Calcul de sommes séries alternées

Partie I

- 1.a Montrer que pour tout $x \in \left]-1,+\infty\right[, \ \ln(1+x) \le x$.
- 1.b En déduire que pour tout $n \ge 1$: $\ln(n+1) \ln n \le \frac{1}{n}$ et que pour tout $n \ge 2$: $\frac{1}{n} \le \ln n \ln(n-1)$.
- 2. Pour $n \ge 1$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.
- 2.a Etablir que pour tout $n \ge 1$: $\ln(n+1) \le H_n \le \ln n + 1$.
- 2.b Déterminer un équivalent simple à la suite (H_n) ainsi que sa limite.
- 3. Pour $n \ge 1$, on pose $u_n = H_n \ln(n+1)$.
- 3.a Montrer que la suite (u_n) est convergente. On pose $\gamma = \lim_{n \to +\infty} u_n$. Ce réel est appelé constante d'Euler.
- 3.b Etablir l'identité $H_n = \ln n + \gamma + o(1)$.

Partie II

- 1. Pour $n \ge 1$, on pose $S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$.
- 1.a Montrer que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes.
- 1.b Quelle est la nature de la suite (S_n) ?
- 2. Dans cette question, on se propose de calculer $\ell = \lim_{n \to +\infty} S_n$.
- 2.a Etablir que pour tout $n \ge 1$: $S_{2n} = H_{2n} H_n$.
- 2.b En exploitant le résultat de la question I.3.b, déterminer ℓ .
- 3. En discutant selon la parité de n, établir la majoration : $\left|S_n \ell\right| \leq \frac{1}{n+1}$.

Partie III

- 1. Pour $n \ge 1$, on pose $T_n = \sum_{k=1}^n \frac{1}{k} \cos \frac{2k\pi}{3}$.
- $1. \text{a} \qquad \text{D\'eterminer} \ \ a,b,c \in \mathbb{R} \ \ \text{tels que} \ \ T_{3n} = a \sum_{k=1}^n \frac{1}{3k} + b \sum_{k=0}^{n-1} \frac{1}{3k+1} + c \sum_{k=0}^{n-1} \frac{1}{3k+2} \ .$
- 1.b En déduire que $T_{3n} = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} \frac{1}{2} \sum_{k=1}^{3n} \frac{1}{k}$.
- 2. Déterminer la limite de la suite (T_n) .