MTRN4110 Robot Design Week 4 – Planning I

Liao "Leo" Wu, Lecturer

School of Mechanical and Manufacturing Engineering

University of New South Wales, Sydney, Australia

https://sites.google.com/site/wuliaothu/

Today's agenda

Introduction to planning

Graph construction

• Graph search

Introduction to Planning

What is planning?

 The process that the robot determines a plan to get from A to B based on the information about the environment and the robot itself

How am I getting to the target?

Two types of planning

Path Planning

Trajectory Planning

The See-Think-Act cycle

Planning - Example

Planning in Micromouse

Search Run

- Exploration
- Mapping

Speed Run

- Planning
- Execution

Search Run

Graph Construction

What is a graph?

Graph construction – Construct graphs that can be searched

- Continuous map
 - Visibility graph
 - Voronoi diagram

- Cell decomposition
 - Exact cell decomposition
 - Fixed cell decomposition
 - Adaptive cell decomposition

Topological representation

Graph construction – Construct graphs that can be searched

- Continuous map
 - Visibility graph
 - Voronoi diagram

- Cell decomposition
 - Exact cell decomposition
 - Fixed cell decomposition
 - Adaptive cell decomposition

Topological representation

Visibility graph – Connect all the vertices visible to each other

Short but not safe

Continuous Map

Voronoi diagram – Points with equal distance to nearest edges

Safe but not short

Continuous Map

Georgy Voronoy 1868-1908

Graph construction – Construct graphs that can be searched

- Continuous map
 - Visibility graph
 - Voronoi diagram

- Cell decomposition
 - Exact cell decomposition
 - Fixed cell decomposition
 - Adaptive cell decomposition

Topological representation

Exact cell decomposition

Efficient for large, sparse environment

Complex in implementation

Fixed cell decomposition – Occupancy grid

Very popular

Easy in implementation

High need in memory

Adaptive cell decomposition

Similar to occupancy grid Fewer nodes for large areas Complex in implementation

Graph construction – Construct graphs that can be searched

- Continuous map
 - Visibility graph
 - Voronoi diagram

- Cell decomposition
 - Exact cell decomposition
 - Fixed cell decomposition
 - Adaptive cell decomposition

Topological representation

Topological representation

From Map to Graph

Why constructing graphs for path planning?

 Because graph search has been well studied!

Graph Search

Graph search

Breadth-first search (BFS)

• Depth-first search (DFS)

• Dijkstra's algorithm

A* algorithm

- Bellman-Ford algorithm
 - Flood Fill algorithm

Graph search - Terminology

Current state

$$x \in X$$

Next state

$$x' \in X$$

- Actions
 - Feasible transitions between states

$$U(x) = \{u_0, u_1, u_2, \cdots, u_n\}$$

Transition function

$$f(x,u) = x'$$

Graph search - Terminology

• Tree:

- Start state at the root node
- Children correspond to successors
- Different implementations (refer to the references)

 A node corresponds to a unique plan from start to that state (<u>follow up</u> <u>tree from node</u>)

We can store information in a tree and easily retrieve the path from start to a node

Graph search - A general template

```
FORWARD SEARCH
     Q.Insert(x_I) and mark x_I as visited
     while Q not empty do
 3
         x \leftarrow Q.GetFirst()
         if x \in X_G
             return SUCCESS
         forall u \in U(x)
 6
            x' \leftarrow f(x, u)
             if x' not visited
 9
                Mark x' as visited
                Q.Insert(x')
 10
 11
             else
                Resolve duplicate x'
 12
     return FAILURE
 13
```

- Breadth-first search
- Depth-first search
- Dijkstra's algorithm
- A* algorithm

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

Green – Open node

FORWARD_SEARCH 1 $Q.Insert(x_I)$ and mark x_I as visited

```
2 while Q not empty do

3 x \leftarrow Q.GetFirst()

4 if x \in X_G

5 return SUCCESS

6 forall u \in U(x)

7 x' \leftarrow f(x, u)

8 if x' not visited

9 Mark x' as visited

10 Q.Insert(x')

11 else

12 Resolve duplicate x'

13 return FAILURE
```


- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front


```
FORWARD_SEARCH
1  Q.Insert(x_I) and mark x_I as visited
2  while Q not empty do
3  x \leftarrow Q.GetFirst()

4  if x \in X_G
5  return SUCCESS
6  forall u \in U(x)
7  x' \leftarrow f(x, u)
8  if x' not visited
9  Mark x' as visited
10  Q.Insert(x')
11  else
12  Resolve duplicate x'
```


For BFS, Q is FIFO (First In First Out)

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

return FAILURE

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

Yellow – Being explored

FORWARD_SEARCH $Q.Insert(x_I)$ and mark x_I as visited while Q not empty do x = B $x \leftarrow Q.GetFirst()$ if $x \in X_G$ $X_G = \mathsf{J}$ return SUCCESS forall $u \in U(x)$ $x' \leftarrow f(x, u)$ if x' not visited Mark x' as visited Q.Insert(x')10 11 else Resolve duplicate x'return FAILURE

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

Red – Closed node

FORWARD_SEARCH $Q.Insert(x_I)$ and mark x_I as visited while Q not empty do x = A3 $x \leftarrow Q.GetFirst()$ if $x \in X_G$ $X_G = J$ return SUCCESS forall $u \in U(x)$ $x' \leftarrow f(x, u)$ if x' not visited Mark x' as visited Q.Insert(x')else Resolve duplicate x'return FAILURE

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

- 1 $Q.Insert(x_I)$ and mark x_I as visited
- 2 **while** Q not empty **do**
- $3 x \leftarrow Q.GetFirst()$
- 4 if $x \in X_G$
- 5 return SUCCESS

9	TOTALL SOCIEDS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate r'

13 **return** FAILURE

$$x = A$$

$$X_G = J$$

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	φ . This cro(x_I) and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.Insert(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

$$x = C$$

 $X_G = J$

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.Insert(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	${\it else}$
12	Resolve duplicate x'
13	return FAILURE

$$x = C$$

 $X_G = J$

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.Insert(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

$$x = G$$

 $X_G = J$

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.III.Set (x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	${\it else}$
12	Resolve duplicate x'
13	return FAILURE

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	φ . The cho(ω_I) and math ω_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	φ .1765Cr ψ (x_I) and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	Q.IRSCIR(xI) and mark xI as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

- push (Q.Insert) onto the back
- pop (Q.GetFirst) from the front

Two important concepts for graph search algorithms

• Complete: Always find a valid path if there exists one

Optimal: When a path is found, it is always the shortest

Complete (will find a valid path if it exists)

- Optimal (guarantee the path found to be the shortest)
 - First solution found is the optimal path

LIFO

- push (Q.Insert) onto the front
- pop (Q.GetFirst) from the front


```
FORWARD_SEARCH

1  Q.Insert(x_I) and mark x_I as visited

2  while Q not empty do

3  x \leftarrow Q.GetFirst()

4  if x \in X_G

5  return SUCCESS

6  forall u \in U(x)

7  x' \leftarrow f(x, u)

8  if x' not visited

9  Mark x' as visited

10  Q.Insert(x')

11  else

12  Resolve duplicate x'
```


For DFS, Q is LIFO (Last In First Out)

- push (Q.Insert) onto the front
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.Insert(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	${f else}$
12	Resolve duplicate x'
13	return FAILURE

- push (Q.Insert) onto the front
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.Insert(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

- push (Q.Insert) onto the front
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.IIIser(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

- push (Q.Insert) onto the front
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.Insert(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

- push (Q.Insert) onto the front
- pop (Q.GetFirst) from the front

- push (Q.Insert) onto the front
- pop (Q.GetFirst) from the front

BFS vs DFS

BFS vs DFS

 Not complete for infinite trees (may explore an incorrect branch infinitely deep, never come back up)

Not optimal (cannot guarantee path found is the shortest)

Lower memory footprint than BFS with high-branching

Both BFS and DFS are simple to implement, but might be inefficient.
 More complex algorithms are faster, but generally more difficult to implement

What if edges have non-uniform weights (costs)?

Edgger W Diikstra

Edsger W Dijkstra 1930-2002

- Essentially, BFS considering edge costs
- One of the most commonly used routing algorithms in graph traversal problems

FORWARD_SEARCH 1 Q.Insert(x_I) and mark x_I as visited 2 while Q not empty do 3 $x \leftarrow Q.GetFirst()$ 4 if $x \in X_G$ 5 return SUCCESS 6 forall $u \in U(x)$ 7 $x' \leftarrow f(x, u)$ 8 if x' not visited 9 Mark x' as visited 10 Q.Insert(x') 11 else 12 Resolve duplicate x'13 return FAILURE

For DA, Q is Priority Queue

- push (Q.Insert) by arrive cost
- pop (Q.GetFirst) from the front

FORWARD_SEARCH 1 $Q.Insert(x_I)$ and mark x_I as visited

```
2 while Q not empty do

3 x \leftarrow Q.GetFirst()

4 if x \in X_G

5 return SUCCESS

6 forall u \in U(x)

7 x' \leftarrow f(x, u)

8 if x' not visited

9 Mark x' as visited

10 Q.Insert(x')

11 else

12 Resolve duplicate x'
```


For DA, Q is Priority Queue

- push (Q.Insert) by arrive cost
- pop (Q.GetFirst) from the front

1 $Q.Insert(x_I)$ and mark x_I as visited

	Q.IIISeII(II) and mark II as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

For DA, Q is Priority Queue

- push (Q.Insert) by arrive cost
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.Insert(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'

For DA, Q is Priority Queue

- push (Q.Insert) by arrive cost
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1	$Q.Insert(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	${\it else}$
12	Resolve duplicate x'

For DA, Q is Priority Queue

- push (Q.Insert) by arrive cost
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.Insert(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'

For DA, Q is Priority Queue

- push (Q.Insert) by arrive cost
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.Insert(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

For DA, Q is Priority Queue

- push (Q.Insert) by arrive cost
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	Q.III.Sett(xI) and mark xI as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

For DA, Q is Priority Queue

- push (Q.Insert) by arrive cost
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.Insert(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'

For DA, Q is Priority Queue

- push (Q.Insert) by arrive cost
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	$Q.Insert(x_I)$ and mark x_I as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'

For DA, Q is Priority Queue

- push (Q.Insert) by arrive cost
- pop (Q.GetFirst) from the front

FORWARD_SEARCH

1 $Q.Insert(x_I)$ and mark x_I as visited

1	Q.IIISerr(xI) and mark xI as visited
2	while Q not empty do
3	$x \leftarrow Q.GetFirst()$
4	if $x \in X_G$
5	return SUCCESS
6	forall $u \in U(x)$
7	$x' \leftarrow f(x, u)$
8	if x' not visited
9	Mark x' as visited
10	Q.Insert(x')
11	else
12	Resolve duplicate x'
13	return FAILURE

For DA, Q is Priority Queue

- push (Q.Insert) by arrive cost
- pop (Q.GetFirst) from the front

- push (Q.Insert) by arrive cost
- pop (Q.GetFirst) from the front

return FAILURE

Resolve duplicate x'

12

 At the end, we can recover the lowest-cost route from the start to any node (or any node with cost < goal if we terminate at a goal)

 Not difficult to implement, but requires a little bit of careful management with the priority queue

- Doesn't really know the goal exists until it reaches it
 - Can we guide the search to expand nodes that are closer to the goal earlier?
 - Can we do it without breaking the condition that a node is only accepted with its lowest cost of arrival?

Dijkstra's Algorithm -> A* Algorithm

A* Heuristic Search

 A* is an extension of Dijkstra's algorithm, and achieves faster performance by using heuristics

• Heuristics:

- Any optimistic estimate of how close a state is to a goal
- Designed for a particular search problem
- Example: Euclidean distance, Manhattan distance, etc.

• A* Priority:

$$f(n) = g(n) + h(n)$$
Cost to arrive Heuristic cost to goal

Green: Euclidean distance

Red/Yellow/Blue: Manhattan distance

A* Heuristic - Example

• push (Q.Insert) by f(n), arrive + heuristic cost

Q

Q

• pop (Q.GetFirst) from the front

- push (Q.Insert) by f(n), arrive + heuristic cost
- pop (Q.GetFirst) from the front

- push (Q.Insert) by f(n), arrive + heuristic cost
- pop (Q.GetFirst) from the front

- push (Q.Insert) by f(n), arrive + heuristic cost
- pop (Q.GetFirst) from the front

- push (Q.Insert) by f(n), arrive + heuristic cost
- pop (Q.GetFirst) from the front

- push (Q.Insert) by f(n), arrive + heuristic cost
- pop (Q.GetFirst) from the front

- push (Q.Insert) by f(n), arrive + heuristic cost
- pop (Q.GetFirst) from the front

- push (Q.Insert) by f(n), arrive + heuristic cost
- pop (Q.GetFirst) from the front

- push (Q.Insert) by f(n), arrive + heuristic cost
- pop (Q.GetFirst) from the front

- push (Q.Insert) by f(n), arrive + heuristic cost
- pop (Q.GetFirst) from the front

- push (Q.Insert) by f(n), arrive + heuristic cost
- pop (Q.GetFirst) from the front

 A* is very commonly used in robot planning, especially for lowdimensional state spaces

• Limitations:

Sometimes an admissible heuristic function is difficult to find (as hard as the problem)

slido

What planning algorithm would you use for the Micromouse competition?

i) Start presenting to display the poll results on this slide.

Instead of examining nodes, scanning edges

Initialise

- i. Set distance of start node as 0 and all the other nodes infinity
- 2. While (true)
 - i. For all the edges
 - a) If the distance to the destination can be shortened by taking the edge, the distance is updated to the new lower value
 - ii. If no changes made, break while
- 3. Connect nodes with shortest distance

Richard E. Bellman Lester R. Ford Jr. 1920-1984 1927-2017

Instead of examining nodes, scanning edges

1. Initialise

- i. Set distance of start node as 0 and all the other nodes infinity
- 2. While (true)
 - i. For all the edges
 - a) If the distance to the destination can be shortened by taking the edge, the distance is updated to the new lower value
 - ii. If no changes made, break while
- 3. Connect nodes with shortest distance

Edges:

(A,B),(A,C),(A,D), (B,C),(B,G), (C,D),(C,G),(C,I), (D,I),(D,J), (G,I), (I,J)

Instead of examining nodes, scanning edges

Initialise

- i. Set distance of start node as 0 and all the other nodes infinity
- 2. While (true)
 - i. For all the edges
 - a) If the distance to the destination can be shortened by taking the edge, the distance is updated to the new lower value
 - ii. If no changes made, break while
- 3. Connect nodes with shortest distance

Edges:

(A,B),(A,C),(A,D), (B,C),(B,G), (C,D),(C,G),(C,I), (D,I),(D,J), (G,I), (I,J)

Instead of examining nodes, scanning edges

Initialise

- i. Set distance of start node as 0 and all the other nodes infinity
- 2. While (true)
 - i. For all the edges
 - a) If the distance to the destination can be shortened by taking the edge, the distance is updated to the new lower value
 - ii. If no changes made, break while
- 3. Connect nodes with shortest distance

Edges:

(A,B),(A,C),(A,D), (B,C),(B,G), (C,D),(C,G),(C,I), (D,I),(D,J), (G,I), (I,J)

Instead of examining nodes, scanning edges

Initialise

- i. Set distance of start node as 0 and all the other nodes infinity
- 2. While (true)
 - i. For all the edges
 - a) If the distance to the destination can be shortened by taking the edge, the distance is updated to the new lower value
 - ii. If no changes made, break while
- 3. Connect nodes with shortest distance


```
(A,B),(A,C),(A,D),
(B,C),(B,G),
(C,D),(C,G),(C,I),
(D,I),(D,J),
(G,I),
(I,J)
```


Instead of examining nodes, scanning edges

Initialise

- i. Set distance of start node as 0 and all the other nodes infinity
- 2. While (true)
 - i. For all the edges
 - a) If the distance to the destination can be shortened by taking the edge, the distance is updated to the new lower value
 - ii. If no changes made, break while
- 3. Connect nodes with shortest distance


```
(A,B),(A,C),(A,D),
(B,C),(B,G),
(C,D),(C,G),(C,I),
(D,I),(D,J),
(G,I),
(I,J)
```


Instead of examining nodes, scanning edges

Initialise

- i. Set distance of start node as 0 and all the other nodes infinity
- 2. While (true)
 - i. For all the edges
 - a) If the distance to the destination can be shortened by taking the edge, the distance is updated to the new lower value
 - ii. If no changes made, break while
- 3. Connect nodes with shortest distance


```
(A,B),(A,C),(A,D),
(B,C),(B,G),
(C,D),(C,G),(C,I),
(D,I),(D,J),
(G,I),
(I,J)
```


Instead of examining nodes, scanning edges

Initialise

- i. Set distance of start node as 0 and all the other nodes infinity
- 2. While (true)
 - i. For all the edges
 - a) If the distance to the destination can be shortened by taking the edge, the distance is updated to the new lower value
 - ii. If no changes made, break while
- 3. Connect nodes with shortest distance


```
(A,B),(A,C),(A,D),
(B,C),(B,G),
(C,D),(C,G),(C,I),
(D,I),(D,J),
(G,I),
(I,J)
```


Instead of examining nodes, scanning edges

Initialise

- i. Set distance of start node as 0 and all the other nodes infinity
- 2. While (true)
 - i. For all the edges
 - a) If the distance to the destination can be shortened by taking the edge, the distance is updated to the new lower value
 - ii. If no changes made, break while
- 3. Connect nodes with shortest distance

Scan all edges once again, we will luckily find no changes to the distance for each node.


```
(A,B),(A,C),(A,D),
(B,C),(B,G),
(C,D),(C,G),(C,I),
(D,I),(D,J),
(G,I),
(I,J)
```


Instead of examining nodes, scanning edges

1. Initialise

- i. Set distance of start node as 0 and all the other nodes infinity
- 2. While (true)
 - i. For all the edges
 - a) If the distance to the destination can be shortened by taking the edge, the distance is updated to the new lower value
 - ii. If no changes made, break while
- 3. Connect nodes with shortest distance


```
(A,B),(A,C),(A,D),
(B,C),(B,G),
(C,D),(C,G),(C,I),
(D,I),(D,J),
(G,I),
(I,J)
```


Easy to implement!

Work with negatively weighted edges

Cost: Distance

Easy to implement!

Work with negatively weighted edges

 Does not scale well (time complexity worse than Dijkstra's algorithm)

Cost: Distance

Cost: Petrol reduction

Flood Fill Algorithm

∞	∞	%	8	∞
8	8	<mark>1</mark>	8	8
∞	1	0	1	8
∞	∞	<mark>1</mark>	8	8
∞	∞	∞	∞	∞

∞	∞	2	∞	∞
8	<mark>2</mark>	1	<mark>2</mark>	8
∞	1	0	1	2
∞	<mark>2</mark>	1	2	8
∞	∞	∞	∞	∞

∞	3	2	3	8
3	2	1	2	3
∞	1	0	1	2
∞	2	1	2	3
∞	<mark>3</mark>	∞	3	∞

4	3	2	3	<mark>4</mark>
3	2	1	2	3
<mark>4</mark>	1	0	1	2
∞	2	1	2	3
4)	3	<mark>4</mark>	3	4

4	3	2	3	4
3	2	1	2	3
4	1	0	1	2
<mark>5</mark>	2	1	2	3
4	3	4	3	4

4	3	2	3	4
3	2	1	2	3
4	1	0	1	2
5	2	1	2	3
4	3	4	3	4

Flood-Fill Algorithm – For exploration

Flood-Fill Algorithm – Pseudocode (More details in tutorial)

```
FloodFill
    initialize
      all CellValues \leftarrow N (N=A Big Number, e.g. N=Rows x Columns)
      GoalCellValue \leftarrow 0
      CurrentExploredValue \leftarrow 0
      MazeValueChanged \leftarrow 1
    while MazeValueChanged ≠0
       MazeValueChanged \leftarrow 0
      forall Rows
 9
         forall Columns
           if CurrentCellValue==CurrentExploredValue
10
11
              forall Directions (North, East, South, West)
12
                if NeighbouringWall does not exist
13
                  if NeighbouringCellValue==N
                     NeighbouringCellValue ← CurrentCellValue+1
14
                    MazeValueChanged \leftarrow 1
15
      CurrentExploredValue = CurrentExploredValue +1
16
    return
```


What we have learnt today

Path planning vs trajectory planning

Constructing graph from map representation

- Graph search algorithms can be used to find an optimal path
 - Breath first search
 - Depth first search
 - Dijkstra's algorithm
 - A* algorithm
 - Bellman-Ford algorithm
 - Flood fill algorithm (tutorial)

Next week: Planning II

Acknowledgment

- Many of the slides are adapted from Nick Lawrance
 - https://www.ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/asl-dam/documents/lectures/autonomous mobile robots/spring-2019/Planning I 2019.pdf

