Mortality Prediction for Acute Respiratory Failure Using MIMIC-IV

```
In [ ]: """
        Import Libraries
        import pandas as pd
        import numpy as np
        import torch
        import torch.nn as nn
        import torch.optim as optim
        import torch.nn.functional as F
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model_selection import train_test_split, GridSearchCV
        from sklearn.preprocessing import StandardScaler
        from sklearn.metrics import accuracy_score, roc_auc_score, precision_score, recall_
        from imblearn.over_sampling import SMOTE
        from sklearn.utils.class_weight import compute_class_weight
        from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
        from sklearn.linear model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from xgboost import XGBClassifier
        import warnings
        # Suppress warnings
        warnings.filterwarnings('ignore')
In [ ]: # Mount Google Drive
        from google.colab import drive
```

```
drive.mount('/content/drive')
```

Mounted at /content/drive

MIMIC-IV: Loading and Filter Data for **Acute Respiratory Failure Analysis**

```
0.00
In [ ]:
        Common function to read mimic csv
        def read_mimic_csv_file(mimic_csv_file_name: str, low_memory: bool = False, chunksi
            Read a CSV file from the MIMIC-IV dataset into a pandas DataFrame.
            Parameters:
            - mimic_csv_file_name (str): Name of the CSV file.
            - low_memory (bool): Whether to use low memory mode when reading.

    chunksize (int, optional): Number of rows per chunk if reading in chunks.
```

```
Returns:
    - pd.DataFrame
"""

# Define the root directory of MIMIC-IV data in Google Drive
mimic_root_dir_path = "/content/drive/MyDrive/Colab Notebooks/AIH/MIMIC-IV/"
file_path = mimic_root_dir_path + mimic_csv_file_name

return pd.read_csv(file_path, low_memory=low_memory, chunksize=chunksize)
```

```
In [ ]: """
         Read, filter, and merge MIMIC-IV data for acute respiratory failure patients.
        # Load diagnoses data
        arf diagnoses df = read mimic csv file("diagnoses icd.csv.gz")
        # Define relevant ICD-9 and ICD-10 codes for acute respiratory failure(MIMIC-IV con
        arf_icd_codes = {'51851', '51881', 'J960', 'J9600', 'J9601', 'J9602'}
        # Filter diagnoses dataset
        arf_diagnoses_df = arf_diagnoses_df[arf_diagnoses_df['icd_code'].isin(arf_icd_codes
        # Drop unnecessary columns
        arf_diagnoses_df.drop(columns=['seq_num', 'icd_code', 'icd_version'], inplace=True,
        # Remove duplicates
        arf_diagnoses_df.drop_duplicates(inplace=True)
        # Merge with admissions data
        arf_admissions_df = read_mimic_csv_file('admissions.csv.gz')
        arf_merged_df = arf_diagnoses_df.merge(
            arf_admissions_df, on=['subject_id', 'hadm_id'], how='inner'
        arf_merged_df.drop(columns=['dischtime', 'deathtime', 'admit_provider_id', 'dischar
                                     'language', 'edregtime', 'edouttime'], inplace=True, er
        arf merged df.drop duplicates(inplace=True)
        arf_merged_df.reset_index(drop=True, inplace=True)
        # Merge with patient demographics
        arf_patients_df = read_mimic_csv_file('patients.csv.gz')
        arf merged df = arf merged df.merge(
            arf_patients_df, on=['subject_id'], how='inner'
        arf_merged_df.drop(columns=['dod', 'anchor_year_group'], inplace=True, errors='igno
        arf merged df.drop duplicates(inplace=True)
        arf merged df.reset index(drop=True, inplace=True)
        # Merge with ICU stays
        arf_icustays_df = read_mimic_csv_file('icustays.csv.gz')
```

```
arf_merged_df = arf_merged_df.merge(
   arf_icustays_df, on=['subject_id', 'hadm_id'], how='inner'
arf_merged_df.drop(columns=['last_careunit', 'intime', 'outtime', 'los', 'stay_id']
arf merged df.drop duplicates(inplace=True)
arf_merged_df.reset_index(drop=True, inplace=True)
# Define lab test keywords related to respiratory function
resp_lab_tests = {
    'oxygen saturation', 'oxygen', 'ph', 'pco2',
    'bicarbonate', 'lactate', 'calculated bicarbonate, whole blood'
}
# Load lab item details
lab_items_df = read_mimic_csv_file('d_labitems.csv.gz')
# Filter respiratory-related blood lab items
lab_items_df = lab_items_df[
    (lab_items_df['fluid'] == 'Blood') &
    (lab_items_df['label'].str.lower().str.strip().isin(resp_lab_tests))
].copy()
# Drop unnecessary columns
lab_items_df.drop(columns=['fluid', 'category'], inplace=True, errors='ignore')
lab items_df.drop_duplicates(inplace=True)
lab_items_df.reset_index(drop=True, inplace=True)
# Extract unique subject_id and hadm_id pairs
subject_hadm_set = arf_merged_df[['subject_id', 'hadm_id']].drop_duplicates().reset
# Process lab events data in chunks to manage memory efficiently
lab_chunks = []
for lab chunk in read_mimic_csv_file('labevents.csv.gz', low_memory=False, chunksiz
   # Drop irrelevant columns
   lab_chunk.drop(columns=['labevent_id', 'value', 'valueuom', 'flag', 'ref_range_
                            'priority', 'specimen_id', 'order_provider_id', 'storet
                   inplace=True, errors='ignore')
   # Merge with filtered lab items
   lab_chunk = lab_chunk.merge(lab_items_df, on='itemid', how='inner')
   lab_chunk.drop(columns=['itemid'], inplace=True, errors='ignore')
   # Keep only data for acute respiratory failure patients
   lab_chunk = lab_chunk.merge(subject_hadm_set, on=['subject_id', 'hadm_id'], how
   # Sort for time-based aggregation
   lab_chunk.sort_values(by=['subject_id', 'hadm_id', 'charttime'], inplace=True)
   # Aggregate lab test values by median per subject id, hadm id, and label
   lab_chunk = lab_chunk.groupby(['subject_id', 'hadm_id', 'label'], as_index=Fals
   lab_chunks.append(lab_chunk)
# Merge processed lab event data with the main dataset
if lab chunks:
```

```
arf_merged_df = arf_merged_df.merge(pd.concat(lab_chunks, ignore_index=True),
                                              on=['subject_id', 'hadm_id'], how='inner')
        # Remove duplicate rows
        arf_merged_df.drop_duplicates(subset=['subject_id', 'hadm_id', 'label'], inplace=Tr
        arf_merged_df.reset_index(drop=True, inplace=True)
In [ ]: # Display dataset info
        arf_merged_df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 83237 entries, 0 to 83236
      Data columns (total 15 columns):
           Column
                                Non-Null Count Dtype
       --- -----
                                -----
       0
           subject_id
                                83237 non-null int64
       1
           hadm_id
                                83237 non-null int64
       2
           admittime
                                83237 non-null object
           admission type
                              83237 non-null object
           admission_location 83237 non-null object
           insurance
                                81768 non-null object
           marital_status
                               72965 non-null object
       7
                                83237 non-null object
           race
           hospital_expire_flag 83237 non-null int64
       9
           gender
                                83237 non-null object
       10 anchor_age
                                83237 non-null int64
       11 anchor_year
                                83237 non-null int64
       12 first_careunit
                              83237 non-null object
       13 label
                                83237 non-null object
       14 valuenum
                                83213 non-null float64
      dtypes: float64(1), int64(5), object(9)
      memory usage: 9.5+ MB
```

In []: arf_merged_df.head()

Out[]:		subject_id	hadm_id	admittime	admission_type	admission_location	insurance	marital
	0	10000690	25860671	2150-11- 02 18:02:00	EW EMER.	EMERGENCY ROOM	Medicare	WIE
	1	10000690	25860671	2150-11- 02 18:02:00	EW EMER.	EMERGENCY ROOM	Medicare	WIE
	2	10000690	25860671	2150-11- 02 18:02:00	EW EMER.	EMERGENCY ROOM	Medicare	WIE
	3	10001843	26133978	2134-12- 05 00:10:00	URGENT	TRANSFER FROM HOSPITAL	Medicare	
	4	10001843	26133978	2134-12- 05 00:10:00	URGENT	TRANSFER FROM HOSPITAL	Medicare	

Preprocessing and Feature Engineering for Acute Respiratory Failure Analysis

```
In [ ]: # Check Missing Values
arf_merged_df.isnull().sum()
```

ut[]:		0
	subject_id	0
	hadm_id	0
	admittime	0
	admission_type	0
	$admission_location\\$	0
	insurance	1469
	marital_status	10272
	race	0
	hospital_expire_flag	0
	gender	0
	anchor_age	0
	anchor_year	0
	first_careunit	0
	label	0
	valuenum	24

dtype: int64

```
Out[]: array(['WHITE', 'BLACK/AFRICAN AMERICAN', 'UNKNOWN', 'PORTUGUESE',
                'BLACK/CAPE VERDEAN', 'ASIAN - SOUTH EAST ASIAN',
                'WHITE - OTHER EUROPEAN', 'WHITE - BRAZILIAN', 'UNABLE TO OBTAIN',
                'HISPANIC/LATINO - CUBAN', 'HISPANIC OR LATINO',
                'HISPANIC/LATINO - DOMINICAN', 'HISPANIC/LATINO - PUERTO RICAN',
                'ASIAN - CHINESE', 'OTHER',
                'NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER',
                'HISPANIC/LATINO - SALVADORAN', 'BLACK/CARIBBEAN ISLAND', 'ASIAN',
                'ASIAN - ASIAN INDIAN', 'HISPANIC/LATINO - HONDURAN',
                'HISPANIC/LATINO - COLUMBIAN', 'WHITE - RUSSIAN',
                'PATIENT DECLINED TO ANSWER', 'BLACK/AFRICAN',
                'HISPANIC/LATINO - CENTRAL AMERICAN', 'ASIAN - KOREAN',
                'SOUTH AMERICAN', 'WHITE - EASTERN EUROPEAN',
                'AMERICAN INDIAN/ALASKA NATIVE', 'HISPANIC/LATINO - GUATEMALAN',
                'HISPANIC/LATINO - MEXICAN', 'MULTIPLE RACE/ETHNICITY'],
               dtype=object)
In [ ]: # Get statistical summary of 'anchor_age' to understand its distribution for approp
        arf_merged_df['anchor_age'].describe()
Out[ ]:
                 anchor age
```

0 0.0 [] .		anchor_age
	count	83237.000000
	mean	64.066869
	std	16.117273
	min	18.000000
	25%	54.000000
	50%	65.000000
	75%	76.000000
	max	91.000000

dtype: float64

```
In []: import itertools
"""

Preprocessing and Feature Engineering for required features
"""

# Create a copy of the merged Acute Respiratory Failure dataset for processing
arf_processed_df = arf_merged_df.copy()

# Map Gender Column
arf_processed_df['gender'] = arf_processed_df['gender'].map({'F': 'Female', 'M': 'M'
# Handle missing values in marital status by replacing NaNs with 'Unknown'
arf_processed_df['marital_status'] = arf_processed_df['marital_status'].fillna('Unk
# Handle missing values in insurance by replacing NaNs with 'Unknown'
```

```
arf_processed_df['insurance'] = arf_processed_df['insurance'].fillna('Unknown')
# Convert admission time to datetime format
arf_processed_df['admittime'] = pd.to_datetime(arf_processed_df['admittime'])
# Compute patient age at admission using MIMIC-IV anchor values
arf processed_df['admission_age'] = (
    arf_processed_df['anchor_age'] +
    (arf processed df['admittime'].dt.year - arf processed df['anchor year'])
# Categorize patients into age groups: Young (<30), Adult (30-60), Senior (60+)
arf_processed_df['age_group'] = pd.cut(
   arf_processed_df['admission_age'],
   bins=[0, 30, 60, float('inf')],
   labels=['Young', 'Adult', 'Senior'],
   right=False
# Remove unnecessary columns after computing age group
arf_processed_df.drop(columns=['admittime', 'anchor_year', 'anchor_age', 'admission
# Convert age group to string type
arf_processed_df['age_group'] = arf_processed_df['age_group'].astype(str)
# Standardize race categories by grouping similar values
arf_processed_df['race'] = arf_processed_df['race'].replace(
   {r"ASIAN\D*": "ASIAN",
    r"WHITE\D*": "WHITE",
     r"HISPANIC\D*": "HISPANIC/LATINO",
     r"BLACK\D*": "BLACK/AFRICAN AMERICAN"},
   regex=True
# Replace ambiguous race values with 'OTHER/UNKNOWN'
arf_processed_df['race'] = arf_processed_df['race'].replace(
    ['UNABLE TO OBTAIN', 'OTHER', 'PATIENT DECLINED TO ANSWER', 'UNKNOWN', 'MULTIPL
    'OTHER/UNKNOWN'
)
# Standardize ICU (first care unit) categories by grouping related units
arf_processed_df['first_careunit'] = arf_processed_df['first_careunit'].replace(
    {r"Medical/Surgical\D*": "MICU, SICU",
     r"Medical\D*": "MICU",
     r"Neuro\D*": "NSICU",
     r"Cardiac\D*": "CVICU",
     r"Coronary\D*": "CCU",
     r"Trauma SICU\D*": "TSICU",
     r"Surgical\D*": "SICU",
     r"Intensive Care Unit\D*": "ICU"},
    regex=True
# Convert uncommon ICU categories into 'OTHERICU'
arf_processed_df['first_careunit'] = arf_processed_df['first_careunit'].replace(
    ['Surgery/Vascular/Intermediate', 'PACU', 'Medicine', 'Surgery/Trauma', 'Med/Su
```

```
'OTHER ICU'
# Convert ICU categories into separate binary columns (one-hot encoding)
arf_processed_df['first_careunit'] = arf_processed_df['first_careunit'].str.split('
arf_processed_df = arf_processed_df.join(
   pd.get_dummies(arf_processed_df['first_careunit'].apply(pd.Series).stack(), dty
    .groupby(level=0)
    .sum(),
   how='outer'
# Remove the original ICU category column after encoding
arf_processed_df.drop(columns=['first_careunit'], inplace=True)
# Aggregate lab test results by subject id and hadm id
tmp = arf_processed_df.groupby(['subject_id', 'hadm_id'], as_index=False)[['label',
# Drop old lab event columns since they have been aggregated
arf_processed_df.drop(columns=['label', 'valuenum'], inplace=True)
# Merge aggregated lab results back into the main dataframe
arf_processed_df = arf_processed_df.merge(tmp, on=['subject_id', 'hadm_id'], how='i
# Clean up temporary variable
del tmp
# Extract unique lab test names from the 'label' column
all_labels = sorted(set(itertools.chain.from_iterable(arf_processed_df['label'])))
# Expand 'valuenum' into separate columns with lab test names as headers
arf processed df = arf processed df.join(
    pd.DataFrame(arf_processed_df['valuenum'].to_list(), columns=all_labels),
   how="outer"
# Drop unnecessary columns after transformation
arf processed df.drop(columns=['subject id', 'hadm id', 'label', 'valuenum'], inpla
# Handle missing values by replacing NaNs with 0
arf_processed_df.fillna(0, inplace=True)
# One-hot encode category columns: admission type, insurance, race, gender, admissi
prefix_cols = ['age', "admission_type", "insurance", 'race', 'gender', 'loc', 'mari
dummy_cols = ['age_group', 'admission_type', 'insurance', 'race', 'gender', 'admiss
arf_processed_df = pd.get_dummies(arf_processed_df, prefix=prefix_cols, columns=dum
# Drop duplicates, drop rows with NaN, and reset indices
arf_processed_df.drop_duplicates(inplace=True)
arf processed df.dropna(inplace=True)
arf_processed_df.reset_index(drop=True, inplace=True)
arf processed df.head()
```

Out[]:

hospital_expire_flag	CCU	CVICU	ICU	MICU	NSICU	OTHER ICU	SICU	TSICU	Bicarb

0	0	0	0	0	1	0	0	0	0	
1	1	0	0	0	1	0	0	1	0	
2	1	0	0	0	1	0	0	0	0	
3	0	1	0	0	0	0	0	0	0	
4	0	0	0	0	1	0	0	1	0	

5 rows × 60 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17003 entries, 0 to 17002
Data columns (total 60 columns):

Data	columns (total 60 columns):		
#	Column	Non-Null Count	Dtype
0	hospital_expire_flag	17003 non-null	int64
1	CCU	17003 non-null	int64
2	CVICU	17003 non-null	
3	ICU	17003 non-null	int64
4	MICU	17003 non-null	int64
5	NSICU	17003 non-null	int64
6	OTHER_ICU	17003 non-null	int64
7	SICU SICU	17003 non-null	
8	TSICU	17003 non-null	
9	Bicarbonate	17003 non-null	
10	Calculated Bicarbonate, Whole Blood	17003 non-null	
11	Lactate	17003 non-null	
12	0xygen	17003 non-null	float64
13	Oxygen Saturation	17003 non-null	float64
14	pCO2	17003 non-null	float64
15	рН	17003 non-null	float64
16	age_Adult	17003 non-null	int64
17	age_Senior	17003 non-null	int64
18	age_Young	17003 non-null	
19	admission_type_DIRECT EMER.	17003 non-null	
20	admission_type_DIRECT OBSERVATION	17003 non-null	int64
21	admission_type_ELECTIVE	17003 non-null	int64
22	admission_type_EU OBSERVATION	17003 non-null	int64
23	admission_type_EW EMER.	17003 non-null	int64
24	admission_type_OBSERVATION ADMIT	17003 non-null	int64
25	admission_type_SURGICAL SAME DAY ADMISSION	17003 non-null	int64
26	admission_type_URGENT	17003 non-null	int64
27	<pre>insurance_Medicaid</pre>	17003 non-null	int64
28	insurance_Medicare	17003 non-null	int64
29	insurance_No charge	17003 non-null	int64
30	insurance_Other	17003 non-null	int64
31	insurance_Private	17003 non-null	int64
32	insurance_Unknown	17003 non-null	int64
33	race_AMERICAN INDIAN/ALASKA NATIVE	17003 non-null	int64
34	race ASIAN	17003 non-null	int64
35	race_BLACK/AFRICAN AMERICAN	17003 non-null	int64
36	race_HISPANIC/LATINO	17003 non-null	
37	race_NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER	17003 non-null	
38	race OTHER/UNKNOWN	17003 non-null	int64
39	race PORTUGUESE	17003 non-null	
40	race_SOUTH_AMERICAN	17003 non-null	
41	race WHITE	17003 non-null	
42	gender_Female	17003 non-null	
43	gender_Male	17003 non-null	
44	loc_AMBULATORY SURGERY TRANSFER	17003 non-null	
45	loc_CLINIC REFERRAL	17003 non-null	
46	loc_EMERGENCY ROOM	17003 non-null	
46 47	loc_INFORMATION NOT AVAILABLE	17003 non-null	
48	-	17003 non-null	
	loc_INTERNAL TRANSFER TO OR FROM PSYCH		
49	loc_PACU	17003 non-null	
50	loc_PHYSICIAN REFERRAL	17003 non-null	11104

```
51 loc_PROCEDURE SITE
                                                   17003 non-null int64
52 loc TRANSFER FROM HOSPITAL
                                                   17003 non-null int64
53 loc_TRANSFER FROM SKILLED NURSING FACILITY
                                                   17003 non-null int64
 54 loc WALK-IN/SELF REFERRAL
                                                   17003 non-null int64
55 marital_status_DIVORCED
                                                   17003 non-null int64
 56 marital status MARRIED
                                                   17003 non-null int64
57 marital_status_SINGLE
                                                   17003 non-null int64
                                                   17003 non-null int64
58 marital_status_Unknown
59 marital status WIDOWED
                                                   17003 non-null int64
dtypes: float64(7), int64(53)
memory usage: 7.8 MB
```

Splitting the Data into Training and Test Sets

dtype: int64

```
In [ ]: # Create a copy of the processed data
        df = processed_data.copy()
        print("Original dataset size:", len(df))
        print(df['hospital_expire_flag'].value_counts())
        # Define features (X) and target (y)
        X = df.drop(columns=['hospital_expire_flag']) # Features
        y = df['hospital_expire_flag'] # Target
        # Split the dataset into training and test sets
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y
        print("\nTraining set size:", len(X_train))
        print("Test set size:", len(X_test) ,"\n")
        print('----')
        # Apply SMOTE to oversample the minority class in the training set
        smote = SMOTE(sampling_strategy='auto', random_state=42)
        X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)
        print("Training set size after SMOTE:", len(X_train_resampled), "\n")
        # Check class distribution after SMOTE
        print(pd.Series(y_train_resampled).value_counts())
```

```
Original dataset size: 17003
hospital_expire_flag
0 12424
1 4579
Name: count, dtype: int64

Training set size: 13602
Test set size: 3401

-----
Training set size after SMOTE: 19878
hospital_expire_flag
1 9939
0 9939
Name: count, dtype: int64
```

Model Evaluation and Comparison

```
In [ ]:
            Common function to prints model's performance metrics.
        def print model performance metrics(name, accuracy, auc roc, precision, recall, f1,
            Prints model's performance metrics.
            Parameters:
            name (str): Name of the model.
            accuracy (float): Accuracy of the model.
            auc_roc (float): AUC-ROC of the model.
            precision (float): Precision of the model.
            recall (float): Recall of the model.
            f1 (float): F1-Score of the model.
            classification_report_output (str): Classification report of the model.
            confusion_matrix_output (ndarray): Confusion matrix of the model.
            0.00
            # Print performance metrics
            print(f"\n{name} Performance:")
            print(f" Accuracy: {accuracy:.4f}")
            print(f" AUC-ROC: {auc_roc:.4f}")
            print(f" Precision: {precision:.4f}")
            print(f" Recall: {recall:.4f}")
            print(f" F1-Score: {f1:.4f}")
            # Print the classification report
            print("Classification Report:")
            print(classification_report_output)
            # Print the confusion matrix
            print(f"Confusion Matrix for {name}:\n {confusion_matrix_output}")
```

Evaluate Classification Models

```
In [ ]:
         Evaluate Classification Models
        warnings.filterwarnings('ignore')
        # Standardize the features (important for neural networks)
        scaler = StandardScaler()
        X_train_resampled = scaler.fit_transform(X_train_resampled)
        X_test = scaler.transform(X_test)
        # Initialize Models
        models = {
            "Logistic Regression": LogisticRegression(random_state=0),
            "Decision Tree" : DecisionTreeClassifier(),
            "Random Forest": RandomForestClassifier(),
            "Gradient Boosting": GradientBoostingClassifier(),
            "XGBoost": XGBClassifier(learning rate=0.1, objective='binary:logistic', random
        # Prepare lists to store metrics
        metrics = []
        # Train and evaluate models on balanced data
        for name, model in models.items():
            model.fit(X_train_resampled, y_train_resampled)
            y pred = model.predict(X test)
            # Evaluate Model
            accuracy = accuracy_score(y_test, y_pred)
            auc_roc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1])
            precision = precision_score(y_test, y_pred)
            recall = recall_score(y_test, y_pred)
            f1 = f1_score(y_test, y_pred)
            # Append metrics for comparison
            metrics.append([accuracy, auc_roc, precision, recall, f1])
            # Print Model Performance Metrics
            cf = classification report(y test, y pred)
            cm = confusion_matrix(y_test, y_pred)
            print_model_performance_metrics(name, accuracy, auc_roc, precision, recall, f1,
        # Create a DataFrame for model performance comparison
        metrics_df = pd.DataFrame(metrics, columns=['Accuracy', 'AUC-ROC', 'Precision', 'Re
        print("\nModel Performance Comparison:")
        display(metrics_df)
```

Logistic Regression Performance:

Accuracy: 0.7754
AUC-ROC: 0.7702
Precision: 0.6590
Recall: 0.3439
F1-Score: 0.4519
Classification Report:

	precision	recall	f1-score	support
0	0.79	0.93	0.86	2485
1	0.66	0.34	0.45	916
accuracy			0.78	3401
macro avg	0.73	0.64	0.66	3401
weighted avg	0.76	0.78	0.75	3401

Confusion Matrix for Logistic Regression:

[[2322 163] [601 315]]

Decision Tree Performance:

Accuracy: 0.6998
AUC-ROC: 0.6233
Precision: 0.4443
Recall: 0.4574
F1-Score: 0.4508
Classification Report:

	precision	recall	f1-score	support
0	0.80	0.79	0.79	2485
1	0.44	0.46	0.45	916
accuracy			0.70	3401
macro avg	0.62	0.62	0.62	3401
weighted avg	0.70	0.70	0.70	3401

Confusion Matrix for Decision Tree:

[[1961 524] [497 419]]

Random Forest Performance:

Accuracy: 0.7945
AUC-ROC: 0.7828
Precision: 0.6955
Recall: 0.4214
F1-Score: 0.5248
Classification Report:

Classificacio	precision	recall	f1-score	support
0	0.81	0.93	0.87	2485
1	0.70	0.42	0.52	916
accuracy			0.79	3401
macro avg	0.75	0.68	0.70	3401
weighted avg	0.78	0.79	0.78	3401

Confusion Matrix for Random Forest:

[[2316 169] [530 386]]

Gradient Boosting Performance:

Accuracy: 0.7974
AUC-ROC: 0.7950
Precision: 0.6988
Recall: 0.4356
F1-Score: 0.5367
Classification Report:

	precision	recall	f1-score	support
0	0.82	0.93	0.87	2485
1	0.70	0.44	0.54	916
accuracy			0.80	3401
macro avg	0.76	0.68	0.70	3401
weighted avg	0.79	0.80	0.78	3401

Confusion Matrix for Gradient Boosting:

[[2313 172] [517 399]]

XGBoost Performance: Accuracy: 0.8077

Accuracy: 0.80//
AUC-ROC: 0.8118
Precision: 0.7481
Recall: 0.4312
F1-Score: 0.5471
Classification Report:

	precision	recall	f1-score	support
0	0.82	0.95	0.88	2485
1	0.75	0.43	0.55	916
accuracy			0.81	3401
macro avg	0.78	0.69	0.71	3401
weighted avg	0.80	0.81	0.79	3401

Confusion Matrix for XGBoost:

[[2352 133] [521 395]]

Model Performance Comparison:

	Accuracy	AUC-ROC	Precision	Recall	F1-Score
Logistic Regression	0.775360	0.770217	0.658996	0.343886	0.451937
Decision Tree	0.699794	0.623279	0.444327	0.457424	0.450780
Random Forest	0.794472	0.782850	0.695495	0.421397	0.524813
Gradient Boosting	0.797413	0.794970	0.698774	0.435590	0.536651
XGBoost	0.807704	0.811770	0.748106	0.431223	0.547091

```
In []:

Common function to plot model performance metrics comparison
"""

def plot_model_metrics_comparison(metrics):
    # Plot comparison of models in a single bar plot
    metrics.plot(kind='bar', figsize=(10, 6), colormap='cividis', width=0.8)
    plt.title('Comparison of Models Performance')
    plt.ylabel('Score')
    plt.xlabel('Model')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()

plot_model_metrics_comparison(metrics_df)
```



```
# Plot ROC curve for each model
for name, model in models.items():
    y_proba = model.predict_proba(X_test)[:, 1]
    fpr, tpr, _ = roc_curve(y_test, y_proba)
    plt.plot(fpr, tpr, label=f"{name} (AUC = {auc(fpr, tpr):.2f})")

# Plot the diagonal line representing random classifier performance
plt.plot([0, 1], [0, 1], linestyle="--", color="gray")

# Add labels and title
plt.xlabel("False Positive Rate", fontsize=12)
plt.ylabel("True Positive Rate", fontsize=12)
plt.title("ROC Curve Comparison", fontsize=14, fontweight='bold')

# Show the legend
plt.legend(loc="lower right")

# Show the plot
plt.show()
```

ROC Curve Comparison


```
In []: import math
    """
    Plotting Feature Importance for Model Comparison
    """
    # Function to plot feature importance for each model
```

```
def plot_feature_importance(models, X_train, feature_names):
   # Dynamically calculate number of rows and columns based on the number of model
   valid models = {name: model for name, model in models.items() if hasattr(model,
   num_models = len(valid_models)
   if num models == 0:
        print("No models with feature importance found.")
        return
   rows = math.ceil(num_models / 3) # 3 columns per row
   cols = min(3, num_models) # Ensure we have at most 3 columns per row
   plt.figure(figsize=(16, 4 * rows)) # Adjust height based on rows
   # Iterate over models to plot feature importance
   for idx, (name, model) in enumerate(valid_models.items()):
        # For models that have feature importances
        if hasattr(model, 'feature_importances_'):
            feature_importance = model.feature_importances_
        elif hasattr(model, 'get_feature_importance'): # For models like CatBoost
            feature_importance = model.get_feature_importance()
        # Create a DataFrame for feature importances and sort it
        feature_importance_df = pd.DataFrame({
            'Feature': feature_names,
            'Importance': feature_importance
       })
        # Plot top important features
       feature_importance_df = feature_importance_df.sort_values(by='Importance',
        # Define position in the grid for subplots (idx + 1 will handle 1-based ind
        ax = plt.subplot(rows, cols, idx + 1)
        # Plot feature importance for the current model
        feature_importance_df.plot.bar(x='Feature', y='Importance', legend=False, t
        plt.xticks(rotation=45, ha='right')
   plt.tight_layout()
   plt.show()
# Assuming X_train_resampled and models are defined
feature_names = X_train.columns
plot feature importance(models, X train resampled, feature names)
```



```
0.000
In [ ]:
        Tune best model XGBoost
        # Define hyperparameters to tune for XGBClassifier
        param_grid = {
            "n estimators": [100, 200, 300],
            "learning_rate": [0.01, 0.1, 0.2],
            "max_depth": [3, 5, 7]
        # Initialize model
        xgb = XGBClassifier(learning_rate=0.1, objective='binary:logistic', random_state=0,
        # Grid Search with 5-Fold Cross Validation
        grid_search = GridSearchCV(xgb, param_grid, cv=5, scoring="roc_auc", n_jobs=-1)
        grid_search.fit(X_train, y_train)
        # Best parameters & best score
        print(f"Best Parameters: {grid_search.best_params_}")
        print(f"Best AUC-ROC Score: {grid_search.best_score_:.4f}")
        # Evaluate on test data
        best_xgb = grid_search.best_estimator_
        y_pred_best = best_xgb.predict(X_test)
        # Evaluate the best XGBoost model
        accuracy = accuracy_score(y_test, y_pred_best)
        auc_roc = roc_auc_score(y_test, best_xgb.predict_proba(X_test)[:, 1])
        precision = precision_score(y_test, y_pred_best)
        recall = recall_score(y_test, y_pred_best)
        f1 = f1_score(y_test, y_pred_best)
        # Append metrics for comparison
        new_row = pd.Series([accuracy, auc_roc, precision, recall, f1],
                             index=metrics_df.columns, name="Tuned XGBoost")
        # Use pd.concat to add the new row to the DataFrame
```

```
metrics_df = pd.concat([metrics_df, new_row.to_frame().T])
 # Print Model Performance Metrics
 cf = classification_report(y_test, y_pred_best)
 cm = confusion_matrix(y_test, y_pred_best)
 print_model_performance_metrics('XGBoost', accuracy, auc_roc, precision, recall, f1
Best Parameters: {'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 300}
Best AUC-ROC Score: 0.8148
XGBoost Performance:
Accuracy: 0.7236
AUC-ROC: 0.5423
Precision: 0.3696
Recall: 0.0371
 F1-Score: 0.0675
Classification Report:
              precision recall f1-score support
                   0.73
                            0.98
          0
                                       0.84
                                                 2485
          1
                   0.37
                            0.04
                                       0.07
                                                  916
                                       0.72
                                                 3401
    accuracy
                                       0.45
                                                 3401
                   0.55
                            0.51
   macro avg
weighted avg
                   0.64
                            0.72
                                       0.63
                                                 3401
Confusion Matrix for XGBoost:
 [[2427
         581
 [ 882
        34]]
```

Evaluate Neural Network Model

```
In [ ]: # Standardize the features (important for neural networks)
        scaler = StandardScaler()
        X_train_resampled = scaler.fit_transform(X_train_resampled)
        X test = scaler.transform(X test)
        # Convert the data to PyTorch tensors
        X_train_tensor = torch.tensor(X_train_resampled, dtype=torch.float32)
        X_test_tensor = torch.tensor(X_test, dtype=torch.float32)
        y_train_tensor = torch.tensor(y_train_resampled.values, dtype=torch.long)
        y_test_tensor = torch.tensor(y_test.values, dtype=torch.long)
        # Define the Deep Learning model
        class ARFModel(nn.Module):
            def __init__(self, input_dim):
                super(ARFModel, self).__init__()
                self.layer11 = nn.Linear(input_dim, 128)
                self.batchnorm11 = nn.BatchNorm1d(128)
                self.layer1 = nn.Linear(128, 64)
                self.batchnorm1 = nn.BatchNorm1d(64)
                self.layer2 = nn.Linear(64, 32)
                self.batchnorm2 = nn.BatchNorm1d(32)
                self.layer3 = nn.Linear(32, 16)
                self.batchnorm3 = nn.BatchNorm1d(16)
                                                         # Batch normalization
```

```
self.output = nn.Linear(16, 2)
        self.dropout = nn.Dropout(0.3)
                                              # Dropout Layer to reduce overfitti
   def forward(self, x):
       x = F.relu(self.batchnorm11(self.layer11(x)))
        x = self.dropout(x)
       x = F.relu(self.batchnorm1(self.layer1(x)))
       x = self.dropout(x)
       x = F.relu(self.batchnorm2(self.layer2(x)))
       x = self.dropout(x)
       x = F.relu(self.batchnorm3(self.layer3(x)))
       x = self.dropout(x)
       x = self.output(x)
        return x
# Initialize model, loss function, and optimizer
input_dim = X_train_tensor.shape[1]
model = ARFModel(input_dim=input_dim)
# Compute class weights to handle imbalance in the dataset
class_weights = compute_class_weight('balanced', classes=np.array([0, 1]), y=y_trai
class_weights = torch.tensor(class_weights, dtype=torch.float32)
# Define the loss function (CrossEntropyLoss) with class weights
criterion = nn.CrossEntropyLoss(weight=class weights)
optimizer = optim.AdamW(model.parameters(), lr=0.001)
# Training Loop (200 epochs)
num epochs = 200
for epoch in range(num_epochs):
   model.train()
   optimizer.zero grad()
   outputs = model(X_train_tensor)
   loss = criterion(outputs, y_train_tensor)
   loss.backward()
   optimizer.step()
   # Print the loss every 10 epochs
   if (epoch + 1) % 10 == 0:
        print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")
# Evaluate the model on the test set
model.eval()
with torch.no grad():
   outputs = model(X_test_tensor)
   _, predicted = torch.max(outputs, 1)
# Calculate various evaluation metrics
accuracy = accuracy_score(y_test_tensor, predicted)
y prob = torch.softmax(outputs, dim=1)[:, 1]
roc_auc = roc_auc_score(y_test_tensor, y_prob)
precision = precision_score(y_test_tensor, predicted)
recall = recall_score(y_test_tensor, predicted)
f1 = f1_score(y_test_tensor, predicted)
# Append metrics for comparison
```

```
new_row = pd.Series([accuracy, auc_roc, precision, recall, f1],
                     index=metrics_df.columns, name='Neural Network')
 # Use pd.concat to add the new row to the DataFrame
 metrics_df = pd.concat([metrics_df, new_row.to_frame().T])
 # Print Model Performance Metrics
 cf = classification_report(y_test_tensor, predicted)
 cm = confusion_matrix(y_test_tensor, predicted)
 print model performance metrics('Neural Network', accuracy, auc roc, precision, rec
Epoch [10/200], Loss: 0.6178
Epoch [20/200], Loss: 0.5354
Epoch [30/200], Loss: 0.4801
Epoch [40/200], Loss: 0.4466
Epoch [50/200], Loss: 0.4287
Epoch [60/200], Loss: 0.4089
Epoch [70/200], Loss: 0.3967
Epoch [80/200], Loss: 0.3861
Epoch [90/200], Loss: 0.3775
Epoch [100/200], Loss: 0.3701
Epoch [110/200], Loss: 0.3606
Epoch [120/200], Loss: 0.3559
Epoch [130/200], Loss: 0.3517
Epoch [140/200], Loss: 0.3504
Epoch [150/200], Loss: 0.3465
Epoch [160/200], Loss: 0.3384
Epoch [170/200], Loss: 0.3395
Epoch [180/200], Loss: 0.3363
Epoch [190/200], Loss: 0.3371
Epoch [200/200], Loss: 0.3305
Neural Network Performance:
Accuracy: 0.7889
AUC-ROC: 0.5423
Precision: 0.7271
Recall: 0.3461
F1-Score: 0.4689
Classification Report:
              precision
                          recall f1-score
                                              support
           0
                             0.95
                                       0.87
                                                 2485
                   0.80
           1
                   0.73
                             0.35
                                       0.47
                                                  916
                                       0.79
                                                  3401
    accuracy
  macro avg
                   0.76
                             0.65
                                       0.67
                                                 3401
                   0.78
                             0.79
                                       0.76
                                                 3401
weighted avg
Confusion Matrix for Neural Network:
 [[2366 119]
 [ 599 317]]
```

Model Comparision

```
In [ ]: #Show comparision of all the models
    plot_model_metrics_comparison(metrics_df)
```

