A virtual Kawasaki formula

Valentin Tonita

Abstract

Kawasaki's formula is a tool to compute holomorphic Euler characteristics of vector bundles on a compact orbifold \mathcal{X} . Let \mathcal{X} be an orbispace with perfect obstruction theory which admits an embedding in a smooth orbifold. One can then construct the virtual structure sheaf and the virtual fundamental class of \mathcal{X} . In this paper we prove that Kawasaki's formula "behaves well" with working "virtually" on \mathcal{X} in the following sense: if we replace the structure sheaves, tangent and normal bundles in the formula by their virtual counterparts then Kawasaki's formula stays true. Our motivation comes from studying the quantum K-theory of a complex manifold X (see [GT]), with the formula applied to Kontsevich' moduli spaces of genus 0 stable maps to X.

1 Introduction

Given a manifold \mathcal{X} and a vector bundle V on \mathcal{X} then Hirzebruch-Riemann-Roch formula states that:

$$\chi(\mathcal{X}, V) = \int_{\mathcal{X}} ch(V) T d(T_{\mathcal{X}}).$$

In [Ka] Kawasaki generalized this formula to the case when \mathcal{X} is an orbifold. He reduces the computation of Euler characteristics on \mathcal{X} to computation of certain cohomological integrals on the inertia orbifold $I\mathcal{X}$:

$$\chi(\mathcal{X}, V) = \sum_{\mu} \frac{1}{m_{\mu}} \int_{\mathcal{X}_{\mu}} Td(T_{\mathcal{X}_{\mu}}) ch\left(\frac{Tr(V)}{Tr(\Lambda^{\bullet}N_{\mu}^{*})}\right). \tag{1}$$

We explain below the ingredients in the formula:

 $I\mathcal{X}$ is defined as follows: around any point $p \in \mathcal{X}$ there is a local chart (\widetilde{U}_p, G_p) such that locally \mathcal{X} is represented as the quotient of \widetilde{U}_p by G_p . Consider the set of conjugacy classes $(1) = (h_p^1), (h_p^2), \ldots, (h_p^{n_p})$ in G_p . Define:

$$IX := \{ (p, (h_p^i)) \mid i = 1, 2, \dots, n_p \}.$$

Pick an element h_p^i in each conjugacy class. Then a local chart on $I\mathcal{X}$ is given by:

$$\prod_{i=1}^{n_p} \widetilde{U}_p^{(h_p^i)} / Z_{G_p}(h_p^i),$$

where $Z_{G_p}(h_p^i)$ is the centralizer of h_p^i in G_p . Denote by \mathcal{X}_{μ} the connected components of the inertia orbifold (we'll often refer to them as Kawasaki strata). The multiplicity m_{μ} associated to each \mathcal{X}_{μ} is given by:

$$m_{\mu} := \left| ker \left(Z_{G_p}(g) \to Aut(\widetilde{U}_p^g) \right) \right|.$$

For a vector bundle V we will denote by V^* the dual bundle to V. The restriction of V to \mathcal{X}_{μ} decomposes in characters of the g action. Let $E_r^{(l)}$ be the subbundle of the restriction of E to \mathcal{X}_{μ} on which g acts with eigenvalue $e^{\frac{2\pi i l}{r}}$. Then the trace Tr(V) is defined to be the orbibundle whose fiber over the point (p, (g)) of \mathcal{X}_{μ} is:

$$Tr(V) := \sum_{l} e^{\frac{2\pi i l}{r}} E_r^{(l)}.$$

Finally, $\Lambda^{\bullet}N_{\mu}^{*}$ is the K-theoretic Euler class of the normal bundle N_{μ} of \mathcal{X}_{μ} in \mathcal{X} . $Tr(\Lambda^{\bullet}N_{\mu}^{*})$ is invertible because the symmetry g acts with eigenvalues different from 1 on the normal bundle to the fixed point locus. We call the terms corresponding to the identity component in the formula fake Euler characteristics:

$$\chi^f(\mathcal{X}, V) = \int_{\mathcal{X}} ch(V) T d(T_{\mathcal{X}}).$$

In the case where \mathcal{X} is a global quotient formula (1) is the Lefschetz fixed point formula.

Now let \mathcal{X} be a compact, complex orbispace (Deligne-Mumford stack) with a perfect obstruction theory $E^{-1} \to E^0$. This gives rise to the intrinsic normal cone, which is embedded in E_1 - the dual bundle to E^{-1} (see [LT], also [BF]). The virtual structure sheaf $\mathcal{O}_{\mathcal{X}}^{vir}$ was defined in [L] as the K-theoretic pull-back by the zero section of the structure sheaf of this cone. Let $I\mathcal{X} = \coprod_{\mu} \mathcal{X}_{\mu}$ be the inertia orbifold of \mathcal{X} . We denote by i_{μ} the inclusion of a stratum \mathcal{X}_{μ} in \mathcal{X} . For a bundle V on \mathcal{X} we write $i_{\mu}^*V = V_{\mu}^f \oplus V_{\mu}^m$ for its decomposition as the direct sum of the fixed part and the moving part under the action of the symmetry associated to \mathcal{X}_{μ} . To avoid ugly notation we will often simply write V^m, V^f . The virtual normal bundle to \mathcal{X}_{μ} in \mathcal{X} is defined

as $[E_0^m] - [E_1^m]$. We will in addition assume that \mathcal{X} admits an embedding j in a smooth compact orbifold \mathcal{Y} . This is always true for the moduli spaces of genus 0 stable maps $X_{0,n,d}$ because an embedding $X \hookrightarrow \mathbb{P}^N$ induces an embedding $X_{0,n,d} \hookrightarrow (\mathbb{P}^N)_{0,n,d}$.

Theorem 1.1. Denote by N_{μ}^{vir} the virtual normal bundle of \mathcal{X}_{μ} in \mathcal{X} . Then

$$\chi\left(\mathcal{X}, j^*(V) \otimes \mathcal{O}_{\mathcal{X}}^{vir}\right) = \sum_{\mu} \frac{1}{m_{\mu}} \chi^f\left(\mathcal{X}_{\mu}, \frac{Tr(V_{\mu} \otimes \mathcal{O}_{\mathcal{X}_{\mu}}^{vir})}{Tr\left(\Lambda^{\bullet}(N_{\mu}^{vir})^*\right)}\right). \tag{2}$$

Remark 1.2. A perfect obstruction theory $E^{-1} \to E^0$ on \mathcal{X} induces canonically a perfect obstruction theory on \mathcal{X}_{μ} by taking the fixed part of the complex $E_{\mu}^{-1,f} \to E_{\mu}^{0,f}$. The proof is the same as that of Proposition 1 in [GP]. This is then used to define the sheaf $\mathcal{O}_{\mathcal{X}_{\mu}}^{vir}$.

Remark 1.3. It is proved in [FG] that if \mathcal{X} is a scheme, the Grothendieck-Riemann-Roch theorem is compatible with virtual fundamental classes and virtual fundamental sheaves i.e.:

$$\chi^f(\mathcal{X}, V \otimes \mathcal{O}_{\mathcal{X}}^{vir}) = \int_{[\mathcal{X}]} ch(V \otimes \mathcal{O}_{\mathcal{X}}^{vir}) \cdot Td(T^{vir})$$

where $[\mathcal{X}]$ is the virtual fundamental class of \mathcal{X} and T^{vir} is its virtual tangent bundle. Their arguments carry over to the case when \mathcal{X} is a stack.

Remark 1.4. The bundles V to which we apply Theorem 1.1 in [GT] are (sums and products of) cotangent line bundles L_i and evaluation classes $ev_i^*(a_i)$. They are pull-backs of the corresponding bundles on $(\mathbb{P}^N)_{0,n,d}$.

Acknowledgements. I would like to thank Alexander Givental for suggesting the problem and for useful discussions. Thanks are also due to Yuan-Pin Lee who patiently answered my questions on the material in his work [L] and to Hsian-Hua Tseng who read a preliminary draft of the paper.

2 Proof of Theorem 1.1

Before proving Theorem 1.1 we recall a couple of background facts and lemmata on K-theory which we will use.

Let $K_0(X)$ be the Grothendieck group of coherent sheaves on X. Given a map $f: X \to Y$, the K-theoretic pullback $f^*(\mathcal{F}): K_0(Y) \to K_0(X)$ is defined as the alternating sum of derived functors $Tor^i_{\mathcal{O}_Y}(\mathcal{F}, \mathcal{O}_X)$, provided

that the sum is finite. This is always true for instance if f is flat or if it is a regular embedding.

For any fiber square:

$$V' \longrightarrow V$$

$$\downarrow \qquad \qquad \downarrow$$

$$B' \stackrel{i}{\longrightarrow} B$$

with i a regular embedding one can define K-theoretic refined Gysin homomorphisms $i^!: K_0(V) \to K_0(V')$ (see [L]). One way to define the map $i^!$ is the following: the class $i_*(\mathcal{O}_{B'}) \in K^0(B)$ has a finite resolution of vector bundles, which is exact off B'. We pull it back to V and then cap (i.e. tensor product) with classes in $K_0(V)$, to get a class on $K_0(V)$ with homology supported on V', which we can regard as an element of $K_0(V')$, because there is a canonical isomorphism between complexes on V with homology supported on V' and $K_0(V')$.

In the following two lemmata X,Y,Y^{\prime} are assumed DM stacks. We will use the following result:

Lemma 2.1. Consider the diagram:

$$\iota^* C_{X/Y} \longrightarrow C_{X/Y}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X' \stackrel{\iota}{\longrightarrow} X$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y' \stackrel{i}{\longrightarrow} Y$$

with i a regular embedding and j an embedding, $C_{X/Y}$ is the normal cone of X in Y and both squares are fiber diagrams. Then:

$$i^{!}[\mathcal{O}_{C_{X/Y}}] = [\mathcal{O}_{C_{X'/Y'}}] \in K_0(\iota^* C_{X/Y}).$$
 (3)

This is stated and proved in [L] (Lemma 2). The proof is based on a more general statement (Lemma 1 of [L]), which has been worked out in [Kr] on the level of Chow rings. Since K-theoretic statements are stronger, we give below the key-ingredient which allows one to carry over Kresch's proof to K-theory:

Lemma 2.2. Let $f: X \to Y$ be a closed embedding let $g: Y \to \mathbb{P}^1$ be a surjection such that $g \circ f$ is flat. Denote by X_0 and Y_0 the fibers over 0 of $g \circ f$ and g respectively. Moreover assume that the restriction of f to $X \setminus X_0$ is an isomorphism. Then if i is the inclusion of $\{0\}$ in \mathbb{P}^1 , $i^!(\mathcal{O}_Y) = \mathcal{O}_{X_0} \in K_0(Y_0)$.

Proof: the skyscraper sheaves at all points of \mathbb{P}^1 represent the same element in $K_0(\mathbb{P}^1)$, hence if we pull-back a resolution of any point $P \in \mathbb{P}^1$ by g we get the same elements of $K_0(Y)$. On the other hand since f is an isomorphism above $\mathbb{P}^1 \setminus \{0\}$, pulling-back by g of the structure sheaf of a point $P \neq 0$ is the same as pulling back by $g \circ f$ followed by f_* . By what we said above we can replace P with 0. Now from the flatness of $g \circ f$ above 0 the pull-back of the structure sheaf of 0 by $g \circ f$ is the structure sheaf of the fiber X_0 . The result then follows from the definition of i!

Remark 2.3. Lemma 2.2 allows one to show Lemma 2.1: intermediately one shows, following [Kr],(notation is as in Lemma 2.1) that $[\mathcal{O}_{C_1}] = [\mathcal{O}_{C_2}]$ in $K_0(C_{X'}Y \times_Y C_XY)$ where $C_1 := C_{i^*C_XY}(C_XY)$ and $C_2 := C_{j^*C_{Y'}Y}(C_{Y'}Y)$.

We now go on to prove Theorem 1.1. We have:

$$\chi(\mathcal{X}, j^*V \otimes \mathcal{O}_{\mathcal{X}}^{vir}) = \chi(\mathcal{Y}, V \otimes j_*\mathcal{O}_{\mathcal{X}}^{vir}).$$

Kawasaki's formula applied to the sheaf $V \otimes j_* \mathcal{O}_{\mathcal{X}}^{vir}$ on \mathcal{Y} gives:

$$\chi(\mathcal{Y}, V \otimes j_* \mathcal{O}_{\mathcal{X}}^{vir}) = \sum_{\mu} \frac{1}{m_{\mu}} \chi^f \left(\mathcal{Y}_{\mu}, \frac{Tr(V_{\mu} \otimes i_{\mu}^* j_* \mathcal{O}_{\mathcal{X}}^{vir})}{Tr(\Lambda^{\bullet} N_{\mu}^*)} \right). \tag{4}$$

From the fiber diagram:

$$\mathcal{X}_{\mu} \xrightarrow{i'_{\mu}} \mathcal{X}$$
 $j' \downarrow \qquad \qquad j \downarrow$
 $\mathcal{Y}_{\mu} \xrightarrow{i_{\mu}} \mathcal{Y}$

and Theorem **6.2** in [FL] (where this is proved for Chow rings) we have $i_{\mu}^{*}j_{*}\mathcal{O}_{\mathcal{X}}^{vir} = j_{*}^{\prime}i_{\mu}^{!}\mathcal{O}_{\mathcal{X}}^{vir}$. Plugging this in (4) gives:

$$\chi^f \left(\mathcal{Y}_{\mu}, \frac{Tr \left(V_{\mu} \otimes i_{\mu}^* j_* \mathcal{O}_{\mathcal{X}}^{vir} \right)}{Tr(\Lambda^{\bullet} N_{\mu}^*)} \right) = \chi^f \left(\mathcal{Y}_{\mu}, \frac{Tr \left(V_{\mu} \otimes j_*' i_{\mu}^! \mathcal{O}_{\mathcal{X}}^{vir} \right)}{Tr(\Lambda^{\bullet} N_{\mu}^*)} \right). \tag{5}$$

Let G_{μ} be the cyclic group generated by one element of the conjugacy class associated to \mathcal{X}_{μ} . Then we will show that:

$$Tr\left(\frac{i_{\mu}^{!}\mathcal{O}_{\mathcal{X}}^{vir}}{\Lambda^{\bullet}(N_{\mu}^{*})}\right) = Tr\left(\frac{\mathcal{O}_{\mathcal{X}_{\mu}}^{vir}}{\Lambda^{\bullet}(N_{\mu}^{vir})^{*}}\right) \tag{6}$$

in the G_{μ} -equivariant K-ring of \mathcal{X}_{μ} . This is essentially the computation of Section 3 in [GP] carried out in \mathbb{C}^* -equivariant K-theory. Relation (6) then

follows by embedding the group G_{μ} in the torus and specializing the value of the variable t in the ground ring of \mathbb{C}^* -equivariant K-theory to a $|G_{\mu}|$ -root of unity.

If we define a cone $D := C_{\mathcal{X}/\mathcal{Y}} \times_{\mathcal{X}} E_0$, then this is a $T\mathcal{Y}$ cone (see [BF]). The virtual normal cone D^{vir} is defined as $D/T\mathcal{Y}$ and $\mathcal{O}^{vir}_{\mathcal{X}}$ is the pull-back by the zero section of the structure sheaf of D^{vir} . Alternatively there is a fiber diagram:

$$\begin{array}{ccc}
T\mathcal{Y} & \longrightarrow & D \\
\downarrow & & \downarrow \\
\mathcal{X} & \xrightarrow{0_{E_1}} & E_1
\end{array}$$

whre the bottom map is the zero section of E_1 . Then one can define $\mathcal{O}_{\mathcal{X}}^{vir}$ as $0_{T\mathcal{Y}}^*0_{E_1}^![\mathcal{O}_D]$. We'll prove formula (6) following closely the calculation in [GP]. First by definition of $\mathcal{O}_{\mathcal{X}}^{vir}$ and by commutativity of Gysin maps we have:

$$i_{\mu}^{!}\mathcal{O}_{\mathcal{X}}^{vir} = i_{\mu}^{!}0_{T\mathcal{Y}}^{*}0_{E_{1}}^{!}[\mathcal{O}_{D}] = 0_{T\mathcal{Y}}^{*}0_{E_{1}}^{!}i_{\mu}^{!}[\mathcal{O}_{D}].$$
 (7)

We pull-back relation (3) to $(i'_{\mu})^*D = (i'_{\mu})^*(C_{\mathcal{X}/\mathcal{Y}} \times E_0)$ to get:

$$i_{\mu}^{!}[\mathcal{O}_{D}] = [\mathcal{O}_{D_{\mu}} \times (E_{0}^{m})^{*}].$$
 (8)

In the equality above we have used the fact that $D_{\mu} = C_{\mathcal{X}_{\mu}/\mathcal{Y}_{\mu}} \times E_0^f$ and we identified the sheaf of sections of the bundle E_0^m with the dual bundle $(E_0^m)^*$. Plugging (8) in (7) we get:

$$i_{\mu}^{!}\mathcal{O}_{\mathcal{X}}^{vir} = 0_{T\mathcal{Y}}^{*}0_{E_{1}}^{!}[\mathcal{O}_{D_{\mu}} \times (E_{0}^{m})^{*}].$$
 (9)

Notice that the action of $T\mathcal{Y}_{\mu}$ leaves $D_{\mu} \times (E_0^m)^*$ invariant (it acts trivially on $(E_0^m)^*$). Now we can write $0_{T\mathcal{Y}}^* = 0_{T\mathcal{Y}_{\mu}^f}^* \times 0_{T\mathcal{Y}_{\mu}^m}^*$ and since $D_{\mu}^{vir} = D_{\mu}/T\mathcal{Y}_{\mu}$ we rewrite (9) as:

$$i_{\mu}^{!} \mathcal{O}_{\mathcal{X}}^{vir} = 0_{T \mathcal{Y}_{\mu}^{m}}^{*} 0_{E_{1}}^{!} [\mathcal{O}_{D_{\mu}^{vir}} \times (E_{0}^{m})^{*}]. \tag{10}$$

The proof of Lemma 1 in [GP] works in our set-up as well: it uses excess intersection formula which holds in K-theory. It shows that the following relation holds in the \mathbb{C}^* -equivariant K-ring of \mathcal{X}_{μ} :

$$0_{T\mathcal{Y}_{\mu}^{m}}^{*}0_{E_{1}}^{!}[\mathcal{O}_{D_{\mu}^{vir}}\times(E_{0}^{m})^{*}] = 0_{E_{0}^{m}}^{*}\left(0_{E_{1}}^{!}[\mathcal{O}_{D_{\mu}^{vir}}\times(E_{0}^{m})^{*}]\right) \cdot \frac{\Lambda^{\bullet}(T\mathcal{Y}^{m})^{*}}{\Lambda^{\bullet}(E_{0}^{m})^{*}}.$$
 (11)

The class $0^!_{E_1}[\mathcal{O}_{D^{vir}_{\mu}} \times E^m_0]$ lives in the \mathbb{C}^* -equivariant K-ring of E^m_0 . The class doesn't depend on the bundle map $E^m_0 \to E^m_1$ so we can assume this map to be 0. Then by excess intersection formula and the definition of $\mathcal{O}^{vir}_{\mathcal{X}_{\mu}}$ we get :

$$0_{E_0^m}^* \left(0_{E_1}^! [\mathcal{O}_{D_\mu^{vir}} \times (E_0^m)^*] \right) = \mathcal{O}_{\mathcal{X}_\mu}^{vir} \cdot \Lambda^{\bullet}(E_1^m)^*. \tag{12}$$

Formula (12) holds because $D_{\mu}^{vir} \times (E_0^m) \subset E_1^f \times E_0^m$ and $0_{E_1}^!$ acts as $0_{E_1^f}^! \times 0_{E_1^m}^!$ on factors. $0_{E_1^f}^! [\mathcal{O}_{D_{\mu}^{vir}}] = \mathcal{O}_{\mathcal{X}_{\mu}}^{vir}$ by definition of $\mathcal{O}_{\mathcal{X}_{\mu}}^{vir}$. By excess intersection formula applied to the fiber square:

$$E_0^m \longrightarrow E_0^m$$

$$\pi \downarrow \qquad \qquad \downarrow$$

$$\mathcal{X}_\mu \xrightarrow{0_{E_1^m}} E_1^m$$

we have $0_{E_0^m}^*0_{E_1^m}^![(E_0^m)^*] = 0_{E_0^m}^*\pi^*\Lambda^{\bullet}(E_1^m)^* = \Lambda^{\bullet}(E_1^m)^*$. Plugging formula (12) in (11) (note that $N_{\mu} = T\mathcal{Y}_{\mu}^m$ and $N_{\mu}^{vir} = [E_0^m] - [E_1^m]$) and taking traces proves (6). We now plug (6) in (5) and then pull-back to \mathcal{X}_{μ} to get:

$$\chi^{f}\left(\mathcal{Y}_{\mu}, \frac{Tr(V_{\mu} \otimes j_{*}i_{\mu}^{*}\mathcal{O}_{\mathcal{X}}^{vir})}{Tr(\Lambda^{\bullet}N_{\mu}^{*})}\right) = \chi^{f}\left(\mathcal{Y}_{\mu}, Tr(V_{\mu}) \otimes j_{*}' \frac{Tr(\mathcal{O}_{\mathcal{X}_{\mu}}^{vir})}{Tr(\Lambda^{\bullet}(N_{\mu}^{vir})^{*})}\right) =$$

$$= \chi^{f}\left(\mathcal{X}_{\mu}, \frac{Tr(V_{\mu} \otimes \mathcal{O}_{\mathcal{X}_{\mu}}^{vir})}{Tr(\Lambda^{\bullet}(N_{\mu}^{vir})^{*})}\right). \tag{13}$$

This concludes the proof of the proposition.

References

- [BFM] P. Baum, W. Fulton, R. Macpherson, Riemann-Roch for singular varieties
- [BF] K. Behrend, B. Fantechi, *The intrinsic normal cone*, Invent. Math. **128**, 45-88 (1997).
- [FG] B. Fantechi, L. Göttsche, Riemann-Roch theorems and elliptic genus for virtually smooth schemes, Geom. Topol. 14, no. 1, 83115 (2010).
- [FL] W. Fulton, Intersection Theory, Springer Verlag, 1984.

- [FP] W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometrySanta Cruz 1995, 4596, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997.
- [GT] A. Givental, V. Tonita, The Hirzebruch-Riemann-Roch theorem in true genus-0 quantum K-theory, preprint available at http://arxiv.org/abs/1106.3136.
- [GP] T. Graber, R. Pandharipande, Localization of virtual classes, Invent. Math. 135, no. 2, 487518 (1999).
- [Ka] T. Kawasaki, The Riemann-Roch theorem for complex V-manifolds, Osaka J. Math., 16, 151-159 (1979).
- [Kr] A. Kresch, Canonical rational equivalence of intersection of divisors
- [L] Yuan-Pin Lee, *Quantum K-Theory I. Foundations.*, Duke Math. J. **121**, No.3, 389-424 (2004).
- [LT] J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11, no. 1, 119174 (1998).