The geometry of blowups

Further material

Complex Singularities

July 12, 2023

Introduction

The blowup is the most simple and typical case of a birational map^1 that is not an isomorphism.

It is the typical method of resolving singularities.

¹a rational map such that its inverse is also rational

Resolution of singularities

Suppose X is an algebraic set with singularities. We want to find a manifold X' such that there exists a map $\pi: X' \to X$ which parametrizes X. For example, recall the difference between *regular surfaces* and *parametrized surfaces*.

This is called **resolving singularities**.

Some examples of resolutions

Example

Consider the cylinder $x^2+y^2=1$ in \mathbb{A}^3 , and the map from this cylinder to $X=\{(x,y,z)\in\mathbb{A}^3\mid x^2+y^2-z^2=0\}$ given by

$$\pi:(x,y,z)\mapsto(xz,yz,z)$$

In this case, we already knew X'. However, in further examples we try to construct resolutions. The main technique is **blowing up** points.

Blowing up the singularity of $y^2 = x^3 + x^2$

Substituting y = tx, we get the equation $x^2(t^2 - (x+1)) = 0$ which yields two nonsingular curves.

5 / 12

Blowing up the singularity of $y^2 = x^3 + x^2$

In this case, the singularity (0,0) is considered to be replaced with the line x = 0, or equivalently all directions in the line passing through (0,0).

Blowing up the singularity of $y^2 = x^3 + x^2$

In this case, the singularity (0,0) is considered to be replaced with the line x=0, or equivalently all directions in the line passing through (0,0). We call the line x=0 the **exceptional curve**.

Blowing up points in higher dimensions

Example

Consider the cone $x^2 + y^2 = z^2$ in \mathbb{A}^3 . This has a singularity at O, so we try to resolve it by substituting x = zs and y = zt. We get $z^2(s^2 + t^2 - 1) = 0$, which again leads to two nonsingular varieties. We call z = 0 the exceptional plane.

Singular varieties that need more than one blowup to resolve them

Example

Consider the curve $y^8 = z^5$ in \mathbb{A}^2 . Let z = yt to get $y^5(t^5 - y^3) = 0$. This is not yet nonsingular. Therefore, we take $t^5 - y^3 = 0$ and blow it up again. Let y = ts, to get $t^3(s^3 - t^2) = 0$. Blow up one more time to get nonsingular varieties.

Formal definition

I could not find a suitable formal definition of a blowup of general spaces...

Blowups of projective spaces

Consider \mathbb{P}^n and \mathbb{P}^{n-1} with coordinates $(x_0 : \cdots : x_n)$ and $(y_1 : \cdots : y_n)$ respectively. For points $x = (x_0 : \cdots : x_n)$ and $y = (y_1 : \cdots : y_n)$, denote $(x, y) \in \mathbb{P}^n \times \mathbb{P}^{n-1}$ as $(x_0 : \cdots : x_n : y_1 : \cdots : y_n)$.

Blowups of projective spaces

Consider \mathbb{P}^n and \mathbb{P}^{n-1} with coordinates $(x_0:\cdots:x_n)$ and $(y_1:\cdots:y_n)$ respectively. For points $x=(x_0:\cdots:x_n)$ and $y=(y_1:\cdots:y_n)$, denote $(x,y)\in\mathbb{P}^n\times\mathbb{P}^{n-1}$ as $(x_0:\cdots:x_n:y_1:\cdots:y_n)$. Consider the closed subvariety $\Pi\subset\mathbb{P}^n\times\mathbb{P}^{n-1}$ defined by

$$\{(x,y)\in\mathbb{P}^n\times\mathbb{P}^{n-1}\mid x_iy_i=x_jy_i\quad\text{for}\quad i,j=1,\ldots,n\}$$

Blowups of projective spaces

Definition

The map $\sigma: \Pi \to \mathbb{P}^n$ defined by restricting the first projection $\mathbb{P}^n \times \mathbb{P}^{n-1} \to \mathbb{P}^n$ is called the **blowup** of \mathbb{P}^n centered at $\xi = (1:0:\cdots:0) \in \mathbb{P}^n$.

An exercise of the text

Problem

Prove that the blowup of the complex manifold M at a point m is diffeomorphic in an orientation preserving manner to the connected sum

$$M\#\overline{\mathbb{P}}^N$$

where $\overline{\mathbb{P}}^N$ is the oriented smooth manifold obtained by changing the canonical orientation of \mathbb{P}^N .