17

The neural network circuit 25 recognizes the seated-state of a passenger Aby training as described in several books on Neural Networks referenced in the above referenced patents and patent applications. Then, after training the seated-state of the passenger A and developing the neural network weights, the system is tested. The training procedure and the test procedure of the neural network circuit 25 will hereafter be described with a flowchart shown in FIG. 6.

As diagrammed in FIG. 6, the first step is to mount the four sets of ultrasonic sensor systems 11-14, the weight 10 sensors 6 and 7, the reclining angle detecting sensor 9, and the seat track position detecting sensor 10 into a vehicle (step S 1). Next, in order to provide data for the neural network circuit 25 to learn the patterns of seated states, data is recorded for patterns of all possible seated states and a list 15 is maintained recording the seated states for which data was acquired. The data from the sensors/transducers 6, 7, 9-14 and 31-33, for a particular occupancy of the passenger seat is called a vector (step S 2). It should be pointed out that the use of the reclining angle detecting sensor 9, seat track 20 position detecting sensor 10, heart beat sensor 31, capacitive sensor 32 and motion sensor 33 are not essential to the detecting apparatus and method in accordance with the invention. However, each of these sensors, in combination with any one or more of the other sensors enhances the 25 evaluation of the seated-state of the seat.

For the vectors of data, adults and children each with different postures, states of windows etc. within the passenger compartment, and occupied and unoccupied child seats were selected. The selected adults include people with a 30 variety of different physiques such as fat, lean, small, large, tall, short, and glasses wearing persons. The selected children ranged from an infant to a large child (for example, about 14 year old). In addition, the selected postures include, for example, a sitting state with legs crossed on a seat, a 35 sitting state with legs on an instrument panel, a sitting state while reading a newspaper, a book, or a map, a sitting state while holding a cup of coffee, a cellular telephone or a dictation machine, and a slouching state with and without raised knees. Furthermore, the selected compartment states 40 include variations in the seat track position, the windowopening amount, headrest position, and varying positions of a sun-visor. Moreover, a multitude of different models of child seats are used in the forward facing position and, where appropriate, in a rear facing position. The range of 45 weights and the corresponding normalized values are as follows:

Class	Weight Range	Normalized Value
Empty seat	0 to 2.2 lbs.	0 to 0.01
Rear Facing Child Seat	2.2 to 60 lbs.	0.01 to 0.27
Forward facing Child Seat	2.2 to 60 lbs.	0.01 to 0.27
Normal Position Adult	60 lbs and greater	0.27 to 1

Obviously, other weight ranges may also be used in accordance with the invention and each weight range may be tailored to specific conditions, such as different vehicles. The output of the weight sensors may not correspond 60 directly to be weight ranges in the above table. If for example strain measuring sensors are placed on each of the vehicle seat supports, such sensors will also respond to the weight of the seat itself. That weight must therefore the remove so that only the additional weight of an occupying 65 item is measured. Similarly it may be desirable to place strain sensing devices on only some of the vehicle seat

support structures. In such cases the weight of the occupying item can be in inferred from the output of the strain sensing sensors. This will be described in greater detail below.

18

Various vehicle setups were prepared by a combination of these variations and, for in this embodiment, almost 500,000 or more vectors should be prepared for the patterns to be used as data for the neural network training.

Next, based on the training data from the reflected waves of the ultrasonic sensor systems 11-14 and the other sensors 6, 7, 31-33, the vector data is collected (step S 3). Next, the reflected waves P1-P4 are removing the initial reflected waves with a short reflection time from an object (range gating) (period T1 in FIG. 5) and the last portion of the reflected waves with a long reflection time from an object (period P2 in FIG. 5) (step S 4). It is believed that the reflected waves with a short reflection time from an object is a due to cross-talk, that is, waves from the transmitters which leaks into each of their associated receivers ChA-ChD. It is also believed that the reflected waves with a long reflection time are reflected waves from an object far away from the passenger seat or from multipath reflections. If these two reflected wave portions are used as data, they will add noise to the training process. Therefore, these reflected wave portions are eliminated from the data.

As shown in FIG. 7(a), measured data is normalized by making the peaks of the reflected wave pulses P1-P4 equal (step S 5). This eliminates the effects of different reflectivities of different objects and people depending on the characteristics of their surfaces such as their clothing Data from the weight sensor, seat track position sensor and seat reclining angle sensor are also frequently normalized based typically on fixed normalization parameters.

Therefore, the normalized data from the ultrasonic transducers the seat track position detecting sensor 10, the reclining angle detecting sensor 9, from the weight sensor(s) 6 and 7, from the heart beat sensor 31, the capacitive sensor 32 and the motion sensor 33 are input to the neural network circuit 25, and the neural network circuit 25 is then trained on this data. More specifically, the neural network circuit 25 adds up the normalized data from the ultrasonic transducers, from the seat track position detecting sensor 10, from the reclining angle detecting sensor 9, from the weight sensor(s) 6 and 7, from the heart beat sensor 31, from the capacitive sensor 32 and from the motion sensor 33 with each data point multiplied by a associated weight according to the conventional neural network process to determine correlation function (step S 6).

In this embodiment, 144 data points are appropriately interconnected at 25 connecting points of layer 1, and each 50 data point is mutually correlated through the neural network training and weight determination process. The 144 data points consist of 138 measured data points from the ultrasonic transducers, the data (139th) from the seat track position detecting sensor 10, the data (140th) from the 55 reclining angle detecting sensor 9, the data (141st) from the weight sensor(s) 6, the data (142nd) from the heart beat sensor 31, the data (143rd) capacitive sensor and the data (144th) from the motion sensor. Each of the connecting points of the layer 1 has an appropriate threshold value, and if the sum of measured data exceeds the threshold value, each of the connecting points will output a signal to the connecting points of layer 2. Although the weight sensor input is shown as a single input, in general there will be a separate input from each weight sensor used. For example, if we the seat has four seat supports and if a strained measuring element is used on each support, what will be four data inputs to neural network. The connecting points of

19

the layer 2 comprises 20 points, and the 25 connecting points of the layer 1 are appropriately interconnected as the connecting points of the layer 2. Similarly, each data is mutually correlated through the training process and weight determination as described above and in the above referenced neural 5 network texts. Each of the 20 connecting points of the layer 2 has an appropriate threshold value, and if the sum of measured data exceeds the threshold value, each of the connecting points will output a signal to the connecting points of layer 3.

The connecting points of the layer 3 comprises 3 points, and the connecting points of the layer 2 are interconnected at the connecting points of the layer 3 so that each data is mutually correlated as described above. If the sum of the outputs of the connecting points of layer 2 exceeds a 15 threshold value, the connecting points of the latter 3 will output Logic values (100), (010), and (001) respectively, for example.

The threshold value of each connecting point is determined by multiplying weight coefficients and summing up 20 the results in sequence, and the aforementioned training process is to determine a weight coefficient Wj so that the threshold value (ai) is a previously determined output.

 $ai = \sum W_j \cdot X_j (j=1 \text{ to } N)$

Wi is the weight coefficient,

Xi is the data and

N is the number of samples.

Based on this result of the training, the neural network circuit 25 generates the weights for the coefficients of the correlation function or the algorithm (step S 7).

At the time the neutral network circuit 25 has learned a suitable number of patterns of the training data, the result of 35 the training is tested by the test data. In the case where the rate of correct answers of the seated-state detecting unit based on this test data is unsatisfactory, the neural network circuit is further trained and the test is repeated. In this embodiment, the test was performed based on about 600,000 40 test patterns. When the rate of correct test result answers was at about 98%, the training was ended.

The neural network circuit 25 has outputs 25a, 25b and 25c. Each of the outputs 25a, 25b and 25c outputs a signal of logic 0 or 1 to a gate circuit or algorithm 30. Based on the 45 signals from the outputs 25a, 25b and 25c, any one of these combination (100), (010) and (001) is obtained. In another preferred embodiment, all data for the empty seat was removed from the training set and the empty seat case was determined based on the output of the weight sensor alone. 50 This simplifies the neural network and improves its accuracy.

In this embodiment, the output (001) correspond to a vacant seat, a seat occupied by an inanimate object or a seat occupied by a pet (VACANT), the output (010) corresponds 55 to a rear facing child seat (RFCS) or an abnormally seated passenger (ASP), and the output (100) corresponds to a normally seated passenger (NSP) or a forward facing child seat (FFCS).

The gate circuit (seated-state evaluation circuit) 30 can be 60 implemented by an electronic circuit or by a computer algorithm by those skilled in the art and the details will not be presented here. The function of the gate circuit 30 is to remove the ambiguity that sometimes results when ultrasonic sensors and seat position sensors alone are used. This 65 ambiguity is that it is sometimes difficult to differentiate between a rear facing child seat (RFCS) and an abnormally

20

seated passenger (ASP), or between a normally seated passenger (NSP) and a forward facing child seat (FFCS). By the addition of one or more weight sensors in the function of acting as a switch when the weight is above or below 60 lbs., it has been found that this ambiguity can be eliminated. The gate circuit therefore takes into account the output of the neural network and also the weight from the weight sensor (s) as being above or below 60 lbs, and thereby separates the two cases just described and results in five discrete outputs.

Thus, the gate circuit 30 fulfills a role of outputting five kinds of seated-state evaluation signals, based on a combination of three kinds of evaluation signals from the neural network 25 and superimposed information from the weight sensor(s). The five seated-state evaluation signals are input to an airbag deployment determining circuit that is part of the airbag system and will not be described here. Naturally, as disclosed in the above reference patents and patent applications, the output of this system can also be used to activate a variety of lights or alarms to indicate to the operator of the vehicle the seated state of the passenger. Naturally, the system that has been here described for the passenger side is also applicable for the most part for the driver side.

In this embodiment, although the neural network circuit 25 25 has been employed as an evaluation circuit, the mapping data of the coefficients of a correlation function may also be implemented or transferred to a microcomputer to constitute the valuation circuit (see Step S 8 in FIG. 6).

According to the seated-state detecting unit of the present invention, the identification of a vacant seat (VACANT), a rear facing child seat (RFCS), a forward facing child seat (FFCS), a normally seated adult passenger (NSP), an abnormally seated adult passenger (ASP), can be reliably performed. Based on this identification, it is possible to control a component, system or subsystem in the vehicle. For example, a regulation valve which controls the inflation or deflation of an airbag may be controlled based on the evaluated identification of the occupant of the seat. This regulation valve may be of the digital or analog type. A digital regulation valve is one that is in either of two states, open or closed. The control of the flow is then accomplished by varying the time that the valve is open and closed, i.e., the duty cycle.

Moreover, the seated-slate detecting unit described above may be used in a component adjustment system and method described below when the presence of a human being occupying the seat is detected.

The component adjustment system and methods in accordance with the invention automatically and passively adjust the component based on the morphology of the occupant of the seat. As noted above, the adjustment system may include the seated-state detecting unit described above so that it will be activated if the seated-state detecting unit detects that an adult or child occupant is seated on the seat, i.e., the adjustment system will not operate if the seat is occupied by a child seat, pet or inanimate objects. Obviously, the same system can be used for any seat in the vehicle including the driver seat and the passenger seat(s). This adjustment system may incorporated the same components as the seated-state detecting unit described above, i.e., the same components may constitute a part of both the seated-state detecting unit and the adjustment system, e.g., the weight measuring means.

The adjustment system described herein, although improved over the prior art, will at best be approximate since two people, even if they are identical in all other respects, may have a different preferred driving position or other

preferred adjusted component location or orientation. A system that automatically adjusts the component, therefore, must learn from its errors, Thus, when a new occupant sits in the vehicle, for example, the system automatically estimates the best location of the component for that occupant 5 and moves the component to that location, assuming it is not already at the best location. If the occupant changes the location, the system must remember that change and incorporate it into the adjustment the next time that person enters the vehicle and is seated in the same seat. Therefore, the 10 system need not make a perfect selection the first time but it must remember the person and the position the component was in for that person. The system, therefore, makes one, two or three measurements of morphological characteristics of the occupant and then adjusts the component based on an 15 algorithm. The occupant will correct the adjustment and the next time that the system measures the same measurements for those measurement characteristics, it will set the component to the corrected position. As such, preferred components for which the system in accordance with the invention 20 is most useful are those which affect a driver of the vehicle and relate to the sensory abilities of the driver, i.e., the mirrors, the seat, the steering wheel and steering column and

accelerator, clutch and brake pedals.

21

The first characteristic used is a measurement of the 25 height of the occupant from the vehicle seat. This can be done by a sensor in the ceiling of the vehicle but this becomes difficult since, even for the same seat location, the head of the occupant will not be at the same angle with respect to the seat and therefore the angle to a ceiling- 30 mounted sensor is in general unknown at least as long as only one ceiling mounted sensor is used. This problem can be solved if two or three sensors are used as described in more detail below. The simplest implementation is to place the sensor in the seat. In the '320 patent mentioned above, 35 a rear impact occupant protection apparatus is disclosed which uses sensors mounted within the headrest. This same system can also be used to measure the height of the occupant from the seat and thus, for no additional cost assuming the rear impact occupant protection system 40 described in the '320 patent is provided, the first measure of the occupant's morphology an be achieved. For some applications, this may be sufficient since it is unlikely that two operators will use the vehicle who have the same height. For other implementations, one or more additional measure- 45 ments are used. Referring now to FIG. 8, an automatic adjustment system for adjusting a seat (which is being used only as n example of a vehicle component) is shown generally at 100 with a movable headrest 111 and ultrasonic sensor 120 and ultrasonic receiver 121 for measuring the 50 height of the occupant of the seat. Power means such as motors 191, 192, and 193 connected to the seat for moving the base of the seat, control means such as a control circuit, system or module 150 connected to the motors and a headrest actuation mechanism using servomotors 160 and 55 170, which may be servomotors, are also illustrated. The seat 110 and headrest 111 are shown in phantom. Vertical motion of the headrest 111 is accomplished when a signal is sent from control module 150 to servomotor 160 through a wire 131. Seromotor 160 rotates lead screw 162 which 60 engages with a threaded hole in member 164 causing it to move up or down depending on the direction of rotation of the lead screw 162. Headrest support rods 165 and 166 are attached to member 164 and cause the headrest 111 to translate up or down with member 164. In this manner, the 65 vertical position of the headrest can be controlled as depicted by arrow A-A. Ultrasonic transmitter and receiver

120,121 may be replaced by other appropriate wavegenerating and receiving devices, such as electromagnetic, active infrared transmitters and receivers.

Wire 132 leads from control module 150 to servomotor 170 which rotates lead screw 172. Lead screw 172 engages with a threaded hole in shaft 173 which is attached to supporting structures within the seat shown in phantom. The rotation of lead screw 172 rotates servo motor support 161, upon which servomotor 160 is situated, which in turn rotates headrest support rods 165 and 166 in slots 168 and 169 in the seat 110. Rotation servomotor support 161 is facilitated by a rod 171 upon which the servo motor support 161 is positioned. In this manner, the headrest 111 is caused to move in the fore and aft direction as depicted by arrow B—B. Naturally there are other designs which accomplish the same effect in moving the headrest up and down and fore and aft.

The operation of the system is as follows. When an adult or child occupant is seated on a seat containing the headrest and control system described above as determined by the neural network circuit 25, the ultrasonic transmitter 120 emits ultrasonic energy which reflects off of the head of the occupant and is received by receiver 121. An electronic circuit in control module 150 contains a microprocessor which determines the distance from the head of the occupant based on the time between the transmission and reception of an ultrasonic pulse. Control module 150 may be within the same microprocessor as neural network circuit 25 or separate therefrom. The headrest 111 moves up and down until it finds the top of the head and then the vertical position closest to the head of the occupant and then remains at that position. Based on the time delay between transmission and reception of an ultrasonic pulse, the system can also determine the longitudinal distance from the headrest to the occupant's head. Since the head may not be located precisely in line with the ultrasonic sensors, or the occupant may be wearing a bat, coat with a high collar, or may have a large hairdo, there may be some error in this longitudinal measurement.

When an occupant sits on seat 110, the headrest 111 moves to find the top of the occupant's head as discussed above. This is accomplished using an algorithm and a microprocessor which is part of control circuit 150. The headrest 111 then moves to the optimum location for rear impact protection as described in the above referenced '320 patent. Once the height of the occupant has been measured, another algorithm in the microprocessor in control circuit 150 compares the occupant's measured height with a table representing the population as a whole and from this table, the appropriate positions for the seat corresponding to the occupant's height is selected. For example, if the occupant measured 33 inches from the top of the seat bottom, this might correspond to a 85% human, depending on the particular seat and statistical tables of human measurements.

Careful study of each particular vehicle model provides the data for the table of the location of the seat to properly position the eyes of the occupant within the "eye-ellipse", the steering wheel within a comfortable reach of the occupant's hands and the pedals within a comfortable reach of the occupant's feet, based on his or her size, etc.

Once the proper position has been determined by control circuit 150, signals are sent to motors 191, 192, and 193 to move the seat to that position. If during some set time period after the seat has been positioned, the operator changes these adjustments, the new positions of the seat are stored in association with an occupant height class in a second table within control circuit 150. When the occupant again occu-

23

pies the seat and his or her height has once again been determined, the control circuit will find an entry in the second table which takes precedence over the basic, original table and the seat returns to the adjusted position. When the occupant leaves the vehicle, or even when the engine is shut off and the door opened, the seat can be returned to a neutral position which provides for easy entry and exit from the vehicle.

The seat 110 also contains two control switch assemblies 180 and 182 for manually controlling the position of the seat 10 110 and headrest 111. The seat control switches 180 permit the occupant to adjust the position of the seat if he or she is dissatisfied with the position selected by the algorithm. The headrest control switches 182 permit the occupant to adjust the position of the headrest in the event that the calculated 15 position is uncomfortably close to or far from the occupant's head. A woman with a large hairdo might find that the headrest automatically adjusts so as to contact her hairdo. This adjustment she might find annoying and could then position the headrest further from her head. For those 20 vehicles which have a seat memory system for associating the seat position with a particular occupant, which has been assumed above, the position of the headrest relative to the occupant's head could also be recorded. Later, when the occupant enters the vehicle, and the seat automatically 25 adjusts to the recorded preference the headrest will similarly automatically adjust (FIG. 17B).

The height of the occupant, although probably the best initial morphological characteristic, may not be sufficient especially for distinguishing one driver from another when 30 they are approximately the same height. A second characteristic, the occupant's weight, can also be readily determined from sensors mounted within the seat in a variety of ways as shown in FIG. 9 which is a perspective view of the seat shown in FIG. 8 with a displacement or 35 weight sensor 200 shown mounted onto the seat. Displacement sensor 200 is supported from supports 202 and 204. Referring now to FIG. 9A, which is a view of the apparatus of FIG. 9 taken along line 9A-9A, seat 230 is constructed from a foam layer 232 which is supported by a spring system 40 234 which is in contract with the displacement sensor 200. The displacement sensor 200 comprises an elongate cable 205 retained at one end by support 210 and a displacement sensor 220 situated at an opposite end. This displacement sensor 220 can be any of a variety of such devices including, 45 but not limited to, a linear rheostat, a linear variable differential transformer (LVDT), a linear variable capacitor, or any other length measuring device. Alternately, the cable can be replaced with a spring and the tension in the spring measured using a strain gage or other force measuring 50 device or the strain in the seat support structure can be measured by appropriately placing strain gages on one or more of the seat supports as described in more detail below. One seat design is illustrated in FIG. 9. Similar weight measurement systems can be designed for other seat 55 designs. Also, some products are available which can approximately measure weight based on pressure measurements made at or near the upper seat surface 236. It should be noted that the weight measured here will not be the entire weight of the occupant since some of the occupant's weight 60 will be supported by his or her feet which are resting on the floor or pedals. As noted above, the weight may also be measured by the weight sensor(s) 6 and 7 described above in the seated-state detecting unit.

As weight is placed on the seat surface 236, it is supported 65 by spring 234 which deflects downward causing cable 205 of the sensor 200 to begin to stretch axially. Using a LVDT

as an example of length measuring device 220 the cable 205 pulls on rod 221 tending to remove rod 221 from cylinder 223 (FIG. 9B). The movement of rod 221 out of cylinder 223 is resisted by a spring 222 which returns the rod 221 into the cylinder 223 when the weight is removed from the seat surface 236. The amount which the rod 221 is removed from the cylinder 223 is measured by the amount of coupling between the windings 226 and 227 of the transformer as is well understood by those skilled in the art. LVDT's are

24

well understood by those skilled in the art. LVDI's are commercially available devices. In this matter, the deflection of the seat can be measured which is a measurement of the weight on the seat. The exact relationship between weight and LVDT output is generally determined experimentally for this application.

By use of a combination of weight and height, the driver of the vehicle can in general be positively identified among the class of drivers who operate the vehicle. Thus, when a particular driver first uses the vehicle, the seat will be automatically adjusted to the proper position. If the driver changes that position within a prescribed time period, the new seat position will be stored in the second table for the particular driver's height and weight. When the driver reenters the vehicle and his or her height and weight are again measured, the seat will go to the location specified in the second table if one exists. Otherwise, the location specified in the first table will be used.

This system provides an identification of the driver based on two morphological characteristics which is adequate for most cases. As additional features of the vehicle interior identification and monitoring system described in the above referenced patent applications are implemented, it will be possible to obtain additional morphological measurements of the driver which will provide even greater accuracy in driver identification. Two characteristics may not be sufficient to rely on for theft and security purposes, however, many other driver references can still be added to seat position with this level of occupant recognition accuracy. These include the automatic selection of a preferred radio station, vehicle temperature, steering wheel and steering column position, etc.

One advantage of using only the height and weight is that it avoids the necessity of the seat manufacturer from having to interact with the headliner manufacturer, or other component suppliers, since all of the measuring transducers are in the seat. This two characteristic system is generally sufficient to distinguish drivers that normally drive a particular vehicle. This system costs little more than the memory systems now in use and is passive, i.e., it does not require action on the part of the occupant after his initial adjustment has been made.

Instead of measuring the height and weight of the occupant, it is also possible to measure a combination of any two morphological characteristics and during a training phase, derive a relationship between the occupancy of the seat, e.g., adult occupant, child occupant, etc, and the data of the two morphological characteristic. This relationship may be embodied within a neural network so that during use, by measuring the two morphological characteristics, the occupancy of the seat can be determined.

Naturally, there are other methods of measuring the height of the driver such as placing the transducers at other locations in the vehicle. Some alternatives are shown in FIG. 10 which is a side plan view wherein two height measuring sensors 320, 321 are shown, sensor 321 being mounted into the headliner above the occupant's head and the other sensor 320 being mounted onto the A-pillar. A sensor as used herein is the combination of two transducers (a transmitter and a

25

receiver) or one transducer which can both transmit and receive. The headliner is the trim which provides the interior surface to the roof of the vehicle and the A-pillar is the roof-supporting member which is on either side of the windshield and on which the front doors are hinged. These 5 transducers may already be present because of other implementations of the vehicle interior identification and monitoring system described in the above referenced patent applications. In this case, the use of both transducers provides a more accurate determination of location of the head 10 of the driver. Using transducer 321 alone, the exact position of the head is ambiguous since the transducer measures the distance to the head regardless of what direction the head is. By knowing the distance from the head to transducer 320 the ambiguity is substantially reduced. This argument is of 15 course dependent on the use of ultrasonic transducers. Optical transducers using CCD or CMOS arrays are now becoming price competitive and, as pointed out in the above referenced patent applications, will be the technology of choice for interior vehicle monitoring. A single CCD array 20 of 160 by 160 pixels, for example, coupled with the appropriate pattern recognition software, can be used to form an image of the head of an occupant and accurately locate the head for the purposes of this invention.

FIG. 10 also illustrates a system where the seatbelt 330 25 has an adjustable upper anchorage point 331 which is automatically adjusted by a motor 332 to a location optimized based on the height of the occupant. The calculations for this feature and the appropriate control circuitry can also be located in control module 301 or elsewhere if appropriate. 30 into control circuit 150.

Many luxury automobiles today have the ability to control the angle of the seat back as well as a lumbar support. These additional motions of the seat can also be controlled by the seat adjustment system in accordance with the invention. FIG. 11 is a view of the seat of FIG. 8 showing motors 481 35 and 482 for changing the tilt of the seat back and the lumbar support. Three motors 482 are used to adjust the lumbar support in this implementation. The same procedure is used for these additional motions as described for FIG. 8 above.

An initial table is provided based on the optimum posi- 40 tions for various segments of the population. For example, for some applications the table may contain a setting value for each five percentile of the population for each of the 6 possible seat motions fore and aft, up and down, total seat tilt, seat back angle, lumbar position, and headrest position 45 for a total of 120 table entries. The second table similarly would contain the personal preference modified values of the 6 positions desired by a particular driver.

In FIG. 8, the ultrasonic transducers 120 and 121 were described as one being a transmitter and the other being a 50 receiver. For some applications, it is desirable to use both transducers as both transducers and receivers. Similarly, a third combination transmitter and receiver 122 may also be utilized as shown in FIG. 11. This arrangement permits many of the advantages of a phased array system to be 55 achieved.

The angular resolution of a transducer is proportional to the ratio of the wavelength to the diameter of the transmitter. Once three transmitters and receivers are used, the approximate equivalent single transmitter and receiver is one which 60 has a diameter approximately equal to the shortest distance between any pair of transducers. In this case, the equivalent diameter is equal to the distance between transmitter 120 or 121 and 122. This provides far greater resolution and, by controlling the phase between signals sent by the 65 transmitters, the direction of the equivalent ultrasonic beam can be controlled. Thus, the head of the driver can be

26

scanned with great accuracy and a map made of the occupant's head. Using this technology plus an appropriate pattern recognition algorithm, such as a neutral network, an accurate location of the driver's head can be found even when the driver's head is partially obscured by a hat, coat, or hairdo. This also provides at least one other identification morphological characteristic which can be used to further identify the occupant, namely the diameter of the driver's

With a knowledge of the weight of an occupant, additional improvements can be made to automobile and truck seat designs. In particular, the stiffness of the seat can be adjusted so as to provide the same level of comfort for light and for heavy occupants. The damping of occupant motions, which heretofore has been largely neglected, can also be readily adjusted as shown on FIG. 12 which is a view of the seat of FIG. 8 showing one of several possible arrangements for changing the stiffness and the damping of the seat. In the seat bottom 520 there is a container 515, the conventional foam and spring design has been replaced by an inflated rectangular container very much like an air mattress which contains a cylindrical inner container 518 which is filled with an open cell urethane foam. An adjustable orifice 525 connects the two container 515,518 so that air can flow in a controlled manner therebetween. The amount of opening of orifice 525 is controlled by control circuit 150. A small air compressor 555 controls the pressure in container 515 tinder control of the control circuit 150. A pressure transducer 560 monitors the pressure within container 515 and inputs this information

The operation of the system is as follows. When an occupant sits on the seat, pressure initially builds up in the seat container 515 which gives an accurate measurement of the weight of the occupant. Control circuit 150 using an algorithm and a microprocessor, then determines an appropriate stiffness for the seat and adds pressure to achieve that stiffness. The pressure equalizes between the two containers 515 and 518 through the flow of air through orifice 525. Control circuit 150 also determines an appropriate damping for the occupant and adjusts the orifice 525 to achieve that damping. As the vehicle travels down the road and the road roughness causes the seat to move up and down, the inertial force on the seat by the occupant causes the air pressure to rise and fall in container 518 and also, but, much less so, in container 515 since the occupant sits mainly above container 518 and container 515 is much larger than container 518. The major deflection in the seat takes place first in container 518 which pressurizes and transfers air to container 515 through orifice 525. The size of the orifice opening determines the flow rate between the two containers and therefore the damping of the motion of the occupant. Since this opening is controlled by control circuit 150 the amount of damping can thereby also be controlled. Thus, in this simple structure, both the stiffness and damping can be controlled to optimize the seat for a particular driver. Naturally, if the driver does not like the settings made by control circuit 150 he or she can change them to provide a stiffer or softer ride.

The stiffness of a seat is the change in force divided by the change in deflection. This is important for many reasons, one of which is that it controls the natural vibration frequency of the seat occupant combination. It is important that this be different from the frequency of vibrations which are transmitted to the seat from the vehicle in order to minimize the up and down motions of the occupant. The damping is a force which opposes the motion of the occupant and which is dependent on the velocity of relative motion between the occupant and the seat bottom. It thus removes energy and

27

minimizes the oscillatory motion of the occupant. These factors are especially important in trucks where the vibratory motions of the driver's seat, and thus the driver, have caused many serious back injuries among truck drivers.

In an automobile, there is an approximately fixed vertical 5 distance between the optimum location of the occupant's eyes and the location of the pedals. The distant from a driver's eyes to his or her feet, on the other hand, is not the same for all people. An individual driver now compensates for this discrepancy by moving die seat and by changing the 10 angle between his or hers legs and body. For both small and large drivers, this discrepancy cannot be fully compensated for and as a result, their eyes are not appropriately placed. A similar problem exists with the steering wheel. To help correct these problems, the pedals and steering column 15 should be movable as illustrated in FIG. 13 which is a plan view similar to that of FIG. 10 showing a driver and driver seat with an automatically adjustable steering column and pedal system which is adjusted based on the morphology of the driver. In FIG. 13, a motor 650 is connected to and 20 controls the position of the steering column and another motor 660 is connected to and controls the position of the pedals. Both motors 650,660 are coupled to and controlled by control circuit 150 wherein now the basic table of settings includes values for both the pedals and steering column 25 locations.

As various parts of the vehicle interior identification and monitoring system described in the above reference patent applications are implemented, a variety of transmitting and receiving transducers will be present in the vehicle passen- 30 ger compartment. If several of these transducers are ultrasonic transmitters and receivers, they can be operated in a phased array manner, as described above for the headrest, to permit precise distance measurements and mapping of the components of the passenger compartment. This is illus- 35 trated in FIG. 14 which is a perspective view of the interior of the passenger compartment showing a variety of transmitters and receivers, 700-706 which can be used in a phased array system. In addition, information can be transmitted between the transducers using coded signals in a 40 ultrasonic network through the vehicle compartment airspace. If one of these sensors is an optical CCD or CMOS array, the location of the driver's eyes can be accurately determined and the results sent to the seat ultrasonically. Obviously, many other possibilities exist.

The eye ellipse discussed above is illustrated at 810 in FIG. 15, which is a view similar to FIG. 1, showing the occupant's eyes and the seat adjusted to place the eyes at a particular vertical position for proper viewing through the windshield and rear view mirror. Many systems are now 50 under development to improve vehicle safety and driving ease. For example, right vision systems are being tested which project an enhanced image of the road ahead of the vehicle onto the windshield in a "heads-up display". The main problem with the systems now being tested is that the 55 projected image does not precisely overlap the image as seen through the windshield. This parallax causes confusion in the driver and can only be corrected if the location of the driver's eyes is accurately known. One method of solving this problem is to use the passive seat adjustment system 60 described herein to place the occupant's eyes at the optimum location as described above. Once this has been accomplished, in addition to solving the parallax problem, the eyes are properly located with respect to the rear view mirror 820 and little if any adjustment is required in order 65 for the driver to have the proper view of what is behind the vehicle.

28

Several systems are in development for determining the location of an occupant and modifying the deployment of the airbag based of his or her position. These systems are called "smart airbags". The passive seat control system in accordance with this invention can also be used for this purpose as illustrated in FIG. 16. This figure is a view similar to FIG. 8 showing an inflated airbag 900 and an arrangement for controlling both the flow of gas into and out of the airbag during a crash. The determination is made based on height sensors 120, 121 and 122 located in the headrest, a weight sensor 200 in the seat and the location of the seat which is known by control circuit 150 (See. FIGS. 8. 9 and 9A). Other smart airbags systems rely only on the position of the occupant determined from various position sensors using ultrasonics or optical sensors.

The weight sensor coupled with the height sensor and the occupant's velocity relative to the vehicle, as determined by the occupant position sensors, provides information as to the amount of energy which the airbag will need to absorb during the impact of the occupant with the airbag. This, along with the location of the occupant relative to the airbag, is then used to determine the amount of gas which is to be injected into the airbag during deployment and the size of the exit orifices which control the rate of energy dissipation as the occupant is interacting with the airbag during the crash. For example, if an occupant is particularly heavy then it is desirable to increase the amount of gas, and thus the initial pressure, in the airbag to accommodate the larger force which will be required to arrest the relative motion of the occupant. Also, the size of the exit orifices should be reduced, since there will be a larger pressure lending to force the gas out of the orifices, in order to prevent the bag from bottoming out before the occupant's relative velocity is arrested. Similarly, for a small occupant the initial pressure would be reduced and the size of the exit orifices increased. If, on the other hand, the occupant is already close to the airbag then the amount of gas injected into the airbag needs to be reduced.

There are many ways of varying the amount of gas injected into the airbag some of which are covered in the patent literature and include, for example, inflators where the amount of gas generated and the rate of generation is controllable. For example, in a particular hybrid inflator manufactured by the Allied Signal Corporation, two pyrotechnic charges are available to heat the stored gas in the inflator. Either or both of the pyrotechnic charges can be ignited and the timing between the ignitions can be controlled to significantly vary the rate of gas flow to the airbag.

The flow of gas out of the airbag is traditionally done through fixed diameter orifices placed in the bag fabric. Some attempts have been made to provide a measure of control through such measures as blowout patches applied to the exterior of the airbag. Other systems were disclosed in U.S. patent application Ser. No. 07/541,464 filed Feb. 9, 1989, now abandoned. FIG. 16A illustrates schematically an inflator 910 generating gas to fill airbag 900 through control valve 920. The flow of gas out of airbag 900 is controlled by exit control valve 930. The valve 930 can be implemented in many different ways including, for example, a motor operated valve located adjacent the inflator and in fluid communication with the airbag or a digital flow control valve as discussed above. When control circuit 150 determines the size and weight of the occupant, the seat position and the relative velocity of the occupant, it then determines the appropriate opening for the exit valve 930 which is coupled to the control circuit 150. A signal is then sent from control circuit 150 to the motor controlling this valve which provides the proper opening.

29

In a like manner, other parameters can also be adjusted, such as the direction of the airbag, by properly positioning the angle and location of the steering wheel relative to the driver. If seatbelt pretensioners are used, the amount of tension in the seatbelt or the force at which the seatbelt spools out, for the case of force limiters, could also be adjusted based on the occupant morphological characteristics determined by the system of this invention.

Once the morphology of the driver and the seat position is known, many other objects in the vehicle can be automatically adjusted to conform to the occupant. An automatically adjustable seat armrest, a cup holder, the cellular phone, or any other objects with which the driver interacts can be now moved to accommodate the driver. This is in addition to the personal preference items such as the radio station, temperature, etc. discussed above.

Once the system of this invention is implemented, additional features become possible such as a seat which automatically makes slight adjustments to help alleviate fatigue or to account for a change of position of the driver in the seat, or a seat which automatically changes position slightly 20 based on the time of day. Many people prefer to sit more upright when driving at night, for example. Other similar improvements based on knowledge of the occupant morphology will now become obvious to those skilled in the art.

In the above-described component adjustment systems 25 and methods, one of the characteristics of the occupying item that may be measured is the weight. Several non-limiting examples of weight measuring apparatus will now be described which may be used in the above-described systems and methods.

In a first embodiment of a weight measuring apparatus shown in FIG. 18, four strain gage weight sensors or transducers are used, two being illustrated at 1010 and 1011 on one side of a bracket of the support structure of the seat and the other two being at the same locations on another 35 bracket of the support (i.e., hidden on the corresponding locations on the other side of the support). The support structure of the seat supports the seat on a substrate such as a floor pan of the vehicle. Each of the strain gage transducers 1010,1011 also contains electronic signal conditioning 40 apparatus, e.g., amplifiers, analog to digital converters, filters etc., which is associated such that output from the transducers is a digital signal. This electronic signal travels from transducer 1010 to transducer 1011 through a wire 1020. Similarly, wire 1021 transmits the output from trans- 45 ducers 1010 and 1011 to the next transducer in the sequence (one of the hidden transducers). Additionally, wire 1022 carries the output from these three transducers toward the fourth transducer (the other hidden transducer) and wire 1023 finally carries all four digital signals to an electronic 50 control system or module 1030. These signals from the transducers 1010,1011 are time or frequency division multiplexed as is well known in the art. The seat position is controlled by motors 1040 as described in detail in U.S. Pat. No. 5,79,576, which is included herein by reference. Finally, 55 the seat is bolted onto the support structure through bolts not shown which attach the seat through holes 1050 in the brackets.

By placing the signal conditioning electronics, analog to digital converters, and other appropriate electronic circuitry 60 adjacent the strain gage element, the four transducers can be daisy chained or otherwise attach together and only a single wire is required to connect all of the transducers to the control module 1030 as well as provide the power to run the transducers and their associated electronics.

The control system 1030 e.g., a microprocessor, is arranged to receive the digital signals from the transducers

30

1010,1011 and determine the weight of the occupying item of the seat based thereon. In other words, the signals from the transducers 1010,1011 are processed by the control system 1030 to provide an indication of the weight of the occupying item of the seat, i.e., the force exerted by the occupying item on the seat support structure.

A typical manually controlled seat structure is illustrated in FIG. 19 and described in greater detail in U.S. Pat. No. 4,285,545. The seat 1056 is attached to a pair of slide mechanisms 1058 in the rear thereof through support members such as rectangular tubular structures 1060 angled between the seat 1056 and the slide mechanisms 1058. The front of the seat 1056 is attached to the vehicle through another support member such as a slide member 1062, which is engaged with a housing 1064. Slide mechanisms 1058 and slide member 1062 constitutes the support structure for mounting the seat on a substrate, i.e., the floor pan. Strain gage transducers are located for this implementation at 1065 and 1066, strain gage transducer 1065 being mounted on each tubular structure 1060 (only one of which is shown) and strain gage transducer 1066 being mounted on slide member 1062. When an occupying item is situated on the seat cushion (not shown), each of the support members 1060 and 1062 are deformed or strained. This strain is measured by transducers 1065 and 1066, respectively, to enable a determination of the weight of the item occupying the seat. More specifically, a control system or module or other compatible processing unit (not shown) is coupled to the strain gage transducers 1065,1066, e.g., via electrical wires (not shown), to receive the measured strain and utilize the measured strain to determine the weight of the occupying item of the seat.

FIG. 19A illustrates an alternate arrangement for the seat support structures wherein a gusset 1068 has been added to bridge the angle on the support. Strain gage transducer 1069 is placed on this gusset 1068. Since the gusset 1068 is not a supporting member, it can be made considerably thinner than the seat support member 1060. As the seat is loaded by an occupying item, the seat support member 1060 will bend. Since the gusset 1068 is relatively weak, greater strain will occur in the gusset then in the support member 1060. The existence of this greater strain permits more efficient use of the strain gage dynamic range thus improving the accuracy of the weight measurement.

FIG. 19B illustrates a seat transverse support member 1070 of the seat shown in FIG. 19, which is situated below the base cushion and extends between opposed lateral sides of the seat. This support member 1070 will be directly loaded by the vehicle seat and thus will provide an average measurement of the force exerted or weight of the occupying item. The deflection or strain in support member 1070 is measured by a strain gage transducer 1072 mounted on the support member 1070 for this purpose. In some applications, the support member 1070 will occupy the entire space fore and aft below the seat cushion. Here it is shown as a relatively narrow member. The strain gage transducer 1072 is coupled, e.g., via an electrical wire (not shown), to a control module or other processing unit (not shown) which utilizes the measured strain to determine the weight of the occupying item of the seat.

In FIG. 19, the support members 1060 are shown as rectangular tubes. In the constructions shown in FIGS. 20A-20C, the rectangular tubular structure has been replaced by a circular tube where only be lower portion of the support is illustrated. FIGS. 20A-20C show three alternate ways of improving the accuracy of the strain gage system, i.e., the accuracy of the measurements of strain by

31

the strain gage transducers. In each case, the transducer is represented by 1065 and the support member corresponding to support member 1060 in FIG. 19 has been labeled 106A. In FIG. 20A, the tube 1060A has been cut to thereby form two separate tubes having longitudinally opposed ends and 5 an additional tube section 1074 has been connected, e.g., by welding, to end portions of the two tubes. In this manner, a more accurate tube section 1074 can be used to permit a more accurate measurement of the strain by transducer 1065, which is mounted on tube section 1074. In FIG. 20B, a small 10 circumferential cut has been made in tube support member 1060A. This cut is used to control the diameter of the tube at the location where strain gage transducer 1065 is measuring the strain. In other words, the strain gage transducer 1065 is placed at a portion wherein the diameter thereof is 15 less than the diameter of remaining portions of the tube. The purpose of this cut is to correct for manufacturing variations in the diameter of the tube 1060A. The magnitude of the cut is selected so as to not significantly weaken the structural member but instead to control the diameter tolerance on the 20 tube so that the strain from one vehicle to another will be the same for a particular loading of the seat. In FIG. 20C, a small hole 1078 is made in the tube 1060A adjacent the transducer 1065 to compensate for manufacturing tolerances on the tube 1060A. From this discussion, it can be seen that all 25 three techniques have as their sole purpose to increase the accuracy of the strain in the support member corresponding to weight on the vehicle seat. Naturally, the preferred approach would be to control the manufacturing tolerances on the support structure tubing so that the variation from 30 vehicle to vehicle is minimized. For some applications where accurate measurements of weight are desired, the seat structure will be designed to optimize the ability to measure the strain in the support members and thereby to optimize the measurement of the weight of the occupying item. The 35 inventions disclosed herein therefore, are intended to cover the entire seat when the design of the seat is such as to be optimized for the purpose of strain gage weight sensing and alternately for the seat structure when it is so optimized.

Although strain measurement devices have been dis- 40 cussed above, pressure measurement systems can also be used in the seat support structure to measure the weight on the seat. Such a system is illustrated in FIG. 21. A general description of the operation of this apparatus is disclosed in U.S. Pat. No. 5,785,291, which is included herein by refer- 45 ence. In that patent, the vehicle seat is attached to the slide mechanism by means of bolts 1084. Between the seat and the slide mechanism, a shock absorbing washer has been used for each bolt. In the present invention, this shock absorbing washer has been replaced by a sandwich con- 50 struction consisting of two washers of shock absorbing material 1080 with a pressure sensitive material 1082 sandwiched in between. A variety of materials can be used for the pressure sensitive material 1082, which generally work on either the capacitance or resistive change of the material as 55 it is compressed. The wires from this material leading to the electronic control system are not shown in this view. The pressure sensitive material is coupled to the control system, e.g., a microprocessor, and provides the control system with an indication of the pressure applied by the seat oil the slide 60 mechanism which is related to the weight of the occupying item of the seat. Generally, material 1082 is constructed with electrodes oil the opposing faces such that as the material is compressed, the spacing between the electrodes is decreased. This spacing change thereby changes both the 65 resistive and the capacitance of the sandwich which can be measured and which is a function of the compressive force

32

on the material. The use of such a pressure sensor is not limited to the illustrated embodiment wherein the shock absorbing material 1080 and pressure sensitive material 1082 are placed around bolt 1084. It is also not limited to the use or incorporation of shock absorbing material in the implementation.

În FIG. 22, which is a view of a seat attachment structure described in U.S. Pat. No. 5,531,503, where a more conventional strain gage load cell design designated 1100 is utilized. One such load cell design 1100 is illustrated in detail in FIG. 22A.

A cantilevered beam load cell design using a half bridge strain gage system 1110 is shown in FIG. 22A. Fixed resistors mounted within the electronic package, which is not shown in this drawing, provide the remainder of the whetstone bridge system. The half bridge system is frequently used for economic reasons and where some sacrifice in accuracy is permissible. The load cell 110 includes a member on which the strain gage 1110 is situated. The strain gage 1100 includes strain-measuring elements 1112 and 1114 arranged on the load cell. The longitudinal element 1112 measures the tensile strain in the beam when it is loaded by the seat and its contents, not shown, which is attached to end 1122 of bolt 1120. The load cell is mounted to the vehicle or other substrate using bolt 1130. Temperature compensation is achieved in this system since the resistance change in strain elements 1112 and 1114 will vary the same amount with temperature and thus the voltage across the portions of the half bridge will remain the same. The strain gage 1100 is coupled to a control system (e.g., a microprocessor-not shown) via wires 1124 and receives the measured tensile strain and determines the weight of an occupying item of the seat based thereon.

One problem with using a cantilevered load cell is that it imparts a torque to the member on which it is mounted. One preferred mounting member on an automobile is the floorpan which will support significant vertical loads but is poor at resisting torques since floor-pans are typically about 1 mm (0.04 inches) thick. This problem can be overcome through the use of a simply supported load cell design designated 1200 as shown in FIG. 22B.

In FIG. 22B a full bridge strain gage system 1210 is used with all four elements 1212,1214 mounted on the top of a beam 1205. Elements 1212 are mounted parallel to the beam 1205 and elements 1214 are mounted perpendicular to it. Since the maximum strain is in the middle of the beam 1205, strain gage 1210 is mounted close to that location. The load cell, shown generally as 1200 is supported by the floor pan, not shown, at supports 1230 that are formed by bending the beam 1205 downward at its ends. Fasteners 1220 fit through holes 1222 in the beam 1205 and serve to hold the load cell 1200 to the floor pan without putting significant forces on the load cell 1200. Holes are provided in the floor-pan for bolt 1240 and for fasteners 1220. Bolt 1240 is attached to the load cell 1200 through hole 1250 of the beam 1205 which serves to transfer the force from the seat to the load cell 1200.

The electronics package is potted within hole 1262 using urethane potting compound 1244 and includes signal conditioning circuits, a microprocessor with integral ADCs 1280 and a flex circuit 1275 (FIG. 22C). The flex circuit 1275 terminates at an electrical connector 1290 for connection to other vehicle electronics, e.g., a control system. The beam 1205 is slightly tapered at location 1232 so that the strain is constant in the strain gage.

Although thus far only beam type load cells have been described, other geometries can also be used. One such

33

geometry is a tubular type load cell. Such a tubular load cell is shown generally at 1300 in FIG. 22D and instead of an elongate beam, it includes a tube. It also comprises a plurality of strain sensing elements 1310 for measuring tensile and compressive strains in the tube as well as other elements, not shown, which are placed perpendicular to the elements 1310 to provide for temperature compensation. Temperature compensation is achieved in this manner, as is well known to those skilled in the art of the use of strain gages in conjunction with a whetstone bridge circuit, since 10 temperature changes will affect each of the strain gage elements identically and the total effect thus cancels out in the circuit. The same bolt 1340 can be used in this case for mounting the load cell to the floor-pan and for attaching the seat to the load cell.

Another alternate load cell design shown generally in FIG. 22E as 1400 makes use of a torsion bar 1410 and appropriately placed torsional strain sensing elements 1420. A torque is imparted to the bar 1410 by means of lever 1430 and bolt 1440 which attaches to the seat structure not shown. 20 Bolts 1450 attach the mounting blocks 1460 at ends of the torsion bar 1410 to the vehicle floor-pan.

The load cells illustrated above are all preferably of the foil strain gage type. Other types of strain gages exist which would work equally which include wire strain gages and 25 transducers described above. A transducer space can be strain gages made from silicon. Silicon strain gages have the advantage of having a much larger gage factor and the disadvantage of greater temperature effects. For the highvoltage implementation of this invention, silicon strain gages have an advantage in that the electronic circuitry 30 (signal conditioning, ADCs, etc.) can be integrated with the strain gage for a low cost package. Other strain gage materials and load cell designs may, of course, be incorporated within the teachings of this invention.

Many seat designs have four attachment points for the 35 seat structure to attach to the vehicle. Since the plane of attachment is determined by three points, the potential exists for a significant uncertainty or error to be introduced. This problem can be compounded by the method of attachment of the seat to the vehicle. Some attachment methods using 40 bolts, for example, can introduce significant strain in the seat supporting structure. Some compliance therefore must be introduced into the seat structure to reduce these attachment induced stresses to a minimum. Too much compliance, on the other hand, can significantly weaken the seat structure 45 and thereby potentially cause a safety issue. This problem can be solved by rendering the compliance section of the seat structure highly nonlinear or significantly limiting the range of the compliance. One of the support members, for example, can be attached to the top of the seat structure 50 through the use of the pinned joint wherein the angular rotation of the joint is severely limited. Methods will now be obvious to those skilled in the art to eliminate the attachment induced stress and strain in the structure which can cause inaccuracies in the strain measuring system.

In the examples illustrated above, strain measuring elements have been shown at each of the support members. This of course is necessary if an accurate measurement of the weight of the occupying item of the seat is to be determined. For this case, typically a single value is inputted 60 into the neural network representing weight. Experiments have shown, however, for the four strain gage transducer system, that most of the weight and thus most of the strain occurs in the strain elements mounted on the rear seat support structural members. In fact, about 85 percent of the 65 load is typically carried by the rear supports. Little accuracy is lost therefore if the forward strain measuring elements are

34

eliminated. Similarly, for most cases, the two rear mounted support strain elements measure approximately the same strain. Thus, the information represented by the strain in one rear seat support is sufficient to provide a reasonably accurate measurement of the weight of the occupying item of the

If a system consisting of eight transducers is considered, four ultrasonic transducers and four weight transducers, and if cost considerations require the choice of a smaller total number of transducers, which of the eight transducers should be eliminated? Fortunately, the neural network technology provides a technique for determining which of the eight transducers is most important, which is next most important, etc. If the six most critical transducers are chosen, that is the six transducers which contain the most useful information as determined by the neural network, and a neural network can be trained using data from those six transducers and the overall accuracy of the system can be determined. Experience has determined, for example, that typically there is almost no loss in accuracy by eliminating two of the eight transducers, that is two of the strain gage weight sensors. A slight loss of accuracy occurs when one of the ultrasonic transducers is then eliminated.

This same technique can be used with the additional determined with perhaps twenty different transducers comprised of ultrasonic, optical, electromagnetic, motion, heartbeat, weight, seat track, seatbelt payout, seatback angle etc, transducers. The neural network can then be used in conjunction with a cost function to determine the cost of system accuracy. In this manner, the optimum combination of any system cost and accuracy level can be determined.

In many situations where the four strain measuring weight sensors are applied to the vehicle seat structure, the distribution of the weight among the four strain gage sensors, for example, well very significantly depending on the position of the seat in the vehicle and particularly the fore and aft and secondarily the seatback angle position. A significant improvement to the accuracy of the strain gage weight sensors, particularly if less than four such sensors are used, can result by using information from a seat track position and/or a seatback angle sensor. In many vehicles, such sensors already exist and therefore the incorporation of this information results in little additional cost to the system and results in significant improvements in the accuracy of the weight sensors.

There have been attempts to use seat weight sensors to determine the load distribution of the occupying item and thereby reach a conclusion about the state of seat occupancy. For example, if a forward facing human is out of position, the weight distribution on the seat will be different than if the occupant is in position. Similarly a rear facing child seat will have a different weight distribution than a forward facing child seat. This information is useful for determining the seated state of the occupying item under static or slowly changing conditions. For example, even when the vehicle is traveling on moderately rough roads, a long term averaging or filtering technique can be used to determine the total weight and weight distribution of the occupying item. Thus, this information can be useful in differentiating between a forward facing and rear facing child seat.

It is much less useful however for the case of a forward facing human or forward facing child seat that becomes out of position during a crash. Panic braking prior to a crash, particularly on a rough road surface, will cause dramatic fluctuations in the output of the strain sensing elements. Filtering algorithms, which require a significant time slice of

25

35

data, will also not be particularly useful. A neural network or other pattern recognition system, however, can be trained to recognize such situations and provide useful information to improve system accuracy.

Other dynamical techniques can also provide useful infor- 5 mation especially if combined with data from the vehicle crash accelerometer. By studying the average weight over a few cycles, as measured by each transducer independently, a determination can be made that the weight distribution is changing. Depending on the magnitude of the change a 10 determination can be made as to whether the occupant is being restrained by a seatbelt. It a seatbelt restraint is not being used, the output from the crash accelerometer can be used to accurately project the position of the occupant during pre crash braking and eventually the impact itself 15 providing his or her initial position is known.

In this manner, a weight sensor with provides weight distribution information can provide useful information to improve the accuracy of the occupant position sensing system for dynamic out of position determination. Naturally, 20 even without the weight sensor information, the use of the vehicle crash sensor data in conjunction with any means of determining the belted state of the occupant will dramatically improve the dynamic determination of the position of a vehicle occupant.

Although several preferred embodiments are illustrated and described above, there are other possible combinations using different sensors which measure either the same or different morphological characteristics, such as knee position, of an occupant to accomplish the same or similar 30 goals as those described herein. There are also numerous additional applications in addition to those described above. This invention is not limited to the above embodiments and should be determined by the following claims.

It should be mentioned that the adjustment system may be 35 used in conjunction with each vehicle seat. In this case, if a seat is determined to be unoccupied, then the processor means may be designed to adjust the seat for the benefit of other occupants, i.e., if a front passenger side seat is unoccupied but the rear passenger side seat is occupied, then 40 adjustment system might adjust the front seat for the benefit of the rear-seated passenger, e.g., move the seat base forward.

In one weight measuring method in accordance with the invention, at least one strain gage transducer is mounted at 45 a motor vehicle. a respective location on the support structure and provides a measurement of the strain of the support structure at that location, and the weight of the occupying item of the seat is determined based on the strain of the support structure measured by the strain gage transducer(s). In another 50 method, the seat includes the slide mechanisms for mounting the seat to a substrate and bolts for mounting the seat to the slide mechanisms, the pressure exerted on the seat is measured by at least one pressure sensor arranged between one of the slide mechanisms and the seat. Each pressure 55 sensor typically comprises first and second layers of shock absorbing material spaced from one another and a pressure sensitive material interposed between the first and second layers of shock absorbing material. The weight of the occupying item of the seat is determined based on the 60 pressure measured by the at least one pressure sensor. In still another method for measuring the weight of an occupying item of a seat, a load cell is mounted between the seat and a substrate on which the seat is supported. The load cell includes a member and a strain gage arranged thereon to 65 measure tensile strain therein caused by weight of an occupying item of the seat. The weight of the occupying item of

36

the seat is determined based on the strain in the member measured by the strain gage. Naturally, the load cell can be incorporated at other locations in the seat support structure and need not be between the seat and substrate. In such a case, however, the seat would need to be especially designed for that particular mounting location. The seat would then become the weight measuring device.

Furthermore although the weight measuring system and apparatus described above are described for particular use in a vehicle, it is of course possible to apply the same constructions to measure the weight of an occupying item on other seats in non-vehicular applications, if a weight measurement is desired for some purpose.

Although several preferred embodiments are illustrated and described above, there are possible combinations using other geometries, sensors, materials and different dimensions for the components that perform the same functions. This invention is not limited to the above embodiments and should be determined by the following claims. For example, the weight measuring apparatus and methods described above could be used in conjunction with a seat position sensor to provide for an accurate determination of the identification and location of the occupying item of the seat.

What is claimed is:

- 1. A seat for a vehicle, comprising
- a seat cushion assembly and seat back assembly defining a contact surface adapted to be in contact with an occupying, item of the seat,
- a support structure arranged underneath said seat cushion assembly and adapted to support said seat cushion assembly and said seat back assembly on a substrate in the vehicle, said support structure being structured and arranged to transfer a force exerted by the occupying item on said support structure to the substrate,
- at least one strain gage transducer, each of said at least one strain gage transducer being mounted at a respective location on said support structure arranged to provide a measurement of the strain of said support structure at the location at which said strain gage transducer is mounted, and
- a control system coupled to said at least one strain gage transducer for determining the weight of the occupying item of the seat based on the strain of said support structure measured by said at least one strain gage transducer.
- 2. The seat of claim 1, wherein the substrate is a floor of
- 3. The seat of claim 1, further comprising electrical connection means for connecting said at least one strain gage transducer to said control system.
- 4. The seat of claim 1, wherein said at least one strain gage transducer comprises a plurality of strain gage transducers.
- 5. The seat of claim 4, wherein at least one of said transducers includes a strain gage element and signal conditioning electronics arranged adjacent thereto.
- 6. The seat of claim 1, wherein each of said at least one strain gage includes signal conditioning circuitry and an analog to digital converter such that the measured strain is output as a digital signal.
- 7. The seat of claim 1, wherein said support structure comprises two elongate slide mechanisms adapted to be mounted on the substrate and support members for coupling the seat to said slide mechanisms, said at least one strain gage transducer comprising a plurality of strain gage transducers, one of said strain gage transducers being arranged on at least one of said support members.
- 8. The seat of claim 7, wherein said support structure further comprises a slide member, one of said strain gage transducers being mounted on said slide member.

37

- 9. The seat of claim 7, further comprising means for increasing the accuracy of said strain gage transducers.
- 10. The seat of claim 9, wherein said means for increasing the accuracy of said strain gage transducers comprises at least one of said support members comprising first and 5 second structural members having longitudinally opposed ends and a third structural member overlying the opposed ends of said first and second structural members and being connected to said first and second structural members, one of said strain gage transducers being arranged on said third 10 structural member.
- 11. The seat of claim 9, wherein said means for increasing the accuracy of said strain gage transducers comprises at least one of said support members being a tube having a first section adjacent the seat having a first diameter, a second 15 section adjacent a respective one of said slide mechanisms having the same diameter as said first section and a third section between said first and second section having a second diameter less than the first diameter, one of said strain gage transducers being mounted on said third section 20 of said tube.
- 12. The seat of claim 9, wherein said means for increasing the accuracy of said strain gage transducers comprises at least one of said support members comprising a tube having. a hole therein, one of said strain gage transducers being 25 arranged adjacent said hole.
- 13. The seat of claim 7, wherein said support members each comprise an angled structure for connecting a respective side of the seat to a respective one of said slide mechanisms.
- 14. The seat of claim 13, wherein said support members each further comprise a gusset to bridge an angle of said structure, said strain gage transducers being arranged on said
- 15. The seat of claim 1, further comprising a transverse 35 support member extending between opposed lateral sides of the seat and below said cushion assembly, said at least one transducer being arranged on said transverse support mem-
- 16. An adjustment system for adjusting a component of a 40 vehicle based on occupancy of a seat, comprising:
 - at least one wave sensor for receiving waves from an area of the seat in the passenger compartment and generating an output representative of waves received by said at least one wave sensor;
 - the seat of claim 1, said control system being arranged to generate an output representative of the measured weight applied onto the seat;
 - adjustment means arranged in connection with the component for adjusting the component, and
 - processor means for receiving the outputs from said at least one wave sensor and said control system and evaluating the seated-state of the seat based thereon and based at least on the evaluation of the seated-state of the 55 seat, directing said adjustment means to adjust the component.
 - 17. A seat for a vehicle, comprising
 - a cushion assembly defining a contact surface adapted to be in contact with an occupying item,
 - slide mechanisms for supporting said cushion assembly on a substrate.
 - bolts for mounting said cushion assembly to said slide mechanisms.
 - at least one pressure sensor arranged underneath said 65 cushion assembly and between one of said slide mechanisms and said cushion assembly for measuring pres-

sure exerted on said cushion assembly, each of said at least one pressure sensor comprising first and second washers and a compressible material arranged between said first and second washers to thereby form a sandwich of said first and second washers and said compressible material, each of said at least one pressure sensor further comprising an electrode on each side of said compressible material, said electrodes being spaced from one another by at least a thickness of said compressible material such that upon compression of said compressible material, the spacing between said electrodes is decreased and capacitance of said sandwich changes, and

38

- a control system coupled to said electrodes for determining the weight of the occupying item of said cushion assembly based on the change in the capacitance of said sandwich.
- 18. The seat of claim 17, wherein said compressible material includes upper and lower faces and a respective one of said electrodes is arranged on each of said upper and lower faces.
- 19. An adjustment system for adjusting a component of a vehicle based on occupancy of a seat, comprising
 - at least one wave sensor for receiving waves from an area of the seat in the passenger compartment and generating an output representative of the reflected waves received by said at least one wave sensor;
 - the seat of claim 17, said control system being arranged to generate an output representative of the measured weight applied onto the seat;
 - adjustment means arranged in connection with the component for adjusting the component, and
 - processor means for receiving the outputs from said at least one wave sensor and said control system and evaluating the seated-state of the seat based thereon and based at least on the evaluation of the seated-state of the seat, directing said adjustment means to adjust the component.
- 20. The system of claim 19 wherein the component is an airbag.
- 21. A seat for a vehicle, comprising
- a cushion assembly defining a contact surface adapted to be in contact with an occupying item of the seat,
- a support structure arranged underneath said cushion assembly and adapted to support said cushion assembly on a substrate in the vehicle,
- a load cell connected to said support structure and adapted to be mounted to the substrate, said load cell including a member and a strain gage arranged on said member in such a position to measure strain in said member caused by weight of an occupying item of the seat, said strain gage including at least first and second strain sensing elements, said first strain sensing element being arranged in a longitudinal direction of said member and said second strain sensing element being arranged in a transverse direction of said member, and
- a control system coupled to said load cell for determining the weight of the occupying item of the seat based on the strain in said member measured by said strain gage.
- 22. The seat of claim 21, wherein said member is a beam. 23. The seat of claim 21, wherein said member is a beam and said strain gage further includes third and fourth strain sensing elements, said third strain sensing element being arranged in the longitudinal direction of said beam and said fourth strain sensing element being arranged in the transverse direction of said beam.

25

39

- 24. The seat of claim 21, wherein said member is a beam including a hole in an upper surface, said strain gage being situated in said hole.
- 25. The seat of claim 21, wherein said member is a tube, at least one of said strain sensing elements being arranged on said tube to measure compressive strain in said tube and at least one of said strain sensing element being arranged on said tube to measure tensile strain in said tube.
- 26. The seat of claim 25, wherein said load cell further comprises a bolt for attaching said tube to said support structure and to the substrate.
- 27. The seat of claim 21, wherein said member is an elongate torsion bar, said torsion bar being adapted to be mounted at its ends to the substrate, said load cell further comprising a lever arranged between the ends of said torsion bar, said lever being connected to said cushion assembly such that a torque is imparted to said torsion bar upon weight being exerted on said cushion assembly.
- 28. The seat of claim 27, wherein said strain gage includes at least one torsional strain sensing element.
- 29. An adjustment system for adjusting a component of a 20 vehicle based on occupancy of a seat, comprising:
 - at least one wave sensor for receiving waves from an area of the seat in the passenger compartment and generating an output representative of waves received by said at least one wave sensor;
 - the seat of claim 21, said control system being arranged to generate an output representative of the measured weight applied onto the seat;
 - adjustment means arranged in connection with the component for adjusting the component, and
 - processor means for receiving the outputs from said at least one wave sensor and said control system and evaluating the seated-state of the seat based thereon and based at least on the evaluation of the seated-state of the seat, directing said adjustment means to adjust the component.
- 30. An occupancy sensing system for a seat adapted to be mounted on a substrate, comprising
 - a cushion defining a contact surface adapted to be in contact with an occupying item,
 - a force sensing arrangement at least partially interposed between said cushion and the substrate for measuring the force transferred from said cushion to the substrate, and
 - a control system coupled to said force sensing arrangement for determining the weight applied by the occupying item onto said cushion based on the force being transferred from said cushion to the substrate measured by said force sensing arrangement.
- 31. The sensing system of claim 30, wherein said force sensing arrangement comprises
 - a support structure for connecting said cushion to the
- 32. The sensing system of claim 31, wherein said force 55 sensing arrangement further comprises
 - at least one strain gage transducer arranged in connection with said support structure for measuring the force transferred from said cushion to the substrate passing through said support structure, said strain gage transducer providing a measurement of the strain of said support structure at the location at which said strain gage transducer is mounted.
- 33. An adjustment system for adjusting a component of a vehicle based on occupancy of a seat, comprising:
 - at least one wave sensor for receiving waves from an area of the seat in the passenger compartment and generat-

- ing an output representative of waves received by said at least one wave sensor;
- the sensing system of claim 30, said control system being arranged to generate an output representative of the weight applied onto said cushion;

40

- adjustment means arranged in connection with the component for adjusting the component, and
- processor means for receiving the outputs from said at least one wave sensor and said control system and evaluating the seated-state of the seat based thereon and based at least on the evaluation of the seated-state of the seat, directing said adjustment means to adjust the component.
- comprising a lever arranged between the ends of said torsion bar, said lever being connected to said cushion assembly such that a torque is imparted to said torsion bar upon weight

 34. An occupant position sensing arrangement for determining the location of an occupying item of a vehicle, comprising
 - a cushion defining a contact surface adapted to be in contact with an occupying item,
 - a force sensing arrangement at least partially interposed between said cushion and the substrate for measuring the force transferred from said cushion to the substrate at a plurality of locations,
 - at least one additional sensor system for measuring a characteristic of the occupying item or the seat, and
 - a processor coupled to said at least one additional sensor system and to said force sensing arrangement for determining the weight applied by the occupying item onto said cushion based on the force being transferred from said cushion to the substrate measured by said force sensing arrangement and the distribution of weight of the occupying item, said processor providing an indication of the location of the occupying item based at least in part on the distribution of weight of the occupying item and the measured characteristic of the occupying item.
 - 35. The sensing arrangement of claim 34, wherein said force sensing arrangement comprises
 - a support structure for connecting said cushion to the substrate.
 - 36. The sensing arrangement of claim 35, wherein said force sensing arrangement further comprises
 - at least one strain gage transducer arranged in connection with said support structure for measuring the force transferred from said cushion to the substrate passing through said support structure, said strain gage transducer providing a measurement of the strain of said support structure at the location at which said strain gage transducer is mounted.
 - 37. The sensing arrangement of claim 34, further comprising
 - receiver means for receiving waves affected by the presence of the occupying item, said receiver means being coupled to said processor,
 - said processor means providing an indication of the location of the occupying item based at least in part on the distribution of weight of the occupying item, the measured characteristic of the occupying item and the waves received by said receiver means.
 - 38. An accoratus for mounting a seat on a substrate in a vehicle, comprising
 - a support structure comprising two elongate slide mechanisms adapted to be mounted on the substrate and support members for coupling the seat to said slide mechanisms, said support members each comprising an angled structure for connecting a respective side of the seat to a respective one of said slide mechanisms,

www.freepatentsonline.com

41

- a plurality of strain gage transducers, each of said strain gage transducers being mounted at a respective location on said support structure and arranged to provide a measurement of the strain of said support structure at the location at which said strain gage transducer is 5 mounted, one of said strain gage transducers being arranged on at least one of said support members, and
- a control system coupled to said at least one strain gage transducer for determining the weight of the occupying item of the seat based on the strain of said support 10 structure measured by said at least one strain gage transducer.
- 39. A seat for a vehicle, comprising
- a cushion assembly defining a supporting surface for an occupying item of the seat,
- a transverse support member extending between opposed lateral sides of said cushion assembly and below said cushion assembly,
- at least one strain gage transducer arranged on said 20 transverse support member to provide a measurement of the strain of said transverse support member at the location at which said at least one strain gage transducer is mounted, and
- a control system coupled to said at least one strain gage 25 transducer for determining the weight of the occupying

42

Filed 05/03/2006

item of the seat based on the strain of said transverse support member measured by said at least one strain gage transducer.

- 40. An apparatus for measuring the weight of an occupying item of a seat, comprising
 - a load cell adapted to be mounted to the seat and to a substrate on which the seat is supported, said load cell including an elongate torsion bar having first and second ends, a strain gage arranged on said torsion bar to measure strain in said torsion bar caused by weight of the occupying item of the seat and a lever arranged between said first and second ends of said torsion bar, said first and second ends of said torsion bar being adapted to be mounted to the substrate, said lever being adapted to be connected to the seat such that a torque is imparted to said torsion bar upon weight being exerted on the seat, and
 - a control system coupled to said load cell for determining the weight of the occupying item of the seat based on the strain in said torsion bar measured by said strain