S.	Authors &	Dataset	Features Used	Techniques	Outcome	Parameter	Advantages	Disadvantages	Results
No.	Year			Implemented					
No. [1]	Year Siddharth Solaiyappa n et al. (2022)	LIDC-IDRI CT-GAN	local and global characteristics	Implemented Support Vector Machine (SVM), Random Forest, Decision Tree, DenseNet121, DenseNet201, ResNet50, ResNet101, and VGG19,	The main purpose of this work is to detect deepfake tampering in medical photos by detecting injected or excised tumours. The outcome assesses how well machine learning systems classify manipulated	Accuracies: SVM- 0.591, Random Forest- 0.665, Decision Tree- 0.641, DenseNet121- 0.804, DenseNet201- 0.777, ResNet50- 0.641, ResNet101- 0.706, VGG19- 0.657	Robust Detection, Diverse Approach, Higher Accuracy	Generalization and limited details	high potential for real-world application in identifying deepfake attacks in medical imaging scenarios.
[2]	Fabi Prezja et al. (2022)	320K DeepFake KOA Images, 5,556 real X-ray images and 3,20,000 synthetic X-ray (DeepFake) images	structure, density, and alignment features of the knee joint bones	Generator- discriminator using GAN for classification	images. This work shows the potential of medically accurate synthetic data to address privacy issues and data limitations and the efficacy of these synthetic images in	Loss of 3.79% from baseline accuracy	Privacy Preservation, Data Augmentation and Reduced Regulatory Hurdles	Realism vs. Real Data, Ethical Considerations	The study shows that generative adversarial neural networks may produce medically correct knee joint X-rays. As indicated in the survey, more DeepFakes were mistaken for real photos by medical

					improving				specialists.
					osteoarthritis				Even when
					severity				replaced by
					assessment				complete
					tasks.				training data,
					tasks.				synthetic
									images
									enhance
									osteoarthritis
									severity
									classification
									accuracy. This
									shows how
									synthetic data
									can improve
									medical image
									analysis while
									addressing data
									restrictions and
									privacy issues.
[<u>3</u>]	Yalamanchil	DRIVE retinal	Retinal features	Cycle-GAN	This study	Accuracy of	Data	Realism and	The Cycle-GAN
	i Salini et	fundus image	like retina,	framework	generates	98.19% for the	Accessibility,	Generalization	framework
	al. (2022)	dataset	blood vessels	which includes	synthetic	proposed Cycle-	Privacy	, Ethical and	generates and
	,		etc.	generation	retinal fundus	GAN model.	Preservation and	Clinical	segments
				and	images using		Innovative	Considerations	retinal fundus
				segmentation.	the Cycle-		approach		pictures in the
					GAN				study. It shows
					architecture,				how GANs may
					evaluates				solve the
					privacy and				medical data
					hallucination				shortage and
					problems,				create
					and examines				authentic
					GAN				synthetic
					potential and				images. The
					limitations in				suggested
					medical				model's 98.19%
					imaging.				accuracy

									implies it can classify retinal fundus images. For a complete evaluation, further information regarding the classification task, segmentation, and limitations is needed.
[4]	Rajat Budhiraja et al. (2022)	LIDC-IDRI CT scans, X-rays and ultrasound images of a miniscule subset with <100 images.	visual characteristics and patterns like textures, shapes, edges, and structures	Convolutional Reservoir Networks (CoRN)	This study aims to detect deepfake medical images that introduce dangerous tumours into healthy people faster. The work seeks to identify such tampering attacks in a fast and lightweight manner to protect patients'	DenseNet, ResNet, VGG and RC combined architecture increased accuracy to more than 90%	Detection Enhancement, Lightweight Solution, and Generalization.	Dataset Size and Limited Details.	The study uses Convolutional Reservoir Networks (CoRN) to detect deepfake medical imaging inserted with malignant tumours into healthy patients' modalities. It is practical and lightweight. The method reportedly improves categorization metrics. The

					privacy and				study shows its
					medical data.				efficacy with a
					inculcal data.				limited dataset,
									but further
									information
									regarding the
									technique's
									performance
									measures and
									real-world
									applications
									would help
									explain the
									results.
[<u>5</u>]	Zeba	COVID-19 positive	Texture and	CNN along	The work	Accuracies:	Rapid Detection,	Limited to	The trained
	Ghaffar et	and normal cases	density features	with	aims to	MobileNet-95%	Non-invasive	Imaging,	CNN models
	al. (2022)	as well as	by grey level	MobileNet,	completely	EfficientNet-95%	and scalability.	Variability and	MobileNet,
	a (====,	potential cases of	and local level	EfficientNet,	evaluate	and InceptionV3-	and coaldinay.	Ethical	EfficientNet,
		other respiratory		and	various CNN	94%		Considerations	and
		diseases.		InceptionV3	architectures'				InceptionV3
				· ·	ability to				classified
					automatically				COVID-19-
					detect				infected chest
					COVID-19				X-ray pictures
					infection				accurately.
					from chest X-				These results
					rays. The				suggest that
					study seeks				these models
					to accelerate				could help
					pandemic				physicians and
					testing with				radiologists
					novel and				speed up
					efficient				COVID-19
					technologies.				testing and
					The writers				diagnosis,
					seek				improving
					infectious				patient
					respiratory				outcomes and

					disease control and prevention methods.				pandemic control.
[6]	Lingzhi Kong et al. (2022)	Pneumonia Healthy COVID-19 Influenza (Lung)	High-level representations capturing complex patterns, textures, and structures within the chest X-ray images.	Feature Fusion, Attention Mechanism and Residual Network	The study proposes an enhanced chest X-ray image classification algorithm for COVID-19 identification. The researchers want to show that their model can accurately categorise X-ray pictures and improve medical diagnosis.	For binary classification (likely COVID-19 positive vs. non-infected), the average accuracy reaches 98.0%. For three-category classification (which might involve categories like COVID-19 positive, other infections, and non-infected), the average accuracy reaches 97.3%.	High Accuracy, Attention Mechanism and Clinical Support.	Dependency on Data Quality, Limited to X- ray Data, and Generalization .	The experimental results show that the proposed model, which combines DenseNet and VGG16 features with attention mechanisms and ResNet segmentation, classifies COVID-19 chest X-ray pictures accurately. This suggests that deep learning, feature fusion, and attention mechanisms can help doctors and radiologists diagnose chest disorders like COVID-19 quickly and accurately.
[7]	Yi-Yang Liu et al. (2022)	KUB images from 104 patients from Kaohsiung Chang	high-level visual representations learned from	Computer- Aided Diagnosis (CAD) system	The work aims to create and propose a	Validation Set: Accuracy 0.977, Sensitivity (True Positive Rate)	Accuracy, Reduced Radiation	External Validation, clinical interpretation	Experimental results show that the deep learning model

		Gung Memorial	pre-processed	using Deep	deep	0.953, Specificity	Exposure and	and	accurately
		Hospital	KUB images.	learning,	learning-	(True Negative	cost effective.	Dependency	detects
		·	· ·	model	based CAD	Rate) 1, F1-		on Data	urolithiasis in
				training,	system for	Measure 0.976.		Quality.	KUB images.
				parameter	accurately	Testing Set:		,	The model's
				tuning and	diagnosing	Accuracy 0.982,			excellent
				testing.	urolithiasis	Sensitivity 0.964,			accuracy and
					from KUB	Specificity 1, F1-			other
					images. The	Measure 0.982.			performance
					project	141643416 0.302.			measures imply
					attempts to				it could help
					help non-				emergency
					expert				room clinicians
					clinicians				make accurate
					make				diagnoses
					accurate				quickly,
					diagnosis				reducing
					without				radiation
					radiological				exposure and
					reports.				medical
					reports.				expenditures
									from unneeded
									CT scans.
									Comparing the
									model against
									CNN-based
									approaches
									shows its
									efficacy.
[8]	Mohamma	Flickr-Faces-HQ	gray level	CNN with	The CNN-	Accuracy:	High Accuracy	Adversarial	The most
[0]	d	dataset, 70,000	gray icver	nceptionResN	based	InceptionV3-	and	Attacks and	accurate model
	Monirujjam	real images by		etV2,	deepfake	99.68%	Explainability.	Generalization	was
	an Khan et	Nvidia and 70,000		DenseNet201,	detection	ResNet152V2-	Explamability.	Generalization	InceptionResNe
	al. (2022)	fake images by		InceptionV3,	method is the	99.19%			tV2 at 99.87%.
	ai. (2022)	styleGAN model.		and	study's main	DenseNet201-			This technique
		Fake images of		ResNet152V2.	result. The	99.81%			had the highest
		256 pixels.		Local	study uses	InceptionResNetV			accuracy and
		230 pixeis.				-			-
				Interpretable	LIME to	2- 99.87%			explainability

	Model-	accurately		with the LIME
	Agnostic	distinguish		algorithm for
	Explanations	real and		Explainable AI
	(LIME)	deepfake		(XAI). The study
	algorithm is	photos and		shows that the
	also used.	explain the		suggested
		model's		method detects
		decisions.		deepfake
				images reliably.
				The study uses
				CNN models to
				detect
				deepfake
				photos with
				excellent
				accuracy. The
				LIME algorithm
				for XAI
				improves
				transparency
				and
				interpretability,
				making the
				detection
				system more
				reliable. The
				results show
				that the
				proposed
				technique,
				especially with
				InceptionResNe
				tV2, might
				solve the
				deepfake
				content
				problem.
				problem.

[<u>9</u>]	R. Saravana	Group-wise Deep	Computer vision	Fuzzy	The paper's	Detection rate	High Detection	Data	The paper
	Ram et al.	Whitening,	features related	Clustering	main result is	accuracy reported	Rate and	Variability and	shows that
	(2022)	Coloring Method	to digital	Feature	a better	increase of 98%	Integration of	Generalization	fuzzy
	(2022)	(GDWCT),	content	Extraction	deepfake	merease or 5070	Techniques	Generalization	clustering, deep
		StarGAN,	integrity.	Method, Deep	image and		recimiques		belief networks
		StyleGAN,	integrity.	Belief Network	video				with loss
		StyleGAN2		(DBN) with	detection				handling, and
		StyledANZ		Loss Handling					paired learning
				and Pairwise	algorithm. The				· · · · · · · · · · · · · · · · · · ·
									improve
				Learning	suggested				deepfake
				Approach.	method uses				detection
					feature				accuracy by
					extraction,				98% across
					deep				datasets.
					learning, and				
					pairwise				In conclusion,
					learning to				the paper
					improve				improves
					content				deepfake
					manipulation				detection by
					detection.				merging
									computer
									vision and deep
									learning
									methods to
									recognise faked
									content. The
									results'
									significant
									increase in
									detection
									accuracy
									supports the
									methodology.
[<u>10</u>]	Thanh Thi	UADFV	Visual cues,	Algorithms	The paper's	Research study	Comprehensive	Lack of	The paper
	Nguyen et	FaceForensics++	artifacts,	and	main result is		Overview and	Original	covers
	al. (2022)	Celeb-DF	inconsistencies,	architectures	a survey and		Research	Research and	deepfake
		VidTIMIT	and statistical	used in	study of		Direction.		production and

		CelebA-HQ	irregularities in	generating	deepfake			Rapidly	detection
		GDWCT	images.	realistic fake	development			Evolving Field.	algorithms and
				images and	and detection				methods. It
				videos using	techniques. It				examines
				deep learning.	seeks a				problems,
				Techniques for	complete				research
				transferring	grasp of the				trends, and the
				facial	field's current				changing
				expressions,	situation.				landscape of
				gestures, and					deepfake
				speech from					technology,
				one person to					improving
				another.					knowledge and
									guiding future
									research.
[<u>11</u>]	Andreas	Forensics++	The paper	The authors	The primary	The specific details	High Accuracy,	Dependency	The paper
	Rossler et	Forensic Analysis	employs	utilize various	outcome of	of the model's	High Accuracy,	on Data,	demonstrates
	al. (2019)		Convolutional	deep learning	the paper is	parameters are	Automated	Adversarial	that the
			Neural	architectures,	the	not provided in	Detection	Attacks	proposed
			Networks	including	development	the summary.			model
			(CNNs) to learn	Inception	of a deep	However, the			outperforms
			features from	ResNet, to	learning-	paper likely			existing
			manipulated	train their	based	includes			methods for
			facial images.	model on a	approach	information about			detecting
			They use a	large dataset	capable of	the architecture's			manipulated
			combination of	of real and	detecting	layers, filter sizes,			facial images. It
			raw pixel values	manipulated	manipulated	activation			achieves high
			and handcrafted	facial images.	facial images.	functions, learning			accuracy in
			features, like	They also	The proposed	rates, etc.			distinguishing
			color histograms	implement	model				real images
			and noise	data	outperforms				from
			patterns.	augmentation	traditional				manipulated
				techniques to	forensics				ones, even
				improve	methods and				when faced
				model	other deep				with various
				generalization.	learning				manipulation
					models in				techniques. The
					terms of				experimental

									results
					accuracy and				
					generalizatio				showcase the
					n.				effectiveness of
									their approach
									on a
									benchmark
									dataset.
[<u>12</u>]	Brian	DFDC dataset	Frame-level	GAN	The large and	MM/NN,	Large and	Lack of	The DFDC
	Dolhansky	with 100,000	pixel data, facial		diversified	DFAE, FSGAN,	Diverse Dataset	Detailed	dataset shows
	et al.	video clips	landmarks,		DFDC	NTH, StyleGAN	and ethical	Techniques	that models
	(2020)	sourced from	grayscale values,		collection of	with each column	considerations	and privacy	can generalise
		3,426 paid actors.	local texture		face-swapped	shows increasing		concerns.	to real-world
			patterns, and		videos is the	quality from left to			deepfake
			structural		result of this	right.			videos. This
			information		study. The				shows that the
			from images.		dataset				dataset and
					supports				approach may
					deepfake				be promising
					detection				for deepfake
					model				detection.
					training and				
					evaluation.				
					The paper				
					shows that				
					models				
					trained				
					purely on the				
					DFDC dataset				
					can				
					generalise to				
					"in the wild."				
					deepfake				
					films,				
					notwithstandi				
					ng their				
					difficulties to				
					detect.				

[<u>13</u>]	Vincent	DeepFake	The paper	The authors	The primary	Details about the	Compact	Limited	The paper
	Nozic et al.	Face2Face	employs deep	propose	outcome of	specific	Architecture,	Complexity,	demonstrates
	(2018)		learning	MesoNet, a	the paper is	parameters of the	Efficiency, Real-	Dependence	that MesoNet is
	(====)		features	shallow CNN	the	MesoNet	Time Detection	on Dataset	effective in
			extracted from	architecture,	development	architecture (e.g.,			detecting facial
			facial images	for detecting	of MesoNet,	number of layers,			video forgeries,
			using a small	facial video	which is a	filter sizes,			achieving
			CNN	forgeries. They	compact	activation			competitive
			architecture.	train the	neural	functions) can be			results
			ar or medetar er	network on a	network	found in the			compared to
				dataset of	capable of	paper.			more complex
				manipulated	detecting	papen			architectures.
				and authentic	facial video				The network's
				facial images.	forgeries with				compact design
				o o	a focus on				allows for
					model				efficient
					efficiency.				deployment
					,				while
									maintaining
									good detection
									performance.
[14]	Ricard	CelebA	pixel-level	GAN	This effort	Robust	Realistic Quality	Potential Bias	The Celeb-DF
	Durall et al.	Forensics++	information,		produced the		and	and Privacy	dataset raises
	(2020)	CelebA-HQ	frame-level		Celeb-DF		Comprehensive	Concerns.	the bar for
		Flickr-Faces-HQ	patterns, facial		dataset,		Evaluation.		DeepFake
		5,639 high-quality	landmarks with		which				detection
		DeepFake videos.	local texture		provides				problems,
			details, and		high-quality,				demonstrating
			structural		realistic				its potential to
			characteristics		DeepFake				advance
					movies. This				DeepFake
					dataset is				detection
					essential for				systems.
					DeepFake				
					detection				
					algorithm				
					creation,				

					training, and				
					evaluation.				
[<u>15</u>]	Lingzhi Li et	FaceForensics++	Grayscale Face	The Face X-ray	Facial X-ray	Detection	General	Lack of	Face X-ray
	al. (2020)	FaceForensics	X-ray images	computation is	was proposed	accuracy of	Applicability,	Specifics,	outperforms
				the key	as an	97.73% for F2F	Effectiveness,	Limited	most face
				method in this	effective tool	and 85.69% for FS.	Greyscale Image	Dataset	forgery
				study. The	for	AUC:	and	Information	detection or
				paper does	identifying	FF++ - 98.52	Transparency.	and Limited	deepfake
				not describe	facial image	DFD- 93.47		Evaluation	detection
				Face X-ray's	counterfeitin			Information.	algorithms in
				technique,	g. It shows				detecting
				although it	how blending				forgery
				may use image	boundaries,				generated by
				processing and	used in many				various face
				computer	face				manipulation
				vision to	manipulation				techniques,
				identify and	techniques,				including those
				visualise face	can be used				not seen during
				image	to detect face				training. The
				blending	manipulation				research
				boundaries.	S.				emphasises
				The paper also					Face X-ray's
				advises					efficacy.
				training the					
				system					
				without using					
				state-of-the-					
				art face					
				alteration					
				tools' phoney					
				photos.					
[<u>16</u>]	Davide	FaceForensics++	CNN,	Variational	The research	AUC: 0.951	High Accuracy,	Lack of	The best model
	Coccomini	DFDC	EfficientNet B0	Autoencoders	focuses on	F1 Score: 88.0%	focus on facial	Dataset	detected
	et al.		as a feature	(VAEs), GAN,	face		expressions and	Information,	deepfakes with
	(2022)		extractor.	EfficientNet	expression		efficient	Lack of	an AUC of
				B7, Vision	deepfakes in		approach.	Technical	0.951 and an F1
				Transformers	video			Details and	score of 88.0%
					material. The				on the DFDC

				and voting	top model			Limited	dataset. The
					had an AUC			Discussion on	paper does not
				system.	of 0.951 and				
								Challenges.	compare the model to
					an F1 score of				
					88.0% on the				existing
					DFDC				approaches or
					dataset.				assess its
					These results				robustness to
					are close to				different
					the state-of-				deepfake
					the-art,				modifications.
					proving the				
					suggested				
					technique				
					detects				
					deepfakes.				
[<u>17</u>]	Ruben	ImageNet	GAN	Fake detection	The survey	Summarizes the	Comprehensive	Limited	The survey may
	Tolosana et	CelebA		and deepfake	covers facial	results from	Coverage,	Discussion of	reveal the
	al. (2020)	FFHQ		detection	picture	multiple studies.	Focus on	Open Issues.	present state of
		CelebA-HQ		methods.	manipulation		DeepFakes,		the art and
		FaceForensics++			and detection		Addresses		trends in the
		Celeb-DF			methods,		Societal		sector, which
		DFDC			including		Implications &		can inform
		FaceForensics			DeepFakes.		Highlights Public		future research
					Facial		Databases		and
					manipulation				development to
					includes				address bogus
					whole face				material in
					synthesis,				society.
					identity				
					switch				
					(DeepFakes),				
					attribute				
					manipulation,				
				1	-				
1					and				
1									
l					expression exchange.				

[18]	Nicolò Bonettin et al. (2020)	FaceForensics++ DFDC ImageNet, more than 119,000 videos to tackle the problem.	Deep learning- based features extracted from video frames	Ensembling of CNN Models, Base Network (EfficientNetB4), Attention Layers & Siamese Training.	provides a comprehensi ve grasp of technology evaluation methods, databases, and benchmarks. The work addresses the essential topic of identifying face modification in video sequences, particularly contemporar y facial manipulation techniques. Combining CNN models yielded good results for recognising altered faces in videos.	On datasets- DFDC: Model - EfficientNetB4 + EfficientNetB4ST + B4Att, Metric name – LogLoss, Metric value – 0.4640. FaceForensics++: Model - EfficientNetB4 + EfficientNetB4ST + B4Att + B4AttST, Metric name – AUC, Metric value - 0.9444. FaceForensics++: Model - EfficientNetB4 + EfficientNetB4ST + B4AttST, Metric name – LogLoss, Metric value - 0.3269.	Addresses a Societal Issue, Large Dataset and Ensembling Approach.	Limited Discussion on challenges.	It implies that ensembling CNN models with attention layers and siamese training can detect face alteration in video sequences.
[19]	Hasam Khalid et al. (2021)	FakeAVCeleb VoxCeleb2 Celeb-DF DFDC	multimodal	Deepfake Generation Methods and Multimodal	Its main result is the FakeAVCeleb dataset,	Accuracy (best): Model - Xception- comp UADFV - 91.2	Addressing Emerging Threats, Racial Bias Mitigation	Limited Technical Information	It introduces FakeAVCeleb, a new Audio- Video

DeeperForensics	Deepfake	which	DF-TIMIT LQ - 95.9	and Realistic	r	nultimodal
KoDF, deepfake	Detection.	provides	DF-TIMIT HQ -	Multimodal	d	ataset that
videos and		high-quality	94.4	Data.	car	n detect both
synthesized lip-		data to	FF-DF - 99.7			deepfake
synced fake		detect audio	DFD - 85.9		١ ,	videos and
audios created		and video	Celeb-DF - 65.3			audios.
using popular		deepfakes	FakeAvCeleb - 72.5		Fa	akeAVCeleb
deepfake		concurrently.			inc	ludes cloned
generation		The dataset	Model - Meso4		á	audios and
methods and real		seeks	DFDC - 72.2			deepfake
YouTube videos of		realism,			vid	leos. Authors
celebrities with		ethnic				created
four different		diversity, and			Fal	keAVCeleb to
ethnic		racial bias-			be	gender and
backgrounds.		free data.				racially
						impartial,
						featuring
						otage of men
						ind women
						from four
					n	najor races
					ac	ross various
						e categories.
						Also used
						various
						common
						epfake video
						and audio
						creation
						chnologies to
						eate almost
						lip-synced
					\	videos and
						audios.
						Evaluated
						akeAVCeleb
						taset against
					S	even other

									deepfake detection datasets. Conducted tests employing cutting-edge approaches in unimodal, ensemble- based, and multimodal environments (see to Appendix C for findings). FakeAVCeleb aims to strengthen deepfake detectors and equip researchers with a solid base for multimodal
[20]	Joel Frank et al. (2021)	WaveFake LFSpeech with 13,100 short audio clips JSUT with basic5000 corpus	Spectral Features.	Deepfake Detection Dataset Creation, Frequency Statistics Analysis and Implementatio n of Classifiers.	This study created a dataset for audio deepfake identification, filling a gap in research that has mostly concentrated on image- based	Neural network- based approaches performed better on average, but more traditional models proved to be more robust.	Filling a Research Gap, Novel Dataset and Baseline Classifiers.	Absence of Specificity	detectors. The study underpins audio signal research. The current TTS landscape, signal processing methods, and feature formats were covered first. Next, they

	d	detection.	presented their
		ne research	main
		also sheds	contribution: a
		light on	new data set
	fr	requency	with samples
	S	statistics	from six
		across	cutting-edge
	r	network	architectures in
	de	esigns and	two languages.
		es baseline	They identified
	cla	assifiers for	modest
		detection	differences
		echnique	between
	dev	velopment.	models by
			visualising the
			frequency
			spectrum,
			especially at
			higher
			frequencies.
			They next
			calculated each
			data set's
			average energy
			per frequency
			using prosody
			analysis. The
			study indicates
			that all models
			approximate
			training data,
			yet differences
			remain. To
			prepare future
			practitioners,
			they trained
			numerous
			baseline

									models. Their
									performance
									was evaluated
									in numerous
									data sets and
									circumstances.
									Our GMM and
									neural network
									solutions were
									trained.
									Although
									neural
									networks
									performed
									better, GMM
									classifiers were
									more robust,
									which may be a
									benefit in real
									life. The final
									classifier
									analysis used
									attribution. It
									was found that
									high-frequency
									and low-
									frequency
									information are
									important.
[21]	Sanjay Saha	FaceForensics++	Embeddings	Deepfake	The main	IoU and AuC of	Novel	Limited	The research
	et al.	Celeb-DF	Vision	Detection	result of this	more than 90% for	Benchmark	Technical	describes a
	(2023)	FSh	Transformer-	Method,	research is a	all the datasets	Dataset, Spatial	specificity	deepfake
		NT	based spatial	Benchmark	deepfake		and Temporal	•	detection
		DF	features and a	Dataset	detection		Features and		algorithm that
		F2F	Timeseries	Creation,	algorithm		Potential for		can detect
			Transformer for	Vision	that can		Targeted		small changes
			learning	Transformer	detect small		Moderation.		in generative

			features from	Timeseries	generated				mentions a new
			the videos	Transformer.	movies. The				benchmark
					approach				dataset for
					identifies				evaluation.
					suspicious				
					deepfakes at				
					the frame				
					and video				
					levels to				
					moderate				
					them.				
[<u>22</u>]	Peter	CIFAR-10	multi–Local	Diffusion	The proposed	A total avg of 1.00	Addressing	Limited	The paper
	Lorenz et	ImageNet	Intrinsic	Model	method for	was found for	Malicious Use,	Technical	describes the
	al. (2023)	CelebA-HQ	Dimensionality	Detection,	automatically	both detection	Superior	Information	development of
		LAION-5B	(multiLID)	Identification	detecting	and identification	Detection and	about	a method for
		Diffusion DB		of Generator	diffusion	on the LSUN-	Comprehensive	MultiLID, the	detecting
		ArtiFact		Networks and	model-	bedroom dataset	Benchmark.	'real' class was	synthetic
		CIFAKE		Benchmark for	generated			troublesome.	images
		use of known and		Diffusion-	synthetic				generated by
		newly created		Generated	pictures and				diffusion
		datasets for		Images.	generator				models and
		extensive			networks is				identifying the
		experiments on			the main				corresponding
		diffusion			result of this				generator
		detection and			research. The				networks. It
		model			research also				also highlights
		identification.			sets a				the creation of
					baseline for				a benchmark
					diffusion-				for diffusion-
					generated				generated
					picture				images.
					detection,				
					which				
					advances				
					diffusion				
					model				
					detection.				

[23]	Komal	DFDC	Modality	Modality	The Modality	The approach	Novel Detection	Generalisation	The paper
	Chugh et al.	DeepFake-TIMIT	Dissonance	Dissonance	Dissonance	outperforms the	Approach,		describes the
	(2020)	'	Score (MDS),	Score (MDS),	Score-based	state-of-the-art by	Improved		proposal of a
	, ,		which quantifies	Feature	deepfake	up to 7%.	Performance		deepfake
			the dissimilarity	Learning and	detection		and Temporal		detection
			between audio	Loss	system is the		Forgery		method based
			and visual	Functions.	main result of		Localization.		on Modality
			modalities in a		this research.				Dissonance
			video.		The method				Score (MDS)
					quantifies				and highlights
					audio-visual				its improved
					dissimilarity				performance
					to identify				compared to
					deepfake				the state-of-
					videos. The				the-art. It also
					paper also				mentions the
					shows				capability of
					temporal				the method to
					forgery				localize
					localization,				manipulated
					which can				video
					identify				segments.
					modified				
					video parts.				
[<u>24</u>]	Yihao	FFHQ	16 popular	FakePolisher	This research	Average reduction	Reduction of	Potential Bias	In order to fool
	Huang et	LSUN	GAN-based fake	and Evaluation	produced	of 47% and up to	Artifacts, and		deepfake
	al. (2020)		image		FakePolisher,	93% in the worst	Impact on		detection
			generation		a technology	case	Detection		systems, the
			techniques		that reduces		Methods.		authors of this
					artefact				work discuss
					patterns in				the creation of
					synthesised				FakePolisher, a
					photos,				tool for
					making				smoothing out
					deepfake				artefact
					detection				patterns in
					approaches				computer-
									generated

					harder to detect.				photographs. It illustrates how FakePolisher
									significantly
									decreased
									detection
									accuracy when
									compared to
									three state-of-
									the-art
									detection
									approaches.
[<u>25</u>]	Oscar de	Celeb-DF V2 for	spatial and	Spatiotempora	The	Method-	Temporal	Limited	The paper
	Lima et al.	evaluating	temporal	I Convolutional	fundamental	ROC-AUC%:	Information	dataset	describes the
	(2020)	spatiotemporal	features	Method,	contribution	RCN – 74.87	Utilization,		creation of a
		convolutional		Benchmark	of this study	R2Plus – 99.43	Benchmark		benchmark to
				Creation and	is the	I3D – 97.59	Creation and		evaluate
				Performance	development	MC3 – 99.30	Improved		spatiotemporal
				Evaluation	of the Celeb-	R3D – 99.73	Performance		convolutional
					DF dataset as	Accurcay%:			methods for
					a baseline for	RCN – 76.25			deepfake
					testing	R2Plus – 98.07			detection using
					spatiotempor	I3D – 92.28			the Celeb-DF
					al	MC3 – 97.49			dataset. It
					convolutional	R3D – 98.26			highlights the
					algorithms				potential
					for deepfake				advantages of
					detection.				incorporating
					These				temporal
					techniques				information
					are meant to				and mentions
					make use of				the
					both				outperformanc
					geographical				e of frame-
					and temporal				based
					data to				detection
					enhance				methods.

					deepfake detection.				
[26]	Ning Yu et	CelebA aligned	artificial	Artificial	The key	Model &	Proactive	Realism vs real	It explains how
	al. (2021)	and cropped	fingerprints into	Fingerprints,	contribution	fingerprint bitwise	Deepfake	data	artificial
	, ,	images	generative	Deepfake	of this study	accuracy:	Detection,		fingerprints
		LSUN Bedroom	models	Detection and	is the	ProGAN trained on	Robustness and		were included
		LSUN cat		Attribution	incorporation	150k fingerprinted	Transferability,		into generative
		CIFAR-10			of synthetic	CelebA 128x128 –	Trivial Deepfake		models as a
		CycleGAN			fingerprints	0.98	Detection and		preventative
		horse2zebra			into	ProGAN trained on	Attribution		and long-term
		AFHQ Cat and			generative	50k fingerprinted			method for
		Dog			models,	LSUN Bedroom			detecting
					which	128x128 - 0.93			deepfakes. It
					provides a	ProGAN trained on			highlights the
					proactive and	50k fingerprinted			approach's
					long-term	LSUN Cat 256x256			success in
					solution for	- 0.98			simplifying
					deepfake	StyleGAN trained			deepfake
					identification.	on 150k			detection and
					The goal of	fingerprinted			attribution
					this method	CelebA 128x128 –			while also
					is to	0.99			highlighting its
					strengthen	StyleGAN trained			stability and
					deepfake	on 50k			portability.
					detection and	fingerprinted			
					attribution so	LSUN Bedroom			
					that it can	128x128 – 0.98			
					withstand	StyleGAN trained			
					adversarial	on 50k			
					methods and	fingerprinted			
					dynamic	LSUN Cat 256x256 – 0.99			
					generative models.				
					illoueis.	StyleGAN2 trained on 150k			
						fingerprinted			
						CelebA 128x128 –			
						0.99			
						0.99			

						StyleGAN2 trained			
						on 50k			
						fingerprinted			
						LSUN Bedroom			
						128x128 - 0.99			
						StyleGAN2 trained			
						on 50k			
						fingerprinted			
						LSUN Cat 256x256			
						- 0.99			
						BigGAN trained on			
						fingerprinted			
						CIFAR10 32x32 -			
						0.99			
						CUT trained on			
						fingerprinted			
						horse2zebra			
						256x256 – 0.99			
						CUT trained on			
						fingerprinted			
						AFHQ cat2dog			
						256x256 – 0.99			
[27]	Tiziano	TuranFaka	Dat somewated	Collection of	This research	Clabal assumes.	Dool Doonfole	Curse of	The study
[27]		TweepFake – 25,572 tweets	Bot-generated			Global accuracy-	Real Deepfake		describes the
	Fagni et al. (2020)	dataset	tweets	Real Deepfake Tweets,	produced the	Log_reg_bow - 0.804	Tweets, Diverse Generation	dimensionality and it ignores	creation of the
	(2020)	which is the first		Evaluation of	TweepFake dataset,	Rand_forest_bow	Techniques and	the	TweepFake
		dataset of real		Deepfake Text	which is	- 0.772	Public	information	dataset, the
		deepfake tweets.		Detection	useful for	Svc_bow - 0.811	Availability	about	first dataset of
		It consists of		Methods and	developing	Log_reg_bert -	Availability	word order	real deepfake
		tweets collected		Dataset	and testing	0.835		word order	tweets
		from a total of 23		Publication.	deepfake text	Rand_forest_bert -			collected from
		bots, imitating 17		r ublication.	detection	0.827			Twitter. It also
		human accounts.			algorithms on	Svc_bert - 0.842			highlights the
		mamam accounts.			social media	Char_cnn - 0.851			evaluation of
					postings. The	Char_gru - 0.830			13 deepfake
					evaluation of	Char_cnngru -			text detection
					13 detection	0.837			text detection
					בס מפנפננוטוו	0.037			

					technologies	Bert_ft - 0.891			methods using
					also sets a	Distilbert_ft -			the dataset.
					baseline for	0.887			
					future	Roberta_ft - 0.896			
					research.	XInet_ft - 0.877			
[28]	Shahroz	Facial	temporal	Single Frame-	This research	Average accuracy	Temporal	Space, single	The paper
	Tariq et al.	Reenactment:	information	based	produced	CLRNet in the	Information	dataset	describes the
	(2020)	Face2Face (F2F)		ShallowNet	CLRNet, a	detection	Utilization,	performance	development of
		Neural Texture		Xception	Convolutional	performance	Generalizability		CLRNet, a deep
		(NT)		MesoNet	LSTM-based	comparison of	and Empirical		learning-based
		Identity Swap:		Multiple	Residual	state-of-the-art	Performance.		model for
		DeepFake (DF)		Frame-based	Network that	deepfake			detecting
		FaceSwap (FS)		CNN+LSTM	detects	detection methods			deepfake
		DeepFake		DBiRNN	deepfake	against in domain			videos by
		Detection (DFD)		CLRNet	films using	attack – 98.61.			leveraging
		DeepFake			temporal	The single domain			temporal
		Detection			information	trained detector			information
		Challenge (DFDC)			from	performance			from sequences
		Unknown:			consecutive	against out of			of consecutive
		DeepFake in the			image	domain attack and			images. It also
		Wild (DFW)			sequences.	DFW when Dt =			emphasizes the
					The transfer	DFDC:			improved
					learning-	DFDC - 96.76 ± 0.2			generalizability
					based	DF - 51.58 ± 0.1			of the method
					method	FS - 51.98 ± 0.1			and its
					overcomes	DFD - 53.62 ± 0.2			outperformanc
					deepfake	NT - 59.70 ± 0.2			e of five state-
					detection's	F2F - 53.83 ± 0.2			of-the-art
					generalizabili	DFW - 51.43 ± 0.1			deepfake
					ty issue.				detection
									methods
[<u>29</u>]	Javier	Celeb-DF	Physiological	DeepFake	This research	AUC values above	Physiological	Lack of	The paper
	Hernandez-	DFDC	measurements	Detection	introduced	98% on both the	Measurement	Dataset Details	introduces a
	Ortega et		related to heart	Framework,	DeepFakesO	Celeb-DF and	Utilization, High		novel deepfake
	al. (2020)		rate using	CNN,	N-Phys, a	DFDC databases	Detection		detection
			remote	Experimental	deepfake		Performance		framework,
			photoplethysmo	Evaluation	detection		and State-of-		DeepFakesON-
			graphy (rPPG)		system that		the-Art Results.		Phys, based on

									احداد ما ما ما ما
					uses				physiological
					physiological				measurements,
					measures,				specifically
					specifically				heart rate
					heart rate				information
					information				obtained
					from rPPG, to				through rPPG.
					improve				It emphasizes
					video				the high
					identification.				detection
					AUC values				performance of
					over 98% on				the method,
					both				with AUC
					available				values
					datasets				exceeding 98%
					show that				on the Celeb-
					this strategy				DF and DFDC
					works.				databases,
									outperforming
									the state of the
							_	_	art.
[<u>30</u>]	Wanjun	WebText style	factual	Graph-Based	This research	Improves strong	Factual	Limited	It introduces a
	Zhong et al.	GPT2 dataset and	structures, it	Model,	produced a	base models built	Structure	Technical	graph-based
	(2020)	news-style	suggests that	Sequential	graph-based	with RoBERTa	Utilization,	Information	model for
		GROVER	coarse-grained	Modeling of	model for		Graph-Based		deepfake text
		generated dataset	representations	Relations &	deepfake text		Representation		detection that
		two public	used in existing	Experimental	detection		and Improved		leverages the
		deepfake datasets	deepfake	Evaluation	that uses		Performance.		factual
		for	detection		document				structure of
		experimentation	methods		factual				documents as a
			struggle to		structure to				discriminative
			capture these		discriminate.				factor. It
			factual		The model's				emphasizes the
			structures.		ability to				improvement in
					identify				performance
					machine-				over strong
					generated				base models
					text from				

					factual-				built with
					structured				RoBERTa.
					human				
					material is				
					supported by				
					significant				
					improvement				
					s over strong				
					base models.				
[31]	Tianchen	ImageNet	The paper	Pair-wise Self-	Based on	The proposed	Source Feature	Lack of	The paper
	Zhao et al.	FaceForensics++	emphasizes the	Consistency	source	models enhance	Inconsistency	Dataset Details	introduces a
	(2021)	DFDC	utilization of	Learning (PCL),	feature	the mean AUC	Utilization,		method for
	, ,		source feature	and	discrepancy,	over the state of	Novel		detecting
			inconsistency	Inconsistency	this research	the art from	Representation		deepfake
			within deepfake	Image	developed a	96.45% to 98.05%	Learning and		images based
			images as a cue	Generator	method to	in-dataset and	Improved		on source
			for detection. It	(I2G)	detect	from 86.03% to	Performance.		feature
			suggests that		deepfake	92.18% cross-			inconsistency. It
			distinct source		images. PCL	dataset.			emphasizes the
			features can be		and I2G are				utilization of
			preserved and		used to				source
			extracted even		improve				features, the
			after deepfake		deepfake				introduction of
			generation		picture				PCL and I2G,
			processes.		detection.				and
					The				improvements
					experimental				in AUC over the
					results show				state of the art.
					improved				
					AUC in in-				
					dataset and				
					cross-dataset				
					evaluations				
					above the				
					state of the				
					art.				
[<u>32</u>]	Bojia Zi et	FaceForensics++	2D and 3D	Deepfake	This research	Systematic	Real-World	Lack of	The paper
	al. (2021)	CelebDF	attention	Detection,	introduced	evaluation of	Dataset,	technical	introduces the

		DFDC datasets	models, and	WildDeepfake	the	baseline detection	attention-Based	details about	WildDeepfake
		consisting of	ADDNets	Dataset, &	WildDeepfak	networks is	Models and	the artificial	dataset,
		7,314 face		Attention-	e dataset to	conducted on the	Availability	fingerprinting	designed for
		sequences		based	help create	existing datasets	,	process and	evaluating
		extracted from		Deepfake	and test	and the		systematic	deepfake
		707 deepfake		Detection	deepfake	WildDeepfake		evaluation.	detectors
		videos collected		Networks	detectors	dataset.			against real-
		entirely from the		(ADDNets)	against real-				world
		internet.		(world				deepfakes from
					internet				the internet. It
					deepfakes.				also mentions
					The research				the proposal of
					also				ADDNets,
					proposed				which leverage
					ADDNets,				attention masks
					which use				for improved
					attention				detection.
					masks to				
					improve				
					detection.				
[<u>33</u>]	Sowmen	FaceForensics++	Model tends to	Face-Cutout,	This research	The paper	Overfitting	Lacks detailed	It discusses the
	Das et al.	Celeb-DF	memorize the	Evaluation	identified	mentions that the	Mitigation, Data	technical	identification of
	(2021)	DFDC	actors' faces	Experiments	deepfake	Face-Cutout	Augmentation	information	limitations in
			and labels	and General-	detection	method achieves a	Solution and	about the	existing
			instead of	Purpose Data	framework	reduction in	General-Purpose	architecture	deepfake
			learning fake	Pre-processing	flaws as its	LogLoss of 15.2%	Guideline.	and	detection
			features.	Guideline.	main result. It	to 35.3% on		functioning of	frameworks
					introduces	different datasets		the Face-	and the
					the Face-	compared to other		Cutout	proposal of the
					Cutout data	occlusion-based		method	Face-Cutout
					augmentatio	techniques.			data
					n strategy to				augmentation
					reduce				method to
					overfitting				mitigate
					and improve				overfitting.
					data				
					variation. A				
					general-				

					purpose data				
					pre-				
					processing				
					strategy is also				
					suggested to				
					improve				
					deepfake				
					detection				
					model				
					generalizabili				
					ty.				
[34]	Deressa		CNN and Vision	Convolutional	The primary	The paper	Model	size or	The paper
[3.]	Wodajo et	DFDC	Transformer	Vision	outcome of	mentions that the	Architecture and	composition of	presents a
	al. (2021)	3.50	(ViT)	Transformer,	this research	model achieves	Competitive	dataset not	Convolutional
	J (2022)		components.The	and Training	is the	91.5% accuracy, an	Results	described	Vision
			CNN is	on DFDC	development	AUC value of 0.91,		properly	Transformer
			responsible for		of a	and a loss value of		, ,	model for
			extracting		Convolutional	0.32 when			deepfake
			learnable		Vision	evaluated on the			detection,
			features, while		Transformer	DFDC dataset.			highlighting its
			the ViT takes		model for				architecture
			these features		detecting				and
			as input and		deepfakes.				performance
			categorizes		The model is				metrics on the
			them using an		evaluated on				DFDC dataset.
			attention		the DFDC				
			mechanism.		dataset and				
					achieves				
					specific				
					performance				
					metrics,				
					including				
					accuracy,				
					AUC, and				
					loss.				

[35]	Felix Juefei-	ImageNet	Timeliness	Comprehensiv	The primary	It focuses on the	Taxonomy and	No personal	It describes the
	Xu et al.	coco	Scale	e analysis of	outcome of	survey and	Categorization	experiment or	research's goal
	(2021)	CelebA	Detailedness	318 research	this research	analysis of	along with a	research	to cover
		FFHQ	Technical	papers	is a	research papers in	Comprehensive		DeepFake
		LSUN	evolution		comprehensi	the DeepFake	Overview.		production,
		CelebA-HQ	analysis		ve overview	domain.			detection, and
		VGGFace2	Battleground		and analysis				evasion. It
		CASIA-WebFace	analysis		of the				provides an
		FaceForensics++	Horizon analysis		landscape of				introduction to
		MS-Celeb-1M	,		DeepFake				the research's
		MegaFace			research,				scope and goals
		Celeb-DF			including				without
		FaceForensics			generation,				quantitative
		WildDeepFake			detection,				data or
		DeeperForensics			and evasion.				technical
		·			It aims to				information.
					provide				
					insights into				
					the trends,				
					challenges,				
					and				
					opportunities				
					in the field.				
[<u>36</u>]	Hanqing	Celeb-DF	fine-grained	Multi-	The main	Method-	Fine-Grained	Framework is	The paper
	Zhao et al.	FaceForensics++	classification	attentional	result of this	Efficient-B4:	Approach and	sensitive	outlines the
	(2021)		and use of	deepfake	research is a	LQ-	Attention	to high	research's aim
			multiple spatial	detection	new	ACC 88.69	Mechanisms.	compression	to formulate
			attention	network has	deepfake	AUC 90.40		rate which	deepfake
				several spatial	detection	HQ-		blurs most of	detection as a
				attention	algorithm	ACC 97.60		the useful	fine-grained
				heads, a	that treats	AUC 99.29		information in	classification
				textural	the problem			spatial	problem and
				feature	as a detailed			domain.	introduces a
				augmentation	classification				novel multi-
				block, and an	task. The				attentional
				aggregation of	method				deepfake
				low-level	outperforms				detection
				textural and	binary				network.

				high-level semantic features directed by attention maps	classification methods and is state-of- the-art.				
[37]	Jiameng Pu et al. (2021)	FaceForensics++ Creation of a large dataset of deepfake videos in the wild, consisting of 1,869 videos collected from YouTube and Bilibili, containing over 4.8 million frames of content.	collection and analysis of real-world deepfake content.	The research collects and analyses realworld deepfake footage. It reviews current defence strategies and investigates transfer learning and competitionwinning ways to improve deepfake video defences.	The study seeks to explain realworld deepfake video growth, popularity, creators, modification strategies, and production processes. It assesses current defences and investigates ways to improve them against real-world deepfake content.	Promising approach to improve performance of DF-W	Large Real- World Dataset, Comprehensive Analysis	Complex approach	The study outlines the contributions of the research, including the creation of a large real-world dataset of deepfake videos, a comprehensive analysis of deepfake content, and an evaluation of existing defense methods.
[38]	Hong-Shuo Chen et al. (2021)	UADFV Celeb-DF v1 Celeb-DF v2	Automatic extraction of features using the successive subspace learning (SSL) principle from various parts of face images.	The proposed DefakeHop approach uses sequential subspace learning (SSL) for feature extraction, the c/w Saab	The primary outcome of this research is the development of the DefakeHop method for deepfake	AUC values of 100%, 94.95%, and 90.56% on UADFV, Celeb-DF v1, and Celeb-DF v2 datasets, respectively.	High Performance and small model size.	Lacks in-depth technical details about the c/w Saab transform, feature distillation module, or SSL principle.	The paper outlines the proposed DefakeHop method for deepfake detection and provides specific

			These features are processed using the c/w Saab transform and a feature distillation module.	transform for feature processing, and a feature distillation module for dimension reduction and soft classification. These methods detect deepfakes in facial photos.	detection. The method achieves state-of-the- art performance on multiple datasets, as indicated by the area under the ROC curve (AUC) values.				accuracy results, demonstrating its state-of-the- art performance on multiple datasets.
[39]	Zhi Wang et al. (2021)	FaceForensics++ (FF++), a recently released large- scale deepfake video detection dataset, contains 1,000 genuine videos: 720 for training, 140 for verification, and 140 for test. Four advanced methods— DeepFakes (DF), Face2Face (F2F), FaceSwap (FS), and NeuralTextures (NT)—generated four fake videos from each real video in the dataset. We	Generalization	Introduction of pixel-wise Gaussian blurring models to mitigate high-frequency artifacts in Albased face manipulation.	The main result of this research is an adversarial training strategy to improve deepfake detection classification model generalisatio n. These models should be better at detecting hidden facial forgeries and responding to different image/video qualities.	Improved accuracy of over 90% in all the models.	Improved Generalization	Lack of Specifics	The study outlines the motivation and approach for improving the generalization ability of deepfake detection models through adversarial training.

		followed the specified training, validation, and test set split in our research. RAW, C23, and C40 video quality were processed for each dataset video. Following the official face detection and alignment method, we collected 270 frames from each of 5,000 (actual and false) videos for each quality. They included DFD and Celeb-DF deepfake datasets to broaden the evaluation. DFD comprises 3,068							
		They included DFD and Celeb-DF deepfake datasets to broaden the evaluation. DFD							
		5,639 fraudulent videos.							
[40]	Young-Jin Heo et al. (2021)	DFDC	Vision Transformer model with distillation methodology	It combines CNN features and a patch- based positioning	The Vision Transformer- based method for detecting	The proposed model achieves an AUC of 0.978 and an F1 score of 91.9, while the	Improved Performance due to focus on false negatives.	Lacks detailed study	The paper presents a Vision Transformer- based approach

				model to interact with all positions to identify	phoney videos with an emphasis on false	previous state-of- the-art model yields an AUC of 0.972 and an F1			with a distillation methodology for detecting
				artifact	negatives is	score of 90.6 on			fake videos,
				regions in the	the main	the same dataset.			highlighting
				videos.	result of the				improved
					research. The				performance in
					research				terms of AUC
					reports				and F1 score on
					better DFDC				the DFDC
					Dataset				Dataset.
					performance				
					than the state-of-the-				
					art model.				
[41]	J. Thies et	Sample of 100	The authors	The authors	The authors	For TGAN-	It can detect	It requires a	The authors
[41]	al. (2019)	real and 100 fake	used a	used a	were able to	Generator:	deepfakes that	large dataset	evaluated their
	ai. (2013)	videos for first.	combination of	temporal	achieve a	ResNet-50	are created	of real and	method on a
		Second dataset	spatial and	generative	detection	Discriminator:	using different	fake images or	dataset of
		had 500 real and	temporal	adversarial	accuracy of	PatchGAN	techniques.	videos to train	deepfake
		500 fake videos.	features to	network	94.6% on a	Learning rate:	It is robust to	the TGAN.	videos. The
			detect	(TGAN) to	dataset of	0.0002	variations in the	It is not yet	dataset
			deepfakes. The	detect	deepfake	Batch size: 64	lighting and	clear how the	consisted of
			spatial features	deepfakes. The	videos.	Number of	background of	method would	100 real videos
			were extracted	TGAN is a type		epochs: 200	the images or	perform on	and 100 fake
			from the images	of deep		•	videos.	deepfakes that	videos. The
			or videos, and	learning			It is relatively	are created	authors were
			the temporal	model that			fast and	using more	able to achieve
			features were	can be used to			efficient.	advanced	a detection
			extracted from	generate				techniques.	accuracy of
			the changes in	realistic					94.6% on this
			the images or	images or					dataset.
			videos over	videos. The					
			time. The spatial	TGAN is					
			features	trained on a					
			included the	dataset of real					
			brightness,	and fake					

			contrast, and texture of the images or videos. The temporal features included the motion of the objects in the images or videos.	images or videos. The real images or videos are used to train the generator of the TGAN, and the fake images or videos are used to train the discriminator of the TGAN. The discriminator is then used to classify images or videos as real or fake.					
[<u>42</u>]	Sangyup Lee et al.	FaceForensics++ 200 real-world	Transfer learning-based	Transfer learning-based	The paper aims to	Zero shot accuracy – 89.49% gaining	A unified model is developed to	Small dataset for	The approach achieves much
	(2021)	Deepfake-in-the-	Autoencoder	Autoencoder	develop a	10.77% from	detect multiple	generalisation	higher
	, ,	Wild (DW) videos	with Residuals	with Residuals	practical	baseline model	types of		generalized
		of 50 celebrities	(TAR).	(TAR) is	digital		deepfake videos		detection
				proposed for	forensic tool		simultaneously.		performance
				deepfake	for detecting		Transfer learning		than state-of-
				detection.	various types		helps improve		the-art
				Autoencoder-	of deepfakes		detection		methods on the
				based detection	simultaneous		performance		FaceForensics+ + dataset.
				model with	ly, achieving high accuracy		across various deepfake types.		+ dataset. Evaluation on
				Residual	with a small		Achieves higher		200 real-world
				blocks is	number of		generalized		Deepfake-in-
				utilized.	training		detection		the-Wild (DW)
				Transfer	samples.		performance		videos of
				learning is	The proposed		compared to		celebrities
				performed to	method seeks				results in

				detect	to generalize		state-of-the-art		89.49% zero-
				different types	detection		methods.		shot accuracy,
				of deepfakes	performance		Demonstrates		significantly
				simultaneousl	across		practicability		higher than the
					different		through real-		best baseline
				y.			world evaluation		model
					types of				
					deepfakes.		and validation.		(improvement
[40]		2520	6	-ı ·	· · ·	0 1000000	· ·	- 1	of 10.77%).
[<u>43</u>]	Matthew	DFDC, consists of	Primarily visual	The primary	This study	Const-0.000002	The study	The paper	It suggests that
	Groh et al.	both authentic	and pertain to	technique	aims to	Anger-0.099525	involves a large	lacks details	human
	(2021)	videos and	the content and	implemented	compare		number of	about the	observers and
		deepfake videos.	quality of the	in this study is	human		participants	composition	computer
		The authentic	videos	the	observers		(15,016) from an	and size of the	vision models
		videos are		comparison of	and a		online setting,	dataset,	make different
		genuine,		human	computer		which allows for	making it	kinds of
		unaltered video		observers'	vision		a diverse and	difficult to	mistakes when
		footage, while the		ability to	deepfake		extensive	assess the	detecting
		deepfake videos		distinguish	detection		dataset of	representative	deepfake
		are machine-		between	technique in		human	ness of the	videos. The
		manipulated		authentic and	recognising		responses.	videos used.	combination of
		videos created		deepfake	deepfake		The comparison	Specific	both human
		using advanced		videos with	films. The		of human	features used	and model
		deep learning		the	study		detection	for detection	predictions
		techniques.		performance	examines		capabilities with	and the	improves
				of a leading	detection		computer vision	deepfake	accuracy, but
				computer	methods'		models provides	detection	incorrect model
				vision	pros and		insights into the	model	predictions can
				deepfake	cons. Also,		relative	employed are	negatively
				detection	the study		strengths and	not detailed.	impact human
				model	examines the		weaknesses of		accuracy. The
					combined		each approach.		study also hints
					accuracy		Investigating the		at the
					when people		impact of pre-		importance of
					see the		registered		specialized
					model's		randomized		cognitive
					predictions.		interventions on		capacities in
					p. 2020.70		deepfake		· ·
							•		
							deepfake detection adds		explaining human

							an experimental		deepfake
							dimension to		detection
F 4 4 3		DECC 2024	- · ·	5	TI 0500	D + C = 0.04	the study.	-1 · · · ·	performance.
[<u>44</u>]	Bo Peng et	DFGC 2021	Facial	Participants'	The DFGC	Best Score – 0.94	The competition	Things in the	Highlights the
	al. (2021)		landmarks, lip	deepfake	2021		helps test	top solutions	importance of
			movements, &	detection	competition		deepfake	also are	benchmarking
			audio-visual	methods were	benchmarks		development	redundant	the adversarial
			synchronization	likely	cutting-edge		and detection		game between
				implemented	deepfake		technologies.		deepfake
				in the	development		The publication		creators and
				competition.	and detection		advances		detectors and
				Modern	algorithms.		deepfake		suggests that
				computer	The		technology and		advancements
				vision models, machine	tournament revealed the		detection by		have occurred in both areas.
					continuous		sharing insights		in both areas.
				learning algorithms,	conflict		and findings. The DFGC-21		
				and other	between		testing dataset		
				methodologies	deepfake		expands		
				may be used	creators and		deepfake		
				to identify	detectors and		detection		
				deepfake	highlighted		research.		
				films.	their		research.		
				111113.	advances.				
					The				
					competition's				
					outcomes				
					would				
					evaluate				
					deepfake				
					detection and				
					technology.				
[45]	Vishal	100,000 fake	image content,	A Fingerprint	A model	Binary	The research	The	It highlights
	Asnani et	images generated	structure, and	Estimation	parsing	classification	addresses the	application of	that the
	al. (2021)	by 116 different	visual	Network (FEN)	system that	performance for	challenging	fingerprint	research
		Generative	characteristics	and Parsing	reverses	coordinated	problem of	estimation for	achieved
		Models (GMs),		Network (PN)	engineers	misinformation	reverse	deepfake	encouraging
		CIFAR		comprise the	GMs to infer	attack-	engineering	detection and	results in

				framework.	hyperparame	Method:	GMs to	image	parsing the
				The constraint-	ters from	FEN-	understand their	attribution can	hyperparamete
				trained FEN	generated	AUC (%) = 83.5	hyperparameter	contribute to	rs of unseen
				estimates GM	images is the	Classification	s, which can be	mitigating the	GMs and
				fingerprints	main result of	accuracy (%) =	valuable for	misuse of	reported state-
				from	this research.	76.85	identifying	GMs.	of-the-art
				generated	The	76.83 FEN + PN –	manipulated	GIVIS.	results in
				_			media.		
				images.	suggested method	AUC (%) = 87.3			deepfake
				However, the		Classification	The proposed		detection and
				PN predicts	estimates GM	accuracy (%) =	framework		image
				network	network	80.6	demonstrates 		attribution
				designs and	designs and		promising		benchmarks
				loss functions	training loss		results in		
				using	functions		estimating GM		
				estimated	from model		network		
				fingerprints.	photos. The		architectures		
				The	calculated		and loss		
				framework	fingerprints		functions from		
				uses these	can also		generated		
				components	recognise		images.		
				for "model	deepfakes				
				parsing." The	and attribute				
				dataset of	images,				
				phoney GM	according to				
				photos is also	the study.				
				used.	,				
[<u>46</u>]	Gaojian	6 large-scale	Fused Facial	The research	The primary	AUC Scores for	The research	Lacks specific	While the
	Wang et al.	DeepFake	Region_Feature	introduces the	outcome of	datasets-	addresses the	details about	paper indicates
	(2021)	datasets	Descriptor	FFR_FD as a	this research	SIFT:96.9	challenge of	the datasets	that the
				novel	is the	SURF:97.1	DeepFake	used for	proposed
				approach for	development	FAST&BRIEF:99.9	detection by	experimentati	FFR_FD-based
				DeepFake	of the	ORB:98.6	proposing a	on, evaluation	method
				detection. It's	FFR_FD-	A-KAZE:97.8	feature-based	metrics, and	outperforms
				mentioned	based		approach that	the extent of	most state-of-
				that this	DeepFake		relies on facial	performance	the-art DNN-
				method is	detection		feature points	improvement	based models,
				efficient and	method. The		and descriptors.	achieved	it doesn't
				fast, making it	proposed			compared to	provide specific
				idat, making it	proposed			compared to	provide specific

				suitable for	approach		The FFR_FD	DNN-based	quantitative
				real-world	aims to		method is	models.	results.
				applications	leverage		designed to be	mouels.	resuits.
				where	facial feature		efficient and		
				computational	points and		fast, making it		
				resources may	descriptors to		suitable for real-		
				be limited.	extract		time or		
					relevant		resource-		
					information		constrained		
					from face		applications.		
					images. The				
					research				
					suggests that				
					this method				
					outperforms				
					most state-				
					of-the-art				
					DNN-based				
					models in				
					DeepFake				
					detection.				
[<u>47</u>]	Hemlata	ASVspoof 2019	raw waveform	spectro-	The main	error rate of 1.06%	The research	While the	The research
	tak et al.		inputs	temporal	outcome of		focuses on using	paper	reports an
	(2021)			graph	this research		raw waveform	highlights the	equal error rate
				attention	is the		inputs, which	model's	of 1.06% for
				network (GAT)	development		can capture fine-	performance	the ASVspoof
					of the		grained audio	on a specific	2019 logical
					RawGAT-ST		details without	dataset, it	access
					model, which		relying on	doesn't	database,
					aims to		predefined	provide	which is
					achieve		features.	insights into its	considered one
					reliable		The RawGAT-ST	performance	of the best
					detection of		model is	across a	results to date.
					spoofed or		designed to	spectrum of	
					deepfake		learn	diverse	
					speech by		relationships	spoofing	
					automatically		between cues in	attacks or on	
					learning		different sub-	300000000000000000000000000000000000000	
				1	Icarriing		different 3db ²		

					representatio		bands and	other	
					ns from raw		temporal	datasets.	
					waveform		intervals, which	datasets.	
					inputs. The		can improve the		
					model's		detection of		
					performance		diverse spoofing		
					is evaluated		attacks.		
					using the		The reported		
					ASVspoof		equal error rate		
					2019 logical		of 1.06% for the		
					access		ASVspoof 2019		
					database.		logical access		
					database.		database		
							suggests that		
							the model		
							achieves		
							excellent		
							detection		
							performance.		
[48]	Jiajun	DeepFake MNIST+	Facial features	The research	The primary	ResNet50-	The research	While the	The paper
[40]	Huang et	consisting of	raciai icatares	proposes a	outcome of	Raw: 93.57%	addresses the	research	provides
	al. (2021)	10,000 facial		baseline	this research	Light	importance of	identifies the	information
	ai. (2021)	animation videos		detection	is the	Comp.:90.69%	detecting facial	importance of	about the
		that cover ten		method for	introduction	Heavy	animations as	facial	dataset's
		different facial		facial	of the	Comp.:85.56%	part of the	animation	creation and
		actions		animation	DeepFake	ResNet152-	DeepFake threat	detection, it	the intention to
		detions		detection.	MNIST+	Raw:95.78%	landscape,	doesn't	develop a
				detection.	dataset,	Light	especially in the	provide	baseline
					which is	Comp.:92.11%	context of	insights into	detection
					designed to	Heavy	liveness	the baseline	method.
					facilitate the	Comp.:88.32%	detection	method's	memour
					development	COp.110010270	systems for user	effectiveness	
					of reliable		authentication.	or its	
					detection		The introduction	performance	
					methods for		of the DeepFake	on the	
					facial		MNIST+ dataset,	proposed	
					animation, a		containing	dataset.	
							_		
					facet of		10,000 facial	dataset.	

					DaanFalsa		onimotion		
					DeepFake		animation		
					attacks that		videos with ten		
					has received		different actions,		
					less attention		contributes to		
					in recent		the		
					research.		development of		
							more robust and		
							reliable		
							detection		
							methods.		
[<u>49</u>]	Minh Tam	FaceForensics++	state-of-the-art	The research	The primary	Increased accuracy	The research	Paper lacks	Introduces the
	Pham et al.	Celeb-DF	counterfeit	introduces an	outcome of	and efficient	addresses the	specific details	concept of a
	(2021)	FaceForensics	generators and	independent	this research	model	critical issue of	about the	benchmarking
		WildDeepFake	detectors	benchmarking	is the		visual forgery	benchmarking	framework for
				framework	development		and its potential	criteria,	visual forgery
				that assesses	of a		malicious	counterfeit	and visual
				the	benchmarkin		applications,	generation	forensics
				performance	g framework		highlighting the	techniques,	
				of counterfeit	for visual		importance of	detection	
				generators	forgery and		visual forensic	methods, and	
				and detectors.	visual		techniques in	their	
				It appears to	forensics.		maintaining	respective	
				evaluate the	This		information	outcomes	
				effectiveness	framework		security.		
				of these	aims to		The		
				methods using	provide a		development of		
				various	comprehensi		a benchmarking		
				criteria,	ve and		framework		
				providing a	empirical		offers a		
				comprehensiv	approach to		systematic and		
				e assessment	assessing the		empirical		
				of visual	performance		approach to		
				forgery and	of counterfeit		assess the		
				visual	generators		performance of		
				forensics	and		various		
				techniques.	detectors,		counterfeit		
				techniques.	shedding		generators and		
					light on the		detectors.		
					ווצווג טוו נוופ		uetectors.		

			I	1	1 -			I	
					ongoing				
					battle				
					between				
					measures				
					and				
					countermeas				
					ures in the				
					field of				
					information security.				
[<u>50</u>]	Shivangi	FFHQ	Generating	It involves	The primary	Enhanced	The research	Comprehensiv	This approach
	Aneja et al.		image-specific	generating	outcome of	performance	addresses the	e study is	can enhance
	(2021)		perturbations	image-specific	this research		significant issue	required.	privacy and
				perturbations	is the		of privacy and		combat the
				that disrupt	development		disinformation		misuse of face
				the	of a data-		associated with		manipulation
				manipulation	driven		face		techniques.
				process.	approach for		manipulation		
					protecting		methods.		
					images from		The proposed		
					face		data-driven		
					manipulation.		approach offers		
					Ву		a novel method		
					embedding		for protecting		
					image-		images from		
					specific		face		
					perturbations		manipulation,		
					, the method		making it		
					aims to		difficult for		
					disrupt the		manipulation		
					manipulation		models to		
					process and		generate		
					make it		accurate results.		
					challenging		It emphasizes		
					for		the efficiency of		
					manipulation		the approach,		
					models to		allowing for		
					produce		integration in		

					accurate		image		
					results.		processing		
							pipelines, even		
							on resource-		
							constrained		
							devices.		
[<u>51</u>]	Sitong Liu	FaceForensics++	CNN	Block shuffling	The primary	Generalised	The research	Doesn't	The paper
	et al.			regularization,	outcome of	results	addresses a	provide	introduces the
	(2022)			Adversarial	this research		significant	specific	concept of a
				loss algorithm	is the		challenge in	findings or	novel deepfake
				& Restoration	development		deepfake	results	detection
				of spatial	of a deepfake		detection, which		method
				layout	detection		is overfitting to		designed to
					method that		known forgery		combat
					addresses the		methods and		overfitting
					overfitting		common image		issues faced by
					challenge.		transformations.		CNN-based
					The proposed		The proposed		models.
					method aims		method		
					to improve		introduces		
					the		innovative		
					generalizatio		techniques like		
					n capabilities		block shuffling		
					of deepfake		regularization		
					detection		and an		
					models,		adversarial loss		
					making them		algorithm to		
					robust		enhance model		
					against cross-		robustness.		
					dataset		The research		
					evaluations		emphasizes the		
					and common		generalization		
					image		capabilities of		
					transformatio		the method,		
					ns.		demonstrating		
							its potential to		
							work well on		
							various datasets		

							and resist common image		
							transformations.		
[<u>52</u>]	Binh M. Lee	DeepFake	Hilbert-Schmidt	QAD (Quality-	The primary	Demonstrates the	High	Lacks details	The paper
	et al.		Independence	Agnostic	outcome of	superiority of the	Performance,		highlights the
	(2023)		Criterion.	Deepfake	this research	QAD	aims to be		development of
				Detection)	is the		quality-agnostic,		a quality-
					development		which suggests		agnostic
					of a deepfake		versatility in		deepfake
					detection		detecting		detection
					method,		deepfakes		method called
					QAD, which		irrespective of		QAD and
					aims to		their quality.		suggests its
					effectively				superiority over
					and				previous
					simultaneous				benchmarks
					ly detect				
					deepfakes of				
					different				
					quality levels.				
					The research				
					suggests that				
					QAD is a				
					quality-				
					agnostic				
					deepfake				
					detection				
					approach.				
[<u>53</u>]	Yuankun	Chinese Fake	focuses on the	The research	The primary	song-trained ADD	The research	Further details	The research
	Xie et al.	Song Detection	construction of	begins by	outcome of	models exhibit a	addresses the	about the	highlights the
	(2023)	(FSD) dataset	the FSD dataset	constructing	this research	38.58% reduction	emerging issue	methodologies	construction of
				the FSD	is the	in average equal	of deepfake	used for	the Chinese
				dataset, and it	development	error rate	songs, which is	constructing	Fake Song
				mentions that	and	compared to	becoming	the FSD	Detection (FSD)
				initial	evaluation of	speech-trained	increasingly	dataset and	dataset and the
				experiments	specialized	ADD models on	relevant with	training the	development of
				revealed the	ADD models	the FSD test set.	advancements in	ADD models	song-trained
				ineffectiveness	for detecting		singing voice	would	ADD models for

				of existing	deepfake		synthesis and	enhance the	deepfake song
				Audio	songs,		conversion	understanding	detection. It
				DeepFake	particularly in		technologies.	of the	suggests that
				Detection	the context		The creation of	research.	these models
				(ADD) models	of the		the Chinese FSD		outperform
				for song	Chinese FSD		dataset provides		speech-trained
				deepfake	dataset.		a valuable		models on the
				detection. To			resource for		FSD test set.
				address this,			further research		
				the FSD			in song deepfake		
				dataset is			detection.		
				employed to			The evaluation		
				train ADD			results suggest		
				models			that training		
				specifically for			ADD models on		
				song deepfake			song-specific		
				detection.			data can		
							significantly		
							improve		
							detection		
							accuracy for		
							deepfake songs.		
[<u>54</u>]	Haixu Song	DeepFakeFace	creation of the	The research	The primary	Enhanced	The research	While the DFF	The paper
	et al.	(DFF)	DFF dataset and	involves the	outcome of	performance	addresses the	dataset is	highlights the
	(2023)		the evaluation	crafting of the	this research		pressing issue of	introduced,	creation of the
			of deepfake	DFF dataset	is the		deepfake images	the paper	DeepFakeFace
			recognition	using	creation and		and their	lacks specific	(DFF) dataset
			tools.	advanced	sharing of the		potential impact	details about	and suggests
				diffusion	DFF dataset,		on the	its size,	evaluation
				models	which is		dissemination of	diversity, and	methods for
					intended to		authentic	characteristics.	deepfake
					serve as a		information.		recognition
					robust		The creation and		tools.
					foundation		sharing of the		
					for training		DFF dataset		
					and testing		contribute to		
					deepfake		the research		
					detection		community's		

					ممسطط المسام				
					algorithms.		resources for		
					The research		developing and		
					aims to boost		evaluating		
					the		deepfake		
					development		detection		
					of more		algorithms.		
					effective		The proposed		
					tools against		evaluation		
					deepfake		methods assess		
					images.		the strength and		
							adaptability of		
							deepfake		
							recognition		
							tools, which is		
							important for		
							improving their		
							effectiveness.		
[<u>55</u>]	Boquan Li	of six deepfake	generalizability	The research	The research	Improved auc	The research	While the	The paper
	et al.	datasets	of the models	utilizes five	aims to	scores for various	addresses a	research	presents an
	(2023)	FaceForensics++	across different	deepfake	examine the	models	critical challenge	identifies	empirical study
			datasets.	detection	generalizabili		in the field of	issues related	on the
				methods and	ty of		deepfake	to	generalizability
				two model	deepfake		detection, which	generalizabilit	of deepfake
				augmentation	detection		is the	y, it doesn't	detection
				approaches.	models,		generalizability	provide	models,
				The	which is		of detection	concrete	highlighting
				augmentation	essential for		models to	solutions or	their limitations
				approaches	these models		previously	findings	in zero-shot
				aim to	to stay		unseen	regarding how	settings and the
				improve the	effective in		deepfake	to improve	challenges they
				generalizabilit	detecting		datasets.	zero-shot	face in
				y of deepfake	emerging		It utilizes	generalization.	extracting
				detection	deepfake		multiple		discriminative
				models.	techniques. It		deepfake		features.
					emphasizes		datasets and		
					the need to		detection		
					address the		methods,		
					limitations of		providing a		

					existing		comprehensive		
					detectors in		examination of		
					zero-shot		the		
					settings.		generalizability		
					settings.				
							issue. The		
							identification of		
							neurons		
							contributing to		
							detection across		
							datasets		
							suggests a		
							potential path		
							forward for		
							achieving zero-		
							shot		
5= -1	_						generalizability.		
[<u>56</u>]	Deressa	DFDC, FF++,	GenConViT	The proposed	The research	average accuracy	The research	lacks specific	The paper
	Wodajo et	DeepfakeTIMIT,	model	GenConViT	aims to	of 95.8% and an	addresses the	details about	highlights the
	al. (2023)	and Celeb-DF v2		model	develop an	AUC value of	significant	the	successful
				leverages	effective	99.3%	concerns related	architecture	development of
				Autoencoder	deepfake		to deepfake	and training	the GenConViT
				and	video		videos and their	process of the	model for
				Variational	detection		potential to	GenConViT	deepfake video
				Autoencoder	model called		spread false	model, making	detection, with
				techniques to	GenConViT.		information.	it challenging	a focus on its
				learn from the	The model is		By combining	to assess the	performance
				latent data	designed to		ConvNeXt and	model's	and
				distribution.	detect a wide		Swin	technical	generalizability
				These	range of		Transformer	aspects.	across different
				techniques	deepfake		models and		datasets
				likely play a	videos by		utilizing		
				role in	learning from		Autoencoder		
				capturing	visual		and Variational		
				visual artifacts	artifacts and		Autoencoder		
				and patterns	latent data		techniques, the		
				indicative of	distribution,		GenConViT		
				deepfake	ultimately		model offers a		

				videos. Additionally, ConvNeXt and Swin Transformer models are used for feature	preserving media integrity.		comprehensive approach to deepfake video detection. The model's robust performance		
				extraction.			across multiple datasets suggests its effectiveness in identifying a wide range of fake videos.		
[57]	Yingxin Lai et al. (2023)	FaceForensics involves fine- grained pixel-wise supervision labels	Segment Anything Model (SAM)	Detect Any Deepfakes (DADF), including the Multiscale Adapter and the Reconstructio n Guided Attention (RGA) module	The research aims to improve deepfake detection and localization by introducing the DADF framework based on the SAM model. The framework seamlessly integrates forgery detection and localization, potentially enhancing the precision and effectiveness	Increase of 3.21% and making it 96.64% on localisation (multiscale) and detection accuracy of 95.94%	The research addresses the challenge of fine-grained pixel-wise supervision labels in deepfake detection and localization, which is crucial for precise forgery detection. The proposed DADF framework leverages the SAM model and introduces additional components to capture forgery contexts and	Specific results and comparative analyses with existing methods are not presented in the paper, making it difficult to gauge the magnitude of improvement achieved.	Highlights the introduction of the DADF framework and its potential advantages for deepfake detection and localization

					A£ 41		a.a.la.c		
					of these		enhance		
					tasks.		sensitivity,		
							potentially		
							leading to		
							improved		
							performance.		
[<u>58</u>]	Piotr Kawa	ASVspoof 2021	Whisper	The research	The research	Whisper-based	The research	Highlights the	The research
	et al.	and DF In-The-	automatic	compares	aims to	features leads to	addresses the	improvement	appears to
	(2023)	Wild.	speech	different	evaluate the	improved DF	growing threat	in EER, it	demonstrate
			recognition	combinations	effectiveness	detection for each	of audio	doesn't	the
			model as a	of Whisper-	of using	of the three	DeepFakes (DF)	provide	effectiveness of
			front-end for DF	based features	Whisper-	models (LCNN,	and focuses on	specific values	using Whisper-
			detection	with well-	based	SpecRNet, and	improving	or	based features
				established	features as a	MesoNet). It also	detection	comparative	for DF
				front-ends for	front-end for	states that this	methods.	metrics,	detection by
				DF detection.	DF detection.	approach reduces	By investigating	making it	achieving a 21%
				Three	The results	the Equal Error	the impact of	challenging to	reduction in
				detection	are expected	Rate (EER) by 21%	Whisper-based	assess the	EER on the DF
				models,	to reveal	on the DF In-The-	features, the	significance of	In-The-Wild
				namely LCNN,	whether	Wild dataset	research aims to	the	dataset.
				SpecRNet, and	Whisper-	compared to	contribute to	improvement.	
				MesoNet, are	based	recent results.	more effective		
				trained and	features		DF detection.		
				evaluated	improve		The reduction in		
				using these	detection		Equal Error Rate		
				features. The	performance		(EER) by 21% on		
				goal is to	compared to		the DF In-The-		
				assess the	traditional		Wild dataset		
				impact of	front-ends.		suggests that		
				Whisper-based			using Whisper-		
				features on DF			based features is		
				detection			a promising		
				performance.			approach for		
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			improving DF		
							detection.		
[59]	Zhixi Cai et	Localized Audio	spatio-temporal	Boundary	The research	quantitative	The research	While it	The research
[22]	al. (2023)	Visual DeepFake	changes in facial	Aware	focuses on	analysis	addresses a	mentions the	focuses on
	ui. (2023)	(LAV-DF)	attributes and	Temporal	improving	demonstrating the	critical gap in	"superiority"	improving
]	(LAV-DI)	attributes and	Temporar	IIIIpiovilig	acmonstrating the	Circui gap III	Juperiority	IIIIpiovilig

manipulations	Forgery	temporal	superiority of BA-	deepfake	of BA-TFD+ in	temporal
involving audio	Detection (BA-	forgery	TFD+ in terms of	detection by	deepfake	forgery
and audio-visual	TFD), CNN	localization	temporal forgery	considering	detection, the	localization and
elements		and deepfake	localization and	manipulations	paper does	deepfake
		detection	deepfake	involving audio,	not quantify	detection tasks
		tasks,	detection tasks.	visual, and	this	by considering
		acknowledgin		audio-visual	improvement	multimodal
		g the		elements, which	or provide	manipulations
		presence of		are often	concrete	involving audio,
		manipulation		overlooked in	results.	visual, and
		s involving		existing		audio-visual
		audio, visual,		methods.		elements.
		and audio-		The creation of		
		visual		the LAV-DF		
		elements.		dataset and the		
		The outcome		proposed BA-		
		of the study		TFD and BA-		
		is expected to		TFD+ methods		
		demonstrate		provide valuable		
		the		resources and		
		effectiveness		tools for		
		of BA-TFD+		improving		
		on these		deepfake		
		tasks using		detection,		
		several		especially in		
		benchmark		scenarios where		
		datasets,		audio-visual		
		including the		aspects play a		
		newly		crucial role.		
		proposed		Availability of		
		LAV-DF		dataset, models,		
		dataset.		and code on		
				GitHub		
				promotes		
				transparency		
				and		
				reproducibility.		

[60]	Ying Xu et	KoDF	Multi-Channel	MCX-API is	The paper	Using the	The proposed	High-level	The research
	al. (2023)	FaceForensics++	Xception	described as	indicates that	proposed MCX-API	MCX-API	results and	focuses on
	, ,	Celeb-DF	Attention	an approach	the	method, including	approach aims	mentions the	developing a
			Pairwise	that leverages	experiments	a BOSC accuracy	to address the	approach's	Deepfake
			Interaction	pairwise	conducted	of 98.48% on the	challenge of	generalization	detection
			(MCX-API)	learning and	with MCX-API	FF++ dataset and	generalization in	capabilities, it	approach called
			,	complementar	demonstrate	90.87% on the	Deepfake	lacks specific	MCX-API, with
				y information	its potential	CelebDF dataset is	detection,	technical	an emphasis on
				from different	to generalize	achieved.	particularly in	details about	generalization
				color space	better than		handling diverse	MCX-API.	across diverse
				representation	state-of-the-		Deepfake		Deepfake
				s in a fine-	art Deepfake		generation		generation
				grained	detectors. It		schemes.		schemes.
				manner.	reports		By reporting		
					balanced-		BOSC accuracy,		
					open-set-		the paper		
					classification		highlights the		
					(BOSC)		method's		
					accuracy		performance in		
					results on the		an open-set		
					FF++ and		scenario, where		
					CelebDF		it needs to		
					datasets,		handle unseen		
					suggesting		attacks.		
					that the		The availability		
					proposed		of the GitHub		
					method		repository		
					performs well		provides access		
					in an open-		to the code and		
					set scenario.		resources		
							associated with		
							the proposed		
							approach,		
							promoting		
							transparency		
							and		
							reproducibility.		