Build-A-Planet

By Erin Bernthold, Roland Hebner, and Lucas Ferrari

Introduction

Goal: To investigate the internal structure and composition of Trappist-1f using its measured mass and radius, and to simulate models with an academic software call ExoPlex.

Why Trappist-1f?

- It is located within the habitable zone of its host star, Trappist-1, which is a cool red dwarf.
- It is a well-known rocky planet with mass and radius measurements.

Image Source: https://science.nasa.gov/exoplanet-catalog/trappist-1-f/

Why Study Trappist-1f?

- Trappist-1f is a confirmed rocky exoplanet located in the habitable zone of the Trappist-1 system.
- It has well-constrained mass and radius:
 - O M = 1.039±0.031 Earth masses
 - \circ R = 1.045 Earth radii
- By understanding the interior composition of Trappist-1f, we can assess its habitability potential, compare its structure with Earth's, and evaluate the significance of stellar composition on planet formation.

Image Source: https://science.nasa.gov/asset/hubble/the-trappist-1-habitable-zone/

Methods

Important Equations

$$f_d = \frac{L_*}{4\pi d^2}$$

Stellar Flux at
Orbital Distance of
the Planets

$$I = f_d \times \pi r^2$$

Incident Luminosity of Planet

Results: Stellar Composition

Ratios	Values (dex)
Fe/H	0.05350
Mg/H	0.1635
Si/H	0.0785
Si/Mg	0.6167
Fe/Mg	0.7762

Results: Initial Structure Modeling

	Using Measured Mass Only	Including the Uncertainties
Mass	1.039 Earth masses	Upper Limit: 1.07 Earth masses Lower Limit: .008 Earth masses
Radius	1.011 Earth radii	Upper Limit: 1.020 Earth radii Lower Limit: 1.003 Earth radii
Core Mass Fraction	33.68	Upper Limit: 33.68 Lower Limit: 33.68
Core Radius Fraction	53.32	Upper Limit: 53.28 Lower Limit: 53.36
Density	5525.0 kg m ⁻³	Upper Limit: 5540.5 kg m ⁻³ Lower Limit: 5489.4 kg m ⁻³

1.011 Earth radii

The Expected Radius

5525 kgm⁻³ The Average Density

Results: Mantle Mineralogy

Ratios	Trial 8	Earth
FeO	8.52%	8.18%
SiO ²	36.5%	44.71%
MgO	45.4%	38.73%
CaO	4.42%	3.17%
Al ² O ³	5.17%	3.98%

Conclusion

- We used stellar composition, mass, and radius to model the internal structure of Trappist-1f using the ExoPlex software.
- Our models suggest Trappist-1f has:
 - O A core mass fraction of ~29-34%
 - A core radius fraction of ~57%
 - O A bulk density of approximately 5525 kg/m³, comparable to Earth
- The planet lies within the habitable zone and receives moderate stellar flux, supporting the possibility of surface habitability under appropriate atmospheric conditions.
- Mineralogy analysis shows a mantle composition similar to Earth's, with slightly elevated MgO and FeO fractions.
- Overall, our results highlight the importance of stellar refractory abundances in constraining planetary interior models and suggest that Trappist-1f is a differentiated rocky planet, which is similar in many ways to Earth.

THANKS!

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Please keep this slide for attribution