

2003 HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet and a Periodic Table are provided at the back of this paper
- Write your Centre Number and Student Number at the top of pages 13, 17, 21 and 25

Total marks - 100

Section I Pages 2–28

75 marks

This section has two parts, Part A and Part B

Part A – 15 marks

- Attempt Questions 1–15
- Allow about 30 minutes for this part

Part B - 60 marks

- Attempt Questions 16–29
- Allow about 1 hour and 45 minutes for this part

(Section II) Pages 29–37

25 marks

- Attempt ONE question from Questions 30–34
- Allow about 45 minutes for this section

Section I 75 marks

Part A – 15 marks Attempt Questions 1–15 Allow about 30 minutes for this part

Use the multiple-choice answer sheet.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample: $2 + 4 = (A) \ 2 (B) \ 6 (C) \ 8 (D) \ 9$ $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 $A lue{lue{\bullet}} B lue{lue{\bullet}} C \bigcirc D \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

Whi	ch of the following is an acid-base indicator?
(A)	Methanol
(B)	Methyl orange
(C)	Methanoic acid
(D)	Methyl ethanoate
Whi	ch of the following is a transuranic element?
(A)	Caesium
(B)	Cerium
(C)	Chromium
(D)	Curium
Whi	ch instrument is used to detect radiation from radioactive isotopes?
(A)	pH meter
(B)	Geiger counter
(C)	Ion-selective electrode
(D)	Atomic absorption spectrophotometer (AAS)
In w	hich layer of the atmosphere does ozone act as a UV radiation shield?
(A)	Mesosphere
(B)	Stratosphere
(C)	Thermosphere
(D)	Troposphere
(2)	Troposphere
(2)	Troposphere
	(A) (B) (C) (D) Which (A) (B) (C) (D) Which (A) (B) (C) (D)

Which of the following could be used to determine the total dissolved solids in a sample of muddy river water?

- (A) P and Q
- (B) R and S
- (C) P and R
- (D) Q and S
- 6 The table gives the heat of combustion in $kJ g^{-1}$ for a number of different fuels.

Fuel	Heat of combustion (kJ g ⁻¹)
Methanol	22.7
Ethanol	29.6
Propanol	33.6
Petrol (octane)	47.8

The heat of combustion in $kJ \text{ mol}^{-1}$ for one of the fuels was calculated as $2016 \, kJ \, \text{mol}^{-1}$. What was the fuel?

- (A) Methanol
- (B) Ethanol
- (C) Propanol
- (D) Petrol

7 The diagram is a representation of the Periodic Table. The positions of six different elements are shown.

What are the reactions of oxides of these elements with acid and with base?

	Oxide reacts with acid	Oxide reacts with base	Oxide reacts with acid and with base
(A)	Z	X	V
(B)	Y	X	U
(C)	X	Z	V
(D)	V	W	Y

8 A sulfuric acid solution has a concentration of 5×10^{-4} mol L⁻¹.

What is the pH of this solution, assuming the acid is completely ionised?

- (A) 3.0
- (B) 3.3
- (C) 3.6
- (D) 4.0

9 What is the name of the compound shown?

- (A) 1-chloro-1,2-difluoropropane
- (B) 3-chloro-2,3-difluoropropane
- (C) 1,2-difluoro-1-chloropropane
- (D) 1-chloro-1,2-difluoropentane

10 The graph shows October ozone concentrations above Halley Bay in Antarctica between 1956 and 1998.

Based on these data alone, which of the following is a valid statement about the concentration of ozone above Halley Bay?

- (A) It was greater in 1998 than in 1993.
- (B) It will be greater in 2004 than in 1998.
- (C) The variation in ozone concentration between 1960 and 1970 was due to changes in atmospheric CFC concentrations.
- (D) The variation in ozone concentration from one year to the next is due only to changes in atmospheric CFC concentrations.

11 Which polymer is made by the polymerisation of methyl methacrylate?

$$CH_3$$
 $H_2C=C-COOCH_3$
methyl methacrylate

$$\begin{array}{c|cccc} & COOCH_3 & COOCH_3 & COOCH_3 \\ & & & & & & \\ \hline (D) & -C & -C & -C & -C \\ & & & & & \\ \hline & CH_3 & CH_3 & CH_3 \end{array}$$

12 The graph shows the mass and amount of carbon, fluorine and chlorine atoms in one mole of a compound.

What is the molecular formula for this compound?

- (A) CF₂Cl
- (B) CF₂Cl₂
- (C) $C_2F_3Cl_3$
- (D) $C_2F_4Cl_2$

A student performed three tests to investigate the relative activity of metals. In each test a metal strip was placed in a solution containing ions of a different metal. The results are shown in the diagrams.

No reaction

What is the order of activity of the metals, based on these results?

- (A) X > Z > Y
- (B) Y > X > Z
- (C) Z > Y > X
- (D) Z > X > Y
- 14 In a titration of a strong base with a strong acid, the following procedure was used:
 - 1. A burette was rinsed with water and then filled with the standard acid.
 - 2. A pipette was rinsed with some base solution.
 - 3. A conical flask was rinsed with some base solution.
 - 4. A pipette was used to transfer a measured volume of base solution into the conical flask.
 - 5. Indicator was added to the base sample and it was titrated to the endpoint with the acid.

Which statement is correct?

- (A) The calculated base concentration will be correct.
- (B) The calculated base concentration will be too low.
- (C) The calculated base concentration will be too high.
- (D) No definite conclusion can be reached about the base concentration.

Which of the following graphs shows how pH will vary when dilute HCl is added to 100 mL of dilute natural buffer solution with an initial pH of 7.0?

(A)

14
12
10
10
9H
6
4
2
0
0
20
40
60
80

Volume of HCl added (mL)

(C)

14
12
10
pH 8
6
4
2
0
0 20 40 60 80

Volume of HCl added (mL)

	HIGHER SCHOOL CERTIFICATE EXAMINATION							Contro	Nu	mber
Secti	ion I (continued)								INU	
Atten	B – 60 marks npt Questions 16–29 v about 1 hour and 45 minutes for this part				1	<u> </u>	St	uden	t Nu	mber
Answ	ver the questions in the spaces provided.									
Show	all relevant working in questions involving ca	lcula	tions	•						
Ques	tion 16 (3 marks)								M	arks
-	performed a first-hand investigation that more entation of glucose to ethanol.	itore	ed m	ass (chang	ges o	lurin	g the	e	
(a)	Outline the procedure you used.									2
		•••••		•••••	•••••	•••••	•••••	•••••	•	
		•••••	• • • • • • •	••••••	•••••	•••••	•••••	•••••	•	
								••••••		
			•••••	•••••				•••••	•	
			•••••	•••••	•••••	•••••		•••••	•	
				•••••	•••••	•••••	•••••	•••••	•	
									•	
(b)	Write a balanced chemical equation for this re	actio	n.	•••••				•••••	•	1

116 - 13 -

Question 17 (5 marks)

The flowchart shows the production of polyethylene.

(a)	Identify Compound <i>X</i> .	1
(b)	Describe <i>Process Y</i> .	3

Question 17 continues on page 15

Question 17 (continued)

A sample of polyethylene was produced by *Process Y*. The following graph shows the distribution of molecular weights of polymer molecules in the sample.

(c)	Why is a range of molecular weights observed?	1

End of Question 17

Please turn over

Question 18 (4 marks)	Marks
Describe how commercial radioisotopes are produced, and how transuranic elements are produced.	4

.....

Chemistry Centre Number Section I — Part B (continued) Student Number

Marks

Question 19 (3 marks)

(a)	Identify the cathode in this diagram.	1
(b)	Write the net redox equation for the cell reaction, and calculate the cell potential (E^{\bullet}) .	2

117 - 17 -

Mark	
------	--

5

Question 20 (5 marks)

Assess the suitability of biomass as a future source of energy and chemicals for industry.

Que	estion 21 (5 marks)	Marks
You	performed a first-hand investigation to prepare an ester by reflux.	
(a)	Identify the products formed when propanoic acid and butanol are refluxed with acid catalyst.	1
(b)	Draw a fully labelled diagram of the equipment assembled for use.	2
(c)	Outline the advantages of using reflux to prepare the ester.	2

Ques	stion 22 (3 marks)	Marks
(a)	Write a balanced chemical equation for the complete combustion of ethanol.	1
(b)	A mass of 72.5 g of ethanol was burnt completely in air. Calculate the volume of carbon dioxide that was produced at 25°C and 100 kPa.	2

Chemistry							antr	Nu:	mber		
Section I — Part B (continued)										inu.	
								Stı	uden	t Nu	mber
O	-)									M	arks
Question 23 (4 mark	s)										
25.0 mL of 0.12 mol acid. The results are r			e solu	ıtion	was	titra	ated v	with	nitri	С	
acid. The results are i		one.									
	Titration	Volume of	nitrio (mL)		d use	ed					
	1		20.4								
	2		18.1								
	3		18.2	,							
	4		18.1								
nitric acid.	ed chemical equat		actio	n of	bari	um 1	nydro	oxide	with	ı	1
(b) Calculate the co	oncentration of the	e nitric acid.									3

118 - 21 -

Question 24 (4 marks)	Marks
Discuss factors that must be considered when using neutralisation reactions to safely minimise damage in chemical spills.	4

.....

Explain the trends in boiling points shown in the graph.

4

Question 26 (4 marks)	Marks
Describe the process of eutrophication, and assess the suitability of water quality tests used to monitor it.	4

.....

2003	B HIGHER SCHOOL CERTIFICATE EXAMINATION									
Ch	emistry							Contro	Nu	 mber
Soct	ion I — Part B (continued)			T				T	INU	
Seci	ion 1 — Tart B (continued)									
							St	uden	t Nu	mber
									M	[arks
Que	stion 27 (5 marks)								IVI	larks
The 0.25	udent carried out an investigation to analyse the student weighed out $1.0\mathrm{g}$ of fertiliser and mol L^{-1} barium chloride solution was then add ate formed, which weighed $1.8\mathrm{g}$.	disso	lved	it i	n wa	ater.	50 n	nL o	f	
(a)	Calculate the percentage by mass of sulfate in	the f	ertili	ser.						2
		•••••				•••••				
			•••••	••••••	•••••	•••••	••••••	•••••	•	
		•••••							•	
						•••••		•••••		
		•••••				•••••		•••••		
		•••••				•••••		•••••		
(b)	Evaluate the reliability of the experimental pro-	ocedu	ire us	sed.						3
		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•	
		•••••	••••••	•••••	•••••	•••••	•••••	•••••	•	
		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••		•	
		•••••	•••••	•••••	•••••	•••••	•••••			
			•••••	•••••	•••••	•••••		•••••	•	
		•••••	•••••	•••••	•••••	•••••		•••••		
		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••		•••••	•	
		•••••	•••••	•••••	•••••	•••••		•••••		
		•••••	•••••	•••••	•••••	•••••		•••••		
			•••••		•••••	•••••	•••••	•••••	•	

119 - 25 -

Question 28 (4 marks)

The results of analysis of a set of standard cadmium solutions are presented in the table.

Concentration of cadmium standard solution (ppm)	Absorbance
0	0.00
3	0.22
6	0.38
9	0.62
12	0.83

(a) Draw an appropriate graph of the data.

2

Question 28 continues on page 27

2

Question 28 (continued)

The map shows a catchment area. There is an industrial plant, a sewage treatment plant and a small town, all of which discharge water into the river. Water samples were collected at four sites.

The results of analysis of cadmium levels from these four sites are given in the table.

Sample site	Absorbance
Site 1	0.08
Site 2	0.15
Site 3	0.55
Site 4	0.40

(b)	Justify your conclusion about the most likely source of cadmium pollution.

End of Question 28

7

Question 29 (7 marks)

Evaluate the importance of monitoring and managing the conditions used in the Haber rocess.	

2003 HIGHER SCHOOL CERTIFICATE EXAMINATION Chemistry

Section II

25 marks Attempt ONE question from Questions 30–34 Allow about 45 minutes for this section

Answer the question in a writing booklet. Extra writing booklets are available.

Show all relevant working in questions involving calculations.

		Pages
Question 30	Industrial Chemistry	30
Question 31	Shipwrecks, Corrosion and Conservation	31
Question 32	The Biochemistry of Movement	32–33
Question 33	The Chemistry of Art	34–35
Question 34	Forensic Chemistry	36–37

-29-

Question 30 — Industrial Chemistry (25 marks)

(a) (i) Identify ONE use of sulfuric acid in industry.

1

(ii) One of the starting materials used for preparing sulfuric acid is sulfur. Describe the process used to extract sulfur from mineral deposits.

3

- (b) During your practical work you performed a first-hand investigation to identify the products of electrolysis of sodium chloride.
 - or to dispose 1
 - (i) Describe ONE precaution you took to minimise hazards, or to dispose of reactants and products safely.

3

(ii) Outline the procedure you used to identify the products of electrolysis of sodium chloride.

5

(c) Analyse how an understanding of the structure and cleaning action of soaps led to the development of synthetic detergents.

1

- (d) The Ostwald process is used for making nitric acid from ammonia, and involves several equilibrium steps.
 - (i) Identify the only factor that changes the value of an equilibrium constant.

2

(ii) One step in the process produces nitrogen dioxide according to the equation:

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g).$$

This reaction is exothermic. Describe TWO methods that could be used to increase the yield of nitrogen dioxide.

(iii) A 1 L reaction vessel initially contained 0.25 mol NO and 0.12 mol $\rm O_2$. After equilibrium was established there was only 0.05 mol NO.

3

Calculate the equilibrium constant for the reaction. Show all relevant working.

(e) Assess how environmental issues have been addressed in an industrial method of production of an acid, and an industrial method of production of a base.

6

Marks **Question 31 — Shipwrecks, Corrosion and Conservation** (25 marks) Identify ONE passivating metal. 1 (a) (i) Account for the differences in corrosion of active and passivating metals. 3 (ii) Include a relevant balanced chemical equation in your answer. (b) During your practical work you performed a first-hand investigation to identify the factors that affect the rate of an electrolysis reaction. 1 Describe ONE precaution you took to minimise hazards, or to dispose of reactants and products safely. Outline the procedure you used to show how ONE factor affects the rate 3 (ii) of an electrolysis reaction. The Titanic struck an iceberg in 1912 and sank to a depth of more than three 5 (c) kilometres. Analyse how theories about corrosion at great ocean depth have changed since the recent discovery of extensive corrosion on wrecks such as the Titanic. (d) Fishermen face a problem of limiting corrosion of their steel fish hooks. A fisherman has the choice of storing his steel fish hooks in a plastic, copper or aluminium container. What is the main metal in steel? 1 5 (ii) Compare the effectiveness of these containers in limiting corrosion of steel fish hooks. Assess how an understanding of electrolysis has contributed to the development 6 (e) of methods for cleaning and restoring marine artefacts.

Question 32 — The Biochemistry of Movement (25 marks)					
(a)	(i)	Identify the role of glycogen in human muscle and liver.	1		
	(ii)	Describe the process of bond formation when glucose molecules react to form glycogen.	3		
(b)		g your practical work you performed a first-hand investigation to compare ructures of fatty acids and glycerol.			
	(i)	Describe the results of your investigation.	2		
	(ii)	Outline why glycerol is more soluble in water than are fatty acids that are commonly found in the body.	2		
(c)	•	se how an understanding of the composition and structure of proteins led current theory of muscle contraction.	5		

Question 32 continues on page 33

1

(d) The flowchart summarises the production of ATP from glucose and stearic acid.

- (i) Identify Pathway P.
- (ii) Construct a word-equation that summarises the formation of products in *Pathway P*, when one molecule of glucose is metabolised.
- (iii) Explain why fats can produce more energy per carbon atom than carbohydrates.
- (e) Evaluate the importance of the chemistry of ATP in metabolic processes. **6**

End of Question 32

Question 33 — The Chemistry of Art (25 marks)

- (a) (i) What is the maximum number of electrons found in an atomic orbital?
 - (ii) The graph shows the first five ionisation energies for sodium, aluminium and magnesium.

C E Housecroft & E C Constable, 2002, Chemistry, 2nd edn, reproduced woth permission of Prentice Hall, Harlow, England.

Explain how the data can be used to provide information about the arrangement of electrons around the atoms.

- (b) During your practical work you performed a first-hand investigation to observe the flame colour of different metal ions.
 - (i) Explain the precautions you took during your investigation.
- 2

2

5

- (ii) Outline the procedure you used to observe the flame colour of different metal ions.
 - ıı
- (c) Analyse the relationship between the chemical composition and properties, including colour, of pigments used in traditional art by Aboriginal people.

Question 33 continues on page 35

1

(d) In the early 1900s, many Australian children were diagnosed as having Pink disease.

The symptoms included pain, loss of teeth, and the presence of a pink colour on fingers and toes.

The first indication that Pink disease was due to mercury poisoning came from the successful treatment of the children using EDTA.

- (i) Identify the block in the Periodic Table in which mercury is present.
- (ii) Explain why transition metals such as mercury may have more than one oxidation state.
- (iii) Explain why chelating ligands such as EDTA are often used to treat poisoning by heavy metals.
- (e) Evaluate the usefulness of the range of technologies used by chemists to identify pigments. 6

End of Question 33

Que	stion 3	4 — Forensic Chemistry (25 marks)	
(a)	(i)	Identify the general class of compounds represented by the formula $C_x(H_2O)_y$.	1
	(ii)	Describe TWO tests that can be used to distinguish between some of the following classes of organic compounds: alkanes, alkanes, alkanols and alkanoic acids.	3
(b)	Durin	g your practical work you performed a first-hand investigation to	
(0)		guish between reducing and non-reducing sugars.	
	(i)	Describe ONE precaution you took to minimise hazards, or to dispose of reactants and products safely.	1
	(ii)	Outline the procedure you used to distinguish between reducing and non-reducing sugars.	3
(c)	•	se how emission spectra of elements assist in the identification of the s of a mixture.	5

Marks

Question 34 continues on page 37

(d) The diagram shows the results of an investigation to identify the parents of a child. The DNA fingerprints from the mother (M) and child (C) are labelled. Also shown are the DNA fingerprints from two possible fathers (F1) and (F2).

M C F1 F2

(i) Identify the more probable father.

1

(ii) Outline the structure and composition of DNA.

- 2
- (iii) Describe how DNA fingerprints are produced, and explain why they can be used to show that two people belong to the same family.
- 3
- (e) Evaluate how the development of chromatographic methods has advanced forensic science.

End of paper

2003 HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

DATA SHEET

Avogadro constant, N_A		$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at	100 kPa and	
	at 0°C (273.15 K)	. 22.71 L
	at 25°C (298.15 K)	. 24.79 L
Ionisation constant for water at	25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water		$1.4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Some useful formulae

$$pH = -\log_{10}[H^+] \qquad \qquad \Delta H = -m C \Delta T$$

Some standard potentials

Some se	· · · · · · · · · · · · · · · · · · ·	a potentials	
$K^+ + e^-$	\rightleftharpoons	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	–2.91 V
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	Ca(s)	–2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na(s)	–2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg(s)	-2.36 V
$Al^{3+} + 3e^-$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^-$	\rightleftharpoons	Mn(s)	-1.18 V
$H_2O + e^-$	\rightleftharpoons	$\frac{1}{2}\mathrm{H}_2(g) + \mathrm{OH}^-$	-0.83 V
$Zn^{2+} + 2e^-$	\rightleftharpoons	Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni(s)	-0.24 V
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
$Pb^{2+} + 2e^-$	\rightleftharpoons	Pb(s)	-0.13 V
$H^+ + e^-$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e ⁻	\rightleftharpoons	2OH-	0.40 V
$Cu^+ + e^-$	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	\rightleftharpoons	I ⁻	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	\rightleftharpoons	I ⁻	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe^{2+}	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^-$	\rightleftharpoons	Br ⁻	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^-$	\rightleftharpoons	Br ⁻	1.10 V
$\frac{1}{2}$ O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2}\text{Cl}_2(g) + e^-$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^-$	\rightleftharpoons	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}$ F ₂ (g) + e ⁻	\rightleftharpoons	F ⁻	2.89 V

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

	4)	33		. <u>∞</u>	Ę		35	u.		30	ton		4)	<i>ε</i> :	uc		_ =		∞ c) ,	tium
		4.003 Helium								83.	Kryp	25	× —	131							Ununoctium
			6	19.00	Fluorine	71	35.45	Chlorine	35 Br	79.90	Bromine	53	_	126.9	Iodine	85	AL [210.0]	Astatine	117		
			∞(16.00	Oxygen	16 S	32.07	Sulfur	34 Se	78.96	Selenium	52	Te	127.6	Tellurium	84 D	F0 [210.0]	Polonium	116 Uhh		Ununhexium
			L 2	14.01	Nitrogen	15 P	30.97	Phosphorus	33 As	74.92	Arsenic	51	$^{\mathrm{Sp}}$	121.8	Antimony	83	209 O	Bismuth	115		
			90	12.01	Carbon	4.S	28.09	Silicon	32 Ge	72.61	Germanium	50	Sn	118.7	Tin	82	707.2	Lead	114 Und	[Ununquadium
			ئ د	10.81	Boron	13 A1	26.98	Aluminium	31 Ga	69.72	Gallium	49	ln	114.8	Indium	81	204.4	Thallium	113		
STN B									30 Zn	65.39	Zinc	48	Cq	112.4	Cadmium	$\frac{80}{11}$	2006	Mercury	112 Uhb	}	Ununbium
FIFMENTS					ent				67 Cn	63.55	Copper	47	Ag	107.9	Silver	6 <u>/</u>	Au 197 0	Gold	1111 Ulim		Unununium
OF THE			3-1-1-0	33 11001 01 61	Name of element	1			%;Z	58.69	Nickel	46	Pd	106.4	Palladium	78	195 1	Platinum	110 Ulun		Ununnilium
TARLE C		KEY	79	Au 197.0	Gold				27 Co	58.93	Cobalt	45	Rh	102.9	Rhodium	ĽĽ	192.2	Iridium	109 M	[268]	Meimerium
•			Atomic Number	Atomic Weight					26 Fe	55.85	Iron	4	Ru	101.1	Ruthenium	76	190.2	Osmium	108 Hs	[265.1]	Hassium
PERIODIC			At	<					25 Mn	54.94	Manganese	43	Tc	[98.91]	Technetium	75	Ke	Rhenium	107 Bb	[764 1]	Bohrium
									75 Cr	52.00	Chromium	42	Mo	95.94	Molybdenum	74	183.8	Tungsten	106 So	[263.1]	Seaborgium
									23 V	50.94	Vanadium	41	Sp	92.91	Niobium	73 T.	180 9	Tantalum	105 dG	[262.1]	Dubnium
									22 Ti	47.87	Titanium	40	Zr	91.22	Zirconium	72	178.5	Hafnium	104 Rf	[261.1]	Rutherfordium
									21 Sc	44.96	Scandium	39	Τ	88.91	Yttrium	57–71		Lanthanides	89–103		Actinides
-			4 5	9.012	Beryllium	12 Q	24.31	Magnesium	20 Ca	40.08	Calcium	38	Sr	87.62	Strontium	56	137.3	Barium	88 Ra	[226.0]	Radium
	1	1.008 Hydrogen	8.1	6.941	Lithium	17 27	22.99	Sodium	19 K	39.10	Potassium	37	Rb	85.47	Rubidium	55	132 0	Caesium	87 Fr	[223.0]	Francium

1		1	4	,	- 1	1	. ,	1	1	1		1	1	
57	28	59	09	61	62	63	4	65	99	29	89	69	0/	71
La	ပိ	Pr	PZ	Pm	Sm	En	PS Cd	Tb	Dy	Но	Ē	Tm	Yb	Lu
138.9	140.1	140.9	144.2	[146.9]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium

Li							.1] [262.1]	_
Yb							[1259.1]	
TE	168.9	Thulium			101	Md	[258.1]	Mendeleviu
Б Б	167.3	Erbium			100	Fm	[257.1]	Fermium
Ho	164.9	Holmium			66	Es	[252.1]	Einsteinium
Dy	162.5	Dysprosium			86	Cţ	[252.1]	Californium
3£	158.9	Terbium			62	Bk	[249.1]	Berkelium
33	157.3	Gadolinium			96	Cm	[244.1]	Curium
品	152.0	Europium			95	Am	[241.1]	Americium
Sm	150.4	Samarium			94	Pu	[239.1]	Plutonium
Pm	[146.9]	Promethium			93	dN	$[23\bar{7}.0]$	Neptunium
PN	144.2	Neodymium			92	D	238.0	Uranium
P.	140.9	Praseodymium			91	Pa	231.0	Protactinium
දුද	140.1	Cerium			96	Th	232.0	Thorium
La	138.9	Lanthanum		Actinides	68	Ac	[227.0]	Actinium
			'	7				

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes 237 Np and 99 Tc.