645

(1)

減少した質量 Δm は、 $\Delta m = 4 \cdot 1.0078 - 4.0026 = 2.86 \times 10^{-2} \, u$ よって減少した質量の割合 $\frac{\Delta m}{m}$ は、 $\frac{\Delta m}{m} = \frac{2.86 \times 10^{-2}}{4 \cdot 1.0087} = 7.1 \times 10^{-3} = 0.71\%$

(2)

$$\Delta E = \Delta m \cdot c^2$$
 より、(結合エネルギーの式)
$$\Delta m = 1.0 \cdot (7.1 \times 10^{-3}) kg \ , c = 3.0 \times 10^8 \, m/_S$$
 を代入して、
$$\Delta E = 1.0 \cdot (7.1 \times 10^{-3}) \cdot (3.0 \times 10^8)^2$$

$$= 6.39 \times 10^{14} J$$

(3)

毎秒消費される水素の質量をM[kg]とすると、

放出されるエネルギーは水素1kgあたりの結合エネルギー ΔE と水素の質量M[kg]に等しくなる。よって、

$$4.0 \times 10^{26} = 6.39 \times 10^{14} \cdot M$$

 $\therefore M = 6.26 \times 10^{11} kg$