

Mark Scheme

Summer 2016

Pearson Edexcel International GCSE Physics (4PH0) Paper 1P Science Double Award (4SC0) Paper 1P

Pearson Edexcel Level 1/Level 2 Certificate Physics (KPH0) Paper 1P Science (Double Award) (KSC0) Paper 1P

ALWAYS LEARNING PEARSON

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful. www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4PH0_1P_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	B – the horizontal part of the line;		1
(b)	A – the area under the line;		1
(c)	B – the distance moved divided by the time taken;		1

Total 3 marks

Question number	Answer	Notes	Marks
2 (a)	All lines correct = 2 marks Any correct added line = 1 mark part of reactor function control rod controls the fission coolant absorbs dangerous radiation fuel rod contains uranium for fission shielding removes energy from reactor		2
(b)	kinetic energy;		1
(c)	and any one from (which)allows fission to continue; (which) causes (induced) fission; (so) neutrons can be absorbed by uranium;	makes the neutrons thermal/eq ignore moderator absorbs neutrons ignore • neutrons collide with uranium • successful collisions	2
(d)	any three of - MP1 each fission (of a nucleus) caused by a single neutron; MP2 each fission releases more than one neutron; MP3 excess neutrons can speed up the reaction; MP4 (more) fissions release excess energy; MP5 control rods absorb neutrons; MP6 control rods regulate the rate of fission/reaction;	e.g. a nucleus splits when neutron has been absorbed ignore 'block'/ eq allow control rods speed up/slow down rate of fission	3

Question number	Answer	Notes	Marks
3 (a) (i)	C – speed in free space;		1
(ii)	All lines correct = 2 marks Any correct line = 1 mark type of electromagnetic wave use		2
	gamma rays heating food for patients microwaves imaging broken bones x-rays with medical tracers		
(iii)	(direction of vibration) perpendicular to (direction in which the wave travels);	allow at right angles to or 90° to	1
(b) (i)	D - 45 000 Hz;		1
(ii)	Any two of -	ignore phrase about reflection received as in stem	2
	wave travels there and back; depth is half total distance travelled; time (to target) is half total (travel) time;	iii steiii	
(iii)	wavelength is longer in patient or wavelength shorter in air;	allow wavelength is longer in more dense medium	2
	and one of:-	meulum	
	(because) $v = f \times \lambda$; OR	 ignore speed related to medium as speed increases wavelength increases 	
	(because) frequency does not change;	Total 9 marks	

Question	Answer	Notes	Marks
number			
4 (a)	Substitution into given equation; Rearrangement;	NB Equation is given on page 2 of QP Substitution and rearrangement in either order Accept working in Pa or kPa, litres and/or m³.	3
	Calculation; e.g. $101 \times 1700 = p_2 \times 12$ $p_2 = 101 \times 1700 \div 12$	POT error = -1 mark	
	= 14 000 (kPa)	14300 (kPa) 14 MPa correct answer without working scores 3 marks	
(b) (i)	In words or $p = h \times \rho \times g$;	For <i>g</i> Accept "acceleration due to gravity" Reject "gravity" For h Accept depth or height For p accept pressure or pressure difference or as Δp	1
(ii)	Substitution; Calculation; e.g. p=11 × 1028 × 10	Allow g=9.8m/s ²	2
	= 110 (kPa)	113 (kPa) 113080 Pa	
		Allow 111 kPa or 110818 Pa(from g=9.8m/s ²)	
(iii)	Answer to (b)(ii) + 101 (kPa);	Allow 210 (kPa) 211 214 Reject answer if new PoT error	1

Question number	Answer	Notes	Marks
(c)	EITHER		2
	MP1 pressure decreases (with decreasing depth)/ $p = h \times \rho \times g$;		
	MP2 pV is constant (for fixed mass of gas)/ $p_1 \times V_1 = p_2 \times V_2$;	v is inversely proportional to p	
	OR		
	MP3 Sea may be warmer near the surface;MP4 (causing the pressure inside the bubble to increase)which causes the volume to increase	MP4 is DOP on MP3	

Total 9 marks

Question number	Answer	Notes	Marks
5 (a) (i)	Voltmeter connected in parallel with a component; component is LDR;	not in parallel with wire	2
(ii)	measure current / take current reading; divide voltage (reading) by current (reading);	 number of amps for current p.d. or number of volts for voltage R = V/I Ignore triangle mnemonics 	2
(b) (i)	B – the diameter of the hole;		1
(ii)	C – the distance from the card to the LDR;		1
(iii)	Any one of - Move ruler to cover half the hole/halfway down the hole; Draw guide lines; Use set square;	idea of measuring across/over the diameter at right angles to ruler Placed against ruler Ignore: move ruler nearer the hole/start from 0 on the ruler	1

Continued

Question	Answer	Notes	Marks
number 5 (c) (i)	suitable scales;	Must use > half	4
5 (c) (i)	axes labelled; Plotting of points;;	width and half height of grid units on axis labels ignore orientation of graph to nearest ½	4
(ii)	line of best fit;	square, up to two marks available for this, -1 each error reject dot to dot allow a reasonably smooth curve, points should be evenly distributed about the line	1
	$\begin{array}{c} 1200 \\ 1000 \\ \hline \\ resistance \\ so \\ of LDR / \Omega \\ 600 \\ \hline \\ 400 \\ \hline \\ 200 \\ \hline \\ 0 \\ \hline \\ 10 \\ 20 \\ \hline \\ 30 \\ \hline \\ diameter of hole / mm \\ \end{array}$	diameter /mm resistance /Ω	
(iii)	MP1 Idea of an inverse relationship; OR	ignore 'negative correlation'	2
	Pattern sentence linking resistance and diameter;	e.g. "the bigger the diameter, the lower the resistance"	
	MP2 Idea of a non-linear relationship;	allow exponential decrease	

Total 14 marks

Question number	Answer	Notes	Marks
6 (a) (i)	Comet orbit behind Sun completed correctly;	Dashed or solid curved line	1
(ii)	X marked anywhere in grey area;	No need to label X as "Sun" X should be left of the imaginary 5-7 line, reject X placed outside the orbit	1
	e.g.	the curve should be 'pointy' not a part of a circle, such that distance week6-week 5 > distance week 5-week4	
(iii)	Any one of the following ideas- MP1. comet was behind/near the Sun; MP2. comet was obscured/eclipsed by Sun; MP3. light from comet could not reach astronomer; MP4. Sun too bright to allow observation; MP5. we should not look directly at the Sun;	Allow labelled sketch	1
(iv)	C – week 9;		1
(v)	Any two of - MP1. Same time between observations;	Allow specific reference to 'a week' as the same time between observations	2
	<pre>MP2. Different distances between observations; MP3. Speed = distance ÷ time;</pre>	3330. Vacions	

(vi)	Any one of - Energy argument – transfer of GPE to KE (ORA);		1
	Force argument, e.g. pulled by the Sun's gravitational force;	Ignore unqualified `pulled by gravity' gravitation from other bodies	
(b)	Substitution into given formula;		3
	Conversion from days to hours; Calculation; e.g. $v = 2 \times \pi \times 150\ 000\ 000 \div (365 \times 24)$ = 110 000 (km/hour)	24 seen $107 589/108 000 (km/hour)$ Allow due π (ONLY) a number that rounds to 110 000 $2 582 130 = 2 \text{ (no 24 hr)}$ 43 036 = 2 (used 60 instead of 24)	

Total 10 marks

Question number	Answer		Notes	Marks
7 (a)	3 or more correct lines = 2 ma Any two correct lines = 1 mark			2
	Notes about the total internal reflection of light	Right or wrong		
	the angle of incidence equals the angle of reflection	√		
	light changes speed when it is internally reflected	×		
	every ray entering the semicircular glass block is reflected by total internal reflection	x		
	if <i>i</i> = 0 then the ray does not deviate	√		
	the refractive index of glass is bigger than the refractive index of air	√		
(b)	MP1 only two internal reflection attempted; MP2 horizontal line from first Tisecond TIR; MP3 ray does not deviate on ex	IR to	horizontal line by eye ignore arrows	3

Question	Answer	Notes	Marks
number 7 (c) (i)	Statement of sin c = $1/n$; Substitution; Calculation; e.g. sin c = $1/n$ worth 1 sin c = $1/1.5$ worth 2 (= 0.667) so c = 41.8° worth 3	Notes Value of c (or n) to at least 3 s.f. Allow reverse argument for max 2. Sin 42° = 0.669, giving n = 1.49 ("about 1.5") Sin 42 x 1.5 = 1.0036	Marks 3
		≈1 (sin 42 = 1/1.5) Beware spurious maths that gives about 42 degrees	
(ii)	Any two of the following ideas:-	allow	2
	• RI= sin i /sin r	n= speed 1/speed2 n= 1/sin c	
	• RI(n) is (only) a <u>number /ratio;</u>	proportion for ratio	
	 a sine is a number /ratio; 	units cancel out	
(d) (i)	Plot at 1.5, 42;	no tolerance	1
(ii)	Any one of -		1
	Fits the trend/pattern; (point is on) an extrapolation of line to;	May be shown on graph OR e.g. "where the line would go"	
(iii)	Any two of - MP1. Idea that a reduced scale gives full(er) use of grid;	allow reduced scale fits the data ranges (of RI or c)	2
	MP2. RI is always more than 1 (for incidence in air)	ignore RI >0	
	MP3. angle c greater than ~20°;	allow angle c never zero	

Question number	Answer	Notes	Marks
8 (a)	(metre) ruler;	allow set square, tape measure, digital callipers ignore metre stick	1
(b)	Up to five marks, no more than 3 from each section:- Recording data Any three of - MP1. measure original length; MP2. add a (known) weight/force/load/mass; MP3. measure the new length / extension; MP4. Repeat for range of values of load; MP5. Experimental detail;	e.g. • distance measurements from the same point each time • use of pointer/indicator • reduce parallax • repeats and average (for each load)	5
	Handling data / conclusions Any three of - MP6. Calculate extension; MP7. Plot graph of extension/length against force/weight/load; MP8. Graph should be a straight line;	Allow length, but not mass calculate k from data k is constant	
	MP9. Extension graph should pass through origin;	Not for length graph	
	MP10. Force proportional to extension;	allow load for force	

Question number			Answer	Notes	Marks	
9	(a)	(i)	Current that passes in one direction only;	ignore current varies	1	
		(ii)	Any three of - MP1 provides a connection / current to the coil/commutator; MP2 idea of reverses the current in the coil;	allow swops the contacts/ ensures that current always flows clockwise through the coil/eq	3	
			MP3 Every half turn; MP4 Reverses (coil) field /polarity	so the moment is always in the same direction		
			MP6 So that the motor keeps turning (the same way);	direction		
		(iii)	Any one of - Still spins clockwise; No (overall) effect/direction remains the same; The two changes cancel out/nothing changes;	Ignore "nothing happens" unless clear that rotation continues	1	
	(b)	(i)	power = voltage × current;	Accept symbols P=I×V Condone a mix of correct symbols and words	1	
		(ii)	Substitution and calculation; Conversion to megawatts; e.g. P=I×V P= 4000 × 600 = 2 400 000 (W)	division by 10 ⁶ or 1 000 000 seen	2	
			= 2 400 000 ÷ 1 000 000 = 2.4 (MW)	correct answer without working scores two marks		

	Question number		Answer	Notes	Marks
9	(c)	(i)	work done = force × distance (moved)	Accept symbols W=F×d W =Fd	1
		(ii)	Substitution; Calculation; e.g. Work = 400 000 × 190 76 000 000 (J)	Accept 76 MJ with correct unit 7.6 x 10 ⁷ (J) 76 x 10 ⁶ (J)	2
	(d)	(i)	Substitution into given equation; P = W/t Rearrangement; Calculation; e.g.	No mark for the equation as it is given in QP Substitution and rearrangement in either order	3
			$1.9 = 67 \div t$ worth 1 $t = 67 \div 1.9$ worth 2 = 35 (s)worth 3	Or (in joules and watts) 67 000 000 ÷ 1 900 000 (35.26) correct answer without working =3	
		(ii)	Any one of :- Takes longer /eq; More time needed to raise coal; Load moves more slowly;	Ignore: unqualified comments about the amount of work done	1

Total 15 marks

Question number	Answer	Notes	Marks	
10 (a) (i)	5.4 ± 0.1 (cm);; if out of range allow 1 mark for 5.4 ± 0.2 (cm) if answer quoted to 3 or more SF, then deduct 1 mark	In the range 5.3 to 5.5 = 2 marks 5.2 OR 5.6 = 1 mark	2	
(ii)	5.12 (cm)	Accept 5.1	1	
(iii)	Substitution; Calculation; e.g. circumference = 1.510 × 3.142 = 4.744 cm	Accept 4.7, 4.74 condone 5 with working credit alternative values of π e.g. 1.510 x 3.14 = 4.741 2 marks for correct answer without working POT error max 1 mark	2	
(b)	 Any four of:- General - MP1. Different precision / use of significant figures; MP2. Calculation error / value for π / unit error; MP3. Unskilled use of equipment; MP4. width of pen mark; String - MP5. Stretches / bends / has inconsistent tension; MP6. Thickness of string makes the circumference larger; MP7. Parallax error (when using ruler); Calliper - MP8. Zero error / calibration error; MP9. Pipe damaged / pipe not quite circular / equation assumes pipe is circular; 	Allow a reverse argument where appropriate ignore 'accurate' Can't do a true circle (only a helix) e.g. may not draw dots in a straight enough line, may not get the calliper at 90 degrees to the pipe, may crush the pipe with calliper Ignore unqualified 'human error' Total 9 Marks	4	

Question number	Answer	Notes	Marks
11 (a) (i)	kinetic energy = $\frac{1}{2}$ × mass × velocity ²	Accept symbols $KE = \frac{1}{2} \times m \times v^2$	1
(ii)	Conversion of units; Substitution and rearrangement into correct formula; Calculation; e.g. $18 \text{ MJ} = 18 000 000 \text{ J}$ $v^2 = 18 000 000 \times 2 \div 250 000 (= 144)$	at any stage	3
	v = 12 (m/s)	POT error max 2 marks e.g. 3.8 x 10° or 1.2 x 10°	
(iii)	Energy is transferred to surroundings;	Allow to heat, sound, other forms / energy decreases	1
(b) (i)	Any two of - MP1. GPE = m.g.h;	allow 'lift' for 'passengers' 'gravity force' (still) acts below ground level, reject 'gravity'	2
	MP2. passengers have moved to a higher point/upwards; MP3. work is done to move the passengers;	moved in opposite direction to force of gravity	
	MP4. passengers are further from the centre of the earth;		
(ii)	max of 3 from each list to total of 4 When entering station- MP1. KE → GPE; MP2. Less work done by the brakes (to stop the train); MP3. Less (braking) force needed (to stop);	Allow energy for work	4
	MP4. train stops more quickly OR brakes are needed for less time (to stop);	an effect on the brakes, e.g. don't get so hot / are quieter / last longer / are less worn	
	When leaving station- MP5. GPE → KE; MP6. Less work done by the motor (to accelerate);	Allow	
	MP7. Less force needed (to accelerate	less power/ current	

MP8.	the train); train accelerates more quickly OR force needed for a shorter time (to reach a given speed);	needed motor lasts longer / is less worn	
------	--	--	--

Total 11 marks

Question number	Answer	Notes	Marks
12 (a)	two correct comparative statements about temperature:- MP1 Bear('s fur) and snow about the same temperature; MP2 Bear's head/nose/eyes warmer (than fur); MP3 Bear's eyes are warmer than eyes/nose OR bear's eyes are the warmest; MP4 Sky/air is cooler than bear/snow OR sky/air is the coldest;	allow reverse arguments bear's nose is cooler than its eyes bear/snow warmer than air	2
(b) (i)	Any two of - MP1. (hollow) hair / fibres contains an insulator; MP2. air is an insulator/poor conductor (of thermal energy); MP3. air is kept / trapped near the body (by fur); MP4. convection currents cannot form between hairs; MP5. white fur is a poor emitter of thermal energy / I R;	hair is an insulator only small convection currents can form	2
(ii)	Any three of - MP1. Black (skin) is a good emitter/radiator of thermal energy; MP2. White (fur) is a good reflector of thermal energy; MP3. Black (skin) is a good absorber of thermal energy; MP4. the reflected thermal energy is absorbed by the black (skin);	Allow white fur is a poor emitter.	3
(c) (i)	Any two of- MP1. Snow reflects UV OR does not absorb UV; MP2. Sky absorbs UV OR does not reflect UV; MP3. Bear('s fur) absorbs UV OR does not reflect UV; MP4. Bear's eyes reflect UV OR do not absorb UV;	ignore other verbs such as emits radiates	2

(ii)	Any one of-	allow air or atmosphere for sky	1
	Sky absorbs UV; Sky not emitting UV; Sun not included in image;	ignore 'blocks out' Accept sky doesn't reflect or only reflects UV diffusely	
(iii)	Any two of - MP1. UV/light travels in air, not in glass or hair (material); MP2. UV is absorbed by hair; MP3. TIR does not happen;	light/UV always travels in the less dense medium ORA for optical fibre	2
	MP4. explanation of why TIR can't happen;	Allow reflection in hair is external, not internal there is no critical angle	

Total 12 marks