(19) 日本国特許厅(JP)

(12) 公 開 特 許 公 報(A)

(11) 特許出願公開番号

特開2004-1630 (P2004-1630A)

(43) 公開日 平成16年1月8日(2004.1.8)

(51) Int.C1.7

F I

テーマコード(参考)

B62D 6/00 // B62D 101:00

B62D 117:00

B 6 2 D 6/00 B 6 2 D 101:00 B 6 2 D 117:00 3D032

審査請求 未請求 請求項の数 3 OL (全 12 頁)

(21) 出題番号 (22) 出題日 特願2002-160061 (P2002-160061) 平成14年5月31日 (2002. 5. 31) (71) 出願人 000001247

光洋精工株式会社

大阪府大阪市中央区南船場3丁目5番8号

(74) 代理人 100087701

弁理士 稲岡 耕作

(74)代理人 100101328

弁理士 川崎 実夫

(72) 発明者 西山 明宏

大阪府大阪市中央区南船場三丁目5番8号

光洋精工株式会社内

(72) 発明者 玉泉 晴天

大阪府大阪市中央区南船場三丁目5番8号

光洋精工株式会社内

最終頁に続く

(54) 【発明の名称】電動パワーステアリング装置

(57)【要約】

【課題】操舵フィーリングを油圧式パワーステアリング 装置により一層近づけることができる電動パワーステア リング装置を提供する。

【解決手段】アシスト特性記憶部22に基本アシスト特性が記憶されている。シフト量演算部24は、操舵速度 および車速に基づいて、基本アシスト特性をシフトして 仮想的な修正アシスト特性を得るときのシフト量を可変 設定する。アシストトルク目標値設定部21は、操舵トルクおよびシフト量に基づいてアシスト特性記憶部22 を検索することにより、修正アシスト特性に従うアシストトルク目標値を設定する。とのアシストトルク目標値 に従って電動モータMが駆動制御される。

【効果】往き操舵時の手応え感が得られ、かつ、戻し操舵時のばね感を解消できる。操舵中であれば、基本アシスト特性における不感帯内に相当する操舵トルクであっても、アシストトルクを発生させることができる。

【選択図】

図 1

【特許請求の範囲】

【請求項1】

電動モータの駆動力をステアリング機構に伝達して操舵補助する電動パワーステアリング 装置であって、

操舵トルクを検出する操舵トルク検出手段と、

操舵速度を検出する操舵速度検出手段と、

上記操舵トルク検出手段によって検出される操舵トルクに対するモータ駆動目標値の基本 特性である基本アシスト特性を設定する基本アシスト特性設定手段と、

この基本アシスト特性設定手段によって設定された基本アシスト特性を操舵トルク軸方向 にシフトさせて得られる修正アシスト特性に従って、上記操舵トルク検出手段によって検 10 出される操舵トルクに対応するモータ駆動目標値を設定するモータ駆動目標値設定手段と

上記基本アシスト特性に対する上記修正アシスト特性のシフト量を上記操舵速度検出手段 によって検出される操舵速度に応じて可変設定する操舵速度適応シフト量設定手段と、 上記モータ駆動目標値設定手段によって設定されたモータ駆動目標値に基づいて上記電動 モータを駆動するモータ駆動手段とを含むことを特徴とする電動パワーステアリング装置

【請求項2】

当該電動パワーステアリング装置が搭載された車両の走行速度を検出する車速検出手段と

この車速検出手段によって検出される車速に応じて、上記基本アシスト特性に対する上記 修正アシスト特性のシフト量を可変設定する車速適応シフト量設定手段とをさらに含むこ とを特徴とする請求項1記載の電動パワーステアリング装置。

上記操舵速度検出手段によって検出される操舵速度の絶対値が所定のシフト方向反転しき い値未満のときには、上記基本アシスト特性に対する上記修正アシスト特性のシフト方向 を操舵速度の方向とは反対方向に定め、上記操舵速度検出手段によって検出される操舵速 度の絶対値が上記シフト方向反転しきい値を超えるときには、上記基本アシスト特性に対 する上記修正アシスト特性のシフト方向を操舵速度の方向と同じ方向に定めるシフト方向 設定手段をさらに含むことを特徴とする請求項1または2記載の電動パワーステアリング 30 装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、電動モータが発生する駆動力を、ステアリング機構に操舵補助力として伝達 する構成の電動パワーステアリング装置に関する。

[0002]

【従来の技術】

電動モータが発生する駆動力をギヤ機構(減速機構)などを介して機械的にステアリング 機構に伝達することによって操舵補助する構成の電動パワーステアリング装置が従来から 40 用いられている。

このような電動パワーステアリング装置では、ステアリングホイールに加えられる操舵ト ルクと、電動モータからステアリング機構に与えられるアシストトルク目標値との関係を 定めるアシスト特性が予め定められており、アシストマップとしてメモリに格納されてい る。そして、このアシストマップから操舵トルクに応じたアシストトルク目標値が読み出 され、この読み出されたアシストトルク目標値に基づいて電動モータが駆動制御されるよ うになっている。

[0003]

アシスト特性は、図7に示すように、操舵トルクが大きいほどアシストトルク目標値が大 きくなるように定められている。操舵トルクは、たとえば、右操舵方向に対して正の値が 50

割り当てられ、左操舵方向に対して負の値が割り当てられている。アシスト特性は、操舵 トルクの正の値に対して正の値のアシストトルク目標値を対応させ、操舵トルクの負の値 に対して負の値のアシストトルク目標値を対応させるように定められている。

[0004]

アシストトルク目標値が正の値のとき、ステアリング機構には、舵取り車輪を右方向に転舵させようとする操舵補助力が作用する。これに対して、アシストトルク目標値が負の値のとき、ステアリング機構には、舵取り車輪を左方向に転舵させようとする操舵補助力が作用する。操舵トルクが零の近傍の不感帯内の値をとるとき、アシストトルク目標値は零とされる。

このようなアシスト特性を適用した電動パワーステアリング装置においては、舵角中点に 10 向かってステアリングホイールを回転させる戻し操舵を行うときに、運転者が意図するよりも強く舵角中点へと戻される操舵感(いわゆるばね感)が生じるという問題がある。すなわち、戻し操舵を行うときに、操舵トルクが小さくなるため、それに応じてアシストカが小さくなり、車輪からの逆入力によって、舵取り車輪が舵角中点へと強く戻されることになるのである。

[0005]

この問題は、操舵トルクに対して、より大きなアシストトルク目標値が設定されるように、アシスト特性曲線の傾斜を大きくすることによって、解決することができる。しかし、この場合には、切り込み操舵時の手応え感が損なわれるという問題がある。

[0006]

【発明が解決しようとする課題】

そこで、舵角中点から離れる方向への操舵である往き操舵時と、舵角中点に向かう戻し操 舵時とで異なるアシスト特性を適用することが考えられる。すなわち、戻し操舵時には、 往き操舵時よりも、絶対値の大きなアシストトルク目標値を設定する。これにより、往き 操舵時には充分な手応え感が得られるとともに、戻し操舵時におけるばね感を改善するこ とができる。

[0007]

しかし、それでもなお、油圧式パワーステアリング装置に比較すると、操舵フィーリングが劣っている。具体的には、油圧式パワーステアリング装置においては、操舵トルクが零の近傍の値であるときであっても、往き操舵時と戻し操舵時との間で、操舵補助力には一30定のヒステリシス幅が生じている。これ対して、往き操舵時と戻し操舵時とでアシスト特性を切り換える上記の手法では、不感帯内では操舵中であってもアシストを行わないため、油圧式パワーステアリング装置における操舵フィーリングとは明確な差異がある。

[0008]

そこで、この発明の目的は、操舵フィーリングを油圧式パワーステアリング装置により一層近づけることができる電動パワーステアリング装置を提供することである。

[0009]

【課題を解決するための手段および発明の効果】

上記の目的を達成するための請求項1記載の発明は、電動モータ(M)の駆動力をステアリング機構(3)に伝達して操舵補助する電動パワーステアリング装置であって、操舵トルクを検出する操舵トルク検出手段(5)と、操舵速度を検出する操舵速度検出手段(7、23、S3)と、上記操舵トルク検出手段によって検出される操舵トルクに対するモータ駆動目標値の基本特性である基本アシスト特性を設定する基本アシスト特性を操定手段によって設定された基本アシスト特性を操舵トルク軸方向にシフトさせて得られる修正アシスト特性に従って、上記操舵トルク検出手段によって検出される操舵トルクに対応するモータ駆動目標値を設定するモータ駆動目標値を設定手段(21、S7)と、上記基本アシスト特性に対する上記修正アシスト特性のシフト量を上記操舵速度検出手段によって検出される操舵速度に応じて可変設定する操舵速度適応シフト量設定手段(24、S4、S6)と、上記モータ駆動目標値設定手段によって検出されたモータ駆動目標値に基づいて上記電動モータを駆動するモータ駆動手段(30

) とを含むことを特徴とする電動パワーステアリング装置である。なお、括弧内の英数字 は後述の実施形態における対応構成要素等を表す。以下、この項において同じ。

[0010]

この発明によれば、基本アシスト特性設定手段によって設定される基本アシスト特性を操 舵速度に基づいて修正することによって得られる修正アシスト特性が、操舵トルク検出手 段によって検出される操舵トルクに適用される。すなわち、修正アシスト特性に従ってモ ータ駆動目標値が設定される。

基本アシスト特性の修正は、この基本アシスト特性を操舵速度に応じて操舵トルク軸方向 にシフトすることによって行われる。

[0011]

より具体的には、たとえば、操舵速度の方向(操舵方向に等しい)および大きさに応じて 、基本アシスト特性のシフト方向およびシフト量が可変設定される。たとえば、操舵トル ク検出手段によって検出される操舵トルクが、右操舵方向に対して正の値をとり、左操舵 方向に対して負の値をとり、基本アシスト特性において、操舵トルクの正の値に対してモ ータ駆動目標値の正の値が割り当てられ、負の値の操舵トルクに対しては負の値のモータ 駆動目標値が設定されているものとする。また、操舵速度は、右操舵方向に対して正の値 をとり、左操舵方向に対して負の値をとるものとする。

[0012]

この場合に、たとえば、操舵速度が正の値をとる場合には操舵トルク軸の正方向に基本ア シスト特性をシフトさせ、操舵速度が負の値をとる場合には基本アシスト特性を操舵トル 20 ク軸の負方向へとシフトさせるとともに、操舵速度の絶対値に応じて単調に(たとえばリ ニアに) 増加するようにシフト量を定めることによって、修正アシスト特性を得るように してもよい。すなわち、基本アシスト特性のシフト方向は、操舵速度の方向(操舵方向) と等しく定めればよい。また、シフト量の増加は、所定の上限値以下の範囲で行えばよい 。さらに、操舵速度の絶対値が零の近傍の値の所定範囲は、シフト量を零とする不感帯と し、この不感帯外において、操舵速度に応じてシフト量を可変設定することが好ましい。 [0013]

このようにして得られる修正アシスト特性に従ってモータ駆動目標値を設定することによ り、往き操舵時と戻し操舵時とで異なるアシスト特性を設定することができるようになる 。これにより、往き操舵時においては充分な手応え感を得ることができるとともに、戻し 30 操舵時においては、充分な操舵補助力がステアリング機構に伝達されることにより、運転 者が意図するよりも中立位置へと強く戻されるような不所望な操舵感(ばね感)を解消す ることができる。

[0014]

さらに、基本アシスト特性において、操舵トルクの零近傍の範囲をモータ駆動目標値を零 とする不感帯としている場合であっても、この不感帯内の操舵トルク変動に対して、往き 操舵時と戻し操舵時とで修正アシスト特性に従って操舵をアシストすることができる。こ れによって、油圧式パワーステアリング装置により一層近い操舵フィーリングを実現する ことができる。

請求項2記載の発明は、当該電動パワーステアリング装置が搭載された車両の走行速度を 40 検出する車速検出手段 (6)と、この車速検出手段によって検出される車速に応じて、上 記基本アシスト特性に対する上記修正アシスト特性のシフト量を可変設定する車速適応シ フト量設定手段(24.S5.S6)とをさらに含むことを特徴とする請求項1記載の電 動パワーステアリング装置である。

[0015]

この構成によれば、基本アシスト特性のシフト量を、車速に応じて可変設定するようにし ているから、たとえばUターン時などの操舵状況のように、低速走行中に大きなステアリ ング操作を行う場合であっても、操舵負担が重くなり過ぎたりすることがない。

請求項3記載の発明は、上記操舵速度検出手段によって検出される操舵速度の絶対値が所 定のシフト方向反転しきい値未満のときには、上記基本アシスト特性に対する上記修正ア 50

50

シスト特性のシフト方向を操舵速度の方向(操舵方向)とは反対方向に定め、上記操舵速度検出手段によって検出される操舵速度の絶対値が上記シフト方向反転しきい値を超えるときには、上記基本アシスト特性に対する上記修正アシスト特性のシフト方向を操舵速度の方向(操舵方向)と同じ方向に定めるシフト方向設定手段(24,図6)をさらに含むことを特徴とする請求項1または2記載の電動パワーステアリング装置である。

[0016]

この構成によれば、操舵速度の絶対値が所定のシフト方向反転しきい値未満のときには、操舵速度の方向(操舵方向)とは反対方向へ基本アシスト特性がシフトされる。これにより、ステアリング操作の開始時における操舵トルクを軽減することができる。その一方で、操舵速度の絶対値が上記シフト方向反転しきい値を超えるときには、操舵速度の方向(¹⁰操舵方向)へと基本アシスト特性がシフトされるから、切り込み時における良好な手応え感を運転者に与えることができる。これにより、より一層油圧式パワーステアリング装置に近い操舵フィーリングを実現できる。

[0017]

操舵速度の方向とは反対方向への基本アシスト特性のシフト量は、零からシフト方向反転しきい値以下の操舵速度域において、操舵速度の絶対値の増加に伴って増加し、零とシフト方向反転しきい値との間の或る操舵速度絶対値で減少に転じ、シフト方向反転しきい値で零になるように定められることが好ましい。また、操舵速度と同じ方向への基本アシスト特性のシフト量は、シフト方向反転しきい値以上の操舵速度域における操舵速度絶対値の増加に伴って所定の上限値まで単調に(たとえばリニアに)増加するように定められる 20 ことが好ましい。

[0018]

【発明の実施の形態】

以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。

図1は、この発明の一実施形態に係る電動パワーステアリング装置の電気的構成を示すブロック図である。操作部材としてのステアリングホイール1に加えられた操舵トルクは、ステアリングシャフト2を介して、ラック軸を含むステアリング機構3に機械的に伝達される。ステアリング機構3には、電動モータMから操舵補助力が、ギヤ機構(減速機構)等の駆動力伝達機構を介して機械的に伝達されるようになっている。

[0019]

ステアリングシャフト 2 は、ステアリングホイール 1 側に結合された入力軸 2 A と、ステアリング機構 3 側に結合された出力軸 2 B とに分割されていて、これらの入力軸 2 A および出力軸 2 B は、トーションバー 4 によって互いに連結されている。トーションバー 4 は、操舵トルクに応じてねじれを生じるものであり、このねじれの方向および量は、トルクセンサ 5 によって検出されるようになっている。

[0020]

トルクセンサ5は、たとえば、入力軸2Aと出力軸2Bとの回転方向の位置関係の変化に応じて変化する磁気抵抗を検出する磁気式のもので構成されている。このトルクセンサ5の出力信号は、コントローラ10(ECU:電子制御ユニット)に入力されている。コントローラ10には、さらに、当該電動パワーステアリング装置が搭載される車両の走 40行速度を検出する車速センサ6の出力信号と、ステアリングホイール1の操舵角(たとえば、入力軸2Aの回転角)を検出する舵角センサ7の出力信号とが入力されている。

[0021]

コントローラ10は、トルクセンサ5によって検出される操舵トルク、車速センサ6によって検出される車速、および舵角センサ7の出力に基づいて求められる操舵速度に応じて、電動モータMからステアリング機構3に与えるべきアシストトルク目標値を定め、操舵トルク等に応じた操舵補助力がステアリング機構3に与えられるように、電動モータMを駆動制御する。

コントローラ10は、マイクロコンピュータ20と、このマイクロコンピュータ20からの制御信号に基づいて電動モータMを駆動するモータドライバ30とを有している。

[0022]

マイクロコンピュータ20は、プログラム処理を実行することによって実現される機能処 理部であるアシストトルク目標値設定部21と、マイクロコンピュータ20内のメモリの 記憶領域により構成されるアシスト特性記憶部22とを備えている。アシスト特性記憶部 22は、複数の車速域のそれぞれに対して予め定めた複数の基本アシスト特性にそれぞれ 対応する複数の基本アシストマップを記憶している。基本アシスト特性は、操舵トルクに 対するアシストトルク目標値の基本特性を定めたものであり、複数の操舵トルクの値に対 応付けて、アシストトルク目標値の基本値がアシストマップ(テーブル)の形式でアシス ト特性記憶部22に記憶されている。

[0023]

マイクロコンピュータ20は、さらに、舵角センサ7の出力信号に基づいて操舵速度を演 算する操舵速度演算部23と、基本アシスト特性を操舵トルク軸方向にシフトさせて仮想 的な修正アシスト特性を得るときのシフト量を演算するシフト量演算部24とを備えてい る。シフト量演算部24は、操舵速度演算部23によって演算される操舵速度と、車速セ ンサ6によって検出される車速とに基づいて、基本アシスト特性を操舵トルク軸方向にシ フトした仮想的な修正アシスト特性を得るためのシフト量を演算する。

[0024]

アシストトルク目標値設定部21は、トルクセンサ5が検出する操舵トルクTh、車速セ ンサ 6 が検出する車速 V 、およびシフト量演算部 2 4 によって演算されるシフト量 Δ T h (その符号によりシフト方向を表し、その絶対値によりシフト長を表す量)に基づいて、 アシスト特性記憶部22から、修正アシスト特性に対応したアシストトルク目標値Taを 読み出す。この読み出されたアシストトルク目標値Taに基づいて、モータドライバ30 が、電動モータMに対して、必要充分な駆動電流を供給する。

[0025]

図2は、アシスト特性記憶部22に記憶された基本アシストマップに対応した基本アシス ト特性と、これを操舵トルク軸方向にシフトして得られる修正アシスト特性とを説明する ための図である。

トルクセンサ5によって検出される操舵トルクThは、ステアリングホイール1に右方向 操舵のためのトルクが加えられているときには正の値をとり、ステアリングホイール1に 左方向操舵のためのトルクが加えられているときには負の値をとる。基本アシスト特性は 30 、図2において、曲線L0で示されている。この基本アシスト特性は、操舵トルクThの 正の値に対してアシストトルク目標値Taの正の値を対応付け、操舵トルクThの負の値 に対してアシストトルク目標値Taの負の値を対応付けるように定められている。上述の とおり、アシスト特性記憶部22には、複数の車速域に対応した複数の基本アシストマッ プが記憶されているが、説明を簡単にするために、図2においては、或る車速域において 適用される1つの基本アシスト特性が示されている。

[0026]

曲線L0に示された基本アシスト特性において、操舵トルクTh=0の近傍においては、 操舵トルクThの値によらずにアシストトルク目標値Ta=0とされる。このような操舵 トルク範囲が不感帯NSである。

この実施形態では、操舵速度演算部23によって演算される操舵速度 d θ / d t および車 速Vに基づいてシフト量演算部24によって演算されるシフト量ΔThだけ、基本アシス ト特性を操舵トルクThの軸方向(正方向または負方向)にシフトさせた仮想的な修正ア シスト特性(たとえば、曲線L11,L12で示す特性)に基づいて、アシストトルク目 標値Taが設定されることになる。

[0027]

図 3 は、シフト量演算部 2 4 の働きを説明するための図であり、操舵速度 d θ ℓ ℓ ℓ ℓ する基本シフト量ATh,の関係が示されている。シフト量演算部24は、この基本シフ ト量 Δ T h $_{R}$ に後述の車速ゲイン G $_{V}$ を乗じることによって、シフト量 Δ T h (= G $_{V}$ × Δ Τ h _B) を求める。

10

[0028]

基本シフト量 Δ T h $_{\rm B}$ がこのように定められることにより、操舵速度 d θ / d t が一定値 10以上の正の値をとるときには、基本アシスト特性を図 2 において操舵トルク軸の正方向にシフトさせた仮想的な修正アシスト特性 (たとえば曲線 L 1 1 で示すアシスト特性) に従って、操舵トルク T h に対応したアシスト特性目標値 T a が定められる。これに対して、操舵速度 d θ / d t が一定値以下の負の値をとるときには、基本アシスト特性を図 2 における操舵トルク軸に沿って負の方向へとシフトさせた仮想的な修正アシスト特性 (たとえば曲線 L 1 2 で示すアシスト特性) に従って、操舵トルク T h に対応するアシストトルク目標値 T a が定められることになる。

[0029]

具体的には、基本アシスト特性を関数 f を用いてTa=f (Th) と表わすとすると、トルクセンサ 5 が検出する操舵トルクTh からシフト量 ΔTh を引いた値をアシストマップ 20 検索用の操舵トルク値Th* として用い(すなわち、Th* $=Th-\Delta Th$)、この検索用操舵トルク値Th* を用いてアシスト特性記憶部 2 2 に記憶された基本アシストマップを検索すればよい。これによって、仮想的な修正アシスト特性に従って、アシストトルク目標値Ta (=f (Th*))を定めることができる。

【0030】
ステアリングホイール1を中立位置から離れる方向へと切り込む往き操舵時においては、操舵速度 d θ / d t は、操舵トルクThと同じ符号をとる(すなわち、操舵速度 d θ / d t と操舵トルクThの方向が一致する)ことになるから、これに応じて仮想的な修正アシスト特性は、基本アシスト特性を操舵トルク軸方向に沿って原点から離れる方向へとシフトさせた特性となる。このときのシフト量 Δ Thは、操舵速度 d θ / d t の絶対値が大きいほど大きい。これにより、操舵トルクThが同じ場合に、アシストトルク目標値Taは、基本アシスト特性の場合に比較してその絶対値が小さくなるから、電動モータMからステアリング機構 3 に与えられる操舵補助力が小さくなる。その結果、ステアリングホイール1を切り込むときに、良好な手応え感を運転者に与えることができる。

[0031]

一方、ステアリングホイール1を舵角中点に向かって操舵する戻し操舵時においては、操舵開始初期において、操舵トルク T h の方向と操舵速度 d θ / d t の方向とが逆転し、その後は、操舵速度 d θ / d t の絶対値が増加していくのに対して、操舵トルク T h は微小な値となる。これに応じて、仮想的な修正アシスト特性は、基本アシスト特性を操舵トルク軸方向に沿って原点に向かう方向へとシフトさせた特性となり、操舵速度 d θ / d t の絶対値の増加に伴ってそのシフト量 Δ T h が増加していく。これにより、操舵トルク T h が同じ場合に、アシストトルク目標値 T a の絶対値は、基本アシスト特性の場合よりも大きな値をとるから、戻し操舵時における操舵補助不足が生じることがない。それによって、運転者が意図するよりもステアリングホイールが強く戻されるといった感覚(ばね感)を解消することができる。

[0032]

しかも、曲線L11,L12のような修正アシスト特性に従ってアシストトルク目標値Taを定めることによって、不感帯NS内においても操舵補助を行うことができる。これによって、より一層油圧式パワーステアリング装置の操舵フィーリングに近づけることができる。

[0033]

車速ゲインG_v は、車速Vが零から所定速度までの範囲内において、車速Vの増加に伴って急増し、その後は緩やかに一定値に集束するように定められている。これによって、低速走行時におけるアシスト特性のシフト量が少なく抑えられるから、たとえばUターン操作を行う場合のように、ステアリングホイール1を同じ方向に切り込み続ける場合であっても、操舵負担が重くなり過ぎるなどということがない。

[0034]

図5は、マイクロコンピュータ20の働きを説明するためのフローチャートである。車速センサ6によって検出される車速Vおよびトルクセンサ5によって検出される操舵トルクThが読み込まれる(ステップS1, S2)。さらに、舵角センサ7の出力信号が読み込まれて、操舵速度演算部23によって操舵速度 d0/d1 が求められる(ステップS3)。この求められた操舵速度 d0/d1 に基づき、シフト量演算部24は、その操舵速度 d0/d1 に対応する基本シフト量d1 に基づき、シフト量演算部24は、その操舵速度 d1 に対応する基本シフト量d1 に表が表出すことになる(ステップd1 の d2 に表がる(ステップd3 の d3 を求める(ステップd3 の d4 に乗じることによって、シフト量d1 が演算される(ステップd3 の d4 に乗じることによって、シフト量d4 トが演算される(ステップd5 の d6 の d7 の d8 に乗じることによって、シフト量d7 トが演算される(ステップd8 の d8 に乗じることによって、シフト量d8 の d9 の d

この求められたシフト \mathbb{B} Δ T h がアシストトルク目標値設定部 2 1 に与えられる。アシストトルク目標値設定部 2 1 は、T h * \leftarrow T h $-\Delta$ T h として、検索用の操舵トルク値 T h * を求め、この検索用操舵トルク値 T h * に基づいてアシスト特性記憶部 2 2 に記憶された基本アシストマップを検索する(ステップ S 7)。

このようにして、基本アシスト特性をシフト量 Δ T h だけ操舵トルク軸方向に沿ってシフトさせて得られる仮想的な修正アシスト特性に従うアシストトルク目標値 T a が、アシスト特性記憶部 2 2 から読み出されることになる。この読み出されたアシスト特性目標値 T a に基づき、モータドライバ 3 0 が制御され、それに応じた駆動力をモータ M が発生して、ステアリング機構 3 に与えることになる。

[0036]

[0037]

実施形態ではリニアに)増加するように定められている。

[0038]

このように基本シフト量 Δ T h $_{B}$ を定めることによって、たとえば、操舵トルク T h が正の領域を例にとると、操舵速度 d θ / d t が小さいときには、アシスト特性が僅かに操舵トルク軸の負の側にシフトし、操舵速度 d θ / d t が大きいときには、アシスト特性は操舵トルク軸の正の方向に大きくシフトすることになる。これにより、ステアリングホイール1を切り込み始めるときにおける操舵力を軽減することができるとともに、ステアリングホイール1を大きく切り込んだときには、良好な手応え感を運転者に与えることができる。このようにして、操舵フィーリングを、油圧式パワーステアリング装置により一層近づけることができる。

[0039]

以上、この発明の一実施形態について説明したが、この発明はさらに他の形態で実施することもできる。たとえば、上記の実施形態では、アシスト特性のシフト量 Δ T h に対して車速 V が加味されているが、車速 V に依存するシフト量の可変設定は必ずしも必要ではない。すなわち、上述の実施形態における基本シフト量 Δ T h B をそのままシフト量 Δ T h として用いてもよい。

また、上記の実施形態では、アシスト特性記憶部22に、基本アシスト特性に対応するアシストマップを記憶させておいて、このアシストマップからアシストトルク目標値Taを読み出す構成とされているが、関数演算によって、操舵トルクThに対応したアシストトルク目標値Taを定める構成としてもよい。

[0040]

また、上記の実施形態では、アシストトルク目標値をモータ駆動目標値とし、操舵トルクに対するアシストトルク目標値の特性をアシスト特性として説明したが、本発明はこれに限らず、モータ電流目標値またはモータ電圧目標値をモータ駆動目標値とし、操舵トルクとこれらとの関係をアシスト特性としてもよい。

[0041]

その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。

【図面の簡単な説明】

- 【図1】この発明の一実施形態に係る電動パワーステアリング装置の電気的構成を示すブロック図である。
- 【図2】基本アシスト特性と、これを操舵トルク軸方向にシフトして得られる修正アシスト特性とを説明するための図である。
- 【図3】操舵速度に対する基本シフト量の関係を示す図である。
- 【図4】車速に対するシフト量の可変設定について説明するための図である。
- 【図5】マイクロコンピュータによる電動モータの駆動制御に関連する処理を説明するた 40めのフローチャートである。
- 【図6】操舵速度に対するシフト量の他の設定例を示す図である。
- 【図7】アシスト特性の一例を示す図である。

【符号の説明】

- 1 ステアリングホイール
- 3 ステアリング機構
- 5 トルクセンサ
- 6 車速センサ
- 7 舵角センサ
- 10 コントローラ

20

30

10

- 20 マイクロコンピュータ
- 21 アシストトルク目標値設定部
- 22 アシスト特性記憶部
- 23 操舵速度演算部
- 24 シフト量演算部
- 30 モータドライバ
- M 電動モータ

フロントページの続き

(72)発明者 山内 知行

大阪府大阪市中央区南船場三丁目5番8号 光洋精工株式会社内

(72)発明者 冷水 由信

大阪府大阪市中央区南船場三丁目5番8号 光洋精工株式会社内

Fターム(参考) 3D032 CC08 DA09 DA23 DC22 EB06 EB11 EC22