Računalnik STM32H750-DK

- Računalnik FRI-SMS
 - □ Mikrokrmilnik AT91SAM9260 iz družine mikrokrmilnikov ARM9

Ekipa RA Tutorji

Žiga Pušnik ziga.pusnik@fri....

Anamari Orehar <u>ao6477@student.un</u> i-lj.si

Kristian Šurbek <u>ks5453@student.un</u> *i-lj.si*

Andrej Sušnik as1767@student.uni-lj.si

Robert Rozman <u>rozman@fri.uni-lj.si</u>

Računalnik STM32H750-DK

- Računalnik FRI-SMS
 - □ Mikrokrmilnik AT91SAM9260 iz družine mikrokrmilnikov ARM9

LAB 1.1 Splošne informacije

Laboratorijske vaje RA

- Spoznati osnove računalniške arhitekture s praktičnega vidika
- Razumeti delovanje računalnika (ARM) s programiranjem v zbirnem jeziku
- Podrobnejši vpogled:
 - v delovanje računalnika
 - v izvajanje programov na računalniku
- Vsebinske nadgradnje -> predmet Organizacija
 - računalnikov in ostali

Vsebina vaj

- Potrebne osnove s predavanj (npr. pomnilniški naslov, vsebina, ...)
- Jedro: Programiranje v zbirnem jeziku ARM
- Oblika: Sprotne vaje + domača naloga
- Tri preverjanja* (november, december, januar)
- Priprava na izpit (avditorne naloge)

Predmetni seminar po dogovoru z asistentom

^{*}V primeru izrednih razmer se lahko spremeni

Ocenjevanje*

Vaje prispevajo 50% h končni oceni in morajo biti opravljene naslednje obveznosti:

- Uspešno opraviti sprotne naloge in biti prisoten na laboratorijskih vajah
- Uspešno oddati in zagovarjati domačo nalogo,
- Tri preverjanja (80 + 100 + 120 točk)
 - skupaj potrebno zbrati vsaj 150 točk (50%)
 - ni omejitev na posameznih preverjanjih
 - *v primeru "Covid zapore" se 1. in 2. preverjanje spremenita v domači nalogi in se 3. preverjanje opravi v okviru pisnega izpita in/ali ustnega izpita
- Ocena vaj velja le v tekočem študijskem letu. Kdor v istem letu ne opravi predmeta v celoti, mora prihodnje leto ponovno opraviti vaje.

^{*}V primeru izrednih razmer se lahko način ocenjevanja spremeni

Spletni simulator cpulator

https://cpulator.01xz.net/?sys=arm

Razvojno okolje WinIDEA

Računalnik STM32H750-DK

- Računalnik FRI-SMS
 - □ Mikrokrmilnik AT91SAM9260 iz družine mikrokrmilnikov ARM9

LAB 1.2 Von Neumannov model (VN)

Von Neumannov računalniški model

Osnovni model računalnika

Mikrokrmilniki

Osnovni model računalnika

Osnovni model računalnika

Računalnik STM32H750-DK

- Računalnik FRI-SMS
 - ☐ Mikrokrmilnik AT91SAM9260 iz družine mikrokrmilnikov ARM9

LAB 1.3 Pomnilnik

Kaj je pomnilnik?

Pomnilniški naslov

Dvojiško (dolžina 16 bitov)	Šestnajst	Desetiško	Pomnilniške besede
0000 0000 0000 0000	0000	0	
0000 0000 0000 0001	0001	1	
0000 0000 0000 0010	0002	2	
0000 0000 0000 0011	0003	3	
0000 0000 0000 0100	0004	4	
0000 0000 0000 0101	0005	5	
1111 1111 1111 1011	FFFB	65531	•
1111 1111 1111 1100	FFFC	65532	
1111 1111 1111 1101	FFFD	65533	
1111 1111 1111 1110	FFFE	65534	
1111 1111 1111 1111	FFFF	65535	

Povezava CPE <-> glavni pomnilnik

Vodilo = skupina povezav (naslovno, podatkovno, kontrolno, ...)

Linija = povezava Signal = vsebina, ki se prenaša po povezavi (1bit)

Kako CPE dostopa do glavnega pomnilnika?

Primer za ukaze:

Kako CPE dostopa do glavnega pomnilnika?

Primera za operande:

Povezava med CPE in glavnim pomnilnikom – bralni dostop

Povezava med CPE in glavnim pomnilnikom – pisalni dostop

Računalnik STM32H750-DK

- Računalnik FRI-SMS
 - □ Mikrokrmilnik AT91SAM9260 iz družine mikrokrmilnikov ARM9

LAB 1.4 Številski sistemi (BIN,HEX) na hitro

Računalnik STM32H750-DK

- Računalnik FRI-SMS
 - □ Mikrokrmilnik AT91SAM9260 iz družine mikrokrmilnikov ARM9

LAB 1.5 Pravilo tankega/debelega konca na hitro

Računalnik STM32H750-DK

- Računalnik FRI-SMS
 - □ Mikrokrmilnik AT91SAM9260 iz družine mikrokrmilnikov ARM9

LAB 1.6 Seštevanje – človek, python, zbirnik

$$64 + 16 = \frac{2}{100} + \frac{64}{100}$$

Python (zgled: REZ = STEV1 + STEV2)

Seštevanje spremenljivk v Pythonu.

http://goo.gl/YXQ5qN

Python 2.7

```
1 STEV1=0x40
```

- 2 STEV2=0x10
- 3 REZ = STEV1 + STEV2
- \rightarrow 4 print ("STEV1 = " + hex(STEV1) + "\n+STEV2 = " + hex(STE

Frames

Objects

STEV1 64 STEV2 16 REZ 80

Print output (drag lower right corner to resize)

Zbirni jezik (zgled: rez=stev1+stev2)

Seštevanje spremenljivk v zbirniku ARM. Prenesite pripravljen projekt na e-učilnici.

Vrednosti spremenljivk so shranjene v pomnilniku. Operacije realiziramo s programom z naslednjimi ukazi:

Zbirni jezik	Opis ukaza	Strojni jezik
adr r0, stev1	R0 ← nasl. stev1	0xE24F0014
ldr r1, [r0]	$R1 \leftarrow M[R0]$	0xE5901000
adr r0, stev2	R0 ← nasl. stev2	0xE24F0018
ldr r2, [r0]	$R2 \leftarrow M[R0]$	0xE5902000
add r3, r2, r1	R3 ← R1 + R2	0xE0823001
adr r0, rez	R0 ← nasl. rez	0xE24F0020
str r3, [r0]	M[R0] ← R3	0xE5803000
	Zbirnik "assembler"	

Ukaze izvajajte po korakih in opazujte vrednosti registrov in vrednosti spremenljivk v pomnilniku.

Praktično delo: Zgled

Razvojno okolje WinIDEA

Centralna procesna enota

> Kontralna enata Aritmetično-

logična enota

Registri

Glavní

pomnilnik

Računalnik STM32H750-DK

- Računalnik FRI-SMS
 - ☐ Mikrokrmilnik AT91SAM9260 iz družine mikrokrmilnikov ARM9

LAB 1.7 Predloge za zapiske

Python (zgled: REZ = STEV1 + STEV2)

```
STEV1 64
STEV2 16
REZ 80

Python 2.7

1 STEV1=0x40
2 STEV2=0x10
3 REZ = STEV1 + STEV2
```

Objects

Frames

Global frame

http://goo.gl/YXQ5qN

 \rightarrow 4 print ("STEV1 = " + hex(STEV1) + "\n+STEV2 = " + hex(STE

CPE

Pomnilnik

		_			
KE -	Kon	tro	lna	en	ota
1/1/2	$\mathbf{I} \mathbf{X} \mathbf{U} \mathbf{H}$	LI ()	ша		na

ALE

	REGISTRI	
R0		
R1		
R2		
R3		

Naslov	Pomnilniške besede	Oznaka Vsebina
0x00 = 0		STEV1
0x04 = 4		STEV2
0x08 = 8		REZ
0x0C = 12		1. ukaz ADR R0,STEV1

Zgled: izvedba programa za seštevanje dveh števil

UKAZI

	Strojni jezik	Zbirni jezik	Opis ukaza	Komentar
1.	0xE24F0014	adr r0, stev1	R0 ← nasl. stev1	
2.	0xE5901000	ldr r1, [r0]	$R1 \leftarrow M[R0]$	
3.	0xE24F0018	adr r0, stev2	R0 ← nasl. stev2	
4.	0xE5902000	ldr r2, [r0]	R2 ← M[R0]	
5.	0xE0823001	add r3, r2, r1	R3 ← R1 + R2	
6.	0xE24F0020	adr r0, rez	R0 ← nasl. rez	
7.	0xE5803000	str r3, [r0]	M[R0] ← R3	

Pravilo tankega in debelega konca / Big vs. Little Endian

MSB LSB

0 x AA BB CC DD

	Debeli konec Big Endian	Tanki konec Little Endian	
N			N
N+1		r	\ +1
N+2			\ +2
N+3		N	1+3