

Contents

SPC 409: Flight Dynamics and Control Cours	
Dr. Mohannad Draz	1
Aircraft Parameters	3
Longitudinal Mode	8
Long Period Approximation	8
Short Period Approximation	8
Lateral Mode	15
Rolling Mode Approximation:	15
Dutch Roll Approximation:	15
Spiral Mode Approximation:	16
Autopilot Controller Design	25
Lateral Controller	26
With controller (PID)	26
Without controller	31
Longitudinal Controller	31
With controller (PID)	33
Without Controller	38

Aircraft Parameters

The F-IO4A is a single place_lightweight_supersonic air superiority fighter powered by a single turbojet engine with afterburner. The wing has a full span leading edge flap. Trailing edge flaps have a blowing-type boundary layer control system. Control is provided by conventional ailerons and rudder and an all-movable stabilizer. Pitch_roll_ and yaw dampers are incorporated_ however their effect is not shown here. Pitch and roll controls are fully irreversible while the yaw control is a cable-actuated rudder without boost. A bobweight is used in the longitudinal feel system. Its position is assumed to be at the pilot's location. The primary source of data was LR 10794. Drag information was obtained from LR-12873. The nominal configuration used here is the combat loading for the F-]O4A based on actual weight and balance data. The PA configuration is a typical loading at flight manual approach speeds.

For nominal Configuration:

YAW AXIS

$$\delta_{s} = [-17,5]$$
 $c_{L} = 0.735$
 $c_{D} = 0.263$
 $C_{L_{\alpha}} = 3.44[1/rad]$
 $c_{D_{\alpha}} = 0.45[1/rad]$
 $c_{m_{\alpha}} = -0.64[1/rad]$
 $c_{m_{\dot{\alpha}}} = -1.6[1/rad]$
 $c_{m_{\dot{q}}} = -5.8[1/rad]$
 $c_{L_{\delta_{s}}} = 0.68[1/rad]$
 $c_{m_{\delta_{s}}} = -1.46[1/rad]$
 $c_{y_{\beta}} = -1.7[1/rad]$

$$c_{y_{\beta}} = -1.17[1/rad]$$
$$c_{n_{\beta}} = 0.5[1/rad]$$

$\begin{split} c_{\mathcal{L}_{\beta}} &= -0.175[1/rad] \\ c_{\mathcal{L}_{p}} &= -0.285[1/rad] \\ c_{n_{p}} &= -0.14[1/rad] \\ c_{n_{r}} &= -0.14[1/rad] \\ c_{\mathcal{L}_{r}} &= 0.265[1/rad] \\ c_{n_{r}} &= -0.75[1/rad] \\ c_{n_{\delta_{a}}} &= 0.0042[1/rad] \\ c_{\mathcal{L}_{\delta_{a}}} &= 0.039[1/rad] \\ c_{\mathcal{L}_{\delta_{a}}} &= 0.208[1/rad] \\ c_{\mathcal{L}_{\delta_{r}}} &= 0.208[1/rad] \\ c_{\mathcal{L}_{\delta_{r}}} &= 0.045[1/rad] \\ c_{n_{\delta_{r}}} &= 0.16[1/rad] \\ c_{\eta_{\delta_{d}}} &= 0.0325[1/rad] \\ c_{\eta_{\delta_{d}}} &= -0.025[1/rad] \\ c_{\mathcal{L}_{\delta_{d}}} &= -0.0044[1/rad] \end{split}$	
$\begin{split} c_{n_p} &= -0.14[1/rad] \\ c_{\mathcal{L}_r} &= 0.265[1/rad] \\ c_{n_r} &= -0.75[1/rad] \\ c_{n_{\delta a}} &= 0.0042[1/rad] \\ c_{\mathcal{L}_{\delta a}} &= 0.039[1/rad] \\ c_{\mathcal{L}_{\delta a}} &= 0.208[1/rad] \\ c_{\mathcal{L}_{\delta r}} &= 0.208[1/rad] \\ c_{\mathcal{L}_{\delta r}} &= 0.045[1/rad] \\ c_{n_{\delta r}} &= 0.16[1/rad] \\ c_{n_{\delta r}} &= 0.0325[1/rad] \\ c_{n_{\delta d}} &= -0.025[1/rad] \end{split}$	$c_{\mathcal{L}_{\beta}} = -0.175[1/rad]$
$\begin{split} c_{\mathcal{L}_r} &= 0.265[1/rad] \\ c_{n_r} &= -0.75[1/rad] \\ c_{n_{\delta a}} &= 0.0042[1/rad] \\ c_{\mathcal{L}_{\delta a}} &= 0.039[1/rad] \\ c_{\mathcal{L}_{\delta a}} &= 0.208[1/rad] \\ c_{\mathcal{L}_{\delta r}} &= 0.208[1/rad] \\ c_{\mathcal{L}_{\delta r}} &= 0.045[1/rad] \\ c_{n_{\delta r}} &= 0.16[1/rad] \\ c_{n_{\delta r}} &= 0.0325[1/rad] \\ c_{n_{\delta d}} &= -0.025[1/rad] \end{split}$	$c_{\mathcal{L}_p} = -0.285[1/rad]$
$\begin{split} c_{n_r} &= -0.75[1/rad] \\ c_{n_{\delta_a}} &= 0.0042[1/rad] \\ c_{\mathcal{L}_{\delta_a}} &= 0.039[1/rad] \\ c_{\mathcal{L}_{\delta_r}} &= 0.208[1/rad] \\ c_{\mathcal{L}_{\delta_r}} &= 0.045[1/rad] \\ c_{n_{\delta_r}} &= 0.16[1/rad] \\ c_{n_{\delta_r}} &= 0.0325[1/rad] \\ c_{n_{\delta_d}} &= -0.025[1/rad] \end{split}$	$c_{n_p} = -0.14[1/rad]$
$\begin{split} c_{n_{\delta_a}} &= 0.0042[1/rad] \\ c_{\mathcal{L}_{\delta_a}} &= 0.039[1/rad] \\ c_{y_{\delta_r}} &= 0.208[1/rad] \\ c_{\mathcal{L}_{\delta_r}} &= 0.045[1/rad] \\ c_{n_{\delta_r}} &= 0.16[1/rad] \\ c_{y_{\delta_d}} &= 0.0325[1/rad] \\ c_{n_{\delta_d}} &= -0.025[1/rad] \end{split}$	$c_{\mathcal{L}_r} = 0.265[1/rad]$
$\begin{split} c_{n_{\delta_a}} &= 0.0042[1/rad] \\ c_{\mathcal{L}_{\delta_a}} &= 0.039[1/rad] \\ c_{y_{\delta_r}} &= 0.208[1/rad] \\ c_{\mathcal{L}_{\delta_r}} &= 0.045[1/rad] \\ c_{n_{\delta_r}} &= 0.16[1/rad] \\ c_{y_{\delta_d}} &= 0.0325[1/rad] \\ c_{n_{\delta_d}} &= -0.025[1/rad] \end{split}$	$c_{n_r} = -0.75[1/rad]$
$\begin{split} c_{\mathcal{L}_{\delta_a}} &= 0.039[1/rad] \\ c_{y_{\delta_r}} &= 0.208[1/rad] \\ c_{\mathcal{L}_{\delta_r}} &= 0.045[1/rad] \\ c_{n_{\delta_r}} &= 0.16[1/rad] \\ c_{y_{\delta_d}} &= 0.0325[1/rad] \\ c_{n_{\delta_d}} &= -0.025[1/rad] \end{split}$	
$\begin{split} c_{y_{\delta_r}} &= 0.208[1/rad] \\ c_{\mathcal{L}_{\delta_r}} &= 0.045[1/rad] \\ c_{n_{\delta_r}} &= 0.16[1/rad] \\ c_{y_{\delta_d}} &= 0.0325[1/rad] \\ c_{n_{\delta_d}} &= -0.025[1/rad] \end{split}$	
$\begin{split} c_{\mathcal{L}_{\delta_r}} &= 0.045[1/rad] \\ c_{n_{\delta_r}} &= 0.16[1/rad] \\ c_{y_{\delta_d}} &= 0.0325[1/rad] \\ c_{n_{\delta_d}} &= -0.025[1/rad] \end{split}$	
$\begin{split} c_{n_{\delta_r}} &= 0.16[1/rad] \\ c_{y_{\delta_d}} &= 0.0325[1/rad] \\ c_{n_{\delta_d}} &= -0.025[1/rad] \end{split}$	
$c_{y_{\delta_d}} = 0.0325[1/rad]$ $c_{n_{\delta_d}} = -0.025[1/rad]$	
	-
	$c_{n_{\delta_d}} = -0.025[1/rad]$
	$c_{\mathcal{L}_{\delta_d}} = -0.0044[1/rad]$

Working Conditions:

Working Conditions:		
F/C *	1	
H(FT)	SL	h = 0 (sea level)
M(-)	. 257	M = 0.257
VTC(FPS)	287.	$v_{To} = 287[ft/s]$
VTO(KTAS)	170 .	$\alpha_o = 2.3^o$ $\delta_s = -7.1^o$
VTO(KCAS)	1 70 •	3
W(L3S)	14126.	Weight (W) = $14126 [lb]$ c. g at $0.164 \bar{c}$
C.G. (MGC)	. 164	$I_x = 3582 [slug ft^2];$
IX (SLLG-FT SC)	3 58 2 •	$I_y = 55802 [slug ft^2];$
IY (SLLG-FT SC)	55 80 2.	$I_z = 56669 [slug ft^2]$ $I_{xz} = 2658 [slug ft^2]$
IZ (SLEG-FT SQ)	56669.	$\epsilon = -2.86^{\circ}$
IXZ(SLLG-FT SC)	2658.	$S = 196.1 [ft^2]$ b = 21.95 [ft]
EPSILCN(DEG)	-2.86	$\bar{c} = 9.55 [ft]$
Q(PSF)	97.8	$Q = 97.8 \left[lb^2 ft \right]$
QC(PSF)	99.5	$\gamma = 0^o$
ALPHA (DEG)	2.30	
GA MMA (DEG)	0.	
LXP(FT)	19.0	
LZP(FT)	-2.40	
ITH(DEG)	-2.50	
XI (DEG)	-2.50	
LTH(FT)	0.	

XU *	0737	
ZU *	204	$X_u = -0.737 Z_u = -0.204$
№ U *	.000294	$M_u = 0.000294$
Χ'n	•0 631	$X_w = 0.0631$
ZW	5 70	$Z_w = -0.57 M_w = -0.00732$
Mh	00732	1.1 _W 0.00732
ZhD	0.	$Z_{\dot{\mathbf{w}}} = 0$ $Z_a = 0$
ZQ	0.	$M_{\dot{w}} = -0.000304$
מאא	000304	$M_q = -0.317$
MQ	317	$X_{\delta_s} = 1.19$
zu s	1.19	$Z_{\delta_s} = -29.7$ $M_{\delta_s} = -4.79$
ZD S	- 29 .7	v 0.00220
MD S	-4.79	$X_{\delta_T} = 0.00228 Z_{\delta_T} = 0.0000994$
XD TH	.00228	$M_{\delta_T}=0$
ZD TH	• 99 4 E - 4	
HI CM	0.	

DENCMINATOR	.238 .152 .324 1.51	DE NOMINATOR 24 DE T) 1 W(DE T) 1 24 DE T) 2 W(DE T) 2	. 239 . 152 . 324 1 .51
NUMERATORS N(U /DS) A(U) 1/T(U)1 Z(U)1 W(U)1	1.19 43.8 .74C 1.25	1UMERATORS N(U /DTH) A(U) 1/T(U)1 2(U)1 N(U)1	.0 02 28 .0 00 361 .32 3 1.51
N(W /DS) A(W) 1/T(W)1 1/T(W)2 1/F(W)3	-29.7 46.6 (.256) (.150)	N(n /DTH) A(h) 1/T(h)1 Z(h)1 h(h)1	.994 E-4 .00157 (118) (-4.09)
N(THE/DS) A(THE) 1/T(THE)1 1/T(THE)2	-4.79 •104 •496	M(THE/DTH) A(THE) 1/T(THE)1 1/T(THE)2	2 42 E-8 2 4 · 0 -6 4 · 1
N(HC /DS) A(HD) 1/T(HC)1 1/T(HC)2 1/T(HC)3	29.7 .0504 -4.65 5.12	N(HD /DTH) A(HD) 1/T(HC)1 Z(HD)1 k(HD)1	7 95 E-5 -6 4.1 .139 1.45
N(AZP/DS) A(AZP) 1/T(AZP)1 1/T(AZP)2 Z(AZP)1 W(AZP)1	61.2 00775 .0575 .08£7 3.41	N(AZP/DTH)	.994F-4 00451 -4.79 .194 1.50

Рисунок 4 Stabilizer Transfer Function Factors

YV	178	$Y_v = -0.178$
ΥB	-51.1	$Y_{\beta} = -51.1$
LB.	-20.9	$\mathcal{L}_{\beta}' = -20.9$
NB .	2.68	$N_{\beta}^{\prime\prime}=2.68$
LP'	-1.38	$\mathcal{L}'_n = -1.38$
NP •	0993	$N_p' = -0.0993$
LR'	1.16	$\mathcal{L}_r' = 1.16$
NR '	157	$N_r' = -0.157$
Pucyнок 2 Late Dimensional D	eral-Directional erivatives	$Y_{\delta a} = 0$ $\mathcal{L}'_{\delta_a} = 4.76$

Y* CA	0.	$N'_{\delta_a} = 0.266$
L' CA	4.76	$Y_{\delta_r} = 0.0317$
Nº CA	.266	$\mathcal{L}_{\delta_r}' = 5.35$
Y* CR	.0317	$N_{\delta r}' = -0.923$
L' CR	5.35	
Nº CR	923	

Рисунок 5 Lateral-Directional **Dimensional Derivatives**

Longitudinal Mode

Ignoring derivatives to \dot{w} ,

$$v_o = p_o = q_o = r_o = \psi_o = \varphi_o = w_o$$

$$\begin{split} x_{4*1}^{\cdot} &= A_{4*4} x_{4*1} + B_{4*2} u_{2*1} \\ \begin{pmatrix} \dot{u} \\ \dot{w} \\ \dot{q} \end{pmatrix} = A \begin{pmatrix} u \\ w \\ q \end{pmatrix} + B \begin{pmatrix} \Delta \delta_s \\ \Delta \delta_T \end{pmatrix} \\ A &= \begin{pmatrix} X_u & X_w & X_q & -g \\ Z_u & Z_w & Z_q + u_o & 0 \\ M_u & M_w & M_q & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -0.737 & 0.0631 & -32.2 \\ -0.204 & -0.57 & 287 & 0 \\ 0.000294 & -0.00732 & -0.317 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \\ B &= \begin{pmatrix} X_{\delta_s} & X_{\delta_T} \\ Z_{\delta_s} & Z_{\delta_T} \\ M_{\delta_s} & M_{\delta_T} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1.19 & 0.00228 \\ -29.7 & 0.0000994 \\ -4.79 & 0 \\ 0 & 0 \end{pmatrix} \end{split}$$

LONG PERIOD APPROXIMATION

$$\begin{pmatrix} \dot{w} \\ \dot{q} \end{pmatrix} = \begin{pmatrix} Z_w & Z_q + u_o \\ M_w & M_q \end{pmatrix} \begin{pmatrix} w \\ q \end{pmatrix} + \begin{pmatrix} Z_{\delta_s} & Z_{\delta_T} \\ M_{\delta_s} & M_{\delta_T} \end{pmatrix} \begin{pmatrix} \Delta \delta_s \\ \Delta \delta_T \end{pmatrix}$$

$$\begin{pmatrix} \dot{w} \\ \dot{q} \end{pmatrix} = \begin{pmatrix} -0.57 & 287 \\ -0.00732 & -0.317 \end{pmatrix} \begin{pmatrix} w \\ q \end{pmatrix} + \begin{pmatrix} -29.7 & 0.00000994 \\ -4.79 & 0 \end{pmatrix} \begin{pmatrix} \Delta \delta_s \\ \Delta \delta_T \end{pmatrix}$$

SHORT PERIOD APPROXIMATION

Nondimensionalize the eigen vector:

$$\begin{pmatrix} \dot{u} \\ \dot{w} \\ \dot{q} \\ \dot{\theta} \end{pmatrix} \rightarrow \begin{pmatrix} (\dot{u}/u_o)/\dot{\theta} \\ \alpha/\dot{\theta} \\ (\dot{q}\bar{c}/2u_o)/\dot{\theta} \\ \dot{\theta}/\dot{\theta} \end{pmatrix}$$

Pole **Damping** Frequency (rad/s) Time Constant (s) **Full System** $-5.20e - 01 \pm 1.22i$ 1.92 3.92e-01 1.33 -5.69e-01 1 5.69e-01 1.76 4.26e-02 -1 4.26e-02 -2.35e+01

	Pole	Damping	Frequency (rad/s)	Time Constant(s)
Long Period	-7.81e-01	1 (error=0)	7.81e-01(error=37.26%)	1.28
	4.40e-02	-1 (error =0)	4.40e-02 (error=3.29%)	-2.28e+01
Short Period	-4.14e-01 ± 1.19i	0.33 (error=15%)	1.26 (error=5.26%)	2.41

Рисунок 7 Step Input

Full System Response to an Impulse Input

Lateral Mode

$$\begin{pmatrix} \frac{Y_{\beta}}{u_o} & \frac{Y_p}{u_o} & \frac{Y_r}{u_o} - 1 & \frac{g\cos\theta_o}{u_o} \\ \mathcal{L}'_{\beta} & \mathcal{L}'_p & \mathcal{L}'_r & 0 \\ N'_{\beta} & N'_p & N'_r & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -0.178 & 0 & -287 & 0 & 0 \\ -20.9 & -1.38 & 1.16 & 0 & 0 \\ 2.68 & -0.0993 & -0.157 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} Y_{\delta_a} & Y_{\delta_r}/u_o \\ \mathcal{L}'_{\delta_a} & \mathcal{L}'_{\delta_r} \\ N'_{\delta_a} & N'_{\delta r} \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0.0317/287 \\ 4.76 & 5.35 \\ 0.266 & -0.923 \\ 0 & 0 & 0 \end{pmatrix}$$

Nondimensionalize the eigen vector:

$$\begin{pmatrix} \dot{\beta} \\ \dot{p} \\ \dot{r} \\ \dot{\varphi} \end{pmatrix} \rightarrow \begin{pmatrix} \dot{\beta}/\dot{\varphi} \\ (\dot{p}b/2u_o)/\dot{\varphi} \\ (\dot{r}b/2u_o)/\dot{\varphi} \\ \dot{\varphi}/\dot{\varphi} \end{pmatrix}$$

ROLLING MODE APPROXIMATION:

This motion can be approximated by the single degree of freedom rolling motion.

$$\dot{p} = \mathcal{L}'_{p} p + \mathcal{L}'_{\delta_{a}} \delta_{a}$$

$$A_{roll} = (\mathcal{L}'_{p})$$

$$B_{roll} = (\mathcal{L}'_{\delta_{a}})$$

$$C_{roll} = (1)$$

$$D_{roll} = (0)$$

$$\lambda_{r_{approx}} = \mathcal{L}'_{p} = -1.38$$

The magnitude of the roll damping \mathcal{L}'_p , is dependent on the size of the wing and tail surfaces.

$$TF_{Rolling} = \frac{p(s)}{\delta_a(s)} = \frac{\mathcal{L}'_{\delta_a}}{s - \mathcal{L}'_p} = \frac{4.76}{s + 1.38}$$

DUTCH ROLL APPROXIMATION:

$$\begin{pmatrix} \dot{\beta} \\ \dot{r} \end{pmatrix} = \begin{pmatrix} \frac{Y_{\beta}}{u_o} & \frac{Y_r}{u_o} - 1 \\ N_{\beta} & N_r \end{pmatrix} \begin{pmatrix} \beta \\ r \end{pmatrix} + \begin{pmatrix} Y_{\delta_a} & Y_{\delta_r}/u_o \\ N'_{\delta_a} & N'_{\delta_r} \end{pmatrix} \begin{pmatrix} \delta_a \\ \delta_r \end{pmatrix}$$

SPIRAL MODE APPROXIMATION:

Neglecting the side force equation and $\Delta \varphi$,

$$\begin{split} \mathcal{L}'_{\beta}\Delta\beta + \mathcal{L}'_{r}\Delta r &= 0 \\ \Delta \dot{r} &= N_{\beta} \, \Delta \dot{\beta} + N_{r}\Delta r \\ \Delta \dot{r} + (\mathcal{L}'_{r}N_{\beta} - \mathcal{L}'_{\beta}N_{r}) \, \Delta r/\mathcal{L}'_{\beta} &= 0 \\ A_{spiral} &= \left(\frac{\left(\mathcal{L}'_{r}N_{\beta} - \mathcal{L}'_{\beta}N_{r}\right)}{\mathcal{L}'_{\beta}}\right) \\ B_{spiral} &= (0) \\ C_{spiral} &= (1) \\ D_{spiral} &= (0) \\ \lambda_{spiral} &= \frac{\left(-\mathcal{L}'_{r}N_{\beta} + \mathcal{L}'_{\beta}N_{r}\right)}{\mathcal{L}'_{\beta}} &= -8.254 * 10^{-3} \end{split}$$

Pole	Damping	Frequency (rad/s)	Time Constant (s)
0	-1	0	Inf
39.2	-1	3.92e+01	-2.55e-02
-40.3	1	4.03e+01	2.48e-02
-5.65e-03	1	5.65e-03	1.77e+02
-6.22e-01	1	6.22e-01	1.61

	Pole	Damping	Frequency (rad/s)	Time Constant(s)
Spiral M	8.25e-03	-1	8.25e-03	-1.21e+02
Dutch Mode	$-1.67 \pm 1.64i$	1.02e-01	1.65e+00	5.97e+00
Roll Mode	-1.38	1	1.38	0.725

	Spiral Mode	Dutch Mode	Roll Mode
Rise Time	0	_	1.5920
Settling Time	0	_	2.8348
Settling Min	0	_	3.1199

Settling Max	0	_	3.4492
Overshoot	Inf	_	0
Undershoot	0	_	0
Peak	0	_	3.4492
Peak Time	0		7.6419

DENCMINATOR		DENCMINATOR	
1/T (DET)1	000594	1/T (DET)1	000594
1/T (DET)2	1.86	1/T (DET)2	1.86
Z(DET)1	0345	Z(CET)1	0345
W(DET)1	2.10	W(CET)1	2.10
NUMER AT ORS		NJ MER AT OR S	
N(B /DA)		NEB /DR)	
A(B)	0749	A(8)	-0317
1/7(8)1	.170	1/T(B)1 1/T(B)2	0139 2.16
1/T(B)2	-9.28	1/1 (B)2	35.3
		171(8 75	35.3
NIP /DA)		NEP /DR)	
A(P)	4.76	A(P)	5.35
1/T(P)1	00446	1/T (P)1	00447
Z(P)1	.103	1/T (P)2	96C
W(P)1	1.97	1/T (P)3	.976
N(R /DA)		N(R /DR)	
A(R)	.266	A(R)	923
1/T(R)1	1.48	1/T (R)1	2.01
Z(R)1	372	Z(R)1	.0299
W(R)1	2.28	W(R)1	- 548
		N(PHI/DR)	
N(PHI/DA)		A(PHI)	5.32
A(PHI)	4.77	1/T (PhI)1	.972
Z(PHI)1	.101	1/T (PHI)2	974
W(PHI)1	1.97	171 (PF1 12	914
		N(AYP/DR)	
N(AYP/DA)		A(AYP)	4-40
A (AY P)	16.5	1/T (AYP)1	0277
1/T (AYP)1	278	1/T (AYP)2	-6.66
1/T (AYP)2	• 34 3	1/T (AYP)3	(.611)
Z(AYP)1	.0370	1/T (AYP)4	(1.43)
W(AYP)1	1.96		

Full System Reponse to Impulse Input

Autopilot Controller Design

In this part of project, we are working on designing two autopilot for two different moving

The Longitudinal Autopilot

The role of the longitudinal autopilot is to control the motion in the longitudinal plane by controlling the elevator and thrust to achieve the desired command of altitude or Climb angle.

The Lateral Autopilot

The rule of the lateral autopilot is to control the motion in the lateral-directional plane by controlling the rudder and aileron to achieve a coordinated turn.

We will use the linearized state-space model of the aircraft dynamics to represent the motion of the airplane, which is a multi-input multi-output system, and to design our controllers we will use our previous studies about the linear time invariant single input single output system to design our controllers. This method is called "Successive loop closure". Which is a PID controller for control loop mechanism employing feedback that is widely used in industrial control systems and a variety of other applications requiring continuously modulated control. A PID controller continuously calculates an error value e(t) as the difference between a desired set point (SP) and a measured process variable and applies a correction based on proportional, integral, and derivative terms (denoted P, I, and D respectively), hence the name.

LATERAL CONTROLLER

In Lateral Controller we have 3 motions Turn & Coordinated Turn & Coordinated Level turn

Turn Motion:

Turning is a maneuver in which the airplane's heading angle is changed (airplane turns) but experiencing lateral acceleration, i.e. $(az\neq 0)$.

In terms of Aerodynamics, turning is a maneuver in which the airplane's heading angle is changed (airplane turns) but with "slipping or skidding", i.e., the side slip angle ($\beta \neq 0$).

Coordinated turn Motion:

In terms of mechanics, the coordinated turn is a maneuver in which the airplane's heading angle is changed (airplane turns) without experiencing any lateral acceleration, i.e., (az=0). We may call it "zero-lateral acceleration turn"

In terms of Aerodynamics, the coordinated turn is a maneuver in which the airplane's heading angle is changed (airplane turns) without "slipping or skidding", i.e., the side slip angle ($\beta = 0$).

Coordinated Level Turn Motion:

In terms of mechanics, the coordinated level turn is a maneuver in which the airplane's heading angle is changed (airplane turns) without experiencing any lateral acceleration, i.e., ($\alpha z=0$). Without losing altitude.

In terms of Aerodynamics, the coordinated level turn is a maneuver in which the airplane's heading angle is changed. We will view that with and without controller.

With controller (PID)

After trying PID is more suitable than any other controller

P= 0.363250528215049

I = 0.0138253028436041

D = 2.12060034133301

But the aircraft is not stable as the poles has positive one pole, so I will do some poles placement to make the aircraft stable. The A & B& C &D were

```
A_latr_full =

    -0.1780
    -51.1000
    191.2212
    -32.1740
    0

    -0.0048
    -1.3800
    1.1600
    0
    0

    0.0003
    0.0993
    -0.1570
    0
    0

    0
    1.0000
    0
    0
    0

    0
    0
    1.0000
    0
    0

B_latr_full =
            0 0.0317
         4.7600 5.3500
0.2660 -0.9230
                    0 0
0 0
                  0
C_latr_full =
          1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
```

D_latr_fu	ıll =
0	0
0	0
0	0
0	0
0	0

Pole	Damping	Frequency (rad/TimeUnit)	Time Constant (TimeUnit)
0.00e+00	-1.00e+00	0.00e+00	Inf
-1.62e+00	1.00e+00	1.62e+00	6.17e-01
2.95e-01	-1.00e+00	2.95e-01	-3.39e+00
-7.58e-02	1.00e+00	7.58e-02	1.32e+01
-3.14e-01	1.00e+00	3.14e-01	3.18e+00

Now, doing poles placement with changing the sign of negative pole to be positive by getting K and then $A_{stable} = A - B * K$

```
p =
       0 -0.0758 -0.2950 -0.3140 -1.6200
K =
   0.0177 -7.4939 29.2806 -4.7615
                                    0.0339
  -0.0084 3.1481 -12.6004
                           2.0818 -0.0148
A_latr_full1 =
  -0.1777 -51.1998 191.6206 -32.2400
                                     0.0005
  -0.0444 17.4487 -70.8039 11.5273
-0.0121 4.9983 -19.5758 3.1880
                                    -0.0824
                                    -0.0226
                            0
          1.0000
                    0
              0 1.0000
                                 0
                                           0
  Pole
             Damping
                        Frequency
                                     Time Constant
                        (rad/seconds)
                                       (seconds)
 -5.18e-13 1.00e+00
                         5.18e-13
                                        1.93e+12
 -7.58e-02 1.00e+00
                         7.58e-02
                                        1.32e+01
 -2.95e-01 1.00e+00
                         2.95e-01
                                        3.39e+00
 -3.14e-01
           1.00e+00
                          3.14e-01
                                         3.18e+00
 -1.62e+00
           1.00e+00
                          1.62e+00
                                        6.17e-01
```


Without controller

As you can see without controller, it's not stable and there are many fluctuations.

LONGITUDINAL CONTROLLER

The longitudinal autopilot in cruise conditions essentially controls two of the four longitudinal states, and also guarantees that the other states are within limits. Typically, it controls the altitude h and the longitudinal speed u, while it makes sure that the pitch and the pitching velocity are within limits.

The longitudinal controls are the elevator and throttle (thrust) deflections. These two controls are supposed to achieve the required values of h and u, and there are two options for doing so:

The first option is to achieve the required altitude by controlling the pitch by feeding back the altitude signal and then position the elevator deflection by feeding back the pitch signal. To achieve the required aircraft velocity, the velocity signal is fed back to position the throttle lever.

The second option is to control the aircraft altitude directly by δT , and use pitch feedback to position δe and control the aircraft velocity by this elevator deflection.

With controller (PID)

After trying PID is more suitable than any other controller

P = 0.390554703212597

I = 0.00167275571490297

D = 12.1787166967996

But the aircraft is not stable as the poles has positive one pole, so I will do some poles placement to make the aircraft stable.

The A & B& C &D were

C_long_f	ull			A_long_full			
1	0	0	0	-0.7370	0.0631	-214.0174	-32.1740
0	1	0	0	-0.2040	-0.5700	-191.2212	0
0	0	1	0	0.0004	0.0075	-0.2588	0
0	0	0	1	0	0	1.0000	0

damp(A_long_full)

Pole	Damping	Frequency (rad/seconds)	Time Constant (seconds)
4.26e-02	-1.00e+00	4.26e-02	-2.35e+01
-5.69e-01	1.00e+00	5.69e-01	1.76e+00
-5.20e-01 + 1.22e+00i	3.92e-01	1.33e+00	1.92e+00
-5.20e-01 - 1.22e+00i	3.92e-01	1.33e+00	1.92e+00

Now, doing poles placement with changing the sign of negative pole to be positive by getting K and then

$$A_{stable} = A - B * K$$

```
Klong =
  1.0e+04 *
  0.0000 -0.0000 -0.0000 -0.0000
  -0.0072 0.0015 -8.4952 -1.4436
A_long_full1 =
  -0.5730 0.0281 -20.2671 0.7736
  -0.1729 -0.5748 -184.2831 0.5833
   0.0042 0.0070 -0.5038 -0.1375
      0 0 1.0000
```

The new poles \rightarrow

plong =

-0.0426 + 0.0000i -0.5690 + 0.0000i -0.5200 + 1.2200i -0.5200 - 1.2200i

Without Controller

As you can see without controller, it's not stable and there are many fluctuations and it diverges.