CS4495/6495 Introduction to Computer Vision

3B-L2 Epipolar geometry

Depth from disparity

image I(x,y)

image I'(x,y)

Depth from disparity

image I(x,y)

Disparity map D(x,y)

General case, with calibrated cameras

 The two cameras need not have parallel optical axes and image planes.

Stereo correspondence constraints

Given p in left image, where can corresponding point p' be?

Stereo correspondence constraints

Remember: in perspective projection, lines project into lines.

Stereo correspondence constraints

So the *line* containing the center of projection and the point P in the left image must project to a *line* in the right image.

Epipolar constraint

Geometry of two views constrains where the corresponding pixel for some image point in the first view must occur in the second view.

Epipolar geometry: Terms

- Baseline: line joining the camera centers
- Epipolar plane: plane containing baseline and world point
- *Epipolar line*: intersection of epipolar plane with the image plane come in pairs
- Epipole: point of intersection of baseline with image plane

Why is the epipolar constraint useful?

Epipolar constraint

The *epipolar constraint* reduces the correspondence problem to a 1D search along an epipolar line.

What do the epipolar lines look like?

 $\mathbf{2.} \qquad \mathbf{O_{L}^{\bullet}} \qquad \mathbf{O_{R}}$

Example: converging cameras

Figure from Hartley & Zisserman

Example: parallel image planes

Where are the epipoles?

Quiz: two stereo pairs

a)

b

Quiz:

How do we know that (B) has parallel image planes

- a) The epipolar lines are horizontal
- b) The epipolar lines are parallel
- c) Because I just said (B) had parallel iimage planes