

## planetmath.org

Math for the people, by the people.

## abelian group is divisible if and only if it is an injective object

 ${\bf Canonical\ name} \quad {\bf Abelian Group Is Divisible If And Only If It Is An Injective Object}$ 

Date of creation 2013-03-22 18:48:15 Last modified on 2013-03-22 18:48:15

Owner joking (16130) Last modified by joking (16130)

Numerical id 8

Author joking (16130) Entry type Theorem Classification msc 20K99 **Proposition.** Abelian group A is divisible if and only if A is an injective object in the category of abelian groups.

*Proof.* ,, $\Leftarrow$ " Assume that A is not divisible, i.e. there exists  $a \in A$  and  $n \in \mathbb{N}$  such that the equation nx = a has no solution in A. Let  $B = \langle a \rangle$  be a cyclic subgroup generated by a and  $i: B \to A$  the canonical inclusion. Now there are two possibilities: either B is finite or infinite.

If B is infinite, then let  $H = \mathbb{Z}$  and let  $f : B \to H$  be defined on generator by f(a) = n. Now A is injective, thus there exists  $h : H \to A$  such that  $h \circ f = i$ . Thus

$$n \cdot h(1) = h(1) + \dots + h(1) = h(1 + \dots + 1) = h(n) = h(f(a)) = i(a) = a.$$

Contradiction with definition of  $n \in \mathbb{N}$  and  $a \in A$ .

If B is finite, then let k = |B| (note that n does not divide k) and let  $H = \mathbb{Z}_{n \cdot k}$ . Furtheremore define  $f : B \to H$  on generator by f(a) = n (note that in this case f is a well defined homomorphism). Again injectivity of A implies existence of  $h : H \to A$  such that  $h \circ f = i$ . Similarly we get contradiction:

$$n \cdot h(1) = h(1) + \dots + h(1) = h(1 + \dots + 1) = h(n) = h(f(a)) = i(a) = a.$$

This completes first implication.

,, $\Rightarrow$ " This implication is proven http://planetmath.org/ExampleOfInjectiveModulehere.

**Remark.** It is clear that in the category of abelian groups  $\mathcal{AB}$ , a group A is projective if and only if A is free. This is since  $\mathcal{AB}$  is equivalent to the category of  $\mathbb{Z}$ -modules and projective modules are direct summands of free modules. Since  $\mathbb{Z}$  is a principal ideal domain, then every submodule of a free module is free, thus projective  $\mathbb{Z}$ -modules are free.