

Modulhandbuch Bauingenieurwesen (B. Eng.)

BACHELORSTUDIENGANG

JADE HOCHSCHULE
FB BAUWESEN GEOINFORMATION GESUNDHEITSTECHNOLOGIE
STUDIENORT OLDENBURG

Inhaltsverzeichnis

GRUNDSTUDIUM	4
Modulname: Baubetrieb / Baurecht I	5
Modulname: Baubetrieb / Baurecht II	6
Modulname: Baukonstruktion I	7
Modulname: Baukonstruktion II	9
Modulname: Baustoffkunde	11
Modulname: BIM-Prozesse	12
Modulname: Boden- und Hydromechanik	13
MODULNAME: CAD-MODELLIERUNG / BIM	14
MODULNAME: EINFÜHRUNG IN DIE BAUPHYSIK	16
Modulname: Englisch für den Beruf	17
MODULNAME: ERD- UND STRAßENBAU MIT ARBEITSSICHERHEIT	18
Modulname: Festigkeitslehre	20
Modulname: Grundbau	21
Modulname: Holzbau I	22
Modulname: Mathematik I	23
Modulname: Mathematik II	24
Modulname: Planung von Straßen- und Schienenanlagen	25
Modulname: Siedlungswasserwirtschaft / Umwelttechnik	27
Modulname: Stahlbau I	29
Modulname: Stahlbetonbau I	30
Modulname: Stahlbetonbau II	31
Modulname: Technische Mechanik	32
Modulname: Vermessungskunde	33
Modulname: Wasserbau	34
Modulname: Wirtschaftswissenschaft	35
VERTIEFUNGSSTUDIUM BAUMANAGEMENT	38
Modulname: Bauablaufplanung	39
Modulname: Baubetriebliches Vertragsmanagement	40
Modulname: Finanzierung	41
Modulname: Kalkulation	42
Modulname: Kostenmanagement	43
Modulname: Projekt Baumanagement	44
Modulname: Schlüsselfertigbau	45
Modulname: Unternehmensführung	47
Modulname: Verhandlungsführung und Konfliktmanagement	48
VERTIEFUNGSSTUDIUM ERHALTUNG/ SANIERUNG/ ERTÜCHTIGUNG VON BAUWERKEN – ESE	49
MODULNAME: AUFNAHME UND MONITORING VON GEBÄUDEN IM BESTAND	50
Modulname: Angewandte Bauphysik	
Modulname: Brandschutz im Bauwerksbestand	_
Modulname: Energetische Sanierungsplanung	
MODULNAME: NACHHALTIGKEITSBEWERTUNG VON GEBÄUDEN	
MODULNAME: PROJEKT ERHALTUNG, SANIERUNG UND ERTÜCHTIGUNG VON BAUWERKEN	
Moduliname: Schadstoffe in Geräuden	59

MODULNAME: SCHUTZ UND ERTÜCHTIGUNG VON BETONBAUTEILEN	60
MODULNAME: SCHUTZ UND SICHERUNG HISTORISCHER BAUTEN	61
Modulname: Statik für den Bauwerksbestand und Umnutzung	62
Modulname: Technische Gebäudeausrüstung	63
VERTIEFUNGSSTUDIUM KONSTRUKTIVER INGENIEURBAU	64
Modulname: Angewandte Baustatik	65
Modulname: Brückenbau	66
Modulname: FE-Methoden	67
Modulname: Geotechnik	68
Modulname: Holzbau II	69
MODULNAME: MODELLBASIERTE TRAGWERKSPLANUNG	70
Modulname: Projekt Konstruktiver Ingenieurbau	72
Modulname: Spannbetonbau	73
Modulname: Stahlbau II	74
Modulname: Stahlbetonbauteile	75
Modulname: Verbundbau	76
VERTIEFUNGSSTUDIUM TECHNISCHE UND KULTURELLE INTEGRATION	77
Modulname: Deutsch für Bauingenieure 1	
MODULNAME: DEUTSCH FÜR BAUINGENIEURE 1	
MODULNAME: DEUTSCH FÜR BAUINGENIEURE Z	
MODULNAME: SCHLÜSSELQUALIFIKATION INTEGRATION UND DIVERSITÄT	
MODULNAME: SCHLUSSELQUALIFIKATION INTEGRATION UND DIVERSITÄT	81
VERTIEFUNGSSTUDIUM VERKEHRSWESEN	82
Modulname: Ausgewählte Kapitel der Verkehrsplanung	83
Modulname: Erhaltung im Asphaltstraßenbau	85
MODULNAME: FAHRDYNAMIK UND TRASSIERUNG VON BAHNANLAGEN	86
Modulname: Leistungsfähigkeit von Straßenverkehrsanlagen	88
Modulname: Öffentlicher Verkehr	89
MODULNAME: PLANFESTSTELLUNG UND BETRIEB VON BAHNANLAGEN	90
Modulname: Plangleiche Knoten	91
Modulname: Projekt Verkehrswesen	92
Modulname: Straßenbau	93
Modulname: Straßenentwurf	94
VERTIEFUNGSSTUDIUM WASSERBAU UND UMWELTTECHNIK	95
Modulname: Abfallwirtschaft und Abfallbehandlung	96
Modulname: Bodenreinigung	97
MODULNAME: HYDROLOGIE UND HOCHWASSERSCHUTZ	98
Modulname: Kläranlagen	99
Modulname: Küsteningenieurwesen	100
MODULNAME: PROJEKT WASSER UND UMWELT	101
Modulname: Rohrleitungen	102
Modulname: Ver- und Entsorgungsnetze	103
Modulname: Verkehrswasserbau	104

Grundstudium

Jade Hochschule

Studiengang: Bauingenieurwesen (B.Eng.)

Modulname: Baubetrieb / Baurecht I

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
3	1	PF	6	5	150 Stunden; davon 81 Std Präsenzstudium, 69 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 2 Std	Vorlesung		Prof. DiplIng. E. Everts

Qualifikationsziele

Ziel: Basiswissen in den Bereichen Zivilrecht, Arbeitsvorbereitung & Bauablaufplanung Die Studierenden verfügen über grundlegende Kenntnisse in folgenden Bereichen:

- Verhältnis / vertragliche Verknüpfungen der am Bau Beteiligten
- Unternehmensformen
- Arbeitsvorbereitung
- Bauablaufplanung einschl. Netzplantechnik
- Baubetriebliche Aspekte der VOB/B
- Sichere Durchführung eines Bauvorhabens unter rechtlichen Gesichtspunkten

Hinweis: Alle wesentlichen Bereiche können in der Studienrichtung "Baumanagement" weiter vertieft werden

Lehrinhalte

- a.) Baubetrieb:
- Die Projektbeteiligten und ihre vertraglichen Verknüpfungen
- Ablauf von Bauprojekten von der Ausschreibung bis zur Abrechnung
- Einführung in das Bauvertragswesen (VOB)
- Vergabe, Abwicklung und Abrechnung von Bauverträgen
- Terminplanung (Balken- und Liniendiagramme, Netzplantechnik
- b.) Baurecht:
- Grundzüge des BGB, insbesondere Bauvertragsrecht
- Grundzüge des Kauf- Werkvertragsrechts

L	ite	ra	tι	ır

s. Vorlesungsunterlagen

Weitere Lehrsprachen

Jade Hochschule Wilhelmshaven / Oldenburg / Elsfleth

Studiengang: Bauingenieurwesen (B.Eng.)

Modulname: Baubetrieb / Baurecht II

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
4	1	PF	6	5	150 Stunden; davon 81 Std Präsenzstudium, 69 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 2 Std	Vorlesung		Prof. DiplIng. E. Everts

Qualifikationsziele

Ziel: Basiswissen in den Bereichen Vertragswesen, Kalkulation, Baumaschinen & Bauverfahrenstechnik Die Studierenden verfügen über grundlegende Kenntnisse in folgenden Bereichen:

- Kalkulation von Baupreisen
- Technik und Leistungsberechnung von Baumaschinen
- Bauverfahrenstechnik im Hoch- und Tiefbau
- Sicherer Umgang mit der VOB/B in rechtlicher Hinsicht

Hinweis: Alle wesentlichen Bereiche können in der Studienrichtung "Baumanagement" weiter vertieft werden

Lehrinhalte

- a.) Baubetrieb:
- Kalkulationsverfahren, Kostenarten, Preisbestandteile
- Baumaschinen und Geräte: Antriebe, Hydraulik, Großgeräte im Bauwesen, Baustelleneinrichtungen
- Ausgewählte Kapitel der Bauverfahrenstechnik (Hoch- und Tiefbau)
- b.) Baurecht:
- Juristische Aspekte der VOB/B: Vergütung, Nachträge, Termine und Fristen, Abnahme, Gewährleistung

Ιi	te	ra	tı	ır
	re	ıa	"	41

s. Vorlesungsunterlagen

۷	۷	eitere	Lehrs	pracher	١
•	•	011010		p. ao. io.	•

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Baukonstruktion I

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul-code
1	1	PF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 1,5 Std	Vorlesungen, Übungen, Exkursion, Baustellenbesichtigung		Prof. Dr. Reuther

Qualifikationsziele

Die Studierenden erlangen grundlegende Kenntnisse über in der Praxis bewährte Hochbaukonstruktionen. Vermittelt werden baukonstruktive Grundlagen unter Berücksichtigung materialspezifischer Eigenschaften und bauphysikalischer Zusammenhänge. Bauteile und ihre Anschlüsse werden in praxisbezogenen Ausführungsvarianten erfasst und in exemplarisch anzufertigenden Konstruktionszeichnungen detailliert geplant. Durch kritische Auseinandersetzung mit Konstruktionsregeln sowie Normen erlangen die Studierenden die Fähigkeit, Risiken einzuschätzen und die Vor- und Nachteile baukonstruktiver Lösungen zu beurteilen.

Lehrinhalte

1) Mauerwerksbau und Wände

Grundlagen des Mauerwerksbaus: Maßordnung, künstliche Steine, Mauermörtel,

Mauerwerksverband und Sichtziegelmauerwerk,

ein- und zweischalige Außenwände, Innenwände mit unterschiedlichen Funktionen,

Detailbereiche: Fußpunkt bzw. Wandsockelbereich, Fenster-/Türsturz, Brüstung

2) Decken und Balkone

Deckenarten, Massivdecken mit Balkonkragplatten,

Estricharten, Fußbodenaufbau,

Detailbereiche: Deckenauflagerbereich, Balkonanschlussbereich

3) Fundamente, Keller und Abdichtung

Kellerbauweisen, Fundamentarten, Tiefengründung,

Wasserbeanspruchungsarten, Grundwasserhaltung und Baugrube,

weiße und schwarze Wanne, Abdichtung der Sohlplatte, Drainage,

Detailbereiche: Sohlplatte-Kelleraußenwand, Kelleraußenwand-Geschossdecke

Literatur

Aktuelle Normen (DIN, DIN EN, DIN EN ISO),

u.a. DIN EN 1996, DIN 4108, DIN 18195 und DIN (Entwurf) 18533

Weitere Lehrsprachen	

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Baukonstruktion II

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
2	1	PF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 1,5 Std	Vorlesungen, Übungen, Exkursion, Baustellenbesichtigung		Prof. Dr. Reuther

Qualifikationsziele

Die Studierenden erlangen grundlegende Kenntnisse über in der Praxis bewährte Hochbaukonstruktionen. Vermittelt werden baukonstruktive Grundlagen unter Berücksichtigung materialspezifischer Eigenschaften und bauphysikalischer Zusammenhänge. Bauteile und ihre Anschlüsse werden in praxisbezogenen Ausführungsvarianten erfasst und in exemplarisch anzufertigenden Konstruktionszeichnungen detailliert geplant. Durch kritische Auseinandersetzung mit Konstruktionsregeln sowie Normen erlangen die Studierenden die Fähigkeit, Risiken einzuschätzen und die Vor- und Nachteile baukonstruktiver Lösungen zu beurteilen.

Lehrinhalte

1) Steildächer

Sparren- und Pfettendach, Dachaufbau belüfteter und nicht belüfteter Dächer,

Zwischensparrendämmung, Aufsparrendämmung, Dachelemente,

Dachdetails: Traufe, First, Ortgang

2) Flachdächer

Kaltdach, Warmdach, Umkehrdach, Dächer mit Bahnenabdichtung, Dächer aus WU-Beton, nicht genutzte und genutzte Dächer, Dachterrassen, begrünte Dächer, befahrbare Dächer,

Dachdetails: Dachrand, Anschluss an aufgehende Bauteile, Dachterrassentürschellenbereich

3) Treppen

Treppenarten, baurechtliche Anforderungen,

Treppenkonstruktionen, schalltechnisch entkoppelte Treppenanschlussbereiche

4) Fenster, Türen, Fassaden

Verglasungen, Fensterarten und Fensteranschlussdetails,

hinterlüftete Fassade, Pfostenriegelfassade, Elementfassade und Sonderkonstruktionen,

5) Hallenbau mit Wand- und Dachelementen

Konstruktionsregeln für einfache Industriehallen,

Porenbetonplatten, Trapezbleche, Kassettenprofile, Sandwichelemente

6) Innenausbau

Leichtbauwände, abgehängte Decken, Doppelböden, Toleranzen im Hochbau

Literatur

Aktuelle Normen (DIN, DIN EN, DIN EN ISO), z.B. DIN 4108, DIN 18065, DIN 18202, Flachdachrichtlinie

Weitere Lehrsprachen

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Baustoffkunde

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
1	1	PF	6	5	150 Std. davon 81 Std. Präsenzstudium, 69 Std. Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
Keine	In jedem Semester	PL/ K2	Vorlesung Übungen Laborpraktika		Wigger, H. Prof. DrIng.

Qualifikationsziele

Die Studierenden kennen die wichtigsten Baustoffe und deren Zusammensetzung, Struktur, Herstellung und Anwendung. Sie verfügen über ein Verständnis der Festigkeit, Tragfähigkeit, Gebrauchstauglichkeit, Verträglichkeit und Dauerhaftigkeit. Die Studierenden verstehen die mechanischen, physikalischen und chemischen Eigenschaften und können dieses Wissen übertragen. Sie verstehen die Zusammenhänge der Anforderungen an Baustoffe und Prüfnormen und beherrschen einfache messtechnische Aufgaben.

Lehrinhalte

Vermittlung von Grundkenntnissen über Natursteine u. Gesteinskörnungen, Bindemittel, Mörtel, Beton, keramische Baustoffe, Glas, Dämmstoffe, künstliche Steine, Kunststoffe, Holz, Stahl, NE-Metalle und versch. Verbundbaustoffe sowie deren Korrosion. Darstellen von Messtechniken und deren Grenzen. Laborübungen zur Erstellung eines Stahlbetonbauwerkes dessen Herstellung und Prüfung sowie Praktika zu Salzausblühungen und Wasseranalytik..

Literatur

Karsten, R.: Bauchemie: Handbuch für Studium und Praxis. Exzerpt Knoblauch, H.; Fleischmann, H. D.; Scholz, W. (Hg.).: Baustoffkenntnis

Skript: Chemisches Repetitorium, Baustoffkunde

Hiese, W.: Baustoffkunde für Ausbildung und Praxis, Düsseldorf: Werner

Strak, J.; Wicht, B.: Dauerhaftigkeit von Beton

Zementmerkblätter (beton.org)

Skript: Baustoffkunde

Weitere Lehrsprachen

HS Wilhelmshaven/Oldenburg/ElsflethStudiengang: Bauingenieurwesen

Modulname: BIM-Prozesse

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
4	1	PF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	SL/nach Wahl des Lehrenden	Vorlesung		Prof. Dr. HH. Prüser

Qualifikationsziele

Die Studierenden sollen ihre Planungsleistung in eine BIM-konforme Arbeitsumgebung einbringen können. Sie sollen Prozesse (für Planung, Realisierung und Betrieb) eines Bauwerkes verstehen und anwenden können.

Lehrinhalte

Herangehensweise BIM; Gestaltung und Arbeiten in einer BIM-konformen Umgebung; Verknüpfung von Eigenschaften und Prozessabläufen an Bauteilen; der Lebenszyklus eines Bauwerkes von der Planung über die Realisierung über den Betrieb bis hin zum Rückbau; Definitionen von LoD/Lod/LoI und ihre Abbildung in Referenzprozessen; Kommunikation am Modell mit IFC und BCF; Modell-Checking

Literatur		
Lehrveranstaltungen		

Studiengang: Bauingenieurwesen

Modulname:	Boden- u	nd Hydro	omechanik
------------	----------	----------	-----------

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
2	4	PF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Jade Hochschule

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/K2	Vorlesung Übung Praktikum		Prof. DrIng. Priesemann Prof. C. Rau

Qualifikationsziele

Die Studierenden verfügen über Grundkenntnisse der Erkundung und Beschreibung von Böden und kennen die Arbeitsmethodik im Labor. Sie können einfache erdstatische Berechnungen (z. B Setzung und Grundbruch) durchführen.

Die Studierenden verfügen über ein Grundverständnis der Strömungsvorgänge in Leitungen und Gerinnen und können einfache Aufgaben aus dem Bereich der Hydrostatik und der Rohr- und Gerinnehydraulik lösen

Lehrinhalte

Eigenschaften des Wassers, Hydrostatischer Druck, Res. Druckkraft und Druckmittelpunkte für allgemeine ebene Flächen, und eingetauchte gekrümmte Körper, Bewegungsformen des Wassers, Turbulenz, Erhaltungssätze (Masse, Energie, Impuls), Rohrhydraulik, Gerinnehydraulik Geologische Grundlagen Bodenansprache und Benennung (z.B. DIN 14688-1, 18196,18300), Bodenerkundung (z.B. Bohrungen, Sondierungen), Labor- und Feldversuche (Korngrößenverteilung, Dichte, Lagerungsdichte, Proctor, Zusammendrückbarkeit, Scherfestigkeit etc.), Berechnungsverfahren (z.B.

Setzungen, Spannungsverteilung im Boden)

Literatur

- Heinemann, E., Feldhaus, R.: Hydraulik für Bauingenieure, 2. Auflage, Verlag B. G. Teubner, Stuttgart
- Strybny, J.: Ohne Panik Strömungsmechanik, 5. Auflage, Viehweg Verlag, Braunschweig
- Simmer: Grundbau 1 +2, Teubner-Verlag
- Dörken/Dehne: Grundbau in Beispielen 1+2, Werner-Verlag
- Lang, Huder, Ammann: Bodenmechanik und Grundbau, Springer

Lehrveranstaltungen

Dozent_in	Titel der Veranstaltung	sws
Prof. Dr. Ing. Priesemann	Bodenmechanik	2
Prof. C. Rau	Hydromechanik	2

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: CAD-Modellierung / BIM

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
2	1	PF	6	5	150 Stunden; davon 81 Std. Präsenzstudium 69 Std. Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend -barkeit	Modul- verantwortliche(r)
	In jedem Semester	SL / K4 und HA	Vorlesungen mit Übungen und betreuter Projektarbeit		Prof. D. Voßmann

Qualifikationsziele

Die Studierenden kennen 3D-Modellierung mit hinterlegter Datenbank. Sie erstellen bauteilorientierte 3D-(Gebäude-)Modelle, wenden unterschiedliche Planungs- und Visualisierungswerkzeuge an und leiten aus den Modellen Konstruktionszeichnungen und Reporte ab.

Lehrinhalte

Das Modul besteht aus Basis-Veranstaltungen und der vertiefenden Projektarbeit.

In den Basis-Veranstaltungen wird die Anwendung von CAD/BIM-Software an Beispielen geübt. Folgende Grundlagen der 3D-Modellierung werden vermittelt:

- Projekte anlegen und verwalten
- Bauwerksstrukturen erstellen und modifizieren
- Bauteile und Ebenen zu einem Gebäudemodell zusammenfügen
- Elementgruppen und Informationen ein- und ausblenden
- Bibliotheken und Assistenten in die Modellierung mit einbeziehen
- Bauwerke in virtuelle Umgebung einfügen und Animation
- Konstruktionszeichnungen für Werk- und Detailplanung generieren
- Reporte / Listen unter Berücksichtigung von Bauteileigenschaften ableiten
- Daten zur Weiterbearbeitung importieren und exportieren

In der Projektarbeit vertiefen die Studierenden die erworbenen Kenntnisse und sammeln umfangreiche Erfahrungen bei der Erstellung und detaillierten Bearbeitung eines exemplarisch gewählten (Gebäude-) Modells mit zu hinterlegender Datenbank. Begleitend werden in den Veranstaltungen projektspezifische CAD/BIM-Themenbereiche behandelt und die Studierenden werden unterstützend betreut.

Literatur

Informationen zur CAD-Software, siehe Internet (Allplan, Archicad, Autocad Ravit)

Weitere Lehrsprachen	

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Einführung in die Bauphysik

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
2	1	PF	4	5	150 Stunden, davon 54 Präsenzstudium, 96 Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend -barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 2 Std	Vorlesung mit Übungen		Prof. Dr. J. Middelberg

Qualifikationsziele

Auf der Basis von Kenntnissen und funktionalen Zusammenhängen des Energietransports durch Wärmeleitung, Konvektion und Strahlung soll den Studierenden ein Grundverständnis für hygro-thermische Prozesse in Baukörpern vermittelt werden sowie für Anforderungen, die sich für und durch Menschen in baulicher Umgebung ableiten. Aus Kenntnissen über Schall- und Schwingungsempfindlichkeit sollen Anforderungen an Bauteile und Schallschutzmaßnahmen hergeleitet und berechnet werden können.

Die sich daraus ergebenden gesetzlichen und normativen Anforderungen lassen sich nicht erschöpfend behandeln, sollen aber in ihrer Struktur und wesentlichen Elementen zugänglich werden.

Aus Kenntnissen von Brandentstehung, -verlaufes und -auswirkungen soll ein Verständnis für die planerischen Anforderungen der Landesbauordnung vermittelt werden.

Lehrinhalte

Wärmeschutz: Technische Wärmelehre - Thermodynamik – Mindestwärmeschutz, energiesparender Wärmeschutz (sommerlich und winterlich)

Feuchteschutz: Wassereigenschaften, Tauwasserbildung an Oberflächen und in Bauteilen,

Raumklima/Lüftung, Behaglichkeitsdiagramme, Luftwechsel

Schallschutz: Schwingungen, Schallfeldgrößen, Pegelrechnung, Raumakustik, Bauakustik, Lärmschutz

Brandschutz: Brandverlauf, Anforderungen an Material, Bauteile, Konstruktion, Planung

Literatur

Krawietz, R., Heimke, W.: Physik im Bauwesen, Carl Hanser Verlag München

Hohmann, Setzer, Wehling: Bauphysikalische Formeln und Tabellen

Schneider Bautabellen für Ingenieure, Werner Verlag Düsseldorf

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Englisch für den Beruf

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs -punkte	Studentische Arbeitsbelastung	Modul- code
1	1	PF	2	2,5	75 Stunden; davon 27 Std Präsenzstudium, 48 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
		SL/ Leistungsnachwei s durch Anwesen- heitspflicht; aktive Teilnahme; Referat + begleitende Hausaufgaben	Praxisorientierte Übungen; Gruppenarbeit; selbstständiges Denken, Reden und Schreiben		D. Howson M.A.

Qualifikationsziele

Das Ziel ist die gründliche AKTIVIERUNG des Schulenglischen. Der Kurs versteht sich als praxisnah, realistisch und ausdrücklich nicht akademisch. Das bereits Gelernte wird unmittelbar (hauptsächlich ohne Texte/Bücher) umgesetzt. Der passive Wortschatz wird aktiviert. Die Grammatik wird entschärft. Ziel ist es, mit Blick auf den Arbeitsmarkt, die Klarheit, Leichtigkeit und Sicherheit der Kommunikation in der Fremdsprache zu erlangen.

Lehrinhalte

Intelligentes, selbstständiges und unkompliziertes Umsetzen vom eigenen Wissen und eigenen Ideen in der Fremdsprache sowohl schriftlich als auch mündlich. Bautechnische und wirtschaftliche Themen werden genauso behandelt als auch alltägliche, sportliche, politische, soziale, kulturelle usw. Die Vermittlung (nicht Übersetzung) von Texten in die andere Sprache. Präsentationstechnik für kurze, unkomplizierte technische Referate.

Literatur

Nach Bedarf

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Erd- und Straßenbau mit Arbeitssicherheit

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
3	1	PF	6	5	150 Stunden, davon 81 Std Präsenzstudium, 69 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Jedes Semester	PL/ K2+KA	Vorlesung, Nach Möglich- keit Tagesex- kursion zu den umliegenden Baustellen.		Prof. Dr. Buttgereit

Qualifikationsziele

Erdbau:

Die Studierenden beherrschen die Grundlagen des Erdbaus:

Sie können verschiedene Bodenarten hinsichtlich ihrer Entstehung und der im Labor sowie im Feld ermittelbaren Parameter als Baustoff einordnen. Sie können ferner einen gegebenen Boden dahingehend beurteilen, inwieweit er als Baustoff verwendbar ist und welche Randbedingungen bei seinem Gebrauch zu beachten sind.

Die Studierenden sind in der Lage, die für eine Baumaßnahme notwendigen Arbeiten mit dem Boden soweit zu beschreiben, dass dies als Grundlage für ein Leistungsverzeichnis herangezogen werden kann.

Straßenbau:

Die Studierenden können aus einem vorhandenen Nutzungsverhalten und auf der Basis der zu erwartenden Nutzungsdauer eine Belastungsklasse nach RStO ermitteln und einen zugehörenden Straßenaufbau begründet auswählen. Sie können weiterhin Asphalt-, Pflaster- und Betonbauweisen den verschiedenen Bauklassen zuordnen und erläutern, warum sie sich für eine bestimmte Bauweise entschieden haben.

Arbeitssicherheit:

Die Studierenden haben antizipiert, dass die Vermeidung von Unfällen auf der Baustelle wichtiger als wirtschaftlicher Erfolg ist und dass dies mit einem deutlichen Aufwand erkauft werden muss. Die Studierenden kennen als Führungskraft ihre Verantwortung gegenüber Ihren MitarbeiterInnen und können dies auf der Baustelle durchsetzen. Sie können potentielle Gefahrensituationen auf Baustellen erkennen und sind in der Lage Vorkehrungen zu treffen, welche die Gefahren minimieren.

Ab einer bestimmten Punktzahl in der Klausur werden die arbeitsschutzfachlichen Kenntnisse für die Ausbildung zum SiGeKo nach Baustellenverordnung bescheinigt.

Lehrinhalte

Erdbau:

Der Boden als Baustoff im Erdbau. Genese verschiedener Böden, insbesondere derjenigen in der hiesigen Region. Klassifikation von Böden auf der Basis verschiedener Regelwerke als Grundlage zur Beurteilung ihrer Verwendbarkeit.

Das Verhalten von Böden bei Frost, Bauweisen zur Vermeidung von Frostschäden. Das Verdichtungsverhalten von Böden, Prüfungen im Erdbau.

Bodenverfestigung, Bodenverbesserung, Bindemittel.

Untergrund, Unterbau, Erdmengenermittlung, Definition verschiedener Mineralstoffe als Grundlage für eine Ausschreibung.

Straßenbau:

Dimensionierung des Oberbaus nach RStO: Ermittlung der Belastung durch Fahrzeugüberfahrten auf der Basis des "4. Potenz Gesetzes" und der gängigen Berechnungsvorschriften.

Definition von Bauklassen und Beschreibung verschiedener Bauweisen.

Übersicht über Asphaltarten und -sorten, Anforderungen an Asphalte; Herstellen und Einbauen von Asphaltmischgut

Übersicht über Pflasterarten und -sorten, Anforderungen an Pflaster; Herstellen und Einbauen von Pflasterflächen.

Übersicht über Betonbauweisen von Verkehrsflächen.

Arbeitssicherheit:

Verkehrssicherung im öffentlichen Raum.

Erd- und Straßenbaumaschinen.

Schnittstelle StVO - ASR.

Gefahren der Elektrizität.

Ladungssicherung.

Persönliche Schutzausrüstung.

Literatur

RStO, ZTVE-Stb.

Vorlesungsskript.

Weitere Literatur wird in der Vorlesung bekannt gegeben.

Weitere Lehrsprachen

Lehrveranstaltungen

Dozent(in)	Titel der Lehrveranstaltung	sws
NN	Erd- und Straßenbau	4
Gottkehaskamp	Arbeitssicherheit	2

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Festigkeitslehre

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
2	1	PF	6	5	150 Stunden, davon 81 Präsenzstudium, 69 Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 2 Std	Vorlesung Tutorenprogr.		Prof. Dr. P. Seibel

Qualifikationsziele

Die verschiedenen Spannungsarten und ihre Zusammensetzung zu Hauptspannungen werden systematisch und ausführlich behandelt, um dem Studierenden gut fundierte Kenntnisse für das Konstruieren und Berechnen von Bauwerken zu vermitteln.

Die Voraussetzungen für die spätere Berechnung statisch unbestimmter Systeme werden durch die vielfache Anwendung der Arbeitsgleichung zur Berechnung von Verformungen statisch bestimmter Systeme geschaffen.

Lehrinhalte

Ermittlung von Normalspannungen infolge Normalkraft, ein- und zweiachsiger Biegung sowie schiefer Biegung, Ermittlung von Schubspannungen infolge Querkräfte und Torsionsmomente, Beschreibung des Schubmittelpunktes,

federelastische Auflager, Berechnung von Auflagerkräften und Schnittgrößen statisch unbestimmter Systeme nach dem Kraftgrößenverfahren, Verformungsberechnung an statisch unbestimmten Systemen mittels Reduktionssatzes, Einflusslinien, Einführung in die Theorie II. Ordnung, Anwendung von Bautabellen

Literatur

Göttsche, Petersen: Festigkeitslehre –klipp und klar, Hanser Verlag, München Schneider: Bautabellen für Ingenieure, Werner Verlag GmbH & Co KG, Düsseldorf

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Grundbau

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
3	1	PF	4	5	150 Stunden, davon 54 Präsenzstudium, 96 Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K / 2 Std	Vorlesung		Prof. DrIng. Otfried Beilke

Qualifikationsziele

Selbständiges Entwerfen, Planen und Berechnen geotechnischer Bauwerke

Lehrinhalte

Spannungszustände im Boden (Spannungs- und Setzungsberechnung), Bruchzustände im Boden, Berechnen von Flachgründungen (Gleiten, Kippen, Grundbruch), Einführung in die Berechnung von Flächengründungen nach dem Bettungsmodulverfahren, Einführung in die Methoden der Baugrundverbesserung, Theorie und Praxis der Pfahlgründungen, , Einführung in die Methoden der Baugrubensicherungen, Stützbauwerke und Baugruben planen und berechnen, Einführung in die Ermittlung von Erd- und Wasserdruck, Einführung in die Wasserhaltung.

Literatur

SIMMER, Grundbau, Teubner Verlag SCHMIDT, Grundlagen der Geotechnik, Teubner Verlag BEILKE et al., Formelsammlung Grundbau, Eigenverlag

Lehrveranstalt	unaer
----------------	-------

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Holzbau I

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
4	1	PF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
		PL /K / 1,5	Vorlesung	Prof. Dr. J. Härtel

Qualifikationsziele

Erwerb grundlegender Kenntnisse und Fähigkeiten für das Erstellen statischer Berechnungen und Konstruktionen im Ingenieurholzbau, insbesondere Holzverbindungen und Anschlüsse.

Lehrinhalte

Holztechnologie (Holz und Holzwerkstoffe), Lasten, Lastfälle und Lastfallkombinationen, Bemessung von Holzbauteilen (Zug-, Druck-, Biege- und Schubbeanspruchung an einteiligen Holzbauteilen) Knicken von Holzdruckstäben, Kippen von Biegeträgern, Fachwerkträger, Verformungsberechnungen von Holzkonstruktionen, Verbindungsmittel, zimmermannsmäßige Holzverbindungen, Verbindungen mit stiftförmigen Verbindungsmitteln (Nägel, Sondernägel, Schrauben, Klammern, Bolzen, Stabdübel, Passbolzen, Dübel besonderer Bauart, Nagelplatten), Berechnung und Konstruktion von Holzverbindungen in Anschlusssituationen und Knotenpunkten, Anwendung von EDV-Programmen im Ingenieurholzbau, BIM im Ingenieurholzbau.

Literatur

Vorlesungsskript; Bautabellen für Bauingenieure;

Werner, G.; Zimmer, K.: Holzbau 1 - Grundlagen nach DIN 1052 und Eurocode 5.

Neuhaus, H.: Lehrbuch des Ingenieurholzbaus.

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Mathematik I

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
1	1	PF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 2 Std	Vorlesung/Übung		Prof. Dr. R. Tawakoli

Qualifikationsziele

Die in der allgemeinbildenden Schule (bis FOS Klasse 12) erworbenen Grundlagen der höheren Mathematik sollen gefestigt und so erweitert werden, dass der Absolvent in der Lage ist, in der Praxis auftretende Probleme selbständig mit diesen mathematischen Methoden zu lösen.

Lehrinhalte

Relationen, Lösungsmengen von Algebraischen Gleichungen; Schwerpunktbestimmung, Betrags-, Wurzel-, Potenz-, Logarithmen-, Umkehr und trigonometrische Funktionen, Gleichungssysteme mit Anwendungen; Vektoren und Matrizen

Literatur

Papula, L., Mathematik für Ingenieure und Naturwissenschaftler, Band 1 und 2 Springer Verlag Bartsch, H-J. und Sachs, M.: Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftlicher

Internet: Mathematik

			14	
Leni	rvera	nsta	ıtun	gen

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Mathematik II

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
2	1	PF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 2Std	Vorlesung/Übung		Prof. Dr. R. Tawakoli

Qualifikationsziele

Die Studierenden sollen in die Lage versetzt werden, die erlernten mathematischen Verfahren anwendungsbezogen in der Statik, Bauphysik und im konstruktiven Ingenieurbau zu verwenden

Lehrinhalte

Matrizen, Determinanten, Lösen von linearen Gleichungen, Vektorprodukt, Funktionsuntersuchung auf Nullstellen, Symmetrie, Polstellen uns Asymptoten, Grenzwertbetrachtungen, Differenzquotient, Differentialrechnung für eine Variable, Kurvendiskussion, Extremwertaufgaben, Kurvenanpassung mit fachbezogenen Anwendungen, Integralrechnung für eine Variable, Integrationsverfahren

Literatur

Papula, L., Mathematik für Ingenieure und Naturwissenschaftler, Band 1 und 2 Springer Verlag Bartsch, H-J. und Sachs, M.: Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftlicher

Internet: Mathematik

	tere Lehrsprache	acl	pra	rsp	h	Le	e	19	it	е	Ν	١
--	------------------	-----	-----	-----	---	----	---	----	----	---	---	---

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Planung von Straßen- und Schienenanlagen

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
3	1	PF	4	5	150 Stunden, davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Jedes Semester	PL/K2	Vorlesung, Nach Möglich- keit Tagesex- kursion zu den umliegenden Straßen- und Schienenbauw erken.		Prof. DrIng. Rainer Schwerdhelm

Qualifikationsziele

Planung Straßenanlagen:

Die Studierenden können anhand einer gegebenen städtebaulichen oder raumplanerischen Situation Werkzeuge wählen, mit welchen die zukünftige Belastung der Verkehrswege und insbesondere der Straßen ermittelt wird. Mit den Ergebnissen können sie das vorhandene Mobilitätsbedürfnis verschiedenen Verkehrsträgern zuordnen.

Die Studierenden erkennen den rechtlichen und fachlichen Rahmen der Verkehrsplanung und gliedern diesen in eine raumordnerische Gesamtsituation vor dem Hintergrund der RIN ein. Die Schnittstellen der Straßenplanung zu anderen Fachdisziplinen können sie erkennen und bearbeiten.

Für eine Straße können die Studierenden innerorts und außerorts eine Querschnittsgestaltung begründet erarbeiten und diese durch eine gegebene Topografie konzeptionell trassieren.

Planung Schienenanlagen:

Die Studierenden kennen die Grundlagen der Rad- / Schiene - Technik sowie die wesentlichen Elemente für die Konstruktion von Oberbau und Unterbau von Schienenanlagen. Ergänzt wird das Wissen um die Kenntnis der Fahrdynamik von Schienenfahrzeugen. Sie können den Bau von ganzen Strecken und Bahnhöfen konzeptionell planen. Wichtige Details wie Weichenverbindungen können sie bis zur Ausführungsplanung bringen.

Die Studierenden können die Planung von Schienenanlagen mit den rechtlichen Randbedingungen, der Betriebsführung und der Sicherungstechnik abstimmen.

Lehrinhalte

Planung Straßenanlagen:

Erhebung und Prognose von Verkehrsströmen. Grundlagen der Verkehrserzeugung, Verkehrsverteilung, Verkehrsmittelwahl und Verkehrsumlegung.

Städtebau und Verkehrsentwicklungsplanung vor dem Hintergrund der Raumplanung und ihrer rechtlichen Grundlagen.

Netzgestaltung, Radverkehr, Fußgängerverkehr, öffentlicher Verkehr, Wirtschaftsverkehr, intermodale Verknüpfungsanlagen, Zukunft der Mobilität.

Querschnittswahl nach RASt, RAL und RAA vor dem Hintergrund der RIN.

Grundlagen der Trassierung im Lageplan und im Höhenplan.

Planung Schienenanlagen:

Grundlagen der Rad- / Schiene - Technik als Basis der Fahrdynamik von Schienenfahrzeugen.

Elemente für die Konstruktion von Oberbau und Unterbau wie z.B. Weichenverbindungen, ...

Konzeption, Planung und Bau von Strecken und Bahnhöfen.

Rechtliche Grundlagen den Betrieb von Schienenbahnen und den Bau der Fahrwege.

Betriebsregime und Sicherungstechnik als Ergebnis der Besonderheiten von Schienenanlagen

Literatur

RASt – Richtlinie für die Anlage von Stadtstraßen

RAL – Richtlinie für die Anlage von Landstraßen

RAA - Richtlinie für die Anlage von Autobahnen

RIN.- Richtlinie für die integrierte Netzgestaltung

Vorlesungsskript.

Weitere Literatur wird in der Vorlesung bekannt gegeben.

Weitere Lehrsprachen					
Lehrveranstaltung	Lehrveranstaltungen				
Dozent_in Titel der Veranstaltung		sws			
Dr. Schwerdhelm	Planung von Straßenanlagen	2			
Thomas	Planung von Schienenanlagen	2			

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Siedlungswasserwirtschaft / Umwelttechnik

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
4	1	PF	6	5	150 Stunden; davon 81 Std Präsenzstudium, 69 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K2	Vorlesung Hörsaalübungen Kurzexkursionen		Prof. Dr. Teuber

Qualifikationsziele

Die Studierenden verstehen die grundlegenden gesundheitlichen Ziele einer Bereitstellung von einwandfreiem Trinkwasser und einer geordneten Ableitung und Behandlung von Abwasser aus Siedlungsgebieten. Im Labor erarbeiten sich die Studierenden in einfachen Versuchen Grundlagen der Wasserchemie. Sie lernen die Auswirkungen von einzelnen technischen Entscheidungen auf andere umweltrelevante Prozesse kennen. Die Kenntnisse werden durch Kurzexkursionen zu Anlagen der Wasseraufbereitung und Abwasserbehandlung vertieft, so dass die Studierenden die Umsetzung theoretischer Überlegungen in praxistaugliche Anlagentechnik kennen lernen. Damit können die Studierenden Folgewirkungen in komplexen Umweltfragen erkennen und nachhaltige Lösungen zum Schutz von Wasser und Umwelt entwickeln.

Neben der Verantwortung für die netzgebundene Infrastruktur mit dem Fokus auf Wasser muss der Ingenieur im Rahmen der grundsätzlichen Daseinsvorsorge auch sein Augenmerk auf die Erfassung, Sortierung und Aufarbeitung/Wiederverwertung von festen Abfällen legen. Die Studierenden wissen, dass sie Verursacher von mehr als der Hälfte aller Siedlungsabfälle sind und für deren ordnungsgemäße Verbringung verantwortlich sind. Sie kennen den Chemismus der Schadstoffe, wissen um deren Verwendung in Gebäuden und können Entsorgungswege und -techniken darstellen.

Lehrinhalte

Entstehung der Disziplin "Siedlungswasserwirtschaft".

Gewinnen, Aufbereiten und Verteilen von Trinkwasser. Ableiten und Behandeln von Regen- und Schmutzwasser. Kanalnetze und Kläranlagen. Moderne, ökologische Entwicklungen zur Regenwassernutzung. Neue Ansätze zur Aufbereitung von Abwasser. Schlammbehandlung und Reststoffe der Abwasserreinigung.

Einfache Berechnungen von Anlagen.

Werkstoffe und Bauweisen.

Folgen der Demographischen Entwicklung.

Grundstrukturen der Abfallwirtschaftssysteme, Schadstoffe und deren Chemismus, Verwendung von schadstoffbasierten Materialien in Gebäuden, persönlicher und Umweltschutz beim Umgang mit Schadstoffen, Baustoffrecycling, Entsorgung und Verwertung von Reststoffen, Deponietechnik

Literatur		

Lehrveranstaltungen					
Dozent_in Titel der Lehrveranstaltung					
Prof. Dr. Teuber	Siedlungswasserwirtschaft	4			
Prof. Dr. Teuber	Umwelttechnik	2			

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Stahlbau I

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
4	1	PF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend -barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 2 Std	Vorlesung		Prof. Dr. R. Tawakoli

Qualifikationsziele

Die Studierenden sollen die werkstoffspezifischen Eigenschaften von Baustahl kennen lernen und die Fähigkeit erlangen, den Tragfähigkeitsnachweis von Bauteilen einschließlich zugehöriger Verbindungen auf der Grundlage von DIN EN 1993-1 zu führen.

Lehrinhalte

Werkstoff Stahl, spezifische Eigenschaften, Stahlerzeugnisse, Statische Berechnung von Stahlbauten, Elastische und plastische Bemessung von Bauteilen, Bemessung von Schraub- und Schweißverbindungen, Stabilitätsnachweise für Bauteile, Trägerauflager

Literatur

/1/ DIN EN 1993-1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, 2010

/2/ DIN EN 1993-1-8 : Bemessung von Anschlüssen, 2010

/3/ Schneider, H.-J.: Bautabellen für Ingenieure, 22. Auflage 2016, Bundesanzeiger Verlag, Köln

/4/ Wagenknecht, G.: Stahlbau-Praxis nach Eurocode 3, Band 1, Tragwerksplanung Grundlagen, 2011,

Beuth Verlag, Berlin . Wien . Zürich

/5/ Wagenknecht, G.: Stahlbau-Praxis nach Eurocode 3, Band 2, Verbindungen und Konstruktionen, 2011, Beuth Verlag, Berlin . Wien . Zürich

/6/ Kindmann, R., Krüger, U.: Stahlbau, Teil 1: Grundlagen, 2013, Ernst & Sohn Verlag

Waitara	Ahrenrac	han

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Stahlbetonbau I

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
3	1	PF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 1,5 Std	Vorlesung		Prof. Dr. HH. Prüser

Qualifikationsziele

Die Veranstaltung soll bei den Studierenden das Verständnis für das Konstruieren mit dem Verbundbaustoff Stahlbeton erreichen und Kenntnisse zu den verwendeten Baustoffen vermitteln. Weiterhin sollen sie in die Lage versetzt werden, die Biege- und Querkraftbemessung sowie das Bewehren von Rechteckbalken normengerecht auszuführen.

Lehrinhalte

Materialverhalten von Stahl und Beton, Grenzzustände und Sicherheitskonzept. Nachweisführung im Grenzzustand der Tragfähigkeit für Biegung und Querkraft. Konstruktion der Längs- und Bügelbewehrung.

Literatur

Bautabellen für Ingenieure, Werner Verlag – Wolters Kluwer Deutschland GmbH, Köln Konstruieren im Stahlbetonbau I - Hansaverlag

Weitere	Lehrs	prac	hen

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Stahlbetonbau II

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
4	1	PF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend -barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 1,5 Std	Vorlesung		Prof. Dr. HH. Prüser

Qualifikationsziele

Vermittlung der Kenntnisse, die bei der Nachweisführung und konstruktiven Durchbildung von Plattenbalken, Platten, Stützen, Wänden und Fundamenten erforderlich sind.

Lehrinhalte

Nachweisführung von Plattenbalken, Platten, Stützen (Theorie I. Ordnung) und Fundamenten. Expositionsklassen für Bauteile und ihre konstruktive Ausbildung.

Literatur

Bautabellen für Ingenieure, Werner Verlag – Wolters Kluwer Deutschland GmbH, Köln Konstruieren im Stahlbetonbau II - Hansaverlag

Lehrveranstal	tungen
---------------	--------

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Technische Mechanik

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
1	1	PF	6	5	150 Stunden, davon 81 Std. Präsenzstudium, 69 Std. Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 2 Std	Vorlesung Tutorenprogr.		Prof. Dr. P. Seibel

Qualifikationsziele

Die Studierenden werden mit den Prinzipien der technischen Mechanik vertraut gemacht. Sie werden befähigt, Kräfte und Momente zu berechnen und die Gleichgewichtsbedingungen incl. des Schnittkraftverlaufs für statisch bestimmte Systeme aufzustellen.

Lehrinhalte

Allgemeine physikalische Grundlagen und Axiome der Statik,

Lastcharaktere, Einwirkungsarten, Lastannahmen nach DIN EN 1991 und das Sicherheitskonzept nach DIN EN 1990, Freiheitsgrade der Bewegung und Wertigkeit von Lagern. Kräfte und Kräftegleichgewicht (grafische und rechnerische Behandlung),

Abzählkriterium, Berechnung von Auflagerkräften und Schnittgrößenverläufen statisch bestimmter Systeme incl. Gelenkträger und Fachwerke.

Beschreibung von Flächenmomenten erster und zweiter Ordnung (Trägheitsmomente,

Hauptträgheitsmomente, Polare und gemischte Trägheitsmomente, Torsionsträgheitsmomente).

Verformungsermittlung mittels Arbeitssatzes.

Literatur

Dallmann: Baustatik 1, Hanser Verlag, München

Schneider: Bautabellen für Ingenieure, Werner Verlag GmbH & Co KG, Düsseldorf

Waitara I	Lehrsprachen
AACIFCIC	Leili Sbi acileii

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Vermessungskunde

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
1	1	PF	2	2,5	75 Stunden; davon 27 Std. Präsenzstudium, 48 Std. Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	SL/ K/ 1,5 Std	Vorlesung / Übungen		DiplIng. A. Bergmann-Weber

Qualifikationsziele

Die Studierende sollen grundlegende Methoden der Vermessungskunde und deren Einsatzgebiete kennen lernen. Sie werden dadurch in die Lage versetzt, einfache Vermessungsaufgaben und Berechnungen bezüglich Lage und Höhe selbständig auch mit Hilfe elektronischer Tachymeter und Nivellierinstrumente durchzuführen.

Darüber hinaus erhalten sie Kenntnisse bezüglich des Aufbaues und der Aufgabenbereiche des Amtlichen Vermessungswesens.

Lehrinhalte

Grundlagen der Vermessungskunde und des Amtlichen Vermessungswesens, Geodätisches Koordinatensystem, einfache Lagemessung (Aufnahme und Absteckung), Koordinatenberechnung aus Richtungs- und Streckenmessungen, weitere geodätische Berechnungen, Höhenbestimmung (geometrisches Nivellement und Trigonometrische Höhenbestimmung)

Literatur

Resnik, Bill: Vermessungskunde für den Planungs-, Bau- und

Umweltbereich, Wichmann Verlag Heidelberg

Gelhaus, Kolouch: Vermessungskunde für Architekten und Bauingenieure

Werner Verlag., Düsseldorf

Waitara	I Ahrenr	achan

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Wasserbau

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
3	1	PF	4	5	150 Stunden; davon 54 Std. Präsenzstudium, 96 Std. Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 2 Std	Vorlesung Übung		Prof. C. Rau

Qualifikationsziele

Die Studierenden kennen die Aufgaben der Wasserwirtschaft und des Wasserbaus und können ökologische Auswirkungen von Maßnahmen des Wasserbaus abschätzen. Sie kennen Verfahren zur Abschätzung des Bemessungshochwassers an Fließgewässern und sind in der Lage, einfache Bauwerke hydraulisch zu bemessen. Die wesentlichen Aufgaben des Verkehrswasserbaus und des Küsteningenieurwesens sind ihnen bekannt.

Die Studieren kennen die wesentlichen Grundlagen des öffentlichen Rechtes, soweit sie der Planung und Genehmigung von Infrastrukturbauwerken, insbesondere des Wasserbaus, zu Grunde liegen.

Lehrinhalte

Einführung, Bedeutung des Wassers, Begriffe, Kreislauf des Wassers, Prozesse des Wasserkreislaufs: Niederschlag, Verdunstung, Abfluss, Bemessungshochwasser,

Gewässerökologie, Gewässergüte, Gewässerstrukturgüte, Ausbau und Unterhaltung von Fließgewässern, Querbauwerke im Gewässer, Überblick Binnenhochwasserschutz und Energiewasserbau, Verkehrssystem Schiff Wasserstraße, Bauwerke an Wasserstraßen

Schleusen, Binnen- und Seehäfen, Küsteningenieurwesen, Rechtliche Grundlagen

Literatur

Lange, G., Lecher, K.: Gewässerregelung Gewässerpflege, Verlag Paul Parey, Berlin, 2003 Lecher, K., Lühr, H., Zanke, U. (Hrsg.): Taschenbuch der Wasserwirtschaft, 9. Auflage, Springer Verlag, Berlin 2015

Heinemann, E., Feldhaus, R.: Hydraulik für Bauingenieure, 2. Auflage, Springer Verlag, Wiesbaden, 2003.

Weitere Lehrsprachen

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Wirtschaftswissenschaft

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
1	1	PF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL/ K/ 1,5 Std	Vorlesung, Übungen		Prof. Dr. T. Weßels

Qualifikationsziele

Die Studierenden sollen nach Abschluss des Kurses in der Lage sein,

- die Einflussfaktoren auf Angebot und Nachfrage zu beschreiben und zu beurteilen
- die Volkswirtschaft der Bundesrepublik Deutschland empirisch zu analysieren,
- die Auswirkungen von Maßnahmen der Wirtschaftspolitik abzuschätzen,
- die ökonomischen Auswirkungen der Globalisierung zu beschreiben.
- Geschäftsvorfälle zu verbuchen und eine Handelsbilanz zu erstellen
- ausgewählte Steuerarten in ihren Grundzügen zu beschreiben und zu beurteilen

Lehrinhalte

- 1. Grundlagen: Bedeutung der Wirtschaftswissenschaften in den Ingenieurwissenschaften, das ökonomische Prinzip, Transformationskurve, Produktionsfaktoren, Arbeitsteilung, Tausch- und Geldwirtschaft
- 2. Wirtschaftssysteme: Zentralverwaltungswirtschaft, Marktwirtschaft, Aufgaben der Politik
- 3. Mikroökonomie: Einflussfaktoren auf Nachfrage und Angebot, Preiselastizität der Nachfrage, Marktgleichgewicht, Gesetze von Angebot und Nachfrage, Cobweb-Theorem
- 4. Makroökonomie: Gesamtwirtschaftliche Nachfrage, volkswirtschaftliche Gesamtrechnung, Konjunktur, Wirtschaftspolitik in der Bundesrepublik Deutschland
- 5. Internationale Wirtschaftsbeziehungen: Globalisierung, Währungssysteme
- 6. Rechnungslegung: Grundlagen der Buchführung, Jahresabschluss nach HGB
- 7. Umsatzsteuer: Grundlagen, Besonderheiten in der Baubranche und bei Vermietung von Immobilien
- 8. Ertragsteuern: Grundlagen der Einkommen-, Körperschaft- und Gewerbesteuer

Literatur

Mankiw, N. G. / Taylor, M. P.: "Grundzüge der Volkswirtschaftslehre"

Krugmann, P. / Wells, R.: "Volkswirtschaftslehre

Wöhe, G. / Döring, U. / Brösel, G.: "Einführung in die Allgemeine Betriebswirtschaftslehre"

Lehrveranstaltungen

	•	 •
l ===		

Vertiefungen

Vertiefungsstudium Baumanagement

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Bauablaufplanung

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden, davon 54 Std Präsenzstudium und 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
Baubetrieb I und II	In jedem Semester	PL oder SL/ K/ 2 Std	EDV-Seminar	WPF in BWI	Prof. DiplIng. E. Everts

Qualifikationsziele

Beherrschung aller im Baubereich gängiger Planungstechniken, Umsetzung mit führender Software Varianten- und Verfahrensvergliche und deren Bewertung, Zeitliche Planung und Steuerung von Bauprojekten

Lehrinhalte

Vertiefung der im Grundfachstudium erworbenen Kenntnisse in den Bereichen Netzplantechnik und Raum-Zeit-Darstellungen. Rechtliche Bedeutung der Ablaufplanung, von Terminen und Fristen. Vertiefte Bereiche:

- Einsatz von Projektmanagement-Software
- Simulation von Bauabläufen
- Kapazitätsplanung / Kostenplanung
- Ablaufsteuerung, Soll- / Ist-Vergleiche, Berichtswesen
- Multiprojektmanagement

Literatur

s. Vorlesungsunterlagen

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Baubetriebliches Vertragsmanagement

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
Baubetrieb I und	In jedem Semester	PL oder SL/ K/ 2 Std	Vorlesung	WPF in BWI	Prof. E. Everts

Qualifikationsziele

Vertiefte Kenntnisse bei der baubetrieblichen Abwicklung von Bauverträgen im Hinblick auf Leistungs- und Vergütungsänderung, Ablauf- und Leistungsstörungen, Fristen und Fristverlängerungen, Schadenersatzprobleme etc.

Lehrinhalte

Abwicklung von Bauverträgen (VOB/B); vertiefte Bereiche:

- Abrechnung von Bauleistungen
- Mengenänderungen
- Geänderte und zusätzliche Leistungen
- Leistungsstörungen / Gestörte Bauabläufe
- Bauzeitliche Auswirkungen / Fristverlängerungsansprüche
- Nachtragsmanagement

Literatur

s. Vorlesungsunterlagen

Weitere	Lehrs	prac	hen
---------	-------	------	-----

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Finanzierung

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden, davon 54 Präsenzstudium, 96 Selbststudium	

Voraussetzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im SoSe	PL oder SL/ H	Vorlesung, PC- Übungen	WPF in BWI	Prof Dr. T. Weßels

Qualifikationsziele

Die Studierenden sollen nach Abschluss des Kurses in der Lage sein, die unterschiedlichen Möglichkeiten einer Finanzierung zu beurteilen und optimal zur Deckung eines Kapitalbedarfs einzusetzen. Weiterhin sollen die Verfahren der Investitionsrechnung unter Berücksichtigung der Finanzierungsform insbesondere bei vermieteten Immobilien zur Ermittlung einer Nach-Steuer-Rentabilität eingesetzt werden können. Zudem soll der Nutzen von Tabellenkalkulationen wie MS-EXCEL zur Lösung von komplexen Finanzierungsproblemen erkannt werden.

Lehrinhalte

- 1. Verfahren der statischen und dynamischen Investitionsrechnung, Grundlagen der Finanzmathematik
- 2. Finanzierungsregeln, Leverage-Effekt, kurz-, mittel- und langfristige Fremdfinanzierung
- 3. Immobilienfinanzierung, Kreditsicherheiten
- 4. Factoring, Leasing, Anleihen- und Beteiligungsfinanzierung

Literatur

Olfert, K. / Rechel, C.: "Finanzierung"

Gräfer, H. / Beike, R. / Scheld, G.A.: "Finanzierung"

Drukarczyk, J.: "Finanzierung"

Weitere	Lehrs	prac	hen
---------	-------	------	-----

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Kalkulation

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL oder SL/ K/ 2 Std	Vorlesung		Prof. T. Wegener

Qualifikationsziele

Den Studierenden sollen aufbauend auf den erlernten Kenntnissen aus den Vorlesungen "Baubetrieb I" und "Baubetrieb II" die in der Bauwirtschaft angewandten Kalkulationsverfahren sicher beherrschen und besondere Fälle kalkulatorisch bearbeiten können.

Lehrinhalte

Bauauftragsrechnung, Preisermittlung, Kalkulation über die Angebotssumme, Beispiele, Deckungsbeitragsrechnung, Kalkulationsumlagen, Normal- und Sonderpositionen, Änderungen des Bauvertrages, Teilkündigungen, Mehrungen und Minderungen nach VOB, Bauzeitverlängerungen und Behinderungen, Mengenspekulation, Arbeitskalkulation, Kalkulationsrisiken

Literatur

Vergabe- und Vertragsordnung für Bauleistungen (VOB); Drees/Bahner: "Kalkulation von Baupreisen"; Keil/Martensen/Vahland/Fricke: "Kostenrechnung für Bauingenieure"; Vorlesungsskript

Weitere	Lehrsprachen
---------	--------------

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Kostenmanagement

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
		PL oder SL/ K/ 2 Std	Vorlesungen Übungen	WPF in BWI	Prof. W. Malpricht

Qualifikationsziele

Fähigkeit zur Analyse, Kontrolle und Steuerung der Baukosten im Sinne des Auftraggebers Befähigung zum Umgang mit den einschlägigen Normen, Richtlinien und Kostendaten Befähigung zum systematischen und methodischen Umgang mit Baukostendaten

Lehrinhalte

Einführung: Begriffe, Definitionen, Beeinflussbarkeit der Kosten; Regelkreislauf: Kostenplanung, -kontrolle, -steuerung

Projektablauf: vom Budget zur Nachkalkulation

DIN 277 "Grundflächen und Rauminhalte von Bauwerken im Hochbau" als Grundlage für Kostendateien und Kostenrichtgrößen

DIN 276 "Kosten im Bauwesen"

Gewerkegliederung, Kostenelemente u. weitere Feingliederungen, Zuordnungsprobleme

Baupreisindex und Baupreisstatistiken

Kostenmanagement: Ermittlung, Kontrolle u. Steuerung von Kosten, Handlungsanweisungen

Marktübliche Kostendateien und sonstige Managementhilfen

DIN 18960 "Nutzungskosten im Hochbau"

Honorarberechnungen nach HOAI

Wertermittlung von Immobilien

Rechts- und Haftungsfragen des Kostenmanagements

Literatur

BKI Baupreise und Objektdaten, Baukosteninformationszentrum Deutscher Architektenkammern Kochendörfer, Liebchen, Viering: Bau-Projekt-Management; Verlag Vieweg + Teubner Fröhlich: Hochbaukosten, Flächen, Rauminhalte; Verlag Vieweg + Teubner

Möller, Kalusche: Planungs- und Bauökonomie; Oldenbourg Verlag

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Projekt Baumanagement

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	Prüfungsleistung/ Projektbericht	Gruppenarbeit Vorträge Diskussionen		Dozentinnen und Dozenten des Fachbereichs BGG

Qualifikationsziele

Die Studierenden sind in der Lage, für fachübergreifende Fragestellungen aus dem Bereich Baumanagement selbständig und arbeitsteilig Lösungen zu erarbeiten und zu präsentieren. Sie beherrschen grundlegende Fertigkeiten der Teamorganisation und des Projektmanagements und können die im Grundstudium erworbenen Kenntnisse in unterschiedlichen Zusammenhängen anwenden.

Lehrinhalte

Am Beispiel eines konkreten Planungs- oder Bauvorhabens sollen selbständig Probleme erkannt und Lösungen erarbeitet werden. Hierbei sind neben den schwerpunktmäßig zu behandelnden Fragestellungen aus dem Bereich Baumanagement auch rechtliche, konstruktive, technische und wirtschaftliche Aspekte zu berücksichtigen. Einzelne Schritte zur Bearbeitung sind

- Organisation der Gruppenarbeit
- Terminplanung und -steuerung der Projektarbeit
- Beschaffung und Aufbereitung von Unterlagen
- Herausarbeiten der Fragestellung/en
- Erarbeitung der Lösung bzw. von Lösungsvarianten
- Ggf. Identifizierung der Vorzugsvariante
- Ausarbeitung der Vorzugsvariante
- Präsentation und Verteidigung der Lösung

Literatur

Jacoby, W.: Projektmanagement für Ingenieure, 2. Auflage, Springer Vieweg 2013

Weitere Lehrsprachen

HS Wilhelmshaven/Oldenburg/Elsfleth Studiengang: Bauingenieurwesen							
Modulname:	Schlüss	elfertigbau					
Empfohlenes Semester	Dauer	Modulart	sws	Leistungs -punkte	Studentische Arbeitsbelastung	Modul- code	
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium		

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend -barkeit	Modul- verantwortliche(r)
		PL oder SL/ K/ 2 Std	Vorlesungen Übungen	WPF in BWI	Prof. Dr. H. Müffelmann

Qualifikationsziele

Grundlagenwissen in der Konzipierung, Planung, Ausschreibung, vertieftes Wissen in der Abwicklung und Steuerung von Schlüsselfertigbau-Vorhaben, nicht nur- aber vornehmlich aus der Sicht des Generalunternehmers (GU). Die Studierenden erhalten einen Einblick in das komplexe Spannungsfeld des GU's zum Bauherrn (AG) und den Nachunternehmern (NU); nach der Darlegung verschiedener GU-Vertragsarten wird den Studierenden im Tragweite von komplexen schlüsselfertigen Bauten hinsichtlich der Kosten, Qualität und Termine mit praxisorientierten Lösungsmöglichkeiten (Messen, Dokumentieren, Analysieren, Zuordnen, Handeln) in der Steuerung vermittelt, wie z.B. im "Lean Management". Dazu gehört das Erkennen und Lösen von Schnittstellenproblematiken (Ausschreibung und Ausführung), veranschaulicht an mehreren konkreten Projektbeispielen im Industriebau, wie auch die Schärfung des Urteilsvermögens bei Störungen im Bauablauf, die sich konsekutiv auf Kosten, Qualität oder Termine auswirken. Neben den "harten Faktoren" werden in der Steuerung Fertigkeiten "weiche Faktoren" der Projektkultur zur Durchführung lösungsorientierter Besprechungen vermittelt. Die Studierenden erhalten zu dem an einem ausgewählten Projektbeispiel im Industriebau technisches Grundwissen und ein Urteilsvermögen in der Bedeutung und Tragweite des Brandschutzes, was Kosten, Qualitätssicherung und entsprechende Steuerungsmöglichkeiten aus der Sicht des GU's betrifft.

Lehrinhalte

Einführung in die Abwicklung und Steuerung von Schlüsselfertig-Bauvorhaben und Generalunternehmer-Aufträge:

- Begriffe und Ziele der Beteiligten, Beispiele
- Vertragsformen/- arten
 - 2.1. Generalunternehmer /Totalunternehmer/-übernehmer

 - 2.3. Construction Management (CM) und Garantierter Maximalpreis (GMP)
 - 2.4. Public-Private- Partnership (PPP)
 - 2.5. Design and Build
- Projektbeispiel Industriebau: WDZ Erfurt
 3.1 Totalunternehmer

 - Einstieg in die Komplexität der Gewerke 3.2
 - Schnittstellenproblematiken 3.3
 - Tragweite und Bedeutung des Brandschutzes
- Projektmanagement des GU's
 - 4.1. Komplexe Projektorganisation
 - 4.2. Durchführung von Besprechungen
 - 4.3. Steuerungsmaßnahmen: Messen, Dokumentieren, Analysieren, Zuordnen, Handeln
 - Termine
 - Qualität

Literatur

- Conditions of Contract for Design Build and Turnkey; Part I General Conditions, Part II Particular application; Hrsg.: FIDIC, Lausanne
- Gossow, Volkmar Schlüsselfertiger Hochbau Praxisbeispiele, Vertragsmuster, Checklisten, Verlag Vieweg, 2. Braunschweig / Wiesbaden
- Kapellmann K. D.; Schlüsselfertiges Bauen Rechtsbeziehungen zwischen Auftraggeber, Generalunternehmer, Nachunternehmer; Werner Verlag

- 4. Klärner E., Schwörer A., Qualitätssicherung im Schlüsselfertigen Bauen Schwerpunkt Bauausführung, Hrsg.: Die Deutsche Bauindustrie, Wiesbaden
- 5. Wirth, V. Schlüsselfertigbau Controlling im Baubetrieb; Hrsg. Kontakt & Studium Band 486

Weitere Lehrsprachen	

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Unternehmensführung

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden, davon 54 Präsenzstudium, 96 Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im SoSe	PL oder SL/ H	Vorlesung, Fallstudien		Prof. Dr. T. Weßels

Qualifikationsziele

Die Studierenden sollen nach Abschluss des Kurses in der Lage sein, Verfahren des strategischen Managements zur Analyse von Unternehmen oder von strategischen Geschäftsfeldern einzusetzen.

Lehrinhalte

- 1. Ablauf- und Aufbauorganisation, Koordination, Weisungssysteme
- 2. Langfristige und strategische Planung
- 3. Strategisches Management: Bedeutung von Strategie, SWOT-Analyse, Gap-Analyse, Lebenszyklus-Analyse, Erfahrungskurve, Portfoliomodelle, Kernkompetenzen, Profit Center, Business Process Reengineering, virtuelle Unternehmen, Wertkettenanalyse, generische Strategien, Branchensegmentierung, Balanced Scorecard, horizontale und vertikale Integration, Szenariotechniken, Strategien unter Unsicherheit

Literatur

Grant, R. M. / Nippa, M. (2006): "Strategisches Management"

Mintzberg, H. et al. (2002): "Strategy Safari. Eine Reise durch die Wildnis des strategischen Managements"

Porter, M. et al. (1983): "Wettbewerbsstrategie. Methoden zur Analyse von Branchen und Konkurrenten" Wilkinson, N. (2005): "Managerial Economics. A Problem-Solving Approach"

Weitere Lehrsprachen

Studiengang: Bauingenieurwesen

Modulname: Verhandlungsführung und Konfliktmanagement

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Jade Hochschule

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
		PL oder SL/R, Ü	Seminar		Prof. Dr. K. Plog

Qualifikationsziele

Ausbau der Kompetenzen in den Bereichen Verhandlungsführung und Konfliktmanagement. Einsatz effektiver Strategien und Gesprächstechniken in schwierigen Praxissituationen (Auftragsabwicklung, Zusammenarbeit mit anderen Firmen etc.). Erweiterung des Verhaltensrepertoires.

Lehrinhalte

Überzeugungstechniken, Umgang mit unterschiedlichen Verhandlungsszenarien, Krisenintervention und Konfliktlösung, Mediation, Changemanagement, Selbstmanagement und Arbeitsorganisation

Literatur

Voeth, Markus/Herbst, Uta: Verhandlungsmanagement. Stuttgart 2009

Weitere Lehrveranstaltunger	Weitere	Lehrvera	anstaltui	naen
-----------------------------	---------	----------	-----------	------

Vertiefungsstudium Erhaltung/ Sanierung/ Ertüchtigung von Bauwerken – ESE

Jade Hochschule Wilhelmshaven/Oldenburg/Elsfleth Studiengang: Bauingenieurwesen

Modulname: Aufnahme und Monitoring von Gebäuden im Bestand

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbelastung
5 oder 6	4 SWS	Vertiefungsstudium Modul Gruppe 1 Studienrichtung ESE	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium

Voraussetzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
keine	Tätigkeit in Ingenieurbüros oder Baufirmen	Klausur 2 h oder Kursarbeit oder Projektarbeit	Vorlesung & Begl. stud. Übungen	Wigger, H. Prof. DrIng.

Qualifikationsziele

Kenntnisse zur Bewertung und praktischen Aufnahme von Gebäuden im Bestand. Generierung und Umgang mit einem digitalen Abbild des realen Gebäudes. Beurteilung des erforderlichen Detailierungsgrades im Kontext zur anstehenden Projektaufgabe (Vorplanung, Erhaltung, Sanierung, Ertüchtigung, Monitoring etc.). Integration von Schadensbildern aller Art im digitalen Abbild des Gebäudes. Monitoring als Verknüpfung des Gebäudemodelles mit real erfassten Daten.

Lehrinhalte

Für bestehende Gebäude sind in vielen Fällen keine Planunterlagen vorhanden. Durch die Anwendung z. B. digitaler Bildverarbeitungstechniken können Bestandsgebäude sehr effizient dokumentiert werden. Die Dokumentation beinhaltet Geometrie, Bauteileigenschaften (Attribute) mit Zustandsbewertung und Schadensbilder aller Art. Hierzu gehören folgende Verfahren:

- klassische Bauaufnahme (Gebäudedaten, Topografie, ...)
- Erfassen der Oberflächenveränderungen, Oberflächenprofilierungen
- Von der visuellen Beurteilung zu Sensortechniken z. B. für Rissmuster oder Feuchteänderungen
- Vor-Ort-Ermittlung der Materialeigenschaften (Festigkeit, Steifigkeit, Oberflächenhärte, ...)
- Laserscanning / Photogrammmetrie z. B. auch Abbildung von Schadensmustern

Es werden Verfahren aufgezeigt und angewendet mit denen die Dokumentation in ein BIM-Gebäudemodell (mit zugehöriger Datenbank) überführt wird.

An ausgewählten Beispielen wird das Gebäudemodell benutzt, um Bauwerksbeobachtungen durchzuführen und zu dokumentieren. In diesem Monitoring werden digital generierte und im

realen Gebäude erfasste Daten miteinander verschnitten und bewertet. Es werden die Verfahren erläutert, mit denen eine dem Projekt erfolgreichen Grundlagenermittlung durchgeführt werden können.

Literatur

- KLEINMANNS, J.; WENZEL, F. (Hg.): Sonderforschungsbereich 315 Universität Karlsruhe: Erhalten historisch bedeutsamer Bauwerke. Empfehlungen für die Praxis. Denkmalpflege und Bauforschung. Aufgaben, Ziele, Methoden. Karlsruhe 2000
- Busen; T.; Knechtel, M.; Knobling, C.; Nagel; E.; Schuller; M.; Todt, B.: Bauaufnahme, Münster 2015.

Lehrveranstaltungen						
Dozent(in)	Titel der Lehrveranstaltung	sws				
Wigger, H. Prof. DrIng. NN	Aufnahme und Monitoring von Gebäuden im Bestand	4				

<u>Erläuterungen:</u> Die Vorlesung findet im **Sommer- und Wintersemester** statt. Sie wird durch Mitarbeiter des Fachgebietes unterstützt.

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Angewandte Bauphysik

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul-code
5 oder 6	1	WPF	4	5	150 Stunden, davon 54 Präsenzstudium, 96 Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL oder SL/ Projekt- präsentation	Vorlesung mit Übungen + Projekt	WPF in BWI	Prof. Dr. J. Middelberg

Qualifikationsziele

Die Teilnehmer sollen in die Lage versetzt werden, eine umfassende bauphysikalische Analyse für ein Bestandsgebäude mit aktuellen technischen Möglichkeiten zu erstellen und das Gebäude bauphysikalisch zu bewerten. Voraussetzung dazu ist die Beherrschung aktuell verfügbarer Untersuchungsmethoden wie Thermografie, Luftdichtheitstests, Endoskopie, Klimadatenlogger, nichtinvasive Feuchtebestimmung etc.

Lehrinhalte

Wärmeschutzberechnungen: - Winterlicher Wärmeschutz, Monatsbilanzverfahren - Sommerlicher Wärmeschutz- Mindestwärmeschutz - Erkennung und Bewertung von Wärmebrücken

Messtechnische Erfassung von Wärmeverlusten durch Luftwechsel und Wärmeleitung sowie kritischer Temperaturen

Analyse der Gebäudesubstanz: Makrofotografie und Endoskopie

Feuchteschutz: - Langzeitaufzeichnung von Feuchte und anderen Raumluftparametern - Behaglichkeitsbeurteilung

Schallschutz: - Messung des Schalldämmmaßes und des Trittschallpegels Brandschutz: - Gebäudedichtheit und Abtrennung von Brandabschnitten

Berichterstattung und Präsentation

Literatur

Hohmann, Setzer, Wehling: Bauphysikalische Formeln und Tabellen

Krawietz, R., Heimke, W.: Physik im Bauwesen

Schneider Bautabellen für Ingenieure

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur in WiSe	PL oder SL/ Projekt- präsentation	Vorlesung + Projekt	WPF in BWI	Prof. Dr. J. Middelberg

Qualifikationsziele

Die Teilnehmer sollen lernen, aus bautechnischer Sicht Brandgefahren zu erkennen, zu bewerten und Lösungen zu erarbeiten. Sie sollen die Bundes- und Landesgesetzgebung zum Thema sowie die Einschlägige Normung kennen. Auf dem Markt verfügbare Materialien, Komponenten und Systeme sollen bekannt sein und bewertet werden können. Die vermittelten Prüf- und Berechnungsverfahren sind Voraussetzung für die Erstellung von Brandschutzkonzepten.

Lehrinhalte

Einteilung des Brandschutzes, Verantwortlichkeiten und gesetzliche Regelungen;

aktuelle und historische Standards;

physikalisch-chemische Beschreibung von Bränden, Auswirkungen auf den menschlichen Organismus; Anforderungen an Materialien, Bauteile, Konstruktionen und Planung; spezifische Probleme im Altbau;

Berechnung von Brandlasten, Rauch- und Wärmeabzugsanlagen, Fluchtwegen, Löschwasserbedarf;

Test von Bauteilen, Signalanlagen, selbstschließenden Türen und Klappen etc.;

Aufbau und Bedeutung von Brandschutzkonzepten; Berichtsorganisation und Präsentation

Literatur

Löbbert, A., Pohl, K.D., Thomas, K., Kruszinski, T.: Brandschutzplanung, Feuertrutz

Schneider, U.: Ingenieurmethoden im Brandschutz, Werner Verlag

Mayr, J. und Battran, L.: Brandschutzatlas - Baulicher Brandschutz. Feuertrutz Verlag

Merschbacher, A.: Brandschutz: Praxishandbuch für die Planung, Ausführung und Überwachung.

Verlagsgesellschaft Rudolf Müller

Fennen, M. in: Fouad, N. (Hrsg): Bauphysikkalender 2016

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Energetische Sanierungsplanung

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im WiSe	PL oder SL/ Projekt- präsentation/HA	Vorlesung + Projekt	WPF für BWI	Prof. Dr. J. Middel- berg, Prof. Dr. N. Becker

Qualifikationsziele

Fähigkeit zur Beurteilung der Notwendigkeit energiesparender Maßnahmen aus wissenschaftlicher, volkswirtschaftlicher, technischer und gesetzlicher Sicht;

Strategien zur energetischen Verbesserung und Optimierung von Gebäuden;

Kenntnis gebräuchlicher und zukunftsweisender Materialien, Verfahren und Techniken;

Überblick über die Einsatzmöglichkeiten alternativer und erneuerbarer Energien;

Energetische, umweltbezogene und wirtschaftliche Bewertung verschiedener Sanierungskonzepte

Lehrinhalte

Notwendigkeit und Möglichkeiten der energetischen Sanierung von Gebäuden

Bilanzierung und Bewertung des Energieumsatzes von Gebäuden.

Energieausweis gem. EU-Richtlinie zur Gesamtenergieeffizienz von Gebäuden (EPBD) nach geläufigen Standards (DIN 4108/4701, DIN 12831, ISO 6946, DIN V 18599, PPHP).

Planung umfassender Modernisierung und von Einzelmaßnahmen nach technischen, sozialen und wirtschaftlichen Gesichtspunkten, insbesondere Vermeidung von Tauwasser und gesundheitsschädlichen Zuständen.

Beurteilung bestehender und neuer Anlagen der technischen Gebäudeausrüstung unter Berücksichtigung alternativer und erneuerbarer Energien im Rahmen der gesetzlichen Vorgaben. Erprobung, Planung und Einsatz von Gebäudeautomation und Optimierung der Energieeffizienz.

Wirtschaftliche und energetische Amortisation energetischer Sanierungen unter Einbeziehung staatlicher Förderprogramme.

Literatur

Ingo Gabriel: Vom Altbau zum Effizienzhaus

Weitere Lehrsprachen	

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Nachhaltigkeitsbewertung von Gebäuden

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	4 SWS	WPF		5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
		PL oder SL/ H	Vorlesung Begl. Stud. Übg.	WPF in BWI	Prof. Dr. N. Becker

Qualifikationsziele

Nachhaltigkeit im Bauwesen: Grundlagen, Strategien und Maßnahmen.

Bewertung der Nachhaltigkeit von Gebäuden mit besonderem Fokus auf den Bestand.

Zusätzlich kann auf Wunsch die DGNB-Prüfung zum "Registered Professional" abgelegt werden.

Lehrinhalte

Literatur

Die Erhaltung, Sanierung und Ertüchtigung des Gebäudebestands kann als besonders nachhaltig gelten, da hierdurch die Nutzungsdauer von Gebäuden erheblich verlängert werden kann. Gleichzeitig reduzieren sich die Materialaufwendungen bei grundlegenden Anpassungen an veränderte Nutzeranforderungen auf ein Drittel dessen, was ein Neubau beanspruchen würde.

Folgende Lehrinhalte werden vermittelt:

- Grundlagen und Methoden des nachhaltigen Bauens
- Nachhaltigkeitszertifizierung nach DGNB/BNB
- Ökobilanzierung von Baustoffen, Bauteilen und Gebäuden: Methodik, Datengrundlagen und Anwendungsbeispiele
- Kreislaufwirtschaft im Bauwesen: Status quo, Ressourcenschonungspotenziale und Hemmnisse

Weitere Lehrsprachen	

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Projekt Erhaltung, Sanierung und Ertüchtigung von Bauwerken

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	Prüfungsleistung/ Projektbericht	Gruppenarbeit Vorträge Diskussionen		Dozentinnen und Dozenten des Fachbereichs BGG

Qualifikationsziele

Die Studierenden sind in der Lage, für fachübergreifende Fragestellungen aus dem Bereich Erhaltung, Sanierung und Ertüchtigung von Bauwerken selbständig und arbeitsteilig Lösungen zu erarbeiten und zu präsentieren.

Sie beherrschen grundlegende Fertigkeiten der Teamorganisation und des Projektmanagements und können die im Grundstudium erworbenen Kenntnisse in unterschiedlichen Zusammenhängen anwenden.

Lehrinhalte

Am Beispiel eines konkreten Planungs- oder Bauvorhabens sollen selbständig Probleme erkannt und Lösungen erarbeitet werden. Hierbei sind neben den schwerpunktmäßig zu behandelnden Fragestellungen aus dem Bereich Erhaltung, Sanierung und Ertüchtigung von Bauwerken auch rechtliche, konstruktive, betriebliche und wirtschaftliche Aspekte zu berücksichtigen. Einzelne Schritte zur Bearbeitung sind

- Organisation der Gruppenarbeit
- Terminplanung und -steuerung der Projektarbeit
- Beschaffung und Aufbereitung von Unterlagen
- Herausarbeiten der Fragestellung/en
- Erarbeitung der Lösung bzw. von Lösungsvarianten
- Ggf. Identifizierung der Vorzugsvariante
- Ausarbeitung der Vorzugsvariante
- Präsentation und Verteidigung der Lösung

Literatur

Jacoby, W.: Projektmanagement für Ingenieure, 2. Auflage, Springer Vieweg 2013

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Schadstoffe in Gebäuden

Empfohlene s Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	90 Stunden; davon 27 Std Präsenzstudium, 63 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im SoSe	PL oder SL/ PA und Vortrag	Vorlesung, Projektarbeit	WPF in BWI	Prof. Dr. H. Wigger

Qualifikationsziele

Die Studierenden sollen für Schadstoffemissionen in Neubauten sensibilisiert werden. Ihnen sollen Wege aufgezeigt werden, wie sie durch die Auswahl geeignete Baustoffe ein möglichst gesundes Raumklima schaffen können. Unsere Altbausubstanz ist teilweise mit Bauschadstoffen belastet, die es gilt aufzuspüren, ihre Auswirkung abzuwägen und Sanierungskonzepte aufzuzeigen. Vorlesungen sollen die Grundlagen vermitteln, das Erlernte soll anhand von möglichst praxisnahen Beispielen erprobt und vertieft werden.

Lehrinhalte

Grundlagen der Baubiologie. Bauschadstoffe in Gebäuden und ihre Folgen. Vermeidung von Emissionen in zunehmend luftdicht ausgeführten Neubauten.

Erfassen und bewerten chemischer, mikrobiologischer und physikalischer Faktoren und ihre Folgen in Gebäuden. Welche Bewertungskriterien stehen zur Verfügung. Welche Empfehlungen, Normen und Vorschriften Technische Regeln haben wir zu beachten. Anleitung zur gutachterlichen Stellungnahme.

Literatur

Bachmann,P.; Lange, M.: Mit Sicherheit gesund bauen: Fakten, Argumente und Strategien für das gesunde Bauen, Modernisieren und Wohnen; Peter Bachmann, Matthias Lange.

Zwiener / Lange (Hrsg.): Handbuch Gebäude-Schadstoffe und Gesunde Innenraumluft.

Weitere	Lehrs	prachen
---------	-------	---------

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Schutz und Ertüchtigung von Betonbauteilen

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im WiSe	PL oder SI/ K oder PA mit Vortrag/ 2 Std	Vorlesung Übungen	WPF in BWI	Prof. Dr. H. Wigger

Qualifikationsziele

Erlangung von fundierten Kenntnissen im Bereich der Sanierung, Ertüchtigung und Wartung von Betonbauwerken auf dem Niveau, das der Ausbildungsbeirat "Verarbeiten von Kunststoffen im Betonbau beim Deutschen Beton- und Bautechnik-Verein e.V." zur Erlangung des sogen. SIVV-Scheins und für den Sachkundigen Planer für Betoninstandsetzung erwartet.

Lehrinhalte

Techn. Baubestimmungen, Materialeigenschaften, Untergrund, Grundlagen der Schutz- und Instandsetzungsbaustoffe, Dauerhaftigkeit von Beton und Schadenserscheinungsformen, Bewehrungskorrosion, Schutzmaßnahmen, Beurteilung der Standsicherheit, Instandsetzung, Oberflächenschutz, Füllen von Rissen, Vergießen, Fugen, Spritzbetonverstärkung, geklebte Bauteilverstärkungen, Qualitätssicherung.

Literatur

ZTV-ING; Instandhaltungsrichtlinie des DafStb;

Schröder et al: Schutz und Instandsetzung von Stahlbeton, Expert-Verlag;

SIVV-Handbuch, Fraunhofer IRB Verlag.

Raupach, Michael; Orlowski, Jeanette (2008): Schutz und Instandsetzung von Betontragwerken

Weit	oro	ام ا	hre	nra	che	'n
vveil	ere	∟eı	1115	DI a	CHE	:11

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Schutz und Sicherung historischer Bauten

Empfohlenes Semester	Dauer	Modulart	sws	Leistung s-punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetzung en für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche (r)
	Nur im SoSe	PL oder SL/ Projektarbeit: schriftliche Ausarbeitung und Vortrag	Vorlesung, Laborübungen, Projektarbeit	WPF in BWI	Prof. Dr. H. Wigger

Qualifikationsziele

Die Studierenden lernen historische Konstruktionen aus unterschiedlichen Baustoffen (Holz, Mauerwerk) mit ihren typischen Schwachstellen kennen. Dabei wird die Vorgehensweise bei Untersuchungen bzw. Sanierung von Baudenkmalen vermittelt. Es werden ihnen unterschiedlichste Verfahren zur Schadensaufnahme und –sanierung vorgestellt. Bei einer Projektarbeit können die in den Vorlesungen vermittelten Inhalte praktisch angewendet und vertieft werden.

Lehrinhalte

Baudenkmalpflege, historische Konstruktionen aus Stein- und Holz, Bauschäden und Schadensursachen, Untersuchungsmethoden und –verfahren, Sanierung von historischen Holz-, Mauerwerk-, Stahlkonstruktionen, nachträgliches Abdichten von Bauwerken

Literatur

Skript Schutz und Sicherung historischer Bauten,

Böttcher, D.: Erhaltung und Umbau historischer Tragwerke,

Wenzel, F.: Erhalten historisch bedeutsamer Bauwerke Empfehlungen für die Praxis.

WTA Merkblätter

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Statik für den Bauwerksbestand und Umnutzung

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	PL oder SL/ K oder nach Wahl des Prüfenden/ 2 Std	Vorlesung Begl. stud Übg.	WPF in BWI	Prof. Dr. HH. Prüser

Qualifikationsziele

Erkennen von statischen Systemen im Gebäudebestand und deren Auslastungsgrade, Erkennen und Beurteilen von Tragwerksänderungen durch Umbaumaßnahmen. Umgang mit historischen Baustoffen

Lehrinhalte

Umbaumaßnahmen in Dachtragwerken (incl. Lasterhöhungen aus Änderungen des Dachaufbaus) Durchdringungen bestehender Geschossdecken durch Fahrstühle oder klimatechnischer Anlagen. Dauerhafte und temporäre Abfangungen von Deckenlasten.

Veränderungen der Beanspruchung am bestehenden Tragwerk aus veränderten Lasten und Systemveränderungen.

Literatur

Fingerloos, F.: Historische technische Regelwerke für den Beton-, Stahlbeton- und Spannbetonbau

Weitere	l ehrsnrachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Technische Gebäudeausrüstung

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	PL oder SL/ H	Vorlesung, Begl. stud Übg.		Prof. Dr. N. Becker

Qualifikationsziele

Planung technischer Gebäudeausrüstung bei Neu- und Umbaumaßnahmen.

Relevanz technischer Gebäudeausrüstung für Energieeffizienz, Komfort sowie Investitions- und Betriebskosten.

Lehrinhalte

Beurteilung bestehender und Auslegung neuer Anlagen der technischen Gebäudeausrüstung:

- Heizungsanlagen
- Lüftungs- und Klimatechnik
- Wasser-, Abwasser- und Gasanlagen
- Starkstrom-, Fernmelde- und informationstechnische Anlagen
- Förderanlagen

Literatur

Pistohl, Rechenauer, Scheuerer: Handbuch der Gebäudetechnik, Band 1/2

Krimmling (Hrsg.) et al.: Atlas Gebäudetechnik

Weitere	l eh	rsn	rac	hen

Vertiefungsstudium Konstruktiver Ingenieurbau

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Angewandte Baustatik

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im WiSe	PL oder SL/ K/ 2 Std	Vorlesung	WPF in BWI	Prof. Dr. R. Tawakoli

Qualifikationsziele

Die praktische Anwendung bereits erworbener Kenntnisse im Bereich "Baustatik" sowie ergänzende Kapitel aus dem konstruktiven Ingenieurbau stehen im Mittelpunkt dieser Vorlesung. Am Beispiel von konkreten Bauvorhaben werden Lastannahmen, Lastabtrag sowie das Zusammenspiel einzelner Bauteile untereinander in Abhängigkeit von ihren Steifigkeiten behandelt. Unterschiedliche Aspekte hinsichtlich Tragwerksidealisierung, Brauchbarkeit und Aussteifung sowie Anwendung von Ersatzsystemen und FE-Programmen werden behandelt.

Lehrinhalte

Systemanalyse von Tragstrukturen, Lastabtrag, Ermittlung von Windlasten für schlanke Strukturen, Ersatzsysteme, Polpläne, federelastisches Verhalten von Bauteilen, weiterführender Einsatz von Theorie II. Ordnung, Aussteifung von Gebäuden, Anwendung von FE-Programmen.

Literatur

/1/ Petersen, Chr.: Statik und Stabilität der Baukonstruktionen, 2. Auflage 1982, Vieweg, Braunschweig/Wiesbaden, 1982

/2/ Schneider k.-J.: Bautabellen für Ingenieure, 22. Aufl. 2016, Bundesanzeiger Verlag

Weitere	labran	rochon
vveitere	Lenrso	nacnen

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Brückenbau

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	PL oder SL/ H	Vorlesung Begl. stud. Übg.	WPF in BWI	Prof. Dr. O. Bahr

Qualifikationsziele

Die Studierenden erlernen die Grundlagen des Brückenbaus. Sie erwerben die Kenntnisse, um eine Brücke in allen wesentlichen Belangen zu entwerfen und vorzubemessen.

Lehrinhalte

Historische Entwicklung, bestehende Brücken, Baustoffe, Tragwerksarten, Entwurf von Brücken, Querschnittsgestaltung, Überbau, Lagerung von Brücken, Unterbauten, Lastannahmen, Vorbemessung, Herstellung von Brücken.

Literatur

- G. Mehlhorn, M. Curbach, "Handbuch Brücken: Entwerfen, Konstruieren, Berechnen, Bauen und Erhalten", Springer Vieweg Verlag, 2015.
- K. Geißler, "Handbuch Brückenbau: Entwurf, Konstruktion, Berechnung, Bewertung und Ertüchtigung", Ernst & Sohn Verlag, 2014.

Weitere	Lehrs	prachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: FE-Methoden

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden, davon 54 Präsenzstudium, 96 Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im SoSe	PL oder SL/ K/ 2Std	Vorlesung	WPF in BWI	Prof. Dr. P. Seibel

Qualifikationsziele

Die Studierenden werden mit den theoretischen Grundlagen vertraut gemacht, um die Vorgehensweise und den Grundgedanken der FE-Berechnung verstehen zu können.

Bei den Übungen am Rechner werden den Studierenden die unterschiedlichen Möglichkeiten und Handhabungen verschiedener Programme gezeigt. An Beispielen aus der Baupraxis lernen die Studierenden Tragwerke zu modellieren und die Berechnungsergebnisse richtig zu interpretieren.

Lehrinhalte

Elementtypen, Diskretisierung, Elementsteifigkeitsmatrix, Gesamtsteifigkeitsmatrix, Belastungen und Randbedingungen, Berechnung von Verformungen, Schnittkräfte und Spannungen, Anwendung von FE-Programmen

Literatur

Ahlert, FEM, Finite-Elemente-Methode im konstruktiven Ingenieurbau, Werner Verlag, 2002 Barth, Rustler, Finite Elemente in der Baustatik-Praxis, Beuth, 2013

Rombach, Anwendung der Finite-Elemente-Methode im Betonbau, Wilhelm Ernst & Sohn Verlag, 2017 Werkle, Finite Elemente in der Baustatik, Vieweg 2008

Weitere Lehrspi	racnen
-----------------	--------

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Geotechnik

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	PL oder SL/ K/ 2 Std	Vorlesung Begl. stud Übg.	WPF in BWI	Prof. Dr. O. Beilke

Qualifikationsziele

Den Studierenden soll der geotechnische Entwurf und die geotechnische Bemessung von Ingenieur- und Erdbauwerken vermittelt werden.

Lehrinhalte

Entwurf und Berechnung von Baugrubenwänden und Ufereinfassungen, Ermittlung des Erddrucks und der Erddruckumlagerung für besondere Randbedingungen (u.a. Baugruben im innerstädtischen Bereich, Ufereinfassungen in weichen bindigen Böden), Grundlagen der statischen Systeme und der Optimierung, Nachweise für Schlitzwände, Entwurf und Bemessen von Verankerungen, Ausführen von Mikropfählen zur Gründungssanierung, Nachweise für Baugruben im Wasser, Standsicherheit von Dämmen, Böschungen, Geländesprüngen und Deichen einschl. der Einflüsse aus strömendem Wasser

Literatur

SIMMER, Grundbau, Teubner Verlag

SCHMIDT, Grundlagen der Geotechnik, Teubner Verlag

SMOLTCYK, Grundbautaschenbuch, Verlag Ernst und Sohn

EAB, Empfehlungen des Arbeitsausschusses Baugruben

EAU, Empfehlungen des Arbeitsausschusses Ufereinfassungen

EAP, Empfehlungen des Arbeitsausschusses Pfähle

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenierwesen

Modulname: Holzbau II

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im SoSe	PL oder SL/ K/ 2 Std	Vorlesung	WPF in BWI	Prof. Dr. J. Härtel

Qualifikationsziele

Erwerb weiterführender Kenntnisse und Fähigkeiten zum Erstellen statischer Berechnungen im Ingenieurholzbau, insbesondere für Dach- und Hallenkonstruktionen.

Lehrinhalte

Konstruktion und Bemessung von hölzernen Dachtragwerken, Biegeträger aus nachgiebig zusammengesetzten Querschnitten, mehrteilige Druckstäbe, Konstruktion und Bemessung von Hallentragwerken im Ingenieurholzbau, genauere Verformungsberechnungen von Holzkonstruktionen, Brettschichtholzträger, Sparrenpfetten, Wind- und Aussteifungsverbände, Anwendung von EDV-Programmen im Ingenieurholzbau, BIM im Ingenieurholzbau.

Literatur

Vorlesungsskript; Bautabellen für Bauingenieure;

Werner, G.; Zimmer, K.: Holzbau 2 - Dach- und Hallentragwerke nach DIN 1052 und Eurocode 5.

Neuhaus, H.: Lehrbuch des Ingenieurholzbaus.

Weitere Lehrsprachen

FH Wilhelmshaven/Oldenburg/Elsfleth Studiengang: Bauingenieurwesen Modulname: Modellbasierte Tragwerksplanung Semester Dauer Art ECTS-Punkte Studentische Arbeitsbelastung

5

150 Stunden; davon

54 Std Präsenzstudium,

96 Std Selbststudium

Vertiefungsstudium

Modul Gruppe 1

Stud.rig: KI

4 SWS

5 oder 6

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Konstruktive Module der Fach-semester 1 bis 4		K2 oder nach Wahl des Prüfenden	Vorlesung mit Software/BIM Anwendungen	Prof. DrIng. HH. Prüser

Qualifikationsziele

Die Studierenden sollen erlernen, wie aus einem digitalen BIM-Bauwerksmodell ein zugehöriges Fachmodell "Tragwerksplanung" zu generieren ist. Sie sollen in dem Fachmodell die Einwirkungen und die Antworten des Tragwerkes simulieren und die Bauteile EDV-gestützt im Detailierungsgrad einer (Vor-)Entwurfplanung dimensionieren. Die Massen des Tragwerkes werden ermittelt, um die damit verbundenen Kostenansätze zu plausibilisieren.

Lehrinhalte

Ansätze zur Vordimensionierung von Bauteilen eines Tragwerkes (Balken, Wand, Platte, Fundament)

Verständnis und Umgang mit digitalen BIM-Bauwerksmodellen und der darin enthaltenen Informationen

Anwendung von Schnittstellen (z.B. IFC), um aus dem BIM-Bauwerksmodell Basisdaten für das Fachmodell "Tragwerksplanung" zu verwenden und diese weiter in ein statisches System zu überführen.

Bearbeitung der Einwirkungen und Baustoffeigenschaften als Grundlage der Simulationen.

Schnittgrößenermittlung und Bemessung im Fachmodell "Tragwerksplanung". Nach Plausibilisierung der Ergebnisse; Überführung in die Basisdaten des BIM-Bauwerksmodells (BCF-basierte Kommunikation)

Durchführung der Massenermittlung und Erstellung Kostenansätze für das nachgewiesene Tragwerk.

Literatur

Fink, T: BIM für die Tragwerksplanung, in Building Information Modeling. Springer

Lehrveranstaltungen						
Dozent(in)	Titel der Lehrveranstaltung	sws				
Prüser	Modellbasierte Tragwerksplanung	4				

Erläuterungen: Das Modul wird einmal jährlich angeboten.

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Projekt Konstruktiver Ingenieurbau

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	In jedem Semester	Prüfungsleistung/ Projektbericht	Gruppenarbeit Vorträge Diskussionen		Dozentinnen und Dozenten des Fachbereichs BGG

Qualifikationsziele

Die Studierenden sind in der Lage, für fachübergreifende Fragestellungen aus dem Bereich Konstruktiver Ingenieurbau selbständig und arbeitsteilig Lösungen zu erarbeiten und zu präsentieren.

Sie beherrschen grundlegende Fertigkeiten der Teamorganisation und des Projektmanagements und können die im Grundstudium erworbenen Kenntnisse in unterschiedlichen Zusammenhängen anwenden.

Lehrinhalte

Am Beispiel eines konkreten Planungs- oder Bauvorhabens sollen selbständig Probleme erkannt und Lösungen erarbeitet werden. Hierbei sind neben den schwerpunktmäßig zu behandelnden Fragestellungen aus dem Bereich Konstruktiver Ingenieurbau auch rechtliche, technische, betriebliche und wirtschaftliche Aspekte zu berücksichtigen. Einzelne Schritte zur Bearbeitung sind

- Organisation der Gruppenarbeit
- Terminplanung und -steuerung der Projektarbeit
- Beschaffung und Aufbereitung von Unterlagen
- Herausarbeiten der Fragestellung/en
- Erarbeitung der Lösung bzw. von Lösungsvarianten
- Ggf. Identifizierung der Vorzugsvariante
- Ausarbeitung der Vorzugsvariante
- Präsentation und Verteidigung der Lösung

Literatur

Jacoby, W.: Projektmanagement für Ingenieure, 2. Auflage, Springer Vieweg 2013

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Spannbetonbau

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	PL oder SL/ K oder nach Wahl des Prüfenden/ 2 Std	Vorlesung	WPF in BWI	Prof. Dr. HH. Prüser

Qualifikationsziele

Die Studierenden sollen Spannbeton als vorgespannten Stahlbeton verstehen. Sie sollen einfache vorgespannte Bauteile per Hand berechnen und komplexere Systeme mit EDV-Methoden bearbeiten können.

Lehrinhalte

Spannstahl und Spannverfahren, Schnittgrößen infolge Vorspannung, Nachweise in den Grenzzuständen der Tragfähigkeit und Gebrauchstauglichkeit, Spannkraftverluste infolge Kriechen, Schwinden und Relaxation, Spannkraftverluste infolge Reibung, Spannwegberechnung, konstruktive Bewehrung und Spaltzugbewehrung.

Literatur

Bautabellen für Ingenieure, Werner Verlag – Wolters Kluwer Deutschland GmbH, Köln Weitere Literatur wird während der Vorlesungen vorgestellt.

Waitara I al	hrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Stahlbau II

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit Prüfungsform/ Prüfungsdauer		Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im WiSe	PL oder SL/ K/ 2 Std	Vorlesung Begl. stud. Übg.	WPF in BWI	Prof. Dr. O. Bahr

Qualifikationsziele

Die Studierenden sind in der Lage, die wesentlichen Tragsicherheits- und Stabilitätsnachweise für eine Gesamtkonstruktion zu führen.

Lehrinhalte

Am Beispiel einer Hallenberechnung werden u.a. folgende Punkte behandelt:

Zusammenstellen der Einwirkungen und Schnittgrößen; Bemessung von Trapezblechen, Pfetten, Trägern und Stützen; Anschlüsse zwischen Trägern und Stützen; konstruktive Gestaltung von Rahmen; Gesamtstabilität durch Anordnung von Verbänden; Fußpunktausbildungen.

Literatur

Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau.

Christian Petersen: Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten. Springer Vieweg Verlag, 4. Auflage 2013.

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Stahlbetonbauteile

Empfohlenes Semester	Dauer	Modul art	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	4 SWS	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im WiSe	PL oder SL/ K/ 2 Std	Vorlesung/Übun gen	WPF in BWI	Prof. Dr. P. Seibel

Qualifikationsziele

Vermittlung von Kenntnissen für die normengerechte Bemessung der unter Lehrinhalte genannten Bauteile.

Lehrinhalte

Bemessung nach Theorie II. Ordnung, näherungsweise Schnittgrößenermittlung bei Rahmen, Rahmenecken, Fundamente mit Durchstanzbewehrung, Flachdecken, Einzel- und Linienlasten auf Decken, Deckengleicher Unterzug, Wände, Rotationsnachweis, Rissbreitenbegrenzung, Verformungsbegrenzung

Literatur

Avak, Conchon, Aldejohann, Stahlbetonbau in Beispielen, Teil 2, Bundesanzeiger Verlag, 2013 Goris, Stahlbetonbau-Praxis nach Eurocode 2, Band 2, Beuth, 2013 Lohmeyer, Baar, Ebeling, Stahlbetonbau, Springer Vieweg, 2016 Hegger, Mark, Stahlbetonbau, Praxishandbuch, Beuth Verlag 2017

Wommelsdorff, Albert, Stahlbetonbau – Bemessung und Konstruktion, Teil 2, Bundesanzeiger Verlag, 2012

Weitere Lehrsprachen

sfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Verbundbau

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	1 WPF		5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	PL oder SL/ K/ 2 Std	Vorlesung Begl. stud. Übg.	WPF in BWI	Prof. Dr. O. Bahr

Qualifikationsziele

Die Studierenden sind in der Lage, die wesentlichen Tragsicherheitsnachweise für Stahlverbund-konstruktionen bei Normaltemperatur und im Brandfall zu führen.

Lehrinhalte

Spezifische Eigenschaften der Verbundbauweise, Werkstoffkenngrößen der Baustoffe,

Schnittgrößenermittlung und Nachweisführungen in den Grenzzuständen von Tragfähigkeit und Gebrauchstauglichkeit, Bemessung von Verbunddecken, -trägern und –stützen bei Normaltemperatur nach EN 1994-1-1 und im Brandfall nach EN 1994-1-2, Anwendungsbeispiele des Hoch- und Ingenieurbaus.

Literatur

Eurocode 4: Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton – Teil 1-1: Allgemeine Bemessungsregeln und Anwendungsregeln für den Hochbau.

Eurocode 4: Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton – Teil 1-2: Tragwerksbemessung für den Brandfall.

Weitere Lehrsprachen		

Vertiefungsstudium	Technische und	Kulturelle	Integration
--------------------	----------------	------------	-------------

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Deutsch für Bauingenieure 1

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	PF TKI	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
		PL/ M + K/ 1,5 Std	Übung (anwendungsorientiert; lernerzentriert)		NN

Qualifikationsziele

Verbesserung der allgemeinen deutschen Sprachkenntnisse; Einführung in die spezifische Fachsprache für Bauingenieure

Lehrinhalte

Mittelstufenniveau (A2 bis B2) des Unterrichtes "Deutsch als Fremdsprache" (Hörverständnis, Leseverständnis, Sprechen und Textproduktion); Grundlagen der Fachsprache für Bauingenieure

Literatur

Fluck, Hans-Rüdiger (1997): Fachdeutsch in Naturwissenschaft und Technik. Einführung in die Fachsprachen und die Didaktik/Methodik des fachorientierten Fremdsprachenunterrichts (Deutsch als Fremdsprache). 2.,neu bearbeitete Auflage. Heidelberg: Julius Groos Verlag.

Weitere Lehrsprachen		

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Deutsch für Bauingenieure 2

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	PF TKI	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
		PL/ M + K/ 1,5 Std	Übung (anwendungsorientiert; lernerzentriert)		NN

Qualifikationsziele

Perfektionierung der deutschen Sprachkenntnisse; Vertiefung der schriftlichen und mündlichen Fachsprachenkenntnisse für Bauingenieure; Techniken des berufs- und studienbezogenen Schreibens

Lehrinhalte

Oberstufenniveau (B2 bis C2) des Unterrichtes "Deutsch als Fremdsprache"; Vermittlung der für den Berufsalltag relevanten schriftlichen Textsorten und mündlichen Präsentationsformen für Bauingenieure; Auseinandersetzung mit Techniken wissenschaftlichen Arbeitens: Literaturrecherche, Zitierweise, Ausformulierung und Korrektur eigener Texte; Schreibtraining im Vorfeld der Haus- und Abschlussarbeiten

Literatur

Fluck, Hans-Rüdiger (1996): Fachsprachen. Einführung und Bibliographie. 5. Auflage. Tübingen/Basel: A. Francke.

Fluck, Hans-Rüdiger (1997): Fachdeutsch in Naturwissenschaft und Technik. Einführung in die Fachsprachen und die Didaktik/Methodik des fachorientierten Fremdsprachenunterrichts (Deutsch als Fremdsprache). 2.,neu bearbeitete Auflage. Heidelberg: Julius Groos Verlag.

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Individuelles Coaching

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	PF TKI	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
		PL/ R/H/PB nach Wahl des Lehrenden	Übung (anwendungsorientiert; lernerzentriert)		NN

Qualifikationsziele

Perfektionierung in Kommunikation, interkulturellem Handeln, Arbeitskultur in der Baubranche und interkulturellem Management; individuell gezielte Förderung von Flexibilität, Motivation, Eigeninitiative, Innovationsfreude und autonomem selbstverantwortlichem Handeln im Beruf

Lehrinhalte

Vertiefung der Inhalte Kommunikation und Handeln, Unternehmens- und Arbeitskulturen, Fremdverstehen, interkulturelles Management; individuelle, auf die jeweiligen Schwächen in den Schlüsselqualifikationen zugeschnittene Coachingprogramme

Literatur

Blom, H. (2004): Interkulturelles Management: Interkulturelle Kommunikation, Internationales Personalmanagement, Diversity-Ansätze im Unternehmen. Herne/Berlin: Verlag Neue Wirtschafts-Briefe.

Lewis, R. D. (2004): When Cultures Collide. Managing successfully across cultures. London/Yarmouth: Brealey.

Schulz von Thun, F. (2004): Miteinander reden 1. Störungen und Klärungen. Allgemeine Psychologie der Kommunikation. Reinbek: Rororo.

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Schlüsselqualifikation Integration und Diversität

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	PF TKI	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
		PL/ R/H/PB nach Wahl des Lehrenden	Seminar (anwendungsorientiert; lernerzentriert)		NN

Qualifikationsziele

Förderung von Flexibilität, Motivation, Eigeninitiative, Innovationsfreude und autonomem selbstverantwortlichem Handeln; Bewusstsein für das Alleinstellungsmerkmal Mehrkulturalität

Lehrinhalte

Kommunikation und Kommunikationsstile, soziales und interkulturelles Handeln, Unternehmens- und Arbeitskulturen, Führungs- und Organisationsstile, Fremdverstehen, interkulturelles Management

Literatur

Elashmawi, F./ Harris Ph. R. (1999): Multicultural Management. New Skills for Global Success. Houston/London et. al.: Golf Publishing Company.

Losche, H. (2005): Interkulturelle Kommunikation. Sammlung praktischer Spiele und Übungen. Augsburg: ZIEL.

Schulz von Thun, F. (2004): Miteinander reden 1. Störungen und Klärungen. Allgemeine Psychologie der Kommunikation. Reinbek: Rororo.

Weitere Lehrsprachen

Vertiefungsstudium Verkehrswesen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Ausgewählte Kapitel der Verkehrsplanung

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF		5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im SoSe	PL oder SL/ H	Vorlesung Übungen Tagesexkursion	WPF in BWI	Prof. H. Pätzold

Qualifikationsziele

Die Studierenden sollen die Berechnung einer Verkehrserzeugung durchführen können und sich den in diesem Berechnungsgang innewohnenden Problematiken bewusst sein. Weiterhin sollen sie verschiedene allgemeine Fragestellungen der Verkehrsplanung einordnen und beantworten können. Dies beginnt bei den grundsätzlichen Anforderungen des Fußgänger- und Radverkehrs, erstreckt sich über die Thematiken der Wegweisung und der Rückhaltesysteme und schließt das Thema der Verkehrssicherheit ein. Letztendlich werden Fragen der Finanzierbarkeit und Förderfähigkeit von Straßenverkehrsanlagen angesprochen.

Lehrinhalte

Berechnung der Verkehrserzeugung durch verschiedene Gebietstypen, Verkehrsprognosen, Fußgängerverkehrsanlagen, Radverkehrsanlagen, "Shared Space", "Simply City", ruhender Verkehr, Straßenraumentwurf, Beschilderung, Verkehrssicherheit wegweisende Fahrzeugrückhaltesysteme, (Unfallursachen, Unfallkosten, volkswirtschaftliche Bewertung) , Förderung und Kostentragung von Straßenverkehrsanlagen (EKrG, FStrG, NStrG, EntFlechtG, landwirtsch. Wegebau, Dorferneuerung), Tagesexkursion unter anderem zu bekannten Unfallschwerpunkten.

Literatur

Vorlesungsskript

Hinweise zur Schätzung des Verkehrsaufkommens durch Gebietstypen

EFA – Empfehlungen für Fußgängeranlagen

ERA – Empfehlungen für Radverkehrsanlagen

EAR – Empfehlungen für Anlagen des ruhenden Verkehrs

Hinweise zu Straßenräumen mit besonderem Überquerungsbedarf

Richtlinien für passiven Schutz an Straßen

RWB – Richtlinien für die wegweisende Beschilderung

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Erhaltung im Asphaltstraßenbau

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs -punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	PL oder SL/ K / 2 Std	Vorlesung begl.stud.Übg.	WPF in BWI	Prof. Dr. Buttgereit

Qualifikationsziele

Die Studierenden sollen für die spätere Anwendung in der Praxis Fahrbahnschäden erkennen und quantifizieren (Schadensanalyse nach den ZEB ZTV). Für unterschiedliche Oberflächenzustände und Resttragfähigkeiten werden unter Beachtung der Umweltverträglichkeit und Nutzungsdauer wirtschaftliche Bauweisen und Verfahren ermittelt.

Lehrinhalte

Einführung in das pms (pavement management => Systematische Erhaltung von Fahrbahnbefestigungen); Methoden der Zustandserfassung und –bewertung des Fahrbahnoberbaus. Vertiefung der Grundlagen des Asphaltstraßenbaus; Gesteine, Bindemittel, Verfahrenstechnik und Qualitätssicherung; Instandhaltung, Instandsetzung, Erneuerung; umfassende Kenntnisse der dünnschichtigen Instandsetzungsbauweisen in Heiß- und Kaltbauweise; Recycling von Asphalt incl. Behandlung teerhaltiger Ausbaustoffe; aktuelle Entwicklungen der Asphaltbauweise. Laborvorführungen und Laborpraktikum zur Vertiefung der Kenntnisse über Baustoffe und Umweltverträglichkeit

Literatur

Periodika: Straße- und Autobahnen, ASPHALT

Zusätzliche Technische Vorschriften, Richtlinien und Merkblätter zur Straßenerhaltung; FGSV-Verlag

Weitere Lehrsprachen

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Fahrdynamik und Trassierung von Bahnanlagen

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 60 Std Präsenzstudium, 90 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	PL oder SL/ K/ 2 Std	Vorlesung mit praktischen Übungen	WPF in BWI	NN

Qualifikationsziele

Nachzuweisen sind die Kenntnisse der Grundlagen in den Bereichen Fahrdynamik, Fahrzeuge und Fahrweg sowie die rechtliche Zuordnung für den Bau und Betrieb von Eisenbahnen.

Konkrete Aufgabenstellungen aus den Bereichen Trassierung mit Linienführung/Querschnittsgestaltung und Planung von Weichen ergänzen die Anforderungen.

Lehrinhalte

- Grundlagen der Rad-Schiene-Technik,
- Fahrdynamik,
- Eisenbahnfahrzeuge
- Rechtliche Grundlagen für Bau und Betrieb von Schienenbahnen
- Elemente der Linienführung / Elemente der Querschnittsgestaltung
- Weichen und Kreuzungen
- Oberbau und Unterbau

Literatur

J.Fiedler: Bahnwesen, Werner Verlag

H.Freystein, M.Muncke: Entwerfen von Bahnanlagen

V. Matthews: Bahnbau, Teubner Verlag

H. Jochim, F. Lademann: Planung von Bahnanlagen

B. Lichtberger: Handbuch Gleis

W.Schiemann: Schienenverkehrstechnik, Teubner Verlag K.J. Schneider: Bautabellen für Ingenieure, Werner Verlag M. Suckale:Taschenbuch der Eisenbahngesetze, Hester Verlag

DB AG: Richtlinie DS 800: Entwerfen von Bahnanlagen

Lehrveranstaltungen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Leistungsfähigkeit von Straßenverkehrsanlagen

Empfohlenes Semester	Dauer	Modulart	sws	SWS Leistungs- Studentische punkte Arbeitsbelastung		Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im WiSe	PL oder SL/ H	Vorlesung Übungen Übungen im Straßenraum		Prof. H. Pätzold

Qualifikationsziele

Die Studierenden sollen in die Lage versetzt werden, die Leistungsfähigkeit verschiedener Verkehrsanlagen auf der Basis des HBS zu berechnen: Aufbauend auf Verkehrserhebungen und deren Auswertungen sollen Möglichkeiten und Grenzen der Berechnung von signalisierten und nicht signalisierten Knotenpunkten, Radverkehrsanlagen und Anlagen des kreuzenden Bahnverkehrs (BÜSTRA-Abhängigkeit) hinsichtlich der Leistungsfähigkeit erarbeitet werden.

Die Studierenden sollen in die Lage versetzt werden, Programme zur verkehrsabhängigen Steuerung von Signalanlagen zu entwickeln und den jeweiligen Bedürfnissen anzupassen ("Grüne Welle", Bahneinsprung, ÖV-Bevorrechtigung, …)

Weiterhin sollen die Studierenden die Möglichkeiten der mikroskopischen Simulation (VISSIM) und der nicht visualisierten Simulation (KNOSIMO) kennen lernen.

Lehrinhalte

Verkehrserhebungen und deren Auswertung, Übung im Straßenraum

HBS: Kapitel S4, S5, S8 und andere

Koordinierte Signalanlagen, Signalanlagen mit ÖPNV- oder Bahneinsprung

Möglichkeiten und Grenzen der Detektion

VISSIM, KNOSIMO

Literatur

Skript zur Vorlesung von Dr. Schwerdhelm

HBS 2009, Ausgabe 2015

RiLSA

Lehrverans	tal	tungen
------------	-----	--------

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Öffentlicher Verkehr

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	PL oder SL/ KA und R	Vorlesung	WPF in BWI	NN

Qualifikationsziele

Die Studierenden erlernen die rechtlichen und fachlichen Grundlagen des Öffentlichen Verkehrs und des Öffentlichen Personennahverkehrs. Die Studierenden sollen Fragestellungen aus dem Fachgebiet ÖPNV selbständig analysieren und mögliche Lösungen entwickeln können.

Das Erarbeiten und Halten von Referaten zu diesen Themen vertieft die fachliche Ausarbeitung und schult die rhetorischen Fähigkeiten.

Lehrinhalte

Durch die Vorlesung erhalten die Studierenden Kenntnisse über Grundlagen (Vergaberecht, Rechtsgrundlagen, Aufgabenträger, Verkehrsunternehmen, ÖPNV-Nutzer), die ÖPNV-Planung (Nachfrage, Angebot, Fahrpläne, Anschlusssicherung, ITF-Realisierung), die Systemelemente (Fahrzeuge, Betriebshöfe), die Systemzugänge (Haltestellen, Umsteigeanlagen, ZOB), die Betriebstechnik (IBIS-Anlagen, Rechnergesteuertes Betriebsleitsystem) und über Beschleunigungsmaßnahmen (Verkehrssignalanlagen, Sonderspuren, Busschleusen) beim öffentlichen Personennahverkehr.

Literatur

Schnabel/Lohse; Grundlagen der Straßenverkehrstechnik und der Verkehrsplanung; Band 1, Straßenverkehrstechnik, Verlag für Bauwesen

Mehlhorn/Köhler; Verkehr - Straße, Schiene, Luft, Verleg Ernst & Sohn, Berlin 2001

Wolfgang Mensebach; Straßenverkehrsplanung, Straßenverkehrstechnik Werner- Verlag 2003

Kolks, W. / Fiedler, J.; Verkehrswesen in der kommunalen Praxis, 2. Aufl. 2003, Erich Schmidt Verlag

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Planfeststellung und Betrieb von Bahnanlagen

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 60 Std Präsenzstudium, 90 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	PL oder SL/ K / 2 Std	Vorlesung mit Praxisbezogenen Übungen	WPF in BWI	NN

Qualifikationsziele

Bedeutung und Abwicklung eines Planfeststellungsverfahrens sowie die Grundsätze für den Betrieb von Bahnanlagen des Personen- und Güterverkehrs sollen beherrscht werden. Dazu gehört auch das Verständnis der Betriebsabläufe einschließlich der Funktion der Sicherungstechnik. Ferner sollen die Studierenden in die Lage versetzt werden die Anforderungen des Lärm- und Landschaftsschutzes zu berücksichtigen.

Lehrinhalte

- Rechtliche Sicherung von Planungen durch Planfeststellung
- Konstruktive Ingenieurbauwerke für Eisenbahnen
- Bahnanlagen für den Personenverkehr / Bahnanlagen für den Güterverkehr
- Eisenbahnbetrieb / Eisenbahnsicherungstechnik
- Lärm- und Landschaftsschutz
- Bauablaufplanung und Durchführung von Baumaßnahmen unter rollendem Eisenbahnbetrieb

Literatur

J. Fiedler: Bahnwesen, Werner Verlag, J. Pachl: Systemtechnik des Schienenverkehrs

W.Schiemann: Schienenverkehrstechnik Teubner Verlag, B. Lichtberger: Handbuch Gleis

Wende: Fahrdynamik des Schienenverkehrs, Verlag Teubner, V. Matthews: Bahnbau, Teubner Verlag

K.J. Schneider: Bautabellen für Ingenieure Werner Verlag

M. Suckale: Taschenbuch der Eisenbahngesetze, Hester Verlag

Schmitt, Burke, Freystein: Handbuch der Planfeststellung für das Eisenbahnwesen

DB AG: Richtlinie DS 800: Entwerfen von Bahnanlagen

Weitere Lehrsprachen

HS Wilhelmshaven/Oldenburg/Elsfleth Studiengang: Bauingenieurwesen

Jade Hochschule

Modulname: Plangleiche Knoten

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im SoSe	PL oder SL/ K/ 2 Std	Vorlesung	WPF in BWI	Prof. Dr. Buttgereit

Qualifikationsziele

Planung und Entwurf von höhengleichen Kreuzungsanlagen und Knotenpunkten. Auswahl und Dimensionierung von Knotenpunktgrundformen. Durchbildung aller wichtigen Knotenpunktdetails einschließlich Markierung und Beschilderung.

Lehrinhalte

Die Studierenden erlernen die Anwendungsformen für Kreuzungen und Kreisverkehrsplätzen inner- und außerorts und die Konstruktion von Knotenpunkten anhand des Lehrstoffs und eigener Entwurfsübungen. Vertiefend wird die Konstruktion aller wichtigen Knotenpunktdetails vermittelt. Neben manuellen Entwurfsübungen werden speziell für den Knotenpunktentwurf vorgesehene IT-Systeme eingesetzt. Besonderer Wert wird auf die Darstellungsform entsprechend den geltenden Entwurfs- und Markierungsrichtlinien der Straßenbauverwaltungen gelegt. Abhalten von Kurzreferaten über selbst zu erarbeitende Details aus dem Lehrstoff anhand vorhandener Quellen

Literatur

Richtlinien für die Anlage von Straßen - Teile Knotenpunkte -, FGSV-Verlag Richtlinien für den Entwurf im Straßenbau (RE), FGSV-Verlag

Weitere	Lehrsp	rachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Projekt Verkehrswesen

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	Prüfungsleistung/ Projektbericht	Gruppenarbeit Vorträge Diskussionen		Dozentinnen und Dozenten des Fachbereichs BGG

Qualifikationsziele

Die Studierenden sind in der Lage, für fachübergreifende Fragestellungen aus dem Bereich Verkehrswesem selbständig und arbeitsteilig Lösungen zu erarbeiten und zu präsentieren. Sie beherrschen grundlegende Fertigkeiten der Teamorganisation und des Projektmanagements und können die im Grundstudium erworbenen Kenntnisse in unterschiedlichen Zusammenhängen anwenden.

Lehrinhalte

Am Beispiel eines konkreten Planungs- oder Bauvorhabens sollen selbständig Probleme erkannt und Lösungen erarbeitet werden. Hierbei sind neben den schwerpunktmäßig zu behandelnden Fragestellungen aus dem Bereich Verkehrswesen auch rechtliche, konstruktive, betriebliche und wirtschaftliche Aspekte zu berücksichtigen. Einzelne Schritte zur Bearbeitung sind

- Organisation der Gruppenarbeit
- Terminplanung und -steuerung der Projektarbeit
- Beschaffung und Aufbereitung von Unterlagen
- Herausarbeiten der Fragestellung/en
- Erarbeitung der Lösung bzw. von Lösungsvarianten
- Ggf. Identifizierung der Vorzugsvariante
- Ausarbeitung der Vorzugsvariante
- Präsentation und Verteidigung der Lösung

Literatur

Jacoby, W.: Projektmanagement für Ingenieure, 2. Auflage, Springer Vieweg 2013

Weitere Lehrsprachen

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule Studiengang: Bauingenieurwesen

Modulname: Straßenbau

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im SoSe	PL oder SL/ K/ 2 Std	Vorlesung	WPF in BWI	Prof. Dr. Buttgereit

Qualifikationsziele

Sicheres Beherrschen der Straßenbautechnik bestehend aus Konstruktion, Bemessung und Baudurchführung von Fahrbahnen nach den anerkannten Regeln der Technik (bei den Straßenbaulastträgern geltenden Regelwerken)

Grundsätzliche Beherrschung der Betonbauweise von Fahrbahnen. Komplette und detaillierte Beherrschung der Asphaltbauweise (Gesteins, Bindemittel, Asphalttechnologie, Asphaltverfahrenstechnik)

Festlegen von Immissionsgrenzwerten und Beurteilungswerten für den Verkehrslärmschutz

Lehrinhalte

Übersicht über die Herstellung von Betonstraßen; Sichere und detaillierte Kenntnis aller Walz- und Gussasphaltarten und –sorten; Anforderungen an Baustoffe und Mischgutzusammensetzungen entsprechend den Technischen Lieferbedingungen, Herstellung von Asphaltbelägen entsprechend den Zusätzlichen Technischen Vertragsbedingungen und Richtlinien; Anwendung der Technischen Prüfbestimmungen und Messung wichtiger asphalttechnologischer Parameter; Durchführung von Labortätigkeiten zur Asphaltzusammensetzung und Qualitätssicherung unter Anleitung; Durchführung von Berechnungen zum Verkehrslärmschutz; Abrechnungsvorschriften im Straßenbau gemäß dem geltenden Regelwerk

Literatur

Einschlägiges Regelwerk für Bau- und Durchführung der Asphaltbauweise veröffentlicht durch die Forschungsgesellschaft für das Straßen- und Verkehrswesen, Berlin/Köln in der jeweils aktuellen Fassung

Lehrveranstaltungen

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule Studiengang: Bauingenieurwesen

Modulname: Straßenentwurf

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im WiSe	PL oder SL/ E	Vorlesung	WPF in BWI	Prof. Dr. Buttgereit

Qualifikationsziele

Komplette Kenntnis des Entwurfs von Straßen in Lageplan, Höhenplan, Krümmungs- "Querneigungs- und Sichtweitenband. Beherrschung der Herstellung digitaler Geländemodelle und Entwurfskontrolle im dreidimensionalen Raum. Trassierung eines Straßenabschnitts in einem vorgegebenen Gelände und Einrechnung in ein Koordinatensystem.

Lehrinhalte

Wiederholung von Querschnittswahl und des einfachen Entwurfsablaufs aus dem Grundstudium. Bestimmung komplexer Querschnitte, Entwurf im Lage- und Höhenplan mit praxisgerechten Randbedingungen (Zwangspunkte in Lage und Höhe!) sowie Anlage von Querneigungs- und Sichtweitenbändern nach den RAL; Anfertigung eines kompletten Entwurfs einer klassifizierten Straße auf freier Strecke incl. Erläuterungsbericht entsprechend dem jeweils geltenden Entwurfs- und Darstellungsregelwerk mittels Einsatz von aktueller IT-Technik; Variantendiskussion und Übersicht zur Entscheidungstechnik

Literatur

Einschlägiges Regelwerk für Straßenplanung und Entwurf veröffentlicht durch die Forschungsgesellschaft für das Straßen- und Verkehrswesen, Berlin/Köln in der jeweils aktuellen Fassung; Straßenplanungs- und Entwurfssystem VESTRACAD AKG Balingen

Weitere Lehrsprachen

Vertiefungsstudium Wasserbau und Umwelttechnik

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Abfallwirtschaft und Abfallbehandlung

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal	PL oder SL/ R und	Vorlesung/	WPF in	Prof. Dr. T.
	jährlich	PB	Praktikum	BWI	Priesemann

Qualifikationsziele

Der Bereich der Abfallentsorgung, -Verwertung, -Vermeidung ist ein Wirtschaftszweig der in der Diskrepanz zwischen reinen Wirtschafts-/Kostenaspekten und dem Begriff der "Daseinsvorsorge" angesiedelt ist. Entsprechend ist eine starke Regulierung durch Gesetze, Richtlinien, Verordnungen etc. gegeben, die das Handeln in das gesellschaftliche Umfeld einfügen. Anhand der gesetzlichen Regelungen wird der Handlungsrahmen erläutert und am Bereich der Entsorgung (Deponierung von Abfällen) die Überführung der Regelungen in technische Anweisungen/Ausführungen dargestellt.

Lehrinhalte

Werkstoffliche Charakterisierung von Abfällen, Beschreibung der Grundkomponenten angewendeter Aufbereitungsverfahren, Entwicklung von Verfahrensstammbäumen, Prozessvariationen für Abfallbehandlungsverfahren wie Verbrennung, Sortierung, Recycling unterschiedlichster Vorstoffe.

Literatur	

Weitere Lehrsprachen	

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Bodenreinigung

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal	PL oder SL/ R	Vorlesung/Prakt	WPF in	Prof. Dr. T.
	jährlich	und PB	ikum	BWI	Priesemann

Qualifikationsziele

Im Bereich der Bodenreinigung konkurrieren technische und "natürliche" Reinigungsverfahren. Auf der Basis der gesetzlichen Regelungen sollen Möglichkeiten und Grenzen der unterschiedlichen Verfahren entwickelt und problematisiert werden.

Lehrinhalte

Literatur

Gesetzliche Grundlagen (BBodSchG etc.), Grenzwertbetrachtungen für Sanierungen etc., Beschreibung von Schadstoffen und Entwicklung für die Reinigung wichtiger Parameter/Kenngrößen , Grundprinzipen der Reinigungsverfahren, technische Umsetzung.

Weitere Lehrsprachen		

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Hydrologie und Hochwasserschutz

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im SoSe	PL oder SL/ H und MP	Vorlesung Übung	WPF in BWI	Prof. C. Rau

Qualifikationsziele

Die Studierenden haben einen guten Überblick über die Methoden der beschreibenden Statistik und sind in der Lage, mittels einfacher hydrologischer Modelle Hochwasserschutzanlagen zu bemessen.

Lehrinhalte

Kreislauf des Wassers, Niederschlag, Interzeption, Bodenwasserhaushalt, Abflussmessung, Regressionsrechnung, Statistische Analyse von Messwerten, Überblick N/A-Modelle Einheitsganglinienverfahren, Überblick Hochwasserschutz, Flussdeiche, Geo-Informationssysteme in der Hydrologie, Hydraulische Bemessung ungesteuerter und gesteuerter Hochwasserrückhaltebecken, Konstruktive Ausbildung von Hochwasserrückhaltebecken inklusive Auslassbauwerk, Hochwasserentlastung, Tosbecken und Dämmen.

Literatur

Bollrich, G.: Technische Hydromechanik 1, 5. Auflage, Verlag Bauwesen, Berlin 2000.

Heinemann, E., Feldhaus, R.; Hydraulik für Bauingenieure, 2. Aufl., B. G. Teubner Stuttgart,

Lange, G., Lecher, K.: Gewässerregelung, Gewässerpflege, 3. Aufl., Verlag Paul Parey, Hamburg, Berlin 1993

Lecher, K., Lühr, P., Zanke, U. (Hrsg.): Taschenbuch der Wasserwirtschaft, Parey Verlag, Berlin, 2001.

Maniak, U.: Hydrologie und Wasserwirtschaft, 7. Auflage, Springer Vieweg Verlag Berlin Heidelberg, 2016

DIN 19700, Teile 10, 11 und 12

Weitere Lehrsprachen

HS Wilhelmshaven/Oldenburg/Elsfleth Studiengang: Bauingenieurwesen Modulname: Kläranlagen

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	PL oder SL/ KA und MP	Vorlesung Hörsaalübung		Prof. Dr. Teuber

Qualifikationsziele

Das Zusammenwirken biologischer und chemischer Prozesse bei der Abwasserreinigung. Anwendung von EDV-Modellen für die Beurteilung von Belastungen von Kläranlagen und die Stabilität des Reinigungsprozesses. Umsetzen der Rechenergebnisse in Ingenieurbauwerke.

Lehrinhalte

Abwasserzusammensetzung, biologische/chemische Prozesse, Wechselwirkungen zwischen den Prozessen, Berechnung der biologischen Stufen von Kläranlagen, Wertung und Sensitivitätsanalyse von Berechnungsergebnissen, Grundzüge von Bauwerken und technischen Anlagen

Literatur		
Weitere Lehrsprachen		

Weitere Lehrsprachen ---

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Küsteningenieurwesen

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend -barkeit	Modul- verantwortliche(r)
	Nur im SoSe	PL oder SL/ K /2 Std.	Vorl./Übung	WPF in BWI	Prof. C. Rau

Qualifikationsziele

Die Studierenden sollen die spezifischen Umweltbedingungen an der Küste abschätzen können und in die Lage versetzt werden, die aus diesen Bedingungen resultierenden Bauwerksbelastungen zu ermitteln. Der Schwerpunkt des Moduls liegt auf der Bemessung von Küstenschutzbauwerken sowie auf der Bemessung von Pfahlbauwerken im Offshore-Bereich.

Lehrinhalte

Hydrolog. Grundlagen, Tiden, Wind, Wasserstände, Strömungen, Eis, Seegang und Brandung, Seegangsvorhersagen, Wellentheorie, Lastansätze für Bauten, Sedimenttransport, Bauwerke des Küstenschutzes, Deiche, Buhnen, Strandauffüllungen und Dünenbau, Siele und Schöpfwerke, Sperrwerke, Offshore Bauwerke, Pfahlgründungen im Offshore Bereich, Geräteeinsatz, Arbeiten im Offshore Bereich.

Literatur

Ausschuss für Küstenschutzwerke: Empfehlungen für die Ausführung von Küstenschutzwerken in "Die Küste", Heft 65, Westholsteinische Verlagsanstalt Boyens & Co. Heide in Holstein, 2002 Arbeitsausschuss "Ufereinfassungen" der Hafenbautechnischen Gesellschaft e. V. und der Deutschen Gesellschaft für Erd- und Grundbau e. V. (Hrsg.): Empfehlungen des Arbeitsausschusses "Ufereinfassungen" Häfen und Wasserstraßen EAU 2012, 11. Auflage Ernst Verlag für Architektur und techn. Wissenschaften, Berlin, 2012

US Army Corps of Engineers (USACE): Coastal Engineering Manual (CEM) 2008, http://www.a-jacks.com/Coastal/GeneralInfo/CEM/CEM.aspx

Weitere Lehrsprachen

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Projekt Wasser und Umwelt

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraussetz- ungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Einmal jährlich	Prüfungsleistung/ Projektbericht	Gruppenarbeit Vorträge Diskussionen		Dozentinnen und Dozenten des Fachbereichs BGG

Qualifikationsziele

Die Studierenden sind in der Lage, für fachübergreifende Fragestellungen aus dem Bereich Wasser und Umwelt selbständig und arbeitsteilig Lösungen zu erarbeiten und zu präsentieren.

Sie beherrschen grundlegende Fertigkeiten der Teamorganisation und des Projektmanagements und können die im Grundstudium erworbenen Kenntnisse in unterschiedlichen Zusammenhängen anwenden.

Lehrinhalte

Am Beispiel eines konkreten Planungs- oder Bauvorhabens sollen selbständig Probleme erkannt und Lösungen erarbeitet werden. Hierbei sind neben den schwerpunktmäßig zu behandelnden Fragestellungen aus dem Bereich Wasser- und Umwelt auch rechtliche, konstruktive, betriebliche und wirtschaftliche Aspekte zu berücksichtigen. Einzelne Schritte zur Bearbeitung sind

- Organisation der Gruppenarbeit
- Terminplanung und -steuerung der Projektarbeit
- Beschaffung und Aufbereitung von Unterlagen
- Herausarbeiten der Fragestellung/en
- Erarbeitung der Lösung bzw. von Lösungsvarianten
- Ggf. Identifizierung der Vorzugsvariante
- Ausarbeitung der Vorzugsvariante
- Präsentation und Verteidigung der Lösung

Literatur

Jacoby, W.: Projektmanagement für Ingenieure, 2. Auflage, Springer Vieweg 2013

Weitere Lehrsprachen

Jade Hochschule /Studienort Oldenburg

Studiengang: Bauingenieurwesen

Modulname: Rohrleitungen

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im SoSe	PL oder SL/ K /2 Std	Vorlesung	WPF in BWI	Prof. T. Wegener

Qualifikationsziele

Rohrleitungen sind die Lebensadern der modernen Gesellschaft und unverzichtbar für die Wirtschaft sowie für die Lebensqualität. Es werden die Grundlagenkenntnisse zu Materialien, Planung, statischer Berechnung sowie Bau und Prüfung von Rohrleitungen vermittelt und detailliert auf grabenlose Bauverfahren eingegangen. Es soll der regelwerkskonforme Einbau von Rohrleitungen in der Theorie erlernt und ein Überblick über die Vielzahl an Bauverfahren vermittelt werden. Zudem werden die vielfältigen Berufsmöglichkeiten im Bereich des Rohrleitungsbaus aufgezeigt. Einblicke in die Baupraxis soll eine Exkursion ermöglichen.

Lehrinhalte

Medien, Rohrleitungsmaterialien und -bauteile, Verbindungstechnologien, Recht und Regelwerke, Grundlagen der statischen Berechnung von Rohrleitungen, Verbau von Leitungsgräben, Planung und Bau von Rohrleitungen in offener Bauweise, Flüssigboden, Bäume und Leitungen, Kreuzungen, Grabenlose Bauverfahren, Hausanschlüsse, Korrosionsschutz

Literatur

Nach Angabe in der Vorlesung

Weitere Lehrsprachen

HS Wilhelmshaven/Oldenburg/Elsfleth Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Ver- und Entsorgungsnetze

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
		PL oder SL/ H	Vorlesung Hörsaalübung	WPF in BWI	Prof. Dr. Teuber

Qualifikationsziele

Erwerben von Grundkenntnissen für die Planung und Berechnung von Netzen für die Trinkwasserverteilung und die Ableitung von Regen- und Schmutzwasser. Anwendung von EDV-Programmen für die Dokumentation von Netzen und die Berechnung der Leistungsfähigkeit der Netze. Grundzüge der Sanierung.

Lehrinhalte

Literatur

Grundlagen der Trinkwasserverteilung. Einfache Berechnungsverfahren für Trinkwassernetze und EDV-Lösungen.

Grundlagen des Anfalls von Schmutz- und Regenwasser. Regenereignisse, Niederschlag und Abfluss, Einfluss der Geländestruktur und der Versiegelung. Berechnung und Planung von Netzen mittels EDV.Programmen. Bauwerke in Rohrnetzen.

Alternative Regenwasserkonzepte. Versickerung und Regenwasserbehandlung.

Weitere Lehrsprachen	

Jade Hochschule

Studiengang: Bauingenieurwesen

Modulname: Verkehrswasserbau

Empfohlenes Semester	Dauer	Modulart	sws	Leistungs- punkte	Studentische Arbeitsbelastung	Modul- code
5 oder 6	1	WPF	4	5	150 Stunden; davon 54 Std Präsenzstudium, 96 Std Selbststudium	

Voraus- setzungen für die Teilnahme	Angebots- häufigkeit	Prüfungsart/ Prüfungsform/ Prüfungsdauer	Lehr- und Lernmethoden	Verwend- barkeit	Modul- verantwortliche(r)
	Nur im WiSe	PL oder SL/ K /2 Std	Vorlesung Übung	WPF in BWI	Prof. C. Rau

Qualifikationsziele

Die Studierenden sollen die hydraulischen und statischen Belastungen von Wasserbauwerken ermitteln können und in die Lage versetzt werden, Bauwerke des Verkehrswasserbaus und des Hafenbaus zu planen und zu bemessen.

Lehrinhalte

Funktion und verkehrliche Bedeutung der Wasserstraßen, Bemessungsregeln für das Fahrwasser, Ausbau von Flüssen, Niedrigwasserregelung, Stauregelung, Kanalbau, Abmessungen, Deckwerke, Bauwerke an Kanälen, Schleusen, Binnenhäfen, Gliederung der Seehäfen, Hafenlayout und, Liegeplätze, Seehafenzufahrten, Seegang, Wellenbrecher und Molen, Kaianlagen, Lastansätze, Spundwände, Pfahlroste, sonstige Konstruktionen, Ausrüstung von Häfen, Grundlagen der Schwimmstabilität, Pontons, Dalben, Docks

Literatur

Arbeitsausschuss "Ufereinfassungen" der Hafenbautechnischen Gesellschaft e. V. und der Deutschen Gesellschaft für Erd- und Grundbau e. V. (Hrsg.): Empfehlungen des Arbeitsausschusses "Ufereinfassungen" Häfen und Wasserstraßen EAU 2012, 11. Auflage Ernst Verlag für Architektur und techn. Wissenschaften, Berlin, 2012

Brinkmann, Birgitt: Seehäfen: Planung und Entwurf, Springer Verlag, Berlin 2005

Tsinker, G.: Port Engineering, Hoboken, N.J. Wiley 2004

Partenscky, H. W.: Binnenverkehrswasserbau Schleusenanlagen, Springer-Verlag Berlin Heidelberg New York Tokyo 1986

Schröder, W.; Römisch, K.: Gewässerregelung Binnenverkehrswasserbau, Werner Verlag, Düsseldorf 2001

Weitere Lehrsprachen