

Predicting Water Well Conditions in Tanzania

Machine Learning Approach for Maintenance Planning

Problem Statement

- Water access is critical in rural Tanzania
- Many wells are functional or need repair.

Objectives

- Predict Water Well Condition: Build a machine learning model to classify whether a water well is functional or non-functional using features.
- Support Maintenance Prioritization: Provide actionable insights to help NGOs and government agencies identify wells that likely need repair.
- Discover Risk Patterns: Analyze the key factors contributing to well failure.

This is the Scientific approach I have taken to the problem at hand

1 2 3 4 5

Data Overview Approach and Methodology Building Models and iterations Conclusions

Recommendations and Conclusions

Reference: The basics you can find anywhere 5 Steps To Successful Storytelling Published on April 5, 2014 Featured in: Marketing & Advertising

Data Overview

- Source: Water well data from Tanzania (31,000+ records)
- Key Features: Pump type, installation year, construction method, geolocation, etc.
- Target Variable: Well status (functional, needs repair, non-functional)

Approach and Methodology

- Data Preprocessing: Cleaning, handling missing values, encoding categories
- Engineering: Converted ternary labels into binary for better clarity
- Modeling Techniques: Logistic regression,
 Decision Trees and Random Forest with
 hyperparameter tuning

Modelling

- 3 models were built with varying complexity so as to improve the classification metrics and they include;
- Logistic regression
- Decision Trees
- Random Forest with hyperparameter tuning

Basic Log Regression Model

Class 0 is mostly predicted correctly (5128), but misclassified as Class 2 (1323 times).

Class 1 is poorly predicted — only 11 correct predictions out of 863 (11+539+313), which is ~1.3% accuracy for Class 1.

Class 2 is also often misclassified as Class 0 (2698 times), despite 1855 correct predictions

Decision tree Model

 As per the basic model we learned the limitations of tertiary classification hence switched to binary and also induced parameters for better performance.

achieved moderate accuracy (67%), a good sign after class balancing and tuning.

Class 1 (functional) is predicted slightly better than class 0 — higher recall and F1.

Random forest model

```
Best Parameters: {'max depth': None, 'min samples leaf': 1,
    'min samples split': 5, 'n estimators': 100}
Class 0 - Functional
Very strong recall (0.86): most functional pumps are correctly
   detected.
   High precision (0.80): few false positives.
   F1 = 0.83 → overall, your model handles Class 0 well.
   Class 1 — Non-Functional
Recall (0.66) is lower: about 34% of non-functional pumps are
   missed.
   Precision (0.75) is decent, so most predicted non-functionals
   are indeed correct.
   F1 = 0.70 \rightarrow reasonable performance, but room to improve recall.
```


Key Findings

Model Performance

The Random Forest classifier achieved 78% accuracy on the test data.

2. High-Impact Features

- The top predictors of a well's condition included:
 - Pump Type: Certain pump types (e.g., handpumps) were more likely to fail.
 - Installation Year: Older wells showed higher failure rates.
 - Management Entity: Wells managed by private individuals or informal groups had higher failure rates compared to those managed by government or NGOs.
- These findings support targeted investment in infrastructure quality and management practices.

3. Class Imbalance Insights

- Functional wells outnumber non-functional ones, which can bias the model.
- This was addressed via resampling techniques (e.g., down sampling/up sampling) and class weights, ensuring the model does not overlook at-risk wells.

Recommendations

Prioritize High-Risk Regions

- •Focus repair efforts in regions with high predicted failure (e.g., Shinyanga, Singida).
- •Align maintenance with areas of high population and low well reliability.

Target Risky Well Characteristics

•Replace outdated pump types & tech (e.g., pre-2000 installations).

Enable Proactive Monitoring

•Use the model to flag at-risk wells.

Inform Future Projects

•Use failure patterns to guide new well placements.