$$(1) \quad A-B \implies A+(-B)$$

00000

00000-000000

03

000000-000010

2

= 810 Gover calculations are correct.

Shift div

CHECK

2) -A/-B										
I	t avot	div	Rem							
0 000000		000000 000000	000000-061110	Init:						
1	8,0000	000110-00000	000000-001110	Smet or a	de					
	Coccoc	000011-00000	11 -	smilet Diright						
2	000000	00001-10000	000000-001110	silver of						
3	000000	0 0000 - 110000	000000-001110	и						
4	00000	00000-11000	000000-001110							
5	000000	000000-01100	00000_00(10	11						
	000001	00000-00100	80000-80010 "	fem==DiV Shift 17Q Shift div right						
	10- 15	000000_000110	010000_00000	Rem= Div Shift O→a						

1000000-001110 111010,00000 -111010-001110

2 111101-000000 000000-001116 111101-001110 update

3 6,00000-001110 111110-100000 dont-11110-101110. webte

> 4 0000000 0011100 111111-070000 11111-0111110

6 000000-6011100 111111- 1010000 DUIII- 110100

6 000000-001110 111111-110100 00000-00000

update 1 00000-000010 111111-111010

001111-11111 + dont update

So we need to complement the remainder and quotient unchanged

Quotient2 0000102 & 2,0

lem = 000102 2'5 C > 1111102 = - (00010) & -210

 50_{-6} $\frac{2}{-14}$ our calculations are right rechecking it.

(3) - A	XB -						000110
7.1		0.10					111010
It	Muld	Procl_Reg	CB	PB	Step		
0	000110	00000-1100tc	0,0	_	Init.	,	
1	000110	000000-01/001	20	0	RHS	1110	010
2	000110	11101-001100	15	0 "	Procl-Mud	11110	010-01100x
8	000110	00000100110	0	1	Rrock+Muld	11 60011	
4	060110	000000-11001	1,30	., 0	PHS	000001	1-601100
5	Ovollo	111101-01100	1 2	.,70	Prod-Made	00000	0-110011
6	000110	111110-10110	70 1	1		11101	10-1100p
	101-01111	- (2's comp)					
8.71		- (00001-01010),	C	HECK:		
-1	luc-illu	-(64+38+4)10		000	14	
ye i	al child	- (84),			vo: 03	84	

So our calculations for prod 7-14x6 is correct and verified.

Q2: Single precision floting point to solver

$$A = 16.35 = 10000.010110_{2} \text{ normalize} = 1.0000010110 \times 2^{4}$$

$$B = 7.3741 = 111.0101111_{2}$$

$$\begin{cases} 1.000001 \times 2^{131} \\ 1.110101 \times 2^{129} \end{cases}$$

$$\begin{cases} 1.000001 \times 2^{131} \\ 1.110101 \times 2^{129} \end{cases}$$

$$\begin{cases} 0.10000010 - 0.000010 & 0.000010 \\ 0.10000010 - 110110100 & 0.000010 \end{cases}$$

$$\begin{cases} 1.0000010 \times 2^{131} \\ 1.110101 \times 2^{129} \end{cases}$$

$$\begin{cases} 1.0000010 \times 2^{131} \\ 0.10000010 - 110110100 & 0.000010 \end{cases}$$

$$\begin{cases} 1.0000010 \times 2^{131} \\ 1.110101 \times 2^{129} \end{cases}$$

$$\begin{cases} 1.00000010 \times 2^{131} \\ 0.10000010 - 110110100 & 0.000010 \end{cases}$$

(a) A+B

A:
$$1.000001 \times 2^{131}$$

B: $1.110101 \times 2^{129} = 1.000001 \times 2^{131}$
 $1.000001 \times 2^{131} = 1.000001 \times 2^{131}$
 $1.011110 \times 2^{131} = 1.01110 \times 2^{131}$
 $1.011110 \times 2^{131-127} = 1.01110 \times 2^{131} = 1.0111.10 \times 2^{131}$

binory-to-decimal

Note: Hexa representation for I EEE number are not preicise because we just take 3 to 4 digit atter decimal.

The exact answer is 23.7241 but our less precise addition answer is 23.5 which is & approx. equal.

(b) A-B

I am not converting A & B again I just copied from previous questions:

 $A_2 1.000001 \times 2^{131} = 10000001 \times 2^{131}$ $B = [110101 \times 2^{129} = 0.011101 \times 2^{131}]$

$$B = \frac{4}{2} \cdot 0.011101 \times 2^{131}$$

$$-B = \frac{1}{2} \cdot 1.100011 \cdot 2^{131}$$

Now A-B

6 1.0000 0 1 x 2 131

or 011110 4

1 1.1000 11 X2 131

discurd e 1 0.0.1000 | X2 131

424700006

+ 0= 1000 11 x 2131 IEEE) 0.10000100-100,011,0000000

remove biase (127) from exponent +0.100011 x24 = 01000.11 x2°

0/000.11₂ 8·(½+½)

= 8.75 io

CHECK:

9.9759

1/2 1/4

241 =

8.75 & 809759

- hence after checking our results are less precise then original but approximately equal.