HUELAOS: CORE

Q-Matrices

Concepts are defined by experts. Very time consuming & domain specific

Q-Matrix

	q1	q2	q3	q4	q5	q6
con1	1	0	0	0	0	1
con2	1	1	0	1	0	0
con3	1	1	1	0	0	0

(Tatsuoka, 1983; 1996)

Probability a student is correct given mastery of a given concept

Q-Matrix

	q1	q2	q3	q4	q5	q6
con1	1	0.01	0.6	0	0.7	1
con2	0.8	0.7	0.8	0.76	0.5	0.42
con3	0.5	0.6	1	0.55	0.5	0.67

(Brewer, 1996)

One Solution

- Create idealized patterns
- Compare the observed pattern to the idealized
- Use difference between them as an indicator of "model fit"

Hill Climbing Algorithm

- If we stop too early might only capture a local maxima
- This is a "heuristic" algorithm when problem is not algebraically solvable or would take too long
- State description contains all the information needed to find a solution

Idealized Pattern

	q1	q2	q3	q4	q5	q6
c1	1	0	0	0	0	1
c2	1	1	0	1	0	0
c3	1	1	1	0	0	0

$$L_1 = d(p,IDR) = \sum_{q} |p(q) - IDR(q)|$$

$$L_1 = 1$$

Student Answer: 101110

Concept State	Ideal Response Vector
000	000010
001	001010
010	000110
011	011 10
100	000011
101)	001011
110	000111
111	111111

Idealized Pattern

	q1	q2	q3	q4	q5	q6
c1	1	0	0	0	0	1
c2	1	1	0	1	0	0
c 3	1	1	1	0	0	0

$$L_1 = d(p,IDR) = \sum_{q} |p(q) - IDR(q)|$$

Concept State	Students
000	A,D,X
001	B,M,N
010	C,E
011	F,G,H
100	I,J,K,L
101	O,W
110	P,Q,R,S
111	T,U,V,Z

Answers

	Q1	Q2	Q3	Q4	Q5	Q8	Q9	Q8	Q9	Q10	Q11	
Ans	2	4	3	4	2	4	2	2	3	3	4	

Q-Matrix

	q1	q2	q3	q4	q5	q6	q7	q8	q9	q10	q11	
c1	1	1	1	0	1	0	0	1	0	0	0	
c2	0	0	0	0	1	1	0	0	0	0	0	
сЗ	1	0	0	0	0	0	0	0	1	1	1	
c 4	0	1	0	1	0	1	0	0	0	0	0	
c 5	0	0	0	0	0	0	1	1	0	1	0	

Concept State	IDR
00000	000000000
00001	00000010000
00010	0001000000
00011	00010010000
10100	10100000101
10101	10100010111
10111	11110011111
11000	00101000000
11100	10101000101
11110	11111100101
01111	00010110111
01000	000000000
01010	00000100000
01101	00010010111
01110	00010100101
11111	1111111111

- Find the IDR closest to your own
- There are two "all zero"
- Count how many digits are different to your answer

What are we gonna do with that Twitter?

Activity

- Break into groups
- Agree on a goal for the platform use by the class
- Devise an intervention to target that goal
- Devise a way to monitor the impact of the intervention
- Pitch