Math 351: Homework 5 Due Friday October 19

Sections 3.2 and 3.3

Section 3.2 Exercises (pg 112-113) work 6,7,8,9,10

6. Let $A \subseteq \mathbb{R}$. When is $A^{\circ} = \overline{A}$?

We know that $A^{\circ} \subseteq A \subseteq \overline{A}$, so $A^{\circ} = \overline{A} = A$ in this case. We have previously shown that $A = A^{\circ}$ if and only if A is open, and that $A = \overline{A}$ if and only if A is closed. So, A must be both open and closed. The only sets for which this can be true are \mathbb{R} and \emptyset , and since we have $A \subseteq \mathbb{R}$, the only case where this is possible is $A = \emptyset$.

7. Is there a set whose interior is empty and whose closure is \mathbb{R} ?

The set \mathbb{Q} satisfies this property. Pick any $q \in \mathbb{Q}$ and fix it. For any $\varepsilon > 0$, the open ball $B(q, \varepsilon)$ will contain a nonrational real number due to the order completeness of \mathbb{R} . Thus, \mathbb{Q} contains no interior points. In addition, we know that \mathbb{R} consists of all values to which sequences of rational numbers converge, so every real number is the limit of some sequence in \mathbb{Q} . Thus every $x \in \mathbb{R}$ is a closure point of \mathbb{Q} . So \mathbb{Q} is a set whose interior is empty and whose closure is \mathbb{R} .

8. Find the closure and interior of each of the following sets:

(a)
$$A = [0, 1) \cup (1, 2)$$

 $\overline{A} = [0, 2], A^{\circ} = (0, 1) \cup (1, 2)$

(b)
$$\mathbb{N}$$
 $\overline{\mathbb{N}} = \mathbb{N}$, $\mathbb{N}^{\circ} = \emptyset$

(c)
$$A = \{\frac{1}{n} : n \in \mathbb{N}\}\$$

 $\overline{A} = A \cup 0, \ A^{\circ} = \emptyset$

(d)
$$A = \mathbb{Q} \cap (0,1)$$

 $\overline{A} = [0,1], A^{\circ} = \emptyset$

(e)
$$A = \mathbb{R} \setminus \mathbb{Q}$$

 $\overline{A} = \mathbb{R}, A^{\circ} = \emptyset$

Recall that \mathbb{Q} is dense in \mathbb{R} , so A has no interior points.

(f)
$$A = \{\frac{p}{2^n} : n \in \mathbb{N}, p = 0, \dots, 2^n\}$$

 $\overline{A} = \mathbb{R}, A^{\circ} = \emptyset$

A is the set of dyadic rationals in [0,1]. In Example 2.2.6, we define a function $d:[0,1] \to \{0,1\}^{\mathbb{N}}$ that maps every real number in [0,1] to a sequence of dyadic intervals of increasing rank. For any $x \in [0,1]$, if we take the sequence of the left endpoints of these intervals determined by d(x), this sequence will be a subset of our set A and will converge to x.

9. Prove or disprove $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$.

We will show that these sets are equal by showing that they are subsets of one another. First, let $x \in \overline{(A \cup B)}$. This means that x is a closure point of $A \cup B$. Thus there exists some sequence $a_n \in (A \cup B)$ that converges to x. There are two possible cases: either a_n is a subset of A or B, or (a_n) contains elements from A and elements from B. If it is the former case, assume without loss of generality that $(a_n) \subseteq A$ (since the following argument is also valid for B). Thus, x is also a closure point of A, so $x \in \overline{A} \subseteq (\overline{A} \cup \overline{B})$. In the case where (a_n) contains elements from both A and B, take either the subsequence $(a_n) \cap A$ or $a_n \cap B$, whichever has an infinite number of elements. We know that if $a_n \to x$, any subsequence of a_n also converges to x. Thus we can find a sequence in either A or B that converges to x, so x is a closure point of either A or B, and it follows that $x \in (\overline{A} \cup \overline{B})$. Since any x in $\overline{A} \cup \overline{B}$ is in $\overline{A} \cup \overline{B}$, $\overline{A} \cup \overline{B} \subseteq (\overline{A} \cup \overline{B})$.

Now take $x \in (\overline{A} \cup \overline{B})$. This means x is either a closure point of A or a closure point of B, so there is some sequence (a_n) of terms in either A or B that converges to x. Each a_n would also be in $A \cup B$, however, which means that x is also a closure point of $A \cup B$, so $x \in \overline{A \cup B}$. Hence $(\overline{A} \cup \overline{B}) \subseteq \overline{A \cup B}$. Since we have both sets as subsets of one another, the sets must be equal.

10. Prove or disprove $\overline{(A \cap B)} = \overline{A} \cap \overline{B}$.

We disprove this by providing a counterexample. Let A = (0,1) and B = (1,2). $\overline{(A \cap B)} = \overline{(0,1) \cap (1,2)} = \overline{\varnothing} = \varnothing$. But, $\overline{A} \cap \overline{B} = \overline{(0,1)} \cap \overline{(1,2)} = [0,1] \cap [1,2] = 1 \neq \varnothing$.

Section 3.3 Exercises (pg 116-117) work 7

Interiors

For \mathbb{R}^n , what is the relationship between A° and $(\bar{A})^{\circ}$? Are they equal? One contained in the other? Prove any claim you make.

Compactness 1

Suppose K, F are subsets of \mathbb{R} , and that K is compact and F is closed. Are the following definitely compact, definitely closed, or possibly neither.

- a) $K \cap F$
- b) $\overline{K^c \cup F^c}$
- c) $K \setminus F$
- d) $\overline{K \cap F^c}$

Compactness 2

Consider the set comprised of closed intervals

$$\ldots \cup \left[\frac{1}{6}, \frac{1}{5}\right] \cup \left[\frac{1}{4}, \frac{1}{3}\right] \cup \left[\frac{1}{2}, 1\right]$$

That is, let $I_n = [\frac{1}{2n}, \frac{1}{2n-1}]$ for $n \in \mathbb{N}$ and take $B = \bigcup_{n \in \mathbb{N}} I_n$.

- a) Show B is bounded but not closed.
- b) Find a sequence $\{b_n\} \subset B$ that converges to a point not contained in B.
- c) Find an open cover of B that cannot be reduced to a finite open cover.
- d) Show $\tilde{B} = B \cup \{0\}$ is compact.
- e) How does the addition of the point $\{0\}$ undo your answers in (b) and (c)? That is, why can't you make similar examples that work for \tilde{B} ?

Compactness 3

Prove that any open cover of any closed set can be reduced to a countable open cover.

(HINT: Let B be a closed set, and define $B_n = B \cap [n-1,n]$ for $n \in \mathbb{Z}$. Then B_n is compact.)

Use this to work section 3.4 exercise 2 (page 122).

Compactness 4

Work section 3.4 exercise 3 (page 122).

(HINT: Suppose not. Then $\forall \delta > 0$, there is an interval I of length δ with $I \cap E \neq \emptyset$ and $I \cap E \neq \emptyset$. Use this to construct convergent e_n in E and f_n in F, with $|e_n - f_n| \to 0$.)

Compactness 5

And now for something completely different. Consider the natural numbers \mathbb{N} with the trivial metric (defined in example 3.1.7 on page 107).

Show that with this metric, the set \mathbb{N} is closed and bounded, but not sequentially compact.