RS 485 ID 新版读卡器通信协议说明

卡片只读器通讯协议格式如下:

HEAD 头标志				DATA	BCC C	END	
SOH	TYPE	ID	FC	资料	(8 bits BCC)		结束码
起始码	模块型式	模块型式	功能码		错误检查码		
0X09					BCC1	BCC2	0X0D

1. SOH 和 END 都是一个字节的控制字符:

SOH 控制器端定义为 < 0X09 >

模块端定义为 < 0X0A >

END 控制器及模块端均定义为 < 0X0D >

其中 < 0X > 为十六进制表示法

- 2. TYPE 为模块型式编号,固定为一个字节.新版本为"B",旧版本为"A"
- 3. ID 为模块端的识别代码<2 字节>.这两字节的 ASCII 字符必须是在 0-99 的范围内(小于 9 时在前面补 0).假如控制器端传送的 ID 值与模块地址编号相同,则该模块将会接收控制器端所传送的数据,而模块响应时,也会传回相同的地址编号
- 4. FC 是通讯功能码,和资料有相关性,固定为一个字节.这些资料请参阅通讯协议表及相关说明.
- 5. 8 bits BCC 是所有字符的检查字段,为二个字节.有关 8 bits BCC 的信息和范围程序,请参阅附录 A
- 6. RS485 传输协议设定为"E,8,1",速率为"19200".
- 7. 新版读卡器与旧版在通讯协议上是兼容的,旧版本的 TYPE 为 "A",新版本为 "B",用旧版本协议时读卡器回传的 TYPE 为 "A",新版协议时回传 TYPE 为 "B"
- 8. 使用上位机软件设置的地址时可以从 00-99,使用外部拔码时为 0-31 如果使用与 ID 相关的指令时须注意,使用内部地址时 00-99 有效,使用外部拔码时 0-31 有效。

控制器与模块通讯协议表:

FC	功能
A	保留
В	读取读卡器序列编号
С	设定读卡器地址编号
D	读取读卡器地址编号
Е	保留

F	读取卡片内码资料
G	重新读取卡片内码资料
Н	设定读卡器工作模式(单机)
I	读取读卡器触发信号状态和卡片资料
J	读取工作模式
K	读取读卡器触发信号状态
L	保留
M	保留
N	设定读卡器工作模式(广播)

FC:B 读取模块出厂序号

说明:此功能为读取卡片内模块出厂序号,共有8个码.第1码至第2码为出厂

年份,第3码至第4码为出厂周别,第5码至第8码为该型号流水号码.

控制器发送信息: 8 Byte

模块代码(ID): <00>~ <99>

资料(DATA): < none >

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检查码		
0X09	В	01	В		BCC1	BCC2	0X0D

模块响应信息:16 Byte (假如模块序号为 12450001)

资料(DATA): < 12450001 >

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检查码		
0X0A	В	01	В	12450001	BCC1	BCC2	0X0D

FC: C 设定模块地址编号

说明:此功能为设定地址编号,使用模块出厂序号.

控制器发送信息: 17 Byte

模块代码(ID):固定为 < X >

资料(DATA):出厂序号 < 12450001 > ,模块代码 < 01 >

	HEAD	头标志		DATA	BCC CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits BCC)	结束码
起始码	模块型式	识别码	功能码		错误检查码	
0X09	В	X	С	1245000101	BCC BCC2	0X0D

模块响应信息: 8 Byte 资料(DATA): < none >

HEAD 头标志				DATA	BCC C	END	
SOH	TYPE	ID	FC	资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检查码		
0X0A	В	01	С		BCC1	BCC2	0X0D

FC: D 读取模块地址编号

说明:此功能为读取地址编号,使用模块出厂序号.

控制器发送信息: 15 Byte 模块代码(ID):固定为 < X >

资料(DATA):出厂序号 < 12450001 >

	HEAD 头标志				BCC C	END	
SOH	TYPE	ID	FC	资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检		
0X09	В	X	D	12450001	BCC1	BCC2	0X0D

模块响应信息: 9 Byte

资料(DATA): 模块代码 < 01 >

	HEAD 头标志				BCC C	END	
SOH	TYPE	ID	FC	资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检查码		
0X0A	В	X	D	01	BCC1	BCC2	0X0D

FC: F 读取卡片资料

说明:此功能为读取卡片阅读模块所读到的卡片资料.

控制器发送信息: 8 Byte

模块代码(ID): <00>~<99>

资料(DATA): < none >

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检查码		
0X09	В	01	F		BCC1	BCC2	0X0D

模块响应信息: 17 Byte (有卡片感应) 资料(DATA): < 00000FF1A > (*附注)

HEAD 头标志				DATA	BCC C	END	
SOH	TYPE	ID	FC	资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检查码		
0X0A	В	01	F	00000FF1A	BCC1	BCC2	0X0D

模块响应信息: 8 Byte (无卡片感应)

资料(DATA): < none >

	HEAD 头标志				BCC C	END	
SOH	TYPE	ID	FC	资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检		
0X0A	В	01	F		BCC1	BCC2	0X0D

附注: 资料(DATA): 00000FF1A

第一码为卡片形式代号,固定为 0,第二码以后为卡片内码(CARD ID).编码方式为 ASCII 码.

FC: G 重新读取卡片资料

说明:此功能为重新读取卡片阅读模块所读到的卡片资料

控制器发送信息: 8 Byte

模块代码(ID): <00>~<99>

资料(DATA): < none >

	HEAD	头标志		DATA	BCC	CHECK	END
SOH	TYPE	ID	FC	资料	资料 (8 bits BCC)		
起始码	模块型式	识别码	功能码		错误检查码		
0X09	В	01	G		BCC1	BCC2	0X0D

模块响应信息: 18 Byte (有卡片感应)

资料(DATA): < 00000FF1A >

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	料 (8 bits B		结束码
起始码	模块型式	识别码	功能码		错误检查码		
0X0A	В	01	G	00000FF1A	BCC1	BCC2	0X0D

模块响应信息: 8 Byte (无卡片感应)

资料(DATA): < none >

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	SOH TYPE ID FC		FC	资料	(8 bits BCC)		结束码
起始码	起始码模块型式 识别码 功能码			错误检	查码		
0X0A	В	01	G		BCC1	BCC2	0X0D

FC: H 设置读卡器工作模式(单机)

说明:此功能为设置读卡器工作模式

控制器发送信息: 9 Byte

模块代码(ID): <00>~<99>

资料(DATA): <A/B/C>

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检查码		
0X09	В	01	Н	Α	BCC1	BCC2	0X0D

模块响应信息: 9Byte

资料(DATA): < A > (*附注)

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	SOH TYPE ID FC		FC	资料	(8 bits	结束码	
起始码	模块型式	识别码	功能码		错误检查码		
0X0A	В	01	Н	A	BCC1	BCC2	0X0D

FC: N 设置读卡器工作模式(广播)

说明:此功能为设置读卡器工作模式

控制器发送信息: 8Byte 模块代码(ID): < X > 资料(DATA): <A/B/C>

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检查码		
0X09	В	X	N	A	BCC1	BCC2	0X0D

模块响应信息: 蜂鸣器响一声

(*附注)

读卡器有 A/B/C 三种工作模式

模式 A: 指令读取模式: 只能用相关指令读取卡片资料(出厂模式)模式 B: 直接模式: 读到卡片资料自动发送(如果连续在 0.5S

内读到同一卡片将不发送)

模式 B 发送格式:

资料(DATA): < 00000FF1A >

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits	BCC)	结束码
起始码	模块型式	识别码	功能码		错误检	查码	
0X0A	В	01	F	00000FF1A	BCC1	BCC2	0X0D

模式 C: 外部触发模式: 收到外部电平触发时读取卡片资料并发送

备注:每收到一次触发信号就读一次卡片资料并发送,如果无卡片则不回应

模式 C 发送格式:

资料(DATA): < 00000FF1A >

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	SOH TYPE ID		FC	资料	(8 bits	结束码	
起始码	模块型式	识别码	功能码		错误检查码		
0X0A	В	01	F	00000FF1A	BCC1	BCC2	0X0D

FC: I 读取触发信号状态和卡片资料

说明: 读取触发信号状态和卡片资料.

控制器发送信息: 8 Byte

模块代码(ID): <00>~<99>

资料(DATA): < none >

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	TYPE ID		资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检查码		
0X09	В	01	I		BCC1	BCC2	0X0D

模块响应信息: 18 Byte (有卡片感应) 触发信号为 1 资料(DATA): < 00000FF1A+触发信号(0/1) > (*附注)

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits	BCC)	结束码
起始码	模块型式	识别码	功能码		错误检查码		
0X0A	В	01	I	00000FF1A1	BCC1	BCC2	0X0D

模块响应信息: 18 Byte (无卡片感应)

资料(DATA): < 0000000001 >

	HEAD 头标志				BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检查码		
0X0A	В	01	F	0000000001	BCC1	BCC2	0X0D

FC: J 读取读卡器工作模式

说明:此功能为读取读卡器工作模式

控制器发送信息: 8 Byte

模块代码(ID): <00>~<99>

资料(DATA): < none >

	HEAD	头标志		DATA	BCC	CHECK	END
SOH	SOH TYPE ID FC		FC	资料	(8 bits BCC)		结束码
起始码	模块型式	识别码	功能码		错误检	查码	
0X09	В	01	J		BCC1	BCC2	0X0D

模块响应信息: 9 Byte

资料(DATA): < A > (*附注)

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits	BCC)	结束码
起始码	模块型式	识别码	功能码		错误检	查码	
0X0A	В	01	J	A	BCC1	BCC2	0X0D

FC: K 读取读卡器触发信号状态

说明:此功能为读取读卡器触发信号状态

控制器发送信息: 8 Byte

模块代码(ID): <00>~<99>

资料(DATA): < none >

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits	BCC)	结束码
起始码	模块型式	识别码	功能码		错误检	查码	
0X09	В	01	K		BCC1	BCC2	0X0D

模块响应信息: 9 Byte 资料(DATA): <1>

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits	BCC)	结束码
起始码	模块型式	识别码	功能码		错误检	查码	
0X0A	В	01	K	1	BCC1	BCC2	0X0D

附录A

计算一个 BCC 检查字符

BCC 检查字符是将所有要传送出去的信息,以逻辑异或(XOR)所产生的结果为BCC 的值.

例如有如下信息:

	HEAD	头标志		DATA	BCC C	CHECK	END
SOH	TYPE	ID	FC	资料	(8 bits	BCC)	结束码
起始码	模块型式	识别码	功能码		错误检	查码	
0X09	A	01	F		BCC1	BCC2	0X0D

BCC 的计算有 4 个步骤:

- 1. 排除 BCC 及 END,不加入 XOR
- 2. "SOH"与"TYPE"异或,产生一个二进制的值
- 3. 将步骤 2 所异或的结果与"ID"的第一字节和第二字节分别异或
- 4. 再将步骤 3 所产生的结果与"FC"异或,以此方法,继续将"DATA"内容先后异或,最后产生的结果即是 BCC 的值.

以下为计算范例:

1.

信息名称	十六进制	说明
SOH	09	开始码的 ASCII 值
TYPE	41	十六进制"A"的 ASCII 值
ID_High	30	十六进制"0"的 ASCII 值
ID_Low	31	十六进制"1"的 ASCII 值
FC	46	十六进制"F"的 ASCII 值
DATA		无资料
BCC		需运算求值
END	0D	结束码的 ASCII 值

2. 将"SOH"与"TYPE"的值 XOR,RES 表示运算结果:

SOH	0000	1001
	XOR	XOR
TYPE	0100	0001
RES	0100	1000

3. 将步骤 2 的结果 RES2 与 ID 的值 XOR:

RES	0100	1000
	XOR	XOR
ID_High	0011	0000
RES	0111	1000
RES	0111	1000
	XOR	XOR
ID_Low	0011	0001
RES	0100	1001

4. 以此方法将其它信息名称的内容先后异或(XOR),最后产生的结果即为 BCC:

RES	0100	1001
	XOR	XOR
FC	0100	0110
BCC	0000	1111
十六进制字符	0	F

其中:

BCC1 为 0X30(十六进制"0"的 ASCII 值为 0X30)

BCC2 为 0X46(十六进制"F"的 ASCII 值为 0X46)

注:发卡机的协议格式如上,,接口为 RS485, 参数为"E,8,1",速率为"19200"