Paper Review

Responding to News Sensitively in Stock Attention Networks via Prompt-Adaptive Trimodal Model

Haotian Liu, Bowen Hu, Yadong Zhou and Yuxun Zhou

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL 36, NO. 6, JUNE 2025

Outline

- Introduction
- Related Work
- Problem Statement
- PA_TMM Architecture
- Model Optimization
- Experiments
- Conclusion

Introduction

Backgrounds and Challenges

Rapid Growth of Multimedia Platforms

- Financial news & social media provide crucial investment signals
- Stock prices contain randomness (random walk)
- But, there is deterministic
 components driven by news

Limitations of Existing Models

- Time-series Forecasting Model
 - Stocks are mutually exclusive
 - Ignore inter-stock dynamics like Momentum spillover
- GNN Model:
 - Hard-coded microstructure
 - Capture limited interactions
- GATs Model
 - Dynamically assign weights
 - Biased attention effect ←

Massive price-related features

Two Main Challenges

- Real-world: a fraction of stocks have the news
- 1. Long Tail Effect in Feature Distribution
 - Distracted by abundant timeseries data
 - Breaking news receive insufficient attention
 - → Biased attention toward price related information
- 2. Data Scarcity Problem
 - Poor generalization

Introduction

Fig. 1. Example of the long-tailed feature distribution of stocks causing biased attention for MSFT on a certain day, where breaking news from financial institutions (JPM and WFC) should have been crucial for any stock.

Backgrounds and Challenges

Top

- Time-series features and Technical indicators
 - → All stocks
- News
 - Few stocks: JPM, WFC

Bottom

- JPM, WFC: Breaking news that impact the overall stock market
- Other sectors: News is unnoticed

Introduction Solution

Turning Point : Near-equivalence

- Idiosyncratic Nature of Financial News
 - → Breaking news of specific stocks has Instantaneous dominance over their movements
- Example: 2024.01, the Federal
 Aviation Administration ordered
 airlines to ground more than 170
 Boeing 737 aircraft
 - → Boeing's stock: Drop 8%
 - → Airbus's stock: Slight increase
 - Boeing's primary competitor:

Prompt-Adaptive Trimodal Model (PA-TMM)

- Cross-Modal Fusion Module
 - : Trimodal features
 - Sentiments Prompts
- Graph Dual-Attention Module
 - Stock Attention Network (dynamic interaction)
- Movement Prompt Adaptation
 - : Equivalence Resampling
 - Movement Prompt
- Pretraining, Fine-tuning
 - : Adapt to feature Imbalance
 - → Focus on real news

Contributions

- Incorporate the dominance of news and capture news propagation dynamics by GATs
- Pretraining with MPA: Sensitively respond to tailed news and avoid over-reliance on stocks carrying news
- 3. Equivalence Resampling Strategy (Data Augmentation): Tackle data scarcity problem and enhance generalizability

Related Work

Time-Series Stock Prediction

- Encode the time series pattern by using RNN based models
 PEN [40], MAN-SF [12], and MTR-C [41]
- Mingle market factors [42], investment behaviors [43], technical indicators
 - REST [44], Digger-Guider [45]
- Limitation of underlying assumption
 - Stocks are mutually exclusive

Graph-Based Stock Prediction

- Conceptualize the stock market as a graph
 - Capture peer influences by using Graph Neural Networks
 - Node (each stock), Edges (relations)
- THGNN [3], ESTIMATE [2], SAMBA [49]
- Limitation
 - Relations are modeled by the static network

News-Based Stock Prediction

- Integrate external information beyond the trading market
 - Financial news, Social media posts
- Graph Convolutional Networks
 - MAC [1], NumHTML [52], MFN [53]
- Graph Attention Networks
 - AD-GAT [15], DANSMP [6]
- Multi-Modal: MSMF [54]
- Limitation
 - Lack of consideration for the long-tail effect

Problem Statement

1 Classification Method for Optimization

- In the stock market, predicting the exact value of stock prices is far more challenging than predicting price movements
- Classify stock as rising or falling: Compare current and previous day stock prices

Given a set $V = \{1, ..., N\}$ of stocks, the movement (labels) y_i^t of stock $i \in V$ on day t is defined as

$$y_i^t = \begin{cases} 1, & c_i^t > c_i^{t-1} \\ 0, & c_i^t \le c_i^{t-1} \end{cases}$$
 (1)

Problem Statement

2 Three Feature Modalities

• Input features on the (T-1)th day \rightarrow Predict the movements on the Tth day

Textual News Copora T

• Labeled the relevant stocks impacted by each news item

Historical Time-Series Trading Signals

- $X_i^{[t-T;t]} = \left[x_i^{[t-T]}, \dots, x_i^{t-1}\right] \in \mathbb{R}^{T \times d_{\mathcal{X}}}$ for each stock $i \in V$
- Transaction features of stock *i* on the *T*th day
- Price (highest, lowest, Opening and Closing), Trade volume, and Rankings
- Normalize prices to handle scale differences

Tabular Technical Indicators

- $I_i^{t-1} \in \mathbb{R}^{d_f}$ for each stock $i \in V$
- Computed through the technical analysis of historical trading signals
- Moving Average Indicators, Momentum Indicators, Volatility Indicators, Volume Indicators

Prompt-Adaptive Trimodal Model Architecture

- Two Subnetworks: Cross-Modal Fusion Module, Graph Dual-Attention Module
- Movement Prompt Adaptation → Pretraining ☐ Fine-tuning

Cross-Modal Fusion Module

1 Pseudo-News Padding and Activation State

1. Fill the news position with pseudonews (i.e., a space character; " ")

- News may be absent for certain stocks
- Address the issue of modality incompleteness with flexibility
- 2. Two mutually exclusive subsets on the day $m{t}$
 - Nonactivation Subset $V^{(0)}$: Price-only
 - Activation Subset $V^{(1)}$: Price, News

Cross-Modal Fusion Module

2 Representation Learning

News-Related Information

$$-m_i = \left(\frac{1}{L}\right) \sum_{l=1}^{L} BERT\left(s_i^{t,l}\right), \in \mathbb{R}^{d_m}$$

Price-Related Information

$$-p_i = Bi - LSTM(X_i^{[t-T;t]})$$

$$-q_i = TabNet(I_i^{t-1})$$

- Where
 - stock $i \in V$ on the (t-1)th day
 - $-s_i^t \in News\ T$, L = # of stock-specific news (target day), $I_i^{t-1} \in \mathbb{R}^{d_f}$, $X_i^{[t-T;t]} \in \mathbb{R}^{T \times d_x}$
 - $\mathbf{m_i} \in \mathbb{R}^{d_m}$, $\mathbf{p_i} \in \mathbb{R}^{d_p}$, $\mathbf{q_i} \in \mathbb{R}^{d_q}$
 - TabNet: Technical Analysis Library(https://ta-lib.org/)

Cross-Modal Fusion Module

Modal Decomposition

Project trimodal representations into 4 different spaces

	News	Price
Specific	u_i^m	u_i^p
Shared	v_i^m	v_i^p

$$\begin{bmatrix} u_i^m \\ v_i^m \\ u_i^p \\ v_i^p \end{bmatrix} = \sigma \begin{pmatrix} \begin{bmatrix} W_{um} m_i \\ W_{vm} m_i \\ W_{up}[p_i||q_i] \\ W_{vp}[p_i||q_i] \end{bmatrix} \end{pmatrix}$$

- $\sigma(\cdot)$: Nonlinear Activation Function
- Orthogonal Loss: **Ensure the independence** of the modal-specific spaces from the modal-shared spaces

-
$$L_{ort} = \parallel W_{um} \cdot W_{vm}^T \parallel_F + \parallel W_{up} \cdot W_{vp}^T \parallel_F$$
 , where $\parallel \parallel_F$: Frobenius Norm $= \sqrt{\sum \sum |x_{ij}|^2}$

Cross-Modal Fusion Module

Activation

Modal Integration

- Media sentiment → Impact stock prices
- **News-Stream Integration**
 - **Sentiment Prompts**

$$h_i^{pmt} = [\hat{h}_i^- \parallel \hat{h}_i^+]$$
$$= softmax(W_{zr}[u_i^n])$$

Price-Stream Integration Hybrid Embeddings

$$h_i^{hyb} = \sigma(W_{hr}[u_i^p \parallel (u_i^p + v_i^m) \parallel v_i^m] + b_h)$$

Where

Pseudo-News

- $u_i^m \odot v_i^p$: News (sentiment source), Price (noise filter)
- $u_i^P + v_i^m$: Equally crucial \rightarrow Addition Operation
- $h_i^{pmt} \in \mathbb{R}^2$, $W_{zr} \in \mathbb{R}^{2 \times 3d_r}$, $i \in V^{(1)}$ (Only Activation) $h_i^{hyb} \in \mathbb{R}^{d_h}$, $W_{hr} \in \mathbb{R}^{d_h \times 3d_r}$, $b_h \in \mathbb{R}^{d_h}$, $i \in V$

Graph Dual-Attention Module

Activation

1 Stock Polarized Activation

- Activated stocks carry more dominant information
 - Asymmetric feature distribution
- Different activation states → Varying inter-stock influences
 Separate embedding

Node Vector
$$n_i = \begin{cases} \sigma\left(W_{nh}^{(1)}[h_i^{hyb} \| h_i^{pmt}] + b_n^{(1)}\right), & i \in V^{(1)} \\ \sigma\left(W_{nh}^{(0)}[h_i^{hyb}] + b_n^{(0)}\right), & i \in V^{(0)} \end{cases}$$

Polarization loss (via cosine distance)

"Opposing Separated, Similar Closer"

$$L_{pol} = \sum_{i \in V^{(1)}} \sum_{j \in V^{(1)}} \cos(n_i, n_j) \operatorname{sgn}\left((\hat{h}_i^+ - \hat{h}_i^-)(\hat{h}_j^+ - \hat{h}_j^-)\right)$$

•
$$n_i \in \mathbb{R}^{d_n}$$
, $W_{nh}^{(1)} \in \mathbb{R}^{d_n \times (d_h + 2)}$
, $W_{nh}^{(0)} \in \mathbb{R}^{d_n \times (d_h)}$, $b_n^{(1)} \in \mathbb{R}^{d_n}$
, $b_n^{(0)} \in \mathbb{R}^{d_n}$

2 Interaction Inference

- Dynamic Interaction Attnetion Network
- Reflecting information flow[Activated → Nonactivated]
 → Partially Bipartite (Fig.3)
- Attention Score $\alpha_{i,j}^{(k)} = \frac{\exp(\varphi(n_i,n_j))}{\sum_{j \in V^{(k)}} \exp(\varphi(n_i,n_j))}$
- Message Flux $\varphi(n_i,n_i) = a_{\omega}^T LeakyRelu(W_{n_{\omega}}[n_i \parallel n_i])$
- Where
 - \mathbf{n}_i : Target Node $\in V^{(0)}$, \mathbf{n}_j : Source Node $\in V$

$$-\alpha^{(1)} \colon V^{(1)} \to V^{(0)}, \alpha^{(0)} \colon V^{(0)} \to V^{(0)}$$

$$-a_{\varphi} \in \mathbb{R}^{d_{\varphi}}, W_{\varphi n} \in \mathbb{R}^{d_{\varphi} \times 2d_{n}}$$

Graph Dual-Attention Module

Fig. 3. Inferred partial-bipartite stock attention network.

3 Information Exchange

• Edge(information flow $N_j \to N_i$)

$$e_{i,j} = W_{eo}[n_i \parallel \sigma(W_{on}[n_i \parallel n_j]) \parallel n_j]$$

Message Vector (weighted sum)

$$\widetilde{m}_i = \|_{\mathbf{k} \in \{0.1\}} \ \sigma \left(\sum_{j \in V^{(k)}} \alpha_{i,j}^{(k)} e_{i,j} \right)$$

- For nonactivated stock,

summary of peer stock interactions

Where

$$-\widetilde{m}_i \in \mathbb{R}^{2d_e}, \alpha_{i,j}^{(k)}: Attention Score (N_j \to N_i), N \in \mathbb{R}^{d_n}$$

$$-\mathbf{e}_{i,j} \in \mathbb{R}^{d_e}, W_{eo} \in \mathbb{R}^{d_e \times 3d_n}, W_{on} \in \mathbb{R}^{d_n \times 2d_n}$$

Graph Dual-Attention Module

Graph Dual-Attention Module

4 Output Mapping

- For activated stock, news often dominates price movement
 - Sentiment Prompts = Movement Prediction

$$\hat{y}_i = h_i^{pmt} = [\hat{h}_i^- \parallel \hat{h}_i^+], i \in V^{(1)}$$

 Fo nonactivated stock, a feed-forward neural network is used

$$\hat{y}_i = [\hat{y}_i^- \parallel \hat{y}_i^+] = softmax(W_i[n_i \parallel \tilde{m}_i] + b_i), i \in V^{(0)}$$

- Where
 - \hat{y}_i : Movement Prediction $\in \mathbb{R}^2$, $W_i \in \mathbb{R}^{2 \times (d_n + 2d_e)}$, $b_i \in \mathbb{R}^2$

Graph Dual-Attention Module

5 Discussion

- PA-TMM models the stock network as a partially bipartite graph
 - The conventional GATs: Homogeneous graphs
- Message vectors (\widetilde{m}_i) play a vital role in the model's performance
 - Demonstrated by ablation experiments (TABEL V), w/o Msgs
 - Calculated by the attention scores
- Treating activated and nonactivated nodes separately is crucial
 - Increase computational complexity
 - However, focus is on the performance
- More lightweight attention modules could be the future work

Computational Complexity

Cross-Modal Fusion Module

Primary Cost: Recurrent Component of Bi-LSTM

$$-O(N \times T \times d_p^2)$$

where, *N*: # of Stocks, *T*: Length of Time Series

, d_p : Hidden Size of LSTM

Other parts are negligible (linear layers)

Graph Dual-Attention Module

Primary Cost: Interactions Inference

$$-O(N^2 \times d_n)$$

where, d_n : Dimension of Node Vector

Other parts are negligible (linear layers)

Overall Complexity

$$O(N \times T \times d_p^2) + O(N^2 \times d_n)$$

- Training Cost (hrs): 4.7 for NASDAQ100, 7.9 for S&P500
- Test Cost (sec): 0.11 for NASDAQ100, 0.32 for S&P500

Model Optimization

Movement Prompt Adaptation : Equivalence Resampling

- Data Augmentation Strategy
 - → Tackle long tail effect in feature distribution

- Wide Range of Possible Scenarios → Enhance generalizability
- Generate prompts (equivalent to market sentiments) from past stock movements
- **1.** Randomly activating a stock subset $V^{(1)} \subset V$
 - Number of stocks is varying with a Poisson distribution Emulate daily variation in news-carrying stocks
- 2. Ground-Truth Movements Movement Prompts

$$h_i^{pmt} = \left[\hat{h}_i^- \parallel \hat{h}_i^+\right] = \begin{cases} \left[(1 - \epsilon_i) \parallel \epsilon_i\right], & when \ y_i^t = 0 \ (Down) \\ \left[\epsilon_i \parallel (1 - \epsilon_i)\right], & when \ y_i^t = 1 \ (Up) \end{cases} \quad \text{where, } \epsilon_i \sim \text{U}(0, 0.5)$$
 Randomness to Prompts for Robustness

- 3. Inverting Movement Prompts: $h_i^{pmt} \leftarrow 1 h_i^{pmt}$, with Mutation Probability θ
 - By Injecting data noise, prevent the model from over-fitting

Model Optimization

Pretraining Objectives

$$L_{mov}^{(0)} = -\frac{1}{|V|} \left(\sum_{i \in V^{(0)}} \left(\left(1 - y_i^t \right) \log(\hat{y}_i^-) + y_i^t \log(\hat{y}_i^+) \right) \right) \qquad L_p = \sum_t \left(L_{mov}^{(0)} + \beta L_{ort} + \gamma L_{pol} \right)$$
 Where, β and γ are the weighting factors

Model Optimization

Fine-Tuning Objectives

$$L_{mov}^{(1)} = -\frac{1}{|V|} \Big(\sum_{i \in V^{(1)}} \Big(\Big(1 - y_i^t \Big) \log(\hat{h}_i^-) + y_i^t \log(\hat{h}_i^+) \Big) \Big) \qquad L_F = \sum_t \Big(L_{mov}^{(1)} + L_{mov}^{(0)} + \beta L_{ort} + \gamma L_{pol} \Big)$$
 Where, β and γ are the weighting factors

Evaluation Setup

1 Datasets

Historical Trading Data

Table1	NASDAQ 100	S&P 500
# Stocks (Nodes)	118	510
# Stocks with news (Average activated nodes)	11	26
Pre-training period	Jan. 2014 - Dec. 2015	Jan. 2014 - Dec. 2015
Fine-tuning and validation period	Jan. 2016 - Dec. 2018	Jan. 2016 - Dec. 2018
Test period (12 tests in total)	Jan. 2019 - Dec. 2019	Jan. 2019 - Dec. 2019 p. 9

- Source: Yahoo Finance, Nasdaq Data Link
- Trading information: highest price, lowest price, opening price, closing price, and trade volume

Technical Indicators

- Using TA-lib (Technical Analysis Library)
- e.g., Moving Average Indicators, Momentum Indicators,
 Volatility Indicators, Volume Indicators

News Headlines

- Period: 2016.01 ~ 2019.12
- Source: Benzinga(Financial News Platform)
- Labeled the relevant stocks impacted by each news item.
- Total: 10,536 news articles

Evaluation Setup

2 Compared Baselines

- Comparative analysis against nine state-of-the-art baselines
- 1. Sequential Models (RNN variants)
 - LSTM [37], Transformer [39], Frequency Interpolation Timeseries Analysis Baselines (FITS) [60] and Pathformer [61]
- 2. Graph-Based Methods (GNNs variants)
 - ESTIMATE [2], Temporal Graph Convolution (TGC) [23], Subsequence based Graph Routing Network (S-GRN) [46], and SAMBA [49]
- 3. Multimodal Method
 - Bimodal (time series and news): PEN [40], STHAN-SR [14], AD-GAT [15], DANSMP [6]
 - Trimodal (time series, news, and technical indicators): MCASP [62], and MSMF [54]

Evaluation Setup

3 Evaluation Metrics

- Accuracy (ACC)
 - Ratio of correctly predicted labels (both positive and negative) to the total number of predictions

$$-ACC = \frac{TP+TN}{TP+FP+TN+FN}$$
, where T: True, F: False, P: Positive, N: Negative

Mathew's Correlation Coefficient (MCC)

$$-MCC = \frac{TP \times TN - FP \times FX}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}, \text{ which handles imbalanced datasets}$$

- Backtesting Profitability for a simulated trading
 - Annual Rate of Return = $\frac{Final\ Value\ -Principal}{Principal}$
 - Annulized Sharpe Ratio = $\frac{ARR-R_f}{\sigma_p}$
 - where R_f : ARR of Risk-Free Asset, σ_p : Annualized Standard Deviation of the Portfolio

Evaluation Setup

4 Implementation Details

- Pretraning Datasets: 2014.01 ~ 2015.12
 - Resampled the same day 50 times to generate 50 different activation subsets in two years
- Fine-tuning Datasets: 2016.01 ~ 2019.12
- Grid Search: Hyper Parameters (Table2) Optimization
- For learnable parameters
 - Glorot Initialization, AdamW Optimizer
 - Maximum of 200 Epochs
- Training Cost (hrs): 4.7 for NASDAQ100, 7.9 for S&P500
- Test Cost (sec): 0.11 for NASDAQ100, 0.32 for S&P500
- GPU: NVIDIA Titan V

Table2 Hyper-parameters	NASDAQ 100	S&P 500
Window size T	12	16
Dimension d_m	768	768
Dimension d_r	64	128
Dimension $d_{oldsymbol{\varphi}}$	192	192
Dimension $d_{\it e}$	256	320
Dimensions d_p and d_q	128	128
Dimensions d_h and d_n	256	384
Mutation probability $ heta$	0.25	0.25
Loss weight $oldsymbol{eta}$	0.15	0.2
Loss weight γ	0.025	0.015
Learning rate (pre-training)	5e-4	5e-5
Learning rate (fine-tuning)	2e-4	1e-5
Batch size	8	4
1.0		

Evaluation Setup

5 Trading Portfolios

- Holding 20 stocks
- Purchasing a maximum of 10 of the highest-ranked stocks, daily basis
 - Using movement prediction scores
 - Not already present in the portfolio
- Selling an equivalent quantity of the lowest-ranked stocks
- Control the turnover rate
- Initial Account Capital: U.S. \$5 million
- Transaction Costs: Buying 0.05%, Selling 0.15%

Stock Movement Prediction

TABLE III

PERFORMANCE EVALUATION OF STOCK MOVEMENT PREDICTION (MEAN ± STANDARD DEVIATION)

Methods	NASDAQ 100		S&P 500	
Methods	ACC (%)	MCC	ACC (%)	MCC
LSTM	53.41±0.34	0.065±0.046	53.18±0.69	0.061 ± 0.034
Transformer	52.24±1.32	0.043±0.028	52.40±1.07	0.043 ± 0.032
FITS	53.83±0.80	0.073±0.022	53.07±0.61	0.059 ± 0.037
Pathformer	54.48±1.03	0.087±0.056	53.91±0.95	0.072 ± 0.031
ESTIMATE	55.77±0.48	0.113±0.071	53.50±0.67	0.078 ± 0.061
TGC	56.86±0.79	0.144±0.056	54.13±1.14	0.093 ± 0.043
S-GRN	57.29±0.55	0.143±0.049	54.88±0.72	0.106 ± 0.037
SAMBA	58.09±0.76	0.151±0.042	55.16±0.89	0.117 ± 0.054
PEN	57.91 ± 0.82	0.157 ± 0.028	55.06±0.96	0.114 ± 0.045
STHAN-SR	58.48 ± 0.89	0.161 ± 0.073	55.88±0.47	0.125 ± 0.080
AD-GAT	58.95 ± 1.91	0.184 ± 0.093	56.39±1.52	0.133 ± 0.084
MCASP	58.44 ± 1.29	0.175 ± 0.049	57.90±1.31	0.152 ± 0.072
DANSMP	59.25 ± 1.14	0.186 ± 0.042	57.14±0.63	0.140 ± 0.058
MSMF	59.45 ± 0.92	0.181 ± 0.055	57.44±1.08	0.148 ± 0.087
PA-TMM	60.34 ±0.75	0.199 ±0.059	59.21 ±1.22	0.187 ±0.074

TABLE IV

DIEBOLD-MARIANO TEST RESULTS BETWEEN PA-TMM AND EACH
BASELINE ON TWO DATASETS

Baselines	NASDAQ 100	S&P 500
LSTM	0.0000***	0.0000***
Transformer	0.0000***	0.0000***
FITS	0.0004***	0.0031***
Pathformer	0.0000***	0.0005***
ESTIMATE	0.0004***	0.0012***
TGC	0.0035***	0.0094***
S-GRN	0.0108**	0.0364**
SAMBA	0.0329**	0.0255**
PEN	0.0278**	0.0041***
STHAN-SR	0.0793*	0.0429**
AD-GAT	0.0351**	0.0230**
MCASP	0.0394**	0.0277**
DANSMP	0.0675*	0.0223**
MSMF	0.0545*	0.0381**

Note: *, **, and *** represent statistical significance at the levels of 10%, 5%, and 1%, respectively.

p. 10 Smaller Advantage

p. 11

Significantly Superior

Stock Movement Prediction-Analysis

Time-Series Stock Prediction

- LSTM, Transformer, FITS, and Pathformer
- Ignore complex relationships among stocks
- Perform worse than graph-based models

Graph-Based Stock Prediction

- ESTIMATE, TGC, S-GRN, and SAMBA
- Outperform time-series models
- Ignore external news information
- Constrained by efficient capital markets
- Unnecessary noise information

News-Based Stock Prediction

- PEN, STHAN-SR, AD-OAT, and DANSMP
 - Bimodal (time series, news)
 - Superior performancecompared to nonnews methods
- MCASP and MSMF
 - Trimodal (time series, news, and technical indicators)
 - Better performance on the S&P500 dataset
- Overlook the long-tailed feature distribution Underutillize
 the news

PA-TMM

- Optimal prediction performance in terms of both ACC and MCC
- Overcome the long tail effect inherent in stock feature distribution

Ablation Study

Effectiveness of the Model Architecture

- Sentiment prompts and Graph aggregation mechanism
 - Pivotal role in addressing the long tail effect
 - ➡ Ensure the feasibility of implementing MPA
- Modal decomposition and Polarized activation
 - Enhance the efficiency of utilizing news

Effectiveness of MPA

- MPA: Responsive to activated nodes
 - Promptly capture news without over-fitting
- Varying number of activated nodes
 - Preadapt to the real-world pattern
- Mutation Strategy
 - Avoid over-reliance on activated nodes

TABLE V PERFORMANCE OF DIFFERENT PA-TMM VARIANTS

Variants	NASDAQ 100		S&P 500	
variants	ACC (%)	MCC	ACC (%)	MCC
w/o Pmts.	53.37	0.0741	53.82	0.0771
w/o Msgs.	54.94	0.0916	53.19	0.0734
w/o \mathcal{L}_{ort}	58.76	0.1740	57.45	0.1463
w/o \mathcal{L}_{pol}	57.98	0.1623	57.12	0.1408
w/o MPA	56.32	0.1277	53.04	0.0595
w/o MPA-P	58.36	0.1682	56.12	0.1338
w/o MPA-M	57.65	0.1543	54.81	0.0924
PA-TMM	60.34	0.1992	59.21	0.1873

p. 11

Backtesting Profitability

- Simulate real-world investment
- Highest ARR Score, Highest ASR Score
- Backtesting Results + Prediction Performance
 - The more precise, the more profitable
- Performance on the S&P 500 is lower
 - More stocks than NASDAQ 100.
 - → Increased complexity of risk management
- News-Based Multimodal Methods
 - Higher ASR scores than those of GNN based methods
 - **Better resilience to risks**
- PA-TMM without constraint of predefined relationships
 - Effectively leverage news sentiments

TABLE VI PERFORMANCE EVALUATION OF BACKTESTING PROFITABILITY

Methods	NASDAQ 100		S&P 500	
	ARR (%)	ASR	ARR (%)	ASR
LSTM	12.57	0.952	11.36	0.973
Transformer	10.47	0.873	10.02	0.791
FITS	14.15	1.025	12.08	0.997
Pathformer	16.76	1.143	13.64	1.185
ESTIMATE	19.63	1.396	12.65	1.022
TGC	22.46	1.424	15.37	1.214
S-GRN	24.02	1.969	16.83	1.581
SAMBA	24.51	1.660	17.53	1.347
PEN	24.27	1.817	19.05	1.426
STHAN-SR	25.98	1.898	20.26	1.440
AD-GAT	27.52	2.067	21.83	1.557
MCASP	26.21	2.050	23.84	1.697
DANSMP	28.07	2.155	23.23	1.682
MSMF	27.43	2.129	24.21	1.732
PA-TMM	30.44	2.381	26.90	1.942

- Market Crash: 2018.10 ~ 2018.12
 - The Federal Reserve persistently increased interest rate
 - → Stock market came under pressure
- Demonstrates substantial resilience in extreme market conditions
 - Early: Struggled to navigate the market's panic sentiment
 - Later: Progressively acclimated to the market conditions
- Showcase an aptitude for risk management

Stress Test During Market Crash

Fig. 4. Stress test during the market crash period.

p. 12

Parameter Sensitivity Analysis

- Window Sizes T (N 12, S 16): Reduce 🔁 Overlook long-term trends, Increase 🔁 Introduce stale information
- Mutation Probability θ (N 0.25, S 0.25): Huge θ \longrightarrow Mistrust movement prompts
- Dimensions of d_n (N 256, S 384) and d_e (N 256, S 320)
 - n: node vector, e: edge vector
 - Excessively low or high dimensionality Under-Fitting or Over-Fitting

Fig. 5. Parameter sensitivity analysis with respect to the window size T, mutation probability θ , dimension d_n , and dimension d_e . (a) Window size. (b) Mutation probability. (c) Node representation. (d) Edge representation.

Case Study on Exploring Stock Attention Networks

- On April 12, 2019, investigate the effectiveness of MPA with S&P500 dataset
 - News: Strong earnings reports from JPM and WFC
 - Broadly positive market sentiment and Strong bullish signals
- Without MPA
 - Independently distributed attention
 - Limited attention to the news from other stocks
- With MPA
 - Significant increase in cross-sector attention

Conclusion

- PA-TMM
 - Novel model for stock movement prediction and quantitative trading
 - Address the long-tail distribution problem
 - MPA (pretraining) + EQSamp (data augmentation) Enhance sensitivity to news
 - Leverage news sentiment as prompts Capture cross-modal signals more effectively
- Experimental results
 - Superior prediction performance in terms of ACC and MCC
 - Various comparative studies validate effectiveness, profitability, and robustness
- Future work
 - Explore lightweight attention mechanisms
 - Integrate other textual sources like financial reports, social media, geopolitical events, and regulations for to enhance the models' understanding of stock market and prediction accuracy

End of Documents