Contrôle Continu 2 LM121 PCME 14.2

- 1. Soit A=(1,1), B=(2,-1) et C=(-1,-1) 3 points du plan. On considère $r_{A,\frac{\pi}{2}}$ la rotation de centre A et d'angle $\frac{\pi}{2}$, et $r_{B,\frac{\pi}{2}}$ la rotation de centre B et d'angle $\frac{\pi}{2}$. Déterminer $(r_{B,\frac{\pi}{2}}\circ r_{A,\frac{\pi}{2}})(C)$ (à savoir, donner ses coordonnées cartésiennes).
- 2. Pour quelle(s) valeur(s) de $x \in \mathbb{R}$ les vecteurs $u = \begin{pmatrix} 1 \\ x \\ 1 \end{pmatrix}$, $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ et

$$w = \begin{pmatrix} x \\ 1 \\ -1 \end{pmatrix}$$
 sont-ils libres?

- 3. Soit \mathcal{P} le plan passant par A=(1,2,-1) et engendré par les vecteurs $u=\begin{pmatrix}1\\1\\-1\end{pmatrix}$ et $v=\begin{pmatrix}2\\-3\\-1\end{pmatrix}$. Soit \mathcal{D} la droite passant par B=(1,1,1) et de vecteur directeur $w=\begin{pmatrix}1\\2\\1\end{pmatrix}$. Déterminer $\mathcal{P}\cap\mathcal{D}$.
- 4. Soit a et b 2 vecteurs non nuls de \mathbb{R}^3 . On s'intéresse à l'équation $a \wedge x = b$.
 - (a) Si $a = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ et $b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, montrer que l'ensemble des $x \in \mathbb{R}^3$ tels que $a \wedge x = b$ est une droite dont on donnera une paramétrisation.
 - (b) Si $a = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ et $b = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, décrire l'ensemble des $x \in \mathbb{R}^3$ tels que $a \wedge x = b$.