Population Genetics, Coalescent Trees and Urns

Caspar Friedrich - "Dolmen in the snow" (1807)

Schematic of evolving population

Ancestral methods

- •The coalescent was introduced in Kingman (1982) as a mathematical description of the genealogy that underlies the evolution of a population.
- It has become a standard tool for the analysis of molecular population data.
- It allows for efficient modeling/analysis of random samples drawn from a population.

John Kingman, 1939-

Coalescent trees - algorithm

- Time runs in reverse! (We start at the bottom and work our way up.)
- Start with a sample of n individuals (set k=n)
- Time to next event ~exp(k(k-1)/2)
 - Choose two lines of ancestry, uniformly at random, to coalesce. (So keep a list of the all the lines of ancestry that still exist.)
 - Label the new node as n+(n-k+1). Add it to the list of lines of ancestry that exist. Remove the two lines that coalesced.
 - Set k=k-1
- Keep going until you get down to one line (i.e., k=1)
- Forwards in time, this is equivalent to a model in which the offspring distribution is Multinomial(N,1/N,1/N,...,1/N)

Markov Chain

A *Markov chain* is a sequence of random variables $X_1, X_2, X_3, ...$ with the Markov property, namely that, given the present state, the future and past states are independent (Wikipedia).

Generic example: a random walk: X(i+1)=X(i)+R, where R is some random variable.

Born: 14 June 1856 in Ryazan, Russia Died: 20 July 1922 in Petrograd (now St Petersburg), Russia

http://www-history.mcs.st-and.ac.uk/Biographies/Markov.html

Theoretical results

- Let T_i be the time for the coalescence from i to i-1 lines.
- Let *T* be the overall height of the tree. Then:

$$E(T) = E(\sum_{i=2}^{n} T_i)$$

$$= \sum_{i=2}^{n} E(T_i)$$

$$= \sum_{i=2}^{n} 2/i(i-1)$$

$$= \frac{2}{n(n-1)} + \frac{2}{(n-1)(n-2)} + \dots + \frac{2}{3 \times 2} + \frac{2}{2 \times 1}$$

$$= \dots$$

Theoretical results

- Claim E(Tree height)=2(1-1/n)
- Can think of time here as being measured in units of N generations, where N is the population size (Kingman, 1982).
- Note that Expected tree height increases as sample size n increases.
- But also note that E(Tree height) never exceeds (or even reaches) 2 (or 2N generations).

Theoretical results

- Let *L_i* be the tree length for coalescence from i to i-1 lines.
- Let *L* be the overall height of the tree. Then:

$$E(L) = E(\sum_{i=2}^{n} L_i) = E(\sum_{i=2}^{n} iT_i)$$

$$= \sum_{i=2}^{n} E(iT_i)$$

$$= \sum_{i=2}^{n} 2i/i(i-1)$$

$$= \frac{2}{(n-1)} + \frac{2}{(n-2)} + \cdots + \frac{2}{2} + \frac{2}{1}$$

$$= 2\sum_{i=2}^{n} \frac{1}{n-1}$$

$$= 2 \sum_{i=1}^{n-1} \frac{1}{n}$$

$$\longrightarrow 2 \log(n-1), \text{ as } n \longrightarrow \infty$$

Optionmal Coalescent - Number of descendants of last two lines

Suppose we have a sample of size 50. What is the distribution of the number of descendants of the 'left (or right) ancestor'?

Now we add mutation

Present day

- Mutations may now appear on lines of ancestry.
- Recall, N = population size
- Suppose we have k lines of ancestry, indexed 1,2,...,k
- In a discrete generation model:
 - P(lines i and j coalesce)=1/N
 - k lines: P(some pair coalesce)=k(k-1)/2N
 - P(line i mutates)=u
 - k lines: P(some line mutates)~ku
 - Define θ =2Nu: P(some line mutates)~k θ /2N

- P(coalesce) = k(k-1)/2N
- P(mutation) = $k\theta/2N$
- The **Jump chain** (the chain observed only at times when the state changes) is as follows: one of two things will happen
 - $-P(coalesce) = [k(k-1)/2N] / [k(k-1)/2N + k\theta/2N]$ $= (k-1)/(k-1+\theta)$
 - $-P(mutation) = \theta/(k-1+\theta)$
- Again, the jump chain is a **Markov chain**. ("What you do next depends only upon where you are, not how you got there.")

Random nice results:

$$E(\# \text{ mutations}) = \sum_{k=2}^{n} E(\exp\left(\frac{k}{2}\right) k\theta/2)$$
$$= \sum_{k=2}^{n} \frac{\theta}{k-1} = \theta \sum_{k=1}^{n-1} \frac{1}{k}$$

Watterson's estimator of mutation rate:

$$\hat{\theta} = S / \sum_{k=1}^{n-1} \frac{1}{k}$$

where S is the observed number of segregating sites (estimate)

A sample is enough

P(sample of n has same MRCA as population of N) =

$$\frac{n-1}{n+1}\frac{N+1}{N-1}$$

(Saunders, I.W., Tavaré, S., Watterson, G.A.: On the genealogy of nested subsamples from a haploid population. Adv. Appl. Prob. 16, 471–491 (1984))

Mutation models

- There are many different mutation models:
 - Infinite Alleles each mutation creates a previously unseen allele [type]
 - Finite Sites there are a finite number of sites at which mutation can occur (e.g. mtDNA)
 - Infinite Sites assume there are an infinite number of sites that could mutate. Thus, each mutation will occur at a unique site.
 (Sounds a bit like Infinite alleles, but actually carries more information about ancestry.).
 - What model for the human genome?

mtDNA

http://en.wikipedia.org/wiki/Mitochondrial DNA

- Just 16000 base pairs
- Loop structure
- Codes for ~40 genes
- Energy factories
- Up to ~1000/cell
- Originally from bacteria engulfed by early eukaryote ancestors

Nucleotide position in the control region

	6	8	9	1 0 6	1 2 4	1 4 9	1 6 2	1 6 6	1 9 0	1 9 4	0	2 1 9	3	2 4 7	2 5 1	2 5 5	2 6 7	2 7 1	2 7 5	2 9 6	3 0 1	3 0 2	3 0 4	3 1 9	3	3 4 4
ID:	Т	С	С	G	С	Т	С	Т	G	Т	С	С	С	С	G	С	С	С	Т	G	Т	Т	С	Т	Т	A
1		_		_	_			C	A		T			_		T							_			
2			Ċ						A		Ť		:			Ť			i		i			Ċ	i	
3			Ī	Ī							т								Ī					Ì	Ì	
4		•											:							:					ċ	
5		Ť		À			Ť	:		:	Ť						Ť			À				•	č	
6	•	T		A									:							A					č	
7	ċ	Ť		Ā		:			:		Ť		:							A			:		č	
8	_	Ť		A									:							A		:			č	
9	ċ	Ť	:	1	•	:							:							A			:		č	
10		Ť	•		:					:			:						:						č	Ġ
11		T	٠	•									:												č	
12	:	Ť	٠	-	•	٠							:							A		:	:			
			٠	•	•	٠	٠											•								
13	٠	T	٠	•			٠		A		m								-			٠				•
14 15		Ť	٠	•		٠	٠		•	٠	T	•		•	:	T		•		A		:	•		C	
			٠	•		٠			•				٠						•						C	
16	٠	٠	٠	٠	-	٠			•		T	Т					٠					٠	Т		_	
17	•	٠	٠	•		٠		٠	•								٠				C		•			
18	٠	٠	÷	•	Т	٠	٠	٠	•	٠	T						٠			٠	٠			٠	_	
19	٠	٠	Т	٠	•	÷	٠	٠	•	٠	Т				:			Т		٠	٠		•			
20	٠	٠	٠	•	-			٠	•				٠				٠			٠					_	
21	÷	•	٠	•	-	٠		٠	•		T		٠				٠		•	٠	٠	_		٠		
22	C	٠	٠	-	-	٠	٠	٠	•	٠	_		٠	•	٠	٠	•	•		٠	٠	C	•	٠	٠	
23	٠	٠	٠	-	-	٠	٠	٠	•	٠	T	Т	•	•	٠	٠	•	•	C	٠	٠	C	-	٠	٠	
24	٠	٠	٠	-	-	٠	٠	٠	•	٠	Т	•	•	•	٠	٠	•	•	С	٠	٠	C	Т	٠	٠	
25		٠				٠		٠		٠	Т	T	٠		٠	٠			C	٠		C		C	٠	
26		٠				٠					٠	Т	٠		٠	٠	٠		С	٠		C	Т	C	٠	
27		٠		•	•	٠		C		C	٠	٠	٠		٠	٠				٠				٠	٠	
28								C		C			т													

infinite alleles model

- Think of types as colors
 - The type of the bottom of a branch is the same as its type at the top if there are no mutations on the branch
 - Otherwise, it is of some unique, new type

Comparing the coalescent to the Urn model

Present day

Real-life is complicated....

The coalescent with recombination.

Figure 5: Representation of an ancestry for markers subject to recombination

We trace the ancestry of a sample of 6 marker sequences, until we reach the MRCA. Mutational events are marked in blue. (Markers not ancestral to the sample are marked '-') Not all mutations on this **graph** will appear in the final sample.

References

Coalescent Theory, M. Nordborg:

https://onlinelibrary.wiley.com/doi/abs/10.1002/0470022620.bbc21

Coalescent Theory: An Introduction, J. Wakeley (2009).

https://www.amazon.com/Coalescent-Theory-Introduction-John-Wakeley/dp/0974707759/ref=sr_1_1? crid=AK4KGA9B24JO&keywords=coalescent+theory+wakeley&qid=1582304288&sprefix=coalescent+theory%2Caps%2C207&sr=8-1

Partition structures, Polya urns, the Ewens sampling formula, and the ages of alleles. P. Donnelly (1986).

https://www.sciencedirect.com/science/article/pii/0040580986900377

END