Computer Vision

Paulo Dias, António Neves

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Edge Detection - Introduction

 Edges are useful to capture important events and changes in properties of the images/world

- Edge detection is difficult
 - noise
 - non ideal edges

Edge Detection - Introduction

- Edges correspond to
 - discontinuities in depth,
 - discontinuities in surface orientation,
 - changes in material properties,
 - variations in scene illumination.
- How to detect the relevant edges?

Edge Detection - example

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Edge detection

- Typical 2 steps for edge detection:
 - Apply a mask (to approximate a derivative)
 - Aggregate detected pixels (edgels) in edges

- Derivatives are used to detect edges
 - 1st derivative
 - > or < 0 depending on I(x) variation
 - =0 in areas of same intensity
 - 2nd derivative
 - =0 in both positive and negative edges

Burger and Burge

Edge detection – 1st derivative

1st derivative

$$f'(x) = \frac{df}{dx}(x)$$

Edge detection – 1st derivative

1st derivative – simple approximation

$$\frac{df}{du}(u) \; \approx \; \frac{f(u+1) - f(u-1)}{2} \; = \; 0.5 \cdot \left(f(u+1) - f(u-1) \right)$$

Burger and Burge

Edge detection – 1st derivative

Partial derivatives and gradient

$$H_x^D = \begin{bmatrix} -0.5 & \mathbf{0} & 0.5 \end{bmatrix} = 0.5 \cdot \begin{bmatrix} -1 & \mathbf{0} & 1 \end{bmatrix}$$

$$H_y^D = \begin{bmatrix} -0.5 \\ \mathbf{0} \\ 0.5 \end{bmatrix} = 0.5 \cdot \begin{bmatrix} -1 \\ \mathbf{0} \\ 1 \end{bmatrix}$$

$$\nabla I(u,v) = \begin{bmatrix} \frac{\partial I}{\partial u}(u,v) \\ \frac{\partial I}{\partial v}(u,v) \end{bmatrix}$$

$$|\nabla I|(u,v) = \sqrt{\left(\frac{\partial I}{\partial u}(u,v)\right)^2 + \left(\frac{\partial I}{\partial v}(u,v)\right)^2}$$

Edge detection

Partial derivatives and gradient

Burger and Burge

- Derivatives Operators
 - Image gradient points into the direction of larger intensity variation

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Gradient amplitude

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$

Gradient direction

How to use operators?

How to use operators?

- Roberts operator
 - Simple, fast but very noise sensitive

$$D_1 = I * H_1^R$$

$$D_2 = I * H_2^R$$

$$H_1^R = \begin{bmatrix} 0 & \mathbf{1} \\ -1 & 0 \end{bmatrix}$$
 and $H_2^R = \begin{bmatrix} -1 & 0 \\ 0 & \mathbf{1}_{\text{Burger and Burge}} \end{bmatrix}$

Prewitt operator

$$H_x^P = \begin{bmatrix} -1 & 0 & 1 \\ -1 & \mathbf{0} & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad H_y^P = \begin{bmatrix} -1 & -1 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Sobel operator

$$H_x^S = \begin{bmatrix} -1 & 0 & 1 \\ -2 & \mathbf{0} & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad H_y^S = \begin{bmatrix} -1 & -2 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Horizontal

Vertical

Sobel operator

Original Image

X – Direction Kernel

0

Resulting image

/ – Direction Kernel						
-1	-2	-1				
0	0	0				
1	2	1				

- Compass Edge Detection
 - alternative to gradient edge detection (Roberts and Sobel operators).
- Usually outputs two images
 - Gradient magnitude
 - edge orientation
- Gradient is estimated in eight (for a 3 x 3 convolution mask) possible orientation (from 0° [vertical] to 315° in steps of 45°.
- The convolution result of greatest magnitude indicates the gradient direction

Extended-Sobel Operator

$$H_0^{\text{ES}} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, \qquad H_1^{\text{ES}} = \begin{bmatrix} -2 - 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix},$$

$$H_2^{\text{ES}} = \begin{bmatrix} -1 - 2 - 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}, \qquad H_3^{\text{ES}} = \begin{bmatrix} 0 - 1 - 2 \\ 1 & 0 - 1 \\ 2 & 1 & 0 \end{bmatrix},$$

$$H_4^{\text{ES}} = \begin{bmatrix} 1 & 0 - 1 \\ 2 & 0 - 2 \\ 1 & 0 - 1 \end{bmatrix}, \qquad H_5^{\text{ES}} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 - 1 \\ 0 - 1 - 2 \end{bmatrix},$$

$$H_6^{\text{ES}} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 - 2 - 1 \end{bmatrix}, \qquad H_7^{\text{ES}} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 - 1 & 0 \end{bmatrix}.$$

Edge detection – 2nd derivative

- Laplacian operator
 - Second derivative approximation of ∇^2

4-neighboorhood

8-neighboorhood

$$h = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$h = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Edge detection with first derivative are noise sensitive and object dependent
 - The first derivative of the image function should have an extremum at the position corresponding to the edge
 - It is much easier and more precise to find a zero-crossing position than an extremum.

- Canny objectives
 - Good location (zero crossing)
 - Minimize weak edges

- Canny Edge Detector (1986)
 - Process in five steps:
 - 1. Gaussian filter to smooth and remove noise
 - 2. Find intensity gradients of the image (Sobel operator)
 - 3. Non-maximum supression
 - 4. Double threshold to determine potential edges High threshold for strong pixels

Low threshold for non-relevant pixels

5. Edge Tracking by Hysteresis

Transform weak into strong pixels, if at least one neighboring pixels is processed as strong

minVal

- Canny Edge Detector (1986)
 - Process in five steps:
 - 1. Gaussian filter to smooth and remove noise

- Canny Edge Detector (1986)
 - Process in five steps:
 - 2. Find intensity gradients of the image (Sobel operator)

- Canny Edge Detector (1986)
 - Process in five steps:
 - 3. Non-maximum suppression

- Canny Edge Detector (1986)
 - Process in five steps:
 - 4. Double threshold to determine potential edges

High threshold for strong pixels

Low threshold for nonrelevant pixels

- Canny Edge Detector (1986)
 - Process in five steps:
 - 5. Edge Tracking by Hysteresis

Transform weak into strong pixels, if at least one neighboring pixels is processed as strong

Images from https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

Original Image

1D convolution (x,y) with Gaussian smoothing $\sigma = 6$

Canny edges

Burger and Burge

Edge detection - comparison

- Possible criteria:
 - Number of weak/false edges
 - Connectivity

– ...

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Lines detection

- Same rationale of detecting "roof" like profiles along "strategic" orientations: 0°; 45°; 90°; 135° [see compass]
- Convolution Kernels

$$h_1 = \begin{bmatrix} -1 & -1 & -1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{bmatrix} \quad h_2 = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \quad h_3 = \begin{bmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{bmatrix}$$

- Lines detected this way are collections of edges.
 Most of the time non single pixel wide edges.
- Necessary to introduce line thinning algorithms

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Hough transform (1962)

- Technique for having edges "vote" for plausible line locations
- Represent line edges in polar coordinates (r, θ) in the Hough space

Line edge in original image

Conversion to (r, θ) representation

Hough transform

Line representation in Hough space


```
0 r
15 189.0
30 282.0
45 355.7
60 407.3
75 429.4
```

```
0 r
15 318.5
30 376.8
45 407.3
60 409.8
75 385.3
```

Θ	r
15	419.0
30	443.6
45	438.4
60	402.9
75	340.1

Hough Transform

 Higher cell values in Hough accumulator are the Hough parameters of the lines for which angle and distance can be determined

Hough Transform

- Classical Hough transform for line identification
- Extended to identifying positions of other shapes as circles or ellipses.

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Corner detector

- Corners in images can be located using local detectors;
 - Input to the corner detector is the Gray-level image
 - Output is the image in which values are proportional to the likelihood that the pixel is a corner.
 - Interest points are obtained by thresholding the result of the corner detector.
- Edge detectors themselves are not stable at corners.
 - Gradient at the tip is ambiguous

Moravec corner detector

- One of the earliest corner detection 1979
- Corner: point with low self-similarity
 - Tests pixels as corners considering similarity between nearby, largely overlapping patches.
 - Similarity is measured by taking the sum of squared differences (SSD) between the corresponding pixels of two patches

Harris corner detector

- Auto-correlation based
- Improvement upon Moravec's corner detector
- Use a sliding window W patch and estimate the sum of square differences of the discriminant function:

$$N = \begin{bmatrix} \sum_{\substack{window \\ vindow}} f_r^2(r,c) & \sum_{\substack{vindow \\ window}} f_r(r,c) \cdot f_c(r,c) \end{bmatrix} \qquad f_r(r,c) : \text{horizontal gradient}$$

$$f_c(r,c) : \text{vertical gradient}$$

• Compute smallest eigenvalue of the structure tensor: $\lambda_{\min} \approx \frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)} = \frac{\det(M)}{\operatorname{tr}(M)}$

with the trace $\mathrm{tr}(M)=m_{11}+m_{22}$.

Corner detector

- Other corner detector:
 - Kitchen 82
 - Harris 88
 - Deriche 90
 - Mehrotra 90
 - Schmid 98
 - Smith 98

— ...

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Other feature detectors

- Several feature descriptors more or less invariant to scale, rotation, affine transformations:
 - Histogram based (use histogram of oriented gradient)
 - SIFT Scale invariant feature transform
 - SURF Speeded-Up Robust Features
 - GLOH Gradient Location and Orientation Histogram
 - HOG Histogram of Oriented Gradients
 - Compact descriptors (use binary strings comparing pairs of intensity images)
 - BRIEF Binary Robust Independent Elementary Features
 - FAST Features from accelerated segment test
 - ORB Oriented FAST and Rotated BRIEF
 - BRISK Binary Robust invariant scalable keypoints

Other feature detectors - SIFT

SIFT Basic idea:

- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge Segment Test

Distinctive image features from scale-invariant keypoints. David G. Lowe. IJCV 60 (2), pp. 91-110, 2004

Other feature detectors - SIFT

SIFT Full version:

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Distinctive image features from scale-invariant keypoints. David G. Lowe. IJCV 60 (2), pp. 91-110, 2004