odporem 1 G Ω a kapacitou 4 pF. a) Určete zesílení pro $f_o=0$ Hz.

- b) Najděte šířku pásma pro pokles přenosu o 3 dB,
- c) najděte šířku pásma pro pokles přenosu o 0,5 dB.

Nejdňve posoudíme pouze vliv A_0 = 200 000 podle vztahu (1) – úkol 1; platí Z_2 =0 a Z_1 = ∞ , proto

 $A_N = 1 + 1/A_{OL} = 1 + 0.5.10^{-5}$.

Tento vliv je zanedbatelný.

 $\begin{array}{ccccc} \text{Nyní posoudíme vliv vstupní impedance} \\ Z_i. & \text{Platí} & u_o\!=\!u_+\!=\!u_i.Z_i\!/(Z_i\!+\!R_1)\!=\!u_i.R_i\!/\\ (j\omega R_iR_1C_i\!+\!R_1\!+\!R_i). \\ \text{Po úpravě dostáváme} \\ u_o\!/u_i\!=\!\left\lceil R_i\!/(R_1\!+\!R_i)\right\rceil\!, & 1/\left\lceil 1\right\rceil & + j\omega R_1R_iC_i\!/\\ (R_1\!+\!R_i)\right\rceil & (176). \end{array}$

Pro $\omega=0$ je u_o/u_i=10°/(10°+10°)=0,999. Pro pokles 3 dB musí platit (ω_3 – frekvence "poklesu" o 3 dB) $\omega_3.R_1R_iC_i/(R_1+R_i)=1$,

aby absolutní hodnota jmenovatele vztahu (176) byla rovna právě √2. Odsud dostane-

 $f_3 = 1/[2\pi C_i R_1 R_i/(R_1 + R_i)]$ po dosazení potom f₃=39,8 kHz.

Pro pokles 0,5 dB musí platit ($\omega_{0,5}$ frekvence "poklesu" o 0,5 dB) 20. log $[1/\sqrt{1 + \omega_{0,5}^2 C_i R_1 R_i / (R_1 + R_i)}] =$ = -0.5. Po úpravě dostaneme $\begin{array}{l} \omega_{0,5}^2 = (10^{0.05}-1)\,/\,[C_iR_1R_i/(R_1+R_i)] = \\ = (10^{0.05}-1)\,\cdot\,\omega_3^2 \end{array}$ Tento vztah lze sňadno zobecnit do po- $\omega_x^2 = (10^{x/10} - 1) \cdot \omega_2^2$ (178),

kde x je pokles přenosu v dB,

ωx je frekvence, na které nastane pokles přenosu o x dB.

Po dosazení dostaneme pro x=0,5 dB, že $(\omega_{0.5}/\omega_3)^2 = 1,122-1=0,122$. Po odmocnění dále dostaneme $\omega_{0.5}/\omega_3 = f_{0.5}/f_3 = 0,3493$. Pro naše konkrétní podmínky proto platí, že $f_{0.5} = 0.3493 f_3 = 13.9 \text{ kHz}.$

ÚKOL 73: Frekvenční závislost přenosu - obr. 73

ы loá f

Obr. 73.a) Zapojení neinvertujícího zesilovače, b) přenos zesilovače bez zpětné vazby (AOI) a se zpětnou vazbou (AN)

Je dán operační zesilovač s tranzitní frekvencí f_T=1 MHz, A_o=106 dB (200 000). Ur-

a) šířku pásma pro pokles přenosu o 3 dB, b) přenosy na frekvenci 1 kHz, 10 kHz a 100 kHz.

Na obr. 73a je zapojen neinvertující zesilovač. Proto lze využít závěry z řešení úkolu (1),

 $A_N = (1 + R_2/R_1)/[1 + (1 + R_2/R_1)/A_{0L}].$

Výraz lze upravit do tvaru

 $A_N = 1/(\beta + 1/A_{OL}),$

stupeň zpětné vazby $\beta = R_1/(R_1 + R_2)$ popisuje míru přenosu signálu zpětnovazební sítí z výstupu zpět na invertující vstup. Přenos moderního, dobře korigovaného zesilovače je na obr. 73b a lze jej popisovat vztahem

$$A_{OL} = A_o/(1+jf/f_1)=1/[1/A_o+jf/(f_1A_o)]=$$

= 1/(1/A_o+jf/f_1),

 $f_T = f_1 A_0$ je tranzitní kmitočet (extrapolovaný), kde platí právě AOL(fT)=1. Pokud zkoumáme chování obvodu ve frekvenční oblasti, lze výraz 1/Ao obvykle zcela zanedbat a používat pouze zjednodušený výraz $A_{OL} = f_T/(jf) = -jf_T/f$.

Nyní již snadno určíme, že pro zesilovač na obr. 73a platí

$$A_{N} = 1/(\beta + jf/f_{T}) = (\beta - jf/f_{T})/[\beta^{2} + (f/f_{T})^{2}]$$
(179).

Ze vztahu (179) určíme, že fázový posuv ϕ přenosu je určen vztahem (180). $tq\phi = Im(A_N)/Re(A_N) = -f/(\beta f_T)$

Absolutní hodnota přenosu je

$$|A_{N}| = \frac{1/\sqrt{\beta^{2} + (f/f_{T})^{2}}}{1/\beta) \cdot 1/\sqrt{1 + [f/(\beta f_{T})^{2}]}}$$
(181).

Pro f = 0 je | $A_N(0)$ | = $1/\beta$; pro f = f_3 (frekvence poklesu přenosu o 3 dB) musí platit | A_N (f₃) | = A_N (0)/ $\sqrt{2} = -1/(\beta\sqrt{2})$. Musí být proto splněna právě podmínka $f_3/(\beta f_T) = 1$.

Nyní již snadno určíme, že k poklesu přenosu o 3 dB dochází na frekvenci

$$f_3 = \beta \cdot f_T = \beta \cdot f_1 A_0 \tag{182}.$$

Pro $R_1 = 1 k\Omega$, $R_2 = 99 k\Omega$ nyní lze určit, že $\beta = 0.01$. Proto $tg\phi = -100f/f_T$, A_N = $100/\sqrt{1 + (100f/f_T)^2}$.

Pro f = 1 kHz je (f_T = 1 MHz) $tg\phi = -100 \cdot 10^{3}$ $/10^6 = -0.1$

tomu odpovídá φ = -5,71°. Absolutní hodnota přenosu je $|A_N| = 100/\sqrt{1 + 0.1^2} =$

Pro f = 10 kHz je tg φ = -1; tomu <u>odpoví</u>dá fáze $\varphi = -45^{\circ}$, $|A_N| = 100/\sqrt{1 + 1^2} =$ = $100/\sqrt{2}$ = 70,71. To je současně frekvence f_3 , pokles přenosu je právě 20 log $\sqrt{2}$ = -3 dB. Stejnou hodnotu dostaneme i podle vztahu (182): $f_3 = 0.01 f_T = 10 \text{ kHz}.$

Pro f = 100 kHz je tg ϕ = -10, ϕ = -84,3° $a \mid A_N \mid = 100/\sqrt{1+100} = 9.95.$

Jestliže nás zajímá chyba pro $f/(\beta f_T) \ll 1$, tedy f/f₃ << 1, lze použít přibližný vztah 1/ $\sqrt{1 + x} = 1 - 0.5x$ (chyba vztahu je menší než 10 % pro x < 0,55). Aplikací na vztah (181) dostaneme

$$A_{N} \doteq (1/\beta) \cdot \{1 - 0.5 [f/(\beta f_{T})]^{2}\} = (1/\beta) \cdot [1 - 0.5(f/f_{3})^{2}]$$
 (183).

Relativní chyba ΔA_N vůči přenosu při f = 0 je

$$\Delta A_{N} = (| A_{N} | - | A_{N}(0) |) / | A_{N}(0) |$$

$$= -0.5[f/(\beta f_{T})]^{2} = -0.5(f/f_{3})^{2}$$
(184)

Vyjádříme-li vztah (184) v procentech, dostáváme

 $\Delta A_N(\%) = -50(f/f_3)^2$.

ÚKOL 74: Ztrátový výkon a oteplení přechodu - obr. 74

Obr. 74. Zapojení operačního zesilovače se zátěží 250 Ω

Je dán operační zesilovač, který má povolenou maximální teplotu přechodu T_{jmax} = 125 °C, tepelný odpor přechod - okolí Ř_{thja} 100 °C/W, omezení výstupního proudu na hodnotu ±50 mA, teplotní závislost napěťové nesymetrie U_{1O} je TK $_{UIO}=5~\mu\text{V/}^{\circ}\text{C},$ klidový odběr $I_{CC} = 1 \text{ mA}$.

- a) maximální dovolenou ztrátu P_{cmax} při teplotě okolí T_a = 25 °C,
- b) ztrátu obvodu P_{∞} , není-li zatížen,
- c) výkon rozptýlený zátěží,

- d) výkon rozptýlený operačním zesilova-
- e) ohřátí obvodu ΔT_i proti okolní teplotě T_a , f) změnu napěťové nesymetrie ΔU_{IO} plynoucí ze změny teploty přechodu.

Operační zesilovač je zapojen jako neinvertující zesilovač se zesílením 1 + 9/1 = 10. Na zátěži proto bude stejnosměrné napětí 10 V.

Je-li ztrátový výkon obvodu Pc, tepelný odpor přechod-okolí Rthja, Tj teplota přechodu a Ta teplota okolí, platí

$$\begin{split} T_{j} &= T_{a} + R_{thja} \cdot P_{c} & (185). \\ \text{Pro } T_{jmax} &= 125 \,^{\circ}\text{C}, \ T_{a} &= 25 \,^{\circ}\text{C} \ \text{a} \ R_{thja} \\ &= 100 \,^{\circ}\text{C/W} \ \text{určíme} \ P_{cmax} = 1 \ \text{W}. \end{split}$$

Není-li obvod zatížen, je jeho ztráta dána pouze klidovým proudem I_{CC} a napájecím napětím (zde 2x 18 V):

$$P_{co} = 2.18 \cdot I_{CC} = 36.10^{-3} \text{ W} = 36 \text{ mW}.$$

Za poměrů uvedených na obrázku je Uo = 10 V a ztráta na zátěži P_z = U₀²/R_z = 100/ /250 = 0.4 W. Zátěží protéká proud $I_z = 10/$ /250 = 40 mA ze zdroje +18 V. Na výstupním tranzistoru operačního zesilovače je ztráta úměrná úbytku napětí na něm: (18 $- U_o$) · $I_o = 8.40 \cdot 10^{-3} = 0.32 \text{ W} = 320 \text{ mW}.$ Celková ztráta obvodu P_c = P_{C0} + 320 mW = 356 mW. Ze vztahu (185) lze nyní určit Ti $= T_a + 100.0,356 = T_a + 35,6 \,^{\circ}\text{C}, \, \Delta T_j = T_j$ – T_a = 35,6 °C. Změna napěťové nesymetrie vyvolaná změnou teploty přechodu ΔT_i je $\Delta U_{IO} = TKU_{IO} \cdot \Delta T_{I} = 35.6 \,^{\circ}C \cdot 5 \mu V/^{\circ}C$ $= 178 \mu V.$

ÚKOL 75: Frekvenční závislost zesílení a doba náběhu t_n – obr. 75

Neinvertující zesilovač A_N(O) Obr. $R_2/R_1 = 1/\beta$ (a), b) zobrazení odezvy obvodu na jednotkový skok

Víte, že tranzitní frekvence operačního zesilovače f_T je 1 MHz. Určete a) šířku pásma přenosu (pro pokles o 3 dB), b) dobu náběhu při impulzním buzení.

Problém šířky pásma přenosu byl již řešen v úkolu 73, kde bylo odvozeno, že $f_3 = \beta f_T = f_T R_1/(R_1 + R_2) = (1/51) MHz$ = 19.6 kHz.

Je-li na vstupu skokové napětí u_i o amplitudě U; je nutné zkoumat chování obvodu v časové oblasti (obr. 75b). Přitom můžeme použít stejného postupu jako v úkolu 7. Víme, že platí vztah (179) – úkol 73, $u_o/u_i = 1/(\beta + jf/f_T).$

Snadno lze určit, že $jf/f_T=j\omega/\omega_T$, protože $\omega=2\pi f$ a $\omega_T=2\pi f_T$. Nyní již lze tvrdit, že přenos obvodu na obr. 75a v operátorovém tvaru je $(p=j\omega)$

 $A_N(p) = 1/(\beta + p/\omega_T) = \omega_T/(p + \beta \cdot \omega_T).$ Laplaceovým obrazem skoku o amplitudě U_i v čase t =0 je $U_i(p) = L[U_i(t)] = U_i/p.$ Laplaceovým obrazem výstupního napětí $U_o(p)$ je potom výraz

 $\begin{array}{l} U_o(p) = A_N(p) \cdot U_i(p) = U_i \cdot \omega_T / [p \cdot (p + \beta \cdot \omega_T)], \\ z \ něhož zpětnou Laplaceovou transformací (za použití stejných vztahů jako v úkolu 7) dostaneme odezvu <math>u_o(t)$ v časové oblasti $\lceil A_N(f=0) = 1/\beta \rceil$:

$$\begin{aligned} u_o\left(t\right) &= L^{-1}\left\{\omega_T U_i/[p\cdot(p+\beta\omega_T)]\right\} = \frac{U_i}{\beta} \\ & \left[1-\exp\left(-\beta\omega_T t\right)\right] = \end{aligned}$$

=
$$A_N(0) \cdot U_i [1 - \exp(-\beta \omega_T t)]$$
 (186).

Doba náběhu je definována jako doba potřebná k překonání úrovně 10 až 90 % ustálené hodnoty U_{os} výstupní úrovně. Ustálenou hodnotu dostaneme pro $t>>1/(\beta\omega_T);$ $U_{os}=U_i\cdot A_N(0).$ V čase t_a proto platí $0,1\cdot U_{i'}\beta=(U_{i'}\beta)\cdot \{1-\exp{(-\beta\omega_T\cdot t_a)}\},$

v čase t_b platí $0.9 \cdot U_b/\beta = (U_b/\beta) \cdot [1 - exp(-\beta\omega_T \cdot t_b)].$

Po úpravách dostaneme pro dobu náběhu $t_n = t_b - t_a = [1/(\beta \omega_T)] \cdot [\ln(1/0,1) - \ln(1/0,9)] = 2,197/(\beta \omega_T).$

Jestliže nyní dosadíme za $\omega_T=2\pi f_T$, dostaneme známý vztah $t_n=2,197/(2\pi\beta f_T)=0,35/(\beta f_T)=0,35/f_3$ (187). Dosadíme-li za $f_3=19,6$ kHz, je $t_n=17,7.10^+s=17,7$ μs .

ÚKOL 76: Určení korekční kapacity – obr.

Je dána korekční kapacita C_k = 40 pF. Při této korekční kapacitě je přenos operačního

Obr. 76.a) Zapojení operačního zesilovače s korekční kapacitou, b) znázornění přenosu při $A_{OL}(f_2) = 0$ dB, c) vliv korekčních kapacit – f_{Ta} C_{ka} $= f_{Tb}$ C_{kb} zesilovače roven jedné právě na druhém "zlomu" operačního zesilovače, $f_2=1$ MHz. Předpokládejte, že f_T je úměrné převrácené hodnotě kapacity $-1/C_k$. Určete

 a) šířku pásma přenosu f₃ a dobu náběhu t_n (pro malý signál),

b) minimální hodnotu C_k, aby úhel fázové jistoty byl 45°,

c) odpovídající šířku pásma a dobu náběhu t_n pro korekční kapacitu z bodu b).

Na obr. 76a je zapojení neinvertujícího zesilovače s korekční kapacitou C_{ka} . Proto i zde platí řešení úkolu 1 (upravený tvar), že $A_N = A_{OL}/(1+\beta A_{OL})$ (188). $\beta = R_1/(R_1+R_2)$.

Pokud je βA_{OL} = -1, jde A_N k nekonečnu; zesilovač bude kmitat. Tuto skutečnost popisuje Nyquistovo kritérium stability. Protože uvažujeme reálný činitel zpětné vazby β, "může" za celý fázový posuv pouze operační zesilovač ».

Pozn. 1: Obecně musíme zkoumat fázi celé smyčky – tedy součinu βA_{OL} a platí obdobné závěry.

Musíme zkoumat, jakou fázi ϕ_z "vyrobí" v oblasti frekvence f_3 , kde právě platí $1/\beta$ = f_T/f_3 = $|A_{OL}|$ - viz úkol **73**.

Pokud je $\mid \phi_z \mid$ < 90° (při 1/ $\beta=A_{OL}$), je systém bezvýhradně stabilní. Pro $\phi_z=180^\circ$ systém kmitá, záporná zpětná vazba se mění ve vazbu kladnou. Rozdíl mezi fází 180° a fází zesilovače ϕ_z (při 1/ $\beta=A_{OL}$) se nazývá úhel fázové jistoty:

 $\begin{array}{ll} \phi_{j}=180-\mid\phi_{z}\mid.\\ \text{Ideální tedy je }\phi_{j}=180^{\circ}(\mid\phi_{z}\mid=0^{\circ})\text{, výborné je }\phi_{j}\geqq+90^{\circ}(\mid\phi_{z}\mid\leqq90^{\circ})\text{, přípustné je }\phi_{j}\geqq+45^{\circ}(\mid\phi_{z}\mid\leqq135^{\circ}). \end{array}$

Pro uvedenou situaci platí, že přenos zesilovače bez zpětné vazby | A_{OL}(f₂) | je právě 0 dB ve druhém zlomu přenosu (f₂ – obr. 76b). V aproximaci pomocí lomených čar to proti výrazu

$$A_{OL} = A_o/[(1 + jf/f_1) \cdot (1 + jf/f_2)]$$
 (189)

znamená, že konec úseku se sklonem –6 dB/okt (bod B) je právě o 3 dB "výš". Bod B aproximace má právě "souřadnice" (f_2 ; $\sqrt{2}$). Extrapolovaný tranzitní kmitočet f_T lze tedy určit ze skutečnosti, že v úseku se strmostí –6 dB/okt platí

 ${\rm f_T/f}=\mid {\rm A_{OL}}\mid$, platí proto i (korekční kapacita ${\rm C_{ka}}$), že ${\rm f_{Ta}/f_2}=\sqrt{2}$.

Pro korekční kapacitu $C_{ka} = 40$ pF tedy dostaneme

 $f_{Ta} = \sqrt{2 \cdot f_2} = 1,414 \text{ MHz}.$

Nyní lze určit i f_{3a} podle vztahu (182) – úkol 73,

AoL C_{ka} A_{OL} C_{kb} C_{ka} C_{ka}

 $f_{3a} = \beta \cdot f_{Ta} = 1,414 \cdot 1/(1+3) = 0,3535$ MHz. Pro náběžnou dobu t_n lze odhadnout $t_{na} = 0,35/t_{3a} = 1$ μ s.

Jde pouze o přibližné hodnoty, protože druhý zlom na přenosu operačního zesilovače je už relativně blízko frekvenci f_{3a} a mělo by se s ním správně při úvahách počítat, což se nestalo.

Každá "závorka" typu $(1+jf/f_i)$ "vyrábí" fázový posuv 0° pro f=0 (přibližně již pro $f=0,1f_i$), posuv -45° pro $f=f_i$ a fázový posuv -90° pro $f>10f_i$. Ze situace na obr. 76b je zřejmé, že pro $1/\beta=A_{OL}$ je fáze operačního zesilovače -90° "od zlomu f_1 " a méně než -45° "od zlomu f_2 ". Situace je proto ještě "dobrá" $-\mid \phi_z\mid <135^\circ$ a proto $\phi_j>45^\circ$.

Lze určiť korekční kapacitu $C_{\rm kb} < C_{\rm ka}$ a tak zvýšit extrapolovaný tranzitní kmitočet na $f_{\rm Tb}$. Platí totiž, že $f_{\rm Ta} = k/C_{\rm ka}$, kde k je konstanta popisující fyzikální vlastnosti konkrétního operačního zesilovače. Současně proto platí $f_{\rm Tb} = k/C_{\rm kb}$. "Srovnáním" konstanty k z obou uvedených vztahů dospějeme k velmi užitečnému vztahu

 $f_{Ta}/f_{Tb} = C_{kb}/C_{ka}$ (190), který nám umožní odhadovat změnu f_T se změnou korekční kapacity.

Hranici pro nejmenší korekční kapacitu vymezuje požadavek $\varphi_{\rm j}=45^{\circ}$. Musí tedy platit, že fázový posuv $\mid \phi_z \mid$ operačního zesilovače je právě 135°. Je zřejmé, že tato situace nastává právě na druhém zlomu přenosu f_2 1), kde tento druhý zlom "přispěje" právě posuvem –45° (a první zlom již spolehlivě "dodal" svých –90°). Můžeme proto posunout $A_{\rm OL}$ lak, aby právě platilo $\mid A'_{\rm OL} \mid = 1/\beta$ při $f = f_2 -$ viz obr. 76c. Změnou C_k se neovlivní $f_2 -$ pouze extrapolovaná frekvence $f_T -$ hodnota f_{Tb} . I zde budeme respektovat skutečnost, že poloha bodu B' je o 3 dB "výše" než u skutečného průběhu přenosu.

Pozn. 1: Ve skutečnosti si nějakou fázi "přidá" i zpětnovazební obvod – tedy β – a obvod by při této korekci již pravděpodobně kmital.

Koncový bod B' úseku se sklonem přenosu –6 dB/okt proto bude mít souřadnice (f_2 ; $1/\beta$ + 3dB $\equiv \sqrt{2/\beta}$). Nyní lze určit nový extrapolovaný tranzitní kmitočet f_{Tb} :

 $f_{Tb}/f_2 = \sqrt{2/\beta}$, po dosazení dostáváme

 $f_{Tb} = f_2 \cdot \sqrt{2.4} = 5,657 \text{ MHz}.$

Nyní již můžeme určit korekční kapacitu C_{kb} ze vztahu $f_{Ta}/f_{Tb} = C_{kb}/C_{ka}$. Dostaneme $C_{kb} = C_{ka}f_{Ta}/f_{Tb} = C_{ka}/4 = 10 \text{ pF}$.

Orientačně lze i určit $f_{3b} = \beta \cdot f_{Tb} = 1,4$ MHz a $t_{nb} = 0.35/f_{3b} = 248$ ns. Výhrady uvedené u výpočtu f_{3a} a t_{na} však platí ještě ve větší míře.

ÚKOL 77: Výpočet korekční kapacity – obr. 77

Je známo, že při korekční kapacitě C_{ka} = 30 pF je tranzitní frekvence f_{Ta} = 1 MHz, při C_{kb} = 0 pF je tranzitní (extrapolovaná) frekvence f_{Tb} = 21 MHz, druhý zlom f_2 = 1 MHz. Uvažujte vliv parazitní kapacity C_p ,

takže skutečná korekční kapacita C'_k = C_k + Cp.

a) Určete f_T pro $C_{kc} = 3$ pF,

b) šířku pásma f_3 pro $R_2 = 39$ k Ω a $R_1 = 1$ k Ω a $C_{ka} = 30 pF$,

c) f_3 pro $C_{kc} = 3$ pF,

d) pro $R_2 = 30 \text{ k}\Omega$ a $R_1 = 10 \text{ k}\Omega$ takovou korekční kapacitu Ck, aby úhel fázové jistoty byl 45° a odhadněte f₃.

Situace je obdobná úkolu 76. Pro extrapolované tranzitní frekvence platí f_{Ta}/f_{Tb} = C'_{kb}/ C'ka, kde

 $C_{\,kb}^{\,\prime}=\,C_{kb}\,+\,C_{p},$

 $C'_{ka} = C_{ka} + C_{p}$

C_p je parazitní kapacita mezi korekčními vývody operačního zesilovače, nečárkované jsou externí korekční kondenzátory.

Známe-li dva údaje ($C_{kb} = 0$, $f_{Tb} = 21$ MHz) a ($C_{ka} = 30 \text{ pF}, f_{Ta} = 1 \text{ MHz}$), lze určit,

 $1/21 = (0 + C_p)/(30 \text{ pF} + C_p)$ Jednoduchou úpravou dostaneme Cp = 30 pF/20 = 1,5 pF.

Nyní již lze určit, že pro $C_{kc} = 3 pF$ je skutečná korekční kapacita $C'_{kc} = 3 pF + 1,5$ pF = 4,5 pF. Dále musí platit f_{Tc}/f_{Ta} = C'_{ka}/

tedy $f_{Tc} = [(30 + 1,5)/4,5] \cdot f_{Ta} = 7 \text{ MHz}.$ Pro $C_{ka} = 30 \text{ pF je } C'_{ka} = 30 + 1,5 = 31,5$ pF a $f_{Ta} = 1$ MHz. Dále $f_{3a} = \beta \cdot f_{Ta} = 1$ MHz/40 = 25 kHz. Pro C_{kc} = 3 pF je f_{Tc} = 7 MHz a f_{3c} = 7 MHz/40 = 175 kHz.

Pro $R_2 = 30 \text{ k}\Omega$ a $R_1 = 10 \text{ k}\Omega$ je $\beta = 1/4$ =0,25. Problém byl podrobně řešen v úkolu 76. Úhel fázové jistoty 45° dosáhneme takovým posuvem (korekcí) A_{OL}, aby platilo 1/β - A'OL právě na frekvenci druhého zlomu, přičemž v bodě zlomu platí při aproximaci lomenou čarou právě A'_{OL} (f_2) = $\sqrt{2/\beta}$ (skutečnost je o 3 dB "pod" bodem zlomu B' - obr. 76). Proto musí platit pro "povolený" extrapolovaný kmitočet $f_T/f_2 = \sqrt{2/0,25}$ = $4 \cdot \sqrt{2}$, tedy $f_T = f_2 \cdot 5,657 = 5,657$ MHz. Dále použijeme vztah f_{Ta}/f_T = C'_k/C'_{ka} a C'_k $=C_k + 1.5 pF.$ Potom $C'_k = C'_{ka} f_{Ta}/f_T$; $C_k = C'_{ka} f_{Ta}/f_T - 1,5 \text{ pF} = 4,07 \text{ pF}.$ Šířku pásma lze odhadnout na $f_3 \doteq f_2 = 1$ MHz.

Obr. 77. Neinvertující zapojení operačního zesilovače s vyznačením vlivu parazitní kapacity Cp

ÚKOL 78: Stabilita operačního zesilovače

Je dáno $f_1 = 10$ Hz, $f_2 = 1$ MHz, f_3 = 4 MHz; při C_k = 50 pF je f_T = 1 MHz (extrapolovaná hodnota). Dokažte, že

a) $U_o = (1,0 \text{ V}) \cdot \log (U_s/U_{REF}) \text{ pro } U_s, U_{REF}$ kladné:

b) stupeň zpětné vazby (pro malý signál) je $\beta_1 \,=\, U_s/U_T$ pro OZ_1 a $\beta \,=\, U_{REF}/U_T$ pro OZ_2 .

c) Pro jaké U_s a U_{REF} je obvod stabilní?

Obr. 78. Zapojení logaritmického zesilovače (a), b) znázornění přenosu OZ bez zpětné vazby | A_{OL} | a fázových poměrů

- d) Jestliže má být logaritmický zesilovač stabilní pro U_s = U_{REF} = 1 V, jaký musí být kmitočet prvního zlomu f₁? Jaká je potřebná korekční kapacita, je-li f₁ $= 10 \text{ Hz při C}_{k} = 50 \text{ pF?}$
- e) Zopakujte zadání bodu d) pro Us, $U_{REF} = 50 \text{ V}.$
- f) Najděte šířku pásma při $C_k = 20 \text{ nF a } U_s$ = 100 mV, 1 V a 5 V pro malý signál.
- g) Předpokládejte, že pro OZ je l_{omax} = 25 mA, vstupní proud I_{IB} = 10 nA, vstupní proudová nesymetrie I_{I0} = 1 nA. Určete povolený rozsah R1 tak, aby chyba od $U_s = 10$ mV do 100 V nepřesáhla 1 %.

Požadavek a) je podrobně objasněn v úkolu 12. Stupeň zpětné vazby dokážeme stanovit, určíme-li přenos tranzistoru z emitoru do kolektoru. Tranzistory ve zpětné vazbě lze považovat z hlediska malých signálů za zesilovač v zapojení se společnou bází (neobrací fázi), jehož zesílení je dáno poměrem kolektorového odporu (zde R₁) a emitorového odporu tranzistoru re, který musíme určit. Pro proud emitoru tranzistoru platí přibližný vztah

 $I_E \doteq I_K \doteq I_{KO} \cdot exp (U_{BE}/U_T).$ Pro dynamický odpor emitoru r_e platí $r_e = dU_{BE}/dI_E = 1/(dI_E/dU_{BE}),$ $dI_E/dU_{BE} = I_{KO} \cdot exp \left(U_{BE}/U_T \right) \cdot \left(1/U_T \right) = I_E/U_T.$ Pro dynamický odpor emitoru tedy platí $r_{\text{e}} = U_{\text{T}}/I_{\text{E}}$ kde U_T je teplotní napětí,

I_E je stejnosměrný proud emitoru. Pro ideální operační zesilovač platí $I_F = U_s/R_1$

 $(I_E = U_{REF}/R_1)$, proto $r_e = R_1 \cdot U_T / U_s$.

Zesílení zapojení se společnou bází (ΔUk změna na kolektoru)

 $\Delta U_k/\Delta U_{BE} = R_1/r_e = U_s/U_T = \beta_1$ (192)je současně stupeň zpětné vazby operačního zesilovače OZ₁.

Pro OZ_2 je $\beta_2 = U_{REF}/U_T$.

Známe-li stupeň zpětné vazby a vlastnosti operačního zesilovače, můžeme zkoumat průsečík závislosti 1/β s přenosem | A_{OL} | zesilovače a tak určit podmínky stability. V úkolu 76 byl zkoumán model OZ se dvěma zlomy f₁, f₂. Takový model vytvoří největší fázový posuv 180° a v zásadě je vždy stabilní (neuvažujeme žádný posuv fáze ve zpětnovazebním obvodu). Reálné operační zesilovače však mají i další zlomy na přenosové charakteristice A_{OL} a proto fáze vždy hodnotu 180° překročí – obvod může kmitat, pokud úhel fázové jistoty není dostatečný. Další zhoršení situace vyplyne z reálných vlastností zpětnovazebních obvodů. V zadání jsou uvedeny tři zlomové frekvence operačního zesilovače - obr. 78b. Pro frekvence f mnohem větší než f₁ a mnohem menší než f_2 ($f_1 \ll f \ll f_2$) je fáze operačního zesilovače prakticky -90°. Fázového posuvu 180° dosahuje operační zesilovač mezi zlomem f2 a fa. Přibližně platí, že k tomu dochází na frekvenci f₁₈₀, která je určena jako geometrický střed z hodnot f₂ a f₃: (193). $f_{180} = \sqrt{f_2 \cdot f_3}$

Dokážeme-li zjistit A_{OL}(f₁₈₀), stačí zajistit

podmínku $1/\beta > |A_{OL}(f_{180})|$.

Potom je úhel fázové jistoty $\phi_i > 0$, obvod nekmitá, je stabilní.

Přenos operačního zesilovače se třemi zlomy podle obr. 78b lze popsat vztahem (f₃ zde frekvence třetího "zlomu")

 $A_{OL} = A_o/[(1 + jf/f_1) \cdot (1 + jf/f_2) \cdot (1 + jf/f_3)].$ Zajímá nás situace na frekvenci $f_{180} = \sqrt{f_2 f_3}$. Jistě platí, že f_{180} je mnohoná-

sobně větší než f₁ <u>a proto můžeme p</u>sát $A_{OL}(f_{180}) \doteq A_o/[(j\sqrt{f_2f_3/f_1}) \cdot (1+j\sqrt{f_2f_3/f_2}) \cdot (1+j\sqrt{f_2f_3/f_2})]$ $+j\sqrt{f_2f_3/f_3}$

Po úpravách dostaneme ($j^2 = -1$), že $A_{OL}(f_{180}) \doteq -A_o f_1/(f_2 + f_3) = -f_T/(f_2 + f_3)(194),$ kde f_T = A_of₁ je extrapolovaný tranzitní kmitočet.

Aby byl systém stabilní, musí platit (195). $1/\beta > f_T/(f_2 + f_3)$ f₃ je frekvence třetího "zlomu".

Poznámka: Hodnotíme-li fázi a přenos celé zpětnovazební smyčky β·A_{OL}, platí stejná úvaha s tím, že zkoumáme průsečík s osou $0~dB-tedy~|~\beta\cdot A_{OL}~|~=1$. Zde totiž opět platí $|~1/\beta=~|~A_{OL}~|~a$ zajímá nás nyní fáze operačního zesilovače i zpětnovazebního obvodu - tedy součet jejich fází.

Platí-li pro operační zesilovač, že f3 je mnohem větší než f2, není nutné vliv f3 na poměry v obvodu uvažovat. Zlom f₃ téměř "nepřidá" fázový posuv ve zlomu f2. Můžéme předokládat, že na f $_2$ je $\mid \phi_z \mid \ = \ 135^\circ$ a stačí proto volit $1/\beta = |A_{OL}(f_2)|$ a úhel fázové jistoty ϕ_{i} = 45°. Chceme-li zaručit ϕ_{i} 45°, než musíme volit 1/B $> \mid A_{OL}(f_2) \mid$. Stačí tedy určit $A_{OL}(f_2) \mid$ člen $(1 + jf/f_3)$ již neuvažujeme; $f_2/f_1 >> 1$]: $A_{OL}(f_2) = A_0/[(1 + jf_2/f_1) \cdot (1 + jf_2/f_2)] =$ $A_0/[(jf_2/f_1)\cdot(1+j)]$

Po úpravě dostaneme pro absolutní hodnotu přenosu operačního zesilovače na frekvenci

druhého zlomu f₂ $\mid A_{OL}(f_2) \mid = A_o f_1/(\sqrt{2} f_2) = f_T/(\sqrt{2} f_2).$ Platí tedy, že pro úhel fázové jistoty $\phi_{j} > 45^{\circ}$ musíme zajistit

 $1/\beta > |A_{OL}(f_2)| = f_T/(\sqrt{2}f_2)$ (196).Tento vztah přesně souhlasí s tím, co vyplynulo z úvah v úkolu 76.

Pro daný operační zesilovač je f₁ = 10 Hz, $f_2 = 1 \text{ MHz a } f_3 = 4 \text{ MHz (operační zesilovač$ "z rodiny 741"). Má-li být OZ stabilní musíme zaručit, aby platil vztah (195) $1/\beta > 10^6/(10^6 + 4.10^6) = 1/6 = 0.2$

Protože $\beta_1 = U_S/U_T$, musí platit $U_T/U_s >$ 1/5, tedy U_s je menší než $5U_T = 5.26 \text{ mV}$ = 130 mV. Stejný závěr platí i pro $\beta_2 = U_{REF}/$

Není-li možné omezit požadavky na činitel zpětné vazby β, musíme vztah (195) upravit do podoby

 $f_T\!<\!(f_2+f_3)/\beta$ (195a)

a pomocí korekční kapacity operačního zesilovače upravit fr tak, aby podmínka stability byla splněna. Pro dané poměry to znamená, že musí platit

 $f_T < (f_2 + f_3) \cdot U_T/U_s.$

Požadujeme-li U_s = 1 V, dostaneme $f_{Ta} < 5 \text{ MHz} \cdot 25 \cdot 10^{-3}/1 = 125 \text{ kHz}.$

aby byl zesilovač stabilní. Požadujeme-li f_{Ta} = 125 kHz, a pro $C_k = 50 pF je f_1 = 10 Hz a f_T$ = 1 MHz, stačí korekční kapacitu zvětšit v poměru $f_T/f_{Ta} = 1 \text{ MHz}/125 \text{ kHz} = 8;$ potřebná korekční kapacita tedy je Cka = 50·8 = 400 pF. V odpovídajícím poměru se sníží frekvence prvního zlomu: $f_{1a} = f_1/8 = 1,25 \text{ Hz.}$

Požadujeme-li U_s = 50 V, dostaneme $f_{Tb} = 5 \text{ MHz} \cdot 25 \cdot 10^{-3} / 50 = 2.5 \text{ kHz}.$ Korekční kapacita $C_{kb} = 50 \text{ pF-f}_T/f_{Tb}$ $= 50.10^{6}/(2,5.10^{3}) = 50.400 = 20000 \text{ pF}$ = 20 nF. První zlom operačního zesilovače bude na frekvenci $f_{1b} = 10$ Hz /400 =0.025 Hz.

Pokud známe činitel zpětné vazby β, můžeme určit i šířku pásma f_{3d} pro pokles přenosu o 3 dB podle vztahu (182) z úkolu 73 (zde f_{3d} kvůli odlišení od zlomu f₃):

 $f_{3d} = \beta \cdot f_T = f_T \cdot U_s / U_T$.

Pro C_{kb} = 20 nF je f_{Tb} = 2,5 kHz, proto dostaneme

 $f_{3d} (U_s = 100 \text{ mV}) = 0.1 \cdot 2.5 \cdot 10^3 / (25 \cdot 10^{-3})$ = 10 kHz:

 f_{3d} (U_s = 1 V) = 1·2,5·10³/(25·10⁻³) = 100 kHz;

 $f_{3d} (U_s = 5 V) = 5.2,5.10^3/(25.10^3) =$ 500 kHz.

To, že frekvence f_{3d} je vyšší než frekvence f_{T} je možné pouze díky tomu, že činitel zpětné vazby β je větší než 1 – ve zpětné vazbě je z hlediska "malého signálu" zesilovač. "Co chybí operačnímu zesilovači při dané korekci, to nadežene zpětná vazba". Ve většině případů je v praxi zpětná vazba pasívní, činitel zpětné vazby β je menší než 1 a f_{3d} je

Při řešení úkolu g) vyjdeme ze skutečnosti, že největší proud bude protékat rezistorem R₁ při U_{smax} = 100 V. Musí platit U_{smax}/ $R_1 < I_{omax}$, aby operační zesilovač pracoval v povoleném pracovním režimu. Proto $R_1 > U_{smax}/I_{omax} = 100/25 \text{ mA} = 4 \text{ k}\Omega. (197)$

Nyní musíme vyšetřit chování obvodu při malých proudech I1. Vhledem k tomu, že jsou v obou vstupech zařazeny stejné rezistory R₁, uplatňuje se pouze proudová nesymetrie I_{IO} = 1 nA, vliv I_{IB} se kompenzuje. Proto musí platit pro chybu 1 %, že

 $I_{1min} > 100 I_{IO}$. Proud $I_{1min} = U_{smin}/R_1$. Pokud je velikost U_{smin} předepsána, musíme určit odpor R_{1 max} $R_{1max} = U_{smin}/(100 \cdot I_{IO}) = 10 \cdot 10^{-3}/(100 \cdot 10^{-9})$ $= 100 \,\mathrm{k}\Omega$ (198).

Máme-li splnit požadavky bodu g), musíme volit R_1 od 4 do 100 k Ω .

Pokud by byly tranzistory T_1 a T_2 zapojeny jako diody, změní se podstatně podmínky stability v obvodu. Na obr. 78a se tranzistory chovají jako aktivní členy se zesílením (pro malý signál) a ze vztahu (192) je zřejmé, že může platit $\beta_1 > 1$, $\beta_2 > 1$ ($U_s > U_T$, U_{REF} > U_T). Jsou-li tranzistory zapojeny jako diody (báze spojena s kolektorem), je činitel zpětné vazby určen vztahem

 $\beta = R_1/(R_1 + r_D)$ (199), $kde_rD \doteq U_T/I_D$,

I_D = U_s/R₁ je stejnosměrný proud diodou.

Po dosazení do (199) dostaneme $\beta \doteq 1/(1 + U_T/U_s)$ (200);vždy platí $\beta < 1$.

Podíl $1/\beta$ pro $\beta < 1$ nemůže "klesnout" tak hluboko jako pro činitel zpětné vazby větší než 1. Obvod bude "stabilnější" pro větší Us (UREF). Na druhé straně bude ovšem pomalejší, protože $f_{3d} = \beta \cdot f_T$ je nyní také menší.

ÚKOL 79: Operační zesilovač má $f_T = 1,5$ MHz a $f_2 = 6$ MHz.

Obr. 79. Vyznačení f_T a druhého zlomu

Určete šířku pásma pro pokles přenosu o 3 dB, je-li zesílení $A_N(0) = 50$.

Ze zadání je zřejmé, že druhý zlom je pod osou 0 dB a systém je proto stabilní. Lze použít vztah (182) - úkol 73 $f_3 \doteq \beta f_T$

pouze si musíme uvědomit, že $A_N(0) = 1/\beta$. Proto

 $f_3 = f_T/A_N(0) = 1.5 \text{ MHz}/50 = 30 \text{ kHz}.$

ÚKOL 80: Operační zesilovač má A₀ = 106 dB, $f_1 = 10$ Hz, $f_2 = 500$ kHz a $f_3 = 2$ MHz.

Najděte minimální zesílení A_N, při kterém bude úhel fázové jistoty $\varphi_i = 45^{\circ}$.

Problém je řešen v rámci úkolu 78, vztah (196). V mezním případě právě platí $1/\beta = A_N = f_T/(\sqrt{2}f_2).$

Extrapolovanou tranzitní frekvenci určíme ze vztahu

Obr. 81.a) Dolní propust s přepínacími kondenzátory, b) dvoufázové řídicí spínací napětí s periodou T_s - frekvencí f_s, c) poměry na ekvivalentním rezistoru, d) zapojení ekvivalentní k zapojení z obr. 81a, e) znázornění přenosu klasického a spínacího filtru, d) blokové schéma systému se spínacími filtry

Obr. 80. Vyznačení f_1 , f_2 , f_3 a f_T

 $f_T = A_0 \cdot f_1 = 10^{(106/20)} \cdot 10 \text{ Hz} = 200\ 000 \cdot 10$ = 2 MHz. Proto

 $A_N = 2.10^6/(\sqrt{2.0,5.10^6}) = 2.88.$

Pro zesílení A_N větší než 2,88 bude úhel fázové jistoty větší než 45°, zesilovač bude stabilní.

ÚKOL 81: Dolní propust s přepínanými kondenzátory – obr. 81

Dokažte, že přenos obvodu je popsán

vztahem

 $A_{DP} = -(C_1/C_2)/|1 + j\omega C_F/(C_2f_s)|,$ jsou-li tranzistory MOS sepnuty při vysoké úrovni a rozepnuty při nízké úrovni. Průběh řídicích úrovní φ1 a φ2 je na obr. 81b. Předpokládejte, že řídicí frekvence $f_s = 1/T_s$ je řádově vyšší než nejvyšší frekvence signálu na vstupu obvodu.

Kombinace tranzistorů T₁, T₂, T₃, T₄ spolu s kondenzátorem C1 tvoří ekvivalentní rezistor Re1, jehož odpor odpovídá velikosti C1 a spínací frekvenci f_s. Kombinace tranzistorů T₅, T₆, T₇, T₈ s kondenzátorem C₂ tvoří ekvivalentní rezistor R_{e2}.

Základní situace je na obr. 81c. Ve fázi ϕ_1 jsou sepnuty tranzistory T_1 a T_2 , kondenzátor C_i se nabije na napětí

 $\mathbf{u_C} = \mathbf{u_1} - \mathbf{u_2}.$

Tomu odpovídá náboj kondenzátoru

 $Q_C = C_i u_C = C_i (u_1 - u_2).$

Ve fázi ϕ_2 se sepnou tranzistory T_3 , T_4 ; kondenzátor C_i se vybije, napětí u_C je nulové.

Znamená to, že za jednu periodu $T_s=1/f_s$ "projde" kondenzátorem C_i náboj $Q_C=C_i(u_1-u_2)$. Známe-li náboj a časový interval T_s , lze určit střední hodnotu proudu i_s z toho, že musí platit

 $T_s \cdot i_s = Q_C$

Lze tedy určit, že střední (ekvivalentní) proud procházející v popisovaném režimu kondenzátorem je

 $i_s = Q_C/T_s = C_i \cdot (u_1 - u_2)/T_s$ (200).

Ekvivalentním odporem R_{ei} musí protékat rovněž proud i_s , přičemž platí $i_s = (u_1 - u_2)/R_{ei}$ (201),

z rovnosti proudů i_s již snadno určíme, že $C_i \cdot (u_1 - u_2)/T_s = (u_1 - u_2)/R_{ei}$.

Po úpravě dostaneme pro ekvivalentní odpor vztah

 $R_{ei} = T_s/C_i = 1/(f_sC_i)$ (202).

Změnou řídicí frekvence f_s lze řídit odpor ekvivalentního rezistoru $R_{\text{el}}.$

Nahradíme-li C_1 a C_2 odpovídajícími ekvivalentními rezistory R_{e1} a R_{e2} , dostaneme zapojení na obr. 81d. Takový obvod byl ovšem zkoumán v úkolu **7**, snadno proto určíme, že

 $\begin{array}{l} u_{o}/u_{i} = (-R_{e2}/R_{e1})/(1+j\omega C_{F}R_{e2}). \\ Po \ dosazeni \ za \ R_{e1} \ a \ R_{e2} \ dostaneme \\ u_{o}/u_{i} = -(C_{1}/C_{2})/[1+j\omega C_{F}/(C_{2}f_{s})]. \end{array}$

 $u_o/u_i = -(C_1/C_2)/[1 +]\omega C_F/(C_2)_s]J$. Zapojení na obr. 81a tedy popisuje přenosovou funkci typu (bez ohledu na znaménko) $T(f) = (C_1/C_2)/(1 + jf/f_o)$ (203),

kde ($\omega = 2\pi f$) $f_o = f_s C_2/(2\pi C_F)$ (204).

Jedná se o dolní propust s poklesem přenosu o 3 dB na frekvenci f_0 , přičemž dolní frekvenci lze přímo řídit přepínací frekvencí f_s – vztah (204).

Ve skutečnosti se jedná pouze o principiální demonstraci spínacích (přepínacích) filtrů. Nejde již o analogový, ale o diskrétní proces – signál spojitý je "rozsekán" přepínací frekvencí f_s. Pro využití takového filtru musí být splněny jisté předpoklady. Prvním předpokladem je, že vstupní napětí u_i se během periody T_s výrazně nemění. Proto je filtru obvykle předřazen vzorkovací obvod.

Druhá podmínka plyne z vlastností filtru řízeného frekvencí f_s. Přenos klasické dolní propusti je znázorněn na obr. 81e, současně je zobrazen i přenos spínacího filtru "stejných vlastností". Mimo požadované dolní propusti – oblast I – se přenos klasické dolní propusti "namoduluje" i na frekvence f_s, 2f_s,

 \dots , vzniknou další nežádoucí pásma II, III, \dots . Odvozený přenos spínacího filtru platí proto pro frekvence f < f_s/2. Pokud není tato podmínka dodržena, dojde k průniku žádoucího pásma I s pásmem II, vzniká neodstranitelná chyba.

Proto se v praxi předřazuje dolní propust, která omezí horní frekvenci f_h vstupního signálu tak, že platí

 $f_h < f_{smin}/2$

kde f_{smin} je minimální spínací frekvence, které bude použito.

Aby se na výstupu neprojevil vliv spínání, zařazuje se ještě výstupní analogový filtr, který odstraní nežádoucí vyšší harmonické složky "obdélníků". Celkové schéma spínacího filtru je blokově na obr. 81d.

Je zřejmé, že takové uspořádání se vyplatí jen tehdy, realizuje-li spínací filtr složité přenosové funkce. Pro jednu dolní propust prvního řádu by se naznačené uspořádání jistě nevyplatilo.

ÚKOL 82: Zapojení pro určení U_{IO}, I_{IB}, I_{IO} – obr. 82

Obr. 82.a) Základní zapojení pro určení U_{IO}, I_{IB}, I_{IO}, b, c), d) – jednotlivé možnosti

 $\begin{array}{l} \mbox{Vite, že U_o} = 2.2 \mbox{ mV při R_1} = R_2 = 0, \\ \mbox{U_o} = 20 \mbox{ mV při R_1} = R_2 = 100 \mbox{ M}\Omega, \\ \mbox{U_o} = -120 \mbox{ mV při R_1} = 0 \mbox{ a R_2} = 100 \mbox{ M}\Omega. \end{array}$

Určete

a) vstupní napěťovou nesymetrii U_{IO},

b) vstupní klidový proud I_{IB},

c) vstupní proudovou nesymetrii I_{IO}.

Náhradní schéma pro R₁ = R₂ = 0 je na obr. 82 b. Operační zesilovač již považujeme za ideální – bez napěťové nesymetrie – ta je "vysunuta ven" z obvodu. Platí potom přímo, že vstupní napěťová nesymetrie (zbytkové napětí) je

$$U_o = U_{IO} = 2.2 \text{ mV}.$$

Situace pro ${
m R_1}={
m R_2}=100~{
m M}\Omega$ je na obr. 82c. l zde již uvažujeme ideální stav, ${
m U_d}=0.$ Potom platí

 $U_o=100~M\Omega \cdot l_{IB-}-100~M\Omega \cdot l_{IB+}+U_{IO}$ Po úpravě dostáváme pro vstupní proudovou nesymetrii

 $I_{IO} = I_{IB-} - I_{IB+} = (U_o - U_{IO})/100 \text{ M}\Omega = (20 \text{ mV} - 2.2 \text{ mV})/100 \text{ M}\Omega = 178 \text{ pA}.$

Stejným postupem získáme z obr. 82d, že $\text{U}_{\text{o}}=\text{U}_{\text{IO}}-\text{I}_{\text{IB+}}\cdot 100~\text{M}\Omega,$

odsud po úpravě dostáváme

 $I_{IB+} = (U_{IO} - U_o)/100 \, M\Omega = [2,2 - (-120)/100 \, \text{fmV/M}\Omega] = 1,22 \, \text{nA}.$

Použijeme-li dobrý milivoltmetr, lze uvedené základní "stejnosměrné" chyby operačního zesilovače měřit přímo v jednoduchých uvedených zapojeních. Při použití rezistorů 100 MΩ lze ovšem očekávat značné rušivé jevy. Přes rezistory 100 MΩ lze přemostit kondenzátory, jejichž vlastnosti ovšem musí být vynikající (beze svodů).

ÚKOL 83: Vliv omezení výstupního proudu (l_{omax}) na výstupní napětí

Obr. 83. Neinvertující zesilovač s přetíženým výstupem

· Nechť \mid I $_{omax}$ \mid = ·20 mA. Určete U $_{o}$ pro poměry na obr. 83

Na obr. 83 je běžný neinvertující zesilovač. Pokud by byla zátěž R_z vhodná, platilo by $u_0 = (1 + 9/1) \cdot u_i = 10 \cdot u_i$.

Zde je však výstup proudově přetížen – OZ nemůže dodat větší proud než ± 20 mA. Znamená to, že mezní výstupní napětí $U_{omax} = R_z \cdot I_{omax} = 100 \cdot 20 \cdot 10^{-3} = 2$ V. Na výstupu proto bude sinusovka, ovšem omezená při dané zátěži na úrovních \pm 2 V.

ÚKOL 84: Zapojení pro určení zesílení bez zpětné vazby – A_{OL}, obr. 84

Obr. 84. Zapojení pro určení AoL

Nechť $-u_o = u_i = 5 \text{ V a } u_1 = 20 \text{ mV}$. Určete A_{OL} bez zpětné vazby.

Ze situace na obr. 84 je zřejmé, že platí $u_d = u_1 \cdot 10/(10 + 10^4) \doteq u_1 \cdot 10^{-3}$. Rezistory $R = 10 \text{ k}\Omega$ uzavírají zpětnou vazbu tak, že $u_o = -u_i$, lze proto velmi jednoduše definovát velikost u_o i frekvenci – tedy podmínky měření. Za uvedených podmínek proto platí

 $A_{OL} = |u_o| / |u_d| = |u_o| \cdot 10^3 / u_1$ = 5 \cdot 10^3 / (20 \cdot 10^3) = 250 000 (108 dB).

ÚKOL 85: Zapojení pro určení vlivu změn napájecího napětí – obr. 85

Ať $u_o=2$ mV na frekvenci 1 kHz, určete činitel potlačení změn napájecího napětí SVR v dB.

Uvažujeme, že rušivé napětí \mathbf{u}_{r} od střídavé složky \mathbf{u}_{n} napájecího napětí proniká přímo na vstup operačního zesilovače. Potom pro

MĚŘENÍ STŘÍDY SROVNÁVACÍ OSCILOSKOPICKOU METODOU

Ing. František Kobza

Článek pojednává o vyhodnocování a měření střídy napětí pravoúhlého průběhu srovnávací osciloskopickou metodou. V současné době nejsou k dispozici žádné elektronické ani číslicové přístroje na přímé měření střídy napětí pravoúhlého průběhu. Stávajícími měřicími metodami je možné pouze vypočítat střídu podle určitého vztahu na základě zjištěných úseků délky impulsu a mezery na stínítku obrazovky osciloskopu. Při čtení velikostí těchto úseků však vzniká chyba subjektivní i chyba vzniklá zkreslením zobrazovaného průběhu napětí na obrazovce. Tento způsob je zdlouhavý, pracný a málo přesný.

zovce. Tento způsob je zdlouhavý, pracný a málo přesný.
Znalost velikosti střídy je důležitá při návrhu multivibrátoru, neboť je jedním z požadavků (vedle opakovacího kmitočtu) pro návrh a výpočet klopného obvodu. Znalost střídy je také důležitá pro různá elektronická měření, testování elektronických a číslicových obvodů a zařízení a dále při měření kmitočtu napětí pravoúhlého průběhu srovnávací osciloskopickou metodou.

Definice střídy

U napětí pravoúhlého průběhu je vedle amplitudy, opakovacího kmitočtu, doby kmitu (periody), strmosti hran (časové konstanty) a šířky impulsu (popř. mezery) důležitá také střída (neboli impulsní poměr).

Střída vyjadřuje vzájemný vztah mezi šířkou impulsu a dobou kmitu (periodou), popř. mezi šířkou impulsu a šířkou mezery. Z toho je zřejmé, že jsou dvě definice střídy.

Na obr. 1 jsou průběhy napětí v symetrickém a v nesymetrickém režimu a důležité údaje pro výpočet střídy:

a)
$$\beta = \frac{t_1}{t_1 + t_2} = \frac{t_1}{T} = t_1 f$$
 (1)

Obr. 85.a) Zapojení pro určení SVR, b) typická závislost na frekvenci

výstupní napětí u_o platí za uvedených poměrů

 $|u_o| = 100 \cdot u_r$. Pro SVR platí

$$\begin{split} SVR &= 20 \log \left(u_n/u_r \right) = 20 \log \left[(100 \cdot u_n)/u_o \right] \\ &= 20 \log \left[100/(2 \cdot 10^{-3}) \right] = 94 \; dB. \end{split}$$

Typická závislost SVR na frekvenci je na obr. 85b. Popisována je situace pro záporné napájecí napětí. Naprosto stejným způsobem lze hodnotit vliv změn kladného napájecího napětí. Obecně není vliv změn v kladné a záporné napájecí větvi stejný.

ÚKOL 86: Ekvivalentní napětí vstupního šumu – obr. 86

Obr. 86. Měření šumového napětí

Nechť je efektivní hodnota šúmového napětí na výstupu $U_{o\hat{s}}=200~\mu V.$

- a) Určete ekvivalentní vstupní šumové napětí U_{iš} (ef. hodnotu).
- b) Operační zesilovač má tranzitní frekvenci $f_T = 1 \text{ MHz}.$

Určete spektrální hustotu vstupního šumového napětí u_{iš}.

Hodnotu U_{is} zjistíme snadno ze zesílení zapojení na obr. 86. Musí platit

 $U_{i\dot{s}}=U_{o\dot{s}}/100=2~\mu V.$ Je-li f_T = 1 MHz, lze určit, že šířka pásma

pro pokles přenosu o 3 dB je $f_3 = \beta f_T = f_T/(1 + 100) = 10 \text{ kHz}.$

Nad frekvencí f₃ klesá přenos se strmostí 6 dB/okt. Šumová šířka pásma B_š takového filtru je určena vztahem

 $B_5 = f_3 \pi/2 = 15.7 \text{ kHz}.$

Spektrální hustota $u_{i\hat{s}}$ je určena vztahem $u_{i\hat{s}} = U_{i\hat{s}}/\sqrt{B_{\hat{s}}} = 2/uV/\sqrt{15,7\cdot10^3} = 15,96\,nV/\sqrt{Hz}$.

ÚKOL 87: Přeslech mezi zesilovači – obr.

Obr. 87. Měření oddělení zesilovačů

Vyjádřete v dB přeslech (oddělení) zesilovače 1 a 4 pro uvedené poměry.

Budíme zesilovač 1, který je zapojen jako sledovač; měříme napětí na výstupu zesilo-

vače 4. Chceme posoudit průnik u_{i1} na vstup zesilovače 4. Je zřejmé, že vstupní napětí zesilovače 4 je

 $u_{i4} \doteq u_{o4}/100 = 10$ mV/100 = 100 $\mu V.$ Nyní již lze vyjádřit oddělení zesilovače 1 a 4 číslem

20 log (u_{i1}/u_{i4}) = 20 log $(5/10^{-4})$ = 94 dB.

Literatura

- [1] Soclof, S.: Analog integrated circuits. Prentice Hall, Inc., 1985 (ruský překlad 1988).
- [2] Punčochář, J.: Když se řekne operační zesilovač. Příloha časopisu Amatérské radio, Electus 1991.
- [3] Mayer, D.: Úvod do teorie elektrických obvodů. SNTL Praha: 1981.
- [4] Kohlmann, Č.: Matematika ve sdělovací technice. SNTL: Praha 1960.
- [5] Beneš, O. Černý, A. Žalud, V.: Tranzistory řízené elektrickým polem. SNTL Praha: 1972.
- [6] Yunik, M.: Design of modern transistor circuits. Prentice Hall, Inc., 1973.
- [7] *Graeme*, *J.:* Analog circuit applications. Burr Brown Research Corporation 1978.
- [8] *Jurkovič, K. Zodl J.:* Příručka nízkofrekvenčnej obvodovej techniky. Alfa: Bratislava 1985.
- [9] Punčochář, J.: Základy pro využití operačních zesilovačů v elektronice. ÚV Svazarmu: Praha 1987.
- [10] Allen, P. Sánchez Sinencio, E.: Switched capacitor circuits. Van Nostrand Reinhold Company, Inc., 1984 (ruský překlad 1989).

symetrický průběh: $t_1 = t_2$ $\beta_1 = 0.5$;

nesymetrický:

 $t_1 > t_2$ $\beta_1 > 0.5$, v limitě $\beta_1 \rightarrow 1$, $t_1 < t_2$ $\beta_1 < 0.5$, v limitě $\beta_1 \rightarrow 0$;

b)
$$\beta_2 = \frac{t_1}{t_2} = \frac{t_1}{T - t_1} = \frac{t_1 f}{1 - T_1 f}$$
 (2),

symetrický průběh: $t_1 = t_2$ $\beta_2 = 1$;

nesymetrický:

 $t_1 > t_2$ $\beta_1 > 1$, v limitě $\beta_2 \rightarrow \infty$, $t_1 < t_2$ $\beta_2 < 1$, v limitě $\beta_2 \rightarrow 0$;

kde t_1 je šířka impulsu [s], t_2 je délka mezery [s],

T je doba kmitu [s], *f* je kmitočet [Hz].

Měřicí metoda popisovaná v tomto článku se opírá o definici střídy podle vztahu (1).

Měření střídy srovnávací osciloskopickou metodou

Uvedené nevýhody a nedostatky stávající metody odstraňuje způsob měření střídy napětí pravoúhlého průběhu srovnávací osciloskopickou metodou za pomoci srovnávacího generátoru.

Podstata této metody spočívá v tom, že při vypnuté časové základně osciloskopu se přivádí měřené napětí s neznámou střídou na vstup vertikálního zesilovače osciloskopu a srovnávací napětí se známou střídou se přivádí na vstup horizontálního zesilovače osciloskopu. Na obrazovce se objeví čtyři

ostře svítící body, které ladicími prvky roztáhneme do čtyř terčíků, jejichž optické kmitání se potlačí kmitočtovým laděním srovnávacího generátoru a velikost střídy je dána takto zjištěným kmitočtovým rozdílem.

Výhodou naznačeného způsobu měření střídy je to, že k měření je zapotřebí pouze běžné přístrojové vybavení laboratoří, tzn. běžný osciloskop a přesný generátor, přičemž měření je dostatečně přesné, jednoduché a rychlé.

Podstata měřicí metody je blíže objasněna na praktickém příkladu. Obr. 2 znázorňuje základní zapojení měřicí metody, na obr. 3 je graf pro čtení střídy a na obr. 4 jsou znázorněny kmitající terčíky při rozdílné střídě.

Způsob měření je založen na srovnávání napětí pravoúhlého průběhu $U_{\rm x}$ s neznámou střídou a srovnávacího napětí rovněž pravoúhlého průběhu $U_{\rm N}$ o známé střídě $\beta=0,5$. Předpokladem správného měření střídy je, aby obě napětí $U_{\rm x}$ a $U_{\rm N}$ měla stejný průběh a jejich kmitočet byl znám. Např. pro náš případ 1 kHz. Obě napětí se srovnávají pomocí osciloskopu, přičemž časová základna je po dobu měření vypnuta.

Měřené napětí Ux je připojeno na vstup vertikálního zesilovače i osciloskopu a srovnávací napětí UN je připojeno na vstup horizontálního zesilovače 2. Po nastavení ovládacích prvků se na stínítku obrazovky 3 objeví čtyři ostře svítící body. Pomocí ovládacího prvku "ostření" je možno tyto body roztáhnout do čtyř svítících terčíků (obr. 4). Mají-li obě napětí stejný kmitočet a stejnou střídu $\beta = 0.5$, zastaví se laděním srovnávacího generátoru kmitání terčíků přesně na tomto kmitočtu, tj. při $f_N = 1 \text{ kHz napětí } U_N \text{ srovnávacího ge-}$ nerátoru. Podaří-li se kmitání terčíků zastavit, jsou oba kmitočty v tomto okamžiku absolutně stejné.

Má-li měřené napětí U_x střídu jinou než 0,5, přestanou terčíky kmitat při jiném kmitočtu f_N – kmitočet f_N se posouvá "dolů". Grafické znázornění tohoto posuvu je vyjádřeno grafem na obr. 3. Z grafu je zřejmé, že posuv k nižším kmitočtům f_N je téměř lineární. Je-li střída < 0,5, kmitají střídavě horní dva terčíky, zatímco při střídě > 0,5 kmitají spodní dva terčíky, viz obr. 4.

Při vhodném cejchování kmitočtové stupnice f_N srovnávacího generátoru napětí U_N je možné tímto způsobem měřit s dostatečnou přesností střídu napětí pravoúhlého průběhu nebo lze použít přímo graf podle obr. 3.

Závěr

Článek se zabývá přímou metodou měření střídy napětí pravoúhlého průběhu o známém kmitočtu. Měřicí metoda spočívá ve srovnávání měřeného napětí s neznámou střídou se srovnávacím napětím o střídě 0,5, kdy čtyři ostře svítící body se pomocí ovládacích prvků vytvarují do čtyř terčíků. Optické kmitání se zastaví kmitočtovým laděním srovnávacího generátoru. Kmitočtový posuv takto vzniklý je přímo úměrný velikosti střídy. Její velikost se přečte na cejchovním měřítku (stupnici) nebo se určí podle speciálního grafu. Přesnost metody je dána pouze přesností srovnávacího generátoru. Můžeme tedy mluvit o veľmi přesné metodě měření.

Obsah tohoto článku se opírá o autorské osvědčení AO 274 178 ze dne 29. 12. 1990 na vynález pod názvem: "Způsob měření střídy napětí obdélníkového průběhu."

Obr. 1.Průběhy obdélníkového napětí pro definici střídy

Obr. 2. Základní zapojení měřicí metody

Obr. 3. Zobrazení kmitajících dvojic terčíků na obrazovce

Obr. 4. Graf pro čtení velikosti střídy z posuvu

Akustické výstupní zařízení "TELEGRAM"

Program "TELEGRAM" používá vestavěný reproduktor jako výstupní zařízení, které výsledky činnosti počítače telegrafuje slyšitelnými telegrafními značkami místo obvyklejšího zobrazení na stinítku nebo tisku. Program je určen pro počítače ZX Spectrum, Didaktik Gama a počítače kompatibilní. Je vhodný tam, kde se chceme obejít bez televizoru (výstupních dat není příliš mnoho) a když nám nedělá potíže morseovka. Lze ho použít jako základ programů pro výuku telegrafní abecedy.

Program po inicializaci reaguje na znaky předávané příkazy např. PRINT 3, INPUT 3, LPRINT, LLIST do kanálu "P" původně určeného pro printer. Současné použití tohoto programu a tiskárny se nepředpokládá.

Program je ve strojovém kódu o délce 631 byte a je podmínečně relokativní. Lze ho nahrát příkazem LOAD "TELEGRAM" CODE XXXX a spustit např. příkazem RAN-DOMIZE USR XXXX, kde je adresa v paměti. Po prvním spuštění se program přizpůsobí místu uložení a připojí se ke kanálu "P". Spuštění lze kdykoliv opakovat, připojení ke

44 DATA 173,000,118,171,064,119,189,000,120,235,165

kanálu se vždycky obnoví (např. po příkazu NEW). Jednou spuštěný program však už nelze přemisťovat.

Neumisťujte program pod adresu 8000 h (32768). Přednost při přístupu ke spodní části paměti má ULA, což způsobuje citelně pomalejší chod programu a vrčivý tón značek.

Činnost programu lze kdykoliv přerušit klávesou "BREAK". Elektrický signál odpovídající značkám je k dispozici na zdířce pro magnetofon a značky lze nahrávat magnetofonem pro záznam programů bez dalších úprav.

Program vysílá všechna písmena mezinárodní telegrafní abecedy (MTA 2), číslice a interpunkční znaménka: křížek, tečku, otazník, čárku a lomítko. Kromě toho je vysílán znak # jako "chyba" – 6 teček a symbol minus jako písmeno M, což umožňuje vysílat výsledky výpočtů.

Rychlost vysílání po nahrání programu je 100 zn/min. Rychlost Ize kdykoliv změnit vysláním znaku * (CHR\$ 42), za kterým následuje jeden ze znaků: 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J. Nová rychlost odpovídá druhému znaku, rozsah rychlostí je 30 až 190 zn/min po 10 zn/min. Nastavovací znaky nejsou vysílány.

Vztah mezi rychlostí v baudech a zn/min je dán metodou "PARIS", tj. 10 kroků (bitů) odpovídá jednomu znaku.

Chyba rychlosti vysílání nepřesáhne 1 % v celém rozsahu za předpokladu, že vysílaný text je v jednom řetězci a nemusí být teprve sestavován.

Program je předkládán ve formě pomocného programu v jazyce BASIC. Program obsahují jednotlivé byte programu "TELE-GRAM". Jedenácté číslo v příkazu je vždy kontrolní součet předchozích deseti čísel modulo 256. Po spuštění program překontroluje jednotlivé řádky a ohlásí případnou chybu. Je-li program bez chyby, je v paměti od adresy 40000 sestaven kód programu a nabídnuto jeho nahrání na kazetu.

Pomocný program lze nahrát příkazem RUN 6000.

Zájemcům, kteří nechtějí program pracně přepisovat, ho autor rád nahraje na kazetu. Kazetu a zpětné poštovné pošlete na adresu:

> **Jan Čermák** Mikulovská 7 628 00 Brno

```
1 DATA 205,082,000,059,059,193,011,011,011,033,152
                                                       45 DATA 064, 121, 239, 064, 122, 250, 064, 048, 255, 208, 155
                                                       46 DATA 049,191,208,050,175,208,051,171,208,052,083
 2 DATA 030,001,009,203,126,040,034,203,190,033,101
 3 DATA 075,002,009,094,035,086,123,178,040,021,151
                                                       47 DATA 170,208,053,170,144,054,234,144,055,250,202
 4 DATA 035,229,105,096,025,229,094,035,086,105,015
                                                       48 DATA 144,056,254,144,057,255,144,043,187,144,148
 5 DATA 096,025,093,084,225,115,035,114,225,024,012
                                                       49 DATA 044,250,244,045,244,000,046,187,180,047,007
 6 DATA 228,033,079,092,094,035,086,033,015,000,183
                                                       50 DATA 235,144,061,234,208,063,175,164,032,080,116
 7 DATA 025,235,033,071,000,009,235,115,035,114,104
                                                       51 DATA 000,035,170,165,000,051,200,000,052,150,055
8 DATA 201,033,030,001,203,118,040,035,079,033,005
                                                       52 DATA 000,053,120,000,054,100,000,055,086,000,212
 9 DATA 249,001,205,021,001,048,020,078,035,070,216
                                                          DATA 056,075,000,057,067,000,065,060,000,066,190
10 DATA 033,031,001,113,035,112,096,105,009,009,032
                                                       54 DRTR 054,000,067,050,000,068,046,000,069,043,141
11 DATA 235,033,033,001,115,035,114,033,030,001,118
                                                       55 DATA 000,070,040,000,071,037,000,072,035,000,069
                                                       56 DATA 073,033,000,074,031,000,097,060,000,098,210
12 DATA 203,182,201,254,042,032,003,203,246,201,031
                                                          DATA 054,000,099,050,000,100,046,000,101,043,237
13 DRTR 254,165,056,005,214,165,195,016,012,243,045
14 DATA 079,033,035,001,205,021,001,048,029,024,220
                                                       58 DATA 000,102,040,000,103,037,000,104,035,000,165
                                                       59 DATA 105,033,000,106,031,000,000,072,000,080,171
15 DATA 002,225,035,126,229,006,005,005,040,247,152
16 DATA 079, 197, 230, 192, 254, 064, 040, 025, 254, 128, 183
                                                       60 DATA 000,083,000,091,000,102,000,108,000,132,004
17 DRTR 040,057,254,192,040,036,193,225,251,062,070
                                                       61 DATA 000,135,000,184,000,203,000,220,000,228,202
18 DATA 127,219,254,031,216,207,020,193,121,023,131
                                                       62 DATA 000,231,000,248,000,000,000,079,075,050,171
19 DATA 023,024,220,033,031,001,078,035,070,058,061
                                                       63 DATA 066,073,085,032,048,050,047,049,057,057,052
                                                       20 DATA 072,092,031,031,031,230,007,246,024,087,083
                                                     5000 FOR n=1 TO 64
21 DATA 024,025,033,033,001,078,035,070,058,072,173
22 DATA 092,031,031,031,230,007,087,024,008,033,062
                                                     5010 LET s=0
                                                     5020 FOR k=0 TO 9
23 DRTR 031,001,078,035,070,024,237,205,252,000,165
                                                     5030 READ x
24 DATA 033,031,001,078,035,070,058,072,092,031,245
                                                     5040 LET s=s+x
25 DATA 031,031,230,007,246,024,087,205,252,000,089
                                                     5050 NEXT k
26 DATA 024,181,122,030,106,211,254,029,032,253,218
                                                     5060 LET q=256*INT (s/256)
27 DATA 030,106,246,024,211,254,029,032,253,011,172
                                                     5070 LET s=s-q
28 DATA 120,177,032,234,201,035,035,126,167,200,047
                                                     5080 READ x
29 DATA 185,035,032,247,055,201,128,060,000,180,099
                                                     5090 IF x<>s THEN PRINT "chyba v radku: ";n: STOP
30 DRTR 000,065,180,000,066,234,064,067,238,064,210
                                                     5100 NEXT n
31 DATA 068,233,000,069,144,000,070,174,064,071,125
                                                     5110 RESTORE
32 DATA 249,000,072,170,064,073,164,000,074,191,033
                                                     5120 FOR N=1 TO 64
33 DRTR 064,075,237,000,076,186,064,077,244,000,255
                                                     5125 FOR K=0 TO 9
34 DATA 078,228,000,079,253,000,080,190,064,081,029
                                                     5130 READ X
35 DATA 251,064,082,185,000,083,169,000,084,208,102
                                                     5140 POKE 40000+(N-1)*10+K,X
36 DATA 000,085,173,000,086,171,064,087,189,000,087
                                                     5144 NEXT K
37 DATA 088,235,064,089,239,064,090,250,064,097,000
                                                     5146 READ X
38 DRTR 180,000,098,234,064,099,238,064,100,233,030
                                                     5150 NEXT N
39 DATA 000,101,144,000,102,174,064,103,249,000,169
                                                     5160 SAVE "TELEGRAM"CODE 40000,631
40 DATA 104,170,064,105,164,000,106,191,064,107,051
                                                     5999 STOP
41 DATA 237,000,108,186,064,109,244,000,110,228,006
                                                     6000 SAVE "BAS2TGRM"
42 DATA 000,111,253,000,112,190,064,113,251,064,134
43 DATA 114,185,000,115,169,000,116,208,000,117,000
```

Jedním z nejznámějších světových výrobců operačních zesilovačů je firma Linear Technology (USA). Z jejího přehledového katalogu jsme vybrali ukázky z výrobního programu operačních zesilovačů pro nejrůznější použití (viz též 3. str. obálky). Z přehledu je dobře patrný rozdíl mezi jednotlivýml typy OZ (běžné, JFET, přístrojové atd.). Názvy uváděných parametrů vlz str. 159.

MILITARY PRECISION OP AMPS

		1	ELECT						
PART NUMBER	V _{OS} MAX (μV)	TC V _{OS} (μV/°C)	I _B MAX (nA)	A _{VOL} MIN (V/mV)	SLEW RATE MIN (V/µs)	NOISE MAX 10Hz (nV√Hz)	PACKAGES AVAILABLE	IMPORTANT FEATURES	
SINGLE									
LT1001AM	15	0.6	2.0	450	0.15	18	H, J8	Extremely Low Offset Voltage, Low Noise,	
LT1001M	60	1.0	3.8	400	0.15	18	H, J8	Low Drift	
LT1006AM	50	1.3	15	1000	0.25	24 [†]	H, J8	Single Suply Operation, Fully Specified for	
LT1006M	80	1.8	25	700	0.25	24 [†]	H, J8	+5V Supply	
LT1007AM	25	, 0.6	35	7000	1.7	4.5	H, J8	Extremely Low Noise, Low Drift	
LT1007M	60	1.0	- 55	5000	1.7	4.5	H, J8		
LT1008M	120	1.5	0.1	200	0.1	30	Н	Low Bias Current, Low Power	
LT101 0M	90mV	0.6mV/°C [†]	150µA	0.995	75	90 [†]	H, K	High Speed Buffer, Drives $\pm 10V$ into 75Ω	
LT1012M	35	1.5	0.1	200	0.1	30	Н	Low V _{OS} , Low Power	
LT1022AM	250	5.0	0.05	150	23	50	Н.	Very High Speed JFET Input Op Amp with	
LT1022M	600	9.0	0.05	120	18	60	Н	Very Good DC Specs	
LT1028AM	40	0.8	90	7000	11	1.7	H, J8	Lowest Noise, High Speed, Low Drift	
LT1028M	80	1.0	180	5000	11	1.9	Н, Ј8		
LT1037AM	25	0.6	35	7000	. 11	4.5	H, J8	Extremely Low Noise, High Speed	
LT1037M	60	1.0	55	5000	11	4.5	H, J8		
LT1055AM	150	.4	0.05	150	10	50	' H	Lowest Offset, JFET Input Op Amp	
LT1055M	400	8	0.05	120	7.5	60	Н	Combines High Speed and Precision	
LT1056AM	180	4	0.05	150	12	50	Н		
LT1056M	450	8	0.05	120	9	60	Н		
LT1077AM	40	0.4	9	250	0.12	40	H, J8	Micropower, Single Supply, Precision,	
LT1077M	60	0.4	11	200	0.12	29 [†]	H, J8	Low Noise	
LTC1050AM	5	0.05	0.035	3162	4 [†]	0.6μVp-p**	H, J8	Auto Zeroed Precision Op Amp, No External Capacitors Required	
LTC1050M	5	0.05	. 0 .050	1000	4 [†]	0 .6μVp-p**	H, J8		
LTC1052M	5	0.05	0.03	1000	3 [†]	0.5μVρ-ρ**	H. J, J8	Low Noise, Auto Zeroed Precision Op Amp	
LTC1150M	5	± 0.05	0.03	10000	3 [†]	0.6μVp-p**	Н, Ј8	Auto Zeroed Precision Op Amp That Operates on ±15V Supplies. No External Capacitors Required	
LF155A	2000	5	0.05	75	5	25**	Н	JFET Inputs, Low I Bias, No Phase Reversal	
LF155	3500	15	0.10	50	5	25**	Н	Guaranteed TC V _{OS} on All Grades	
LF156A	2000	5	0.05	75	10	15 [†] *	Ĥ		
LF156	3500	15	0.10	50	9	15 [†] *	Н]	
LM10	2000	2 [†]	20	120		50 [†]	H, J8	On-Chip Reference Operates with +1.2V Single Battery	
LM101A	2000	15	75	25	0.3	28 [†]	H, J8	Uncompensated General Purpose	
LM107	2000	15	75	25	- 0.3	28 [†]	Н, Ј8	Compensated General Purpose	
LM108A	500	5	2	40	0.1	30 [†]	Н	Low Bias Current, Low Supply Current	
LM108	2000	15 -	3	25	0.1	30 [†]	Н		
LM118	4000		250	25	50	42 [†]	Н	High Speed, 15MHz	
LT118A	1000	```	250	200	50	42 [†]	H, J8	High Speed, 15MHz	
OP-05A	150	0.9	2	300	0.1	18	H. J8	Low Noise, Low Offset Drift with Time	
OP-05	500	2.0	3	200	0.1	18	Н, Ј8		
0P-07A	25	0.6	2	300	0.1	· 18	H, J8	Low Initial Offset, Low Noise, Low Drift	
0P-07	75	1.3	3	200	0.1	18	H, J8		
0P-15A	500	5	0.05	100	10	20 [†] *	Н	Precicion JFET Input,	
OP-15B	1000	10	0.1	75	7.5	20 [†] •	Н	Low I Bias, No Phase Reversal	
0P-15C	3000	15	0.2	50	5	20 [†] •	Н		
OP-16A	500	5	0.5	100	18	20 [†] •	Н	Precicion JEET Input,	
OP-16B	1000	10	0.1	75	12	20 [†] *	Н	High Speed, No Phase Reversal	
OP-16C	3000	15	0.2	50	9	20 [†] *	Н		
OP-27A	25	0.6	40	1000	1.7	5.5	Н, Ј8	Very Low Noise, Unity Gain Stable	
0P-27C	100	1.8	80	700	1.7	8.0	Н, Ј8		
0P-37A	25	0.6	40	1000	11	5.5	Н, Ј8	Very Low Noise, Stable for Gain ≥ 5	
OP-37C	100	1.8	80	700	11	8.0	Н, Ј8	-	
OP-97A	25	0.6	± 0.1	300	0.1	. 30	Н, Ј8	Low Noise, Low Bias Current	

			ELEC	TRICAL CHAI	RACTERISTICS			
PART NUMBER	V _{OS} MAX (μV)	TC V _{OS} (μV/°C)	MAX (nA)	A _{VOL} MiN (V/mV)	SLEW RATE MIN (V/µs)	NOISE MAX 10Hz (nV√Hz)	PACKAGES AVAILABLE	IMPORTANT FEATURES
DUAL					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
LT1002AM	60	0.9	3.0	400	_ 0.15	20	J	Dual, Matched LT1001 High
LT1002M	100	1.3	4.5	350	0.15	20	J	CMRR, PSRR Matching
LT1013AM	150	2.0	20	1500	0.2	24 [†]	H, J8	Precision Dual Op Amp in
LT1013M	300	2.5	30	1200	0.2	24 [†]	Н, Ј8	8-Pin Package
LT1024AM	50	1.5	0.12	250	0.1	33	D	Low V _{OS} , Low Power,
LT1024M	100	2.0	0.20	180	0.1	33	D	Matching Specs
LT1057AM	450	7	0.05	150	10	26 [†]	H, J8	Low Offset, JFET Input Multiple Op Amps
LT1057M	800	12	0.075	100	8	26 [†]	H, J8	Combine High Speed and Excellent DC Spec
LT1078AM	70	2.0	0.25	250	0.07 [†]	40	H, J8	Micropower, Precision,
LT1078M	120	2.5	0.35	200	0.07 [†]	29 [†]	H, J8	Single Supply, Low Noise Dual
LT1124AM	170	1	55	1000	2.3	5.5	J8	Dual Preicsion Op Amp,
LT1124M	250	1.5	70	700	2.0	5.5	J8	Low Noise, High Speed
LT1178AM	70	2.2	5	140	0.013	75	Н, Ј8	17μA Max, Single Supply,
LT1178M	120	3.0	6	110	0.013	50 [†]	J, N	Precision Dual
LTC1051M	5	0.05	0.05	1000	4 [†]	0.4μVp-p**	J8	Dual, Precision Auto Zeroed Op Amp. No External Capacitors Required.
LF412AM	1000	10	0.1	100	10	20 [†] *	H, J8	High Performance Dual JFET Input Op Amp
LH2108A	500	5.0	2	40	0.1	30 [†]	D	Dual, Low Bias Current,
LH2108	2000	15.0	2	25	0.1	30 [†]	D	Side Brazed Package
OP-215A	1000	10	0.1	150	10	20 [†] *	H, J8	High Performance Dual JFET
OP-215C	3000	20	0.2	50	8	20 [†] *	H, J8	Input Op Amp
OP-227A	80	1.0	40	3000	1.7	6	J	Dual Matched OP-27
OP-227C	180	1.8	80	2000	1.7	9	J	
OP-237A	80	1.0	40	3000	10	6	J	Dual Matched OP-37
OP-237C	180	1.8	80	2000	10	9 -	J	
OP-270A	175	1	60	400	1.7	3.6 [†]	J8,	Dual Precision Op Amp, Low Noise
QUAD								
LT1014AM	180	2.0	20	1500	0.2	24 [†]	J	Precision Quad Op Amp in 14-Pin Package
LT1014M	300	2.5	30	1200	0.2	24 [†]	J	
LT1058AM	600	10	0.05	150	10	26 [†]	J	Low Offset JFET Input Multiple Op Amps
LT1058M	1000	15	0.075	100	8	29 [†]	J	Combine High Speed and Excellent DC Spec
LT1079AM	120	2.0	0.25	250	0.07 [†]	40	J	Micropower, Precision, Single Supply,
LT1079M	150	2.5	0.35	200	0.07 [†]	26 [†]	J	Low Noise Quad
LT1125AM	170	1	55	1000	2.3	5.5	J	Quad Precision Op Amp, Low Noise,
LT1125M	250	1.5	70	700	2.0	55	J	High Speed
LT1179AM	100	2.2	3	140	0.013	75	J	17μA Max, Single Supply,
LT1179M	150	3.0	6	110	0.013	50 [†]	J	Precision Quad
LTC1053M	5	0.05	0.05	1000	4 [†]	0.4μVp-p**	J ·	Quad Precision Auto Zeroed Op Amp, No External Capacitors Required.
OP-470A	600	2	50	400	1.4	6.5	J	Quad Precision Op Amp, Low Noise

[†] Typical Spec * 100Hz Noise ** DC to 1Hz Noise

WPW BOOD				\$			#### ####		<u> </u>	
H TO-5 8 LEAD 10 LEAD	J8 HERMETIC DIP 8 LEAD	J HERMETIC DIP 14 LEAD 16 LEAD 18 LEAD 20 LEAD 24 LEAD	N8 PLASTIC DIP 8 LEAD	N PLASTIC DIP 14 LEAD 16 LEAD 18 LEAD 20 LEAD 24 LEAD	D8 HERMETIC DIP 8 LEAD	D HERMETIC DIP 14 LEAD 16 LEAD 18 LEAD	S8 PLASTIC SO 8 LEAD	S PLASTIC SO 14 LEAD 16 LEAD	S PLASTIC SOL 16 LEAD 18 LEAD 20 LEAD 24 LEAD 28 LEAD	W CERPAK 10 LEAD

COMMERICAL PRECISION OF AMPS

			ELECT					
PART NUMBER	V _{OS} MAX (μV)	ΤC V _{OS} (μV/°C)	I _B MAX (nA)	A _{VOL} MIN (V/mV)	SLEW RATE MIN (V/µs)	NOISE MAX 10Hz (nV/√Hz)	PACKAGES AVAILABLE	IMPORTANT FEATURES
SINGLE								
LT1001AC	25	0.6	2.0	450	0.15	18	H, J8, N8	Extremely Low Offset Voltage, Low Noise,
LT1001C	60	1.0	-3.8	400	0.15	18	H, J8, N8, S8	Low Drift
LT1006AC	50	1.3	15	1000	0.25	24 [†]	H, J8	Single Supply Operation, Fully Specified for
LT1006C	80	1.8	25	- 700	0.25	24 [†]	H, J8, N8	+5V Supply
LT1006S8	400	3.5	25	700	0.25	25	S8	
LT1007AC	25	0.6	35	7000	` 1.7	4.5	H, J8, N8	Extremely Low Noise, Low Drift
LT1007C	60 .	1.0	55	5000	1.7 .	4.5	H, J8, N8, S	
LT1008C	120	1.5	0:1	200	0.1	30	H, N8	Low Bias Current, Low Power
LT1010C	100mV	0.6mV/°C [†]	250μΑ	0.995	75	90 [†]	H, K, T	High Speed Buffer, Drives $\pm 10V$ into 75Ω
LT1012C	25	0.6	100	300	0.1	30	H, N8	Low V _{OS} , Low Power
LT1012CA	50	1.5	0.15	200	0.1	30	H, N8	
LT1012D	60	1.7	150	200	0.1	30	H, N8	, k
	120	1.8	0.28	200	0.1	30	S8	
LT1012S8	250	5.0	0.05	150	23	50	Н	Very High Speed JFET Input Op Amp with
LT1022AC	 			120	18	60	Н	Very Good DC Specs
LT1022CH	600	9.0	0.05 0.05	100	18	60	N8	
LT1022CN8	1000	15.0				1.7	H. J8, N8	Lowest Noise, High Speed, Low Drift
LT1028AC	40	0.8	90	7000	11			Lowest Moise, riigh opeca, Low Dilit
LT1028C	80	1.0	180	5000	11	1.9	H, J8, N8, S	Extremely Low Noise, High Speed
LT1037AC	25	0.6	35	7000	11	4.5	H, J8, N8	Extremely Low Moise, Flight Speed
LT1037C	60	1.0	55	5000	11	4.5	H, J8, N8, S	
LT1055AC	150	4	0.05	150	10	50	H	Lowest Offset, JFET Input Op Amp Combines High Speed and Precision
LT1055C	400	8	0.05	120	7.5	60	Н	riigii opeca ana ricolololi
LT1055CN8	700	12	0.05	120	7.5	60	N8	
LT1055S8	1500	15	0.1	120	7.5	70	S8	
LT1056AC	180	4	0.05	150	12	50	Н	
LT1056C	450	8	0.05	120	9	60	Н	•
LTT056CN8	800	12	0.05	120	9	.60	N8	
LT1056S8	1500	15	0.1	120	9.0	70	S8	
LT1077AC	40	0.4	9	250	0.12	40	H, J8, N8	Micropower, Single Supply, Precision,
LT1077C	60	0.4	11	200	0.12	29 [†]	H, J8, N8	Low Noise
LT1077S8	150	3.0	11	240	0.05	28 [†]	S8	
LT1097C	50	1.0	±0.250	700	0.1	16 [†]	_ N8	Low Cost, Low Power Precision
LT1097S8	60	1.4	± 0.350	. 700	0.1	16 [†]	S8	
LT1115C	280	0.5 (Typ)	±380	2000	10	1.8	N8, S	Lowest Noise, Ultra Low Distortion Audio Optimized Op Amp
LTC1049C	10	0.1	±0.050	3162	0.8 [†]	1.0μVp-p**	J8, N8	Auto Zeroed Precision Op Amp, No External
LTC1050AC	5	0.05	0.035	3162	4 [†]	0.6μVp-p**	H, J8. N8, S8	Capacitors Required
LTC1050C	5	0.05	0.050	1000	4 [†]	0.6μVp-p**	H, J8, N8, S8	
LT.C1052C	5	0.05	0.03	1000	3 [†]	0.5µVp-p**	H, N8, N	Low Noise, Auto Zeroed Precision Op Amp
LTC7652C	5	0.05	0.03	1000	3 [†] .	0.5μVp-p**	H, N8	
LTC1150	5	0.05	0.03	10000	3†	0.6μVp-p**	H, J8, N8, S8	Auto Zeroed Precision Op Amp That Operate on Standard ±15V Supplies. No External Capacitors Required
LF355A	2000	5	0.05	75	5	25 [†] *	H, N8	JFET Inputs, Low I Bias, No Phase Reversal
LF356A	2000	5	0.05	75	10	15 [†] *	H, N8	
LM10B	2000	2†	20	120	_	50 [†]	H, J8	On-Chip Reference Operates with +1.2V
LM10BL	2000	2†	20	60		50 [†]	H, J8	Single Battery
	4000	5†	30	80		50 [†]	H. J8, N8	
LM10C		5†	30	40		50 [†]	H, J8, N8	1
LM10CL	4000	5	7	60	0.1	30 [†]	H, N8	Low Bias, Supply Current
LM308A	500	J	250	- 200	50	42†	H, J8, N8	High Speed, 15MHz
LT318A	1000		500	25	50	42 [†]	H, J8, N8, S8	High Speed, 15MHz
1.446.10	1 10000	1	1 200	20	50	1 74	1, 00,, 00	1a L
LM318 OP-05C	1300	4.5	7	120	0.1	20	H, J8, N8	Low Noise, Low Offset Drift With Time

156

			ELECT						
PART	V _{OS} MAX	TC V _{os}	I _B MAX	A _{VOL} MIN	SLEW RATE MIN	NOISE MAX 10Hz	PACKAGES		
NUMBER	(μ V)	(μ V /° C)	(nA)	(V/mV)	(V/μs)	(nV/√Hz)	AVAILABLE	IMPORTANT FEATURES	
SINGLE	r			·		1	,	to the state of th	
OP-07C	150	1.8	7	120	0.1	20	H, J8, N8, S8	Low Initial Offset, Low Noise, Low Drift	
OP-07E	75	1.3	4	200	0.1	18	H, J8, N8		
0P-15E	500	5	0.05	100	10	20 [†] *	H, N8	Precision JFET Input, Low I Bias,	
0P-15F	1000	10	0.1	75	7.5	20 [†] *	H, N8	No Phase Reversal	
0P-15G	3000	- 15	0.2	50	5	20 [†] •	H, N8		
OP-16E	500	5	0.05	100	18	20 [†] •	H, N8	Precision JFET Input, High Speed,	
OP-16F	1000	10	0.1	75	12	20**	H, N8	No Phase Reversal	
OP-16G	3000	15	0.2	50	9	20 [†] *	H, N8		
OP-10G OP-27E	25	0.6	40	1000	1.7	5.5	H, J8, N8	Very Low Noise, Unity Gain Stable	
	 		80	700				very Low Noise, officy daily Stable	
OP-27G	100	1.8			1.7	8.0	H, N8	Manufacture Maine Challe for Onion 5	
OP-37E	25	0.6	40	1000	11	5.5	H, J8, N8	Very Low Noise, Stable for Gains ≥ 5	
OP-37G	100	1.8	80	700	11	8.0	H, N8		
OP-97E	25	0.6	± 0.1	300	0.1	30	H. N8	Low Power, Low I _B , Precision	
DUAL									
T1002AC	60	0.9	3.0	400	0.15	. 20	J, N	Dual, Matched LT1001 High CMRR,	
T1002C	100 -	1.3	4.5	350	× 0.15	20	J, N	PSRR Matching	
T1013AC	150	2.0	20	1500	0.2	24 [†]	H, J8	Precision Dual Op Amp in 8-Pin Package	
T1013C	300	2.5	30	1200	0.2	24 [†]	H, J8, N8		
T1013D	800	5.0	30	1200	0.2	24 [†]	N8, S8		
T1024AC	50	1.5	0.12	250	0.1	33	N N	Low Vos. Low Power, Matching Specs	
T1024AC	100	2.0	0.20	180	0.1	33	N	LOW VOS, LOW I OWEI, Matering opecs	
	 	7				26 [†]		Low Officer LEET Locus Multiple On Among	
LT1057AC	450		0.05	150	10		H, J8	Low Offset JFET Input Multiple Op Amps Combine High Speed and Excellent DC Spe	
LT1057ACN8	450	10	0.05	150	10	26 [†]	N8	Outstand Fight Opeca and Executent Do Ope	
_T1057C	800	12	0.075	100	8	26 [†]	H, J8		
LT1057CN8	800	16	0.075	100	8	26 ^{†.}	N8		
LT1057S	2000	5 [†]	0.1	100	8	26 [†]	S		
LT1057IS	2000	5 [†]	0.1	100	8	· 26 [†]	S	4.8	
LT1078AC	70	2.0	8	250	0.07 [†]	40	H, J8, N8	Micropower, Precision,	
LT1078C	120	2.5	10	200	0.07 [†]	29 [†]	H, J8, N8, S	Single Supply, Low Noise Dual	
LT1124AC	70	1	55	2000	3	5.5	N	Dual Precision Op Amp.	
LT1124C	100	1.5	70	1500	2.7	5.5	J, N, S	Low Noise, High Speed	
LT1178AC	70	2.2	5	140	0.013	75	H, J8, N8	17µA Max, Single Supply, Precision Dual	
LT1178C	120	3.0	6	110	0.013	50 [†]	H, J8, N8	(pri max, oligio oupply, 1 tooloidii buul	
LTC1051C	5	0.05	0.05	1000	4 [†]	0.4μVp-p**	J8, N8, S	Dual, Precision Auto Zeroed Op Amp.	
LIGIOSIG	3	0.05	0.03	1000	1	0.4μνμ-μ	30, 140, 3	No External Capacitors Required	
LF412AC	1000	10	0.1	· 100	`10	20 [†] *	H, J8, N8	High Performance Dual JFET Input Op Amp	
OP-215E	1000	10	0.1	150	10	20**	H, J8, N8		
DP-215G	3000	20	0.2	50	8	20**	H, J8, N8		
OP-227E	80	1.0	40	3000	1.7	6	J, N	Dual Matched OP-27	
OP-227G	180	1.8	80	2000	1.7	9	J, N	Dual Matched Of 27	
 	 			 				Duel Malabad OD 27	
OP-237E	80	1.0	40	3000	10	6	J, N	Dual Matched OP-37	
OP-237G	180	1.8	80	2000	10	9	J, N		
OP-270A	75	11	20	750	1.7	6.5	J	Dual Op Amp, Low Noise	
OP-270C	250	3	60	350	1.7	3.6 [†]	N. S		
QUAD			· · · · · · · · · · · · · · · · · · ·	•	·		·		
LT1014AC	180	2.0	20	1500	0.2	24 [†]	J	Precision Quad Op Amp in 14+Pin Package	
LT1014C	300	2.5	30	1200	0.2	24 [†]	J, N		
LT1014D	800	5.0	30	1200	0.2	24 [†]	N, S		
LT1058AC	600	10	0.05	150	10	26 [†]	J	Low Offset JFET Input Multiple Op Amps	
LT1058ACN	600	15	0.05	150	10	26 [†]	N	Combine High Speed and Excellent DC Spe	
LT1058C	1000	15	0.075	100	8	26 [†]	J		
LT1058CN	1000	22	0.075	100	8	26 [†]	N		
	 				0.07 [†]	+	J, N	Micropower, Precision, Single Supply,	
LT1079AC	120	2.0	8	250		40	+	Low Noise Quad	
LT1079C	150	2.5	10	200	0.07	29 [†]	J, N, S		
LT1125AC	90	1	20	2000	3	5.5	N	Precision Quad Op Amp,	
LT1125C	140	1.5	30	1500	2.7	5.5	J, N, S	Low Noise, High Speed	
LT1179AC	100	2.2	5	140	0.013	75	J, N	17µA Max, Single Supply, Precision Quad	
LT1179C	150	3.0	6	110	0.013	50 [†]	J, N	•	
LTC1053C	5	0.05	0.05	1000	4 [†]	0.4μVp-p**	J, N	Quad, Precision Auto Zeroed Op Amp.	
	1	1	1	1		1	1 1	No External Capacitors Required.	

MILITARY HIGH SPEED OP AMPS

			ELECTRICAL (HARACTERI	STICS		`	
PART NUMBER	MIN- SLEW RATE (V/µs)	TYP SETTLING TIME TO 0.01% (µs)	TYPICAL GAIN BANDWIDTH PRDDUCT (MHz)	MIN Avol (V/mV)	MAX V _{OS} = (μV)	I _B MAX (nA)	PACKAGES AVAILABLE	IMPORTANT FEATURES
SINGLE		J						
LT1022AM	23	1.5	8.5	150	250	0.05	Н	Very Good DC Specs
LT1022M	18	1.5	8.0	120	600	0.05	Н	
LT1028AM	11	•	75	7000	40	90	H, J8	Lowest Voltage Noise. Good DC Specs
LT1028M	11	•	75	5000	80	180	H, J8	
LT1037AM	11	*	60	7000	25	35	H, J8	Low Voltage Noise, Good DC Specs
LT1037M	11	*	60	5000	60	55	H, J8	
LT1055AM	10	1.5	5.5	150	150	0.05	H	Lowest Offset JFET Input Op Amps
LT1055M	7.5	1.5	4.5	120	400	0.05	Н	
LT1056AM	12	1.5	6.5	150	180	0.05	° H	٠,
LT1056M	9	1.5	5.5	120	450	. 0.05	Н	
LT1122AM	60	0.340** 0.540***	14	180	600	0.075	J8	JFET Input. Faster and Better DC Specs Than OP-42. A and C Grades Have 100%
LT1122BM	60	0.350**	14	180	600	0.075	J8	Tested Settling Time
LT1122CM	50	0.350** 0.590***	13	150	900	0.1	J8	
LT1122DM	50	0.360**	13	150	900	0.1	J8	Inverting Applications Can Use External
LM118	50	1 [†]	15	25	4000	250	н	Compensation to Get 150V/µs Slew Rate
LT118A	50	1†	15	200	1000	250	Н, Ј8	Fast Slew Rate
OP-15A	10	4.5	6	100	500	0.05	Н	Precision JFET Input, No Phase Reversal
OP-15B	7.5	4.5	5.7	75	1000	0.1	н	
0P-15C	5	4.7	5.4	50	3000	0.2	н	
OP-16A	18	3.8	8	100	500	0.05	н	Precision JFET Input, No Phase Reversal
OP-16B	12	3.8	7.6	75	1000	0.1	Н	
OP-16C	9	4.0	7.2	50	3000	0.2	Н	
DUAL	*							
LT1057AM	10	1.4	3.5	150	450	0.05	H, J8	Low Offset Voltage, JFET Input
LT1057M	8	1.4	3	100	800	0.075	H, J8	
LF412AM	10	2.3	5.7	100	1000	0.1	H, J8	JFET Input
OP-215A	10	2.3	5.7	150	1000	0.1	H, J8	JFET Input
OP-215C	8 .	2.4	5.5	50	3000	0.2	H, J8	
OP-237A	10	•	40	3000	80	40	J	Dual Matched OP-37
OP-237C	10	• .	40	2000	180	80	J	
QUAD								
LT1058AM	10	1.4	3.5	150	600	0.05	J	Lowest Offset Voltage, JFET Input Quad
LT1058M	8	1.4	. 3	100	1000	0.075	J	-

[†] To 0.1%

Pro rychlou orientaci jsou v katalogu i přehledy vyráběných OZ podle několika parametrů, např. podle teplotního driftu napěťové nesymetrie (μ V/°C) - vlevo dole, podle napěťové nesymetrie vstupů (μ V) - na str. 159 nahoře, podle vstupního klidového proudu (nA) - na str. 159 vlevo dole, podle napájecího napětí (OZ napájené nesymetrickým napětím) - str. 159 vpravo dole, což je velmi praktické.

LOW OFFSET VOLTAGE DRIFT Maximum Offset Voltage Drift

≤0.05µV/°C	≤0.6µV/°C	≤1µV/°C	≤ 1.5μV/°C	≤ 2.0μV/°C	. ≤3μV/°C	≤5μV/°C
LTC1050A LTC1050 LTC1051 (D) LTC1052 LTC1053(Q) LTC1150	LT1001A LT1007A LT1012A LT1037A LTC1049 ALL OP07A OP27A/E OP37A/E	LT1001 LT1002A (D) LT1007 LT1012C LT1037 LT1028 ALL OP05A/E OP227A/E OP237A/E	LT1002 (D) LT1006A LT1008 LT1012M LT1024A (D) OP07 OP07E	LT1006 LT1012D LT1012S8 LT1013A (D) LT1014A (Q) LT1024 (D) LT1078A (D) LT1079A (Q) LM10* LM10B* OPO5 OPO7C OP27C/G OP27C/G OP237C/G	LT1006CN8 LT1013C (D) LT1013M (D) LT1014C (Q) LT1014M (Q) LT1078 (D) LT1079 (Q) LT1178 (D) LT1179 (Q)	LT1006S8 LT1013D (D) LT1014D (Q) LT1022A LT1055A LT1056A LH2108A (D) LM10C* LM108A LM308A OP05C OP15A/E OP16A/E

^{*}Typical

^{*} Not recommended for Fast Settling Applications.

^{** 10}V Step, to 1mV at Sum Node.

^{***} Maximum Value, 10V Step, to 1mV at Sum Node.

LOW OFFSET VOLTAGE

Max Input Offset Voltage $(T_A = 25^{\circ}C)$

≤ 15 μ V	≤ 25 μ V	≤ 75 μ V	≤ 150 µ V	≤ 1mV
LT1001AM	LT1001AC	LT1001	LT1002	LT1013 (D)
LTC1049	LT1007A	LT1002A (D)	LT1006	LT1014 (Q)
LTC1050A	LT1012A	LT1006A	L11008	LT1014A (Q).
LTC1050	LT1037A	LT1007	LT1012S8	LT1022 ALL
LTC1051	OP-07A	LT1012	LT1013A (D)	LT1055C
LTC1052	OP-27A	LT1012D	LT1024 (D)	LT1055M
LTC1053	OP-27E	LT1012S8	LT1028	LT1056AM
` LTC1150	OP-37A	LT1024A (D)	LT1055AM	LT1056AC
LTC7652	OP-37E	LT1037	LT1055AC	LT1056M
		LT1077	LT1079A (Q)	LT1056C
		LT1078A (D)	LT1178 (D)	LT1057 ALL (D)
		LT1178A (D)	LT1179A (Q)	LT1058 ALL (Q)
		0P-07E	LT1179 (Q)	LT1078 (D)
		0P-07	OP-05A	LT1079 (Q)
		0P-97A	OP-07C, D	LT1115C
		0P-97E	OP-27C	LT1122 ALL
		LT1097C	OP-37C	LF412A
		LT1097S8	OP-227A, E (D)	LT1191
			OP-237A, E (D)	LT1192 .
			*	LT1220
	İ			LT1221
			1	LT1222
7				LH2108A (D)
· ·				LM108A
				LM308A
				0P-05
				0P-05E
				0P-15A, E
				0P-15B, F
				0P-16A, E
				0P-16B, F
				OP-215A, E (D)

(D) — Dual Op Amp (Q) — Quad Op Amp

Parametry, uváděné v těchto ukázkách:

V_{os} - napěťová nesymetrie vstupů TČ V_{os} - teplotní drift napěťové nesymetrie i_B - vstupní klidový proud A_{vol.} - zesílení slew rate - rychiost přeběhu noise - šum settling tlme - doba ustálení galn bandwidth product - kmitočtový rozsah (součin zesílení a kmitočtu)

LOW BIAS CURRENT Max Input Bias Current (T_i = 25°C)

≤ 0.2nA	≤ 3nA	≤ 5nA	≤ 10nA
LT1008	LT1001A	LT1001	LT1077A
LT1012 ALL	LT1002A (D)	LT1002 (D),	LT1078A (D)
LT1022 ALL	LT1006 ALL	LT1178A (D)	LT1079A (Q)
LT1024 ALL (D)	LM108	LT1179A (Q)	LT1078 (D)
LT1055 ALL	LM108A	OP-05E	LT1079 (Q)
LT1056 ALL	OP-05A	OP-07E	LT1178 (D)
LT1057 ALL (D)	OP-05	,	LT1179 (Q)
LT1058 ALL (Q)	OP-07A		OP-05C
LT1122 ALL	OP-07		L M 308A
LF155 ALL			
LF156 ALL			
LF412A ALL			
LTC1049 ALL			
LTC1050			
LTC1051		\	
LTC1052			
LTC1053			
LTC1150			
LTC7652			
OP-15 ALL			
. OP-16 ALL			
OP-215 ALL (D)			
OP-97A/E			
LT1097		*	

high speed - velmi rychiý, auto zeroed - samočinně se nuiující, generai purposed - pro všeobecné použití, stable for gain ... - stabilní pro (do) zesilení ..., single supply - nesouměrný zdroj, single, duai, quad - jeden, dva, čtyři OZ v jednom pouzdru, packages avaliable - vyrábí se v pouzdru, important features - důležité poznámky, very good DC specs - velmi dobré "stejnosměrné" vlastnostl, mlcropower - s maiou výkonovou ztrátou, unity gain - jednotk. zes. atd.

SINGLE SUPPLY OPERATION (Inputs and Outputs Operate Down to Ground with +V, GND Voltage Supplies)

SINGLE	DUAL	QUAD
LT1006	LT1013	LT1014
LT1077	LT1078	LT1079
LTC1049	LT1178	LT1179
LTC1050	LTC1051	LTC1053
LTC1052		
LTC1150		

⁽D) — Dual Op Amp

⁽Q) — Quad Op Amp

VÁŽENÍ ČTENÁŘI!

V září a v listopadu 1993 vyjdou přílohy AR (Electus 93 a Malý katalog pro konstruktéry). Letos naše přílohy bude rozesílat firma:

Ing. Josef Šmíd, Sportovní 1380, 101 00 Praha 10.

Na této stránce je vytištěn objednací lístek. Ten vystřihněte a čitelně vyplňte. Cena jednoho výtisku je 18 Kč včetně balného (papírová obálka) a poštovného. Příslušnou částku (18, 36, 54 Kč atd.) zašlete poštovní poukázkou typu C (žlutá) firmě "Ing. Josef Šmíd - zasilatelství" na výše uvedenou adresu. Potom vložte vyplněný objednací lístek do obálky a zašlete na stejnou adresu.

Toto vše učiňte nejpozději do:

a) v případě, že objednáváte pouze Electus 93, do 7. 7. 1993;

b) v případě, že objednáváte pouze Malý katalog pro konstruktéry, do 20. 8. 1993;

c) v případě, že objednáváte obě přílohy, do 7. 7. 1993.

Upozomujeme, že v současné době lze poukázat peněžní úhradu prostřednictvím pošty pouze v České republice, ale po zaplacení může firma zasílat časopis i na Slovensko. Zasilatelská firma Vám zaručuje dodání časopisu do 14 dnů po jeho vydání. Obě přílohy AR vycházejí podstatně menším nákladem než měsíčník AR, proto Vám doporučujeme využít tuto nabídku.

Z obsahu letošních příloh AR

Electus 93: Přijímače VKV, Přesný měřič LC, Z historie radiotechniky, Magnetické antény, Napájecí zdroje, Časový spínač, Paket radio, Regata Columbus a mnoho dalších zajímavých článků.

Malý katalog pro konstruktéry: Přehledový katalog stabilizátorů, referenčních zdrojů a výkonových operačních zesilovačů.

Věcné prémie i 40 000 Kč připraveny!

Nezapomeňte, že 4. září 1993 (pošt. razítko) je uzávěrka konkursu AR o nejlepší amatérské konstrukce za rok 1993. Podrobné – letos velice výhodné – podmínky konkursu jsou zveřejněny v AR A2/1993, s. 3 a 4.

Kromě 40 000 Kč z prostředků redakce AR budou

udělovány věcné prémie od těchto sponzorů:

AMA Plzeň (věnuje prémil FM transceiver ALINCO DJ S1)

ELING Nová Dubnica (věnuje skříňky BOPLA)

ELIX Praha (věnuje družicový přijímač AMSTRAD 320)

FAN radio Plzeň (věnuje vozidlovou CB radiostanici DNT Coupé)

GES Electronics Pizeň (věnuje sady součástek)

GM Electronic Praha (věnuje digit. osciloskop Hung Chang)

Objednávka příloh AR Objednávám u firmy Ing. Josef Šmíd – zasilatelství, Sportovní 1380, 101 00 Praha 10. AR příloha 1 (Electus 93): ks AR příloha 2 (M. katalog): ks AR přílohy 1 + 2: ks JMÉNO A PŘÍJMENÍ: ADRESA: PSČ:

Aktivní i pasivní elektrosoučástky za nízké ceny nabízí

LHOTSKY - E.A. electronic actuell Komenského 465/11 431 51 Klášterec nad Ohří

Nabídkový seznam zdarma zašleme.

Součástky odesíláme poštou, nebo je možný osobní odběr ve dnech:

Po až Pá /mimo St/ 8.00 - 12.00 Út, Pá též odpoledne 15.00 - 19.30

PLOŠNÉ SPOJE

publikované v AR nebo podle Vaší předlohy vyrobíme fotocestou bez prokovených otvorů jednostronný 15-25 Kčs/dm² oboustronný 25-35 Kčs/dm² vrtání na obj. 4 hal/1 otvor

SPOJ mesani

J. Kohout Nosická 16 100 00 Praha 10 tel. 78 13 823 V. Kohout U zahrádkářské kolonie 244 142 00 Praha 4 tel. 47 28 263

INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Magnet-Press, inzertní oddělení (inzerce ARB), Jungmannova 24, 113 66 Praha 1, tel. 26 96 51-9 linka 341, fax 23 62 439 nebo 23 53 271. Uzávěrka tohoto čísla byla 1. 6. 1993, do kdy jsme museli obdržet úhradu za inzerát. Čena za první řádek činí 44 Kč a za každý další (i započatý) 22 Kč. Platba je včetně daně z přidané hodnoty. Cena za plošnou inzerci se řídí velikostí inzerátu. Za 1 cm² plochy je cena stanovena na 18 Kč. K ceně se připočítává 23 % DPH. Nejmenší velikost plošného inzerátu je 55×40 mm. Za opakovanou inzerci poskytujeme výhodné slevy od 10 až 30 %. Texty pište čitelně, nejlépe hůlkovým písmem nebo na stroji, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

SL1452, µA733, 10116, BFQ69, (515, 29, 62, 78). BFG65, GT346B, AF239S, BB405 (76, 19, 20, 8). AY-3-8500, AY-3-8910, TDA1510, A2005 (275, 346, 75, 40). LA4445, LA4461, HA13001, TA7270 (82, 98, 112, 109). BA5406, KA2206, Ty-KZ120A (78, 62, 26) zaslanie ihneď. Zoznam zdarma. M. Rezníček, Na Sihoti 6, 010 01 Žilina. Servisní manuál (kople) ZX Spectrum+2 (60+pošt.). Buček, Šustaly 1083, 742 21 Kopřivnice.

Reproduktory a reproduktorové soustavy trochu jinak