Statistics Inference I

Probability Theory, Lecture 1

Haoming Wang

23 June 2020

This is the Lecture note for the *Mathematical Statistics*. The reference materials is *Statistics Inference second edition, George Casella, Roger L. Berger*. The course covers first 5 chapters of the book: Probability Theory, Transformations and Expectations, Common Families of Distributions, Multiple Random Variables, Properties of a Random Sample.

Set

Definition 1 (Countable Set). Given a set A, if \exists a bijection $A \xrightarrow{f} \mathbb{N}$, then we say A is a countable set.

Proposition 1. Given countable sets A_1, A_2, \dots, A_n , then $\bigcup_{i=1}^n A_i$ is a countable set.

Proof. Just give an intuitive proof in the margin figure, note to skip all elements that have been numbered.

Proposition 2. Rational number set \mathbb{Q} is a countable set. Real number set \mathbb{R} is not a countable set.

Proof. The proofs have been given in *Introduction to Topology/Naive Set Theory 2.pdf.* \Box

Proposition 3. The intersection of finite open sets is still an open set. The union of any open sets is still an open set.

Proof. Assume that $A_i(i=1,\cdots,n)$ is open, If $\bigcap_{i=1}^n A_i = \emptyset$, then it is open. If $\bigcap_{i=1}^n A_i \neq \emptyset$, then for any $a \in \bigcap_{i=1}^n A_i$, $a \in A_i$ for $i=1,\cdots,n$, and $\exists r_i > 0$, s.t. $B_{r_i}(a) \subseteq A_i$. Let $r=\min\{r_1,\cdots,r_n\}$, then $B_r(a) \subseteq A_i (i=1,\cdots,n)$, and $B_r(a) \subseteq \bigcap_{i=1}^n A_i$. Thus $\bigcap_{i=1}^n A_i$ is an open set. The case for union is trivial.

Example 1. The intersection of countable open sets could not be an open set, for example, let $A_n = (0 - 1/n, 1 + 1/n)$, then $\bigcap_{n=1}^{\infty} A_i = [0, 1]$. It can be prove that $\mathbb{R} \setminus \bigcap_{n=1}^{\infty} A_i$ is open.

CONTENT:

- 1. Set
- 2. Sample space, Event and Sample
- 3. Probability
 - 3.1 Classical probability
 - 3.2 Experience probability
 - 3.3 Axiomatic definition

Note 1. That is for $\forall n \in \mathbb{N}$, $\exists ! a \in A$, s.t. f(a) = n. If A is a countable set, then the cardinality of A is equal to the cardinality of \mathbb{N} .

$$A_{1} = \{d_{11}, d_{12}^{2}, d_{13}^{1}, \cdots\}$$

$$A_{2} = \{d_{21}, d_{22}^{2}, d_{23}^{2}, \cdots\}$$

$$A_{3} = \{d_{31}, d_{32}, d_{33}^{2}, \cdots\}$$

$$A_{4} = \{d_{41}, d_{42}, d_{43}^{2}, \cdots\}$$

$$A_{5} = \{d_{51}, d_{52}, d_{53}^{2}, \cdots\}$$

Sample space, Event and Sample

Define a random trial, the set of all outcomes is called sample space, denote as S (or Ω). The element of the sample space S, that is the outcome, is called sample point, any measurable subset of sample space *S* is called event.

Example 2. Given a sample space *S*:

- 1. \emptyset is an event, called empty-event;
- 2. *S* is also an event, called total-event.

Given a random trial with sample space S and an event $A \subseteq S$. If the outcome of the random trial belongs to A, we say event A occurs, otherwise we say A does not occur.

Definition 2 (Disjoin). Given two events *A*, *B* of the sample space *S*, if $A \cap B = \emptyset$, we say A and B are disjoin. For (countable or finite) events $A_i (i \in I)$, if $A_i \cap A_j = \emptyset$ for any $i, j \in I$ and $i \neq j$, we say $A_i (i \in I)$ are pairwise disjoin.

Definition 3 (Partition). Given (countable or finite) event of sample space S, $A_i (i \in I)$, if:

- 1. $A_i (i \in I)$ are pairwise disjoin;
- 2. $\cup_{i∈I} A_i = S$,

we say $A_i (i \in I)$ is a partition of S.

Example 3. Define $A_i = [i, i+1), i \in \mathbb{Z}$, then $A_i (i \in \mathbb{Z})$ is a partition of \mathbb{R} .

Probability

Intuitively, probability is a measure that maps the possibility of the occurrence of an uncertainty event, that is the outcome of the random trial belongs to the event, to [0,1].

Classical probability

Each outcome of the random trial has the same possibility to occur. Then the probability of an event A is $\mathbb{P}(A) = \frac{n(A)}{n(S)}$. $(n(\cdot))$ represents the amount of sample points in a set)

Example 4. Roll two fair dice at once, the probability of the event where the sum of the points is 7 is $\frac{n(A)}{n(S)} = \frac{6}{36} = \frac{1}{6}$. Here A = $\{(1,6),(2,5),(3,4),(6,1),(5,2),(4,3)\}.$

Experience probability

Repeat a random trial n times. Denote the number of occurrences of event *A* as n(A), then the probability of *A* is $\mathbb{P}(A) = \lim_{n \to \infty} \frac{n(A)}{A}$.

Axiomatic definition

Let *S* be a sample space, the set $\mathcal{P}(A) = \{A | A \subseteq S\}$ is called the power set of S.

Definition 4 (σ algebra). Let S be a set, \mathcal{F} is constituted by some subsets of S. If

- 1. $\emptyset \in \mathcal{F}$;
- 2. if $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$;
- 3. if countable subsets of S, $A_i (i \in I) \in \mathcal{F} \Rightarrow \bigcup_{i \in I} A_i \in \mathcal{F}$, then we say \mathcal{F} is a σ algebra on S.

Example 5. Let *S* is an nonempty set, then $\mathcal{F}_1 = \{\emptyset, S\}$ is the smallest σ algebra on S; the power set of S, 2^S , is the largest σ algebra on S.

Example 6. If $S = \{a\}$, then S has only one σ algebra $\mathcal{F} = \{\emptyset, \{a\}\}$; If $S = \{a, b\}$, then S has two σ algebras: $\mathcal{F}_1 = \{\emptyset, \{a, b\}\}, \mathcal{F}_2 = \{\emptyset, \{a,$ $\{\emptyset, \{a\}, \{b\}, \{a,b\}\}$; If $S = \{a,b,c\}$, its all σ algebras are

$$\mathcal{F}_{1} = \{\emptyset, \{a, b, c\}\}
\mathcal{F}_{2} = \{\emptyset, \{a, b, c\}, \{a\}, \{b, c\}\}
\mathcal{F}_{3} = \{\emptyset, \{a, b, c\}, \{b\}, \{a, c\}\}
\mathcal{F}_{4} = \{\emptyset, \{a, b, c\}, \{c\}, \{a, b\}\}
\mathcal{F}_{5} = \{\emptyset, \{a, b, c\}, \{a\}, \{b\}, \{a, b\}, \{c\}, \{a, c\}, \{b, c\}\} .$$

Definition 5 (Generate). Let *S* be a set, $A \subseteq S$. The smallest σ algebra that contains A is called the σ algebra generated by A, denote as $\sigma(A)$.

Example 7. Let $S = \{a, b, c\}$, then

$$\sigma(\{a\}) = \{\emptyset, \{a, b, c\}, \{a\}, \{b, c\}\},\$$

$$\sigma(\{a\}, \{b\}) = 2^{S}$$

Definition 6 (Axiomatic definition for probability). Assume that *S* is the sample space of a random trial, \mathcal{F} is a σ algebra on S, map $\mathbb{P}: \mathcal{F} \to [0,1]$ satisfies:

- 1. $\mathbb{P}(A) \geq 0$, for $\forall A \in \mathcal{F}$;
- 2. $\mathbb{P}(S) = 1$;
- 3. If (countable or finite) events $A_i (i \in I)$ are pairwise disjoin, then $\mathbb{P}\left(\cup_{i\in I}A_i\right)=\sum_{i\in I}\mathbb{P}\left(A_i\right).$

We say \mathbb{P} is a probability on \mathcal{F} , and $(S, \mathcal{F}, \mathbb{P})$ is called probability space.

Note 2. If *S* is a finite set, n(S) = n, then the number of elements in $\mathcal{P}(S)$ is 2^n , thus $\mathcal{P}(S)$ sometimes also be denoted as 2^S .

Note 3. In \mathcal{F}_5 , $\{a\} \cup \{b\} = \{a, b\}$, and then $\{a,b\}^c = \{c\}$, and then union out $\{a,c\},\{b,c\}$. It is the power set of *S*.