${\bf Project~4} \\ {\bf Inesh~Chakrabarti,~Lawrence~Liu,~Nathan~Wei} \\$

Introduction

For the first part of this project we will do regression analysis. The dataset we chose to use is one of diamond characteristics. We will conduct regressions to predict the price of a diamond given some features.

Dataset

Let us begin by understanding the dataset. The dataset consists of information about 53940 round-cut diamonds with ten features:

Feature	Description				
carat	weight of the diamond $(0.2–5.01)$				
cut	quality of the cut (Fair, Good, Very Good, Premium, Ideal)				
color	diamond colour, from J (worst) to D (best)				
clarity	a measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1, IF (best))				
x	length in mm $(0-10.74)$				
У	width in mm $(0-58.9)$				
z	depth in mm $(0-31.8)$				
depth	total depth percentage				
table	width of top of diamond relative to widest point (43-95)				
price	price in US dollars (\$326-\$18,823)				

Question 1.1

Figure 1: Feature Pearson Correlation Heatmap

We will be using the nine features to predict the price. We can begin by computing the Pearson correlation matrix heatmap for these features in the dataset in Figure 1. The values for correlation for price is given in Table 1(a). We see that, unsurprisingly, there is a massive collection of high correlation squares at the bottom right. These indicate high Pearson correlation coefficient between price and x, y, texttz. This suggests that

	Correlation	_		Correlation
		-		
carat	0.9215914337868304		carat	0.7694571626172851
cut	-0.05349263851362828		cut	0.00542011950342582
color	-0.1725093772499559		color	-0.011980043670033661
clarity	-0.14680175361025616		clarity	0.04512538515850012
depth	-0.010647725608533299		depth	-0.03572374489729493
table	0.12713358133531918		table	0.08458507638109278
x	0.8844357793744166		х	0.7873455524189906
У	0.865421694764742		У	0.7717301198408058
z	0.861250266123968		Z	0.7655421629234554
	(a) Price			(b) Price per Carart

Table 1: Pearson Correlation Coefficients