$\begin{array}{c} {\rm MAS439} \ {\rm COMMUTATIVE} \ {\rm ALGEBRA} \\ {\rm PROBLEM \ SET \ 2} \end{array}$

DUE FRIDAY, NOVEMBER 1ST

QUESTION 1: A SUBRING

For f polynomial, let f' be its derivative and f'' be its second derivative. Define

$$S = \{ f \in \mathbb{Z}[x] : f'(1) = f''(1) = 0 \}$$

Part 1. Prove that S is a subring of $\mathbb{Z}[x]$.

Part 2. Prove that S is finitely generated.

QUESTION 2: IDEALS?

Let R be a commutative ring.

Part 1. Let N be the union of $\{0\}$ and all the nilpotent elements of R. Prove that N is an ideal of R.

Part 2. Let D be the union of $\{0\}$ and all the zero divisors of R. Give an example to show that D need not be an ideal.

QUESTION 3: RINGS WITH FOUR ELEMENTS

We already know three rings with four elements: $\mathbb{Z}/4, \mathbb{Z}/2 \times \mathbb{Z}/2$ and \mathbb{F}_4 , the field with four elements, which we constructed in lecture and in the notes as the quotient ring $\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2 + x + 1)$.

In addition to $x^2 + x + 1$, there are three more quadratic polynomials in $\mathbb{F}_2[x]$ (Recall that \mathbb{F}_2 is just what we write for $\mathbb{Z}/2$ when we want to emphasize it's a field):

$$f_1 = x^2$$
, $f_2 = x^2 + x$, $f_3 = x^2 + 1$

Part one. Prove that each of the rings $R_i = \mathbb{F}_2[x]/(f_i)$ has four elements – do this for all three at one time.

Part two. Write down the multiplication tables for each of the rings R_i , and for each one determine:

- (1) Is R_i reduced?
- (2) Is R_i an integral domain?
- (3) Is R_i a field?
- (4) Is R_i isomorphic to one of three rings with four elements we already knew?

Part three. Finally, decide which of the R_i are isomorphic to each other, and which are not?

1