强化学习及其应用

第二章 动态规划方法

Reinforcement Learning and Its Applications

Dynamic Programming Methods

授课人: 周晓飞 zhouxiaofei@iie.ac.cn 2023-6-12

- 2.1 Bellman 公式
- 2.2 动态规划: 策略收敛法
- 2.3 动态规划: 值迭代法
- 2.4 值迭代方法比较

2.1 Bellman 公式

2.2 动态规划: 策略收敛法

2.3 动态规划: 值迭代法

2.4 值迭代方法比较

Bellman 公式

Bellman Expectation Equation for V

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

$$v_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v_{\pi}$$

$$\vdots$$

$$\vdots$$

$$v(s)$$

$$v_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v_{\pi}$$

$$\vdots$$

$$\vdots$$

$$v(s)$$

Bellman 公式

Bellman Optimality Equation for v*

$$v_*(s) = \max_{a} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

$$v^*(s) = \prod_{a} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$v^*(s') = \prod_{a} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

Bellman 公式

动态规划

- A method for solving complex problems
- By breaking them down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems

DP 方法: 已知 Bellman 方程的环境参数(回报 R 和转移概率 P),

求取最优策略 u*和最优值 v*。

- 2.1 Bellman 公式
- 2.2 动态规划: 策略收敛法
- 2.3 动态规划: 值迭代法
- 2.4 值迭代方法比较

算法

初始化最优策略 u,

Step1: 确定的最优策略 u,以V = Vin=Vout,求解V;

Step2: V→Vin, 得到Q因子

Step3:对 Si选择最优 a, maxaQ(Si, a), 形成最优策略 u;

算法

初始化最优策略 u,

Step1: 确定的最优策略 u , 以 V = V_{in}=V_{out}, 求解 V ;

Step2: V→Vin, 得到Q因子

Step3: 对 S_i选择最优 a, max_aQ(S_{i,} a), 形成最优策略 u;

算法

初始化最优策略 u,

Step1: 确定的最优策略 u , 以 V = V_{in}=V_{out}, 求解 V;

Step2: V→Vin, 得到Q因子

Step3: 对 S_i选择最优 a , max_aQ(S_{i,} a), 形成最优策略 u ;

算法

初始化最优策略 u,

Step1: 确定的最优策略 u , 以 V = V_{in}=V_{out} , 求解 V ;

Step2: V→Vin, 得到Q因子

Step3: 对 S_i选择最优 a, max_aQ(S_i, a), 形成最优策略 u;

算法

初始化最优策略 u,

Step1: 确定的最优策略 u , 以 V = V_{in}=V_{out}, 求解 V ;

Step2: V→Vin, 得到Q因子

Step3: 对 S_i选择最优 a, max_aQ(S_i, a), 形成最优策略 u;

- 2.1 Bellman 公式
- 2.2 动态规划: 策略收敛法
- 2.3 动态规划: 值迭代法
- 2.4 值迭代方法比较

基本思想

对最优策略的优化值进行迭代。

Policy Improvement

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} q_{\pi}(s, a)$$

算法

Three simple ideas for asynchronous dynamic programming:

- *In-place* dynamic programming
- Prioritised sweeping
- Real-time dynamic programming

算法

In-place dynamic programming

Synchronous value iteration stores two copies of value function

for all s in S

$$v_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_{old}(s') \right)$$

$$V_{old} \leftarrow V_{new}$$

■ In-place value iteration only stores one copy of value function

for all s in S

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right)$$

算法

Prioritised Sweeping

Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right) - v(s) \right|$$

误差导向的更新,例如更新最大误差或满足误差界的 s 对应的 \(\epsilon(s))。

算法

Real-Time Dynamic Programming

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step S_t , A_t , R_{t+1}
- \blacksquare Backup the state S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{S_t}^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^a v(s') \right)$$

思考问题

以上的方法中, DP 环境参数已知,

如果环境参数未知,如何随机逼近等效的 DP 值估计?

- 2.1 Bellman 公式
- 2.2 动态规划: 策略收敛法
- 2.3 动态规划: 值迭代法
- 2.4 值迭代方法比较

值迭代方法比较

值迭代方法概括

Dynamic Programming (DP)

Monte Carlo (MC)

Temporal Difference (TD)

Q-Learning

值迭代方法比较

Backup 比较

本讲参考文献

- 1. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. (Second edition, in progress, draft.
- 2. David Silver, Slides@ «Reinforcement Learning: An Introduction», 2016.
- 3. Simon Haykin, 申富饶等译,神经网络与学习机器,第三版。