Computer Networks

CMP2205

Lecture 1

Course information

- Grading:
- 2 mid-term tests: 40% and Final Exam: 60%
- Office: 3014
- References
 - Andrew S. Tanenbaum1996. Computer Networks. Prentice Hall; 3rd Edition.ISBN-10: 0133499456, ISBN-13: 978-0133499452
 - James F. Kurose and Keith W, 2007. Computer Networking: A Top-Down.
 Addison Wesley; 4 Edition. ISBN-10: 0321497708, ISBN-13: 978-0321497703

Course Outline

- Introduction
 - Basic concepts, terminology.
 - Protocols, layering, etc.
- Physical layer
 - Transmitting data.
- Data link layer
 - Reliable transmission.
 - Accessing the communication medium
 - Medium access control protocols.
- LANs
 - Ethernet, token ring, wireless LANs.

Course Outline (cont'd)

- Network layer
 - Types of network services.
 - Circuit- vs. packet switching.
 - Virtual circuits and datagrams.
 - Routing.
 - Addressing.
 - Unicast and multicast.
- Internetworking
 - IP.
 - The Internet.
 - IP Routing and Control.

Course Outline (cont'd)

- Transport layer
 - E2E communication...
 - Types of transport service.
 - Connectionless versus connection-oriented.
 - UDP.
 - TCP.
- Application layer
 - DNS, ssh, telnet, ftp, news, e-mail.
 - The Web.
 - HTTP.
 - HTML.
 - Search engines.
 - Proxy and caches
 - Peer-to-peer.
 - Security.

What's a Computer network?

- A communication system for connecting computers/hosts.
 - A computer network is a number of computers (also known as nodes) connected by some communication lines.
 - Two computers connected to the network can communicate with each other through the other nodes if they are not directly connected.
 - Some of the nodes in the network may not be computers at all but they are network devices(Like switches, routers etc.) to facilitate the communication.

Why network?

- Resource sharing!
 - Hardware: printers, disks, terminals, etc.
 - Software: text processors, compilers, etc.
 - Data.
- · Robustness.
 - Fault tolerance through redundancy.
- Load balancing.
 - Processing and data can be distributed over the network.
- Location independence.
 - Users can access their files, etc. from anywhere in the network.

Problems?

- Security!
 - It's much easier to protect centralized resources than when they are distributed.
 - Network itself as the target..

History

- Before the internet
 - Postal network.
 - Delivers different types of objects (letters, packages, etc.) world-wide.
 - Relatively high delay but relatively cheap.
 - Sender and receiver identified by their postal address (name, number, street, city, etc.).
 - Telephone network.
 - Engineered to deliver real-time voice.
 - Also world-wide.
 - Low delay but more expensive.
 - Users identified by telephone number.

The Telephone Network

- Telephone was patented by G. Bell in 1876.
- For one telephone to be able to talk with another telephone, a direct connection between the two telephones was needed.
 - Within one year, cities were covered with a wild jumble of wires!

The Telephone Network (cont'd)

- In 1878, the Bell Telephone company opened its first switching office (in New Haven, CT).
- Each user would connect to the local switching office.
 - When a user wanted to make a call, s/he rang to the office, and would be manually connected to the other end.

The Telephone Network (cont'd)

• To allow for long-distance calls, switching offices (switches) were connected.

- Several connections can go through interswitch trunks simultaneously.
- At some point, there were too many connections between switching offices!

The Telephone Network (cont'd)

Thus, a second-level hierarchy was added.

 The current telephone system has at least five levels of hierarchy.

Addressing

- Uniquely identifies users.
- Examples:
 - Postal address, telephone number.
- Types of addresses:
 - Flat.
 - Hierarchical.
 - Are postal addresses flat or hierarchical?
 - And phone numbers?

POTS or PSTN

- For over 100 years, the POTS (Plain Old Telephone System) a.k.a. PSTN (Public Switched Telephone Network) handles voiceband communications.
- The PSTN is well designed and engineered for the transmission and switching of voice
 - Real-time.
 - Low latency.
 - High reliability.
 - Moderate fidelity.

Evolution of Communications Networks

- The second communications network was created with the goal of providing a better transport mechanism for data.
- We will study the technology underpinning data networks.

Communication Model

Simplified Communication Model

Components

- End systems (or hosts),
- Routers/switches/bridges, and
- Links (twisted pair, coaxial cable, fiber, radio, etc.).

Components (cont'd)

- Source
 - generates data to be transmitted
- Transmitter
 - Converts data into transmittable signals
- Transmission System
 - Carries data
- Receiver
 - Converts received signal into data
- Destination
 - Takes incoming data

Simplified Data Communications Model

Key Tasks

- Transmission.
- Signal Generation.
- Synchronization.
- Error detection and correction.
- Addressing and routing
- End-to-end Recovery.
- Security.

Networking

- Point to point communication not usually practical
 - Devices are too far apart.
 - Large set of devices would need impractical number of connections.
- Solution is a communications network.

Simplified Network Model

Data Communication Model

Simplified Communication Model

Simplified Data Communications Model

Components

- End systems (or hosts),
- Routers/switches/bridges, and
- Links (twisted pair, coaxial cable, fiber, radio, etc.).

Components (cont'd)

- Source
 - generates data to be transmitted
- Transmitter
 - Converts data into transmittable signals
- Transmission System
 - Carries data
- Receiver
 - Converts received signal into data
- Destination
 - Takes incoming data

Key Tasks

- Transmission.
- Signal Generation.
- Synchronization.
- Error detection and correction.
- Addressing and routing
- End-to-end Recovery.
- Security.

Key Tasks

- Transmission.
- Signal Generation.
- Synchronization.

Physical Layer

• Error detection and correction.

Data Link Layer

Addressing and routing

Network Layer

• End-to-end Recovery.

Transport Layer

Security.

Application Layer

Networking

- Point to point communication not usually practical
 - Devices are too far apart.
 - Large set of devices would need impractical number of connections.
- Solution is a communications network.

Simplified Network Model

Connecting End Systems

Multiple access / shared medium

Connecting End Systems (cont'd)

Shared Communication Infrastructure

A stream of packets from sender to receiver.

Types of Data Networks

- Several ways to classify data networks.
- For example, according to "coverage".
 - Local Area Networks (LANs) typically provide networking capabilities within a building, campus.
 - Typically within 5-mile radius.
 - Wide-Area Networks (WANs) span greater geographic distances (e.g., world-wide).
 - Metropolitan Area Networks (MANs) span more restricted distances, e.g., geographic regions (e.g., Los Nettos network in Southern California, etc.)

The Internet

Types of Networks (cont'd)

- Classification according to type of connection.
 - Dedicated link.
 - Shared medium (multiple access).
 - Switched point-to-point.

Types of Networks (cont'd)

- Classification according to topology...
- What is network topology?
 - The way network elements are interconnected.

Network Topologies: Examples

More Concepts...

- Network protocols.
- Layering.
- Network/protocol architecture.

Network Protocols

- Diplomats use rules, called **protocols**, as guides for formal interactions.
- A communication protocol is a set of rules that specify the format and meaning of messages exchanged between computers across a network.
- A set of related protocols that are designed for compatibility are called protocol suite.

Human and Computer Protocols

Human Protocol

Hi Hi Got the time? 2:00

Computer Protocol

Layering

- What is it?
- Building complex systems is hard!
 - Approach: "Divide and conquer".
 - Split job into smaller jobs, or layers.
- Analogy to other fields.
 - Building a house: digging, foundation, framing, etc.
 - Car assembly line...
- Basic idea: each step dependent on the previous step but does not need to be aware of how the previous step was done.

Analogy: Air Travel

- The problem: air travel.
- Decomposed into series of steps:

Arrival at airport Departure from airport

Check-in Baggage claim

Boarding Deplane

Takeoff Landing

Traveling

More on the air travel analogy...

Protocol Architecture

- Task of communication broken up into modules
- For example file transfer could use three modules
 - File transfer application
 - Communication service module
 - Network access module

Simplified File Transfer Architecture

A Three Layer Model

- Application Layer
- Transport Layer
- Network Access Layer

Network Access Layer

- Exchange of data between the computer and the network
- Sending computer provides address of destination
- May invoke levels of service
- Dependent on type of network used (LAN, packet switched etc.)

Transport Layer

- Reliable data exchange
- Independent of network being used
- Independent of application

Application Layer

- Support for different user applications
- e.g. e-mail, file transfer

Layered Protocol Design

- Layering model is a solution to the problem of complexity in network protocols
- The model divides the network protocols into layers, each of which solves part of the network communication problem
 - Each layer has its own protocol!
- Each layer implements a service to the layer above
 - Relying on services provided by the layers below.

Layers

- Layers are the different components that need to be designed/implemented when designing/implementing networks.
- Each layer responsible for a set of functions.
- Top layer relies on services provided by bottom layer.
- Layer makes it service available to higher layer through an interface.

Network/Protocol Architecture

- Set of layers, what their functions are, the services each of them provide, and the interfaces between them.
- A.k.a, protocol architecture or protocol stack.
- Examples:
 - ISO-OSI 7 layer architecture.
 - TCP-IP architecture (Internet).

Protocol Data Units (PDU)

- At each layer, protocols are used to communicate.
- At the source, control information is added to user data at each layer, a.k.a., encapsulation.
- At the receiver, control information is stripped off at each layer going up the stack, a.k.a., decapsulation.

Operation of a Protocol Architecture

Example 1: ISO OSI Architecture

- ISO: International Standards Organization
- OSI: Open Systems Interconnection.

Application

Presentation

Session

Transport

Network

Data link

Physical

Layers of Interest in ISO Model

- Layer 7: Application
 - Application-specific protocols (e.g. ftp, http, smtp)
- Layer 4: Transport
 - Delivery of data between computers (end-to-end).
- Layer 3: Network
 - Data routing across a network.
- Layer 2: Data Link
 - Reliable transmission over physical medium.
- Layer 1: Physical
 - Transmission of bits between two nodes.

Example 2: TCP/IP Architecture

Model employed by the Internet.

TCP/IP

Application	Application
	Presentation
Transport	Session
	Transport
Internet	Network
Network	Data link
Access	Data IIIK
Physical	Physical

ISO OSI

TCP/IP Protocol Architecture

