Microcontroller Engineering TMIK13 Lecture 13

DIRECT MEMORY ACCESS (DMA)

ANDREAS AXELSSON (ANDREAS.AXELSSON@JU.SE)

DMA – Basic Concepts

Hardware which reads data from a source and writes it to a destination

- Can copy data quickly
- Can eliminate ISRs which just copy data (e.g. unload UART receive buffer into queue)

Various configurable options

- Number of data items to copy
- Source and destination addresses can be fixed or change (e.g. increment, decrement)
- Size of data item
- When transfer starts

Operation

- Initialization: Configure controller
- Transfer: Data is copied
- Termination: Channel indicates transfer has completed

Basic Use of DMA

Configuration

- Enable clock to DMA module
- Initialize control registers
- Load SARn with source address
- Load DARn with destination address
- Load BCRn with number of bytes to transfer
- Clear DSRn[DONE]

Start transfer by setting DCRn[START]

Wait for end of transfer

- Interrupt generated if DCRn[EINT] is set (DMAn_IRQHandler)
- Or else poll DSRn[DONE]

System Bus Architecture

Overview DMA – STM32F401

DMA Controller – STM32F401

Channel Selection

DMA_SxCR

Channel Sources – DMA1

Table 28. DMA1 request mapping (STM32F401xB/C and STM32F401xD/E)

Peripheral requests	Stream 0	Stream 1	Stream 2	Stream 3	Stream 4	Stream 5	Stream 6	Stream 7	
Channel 0	SPI3_RX	-	SPI3_RX	SPI2_RX	SPI2_TX	SPI3_TX	-	SPI3_TX	
Channel 1	I2C1_RX	I2C3_RX	-	-	-	I2C1_RX	I2C1_TX	I2C1_TX	
Channel 2	TIM4_CH1	-	I2S3_EXT_RX	TIM4_CH2	I2S2_EXT_TX	I2S3_EXT_TX	TIM4_UP	TIM4_CH3	
Channel 3	I2S3_EXT_RX	TIM2_UP TIM2_CH3	I2C3_RX	I2S2_EXT_RX	I2C3_TX	TIM2_CH1	TIM2_CH2 TIM2_CH4	TIM2_UP TIM2_CH4	
Channel 4	-	-	-	-	-	USART2_RX	USART2_TX	-	
Channel 5	-	-	TIM3_CH4 TIM3_UP	_ -		TIM3_CH2	-	TIM3_CH3	
Channel 6	TIM5_CH3 TIM5_UP	TIM5_CH4 TIM5_TRIG	TIM5_CH1	TIM5_CH4 TIM5_TRIG	TIM5_CH2	I2C3_TX	TIM5_UP	-	
Channel 7	-	-	I2C2_RX	I2C2_RX	-	-	-	I2C2_TX	

Channel Sources – DMA2

Table 29. DMA2 request mapping (STM32F401xB/C and STM32F401xD/E)

Peripheral requests	Stream 0	Stream 1	Stream 2	Stream 3	Stream 4	Stream 5	Stream 6	Stream 7	
Channel 0	ADC1	-	-	-	ADC1	-	TIM1_CH1 TIM1_CH2 TIM1_CH3	-	
Channel 1	-	-	-			-	-	-	
Channel 2	-	-	-	-	-	-	-	-	
Channel 3	SPI1_RX	-	SPI1_RX	SPI1_TX	-	SPI1_TX	-	-	
Channel 4	SPI4_RX	SPI4_TX	USART1_RX	SDIO	-	USART1_RX	SDIO	USART1_TX	
Channel 5	-	USART6_RX	USART6_RX	SPI4_RX	SPI4_TX	-	USART6_TX	USART6_TX	
Channel 6	TIM1_TRIG	TIM1_CH1	TIM1_CH2	TIM1_CH1	TIM1_CH4 TIM1_TRIG TIM1_COM	TIM1_UP	TIM1_CH3	-	
Channel 7	-	-	-	-	-	-	-	-	

Stream Control Registers

0x0010	DMA_S0CR	Reserved	CHSEL[2:0]	MBURST[1:0]	PBURST[1:0]	Reserved	DBM	PL[1:0]	PINCOS	MSIZE[1:0]	PSIZE[1:0]	MINC	PINC	CIRC	DIR[1:0]	PFCTRL	TCIE	HTIE	TEIE	DMEIE
	Reset value		0 0 0	0 0	0 0	C	0	0 0	0	0 0	0 0	0	0	0 0	0	0	0	0	0	0 0
0x0014	DMA_S0NDTR			Reserve	٠.								N	DT[1	5:.]					
0,0014	Reset value		0 0 0 0 0 0 0 0									0	0	0	0	0	0 0			
0x0018	DMA_S0PAR		PA[31:0]								•	•								
	Reset value	0 0 0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0	0 0	0	0	0	0	0	0 0
0x001C	DMA_S0M0AR		M0A[31:0]											'	•					
	Reset value	0 0 0 0	0 0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	0	0	0 0	0	0	0	0	0	0 0
0x0020	DMA_S0M1AR							M1A	[31:	0]										
	Reset value	0 0 0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0	0 0	0	0	0	0	0	0 0
0x0024	DMA_S0FCR			· · · · · · ·	F	Reserv	/ed	-	•	-	-		•	FEF	Reserved	F	5[2:0	0]	DMDIS	FTH [1:0]
	Reset value							1	1		1			C) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	0	0	0	0 1

DMA – Direct and FIFO Mode

Performance Comparison

Traces

- Yellow: ISR is executing when trace is low
- Blue: DAC output (PTE30, pin 11 of J10)

Without DMA: Interrupt per sample

- 4.7 microseconds per 620 microseconds
- 0.758% of processor's time

With DMA: Interrupt per cycle

- 5.0 microseconds per 20 milliseconds
- 0.025% of processor's time

How is this useful?

- Saves CPU time
- Reduces timing vulnerability to interrupts being disabled
- Enables CPU to sleep longer, wake up less often (20 milliseconds vs. 620 microseconds)

Application – Sound Processing

WS2812B

Intelligent control LED integrated light source

Features and Benefits

- Intelligent reverse connect protection, the power supply reverse connection does not damage the IC.
- The control circuit and the LED share the only power source.
- Control circuit and RGB chip are integrated in a package of 5050 components, form a complete control of pixel point.
- Built-in signal reshaping circuit, after wave reshaping to the next driver, ensure wave-form distortion not accumulate.
- Built-in electric reset circuit and power lost reset circuit.
- Each pixel of the three primary color can achieve 256 brightness display, completed 16777216 color full color display, and scan frequency not less than 400Hz/s.
- Cascading port transmission signal by single line.
- Any two point the distance more than 5m transmission signal without any increase circuit.
- When the refresh rate is 30fps, cascade number are not less than 1024 points.
- Send data at speeds of 800Kbps.
- The color of the light were highly consistent, cost-effective..

Applications

- Full-color module, Full color soft lights a lamp strip.
- LED decorative lighting, Indoor/outdoor LED video irregular screen.

Mechanical Dimensions

PIN configuration

PIN function

NO.	Symbol	Function description
1	VDD	Power supply LED
2	DOUT	Control data signal output
3	VSS	Ground
4	DIN	Control data signal input

WS2812B Protocol

ТОН	0 code ,high voltage time	0.4us	±150ns
T1H	1 code ,high voltage time	0.8us	±150ns
T0L	0 code, low voltage time	0.85us	±150ns
T1L	1 code ,low voltage time	0.45us	±150ns
RES	low voltage time	Above 50μs	

Composition of 24bit data:

G7	G6	G5	G4	G3	G2	Gl	G0	R7	R6	R5	R4	R3	R2	R1	R0	В7	В6	В5	B4	В3	В2	B1	В0

Note: Follow the order of GRB to sent data and the high bit sent at first.

STM32CubeIDE Demo

Lets go!!!

Microcontroller Engineering

Questions?

Contact information

Andreas Axelsson

Email: andreas.axelsson@ju.se

Mobile: 0709-467760