The DBICP Project

http://code.google.com/p/dbicp April 2009

Jean-Baptiste Fiot

Position of the problem

- Point-based registration
- Parametric transformations
- Unknown correspondences
- Conditions might be tough. Example:

ICP algorithm

- Initialization
 - Initial transformation
- Iterations of 2 steps:
 - Matching step
 - Find the correspondences given the current transformation T
 - Optimization step
 - Optimize the parameters of the transformation T given the current correspondences

ICP - Matching Step

→ Illustrated with the blue arrows:

ICP - Optimization Step

$$E(\theta, \sigma, C) = \sum_{p_i, q_j \in C} \rho\left(\frac{d\left(T_{\theta}(p_i), q_j\right)}{\sigma}\right)$$

 θ parameters of the T_{θ} transformation with $\{p_i, q_j\}$ points in the images σ error scale ρ loss function

ICP - Optimization Step

- Various possibilities (IRLS, Levenberg Marquadt, classic gradient descent...)
- Gradient descent with p constant, using finite differences:

$$\theta_{i} \leftarrow \theta_{i} - \rho * \frac{E(\theta_{i} + \epsilon) - E(\theta_{i})}{\epsilon} \approx \theta_{i} - \rho * \nabla E_{i}$$

(Note for E: other parameters remain constant in the finite difference)

ICP Demo

Videos of algo stuck in local minima:

Video 1 Video 2

ICP Demo

Video of a successfull result

Error cost

Max: 6.95001e+06

Min: 419.814

Conclusion on ICP

- Often stuck in a local minimum
- Very sensitive to initialization
 - Many papers on this issue
- Needs a large enough overlap
- Sensitive to outliers

Dual Bootstrap ICP

- Innovations in the structure
- Idea: Approximate the solution in a simpler case (relaxation), then refine it
- Goal: avoid being stuck in a local minimum
- Dual bootstrap: progressive enlargement of:
 - Bootstrap Region
 - Parametric Transformation Model

DBICP

Algorithm outline

- Initialization
 - Bootstrap region
 - Initial transformation
- Iterations:
 - Compute correspondences
 - Optimize the transformation
 - Bootstrap the region
 - Bootstrap the model

Region Bootstrap

 Change based on the covariance matrix of the error, and thresholded with a max growth parameter

Model Bootstrap

Transformation	Matrix	DoF
Similarity	$\begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} & 0 & 0 & 0 \\ \theta_{21} & -\theta_{13} & \theta_{12} & 0 & 0 & 0 \end{pmatrix}$	4
Affine (not used)	$\begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} & 0 & 0 & 0 \\ \theta_{21} & \theta_{22} & \theta_{23} & 0 & 0 & 0 \end{pmatrix}$	6
Reduced Quadratic	$ \begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} & \theta_{14} & 0 & \theta_{14} \\ \theta_{21} & -\theta_{13} & \theta_{12} & \theta_{24} & 0 & \theta_{24} \end{pmatrix} $	6
Quadratic	$\begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} & \theta_{14} & \theta_{15} & \theta_{16} \\ \theta_{21} & \theta_{22} & \theta_{23} & \theta_{24} & \theta_{25} & \theta_{26} \end{pmatrix}$	12

 Selection criterion based on the error and the degree of freedom (DoF)

Model Bootstrap Demo

• 2 videos:

Without MB

With MB

Further work

- Test on real data (eg human retina registration)
- Test with descriptors (not only points' positions)
- Test with other optimization techniques (Levenberg Marquardt, ...)
- Test with other loss functions

Conclusion

- Great concept
- Efficient and flexible C++ implementation
- Mild enthusiasm with the results
- Source code available at http://code.google.com/p/dbicp