Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра комплексной информационной безопасности электронно-вычислительных систем (КИБЭВС)

Л.П. Серафинович

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОЕКТИРОВАНИЯ, ПРОИЗВОДСТВА И НАДЁЖНОСТИ ЭВС

СТАТИСТИЧЕСКАЯ ОБРАБОТКА ОПЫТНЫХ ДАННЫХ

Методические указания по выполнению курсовой работы для студентов специальности 210202

Корректор: Осипова Е.А.

Серафинович Л.П.

Теоретические основы проектирования, производства и надежности ЭВС. Статистическая обработка опытных данных: методические указания по выполнению курсовой. — Томск: Факультет дистанционного обучения, ТУСУР, 2012. — 111 с.

Обработка массива полученных данных является важным заключительным этапом проведения различного рода экспериментов, испытаний и т.п. В пособии приведен систематизированный порядок статистической обработки опытных данных, который иллюстрируется соответствующими примерами. Рассматривается построение рядов и эмпирических кривых распределения, подбор и расчет некоторых теоретических законов распределения, определение их параметров, а также способы проверки соответствия выбранных законов распределения по критериям согласия.

Пособие имеет целью только практическое применение, в нем отсутствуют теоретические предпосылки и оно не претендует на полноту изложения вопросов обработки опытных данных. Это позволило сделать его компактным и удобным для применения при выполнении курсовых и лабораторных работ.

Пособие предназначено в основном для студентов, но автор надеется, что оно окажется полезным для аспирантов, научных сотрудников и преподавателей.

[©] Серафинович Л.П., 2012

[©] Факультет дистанционного обучения, ТУСУР, 2012

ОГЛАВЛЕНИЕ

Предисловие	5
1 Введение	6
2 Порядок статистической обработки опытных данных	8
3 Формы представления первичных данных	10
4 Исключение грубых ошибок наблюдений	13
5 Построения рядов распределения	18
6 Построение эмпирических кривых распределения	26
7 Определение доверительных границ	30
8 Выбор теоретического закона распределения	33
9 Определение числовых характеристик эмпирического распределения	37
9.1 Вычисление статистик по интервальному ряду распределения	38
9.2 Вычисление статистик по способу «условного нуля»	
(способ произведений) для интервального ряда	
9.3 Применение статистик для выбора закона распределения.	44
9.4 Вычисление доверительных интервалов для числовых характеристик	46
10 Расчет теоретических кривых распределений и оценки	.0
их параметров	51
10.1 Нормальное распределение	
10.1.1 Оценка параметров графическим методом	
10.1.2 Оценка параметров по методу моментов	
10.1.3 Оценка параметров по методу максимального	
правдоподобия	55
10.1.4 Определение доверительных интервалов	56
10.1.5 Расчёт теоретической кривой нормального	
распределения	
10.2 Распределения, отличные от нормального	
10.2.1 Усечённое нормальное распределение	
10.2.2 Логарифмически нормальное распределение	
10.2.3 Распределение Рэлея	67

10.2.4 Некоторые другие распределения, отличные	60
от нормального	09
11 Проверка правильности выбора теоретического закона	7 0
распределения по критериям согласия	
11.1 Критерий Колмогорова	
11.2 Критерий Пирсона(ХИ-квадрат)	
11.3 Критерий Мизеса (омега-квадрат)	77
12 Уточнение достоверности оценок параметров	
распределения	78
13 Определение коэффициента корреляции	78
14 Заключение	80
15 Методические указания по выполнению курсового проекта	
по курсу «Теоретические основы проектирования,	
производства и надежности ЭВС»	80
15.1 Введение	80
15.2 Общие требования к выполнению и оформлению	
курсовой работы	80
15.3 Требования к выполнению и оформлению расчетов	
и таблиц	82
15.4 Требования по выполнению и оформлению	
графического материала	
15.5 Варианты заданий на курсовой проект	84
Литература	98
Приложение 1	. 101
Приложение 2	. 103
Приложение 3	. 104
Приложение 4	. 105
Приложение 5	. 106
Приложение 6	. 107
Приложение 7	. 109
Приложение 8	. 110

ПРЕДИСЛОВИЕ

Широкое внедрение методов математической статистики в теорию и практику конструирования и производства радио- и электронной аппаратуры требует от конструкторов и технологов освоения этих методов и умения их применения. При этом очень важным является выполнение этапа статистической обработки опытных данных, полученных в результате проведения эксперимента, испытаний изделий и наблюдений за технологическими процессами. Такую обработку можно проводить на ЭВМ и без нее. Но прежде чем использовать ЭВМ, необходимо изучить «механизм» статистической обработки, что можно осуществить только при безмашинной обработке опытных данных. Кроме того, при этом часто удается получить необходимые результаты более оперативно. Естественно, что начальную подготовку по статистической обработке опытных данных будущие инженеры должны получить еще при обучении в институте во время выполнения курсовых и лабораторных работ.

Для этой цели предназначается настоящее учебное пособие, которое оказалось необходимым, несмотря на большое количество литературы, посвященной рассматриваемому вопросу. Представляется целесообразным иметь студенту под рукой краткое пособие, в котором порядок обработки был бы четко систематизирован, проанализирован на примерах, приведены различные способы обработки и имелись бы для необходимых случаев ссылки на литературу.

В пособии рассматривается статистическая обработка опытных данных, относящихся, как правило, к классу непрерывных случайных величин, которые можно описать одномерной функцией распределения.

В пособии не рассматриваются вопросы организации и проведения эксперимента, обработки результатов при малом числе опытов и не приводятся таблицы, необходимые при обработке, а даются ссылки на литературные источники с целью обеспечения возможности читателю расширить свой кругозор.

Пособие не претендует на полноту рассмотрения вопросов статистической обработки опытных данных, но во многих практических случаях приведенный объем действий оказывается вполне достаточным.

Предполагается, что читатель знаком с основами теории вероятностей и математической статистики.

1 ВВЕДЕНИЕ

Прежде чем проводить статистическую обработку опытных данных, необходимо уточнить, какова цель обработки. Это позволит установить минимальный объем действий обработчика. Целями статистической обработки опытных данных могут быть: нахождение закона распределения исследуемой случайной величины, определение числовых характеристик распределения, построение рядов распределения и (или) эмпирических кривых распределений, определение степени связи между исследуемыми случайными величинами и т.д. Достижение поставленных целей зависит от объема выборки. Так, числовые характеристики можно определять для любого количества статистических данных, начиная обычно с десяти. Но для определения закона распределения выборка должна содержать не менее 50 измерений и чем больше, тем лучше. Но в любом случае выборка должна быть случайной, а исследуемая совокупность однородной. Кроме того, должно быть известно, что для наблюдений случайной величины применялись средства измерения с ценой деления, не превышающей 1/5 предполагаемой величины среднего квадратического отклонения исследуемого распределения [1].

При обработке данных эксперимента следует всегда стараться проверить условия применимости (например, нормальности или независимости) статистических процедур. Если это не представляется возможным, то тогда к полученным результатам должно быть осторожное, условное отношение, что, к сожалению, не всегда имеет место.

Статистическая обработка опытных данных рассматривается на ряде примеров. В качестве основного примера взят несколько видоизмененный пример, приведенный в [2].

Необходимо, наконец, отметить, что при пользовании указанной в ссылках литературой следует разобраться, что понимается под тем или иным термином (определением) и какая величина обозначена данной буквой или индексом. Так, одно и то же значение вероятности в таблицах одних источников обозначается через \mathbf{P} , а в других это значение соответствует разности $\mathbf{1} - \mathbf{P}$. Аналогично, при определении доверительных интервалов одно и

то же значение критерия t_{α} в одних таблицах соответствует уровню значимости α , а в других $1-\alpha$.

В заключение отметим, что приведенный классический метод обработки данных имеет три основных недостатка:

- потеря информации при группировке данных;
- неоднозначность выбора теоретической функции распределения;
 - неопределенность при проверке гипотез.

2 ПОРЯДОК СТАТИСТИЧЕСКОЙ ОБРАБОТКИ ОПЫТНЫХ ДАННЫХ

При статистической обработке используются графический и аналитический методы отдельно или в совокупности. Графический метод состоит в определении закона распределения и некоторых его параметров с помощью вероятностных (координатных) сеток (вероятностных бумаг). Аналитический метод состоит в вычислении теоретической кривой распределения и ее параметров.

Порядок обработки зависит от выбранного метода. Графический метод обработки содержит следующие этапы:

- построение дискретного ряда распределения;
- определение закона распределения по вероятностной бумаге (сетке);
- проверка соответствия эмпирического распределения теоретическому по критериям согласия;
- определение параметров распределения по вероятностной бумаге (сетке).

В необходимых случаях при этом методе обработки могут быть построены интервальный ряд и эмпирические кривые распределения, определены доверительные границы и интервалы.

Аналитический метод обработки содержит следующие этапы:

- построение интервального ряда и эмпирических кривых распределения;
- определение числовых характеристик (статистик) эмпирического распределения;
- приближенное определение доверительных границ и интервалов;
 - выбор теоретического распределения;
- определение оценок параметров теоретического распределения;
- расчет теоретических кривых распределения (дифференциальной и интегральной), проверка согласия;
 - уточнение доверительных интервалов.

В процессе обработки могут выполняться также следующие этапы:

- исключение грубых ошибок наблюдений;
- проверка однородности выборок;

– определение коэффициента корреляции и т.п.

Таким образом, в общем случае можно рекомендовать следующий порядок обработки:

- исключение грубых ошибок наблюдений;
- построение ряда (рядов) распределения;
- построение эмпирических кривых распределения;
- определение доверительных границ;
- выбор теоретического распределения;
- проверка правильности выбора теоретического распределения с помощью вероятностных бумаг (сеток) и критериев согласия;
- определение числовых характеристик (статистик) эмпирического распределения;
- приближенное определение доверительных интервалов для оценок параметров распределения;
- определение оценок параметров теоретического распределения;
 - расчет теоретических кривых распределения;
- проверка правильности выбора теоретического распределения с помощью критериев согласия;
 - уточнение доверительных интервалов;
 - определение коэффициента корреляции.

В зависимости от цели обработки и выбранного метода выполняются только необходимые этапы приведенного порядка обработки.

Для исключения ошибок и удобства вычислений обработка опытных данных проводится путем обязательного заполнения соответствующих таблиц на всех расчетных этапах.

3 ФОРМЫ ПРЕДСТАВЛЕНИЯ ПЕРВИЧНЫХ ДАННЫХ

Первичные данные, полученные в результате проведения наблюдений, опытов, испытаний и т.д., могут быть представлены в виде простого статистического ряда или в виде вариационного ряда.

Простой статистический ряд представляет собой совокупность (ряд) значений признака (наблюдаемой случайной величины), расположенных в порядке их получения. Обычно это рабочая таблица, в которую заносятся опытные данные (табл.1). Приведенная таблица содержит выборку, полученную при наблюдениях за какой-то случайной величиной.

Таблица 1

NoNo	Пара-								
	метр								
1	850	41	820	81	845	121	820	161	840
2	825	42	835	82	865	122	820	162	815
3	830	43	815	83	870	123	825	163	820
4	825	44	835	84	855	124	820	164	835
5	830	45	840	85	845	125	815	165	840
6	860	46	825	86	825	126	850	166	850
7	855	47	825	87	815	127	850	167	865
8	840	48	845	88	835	128	825	168	870
9	845	49	830	89	850	129	820	169	835
10	830	50	830	90	800	130	835	170	850
11	840	51	835	91	810	131	855	171	845
12	845	52	830	92	835	132	840	172	825
13	835	53	840	93	825	133	835	173	850
14	855	54	840	94	830	134	860	174	845
15	820	55	830	95	835	135	840	175	830
16	850	56	825	96	845	136	840	176	820
17	845	57	805	97	840	137	820	177	810
18	860	58	810	98	810	138	835	178	860
19	840	59	830	99	805	139	835	179	870
20	850	60	855	100	815	140	805	180	835
21	860	61	835	101	840	141	810	181	840
22	805	62	850	102	855	142	845	182	825
23	865	63	845	103	850	143	820	183	850

Продолжение табл. 1

No No	Пара-	NoNo	Пара-	$N_{\underline{0}}N_{\underline{0}}$	Пара-	$N_{0}N_{0}$	Пара-	NoNo	Пара-
11212	метр	312312	метр	21212	метр	21212	метр	215215	метр
24	845	64	830	104	840	144	830	184	865
25	830	65	830	105	830	145	855	185	870
26	825	66	855	106	835	146	845	186	815
27	820	67	845	107	850	147	820	187	815
28	860	68	845	108	825	148	830	188	830
29	855	69	855	109	815	149	855	189	830
30	855	70	835	110	825	150	835	190	840
31	865	71	835	111	810	151	835	191	845
32	870	72	840	112	800	152	845	192	860
33	845	73	840	113	835	153	805	193	850
34	830	74	820	114	850	154	825	194	820
35	870	75	840	115	855	155	830	195	870
36	850	76	830	116	840	156	820	196	840
37	840	77	855	117	850	157	830	197	835
38	845	78	860	118	845	158	830	198	830
39	855	79	835	119	820	159	825	199	840
40	865	80	820	120	840	160	820	200	850

Вариационный ряд — это ряд данных, расположенных в порядке возрастания варьирующего признака. При этом одинаковые значения признака не исключаются, а записываются друг за другом. Вариационный ряд может быть представлен в виде таблицы

No	1	2	3	4	5	•••	197	198	199	200
Пара- метр	800	800	805	805	805	•••	870	870	870	870

или построчной записи

Приведенный вариационный ряд получен путем обработки данных табл.1. Однако в большинстве случаев первичные данные

представляются в виде простого статистического ряда и обычно не имеет смысла строить по ним вариационный ряд.

При проведении некоторых видов испытаний регистрируемые первичные данные сразу образуют вариационный ряд. Например, такая запись имеет место в случае испытаний на надежность, когда регистрируются времена исправной работы изделий в партии. Это время записывается в порядке его возрастания, причем одинаковые значения времен работы нескольких изделий повторяются друг за другом.

4 ИСКЛЮЧЕНИЕ ГРУБЫХ ОШИБОК НАБЛЮДЕНИЙ

Для исключения грубых ошибок наблюдений, искажающих статистические характеристики распределения, необходимо провести оценку резко выделяющихся членов выборки. Для этого используются различные методы. Конечно, прежде всего следует быть уверенным, что резко выделяющиеся члены выборки не являются результатом ошибки, нарушения условий эксперимента. Если такой уверенности нет, то грубые ошибки сразу следует исключить из дальнейшего анализа.

Разработанные методы для оценки резко выделяющихся членов выборки применимы, если известно распределение, которому подчиняются наблюдаемые случайные величины. Их применение при других распределениях может привести к серьезным ошибкам [3]. Это часто не указывается в литературе, где приводятся такие методы. Большинство методов разработано для случаев, когда исследуемые величины подчиняются нормальному распределению. Эти методы (часто они носят название критериев), как правило, требуют предварительного вычисления среднего значения и среднего квадратического отклонения исследуемой величины. Во всех методах рассчитываемая величина сравнивается с критическим значением этой величины, найденным из соответствующих таблиц при выбранном проценте риска. После чего принимается решение о том, является ли резко выделяющееся значение случайной величины грубой ошибкой и его следует отбросить или оно не подлежит исключению из выборки.

Рассмотрим методы (критерии), которые применяются при нормальном распределении исследуемой случайной величины. В литературе приводятся следующие методы (критерии): критерий, основанный на теореме Р. Фишера [4], критерий типа г [4], упрощенные критерии [4], метод Грэббса [5], метод Романовского [5], метод исключения при известной σ [6], оценка анормальности результатов измерений при известной генеральной дисперсии [3], метод исключения при неизвестной σ [6], оценка анормальности результатов измерений при неизвестной генеральной дисперсии [3]. Следует отметить, что в [5] и [6] не указано, что перечисленные методы применимы только при нормальном распределении.

Критерий, основанный на теореме Фишера [4], приведен в одной из работ В.Н.Романовского. В нем рассматривается неравенство:

$$\left|x_{i}^{\prime}-\overline{x}_{n-1}\right|\geq S_{n-1}^{\prime}t_{\alpha}\sqrt{\frac{n+1}{n(n-1)}}$$
,

где n — число членов выборки;

 χ'_{i} — резко выделяющийся член выборки;

$$\overline{x}_{n-1} = \frac{1}{n-1} \sum_{i=1}^{n-1} x_i$$
 — среднее значение исследуемой величи-

ны, подсчитанное при исключенном резко выделяющемся члене выборки χ_i' ;

$$S'_{n-1} = \sqrt{\sum_{i=1}^{n-1} (x_i - \overline{x}_{n-1})^2}$$
.

Если преобразовать неравенство к виду:

$$t_{\alpha} \leq \frac{\left|\chi'_{i} - \overline{\chi}_{n-1}\right|}{S_{n-1}\sqrt{\frac{n+1}{n}}},$$

то оно напоминает метод Романовского [5], при котором оценивается:

$$t_{\beta} = \frac{\left|\chi'_{i} - \overline{\chi}_{n-1}\right|}{S_{n-1}},$$

где $S_{n-1} = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n-1}(\chi_i - \frac{1}{\chi_{n-1}})^2}$ — среднее квадратическое отклонение,

подсчитанное при исключенном резко выделяющемся члене выборки x_i' .

В рассмотренных двух методах не приходится пересчитывать среднее значение \overline{x} и среднее квадратическое отклонение S исследуемой случайной величины после исключения резко выделяющегося члена выборки. Но если его исключить не удается, то следует при дальнейшей обработке пересчитать \overline{x} и S с учетом значения x_i' .

Во всех остальных методах (кроме упрощенных критериев) приходится после исключения грубой ошибки снова определять значения \overline{x} и S .

Критерий типа r [4] определяет величину:

$$r = \frac{\left|x_{i}' - \overline{x}\right|}{S\sqrt{\frac{n-1}{n}}},$$
 где $x = \frac{1}{n}\sum_{i=1}^{n}\chi_{i}$ и $S = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(\chi_{i}-x)^{2}}.$

Если преобразовать знаменатель этого критерия, то мы получим:

$$r = \frac{\left|x_i' - \overline{x}\right|}{S_n},$$

ГДе
$$S_n = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\chi_i - \overline{\chi})^2}$$
.

Полученное выражение совпадает с методом Грэббса [5]:

$$t_K = \frac{\left|x_i' - \overline{x}\right|}{S_n}.$$

В методе исключения грубой ошибки при известной σ [6] определяется величина:

$$t = \frac{\left|x_i' - \overline{x}\right|}{\sigma\sqrt{\frac{n+1}{n}}},$$

а в методе оценки анормальности результатов измерений при известной генеральной дисперсии [3] определяется величина:

$$Z = \frac{x_i' - \overline{x}}{\sigma}.$$

В методе исключения грубых ошибок при неизвестной σ [6] определяется величина:

$$t = \frac{\left|x_i' - \overline{x}\right|}{S},$$

то есть та же, что и в методе оценки анормальности результатов измерений при неизвестной генеральной дисперсии [3].

Таким образом, последний метод отличается от критерия типа r и метода Грэббса только способом определения среднего квадратического отклонения (несмещенная оценка).

Метод упрощенных критериев [4] предполагает определение отношения отклонения экстремального члена выборки к ее размаху. Определяются величины:

$$r' = \frac{x_2 - x_1}{x_n - x_1}$$
 и $r'' = \frac{x_n - x_{n-1}}{x_n - x_1}$,

поскольку экстремальные члены могут лежать слева и (или) справа от основной части выборки. Как указано выше, в этом методе не приходится определять \overline{x} и S, что значительно уменьшает объем вычислительной работы.

Для случая оценки резко выделяющегося члена выборки при справедливости показательного распределения используется критерий Р. Фишера [4].

Таблицы для сравнения полученных критериев с их критическими значениями приведены в указанной в тексте литературе. А для метода Грэббса можно использовать [8].

Существует также критерий Ирвина [4, 5], о котором не указывается, что он применим при определенном распределении. Метод или критерий Ирвина основан на оценке разности двух наибольших или наименьших членов выборки. Определяется величина λ , равная:

$$\lambda = \frac{X_2 - X_1}{S}$$
 или $\lambda = \frac{X_n - X_{n-1}}{S}$,

в зависимости от того, с какой стороны выборки расположен резко выделяющийся член выборки. По приведенной таблице (или таблице [7]) в зависимости от объема выборки п при уровне значимости $\alpha=0.95$ находят критическое значение $\lambda_{0.95}$.

n	20	30	50	100	400	1000
$\lambda_{0,95}$	1,3	1,2	1,1	1,0	0,9	0,8

Если оказывается, что рассчитанная $\lambda \leq \lambda_{0,95}$, то оцениваемый результат является случайным и не подлежит исключению из выборки. Если $\lambda > \lambda_{0.95}$, то следует исключить из выборки

оцениваемое резко выделяющееся наименьшее или наибольшее значение случайной величины (или оба вместе), так как оно представляет собой грубую ошибку. После исключения ошибки необходимо снова вычислить значения \overline{x} и S.

5 ПОСТРОЕНИЕ РЯДОВ РАСПРЕДЕЛЕНИЯ

Рядом распределения называется совокупность значений признака вместе с соответствующими им частотами или частостями. Ряд распределения записывается в виде таблицы, в которой в определенном порядке перечислены возможные значения случайной величины (признака) и соответствующие им частоты (или) и частости. Иногда такие ряды называют статистическими.

В ряде распределения возможные значения случайной величины могут быть представлены или в виде дискретных значений или в виде интервалов (разрядов). Они образуют соответственно дискретный и интервальный ряды (сгруппированный и интервальный статистические ряды [10]).

Выбор того или иного ряда определяется выбранным методом для нахождения закона распределения и его числовых характеристик и применяемым критерием согласия.

Построение ряда распределения представляет собой первичную обработку статистических данных. Он строится по частотам или частостям (статистическим вероятностям) на основе простого статистического (табл. 2) или вариационного рядов. В табл. 2 приведен пример построения дискретного ряда. В такой ряд записываются те значения параметра, которые получаются при измерениях, и подсчитывается их количество (частоты). По частотам могут быть вычислены частости p_i .

Таблица 2

Параметры	Подсчет отдельных значе- ний	Частоты n_i	Частости $p_i = \frac{n_i}{n}$
800		2	0,010
805		5	0,025
810	!	6	0,030
		•	•
•		•	•
•		•	•
870		7	0,035
	Контроль Σ =	200	1,000

Дискретный ряд распределения используется при применении графического метода и критериев согласия Колмогорова и Мизеса (ω^2). В других случаях, особенно при большом числе исходных статистических данных, удобнее использовать интервальный ряд распределения.

При построении интервального ряда наибольшую трудность составляет выбор количества интервалов, которое определяет ширину интервала. Количество интервалов оказывает влияние на форму эмпирической кривой распределения, которая представляется графически, на объем вычислительных работ, на показатели асимметрии и эксцесса, на выбор теоретического закона распределения, который описывает исследуемую совокупность случайных величин, а также на результат оценки согласия по критериям Колмогорова и Пирсона [12]. Это объясняется тем, что при большом числе интервалов эмпирическая кривая может оказаться многовершинной, иметь нехарактерные для нее случайные колебания, так как при малой ширине интервалов в него попадает мало данных. Наоборот, при малом числе интервалов могут быть потеряны характерные особенности распределения. Следовательно, количество интервалов надо выбирать таким, чтобы оно способствовало выявлению основных черт распределения и сглаживанию случайных колебаний. При этом все интервалы могут иметь одинаковую (равноширотные интервалы) или разную ширину (разноширотные интервалы). Интервалы разной ширины используются в том случае, когда имеет место крайне неравномерное распределение случайных величин. Тогда в области наибольшей плотности распределения берутся интервалы более узкие, чем в области малой плотности. Часто более широкие интервалы приходится брать на краях распределения, так как требуется, чтобы количество частот в интервале было не менее пяти. Но трудности в расчете характеристик, которые при этом возникают, приводят к тому, что обычно берутся интервалы одинаковой ширины (равноширотные интервалы). При выборе числа интервалов необходимо иметь в виду, что ширина интервала должна быть не менее чем в два раза больше погрешности измерения параметра.

В работах [36, 37] показано, что группировка данных в общем случае приводит к потере информации. В [36] установлено,

что для каждого закона распределения существует оптимальное число интервалов гистограммы, при котором вид гистограммы оказывается наиболее близким к действительному виду кривой плотности распределения. Но поскольку, приступая к обработке опытных данных, мы, как правило, не знаем закона распределения исследуемой величины, то для выбора количества интервалов приходится пользоваться нижеприведенными рекомендациями, которые весьма различны.

Так, в [2] указывается, что довольно часто число интервалов берут равным 7, 9 или 11 в зависимости от числа наблюдений и точности измерений. В [9] рекомендуется число интервалов принимать равным 12 с отклонением от него на 2—3 единицы в ту или иную стороны, т.е. от 9 до 15. В [10] указывается, что количество интервалов берут произвольно, обычно не меньше 5 и не более 15. В [11] рекомендуется брать число интервалов от 10 до 20 при количестве наблюдений порядка 200—300. Таким образом, количество интервалов выбирается в пределах от 5 до 20. Естественно, что чем больше данных наблюдений, тем больше можно брать интервалов. Оптимальное количество интервалов выбирается по правилу Старджесса:

$$l = 1 + 3.3 \lg n,$$

где n — количество наблюдений (объем выборки).

Но в [5] указывается, что такое количество интервалов берется только при объеме выборки $n \le 100$. А при объеме выборки n > 100 следует количество интервалов определять по формуле:

$$l = 5 \lg n$$
.

Можно пользоваться для выборки количества интервалов следующей таблицей, приведенной в [5]:

n	25 40	40 60	60 100	100	100 160	100 250	250 400	400 630	630 1000
l	6	7	8	10	11	12	13	14	15

Однако в стандартах требуется, чтобы количество интервалов выбиралось в следующих рекомендованных пределах:

n	50100	200	400	1000
l	1020	1820	2530	3540

Следует отметить, что это предварительный выбор количества интервалов, который в дальнейшем иногда подлежит уточнению при построении эмпирической кривой распределения для устранения зигзагообразности, провалов и т.п.

После выбора количества интервалов определяют ширину интервала h путем деления размаха варьирования R, равного разности между наибольшим и наименьшим значениями признака, на количество интервалов:

$$h = \frac{R}{I} = \frac{\chi_{\text{HAU}} - \chi_{\text{HAUM}}}{I}.$$

Полученное число округляется до ближайшего из предпочтительного ряда. Рекомендуется выбирать значения h равными 1, 2, 3, 5, 7, 10, 15 или числу, кратному 5 [5]. Там же рекомендуется выбирать h примерно в два раза больше, чем цена деления измерительного прибора, что не всегда возможно, так как при этом уменьшается количество интервалов. Но в любом случае ширина интервала не должна быть меньше цены деления измерительного прибора [2]. Для ширины интервала нужно всегда выбирать удобное число и не записывать ее с «дикой» точностью, благодаря большому числу разрядов, например в калькуляторах, применяемых при расчетах.

И еще некоторые рекомендации для построения интервального ряда распределения. Границы интервалов не должны совпадать с измеренными значениями [2]. Если это получилось, то следует расширить размах варьирования за счет некоторого смещения его нижнего предела влево, а его верхнего предела — вправо. Например, если ширина интервала равна цене деления измерительного прибора, то следует величину смещения взять равной половине ширины интервала. Тогда все данные будут располагаться в серединах интервалов. Если при смещении крайних границ не удается избежать совпадения измеренных значений с границами промежуточных интервалов, то в таких случаях следует условиться, к какому из интервалов, левому или правому, отнести эти значения. Довольно часто рекомендуется значения, сов-

падающие с границами интервалов, делить пополам, т.е. половину таких значений относить к левому интервалу, а половину — к правому. Чтобы не иметь дело с дробями при нечетном количестве значений, совпадающих с границей интервалов, следует условиться, к какому интервалу, левому или правому, будет отнесено лишнее значение. Можно в этом случае также все количество значений умножить на два. Это не внесет ошибки, так как вероятность попасть в каждый из интервалов не изменится. Следует заметить, что от способа распределения значений, совпадающих с промежуточными границами, по интервалам несколько зависят результаты расчетов.

Рассмотрим на примере наиболее часто используемый способ построения интервального ряда распределения по крайним значениям признака. Обычно используется следующий порядок построения.

1. По табл.1 или вариационному ряду находим наибольшее и наименьшее значения параметра:

$$x_{\text{наиб}} = 870, \quad x_{\text{наим}} = 800.$$

2. Определяем размах варьирования:

$$R = x_{\text{наиб}} - x_{\text{наим}} = 870 - 800 = 70.$$

3. Выбираем число интервалов l'.

В нашем случае удобно выбрать l' = 7.

4. Определяем ширину интервала:

$$h = \frac{R}{l'} = \frac{70}{7} = 10$$
.

5. Чтобы крайние границы размаха варьирования не совпадали с измеренными значениями, отступаем на половину ширины интервала влево и вправо соответственно от верхнего и нижнего пределов варьирования. Получаем новые границы.

$$x'_{\text{наим}} = x_{\text{наим}} - 0.5h = 800 - 0.5 \cdot 10 = 795;$$

 $x'_{\text{наиб}} = x_{\text{наиб}} + 0.5h = 870 + 0.5 \cdot 10 = 875.$

При этом границы первого интервала будут 795 и 805, второго — 805 и 815 и т.д. Теперь интервалов стало l=8. По правилу Старджесса:

$$l = 1 + 3.3 \lg 200 = 8.6$$
.

Как видно из табл.1, нам не удалось избежать совпадения измеренных значений с промежуточными границами интервалов. Поэтому условимся относить те значения, которые попадают на границы интервалов, к левому интервалу.

Пример построения интервального ряда распределения приведен в табл. 3.

Таблица 3

Интер- валы <i>l</i>	Границы интер- валов (разрядов)	Подсчет отдельных значений	Частоты n_i	Частости $p_i = \frac{n_i}{n}$
1	795—805	///!//	7	0,035
2	805—815	///!///!///	14	0,070
3	815—825		34	0,170
4	825—835		47	0,235
5	835—845		44	0,220
6	845—855		33	0,165
7	855—865		14	0,070
8	865—875		7	0,035
	Контроль	$\sum_{i=1}^{l}$	200	1,000

В графе «Подсчет отдельных значений» приведены три способа подсчета количества значений, попадающих в тот или иной интервал. Эти значки в интервалах ставятся при последовательной обработке табл.1. Каждый значок (точка или линия в любом положении) соответствует одному значению из табл. 1.

Если значения, совпадающие с границами интервалов, делятся на два интервала, то, чтобы не ошибиться, рекомендуется эти значения при обработке табл. 1 последовательно записывать во вспомогательную таблицу, одновременно регистрируя их в соответствующем интервале табл. 3.

Вспомогательная таблица

Левый	825	855	845	835	845	805	865	825	855	и т.д.
интервал	823	033	0 1 2	055	0+3	003	005	023	055	и 1.д.
Правый	825	955	845		845				855	итп
интервал	823	833	043		043				833	и т.д.

Во вспомогательной таблице для примера приведена обработка первых 30 значений табл.1.

Когда возникают трудности в построении рядов распределения для выявления закономерностей из-за значительных ошибок измерения (кривые распределения получаются с значительными провалами или гребенчатые), то можно использовать способ построения ряда распределения по среднему квадратическому отклонению [2].

Для этого определяют эмпирическое значение среднего квадратического отклонения S по дискретному или первичному интервальному ряду распределения. Затем от наименьшего значения признака отнимают половину S. Это будет новое начало ряда распределения. Все интервалы имеют ширину h = S. Таким образом, левая граница 1-го интервала равна $x_{\text{наим}} - 0.5S$, правая граница 1-го интервала равна $(x_{\text{наим}} - 0.5S) + S$, правая граница 2-го интервала будет $[(x_{\text{наим}} - 0.5S) + S] + S$ и т.д. При h = S может получиться мало интервалов, тогда следует брать ширину интервала 0.5S или 0.25S. Это требуется при проведении более точных исследований.

В случае крайне неравномерно распределенных по размаху варьирования экспериментальных данных, когда в отдельные интервалы попадает весьма малое количество частот (менее 5), удобно использовать метод равночастотных интервалов [13].

Этот метод основан на условии соблюдении равной частоты (равной вероятности) попадания значений признака в любой из l интервалов, т.е.

$$n = const = m$$
 и $n_i/n = \frac{m}{n} = const.$

При этом интервалы получаются разной длины.

На основании объема выборки принимается решение о количестве интервалов (в тех же пределах, что и ранее, т.е. от 6 до 20) и числе значений признака m в интервале исходя из условий:

$$m \ge 5 = const$$
; $ml = n$.

Ширина каждого интервала выбирается по следующему правилу.

Для первого интервала:

$$h_1 = x_{\text{\tiny MUH}} \cdots \frac{x_m + x_{m+1}}{2} \cdot$$

Для второго интервала:

$$h_2 = \frac{x_m + x_{m+1}}{2} \cdots \frac{x_{2m} + x_{2m+1}}{2}$$
.

Для і-го интервала:

$$h_i = \frac{X_{(i-1)m} + X_{(i-1)(m+1)}}{2} \cdots \frac{X_{im} + X_{i(m+1)}}{2}$$

Для последнего l-го интервала:

$$h_l = \frac{X_{(l-1)m} + X_{(l-1)(m+1)}}{2} \cdots X_{lm} = X_{MAKC}.$$

В приведенных выражениях обозначение x_{im} определяет значение i^*m -го признака.

Например, выбрано m=12=const, i=5, тогда $x_{im}=x_{60}$, т.е. 60-десятое значение признака. Следует заметить, что при этом значения признака должны быть расположены в возрастающем порядке, т.е. должен быть построен вариационный ряд (а иногда и дискретный ряд распределения). Если в вариационном ряде имеется по несколько одинаковых значений признака, то m надо выбирать так, чтобы все эти одинаковые значения попадали в один интервал, а общее количество значений признака в интервале оставалось неизменным, т.е. частота не превышала выбранное $n_i = m = const$. Это удобнее делать по дискретному ряду распределения.

В тех случаях, когда $l \cdot m \neq n$, принимается $l \cdot m < n$ так, что $n - l \cdot m = mun$. Разность $n - l \cdot m$ включается в один или два интервала с наибольшей плотностью распределения случайной величины (в интервалы, имеющие меньшую длину).

Отметим, что при использовании приведенного метода гистограмма должна строиться по плотностям распределения частот m/h_i или частостей $m/n \cdot h_i$.

К достоинствам изложенного метода равночастотных интервалов относится то, что он позволяет рациональным образом группировать данные при выборках небольшого объема.

6 ПОСТРОЕНИЕ ЭМПИРИЧЕСКИХ КРИВЫХ РАСПРЕДЕЛЕНИЯ

Ряды распределения представляют также в виде эмпирических кривых, которые строятся для наглядности и качественной оценки распределения. Используются следующие виды эмпирических кривых: полигон, гистограмма и кумулятивные кривые (ступенчатая и ломаная). Полигон и гистограмма соответствуют изображению дифференциальной функции распределения, а кумулятивные кривые — интегральной.

Как правило, для случайных величин дискретного типа употребляются полигон и ступенчатая кумулятивная кривая, а для непрерывных случайных величин — гистограмма и ломаная кумулятивная кривая. Но часто в литературе встречается применение всех четырех типов кривых для непрерывных случайных величин, что, по видимому, нельзя считать вполне обоснованным [2]. Разница между полигоном и гистограммой состоит в следующем. Полигон показывает, что все случайные величины (вариации), попавшие в один и тот же интервал, имеют одинаковое значение признака (это несправедливо для непрерывных случайных величин), равное численно середине интервала, поэтому и кумулятивная кривая имеет разрывы непрерывности. А гистограмма показывает, что все случайные величины, попавшие в один и тот же интервал, равномерно распределяются по интервалу, поэтому кумулятивная кривая имеет рост в интервале. Полигон и гистограмма строятся при равных интервалах по частотам или частостям, а при неравных интервалах — по плотностям распределения частот или частостей. Кумулятивные кривые строятся по накопленным частотам или частостям.

Для построения эмпирических кривых необходимо вначале построить интервальный ряд распределения по правилам, указанным в предыдущем разделе. Здесь следует отметить, что кумулятивная кривая гораздо меньше чувствительна к изменениям размера интервала (количества интервалов), чем полигон или гистограмма. Эмпирические кривые (кроме гистограммы) могут быть построены также по дискретному ряду распределения.

При построении кривых распределения рекомендуется пользоваться «правилом золотого сечения», по которому высота чертежа должна составлять 5/8 основания.

Рассмотрим, как строятся все графики на примере выборки, приведенной в табл.1, хотя это выборка непрерывных случайных величин. Интервальный ряд приведен в табл. 4, а кривые — на рис.1—4. При построении всех эмпирических кривых на оси абсцисс откладываются интервалы шириной h при равных интервалах и h_i при неравных интервалах. Для построения полигона в серединах интервалов строятся ординаты, пропорциональные частотам или частостям при равных интервалах или пропорциональные плотностям частот или частостей при неравных интервалах. Концы ординат соединяются отрезками прямой (рис.1). Для построения гистограммы (рис.3) нужно на каждом из интервалов как на основании построить прямоугольники. Площадь каждого прямоугольника должна быть пропорциональна частоте или частости в соответствующем интервале. Для этого по оси ординат откладывают плотности распределения частот или частостей. Общая площадь гистограммы для случая, когда по оси ординат откладывают относительную плотность распределения p_{i}/h_{i} , должна быть равна единице, поскольку площадь должна совпадать с суммой частостей. Если же на гистограмме изображена абсолютная плотность распределения n_i/h_i , то площади прямоугольников соответствуют частотам интервалов, а площадь всей гистограммы — общему числу случаев (объему выборки). По оси ординат также можно откладывать частоты или частости в случае равных интервалов, при этом изменится только масштаб по оси ординат. Ступенчатая кумулятивная кривая получается путем проведения горизонтальных отрезков прямой между ординатами, построенными в серединах соседних интервалов, и пропорциональных накопленным частотам или частостям в соответствующих интервалах. Концы отрезков прямых соединяются вертикальными прямыми (рис. 2).

Ломаная кумулятивная кривая строится следующим образом. На правых границах интервалов восстанавливаются ординаты, пропорциональные накопленным частотам или частостям. На левой границе первого интервала ордината равна нулю, а на правой границе последнего интервала — единице, если кумулятивная кривая строится по накопленным частостям (рис. 4).

Таблица 4

Ин- тер- валы <i>l</i>	Грани- цы ин- терва- лов, a-b	Пред- стави- тели интер- валов, x_i	Час- тоты, n_i	Часто- сти, $p_i = \frac{n_i}{n}$	Нако- плен- ные часто- ты, <i>H</i> _i	Накоп лен- ные часто- сти, p_H	Плотно- сти рас- пределе- ния час- тот, $\binom{n_i}{h_i}$	Плотности распределения частостей, p_i / h_i
1	795— 805	800	7	0,035	7	0,035	0,70	0,0035
2	805— 815	810	14	0,070	21	0,105	1,40	0,0070
3	815— 825	820	34	0,170	55	0,275	3,40	0,0170
4	825— 835	830	47	0,235	102	0,510	4,70	0,0235
5	835— 845	840	44	0,220	146	0,730	4,40	0,0220
6	845— 855	850	33	0,165	179	0,895	3,30	0,0165
7	855— 865	860	14	0,070	193	0,965	1,40	0,0070
8	865— 875	870	7	0,035	200	1,000	0,70	0,0035
	Кон- троль	$\sum_{i=1}^{l}$	200	1,000			20,00	0,1000

Рисунок 3

Рисунок 4

7 ОПРЕДЕЛЕНИЕ ДОВЕРИТЕЛЬНЫХ ГРАНИЦ

Доверительные границы определяют область, в которой с достаточно большой степенью вероятности находится неизвестная теоретическая функция распределения $F_T(x)$. Определим для нее верхнюю $F_B(x)$ и нижнюю $F_H(x)$ доверительные границы через известную из опыта эмпирическую функцию распределения $F_{\Im}(x)$, представленную в ряде распределения накопленными частостями — P_H .

Доверительная вероятность того, что неизвестная теоретическая функция распределения будет лежать в области, ограниченной доверительными границами, определяется выражением:

$$P_{\partial} = sep. \Big[F_{\ni}(x) - D_{n}^{\circ} \le F_{T}(x) \le F_{\ni}(x) + D_{n}^{\circ} \Big],$$

где D_n^0 — некоторая величина, удовлетворяющая уравнению:

$$P_{\partial} = sep(D_n < D_n^{\circ}),$$

т.е. наибольшее отклонение D_n теоретической кривой от экспериментальной не превышает значения D_n^0 , установленной для доверительной вероятности P_{∂} .

Таким образом, доверительные границы определяются выражениями:

- верхняя

$$F_{R}(x) = F_{R}(x) + D_{R}^{\circ};$$

- НИЖНЯЯ

$$F_H(x) = F_{\ni}(x) - D_n^{\circ}$$

Всегда численные значения для $F_H(x) \ge 0$ и для $F_B(x) \le 1$.

Для определения доверительных границ задаются значением доверительной вероятности $\boldsymbol{P}_{\boldsymbol{\partial}}$ и по таблицам критерия Колмогорова (см. Приложение 1) определяют \boldsymbol{D}_n° или $\boldsymbol{\chi}_n^*$. Связь между ними устанавливается формулой:

$$\lambda_n^* = D_n^\circ \sqrt{n}.$$

Значения D_n° для $P_\partial=\alpha=0.80\div0.99$ и n=10...100 можно найти в [15]. Для n>100 в [15] даны значения χ_n^* , по которым определяются D_n° . В [1] для $P_\partial=\gamma=0.01\div0.99$ приведены значения χ_n^* при n>100.

Для нашего примера при n=200 зададимся $\boldsymbol{P}_{o}\!=\!0,\!90.$ Находим в таблицах $\boldsymbol{\chi}_{n}^{*}\!=\!1,\!22.$

Тогда:

$$D_n^{\circ} = \frac{\lambda_n^*}{\sqrt{n}} = \frac{1,22}{\sqrt{200}} = 0,087$$
.

Расчеты $F_B(x)$ и $F_H(x)$ сведены в табл. 5. Значения $F_B(x) = P_H$ взяты из табл. 4.

Таблица 5

Интерва-	Границы интер-	$F_{\Im}(x) = P_H$	$F_{H}(x)$	$F_{\scriptscriptstyle R}(x)$
лы l	валов, $a-b$	$1_{\mathfrak{I}}(x) - 1_{H}$	$\Gamma_H(x)$	$\Gamma_B(X)$
1	795—805	0,035	0	0,122
2	805—815	0,105	0,013	0,192
3	815—825	0,275	0,188	0,362
4	825—835	0,510	0,423	0,597
5	835—845	0,730	0,643	0,817
6	845—855	0,895	0,808	0,982
7	855—865	0,965	0,878	1,000
8	865—875	1,000	0,918	1,000

Доверительные границы для неизвестной теоретической функции распределения построены на рис. 5.

8 ВЫБОР ТЕОРЕТИЧЕСКОГО ЗАКОНА РАСПРЕДЕЛЕНИЯ

Одной из главных задач статистической обработки опытных данных является подбор теоретического закона распределения для исследуемой случайной величины. Эту задачу редко удается осуществить с первой попытки и, как правило, приходится перебрать несколько законов распределения, прежде чем удастся отыскать тот, который имеет хорошее согласие с эмпирическим распределением. Это объясняется тем, что нет обоснованных правил выбора теоретического закона распределения. Предварительный выбор теоретического закона распределения может производиться:

- на основании данных о механизме образования случайной величины или физического анализа задачи;
- путем качественного анализа распределения частот или частостей в ряде распределения;
- путем качественного анализа вида гистограммы или полигона;
 - графическим способом (с помощью вероятностных бумаг);
 - по величине эмпирического коэффициента вариации;
 - по коэффициентам асимметрии и эксцесса.

Первый способ применяется в том случае, если заранее известен механизм образования случайной величины. Например, при одинаковом влиянии большого числа различных факторов случайная величина подчиняется нормальному закону; при наличии доминирующего фактора может быть справедливым иной закон распределения (Максвелла или другой) и т.д.

Второй способ используется, когда построен интервальный ряд распределения, и он сравнительно легко поддается качественному анализу. Так, рассматривая ряд, представленный в табл. 3 и 4, нетрудно заметить, что частоты и частости распределены приблизительно симметрично относительно середины размаха варьирования и их изменение приблизительно одинаково, но не равномерно по обе стороны от середины. Следовательно, распределение, по-видимому, подчиняется нормальному закону.

Третий способ, однако, лучше подходит для качественного анализа распределения. Нетрудно построить полигон или гистограмму, если построен интервальный ряд. А по их виду проще

подбирать теоретический закон распределения. Из рис. 1 или 3 следует, что исследуемое распределение, по-видимому, близко к нормальному.

Четвертый способ — графический — состоит в том, что для определения закона распределения применяются специальные бумаги, называемые вероятностными (или вероятностные сетки). На таких бумагах по координатным осям наносятся соответствующие шкалы, рассчитанные так, что в этих координатах график функции распределения представляет прямую линию. Для разных законов распределения существуют свои типы вероятностных бумаг. Правила и таблицы для построения и применения таких бумаг и их образцы можно найти в [14,15,16, 20].

Для определения закона распределения по вероятностной бумаге необходимо сначала построить дискретный ряд распределения, если объем выборки $n \le 50$, и интервальный ряд с количеством интервалов $l \ge 10$ при n > 50[14]. Количество частот в интервале должно быть не менее 5 ($n_i \ge 5$).

Рекомендации по выбору количества интервалов приведены в разделе 5. В обоих случаях должны быть подсчитаны накопленные частости, которые и представляют эмпирическую функцию распределения. Значения P_H наносятся на выбранный тип вероятностной бумаги и полученные экспериментальные точки аппроксимируются прямой линией. Если это удается и опытные точки располагаются близко к прямой, то это свидетельствует в первом приближении о согласии опытных данных с тем законом распределения, для которого построена вероятностная бумага.

Для более объективного построения прямой по опытным точкам рекомендуется использовать метод наименьших квадратов [14].

В рассматриваемом примере удобно построить дискретный ряд распределения, который представлен в таблице 6, а вероятностная бумага с опытными точками и аппроксимирующей прямой на рис. 6. Выбрана бумага для нормального распределения. Как видно из рисунка, экспериментальные точки расположены близко к прямой. Следовательно, исследуемое распределение близко к нормальному.

При нанесении на вероятностную бумагу экспериментальных точек частости, соответствующие крайним значениям признака, обычно отбрасываются, так как количество данных для этих значений весьма мало и получается большая погрешность.

Таблица 6

Параметр x_i	Частоты n_i	Накопленные частоты H_i	Накопленные частости $P_H = \frac{H_i}{n}$
800	2	2	0,010
805	5	7	0,035
810	6	13	0,065
815	8	21	0,105
820	18	39	0,195
825	16	55	0,275
830	24	79	0,395
835	23	102	0,510
840	24	126	0,630
845	20	146	0,730
850	18	164	0,820
855	15	179	0,895
860	8	187	0,935
865	6	193	0,965
870	7	200	1,000
	200		

После визуальной оценки согласия по вероятностной бумаге эмпирического распределения с выбранным теоретическим распределением необходимо проверить соответствие между ними по критериям согласия.

Недостатком графического способа выбора закона распределения является то, что часто приходится перебирать несколько типов вероятностных бумаг, прежде чем будет найден подходящий закон. Поэтому перед использованием графического способа следовало бы иметь какие-то рекомендации о последовательности применения соответствующих типов вероятностных бумаг, с какого закона распределения начинать подбор. Например, если

исследуется надежность изделий, то применять тот или иной тип вероятностной бумаги следует по степени распространенности законов распределения отказов в следующем порядке [16]: экспоненциальный, усеченный нормальный, логарифмически нормальный, Вейбулла, гамма. Если нет никаких рекомендаций, то начинать подбор следует с нормального закона как наиболее распространенного.

Здесь следует отметить, что в теории надежности обычно исследуется вероятность безотказной работы. Поэтому на вероятностную бумагу наносят не накопленные эмпирические частоты, представляющие эмпирическую функцию распределения, тождественную вероятности отказа, а разности $1-P_H$ или $1-H_i/n$, представляющие функцию вероятности безотказной работы.

Пятый и шестой способы, требующие предварительного вычисления различных моментов случайной величины по ряду распределения, будут рассмотрены ниже.

Для большинства случаев можно рекомендовать следующий порядок выбора теоретического закона распределения: предварительный выбор на основании имеющихся рекомендаций по предыдущим опытам или с помощью любого из первых трех способов, уточнение выбранного закона с помощью графического способа, а если вычислены моменты, то с помощью пятого и шестого способов, и окончательная проверка соответствия теоретического распределения эмпирическому с помощью критериев согласия.

9 ОПРЕДЕЛЕНИЕ ЧИСЛОВЫХ ХАРАКТЕРИСТИК ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ

Эмпирические распределения, как и теоретические, характеризуются числовыми характеристиками, которые являются моментами распределения различных порядков. Для эмпирического распределения это будут выборочные моменты. Они характеризуют статистические свойства выборки и называются также статистиками. К числовым характеристикам одномерных распределений относятся [17]:

- квантили;
- характеристики положения (центр распределения математическое ожидание или среднее значение, медиана, мода);
- характеристики рассеяния (дисперсия, среднее квадратическое отклонение, коэффициент вариации, среднее абсолютное отклонение, интервальная широта, размах, полуширота);
- характеристики асимметрии и эксцесса (коэффициент асимметрии, коэффициент эксцесса, пирсоновская мера асимметрии).

Асимметрия указывает на характер скошенности функции f(x). При A = 0 кривая симметрична, при A > 0 вытянута правая, а при A < 0 левая спадающая часть кривой.

Искажения формы оцениваются относительно формы нормального распределения. Эксцесс является показателем «сгруппированности» случайных величин относительно среднего значения и характеризует степень заостренности пика кривой (относительно кривой нормального распределения).

Числовые характеристики выборочного распределения являются оценками параметров теоретического распределения и поэтому к ним предъявляются следующие требования:

- несмещенность;
- состоятельность;
- эффективность.

Несмещенность означает, что оценка не должна преувеличивать или преуменьшать значение параметра, т.е. в наблюдениях отсутствуют систематические погрешности.

Состоятельность означает, что с увеличением объема информации оценка должна приближаться к величине параметра.

Эффективность означает, что данная оценка является наиболее точной, т.е. имеет минимальную дисперсию или наименьшее рассеяние, чем любые другие несмещенные оценки, найденные из тех же самых данных другими способами.

Однако одних этих критериев недостаточно. Для практических технических ситуаций необходимо иметь рабочие правила, позволяющие получить оценки с таким количеством полезных свойств, насколько это возможно. Такими правилами являются:

- метод максимального правдоподобия;
- метод наименьших квадратов.

Ниже рассматриваются точечные оценки параметров распределения.

Числовые характеристики выборочного распределения (статистики) могут вычисляться как для дискретного, так и для интервального рядов распределения по известным формулам для моментов. Существует несколько способов определения статистик:

- по ряду распределения;
- способ произведений или «условного нуля»;
- способ сумм [9], который удобен при большом числе интервалов или разрядов в ряде распределения, и т.п.

Рассмотрим некоторые способы на примере.

9.1 Вычисление статистик по интервальному ряду распределения

Воспользуемся табл. 4.

Среднее значение \overline{x} вычисляется по формуле:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{l} n_i x_i = \sum_{i=1}^{l} p_i x_i =$$

$$= 0,035 * 800 + 0,070 * 810 + 0,170 * 820 + \dots = 835.$$

Эмпирическое среднее квадратическое отклонение S находится через эмпирическую дисперсию, которая определяется по следующему выражению:

$$S^{2} = \frac{1}{n} \sum_{i=1}^{l} (x_{i} - \overline{x})^{2} n_{i} = \sum_{i=1}^{l} p_{i} (x_{i} - \overline{x})^{2} =$$

$$= 0.035(800 - 835)^{2} + 0.070(810 - 835)^{2} + 0.170(820 - 835)^{2} + \dots = 260.$$

Откуда S = 16,125.

При небольшом объеме выборки из-за того, что \overline{x} отличается от математического ожидания, оценка \mathbf{S} получается смещенной. Несмещенная оценка среднего квадратического отклонения для малой выборки вычисляется по формуле:

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{l} (x_i - \overline{x})^2 n_i} .$$

Для нашего примера в этом случае разницы практически не будет, так как S=16,125 (отличие на 0,25%). При n=50 отличие в результатах расчета по обеим формулам составляет порядка 1%. Поэтому формула для несмещенной оценки применяется при объеме выборки от единиц до двух-трех десятков ($\mathbf{n} \le 30$). Для вычисления медианы воспользуемся формулой, приведенной в [2]:

$$M_e = a_{M_e} + \frac{h(n/2 - H_i)}{n_{M_e}},$$

где a_{M_e} — начало медианного интервала;

 H_i — последний член кумулятивного ряда, меньший или равный n/2;

 n_{M_e} — частота медианного интервала.

Для нашего примера $a_{M_e}=825,\ h=10,\ n/2=200/2=100,$ $H_i=55,\ n_{M_e}=47.$

Тогда:

$$M_e = 825 + \frac{10(100 - 55)}{47} = 835.$$

Моду вычислим по следующему выражению [2]:

$$M_0 = a_M + \frac{h(p_1 - p_{M_0})}{p_1 - 2p_{M_0} + p_2},$$

где a_{M_0} — начало модального интервала;

 p_{M_0} — частость модального интервала;

 p_1 и p_2 — частости соседних с модальным интервалов.

Для нашего примера $a_{M_0}=825,\ h=10,\ p_1=0,170,\ p_{M_0}=0,235,\ p_2=0,220.$

Тогда:

$$M_0 = 825 + \frac{10(0.170 - 0.235)}{0.170 - 2 \cdot 0.235 + 0.220} \approx 833.$$

Меру асимметрии A и коэффициент эксцесса E (или просто асимметрию и эксцесс) вычисляют через центральные моменты третьего μ_3 и четвертого μ_4 порядков по формулам:

$$A = \frac{\mu_3^*}{S^3}$$
 и $E = \frac{\mu_4^*}{S^4} - 3$,

где

$$\mu_3^* = \sum_{i=1}^l p_i (x_i - \overline{x})^3, \quad \mu_4^* = \sum_{i=1}^l p_i (x_i - \overline{x})^4$$
 — эмпирические мо-

менты.

Коэффициент вариации определяется выражением:

$$\upsilon = \frac{S}{\overline{x}}$$
 или $\upsilon = \frac{S}{\overline{x}} \cdot 100\%$.

Для рассматриваемого примера:

$$\upsilon = \frac{16}{835} = 1,92 \cdot 10^{-2}$$
 или $\upsilon = 1,92\%$.

9.2 Вычисление статистик по способу «условного нуля» (способ произведений) для интервального ряда

Вычисление моментов может быть существенно упрощено, если учитывать наличие определенных соотношений между различными видами моментов. Способ заключается в выборе нового начала отсчета, переходе от действительных значений случайной величины (вариантов) к условным вариантам, вычислении условных начальных и центральных моментов и определении через них числовых характеристик эмпирического распределения.

Новое начало отсчета (ложный или условный нуль) x_0 берется в середине среднего по порядку интервала или интервала с наибольшей частотой. Условные варианты определяются по соотношению:

$$x_i' = \frac{x_i - x_0}{h}.$$

Условные варианты являются целыми числами, так как разность берется между представителями интервалов, которые равны значениям случайной величины в серединах интервалов.

Для удобства вычислений составляется табл. 7. Выбираем $x_0 = 830$. Из табл. 4 берем значения x_i и n_i . Начальные моменты k-го порядка определяются по формуле:

$$V_k = \frac{\sum n_i x_i^k}{n} = \sum_{i=1}^l p_i x_i^k,$$

в соответствии с которой условные начальные моменты будут равны:

$$v_{1} = \frac{\sum(5)}{\sum(3)} = \frac{97}{200} = 0,485;$$

$$v_{2} = \frac{\sum(6)}{\sum(3)} = \frac{567}{200} = 2,835;$$

$$v_{3} = \frac{\sum(7)}{\sum(3)} = \frac{799}{200} = 3,995;$$

$$v_{4} = \frac{\sum(8)}{\sum(3)} = \frac{4323}{200} = 21,615.$$

В скобках указаны номера столбцов табл. 7.

Условно-условный момент четвертого порядка:

$$v_4' = \frac{\sum (10)}{\sum (3)} = \frac{11509}{200} = 57,545.$$

Проверку правильности вычислений проводят по формуле:

$$v_4' = 4v_1 + 6v_2 + 4v_3 + v_4 + 1 =$$

= $4 \cdot 0,485 + 6 \cdot 2,835 + 4 \cdot 3,995 + 21,615 + 1 = 57,54$.

Для дальнейших расчетов необходимо найти v_1^2 , v_1^3 , v_1^4 :

$$v_1^2 = 0.235, v_1^3 = 0.114, v_1^4 = 0.055.$$

Затем определяются условные центральные моменты:

$$\begin{split} \mu_2 = & \nu_2 - \nu_1^2 = 2,835 - 0,235 = 2,600 \,; \\ \mu_3 = & \nu_3 - 3\nu_1 \cdot \nu_2 + 2\nu_1^3 = 3,995 - 3 \cdot 0,485 \cdot 2,835 + 2 \cdot 0,144 = 0,103 \,; \\ \mu_4 = & \nu_4 - 4\nu_1 \cdot \nu_3 + 6\nu_1^2 \cdot \nu_2 - 3\nu_1^4 = \end{split}$$

 $= 21.615 - 4 \cdot 0.485 \cdot 3.995 + 6 \cdot 0.235 \cdot 2.835 - 3 \cdot 0.055 = 17.700$. Правильность вычислений проверяется по формуле:

$$\begin{aligned} \nu_4 &= \mu_4 + 4\nu_1 \cdot \mu_3 + 6\nu_1^2 \cdot \mu_2 + \nu_1^4 = \\ &= 17.700 + 4 \cdot 0.485 \cdot 0.103 + 6 \cdot 0.235 \cdot 2.600 + 0.055 = 21.625 \,. \end{aligned}$$

Для более точных вычислений моментов следует учитывать поправки Шеппарда [2, 9].

Таблица 7

Ин- тер- вал <i>l</i>	Пред- стави- тели интер- валов x_i	n_i	Условные варианты $x_i' = \frac{x_i - x_0}{h}$	$n_i \cdot x_i'$ (3x4)	$n_i \cdot x_i^{\prime 2}$ (4x5)	$n_i \cdot x_i^{\prime 3}$ (4x6)	$n_i \cdot x_i^{\prime 4}$ (4x7)	$x_i' + 1$	$n_i(x_i'+1)^4$ $(3x9^4)$
1	2	3	4	5	6	7	8	9	10
1	800	7	-3	-21	63	-189	567	-2	112
2	810	14	-2	-28	56	-112	224	-1	14
3	820	34	-1	-34	34	-34	34	0	0
4	830	47	0	0	0	0	0	1	47
5	840	44	1	44	44	44	44	2	704
6	850	33	2	66	132	264	528	3	2673
7	860	14	3	42	126	378	1134	4	3584
8	870	7	4	28	112	448	1792	5	4375
	$\sum_{i=1}^{l}$	200		97	567	799	4323		11509

После определения всех условных моментов можно найти числовые характеристики распределения:

$$\overline{x} = x_0 + hv_1 = 830 + 10 \cdot 0,485 \approx 835;$$

$$S = h\sqrt{\mu_2} = 10\sqrt{2,600} \approx 16;$$

$$A = \frac{\mu_3}{\sqrt{\mu_2^3}} = \frac{0,103}{\sqrt{2,600^3}} = 0,025.$$

Так как результат для A положительный, то, следовательно, асимметрия правосторонняя (математическое ожидание расположено правее моды).

$$E = \frac{\mu_4}{\mu_2^2} - 3 = \frac{17,700}{2,600^2} - 3 = -0,380.$$

Эксцесс отрицательный, следовательно, вершина эмпирической кривой распределения лежит ниже вершины теоретической кривой нормального распределения.

Поскольку асимметрия и эксцесс малы по абсолютной величине, следовательно, исследуемое распределение близко к нормальному.

Для определения моды можно использовать следующую формулу [2]:

$$M_0 = \overline{x} - \frac{A \cdot S(E+6)}{2(5E-6A^2+6)} =$$

$$= 835 - \frac{0,025 \cdot 16(-0,380+6)}{2(-5 \cdot 0,380-6 \cdot 0,025^2+6)} = 834,7.$$

Если метод «условного нуля» будет применяться к дискретному ряду, то при проведении эксперимента необходимо обеспечить равный шаг между дискретными значениями признака, чтобы условные варианты были целыми числами.

В тех случаях, когда достаточно ограничиться определением среднего и имеется интервальный ряд, можно использовать следующее выражение [5]:

$$\overline{x} = x_l - h \left(\frac{1}{n} \sum_{i=1}^l H_i - 1 \right),$$

где χ_l — середина последнего интервала;

 $\sum_{i=1}^{l} H_i$ — сумма накопленных частот всех интервалов.

Для нашего примера (табл. 4):

$$x_l = 870, \quad h = 10, \quad n = 200, \quad \sum_{i=1}^{l} H_i = 903,$$

$$\overline{x} = 870 - 10 \left(\frac{1}{200} \cdot 903 - 1 \right) = 835.$$

9.3 Применение статистик для выбора закона распределения

Коэффициент вариации, коэффициенты асимметрии и эксцесса могут использоваться для приближенного выбора или приближенной оценки правильности выбора теоретического распределения [10].

Так, для коэффициента вариации известны диапазоны значений, в которых он находится, для того или иного закона распределения.

Закон распределения	Пределы	Среднее значение		
Нормальный	0,080,40	0,25		
Вейбулла	0,360,63; 0,400,85	0,44; 0,71		
Логарифмический	0,350,80	0,68		
Экспоненциальный	0,601,30	0,92		

Как следует из таблицы, возможна неоднозначность выбора.

Для того, чтобы применить коэффициенты асимметрии и эксцесса к выбору или оценке выбора теоретического закона, необходимо рассчитать их средние квадратические отклонения по формулам:

$$S_A = \sqrt{\frac{6(n-1)}{(n+1)(n+3)}} \text{ и } S_E = \sqrt{\frac{24n(n-2)(n-3)}{(n-1)^2(n+3)(n+5)}}.$$

Если найденные значения коэффициентов асимметрии и эксцесса отличаются от их значений для теоретического распределения не более чем на утроенные средние квадратические отклонения, то теоретическое и эмпирическое распределения согласуются. Причем должны выполняться одновременно оба условия:

$$|A - A_T| < 3S_A$$
 и $|E - E_T| < 3S_E$,

где A_T и E_T — соответствующие значения коэффициентов асимметрии и эксцесса для теоретического распределения, взятые из таблиц, например [3].

Для нормального закона $A_T = E_T = 0$, следовательно, используются условия:

$$|A| < 3S_A$$
 и $|E| < 3S_E$.

Недостаток метода заключается в приближенности оценки, так как правило «трёх сигм» является эмпирическим. Для нашего примера:

$$S_A = \sqrt{\frac{6(200-1)}{(200+1)(200+3)}} = 0,17;$$

$$S_E = \sqrt{\frac{24 \cdot 200(200-2)(200-3)}{(200-1)^2(200+3)(200+5)}} = 0,34.$$

Следовательно, в нашем случае согласие можно считать хорошим.

При объёме выборки $n \ge 60$ с точностью не хуже 10 % можно пользоваться выражениями:

$$S_A = \sqrt{\frac{6}{n}} \text{ if } S_E = \sqrt{\frac{24}{n}} = 2S_A.$$

В [9] приведены формулы для основных ошибок статистик, если исследуемое распределение подчиняется нормальному закону:

$$S_{\overline{x}} = \frac{S}{\sqrt{n}}; \quad S_S = \frac{S}{\sqrt{2n}}; \quad S_{\upsilon} = \frac{\upsilon}{\sqrt{2n}} \left[1 + 2\left(\frac{\upsilon}{100}\right)^2 \right]^{\frac{1}{2}};$$

$$S_A = \sqrt{\frac{6}{n}}; \quad S_E = \sqrt{\frac{24}{n}} = 2S_A.$$

При этом указывается, что основная ошибка статистики определяет те границы, в которых с вероятностью 0,683 заключено неизвестное значение соответствующего параметра, т.е. в пределах $\pm S$.

Если найденные значения A и E лежат в пределах своих двукратных основных ошибок, т.е. $A < 2S_A$ и $E < 2S_E$, то исследуемое распределение можно считать нормальным [9].

Для рассматриваемого примера основные ошибки статистик равны:

$$S_{\overline{x}} = \frac{16}{\sqrt{200}} = 1,13$$
, T. e. $\overline{x} = 835 \pm 1,13$.

$$S_S = \frac{16}{\sqrt{2 \cdot 200}} = 0.8, \text{ r.e. } S = 16 \pm 0.8.$$

$$S_v = \frac{1.92}{\sqrt{2 \cdot 200}} \left[1 + 2 \left(\frac{1.92}{100} \right)^2 \right]^{\frac{1}{2}} = 9.6 \cdot 10^{-2} \%, \text{ r.e.}$$

$$v = (1.92 \pm 0.096) \%.$$

$$S_A = \sqrt{\frac{6}{200}} = 0.173, \text{ r. e. } A = 0.025 \pm 0.173.$$

$$S_E = 2 \cdot 0.173 = 0.346, \text{ r. e. } E = -0.380 \pm 0.346.$$

В нашем примере 0.025 < 2.0,173 и 0.380 < 2.0,346, т.е. распределение нормальное.

Если приведённые формулы для основных ошибок статистик используются при анализе распределений, отличных от нормального, то границы, в которых с вероятностью 0,683 заключается неизвестное значение соответствующего параметра, будут определены только приближённо.

9.4 Вычисление доверительных интервалов для числовых характеристик

Поскольку точечные оценки параметров распределения являются случайными, то обычно для них определяют доверительные интервалы, в которых с доверительной вероятностью находятся истинные значения параметров распределения — интервальные оценки. Точное определение интервалов возможно только, если известен закон распределения случайной величины. Пока такой закон неизвестен, доверительные интервалы определяют приближённо, полагая справедливым нормальный закон распределения случайной величины. Уточнение проводится после выбора закона распределения и проверки его согласия с эмпирическим распределением.

Доверительный интервал для математического ожидания имеет границы:

$$a_{H} = \overline{x} - \varepsilon_{x} \text{ и } a_{g} = \overline{x} + \varepsilon_{x},$$

$$\varepsilon_x = t_\alpha \frac{S}{\sqrt{n}}$$
.

Для определения следует найти по таблицам (см. Приложение 2) значения t_{α} при выбранной доверительной вероятности α и числе степеней свободы k=n-1. Обычно рекомендуется брать $\alpha \ge 0.90$.

Таблицы для t_{α} называются по-разному, в том числе: распределение Стьюдента, значения коэффициента Стьюдента t_{α} и т.п. В некоторых источниках [10,19] значения t_{α} приведены для одностороннего критерия при доверительной вероятности $1-\alpha$. Поэтому при вычислении двухсторонних границ значения t следует брать при $\frac{1-\alpha}{2}$.

Для примера выбираем $\overline{x}=835,\,S=16,\,n=200$ и $\alpha=0,95$. При $k=n-1\approx 200$ по [15, табл. 11.5] или [18, табл. 4] находим $t_{\alpha}=1,972$. В [9, табл. XVII] значение $t_{\alpha}=1,972$ находим уже при уровне значимости $1-\alpha=1-0,95=0,05$.

По [10, 19, табл. приложения 3] и [9, табл. XVII] значение t_{α} =1,972 определяем при доверительной вероятности:

$$\frac{1-\alpha}{2} = \frac{1-0.95}{2} = 0.025 .$$

Тогда: $\varepsilon_x = 1,972 \frac{16}{\sqrt{200}} = 2,24$.

Следовательно,

$$a_{\scriptscriptstyle H} = 835 - 2,24 = 832,76$$
 и $a_{\scriptscriptstyle g} = 835 + 2,24 = 837,24$.

Доверительный интервал для теоретического среднего квадратического отклонения σ имеет границы:

$$\sigma_{H} = S - \varepsilon_{\sigma}$$
 и $\sigma_{e} = S + \varepsilon_{\sigma}$,

где $\varepsilon_{\sigma} = q \cdot S$.

Значения q определяются через доверительные вероятности $\alpha = l(q, n-1)$, таблицы для которых приведены в [2, 18]. Доверительная вероятность α определяет вероятность нахождения генеральной характеристики σ в доверительном интервале:

$$\alpha = Bep(\sigma_{H} \leq \sigma \leq \sigma_{e}).$$

B этом случае α является двусторонней доверительной вероятностью.

Могут быть односторонние доверительные вероятности

$$\alpha_1 = Bep(\sigma \ge \sigma_H)$$
 и $\alpha_2 = Bep(\sigma \le \sigma_R)$.

В этом случае α_1 и α_2 обычно имеют большие значения, например 0,95. Связь между двусторонней и односторонними доверительными вероятностями устанавливается выражением:

$$\alpha = \alpha_1 + \alpha_2 - 1.$$

При $\alpha_1=\alpha_2$ имеем $\alpha=2\alpha_1-1$ или $\alpha=2\alpha_2-1$. Для расчётов доверительного интервала при заданной α можно использовать также выражения:

$$\sigma_{\scriptscriptstyle H} = (1-q)S$$
 и $\sigma_{\scriptscriptstyle G} = (1+q)S$

и [6, табл. V] для нахождения q.

Однако удобнее для определения доверительных границ использовать формулы вида:

$$\sigma_{\scriptscriptstyle H} = \gamma_1 S$$
 и $\sigma_{\scriptscriptstyle \theta} = \gamma_2 S$.

Расчёт по этим формулам можно проводить по таблицам, приведённым в [3, 6, 10, 15, 19]. Отметим особенности расчёта по указанной литературе.

В [6, 10, 19] доверительные границы определяются для двусторонней доверительной вероятности α . В [6] коэффициенты γ_1 и γ_2 обозначены соответственно через z1 и z2, а α — через p. В [19] необходимо рассчитать γ_1 и γ_2 по формулам:

$$\gamma_1 = \sqrt{\frac{n-1}{\chi^2_{(1-\gamma)/2}}}$$
 и $\gamma_2 = \sqrt{\frac{n-1}{\chi^2_{(1+\gamma)/2}}}$,

где χ^2 — процентные точки хи-квадрат распределения, определяемые по таблицам [19], а $\gamma = \alpha$.

Для использования таблиц, приведённых в [3], следует или задаться двусторонней доверительной вероятностью α и по ней выбрать односторонние доверительные вероятности α_1^* и α_2 из условия $\alpha = \alpha_2 - \alpha_1^*$, или задаться непосредственно α_1^* и α_2 . В данном случае $\alpha_1^* = Bep(\sigma \le \sigma_{_H})$, и она должна быть близка к ну-

лю. Затем по таблицам определяются для α_1^* значение q_1 , а для α_2 значение q_2 . Тогда:

$$\gamma_1 = \frac{1}{q_2}$$
 и $\gamma_2 = \frac{1}{q_1}$.

В [15] коэффициенты γ_1 и γ_2 обозначены соответственно через k_1 и k_2 и определяются они для односторонних доверительных границ, причём $\alpha_1 = \alpha_2$. Следовательно, если задана двусторонняя доверительная вероятность α , то следует найти:

$$\alpha_1 = \alpha_2 = \frac{1+\alpha}{2}$$

и по этому значению определить k_1 и k_2 .

Для примера зададим n=19 и. α =0,99 и покажем определение γ_1 и γ_2 по различным источникам. По [6, табл. VI] и [10, приложение 6] имеем при k=n-1=18, что $\gamma_1=Z_1=0,696$ и $\gamma_2=Z_2=1,695$. По [19, приложение 2] находим для

$$\frac{1-\gamma}{2} = \frac{1-\alpha}{2} = \frac{1-0.99}{2} = 0.005$$

значение $\chi^2_{(1-\gamma)/2} = 37,156$

и для

$$\frac{1+\gamma}{2} = \frac{1+\alpha}{2} = \frac{1+0.99}{2} = 0.995$$

значение $\chi^2_{(1+\gamma)/2} = 6,265$ при k = n - 1 = 18.

Тогда:

$$\gamma_1 = \sqrt{\frac{19-1}{37,156}} = 0,696$$
 и $\gamma_2 = \sqrt{\frac{19-1}{6,265}} = 1,695$.

Для использования [3, табл. П6] задаёмся $\alpha_1^*=0,005$ и $\alpha_2=0,995$, так что $\alpha=\alpha_2-\alpha_1^*=0,99$. Находим по таблице, что $q_1=0,590$ и $q_2=1,437$ при ${\pmb k}={\pmb n}-{\pmb 1}={\pmb 18}.$ Тогда:

$$\gamma_1 = \frac{1}{1,437} = 0,696 \text{ M } \gamma_2 = \frac{1}{0,590} = 1,682.$$

Для использования (см. Приложение 3) задаёмся $\alpha_1 = \alpha_2$, близким к единице, но так как задано $\alpha = 0.99$, то определяем:

$$\alpha_1 = \alpha_2 = \frac{1+0.99}{2} = 0.995$$
.

По таблице находим для k=n-1=18 значения $k_1=\gamma_1=0,696$ и $k_2=\gamma_2=1,70$. То есть при односторонних доверительных вероятностях $\alpha_1=\alpha_2=0,995$ двусторонняя доверительная вероятность $\alpha=0,99$. Соответственно при $\alpha_1=\alpha_2=0,99$ имеем $\alpha=0,98$ и т.д.

Следует заметить, что в [6] формулы вида $\sigma = \gamma S$ используются только при малом объёме выборки, а при большом объёме используются формулы вида $\sigma = (1-q)S$. Но в других источниках [3, 10, 15, 18, 19] таких ограничений нет. Например, в [10,15] вычисления по формулам вида $\sigma = \gamma S$ проводятся при k, достигающем значений 100...200 и даже 1000 [3].

10 РАСЧЁТ ТЕОРЕТИЧЕСКИХ КРИВЫХ РАСПРЕДЕЛЕНИЙ И ОЦЕНКИ ИХ ПАРАМЕТРОВ

Расчёт теоретических кривых распределений может проводиться как для дискретного ряда, так и для интервального ряда. В интервальных рядах расчёт проводится по серединам интервалов или по интервалам. Расчёт по интервалам для интервальных рядов является более удобным и правильным. Расчёт дифференциальной кривой теоретического распределения для середин интервалов проводится по плотности распределения $f_T(x)$, определяемой по значениям признака x_i в серединах интервалов. Теоретическая частость находится по формуле:

$$p_{Ti} = f_{Ti}(x) \cdot h.$$

Расчёт дифференциальной кривой по интервалам проводится по следующему выражению:

$$p_{Ti} = F(x_2) - F(x_1),$$

где F(x) — интегральная функция распределения;

 x_1 и x_2 — значения левых и правых границ интервалов.

Теоретические частоты в обоих случаях вычисляются через теоретические частости:

$$n_{Ti} = p_{Ti} \cdot n$$
.

Параметры законов распределения находятся по опытным данным в виде точечных или интервальных оценок. Методы нахождения параметров закона распределения делятся на графические и аналитические — метод моментов и метод наибольшего (или максимального) правдоподобия. От точечных оценок, как указано выше, требуется, чтобы они были состоятельными, несмещёнными и эффективными. Названные методы не всегда обеспечивают эти требования и тем более одновременно, т.е. чтобы оценка отвечала сразу всем требованиям.

Оценки, полученные графическим методом, являются наименее точными. Более точно определяются оценки методом моментов. Этот метод состоит в том, что теоретические моменты приравниваются эмпирическим. Образуется система, в которой количество уравнений равно количеству неизвестных параметров теоретического распределения. Решая систему, находят неиз-

вестные параметры. Метод моментов позволяет доказать, что для случайной величины x, распределённой по любому закону, оценками математического ожидания a и дисперсии σ^2 являются \overline{x} и S^2 , найденные для исследуемой выборки.

Метод моментов весьма простой и часто используется, хотя оценки параметров при этом получаются, как правило, смещёнными и малоэффективными.

Наиболее точные оценки получаются по методу максимального правдоподобия, но они могут оказаться смещёнными. Этот метод, как и метод моментов, может применяться только при известном законе распределения случайной величины. Суть метода заключается в составлении функции правдоподобия, которая для непрерывных случайных величин имеет вид:

$$L = \prod_{i=1}^{n} f(x_i, \Theta_1, ..., \Theta_k),$$

где n — число измеренных значений x (объём выборки);

 Θ — неизвестный параметр теоретического распределения;

k — число неизвестных параметров распределения.

По методу максимального правдоподобия за оценку Θ выбирается такое значение Θ , которое обеспечивает максимум \boldsymbol{L} , что будет при:

$$\frac{\partial L}{\partial \Theta_j} = 0, \left(j = \overline{1, k} \right).$$

Удобнее находить, однако, не экстремум функции L, а экстремум функции $\ln L$, т.е. $\frac{\partial \ln L}{\partial \Theta_i} = 0$.

Число таких уравнений берётся равным числу неизвестных параметров Θ_j . Из образовавшейся системы находят оценки неизвестных параметров $\widehat{\Theta}_j$. Этот метод иногда приводит к сложным уравнениям. Но он обладает рядом преимуществ по сравнению с методом моментов [10]. Оценки получаются состоятельные и эффективные. Смещение можно устранить введением поправок, и, кроме того, с ростом n смещение уменьшается, т.е. оценки становятся несмещёнными. Возможно приближённое решение

уравнения, а также системы уравнений максимального правдоподобия [19].

В связи с вышеизложенным, можно рекомендовать следующий порядок получения точечных оценок параметров распределения. Вначале их получают графическим методом по вероятностной бумаге. Затем они могут быть уточнены или, если графический метод не использовался, впервые вычислены методом моментов или методом максимального правдоподобия [19].

После выбора закона распределения производится также уточнение и интервальных оценок.

Различные законы распределения (их форму, расчётные формулы для плотности и функции распределения, а также для моментов υ, A и E) можно найти в [3, 9, 15, 16, 20...24, 32 и др.].

10.1 Нормальное распределение

Формулы для плотности и функции нормального распределения имеют вид:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} = \frac{1}{\sigma} \phi_0 \left(\frac{x-a}{\sigma}\right);$$

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-a)^2}{2\sigma^2}} \cdot dx = \frac{1}{2} \left[1 + \Phi\left(\frac{x-a}{\sigma}\right)\right]$$
при $-\infty < x < \infty$ и $\sigma > 0$.

Нормальное распределение является двухпараметрическим. Его параметрами являются математическое ожидание a и среднее квадратическое отклонение σ . Прежде чем проводить расчёт теоретической кривой, необходимо найти значения a и σ . Для нормального распределения $a=M_e=M_o$, A=E=0.

10.1.1 Оценка параметров графическим методом

После нанесения прямой линии по экспериментальным точкам на вероятностной бумаге определяют оценки параметров распределения по углу наклона прямой и отрезкам, которые она отсекает на осях координат.

Для нашего примера нормальная вероятностная бумага с нанесёнными экспериментальными точками и аппроксимирующей прямой линией приведена на рис. 6. Поскольку распределение нормальное, то F(x) = 0.5 соответствует математическому ожиданию a. На уровне F = 0.5 проводим прямую, параллельную оси абсцисс. Точка A пересечения прямых соответствует точечной оценке математического ожидания $\widehat{a} = \overline{x} = 835$.

Точечная оценка среднего квадратического отклонения S находится по углу α , образованному прямыми. Для определения S используется следующая формула, справедливая при длине шкалы по оси ординат, равной 300 мм, что соответствует изменению F от 0,001 до 0,999 [15]:

$$S = \frac{48.5}{K_r} \cdot Ctg\alpha,$$

где $K_x = \frac{K}{R}$ — масштабный коэффициент для оси абсцисс;

K — ширина графика по оси абсцисс в мм (длина отрезка в мм по оси абсцисс, соответствующего R);

R — размах варьирования.

По графику находим, что K=140 мм, AB=60 мм, BC=90 мм. Известно, что R=70. Тогда:

$$K_x = \frac{140}{70} = 2;$$
 $Ctg\alpha = \frac{AB}{BC} = \frac{60}{90} = 0,667;$ $\hat{\sigma} = S = \frac{48,5}{2} \cdot 0,667 = 16,2.$

С целью уменьшения размеров (рис. 6) на ось ординат нанесена только часть шкалы от 0,01 до 0,96, что вполне достаточно для построения графика и соответствует 204 мм.

10.1.2 Оценка параметров по методу моментов

Для нормального распределения начальный момент 1-го порядка $m_1(x) = a$, центральный момент второго порядка $M_2(x) = \sigma^2$. Соответствующие моменты эмпирического распределения $v_1(x) = \overline{x}$ и $\mu_2(x) = S^2$. Приравнивая моменты, находим:

$$\begin{cases} m_1(x) = \mathbf{v}_1(x) \Rightarrow \hat{a} = \overline{x}; \\ M_2(x) = \mathbf{\mu}_2(x) \Rightarrow \hat{\sigma}^2 = S^2. \end{cases}$$

При этом \overline{x} является состоятельной, несмещённой и эффективной оценкой a. S будет состоятельной, несмещённой и эффективной оценкой σ только в случае, если известно a, в противном случае она не обладает свойствами эффективности. Чтобы S было несмещённой оценкой σ , её следует вычислять по формулам:

$$S = \sqrt{\frac{1}{n} \sum_{i=1}^{l} (x_i - \overline{x})^2 \cdot n_i}$$
 при $n > 30$;
$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{l} (x_i - \overline{x})^2 \cdot n_i}$$
 при $n \le 30$

для интервального ряда.

10.1.3 Оценка параметров по методу максимального правдоподобия

Функция правдоподобия для нормального распределения случайной величины х имеет вид:

$$L = L(x_i, a, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{-\sum_{i=1}^n \frac{(x_i - a)^2}{2\sigma^2}} =$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - a)^2\right].$$

Логарифмическая функция правдоподобия равна:

$$\ln L = -\frac{n}{2} \left(\ln 2\pi + \ln \sigma^2 \right) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - a)^2.$$

Дифференцируем $\ln L$ последовательно по a и по σ^2 и получаем систему уравнений для их оценок:

$$\frac{\partial \ln L}{\partial a} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - a) = 0;$$

$$\frac{\partial \ln L}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - a)^2 = 0.$$

Отсюда находим:

$$\hat{a} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x} = 835;$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - a)^2 = S^2; \quad \hat{\sigma} = S = 16.$$

Оценка σ будет смещённой при $n \le 30$.

10.1.4 Определение доверительных интервалов

Доверительные интервалы (интервальные оценки) для параметров a и σ нормального распределения при заданной доверительной вероятности α определяются по методике, приведённой в п. 9.4.

10.1.5 Расчёт теоретической кривой нормального распределения

Расчёт проведён для середин интервалов и по интервалам. При вычислении кривой распределения для середин интервалов воспользуемся нормированной и центрированной плотностью вероятности нормального распределения:

$$y_0 = \frac{1}{\sqrt{2\pi}} e^{-t^2/2},$$

где $t = \frac{x-a}{\sigma}$ — нормированное отклонение.

Функция y_0 является табулированной и определяется через t (см. Приложение 4). При этом $y_0(-t) = y_0(t)$.

Тогда:

$$y_T = f_T(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}} = \frac{1}{\sigma}y_0.$$

Средняя плотность эмпирического распределения:

$$y_i = \frac{n_i}{h \cdot n} = \frac{p_i}{h}.$$

Теоретические частости для середин интервалов будут равны:

$$p_{Ti} = y_{Ti} \cdot h = \frac{1}{\sigma} y_0 \cdot h,$$

а теоретические частоты для середин интервалов определятся выражением:

$$n_{Ti} = y_{Ti} \cdot h \cdot n = \frac{1}{\sigma} y_0 \cdot h \cdot n = p_{Ti} \cdot n.$$

Вычисления проводятся с помощью табл. 8.

После вычисления теоретических частот их необходимо выровнять на основании следующих положений:

- частоты могут выражаться только целыми числами;
- сумма теоретических частот должна быть равна сумме
 эмпирических частот с принятой точностью;
- в случае нормального распределения принимается во внимание знак эксцесса и частоты должны быть поровну распределены относительно a .

В рассматриваемом случае знак у эксцесса отрицательный, т. е. вершина теоретической кривой распределения должна лежать выше вершины эмпирической кривой. Поэтому частоты интервалов, близких вершине, округляем в большую сторону.

В табл. 9 приведён расчёт теоретических интегральных кривых распределения на основе данных табл. 8. Кривые, рассчитанные в табл. 8 и 9, представлены на рис. 1 и 2.

Операцию расчёта теоретических частостей и частот иногда называют вычислением выравнивающих частостей и частот [9].

При вычислении нормальной кривой распределения по интервалам (что более удобно и правильно) используется табулированный интеграл вероятностей (функция Лапласа):

$$\Phi(t) = \frac{2}{\sqrt{2\pi}} \int_0^t e^{-t^2/2} \cdot dt,$$

где $t = \frac{x-a}{\sigma}$ — нормированное отклонение.

Таблица 8

Интер- валы <i>b</i> – <i>c</i>	x_i	$x_i - a$	$t = \frac{x_i - a}{\sigma}$	y_0	$y_{Ti} = \frac{y_0}{\sigma}$	p_i	$p_{Ti} = = hy_{Ti}$	$n_{Ti} = p_{Ti}n$	Выров нен- ные n_{Ti}	n_i
795— 805	800	-35	-2,19	0,0363	0,0023	0,035	0,023	4,6	5,0	7
805— 815	810	-25	-1,56	0,1182	0,0074	0,070	0,074	14,8	15,0	14
815— 825	820	-15	-0,94	0,2565	0,0160	0,170	0,160	32,0	32,0	34
825— 835	830	-5	-0,31	0,3802	0,0238	0,235	0,238	47,6	48,0	47
835— 845	840	5	0,31	0,3802	0,0238	0,220	0,238	47,6	48,0	44
845— 855	850	15	0,94	0,2565	0,0160	0,165	0,160	32,0	32,0	33
855— 865	860	25	1,56	0,1182	0,0074	0,070	0,074	14,8	15,0	14
865— 875	870	35	2,19	0,0363	0,0023	0,035	0,023	4,6	5,0	7
Кон- троль					$\sum_{i=1}^{l}$	1,000	0,990	198,0	200,0	200

Таблица 9

Интервалы $b-c$	x_i	p_{Ti}	n_{Ti}	$p_{{\scriptscriptstyle HTi}}$	H_{Ti}
795—805	800	0,023	5	0,023	5
805—815	810	0,074	15	0,097	20
815—825	820	0,160	32	0,257	52
825—835	830	0,238	48	0,495	100
835—845	840	0,238	48	0,733	148
845—855	850	0,160	32	0,893	180
855—865	860	0,074	15	0,967	195
865—875	870	0,023	5	0,990	200

Теоретическая частость (вероятность) будет равна:

$$p_{Ti} = \frac{1}{2} \left[\Phi(t_2) - \Phi(t_1) \right],$$

где t_1 и t_2 — нормированные отклонения, соответствующие началу и концу интервала. Теоретические частоты определяются по формуле:

$$n_{Ti} = p_{Ti} \cdot n$$
.

Вычисления проводятся с помощью табл. 10. Выравнивание частот проводится по тем же положениям, что и в табл. 8.

Расчёт теоретической интегральной кривой распределения по интервалам удобнее проводить по формуле [2, 11 и др.]:

$$F_{Ti}(x) = \frac{1}{2} + \frac{1}{2} \Phi\left(\frac{c-a}{\sigma}\right),$$

где c — правая граница интервала.

По этой формуле непосредственно определяются значения функции нормального распределения без предварительного вычисления дифференциальной функции распределения. Расчёт $F_T(x)$ приведён в табл. 11.

Значения функций $\frac{1}{2}\Phi(t_1)$ и $\frac{1}{2}\Phi(t_2)$ находятся в приложении Результаты, найденные в таблице приложения не делить на 2

5. Результаты, найденные в таблице приложения не делить на 2. Таблица 10

Интерва- лы <i>b</i> – <i>c</i>	n_i	p_{i}	$t_1 = \frac{b - a}{\sigma}$	$t_2 = \frac{c - a}{\sigma}$	$\boxed{\frac{1}{2}\Phi(t_1)}$	$\boxed{\frac{1}{2}\Phi(t_2)}$	p_{Ti}	$n_{Ti} = p_{Ti}n$	<i>n</i> _{Ti} выров- ненные
795— 805	7	0,035	-2,50	-1,87	-0,4940	-0,4695	0,0245	4,9	5,0
805— 815	14	0,070	-1,87	-1,25	-0,4695	-0,3945	0,0750	15,0	15,0
815— 825	34	0,170	-1,25	-0,63	-0,3945	-0,2355	0,1590	31,8	32,0
825— 835	47	0,235	-0,63	0	-0,2355	0	0,2355	47,1	48,0
835— 845	44	0,220	0	0,63	0	0,2355	0,2355	47,1	48,0
845— 855	33	0,165	0,63	1,25	0,2355	0,3945	0,1590	31,8	32,0

0		10
Окончание	таол.	10

Интерва- лы <i>b – c</i>	n_i	p_{i}	$\begin{vmatrix} t_1 = \\ = \frac{b-a}{\sigma} \end{vmatrix}$	$t_2 = \frac{c - a}{\sigma}$	$\frac{1}{2}\Phi(t_1)$	$\frac{1}{2}\Phi(t_2)$	p_{Ti}	$\begin{vmatrix} n_{Ti} = \\ = p_{Ti}n \end{vmatrix}$	$n_{\it Ti}$ выров- ненные
855— 865	14	0,070	1,25	1,87	0,3945	0,4695	0,0750	15,0	15,0
865— 875	7	0,035	1,87	2,50	0,4695	0,4940	0,0245	4,9	5,0
$\sum_{i=1}^{l}$	20 0	1,000					0,9880	197,6	200

Таблица 11

Интерва- лы <i>b</i> – <i>c</i>	$t = \frac{c - a}{\sigma}$	$\frac{1}{2}\Phi(t)$	$F_T(x) = p_{HTi} = $ $= \frac{1}{2} + \frac{1}{2} \Phi(t)$	$p_{{\scriptscriptstyle Hi}}$	H_{i}	$H_{{\scriptscriptstyle Ti}}$	<i>H</i> _{<i>Ti</i>} выров- ненные
795—805	-1,87	-0,4695	0,0305	0,035	7	6,1	6
805—815	-1,25	-0,3945	0,1055	0,105	21	21,1	21
815—825	-0,63	-0,2355	0,2645	0,275	55	52,9	53
825—835	0	0	0,5000	0,510	102	100,0	100
835—845	0,63	0,2355	0,7355	0,730	146	147,1	147
845—855	1,25	0,3945	0,8945	0,895	179	178,9	179
855—865	1,87	0,4695	0,9695	0,965	193	193,9	194
865—875	2,50	0,4940	0,9940	1,000	200	198,8	200

Дифференциальная кривая, рассчитанная в табл. 10, представлена на рис. 3.

Плавная интегральная кривая, рассчитанная в табл. 11, не приведена на рис. 4 в связи с тем, что масштаб рисунка мелкий и такая кривая будет почти полностью совпадать с ломаной кумулятивной кривой и скроет её особенности.

После вычисления теоретической кривой распределения и нанесения её на график эмпирического распределения может наблюдаться сдвиг между вершинами или различная острота вершин. Это может быть обусловлено в некоторых случаях ошибками в определении a и σ из-за конечного объёма выборки. Для улучшения совпадения кривых в таких случаях рекомендуется варьировать значениями a и σ в пределах их ошибок, учитывая, что с уменьшением σ кривая становится острее.

Следует отметить ошибку, которая встречается при применении нормального закона распределения.

Этот закон часто применяют вместо усечённого нормального закона распределения, получая при этом хорошее согласие с эмпирическим распределением. Ошибка заключается в том, что теоретическую кривую нормального распределения рассчитывают не в пределах ±3 σ , а в пределах усечения, отбрасывая произвольно ту часть теоретической кривой, которая выходит за пределы усечения. Поэтому и получается хорошее согласие, что, конечно, неверно. Кривая нормального закона распределения должна начинаться и кончаться на оси абсцисс в пределах ±3 σ , опираться на нее, а не быть «подвешенной» над осью абсцисс.

Прежде чем приступать к нанесению теоретической кривой на гистограмму, необходимо определить значения p_{Ti} или n_{Ti} для вершины кривой при выбранном значении математического ожидания a ,а также точки касания ветвями теоретической кривой оси абсцисс.

Для рассматриваемого примера максимум кривой будет при x = a = 835. Следовательно:

$$t = 0$$
, $y_0 = 0,3989$, $y_{Ti} = 0,0249$,
 $p_T(x = 835) = 0,249$, $n_{Ti}(x = 835) = 49,8$,

выровненная $n_T(x = 835) = 50$.

Точки касания будут иметь значения (при $\sigma = 16$):

$$x_{nee.} = a - 3\sigma = 835 - 48 = 787,$$

 $x_{npae.} = a + 3\sigma = 835 + 48 = 883.$

Проконтролировать правильное построение теоретической кривой нормального распределения можно путём её вычисления в реперных точках по следующим соотношениям [39]:

X	a	$a \pm 0.5\sigma$	$a \pm \sigma$	$a\pm1,5\sigma$	$a \pm 2\sigma$	$a \pm 3\sigma$
у	У макс	$\frac{7}{8}y_{\text{макс}}$	$\frac{5}{8}y_{\text{макс}}$	$\frac{2,5}{8}y_{\text{макс}}$	$\frac{1}{7}y_{\text{макс}}$	$\frac{1}{80}y_{\text{макс}}$

Для нашего примера $y_{\text{макс}} = p_T (a = 835) = 0,249; \quad \sigma = 16.$

X	835	835±8	835±16	835±24	835±32	835±48
$p_{\scriptscriptstyle T}$	0,249	0,218	0,155	0,078	0,035	0,003
n_T	50	44	31	15	7	0

Полученные результаты хорошо совпадают с расчётами в табл. 8 и 10.

Точки кривой, соответствующие значениям $x = a \pm \sigma$, являются точками перегиба ветвей.

10.2 Распределения, отличные от нормального

Методику определения параметров графическим методом для некоторых распределений, отличных от нормального, можно найти в [14, 15, 20]. Определение доверительных границ для параметров различных законов распределения рассмотрено в [3, 6, 11, 15, 16, 20 и др.].

При расчётах распределений, отличных от нормального, не следует забывать о том, что в литературе они обычно рассматриваются в пределах от 0 до ∞ . Так как на практике распределения могут начинаться с какого-то конкретного значения x, то в формулы для таких распределений вместо x следует подставлять

$$(x-x''_{Haum}),$$

где $x''_{haum} = x'_{haum} - h/2 = x_{haum} - h$ — новое начало координат. Это положение не относится к логарифмически нормальному и усечённому нормальному законам. Кроме того, в некоторых источниках параметр однопараметрических законов (Рэлея, Максвелла и др.) обозначается через σ , которое не является в данном случае средним квадратическим отклонением.

Как правило, все рассматриваемые в литературе распределения имеют правостороннюю асимметрию, т.е. левый склон кривой распределения более крутой, чем правый. Однако на практике часто имеет место левосторонняя асимметрия. В этих случаях можно пользоваться известным асимметричным распределением, развёрнутым на 180°, т.е. с так называемыми обращёнными аргументами.

И наконец, следует всегда иметь в виду, что теоретические законы распределения для непрерывных случайных величин, как правило, начинаются и заканчиваются на оси абсцисс, опираются на нее, а не «парят над ней», «не висят в воздухе». Это требует нахождения точек касания ветвями теоретической кривой оси абсцисс.

10.2.1 Усечённое нормальное распределение

Такое распределение получается из нормального распределения путём ограничения изменения случайной величины х одним или двумя пределами — соответственно одностороннее или двустороннее усечённое нормальное распределение.

Плотность и функция распределения определяются по формулам:

$$f(x) = \frac{c}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}};$$
$$F(x) = \frac{c}{\sigma\sqrt{2\pi}} \int_{b}^{x} e^{-\frac{(x-a)^2}{2\sigma^2}} \cdot dx,$$

где C — нормирующий множитель;

b и d — пределы изменения x;

а и **о** — математическое ожидание и среднее квадратическое отклонение неусечённого распределения.

Введём нормирующий множитель $t = \frac{x-a}{\sigma}$.

Тогда F(x) будет нормированной функцией распределения:

$$F_{0}(x) = \frac{C}{\sqrt{2\pi}} \int_{\frac{b-a}{\sigma}}^{\frac{x-a}{\sigma}} e^{-t^{2}/2} \cdot dt = C \left[F_{0}(x) - F_{0}(b) \right] =$$

$$= C \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-t^{2}/2} \cdot dt - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t_{i}} e^{-t_{i}^{2}/2} \cdot dt \right].$$

Множитель C определяется по формуле:

$$C = \frac{1}{F_0(t_2) - F_0(t_1)} = \frac{2}{\Phi(t_2) - \Phi(t_1)},$$

где

$$t_1 = \frac{b-a}{\sigma}, \quad t_2 = \frac{d-a}{\sigma}, \quad F_0(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-t^2/2} \cdot dt.$$

Функция Лапласа:

$$\Phi(t) = \frac{2}{\sqrt{2\pi}} \int_{0}^{t} e^{-t^{2}/2} \cdot dt;$$
$$F_{0}(t) = \frac{1}{2} + \frac{1}{2} \Phi(t).$$

Следует помнить о правиле знаков:

$$F(-x)=1-F(x), \Phi(-x)=-\Phi(x).$$

 $F_0(t)$ и $\Phi(t)$ определяются по таблицам нормального распределения в функции от t.

Для определения параметров распределения математического ожидания \tilde{a} и среднего квадратического отклонения σ используется метод моментов. Согласно [21], имеем:

$$m_1(x) = \tilde{a} + B\sigma;$$

 $M_2(x) = \sigma^2 \{ 1 - B^2 - C[t_2 f_0(t_2) - t_1 f_0(t_1)] \},$

где

$$B = C \Big[f_0(t_1) - f_0(t_2) \Big];$$
 $f_0(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$ — нормированная плотность распределе-

ния.

Приравниваем теоретические и эмпирические моменты и находим \tilde{a} и σ из системы уравнений (см. также [25, с. 274]):

$$\overline{x} = \tilde{a} + B\sigma,$$

$$S^2 = \sigma^2 \left\{ 1 - B^2 - C \left[t_2 f_0(t_2) - t_1 f_0(t_1) \right] \right\}.$$

В уравнениях известны \overline{x} , S, t_1 , t_2 .

При симметричном двустороннем усечении:

$$f_0(t_2) = f_0(t_1) = f_0(t).$$

Следовательно, B=0. Тогда $\tilde{a}=\overline{x}$ и

$$S^{2} = \sigma^{2} \left[1 - Cf_{0}(t) \cdot (t_{2} - t_{1}) \right].$$

Определить \tilde{a} можно также, если найти моду эмпирического распределения. При этом $\tilde{a} \approx M_0$. При одностороннем усечении нормального распределения ориентировочное значение σ можно найти следующим образом.

Если
$$f(b) = 0$$
, где $b = x_{MUH} - h$, то

$$\sigma = \frac{1}{3} \left[\tilde{a} - (x_{\text{\tiny MUH}} - h) \right].$$

Если f(d) = 0, где $d = x_{\text{макс}} + h$, то

$$\sigma = \frac{1}{3} \Big[\big(x_{\text{MAKC}} + h \big) - \tilde{a} \Big].$$

Следует отметить, что если для симметричного двустороннего усеченного нормального распределения $\tilde{a}-b\geq 2\sigma$ и $d-\tilde{a}\geq 2\sigma$, то можно полагать с ошибкой не более 10 %, что параметры такого распределения равны параметрам нормального распределения и $C\approx 1$, т.е. $m_1(x)\approx a$ и $M_2(x)\approx \sigma^2$ и усеченное нормальное распределение достаточно точно аппроксимируется обычным нормальным распределением. Дополнительные сведения об усеченном нормальном распределении можно найти в [3,c.143 и 395; 15,c. 119; 21, c. 429].

Теоретическая частость (вероятность) будет равна:

$$\begin{split} p_{Ti} &= F_0\left(t_4\right) - F_0\left(t_3\right) = \\ &= C \Bigg(\frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{t_4} e^{-t_4^2/2} \cdot dt - \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{t_3} e^{-t_3^2/2} \cdot dt - \frac{2}{\sqrt{2\pi}} \int\limits_{-\infty}^{t_1} e^{-t_1^2/2} \cdot dt \, \Bigg), \end{split}$$
 где $t_3 = \frac{k-a}{\sigma}, \ t_4 = \frac{l-a}{\sigma},$

k — левая граница интервала,

l — правая граница интервала.

10.2.2 Логарифмически нормальное распределение

Случайная величина имеет логарифмически нормальное распределение, если логарифм этой величины распределен нормально.

Плотность и функция распределения определяются по формулам:

$$f(x) = \frac{1}{x\sigma_{JI}\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma_{JI}^2}};$$

$$F(x) = \int_{0}^{x} f(x) \cdot dx = \frac{1}{\sigma_{\pi} \sqrt{2\pi}} \int_{0}^{x} \frac{1}{x} e^{-\frac{(\ln x - \mu)^{2}}{2\sigma_{\pi}^{2}}} \cdot dx.$$

Обозначив $y = \frac{\ln x - \mu}{\sigma_{JJ}}$, имеем $\sigma_{JJ} \cdot dy = \frac{1}{x} dx$; $dx = x \cdot \sigma_{JJ} dy$ и

$$F(y) = \frac{1}{\sqrt{2\pi}} \int_{0}^{y} e^{-\frac{y^2}{2}} dy$$
 находим по y в [15, табл. 1.2].

Оценки параметров распределения μ и $\sigma_{\it Л}$ определяются для дискретного ряда по формулам:

$$\mu \approx \widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \ln x_i, \quad \sigma_{\mathcal{J}}^2 \approx \widehat{\sigma}_{\mathcal{J}}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\ln x_i - \mu)^2$$

и для интервального ряда по формулам:

$$\mu \approx \widehat{\mu} = \sum_{i=1}^{l} p_i \ln x_i$$
, $\sigma_{\pi}^2 \approx \widehat{\sigma}_{\pi}^2 = \sum_{i=1}^{l} p_i \left(\ln x_i - \mu \right)^2$,

где l — количество интервалов.

Плотность распределения можно записать в следующем виде:

$$f(x) = \frac{1}{x\sigma_{\pi}} \varphi_0(t),$$

где $t = \frac{\ln x - \mu}{\sigma_{\pi}}$ — нормированное отклонение.

Значения $\varphi_0(t)$ определяются по таблицам плотности нормированного и центрированного распределения, например по [15, табл. 1.1.].

Дополнительные сведения о логарифмически нормальном распределении можно найти в [3, с. 207; 6, с. 54; 14; 15, с. 75 и 157; 20, с. 160; 21, с. 431].

10.2.3 Распределение Рэлея

Распределение Рэлея относится к семейству однопараметрических распределений. Плотность и функция распределения определяются по формулам, если $0 < x < \infty$:

$$f(x) = \frac{x}{\sigma_1^2} e^{-\frac{x^2}{2\sigma_1^2}},$$

$$F(x)=1-e^{-\frac{x^2}{2\sigma_1^2}},$$

где σ_1 — параметр распределения.

Определить параметр распределения можно по методу максимального правдоподобия. Функция правдоподобия имеет вид:

$$L(x_1,...,x_n,\sigma_1) = \prod_{i=1}^n f(x_i,\sigma_1) =$$

$$= \prod_{i=1}^n \frac{x_i}{\sigma_1^2} e^{-\frac{x_i^2}{2\sigma_1^2}} = \frac{1}{\sigma_1^{2n}} e^{-\frac{1}{2\sigma_1^2} \sum_{i=1}^n x_i^2} \prod_{i=1}^n x_i^2.$$

Логарифмируем полученное выражение:

$$\ln L = \ln \frac{1}{\sigma_1^{2n}} - \frac{1}{2\sigma_1^2} \sum_{i=1}^n x_i^2 + \sum_{i=1}^n \ln x_i.$$

Находим частную производную и приравниваем ее нулю:

$$\frac{\partial \ln L}{\partial \sigma_1} = -\frac{2n}{\sigma_1} + \frac{1}{\sigma_1^3} \sum_{i=1}^n x_i^2 = 0.$$

Отсюда оценка параметра распределения равна:

$$\hat{\sigma}_1^2 = \frac{1}{2n} \sum_{i=1}^n x_i^2 .$$

Если использовать метод моментов, то:

$$\begin{cases} m_1(x) = \mathsf{v}_1(x) \Rightarrow m = \overline{x} \approx 1,25\sigma_1; \\ M_2(x) = \mathsf{\mu}_2(x) \Rightarrow \sigma^2 = S^2 \approx 0,43\sigma_1^2. \end{cases}$$

Откуда оценки параметра распределения получаются следующие:

$$\widehat{\sigma}_1 = 0.8\overline{x}$$
 или $\widehat{\sigma}_1 = 1.525S$.

Связь между m и σ_1 устанавливается выражением

$$\sigma_1 = 0.524m$$
.

Если распределение Рэлея начинается не с нуля, а меняется в пределах от b до ∞ , где $b=x_{_{\it MUH}}-h$ (сдвинутое распределение Релея), то для расчетов следует использовать выражения:

$$f(x) = \frac{x - b}{\sigma_1^2} e^{-\frac{(x - b)^2}{2\sigma_1^2}},$$

$$F(x) = 1 - e^{-\frac{(x - b)^2}{2\sigma_1^2}},$$

$$\hat{\sigma}_1^2 = \frac{1}{2n} \sum_{i=1}^n (x_i - b)^2.$$

При этом расчет $\hat{\sigma}_1^2$ следует вести по вариационному ряду. Для интервального и дискретного рядов используются выражения:

$$\widehat{\sigma}_1^2 = \frac{1}{2} \sum_{i=1}^n p_i (x_i - b)^2$$
 или $\sigma_1 = 1,525S$.

Если эмпирическое распределение имеет левостороннюю асимметрию, то для его расчетов можно использовать распределение Рэлея с так называемым обращенным аргументом, которое лежит в пределах от $-\infty$ до d, где $d = x_{\text{макс}} + h$. Используются следующие формулы:

$$f(x) = \frac{d-x}{\sigma_1^2} e^{-\frac{(d-x)^2}{2\sigma_1^2}};$$
$$F(x) = e^{-\frac{(d-x)^2}{2\sigma_1^2}};$$
$$\hat{\sigma}_1^2 = \frac{1}{2n} \sum_{i=1}^n (d-x_i)^2.$$

При этом расчет $\hat{\sigma}_1^2$ также ведется по вариационному ряду. Для интервального и дискретного рядов:

$$\hat{\sigma}_1^2 = \frac{1}{2} \sum_{i=1}^n p_i (d - x_i)^2$$
.

Если для случая $0 < x < \infty$ мода равна $\mu_0 = \sigma_I$, то для случая $-\infty < x < d$ мода равна $\mu_0 = d - \sigma_1$. Для обоих случаев:

$$f(x=\mu_0)=\frac{1}{\sigma_1}e^{-\frac{1}{2}}$$
.

Дополнительные сведения о распределении Рэлея можно найти в [21, с. 432; 22, с. 36].

10.2.4 Некоторые другие распределения, отличные от нормального

В связи с ограниченным объемом данного пособия укажем лишь литературу для некоторых распределений.

Сведения об определении параметров распределений методом моментов или методом максимального правдоподобия, а также формулы для расчетов плотности и функции распределения и различных моментов можно найти:

- для экспоненциального распределения в [3, с. 219; 10,
 с. 34 и 38; 15, с. 154; 20, с. 170; 21, с. 417; 22, с. 35];
- для усеченного экспоненциального распределения в [15, c. 120];
- для сдвинутого экспоненциального распределения в [34, с. 90];
- для распределения Вейбулла в [3, с. 223 и 393; 14; 15,
 с. 39 и 155; 20, с. 177; 21, с. 425; 22, с. 38; 24, с. 235; 27, с. 14; 33];
- для гамма-распределения в [3, с. 212; 9, с. 247 и 255; 15, с. 67; 20, с. 163; 21, с. 424; 22, с. 39; 23, с. 504; 24, с. 228];
 - для распределения Эрланга в [21, с. 422; 22, с. 37];
 - для распределения Максвелла в [21, с. 434];
 - для бэта-распределения в [9, с. 250 и 257].

Многочисленные распределения типа 1-VII (кривые Пирсона) приведены в [9, с. 273].

Указанные распределения могут иметь также левостороннюю (отрицательную) асимметрию, что требует их использования с обращенным аргументом.

11 ПРОВЕРКА ПРАВИЛЬНОСТИ ВЫБОРА ТЕОРЕТИЧЕСКОГО ЗАКОНА РАСПРЕДЕЛЕНИЯ ПО КРИТЕРИЯМ СОГЛАСИЯ

Для проверки соответствия (степени близости, согласия) выбранного теоретического распределения эмпирическому наиболее часто применяют критерии согласия Колмогорова, Пирсона (ХИ-квадрат — χ^2) и Мизеса (омега-квадрат ω^2). Необходимо отметить, что при проверке гипотез существует неопределенность. Критерии согласия, позволяя отбросить ту или иную гипотезу, как противоречащую опытным данным, не дают основания предпочесть одно теоретическое распределение другому, если они не отвергаются.

Число наблюдений случайной величины должно быть больше 100, если используются критерии Колмогорова и Пирсона, и больше 50, если используется критерий Мизеса [1]. Эти критерии применяются только для непрерывных распределений, хотя, как указано в [28,с.52], критерий Пирсона можно использовать и для дискретных распределений. Наиболее простым является критерий Колмогорова, наиболее мощным — Мизеса.

11.1 Критерий Колмогорова

Этот критерий применим в том случае, когда параметры теоретического закона распределения определяются не по данным исследуемой выборки. Такой случай сравнительно редко встречается на практике. Поэтому все же критерий Колмогорова, как более простой, применяется и тогда, когда параметры теоретического распределения определяются по статистическим данным. Однако при этом критерий дает заведомо завышенные значения вероятности $p(\lambda)$, и в ряде случаев мы рискуем принять как правдоподобную гипотезу, в действительности плохо согласующуюся с опытными данными.

При использовании критерия необходимо помнить, что критерий Колмогорова можно применять только для дискретного ряда распределения, так как при группировании опытных данных в интервалы и последующем применении критерия можно непра-

вильно определить вероятность наибольшего отклонения теоретической кривой от экспериментальной [2]. В критерии Колмогорова, как и в большинстве других, для проверки соответствия эмпирического распределения выбранному теоретическому используются отклонения эмпирических частостей от теоретических. Очевидно, что чем больше это отклонение, тем хуже теоретическое распределение описывает эмпирическое.

За меру расхождения между теоретическим и эмпирическим распределениями в критерии Колмогорова принимается наибольшее значение абсолютной величины модуля разности между эмпирической $F_{\mathfrak{I}}(x)$ и теоретической $F_{T}(x)$ функциями распределения случайной величины:

$$D = \text{макс} \left| F_{\mathcal{I}}(x) - F_{T}(x) \right| = \text{макс} \left| P_{Hi} - P_{HTi} \right| = \frac{\text{макс} \left| H_{i} - H_{Ti} \right|}{n}.$$

Умножая наибольшее значение на \sqrt{n} , получаем число $\lambda = D\sqrt{n}$,

для которого по табл. 12 находим соответствующее значение вероятности $P(\lambda)$, т.е. вероятность того, что наибольшее отклонение $F_{\ni}(x)$ от $F_T(x)$ превысит некоторое заданное число λ/\sqrt{n} :

$$P(x) = eep\left\{D \ge \frac{\lambda}{\sqrt{n}}\right\}.$$

Таблица 12

λ	$P(\lambda)$	λ	$P(\lambda)$	λ	$P(\lambda)$	λ	$P(\lambda)$
≤ 0,30	1,0000	0,70	0,7112	1,20	0,1122	2,00	0,0007
0,35	0,9997	0,75	6272	1,30	0681	2,10	0003
0,40	9972	0,80	5441	1,40	0397	2,20	0001
0,45	9874	0,85	4653	1,50	0222	2,30	0001
0,50	9639	0,90	3927	1,60	0120	2,40	0000
0,55	9228	0,95	3275	1,70	0062	2,50	0000
0,60	8643	1,00	2700	1,80	0032	2,60	0000
0,65	7920	1,10	1777	1,90	0015	2,70	0000

Согласие между $F_{\Im}(x)$ и $F_{T}(x)$ считается хорошим при $P(\lambda) \ge 0.27$, т.е. при $\lambda \le 1$, и тем лучше, чем ближе $P(\lambda)$ к единице.

Если же вероятность отклонения $P(\lambda)$ получается малой (менее 0,05...0,01), то это означает, что мала вероятность такого случайного отклонения эмпирической функции распределения от теоретической, которое наблюдалось при опыте. Иначе говоря, наблюдаемое отклонение $F_{\Im}(x)$ от $F_{T}(x)$, по-видимому, не случайно и теоретическое распределение не согласуется с эмпирическим.

Таблица 13

Пара- метр \mathcal{X}_i	n_{i}	H_{i}	$p_{_{\scriptscriptstyle Hi}}$	$t = \frac{x_i - a}{\sigma}$	$\frac{1}{2}\Phi(t)$	$F_T(x) = p_{HTi}$	$p_{Hi} - p_{HTi}$
800	2	2	0,010	-2,18	-0,4855	0,0145	-0,0045
805	5	7	0,035	-1,87	-0,4695	0,0305	0,0045
810	6	13	0,065	-1,56	-0,4405	0,0595	0,0055
815	8	21	0,105	-1,25	-0,3945	0,1055	0,0005
820	18	39	0,195	-0,94	-0,3265	0,1735	<u>0,0215</u>
825	16	55	0,275	-0,63	-0,2355	0,2645	0,0105
830	24	79	0,395	-0,31	-0,1215	0,3785	0,0165
835	23	102	0,510	0	0	0,5000	0,0100
840	24	126	0,630	0,31	0,1215	0,6215	0,0085
845	20	146	0,730	0,63	0,2355	0,7355	-0,0055
850	18	164	0,820	0,94	0,3265	0,8265	-0,0065
855	15	179	0,895	1,25	0,3945	0,8945	0,0005
860	8	187	0,935	1,56	0,4405	0,9405	-0,0055
865	6	193	0,965	1,87	0,4695	0,9695	-0,0045
870	7	200	1,000	2,18	0,4855	0,9855	0,0145
	200						

Проверим согласие эмпирического и теоретического распределений для примера, приведенного в табл. 1. Для расчета нормальной функции распределения, соответствующей дискретному ряду распределения, используем формулу:

$$F_T(x) = \frac{1}{2} + \frac{1}{2} \Phi\left(\frac{x-a}{\sigma}\right).$$

Значения x_i , n_i , H_i и p_{Hi} берем из табл. 6.

Все вычисления приведены в табл. 13.

Определение согласия проведем через накопленные частости

$$D_{\text{макс}} = \text{макс} \left| P_{Hi} - P_{HTi} \right| = 0,0215,$$

 $\lambda = D_{\text{макс}} \sqrt{n} = 0,0215 \cdot \sqrt{200} = 0,304.$

По табл. 12 имеем $P(\lambda) = P(0,304) \approx 1.000$.

Следовательно, согласие между эмпирическим и теоретическим нормальным распределением хорошее.

Критерий Колмогорова используется также в графическом методе для проверки правильности выбора теоретического распределения, так как приближенная визуальная оценка согласия явна недостаточна.

По графикам, построенным на вероятностной бумаге, определяется наибольшее отклонение $D_{\text{макс}}$ теоретической функции распределения от эмпирической. Для этого следует на вероятностной бумаге взять ту экспериментальную точку, которая наиболее далеко отстоит от аппроксимирующей прямой, соответствующей теоретической функции распределения, и найти по ординате расстояние между этой точкой и прямой. Затем определяется $\lambda = D\sqrt{n}$. Согласие считается хорошим, если $\lambda \leq 1$, что соответствует вероятности отклонения $P(\lambda) \geq 0.27$.

Для рассмотренного примера (рис.6) $D_{\text{макс}} = 0.01$. При этом $\lambda = 0.01\sqrt{200} = 0.141 < 1$. Следовательно, согласие хорошее. Но так как при неизвестных параметрах генеральной совокупности критерий Колмогорова может оказаться весьма не точным, то после проверки согласия закона, выбранного графическим способом, следует степень соответствия эмпирического и теоретического распределений уточнить с помощью критерия Пирсона.

11.2 Критерий Пирсона(ХИ-квадрат)

Обычно числовые параметры теоретического распределения определяются по имеющемуся статистическому материалу (выборке). При этом найденные числовые параметры распределения будут отличаться от числовых параметров распределения, справедливого для генеральной совокупности. В отличие от критерия Колмогорова это обстоятельство не влияет на результат оценки согласия между эмпирическим и теоретическим распределениями по критерию Пирсона, так как в последнем путем уменьшения

числа степеней свободы распределения χ^2 учитывается то, что числовые параметры определены по выборочной совокупности.

Рекомендуется [1], чтобы при применении критерия Пирсона объем выборки был не менее 100, а частоты в интервалах были не менее 10. Если частота в каком-либо интервале менее 10, то целесообразно объединить этот интервал с соседним, чтобы в новом интервале частота оказалась не менее 10. Практически, однако применяеют критерий Пирсона при $n \ge 50...60$ и $n_i \ge 5...8$.

При использовании критерия Пирсона вычисляется вероятность следующего вида:

$$P(\chi^2 \le \Delta < \infty),$$

где Δ — мера расхождения.

Обычно полагают $\Delta = \chi^2$ и далее оценивают χ^2 по формуле:

$$\chi^2 = \sum_{i=1}^l \frac{\left(n_i - n_{Ti}\right)^2}{n_{Ti}}.$$

Затем определяют число степеней свободы:

$$k = l - q - 1,$$

где q — число используемых параметров теоретического распределения.

По таблицам квантилей XИ-квадрат распределения (см. Приложение 6), определяют согласие между эмпирическим и теоретическим распределениями. При пользовании таблицами следует уточнить для данного источника, при каких значениях доверительной вероятности согласие считается хорошим. Так, одни и те же значения квантилей XИ-квадрат даны в одних источниках для P_{∂} , а в других — для $(1-P_{\partial})$.

Определим согласие для рассмотренного примера, приведенного в табл. 1. В табл. 10 для него было рассчитано нормальное распределение. Расчет критерия ХИ-квадрат приведен в табл. 14.

Число степеней свободы равно:

$$k = 8 - 2 - 1 = 5$$
,

где l = 8 — количество интервалов;

q=2 — количество параметров нормального распределения (a и σ).

Таблица 14

Номера Интерва- лов	Интерва- лы в – с	n_i	n_{Ti}	$n_i - n_{Ti}$	$(n_i - n_{Ti})^2$	$\frac{\left(n_i - n_{Ti}\right)^2}{n_{Ti}}$
1	795—805	7	4,9	2,1	4,41	0,900
2	805—815	14	15,0	-1,0	1,00	0,067
3	815—825	34	31,8	2,2	4,84	0,152
4	825—835	47	47,1	-0,1	0,01	0,000
5	835—845	44	47,1	-3,1	9,61	0,204
6	845—855	33	31,8	1,2	1,44	0,045
7	855—865	14	15,0	-1,0	1,00	0,067
8	865—875	7	4,9	2,1	4,41	0,900
		200			$\chi^2 =$	2,235

В таблице, приведенной в [15], при k=5 и $\frac{\chi^2}{k}=\frac{2,235}{5}=0,467$ находим $P_{\partial}=0,20$, т.е. согласие хорошее. Если пользоваться таблицей, приведенной в [22], то при k=5 и $\chi^2=2,335$ имеем $P_{\partial}'=0,8$. Это свидетельствует о том, что с уверенностью не менее чем 80 % можно полагать, что эмпирическое распределение мало отличается от выбранного нормального закона распределения.

Видно, что $P'_{\partial} = 1 - P_{\partial}$. При пользовании таблицей, приведенной в [10], находим, что рассчитанное значение χ^2 меньше любого, приведенного в строке для k=5. Это свидетельствует о хорошем согласии эмпирического и теоретического распределений.

При использовании критерия XИ-квадрат следует иметь в виду, что проверка согласия должна проводиться не в пределах гистограммы, а в пределах выбранной теоретической кривой. То есть, если площадь, ограниченная теоретической кривой, не вся заполнена гистограммой или полигоном, то ее свободная часть должна быть разделена на интервалы, для них определены теоретические частоты (частости) и они должны быть внесены в таблицу для расчета критерия XИ-квадрат.

Критерий XИ-квадрат, как указывалось выше, рекомендуется применять после выбора графическим способом закона распределения и проверки согласия по критерию Колмогорова с целью уточнения степени соответствия эмпирического и теоретиче-

ского распределений. Для этого предлагается следующий способ [30]. Статистический ряд разбивается на равновероятные интервалы. При этом $P_i = 1/l$, где l — количество интервалов, и критерий ХИ-квадрат:

$$\chi^2 = \sum_{i=1}^{l} \frac{\left(n_i - np_i\right)^2}{np_i}$$

можно записать в следующем виде:

$$\chi^2 = \frac{l}{n} \sum_{i=1}^{l} n_i^2 - n.$$

Рекомендуется следующий порядок вычисления критерия.

- 1. Выбирается количество равновероятных интервалов. Для удобства пользования вероятностной бумагой целесообразно принять при $n \le 50$, l=5 интервалы с $P_i=0,2$, при $50 < n \le 500$, l=10 интервалы с $P_i=0,1$, при n > 500, l=20 интервалы с $P_i=0,05$.
- 2. Отрезок 0—1 шкалы накопленных частостей вероятностной бумаги делится на l равных частей, длина которых равна P_i . Границы этих частей проектируются на прямую линию F(x), выравнивающую экспериментальные точки. Проекции полученных на этой прямой точек на ось абсцисс покажут границы равновероятных интервалов группирования x_i . В качестве нижней (левой) границы первого интервала принимается минимальное значение гипотетического распределения. За верхнюю (правую) границу последнего интервала принимается значение $+\infty$.
- 3. Устанавливается n_i число значений экспериментальных данных, попавших в каждый i-й равновероятностный интервал.
 - 4. По формуле:

$$\chi^2 = \frac{l}{n} \sum_{i=1}^{l} n_i^2 - n$$

рассчитывается мера расхождения χ^2 между экспериментальными данными и теоретическим распределением.

5. Определяется число степеней свободы:

$$r = l - q - 1$$
.

6. По рассчитанным значениям χ^2 и r при помощи таблицы XИ-квадрат определяется согласие.

Номер интервала	x_i	n_i	n_i^2
1			
•			
•			
•			
•			
			,

При расчетах используется следующая таблица:

11.3 Критерий Мизеса (омега-квадрат)

Этот критерий носит иногда название критерий Крамера—Мизеса—Смирнова.

Статистическая характеристика критерия представляет собой взвешенную сумму квадратов отклонений эмпирической функции от теоретической:

$$\omega_n^2 = \int_{-\infty}^{\infty} \left[F_{\mathcal{T}}(x) - F_T(x) \right]^2 \cdot \psi \left[F_T(x) \right] \cdot dF_T(x),$$

где $\psi \lceil F_T(x) \rceil$ — весовая функция.

При $\psi[F_T(x)]=1$ все значения функции распределения обладают одинаковым весом. В этом случае критерий определяется по формуле:

$$\omega^{2} = \sum \left[F_{\mathcal{T}}(x) - F_{T}(x) \right]^{2}.$$

Характерной особенностью критерия является то, что в нем учитываются все отклонения эмпирической функции распределения от теоретической, так как он применяется только для дискретного ряда, т. е. используются индивидуальные, а не сгруппированные данные. Это обстоятельство приводит к большому количеству вычислений. При применении критерия к интервальному ряду значения ω^2 вычисляются приближенно. Сведения по использованию критерия Мизеса можно найти в [1, 29].

12 УТОЧНЕНИЕ ДОСТОВЕРНОСТИ ОЦЕНОК ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

После установления согласия теоретического и эмпирического распределений следует уточнить достоверность оценок параметров теоретического распределения путем определения доверительных интервалов. Последние могут быть точно определены только в случае известных законов распределения. Методику определения доверительных интервалов для различных законов распределения можно найти в следующей литературе:

- для логарифмически нормального [6, с. 55; 15, с. 179);
- для экспоненциального [3, с. 217; 15, с. 165];
- для Вейбулла [15, с. 176];
- для гамма [15, c. 178].

13 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ

Для характеристики тесноты связи между двумя случайными величинами, относящимися к двумерной выборке, в статистике используется эмпирический коэффициент корреляции. Он вычисляется при достаточно большом объеме выборки (n≥50) по формуле:

$$r = \frac{m_{12}}{S_X \cdot S_Y},$$

где
$$m_{12} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$
 — эмпирический корреляционный момент.

Для определения коэффициента корреляции должна быть проведена обработка эмпирических данных x и y, полученных в результате исследования выборки, и определены выборочные средние \overline{x} и \overline{y} , а также выборочные среднеквадратические отклонения S_X и S_Y . Полученное значение r является точечной состоятельной оценкой коэффициента корреляции генеральной совокупности — ρ .

Средняя квадратическая ошибка приближенно равна:

$$\sigma_r \approx \frac{1-r^2}{\sqrt{n}}$$
.

Следовательно, можно приближенно считать, что р лежит в пределах:

$$r - 3\sigma_r \le \rho \le r + 3\sigma_r$$
.

При оценке надежности коэффициента корреляции важно убедиться в том, что абсолютная величина коэффициента корреляции превышает вычисленную ошибку по крайней мере в 3 раза, т.е. $r/\sigma_r > 3$ [2]. Более полные сведения по оценке точности коэффициента корреляции можно найти в [2, с. 241; 6, с. 113; 9, с. 359; 10, с. 142; 11, с. 294; 20, с. 203].

Определение коэффициента корреляции проводится по дискретному ряду с помощью таблицы следующего вида:

x_i	\mathcal{Y}_i	n_{i}	$x_i * n_i$	$y_i * n_i$	$x_i - \overline{x}$	$y_I - \overline{y}$	$(x_i - \overline{x})^2 n_i$	$(y_i - \overline{y})^2 n_i$	$(X_i - \overline{X}) * * (Y_i - \overline{Y}) * n_i$
18,0	0,5	3	54,0	1,5	-6	-0,2	108	0,12	3,6
		$\sum n_i$	$\sum x_i n_i$	$\sum y_i n_i$			$\sum_{*n_i} (x_i - \overline{x})^2$	$\sum_{*n_i} (y_i - \overline{y})^2$	Σ

где:

$$n = \sum n_{i}; \quad \overline{x} = \frac{1}{n} \sum x_{i} n_{i}; \quad \overline{y} = \frac{1}{n} \sum y_{i} n_{i};$$

$$S_{x}^{2} = \frac{1}{n} \sum (x_{i} - \overline{x})^{2} n_{i}; \quad S_{y}^{2} = \frac{1}{n} \sum (y_{i} - \overline{y})^{2} n_{i};$$

$$m_{12} = \frac{1}{n} \sum (x_{i} - \overline{x}) (y_{i} - \overline{y}) n_{i}.$$

Для упрощения вычислений можно выбрать новое начало отсчета и масштаб измерения величин X и Y [6, c. 110].

14 ЗАКЛЮЧЕНИЕ

Приведенный объем статистической обработки опытных данных достаточен для ознакомления с этой процедурой. После освоения предложенного минимума можно переходить к более сложным случаям и методам, к использованию ЭВМ для обработки результатов наблюдений, экспериментов и т. п. Это позволяет осуществить та многочисленная литература, которая издана по рассматриваемому вопросу.

15 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ПРОЕКТА ПО КУРСУ «ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОЕКТИРОВАНИЯ, ПРОИЗВОДСТВА И НАДЕЖНОСТИ ЭВС»

15.1 Введение

Курсовая работа на тему: «Статистическая обработка опытных данных» по курсу «Теоретические основы проектирования, производства и надежности ЭВС» (ТОППиН) выполняется студентами специальности 210202 на третьем курсе. Цель курсовой работы на указанную тему заключается в углубленном изучении и практическом освоении методики статистической обработки результатов, полученных в ходе различного рода исследований и испытаний аппаратуры при ее разработке и производстве. Конструктор-технолог принимает в них самое непосредственное участие. Единая тема курсовой работы всех студентов обусловлена ее важностью для практической деятельности конструктора-технолога.

Методические указания составлены с целью обучения студентов выполнению и оформлению расчетных материалов по статистике, а также для достижения единообразия и соответствия государственным стандартам в оформлении расчетных работ.

15.2 Общие требования к выполнению и оформлению курсовой работы

15.2.1 Курсовая работа выполняется в соответствии с требованиями ГОСТ 2.105-99 ЕСКД или ОС ТУСУР 6.1-97. Допускается основные надписи для текстовых документов (формы 2 и 2а ГОСТ 2.104-68 ЕСКД) выполнять на первых двух листах текста.

- 15.2.2 Курсовая работа должна быть сброшюрована и прошита.
- 15.2.3 Титульный лист выполняется по прилагаемому образцу (Приложение 7), задание по форме, приведенной в Приложении 8.
- 15.2.4 Курсовая работа должна быть написана грамотно и аккуратно. Сокращение слов, кроме общепринятых, не допускается.
 - 15.2.5 В тексте должны быть выделены заголовки разделов.
- 15.2.6 В тексте обязательны ссылки на использованную литературу. Они выполняются в виде номера источника из перечня литературы, помещенного в квадратные скобки, например: [5].
- 15.2.7 Все исходные и расчетные данные должны сводиться в таблицы для удобства расчетов и проверки.
- 15.2.8 Графики выполняются на рисунках, помещенных в тексте или вынесенных в приложение.
- 15.2.9 Количество интервалов, как правило, должно обеспечивать гистограмму (полигон) без провалов.
- 15.2.10 Численные характеристики (статистики) распределения должны определяться только способом «условного нуля».
- 15.2.11 При отсутствии согласия для первого выбранного закона, рассчитывается второй закон. Если он также не подходит, то расчет все равно заканчивается. В этом случае согласие по критерию Пирсона (ХИ-квадрат) проверяется для двух законов, а по критерию Колмогорова для того, у которого лучше сходимость по критерию ХИ-квадрат. Проверка по критерию Колмогорова проводится только для дискретного ряда.
- 15.2.12 Не следует в качестве одного из двух законов использовать нормальный закон, если он явно не подходит.
- 15.2.13 Обрабатываемые случайные величины должны в курсовой работе обозначаться так же, как и в действительности, например ток l, размер l, диаметр d, но не X.
- 15.2.14 При несоответствии работы предъявляемым требованиям она возвращается для доработки.

15.3 Требования к выполнению и оформлению расчетов и таблиц

- 15.3.1 Расчеты и таблицы должны быть выполнены четко и аккуратно.
- 15.3.2 Расчеты по формулам должны выполняться следующим образом: записывается формула, затем подставляются числовые значения входящих в нее величин и только потом записывается результат и проставляется его размерность.
- 15.3.3 Точность расчета должна быть везде одинакова, не более 3—4 значащих цифр.
- 15.3.4 Таблицы, в которые сводятся результаты расчета теоретических кривых, должны иметь столько столбцов, сколько их необходимо для отражения последовательности расчета по формуле. Например, для распределения Рэлея:

$$f(x) = \frac{x}{\sigma_1^2} e^{-\frac{x^2}{2\sigma_1^2}}$$

таблица должна содержать, в числе других, следующие графы:

Интервалы	$X_{\rm i}$	$\frac{x_i}{\sigma_1^2}$	$t = \frac{x_i^2}{2\sigma_1^2}$	e^{-t}	f(x)		

- 15.3.5 В конце таблицы должен быть контроль по частостям и частотам, кроме таблиц для интегральных кривых.
- 15.3.6 После каждой таблицы должен быть приведен пример расчета одной строки в соответствии с пунктом 3.2.
- 15.3.7 При расчете любого теоретического закона следует обязательно определять координаты вершины.
- 15.3.8 В тексте курсовой работы должны быть ссылки на таблицы и рисунки. Например, результаты расчета приведены в таблице 6.2; кривая, рассчитанная в таблице 6.2, приведена на рисунке 2.1.

15.4 Требования по выполнению и оформлению графического материала

- 15.4.1 Графический материал выполняется на чертежной или писчей бумаге.
- 15.4.2 Рисунки должны быть выполнены четко и аккуратно и снабжены необходимыми подписями и обозначениями.
- 15.4.3 При построении кривых распределения рекомендуется пользоваться «правилом золотого сечения», по которому высота чертежа должна составлять 5/8 основания.
- 15.4.4 Эмпирические и теоретические распределения должны располагаться на одном рисунке, например, гистограмма и дифференциальная функция распределения, кумулятивная кривая и интегральная функция распределения.
- 15.4.5 Теоретические кривые распределения всегда изображаются плавными кривыми.
- 15.4.6 Теоретические кривые обязательно должны начинаться и кончаться на оси абсцисс, а «не висеть в воздухе». Начало в точке X_{min} _ h/2 или X_{min} h, конец в точке X_{max} + h/2 или X_{max} + h, где h ширина интервала.
- 15.4.7 Если площадь под теоретической кривой не вся заполнена гистограммой или полигоном, то свободная часть ветви кривой теоретического распределения должна быть также разделена на интервалы, подсчитаны для них частоты и частости, и они должны быть внесены в таблицы расчетов теоретической кривой и согласия по критерию Пирсона (ХИ-квадрат).

15.5 Варианты заданий на курсовой проект

№				
опыта	x_{I}	x_2	x_3	У
1	1,09985	7,66054	7,33286	80,06786
2	0,99998	7,23868	5,39765	65,48767
3	1,15908	7,75902	6,33223	75,20557
4	1,12773	6,50359	7,31220	72,15308
5	0,73498	7,60574	6,65431	74,08051
6	0,90609	7,36819	6,00417	69,46459
7	1,11592	7,26191	6,40205	72,00871
8	1,26195	7,18567	6,36286	71,92889
9	1,22459	7,21842	6,98550	75,59607
10	0,99436	6,77096	6,09617	66,31372
11	1,01181	6,78357	6,95155	71,44537
12	1,20784	7,23289	6,24762	71,33515
13	1,48463	7,54725	6,73205	77,56923
14	1,14599	6,45291	5,79009	63,05448
15	0,99635	7,41388	6,11597	70,84040
16	0,88889	7,17055	7,27061	75,38359
17	0,95074	7,31389	5,97731	69,14165
18	1,05944	7,12224	5,96034	68,22923
19	0,89298	6,71280	6,82659	69,69034
20	1,04309	7,29932	6,48181	72,39389
21	1,43217	7,31292	5,75924	70,07710
22	1,25787	7,65848	6,77649	77,54893
23	0,46712	8,25092	6,91106	78,76054
24	1,12446	7,13960	6,98994	74,62285
25	1,10565	6,61541	6,48428	68,01179
26	0,88751	6,77865	6,55368	68,53203
27	0,66104	8,29795	6,59114	78,11487
28	1,08155	7,34136	6,04763	70,33782
29	0,85587	7,76979	6,11192	72,60983
30	1,29494	7,78814	6,63257	77,77142
31	0,96196	7,88660	6,19550	74,38151
32	1,23707	7,31666	6,39043	72,87180
33	1,12756	8,44149	6,08313	78,28852
34	0,92496	6,90551	6,61932	69,95356
35	0,81384	7,81812	6,97196	77,74036
36	1,20588	6,53268	6,42268	67,54739

№	24	30	30	.,
опыта	x_I	x_2	x_3	У
37	1,46262	7,81809	7,00972	80,93472
38	1,03728	6,67047	6,11494	65,93135
39	0,80933	7,08595	6,84878	71,99079
40	1,35942	7,43612	6,76160	76,40551
41	1,36131	7,63134	6,00553	73,36231
42	1,18114	7,14778	6,61885	72,78474
43	0,76518	7,21624	6,55405	70,96976
44	0,73362	7,45342	6,59804	72,70450
45	0,87679	7,02283	6,18723	68,02779
46	1,49085	7,84457	6,62772	79,02824
47	1,33640	7,32660	6,49785	74,01899
48	1,09463	7,40813	6,59981	74,06029
49	0,97201	6,63372	5,77664	63,41663
50	1,16563	6,91623	6,24148	68,93744

$\mathcal{N}_{\underline{0}}$	74	74	74	
опыта	x_1	x_2	x_3	У
1	2,56303	6,15134	1,19195	151,40031
2	3,40307	6,39286	1,20898	146,29286
3	3,33099	6,23762	1,25288	145,92197
4	2,34555	6,35226	1,29119	135,77279
5	3,33061	6,20912	1,20397	151,38406
6	3,69265	6,34756	1,36877	133,11309
7	3,36717	6,34994	1,21850	146,38721
8	2,80503	6,72839	1,22897	133,41041
9	3,87611	6,57079	1,30581	133,90719
10	2,49037	6,13640	1,21190	149,62209
11	2,88395	6,34042	1,31134	136,01888
12	2,15555	6,26728	1,13053	152,82938
13	3,02296	6,32794	1,30145	137,78525
14	3,44472	5,84717	1,18649	163,04014
15	2,43040	5,91156	1,25279	151,42490
16	4,45104	6,28264	1,24829	149,06026
17	3,89038	6,27751	1,28418	143,79861
18	2,68155	6,13507	1,15795	155,51669
19	2,37525	6,07791	1,22739	152,75603
20	3,76837	5,96297	1,33892	146,42574

$\mathcal{N}_{\underline{0}}$	34	34	34	.,
опыта	x_{I}	x_2	x_3	У
21	2,70525	6,43300	1,29154	134,85404
22	3,71465	6,75932	1,29743	129,16481
23	2,96347	6,44352	1,22578	141,80565
24	3,69187	6,32037	1,25989	144,31375
25	3,92993	6,01585	1,18498	160,41065
26	3,07950	6,14214	1,09653	162,62762
27	3,07392	6,58615	1,29945	131,32290
28	3,25361	6,37501	1,23385	143,85116
29	2,41049	6,28413	1,29377	137,55314
30	2,64456	6,12462	1,31311	140,72499
31	4,13275	6,93584	1,22259	133,15490
32	3,63676	6,58052	1,01740	160,58709
33	3,41352	6,31356	1,23820	145,61366
34	4,91912	6,15789	1,14220	164,21283
35	3,39774	5,96911	1,25440	155,90013
36	3,33612	6,62014	1,31477	129,86097
37	3,70060	7,26506	1,19877	125,23547
38	1,58808	6,66388	1,26067	127,83203
39	3,10747	6,48623	1,34865	129,34649
40	3,14249	6,55026	1,13638	148,21229
41	3,11900	6,50178	1,19719	143,55855
42	2,76262	5,95103	1,11975	164,34623
43	3,58763	6,15066	1,16312	157,75830
44	2,67025	6,44579	1,29372	134,18472
45	2,56250	6,12720	1,16238	154,88425
46	4,02923	6,73724	1,14103	145,90228
47	3,02951	5,63541	1,30900	155,40303
48	3,71957	6,10022	1,33821	142,69307
49	4,12356	6,53187	1,25981	140,22716
50	3,75674	6,30218	1,27280	143,77764

Вариант 3

No॒				
опыта	x_1	x_2	x_3	У
1	0,51224	9,70138	3,40966	9,24693
2	0,14530	8,67776	4,10911	9,77647
3	1,14493	8,22260	6,07757	2,90395
4	1,52843	8,08383	5,27106	3,01366
5	0,47251	9,97266	4,36214	7,96019
6	0,48841	8,95619	4,12166	8,01283
7	0,93231	8,83522	3,86425	7,10426
8	0,78034	8,56162	5,01610	5,68443
9	1,00486	8,82077	4,10484	6,51980
10	0,94372	8,24045	3,21443	7,91679
11	1,74023	9,57493	3,61158	5,37523
12	1,54347	9,57074	2,98366	6,91057
13	1,35750	8,60093	4,12013	5,42460
14	0,85320	7,71954	4,59134	5,90568
15	0,72673	7,92518	4,46103	6,52582
16	0,73460	7,50506	4,53810	6,27076
17	1,65903	8,50623	3,60152	5,33599
18	1,04657	10,27799	3,03217	8,45250
19	1,07498	8,03683	3,85896	6,48781
20	1,79260	8,50846	3,99750	4,34041
21	0,84479	9,94579	3,54853	8,14323
22	1,05225	9,47959	4,31086	6,24161
23	1,39172	8,13577	5,15124	3,60553
24	0,96380	8,35951	4,60315	5,74233
25	1,47367	8,78308	3,01939	6,84346
26	0,90600	8,98654	3,15439	8,31900
27	1,22932	8,16995	5,17156	4,04949
28	0,80773	10,26480	6,37525	3,96149
29	1,05268	9,57286	3,40915	7,66165
30	0,10901	8,74185	4,31261	9,37467
31	1,76070	7,80755	3,54349	4,94569
32	0,91284	9,05113	4,46858	6,28317
33	1,15743	7,35874	2,46314	8,22833
34	1,06247	8,29196	3,92714	6,48695
35	1,01272	9,37444	5,68877	4,19542
36	0,30458	9,25506	3,85471	9,03415
37	1,25472	8,11960	5,32389	3,72729
38	1,36411	7,51293	5,09001	3,61171
39	1,38123	8,52338	3,91531	5,65252

No	30	24	24	3,
опыта	x_I	x_2	x_3	У
40	1,39077	7,92707	4,65417	4,32119
41	1,84057	9,19860	4,97624	2,87411
42	1,06451	8,90628	4,39224	5,92688
43	1,50947	8,39207	4,79425	3,88893
44	0,44293	8,98095	4,96607	6,84341
45	0,56217	9,45167	4,56241	7,25255
46	0,95418	9,72524	4,60577	6,13381
47	0,56246	9,53224	2,42359	10,58304
48	0,94373	8,27537	3,82525	6,98100
49	0,84624	7,82072	4,82896	5,58525
50	1,57772	7,83014	3,46182	5,60343

No				
опыта	x_{I}	x_2	x_3	У
1	5,56243	3,01167	10,01925	59,88499
2	4,49579	3,09104	7,95609	48,56202
3	4,85445	3,24512	8,94631	43,50125
4	3,11729	2,90553	8,09318	53,78472
5	6,72499	3,08338	9,24363	58,72797
6	6,24996	2,94668	8,14204	62,29928
7	4,74367	3,01865	7,48988	52,34251
8	6,56782	3,20469	7,84930	49,46311
9	6,31136	3,13871	8,57898	53,29879
10	4,96242	3,12859	6,69286	45,97984.
11	5,96342	3,17760	5,75487	44,25585
12	5,35867	3,20075	7,08075	58,45707
13	6,86082	3,08532	8,88405	45,17264
14	8,51469	2,89760	9,03349	74,04361
15	8,31496	3,01059	8,32107	66,25887
16	7,05224	3,07787	7,74731	57,50403
17	4,61595	3,01787	6,28264	49,84367
18	5,93902	2,97318	8,17375	59,92974
19	2,15928	2,98555	7,98583	46,21072
20	8,75059	3,21113	7,69293	56,21792
21	5,71127	2,97751	8,11849	58,84050
22	2,65670	3,11697	8,47293	41,91554
23	4,94337	2,97968	6,42745	53,18368
24	4,21254	3,07045	5,49972	44,38532

$N_{\underline{0}}$				
опыта	x_1	x_2	x_3	У
25	9,80817	3,16725	9,75934	65,67308
26	3,22870	3,05876	9,08977	47,94456
27	6,17226	2,97240	7,76150	60,03701
28	1,72795	3,00642	7,60977	43,01537
29	5,01025	3,19205	7,45114	44,17040
30	8,53010	2,99671	7,90321	66,97508
31	5,59064	3,27293	8,29736	43,40678
32	5,83861	3,09996	8,42373	53,44496
33	8,80628	3,02763	7,90156	66,29840
34	5,15994	3,14152	9,99032	51,73449
35	3,06575	3,08942	8,55518	44,86932
36	4,52419	2,96814	7,98192	55,08452
37	6,83459	3,21376	7,01724	48,43836
38	6,04293	3,20052	6,72850	45,95126
39	4,48275	3,00225	6,46282	50,52020
40	6,68607	3,12033	7,36774	53,40093
41	4,64816	3,29451	7,43372	37,59870
42	3,69930	3,35531	7,41356	31,20617
43	4,45880	3,14317	8,53758	46,74621
44	5,36474	3,28835	8,24180	41,74719
45	6,31907	3,19475	7,20458	48,01420
46	7,60538	3,04404	8,67075	62,73926
47	5,45018	3,01730	8,91984	57,29333
48	4,01704	3,11684	8,32390	46,24996
49	8,10987	2,88979	7,52448	70,44777
50	4,56499	2,87517	7,93250	59,96333

$N_{\underline{0}}$				
опыта	x_I	x_2	x_3	У
1	5,97464	7,37511	7,66907	50,00516
2	4,10538	6,57660	9,09751	63,04086
3	4,69493	4,94683	7,34944	42,69482
4	5,97822	8,09110	9,24264	54,28939
5	5,44306	7,82470	10,38821	56,38985
6	5,55243	7,09707	9,93797	48,65956
7	4,55516	6,00810	9,36429	51,39833
8	3,88641	6,77865	7,91562	69,77690
9	5,12707	6,68304	9,77488	50,18275

$N_{\underline{0}}$				
опыта	x_1	x_2	x_3	У
10	4,45121	6,12555	9,96186	52,82392
11	6,22553	6,51252	7,72186	38,82484
12	4,29574	7,41101	9,16397	68,73726
13	4,61456	7,51735	8,32307	67,24370
14	5,25606	7,23524	10,74368	52,33228
15	4,29157	7,14292	8,38408	67,49485
16	5,46690	7,66640	9,11301	56,72279
17	5,87969	6,82675	8,64312	44,14320
18	5,37048	7,21022	9,74348	52,37165
19	5,89060	5,76070	6,65354	36,95661
20	4,82705	5,72365	9,78142	44,50322
21	5,00649	6,56704	10,23791	49,75626
22	5,55534	7,99555	8,98870	59,06117
23	4,99653	6,95597	9,23928	55,40479
24	5,22157	7,16313	8,53595	55,83406
25	4,98970	5,72493	9,93080	42,23142
26	5,88156	7,01381	6,61104	49,43342
27	4,38554	5,94473	9,27095	53,05199
28	6,00395	8,08199	8,93350	54,40848
29	6,03517	5,75920	11,15086	27,43986
30	5,04050	6,10829	10,08106	45,10090
31	6,28222	6,77915	8,07749	39,62424
32	5,62918	6,51585	8,70109	44,11885
33	6,17404	6,14166	9,63362	32,05664
34	5,22877	6,45420	8,08066	49,57018
35	5,81253	5,70865	8,28712	34,62321
36	4,93966	6,06416	8,92750	47,90056
37	5,44869	6,44870	10,20362	43,13902
38	5,57407	6,37985	8,44357	43,91308
39	5,79268	9,05250	8,82781	66,74362
40	4,94736	7,25666	10,89007	56,14146
41	4,90131	6,31403	6,97749	54,16788
42	4,50907	6,28294	7,48983	57,87794
43	6,05611	7,31931	9,91652	44,59432
44	5,05678	6,76759	8,87095	53,43622
45	4,71968	6,43373	10,20965	52,07410
46	6,00119	7,56612	9,90458	47,71102
47	6,08324	7,01556	7,77795	44,93759
48	4,84383	6,16236	10,29404	47,71948
49	4,87314	6,23876	8,72529	50,78887
50	6,21116	5,77071	8,73571	29,49230

No				
опыта	x_1	x_2	x_3	У
1	0,60356	1,20322	1,01859	69,70428
2	0,59089	-0,22612	1,47258	49,11551
3	0,53293	0,25336	1,33816	54,53468
4	0,58794	0,34453	1,18889	60,04377
5	0,52782	-0,57739	0,97793	59,88292
6	0,57451	1,88614	1,05101	72,07810
7	0,56361	0,81890	1,11860	64,19604
8	0,57333	2,37634	0,64712	85,92260
9	0,56407	1,80392	0,60915	83,69540
10	0,54902	1,11996	0,91135	71,34772
11	0,55324	2,60727	1,08590	74,71704
12	0,57526	0,71381	0,51397	80,54704
13	0,58090	0,92511	1,10729	65,36586
14	0,51970	1,71070	1,14695	67,58801
15	0,49666	2,02425	0,85006	77,15497
16	0,51473	2,89318	1,04442	76,81455
17	0,43866	1,90764	1,00381	71,33500
18	0,47177	0,58388	1,03214	63,83909
19	0,45554	1,85338	0,82322	76,30735
20	0,49916	0,84134	1,14315	62,61070
21	0,54836	2,40035	1,10246	73,04893
22	0,51196	2,87953	0,94469	79,45668
23	0,54645	0,71742	0,80374	72,08454
24	0,61942	2,34033	0,47611	91,19553
25	0,50336	-0,60798	0,81366	63,87340
26	0,55226	0,00984	1,02369	41,74719
27	0,39916	1,35632	0,90839	70,33118
28	0,61316	0,46753	0,74032	73,53822
29	0,63088	2,94501	0,88117	83,47095
30	0,58916	3,22668	0,81992	86,04172
31	0,56961	-0,52806	1,36682	50,05267
32	0,51133	1,23848	0,92074	71,13477
33	0,58605	2,60644	1,06733	75,74999
34	0,53980	2,10359	0,84319	78,46732
35	0,64592	2,70693	1,05232	77,67035
36	0,64241	0,02757	1,44499	52,08898
37	0,62518	-0,39888	0,96718	62,71033
38	0,41268	0,86961	0,69972	73,66221
39	0,56953	3,16649	1,09313	77,83500

$N_{\underline{0}}$	24	24	24	33
опыта	x_{I}	x_2	χ_3	У
40	0,51099	0,62251	0,77956	71,66903
41	0,47169	0,47401	0,91078	66,59685
42	0,53508	2,63955	0,89823	79,79960
43	0,55460	-0,43679	1,44241	48,21962
44	0,60804	2,06459	1,16729	70,36995
45	0,61217	1,91801	1,40415	63,07642
46	0,59562	3,32006	1,24294	74,94372
47	0,57113	0,43830	0,65814	74,98273
48	0,51866	2,52289	1,16794	71,43237
49	0,66291	2,65157	1,03255	78,18608
50	0,48733	1,25006	1,31638	59,86116

No				
опыта	x_1	x_2	x_3	У
1	6,08915	9,54520	7,18144	59,98149
2	9,76370	9,98257	6,98579	64,49431
3	6,98496	9,60773	6,74558	52,39712
4	7,14883	9,63015	7,04908	59,84587
5	6,77070	10,45549	7,18416	55,17570
6	6,24353	9,69452	7,29503	61,97977
7	3,83240	9,64460	6,83558	43,46003
8	6,74039	9,73755	6,98497	56,11199
9	6,19160	9,63727	6,92366	53,60736
10	8,67283	9,98226	6,95596	60,08516
11	8,81000	9,88397	7,35120	70,53392
12	11,95642	10,09910	7,09017	73,47428
13	9,63154	10,12213	7,41652	72,97060
14	5,86872	10,19350	7,04219	50,86853
15	4,59438	9,93244	7,09656	49,85724
16	11,95353	10,08044	7,19472	76,04676
17	9,14132	10,15100	7,16242	65,15484
18	10,98078	10,26964	6,68785	59,43262
19	11,66272	10,36512	6,74740	62,38753
20	8,33939	9,73612	6,82969	57,95533
21	7,12926	10,00503	7,15100	59,37635
22	7,23762	9,78797	6,80929	53,31620
23	6,09026	9,55668	7,03763	56,55339
24	5,82678	9,91041	6,76918	49,07948

No				
опыта	x_1	x_2	x_3	У
25	7,56541	9,64202	6,78860	52,98303
26	5,77265	9,59777	7,45191	64,44387
27	10,79517	10,08408	6,87557	64,63908
28	4,39188	10,14419	7,32760	52,87287
29	4,39301	10,15337	6,54096	34,48575
30	7,18749	9,54969	6,52265	48,35486
31	8,17454	9,84697	7,00706	60,64745
32	7,14549	9,50548	6,46808	47,29083
33	8,30440	9,87027	6,70603	53,89548
34	9,55946	10,07459	7,26441	69,55884
35	8,99165	9,53010	7,07381	67,49188
36	10,05242	9,66574	7,37273	76,99442
37	7,74553	9,13996	7,15932	68,32278
38	7,41459	10,06539	6,89022	53,60984
39	8,30495	9,87838	7,18958	65,09359
40	4,11848	10,16423	6,89225	41,64484
41	3,20557	10,00845	6,91220	40,23105
42	8,08947	9,83088	6,90393	58,08318
43	4,84491	9,45803	7,03882	53,11827
44	7,13647	10,14933	7,01153	54,82326
45	6,30739	9,93351	7,28992	60,18808
46	7,58441	10,38777	6,38974	39,98419
47	11,48620	9,78941	7,01031	72,46175
48	4,41053	10,36160	6,57041	33,58436
49	11,20704	9,60248	7,09564	74,97615
50	9,27056	9,59159	7,05580	67,53655

$N_{\underline{0}}$				
опыта	x_I	x_2	x_3	У
1	2,67727	0,75989	7,64282	56,04550
2	2,08766	0,56717	6,47261	57,35532
3	2,88525	0,67607	6,95541	62,00395
4	2,80618	1,04317	7,45863	47,86057
5	2,63405	0,54652	7,71718	62,88141
6	2,65089	1,16338	8,42246	40,93983
7	2,81209	0,81371	9,00115	54,26069
8	2,99917	0,79047	6,31198	59,98991
9	2,28610	0,94393	7,36105	45,57984

$N_{\underline{0}}$				
опыта	x_{I}	x_2	x_3	У
10	2,66916	0,44992	7,93091	66,39923
11	2,75421	0,68591	6,58071	60,58938
12	2,55375	1,09641	9,60418	40,93119
13	2,61375	0,80260	7,82485	53,66171
14	2,89264	0,89471	6,21440	55,28509
15	2,62880	0,64820	7,64497	59,37298
16	2,24835	0,97226	6,81538	44,74866
17	2,63780	0,93752	8,45858	48,58651
18	3,05687	0,97967	8,75728	51,50401
19	2,57886	1,01566	5,45067	48,38075
20	2,44030	0,74053	7,46991	54,24463
21	2,35109	0,98747	7,57769	44,57028
22	2,67936	0,89774	9,23181	49,61796
23	2,79856	0,63699	8,76710	60,48256
24	2,75425	0,68892	8,25121	58,72824
25	2,06296	0,98350	8,01064	41,02565
26	2,43264	0,06247	5,18682	48,86506
27	2,88046	1,02032	8,43465	48,45806
28	2,33461	0,59082	6,95661	58,79202
29	2,89667	1,04041	6,21602	50,27682
30	2,66985	0,64370	8,60655	58,97727
31	2,19163	0,90845	5,22039	48,00369
32	2,12383	0,70567	6,93775	52,46892
33	2,14958	0,55940	7,56724	57,16698
34	2,32751	1,10589	8,47045	39,26127
35	2,40995	0,80749	6,11853	53,00472
36	2,51382	1,16117	8,02768	39,89660
37	2,21505	1,27322	8,55417	32,11189
38	2,65624	1,02406	7,38686	46,91956
39	2,07941	0,88579	7,49445	45,14068
40	2,51944	0,61149	7,58217	59,48705
41	3,04789	0,88526	7,09864	52,42153
42	2,58777	0,85790	6,68572	52,65145
43	2,48346	1,03138	7,96948	44,11797
44	2,54633	0,83312	8,22011	51,43261
45	2,80525	0,97966	8,66005	48,43261
46	2,45931	0,48370	7,52119	63,30879
47	2,83606	0,87570	7,57513	53,87944
48	2,59571	0,54818	8,07762	62,01527
49	2,31281	0,90430	8,38626	46,17478
50	2,65961	0,81611	7,84676	53,68375

Вариант 9

No॒				
опыта	x_1	x_2	x_3	У
1	7,40162	3,50862	8,04147	30,17912
2	9,43349	3,36379	4,00823	12,01851
3	8,16690	3,28152	6,17358	22,06525
4	8,16235	4,61826	11,61780	35,90435
5	8,85258	3,54508	14,86201	31,79096
6	11,03698	3,46434	7,56668	8,34556
7	7,47934	3,26720	6,94929	27,07981
8	8,63243	3,52047	8,92585	24,41051
9	8,51607	4,23604	6,23628	24,41405
10	10,02977	3,24474	0,07437	2,39046
11	7,55749	3,34832	15,35935	39,09022
12	7,35265	4,26784	5,97299	30,88304
13	9,19591	3,71704	8,60782	21,58498
14	9,67159	4,57206	10,76966	25,77911
15	8.52427	3,55151	8,89463	25,12787
16	9,68287	3,61049	7,80538	17,14727
17	8,74324	4,13720	5,92156	22,20984
18	7,74863	3,94806	8,43481	30,71124
19	8,70460	3,22569	12,33698	27,58249
20	7,58355	3,86568	5,27274	26,74540
21	9,18580	4,21215	10,07950	25,97568
22	8,73613	3,48107	14,52419	31,68977
23	8,03914	2,77583	2,68550	15,52125
24	8,12740	3,72519	7,38679	26,02337
25	8,83477	3,16439	8,76922	21,42570
26	8,05150	3,74271	6,18806	24,81480
27	8,58570	3,44055	6,98688	21,53306
28	9,83301	3,58239	9,18361	18,13883
29	9,64026	4,04883	13,56015	27,63255
30	9,37092	4,26051	11,55821	27,25229
31	10,28957	3,15471	3,89823	5,99074
32	8,56181	4,01517	12,75679	32,54195
33	9,29909	4,09302	10,34741	25,17506
34	9,04809	4,12374	5,47896	19,75593
35	9,86129	3,31270	7,28669	14,04036
36	7,79915	4,18541	11,93192	36,51271
37	7,87036	3,95630	6,49936	27,26235
38	8,58544	3,41601	6,26190	20,38181
39	8,44917	4,10654	11,79445	32,21566

$N_{\underline{0}}$	30	20	24	
опыта	x_I	x_2	χ_3	У
40	10,51019	4,58655	4,11260	11,43446
41	10,25511	4,01244	9,61419	18,24978
42	9,40159	3,43155	8,93464	21,84575
43	8,75277	3,68305	15,19175	33,45793
44	9,28786	3,08265	13,27615	24,93175
45	8,83935	3,66702	6,13311	19,85635
46	9,17449	3,16527	9,32663	20,27352
47	9,44306	4,00989	7,45397	19,81110
48	8,71121	3,85770	7,06413	22,78733
49	10,25864	4,09794	4,33638	11,01986
50	9,39345	3,04485	8,00935	16,57778

$\mathcal{N}_{\underline{0}}$				
опыта	x_1	x_2	x_3	У
1	5,77081	1,17167	8,69187	21,32933
2	7,30067	1,02572	1,81054	20,82327
3	14,02376	0,94992	4,94264	36,08824
4	10,22023	1,70500	6,53939	24,02033
5	8,19746	0,78385	7,45255	28,13833
6	9,19023	1,44211	7,53359	24,83010
7	9,36570	0,45067	10,28218	34,83454
8	8,57198	1,18505	7,68956	25,81342
9	8,49501	0,78327	7,03864	28,42799
10	9,03571	1,00943	6,39776	27,22519
11	7,77758	1,04403	8,63286	26,06438
12	8,20526	0,99426	4,31171	24,41538
13	9,91175	0,56291	6,11342	32,22238
14	7,22100	0,86193	4,01500	23,42506
15	7,32876	0,51372	7,47542	30,34942
16	7,32876	1,58500	6,66216	19,63373
17	10,27710	1,00186	5,51036	29,02767
18	7,67325	0,82310	7,61100	26,94875
19	8,97902	1,03636	7,39078	27,55922
20	11,48401	1,03014	7,45375	32,34510
21	9,30147	1,28942	6,79526	25,76377
22	9,52283	0,96599	7,41023	29,14959
23	8,89589	1,11410	6,92579	26,48046
24	8,48885	0,46583	6,83434	30,80041

No				
опыта	x_{I}	x_2	x_3	У
25	10,04768	0,69504	8,19379	32,79887
26	13,68009	0,87232	6,82003	36,29599
27	8,42334	1,63399	10,06535	23,53758
28	9,35249	1,07848	5,03166	26,37158
29	9,17837	1,00285	6,32633	27,49773
30	7,55639	1,53275	6,66071	20,47535
31	10,08265	0,68790	4,70533	30,62385
32	9,24054	1,15566	7,17517	26,96094
33	8,09563	0,94365	5,16128	25,17082
34	7,72725	0,95379	8,00930	26,27534
35	8,66582	1,27808	5,64043	23,90193
36	8,68727	1,03176	9,74135	28,59671
37	11,31045	1,17040	7,53107	30,95798
38	9,13693	0,52239	4,57070	30,07578
39	8,66120	1,14159	7,09590	25,93454
40	6,97711	0,68846	5,07222	25,04034
41	8,49536	0,77886	3,89062	26,39075
42	6,78831	0,72583	11,49366	28,61853
43	7,74471	1,29833	6,60340	22,64891
44	7,31145	1,16913	6,69857	22,92452
45	10,62066	1,10323	9,92438	31,77403
46	11,18258	0,64704	6,38681	34,11691
47	10,80539	0,76855	8,18271	33,62851
48	10,32314	1,15879	4,09174	26,93476
49	7,24659	1,19471	3,52975	20,51335
50	7,37515	1.19352	8,66580	24,14583

ЛИТЕРАТУРА

- 1. СТ.СЭВ 1190-78. Правила проверки согласия опытного распределения с теоретическим.
- 2. Длин А. М. Математическая статистика в технике / А. М. Длин. М.: Советская наука, 1958.
- 3. Шор Я. Б. Статистические методы анализа и контроля качества и надежности / Я. Б. Шор. М.: Сов. радио, 1962.
- 4. Демаков И. П. Методы статистической проверки однородности информации об эксплуатационной надежности изделий / И. П. Демаков. Л. : ЛДНТП, 1968.
- 5. Колкер Я. Д. Математический анализ точности механической обработки деталей / Я. Д. Колкер. Киев : Техника, 1976.
- 6. Румшиский Л. 3. Математическая обработка результатов эксперимента / Л. 3. Румшиский. М.: Наука, 1971.
- 7. Янко Я. Математико-статистические таблицы / Я. Янко. М.: Статиздат, 1961.
- 8. Кутай А. К. Об оценке резко выделяющихся наблюдений / А. К. Кутай, Г. 3. Файнштейн // Измерительная техника. 1967. № 1.
- 9. Митропольский А. К. Техника статистических вычислений / А. К. Митропольский. М.: Наука, 1971.
- 10. Герасимович А. И. Математическая статистика / А. И. Герасимович, Я. И. Матвеева. Минск : Вышейшая школа, 1978.
- 11. Смирнов Н. В. Краткий курс математической статистики для технических приложений / Н. В. Смирнов, И. В. Дунин-Барковский. М.: Физматгиз, 1959.
- 12. Ван-дер-Варден Б. Л. Математическая статистика / Б. Л. Ван-дер-Варден. М.: ИЛ, 1960.
- 13. Гетопанов В. Н. Методы равночастотных интервалов при построении гистограмм / В. Н. Гетопанов, Ю. Н. Алешин // Надежность и контроль качества. 1973. № 1. С. 23—26.
- 14. СТ.СЭВ 3542-82. Прикладная статистика. Правила построения и применения вероятностных сеток.
- 15. Шор Я. Б. Таблицы для анализа и контроля надежности / Я. Б. Шор, Ф. Н. Кузьмин. М.: Сов. радио, 1968.

- 16. Сборник задач по теории надежности / под ред. А. М. Половко, И. М. Маликова. М.: Сов. радио, 1973.
- 17. Корн Г. Справочник по математике (для научных работников и инженеров) : пер. с англ. / Г. Корн, Т. Корн. М. : Наука, 1974.
- 18. Вентцель Е. С. Теория вероятностей / Е. С. Вентцель. М.: Наука, 1964.
- 19. Левин Б. Р. Теоретические основы статистической радиотехники : в 3 кн. / Б. Р. Левин. 2-е изд.. М. : Сов. радио, 1975. Книга 2.
- 20. Справочник по надежности : пер с англ. / под ред. Б. Р. Левина. М. : Мир, 1969. Т. 1.
- 21. Заездный А. М. Основы расчетов по статистической радиотехнике / А. М. Заездный. М.: Связь, 1969.
- 22. Основы теории надежности и эксплуатации радиоэлектронной техники / Н. А. Шишонок [и др.]. М. : Сов. радио, 1964.
- 23. Справочник по теории вероятностей и математической статистике / под ред. В. С. Королюка. Киев : Наукова думка, 1978.
- 24. Ллойд Д. К. Надежность: организация исследования, методы, математический аппарат : пер. с англ. / Д. К. Ллойд, М. Липов. М. : Сов. радио, 1964.
- 25. Крамер Г. Математические методы статистики / Г. Крамер. М. : Мир, 1975.
- 26. Дружинин Γ . В. Надежность автоматизированных систем / Γ . В. Дружинин. М. : Энергия, 1977.
- 27. Надежность электронных элементов и систем : пер с нем. / под ред. Х. Шнайдера. М. : Мир, 1977.
- 28. Левин Б. Р. Теоретические основы статистической радиотехники : в 3 кн. / Б. Р. Левин. 2-е изд. М. : Сов. радио, 1976. Книга 3.
- 29. Критерии математической статистики в экономических исследованиях / А. В. Головач [и др.]. М.: Статистика, 1973.
- 30. Кузьмин Г. С. Метод ускоренного вычисления критериев согласия при анализе законов распределения // Стандарты и качество. 1975. № 5. С. 84—85.

- 31. Кассандрова О. Н. Обработка результатов наблюдений: учеб. пособие для вузов / О. Н. Кассандрова, В. В. Лебедев. М.: Наука, 1970.
- 32. Краткий справочник по вероятностным и статистическим расчетам / А. Я. Иоффе [и др.]. Л. : ЛВИКА им. А. Ф. Можайского, 1969.
- 33. Груничев А. С. Таблицы для расчетов надежности при распределении Вейбулла / А. С. Груничев, А. И. Михайлов, Я. Б. Шор. М.: Изд. стандартов, 1974. 63 с.
- 34. Решение задач надежности и эксплуатации на универсальных ЭЦВМ / Б. П. Креденцер [и др.]. М. : Сов. радио, 1967. 400 с.
- 35. Северцев Н. А. Надежность сложных систем в эксплуатации и отработке : учеб. пособие для вузов / Н. А. Северцев. М. : Высш. шк., 1989. 432 с.
- 36. Кульбак С. Теория информации и статистика / С. Кульбак. М.: Наука, 1967.
- 37. Кундорф Г. Введение в теорию оценивания по группированным и частично группированным выборкам / Г. Кундорф. М.: Наука, 1966.
- 38. Алешин А. В. Методика подбора функций распределения для построения математических моделей отклонения параметров РЭА // Конструкторско-технологические аспекты проектирования РЭА. М.: МИРЭА, 1981. С. 53—62.
- 39. Дьерфель К. Статистика в аналитической химии / К. Дъерфель. — М.: Мир, 1969. — 247 с.

Таблица П.1.1 — Значения D_n° (критерий Колмогорова)

P_{∂}	0,80	0,90	0,95	0,98	0,99
Σn_i	0.222	0.260	0.400	0.457	0.490
10	0,323	0,369	0,409	0,457	0,489
11	0,308	0,352	0,391	0,437	0,468
12	0,296	0,338	0,375	0,419	0,449
13	0,285	0,325	0,361	0,404	0,432
14	0,275	0,314	0,349	0,390	0418
15	0,266	0,304	0,338	0,377	0,404
16	0,258	0,295	0,327	0,366	0,392
17	0,250	0,286	0,318	0,355	0,381
18	0,244	0,279	0,309	0,346	0,371
19	0,237	0,271	0,301	0,337	0,361
20	0,232	0,265	0,294	0,329	0,352
21	0,226	0,259	0,287	0,321	0,344
22	0,221	0,253	0,281	0,314	0,337
23	0,216	0,247	0,275	0,307	0,330
24	0,212	0,242	0,269	0,301	0,323
25	0,208	0,238	0,264	0,295	0,317
26	0,204	0,233	0,259	0,290	0,311
27	0,200	0,229	0,254	0,284	0,305
28	0,197	0,225	0,250	0,279	0,300
29	0,193	0,221	0,246	0,275	0,295
30	0,190	0,218	0,242	0,270	0,290
32	0,184	0,211	0,234	0,262	0,281
34	0,179	0,205	0,227	0,254	0,273
36	0,174	0,199	0,221	0,247	0,265
38	0,170	0,194	0,215	0,241	0,258
40	0,165	0,189	0,210	0,235	0,252
42	0,162	0,185	0,205	0,229	0,246
44	0,158	0,181	0,201	0,224	0,241
46	0,155	0,177	0,196	0,219	0,235
48	0,151	0,173	0,192	0,215	0,231

Продолжение табл. П.1.1

P_{θ}	0,80	0,90	0,95	0,98	0,99
Σn_i					0,22
50	0,148	0,170	0,188	0,211	0,226
52	0,146	0,166	0,185	0,207	0,222
54	0,143	0,163	0,181	0,203	0,218
56	0,140	0,160	0,178	0,199	0,214
58	0,138	0,158	0,175	0,196	0,210
60	0,136	0,155	0,172	0,193	0,207
62	0,134	0,153	0,170	0,190	0,203
64	0,132	0,150	0,167	0,187	0,200
66	0,130	0,148	0,164	0,184	0,197
68	0,128	0,146	0,162	0,181	0,194
70	0,126	0,144	0,160	0,179	0,192
72	0,124	0,142	0,158	0,176	0,189
74	0,122	0,140	0,155	0,174	0,187
76	0,121	0,138	0,153	0,172	0,184
78	0,119	0,136	0,151	0,169	0,182
80	0,118	0,135	0,150	0,167	0,179
82	0,116	0,133	0,148	0,165	0,177
84	0,115	0,131	0,146	0,163	0,175
86	0,114	0,130	0,144	0,161	0,173
88	0,112	0,128	0,143	0,160	0,171
90 .	0,111	0,127	0,141	0,158	0,169
92	0,110	0,126	0,140	0,156	0,168
94	0,109	0,124	0,138	0,154	0,166
96	0,108	0,123	0,137	0,153	0,164
98	0,107	0,122	0,135	0,151	0,162
100	0,106	0,121	0,134	0,150	0,161
n > 100					
$D_n^\circ \sqrt{n}$	1,07	1,22	1,36	1,52	1,63

Таблица П.2.1 — Значения коэффициента Стьюдента t_{α}

*							
α^*	0,80	0,90	0,95	0,98	0,99	0,995	0,999
2	1,886	2,920	4,303	6,965	9,925	14,09	31,60
3	1,638	2,353	3,182	4.541	5,841	7,453	12,92
4	1,533	2,132	2,776	3,747	4,604	5,598	8,610
5	1,476	2,015	2,571	3,365	4,032	4,773	6,869
6	1,440	1,943	2,447	3,143	3,707	4,317	5,959
7	1,415	1,895	2,365	2,998	3,500	4,029	5,408
8	1,397	1,860	2,306	2,897	3,355	3,833	5,041
9	1,383	1,833	2,262	2,821	3,250	3,690	4,781
10	1,372	1,813	2,228	2,764	3,169	3,581	4,587
11	1,363	1,796	2,201	2,718	3,106	3,497	4,437
12	1,356	1,782	2,179	2,681	3,055	3,428	4,318
13	1,350	1,771	2,160	2,650	3,012	3,373	4,221
14	1,345	1,761	2,145	2,625	2,977	3,326	4,141
15	1,341	1,753	2,131	2,603	2,947	3,286	4,073
16	1,337	1,746	2,120	2,584	2,921	3,252	4,015
17	1,333	1,740	2,110	2,567	2,898	3,222	3,965
18	1,330	1,734	2,101	2,552	2,878	3,197	3,922
19	1,328	1,729	2,093	2,540	2,861	3,174	3,883
20	1,325	1,725	2,086	2,528	2,845	3,153	3,850
22	1,321	1,717	2,074	2,508	2,819	3,119	3,792
24	1,318	1,711	2,064	2,492	2,797	3,091	3,745
26	1,315	1,706	2,056	2,479	2,779	3,067	3,707
28	1,313	1,701	2,048	2,467	2,763	3,047	3,674
30	1,310	1,697	2,042	2,457	2,750	3,030	3,646
40	1,303	1,684	2,021	2,423	2,705	2.971	3,551
50	1,299	1,676	2,009	2,403	2,678	2,937	3,496
60	1,296	1,671	2,000	2,390	2,660	2,915	3,460
80	1,292	1,664	1,990	2,374	2,639	2,887	3,416
100	1,290	1,660	1,984	2,364	2,626	2,871	3,391
150	1,287	1,655	1,976	2,352	2,609	2,849	3,357
200	1,286	1,653	1,972	2,345	2,601	2,839	3,340
300	1,284	1,650	1,968	2,339	2,592	2,828	3,323
500	1,283	1,648	1,965	2,334	2,586	2,820	3,310
	1,282	1,645	1,960	2,326	2,576	2,807	3,291

приложение 3

Таблица П.3.1 — Коэффициенты для определения доверительных границ среднего квадратического отклонения $\mathrm{Bep}(\sigma > k_1 S) = \alpha_1$, $\mathrm{Bep}(\sigma < k_2 S) = \alpha_2$

	$\alpha = 0$),95	$\alpha = 0$,	975	$\alpha = 0$,99	$\alpha = 0$,	995
k	k_1	k_2	k_1	k_2	k_1	k_2	k_1	k_2
2	0,578	4,42	0,521	6,28	0,466	9,97	0,434	14,12
3	0,620	2,92	0,566	3,73	0,514	5,11	0,483	6,47
4	0,649	2,37	0,599	2,87	0,549	3,67	0,519	4,40
5	0,672	2,09	0,624	2,45	0,576	3,00	0,546	3,48
6	0,690	1,92	0,644	2,20	0,597	2,62	0,569	2,98
7	0,705	1,80	0,661	2,04	0,616	2,38	0,588	2,66
8	0,718	1,71	0,675	1,92	0,631	2,20	0,604	2,44
9	0,729	1,65	0,688	1,83	0,645	2,08	0,618	2,28
10	0,739	1,59	0,699	1,75	0,656	1,98	0,630	2,15
11	0,748	1,55	0,708	1,70	0,667	1,90	0,641	2,06
12	0,755	1,52	0,717	1,65	0,677	1,83	0,651	1,98
13	0,762	1,49	0,725	1,61	0,685	1,78	0,660	1,91
14	0,769	1,46	0,732	1,58	0,693	1,73	0,669	1,85
15	0,775	1,44	0,739	1,55	0,700	1,69	0.676	1,81
16	0,780	1,42	0,745	1,52	0,707	1,66	0,683	1,76
17	0.785	1,40	0,750	1,50	0,713	1,63	0,690	1,73
18	0,790	1,38	0,756	1,48	0,719	1,60	0,696	1,70
19	0,794	1,37	0,760	1,46	0,725	1,58	0,702	1,67
20	0,798	1,36	0,765	1,44	0,730	1,56	0,707	1,64
22	0,805	1,34	0,773	1,42	0,739	1,52	0,717	1,60
24	0,812	1,32	0,781	1,39	0,747	1,49	0,726	1,56
26	0,818	1,30	0,788	1,37	0,755	1,46	0,734	1,53
28	0,823	1,29	0,794	1,35	0,762	1,44	0,741	1,50
30	0,828	1,27	0,799	1,34	0,768	1,42	0,748	1,48
40	0,847	1,23	0,821	1,28	0,792	1,34	0,774	1,39
50	0,861	1,20	0,837	1,24	0,810	1,30	0,793	1,34
60	0,871	1,18	0,849	1,22	0,824	1,27	0,808	1,30
70	0,879	1,16	0,858	1,20	0,835	1,24	0,820	1,27
80	0,886	1,15	0,866	1,18	0,844	1,22	0,829	1,25
90	0,892	1,14	0,873	1,17	0,852	1,21	0,838	1,23
100	0,897	1,13	0,879	1,16	0,858	1,19	0,845	1,22
100	2 TOOL OF	1 1,15	THE OTTOR	1,10 111aa 11		104 000	0,015	,

Здесь $\alpha_{1,2}$ — односторонняя доверительная вероятность, причем $\alpha_1=\alpha_2$. Если задана двусторонняя доверительная вероятность α , то находим $\alpha_1=\alpha_2=\frac{1+\alpha}{2}$ и по их значениям k_1 и k_2 . При $\alpha_1=\alpha_2=0.99$ $\alpha=2\alpha_1-1=0.98$.

Таблица П.4.1 — Значения функции $\Phi'(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$

t	Φ'	t	Φ'	t	Φ'	t	Φ'	t	Φ'	t	Φ'
0,00	0,399	0,45	0,361	0,90	0,266	1,35	0,160	1,80	0,079	2,25	0,032
0,00	0,399	0,45	0,359	0,91	0,264	1,36	0,158	1,80	0,078	2,26	0,032
0,02	0,399	0,47	0,357	0,92	0,261	1,37	0,156	1,82	0,076	2,27	0,031
0,03	0,399	0,48	0,356	0,93	0,259	1,38	0,154	1,83	0,075-	2,28	0,030
0,04	0,399	0,49	0,354	0,94	0,256	1,39	0,152	1,84	0,073	2,29	0,029
0,05	0,398	0,50	0,352	0,95	0,254	1,40	0,150	1,85	0,072	2,30	0,028
0,06	0,398	0,51	0,350	0,96	0,252	1,41	0,148	1.86	0,071	2,31	0,028
0,07	0,398	0,52	0,348	0,97	0,249	1,42	0,146	1,87	0,069	2,32	0,027
0,08	0,398	0,53	0,347	0,98	0,247	1,43	0,144	1,88	0,068	2,33	0,026
0,09	0,397	0,54	0,345	0,99	0,244	1,44	0,141	1,89	0,067	2,34	0,026
0,10	0,397	0,55	0,343	1,00	0,242	1,45	0,139	1,90	0,066	2,35	0,025+
0,11	0,396	0,56	0,341	1,01	0,240	1,46	0,137	1,91	0,064	2,36	0,025—
0,12	0,396	0,57	0,339	1,02	0,237	1,47	0,135+	1,92	0,063	2,37	0,024
0,13	0,396	0,58	0,337	1,03	0,235	1,48	0,133	1,93	0,062	2.38	0,023
0,14	0,395	0,59	0,335+	1,04	0,232	1,49	0,131	1,94	0,061	2,39	0,023
0,15	0,394	0,60	0,333	1,05	0,230	1,50	0,130	1,95	0,060	2,40	0,022
0,16	0,394	0,61	0,331	1,06	0,228	1,51	0,128	1,96	0,058	2,41	0,022
0,17	0,393	0,62	0,329	1,07	0,225+	1,52	0,126	1,97	0,057	2,42	0,021
0,18	0,392	0,63	0,327	1,08	0,223	1,53	0,124	1,98	0,056	2,43	0,021
0,19	0,392	0,64	0,325+	1,09	0,220	1,54	0,122	1,99	0,055+	2,44	0,020
0,20	0,391	0,65	0,323	1,10	0,218	1,55	0,120	2,00	0,054	2,45	0,020
0,21	0,390	0,66	0,321	1,11	0,216	1,56	0,118	2,01	0,053	2,46	0,019
0,22	0,389	0,67	0,319	1,12	0,213	1,57	0,116	2,02	0,052	2,47	0,019
0,23	0,388	0,68	0,317	1,13	0,211	1,58	0,114	2,03	0,051	2,48	0,018
0,24	0,388	0,69	0,314	1,14	0,208	1,59	0,113	2,04	0,050	2,49	0,018
0,25	0,387	0,70	0,312	1,15	0,206	1,60	0,111	2,05	0,049	2,50	0,018
0,26	0,386	0,71	0,310	1,16	0,204	1,61	0,109	2,06	0,048	2,51	0,017
0,27	0,385-	0,72	0,308	1,17	0,201	1,62	0,107	2,07	0,047	2,52	0,017
0,28	0,384	0,73	0,306	1,18	0,199	1,63	0,106	2,08	0,046	2.53	0,016
0,29	0,382	0,74	0,303	1,19	0,196	1,64	0,104	2,09	0,045-	2,54	0,016
0,30	0,381	0,75	0,301	1,20	0,194	1,65	0,102	2,10	0,044	2,55	0,015
0,31	0,380	0,76	0,299	1,21	0,192	1,66	0,101	2,11	0,043	2.56	0,015
0,32	0,379	0,77	0,297	1,22	0,190	1,67	0,099	2,12	0,042	2,57	0,015
0,33	0,378	0,78	0,294	1,23	0,187	1,68	0,097	2,13	0,041	2,58	0,014
0,34	0,376	0,79	0,292	1,24	0,185—	1,69	0,096	2,14	0,040	2,59	0,014
0,35	0,375+	0,80	0,290	1,25	0,183	1,70	0,094	2,15	0,040	2,60	0,014
0,36	0,374	0,81	0,287	1,26	0,180	1,71	0,092	2,16	0,039	2,61	0,013
0,37	0,373	0,82	0,285+	1,27	0,178	1,72	0,091	2,17	0,038	2,62	0,013
0,38	0,371	0,83	0,283	1,28	0,176	1,73	0,089	2,18	0,037	2,63	0,013
0,39	0,370	0,84	0,280	1,29	0,174	1,74	0,088	2,19	0,036	2,64	0,012
0,40	0,368	0,85	0,278	1,30	0,171	1,75	0,086	2,20	0,036	2,65	0,012
0,41	0,367	0.86	0,276	1,31	0,169	1,76	0,085-	2,21	0,035-	2,66	0,012
0,42	0,365+	0,87	0,273	1,32	0,167	1,77	0,083	2,22	0,034	2,67	0,011
0,43	0,364	0,88	0,271	1,33	0,165–	1,78	0,082	2,23	0,033	2,68	0,011
0,44	0,362	0,89	0,268	1,34	0,163	1,79	0,080	2,24	0,032	2,69	0,011
2,70	0,010	2,75	0,009	2,80	0,008	2,85	0,007	2,90	0,006	2,95	0,005+
2,71	0,010	2,76	0,009	2,81	0,008	2,86	0,007	2,91	0,006	2,96	0,005-
2,72	0,010	2,77	0,009	2,82	0,007	2,87	0,006	2,92	0,006	2,97	0,005-
2,73	0,010	2,78	0,008	2,83	0,007	2,88	0,006	2,93	0,005+	2,98	0,005-
2,74	0,009	2,79	0,008	2,84	0,007	2,89	0,006	2,94	0,005+	2,99	0,005-
			,	ĺ	· ·				, i	3,00	0,004

Таблица П.5.1 — Таблица значений функции $\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{0}^{t} e^{-\frac{t^{2}}{2}} dt$

t	0	1	2	3	4	5	6	7	8	9
0,0	0,00000	00399	00798	01197	01595	01994	02392	02790	03188	03586
0,1	03983	04380	04776	05172	05567	05962	06356	06749	07142	07535
0,2	07926	08317	08706	09095	09483	09871	10257	10642	11026	11409
0,3	11791	12172	12552	12930	13307	13683	14058	14431	14803	15173
0,4	15542	15910	16276	16640	17003	17364	17724	18082	18439	18793
0,5	19146	19497	19847	20194	20540	20884	21226	21566	21904	22240
0,6	22575	22907	23237	23565	23891	24215	24537	24857	25175	25490
0,7	25804	26115	26424	26730	27035	27337	27637	27935	28230	28524
0,8	28814	29103	29389	29673	29955	30234	30511	30785	31057	31327
0,9	- 31594	31859	32121	32381	32639	32894	33147	33398	33646	33891
1,0	34134	34375	34614	34850	35083	35314	35543	35769	35993	36214
1,1	36433	36650	36864	37076	37286	37493	37698	37900	38100	38298
1,2	38493	38686	38877	39065	39251	39434	39617	39796	39973	40147
1,3	40320	40490	40658	40824	40988	41149	41309	41466	41621	41774
1,4	41924	42073	42220	42364	42507	42647	42786	42922	43056	43189
1,5	43319	43448	43574	43699	43822	43943	44062	44179	44295	44408
1,6	44520	44630	44738	44845	44950	45053	45154	45254	45352	45449
1,7	45543	45637	45728	45818	45907	45994	46080	46164	46246	46327
1,8	46407	46485	46562	46638	46712	46784	46856	46926	46995	47062
1,9	47128	47193	47257	47320	47381	47441	47500	47558	47615	47670
2,0	47725	47778	47831	47882	47932	47982	48030	48077	48124	48169
2,1	48214	48257	48300	48341	48382	48422	48461	48500	48537	48574
2,2	48610	48645	48679	48713	48745	48788	48809	48840	48870	48899
2,3	48928	48956	48983	49010	49036	49061	49086	49111	49134	49158
2,4	49180	49202	49224	49245	49266	49286	49305	49324	49343	49361
2,5	49379	49396	49413	49430	49446	49461	49477	49492	49506	49520
2,6	49534	49547	49560	49573	49585	49598	49609	49621	49632	49643
2,7	49653	49664	49674	49683	49693	49702	49711	49720	49728	49736
2,8	49744	49752	49760	49767	49774	49781	49788	49795	49801	49807
2,9	49813	49819	49825	49831	49836	49841	49846	49851	49856	49861
	3,0	0,49865	3,1	49903	3,2	49931	3,3	49952	3,4	49966
	3,5	49977	3,6	49984	3,7	49989	3,8	49993	3,9	49995
	4,0	499968								
	4,5	499997								
	5,0	49999997								

Таблица П.6.1 — Квантили хи-квадрат распределения $\frac{x_p}{k}$

p								
k	0,001	0,005	0,010	0,025	0,05	0,10	0,20	0,30
1	$0.0^{5}2$	$0.0^{4}4$	$0.0^{3}2$	$0.0^{2}1$	$0.0^{2}4$	0,016	0,064	0,148
2	0,001	0,005	0,010	0,025	0,052	0,106	0,223	0,356
3	0,008	0,024	0,038	,0,072	0,117	0,195	0,335	0,475
4	0,023	0,052	0,074	0,121	0,178	0,266	0,412	0,549
5	0,042	0,082	0,111	0,166	0,229	0,322	0,469	0,600
6	0,064	0,113	0,145	0,206	0,272	0,367	0,512	0,638
7	0,085	0,141	0,177	0,241	0,310	0,405	0,546	0,667
8	0,107	0,168	0,206	0,272	0,342	0,436	0,574	0,691
9	0,128	0,193	0,232	0,300	0,369	0,463	0,598	0,710
10	0,128	0,216	0,256	0,325	0,394	0,487	0,618	0,727
11	0,167	0,210	0,238	0,347	0,416	0,507	0,635	0,741
12	0,184	0,256	0,278	0,367	0,436	0,525	0,651	0,753
13	0,201	0,274	0,316	0,385	0,453	0,542	0,664	0,764
14	0,217	0,274	0,333	0,402	0,469	0,556	0,676	0,773
15	0,232	0,307	0,349	0,418	0,484	0,570	0,687	0,781
16	0,232	0,321	0,363	0,432	0,498	0,582	0,697	0,789
17	0,240	0,335	0,377	0,432	0,510	0,593	0,706	0,796
18	0,272	0,348	0,390	0,457	0,522	0,604	0,714	0,802
19	0,272	0,360	0,402	0,469	0,532	0,613	0,714	0,802
20	0,296	0,372	0,413	0,480	0,543	0,622	0,722	0,813
22	0,230	0,372	0,413	0,499	0,543	0,638	0,723	0,813
24	0,317	0,373	0,454	0,477	0,577	0,652	0,742	0,823
26	0,357	0,412	0,452	0,517	0,577	0,665	0,762	0,831
28	0,333	0,429	0,484	0,532	0,605	0,676	0,762	0,838
30	0,371	0,443	0,484	0,547	0,616	0,687	0,791	0,843
	0,500	0,400	0,490	0,500	0,010	0,007	0,779	0,630

Продолжение табл. П.6.1

	ı	ı						
p k	0,001	0,005	0,010	0,025	0,05	0,10	0,20	0,30
35	0,420	0,491	0,529	0,588	0,642	0,708	0,795	0,862
40	0,448	0,518	0,554	0,611	0,663	0,726	0,809	0,872
45	0,472	0,540	0,576	0,630	0,680	0,741	0,820	0,880
50	0,494	0,560	0,594	0,647	0,695	0,754	0,829	0,886
55	0,512	0,577	0,610	0,662	0,708	0,765	0,837	0,892
60	0,529	0,592	0,625	0,675	0,720	0,774	0,844	0,897
70	0,558	0,618	0,649	0,697	0,739	0,790	0,856	0,905
80	0,582	0,640	0,669	0,714	0,755	0,803	0,865	0,911
90	0,602	0,658	0,686	0,729	0,768	0,814	0,873	0,917
100	0,619	0,673	0,701	0,742	0,779	0,824	0,879	0,921
120	0,648	0,699	0,724	0,763	0,798	0,839	0,890	0,929
140	0,671	0,719	0,743	0,780	0,812	0,850	0,898	0,934
160	0,690	0,736	0,758	0,793	0,824	0,860	0,905	0,939
180	0,706	0,749	0,771	0,804	0,833	0,868	0,910	0,942
200	0,719	0,761	0,782	0,814	0,841	0,874	0,915	0,945
250	0,746	0,785	0,804	0,832	0,858	0,887	0,924	0,951
300	0,767	0,802	0,820	0,846	0,870	0,897	0,931	0,956
350	0,783	0,816	0,833	0,857	0,879	0,904	0,936	0,959
400	0,796	0,827	0,843	0,866	0,887	0,911	0,940	0,962
450	0,807	0,837	0,852	0,874	0,893	0,916	0,944	0,964
500	0,816	0,845	0,859	0,880	0,898	0,920	0,946	0,966
750	0,848	0,872	0,884	0,901	0,917	0,934	0,956	0,972
1000	0,868	0,889	0,899	0,914	0,928	0,943	0,962	0,976
5000	0,939	0,949	0,954	0,961	0,967	0,974	0,983	0,989
∞	1	1	1	1	1	1	1	1

Министерство образования и науки РФ

ФГОУ ВПО «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ»

Кафедра комплексной информационной безопасности электронно-вычислительных систем (КИБЭВС)

СТАТИСТИЧЕСКАЯ ОБРАБОТКА ОПЫТНЫХ ДАННЫХ

Курсовая работа по ТОППиН

ФВС КР.X.XXX.001 PP

Студент гр	Руководитель
К.И.Артемов	(должность, ученая
20г.	степень, звание)
	С.П.Миронов
	Оценка:

Министерство образования и науки РФ

ФГОУ ВПО «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ»

Кафедра комплексной информационной безопасности

электронно-вычислительных систем (КИБЭВС)

Z	/ТВЕРЖДАЮ
Зав.	кафедрой КИБЭВС
	А.А. Шелупанов

ЗАДАНИЕ

на курсовую работу по дисциплине «Теоретические основы проектирования, производства и надежности ЭВС»

Студенту	
группа	факультет
1. Тема работы: СТАТИС ДАННЫХ	ТИЧЕСКАЯ ОБРАБОТКА ОПЫТНЫХ
2. Срок сдачи студентом :	законченной работы
3. Исходные данные:	см. таблицу

- 4. Содержание работы (перечень подлежащих разработке вопросов):
 - исключение грубых ошибок наблюдений;
 - построение вариационного, дискретного и интервального рядов распределения;
 - построение эмпирических кривых распределения;
 - определение и построение доверительных границ с вероятностью Pg =;
 - определение числовых характеристик эмпирического распределения \bar{x} , S, A, E;
 - приближенное определение доверительных интервалов для числовых характеристик \bar{x} и S с вероятностью $\alpha=$;

- выбор теоретического закона распределения;
- определение оценок параметров теоретического распределения;
- расчет и построение дифференциальной и интегральной кривых распределения;
- проверка правильности выбора теоретического распределения по критериям согласия ХИ-квадрат (Пирсона) и Колмогорова.

-	графического м чертежей):	латериала (с точным указанием обяза-
6. Дата выда	чи задания:	
Руководи	тель	
		Задание принял к исполнению