# ANEME SON

PISCO AND LA JOYA AIR BASES, PERU



NOVEMBER 1989

# DESTRUCTION STATEMENT A

Approved for public release; Distribution Uniforited



AIR FORCE ENGINEERING and SERVILES CENTER

TYNDALL AIR FORCE BASE,

FLORIDA 32403-6001



#### AIRFIELD PAVEMENT EVALUATION

OF

PERUVIAN AIR BASES

PREPARED FOR
TACTICAL AIR COMMAND (TAC)

ΒY

HQ AFESC PAVEMENT EVALUATION TEAM

CAPTAIN JAY GABRIELSON TSGT RALPH CROMPTON SSGT TODD BAUDER SSGT STEVEN HUDSON

ASSISTED BY

SMSGT DOUG THOMPSON USSOUTHCOM/SCEN



HQ AIR FORCE ENGINEERING AND SERVICES CENTER
TYNDALL AIR FORCE BASE
FLORIDA 32403-6001

PUBLISHED NOVEMBER 1989



# TABLE OF CONTENTS

| ge        |
|-----------|
| i         |
| 1         |
| 3         |
| 5         |
| .1        |
| .7        |
| .9        |
| 1         |
| :3        |
| :5        |
|           |
| <b>-1</b> |
|           |
| 2-1       |
| 0-1       |
| E-1       |
| ?-1       |
| 3-1       |
|           |

| Acces  | ssion For      |  |
|--------|----------------|--|
| NTIS   | GRA&I P        |  |
| DTIC   | TAB 🗍          |  |
| Untime | Department     |  |
| Just   | Cloation       |  |
|        |                |  |
| Ву     |                |  |
| Distr  | itution/       |  |
| Avas   | lability Codes |  |
| [      | Avail and/or   |  |
| Dist   | Special        |  |
| A-1    |                |  |



#### **EXECUTIVE SUMMARY**

1. At the request of Tactical Air Command, a Pavement Evaluation Team from HQ Air Force Engineering and Services Center (AFESC) performed modified destructive airfield pavement evaluations at LaJoya Air Base and Pisco Air Base, Peru during 26 April-10 May 1989. The purposes were to establish physical property data, determine pavement load-carrying capabilities, and identify any existing or potential pavement distresses.

#### 2. LAJOYA AIR BASE

- a. The LaJoya airfield consists primarily of 13,154 ft long runway and a parallel taxiway which is also used as a runway. Primary apron features include the East and West Aprons with aircraft shelters dispersed around each. Runway 17/35 and the Parallel Taxiway are essentially 3-layered flexible pavement systems. Tests were conducted every 1000 feet on the taxiway and runway to define the soil strength profiles. Tests were also conducted in random spots throughout the two major parking aprons.
- b. Pavement conditions at LaJoya range from FAIR to VERY GOOD condition. The portland cement concrete (PCC) parking aprons are generally FAIR and the asphaltic concrete (AC) runway and taxiway are in GOOD and VERY GOOD condition, respectively. Joint sealant is virtually non-existent throughout all PCC features. This has led to edge spalls that present a FOD hazard. Few distresses exist in the AC pavements. The underlying soils are unusually strong which is key to the overall pavement strength. No significant load limitations exist on this airfield.

#### 3. PISCO AIR BASE

a. The Pisco airfield consists primarily of a 10,000 ft long runway and a parallel taxiway. The parallel taxiway adjoins the runway via 5 ladder taxiways. One other flexible pavement taxiway is adjacent to the PCC parking apron. All flexible pavements are three-layer systems.

- b. Pavement conditions at Pisco range from FAILED to EXCELLENT. The PCC parking apron is generally VERY POOR and the AC runway is VERY GOOD to EXCELLENT. The remaining PCC and AC taxiways vary in condition. There are no indications of structural distress on the runway. Joint sealant is virtually non-existent throughout all PCC features. This, too, has led to edge spalls that present a FOD hazard.
- c. Shattered slabs, indicative of pavement failure, are common throughout the Parking Apron. Significant load limitations should be imposed on the PCC parking apron. The weakest pavements are sections of the Parallel Taxiway (Feature TO4A) and part of the Main Parking Apron (Features AO1B and AO2B). Catastrophic failure is unlikely, however, the existing slabs are in POOR condition, or worse, on many of the features. Recommend the severely distressed sections be replaced.

SECTION I: INTRODUCTION

#### A. SCOPE

A Headquarters Air Force Engineering and Services Center (HQ AFESC) Pavement Evaluation Team (PET) performed modified destructive airfield pavement evaluations at LaJoya Air Base and Pisco Air Base, Peru, at the request of Headquarters, Tactical Air Command (TAC). Field testing was accomplished during 26 April-10 May 1989. The purposes of the evaluations were to investigate distress patterns on the airfields, establish physical property data, determine the in situ properties of the pavement structures for calculating allowable gross loads (AGLs), and identify reasons for existing or potential pavement distress.

This report is intended as an aid to individuals, organizations, and agencies. With this in mind, the narrative is brief but is supplemented by many detailed appendices. LaJoya pavement evaluation is reported first in each section, followed by the Pisco evaluation. A list of the included appendices is provided below.

# Appendix Description

- A <u>Airfield Layout Plan</u>: This plan graphically depicts different pavement features of the airfield.
- B This appendix not used.
- C Test Location and Core Location Plans:
  These plans document the locations where tests were conducted and cores were extracted. Core thicknesses and flexural strengths are also recorded on the core location plan.
- D <u>Condition Survey</u>: This plan shows the operating condition of the airfield pavements. The condition ratings are a qualitative assessment of the pavement surface conditions based upon visual observations and engineering judgment.
- E <u>Summary of Physical Property Data</u>: Physical properties of each pavement feature are tabulated. Included are feature dimensions, material types, thicknesses of layers, and engineering properties.

- F Allowable Gross Loads (AGLs): A listing of the allowable magnitude of loads at four pass intensity levels for each aircraft group.
- Related Information: Included in this are
  Aircraft Group Indices, Gross Weight Limits for
  Aircraft Groups, Pass Intensity Levels,
  Climatological Chart, and Climatological
  Narrative.

#### B. SITE LOCATIONS

LaJoya Air Base is located in southwestern Peru, near the city of Arequipa. It lies in desert terrain, where there is little precipitation. Pisco is located approximately 150 miles south of Lima and located on the Pacific coast. Respective locations are shown on the map below.





1. LaJoya

2. Pisco

#### SECTION II. EVALUATION PROCEDURES

#### A. FIELD TESTING

Pavement testing was done by extracting pavement cores and conducting Small Aperture Tests (SAT) and Dynamic Cone Penetrometer (DCP) tests in the pavement core holes. SAT is a modified California Bearing Ratio (CBR) test used to determine the strength of supporting soils. The DCP measures penetration resistance correlated to CBRs for the supporting soils. For evaluation of Portland cement concrete (PCC), corresponding CBRs were correlated to moduli of subgrade reaction (k-values) used in design and evaluation of rigid pavements. Additionally, pavement cores, along with soil samples from both bases, were shipped to Tyndall AFB for material testing.

#### B. CONDITION RATINGS

Pavement condition definitions range from EXCELLENT (like new) to FAILED (unsafe for aircraft traffic). Condition ratings are a qualitative assessment of the pavement surface and should not be confused with the structural capacity of a pavement. For example, a pavement surface may rate EXCELLENT, but have underlying pavement or soil conditions that could result in pavement failure under the applied load of a given aircraft. On the other hand, a pavement may be structurally sound but the surface condition may be hazardous for aircraft traffic.

#### C. LABORATORY TESTING

Pavement core samples were returned to Tyndall AFB for laboratory testing. PCC cores were tested for strength by tensile splitting in accordance with ASTM's "Standard Test Methods." The six-inch diameter core tensile splitting strengths were then converted to flexural strengths by using an empirical relationship (Ref 4). Flexural strengths are reported on the "Core Location Plan" (Appendix C) and in Appendix E.

# D. MATERIAL PROPERTIES

The load-carrying capacities of the pavements reported herein are based on material properties representative of the in-place conditions at the time this field investigation was conducted. Exact agreement between behavior of the facilities as shown by this evaluation and that which may actually occur under traffic cannot be expected, primarily because of the difficulties of determining the exact traffic that produces the behavior, and also because material properties change due to environmental factors such as precipitation, freeze-thaw cycles, and age. These changes must be considered in future planning, especially where a change in mission will result in an increase in aircraft loads and/or aircraft traffic volume.

#### E. CLIMATIC DATA

Appendix G provides a summary of climatic data for both airfields.

#### SECTION III: METHODOLOGY OF ANALYSIS

#### A. PHYSICAL PROPERTY DATA

The parameters used for this evaluation are summarized in Appendix E. The data presented were selected as the most representative strength values for each feature. Strength of flexible pavements (asphaltic concrete, AC) are based on the the conventional CBR method of design and evaluation. Each unique soil layer was tested to determine the CBR of the layer. CBRs were also measured on the rigid pavement (Portland cement concrete, PCC) supporting soils, and then correlated to moduli of subgrade reaction, or k-value. Rigid pavements were then evaluated based on the Westergaard theory of design and evaluation.

#### B. DETERMINATION OF ALLOWABLE GROSS LOADS

The AGLs were determined by a computer program based on procedures in AFM 88-24 and AFR 93-5. The AGL for a feature was reduced 25 percent if the condition rating for the feature was POOR or worse. Appendix E outlines the engineering properties used to calculate the AGLs.

Failure criteria used in the allowable load analysis is different for rigid and flexible pavements. Rigid (and composite) pavement failure criteria is partly based on a limiting tensile stress of the concrete. Conversely, compressive subgrade strain is one failure parameter used in the AGL calculation of flexible pavement systems.

#### C. EXAMPLE PROBLEM

The following example (employing data from this report) illustrates how to use the allowable gross load information.

<u>Problem</u>: The Peruvian Air Force wants to know how many times a 550-kip (1 kip = 1000 pounds) C-5 aircraft can traffic on Feature T01A of the Pisco airfield. How many C-5 passes can be supported before the pavement fails?

<u>Solution</u>: From Appendix F, the Allowable Gross Loads for a C-5 at Pass Intensity Levels I-IV (50,000, 15,000, 3,000, and 500) are 507, 513, 536, and 581 kips, respectively. The weights and passes are plotted on semi-log paper as shown in Figure 1. The completed graph indicates a 550-kip C-5 can make approximately 1,500 passes on Feature T01A before the pavement fails.



FIGURE 1

#### D. PAVEMENT CLASSIFICATION NUMBER

The International Civil Aviation Organization (ICAO) has developed and adopted a standardized method of reporting pavement strength. This procedure is known as the Aircraft Classification Number/Pavement Classification Number (ACN/PCN) method (Reference 3). In support of this international system, PCNs are provided for each pavement feature on the different airfields. PCNs were calculated based on Group 9 aircraft at Pass Intensity Level I (50,000 passes). PCNs for respective airfields are listed in Appendix F. A brief explanation on the PCN code is shown below for PCN = 31/R/A/W/T.

#### PCN FIVE-PART CODE

| PCN              | Pavement<br>Type | Subgrade<br>Strength | Tire<br>Pressure | Method of PCN Determination |
|------------------|------------------|----------------------|------------------|-----------------------------|
| Numeric<br>Value | R - Rigid        | A                    | W                | T - Technical<br>Evaluation |
|                  |                  | В                    | X                |                             |
| = 31             | F - Flexib       | le C                 | Y                | U - Using                   |
|                  |                  | D                    | Z                | Aircraft                    |

#### **EXPLANATION OF TERMS:**

#### Subgrade Strength Codes

| Code | Category | Flexible Pavement CBR, % | Rigid<br>Pavement<br>k, pci |
|------|----------|--------------------------|-----------------------------|
| A    | High     | Over 13                  | Over 400                    |
| В    | Medium   | 9 - 13                   | 201-400                     |
| С    | Low      | 4 - 8                    | 100-200                     |
| D    | Ultralow | <b>4</b>                 | < 100                       |

#### Tire Pressure Codes

| Code | Category | Tire Pressure, psi |
|------|----------|--------------------|
| W    | High     | No Limit           |
| X    | Medium   | 146 - 217          |
| Y    | Low      | 74 - 145           |
| Z    | Ultralow | 0 - 73             |

#### SECTION IV. PAVEMENT ASSESSMENT

#### A. LAJOYA AIR BASE

The LaJoya airfield consists primarily of 13,154 ft long runway and a parallel taxiway which is also used as a runway. Primary apron features include the East and West Aprons with aircraft shelters dispersed around each. Runway 17/35 and the Parallel Taxiway are essentially 3-layered flexible pavement systems. SATs were conducted every 1000 feet on the taxiway and runway on both the base course and subgrade, where possible. This was done to define the soil strength profile. SATs were also conducted in random spots throughout the two major parking aprons.

Pavement conditions at LaJoya range from FAIR to VERY GOOD condition. The PCC parking aprons are generally FAIR and the AC runway and taxiway are in GOOD and VERY GOOD condition, respectively. Joint sealant is virtually non-existent throughout all PCC features. This has led to edge spalls that present a FOD hazard. Few distresses exist in the AC pavements. Specific conditions and recommendations are addressed in the following paragraphs.

#### 1. Runway 17/35

Most of Runway 17/35 is a three-layer flexible pavement system consisting of approximately 6 inches of AC on 18 inches of base course covering the subgrade material. Distinction between the two soil layers was difficult at points, but enough tests were conducted to differentiate between the layers. The first 1600 feet of the 17 end is approximately 12 inches of Portland cement concrete (PCC) placed on 12 inches (design thickness) of base over the subgrade material.

The strength of each layer was determined throughout the runway. The base course strengths consistently tested well above 100% CBR. The subgrade strengths also tested considerably high (30%-75%). This can be attributed to the type of soil and arid climate. The soil is a silty sand that is naturally cemented. Runway soil strength indicate the pavements are adequate to maintain current operations, and more. Specific load carrying capabilities are outlined in Allowable Gross Load tables, Appendix F.

Flexible runway pavements are generally in GOOD-to-VERY GOOD condition. Original construction was four inches of AC followed by a 2-inch overlay to smooth the surface. An asphalt seal coat was subsequently applied to the runway. There are no indications of structural distress. However, several patches have been randomly placed throughout.

The patches were constructed and then sealed with a rich asphalt sealant. Because of the rich sealant, surface shear failures are evident from aircraft and vehicular traffic. This can be expected to occur under sharp turning wheels.

Approximately 6000 feet from the 35 end are 1/4"-1/2" cracks running diagonally across the runway. The cracks do not follow a typical "load-related" pattern. The cracks appear to be caused from shifting of subsurface soils. Earth tremors have been known to occur in the area, and testing geological conditions is beyond the scope of this evaluation. Recommend the cracks be sealed and any further deterioration be monitored.

The PCC at the 17 end is in FAIR condition. Typical distresses include longitudinal and transverse cracks that resulted from extreme slab dimensions. Since the cracks first appeared, aircraft traffic has aggravated the condition. Some of the cracks were chipped to a "V-shape" and filled with concrete. The concrete has since broken in many areas and presents a potential for FOD. A suggested method of repair is to sawcut a minimum of three inches deep on each side of the crack, and remove the distressed concrete to sound material. New concrete should then be placed in the prepared area. The cracks will reappear, in time. However, the new material can be sawcut and sealed to "establish" and control the cracking like a joint. Recommend the the new joints be sealed with a flexible, asphalt-based sealant. Recommend the remaining joints and cracks be cleaned and sealed.

#### 2. Taxiways:

There are six AC ladder taxiways that connect the Parallel Taxiway to the runway. Like the runway, the taxiways' soil strength tested very high. The same type of diagonal cracks that appear on the runway also appear on the Parallel Taxiway at the same location. Withstanding these cracks, the parallel taxiway, and the ladder taxiways are generally in GOOD-to-VERY GOOD condition.

The only obvious distresses on the Parallel Taxiway are some environmentally-related block cracks limited to one paving lane between ladder Taxiways 4 and 5. The only other distresses are the same type of diagonal cracks that were present on the runway. These cracks appear to follow the same pattern and continue along the same geological disturbance path. The recommended maintenance for this type of cracking is to seal the cracks and watch for any further deterioration.

#### 3. Aprons:

The primary aprons consist of the East and West parking ramps which are constructed of 11 to 12 inches of PCC. Typical distresses are primarily intersecting slab cracks and joint spalls.

The intersecting cracks are present in a majority of the slabs. The cracks initially appeared because the slab dimensions are too great. Existing slabs are approximately 25 ft x 25 ft, hence many of the slabs have broken into four pieces. The resulting cracks are not sealed and have subsequently spalled. Recommend the cracks be cleaned and sealed to retard any further deterioration.

The second primary problem throughout the aprons is the joint spalling. Joint sealant is virtually non-existent, which has allowed a passageway for incompressibles to enter the pavement joints. These incompressibles restrict movement when concrete expands, thus resulting in spalled edges. Recommend the spalled edges be sawcut a minimum of three inches deep, and the unsound material removed. Upon removal, the joint should be formed and the material replaced with concrete mix.

Joint sealant is missing in most of the PCC features. It is essential to extend the pavement life. Recommend all the joints be cleaned and sealed following the spall repairs.

#### B. PISCO AIR BASE

The Pisco airfield consists primarily of a 10,000 ft long runway and a parallel taxiway. The parallel taxiway adjoins the runway via 5 ladder taxiways. One other taxiway is adjacent to the PCC parking apron. Runway 03/21 and all the flexible pavements taxiways can be considered three-layer pavement systems. SATs were conducted every 1000 feet on the taxiway, and runway, on both the base course and subgrade, where possible. This was done to define the soil strength profile. Subgrade tests indicated similar materials and strengths throughout the airfield. SATs were also conducted in random spots throughout the main parking apron.

Pavement conditions at Pisco range from FAILED to EXCELLENT condition. The PCC parking apron is generally VERY POOR and the AC runway is VERY GOOD-to-EXCELLENT. The remaining PCC and AC taxiways vary in condition. Joint sealant is virtually non-existent throughout all PCC features. This has led to edge spalls that present a FOD hazard. The joint sealant that does exist is a sand asphalt mixture. This is brittle and popping out in many areas. It also lends itself to incompressibles penetrating the joints.

AGL calculations indicate load limitations should be imposed on some of the Pisco pavements. Although the runway is in VERY GOOD condition, it is because it has not been subjected to frequent large aircraft loadings. Specific load carrying capabilities for each feature are outlined in the AGL tables, Appendix F. Specific conditions and recommendations are addressed in the following paragraphs.

#### 1. Runway 03/21

Original construction of Runway 03/21 was approximately 8000 feet long with a PCC touchdown on the 21 end. The length of the existing runway is nearly 10,000 feet because of a 2000 ft addition on the 21 end. The first 1000 feet of the Runway 21 is 12 inches of PCC, followed by 1000 feet of flexible pavement. The original PCC touchdown has since been overlayed with 4.5 inches of AC. The remaining 7000 feet of runway is a three-layer flexible pavement. The profile, which was investigated and found to be fairly consistent for all flexible pavements, was evaluated as 18 inches of base course covering the subgrade. Surface thicknesses are based on the actual cores extracted throughout the airfield. SATs were conducted at points throughout the airfield and strengths were found to be fairly consistent. For evaluation purposes, subgrade CBRs equal 25%. Base course CBRs are based on SATs conducted in respective pavement features.

The strength of each layer was determined throughout the runway. The base course strengths generally tested between 30% and 50%. "Averages" were then assigned to the different features. Features were distinguished based on surface course thickness, pavement type, traffic area, and subsurface soil strength. The subgrade strengths were consistent at approximately 25%. The base course and subgrade are gravels and sands with large cobbles. Seashells are abundant in each layer.

Flexible runway pavements are generally VERY GOOD to EXCELLENT condition. Original construction was approximately two inches of AC followed by a 2-4 inch overlay to strengthen the surface. There are no indications of structural distress, and only limited environmentally-related distresses. As was mentioned before, the condition can be highly attributed to this area having only light aircraft landings and the low frequency of loads.

The PCC touchdown, located on the first 1000 feet of the 21 end, is in VERY GOOD condition. Only surface map cracks and a few low severity transverse cracks are apparent. However, as in many of the PCC pavements, the joint sealant is a sand asphalt mix. Recommend the joint condition be monitored and the sealant replaced with a hot-poured asphalt sealant.

#### 2. Taxiways:

There are five ladder taxiways that connect the Parallel Taxiway to the runway. Two are PCC and the remaining are flexible pavements. The conditions range from FAIR to EXCELLENT.

The PCC taxiway sections are generally in GOOD condition with the exception of two, which are in VERY POOR and FAILED condition. One is a small section of PCC near the intersection of Taxiway 2 and the Parallel Taxiway (Feature TlOA). In this section, nearly all the PCC slabs have shattered due to overloading the pavement. The PCC thickness is between seven and eight inches and supporting soils are relatively weak. Recommend this area be replaced. The second area is the PCC (part of Feature AO3B) connecting the main apron to the adjacent AC taxiway. It is in VERY POOR condition. Again, shattered slabs, spalled joints, and intersecting cracks are typical throughout. Recommend this area be replaced.

The other significant taxiway distresses are limited to the AC at the intersection of the Parallel Taxiway and the main parking apron (the south end of Feature T04A). Only 2 inches of AC protects the base course in this area. Isolated depressions and alligator cracking are evidence of pavement failure. Recommend the general area (approximately 800 square feet) be structurally repaired by enhancing the supporting soils and replacing the AC surface course.

#### 3. Aprons:

The primary apron is located on the West side of the parallel taxiway and is constructed of PCC. Different thicknesses indicate different pavement features. Common to all features is the lack of joint sealant. Recommend all joints be cleaned and sealed with a hot-poured liquid asphalt.

The North half of the apron is in FAIR condition with most distresses being low severity intersecting cracks, lack of The south half of the apron joint sealant, and edge spalls. is in POOR, or worse condition. The slab thicknesses in this section range from five to eight inches. The five-inch pavement has failed. The rest of this area is in POOR condition. Shattered slabs, edge spalls, and surface scaling are common throughout. The entire section of apron will eventually require replacement. The most severe areas are where the aircraft travel to and from the parking spots. Shattered slabs are common. If it cannot be done under one contract, recommend the inbound and outbound traffic lanes be replaced first, followed by the remainder of the apron. Recommend the AGL tables be consulted prior to using the apron.

#### SECTION V: CONCLUSIONS/RECOMMENDATIONS

#### 1. LAJOYA AIR BASE

- a. Joint sealant, where evident, is not properly functioning on virtually all PCC features. Recommend a major joint sealant replacement project be implemented.
- b. Spalled joints are quite common. Recommend the severely spalled areas be repaired.
- c. Diagonal cracks appear in the same general station on both the runway and Parallel Taxiway. Recommend the cracks be sealed.
- d. The PCC cracks on the 17 end of the runway were repaired with rigid material after the concrete was chipped to sound material, resulting in a groove. Recommend these cracks be sawcut to establish a clean, vertical edge, and replaced with rigid material.
- e. AGLs indicate no significant load restrictions on the tested pavements at LaJoya Air Base.

#### 2. PISCO AIR BASE

- a. Many PCC apron features are in POOR, or worse, condition. These pavements should be replaced.
- b. Joint sealant is also in poor condition in many PCC pavements. Recommend a major joint sealant replacement project be implemented. Recommend the sealant be a hot-pour asphalt sealant.
- c. Most PCC slabs on Feature T10A are shattered. Recommend this feature be replaced.
- d. The south area of Feature T4A is structurally distressed. Recommend this area, approximately 800 square feet, be rebuilt.
- e. Significant load restrictions should be placed on many of the pavement features at Pisco Air Base. Based on the AGL calculations, the weakest pavements include Features T04A, A01B, and A02B. Recommend these pavements be structurally enhanced, and/or replaced, and the AGL tables consulted prior to loading these pavements.

SECTION VI: GLOSSARY

Allowable Gross Load (AGL) - The maximum aircraft load that can be supported by a pavement feature for a particular number of passes.

Base or Subbase Courses - Natural or processed materials placed on the subgrade beneath the pavement.

<u>Compacted Subgrade</u> - The upper part of the subgrade, which is compacted to a density greater than the portion of the subgrade below.

<u>Feature</u> - A unique portion of the airfield pavement distinguished by traffic area, pavement type, pavement surface thickness and strength, soil layer thicknesses and strengths, construction period, and surface condition.

<u>Frost Evaluation</u> - Pavement evaluation during the frost-melting period, when the pavement load-carrying capacity will be reduced unless protection has been provided against detrimental frost action in underlying soils.

<u>Pass</u> - On a runway, the movement of an aircraft over an imaginary line 500 feet down from the approach end. On a taxiway, the movement of an aircraft over an imaginary line connecting an apron with the runway. AFR 93-5, Chapter 2.

<u>Pass Intensity Levels (PIL)</u> - Specific repetitions of aircraft over a pavement feature, regardless of time, that are dependent on aircraft design category. AFR 93-5, Chapter 2.

<u>Pavement Condition Index (PCI)</u> - A numerical indicator between 0 and 100 that reflects the structural integrity and surface operational condition of the pavement. AFR 93-5, Chapter 3.

<u>Primary Pavements</u> - Those features that are absolutely necessary for mission aircraft operations. AFR 93-5, Chapter 4.

<u>Subgrade</u> - The natural soil in-place, or fill material, upon which a pavement, base, or subbase course is constructed.

Type A Traffic Areas - Type A Traffic Areas are those pavement facilities that receive the channelized traffic and full design weight of the aircraft. AFM 88-6, Chapter 1.

Type B Traffic Areas - Type B Traffic Areas are considered to be those areas where traffic is more nearly uniform over the full width of the pavement facility, but which receive the full design weight of the aircraft. AFM 88-6, Chapter 1.

Type C Traffic Areas - Type C Traffic Areas are considered to be those on which the volume of traffic is low or the applied weight of the operating aircraft is less than the design weight. AFM 88-6, Chapter 1.

# PAVEMENT CONDITION EVALUATION TERMINOLOGY

| CONDITION RATING | DEFINITION                                                                                                                                                                                        |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXCELLENT        | PAVEMENT HAS MINOR OR NO DISTRESS AND WILL REQUIRE ONLY ROUTINE MAINTENANCE.                                                                                                                      |
| VERY GOOD        | PAVEMENT HAS SCATTERED LOW SEVERITY DISTRESSES WHICH SHOULD NEED ONLY ROUTINE MAINTENANCE.                                                                                                        |
| GOOD             | PAVEMENT HAS A COMBINATION OF GENERALLY LOW AND MEDIUM SEVERITY DISTRESSES. MAINTENANCE AND REPAIR NEEDS SHOULD BE ROUTINE TO MAJOR IN THE NEAR-TERM.                                             |
| FAIR             | PAVEMENT HAS LOW, MEDIUM, AND HIGH SEVERITY DISTRESSES WHICH PROBABLY CAUSE SOME OPERATIONAL PROBLEMS. MAINTENANCE AND REPAIR NEEDS SHOULD RANGE FROM ROUTINE TO RECONSTRUCTION IN THE NEAR-TERM. |
| POOR             | PAVEMENT HAS PREDOMINANTLY MEDIUM AND HIGH SEVERITY DISTRESSES CAUSING CONSIDERABLE MAINTENANCE AND OPERATIONAL PROBLEMS. NEAR-TERM MAINTENANCE AND REPAIR NEEDS WILL BE INTENSIVE.               |
| VERY POOR        | PAVEMENT HAS MAINLY HIGH SEVERITY DISTRESSES WHICH CAUSE OPERATIONAL RESTRICTIONS. REPAIR NEEDS ARE IMMEDIATE.                                                                                    |
| FAILED           | PAVEMENT DETERIORATION HAS PROGRESSED TO THE POINT THAT SAFE AIRCRAFT OPERATIONS ARE NO LONGER POSSIBLE. COMPLETE RECONSTRUCTION IS REQUIRED.                                                     |

#### SECTION VII: CONVERSION FACTORS

# BRITISH TO INTERNATIONAL SYSTEMS (SI) OF UNITS

British units of measurements are used in this report and can be converted to SI (Metric) units as follows:

| TO CONVERT                                                                                                                                                            | <u>TO</u>                                                                                                                                                                                                   | MULTIPLY BY                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| LENGTH inch (in) inch (in) foot (ft) yard (yd) mile (mi)                                                                                                              | <pre>millimetre (mm)     metre (m)     metre (m)     metre (m)     kilometre (km)</pre>                                                                                                                     | 25.400<br>0.0254<br>0.305<br>0.915<br>1.609               |
| AREA square inch (in <sup>2</sup> ) square inch (in <sup>2</sup> ) square foot (ft <sup>2</sup> ) square yard (yd <sup>2</sup> ) square mile (mi <sup>2</sup> ) acres | square millimetre (mm <sup>2</sup> ) square metre (m <sup>2</sup> ) square metre (m <sup>2</sup> ) square metre (m <sup>2</sup> ) square kilometres (km <sup>2</sup> ) square kilometres (km <sup>2</sup> ) | 645.2<br>0.0006452<br>0.093<br>0.8361<br>2.59<br>0.004046 |
| VOLUME cubic inch (in <sup>3</sup> ) cubic foot (ft <sup>3</sup> ) cubic yard (yd <sup>3</sup> )                                                                      | cubic millimetre (mm <sup>3</sup> ) cubic metre (m <sup>3</sup> ) cubic metre (m <sup>3</sup> )                                                                                                             | 16487.0<br>0.028<br>0.7646                                |
| MASS<br>pound (1b)                                                                                                                                                    | kilogram (kg)                                                                                                                                                                                               | 0.454                                                     |
| FORCE pound (1b f) kip (1000 lb f)                                                                                                                                    | newton (n)<br>kilogram (kg)                                                                                                                                                                                 | 4.448<br>453.6                                            |
| STRESS pound per square inc (psi)                                                                                                                                     | h kilo Pascals (kPa)                                                                                                                                                                                        | 6.895                                                     |
| MODULUS OF SUBGRADE pounds per square in per inch (psi/in)                                                                                                            | REACTION (K-VALUE)<br>ch kilo Pascals per<br>millimetre (kPa/mm)                                                                                                                                            | 0.2715                                                    |
| DEGREES<br>degrees Fahrenheit(°<br>(F°-32)                                                                                                                            | F)<br>degrees Celsius ( <sup>O</sup> C)                                                                                                                                                                     | 5/9                                                       |
| DENSITY pounds per cubic foo (pounds mass)                                                                                                                            | t kilogram per cubic<br>meter (kg/m <sup>3</sup> )                                                                                                                                                          | 16.052                                                    |

#### REFERENCES

- 1. AFM 89-3, Materials Testing, February 1971.
- 2. AFR 93-5, Airfield Pavement Evaluation Program, 18 May 1981.
- 3. FAA Advisory Circular 150/5335-5, Standardized Method of Reporting Airport Pavement Strength PCN, 15 June 1983.
- 4. Hammitt, G. M. III, <u>Concrete Strength Relationships</u>, <u>Research Paper</u>, Texas A&M University, College Station, Texas, December 1971.

#### DISTRIBUTION

|                                                                                              | Copies |
|----------------------------------------------------------------------------------------------|--------|
| CHMAAG, LIMA PERU<br>APO Miami 34031-0008                                                    | 8      |
| HQ SAC/DE<br>Offutt AFB NE 68113-5000                                                        | 2      |
| HQ USAF/LEEDM<br>Washington DC 20330                                                         | 2      |
| HQ TAC/DE<br>Langley AFB VA 23665-5000                                                       | 4      |
| HQ MAC/DE<br>Scott AFB IL 62225-5001                                                         | 2      |
| HQ AFLC/DE<br>Wright-Patterson AFB OH 45433-5000                                             | 2      |
| HQ AFSPACECOM/DE Peterson AFB CO 80914-5000                                                  | 1      |
| AFIT/DEE<br>Wright-Patterson AFB OH 45433-5000                                               | 1      |
| DMA Aerospace Center<br>Attn: DMAAC/ADP<br>3200 South Second Street<br>St Louis AFS MO 63118 | 1      |
| AUL<br>Maxwell AFB AL 36112-5000                                                             | 1      |
| NAVFAC Division Attn: 04Bl 200 Stovall Street Alexandria VA 22332                            | 1      |
| HQ DA (CEEC-EG) Pulaski Building 20 Massachusetts Ave., NW Washington DC 20314-1000          | 4      |
| WESGP 3909 Halls Ferry Road Vickshurg MS 20180 6180                                          | 2      |

| HQ USSOUTHCOM/SCEN APO Miami 34003-0015        | 10 |
|------------------------------------------------|----|
| HQ 12 AF/DE<br>Bergstrom AFB, TX 78743-5002    | 4  |
| CRREL-EG 72 Lyme Road Hanover NH 03755-1290    | 2  |
| CERL-FOM P.O. Box 4005 Champaign IL 61820-1305 | 2  |
| HQ AFESC/TIC<br>Tyndall AFB, FL 32403-6001     | 1  |
| HQ USAF/LEEI<br>Washington DC 20330-5130       | 1  |
| HQ USAF/LEEP Washington, D.C. 20330            | 1  |
| HQ AFESC/DEMP Tyndall AFB FL 32403-6001        | 15 |

# LAJOYA





# <u>LEGEND</u>

FEATURE DESIGNATION SEE NOTE 1, PAVEMENT THICKNESS IN INCHES & TYPE

#### TYPE OF FEATURE

- R -- RUNWAY T -- TAXIWAY

#### TYPE TRAFFIC AREA (SEE NOTE 2)

- A A TYPE TRAFFIC
- 8 8 TYPE TRAFFIC
- C C TYPE TRAFFIC
- ..... CHANGE IN FEATURE DESIGNATION
- PCC PORTLAND CEMENT CONCRETE
  AC ASPHALTIC CONCRETE

NOT EVALUATED (N.E)

#### NOTES

- 1 FEATURE DESIGNATION DENCTE FEATURE FOR GIVEN FEATURE
- 2 TRAFFIC AREA DESIGNATION:
- 3 FEATURE DESIGNATIONS DO NO
- FROM PREVIOUS REPORTS AND

a timb. SEE NOTE 1 NESS IN INCHES & TYPE

ste 2

JAF DE SKAMATIO Nº - ONORETE - RETE

(NE)

#### NOTES

- FEATURE DESIGNATION DENOTES TYPE OF FEATURE, NUMBER OF FEATURE FOR GIVEN FEATURE TYPE AND TYPE TRAFFIC AREA
- 2 TRAFFIC AREA DESIGNATIONS ARE BASED ON AFM 88 6. CHAPTER 1
- 3 FEATURE DESIGNATIONS DO NOT CORRESPOND WITH THOSE FROM PREVIOUS REPORTS AND DRAWINGS





UNITED STATES AIR FORCE ENGINEERING & SERVICES CENTER TYNDALL AIR FORCE BASE, FLORIDA

# **AIRFIELD LAYOUT PLAN**

| CHOINEER<br>GABRIELSON | NOV 89  | APPENDIX A   |
|------------------------|---------|--------------|
| SANTIAGO               | GRAPHIC | SHEET 1 OF 2 |





100 100 100 100

UNITED STATES AIR FORCE ENGINEERING & SERVICES CENTER TYNDALL AIR FORCE BASE, FLORIDA

# AIRFIELD DESIGNATIONS

| ENGINEER   | DATE    |              |
|------------|---------|--------------|
| GABRIELSON | NOV 89  | APPENDIX A   |
| 08144      | BCALE   | Υ            |
| LaHUE      | GRAPHIC | SHEET 2 OF 2 |



CORE LOCATION, PA TYPE PAVEMENT, AN CONCRETE FOR PCC



7.5 AC ' 8.5 PCC (578)

CORE LOCATION, PAVEMENT THICKNESS IN INCHES, TYPE PAVEMENT, AND FLEXURAL STRENGTH OF CONCRETE FOR PCC CORES.



UNITED STATES AIR FORCE ENGINEERING & SERVICES CENTER TYNDALL AIR FORCE BASE, FLORIDA

#### **CORE LOCATIONS**

| CHOINCEN<br>GABRIELSON | NOV 89  | APPENDIX C    |
|------------------------|---------|---------------|
| LaMUE                  | GRAPHIC | SHEET 1. OF 1 |







Z-)



UNITED STATES AIR FORCE ENGINEERING & SERVICES CENTER TYNDALL AIR FORCE BASE, FLORIDA

#### **CONDITION SURVEY**

| CABRIELSON | NOV 88  | APPENDIX O |
|------------|---------|------------|
| LaHUE      | GRAPHIC | SHEET OF   |





PHOTOGRAPH LOCATION, DIRECTION, AND NUMBER



UNITED STATES AIR FORCE ENGINEERING & SERVICES CENTER TYNDALL AIR FORCE BASE, FLORIDA

#### **PHOTOGRAPH LOCATIONS**

| GABRIELSON | NOV B9  | APPENDIX D   |
|------------|---------|--------------|
| LaHUE      | GRAPHIC | SHEET 2 OF 4 |



PHOTO 1: Typical patchwork on runway showing excessive asphalt in seal coat and ungulating AC surface.



PHOTO 2: Tire mark in AC patch where asphalt sealant was placed. Excessive asphalt sealant typical in isolated spots on the runway.



PHOTOS 4-7: Diagonal cracks extending across the entire taxiway. Cracks are most likely a result of earth movement and not aircraft loadings. Recommend the cracks be sealed.



PHOTO 5



PHOTO 7



PHOTO 8: Close-up of diagonal runway mack similar to those located on the Parallel Taxiway. Cracks on the runway and taxiway are located in line, indicating subsulface movement.



where essive ted spots on



<u>PHOTO 3</u>: Longitudinal, environmenta., and load-related cracks limited to the outer 3 paving lanes of the Parallel Taxiway. This is common to both sides, but isolated to the Parallel between Taxiways 4 and 5.



PHOTO 6



unway crack Fara..el od taxiway



PHOTO 9: "Pepaired" transverse cracks that were chipped to sound material and filled with PCC. Pavement is spalled around the rigid material.

UNITED STATES AIR FORCE
ENGINEERING & SERVICES CENTER
TYNDALL AIR FORCE BASE, FLORIDA

## **PHOTOGRAPHS**

MARIANO MELGAR AIR BASE, LA JOYA PERU

| ENGINEER<br>GABRIELSON | NOV 89    | APPENDIX D   |
|------------------------|-----------|--------------|
| DRAWN LAHUE            | SCALE N/A | SHEET 3 OF 4 |



PHOTOS 10 & 11: Spalled joints on PCC apron. Joint sealant missiong in most of the PCC. Recommend the distresses be sawcut, material removed, and replaced with new PCC.



PHOTOS 11



PHOTO 13: High severity joint spall. Joint should be repaired like that recommended in Photos 10 and 11.



PHOTO 14: Intersecting PCC slab cracks caused from excessive slab dimensions. Recommend the cracks be sealed to minimize moisture and debris infiltrating the pavement.



<u>PHOTO 16</u>: Nonexistent joint sealant typical of many PCC pavements.



PHOTO 17: Evenly spaced cracks extending the length of the apron and isolated to a row of slabs. This type of distress is associated with the vibration and consolidation during construction. Recommend the cracks be cleaned and sealed.



PHOTO 12: Excessively wide joint with no joint sealant.



PHOTO 15: Spalled transverse joints which may be a caused from incompressibles prohibiting slab movement resulting in joint spalls.

oracks sions. o minimize the

extending the to a row of associated ion during iks be



PHOTO 18: LaJoya Air Base pavements.

UNITED STATES AIR FORCE
ENGINEERING & SERVICES CENTER
TYNDALL AIR FORCE BASE, FLORIDA

## **PHOTOGRAPHS**

| MARIANO MELGAR AIR BASE, LA JOYA PERU |        |            |  |  |  |  |  |  |  |  |  |
|---------------------------------------|--------|------------|--|--|--|--|--|--|--|--|--|
| ABRIELSON                             | NOV 89 | APPENDIX D |  |  |  |  |  |  |  |  |  |
| 4 - 11110                             | BCALE  | A OF A     |  |  |  |  |  |  |  |  |  |

| at C |
|------|
| _    |
| ≥    |
| 9    |
| 3    |
| ~    |
| 3    |

| 30          | 1000E<br>K/CBR |         | 20                |             | 35       |        | 75      |                   |        |      | 45     |        | 45    |          | 45     |       | 45 |       | 45              |       | 45 |        | 45           |          | 25           |             | 25  |
|-------------|----------------|---------|-------------------|-------------|----------|--------|---------|-------------------|--------|------|--------|--------|-------|----------|--------|-------|----|-------|-----------------|-------|----|--------|--------------|----------|--------------|-------------|-----|
| SUBGRADE    |                | SH      |                   | SM          |          | N.S.   |         | N.S.              |        | SH   |        | ₹.     |       | W.S      |        | NS.   |    | SM    |                 | NS.   |    | SH     |              | SH       |              | NS.         |     |
|             | 100E           | 3       |                   |             |          |        |         |                   |        |      |        |        |       |          |        |       |    |       |                 |       |    |        |              |          |              |             |     |
| SUBBASE     | DESCRE         | 1000 TO |                   |             |          |        |         |                   |        |      |        |        |       |          |        |       |    |       |                 |       |    |        |              |          | •            |             |     |
|             | THICK          |         |                   |             |          |        |         |                   |        |      | ,      |        |       |          |        |       |    |       |                 |       |    |        |              |          |              |             |     |
|             | 1000E          | ערמע    | 100               |             | 001      |        | 100     |                   | 200    |      | 95     |        | 95    |          | 95     |       | 95 |       | 95              |       | 95 |        | 95           |          | 100          |             | 100 |
| BASE        | DESCED         | SM      |                   | SM          |          | ¥S.    |         | SM                |        | NS.  |        | NS.    |       | WS.      |        | S.    |    | NS.   |                 | ¥S.   |    | SM     | <u>-</u> ,   | SM       |              | SM          |     |
|             | THICK          | 18.0    |                   | 18.0        |          | 18.0   |         | 12.0              |        | 18.0 |        | 18.0   |       | 18.0     |        | 18.0  |    | 18.0  |                 | 18.0  |    | 18.0   |              | 18.0     |              | 18.0        |     |
|             | 1000E          | רבע     |                   |             |          |        |         |                   | 009    |      |        |        |       |          |        |       |    |       |                 |       |    |        |              |          |              |             |     |
| PAVEMENT    | precess        | AC AC   | ·                 | AC          |          | AC     |         | PCC               |        | AC   |        | AC     |       | AC       |        | AC    |    | AC    |                 | AC    |    | AC     |              | AC       |              | AC          |     |
|             | THICK          | 5.5     |                   | 6.0         |          | 0.9    |         | 12.0              |        | 5.0  |        | 6.5    |       | 4.0      |        | 4.0   |    | 3.5   |                 | 3.5   |    | 4.0    |              | 3.0      |              | 3.5         |     |
| I. 1        | 임              | Y LEY   |                   |             |          |        |         |                   |        |      |        |        |       |          |        |       |    |       |                 |       |    |        |              |          |              |             |     |
| AY PAVEMENT | 002330         | UESCRIP |                   |             |          |        |         |                   |        |      |        |        |       |          |        |       |    |       |                 |       |    |        |              |          |              |             |     |
|             | E`             |         |                   |             |          |        |         |                   |        |      |        |        |       |          |        |       |    |       |                 |       |    |        |              |          |              |             |     |
|             | GEN            | VERY    |                   | VERY        | <u> </u> | VERY   | 3       | FAIR              |        | VERY | 333    | 100    | 2005  | 8        | 3      |       | EX |       |                 | VERY  | 3  | VERY   | 1003         | 300      | 1003<br>1003 | į           | 3   |
|             | WDTH           |         |                   | 175         |          | 175    |         | 175               |        | 200  |        | 25     |       | 100      |        | 100   |    | 25    |                 | 100   |    | 25     | <del>.</del> | <u>9</u> | ·            | 100         |     |
| FACILITY    | LGTH           | 2825    |                   | 4100        |          | 4575   |         | 1650              |        | 275  |        | 200    |       | 4750     |        | 275   |    | 001   |                 | 275   |    | 901    |              | 2100     |              | 275         |     |
| FA          |                | RUNMAY  | 17L/35R<br>35 END | RO2C RUNNAY | 17L/35R  | RUNMAY | 1/L/35K | RUMAY<br>171 /250 | 17 FND |      | -<br>- | R/W 35 | TO TA | PARALLEL | AAIWAT | T/N 2 |    | TRANS | 780¥<br>78 ¥ 70 | T/4 3 |    | TRANS. | 12 TO 10     | PARALLEL | TAXIWAY      | 124 4       |     |
|             |                | ROIA    |                   | ROZC        |          | R03C   |         | R04A              |        | TO1A |        | T02A   |       | T03A     |        | T04C  |    | T05C  |                 | T06C  |    | T07C   |              | T08A     |              | <b>109C</b> |     |

| ADE         | 1000E<br>K/CBR |              | 35      |      | 25   |       | 25  |        | 25          |            |        |              |     |                   |     |           |             |           |     |      |       |             |       |
|-------------|----------------|--------------|---------|------|------|-------|-----|--------|-------------|------------|--------|--------------|-----|-------------------|-----|-----------|-------------|-----------|-----|------|-------|-------------|-------|
| SUBGRADE    | 30             | 35           |         | 35   |      | ₩S    |     | NS.    | ,           | ¥.         |        | NS.          |     | ₹.                |     | SM        |             | NS.       |     | 35   | ·     | <b>3</b>    |       |
|             | 1000E<br>CBR   |              |         |      |      |       |     |        |             |            |        |              |     |                   |     |           |             |           |     |      |       |             |       |
| SUBBASE     | DESCRP         |              |         |      |      |       |     |        |             |            |        |              |     |                   |     |           |             |           |     |      |       |             |       |
|             | THICK<br>(in)  |              |         |      |      |       |     |        |             |            |        |              |     | -                 |     |           |             |           |     |      |       |             |       |
|             | 1000E<br>K/CBR |              | 001     |      | 100  |       | 100 |        | 001         |            | 450    |              | 450 |                   | 350 |           | 375         |           | 400 |      | 450   |             | 450   |
| BASE        | DESCRP         | 55           | ,       | ₩.   |      | 3     |     | 3      |             | 3.         |        | 35           |     | NS.               |     | NS.       |             | SH        |     | SH   |       | 35          |       |
|             | THICK<br>(in)  | l            |         | 18.0 |      | 18.0  |     | 18.0   |             | 18.0       |        | 12.0         |     | 12.0              |     | 12.0      |             | 12.0      |     | 12.0 |       | 12.0        |       |
|             | 1000E<br>FLEX  | ┰            |         |      |      |       |     |        |             |            | 520    |              | 550 |                   | 530 |           | 200         |           | 450 |      | 550   |             | 260   |
| PAVEMENT    | DESCRP         | ΑC           |         | AC   |      | AC    |     | AC     |             | الم<br>الم |        | PCC          |     | ٥٥٨               |     | ٩         |             | ))d       |     | PCC  |       | PCC         |       |
| . 1         | THICK<br>(in)  | 6.0          |         | 3.5  |      | 4.0   |     | 4.0    |             | 12.0       |        | 11.5         |     | 12.0              |     | 12.0      |             | 11.5      |     | 12.0 |       | 7.5         |       |
| INT         | 1000E          |              |         |      |      |       |     |        |             |            |        |              |     |                   |     |           |             |           |     |      |       |             |       |
| AY PAVEMENT | DESCRP         | 1            |         |      |      |       |     |        |             |            |        |              |     | :                 |     |           |             |           |     |      |       |             |       |
| ı≓          |                |              |         |      |      |       |     |        |             |            |        |              |     |                   |     |           | ·           |           |     |      |       |             |       |
|             | S GEN          | <del> </del> | 000     | VERY |      | VERY  |     | VERY   | <del></del> | LOS OF     |        | 0009         | }   | 000               |     | 0009      | <del></del> | Ş         |     | 5    | <br>} | 5           |       |
|             | WOTH<br>(ft)   | 25           |         | 001  |      | 001   |     | 35     |             | 100        |        | 100          |     | 100               |     | 300       |             | 300       |     | 350  |       | 100         |       |
| FACILITY    | LGTH<br>(ft)   | 100          |         | 4700 |      | 275   |     | 100    |             | 2000       |        | 2000         |     | 1050              |     | 475       |             | 750       |     | 200  |       | 35          |       |
| FA          | IDENT          | TRANS.       | 7. V TO | ਜ਼ ≥ | W. 1 | T/N 5 |     | TRANS. | TO TAY 5    | 1 .        | 17 END | T15A HELOPAD |     | z                 |     | Z         |             | . 3       |     | EAST |       | A058 HANGAR | APRON |
|             | FEAT           | 1100         |         | TIJA |      | T12C  |     | T13C   |             | T14A       |        | T15A         |     | A01B WEST<br>APRO |     | A028 WEST |             | A038 WEST |     | A048 |       | A058        |       |

| SU          | MMARY (           | OF A                                             | ALLC                                             | WAE      | BLE | GRO                                              | SS       | LOA                                              | DS                                               | IN B       | RIT            | ISH                                              | UNI            | TS             |
|-------------|-------------------|--------------------------------------------------|--------------------------------------------------|----------|-----|--------------------------------------------------|----------|--------------------------------------------------|--------------------------------------------------|------------|----------------|--------------------------------------------------|----------------|----------------|
| FEAT.       | PASS<br>INTENSITY |                                                  |                                                  |          | FOF |                                                  |          | CAPA                                             |                                                  |            |                |                                                  |                |                |
|             | LEVEL             |                                                  | 2                                                | 3        | 4   | 5                                                | 6        | 7                                                | 8                                                | 9          | 10             | 11                                               | 12             | 13             |
|             | I                 | +                                                | •                                                | +        | +   | 1 +                                              | 1 +      | +                                                | +                                                | 1          | •              | •                                                | •              | •              |
| POLA        | II                | +                                                | +                                                | +        | +   | +                                                | +        | +                                                | +                                                | +          | •              | •                                                | •              |                |
| ł           | III               | +                                                |                                                  | +        | +   | +                                                | +        | +                                                | +                                                | +          | •              | +                                                | •              | •              |
|             | I V               | •                                                |                                                  | <u> </u> |     | <u> </u>                                         | •        | +                                                | •                                                | •          | •              | · •                                              | <del> </del>   | <u> </u>       |
| 1           | I                 | •                                                | •                                                | •        | •   | +                                                | +        | +                                                | +                                                | •          | •              | •                                                | •              | •              |
| POZC        | II                | •                                                | •                                                | +        | •   | +                                                | +        | +                                                | +                                                | +          | •              | •                                                | •              | 1 *            |
|             | III               | •                                                | •                                                | +        | •   | +                                                | +        | +                                                | 1 *                                              |            | •              | •                                                | •              | •              |
|             | IV                |                                                  | <u> </u>                                         | +        | +   | +                                                | +        | + +                                              | +                                                | + +        | ·              | <u> </u>                                         | <u> </u>       | <del>  •</del> |
|             | I                 | +                                                | +                                                | +        | +   | +                                                | +        | +                                                | •                                                | +          | •              | +                                                | •              | •              |
| RO3C        | II                | +                                                | +                                                | +        | +   | +                                                | +        | +                                                | +                                                | +          | •              | +                                                | +              | •              |
| 1           | III               | +                                                | •                                                | +        | +   | +                                                |          | +                                                | 1 *                                              | •          | •              | •                                                | +              | •              |
|             | I V               | *                                                | •                                                | <u> </u> | +   | <del>                                     </del> | +        | + +                                              | <u> </u>                                         | + +        | <del>  •</del> | <u> </u>                                         | <u> </u>       | <u> </u>       |
|             | I                 | •                                                | +                                                | 107      | •   | +                                                | 1 *      | +                                                | •                                                | 440        | +              | +                                                | •              | 369            |
| RO4A        | II                | •                                                | •                                                | +        | +   | +                                                | +        | +                                                | +                                                | +          | •              | •                                                | 1 *            | 420            |
| - 1         | III               | +                                                | +                                                | +        | •   | +                                                | +        | +                                                | *                                                | <b>†</b> * |                | · •                                              | 1 *            | 1 *            |
|             | IV                | + +                                              | + *                                              | + +      | +   | +                                                | +        | ++                                               | +                                                | +          | +              | *                                                | <del>  •</del> | +              |
|             | Ī                 | •                                                | +                                                | +        | +   | +                                                | +        | +                                                | +                                                | 431        | i              | +                                                |                | 431            |
| TO1A        | II                | +                                                | <b>†</b>                                         | +        | •   | +                                                | •        | +                                                | +                                                | 458        | •              | •                                                | 1 *            | 474            |
|             | III               | •                                                | •                                                | +        | +   | +                                                | +        | +                                                | •                                                | •          | •              | +                                                | •              | •              |
|             | IV                | <u></u>                                          | +                                                | +        | +   | +                                                | + +      | <del>                                     </del> | +                                                | ļ <u> </u> | <u> </u>       | <del>  •</del>                                   | +              | <del>  •</del> |
|             | Ĭ                 | +                                                | +                                                | +        | +   | +                                                | •        | 1 *                                              | •                                                |            | +              | <b>†</b>                                         | +              | •              |
| TOZA        | II                | •                                                | •                                                | *        | •   | +                                                | +        | <b>†</b>                                         | •                                                | •          | •              | •                                                | •              | •              |
| 1           | III               | •                                                | •                                                | 1 *      | •   | <b>†</b>                                         | <b>†</b> | +                                                | •                                                | •          | •              | ^                                                | •              | 1 *            |
| <del></del> | IV                | + +                                              | + •                                              | +        | +   | <del> </del>                                     | +        | + +                                              | <del>                                     </del> | <u> </u>   | +              | <del>                                     </del> | +              | <del> </del>   |
|             | I                 | •                                                | +                                                | 102      | •   | +                                                | +        | +                                                | +                                                | 351        | +              | +                                                | •              | 340            |
| TOSA        | II                | •                                                | +                                                | 113      | •   | <b>†</b>                                         | •        | •                                                | •                                                | 370        | •              | •                                                | •              | 3 1            |
| ļ           | III               | <b>†</b>                                         | •                                                | +        | •   | •                                                | +        | +                                                | •                                                | 407        | •              | •                                                | •              | 435            |
|             | I V               | + +                                              | + -                                              | +        | +   | <del>                                     </del> | + +      | +                                                | +                                                | 470        | +              | +                                                | +              | <del>  •</del> |
| 7046        | I                 | <b>!</b>                                         | +                                                | •        | •   | •                                                |          | <b>†</b>                                         | •                                                | 479        | •              | •                                                | •              | 469            |
| TO4C        | II                | •                                                | •                                                | <b>!</b> | •   | +                                                | +        |                                                  |                                                  | •          | •              | •                                                | •              | •              |
| - 1         | IV                | 1                                                | 1                                                | •        | +   | +                                                | +        | *                                                | •                                                | *          | •              | •                                                | •              |                |
|             | I                 | <del>  •</del>                                   | + :                                              | +        | +   | +                                                | +        | +                                                | *                                                | *          |                | -                                                | + +            | <u> </u>       |
| TOSC        | 11                | *                                                | <b>†</b>                                         | •        |     | +                                                |          | 1                                                | •                                                | 427        | +              | 1                                                | *              | 418            |
| 10,0        |                   | •                                                | •                                                |          | •   | <b>†</b>                                         | •        | +                                                | •                                                | 454        | +              | •                                                | •              | 454            |
| -           | III<br>IV         | *                                                | 1                                                | •        | •   |                                                  | •        | *                                                |                                                  | *          | •              | •                                                | •              | •              |
|             | I                 | +                                                | <del>                                     </del> | +        | +   | +                                                | +        | +                                                | <u> </u>                                         | +          |                |                                                  | + +            | + +            |
| T06C        | II                | :                                                | •                                                |          | •   | <b>†</b>                                         |          |                                                  | •                                                | 427        | <b>.</b>       |                                                  |                | 418            |
| , 300       | III               |                                                  | •                                                | ,        | +   | +                                                | 1 :      |                                                  |                                                  | 454        |                |                                                  |                | 454            |
| İ           | IV                |                                                  | 1                                                | *        | •   | *                                                |          |                                                  |                                                  |            | •              |                                                  | <b>!</b> .     |                |
|             | 1                 | <del>                                     </del> | +                                                | •        | •   | +                                                | +        |                                                  |                                                  | 4 70       | +              | +                                                |                | 110            |
| 07C         | II                | `.                                               |                                                  |          |     |                                                  |          | *                                                | •                                                | 479        | •              |                                                  | *              | 640            |
|             | III               | .                                                |                                                  | *        | •   | +                                                | •        | *                                                | •                                                |            | *              | *                                                | •              | •              |
|             | IV                | :                                                |                                                  | *        | *   | +                                                | •        | *                                                |                                                  | •          |                | *                                                | •              | •              |
|             | 1                 | -                                                | 56                                               | 88       |     | +                                                | +        | -                                                | +                                                | +          | +              | *                                                | *              | +              |
| 08A         | II                |                                                  | 63                                               | 95       |     | •                                                | 148      | *                                                | 313                                              | 293        |                | 500                                              | 632            | Zan            |
|             | • •               | l 🔻                                              | , UJ                                             | 77       | · • | +                                                | •        | + !                                              | +                                                | 305        | +              | 537                                              | 671            | 312            |
| "           | III               |                                                  |                                                  | 102      |     | +                                                | •        |                                                  | +                                                | 3 3 2      | •              | •                                                | 736            | 340            |

| SU      | MMARY C           | FA       | LLO | WAB      | LE       | GRO      | SS         | LOA                                              | os i       | N B      | RITI     | SH       | UNI                                              | rs           |
|---------|-------------------|----------|-----|----------|----------|----------|------------|--------------------------------------------------|------------|----------|----------|----------|--------------------------------------------------|--------------|
| FEAT.   | PASS<br>INTENSITY |          |     |          | FOF      |          |            | CAPAC                                            |            |          | BERS     | -        |                                                  |              |
|         | LEVEL             | 1        | 2   | 3        | 4        | 5        | 6          | 7                                                | 8          | 9        | 10       | ] 11     | 12                                               | 13           |
|         | I                 | 1 +      | +   | +        | +        | 1        | +          | +                                                | +          | 450      | +        | +        | •                                                | 440          |
| T 0 9 C | II                | +        |     | +        |          |          | +          | +                                                |            | 47R      | +        | +        | +                                                | . 478        |
| ł       | III               | +        | +   | +        | +        | +        | +          | +                                                | •          |          | +        |          | •                                                |              |
|         | IV                | +        |     | +        | <u> </u> | <u> </u> | +_         | +                                                | <u> </u>   |          | +        | •        | +                                                | +            |
| 1       | I                 | +        | +   | +        | +        | +        | +          | +                                                | +          | +        | •        | +        | +                                                | •            |
| TIOC    | ΙΙ                | +        | +   | +        | +        | +        | •          | +                                                | +          | +        | +        | +        | •                                                | +            |
| 1       | III               | +        | +   | +        | +        | +        | +          | +                                                |            | +        | •        | +        | +                                                | +            |
|         | IV                | +        | +   | +        | •        | +        | +          | <u> </u>                                         | +          | +        | +        | +        | <u> </u>                                         | +            |
|         | I                 | •        | +   | 167      | 1 +      | +        | +          | +                                                | +          | 369      | +        | +        | +                                                | 367          |
| TIIA    | II                | +        | •   | 110      | •        | +        | +          | +                                                | +          | 3 90     | +        | +        | •                                                | 401          |
|         | III               | +        | +   | +        | •        | i •      | +          | +                                                | +          | 429      | +        | +        | +                                                | 458          |
|         | IV                | +        | +   | +        | +        | +        | +          | +                                                | +          | <u> </u> | +        | +        | <u> </u>                                         | +            |
| 1       | Ī                 | +        | •   | +        | +        | +        | +          | •                                                | +          | •        | +        | +        | •                                                | +            |
| TIZC    | II                |          | +   | +        | +        | •        | +          | •                                                | +          | +        | •        | +        | •                                                | +            |
| 1       | III               | +        | +   | +        | +        | +        | +          | +                                                | <b>+</b>   | +        | +        |          | +                                                | +            |
|         | IV                | +        | •   | <u> </u> | +        | <u> </u> | +          | +                                                | +          | +        | <u> </u> | •        | <u> </u>                                         | •            |
|         | 1                 | +        |     | +        | +        | +        | +          | +                                                | +          | +        | +        | +        | •                                                | +            |
| T13C    | ΙΙ                | +        | •   | +        | •        | +        | •          | +                                                | +          | +        | •        | •        | •                                                | +            |
|         | III               | +        | •   | +        | •        | +        | +          | +                                                | +          | +        | +        | +        | +                                                | +            |
|         | IV                | +        | •   | +        | +        | *        | •          | <u> </u>                                         | +          | •        | <u> </u> | <u> </u> | +                                                | <u> </u>     |
| 1       | I                 | •        |     | 76       | +        | +        |            | 164                                              | •          | 350      | +        | +        | +                                                | 5.05         |
| T14A    | II                | •        |     | 112      | •        | +        | ·          | •                                                | •          | 404      |          | +        | •                                                | 371          |
| İ       | III               | +        | +   | +        | +        | +        | <b> </b> • | +                                                | +          | +        |          | +        | +                                                | •            |
|         | IV                | +        | •   | +        | +        | •        | •          | +                                                | +          | +        | •        | •        | <u> </u>                                         | <u> </u>     |
| -       | I                 | •        | •   | 85       | •        | +        | •          | 163                                              | •          | 352      | •        | +        | •                                                | 292          |
| T15A    | II                | •        | •   | 111      | +        | +        | +          | +                                                |            | 408      | •        | +        | +                                                | 370          |
|         | III               | <b>+</b> | •   | •        | •        | +        | +          | <b>†</b>                                         | •          | •        | •        | •        | •                                                | •            |
|         | IV                | •        | •   | •        | *        | •        | +          | +                                                | +          | •        | +        | · ·      | +                                                | <u> </u>     |
| i       | I                 | •        | •   | 8.2      | •        | •        | 145        | 153                                              | •          | 351      | •        | •        | •                                                | 254          |
| AOIR    | II                |          | •   | 106      | •        | +        | *          | <b>†</b>                                         | *          | 365      | *        | •        | +                                                | 316          |
| 1       | III               | •        | •   | +        | +        | *        | +          | <b>†</b>                                         | <b>,</b> • | 447      |          | •        | +                                                | 413          |
|         | IA                | · •      | -   | + +      | +        | <u> </u> | +          | <del>                                     </del> | +          | *        | <u> </u> | •        | <del>                                     </del> | ļ <u>+</u> _ |
| ]       | I                 | •        | *   | 80       | *        | +        | 143        | 151                                              | +          | 316      |          | •        | •                                                | 252          |
| AOZR    | II                |          | •   | 105      | •        | •        | •          | •                                                | +          | 351      | •        | •        | <b>†</b>                                         | 313          |
|         | III               | •        | •   | •        | +        | <b>+</b> | +          | +                                                | +          | 445      | •        | •        | •                                                | 414          |
|         | IV                | +        |     |          | +        | <u> </u> | +          | +                                                | •          | +        | +        | +        | +                                                | +            |
|         | I                 | +        | 54  | 70       | *        | +        | 126        | 133                                              | 319        | 283      |          | 5/1      | 778                                              | 274          |
| A03B    | 11                | •        | •   | 92       | +        | •        | +          | 150                                              | *          | 325      |          | +        | +                                                | 279          |
| į       | III               | •        | •   | 112      | *        | •        |            | •                                                | •          | 403      |          | +        | •                                                | 374          |
|         | I A               | <u> </u> | •   | +        |          |          | +          | <u> </u>                                         | •          | +        | •        | <u> </u> | <del>                                     </del> | *            |
|         | I                 | •        | •   | 100      | *        | •        |            | +                                                | +          | 398      |          | <b>+</b> | +                                                | 318          |
| AO4B    | II                | •        | +   | +        | •        | •        | +          | •                                                | •          | 461      | *        | +        | <b>†</b> •                                       | 406          |
|         | III               | •        | •   | +        | •        | *        | •          | *                                                | •          | +        | +        | +        | •                                                | +            |
|         | IV                | *        | +   | *        | +        |          | +          | +                                                | +          | +        | +        | +        | + +                                              | *            |
|         | I                 | 56       | 44  | 50       | •        | 88       | 04         | 100                                              | 266        | 240      | 60*      | 486      | 6 53                                             | Δ.           |
| A05B    | 1.1               | •        | 50  | 66       | +        | 106      | 113        | 120                                              | 310        | 274      | 711      | +        | •                                                | 220          |
|         | 111               | •        | •   | 30       |          | •        | •          | 159                                              | +          | 345      | •        | +        | <b>†</b> •                                       | 302          |
|         | IV                | +        | •   | 112      | +        | +        | +          | <u>+</u>                                         | +          | 471      |          |          |                                                  | 441          |

LAJOYA

| SU    | MMARY O           | FA  | LLO | WAB | LE           | GRO  | รร เ           | OAD      | S II     | N ME | TR            | CU       | NITS     | <u> </u> |
|-------|-------------------|-----|-----|-----|--------------|------|----------------|----------|----------|------|---------------|----------|----------|----------|
| FEAT. | PASS<br>INTENSITY |     |     |     | PAVE!<br>FOR | MENT | CAPACI<br>RAFT | TY IN    | KILOG    | RAMS | x 1000<br>ERS | )        |          |          |
|       | LEVEL             |     | 2   | 3   | 4            | 5    | 6              | 7        | 8        | 9    | 10            | 11       | 12       | 13       |
|       | I                 | +   | •   | +   | +            | +    | +              | +        | +        | +    | •             | •        | +        | +        |
| ROIA  | II                |     | •   | +   | +            | +    | +              |          | •        | +    | +             | •        | . •      | •        |
|       | III               |     |     |     |              |      | +              |          |          | +    | •             | •        | •        | •        |
| 1     | IV                |     | •   |     |              |      | +              | +        | +        | •    | +             | •        | +        | <u>.</u> |
|       | Ĭ                 | +   | +   | +   | +            | +    | •              | +        | +        | +    | +             | •        | •        | •        |
| POZC  | II                | •   | +   | +   | +            | +    |                |          |          | •    |               | +        | •        | +        |
|       | III               | +   | +   | +   | +            | +    | +              | +        | +        | +    | ٠             | •        | +        |          |
| ł     | IV                | +   | +   | +   | +            | +    | +_             | +        | •        | +    |               | +        | · ·      | +        |
|       | 1                 | +   | +   | +   | +            | +    | +              | +        | +        | •    | +             | •        | •        | •        |
| PO3C  | II                | +   | •   | +   | +            | +    | +              | +        | +        | +    |               | +        | •        | •        |
|       | III               | +   | +   | +   | +            | +    | +              | +        | +        | +    | +             | +        | •        |          |
|       | IV                | +   | +   | +   | +            | +    | +              | +        | +        | +    | +             | <u> </u> | +        | <u> </u> |
|       | I                 | +   | +   | 48  | +            | +    | +              | +        |          | 199  | •             | •        |          | 167      |
| RO4A  | II                | +   | +   | +   | +            | +    | +              | +        | •        | +    | •             | +        | +        | 217      |
|       | 111               | +   | •   | +   | +            | +    | •              | <b>+</b> | +        | +    |               | •        | +        |          |
|       | IV                | +   | +   | +   | +            | +    | +              | +        | +        | +    | +             | +        | <u> </u> | -        |
|       | I                 | +   | +   | +   | +            | +    | +              | +        | +        | 195  | •             | •        | •        | 100      |
| TOTA  | II                | +   | +   |     | •            | +    | +              | +        | +        | 207  | +             | <b>+</b> | •        | 216      |
|       | III               | +   | •   | +   | •            | +    | +              | +        |          |      | +             | +        | •        | •        |
|       | IV                | +   | +   | +   |              | +    | +              | +        | +        | +    | <u> </u>      | +        |          | <u> </u> |
|       | I                 | +   | •   | +   | •            | +    | <b>+</b>       | +        | <b>+</b> | •    | ٠ ا           | +        | •        | +        |
| TOZA  | II                | +   | •   | +   | •            | +    | +              | +        |          | •    | •             | •        | •        | •        |
|       | III               | +   | +   | +   | +            |      | +              | •        | +        | •    | ٠             | •        | •        | •        |
|       | IV                | •   | +   | +   | <u> </u>     | +    | +              | +        | +        | •    | •             | •        | +        | •        |
|       | I                 | +   | +   | 46  | +            | +    | +              | +        | +        | 159  | •             | +        | <b>†</b> | 150      |
| TOSA  | 11                | •   | +   | 51  | •            | +    | •              | +        | +        | 167  |               | +        | +        | 172      |
|       | III               |     | +   | +   | +            | •    | <b>†</b> •     | +        | •        | 184  |               | •        | •        | יחן      |
|       | IV                | ·   | +   | +   | +            | +    | +              | +        | •        | 213  | <u> </u>      | <u> </u> |          | •        |
| _     | I                 | +   | +   | +   | +            | +    | +              | +        | +        | 217  | •             | •        | •        | 217      |
| TO4C  | II                | •   | +   | +   |              | +    | +              | +        | +        | +    | •             | •        | •        | •        |
|       | III               | •   | +   | +   | +            | +    | +              | +        | +        | +    | +             | •        | •        | +        |
|       | IV                | +_  | +   | +   | <u> </u>     | +    | +              | +        | <u> </u> | +    |               | <u> </u> | <u> </u> | <u> </u> |
|       | Ĭ                 | •   | •   | +   | +            | •    | +              | +        | +        | 193  | •             | •        | •        | 1 80     |
| T05C  | II                | +   | +   |     | •            | +    | +              | +        | +        | 206  |               | +        |          | 204      |
|       | III               | +   | +   | +   | •            | +    | +              | +        | •        | +    | •             | •        | +        | •        |
|       | IV                | •   | +   | +   | +            | +    | +              | +        | <u> </u> | •    | •             | +        | <u> </u> | -        |
|       | I                 | •   | •   | +   | +            | +    | +              | +        | +        | 193  | ٠             | +        | +        | 1 89     |
| ₹06C  | II                | •   |     | •   | +            | +    | +              | •        | •        | 206  | +             | +        |          | 205      |
| j     | III               | +   | •   | +   | •            | +    | •              | •        | •        | **   | •             | •        | •        | •        |
|       | IV                | +   | +   | +   | <u>+</u>     | +'   | / +            | +        |          | •    | +             | •        | •        | <u> </u> |
|       | ı                 | • " | •   | +   | +            | •    | . +            | +        | •        | 217  | •             | •        | +        | 213      |
| T07C  | II                | •   | •   | +   | +            | +    | •              | +        | +        | +    | +             | •        | +        | +        |
| }     | III               | •   | •   | +   | *            | •    | •              | •        | •        | +    | +             | •        | +        | •        |
|       | IV                |     | +   | +   | •            |      | <u> </u>       |          | +        | •    | +             |          | ٠        | +        |
|       | I                 | •   | 25  | 39  | +            | +    | 67             | +        | 142      | 133  | •             | 227      | 286      | 131      |
| TOBA  | 11                | •   | 28  | 43  | +            | •    | •              | +        | +        | 134  | •             | 243      | 304      | 14!      |
|       | III               | •   | •   | 46  | +            |      | •              | +        | •        | 150  | •             |          | 3 34     | 159      |
|       | IA                | •   | +   | 52  |              |      | •              | +        | •        | 170  | +             | •        | •        | 1 44     |

LAJOYA

| SU          | MMARY O           | FΑ           | LLO      | WAB | LE       | GRO              | SS I  | OAC             | S II     | IM V         | ETR            | IC U     | NIT                                              | S        |
|-------------|-------------------|--------------|----------|-----|----------|------------------|-------|-----------------|----------|--------------|----------------|----------|--------------------------------------------------|----------|
| FEAT.       | PASS<br>Intensity |              |          |     | PAVE     | MENT (           | CAPAC | ITY IN<br>GROUP | KILOG    | RAMS<br>NUME | x 1000<br>BERS | )        |                                                  |          |
| }           | LEVEL             | 1            | 2        | 3   | 4        | 5                | 6     | 7               | 8        | 9            | 10             | 11       | 12                                               | 13       |
|             | I                 | +            | +        | +   | +        | 1                | +     | +               | +        | 204          | •              | +        | +                                                | 100      |
| T090        | II                | •            |          |     |          | 1 .              |       |                 |          | 217          |                |          |                                                  | 217      |
|             | III               |              |          |     |          | 1 .              |       |                 |          |              |                |          |                                                  |          |
| ļ           | IV                |              |          |     |          |                  |       |                 |          |              |                |          |                                                  |          |
|             | Ī                 | +            |          |     |          | 1                | +     | +               | +        | +            | +              | +        | +                                                | +        |
| TIOC        | 11                |              |          |     | +        |                  |       |                 |          |              |                |          |                                                  | +        |
|             | III               |              |          |     |          |                  |       |                 |          |              |                |          |                                                  |          |
|             | IV                |              |          |     |          |                  | +     |                 |          |              |                |          |                                                  |          |
|             | 1                 | +            | •        | 48  | +        | +                | +     | +               | +        | 167          |                | •        | <del>                                     </del> | 166      |
| TIIA        | 11                |              |          | 54  |          |                  |       | 1               |          | 177          | ١.             |          | l .                                              | 1 72     |
| 1144        | III               |              |          | ,   |          | +                |       |                 |          | 194          |                |          |                                                  | 207      |
|             |                   | 1            |          |     | į        | 1                |       |                 | ;        | •            |                |          |                                                  |          |
|             | <u> IV</u>        | +            | <u> </u> | +   | +        | <del> </del>     | -     | +               | -        | -            | <b>-</b>       | ·        | <del>                                     </del> | + +      |
|             | 1                 | *            |          | +   | •        | *                |       | 1               |          |              | :              |          |                                                  |          |
| T12C        | 11                |              | •        | *   |          |                  |       | •               |          | l            |                | }        |                                                  |          |
| 1           | III               | •            | •        | +   | •        | •                | *     | •               |          | •            |                |          | 1                                                | 1        |
|             | IV                | <u> </u>     | <u> </u> | •   | <u> </u> | +                | *     | +               | <u> </u> | •            |                | •        |                                                  | <u> </u> |
|             | I                 | •            | •        | +   |          | •                | +     | •               | •        | •            | •              | +        | •                                                | +        |
| T13C        | II                | •            | •        | •   | •        | +                | •     | +               | •        | •            | •              | •        | •                                                | 1 +      |
|             | III               | •            |          | •   | •        | •                | •     | +               | •        | •            | •              | +        | •                                                | •        |
|             | IV                | <u> </u>     | <u> </u> | •   | +        | +                | +     | +               | +        | <u> </u>     | <u> </u>       | <u> </u> | <u> </u>                                         | <u> </u> |
|             | I                 | +            | +        | 39  |          | +                |       | 74              | •        | 154          |                | +        | +                                                | 132      |
| T14A        | II                | •            |          | 50  | +        | •                | +     | •               | •        | 183          | •              | •        | •                                                | 168      |
|             | III               |              |          | +   | +        | +                | +     | +               | +        | +            | ٠ .            | +        | +                                                | +        |
| -           | IV                |              |          | •   |          |                  | +     | +               | •        | +            |                | +        | •                                                | +        |
|             | I                 | +            | +        | 3 9 | •        | +                | +     | 74              | +        | 150          | •              | +        | +                                                | 132      |
| T15A        | II                | •            |          | 50  | •        | •                |       | •               | •        | 195          |                | +        |                                                  | 167      |
|             | III               | +            | +        | +   |          | •                |       | +               |          | •            |                | +        |                                                  | •        |
|             | 10                |              | •        | •   |          |                  | .     |                 |          | •            |                | •        |                                                  |          |
| <del></del> | 1                 | •            | •        | 37  | •        | •                | 65    | 60              | +        | 145          |                | +        | +                                                | 116      |
| AOIB        | ı.                |              |          | 48  |          |                  |       |                 |          | 165          |                |          |                                                  | 143      |
| 7010        | III               |              |          | •   | •        |                  |       |                 |          | 202          |                |          |                                                  | 162      |
|             | IV                | •            |          |     |          |                  | +     |                 |          |              | ٠.             |          |                                                  |          |
|             | 1                 | <del>-</del> | •        | 36  | •        | <b>-</b>         | 64    | 6.0             | +        | 143          |                | +        | +                                                | 114      |
| A028        | II                | ·            |          | 47  |          | ;                |       | +               | •        | 163          |                |          |                                                  | 142      |
| AUZB        |                   |              |          | *   |          |                  |       |                 |          | 202          | ,              |          |                                                  | 187      |
|             | 111               | ļ            |          | ĺ   | ļ        | 1                |       |                 |          | +            |                |          |                                                  |          |
|             | IV                | +            | +        | +   | *        | +                |       | 60              | 144      | 128          |                | 263      | 3 5 3                                            | 101      |
|             | I                 | •            | 29       | 31  | •        | +                | 57    | 1               | ŀ        | į.           |                |          | +                                                | 126      |
| A038        | II                | •            | *        | 41  | *        | •                | *     | 72              | •        | 147          | (              | •        | ł                                                | !        |
| ļ           | 111               | •            | *        | 50  | •        | *                | +     | +               | +        | 1 42         |                |          |                                                  | 140      |
|             | IV                | +            | -        | +   | +        | <del>  _ +</del> | +     | +               |          | +            | +              | +        | +                                                | +        |
|             | I                 | •            | •        | 45  | +        | <b>+</b>         | +     | +               | •        | 1 00         | •              | •        | +                                                | 144      |
| AO4B        | II                | •            | •        | +   | *        | +                | +     | +               | +        | 200          | *              | •        | +                                                | 184      |
|             | III               | •            |          | +   | •        | +                | +     | +               | +        | +            |                | •        | +                                                | +        |
|             | IV                | +            | •        | +   | *        | +                | •     | +               | +        | +            | •              | +        | +                                                | +        |
|             | I                 | 25           | 19       | 22  | •        | 39               | 42    | 45              | 120      | 108          | 274            | 220      | 2 96                                             | ٨        |
| AO5B        | II                | •            | 26       | 29  | •        | 48               | 51    | 54              | 140      | 125          | 322            | •        | +                                                | 00       |
|             | 111               | <b> </b> •   |          | 36  | •        |                  | +     | 72              | •        | 156          | +              | +        | +                                                | 137      |
|             | IV                | ١.           |          | 50  | •        |                  | +     |                 |          | 717          |                |          |                                                  | 200      |

LAJOYA F-4

# PAVEMENT CLASSIFICATION NUMBERS (PCN) BASED ON 50,000 PASSES OF GROUP INDEX 9 AIRCRAFT

# LAJOYA AIR BASE PERU

| PPAMIDO         | Dest               |
|-----------------|--------------------|
| FEATURE<br>R01A | PCN<br>104/F/A/X/T |
| R02C            | 162/F/A/X/T        |
| R03C            | 162/F/A/X/T        |
| R04A            | 100/R/A/X/T        |
| T01A            | 88/F/A/X/T         |
| T02A            | 119/F/A/X/T        |
| T03A            | 70/F/A/X/T         |
| T04C            | 99/F/A/X/T         |
| T05C            | 87/F/A/X/T         |
| T06C            | 87/F/A/X/T         |
| T07C            | 99/F/A/X/T         |
| T08A            | 56/F/A/X/T         |
| T09C            | 92/F/A/X/T         |
| T10C            | 162/F/A/X/T        |
| T11A            | 74/F/A/X/T         |
| T12C            | 105/F/A/X/T        |
| T13C            | 105/F/A/X/T        |
| T14A            | 77/R/A/X/T         |
| T15A            | 79/R/A/X/T         |
| A01B            | 76/R/B/X/T         |
| A02B            | 75/R/B/X/T         |
| A03B            | 60/R/A/X/T         |
| A04B            | 89/R/A/X/T         |
| A05B            | 50/R/A/X/T         |

|                  |       |       |                                       |                                                                                     |                  |              | AIRC                         | RAFT         | GRO           | UP IN                                                                         | DEX                    |      |                                 |                       |          |  |  |
|------------------|-------|-------|---------------------------------------|-------------------------------------------------------------------------------------|------------------|--------------|------------------------------|--------------|---------------|-------------------------------------------------------------------------------|------------------------|------|---------------------------------|-----------------------|----------|--|--|
|                  |       |       | Li                                    | GHT LO                                                                              | DAD              |              |                              | ME           | DIUM L        | OAD                                                                           |                        |      | HE                              | AVY LO                | AD       |  |  |
| l                |       |       |                                       | 2                                                                                   | 3                | 4            | 5                            | 6            | 7             | 8                                                                             | 9                      | 10   | 11                              | 12                    | 18       |  |  |
|                  |       |       | A-37<br>C-12<br>C-21<br>#C-23<br>T-37 | A-7<br>A-10<br>F-4<br>F-5<br>F-16<br>F-10X<br>T-33<br>T-38<br>T-39<br>0V-10<br>C-20 | #F-III<br>FB-III | C-130        | C-7<br>≋C-9<br>DC9.<br>C-I4O | 737<br>#T-43 | *727<br>C-22  | 707<br>* E-3<br>C-i35<br>*KC-i35<br>VC-i37<br>DC-8<br>EC-18<br>A-300<br>B-767 | C-I4I<br>#B-I<br>B-757 | C-5  | MKC-IO<br>DCIO<br>LIOII<br>C-I7 | 747<br># E-4<br>VC-25 | 8-52     |  |  |
|                  |       |       |                                       | <u> </u>                                                                            |                  |              |                              |              |               |                                                                               |                        | • (  | CONTROL                         | LING AIF              | CRAFT    |  |  |
|                  |       |       |                                       | G                                                                                   | ROSS             | WEI          | GHT                          | LIMIT        | S FO          | RAIR                                                                          | CRAF                   | T GR | OUPS                            | _                     |          |  |  |
| ĺ                |       |       | 1                                     | 2                                                                                   | 3                | 4            | 5                            | EMENT        | CARACI        | TY IN H                                                                       | 9                      | 10   | 1 11                            | 12                    | 13       |  |  |
| LOWEST           |       |       | 5                                     | 7                                                                                   | 49               | 69           | 22                           | 61           | 92            | 60                                                                            | 150                    | 325  | 240                             | 334                   | 180      |  |  |
| HIGHEST<br>GROSS | POS   | SIBLE | 25                                    | 81                                                                                  | 114              | 175          | 121                          | 125          | 210           | 400                                                                           | 477                    | 840  | 590                             | 850                   | 488      |  |  |
|                  |       |       |                                       | L                                                                                   |                  | PA           | EMENT                        | CAPAC        | ITY IN        | KILOGRA                                                                       | MS x IC                | 000  | .4                              | <u> </u>              | <u> </u> |  |  |
| LOWEST<br>GROSS  |       |       | 2                                     | 3                                                                                   | 22               | 31           | 31 10 28 42 27 68 147        |              |               |                                                                               |                        |      |                                 | 151                   | 82       |  |  |
| HIGHEST<br>GROSS |       |       | 11                                    | 37                                                                                  | 52               | 79           | 55                           | 57           | 95            | 181                                                                           | 216                    | 361  | 267                             | 385                   | 221      |  |  |
|                  |       |       | PASS INT                              |                                                                                     |                  |              |                              |              |               | Y LE                                                                          | VEL                    |      |                                 | <del> </del>          |          |  |  |
|                  |       |       | L                                     | 2                                                                                   | 3                | 4            | 5                            | 6            | 7             | 8                                                                             | 9                      | 10   | 11                              | 12                    | 13       |  |  |
|                  |       | I     | 300,                                  | 000 PAS                                                                             | SES              |              |                              |              | 15,000 PASSES |                                                                               |                        |      |                                 |                       |          |  |  |
| ]                | LEVEL | □     | 50,                                   | OOO PAS                                                                             | SES              |              |                              | 15,0         | OO PASS       | SES                                                                           |                        |      | 3,000 PASSES                    |                       |          |  |  |
| ]                | Ē     | ш     | 15,                                   | 000 PAS                                                                             | SES              | 3,000 PASSES |                              |              |               |                                                                               |                        |      |                                 | 500 PASSES            |          |  |  |
|                  |       | NZ.   | 3,                                    | 000 PAS                                                                             | SES              | 500 PASSES   |                              |              |               |                                                                               |                        |      |                                 | 100 PASSES            |          |  |  |

## **NOTES**

- M REFERENCE TO THE ALLOWABLE GROSS LOAD (AGL) TABLE:
  - A Genetes lowest possible empty gross weight of any excraft within the group exceeds the AGL of the perement. Perement cannot support aircreft for respective pass intensity level.
  - + Denotes no weight restrictions. AGL of the pavement exceeds the grounded possible gross weight of any elecate in the group.

Pass intensity levels  $\Sigma$  and  $\Sigma$  are used with reduced subgrave strongths to determine the maximum alternate leads during the frest-men period.

UNITED STATES AIR FORCE ENGINEERING & SERVICES CENTER TYNDLL AIR FORCE BASE, FLORIDA

# **RELATED DATA**

| ENGINEER   | TOATE  | DRAWING HUMOER |
|------------|--------|----------------|
| N/A        | NOV 88 | APPENDIX &     |
| DRAWN      | BEALS  |                |
| L. BASTIAN | N/A    | SHEET OF       |

## LA JOYA, PERU

#### TOPOGRAPHY

La Joya is located 24 miles inland from the South Pacific Ocean in a desert environment. Mountains lie 20 miles to the north through south southeast. The elevations range from 12,000 feet in the north to 5,000 feet in the southeast.

#### VISIBILITY

There are no significant restrictions to visibility.

## SEVERE WEATHER

As La Joya is located in southern Peru there is no significant weather. La Joya has a mean annual precipitation rate of less than 10 inches.

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION IS UNLIMITED

7 SORE BEVISION DES ISEE AFR 91 71 LA JOYA PFRU
16° 43' S 071° S-' 'E
ELEVATION 4100 ft
PREPARED RY USAFFTAC
MAR 1989 ≂ EXTREME WIND DATA FOR CONSTRUCTION DESIGN (SEE AFM 88-3, CHAP 1) SNOW 15AD DATA FOR NOOF COMSTRUCTION ISEE AFM 88-3, CHAP 1]
MAXIMUM FROST PENETRATION ISEE AFM 88-3, CHAP 1]
MEAN ANNUAL COOLING DEGREE DAYS 1026 RUNWAYS OR COMBINATIONS FOR CROSSWIND COMPONENT 10 AMOTS OR LESS AIR CONDITIONING DESIGN AND CRITERIA DATA (SEE AFM 88 8, CHAP 6; ANNUAL WIND COVERAGE TABULATION INSTRUMENT RUNWAY |1| WIND COVERAGE ("...) ALL WEATHER |2| WIND COVERAGE ("...) INSTRUMENT MINIER MEATING DESIGN TEMPERATURE ISEE AFM BB B, CHAP 61 PRESSUME ALTITUDE AND TEMPERATURE DATA FOR DETERMINING REQUIRED RUNNAY LENGTHS (SEE AFM 86-2) DATA AVAIL ATBLE MEAN ANNUAL NUMBER OF MEATING DEGREE DAYS 659 ADDITIONAL DATA DATA SHOULD BE SECURED THROUGH THE LOCAL NOTICE WHEN INCESSARY INTERPRETATIONS OF THESE FIELD ELEVATION \_4100 ENGINEERING WEATHER DATA MAGNETIC VARIATION SOURCE MEAN WINTER WIND SPEED 2.6. KNOTS 5 THE NOT Y STAFF WEATHER OFFICER MAGNETIC MARK RNO15 ţ AIR FORCE RUKWAY WIND COMPUTER (SEE AFM 86.6) RUMMAY Diagram म्म 77 AMM YRS REC 90 \*\* 77 222 323 ŧ 0 D INSTRUMENT. CERLING = 200 FEET AND VISIBILITY = 1.2 MM.E. A CELLING SOCIOOFEET AND VISIBILITY = 3 MINES 96.3 D CELLING SOCIOOFEET AND VISIBILITY = 1 MINE OF VISIBILITY = 1 MINE BUT = 3 MINES AND CELLING = 1000° 2.7 FLYING WEATHER ANNUAL PENCENTAGES FOR VARIOUS CATEGORIES 3 AND EITHER CEILING - 1500 FEET OR VISIBILITY - 3 MILES DENOTES LESS THAN 0.5 DAY
DENOTES LESS THAN 0. MINCH 0. 45 INCN 82 0 99 100 2228 Y X X 00 ad C CERLING - 500 FEET AND OR VISIBILITY - 1 MILE **MSTRUMENT** 00 90 SOUTH OF SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVI 0 qq 98.7 z Ş 00 00 aa 88 4 311 4, 99 ब्रुव्यन aa 00 90 ٥٥ **#**222 THESE WIND ROSES SHOW THE TOTAL IN OF WINDS BY SPEED GROUP AND EMECTION SASED ON THAT SEASTING. CLIMATOLOGICAL DATA MAM ANNUAL WIND ROSES W54 323X aa 99 #OTE: 822 9 9 aa 90 = 0 aa 9 69 68 69 73 87 25 8 353 99 90 ~ MACE OF DATA NATIONAL INTELLIGENCE SURVEY \* 0 **35** E2 00 \* ল্লহ \* 882 O. 70. INCHES \_ 9 ... YEARS OF RECORD . INCHES 9 YEARS OF RECORD 88 ٩ Ž MAXIMUM 24 HOUR PRECIPITATION MAXIMUM 24 MOUR SHOWFALL ALL WEATHER 93.9 **##32**2 dd 7 z Ş RELATIVE NUMBERY (%) MEAN (MCNES) MEAN NO OF DAYS - 0 5 IN DATSAV MAN TEMP = 50 ° F MAN TEMP = 50 ° F MAN TEMP = 32 ° F ا س MEAN BALY BAX MEAN BALY BW LOWEST SHEWFALL MEAN (MICHES) TEMPERATURE PF þ MAM WOW M

USAFETAC FORM 49 MAY 86

**PISCO** 





FEATURE DESIGNATION (SEE NOTE 1) 13 PCC PAVEMENT THICKNESS IN INCHES & TYPE

#### TYPE OF FEATURE

- R RUNWAY
- T TAXIWAY
- A APRON

#### TYPE TRAFFIC AREA (SEE NOTE 2)

- A A TYPE TRAFFIC
- 8 8 TYPE TRAFFIC
- C C TYPE TRAFFIC
- · · · · CHANGE IN FEATURE DESIGNATION
- PCC PORTLAND CEMENT CONCRETE
- AC ASPHALTIC CONCRETE

## **NOTES**

- 1. FEATURE DESIGNATION DENOTES TYPE OF FEATURE, NUMBER OF FEATURE FOR GIVEN FEATURE TYPE AND TYPE TRAFFIC AREA.
- 2. TRAFFIC AREA DESIGNATIONS ARE BASED ON AFM 88 6. CHAPTER
- 3. FEATURE DESIGNATIONS DO NOT CORRESPOND WITH THOSE FROM PREVIOUS REPORTS AND DRAWINGS.







FEET H







7.5 AC 8.5 PCC (576)

CORE LOCATION. PAVEMENT 1-TYPE PAVEMENT, AND FLEXURA CONCRETE FOR PCC CORES INT: NOT TESTED





7.5 AC 8.5 PCC (576)

CORE LOCATION. PAVEMENT THICKNESS IN INCHES.
TYPE PAVEMENT. AND FLEXURAL STRENGTH OF
CONCRETE FOR PCC CORES

MT. NOT TESTED





EXCELLENT
VERY GOOD
GOOD
FAIR
POOR
VERY POOR
FAILED
NOT EVALUATED



# <u>GEND</u>

CELLENT

RY GOOD

00

OR

RY POOR

LED

T EVALUATED



UNITED STATES AIR FORCE ENGINEERING & SERVICES CENTER TYNDALL AIR FORCE BASE, FLORIDA

# **CONDITION SURVEY**

PISCO AIR BASE DERIL

| GABRIELSON | NOV 89  | APPENDIX D   |
|------------|---------|--------------|
| SANTIAGO   | GRAPHIC | SHEET_1 OF 4 |





## <u>LEGEND</u>

• 3 PHOTOGRAPH LOCATION, DIRECTION, AND NUMBER



UNITED STATES AIR FORCE ENGINEERING & SERVICES CENTER TYNDALL AIR FORCE BASE, FLORIDA

## **PHOTOGRAPH LOCATIONS**

PISCO AIR BASE. PERU

| ENGINEER   | DATE    | DRAWING NUMBER |
|------------|---------|----------------|
| GABRIELSON | NOV 89  | APPENDIX D     |
| DRAWN      | BCALE   |                |
| SANTIAGO   | GRAPHIC | SHEET 2 OF 4   |



PHOTOS 1-4: Pavement overloading is indicated by alligator cracks, block cracks, and depressions. These are common at the intersection of the Parallel Taxiway and the apron. Recommend this area be replaced.



PHOTO 2



PHOTO 4



PHOTO 5: Severely spalled joint that was patched with AC. The joint should be essuat and repaired with rigid material



PB010 7: Typical shattered slabs concentrated on the apron tax; route. These slabs should be replaced.



 $\underline{P(QTOS,g)}$  . Larly signs of pavement farility shown at the intersection of the FCC spin and AC taxibay.





PHOTO 3







 $\frac{PH \times TO - 6}{\text{extensive}}: \quad \text{Failed PCC feature as indicated by extensive shattered slabs}. \quad \text{Recommend the area be replaced}.$ 



or and to fee upon or the second



PHOTO 9: Typical shattered pcc s masor apron.

UNITED STATES AIR FORCE ENGINEERING & SERVICES CENTER TYNDALL AIR FORCE BASE. FLORIDA

## **PHOTOGRAPHS**

PISCO AIR BASE. PERU

| PISCO AIR BASE. PERO   |           |              |  |  |  |  |  |  |  |  |
|------------------------|-----------|--------------|--|--|--|--|--|--|--|--|
| ENGINEER<br>GABRIELSON | NOV 89    | APPENDIX D   |  |  |  |  |  |  |  |  |
| SANTIAGO               | SCALE N A | SHEET 3 OF 4 |  |  |  |  |  |  |  |  |



<u>PHOTO 10</u>: AC depression which will eventually progress to alligator cracking and pavement failure under aircraft loads.



PHOTO 11: Pothole shown at the intersection of the AC taxiway and the PCC apron.



PHOTO 1: Cracks formed where joints should have been cut to control the cracking. Recommend the cracks be cleaned and sealed.



 $\underline{\text{PHOTO}}$  14: Extremely "tight" transverse joint typical on the apron.



<u>PHOTO 16</u>: Extensive map cracking caused from over-finishing and possible, uncontrolled curing.



 $\underline{PHOTO}(\underline{17})$  . Nonexistent joint scalant typical throughout the PCC features.



ie intersection
apron.



PHOTO 12: Typical longitudinal cracks extending the entire length of the apron. Recommend the cracks be cleaned and sealed.



verse from



PHOTOS 15: Shattered slabs typical accross entire taxiway.





PHOTO 18: Pavement Evaluation Team consisting of (left to right) Capt Jay Gabrielson, Team Chief, SSgt Steve Hadron. Coring Expert, SMSgt Doug Thompson, Consultant, TSgt Ralph Crompton, Team Superintendent, and SSgt Todd Bauder, Soils Expert.

UNITED STATES AIR FORCE
ENGINEERING & SERVICES CENTER
TYNDALL AIR FORCE BASE. FLORIDA

## **PHOTOGRAPHS**

PISCO AIR BASE. PERU

| ENGINEER<br>GABRIELSON | NOV 89 | APPENDIX D   |
|------------------------|--------|--------------|
| SANTIAGO               | N A    | SHEET_4 OF_4 |

| ^ |
|---|
| ដ |
| ŭ |
| Ħ |

| PADE                              |             | K/CBR        | 25              |           | 25    |        |                 |        | 25    |        |             |         | 25             |         | 22          |            | 25           |            | 52          |                | 25          |                |                     |         |          |       | 25      |
|-----------------------------------|-------------|--------------|-----------------|-----------|-------|--------|-----------------|--------|-------|--------|-------------|---------|----------------|---------|-------------|------------|--------------|------------|-------------|----------------|-------------|----------------|---------------------|---------|----------|-------|---------|
| SUBCOAN                           |             | DESCRP<br>GP | <del></del>     | d5        |       | dg     |                 | дъ     |       | d5     |             | д5      | <del>,</del> - | GP      | <del></del> | д <u>э</u> |              | <b>6</b> P | <del></del> | g <sub>p</sub> | <del></del> | g <sub>b</sub> |                     | d5      |          | ď     |         |
|                                   | 1000E       | ð            |                 |           |       |        |                 |        |       |        |             |         |                |         |             |            |              |            |             |                |             |                |                     |         |          |       |         |
| CHRRACE                           | 300000      | DESCRP       |                 |           |       |        |                 |        |       |        |             |         | •              |         |             |            |              |            |             |                |             |                |                     |         |          |       |         |
|                                   | THICK       | 1            |                 |           |       |        |                 |        |       |        |             |         |                |         |             |            |              |            |             |                |             |                |                     |         |          |       |         |
|                                   | 1000        | K/CBR        | 46              |           | 9     |        | 250             |        | 36    |        | 250         |         | 40             |         | 09          |            | 40           |            | 9           |                | 8           |                | 350                 |         | 350      |       | 36      |
| BACE                              | 10435       | DESCRP       |                 | <b>GP</b> |       | SP     |                 | 75     |       | 35     |             | дS      |                | дĐ      |             | db         |              | СР         |             | GP<br>GP       |             | SP             |                     | SP      |          | СР    |         |
| RTY DATA                          | THICK       | (18.0        |                 | 18        |       | 18.0   |                 | 18.0   |       | 18.0   |             | 18.0    |                | 18.0    |             | 18.0       |              | 18.0       |             | 18.0           |             | 18.0           |                     | 18.0    |          | 18.0  |         |
| PROPE                             | 1000        | FEX          |                 |           |       |        | 200             |        |       |        | 540         |         |                |         |             |            |              |            |             |                |             |                | 550                 |         | 550      | -     |         |
| SUMMARY OF PHYSICAL PROPERTY DATA | AVENCIA!    | DESCRP<br>AC |                 | AC        |       | PCC    |                 | AC     |       | PCC    |             | AC      |                | AC      |             | AC         |              | ΑC         |             | ΨC             |             | PCC            |                     | PCC     |          | AC    |         |
| MMARY OF                          | THICK       | 10.4         |                 | 5.5       |       | 8.0    | <del>,</del>    | 4.5    |       | 12.0   | <del></del> | 4.0     |                | 4.0     |             | 2.0        | <del>.</del> | 2.0        |             | 2.0            |             | 7.0            |                     | 7.0     |          | 4.5   |         |
| 1 I.                              | 12          | EXE          |                 |           |       |        |                 |        |       | _      |             | _       |                |         |             |            |              |            |             |                |             |                |                     |         |          |       |         |
| 7.7.40                            | LAY PAVENEN | DESCRP       |                 |           |       | AC     |                 |        |       |        |             |         |                |         |             |            |              |            |             |                |             | AC             |                     |         |          |       |         |
|                                   | THICK       | (in)         |                 |           |       | 4.5    |                 |        |       |        |             |         |                |         |             |            |              |            |             |                |             | 2.0            |                     |         |          | }     |         |
|                                   | 100         | COND         | EXC             |           | <br>X | VERY 4 | <br>0<br>0<br>0 |        | EXC   | VERY   |             | VERY    | 9000           | VERY    | <br>a005    |            | 1005<br>1005 |            | FAIR<br>    | VERY           | 0005        | $\neg$         | <br>900             | 1 8     | <br>1009 | 5     | 0000    |
|                                   | -           | (ft)         | }               | 150       |       | 150    |                 | 150    |       | 150    |             | 7.5     |                | 75      |             | 150        |              | VARIES     |             | 150            |             | 50             |                     | 150     |          | 75    |         |
|                                   | FACILITY    |              |                 | 6170      |       | 1000   |                 | 770    |       | 1000   |             | 850     |                | 3900    |             | 909        |              | 2600       |             | 850            |             | 100            |                     | 200     |          | 1900  |         |
|                                   | A L         | IDENT        | 03/21<br>03 END | RUMMAY    | 03/21 | RUNWAY | 13/50           | RUNMAY | 03/21 | RUNWAY | 03/21       | TAXIWAY | so.            | PARALLE | TAXIWAY     | MAY        | 4            | PARALLEL   | TAXIWAY     | TAXIWAY        | m           | TW 2 /         | PARALLEL<br>TAXIWAY | TAXIWAY | 8        | APRON | IAXIWAY |
|                                   |             | FEAT         |                 | ROZC      |       | R03C   |                 | R04C   |       | ROSA   | ·····       | TO1A    |                | T02A    |             | T03C       |              | T04A       |             | T05C           |             | T06A           |                     | T07A    |          | 708C  |         |

| ADE         | 1000E<br>K/CBR |            | 25       |              |          |            | 25         |              |     |               |       |              |     |              |     |              |              |         |          |
|-------------|----------------|------------|----------|--------------|----------|------------|------------|--------------|-----|---------------|-------|--------------|-----|--------------|-----|--------------|--------------|---------|----------|
| SUBGRADE    | DESCRP         | d.         |          | <u>6</u> P   | _        | <u>6</u> b |            | СР           |     | GР            |       | GP           |     | GP           |     | d9           |              | СР      |          |
|             | 1000E<br>CBR   | _          |          |              |          | 9          |            |              |     | -             | 1     | 9            |     | 9            |     | 9            |              | 9       |          |
| SUBBASE     | DESCRP         |            |          |              |          |            | <u> </u>   |              |     |               | •     |              |     |              | •   |              | <u>' -</u> - |         | <u>'</u> |
|             | THICK (in)     |            |          |              |          |            |            |              | -   |               |       |              |     |              |     |              |              |         |          |
|             | 1000E<br>K/CBR |            | 34       |              | 300      |            | 8          |              | 350 |               | 210   |              | 210 |              | 230 |              | 250          |         | es<br>S  |
| BASE        | DESCRP         | <b>d</b> 9 |          | SP           |          | <b>M</b> 9 |            | <b>3</b> 5   |     | SP            |       | SP           |     | SP<br>SP     |     | SP           |              | SP      |          |
|             | THICK<br>(in)  | 18.0       |          | 18.0         | ı        | 18.0       |            | 18.0         |     | 18.0          |       | 18.0         |     | 18.0         |     | 18.0         |              | 18.0    |          |
|             | 1000E<br>FLEX  |            |          |              | 460      |            | EXC        |              | 570 |               | 550   |              | 450 |              | 550 |              | 425          |         | 260      |
| PAVEMENT    | DESCRP         | AC         |          | PCC          |          | AC         | •          | PCC          |     | PCC           |       | PCC          | _   | PCC          |     | PCC          |              | PCC     |          |
|             | THICK<br>(in)  | 4.0        |          | 8.0          |          | 4.0        |            | 11.5         |     | 5.0           |       | 5.5          |     | 8.0          |     | 8.0          | _            | 11.5    |          |
| IN          | 1000E<br>FLEX  |            |          |              |          |            |            |              |     | <u>.,</u>     |       | -            |     |              |     |              |              |         |          |
| AY PAVEMENT | DESCRP         |            |          |              |          |            |            |              |     |               |       |              |     |              |     |              |              |         |          |
| OVERL       | THICK<br>(in)  |            |          |              |          |            |            |              |     |               |       |              |     |              |     |              |              | •       |          |
|             | GEN            | VERY       | 9        | I V          |          | ر          | באר<br>באר | VERY         | 9   | acca          |       | CATI         |     | 9000         | ¥   | 0 1 0        | <u> </u>     | E A 1 B | r<br>r   |
|             | WDTH<br>(ft)   | ]          |          | 75           |          | 75         |            | 150          |     | 100           |       | 100          |     | 175          |     | 200          |              | 400     |          |
| FACTI 11Y   | LGTH<br>(ft)   | 450        |          | 100          |          | 2150       |            | 750          |     | 400           |       | 150          |     | 2300         |     | 550          |              | 450     |          |
| FA          | IDENI          | TAXIWAY    | <b>J</b> | T10A TAXIWAY | <b>-</b> | PARALLEL   |            | T12A TAXIWAY | _   | AO 18 PARKING | NOW A | A02B PARKING |     | A03B PARKING |     | A04B PARKING | NOW LA       | PARKING | 200      |
|             | FEAT           | T09A       |          | T10A         |          | T11A       |            | T12A         |     | A01B          |       | A02B         |     | A038         |     | A04B         |              | A05B    | -        |

| SUMMARY OF ALLOWABLE GROSS LOADS IN BRITISH UNITS |                   |     |     |     |          |               |     |                |      |      |       |             |       |     |
|---------------------------------------------------|-------------------|-----|-----|-----|----------|---------------|-----|----------------|------|------|-------|-------------|-------|-----|
| FEAT.                                             | PASS<br>INTENSITY |     |     |     | FOR      | PAVE<br>AIRCE |     | CAPAC<br>GROUP |      |      | BERS  |             |       |     |
|                                                   | LEVEL             | 1   | 2   | 3   | 4        | 5             | 6   | 7              | 8    | 9    | 10    | - 11        | 12    | 13  |
|                                                   | I                 | 60  | 34  | A   | 137      | nο            | 87  | 103            | 1 11 | 170  | 593   | 580         | 3 77  | ٨   |
| POLA                                              | ΙΪ                | •   | 39  | 55  | 148      | 73            | 06  | 112            | 190  | 177  | 570   | 316         | 406   | 114 |
|                                                   | III               | •   | 43  | 59  | 163      | 103           | 109 | 126            | 209  | 197  | 517   | 360         | 452   | 211 |
|                                                   | IV                | •   | 52  | 68  |          |               | 134 | 1:2            | 241  | 220  | 54 A  | 434         | 547   | 2:4 |
|                                                   | Ţ                 | +   | 67  | 89  | +        | +             | +   | +              | •    | 315  | •     | 576         | 713   | 300 |
| POZC                                              | II                | •   | +   | 102 | +        | •             | •   | +              | +    | 340  | •     | •           | 778   | 343 |
|                                                   | III               | •   | •   | 114 | +        | +             | +   | +              | +    | 382  | •     | •           | •     | 403 |
|                                                   | IV                | •   | +   | +   | +        | <u> </u>      | +   | +              | +    | 460  |       | +           | •     | +   |
| Ī                                                 | Ĭ                 | 59  | 47  | 54  | +        | 70            | 96  | 101            | 260  | 232  | 520   | 465         | 620   | A   |
| RO3C                                              | II                | •   | 60  | 67  |          | 104           | 110 | 118            | 292  | 259  | 777   | 540         | 7 34  | 208 |
| 1                                                 | III               | •   | +   | 79  | •        |               | 137 | 144            | +    | 306  | •     |             | +     | 262 |
|                                                   | IV                |     |     | 100 | <u> </u> | <u> </u>      | +   | +              | •    | 381  | •     | +           | •     | 336 |
|                                                   | Ī                 | •   | 42  | 58  | 163      | 105           | 107 | 124            | 215  | 202  | 694   | 344         | 4 51  | 108 |
| RO4C                                              | II                | •   | 49  | 66  | •        | •             | 118 | 136            | 230  | 217  | 697   | 379         | 4 80  | 218 |
|                                                   | III               | +   | 56  | 72  |          | +             | 137 | 155            | 255  | 241  | 733   | 443         | 5 56  | 257 |
|                                                   | IV                | •   |     | 86  | +_       | +             | +   | +              | 302  | 287  |       | 557         | 7 05  | 312 |
|                                                   | I                 | +   | 62  | 67  | +        | 109           | 116 | 173            | 5 00 | 250  | 74?   | 528         | 713   | 215 |
| RO5A                                              | ΙΙ                | •   |     | 84  | +        | •             | 135 | 144            | +    | 290  |       | +           | +     | 250 |
| 1                                                 | III               | +   |     | 98  | +        | •             | +   | 175            | +    | 342  |       | •           |       | 374 |
|                                                   | IV                | +   |     | +   | •        | +             |     | +              |      | 425  | ٠     | +           | -     | 415 |
|                                                   | I                 | .52 | 29  | Α   | 121      | 75            | 76  | 30             | 157  | 149  | 507   | 252         | 3 3(  | Δ   |
| TOIA                                              | 11                | 57  | 34  | Α . | 123      | 30            | 83  | 0.7            | 166  | 156  | 513   | 274         | 3.53  | Δ   |
| }                                                 | 111               | •   | 38  | 51  | 142      | 30            | 95  | 110            | 1 22 | 171  | 576   | 313         | 3 93  | 103 |
|                                                   | IA                | •   | 46  | 59  | 164      | 108           | 116 | 132            | 207  | 198  | 571   | 377         | 475   | 221 |
|                                                   | I                 | +   | 44  | 64  | +        | +             | 114 | 135            | 2.35 | 5.55 | 750   | 377         | 404   | 220 |
| TOZA                                              | II                | •   | 50  | 71  | •        | •             | 125 | 146            | 240  | 234  | 759   | 412         | 530   | 241 |
|                                                   | III               |     | 5 ს | 77  |          | +             | 142 | 164            | 273  | 257  | •     | 470         | 5 90  | 275 |
|                                                   | IV                | •   | 69  | 89  | •        | +             | +   | +              | 314  | 297  | +     | 566         | 713   | 332 |
|                                                   | I                 | 47  | 23  | ٨   | 11i      | 58            | ρŢ  | Δ              | 120  | Δ    | 322   | Δ           | Δ     | Λ   |
| TOSC                                              | II                | 50  | 2.5 | Α   | 116      | 61            | 65  | ۸              | 135  | A    | 328   | Δ           | ٨     | Λ   |
|                                                   | III               | 53  | 27  | ٨   | 123      | 57            | 71  | ٤٦ .           | 1 44 | 135  | 410   | 240         | 3.07  | A   |
|                                                   | IA                | 59  | 32  | A   | 137      | 70            | P 4 | 100            | 1.61 | 151  | 433   | 49.6        | 340   | ^   |
|                                                   | I                 | 35  | 1.5 | Α   | 9.2      | 43            | 4.5 | ٨              | ۸    | Δ    | 1     | Δ           | ٨     | ,   |
| TO4A                                              | ŢĪ                | 37  | 1.0 | Α   | 85       | 4.5           | 47  | ٨              | ^    | Δ    | ١     | ٨           | Δ     |     |
| İ                                                 | III               | 39  | 19  | A   | 90       | 4,0           | 52  | ^              | 104  | ۸    | ۸     | Λ           | Δ     |     |
| _                                                 | IV                | 42  | 22  | λ   | 9.6      | 5.5           | 50  | Λ              | 115  | ٨    | 1     | ٨           | ۸     |     |
|                                                   | I                 | 47  | 23  | Α   | 111      | 59            | 61  | Δ              | ני ב | Δ    | 3 2 3 | ۸           | Δ     | Δ   |
| TOSC                                              | II                | 50  | ?.5 | Λ   | 116      | οl            | 65  | Λ              | 1.35 | ٨    | 334   | ۸           | ^     | ^   |
|                                                   | III               | 53  | 27  | ۸   | 123      | 57            | 71  | 87             | 144  | 135  | 410   | 240         | 307   | Λ   |
|                                                   | IA                | 59  | 32  | ٨   | 137      | 78            | p 4 | 100            | 161  | 151  | 437   | <b>9.28</b> | 3 € 0 | ^   |
| <u>†</u>                                          | I                 | 43  | 34  | ٨   | 146      | 67            | 7:  | ^              | 204  | 105  | 44·3  | 172         | 5.04  | Λ   |
| T05A                                              | II                | 54  | 44  | Α   | 170      | 79            | ٦3  | 8.0            | 234  | 210  | 551   | 45]         | 609   | ۸   |
| ļ                                                 | 111               | •   | 53  | 57  |          | იგ            | 104 | 110            | 2.80 | 250  | 592   | 576         | 7 PC  | 211 |
| ļ                                                 | IV                |     | •   | 74  | •        | •             | 142 | 140            | +    | 317  |       |             |       | 30. |
| <u> </u>                                          | ŗ                 | 30  | 31  | Λ   | 134      | 61            | 65  | Λ              | . eu | 171  | 446   | 341         | 443   | ٨   |
| TOTA                                              | 11                | 49  | 40  | Λ   | 155      | 71            | 75  | Δ              | 215  | 175  | 513   | 414         | 5.62  | ۸.  |
| ł                                                 | III               | 57  | 48  | 52  | •        | qn            | 04  | 100            | 250  | 231  | 625   | 533         | 720   | 201 |
|                                                   | 17                | •   | 53  | 96  | •        |               | 120 | 115            | •    | ירי, |       | •           |       | 26  |

PISCO

# SUMMARY OF ALLOWABLE GROSS LOADS IN BRITISH UNITS

| FEAT.   | PASS<br>INTENSITY |            |                 | <del></del>  | FOR      | PAVE     |          | CAPAC<br>GROUP |                                        |         | BERS                                  |               |                     |       |
|---------|-------------------|------------|-----------------|--------------|----------|----------|----------|----------------|----------------------------------------|---------|---------------------------------------|---------------|---------------------|-------|
|         | LEVEL             | 1          | 2               | 3            | 4        | 5        | 6        | 7              | 8                                      | 9       | 10                                    | 11            | 12                  | 13    |
|         | I                 | T +        | 4.2             | 58           | 163      | 105      | 107      | 124            | ?15                                    | 202     | 534                                   | 344           | 451                 | 124   |
| TOBC    | I I               | •          | 40              | 66           | +        |          | 119      | 176            | 230                                    | 217     | 577                                   | 170           | 4 6 6               | 218   |
|         | III               | •          | 56              | 72           |          |          | 137      | 1. F           | 2 5 5                                  | 241     | 733                                   | 443           | 554                 | 5.3   |
|         | <u> </u>          | +          | •               | 9.6          | +        |          | +        |                | 102                                    | 207     | +                                     | ,57           | 7.05                | 312   |
|         | I                 | 44         | 25              | A            | 103      | 6.4      | 65       | ^              | 1 33                                   | 4       | 431                                   | ^             | Δ                   | ٨     |
| 707A    | II                | 40         | 29              | A            | 107      | 60       | 72       | Λ              | 141                                    | ۸       | 436                                   | 233           | ين د                | ٨     |
|         | III               | <b>5</b> 3 | 32              | A            | 120      | 75       | 50       | 0.3            | 154                                    | 146     | 456                                   | 265           | 3 34                | Δ     |
|         | IV                | <u> </u>   | 30              | 50           | 139      | 71       | 79       | 112            | 179                                    | 144     | 474                                   | 321           | 404                 | 1 bu  |
|         | I                 | Δ          | 22              | Α            | 91       | 42       | 4.5      | Α              | 127                                    | ۵       | 4                                     | 230           | 3 1 1               | Δ     |
| TIOA    | ΙΙ                | Δ          | 2.8             | A            | 105      | 49       | 5.2      | Λ              | 144                                    | Δ.      | 350                                   | 275           | 369                 | Δ     |
|         | III               | 40         | 33              | A            | 127      | 00       | 64       | ^              | 170                                    | 1,51    | 421                                   | 343           | 464                 | ^     |
| <b></b> | IV                | 50         | 44              | ^            | 164      | ا من     | 45       | 00             | 212                                    | 183     | 525                                   | 437           | 5.06                | ^_    |
|         | I                 | +          | 50              | 96           | +        | ! +<br>i | <b>+</b> | +              |                                        | 332     | <b>!</b> •                            | 566           | 7 41                | 3.0   |
| T11A    | II                | +          | •               | 107          | +        | +        | +        | +              | +                                      | 351     | <b>†</b> •                            | +             | •                   | 361   |
| · [     | III               | •          | +               | 116          | •        | +        | +        | <b>†</b> •     |                                        | 3.96    |                                       | <b>†</b>      | •                   | 413   |
| ļļ.     | <u>I V</u>        | +          | <u>+</u>        | _ + _        | •        | · ·      | · -      | ļ              |                                        | 445     | ļ <del>.</del>                        | +             | +                   |       |
|         | I                 | •          | +               | 76           | •        | +        | 135      | 14?            | +                                      | 302     | •                                     | +             | •                   | 2-4   |
| T12A    | II                | <b>,</b>   | +               | 76           | +        | +        | +        | 168            | •                                      | 351     | •                                     | •             | •                   | 311   |
|         | III               | +          | •               | 115          | •        | *        | •        | •              | •                                      | 4.20    | ! +                                   | •             |                     | 405   |
|         | IA                | +          | -               | •            | +        | +        | +        | +              | +                                      | +       | · ·                                   | <del></del> - | +                   | •     |
|         | I                 | A          | 1.7             | ^            | Α        | 25       | ٨        | Α              | ^                                      | ۵       | ٨                                     | Δ             | Δ                   | Δ .   |
| A019    | II                | A .        | 15              | A            | ^        | 30       | ٨        | ^              | ^                                      | Λ       | 1                                     | Δ             | Δ .                 | ^     |
|         | III               | Δ          | 17              | A            | 75       | 34       | A        | ^              | ^                                      | ۸       | 4                                     | Δ             | ^                   | ^     |
|         | <u> </u>          | Α          | 2.2             | ^            | 9:       | 44       | 40       | A .            | 177                                    | ^       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 355           | 746                 | Λ     |
|         | I                 | Α          | 11              | A            | А        | 3 ני     | Α        | ٨              | Δ                                      | ۸ .     | Α .                                   | Δ .           | Δ .                 | Λ     |
| A029    | ΙΙ                | A          | : 4             | ^            | Α .      | 26       | Λ        | Λ              | Δ                                      | ۸       | 1                                     | ۸             | Δ.                  | Δ .   |
|         | III               | A          | 16              | ٨            | A        | 32       | ٨        | Λ .            |                                        | 1       | 1                                     | 277           | Δ                   | Δ     |
|         | IV                | A          | $-\frac{21}{1}$ | <u> </u>     | AP       | 41       | 43       | <u>``</u>      | 113                                    | Δ       | 34)                                   | 255           | 341                 | Α Λ   |
|         | I                 | A          | 25              | Λ .          | 105      | 47       | 5.2      | A              | 143                                    |         | 345                                   | 300           | 401                 | ,     |
| AG3B    | II                | 40         | 12              | ۸            | 110      | 5L       | 6.0      | *              | 1 to 0<br>1 to 0                       | 143     | 4,7                                   | 363           | 401                 | ٨     |
|         | 111               | 46         | 3 11            | ۸            | 144      | 60<br>60 | 72<br>96 | ,,,,,          | : ( '<br>  : 11                        | 107     | 340                                   | 4+1           | 124                 | יין " |
|         | I V               | εú         | 40              | - 3          | 112      |          |          | 1 2            | ا ــــــــــــــــــــــــــــــــــــ |         | 347                                   | !             | ·                   |       |
|         | I                 | Δ          | 27              | ^            | 112      | 52<br>40 | 14       | ^              | 177                                    | 137     | +11                                   | 272           | 3 <i>6</i> 0<br>431 | Λ.    |
| A043 [  | !!                | 43         | 34              | ^            | 120      | 74       | 71)      | į .            | 203                                    | - · · · | 430                                   | 40            | 0 a'r<br>4 .⊤       | Λ.    |
| . }     | III               | 50         | 41              | A<br>5.7     | 155<br>+ | 20       | 104      | 110            | 253                                    | 274     | 514                                   | 10.           | 1 57                | 125   |
|         | IV                | •          | 53              | 70           | •        | +        | 123      | 1.70           | 3 ( 5                                  | 271     | 707                                   | C ., K        | 771                 | 316   |
| 4059    |                   |            | 5 °+            | / O<br>ภ.ต.  | ` .      |          | 142      | 1:1            | +                                      | 3(4)    | · ·                                   | 7.            | +                   | 260   |
| A 0 5 B | III               |            |                 | 105          |          |          |          |                | •                                      | 351     | +                                     | •             |                     | 277   |
|         |                   | *          |                 | ±05 !<br>+ . | •        | •        | +        |                |                                        | . ,     |                                       |               |                     | 4 20  |
|         | I V               | 1 * 1      |                 |              |          |          |          |                |                                        |         |                                       |               |                     |       |

#### NOTES

IN REFERENCE TO THE ALLOWABLE GROSS LOAD (AGL) TABLE:

- A Denotes lowest possible empty gross weight of any aircraft within the group exceeds the AGL of the pavement. Pavement cannot support aircraft for respective pass intensity level.
- + Denotes no weight restrictions. AGL of the pavement exceeds the greatest possible gross weight of any aircraft in the group.

The load carrying capacitie: of the pavements reported herein are based on material propertius representative of the in-place conditions at the time this field investigation was conducted.

| SU    | MMARY O           | FA       | LLO | WAB          |     |          |      |          |            |              |        |              | NIT           | S<br>         |
|-------|-------------------|----------|-----|--------------|-----|----------|------|----------|------------|--------------|--------|--------------|---------------|---------------|
| FEAT. | PASS<br>INTENSITY |          | _   | <del>,</del> | FOR | AIRC     | RAFT | GROUP    | INDEX      | RAMS         | ERS    | <del>,</del> |               | T=-           |
|       | LEVEL             | 1        | 2   | 3            | 4   | 5        | 6    | 7        | 8          | 9            | 10     | 11           | 12            | 13            |
|       | I                 | 27       | 15  | A            | 63  | 39       | 3.0  | 46       | 8.5        | 77           | 254    | 131          | 1.72          | ^             |
| ROIA  | II                | +        | 17  | 24           | 67  | 42       | 43   | 50       | n6         | 91           | 257    | 143          | 1.94          | я:            |
|       | - 111             | +        | 19  | 26           | 74  | 46       | 49   | 57       | 04         | 90           | 290    | 163          | 2 05          | 35            |
|       | IV                | •        | 23  | 30           |     | +        | 60   | 10       | 109        | 107          | 303    | 107          | 249           | 115           |
|       | I                 | +        | 30  | 40           | •   | +        | +    | +        | •          | 143          | •      | 243          | 323           | 140           |
| RO2C  | II                |          | +   | 46           | +   | +        | +    | +        |            | 154          | +      | +            | <b>ن</b> وز 3 | 155           |
|       | III               |          | +   | 51           | +   |          |      | +        |            | 173          | •      |              | +             | * b 5         |
|       | IA                | +        |     | +            | +   | +        |      | +        |            | 2 C 9        | +      | <u> </u>     | +             | •             |
|       | I                 | 26       | 21  | 24           | +   | 40       | 43   | 45       | 119        | 105          | 271    | 711          | 281           | A             |
| RO3C  | ΙĪ                |          | 27  | 30           | +   | 47       | 40   | 53       | 1.32       | 117          | 320    | 240          | 3 3 3         | 94            |
|       | III               |          |     | 35           |     |          | 62   | 65       |            | 139          |        |              |               | 118           |
| -     | I.A.              |          |     | 45           |     | .        | +    |          |            | 172          |        |              |               | 157           |
|       | I                 | +        | 10  | 26           | 74  | 47       | 48   | 56       | 97         | 91           | 310    | 156          | 204           | nq            |
| RO4C  | 11                |          | 22  | 29           | ;   |          | 53   | 01       | 104        | 98           | 31.6   | 172          | 272           | 90            |
| ,,,,, | III               | •        | 25  | 32           | ,   | ;        | 62   | 70       | 115        | 109          | 332    | 201          | 252           | 114           |
| ľ     | IV                |          |     | 30           |     |          | 02   |          | 137        | 130          | ,,,,   | 252          | 320           | 141           |
|       | I I               | + ·      | 28  | 30           | •   | 49       | 52   | 55       | 131        | 117          | 336    | 239          | 3 2 3         | 07            |
| 2054  |                   | 1        | +   | 1            |     | , ,      | 61   | 65       | 1          | 131          |        | +            |               | 117           |
| POSA  | II                | •        |     | 38           |     | 1        | +    | 70       |            | 155          |        |              |               | 147           |
| ļ     | 111               | 1        |     | 44           | *   |          | ł    | i        |            | 193          |        |              |               | 109           |
|       | IV                | +        | +   | +            | +   | •        | +    | +        | +          | <del> </del> |        | <del> </del> | <del> </del>  | <del></del> - |
| _     | Ī                 | 23       | 13  | ۸            | 5.4 | 34       | 34   | 40       | 71         | 67           | 530    | 114          | 149           | A             |
| TOIA  | 11 .              | 2.5      | 1.5 | Ι Δ          | 5.7 | 36       | 37   | 44       | <b>7</b> 5 | 7()          | 232    | 124          | 140           | A             |
| -     | III               | +        | 17  | 23           | 54  | 40       | 43   | 40       | P?         | 77           | 243    | 142          | 178           | PA            |
|       | <u>I V</u>        | *        | 20  | 26           | 74  | 40       | 5.2  | <u>.</u> | 74         | PO           | 253    | 171          | 215           | 100           |
|       | I                 | +        | 19  | 29           | •   | <b>†</b> | 51   | (·1      | 1.05       | 100          | 345    | 171          | 2 2 4         | 97            |
| TOZA  | II                | •        | 22  | 32           |     | +        | 56   | ',(      | 112        | 106          | 340    | 197          | 240           | 100           |
|       | III               | <b>+</b> | 25  | 34           |     | +        | 64   | 74       | 123        | 115          | •      | ?13          | 2 47          | 174           |
|       | IV                |          | 30  | 40           | +   | +        | +    | +        | 1.42       | 134          |        | ?56          | 7 2 3         | 150           |
|       | I                 | 21       | 10  | А            | 50  | 26       | 27   | Α        | 57         | Δ            | 170    | Ι Δ          | Δ .           | Δ             |
| T03C  | II                | 22       | 11  | Α            | 52  | 27       | 20   | ^        | 61         | Δ            | 190    | Δ            | Δ             | Δ             |
| ĺ     | III               | 24       | 12  | Α            | 55  | 30       | 32   | 30       | <i>t</i> 5 | 51           | 135    | 113          | 130           |               |
|       | ΙV                | 26       | 14  | Α            | 62  | 3.5      | 3.6  | 45       | 77         | 7) 3         | 175    | 130          | 1 63          | t.            |
|       | I                 | 15       | 7   | ٨            | 3.7 | 10       | 20   | Λ.       | ٨          | ۸            | 1      | Δ            | ۸             | ٨             |
| T04A  | ΙΙ                | 16       | 3   | ٨            | 312 | 20       | 21   | ٨        | Δ          | Δ            | 1      | Δ            | Δ             |               |
|       | III               | 17       | в   | Α            | 40  | 21       | 23   | ٨        | 40         | Δ            | ۸      | Δ            | Δ             | ,             |
| j     | IV                | 10       | 3   | Λ            | 44  | 24       | 26   | <i>•</i> | 5.2        | ۸            | 4      | ٨            | Δ.            | Λ             |
|       | I                 | 21       | 10  | Α            | 50  | 26       | 27   | Α        | 5.3        | Δ            | 170    | Δ            | ۸             | ٨             |
| TOSC  | II                | 22       | 11  | Α            | 5?  | 27       | 20   | ٨        | £1         | ۸            | 130    | Δ .          | Δ             | Λ             |
|       | III               | 24       | : 2 | ٨            | 55  | 30       | 32   | 39       | 7.4        | 51           | 114    | 113          | 130           | ٨             |
|       | IA                | 26       | : 4 | A            | 62  | 3.5      | 30   | 4.5      | 73         | 43           | 116    | 130          | 1.63          | ۵             |
|       | <u>r</u>          | 19       | 15  | - A          | 56  | 30       | 32   | ٨        | 65         | 0.3          | 222    | 169          | 228           | ٨             |
| T06A  | ΙΙ                | 24       | 19  | Λ            | 77  | 35       | 37   | 40       | ٠ ٥ ۾      | 35           | 254    | 704          | 276           | Δ             |
|       | III               |          | 24  | 25           | •   | 44       | 47   | 40       | 127        | 111          | 333    | 261          | 354           | nr            |
|       | IV                | 1 1      | +   | 33           |     | +        | 64   | £ 7      |            | 143          | , ,,,, | +            | +             | 13-           |
|       | I                 | 17       |     |              |     | 27       | 29   |          | ne -       | 77           | 272    | 154          | 210           | - i 3         |
| T074  |                   | 17       | 14  | Α .          | 60  | l        |      | A .      | 97         | n q          | 232    | 187          |               | ,             |
| TO7A  | II                | 22       | 18  | Α            | 70  | 32       | 34   | Λ.       |            |              |        | 1            | 255           | a,<br>v       |
| -     | III               | 25       | 21  | 23           | +   | 30       | 42   | 4.5      | 117        | 104          | 211    | 241          | 3.26          |               |
|       | 1.4               |          | 23  | 5.0          | +   | +        | 24   | 6.1      | •          | 132          |        | •            | •             | 1.2           |

| SU    | MMARY O           | FA       | LLO | WAB | LE (       | GROS   | SS L           | OAD            | S II       | N ME         | ETR            | IC U     | NIT:       | S    |
|-------|-------------------|----------|-----|-----|------------|--------|----------------|----------------|------------|--------------|----------------|----------|------------|------|
| FEAT. | PASS<br>INTENSITY |          |     |     | PAVEN      | AENT ( | CAPACI<br>RAFT | TY IN<br>GROUP | KILOG      | RAMS<br>NUME | x 1000<br>BERS | )        |            |      |
| İ     | LEVEL             | 1        | 2   | 3   | 4          | 5      | 6              | 7              | 8          | 9            | 10             | 11       | 12         | 13   |
|       | I                 | +        | 19  | 26  | 74         | 47     | 48             | 5€             | 97         | 0.5          | 31 2           | 150      | 204        | 6.3  |
| T08C  | II                |          | 22  | 29  | +          | +      | 53             | (-1            | 104        | 34           | 31.5           | 172      | 2.22       | 0.9  |
| 1     | III               | <b>+</b> | 2.5 | 32  |            | +      | 02             | 70             | 115        | 100          | 332            | 201      | 256        | 114  |
|       | VI                | +        | +   | 39  | •          | · .    | +              | +              | 137        | 131          | •              | 7. !     | 3.20       | 141  |
|       | Ĭ                 | 19       | 11  | A   | 45         | 20     | 20             | A              | 40         | ۸            | 175            | Δ        | ٨          | Δ    |
| T09A  | II                | 22       | 13  | А   | 49         | 30     | 32             | ٨              | 64         | 1            | 127            | 105      | 1.36       | Δ    |
|       | III               | 24       | 14  | A   | 54         | 34     | 36             | 4.2            | 60         | 55           | 237            | 120      | 151        | Δ    |
|       | ΙV                | <u> </u> | 17  | 22  | 63         | 41     | 44             | 50             | 80         | 74           | 274            | 145      | 1 93       | OR   |
|       | I                 | Α        | 9   | ۸   | 41         | 19     | 20             | Α              | 57         | ٨            | ١              | 104      | 141        | Δ    |
| TIOA  | ΙΪ                | Δ        | 12  | Α   | 47         | 22     | 23             | ٨              | 45         | Δ            | 153            | 124      | 1 47       | ^    |
|       | III               | 18       | 14  |     | 57         | 27     | 20             | ٨              | 77         | 57           | 171            | 155      | 210        | ^    |
|       | 1 /               | 22       | 10  | `_  | 74         | 36     | 36             | 40             | 76         | 05           | 550            | 198      | 270        | Δ    |
|       | I                 | +        | 29  | 43  | +          | +      | +              | +              | +          | 150          | +              | 256      | 336        | 143  |
| TIIA  | ΙΙ                | +        | +   | 4.9 | +          | +      | +              | +              | •          | 159          | +              | +        | •          | 163  |
|       | III               | •        | +   | 5.2 | +          | +      | +              | +              | +          | 175          | +              | <b> </b> | · •        | דחן  |
|       | IV                | +        | +   | +   | +          | +      | +              | +              | +          | 202          | +              | +        |            | •    |
|       | I                 | +        | +   | 34  | +          | +      | 61             | 6.4            | •          | 130          | +              | +        |            | 115  |
| T124  | ΙΙ                | +        | +   | 43  | +          | +      | +              | 76             | +          | 157          | +              |          | † <b>*</b> | 141  |
| ,     | 111               | +        | +   | 5.2 | +          | +      | +              | +              | •          | 190          | •              | +        | •          | 193  |
|       | ΙV                | +        |     | +   | +          | +      | +              | +              | +          | +            | •              | +        | <u> </u>   | *    |
| 1     | I                 | Α .      | 5   | ^   | ٨          | 11     | ۸              | Α              | ^          | ^            | ١ ،            | Δ.       | Δ          | ^    |
| A019  | ΙΙ                | Δ.       | б   | ۸   | Δ          | 12     | Λ              | ٨              | ^          | ۸            | 7              | ^        | ^          | ^    |
| 1     | III               | Δ        | 7   | Λ   | 34         | 15     | ٨              | Λ.             | Δ          | ۸            | Λ              | ٨        | Δ          | Δ    |
|       | IV                | Δ        | ?   | Α   | 43         | 10     | . ? C          | Α              | 1 3        | ^            | 1              | lir      | 154        | ٨    |
| 1     | I                 | Α        | 4   | Δ   | ٨          | 10     | Λ              | د              | Δ          | 3            | Δ              | Δ        | Δ          | Δ    |
| 1029  | ΙΙ                | Δ        | U   | Α   | Α          | 11     | A              | Δ              | Δ          | ۸            | ١              | ۵        | Δ          | Δ    |
| 1     | III               | A        | 7   | Α   | Λ          | 14     | Д              | Λ              | ٨          | Δ            | Δ              | Λ        | ۵          | ۸    |
|       | <u>t v</u>        | Α        | ?   | ٨   | 30         | 12     | 10             | ٨              | 53         | Δ            | 1              | 105      | 141        | ۸    |
|       | I                 | Δ        | 11  | ۸   | 47         | 22     | 23             | Λ              | 64         | ٨            | 154            | 115      | 1 54       | ^    |
| AOSA  | II                | 19       | : 4 | A   | 54         | 25     | 27             | ٨              | 7?         | r4           | 174            | 1.34     | 107        | ^    |
|       | III               | 50       | 17  | A   | 45         | 31     | 33             | *              | <b>4</b> 5 | 75           | 237            | 167      | 2.24       | ^    |
|       | IV                | 26       | 2.2 | 24  | +          | 41     | 43             | 41.            | īvė        | <u> </u>     | 224            | 210      | 293        |      |
|       | Ĭ                 | Δ        | 12  | Α   | 50         | 23     | 24             | ٨              | F 3        | 4,9          | 154            | 153      | 1 45       | Δ    |
| 1049  | II .              | 10       | 15  | Λ   | <b>5</b> 3 | 37     | 50             | ۸              | 73         | • •          | 1,44           | 140      | 1.95       | Λ    |
|       | III               | 22       | 13  | ۸   | 70         | 33     | 3.5            | ٨              | 0.5        | `1           | 277            | 101      | 243        | ^    |
|       | IV                | •        | 24  | 25  | +          | 44     | ۷7             | 4.0            | 1.14       | 17:          | ,,,            | 220      | 3 (1)      | (1 Q |
|       | Ĭ                 | +        | 29  | 31  | +          | +      | ς.             | 5١.            | 137        | ורי          | 3 % 1          | 747      | 3 7 1      | ر ن  |
| A058  | II                | •        | •   | 40  | +          | •      | 6.4            | ( (            | •          | 130          | ٠              | +        | •          | 119  |
|       | III               | •        | •   | 47  | •          |        | +              | +              | •          | 153          | ٠              | •        | +          | 149  |
|       | In                | +        | ٠   | +   | +          | •      | •              | *              |            | 2.72         | +              | <u> </u> | •          | 190  |

## **NOTES**

IN REFERENCE TO THE ALLOWABLE GROSS LOAD (AGL) TABLE:

- A Denotes lowest possible empty gross weight of any aircraft within the group exceeds the AGL of the pavement. Pavement cannot support aircraft for respective pass intensity level.
- + Denotes no weight restrictions. AGL of the pavement exceeds the greatest possible gross weight of any aircraft in the group.

The load carrying capacities of the pavements reported herein are based on material properties representative of the in-place conditions at the time this field, investigation was conducted.

# PAVEMENT CLASSIFICATION NUMBERS (PCN) BASED ON 50,000 PASSES OF GROUP INDEX 9 AIRCRAFT

# PISCO AIR BASE PERU

| FEATURE | PCN        |
|---------|------------|
| RO1A    | 28/F/A/X/T |
| R02C    | 62/F/A/X/T |
| R03C    | 52/R/B/X/T |
| R04C    | 35/F/A/X/T |
| R05A    | 59/R/B/X/T |
| TOIA    | 23/F/A/X/T |
| TO2A    | 40/F/A/X/T |
| T03C    | 17/F/A/X/T |
| T04A    | 10/F/A/X/T |
| T05C    | 17/F/A/X/T |
| T06A    | 39/R/B/X/T |
| T07A    | 35/R/B/X/T |
| T08C    | 35/F/A/X/T |
| T09A    | 18/F/A/X/T |
| T10A    | 20/R/B/X/T |
| T11A    | 65/F/A/X/T |
| T12A    | 72/R/B/X/T |
| A01B    | 9/R/B/X/T  |
| A02B    | 7/R/B/X/T  |
| A03B    | 24/ /B/X/T |
| A04B    | 26/R/B/X/T |
| A05B    | 62/R/B/X/T |

|                                           |                                 |   |                                                   |                                                                                              |                  |       | AIRC                         | RAFT         | GRO           | UP IN                                                                         | DEX                   |     | بربنوسه الله الله               |                       |       |
|-------------------------------------------|---------------------------------|---|---------------------------------------------------|----------------------------------------------------------------------------------------------|------------------|-------|------------------------------|--------------|---------------|-------------------------------------------------------------------------------|-----------------------|-----|---------------------------------|-----------------------|-------|
|                                           |                                 |   | LI                                                | SHT LO                                                                                       | DAD              |       |                              | ME           | DIUM L        | OAD                                                                           |                       |     | HE                              | AVY LO                | AD    |
|                                           |                                 |   |                                                   | 2                                                                                            | 3                | 4     | 5                            | 6            | 7             | 8                                                                             | 9                     | 10  | 11                              | 12                    | 15    |
|                                           |                                 |   | A-37<br>C-12<br>C-21<br>HC-23<br>T-37             | A-7<br>A-10<br>F-4<br>F-5<br>*F-15<br>F-16<br>F-10X<br>T-33<br>T-38<br>T-39<br>OV-10<br>C-20 | #F-III<br>F8-III | C-130 | C-7<br>#C-9<br>DC9.<br>C-I40 | 737<br>*T-43 | *727<br>C-22  | 707<br>* E-3<br>C-i35<br>*KC-i35<br>VC-i37<br>DC-8<br>EC-18<br>A-300<br>B-767 | C-141<br>*B-1<br>B757 | C-5 | #KC-IO<br>DCIO<br>LIOII<br>C-I7 | 747<br>* E-4<br>VC-25 | ·8-52 |
| ł                                         |                                 |   |                                                   | <u></u>                                                                                      |                  |       |                              | L            |               |                                                                               |                       |     | CONTROL                         | LING AIF              | CRAFT |
|                                           |                                 |   |                                                   |                                                                                              |                  |       | ,                            |              |               | R AIR                                                                         |                       |     | <del></del>                     | 12                    | 13    |
| l                                         |                                 |   | 1 2 3 4 5 6 7 8 9 10 11 PAVEMENT CAPACITY IN KIPS |                                                                                              |                  |       |                              |              |               |                                                                               |                       |     |                                 |                       |       |
|                                           |                                 |   | 5                                                 | 7                                                                                            | 49               | 69    | 22                           | 61           | 92            | 60                                                                            | 150                   | 325 | 240                             | 334                   | 180   |
|                                           |                                 |   | 25                                                | 81                                                                                           | 114              | 175   | 121                          | 125          | 210           | 400                                                                           | 477                   | 840 | 590                             | 850                   | 488   |
|                                           |                                 |   |                                                   |                                                                                              |                  | PA    | VEMENT                       | CAPAC        | ITY IN        | KILOGRA                                                                       | MS x 10               | 000 |                                 |                       |       |
|                                           |                                 |   | 2                                                 | 3                                                                                            | 22               | 31    | 10                           | 28           | 42            | 27                                                                            | 68                    | 147 | 109                             | 151                   | 82    |
|                                           |                                 |   | 11                                                | 37                                                                                           | 52               | 79    | 55                           | 57           | 95            | 181                                                                           | 216                   | 381 | 267                             | 385                   | 221   |
|                                           |                                 |   |                                                   |                                                                                              |                  |       | PAS                          | S INT        | ENSIT         | Y LE                                                                          | VEL                   |     |                                 |                       |       |
| 1 .                                       |                                 |   | 1                                                 | 2                                                                                            | 3                | 4     | 5                            | 6            | 7             | 8                                                                             | 9                     | 10  | 11                              | 12                    | 13    |
| [                                         | GROSS WEIGHT<br>HIGHEST POSSIBL |   |                                                   | OOO PAS                                                                                      | SSES             |       |                              | 50,0         | 15,000 PASSES |                                                                               |                       |     |                                 |                       |       |
| GROSS WEIGHT HIGHEST POSSIBL GROSS WEIGHT |                                 |   | 50,                                               | 000 PAS                                                                                      | SSES             |       |                              | 15,0         | OO PASS       | SES                                                                           |                       |     | 3,0                             | OO PASSI              | ES    |
|                                           | I II                            |   | 15,                                               | 000 PAS                                                                                      | SSES             |       |                              | 3,0          | OO PAS        | SES                                                                           |                       |     | 5                               | OO PASSI              | ES    |
| , ,                                       |                                 | 区 | 3,                                                | 000 PAS                                                                                      | SSES             |       |                              | 5            | OO PAS        | ĖES                                                                           |                       |     | I t                             | OO PASS               | ES    |

#### NOTES

- IN REFERENCE TO THE ALLOWABLE GROSS LOAD (AGL) TABLE:
  - A Denotes lowest possible empty grass weight of any sircraft within the group exceeds the AGL of the pavement. Pavement cannot support alreaft for respective pass intensity level.
  - Denotes no weight restrictions. AGL of the pavement exceeds the greatest possible grass weight of any electric in the group.

Pass intensity levels  $\underline{\underline{Y}}$  and  $\underline{\underline{Y}}$  are used with reduced subgrace strengths to determine the maximum allowable loads during the frost-melt period.

UNITED STATES AIR FORCE
ENGINEERING & SERVICES CENTER
TYNDLL AIR FORCE E, FLORIDA

# **RELATED DATA**

| ENGINEER<br>N/A | NOV 88       | APPENDIX G |
|-----------------|--------------|------------|
| L. BASTIAN      | BCALE<br>N/A | SHEET 1 OF |

## PISCO, PERU

#### TOPOGRAPHY

Pisco airport is located on the South Pacific coastline just four miles south of the town of Pisco and is at sealevel. The Bay of Paracas is 3 miles south of the airport. A desert plateau lies five miles to the east through southeast. The town of Lima is 130 miles to the north.

#### VISIBILITY

Visibility can be expected to be reduced below three miles due to fog on at least 12 days a year with May and June having the most days of three and two respectively. Only three days a year will see visibilities reduced below one mile.

#### SEVERE WEATHER

With Pisco being located on the eastern Peruvian coast there is no significant weather. The mean annual precipitation rate for Pisco is less than 10 inches.

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION IS UNLIMITED

| ANNUAL WIND COVERAGE TABULATION | RUNWAYS OR COMBINATIONS FOR CROSSWIND COMPONENT | AV MACMETIC TOUR LEAGE. | MARK       |               | ы            | 03-21 2° 30' 9908 0.6 0.1 |               |              |               |             |                       |          |               | 12) WIND COVERNOE 1.0. ALE WEATHER |                     | ADDITIONAL DATA        | FIELD ELEVATION 39 FEET MSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAGNETIC VARIATION | SUURCE                                               | 14AX                                           |                                                |                              |                            | ENGINEERING WEATHER DATA |                | AIR CONDITIONING DESIGN AND CRITERIA DATA (SEE AFM 88 8 CHAP 6) | MINITER MEATING DESIGN TEMPERATURE ISEE AFM 88 8. CHAP 6.<br>Mean miniter wind coef. () | MEAN ANNUAL MINESTER OF MEATING DEOFF DAY 747 | DE TERMINING  | RUNWAY LENGTHS JSEE AFM 86-2] | EXTREME WIND DATA FOR CONSTRUCTION DESIGN ISEE AFM 88-3, CHAP   ]                           | MAXIMUM FROST PERETRATION ISEE THE 88 - 3, CHAP I | MEAN ANNUAL COOLING DESKEE DAYS 1509 | NOTICE WHEN NECESSARY, INTERPRETATIONS OF THESE | DATA SHOULD BE SECURED THROUGH THE LOCAL | STAFF WEATHER OFFICER |                   | ~                      |                                                  | RREPARED BY CAPETAC                                 |                |
|---------------------------------|-------------------------------------------------|-------------------------|------------|---------------|--------------|---------------------------|---------------|--------------|---------------|-------------|-----------------------|----------|---------------|------------------------------------|---------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------|----------------------------|--------------------------|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------|---------------|-------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------|-------------------------------------------------|------------------------------------------|-----------------------|-------------------|------------------------|--------------------------------------------------|-----------------------------------------------------|----------------|
|                                 | YRS REC                                         | 3410                    | 14 DIAGRAM | 14            | 14           | 14                        |               | 14           | 14            | 5           | 2                     |          | 101           | 2 =                                | *                   | 14                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                      |                                                |                                                | T                            |                            | ۳<br>]                   | •              | AIR CONDITION                                                   | MINIER MEATIN<br>Mean winter ,                                                          | PEAN ANNUAL                                   | PRESSURE ALTI | REDUIRED                      | EXTREME WIND<br>Snow Load da                                                                | MAXIMUM FROS                                      | TEAIN ANNU                           | NOTICE WHEN                                     | DATAS                                    | STAFF                 |                   |                        | AIR FORCE RUNWAY WIND COMPUTER<br>ISEE AFM RG GI | 27 23                                               | *              |
|                                 | ANN YR                                          |                         | 102        | 74            | 79           | 33                        |               | 1            | 9             | 0 0         | 3                     |          |               | 10                                 | 1                   | 80                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | ۸.                                                   |                                                |                                                |                              |                            |                          |                |                                                                 | _                                                                                       | _                                             | ٤٢            |                               |                                                                                             | E                                                 | _                                    | _                                               | 35                                       |                       |                   |                        | RCE RUNW                                         | 2 D                                                 |                |
|                                 | -                                               |                         | 96         | -17           | 59           | - 57.1                    | ,             | 9            | <del> </del>  | K           | 2                     | 7        | 1             | )<br> <br>                         |                     | 78 T                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96.3               | ,<br>00                                              | 1                                              | 1 2 Mil                                        |                              | NOS INCH                   |                          |                | 4                                                               | */                                                                                      |                                               | ۲             |                               |                                                                                             |                                                   | 1                                    |                                                 |                                          | <b>&gt;</b>           | \                 | n,                     | AIR FO                                           |                                                     | •              |
|                                 | ×                                               |                         | 91         | 74            | 13           | 44                        |               | *            | 7             | 14          |                       | 7<br>    |               | 20                                 |                     | 80<br>                 | JUS CATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (E 08              | N6 Y 10                                              | MILE                                           | IBILITY Z                                      |                              |                            | l                        | Z X            |                                                                 | \                                                                                       | ×                                             |               | $\sum_{i}$                    |                                                                                             | +                                                 | +                                    | 7                                               | X                                        | `<br>\                |                   | $\lambda$              | \*;                                              | i                                                   |                |
|                                 | ٥                                               |                         | 8          | 77            | 23           | R                         | ļ             | 3            | =             | ×           | 0                     | 7        |               | >0                                 |                     | 83   82   81   80   78 | A CELLING Y 1000 CECT AND MIDDLEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 4                | VISIBILITY = 1 MILE BUT < 3 MILES AND CEILING = 1000 | C CERING - 500 FEET AND OR VISIBILITY - I MILE | AND CALLED POLITIC TO THE TAND VISIBILITY TO A | DENOTTE LESS THAN O S DAY    | DENOTES LESS THAN 0.5 INCH |                          | f              | -                                                               | 4                                                                                       | /<br>                                         | <u> </u>      | \                             | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | ON LESS<br>09 0                                   |                                      | 7                                               | _                                        | 7                     | +                 |                        | 7                                                |                                                     | MENT           |
|                                 | S                                               |                         | 82         | 69            | 57           | 43                        | [,            |              | 7             | <b>\</b>    |                       | 7 7      |               | 0                                  |                     | 82                     | CENTAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VISIBILIT          | A 3 Mile                                             | OR VISIBI                                      | 200 FEE                                        | THAN                         | THAN                       | ľ                        | \$<br>}        |                                                                 | 7                                                                                       | ز<br>ا                                        | -             | _;<br>_/                      | SONING                                                                                      | ₹ °                                               | ,<br>~                               | 人                                               | -4.<br>-4.                               | _                     | +                 | _                      | $\int$                                           | <b>♥</b> 7                                          | INSTRUMENT     |
|                                 | 4                                               |                         | 84         | 89            | 27           | 49                        | ,             | 3            | 3             | ke          | 2                     |          | 0             | 0                                  |                     | 82                     | CCCT AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FEET AND           | MILE BUT                                             | FEET AND                                       | CENTING                                        | T PCC                        | S LESS                     |                          | 3/2            | /                                                               |                                                                                         | ×                                             | $\langle$     | Z                             |                                                                                             | _                                                 | 7                                    | $\sum_{i}$                                      |                                          | $\times$              |                   | $\checkmark$           | \ <del>\$</del>                                  |                                                     |                |
| DATA                            | `                                               |                         |            | $\downarrow$  | 1            | 9,                        | 1             |              | 7             | 0           | 10                    | 3        | 0             | 0                                  |                     | 83                     | A NAME OF A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY | C 500 900          | 111                                                  | . 500<br>500                                   | D INSTRUMENT. CEILING                          | DENGL                        | DENOTE                     |                          | v              |                                                                 | <b>\</b>                                                                                | \                                             |               |                               | $\int$                                                                                      |                                                   | 1                                    | <u> </u>                                        | \<br>سر                                  | \                     | /5                | *                      |                                                  | ¥ 8                                                 | 2              |
| <b>ا</b> بــ                    | 1                                               |                         |            | 1             | 1            | 7                         | -             | 30           | =             | 0 0         | 4 🔾                   | 2        | c             | 0                                  |                     | 83                     | A CENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B CEILIN           | VISIB                                                | C CERTIN                                       | D INSTR                                        | *                            | Ţ                          |                          | D ROSES        |                                                                 |                                                                                         |                                               | 41~           | M                             |                                                                                             | <b>M</b>                                          |                                      |                                                 | NSY                                      | N                     |                   |                        |                                                  | MON T                                               | TION BAS       |
| CLIMATOLOGICA                   | *                                               |                         |            | 1             | $\perp$      | 95                        | 1             | 4            | 4             | 10          |                       | 7        | 0             | 0                                  |                     | 182                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                      |                                                |                                                | 2.5                          |                            |                          | ANNUAL WIND RO |                                                                 |                                                                                         |                                               |               |                               |                                                                                             |                                                   |                                      |                                                 |                                          |                       |                   |                        | MOTE                                             | THERE WIND ROSES SHOW THE TOTAL % OF WINDS BY SPEED | AND DIRECTIONS |
| ᆰ                               | ٧                                               |                         | _          | 28            | $\downarrow$ | 7                         | -             | 20           |               | 10          | _                     |          | 0             |                                    |                     | 80                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                      |                                                |                                                | ACP SUR                      |                            |                          | Z              |                                                                 |                                                                                         | <u> </u>                                      | EN            | E                             | T                                                                                           | E                                                 | _                                    |                                                 | 35                                       | ,<br>                 |                   |                        |                                                  | THESE W                                             | ON THE         |
|                                 |                                                 |                         | -          | $\downarrow$  | 20           |                           |               | *   0        | -             |             | -                     |          | 0             | d                                  | +                   | 78                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g                  |                                                      |                                                | e                                              | E I ICE                      |                            |                          | ı.             | 1                                                               | <b>'</b> /                                                                              |                                               | $\setminus$   |                               | 1                                                                                           | _                                                 | #                                    | _                                               | $\times$                                 |                       | \                 | $\overset{*}{\lambda}$ |                                                  |                                                     |                |
|                                 | ſ                                               |                         | 7          | +             | +            | 7                         | -             | *   0        |               | <b>V</b>    | -                     | 1        | 0             |                                    | -                   | 78                     | TATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | YEARS OF RECORD    |                                                      | VFALL                                          | - YEARS OF RECORD                              | AI INT                       |                            |                          | XX/            | _                                                               | /                                                                                       | $\times$                                      | X             | <i>×</i>                      |                                                                                             |                                                   | <                                    |                                                 | جَ                                       | $\langle$             | $\overline{\ \ }$ | \                      | 7%                                               | ł                                                   | 5              |
|                                 | -                                               |                         | 83         | 8             | 28 5         | 7                         | -             | 4 0          |               | -           | _                     |          | 0             | H                                  |                     | 78                     | NIR PRECIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | YEARS              |                                                      | HOUR SHOT                                      | - 1                                            | NATIONAL INTELLICENCE SURVEY | DATSAV                     | z                        | 6              |                                                                 | ナニナ                                                                                     | イバナ                                           | _             | 70.7                          | S KNOT                                                                                      | 97.9                                              |                                      | }                                               | 2.3                                      | I                     | I                 |                        | }.                                               | ,                                                   | ALL WEATHER    |
|                                 |                                                 |                         |            | T W           |              | 5                         | 3             | 32 %         |               | -           | MEAN NO OF DAYS 0 SIN |          | 2             | MEAN NO OF DAYS - 6 IN             | <u>-</u>            |                        | MAXIMUM 24 HOUR PRECIPITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INCHES 10          | -<br> -                                              | MAXIMUM 24 HOUR SHOWFALL                       | HES 10                                         |                              |                            |                          | 支              |                                                                 | \<br>/                                                                                  | ×                                             | X             | /<br>×                        |                                                                                             | أشا                                               | ام<br>اف                             | $\hat{\chi}$                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\   |                       | /                 |                        | 7 355                                            | 1                                                   | 1              |
|                                 |                                                 | TEMPERATURE PF          | MGMEST     | MEAN DAMY MAX | MEAN DAILY   | MEAN MO OF DAYS           | MAX TEND > 90 | MM 1689 = 32 | TATION        | MEAN INCHES | 150                   | 1        | MEAN (INCHES) | AN MG OF 0                         | RELATIVE HUMBOTY 1% |                        | MAXIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1 INCH           |                                                      | N.                                             | D.D. INCHES                                    | SOURCE OF DATA               |                            |                          |                | 7,                                                              | .\                                                                                      | _                                             | $\nearrow$    |                               | 7                                                                                           |                                                   | Ŧ                                    | \\ \\ \                                         | <                                        | \_                    | \<br>\z\          | 7                      | ~                                                |                                                     |                |
|                                 |                                                 | 34831                   | ₹          |               |              | EAN I                     | 3             | 3            | PRECIPITATION | *           | *                     | SHOWFALL | *             | 3                                  | RELATA              | E A H                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                  |                                                      |                                                | 4                                              | SOURCE                       |                            |                          |                |                                                                 |                                                                                         |                                               | HN,           | M                             | 1                                                                                           |                                                   | لـ                                   | *                                               | 15W                                      |                       | -                 |                        |                                                  |                                                     |                |