

Øving 11: Høst 2014

Oppgave 1: Gruntvannsbølger

Anta at en monokromatisk bølge med liten amplitude ($ka \ll 1$) forplanter seg på grunt vann ($kd \ll 1$); her er k bølgetallet, a er bølgens amplitude og d er stillevannsdybden. Under disse forholdene gjelder følgende approksimasjoner

$$u = u(x,t)$$
 og $w \approx 0$ (1)

a

Vis, ved å bruke den lineariserte versjon av Eulerligningen at

$$p = p_0 + \gamma(\eta - z)$$
 og $\frac{\partial u}{\partial t} = -g\frac{\partial \eta}{\partial x}$ (2)

 \mathbf{b}

Vis, ved å betrakte massebevarelse mellom to vertikale plan i posisjon x og x + dx, at kontinuitetsligningen i dette tilfellet kan skrives som

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} = 0 \quad \text{med} \quad h(x,t) \equiv d + \eta(x,t).$$
 (3)

 \mathbf{c}

Bruk ligningene ovenfor til å utlede bølgeligningen for η of finn herav bølgens fasehastighet. Sjekk resultatet ved å sammenligne med den generelle dispersjonsrelasjonen for bølger med liten amplitude. Er bølgen dispersiv?

Oppgave 2: Havbølger

En havbølge med periode T=12s forplanter seg på vanndybden d=50m. Finn bølgelengden L.