An algorithm a repeatable finite series of steps/instructions to accomplish an intended task.

* finiteners

* de well-defined / repeatable / non-ambiguous

* has zero or more imputs of specific types

* there is an output / result with defined relationship to the input.

Analysis of Algorithms.

1) Is it correct?

2 Does it terminate?

(3) Time Complexity? (Worst case, average case)

(4) Space Complexity?

- assume: i=1...10 iterates i through 21,2,3,4,5,6,7, 8,9,107=:5
- · i takes values in a finite set S + takes each of those values exactly once.

- if $j \in \mathbb{Z}$, terminates if rounds $\frac{1}{2}$ to 0 but not if rounds $\frac{1}{2}$ to 1.
- · if y F.P., then probably terminates
- · if $j \in \mathbb{R}$, then never terminates
- · Suppose ig is an int and 1/2=0, then how do ne show it terminates?

D: Estate 3 -> IV

X -> j

Cax	KAM	11100	es of	combras	mon .
	Ls ro	andom	access	machine	input tap
	Registers	R. R. RO		Instructions: 1. take unit time! 2. Simple tasks! 3. e.g., at, ÷, × : access memore in unit time can't change the instructions!	
	LT .	emony		nit of memor	
	Outh	out tap			
· Time	complex the	city = program	# of 1	pasic instruc	tons
· Spac	e comp u. usina	lexity =	# of 1	oasic instructions of a rotation	needed,

Let	S	be	0 5	Set	•					
						well	-ord	leved	7	
A	A' S	S	E	a	Sr	nalle	ta	elema	tri	in A
	· w:									

N are a well-ordered set!

To prove an algo terminates,
we define a fen:

D: { state} -> N

such that

- 1 D is well-defined when entering the loop for the loop for
- 2 each time throughthe loop, D de creases
- 3) when D reaches 1 mg.

 The Loop terminates

 So, the loop guard

 Should check if we have reached the

 smallest element.

notations:

V = for all

E = is an elt. of

3 = the re exists

min A = if A finite,

min A is the

smallest elt.

inf A = allows for

inf. Sets.

i.o.w = In other words

inf { (0,1)} = 0 \$ (0,1)