Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1. (Original): A compound of formula I

in free or salt or solvate form, where -C-Y- denotes -CH₂-CH₂-, -CH=CH- or -CH₂-O-; one of \mathbb{R}^1 and \mathbb{R}^2 is hydroxy and the other is hydrogen;

G is a group having the formula la, lb, lc, ld or le

 $\begin{array}{l} n^1 \text{ is an integer from 0 to 4;} \\ \text{when } n^1 \text{ is 0, } R^a \text{ is } - \text{CR}^{26} R^{27}\text{-, } - \text{CH}_2\text{-}\text{CH}_2\text{-, } - \text{CH}_2\text{-}\text{CH}_2\text{-, } - \text{CH}_2\text{-}\text{O}\text{-, } - \text{CH}_2\text{-}\text{O}\text{-, } - \text{CH}_2\text{-}\text{O}\text{-, } - \text{CH}_2\text{-}\text{C}\text{-}\text{C}\text{-}\text{C}\text{-}\text{-}\text{C}\text{-}\text{C}\text{-}\text{C}\text{-}\text{C}\text{-}\text{-}\text{C}\text{-}\text{C}\text{-}\text{-}\text{C}\text{-}\text{C}\text{-}\text{-}\text{C}\text{-}\text{C}\text{-}\text{-}\text{C}\text{-}\text{C}\text{-}\text{C}\text{-}\text{-}\text{C}\text{-}\text{C}\text{-}\text{C}\text{-}\text{C}\text{-}\text{C}\text{-}\text{C}\text{-}\text{-}\text{C}\text$

 R^c is hydrogen or C_1 - C_{10} -alkyl optionally substituted by a C_5 - C_{15} -carbocyclic group or by C_1 - C_{10} -alkoxy,

or when R^b is $-CR^{26}R^{27}\text{-}$ or $-CR^{28}R^{29}\text{-},\ R^c$ and R^b form a $C_5\text{-}C_{15}\text{-}carbocyclic group;}$

R³, R⁴, R⁵ and R⁶ are independently hydrogen, halo, C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy, or a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, or any two of R³, R⁴, R⁵ and R⁵ that are attached to adjacent carbon atoms on the phenylene ring together form a phenylene ring, C₃-C₁₀-cycloalkyl, C₃-C₁₀-cycloalkenyl or 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur:

 R^{26} , R^{27} and R^{26} are independently hydrogen, C_1 - C_{10} -alkyl or C_1 - C_{10} -alkoxy, either of which being optionally substituted by a C_5 - C_{15} -carbocyclic group;

 R^{20} is C_1 - C_{10} -alkyl or C_1 - C_{10} -alkoxy, either of which being optionally substituted by a C_5 - C_{15} -carbocyclic group;

n² is an integer from 0 to 4:

C~C denotes C=C or CH-CH;

 R^7 is hydrogen or C_1 - C_{10} -alkyl optionally substituted by a C_3 - C_{15} -carbocyclic group or by C_1 - C_{10} -alkoxy;

R8 is hydrogen, hydroxy, C1-C10-alkyl or C1-C10-alkoxy;

 R^9 and R^{10} are independently hydrogen, halo, a C_3 - C_{15} -carbocyclic group, a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, C_1 - C_{10} -alkyl optionally substituted by a C_3 - C_{15} -carbocyclic group, or C_1 - C_{10} -alkoxy optionally substituted by a C_3 - C_{15} -carbocyclic group.

or R^0 and R^{10} together form a C_3 - C_{10} -cycloalkyl or C_3 - C_{10} -cycloalkenyl in either case optionally substituted by C_1 - C_{10} -alkyl or C_1 - C_{10} -alkoxy;

 R^{11} is hydrogen, hydroxy, a C_3 - C_{15} -carbocyclic group, C_1 - C_{10} -alkyl optionally substituted by a C_3 - C_{15} -carbocyclic group, or C_1 - C_{10} -alkoxy optionally substituted by a C_3 - C_{15} -carbocyclic group;

n3 is an integer from 0 to 4;

 R^{12} is C_1 - C_{10} -alkyl substituted by C_1 - C_{10} -alkoxy, C_7 - C_{15} -aralkyloxy, a C_5 - C_{15} -carbocyclic group or by a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur;

 R^{13} , R^{14} , R^{15} and R^{16} are independently hydrogen, halo, cyano, carboxy, nitro, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_1 - C_{10} -alkoxy, C_7 - C_{15} -aralkyloxy, tri- C_1 - C_{10} -alkylsilyl, aminocarbonyl, amino, C_1 - C_{10} -alkylamino, di(C_1 - C_{10} -alkyl)amino, a C_5 - C_{15} -carbocyclic group or a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, or any two of R^{13} , R^{14} , R^{15} and R^{16} that are attached to adjacent carbon atoms on the benzene ring together with the carbon atoms to which they are attached form a C_3 - C_{10} - cycloaliphatic ring, a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen

or sulphur, or a benzene ring optionally substituted by halo, cyano, hydroxy, carboxy, aminocarbonyl, nitro, C_1 - C_1 0-alkyl, C_1 - C_1 0-alkoxy or C_3 - C_1 0-cycloalkyl;

n4 is an integer from 0 to 4;

 $R^{17} \text{ and } R^{18} \text{ are independently } -CR^{30}R^{31}, -CH_{2^*}CH_{2^*}, -CH_{2^*}CH_{2^*}, -CH_{2^*}CH_{2^*}, -CH_{2^*}CH_{2^*}, -CH_{2^*}CH_{2^*}, -CH_{2^*}CH_{2^*}CH_{2^*}, -CH_{2^*}CH_$

 R^{19} is hydrogen or $C_{1^{\circ}}C_{10^{\circ}}$ alkyl optionally substituted by $C_{1^{\circ}}C_{10^{\circ}}$ alkoxy, $C_{7^{\circ}}C_{15^{\circ}}$ aralkyloxy, a $C_{5^{\circ}}$ $C_{15^{\circ}}$ carbocyclic group or by a 5- or 6-membered heterocyclic group wherein at least one of the ring atoms is nitrogen, oxygen or sulphur;

or when R^{18} is $-CR^{30}R^{31}$ -, R^{19} and R^{18} form a $C_5\text{-}C_{15}\text{-}$ carbocyclic group;

 R^{20} and R^{21} form a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, that ring being optionally substituted by halo, oxo, cyano, hydroxy, carboxy, aminocarbonyl, nitro, a $C_{5^{\circ}}C_{15^{\circ}}$ -carbocyclic group, $C_{7^{\circ}}C_{15^{\circ}}$ -aralkyl, $C_{1^{\circ}}C_{10^{\circ}}$ -alkyl optionally substituted by $C_{3^{\circ}}C_{10^{\circ}}$ -cycloalkyl, or $C_{1^{\circ}}C_{10^{\circ}}$ -alkoxy optionally substituted by $C_{3^{\circ}}C_{10^{\circ}}$ -cycloalkyl, R^{30} and R^{31} are independently hydrogen, $C_{1^{\circ}}C_{10^{\circ}}$ -alkyl or $C_{1^{\circ}}C_{10^{\circ}}$ -alkoxy, either of which being optionally substituted by a $C_{5^{\circ}}C_{15^{\circ}}$ -carbocyclic group;

n⁵ is an integer from 0 to 4; and

at least one of R²², R²³, R²⁴ and R²⁵ is a 5- to 12-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, that ring being optionally and independently substituted by halo, cyano, hydroxy, carboxy, aminocarbonyl, nitro, C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy or C₂-C₁₀-cycloalkyl,

the other or others of R^{22} , R^{23} , R^{24} and R^{26} being independently hydrogen, halo, cyano, hydroxy, carboxy, aminocarbonyl, nitro, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or C_3 - C_{10} -cycloalkyl.

Claim 2. (Original): A compound according to claim 1, where -C~Y- is -CH=CH-;

R¹ is hydroxy and R² is hydrogen;

G is a group having the formula la, lb, lc, ld or le;

n1 is 0 or 1:

when n^1 is 0, R^a is $-CR^{20}R^{27}$, $-CH_{2^-}CH_{2^-}$, $-CH_{2^-}CH_{2^-}$, $-CH_{2^-}CH_{2^-}$ or $-CH_{2^-}CH_{2^-}$ and R^a is $-CR^{20}R^{20}$ -, $-CH_{2^-}O$ - or a bond,

otherwise when n1 is 1, Ra and Rb are both -CR26R27-;

 R^c is hydrogen or C_1 - C_{10} -alkyl optionally substituted by a C_5 - C_{15} -carbocyclic group or by C_1 - C_{10} -alkoxy.

or when R^b is $-CR^{26}R^{27}$ - or $-CR^{28}R^{29}$ -, R^c and R^b form a C_5 - C_{15} -carbocyclic group;

 R^3 , R^4 , R^5 and R^8 are independently hydrogen, C_1 - C_{10} -alkyl or C_1 - C_{10} -alkoxy;

 R^{28} , R^{27} and R^{28} are independently hydrogen, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur;

R29 is C1-C10-alkyl or C1-C10-alkoxy;

n2 is 0:

C~C denotes C=C or CH-CH;

R7 and R8 are both hydrogen;

R⁹ and R¹⁰ are independently hydrogen or C₁-C₁₀-alkyl,

or R^0 and R^{10} together form a $C_{3^+}C_{10^-}$ cycloalkyl or $C_{3^-}C_{10^-}$ cycloalkenyl in either case optionally substituted by $C_{1^+}C_{10^-}$ alkyl;

 R^{11} is hydrogen, hydroxy, a C_{3} - C_{15} -carbocyclic group or C_{1} - C_{10} -alkyl optionally substituted by a C_{3} - C_{15} -carbocyclic group;

n3 is 0:

 R^{12} is C_1 - C_{10} -alkyl substituted by C_1 - C_{10} -alkoxy, C_7 - C_{15} -aralkyloxy or by a C_5 - C_{15} -carbocyclic group:

 R^{13} , R^{14} , R^{15} and R^{16} are independently hydrogen or C_1 - C_{10} -alkyl;

n4 is 0 or 1;

R17 and R18 are both methylene;

R19 is hydrogen;

 R^{20} and R^{21} form a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, that ring being optionally substituted by oxo, C_{7} - C_{15} -aralkyl or C_{17} -alkyl optionally substituted by C_{3} - C_{19} -cycloalkyl;

n⁵ is 0; and

at least one of R^{22} , R^{23} , R^{24} and R^{25} is a 5- to 12-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, that ring being optionally and independently substituted by halo or C_1 - C_{10} -alkyl,

the other or others of R^{22} , R^{23} , R^{24} and R^{25} being hydrogen.

Claim 3. (Original): A compound according to claim 2, where

-C~Y- is -CH=CH-;

R1 is hydroxy and R2 is hydrogen;

n1 is 0 or 1;

when n¹ is 0, R³ is $-CR^{20}R^{27}$, $-CH_{2^-}CH_{2^-}$, $-CH_{2^-}CH_{2^-}CH_{2^-}$, $-CH_{2^-}O-CH_{2^-}$ or $-CH_{2^-}CH_{2^-}S-$, and R³ is $-CR^{20}R^{20}$ -, $-CH_{2^-}O-$ or a bond,

otherwise when n1 is 1, Ra and Rb are both -CR26R27-;

 R^c is hydrogen or $C_1\text{-}C_4\text{-}alkyl$ optionally substituted by a $C_5\text{-}C_{10}\text{-}carbocyclic}$ group or by $C_1\text{-}C_4\text{-}alkoxy,$

or when R^b is $-CR^{20}R^{27}$ - or $-CR^{20}R^{29}$ -, R^c and R^b form a C_9 - C_{10} -carbocyclic group; R^3 , R^4 , R^5 and R^6 are independently hydrogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy;

R²⁶, R²⁷ and R²⁸ are independently hydrogen, C₁-C₄-alkyl, C₁-C₄-alkoxy or a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur;

R29 is C1-C4-alkyl or C1-C4-alkoxy;

n2 is 0;

C~C denotes C=C or CH-CH;

R7 and R8 are both hydrogen;

R9 and R10 are independently hydrogen or C1-C4-alkyl,

or R^5 and R^6 together form a C_3 - C_6 -cycloalkyl or C_3 - C_6 -cycloalkenyl in either case optionally substituted by C_1 - C_4 -alkyl;

 R^{11} is hydrogen, hydroxy, a C_3 - C_{10} -carbocyclic preferably C_3 - C_6 -cycloalkyl, or C_1 - C_{10} -alkyl optionally substituted by a C_3 - C_{10} -carbocyclic group preferably an unsaturated C_5 - C_6 -carbocyclic group:

n3 is 0;

 R^{12} is C_1 - C_{14} -alkyl substituted by C_1 - C_6 -alkoxy, C_7 - C_{10} -aralkyloxy or by a C_5 - C_{10} -carbocyclic group;

R¹³ and R¹⁶ are both hydrogen;

.R¹⁴ and R¹⁵ are independently hydrogen or C₁-C₄-alkyl.

n4 is 0 or 1;

R¹⁷ and R¹⁸ are both methylene;

R¹⁹ is hydrogen;

 R^{20} and R^{21} form a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, that ring being optionally substituted by oxo, C_7 - C_{10} -aralkyl or C_1 - C_4 -alkyl optionally substituted by C_3 - C_6 -cycloalkyl.

n5 is 0: and

at least one of R^{22} , R^{23} , R^{24} and R^{25} is a 5- to 9-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, that ring being optionally and independently substituted by halo or C_1 - C_4 -alkyl,

the other or others of R22, R23, R24 and R25 being hydrogen.

Claims 4-9. (Canceled)

Claim 10. (Currently amended): A process for the preparation of a compound of formula I in free or salt or solvate form comprising:

(i) (A) reacting a compound of formula II

or a protected form thereof wherein -C-Y-, R^1 and R^2 are as hereinbefore-defined in claim 1, with a compound of formula III

where G is a group of formula la, lb, lc, ld or le

$$(CH_{2})^{n^{1}}R^{a}$$

$$R^{a}$$

$$R^{b}$$

$$R^{b$$

or a protected form thereof wherein n^1 , n^2 , n^3 , n^4 , n^5 , R^a , R^b , R^c and R^3 through R^{25} are as hereinbefore defined in claim 1; or

(B) reducing a compound of formula IV

$$\begin{array}{c} O \\ C \\ R^{1} \\ \end{array}$$

or a protected form thereof wherein -C~Y-, R¹, R² and G are as hereinbefore defined in claim 1, to convert the indicated keto group into -CH(OH); or

(C) for the preparation of compounds of formula I where G is a group of formula Ia, R^c is hydrogen and n^1 is 0, reacting a compound of formula V

or a protected form thereof wherein -C~Y-, R^1 and R^2 are as hereinbefore defined in claim 1, with a compound of formula VI

$$0 = \begin{pmatrix} R^3 & R^4 \\ R^3 & R^6 \end{pmatrix}$$

or a protected form thereof wherein R^a , R^b , R^3 , R^4 , R^5 and R^6 are as hereinbefore defined in claim 1; or

(D) for the preparation of compounds of formula I where G is a group of formula 1d, R¹⁹ is hydrogen and n⁴ is 0, reacting a compound of formula V or a protected form thereof wherein -C~Y-, R¹ and R² are as hereinbefore defined in claim 1, with a compound of formula VII

$$0 = \frac{R^{17}}{R^{18}} \frac{R^{20}}{R^{21}} \qquad \text{VII}$$

or a protected form thereof wherein R^{17} , R^{18} , R^{20} and R^{21} are as hereinbefore-defined in claim 1; and

(ii) recovering the resultant compound of formula 1 in free or salt or solvate form.

Claim 11. (Original): A compound of formula IV

in free or salt or solvate form, where

-C~Y-, R1, R2 and G are as defined in claim 1.

Claim 12. (New): A compound according to claim 1 that is also a compound of formula XXXV

wherein R1, R2 and T are as shown in the following table:

R ¹	R ²	T
-OH	-H	
-OH	-H	
-OH	-H	СН
-OH	-H	H,C
-OH	-н	
-OH	-H	H ₃ C H ₃ C
-ОН	-H	
-OH	-H	

-OH	-H	
		O-CH3
-OH	-Н	CH ₃
		CH₃
		CH ₃
-OH	-H	S S
-OH	-H	CH ₃
-OH	-H	CH ₃
		/ CH ₃
-OH	-H	
		CH ₃
-OH	-Н	СН
-OH	-H	Y
		CH ₃
-OH	-H	1
		СН3
-OH	-Н	O CH ₃
		CH ₃
-OH	-Н	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
-OH	-Н	CH ₃
	- 2	CH³
-OH	-Н	
		Н

-OH	-H	H _s C S
-OH	-H	CH ₃
-OH	-н	H ₃ C CH ₃
-OH	-H	CH ₃ CH ₃
-OH	-Н	CH ₃ CH ₃
-OH	-H	H ₃ C CH ₃ .
-OH	-H	CH ₃

Claim 13. (New): A compound according to claim 1 that is also a compound of formula XXXV

wherein R1, R2 and T are as shown in the following table:

	- 52	T T
R'	R ²	
-OH	-H	
-OH	-H	CH ₃

-OH	-H	CH ₃
-ОН	-H	СН3
-OH	-Н	-
-H	-OH	
-H	-OH	CH ₃
-Н	-OH	
-Н	-OH	CH ₃
-H	-OH	— СH ₃
-H	-OH	-

Claim 14. (New): A compound according to claim 1 that is also a compound of formula XXXV

wherein R1, R2 and T are as shown in the following table:

R ¹	R ²	T
-OH	-H	
-OH	-Н	о _{СН3}

-OH	-H	CH ₃
-OH	-H	CH ₃
-OH	-H	O CH ₃
-OH	-Н	CH ₃
-OH	-H	
-H	-OH	CH ₃
-H	-OH	CH ₃
-Н	-OH	СН ₃
-H	-OH	CH ₃

-H	-OH	CI
		O_CH ₃
-H	-OH	N S CH ₃
-H	-OH	
-OH	-H	
-OH	-Н	CH ₃
-OH	-H	CH ₃
-OH	-H	
-OH	-H	CH ₃

	-OH	-H	
1			
	-H	-OH	CH ₃
	-H	-OH	CH,
	-H	-OH	CH ₃
	-н	-OH	
	-H	-OH	CH ₃
	-Н	-OH	

Claim 15. (New): A compound according to claim 1 that is also a compound of formula XXXV

wherein R^1 , R^2 and T are as shown in the following table:

R ¹	R ²	T
-ОН	-H	
-OH	-H	
-OH	-H	CH ₃
-OH	-H	
-OH	-H	N—CH ₃
-OH	-H	
-OH	-H	— <u></u>
-OH	-H	-
-OH	-H	-(T)

-OH	-Н	-CC
-ОН	-H	CH ₃
-OH	-Н	CH ₃
-OH	-Н	N CH ₃
-OH	-H	CH ₃
-OH	-H	CH ₃
-OH	-H	СН3
-OH	-Н	
-OH	-H	
-OH	-H	→ N
-OH	-H	CH ₃
-OH	-H	N CH ₃
-OH	-H	N CH ₃
-OH	-H	CH ₃
-ОН	-H	CH ₃
-OH	-H	CH ₃

			CH ₃
	-OH	-H	Con ₃
			ş
			CH ₃
 	-OH	-Н	H ₃ C
1	1		сн,
_		-н	N CH ₃
1	-OH	-11	NH
			CH ₃
1	-OH	-H	/ 'N' Y
			CH ₃
	-H	-OH	9 \
1			
1			
			"
-	-H	-OH	8 (-)
1			
-		-OH	O CH ₃
	-Н	-5	N-
١			ő
+	-H	-OH	$\langle \rangle$
- 1			
- 1			
١	-Н	-OH	CH3
	-H	-0	N-
	-H	-OH	
	-Н	-OH	
		-OH	
	-H	-01	
	1		V N

		N.
-Н	-OH	
-H	-OH	-(1)
-н	-OH	CH ₃
-H	-OH	-CH ₃
-Н	-OH	CH ₃
-Н	-OH	
-н	-OH	
-н	-OH	N CH ₃
-H	-OH	N CH,
-H	-OH	CH ₃
-Н	-OH	CH ₃
-Н	-OH	CH ₃
-H	-OH	Ň
-Н	-OH	CH ₃
		,

		,CH ₃
-Н	-OH	
		СН
1		~
-H	-OH	н,с
		сн,
1	1	CU
-H	-OH	1 27
		ŃН
	-OH	CH ₃
-н	-0	Сн,
	1	<i></i>

Claim 16. (New): A compound according to claim 1 that is also a compound of formula XXXV

wherein $\ensuremath{\mathsf{R}}^1, \ensuremath{\mathsf{R}}^2$ and T are as shown in the following table:

	R ²	T
R¹ -OH	-H	
-OH	-H	-(1)
-OH	-H	-()
-OH	-H	

-OH	-Н	
311		
-OH	-H	
-OH	-H	-CI
-OH	-H	CH ₃
-OH	-н	
-ОН	-Н	N S CH₃
-ОН	-H	
-H	-OH	None Control of the C
-H	-OH	-(I)
-H	-OH	-(1)

-H	-OH	-
-H	-OH	
-H	-OH	
-H	-OH	-CI
-Н	-OH	N CH ₃
-H	-OH	
-H	-OH	CH,
-Н	-OH	- (1) (s)

Claim 17. (New): A pharmaceutical composition comprising as active ingredient a compound of formula I as defined in claim 1.

Claim 18. (New): A pharmaceutical composition comprising a compound of formula I as defined in claim 1 in combination with another drug substance which is an anti-inflammatory, a bronchodilator, an antihistamine or an immunosuppressive or anti-tussive drug substance.

Claim 19. (New): A method of treating a condition that is prevented or alleviated by activation of the β_{2} -adrenoreceptor in a subject in need of such treatment, which comprises administering to said subject an effective amount of a compound of formula I as defined in claim 1 in free form or in the form of a pharmaceutically acceptable salt.

Claim 20. (New): A method of treating an obstructive or inflammatory airways disease in a subject in need of such treatment, which comprises administering to said subject an effective amount of a compound of formula I as defined in claim 1 in free form or in the form of a pharmaceutically acceptable salt.