

Proba de Avaliación do Bacharelato Código: 23 para o Acceso á Universidade

Convocatoria ordinaria 2023

FÍSICA

O exame consta de 8 preguntas de 2 puntos, das que poderá responder un MÁXIMO DE 5, combinadas como queira. Se responde máis preguntas das permitidas, só serán corrixidas as 5 primeiras respondidas.

PREGUNTA 1. Responda indicando e xustificando a opción correcta:

- 1.1. Un satélite artificial describe unha órbita circular arredor da Terra. O traballo que realiza a forza da gravidade sobre o satélite ao longo de media órbita é: A) positivo; B) negativo; C) nulo.
- 1.2. Un núcleo do isótopo ${}_{2}^{4}$ He describe unha traxectoria de raio r nun campo magnético. Sen variar as condicións do campo magnético nin da dirección ou velocidade de entrada, facemos incidir un núcleo de 3He que describirá: A) unha traxectoria de raio menor; B) unha traxectoria de raio maior; C) unha traxectoria do mesmo raio.

PREGUNTA 2. Responda indicando e xustificando a opción correcta:

- 2.1. Colócanse catro cargas puntuais +Q nos vértices dun cadrado e outra carga -Q no centro. A forza atractiva que sente a carga -Q é: A) catro veces maior cá que sentiría se só houbese unha carga +Q nun dos vértices do cadrado; B) nula; C) dúas veces maior cá que sentiría se só houbese unha carga + Q nun dos vértices do cadrado.
- 2.2. Dous focos de ondas sonoras emiten sons de 1,7 kHz de frecuencia coa mesma fase inicial. Un observador que se encontra a 8 m dun dos focos e a 10 m do outro percibe nesa posición: A) un mínimo de intensidade; B) un máximo de intensidade; C) unha intensidade intermedia entre a máxima e a mínima. DATO: velocidade do son = 340 m s⁻¹.

PREGUNTA 3. Responda indicando e xustificando a opción correcta:

- 3.1. Ao irradiar un metal con luz vermella (682 nm) prodúcese efecto fotoeléctrico. Se irradiamos o mesmo metal con luz amarela (570 nm): A) non se produce efecto fotoeléctrico; B) os electróns emitidos son máis rápidos; C) emítense máis electróns, pero á mesma velocidade.
- 3.2. Unha muller situada na Terra observa que dúas naves espaciais, A e B, se dirixen cara a ela na mesma dirección e con sentidos opostos con velocidades 0,7 c e 0,6 c respectivamente. A velocidade relativa da nave A medida por unha observadora pertencente á nave B é: A) 1,3 c; B) 0,9 c; C) 0,1 c.

PREGUNTA 4. Desenvolva esta práctica:

- a) Describa o procedemento utilizado no laboratorio para determinar o
- índice de refracción cun dispositivo como o da figura.
- b) Determine o índice de refracción a partir dos datos da táboa. DATO: n(aire) = 1. θ_1 : ángulo de incidencia; θ_2 : ángulo de refracción

 $\theta_1(^{\circ})$

15,0

12.0

20,0

15.8

25,0

20,1

30,0

23.6

53,0

27,5

PREGUNTA 5. Resolva este problema:

Un pequeno satélite xira ao redor da Lúa orbitando nunha circunferencia de 3 veces o raio da Lúa. a) Calcule o período do satélite e determine a enerxía mecánica total que posúe o satélite na súa órbita. b) Deduza e calcule a velocidade de escape dende a Lúa. DATOS: $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$; $M(L) = 7.35 \times 10^{22} \text{ kg}$; R(L) = 1740 km; m(satélite)= 1500 kg.

PREGUNTA 6. Resolva este problema:

Dous condutores rectilíneos, paralelos e infinitos, están situados no plano yz, na dirección do eixe z, separados unha distancia de 80 cm. Se por cada un deles circula unha corrente de 12 A en sentidos contrarios, calcule: a) a forza por unidade de lonxitude que se exercen mutuamente, indicando a dirección e o sentido desta; b) o vector campo magnético no punto medio da distancia que separa os condutores. DATO: $\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$.

PREGUNTA 7. Resolva este problema:

Situamos un obxecto de 2 cm de altura a 15 cm dunha lente de +5 dioptrías. a) Debuxe un esquema (marcha de raios) coa posición do obxecto, a lente e a imaxe, e indique o tipo de lente. b) Calcule a posición e o aumento da imaxe.

PREGUNTA 8. Resolva este problema:

O 200 bet ransfórmase en polonio ao emitir dúas partículas beta e posteriormente, por emisión dunha partícula alfa, obtense chumbo. a) Escriba as reaccións nucleares descritas. b) O período de semidesintegración do ²⁸⁰₈₂Pb é de 22,3 anos. Se tiñamos inicialmente 3 moles de átomos dese elemento e transcorreron 100 anos, calcule o número de núcleos radioactivos que quedan sen desintegrar e a actividade inicial da mostra. DATO: $N_A = 6,02 \times 10^{23}$ mol⁻¹.

Solucións

- 1.1. Un satélite artificial describe unha órbita circular arredor da Terra. O traballo que realiza a forza da gravidade sobre o satélite ao longo de media órbita é:

- A) Positivo.B) Negativo
- C) Nulo.

(A.B.A.U. ord. 23)

Solución: C

O traballo realizado por unha forza sobre un corpo é igual ao produto escalar da forza polo desprazamento do corpo:

$$W = \overline{F} \cdot \Lambda \overline{r}$$

La forza gravitacional é unha forza central que actúa sempre na dirección do centro da Terra, mentres que o desprazamento do satélite é tanxencial á súa órbita. Como a órbita é circular, a forza e o desprazamento son perpendiculares entre si en todo momento.

Dado que o produto escalar de dous vectores perpendiculares é cero, o traballo realizado pola forza gravitacional sobre o satélite ao longo de calquera traxectoria, por exemplo media órbita, é cero.

- 1.2. Un núcleo do isótopo ¹/₂He describe unha traxectoria de raio r nun campo magnético. Sen variar as condicións do campo magnético nin da dirección ou velocidade de entrada, facemos incidir un núcleo de ³/₂He que describirá unha traxectoria de raio:
 - 0

- A) Menor.
- B) Maior.
- C) Igual.

(A.B.A.U. ord. 23)

Solución: A

A forza magnética, \overline{F}_B , sobre unha carga, q, que se despraza no interior dun campo magnético, \overline{B} , cunha velocidade, \overline{v} , vén dada pola lei de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

Esta forza é perpendicular en todos os puntos á dirección de avance da partícula, polo que describe traxectoria circular con velocidade de valor constante, xa que a aceleración só ten compoñente normal a_N .

$$a_{\rm N} = \frac{v^2}{r}$$

Se só actúa a forza magnética:

$$\Sigma \overline{F} = \overline{F}_{R}$$

Aplicando a 2.ª lei de Newton

$$\Sigma \overline{F} = m \cdot \overline{a}$$

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Se as partículas entran perpendicularmente ao campo, sen $\varphi=1$. Despexando o radio, R:

$$R = \frac{m \cdot v}{q \cdot B}$$

A carga do núcleo de ³He é a mesma que a do núcleo de ⁴He.

$$q_3 = q_4 = 2$$

Como as velocidades e o campo magnético tamén son iguais, aplicando esta expresión tanto ao núcleo de ⁴₂He como ao núcleo de ³₂He e dividindo unha entre a outra queda:

$$\frac{R_3}{R_4} = \frac{\frac{m_3 \cdot \mathbf{v}}{\mathbf{q}_3 \cdot \mathbf{B}}}{\frac{m_4 \cdot \mathbf{v}}{\mathbf{q}_4 \cdot \mathbf{B}}} = \frac{m_3}{m_4} = \frac{3}{4} < 1 \implies R_3 < R_4$$

O radio da circunferencia descrita polo núcleo de ${}_{2}^{3}$ He é menor que o da circunferencia descrita polo núcleo de ${}_{2}^{4}$ He.

- 2.1. Colócanse catro cargas puntuais +Q nos vértices dun cadrado e outra carga -Q no centro. A forza atractiva que sente a carga -Q é:
 - . .
 - A) Catro veces maior cá que sentiría se só houbese unha carga + Q nun dos vértices do cadrado.

- B) Nula.
- C) Dúas veces maior cá que sentiría se só houbese unha carga + Q nun dos vértices do cadrado.

(A.B.A.U. ord. 23)

Solución: B

A forza eléctrica entre dúas cargas puntuais é proporcional ás cargas e inversamente proporcional ao cadrado da distancia que as separa, segundo a lei de Coulomb:

$$F = K \frac{q_1 \cdot q_2}{r^2}$$

Nesta expresión K é a constante de Coulomb, q_1 e q_2 son as cargas e r é a distancia entre elas.

A carga -Q situada no centro do cadrado sentirá unha forza de atracción cara a cada unha das catro cargas +Q situadas nos vértices. Estas forzas terán a mesma magnitude, xa que as cargas son iguais e as distancias entre elas tamén son iguais. Ademais, estas forzas estarán orientadas ao longo das diagonais do cadrado.

Por tanto, a resultante das catro forzas é cero e a carga -Q non sentirá ningunha forza neta.

- 2.2. Dous focos de ondas sonoras emiten sons de 1,7 kHz de frecuencia coa mesma fase inicial. Un observador que se encontra a 8 m dun dos focos e a 10 m do outro percibe nesa posición:
 - 0

- A) Un mínimo de intensidade.
- B) Un máximo de intensidade.
- C) Unha intensidade intermedia entre a máxima e a mínima.
- DATO: velocidade do son = 340 m s^{-1} .

(A.B.A.U. ord. 23)

Solución: B

Cando dúas ondas sonoras coherentes (da mesma frecuencia e fase inicial) superpóñense, producen un fenómeno chamado interferencia. A interferencia pode ser construtiva (cando as ondas están en fase e producen unha intensidade máxima) ou destrutiva (cando as ondas están en oposición de fase e producen unha intensidade mínima).

A diferenza de camiño entre as dúas ondas é de:

$$\Delta s = 10 \text{ m} - 8 \text{ m} = 2 \text{ m}$$

A lonxitude de onda das ondas de son pódese calcular como $\lambda = v/f$, onde v é a velocidade do son e f é a frecuencia. Substituíndo os valores coñecidos, temos:

$$\lambda = \frac{340 \text{ [m/s]}}{1,7 \cdot 10^3 \text{ [Hz]}} = 0.2 \text{ m}$$

A diferenza de camiño entre as dúas ondas é igual a 10 veces a lonxitude de onda:

$$\frac{\Delta s}{\lambda} = \frac{2 [m]}{0.2 [m]} = 10$$

As dúas ondas chegan á posición do observador en fase. Por tanto, a interferencia é construtiva e o observador percibe un máximo de intensidade na súa posición.

- 3.1. Ao irradiar un metal con luz vermella (682 nm) prodúcese efecto fotoeléctrico. Se irradiamos o mesmo metal con luz amarela (570 nm):
 - A) Non se produce efecto fotoeléctrico.
 - B) Os electróns emitidos son máis rápidos.
 - C) Emítense máis electróns, pero á mesma velocidade.

(A.B.A.U. ord. 23)

Solución: B

Cando a luz interactúa co metal da célula fotoeléctrica faino coma se fose un chorro de partículas chamadas fotóns (paquetes de enerxía).

Cada fotón choca cun electrón e transmítelle toda a súa enerxía.

Para que se produza efecto fotoeléctrico, os electróns emitidos deben ter enerxía suficiente para chegar ao anticátodo, o que ocorre cando a enerxía do fotón é maior que o traballo de extracción, que é unha característica do metal.

A ecuación de Einstein do efecto fotoeléctrico pode escribirse:

$$E_{\rm f} = W_e + E_{\rm c}$$

Na ecuación, $E_{\rm f}$ representa a enerxía do fotón incidente, $W_{\rm e}$ o traballo de extracción do metal e $E_{\rm c}$ a enerxía cinética máxima dos electróns (fotoelectróns) emitidos.

A enerxía que leva un fotón de frecuencia f é:

$$E_f = h \cdot f$$

h é a constante de Planck e ten un valor moi pequeno: $h = 6,63 \cdot 10^{-34} \,\text{J} \cdot \text{s}$.

A frecuencia, f, e a lonxitude de onda, λ , da luz son inversamente proporcionais:

$$f \cdot \lambda = c$$

c é a velocidade da luz.

Cando un fotón golpea un electrón nun metal, lle transfire a súa enerxía. Se esta enerxía é suficiente para vencer a forza de atracción do metal, emitirase o electrón. A enerxía mínima requirida para emitir un electrón dun metal chámase función de traballo do metal.

No enunciado da cuestión indícase que irradiando o metal con luz vermella (λ = 682 nm) prodúcese efecto fotoeléctrico. Isto significa que a enerxía dos fotóns de luz vermella é suficiente para superar a función de traballo do metal e emitir electróns.

Se irradiamos o mesmo metal con luz amarela (λ = 570 nm), os fotóns desta luz terán maior frecuencia (xa que a frecuencia é inversamente proporcional á lonxitude de onda e λ é menor) e por tanto maior enerxía ($E = h \cdot f$). Isto significa que os fotóns da luz amarela transferirán máis enerxía aos electróns do metal, que serán emitidos a maior velocidade. Por tanto, os electróns emitidos son máis rápidos.

As outras opcións:

- A) Falso. Se ao irradiar o metal con luz vermella prodúcese efecto fotoeléctrico, tamén se producirá ao irradialo con luz amarela, xa que a enerxía dos fotóns de luz amarela é maior que a enerxía dos fotóns de luz vermella.
- C) Falso. El número de electróns emitidos depende da intensidade da luz incidente, non da súa frecuencia ou lonxitude de onda. Por tanto, si irradiamos o metal con luz amarela e vermella de igual intensidade, emitiranse o mesmo número de electróns.
- 3.2. Unha muller situada na Terra observa que dúas naves espaciais, A e B, se dirixen cara a ela na mesma dirección e con sentidos opostos con velocidades 0,7 c e 0,6 c respectivamente. A velocidade relativa da nave A medida por unha observadora pertencente á nave B é:
 A) 1,3 c

Solución: B

Segundo a relatividade especial, a velocidade relativa entre dous obxectos en movemento non se pode calcular simplemente sumando ou restando as súas velocidades, como se faría na mecánica clásica. No seu lugar, débese usar a fórmula de composición de velocidades de Einstein:

$$v = \frac{v_1 - v_2}{1 - \frac{v_1 \cdot v_2}{c^2}}$$

Nesta ecuación v é a velocidade relativa entre os dous obxectos, v_1 e v_2 son as súas velocidades medidas por un observador externo e c é a velocidade da luz.

Neste caso, a muller na Terra observa que as naves A e B diríxense cara a ela con velocidades de 0,7 c e -0,6 c respectivamente (o signo negativo indica que a nave B desprázase en dirección oposta á da nave A). A velocidade relativa a nave A medida por un observador pertencente á nave B pódese calcular utilizando a fórmula de Einstein:

$$v = \frac{0.7 c - (-0.6 c)}{1 - \frac{0.7 c \cdot (-0.6 c)}{c^2}} = \frac{1.3 c}{1.4} = 0.9 c$$

- a) Describe o procedemento $\theta_1(^\circ)$ 15,0 20,0 25,0 30,0 35,0 utilizado no laboratorio para $\theta_2(^\circ)$ 12,0 15,8 20,1 23,6 27,5 determinar o índice de refracción cun dispositivo como o da figura.
 - b) Determina o índice de refracción a partir dos datos da táboa. DATO: n(aire) = 1. θ_1 : ángulo de incidencia; θ_2 : ángulo de refracción. (A.B.A.U. ord. 23)

Rta.: $n_{\rm r} = 1.24$

Solución:

- 1. Colocar o emisor de luz, a lente converxente e a pantalla nunha superficie plana e nivelada, asegurándose de que estean ben suxeitos e aliñados.
- 2. Acender o emisor de luz e axustar a súa posición para que o raio de luz incida sobre a lente converxente.
- 3. Observar a imaxe formada pola lente converxente na pantalla e axustar a súa posición até obter unha imaxe nítida.
- 4. Medir o ángulo de incidencia do raio de luz que entra na lente converxente utilizando o círculo graduado.
- 5. Medir o ángulo de refracción do raio de luz que salgue da lente converxente utilizando o círculo graduado.
- 6. Utilizar a lei de Snell para calcular o índice de refracción da lente a partir dos ángulos de incidencia e refracción medidos. A lei de Snell establece que $n_1 \cdot \text{sen}(\theta_1) = n_2 \cdot \text{sen}(\theta_2)$, onde n_1 é o índice de refracción do medio no que incide o raio de luz, θ_1 é o ángulo de incidencia, n_2 é o índice de refracción do medio no que se refracta o raio de luz e θ_2 é o ángulo de refracción.
- 7. Repetir as medidas catro ou cinco veces, variando a posición do emisor de luz para que o ángulo de incidencia sexa distinto de cada vez.
- 8. Construír unha táboa cos ángulos de incidencia e refracción, os seus seos e o cociente entre eles e calcular o valor medio do cociente.

<u>DETERMINACIÓN DO ÍNDICE DE REFRACCIÓN DUN MEDIO</u> en <u>Prácticas</u>: <u>Orientacións xerais</u> do *Grupo de Traballo*.

b) A lei de Snell pode resumirse na ecuación:

Se o medio de incidente é o aire, $n_i = 1$, o índice de refracción do vidro será:

$$n_{\rm r} = \frac{{\rm sen}\,\varphi_{\rm i}}{{\rm sen}\,\varphi_{\rm r}}$$

Faise unha táboa calculando os seos dos ángulos de incidente e refracción.

N.º exp.	$arphi_{ m i}/^\circ$	$arphi_{ m r}/^\circ$	sen $arphi_{ m i}$	sen $arphi_{ m r}$	$n_{\rm r} = \frac{{\rm sen}\varphi_{\rm i}}{{\rm sen}\varphi_{\rm r}}$
1	15	12,0	0,26	0,21	1,24
2	20	15,8	0,34	0,27	1,26
3	25	20,1	0,42	0,34	1,23
4	30	23,6	0,5	0,4	1,25
5	35	27,5	0,57	0,46	1,24

O valor medio dos índices de refracción é:

$$n_{\rm r} = 1,24$$

- Un pequeno satélite xira ao redor da Lúa orbitando nunha circunferencia de 3 veces o raio da Lúa.
 - a) Calcula o período do satélite e determina a enerxía mecánica total que posúe o satélite na súa
 - b) Deduce e calcula a velocidade de escape dende a Lúa.

DATOS: $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$; $M(L) = 7.35 \times 10^{22} \text{ kg}$; R(L) = 1740 km; m(satélite) = 1500 kg. (A.B.A.U. ord. 23)

Rta.: a) $T = 3.38 \cdot 10^4 \text{ s} = 9 \text{ h} 24 \text{ min}$; $E = -7.0 \cdot 10^8 \text{ J}$; b) $v_e = 2.37 \text{ km/s}$.

Datos

Raio da órbita Masa da Lúa Raio da Lúa Constante da gravitación universal Masa del satélite

Incógnitas

Período da órbita Enerxía mecánica do satélite Velocidade de escape desde a Lúa

Ecuacións

Lei de Newton da gravitación universal (forza que exerce un planeta esférico sobre un corpo puntual) 2.ª lei de Newton da Dinámica

Velocidade lineal nun movemento circular uniforme de raio r e período T

Aceleración normal dun obxecto que se move cunha velocidade lineal, v, nunha traxectoria circular de radio r

Enerxía cinética dunha masa, m, que se move cunha velocidade, v

Enerxía potencial gravitacional (referida ao infinito)

Enerxía mecánica

Cifras significativas: 3

 $r = 3.1,74.10^6 \text{ m} = 5,22.10^6 \text{ m}$ $M = 7.35 \cdot 10^{22} \text{ kg}$ $R = 1740 \text{ km} = 1,74 \cdot 10^6 \text{ m}$ $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$

 $m = 1500 \text{ kg} = 1,50 \cdot 10^3 \text{ kg}$

TЕ

$$\vec{F}_{G} = -G \frac{M \cdot m}{r^{2}} \vec{u}_{r}$$

$$\sum \overline{F} = m \cdot \overline{a}$$

$$v = \frac{2\pi \cdot r}{T}$$

$$v = \frac{2\pi r}{T}$$

$$a_{\rm N} = \frac{v^2}{r}$$

$$E_{\rm c} = \frac{1}{2} m \cdot v^2$$

$$E_{\rm p} = -G \frac{M \cdot m}{r}$$

$$E = E_{\rm c} + E_{\rm p}$$

Solución:

A forza gravitacional, \overline{F}_G , que exerce un astro de masa M sobre un satélite de masa m que xira arredor del nunha órbita de radio r, é unha forza central, está dirixida cara ao astro, e réxese pola lei de Newton da gravitación universal:

$$\vec{F}_{G} = -G \frac{M \cdot m}{r^2} \vec{u}_{r}$$

Nesta expresión, G é a constante da gravitación universal, e \overline{u}_r , o vector unitario na dirección da liña que une o astro co satélite. En módulos:

$$F_{\rm G} = G \frac{M \cdot m}{r^2}$$

En moitos casos a traxectoria do satélite é practicamente circular arredor do centro do astro. Como a forza gravitacional é unha forza central, a aceleración só ten compoñente normal, a_N . Ao non ter aceleración tanxencial, o módulo, v, da velocidade lineal é constante e o movemento é circular uniforme.

A aceleración normal, nun movemento circular uniforme de raio *r*, obtense da expresión:

$$a_{\rm N} = \frac{v^2}{r}$$

Como a forza gravitacional que exerce o astro sobre o satélite é moito maior que calquera outra, pódese considerar que é a única forza que actúa.

$$\Sigma \overline{F} = \overline{F}_C$$

A $2.^a$ lei de Newton di que a forza resultante sobre un obxecto produce unha aceleración directamente proporcional á forza, sendo a súa masa, m, a constante de proporcionalidade.

$$\Sigma \overline{F} = m \cdot \overline{a}$$

Expresada para os módulos, queda:

$$\left|\sum \vec{F}\right| = m \cdot |\vec{a}|$$

$$F_G = m \cdot a_N$$

Substituíndo a expresión do módulo, F_G, da forza gravitacional, e a da aceleración normal, queda:

$$G\frac{M \cdot m}{r^2} = m \frac{v^2}{r}$$

Despexando a velocidade orbital do satélite, queda:

$$v = \sqrt{\frac{G \cdot M}{r}}$$

a) Calcúlase la velocidade orbital substituíndo os valores dos datos:

$$v = \sqrt{\frac{G \cdot M}{r}} = \sqrt{\frac{6.67 \cdot 10^{-11} \left[\text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2} \right] \cdot 7.35 \cdot 10^{22} \left[\text{kg} \right]}{5.22 \cdot 10^6 \left[\text{m} \right]}} = 969 \text{ m/s}$$

O período calcúlase a partir da expresión da velocidade lineal no movemento circular uniforme:

$$v = \frac{2\pi \cdot r}{T} \Rightarrow T = \frac{2\pi \cdot r}{v} = \frac{2 \cdot 3.14 \cdot 1.75 \cdot 10^6 \text{ [m]}}{969 \text{ [m/s]}} = 3.38 \cdot 10^4 \text{ s} = 9 \text{ h } 24 \text{ min}$$

Calcúlase a enerxía potencial:

$$E_{p} = -G \frac{M \cdot m}{r} = -\frac{6.67 \cdot 10^{-11} \left[\text{N} \cdot \text{m}^{2} \cdot \text{kg}^{-2} \right] \cdot 7.25 \cdot 10^{22} \left[\text{kg} \right] \cdot 1.50 \cdot 10^{3} \left[\text{kg} \right]}{969 \left[\text{m} \right]} = -1.41 \cdot 10^{9} \text{ J}$$

Calcúlase a enerxía cinética:

$$E_c = 1,50 \cdot 10^3 \text{ [kg]} \cdot (969 \text{ [m/s]})^2 / 2 = 7,04 \cdot 10^8 \text{ J}$$

A enerxía cinética é a metade e de signo contrario que a enerxía potencial.

A enerxía (mecánica) total é a suma das enerxías cinética e potencial, e vale o mesmo que a enerxía cinética, pero é negativa.

$$E = E_c + E_p = 7.04 \cdot 10^8 \text{ [J]} - 1.41 \cdot 10^9 \text{ [J]} = -7.0 \cdot 10^8 \text{ J}$$

b) Se se entende a pregunta como «velocidade de escape desde a superficie da Lúa».

A velocidade de escape dun astro é a velocidade mínima adicional que habería que comunicar a un corpo sometido ó seu campo gravitacional, para situalo nun punto no que non estea sometido a devandita atracción, a unha distancia infinita do centro del astro.

A velocidade de escape proporcionaríalle a enerxía, ΔE , necesaria para situalo no infinito.

$$\Delta E = (E_{\rm c} + E_{\rm p})_{\infty} - (E_{\rm c} + E_{\rm p})_{\rm 1}$$

No infinito a enerxía potencial é nula, porque tómase coma orixe de enerxías potenciais.

Tendo en conta que velocidade de escape é a velocidade mínima, a enerxía cinética que tería o obxecto no infinito sería nula.

A enerxía mecánica, suma das enerxías cinética e potencial, no infinito sería nula:

$$E_{\infty} = (E_c + E_p)_{\infty} = 0 + 0 = 0$$

A enerxía potencial dun corpo de masa m situado na superficie dun astro de masa M e radio R é:

$$E_{\rm p} = -G \frac{M \cdot m}{R}$$

Se o corpo atópase na superficie do astro, en repouso respecto do chan, a súa enerxía cinética é nula. A enerxía mecánica na superficie do astro sería:

$$E_{s} = (E_{c} + E_{p})_{s} = 0 + \left(-G\frac{M \cdot m}{R}\right) = -G\frac{M \cdot m}{R}$$

A velocidade de escape v_e comunicaríalle a enerxía ΔE necesaria para situalo no infinito.

$$\Delta E = \frac{1}{2} m \cdot v_e^2 = (E_c + E_p)_{\infty} - (E_c + E_p)_s$$

$$\frac{1}{2} m v_e^2 = 0 - \left(-G \frac{M \cdot m}{R} \right) = G \frac{M \cdot m}{R}$$

Despexando a velocidade de escape, queda:

$$v_{\rm e} = \sqrt{2 G \frac{M}{R}}$$

$$v_e = \sqrt{2 \cdot 6,67 \cdot 10^{-11} \left[N \cdot m^2 \cdot kg^{-2} \right] \cdot \frac{7,35 \cdot 10^{22} \left[kg \right]}{1,74 \cdot 10^6 \left[m \right]}} = 2,37 \cdot 10^3 \text{ m/s} = 2,37 \text{ km/s}$$

Se, polo contrario, deséxase saber a velocidade de escape desde a órbita:

Se a dirección de escape é perpendicular á dirección do movemento do satélite, só hai que ter en conta a súa enerxía potencial, xa que a compoñente da súa velocidade na dirección de escape é cero.

$$\Delta E = \frac{1}{2} m \cdot v_e^2 = (E_c + E_p)_{\infty} - (E_c + E_p)_1 = -E_{p1}$$

$$\frac{1}{2} m v_e^2 = 0 - \left(-G \frac{M \cdot m}{r} \right) = G \frac{M \cdot m}{r}$$

Despexando, a velocidade de escape dun satélite, nunha dirección perpendicular á órbita, queda:

$$v_{\rm eof} = \sqrt{2G\frac{M}{r}}$$

Se a dirección de escape é paralela á dirección do movemento do satélite, hai que ter en conta a súa enerxía cinética.

A enerxía cinética dun obxecto de masa m, que se move con velocidade v, é directamente proporcional ao cadrado da súa velocidade.

$$E_{\rm c} = \frac{1}{2} m \cdot v^2$$

A enerxía potencial gravitacional dun satélite de masa m, que xira arredor dun astro de masa M, nunha órbita de radio r, é inversamente proporcional ao raio da órbita.

$$E_{\rm p} = -G \frac{M \cdot m}{r}$$

Onde *G* é a constante da gravitación universal.

A enerxía mecánica de un corpo de masa m, que se atopa en órbita de raio r arredor dun astro de masa M, é a suma das súas enerxías cinética e potencial.

$$E = E_c + E_p = \frac{1}{2} m \cdot v^2 + \left(-G \frac{M \cdot m}{r} \right)$$

A <u>velocidade dun satélite</u> que xira a unha distancia r arredor dun astro de masa M é:

$$v = \sqrt{\frac{G \cdot M}{r}}$$

Substituíndo v^2 , a expresión da enerxía cinética queda:

$$E_{c} = \frac{1}{2} m \cdot v^{2} = \frac{1}{2} G \frac{M \cdot m}{r}$$

A expresión da enerxía mecánica queda:

$$E = E_c + E_p = \frac{1}{2} m \cdot v^2 - G \frac{M \cdot m}{r} = \frac{1}{2} G \frac{M \cdot m}{r} - G \frac{M \cdot m}{r} = -\frac{1}{2} G \frac{M \cdot m}{r}$$

Se o sentido de escape é o mesmo que o de avance do satélite, a enerxía necesaria sería:

$$\Delta E = \frac{1}{2} m \cdot v_e^2 = (E_c + E_p)_{\infty} - (E_c + E_p)_1$$

$$\frac{1}{2} m v_{\rm e}^2 = 0 - \left(-\frac{1}{2} G \frac{M \cdot m}{r} \right) = \frac{1}{2} G \frac{M \cdot m}{r}$$

Despexando a velocidade de escape no sentido de avance dun satélite en órbita, queda:

$$v_{\rm e o} = \sqrt{G \frac{M}{r}}$$

Se o sentido de escape fose oposto ao do avance do satélite, o que suporía un desperdicio de enerxía, habería que comunicarlle unha velocidade dobre da que tiña en órbita, para que alcance o mesmo valor de velocidade pero en na dirección oposta, máis esta velocidade adicional:

$$v_{\rm eo} = \sqrt{\frac{3}{2} G \frac{M}{r}}$$

Tendo en conta que a velocidade de escape é a velocidade mínima, o lóxico é tomar a velocidade de escape no sentido de avance dun satélite:

$$v_{eo} = \sqrt{G \frac{M}{r}}$$

$$v_{eo} = \sqrt{G \frac{M}{r}} = \sqrt{\frac{6,67 \cdot 10^{-11} \left[\text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2} \right] \cdot 7,35 \cdot 10^{22} \left[\text{kg} \right]}{5,22 \cdot 10^6 \left[\text{m} \right]}} = 969 \text{ m/s}$$

- 6. Dous condutores rectilíneos, paralelos e infinitos, están situados no plano yz, na dirección do eixo z, separados unha distancia de 80 cm. Se por cada un deles circula unha corrente de 12 A en sentidos contrarios, calcula:
 - a) A forza por unidade de lonxitude que se exercen mutuamente, indicando a dirección e o sentido desta.
 - b) O vector campo magnético no punto medio da distancia que separa os condutores.

DATO: $\mu_0 = 4\pi \ 10^{-7} \text{ T m A}^{-1}$. **Rta.:** a) $F/l = 3.6 \cdot 10^{-5} \text{ N/m}$; b) $\overline{B} = -1.20 \cdot 10^{-5} \overline{\mathbf{j}} \text{ T}$ (A.B.A.U. ord. 23)

Datos

Intensidade de corrente polo condutor 1 Intensidade de corrente polo condutor 2 Distancia entre os condutores

Permeabilidade magnética do baleiro

Incógnitas

Forza por unidade de lonxitude que se exercen mutuamente Campo magnético no punto medio entre os dous condutores

Fruacións

Lei de Biot-Savart: campo magnético, \overline{B} , creado a unha distanciar r, por un condutor recto polo que circula unha intensidade de corrente, I Principio de superposición:

Cifras significativas: 3

 $I_1 = 12,0 \text{ A}$ $I_2 = 12,0 \text{ A}$ d = 80,0 cm = 0,800 m $\mu_0 = 4 \pi \cdot 10^{-7} \text{ T·m·A}^{-1}$

 $\frac{\overline{F}/l}{\overline{B}}$

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$
$$\overline{B} = \Sigma \overline{B}_i$$

Ecuacións

Lei de Laplace: forza magnética que exerce un campo magnético, \overline{B} , sobre un tramo, l, de condutor recto polo que circula unha intensidade de corrente, I $\overline{F}_B = I(\overline{l} \times \overline{B})$

Solución:

a) O valor do campo magnético, \overline{B} , creado a unha distancia, r, por un condutor recto polo que circula unha intensidade de corrente, I, vén dado pola lei de Biot-Savart:

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

O campo magnético creado polo condutor 1 no condutor 2, que dista 80 cm del é:

$$\vec{B}_{1} = \frac{\mu_{0} \cdot I_{1}}{2 \pi \cdot r} (-\vec{j}) = \frac{4 \pi \cdot 10^{-7} [\text{T·m·A}^{-1}] \cdot 12,0 [\text{A}]}{2 \pi \cdot 0,800 [\text{m}]} (-\vec{j}) = -3,00 \cdot 10^{-6} \vec{j} \text{ T}$$

A forza por unidade de lonxitude que exerce o condutor 1 sobre un condutor 2 vale:

$$\frac{\vec{F}}{l} = \frac{I_2(\vec{l} \times \vec{B}_1)}{l} = I_2(\vec{u}_l \times \vec{B}_1) = 12.0 [A](-\vec{k} \times (-3.00 \cdot 10^{-6} \ \vec{j} [T])) = 3.60 \cdot 10^{-5} \ \vec{i} \text{ N/m}$$

O campo magnético creado polo condutor 2 no condutor 1 é:

$$\vec{B}_{2} = \frac{\mu_{0} \cdot I_{1}}{2\pi \cdot r} (-\vec{\mathbf{j}}) = \frac{4\pi \cdot 10^{-7} [\text{T·m·A}^{-1}] \cdot 12,0 [\text{A}]}{2\pi \cdot 0,800 [\text{m}]} (-\vec{\mathbf{j}}) = -3,00 \cdot 10^{-6} \vec{\mathbf{j}} \text{ T}$$

A forza por unidade de lonxitude que se exerce sobre un condutor 2 sobre un condutor 1 vale:

$$\frac{\vec{F}}{l} = \frac{I_1(\vec{l} \times \vec{B}_2)}{l} = I_1(\vec{u}_l \times \vec{B}_2) = 12.0 [A](\vec{k} \times (-3.00 \cdot 10^{-6} \ \vec{j}[T])) = -3.60 \cdot 10^{-5} \ \vec{i} \text{ N/m}$$

Análise: Os condutores que transportan a corrente no mesmo sentido atráense e en sentido oposto repélense.

- b) No diagrama debúxanse os campos magnéticos \overline{B}_1 e \overline{B}_2 creados por ambos os condutores no punto medio.
- O campo magnético creado polo condutor 1 no punto equidistante de ambos os condutores é:

$$\vec{B}_{1} = \frac{\mu_{0} \cdot I_{1}}{2\pi \cdot r_{1}} \left(-\vec{\mathbf{j}}\right) = \frac{4\pi \cdot 10^{-7} \left[\text{T} \cdot \text{m} \cdot \text{A}^{-1}\right] \cdot 12,0 \left[\text{A}\right]}{2\pi \cdot 0,400 \left[\text{m}\right]} \left(-\vec{\mathbf{j}}\right) = -6,00 \cdot 10^{-6} \vec{\mathbf{j}} \text{ T}$$

O campo magnético creado polo condutor 2 no punto equidistante de ambos os condutores vale o mesmo:

$$\overline{\boldsymbol{B}}_2 = -6,00 \cdot 10^{-5} \, \overline{\mathbf{j}} \, \mathrm{T}$$

O campo magnético resultante é a suma vectorial de ambos:

$$\overline{B} = \overline{B}_1 + \overline{B}_2 = -6.00 \cdot 10^{-5} \, \overline{\mathbf{j}} \, [\text{T}] + (-6.00 \cdot 10^{-5} \, \overline{\mathbf{j}} \, [\text{T}]) = -1.20 \cdot 10^{-5} \, \overline{\mathbf{j}} \, \text{T}$$

- 7. Situamos un obxecto de 2 cm de altura a 15 cm dunha lente de +5 dioptrías.
 - a) Debuxa un esquema (marcha de raios) coa posición do obxecto, a lente e a imaxe, e indica o tipo de lente.
 - b) Calcula a posición e o aumento da imaxe.

Datos (convenio de signos DIN)

Tamaño do obxecto

Posición do obxecto Potencia da lente

Incógnitas

Posición da imaxe

Aumento da imaxe

Ecuacións

Relación entre a posición da imaxe e a do obxecto nas lentes

Aumento lateral nas lentes

Potencia dunha lente

Cifras significativas: 2

y = 2.0 cm = 0.020 m

s = -15 cm = -15 m

P = +5,0 dioptrías

ś

 $A_{\rm L}$

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$$

$$A_{L} = \frac{y'}{y} = \frac{s'}{s}$$

$$P = \frac{1}{f}$$

$$P = \frac{1}{f}$$

Solución:

a) Como a potencia dunha lente é a inversa da súa distancia focal, esta vale:

$$P = \frac{1}{f'} \Rightarrow f' = \frac{1}{P} = \frac{1}{5,0} = 0,20 \text{ [m]} = 20 \text{ [cm]}$$

Como a potencia é positiva, polo convenio de signos, o foco atópase á dereita da lente, polo que a lente é converxente.

Debúxase un esquema de lente converxente (unha liña vertical rematada por dúas puntas de frechas) e sitúase o foco F' á dereita da lente. Debúxase, á súa esquerda, unha frecha vertical cara arriba, que representa ao obxecto O. Desde o punto superior do obxecto debúxanse dous raios:

- Un, cara ao centro da lente. Atravésaa sen desviarse.
- Outro, horizontal cara á lente, que a atravesa e se refracta. Debúxase de forma que o raio refractado pase polo foco da dereita F'.

O punto de corte é o correspondente á punta da imaxe I. Debúxase unha frecha vertical nese punto.

b) Polo convenio de signos, os puntos situados á esquerda da lente teñen signo negativo. Substitúense os datos na ecuación das lentes:

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'} \Rightarrow \frac{1}{s'} - \frac{1}{-0.15 \,[\,\mathrm{m}\,]} = \frac{1}{0.20 \,[\,\mathrm{m}\,]}$$

Calcúlase a posición da imaxe despexando:

$$\frac{1}{s'} = \frac{1}{0,20 \,[\,\mathrm{m}\,]} + \frac{1}{-0,15 \,[\,\mathrm{m}\,]} = 5.0 \,[\,\mathrm{m}\,]^{-1} - 6.7 \,[\,\mathrm{m}\,]^{-1} = -1.7 \,[\,\mathrm{m}\,]^{-1} \Longrightarrow s' = -0.60 \,\mathrm{m} = -60 \,\mathrm{cm}$$

A imaxe fórmase a 60 cm á esquerda da lente.

Substitúense os datos na ecuación do aumento lateral nas lentes:

$$A_{\rm L} = \frac{y'}{y} = \frac{s'}{s}$$

A imaxe é virtual (s' < 0), dereita ($A_L > 0$) e menor ($|A_L| < 1$).

Análise: Os resultados dos cálculos numéricos están en consonancia co debuxo.

O ²/₈₂Pb transfórmase en polonio ao emitir dúas partículas beta e posteriormente, por emisión dunha partícula alfa, obtense chumbo.

b) O período de semidesintegración do 210 Pb é de 22,3 anos. Si tiñamos inicialmente 3 moles de átomos dese elemento e transcorreron 100 anos, calcula o número de núcleos radioactivos que quedan sen desintegrar e a actividade inicial da mostra.

DATO: $N_{A=}$ 6,02·10²³ mol⁻¹. (A.B.A.U. ord. 23) **Rta.:** a) ${}^{210}_{82}$ Pb $\rightarrow {}^{210}_{83}$ Bi $+{}^{0}_{-1}$ e $\rightarrow {}^{210}_{84}$ Po $+{}^{0}_{-1}$ e $\rightarrow {}^{206}_{82}$ Pb $+{}^{4}_{2}$ He; b) $N = 8,07 \cdot 10^{22}$ núcleos; $A_0 = 1,78 \cdot 10^{15}$ Bq

Datos	Cifras significativas: 3	
Período de semidesintegración	$T_{\frac{1}{2}} = 22.3 \text{ anos} = 7.04 \cdot 10^8 \text{ s}$	
Cantidade da mostra	$n_0 = 3,00 \text{ mol}$	
Número de Avogadro	$N_{\rm A} = 6.02 \cdot 10^{23} \; {\rm mol^{-1}}$	
Tempo transcorrido	t = 100 anos	
Incógnitas		

Número de núcleos que queda sen desintegrar despois de 100 anos N Actividade inicial A_0

Outros símbolos

λ Constante de desintegración radioactiva

Ecuacións

 $N = N_0 \cdot e^{-\lambda \cdot t}$ Lei da desintegración radioactiva Relación do período de semidesintegración coa constante de desintegración $T_{1/2} \cdot \lambda = \ln 2$

Actividade radioactiva $A = -d N / d t = \lambda \cdot N$

Solución:

a) As partículas alfa son núcleos de helio ⁴₂He e as partículas beta electróns ⁰₋₁e.

As reaccións nucleares, aplicando os principios de conservación do número bariónico (ou número másico) e da carga, son:

$$^{210}_{82}$$
Pb \rightarrow $^{210}_{83}$ Bi $+$ $^{0}_{-1}$ e \rightarrow $^{210}_{84}$ Po $+$ $^{0}_{-1}$ e \rightarrow $^{206}_{82}$ Pb $+$ $^{4}_{2}$ He

b) Dedúcese a relación entre o período de semidesintegración e a constante de desintegración.

A lei de desintegración radioactiva, que di que o número de átomos que se desintegran na unidade de tempo é proporcional á cantidade de átomos presentes, $(-dN = \lambda \cdot N \cdot dt)$, pode expresarse como:

$$N = N_0 \cdot e^{-\lambda \cdot t}$$

N é a cantidade de átomos que quedan sen desintegrar ao cabo dun tempo t, N_0 é a cantidade inicial de átomos e λ é a constante de desintegración.

Obtense unha versión máis manexable da ecuación de desintegración radioactiva, $N = N_0 \cdot e^{-\lambda \cdot t}$, pasando N_0 ao outro membro, aplicando logaritmos neperianos e cambiando o signo:

$$-\ln (N / N_0) = \ln (N_0 / N) = \lambda \cdot t$$

O período de semidesintegración dunha substancia radioactiva é o tempo que transcorre ata que só queda a metade da mostra orixinal. Cando $t=T_{1/2},\,N=N_0$ / 2.

Poñendo na ecuación logarítmica: (2 N) en lugar de N_0 , e $T_{1/2}$ en vez de t, queda:

$$\ln (2 N/N) = \lambda \cdot T_{1/2}$$
 $\Rightarrow \lambda \cdot T_{1/2} = \ln 2$

Calcúlase o período de semidesintegración en segundos:

$$T_{1/2}$$
=22,3 [anos] $\frac{365,25 \text{ [días]}}{1 \text{ [ano]}} \frac{24,0 \text{ [h]}}{1 \text{ [día]}} \frac{3600 \text{ [s]}}{1 \text{ [h]}} = 7,04 \cdot 10^8 \text{ s}$

Calcúlase a constante radioactiva:

$$\lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{22.3 \text{ [años]}} = 0.031 \text{ laño}^{-1} = \frac{0.693}{7.04 \cdot 10^8 \text{ [s]}} = 9.85 \cdot 20^{-10} \text{ s}^{-1}$$

Calcúlase o número de núcleos que hai en 3 mol de ²¹⁰Pb:

$$N_0 = \frac{3,00 \; [\, \mathrm{mol} \; \mathrm{Pb}\,] \cdot 6,02 \cdot 10^{23} \; [\, \mathrm{\acute{a}tomos} \; \mathrm{Pb}\,]}{1 \; [\, \mathrm{mol} \; \mathrm{Pb}\,]} \quad \frac{1 \; [\, \mathrm{n\acute{u}cleo} \; \mathrm{Pb}\,]}{1 \; [\, \mathrm{\acute{a}tomo} \; \mathrm{Pb}\,]} = 1,81 \cdot 10^{24} \; [\, \mathrm{n\acute{u}cleos} \; \mathrm{Pb}\,]$$

Aplícase la lei de desintegración radioactiva:

$$N = N_0 \cdot e^{-\lambda \cdot t} = 1,81 \cdot 10^{24} [\text{núcleos}] \cdot e^{0,031 \text{ [ano}^{-1]} \cdot 100 \text{ [anos]}} = 8,07 \cdot 10^{22} \text{ núcleos quedan sen desintegrar.}$$

Calcúlase a actividade inicial:

$$A_0 = \lambda \cdot N_0 = 9.85 \cdot 10^{-10} \text{ [s}^{-1}] \cdot 1.81 \cdot 10^{24} \text{ [núcleos]} = 1.78 \cdot 10^{15} \text{ Bq}$$

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, de Óscar Hermida López.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 22/03/24