1.4 True or False: "If ab is a unit, then a, b are units"?

This statement is false.

Show the following for any ring R:

- a. If a^n is a unit in R, then a is a unit in R.
- b. If a is left-invertible and not a right 0-divisor, then a is a unit in R.
- c. If R is a domain, then R is Dedekind-finite.

Let R be any ring.

Solution.

a. Let $a \in R$ and assume that a^n is a unit in R. Then, there is a $b \in R$ such that $a^n b = ba^n = 1$. We have that $a^n b = (aa^{n-1})b = a(a^{n-1})b$ and $ba^n = b(a^{n-1}a) = (ba^{n-1})a$. Whence $a(a^{n-1}b) = (ba^{n-1})a = 1$. Therefore, a is a unit in R.

b. Let $a \in R$ and assume that a is left invertible and not a right 0-divisor. So, $a \neq 0$, there exists $b \in R$ such that ba = 1, and for all $c \in R \setminus \{0\}$, $ca \neq 0$. Now consider (1 - ab)a. By distribution, we get

$$(a - ab)a = a - (ab)a = a - a(ba) = a - a = 0$$

Since a is not a right zero divisor, we have that 1 - ab = 0. Hence, ab = 1, That is a is a unit in R.

c. Assume that R is a domain and let $a, b \in R \setminus \{0\}$ such that ab = 1. Now, consider a(1 - ba). This yields a - a(ba) = a - (ab)a = a - a = 0. Since R is a domain and $a \neq 0$, we have that 1 - ba = 0. That is 1 = ba. Thus, R is Dedekind-finite as desired.

1.5 Give an example of an element x in a ring R such that $Rx \subseteq xR$.

Solution.

Consider the ring of upper triangular 2×2 real matricies. So, $m \in R$ has the form $m = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ where $a, b, d \in \mathbb{R}$. Now consider $x = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \in R$. Then

$$Rx = \left\{ \left(\begin{array}{cc} a & b \\ 0 & d \end{array} \right) \left(\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right) = \left(\begin{array}{cc} 2a & 0 \\ 0 & 0 \end{array} \right) | a \in \mathbb{R} \right\}$$

and

$$xR = \left\{ \left(\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{cc} a & b \\ 0 & d \end{array} \right) = \left(\begin{array}{cc} 2a & 2b \\ 0 & 0 \end{array} \right) | a, b \in \mathbb{R} \right\}$$

Clearly, we have that $Rx \subseteq xR$ as desired.

1.9 Show that for any ring R, the center of the matrix ring $\mathbb{M}_n(R)$ consists of the diagonal matrices $r \cdot I_n$, where r belongs to the center of R.

Solution.

Let
$$R$$
 be any ring and let $r \in Z(R)$. Let $a = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \in \mathbb{M}_n(R)$ Hence,

$$(r \cdot I_n)a = \begin{pmatrix} ra_{11} & \cdots & ra_{1n} \\ \vdots & \ddots & \vdots \\ ra_{n1} & \cdots & ra_{nn} \end{pmatrix}$$

Since $r, a_{ij} \in R$ for $1 \le i, j \le n$ and $r \in Z(R)$, $ra_{ij} = a_{ij}r$ for all a_{ij} . Therefore,

$$\begin{pmatrix} ra_{11} & \cdots & ra_{1n} \\ \vdots & \ddots & \vdots \\ ra_{n1} & \cdots & ra_{nn} \end{pmatrix} = \begin{pmatrix} a_{11}r & \cdots & a_{1n}r \\ \vdots & \ddots & \vdots \\ a_{n1}r & \cdots & a_{nn}r \end{pmatrix} = a(r \cdot I_n)$$

Since $a \in \mathbb{M}_n(R)$ was arbitrary, we have that $(r \cdot I_n) \in Z(\mathbb{M}_n(R))$ where $r \in Z(R)$ as desired.

- 1.11 Let R be a ring possibly without an identity. An element $e \in R$ is called a left (resp. right) identity for R if ea = a(resp.ae = a) for every $a \in R$.
 - (a) Show that a left identity for R need not be a right identity.
 - (b) Show that if R has a unique left identity e, then e is also a right identity.

(Hint.For(b),consider(e + ae - a)c for arbitrary $a, c \in R$.)

Solution.

Let R be as above.

a. Consider the ring of 2×2 real matricies with 0's in the bottom row. That is, the ring $R = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b \in \mathbb{R} \text{ and } c, d = 0 \}$. Further consider the element $el = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in R$. Now, let $m \in R$. So,

$$el \cdot m = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$$

However,

$$m \cdot el = \left(\begin{array}{cc} a & b \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array}\right)$$

Since $m \in R$ was arbitrary, we have that el is a left identity, but not a right identity.

b. Let $e \in R$ be the unique left identity for R. Let $a, c \in R$ and consider (e + ae - a)c. By distribution, we have that

$$(e + ae - a)c = ec + (ae)c - ac = c + a(ec) - ac = c + ac - ac = c$$

Since we have that ec = (e + ae - a)c and that e is the unique left identity for R, e = e + ae - a. Hence, ae - a = 0 and thus ae = a. Therefore, e is also a right identity for R as desired.

1.17 Let x, y be elements in a ring R such that Rx = Ry. Show that there exists a right R-module isomorphism $f: xR \to yR$ such that f(x) = y.

Solution.

Let x, y, and R be as given. Consider the mapping $\phi: xR \to yR$ defined by $\phi(xr) = yr$ for all $r \in R$. Now, $\phi(xr + xr') = \phi(x(r + r'))$ since xR is a right R-module. Whence, $\phi(x(r + r')) = y(r + r') = yr + yr' = \phi(xr) + \phi(xr')$ since yR is also a right R module. Now, let $r' \in R$. So, $\phi(xr)r' = (yr)r' = y(rr') = \phi(x(rr')) = \phi((xr)r')$ since R is a ring and xR, yR are right R-modules. Therefore, ϕ is a right R-module homomorphism. Now, let let $xr, xr' \in xR$ and assume that $\phi(xr) = \phi(xr')$. That is yr = yr'. Now, let $\bar{r} \in R$ So, $\bar{r}(yr) = \bar{r}(yr')$. By associativity, $(\bar{r}y)r = (\bar{r}y)r'$. Since Rx = Ry and $\bar{r} \in R$, we have that $(\bar{r}x)r = (\bar{r}x)r'$. Thus, xr = xr' and ϕ is 1 - 1. Now, let $yr \in yR$ be arbitrary. We see that $\phi(xr) = yr$, and so ϕ is also onto. It follows that ϕ is a right R-module isomorphism. Clearly, if r = 1 the identity of R, then we have that $\phi(x) = y$ where $\phi: xR \to yR$ is an isomorphism.

1. Let R be a ring and

$$0 \longrightarrow M_1 \stackrel{\phi_1}{\longrightarrow} M_2 \stackrel{\phi_2}{\longrightarrow} M_3 \longrightarrow 0$$

a short exact sequence of left R-modules. Show that if M_2 is noetherian, then so are M_1 and M_3 .

Solution.

Let R and the above sequence be as given. Assume that M_2 is noetherian. Let $K = \ker(\phi_2)$. We have that $K \subseteq M_2$ and since M_2 is noetheriean, so to is M_2/K . Since the sequence is short exact, we know that ϕ_2 is onto, and so $\phi_2(M_2) = M_3$. Now, by the Fundamental Homomorphism Theorem, we have that $M_2/K \cong \phi_2(M_2) = M_3$, and so M_3 is also noetherian. Now, let $N_1 \subset N_2 \subset \ldots$ be an ascending chain of left R-submodules of M_1 . So, $\phi_1(N_1) \subset \phi_1(N_2) \subset \ldots$ is an ascending chain of left R-submodules of M_2 . Since M_2 is noetherian, we have that $\phi_1(N_1) \subset \phi_1(N_2) \subset \ldots$ satisfies the ascending chain condition. That is for some $n \in \mathbb{Z}^+$, we have that $\phi_1(N_n) = \phi_1(N_{n+1}) = \ldots$ Since the above sequence is short exact, we have that ϕ_1 is 1-1. Thus, $N_n = N_{n+1} = \ldots$ Whence, $N_1 \subset N_2 \subset \ldots$ also satisfis the ascending chain condition. Therefore, M_1 is also noetherian.

2. Let R be a ring and $n \in \mathbb{Z}^+$. Show that if $\mathbb{M}_n(R) \mathbb{M}_n(R)$ is artinian, then so is RR.

Solution.

Let R and n be as above. Assume that $\mathbb{M}_{n(R)}\mathbb{M}_{n}(R)$ is artinian. So, let $N_1 \supseteq N_2 \supseteq \ldots$ be a descending chain of submodules of R. Then, $\mathbb{M}_{n}(N_1) \supseteq \mathbb{M}_{n}(N_2) \supseteq \ldots$ is a descending chain of submodules of $\mathbb{M}_{n(R)}\mathbb{M}_{n}(R)$. Since $\mathbb{M}_{n(R)}\mathbb{M}_{n}(R)$ is artinian, we have that $\mathbb{M}_{n}(N_m) = \mathbb{M}_{n}(N_{m+1}) = \ldots$ for some $m \in \mathbb{Z}^+$. Clearly, I_n the $n \times n$ identity matrix is an element of $\mathbb{M}_{n}(N_i)$ for all $i \in \mathbb{Z}^+$. Hence, let $x_m \in N_m$. Then $x_m \cdot I_n \in \mathbb{M}_{n}(N_m)$ and $x_m \cdot I_n \in \mathbb{M}_{n}(N_{m+i})$ for all $i \in \mathbb{Z}^+$ since $\mathbb{M}_{n}(N_m) = \mathbb{M}_{n}(N_{m+1}) = \ldots$. Therefore, we have that $x_m \in N_{m+i}$ for all $i \in \mathbb{Z}^+$. Since x_m was arbitrary, we have that $N_m = N_{m+1} = \ldots$. Thus, the descending chain of submodules of R, $N_1 \supseteq N_2 \supseteq \ldots$, satisfies the descending chain condition. That is, R is artinian as desired.

3. Let R be any ring and M a left R-module that is both artinian and noetherian. Prove that for any R-module homomorphism $\phi: M \to M$, there exists $n \in \mathbb{Z}^+$ such that $\phi^n(M) \cap \ker(\phi^n) = \{0\}$.

Solution.

Let R and M be as given. Let $\phi: M \to M$ be an R-module homomorphism. Consider the ascending chain

$$\phi(M) \subset \phi^2(M) \subset \phi^3(M) \subset \dots$$

and the descending chain

$$\phi(M) \supset \phi^2(M) \supset \phi^3(M) \supset \dots$$

Since ϕ is an endomorphism, $\phi^i(M) \in M$ for all $i \in \mathbb{Z}^+$. Since M is noetherian, we have that

$$\phi(M) \subset \phi^2(M) \subset \phi^3(M) \subset \ldots \subset \phi^l(M) = \phi^{l+1}(M) = \ldots$$

for some $l \in \mathbb{Z}^+$ and since M is also artinian,

$$\phi(M) \supset \phi^2(M) \supset \phi^3(M) \supset \ldots \supset \phi^m(M) = \phi^{m+1}(M) = \ldots$$

for some $m \in \mathbb{Z}^+$. Now set $n = \max\{l, m\}$. Then, $\phi^n(M) = \phi^{n+1}(M) = \ldots$ satisfies both the ascending and descending chain conditions on M. Clearly $0 \in \phi^n(M) \cap \ker(\phi^n)$ since ϕ is an endomorphism. Now, let $x \in \phi^n(M) \cap \ker(\phi^n)$. That is, $\phi^n(x) = 0$ and there exists $y \in M$ such that $\phi^n(y) = x$. So, $\phi^{n+1}(y) = \phi(x)$ and $\phi^{n+2}(y) = \phi^2(x)$. Continuing this process of composing with ϕ on both sides, we see that $\phi^{2n}(y) = \phi^n(x) = 0$. Whence, x = 0. Since $x \in \phi^n(M) \cap \ker(\phi^n)$ was arbitrary, $\phi^n(M) \cap \ker(\phi^n) \subseteq \{0\}$. Therefore, $\phi^n(M) \cap \ker(\phi^n) = \{0\}$ for some $n \in \mathbb{Z}^+$ as desired.