AI AND CYBERSECURITY am Université

ALLOUI MOHAMED, BAUQUIN NIELS, DOUZI YOUSSEF, KALLEL MOHAMED ALI | COMPUTER SCIENCE MASTER 2024/2025 SUPERVIZED BY: SCHATZ THOMAS

Introduction

Cybersecurity: a key issue in the digital age:

- Protect systems, networks and data against cyberthreats.

 Main objectives:
- Confidentiality: guarantee the security of information.
- Integrity: prevent unauthorized alteration of data.
- Availability: ensure continuous access to systems and services

Common threats:

- Malware, ransomware and phishing attacks.
- Exploitation of system vulnerabilities.

Current challenges :

- Increasing complexity of attacks
- Increasing need for innovative solutions such as NLP and Federated Learning.

Cybersecurity M	1arket
Période d'étude	2019 - 2029
Taille du Marché (2024)	USD 234.01 Billion
Taille du Marché (2029)	USD 424.14 Billion
CAGR (2024 - 2029)	11.44%
Marché à la Croissance la Plus Rapide	Asie-Pacifique
Plus Grand Marché	Amérique du Nord
Concentration du Marché	Faible
Acteurs majeurs pro	ofpoint. NortonLifeLock
IB:	Microsoft McAfee
Source: Mordor Intel	ligence

Natural langage processing

What is it and why it is used:

Natural language processing (NLP) is the ability of a computer program to understand human language as it's spoken and written — referred to as natural language.

It's a component of artificial intelligence (AI).

How NLP works

Data collection and cleansing:

- Tokenization: Division of text into basic units (words, syllable groups). Example: [bonjour comment ça va ?] becomes ["Bonjour", "comment", "ça", "va", "?"].
- Elimination of Stop-words: Elimination of common but non-affirmative words (LE , DE , ET , LA)
- Stemming and Lemming:
 - Stemmatization: Reduction of a word to its root, which may be grammatically false, the and made by heuristic algorithms by removing prefixes and suffixes
 - Lemmatization: A more sophisticated method that reduces a word to its lemma, its canonical form, based on linguistic rules.

Words representation: Transformation of words into a form that machine learning algorithms can understand: numerical vectors

- Bags of Word: each document is represented by a vector of the frequency with which words appear in the document
- TF-IDF: An enhancement to BoW that weights words according to their importance by applying the following formula:
 - TF-IDF = TF x log(N/DF) where DF = number of documents containing the word, N = number of documents TF= Frequency of the word in the document.

Processing with AI models:

- Classical approaches :
 - Regressions (Linear, Logistic)Probabilistic models (Naive Bayes)
 - SVM
- Modern approaches :Transformers (Bert, GPT)
 - RNN (Recurrent Neural Networks)

Federated Learning

Definition:

Federated Learning is a machine learning technique where data remains

learning technique where data remains on local devices, and only models or parameter updates are shared

Cybersecurity advantages:

- Privacy protection by minimizing the transfer of sensitive data.
- The system is more resilient in the face of DDoS or ransomware attacks, which often target centralized databases.
- Connected devices (such as smartphones, IoTs) can detect malicious patterns locally and help improve a global model without directly sharing sensitive logs. This enables emerging threats to be detected quickly, while maintaining a high level of security.

Model updates are aggregated and encrypted, limiting the possibilities for a malicious actor to interfere or access data.

Application to cyber security: Pishing detection

Al relies on data. Therefore, using Al to protect ourselves leads us to think about how to secure that data.

Security risks

Data poisoning attacks:

- A malicious participant modifies or inserts incorrect, biased or malicious data into his own training set.
- Local models trained with this biased data introduce errors into the global model after aggregation.

Model poisoning attacks:

- A compromised participant locally trains a model with malicious objectives.
- During the aggregation stage, it sends modified updates to the server.
- As the server integrates these updates, it gradually adopts undesirable behaviors.

Conclusion

Artificial intelligence transforms cybersecurity:

- Advanced threat detection.
- Powerful predictive analysis.
- Automated responses.

Data centralization challenges:

- Increased vulnerability to cyber-attacks.
- Confidentiality and ethical issues.

Federated Learning combines the efficiency of AI and decentralized models:

• Reducing the risks associated with data concentration.

Federated Learning: a promising but imperfect alternative:

- Reduces the risks
 associated with data
 centralization.
 Still vulnerable to specific
 attacks:
- Data poisoning : contamination of learning data.
- Model poisoning: alteration of Al models.

Conclusion: an evolving field

- There are still many challenges to the resilience and effectiveness of AI in cybersecurity.
- The need to develop complementary solutions to enhance security.

Bibliography

- <u>Priyanka Mary Mammen. (2021). Federated Learning: Opportunities and Challenges.</u>
 University of Massachusetts.
- <u>Iqbal H. Sarker. Al-Driven Cybersecurity: An Overview, Security Intelligence Modeling and</u>
 Research Directions.
- Joseph Nnaemeka Chukwunweike, Moshood Yussuf, Oluwatobiloba Okusi. The role of deep learning in ensuring privacy integrity and security: Applications in Al-driven cybersecurity solutions.
- Bibhu Dash, Meraj Farheen Ansari, Pawankumar Sharma and Azad Ali. THREATS AND
 OPPORTUNITIES WITH AIBASED CYBER SECURITY INTRUSION DETECTION: A REVIEWDept. of
 Computer and Information Systems, University of the Cumberlands, Williamsburg, KY USA. 1
- JOON-WOO LEE, WOOSUK CHOI, JIEUN EOM. Privacy Preserving Machine Learning With Fully
 Homomorphic Encryption for Deep Neural NetworkDept. of Computer and Information
 Systems, University of the Cumberlands, Williamsburg, KY USA.
- Phishing Detection Using Natural Language Processing and Machine Learning Apurv Mittal
- Qu'est-ce que le PNL (Traitement du Langage Naturel) ? IBM technology
- The Role of Artificial Intelligence in Cyber-Defence AI Cybersecurity Vincent Lenders
- Entretien avec Mr. Nasraoui (ingénieur en cybersécurité)
- <u>Natural Language Processing</u>, <u>Jacob Eisenstein</u>