Chapter 1

Preliminaries: Set theory and categories

1 Naive set theory

Exercises

1.1. Locate a discussion of Russell's paradox, and understand it.
Solution.
1.2. \triangleright Prove that if \sim is a relation on a set S , then the corresponding family \mathscr{P}_{\sim} defined in §1.5 is indeed a partition of S : that is, its elements are nonempty, disjoint, and their union is S . [§1.5]
Solution.
1.3. \triangleright Given a partition $\mathscr P$ on a set S , show how to define an equivalence relation \sim on S such that $\mathscr P$ is the corresponding partition. [§1.5]
Solution. content
1.4. How many different equivalence relations may be defined on the set $\{1,2,3\}$
Solution. content
1.5. Give an example of a relation that is reflexive and symmetric but not transitive. What happens if you attempt to use this relation to define a partition on the set? (Hint: Thinking about the second question will help you answer the first one.)
Solution content

1.6. ▷ Define a relation \sim on the set \mathbb{R} of real numbers by setting $a \sim b \iff b - a \in \mathbb{Z}$. Prove that this is an equivalence relation, and find a 'compelling' description for \mathbb{R}/\sim . Do the same for the relation \approx on the plane $\mathbb{R} \times \mathbb{R}$ defined by declaring $(a_1, a_2) \approx (b_1, b_2) \iff b_1 - a_1 \in \mathbb{Z}$ and $b_2 - a_2 \in \mathbb{Z}$. [§II.8.1, II.8.10]

Solution. content...

2 Functions between sets

Exercises

3 Categories

Exercises

4 Morphisms

Exercises

5 Universal properties

Exercises