Total No of Questions: [8] **SEAT NO.:** [Total No. of Pages :3] Solution set: T.E. (Robotics and Automation)-2019 course Artificial Intelligence for Robotics (311509-A) (Semester - II) Time: 2 Hours Max. Marks: 70 Instructions to the candidates: 1) Neat diagrams must be drawn wherever necessary. 2) Figures to the right side indicate full marks. 3) Use of Calculator is allowed. 4) Assume Suitable data if necessary Determine the minimum path length for following graph using greedy search method. **Q1**) a) [9] ۷1 10 2 ۷5 ۷4 ٧3 6 5 V6 V7 1 V1-V4: 1, V1-V2: 2, V4-V3: 2, V4-V7: 4, V7-V1: 1, V7-V5: 6, Total Length: 16 Using a simulated annealing algorithm to solve minimization problem, function value of 20 b) [8] is updated to new value of 30 at temperature 55°C. What is the probability of accepting the new solution? $Pr = \frac{e^{-\Delta C^{\prime}T}}{2} = \frac{e^{-10/55}}{2} = 83.37 \%$

OR

(2)	a)	Ant colo	ny optir	nizatio	n is used	l to sol	ve a tra	avelling	salesme	n probl	em wit	h 5 stati	ions. The	[10		
		distance	matrix i	s given	below.	Consi	dering	starting	station a	ıs A, w	hat is t	he % pr	obability			
		that an a		_			_	_				_	-			
			1		2	3		4	5							
		1	0		14	16		19	12							
		2	14		0	15		13	10							
		3	16		15	0		11	17							
		4	19		13	11		0	21							
		5	12		10	17		21	0							
		+		DISTAN	ICE MAT	RIX(d)			PHEROMEN DEPOSIT (:)				
		03	Α	В	С	D	Е		Α	В	С	D	E			
		A	0	14	16	19	12	1	1	1	1	1				
		B C	14 16	0 15	15 0	13 11	10 17	3	1	1	1	1	3720			
		D	19	13	11	0	21	4	1	1	1	1	1 35			
		E	12	10	17	21	0	5	1	1	1	1				
		150	- 12													
			97.		η					Probabi	ity from	Ant 1 from	City 1			
			1	2	3	4	5		В	С	D	E	Total			
		1	0.0000	0.0714	0.0625	0.0526	0.0833		0.0051	0.0039	0.0028	0.0069	0.0187			
		3	0.0714	0.0000	0.0667	0.0769	0.1000	:	0.2725	0.2086	0.1480	0.3709				
		4	0.0526	0.0769	0.0909	0.0000	0.0388	:	0.2725	0.2000	0.1400	0.3703				
		5	0.0833	0.1000	0.0588	0.0476	0.0000									
	b)	Explain	the steps	s of rea	l coded	genetic	algori	thm.						[7		
3)	a)												anslation	[1		
		Template y Image														
		8	1	8			2	2	6	5		1				
		1	1	2	•		4	5	9	9		4				
		4	8	3	X		7	8	1	9		3				
							9	1	1	3	35	8				
							5	4	9	6	3	9				
							1	6	4	8		5				

					Avg. Inte	nsity of	image		
		5	9	9	25	81	81		
		8	1	9	64	1	81		
		1	1	3	1	1	9		
					-			18.547	
		40	9	72		- W			
		8	1	18	Avg. Int	ensity o	f Temp	late	
		4	8	9	64	1	64		
					1	1	4		
			$\Sigma T-I=$	169	16	64	9		
		ļ		0.609				14.96663	
		!	σ=	0.609					
		\mathbf{X} $m00 = 8$,	0,0 1 2 3	1 2 1 2	2 0 1		3 4 3		
		m10=35, m01=39, xc=m10/m0	00=4.375,						
		m01=39,							
		m01=39, xc=m10/m0)R			
4)	a)	m01=39, xc=m10/m0 yc=m01/m0	00=4.875	nt of intensi			g inten	sity 2 in the image given below	· [
4)	a)	m01=39, xc=m10/m0 yc=m01/m0	00=4.875 the gradien	nt of intensi			g inten	sity 2 in the image given below	· [
4)	a)	m01=39, xc=m10/m0 yc=m01/m0 Determine Use Prewitt	the gradier toperator.				g inten	sity 2 in the image given below	· [
4)	a)	m01=39, xc=m10/m0 yc=m01/m0 Determine Use Prewitt	the gradient operator.	4			g inten	sity 2 in the image given below	. [
4)	a)	m01=39, xc=m10/m0 yc=m01/m0 Determine Use Prewitt	the gradier toperator.				g inten	sity 2 in the image given below	· [1

		Mx Mx				11.			т	mass			
		IV.	1X			My				mage			
		-1	0	1	-1	-1	-1		5	8	4		
		-1	0	1	0	0	0		6	2	3		
		-1	0	1	1	1	1		4	6	1		
		-1	U	1	1	1	1		•				
		M1				<i>M</i> 2	I						
		-5	0	4	-5	-8	-4						
		-6	0	3	0	0	0						
		-4	0	1	4	6	1						
		Fx 2	.333		Fy	2							
		∇F 3.	.073										
	b)			inary	image,	follov	ving d	ata o	perat	es. D	etern	nine the compression ratio using	[9]
		run lengtl	n enco	oding.									
		Bit											
		Run Value Length											
		1		1	12								
		2	(0	18								
		3		1	7								
		4	(0	17								
		5		1	10								
		Length		it	Total								
		01100 10010		l)	6								
		00111		1	6								
		10001	()	6								
		01010] 1	1	6								
		Compres	sion 1	atio =	30 = (64-30)/64=	0.53 =	53%	ó				
Q5)	a)	Explain tl	he app	olicati	on of ar	ny one	e meta	heur	istics	algor	ithm	for robot motion planning.	[10]
	b)	Write note on visibility graph method for robot path planning.										[8]	
								(OR				
Q6)	a)	Explain route optimization for AS/RS systems											[8]

	b)	With suita		kamples,	the bug 0	and bug	g 1 strategies for obstacle avoidance in mobile robot	[10]				
Q7)	a)	Use A* algorithm to determine the shortest path for an automated guided vehicle while moving from work station at $(4, 6)$ to workstation at $(1, 1)$ shown in Fig. below. The obstacles are in the form of tool storage racks at locations $(3, 3)$, $(1, 4)$ and $(4, 2)$. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
			(2,2) $(2,3)$	(3,2) $(3,3)$	(4,2)							
			(2, 4)	(3,4)	(4,4)							
		(1,5)	(2,5)	(3, 5)	(4,5)							
		(1,6)	(2,6)	(3,6)	(4,6)							
			1	2	3	4						
			(1,1)	(2,1)	(3,1)	(4,1)						
			(1,2)	(2,2)	(3,2)	(4,2)						
			(1,3)	(2, 3)	(3,3)	(4,3)						
			(1,4)	(2, 4)	(3,4)	(4,4)						
			(1, 5)	(2,5)	(3, 5)	(4,5)						
		6	(1,6)	(2,6)	(3,6)	(4,6)						
				g	h	Total						
			1,5	1	7	8						
		3	3, 6	1	7	8						
		3	3, 5	2	6	8						
		4	1, 4	2	6	8						
		3	3,4	3	5	8						
			, 3,6	0	7	7						
			2,5	3	5	8						
	b)	Write not	e on: l	Real time	e scheduli	ing in fl	exible environment	[9]				
							OR					
Q8)	a)	Explain with suitable example techniques for automatic tool path generation.										
	b)	Write not	te on:	Applica	ations of	artificia	l intelligent techniques in flexible manufacturing	[9]				
		systems.										