Lead Score Prediction

Logistic Regression

Data Overview

- There are 9240 rows and 37 columns (36 columns and 1 target).
- There are more categorical columns than numerical columns.

RangeIndex: 0240 entries 0 to 0230

# Column	Non-Null Count	Dtype
	9240 non-null	object
	9240 non-null	int64
	9240 non-null	object
	9204 non-null	object
	9240 non-null	object
	9240 non-null	object
	9240 non-null	int64
7 TotalVisits 9	9103 non-null	float64
8 Total Time Spent on Website 9	9240 non-null	int64
	9103 non-null	float64
10 Last Activity	9137 non-null	object
11 Country 6	6779 non-null	object
12 Specialization 7	7802 non-null	object
13 How did you hear about X Education 7	7033 non-null	object
14 What is your current occupation 6	6550 non-null	object
15 What matters most to you in choosing a course 6	6531 non-null	object
16 Search	9240 non-null	object
17 Magazine 9	9240 non-null	object
18 Newspaper Article	9240 non-null	object
19 X Education Forums	9240 non-null	object
20 Newspaper	9240 non-null	object
21 Digital Advertisement	9240 non-null	object
22 Through Recommendations	9240 non-null	object
23 Receive More Updates About Our Courses	9240 non-null	object
24 Tags 5	5887 non-null	object
25 Lead Quality 4	4473 non-null	object
26 Update me on Supply Chain Content	9240 non-null	object
27 Get updates on DM Content	9240 non-null	object
28 Lead Profile 6	6531 non-null	object
29 City 7	7820 non-null	object
30 Asymmetrique Activity Index 5	5022 non-null	object
31 Asymmetrique Profile Index 5	5022 non-null	object
32 Asymmetrique Activity Score 5	5022 non-null	float64
33 Asymmetrique Profile Score	5022 non-null	float64
34 I agree to pay the amount through cheque	9240 non-null	object
35 A free copy of Mastering The Interview 9	9240 non-null	object
	9240 non-null	object
36 Last Notable Activity	5240 Holl-Hutt	00) 000
36 Last Notable Activity dtypes: float64(4), int64(3), object(30)	9240 HOH-HUCC	object

Dropping the skewed columns

- Skewed columns are something which has around 90% of its value to be one specific value/category and the remaining 10% will be other values. This must be dropped as there is no use in having them as a feature while training the model.
- Following are the columns of skewed values.

Replace "Select" with "Nan"

 "Select" is the default option in any drop down whenever you fill a form online and if no option is chosen then "select" is the options recorded.

Checking the missing value percentage

Checking the Missing value %

:	round(input_data.isnull().mean()*100,2)	
	Prospect ID	0.00
	Lead Number	0.00
	Lead Origin	0.00
	Lead Source	0.39
	Converted	0.00
	TotalVisits	1.48
	Total Time Spent on Website	0.00
	Page Views Per Visit	1.48
	Last Activity	1.11
	Country	26.63
	Specialization	36.58
	How did you hear about X Education	78.46
	What is your current occupation	29.11
	Tags	36.29
	Lead Quality	51.59
	Lead Profile	74.19
	City	39.71
	Asymmetrique Activity Index	45.65
	Asymmetrique Profile Index	45.65
	Asymmetrique Activity Score	45.65
	Asymmetrique Profile Score	45.65
	A free copy of Mastering The Interview	0.00
	Last Notable Activity	0.00
	dtype: float64	

Drop the columns with missing value>40%

<pre>round(input_data.isnull().mean()*100,2)</pre>		
Prospect ID	0.00	
Lead Number	0.00	
Lead Origin	0.00	
Lead Source	0.39	
Converted	0.00	
TotalVisits	1.48	
Total Time Spent on Website	0.00	
Page Views Per Visit	1.48	
Last Activity	1.11	
Country	26.63	
Specialization	36.58	
What is your current occupation	29.11	
Tags	36.29	
City	39.71	
A free copy of Mastering The Interview	0.00	
Last Notable Activity	0.00	
dtype: float64		

Impute missing values

- when the distribution is skewed, we can use MODE (most repeated value)
- when the distribution is almost evenly distributed, we can use "others" as a new category to impute missing values.

```
input_data['Lead Source'].fillna('others',inplace=True)
input_data['Specialization'].fillna('others',inplace=True)
input_data['Tags'].fillna('others',inplace=True)
```

```
input_data['Country'].fillna(input_data['Country'].mode()[0],inplace=True)
input_data['What is your current occupation'].fillna(input_data['What is your current occupation'].mode()[0],inplace
input_data['City'].fillna(input_data['City'].mode()[0],inplace=True)
```

Dropping the duplicate records & dropping other missing value records

- Dropping Nan records

```
input_data.dropna(inplace=True)
```

- Dropping Duplicate records

```
input_data.drop_duplicates(inplace=True)
```

Checking the distribution and outliers

- This is for the numerical columns
 - TotalVisits
 - Total time spent on websites
 - Page views per visit

Total Visits

Skewed data between 0 - 20

Obviously, there are outliers

Total time spent on website

Skewed data again but if it is adjusted using Log it will be converted to normal.

No outlier as such when we observe

Page Views per visit

Skewed data between 0 - 20

Obviously, there are outliers

Outlier Treatment

- Outlier treatments are subjective
- Usual method :
 - should be greater than Q1 (1.5 * IQR)
 - should be lesser than Q3 + (1.5 * IQR)
- Used method below :
 - should be greater than percentile(10%) (1.5 * IQR)
 - should be lesser than percentile(80%) + (1.5 * IQR)

After treatment

TotalVisits

12

10

Drop Junk Values

- As per the explanation
 - - Closed by Horizzon
 - Lost to EINS
- the above 2 features means that the leads are lost or closed by the competitors, but the data says that these leads are converted (1), So Dropping these features because of the discrepancies (This is under the column Tag).

Encoding & Scaling the data

 One hot encoding is used to convert the categorical value into numerical value.

 As most of our data is binary, we are choosing MINMAXSCALER to have our distribution between 0-1 which will be easier to get the coefficients faster.

Feature Selection

- Stats model
 - Here we use the p-value in order to choose the best features for the model
- RFE
 - Recursive feature elimination helps to choose a specific number of features using the model results
- VIF
 - Helps to identify the if there is any multicollinearity between the selected features

Stats model

 Scaled data is then fed into the model and p-value is checked to choose the right features.

RFE — choosing top 20 features

• Top 20 features relevant for the model.

```
In [68]: top_20_features = list(rfe_rank.sort_values(['rank']).head(20)['cols'])
         top 20 features
Out[68]: ['Lead Source_Referral Sites',
           'Last Notable Activity Olark Chat Conversation',
           'Tags_Busy',
           'Last Activity_Email Bounced',
           'Tags Interested in Next batch',
           'Tags Lateral student',
           'Tags_Ringing',
           'Tags_Will revert after reading the email',
           'Tags in touch with EINS',
           'Lead Source Welingak Website',
           'Tags_invalid number',
           'Lead Source_Organic Search',
           'Last Activity SMS Sent',
           'Tags others',
           'Tags_switched off',
           'Lead Source_Google',
           'Tags wrong number given',
           'Total Time Spent on Website',
           'Lead Source_Direct Traffic',
           'Last Notable Activity_Modified']
```

VIF

• VIF scores are lesser than 5 which means there is no correlation

between the features

17	7 Total Time Spent on Website 2.4		
15	Lead Source_Google	2.343825	
18	Lead Source_Direct Traffic	2.078224	
13	Tags_others	1.887296	
7	Tags_Will revert after reading the email	1.843569	
12	Last Activity_SMS Sent	1.716140	
19	Last Notable Activity_Modified 1.512612		
11	Lead Source_Organic Search 1.5		
6	Tags_Ringing	1.448102	
3	Last Activity_Email Bounced	1.117242	
14	Tags_switched off	1.113838	
2	Tags_Busy	1.094434	
9	Lead Source_Welingak Website 1.055		
0	Lead Source_Referral Sites	1.046636	
1	Last Notable Activity_Olark Chat Conversation 1.04		
10	Tags_invalid number	1.032151	
16	Tags_wrong number given	1.021056	
4	Tags_Interested in Next batch	1.005696	
8	Tags_in touch with EINS	1.004770	
5	Tags_Lateral student	1.003717	

cols vif_score

Model Building

We use a sklearn logistic regression model (which by default has 0.5 as the threshold for the prediction)

```
In [72]: log_mdl.fit(x_train_scaled[top_20_features], y_train)
Out[72]: LogisticRegression()
In [73]: y_pred = log_mdl.predict(x_test_scaled[top_20_features])
y_pred_train = log_mdl.predict(x_train_scaled[top_20_features])
```

Model Results

Scores are above 80% as expected.

Test Recall Score

```
In [75]: recall_score(y_test, y_pred)
Out[75]: 0.8646003262642741
```

Test Precision Score

```
In [76]: precision_score(y_test,y_pred)
Out[76]: 0.9314586994727593
```

Train Recall Score

```
In [77]: recall_score(y_train, y_pred_train)
Out[77]: 0.8557650153441473
```

Test Precision Score

```
In [78]: precision_score(y_train, y_pred_train)
Out[78]: 0.9255571360834519
```

Confusion matrix & AUC-ROC score

Confusion Matric and classification Report (only on test data)

```
In [79]: from sklearn.metrics import confusion_matrix, classification_report
In [80]: confusion_matrix(y_test,y_pred)
Out[80]: array([[1024,
                [ 83. 53011)
In [81]: print(classification_report(y_test,y_pred))
                                    recall f1-score
                       precision
                                                       support
                    0
                            0.93
                                      0.96
                                                0.94
                                                           1063
                            0.93
                                      0.86
                                                0.90
                                                           613
                                                0.93
                                                          1676
             accuracy
                                                0.92
                            0.93
                                      0.91
                                                           1676
            macro avg
         weighted avg
                            0.93
                                      0.93
                                                0.93
                                                          1676
```

Auc-Roc Score (only on test data)

```
In [82]: from sklearn.metrics import roc_auc_score
roc_auc_score(y_test, y_pred)
Out[82]: 0.9139558545714597
```

Feature importance

	Coefficients
Tags_Will revert after reading the email	6.207466
Total Time Spent on Website	3.865871
Lead Source_Welingak Website	3.129140
Tags_Busy	2.100997
Last Activity_SMS Sent	1.955803
Tags_Lateral student	1.718531
Tags_others	1.550068
Tags_in touch with EINS	1.241696
Tags_Interested in Next batch	1.078165
Last Activity_Email Bounced	-1.046988
Lead Source_Organic Search	-1.113832
Lead Source_Google	-1.122498
Tags_invalid number	-1.164388
Tags_wrong number given	-1.170474
Lead Source_Referral Sites	-1.287500
Lead Source_Direct Traffic	-1.487034

Result

The result here has lead id/number, lead prediction (binary) and the probability of getting converted. This Helps the intern or sales team to easily pick the lead and Approach them to convert the lead by helping them understand the Service and benefits they would get if they get converted. The Threshold can be modified to approach the leads better. The leads With Higher probability will be chosen as they are the hot leads to Get converted and the cold leads are chosen to understand the reason where we can improve

	lead_num	lead_pred	lead_pred_prob
837	601868	1	99.96
269	630200	1	99.95
289	641173	1	99.94
335	608835	1	99.93
603	639056	1	99.93
1284	608183	1	99.92
468	628916	1	99.92
622	601618	1	99.92
952	608709	1	99.92
1541	647404	1	99.91
168	647201	1	99.91