

COMMUNICATION ENGINEERING

By Prof. Hitesh Dholakiya

Visit: Engineering Funda YouTube Channel

Download: Engineering Funda Android Application

ABSTRACT

I am preparing this material to help my students studying in Engineering. I wish all my students will progress in their life and live happily. Your Suggestions are most welcome to me, so please give your valuable suggestions. For Video learning you can see my YouTube Channel Engineering Funda. God Bless You

Prof. Hitesh L. Dholakiya SSASIT. surat

Analog Communication

Block Diagram of a generalised Communication System

Basic elements of a communication system

Basic Analog and Digital data transmission

COMMUNICATION ENGINEERING

Frequency Bands

Frequency	Name	Medium	Applications
3-30 kHz	Very Low frequency	Wire pairs	Long range
	(VLF)		navigation, sonar
30-300kHz	Low Frequency (LF) Wire pairs		Navigational aids,
			radio beacons.
300-3000kHz	Medium Frequency	Coaxial Cable	Maritime radio,
	(MF)		direction finding.
2-30MHz	High Frequency	Coaxial Cable	Search and rescue,
	(HF)		aircraft comm.
30-300MHz	Very High	Coaxial Cable	VHF TV channels,
	Frequency (VHF)		FM radio.
0.3-3 GHz	Ultra High	Coaxial Cable/	UHF TV channels,
	Frequency (UHF)	Waveguide	Satellite comm.
3-30 GHz	-30 GHz Super High Waveguide		Satellite comm.,
	Frequency (SHF)		weather RADAR.
30-300 GHz	Extremely High	Waveguide	Railroad service,
	Frequency		RADAR landing.
>300 GHz	Optical Frequency	Optical Fiber	Wideband data,
			experimental.

Classification of Communication systems

Based on the type of communication system

- I. Analog Communication systems
- II. Digital Communication systems

Based on the type of transmission wave

- I. Light wave
- II. RF transmission

Based on the type of transmission system

- I. Carrier
- II. Direct baseband

Communication channels

- I. Twisted wire pair
- II. Coaxial cable
- III. Waveguides
- IV. Optical fiber

Communication modulation

Spectral Analysis

Periodic signals: Fourier series

Analog Modulation

Amplitude Modulation

Single Tone Modulation

Modulating wave

$$V_m(t) = V_m \cos \omega_m t$$

Carrier wave

$$V_c(t) = V_c \cos \omega_c t$$

AM modulated wave

$$V_{AM}(t) = [V_C + k_a V_m \cos \omega_m t] \cos \omega_c t$$

Modulation Index

$$m_a = k_a \frac{V_m}{V_C} = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}$$

Where,

 $V_m(t)$ = Modulating signal or Message Signal

 $V_c(t)$ = Carrier signal

 V_m = Peak message volt

 V_C = Peak carrier volt

 ω_C = Carrier frequency in rad/sec

 ω_m = message frequency in rad/sec

 A_{max} = Max. amplitude of message

 A_{min} = Min. amplitude of message

Modulation index behaviour

Amplitude modulation types

- I. Double SideBand with Carrier DSB+S / Amplitude Modulation with Full Carrier
- II. Double SideBand Suppressed Carrier DSC-SC
- III. Single Side Band SSB
- IV. Single Side Band Full Carrier SSBFC
- V. Vestigial Side Band VSB

Representation of various AM signal

AM / DSB-FC

Standard AM Signal

$$V_{AM}(t) = V_C \cos \omega_c t + 0.5 m_a V_C [\cos(\omega_c + \omega_m)t + \cos(\omega_c - \omega_m)t]$$

Total Power required for AM or DSB-FC

$$P_t = P_{carrier} + P_{USB} + P_{LSB}$$

$$P_t = P_c(1 + 0.5m_a^2)$$

DSB-SC

Standard AM Signal

$$V_{AM}(t) = 0.5m_a V_C [\cos(\omega_c + \omega_m)t + \cos(\omega_c - \omega_m)t]$$

Total Power required for AM or DSB-FC

$$P_t = P_{USB} + P_{LSB}$$

$$P_t = P_c(0.5m_a^2)$$

SSB-FC

Standard AM Signal

$$V_{AM}(t) = V_C \cos \omega_c t + 0.5 m_a V_C [\cos(\omega_c - \omega_m) t]$$

Total Power required for AM or DSB-FC

$$P_t = P_{carrier} + P_{USB} \text{ or } P_{LSB}$$

$$P_t = P_c(1 + 0.25m_a^2)$$

SSB-SC

Standard AM Signal

$$V_{AM}(t) = 0.5m_a V_C [\cos(\omega_c - \omega_m) t]$$

Total Power required for AM or DSB-FC

$$P_t = P_{USB} \text{ or } P_{LSB}$$

$$P_t = P_c(0.25m_a^2)$$

Multi Tone Modulation (Non - Sinusoidal)

AM / DSB-FC	AM / DSB-SC	
Standard AM signal (Time domain)	Standard AM signal (Time domain)	
$V(t) = (A + f(t)) \left[0.5 \left(e^{j\omega_c t} + e^{-j\omega_c t} \right) \right]$	$V(t) = f(t) \left[0.5 \left(e^{j\omega_c t} + e^{-j\omega_c t} \right) \right]$	
Standard AM signal (Frequency domain)	Standard AM signal (Frequency domain)	
$V(\omega) = (\pi A + 0.5)[F(\omega - \omega_C) + F(\omega + \omega_C)]$	$V(\omega) = 0.5[F(\omega - \omega_C) + F(\omega + \omega_C)]$	

Angle Modulation

Frequency Modulation

If carrier wave is

$$x_c(t) = A_c \cos(2\pi f_c t)$$

Modulating signal is

$$m(t) = A_m \cos(2\pi f_m t)$$

Then general expression of **FM** is given by,

$$y_{fm}(t) = A_c \cos(2\pi f_c t + \beta \sin 2\pi f_m t) = A_c \cos\left(2\pi f_c t + k_f \int m(t)dt\right)$$

Frequency deviation

$$\Delta f = \frac{k_f A_m}{2\pi}$$

Modulation Index

$$\beta = \frac{\Delta f}{f_m}$$

When $\beta \ll 1$, FM is NarrowBand FM (NBFM)

When $\beta = 1$, FM is WideBand FM (WBFM)

Bandwidth of FM is $BW = 2(\Delta f + B)$

Phase Lock Loop FM Demodulation

Image signal frequency $f_{si} = f_s + 2f_i$

Where, f_s = Source frequency and f_i = image frequency

Phase Modulation

If carrier wave is

$$x_c(t) = A_c \cos(2\pi f_c t)$$

Modulating signal is

$$m(t) = A_m \cos(2\pi f_m t)$$

Then general expression of **PM** is given by,

$$y_{pm}(t) = A_c \cos(2\pi f_c t + k_p m_p(t))$$

The **phase modulation index** β_p is given by,

$$\beta_p = \Delta \emptyset = k_p max \big| m_p(t) \big|$$

Bandwidth of PM is given by,

$$BW = 2(\Delta f + B)$$

Frequency deviation

$$\Delta f = \frac{\Delta \emptyset}{2\pi}$$

Where,

 k_p is phase sensitivity

Noise in Analog Communications

Signal to Noise ratio (SNR)

$$(SNR)_0 = \frac{Average\ power\ of\ message\ signal\ at\ the\ receiver\ output}{Average\ power\ of\ the\ noise\ at\ the\ receiver\ output}$$

$$(SNR)_c = \frac{Average\ power\ of\ modulated\ signal}{Average\ power\ of\ the\ noise\ measured\ in\ message\ bandwidth}$$

Figure of merit

Figure of merit =
$$\frac{(SNR)_0}{(SNR)_c}$$

Comparison of AM and FM

AM Signal	FM Signal
SNR ratio for DSBFC modulation is given	The output SNR ratio is given by
by	$A_c^2 k_f^2 P$
$A_c^2 P$	$(SNR)_0 = \frac{{A_c}^2 {k_f}^2 P}{2W^3 N_0}$
$(SNR)_0 = (SNR)_c = \frac{{A_c}^2 P}{2WN_0}$	The channel SNR ratio is given by
The figure of merit is	A_c^2
Figure of merit = $\frac{(SNR)_0}{(SNR)_c} = 1$	$(SNR)_c = \frac{A_c^2}{2WN_0}$
$(SNR)_c$	The figure of merit is given by
SNR ratio for SSBSC modulation is given by	Figure of merit = $\frac{(SNR)_0}{(SNR)_c} = \frac{k_f^2}{W^2}$
$(SNR)_0 = (SNR)_c = \frac{{A_c}^2 P}{4WN_0}$	
The figure of merit is	
Figure of merit = $\frac{(SNR)_0}{(SNR)_c} = 1$	

Digital Communication

Digital Modulation

General Types of Digital Modulation

Pulse Modulation

Sampling Theorem

Sampling frequency,

$$f_s = \frac{1}{T_s} \ge 2f_m$$

Nyquist rate of Sampling,

$$f_s = \frac{1}{T_s} = 2f_m$$

Where,

 $f_s = Sampling frequency$

 $T_s = Sampling period$

 $f_m = Maximum$ frequency of the modulating signal

Comparison between PAM, PWM, PPM

S.No	Pulse Amplitude Modulation (PAM)	Pulse Duration/Width Modulation (PDM/PWM)	Pulse Position Modulation (PPM)
1	Amplitude of the pulse proportional to amplitude of modulating signal	Width of the pulse is proportional to amplitude of modulating signal	•
2	Bandwidth of the trans- mission channel depends on the pulse width	Bandwidth of the transmission channel depends on the rise time of the pulse	Bandwidth of the transmission channel depends on the rising time of the pulse
3	Instantaneous power of the transmitter varies	Instantaneous power of the transmitter varies	Instantaneous power of the transmitter remains constant
4	Noise interference is high	Noise interference is minimum	Noise interference is minimum
5	System is complex to implement	System is simple to implement	System is simple to implement
6	Similar to amplitude modulation	Similar to frequency modula-	Similar to phase modulation

Pulse Code Modulation PCM

Quantization levels

$$M=2^N$$

Step size

$$\delta = \frac{2V_m}{M}$$

Signal Power

$$s_i = \frac{(M\delta)^2}{12}$$

Signal to Noise ratio
$$\frac{S_i}{N_Q} = M^2, \quad \frac{S_o}{N_Q} = \frac{3}{2}M^2$$

Bit rate

$$r_b = Nf_s$$

Minimum Bandwidth

$$BW_{Min} = \frac{r_{b(min)}}{2}$$

Where,

N = Number of bits to represent

 $V_m = Max$ amplitude of signal f_s = Number of samples per sec.

Delta Modulation

Condition for slope overload

$$\frac{\delta}{T_s} \ge 2\pi a_m f$$
 \mathbf{Or} $a_m \le \frac{\delta}{2\pi f T_s}$

The maximum allowable power

$$P_{max} = \frac{{a_m}^2}{2} = \frac{\delta^2}{8\pi^2 f^2 T_s^2}$$

Quantization noise power

$$N_Q = \frac{\delta^2}{3}$$

The in band quantization noise power

$$=\frac{f}{f_s}N_Q$$

Signal to Noise Ratio SNR

$$SNR = \frac{3}{8\pi^2} \left(\frac{f_s}{f}\right)^3$$

Where,

 δ = step size

 $a_m = peak \ amplitude$

ASK, FSK, PSK

Noise in Digital Communications

Noise categories

Noise Voltage

Thermal Noise

Thermal noise voltage is given by

$$V_n = \sqrt{4kTBR}$$

Where,

 $V_n = rms$ Noise voltage

k = Boltzman's constant $(1.38 \times 10^{-23} J/K)$

T = Temperature in Kelvin

B = Bandwidth

R = Thermal Resistance

Measuring noise SNR

Signal to Noise Ratio (SNR)

$$\frac{S}{N} = \frac{V_s}{V_n} \quad or \quad \frac{S}{N} = \frac{P_s}{P_n}$$

Signal to Noise Ratio (Decibels)

SNR in dB using Voltage

$$dB = 20 \log \frac{V_s}{V_n}$$

SNR in dB using Power

$$dB = 10 \log \frac{P_s}{P_n}$$

Noise ratio (NR)

$$NR = \frac{SNR input}{SNR output}$$

Noise Figure (NF)

$$NF = 10 \log NR$$
 (dB)

Noise in cascaded stages

$$NR = NR_1 + \frac{NR_2 - 1}{A_1} + \frac{NR_3 - 1}{A_1 A_2} + \frac{NR_4 - 1}{A_1 A_2 A_3} + \cdots$$

Random Signals and Processes

Probability distribution function

$$F_x(x) = P(X \le x) = \int_{-\infty}^x f_x(u) du$$

Probability density function

$$f_x(x) = \frac{dF_x(x)}{dx}$$

Gaussian Probability function

$$f_x(x) = \frac{1}{\sigma\sqrt{2\pi}}exp\left[-\frac{(x-\overline{X})^2}{2\sigma^2}\right]$$

Independence

$$f_{X,Y}(x,y) = f_X(x) f_Y(y)$$

Expectation

$$E[X] = \int_{-\infty}^{\infty} x f_x(x) dx$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f_x(x) dx$$

Variance

$$\sigma_{x}^{2} \triangleq E[X - E[X]^{2}] = E[X^{2}] - E^{2}[X]$$

Addition of random variables

$$E[X+Y] = E[X] + E[Y]$$

Independent random variables

$$E[XY] = E[X]E[Y]$$

Correlation

$$R_{XY} = E[XY] = \iint_{-\infty}^{\infty} xy \, f_{X,Y}(x,y) \, dx \, dy$$