	S	SHAHEED BHAGAT SINGH STATE TECHNICAL CAMPUS, FEROZEPUR
		LL NO :Total number of pages:[01]
,	Γot	al number of questions:06
		B.TechCSE 5 th Sem
		Theory of Computation
		Subject Code:BTCS-504A
		Paper ID:
	Ti	ime allowed: 3 Hrs Max Marks:60
In	npo	rtant Instructions:
	•	All questions are compulsory
PART A (10 x 2 marks)		
Q.	1.	Answer in brief:
		a. Define finite automata.
		b. Define Moore machine.
		c. Design deterministic finite automata over input alphabets (0,1) that starts with 0
		and end with 1.
		d. What do you mean by Context Sensitive Language?e. What is need of regular expression?
		f. What do you mean by universal Turing Machine?
		g. State Pumping Lemma.
		h. Briefly explain concept of NULL production.
		i. What is Turing machine halting problem?
		j. Write down formal definition of push down automata.
		PART B (5×8 marks)
	2.	Define automata with the help of its block diagram. What are its various characteristics? OR
		Explain Moore and Mealy Machine with a suitable example. CO1
	3.	Prove $(1+00*1)+(1+00*1)(0+10*1)*(0+10*1)=0*1(0+10*1)*$
		OR
		Find an FA equivalent to the regular expression $(0+1)*(00+11)(0+1)*$
	4.	Design a Pushdown Automata that accepts the language $\{0^n1^{2n} n>0\}$.
		OR
		Design a Turing machine M to recognize the language $\{1^n 2^n 3^n n \ge 1\}$.
	5.	Find a grammar in Chomsky normal form equivalent to $S \rightarrow aAbB$, $A \rightarrow aA a$, $B \rightarrow bB b$. OR
		Write down different steps involved in converting a grammar into GNF. CO3
	6.	Construct a grammar G generating $\{a^nb^nc^n n\geq 1\}$.
		OR
		What do you mean by ambiguity in expression? Also show that the grammar S→a abSb aAb, A→bS aAAb is ambiguous.