Regression Analysis

01010001 Introduction to

Introduction

- Let us consider two variables, years of experience and salary of software engineers working in a company
- Years of experience is the independent variable and Salary is the dependent variable
- In regression we try to find a relationship between the dependent variable and the independent variable i.e. between the salary and the years of experience
- > To do a regression, the relationship between the variables has to be linear

Introduction (contd.)

Consider the following table which gives the salary of software engineers with different years of experience

Years of Exp.	Salary
0	300,000
1	400,000
2	500,000
4	700,000

From this data, can we tell what is the expected salary of a software engineer with 3 years of experience?

L000101010 101010001

Introduction (contd.)

> Let us do a scatter plot of the data

As you can see from the data, we can draw a straight line through the points

Regression Line

> The line is called the regression line

- > The line is given by the equation:
- \Rightarrow $\hat{y} = \beta_0 + \beta_1 (x)$
- \triangleright β_0 is the y-intercept & β_1 is the slope of the line

Regression Line (contd.)

- \triangleright In our case, $\beta_0 = 300000$
- $> \beta_1 = 100000$
- > So the equation for our regression line is

```
salary = 300000 + 100000*(Years of Exp.)
```

010100010 10100010 0101000101010 .000101010100 01010 01010 1010001

1010100

101000101

Least Squares Fit

- In most practical cases, we won't able to fit all the points in a line
- > For example consider the following data

- > The relationship between dependent and independent variables is linear
- ➤ But we clearly can't fit a straight line through all the points

Least Squares Fit (contd.)

- ➤ Least squares fit allows us to draw a line that is close to all the points
- The difference between the line and the points should be minimum

Least Squares Fit (contd.)

- Every point in the graph can be expressed as (x_1,y_1) , (x_2,y_2) , (x_3,y_3) and so on..
- And for every point x_1 , x_2 , x_3 .. we have the predicted values \hat{y}_1 , \hat{y}_2 , \hat{y}_3 .. given by the regression equations $\hat{y}_1 = \beta_0 + \beta_1 (x_1)$, $\hat{y}_2 = \beta_0 + \beta_1 (x_2)$, $\hat{y}_3 = \beta_0 + \beta_1 (x_3)$...
- > We need to reduce the square of the distance between y and ŷ
- \triangleright We need to find β₀ and β₁ which minimizes the above function

010 010100 0101010 01010010 1010100010101000 010001010100010

Least Squares Fit (contd.)

 \triangleright The β₀ and β₁ which minimizes the squared error is given as follows:

$$\hat{eta}_1 = Cor(Y,X) \, rac{Sd(Y)}{Sd(X)}$$

$$\hat{\boldsymbol{\beta}}_0 = \bar{Y} - \hat{\boldsymbol{\beta}}_1 \bar{X}$$

- > Where,
 - Cor(Y,X) is the correlation between Y and X
 - Sd is the standard deviation
 - \overline{X} and \overline{Y} are the means of X and Y respectively

Covariance

- Covariance measures how two variables vary together
 - If one variable increases with increase in another variable, then covariance is positive
 - If one variable decreases with increase in another variable, then covariance is negative
- Covariance doesn't tell us anything about the strength of the relationship

$$Cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

L0001010100

Correlation

- Correlation is another measure that explains the relationship between two variables
- Correlation explains both the direction and the strength of the relationship
- ➤ Correlation ranges between -1 to +1

$$corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Correlation (contd.)

- Direction of relationship: If the value of correlation is
 - > 0, then the relationship is positive
 - < 0, then the relationship is negative
 - Close to 0, then no relationship
- Strength of relationship: If the value of correlation is
 - > 0.8 or < -0.8, then the relationship is strong
 - Between 0.4 to 0.8 or between -0.8 to -0.4, then the relationship is of medium strength
 - Between -0.4 to 0.4 then the relationship is weak

00101010 L0001010100

Correlation (contd.)

Simple Linear Regression

Simple Linear Regression

- Involves two variables one independent variable X and one dependent variable Y
- The dependent variable Y has to be a quantitative variable
- > We need to find a line of best fit

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon$$

- We need to minimize the error and find and using least squares fit
- ➤ Using this equation we can find the predicted Y values using the equation

$$\hat{y}_i = \beta_0 + \beta_1 X_i$$

Assumptions of Linear Regression

- > The relationship between dependent and independent variables is linear
- > The error term should be:
 - Normally distributed
 - Independent
 - Homoscedastic (the error term should have the same variance across different X values)

101000101

Linear and Non-Linear Relationships

Independence of Errors

- > The above figures show residual errors
- > The errors in the first one are independent
- > But in the second is not independent as we can see a trend

Homoscedasticity

Multiple Linear Regression

Multiple Linear Regression

- ➤ Involves one dependent variable (Y) and more than one independent variables (X₁,X₂...X_n)
- The goal is to find the relationship between independent variables and the dependent variable
- We need to find a line of best fit $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_n X_{in} + \varepsilon$
- We need to minimize the error and find and using least squares fit
- > Using this equation we can find the predicted Y values using the equation

$$\hat{y}_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_n X_{in}$$

Evaluation Criteria

Measures

- ➤ Mean Squared Error (Mean Squared Residual)
- ➤ Coefficient of Determination (R²)
- ➤ Adjusted R2
- ➤ Mallow's C_p

Mean Squared Error

- Mean squared error is the average of the square of errors
- The model is good if the mean squared error is low

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$$

L000101010

0

101000101

Coefficient of Determination (R²)

- R² gives a measure of how much total variance in the data is explained by the model
- > R² takes values in the range 0 to 1
- ➤ If R² is 1, then the regression line perfectly fits the data, if R² is 0, then the regression line doesn't fit the data at all

Coefficient of Deternination
$$\rightarrow$$
 $R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$

Sum of Squares Total \rightarrow $SST = \sum (y - \bar{y})^2$

Sum of Squares Regression \rightarrow $SSR = \sum (y' - \bar{y'})^2$

Sum of Squares Error \rightarrow $SSE = \sum (y - y')^2$

Adjusted R²

- ➤ When we add more independent variables to a model, R² increases irrespective of whether the additional variables improve the model or not
- Adjusted R² penalizes the model if the new variable doesn't fit the model
- Adjusted R² can take any value unlike R² which can be within the range of 0 to 1

Adjusted
$$R^2 = 1 - \frac{(1 - R^2)(N - 1)}{N - p - 1}$$

Here p is the number of independent variables

Mallow's C_p

- Mallow's C_p is used in selecting the best regression model
- ➤ Mallow's C_p value should to be small and close to the number of independent variables used in the model

$$C_p = \frac{SSE_p}{S^2} - N + 2P,$$

➤ Here N is the sample size and P is the number of independent variables used in the model

Linear Regression t-test

- ➤ We can use the t-test to test whether each coefficient used in the linear model is 0
- > Example:
 - The t-test with the intercept tests the null hypothesis H_0 : $\beta_0 = 0$
 - The t-test with the first variable tests the null hypothesis H_0 : $\beta_1 = 0$ to be true

Linear Regression Partial Ftest

- Partial F-test is used to compare two linear models
- Let us say there are two models on the same data
- ➤ One with 3 variables var1, var2 and var3 and the other with only 2 variables var1 & var2
- ➤ Partial F-test between these two models tests the null hypothesis that the coefficient of var3 is 0
- \triangleright i.e. $\beta_3 = 0$
- > This is similar to the t-test
- ➤ However using partial F-test we can compare more than one variable


```
0101006
0101006
0101000101
10100010101000
010001010100010
01010100010100010
010101000101
```

Partial F-test (contd.)

- For example, let us say one model has 5 variables var1, var2, var3, var4 and var5 and the second one has only 3 variables var1, var2 and var3
- ➤ Partial F-test between these two models tests the null hypothesis that both the coefficients of var4 and var5 = 0
- \triangleright i.e. $\beta_4 = \beta_5 = 0$

Linear Model Selection

- Involves the process of selecting a subset of relevant features or independent variables to be used in building a linear model
- ➤ The goals is to identify a subset of independent variables or predictors that influence the dependent variable and to fit a least squares model using the subset of independent variables
- ➤ If there are p independent variables, the number of possible models is 2^p
- > We are going to study three methods:
 - Backward Elimination
 - Forward Selection
 - Stepwise Regression

010100010 10100010 010100010101 **L000101010** 1000101010 01010 **101010001** 1010001

1010100

010100 010100 010100010 010100010101000 10101000101010001

Backward Elimination

- ➤ In this method, we start with all the independent variables or predictors in the model
- Remove the variable with highest p-value greater than the alpha value
- > Refit the model after removing the variable
- Remove the next variable with highest pvalue greater than the alpha value
- > Refit the model and repeat the process until all the p-values are less than alpha

Forward Selection

- ➤ This is the reverse process of backward elimination
- For all the predictors which are not in the model, check their p-value if they are added to the model
- Choose the one with the lowest p-value which is lower than the alpha value
- From the rest of the predictors, check the p-value if they are added to the model
- Choose the one with the lowest p-value which is greater than the alpha value
- Repeat the process until there are no predictors with p-value lower than alpha

Stepwise Regression

- Combination of backward elimination and forward selection
- ➤ Helps us when we have added or removed a variable early in the process and we want to remove them at a later stage
- This is because the significance of one predictor might be influenced by the presence or absence of another
- In stepwise regression, after a new predictor is added, all other predictors which are already in the model are checked to see if the p-value falls below alpha level
- If the p-value of any of any of the predictors falls below alpha level then that predictor is removed before moving on to the next step

1010001010100010101

Multicollinearity

Multicollinearity

- > A phenomenon in which two or more predictor variables in a multiple regression model are highly correlated
- > Since one predictor variable is correlated with the other, it is possible to predict one with another using linear fit
- > Multicollinearity can be detected using:
 - Correlation Matrix
 - Variation Inflation Factor (VIF)

Effects of multicollinearity

- Multicollinearity increases the uncertainty about the estimated coefficients and as a result the confidence intervals on the coefficients will be large
- ➤ Individual p-values can be misleading because of multicollinearity. A variable can have a high p-value even though it is important

Correlation Matrix

- Correlation Matrix offers a simple measure of multicollinearity
- High correlation between two or more predictor variables indicate presence of multicollinearity
- ➤ One disadvantage of using correlation to determine mutlicollinearity is that correlation is bivariate i.e. it measures correlation between two variables and it isn't particularly useful when one variable is a linear combination of many variables put together

Variation Inflation Factor

- Assesses how much the variance of an estimated regression coefficient increases if your predictors are correlated
- ➤ If none of the predictor variables are correlated, then VIF will be 1
- \triangleright We say multicollinearity is present if the VIF of any variable is ≥ 5

$$VIF = \frac{1}{1 - R_i^2}$$

➤ Where R_i² is the coefficient of determination of the linear regression where dependent variable is the ith predictor variable and the independent variables are the rest of the predictor variables

1010100

Dealing with multicollinearity

- > Collect additional data
 - Additional data might break multicollinearity
- Remove predictor variables from the model
 - see if VIF of any of the predictor variable is > 5
 - If yes, then remove the predictor variable with the highest VIF from the model
 - Re-compute VIF values
 - Repeat the steps until VIF of all the predictor variables is below 5

Handling Outliers

Leverage points & Influential observations

- Leverage points are those observations, which have extreme or outlying values of independent variable but graphically they lie close to the pattern described by other points
- Influential points also have extreme or outlying values of independent variable but they are far from the pattern described by other points
- Leverage points don't have much effect on the regression coefficients but Influential points have great influence on them
- Influential points in a regression can be detected using Cook's distance or Cook's D statistic

010100010 10100010 01010001010101 L0001010100 10001010100

101010001

1010100

010100

.010100010

1000101010001

101000101

Leverage points & Influential observations (contd.)

Examples of influential observation and leverage point

There are two regression lines on the left.

One is a fit obtained by including the influential observation in the regression and another without including the influential observation

Cook's distance

- Cook's distance is used estimate the influence of a data point in linear regression
- > Cook's distance for the ith observation is:

$$D_{i} = \frac{\sum_{j=1}^{n} (\hat{Y}_{j} - \hat{Y}_{j(i)})^{2}}{p \text{ MSE}},$$

- > Where,
 - \hat{Y}_j is the prediction from the full regression model for observation j
 - $\hat{Y}_{j(i)}$ is the prediction for observation j from a refitted regression model in which observation i has been omitted
 - p is the number of fitted parameters in the model
 - MSE is the mean square error of the model

Cook's distance (contd.)

- ➤ The generally accepted cut-off values for spotting highly influential points is D_i > 4/(n-k-1) where n is the number of observations, k is the number of independent variables
- ➤ Can we remove observations with D_i > 4/(n-k-1) from our regression model?
 - We can remove them if we have enough evidence that the influential observation was due to measurement error or other errors
 - If they are genuine observations, we need to include them in our model even though they are influential