

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code : ES-EE 401/ES-ME 401 Thermal Power Engineering UPID : 004433

Time Allotted: 3 Hours Full Marks:70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. An		any ten of the following:	$[1 \times 10 = 10]$
			[1 × 10 - 10]
	(1)	What do you mean by Gas Turbine efficiency?	
	(II)	Write the type of energy conversion in boiler.	
	(111)	Write the function of nozzle in a steam power plant.	
	(IV)	Write the function of carburetor.	
	(V)	Name the processes (In sequence) of Gas Turbine cycle.	
	(VI)	Define fire tube boiler.	
	(VII)	State the type of flow through steam nozzle for M<1(Mach no).	
	(VIII)	What is ignition lag?	
	(IX)	How the GT efficiency is improved by a reheater?	
	(X)	Define artificial draught or draft in boiler.	
	(XI)	State the blade profile of impulse turbine.	
	(XII)	State the different parts of IC engine.	
Group-B (Short Answer Type Question)			
		Answer any three of the following:	[5 x 3 = 15]
2.	Con	pare between impulse & reaction turbine.	[5]
3.	Dist	inguish between SI & CI engine.	[5]
4.	Dra	w a neat sketch of Babcock and Wilcox boiler showing the mountings.	[5]
5.	Why	are steam turbine compounded?	[5]
6.	Wri	te a short on FD & ID fan.	[5]
		Group-C (Long Answer Type Question)	
		Answer any three of the following :	[15 x 3 = 45]
7.	(a)	Explain with fig.	[8]
		i) Supersonic nozzle, ii) Subsonic nozzle, iii) Supersonic diffuser, iv) Subsonic diffuser	[0]
		A convergent divergent adiabatic steam nozzle is supplied with steam at 10 bar and 250°c.the discharge pressure is 1.2 bar. assuming that the nozzle efficiency is 100% and initial velocity of steam is 50 m/s. find the discharge velocity.	
8.	(a)	Derive the efficiency of Diesel engine air standard cycle. https://www.makaut.com	[6]
	(b)	A 4S SI engine has the compression ratio of 6 & swept volume of 0.15 m ³ . Pressure & temperature	[9]
		at the beginning of compression are 98 KPa & 6° C. Determine the Pressure, Volume & temperature at all salient points if heat supplied to it is 150KJ/Kg. Also find out entropy change, work done efficiency & mep of cycle. Cp = 1KJ/Kg, CV = 0.71KJ/Kg-K	:
9.	(a)	How the boiler can be classified?	[6]
		Describe the followings: i) Flusible Plug ii) Water level indicator iii) Pressure gauge	[9]
10.		Dry steam at 10 bar & 100 m/s enters a nozzle & leaves it with velocity of 300 m/sat 5 bar. For 16 kg/s of steam mass flow rate, determine heat drop in nozzle & final state of steam leaving nozzle assuming heat loss to surroundings as 10KJ/kg.	
		In an impulse turbine, the fixed nozzle angle is α , the blades are equiangular, the blade velocity coefficient is k, show that maximum efficiency is [(1+k) $\cos^2 \alpha$]/2	([7]

- 11. (a) Explain Velocity compounding impulse turbine showing pressure & velocity variations along the axis.
- [8]
- (b) In a single stage impulse turbine, the isentropic enthalpy drop of 200 KJ/kg occurs in the nozzle having efficiency of 96% & nozzle angle of 15°. The blade velocity co-efficient is 0.96 & ratio of blade speed to steam velocity is 0.5. The steam mass flow rate is 20kg/s & velocity of steam entering is 50 m/s.

Find, a) The blade angles at inlet & outlet if the steam enters blades smoothly & leaves axially b) The blade efficiency c) The power developed d) The axial thrust

*** END OF PAPER ***

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से