

Inteligência Artificial Aplicada

UniSenai PR-São José dos Pinhais

Categoria	Descrição	Algoritmos/técnicas	Exemplos de aplicação
Métodos de busca	Encontram soluções em um espaço de estados.	BFS, A*	GPS traçando a melhor rota.
Raciocínio temporal	Modelam eventos ao longo do tempo.	Cadeias de Markov, Redes Bayesianas	Previsão do tempo, reconhecimento de fala.
Lógica fuzzy	Lida com incertezas e valores intermediários.	Conjuntos fuzzy, Inferência fuzzy	Controle de temperatura em ar-condicionado.
Representação do conhecimento	Estrutura e organiza informações para tomada de decisão.	C4.5, Árvores de decisão	Diagnóstico médico, sistemas especialistas.
Modelos de aprendizado	Ajustam pesos para identificar padrões em dados.	Redes Neurais (Perceptron, MLP)	Reconhecimento facial, chatbots.

Objetivo: <u>analisar eventos ao longo do tempo</u>, considerando como o <u>estado atual depende do passado e influencia o futuro</u>.

- O raciocínio temporal responde a perguntas como:
- 1. O que aconteceu antes influencia o que acontece agora?
- 2. Como prever o futuro baseado no passado?
- 3. Quais padrões temporais podemos identificar em uma sequência de eventos?

Cadeias de Markov

• Ideia principal: modelo matemático usado para descrever processos onde o próximo estado depende apenas do estado atual, e não de toda a sequência passada.

Exemplo - didático

Você está jogando um jogo de tabuleiro onde:

- 1. Você está em uma casa numerada (ex: casa 4);
- 2. O próximo movimento depende apenas de **onde você está agora**, e não de como chegou lá;
- 3. Se um dado decide o próximo movimento, o passado não influencia apenas o número que sair no dado importa.

Exemplo - formal

• Seja X_t um processo estocástico, ou seja, uma sequência de variáveis aleatórias que representam estados ao longo do tempo. A propriedade de Markov pode ser expressa matematicamente como:

$$P(X_{t+1} | X_t, X_{t-1}, ..., X_0) P(X_{t+1} | X_t)$$

• Isso significa que a probabilidade do próximo estado X_{t+1} depende apenas do estado atual X_t e não de qualquer outro estado anterior.

Probabilidade

• Mede a chance de algo acontecer;

• **Espaço amostral:** conjunto de todos os resultados possíveis. Exemplo: no lançamento de um dado, o espaço amostral é {1,2,3,4,5,6};

• Evento: um subconjunto do espaço amostral. Exemplo: tirar um número par {2,4,6}.

Probabilidade

•
$$P(A) = \frac{n \text{\'umero de casos favor\'aveis}}{n \text{\'umero total de casos}}$$

Exemplo: a probabilidade de tirar um número par no dado é $P(A) = \frac{3}{6} = 0.5$

Probabilidade condicional

• Chance de um evento ocorrer dado que outro já ocorreu

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

 $P(A|B) \rightarrow \text{Probabilidade de A ocorrer, sabendo que B já aconteceu;}$ $P(A \cap B) \rightarrow \text{Probabilidade de A e B acontecerem juntos;}$ $P(B) \rightarrow \text{Probabilidade de B acontecer.}$

Probabilidade condicional

 Qual é a probabilidade de pegar um Ás, sabendo que já sabemos que a carta é preta?

 $P(A) \rightarrow \text{Probabilidade de pegar um Ás: } (\frac{4}{52}).$

 $P(B) \rightarrow \text{Probabilidade de a carta ser preta:} (\frac{26}{52});$

 $P(A \cap B) \rightarrow \text{Probabilidade de a carta ser um \'{A}s e preta:} (\frac{2}{52});$

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{2}{52}}{\frac{26}{52}} = \frac{2}{26} = \frac{1}{13} \approx 7.7\%$$

Matriz de transição

• Representa as chances de mudar de um estado para outro.

$$M = \begin{bmatrix} 0,7 & 0,2 & 0,1 \\ 0,3 & 0,4 & 0,3 \\ 0,2 & 0,3 & 0,5 \end{bmatrix}$$

 Cada linha representa o estado atual e cada coluna a probabilidade de ir para outro estado.

Multiplicação de matrizes

 Envolve multiplicar as linhas da primeira matriz pelas colunas da segunda matriz e somar os resultados.

• Para multiplicar duas matrizes, o número de colunas da primeira matriz deve ser igual ao número de linhas da segunda matriz.

Para multiplicar duas matrizes $A \in B$, o elemento da linha i e coluna j da matriz resultante $C = A \times B$ é dado pela soma do produto entre os elementos da i - ésima linha de A e da j - ésima coluna de B.

•
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix}$ $C = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix}$
 $C_{11} = (1*7) + (2*9) + (3*11) = 7 + 18 + 33 = 58$
 $C_{12} = (1*8) + (2*10) + (3*12) = 8 + 20 + 36 = 64$
 $C_{21} = (4*7) + (5*9) + (6*11) = 28 + 45 + 66 = 139$
 $C_{22} = (4*8) + (5*10) + (6*12) = 32 + 50 + 72 = 58$

Para cadeias de Markov

• Matriz de transição P, onde cada elemento P_{ij} representa a probabilidade de transição do estado i para o estado j.

Para calcular a distribuição de probabilidades após n períodos,
 multiplica-se a matriz de transição pela distribuição de probabilidades inicial (um vetor), repetidamente, para o número de períodos desejado.

Para cadeias de Markov

• Seja P_0 a distribuição inicial de e P a matriz de transição. A distribuição após um período t é dada por:

•
$$P_t = P_0 * P^t$$

- Onde:
- P₀: vetor de estado inicial
- P: matriz de transição
- P^t : multiplicação repetida da matriz de transição por si mesma t

- 1. Definir os estados: identificar todas as possíveis situações do sistema;
- 2. Criar a matriz de transição: listar as probabilidades de mudança de um estado para outro;
- 3. Definir o estado inicial: determinar a condição inicial do sistema;
- **4. Calcular os próximos estados:** multiplicar o estado atual pela matriz de transição;
- **5. Repetir o processo para mais passos:** continuar multiplicando para prever estados futuros;
- **6. Analisar o estado estacionário:** após várias iterações, o sistema pode atingir um equilíbrio.

• • • • •

 Suponha que, baseado em dados históricos, as probabilidades de mudança de clima são:

De/Para	Ensolarado	Nublado	Chuvoso
Ensolarado	0,7	0,2	0,1
Nublado	0,3	0,4	0,3
Chuvoso	0,2	0,3	0,5

• Estado inicial: hoje temos 90% de chance de estar ensolarado, 10% de estar nublado e 0% de estar chuvoso: