Uniform Integral, by

Problem: Ohm
$$X_n \to X_{00}$$
, when can we

say that $E(X_n) \to E(X_{00})^2$.

Example: $X_n = \begin{cases} n' & \text{with prob} \end{cases} = \begin{cases} x_n \\ 0 & \text{otherwise} \end{cases}$.

Then $E(X_n) = 1$. Since $\sum P(X_n \neq 0) = \sum \frac{1}{n^2} < \infty$

we have $X_n \to X_{00} = 0$ a.s.

But $E(X_{00}) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

Uniform integral, liky is a key condition

that allows exchange of E and $E(X_n)$!

Lemma: let $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

Lemma: let $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

Proof: Suppose this was not the case: For some Eo > 0 there exists a sequence af events En s.f. P(En) < 2" but IE(1X1. IEn) > Eo. Since ZP(En) < 0 the B.C. Runa implies that only finitely many En sour. Let F= limsup En . Then P(F) = O. Hence $E(1XI \cdot I_F) = 0$. But by the revese Faton lemma: lin sup IE (IXI IEn) = E(XI linsup IEn) $H(|x|^*I_F) = 0$ But the LHS is bounded below by Eo > 0, a contradiction &

In particular, there exists K>0 s.t. $E(1\times1;1\times1\times K) < E$ This holds because $P(1\times1\times K) \triangleq \frac{E(1\times1)}{K}$ by Makov's inequality so we can take

K > E(1×1). Note: K generally depends on E and X! Deft Let C be a family of random variables. We say e is uniformly integrable if, for every E>O, thre exists K>O s.t.

[E(1X1; 1X1>K) < E for all X EC Note: K does not depend on X (just E, C). Example: $X_n = \begin{cases} n^2 & \text{with probability in }^2 \\ 0 & \text{otherwise} \end{cases}$ is not uniformly integrable. No mother KTO, for lege enough n, $\mathbb{E}(|X|;|X|\geq K) = n^2 \cdot \frac{1}{n^2} = 1$.

Uniform integratility and whether $\lim_{n} E(X_n) = E(\lim_{n} X_n)$ are closely comected. We start with a sufficient condition: Proposition: Assume there exists p>1 and C>0 s.t. $E(1\times1^p) \leq C$ for all $X \in \mathcal{C}$. Then $(X)_{X \in \mathcal{C}}$ is uniformly integrable.

Proof: We have for all K>0. $E(1\times1; 1\times17K) \in E(1\times1\cdot (|\times|))$; $|\times|>K$ $= E(1\times1^p | K^{1-p}; 1\times1>K)$

 $\leq K^{1-p} E(|X|^p) \leq C K^{1-p}$ Hence, choosing $K = (e/c)^{n-p} = (f/e)^{p-1}$ Suffices.

Another sufficient condition: Proposition: If IXI = Y for all XEC where Y is an integrable random variable, then C is uniformly integrable. Proof: [Exercise .] Theorem: let X be on Integrable random veriable. The family $C = \frac{1}{2} E(X/G) : G = \frac{1}$ is uniformly integrable. Proof: For given E>O choose I such that P(F) < S implies $E(X; F) < \varepsilon$ for all $F \in \mathcal{F}$. Now take K > E(1x1)/s. For Y = E(x1g) ne get |Y| = |E(x 1G)| = E(1x1/G) (Jensen) and so E/Y/ & E(E(1X1/g)) = E/X/ and K P(141 > K) & E(141) & E/X/ < K S

Makon

and so P(141 > K) < S.

And we get $E(|Y|;|Y|>K) \leq E(|X|;|Y|>K) < \varepsilon. \square$ event F with prob < S Definition: A sequence Xn of vanclon variables is said to converge in probability $(X_n \rightarrow X)$ if, for all $\varepsilon > 0$, $\mathbb{P}(|X_n-X|>\varepsilon) \rightarrow 0$ as $n \rightarrow \infty$. lemma If Xn as X, then also Xn => X. If X => X for some p>1 (i.e. ||Xn-X||p->0) then also $X_n \xrightarrow{p} X$. Proof: For the first part, assume X, -> X a.s. and apply revese Fatou lemma: Sursup $P(|X_n - X| > E) \leq P(\lim \sup_{n \to \infty} \{|X_n - X| > E\})$ = P(1xn-X/> E infinitely often) = P(Xn +>X) = 0 by a.s. conveyed. $S_0 X_n \rightarrow X$.

For the second part, suppose Xn ZX That is 11x, -x1/p = #(1x,-x1/p)/p -> 0. ht use Markov's inequality, $P(|X_n-x|>\varepsilon)=P(|X_n-x|^p,\varepsilon)$ = EP E(1Xn-X1P) -> 0 From which we again have X -> X. Theorem: Suppose that Xn => X and 1×1 ≤ K for some K>0 for all n∈W. Then we have $F(|X_n-X|) \rightarrow 0$ and thus X -> X Proof: For any LEN we have P(1X1>K+2) & P(1X,-X1>1/2) -> 0 So IP(1X1>K+1/k)=0 and 1X1 ≤ K a.s. let E>O and pick no large enough s.t. P(1Xn-X1> €3) < 3K for all n≥no.

$$E(|X_{n}-X|) = E(|X_{n}-X|; |X_{n}-X| = \frac{\varepsilon}{3})$$

$$+ E(|X_{n}-X|; |X_{n}-X| > \frac{\varepsilon}{3})$$

$$= |X_{n}| + |X_{n}| = 2K$$

$$= \frac{\varepsilon}{3} + P(|X_{n}-X| > \frac{\varepsilon}{3}) = 2K$$

$$< \frac{\varepsilon}{3} + 2K \frac{\varepsilon}{3}K = \varepsilon.$$
Since $\varepsilon > 0$ was arbitrary, $E(|X_{n}-X|) \rightarrow 0$
And $X_{n} \rightarrow X$.

Theorem: Suppose that X_{n} is a sequence of integrable random variables. The following are equivalent:

1) $E(|X_{n}-X|) \rightarrow 0$
2) $X_{n} \rightarrow X$ and $\{X_{n}\}$ is uniformly idenable.

Proof: Exactse (maybe) \int

Uniformly Integrable Martingales let Mu be a conformly integrable matigale.

Mu -> Mo a.s. by the martingale convergence theorem. By uniform integrability, Mn -> Mas . For any fixed u, we have E(Mr / 7) = Mn for rzn => IE(M, ; F) = E(Mn; F) for all FE Fn. We get | E(Mn; F)-E(Ms; F)| = | E(Mr; F) - E(Mo; F) | = | E(M, - Mo ; F) | = E(1M, - Mo); F) tr2n -7 0 os r > 0 So me must have $E(M_n; F) = E(M_o; F)$ for all FEF. So Mn = E(Mool Fn) a.s.

We have shown: Theorem: If Mn is a uniformly integrable martingale with respect to filtration Fr , then Mos = lin Mn exists a.s. and we have Mn = E(Moo | Fn) a.s. for all n EN Remork: Also holds for super-/3nd northigales n; the appropriate inequalities. Doob's submartingale inequality The Consider a non-negative sub-mortingale Zn. For every C70, we have $CP(9up Zk \ge c) \le E(Z_n; Sup Zk \ge c) \le |E(Z_n)|$ $k \le n$ [Note the similarity to Markov's inequality] Proof: The event { sup 2/2 2 c } can be decomposed in disjoint events F= {Z, >c}, F= {Z, <c} \ \ Z, z c} F= { Zo (c) n {Z, (c) n {Z, 2c}, F, = ...

Note that
$$F_k \in \mathcal{F}_k = o(Z_0, ..., Z_k)$$
.

So, $E(Z_n; F_k) = \int_{\mathbb{R}^n} Z_n dP = \int_{\mathbb{R}^n} E(Z_n | F_k) dP$

$$= \int_{\mathbb{R}^n} Z_k dP = E(Z_k; F_k) .$$

$$1 \mid_{\mathcal{F}_k} \sum_{k=0}^{n} Z_k dP = CP(F_k) .$$

$$E(Z_n; F_k) \geq \int_{\mathbb{R}^n} C dP = CP(F_k) .$$

$$Now suming, gives$$

$$= CP(\mathcal{D}_k) = CP(S_{up} Z_k Z_c).$$

$$And CHS gives$$

$$= CP(\mathcal{D}_k) = CP(S_{up} Z_k Z_c).$$

$$And CHS gives$$

$$= E(Z_n; F_k) = \sum_{k=0}^{n} E(Z_n I_{F_k}) = E(Z_n \sum_{k=0}^{n} I_k)$$

$$= E(Z_n \sum_{k=0}^{n} I_{k}) = E(Z_n \sum_{k=0}^{n} I_k).$$

$$So E(Z_n) \geq CP(S_{up} Z_k Z_c) \text{ or regard} \square$$

Jensen's inequality also implies

Lemma If Mn is a mortingale and f is a convex function s.t. $f(M_n)$ is integrable for all is, then $f(M_n)$ is a submertingal.

for all is, then $f(M_n)$ is a submortingale.

Theorem (Kolmogorov's inequality)

Let X be a sequence of inolymendal

Let X_n be a sequence of independent random variables with $E(X_n)=0$ and $Vor(X_n)=\sigma_n^2<\infty$. Set $S_n=X_n+...+X_n$

Then, for every $C \neq 0$, $c^{2} P(\sup_{k \in n} |S_{k}| \geq c) \leq V_{n} = V_{n} = V_{n} = \sum_{k \in n} V_{n}$

Froaf: S_n is a martingale and S_n a

Sabmartingale or $x \leftrightarrow x^2$ is convex.

By Doob's submartingale inequality, we get $C_n^2 P(S_n p \mid S_k \mid \ge C) = C_n^2 P(S_n p \mid S_k \mid \ge C)$ $C_n^2 E(S_n^2) = V_{ar}(S_n)$.