Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \, \mathbf{B} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}, \, \mathbf{C} = \begin{pmatrix} -6 \\ -6 \end{pmatrix} \tag{1}$$

1 VECTORS

parameters	values	description	
$\mathbf{m_1}$	$\begin{pmatrix} 1 \\ -8 \end{pmatrix}$	AB	
m ₂	$\begin{pmatrix} -9 \\ -2 \end{pmatrix}$	BC	
m_3	$\binom{8}{10}$	CA	
A - B	8.06	length of AB	
B-C	9.21	length of BC	
C - A	12.81	length of CA	
$ \begin{bmatrix} \operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} $	3	non collinear	
n_1	$\begin{pmatrix} -8 \\ -1 \end{pmatrix}$	AB	
c_1	-12		
n_2	$\begin{pmatrix} -2\\9 \end{pmatrix}$	BC	
c_2	30		
n_3	$\begin{pmatrix} 10 \\ -8 \end{pmatrix}$	CA	
c_3	-108		
Area	37	Area of Triangle	
$\angle A$	45.78°		
$\angle B$	95.40°	Angles	
$\angle C$	38.81°		

TABLE 1: Vectors.

2 MEDIAN

parameters	value	description		
D	$\begin{pmatrix} -1.5 \\ -5 \end{pmatrix}$	BC midpoint		
E	(-2, -1)	CA midpoint		
F	$\begin{pmatrix} 2.5 \\ 0 \end{pmatrix}$	AB midpoint		
m_4	$\begin{pmatrix} -3.5 \\ -9 \end{pmatrix}$	AD		
n ₄	$\begin{pmatrix} -9\\3.5 \end{pmatrix}$			
c_4	-4			
m_5	$\begin{pmatrix} -5 \\ 3 \end{pmatrix}$	BE		
n_5	$\begin{pmatrix} 3 \\ 5 \end{pmatrix}$			
c_5	-11			
m_6	$\binom{8.5}{6}$	CF		
n ₆	$\begin{pmatrix} 6 \\ -8.5 \end{pmatrix}$			
c_6	15			
G	$\begin{pmatrix} -0.33 \\ -2 \end{pmatrix}$	Centroid		
$\begin{array}{c} \underline{BG} \\ \overline{GE} \\ \underline{CG} \\ \overline{GF} \\ \underline{AG} \\ \overline{GD} \end{array}$	2	Division ratio by G		
$ \frac{\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix}}{\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{B} & \mathbf{E} & \mathbf{G} \end{pmatrix}} $	2	collinear		
$\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{C} & \mathbf{F} & \mathbf{G} \end{pmatrix}$				

TABLE 2: Median.

Fig. 1: triangle plotted using python

Fig. 2: medians plotted using python

3 ALTITUDE

4 PERPENDICULAR BISECTOR

			parameters	value	description
			m ₁₀	$\begin{pmatrix} -2\\9 \end{pmatrix}$	4.0
parameters	value	description	n ₁₀	(9)	AD_1
$\mathbf{D_1}$	$\left(\begin{array}{c}3.74\end{array}\right)$	Foot of altitude from A	1110	(2)	
	\-3.83/		c_{10}	-23.50	
$\mathbf{E_1}$	(-1.51, -0.39)	Foot of altitude from B	$\mathbf{m_{11}}$	(10)	
$\mathbf{F_1}$	$\begin{pmatrix} 3.11 \\ 4.96 \end{pmatrix}$	Foot of altitude from ${f C}$	11111	(-8)	BE_1
	(-4.86)		$\mathbf{n_{11}}$	$\begin{pmatrix} -8 \\ 10 \end{pmatrix}$	-
m_7	$\begin{pmatrix} 1.74 \\ -7.83 \end{pmatrix}$			(-10)	
	(-7.83)	AD_1	c_{11}	26	
$\mathbf{n_7}$	$\begin{pmatrix} -7.83 \\ -1.74 \end{pmatrix}$		m ₁₂	$\begin{pmatrix} -8 \\ -1 \end{pmatrix}$	
c_7	-8.7			(-1)	CF_1
m.	(-4.51)		n ₁₂	$\left(\begin{array}{c}8\end{array}\right)$	
m ₈	3.61	BE_1	c_{12}	-2.5	
n ₈	(3.61)	DE_1	О	(-2.47)	Circumcentre
	(4.51)			$\left(-0.62\right)$	Circumcentre
<i>c</i> ₈	-7.21		$\ \mathbf{O} - \mathbf{A}\ $		
m ₉	9.1		$\ \mathbf{O} - \mathbf{B}\ $		
	(1.14)	CF_1	$\ \mathbf{O} - \mathbf{C}\ $	6,43	OA = OB = OC = R
n ₉	$\left(\begin{array}{c} 1.14 \end{array}\right)$	011	R		
	\-9.1		$\angle BOC$	91.57°	(DOC OVERAC
c_9	47.82		$\angle BAC$	45.78°	$\angle BOC = 2\angle BAC$
н	$\left(\begin{array}{c}3.95\end{array}\right)$	Orthocentre	$\angle AOC$	169.19°	/ AOC
	$\left(-4.76\right)$		$\angle ABC$	95.40°	$\angle AOC = 2\angle ABC$
TABLE 3: Altitude.		$\angle AOB$	282.37°	/AOB = 2/BCA	
		$\angle BCA$	0	$\angle AOB = \angle \angle BOA$	

TABLE 4: Perpendicular Bisector.

Fig. 4: perpendicular bisectors plotted using python

5 ANGLE BISECTOR

Fig. 5: Angle bisectors plotted using python

		,	
parameters	value	description	
m ₁₃	$\begin{pmatrix} -0.5\\1.77 \end{pmatrix}$	AI	
n ₁₃	$\begin{pmatrix} 1.77 \\ -0.5 \end{pmatrix}$		
c_{13}	1.54		
m ₁₄	$\begin{pmatrix} -1.10 \\ 0.77 \end{pmatrix}$	BI	
m ₁₄	$\begin{pmatrix} -0.77 \\ -1.10 \end{pmatrix}$		
c_{14}	2.07		
m ₁₅	$\begin{pmatrix} -1.60 \\ -0.99 \end{pmatrix}$	CI	
n ₁₅	$\begin{pmatrix} 0.99 \\ -1.60 \end{pmatrix}$	CI	
c_{15}	3.62		
I	$\begin{pmatrix} 0.28 \\ -2.08 \end{pmatrix}$	Incentre	
D_3	$\begin{pmatrix} 0.82 \\ -4.49 \end{pmatrix}$	Point of contact with BC	
E ₃	$\begin{pmatrix} -1.64 \\ -0.55 \end{pmatrix}$	Point of contact with AC	
F ₃	$\begin{pmatrix} 2.72 \\ -1.78 \end{pmatrix}$	Point of contact with AB	
$\ \mathbf{I} - \mathbf{D_3}\ $			
$\ \mathbf{I} - \mathbf{E_3}\ $			
$\ \mathbf{I} - \mathbf{F_3}\ $	2.46	$ID_3 = IE_3 = IF_3 = r$	
r			
$\angle BAI$	22.222	(DAT : 247	
$\angle CAI$	22.89°	$\angle BAI = \angle CAI$	
$\angle ABI$	47 700	/ ADI / CDI	
$\angle CBI$	47.70°	$\angle ABI = \angle CBI$	
$\angle ACI$ $\angle BCI$	19.40°	$\angle ACI = \angle BCI$	

TABLE 5: Angle Bisectors.