REINFORCEMENT LEARNING (part 2)

Nguyen Do Van, PhD

Reinforcement Learning

- Online Learning
- Value Function Approximation
- Policy Gradients

Reinforcement learning: Recall

- Making good decision to do new task: fundamental challenge in Al, ML
- Learn to make good sequence of decisions
- Intelligent agents learning and acting
 - Learning by trial-and-error, in real time
 - Improve with experience
 - Inspired by psychology:
 - Agents + environment
 - Agents select action to maximize cumulative rewards

Reinforcement learning: Recall

- At each step t the agent:
 - Executes action A_r
 - □ Receives observation O_t
 - Receives scalar reward R_t
- The environment:
 - Receives action A_t
 - \square Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at environment step

Reinforcement learning: Recall

- Policy maps current state to action
- Value function prediction of value for each state and action
- Model agent's representation of the environment.

Markov Decision Process (Model of the environment)

Terminologies:

In a Markov Decision Process:

 $egin{array}{lll} s,s' & {
m states} \ a & {
m action} \ r & {
m reward} \end{array}$

S set of all nonterminal states

S⁺ set of all states, including the terminal state

A(s) set of all actions possible in state s

R set of all possible rewards

t discrete time step

T,T(t) final time step of an episode, or of the episode including time t

 A_t action at time t

 S_t state at time t, typically due, stochastically, to S_{t-1} and A_{t-1}

Bellman's equation

State value function (for a fixed policy with discount)

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) \left[R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^{\pi}(s') \right]$$
Immediate Future expected sum of rewards

State-action value function (Q-function)

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} T(s,a,s') [\sum_{a' \in A} \pi(s',a') Q^{\pi}(s',a')]$$

- When S is a finite set of states, this is a system of linear equations (one per state)
- Belman's equation in matrix form: $V^{\pi} = R^{\pi} + \gamma T^{\pi} V^{\pi}$

$$Q^{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|a, s) V^{\pi}(s')$$

Optimal Value, Q and policy

- Optimal V: the highest possible value for each s under any possible policy
- Satisfies the bellman Equation $V^*(s) = \max_{a} \left[r(s, a) + \gamma \sum_{s' \in S} p(s'|a, s) V^*(s') \right]$
- $lacksquare ext{Optimal Q-function} Q^*(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s'|a,s) V^*(s')$
- Optimal policy: $\pi^*(s, a) = \arg \max_a Q^*(s, a)$

Dynamic Programming (DP)

- Assuming full knowledge of Markov Decision Process
- It is used for planning in an MDP
- For prediction
 - □ Input: MDP (S,A,P,R,γ) and policy π
 - $lue{}$ Output: value function v_{π}
- For controlling
 - □ Input: MDP (S,A,P,R,γ) and policy π
 - $lue{}$ Output: Optimal value function v_* and optimal policy π_*

ONLINE LEARNING

Model-free Reinforcement Learning
Partially observable environment, Monte Carlo, TD, Q-Learning

Monte-Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
- Caveat:
 - Can only apply MC to episodic MDPs
 - All episodes must terminate

Monte-Carlo Policy Evaluation

• Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

Total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Value function is expected return

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return

State Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- At time-step t that state s is visited in an episode
 - Visiting state s: first or every time-step
- Increase counter N(s) = N(s) + I
- Increate total return $S(s) = S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large number $V(s) \to v_{\pi}(s)$ as $N(s) \to \infty$

Incremental Monte-Carlo Updates

- Learning from experience
- Update V(s) incrementally after full game $S_1, A_1, R_2, ..., S_T$
- For each state S_t , with actual return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

With learning rate

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t)\right)$$

Temporal-Difference Learning

- Model-free: no knowledge of MDP
- Do not wait for episodes, learn from incomplete episode by bootstrapping
- Update value $V(s_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + lpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

TD Target

TD Target

Monte-Carlo and Temporal Difference

- TD can learn before knowing the final outcome
 - □ TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - □ TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - □ TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Monte-Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

Temporal-Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

N-step prediction

n-step return

$$\begin{array}{lll} n = 1 & (TD) & G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1}) & & & & & & \\ n = 2 & G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2}) & & & & \\ \vdots & & \vdots & & & & & \\ n = \infty & (MC) & G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T & & & & \\ \end{array}$$

Define n-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

n-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right)$$

On-policy Learning

- Advantage of TD:
 - Lower variance
 - Online
 - Incomplete sequence
- Sarsa:
 - Apply TD to Q(S,A)
 - \square Use policy improvement eg ϵ -greedy
 - Update every time-step

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t)\right)$$

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

Sarsa Algorithm

```
Initialize any Q(s,a) and Q (terminate-state, null) =0
Repeat (for each episode)
     Initialize S
    Choose A from S using Q (eg \epsilon-greedy)
    Repeat (for steps of episode)
         Take A, observe R, S'
         Chose A' from S' using Q (eg \epsilon-greedy)
         Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') - Q(S,A)]
         S \leftarrow S'; A \leftarrow A';
```

Until S is terminal

Off-Policy Learning

- Evaluate target policy $\pi(a|s)$ to compute $v_{\pi}(s)$ or $q_{\pi}(s,a)$
- While following policy $\mu(a|s)$

$${S_1, A_1, R_2, ..., S_t} \sim \mu$$

- Advantages:
 - Learning from observing human or other agents
 - \square Reuse experience generated from old policies $\pi_1, \pi_2, \pi_3, ..., \pi_{t-1}$
 - Learn about optimal policy while following exploratory policy
 - ☐ Learn about multiple policies while following one policy

Q-Learning

- Off-policy learning action-value Q(s,a)
- No importance sampling is required
- Off policy: Next action is chosen by $A_{t+1} \sim \mu(\cdot|S_t)$
- Q-Learning: choose alternative successor $A' \sim \pi(\cdot | S_t)$
- Update $Q(S_t, A_t)$ towards value of alternative action

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t) \right)$$

Improve policy by greedy

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

$$= R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax}_{a'} Q(S_{t+1}, a'))$$

$$= R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$$

Q-Learning

Update equation

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A)\right)$$

Algorithm

Initialize Q(s,a) arbitrarily Repeat (for each episode):

Initialize sRepeat (for each step of episode):

Choose a from s using policy derived from Q (e.g., ε -greedy)

Take action a, observe r, s' $Q(s,a) \leftarrow Q(s,a) + \alpha \big[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \big]$ $s \leftarrow s';$ until s is terminal

	1	1	↓	Î
S ₁	0	0	0	0
S ₂	0	0	0	0
S ₃	0	0	0	0
S ₄	0	0	0	0

Q-Table

Q-Learning Table version

Visualization and Codes

https://cs.stanford.edu/people/karpathy/reinforcejs/index.html

VALUE FUNCTION APPROXIMATION

State representation in complex environments
Linear Function Approximation
Gradient Descent and Update rules

Function approximation

- So far we have represented value function by a lookup table
 - Every state s has an entry V(s), or
 - Every state-action pair (s,a) has an entry Q(s,a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with function approximation

$$\hat{v}(s,\mathbf{w})pprox v_{\pi}(s)$$
 or $\hat{q}(s,a,\mathbf{w})pprox q_{\pi}(s,a)$

Generalize from seen states to unseen states

Type of Value Function Approximation

- Differentiable function approximation
 - Linear combination of feature
 - Robots: distance from checking point, target, dead mark, wall
 - Business Intelligence Systems: Trends in stock market
 - Neural Network
 - Deep Q Learning
- Training strategies

Value Function by Stochastic Gradient Descent

• Goal: find parameter w minimizing mean-squared error between approximate value function and true state value on π

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))^{2} \right]$$

Gradient descent finds a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$
$$= \alpha \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) \right]$$

Stochastic gradient descent sample

$$\Delta \mathbf{w} = \alpha(\mathbf{v}_{\pi}(S) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$$

Linear Value Function Approximation

- Represent state by a feature vector $\mathbf{x}(S) = \begin{pmatrix} \mathbf{x}_1(S) \\ \vdots \\ \mathbf{x}_{(S)} \end{pmatrix}$

- Feature examples:
 - Distance to obstacle by lidar
 - Angle to target
 - Energy level of robot
- Represent a value function by a linear combination of features

$$\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S) \mathbf{w}_{j}$$

Linear Value Function Approximation

Objective function is quadratic in parameter w

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \mathbf{x}(S)^{\top} \mathbf{w})^{2} \right]$$

- Stochastic gradient descent converges on global optimum
- Update rule:

Update = step-size x predict error x feature value

$$\nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) = \mathbf{x}(S)$$
$$\Delta \mathbf{w} = \alpha(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))\mathbf{x}(S)$$

Incremental Prediction Algorithms

- Value function $v_{\pi}(s)$ is assumed to be given by supervisors
- In reinforcement learning, there is only rewards instead
- In online learning (practice), a target for $v_{\pi}(s)$ is used

For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha (\mathbf{G_t} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

For TD(0), the target is the TD target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$

$$\Delta \mathbf{w} = \alpha(R_{t+1} + \gamma \hat{\mathbf{v}}(S_{t+1}, \mathbf{w}) - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

■ For TD(λ), the target is the λ -return G_t^{λ}

$$\Delta \mathbf{w} = \alpha (G_t^{\lambda} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

Control with Value Function

Policy evaluation Approximate policy evaluation

$$\hat{q}(\cdot,\cdot,\mathbf{w})pprox q_{\pi}$$

Policy improvement e-greedy policy improvement

Action-Value Function Approximation

Approximate the action-value function (Q-value)

$$\hat{q}(S, A, \mathbf{w}) \approx q_{\pi}(S, A)$$

• Minimize mean-squared error between approximate actionvalue function and true value function with π

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))^{2} \right]$$

Use stochastic gradient descent to find a local minimum

$$-\frac{1}{2}\nabla_{\mathbf{w}}J(\mathbf{w}) = (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S, A, \mathbf{w})$$
$$\Delta\mathbf{w} = \alpha(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S, A, \mathbf{w})$$

Linear Action-Value Function Approximation

- Represent state and action by a feature vector $\mathbf{x}(S,A) = \begin{pmatrix} \mathbf{x}_1(S,A) \\ \vdots \\ \mathbf{x}_n(S,A) \end{pmatrix}$ Represent action-value function by linear combination

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S, A) \mathbf{w}_{j}$$

• Stochastic gradient descent update $\nabla_{\mathbf{w}}\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)$

$$\Delta \mathbf{w} = \alpha(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\mathbf{x}(S, A)$$

- Using target update in practice
 - $\Delta \mathbf{w} = \alpha (\mathbf{G_t} \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$
 - $\Delta \mathbf{w} = \alpha (R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$

POLICY GRADIENT

Policy-Based Reinforcement Learning

Last part: value (and action-value) functions are approximate by parameterized function:

$$V_{ heta}(s) pprox V^{\pi}(s)$$
 $Q_{ heta}(s,a) pprox Q^{\pi}(s,a)$

- Generate policy from value function, e.g using e-gready
- In this part: directly parameterize policy

$$\pi_{\theta}(s, a) = \mathbb{P}[a \mid s, \theta]$$

Effective in high-dimensional or continuous action spaces

Policy Objective Functions

- Goal: given policy $\pi_{\theta}(s, a)$ with parameters θ , find the best θ
- Define objective function to measure quality of policy
 - □ In episodic environments, objective function is the start value

$$J_1(\theta) = V^{\pi_{\theta}}(s_1) = \mathbb{E}_{\pi_{\theta}}[v_1]$$

In continuing environments, objective function is average value

$$J_{\mathsf{avV}}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) V^{\pi_{\theta}}(s)$$

Or average reward per time-step

$$J_{avR}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) \mathcal{R}_{s}^{a}$$

Policy Optimization

- Policy based RL is an optimization problem
- Find θ that maximize objective function $J(\theta)$
- Policy gradient algorithms search for a local maximum in $J(\theta)$ by ascending gradient of the policy $\Delta\theta = \alpha\nabla_{\theta}J(\theta)$

Theorem

For any differentiable policy $\pi_{\theta}(s, a)$, for any of the policy objective functions $J = J_1, J_{avR}, \text{ or } \frac{1}{1-\gamma}J_{avV}$, the policy gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ Q^{\pi_{\theta}}(s, a) \right]$$

Monte-Carlo Policy Gradient (REINFORCE)

- Update parameter by stochastic gradient ascent
- Using policy gradient theorem
- Using return v_t as an unbiased sample of $Q^{\pi_{\theta}}(s_t, a_t)$

$$\Delta \theta_t = \alpha \nabla_\theta \log \pi_\theta(s_t, a_t) v_t$$

```
function REINFORCE Initialise \theta arbitrarily for each episode \{s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do for t = 1 to T - 1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t end for end for return \theta end function
```


Reducing Variance using a Critic

- Monte-Carlo policy gradient has high variance
- A Critic is used to estimate action-value function

$$Q_w(s,a) \approx Q^{\pi_{\theta}}(s,a)$$

- Actor-critic algorithms maintain two sets of parameters
 - Critic: Updates action-value function parameter w
 - \Box Actor: Updates policy parameter θ
- Actor-critic algorithms follow an approximate policy gradient

$$\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ Q_{w}(s, a) \right]$$
$$\Delta \theta = \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) \ Q_{w}(s, a)$$

Action-Value Actor-Critic

- Simple actor-critic algorithm based on action-value critic
- Using linear value function approximation $Q_w(s, a)$
- Critic: Update w by linear TD(0)
- Actor: Update θ by policy gradient

```
function QAC Initialise s, \theta Sample a \sim \pi_{\theta} for each step do Sample reward r = \mathcal{R}_s^a; sample transition s' \sim \mathcal{P}_{s,\cdot}^a. Sample action a' \sim \pi_{\theta}(s', a') \delta = r + \gamma Q_w(s', a') - Q_w(s, a) \theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) Q_w(s, a) w \leftarrow w + \beta \delta \phi(s, a) a \leftarrow a', s \leftarrow s' end for end function
```


Recap on Reinforcement Learning 02

- Online Learning
 - Model-free Reinforcement Learning
 - Partially observable environment,
 - Monte Carlo
 - Temporal Difference
 - Q-Learning

- Value Function Approximation
 - State representation in complex environments
 - Linear Function Approximation
 - Gradient Descent and Update rules
- Policy Gradient
 - Objective Function
 - Gradient Ascent
 - REINFORCE, Actor-Critic

Questions?

THANK YOU!

