Project - 5 (DATASET: Online Retail) The transactionsmade by a UK-based, registered, nonstore online retailer between December 1, 2010, and December 9,2011, are all included in the transnational data setknown as online retail. The company primarily offers one-of-a-kind gifts for every occasion. The company has a large number of wholesalers as clients. CompanyObjective Using the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to target.

In [1]:

import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

In [3]:

df=pd.read_csv(r"C:\Users\dinesh reddy\Downloads\Retail Income.csv")
df

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0
541909	rows × 8 co	lumns					
1							

In [4]:

df.head()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unite Kingdor
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unite Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4								

In [5]:

df.tail()

Out[5]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0
4)

```
In [6]:
```

```
df['InvoiceNo'].value_counts()
```

Out[6]:

```
InvoiceNo
573585
           1114
            749
581219
581492
            731
580729
            721
558475
            705
554023
              1
554022
              1
554021
              1
              1
554020
C558901
Name: count, Length: 25900, dtype: int64
```

In [7]:

```
df['CustomerID'].value_counts()
```

Out[7]:

```
CustomerID
17841.0
           7983
14911.0
           5903
14096.0
           5128
12748.0
           4642
14606.0
           2782
           . . .
15070.0
              1
15753.0
              1
              1
17065.0
16881.0
              1
16995.0
              1
Name: count, Length: 4372, dtype: int64
```

In [8]:

```
df['Quantity'].value_counts()
```

Out[8]:

Quanti	ty				
1	148	3227			
2	81	L829			
12	61	L063			
6	46	868			
4	38	3484			
	• •	• •			
-472		1			
-161		1			
-1206		1			
-272		1			
-80995	5	1			
Name:	count,	Length:	722,	dtype:	int64

In [9]:

```
plt.scatter(df["CustomerID"],df["Quantity"])
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[9]:

Text(0, 0.5, 'Quantity')


```
In [10]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
#
     Column
                  Non-Null Count
                                   Dtype
---
                  -----
0
     InvoiceNo
                  541909 non-null object
 1
     StockCode
                  541909 non-null
                                   object
 2
     Description 540455 non-null object
 3
     Quantity
                  541909 non-null
                                   int64
 4
     InvoiceDate 541909 non-null object
 5
     UnitPrice
                  541909 non-null float64
 6
     CustomerID
                  406829 non-null float64
 7
     Country
                  541909 non-null object
dtypes: float64(2), int64(1), object(5)
memory usage: 33.1+ MB
In [11]:
df.isnull().sum()
Out[11]:
InvoiceNo
                    0
StockCode
                    0
Description
                 1454
Quantity
                    0
InvoiceDate
                    0
UnitPrice
                    0
CustomerID
               135080
Country
                    0
dtype: int64
In [12]:
df.fillna(method='ffill',inplace=True)
In [13]:
df.isnull().sum()
Out[13]:
               0
InvoiceNo
StockCode
               0
               0
Description
Quantity
               0
InvoiceDate
               0
UnitPrice
               0
CustomerID
               0
               0
Country
dtype: int64
```

```
In [14]:
```

```
from sklearn.cluster import KMeans
km=KMeans()
km
```

Out[14]:

KMeans()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [15]:

```
y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted
```

C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(

Out[15]:

```
array([1, 1, 1, ..., 0, 0, 0])
```

In [16]:

df["cluster"]=y_predicted
df.head()

Out[16]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unite Kingdor
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unite Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4								•

In [17]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[17]:

Text(0, 0.5, 'Quantity')

In [18]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["Quantity"]])
df["Quantity"]=scaler.transform(df[["Quantity"]])
df.head()
```

Out[18]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	Unite Kingdor
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	Unite Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4								•

In [19]:

```
scaler.fit(df[["CustomerID"]])
df["CustomerID"]=scaler.transform(df[["CustomerID"]])
df.head()
```

Out[19]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	Unite Kingdor
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdor
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	Unite Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdor
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdor
4								•

K-MeansClustering

```
In [20]:
```

```
km=KMeans()
```

In [21]:

```
y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted
```

C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(

Out[21]:

```
array([3, 3, 3, ..., 1, 1, 1])
```

In [22]:

df["New Cluster"]=y_predicted
df.head()

Out[22]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	Unite Kingdor
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdor
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	Unite Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdor
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdor
4								•

In [23]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[23]:

Text(0, 0.5, 'Quantity')

In [24]:

```
km.cluster_centers_
```

Out[24]:

In [25]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[25]:

Text(0, 0.5, 'Quantity')

In [26]:

```
k_rng=range(1,10)
sse=[]
```

In [27]:

```
for k in k_rng:
   km=KMeans(n_clusters=k)
   km.fit(df[["CustomerID","Quantity"]])
    sse.append(km.inertia_)
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
`n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of
`n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
 warnings.warn(
[46374.84553398474, 11336.065820169122, 4921.706891841346, 2723.519105189
529, 1695.0537089555137, 1178.5908477316075, 903.0156365895941, 677.41167
08385457, 528.4994805027764]
```

Out[27]:

Text(0, 0.5, 'Sum of Squared Error')

CONCLUSION

For the given dataset we use K-means Clustering and done the grouping based on the given data.In the above dataset we will take customer id and quantity based on that we make the clusters. When the K-value is low error rate is more and the K-value is high error rate is very high. So, finally we can Conclude the above dataset is bestfit for K-Means.

In []:		