

A Ub, [Y'XY'WXYj Ui I 'XY'Vc]g

Un manège de chevaux de bois est composé de trois pièces : la plate-forme, le toit et les barres support de chevaux forment la pièce S_1 , le corps du cheval est la pièce S_2 et la tête du cheval la pièce S_3 . Le sol est noté S_0 . Chaque élément S_i du manège est repéré par R_i . Le paramétrage des positions des pièces est donné mais les liaisons ne sont pas représentées sur le schéma.

- La pièce S_1 tourne par rapport à S_0 autour de l'axe vertical (O, \mathbf{z}_0) .
- Le corps S_2 du cheval est en liaison glissière par rapport à la pièce S_1 suivant l'axe (O, \mathbf{z}_0) .
- La tête S_3 s'articule avec le corps S_2 grâce à une liaison pivot d'axe (C, \mathbf{x}_1) .

On a les notations suivantes : $R_0(0, \mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0)$, $R_1(A, \mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_0)$, $R_2(B, \mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_0)$ et $R_3(C, \mathbf{x}_1, \mathbf{y}_3, \mathbf{z}_3)$ et $\mathbf{OA} = r\mathbf{x}_1$, $\mathbf{AB} = h(t)\mathbf{z}_0$, $\mathbf{BC} = l\mathbf{y}_1$ et $\mathbf{CD} = d\mathbf{z}_3$.

- 1) Exprimer en fonction du paramétrage proposé le vecteur vitesse du point C, élément de S_2 , par rapport au repère R_0 .
- 2) Faites de même pour le vecteur vitesse du point D, élément de S₃, par rapport au repère R₀.
- 3) Quelles sont les vitesses instantanées de rotation de S_1 par rapport à S_0 , de S_2 par rapport à S_0 , et de S_3 par rapport à S_0 ?