

Objetivos do capítulo

- Entender os elementos básicos de um ciclo de instrução e o papel das interrupções.
- > Descrever o conceito de interconexão dentro de um sistema computacional.
- Avaliar as vantagens relativas da interconexão ponto a ponto em comparação com a interconexão de barramento.
- Apresentar uma visão geral da QPI.
- Apresentar uma visão geral da PCIe.

Componentes do computador

Abordagens de hardware e software - programação no hardware:

Componentes do computador

Abordagens de hardware e software - programação no software:

Componentes do computador

Componentes do computador - vista de nível superior:

Funções do computador

- A **função** básica realizada por um computador é a execução de um programa, que consiste em um conjunto de instruções armazenadas na memória.
- > O processamento exigido para uma única instrução é chamado de ciclo de instrução.
- Usando a descrição simplificada em duas etapas dada anteriormente, o ciclo de instrução é representado na figura a seguir.
- As duas etapas são conhecidas como ciclo de busca (fetch) e ciclo de execução.

Funções do computador

Ciclo de instrução básico:

- No início de cada ciclo de instrução, o processador busca uma instrução da memória.
- Em um processador típico, um registrador chamado contador de programa (PC) mantém o endereço da instrução a ser buscada em seguida.
- A menos que seja solicitado de outra maneira, o processador sempre incrementa o PC após cada busca de instrução, de modo que buscará a próxima instrução em sequência (ou seja, a instrução localizada no próximo endereço de memória mais alto).

- O processador interpreta a instrução e realiza a ação solicitada.
- Em geral, essas ações estão em uma destas quatro categorias:
- **1. Processador-memória**: os dados podem ser transferidos do processador para a memória ou da memória para o processador.
- **2. Processador-E/S**: os dados podem ser transferidos de ou para um dispositivo periférico, transferindo entre o processador e um módulo de E/S.

- **3. Processamento de dados**: o processador pode realizar alguma operação aritmética ou lógica sobre os dados.
- **4. Controle**: uma instrução pode especificar que a sequência de execução seja alterada.
- Além disso, em vez de referências à memória, uma instrução pode especificar uma operação de E/S.
- A figura a seguir oferece uma visão mais detalhada do ciclo de instrução básico.

Função do computador

Características de uma máquina hipotética

Função do computador

Exemplo de execução de programa

0001 = Carrega AC da memória 0010 = Armazena AC na memória 0101 = Adiciona da memória ao AC

Diagrama de estado de ciclo de instrução:

- Praticamente todos os computadores oferecem um mecanismo por meio do qual outros módulos (E/S, memória) podem **interrompe**r o processamento normal do processador.
- A tabela abaixo lista as classes mais comuns de interrupções:

Programa	Gerada por alguma condição que ocorre como resultado da execução de uma instrução, como o <i>overflow</i> aritmético, divisão por zero, tentativa de executar uma instrução de máquina ilegal ou referência fora do espaço de memória permitido para o usuário.
Timer	Gerada por um timer dentro do processo. Isso permite que o sistema operacional realize certas funções regularmente.
E/S	Gerada por um controlador de E/S para sinalizar o término normal de uma operação ou para sinalizar uma série de condições de erro.
Falha de hardware	Gerada por uma falha como falta de energia ou erro de paridade de memória.

- As interrupções são fornecidas em primeiro lugar como um modo de melhorar a eficiência do processamento.
- Com as interrupções, o processador pode estar engajado na execução de outras instruções enquanto uma operação de E/S está em andamento.
- Depois que essas poucas instruções tiverem sido executadas, o controle retorna ao programa do usuário.
- Enquanto isso, o dispositivo externo está ocupado aceitando e imprimindo dados vindos da memória do computador.

- Essa operação de E/S é realizada simultaneamente com a execução de instruções no programa do usuário.
- Quando o dispositivo externo está pronto para ser atendido ou seja, quando estiver pronto para aceitar mais dados do processador —, o módulo de E/S para o dispositivo externo envia um sinal de requisição de interrupção ao processador.
- ➤ O processador responde suspendendo a operação do programa atual, desviando para um programa para atender a esse dispositivo de E/S em particular, conhecido como **tratador de interrupção**, e retomando a execução original depois que o dispositivo for atendido.

(a) Sem interrupções

(b) Interrupções; curta espera de E/S

(c) Interrupções; longa espera de E/S

Ciclo de instruções com interrupção:

Diagrama do estado de ciclo de instruções, com interrupções:

Interrupções múltiplas

- > Duas técnicas podem ser utilizadas para lidar com múltiplas interrupções:
- 1. Desativar as interrupções enquanto uma interrupção estiver sendo processada.
- Uma interrupção desabilitada significa simplesmente que o processador pode ignorar e ignorará esse sinal de requisição de interrupção.
- 2. Definir prioridades para interrupções e permitir que uma interrupção de maior prioridade faça com que um tratamento de interrupção com menor prioridade seja interrompido.

Interrupções múltiplas

Transferência de controle com múltiplas interrupções - processamento de interrupção sequencial:

Interrupções múltiplas

Exemplo de sequência de tempo de múltiplas interrupções:

- O conjunto de caminhos conectando os diversos módulos é chamado de estrutura de interconexão.
- > O projeto dessa estrutura depende das trocas que precisam ser feitas entre os módulos.
- A figura a seguir sugere os tipos de trocas que são necessárias, indicando as principais formas de entrada e saída para cada tipo de módulo:
 - 1. Memória
 - 2. Módulo de E/S
 - 3. Processador

Módulos do computador:

Módulos do computador:

Módulos do computador:

Módulos do computador:

A estrutura de interconexão deve admitir os seguintes tipos de transferências:

- Memória para processador
- Processador para memória
- > E/S para processador
- Processador para E/S
- E/S de ou para a memória

- > Um **barramento** é um caminho de comunicação que conecta dois ou mais dispositivos.
- Uma característica-chave é que ele é um meio de transmissão compartilhado.
- Cada linha é capaz de transmitir sinais representando o binário 1 e o binário
 0.
- Com o tempo, uma sequência de dígitos binários pode ser transmitida por uma única linha. Juntas, várias linhas de um barramento podem ser usadas para transmitir dígitos binários simultaneamente (em paralelo).

- > Um barramento que conecta os principais componentes do computador (processador, memória, E/S) é chamado de **barramento do sistema**.
- > Um barramento do sistema consiste, normalmente, em cerca de 50 a centenas de linhas separadas.
- As **linhas de dados** oferecem um caminho para movimentação de dados entre os módulos do sistema.
- Essas linhas, coletivamente, são chamadas de barramento de dados.

- As **linhas de endereço** são usadas para designar a origem ou o destino dos dados no barramento de dados.
- As **linhas de controle** são usadas para controlar o acesso e o uso das linhas de dados e endereço.
- As linhas de controle típicas incluem:
 - > Escrita de memória
 - > Leitura de memória
 - > Escrita de E/S

- > Leitura de E/S
- > ACK de transferência
- Solicitação de barramento (bus request)
- Concessão de barramento (bus grant)
- Requisição de interrupção (interrupt request)
- > ACK de interrupção (interrupt acknowledge)
- > Clock
- > Reset

Esquema de interconexão de barramento:

Interconexão ponto a ponto

- Em comparação com o barramento compartilhado, a **interconexão ponto a ponto** tem menor latência, maior taxa de dados e melhor escalabilidade.
- Analisamos um exemplo importante e representativo da técnica de interconexão ponto a ponto: QuickPath Interconnect (QPI), da Intel, que foi apresentada em 2008.
- Características significativas da QPI:
 - ➤ Conexões diretas múltiplas: múltiplos componentes dentro de um sistema aproveitam as conexões diretas emparelhadas de outros componentes. Isso elimina a necessidade de arbitração encontrada em sistemas de transmissão compartilhada.

- Em comparação com o barramento compartilhado, a **interconexão ponto a ponto** tem menor latência, maior taxa de dados e melhor escalabilidade.
- Analisamos um exemplo importante e representativo da técnica de interconexão ponto a ponto: QuickPath Interconnect (QPI), da Intel, que foi apresentada em 2008.
- Características significativas da QPI:
 - ➤ Arquitetura de protocolo em camadas: como encontrado em ambientes de rede, como redes de dados baseadas em TCP/IP, essas interconexões em nível de processador usam uma arquitetura de protocolo em camadas, em vez do simples uso de sinais de controle encontrado nas disposições de barramento compartilhado.

- Em comparação com o barramento compartilhado, a **interconexão ponto a ponto** tem menor latência, maior taxa de dados e melhor escalabilidade.
- Analisamos um exemplo importante e representativo da técnica de interconexão ponto a ponto: QuickPath Interconnect (QPI), da Intel, que foi apresentada em 2008.
- Características significativas da QPI:
 - ➤ Transferência de dados em pacotes: os dados não são enviados simplesmente como um *stream* de bits. Em vez disso, eles são enviados como uma sequência de pacotes, cada um contendo cabeçalho de controle e códigos de controle de erro.

Configuração multicore usando QPI:

- Define-se QPI como uma arquitetura de protocolo de quatro camadas, que abrange as seguintes camadas:
 - **1. Física:** consiste em fios reais que carregam os sinais, bem como circuitos e lógica para suportar as características necessárias para a transmissão e recepção de 1s e 0s. A unidade de transferência da camada física é de **20 bits**, que é chamada de Phit (Physical unit).
 - **2. Ligação:** responsável pela transmissão e pelo controle de fluxo. A unidade de camada de ligação de transferência consiste em uma Flit (Flow control unit) de 80 bits.

- Define-se QPI como uma arquitetura de protocolo de quatro camadas, que abrange as seguintes camadas:
 - **3. Roteamento:** proporciona a estrutura de redirecionamento dos pacotes através dos caminhos.
 - **4. Protocolo:** um conjunto de regras de alto nível para troca de pacotes de dados entre os dispositivos. Um pacote é compreendido por um número inteiro de Flits.
- A figura a seguir mostra camadas de QPI.

QPI – Camada física

Interface física da interconexão da Intel QPI:

QPI – Camada física

Distribuição multivia da QPI:

QPI - Camada de ligação

- A camada de ligação QPI desempenha duas funções-chave: controle de fluxo e controle de erro.
- A função de controle de fluxo é necessária para assegurar que a entidade de QPI de envio não sobrecarregue uma entidade de QPI de recebimento ao enviar dados mais rápido do que o receptor pode processar e para limpar os buffers para receberem mais dados.
- A função de controle de erro em uma camada de ligação detecta e recupera a partir desses erros de bits, e então isola camadas mais altas a partir da experiência de erros de bits.

QPI – Camada de roteamento

- A camada de roteamento é usada para determinar o caminho que um pacote vai trafegar através de interconexões disponíveis do sistema.
- Em pequenas configurações as opções de roteamento são limitadas e as tabelas de roteamento são bastante simples.
- Para sistemas maiores, as opções de tabela de roteamento são mais complexas, dependendo de como (1) dispositivos são alocados na plataforma,
 (2) recursos do sistema são divididos e (3) eventos de confiabilidade resultam no mapeamento em torno de um recurso de falha.

QPI – Camada de protocolo

- Na camada, o pacote é definido como uma unidade de transferência.
- A definição de conteúdo de pacote é padronizada com alguma flexibilidade permitida ao atender pedidos diferentes de segmentos de mercado.
- Uma função-chave desempenhada é um protocolo de coerência de cache, que age se certificando de que os valores da memória principal mantidos em diversas caches são consistentes.
- Uma carga útil de pacote de dados comum é um bloco de dados enviados para e a partir de uma cache.

PCI Express

- Do barramento PCI (do inglês, Peripheral Component Interconnect) é um barramento de grande largura de banda, independente de processador, que pode funcionar como uma unidade intermediária ou barramento de periféricos.
- A PCI oferece melhor desempenho de sistema para subsistemas de E/S de alta velocidade.
- Uma nova versão, conhecida como PCI Express (PCIe) foi desenvolvida.
- A PCIe é um esquema de **interconexão ponto a ponto** que visa substituir os esquemas baseados em barramento, como a PCI.

Configuração comum usando PCIe:

> Camadas:

- Física: consiste em fios reais que carregam os sinais, bem como circuitos e lógica para suportar os requisitos para a transmissão e recepção de 1s e 0s.
- Ligação de dados: é responsável pela transmissão confiável e pelo controle de fluxo. Pacotes de dados gerados e consumidos pela DLL são chamados de Pacotes de Camada de Ligação de Dados (DLLPs Data Link Layer Packets).
- Transação: gera e consome pacotes de dados usados para implementar mecanismos de transferência de dados e armazenamento de carga e também gerencia o controle de fluxo daqueles pacotes entre dois componentes em um link. Pacotes de dados gerados e consumidos pela TL são chamados de Pacotes de Camada de Transação (TLPs Transaction Layer Packets).

Camadas de protocolo de PCIe:

PCIe – Camada física

Técnica de distribuição multivia do PCIe:

- Uma técnica comum, e a única usada na PCle 3.0, para superar o problema de uma longa cadeia de bits de um valor é a cifragem.
- A cifragem é uma técnica de mapeamento que tende a fazer os dados aparecerem de modo mais aleatório.
- Outra técnica que pode auxiliar na sincronização é a **codificação**, em que bits adicionais são inseridos no stream de bits para forçar transições.
- A figura a seguir ilustra o uso da cifragem e da codificação.

PCIe – Camada de transação

- A camada de transação (TL) recebe pedidos de leitura e escrita a partir do software acima da TL e cria pacotes de solicitação de transmissão para um destino por meio da camada de ligação.
- A TL suporta quatro espaços endereçados:
 - 1. Memória
 - 2. E/S
 - 3. Configuração
 - 4. Mensagem

PCIe - Camada de transação PCIe TLP

Espaço de endereço	Tipo de TLP	Propósito
Memória	Pedido de leitura de memória	Transfere os dados para ou a partir de um local no mapa de memória do sistema
	Pedido de bloqueio de leitura de memória	
	Pedido de escrita de memória	
E/S	Pedido de leitura de E/S	Transfere os dados para ou a partir de um local no mapa de memória do sistema para
	Pedido de leitura de tipo de configuração 0	
Configuração	Pedido de escrita de tipo de configuração 0	Transfere os dados para e a partir de um local no espaço de configuração de um dispositivo PCIe
	Pedido de leitura de tipo de configuração 1	
	Pedido de escrita de tipo de configuração 1	
Mensagem	Pedido de mensagem	Proporciona uma mensagem em banda e um relato de evento
	Pedido de mensagem com dados	
Memória, E/S, Configuração	Finalização	Retornado para certos pedidos
	Finalização com dados	
	Finalização bloqueada	
	Finalização bloqueada para dados	

PCIe – Camada de ligação de dados

- O propósito da camada de ligação de dados PCIe é assegurar a entrega confiável pela ligação de PCIe.
- Os pacotes de camada de ligação de dados originam-se na camada de ligação de dados de um dispositivo de transmissão e terminam na DLL do dispositivo no outro final da ligação.
- Há três grupos importantes de DLLPs usados para gerenciar a ligação:
- 1. pacotes de controle de fluxo,
- 2. pacotes de gerenciamento de potência e
- 3. pacotes TLP ACK e NAK.