

HW = E[-["(+;x)] $\mathbb{D}(\theta) := \mathbb{E} \mathbb{E} \mathbb{D}'(\theta; \mathbf{x})^2 \mathbb{J} =$ need to assume differentiation & integration can be interchanged just like in the proof of the CRLB. X,, -.., Xn wid Bern (a). A= x. Ds & the UMVUE? $\mathcal{L}(\theta; X) = \theta^{x}(1-\theta)^{-x}$ $\lambda(\theta; x) = x \ln(\theta) + (1-x) \ln(1-\theta)$ $\lambda'(\theta; x) = x - 1-x$ $\frac{\text{FEXJ}}{\theta^2} + \frac{1 - \text{FEXJ}}{(1 - \theta)^2}$

Where did we come from so for " We started Where did we come from so far? We started with the question "given a DGP, how do we come up with an estimator for t?" We had two procedures (1) MM and (2) MLE. Then we observed that sometimes they have different performance (in MSE). And we asked "What's the best performance?" Assuming an estimator 15 unbiased, we proved the best performance is given by the CRLB formula. Detan estimator has the CRLB variance, it is the UMVUE (i.e. the very very best found the MM or the MLE and you want to test Ha. What do you need to do this?
You need the "sampling distribution" (the distribution of a) either approximately (for an exact test). We need to derive it. Definition !-"en estimator & is asymptotically $\hat{\theta} = \hat{\theta} - \theta$ d, N(0,1) This means as still standardized distribution looks more? The $\hat{\theta}$ -standardized distribution looks more? more like the $2 \sim N(0,1)$. Do this possible to use the above as-is? Hardly ever Here's why * DGP ud Bem (4) , &= X , SE[&] = J+LI-+)

By CLT - + d N(0,1) What's wrong with the above expression?

you donot know of In a testing setting;

the null hypothesis will assume it. But in

general, it is unknown. In general, Anow is a function of things you can never know. * DGP Lid N(A, A,2), A= X, SE=A, winknown an estimate of the standard assuming we know the 0's!) function of estimates is an estimate of SE * DGP Lid Bein(A) &= x, SE[A] ~ SE[A] = (a(-4)) wouldn't it be nice if the following were d, NCO,1) Distrue if the estimators employed in St are "consistent". SELAJ

	Definition for this class: an estimator & is consistent if you can estimate it for any degree of precision you wish given large enough sample size (n).
	Ô P. H
	This type of convergence is called "convergence in probability" and it's done at the end of 368. But we're not going to need to know it. Here are 2 technical theorems.
0	Thm 5,5,4 p233 C2B. Let A be a rv and c 15 a constant
	If A Poc then h(A) Poh(c) for hoontinuous
	$=) \frac{\hat{A}}{c} = h(\hat{A}) \xrightarrow{P} h(c) = c_{c} = 1$
	$\Rightarrow \hat{A} P, \Gamma (fact 2)$
	$\hat{SF}[\hat{\theta}] = h(\hat{\theta}) \xrightarrow{P} h(\hat{\theta}) = SF[\hat{\theta}] \xrightarrow{P} SF[\hat{\theta}] \xrightarrow{P} SF[\hat{\theta}]$ $SF[\hat{\theta}] = h(\hat{\theta}) \xrightarrow{P} \theta. \qquad (fact 1)$
0	Slulsky's Thm (Thm 5.5.17 p 239-240 C&B). Let A, B be rv's.
	DI ÂPOC, BOB BAB dCB

	$ \frac{\hat{A} - P_{0} \cdot (by \text{ fact } 1, 2)}{\hat{A} - \theta} = \frac{SE[\hat{B}]}{SE[\hat{B}]} = \frac{\hat{A} - P_{0}}{A} = \frac{A \cdot P_{0} \cdot (by \text{ fact } 1, 2)}{A} = \frac{A \cdot P_{0} \cdot (by \text{ fact } $
	Assume B. d. N(0,1)
	We just proved that if A is asymptotically normal, then A standardized with a consistent estimate of its standard error is ALSO asymptotically normal
	One of the most fundamental results in this chiss is the following. Under some technical conditions,
	Jam, Jule are consistent
(2°	gim, gimes are asymptotically normal where
	SE [g mm], SE [g mm] are too difficult for this class but
	SE[& mie] = 100) i.e. the CRIB!!
	SE[ÎMLE] = P(ÎMLE) -1 *
(3)	Bome is called asymptotically efficient" be as n gets large, it provides the SMALLEST possible vorionce. The MM cloes not.
	Proof next class