嵌入式智能频率计 PLJ-1601A

用户手册 **V 1.0**

三剑工作室

淡荣生

2011年12月

广西 南宁 隆安

目 录

概 述	
技术参数	
工作原理	
性能测试	10
使用操作	13
有关套件	20
有关 DIY	23
后 记	25

概述

PLJ-1601A 嵌入式智能频率计专为 HAM 设计的频率测量仪器。其小巧精致,操作简单,工作可靠,主要用于 DIY 收发信机作频率值显示,也可用于常规频率测量。本频率计的主要特点如下:

- ◆ 以 Microchip 公司 8 位单片机 PIC16F648A 为核心的高性能 1.1GHz 频率计。
- ◆ 内置频率基准采用温度补偿型压控晶体振荡器(±2.5 ppm VC-TCXO),可外接更高性能的频率基准,软件支持 13.000 MHz、12.800 MHz、10.000 MHz 和 4.000 MHz 四种频点。
- ◆ 定时闸门(0.01 秒/0.1 秒/1.0 秒)三档可选。
- ◆ 单端输入三通道(低通道/高通道/自动通道)可选。
- ◆ 有加减中频功能,中频值可调,加/减模式可选。
- ◆ 采用 LCD1601/1602 字符型液晶屏显示频率值,最高可显示 9 位数字,频率值无效零自动消 隐,无效频率值显示滤波可选。
- ◆ 四按键控制,人机界面良好。
- ◆ 各项设置自动保存在 EEPROM 中,下次开机直接调用。

技术参数

- 1. 闸门时间
 - 0.01秒
 - 0.10秒
 - 1.0 秒
- 2. 测量通道(高低通道均为高阻)
 - 低通道

测量范围: 0.1 MHz~70 MHz

测量精度: ± 100Hz (0.01 秒闸门时)

± 10Hz (0.1 秒闸门时)

± 1Hz (1.0 秒闸门时)

低通道灵敏度:

0.1 MHz ~ 10 MHz: 优于 60mV_{PP}

10 MHz~60 MHz: 优于 60mV_{PP}

60 MHz ~ 75 MHz: 未测试

● 高通道(64分频)

测量范围: 10 MHz ~ 1.1 GHz

测量精度: ± 6400Hz(0.01 秒闸门时)

± 640Hz(0.1 秒闸门时)

± 64Hz (1.0 秒闸门时)

高通道灵敏度:

10 MHz ~ 30 MHz: 优于 100mV_{PP}

30 MHz~60 MHz: 优于 50mV_{PP}

60 MHz~1.1 GHz: 未测试

● 自动通道

依据输入信号频率自动选择高通道或低通道,识别频率为 60 MHz。如输入大于 60 MHz 的信号幅度不足无法自动选择高通道时,应手动选择高通道测频。

© 2008 Studio.Sanjian 三剑工作室

E-mail: drsh1@163.com

QQ: 307693659

3. 中频设置

中频可调最小步距为100 Hz,中频范围0~999.9999 MHz,可设置为加中频或减中频模式。

4. 频率基准

内部采用 5032 封装 13.000MHz 温补压控晶体振荡器(VC-TCXO), 频率稳定度是±2.5 ppm。 设有外接频率基准接口,目前软件支持的频率基准有: 13.000 MHz、12.800 MHz、10.000 MHz 和 4.000 MHz。

5. 工作电压

直流输入: DC 9V~12V(有电源极性反接保护)

6. 工作电流

启用背光: ≤ 75 mA

禁用背光: ≤ 55 mA (断开背光电源)

7. 显示位数

最高9位数字显示

8. 物理尺寸

长×宽×高: 92mm×37mm×27mm

9. 板载接口

RF INPUT (测量信号输入): XH2.54-2P 弯针方口插座

ICSP INPUT (MCU 编程接口): XH2.54-6P 弯针方口插座

ECL INPUT (外部时钟输入): XH2.54-2P 弯针方口插座

POWER INPUT (电源接口): ①Φ3.5mm DC 插座 (内正外负)

②XH2.54-2P 弯针方口插座

工作原理

前置放大

射频信号由 RF INPUT 输入后分两路进入前置宽带放大。

低通道放大由双栅场效应管 Q101 BF998R 和 Q102 C3356 及外围元件组成, W101 调整 Q102 工作点改变低通道灵敏度,放大后信号进入 IC101 74AC151 的输入端 I3 待选导通。

低通道前置放大

高通道放大由 Q104 BF998R、前置分频 IC103 MB501 和 Q103 C3356 及外围元件组成,W103 调整与 IC103 MB501 输入的匹配(实验测定,此电阻 470K 最佳,既可保证通道灵敏度,也可避免无信号输入时频率值示数乱跳),W102 调整 Q103 工作点改变高通道灵敏度,放大后信号进入IC101 74AC151 的输入端 I2 待选导通。

高通道前置分频放大

通道选择

由高速 8 选 1 数据选择器 IC101 74AC151 构成通道信号选择电路,IC101 74AC151 的 11 脚根据来自 IC102 PIC16F648A 1 脚的电平,控制 IC101 74AC151 的输出脚 5 是输出低通道信号还是高通道信号。

MCU&按键输入&显示输出&在线编程

PIC16F648A 的 RA0、RA1、RB4-RB7 用于 LCD 的控制,采用四线制并口数据传输,RA6和 RA7也同时作为在线编程接口。RB0-RB3用于按键控制,内部电阻上拉。时钟由 16 脚输入,RA2 控制 IC10174AC151的选通,RA4对外部脉冲计数,RA3作闸门控制。

● 有关频率基准

频率基准采用广泛用于手机的 13.000MHz 温度补偿型压控晶体振荡器 (VC-TCXO), 频率稳定度是±2.5 ppm。

由于此类频点为大规模生产,所以成本很低,淘宝价为3元左右,为收发信机信号合成等场合提供了价廉物美的频率基准,在此感谢BH7KVE,他提出了设想并积极实践。

此前曾为寻找合适的频率基准头痛,普通晶体频率稳定度只有±100 ppm,前面发布的 PLJ -5110B 采用了全尺寸 4.000 MHz 温度补偿型晶体振荡器 (TCXO),标称频率稳定度也是±2.5 ppm。

这种 TCXO 体积大,而且价格高,淘宝上标价 50 元/只,几十只的价格是 35 元/只,大大限制了其广泛应用。曾因电源接反损坏过一只,打开看看内部结构,呵呵。。。

其核心也是手机所用的温度补偿型压控晶体振荡器(VC-TCXO),增加了压控微调频率及电

平放大转换电路。以下是根据实物绘制的电路图:

以下是本机实际采用的电路,R114、D106等构成 3V 稳压电路,R112、W104 和 R115 构成分压微调频率。

本机设有外接频率基准接口,可接入质量更高的频率基准(如恒温晶振、铷原子钟等),实现更高的测量要求。现在淘宝上的铷原子钟比较便宜,如 FE-5680A 也就 100 多元,其输出频率是10.000 MHz,可为本频率计提供高质量的频率基准。

本机定时算法精准,只要保证输入频率基准的准确,即可产生准确定时闸门。目前支持的外部频率基准有: 13.000 MHz、12.800 MHz、10.000 MHz 和 4.000 MHz 四种常用频点,可在高级© 2008 Studio.Sanjian 三剑工作室 E-mail: drsh1@163.com QQ: 307693659 page 7

设置菜单中预置。如需其它频点,可使用本工作室编写的"T 计算器"计算定时参数。

● 有关闸门

待测信号经 R106 进入 PIC16F648A 的 3 脚进行计数,闸门时间到后 PIC16F648A 的 2 脚 RA3 由输入高阻状态变为输出,阻止 3 脚电平变化,T0 停止对外计数,这种闸门控制方式不需专门闸门芯片,简单可靠,易于移植至其他单片机,此为本频率计设计亮点之一。

● 有关计数

对于 89S51 单片机来说,当定时/计数器工作于计数功能时,其最大的计数频率值不会超过时钟频率 $F_{\rm OSC}$ 的 1/24,即通过 T0 或 T1 完成的频率计数器的频率小于 $F_{\rm OSC}$ /24。因此,要想用 51 单片机来实现超过 100MHz 以上的频率计数功能,就得使用外部扩展分频电路(如 74LS393、74AC4040 等)来完成,这样会使得系统的电路变得复杂。

PIC 单片机内部 TMR0 拥有预分频器,无需扩展外部电路,就可以轻松实现 75MHz 以下的频率计数。但这里有一个问题,就是 PIC 单片机内部的预分频器是不可直接读写的,当闸门时间到时,如何知道预分频器里的计数值呢?设计思路是如下: 当闸门时间到时,PIC16F648A 的 2 脚 RA3 由输入高阻状态变为输出状态,PIC16F648A 的 3 脚停止对来自 74AC151 的脉冲计数,同时 PIC16F648A 的 2 脚 RA3 端产生模拟脉冲信号并记录脉冲的个数 N,使 PIC16F648A 的 3 脚 T0 进行计数,当 T0 溢出时计算 255—N,即为闸门时间到时预分频器里的计数值,无需外部计数器是本频率计设计亮点之二。

● 有关定时

用单片机做频率计许多设计者采用 Timer 溢出中断的方式来定时,中断的延迟问题尚可通过 © 2008 Studio.Sanjian 三剑工作室 E-mail: drsh1@163.com QQ: 307693659 page 8

改写定时器初值来补偿,但中断时单片机响应的时间有时是无法确定的,这决定中断时单片机正 在执行什么样的指令,如 MCS-51 单片机中断系统中的中断响应时间为 3~8 个机器周期,补偿 起来相当麻烦。

也有人设计时不太关注频率基准的准确度,认为可以用软件调整,其实这是不严谨的做法,会产生"累计误差"或"线性准确度"的问题,做这种脉冲计数型的频率计,频率基准的准确度是很重要的。当然也要注意频率基准的稳定度,没有稳定度的保证,准确度也是浮云。

本频率计不采用 Timer 溢出中断的方式,而是采用软件延时的方法来精确计时。具体做法是:在软件延时过程中加入 Timer 溢出检测,发现溢出软件计数器加 1,Timer 溢出标志清零,然后继续执行延时程序直至延时时间结束,这里最关键的地方是:① 执行 Timer 溢出检测所耗的时间也包含在延时时间中;② 插入 Timer 溢出检测的时机要合适,即每次 Timer 溢出都不能错过。采用软件延时的方法来确保定时的精准是本频率计设计的亮点之三。

● 有关软件

本版本采用 C 语言编写,定时部分内嵌汇编,占用 8125 words 程序空间。

性能测试

• 测量范围测试

低通道:最低可至 0.1MHz,最高可至 75 MHz,但大于 70 MHz 时,通道增益减小,需输入 >100 mVpp 信号方可稳定显示,该通道建议测量范围为 0.1 MHz ~ 60 MHz。

高通道:最低可至 2 MHz,但需要输入较大幅度的信号。理论上最高可至 1.1 GHz,因条件限制无法验证。以下图片是感应法测量 150 MHz 和 450 MHz 对讲机的频率,该通道建议测量大于 20 MHz 的信号。

测量 150 MHz 对讲机的频率

测量 450 MHz 对讲机的频率

• 通道灵敏度测试

工作室里那台高龄的 YM8178 锁相信号发生器终于罢工了。不得已翻出经改装可调节输出幅度的 NWT-7,配合电脑当信号发生器了,再用一台同样是高龄的 COS5100 示波器观察频率计可靠计数时的电压峰峰值,测试环境简陋,欢迎有条件的朋友帮忙测试。

通道灵敏度测试数据(参考值)

低通道		高通道		
测试频率	通道灵敏度	测试频率	通道灵敏度	
15MHz	40 mVpp	10 MHz	100 mVpp	
20 MHz	45 mVpp	15 MHz	120 mVpp	
25 MHz	50 mVpp	20 MHz	60 mVpp	
30 MHz	50 mVpp	25 MHz	60 mVpp	
35 MHz	60 mVpp	30 MHz	80 mVpp	
40 MHz	60 mVpp	35 MHz	30 mVpp	
45 MHz	60 mVpp	40 MHz	25 mVpp	
50 MHz	55 mVpp	45 MHz	25 mVpp	
55 MHz	50 mVpp	50 MHz	60 mVpp	
60 MHz	50 mVpp	55 MHz	50 mVpp	
65 MHz	50 mVpp			
70 MHz	50 mVpp			
75 MHz	未测试			

• 精度&稳定度测试

测试目的:测量频率稳定度

测试对象: PLJ-1601A

信 号 源: FE-5680A 铷原子钟输出的 10.000 000 MHz 0.5V rms 正弦波信号(FE-5680A 铷原子钟拥有超高的频率精度和稳定度±0.00001ppm,比恒温晶振性能高 1000 倍。)

E-mail: drsh1@163.com

闸门: 1.0 S

通道: AUTO

结果: 在长时间工作中, 最末一位示数偶尔在"0"和"1"之间跳动。

使用操作

一. 本机结构

二. 显示说明

三. 操作步骤

(一)准备工作

- 1. 使用前请先检查电源电压 (DC 9V-12V) 及极性,确认后方可将电源插头插入本仪器 Φ3.5mm DC 插座内 (内正外负),也可在 Φ3.5mm DC 插座旁的 2P 方口插座输入 9V-12V 直流电压。本机有防呆设计,电源极性接反机器不工作,但不会产生破坏性后果。
- 2. 测量信号输入 2P 方口座接入测试线 (有线方式) 或天线 (感应方式)。
- 3. 仪器电源开启预热几分钟待频率基准稳定后再进行测量操作。

(二)功能设置

工作闸门设置

工作通道设置

系统重置

高级设置

注: 红色文字为显示屏中实际显示的信息。

2. 菜单详解

(1) 中频设置

① NO IF (无中频)

显示的频率就是所测得的频率。

② SET IF (有中频)

显示的频率是所测得的频率加/减中频后的频率。

选择该项后会显示当前中频值,其中一位数字下面有下划线为当前改变位,按【▲】或键【▼】键改变该位数值,按【SET】键下划线移到下一位数字,再按【▲】或键【▼】键改变该位数值,依此类推直至中频值设置完毕,按【OK】键后进入加/减中频设置,按【▲】或键【▼】键改变加或减,再按【OK】键完成中频设置并返回工作界面。在中频调整时,长按【▲】或键【▼】键数字可连接变化,可以加快设置速度。

(2) 显示滤波

① FILTER ON (滤波启用)

为避免无信号输入时杂乱信号引起的假象计数,滤除频率<3MHz 的信号,主页面频率值显示 0.00000 MHz。

② FILTER OFF (滤波禁用)

对频率<3MHz 的信号不作滤除处理。在测量频率<3MHz 的信号时应选择该项设置,否则一直显示 0.00000 MHz。

(3) LCD 类型

① 1601 LCD

1601 符型液晶显示模块。

② 1602 LCD

1602字符型液晶显示模块。

注意:根据实际所使用的 LCD 类型设置,否则显示异常,如 1602 出现分两行显示,1601 出现后 8 个字符不显示。

(4) 时钟选择

① 13.000 MHz

本机内置时钟(默认时钟)。

② 12.800 MHz

根据外置时钟设置。

③ 10.000 MHz

根据外置时钟设置。

4 4.000 MHz

根据外置时钟设置。

注意:如使用外部时钟,请事先切断内置时钟通路,如去掉B103等。

补充说明

按键功能

工作界面下各按键功能:

【SET】 键: 进入菜单

【▲】 键:改变闸门

【▼】 键:改变通道

【OK】 键: 无

菜单界面下各按键功能:

【SET】 键: 设置/中频值下一位

【▲】 键:上一项/数字递增

【▼】 键:下一项/数字递减

【OK】 键:确定并退出菜单

- 各功能设置按【OK】键后退出菜单返回仪器工作界面,各项设置自动保存,下次开机直接调用, 无需重新设置。
- 在使用 1.0S 闸门时,各按键须按下至少 2 秒钟后才响应,所以设置各功能最好在非 1.0S 闸门 下进行,设置完成后再返回 1.0S 闸门界面。
- 恢复出厂设置:在关机状态下首先按住【SET】键不放,接通电源至LCD 屏背光亮起并最终显 示 Complete! 后松开【SET】 键,仪器即可恢复出厂设置。在仪器工作不正常时应执行此操作。

(五) 频率测量

1. 有线方式

在 RF INPUT (测量信号输入)端口与信号测量点通过测试线连接测量频率。如本振信号 的测量。

2. 感应方式

在 RF INPUT (测量信号输入)端口接上测试天线,对发射信号的设备感应的方式测量频 率。如对讲机等无线发射设备频率的测量。

测量高压、强辐射信号频率时,有线方式应串接大阻值电阻,感应方式应将频率计远离辐射 信号源,以免损坏仪器。

有关套件

为方便大家测试使用,提供少量成品,有兴趣请进入三剑工作室的淘宝链接(http://studio-sanjian.taobao.com)。

套件说明:

- 贴片器件安装
- 回流焊工艺
- 使用 LCD1601
- 镀镍铜柱安装
- 无电源、无外壳
- 己调试成品

包装清单:

- 主机 一台
- XH2.54-2P 20cm 单头线 两条
- 防静电袋包装

注意事项:

- 套件配送的两条 XH2.54-2P 20cm 单头线,请勿以颜色做为极性的判断依据,接入前请根据 主机插座判断极性,详情阅读本手册使用操作一节的内容。
- 电源接入有两个端口, 主机下方的 Φ3.5mm DC 插座(内正外负)以及其旁边的 2P 方口插座, 请根据实际情况输入 9-12V 电源。切勿把电源误接入上方外部时钟 2P 方口插座!
- 市面销售的 LCD 安装孔尺寸有差异,如自行配置 LCD 屏,须符合附图一规范。
- LCD 屏采用四颗内六角不锈钢螺丝固定,如需面板安装,请自行换成四颗 8 mm 铜柱,也可 通知我们发货前更换。
- LCD 不需背光请自行断开背光电源(焊开主板上方用焊锡短路的两个焊盘)。
- 主板 PCB 右端留有按键空位,在按键小板损坏或丢失等情况可自行加装按键。
- 如需外接频率基准,请先断开板载时钟通路,并加隔直电容后在 ECL INPUT 方口插座输入 符合规范的频率基准信号。
- 本机无信号直接输入时可能是非零显示,这是正常现象,不影响正常测量及准确度。
- 请勿将仪器置于高温、潮湿、多尘的环境,并应防止剧烈震动。
- 本机出厂前时钟基准已用铷原子钟校正,灵敏度调整至最佳状态,请勿自行调整。
- 在正常的使用情况下保修期为一年。保修不适用于因错误使用、改装等非正常条件下导致损 坏的产品。

PLJ-1601A

1	2	3	4	5	6	7	8
VSS	VCC	VEE	RS	R/W	E	DB0	DB1
9	10	11	12	13	14	15	16
DB2	DB3	DB4	DB5	DB6	DB7	LED+	LED-

附图一

有关 DIY

PCB 板可自行制作,我的评估板就是用感光膜制作的双面板,可适当更改 PCB 文件,以符合您的制板要求。

MB501 可用 MB506 代替,74AC151 也可用其它相近产品代替,但应选择工作频率较高的系列,PIC16F648A 不能用其它器件代替,这些器件在淘宝网上都可找到。

市售的 LCD1601/1602 背光电流差别很大,我手头上的屏背光耗电 20 mA 至 200 mA 不等,在评估版时曾采用 ASM1117-5V 做为稳压,在开背光耗电 200 mA 的情况下发热严重,最终改用体积较大的 78M05。

烧写文件中已设置了烧写位,大部分烧写器有读入烧写位的功能,无需人工干预。如您的烧写器无法识别,晶振类型选 HS,其余选项关闭即可。

总结前版的种种状况,在论坛所公布的烧写文件中加入了使用次数限制,开机第 25 次时,会显示"BETA VERSION"限制继续使用,此时按照使用操作中的系统重置方法(按住 SET 键开机)即可恢复正常使用。除此以外,硬件及软件无任何技术陷阱。

本产品版权为三剑工作室所有,所公布资料可任意复制转载,并鼓励个人仿制测试,但不得用于商业用途。

E-mail: drsh1@163.com

后 记

有关频率计的第一个贴子于 2008 年底发布,至今已有 3 年时间,这几年来,结识了不少的朋友,是他们的支持与帮助,开发工作得以坚持下去。频率计经多次改版,功能得到了完善,电路日趋成熟,性能有较大的提升。

使用汇编编程已经很多年,随着程序量的增大,其弊端突显。于是下定决心学习 C 语言编程,从零开始学习,花了三个月时间,终有小成。索性把前面发布的几款作品进行硬件的改进,程序用 C 重写。由于各方面的原因,这次发布可能是最终版,至少短期内不会再推出新版本。

期望这系列小作品的资料能给大家的 DIY 提供有益的帮助,文档或设计当中有可改进之处敬请指正。

附: 历次在 hellocq.net 发布的资料

> 2008-11-03,

http://www.hellocq.net/forum/showthread-t-189583.偶弄的几款频率计.html

> 2008-11-04

http://www.hellocq.net/forum/showthread-t-189696.我为论坛做贡献之频率计一.html

> 2008-11-05

http://www.hellocq.net/forum/showthread-t-189718.我为论坛做贡献之频率计二.html

> 2009-03-30

http://www.hellocq.net/forum/showthread-t-200868.发布两款嵌入式智能频率计(加强版)的制作资料.html

> 2011-04-27

http://www.hellocq.net/forum/showthread-t-264417.再发布一款频率计的制作资料.html

♦ 2011-12-14

http://www.hellocq.net/forum/showthread-t-282626.再次公布新版频率计资料.html