1 Syllabus covered

V	Binary numbers, Hexadecimal, Sign-magnitude, One's-complement and Two's complement. Conversions between them.
✓	Generate minterms, maxterms, SOP canonical form and POS canonical forms and convert between them
V	Understand and use the laws and theorems of Boolean Algebra
•	Perform algebraic simplification using Boolean algebra
•	Simplification using K-maps
•	Derive sum of product and product of sums expressions for a combinational circuit
•	Convert combinational logic to NAND-NAND and NOR-NOR forms
√	Simplification using Quine-McCluskey method, PI tables and Petrick's method
	Design combinational circuits for positive and negative logic
	Design Hazard-free two level circuits and understand Hazards in multi-level circuits
	Compute noise margin of one device
	Describe how tri-state and open-collector outputs are different from totem-pole outputs.
	Different between and limitations of master-slave and edge-triggered flip-flops.
	Compute fan out and noise margin of one device driving the same time
	Know the differences and similarities between PAL, PLA, and ROMs and can use each for logic design
	Design combinational circuits using multiplexers and decoders
	Analyze a sequential circuit and derive a state-table and a state-graph
	Understand the difference between synchronous and asynchronous inputs
	Derive a state graph or state table from a word description of the problem
	Reduce the number of states in a state table using row reduction and implication tables
	Perform a state assignment using the guideline method
	Implement a design using JK, SR, D or T flip-flops
	Analyse and design both Mealy and Moore sequential circuits with multiple inputs and multiple outputs
	Convert between Mealy and Moore designs
	Partition a system into multiple state machines
1.1	Labs (not questioned in exams)
	Use computer tools to enter designs graphically and HDL
	Simulate designs using computer tools
	Use computer tools to program gate arrays logic and debug and test

ECE275 (sample) Midterm 1 Fall 2023

Instructor: Vikas Dhiman (vikas.dhiman@maine.edu)
September 29, 2023

Student Name: Student Email:

2 Instructions

- Time allowed is 50 minutes. (This sample exam might be lengthier than the actual exam.)
- In order to minimize distraction to your fellow students, you may not leave during the last 10 minutes of the examination.
- The examination is closed-book. One 8x11in cheatsheet is allowed.
- Non-programmable calculators are permitted.
- The maximum number of marks is 100, as indicated; the midterm examination amounts 10% toward the final grade.
- Please use a pen or heavy pencil to ensure legibility.
- Please show your work; where appropriate, marks will be awarded for proper and well-reasoned explanations.

Problem 1. Number conversions:

- 1. Use repeated division to convert 230_{10} to octal representation (5 marks).
- 2. What is the value of $19D_{16}$ in base 10 (5 marks).
- 3. A 6-bit two's complement number is 100011₂. Convert it to (signed) decimal (5 marks).
- 4. Represent -23_{10} in two's complement binary notation (5 marks).

Problem 2. Consider the circuit below

By algebraic manipulation, prove or disprove that $Y = \bar{B}\bar{C} + BC$ (10 marks).

Problem 3. Use the following 5-variable K-map for F (A, B, C, D, E), and find a minimal SOP expression for F (15 marks)

DE	C_{00}	01	11	10
00	1			1
01	1	1		1
11		1		
10		1	1	

DE	C_{00}	01	11	10
00		1	1	
01	1	1		1
11		1		
10		1	1	

A=0 A=1

Problem 4. Use bubble-pushing and/or algebra to find an SOP expression for Y in the circuit below. If you use bubble-pushing, draw an equivalent circuit beside the given circuit (5 marks).

Problem 5. Consider the function Y given below.

$$Y(A, B, C, D) = \sum m(0, 3, 5, 7, 8, 14) + d(2, 12, 15)$$

- 1. Draw a K-maps to derive a minimum SOP and POS expressions for Y . Indicate all essential prime implicants for Y or \bar{Y} in your K-maps (20 marks).
- 2. Sketch a two-level NOR-NOR circuit for Y. Assume that A, B, C, and D are available in true end complimentary forms (5 marks).
- 3. Write Y in Product of sums (POS) canonical form (5 marks).

Problem 6. Design a minimal SOP circuit to add two two-bit unsigned numbers. Denote the two bits of first number as A_1A_0 and the two bits of second number as B_1B_0 . The result will be a 2-bit sum S_1S_0 and a carry C. Start with filling out the following truth table (3 example rows are provided) and then use K-maps to find minimal SOP for S_1 , S_0 and a single carry bit C_1 (20 marks).

A_1	A_0	B_1	B_0	C_1	S_1	S_0
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1	0	1	0
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1	1	0	0
1	1	1	0			
1	1	1	1	1	1	0