习题

- 1. 计算积分: $\int_{|z-2|=2} \frac{\bar{z}-2}{|\bar{z}-2|} dz$, 曲线沿上半圆周, 逆时针方向.
- 2. 设 C为原点到 1+2i的直线段,估计上界并计算 $\int_C \frac{1}{z-i} dz$.
- 3. 计算积分: $\int_{|z|=1} \frac{z}{(2z+1)(z-2)} dz$ 并判断下述计算是否正确?

曲线 |z|=1 所围区域只包含奇点 z=-1/2. 由Cauchy积分公式

$$\int_{|z|=1} \frac{z}{(2z+1)(z-2)} dz = \int_{|z|=1} \frac{z/(z-2)}{2z+1} dz = 2\pi i \frac{z}{z-2} \Big|_{z=-\frac{1}{2}} = \frac{2\pi i}{5}.$$

- **4.** 计算积分: $\int_{|z|=1} \frac{dz}{z}$, $\int_{|z|=1} \frac{dz}{|z|}$, $\int_{|z|=1} \frac{|dz|}{z}$ 和 $\int_{|z|=1} |\frac{dz}{z}|$.
- 5. 计算积分 $I = \int_{|z|=\rho}^{|z|-1} \frac{\mathrm{d}z}{z^3(z+1)(z+2)}, \quad \sharp \, \mathrm{d}\rho > 0, \rho \neq 1, 2.$

习题

- 6. 计算积分: $\int_{|z|=2} \frac{\sin^2 z}{z^2(z-1)} dz$, 取正方向.
 7. 计算积分: $\int_{|z|=2} \frac{z+1}{(z^2+9)(z-1)} dz$, 取正方向.
 8. 设 $v(x,y) = e^{px} \sin y$, 而 f(z) = u + iv 是解析函数. 试确定p 值
- 并求f(z).
- 9. 设f(z) = u + iv是解析函数, 其中 $v(x,y) = \frac{x}{x^2 + v^2}$ 且 f(z) 在正 实轴上的值是纯虚数。试确定 f(z).
- 10. 利用Cauchy 积分公式和估值不等式证明Liouville 定理:有界 整函数必为常数.