Another Look at the Role of Oil Supply, Demand, and Inventory Shocks

Reza Parsi July 19, 2019

Table 1: Simulation of Contemporaneous Effects Γ_0

	Variance Set $(\epsilon_{1t}, \epsilon_{4t})$				
	(0.5, 0.5)	(0.1, 0.5)	(0.9,0.5)	(0.5, 0.1)	(0.5, 0.9)
$\gamma_{21}_{_{\times 10^{-3}}}$	0.31 (14.7)	0.36 (5.20)	0.30 (2.59)	0.31 (14.4)	0.31 (1.49)
γ_{31}	0.31 (17.6)	0.31 (5.76)	$0.30 \\ (3.79)$	0.31 (17.4)	0.31 $(1.78))$
γ_{41}	0.29 (18.2)	0.25 (5.39)	$0.30 \\ (4.97)$	0.30 (0.48)	0.30 (14.8)
γ_{32}	0.30 (15.4)	0.30 (15.0)	0.29 (15.2)	0.30 (15.2)	$0.30 \\ (1.5)$
γ_{42}	0.27 (14.4)	0.27 (15.6)	0.27 (13.8)	0.29 (0.41)	0.23 (11.1)
γ_{43}	0.33 (13.9)	0.32 (15.3)	0.33 (13.4)	$0.38 \\ (0.39)$	0.38 (10.0)
Correct Prediction	26	39	16	0	44

The lag order k=3, which is chosen by AIC method. Each row shows the mean of estimated coefficients and standard errors $(\times 10^{-3})$ calculated from 100 simulations. The sample size S=100. Correct Prediction is the number of correct ordering prediction in 100 simulations.

$$\begin{split} & \boldsymbol{\Gamma_0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0.3 & 0 & 0 & 0 \\ 0.3 & 0.3 & 0 & 0 \\ 0.3 & 0.3 & 0.3 & 0 \end{bmatrix}, \boldsymbol{\Gamma_1} = \begin{bmatrix} 0.9 & 0 & 0 & 0 \\ 0 & 0.9 & 0 & 0 \\ 0 & 0 & 0.9 & 0 \\ 0 & 0 & 0 & 0.9 \end{bmatrix} \\ & \boldsymbol{Y}_t = \begin{bmatrix} y_{1t} \\ y_{2t} \\ y_{3t} \\ y_{4t} \end{bmatrix}, \, \boldsymbol{\epsilon_t} \sim Log\mathcal{N}(0, 0.01 - 0.81) \\ & \boldsymbol{\mathbf{u}}_t = \begin{bmatrix} \mathbf{I} - \boldsymbol{\Gamma_0} \end{pmatrix}^{-1} \quad \boldsymbol{\epsilon}_t \\ \begin{bmatrix} u_t^1 \\ u_t^2 \\ u_t^3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ \gamma_{21} & \gamma_{22} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix} \begin{bmatrix} \boldsymbol{\epsilon_t^1} \\ \boldsymbol{\epsilon_t^2} \\ \boldsymbol{\epsilon_t^3} \end{bmatrix} \end{split}$$