MATH 484/564 HOMEWORK #3

Due: October 17, Thursday
How to submit: submit in class

MATH 484 students: do problems 1, 3, 4. MATH 564 students: do problems 1, 2, 3, 4.

Problem 1 Consider the multiple regression model

$$y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i, \ i = 1, \dots, n$$

where ϵ_i are independent with normal distribution $N(0, \sigma^2)$. State the least square criterion and derive the least square estimators of β_1 and β_2 .

Problem 2 Consider the multiple regression model,

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_{11} x_{i1}^2 + \beta_2 x_{i2} + \epsilon_i, \ i = 1, \dots, n$$

where ϵ_i are independent with normal distribution $N(0, \sigma^2)$. State the least square criterion and derive the least square estimators of all coefficients.

Problem 3 For a multiple regression model with 4 variables,

- 1) Show that SSR(X1, X2, X3, X4) = SSR(X1) + SSR(X2, X3|X1) + SSR(X4, |X1, X2, X3)
- 2) Show that SSE(X1, X2) SSE(X1, X2, X3, X4) = SSR(X3, X4|X1, X2)
- 3) What are the degrees of freedom that are associated with each of the following:
 - 3a) SSR(X1|X2)
 - 3b) SSR(X2|X1, X3)
 - 3c) SSR(X1, X2|X3, X4)
 - 3d) SSE(X1, X2)
- 4) What is the relevant extra sum of squares for testing whether or not $\beta_4=0$? whether or not $\beta_2=\beta_3=0$?

Problem 4 In the copier maintenance dataset (Copier.txt), X_1 (the second column) is the number of copiers serviced and Y (the first column) is the total number of minutes spent by the service person. X_2 (in Model.txt) is the binary predictor variable that indicates whether the copier model is small or large. It is coded as $X_2=1$ if small model is used and $X_2=0$ if large model is used.

- 1) Fit the regression model $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$ and provide the estimated regression function.
- 2) Estimate the effect of copier model X_2 on mean service time μ_y with a 95% confidence interval.
- 3) Obtain the residuals from 1) and plot them agains x_1x_2 . Is there any indication that an interaction term in the regression model would be helpful?
- 4) Fit the regression model $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_{12} x_{i1} x_{i2} + \epsilon_i$ and provide the estimated regression function.

5) Based on 4), test whether the interaction term can be dropped from the model: let the significance level $\alpha=10\%$, state the null, alternative hypotheses, the decision rule and your conclusion. What is the P-value of the test? If the interaction term cannot be dropped from the model, describe the nature of the interaction effect.