Lecture $|5\rangle$: The Matrix (1/3)

May 21, Tue. 6:30pm -8:35pm

Contributor: _____ Lecturer: Yanglet Liu

Topics: Complex linear algebra and The Matrix

Quantum gates are linear maps that keep the total probability equal to 1.

$$U |\psi\rangle = \alpha U |0\rangle + \beta U |1\rangle$$

where U is a unitary matrix.

Videos

Video ²² (5 min): The Matrix - Neo sees the Matrix

Video ²³ (5 min): What is The Matrix?

Video ²⁴ (10 min): The Story of The Architect | MATRIX EXPLAINED

Video ²⁵ (5 min): The Complete Matrix Timeline

Video ²⁶ (20 min): You are a Simulation & Physics Can Prove It: George Smoot at TEDxSalford

Figure 8: (Credit: The Matrix)

²²https://www.youtube.com/watch?v=0pYyzolIN3I

²³https://www.youtube.com/watch?v=05b0ZxUWNf0

²⁴https://www.youtube.com/watch?v=PI4PHI8xLVo

²⁵https://www.youtube.com/watch?v=10N7juslqcc

²⁶https://www.youtube.com/watch?v=Chfoo9NBEow

Outline

- (Complex) Linear algebra
- Vectors for Qubit
- Matrices for Quantum Gates

12 Linear Algebra

Chapter 2 Linear Algebra.

13 Vectors for Qubit

Superposition: Qubit

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

where amplitudes $\alpha, \beta \in \mathbb{C}$ satisfy that $|\alpha|^2 + |\beta|^2 = 1$.

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{|0\rangle} + \beta \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{|1\rangle} \tag{18}$$

Linearity of function: $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$

Examples: "plus", "minus", "i", and "minus i", ket and bra representations.

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \qquad \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix}, \qquad \frac{1}{\sqrt{2}}[1 \quad 1]$$

$$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle), \qquad \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-1 \end{bmatrix}, \qquad \frac{1}{\sqrt{2}}[1 \quad -1]$$

$$|i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle), \qquad \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\i \end{bmatrix}, \qquad \frac{1}{\sqrt{2}}[1 \quad -i]$$

$$|-i\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle), \qquad \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-i \end{bmatrix}, \qquad \frac{1}{\sqrt{2}}[1 \quad i]$$

$$(19)$$

14 One-Qubit Gates

A quantum gate is *linear*, recall the linearity of function such that

Linearity of function:
$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$
.

We can distribute U across a superposition state (qubit) $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ as follows (pp. 99):

$$U |\psi\rangle = \alpha U |0\rangle + \beta U |1\rangle \tag{20}$$

Probability-preserving linear maps.

Quantum gates are linear maps that keep the total probability equal to 1.

Section 3.3.2 and Lab1: I, X, Y, Z, S, T, H

Gate	Action on Computational Basis	Matrix Representation
Identity	$I 0\rangle = 0\rangle$ $I 1\rangle = 1\rangle$	$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Pauli X	$egin{array}{c} X 0 angle = 1 angle \ X 1 angle = 0 angle \end{array}$	$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Pauli Y	$egin{array}{c} Y 0 angle = i 1 angle \ Y 1 angle = -i 0 angle \end{array}$	$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
Pauli Z	$egin{array}{c} Z 0 angle = 0 angle \ Z 1 angle = - 1 angle \end{array}$	$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Phase S	$egin{array}{l} S 0 angle = 0 angle \ S 1 angle = i 1 angle \end{array}$	$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$
T	$T 0 angle = 0 angle \ T 1 angle = e^{i\pi/4} 1 angle$	$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$
Hadamard H	$H 0\rangle = \frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$ $H 1\rangle = \frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Figure 9: Common one-qubit gates as matrices

Scott Aaronson: Quantum mechanics (QM) resembles an opearting system on which the rest of Physics is running its application software.²⁷

²⁷Except for general relativity "which has not yet been successfully ported to this particular OS"