

UNIVERSIDADE DE AVEIRO
DEPARTAMENTO DE FÍSICA
3810-193 AVEIRO

Mecânica e Campo Eletromagnético Ano letivo 2015/2016

Capítulo 3. Campos elétrico e magnético 3ª serie

Lei de Biot e Savart

1. Considere um fio condutor retilíneo finito percorrido por uma corrente *l*:

- a) Determine o campo magnético criado no ponto P, em função dos parâmetros indicados.
- b) Considere o fio muito comprido e calcule agora o campo magnético criado no mesmo ponto.

Solução: a)
$$B=rac{\mu_0}{4\pi d}\left(\mathrm{sen}\left|\alpha_1\right|+\mathrm{sen}\left|\alpha_2\right|\right)$$
 (T); b) $B=rac{\mu_0 I}{2\pi d}$ (T).

2. Um fio infinito tem um troço semicircular de raio *R*. Este fio é percorrido por uma corrente *I*. Determine o campo magnético no centro da curvatura do troço.

Solução:
$$B=\frac{\mu_0 I}{4R}$$
 (T)

- **3.** Considere um anel circular de raio *r* percorrido por uma corrente *l*.
 - a) Determine o campo magnético no centro do anel.
 - b) Utilize o resultado da alínea anterior para calcular o campo magnético no centro de um disco isolador de raio R, carregado com densidade superficial de carga σ . O disco roda com velocidade angular ω .
 - c) Determine o campo magnético ao longo do eixo do anel de raio R, a uma distância d do seu centro. Obtenha uma aproximação para d>>r.

Solução: a)
$$B=\frac{\mu_0 I}{2R}$$
 (T) b) $B=\frac{\mu_0}{2}\sigma.\omega.R$ (T) c) $B=\frac{\mu_0 I R^2}{2\left(R^2+d^2\right)^{3/2}}$; $B=\frac{\mu_0 I R^2}{2d^3}$ (T)

- **4.** Considere uma espira quadrada de lado α , percorrida por uma corrente l.
 - a) Determine o campo magnético no centro da espira.
 - Determine o campo magnético ao longo do eixo da espira, a uma distância d do seu centro, numa aproximação válida para d>>a.
 - c) Compare os resultados das alíneas 3.c) e 4.b). Introduza nos resultados a grandeza momento dipolar magnético, p_m , que é (em módulo) igual ao produto (corrente × área da espira).

Solução: a)
$$B = \frac{4\mu_o I}{\sqrt{2} \pi a}$$
 (T) b) $B = \frac{\mu_o I a^2}{2\pi d^3}$ (T)

5. Um átomo de hidrogénio consiste num protão e num eletrão separados por uma distância de 0.5×10^{-10} m. Assumindo que o eletrão se move numa órbita circular em torno do protão com uma frequência de 10^{13} Hz, calcule o campo magnético, no sítio do núcleo, criado pelo movimento do eletrão.

Solução:
$$B = \frac{\mu_0 \ e \ f}{2 \ r} \approx 2.10^{-2} \ T$$

Força magnética:

6. Numa região do espaço coexistem um campo elétrico $\vec{E} = \left(3\hat{i} + 5\hat{j} - 2\hat{k}\right).10^4 \text{ V/m}$ e um campo magnético desconhecido.

Uma partícula de carga $Q=10^{-10}$ C sofre, num instante em que possui a velocidade de $\vec{v}=10^3\hat{i}\,$ m/s , uma força $\vec{F}=\left(3\hat{i}+2\hat{j}\right)\cdot10^{-6}$ N . Determine o vetor campo magnético e o ângulo entre este campo e a direção da aceleração da partícula.

Solução:
$$\vec{B} = B_x \vec{i} + 20 \vec{j} + 30 \vec{k}$$
 (T); $\alpha = \arccos\left(\frac{3B_x + 40}{\sqrt{13B_x^2 + 16900}}\right)$ (rad)

7. Considere dois fios infinitos, paralelos, distanciados de *d*, e percorridos por correntes iguais mas de sentidos opostos.

- a) Calcule o campo magnético no ponto P situado a uma distância d, do ponto médio entre os fios.
- b) Calcule o campo magnético no ponto D sobre a reta perpendicular ao plano que contêm os fios e passa pelo ponto médio, situado a uma distância d do plano.
- c) Calcule a força por unidade de comprimento que atua em cada fio.

Solução: a)
$$\stackrel{\rightarrow}{B} = \frac{-2}{3} \frac{\mu_0}{\pi d} \stackrel{\rightarrow}{j}$$
 (T); b) $\stackrel{\rightarrow}{B} = \frac{2}{5} \frac{\mu_0}{\pi d} \stackrel{\rightarrow}{j}$ (T); c) $\stackrel{\rightarrow}{F} = \frac{\mu_0}{2\pi d} \stackrel{\rightarrow}{i}$ (N)

- **8.** Dois fios condutores retilíneos, paralelos e infinitos, distanciado de d, estão percorridos pelas correntes I e I'. Entre eles e no mesmo plano, coloca-se um terceiro fio condutor de comprimento L, percorrido por I'' e podendo deslocar-se lateralmente.
 - a) Como devem ser os sentidos das correntes para existir uma posição de equilíbrio do 3º condutor entre os dois primeiros?
 - b) Qual é a posição de equilíbrio do 3º condutor? Será que o comprimento desse tem uma influência? Discuta a estabilidade do equilíbrio.

Solução:

a) I e I' de mesmo sentido

$$b) x = \frac{I}{|I - I'|} d \text{ (m)}$$

9. Considere a balança indicada na figura, onde um dos pratos está substituído por um quadro condutor por onde passa uma corrente *I* no sentido horário. A balança está em equilíbrio quando se coloca no prato uma massa *m*.

- a) Suponha que se cria um campo magnético uniforme perpendicular ao plano do papel. A balança fica em equilíbrio se se adicionar ao outro prato uma massa m_1 . Determine o sentido e o módulo do campo aplicado.
- b) Se tirar as massas m e m_1 , determine o sentido e o módulo do campo magnético capaz de manter a balança em equilíbrio.

Solução: a)
$$B = \frac{m_1 g}{I \, l}$$
 (T) b) $B = \frac{mg}{I \, l}$ (T)

10. Um disco metálico de raio *R*, capaz de rodar livremente sobre o seu eixo, está mergulhado num campo magnético uniforme e paralelo ao seu eixo. Uma corrente *I* circula como indicado na figura, graças a contactos sem atrito, percorrendo o disco radialmente. Este dispositivo é chamado de *roda de Barlow*.

- a) Utilizando coordenadas polares no plano do disco, exprima a força elementar dF que atua sobre um elemento de raio r e espessura dr do disco. Qual será o sentido de rotação do disco?
- b) Calcule o momento relativamente a O das forças magnéticas. Compare com o que se obtém considerando que a corrente circula apenas seguindo o raio OH.

Solução: a)
$$dF = B.l.dr$$
 (N) b) $\stackrel{\rightarrow}{M}_O = -\frac{IR^2}{2}\stackrel{\rightarrow}{B}$ (T)

- **11.** Uma pequena esfera de massa m e carga q pode-se mover livremente no plano xy encontrando-se inicialmente (t < 0) em (x,y) = (0,0). Existe no espaço um campo magnético uniforme $\vec{B} = B_Z \ \hat{k}$. No instante t = 0 estabelece-se no espaço um campo elétrico uniforme $\vec{E} = E_X \ \hat{i}$.
 - a) Determine a velocidade da esfera como função do tempo.
 - b) Escreva um conjunto de equações paramétricas (parâmetro t tempo), que traduzam a posição da esfera no plano xy em função do tempo.

a)
$$\vec{v}(t) = \frac{E_x}{B_z} [\hat{i} . \text{sen}(\omega t) + \hat{j}(\cos(\omega t) - 1)]$$
 (m/s) com $\omega = \frac{q.B_z}{m}$

(rad/s)

b)
$$x(t) = \frac{E_x}{wB_z} (1 - \cos(\omega t))$$
 (m) ; $y(t) = \frac{E_x}{B_z} \frac{1}{\omega} \sin(\omega t)$ (m)

Lei de Ampère

12. Usando a Lei de Ampére calcule o campo $\stackrel{\rightarrow}{B}$, criado por um fio infinito percorrido por uma corrente I. Calcule a circulação de $\stackrel{\rightarrow}{B}$ ao longo de uma circunferência de raio d centrada no ponto médio entre dois fios paralelos, distanciados de d, e percorridos por correntes iguais mas de sentidos opostos.

Solução:
$$\vec{B}=\frac{\mu_0 I}{2\pi r}\widehat{\phi}$$
 (T) ; $\int \vec{B}\cdot d\vec{l}=0$

13. Uma longa e fina superfície condutora de largura *b* é percorrida uniformemente por uma corrente *l*. Determine o campo magnético num ponto no mesmo

plano da superfície condutora, mas fora dela, à distância α como mostra a figura.

Solução:
$$B = \frac{\mu_0 I}{2\pi b} \cdot \log\left(\frac{a+b}{a}\right)$$
 (T)

Solução: dentro:
$$B=\frac{\mu_0\alpha.r^2}{3}$$
 (T) ; fora: $B=\frac{\mu_0\alpha.a^3}{3r}$ (T)

15. Um solenóide é constituído por um fio enrolado uniformemente sobre um corpo de superfície cilíndrica. Considere um solenóide de raio R, comprimento L (L >> R) e N voltas por metro. Calcule o campo magnético num ponto do eixo do solenóide, no interior deste.

Solução:
$$B=\mu_0\,rac{N}{L}I$$
 (T)

16. Um fio condutor está enrolado sobre um toróide de eixo vertical ② e de raio b. As espiras formam círculos de raio a (a < b) e são juntas, de modo que se conta N espiras/rad. Determine o campo magnético no interior das espiras, e no exterior, quando o fio está percorrido por uma intensidade I.

Solução:
$$\overrightarrow{B}_{int} = \mu_0 \frac{NI}{r} \overrightarrow{u_\theta}$$
 ; $\overrightarrow{B}_{ext} = \overrightarrow{0}$ (T)

- **17.** Num sistema de eixos cartesiano considere um condutor plano vertical e infinito de espessura a, paralelo ao plano yOz com $x \in [-a/2 ; +a/2]$. Está percorrido por uma corrente uniforme de densidade $\vec{j} = j \; \hat{z}$.
 - a) Determine a direção e a expressão do campo magnético em todo o espaço.
 - b) Considere um segundo condutor plano paralelo ao anterior, de mesma espessura e centrado em x = d, percorrido pela corrente oposta. Determine o campo magnético produzido pelo conjunto em todo o espaço :
 - (i) por sobreposição dos dois casos
 - (ii) diretamente pela lei de Ampère

a)
$$\overrightarrow{B}_{int} = \mu_o j x \hat{y}$$
 ; $\overrightarrow{B}_{ext} = \pm \mu_o j \frac{a}{2} \hat{y}$ (T)

Х	-∞	-a/2	+a/2	d-a/2	d+a/2	+∞
$\overset{ ightarrow}{B}_{tot}$	(μ_{α}	$_{o}j\left(x+\frac{a}{2}\right)\hat{y}$	$\mu_o j a \hat{y}$	$\mu_o j \left(d + \frac{a}{2} - x \right) \hat{y}$	$\vec{0}$

18. Um cabo coaxial é formado por um cilindro condutor sólido de raio R_1 , envolvido por um cilindro condutor oco concêntrico com raio interno R_2 externo R_3 .

Na prática a corrente *l* é enviada pelo fio interno e retorna pela parte externa.

- a) Usando a lei de Ampère determine o campo magnético para todos os pontos, dentro e fora do condutor. Faça o gráfico de B em função de r. Suponha que a densidade de corrente é uniforme.
- Suponha que o condutor interior está ligeiramente descentrado. Determine o campo magnético no plano perpendicular aos condutores, ao longo da reta que passa pelos eixos de ambos.

Solução:
$$r < R_1 \implies B = \frac{\mu_0 I}{2\pi} \frac{r}{R_1^2} \text{ (T)}; \quad R_1 < r < R_2 \implies B = \frac{\mu_0 I}{2\pi} \frac{1}{r} \text{ (T)}$$

$$R_2 < r < R_3 \implies B = \frac{\mu_0 I}{2\pi} \frac{1}{r} \left(1 - \frac{r^2 - R_2^2}{R_3^2 - R_2^2} \right) \text{ (T)}; \quad r > R_3 \implies B = 0 \text{ (T)}$$

Divergência do campo magnético

- 19. Um anel circular de raio R é percorrido por uma corrente de intensidade I.
 - a) Calcule o valor do campo magnético num ponto genérico P situado no eixo do anel a uma distância z deste. Verifique que em todos os pontos sobre o eixo do anel, $B=B_z(z)$.
 - b) Faça uma análise quantitativa de $\overset{..}{B}$ num ponto próximo do eixo do anel mas não pertencente a este. Verifique que neste caso o campo não tem só componente segundo z, e que do facto de $\overset{..}{div}\overset{..}{B}=0$, o campo tem simetria axial, sendo a componente radial dada por $B_r=-\frac{r}{2}\frac{\partial Bz}{\partial z}$.

Ao produto (corrente)×(área) damos o nome de momento dipolar magnético do anel de corrente, p_m . Verifique que para distâncias muito grandes comparadas com o raio do anel, o campo determinado na alínea a) é dado aproximadamente por: $B = \frac{\mu_0}{4\pi} \frac{2p_m}{z^3}$.

a)
$$B = \frac{\mu_0 I}{2} \frac{R^2}{(z^2 + R^2)^{3/2}}$$
 (T)

20. Considere um anel de corrente de raio *R*, e massa *m*, percorrido pela corrente *l*.

- Determine a componente radial de um campo magnético capaz de equilibrar o anel no campo gravítico, e qual o sentido do mesmo.
- Mostre que esse campo radial tem de ter uma componente B_z não nula, e determine-a.

a)
$$B_r = \frac{m g}{2\pi RI}$$
 (T)

a)
$$B_r = \frac{m g}{2\pi RI}$$
 (T) **b)** $B_z = \frac{-z}{r} \frac{mg}{2\pi RI} + C$ (T)