1 Espaces vectoriels de dimension finie

- ▶ Base d'un espace vectoriel E : c'est une famille finie \mathcal{B} à la fois
 - ▶ libre (pas de relation de dépendance linéaire non-triviale entre les vecteurs de ℬ)
 - génératrice : $Vect(\mathcal{B}) = E$ (tout entier)
- ▶ Dimension finie
 - \star) Définition: Un espace vectoriel E est de dimension finie s'il admet une base finie
 - *) Propriété: Toutes les bases de E ont alors le même nombre $n \in \mathbb{N}$ de vecteurs (cardinal)
 - \star) Dimension d'un ev : Cet entier n (card. d'une base) est la dimension de E : notée dim(E)
 - *) Vocabulaire en petite dimension :

$$n=0$$
 1 2 3
$$E \text{ est ... le singleton } \left\{ \vec{0} \right\} \text{ une droite un plan } \text{ "l'espace physique "}$$

- $\star)$ Dimension d'un sous-ev : si $F\subseteq E$ avec E de dim. finie, alors :
 - F est de dim. finie aussi, et $\dim(F) \leq \dim(E)$
 - ightharpoonup il y a égalité $ssi\ F = E\ (tout\ entier)$.
- ▶ Rang d'une famille de vecteurs $\mathcal{F} = (\vec{v}_1, \dots, \vec{v}_p)$ de E où dim(E) = n.
 - *) Définition : le rang de la fam. est la dimension du sous-ev engendré : $rg(\mathcal{F}) = dim(Vect(\mathcal{F}))$.
 - *) Calcul dans \mathbb{R}^n : rg(\mathcal{F}) = **nb de pivots**, une fois la matrice de la fam. \mathcal{F} échelonnée.
 - \star) Majorations: on a à la fois $\operatorname{rg}(\mathcal{F}) \leqslant p$ (nb de vecteurs) et $\operatorname{rg}(\mathcal{F}) \leqslant n$ (dimension)
 - *) Famille libre, génératrice, base :
 - La famille \mathcal{F} est libre $ssi \operatorname{rg}(\mathcal{F}) = p$ (nb de vecteurs)
 - La famille \mathcal{F} est **génératrice** $ssi \operatorname{rg}(\mathcal{F}) = n \ (dimension)$
 - La famille \mathcal{F} est une base ssi p = n (bon nb de vecteurs) et $\operatorname{rg}(\mathcal{F}) = p = n$
 - Si p = n, il suffit d'avoir \mathcal{F} libre ou génératrice pr déduire que \mathcal{F} est une base

2 Vocabulaire et représentation des applications linéaires

▶ Vocabulaire, notations

À chaque point, penser à l'interprétation pour $E = \mathbb{R}^n$, $F = \mathbb{R}^p$ et $f \leftrightarrow A \in \mathcal{M}_{p,n}(\mathbb{R})$.

- *) Définition : pour E, F espaces vectoriels, $f: E \to F$ est linéaire si $\forall \lambda, \mu \in \mathbb{R}, \ \vec{u}, \vec{v} \in E, \ f(\lambda \vec{u} + \mu \vec{v}) = \lambda f(\vec{u}) + \mu f(\vec{v})$
- \star) Espace des applications linéaires : noté $\mathcal{L}(E,F)$, c'est un espace vectoriel.
- *) Composition d'applications linéaires :

Pour $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$, on a $g \circ f \in \mathcal{L}(E, G)$, notion d'application inverse

- ▶ Le cas des endomorphismes Si E = F, on note $\mathcal{L}(E)$ l'espace des endomorphismes. On peut alors calculer des puissances.
 - *) Règles de calcul générales :
 - *) Formule du binôme de Newton : si $f, g \in \mathcal{L}(E)$ commutent $(f \circ g = g \circ f)$, alors $(f+g)^n = \sum_{k=0}^n \binom{n}{k} f^k g^{n-k}$.
- · Représentation matricielle d'une application linéaire dans des bases

Construction de la matrice $\operatorname{Mat}_{\mathcal{B}_E,\mathcal{B}_F}(f)$ pour $f:(E,\mathcal{B}_E)\to(F,\mathcal{B}_F)$ colonne par colonne

▶ Formule de changement de base pour un endom. $f: E \to E$ avec $\mathcal{B}, \mathcal{B}'$ deux bases. Pour P la matrice de passage $\mathcal{B} \leadsto \mathcal{B}'$, et avec $M = \operatorname{Mat}_{\mathcal{B}}(f)$ et $M' = \operatorname{Mat}_{\mathcal{B}'}(f)$ on a : $M = PM'P^{-1}$.

▶ Notion de diagonalisation

Si l'on arrive à écrire $M = PDP^{-1}$, avec D diagonale, on a **diagonalisé** M.

Exemple de l'application au calcul des puissances de M.

(On verra bientôt comment trouver la matrice diagonale D et la matrice de passage P)

(... et bonne année 2016!)