

Fall 2020

머신러닝

PA # 2

Instructor name	김태완 교수님
Student name	이용준
Department	조선해양공학과
Student ID	2015-19595
Submission date	2020.10.11

Contents

1. Problem Definition	3
1.1 Problem 1	3
1.2 Problem 2	3
1.3 Problem 3	3
1.4 Problem 4	3
1.5 Problem 5	4
1.6 Problem 6	4
1.7 Problem 7	4
2. Problem Analysis and Design	4
2.1 Analysis	4
2.2 Data Flow Diagram	6
3. Code Explanation	8
3.1 Class	8
3.2 Function	8
4. Conclusion	11
4.1 Result	11
4.2 Conclusion	14

1. Problem Definition

1.1 Problem 1

-Perceptron에서 w1, w2를 계산하라. 또한 이를 Python으로 작성 후 그 결과를 비교하라.

1.2 Problem 2

- Backpropagation을 실행하고 결과를 정리하시오. 또한 이를 Python으로 작성 후 그 결과를 비교하라.

1.3 Problem 3

- Backpropagation을 한 번 수행하고 결과를 정리하시오. 또한 이를 Python으로 작성 후 그 결과를 비교하라

1.4 Problem 4

- SSE으로 backpropagation을 한 번 수행하고 결과를 정리하시오. 또한 이를 Python으로 작성 후 그 결과를 비교하라.

1.5 Problem 5

- "SSE"로 error 정의, hidden layer 2개일 때 backpropagation을 1번 수행하고 정리하시오. 또한 이를 Python으로 작성 후 그 결과를 비교하시오.

1.6 Problem 6

- "Logistic error function"로 error 정의 hidden layer가 1개일 때 1번 backpropagation을 수행하고 정리하라. 또한 이를 Python으로 작성 후 그 결과를 비교하라.

1.7 Problem 7

- "Logistic error"로 error를 정의, hidden layer 2개일 때 1번 backpropagation을 수행하고 결과를 정리하라. 또한 이를 Python으로 작성 후 그 결과를 비교하라.

2. Problem Analysis and Design

2.1 Analysis

- Error Function

Cost	Equation
Sum of squared error (SSE)	$C_5 = \frac{1}{2} (y_5 - a_5)^2$
Cross entropy cost function (CECF)	$C_5 = -[y_5 \ln a_5 + (1 - y_5) \ln(1 - a_5)]$
Logistic error	$C_5 = -y_5 \ln a_5$

- Activation Function

이중 분류의 문제를 풀기 위해서 hidden layer의 활성화 함수로 sigmoid를, output layer의 활성호 함수로 softmax함수를 사용하기로 하였다.

Activation function of output layer	Cost(error) function	δ_k
Identity	SSE	$\delta_5 = a_5 - y_5$
Sigmoid	SSE	$\delta_5 = (a_5 - y_5)a_5(1 - a_5)$
Sigmoid	CECF	$\delta_5 = a_5 - y_5$
Softmax	SSE	$\delta_5 = (a_5 - y_5)a_5(1 - a_5) + (a_6 - y_6)a(-a_5) + (a_7 - y_7)a_7(-a_5)$
Softmax	Logistic	$\delta_5 = a_5 - y_5$

Backpropagation

의미: 오차 (δ_k) 를 weight의 크기에 비례하게 배분하여 역방향으로 signal을 보낸다.

따라서 오차 (δ_k) 를 구하는 것이 핵심이다.

그 이유는 다음과 같다.

구하고자 하는 최적해는 w^*, b^* 이다.

역방향 j layer와 k layer의 w,b update:

$$w_{jk}^{new} \leftarrow w_{jk}^{old} - \eta \nabla w_{jk} = w_{jk}^{old} - \eta a_j \delta_k$$

 $b_k^{new} \leftarrow b_k^{old} - \eta \nabla b_k = b_k^{old} - \eta \delta_k$

역방향 i layer와 j layer의 w,b update:

$$w_{ij}^{new} \leftarrow w_{ij}^{old} - \eta \nabla w_{ij} = w_{ij}^{old} - \eta a_i \delta_j$$

$$b_j^{new} \leftarrow b_j^{old} - \eta \nabla b_j = b_j^{old} - \eta \delta_j$$

2.2 Data Flow Diagram

각 문제에 대한 DFD이다.

3. Code Explanation

3.1 Class

프로젝트에 사용된 클래스에 관한 설명이다. 이번 과제에서는 클래스는 거의 사용하지 않았다.

Class Name	Explanation	
activate_function	여러 활성화 함수를 담고 있는 클래스	

3.2 Function

과제에 사용된 함수에 대한 설명이다.

<pre>perceptron(x,w,t,Ir,epoch)</pre>		
Parameter	Туре	Explanation
Х	Array	Input value
W	Array	weight
t	float	Target value
Ir	float	Learning rate
epoch	int	Number of training

sigmoid_function(z)		
Parameter	Туре	Explanation
Z	float	활성화할 z값

softmax(z1,z2, index)		
Parameter	Туре	Explanation
Z1	float	활성화할 z1값
Z2	float	활성화할 z2값
Index	Int	Softmax 함수의 분자를 결정하는 인덱스

identity(z)		
Parameter	Туре	Explanation
Z	float	활성화할 z값

ReLU(z)		
Parameter	Туре	Explanation
Z	float	활성화할 z값

feed_forward(num_input ,num_hidden, num_output, x, w_ij, b_j,		
w_jk,b_k,activate_option_in_output_layer)		
Parameter	Type	Explanation
num_i npu t	Int	Input layer의 node 개수
num_hidden	Int	hidden layer의 node 개수
num_output	Int	output layer의 node 개수
X	Array	Input value
w_i j	Array	weight
b_j	float	bias
w_jk	Array	weight
b_k	float	bias
activate_option_in_output_layer	int	Output layer에서의 활성함수를 선택하는 인덱스
		0이면 softmax,1이면 identity

backpropagation(x, w_ij,b_j,w_jk,b_k,hidden_a,output_a,target,Ir,error_function_option)		
Parameter	Туре	Explanation
Х	Array	Input value
w_i j	Array	weight
b_j	float	bias
w_j k	Array	weight
b_k	float	bias

hidden_a	array	Hidden layer의 a값들을 배열로 저장	
output_a	Array	output layer의 a값들을 배열로 저장	
target	array	Target value	
Ir	Float	Learning rate	
error_function_option	int	Error 함수를 선택하는 인덱스	

다음 함수들은 hidden layer가 2개인 문제에서 사용할 함수들이다.

feed_forward_2_hidden_layer(x,w_ij,b_j,w_jk,b_k,w_kl,b_l)			
Parameter	Туре	Explanation	
Х	Array	Input value	
w_i j	Array	weight	
b_j	float	bias	
w_jk	Array	weight	
b_k	float	bias	
w_kI	Array	weight	
b_I	float	bias	

Backpropagation2(x,w_ij,b_j,w_jk,b_k,w_kl,b_l,hidden_1_a,hidden_2_a,output_a,target,lr,error_function_option)				
Parameter	Туре	Explanation		
Х	Array	Input value		
w_i j	Array	weight		
b_j	float	bias		
w_jk	Array	weight		
b_k	float	Bias		
w_k1	Array	weight		
b_I	float	Bias		
hidden_1_a	array	첫번째 Hidden layer의 a값들을 배열로 저장		
hidden_2_a	array	두번째 Hidden layer의 a값들을 배열로 저장		
output_a	Array	output layer의 a값들을 배열로 저장		
target	array	Target value		
lr	Float	Learning rate		
error_function_option	int	Error 함수를 선택하는 인덱스		

4. Conclusion

4.1 Result

Problem 1)

Epoch = 10으로 학습시킨 결과, 최종 결과 값이 1에 매우 근사하게 되었다. 학습이 잘이루어졌음을 확인하였다. 그때의 weight는 대략 w1 = 0.96, w2 = 0.22였다. 직접 계산하여 weight를 세 번 정도 업데이트를 해주었는데, 같은 결과를 얻었다.

Problem 2)

```
Problem 2
[0.539286074115832, 0.46071392588416815]
[0.5141369095193018, 0.4858630904806982]
[0.48997015667395205, 0.5100298433260481]
[0.46696912191626355, 0.5330308780837366]
[0.4452505757689585, 0.5547494242310416]
[0.4248720313731654, 0.5751279686268346]
[0.40584250210811035, 0.5941574978918897]
[0.3881342493928367, 0.6118657506071633]
[0.3716937978123171, 0.628306202187683]
[0.3564512861760681, 0.6435487138239319]
[0.3423278388116104, 0.6576721611883897]
[0.3292410304318099, 0.6707589695681901]
[0.3171087138119923, 0.6828912861880077]
[0.2953945154329874326, 0.6941484567012567]
[0.2953945154360422, 0.7046054845639577]
[0.2856678015044761, 0.7143321984955239]
[0.276607090360548, 0.7233929096394519]
[0.26815360654895004, 0.73184639345105]
[0.26825392361288235, 0.7397460763871176]
[0.25285965704742286, 0.7471403429525771]
[0.2459270946442907, 0.7540729053557094]
[0.23329323154593415, 0.7667067684540658]
[0.22752433863251037, 0.7724756613674897]
[0.22208123226265536, 0.7779187677373447]
```

```
[0.11517652149720797, 0.884823478502792]
[0.11419021647738882, 0.8858097835226112]
[0.1132260646424308, 0.8867739353575692]
[0.11228328592523742, 0.8877167140747625]
[0.1113611370835183, 0.8886388629164816]
[0.1104589095427838, 0.8895410904572162]
[0.10957592738899022, 0.8904240726110099]
[0.1087115454989149, 0.8912884545010851]
[0.10786514779740713, 0.8921348522025929]
[0.10703614563162146, 0.8929638543683786]
[0.10622397625320631, 0.8937760237467937]
[0.10542810140020399, 0.894571898599796]
[0.10464800597112638, 0.8953519940288737]
[0.1038831967843108, 0.8961168032156892]
[0.10313320141624123, 0.8968667985837587]
[0.10239756711304648, 0.8976024328869535]
[0.10167585976986468, 0.8976024328869535]
[0.10096766297319772, 0.8990323370268023]
[0.10097257710177358, 0.8997274228982264]
[0.0995902184817957, 0.9004097815182043]
[0.0985902185927826, 0.9010797814072173]
[0.09826222332050381, 0.9017377766794962]
[0.098636592557202382, 0.9036430743279762]
[0.096980898082222383, 0.9030191019777762]
[0.09693685892557702382, 0.9036430743279762]
[0.09635692557702382, 0.9036430743279762]
[0.0957436720774838, 0.9042563279225162]
[0.09514084538571899, 0.904859154614281]
[0.09454816449248672, 0.9054518355075133]
[0.09454816449248672, 0.9054518355075133]
```

문제 2의 경우, 목표값이었던 [0.0, 1.0]에 근접하려면 적어도 epoch = 100의 학습이 필요했다. Epoch를 늘리면 더 목표치에 가까워진다. 결과적으로 목표값에 매우 근접함을 확인하였다. 직접계산하여 w를 3번 업데이트 해주었는데 프로그래밍 결과와 동일한 결과를 얻었다.

Problem 3)

Epoch = 30으로 학습시켜주었는데, 매우 빨리 목표치였던 [8.0, 40.0]에 도달함을 확인하였다. 직접 계산하여 w를 3번 업데이트 해주었는데 프로그래밍 결과와 동일한 결과를 얻었다.

Problem 4)

```
Problem 4
[0. 539286074115832, 0.46071392588416815]
[0. 5141369095193018, 0.4858630904806982]
[0. 5141369095193018, 0.4858630904806982]
[0. 468997015667395205, 0.5100298433260481]
[0. 46696912191626355, 0.5330308780837366]
[0. 4482505757689585, 0.5537494242310416]
[0. 4248720313731654, 0.5751279686268346]
[0. 40584250210811035, 0.5941574978918897]
[0. 3881342493928367, 0.6118657506071633]
[0. 3881342493928367, 0.6118657506071633]
[0. 3716937978123171, 0.628306202187683]
[0. 3276938116104, 0.6576721611883887]
[0. 3292410304318099, 0.6707589695681901]
[0. 30585154329874326, 0.6941484567012567]
[0. 2953945154360422, 0.70460548455939777]
[0. 2058679090360548, 0.7233929096394519]
[0. 226025392361288235, 0.73974607638717167]
[0. 226025392361288235, 0.7397460763871716]
[0. 22520812322525956556, 0.77714756613674997]
[0. 23941680254549422, 0.7667684540599]
[0. 225285965704742286, 0.7714703429525771]
[0. 23941680254549422, 0.7667684540599]
[0. 225285965704742286, 0.777147861387479777762]
[0. 225285965704742286, 0.77714756613674997]
[0. 225285965704742286, 0.77714756613674997]
[0. 22528612322526265536, 0.7779187677373447]
[0. 21593784558007184, 0.7830621544199282]
[0. 215907063898111253, 0.78792936101888741]
[0. 21207063898111253, 0.78792936101888741]
[0. 21207063898111253, 0.78792936101888741]
[0. 21207063898111253, 0.78792936101888741]
[0. 21207063898111253, 0.78792936101888741]
[0. 21207063898111253, 0.78792936101888741]
```

문제 4의 경우, epoch = 100의 학습이 있어야 목표값이었던 [0.0, 1.0]에 근접했다. Epoch를 늘리면 더

목표치에 가까워진다. 결과적으로 목표값에 매우 근접함을 확인하였다. 직접 계산하여 w를 3번 업데이트 해주었는데 프로그래밍 결과와 동일한 결과를 얻었다.

Problem 5)

문제 5의 경우 학습 속도가 느려서, epoch = 150으로 학습을 시켰을 때 목표치였던 [0.0, 1.0]에 도달함을 확인하였다. Epoch를 늘리면 목표치에 더욱 가까워졌다. 직접 계산하여 w를 3번 업데이트 해주었는데 프로그래밍 결과와 동일한 결과를 얻었다.

Problem 6)

문제 6은 epoch = 30일 때의 결과를 출력한 것이다. 30회의 학습만으로 목표치였던 [0.0, 1.0]에 근접하였다. error함수로 SSE가 아닌 logistic error를 사용하여 이런 결과를 얻을 수 있었다. 직접 계산하여 w를 3번 업데이트 해주었는데 프로그래밍 결과와 동일한 결과를 얻었다.

Problem 7)

문제 7은 epoch = 50일 때의 결과를 출력한 것이다. 50회의 학습만으로 목표치였던 [0.0, 1.0]에 근접하였다. 문제 6과 마찬가지로, error함수로 SSE가 아닌 logistic error를 사용하여 더 빠른 학습 결과를 얻을 수 있었다. 직접 계산하여 w를 3번 업데이트 해주었는데 프로그래밍 결과와 동일한 결과를 얻었다.

4.2 Conclusion

- Weight와 bias를 프로그래밍을 통하여 직접 업데이트를 해보고 학습 결과를 확인해 볼 수 있었다.
- 다양한 활성화 함수와 error 함수를 비교해가면서, 여러 학습결과를 얻을 수 있었다.
- 문제 4번, 5번과 6번,7번을 비교한 결과 error 함수로 logistic을 사용했을 때 더 빠른 학습 결과를 얻을 수 있었다.
- PA#2을 수행함으로써 인공신경망의 기초 내용을 직접 구현하고, 결과를 확인할 수 있었다.