Zadania z Analizy Matematycznej I.1 - seria I

Zadanie 1. Udowodnić, że dla $n \in \mathbb{N}$ zachodzi

- $1+3+5+\ldots+(2n-1)=n^2$;
- $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$;
- $1^3 + 2^3 + 3^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2 = (1+2+3+\ldots+n)^2$.

Zadanie 2. Udowodnić, że dla $x>-1,\,n\in\mathbb{N}$ zachodzi

$$(1+x)^n \ge 1 + nx.$$

Udowodnij również, że dla $-1 < x < \frac{1}{n}$ i $n \in \mathbb{N}$ prawdziwe jest oszacowanie

$$(1+x)^n \le \frac{1}{1-nx}.$$

Zadanie 3. Udowodnić, że dla $n \ge 2$ wyrażenie

$$2^{2^n} - 6$$

jest podzielne przez 10.

Zadanie 4. Udowodnić, że liczba postaci

$$\frac{n^3}{6} + \frac{n^2}{2} + \frac{n}{3}$$

jest naturalna dla $n \in \mathbb{N}$.

Zadanie 5. Niech $a_1, a_2, \ldots, a_n > 0$, $A_n = \frac{a_1 + a_2 + \ldots + a_n}{n}$, $G_n = \sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n}$, $H_n = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}}$. Udowodnić, że zachodza nierówności

$$A_n \geq G_n \geq H_n$$
.

Zadanie 6. Wykazać, że wśród obszarów, na jakie dzieli płaszczyznę n prostych, jest co najwyżej $\frac{(n-1)(n-2)}{2}$ obszarów ograniczonych.

Zadanie 7. Wykazać, że nierówność

$$\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \ldots + \frac{1}{3n+1} > 1$$

zachodzi dla $n \in \mathbb{N}$.

Zadanie 8. Wykazać, że jeśli $a_k > 0$ dla k = 1, ..., n i $a_1 \cdot a_2 \cdot ... \cdot a_n = 1$, wówczas

$$(1+a_1)(1+a_2)\cdot\ldots\cdot(1+a_n)\geq 2^n$$
.