

Energieeffiziente Eingebettete Systeme: Dynamische Spannungs- und Frequenzskalierung

Agenda

- i. Überblick: eingebettete Systeme
 - i. ASIC Design
- ii. Dynamischen Spannungs- und Frequenzskalierung
 - i. Frequenzskalierung
 - ii. Spannungsskalierung
 - Aufbau / Funktion Halbleiter und Transistor
- iii. Grundlegende Stromspar-Mechanismen
 - i. Energieeffizienz beim PCB Design
- iv. Fallstudie, Anwendungen und Zukunftsaussichten
- v. Schlussfolgerung

Überblick: eingebettete Systeme

Kombination von Hardware und Software, für bestimmte Funktion

entwickelt.

Anwendungen: Wetterstationen,
Thermostate, ...

- ROM oder Flash?
- Mikrocontroller oder Mikroprozessor?

[1]

Erster wichtiger Schritt: ASIC Design!

Dynamischen Spannungs- und Frequenzskalierung Frequenzskalierung

- Echtzeitapplikationen:
 - Harte, feste und weiche Applikationen
- Frequenz Wahl: Kompromiss zwischen Leistung und Energieverbrauch

Wie wird dynamisch skaliert?

TIL - target interval length & CIL - current interval length

Dynamischen Spannungs- und Frequenzskalierung Spannungsskalierung

- Strom sparen durch erh
 öhte Frequenz?
 - Unterschied statische und dynamische Leistung

[5]

Dynamischen Spannungs- und Frequenzskalierung

Aufbau / Funktion Halbleiter und Transistor

Dynamischen Spannungs- und Frequenzskalierung Spannungsskalierung

Eine höhere Leistung bedeutet:

PRO

- Verbesserte Leistungsfähigkeit
- Schnellere
 Verarbeitungsgeschwindigkeit

CONTRA

- Wärmeentwicklung
- Geringe Lebensdauer
- Erhöhter Energieverbrauch

[6]

	Prozessors	
	$\rm Frequenz(GHz)$	$\mathrm{Spannung}(V_{CC})$
$P arpropto V^2 \cdot f$	1.6	1.484
$I \sim V$	1.4	1.420
	1.2	1.276
	1.0	1.164
	0.8	1.036
	0.6	0.956

Grundlegende Stromspar-Mechanismen

- Cache-Hierarchien optimieren
- Power Gating deaktivieren bestimmter Bereiche
- Clock Gating deaktivieren des Taktsignale zu bestimmten Teilen

Sleepmodi:

- Idle
- Standby-Modus
- Power-Down-Modus

Warum lohnt sich Clock Gating?:

- Schneller
- Granularität

[7]

Grundlegende Stromspar-Mechanismen Energieeffizienz beim PCB Design

- Low-Power-Peripheriegeräte
- Optimierung der Stromversorgung
 - Durch den richtigen Spannungsregler
 - Linearregler oder Schaltregler
- Optimierung von Layout und Routing

Fallstudie, Anwendungen und Zukunftsaussichten

Anwendungen:

- Herzschrittmacher
- Sonde/Weltraum
- Armbanduhren und Handys

Zukunftsaussichten:

- Feinere Granularität
- Heterogene Systeme

Energieeffiziente Eingebettete Systeme: Dynamische Spannungs- und Frequenzskalierung

Textquellen

- (1) IEEE "Dynamic Voltage and Frequency Scheduling for Embedded Processors Considering Power/Performance Tradeoffs" Autoren: Mostafa E. Salehi, Mehrzad Samadi, Mehrdad Najibi, Ali Afzali-Kusha, Masoud Pedram, and Sied Mehdi Fakhraie
- (2)IEEE "Dynamic Voltage and Frequency Management for a Low-Power Embedded Microprocessor"
 Autoren: Masakatsu Nakai, Satoshi Akui, Katsunori Seno, Tetsumasa Meguro, Takahiro Seki, Tetsuo Kondo, Akihiko Hashiguchi,
 Hirokazu Kawahara, Kazuo Kumano, and Masayuki Shimura
- (3) https://de.wikipedia.org/wiki/Halbleiter
- (4) https://www.youtube.com/watch?v=EYTKQ3dkQ0w
- (5) https://reboundeu.com/de/insights/blog/embedded-systems-explained-16/
- (6) https://de.digi.com/blog/post/power-management-techniques-in-embedded-systems
- (7) https://fastercapital.com/de/thema/dynamische-spannung-und-frequenzskalierung-(dvfs).html
- (8) https://de.wikipedia.org/wiki/Complementary_metal-oxide-semiconductor
- (9) IEEE "Dynamic Voltage and Frequency Scaling For On-Demand Performance and Availability of Biomedical Embedded Systems" Autoren: Dejan Raskovic, Member, IEEE, and David Giessel, Member, IEEE
- (10) "Energieeffizienz von Prozessoren in high Performance Computing-Anwendungen der Ingenieur-Wissenschaften" Autor: Dmitry Khabi vom Institut für Höchstleistungsrechnen
- (11) IEEE "An Improved Power Gating Technique with Data Retention and Clock Gating" Autoren: Mohit Saini, Siddharth Shringi, Abhijit Asati
- (12) https://www.mikrocontroller.net/articles/Sleep_Mode
- (13) "The Impact of GPU DVFS on the Energy and Performance of Deep Learning: an Empirical Study" Autoren: Zhenheng Tang, Yuxin Wang, Qiang Wang, Xiaowen Chu
- (14) "A Case Study of Limited Dynamic Voltage Frequency Scaling in Low-Power Processors" Autoren: Hwan Su Jung, Ahn Jun Gil, Jong Tae Kim

Bildquellen

- [1] https://de.wikipedia.org/wiki/Eingebettetes_System#/media/Datei:DHCOM_Computer_On_Module_-_AM35x.jpg
- [2] Dynamic Voltage and Frequency Scheduling for Embedded Processors Considering Power/Performance Tradeoffs Mostafa E. Salehi, Mehrzad Samadi, Mehrdad Najibi, Ali Afzali-Kusha, Masoud Pedram, and Sied Mehdi Fakhraie
- [3] http://grund-wissen.de/physik/elektrizitaet-und-magnetismus/leiter-halbleiter-isolator.html
- [4] https://www.youtube.com/watch?v=EYTKQ3dkQ0w
- [5] https://www.grund-wissen.de/elektronik/bauteile/transistor.html
- [6] https://de.wikipedia.org/wiki/Complementary_metal-oxide-semiconductor
- [7] https://www.anandtech.com/show/4444/amd-llano-notebook-review-a-series-fusion-apu-a8-3500m/4
- [8] https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m4.html
- [9] https://www.notebookcheck.com/NVIDIA-GeForce-RTX-2080-Ti-Desktop.400706.0.html

