Babeş-Bolyai University, Faculty of Mathematics and Computer Science Analysis for Computer Science

Year: 2015/2016

Exercise Set #2

1. Using the following sets, fill in a table with the header:

Set	Set of upper bounds	Set of lower bounds	Min	Max	Inf	Sup	l
-----	---------------------	---------------------	-----	-----	-----	-----	---

$$\begin{split} A &= (-1,1) \cup \{7\}, \\ B &= [-8,\pi) \cap \mathbb{Z}, \\ C &= \{(-1)^n \mid n \in \mathbb{N}\}, \\ D &= \left\{\frac{1}{n} \mid n \in \mathbb{Z} \setminus \{0\}\right\}, \\ E &= \{x \in \mathbb{Z} \mid |2x - 3| < 5, |x + 1| > 2\}, \\ F &= \{2^m + n! \mid m, n \in \mathbb{N}\}, \\ G &= \left\{\frac{n}{n+1} \mid n \in \mathbb{N}^*\right\}, \\ H &= \left\{\frac{n}{n+m} \mid m, n \in \mathbb{N}^*\right\}, \\ I &= \left\{\frac{3n+7}{n+1} \mid n \in \mathbb{N}\right\}, \\ I &= \left\{\frac{3n+7}{n+1} \mid n \in \mathbb{N}\right\}, \\ I &= \left\{x \in \mathbb{Z} \mid |x^2 \le \sqrt{2}\right\}. \end{split}$$

- 2. Find two sets A and B such that the following conditions are simultaneously met:
 - i) one of the sets is unbounded (but not an interval) and the other is finite,
 - ii) $\sup A = \inf B = 2 \in A$,
 - iii) for every $a \in A$ and $b \in B$, there exists $c \in \mathbb{R}$ with a < c < b.

True or false: is it possible to choose B to be the finite set?

3. True or false:
$$\bigcap_{n=1}^{\infty} \left(0, \frac{1}{n}\right) = \emptyset$$
?

What can you say about the Nested Interval Property when replacing the closed intervals with open ones?

4. Decide which of the following sets are neighborhoods of 0. Justify.

$$\begin{split} &A = [-1,1], \\ &B = [-1,1] \cap \mathbb{Z}, \\ &C = (-1,0) \cup (0,1), \quad G = \mathbb{Q}, \\ &D = (-0.001, +\infty), \quad H = \left[1 - \frac{3}{2}, 1 + \frac{3}{2}\right] \cup (3,4). \end{split}$$

5. Show that if $x, y \in \mathbb{R}$, $x \neq y$, there exist $U \in \mathcal{V}(x)$ and $V \in \mathcal{V}(y)$ such that $U \cap V = \emptyset$.

1

Additional exercises:

6. Suppose that B is a bounded subset of \mathbb{R} and let A be a nonempty subset of B. Prove that

$$\inf B \le \inf A \le \sup A \le \sup B$$
.

True or false: if, in addition, $\inf A = \inf B$ and $\sup A = \sup B$, does it follow that A = B? Justify.

7. Suppose that A and B are nonempty subsets of $\mathbb R$ which are bounded above. Show that $A \cup B$ is nonempty and bounded above and

$$\sup(A \cup B) = \max\{\sup A, \sup B\}.$$

- 8. Suppose that A and B are nonempty subsets of \mathbb{R} such that for every $a \in A$ and $b \in B$, $a \leq b$. Show that $\sup A \leq \inf B$.
- 9. Suppose that A and B are nonempty subsets of \mathbb{R} . Prove that
 - i) $\sup\{a+b \mid a \in A, b \in B\} = \sup A + \sup B$,
 - ii) $\sup\{a-b\mid a\in A,b\in B\}=\sup A-\inf B.$
- 10. Let A be a nonempty subset of \mathbb{R} such that inf A > 0. Prove that

$$\sup\left\{\frac{1}{x}\mid x\in A\right\} = \frac{1}{\inf A}.$$