1 Continuation method

Our goal is to continue numerically a curve $\mathcal{C} \subset \mathbb{R}^{n+1}$, defined implicitly by the equation F(z) = 0, being $F: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^n$ a smooth function. Let us assume that $z^j \in \mathbb{R}^{n+1}$, is a regular point of \mathcal{C} , so $F(z^j) = 0$, and $\operatorname{rank} DF(z^j) = n$. Moreover, let $v^j \in \mathbb{R}^{n+1}$ be an unitary vector tangent to the curve \mathcal{C} at the point z^j , $v^j \in T_{z^j}\mathcal{C}$, so $||v^j|| = 1$, and $DF(z^j)v^j = 0$.

Then, it is possible to find a new point on the curve, $z^{j+1} \in \mathcal{C}$, and a new unitary tangent vector, to \mathcal{C} at z^{j+1} , $v^{j+1} \in T_{z^{j+1}}\mathcal{C}$, $||v^{j+1}|| = 1$. If, on its turn, z^{j+1} is a regular point of \mathcal{C} , then one can look for yet another point on \mathcal{C} , $z^{j+2} \in \mathcal{C}$, and a new unitary tangent vector to \mathcal{C} at z^{j+2} , $v^{j+2} \in T_{z^{j+2}}\mathcal{C}$, $||v^{j+2}|| = 1$, and so on.

Of course, there are several numerical methods to do this step-by-step continuation of \mathcal{C} from an inital point on the curve, $z^j \in \mathcal{C}$, and a (normalized) tangent direction at that point, $v^j \in T_{z^j}\mathcal{C}$. The one we outline here is the so called pseudo-arc continuation method (see [1], Chap. 10, Sect. 2, for a complete description). In a nutshell, it consists in the three stages discussed below.

Now, this process can be iterated until we reach a point $z^{\ell} \in \mathcal{C}$ such that eventually $Rank \, DF(z^{\ell}) < n$ As described in [1] (see chap. 10, sect. 2),

points on the curve can be approximated by means of the pseudo arc method, following these three stages:

- 1. Stage 1: Prediction. Take $\hat{z}^{j+1} = z^j + h_j v^j \in z^j + \langle v^j \rangle$ as an approximation for another new point $z^{j+1} \in \mathcal{C}$. Here $h_i > 0$ is the pseudo-arc length, and can be conveniently adapted at each step.
- 2. Stage 2: Correction. Refine the approximation \hat{z}^{j+1} to find $z^{j+1} \in \mathbb{R}^{n+1}$ such that $F(z^{j+1}) = 0$. However, as the system F(z) = 0 has n equations and n+1 unknowns $z_1, z_2, \ldots, z_n, z_{n+1}$, we need to ask for an additional condition: in particular, we shall require that $z^{j+1} \in \hat{z}^{j+1} + \langle v^j \rangle^{\perp}$, i.e., that z^{j+1} belongs to the hyperplane orthogonal to the vector v^j that holds \hat{z}^{j+1} (see Figure 1). The corresponding equation con be formulated as

$$\langle v^{j}, z^{j+1} - \hat{z}^{j+1} \rangle = \langle v^{j}, z^{j+1} - z^{j} - h_{j} v^{j} \rangle$$

$$= \langle v^{j}, z^{j+1} \rangle - \langle v^{j}, z^{j} \rangle - h_{j} \langle v^{j}, v^{j} \rangle$$

$$= \langle v^{j}, z^{j+1} \rangle - \langle v^{j}, z^{j} \rangle - h_{j} = 0,$$

where $\langle \cdot, \cdot \rangle$ stands for the *inner* (or dot) product $\langle \xi, \eta \rangle := \xi_1 \eta_1 + \dots + \xi_m \eta_m$, for $\xi, \eta \in \mathbb{R}^m$. Hence z^{j+1} will be given by the solution of the nonlinear system,

$$F(z) = 0,$$

$$\langle v^j, z \rangle = \langle v^j, z^j \rangle - h_j$$

that can be solved by some iterative method (for example, Newton method) taking form some the initial approximation. $z = \hat{z}^{j+1}$ is usually a good choice.

3. Step 2. Compute a new approximation. For this we need a tangent vector, v^{j+1} , to the curve C at the point z^{j+1} found at step one. To find v^{j+1} , first we solve the appended linear system

$$DF\left(z^{j+1}\right)v = 0,$$

$$\left\langle v^{j}, v \right\rangle = 1.$$
(1)

We note two points remarked in [1]. On the one hand, if C is a regular curve and z^j , z^{j+1} are close enough, the system (1) is nonsingular. On the other hand, the last equation assures that the direction along the curve is preserved.

 v^{j+1} must be a solution of the equation $DF\left(z^{j+1}\right)v=0$. Clearly, it is not unique, since rank $DF\left(z^{j+1}\right)\leq n$ equations defines The second condition, in terms of the inner product, can be written as

4. Prediction: we shall take $\hat{z}^{j+1} = z^j + h_j v^j$ as an approximation of the new point of z^{j+1} , where $h_j \in \mathbb{R}$ is the pseudo-arc step (the step in what follows), and $v^j \in \mathbb{R}^{n+1}$, $||v^j|| = 1$, is the tangent vector to the

Figure 1

 \mathcal{C} at point z^j , that will be find as the solution of és el vector tangent a la corba \mathcal{C} al punt z^j , el qual determinarem resolent el sistema ampliat,

$$DF(z^{j}) v = 0,$$

$$\langle v^{j-1}, v \rangle = 1,$$
(2)

on $v^{j-1} \in \mathbb{R}^{n+1}$, $||v^{j-1}|| = 1$, és el vector tangent a la corba \mathcal{C} al punt z^{j-1} , tots dos $(v^{j-1} i z^{j-1})$ prèviament calculats. Com s'observa a [1]:

- (i) El sistema lineal (2) és no singular si \mathcal{C} és una corba regular (i.e., si rang $DF(z) = n, z \in \mathcal{C}$) i els punts z^{j-1} i z^j estan suficientment a prop.
- (ii) La solució $v^* \in \mathbb{R}^{n+1}$ satisfà la condició $\langle v^{j-1}, v^* \rangle = 1$, per tant es preserva la direcció al llarg de la corba.

Per últim, normalitzem per tenir $v^j = v^* / \|v^*\|$. Nota: a l'inici, quan j = 0, no podrem escriure el sistema (2), sinó que resoldrem el sistema $n \times n$ que s'obté de seleccionar n columnes linealment independents (siguin les columnes $1, 2, \ldots, i-1, i+1, \ldots, n, n+1$) de $DF(z^j)$ a la primera equació de (2) i fixar $v_i = 1$. D'aquesta manera trobarem un vector $v^* \in \mathbb{R}^n$, $v_i^* = 1$, t.q. $DF(z^0)v^* = 0$. Llavors $v^0 = \pm v^* / \|v^*\|$, on la tria del signe determinarà la direcció en què es continua la corba.

5. Correcció. Per a "refinar" el valor aproximat $\hat{z}^{j+1} = z^j + h_j v^j$ del pas predictiu pel mètode de Newton i determinar el nou punt sobre la corba, $z^{j+1} \in \mathcal{C}$, s'ha d'afegir alguna equació addicional al sistema F(z) = 0. Al mètode del pesudo-arc, s'imposa que $z^{j+1} \in \hat{z}^{j+1} + \langle v^j \rangle^{\perp}$; això és, que el punt z^{j+1} pertanyi també al hiperplà perpendicular al vector v^j que conté \hat{z}^{j+1} . Usant el producte escalar aquesta condició geomètrica s'escriu com,

$$\left\langle z^{j+1} - \hat{z}^{j+1}, v^j \right\rangle = \left\langle z^{j+1} - z^j - h_j v^j, v^j \right\rangle = \left\langle z^{j+1} - z^j, v^j \right\rangle - h_j = 0$$

(vegeu la figura 1). Aleshores aplicarem el mètode de Newton al sistema no lineal

$$F(z) = 0,$$
$$\left\langle z - z^j, v^j \right\rangle = h_j,$$

prenent $z^{(0)} = \hat{z}^{j+1}$ com a aproximació inicial.

2 References

[1] Yuri A. Kuznetsov. Elements of Applied Bifurcation Theory, volume 112 of Applied Mathematical Sciences. Springer-Verlag, New York, third edition, 2004. 1, 2