

ENGLISH -II

Introduction:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training the students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competence of the students of Engineering.

As far as the detailed Textbooks are concerned, the focus should be on the skills of listening, speaking, reading and writing. The nondetailed Textbooks are meant for extensive reading for pleasure and profit.

Thus the stress in the syllabus in primarily on the development of communicative skills and fostering of ideas.

Objectives:

- 1. To imporve the language proficiency of the students in English with emphasis on LSRW skills.
- 2. To enable the students to study and comprehend the prescribed lessons and subjects more effectively relating to their theoretical and practical components.
- 3. To develop the communication skills of the students in both formal and informal situations.

LISTENING SKILLS:

Objectives:

- 1. To enable the students to appreciate the role of listening skill and improve their pronounciation.
- 2. To enable the students to comprehend the speech of people belonging to different backgrounds and regions.
- 3. To enable the students to listen for general content, to fill up information and for specific information.

SPEAKING SKILLS:

Objectives:

- 1. To make the students aware of the importance of speaking for their personal and professional communication.
- 2. To enable the students to express themselves fluently and accurately in social and professional success.
- 3. To help the students describe objects, situations and people.
- 4. To make the students participate in group activities like roleplays, discussions and debates.
- 5. To make the students particiapte in Just a Minute talks.

READING SKILLS:

Objectives:

- 1. To enable the students to comprehend a text through silent reading.
- 2. To enable the students to guess the meanings of words, messages and inferences of texts in given contexts.
- 3. To enable the students to skim and scan a text.
- 4. To enable the students to identify the topic sentence.
- 5. To enable the students to identify discourse features.
- 6. To enable the students to make intensive and extensive reading.

WRITING SKILLS:

Objectives:

- 1. To make the students understand that writing is an exact formal skills.
- 2. To enable the students to write sentences and paragraphs.
- 3. To make the students identify and use appropriate vocabulary.
- 4. To enable the students to narrate and describe.
- 5. To enable the students capable of note-making.
- 6. To enable the students to write coherently and cohesively.
- 7. To make the students to write formal and informal letters.
- 8. To enable the students to describe graphs using expressions of comparision.
- 9. To enable the students to write techincal reports.

Methodology:

- 1. The class are to be learner-centered where the learners are to read the texts to get a comprehensive idea of those texts on their own with the help of the peer group and the teacher.
- 2. Integrated skill development methodology has to be adopted with focus on individual language skills as per the tasks/exercise.
- 3. The tasks/exercises at the end of each unit should be completed by the learners only and the teacher interventionis perimitted as per the complexity of the task/exercise.
- 4. The teacher is expected to use supplementary material wherever necessary and also generate activities/tasks as per the requirement.
- 5. The teacher is perimitted to use lecture method when a completely new concept is introduced in the class.

Assessment Procedure: Theory

- 1. The formative and summative assessment procedures are to be adopted (mid exams and end semester examination).
- 2. Neither the formative nor summative assessment procedures should test the memory of the content of the texts given in the textbook. The themes and global comprehension of the units in the present day context with application of the language skills learnt in the unit are to be tested.
- 3. Only new unseen passages are to be given to test reading skills of the learners. Written skills are to be tested from sentence level to essay level. The communication formats—emails,letters and reports—are to be tested along with appropriate language and expressions.
- 4. Examinations:

I mid exam + II mid exam (15% for descriptive tests+10% for online tests)= 25%

(80% for the best of two and 20% for the other)

Assignments= 5%

End semester exams=70%

5. Three take home assignments are to be given to the learners where they will have to read texts from the reference books list or other sources and write their gist in their own words.

The following text books are recommended for study in I B.Tech II Semester (Common for all branches) and I B.Pharma II Sem of JNTU Kakinada from the academic year 2016-17 (**R-16 Regulations**)

DETAILED TEXTBOOK: ENGLISH ENCOUNTERS Published by **Maruthi Publishers**.

DETAILED NON-DETAIL: THE GREAT INDIAN SCIENTISTS Published by Cenguage learning

The course content along with the study material is divided into six units.

UNIT 1:

1. 'The Greatest Resource- Education' from English Encounters

OBJECTIVE:

Schumacher describes the education system by saying that it was mere training, something more than mere knowledge of facts.

OUTCOME:

The lesson underscores that the ultimate aim of Education is to enhance wisdom.

2. 'A P J Abdul Kalam' from The Great Indian Scientists.

OBJECTIVE:

The lesson highlights Abdul Kalam's contributions to Indian science and the awards he received.

OUTCOME:

Abdul Kalam's simple life and service to the nation inspires the readers to follow in his footsteps.

UNIT 2:

1. 'A Dilemma' from English Encounters

OBJECTIVE: The lesson centres on the pros and cons of the development of science and technology.

OUTCOME: The lesson enables the students to promote peaceful co-existence and universal harmony among people and society.

2. 'C V Raman' from The Great Indian Scientists.

OBJECTIVE:

The lesson highlights the dedicated research work of C V Raman and his achievements in Physics.

OUTCOME:

The Achievements of C V Raman are inspiring and exemplary to the readers and all scientists.

UNIT 3:

1. 'Cultural Shock': Adjustments to new Cultural Environments from English Encounters.

OBJECTIVE:

The lesson depicts of the symptoms of Cultural Shock and the aftermath consequences.

OUTCOME:

The lesson imparts the students to manage different cultural shocks due to globalization.

2. 'Homi Jehangir Bhabha' from The Great Indian Scientists.

OBJECTIVE:

The lesson highlights Homi Jehangir Bhabha's contributions to Indian nuclear programme as architect.

OUTCOME:

The seminal contributions of Homi Jehangir Bhabha to Indian nuclear programme provide an aspiration to the readers to serve the nation and sterngthen it.

UNIT 4:

1. 'The Lottery' from English Encounters.

OBJECTIVE:

The lesson highlights insightful commentary on cultural traditions.

OUTCOME:

The theme projects society's need to re examine its traditions when they are outdated.

2. 'Jagadish Chandra Bose' from The Great Indian Scientists.

OBJECTIVE:

The lesson gives an account of the unique discoveries and inventions of Jagadish Chandra Bose in Science.

OUTCOME: The Scientific discoveries and inventions of Jagadish Chandra Bose provide inspiration to the readers to make their own contributions to science and technology, and strengthen the nation.

UNIT 5:

1. 'The Health Threats of Climate Change' from English Encounters.

OBJECTIVE:

The essay presents several health disorders that spring out due to environmental changes

OUTCOME:

The lesson offers several inputs to protect environment for the sustainability of the future generations.

2. 'Prafulla Chandra Ray' from The Great Indian Scientists.

OBJECTIVE:

The lesson given an account of the experiments and discoveries in Pharmaceuticals of Prafulla Chandra Ray.

OUTCOME:

Prafulla Chandra Ray's scientific achievements and patriotic fervour provide inspiration to the reader.

UNIT 6:

1. 'The Chief Software Architect' from English Encounters

OBJECTIVE:

The lesson supports the developments of technology for the betterment of human life.

OUTCOME:

Pupil get inspired by eminent personalities who toiled for the present day advancement of software development.

2. 'Srinivasa Ramanujan' from The Great Indian Scientists.

OBJECTIVE:

The lesson highlights the extraordinary achievements of Srinivasa Ramanujan, a great mathematician and the most romantic figure in mathematics.

OUTCOME:

The lesson provides inspiration to the readers to think and tap their innate talents.

NOTE:

All the exercises given in the prescribed lessons in both detailed and non-detailed textbooks relating to the theme and language skills must be covered.

MODEL QUESTION PAPER FOR THEORY

PART-I

Six short answer questions on 6 unit themes

One question on eliciting student's response to any of the themes

PART-II

Each question should be from one unit and the last question can be a combination of two or more units.

Each question should have 3 sub questions: A,B & C

A will be from the main text: 5 marks

B from non-detailed text: 3 marks

C on grammar and Vocabulary: 6 marks

I Year - II Semester

L T P C 4 0 0 3

MATHEMATICS-III

Course Objectives:

- 1. The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.
- 2. The skills derived from the course will help the student from a necessary base to develop analytic and design concepts.
- 3. Understand the most basic numerical methods to solve simultaneous linear equations.

Course Outcomes: At the end of the Course, Student will be able to:

- 1. Determine rank, Eigenvalues and Eigen vectors of a given matrix and solve simultaneous linear equations.
- 2. Solve simultaneous linear equations numerically using various matrix methods.
- 3. Determine double integral over a region and triple integral over a volume.
- 4. Calculate gradient of a scalar function, divergence and curl of a vector function. Determine line, surface and volume integrals. Apply Green, Stokes and Gauss divergence theorems to calculate line, surface and volume integrals.

UNIT I: Linear systems of equations:

Rank-Echelon form-Normal form – Solution of linear systems – Gauss elimination - Gauss Jordon- Gauss Jacobi and Gauss Seidal methods. Applications: Finding the current in electrical circuits.

UNIT II: Eigen values - Eigen vectors and Quadratic forms:

Eigen values - Eigen vectors- Properties - Cayley-Hamilton theorem - Inverse and powers of a matrix by using Cayley-Hamilton theorem- Diagonalization- Quadratic forms- Reduction of quadratic form to canonical form - Rank - Positive, negative and semi definite - Index - Signature.

Applications: Free vibration of a two-mass system.

UNIT III: Multiple integrals:

Curve tracing: Cartesian, Polar and Parametric forms.

Multiple integrals: Double and triple integrals – Change of variables – Change of order of integration.

Applications: Finding Areas and Volumes.

UNIT IV: Special functions:

Beta and Gamma functions- Properties - Relation between Beta and Gamma functions- Evaluation of improper integrals.

Applications: Evaluation of integrals.

UNIT V: Vector Differentiation:

Gradient- Divergence- Curl - Laplacian and second order operators - Vector identities.

Applications: Equation of continuity, potential surfaces

UNIT VI: Vector Integration:

Line integral – Work done – Potential function – Area- Surface and volume integrals Vector integral theorems: Greens, Stokes and Gauss Divergence theorems (without proof) and related problems. Applications: Work done, Force.

Text Books:

- 1. **B.S.Grewal,** Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. N.P.Bali, Engineering Mathematics, Lakshmi Publications.

Reference Books:

- 1. **Greenberg,** Advanced Engineering Mathematics, 2nd edition, Pearson edn
- 2. **Erwin Kreyszig,** Advanced Engineering Mathematics, 10th Edition, Wiley-India
- 3. **Peter O'Neil**, Advanced Engineering Mathematics, 7th edition, Cengage Learning.
- 4. **D.W. Jordan and T.Smith,** Mathematical Techniques, Oxford University Press.
- 5. Srimanta Pal, Subodh C.Bhunia, Engineering Mathematics, Oxford University Press.
- 6. Dass H.K., Rajnish Verma. Er., Higher Engineering Mathematics, S. Chand Co. Pvt. Ltd, Delhi.

APPLIED CHEMISTRY (Common to EEE, ECE, CSE, IT, EIE, E.Com.E,)

Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

Learning Objectives:

- Plastics are nowadays used in household appliances; also they are used as composites (FRP) in aerospace industries (Unit I).
- Fuels as a source of energy are a basic need of any industry, particularly industries like thermal power stations, steel industry, fertilizer industry etc., and hence they are introduced (Unit II).
- The basics for the construction of galvanic cells as well as some of the sensors used in instruments are introduced. Also if corrosion is to be controlled, one has to understand the mechanism of corrosion which itself is explained by electrochemical theory (Unit III).
- With the increase in demand, a wide variety of materials are coming up; some of them have excellent engineering properties and a few of these materials are introduced (Unit IV).
- Understanding of crystal structures will help to understand the conductivity, semiconductors and superconductors. Magnetic properties are also studied (Unit V).
- With the increase in demand for power and also with depleting sources of fossil fuels, the demand for alternative sources of fuels is increasing. Some of the prospective fuel sources are introduced (Unit VI).

UNIT I: HIGH POLYMERS AND PLASTICS

Polymerisation: Introduction- Mechanism of polymerization - Stereo regular polymers – methods of polymerization (emulsion and suspension) -Physical and mechanical properties – Plastics as engineering materials: advantages and limitations – Thermoplastics and Thermosetting plastics – Compounding and fabrication (4/5 techniques)-Preparation, properties and applications of polyethene, PVC, Bakelite Teflon and polycarbonates

Elastomers – Natural rubber- compounding and vulcanization – Synthetic rubbers : Buna S, Buna N, Thiokol and polyurethanes – Applications of elastomers.

Composite materials & Fiber reinforced plastics – Biodegradable polymers – Conducting polymers.

UNIT II: FUEL TECHNOLOGY

Fuels:- Introduction – Classification – Calorific value – HCV and LCV – Dulong's formula – Bomb calorimeter – Numerical problems – Coal — Proximate and ultimate analysis – Significance of the analyses – Liquid fuels – Petroleum- Refining – Cracking – Synthetic petrol – Petrol knocking – Diesel knocking - Octane and Cetane ratings – Anti-knock agents – Power alcohol – Bio-diesel – Gaseous fuels – Natural gas. LPG and CNG – Combustion – Calculation of air for the combustion of a fuel – Flue gas analysis – Orsat apparatus – Numerical problems on combustion.

Explosives:- Introduction, classification, examples: RDX, TNT and ammonium nitrite - rocket fuels.

UNIT III: ELECTROCHEMICAL CELLS AND CORROSION

Galvanic cells - Reversible and irreversible cells - Single electrode potential - Electro chemical series and uses of this series- Standard electrodes (Hydrogen and Calomel electrodes) - Concentration Cells - Batteries: Dry Cell - Ni-Cd cells - Ni-Metal hydride cells - Li cells - Zinc - air cells.

Corrosion:- Definition – Theories of Corrosion (electrochemical) – Formation of galvanic cells by different metals, by concentration cells, by differential aeration and waterline corrosion – Passivity of metals – Pitting corrosion – Galvanic series – Factors which influence the rate of corrosion – Protection from corrosion – Design and material selection – Cathodic protection – Protective coatings: – Surface preparation – Metallic (cathodic and anodic) coatings - Methods of application on metals (Galvanizing, Tinning, Electroplating, Electroless plating)

UNIT IV: CHEMISTRY OF ADVANCED MATERIALS

Nano materials: - Introduction – Sol-gel method & chemical reduction method of preparation – Characterization by BET method and TEM methods - Carbon nano tubes and fullerenes: Types, preparation, properties and applications

Liquid crystals:- Introduction – Types – Applications

Superconductors: - Type-I & Type-2, properties & applications

Green synthesis: Principles - 3or 4 methods of synthesis with examples $-R_4M_4$ principles

UNIT V: SOLID STATE CHEMISTRY

Types of solids - close packing of atoms and ions - BCC , FCC, structures of rock salt - cesium chloride- spinel - normal and inverse spinels,

Non-elemental *semiconducting Materials:*- Stoichiometric, controlled valency & Chalcogen photo/semiconductors, Preparation of Semiconductors - Semiconductor Devices:- p-n junction diode as rectifier – junction transistor.

Insulators (electrical and electronic applications)

Magnetic materials:- Ferro and ferri magnetism. Hall effect and its applications.

UNIT VI: NON CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICESSolar Energy: -

Introduction, application of solar energy, conversion of solar energy (Thermal

conversion & photo conversion) – photovoltaic cell: design, working and its importance

Non-conventional energy sources:

- (i) Hydropower include setup a hydropower plant (schematic diagram)
- (ii) Geothermal energy: Introduction-schematic diagram of a geothermal power plant
- (iii) Tidal and wave power: Introduction- Design and working-movement of tides and their effect on sea level.
- (iv)Ocean thermal energy: Introduction, closed-cycle, ocean thermal energy conversion (OTEC), open cycle OTEC, hybrid OTEC, schematic diagram and explanation.
- (v) Biomass and biofuels

Fuel cells:- Introduction - cell representation, H_2 - O_2 fuel cell: Design and working, advantages and limitations. Types of fuel cells: Alkaline fuel cell - methanol-oxygen - phosphoric acid fuel cells - molten carbonate fuel cells.

Outcomes: The advantages and limitations of plastic materials and their use in design would be understood. Fuels which are used commonly and their economics, advantages and limitations are discussed. Reasons for corrosion and some methods of corrosion control would be understood. The students would be now aware of materials like nanomaterials and fullerenes and their uses. Similarly liquid crystals and superconductors are understood. The importance of green synthesis is well understood and how they are different from conventional methods is also explained. Conductance phenomenon is better understood. The students are exposed to some of the alternative fuels and their advantages and limitations.

Standard Books:

- 1. Engineering Chemistry by Jain and Jain; Dhanpat Rai Publicating Co.
- 2. Engineering Chemistry by Shikha Agarwal; Cambridge University Press, 2015 edition.

Reference Books:

- 1. Engineering Chemistry of Wiley India Pvt. Ltd., Vairam and others, 2014 edition (second).
- 2. Engineering Chemistry by Prasanth Rath, Cengage Learning, 2015 edition.
- 3.A text book of engineering Chemistry by S. S. Dara; S. Chand & Co Ltd., Latest Edition
- 4. Applied Chemistry by H.D. Gesser, Springer Publishers
- 5. Text book of Nano-science and nanotechnology by B.S. Murthy, P. Shankar and others, University Press, IIM

ELECTRICAL & MECHANICAL TECHNOLOGY

ELECTRICAL TECHNOLOGY:

Preamble:

This course covers the topics related to analysis of various electrical circuits, operation of various electrical machines, various electronic components to perform well in their respective fields.

Learning Objectives:

- To learn the basic principles of electrical law's and analysis of networks.
- To understand the principle of operation and construction details of DC machines.
- To understand the principle of operation and construction details of transformer.
- To understand the principle of operation and construction details of alternator and 3-Phase induction motor.
- To Understand the principles and construction of various measuring instruments.

Unit - I

DC Machines:

Principle of operation of DC generator – emf equation – types of DC machine – torque equation of DC motor – applications – three point starter, speed control methods – OCC of DC generator

Transformers: Principle of operation of single phase transformers – e.m.f equation – losses –efficiency and regulation.

Unit - II

AC Rotating Machines:

Principle of operation of alternators – regulation by synchronous impedance method –principle of operation of 3-Phase induction motor – slip-torque characteristics - efficiency – applications.

Unit III

Measuring Instruments:

Classification – Deflection, controlling, damping torque, ammeter, voltmeter, wattmeter, MI, MC instruments – Energy meter – Construction of CRO.

Learning Outcomes:

- Able to analyse the various electrical networks.
- Able to understand the operation of DC generator, DC Motor ,3-point starter and Speed control methods.
- Able to analyse the performance of transformer.
- Able to explain the operation of 3-phase alternator and 3-phase induction motors.
- Able to explain the working principle of various measuring instruments.

MECHANICAL TECNOLOGY

Learning Objectives: The content of this course shall provide the student the basic concepts of various mechanical systems and exposes the student to a wide range of equipment and their utility in a practical situation. It shall provide the fundamental principles of fuels, I.C. Engines, transmission systems, heat transfer fundamentals and various manufacturing operations usually exist in any process plant.

UNIT-IV:

Energy Sources: Renewable and non renewable energy resources, renewable energy forms and conversions. Thermodynamic principles and laws.

Internal combustion engines: classification – working principle - engine components. Four stroke and two stroke petrol and diesel engines, comparisons. Performance parameters: IP, BP, FP, SFC, BTE, ITE, ME.

UNIT-V:

Heat Transfer: Modes of heat transfer- heat transfer parameters, various thermo physical properties. Conduction - heat transfer for extended surfaces, Types of fins, Fin equation for rectangular fin, Fin efficiency, Fin effectiveness. Convection – Mechanism, Natural and Forced Convection. Heat Transfer in laminar and turbulent flow over a flat plate. Radiation heat transfer: Thermal radiation, Blackbody radiation, Radiation intensity, Radiative properties, Basic laws of radiation.

UNIT-VI:

Transmission of power and manufacturing methods:

Belt, rope and chain drives- Different types - power transmission by belts and ropes, initial tensions in the belt.

Gears: classification of gears, applications.

Metal joining: arc welding, resistance welding, gas welding, brazing and soldering

Metal forming: forging – operations, rolling and extrusion principles Machine tool: lathe classification, specifications, and operations.

Outcomes:

After completing the course, the student shall be able to understand:

- Working of I.C. Engines
- Modes of Heat transfer
- Power transmission by drives and different manufacturing methods.

Text Books:

- 1. Electrical Technology by Surinder Pal Bali, Pearson Publications.
- 2. Electrical Circuit Theory and Technology by John Bird, Routledge Taylor &Francis Group
- 3. Mechanical Engineering Science K R Gopala Krishna, Subhas publications
- 4. Elements of Mechanical Engineering, M.L. Mathur, F.S.Metha & R.P.Tiwari Jain Brothers Publs., 2009.
- **5.** Heat transfer by P.K. Nag, Tata McGraw-Hill

Reference Books:

- 1. Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH Publications
- 2. Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publications, 2nd edition
- 3. Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2nd edition
- 4. Electrical Engineering Prasad, Sivanagaraju, Cengage Learning
- 5. Theory of machines by Rattan McGraw-Hill publications
- 6. Production Technology by P.N.Rao by I & II McGraw-Hill publications

I Year - II Semester

L T P C 4 0 0 3

ENVIRONMENTAL STUDIES

Course Learning Objectives:

The objectives of the course is to impart

- Overall understanding of the natural resources
- Basic understanding of the ecosystem and its diversity
- Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities
- An understanding of the environmental impact of developmental activities
- Awareness on the social issues, environmental legislation and global treaties

Course Outcomes:

The student should have knowledge on

- The natural resources and their importance for the sustenance of the life and recognize the need to conserve the natural resources
- The concepts of the ecosystem and its function in the environment. The need for protecting the producers and consumers in various ecosystems and their role in the food web
- The biodiversity of India and the threats to biodiversity, and conservation practices to protect the biodiversity
- Various attributes of the pollution and their impacts and measures to reduce or control the pollution along with waste management practices
- Social issues both rural and urban environment and the possible means to combat the challenges
- The environmental legislations of India and the first global initiatives towards sustainable development.
- About environmental assessment and the stages involved in EIA and the environmental audit.
- Self Sustaining Green Campus with Environment Friendly aspect of Energy, Water and Wastewater reuse
 Plantation, Rain water Harvesting, Parking Curriculum.

Syllabus:

UNIT – I Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance –Sustainability: Stockholm and Rio Summit–Global Environmental Challenges: Global warming and climate change, Carbon Credits, acid rains, ozone layer depletion, population growth and explosion, effects. Role of information Technology in Environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem. - Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids. - Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT – II Natural Resources: Natural resources and associated problems

Forest resources – Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people

Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, Sustainable mining of Granite, Literate, Coal, Sea and River sands.

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources Vs Oil and Natural Gas Extraction.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT – III Biodiversity and its conservation: Definition: genetic, species and ecosystem diversity- classification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-spots of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts - Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.

UNIT – IV Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution. - Pollution case studies, Sustainable Life Studies.

Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and e – waste management.

UNIT – V Social Issues and the Environment: Urban problems related to energy -Water conservation, rain water harvesting-Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act -Wildlife Protection Act -Forest Conservation Act-Issues involved in enforcement of environmental legislation. -Public awareness.

UNIT – VI Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism, Green Campus – Green business and Green politics.

The student should Visit an Industry/Ecosystem and submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

Text Books:

- 1. Environmental Studies, K.V. S. G. Murali Krishna, VGS Publishers, Vijayawada
- 2. Environmental Studies , R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.
- 3. Environmental Studies, P.N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai

Reference:

- 1. Text Book of Environmental Studies, Deeshita Dave & P. Udaya Bhaskar, Cengage Learning.
- 2. A Textbook of Environmental Studies, Shaashi Chawla, TMH, New Delhi
- 3. Environmental Studies, Benny Joseph, Tata McGraw Hill Co, New Delhi
- 4. "Perspectives in Environment Studies" Anubha Kaushik, C P Kaushik, New Age International Publishers, 2014

DATA STRUCTURES

OBJECTIVES:

- To be familiar with basic techniques handling problems with Data structures
- Solve problems using data structures such as linear lists, stacks, queues, hash tables

UNIT-I: ARRAYS

Abstract Data Type, The Array as an Abstract Data Type, The Polynomial Abstract Data type-Polynomial Representation- Polynomial Addition. Spares Matrices, Introduction- Sparse Matrix Representation- Transposing a Matrix- Matrix Multiplication, Representation of Arrays.

UNIT-II: STACKS AND QUEUES

The Stack Abstract Data Type, The Queue Abstract Data Type, Evaluation of Expressions, Expression- Postfix Notation- Infix to Postfix.

UNIT-III: LINKED LISTS

Single Linked List and Chains, Circular Lists, Available Space Lists, Linked Stacks and Queues, Polynomials, Polynomial Representation- Adding Polynomials- Circular List Representation of Polynomials, Equivalence Classes, Sparse Matrices, Sparse Matrix Representation- Sparse Matrix Input- Deleting a Sparse Matrix, Doubly Linked Lists, Generalized Lists, Representation of Generalized Lists- Recursive Algorithms for Lists- Reference Counts, Shared and Recursive Lists

UNIT-IV: TREES

Representation of Trees, Binary Trees, The Abstract Data Type, Properties of Binary Tress, Binary Tree Representations, Binary Tree Traversal, Introduction, Inorder Traversal Preorder Traversal, Postorder Traversal, Thread Binary Trees, Threads, Inorder Traversal of a Threaded Binary Tree, Inserting a Node into a Threaded Binary Tree, Heaps, Priority Queues, Definition of a Max Heap, Insertion into a Max Heap, Deletion from a Max Heap, Binary Search Trees, Definition, Searching a Binary Search Tree, Insertion into a Binary Search Tree, Deletion from a Binary Search Tree, Height of Binary Search Tree.

UNIT-V: GRAPHS

The Graph Abstract Data Type, Introduction, Definition, Graph Representation, Elementary Graph Operation, Depth First Search, Breadth First Search, Connected Components, Spanning Trees, Biconnected Components, Minimum Cost Spanning Trees, Kruskal S Algorithm, Prim s Algorithm, Sollin's Algorithm, Shortest Paths and Transitive Closure, Single Source/All Destination: Nonnegative Edge Cost, Single Source/All Destination: General Weights, All-Pairs Shortest Path, Transitive Closure.

UNIT-VI: SORTING

Insertion Sort, Quick Sort, Merge Sort Merging, Iterative Merge Sort, Recursive Merge Sort, Heap Sort, Summary of Internal Sorting

OUTCOMES:

- Apply advanced data structure strategies for exploring complex data structures.
- Compare and contrast various data structures and design techniques in the area Of Performance.
- Implement all data structures like stacks, queues, trees, lists and graphs and compare their Performance and trade offs

Text Books:

- 1. Data structures, Algorithms and Applications in C++, S.Sahni, University Press (India) Pvt.Ltd, 2nd edition, Universities Press Orient Longman Pvt. Ltd.
- 2. Data structures and Algorithm Analysis in C++, Mark Allen Weiss, Pearson Education. Ltd., Second Edition.
- 3. Data structures and algorithms in C++, 3rd Edition, Adam Drozdek, Thomson□

Reference Books:

- 1. Data structures and Algorithm Analysis in C++, Mark Allen Weiss, Pearson Education. Ltd., Second Edition. □
- 2. Data structures using C and C++, Langsam, Augenstein and Tanenbaum, PHI. □
- 3. Problem solving with C++, The OOP, Fourth edition, W.Savitch, Pearson education.

APPLIED/ENGINEERING CHEMISTRY LABORATORY

- 1. Introduction to Chemistry laboratory Molarity, Normality, Primary, secondary standard solutions, Volumetric titrations, Quantitative analysis, Qualitative analysis, etc.
- 2. Trial experiment Determination of HCl using standard Na₂CO₃ solution.
- 3. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 4. Determination of KMnO₄ using standard Oxalic acid solution.
- 5. Determination of Ferrous iron using standard K₂Cr₂O₇ solution.
- 6. Determination of Copper using standard K₂Cr₂O₇ solution.
- 7. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 8. Determination of Copper using standard EDTA solution.
- 9. Determination of Iron by a Colorimetric method using thiocynate as reagent.
- 10. Determination of pH of the given sample solution using pH meter.
- 11. Conductometric titration between strong acid and strong base.
- 12. Conductometric titration between strong acid and weak base.
- 13. Potentiometric titration between strong acid and strong base.
- 14. Potentiometric titration between strong acid and weak base.
- 15. Determination of Zinc using standard EDTA solution.
- 16. Determination of Vitamin C.

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.

Reference Books

- 1. A Textbook of Quantitative Analysis, Arthur J. Vogel.
- Dr. Jyotsna Cherukuris (2012) Laboratory Manual of engineering chemistry-II, VGS Techno Series
 Chemistry Practical Manual, Lorven Publications K. Mukkanti (2009) Practical Engineering Chemistry, B.S. Publication.

I Year - II Semester

L T P C 0 0 3 2

ENGLISH - COMMUNICATION SKILLS LAB - 2

PRESCRIBED LAB MANUAL FOR SEMESTER II:

'INTERACT: English Lab Manual for Undergraduate Students' Published by Orient Blackswan Pvt Ltd.

OBJECTIVES:

To enable the students to learn demonstratively the communication skills of listening, speaking, reading and writing.

OUTCOME:

A study of the communicative items in the laboratory will help the students become successful in the competitive world.

The course content along with the study material is divided into six units.

UNIT 1:

1. Debating - Practice work

UNIT 2:

1. Group Discussions -- Practice work

UNIT 3:

1. Presentation Skills - Practice work

UNIT 4:

1. Interview Skills - Practice work

UNIT 5:

1. Email, Curriculum Vitae - Practice work

UNIT 6:

- 1. Idiomatic Expressions
- 2. Common Errors in English Practice work

Reference Books:

- 1. Strengthen your communication skills by Dr M Hari Prasad, Dr Salivendra Raju and Dr G Suvarna Lakshmi, Maruti Publications.
- 2. English for Professionals by Prof Eliah, B.S Publications, Hyderabad.
- 3. Unlock, Listening and speaking skills 2, Cambridge University Press
- 4. Spring Board to Success, Orient BlackSwan
- 5. A Practical Course in effective english speaking skills, PHI
- 6. Word power made handy, Dr shalini verma, Schand Company
- 7. Let us hear them speak, Jayashree Mohanraj, Sage texts
- 8. Professional Communication, Aruna Koneru, Mc Grawhill Education
- 9. Cornerstone, Developing soft skills, Pearson Education

COMPUTER PROGRAMMING LAB

OBJECTIVES:

- Understand the basic concept of C Programming, and its different modules that includes conditional and looping expressions, Arrays, Strings, Functions, Pointers, Structures and File programming.
- Acquire knowledge about the basic concept of writing a program.
- Role of constants, variables, identifiers, operators, type conversion and other building blocks of C Language.
- Use of conditional expressions and looping statements to solve problems associated with conditions and repetitions.
- Role of Functions involving the idea of modularity.

Programming

Exercise - 1 Basics

- a) What is an OS Command, Familiarization of Editors vi, Emacs
- b) Using commands like mkdir, ls, cp, mv, cat, pwd, and man
- c) C Program to Perform Adding, Subtraction, Multiplication and Division of two numbers From Command line

Exercise - 2 Basic Math

- a) Write a C Program to Simulate 3 Laws at Motion
- b) Write a C Program to convert Celsius to Fahrenheit and vice versa

Exercise - 3 Control Flow - I

- a) Write a C Program to Find Whether the Given Year is a Leap Year or not.
- b)Write a C Program to Add Digits & Multiplication of a number

Exercise – 4 Control Flow - II

- a)Write a C Program to Find Whether the Given Number is
 - i) Prime Number
 - ii) Armstrong Number
- b) Write a C program to print Floyd Triangle
- c) Write a C Program to print Pascal Triangle

Exercise – 5 Functions

- a) Write a C Program demonstrating of parameter passing in Functions and returning values.
- b) Write a C Program illustrating Fibonacci, Factorial with Recursion without Recursion

Exercise - 6 Control Flow - III

- a) Write a C Program to make a simple Calculator to Add, Subtract, Multiply or Divide Using switch...case
- b) Write a C Program to convert decimal to binary and hex (using switch call function the function)

Exercise – 7 Functions - Continued

Write a C Program to compute the values of sin x and cos x and e^x values using Series expansion. (use factorial function)

Exercise – 8 Arrays

Demonstration of arrays

- a) Search-Linear.
- b) Sorting-Bubble, Selection.
- c) Operations on Matrix.

Exercises - 9 Structures

- a)Write a C Program to Store Information of a Movie Using Structure
- b) Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
- c) Write a C Program to Add Two Complex Numbers by Passing Structure to a Function

Exercise - 10 Arrays and Pointers

- a) Write a C Program to Access Elements of an Array Using Pointer
- b) Write a C Program to find the sum of numbers with arrays and pointers.

Exercise – 11 Dynamic Memory Allocations

- a) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc () function.
- b) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc () function.

Understand the difference between the above two programs

Exercise – 12 Strings

- a) Implementation of string manipulation operations with library function.
 - i) copy
 - ii) concatenate
 - iii) length
 - iv) compare
- b) Implementation of string manipulation operations without library function.
 - i) copy
 - ii) concatenate
 - iii) length
 - iv) compare

Exercise -13 Files

- a)Write a C programming code to open a file and to print it contents on screen.
- b)Write a C program to copy files

Exercise - 14 Files Continued

- a) Write a C program merges two files and stores their contents in another file.
- b)Write a C program to delete a file.

OUTCOMES:

- Apply and practice logical ability to solve the problems.
- Understand C programming development environment, compiling, debugging, and linking and executing a program using the development environment
- Analyzing the complexity of problems, Modularize the problems into small modules and then convert them into programs
- Understand and apply the in-built functions and customized functions for solving the problems.
- Understand and apply the pointers, memory allocation techniques and use of files for dealing with variety of problems.
- Document and present the algorithms, flowcharts and programs in form of user-manuals
- •Identification of various computer components, Installation of software

Note:

- a) All the Programs must be executed in the Linux Environment. (Mandatory)
- b) The Lab record must be a print of the LATEX (.tex) Format.