Equating OTUs with Species Diversity

Micah Dunthorn

Natural History Museum

OTUS = species

clustering as a step

clustering

= grouping of similar sequences

clustering

sampling, storage

clustering

environmental microbiology

Environmental Microbiology (2010) **12**(7), 1806–1810

doi:10.1111/j.1462-2920.2010.02201.x

Opinion

Replicate or lie

James I. Prosser*

Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, UK.

2017 8:1188

ARTICLE

program: LULU

DOI: 10.1038/s41467-017-01312-x

OPEN

Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates

Tobias Guldberg Frøslev (b) 1,2, Rasmus Kjøller¹, Hans Henrik Bruun (b) 1, Rasmus Ejrnæs³, Ane Kirstine Brunbjerg³, Carlotta Pietroni² & Anders Johannes Hansen²

sampling, storage

nucleotide
extraction

amplification, sequencing

cleaning,
dereplication

Clustering

cleaning

sampling, storage

nucleotide extraction amplification, sequencing

cleaning,
dereplication

Clustering

cleaning

taxonomic assignments, phylogenetic placements

what is a species

1997 in "Species: The units of biodiversity"

A hierarchy of species concepts: the denouement in the saga of the species problem

R. L. Mayden

Contacting address: Department of Biological Sciences, P.O. Box 0344, University of Alabama, Tuscaloosa, AL 35487, USA

eukaryote vs. bacteria and archaea

sexual vs. asexual

macro-evolutionary processes of phylogeny

macro-evolutionary processes of phylogeny

micro-evolutionary processes of population genetics

trait 2

trait 1

biological species

= actually or potentially inter-breeding natural populations, which are reproductively isolated

- Mayr 1942

ciliate sex

Symbiodinium

trait 2

trait 1

Barraclough (2019) The Evolutionary Biology of Species

morphological species

= the smallest groups that are consistently and persistently distinct

- Cronquist 1978

ciliates

trait 2

trait 1

Barraclough (2019) The Evolutionary Biology of Species

phylogenetic species

= the smallest biological entities that are diagnosable and/or monophyletic

- Mayden 1997

species 1 species 2 species 3

<u>Paramecium</u>

trait 2

trait 1

Syst. Biol. 56(6):879–886, 2007

Copyright © Society of Systematic Biologists

ISSN: 1063-5157 print / 1076-836X online

DOI: 10.1080/10635150701701083

Species Concepts and Species Delimitation

KEVIN DE QUEIROZ

Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0162, USA; E-mail: dequeirozk@si.edu

concept of a species

= separately evolving metapopulation lineages

concept of a species

= separately evolving metapopulation lineages

operational criteria for delimitation

= Biological Species, Morphological Species, Phylogenetic Species, etc.

operational criteria

Phylogenetic

Morphological

Biological

operational criteria

Morphological

Biological

Phylogenetic

clustering methods

just clustering vs. clustering and cleaning

de novo clustering vs.

closed-reference clustering

metabarcoding data vs.

metagenomic/ metatranscriptomic 2002 75:509-516

Biol. J. Linn. Soc.

On the use of genetic divergence for identifying species

J. WILLEM H. FERGUSON*

Department Zoology and Entomology, University of Pretoria, 0002 Pretoria, South Africa

global clustering thresholds

local clustering thresholds

pairwise phylogenetic comparisons

global clustering thresholds

local clustering thresholds

pairwise comparisons

phylogenetic comparisons

global clustering thresholds

VSEARCH/ Mothur

DADA2

local clustering thresholds

Swarm

multi-rate
PTP

pairwise comparisons

phylogenetic comparisons

global clustering thresholds

VSEARCH/ Mothur

DADA2

local clustering thresholds

Swarm

multi-rate
PTP

VSEARCH: a versatile open source tool for metagenomics

Torbjørn Rognes^{1,2}, Tomáš Flouri^{3,4}, Ben Nichols⁵, Christopher Quince^{5,6} and Frédéric Mahé^{7,8}

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Dec. 2009, p. 7537–7541 0099-2240/09/\$12.00 doi:10.1128/AEM.01541-09 Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Vol. 75, No. 23

Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities⁷

Patrick D. Schloss,^{1,2}* Sarah L. Westcott,^{1,2} Thomas Ryabin,¹ Justine R. Hall,³ Martin Hartmann,⁴ Emily B. Hollister,⁵ Ryan A. Lesniewski,⁶ Brian B. Oakley,⁷ Donovan H. Parks,⁸ Courtney J. Robinson,² Jason W. Sahl,⁹ Blaz Stres,¹⁰ Gerhard G. Thallinger,¹¹ David J. Van Horn,² and Carolyn F. Weber¹²

trait 2

trait 1

pairwise comparisons

phylogenetic comparisons

global clustering thresholds

VSEARCH/ Mothur

DADA2

local clustering thresholds

Swarm

multi-rate
PTP

BRIEF COMMUNICATIONS

2016 13:581-583

DADA2: High-resolution sample inference from Illumina amplicon data

Benjamin J Callahan¹, Paul J McMurdie², Michael J Rosen³, Andrew W Han², Amy Jo A Johnson² & Susan P Holmes¹ Nature Methods

amplicon sequence variants (ASVs)

amplicon sequence variants (ASVs)

clustering by another name

population genetics doesn't matter

population genetics doesn't matter

Sewall Wright

J.B.S. Haldane

Ronald Fisher

sampling, storage

nucleotide extraction amplification, sequencing

cleaning, dereplication

- clustering

more cleaning

taxonomic assignments

phylogenetic placements

α,β diversities, co-occurrences

trait 2

trait 1

Barraclough (2019) The Evolutionary Biology of Species

pairwise comparisons

phylogenetic comparisons

global clustering thresholds

local clustering thresholds

multi-rate
PTP

Bioinformatics, 38(1), 2022, 267–269 doi: 10.1093/bioinformatics/btab493

Advance Access Publication Date: 9 July 2021

Applications Note

Sequence analysis

Swarm v3: towards tera-scale amplicon clustering

Frédéric Mahé^{1,2,*}, Lucas Czech (1) ^{3,4}, Alexandros Stamatakis^{3,5}, Christopher Quince^{6,7,8}, Colomban de Vargas^{9,10}, Micah Dunthorn (1) ^{11,12} and Torbjørn Rognes^{13,14}

trait 2

trait 1

Barraclough (2019) The Evolutionary Biology of Species

pairwise comparisons

phylogenetic comparisons

global clustering thresholds

VSEARCH/ Mothur

DADA2

Swarm

multi-rate
PTP

local clustering thresholds

Bioinformatics, 33(11), 2017, 1630–1638

doi: 10.1093/bioinformatics/btx025

Advance Access Publication Date: 20 January 2017

Original Paper

Phylogenetics

Multi-rate Poisson tree processes for singlelocus species delimitation under maximum likelihood and Markov chain Monte Carlo

P. Kapli^{1,*}, S. Lutteropp^{1,2}, J. Zhang¹, K. Kobert¹, P. Pavlidis³, A. Stamatakis^{1,2,*} and T. Flouri^{1,2,*}

trait 2

trait 1

Barraclough (2019) The Evolutionary Biology of Species

where to now with OTUs

operational taxonomic units

operational taxonomic units

are

operational criteria for species delimitation

morpho species

biological species

Phylogenetic

Morphological

Biological

Phylogenetic Multi-rate PTP Morphological Swarm Biological DADA

Phylogenetic Multi-rate PTP Morphological Swarm Biological DADA

in conclusion

OTUS = species

separately evolving metapopulation lineages

thanks to:

CIRAD Frédéric Mahé

Heidelberg Institute for Theoretical Studies
Alexandros Stamatakis
Pierre Barbera

Institut de Ciències del Mar Ramiro Logares

