COM2031 Advanced Algorithms

Topic 2: Greedy Algorithms

Steve Schneider

Greedy Algorithms

Greedy Algorithms

- build up a solution incrementally in small steps using some local decision rule,
- make a decision at each step just based on the solution so far
- Probably the most simple and straight forward way to design an algorithm.

Key feature:

- Only need to see the solution so far to make a decision about what to do next.
- The sequence of decisions about what to do next leads to an optimal solution.

The General Scenario:

- A collection of items, need to select some to optimize something
- Consider items in some order, consider each in turn, and select it if it is compatible with the previous selections

Greedy Algorithm Template

- Consider items in a particular order.
 - The initial step may involve a preprocessing step of sorting the items if they are not already sorted
- Take each item provided it is compatible with the ones already taken, otherwise discard it.
 - There will be some check on the item and the solution so far
- Continue until all items have been considered or a solution is reached.

The greedy algorithm is straightforward. But it is also necessary to reason why it gives the optimal solution.

The order in which items are considered is critical – considering the items in the wrong order may give a non-optimal solution

COIN CHANGE PROBLEM

Coin Change problem

Problem: Find the minimum number of coins to make a specific amount *n*

Coin denominations: 1, 2, 5, 10, 20, 50, 100, 200. We have as many of each coin as we need.

Greedy Algorithm:

- Sort the denominations largest to smallest:
 - **200**, 100, 50, 20, 10, 5, 2, 1
- Keep taking the largest coin which can fit into the remaining amount
- Stop when you have the exact amount

5

Coin Change problem

Example: coins to make n = 582

Take 200: 382 remaining

Take 200: 182 remaining

Take 100: 82 remaining

Take 50: 32 remaining

Take 20: 12 remaining

Take 10: 2 remaining

Take 2: 0 remaining – **done!**

Solution: {200, 200, 100, 50, 20, 10, 2} : 7 coins.

Coin Change problem - wrong order

Example: coins to make n = 582

What if we considered coins from smallest to largest?

Take 1: 581 remaining

Take 1: 580 remaining

... etc

Solution: {1,1,...,1} : 582 coins.

Not optimal! The order is critical

COIN CHANGE PROBLEM

COIN CHANGE PROBLEM

GREEDY ALGORITHM WORKS WHEN WE HAVE DEMONINATIONS {1,2,5,10, 20, 50, 100, 200}

INTERVAL SCHEDULING PROBLEM

Interval Scheduling Problem

Interval Scheduling Problem

- Job j starts at time s_i and finishes at time f_i
- Two jobs are compatible if they don't overlap
- Goal: find maximum size subset of mutually compatible jobs

Interval Scheduling: Greedy Approach

Greedy Algorithm Template

- Consider jobs in a particular order.
- Take each job provided it is compatible with the ones already taken.

A priori, many ways to **order** jobs:

- Earliest start time Consider jobs in ascending order of start time s_j
 (allows to use available resources quickly)
- Shortest interval Consider jobs in ascending order of interval length $f_j s_j$ (establishes priority for jobs that consume less time)
- Fewest conflicts For each job, count the number of conflicting jobs c_j Schedule in ascending order of conflicts c_j

Interval Scheduling: Greedy Approach

Greedy Algorithm Template

- Consider jobs in some order.
- Take each job provided it's compatible with the ones already taken.

Interval Scheduling: Greedy Algorithm

Greedy Algorithm for Interval Scheduling Problem

- Consider jobs in the order of earliest finish time.
- Take each job provided it is compatible with the ones already taken.

```
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n. 
J \leftarrow \phi \text{ (initialize set of selected jobs)} for j = 1 to n {    if (job j compatible with J)       J \leftarrow J \cup \{j\} } return J
```

- Remember latest job j* added to J. New job j is compatible if $s_j \ge f_{j^*}$. That is only 1 comparison needed: O(1)
- **Running time:** O(n log n) time due to the sorting step.
- But how can we convince ourselves that this algorithm is doing the right thing?

Theorem Greedy algorithm based on earliest finish time is optimal. Proof Let S* be any optimal schedule and j_1 , j_2 , ... j_m denote the jobs in it.

Theorem Greedy algorithm based on earliest finish time is optimal.

<u>Proof</u> Let S* be any optimal schedule and j_1 , j_2 , ... j_m denote the jobs in it.

• Let S be the output of our algorithm and i_1 , i_2 , ... i_k denote jobs selected by the greedy algorithm. As S* is optimal $k \le m$.

Theorem Greedy algorithm based on earliest finish time is optimal.

<u>Proof</u> Let S* be any optimal schedule and j_1 , j_2 , ... j_m denote the jobs in it.

- Let S be the output of our algorithm and i_1 , i_2 , ... i_k denote jobs selected by the greedy algorithm. As S* is optimal $k \le m$.
- If S* and S agree up to index r, ie $i_1 = j_1$, $i_2 = j_2$, ..., $i_r = j_r$ then we can construct another optimal solution from S* by replacing j_{r+1} with i_{r+1} , see below, hence we have an optimal solution which agrees with S up to r+1.

Slides courtesy of Pearson

20

Theorem Greedy algorithm based on earliest finish time is optimal.

<u>Proof</u> Let S* be any optimal schedule and j_1 , j_2 , ... j_m denote the jobs in it.

- Let S be the output of our algorithm and i_1 , i_2 , ... i_k denote jobs selected by the greedy algorithm. As S* is optimal $k \le m$.
- If S* and S agree up to index r, ie $i_1 = j_1$, $i_2 = j_2$, ..., $i_r = j_r$ then we can construct another optimal solution from S* by replacing j_{r+1} with i_{r+1} , see below, hence we have an optimal solution which agrees with S up to r+1.

Slides courtesy of Pearson

21

Theorem Greedy algorithm based on earliest finish time is optimal.

<u>Proof</u> Let S* be any optimal schedule and j_1 , j_2 , ... j_m denote the jobs in it.

- Let S be the output of our algorithm and i_1 , i_2 , ... i_k denote jobs selected by the greedy algorithm. As S* is optimal $k \le m$.
- If S* and S agree up to index r, ie $i_1 = j_1$, $i_2 = j_2$, ..., $i_r = j_r$ then we can construct another optimal solution from S* by replacing j_{r+1} with i_{r+1} , see below, hence we have an optimal solution which agrees with S up to r+1.
- Repeating this procedure we end up with an optimal solution S** that agrees with S for its k first elements.

greedy schedule matches optimal schedule up to r

Theorem Greedy algorithm based on earliest finish time is optimal.

<u>Proof</u> Let S* be any optimal schedule and j_1 , j_2 , ... j_m denote the jobs in it.

- Let S be the output of our algorithm and i_1 , i_2 , ... i_k denote jobs selected by the greedy algorithm. As S* is optimal $k \le m$.
- If S* and S agree up to index r, ie $i_1 = j_1$, $i_2 = j_2$, ..., $i_r = j_r$ then we can construct another optimal solution from S* by replacing j_{r+1} with i_{r+1} , see below, hence we have an optimal solution which agrees with S up to r+1.
- Repeating this procedure we end up with an optimal solution S** that agrees with S for its k first elements.

Theorem Greedy algorithm based on earliest finish time is optimal.

<u>Proof continued:</u> What remains to be shown is that m=k.

- We know already $k \le m$, but $k \le m$ cannot happen, because:
- In that case, there would be at least one job left, namely j_{k+1} that is compatible with i_k and has a later finish time.
- However the greedy algorithm runs until all such jobs are selected.
- Hence k<m cannot happen, and k=m.

Slides courtesy of Pearson

24

INTERVAL SCHEDULING PROBLEM

GREEDY ALGORITHM SOLUTION WITH JOBS SORTED BY EARLIEST FINISH TIME

INTERVAL PARTITIONING

Interval Partitioning Problem

Interval Partitioning Problem

- Lecture j starts at s_j and finishes at f_j.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Example This schedule uses 4 classrooms to schedule 10 lectures.

Interval Partitioning Problem

Interval Partitioning Problem

- Lecture j starts at s_j and finishes at f_{j.}
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Example This schedule uses only 3 rooms for the same 10 lectures.

Interval Partitioning: Lower Bound on Optimal Solution

Definition The depth of a set of (open) intervals is the maximum number of intervals that contains any given time.

Observation Number of classrooms needed \geq depth.

Example Depth of this schedule = $3 \Rightarrow$ This schedule is optimal.

e.g. lectures a, b, c all contain 9:30

Does there always exist a schedule equal to depth of intervals?

Interval Partitioning: Greedy Algorithm

Greedy Algorithm for Interval Partitioning Problem

- Consider lectures in the order of earliest start time.
- Assign lecture to any compatible classroom.

Running time O(n log n) due to sorting step.

Interval Partitioning: Analysis

Fact By construction, this greedy algorithm never schedules two incompatible (overlapping) lectures in the same classroom.

Theorem Greedy algorithm based on earliest start time is optimal.

Proof

Let d denote the number of classrooms allocated:

- A new classroom d is opened only if a new lecture j that is incompatible with all existing d – 1 classrooms has to be scheduled.
- Sorting by earliest start time implies this new incompatibility is caused only by lectures that start no later than s_i.
- Thus, we have d lectures overlapping at time $s_i + \varepsilon$ for some $\varepsilon > 0$.
- However Depth \geq d \Rightarrow this schedule uses classrooms no more than Depth.

Interval Partitioning Problem

Example

Example

room 1

Example

Example

The algorithm only introduces room 2 when there are 2 intervals that overlap: in this case a, b.

Depth is always the minimum it can be.

Example

Example

The algorithm only introduces room 3 when there are 3 intervals that overlap: in this case a,b,c.

Depth is always the minimum it can be.

Example

The algorithm only introduces room 3 when there are 3 intervals that overlap: in this case a,b,c.

Depth is always the minimum it can be.

Example

e

Example

Example

Ş

Example

h

Example

The algorithm only introduces room 4 when there are 4 intervals that overlap: in this case e, f, g, h.

Depth is always the minimum it can be.

Example

Example:

Overall depth is 4, this is the minimum number of rooms needed to schedule the intervals, and the greedy algorithm has found such a schedule.

