AMU - L3 Informatique Logique - 2020

TD nº 6

Logique du premier ordre 1

1 Syntaxe

Exercice 6.1. On considère le langage $\mathscr{S} = (\mathscr{S}_{\mathbf{f}}, \mathscr{S}_{\mathbf{r}})$ où $\mathscr{S}_{\mathbf{f}} = \{(c,0), (f,1), (g,2)\}$ et $\mathscr{S}_{\mathbf{r}} = \{(r,2), (p,1), (q,3)\}$

- 1. Donnez trois termes de ce langage et utilisez les pour construire trois formules atomiques.
- 2. Donnez quelques formules du premier ordre de ce langage.

Corrigé.

- 1. Termes : $t_1 = x$, $t_2 = g(c, f(x))$, $t_3 = f(f(y))$ Formules atomiques : $\varphi_1 = r(x, g(c, f(x)))$, $\varphi_2 = p(x)$, $\varphi_3 = q(x, g(c, f(x)), f(f(y)))$.
- 2. r(x, g(c, f(x))), $\exists yr(x, g(c, f(x))), p(x) \land (\forall xr(x, g(c, f(x)))) \land q(x, g(c, f(x)), f(f(y)))$

Exercice 6.2. On considère l'ensemble de variables $X = \{x, y, z\}$ et les formules suivantes :

$$\varphi_1 = (\forall x \exists z f(x, z)) \Rightarrow (\exists x \forall y r(x, y, z))$$

$$\varphi_2 = (\forall x p(x) \land \forall x f(x)) \Rightarrow \forall x (p(x) \land f(x))$$

$$\varphi_3 = \forall x ((\exists x g(f(x), a) \lor h(x, x)) \land (\forall y \exists x q(x, y) \lor \exists z p(z, y)))$$

Pour chacune des formules $\varphi_1, \varphi_2, \varphi_3$:

- 1. inférez le langage (i.e. le couple des signatures \mathscr{S}_f et \mathscr{S}_r) sur laquelle la formule est écrite;
- 2. listez les termes et les formules atomiques apparaissant dans la formule.

Corrigé.

1.

formule	\mathscr{S}_F	\mathscr{S}_R
φ_1	Ø	$\{(f,2),(r,3)\}$
φ_2	Ø	$\{(p,1),(f,1)\}$
φ_3	$\{(a,0),(f,1)\}$	$\{(g,2),(h,2),(q,2),(p,2)\}$

2.

formule	termes	formules atomiques
φ_1	x, y, z	f(x,z), r(x,y,z)
φ_2	x	f(x), p(x)
φ_3	x, y, z, a, f(x)	g(f(x),a),h(x,x),g(x,y),p(z,y)

Exercice 6.3. Pour chacune des formules suivantes, déterminer les occurrences liées et libres de chaque variable, puis renommer les occurrences de variables liées pour obtenir une formule équivalente polie.

$$\varphi_1 \equiv \forall x \exists z r(x, z) \Rightarrow \exists x \forall y s(x, y, z)$$

$$\varphi_2 \equiv \forall x p(x) \land \forall x q(x) \Rightarrow \forall x (p(x) \land q(x))$$

$$\varphi_3 \equiv \forall x((\exists x p(f(x), a) \lor q(x, x)) \land (\forall y \exists x q(x, y) \lor \exists z p(z, y)))$$

$$\varphi_1 \equiv \forall x \exists z' \, r(x,z') \Rightarrow \exists x' \forall y s(x',y,z)$$

$$\varphi_2 \equiv \forall x p(x) \land \forall y q(y) \Rightarrow \forall z (p(z) \land q(z))$$

$$\varphi_3 \equiv \forall x ((\exists x' p(f(x'), a) \lor q(x, x)) \land (\forall y' \exists x" q(x", y') \lor \exists z p(z, y)))$$

Exercice 6.4. Soit $\mathscr{S} = (\mathscr{S}_{\mathbf{f}}, \mathscr{S}_{\mathbf{r}})$ le langage tel que $\mathscr{S}_{\mathbf{f}} = \{(a,0), (b,0), (c,0)\}$ et $\mathscr{S}_{\mathbf{r}} = \{(P,1), (R,1), (Q,1)\}$. Soit \mathcal{M} la \mathcal{S} -structure définit par :

$$D_{\mathcal{M}} = \{1, 2, 3\},$$
 $a^{\mathcal{M}} = 1,$ $b^{\mathcal{M}} = 2,$ $c^{\mathcal{M}} = 3$ $P^{\mathcal{M}} = \{1, 3\},$ $Q^{\mathcal{M}} = \{1, 2, 3\},$ $R^{\mathcal{M}} = \emptyset.$

Dites si \mathcal{M} est un modèle des formules suivantes :

1. P(a)

4. $\exists x O(x)$

7. $\forall x (P(x) \land O(x))$

Q(c)

5. $\forall x P(x)$

8. $\exists x (Q(x) \land \neg P(x))$

R(b)

6. $\forall x (P(x) \Rightarrow Q(x))$

9. $\neg(\exists x R(x))$

Corrigé.

1. $[P(a)]_{\mathcal{M}} = 1$ parce que $a^{\mathcal{M}}$ appartient à $P^{\mathcal{M}}$.

Donc $\mathcal{M} \models P(a)$.

2. $[Q(c)]_{\mathcal{M}} = 1$ parce que $c^{\mathcal{M}}$ appartient à $Q^{\mathcal{M}}$.

Donc $\mathcal{M} \models Q(c)$.

3. $[R(b)]_{\mathcal{M}} = 0$ parce que $b^{\mathcal{M}}$ n'appartient pas à $R^{\mathcal{M}}$.

Donc $\mathcal{M} \not\models R(b)$.

4. $[\exists x Q(x)]_{\mathscr{M}} = 1$ parce qu'une instance au moins de la formule Q(x) est vraie dans $\mathscr{M} : [Q(x)]_{\mathscr{M},[x:=3]} = 1$.

Donc $\mathscr{M} \models \forall Q(x)$.

5. $\|\forall x P(x)\|_{\mathscr{M}} = 0$ parce que une des instances de P(x) n'est pas vraie dans $\mathscr{M} : \|P(x)\|_{\mathscr{M},[x:=2]} = 0$.

Donc $\mathscr{M} \not\models \forall P(x)$.

6. $[\forall x(P(x) \Rightarrow Q(x))]_{\mathscr{M}} = 1$ parce que toutes les instances de Q(x) sont vraies dans \mathscr{M} :

 $-- [P(x) \Rightarrow Q(x)]_{\mathcal{M},[x:=1]} = 1 \text{ parceque } [Q(x)]_{\mathcal{M},[x:=1]} = 1$

- $[P(x) \Rightarrow Q(x)]_{\mathcal{M},[x:=2]} = 1$ parceque $[Q(x)]_{\mathcal{M},[x:=2]} = 1$

- $[P(x) \Rightarrow Q(x)]_{\mathcal{M},[x:=3]} = 1$ parceque $[Q(x)]_{\mathcal{M},[x:=3]} = 1$.

Donc $\mathcal{M} \models \forall x (P(x) \Rightarrow Q(x)).$

7. $[\![\forall x (P(x) \land Q(x))]\!]_{\mathscr{M}} = 0$ car une instance de $P(x) \land Q(x)$ est fausse ans $\mathscr{M} : [\![P(x) \land Q(x)]\!]_{\mathscr{M},[x:=2]} = 0$.

Donc $\mathscr{M} \not\models \forall x (P(x) \land Q(x)).$

8. $[\exists x (Q(x) \land \neg P(x))]_{\mathscr{M}} = 1$ parce qu'une instance au moins de $Q(x) \land \neg P(x)$ est vraie dans \mathscr{M} :

 $[\![Q(x) \land \neg P(x)]\!]_{\mathcal{M},[x:=2]} = 1 \text{ car } [\![Q(x)]\!]_{\mathcal{M},[x:=2]} = 1 \text{ et } [\![\neg P(x)]\!]_{\mathcal{M},[x:=2]} = 1.$

Donc $\mathcal{M} \models \exists x (Q(x) \land \neg P(x)).$

9. $[\neg(\exists x R(x))]_{\mathscr{M}} = 1$ parce que $[\exists x R(x)]_{\mathscr{M}} = 0$: en effet, on a $[R(x)]_{\mathscr{M},[x:=1]} = 0$ et $[R(x)]_{\mathscr{M},[x:=2]} = 0$ et

 $[\![R(x)]\!]_{\mathcal{M},[x:=3]} = 0$. Donc $\mathcal{M} \models neg(\exists x R(x))$.

Exercice 6.5. Considérons le langage $\mathscr S$ avec un symbole de relation R binaire et un symbole de fonction f unaire, et la \mathscr{S} -structure suivante :

$$\begin{split} D_{\mathcal{M}} &= \left\{a, b, c, d\right\}, & R^{\mathcal{M}} &= \left\{(a, b), (b, c), (c, d), (d, a)\right\}, \\ f^{\mathcal{M}}(a) &= c, & f^{\mathcal{M}}(c) &= a, & f^{\mathcal{M}}(b) &= d, & f^{\mathcal{M}}(d) &= b. \end{split}$$

1. Représentez la structure \mathcal{M} sous la forme de graphe étiqueté (des arcs étiquetés par R et des arcs étiquetés par f).

2. En regardant le (dessin du) graphe, évaluez les formules suivantes (utilisez votre intuition) :

$$\varphi_1 \equiv \forall x \exists y (R(x,y) \land R(f(y),x))$$

$$\varphi_2 \equiv \exists x \forall y (R(x,y) \lor R(f(y),x))$$

$$\varphi_3 \equiv \forall x \exists y (R(x,y) \Rightarrow \exists z R(f(z),x))$$

3. Évaluez ces formules dans \mathcal{M} , en utilisant maintenant la définition formelle de l'évaluation : appliquez, une par une, toutes les étapes.

Corrigé. La structure \mathcal{M} peut se représenter comme suit : (la fonction f est représentée en pointillées et la relation R en traits pleins)

$$\varphi_1 \equiv \mathcal{M} \models \forall x \exists y (R(x,y) \land R(f(y),x))$$
 puisque :

$$-\mathcal{M}, [x:=a] \models \exists y (R(x,y) \land R(f(y),x)), \text{ puisque } \mathcal{M}, [x:=a,y:=b] \models R(x,y) \land R(f(y),x).$$

$$-\mathcal{M}, [x:=b] \models \exists y (R(x,y) \land R(f(y),x)), \text{ puisque } \mathcal{M}, [x:=b,y:=c] \models R(x,y) \land R(f(y),x).$$

$$-\mathcal{M}, [x:=c] \models \exists y (R(x,y) \land R(f(y),x)), \text{ puisque } \mathcal{M}, [x:=c,y:=d] \models R(x,y) \land R(f(y),x).$$

$$-\mathcal{M}, [x:=d] \models \exists y (R(x,y) \land R(f(y),x)), \text{ puisque } \mathcal{M}, [x:=d,y:=a] \models R(x,y) \land R(f(y),x).$$

$$\varphi_2 \equiv \mathcal{M} \not\models \exists x \forall y (R(x,y) \lor R(f(y),x))$$
 puisque

$$--\mathcal{M}, [x := a] \not\models \forall y (R(x, y) \lor R(f(y), x)) \text{ car } \mathcal{M}, [x := a, y := b] \not\models (R(x, y) \lor R(f(y), x))$$

— les cas x = b, c, d sont symétriques.

$$\varphi_3 \equiv \mathscr{M} \models \forall x \exists y (R(x,y) \Rightarrow \exists z R(f(z),x)), \text{ puisque}$$

pour tout
$$e \in D_{\mathcal{M}}$$
, \mathcal{M} , $[x := e, y := e] \models R(x, y) \Rightarrow \exists z R(f(z), x) \text{ car } \mathcal{M}$, $[x := e, y := e] \not\models R(x, y)$.

Exercice 6.6. Soient *A* et *B* deux symboles de relation unaires.

1. Déterminer les modèles de formules suivantes :

$$\exists x A(x), \qquad \forall x A(x), \qquad A(x) \land B(x), \qquad A(x) \lor B(x), \qquad \forall x (A(x) \Rightarrow B(x)).$$

2. Déterminer si les paires de formules suivantes sont equivalentes, ou si une est conséquence de l'autre :

(a)
$$\varphi_1 := \exists x (A(x) \land B(x)) \text{ et } \varphi_2 := \exists x A(x) \land \exists x B(x)$$

(b)
$$\varphi_1 := \exists x (A(x) \lor B(x)) \text{ et } \varphi_2 := \exists x A(x) \lor \exists x B(x))$$

(c)
$$\varphi_1 := \forall x A(x) \land \forall x B(x) \text{ et } \varphi_2 := \forall x (A(x) \land B(x))$$

(d)
$$\varphi_1 := \forall x A(x) \lor \forall x B(x) \text{ et } \varphi_2 := \forall x (A(x) \lor B(x))$$

Corrigé.

1. (a)
$$\exists x A(x)$$
, \mathscr{M} est modèle ssi $A^{\mathscr{M}} \neq \varnothing$

(b)
$$\forall x A(x)$$
, \mathcal{M} est modèle ssi $A^{\mathcal{M}} = D_{\mathcal{M}}$

(c)
$$A(x) \wedge B(x)$$
, \mathcal{M} , $\mathcal{V} \models A(x) \wedge B(x)$ ssi $\mathcal{V}(x) \in A^{\mathcal{M}} \cap B^{\mathcal{M}}$,

(d)
$$A(x) \vee B(x)$$
, $\mathcal{M}, \mathcal{V} \models A(x) \vee B(x)$ ssi $\mathcal{V}(x) \in A^{\mathcal{M}} \cup B^{\mathcal{M}}$,

(e)
$$\forall x (A(x) \Rightarrow B(x)) : \mathcal{M} \text{ est modèle ssi } A^{\mathcal{M}} \subseteq B^{\mathcal{M}}$$

(a) pour toute structure \mathcal{M} ,

$$\mathcal{M} \models \exists x (A(x) \land B(x)) \text{ ssi } A^{\mathcal{M}} \cap B^{\mathcal{M}} \neq \emptyset$$

$$\mathcal{M} \models \exists x A(x) \land \exists x B(x) \text{ ssi } A^{\mathcal{M}} \neq \emptyset \text{ et } B^{\mathcal{M}} \neq \emptyset$$

Donc les deux formules ne sont pas équivalentes et φ_2 est conséquence de φ_1

(b) pour toute structure \mathcal{M} ,

$$\mathcal{M} \models \exists x (A(x) \lor B(x)) \text{ ssi } A^{\mathcal{M}} \cup B^{\mathcal{M}} \neq \emptyset$$

 $\mathcal{M} \models \exists x A(x) \lor \exists x B(x) \text{ ssi } A^{\mathcal{M}} \cup B^{\mathcal{M}} \neq \emptyset$

Donc les deux formules sont equivalentes.

(c) pour toute structure \mathcal{M} ,

$$\mathcal{M} \models \forall x (A(x) \land B(x)) \operatorname{ssi} A^{\mathcal{M}} \cap B^{\mathcal{M}} = D_{\mathcal{M}} \operatorname{ssi} A^{\mathcal{M}} = D_{\mathcal{M}} \operatorname{et} B^{\mathcal{M}} = D_{\mathcal{M}}$$

 $\mathcal{M} \models \forall x A(x) \land \forall x B(x) \operatorname{ssi} A^{\mathcal{M}} = D_{\mathcal{M}} \operatorname{et} B^{\mathcal{M}} = D_{\mathcal{M}}.$

Les deux formules sont donc équivalentes

(d) pour toute structure \mathcal{M} ,

$$\mathcal{M} \models \forall x (A(x) \lor B(x)) \operatorname{ssi} A^{\mathcal{M}} \cup B^{\mathcal{M}} = D_{\mathcal{M}}$$

$$\mathcal{M} \models \forall x A(x) \lor \forall x B(x) \operatorname{ssi} A^{\mathcal{M}} = D_{\mathcal{M}} \operatorname{ou} B^{\mathcal{M}} = D_{\mathcal{M}}.$$

Donc les deux formules ne sont pas équivalentes mais φ_1 est conséquence de φ_2 .

Exercice 6.7. Considérons le langage $\mathscr S$ avec un symbole de relation R binaire, et un symbole de fonction f binaire, et la $\mathscr S$ -structure suivante :

$$D_{\mathscr{M}} = \mathbb{Z}$$
, $R^{\mathscr{M}}$ est la relation $f^{\mathscr{M}}$ est l'addition.

Pour chacune des formules φ suivantes, donnez une condition nécessaire et suffisante **sur la valuation** $\mathscr V$ pour que $\mathscr M, \mathscr V \models \varphi$.

$$\varphi_1 \equiv \forall x \exists y (f(z,y) = x)$$

$$\varphi_2 \equiv \exists x (R(x,y) \land R(y,f(x,x)))$$

$$\varphi_3 \equiv \forall x (R(x,y) \Rightarrow R(f(x,x),y))$$

Corrigé.

1. La valeur de φ_1 dépend de la valeur de la variable libre z. On a donc $\mathscr{M}, \mathscr{V} \models \varphi_1$ ssi pour tout $n \in \mathbb{Z}$, il existe $m \in \mathbb{Z}$ tel que $m + \mathscr{V}(z) = n$.

On a donc $\mathcal{M}, \mathcal{V} \models \varphi_1$ pour tout \mathcal{V} , puisque, pour tout $n \in \mathbb{Z}$, il existe $m = n - \mathcal{V}(z)$ tel que $[f(z,y) = x]_{\mathcal{M}, \mathcal{V}[x:=n,y:=n-\mathcal{V}(z)]} = 1$

2. Ici, y est une variable libre.

On a
$$\mathcal{M}$$
, $\mathcal{V} \models \varphi_2$ ssi il existe $n \in \mathbb{Z}$ tel que $n < \mathcal{V}(y)$ et $\mathcal{V}(y) < 2n$ ssi $\mathcal{V}(y) > 2$.

3. De même ici, y est une variable libre.

On a
$$\mathcal{M}, \mathcal{V} \models \varphi_2$$
 ssi il existe $n \in \mathbb{Z}$ tel que si $n < \mathcal{V}(y)$ alors $2n < \mathcal{V}(y)$ ssi $\mathcal{V}(y) < 2$.

3 Modélisation

Exercice 6.8. [Modélisation de l'article "un"] Formalisez en logique du premier ordre les formules suivantes : (choisir le langage de façon à ce que chaque "un" soit modélisé par une quantification)

- 1. Jean suit un cours.
- 2. Un logicien a été champion du monde de cyclisme.
- 3. Un entier naturel est pair ou impair.
- 4. Un enseignant-chercheur a toujours un nouveau sujet à étudier.

1. Jean suit un cours : on introduit un symbole de relation binaire suit et une constante Jean.

$$\exists c, suit(Jean, c).$$

2. Un logicien a été champion du monde de cyclisme : on introduit deux symboles de relation d'arité 1 *champion*, *logicien*.

$$\exists \ell logicien(\ell) \land champion(\ell)$$
.

3. Un entier naturel est pair ou impair : ici 3 symboles de relation d'arité 1 : *naturel*, *pair*, *impair*.

$$\forall n(naturel(n) \Rightarrow (pair(n) \lor impair(n)).$$

4. Un enseignant-chercheur a toujours un nouveau sujet à étudier : deux symboles de relation d'arité 1 *ec*, *nouveau* et un symbole de relation d'arité 2 *etudie*.

$$\forall x(ec(x) \Rightarrow (\exists y(nouveau(y) \land etudie(x,y)))).$$

Exercice 6.9. On se place dans un langage du premier ordre modélisant les entiers qui utilise les symboles suivants :

- les constantes 0, 1;
- les symboles de fonction binaires + et \times qui représentent l'addition et la multiplication et seront notés de manière usuelle x + y et $x \times y$;
- les symboles de prédicats unaires Pair(x) et Prem(x) représentant respectivement le fait que x est un nombre pair et x est un nombre premier.
- les symboles de prédicats binaires Div(y,x) qui représente le fait que y divise x, et $x \le y$ qui représente que x est inférieur ou égal à y.
- 1. Formaliser les énoncés suivants :
 - (a) Il existe un entier plus petit ou égal à tous les autres.
 - (b) Il n'existe pas d'entier plus grand ou égal à tous les autres, mais pour tout entier il en existe un qui est strictement plus grand.
 - (c) Tout nombre entier pair est égal à la somme de deux nombres entiers premiers.
 - (d) L'ensemble des entiers premiers est non borné.
- 2. Expliquer par des phrases le sens de chacune des formules suivantes et dire si elles sont vérifiées dans la structure des entiers :
 - (a) $\forall xy (Pair(x) \land Pair(y) \Rightarrow Pair(x+y))$
 - (b) $\forall xy \exists z (Div(x,z) \land Div(z,y))$
- 3. Pour chacun des prédicats suivants, donner une formule équivalente qui n'utilise que les symboles de constantes 0 et 1, les fonctions + et × et la relation d'égalité.
 - (a) Pair(x)
 - (b) Div(y,x)
 - (c) Prem(x) (on pourra utiliser le prédicat Div).

- 1. (a) $\exists n \forall m (n \leq m)$
 - (b) $\neg(\exists n \forall m \ (m \leq n)) \land \forall m \exists n \ (m \leq n \land \neg n = m)$
 - (c) $\forall n, (Pair(n) \Rightarrow \exists p \ \exists q \ (n = p + q \land Prem(p) \land Prem(q)))$
 - (d) $\forall n \exists p (Prem(p) \land n \leq p)$
- 2. (a) La somme de deux entiers pairs est pair, ce qui est vrai dans le modèle des entiers.

- (b) Pour tout entiers x et u, il existe z tel que x divise z et z divise y.
 Cette propriété est fausse dans le modèle des entiers, en effet on aurait alors que x divise y et il suffit de prendre x = 2 et y = 3 pour que la propriété soit fausse.
- 3. (a) $Pair(x) \equiv \exists y (x = y + y)$
 - (b) $Div(y,x) \equiv \exists z (x = y \times z)$
 - (c) $Prem(x) \equiv (1 + 1 \le x \land \forall y (Div(y, x) \Rightarrow (x = y \lor y = 1)))$

Exercice 6.10. Représenter la phrase

"Tout nombre entier x a un successeur qui est inférieur ou égal à tout entier strictement supérieur à x."

par une formule logique en utilisant le langage suivant :

- entier(x): "x est un entier
- $\operatorname{succ}(x, y)$: "x est successeur de y"
- $\inf(x, y)$: "x est inférieur ou égal à y".

 $Corrig\'e. \ \forall n(entier(n) \Rightarrow (\exists m(entier(m) \land succ(m,n) \land (\forall r((entier(r) \land \neg(inf(r,x))) \Rightarrow inf(m,r))))))$

FRANCAIS ET ARGOT MATHÉMATIQUE

Exercice 6.11. Une relation binaire r est réflexive si tout élément est en relation avec lui-même. Elle est symétrique si pour tout couple d'éléments x, y si x est en relation avec y alors y est en relation avec x. Elle est treflexive si aucun élément n'est en relation avec lui-même. Elle est treflexive si si x est en relation avec y, y avec y alors y est en relation avec y.

- 1. Ecrire les formules du premier ordre correspondant à ces propriétés.
- 2. Ecrire une formule signifiant qu'une relation symétrique et transitive est réflexive. Cette formule a-t-elle un modèle? Peut-on donner une interprétation qui la falsifie?
- 3. Ecrire une formule signifiant qu'une relation transitive et irréflexive est symétrique. Cette formule a-t-elle un modèle ? Peut-on donner une interprétation qui la falsifie ?

Corrigé.

- 1. Ecrire les formules du premier ordre correspondant à ces propriétés.
 - $-- \varphi_R : \forall x, r(x,x)$
 - $\varphi_S : \forall x, \forall y, (r(x,y) \Rightarrow r(y,x))$
 - $-- \varphi_I : \forall x, \neg r(x,x)$
 - $\varphi_T : \forall x, y, z, (r(x, y) \land r(y, z)) \Rightarrow r(x, z)$
- 2. Ecrire la formule qui dit qu'une relation symétrique et transitive est réflexive. Cette formule a-t-elle un modèle ? Peut-on donner une interprétation qui la falsifie.

```
\varphi_1: \varphi_S \wedge \varphi_T \Rightarrow \varphi_R.
```

La structure $\langle \mathbb{N}, r_{=} \rangle$ est un modèle.

La structure $\mathcal{M} = \langle \{a,b,c\},r \rangle$ où $r = \{(a,b),(b,a),(a,a),(b,b)\}$ falsifie φ_1 .

3. Ecrire la formule qui dit qu'une relation transitive et irréflexive est symétrique. Cette formule a-t-elle un modèle ? Peut-on donner une interprétation qui la falsifie.

```
\varphi_2: \varphi_T \wedge \varphi_I \Rightarrow \varphi_S.
```

On peut prendre pour modèle toute relation qui n'est pas à la fois transitive et irréflexive : la structure $\langle \mathbb{N}, r_{=} \rangle$ est un donc modèle de φ_2 .

La structure $\mathcal{M} = \langle \{a,b,c\},r \rangle$ où $r = \{(a,b),(b,c),(a,c)\}$ falsifie φ_2 .

Exercice 6.12. Soit le langage $\mathscr{S} = (\mathscr{S}_{\mathtt{f}}, \mathscr{S}_{\mathtt{r}})$, où $\mathscr{S}_{\mathtt{f}} = \{(f,1), (g,1)\}$ et $\mathscr{S}_{\mathtt{r}} = \{(p,1), (q,1), (r,2)\}$. Modélisez en logique du premier ordre les propriétés suivantes :

- 1. La relation *r* est (le graphe d') une fonction totale;
- 2. Le prédicat r contient le produit cartésien de p et q;
- 3. le prédicat r est égal au produit cartésien de q et p;
- 4. La fonction f est surjective;
- 5. La fonction *g* est injective.

Corrigé.

- 1. $\forall x \forall y \forall z (r(x,y) \land r(x,z)) \Rightarrow y = z$
- 2. $\forall x \forall y (p(x) \land q(y)) \Rightarrow r(x, y)$
- 3. $\forall x \forall y (q(x) \land p(y)) \Leftrightarrow r(x,y)$
- 4. $\forall y \exists x f(x) = y$
- 5. $\forall x \forall y g(x) = g(y) \Rightarrow x = y$

Exercice 6.13. Soit le langage $\mathscr{S} = (\varnothing, \mathscr{S}_r)$, où $\mathscr{S}_r = \{(\sqsubseteq, 2), (S, 1)\}$ (vous pouvez écrire $\sqsubseteq (x, y)$ en notation infixe : $x \sqsubseteq y$). Modélisez en logique du premier ordre les propriétés suivantes :

- 1. Le prédicat ⊑ est une relation d'ordre partiel (réflexive, transitive et antisymétrique);
- 2. *x* est une borne inférieure de *y* et *z*;
- 3. *x* est la plus grande borne inférieure de *y* et *z*;
- 4. *x* est plus grande borne inférieure de *S*;
- 5. S est fermé par le bas pour \sqsubseteq .

- 1. $\forall x(x \sqsubseteq x) \land \forall x \forall y \forall z((x \sqsubseteq y \land y \sqsubseteq z) \Rightarrow (x \sqsubseteq z)) \land \forall x \forall y((x \sqsubseteq y \land y \sqsubseteq x) \Rightarrow x = y)$
- 2. $x \sqsubseteq y \land x \sqsubseteq z$
- 3. $x \sqsubseteq y \land x \sqsubseteq z \land \forall x' ((x' \sqsubseteq y \land x' \sqsubseteq z) \Rightarrow (x' \sqsubseteq x))$
- 4. $\forall y(S(y) \Rightarrow x \sqsubseteq y) \land \forall x'(\forall y(S(y) \Rightarrow x' \sqsubseteq y) \Rightarrow x' \sqsubseteq x)$
- 5. $\forall x \forall y (S(x) \land y \sqsubseteq x) \Rightarrow S(y)$