that has the same elements as **P** and the reverse ordering (??). For a given $p \in \mathbf{P}$,

we use p^* to represent its corresponding copy in \mathbf{P}^{op} ; note that p and p^* belong

use
$$p$$
 to rep

to distinct posets. Reversing the order means that, for all
$$p, q \in \mathbf{P}$$
,

 $p \leq_{\mathbf{P}} q \iff q^* \leq_{\mathbf{P}}^{\mathrm{op}} p^*.$

Definition. The *opposite* of a poset $\langle \mathbf{P}, \leq_{\mathbf{P}} \rangle$ is the poset denoted as $\langle \mathbf{P}^{op}, \leq_{\mathbf{P}}^{op} \rangle$