Apprentissage robuste de distance par géométrie riemannienne

GRETSI 2022 - Nancy, France

A. Collas¹, A. Breloy², G. Ginolhac³, C. Ren¹, J.-P. Ovarlez^{1,4}

- 1 SONDRA, CentraleSupélec, Université Paris Saclay
- 2 LEME. Université Paris Nanterre
- 3 LISTIC, Université Savoie Mont-Blanc
- 4 DEMR, ONERA, Université Paris Saclay

Table of contents

1. Metric learning

2. Robust Geometric Metric Learning

3. Riemannian geometry and optimization

4. Application

Metric learning

Metric learning

Supervised regime with K classes: $\{(x_i, y_i)\}_{i=1}^n$.

Metric learning

Find a Mahalanobis distance

$$d_{\mathbf{A}}(\mathbf{x}_i,\mathbf{x}_j) = \sqrt{(\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{A}^{-1} (\mathbf{x}_i - \mathbf{x}_j)}$$

relevant for classification problems.

 $\mathbf{A} \in \mathcal{S}_p^{++}$ the set of $p \times p$ symmetric positive definite matrices.

(b) Whitened data

Information-Theoretic Metric Learning (ITML)

Set S:
$$n_S$$
 pairs $(\mathbf{x}_l, \mathbf{x}_q)$ with $y_l = y_q$.
Set D: n_D pairs $(\mathbf{x}_l, \mathbf{x}_q)$ with $y_l \neq y_q$.

ITML minimization problem

Interpreted as a covariance estimation problem

For $\mathbf{A}_0 = \frac{1}{m} \sum_{i=1}^m \mathbf{x}_i \mathbf{x}_i^T$, it is the minimization of the Gaussian negative log-likelihood under constraints.

Geometric Mean Metric Learning (GMML) (1/2)

Minimization problem

$$\underset{\mathbf{A} \in \mathcal{S}_{p}^{++}}{\text{minimize}} \frac{1}{n_{S}} \sum_{(\mathbf{x}_{l}, \mathbf{x}_{q}) \in S} d_{\mathbf{A}}^{2}(\mathbf{x}_{l}, \mathbf{x}_{q}) + \frac{1}{n_{D}} \sum_{(\mathbf{x}_{l}, \mathbf{x}_{q}) \in D} d_{\mathbf{A}^{-1}}^{2}(\mathbf{x}_{l}, \mathbf{x}_{q})$$

GMML Algorithm

$$m{A}^{-1} = m{S}^{-1} \#_t m{D} = m{S}^{-rac{1}{2}} \left(m{S}^{rac{1}{2}} m{D} m{S}^{rac{1}{2}}
ight)^t m{S}^{-rac{1}{2}} \; ext{with} \; t \in [0,1]$$

$$\begin{aligned} \boldsymbol{S} &= \frac{1}{n_S} \sum_{(\boldsymbol{x}_I, \boldsymbol{x}_q) \in S} (\boldsymbol{x}_I - \boldsymbol{x}_q) (\boldsymbol{x}_I - \boldsymbol{x}_q)^T \\ \boldsymbol{D} &= \frac{1}{n_D} \sum_{(\boldsymbol{x}_I, \boldsymbol{x}_q) \in D} (\boldsymbol{x}_I - \boldsymbol{x}_q) (\boldsymbol{x}_I - \boldsymbol{x}_q)^T. \end{aligned}$$

 ${m A}^{-1}$ is the Riemannian interpolation on ${\mathcal S}_p^{++}$ between ${m S}^{-1}$ and ${m D}$.

In practice, works well for t small, i.e. $\boldsymbol{A} \approx \boldsymbol{S}$.

Geometric Mean Metric Learning (GMML) (2/2)

Assumption

Data points of each class are realizations of independent random vectors with class-dependent first and second order moments

$$\mathbf{x}_{kl} \stackrel{d}{=} \boldsymbol{\mu}_k + \boldsymbol{\Sigma}_k^{\frac{1}{2}} \mathbf{u}_{kl}$$

with $\mu_k \in \mathbb{R}^p$, $\Sigma_k \in \mathcal{S}_p^{++}$, $\mathbb{E}[\boldsymbol{u}_{kl}] = \boldsymbol{0}$ and $\mathbb{E}[\boldsymbol{u}_{kl}\boldsymbol{u}_{kq}^T] = \boldsymbol{l}$ if kl = kq, $\boldsymbol{0}_p$ otherwise.

Interpreted as a covariance estimation problem

$$\mathbb{E}[S] = 2\sum_{k=1}^K \pi_k \mathbf{\Sigma}_k$$

where $\{\pi_k\}$ are the classes proportions.

Thus, in practice

$$\mathbb{E}[\mathbf{A}] \approx 2 \sum_{k=1}^{K} \pi_k \mathbf{\Sigma}_k.$$

Robust Geometric Metric

Learning

Proposed general formulation

minimize
$$(\mathbf{A}, \{\mathbf{A}_k\}) \in (\mathcal{S}_p^{++})^{K+1} = \sum_{k=1}^K \pi_k \mathcal{L}_k(\mathbf{A}_k) + \lambda \sum_{k=1}^K \pi_k d_{\mathcal{S}_p^{++}}^2(\mathbf{A}, \mathbf{A}_k)$$
negative log-likelihood
cost function to compute the center of mass of $\{\mathbf{A}_k\}$

where $d_{\mathcal{S}_p^{++}}$ is the Riemannian distance on \mathcal{S}_p^{++}

$$d_{\mathcal{S}_p^{++}}^2(\boldsymbol{A}, \boldsymbol{A}_k) = \left\| \log \left(\boldsymbol{A}^{-\frac{1}{2}} \boldsymbol{A}_k \boldsymbol{A}^{-\frac{1}{2}} \right) \right\|_F^2.$$

Set S_k : n_k pairs (x_l, x_q) with $y_l = y_q = k$.

Gaussian negative log-likelihood

$$\mathcal{L}_{G,k}(\boldsymbol{A}_k) = \frac{1}{n_k} \sum_{(\boldsymbol{x}_l, \boldsymbol{x}_q) \in S_k} (\boldsymbol{x}_l - \boldsymbol{x}_q)^T \boldsymbol{A}_k^{-1} (\boldsymbol{x}_l - \boldsymbol{x}_q) + \log |\boldsymbol{A}_k|$$

minimized for

$$\mathbf{A}_k = \frac{1}{n_k} \sum_{(\mathbf{x}_l, \mathbf{x}_q) \in S_k} (\mathbf{x}_l - \mathbf{x}_q) (\mathbf{x}_l - \mathbf{x}_q)^T$$

Tyler cost function

$$\mathcal{L}_{T,k}(\boldsymbol{A}_k) = \frac{p}{n_k} \sum_{(\boldsymbol{x}_l, \boldsymbol{x}_q) \in S_k} \log \left((\boldsymbol{x}_l - \boldsymbol{x}_q)^T \boldsymbol{A}_k^{-1} (\boldsymbol{x}_l - \boldsymbol{x}_q) \right) + \log |\boldsymbol{A}_k|$$

minimized for

$$\mathbf{A}_k = \frac{1}{n_k} \sum_{(\mathbf{x}_l, \mathbf{x}_q) \in S_k} \underbrace{\frac{p}{(\mathbf{x}_l - \mathbf{x}_q)^T \mathbf{A}_k^{-1} (\mathbf{x}_l - \mathbf{x}_q)}}_{\text{weight of } (\mathbf{x}_l - \mathbf{x}_q)} (\mathbf{x}_l - \mathbf{x}_q) (\mathbf{x}_l - \mathbf{x}_q)^T$$

where $\mathcal{SS}_{p}^{++} = \{ \mathbf{\Sigma} \in \mathcal{S}_{p}^{++} : |\mathbf{\Sigma}| = 1 \}$

Gaussian RGML

$$\underset{(\boldsymbol{A}, \{\boldsymbol{A}_k\}) \in \left(\mathcal{S}_p^{++}\right)^{K+1}}{\text{minimize}} h_G\left(\boldsymbol{A}, \{\boldsymbol{A}_k\}\right) = \underbrace{\sum_{k=1}^K \pi_k \mathcal{L}_{G,k}(\boldsymbol{A}_k)}_{\text{Gaussian negative}} + \lambda \sum_{k=1}^K \pi_k d_{\mathcal{S}_p^{++}}^2(\boldsymbol{A}, \boldsymbol{A}_k)$$

Tyler RGML

$$\underset{(\boldsymbol{A}, \{\boldsymbol{A}_k\}) \in \left(\mathcal{SS}_{p}^{++}\right)^{K+1}}{\text{minimize}} h_T\left(\boldsymbol{A}, \{\boldsymbol{A}_k\}\right) = \underbrace{\sum_{k=1}^{K} \pi_k \mathcal{L}_{T,k}(\boldsymbol{A}_k)}_{\text{Tyler cost function}} + \lambda \sum_{k=1}^{K} \pi_k d_{\mathcal{S}_{p}^{++}}^2(\boldsymbol{A}, \boldsymbol{A}_k)$$

Riemannian geometry and optimization

What is a Riemannian manifold?

Figure 2: A Riemannian manifold.

Curvature induced by:

- constraints, e.g. $|\mathbf{\Sigma}| = 1$,
- the Riemannian metric, e.g. on \mathcal{S}_p^{++} : $\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle_{\boldsymbol{\Sigma}}^{\mathcal{M}} = \text{Tr}(\boldsymbol{\Sigma}^{-1} \boldsymbol{\xi} \boldsymbol{\Sigma}^{-1} \boldsymbol{\eta}).$

Examples of Riemannian manifolds \mathcal{M} :

- linear space (no constraints): $\mathbb{R}^{p \times p}$
- orthogonality constraints: $\operatorname{St}_{p,k} = \{ \boldsymbol{U} \in \mathbb{R}^{p \times k} : \boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}_k \}$
- positivity constraints: $S_p^{++} = \{ \Sigma \in S_p : \forall x \neq 0 \in \mathbb{R}^p, \ x^T \Sigma x > 0 \}$
- positivity constraints: $\mathcal{SS}_p^{++} = \{ \mathbf{\Sigma} \in \mathcal{S}_p^{++} : |\mathbf{\Sigma}| = 1 \}$
- rank constraints: $\mathcal{S}_{p,k}^+ = \{ \mathbf{\Sigma} \in \mathcal{S}_p^+ : \operatorname{rank}(\mathbf{\Sigma}) = k \}$
- ullet norm constraints: $S^{p^2-1}=\{oldsymbol{X}\in\mathbb{R}^{p imes p}:\|oldsymbol{X}\|_F=1\}$

Chosen Riemannian metric on $\left(\mathcal{S}_{p}^{++}\right)^{K+1}$ and $\left(\mathcal{S}\mathcal{S}_{p}^{++}\right)^{K+1}$

 $\forall \xi = (\xi, \{\xi_k\}) \,, \eta = (\eta, \{\eta_k\})$ in the tangent space

$$\langle \xi, \eta \rangle_{(\mathbf{A}, \{\mathbf{A}_k\})} = \operatorname{Tr} \left(\mathbf{A}^{-1} \boldsymbol{\xi} \mathbf{A}^{-1} \boldsymbol{\eta} \right) + \sum_{k=1}^K \operatorname{Tr} \left(\mathbf{A}_k^{-1} \boldsymbol{\xi}_k \mathbf{A}_k^{-1} \boldsymbol{\eta}_k \right)$$

- \implies the minimization problems are strongly geodesically convex
- ⇒ unique global minimum and fast Riemannian gradient descent

$$\theta = (\mathbf{A}, {\mathbf{A}_k}), \ \alpha \ \mathsf{a} \ \mathsf{step} \ \mathsf{size}$$

Iterations of Gaussian RGML: minimization of h_G

$$\theta_{\ell+1} = \underbrace{R_{\theta_{\ell}}^{\left(\mathcal{S}_{p}^{++}\right)^{K+1}}}_{\text{retraction on }\left(\mathcal{S}_{p}^{++}\right)^{K+1}} \left(-\alpha \underbrace{\nabla^{\left(\mathcal{S}_{p}^{++}\right)^{K+1}} h_{G}(\theta_{\ell})}_{\text{Riemannian gradient of }h_{G}}\right)$$

Iterations of Tyler RGML: minimization of h_T

$$\theta_{\ell+1} = \underbrace{R_{\theta_{\ell}}^{\left(\mathcal{S}\mathcal{S}_{p}^{++}\right)^{K+1}}}_{\text{retraction on }\left(\mathcal{S}\mathcal{S}_{p}^{++}\right)^{K+1}} \left(-\alpha \underbrace{\nabla^{\left(\mathcal{S}\mathcal{S}_{p}^{++}\right)^{K+1}} h_{T}(\theta_{\ell})}_{\text{Riemannian gradient of }h_{T}}\right)$$

Application

Application to datasets from the UCI Machine Learning Repository

Figure 3: Left: cost function versus the number of iterations. Right: gradient norm versus the number of iterations. The optimization is performed on the *Wine* dataset.

RGML + k-NN on datasets from the UCI Machine Learning Repository

	Wine				Vehicle				Iris			
	p = 13 , $n = 178$, $K = 3$				p = 18, n = 846, K = 4				p = 4, n = 150, K = 3			
Method	Mislabeling rate				Mislabeling rate				Mislabeling rate			
	0%	5%	10%	15%	0%	5%	10%	15%	0%	5%	10%	15%
Euclidean	30.12	30.40	31.40	32.40	38.27	38.58	39.46	40.35	3.93	4.47	5.31	6.70
SCM	10.03	11.62	13.70	17.57	23.59	24.27	25.24	26.51	12.57	13.38	14.93	16.68
ITML - Identity	3.12	4.15	5.40	7.74	24.21	23.91	24.77	26.03	3.04	4.47	5.31	6.70
ITML - SCM	2.45	4.76	6.71	10.25	23.86	23.82	24.89	26.30	3.05	13.38	14.92	16.67
GMML	2.16	3.58	5.71	9.86	21.43	22.49	23.58	25.11	2.60	5.61	9.30	12.62
LMNN	4.27	6.47	7.83	9.86	20.96	24.23	26.28	28.89	3.53	9.59	11.19	12.22
Proposed - Gaussian	2.07	2.93	5.15	9.20	19.76	21.19	22.52	24.21	2.47	5.10	8.90	12.73
Proposed - Tyler	2.12	2.90	4.51	8.31	19.90	20.96	22.11	23.58	2.48	2.96	4.65	7.83

Table 1: Misclassification errors on 3 datasets: Wine, Vehicle and Iris. Mislabeling rate: percentage of labels randomly changed in the training set.

Github: https://github.com/antoinecollas/robust_metric_learning

Conclusion

Conclusion

Theoretical contributions:

- new interpretation of GMML algorithm...
- new g-convex optimization problem in metric learning: Gaussian RGML and Tyler RGML.

Publications

Absil, P.-A., R. Mahony, and R. Sepulchre. *Optimization Algorithms on Matrix Manifolds*. Princeton, NJ: Princeton University Press, 2008, pp. xvi+224. ISBN: 978-0-691-13298-3.

Boumal, N., B. Mishra, P.-A. Absil, and R. Sepulchre. *Manopt, a Matlab Toolbox for Optimization on Manifolds*. 2014. URL: https://www.manopt.org.

Boumal, Nicolas. An introduction to optimization on smooth manifolds. Mar. 2022. URL: http://www.nicolasboumal.net/book.

Davis, J. V., B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. "Information-Theoretic Metric Learning". In: *Proceedings of the 24th International Conference on Machine Learning*. ICML '07. Corvalis, Oregon, USA: Association for Computing Machinery, 2007, pp. 209–216. ISBN: 9781595937933. DOI: 10.1145/1273496.1273523. URL: https://doi.org/10.1145/1273496.1273523.

Ollila, Esa, David E. Tyler, Visa Koivunen, and H. Vincent Poor. Complex Elliptically Symmetric Distributions: Survey, New Results and Applications. 2012. DOI: 10.1109/TSP.2012.2212433.

Townsend, J., N. Koep, and S. Weichwald. Pymanopt: A Python Toolbox for Optimization on Manifolds Using Automatic Differentiation. Jan. 2016.

Tyler, David E. A Distribution-Free M-Estimator of Multivariate Scatter. 1987. DOI: 10.1214/aos/1176350263.

Apprentissage robuste de distance par géométrie riemannienne

GRETSI 2022 - Nancy, France

A. Collas¹, A. Breloy², G. Ginolhac³, C. Ren¹, J.-P. Ovarlez^{1,4}

- 1 SONDRA, CentraleSupélec, Université Paris Saclay
- 2 LEME, Université Paris Nanterre
- 3 LISTIC, Université Savoie Mont-Blanc
- 4 DEMR, ONERA, Université Paris Saclay