Interfacing R with web technologies for interactive statistical graphics and computing with data

by

Carson Sievert

A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of ${\tt DOCTOR\ OF\ PHILOSOPHY}$

Major: Statistics

Program of Study Committee:
Heike Hofmann, Major Professor
Dianne Cook
Jarad Niemi
Ulrike Genschel
Grayson Calhoun

Iowa State University

Ames, Iowa

2016

Copyright © Carson Sievert, 2016. All rights reserved.

ProQuest Number: 10238714

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10238714

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

TABLE OF CONTENTS

LIST (OF TA	BLES	vi
LIST (OF FIG	GURES	viii
ACKN	IOWL	EDGEMENTS	xxiv
СНАР	TER	1. PROBLEM STATEMENT	1
СНАР	TER :	2. OVERVIEW	3
2.1	What	makes a good statistical software interface?	. 3
	2.1.1	Synergy between interfaces	. 3
	2.1.2	Synergy among programming interfaces	. 8
2.2	Acqui	ring and wrangling web content in R \dots	. 10
	2.2.1	Interfaces for working with web content	. 10
	2.2.2	Interfaces for acquiring data on the web	. 13
2.3	Intera	active statistical web graphics	. 15
	2.3.1	Why interactive graphics?	. 15
	2.3.2	Web graphics	. 18
	2.3.3	Translating R graphics to the web	. 20
	2.3.4	Interfacing with interactive web graphics	. 22
	2.3.5	Multiple MVC paradigms	. 23

	2.3.6	Hybrid MVC for one interface	28
	2.3.7	MVC for multiple interfaces	29
CHAP	TER 3	3. TAMING PITCHF/X DATA WITH XML2R AND	
		PITCHRX	33
3.1	Introd	uction	34
	3.1.1	What is PITCHf/x?	34
	3.1.2	Why is PITCHf/x important?	34
	3.1.3	PITCHf/x applications	35
	3.1.4	Contributions of pitchRx and XML2R	35
3.2	Gettin	g familiar with Gameday	36
3.3		ucing XML2R	39
	3.3.1	Constructing file names	39
	3.3.2	Extracting observations	40
	3.3.3	Renaming observations	42
	3.3.4	Linking observations	44
	3.3.5	Collapsing observations	45
3.4	Collect	ting Gameday data with pitchRx	46
3.5	Storing	g and querying Gameday data	48
3.6	Visual	izing PITCHf/x	50
	3.6.1	Strike-zone plots and umpire bias	50
	3.6.2	2D animation	59
	3.6.3	Interactive 3D graphics	62
3.7	Conclu	ısion	64
СНАР	TER 4	. LDAVIS: A METHOD FOR VISUALIZING AND IN-	
		TERPRETING TOPICS	66
4 1	Introd	uction	67

4.2	Relate	ed Work	70
	4.2.1	Topic Interpretation and Coherence	70
	4.2.2	Topic Model Visualization Systems	72
4.3	Releva	ance of tokens to topics	73
	4.3.1	Definition of Relevance	73
	4.3.2	User Study	74
4.4	Our V	isualization System	79
4.5	Discus	ssion	83
CHAP	TER 5	5. EXTENDING GGPLOT2'S GRAMMAR OF GRAPH-	
		ICS IMPLEMENTATION FOR LINKED AND DY-	
		NAMIC GRAPHICS ON THE WEB	84
5.1	Introd	luction	85
5.2	Relate	ed Work	86
5.3	Exten	ding the layered grammar of graphics	89
	5.3.1	Direct Manipulation of Database Queries	90
	5.3.2	Adding animation	92
	5.3.3	World Bank Example	93
	5.3.4	Implementation details	100
5.4	Explo	ring performance & scope with examples	104
5.5	Comp	arison study	105
	5.5.1	The Grand Tour	105
	5.5.2	World Bank Example	109
5.6	User f	eedback and observations	110
	5.6.1	User perspective	110
	5.6.2	Developer perspective	111
5.7	Limita	ations and future work	111

5.8	Conclu	ısion			113
СНАР	TER 6	6. INTERACTIVE DATA VISUALIZATION	ON	THE	
		WEB USING R			114
6.1	Introd	uction			114
6.2	Case S	Studies			116
	6.2.1	Exploring pedestrian counts			116
	6.2.2	Tracking disease outbreak			128
	6.2.3	Exploring Australian election data			132
6.3	Conclu	ısion			137
6.4	Ackno	wledgements			139
СНАР	TER 7	Z. PLOTLY FOR R			140
7.1	Two a	pproaches, one object			140
	7.1.1	A case study of housing sales in Texas			141
	7.1.2	Extending ggplotly()			153
7.2	The pl	lotly cookbook			160
	7.2.1	Scatter traces			160
	7.2.2	Maps			182
	7.2.3	Bars & histograms			185
	7.2.4	Boxplots			191
	7.2.5	2D frequencies			195
	7.2.6	Other 3D plots			199
7.3	Arrang	ging multiple views			200
	7.3.1	Arranging htmlwidgets			201
	7.3.2	Merging plotly objects			205
	7.3.3	Navigating many views			213
7.4	Multip	ole linked views			216

	7.4.1	Linking views with shiny	. 216
	7.4.2	Linking views without shiny	. 220
7.5	Anima	ating views	. 242
	7.5.1	Key frame animations	. 242
	7.5.2	Linking animated views	. 246
7.6	Advar	aced topics	. 251
	7.6.1	Custom behavior via JavaScript	. 252
	7.6.2	Translating custom ggplot2 geoms	. 253
	7.6.3	Designing an htmlwidget interface	. 256
СНАР	TER 8	8. IMPACT AND FUTURE WORK	259
8.1		st	
	8.1.1	plotly	. 259
	8.1.2	LDAvis	. 261
8.2	Future	e work	. 261
BIBLI	OGR.A	РНУ	263

LIST OF TABLES

Table 3.1	Structure of PITCHf/x and related Gameday data sources accessi-	
	ble to 'scrape()' \dots	38
Table 5.1	Characteristics of 11 interactive visualizations designed with	
	animint. The interactive version of these visualizations can be ac-	
	cessed via http://sugiyama-www.cs.titech.ac.jp/~toby/animint/.	
	From left to right, we show the data set name, the lines of R code	
	(LOC) including data processing but not including comments (80	
	characters max per line), the amount of time it takes to compile	
	the visualization (seconds), the total size of the uncompressed	
	TSV files in megabytes (MB), the total number of data points	
	(rows), the median number of data points shown at once (on-	
	screen), the number of data columns visualized (variables), the	
	number of clickSelects/showSelected variables (interactive),	
	the number of linked panels (plots), if the plot is animated, and	
	the corresponding Figure number in this paper (Fig)	106

LIST OF FIGURES

Figure 2.1	A basic visual depiction of linked views in a standalone web page	
	(A) versus a client-server model (B). In some cases (A), linked	
	views can be resolved within a web browser, which generally leads	
	to a better user experience. In other cases (B), updating views	
	may require calls to a web server running special software	9
Figure 2.2	A video demonstration of interactive and dynamic techniques for	
	visualizing high-dimensional relationships in data using the R	
	package tourbrush. You can view this movie online at https:	
	//vimeo.com/148050343	15
Figure 2.3	Four different MVC paradigms. In all the scenarios, the graph	
	acts as the controller, but the model (i.e., the data and logic	
	which updates the view) exists in different places. In Scenario A,	
	a mouse hover event manipulates the model within the underlying	
	JavaScript library. In Scenario B, a window resizing manipulates	
	the model within the HTMLwidget.resize() method, defined by	
	the widget author. In Scenario C, a mouse hover event manip-	
	ulates the model within the underlying JavaScript library and a	
	model defined by both the user (in R) and the widget author (in	
	JavaScript). In Scenario D, removing outliers from the raw data	
	may require R code to be executed	25

Figure 2.4	Linking views in plotly with shiny (scenario B) versus without	
	shiny (scenario A)	30
Figure 2.5	The GGobi pipeline, as described by Lawrence (2002), in compar-	
	ison to a centralized pipeline. The GGobi pipeline is shown in	
	peach color while the centralized pipeline is in both yellow and	
	blue to point out multiple interfaces can be linked in a centralized	
	pipeline	31
Figure 2.6	The MVC design for linking multiple htmlwidgets with crosstalk	32
Figure 3.1	Table relations between Gameday data accessible via scrape().	
	The direction of the arrows indicate a one to possibly many rela-	
	tionship	38
Figure 3.2	Density of called strikes for right-handed batters and left-handed	
	batters (from 2008 to 2013)	52
Figure 3.3	Density of called strikes minus density of balls for both right-	
	handed batters and left-handed batters (from 2008 to 2013). The $$	
	blue region indicates a higher frequency of called strikes and the	
	red region indicates a higher frequency of balls	54
Figure 3.4	Probability that a right-handed away pitcher receives a called	
	strike (provided the umpire has to make a decision). Plots are	
	faceted by the handedness of the batter	57
Figure 3.5	Difference between home and away pitchers in the probability of	
	a strike (provided the umpire has to make a decision). The blue	
	regions indicate a higher probability of a strike for home pitchers	
	and red regions indicate a higher probability of a strike for away	
	pitchers. Plots are faceted by the handedness of both the pitcher	
	and the batter	58

Figure 3.6	The last frame of an animation of every four-seam and cutting	
	fastballs thrown by NY Yankee pitchers Mariano Rivera and Phil	
	Hughes during the 2011 season. The actual animation can be	
	viewed at http://cpsievert.github.io/pitchRx/ani1. Pitches are	
	faceted by pitcher and batting stance. For instance, the top left	
	plot portrays pitches thrown by Rivera to left-handed batters	61
Figure 3.7	The last frame of an animation of averaged four-seam and cut-	
	ting fastballs thrown by NY Yankee pitchers Mariano Rivera and	
	Phil Hughes during the 2011 season. The actual animation can	
	be viewed at http://cpsievert.github.io/pitchRx/ani2. PITCHf/x	
	parameters are averaged over pitch type, pitcher and batting	
	stance. For instance, the bottom right plot portrays an average	
	four-seam and average cutter thrown by Hughes to right-handed	
	batters	63
Figure 3.8	3D scatterplot of pitches from Rivera. Pitches are plotted every	
	one-hundredth of a second. Cutting fastballs are shown in red and	
	four-seam fastballs are shown in blue. The left hand plot takes	
	a viewpoint of Rivera and the right hand plot takes a viewpoint	
	near the umpire. Note these are static pictures of an interactive	
	object.	64
Figure 4.1	The layout of LDAvis, with the global topic view on the left, and	
0	the token barcharts on the right. Linked selections allow users to	
	reveal aspects of the topic-token relationships compactly	69
Figure 4.2	Dotted lines separating the top-10 most relevant tokens for dif-	00
- 10 410 112	ferent values of λ , with the most relevant tokens for $\lambda = 2/3$	
	displayed and highlighted in green	75

Figure 4.3	A plot of the proportion of correct responses in a user study vs. the	
	value of λ used to compute the most relevant tokens for each topic.	78
Figure 4.4	The user has chosen to segment the topics into four clusters, and	
	has selected the green cluster to populate the barchart with the	
	most relevant tokens for that cluster. Then, the user hovered	
	over the ninth bar from the top, 'file', to display the conditional	
	distribution over topics for this token	80
Figure 5.1	Linked database querying via direct manipulation using animint.	
	A video demonstration can be viewed online at https://vimeo.	
	com/160496419	92
Figure 5.2	A simple animation with smooth transitions and interactively al-	
	tering transition durations. A video demonstration can be viewed	
	online at https://vimeo.com/160505146	94
Figure 5.3	An interactive animation of World Bank demographic data of sev-	
	eral countries, designed using clickSelects and showSelected	
	keywords (top). Left: a multiple time series from 1960 to 2010 of	
	life expectancy, with bold lines showing the selected countries and	
	a vertical grey tallrect showing the selected year. Right: a scat-	
	terplot of life expectancy versus fertility rate of all countries. The	
	legend and text elements show the current selection: year=1979,	
	$country = \{United \ States, \ Vietnam\}, \ and \ region = \{East \ Asia \ \&$	
	Pacific, North America}	95
Figure 5.4	Animint provides a menu to update each selection variable. In	
	this example, after typing 'th' the country menu shows the subset	
	of matching countries	97

Figure 5.5	A schematic explanation of compilation and rendering in the	
	World Bank visualization. Top: the interactive animation is a list	
	of 4 R objects: 2 ggplots and 2 option lists. Center: animint R	
	code compiles data in ggplot geoms to a database of TSV files (\Longrightarrow) .	
	It also compiles plot meta-data including ggplot aesthetics, ani-	
	mation time options, and transition duration options to a JSON	
	meta-data file (\rightarrow). Bottom: those data-dependent compiled files	
	are combined with data-independent JavaScript and HTML files	
	which render the interactive animation in a web browser $({ \multimap }).$	101
Figure 5.6	Interactive animation of tornadoes recorded from 1950 to 2012 in	
	the United States. Left: map of the lower 48 United States with	
	tornado paths in 1982. The text shows the selected year, and click-	
	ing the map changes the selected state, currently Texas. Right:	
	time series of tornado counts in Texas. Clicking a bar changes the	
	selected year, and the text shows selected state and the number	
	of tornadoes recorded there in that year (119 tornadoes in Texas	
	in 1022)	102

Figure 5.7	Visualization containing 6 linked, interactive, animated plots of	
	Central American climate data. Top: for the selected time (De-	
	cember 1997), maps displaying the spatial distribution of two	
	temperature variables, and a scatterplot of these two variables.	
	The selected region is displayed with a black outline, and can be	
	changed by clicking a rect on the map or a point on the scatter-	
	plot. Bottom: time series of the two temperature variables with	
	the selected region shown in violet, and a scatterplot of all times	
	for that region. The selected time can be changed by clicking a	
	background tallrect on a time series or a point on the scatterplot.	
	The selected region can be changed by clicking a line on a time	
	series	103
Figure 5.8	Linked selection in a grand tour with animint. A video demon-	
	stration can be viewed online at https://vimeo.com/160720834 $$.	107
Figure 5.9	Linked selection in a grand tour with ggvis and shiny. A video	
	demonstration can be viewed online at https://vimeo.com/	
	160825528	108
Figure 6.1	Missing values by station	117
rigure 0.1	wissing values by station	111
Figure 6.2	An interactive bar chart of the number of missing counts by sta-	
	tion linked to a sampled time series of counts. See here for the	
	corresponding video and here for the interactive figure	118

Figure 6.3	Two frames from a grand tour of measures generated from sea-	
	sonal, trend, and irregular time-series components. The first	
	frame (the top row) displays the state of the tour roughly 16	
	seconds into the animation while the second frame (the bottom	
	row) is at roughly 60 seconds. A given frame displays both a 2D	
	projection (on the left) and the linear combination of variables	
	used for the projection (on the right). In both frames, the Tin	
	Alley-Swanson St (West) sensor is highlighted in red – a useful	
	technique for tracking interesting or unusual point(s) throughout	
	a tour	121
Figure 6.4	Identifying and comparing unusual sensors (Tin Alley and Swan-	
	son St) using linked highlighting between a grand tour and a	
	parallel coordinates plot. The second frame of Figure 6.3 helped	
	to point out Bourke St as a somewhat unusual sensor with respect	
	to trend. Highlighting that point and linking it to a parallel co-	
	ordinate plot makes it easier to compare trend across sensors and	
	compare the other measures among sensors of interest	122
Figure 6.5	Linking views of seasonal trend decomposition summaries (first	
	two rows) to the actual time series (last two rows). By linking	
	raw counts and the hourly IQR, we can see that Tin Alley (in	
	red) experiences relatively low traffic compared to Bourke St (in	
	blue), and overall traffic (black). See here for the corresponding	
	video and here for the interactive figure	124

Figure 6.6	Seventeen time series features linked to a geographic map as well	
	as raw counts. This static image was generated using a persistent	
	brush to compare Tin Alley-Swanson St. (in red) to Waterfront	
	City (in blue). In addition to being unusual in the feature space,	
	these sensors are also on the outskirts of the city. The corre-	
	sponding video and interactive figure (available here and here)	
	also includes a grand tour and raw counts by day of the year	126
Figure 6.7	Sensors with high first order autocorrelation (in red) versus sen-	
	sors with low autocorrelation (in blue). See here for the corre-	
	sponding video and here for the interactive figure	127
Figure 6.8	Linking a dendrogram of hierarchical clustering results to multiple	
	views of the raw data. See here for the corresponding video and	
	here for the interactive figure	128
Figure 6.9	Multiple views of the Zika outbreak data. On the left-hand side	
	is a map of the reporting locations. On the right is the overall	
	density of suspected/confirmed cases reported per week (on a log	
	scale), and the overall weekly median over time	129
Figure 6.10	A comparison of the overall cases (in black) to the cases condi-	
	tional on the map bounds (in red). Zooming and panning the	
	interactive map dynamically updates the density estimates and	
	median number of incidents	130
Figure 6.11	Zooming and panning to a region of the map that has a negative	
	median of overall cases (Nicaragua). A video of the zooming and	
	panning may be viewed here	131
Figure 6.12	Cumulative confirmed (in red) and suspected (in blue) counts by	
	location within 9 different countries	132

Figure 6.13	Highlighting cumulative confirmed (in red) and suspected	
	(in blue) counts by location within Colombia to verify re-	
	classifications from confirmed to suspected. A video of the	
	interactive highlighting may be viewed here	133
Figure 6.14	Electorate demographics among the Liberal Party (in green), the	
	Australian Labor Party (in orange), and other parties (in black).	
	The vertical lines represent the mean value within each group.	
	The interactive application used to generate this image may be	
	accessed here and a video of the interactive highlighting may be	
	viewed here.	134
Figure 6.15	Comparing voting outcomes and geographic location among the	
	Liberal Party (in green), the Australian Labor Party (in orange),	
	and other parties (in black). The bar chart in the upper-left hand	
	panel shows the number of electorates won by each party. The	
	upper-right hand panel shows the proportion of 1st preference	
	votes for each party for given electorate. The lower-left hand panel	
	shows the absolute difference in vote totals for each electorate.	
	The lower-right hand panel show the locations of electorates	136
Figure 6.16	Electorates that were determined by less than 10 percent of the	
	total vote. These electorates tend to have voters that are younger,	
	less religious, are less likely to own property, and lean towards the	
	Labor party	137
Figure 6.17	Electorates that experienced a close election as well as electorates	
	with small populations (in orange)	138

Figure 7.1	Monthly median house price in the state of Texas. The top row	
	displays the raw data (by city) and the bottom row shows 2D	
	binning on the raw data. The binning is helpful for showing the	
	overall trend, but hovering on the lines in the top row helps reveal	
	more detailed information about each city	143
Figure 7.2	Monthly median house price in Houston in comparison to other	
	Texan cities	146
Figure 7.3	Monthly median house price in Houston and San Antonio in com-	
	parison to other Texan cities	149
Figure 7.4	First, second, and third quartile of median monthly house price	
	in Texas	151
Figure 7.5	Layering on a 4-year forecast from a exponential smoothing state	
	space model	152
Figure 7.6	Customizing the dragmode of an interactive ggplot 2 graph. $\ .$	153
Figure 7.7	Adding a rangeslider to an interactive ggplot2 graph	154
Figure 7.8	Using list viewer to inspect the JSON representation of a plotly	
	object	155
Figure 7.9	Using the style() function to modify hoverinfo attribute values	
	of a plotly object created via ggplotly() (by default, ggplotly()	
	displays hoverinfo for all traces). In this case, the hoverinfo for a	
	fitted line and error bounds are hidden	156
Figure 7.10	Leveraging data associated with a geom_smooth() layer to display	
	additional information about the model fit	158
Figure 7.11	Leveraging output from StatBin to add annotations to a stacked	
	bar chart (created via <pre>geom_bar()</pre>) which makes it easier to com-	
	pare bar heights	159

Figure 7.12	Leveraging output from StatDensity2d to add annotations to	
	contour levels. a stacked bar chart (created via geom_bar())	
	which makes it easier to compare bar heights	161
Figure 7.13	Three versions of a basic scatterplot	163
Figure 7.14	Specifying symbol in a scatterplot	164
Figure 7.15	Mapping symbol to a factor	165
Figure 7.16	Variations on a numeric color mapping	166
Figure 7.17	Three variations on a numeric color mapping	167
Figure 7.18	Three variations on a discrete color mapping	168
Figure 7.19	Controlling the size range via sizes (measured in pixels)	169
Figure 7.20	A 3D scatterplot	169
Figure 7.21	An interactive version of the generalized pairs plot made via the	
	ggpairs() function from the GGally package	171
Figure 7.22	A coefficient plot	173
Figure 7.23	Median house sales with one trace per city	174
Figure 7.24	Using $\operatorname{\mathtt{color}}$ and/or $\operatorname{\mathtt{linetype}}$ to differentiate groups of lines	175
Figure 7.25	Various kernel density estimates	176
Figure 7.26	Parallel coordinates plots of the Iris dataset. On the left is the	
	raw measurements. In the middle, each variable is scaled to have	
	mean of 0 and standard deviation of 1 . On the right, each variable	
	is scaled to have a minimum of 0 and a maximum of 1. $\ \ldots \ \ldots$	178
Figure 7.27	A path in 3D	178
Figure 7.28	A 3D line plot	179
Figure 7.29	A candlestick chart	180
Figure 7.30	Plotting fitted values and uncertainty bounds of a linear model	
	via the broom package	181
Figure 7.31	A map of Canada using the default cartesian coordinate system.	182

Figure 7.32	Three different ways to render a map. On the top left is plotly's	
	default cartesian coordinate system, on the top right is plotly's	
	custom geographic layout, and on the bottom is map box. $\ .\ .\ .$	184
Figure 7.33	A map of U.S. population density using the state.x77 data from	
	the datasets package	185
Figure 7.34	plotly.js's default binning algorithm versus R's ${\tt hist}(\tt)$ default	187
Figure 7.35	Number of diamonds by cut	188
Figure 7.36	A trellis display of diamond price by diamond clarity	189
Figure 7.37	A grouped bar chart	190
Figure 7.38	A stacked bar chart showing the proportion of diamond clarity	
	within cut	191
Figure 7.39	Using ggmosaic and ggplotly() to create advanced interactive vi-	
	sualizations of categorical data	192
Figure 7.40	Overall diamond price and price by cut	193
Figure 7.41	Diamond prices by cut and clarity	193
Figure 7.42	Diamond prices by cut and clarity, sorted by price median. $\ . \ .$	195
Figure 7.43	Three different uses of histogram2d()	196
Figure 7.44	2D Density estimation via the kde2d() function	198
Figure 7.45	Displaying a correlation matrix with add_heatmap() and control-	
	ing the scale limits with colorbar()	199
Figure 7.46	A 3D surface of volcano height	200
Figure 7.47	Printing multiple htmlwidget objects with tagList(). To render	
	tag lists at the command line, wrap them in ${\tt browsable()}$	202
Figure 7.48	Arranging multiple htmlwidgets with flexbox	203
Figure 7.49	Arranging multiple htmlwidgets with fluidPage() from the	
	shiny package	204

Figure 7.50	The most basic use of subplot() to merge multiple plotly objects	
	into a single plotly object	206
Figure 7.51	Five different economic variables on different y scales and a com-	
	mon x scale. Zoom and pan events in the x-direction are synchro-	
	nized across plots	207
Figure 7.52	Pre-populating y axis IDs	208
Figure 7.53	A visual diagram of controling the heights of rows and widths	
	of columns	208
Figure 7.54	A joint density plot with synchronized axes	209
Figure 7.55	Recursive subplots	210
Figure 7.56	Multiple bar charts of US statistics by state in a subplot with a	
	choropleth of population density	212
Figure 7.57	Arranging multiple faceted ggplot2 plots into a plotly subplot	213
Figure 7.58	Using plotly within a trelliscope	215
Figure 7.59	A video demonstration of plotly events in shiny. The video can	
	be accessed here	217
Figure 7.60	A video demonstration of linked brushing in a shiny app. The	
	video can be accessed here and the code to run the example is here	e 2 19
Figure 7.61	A video demonstration of clicking on a cell in a correlation matrix	
	to view the corresponding scatterplot. The video can be accessed	
	here and the code to run the example is here	220
Figure 7.62	Monthly median house sales by year and city. Each panel repre-	
	sents a city and panels are linked by year. A video demonstrating	
	the graphical queries can be viewed here	222
Figure 7.63	Brushing a scatterplot matrix via the ggpairs() function in the	
	GGally package. A video demonstrating the graphical queries	
	can be viewed here	223

Figure 7.64	Highlighting lines with transient versus persistent selection. In
	the left hand panel, transient selection (the default); and in the
	right hand panel, persistent selection. The video may be accessed
	here
Figure 7.65	Linking views between plotly and leaflet to explore the relation be-
	tween magnitude and geographic location of earthquakes around
	Fiji. The video may be accessed here
Figure 7.66	Selecting cities by indirect manipulation. The video may be ac-
	cessed here
Figure 7.67	A bar chart of cities with one or more missing median house sales
	linked to a time series of those sales over time. The video may be
	accessed here
Figure 7.68	A diagram of the pipeline between the data and graphics 230
Figure 7.69	Dynamically populating a boxplot reflecting brushed observations 233
Figure 7.70	Dynamically populating a bar chart reflecting brushed observations 234
Figure 7.71	Engine displacement versus highway miles per gallon by class of
	car. The linear model for each class, as well as the individual
	observations, can be selected by hovering over the line of fitted
	values. An individual observation can also be selected by hovering
	over the relevant point
Figure 7.72	Using nested selections to highlight numerous diagnostics from
	different regions of the design matrix
Figure 7.73	Clicking on a density estimate to highlight all the raw observations
	that went into that estimate
Figure 7.74	A simple example of hierarchial selection
Figure 7.75	Leveraging hierarchical selection and persistent brushing to paint
	branches of a dendrogram

Figure 7.76	Animation of the evolution in the relationship between GDP per	
	capita and life expectancy in numerous countries	243
Figure 7.77	Modifying animation defaults with animation_opts(), animation	button()
	and animation_slider()	244
Figure 7.78	Animation of GDP per capita versus life expectancy by continent.	
	The ordering of the contintents goes from lowest average (across	
	countries) life expectancy to highest	245
Figure 7.79	Overlaying animated frames on top of a background of all possible	
	frames	246
Figure 7.80	Highlighting the relationship between GDP per capita and life ex-	
	pectancy in the Americas and tracking that relationship through	
	several decades	247
Figure 7.81	Comparing the evolution in the relationship between per capita	
	GDP and life expectancy in countries with large populations (red)	
	and small populations (blue)	248
Figure 7.82	Linking a dendrogram to a grand tour and map of the USArrests	
	data to visualize a classification in 5 dimensions	250
Figure 7.83	Using onRender() to register a JavaScript callback that opens a	
	google search upon a 'plotly_click' event	253
Figure 7.84	Converting GeomXspline from the \mathbf{ggalt} package to plotly. js via	
	ggplotly()	256
Figure 8.1	CRAN downloads over the past 6 months from RStudio's	
	anonymized CRAN mirror download logs. Shown are common	
	packages for interactive web graphics.	260

