Mock Grade 8/9

Maths Booklet 1

Paper 1H Non-Calculator

www.ggmaths.co.uk

(Total for Question 1 is 4 marks)

2	There are 12 counters in a bag.
	8 of the counters are green. 4 of the counters are blue.
	Ria takes at random two counters from the bag.
	Work out the probability that Ria takes one counter of each colour. You must show your working.
	(Total for Question 2 is 4 marks)

3

ABCD is a rhombus.

The coordinates of A are (9, 17) The equation of the diagonal DB is $y = \frac{2}{3}x + 6$

Find an equation of the diagonal AC.

(Total for Question 3 is 4 marks)

4

OABC is a parallelogram.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$

X is the midpoint of the line AC. OCD is a straight line so that OC : CD = k : 1

Given that
$$\overrightarrow{XD} = 5\mathbf{c} - \frac{2}{3}\mathbf{a}$$

find the value of k.

5	Solve algebraically the simultaneous equations	
	$x^2 + y^2 = 41$	
	$x^2 + y^2 = 41$ $y = 2x - 3$	
	(Total for Question 5 is 5 marks)	

6 *ABCD* is a quadrilateral.

$$AB = AD$$
$$BC = CD$$

Prove that angle ABC is equal to angle ADC.

7 The diagram shows a hexagon ABCDEF.

ABEF and CBED are congruent parallelograms where AB = BC = 8 cm. P is the point on AF and Q is the point on CD such that BP = BQ = x cm.

Given that angle $ABC = 30^{\circ}$

prove that $\cos PBQ = 1 - \frac{32(2 - \sqrt{3})}{x^2}$

8 Here is the graph of $y = \sin x^{\circ}$ for $-180 \leqslant x \leqslant 180$

On the grid, sketch the graph of $y = 2\sin x^{\circ} - 1$ for $-180 \leqslant x \leqslant 180$

(Total for Question 8 is 2 marks)

9	The point P has coordinates $(5, 9)$		
	The point Q has coordinates (a, b)		
	A line perpendicular to PQ is given by the equation $4x + 3y = 9$		
	Find an expression for b in terms of a .		
	(Total for Question 9 is 5 marks)		

10 <i>n</i> is an integer such that Find all the possible values of <i>n</i> .	$1 < \frac{2n-13}{3} < 5 \text{ and } 2 \le \frac{35n}{n^2 + 66}$
	(Total for Question 10 is 5 marks)
	,