Lec 1

1. w.l.o.g == 不失一般性

2. 递归数列求通项式

- 1. 将 F_n 设为 X_2 , 再第一次的设为X , -2项设为常数项,之后列方程解出来特征根 ϕ 和 ψ
- 2. 将特征根 ϕ 和 ψ 以及 F_0,F_1 带入公式: $F_n=a\phi^n+b\psi^n$ 得到**a, b** 。
- 3. 将**a, b** 带回公式,得到 F_n 的通项公式。

3. Logical connectives:

Logical connectives:

- ⋄ Negation
- ⊕'
- ⋄ Conjunction
- ⋄ Disjunction
- ⋄ Exclusive or
- ⋄ Implication
- ♦ Biconditional

1. exclusive or 异或

p	\boldsymbol{q}	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

2. implication

p	\boldsymbol{q}	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

- \diamond if p then q
- $\diamond p$ implies q
- $\diamond p$ is sufficient for q
- $\diamond q$ is necessary for p
- $\diamond q$ follows from p
- $\diamond q$ unless $\neg p$
- $\diamond p$ only if q
- $\neg q \rightarrow \neg p$ is equivalent to $p \rightarrow q$

3. Biconditional

- ⋄ p is necessary and sufficient for q
- \diamond if p then q, and conversely
- $\diamond p \text{ iff } q$

p	\boldsymbol{q}	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F [®]
F	F	T

Lec 2

名词:

- tautology 永真式: always True
- contradiction 永假式: always False
- contingency 偶然式:

P	$\neg p_{_{0}}$	$p \lor \neg p$	$p \land \neg p$
T	F	T	F
F	T	T	F

偶然 永真 永假

1. Equivalent Propositions 等价命题

Identity laws

$$\diamond p \wedge T \equiv p \\
\diamond p \vee F \equiv p$$

Domination laws

$$\diamond p \lor T \equiv T \\
\diamond p \land F \equiv F$$

Idempotent laws

$$\diamondsuit p \lor p \equiv p$$

$$\diamondsuit p \land p \equiv p$$

Double negation laws

$$\diamond \neg (\neg p) \equiv p$$

■ Commutative laws

■ Associative laws

$$\diamond (p \lor q) \lor r \equiv p \lor (q \lor r)$$
$$\diamond (p \land q) \land r \equiv p \land (q \land r)$$

Distributive laws

$$\diamond p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

$$\diamond p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

De Morgan's laws

Others

3. 证明一个命题的方法:

- 1. 公式迭代证明
- 2. 真值表证明
- 3. 反证法

4. 命题逻辑的局限性:

5. propositional logic 命题逻辑 || Predicate Logic 谓词逻辑

- 1. Predicate Logic 谓词逻辑: P(x) depend on x!! P(x)不是命题但是在确定x的情况下是命题。
- 2. truth set

6. quantifiers

1. depends on domain

3.

Lec 3

1. review:

Important Logical Equivalences

- Identity laws
- Domination laws
- Idempotent laws

 - Double negation laws

$$\diamond \neg (\neg p) \equiv p$$

- Commutative laws
- Associative laws
 - $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$
- Distributive laws

$$\diamond p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

$$\diamond p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

■ De Morgan's laws

Others

1. Order of Quantifiers

1. **Example:** $\forall x \exists y \ L(x,y) \not\equiv \exists y \forall x \ L(x,y)$

- $\diamond L(x,y)$ denotes "x loves y"
- $\diamond \forall x \exists y \ L(x,y)$: Everybody loves somebody.
- $\Diamond \exists y \forall x \ L(x,y)$: There is someone who is loved by everyone.
- 2. There is **exactly** one person whom everybody loves.

$$\exists y (orall \ x \ L(x, \ y) \land orall \ z(\ L(x, \ z)
ightarrow z = y))$$

3. Rules of Inference for Propositional Logic

modus ponens (law of detachment) 肯定前件式

$$p \to q$$
 corresponding tautology:

$$p \qquad (p \land (p
ightarrow q))
ightarrow q$$

■ modus tollens 否定后件式

$$\begin{array}{c} p \to q \\ \hline \neg q \\ \hline \vdots \neg p \end{array} \quad \text{corresponding tautology:}$$

■ hypothetical syllogism 假言三段论

$$\begin{array}{c} p \to q \\ \hline q \to r \\ \hline \vdots p \to r \end{array} \quad \text{corresponding tautology:} \\ ((p \to q) \land (q \to r)) \to (p \to r)$$

⊕,

■ disjunctive syllogism 选言三段论

$$\begin{array}{cc} p \lor q & \text{corresponding tautology:} \\ \hline \neg p & (\neg p \land (p \lor q)) \to q \\ \hline \vdots & q & \end{array}$$

Addition

Simplication

Conjunction

$$\begin{array}{c} p \\ \hline q \\ \hline \hline \therefore p \wedge q \end{array} \quad \begin{array}{c} \text{corresponding tautology:} \\ \hline ((p) \wedge (q)) \rightarrow (p \wedge q) \end{array}$$

■ Resolution

$$\begin{array}{c|c} \neg p \lor r & \text{corresponding tautology:} \\ \hline p \lor q & ((p \lor q) \land (\neg p \lor r)) \to (q \lor r) \\ \hline \vdots q \lor r & \end{array}$$

$$\frac{\forall x P(x)}{\therefore P(c)}$$

Universal Generalization (UG)

$$P(c)$$
 for an arbitrary c
 $\therefore \forall x P(x)$

■ Existential Instantiation (EI)

$$\exists x P(x)$$

 $\therefore P(c) \text{ for some element } c$

Existential Generalization (EG)

$$P(c)$$
 for some element c
 $\therefore \exists x P(x)$

Lec 4

1. Sets

Natural numbers:

$$\diamond N = \{0, 1, 2, 3, \ldots\}$$

■ Integers:

$$\diamond \mathbf{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

■ Positive integers:

$$\diamond \mathbf{Z}^+ = \{1, 2, 3, \ldots\}$$

■ Rational numbers:

$$\diamond \mathbf{Q} = \{ \frac{p}{q} \mid p \in \mathbf{Z}, q \in \mathbf{Z}, q \neq 0 \}$$

■ Real numbers:

Complex numbers:

2. Cardinality (基数;集的势)

$$A = \{1, 2, 3, \dots, 20\} \ (|A| = 20)$$
1. $B = \{1, 2, 3, \dots\}$ (infinite)
$$|\emptyset| = 0$$

3. Power Set

Given a set S, the power set of S is the set of all subsets of the set S, denoted by P(S).

Examples: $o \diamond \emptyset$ $4 = 2^{2}$ $3 \diamond \{1,2,3\} \{\psi,\{i\},\{i\},\{i\},\{i\},\{i,2\},\{i,3\},\{i,2\}\}\} = 2^{3}$. Cartesian Proof.

4. Cartesian Product: 笛卡尔积

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a,b), where $a \in A$ and $b \in B$. Hence

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

1.

Example:

$$A = \{1, 2\}, B = \{a, b, c\}$$

 $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$

$$\blacksquare A \times B \neq B \times A$$

2.

$$|A \times B| = |A| \times |B|$$

3.
$$A \cap B = \emptyset$$

 $\rightarrow A - b = A$
 $\rightarrow A \cap \overline{B} = A$

5. Function

1. injective --- one-to-one --- 单射 --- image只被指向一次 g(x) = g(y) if f $x \neq y \rightarrow f(x) \neq f(y)$ surjective --- Onto --- 满射 --- image 全部用到

Bijective --- both one-to-one and onto --- 一对应

Suppose that $f: A \rightarrow B$.

To show that f is injective	Show that if $f(x) = f(y)$ for all $x, y \in A$, then $x = y$
To show that f is not injective	Find specific element $x, y \in A$ such that $x \neq y$ and $f(x) = f(y)$
To show that f is surjective	Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x) = y$
To show that <i>f</i> is not <i>surjective</i>	Find a specific element $y \in B$ such that $f(x) \neq y$ for all $x \in A$

2. inverse Function <mark>必须是bijection</mark> ,也就是必须是<mark>onto和one-to-one</mark>。