Assignment 05

PUBH 8878

Setup

```
set.seed(8878)

library(ggplot2)
library(dplyr)
library(tibble)
```

Data for the assignment

We simulate m test statistics using the two-groups model discussed in lecture, then convert to two-sided p-values.

```
m <- 20000
pi0_true <- 0.95 # fraction of nulls
sigma_true <- 2.0 # sd under alternative
tau_true <- 1.0 # sd under null (standard normal null)

H <- rbinom(m, 1, 1 - pi0_true) # 1 = non-null, 0 = null
z <- numeric(m)
z[H == 0] <- rnorm(sum(H == 0), 0, tau_true) # null z
z[H == 1] <- rnorm(sum(H == 1), 0, sigma_true) # alt z
p <- 2 * pnorm(-abs(z)) # two-sided p-values

dat <- tibble(i = seq_len(m), z = z, p = p, H = H)</pre>
```

A quick look:

m	m0	m1	pi0	min_p	med_p
20000	19010	990	0.951	0	0.486

```
ggplot(dat, aes(p)) +
  geom_histogram(bins = 60, color = "black", fill = "grey90") +
  labs(x = "p-value", y = "Count")
```


Problem 1: Some theory (20 pts)

(a) (4 pts) Prove that if a continuous test statistic T has null cdf F_0 , then the one-sided p-value $P = 1 - F_0(T)$ is **Uniform(0,1)** under the null. (Hint: use the probability integral

transform.)

- (b) Show that BFDR(A) = $\frac{F_0(A)\pi_0}{F(A)}$. Then, let $\mathrm{lfdr}(z) = \mathrm{Pr}(H=0 \mid Z=z) = \frac{\pi_0 f_0(z)}{f(z)}$. Prove the averaging identity BFDR(A) = $\mathbb{E}[\mathrm{lfdr}(Z) \mid Z \in A]$. (Hint: write both numerator and denominator as integrals over A.)
- (c) (3 pts) Briefly describe the key difference between FDR control at level q (e.g., BH) and reporting local false discovery rates (lfdr) for individual hypotheses.

Problem 2: Implement BH step-up from scratch (20 pts)

We will implement the BH decision rule and compare to built-ins.

- (a) (10 pts) Write an R function bh_from_scratch(p, q) that:
 - 1. orders the input vector of p-values p
 - 2. finds $k = \max\{i: p_{(i)} \le (i/m)q\}$ (take k = 0 if the set is empty)
 - 3. returns a list with k, the BH threshold $\alpha^* = (k/m)q$, and a logical vector reject of length m marking rejections.

Then run it at q = 0.10 on the vector dat\$p. Produce a plot overlaying the ordered $p_{(i)}$ and the BH line (i/m)q, and mark the chosen cutoff.

- (b) (5 pts) Compare your rejections to p.adjust(dat\$p, method="BH") <= 0.10. They should match exactly. Report the number of discoveries.
- (c) (5 pts) Report the *empirical FDP* on this simulated data, $Q = V/\max(1, R)$, using the latent truth H (remember: H==0 means null). Comment briefly.

Problem 3: Simulation study of BH FDR control (20 pts)

Design a small simulation to assess how the BH FDR behaves as a function of π_0 and the alternative strength.

- Fix m = 5000, q = 0.10. For each $\pi_0 \in \{0.6, 0.8, 0.9, 0.95\}$ and alternative sd $\sigma \in \{1.5, 2.0\}$:
 - simulate 200 independent datasets via the two-groups model with tau = 1,
 - apply BH at level q,
 - record the FDP for each replication using the latent truth.
- Plot the average FDP and its simulation SE versus π_0 for each σ . Does BH control FDR near $\pi_0 q$ under independence?

Problem 4: Empirical-Bayes BFDR from p-values (20 pts)

We will estimate the Bayesian FDR at a threshold p_t using

$$\widehat{\mathrm{BFDR}}(p_t) = \frac{\hat{\pi}_0\,p_t}{\hat{F}(p_t)}, \qquad \hat{F}(p_t) = \frac{1}{m}\sum_{i=1}^m \mathbf{1}\{p_i \leq p_t\}.$$

(a) (8 pts) Implement the Storey (2002) estimator

$$\widehat{\pi}_0(\lambda) = \frac{\#\{p_i > \lambda\}}{m(1-\lambda)}, \qquad \lambda \in [0.5, 0.95],$$

and report the smoothed estimate $\hat{\pi}_0$ obtained by fitting a cubic spline or loess of $\hat{\pi}_0(\lambda)$ versus λ and evaluating at $\lambda = 1$

- (b) (6 pts) For a grid of thresholds $p_t \in \{10^{-6}, 10^{-5}, \dots, 10^{-1}\}$, compute $\widehat{\text{BFDR}}(p_t)$ and plot it as a function of p_t .
- (c) (6 pts) Pick the smallest p_t whose estimated BFDR is ≤ 0.10 and report how many discoveries you would make at that threshold. Compare to the BH discoveries at q=0.10 from Problem 2.

Compare your $\hat{\pi}_0$ to the estimate from the qvalue package and report both.

Problem 5: q-values and discovery sets (10 pts)

Compute qvalues <- qvalue::qvalue(dat\$p) and:

- (a) (4 pts) Report how many features have qvalues \neq 0.10. Compare to BH at q = 0.10 and to your BFDR-based threshold in Problem 4.
- (b) (6 pts) Sort features by their q-values (ascending). Let $\bar{q}(k)$ be the running mean of the first k q-values. Plot $\bar{q}(k)$ versus k and mark the largest \hat{k} with $\bar{q}(\hat{k}) \leq 0.10$. Explain why selecting the first \hat{k} features is a reasonable discovery rule.

Problem 6: Brief discussion (20 pts)

Write a concise paragraph (6–10 sentences) addressing the following:

- How do BH, BFDR thresholding, and q-value selection compare on these data in terms of number of discoveries and estimated error rates?
- What assumptions underlie BH control, and how might LD (dependence among tests) in GWAS affect it?
- What are potential pitfalls of estimating π_0 from the empirical distribution of p-values?