Computación Gráfica MG. R. Jesús Cárdenas Talavera

- La definición del color es extremadamente subjetiva y personal
- Todos tienen un concepto de color, pero en percepción pueden llegar a ser diferentes
- El objetivo es los espacios de color es ayudar al proceso de descripción del color
- Ayuda a comprender un color tanto por las personas como por la máquina

- Surge la pregunta:
 - ¿Cómo describir correctamente el color?
- En humanos, el color es una reacción a un estímulo visual

- No se puede describir con precisión un color (más intenso, más tenue, ...)
- Dado que la intensidad se mide con una onda de radiación electromagnética, se puede tener un grado de redundancia en la percepción
- Por ejemplo, el ojo humano percibe longitudes de onda aproximadamente de:
 - 400 nanómetros (violeta)
 - 700 nanómetros (rojo)
- Este rango es el espectro visible

- Los colores base o colores primarios que percibe el ojo humano son:
- Rojo
- Verde
- Azul
- La combinación de ellos lleva al cerebro a tener la sensación de percibir diferentes colores

- La sensaciones de color podrían variar de acuerdo:
- Brillo, mayor o menor cantidad de luz
- Tono, que área aparenta un tono similar
- Colorido, que área aparenta más o menos tono
- Luminosidad, sensación relativa del brillo al color blanco

- Croma, sensación de colorido con referencia al blanco
- Saturación, relación del colorido con el brillo
- Pese a estas sensaciones, el cerebro puede tener una interpretación diferente

- Métodos que especifican, crean y visualizan el color
- Una computadora lo describe usando cantidades de rojo, verde y azul
- Una impresión produce un color en términos de combinación de Cian, magenta, amarillo y negro

¿Porque existen diferentes espacios de color?

- Debido a la aplicación
- Equipos de visualización
- Algunos espacios de color son intuitivos

- Transformar una imagen en su espacio de color, requiere una transformación en cuanto a sus canales que lo componen
- Podemos transformar $(R_{(x,y)})$ una imagen $A_{(x,y)}$ en cada uno de sus canales, aplicando una determinada función

$$R(x,y).R:= f1(A(x,y).R,A(x,y).G,A(x,y).B)$$

 $R(x,y).G:= f2(A(x,y).R,A(x,y).G,A(x,y).B)$
 $R(x,y).B:= f3(A(x,y).R,A(x,y).G,A(x,y).B)$

• Existen transformaciones basadas en modelos de color

• Todas estas tienen funciones que ayudan en esta

transformación

Por ejemplo:

- Grises,
- RGB,
- CMYK,
- HSL, HSV,
- YUV,
- · YCbCr,
- CIE

Escala de Grises

• Conversión sencilla:

$$R_{(x,y)} = \frac{A_{(x,y)} \cdot R + A_{(x,y)} \cdot G + A_{(x,y)} \cdot B}{3}$$

Conversión precisa:

$$R_{x,y} = 0.21A_{x,y}.R + 0.72A_{x,y}.G + 0.07A_{x,y}.B$$

Imagen de entrada

Grises (media)

Grises (precisa)

Escala de Grises

$$R_{x,y} = 0.21A_{x,y}.R + 0.72A_{x,y}.G + 0.07A_{x,y}.B$$

- Estos valores representan la percepción promedio relativa del brillo de la luz del rojo, verde y azul
- ¿Es posible revertir el proceso?

- Idea: dada un imagen en gris, producir una imagen en escala de cierto color dado
- Sea A una imagen en grises y un color objetivo (vr, vg, vb), la escala se puede descomponer en dos partes:

• Transformación (obviamos (x,y)):

si A<128 entonces

$$R.R:= vr \cdot \frac{A}{128}; \ R.G:= vg \cdot \frac{A}{128}; \ R.B:= vb \cdot \frac{A}{128}$$

sino

$$R.R: = vr + \frac{(255-vr)(A-128)}{128}; R.G: = vg + \frac{(255-vg)(A-128)}{128}$$

$$R.B: = vb + \frac{(255-vb)(A-128)}{128}$$

finsi

Imagen de entrada

¿Cómo conseguir que el punto intermedio sea un valor cualquiera (distinto de 128)?

Escala de grises

Escala de (30,255,0)

Escala de sepias

Escala de (0,255,255)

Transformación de color falso

- Es una transformación de la misma familia, cuyo objetivo es hacer más visibles las **pequeñas variaciones** del nivel de gris
- Se define una paleta de salida adecuada y una transformación de cada valor de gris en la paleta

• Las transformaciones de este tipo son comunes en imágenes médicas y de satélite

Imagen de entrada

Imagen con color falso

Agregar color

• Se puede usar las operaciones de suma, resta y producto, pero con una constante distinta por cada canal

$$R.R: = vr + A.R;$$
 $R.G: = vg + A.G;$ $R.B: = vb + A.B$
 $R.R: = fr \cdot A.R;$ $R.G: = fg \cdot A.G;$ $R.B: = fb \cdot A.B$

• (vr, vg, vb) y (fr, fg, fb) indican el tono de color que se da a la imagen

Imagen de entrada

Sumar (-20, 8, 60)

Multipl. (1.4, 0.9, 0.9)

Imagen de entrada

Sumar (-10, 40, -10)

Multipl. (1.4, 1.15, 1)

• También es posible mezclar y cambiar los canales, con transformaciones como las siguientes.

R.R = A.G R.G = A.BR.B = A.R

$$R.R = A.B$$

 $R.G = A.R$
 $R.B = A.G$

$$R.R = \frac{A.R + A.B}{2}$$

$$R.G = \frac{A.G + A.R}{2}$$

$$R.B = \frac{A.G + A.B}{2}$$

Computación Gráfica MG. R. Jesús Cárdenas Talavera