

SenNet IoT Easy Meter

Energy Meter 3PH CT/Rogowski

8

Gateway for remote nodes

General description

SenNet IoT Easy Meter is a device that monitors 3PH energy electrical circuits, with two options of current transformer, 0.33Vac or flexible Rogowski. This device has the possibility to create a local RF Network with remote nodes with differents features: Pulse Counter / Temperature-Humidity / CO2 / Particule Matter etc.., and send all these information in one Sigfox message.

The configuration of all these features is possible by two ways:

- Micro-usb connection and console/terminal.
- -Trough APPSenNet NFC (IOS or Android).

The end user can select what kind of energy data and remote device wants upload to the cloud, must to select type of message (see in the next section).

Power supply

The device uses voltage reference to use like power supply (100-265VAC @ 50HZ), it's important to take care of using Neutral Line Vn and V1. There is an internal fuse to protect the device against surge damages.

Voltage power supply	100-265VAC @ 50HZ
Power	<1W

Basic steps to intall:

- 1. Set type Current Transformer (50A, 100A, 150A, 400A, 800A, 5000A).
- 2. Set type of message to use and take note to parch this datas on your prefer platform.
- 3. Take note ID / PAC to sign the device on Sigfox Cloud.
- Connect voltage reference (feed internal power supply) and current reference.

Extra features:

- Define and install remotes devices that will join to Local Network
- Set an univoque ID at each remote device

Power Meter 3 Phase Class 1 (CT's 0.33v -Rogowski)

Local RF Network

Remotes Nodes

Type Message

SenNet IoT Easy Meter is a powerfull Energy Meter but the client must be filter and select what kind of data will be upload to the platform. For that reason the devices has been defined by default several types of message what includes the main information from each electricity measureament.

The main interest allways is the total Energy accumulated, if your interest is on other parameter you can contact with our technical departament to ask for it.

Type message	Information	Details
1	Active + Reactive Energy + Remote Node -trifasic measure-	Must include some Remote Node
2	Active Energy Easy Meter + Active Energy Remote Node -trifasic measureament-	Must include an Remote Easy Meter Node
3	Active Energy PH1 + Active Energy PH2 + Active Energy PH3 -monofasic or trifasic measureament-	
4	Active Energy PH1 + Active Energy PH2 + Remote Node Data -monofasic or trifasic measureament-	Must include some Remote Node
515	To defined -future use-	

A common point in all types of messages is the head (defined with <u>2 bytes</u>) that includes important information embeded on the message (type device / type message / errors.. etc). In the next table are defined the mean of these info-fields.

								Info (byte	es)																		
Byte			Ву	te 1				Byte 2																			
	Type N	/laster D	Device	Ту	oe Messa	age	Feedback Error			Type Rem	ID Remote Nodes																
				ty	pe 0 (inf	o)					No F	Remote	= 000														
	01 - Ea	sy Mete	r		type 1					0x00 - Info	Remote																
	02 - PC	LongNe	et		type 2					0x01 - PC L	ongNet	Rem	ote ID	= 010 _b	= 02 _d												
	03 - TH	LongNe	et		type 3					0x02 - TH L	ongNet			= 011 _b =	= 03 _d												
	04 - CC	2 Longi	Vet	type 4					0x03 - CO2	LongNet	= 100 _b = 04 _d			= 04 _d													
	05 - PN	05 - PM LongNet type 5 (not defined)		type 5 (not defined)		type 5 (not defined)		ž	> 5		0x04 - PM I	ongNet			= 101 _b =	= 05 _d											
	06 – G	W Modb	ous LN	type 6 (not defined)		<u> </u>	SAG / error	ţ	0x05 – GW	Modbus LN			= 110 _b =	= 06 _d													
	07 – N	ot defin	ed				e do	_ j	oqə.	0x06 – Ana	log Input			= 111 _b =	= 07 _d												
				type 15 (not defined)		Error receive donwlink message	Overvoltage /.	Wrong reboot	0x07 – Not	defined	(6	remot	es node	es)													
Bit	7	6	5	4 3 2		4 3 2		4 3 2		4 3 2		4 3 2		4 3 2		4 3 2		4 3 2		7	6	5	4	3	2	1	0
	E	Byte1 Bit 7-6-5		Byte1 Bit 4-3-2-1					Byte2 Bit 2-4		Byte2 Bit 5-7																

	Type 1 : Active + Reactive Energy + Remote Node												
Field	In	fo	Active Energy PH1+PH2+PH3		Reactive Energy PH1+PH2+PH3				Data from R	emote node			
Byte	1	2	3	3 4 5 6				8	9	10	11 12		
			floa	t 32 l	oits v	alue	floa	at 32	bits v	/alue	At depend of Re	mote node type	

	Type 2: Active Energy Easy Meter + Active Energy Remote Node											
Field	In	fo	F	PH1+PI	gy Con H2+PH3 Energy	3	Activ	PH1+P	H2+PH ote Dev		Data from R	emote Node
			,	ACTIVE	Lileigy		Active Energy					
Byte	1	2	3 4 5 6			6	7	7 8 9 10			11	12
			flo	at 32 l	oits val	ue	float 32 bits value				At depend of Re	mote node type

	Type 3: Active Energy PH1 + Active Energy PH2 + Active Energy PH3											
Field	In	fo	Activ	e Energ	y PH1	А	ctive Energ	y PH2	Active Energy PH3			
Byte	1	2	3 4 5			6	7	8	9	10	11	
			Max. 16Mwh resolution=1kwh			r	Max. 16M esolution=			Max. 16M resolution=		

	Type 4: Active Energy PH1 + Active Energy PH2 + Remote Node Data												
Field	lı	Info Active Energy PH1			Α		Enei H2	gy	Data from R	emote Node			
Byte	1	2	3	3 4 5 6			7	8	9	10	11 12		
			float	float 32 bits value				at 32	bits v	alue	At depend of Re	mote node type	

Remote Node Data:

Type Remote Node		
Pulse Counter LongNet	2 bytes (integer type) Ma overflow option on the c	
TH-LongNet	1 byte temperature [-10°C60°C]	1 byte humidity [0-100%]
CO2 LongNet	2 bytes (integer type)	

Downlink Message

It's possible set the device by the cloud without interact with it in local, define this type of downlink message on the sigfox backend or in your platform. That method is optional but it's not necessary.

Byte	1	2 - 5	6	7	8
r:-ld	SenNet Code	Set time	Type uplink Message	Debug 1	Debug 2
Field	(1byte)	(4bytes)	(1 byte)	(1 byte) Only for internal use	(1 byte) Only for internal use
			01		
			02	00 disable	00 disable
Value	0xAB	{Time-Epox}	03	01 version HW/SW	01 debug meter
			04	02 – future use	02 – future use
			-		

An example for sending a message type 1 with 2 remotes devices defined in the local network. The data of each remote device is sent alternatively, with the use of info-field the cloud / platform will be able to patch the data belong to each Remote node.

send

send

- Active + Reactive Energy
 - Pulse Counter value (Node ID=2)
 - •Active + Reactive Energy
 - •Temperature & humidity value (Node ID=3)

SenNet Easy Meter works as Local Network coordinator and gateway for Remotes Nodes

Easy Meter Coordinator ID=1

Pulse Counter Node ID=2

Temperature & Humidity Node ID=3

Power Meter features

This devices include an advance technology to meter power electicity lines, for that need a current reference and voltage reference. It's possible to use this device like a 3 single phase meter or 1 three-phase meter, it depends on client goal to monitori.

Type of load to monitorized	
3 single-phase loads independient	PH1 PH2 PH3
1 three-phase load	PH1 / PH2 / PH3

Led output pulse		c	urrent F	Referenc	e		Vo	oltage Refere Power Sup		
	I1+	l1- (2)	12+	12-	13+	13-	Vn	V1	V2 (21)	V3 (22)
Reactive Power Aparent Power Active Power 1 pulse/seg = 1kw		(1) (2) (3) (4) (5) (6) (19) (20) Power Suppy 100-265VAC @ 50HZ Type CT current transformer 50A, 100A, 150A, 400A, 800A, 5000A(only for Rogowski type)							(,	(/
5000A(only for Rogowski type)										

Voltage reference

Range	110-220/240VAC (CAT III – 400V)
Frecuency	50-60Hz
Electrical isolation	2.5Kv @ 60second
Power supply requeriment	0.1 VA per phase
Accuracy	Class 0.2 (+/-0.2%)
4	Recommend use electrical protection before to connect this reference.

Current reference

Accuracy Class: Clase 0.2 (+/-0.2%)

This device canuse current transformer (CT) of two types 0.3Vac and flexible type (Rogowski), depending on each type, it has different type of accuracy.

Types	Range of measureament	Output type	Accuracy
CT 50 A	150 A	0.33VAC	+/-1% (5%100% In)
CT 100 A	1100 A	0.33VAC	+/-1% (5%100% ln)
CT 150 A	1150 A	0.33VAC	+/-1% (5%100% ln)
CT 400 A	1400 A	0.33VAC	+/-1% (5%100% ln)
CT 800 A	1800 A	0.33VAC	+/-1% (5%100% ln)
Flexible 5000 A (7cm Ø) (*)	105000 A	Rogowski	+/-1% (centered)
Flexible 5000 A (12cm Ø) (*)	105000 A	Rogowski	+/-1% (centered)
Flexible 5000 A (20cm Ø) (*)	105000 A	Rogowski	+/-1% (centered)

(*)Must be use model flexible SenNet Rogowski to certificate Class 1. (Factory Calibrated)

Accuracy on current measureament		
Easy Meter + SenNet CT 0.33Vac	Class 1	
Easy Meter + Flexible SenNet Rogowski	Class 1	Factory Calibrated

Electrical isolation	
SenNet CT 0.33Vac	2.5KV / 0.5mA / 3second
Flexible SenNet Rogowski	600V CAT IV

Holding case

IP Grade	IP-60
Temperature details	
Working temperature	-20ºC+70ºC
Store temperature	-20ºC+75ºC
Holding	
Dimensions	119 x 111 x 53 mm
Type mount	wall or rail din
Plastic Material	ABS – VO

