

SESSION FORMAT

- It might be best to focus on the presentation and not follow along live in MAWA.
- There will be two videos of this session available (the recording and a reference video), plus the entire session script in writing, with screenshots.
- It might be better to dive into MAWA yourselves as homework (summarized at the end of the session).
- If you really want to try to follow along live in the app, start loading MAWA now by clicking this link.
- Don't stress about taking notes!
- Questions:
 - I'll periodically ask if there are questions
 - If I don't, feel free to interrupt
 - Or put it in the chat for Dante and Andrei to triage

WHAT IS MAWA?

- MAWA = Multiplex Analysis Web Apps
- New, open-source software capable of performing:
 - File handling
 - Phenotyping
 - Spatial analysis
- Includes multiple published and novel methodologies
- Extremely performant
- Aims to be user-friendly and accessible to users of all skill levels

INPUT DATA

- Spatial Transcriptomics:
 - Technology summary: Barcodes embedded in grids on specialized slides, RNA sequencing techniques.
 - Raw data: Transcript counts at each point on a grid.
 - Processing: Spatial deconvolution is used to obtain the gene expression profile (in counts) for each cell or spot.
- Spatial Proteomics (in the case of immunofluorescence):
 - Technology summary: Fluorophore-labeled antibodies bound to protein surface markers.
 - Raw data: Channel intensity at each pixel.
 - Processing: Deep-learning based image segmentation is used to obtain the protein intensity for each cell.
- Ultimately, both methods lead to text-based data with objects in rows and coordinates and numerical features
 in columns.
- Any data of this general format can be used in MAWA.

MAWA DEPLOYMENT PLATFORMS

NIDAP

- NIDAP = NIH Integrated Data Analysis Platform
- Filesystem is organized into Projects, which usually correspond to research groups
- Each project can contain both user data and instances of NIDAP applications
- We have <u>deployed MAWA</u> in a public project on NIDAP for use during this workshop
- To create a secure deployment for your group, contact us (<u>andrew.weisman@nih.gov</u>) to have MAWA set up in your project

THRESHOLDED PHENOTYPING OPTIONS

x coord	y coord	CD8	CD163	СК	FOXP3	"Species" phenotype
x1	y1	1	0	0	0	CD8+
x2	y2	0	1	1	0	CD163+ CK+
						· **
x coord	y coord	CD8	CD163	CK	FOXP3	"Custom" phenotype
x1	y1	1	0	0	0	CTL
x2	y2	0	1	1	0	Tumor M2
					hat all all se	
x coord	y coord	CD8	CD163	CK	FOXP3	"Marker" phenotype
x1	y1	1	0	0	0	CD8
x2	y2	0	1	1	0	CD163
x2	y2					CK

						Phenotypes
x coord	y coord	CD8	CD163	CK	FOXP3	Species Custom Marker
x1	y1	1	0	0	0	CD8+ CTL CD8
x2	y2	0	1	1	0	CD163+ CK+ Tumor M2 CD163
x2	y2					CK

MUTUALLY EXCLUSIVE PHENOTYPES

NON-MUTUALLY EXCLUSIVE PHENOTYPES

NEXT STEPS

- Homework:
 - Review the <u>video</u> and <u>script</u> for this session of this workshop.
 - Follow along step-by-step in the <u>training MAWA deployment</u>.
- Plan to attend the next sessions:
 - Tue 10/22, 1-2 PM
 - Unsupervised phenotyping.
 - Andrei Bombin, Ph.D.
 - Tue 10/29, 1-2 PM
 - Pairwise spatial analysis using hypothesis testing.
 - Andrew Weisman, Ph.D.
 - Wed 11/6, 11-12 PM
 - Neighborhood analysis using spatial UMAP.
 - Dante Smith, Ph.D.

