In [1]: pip install numpy

Requirement already satisfied: numpy in /home/anaconda/anaconda3/lib/pytho n3.12/site-packages (1.26.4)

Could not fetch URL https://pypi.org/simple/pip/: There was a problem confirming the ssl certificate: HTTPSConnectionPool(host='pypi.org', port=44 3): Max retries exceeded with url: /simple/pip/ (Caused by SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1000)'))) - skippin a

Note: you may need to restart the kernel to use updated packages.

In []: Note: you may need to restart the kernel to use updated packages.

In [3]: import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

 $\textbf{from} \ \ \text{sklearn.linearfrom} \ \ \text{sklearn.model_selection} \ \ \textbf{import} \ \ \text{train_test_split}$

model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

In [5]: df = pd.read_csv('doc.csv')

In [6]: df

Out[6]:		bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	1
	0	3	2	1500	5000	1	0	0	3	
	1	4	3	2500	6000	2	1	1	4	
	2	2	1	900	3000	1	0	0	3	
	3	5	4	3200	8000	2	1	2	5	,
	4	3	2	1800	4000	1	0	1	4	
	•••	•••			•••			•••		
	91	2	1	950	3200	1	0	0	3	
,	92	5	4	3300	8200	2	1	2	5	,
,	93	3	2	1900	4200	1	0	1	4	
	94	4	3	2500	6800	2	1	1	4	
	95	2	1	1100	3600	1	0	0	3	

96 rows × 9 columns

In [7]: df.describe()

Out[7]:		bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront		
	count 96.000000		96.000000	96.000000	96.000000	96.000000	96.000000	96.00	
	mean	3.375000	2.375000	2003.125000	5362.500000	1.437500	0.437500	0.81	
	std 1.058798		1.058798	796.003587	1727.623863	0.498682	0.498682	0.72	
	min	2.000000	1.000000	900.000000	3000.000000	1.000000	0.000000	0.00	
	25%	2.750000	1.750000	1400.000000	3900.000000	1.000000	0.000000	0.00	
	50%	3.000000	2.000000	1850.000000	4900.000000	1.000000	0.000000	1.00	
	75%	4.000000	3.000000	2525.000000	6850.000000	2.000000	1.000000	1.00	
	max	5.000000	4.000000	3300.000000	8200.000000	2.000000	1.000000	2.00	
<pre>In [9]: Out[9]:</pre>	<pre>bedrooms bathrooms sqft_living sqft_lot floors waterfront view condition price dtype: int64</pre>		() 0 0 0 0 0 0 0 0						
In [10]:	<pre>correlation_matrix = df.corr() sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm') plt.title("Correlation Matrix") plt.show()</pre>								


```
In [16]: y_pred = model.predict(X_test)
In [17]: mse = mean_squared_error(y_test, y_pred)
    r2 = r2 score(y test, y pred)
```

Mean Squared Error: 20027.086153182714 R-squared: 0.9727188582574816

```
In [19]: # Predictions and Visualization
    # To visualize the predictions against actual prices, we'll use a scatter
    plt.scatter(y_test, y_pred)
    plt.xlabel("Actual Prices")
```

```
plt.ylabel("Predicted Prices")
plt.title("Actual Prices vs. Predicted Prices")
plt.show()
```



```
In [20]: # We can also create a residual plot to check the model's performance
    residuals = y_test - y_pred
    plt.scatter(y_test, residuals)
    plt.axhline(y=0, color='red', linestyle='--')
    plt.xlabel("Actual Prices")
    plt.ylabel("Residuals")
    plt.title("Residual Plot")
    plt.show()
```



```
In [21]: new_data = [[3, 2, 1500, 4000, 1, 0, 0, 3]]
    predicted_price = model.predict(new_data)
    print("Predicted Price:", predicted_price[0])
```

Predicted Price: 2040.681186468728

/home/anaconda/anaconda3/lib/python3.12/site-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names

warnings.warn(

```
In [ ]:
```