Preliminary Study on Automatic Grammaticality Evaluation

Yang 20190913

Background

• Given a grammatical or ungrammatical sentence, grammaticality Evaluation is to access the grammaticality (or fluency) by scoring

• Most common way is to use language model

Background – Neural Language Model

• The sentence to be evaluated w_1 w_2 w_3 w_4 ...

Sentence Perplexity =
$$e^{-1/N(\Sigma log(Pi))}$$

Background - Perplexity

- The lower the Perplexity is, the more likely this sentence occur
- Word frequency has great impact on Perplexity
- Using larger training data usually leads to lower Perplexity

Sample sentence	Perplexity
sees he i often mary?	7555.2
it seems that it is likely that john will win.	48.9

Perplexity Good for Grammaticality Judgment?

No

Sample sentence	Perplexity
I travel to London	800.0
I travel to Tuvalu	233.9

GPT2 language model used

• Perplexity favors frequent words, although sentences are equally grammatical

Goals

- An idealized grammaticality evaluator should
 - 1. Avoid or alleviate the impact of low frequency word (this is especially important for the text contains a number of low-frequency entity)
 - 2. Grammatical sentence > ungrammatical sentence

3. ungrammatical sentence with 1 grammar errors > ungrammatical sentence with 4 grammar errors

Eliminating impact of low frequency word by considering POS tags

Sample sentence	Perplexity
I travel to London [('I', PRON'), ('travel', VERB'), ('to', ADP'), ('London', PROPN')]	800.0
I travel to Tuvalu [('I', PRON'), ('travel', VERB'), ('to', ADP'), (Tuvalu', PROPN')]	233.9

POS based Neural Language Model

"two ppl loss terms"

Training

- Training LM with Gigawords (Agence France-Presse, English Service (afp_eng) scoure, etc.)
- Vocabulary size: ~30,000 subwords
- One-layer unidirectional LSTM language model
- Test Dataset Corpus of Linguistic Acceptability (CoLA; Warstadt et al., 2018): 1,000 sentences with human judgments (1: grammatical or 0: ungrammatical)

Results

take (ppl<100) as grammatical prediction and (ppl>100) as ungrammatical prediction

	f(x)
${ m LM}$	0.62
POS-guided LM	0.66

$$f(\boldsymbol{x}) = \frac{1}{1 + H(\boldsymbol{x})} \quad \mathsf{D} \in (0, 1]$$

$$H(\boldsymbol{x}) = -rac{\sum_{i=1}^{|\boldsymbol{x}|} \log P(x_i|\boldsymbol{x}_{< i})}{|\boldsymbol{x}|} \quad \mathsf{D} \in [0, +\infty)$$

Expectation

- The number of POS tags is less than 50, making pos tag embedding well learned during training
- Model might learn correct collocation of POS tags
- Limitation of this approach:
 - Need pos tagging beforehand
 - Ungrammatical sentence might have wrong pos tagging

Goals

- An idealized grammaticality evaluator should
 - 1. Avoid or alleviate the impact of low frequency word (this is especially important for the text contains a number of low-frequency entity)
 - 2. Grammatical sentence > ungrammatical sentence ? Large room for improvement
 - 3. ungrammatical sentence with 1 grammar errors > ungrammatical sentence with 4 grammar errors

Need category errors

Next

• Testify whether LM is able to detect the grammar errors like

• Subject-Verb