Fundamentals of Database Systems

Chapter 5: Mapping ER Converting ER Diagram to Database Schema

• We learned that:

- 1. A DBMS will allow us to create and manage databases.
- 2. We can query the database (retrieve data from tables in the database).
- 3. We can update the database (change, add, or delete data from tables in the database).
- 4. We can complete a conceptual design of the database using the ER and the EER model.

This chapter

- Learning how to convert the ER diagram to the database
- ERD is a just a conceptual design.
- Now we need to learn how to convert this conceptual design to an actual database schema.

ER model/EER model

Mapping ER diagrams to relational schema

- 7 Steps (rules):
- 1. Mapping of Regular Entity Types
- 2. Mapping of Weak Entity Types
- 3. Mapping of Multivalued Attributes
- 4. Mapping of Binary 1:1 Relationship Types
- 5. Mapping of Binary 1:N Relationship Types
- 6. Mapping of Binary N:M Relationship Types
- 7. Self referencing
- Additional rules for mapping the EER

Strong Entity & Weak Entity

The **strong entity** has a primary key. Weak entities are dependent on strong entity. Its existence is not dependent on any other entity.

The **weak entity** in DBMS do not have a primary key and are dependent on the parent entity. It mainly depends on other entities.

Weak Entity is represented by double rectangle:

Strong Entity

1. Converting Strong entity types

- How to convert:
- Each entity type becomes a table
- Each single-valued attribute becomes a column
- Derived attributes are ignored (why?)
- Composite attributes are represented by components
- The key attribute of the entity type becomes the primary key of the table

1. Converting Strong entity types: Example

- Here address is a composite attribute
- Years of service is a derived attribute (can be calculated from date of joining and current date)

• The Database Schema:

Employee (E#, Name, Door_No, Street, City, Pincode, Date_Of_Joining)

1. Converting Strong entity types: Example

Employee Table

E# (PK)

EmpName

DateofJoining

Door No

Street

City

PinCode

Primary Key

Example of Strong and Weak Entity

The Strong Entity is Professor, whereas Dependent is a Weak Entity.

ID is the primary key (represented with a line) and Name in Dependent entity is called Partial Key (represented with a dotted line).

2. Converting Weak Entity Types

- How to convert:
- Weak entity types are converted into a table of their own
- The primary key of the strong entity acting as a foreign key in the table
- This foreign key along with the key of the weak entity form the composite primary key of this table

2. Converting Weak Entity Types: Example

• The Relational Schema

Employee (<u>E#</u>.....)

Dependant (<u>Id</u>, <u>E#</u>, Name, Address)

E# in dependent is a FK referencing E# in Employee

🚕 3. Converting Multivalued Attributes

- How to convert:
- For each multivalued attribute A, create a new relation R.

A multivalued attribute can have more than one value at a time for an attribute. For example,

• the *skills of a surgeon* is a multivalued attribute since a surgeon can have more than one skill.

Contact hobbies			
contactid	firstname	lastname	hobbies
1639	George	Barnes	reading
5629	Susan	Noble	hiking, movies
3388	Erwin	Star	hockey, skiing
5772	Alice	Buck	
1911	Frank	Borders	photography, travel, art
4848	Hanna	Diedrich	gourmet cooking

3. Converting Multivalued Attributes: Example

The Relational Schema

Employee (E, Name, Door_No, Street, City, Pincode, Date_Of_Joining)

Emp_Skillset(E#, Skillset)

E# and skillset are both the PK

3. Converting Multivalued Attributes: Example

Converting Relationships

 The way relationships are converted depends on the cardinality and the degree of the relationship

- The possible cardinalities are:
- 1:1, 1:M, N:M
- The degrees are:
- Unary
- Binary
- Ternary

4. Converting Binary 1:1 Relationship Types

- How to convert:
- Two cases:
- a. Combination of participation types (total and partial)
- b. Uniform participation types

- 4. Converting Binary 1:1.. Example
- a. Combination of participation types

The primary key of the partial participant will become the foreign key of the total participant

• Database schema:

- 4. Converting Binary 1:1.. Example
- a. Combination of participation types

- 4. Converting Binary 1:1.. Example
- b. Uniform participation types

The primary key of either of the participants can become a foreign key in the other

• Database schema:

Employee (E#, name...)

Account (Account ID, E#, bank)

(or)

Employee (<u>E#</u>, Account_ID,name...)

Account (Account ID, bank)

4. Converting Binary 1:1.. Example

b. Uniform participation types

5. Converting Binary 1:N Relationship Types

- How to convert:
- The primary key of the relation on the "1" side of the relationship becomes a foreign key in the relation on the "N" side

5. Converting Binary 1:N.. Example

The primary key of the relation on the "1" side of the relationship becomes a foreign key in the relation on the "N" side

Oatabase schema:

Author (Teacher ID, name...)

Book(Student ID, Name, Teacher_ID)

5. Converting Binary 1:N.. Example

6. Converting Binary N:M Relationship Types

• How to convert:

- 1. A new table is created to represent the relationship
- 2. Contains two foreign keys one from each of the participants in the relationship
- 3. The primary key of the new table is the combination of the two foreign keys

6. Converting Binary 1:N.. Example

Opening the second of the s

New attribute is added. The new attribute is the primary key field and it becomes a foreign key in the same table

• Database schema:

Employee (IDEmpl, name, DateOfJoining, partner_ID)

7. Self Referencing (unary) 1:N Example

Exactly the same as 1:1

• Database schema:

Employee (IDEmpl. name, DateOfJoining, manager_ID)

7. Self Referencing (unary) N:M Example

There will be two resulting tables. One to represent the entity and another to represent the M:N relationship

• Database schema:

Employee (IDEmpl, name, DateOfJoining)

Guarantors (ID Guarantors, ID Beneficiary)