

Day 3

Mathematical Foundation – I

Linear Algebra & Tensor Concept

Why Linear Algebra?

- A good understanding of linear algebra is essential for understanding and working with many machine learning algorithms, especially deep learning algorithms
- Many machine learning algorithms require vectorized inputs (and produce vectorized outputs) and uses vectorization for parallelization of computation to achieve massive speed-up of training/inference of machine learning algorithms (especially on a

GPU)

An example of linear equation

Rewrite the following linear equation in Matrix Format.

$$2x + 4y = 22$$

$$3x + y = 13$$

$$\begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 22 \\ 13 \end{bmatrix}$$

Linear Algebra

- Matrices and Vectors
 - Definitions and terminology
 - Addition & Subtraction
 - Scalar multiplication
 - Matrix-vector multiplication
 - Matrix-matrix multiplication
 - Matrix properties

Matrices and Vectors – Definitions and Terminology

Scalar

Object with a single value

Vector 2 -8 7 row or column -8 7

n x 1 matrix

${ m I\!R}^3$

Usually denoted using small bold letters e.g. x

Rectangular array of numbers

$$\mathbb{R}^{2\times3}$$

Usually denoted using uppercase bold e.g. *A*

Tensor

- Tensor is a generalization of matrices to an arbitrary number of dimensions (or axis)
- Tensor is normally denoted as capital non-italicized letter, e.g. A.

Real world examples of data tensor

- Vector data 2D tensors of shape (sample, features)
- Timeseries data or sequence data 3D tensors of shape (sample, timesteps, features)
- Images 4D tensors of shape (samples, height, width, channels)
- Video 5D tensors of shape (samples, frames, height, width, channels)

Matrices and Vectors – Definitions and Terminology

Vector: An n x 1 matrix.

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

 $y_i = i^{th}$ element

4 dimensional vector

1-indexed vs 0-indexed:

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} \qquad y = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$y_1 = 460$$
 $y_1 = 232$
 $y_3 = 315$ $y_3 = 178$

Matrices and Vectors – Definitions and Terminology

Matrix elements

$$\begin{bmatrix}
9 & 13 & 5 & 2 \\
1 & 11 & 7 & 6 \\
3 & 7 & 4 & 1 \\
6 & 0 & 7 & 10
\end{bmatrix}$$

$$M_{3,4} = 1$$

 $M_{2,2} = 11$

Matrix Addition & Subtraction

Matrix 1 Matrix 2 Matrix 1 + 2
$$\begin{bmatrix}
10 & 0 \\
-4 & 5
\end{bmatrix} + \begin{bmatrix}
-6 & 3 \\
1 & -7
\end{bmatrix} = \begin{bmatrix}
4 & 3 \\
-3 & -2
\end{bmatrix}$$
2 x 2 2 2 2 2 2 2

$$\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} + \begin{bmatrix} 4 & 3 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 1+4 & 2+3 \\ -3+5 & 4+(-1) \end{bmatrix}$$
addition
$$= \begin{bmatrix} 5 & 5 \\ 2 & 3 \end{bmatrix}$$

We cannot add matrices of different dimensions.

$$\begin{bmatrix} 2 & 4 & 3 \\ 6 & 8 & 1 \end{bmatrix} - \begin{bmatrix} 4 & 6 & 3 \\ 5 & 2 & 7 \end{bmatrix} = \begin{bmatrix} 2-4 & 4-6 & 3-3 \\ 6-5 & 8-2 & 1-7 \end{bmatrix}$$
subtraction
$$= \begin{bmatrix} -2 & -2 & 0 \\ 1 & 6 & -6 \end{bmatrix}$$

Matrix Scalar Multiplication

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 2.1 & 2.2 & 2.3 \\ 2.4 & 2.5 & 2.6 \\ 2.7 & 2.8 & 2.9 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18 \end{bmatrix}$$

Result is matrix of same dimensions

Matrix-vector multiplication

Result will be an N-dimensional vector

Matrix-Matrix multiplication

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 \\ \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix}$$

In order for this product to be defined, matrix **A** must have the same number of columns as **B** has

rows. If A is of shape $(m \times n)$ and B is of shape $(n \times p)$, then **C** is of shape $(m \times p)$.

Commutive

- Scalars are commutive
- 3×5 is the same as 5×3
- Matrices are not

For
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 5 & 4 \\ -5 & 1 \end{bmatrix}$

AB =
$$\begin{bmatrix} 5 & 4 \\ 5 & 9 \end{bmatrix}$$

Associative

Scalars are associative

3 x 5 x 2 the order this is computed in doesn't matter

$$3 \times 5 = 15 \times 2 = 30$$

$$5 \times 2 = 10$$
 $3 \times 10 = 30$

Matrices are associative

Identity matrix

1 is identity scalar

 $1 \times z = z$ (true for any value of z), 1 is "identity"

Identity Matrices

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{2 \times 2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

AI = IA = A I identity matrix

- Inverse
 - Scalars

$$3 \times 3^{-1} = 1$$

number x inverse = identity

 Only square matrices can have inverses (but not all do, those that don't are known as singular)

$$A \times A^{-1} = A^{-1} \times A = I$$

$$\begin{bmatrix} 3 & 4 \\ 2 & 16 \end{bmatrix} \times \begin{bmatrix} 0.4 & -0.1 \\ -0.05 & 0.075 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Transpose

18

 A lot of machine learning algorithm requires the computation of weighted sum of the input features (e.g. linear regression, or a linear layer in deep learning network)

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

 \hat{y} is the predicted value.

n is the number of features.

 x_i is the ith feature value.

 θ_j is the jth model parameter (including the bias term θ_0 and the feature weights $\theta_1, \theta_2, \dots, \theta_n$).

• We can compute the value in a traditional *for-loop* way:

```
y_hat = 0

for i in range (1..n):
    y_hat += theta[i] * x[i]

y_hat += b
```


• Or we express the equation in a more concise way using vectorized form $\hat{y} = \theta^T \cdot \mathbf{x}$

 θ is the model's *parameter vector*, containing the bias term θ_0 and the feature weights θ_1 to θ_n .

 θ^T is the transpose of θ (a row vector instead of a column vector).

x is the instance's *feature vector*, containing x_0 to x_n , with x_0 always equal to 1.

 $\theta^T \cdot \mathbf{x}$ is the dot product of θ^T and \mathbf{x} .

 we can compute the value using faster (parallelized) matrix dot product operation:

• The speed-up is especially important in deep learning network typically consist of millions of weights θ (image we have write a for loop that loops millions of times !!)

Let's Practice using Numpy

23