

"Many savages at the present day regard their names as vital parts of themselves, and therefore take great pains to conceal their real names, lest these should give to evil-disposed persons a handle by which to injure their owners."

The Golden Bough,Sir James George Frazer

Triple-DES with Two-Keys

- Obvious counter to the meet-in-the-middle attack is to use three stages of encryption with three different keys
 - This raises the cost of the meet-in-the-middle attack to 2¹¹², which is beyond what is practical
 - Has the drawback of requiring a key length of 56 x 3 = 168 bits, which may be somewhat unwieldy
 - As an alternative Tuchman proposed a triple encryption method that uses only two keys
- 3DES with two keys is a relatively popular alternative to DES and has been adopted for use in the key management standards ANSI X9.17 and ISO 8732

Multiple Encryption

Figure 6.1 Multiple Encryption

Triple DES with Three Keys

 Many researchers now feel that three-key 3DES is the preferred alternative

Three-key 3DES has an effective key length of 168 bits and is defined as:

• $C = E(K_3, D(K_2, E(K_1, P)))$

Backward compatibility with DES is provided by putting:

• $K_3 = K_2 \text{ or } K_1 = K_2$

 A number of Internet-based applications have adopted three-key 3DES including PGP and S/MIME

Modes of Operation

- A technique for enhancing the effect of a cryptographic algorithm or adapting the algorithm for an application
- To apply a block cipher in a variety of applications, five modes of operation have been defined by NIST
 - The five modes are intended to cover a wide variety of applications of encryption for which a block cipher could be used
 - These modes are intended for use with any symmetric block cipher, including triple DES and AES

Table 6.1 Block Cipher Modes of Operat
--

Mode	Description	Typical Application
Electronic Codebook (ECB)	Each block of plaintext bits is encoded independently using the same key.	•Secure transmission of single values (e.g., an encryption key)
Cipher Block Chaining (CBC)	The input to the encryption algorithm is the XOR of the next block of plaintext and the preceding block of ciphertext.	•General-purpose block- oriented transmission •Authentication
Cipher Feedback (CFB)	Input is processed s bits at a time. Preceding ciphertext is used as input to the encryption algorithm to produce pseudorandom output, which is XORed with plaintext to produce next unit of ciphertext.	•General-purpose stream- oriented transmission •Authentication
Output Feedback (OFB)	Similar to CFB, except that the input to the encryption algorithm is the preceding encryption output, and full blocks are used.	•Stream-oriented transmission over noisy channel (e.g., satellite communication)
Counter (CTR)	Each block of plaintext is XORed with an encrypted counter. The counter is incremented for each subsequent block.	•General-purpose block- oriented transmission •Useful for high-speed requirements

Criteria and properties for evaluating and constructing block cipher modes of operation that are superior to ECB:

- Overhead
- Error recovery
- Error propagation
- Diffusion
- Security

XTS-AES Mode for Block-Oriented Storage Devices

- Approved as an additional block cipher mode of operation by NIST in 2010
- Mode is also an IEEE Standard, IEEE Std 1619-2007
 - Standard describes a method of encryption for data stored in sector-based devices where the threat model includes possible access to stored data by the adversary
 - Has received widespread industry support

Tweakable Block Ciphers • XTS-AES mode is based on the concept of a tweakable block cipher • General structure: • Has three inputs: A symmetric key K A tweak T Produces a ciphertext output C • Tweak need not be kept secret • Purpose is to provide variability

Summary

- Multiple encryption and triple DES
 - Double DES
 - Triple DES with two keys
 - Triple DES with three keys
- Electronic code book
- Cipher block chaining mode

- Cipher feedback mode
- Output feedback mode
- Counter mode
- XTS-AES mode for block-oriented storage devices
 - Storage encryption requirements
 - Operation on a single block
 - Operation on a sector