CS221: Digital Design Register and Memory

A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

<u>Outline</u>

- Register
 - Parallel Load, Parallel out : (PIPO)
 - Serial Load, Wrap around load, Serial out (SISO)
 - PISO, SIPO Register
- Multifunction Register: How to design?
- Memory Design using array of PIPO registers
 - RAM: Random Access Memory

Rotate Register

 Rotate right: Like shift right, but leftmost bit comes from rightmost bit

Serial Transfer

N-Bit RCA: Series of FA Cells

To add two n-bit numbers

- Adder delay = Tc * n
- Tc = (C_{in} to C_{out} delay) of a FA

N-Bit Ripple-Carry Adder

To add two n-bit numbers

Any point of time: only one FA is active

Serial Addition

Universal Shift Register

- Parallel-in Parallel-out (PIPO)
- Serial-in Serial-out (SISO)
- Serial-in Parallel-out (SIPO)
- Parallel-in Serial-out (PISO)

Universal Shift Register

Universal Shift Register

Operation Table for USR

S1	S0	Register Operation
0	0	No Change
0	1	Shift Right
1	0	Shift Left
1	1	Parallel Load

Design of Multifunction Register

- M function N bit Register
 - Last example : 4 functions and 4 bits register
- N number of *ceil[Log₂M]x2*^{ceil[Log₂M]} size Multiplexor (Mux)
 - For 4 function 2x4 Mux (4 to 1 Mux), 2 select line
 - For 5 function 3x8 Mux (8 to 1 Mux), 3 select line
- Extra functions of Mux need to shunted (ignored) to do no work
 - For 5 function need a 3x8 Mux, we need to shunt
 8-5=3 lines shunted (ignored) to do no work

Memory

- Universal register: One register with many functionality
- Many registers clubbed with less functionality
 - No Shift
- Parallel load (In) or Parallel Out to a specific register
- Multiplexors used for selection of resisters

Register(PIPO)

Register(PIPO)

Tri-state Buffer

Register with Read and write control

If S =0, TS1 and TS2 will be open S=1, RW=1, Write to Register 4 bit of data S=1, RW=0, Read data from Register

Register with Read and write control

Parallel In **RW** Register Load **Parallel Out**

Many Register with RW control

Memory with MAR and MDR

MAR: memory Address Register

MDR: Memory Data Register

Many Register with RW control: 4 four bit word Memory

General Memory

Memory: Locations & Word size

- ADDRESS decides the number of memory location
- MDR size : decides the WordSize
- Number of registers: 2+NumLocations
 - -2 + 2 AddressSize
 - 1 for MBR, 1 for MAR
- NumFF= MARsize+MDRsize+NumLoc*MDRSize

Designing 1KB Mem using two 1KN Mem

