Microprocessors & Interfacing

Analog Input/Output

Lecturer: Annie Guo

COMP9032 Week9

Lecture Overview

- Analog output
 - PWM
 - Digital-to-Analog (D/A) Conversion
- Analog input
 - Analog-to-Digital (A/D) Conversion

COMP9032 Week9

PWM Analog Output

- PWM (Pulse Width Modulation) is a way of digitally encoding analog signal levels.
 - By using high-resolution counters, the duty cycle (pulse width/period) of a pulse wave is modulated to encode a specific analog signal level.
- PWM is a powerful technique for controlling analog circuits/devices with the processor's digital output.
- It is used in a wide variety of applications
 - E.g. motor speed control

COMP9032 Week9

PWM Analog Output (cont.)

- The PWM signal is still digital
 - Its value is either full high or full low.
- A low-pass filter is required to smooth the input signal and eliminate the inherent noise components in PWM signal.
- The output voltage is directly proportional to the pulse width.
 - By changing the pulse width of the PWM waveform, we can control the output value.

COMP9032 Week9

PWM Generation in AVR

PWM can be obtained through the provided timers.

COMP9032 Week9

Configuration for PWM

• TCCR0A/B

Bit	7	6	5	4	3	2	1	0	
0x24 (0x44)	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	TCCR0A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
Bit	7	6	5	4	3	2	1	0	_
0x25 (0x45)	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	TCCR0B
Read/Write	W	W	R	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Mode	WGM2	WGM1	WGM0	Timer/Counter Mode of Operation	ТОР	Update of OCRx at	TOV Flag Set on ⁽¹⁾⁽²⁾
0	0	0	0	Normal	0xFF	Immediate	MAX
1	0	0	1	PWM, Phase Correct	0xFF	TOP	воттом
2	0	1	0	CTC	OCRA	Immediate	MAX
3	0	1	1	Fast PWM	0xFF	TOP	MAX
4	1	0	0	Reserved	_	_	_
5	1	0	1	PWM, Phase Correct	OCRA	TOP	воттом
6	1	1	0	Reserved	_	_	_
7	1	1	1	Fast PWM	OCRA	воттом	TOP

CTC*

Clear Timer on Compare Match

COMP9032 Week9

Example

• Generate a PWM waveform.

COMP9032 Week9

Example (solution)

- Use Timer5
 - Set OC5A as output
 - Set the Timer5 operation mode as Phase Correct PWM mode
 - Set the timer clock

COMP9032 Week9

Example Code

```
.include "m2560def.inc"
.def temp=r16
        ldi temp, 0b00001000
        sts DDRL, temp
                                  ; Bit 3 will function as OC5A.
        clr temp ldi
                                  ; the value controls the PWM duty cycle
        sts OCR5AH, temp
        ldi temp, 0x4A
        sts OCR5AL, temp
                                  ; Set Timer5 to Phase Correct PWM mode.
        ldi temp, (1 << CS50)
        sts TCCR5B, temp
        ldi temp, (1<< WGM50) | (1<<COM5A1)</pre>
        sts TCCR5A, temp
        rjmp end
end:
```

COMP9032 Week9

Digital-to-Analog Conversion

COMP9032 Week9

Digital-to-Analog Conversion (cont.)

- A parallel output interface connects the Digital-to-Analog converter (DAC) to CPU.
- The latches may be part of the DAC or the output interface.
- Digital value is converted into continuous value.
- A signal conditioning block may be used as a filter to smooth the quantized nature of the output.
 - The signal conditioning block also provides isolation, buffering and voltage amplification if needed.

COMP9032 Week9

Binary-Weighted D/A Converter

- As a switch for a bit is closed, a weighted current is supplied to the summing junction of the amplifier (OP).
- For high-resolution D/A converters, the binaryweighted type must have a wide range of resistors.
 This may affect the output accuracy.

R-2R Ladder D/A Converter

- As a switch changes from the grounded position to the reference position, a binary-weighted current is supplied to the summing junction.
- For high-resolution D/A converters, a wide range of resistors are not required, providing better accuracy for the output.

D/A Converter Specifications

Resolution and linearity

- The resolution is determined by the number of bits and is given as the output voltage corresponding to the smallest digital step, i.e. 1 LSB.
- The linearity shows how closely the output voltage to the idea values (a straight line drawn through zero and full-scale).

Settling Time

– The time taken for the output voltage to settle to within a specified error band, usually $\pm \frac{1}{2}$ LSB.

COMP9032 Week9

D/A Converter Specifications (cont.)

Glitches

- A glitch is caused by asymmetrical switching in the D/A switches. If a switch changes from 1 to 0 faster than from 0 to 1, a glitch may occur.
 - Consider changing the output code of a 8-bit D/A from 10000000 to 01111111 in the next slide.
- The D/A converter glitch can be eliminated by using a sample-and-hold.

COMP9032 Week9

A/D Conversion electrical analog digital physical analog data data analog Signal Conditioning Sample-and-Transducer ADC Hold to CPU Analog-to-Digital Converter COMP9032 Week9 24

Data Acquisition and Conversion

- A transducer converts physical values to electrical signals, either voltages or currents.
- Signal conditioner performs the following tasks:
 - Isolation and buffering:
 - The input to ADC may need to be protected from dangerous voltages such as static charges or reversed polarity voltages.
 - Amplification:
 - To ensure the full-scale signal from the analog results in a full-scale signal to ADC.
 - Bandwidth limiting:
 - The signal conditioning provides a low-pass filter to limit the range of frequencies that can be digitized.

COMP9032 Week9

Data Acquisition and Conversion (cont.)

- The sample-and-hold circuit samples the signal and holds it steady for A/D conversion.
 - What is the sample frequency?
- The ADC converts the sampled signal to digital data
 - The output of ADC connected to CPU through three-state buffers.

COMP9032 Week9

Shannon's Sampling Theorem and Aliasing

- To preserve the full information in the signal, it is necessary to sample at least twice the maximum frequency of the signal.
 - This minimum sampling frequency is known as the Nyquist rate.
 - A signal can be exactly reproduced if it is sampled at a frequency greater than or equal to its Nyquist rate.
- If the sampling frequency is less than Nyquist rate, the waveform is said to be undersampled.

COMP9032 Week9

Shannon's Sampling Theorem and Aliasing (cont.)

- Undersampled signal, when converted back into a continuous time signal, will exhibit a phenomenon called *aliasing*.
 - Aliasing: the presence of unwanted components in the reconstructed signal. These components were not present when the original signal was sampled.

COMP9032 Week9

Sample Examples

• Sampled at twice of the signal frequency.

COMP9032 Week9

Sample Examples

 Undersampled, with sample frequency less than twice of the signal frequency

Successive Approximation Converter analog D/A Converter input CP / Comparator digital **MSB** LSB output Successive Approximation Clock Register MSB: most significant bit LSB: least significant bit

COMP9032 Week9

Successive Approximation A/D Converter

- Each bit in the *successive approximation register* is tested, starting at the most significant bit and working toward the least significant bit.
 - As each bit is set, the output of the D/A converter is compared (by the comparator) with the analog input.
 - If the D/A output is lower than the input signal, the bit remains set and the next bit is tried.
- For an N-bit output, such a bit test needs to be performed N times.

COMP9032 Week9

Parallel A/D Converter

- For an N-bit output, the ADC consists of
 - an array of 2^N-1 comparators
 - produces a (2N-1)-bit code
 - a 2^N-to-N decoder
 - converts 2^N-bit input code to N-bit binary value
- · The design is
 - fast
 - hence called flash ADC
 - but more costly than the successive approximation ADC

COMP9032 Week9

Two-Stage Parallel A/D Converter*

- The input signal is converted in two steps:
 - First, a coarse estimate is found by the first parallel A/D converter. This digital value is sent to the D/A converter and the adder, where it is subtracted from the original analog value.
 - Next, the difference is converted by the second parallel converter and the result combined with that from the first ADC gives the digitized value.
- The ADC has nearly the performance of the parallel converter but without the need of 2^N –1 comparators.
- It offers high resolution and high-speed conversion for applications like video signal processing.

COMP9032 Week9

A/D Converter Specifications

· Conversion time

- The time required to complete a conversion of the input signal.
- Determines the upper signal frequency limit that can be sampled without aliasing.

$$f_{MAX} = 1/(2 \cdot conversion time)$$
 (1)

Resolution

 The number of bits in the converter gives the resolution and thus the smallest analog input signal for which the converter will produce a digital code.

_

COMP9032 Week9

A/D Converter Specifications (Cont.)

Accuracy

- Relates to the smallest signal (or noise) to the measured signal.
- Given as a percent, and
- Describes how close the measurement is to the actual value.

Linearity

 The derivation in output codes from the real value (a straight line drawn through zero and full-scale).

COMP9032 Week9

A/D Converter Specifications (Cont.)

- Aperture time.
 - The time that the A/D converter is "looking" at the input signal.
 - It is usually equal to the conversion time.

COMP9032 Week9

Announcement

• Project is available on the course website.

COMP9032 Week9

Reading Material

- Chapter 13: Analog Input and Output. Microcontrollers and Microcomputers by Fredrick M. Cady.
- Timers/Counters. AVR Mega2560 Data Sheet.
 - PWM

COMP9032 Week9

Homework

1. Design to use PWM to drive the motor on the lab board to spin.

COMP9032 Week9

Homework

2. The A/D converter conversion time is 100 us. What is the maximum frequency of a signal that can be digitalized without aliasing occurring?

COMP9032 Week9