(1) Give an example of an operator $T \in L(V)$ whose characteristic polynomial is $x(x-29)^3(x-34)$ and whose minimal polynomial is $x(x-29)^2(x-34)$.

Solution. One example is $T \in L(\mathbb{C}^5)$ given by the matrix (with respect to the standard basis of \mathbb{C}^5)

$$T := \begin{pmatrix} 0 & & & & \\ & 29 & 1 & & \\ & & 29 & & \\ & & & 29 & \\ & & & & 34 \end{pmatrix}.$$

(2) Fix $a_0, a_1, ..., a_{n-1} \in \mathbb{C}$, and let

$$T := \begin{pmatrix} 0 & & -a_0 \\ 1 & 0 & & -a_1 \\ & 1 & \ddots & -a_2 \\ & & \ddots & & \vdots \\ & & 0 & -a_{n-2} \\ & & 1 & -a_{n-1} \end{pmatrix}$$

(with respect to the standard basis of \mathbb{C}^n). Compute the minimal and characteristic polynomial of T.

Solution. Denote the standard basis vectors of \mathbb{C}^n by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$. By looking at the matrix, we see that

$$T(\mathbf{e}_1) = \mathbf{e}_2$$

$$T^2(\mathbf{e}_1) = T(\mathbf{e}_2) = \mathbf{e}_3$$

$$\vdots$$

$$T^{n-1}(\mathbf{e}_1) = T(\mathbf{e}_{n-1}) = \mathbf{e}_n$$

$$T^n(\mathbf{e}_1) = T(\mathbf{e}_n) = -a_0 \, \mathbf{e}_1 - a_1 \, \mathbf{e}_2 - \dots - a_{n-1} \, \mathbf{e}_n. \quad (\star)$$

From this we deduce that $\mathbf{e}_1, T(\mathbf{e}_1), T^2(\mathbf{e}_1), \dots, T^{n-1}(\mathbf{e}_1)$ is a linearly independent list; in particular the minimal polynomial m(x) of T has degree n (otherwise, $m(T)(\mathbf{e}_1) \neq 0$), and so it equals the characteristic polynomial of T. Rewriting (\star) as

$$T^{n}(\mathbf{e}_{1}) = -a_{0}\mathbf{e}_{1} - a_{1}T(\mathbf{e}_{1}) - a_{2}T^{2}(\mathbf{e}_{1}) - \cdots - a_{n-1}T^{n-1}(\mathbf{e}_{1}),$$

we see that the polynomial $p(x) := x^n + a_{n-1}x^{n-1} + \cdots + a_0$ satisfies p(T) = 0. But since m(x) is monic and of degree n, we must have m(x) = p(x).

(3) Suppose $T \in L(V)$ and $\mathbf{v} \in V$. Prove that, if p(x) be the monic polynomial of smallest degree such that $p(T)(\mathbf{v}) = \mathbf{0}$, then p(x) divides the minimal polynomial of T.

Proof. Fix $\mathbf{v} \in V$, let p(x) be the monic polynomial of smallest degree such that $p(T)(\mathbf{v}) = \mathbf{0}$, and denote the minimal polynomial of T by m(x). By the division algorithm, there exist polynomials q(x) and r(x) with

$$m(x) = p(x) q(x) + r(x)$$

and the degree of r(x) is less than the degree of p(x). But then

$$m(T)(\mathbf{v}) = p(T)(\mathbf{v}) q(T)(\mathbf{v}) + r(T)(\mathbf{v}),$$

¹This shows that every monic polynomial over **C** is the characteristic polynomial of some linear operator.

which gives $r(T)(\mathbf{v}) = \mathbf{0}$. Since we can divide this equation by the leading coefficient of r(x) (thus making r(x) monic), this contradicts the minimality of p(x), unless r(x) = 0. But this means that p(x) divides m(x).

(4) Suppose V is an inner-product space, and $T \in L(V)$ is normal. Prove that the minimal polynomial of T has no repeated roots.²

Proof. Denote the minimal polynomial of T by m(x) and suppose λ is an eigenvalue of T. Then $m(x) = (x - \lambda)^k q(x)$ for some polynomial q(x) which does not have λ as a root. Thus $m(T) = (T - \lambda I)^k q(T) = 0$, which means that

$$\operatorname{range} q(T) \subseteq \operatorname{null}(T - \lambda \mathbf{I})^k = \operatorname{null}(T - \lambda \mathbf{I}),$$

where for the last equality we used that $T - \lambda I$ is normal (because T is) and so this equality follows from Homework #3 on Set 9. Thus $(T - \lambda I)q(T) = 0$, and so k > 1 would contradict the minimality of m(x). So we must have k = 1, which means that any root of m(x) is simple.

(5) If $T \in L(V)$ has minimal polynomial $(x-1)^2(x+1)$ and characteristic polynomial $(x-1)^6(x+1)^2$, what are the possible different Jordan normal forms for T?

Solution. All the Jordan forms must have a 2×2 Jordan block with eigenvalue 1 (of the form $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$) and two 1×1 blocks with eigenvalue -1. The possible variations are

- (a) three 2×2 Jordan blocks with eigenvalue 1 and two 1×1 blocks with eigenvalue -1,
- (b) two 2×2 Jordan blocks with eigenvalue 1, two 1×1 blocks with eigenvalue 1, and two 1×1 blocks with eigenvalue -1, and
- (c) one 2×2 Jordan block with eigenvalue 1, four 1×1 blocks with eigenvalue 1, and two 1×1 blocks with eigenvalue -1.

²Hint: start by observing that, if λ is an eigenvalue of T, then $T - \lambda I$ is also normal.