

Прикладная статистика и анализ данных Съезд III

Пропуски в данных

6

Неслучайные пропуски

Возможные причины:

▶ Отказ респондента дать ответ на вопрос:

```
Сколько вы тратите в месяц на развлечения? <не скажу>
<не скажу> — важная информация!!!
```

Признак не применим:

```
Посещаете ли вы рестораны? Нет

Какой ваш средний чек? NaN>
```

В таких случаях:

- 1. Создается новый признак $x_{j'} = I\{x_j \text{ пропущено}\};$
- Пропуски заменяются на любую константу, не встречающуюся в данных.

Возможные причины:

▶ Сломалось оборудование:

Время	8:00	9:00	10:00	11:00	12:00
Температура возд.	21.4	22.1	NaN	24.2	25.5

Было лень:

Варианты:

- ▶ Удалить строки, содержащие пропуски; df.dropna
- Заполнить пропуски:
 - по ближайшему соседу;
 - ► среднее/медиана; df.fillna
 - Интерполяция (временные ряды); df.interpolate
 - EM-алгоритм;
- ightharpoonup Считать X^TX и X^TY только по полным парам

$$\frac{1}{n} (X^T X)_{jk} = \frac{1}{n} \sum_{i=1}^n x_{ij} \ x_{ik} pprox \frac{1}{n_{jk}} \sum_{i=1}^n x_{ij} \ x_{ik} \ I\{x_{ij} \ \text{и} \ x_{ik} \ \text{не пропущены}\},$$

$$\frac{1}{n} (X^T Y)_{jk} = \frac{1}{n} \sum_{i=1}^n x_{ij} \ y_i pprox \frac{1}{n_j} \sum_{i=1}^n x_{ij} \ y_i \ I\{x_{ij} \ \text{не пропущено}\}.$$

где n_{jk} — число полных пар (x_{ij}, x_{ik}) ; n_j — число заполненных x_{ij} .

Робастная регрессия

$$\begin{split} y &= a + bx \\ \widehat{b} &= \text{med} \left\{ \frac{Y_j - Y_i}{x_j - x_i}, \quad 1 \leqslant i < j \leqslant n \right\} \\ \widehat{a} &= \text{med} \left\{ Y_i - \widehat{b}x_i, \quad i = 1, ..., n \right\} \end{split}$$

Робастная оптимизация

$$\sum_{i=1}^{n} R\left(Y_{i} - x_{i}^{T}\theta\right) \to \min_{\theta \in \mathbb{R}^{d}}$$

- $ightharpoonup R(x) = x^2 L_2$ -норма, получаем обычный МНК;
- ▶ $R(x) = |x| L_1$ -норма;
- $R(x) = \frac{x^2}{2}I\{|x| < c\} + c(|x| c/2)I\{|x| > c\} Xy6ep;$

Методы на основе ближайшего соседа

6

Метод ближайших соседей (kNN)

Пусть \mathscr{X} — метрическое пространство.

 $x_1,...,x_n \in \mathscr{X}$ — обучающая выборка.

 $Y_1,...,Y_n$ — соответствующая целевая переменная.

Предположение:

свойства объекта меняются не сильно в его окрестности.

Тогда давайте смотреть на свойства k ближайших соседей.

Примеры.

Пусть $x\in\mathscr{X}$ — исследуемый объект. $x_{(1)},...,x_{(k)}$ — k его соседей в порядке удаления от x.

- 1. *Классификация*. Предсказание наиболее часто встречаемый класс.
- 2. *Регрессия*. Предсказание усреднение отклика по соседям.

Взвешенный метод ближайших соседей

Пусть $x \in \mathscr{X}$ — исследуемый объект.

 $x_{(1)},...,x_{(k)}-k$ его соседей в порядке удаления от x.

 $Y_1, ..., Y_k$ — соответствующий отклик.

 $w_1,...,w_k$ — вклад k-го соседа, определяемый пользователем.

Способы определения веса:

- $ightharpoonup w_j = 1 j/k$ зависящий от номера соседа
- $ightharpoonup w_j = \|x x_{(j)}\|^{-1}$ зависящий от расстояния до соседа

$$\widehat{y}(x) = rg \max_{y} \sum_{j=1}^k w_j I\{Y_j = k\}$$
 — Классификация $\widehat{y}(x) = rac{\sum_{j=1}^k w_j Y_j}{\sum_{j=1}^k w_j}$ — Регрессия

Свойства

- 1. k гиперпараметр модели;
- 2. Не редко на практике показывает хорошие результаты.
- 3. Дорогое применение: для каждого x результат вычисляется за $O(n \ln n)$.

Способы решения проблемы:

- ▶ Хранение данных в виде дерева: K-D Tree, Ball Tree
- Приближенный поиск: Locality-sensitive hashing —
 вероятностный метод понижения размерности многомерных данных.
 Подбирает хеш-функций так, чтобы похожие объекты
 с высокой степенью вероятности попадали в одну корзину.

https://github.com/facebookresearch/faiss — реализации методов

Непараметрическая регрессия

$$\widehat{y}(x) = \sum_{i=1}^{n} w_i(x) Y_i / \sum_{i=1}^{n} w_i(x),$$

где $w_i(x)\geqslant 0$ убывает при удалении x от X_i .

Варианты:

- 1. $w_i(x) = I\{|x X_i| \leqslant c\}$ усреднение по окрестности x;
- 2. $w_i(x) = (c |x X_i|)^k I\{|x X_i| \le c\}$ взвешенное усреднение по окрестности x;
- 3. Усреднение по k ближайшим соседям;
- 4. Ядерная оценка (см. далее).

Ядерная оценка Надарая-Ватсона

$$w_i(x) = \frac{1}{h}q\left(\frac{x-X_i}{h}\right),$$

где q — ядро (симметричная плотность),

h > 0 — ширина ядра.

Вероятностная интерпретация

Пусть $X_1,...,X_n$ случайны и $Y_i=f(X_i,\varepsilon_i)$ — отклик. Тогда $\frac{1}{n}\sum_{i=1}^n w_i(x)=\frac{1}{nh}\sum_{i=1}^n q\left(\frac{x-X_i}{h}\right)$ — ядерная оценка плотности X; $\frac{1}{n}\sum_{i=1}^n w_i(x)Y_i=\frac{1}{nh}\sum_{i=1}^n Y_i\cdot q\left(\frac{x-X_i}{h}\right)$ — "ядерное мат. ожид." EY; $\widehat{y}(x)=\sum_{i=1}^n w_i(x)Y_i\left/\sum_{i=1}^n w_i(x)-1\right.$ "ядерное УМО" E(Y|X).

Ядерная оценка: теорема о сходимости

Пусть

- 1. $\int_{\mathbb{R}} |q(y)| dy < \infty;$
- 2. yq(y) o 0 при $|y| o \infty$;
- 3. E*Y*² < ∞;
- 4. $h_n \to 0, nh_n \to \infty$ при $n \to \infty$.

Тогда $\widehat{y}(x) \stackrel{\mathrm{P}}{\longrightarrow} y(x)$ в точках непрерывности функции f(x), плотности $p_X(x)$ и условной дисперсии $\sigma^2(x) = \mathrm{D}(Y|X=x)$, если при этом p(x) > 0.

Наилучшая скорость сходимость квадратичного риска достигается при $h \sim n^{-1/5}$

Ядерная оценка: выбор ширины ядра

Функционал вида leave one out:

$$F(h) = \sum_{i=1}^{n} (Y_i - \hat{y}_{-i}(x_i))^2,$$

где $\hat{y}_{-i}(x)$ — ядерная оценка, построенная по выборке, из которой было исключено і-е наблюдение.

Утверждение

$$F(h) = \sum_{i=1}^{n} (Y_i - \hat{y}(x_i))^2 / \left(1 - \frac{q(0)}{\sum_{k=1}^{n} q(\frac{x_i - x_k}{h})}\right)$$

Выбор
$$h: F(h) \rightarrow \min_{h}$$

Ядерная оценка: доверительная лента

Предположения:

$$\mu(x)$$
 — ожидаемый отклик;

$$Y_i = \mu(x_i) + \varepsilon_i$$
 — наблюдаемый отклик, $\mathsf{E}\varepsilon_i = 0, \mathsf{D}\varepsilon_i = \sigma^2;$ q — гауссовское ядро.

Доверительная лента уровня доверия α :

$$\left(\widehat{y}(x) - z_{3h}\delta(x), \quad \widehat{y}(x) + z_{3h}\delta(x)\right)$$

$$\delta(x) = \widehat{\sigma} \sqrt{\sum_{i=1}^{n} w^2(x_i)} / \sum_{i=1}^{n} w(x_i), \qquad p = \frac{1 + \alpha^{1/3h}}{2},$$

$$\widehat{\sigma}^2 = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (Y_{i+1} - Y_i)^2$$

Ширина окна

h = const не ок в случае "где-то пусто, а где-то густо".

Тогда $h(x) = ||x - X_{(k)}||$, где $X_{(k)} - k$ -й ближайший сосед для x.

Выбросы

Оценка Надарая-Ватсона крайне неустойчива к выборсам.

См. алгоритм LOWESS.

Локальная линейная регрессионная модель

Модель
$$f(x) = x^T \theta(x)$$

Для каждого х применяется взвешенный МНК:

$$\sum_{i=1}^{n} w_i(x) \left(Y_i - X_i^T \theta(x) \right)^2 \longrightarrow \min_{\theta(x)}$$

где
$$w_i(x) = q_{h(x)}(x - X_i)$$
.

Взвешенный МНК:

$$\widehat{\theta}(x) = \left(X^T W(x) X\right)^{-1} X^T W(x) Y$$

$$W(x) = diag(w_1^2(x), ..., w_n^2(x))$$

Проверка линейности логита в логистической регрессии

Пусть $(x_1, Y_1), ..., (x_n, Y_n)$ — обучающая выборка, где $Y_i \in \{0, 1\}$.

Выберем признак j и построим ядерную регрессию $y \sim x_j$:

$$\widehat{y}(x_j) = \sum_{i=1}^n q\left(\frac{x_j - x_{ij}}{h}\right) Y_i / \sum_{i=1}^n q\left(\frac{x_j - x_{ij}}{h}\right),$$

 \Im та регрессия — приближение вер-ти класса 1 в зависимости от x_j .

Отсюда делаем приближение логита:

$$logit(x_j) = log \frac{\widehat{y}(x_j)}{1 - \widehat{y}(x_j)}.$$

Проверка: график $logit(x_j)$ похож на прямую.

Логит линеен, все хорошо

Классы линейно разделимы, но зависимость нелинейна

Классы не являются линейно разделимыми

