The Squid Game

เกม Squid คือเกมที่มีผู้เล่นทั้งหมด N คน เข้าร่วมแข่งขัน ผู้เล่นคนที่ i มีเงินประจำตัวอยู่ M_i เมื่อผู้เล่นคนที่ i ถูกกำจัดออก จากเกม จำนวนเงิน M_i ที่ประจำตัวจะถูกเพิ่มเข้าในมูลค่าเงินรางวัลรวม เป็นเช่นนี้เรื่อยไป จนกระทั่งเหลือผู้เล่นคนเดียว คน นั้นคือผู้ชนะ ได้รับเงินรางวัลที่สะสมมาทั้งหมด เช่น ตารางข้างล่างนี้แสดงเงินประจำตัวผู้เล่นจำนวน 5 คน

ผู้เล่นหมายเลข <i>i</i>	1	2	3	4	5
เงินประจำตัว M_i	10	20	5	10	15

ถ้าลำดับผู้เล่นที่ถูกกำจัดออกคือ $1,\,5,\,3$ และ $4\,$ ผู้เล่นหมายเลข $2\,$ ชนะเกมนี้ ได้เงินรวม $10+15+5+10=40\,$

จงเขียนโปรแกรมที่รับจำนวนเกม ตามด้วยข้อมูลของแต่ละเกมที่ประกอบด้วย จำนวนผู้เล่น และเงินประจำตัวผู้เล่นต่าง ๆ เพื่อหา มูลค่า<mark>เงินรางวัลสูงสุดที่เป็นไปได้</mark>ที่ผู้ชนะจะได้รับในแต่ละเกม

ข้อมูลนำเข้า

บรรทัดแรกเป็นค่า K ระบุจำนวนเกม ตามด้วย K บรรทัด แต่ละบรรทัด ประกอบด้วยจำนวนเต็ม

$$N M_1 M_2 M_3 \dots M_N$$

 $extbf{N}$ คือจำนวนผู้เล่น และ M_i คือเงินประจำตัวผู้เล่นคนที่ i $(1 \leq N \leq 100, \ 1 \leq i \leq N, \ 1 \leq M_i \leq 100,000,000)$

ข้อมูลส่งออก

มี K บรรทัด แต่ละบรรทัดแสดง<u>เงินรางวัลสูงสุดที่เป็นไปได้</u>ที่ผู้ชนะจะได้รับของแต่ละเกมที่ได้รับจากอินพุต

ตัวอย่าง			
input (จากแป้นพิมพ์)	output (ทางจอภาพ)		
3	6		
3 2 4 1	3		
4 1 1 1 1	20		
6 3 1 2 4 5 6			
4	11		
3 5 1 6	15		
4 1 3 5 7	11		
5 2 1 4 3 2	17		
6 3 4 2 3 5 1			