CS 65500 Advanced Cryptography

Lecture 17: Coin Toss

Instructor: Aarushi Goel

Spring 2025

Agenda → Commitments → Coin Toss

Defining Interactive Proofs (without Zero-Knowledge)

<u>Definition</u>: A protocol T between a prover P and a verifin V is an interactive proof system for a language L if V is a PPT machine and the following properties hold:

· Completenus: +xEL

Pr [Out, [P(x) \ V(x)]=1]=1

· <u>Soundness</u>: There exists a negligible function $\mathcal{V}(.)$, s.t., $\forall x \notin L$, $\forall \lambda \in \mathbb{N}$ and all adversarial proves P^* ,

Pr [Out, [P(x) ← V(x)]=1] ≤ V(x)

We can also modify the above definition to consider PPT proves. Proofs that are only sound against PPT proves are called arguments.

Defining Zero-Knowledge

2. { S(1), x,z, L)}

Definition: An interactive proof Π between $P \ V$ for a language L with witness relation R is said to be zero-knowledge if for every (expected) n.u. PPT adversary V^* , there exists a PPT simulator S, such that $\forall x \in L$, $\forall w \in R(x)$, $\forall z \in \{0,1]^*$ and $\forall x \in N$, the following two distributions are computationally indistinguishable:

1. $\{View_{V^*} [P(x,w) \longleftrightarrow V^*(x,z)]\}$

We can also consider the notions of Statistal/perfect Zero-Knowledge against unbounded adversaries, if the above distributions are statistically close (oridentical respectively)

Defining Zuo-Proofs of Knowledge

Definition: A zero-Knowledge proof Π between P & V for a language L, with witness relation R_L is said to be a proof of Knowledge with Knowledge error E, if \exists an algorithm E^{P*} , called an extractor, that runs in expected polynomial time, such that the following holds for every X and every P^*

$$Pr[Out_{V}[P(x) \leftrightarrow V(x)]=1] - Pr[R_{L}(x,w)=1 \quad w \leftarrow E^{p^{*}}(x)] \leq \epsilon$$

ZKPs that only satisfy knowledge soundness against PPT provers are called arguments of Knowledge

Defining Maliciously Secure MPC

Definition: A protocol π securely realizes F in the presence of malicious adversaries, if \exists a PPT simulator algorithm Sim, such that \forall PPT malicious adversaries A corrupting any t-sized subset C C EnJ of the parties, \forall λ \in N and \forall $\{x_i\}_{i\neq C}^{i}$, the following two distributions are computationally $\{x_i\}_{i\neq C}^{i}$, the following perfectly indistinguishable:

Real T, A (A, { xiyifc)

Ideal F, Sim (>, &xigitc)

Formalizing the Requirements of a Maliciously Secure MPC in the Real-Ideal World Paradigm

Let CCInJ be t-sized subset of corrupt parties. We define two distributions:

1 Real_{π,A} (λ, [xi]_{i+c}): Run the protocol using λ as the security parameter & {xi}_{i+c} c as the inputs of the honest parties. The messages of corrupt parties are chosen based on A. Let y; denote the output of each honest party P; & View; denote the view of each Pi in this protocol.

Output: } { viewiziec, { yiji#c}

Let Sim be a PPT algorithm given oracle access to A.

2. Ideal f, sim (Λ , f xigifc): Run sim until it outputs f xigiec, compute $(y_1, --., y_n) \leftarrow F(x_1, -.., x_n)$. Then, give f yigiec to sim. Let f view; f iec denote the final output of sim.

Output: { {view*igiec, {yigiqc}

Commitments

- → Commitments are a digital analogue of locked boxes
- Comprise of two phases:
 - * Commit phase: Sender locks a value v inside the box
 - * open phase: Sender unlocks the box to reveal v.

- -> Properties that we need from a commitment scheme:
 - * Hiding: Contents of the box remain hidden from the receiver until it is unlocked by the sender
 - * Binding: Once the sender locks the box and sends it to the receiver the sender can no longer change its contents

Defining Commitments

```
Definition: A randomized polynomial time algorithm Com is called a commitment scheme for n-bit strings if it satisfies
the following properties:
* Binding: + vo, v, efoilg" and ro, r, efoilg", it holds that
com ( vo; ro) + com (vi; ri)
* Hiding: + Vo, V, Efo, 13h, the following distributions are
computationally indistinguishable!

I to (50,13"; Com (Vo; 1)]
   · fu ← {0,13n; com (v,; 1)}
```

Construction of Bit commitments

The following scheme can be used for committing to bits.

Let f be a one-way permutation, h be the hard core predicate for f.

* Commit Phase: Sender computer Com(b; 1) = f(1), b@h(u). Let C

denote this commitment.

* Open Phase: Sender reveals (b, r). Receiver accepts if $C = (f(x), b \oplus h(x))$, and rejects otherwise.

Security:

Binding holds because f is a permutation

· Hiding follows from the property of hard-core predicates.

(Think of a formal proof)

Multibit commitment! How can one go from single bit commitment to a multi-bit commitment?

Two-Party Coin Toss

→ A secure two-party coin tossing protocol enables two-mutually distrusting parties to obtain unbiased random strings.

In other words, it is a two-party protocol that securely realizes the following functionality in the presence of a malicious adversary:

> samples h \$ 50,13 Alice Bob

Observe that this is an input-less functionality!

Candidate Construction for Two-Party coin Toss Alice Bob $S \leftarrow \frac{\$}{50113}$ $C = Com(x_1; S)$ $S \leftarrow \frac{\$}{50113}$ $X_2 \leftarrow \frac{\$}{50113}$ If c= Com (x,; s), Output r= 11 + 12 This protocol is not secure!

The simulator given a random is from f_{ct} is now unable to f_{ix} so, such that $s_i \oplus s_2 = s$, since s_2 depends on s_i

A Seure Coin-Tossing Protocol

Alice &

Bob

$$S \leftarrow \frac{\$}{\$} \left\{ 0_{1} \right\}^{\lambda} \xrightarrow{c = com(x_{1}; \$)}$$

knows A,, s; Such that C= com(u;s)

Output r= 11 + 12

output r= a, + 2

Security Against Malicious Bob.

A simulator 5^{8*} for Bob will proceed as follows:

- 1 Query Fet to get r
- 2. Compute c= Com(0;s) & send it to B*
- 3. Simulate ZKPOK about validity of C.
- 4. Receive 12 from B*
- 5. Send 1, = A + 12 to B*
- 6. Simulate the ZKP that initial commitment was to s.

Security Against Malicious 806.

We can use the following sequence of hybrids to show indistinguishability between the simulated transvipt & Bob's view in the real protocol:

Ho Bob's view in the Real protocol

H, Simulate ZKPOK about validity of C

H2 Simulate the ZKP that unitial commitment was to 4,

H3 Compute C= Com (0;5) & rend it to B*.

Hy Simulated transcript

Security Against Malicious Alice.

A simulator SAT for Alice will proceed as follows:

- 1 Query Fet to get r
- 2. Receive a commîtment C & ZKPOK from A*.
- 3. Verify ZKPOK and extract up.
- 4. Send 12 = 1 + 1, to A*
- 5. Receiver ri & ZKP from A*
- 6. Check if r,= r,' & verify ZKP W.L.t. r,