Discrete differential geometry

Xiao-Ming Fu

Goal

• Compute approximations of the differential properties of this underlying surface directly from the mesh data.

- Local Averaging Region
- Normal Vectors
- Gradients
- Laplace-Beltrami Operator
- Discrete Curvature

Local Averaging Region

• General idea: spatial averages over a local neighborhood $\Omega(x)$ of a point x.

• x: one mesh vertex

• $\Omega(x)$: n-ring neighborhoods of mesh vertex or local geodesic balls.

- The size of the $\Omega(x)$: stability and accuracy
 - Large size: smooth
 - Small size: accurate for clean mesh data

Local Averaging Region

Voronoi cell

Mixed Voronoi cell

triangle barycenters edge midpoints

triangle barycenters→ triangle circumcenter

circumcenter for obtuse triangles → edge midpoints

Implementation thinking

• How to compute the area of local average region? For example, barycentric cell.

One simple idea: for each vertex, compute the area directly.

Any improvement?

How about Voronoi cell and mixed Voronoi cell?

Normal Vectors

- Normal vectors for individual triangles are well-defined.
- Vertex normal: spatial averages of normal vectors in a local one-ring neighborhood.

$$\boldsymbol{n}(v) = \frac{\sum_{T \in \Omega(v)} \alpha_T \boldsymbol{n}(T)}{\left\| \sum_{T \in \Omega(v)} \alpha_T \boldsymbol{n}(T) \right\|_2}$$

- 1. constant weights: $\alpha_T = 1$
- 2. triangle area: $\alpha_T = \text{area}(T)$
- 3. incident triangle angles: $\alpha_T = \theta(T)$

Implementation thinking

How to compute the normal on triangles or vertices?

Barycentric coordinate

$$g = \alpha g_i + \beta g_j + \gamma g_k$$

$$\alpha + \beta + \gamma = 1,$$

$$\alpha, \beta, \gamma \ge 0.$$

$$\alpha = \frac{s_i}{s_i + s_j + s_k}$$

$$s_i$$
: area of the green triangle

Gradients

- Given the function value on vertices, compute the gradient on each triangle.
- A piecewise linear function

$$f(\mathbf{x}) = \alpha f_i + \beta f_j + \gamma f_k$$

• Gradient:

$$\nabla_{x} f(x) = f_{i} \nabla_{x} \alpha + f_{j} \nabla_{x} \beta + f_{k} \nabla_{x} \gamma$$

Because

se
$$\alpha = \frac{A_i}{A_T} = \frac{\left(\left(x - x_j\right) \cdot \frac{\left(x_k - x_j\right)^{\perp}}{\left\|x_k - x_j\right\|_2}\right) \left\|x_k - x_j\right\|_2}{2A_T}$$

$$= \left(x - x_j\right) \cdot \left(x_k - x_j\right)^{\perp} / 2A_T$$

Gradients

Then

$$abla_{x} lpha = rac{\left(oldsymbol{x}_{k} - oldsymbol{x}_{j}
ight)^{\perp}}{2A_{T}}
abla_{x} eta = rac{\left(oldsymbol{x}_{i} - oldsymbol{x}_{k}
ight)^{\perp}}{2A_{T}}
abla_{x} \gamma = rac{\left(oldsymbol{x}_{j} - oldsymbol{x}_{i}
ight)^{\perp}}{2A_{T}}
abla_{x} \gamma = rac{\left(oldsymbol{x}_{j} - oldsymbol{x}_{i} - oldsymbol{x}_{i}
ight)^{\perp}}{2A_{T}}
abla_{x} \gamma = rac{\left(oldsymbol{x}_{i} - oldsymbol{x}_{i} - oldsymbol{x}_{i} - oldsymbol{$$

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = f_i \frac{\left(\mathbf{x}_k - \mathbf{x}_j\right)^{\perp}}{2A_T} + f_j \frac{\left(\mathbf{x}_i - \mathbf{x}_k\right)^{\perp}}{2A_T} + f_k \frac{\left(\mathbf{x}_j - \mathbf{x}_i\right)^{\perp}}{2A_T}$$

Gradients

• Because:

$$(x_k - x_j)^{\perp} + (x_i - x_k)^{\perp} + (x_j - x_i)^{\perp} = 0$$

=>

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \left(f_j - f_i\right) \frac{(\mathbf{x}_i - \mathbf{x}_k)^{\perp}}{2A_T} + \left(f_k - f_i\right) \frac{(\mathbf{x}_j - \mathbf{x}_i)^{\perp}}{2A_T}$$

• Consistent with the formula in the book.

Gradient

Constant on each facet.

- Different in different facets
 - the signal is C^0

• No definition on vertices.

• If the signal is the positions of the vertices, what does the gradient mean?

Implementation thinking

• Simple question:

How to compute
$$(x_k - x_j)^{\perp}$$
 in 3D?

How about the gradient in tetrahedral mesh?

Laplace-Beltrami Operator Paper: Discrete Laplace operators: No free lunch

- $\Delta = -\text{div grad on a smooth surface } S$
 - (NULL): $\Delta f = 0$ whenever f is constant.
 - (SYM) Symmetry: $(\Delta f, g)_{L^2} = (f, \Delta g)_{L^2}$
 - (LOC) Local support: for any pair $p \neq q$ of points, $\Delta f(p)$ is independent of f(q).
 - (LIN) Linear precision: $\Delta f = 0$ whenever $S \in \mathbb{R}^2$ and f is linear.
 - (MAX) Maximum principle: harmonic functions have no local maxima at interior points.
 - (PSD) Positive semi-definiteness: the Dirichlet energy $E_D(f) = \int_S ||\operatorname{grad} f||_2^2 dA = (\Delta f, f)_{L^2}$ is non-negative.

Discrete Laplace-Beltrami Operator Paper: Discrete Laplace operators: No free lunch

- Discrete Laplace operators on triangular surface meshes span the entire spectrum of geometry processing applications:
 - mesh filtering, parameterization, pose transfer, segmentation, reconstruction, re-meshing, compression, simulation, and interpolation via barycentric coordinates.

- Constant gradient on facet → zero Laplace value on facet
- Exists on the vertex
- A discrete Laplace operator on vertex-based functions:

$$(Lf)_i = \sum_{j \in \Omega(i)} \omega_{ij} (f_j - f_i)$$

Desired Properties for Discrete Laplace-Beltrami Operator

- Require a discrete Laplacian having properties corresponding to (some subset of) the properties of the continuous Laplace operator:
 - NULL
 - $\Delta f = 0$ whenever f is constant.
 - SYM (SYMMETRY)
 - Condition: $\omega_{ij} = \omega_{ji}$
 - Real symmetric matrices exhibit real eigenvalues and orthogonal eigenvectors.
 - LOC (LOCALITY)
 - Condition: Weights are associated to mesh edges, $\omega_{ij}=0$ if vertex i and j do not share an edge.
 - Smooth Laplacians govern diffusion processes via $u_t = -\Delta f$.
 - LIN (LINEAR PRECISION)
 - $(Lf)_i = 0$ for all interior vertices when the positions of vertices are in the plane.
 - Condition: $0 = (Lx)_i = \sum_i \omega_{ij} (x_i x_j)$
 - Applications: de-noising, parameterizations, plate bending energies.

Desired Properties for Discrete Laplace-Beltrami Operator

POS (POSITIVE WEIGHTS)

- Condition: $\omega_{ij} > 0$ whenever $i \neq j$.
- A sufficient condition for a discrete maximum principle.
- In diffusion problems, this property assures that flow travels from regions of higher to regions of lower potential.
- Establishes a connection to barycentric coordinates.
- Tutte's embedding theorem: LOCALITY + LINEAR PRECISION + POSITIVE WEIGHTS.

PSD (POSITIVE SEMI-DEFINITENESS)

- Condition: *L* is symmetric positive semi-definite.
- Discrete Dirichlet energy $E_D(f) = \sum_{i,j} \omega_{ij} (f_i f_j)^2$.
- SYMMETRY + POSITIVE WEIGHTS → POSITIVE SEMI-DEFINITENESS
- POSITIVE SEMI-DEFINITENESS → POSITIVE WEIGHTS

Uniform Laplacian

•
$$\omega_{ij} = 1$$
 or $\omega_{ij} = \frac{1}{N_i}$

$$(Lf)_i = \sum_{j \in \Omega(i)} (f_j - f_i) \text{ or } (Lf)_i = \frac{1}{N_i} \sum_{j \in \Omega(i)} (f_j - f_i)$$

Violate property of LINEAR PRECISION

- The definition only depends on the connectivity of the mesh.
- The uniform Laplacian does not adapt at all to the spatial distribution of vertices.

- mixed finite element/finite volume method
 - Assume it constant on each vertex

$$\int_{A_i} \Delta f dA = \int_{A_i} \operatorname{div} \nabla f \, dA = \int_{\partial A_i} (\nabla f) \cdot \boldsymbol{n} \, ds$$

- 1. A_i is the local averaging domain of vertex i.
- 2. ∂A_i is the boundary of A_i .
- 3. n is the outward pointing unit normal of the boundary.
- 4. f is the signal defined on mesh.

We split this integral by considering the integration separately for each triangle T.

$$\int_{\partial A_i \cap T} \nabla f \cdot \mathbf{n} d\mathbf{s} = \nabla f \cdot (\mathbf{a} - \mathbf{b})^{\perp} = \frac{1}{2} \nabla f \cdot (\mathbf{x}_j - \mathbf{x}_k)^{\perp}$$

 ∇f is constant within each triangle.

$$\nabla f = (f_j - f_i) \frac{(\boldsymbol{x}_i - \boldsymbol{x}_k)^{\perp}}{2A_T} + (f_k - f_i) \frac{(\boldsymbol{x}_j - \boldsymbol{x}_i)^{\perp}}{2A_T}$$

$$\int_{\partial A_{i} \cap T} \nabla f \cdot \mathbf{n} d\mathbf{s} = (f_{j} - f_{i}) \frac{(\mathbf{x}_{i} - \mathbf{x}_{k})^{\perp} \cdot (\mathbf{x}_{j} - \mathbf{x}_{k})^{\perp}}{4A_{T}} + (f_{k} - f_{i}) \frac{(\mathbf{x}_{j} - \mathbf{x}_{i})^{\perp} \cdot (\mathbf{x}_{j} - \mathbf{x}_{k})^{\perp}}{4A_{T}}$$

Because:

$$A_{T} = \frac{1}{2} \sin \gamma_{j} || \mathbf{x}_{j} - \mathbf{x}_{i} || || \mathbf{x}_{j} - \mathbf{x}_{k} ||$$

$$= \frac{1}{2} \sin \gamma_{k} || \mathbf{x}_{i} - \mathbf{x}_{k} || || || \mathbf{x}_{j} - \mathbf{x}_{k} ||$$

and

$$\cos \gamma_j = \frac{\left(x_j - x_i\right) \cdot \left(x_j - x_k\right)}{\left\|x_j - x_i\right\| \left\|x_j - x_k\right\|}$$

$$\cos \gamma_k = \frac{(x_i - x_k) \cdot (x_j - x_k)}{\|x_i - x_k\| \|x_j - x_k\|}$$

and

$$(\mathbf{x}_i - \mathbf{x}_k)^{\perp} \cdot (\mathbf{x}_j - \mathbf{x}_k)^{\perp} = (\mathbf{x}_i - \mathbf{x}_k) \cdot (\mathbf{x}_j - \mathbf{x}_k)$$
$$(\mathbf{x}_j - \mathbf{x}_i)^{\perp} \cdot (\mathbf{x}_j - \mathbf{x}_k)^{\perp} = (\mathbf{x}_j - \mathbf{x}_i) \cdot (\mathbf{x}_j - \mathbf{x}_k)$$

So

$$\int_{\partial A_i \cap T} \nabla f \cdot \mathbf{n} d\mathbf{s}$$

$$= \frac{1}{2} \left(\cot \gamma_k (f_j - f_i) + \cot \gamma_j (f_k - f_i) \right)$$

$$\int_{A_i} \Delta f dA = \frac{1}{2} \sum_{j \in \Omega(i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (f_j - f_i)$$

Discrete average of the Laplace-Beltrami operator of a function f at vertex v_i is given as:

$$\Delta f(v_i) = \frac{1}{2A_i} \sum_{j \in \Omega(i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (f_j - f_i)$$

- 1. most widely used discretization
- 2. $(\cot \alpha_{ij} + \cot \beta_{ij})$ become negative if $\alpha_{ij} + \beta_{ij} > \pi$. Violate the property of POSITIVE WEIGHTS.

No free lunch

 Main result Not all meshes admit Laplacians satisfying properties (SYMMETRY), (LOCALITY), (LINEAR PRECISION), and (POSITIVE WEIGHTS) simultaneously.

Implementation thinking

- How to compute the cotangent formula?
- One simple idea: for each edge, compute the related cot value.

Any improvement? More efficient?

Discrete Curvature

• When applied to the coordinate function x, the Laplace-Beltrami operator provides a discrete approximation of the mean curvature normal.

$$\Delta x = -2Hn$$

absolute discrete mean curvature at vertex i:

$$H_i = \frac{1}{2} ||\Delta x||$$

A discrete operator for Gaussian curvature:

$$K_i = \frac{1}{A_i} \left(2\pi - \sum_{j \in \Omega(i)} \theta_j \right)$$

Implementation thinking

- How to compute the discrete Gaussian curvature?
- One simple idea: for each vertex, compute the related angle.

Any improvement? More efficient?

Second homework

- Color bar
 - Map a value to a color
- Visualize:
 - mean curvature,
 - absolute mean curvature,
 - and Gaussian curvature.