Problem R-12F. Below is the 300 MHz 1 H NMR spectrum of a nearly 1:1 mixture of the E and Z isomers of 1,2-dichloroethylene. Also shown is a vertical and horizontal expansion.

Indicate which peak (A or B) is cis and which is trans 1,2-dichloroethylene. Summarize all chemical shift and/or coupling information you obtained from the spectrum.

Problem R-12F. Below is the 300 MHz 1 H NMR spectrum of a nearly 1:1 mixture of the E and Z isomers of 1,2-dichloroethylene. Also shown is a vertical and horizontal expansion.

Problem R-12F (C₂H₂Cl₂).

300 MHz ¹H NMR spectrum in CDCl₃

(Source: Reich/ASV 04/43)

Indicate which peak (A or B) is cis and which is trans 1,2-dichloroethylene. Summarize all chemical shift and/or coupling information you obtained from the spectrum.

The cis and trans 3-bond $J_{\rm HH}$ can be measured directly from the $^{13}{\rm C}$ satellites of each peak - the one at δ 6.42 has a coupling of 6 Hz, thus cis isomer, the one at δ 6.35 has $J_{\rm HH}$ = 12 Hz, so trans isomer

NOTE: The ¹³C peaks are only 0.5 ppm apart, so also not suitable making a stereochemical assgnment