SEQUENCE LISTING

- <110> Anderson, Marilyn A. Atkinson, Angela H. Heath, Robyn L. Clarke, Adrienne E.
- <120> PROTEINASE INHIBITOR, PRECURSOR THEREOF AND GENETIC SEQUENCES ENCODING SAME
- <130> 9748B
- <140> 09/431,500 <141> 1999-11-01
- <150> 08/454,295
- <151> 1995-09-01
- <160> 16
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 1104
- <212> DNA
- <213> Nicotiana alata

<400> 1

aaggcttgta	ccttaaactg	tgatccaaga	attgcctatg	gagtttgccc	gcgttcagaa	60
gaaaagaaga	atgatcggat	atgcaccaac	tgttgcgcag	gcacgaaggg	ttgtaagtac	120
ttcagtgatg	atggaacttt	tgtttgtgaa	ggagagtctg	atcctagaaa	tccaaaggct	180
tgtaccttaa	actgtgatcc	aagaattgcc	tatggagttt	gcccgcgttc	agaagaaaag	240
aagaatgatc	ggatatgcac	caactgttgc	gcaggcacga	agggttgtaa	gtacttcagt	300
gatgatggaa	cttttgtttg	tgaaggagag	tctgatccta	gaaatccaaa	ggcttgtcct	360
cggaattgcg	atccaagaat	tgcctatggg	atttgcccac	ttgcagaaga	aaagaagaat	420
gatcggatat	gcaccaactg	ttgcgcaggc	aaaaagggtt	gtaagtactt	tagtgatgat	480
ggaacttttg	tttgtgaagg	agagtctgat	cctaaaaatc	caaaggcctg	tcctcggaat	540
tgtgatggaa	gaattgccta	tgggatttgc	ccactttcag	aagaaaagaa	gaatgatcgg	600
atatgcacca	actgctgcgc	aggcaaaaag	ggttgtaagt	actttagtga	tgatggaact	660
tttgtttgtg	aaggagagtc	tgatcctaaa	aatccaaagg	cttgtcctcg	gaattgtgat	720
ggaagaattg	cctatgggat	ttgcccactt	tcagaagaaa	agaagaatga	tcggatatgc	780
acaaactgtt	gcgcaggcaa	aaagggctgt	aagtacttta	gtgatgatgg	aacttttgtt	840

ggtgaaggag agt	ctgatcc tagaaatcca	aaggcctgtc	ctcggaattg tgatggaa	ga 900			
attgcctatg gaa	tttgccc actttcagaa	gaaaagaaga	atgatcggat atgcacca	at 960			
ggttgcgcag gca	agaaggg ctgtaagtac	: tttagtgatg	atggaacttt tatttgtg	aa 1020			
ggagaatctg aat	atgccag caaagtggat	gaatatgttg	gtgaagtgga gaatgatc	tc 1080			
cagaagtcta agg	sttgctgt ttcc			1104			
<210> 2 <211> 1360 <212> DNA <213> Nicotiana alata <220> <221> CDS <222> (97)(1200)							
<400> 2	which are good at to at	- ttaattaata	tcctcctctt atttggaa	ata 60			
-							
tototgottg taa	agcaatgt ggaacatgc	Lys 1	gct tgt acc tta aac Ala Cys Thr Leu Asr 5	n in			
Cys Asp Pro A	ga att gcc tat gga rg Ile Ala Tyr Gly 10	gtt tgc ccg Val Cys Pro 15	cgt tca gaa gaa aaq Arg Ser Glu Glu Lys 20	g 162 s			
aag aat gat co Lys Asn Asp A 25	gg ata tgc acc aac rg Ile Cys Thr Asn 30	tgt tgc gca Cys Cys Ala	ggc acg aag ggt tg Gly Thr Lys Gly Cys 35	t 210			
aag tac ttc a Lys Tyr Phe S 40	gt gat gat gga act er Asp Asp Gly Thr 45	ttt gtt tgt Phe Val Cys	gaa gga gag tot ga Glu Gly Glu Ser As 50	t 258 p			
cct aga aat c Pro Arg Asn P 55	ca aag gct tgt acc ro Lys Ala Cys Thr 60	tta aac tgt Leu Asn Cys 65	gat cca aga att gc Asp Pro Arg Ile Al	a			
tat gga gtt t Tyr Gly Val C	gc ccg cgt tca gaa ys Pro Arg Ser Glu 75	gaa aag aag Glu Lys Lys 80	g aat gat cgg ata tg s Asn Asp Arg Ile Cy 85	c 354 s			
Thr Asn Cys C	gc gca ggc acg aag ys Ala Gly Thr Lys 90	ggt tgt aag Gly Cys Lys 95	g tac ttc agt gat ga s Tyr Phe Ser Asp As 100	t 402 p			
gga act ttt g Gly Thr Phe V 105	rtt tgt gaa gga gag Val Cys Glu Gly Glu 110	Ser Asp Pro	aga aat cca aag gc Arg Asn Pro Lys Al 115	t 450 a			
tgt cct cgg a Cys Pro Arg A 120	aat tgc gat cca aga Asn Cys Asp Pro Arg 125	att gcc tat g Ile Ala Tyn	t ggg att tgc cca ct r Gly Ile Cys Pro Le 130	t 498 eu			

gca gaa gaa aa Ala Glu Glu Ly 135						Ala G		546
aaa aag ggt tg Lys Lys Gly Cy								594
gga gag tct ga Gly Glu Ser As 17	p Pro Lys							642
gga aga att gc Gly Arg Ile Al 185		-		-		_		690
gat cgg ata tg Asp Arg Ile Cy 200								738
ttt agt gat ga Phe Ser Asp As 215						Pro L		786
aat cca aag gc Asn Pro Lys Al								834
att tgc cca ct Ile Cys Pro Le 25	u Ser Glu							882
tgt tgc gca gg Cys Cys Ala Gl 265								930
ttt gtt tgt ga Phe Val Cys Gl 280								978
cgg aat tgt ga Arg Asn Cys As 295		_		_		Ser G		1026
gaa aag aag aa Glu Lys Lys As								1074
ggc tgt aag ta Gly Cys Lys Ty 33	r Phe Ser							1122
tct gaa tat go Ser Glu Tyr Al 345								1170
gat ctc cag aa Asp Leu Gln Ly 360	g tot aag vs Ser Lys	gtt gct Val Ala 365	gtt tcc Val Ser	taagtcc	taa ctaa	taatat	<u>:</u>	1220
gtagtctatg tatgaaacaa aggcatgcca atatgctctg tcttgcctgt aatctgtaat 128								1280

1360

<210> 3

<211> 368

<212> PRT

<213> Nicotiana alata

<400> 3

Lys Ala Cys Thr Leu Asn Cys Asp Pro Arg Ile Ala Tyr Gly Val Cys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Pro Arg Ser Glu Glu Lys Lys Asn Asp Arg Ile Cys Thr Asn Cys Cys 20 25 30

Ala Gly Thr Lys Gly Cys Lys Tyr Phe Ser Asp Asp Gly Thr Phe Val 35 40 45

Cys Glu Gly Glu Ser Asp Pro Arg Asn Pro Lys Ala Cys Thr Leu Asn 50 55 60

Cys Asp Pro Arg Ile Ala Tyr Gly Val Cys Pro Arg Ser Glu Glu Lys
65 70 75 80

Lys Asn Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Thr Lys Gly Cys 90 95

Lys Tyr Phe Ser Asp Asp Gly Thr Phe Val Cys Glu Gly Glu Ser Asp 100 105 110

Pro Arg Asn Pro Lys Ala Cys Pro Arg Asn Cys Asp Pro Arg Ile Ala 115 120 125

Tyr Gly Ile Cys Pro Leu Ala Glu Glu Lys Lys Asn Asp Arg Ile Cys 130 135

Thr Asn Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr Phe Ser Asp Asp 150 155 160

Gly Thr Phe Val Cys Glu Gly Glu Ser Asp Pro Lys Asn Pro Lys Ala 165 170 175

Cys Pro Arg Asn Cys Asp Gly Arg Ile Ala Tyr Gly Ile Cys Pro Leu 180 185 190

Ser Glu Glu Lys Lys Asn Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly 195 200 205

Lys Lys Gly Cys Lys Tyr Phe Ser Asp Asp Gly Thr Phe Val Cys Glu 210 220

Gly Glu Ser Asp Pro Lys Asn Pro Lys Ala Cys Pro Arg Asn Cys Asp 235 230 235 240

Gly Arg Ile Ala Tyr Gly Ile Cys Pro Leu Ser Glu Glu Lys Lys Asn $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr 260 265 270

Phe Ser Asp Asp Gly Thr Phe. Val Cys Glu Gly Glu Ser Asp Pro Arg 275 280 285

Asn Pro Lys Ala Cys Pro Arg Asn Cys Asp Gly Arg Ile Ala Tyr Gly 290 295 300

Ile Cys Pro Leu Ser Glu Glu Lys Lys Asn Asp Arg Ile Cys Thr Asn305310

Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr Phe Ser Asp Asp Gly Thr \$325\$

Phe Ile Cys Glu Gly Glu Ser Glu Tyr Ala Ser Lys Val Asp Glu Tyr 340 345 350

Val Glu Val Glu Asn Asp Leu Gln Lys Ser Lys Val Ala Val Ser 355 360 365

<210> 4

<211> 24

<212> PRT

<213> Nicotiana alata

<400> 4

Lys Ala Cys Thr Leu Asn Cys Asp Pro Arg Ile Ala Tyr Gly Val Cys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Pro Arg Ser Glu Glu Lys Lys Asn

<210> 5

<211> 58

<212> PRT

<213> Nicotiana alata

<400> 5

Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Thr Lys Gly Cys Lys Tyr 1 10 15

Phe Ser Asp Asp Gly Thr Phe Val Cys Glu Gly Glu Ser Asp Pro Arg 20 25 30

Asn Pro Lys Ala Cys Thr Leu Asn Cys Asp Pro Arg Ile Ala Tyr Gly 35 40

Val Cys Pro Arg Ser Glu Glu Lys Lys Asn 50 55

<210> 6

<211> 58

<212> PRT

<213> Nicotiana alata

<400> 6

Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Thr Lys Gly Cys Lys Tyr 1 5 10 15

Phe Ser Asp Asp Gly Thr Phe Val Cys Glu Gly Glu Ser Asp Pro Arg 20 25 30

Asn Pro Lys Ala Cys Pro Arg Asn Cys Asp Pro Arg Ile Ala Tyr Gly 35 40 45

Ile Cys Pro Leu Ala Glu Glu Lys Lys Asn 50

<210> 7

<211> 58

<212> PRT

<213> Nicotiana alata

<400> 7

Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} \cdot \hspace{1cm} 15$

Phe Ser Asp Asp Gly Thr Phe Val Cys Glu Gly Glu Ser Asp Pro Lys 20 25 30

Asn Pro Lys Ala Cys Pro Arg Asn Cys Asp Gly Arg Ile Ala Tyr Gly 35 40 45

Ile Cys Pro Leu Ser Glu Glu Lys Lys Asn 50 54

<210> 8

<211> 58

<212> PRT

<213> Nicotiana alata

<400> 8

Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr 1 5 .15

Phe Ser Asp Asp Gly Thr Phe Val Cys Glu Gly Glu Ser Asp Pro Lys 20 25 30 .

Asn Pro Lys Ala Cys Pro Arg Asn Cys Asp Gly Arg Ile Ala Tyr Gly 35 40 45

Ile Cys Pro Leu Ser Glu Glu Lys Lys Asn 50 55

<210> 9

<211> 58

<212> PRT

<213> Nicotiana alata

<400> 9

<211> 6 <212> PRT

```
Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr
Phe Ser Asp Asp Gly Thr Phe Val Cys Glu Gly Glu Ser Asp Pro Arg
Asn Pro Lys Ala Cys Pro Arg Asn Cys Pro Gly Arg Ile Ala Tyr Gly 35
Ile Cys Pro Leu Ser Glu Glu Lys Lys Asn
<210> 10
<211> 54
<212> PRT
<213> Nicotiana alata
<400> 10
Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr
Phe Ser Asp Asp Gly Thr Phe Ile Cys Glu Gly Glu Ser Glu Thr Ala
             20
Ser Lys Val Asp Glu Tyr Val Gly Glu Val Glu Asn Asp Leu Gln Lys
Ser Lys Val Ala Val Ser
<210> 11
<211> 13
<212> PRT
<213> Nicotiana alata
<400> 11
Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Thr Lys Gly
<210> 12
<211> 13
<212> PRT
<213> Nicotiana alata
<400> 12
Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Lys Lys Gly
<210> 13
```

```
<213> Nicotiana alata
<400> 13
Lys Ala Cys Thr Leu Asn
<210> 14
<211> 5
<212> PRT
<213> Nicotiana alata
<4.00> 14
Glu Glu Lys Lys Asn
<210> 15
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial
      Sequence: Protease-sensitive peptide
<220>
<221> UNSURE
<222> (1)..(2) <223> Xaa can be any amino acid
<400> 15
Xaa Xaa Asn Asp
<210> 16
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial
      Sequence: Protease-sensitive peptide
<220>
<221> UNSURE
<222> (1)
<223> Xaa is Ile or Val
<220>
<221> UNSURE
```

```
The state of the s
```