On place les points obtenus et on les relie :

Point sur la courbe

Pour vérifier qu'un point de coordonnées (a;b) appartient à la courbe C_f , on calcule f(a) et on regarde si le résultat est égal à b.

EXEMPLE

Dans l'exemple précédent, le point (2; 8) appartient-il à la courbe C_f ?

Réponse : On calcule $f(2) = -2^2 + 4 \times 2 + 12 = -4 + 8 + 12 = 16$. Or $16 \neq 8$ donc le point (2; 8) n'appartient pas à C_f .

Résolution d'(in)équation graphiquement

Résolution d'une équation graphiquement

Pour résoudre une équation du type f(x) = k où k est un nombre :

- 1. on trace la droite y=k et on cherche les points d'intersections de cette droite avec la courbe représentative de f.
- 2. Les abscisses de ces points d'intersections seront les solutions de cette équation.

Exemple

« On cherche à résoudre $x^2 - 5x + 6 = 2$. Ci-dessous on donne la représentation graphique de $f(x) = x^2 - 5x + 6$. En déduire les solutions de l'équation donnée. »

Réponse : En traçant la droite y=2 on s'aperçoit qu'il y a deux points d'intersections. Ces points ont pour abscisse 1 et 4. D'où $S=\{1;4\}$.

RÉSOLUTION D'UNE INÉQUATION GRAPHIQUEMENT

Pour résoudre une équation du type $f(x) \ge k$ ou $f(x) \le k$ ou f(x) > k ou f(x) < k, où k est un nombre :

- 1. on répète les même étapes que pour la résolution graphique d'une équation.
- 2. Si on cherche à résoudre $f(x) \ge k$ ou f(x) > k on cherchera l'intervalle des x pour lequel la courbe C_f est au-dessus de la droite tracée.
- 3. Si on cherche à résoudre $f(x) \le k$ ou f(x) < k on cherchera l'intervalle des x pour lequel la courbe C_f est en-dessous de la droite tracée.

Remarque

Le plus souvent la solution sera un intervalle.

Exemple

« Ci-dessous on donne la représentation graphique de $f(x)=x^2+x-3$. Résoudre $x^2+x-3>3$. »