

Python: Classes

- 1. Create a class to represent an electric car.
 - The class should include data members for the speed, map coordinates (x and y), electric charge and maximum charge.
 - Write a function to return the percentage electric charge, using the electric charge and the maximum electric charge.
- 2. A house has a solar panel array on it that is controlled by a small computer system that is part of the solar array installation.
 - Define a SolarPanel class that includes a public data member to hold a serial number as a text string and a public data member to hold the power produced as a floating point value.
 - Define a SolarArray class that contains a public data member that is a list of solar panel objects, and map coordinates (x and y) for the solar array. The constructor should have three input parameters:

```
def __init__(self, x, y, solar_panels=[]):
```

The constructor should use a shallow copy to copy the input solar_panels to a data member.

- Add a member function to the SolarArray class that returns the total power of the solar array, by looping over the SolarPanel objects and summing their power values.
- 3. Create two classes named Customer and Purchase.
 - The classes should be designed to contain the contents of Table 1 and 2. The Customer class should include a list data member to hold Purchase objects.

Table 1: Customers		
id	first_name	surname
1	Amiee	Greene
2	Maia	Morley
3	Charleigh	Cano
4	Franklin	Torres
5	Mitchell	Page
6	Momina	Thornton
7	Cheryl	Devlin
8	Isobel	Orozco
9	Nicolas	Adams
10	Devante	Rodriguez

Table 2: Purchases, where the foreign key customer_id relates to the id value in the Customers table.

customer_id	item_id	amount_paid
3 2	1	100
2	3	123
6	5	40
1	2	23
3	1	100
3 5 7	5	40
	15	46
2	7	3.02
1	10	22
8	12	45.95
4	17	33
4 2	17	33
2	5	40

- Add a member function to the Customer class to return a table of item_id and amount_paid. The return value should be a formatted string that includes the values and description of what they are. The string should use a tab (\t) character to separate the two columns.
- Add a member function to the Customer class to return a total amount_paid by a specific customer. The function should loop over all Purchase objects and return a floating point number.