Bayesian Model Averaging

Model <u>Selection</u>: pick one of several models MI, Ma, ... Mr

Mudel Areaging: don't pick one model but combine predictions from several models

Suppose Δ is a quantity you wish to predict, Examples:
- effect size

= utility of a decision

- Statistical parameter

Each model Mk gives a predicted value of Δ .

- -> better predictions of D using weighted average of model's prediction of D. (weighted using each model's posterior probability).
- -> In other words, we wish to compute ELD/XI for our data X using a sum over our models.

(orditional Expectation: $E[\Delta | X] = \int \Delta Pr(\Delta | X) d\Delta$ (assuming Δ is cont.) (1)

where Pr (A |X) can be written as a sum over models:

$$Pr(\Delta|X) = \sum_{k=1}^{K} Pr(\Delta, M_k|X) = \sum_{k=1}^{K} Pr(\Delta|M_k, X) Pr(M_k|X)$$
whose does
this come
from?
$$P(A, B|C) = Pr(A|B, C) Pr(B|C) \rightarrow compare$$

Pr(A|X) =
$$\sum_{k} Pr(A|M_{k},X) Pr(M_{k}|X)$$
 (2)
+Mis pobs, prob & under weighted by
is the average each model k posterior prob
of that model

Posterior Prob. of model Mk.

$$P_{c}(M_{k}|X) = \frac{P_{c}(X|M_{k})P_{c}(M_{k})}{\sum_{Q=1}^{K} P_{c}(X|M_{k})P_{c}(M_{Q})}$$
(4) (4) (4) (4) (4)

and >

$$P_r(X|M_k) = \int P_r(x|\Theta_k,M_k) P_r(\Theta_k|M_k) d\Theta_k$$

is the likelihood of model M_k w/ parameter(s) Θ_k and prior prob. $Pr(\Theta_k|M_k)$ for those parameters under model M_k .

With these equations we can now compute $E[\Delta | X] : A$ $E[\Delta | X] = \int \Delta P_r(\Delta | X) d\Delta \qquad \qquad \text{Plug Eq. 2 into Eq. 2}$

$$= \int \Delta \left(\sum_{k} P_{r}(\Delta | M_{k}, X) P_{r}(M_{k} | X) \right) d\Delta \qquad \text{Exchange } \Xi \text{ and } S$$

$$= \sum_{k} \left(\int \Delta \Pr(\Delta | M_{k}, X) d\Delta \right) \Pr(M_{k} | X) \qquad \text{Pasteriar prob (E43)} \\ \text{does not depend on } \Delta$$

$$= \sum_{k} \widehat{\Delta}_{k} \Pr(M_{k}|X) \quad \text{where} \quad \widehat{\Delta}_{k} = \int \triangle \Pr(\Delta|M_{k},X) d\Delta$$
$$= E[\Delta|M_{k},X]$$

Now we can use E[AX] as a better ownell prediction of Δ , but there are some challenges:

I Where do models M, ... Mx come from? How to specify their prior probs. Pr(Mx) in Eq3?

2. Computational challenges:

- · Number of terms summed over in Ey 2 can be enormous
- Integrals w/in Eu. 2 (Pr(X/Mx)) can be difficult to compute.

We will learn some techniques to address some of these challenges

Remark: Model averging in the context of machine barring is a type of ensemble learning => very powerful!

(x) It is also important to compute variance in Δ , $Vor(\Delta|x) \rightarrow see$ supp.

Boyesian Model Averaging supplement - variance of Δ

Knowing E[A|X] benefits from also knowing Var(A|X): how reliable are our predictions?

Recall:
$$Var(A) = E[(A - E[A])^{a}] = E[A^{a}] - (E[A])^{a}$$
 for R.V. A

Likewise, for the conditional variance:

Var
$$(A|B) = E[(A - E[A|B])^{2}|B]$$

= $E[A^{2}|B] - (E[A|B])^{2}$

knowing E[A|X], which we have, To compute $Var(\Delta|X)$ requires knowing $E[\Delta|X]$ and $E[\Delta^2|X]$. Let's focus on the latter.

$$E[\Delta^{2}|X] = \int \Delta^{2} Pr(\Delta|X) d\Delta$$

$$= \int \Delta^{2} \sum Pr(\Delta|M_{K},X) Pr(M_{K}|X) d\Delta$$

$$= \sum_{k} \left(\int \Delta^{2} Pr(\Delta|M_{K},X) d\Delta \right) Pr(M_{K}|X)$$

write this in terms of a variance

$$\int \Delta^{2} Pr(\Delta | M_{K}, X) d\Delta - \left(\int \Delta Pr(\Delta | M_{K}, X) d\Delta \right)^{2} = Var(\Delta | M_{K}, X)$$
The back is

plug back in

=
$$\sum_{k} \left(Var(\Delta | M_{k}X) + \widehat{\Delta}_{k}^{2} \right) Pr(M_{k}|X)$$
 and plug this back into $Var(\Delta | X)$

proceed as we did W/ E[DIX]

$$Var(\Delta|x) = E[\Delta^{2}|x] - (E[\Delta|x])^{2}$$

$$= \sum_{k} (Var(\Delta|M_{k},x) + \hat{\Delta}_{k}^{2}) P_{+}(M_{k}|x) - (E[\Delta|x])^{2}, \hat{\Delta}_{k}^{2} = E[\Delta|M_{k},x]$$