CS321: Computer Networks

Wired LAN Protocol: Ethernet Wireless LAN Protocol: IEEE 802.11

Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Wired LAN Protocols

- Following CSMA/CD approach
 - Ethernet
- Following token-passing approach
 - Token Ring
 - Token Bus
 - FDDI (Fiber Distribution Data Interface)

Ethernet

Table 13.1 Summary of Standard Ethernet implementations

Implementation	Medium	Medium Length	Encoding	
10Base5	Thick coax	500 m	Manchester Manchester Manchester	
10Base2	Thin coax	185 m		
10Base-T	2 UTP	100 m		
10Base-F	2 Fiber	2000 m	Manchester	

 Table 13.2
 Summary of Fast Ethernet implementations

Implementation	Medium	Medium Length	Wires	Encoding
100Base-TX	UTP or STP	100 m	2	4B5B + MLT-3
100Base-FX	Fiber	185 m	2	4B5B + NRZ-I
100Base-T4	UTP	100 m	4	Two 8B/6T

Ethernet

 Table 13.3
 Summary of Gigabit Ethernet implementations

Implementation	Medium	Medium Length	Wires	Encoding
1000Base-SX	Fiber S-W	550 m	2	8B/10B + NRZ
1000Base-LX	Fiber L-W	5000 m	2	8B/10B + NRZ
1000Base-CX	STP	25 m	2	8B/10B + NRZ
1000Base-T4	UTP	100 m	4	4D-PAM5

Table 13.4 Summary of 10 Gigabit Ethernet implementations

Implementation	Medium	Medium Length	Number of wires	Encoding
10GBase-SR	Fiber 850 nm	300 m	2	64B66B
10GBase-LR	Fiber 1310 nm	10 Km	2	64B66B
10GBase-EW	Fiber 1350 nm	40 Km	2	SONET
10GBase-X4	Fiber 1310 nm	300 m to 10 Km	2	8B10B

Frame Format

 Type: defines the upper-layer protocol whose packet is encapsulated

Wireless LAN

- Influential Characteristics
 - Attenuation
 - Error
 - Interference
 - Multipath Propagation

IEEE 802.11 PROJECT

 Institute of Electrical and Electronics Engineers (IEEE) defines standard for Wireless LANs (802.11)

Architecture:

- BSS (Basic Service Set)
- ESS (Extended Service Set)

Server or gateway Distribution system BSS BSS BSS

Pathway to present WiFi

- IEEE 802.11-1997: The WLAN standard was originally 1 Mbit/s and 2 Mbit/s,
 2.4 GHz RF and infrared (IR) standard (1997)
- <u>IEEE 802.11b</u>: Enhancements to 802.11 to support 5.5 Mbit/s and 11 Mbit/s (1999)
- <u>IEEE 802.11e</u>: Enhancements: <u>QoS</u>, including packet bursting (2005)
- <u>IEEE 802.11g</u>: 54 Mbit/s, 2.4 GHz standard (backwards compatible with b) (2003)
- IEEE 802.11-2007: A new release of the standard that includes amendments a, b, d, e, g, h, i, and j. (July 2007)
- <u>IEEE 802.11n</u>: Higher-throughput improvements using MIMO (multiple-input, multiple-output antennas) (September 2009)
- IEEE 802.11-2012: A new release of the standard that includes amendments k, n, p, r, s, u, v, w, y, and z (March 2012)
- <u>IEEE 802.11ac</u>: Very High Throughput < 6 GHz; potential improvements over 802.11n: better modulation scheme (expected ~10% throughput increase), wider channels (estimate in future time 80 to 160 MHz), multiuser MIMO;(December 2013)
- <u>IEEE 802.11ad</u>: Very High Throughput 60 GHz (December 2012) see <u>WiGig</u>

MAC Layer in IEEE 802.11

- MAC protocols
 - DCF (Distributed Coordination Function)
 - PCF (Point Coordination Function)

MAC Protocols

Cont...

- Distributed Coordination Function (DCF)
 - Symmetric, all stations (including APs) behave the same way
 - Follow CSMA/CA
 - Stations contend for access to medium
- Point Coordination Function (PCF)
 - Built on DCF
 - Allows periods of contention-free operation interleaved with periods of contention
 - One station (typically AP) polls others to control who transmits
 - Permits more efficient operation under heavy loads

Cont...

- Slot time: basic unit of MAC algorithm
 - = Time required for station to sense end of frame, start transmitting, and beginning of frame to propagate to others
- SIFS (Short Inter-Frame Space)
 - = Time required for station to sense end of frame and start transmitting
 - = By that time the transmitting station will be able to switch back to receive mode and be capable of decoding the incoming packet
- DIFS (DCF Inter-Frame Space)
 - = SIFS + 2 *Slot time
- PIFS (PCF Inter-Frame Space)
 - = SIFS + Slot time
- AIFS (Arbitration Inter-Frame Space)

DCF

DCF follows CSMA/CA protocol

RTS-CTS Access Method

Basic Access Method

CFP/CP

NAV

Frame Format

- FC: Frame Control
- D: Duration / ID
- SC: Fragment number & Sequence counter
- FCS: Frame Check Sequence (CRC-32)

Frame Control (FC)

Field	Explanation			
Version	Current version is 0			
Туре	Type of information: management (00), control (01), or data (10)			
Subtype	Subtype of each type (see Table 15.2)			
To DS	Defined later			
From DS	Defined later			
More frag	When set to 1, means more fragments			
Retry	When set to 1, means retransmitted frame			
Pwr mgt	When set to 1, means station is in power management mode			
More data	When set to 1, means station has more data to send			
WEP	Wired equivalent privacy (encryption implemented)			
Rsvd	Reserved			

Subtype	Meaning		
1011 Request to send (RTS)			
1100	Clear to send (CTS)		
1101	Acknowledgment (ACK)		

Cont...

To DS	From DS	Address 1	Address 2	Address 3	Address 4
0	0	Destination	Source	BSS ID	N/A
0	1	Destination	Sending AP	Source	N/A
1	0	Receiving AP	Source	Destination	N/A
1	1	Receiving AP	Sending AP	Destination	Source

Few Other Wireless Networks

- Bluetooth
 - It is a Wireless LAN designed to connect heterogeneous devices
- WiMAX
 - Where wired access to Internet is difficult
- Cellular Network
 - 1G, 2G, 3G, 4G, 5G
- Satellite Network
 - GEO, MEO, LEO Satellites

Thanks!