WO 2005/059971 PCT/IB2004/052778

CLAIMS

10

15

20

25

30

- 1. A method of manufacturing an active matrix pixel device comprising a thin film transistor (10) which includes a polycrystalline silicon channel (15) and doped source/drain regions (16,17), and a PIN diode (12) which includes a ptype doped region (26) and an n-type doped region (24) separated by an amorphous silicon intrinsic region (25), the method including the steps of:
- (a) forming a plurality of polycrystalline silicon islands on a substrate (14), one of which providing the transistor channel (15), and source/drain regions (16,17); and then,
- (b) depositing and patterning a layer of amorphous silicon to provide the intrinsic region (25) of the PIN diode (12) such that the intrinsic region overlies and contacts at least a part of one of the polycrystalline silicon islands which provides one of the p-type or n-type doped regions.
- 2. A method according to Claim 1, wherein the source/drain regions (16,17) and said one of the p-type or n-type doped regions (26,24) of the PIN diode are provided by the same polycrystalline silicon island.
- 3. A method according to claims 1 or 2, wherein the source/drain regions are doped n-type, and wherein the method further comprises the steps of:
- (c) depositing and patterning a layer of aluminium to define a top PIN diode contact (40) on the intrinsic region (25) of the PIN diode;
- (d) annealing the top PIN diode contact to cause aluminium ions to diffuse into the underlying intrinsic region to form the p-type doped region (26).
 - 4. A method according to claim 3, further comprising the step of:
 - (e) etching away part of the top PIN diode contact (40) so as to expose the PIN diode to input light (100).
 - 5. An active matrix pixel device comprising a plurality of polycrystalline silicon islands supported by a substrate (14), one of the islands providing a

WO 2005/059971 PCT/IB2004/052778

channel (15) and doped source/drain regions (16,17) of a thin film transistor (10), the device further comprising a PIN diode (12) which includes a p-type doped region (26) and an n-type doped region (24) separated by an amorphous silicon intrinsic region (25), wherein the intrinsic region overlies and contacts at least a part of one of the polycrystalline silicon islands which provides one of the p-type or n-type doped regions.

- 6. An active matrix pixel device according to Claim 5, wherein the source/drain regions (16,17) and said one of the p-type or n-type doped regions (26,24) of the PIN diode are provided by the same polycrystalline silicon island.
- 7. An active matrix pixel device according to Claim 5 or 6, wherein both the p-type and n-type doped regions of the PIN diode are provided by respective ones of the polycrystalline silicon islands.
- 8. An active matrix pixel device according to Claim 7, further comprising a second thin film transistor (10b) having doped source/drain regions (16b,17b) provided by one of the islands, the doped source/drain regions (16b,17b) being of an opposite conductivity type to those of the first transistor (16a,17a), wherein the n-type doped region (24) of the PIN diode is provided by a doped source/drain region (17a) of one transistor and the p-type doped region (26) of the PIN diode is provided by a doped source/drain region (16b) of the other transistor.

25

5

10

15

20

9. An active matrix pixel device according to Claim 7 or 8, wherein a transparent conductive gate (30) overlies the intrinsic region (25) of the PIN diode separated therefrom by an insulating layer (18), the gate serving to apply a voltage to the intrinsic region so as to control the conductivity between the n-type and p-type doped regions.

WO 2005/059971 PCT/IB2004/052778

14

10. An active matrix pixel device according to any one of Claims 5 to 7, wherein the transistor further comprises a gate electrode (20) which serves to control the current through the channel, and wherein the amorphous silicon intrinsic region of the PIN diode overlies the gate electrode.

5

10

11. An active matrix electroluminescent display device according to any preceding claim, wherein the PIN diode serves to measure the light intensity output (100) from an associated display element and supply a signal to drive circuitry connected thereto to enable modulation of the light output in accordance with the measured light intensity.