Assignment 3

Namita Kumari - CS20BTECH11034

Download all latex-tikz codes from

https://github.com/ImNamitaKumari/Probabilityand-Random-Variables/blob/main/ Assignment3/Assignment3.tex

1 Problem

Let P(E) denote the probability of the event E. Given P(A)=1, $P(B)=\frac{1}{2}$, the values of P(A|B) and P(B|A) respectively are

- 1) $\frac{1}{4}$, $\frac{1}{2}$ 2) $\frac{1}{2}$, $\frac{1}{4}$ 3) $\frac{1}{2}$, 1
- 4) $1, \frac{1}{2}$

2 Solution

Let $X \in \{0,1\}$ be the random variable denoting the non-occurrence or occurrence of event A and $Y \in \{0,1\}$ be the random variable denoting the nonoccurrence or occurrence of event B.

X	Pr(X)	Y	Pr(Y)
0	0	0	$\frac{1}{2}$
1	1	1	$\frac{1}{2}$

TABLE I: Random Variables and their probabilities

$$P(A|B) = \Pr(X = 1|Y = 1) = \frac{\Pr(\{X = 1\}\{Y = 1\})}{\Pr(Y = 1)}$$
$$= \frac{1 \times \frac{1}{2}}{\frac{1}{2}} = 1$$
(2.0.1)

$$P(B|A) = \Pr(Y = 1|X = 1) = \frac{\Pr(\{Y = 1\}\{X = 1\})}{\Pr(X = 1)}$$
$$= \frac{\frac{1}{2} \times 1}{1} = \frac{1}{2} \quad (2.0.2)$$

As evident from question too, A and B are independent events. So, P(A|B) = P(A) and P(B|A) = P(B).