

Analyzing Sports Bets with Quadrinomial Trees

Quinlin Gregg

Background

- Sports betting is currently legal in 30 states, Puerto Rico, and the District of Columbia
- Some sites claim to use arbitrage between different oddsmakers to guarantee returns
- Simulation:
 - Using drive-level data, simulate the expected outcomes of a game
 - Using previous drive-level data, predict future drive-level data

Betting

- Three main types of bets:
 - Money Line: A bet on which team will win—returns are based on the likelihood of a given team winning
 - Over/Under: A "50-50" bet on whether the combined score of both teams will be over or under a target
 - Spread: A "50-50" on whether the favorited team will win be a least a given number of points
- With repeated bets, one can expect to lose 3-4.5%

Data

- Drive-level data (offense and defense) on all 32 NFL teams since 2002 (n=704)
 - Touchdowns
 - Field Goals
 - Punts
 - Turnovers
 - Total Drives
- Betting odds and outcomes for all NFL games since 2007 (n=4,861)

Touchdowns per Team per Game by Season 2.6 Touchdowns 5: 2.2 2005 2010 2015 2020 Season

$$\sqrt{td_per_drive_t} = \hat{\beta}_0 + \hat{\beta}_1 \sqrt{td_per_drive_{t-1}} + \hat{\beta}_2 playoff_{t-1} + \hat{\beta}_3 season$$

- td_per_drive_t: Number of touchdowns scored per drive in season t
- playoff_t: A dummy variable representing whether a team made the playoffs in season t
- season: The season to account for time trends

Error Errors (Forecasted) 1500 1500 Frequency Frequency 500 500 0 0 -40 -20 0 20 -40 -20 0 Simulated - Actual

 $(\bar{x}=-0.31, S_x=9.20, n=9,722)$

Simulated - Actual (x̄=-0.49, S_x=10.04, n=9,722)

20

Over/Under Bet Returns

Difference in Odds	Percent of Games (in 1 Season)	Returns	Returns (Dynamic)
>0%	100% (272)	-3.9%	-4.4%
>5%	77.5% (211)	-3.5%	-4.1%
>10%	44.0% (120)	-5.3%	-5.0%
>20%	8.4% (23)	-4.0%	-4.4%
>25%	2.3% (6)	-1.1%	-2.3%
>30%	0.5% (1)	-26.5%	-26.6%

Money Line Bet Returns

Difference in Odds	Percent of Games (in 1 Season)	Returns	Returns (Dynamic)
>0%	100% (272)	-3.0%	-4.3%
>5%	76.3% (208)	-3.9%	-4.6%
>10%	53.2% (145)	-7.0%	-6.1%
>20%	18.3% (50)	-8.5%	-6.4%
>25%	8.2% (22)	1.9%	3.0%
>30%	3.4% (9)	1.8%	3.8%

Spread Bet Returns

Difference in Odds	Percent of Games (in 1 Season)	Returns	Returns (Dynamic)
>0%	100% (272)	-11.5%	-0.6%
>5%	97.1% (264)	-11.7%	-0.6%
>10%	91.5% (249)	-11.2%	-0.4%
>20%	77.3% (210)	-5.6%	2.8%
>25%	68.2% (186)	0.5%	7.1%
>30%	58.2% (158)	8.6%	13.2%

Conclusions

- The model is better at determining the difference between the teams' scores than determining the combined score
- Scaling bets based on expected returns may or may not increase returns/decrease losses
- There is a Goldilocks zone of differences to exploit
- Football games are inherently difficult to accurately predict