University of New Brunswick Faculty of Computer Science

CS2333: Computability and Formal Languages

Homework Assignment 3, Due Time, Date 5:00 PM, February 11, 2022

Student Name: _____ Matriculation Number: _____

Instructor: Rongxing Lu

The marking scheme is shown in the left margin and [100] constitutes full marks.

- [20] 1. Give NFAs with the specified number of states recognizing each of the following languages.
- [4] (a) The language $\{w|w \in \{0,1\}^* \text{ end with } 00 \text{ with three states}\}.$
- [4] (b) The language $\{0\}$ with two states.
- [4] (c) The language $0^*1^*0^*0$ with three states.
- [4] (d) The language $\{\varepsilon\}$ with one state.
- [4] (e) The language 0^* with one state.
- [10] 2. Given below is the NFA for a language

 $L = \{ \text{ set of all strings over } \{0, 1\} \text{ that end with '11'} \}$

Construct its equivalent DFA.

[10] 3. Convert the following ε -NFA to its equivalent NFA.

[10] 4. Minimize the following DFA with reduced states.

- [10] 5. Design Regular Expression for the following languages over $\{a, b\}$.
- [5] (a) Language accepting strings of length at least 1.
- [5] (b) Language accepting strings of length at most 3.
- [10] 6. Find the Regular Expression for the following DFA.

- [10] 7. Covert each of the following Regular Expression to its equivalent Finite Automata.
- [5] (a) $0^* + 0^*10^*$
- [5] (b) 10 + (1+00)1*0

- [20] 8. Convert each of the following NFAs to an equivalent DFA.
- [10] (a)

[10] (b)

Solutions.

- 1. Give NFAs with the specified number of states recognizing each of the following languages.
 - (a) The language $\{w|w\in\{0,1\}^* \text{ end with } 00 \text{ with three states}\}.$

(b) The language $\{0\}$ with two states.

(c) The language 0*1*0*0 with three states.

(d) The language $\{\varepsilon\}$ with one state.

(e) The language 0^* with one state.

2. Given below is the NFA for a language

 $L=\{ \mbox{ set of all strings over } \{0,1\} \mbox{ that end with `11'} \}$

Construct its equivalent DFA.

	0	1
\rightarrow A	Α	A,B
В	Ø	C
<u>C</u>	Ø	Ø

Set A as the initial state,

	0	1
$\rightarrow A$	Α	AB
AB	Α	ABC
<u>ABC</u>	Α	ABC

3. Convert the following ε -NFA to its equivalent NFA.

	ε^*	0	ε^*
A	A	Ø	
	В	В	B,C
	C	C	C
	ε^*	1	ε^*
A	Α	Α	A,B,C
	В	Ø	
	C	C	C
	ε^*	0	ε^*
В	В	В	B,C
	C	C	C

	ε^*	1	ε^*
В	В	Ø	
	C	C	C

A, B, C are all final states, since the ε can make them reach C.

	0	1
$\rightarrow \underline{A}$	B,C	A,B,C
$\underline{\mathbf{B}}$	B,C	C
<u>C</u>	C	C

4. Minimize the following DFA with reduced states.

	0	1
\rightarrow A	В	С
В	В	D
C	В	C
<u>D</u>	В	C

- 0-Equivalence $\{ABC\}$, $\{D\}$
- 1-Equivalence $\{AC\},\,\{B\}$, $\{D\}$
- 2-Equivalence $\{AC\},\,\{B\}$, $\{D\}$

As there is no difference between 1-Equivalence and 2-Equivalence, we have

	0	1
\rightarrow AC	В	AC
В	В	D
$\underline{\mathbf{D}}$	В	AC

- 5. Design Regular Expression for the following languages over $\{a,b\}$.
 - (a) Language accepting strings of length at least 1.

$$L_1 = \{a, b, aa, ab, ba, bb, aaa, \dots\}$$

 $R_1 = (a+b)(a+b)^*$

(b) Language accepting strings of length at most 3.

$$L_2 = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb \cdots \}$$
$$R_2 = (\varepsilon + a + b)(\varepsilon + a + b)(\varepsilon + a + b)$$

6. Find the Regular Expression for the following DFA.

$$q_1 = \varepsilon + q_1 \cdot 0 \tag{1}$$

$$q_2 = q_1 \cdot 1 + q_2 \cdot 0 \tag{2}$$

$$q_3 = q_2 \cdot 1 + q_3 \cdot 0 + q_3 \cdot 1 \tag{3}$$

Based on the Arden Theorem, we know if R = Q + RP, we have $R = QP^*$.

Final state q_1

From (1), we have

$$\underbrace{q_1}_{R} = \underbrace{\varepsilon}_{Q} + \underbrace{q_1}_{R} \cdot \underbrace{0}_{P}$$

and then $q_1 = \varepsilon 0^*$, that is $q_1 = 0^*$.

Final state q_2

From (2), we have

$$q_2 = q_1 \cdot 1 + q_2 \cdot 0$$
 $q_2 = 0^* \cdot 1 + q_2 \cdot 0$ $\underbrace{q_2}_R = \underbrace{0^* \cdot 1}_Q + \underbrace{q_2}_R \cdot \underbrace{0}_P$

and then $q_2 = 0^* 10^*$.

Then, R is the union of both final states

$$R = 0^* + 0^*10^*$$
 or $R = 0^* + 0^*10^* = 0^*(\varepsilon + 10^*)$

- 7. Covert each of the following Regular Expression to its equivalent Finite Automata.
 - (a) $0^* + 0^*10^*$

(b) 10 + (1+00)1*0

 \Rightarrow

 \Rightarrow

8. Convert each of the following NFAs to an equivalent DFA.

(a)

	0	1
$\rightarrow \underline{A}$	A	В
<u>B</u>	В	Ø

	0	1
$\rightarrow \underline{A}$	A	В
<u>B</u>	В	D
D	D	D

D is a dead state.

(b)

Step 1: convert ε -NFA to NFA.

	ε^*	0	ε^*
A	A	A	A,B
	В	A	A,B
	ε^*	1	ε^*
A	Α	Ø	
	В	В	В
	ε^*	0	ε^*
В	В	A	A,B
	ε^*	1	ε^*
В	В	В	В
Step	2:		

	0	1
$\rightarrow \underline{A}$	A,B	В
В	A.B	В

Step 3: set AB as the initial state (Note that, if we set A as the initial state, we can use the minimization of DFA to get the same result.)

	0	1
$\rightarrow \underline{AB}$	AB	В
В	AB	В

