RS/Conference2020

San Francisco | February 24 – 28 | Moscone Center

HUMAN ELEMENT

Improved Secure Integer Comparison via Homomorphic Encryption

Jacques Traoré

Research Engineer
Orange Labs
Caen, France
Joint work with Florian Bourse and Olivier Sanders

Agenda

- Secure Integer Comparison
- Related Works
- Our Contribution
- Efficiency
- Conclusion

Secure Integer Comparison

Yao's Millionaires' Problem

How can they find out who is richer without revealing their actual wealth?

Secure Integer Comparison

How to determine whether $X \ge Y$ or not without revealing anything more about X and Y?

FHE Setting

- Inputs of A: a pair of keys (SK, PK) of a public key encryption scheme E
- Inputs of B: two ciphertexts $C_1 = E_{PK}$ (x) and $C_2 = E_{PK}$ (y)

- Goal of B: to blindly compute an encryption C of the boolean (x < y) under PK
- Applications: e.g. «Machine Learning Classification over Encrypted Data » (NDSS 2015)

Related Works

Related Works

- FOCS 1982: based on « Garbled Circuits » ⇒ rather important communication complexity
- CT-RSA 2001: based on Homomorphic Encryption. Involves bitwise encryption of the integers \Rightarrow a complexity of at least $log_2(M)$ operations where M is the bound on the integers to compare
- CT-RSA 2018: based on an Homomorphic Threshold Encryption scheme. Allows to directly compare small integers but at the cost of more interactions between the two parties
- Crypto 2018: based on FHE. Only supports a bounded message space which has to be defined at setup time \Rightarrow works well but on very small sized inputs.
- CT-RSA 2019: based on the « Legendre Symbol ». Unfortunately can only handle integers of limited size. Seems difficult to extend it to support large inputs

Our Contribution

Our Contribution

- We propose two protocols that respectively improve CEK (CT-RSA 2018) and BMMP (Crypto 2018)
- For both of our protocols, we avoid binary decomposition in order to improve the performances
- Compared to CEK we managed to divide by two the number of interactions between the two protagonists
- Compared to BMMP, our new protocol allows to securely compare large (a priori unbounded) integer

Encryption Scheme

Based on CEK

$$E_{PK}(m) = g^{b^m} h^r \bmod N$$

- Public Key $PK = \{N, b, d, g, h, u\}$
 - N = pq where $p = 2b^d p_s p_t + 1$ and $q = 2b^d q_s q_t + 1$
 - g is of order b^d , h is of order $p_{\scriptscriptstyle S}q_{\scriptscriptstyle S}$ and u is a an upper bound on $p_{\scriptscriptstyle S}q_{\scriptscriptstyle S}$
- Private key $SK = p_s q_s \hat{s}$ where $\hat{s} = (p_s q_s)^{-1} \mod b^d$
- Message space $\mathcal{M} = \{0, ..., d-1\}$

Decryption

To decrypt a ciphertext C using a private key SK

$$(C)^{sk} \mod N = (g^{b^m}h^r)^{p_sq_s\hat{s}}$$

$$= (g^{b^m})^{p_sq_s\hat{s}}(h^r)^{p_sq_s\hat{s}}$$

$$= g^{b^mp_sq_s\hat{s}}$$

$$= g^{b^m}$$

ullet Find m by exhaustive search. Easy provided d is a small integer

Threshold Homomorphic Property

$$C = E_{PK}(x)^{b^{d-y}} = (g^{b^x}h^r)^{b^{d-y}}$$
$$= g^{b^xb^{d-y}}h^{r'}$$
$$= g^{b^{d+(x-y)}}h^{r'}$$

If
$$x - y \ge 0$$
 then $b^{d+(x-y)} \equiv 0 \mod b^d$

$$C = E_{PK}(x)^{b^{d-y}} = g^0 h^{r'}$$

$$D_{SK}(C) = \emptyset$$

Threshold Homomorphic Property (II)

$$C = E_{PK}(x)^{b^{d-y}} = g^{b^{d+(x-y)}}h^{r'}$$

If $x - y \ge 0$ then $D_{SK}(C) = \emptyset$ and we obtain no other information on y

If
$$x - y < 0$$
 then $D_{SK}(C) = d + (x - y)$

• An interesting property for secure integer comparison provided we find a way to blind the integer y in particular when x-y<0

Protocol for the Millionaires' Problem

Alice (sk, x)

$$C \leftarrow E_{PK}(x) = g^{b^x} h^{r_1}$$

D,D'

Compute:

$$C' = D^{sk}$$

If $D' = \mathcal{H}(C')$

Return
$$(x \ge y)$$

Return (x < y) otherwise

Bob (Pk, y)

Choose random:

$$u, v, r_2$$

Compute:
$$D \leftarrow$$

$$C^{ub^{d-y}}g^{v}h^{r_{2}}$$

$$= g^{ub^{d+(x-y)}+v}h^{r_{3}}$$

$$D' = \mathcal{H}(g^{v})$$

Security

- We proved the security for both A and B against honest-but-curious adversaries in the random oracle model
- Privacy for A. We show that B learns nothing about x during the protocol

Theorem. Under the **Small RSA Subgroup Decision Assumption**, B's view is computationally indistinguishable from a uniformly random element in \mathbb{QR}_N for any message x

• Privacy for B. We show that A only learns the output of the protocol $(x \ge y)$ and nothing else about y

Theorem. There exists an efficient simulator S, such that $S(1^{\lambda}, (x \ge y))$ is statistically indistinguishable from A's view for any messages x and y in the random oracle model

FHE based Secure Integer Comparison

- A variant of Bourse et al. FHE scheme (Crypto 2018)
- Our scheme supports a non-binary message space:

Let B be an integer. The message space will be $\mathcal{M} = \{-B + 1, ..., B - 1\}$

Ciphertexts can be homomorphically added and scaled by a known integer constant.

Roughly: let
$$c_1=E_{PK}(m_1)$$
 and $c_2=E_{PK}(m_2)$ and $w\in\mathbb{Z}$
$$D_{SK}(c_1+wc_2)=m_1+wm_2$$

Ternary Sign computation:

Input:
$$c = E_{PK}(m)$$
 where $m \in \{-B + 1, ..., B - 1\}$

Output: $c' = E_{PK}(s)$ where $s = \begin{cases} -1, & m < 0 \\ 0, & m = 0 \\ 1, & m > 0 \end{cases}$

A Protocol for Small Integers

Let x and y be two integers in $\mathfrak{B} = \{0, ..., B-1\}$

- Inputs of B: $C_1 = E_{PK}(x)$ and $C_2 = E_{PK}(y)$
- Compute $C = E_{PK}(x y)$ using the homomorphic properties satisfied by E

• Output: $C' = E_{PK}(s)$ an encryption of s, the ternary sign of (x - y)

A Protocol for Large Integers

Let
$$x = x_0 + x_1D + x_2D^2$$
 and $y = y_0 + y_1D + y_2D^2$ where $D = \frac{B}{2}$

- Inputs of B: $C_1 = (E_{PK}(x_0), E_{PK}(x_1), E_{PK}(x_2))$ and $C_2 = (E_{PK}(y_0), E_{PK}(y_1), E_{PK}(y_2))$
- Compute $C = (E_{PK}(z_0), E_{PK}(z_1), E_{PK}(z_2))$ where $z_i = x_i y_i$ using the homomorphic properties of E

Efficiency

Efficiency

- There is a wide range of solutions to the Millionaires' problem from garbled circuits to homomorphic encryption
- Compared to similar solutions based on homomorphic encryption such DGK (ACISP'07) and CEK (CT-RSA 2018) our protocol is:
 - 4 times faster than DGK for a 256-bit security level
 - in two-passes instead of 4 with CEK and do not require a Plaintext Equality TEST (PET)
- Our FHE solution allows to compare 32 bits integers (on a Core i7-3630QM laptop) in 1023ms on a single core, 297ms on 8 cores and 165ms with maximum parallelization
 - Greater than comparison of 32 bits integers with Kolesnikov et al. protocol (CANS 09) would require 4224 ms on the same laptop

Conclusion

Conclusion

- We have introduced two new solutions to the Millionaires' problem in two different settings
- Our first solution leverages the homomorphic encryption scheme of Carlton et al. to construct a two-passes integer comparison protocol that improves over the state of the art.
- Our second solution extends the FHE construction of Bourse et al. to enable efficient computation of the encrypted boolean $(x \le y)$ given only the encryption of (a priori unbounded) integers x and y
- Both solutions share the same guiding principles, namely reducing as much as possible the number of interactions and avoiding bitwise decomposition of the integers

