Characterizing A Geolocation Dataset

Alexis Barrett CDS 486 Student

February 19, 2019

1 Problem Statement

Given a .csv file of geolocation points of a short leg of a cross-country roadtrip, clean and characterize the dataset. The data file includes time stamped longitude, latitude, altitude, speed and accuracy data points. Cleaning the dataset will involve logical definition of outliers, and characterization of the dataset will mean plotting the data onto a map and calculating distance traveled.

2 Data Exploration

As seen in the table in Figure 2, the maximum speed is 161.70 kilometers per hour. The minimum speed is 0.0 kilometers per hour.

	latitude	longitude	altitude	speedmph	speedkmh	accuracy
count	2850.000000	2850.000000	2850.000000	2850.000000	2850.000000	2850.000000
mean	41.663934	-87.307773	192.319649	39.329404	63.294246	10.458831
std	0.083421	0.254616	19.384816	18.335309	29.507759	6.429008
min	41.592181	-87.638856	171.000000	0.000000	0.000000	5.000000
25%	41.604792	-87.530962	182.000000	28.000000	45.000000	10.000000
50%	41.616590	-87.323511	185.000000	40.500000	65.200000	10.000000
75%	41.710130	-87.133026	191.000000	48.175000	77.475000	10.000000
max	41.877575	-86.754688	266.000000	100.500000	161.700000	98.216204

Figure 1: Table of summary statistics for raw data in file1.csv

2.1 Accuracy vs. Speed

There is a positive correlation between speed and accuracy of the geolocation data, wherein high speeds lead to a large accuracy value. (which in laymen terms means that it is low accuracy, because of the way that accuracy is defined in this dataset.)

Figure 2: Scatterplot of speed vs. accuracy with a linear line of best fit

2.2 Speed Data

It is unusal for a histogram to be multimodal, as is this histogram, with four distinct peaks. In the case of this dataset however, it can be explained by speed limits.

2.3 Outliers

The lowerbound of the dataset should remain at 0 kph because as automobile travel data, it is reasonable that the car should stop moving, therefore making these data important. The upper bound should be mu + 2 sigma because this value (122.2 kph or about 76 mph) coordinates closely to the speed limit in both Indiana and Illinois of 70 mph. There is also evidence that the accuracy of the data is lower at higher speeds, making this bound more important than a lower bound. It is unlikely that the driver would drive more than 6 mph above the speed limit given the value of the uppermost modes at approximately 110 kph or 68 mph.

2.4 Accuracy data

It would be a good choice to eliminate values above 10 m accuracy from the dataset because over 2500 points would be included in the dataset of 2850 points. Proportionally, this means keeping about 90% of the data.

3 Data Cleaning

Outliers will be considered speeds greater than 2 standard deviations above average speed as well as accuracy greater than 10 meters. This definition of outliers will include 214 data points which will be eliminated from the dataset. None were modified.

Figure 3: Speed histogram of raw data

3.1 Analysis of Data Cleaning

Comparing the raw data and the cleaned dataset, there are 214 few points in the cleaned dataset. The minimum speed is the same for both dataset, but the maximum speed has been decreased in the cleaned dataset. Accordingly this led to a lowering of the mean value in the cleaned dataset.

The speed distribution as shown in Figure 6 is quite similar in shape to the speed histogram of the raw dataset. The distribution still is multimodal with four distinct peaks which correlate to stopped, 35 mph speed limit, 55 mph speed limit, and 70 mph speed limit. The most defined difference is in the spread, as values above 125 kph have been eliminated in the cleaned dataset.

The new plot ranges in the Speed vs. Accuracy plot of cleaned data (see Figure 7) are refined compared to the raw dataset. Speed is limited to 0 kph to 120 kph, as opposed to the original 0 kph to 165 kph; accuracy is limited to 5 m to 10 m, as opposed to 5 m to 100 m. There is clumping present at 5 m and 10 m accuracy, though there is no longer any correlation in this plot between speed and accuracy. This is ideal because we want speed and accuracy to act as independent variables.

4 Geopandas

The map in Figure 10 was generated using shapefiles and the geopandas package.

4.1 Distance Calculations

The total distance traveled on this journey as recorded by the geolocation data is 92.868 km. As the crow flies, distance traveled was 80.76 km.

5 Teaming Assignment

Figure 4: Accuracy histogram of raw data

Figure 5: Table of summary statistics for clean data

latitude	longitude	altitude	speedmph	speedkmh	accuracy
2636.000000	2636.000000	2636.000000	2636.000000	2636.000000	2636.000000
41.664784	-87.311951	191.518589	38.671206	62.234901	9.111570
0.083410	0.251610	17.510421	17.665368	28.429410	1.907298
41.592379	-87.638186	171.000000	0.000000	0.000000	5.000000
41.604793	-87.532001	182.000000	27.800000	44.800000	10.000000
41.615946	-87.321402	185.000000	39.600000	63.800000	10.000000
41.711085	-87.133602	191.000000	46.500000	74.825000	10.000000
41.872075	-86.755283	266.000000	75.900000	122.200000	10.000000
	2636.000000 41.664784 0.083410 41.592379 41.604793 41.615946 41.711085	2636.000000 2636.000000 41.664784 -87.311951 0.083410 0.251610 41.592379 -87.638186 41.604793 -87.532001 41.615946 -87.321402 41.711085 -87.133602	2636.000000 2636.000000 2636.000000 41.664784 -87.311951 191.518589 0.083410 0.251610 17.510421 41.592379 -87.638186 171.000000 41.604793 -87.532001 182.000000 41.615946 -87.321402 185.000000 41.711085 -87.133602 191.000000	2636.000000 2636.000000 2636.000000 2636.000000 41.664784 -87.311951 191.518589 38.671206 0.083410 0.251610 17.510421 17.665368 41.592379 -87.638186 171.000000 0.000000 41.604793 -87.532001 182.000000 27.800000 41.615946 -87.321402 185.000000 39.600000 41.711085 -87.133602 191.000000 46.500000	2636.000000 2636.000000 2636.000000 2636.000000 2636.000000 2636.000000 41.664784 -87.311951 191.518589 38.671206 62.234901 0.083410 0.251610 17.510421 17.665368 28.429410 41.592379 -87.638186 171.000000 0.000000 0.000000 41.604793 -87.532001 182.000000 27.800000 44.800000 41.615946 -87.321402 185.000000 39.600000 63.800000 41.711085 -87.133602 191.000000 46.500000 74.825000

Figure 6: Speed histogram from cleaned dataset.

Figure 7: Scatterplot of Speed vs. Accuracy from cleaned dataset.

Figure 8: Table of summary statistics for data cleaned by accuracy = 5 m.

	latitude	longitude	altitude	speedmph	speedkmh	accuracy
count	466.000000	466.000000	466.000000	466.000000	466.000000	466.0
mean	41.638673	-87.253372	186.856223	35.687339	57.431760	5.0
std	0.063612	0.181564	7.725863	17.845956	28.721005	0.0
min	41.596420	-87.635442	177.000000	0.000000	0.000000	5.0
25%	41.607517	-87.256538	183.000000	28.000000	45.000000	5.0
50%	41.613882	-87.220090	185.000000	29.200000	47.000000	5.0
75%	41.620652	-87.178734	188.000000	41.700000	67.075000	5.0
max	41.799261	-86.759924	258.000000	72.400000	116.500000	5.0

Figure 9: Table of summary statistics for data cleaned by accuracy = 10 m.

	latitude	longitude	altitude	speedmph	speedkmh	accuracy
count	2158.000000	2158.000000	2158.000000	2158.000000	2158.000000	2158.0
mean	41.670579	-87.325248	192.425394	39.314875	63.270853	10.0
std	0.086122	0.262013	18.660218	17.590692	28.308972	0.0
min	41.592379	-87.638186	171.000000	0.000000	0.000000	10.0
25%	41.604729	-87.541173	182.000000	27.800000	44.700000	10.0
50%	41.619467	-87.378917	185.000000	41.350000	66.550000	10.0
75%	41.718204	-87.083926	192.000000	47.500000	76.475000	10.0
max	41.872075	-86.755283	266.000000	75.900000	122.200000	10.0

Figure 10: Geopandas plot of geolocation data

6 Appendix

```
# coding: utf-8
# In[1]:
import numpy as np
import pandas as pd
import geopandas as gpd
from shapely.geometry import Point
import matplotlib.pyplot as plt
import seaborn as sns
import math
file1 = pd.read_csv('file1.csv', ',')
file1.describe()
# In[2]:
plt.scatter(file1['accuracy'],file1['speedkmh'])
plt.xlabel('Accuracy (meters)')
plt.ylabel('Speed (kph)')
plt.title('Speed vs. Accuracy (Raw Data)')
plt.plot(np.unique(file1['accuracy']),
                                            np.poly1d(np.polyfit(file1['accuracy'], file1['speedkmh']
(np.unique(file1['accuracy'])))
#There is a positive correlation between speed and accuracy.
```

```
# In[3]:
sns.distplot(file1['speedkmh'], kde = False)
plt.title('Speed Distribution (Raw Data)')
plt.ylabel('Count')
plt.xlabel('Speed (kph)')
# In[4]:
mean_speedkmh = file1['speedkmh'].mean()
#The average speed for this dataset is 63.29 kph.
std_speedkmh = file1['speedkmh'].std()
#29.5 kph
upperbound_2sig = mean_speedkmh + 2 * std_speedkmh
#122.3 \text{ kph} \sim 76 \text{ mph}
upperbound_3sig = mean_speedkmh + 3 * std_speedkmh
#151.8 kph ~ 94 mph
# In[5]:
sns.distplot(file1['accuracy'], kde = False)
plt.title('Accuracy Distribution (Raw Data)')
plt.xlabel('Accuracy (m)')
plt.ylabel('Count')
# In[6]:
                                                                                    (file1['accuracy'] <=</pre>
file1_clean = file1.loc[(file1['speedkmh'] < upperbound_2sig) &</pre>
file1_clean.describe()
# In[7]:
sns.distplot(file1_clean['speedkmh'], kde = False)
plt.title('Speed Distribution (Clean)')
plt.xlabel('Speed (kph)')
plt.ylabel('Count')
# In[8]:
```

```
plt.scatter(file1_clean['accuracy'],file1_clean['speedkmh'])
                                                 np.poly1d(np.polyfit(file1_clean['accuracy'], file1_
plt.plot(np.unique(file1_clean['accuracy']),
(np.unique(file1_clean['accuracy'])))
plt.title('Speed vs. Accuracy (Clean)')
plt.xlabel('Accuracy (kph)')
plt.ylabel('Speed (kph)')
#There is clumping present at 5 m and 10 m accuracy, though there is no longer any
#correlation in this plot between speed and accuracy. This is ideal because we want
#speed and accuracy to act as independent variables.
# In[9]:
file1_clean_acc10 = file1_clean.loc[(file1['accuracy'] == 10.0)]
file1_clean_acc5 = file1_clean.loc[(file1['accuracy'] == 5.0)]
file1_clean_acc10.describe()
# In[10]:
file1_clean_acc5.describe()
# In[12]:
file1_clean['Coordinates'] = list(zip(file1_clean.longitude, file1_clean.latitude))
file1_clean['Coordinates'] = file1_clean['Coordinates'].apply(Point)
geofile1 = gpd.GeoDataFrame(file1_clean, geometry='Coordinates')
usa = gpd.read_file('tl_2018_us_state/tl_2018_us_state.shp')
coastline = gpd.read_file('tl_2018_us_coastline/tl_2018_us_coastline.shp')
laporte_in = gpd.read_file('tl_2018_18091_roads/tl_2018_18091_roads.shp')
lake_in = gpd.read_file('tl_2018_18089_roads/tl_2018_18089_roads.shp')
porter_in = gpd.read_file('tl_2018_18127_roads/tl_2018_18127_roads.shp')
cook_il = gpd.read_file('tl_2018_17031_roads/tl_2018_17031_roads.shp')
berrian_mi = gpd.read_file('tl_2018_26021_roads/tl_2018_26021_roads.shp')
#https://www.census.gov/cgi-bin/geo/shapefiles/index.php?
fig, ax = plt.subplots(figsize = (30,30))
ax.set_xlim([-87.75, -86.6])
ax.set_ylim([41.5, 42.0])
```

```
usa[usa.NAME == 'Indiana'].plot(ax = ax, color='white', edgecolor='orange')
usa[usa.NAME == 'Illinois'].plot(ax = ax, color='white', edgecolor='orange')
laporte_in.plot(ax = ax, alpha = 0.2)
lake_in.plot(ax = ax, alpha = 0.2)
porter_in.plot(ax = ax, alpha = 0.2)
cook_il.plot(ax = ax, alpha = 0.2)
berrian_mi.plot(ax = ax, alpha = 0.2)
coastline.plot(ax = ax)
#Chicago, IL to La Porte, IN
geofile1.plot(ax=ax, color='red', alpha = 0.5)
plt.title('Geolocation Map of Illinois and Indiana Leg of Cross-Country Roadtrip', fontsize=20)
plt.xlabel('Longitude', fontsize=16)
plt.ylabel('Latitude', fontsize=16)
plt.show()
# In[13]:
#https://www.thoughtco.com/degree-of-latitude-and-longitude-distance-4070616
#Latitude: 1 deg = 111 km
#Longitude: 1 deg = 85 km
end = (-87.638186, 41.872075)
delta_long = start[0] - end[0]
delta_lat = start[1] - end[1]
delta_km_ew = delta_long * 85
delta_km_ns = delta_lat * 111
distance = (delta_km_ew**2 + delta_km_ns**2)**0.5
print(distance)
# In[14]:
total_distance = 0
for x in range (2635):
start = (file1_clean.iloc[x,2], file1_clean.iloc[x,1])
end = (file1_clean.iloc[x+1,2], file1_clean.iloc[x+1,1])
delta_long = start[0] - end[0]
delta_lat = start[1] - end[1]
delta_km_ew = delta_long * 85
```

```
delta_km_ns = delta_lat * 111
distance = (delta_km_ew**2 + delta_km_ns**2)**0.5
total_distance = total_distance + distance
print(total_distance)
```