MATH235 HOMEWORK 8 SOLUTION

• 5.1.7

Proof. (1). By construction φ is continuous and non-decreasing. Notice that x is also continuous and strictly increasing, then g(x) is continuous and strictly increasing. Since g is defined on a closed interval, it is strictly monotone. The inverse h is also a continuous bijection and suppose $x, y \in [0, 2]$ with x > y, then we have

$$x = g(g^{-1}(x)) > g(g^{-1}(y)) = y.$$

Since g is strictly increasing, we obtain $g^{-1}(x) > g^{-1}(y)$, which gives strictly increasing.

- (2). Notice that C is a compact set. Under continuous function compact sets remains compact, hence g(C) is a compact subset of [0,2]. Notice that φ is a constant function on $[0,1]\setminus C$, hence $g([0,1]\setminus C)$ is in the form $x+c_n$ for constants c_n . Since $|[0,1]\setminus C|=1$, $|g([0,1]\setminus C)|=1$. Since g is a bijection, we have $|g(C)|=|[0,2]|-|g([0,1]\setminus C)|=1$.
- (3). Since $N \subseteq g(C)$, we have $h(N) \subseteq (h \circ g)(C) = C$, hence $A \subseteq C \subset [0,1]$ and by monotonicity of Lebesgue measure |A| = 0. Hence A is Lebesgue measurable (sets with Lebesgue measure 0 is Lebesgue measurable).
- (4). Consider the set $\{f \circ h > 0\}$, if $f \circ h$ is measurable then the set should also be measurable, but the set is A, which is not measurable. Therefore $f \circ h$ is not measurable.

• 5.2.21

Proof. If $m^*(A) = \infty$, then there is nothing to prove, assume otherwise.

Suppose $m^*(A) < \infty$, then there exists an open set O such that $\forall \varepsilon > 0$, $A \subseteq O$ and $|O \setminus A| < \varepsilon$.

Since O is an open set, O is union of countable disjoint interval (a_i, b_i) for $i = \{1, 2, ..., n\}$ and $(a_i, b_i) \in E$.

It is given that f is Lipschitz on E. And $a_i, b_i \in E$.

Define partition

$$\Gamma_i = \{a_i = x_1, x_2, ..., x_m = b_i\},\$$

then we have

$$|f(x_{j+1}) - f(x_j)| < K_i(x_{j+1} - x_j).$$

Compute that

$$S_{\Gamma_i} = \sum_{j=1}^{m-1} |f(x_j) - f(x_{j-1})| \le \sum_{j=1}^{m-1} K_i |x_{j+1} - x_j|$$
$$= K_i \sum_{j=1}^{m-1} |x_{j+1} - x_j|$$
$$= K_i (b_i - a_i).$$

Therefore, as (a_i, b_i) are disjoint, we obtain that

$$V[f; a_i, b_i] \le K_i(b_i - a_i).$$

Thus,

$$|f(A)|_{e} = \sum_{i=1}^{n} V[f, a_{i}, b_{i}] \leq \sum_{i=1}^{n} K_{i}(b_{i} - a_{i})$$

$$\leq \max(K_{i}) \sum_{i=1}^{n} (b_{i} - a_{i})$$

$$= K|A|_{e},$$

where $K = \max(K_i)$.

Hence, we have proved that $|f(A)|_e \leq K|A|_e$ for every set $A \subseteq E$.

• 5.2.22

Proof. y symmetry property of f, it suffices to consider f restricted to [0,1].

(a) " \Rightarrow " It is clear that f is continuous at x = 0. Compute that

$$f'(x) = ax^{a-1}\sin\frac{1}{x^b} - bx^{a-b-1}\cos\frac{1}{x^b}, \quad \forall x \in (0,1].$$

By Lemma 5.2.9, it suffices to show that $f' \in L^1$. If a > b, then we have that

$$\int_{0}^{1} |f'(x)| dx = \int_{0}^{1} \left| ax^{a-1} \sin \frac{1}{x^{b}} - bx^{a-b-1} \cos \frac{1}{x^{b}} \right| dx$$

$$\leq \int_{0}^{1} \left| ax^{a-1} \sin \frac{1}{x^{b}} \right| dx + \int_{0}^{1} \left| bx^{a-b-1} \cos \frac{1}{x^{b}} \right| dx$$

$$\leq \int_{0}^{1} \left| ax^{a-1} \right| dx + \int_{0}^{1} \left| bx^{a-b-1} \right| dx$$

$$= \int_{0}^{1} ax^{a-1} dx + \int_{0}^{1} bx^{a-b-1} dx \leq 1 + \frac{b}{a-b} < \infty.$$

" \Leftarrow " Consider the partition defined by

$$\mathcal{P}_m = \{x_n\}_{n=1}^m = \left\{ \left(\frac{2}{(2n+1)\pi} \right)^{\frac{1}{b}} \right\}_{n=1}^m.$$

Observe that

$$\sin \frac{1}{x_n^b} = \begin{cases} 1 & n \text{ even} \\ -1 & n \text{ odd} \end{cases}$$

and hence

$$f(x_n) = \begin{cases} x_n^a & n \text{ even} \\ -x_n^a & n \text{ odd} \end{cases}$$

Now,

$$\sum_{n=1}^{m} |f(x_n) - f(x_{n-1})| = \sum_{n=1}^{m} |(-1)^n (x_n^a + x_{n-1}^a)|$$

$$= \sum_{n=1}^{m} x_n^a + x_{n-1}^a = 2 \sum_{n=1}^{m-1} x_n^a + x_m + x_0$$

$$\geq \sum_{n=1}^{m-1} x_n^a = \sum_{n=1}^{m-1} \left(\frac{2}{(2n+1)\pi}\right)^{\frac{a}{b}}.$$

Note that the hidden power series

$$\lim_{m \to \infty} \sum_{n=1}^{m-1} \left(\frac{2}{(2n+1)\pi} \right)^{\frac{a}{b}} < \infty$$

converges iff. a > b.

(b) Assume $0 \le x < y \le 1$. If x = 0, the estimate is simple, we have

$$|f(y) - f(0)| \le y^b \le y^\alpha$$

Now we follow the hint. Consider $0 < x < y \le 1$ and set h = y - x. If $x^{b+1} < h$, note that we have inequalities

$$x^{b} < h^{\alpha}$$
 and $y^{b} = (x+h)^{b} < \left(h^{\frac{1}{b+1}} + h\right)^{b} < Ch^{\alpha}$

where C is a real constant depending on b. Then

$$|f(y) - f(x)| \le |f(y)| + |f(x)| \le y^b + x^b < (1 + C)h^{\alpha}$$

If $x^{b+1} \ge h$, MVT yields a $t \in (x, y)$, such that

$$|f(y) - f(x)| = h |f'(t)| \le \frac{2bh}{t} \le \frac{2bh}{x} \le 2bh^{\alpha}.$$

(c) For any $0<\alpha<1$, set $a=b=\frac{\alpha}{1-\alpha}$ in the definition of f. Then, by (a) and (b), we have $f\in C^{\alpha}[-1,1]$ but f does not have bounded variation.

• 5.4.5

Proof. Let $I \subseteq \mathbb{R}$ be an interval and f is monotonically increasing on I. We can consider $I_k = I \cap [k, k+1]$ and each I_k is a bounded interval in \mathbb{R} . Take any I_k and assume it has endpoints a_k, b_k . Then f'(x) exists a.e. on (a_k, b_k) . Then we deduce that f'(x) exists a.e. on $I \setminus Z$, $Z = \{a_k, b_k\}_{k \in \mathbb{Z}}$. Since Z has measure 0, we have the desired result.

• 5.4.6

Proof. Assume $D^+f \ge \delta > 0$ on (a,b). Since f is continuous it achieves its maximum on any closed interval $[x,y] \subset (a,b)$. Suppose f achieves its maximum at some x_0 where $x \le x_0 < y$, then $f(s) \le f(x_0)$ for all $s \in [x,y]$. Then we have

$$D^{+}f(x_{0}) = \limsup_{t \to x_{0}^{+}} \frac{f(t) - f(x_{0})}{t - x_{0}} \le 0,$$

which is a contradiction. Now consider $D^+f(x) \ge 0$ on (a,b). Consider $g(x) = f(x) + \delta x$ for any $\delta > 0$. Then we have

$$D^+g(x) = D^+f(x) + \delta.$$

From previous claim, g(x) is monotonically increasing on (a,b). Then we know if $x,y \in (a,b)$ then $g(x) \ge g(y)$, which also gives

$$f(y) - f(x) \ge \delta(x - y).$$

Setting $\delta \to 0^+$ we have f is monotonically increasing on (a,b).

• 5.5.19

Proof. (a). There exists a G_{δ} set $H \supset A$ such that $|A|_e = |H| > 0$. Then we have

$$D_A(x) = \lim_{r \to 0} \frac{|A \cap B_r(x)|_e}{|B_r(x)|} = \lim_{r \to 0} \frac{|H \cap B_r(x)|}{|B_r(x)|} = D_H(x) = 1$$

for a.e. x. Notice that there exists some $Z \subset \mathbb{R}^d$ with measure 0 and $H = A \cup Z$, we conclude $D_A = 1$ for a.e. x.

(b) . Suppose A is measurable, then for a.e. $x \notin A$ we have

$$D_A(x) = \lim_{r \to 0} \frac{|A \cap B_r(x)|}{|B_r(x)|} = \lim_{r \to 0} \frac{1}{|B_r(x)|} \int_B \chi_A = \chi_A = 0.$$

Suppose $D_A(x)=0$ for a.e. $x\notin A$. Consider $Z\subseteq A^C$ satisfies |Z|=0 and for all $x\in A^C\setminus Z$, $D_A(x)=0$. We claim that $A^C\setminus Z$ is measurable. Assume $x\in A^C\setminus Z$, then

$$\lim_{r \to 0} \frac{|A \cap B_r(x)|_e}{|B_r(x)|} = 0.$$

Let $\epsilon > 0$, there exists $A \subseteq U$ open set such that $|A|_e \le |U| \le |A|_e + \epsilon$. Then we have

$$\lim_{r \to 0} \frac{|A \cap B_r(x)|_e}{|B_r(x)|} \le \lim_{r \to 0} \frac{|U \cap B_r(x)|}{|B_r(x)|} \le \lim_{r \to 0} \frac{|A \cap B_r(x)|_e}{|B_r(x)|} + \epsilon,$$

which gives $D_U(x) \leq D_A(x) + \epsilon$ and therefore $D_U(x) = 0$ for a.e. $x \notin A$. Hence $A^C \setminus Z$ is measurable which gives A^C and A are measurable.

Consider a set where $D_E(x)$ does not exist. Define $E_n = (\frac{1}{2n!}, \frac{1}{(2n-1)!})$ and $E = \bigcup E_n$. Consider two sequences $\{a_n = \frac{1}{(2n-1)!}\}$ and $\{b_n = \frac{1}{(2n)!}\}$. Then

$$\frac{|E \cap B_{a_n}(x)|_e}{|B_{a_n}(x)|} = \frac{1/(2n)! - 1/(2n+1)!}{2/(2(n-1)!)} > 0$$
$$\frac{|E \cap B_{b_n}(x)|_e}{|B_{b_n}(x)|} = \frac{1/(2n-1)!}{2/(2(n-1)!)} \to 0$$

Hence $D_E(x)$ does not exist. On the other hand, consider a set where $D_E(x)$ attains any $\alpha \in (0,1)$. Defince $\theta = 2\pi\alpha$ and consider E to be a slice of circle in \mathbb{R}^2 with θ radians.

• 5.5.20

Proof. Suppose $E\subseteq [0,1]$ is measurable and there exists some $\delta>0$ such that $|E\cap [a,b]|_e\geq \delta(b-a)$ for all a,b. Then

$$D_E(x) = \lim_{r \to 0} \frac{|E \cap B_r(x)|_e}{|B_r(x)|} = \lim_{r \to 0} \frac{|E \cap (x - r, x + r)|}{2r} \ge \delta > 0.$$

Hence, $D_E = 0$ for a.e. $x \notin E$. Then we have $|[0,1] \setminus E| = 0$ which gives |E| = 1. \square

• 5.5.21

Proof. Suppose $f \in L^1[0,1]$ is such that $\int_E f = 0$ for all measurable $E \in [0,1]$ with $|E| = \lambda$. Consider $x \leq y \in [0,1]$ be two Lebesgue points of f and $\delta = \min\{y-x,1-y,\lambda,1-\lambda\}$. We claim that there exists $F \subseteq ([x,x+\delta] \cup [y,y+\delta])^C$ with $|F| = \lambda - \delta$. Consider $E_1 = [x,x+\delta] \cup F$ and $E_2 = [y,y+\delta] \cup F$. Then

$$\int_{E_1} f = \int_{[x,x+\delta]} f + \int_F f = 0 = \int_{E_2} f = \int_{[y,y+\delta]} f + \int_F f$$

which implies

$$\int_{x}^{x+\delta} f = \int_{y}^{y+\delta} f.$$

Since x, y are Lebesgue points,

$$f(x) = \lim_{\delta \to 0^+} \int_x^{x+\delta} f = \lim_{\delta \to 0^+} \int_y^{y+\delta} f = f(y).$$

This tells that f(x) = K for some constant K a.e. on $x \in [0,1]$. By the assumption $\int_E f = 0$ for all measurable $E \in [0,1]$ with $|E| = \lambda$, we have K = 0.