La tensione superficiale

Fenomeni di Trasporto

Definizione

Definiamo la tensione superficiale σ : IM_S = σ dA $_S$

 $\square W_S$ è il lavoro che è necessario fornire dall'esterno per allargare la superficie A_S di un fluido di una quantità dA_S .

La tensione superficiale così definita è

un'energia per unità di superficie

Si compie un lavoro positivo se si aumenta una superficie di interfaccia (che quindi tende a contrarre).

Poiché un sistema vuole raggiungere uno stato di minima energia, allora un sistema con un'interfaccia vuole avere un'area interfacciale minima.

Oss.: il lavoro di volume è $[W_V=-P dV]$ compio un lavoro positivo se comprimo un fluido (che quindi tende ad espandere)

La tensione superficiale

Le molecole di un fluido subiscono l'attrazione da parte delle molecole a loro prossime. Nel seno del fluido la somma di tutte le forze di attrazione è nulla. Sulla superficie tali forze si compongono fino a diventare una forza di attrazione verso l'interno.

Questo si traduce in un'azione di compressione.

Effetti della tensione superficiale

Supponiamo di avere un film liquido imbrigliato in un telaio con un lato mobile

lo spostamento del lato mobile del telaio di un tratto $\mathbf{d}\mathbf{x}$ fa crescere l'interfaccia complessiva di un $\mathbf{d}\mathbf{A}_S$ = 2 \mathbf{L} $\mathbf{d}\mathbf{x}$

Tale spostamento richiede un lavoro:

$$F dx = 2 \sigma L dx \rightarrow F = 2 \sigma L$$

Ossia, la superficie esercita una forza F diretta **verso l'interno** (che bisogna vincere), tale che $F/(2L)=\sigma$

F è proporzionale alla lunghezza su cui agisce F è diretta tangenz. alla superficie e perpend. al suo perimetro

Angolo di contatto

Quando un liquido bagna una superficie solida si formano tre interfacce: solido-liquido, solido-gas e liquido-gas

Ognuna delle interfacce esercita la propria tensione, diretta verso il suo interno. L'angolo di contatto | viene fuori dal bilancio delle tensioni

$$\sigma_{SL} + \sigma_{LG} \cos(\theta) = \sigma_{SG}$$

$$\cos(\theta) = (\sigma_{SG} - \sigma_{SL})/\sigma_{LG}$$

Generalmente, si dice che un liquido bagna una superficie quando θ è molto piccolo (al limite zero), come nel caso di acqua su vetro pulito o mercurio su rame pulito.

Se $\theta > 90^{\circ}$ si dice che il liquido non bagna la superficie, come nel caso di acqua su teflon pulito o mercurio su vetro pulito.

Quanto vale la tensione superficiale?

 $\square_{cloroformio-aria}(20^{\circ}C)=2.7\ 10^{-2}N/m$ $\square_{\text{acido oleico-aria}} (20^{\circ}\text{C}) = 3.3 \ 10^{-2} \text{N/m}$ □_{mercurio-aria}(20°C)=0.52 N/m

 $\begin{array}{l} \square_{cloroformio\text{-}acqua}(20^{\circ}C){=}3.3\ 10^{\text{-}2}N/m\\ \square_{acido\ oleico\text{-}acqua}(20^{\circ}C){=}1.6\ 10^{\text{-}2}N/m \end{array}$ $\square_{\text{mercurio-acqua}} (20^{\circ}\text{C}) = 3.75 \text{ N/m}$

La misura della tensione superficiale

Tensiometro di Du Nouv

La forza necessaria per sollevare l'anello vale

$$F=2(\pi D \square)$$

Diametro di una goccia da un capillare

La goccia cade quando $F_G = F_S$

$$\frac{\rho \pi D_G^3}{6} g = \sigma \pi D_C \cos(\theta)$$

(trascuriamo la spinta di Archimede)

∏ inizialmente vale circa 90°, poi diminuisce. Assumiamo che quando la goccia cade ∏≈0

$$D_G = \sqrt[3]{\frac{6\sigma D_C}{\sigma g}}$$

$$D_G = \sqrt[3]{\frac{6\sigma D_C}{\rho g}} \qquad \qquad \frac{D_G}{D_C} = \sqrt[3]{\frac{6\sigma}{\rho g D_C}} = \sqrt[3]{\frac{6}{Bo}}$$

Bo=(numero di Bond) = $\frac{\rho g D_C^3}{\sigma D_C}$ = $\frac{\text{forza di gravità}}{\text{forza di superficie}}$

Oss.: sperimentalmente $\frac{D_G}{D_C} = \sqrt[3]{\frac{4.1}{Bo}}$

$$\frac{D_G}{D_C} = \sqrt[3]{\frac{4.1}{Bo}}$$

Diametro di una bolla da un orifizio

Tempo di risalita di un liquido in un capillare

Supponendo moto laminare: f=16/Re la velocità (media sulla sezione) di risalita di un liquido in un capillare si può scrivere

$$v = \left(\frac{\rho g D_c^2}{32\eta}\right) \left(\frac{h}{x} - 1\right)$$

dove x è l'altezza istantanea e h è l'altezza finale: $\frac{h}{D_{C}} = \frac{4\sigma cos(\theta)}{\rho g D_{C}^{2}}$

Essendo v=dx/dt, si ottiene un'equazione differenziale che fornisce:

$$\xi + \ln(1 - \xi) = -\frac{V}{h}t$$
 con $V = \left(\frac{\rho g D_c^2}{32\eta}\right) e^{-\xi} = \frac{x}{h}$

Risalita (o discesa) di un liquido in un

Da un bilancio di forze si ottiene (all'equilibrio): $\sigma = \frac{\rho h D_C g}{4 \ cos(\theta)}$

 $\frac{h}{D_{C}} = \frac{4\sigma\cos(\theta)}{\rho g D_{C}^{2}} = \frac{4\cos(\theta)}{Bo}$

Oss.: l'altezza dipende dall'angolo di contatto, e può anche essere negativa

Bo = $\frac{\rho g D_C^2}{\sigma}$

Frazionamento di una colonna di liquido in goccioline

Il volume di un cilindro di liquido vale

$$V_c = \pi R_c^2 L$$

Il raggio di una sfera di ugual volume è

$$R_s = \left(\frac{3}{4}\right)^{\frac{1}{3}} R_c^{\frac{2}{3}} L^{\frac{1}{3}}$$

Il rapporto fra le superfici di una sfera e di un cilindro di ugual volume vale: $\frac{S_s}{S_c} = \left(\frac{9}{2} \frac{R_c}{L}\right)^{\frac{1}{3}}$

Se $R_c/L < 2/9$ il liquido preferisce formare sfere anziché un cilindro.

Pertanto una perturbazione del sistema porta la formazione di gocce

Forze dovute a superfici curve

Se una superficie è curva, la tensione superficiale ha componenti dirette anche verso l'interno della superficie

La forza normale dovuta alla tensione superficiale vale $\mathsf{F}_{Sz} = 2\mathsf{F}_{Sy} \sin(\alpha_y) + 2\mathsf{F}_{Sx} \sin(\alpha_x) \ \text{con} \ \mathsf{F}_{Sy} = \sigma \square y \ \text{e} \ \mathsf{F}_{Sx} = \sigma \square x$ ed è diretta verso la parte concava della superficie

Forze dovute a superfici curve

 $F_{Sz} = \sigma A (1/R_v + 1/R_x)$

con A= □x □y = proiezione della superficie su un piano

Per una superficie sferica: F_{Sz} =2 \square A (1/R)

Questo vuol dire che, se la superficie curva è chiusa, esiste una differenza fra la pressione interna e quella esterna

Forze dovute a superfici curve

 $F_{S_z} = 2\sigma \Box y \sin(\alpha_v) + 2\sigma \Box x \sin(\alpha_x)$

Forze dovute a superfici curve

 $F_{Sz} = \sigma A (1/R_v + 1/R_x)$

con A= $\prod x \prod y$ = proiezione della superficie su un piano

Se la superficie è aperta e quindi P_i=P_e il film si dispone in maniera tale che i due raggi di curvatura sono opposti l'uno all'altro, cosicché la forza normale si annulla

Forze dovute a superfici curve Passaggio di una bolla in una strozzatura

C'è bisogno di una sovrapressione a monte per far passare la bolla attraverso la strozzatura:

$$P_{i} - P_{1} = \frac{2\sigma}{R_{1}}$$

$$P_{i} - P_{2} = \frac{2\sigma}{R_{2}}$$

$$P_{1} - P_{2} = 2\sigma \left(\frac{1}{R_{2}} - \frac{1}{R_{1}}\right)$$