Formulas:

Normal Distribution Function

$$f(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Message Probability $p(m) = \sum_{t \in S} p(m, t)$

Prior Probability
$$p(s) = \sum_{m \in M} p(m, s)$$

Likelihood
$$p(m|s) = \frac{p(m,s)}{p(s)}$$
$$p(m,s) = p(m|s)p(s)$$

Posterior
$$p(s|m) = \frac{p(m,s)}{p(m)}$$

Bayes

$$p(s|m) = \frac{p(m|s)p(s)}{p(m)}$$

or

$$p(s|m) = \frac{p(m|s)p(s)}{\sum_{t \in s} p(m|t)p(t)}$$

Arrow Pratt Absolute Risk Aversion:

$$A(c) = -\frac{u''(c)}{u'(c)}$$

Arrow Pratt Relative Risk Aversion:

$$R(c) = cA(c) = \frac{-cu''(c)}{u'(c)}$$

Poisson Process:

$$p(n|\lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$$
 $\lambda = rate$ $n = number$

Definitions:

Certainty Equivalence:

$$u(c(F,u)) = \int u(x)dF(x)$$

P * U(a) + (1 - P)U(b) = U(c)

1st Order Stochastic Dominance (example):

$$F(s) \ge G(s) \ \forall s$$
 (F and G are CDF's)

2nd Order Stochastic Dominance (example):

$$\int_{-\infty}^{s} F(t)dt \ge \int_{-\infty}^{s} G(t)dt \quad \forall s$$

IFF F is a mean-preserving spread of G.

Gross Value of Information:

$$\sum_{m \in M} p(m) \sum_{s \in S} p(s|m)(w(a^*|m), s) - w(\hat{a}, s)) \ge 0$$

Best Response:

$$s_i \in S_i$$
 is a best response to $s_{-i} \in S_{-i}$ if $u_i(s_i, s_{-i}) \ge u_i(t_i, s_{-i}) \ \forall t_i \in S_i$

Nash Equilibrium:

 $s^* = (s_1^* \dots s_n^*)$ is a Nash Equilibrium if s^* is a Best Response to $s_{-i}^* \ \forall i$