

## Importance Measures and Chaos (Duflot, 2006)



## Let's Take a Look at RAW

$$RAW = P(S|e)/P(S)$$

With any sufficiently large and interesting system, the cutsets are truncated. All importance measures are built on conditional probabilities. They are calculated from the minimal cutsets generated for S.



## But generating MCS with truncation and then calculating the importance measures can have problems:

--- truncation limit le-13 le-3 \* le-9 = le-12

b \* Q = e-6 \* e-8 = e-14

If there is no recalculation of the MCS:

p(S|a) = p(P) = 1e-09 RAW(S,a) = 1e-3 p(S|b) = p(a\*P) = 1e-12 RAW(S,b) = 1



## But generating MCS with truncation and then calculating the importance measures can have problems:

a \* P le-3 \* le-9 = le-12

----- truncation limit le-13

b \* Q = e-6 \* e-8 = e-14

However, if there is regeneration of the MCS:

p(S|a) = p(P) = 1e-09p(S|b) = p(a\*P + Q) = 1.1e-08

RAW(S,a) = Ie-3 $RAW(S,b) \approx Ie-4$ 



Dr. Duflot demonstrated these effects value of importance measures may be chaotic at this same truncation value. limit may be good for calculating an Moreover, while a given truncation end state, like CDF, the order and on the French reference PSA.