

## Agenda



Achieved and future goals



Architecture for automated testing



**Environment and RL agent** 



Fake environment



Quality assurance











# **Progress Report**

## Webot/Controller

- Supervisor functions for randomised world generation
- Automated testing
- PID controller
- Safe communication











## **Progress Report**

## Webot/Controller

- Supervisor functions for randomised world generation
- Automated testing
- PID controller
- Safe communication

#### Backend

- Implementation of fake environment to test reward functions
- Connect backend to supervisor to controll training runs
- Training with algorithms in Stable Baselines











## **Architecture Overview**



# Webot-External Controller Communication (1)



# Webot-External Controller Communication (2)



# Webot-External Controller Communication (3)



# Webot-External Controller Communication (4)



# Webot-External Controller Communication (5)











# External Controller – Backend Communication (1)













# External Controller – Backend Communication (2)













# External Controller – Backend Communication (3)













## Backend













## Environment

### Why is environment necessary?

 to use the RL baselines with custom environments, they need to follow the gym interface

#### What is the environment?

- connection between non-backend part and RL agent, which means wrapped the data from webots/controller into standard form for openAl algorithms
- inherits from OpenAI Gym Class
- implement the necessary methods, such as init(), step(), reset(), etc.











## Environment

#### **Current environment**

- reset function, used to create a new environment for training
- observation function, uses the states from webots to setup an observation to be fed to RL agent
- action space, includes speed commends and direction commends
- reward class, includes several reward functions
- step function, gets the current state from the external controller and sends action back











## Environment

#### **Current environment**

- reset function, used to create a new environment for training
- observation function, uses the states from webots to setup an observation to be fed to RL agent
- action space, includes speed commends and direction commends
- reward class, includes several reward functions
- step function, gets the current state from the external controller and sends action back

#### Goals

- test reward function and optimize it
- complete automated training
- add more info to observation (optional)











## **RL** Agent

### **How to implement?**

Stable Baselines

#### What is Stable Baselines

a set of improved implementations of Reinforcement Learning (RL) algorithms based on OpenAI Baselines

### Why use it?

- do not have to implement all the algorithms by ourself
- easier standardization/benchmarking

#### **Process**















## **Fake Environment**

### State space

- Current GPS location
- Target GPS location
- Distance sensors
- Touching obstacle

## **Action space**

- 4 directions(N, E, S, W)
- Fixed step size

## **Reward function**













## Reward

#### Time Limit

- number of steps or time available in the webots environment
- number of requests from backend to controller for observation space

#### **Positive Reward**

- going closer to the goal
- staying away from obstacles
- entering the goal

### **Negative Reward**

- for each step used to achieve the goal
- crashing or hitting an obstacle
- get too close to an obstacle











## Reward

#### **Time Limit**

- number of steps or time available in the webots environment
- number of requests from backend to controller for observation space

#### **Positive Reward**

- going closer to the goal
- staying away from obstacles
- entering the goal

### **Negative Reward**

- for each step used to achieve the goal
- crashing or hitting an obstacle
- get too close to an obstacle

### Reward

reward\_time reward\_distance reward\_goal reward\_obstacle reward\_steps











## Quality Assurance: Coding Guideline

### *C/C++ Coding Guide*

- follow self-defined coding guidelines, includes naming conventions, file structure, etc.

### **Python Coding Guide**

- follow PEP 8 coding guidelines, use Pylint for checking













# Quality Assurance: Code Review



# **Quality Assurance: Automated Testing**

#### **Test Framework**

- Google Test for C/C++
- Pytest for python

## **Automated Testing**

- Github Action















