Appendix A Selected articles

This appendix contains the table that summons the identification numbers, titles, and references of the selected articles.

 ${\bf Table~5}~{\bf Selected~articles}.$

10	Multiclass Land Use / Land Cover (LULC) Classification Using Quantum Enhanced	[60]		
	Support Vector Machines	[16]		
12	Effect of Pure Dephasing Quantum Noise in the Quantum Search Algorithm Using Atos			
L	Quantum Assembly	f1		
16	QuantoTrace: Quantum Error Correction as a Service for Robust Quantum Computing	[55]		
39	Comprehensive Library of Variational LSE Solvers	[17] [24]		
41	Comparing Natural Language Processing and Quantum Natural Processing approaches			
	in text classification tasks			
50	Introduction to Quantum-Train Toolkit	[49]		
61	Composable Quantum Oracles for Shifting Quantum Circuits Abstraction Level	[40]		
66	Quantum-Classical-Quantum Workflow in Quantum-HPC Middleware with GPU Acceleration	[11]		
69	Polynomial Reduction Methods and their Impact on QAOA Circuits	[73]		
72	Quantum Program Testing Through Commuting Pauli Strings on IBM's Quantum Computers	[56]		
77	Evolution of Service-Oriented Computing: Integrating Quantum Techniques for Integer	[61]		
	Factorization			
78	Hybrid quantum architecture for smart city security	[47]		
99	Quantum Metropolis Solver: a quantum walks approach to optimization problems	[50]		
105	Operating with Quantum Integers: An Efficient 'Multiples of' Oracle	[41]		
108	Improving the Quality of Quantum Services Generation Process: Controlling Errors and Noise	[76]		
115	Quantum Computing Techniques for Multi-knapsack Problems	[72]		
117	Lattice surgery-based logical operations in a fault-tolerant quantum software framework	[25]		
122	A Reference Implementation for a Quantum Message Passing Interface	[2]		
134	Quantum Computing with Differentiable Quantum Transforms	[53]		
135	ScaffML: A Quantum Behavioral Interface Specification Language for Scaffold	[36]		
141	Chaotic Image Encryption Based on Boson Sampling	[37]		
165	Evaluation of Entaglement-based Quantum Key Distribution for Genome Data Transmission	[31]		
170	Solving 2 by 2 Grid Sudoku Problem using Grover's Algorithm with Intel Quantum SDK	[62]		
192	QUANTUM ANNEALING LEARNING SEARCH IMPLEMENTATIONS	[12]		
199	RECONSTRUCTING BAYESIAN NETWORKS ON A QUANTUM ANNEALER	[14]		
230	Secure Software Leasing Without Assumptions	[1]		
256	Password authentication schemes on a quantum computer	[3]		
271	Variational quantum chemistry programs in jaqalpaq	[6]		
289				
294	A quantum procedure for map generation	[43] [44]		
295	Quantum algorithms for near-term devices	[38]		
297	Quantum Software Engineering Supremacy in Intelligent Robotics	[68]		
311	TIGER: Topology-aware Task assignment approach using ising machines	[35]		

Appendix B Tables

This appendix contains the tables that summon the number of times each of the terms appeared in the six different research questions as well as the categorisation, if any, of terms within each research question.

Table 6 Quantum algorithms, or software solutions mentioned or proposed and the number of times each one of them appeared (counts) in the 33 primary studies for RQ1.

Quantum algorithm, or solution proposed	Counts
Grover	5
VQE	4
QAOA	3
Quantum Annealing	3
QUBO	2
QML	2
Shor	1
Metropolis-Hastings	1
Quantum Walks	1
Boson Sampling	1
QOPS	1
QKD	1

Table 7 Quantum simulators or simulation platforms employed, related to RQ2.

Quantum simulator/simulation platform	Times employed
IBM Quantum	9
PennyLane	4
DWave	2
HPC Simulators	1
AQASM	1
myQLM	1
Quantum Learning Machine (QLM)	1
Jax library	1
Cirq	1
cuQuantum SDK	1
Amazon Braket	1
QPlayer	1
QASMBench	1
StrawberryFields	1
Intel Quantum SDK	1

Table 8 Real quantum computer platform employed, related to RQ2.

Real quantum computing platform	Times employed
IBM Quantum	8
DWave	6
Amazon Braket	1
Xanadu Quantum	1
QSCOUT	1

 ${\bf Table~9~Parameters~or~other~criteria~to~evaluate~quantum~software~and~the~number~of~times~each~one~of~them~appeared~(counts)~in~the~30~primary~studies~for~RQ3. }$

Term/parameter/criteria	Counts
Performance	12
Speedup	12
Number of qubits	12
Complexity	12
Accuracy	9
Depth	9
Efficiency	7
Quality	7
Probability	7
Effectiveness	5
Runtime	4
Scalability	4
Reusability	4
Shots	4
Execution time	3
Stability	3
Fidelity	3
Shallow (depth)	3
Number of gates	3
Computational complexity	3
Cost function	3
Computational speed	2
Computational cost	2
Problem size	2
Success rate	2
	2
Composability Robustness	2
Computational time	1
Hardware efficiency	1
Time-to-solution	1
Precision	
	1
Reliability	1
Memory consumption	1
Cost-effective	1
Accessibility	1
Expressivity	1
Loss function	1
Learning rate	1
Training time	1
Success probability	1
Solution probability	1
Error probability	1
Quantum annealing sensitivity	1
Streamlined	1
Controllability	1
Suitability	1
Communication cost	1
Counts	1

Quantum Utility	1

Table 10 Responses for RQ3 categorized as performance and efficiency, result accuracy and success, resources and complexity, implementation, and others.

Performance and efficiency				
Performance	Efficiency	Speedup	Computational speed	
Execution time	Runtime	Computational time	Computational cost	
Tim	ne-to-solution	Effectiveness		
	Result accurac	y and success		
Accuracy	Precision	Reliability	Quality	
Stability	Fidelity	Success probability	Probability	
Success rate	Solution probability	Error probability		
	Resources and complexity			
Number of qubits	Depth	Shallow (depth)	Number of gates	
Problem size	Computational complexity	Complexity	Memory consumption	
Cost-effective	Scalability	Accessibility	Expressivity	
Cost function	Loss function	Learning rate	Training time	
Implementation				
Controllability	Reusability	Composability	Streamlined	
Quantum annealing sensitivity		Robustness		
Other terms				
Suitability	Communication cost	Shots	Counts	
Quantum Utility				

Table 11 Verification or validation of quantum software and the number of times each one of them appeared (counts) in the 13 primary studies for RQ4.

Quantum verification or validation	Counts
Accuracy	4
Effectiveness	2
Simulation testing	2
Success rate	1
Success probability	1
Accuracy rate	1
Model accuracy	1
Precision	1
Recall	1
F1-Score	1
Probability	1
Test assessment	1
Benchmark: a simplified game based on the work of Broadbent et al. on Secure Software Leasing (SSL)	1
Benchmark: inverted pendulum "Cart-Pole" problem	1
Usage of a quantum annealer to check	1
Standard error	1
Evaluation of the sum of all penalty terms in the QUBO	
Verification of data authenticity	1

ANSI/ISO C Specification Language (ACSL)	
Quantum probability computation	
Quantum Utility	
Benchmark: N-Queens	
Analysis of Quantum Message Authentication Codes (QMACs)	
Honest-Malicious security model	
Experimentation and comparative analysis with classical approaches	

 ${\bf Table~12~Limitations~of~quantum~software~and~the~number~of~times~each~one~of~them~appeared~(counts)~in~the~26~} \\ {\bf primary~studies~for~RQ5}.$

Quantum software limitations	Counts
Number of qubits	12
NISQ era	12
Error	11
Noise	10
Decoherence/coherence time	8
Qubit connectivity	5
Size	5
Scalability	4
Gate related (imperfections, inaccuracies or errors)	3
Fault-tolerancy	3
Readout	2
Limited machine time	2
Intermediate verification of results is not possible	2
Lack of specialized expertise	2
Slow execution time	2
Measurement errors	1
State preparation	1
Efficiency in applying gates	1
Limited RAM of simulators	1
Usage queues	1
Qubit fidelity	1
Explicit specification of expected outputs	1
Generating random test cases is time-consuming and resource-intensive	1
The invocation of quantum services is technically difficult	1
Quantum algorithms and their parameters are architecture-dependent	1
Quantum computers are expensive to produce and operate	1
Lack of do-it-yourself algorithms	1
Infrastructure dependence	1
Current abstractions used to define quantum service architectures	1
Reliability	1
Uncertainty in the outputs	1
Usability	1
Gate types	1
Embedding overhead	1
The noise model of the computer does not reflect the actual amount of noise	1
Noise mitigation	1
The quantum no-cloning theorem makes it impossible to copy and paste quantum states	1
Lack of Behavioral Interface Specification Languages	1

Problem mapping	1
Find a suitable way to represent the objective function (annealing)	
Structure of the annealer topologies prevents a straightforward representation of the problem	
Internal system constraints impose a maximum annealing time	
Programming complexity	
Variable range	
Qubit weights and coupler strengths	1
Relaxation time	1
The need for multiple qubits to encode input data limits the complexity of the datasets	
Non intentional interactions between qubits	

Table 13 Responses for RQ5 categorized as hardware, operational, development, and infraestructure.

Hardware limitations				
Number of qubits	Noise	Decoherence time	Error	
Gate types	Measurement errors	NISQ era	Fault-tolerancy	
Qubit connectivity	Scalability	Readout	State preparation	
Efficiency in applying gates	Qubit fidelity	Size	Reliability	
Uncertainty in the outputs	Gate related (impe	rfections, inaccuracie	es or errors)	
The noise model of the co	mputer does not reflect the actual amount		Noise mitigation	
Relaxation time	Qubit weights and coupler strengths	Non intentional i	interactions between qubits	
The need for m	ultiple qubits to encode input data limi	ts the complexity of	the datasets	
The quantum	no-cloning theorem makes it impossible	e to copy/paste quan	tum states	
	Operational limitation	ons		
Limited machine time	Slow execution time	Usage queues	Limited RAM of simulators	
Inte	ernal system constraints impose a maxi-	mum annealing time		
	Development limitati	ons		
Lack of do-it-yourself algorithms	Variable range	Problem mapping	Embedding overhead	
Explicit specification	Explicit specification of expected outputs Intermediate verification of results is not possible			
Lack of Behavioral Interface Specification Languages Programming complexity				
Generatin	ng random test cases is time-consumi	ng and resource-int	ensive	
Find a	suitable way to represent the objecti	ve function (anneal	ing)	
Structure of the ann	ealer topologies prevents a straightfo	rward representation	on of the problem	
Quantum algorithms and their parameters are architecture-dependent				
Infraestructure limitations				
Lack of spec	cialized expertise	Usability	Infraestructure dependence	
Current abstractions used to define quantum service architectures				
The invocation of quantum services is technically difficult				
Qu	antum computers are expensive to pr	roduce and operate		

 ${\bf Table~14~Quantum~software~challenges~found~in~the~14~primary~studies~for~RQ6.}$

Quantum software challenges	
Quantum computing (QC) is still in its infancy	
Performance on NISQ hardware will be very low	
Developing devices that work according to the laws of quantum mechanics	
Developing fault-tolerant quantum error correction codes	
Errors arising from factors like noise, defective hardware, and decoherence	

Maintaining the integrity of quantum information
Reliability and fidelity of quantum computations
Achieving high-fidelity error correction
Quantum devices have been available only since the past few years
Devices are still imperfect
The need for multiple qubits to encode input data adds computational cost and complexity
The industry will not adopt quantum devices unless quantum software can be produced in a repeatable, efficient, maintainable, reusable, and cost-effective way
Better documentation about how to reuse quantum circuits
Quantum interconnect bottleneck (QIB)
Adoption of distributed quantum algorithms introduces vulnerabilities
Intensive computational requirement of Quantum Machine Learning (QML)
Enhancing accuracy, extending applicability
Higher-level process of formulating a real-world problem and transforming it to a suitable representation for quantum computers
High-level software engineering, low-level design of compilers
Current software testing methods are not designed to work efficiently with error mitigation techniques
Challenges using real quantum computers like IBM: incompatible test cases, requirement of a complete program specification
Incompatibility with error mitigation methods
Detecting phase flip faults
Scalability and practicality of current testing methods in real-world scenarios
The invocation of a quantum program in an agnostic manner
Identification of new quantum algorithms for integer factorization
Reworking and extending classical software engineering into the quantum domain
Qubits are inherently fragile and susceptible to decoherence
Qubits can exist in a linear combination of both 0 and 1 states simultaneously
Low abstraction level, absence of integration, deployment, or quality and security control mecha-
nisms
Errors pose challenges for addressing quality and security requirements
Lack of support tools for quantum software design
Simulating general-purpose quantum circuits
Realization of individual quantum processors with millions of physical qubits
Achieving fault tolerance in quantum gates
Transforming a problem into QUBO format

 $\textbf{Table 15} \ \ \text{Responses for RQ6 categorized as hardware, error correction, integration, problem formulation and representation, scalability, and adoption and usage.}$

Hardware challenges			
Quantum computing (QC) is still in its infancy		Performance on NISQ hardware will be very low	
Devices are still imperfect	Quantum devices have been available only since the past few years		
Developing devices that work according to the laws of quantum mechanics		Qubits are inherently fragile and susceptible to decoherence	
Realization of individual quantum processors with millions of physical qubits		Achieving fault tolerance in quantum gates	
Error correction challenges			
	Error correction ch	allenges	
Developing fault-	Error correction characteristic contraction contraction codes	Detecting phase flip faults	
		0	
Maintaining t	tolerant quantum error correction codes	Detecting phase flip faults	

Integration challenges

Better documentation about how to reuse quantum circuits

Low abstraction level, absence of integration, deployment, or quality and security control mechanisms

Errors pose challenges for addressing quality and security requirements

Lack of support tools for quantum software design

Simulating general-purpose quantum circuits

Reworking and extending classical software engineering into the quantum domain

High-level software engineering, low-level design of compilers

The invocation of a quantum program in an agnostic manner

Problem formulation and representation challenges

The need for multiple qubits to encode input data adds computational cost and complexity

Intensive computational requirement of Quantum Machine Learning (QML)

Enhancing accuracy, extending applicability

Higher-level process of formulating a real-world problem and transforming it to a suitable representation for quantum computers

Transforming a problem into QUBO format

Identification of new quantum algorithms for integer factorization

Scalability challenges

Scalability and practicality of current testing methods in real-world scenarios

Current software testing methods are not designed to work efficiently with error mitigation techniques

Challenges using real quantum computers like IBM: incompatible test cases, requirement of a complete program specification

Qubits can exist in a linear combination of both 0 and 1 states simultaneously

Adoption and usage challenges

The industry will not adopt quantum devices unless quantum software can be produced in a repeatable, efficient, maintainable, reusable, and cost-effective way

Quantum interconnect bottleneck (QIB)

Adoption of distributed quantum algorithms introduces vulnerabilities