- Les calculatrices ne sont pas autorisées.
- Je vous conseille de bien lire chaque énoncé entièrement avant de vous lancer, de souligner ou de surligner les points ou notations importants.
- Les trois exercices peuvent être traités dans l'ordre que vous souhaitez, mais vous devez l'indiquer clairement sur votre copie.
- La présentation, la lisibilité et la qualité de la rédaction des copies font l'objet d'une appréciation spécifique. En particulier, les résultats doivent être encadrés à la règle.
- Si vous repérez une erreur d'énoncé, vous l'indiquez sur votre copie et expliquez les raisons des initiatives que vous prenez.

Exercice 1 - Groupe de Heisenberg

On considère un corps \mathbb{K} et l'ensemble des matrices carrées $\mathcal{M}_3(\mathbb{K})$ de taille 3 sur le corps \mathbb{K} . Pour tout triplet $(x,y,z) \in \mathbb{K}^3$, on note

$$h(x, y, z) = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

On note de plus

$$\mathcal{H}_3(\mathbb{K}) = \left\{ h(x, y, z) \mid (x, y, z) \in \mathbb{K}^3 \right\}$$

1. Montrer que

$$\forall (x, y, z, x', y', z') \in \mathbb{K}^6, \quad h(x, y, z)h(x', y', z') = h(x + x', y + y', z + z' + xy')$$

2. Montrer que pour tout triplet (x, y, z) dans \mathbb{K}^3 , la matrice h(x, y, z) est inversible et que son inverse est donné par

$$h(x, y, z)^{-1} = h(-x, -y, -z + xy)$$

- 3. En déduire que $\mathcal{H}_3(\mathbb{K})$ est un sous-groupe de $GL_3(\mathbb{K})$, le groupe linéaire d'ordre 3 sur le corps \mathbb{K} .
- 4. Montrer que

$$\forall n \in \mathbb{N}, \forall (x, y, z) \in \mathbb{K}^3, \quad h(x, y, z)^n = h\left(nx, ny, nz + \frac{n(n-1)}{2}xy\right)$$

- 5. Le groupe $\mathcal{H}_3(\mathbb{K})$ est-il commutatif?
- 6. On munit \mathbb{K}^2 de sa structure additive de groupe produit, i.e

$$\forall (x, y, x', y') \in \mathbb{K}^4, \quad (x, y) + (x', y') = (x + x', y + y').$$

On introduit l'application

$$\begin{array}{cccc} f & : & \mathcal{H}_3(\mathbb{K}) & \to & \mathbb{K}^2 \\ & & h(x,y,z) & \mapsto & (x,y) \end{array}$$

Montrer que l'application f est un morphisme de groupes.

- 7. Quel est le noyau de l'application f? En particulier, f est-elle injective?
- 8. On munit à présent \mathbb{K}^3 de sa structure additive de groupe produit, i.e

$$\forall (x, y, z, x', y', z') \in \mathbb{K}^6, \quad (x, y, z) + (x', y', z') = (x + x', y + y', z + z')$$

Montrer que l'application

$$g: \mathcal{H}_3(\mathbb{K}) \to \mathbb{K}^3$$

 $h(x,y,z) \mapsto (x,y,z)$

n'est pas un morphisme de groupes.

Exercice 2 - Les entiers de Gauss

On se place dans l'anneau $\mathbb C$ (qui se trouve être un corps). On note

$$\mathbb{Z}[i] = \left\{ a + bi \mid (a, b) \in \mathbb{Z}^2 \right\}$$

Les éléments de l'ensemble $\mathbb{Z}[i]$ sont appelés des entiers de Gauss.

- 1. L'anneau $\mathbb{Z}[i]$.
 - (a) Montrer que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} .
 - (b) Montrer que $\mathbb{Z}[i]$ un anneau commutatif, puis qu'il est intègre.
 - (c) On introduit l'application

$$\begin{array}{ccc} \mathsf{N} & : & \mathbb{Z}[\mathrm{i}] & \to & \mathbb{N} \\ & a+b\mathrm{i} & \mapsto & a^2+b^2 \end{array}$$

Montrer que

$$\forall (z, z') \in \mathbb{Z}[i]^2$$
, $N(zz') = N(z)N(z')$

- (d) Soit $z \in \mathbb{Z}[i]$. Montrer que z est inversible dans $\mathbb{Z}[i]$ si et seulement si N(z) = 1.
- (e) En déduire la liste des éléments inversibles de $\mathbb{Z}[i]\!$.
- 2. L'anneau euclidien $\mathbb{Z}[i]$.
 - (a) Soit $(z, w) \in \mathbb{Z}[i] \times \mathbb{Z}[i]^*$. Montrer qu'il existe un couple (q, r) dans $(\mathbb{Z}[i])^2$ tel que

$$z = qw + r$$
 et $0 \le N(r) < N(w)$

Indication : on pourra placer le complexe z/w dans un quadrillage de $\mathbb C$

- (b) Déterminer un tel couple (q, r) pour z = 7 + 2i et w = 2 + 3i.
- 3. On dit qu'un élément z de $\mathbb{Z}[i]$ est irréductible lorsque z est non nul, non inversible et

$$\forall (s,t) \in \mathbb{Z}[i]^2, z = st \Rightarrow s \text{ ou } t \text{ est inversible}$$

- (a) Montrer que 3 est irréductible dans $\mathbb{Z}[i]$, mais que 2 ne l'est pas.
- (b) Soit (w, a, b) un triplet de $\mathbb{Z}[i]$. On suppose que w est irréductible, puis que w divise ab, i.e qu'il existe un entier de Gauss v tel que vw = ab. Montrer qu'alors w divise a ou b. Indication : Raisonner par l'absurde, et prendre un triplet absurde avec b tel que N(b) est minimal.
- (c) Soit p un entier premier dans \mathbb{Z} . On suppose qu'il existe deux entiers naturels a et b tels que $p = a^2 + b^2$. Montrer que w = a + ib et $\overline{w} = a ib$ sont irréductibles dans $\mathbb{Z}[i]$.
- (d) Avec les mêmes hypothèses et notations qu'en question précédente, montrer que

$$\forall z \in \mathbb{Z}[i], N(z) = p \Rightarrow \exists u \in \{1, -1, i, -i\}, z = u(a + ib) \text{ ou } z = u(a - ib)$$

(e) On considère q un entier premier dans \mathbb{Z} . On suppose qu'il ne s'écrit pas comme somme de deux carrés d'entiers naturels. Montrer qu'alors q est irréductible dans $\mathbb{Z}[i]$.

Exercice 3 - Une extension quadratique

- 1. (a) Soit \mathbb{K} un sous-corps de $(\mathbb{C},+,\times)$. Montrer que \mathbb{K} contient \mathbb{Q} .

 Indication: on pourra commencer par montrer par récurrence que \mathbb{K} contient \mathbb{N} .
 - (b) Soit A une partie de \mathbb{C} . On note

$$\mathbb{Q}(A) = \bigcap_{\substack{\mathbb{K} \text{ sous-corps de } \mathbb{C}}} \mathbb{K}$$

l'intersection de tous les sous-corps de $\mathbb C$ qui contiennent A. Montrer que $\mathbb Q(A)$ est un sous-corps de $\mathbb C$, et que c'est le plus petit qui contient A.

(c) Dans le cas particulier où $A = \{\sqrt{2}\}$, démontrer que $\mathbb{Q}(\{\sqrt{2}\}) = \{a + b\sqrt{2} \mid (a,b) \in \mathbb{Q}^2\}$. Indication : on pourra commencer par montrer que $\{a + b\sqrt{2} \mid (a,b) \in \mathbb{Q}^2\}$ est un sous-corps de \mathbb{C} .

On le note plus légèrement $\mathbb{Q}(\sqrt{2})$ dans ce qui suit.

- 2. On considère f un morphisme de corps de $\mathbb{Q}(\sqrt{2})$ dans $\mathbb{Q}(\sqrt{2})$.
 - (a) Montrer que $\forall x \in \mathbb{Q}$, f(x) = x.
 - (b) Montrer que $f(\sqrt{2}) = \sqrt{2}$ ou $f(\sqrt{2}) = -\sqrt{2}$.
 - (c) En déduire la liste des automorphismes de corps de $\mathbb{Q}(\sqrt{2})$, i.e des morphismes bijectifs de $\mathbb{Q}(\sqrt{2})$ dans lui-même. On montrera en particulier qu'il n'y en a que deux.
- 3. (a) Soit $(a,b) \in \mathbb{Q}^2$ et $z = a + b\sqrt{2}$. Montrer qu'il existe un polynôme non nul unitaire $P \in \mathbb{Q}[X]$ (donc à coefficients dans \mathbb{Q}) tel que P(z) = 0. Parmi ces polynômes, déterminer celui de plus petit degré (on ne demande pas de démontrer son unicité).
 - (b) On suppose que $2a \in \mathbb{Z}$, et que $a^2 2b^2 \in \mathbb{Z}$. En écrivant b sous forme irréductible b = r/s, montrer par l'absurde que $a \in \mathbb{Z}$. En déduire que $b \in \mathbb{Z}$.