Lecture 1 - Discrete Mafematiks

Kori Vernon

July 7, 2020

1 Numbers

- $\mathbb{N} \to \text{We have natural numbers, } \{1,2,3,4,...\}.$ also the same as: \mathbb{Z}^+ .
 - 1. We have whole numbers $\{0,1,2,3,4,...\}$
- $\mathbb{Z} \to \text{We have integers } \{-\infty,...,-2,-1,-1,2,3,...,\infty\}$
- $\mathbb{Q} \to \text{ We have rational numbers } \frac{n}{m} \text{ where } m \neq 0.$
- $\mathbb{Q}^c \to \text{complement are irrational numbers}$
- $\mathbb{C} \to \text{ the set of all complex numbers, where if } \mathbb{Z} \text{ is a complex number of the following form } z = a + bi \text{ where } a$ and b are any real numbers and $i = \sqrt{-1}$. **Note:** All real numbers are a subset of complex numbers.
 - (a) All real numbers are complex numbers. A is called a real part of z and notation is Re(z) = a.
 - (b) Example: z = 3 + 2i.
 - (c) Re(z) = 3 and Im(z) = 2.

Note: A conjugate of complex number z = a + bi is $\bar{z} = a - bi$

- 2. if $z = \bar{z}$ then it is a real number.
- 3. $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{R} \subset \mathbb{C}$

2 Division

- 1. We say that a number divides another in the form of 5|25. This means that 5 divides 25. It's equivalent is 25/5.
 - (a) If we say that x|25, we say that x is a factor of 25.
 - (b) If we say that 5|x, we say that 5 is a divisor of x.
- 2. If y = 2a then y is even, because 2a|y.

Note: An integer p is called prime if p > 1 and the only positive divisiors of p are 1 and p.

Note: A composite integer is an integer for which there exists an integer b, so that 1 < b < a and b|a

3 Theorems

- a) A theorem is a declarative statement which needs to be proved.
- b) An axiom is a statement that does not require proof and can be used as fact.
- c) Theorems can vary in purpose and size.
- d) Claims, Propositions, and Lemmas are *small* theorems which are used for proving.
- e) A Corollary is a theorem which is derived as a conclusion of a large theorem.

Note: Every detail matters, we have to understand where everything comes from.

Proofs: are logically derived statements which prove theorems. We must use definition and axioms in proofs.

4 Proof Structure

- 1. If A, then $B = A \rightarrow B$ (see Table 1)
- 2. If and only if $= A \Leftrightarrow B$ (see Table 2)
- 3. A and $B = A \cap B$ (see Table 3)
- 4. A and $B = A \cup B$ (see Table 4)

Table 1: If A, then B				
A	В	$A \Rightarrow B$		
True	True	True		
True	False	True		
False	True	False		
False	False	True		

Table 2: A iff B				
A	В	$A \Leftrightarrow B$		
True	True	True		
True	False	False		
False	True	False		
False	False	True		

Table 3: $A \cap B$			
A	В	$A \cap B$	
True	True	True	
True	False	False	
False	True	False	
False	False	False	

Table 4: $A \cup B$			
A	В	$A \cup B$	
True	True	True	
True	False	True	
False	True	True	
False	False	False	

4.1 Vacuous Truths

- 1. Vacuous Truth \rightarrow "If A, then B," which is a statement that is impossible to check.
- 2. This statement is considered to be true.
- 3. As per Wikipedia, "a vacuous truth is a conditional or universal statement that is only true because the antecedent cannot be satisfied."

4.2

Proposition: The sum of two even integers is even.

Proof: Let $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$. Since x and y are even integers, then 2|x and 2|y, so there exists arbitrary positive integers a and b, so that x = 2a and y = 2b.

Then, x + y = 2a + 2b = 2(a + b) = 2c where c = a + b is some positive integer. 2(a + b) suggest that there exists some integer c = a + b such that x + y = 2c. $2|(x + y)\square$

Proposition: (5.1) The sum of two odd integers is even.

Proof: Let x and y be odd integers. x = 2a + 1 and y = 2a + 1 where a and b are some integers.

Then, x + y = (2a + 1) + (2b + 1) = 2(a + b) + 2 = 2(a + b + a). Let c = a + b + 1, where c is an integer. Because a and b are integers, then x + y = 2(a + b + 1) = 2c, so 2|(x + y).

Proposition: (5.6) Prove that the product of two odd integers is odd.

Proof: Let x and y be odd integers. x = 2a + 1 and y = 2a + 1 where a and b are some integers.

Then, $x \cdot y = (2a+1)(2b+1) = 4ab+2a+2b+1 = 2(ab+b+a)+1$. Let c = 2ba+a+b, where c is an integer. Because a and b are integers, then x = 2(2ab+a+b)+1 = 2c+1, so 2+1|(x).

Proposition: Let a, b, c, d be integers. If a|b, b|c and c|d, then a|d.

Proof: Since a|b, then there exists an integer x, such that b=ax.

Similarly, there exists an integer y such that c = by, and an integer z such that d = cz.

c = by = ax(y) and since d = (ax(y))z, let w = xyz which is an integer, so $d = ((ax(y))z = a(xyz) = a \cdot w$. Therefore, $a|d \square$.

Proposition: Let x be an integer. If x > 1, then $x^3 + 1$ is composite.

Recall: $x^3 + 1 = (x+1)(x^2 - x + 1)anda^3 + b^3 = (a+b)(a^2 - ab + b^2)$

Proof(1): Since $x^3 + 1 = (x+1)(x^2 - x + 1)$, and $x^2 - x + 1 = c$ where c is an integer because x is an integer, then $x^3 + 1 = (x+1)(x^2 - x + 1) = (x+1) \cdot c$, so $(x+1)|x^3 + 1$

Note: We need to show that $1 < x + 1 < x^3 + 1$, because based on the definition of a composite number, 1 < b < a.

Proof(2): Since x > 1, $x < x^3$, and $x + 1 < x^3 + 1$, so $1 < x + 1 < x^3 + 1$.

Therefore, x+1 is the divisor of x^3+1 (1) and $1 < x+1 < x^3+1$ (2) is composite, then the statement is True. \square

Proposition: Let x be an integer. Then x is even, if and only if x is odd.

Remark: Proofs of "if and only if" must consist of two parts. (1) $A \Rightarrow B$ and (2) $B \Rightarrow A$.

Proof(1): If x is even, then x + 1 is odd. Let x be an even integer. Then there exists some integer a such that x = 2a.

Adding "1" to both sides leads to x + 1 = 2a + 1 which is odd.

Proof(2): Let x + 1 be an odd integer. Then there exists an integer b such that x + 1 = 2b + 1.

Subtracting "1" from both sides leads to x. x = 2b, therefore x is divisible by 2. x is even.