

Eexam

Place student sticker here

Note:

- · During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Algorithms for Scientific Computing

Exam: IN2001 / Tech Test Date: Monday 19th July, 2021

Examiner: Michael Bader **Time:** 08:00 – 18:00

Working instructions

- This exam consists of 10 pages with a total of 4 problems.
 Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 44 credits.
- · Detaching pages from the exam is prohibited.
- · Allowed resources:
 - one non-programmable pocket calculator
 - one analog dictionary English ↔ native language
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Problem 1 Quarter-Wave Discrete Sine Transform (11 credits)

Given is a real-valued input data-set $f_0, ..., f_{2N-1} \in \mathbb{R}$ (i.e., length 2N) with the symmetry conditions $f_{2N-n-1} = -f_n$. Complete the tasks below.

$$F_{k} = \frac{1}{2N} \sum_{n=0}^{2N-1} f_{n} \omega_{2N}^{-k(n+\frac{1}{2})}$$
 (1.1)

have only imaginary values and can be written as

$$F_{k} = -\frac{i}{N} \sum_{n=0}^{N-1} f_{n} \sin\left(\frac{\pi k}{N} \left(n + \frac{1}{2}\right)\right)$$
 (1.2)

b) Show that the coefficients F_k of the QW-DST again justify a symmetry condition!	$_{\neg}$ $ar{f H}^{\circ}_{\scriptscriptstyle 1}$
	2 3
c) Let real-FFT(g,N) be a procedure that computes the Fourier coefficients G_k efficiently from a real data-se that consists of $2N$ values g_n . Describe a procedure QW-DST(g,N) that uses the given procedure real-FFT to compute the coefficients F_k $k = 0,, N-1$ from equation (1.2) for the (non-symmetrical) real data $f_0,, f_{N-1}$, stored in the parameter field Note: real-FFT(g,N) does not compute a QW-RDFT!	for \Box 1
	— — 3
	1

Problem 2 Wavelets Approximation (12 credits)

The cubic Battle-Lemarié wavelet is given by the coefficients $\{c_k\}$:

$$c_0 = \frac{1}{8}$$
 $c_1 = \frac{1}{2}$ $c_2 = \frac{3}{4}$ $c_3 = \frac{1}{2}$ $c_4 = \frac{1}{8}$. (2.1)

Starting with the mother hat function

0

2

3

5

6 7

$$\phi_0(t) = \max\{1 - |t|, 0\},\tag{2.2}$$

we can compute an approximation of the scaling and wavelet functions by iterating over their dilation equations. Ignoring the scaling factor such as $\frac{1}{\sqrt{2}}$, the dilation equation for the scaling (father) function is given by

$$\phi_{n+1}(t) = \sum_{k=0}^{4} c_k \cdot \phi_n(2t - k), \tag{2.3}$$

and the dilation equation for the wavelet (mother) function is given by

$$\psi_{n+1}(t) = \sum_{k=0}^{4} (-1)^k c_{K-k} \cdot \phi_n(2t-k), \text{ where } K = 4.$$
 (2.4)

a) In the given figure below, sketch the first approximation of the scaling function $\phi_1(t)$ and the wavelet function $\psi_1(t)$ on the interval [-1,3].

Hint 1: Use the given helper table on the right to compute the values of $\phi_1(t)$ and $\psi_1(t)$ at given points to help for your sketching.

Hint 2: Backup figure and helper table is provided in case you need to correct your solutions.

	$\phi_1(t)$	$\psi_{1}(t)$
t = -1.0		
t = -0.5		
t = 0.0		
t = 0.5		
t = 1.0		
t = 1.5		
t = 2.0		
t = 2.5		
t = 3.0		

what this implies for wave	conclusion can you draw for the integral of the obtained wavelet, i.e., $\int_{-\infty}^{+\infty} \psi_1(t)$? elets in general.	Explain,

Problem 3 Sparse Grids (10 credits)

a) Na	ame two different data structures for sparse grids. For each of them, discuss the following points:
(i)	Hierarchization/dehierarchization (Hint: consider data access and traversal complexity)
(ii)	Spatial adaptivity
(iii)	Memory consumption

	•		•				
•	•	•	•		•		
	•		•				
•	•	•	•	•	•	•	
	•		•		•		
			•				7
	•		•		•		
			•				
.	•	•	•	•	•	•	
			•		•		
	•		•	•	•	•	
	•		_		•		
	_		-		•		
			•				

Problem 4 Space-filling Curves - Peano-Meander Curve (11 credits)

Figure 4.1 depicts the first two iterations of a Meander type Peano curve.

Figure 4.1: First two iterations of a Peano-Meander curve.

$$q(0_9.n_1n_2n_3n_4...) = Q_{n_1} \circ Q_{n_2} \circ Q_{n_3} \circ Q_{n_4} \circ ... \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad (4.1)$$

where $t = 0_9.n_1n_2n_3n_4...$ is the representation of t in a base nine system.

1) Determine the operators Q_1 , Q_4 and Q_6 .

2) Compute the coordinates of $q(\frac{2}{3})$ and $q(\frac{1}{2})$.

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

