CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay Guest Lecture by : R. Govind

Sep 05, 2023 Lecture 13 – Basic Mathematical Structures Chains and Antichains

Recap: Partial order relations

Last class we saw

- ▶ Partial orders: definition and examples
- ▶ Posets, chains and anti-chains
- ▶ Graphical representation as Directed Acyclic Graphs
- ► Topological sorting (application to task scheduling)

Recall: Partial Orders

- ▶ A poset is a set S with a partial order \leq \subseteq S \times S.
- ▶ A totally ordered set is a poset in which every pair of elements is comparable, i.e., $\forall a, b \in S$, either $a \leq b$ or $b \leq a$.

Definitions: Let (S, \preceq) be a poset.

- ▶ A subset $B \subseteq S$ is called a chain if every pair of elements in B is related by \leq .
- ▶ A subset $A \subseteq S$ is called an anti-chain if no two distinct elements of A are related by \leq .

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

► Clearly, this shows the dependencies.

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

- ► Clearly, this shows the dependencies.
- ▶ But when you cook you need a total order, right?

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

- ► Clearly, this shows the dependencies.
- ▶ But when you cook you need a total order, right?
- ► Further, this total order must be consistent with the po.
- ► This is called a linearization or a topological sorting.

Theorem

► Every finite poset has a topological sort, i.e., a totally ordered set that is consistent with the poset (H.W).

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_t) with a total order \preceq_t such that $x \preceq y$ implies $x \preceq_t y$.

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_t) with a total order \preceq_t such that $x \preceq y$ implies $x \preceq_t y$.

Theorem

Every finite poset has a topological sort.

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_t) with a total order \preceq_t such that $x \preceq y$ implies $x \preceq_t y$.

Theorem

Every finite poset has a topological sort.

Proof: (H.W)

- ► Recall the lemma:
 - Every finite non-empty poset has at least one minimal element $(x \text{ is minimal if } \not\exists y, y \leq x).$
- ▶ Then, construct a (new) chain to complete the proof.

Ø

{2}

Figure: A poset and its Topological sort.

Coming back to our example,

Coming back to our example,

▶ Assume that every task takes 1 time unit.

Coming back to our example,

- ▶ Assume that every task takes 1 time unit.
- ► How much time is required?

Coming back to our example,

- ▶ What if there are many cooks, i.e., parallel processors?
- ▶ How do we schedule the tasks to minimize time used?

Coming back to our example,

- ▶ What if there are many cooks, i.e., parallel processors?
- ▶ How do we schedule the tasks to minimize time used?

▶ Assume that every task takes 1 time unit.

Coming back to our example,

- ▶ What if there are many cooks, i.e., parallel processors?
- ▶ How do we schedule the tasks to minimize time used?

- ► Assume that every task takes 1 time unit.
- ▶ Clearly, we still need at least 5 time units.

Coming back to our example,

- ▶ What if there are many cooks, i.e., parallel processors?
- ▶ How do we schedule the tasks to minimize time used?

- ▶ Assume that every task takes 1 time unit.
- ▶ Clearly, we still need at least 5 time units.
- ► That is, the length of the longest chain (length of chain = no. of elements in it).

Parallel Task Scheduling

For any poset, there is a legal parallel schedule that runs in t steps, where t is the length of the longest chain.

Parallel Task Scheduling

For any poset, there is a legal parallel schedule that runs in t steps, where t is the length of the longest chain.

We will in fact prove:

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Parallel Task Scheduling

For any poset, there is a legal parallel schedule that runs in t steps, where t is the length of the longest chain.

We will in fact prove:

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Assuming this theorem,

- \triangleright Observe that we can schedule all of S_i at time i (since we know that all previous tasks were done earlier!).
- \triangleright Thus, each S_i is an anti-chain.
- ▶ This solves the parallel task scheduling problem.

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof:

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof:

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof:

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

$$height(x) = \{max \text{ size of a chain ending at } x\}$$

$$S_i = \{x \mid \mathsf{height}(x) = i\}$$

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof:

$$S_i = \{x \mid \mathsf{height}(x) = i\}$$

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof:

 $height(x) = \{max \text{ size of a chain ending at } x\}$

$$S_i = \{x \mid \mathsf{height}(x) = i\}$$

Lemma

For $a \in S_i$, if $b \leq a$ and $b \neq a$, then $b \in S_1 \cup \ldots \cup S_{i-1}$.

$$\mathsf{height}(x) = \{ \max \text{ size of a chain ending at } x \}$$

$$S_i = \{ x \mid \mathsf{height}(x) = i \}$$

Lemma

For $a \in S_i$, if $b \leq a$ and $b \neq a$, then $b \in S_1 \cup \ldots \cup S_{i-1}$.

$$\mathsf{height}(x) = \{ \max \text{ size of a chain ending at } x \}$$

$$S_i = \{ x \mid \mathsf{height}(x) = i \}$$

Lemma

For $a \in S_i$, if $b \leq a$ and $b \neq a$, then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof:

▶ Suppose $a \in S_i, b \leq a, b \neq a$ but $b \notin S_1 \cup \ldots \cup S_{i-1}$.

$$\mathsf{height}(x) = \{ \max \text{ size of a chain ending at } x \}$$

$$S_i = \{ x \mid \mathsf{height}(x) = i \}$$

Lemma

For $a \in S_i$, if $b \leq a$ and $b \neq a$, then $b \in S_1 \cup \ldots \cup S_{i-1}$.

- ▶ Suppose $a \in S_i, b \leq a, b \neq a$ but $b \notin S_1 \cup ... \cup S_{i-1}$.
- ▶ By defn of S_i , \exists chain of length at least i ending at b.

$$\mathsf{height}(x) = \{ \max \text{ size of a chain ending at } x \}$$

$$S_i = \{ x \mid \mathsf{height}(x) = i \}$$

Lemma

For $a \in S_i$, if $b \leq a$ and $b \neq a$, then $b \in S_1 \cup \ldots \cup S_{i-1}$.

- ▶ Suppose $a \in S_i, b \leq a, b \neq a$ but $b \notin S_1 \cup ... \cup S_{i-1}$.
- ▶ By defin of S_i , \exists chain of length at least i ending at b.
- ▶ But now, $b \leq a, b \neq a$ implies we can extend the chain to chain of length $\geq i + 1$, ending at a.

$$\mathsf{height}(x) = \{ \max \text{ size of a chain ending at } x \}$$

$$S_i = \{ x \mid \mathsf{height}(x) = i \}$$

Lemma

For $a \in S_i$, if $b \leq a$ and $b \neq a$, then $b \in S_1 \cup \ldots \cup S_{i-1}$.

- ▶ Suppose $a \in S_i, b \leq a, b \neq a$ but $b \notin S_1 \cup ... \cup S_{i-1}$.
- ▶ By defin of S_i , \exists chain of length at least i ending at b.
- ▶ But now, $b \leq a, b \neq a$ implies we can extend the chain to chain of length $\geq i + 1$, ending at a.
- ▶ But then a cannot be in S_i . Contradiction.

Theorem

For a finite poset (S, \preceq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \preceq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the length of the longest chain ending at a.

Consequences for chains and anti-chains

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \preceq) is of length t, then S can be partitioned into t anti-chains.

Consequences for chains and anti-chains

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \leq) is of length t, then S can be partitioned into t anti-chains.

(H.W) Apply this on the poset $(\mathcal{P}(S), \subseteq)$, where $S = \{1, 2, 3\}$. What does it imply for this poset?

Consequences for chains and anti-chains

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \preceq) is of length t, then S can be partitioned into t anti-chains.

(H.W) Apply this on the poset $(\mathcal{P}(S), \subseteq)$, where $S = \{1, 2, 3\}$. What does it imply for this poset?

Another corollary (Dilworth's Lemma)

For all t > 0, any poset with n elements must have

- \triangleright either a chain of length greater than t
- ▶ or an antichain with at least $\frac{n}{t}$ elements.

(H.W): Prove it!