ULA unidade lógica aritmética

Marcos Monteiro Junior

ULA

• Como a ULA funciona e manipula dados e instruções.

- Representação de números em complemento de dois.
 - É a forma de representar os números negativos em binários
 - Número negativo é o espelho do número positivo
- Pode-se converter os números de várias formas.

- Uma das maneiras é inverter todos os números positivo (binários) e somar 1.
- Outra forma é seguir a equação:

$$100101 = 1*(-2^5) + 1*2^2 + 1*2^0 = -32 + 4 + 1 = -27$$

- O MIPS usa 32 bits
- Se não fosse complemento de 2 teriamos:

Como há complemento de 2 temos:

Complemento de 2

- Afeta tanto operações matemáticas como operações de endereçamento de memória.
- A função de um load com sinal é de copiar o sinal repetidamente até preencher o registrador. Sua intenção é colocar no registrador uma representação correta do número. Instrução load byte (lb) replica o sinal
- Um load sem sinal simplesmente preenche o registrador com zeros à esquerda dos dados. Instrução load byte unsigned (lbu) não replica o sinal.

Acessando bits

 Algumas vezes interessa acessar campos de uma palavra, e não apenas a palavra inteira

 Algumas instruções auxiliam o acesso a bits em uma palavra

Acessando bits

- Operações de deslocamento (shift) movem os bits a esquerda ou a direita, introduzindo zeros na extremidade
- Operações lógicas bit a bit, como AND e OR

O campo shamt, é usado

	Op	Rs	Rt	Rd	Endereço/ shamt	funct
--	----	----	----	----	--------------------	-------

Deslocando bits

- Aplicações:
- Selecionando 1 byte

```
srl $t0, $t0, 8
0000 0000 0000 0000 0101 0110 0111 1000
0000 0000 0000 0000 0000 0101 0110
```

Elevando 2ⁿ

```
    sll $t0, $t0, 2 # multiplica por 2² = 4
    0000 0000 0000 0000 0000 0101 0110
    0000 0000 0000 0000 0001 0101 1000
```

ULA

 O MIPS tem uma ULA de 32 bits que realiza as operações lógicas e aritméticas básicas.

Parte fundamental do processador

Composta de vários elementos eletrônicos

- Funciona como um seletor
- Multiplexador de 2 bits
- Ao carregar o sel, com valor, 0 ou 1 irá selecionar a saída de acordo com a entrada IO ou ou I1

• O interior do Multiplexador de 2 bits

- Ao seta o seletor com 1 temos:
 - Porta E0 com valor 0 (já que tem uma negação na entrada)
 - Sua saída sempre será 0.
 - Porta E1 teremos o valor 1
 - Sua saída dependera da entrada externa em E1
- Por fim temos a saída ou que permite que o resultado de E1 sempre se repita.
- Caso se inverta o seletor a porta E0 será selecionada

 De 4 bits, funciona exatamente com o de 2 bits

Somador

- Circuito responsável por executar a soma bit a bit.
- Existem várias versões de somador

O MIPS utiliza o lookahead

Somador

- A e B são os bits a serem somados
- Cin entrada do bit carry
- Cout saída do bit carry
- Soma saída da soma

lookahead

O lookahead segue a tabela verdade a seguir:

	Entrad	as	Saídas		
а	b	Carryl	CarryOu	Som	
		n	t	а	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

ULA de 1 bit

ULA

 O somador anterior operações, and, or, soma de apenas 1 bit

• É utilizado um multiplexador de 3 bits para a escolha da operação.

ULA 32 bit

Referências

 Universidade de Brasília Departamento de Ciência da Computação (Pdf utilizado em aula)