Introduction to Machine Learning

Praanesh Balakrishnan Nair

January 27, 2025

Contents

1	Intr	roduction	1		
2 Well-posed Learning Problem by Tom Mitchell (1998)					
3	Components of a dataset				
	3.1	Features	2		
	3.2	Data Points	2		
	3.3	Feature Vector	2		
4	Cla	ssification	2		
	4.1	Types of Classification Learning	2		
		4.1.1 Supervised Learning	2		
		4.1.2 Unsupervised Learning	2		
		4.1.3 Semi-supervised Learning	:		
	4.2	Model Validation Techniques	5		
		4.2.1 Internal Validation	3		
		4.2.2 External Validation	3		
5	Reg	gression	3		
	_	Quality of Fit	3		

1 Introduction

Quote by Herbert Alexander Simon:

Learning is the process by which any system improves its performance from experience

2 Well-posed Learning Problem by Tom Mitchell (1998)

A computer program

- Performs Task T
- Has some Performance P
- Learns from Experience E

Sl. No	Task	Performance	Experience
1.	Classifying Emails as Spam/Not Spam	Number of emails correctly classified	Watching you Label Ema
2.	Playing Chess	Percent of games won	Watch enemy play
3.	Handwriting Recognition	Percent of correct recognitions	Sample images

3 Components of a dataset

3.1 Features

• Individual measurable properties, which are going to be used as input to the machine learning model. Eg. Age of people, Dimensions of a house, etc

3.2 Data Points

- Multiple samples of features.
- Eg:

Sl.	No	Age	Height	Weight	BP
	1	19	175	68	999
	2	25	169	69	0

Each of these rows are data points. In each data point, you have different samples of the same features

3.3 Feature Vector

- Features in one data-point is often mathematically represented as a Vector
- Eg:

Sl.	No	Age	Height	Weight	BP	Feature Vector
	1	19	175	68	999	[19, 175, 68]
	2	25	169	69	0	[25, 169, 0]

4 Classification

Here, you input some data, and the output is a classification of it.

4.1 Types of Classification Learning

4.1.1 Supervised Learning

- Classify features X_i into classes/labels Y_i
- You find the pattern of data that is associated with one label, and use that pattern to classify.

4.1.2 Unsupervised Learning

- You have only features X_i and no labels
- You find patterns, so that similar patterns form one label, and anything different will be given another label.

4.1.3 Semi-supervised Learning

The entire dataset consists of labelled and unlabelled data

- 1. Perform supervised learning on the labelled data
- 2. Now you use this to predict the labels of the unlabelled data. The predicted labels are called psuedo-labels.
- 3. Now do supervised learning on the combined data

4.2 Model Validation Techniques

4.2.1 Internal Validation

- Seperation betwee clusters should be high
- Cohesion (distance between points in a cluster) should be low

4.2.2 External Validation

- 1. Dice Coefficient
 - $D(A,B) = \frac{2|A \cap B|}{|A|+|B|}$
 - If D(A, B) = 0, then there's no overlap. Similarly if D(A, B) = 1, they are the same set.
 - A could be the data we have and B could be some external data.
- 2. Jaccard Similarity Index

•
$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

5 Regression

Here, you input some data and you get a quantitative response.

5.1 Quality of Fit

- It's the quantification of the degree of closeness of predicted response and the true response
- The most commonly used measure for this, is the Mean Square Error (MSE).
- $MSE = \frac{\sum_{i=1}^{n} (y_i f(x_i))^2}{n}$