PHYS 615 – Activity 8.2: Kepler Orbits

1. Effective Potential

(a) By examining the effective potential energy

$$U_{eff} = -\frac{\gamma}{r} + \frac{l^2}{2\mu r^2}$$

find the radius r_0 at which a planet with angular momentum l can orbit the Sun in a circular orbit with fixed radius. (Look at dU_{eff}/dr)

Solution: $r = r_0 = const$ implies that $\dot{r} = 0$, and hence $\ddot{r} = 0$ as well. Since $\mu \ddot{r} = -dU_{eff}/dr$, that means we need $dU_{eff}/dr = 0$.

$$\frac{dU_{eff}}{dr} = \frac{\gamma}{r^2} - \frac{l^2}{\mu r^3}$$

So to find that fixed radius r_0 :

$$0 = \frac{dU_{eff}}{dr} \bigg|_{r_0} = \frac{\gamma}{r_0^2} - \frac{l^2}{\mu r_0^3} \Longrightarrow r_0 = \frac{l^2}{\gamma \mu}$$

(b) Show that this circular orbit is stable, in the sense that a small nudge will only cause small radial oscillations. (Look at d^2U_{eff}/dr^2). Show that the period of these oscillations is equal to the planet's orbital period.

Solution: The orbit at $r=r_0$ will be stable if U_{eff} has a minimum there. We already know the first derivative of U_{eff} is zero, now we still need to make sure the 2nd derivative is positive. Let's find the 2nd derivative first:

$$\frac{d^2 U_{eff}}{dr^2} = \frac{-2\gamma}{r^3} + \frac{3l^2}{\mu r^4}$$

Plug in r_0 :

$$\left. \frac{d^2 U_{eff}}{dr^2} \right|_{r_0} = \frac{-2\gamma}{r_0^3} + \frac{3l^2}{\mu r_0^4} = \frac{\gamma}{r_0^3}$$

So that is in fact positive.

What this means is that if we perturb the orbit a little bit from r_0 , acceleration will move us back towards r_0 , but overshoot, and we're doing a small oscillation around the true r_0 . In order to look at that more closely, we can approximate U_eff by its Taylor expansion around r_0 :

$$U_{eff}(r) = U_{eff}(r_0) + (r - r_0)\frac{dU_{eff}}{dr} + \frac{1}{2}(r - r_0)^2 \frac{d^2U_{eff}}{dr^2}$$
$$= U_{eff}(r_0) + \frac{\gamma}{2r_0^3}(r - r_0)^2$$

1

Putting this into the equation of motion:

$$\mu \ddot{r} = -\frac{dU_{eff}}{dr} = -\frac{\gamma}{r_0^3} (r - r_0)$$

which is the differential equation for oscillations that we've seen many times before, and we can read that $\omega_0 = \sqrt{\gamma/\mu r_0^3}$. This is actually the same value as the angular velocity of the planet circling the Sun.

2. Ellipses

We have proved that any Kepler orbit can be written in the form

$$r(\phi) = \frac{c}{1 + \epsilon \cos \phi}$$

where c>0 and $\epsilon\geq 0$. For the case that $0\leq \epsilon<1$, rewrite this equation in Cartesian coordinates (x,y) and prove that the equation can be cast in the form

$$\frac{(x+d)^2}{a^2} + \frac{y^2}{b^2} = 1$$

which the equation of an ellipse. Verify these expressions:

$$a = \frac{c}{1 - \epsilon^2}, \qquad b = \frac{c}{\sqrt{1 - \epsilon^2}}, \qquad d = a\epsilon$$

Draw a picture of the ellipse and indicate all the lengths (a, b, c, d).

Solution: We'll end up using that $x = r \cos \phi$ and $r^2 = x^2 + y^2$.

First, multiply the orbit equation by its denominator

$$r + \epsilon r \cos \phi = c$$

$$r + \epsilon x = c$$

$$r = c - \epsilon x$$

$$r^2 = (c - \epsilon x)^2$$

$$x^2 + y^2 = c^2 - 2\epsilon cx + \epsilon^2 x^2$$

In some sense we're done, since the equation is now expressed in terms of x and y – but it's not the standard form yet, so that'll require some more fun and completing the square to get it there. I'll introduce $d = \frac{\epsilon c}{1-\epsilon^2}$.

$$x^{2} + y^{2} = c^{2} - 2\epsilon cx + \epsilon^{2}x^{2}$$

$$(1 - \epsilon^{2})x^{2} + 2\epsilon cx + y^{2} - c^{2} = 0$$

$$x^{2} + 2\frac{\epsilon c}{(1 - \epsilon^{2})}x + \frac{y^{2}}{(1 - \epsilon^{2})} - \frac{c^{2}}{(1 - \epsilon^{2})} = 0$$

$$x^{2} + 2\frac{\epsilon c}{(1 - \epsilon^{2})}x + \frac{(\epsilon c)^{2}}{(1 - \epsilon^{2})^{2}} - \frac{(\epsilon c)^{2}}{(1 - \epsilon^{2})} + \frac{y^{2}}{(1 - \epsilon^{2})} - \frac{c^{2}}{(1 - \epsilon^{2})} = 0$$

$$\left(x + \frac{\epsilon c}{(1 - \epsilon^{2})}\right)^{2} - \frac{(\epsilon c)^{2}}{(1 - \epsilon^{2})^{2}} + \frac{y^{2}}{(1 - \epsilon^{2})} - \frac{c^{2}}{(1 - \epsilon^{2})} = 0$$

$$\left(x + \frac{\epsilon c}{(1 - \epsilon^{2})}\right)^{2} + \frac{y^{2}}{(1 - \epsilon^{2})} = \frac{(\epsilon c)^{2}}{(1 - \epsilon^{2})^{2}} + \frac{c^{2}}{(1 - \epsilon^{2})^{2}}$$

$$\left(x + \frac{\epsilon c}{(1 - \epsilon^{2})}\right)^{2} + \frac{y^{2}}{(1 - \epsilon^{2})} = \frac{\epsilon^{2}c^{2} + c^{2} - c^{2}\epsilon^{2}}{(1 - \epsilon^{2})^{2}}$$

$$\left(x + \frac{\epsilon c}{(1 - \epsilon^{2})}\right)^{2} + \frac{y^{2}}{(1 - \epsilon^{2})} = \frac{c^{2}}{(1 - \epsilon^{2})^{2}}$$

Time to use some constants to get this under control: I'll introduce $d=\frac{\epsilon c}{1-\epsilon^2}$, and $a=\frac{c}{1-\epsilon^2}$

$$(x+d)^{2} + \frac{y^{2}}{(1-\epsilon^{2})} = a^{2}$$
$$\frac{(x+d)^{2}}{a^{2}} + \frac{y^{2}}{(1-\epsilon^{2})a^{2}} = 1$$

Almost there – let's use $b = \sqrt{1 - \epsilon^2}a$, too:

$$\frac{(x+d)^2}{a^2} + \frac{y^2}{b^2} = 1$$

It turns out that the constants we introduced really match those given in the problem;)