Exercice 1 : Soit P et Q deux propositions logiques. Déterminer la table de vérité de la proposition « non (P) ou Q ».

P	Q	non (P) ou Q
0	0	
0	1	
1	0	
1	1	

Tableau 1 – non (P) ou Q

Exercice 2 : Soit P et Q deux propositions logiques. On considère une proposition T(P,Q), construite à partir des propositions P et Q, dont la table de vérité est donnée ci-dessous.

Р	Q	T(P,Q)		
F	F	F		
F	V	F		
V	F	V		
V	V	F		

Tableau 2 - T(P,Q)

Parmi les propositions suivantes, laquelle est logiquement équivalente à T(P,Q)?

- Q et non(P)
- non(Q) ou P
- non(Q) et P
- Q ou non(P)

A	В	С	C et (A ou B)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Tableau 3 – C et (A ou B)

Exercice 4: Montrer l'égalité suivante :

$$(x \wedge y) \vee (\neg y \wedge z) = (x \vee \neg y) \wedge (y \vee z)$$

Exercice 5 : On considère la fonction booléenne suivante :

$$f(x,y,z) = (x \land \neg y \land \neg z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land \neg y \land z)$$

- 1. Donner sa table de vérité.
- 2. Que fait cette fonction?
- 3. En s'aidant de la table de vérité, donner une expression plus simple de cette fonction.

Exercice 6: En combinant 2 additionneurs 1 bit nous pouvons obtenir un additionneur 2 bits. Notons e_0e_1 et e_2e_3 deux nombres binaires. Le premier additionneur se charge d'additionner les bits de poids faible.

- 1. Quels bits additionnent cet additionneur?
- 2. Que vaut l'entrée c_0 de cet additionneur?
- 3. Où est envoyé la sortie c de ce premier additionneur?
- 4. Combien de lignes y-aura-t-il dans la table de vérité de l'additionneur 2 bits?
- 5. Compléter la table de vérité de l'additionneur 2 bits ci-après :

e_0	e_1	e_2	e_4	s_0	s_1	c
0	0	0	0	0	0	0

Tableau 4 – Additionneur 2 bits