Logic for Communicating Automata with Parameterized Topology

Benedikt Bollig

Laboratoire Spécification et Vérification

Séminaire Vérification LIAFA 27 janvier 2014

Objective

A Büchi-Elgot-Trakhtenbrot theorem for communicating automata with parameterized topology.

Objective

A Büchi-Elgot-Trakhtenbrot theorem for communicating automata with parameterized topology.

Bridges the gap between high-level specifications and system models.

Objective

A Büchi-Elgot-Trakhtenbrot theorem for communicating automata with parameterized topology.

Bridges the gap between high-level specifications and system models.

Theorem (Büchi-Elgot-Trakhtenbrot '60s)

Every MSO formula is equivalent to some finite automaton, and vice versa.

Objective

A Büchi-Elgot-Trakhtenbrot theorem for communicating automata with parameterized topology.

Bridges the gap between high-level specifications and system models.

Theorem (Büchi-Elgot-Trakhtenbrot '60s)

Every MSO formula is equivalent to some finite automaton, and vice versa.

Objective

A Büchi-Elgot-Trakhtenbrot theorem for communicating automata with parameterized topology.

Bridges the gap between high-level specifications and system models.

Theorem (Büchi-Elgot-Trakhtenbrot '60s)

Every MSO formula is equivalent to some finite automaton, and vice versa.

Has been extended to trees, graphs, weighted automata, ...

Büchi-Elgot-Trakthenbrot theorems:

• ∀-bounded channels [Henriksen-Mukund-Kumar-Sohoni-Thiagarajan 2000]

- ∀-bounded channels [Kuske 2002]
- ∃-bounded channels [Genest-Kuske-Muscholl 2004]
- unbounded channels (but weaker logic) [B.-Leucker 2004]

Büchi-Elgot-Trakthenbrot theorems:

- ▼-bounded channels [Henriksen-Mukund-Kumar-Sohoni-Thiagarajan 2000]
- ∀-bounded channels [Kuske 2002]
- ∃-bounded channels [Genest-Kuske-Muscholl 2004]
- unbounded channels (but weaker logic) [B.-Leucker 2004]

But ...

all results require communication topology to be fixed!

Büchi-Elgot-Trakthenbrot theorems:

- ▼-bounded channels [Henriksen-Mukund-Kumar-Sohoni-Thiagarajan 2000]
- ∀-bounded channels [Kuske 2002]
- ∃-bounded channels [Genest-Kuske-Muscholl 2004]
- unbounded channels (but weaker logic) [B.-Leucker 2004]

But ...

... all results require communication topology to be fixed!

Towards a parameterized version

Parameterized realizability

Let φ be a formula and ${\mathfrak T}$ be a class of topologies.

Is there a CA that is equivalent to φ on all topologies $\mathcal{T} \in \mathfrak{T}$?

Towards a parameterized version

Parameterized realizability

Let φ be a formula and ${\mathfrak T}$ be a class of topologies.

Is there a CA that is equivalent to φ on all topologies $\mathcal{T} \in \mathfrak{T}$?

More precisely:

- \bullet φ is an MSO formula over MSCs (directed acyclic graphs)
- T is a class of topologies of bounded degree (such as pipelines, trees, grids, and rings)

Towards a parameterized version

Parameterized realizability

Let φ be a formula and ${\mathfrak T}$ be a class of topologies.

Is there a CA that is equivalent to φ on all topologies $\mathcal{T} \in \mathfrak{T}$?

More precisely:

- \bullet φ is an MSO formula over MSCs (directed acyclic graphs)
- T is a class of topologies of bounded degree (such as pipelines, trees, grids, and rings)

⇒ Need for new notions

- ► Topologies (of bounded degree)
- Parameterized communicating automata (PCA)

Topologies and MSCs

- Topologies and MSCs
- Parameterized communicating automata

- Topologies and MSCs
- Parameterized communicating automata

MSO logic

- Topologies and MSCs
- Parameterized communicating automata
- MSO logic
- Negative results:

There is a formula $\varphi \in \mathcal{C}$ that is not realizable for \mathfrak{T} .

- Topologies and MSCs
- Parameterized communicating automata
- MSO logic
- Negative results:

There is a formula $\varphi \in \mathcal{C}$ that is not realizable for \mathfrak{T} .

Positive results:

All formulas $\varphi \in \mathcal{C}$ are realizable for \mathfrak{T} .

Topologies and MSCs

Topology

6 / 34

Topology

Pipeline

Pipeline

Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Pipeline

Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Definition

A topology over \mathcal{N} is a pair $\mathcal{T} = (P, \longmapsto)$ where

- P is the nonempty finite set of processes
- $\bullet \longmapsto \subseteq P \times \mathcal{N} \times \mathcal{N} \times P$ is the edge relation

7 / 34

Pipeline

Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Definition

A topology over $\mathcal N$ is a pair $\mathcal T=(P, \longmapsto)$ where

- *P* is the nonempty finite set of processes
- $\longmapsto \subseteq P \times \mathcal{N} \times \mathcal{N} \times P$ is the edge relation

Whenever $p \stackrel{a}{\longmapsto} q$, the following hold:

Pipeline

Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Definition

A topology over $\mathcal N$ is a pair $\mathcal T=(P, \longmapsto)$ where

- P is the nonempty finite set of processes
- $\longmapsto \subseteq P \times \mathcal{N} \times \mathcal{N} \times P$ is the edge relation

Whenever $p \stackrel{a}{\vdash} q$, the following hold:

$$\mathbf{0} \quad p \neq q$$

Pipeline

Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Definition

A topology over $\mathcal N$ is a pair $\mathcal T=(P, \longmapsto)$ where

- P is the nonempty finite set of processes
- $\longmapsto \subseteq P \times \mathcal{N} \times \mathcal{N} \times P$ is the edge relation

Whenever $p \stackrel{a}{\vdash} q$, the following hold:

- $Q q \stackrel{b}{\longmapsto} p$

Pipeline

Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Definition

A topology over \mathcal{N} is a pair $\mathcal{T} = (P, \longmapsto)$ where

- P is the nonempty finite set of processes
- $\longmapsto \subseteq P \times \mathcal{N} \times \mathcal{N} \times P$ is the edge relation

Whenever $p \stackrel{a}{\longmapsto} q$, the following hold:

- $a \mapsto a p$
- 3 $p \stackrel{a'}{\mapsto} q'$ implies $(a = a' \iff q = q')$

Pipeline

Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Definition

A topology over \mathcal{N} is a pair $\mathcal{T} = (P, \longmapsto)$ where

- P is the nonempty finite set of processes
- $\longmapsto \subseteq P \times \mathcal{N} \times \mathcal{N} \times P$ is the edge relation

Whenever $p \stackrel{a}{\longmapsto} q$, the following hold:

- $p \neq q$
- $q \mapsto p$
- 3 $p \stackrel{a'}{\mapsto} q'$ implies $(a = a' \iff q = q')$

Pipeline \mathcal{T}_{lin}^5

Pipeline $\mathcal{T}_{\text{lin}}^5$

Tree

Pipeline \mathcal{T}_{lin}^5

Grid $\mathcal{T}_{grid}^{3,4}$

Tree

Topologies

Pipeline \mathcal{T}_{lin}^5

Grid $\mathcal{T}_{grid}^{3,4}$

Tree

Ring \mathcal{T}_{ring}^5

MSC

MSC

Definition

An MSC over $\mathcal{T} = (P, \longleftarrow)$ is a triple $M = (E, \triangleleft, \ell)$ where

MSC

Definition

An MSC over $\mathcal{T} = (P, \longmapsto)$ is a triple $M = (E, \lhd, \ell)$ where

• *E* is the nonempty finite set of events

MSC

Definition

An MSC over $\mathcal{T} = (P, \longmapsto)$ is a triple $M = (E, \lhd, \ell)$ where

- *E* is the nonempty finite set of events
- $\triangleleft = \triangleleft_{\mathsf{proc}} \uplus \triangleleft_{\mathsf{msg}} \subseteq E \times E$ acyclic

MSC

Definition

An MSC over $\mathcal{T} = (P, \longmapsto)$ is a triple $M = (E, \lhd, \ell)$ where

- *E* is the nonempty finite set of events
- $\triangleleft = \triangleleft_{\mathsf{proc}} \uplus \triangleleft_{\mathsf{msg}} \subseteq E \times E$ acyclic
- $\ell: E \to P$

MSC

Definition

An MSC over $\mathcal{T} = (P, \longmapsto)$ is a triple $M = (E, \lhd, \ell)$ where

- *E* is the nonempty finite set of events
- $\triangleleft = \triangleleft_{\mathsf{proc}} \uplus \triangleleft_{\mathsf{msg}} \subseteq E \times E$ acyclic
- $\ell: E \to P$

MSC

Definition

An MSC over $\mathcal{T} = (P, \longmapsto)$ is a triple $M = (E, \lhd, \ell)$ where

- *E* is the nonempty finite set of events
- $\triangleleft = \triangleleft_{\mathsf{proc}} \uplus \triangleleft_{\mathsf{msg}} \subseteq E \times E$ acyclic
- $\ell: E \to P$
- + some extra conditions

PCA ${\cal A}$ running on ${\cal T}_{lin}^5$

PCA A over $\{a, b\}$

PCA \mathcal{A} running on $\mathcal{T}_{\text{lin}}^5$

PCA \mathcal{A} over $\{a, b\}$

PCA \mathcal{A} running on \mathcal{T}_{lin}^5

PCA A over $\{a, b\}$

PCA \mathcal{A} running on \mathcal{T}_{lin}^5

PCA \mathcal{A} over $\{a, b\}$

PCA ${\cal A}$ running on ${\cal T}_{\rm lin}^5$

PCA \mathcal{A} running on $\mathcal{T}_{\text{lin}}^5$

Accepted language

$$L_{\mathcal{T}_{\text{lin}}^n}(\mathcal{A}) = \{M_{\text{lin}}^n\}$$
 for all $n > 2$

 $M_{\rm lin}^5 =$

PCA \mathcal{A} running on \mathcal{T}_{lin}^{5}

 $\in L_{\mathcal{T}^5_{\mathsf{lin}}}(\mathcal{A})$

Definition

A PCA over \mathcal{N} is a tuple (S, Msg, Δ, I, F) :

S finite set of states

Definition

- S finite set of states
- Msg finite set of messages

Definition

- S finite set of states
- Msg finite set of messages
- $I: (2^{\mathcal{N}} \setminus \{\emptyset\}) \to 2^{\mathcal{S}}$ initial states

Definition

- S finite set of states
- Msg finite set of messages
- $I: (2^{\mathcal{N}} \setminus \{\emptyset\}) \to 2^{\mathcal{S}}$ initial states
- ullet Δ the set of transitions

Definition

- S finite set of states
- Msg finite set of messages
- $I: (2^{\mathcal{N}} \setminus \{\emptyset\}) \to 2^{\mathcal{S}}$ initial states
- ullet Δ the set of transitions
- F a boolean combination of statements $\langle \#(s) \geq k \rangle$ with $s \in S$ and $k \in \mathbb{N}$

Definition

- S finite set of states
- Msg finite set of messages
- $I: (2^{\mathcal{N}} \setminus \{\emptyset\}) \to 2^{\mathcal{S}}$ initial states
- ullet Δ the set of transitions
- F a boolean combination of statements $\langle \#(s) \geq k \rangle$ with $s \in S$ and $k \in \mathbb{N}$ "s occurs at least k times as the terminal state of an active process"

Definition

- S finite set of states
- Msg finite set of messages
- $I: (2^{\mathcal{N}} \setminus \{\emptyset\}) \to 2^{\mathcal{S}}$ initial states
- ullet Δ the set of transitions
- F a boolean combination of statements $\langle \#(s) \geq k \rangle$ with $s \in S$ and $k \in \mathbb{N}$ "s occurs at least k times as the terminal state of an active process"

$$F = igwedge_{s \in S \setminus \{s_2, t_4, u_2\}} \lnot \langle \#(s) \ge 1
angle$$

X A PCA cannot say "the topology has at least 5 processes"

- A PCA cannot say "the topology has at least 5 processes"
- A PCA can say "at least 5 processes of type $\{a, b\}$ are active"
- X A PCA cannot distinguish between:

- A PCA cannot say "the topology has at least 5 processes"
- A PCA can say "at least 5 processes of type $\{a, b\}$ are active"
 - X A PCA cannot distinguish between:

- A PCA cannot say "the topology has at least 5 processes"
- A PCA can say "at least 5 processes of type $\{a, b\}$ are active"
- X A PCA cannot distinguish between:

- A PCA cannot say "the topology has at least 5 processes"
- A PCA can say "at least 5 processes of type $\{a, b\}$ are active"
 - X A PCA cannot distinguish between:

MSO Logic

MSO Logic 14 / 34

MSO logic

MSO logic

where $a \in \mathcal{N}$

$$\varphi ::= |a(x)| ?a(x)| a \in type(x)|$$

$$x \triangleleft_{proc} y | x \triangleleft_{proc}^* y | x \triangleleft_{msg} y | x \triangleleft^* y | x \sim y |$$

$$x = y | x \in X | \neg \varphi | \varphi \lor \varphi | \exists x \varphi | \exists X \varphi$$

MSO Logic 15 / 34

MSO logic

$$\varphi ::= |a(x)| ?a(x)| a \in type(x)|$$

$$x \triangleleft_{proc} y | x \triangleleft_{proc}^* y | x \triangleleft_{msg} y | x \triangleleft^* y | x \sim y |$$

$$x = y | x \in X | \neg \varphi | \varphi \lor \varphi | \exists x \varphi | \exists X \varphi$$

where $a \in \mathcal{N}$

 $x \sim y$ says that x and y are located on the same process.

MSO logic

$$\varphi ::= !a(x) | ?a(x) | a \in type(x) |$$

$$x \triangleleft_{proc} y | x \triangleleft_{proc}^* y | x \triangleleft_{msg} y | x \triangleleft^* y | x \sim y |$$

$$x = y | x \in X | \neg \varphi | \varphi \lor \varphi | \exists x \varphi | \exists X \varphi$$

where $a \in \mathcal{N}$

 $x \sim y$ says that x and y are located on the same process.

Define fragments:

• FO: first-order logic, without $\exists X \varphi$

MSO logic

$$\varphi ::= !a(x) | ?a(x) | a \in type(x) |$$

$$x \triangleleft_{proc} y | x \triangleleft_{proc}^* y | x \triangleleft_{msg} y | x \triangleleft^* y | x \sim y |$$

$$x = y | x \in X | \neg \varphi | \varphi \lor \varphi | \exists x \varphi | \exists X \varphi$$

where $a \in \mathcal{N}$

 $x \sim y$ says that x and y are located on the same process.

Define fragments:

- FO: first-order logic, without $\exists X \varphi$
- EMSO: formulas of the form $\exists X_1 \dots \exists X_n \varphi$ with $\varphi \in FO$

MSO logic

$$\varphi ::= !a(x) | ?a(x) | a \in type(x) |$$

$$\sigma \subseteq x \triangleleft_{proc} y | x \triangleleft_{proc}^* y | x \triangleleft_{msg} y | x \triangleleft^* y | x \sim y |$$

$$x = y | x \in X | \neg \varphi | \varphi \lor \varphi | \exists x \varphi | \exists X \varphi$$

where $a \in \mathcal{N}$

 $x \sim y$ says that x and y are located on the same process.

Define fragments:

- FO: first-order logic, without $\exists X \varphi$
- EMSO: formulas of the form $\exists X_1 \dots \exists X_n \varphi$ with $\varphi \in FO$
- $FO[\sigma]$ and $EMSO[\sigma]$ (e.g., $FO[\lhd_{proc}, \lhd_{msg}]$)

MSO logic

$$\varphi ::= |a(x)| ?a(x)| a \in type(x)|$$

$$\sigma \subseteq x \triangleleft_{proc} y | x \triangleleft_{proc}^* y | x \triangleleft_{msg} y | x \triangleleft^* y | x \sim y |$$

$$x = y | x \in X | \neg \varphi | \varphi \lor \varphi | \exists x \varphi | \exists X \varphi$$

where $a \in \mathcal{N}$

 $x \sim y$ says that x and y are located on the same process.

Define fragments:

- FO: first-order logic, without $\exists X \varphi$
- EMSO: formulas of the form $\exists X_1 \dots \exists X_n \varphi$ with $\varphi \in FO$
- $FO[\sigma]$ and $EMSO[\sigma]$ (e.g., $FO[\lhd_{proc}, \lhd_{msg}]$)

Let $L_{\mathcal{T}}(\varphi)$ be the set of MSCs over \mathcal{T} that are a model of φ .

MSC M_{lin}^6

$MSC M_{lin}^6$

• $M_{\text{lin}}^6 \models \forall x (?b(x) \rightarrow \exists y (x \lhd_{\text{proc}}^* y \land !b(y)))$

$MSC M_{lin}^6$

• $M_{\text{lin}}^6 \models \forall x (?b(x) \rightarrow \exists y (x \lhd_{\text{proc}}^* y \land !b(y))) \in \mathsf{FO}[\lhd_{\text{proc}}^*]$

$MSC M_{lin}^6$

- $M_{\text{lin}}^6 \models \forall x (?b(x) \rightarrow \exists y (x \lhd_{\text{proc}}^* y \land !b(y))) \in \mathsf{FO}[\lhd_{\text{proc}}^*]$
- $\bullet \ M_{\mathsf{lin}}^6 \models \forall x \forall y (x \lhd^* y \lor y \lhd^* x)$

$MSC M_{lin}^6$

- $M_{\text{lin}}^6 \models \forall x (?b(x) \rightarrow \exists y (x \lhd_{\text{proc}}^* y \land !b(y))) \in \mathsf{FO}[\lhd_{\text{proc}}^*]$
- $\bullet \ M_{\mathsf{lin}}^6 \models \forall x \forall y (x \lhd^* y \lor y \lhd^* x)$
- $M_{\text{lin}}^6 \not\models \exists x \exists y (b \not\in type(x) \land a \not\in type(y) \land x \lhd_{\mathsf{msg}} y)$

$MSC M_{lin}^6$

- $M_{\text{lin}}^6 \models \forall x (?b(x) \rightarrow \exists y (x \lhd_{\text{proc}}^* y \land !b(y))) \in \mathsf{FO}[\lhd_{\text{proc}}^*]$
- $M_{\text{lin}}^6 \models \forall x \forall y (x \triangleleft^* y \lor y \triangleleft^* x)$
- $M_{\text{lin}}^6 \not\models \exists x \exists y (b \notin type(x) \land a \notin type(y) \land x \triangleleft_{\text{msg}} y) =: \varphi$

16 / 34

$MSC M_{lin}^6$

- $M_{\text{lin}}^6 \models \forall x (?b(x) \rightarrow \exists y (x \lhd_{\text{proc}}^* y \land !b(y))) \in \mathsf{FO}[\lhd_{\text{proc}}^*]$
- $M_{\text{lin}}^6 \models \forall x \forall y (x \triangleleft^* y \lor y \triangleleft^* x)$
- $M_{\text{lin}}^6 \not\models \exists x \exists y (b \notin type(x) \land a \notin type(y) \land x \lhd_{msg} y) =: \varphi$
- $M_{\text{lin}}^n \models \varphi \text{ iff } n = 2$

Theorem

For every PCA \mathcal{A} , there is a formula $\varphi \in \mathsf{EMSO}[\lhd_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$ that is equivalent to \mathcal{A} on all topologies.

Theorem

For every PCA \mathcal{A} , there is a formula $\varphi \in \mathsf{EMSO}[\lhd_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$ that is equivalent to \mathcal{A} on all topologies.

Proof

Standard.

Negative Results

Theorem

There exists a sentence $\varphi \in \mathsf{FO}[\lhd_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$ over $\{a, b\}$ such that, for all PCA \mathcal{A} , there is a ring forest \mathcal{T} with $L_{\mathcal{T}}(\mathcal{A}) \neq L_{\mathcal{T}}(\varphi)$.

Theorem

There exists a sentence $\varphi \in \mathsf{FO}[\lhd_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$ over $\{a, b\}$ such that, for all PCA \mathcal{A} , there is a ring forest \mathcal{T} with $L_{\mathcal{T}}(\mathcal{A}) \neq L_{\mathcal{T}}(\varphi)$.

Proof

$$\varphi = \forall x \exists x_1, \dots, x_6 (x \in \{x_1, \dots, x_6\} \land cycle(x_1, \dots, x_6))$$

• Suppose there is A such that $L_T(A) = L_T(\varphi)$ for all ring forests T.

- Suppose there is A such that $L_T(A) = L_T(\varphi)$ for all ring forests T.
- $\bullet \ \ \text{We have} \ \underline{\mathcal{M} \uplus \ldots \uplus \mathcal{M}} \in L_{\mathcal{T}^3_{\mathrm{ring}} \uplus \ldots \uplus \mathcal{T}^3_{\mathrm{ring}}}(\mathcal{A}) \ \text{for all} \ \ n \geq 1.$

- Suppose there is A such that $L_T(A) = L_T(\varphi)$ for all ring forests T.
- We have $\underbrace{M \uplus \ldots \uplus M}_{n} \in L_{\mathcal{T}^3_{\mathrm{ring}} \uplus \ldots \uplus \mathcal{T}^3_{\mathrm{ring}}}(\mathcal{A})$ for all $n \geq 1$.
- For large enough n, there is a run of \mathcal{A} that behaves the same on two copies of M.

- Suppose there is A such that $L_T(A) = L_T(\varphi)$ for all ring forests T.
- We have $\underbrace{M \uplus \ldots \uplus M}_{\stackrel{\bullet}{\underset{r \text{ing}}{\vdash}}} \in L_{\mathcal{T}^3_{\text{ring}} \uplus \ldots \uplus \mathcal{T}^3_{\text{ring}}}(\mathcal{A})$ for all $n \geq 1$.
- For large enough n, there is a run of \mathcal{A} that behaves the same on two copies of M.
- Replace the two copies with MSC over $\mathcal{T}_{\rm ring}^6$. Contradiction.

- Suppose there is A such that $L_T(A) = L_T(\varphi)$ for all ring forests T.
- We have $\underbrace{M \uplus \ldots \uplus M}_{n} \in L_{\mathcal{T}^3_{\mathrm{ring}} \uplus \ldots \uplus \mathcal{T}^3_{\mathrm{ring}}}(\mathcal{A})$ for all $n \geq 1$.
- For large enough n, there is a run of \mathcal{A} that behaves the same on two copies of M.
- Replace the two copies with MSC over $\mathcal{T}_{\rm ring}^6$. Contradiction.

Lesson learned

PCA have limited ability to "detect" cycles.

Theorem

There exists a sentence $\varphi \in \mathsf{FO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}, \lhd^*]$ over $\{a, b, c, d\}$ such that, for all PCA \mathcal{A} , there is a tree \mathcal{T} with $L_{\mathcal{T}}(\mathcal{A}) \neq L_{\mathcal{T}}(\varphi)$.

Theorem

There exists a sentence $\varphi \in \mathsf{FO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}, \lhd^*]$ over $\{a, b, c, d\}$ such that, for all PCA \mathcal{A} , there is a tree \mathcal{T} with $L_{\mathcal{T}}(\mathcal{A}) \neq L_{\mathcal{T}}(\varphi)$.

Proof (idea goes back to [Thomas 1996])

Theorem

There exists a sentence $\varphi \in \mathsf{FO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}, \lhd^*]$ over $\{a, b, c, d\}$ such that, for all PCA \mathcal{A} , there is a tree \mathcal{T} with $L_{\mathcal{T}}(\mathcal{A}) \neq L_{\mathcal{T}}(\varphi)$.

Proof (idea goes back to [Thomas 1996])

Lesson learned

Look at more "local" logics.

Theorem [Schwentick-Barthelmann 1999]

Every formula $\varphi \in \mathsf{FO}[\sigma]$ is equivalent to a formula of the form $\exists x_1 \ldots \exists x_n \forall y \psi \in \mathsf{FO}[\sigma]$ where ψ is r-local around y, for some $r \geq 1$ (quantification is restricted to elements of distance $\leq r$ from y).

Theorem [Schwentick-Barthelmann 1999]

Every formula $\varphi \in \mathsf{FO}[\sigma]$ is equivalent to a formula of the form $\exists x_1 \ldots \exists x_n \forall y \psi \in \mathsf{FO}[\sigma]$ where ψ is r-local around y, for some $r \geq 1$ (quantification is restricted to elements of distance $\leq r$ from y).

Theorem [Schwentick-Barthelmann 1999]

Every formula $\varphi \in \mathsf{FO}[\sigma]$ is equivalent to a formula of the form $\exists x_1 \ldots \exists x_n \forall y \psi \in \mathsf{FO}[\sigma]$ where ψ is r-local around y, for some $r \geq 1$ (quantification is restricted to elements of distance $\leq r$ from y).

Theorem [Schwentick-Barthelmann 1999]

Every formula $\varphi \in \mathsf{FO}[\sigma]$ is equivalent to a formula of the form $\exists x_1 \ldots \exists x_n \forall y \psi \in \mathsf{FO}[\sigma]$ where ψ is r-local around y, for some $r \geq 1$ (quantification is restricted to elements of distance $\leq r$ from y).

Theorem [Schwentick-Barthelmann 1999]

Every formula $\varphi \in \mathsf{FO}[\sigma]$ is equivalent to a formula of the form $\exists x_1 \ldots \exists x_n \forall y \psi \in \mathsf{FO}[\sigma]$ where ψ is r-local around y, for some $r \geq 1$ (quantification is restricted to elements of distance $\leq r$ from y).

Theorem [Schwentick-Barthelmann 1999]

Every formula $\varphi \in \mathsf{FO}[\sigma]$ is equivalent to a formula of the form $\exists x_1 \ldots \exists x_n \forall y \psi \in \mathsf{FO}[\sigma]$ where ψ is r-local around y, for some $r \geq 1$ (quantification is restricted to elements of distance $\leq r$ from y).

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$, $B \geq 1$, and ${\mathfrak T}$ be any of the following:

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$, $B \geq 1$, and $\mathfrak T$ be any of the following:

- the set of pipeline topologies,
- the set of grid topologies,
- the set of tree topologies,
- the set of ring topologies.

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$, $B \geq 1$, and $\mathfrak T$ be any of the following:

- the set of pipeline topologies,
- the set of grid topologies,
- the set of tree topologies,
- the set of ring topologies.

There is a PCA \mathcal{A} such that, for all $\mathcal{T} \in \mathfrak{T}$, we have $L_{\mathcal{T}}^{\mathcal{B}}(\mathcal{A}) = L_{\mathcal{T}}^{\mathcal{B}}(\varphi)$.

Positive results

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd_{\mathsf{proc}}^*, \lhd_{\mathsf{msg}}]$, $B \geq 1$, and $\mathfrak T$ be any of the following:

- the set of pipeline topologies,
- the set of grid topologies,
- the set of tree topologies,
- the set of ring topologies.

There is a PCA \mathcal{A} such that, for all $\mathcal{T} \in \mathfrak{T}$, we have $L_{\mathcal{T}}^{\mathcal{B}}(\mathcal{A}) = L_{\mathcal{T}}^{\mathcal{B}}(\varphi)$.

Here, $L_T^B(A)$ is the restriction of $L_T(A)$ to B-bounded MSCs.

Positive results

Corollary

Let $\varphi \in \mathsf{EMSO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$, $B \geq 1$, and $\mathfrak T$ be any of the following:

- the set of pipeline topologies,
- the set of grid topologies,
- the set of tree topologies,
- the set of ring topologies.

There is a PCA \mathcal{A} such that, for all $\mathcal{T} \in \mathfrak{T}$, we have $L_{\mathcal{T}}^{\mathcal{B}}(\mathcal{A}) = L_{\mathcal{T}}^{\mathcal{B}}(\varphi)$.

Here, $L_T^B(A)$ is the restriction of $L_T(A)$ to B-bounded MSCs.

Positive results

Corollary

Let $\varphi \in \mathsf{EMSO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$, $B \geq 1$, and $\mathfrak T$ be any of the following:

- the set of pipeline topologies,
- the set of grid topologies,
- the set of tree topologies,
- the set of ring topologies.

There is a PCA \mathcal{A} such that, for all $\mathcal{T} \in \mathfrak{T}$, we have $L_{\mathcal{T}}^{\mathcal{B}}(\mathcal{A}) = L_{\mathcal{T}}^{\mathcal{B}}(\varphi)$.

Here, $L_T^B(A)$ is the restriction of $L_T(A)$ to B-bounded MSCs.

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd_{\mathsf{proc}}^*, \lhd_{\mathsf{msg}}]$, $B \geq 1$, and \mathfrak{T} be a $(r_{\varphi} + 2)$ -unambiguous set of topologies. There is a PCA \mathcal{A} such that, for all $\mathcal{T} \in \mathfrak{T}$, we have $L^{\mathcal{B}}_{\mathcal{T}}(\mathcal{A}) = L^{\mathcal{B}}_{\mathcal{T}}(\varphi)$.

Here, r_{φ} is the radius associated with the first-order kernel of φ .

Definition

Let $k \in \mathbb{N}$. A class \mathfrak{T} of topologies is k-unambiguous if, for all $w \in (\mathcal{N} \times \mathcal{N})^*$ with $|w| \leq k$, all $(P, \longmapsto), (P', \longmapsto') \in \mathfrak{T}$, and all processes $p, q \in P$ and $p', q' \in P'$ such that $p \stackrel{\mathsf{w}}{\longmapsto} q$ and $p' \stackrel{\mathsf{w}}{\longmapsto}' q'$, we have p = q iff p' = q'.

Definition

Let $k \in \mathbb{N}$. A class \mathfrak{T} of topologies is k-unambiguous if, for all $w \in (\mathcal{N} \times \mathcal{N})^*$ with $|w| \leq k$, all $(P, \longmapsto), (P', \longmapsto') \in \mathfrak{T}$, and all processes $p, q \in P$ and $p', q' \in P'$ such that $p \stackrel{w}{\longmapsto} q$ and $p' \stackrel{w}{\longmapsto}' q'$, we have p = q iff p' = q'.

In other words:

If w forms a cycle in a topology from \mathfrak{T} , then it forms a cycle anywhere, in any topology of \mathfrak{T} (if it is applicable).

Pipelines k-unambiguous for all $k \in \mathbb{N}$

Pipelines k-unambiguous for all $k \in \mathbb{N}$

Grids k-unambiguous for all $k \in \mathbb{N}$

w = (a, b)(c, d)(b, a)(d, c)

Trees \checkmark k-unambiguous for all $k \in \mathbb{N}$

Pipelines k-unambiguous for all $k \in \mathbb{N}$

Grids k-unambiguous for all $k \in \mathbb{N}$

$$w = (a, b)(c, d)(b, a)(d, c)$$

Trees k-unambiguous for all $k \in \mathbb{N}$

Grids k-unambiguous for all $k \in \mathbb{N}$

$$w = (a, b)(c, d)(b, a)(d, c)$$

But:

• The class of rings of size $\geq k+1$ is k-unambiguous, for all $k \in \mathbb{N}$.

Grids k-unambiguous for all $k \in \mathbb{N}$

$$w = (a,b)(c,d)(b,a)(d,c)$$

But:

- The class of rings of size $\geq k+1$ is k-unambiguous, for all $k \in \mathbb{N}$.
- Every single ring is k-unambiguous, for all $k \in \mathbb{N}$.

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$, $B \geq 1$, and $\mathfrak T$ be a $(r_\varphi + 2)$ -unambiguous set of topologies. There is a PCA $\mathcal A$ such that, for all $\mathcal T \in \mathfrak T$, we have $L^{\mathcal B}_{\mathcal T}(\mathcal A) = L^{\mathcal B}_{\mathcal T}(\varphi)$.

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$, $B \geq 1$, and $\mathfrak T$ be a $(r_\varphi + 2)$ -unambiguous set of topologies. There is a PCA $\mathcal A$ such that, for all $\mathcal T \in \mathfrak T$, we have $L^{\mathcal B}_{\mathcal T}(\mathcal A) = L^{\mathcal B}_{\mathcal T}(\varphi)$.

Proof

• Translate φ into normal form

$$\exists X_1 \ldots \exists X_m \exists x_1 \ldots \exists x_n \forall y \psi$$

where ψ is r_{φ} -local around y.

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}], \ B \geq 1$, and $\mathfrak T$ be a $(r_\varphi + 2)$ -unambiguous set of topologies. There is a PCA $\mathcal A$ such that, for all $\mathcal T \in \mathfrak T$, we have $L^{\mathcal B}_{\mathcal T}(\mathcal A) = L^{\mathcal B}_{\mathcal T}(\varphi)$.

Proof

ullet Translate arphi into normal form

$$\exists X_1 \dots \exists X_m \exists x_1 \dots \exists x_n \forall y \psi$$

where ψ is r_{φ} -local around y.

• Existential quantification \Rightarrow projection & guessing of truth values for propositions involving only free variables of $\forall y \psi$ [Gastin-Kuske 2010].

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$, $B \geq 1$, and $\mathfrak T$ be a $(r_\varphi + 2)$ -unambiguous set of topologies. There is a PCA $\mathcal A$ such that, for all $\mathcal T \in \mathfrak T$, we have $L^{\mathcal B}_{\mathcal T}(\mathcal A) = L^{\mathcal B}_{\mathcal T}(\varphi)$.

Proof

• Translate φ into normal form

$$\exists X_1 \dots \exists X_m \exists x_1 \dots \exists x_n \forall y \psi$$

where ψ is r_{φ} -local around y.

- Existential quantification \Rightarrow projection & guessing of truth values for propositions involving only free variables of $\forall y \psi$ [Gastin-Kuske 2010].
- Construct fixed-topology CA \mathcal{A}_{θ} for formula $\forall y\psi$ over all topology neighborhoods θ of radius $\lceil r_{\varphi}/2 \rceil$ [Genest-Kuske-Muscholl 2004].

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd^*_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$, $B \geq 1$, and $\mathfrak T$ be a $(r_\varphi + 2)$ -unambiguous set of topologies. There is a PCA $\mathcal A$ such that, for all $\mathcal T \in \mathfrak T$, we have $L^{\mathcal B}_{\mathcal T}(\mathcal A) = L^{\mathcal B}_{\mathcal T}(\varphi)$.

Proof

ullet Translate arphi into normal form

$$\exists X_1 \dots \exists X_m \exists x_1 \dots \exists x_n \forall y \psi$$

where ψ is r_{φ} -local around y.

- Existential quantification \Rightarrow projection & guessing of truth values for propositions involving only free variables of $\forall y \psi$ [Gastin-Kuske 2010].
- Construct fixed-topology CA \mathcal{A}_{θ} for formula $\forall y\psi$ over all topology neighborhoods θ of radius $\lceil r_{\varphi}/2 \rceil$ [Genest-Kuske-Muscholl 2004].

• Glue fixed-topology CA together to obtain a PCA for $\forall y \psi$.

Proof (cntd.) suppose $r_{\varphi}=3$ so that $\lceil r_{\varphi}/2 \rceil=2$

Proof (cntd.) suppose
$$r_{\varphi}=3$$
 so that $\lceil r_{\varphi}/2 \rceil=2$

Proof (cntd.) suppose $r_{\varphi}=3$ so that $\lceil r_{\varphi}/2 \rceil=2$

Proof (cntd.) suppose
$$r_{\varphi}=3$$
 so that $\lceil r_{\varphi}/2 \rceil=2$

Proof (cntd.) suppose
$$r_{\varphi} = 3$$
 so that $\lceil r_{\varphi}/2 \rceil = 2$

• Process p = (2,3) guesses topology neighborhood θ and simulates local automaton $\mathcal{A}_{\theta}[2',3']$.

Proof (cntd.) suppose
$$r_{\varphi}=3$$
 so that $\lceil r_{\varphi}/2 \rceil=2$

- Process p = (2,3) guesses topology neighborhood θ and simulates local automaton $\mathcal{A}_{\theta}[2',3']$.
- Process p sends $(\theta, (2', 3'))$ to (2, 2).

Proof (cntd.) suppose
$$r_{\varphi}=3$$
 so that $\lceil r_{\varphi}/2 \rceil=2$

- Process p = (2,3) guesses topology neighborhood θ and simulates local automaton $\mathcal{A}_{\theta}[2',3']$.
- Process p sends $(\theta, (2', 3'))$ to (2, 2).
- Process (2,2) receives $(\theta,(1',2'))$ from (1,2) and simulates $\mathcal{A}_{\theta}[2',2']$.

Proof (cntd.) suppose
$$r_{\varphi}=3$$
 so that $\lceil r_{\varphi}/2 \rceil=2$

- Process p = (2,3) guesses topology neighborhood θ and simulates local automaton $\mathcal{A}_{\theta}[2',3']$.
- Process p sends $(\theta, (2', 3'))$ to (2, 2).
- Process (2,2) receives $(\theta,(1',2'))$ from (1,2) and simulates $\mathcal{A}_{\theta}[2',2']$.

• \Rightarrow Topology admits w = (b, a)(d, c)(a, b)(c, d)-path from p.

Proof (cntd.) suppose
$$r_{\varphi}=3$$
 so that $\lceil r_{\varphi}/2 \rceil=2$

- Process p = (2,3) guesses topology neighborhood θ and simulates local automaton $\mathcal{A}_{\theta}[2',3']$.
- Process p sends $(\theta, (2', 3'))$ to (2, 2).
- Process (2,2) receives $(\theta,(1',2'))$ from (1,2) and simulates $\mathcal{A}_{\theta}[2',2']$.
- \Rightarrow Topology admits w = (b, a)(d, c)(a, b)(c, d)-path from p.
- Since $|w|=4 \le r_{\varphi}+2$, and $\mathfrak T$ is $(r_{\varphi}+2)$ -unambiguous, w forms a cycle in the topology as well.

Proof (cntd.) suppose
$$r_{\varphi}=3$$
 so that $\lceil r_{\varphi}/2 \rceil=2$

- Process p = (2,3) guesses topology neighborhood θ and simulates local automaton $\mathcal{A}_{\theta}[2',3']$.
- Process p sends $(\theta, (2', 3'))$ to (2, 2).
- Process (2,2) receives $(\theta,(1',2'))$ from (1,2) and simulates $\mathcal{A}_{\theta}[2',2']$.
- \Rightarrow Topology admits w = (b, a)(d, c)(a, b)(c, d)-path from p.
- Since $|w| = 4 \le r_{\varphi} + 2$, and \mathfrak{T} is $(r_{\varphi} + 2)$ -unambiguous, w forms a cycle in the topology as well.

• Every process has to simulate several automata.

Almost the same proof works for a weaker logic without channel bound:

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd_{\mathsf{proc}}, \lhd_{\mathsf{msg}}, \sim]$, and $\mathfrak T$ be a $(r_{\varphi} + 2)$ -unambiguous set of topologies. There is a PCA $\mathcal A$ such that, for all $\mathcal T \in \mathfrak T$, $L_{\mathcal T}(\mathcal A) = L_{\mathcal T}(\varphi)$.

Almost the same proof works for a weaker logic without channel bound:

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd_{\mathsf{proc}}, \lhd_{\mathsf{msg}}, \sim]$, and $\mathfrak T$ be a $(r_{\varphi} + 2)$ -unambiguous set of topologies. There is a PCA $\mathcal A$ such that, for all $\mathcal T \in \mathfrak T$, $L_{\mathcal T}(\mathcal A) = L_{\mathcal T}(\varphi)$.

Proof

ullet Translate φ into normal form

$$\exists X_1 \ldots \exists X_m \exists x_1 \ldots \exists x_n \forall y \psi$$

where ψ is r_{φ} -local around y.

- Existential quantification \Rightarrow projection & guessing of truth values for propositions involving only free variables of $\forall y \psi$ [Gastin-Kuske 2010].
- Construct fixed-topology CA \mathcal{A}_{θ} for formula $\forall y\psi$ over all topology neighborhoods θ of radius $\lceil r_{\varphi}/2 \rceil$ [Genest-Kuske-Muscholl 2004].

• Glue fixed-topology CA together to obtain a PCA for $\forall y \psi$.

Almost the same proof works for a weaker logic without channel bound:

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd_{\mathsf{proc}}, \lhd_{\mathsf{msg}}, \sim]$, and $\mathfrak T$ be a $(r_{\varphi} + 2)$ -unambiguous set of topologies. There is a PCA $\mathcal A$ such that, for all $\mathcal T \in \mathfrak T$, $L_{\mathcal T}(\mathcal A) = L_{\mathcal T}(\varphi)$.

Proof

ullet Translate φ into normal form

$$\exists X_1 \ldots \exists X_m \exists x_1 \ldots \exists x_n \forall y \psi$$

where ψ is r_{φ} -local around y.

- Existential quantification \Rightarrow projection & guessing of truth values for propositions involving only free variables of $\forall y \psi$ [Gastin-Kuske 2010].
- Construct fixed-topology CA \mathcal{A}_{θ} for formula $\forall y \psi$ over all topology neighborhoods θ of radius $\lceil r_{\varphi}/2 \rceil$ [B.-Leucker 2004].

• Glue fixed-topology CA together to obtain a PCA for $\forall y \psi$.

An orthogonal approach

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$. There is a PCA $\mathcal A$ that is equivalent to φ on all pipelines, trees, and grids.

An orthogonal approach

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$. There is a PCA $\mathcal A$ that is equivalent to φ on all pipelines, trees, and grids.

Proof

An orthogonal approach

Theorem

Let $\varphi \in \mathsf{EMSO}[\lhd_{\mathsf{proc}}, \lhd_{\mathsf{msg}}]$. There is a PCA $\mathcal A$ that is equivalent to φ on all pipelines, trees, and grids.

Proof

Exploit sphere automaton from [B.-Leucker] to compute $\{ \lhd_{proc}, \lhd_{msg} \}$ -neighborhoods.

Summary of results

Negative results

- There is an FO[\lhd_{proc} , \lhd_{msg}]-formula that is not realizable for the class of ring forests.
- There is an FO-formula that is not realizable for the class of trees.

Summary of results

Negative results

- There is an FO[\triangleleft_{proc} , \triangleleft_{msg}]-formula that is not realizable for the class of ring forests.
- There is an FO-formula that is not realizable for the class of trees.

Positive results

- Under a channel bound, every $FO[\lhd_{proc}^*, \lhd_{msg}]$ -formula is realizable for the classes of pipelines, trees, grids, and rings.
- Every FO[$\lhd_{proc}, \lhd_{msg}, \sim$]-formula is realizable for the classes of pipelines, trees, grids, and rings.

Summary of results

Negative results

- There is an FO[⊲_{proc}, ⊲_{msg}]-formula that is not realizable for the class of ring forests.
- There is an FO-formula that is not realizable for the class of trees.

Positive results

- Under a channel bound, every $FO[\lhd_{proc}^*, \lhd_{msg}]$ -formula is realizable for the classes of pipelines, trees, grids, and rings.
- Every FO[\triangleleft_{proc} , \triangleleft_{msg} , \sim]-formula is realizable for the classes of pipelines, trees, grids, and rings.

Open problems

- Is every $FO[\triangleleft_{proc}^*, \triangleleft_{msg}]$ -formula realizable without channel bound?
- Is every FO[¬*]-formula realizable (for interesting classes of topologies)?

Related work

- Parameterized synthesis [Jacobs-Bloem 2012]
- Parameterized verification [Browne-Clarke-Grumberg 1989], [Emerson-Namjoshi 2003], [Bouajjani-Habermehl-Vojnar 2008], [Delzanno-Sangnier-Zavattaro 2010]
- Distributed algorithms [Grumbach-Wu 2010], [Chalopin-Das-Kosowski 2010]
- Automata from normal forms [Schwentick-Barthelmann 1999], [Gastin-Kuske 2010]

Conclusion

Contribution

- A notion of communicating automaton that is independent of a concrete topology
- Büchi-Elgot-Trakhtenbrot theorems for PCA

Conclusion

Contribution

- A notion of communicating automaton that is independent of a concrete topology
- Büchi-Elgot-Trakhtenbrot theorems for PCA

Future work

- Topologies of unbounded degree (unranked trees, star architectures)
- Parameterized verification

Thank You!

The End 34 / 34