

Modellbildung und Simulation - Kurzfassung

Kapitel 3: Modelle mit konzentrierten Parametern

Prof. Dr.-Ing. Marcus Geimer

Institut für Fahrzeugsystemtechnik (FAST), Institutsteil Mobile Arbeitsmaschinen (Mobima) Institutsleiter: Prof. Dr.-Ing. Marcus Geimer

Institutsteil Mobile Arbeitsmaschinen

Prof. Dr.-Ing. Marcus Geimer

Karlsruher Institut für Technologie (KIT) Institutsteil Mobile Arbeitsmaschinen Rintheimer Querallee 2 76131 Karlsruhe

marcus.geimer@kit.edu +49 721 608 48601

Organisatorisches

- Bereitstellung der Vorlesungsvideos über ILIAS
- Heute
 - Beantwortung von Fragen auf Englisch und Deutsch
 - Zusammenfassung auf Deutsch
- Mitschrift wird auf ILIAS hochgeladen
- Fragen: Hand heben oder über den Chat (H. Stein beobachtet auch den Chat)

Institut für Fahrzeugsystemtechnik (FAST)

Institutsteil Mobile Arbeitsmaschinen (Mobima)

Fragen

Modellbildung & Simulation

Inhalt der Zusammenfassung

- Einleitung
- Analogien
 - Detailliertere Vorstellung der Darstellungsmöglichkeiten von Systemen
 - Überarbeitung der Analogietafeln
- Grundlagen der Hydraulik
- Erstellung der Differentialgleichungen

Institut für Fahrzeugsystemtechnik (FAST)

Institutsteil Mobile Arbeitsmaschinen (Mobima)

Warum Modellbildung mit konzentrierten Parametern?

 Modellbildungsprozess ist einfacher, da z.B. keine dreidimensionale Überlegungen notwendig sind.

- systemische Untersuchungen
- eindimensionale Problemstellungen
- Parameterstudien
- Vernachlässigbare 3D-Effekte

Dreidimensionale Strömung

Eindimensionale Strömung

Vereinfachung der Navier Stokes Gleichung:

$$\rho \cdot \left(\frac{\partial y}{\partial t} + u \cdot \frac{\partial u}{\partial x} + v \cdot \frac{\partial u}{\partial y} + w \cdot \frac{\partial u}{\partial z} \right)$$

$$= k_x - \frac{\partial p}{\partial x} + \mu \cdot \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

$$\rho \cdot u \cdot \frac{\partial u}{\partial x} = k_x - \frac{\partial p}{\partial x} + \mu \cdot \frac{\partial^2 u}{\partial x^2}$$

Karlsruher Institut für Technologie

Aktuelle Forschungsbeispiele - Forstkran

Aufstellung eines Netzwerks

- Aufstellung eines Netzwerks aufgrund der Problemstellung
- Nebenbedingungen durch die Verschaltung berücksichtigen
 - Knotengleichung: (Kräfte- und Momentengleichgewicht, Druckaufbaugleichung, 1. Kirchhoffsches Gesetz)
 - Maschenregel (kinematische Beziehungen, Druckbilanz, 2. Kirchhoffsches Gesetz)
- In der Praxis üblich: Formulierung des Problems mit Hilfe der Naturgesetze und Einbezug der Nebenbedingungen

Inhalt heute

- Einleitung
- Analogien
 - Detailliertere Vorstellung der Darstellungsmöglichkeiten von Systemen
 - Überarbeitung der Analogietafeln
- Grundlagen der Hydraulik
- Erstellung der Differentialgleichungen

9

Analogiebildung

- Analogien zwischen unterschiedlichen technischen Systemen schon seit langem bekannt
- Festlegung der Analogien erfolgt in einer Analogietafel:
 - Unendlich viele Möglichkeiten der Darstellung
 - Im Rahmen der Vorlesung wird Potential-Strom Darstellung verwendet
- Möglichkeiten der Darstellung:
 - Potential Strom Darstellung: schaltungsreziproke Darstellung

Trans – Per Darstellung: schaltungstreue Darstellung; Beiwerte verhalten sich jedoch reziprok

$$F = U \quad v = I$$

$$F = I$$
 $V = U$

Institut für Fahrzeugsystemtechnik (FAST)

Institutsteil Mobile Arbeitsmaschinen (Mobima)

Trans-Per Darstellung (schaltungstreu):

$$F = I$$

$$v = U$$

Potential-Strom Darstellung (schaltungsreziprok): F = U v = I

Modellbildung & Simulation

Trans-Per Darstellung (schaltungstreu):

$$\frac{u}{\sqrt{2}}$$

$$C = \frac{3}{u_c} = 0 \quad J = 0 \quad u_c$$

Yc:

$$\frac{\cdot}{T_c} = C \cdot V_c$$

$$L = \frac{2L_L}{3} (=) 2L_2 = L \cdot 3$$

14

Potential-Strom Darstellung (schaltungsreziprok):

$$V = I$$

Vm

Yc

$$\frac{\circ}{\mathsf{t}_c} = c \cdot \mathsf{V}_c$$

Analogietafel für die Potential-Strom Darstellung

Analogietafel: Potential-Strom-Darstellung				
	Elektrisch	Mechanisch		Hydraulisch
		Translation	Rotation	
Potentialdifferenz $oldsymbol{e}$	Spannung $oldsymbol{U} = oldsymbol{L} \ddot{oldsymbol{Q}}$	Kraft $oldsymbol{F} = oldsymbol{m} \ddot{oldsymbol{x}}$	Moment $\pmb{M} = \pmb{J}\ddot{\pmb{arphi}}$	Druck $p=L_h\ddot{V}$
Stromgröße $m{f}$	Stromstärke $m{I} = rac{dQ}{dt}$	Geschwindigkeit $v=rac{dx}{dt}$	Drehgeschwindigkeit $w=rac{d arphi}{dt}$	Volumenstrom $Q = \frac{dV}{dt}$
int. Potentialdifferenz $oldsymbol{p}$	Magn. Fluss $oldsymbol{\Phi} = oldsymbol{L}oldsymbol{I}$	Impuls $oldsymbol{p} = oldsymbol{m} oldsymbol{v}$	Drall $L=Jw$	Druckimpuls $\Gamma = L_h Q$
int. Stromgröße $m{q}$	Ladung Q	Verschiebung $oldsymbol{x}$	Winkel $oldsymbol{arphi}$	Volumen \emph{V}
Widerstand R	$\frac{U}{I}$	$\frac{F}{v}$ (= d , Dämpfer)	$\frac{M}{w}$ (Drehdämpfer)	$\frac{p}{Q}$
Kapazität <i>C</i>	$rac{oldsymbol{Q}}{oldsymbol{U}}$	$\frac{x}{F} (= \frac{1}{c}, \text{Federkonstante})$	$\frac{arphi}{M}$	$\frac{V}{p}$
Induktivität $m{L}$	$\frac{U}{\dot{I}}$	$\frac{F}{\dot{v}}$ (= m , Masse)	$\frac{M}{\dot{w}} (= J, Trägheitsmoment)$	$rac{p}{\dot{Q}}$
Leistung $P = e \cdot f$	$U \cdot I$	$F \cdot v$	$M \cdot w$	$p \cdot Q$
Energie $E = \int f \cdot dp$	$\frac{1}{2}L\cdot I^2$	$\frac{1}{2}m\cdot v^2$	$\frac{1}{2}J\cdot w^2$	$\frac{1}{2}L_h\cdot Q^2$
Maschenregel	$\sum U_i = 0$	$\sum v_i = 0$	$\sum \omega_i = 0$	$\sum p_i = 0$
Knotenregel	$\sum I_i = 0$	$\sum F_i = 0$	$\sum M_i = 0$	$\sum Q_i = 0$

Inhalt heute

- Einleitung
- Analogien
 - Detailliertere Vorstellung der Darstellungsmöglichkeiten von Systemen
 - Überarbeitung der Analogietafeln
- Grundlagen der Hydraulik
- Erstellung der Differentialgleichungen

18

Hydraulische Grundgleichungen

Zylinder:

$$X \stackrel{\circ}{=} D$$
: $F = \rho_{\lambda} \cdot \Omega_{\lambda} - \rho_{2} \cdot \Omega_{2}$

Pumpe oder Motor:

Hydraulische Grundgleichungen

Widerstände:

$$P_{1} = \frac{AP}{Q}$$

$$P_{2} = \frac{AP}{Q}$$

Kapazitäten:

Induktivitäten:

Karlsruher Institut für Technologie

Aufstellung eines Netzwerks für hydraulische Systeme

Druckaufbaugleichung

Druckbilanz

$$\sum \Delta p = 0$$

$$\Delta \rho_{Q_H} + \Delta \rho_{L_H} + \rho_{Y} - \rho_{3} = 0$$

$$\rho_{Y} - \Delta \rho_{C_H} = 0$$

Inhalt heute

- Einleitung
- Analogien
 - Detailliertere Vorstellung der Darstellungsmöglichkeiten von Systemen
 - Überarbeitung der Analogietafeln
- Grundlagen der Hydraulik
- Erstellung der Differnetialgleichungen

22

Aufstellung eines Netzwerks

- Aufstellung eines Netzwerks aufgrund der Problemstellung
- Nebenbedingungen durch die Verschaltung berücksichtigen
 - Knotengleichung: (Kräfte- und Momentengleichgewicht, Druckaufbaugleichung, 1. Kirchhoffsches Gesetz)
 - Maschenregel (kinematische Beziehungen, Druckbilanz, 2. Kirchhoffsches Gesetz)
- In der Praxis üblich: Formulierung des Problems mit Hilfe der Naturgesetze und Einbezug der Nebenbedingungen

Co-Simulation 6 Eustandsgrößen 3 Koppelgleiden Elektromotor Wegmess Elastische Ölleitung (4m) Druckmessung Po Getriebe Kolben Kolbenrückholfeder Zahnstange V_5 Hydraulikzylinder $V_5 : Q_5 \times 5$ \dot{x}_2 M_{M} $p_5 \cdot A_5$ u_1 F_L mechamechahydraulisch elektrisch \dot{q}_1 ω \dot{x}_5 $p_2 \cdot A_2$ nisch nisch

Aufstellen der Differentialgleichungen - Beispiel

Aufstellen der Differentialgleichungen - Beispiel

