Claims

1. Polypeptides capable of forming antigen binding structures with specificity for Rhesus D antigens which include Rhesus D-specific CDR 1, CDR 2 and CDR 3 regions of pairs of amino acid sequences V_H and V_L with the same or different identification numbers according to the figures given in the table below:

	V _L							
Identi- fication	Figure	CDR 1 base pair No.	CDR 2 base pair No.	CDR 3 base pair No.	Figure	CDR 1 base pair No.	CDR 2 base pair No.	CDR 3 base pair No. 259-288
No.	Fig. 12	91-103	148-198	295-342	Fig. 1b	64-96	142-162	
	Fig. la	91-105	148-198	295-342	Fig. 2b	64-96	142-162	259-288
LD1-52	Fig. 2a	91-105	148-198	295-342	Fig. 3b	64-96	142-162	259-285
LD1-84	Fig. 3a		148-198	295-342	Fig. 4b	64-96	142-162	259-285
LD1-110	Fig. 4a	91-105		295-345	Fig. 5b	64-96	142-162	259-288
LD1-117	Fig. 5a	91-105	148-198	<u> </u>	Fig. 6b	61-99	145-165	262-294
LD2-1	Fig. 6a	91-105	148-198	295-342		64-96	142-162	259-282
LD2-4	Fig. 7a	91-105	148-198	295-342	Fig. 7b	64-96	142-162	259-288
LD2-5	Fig. 8a	91-105	148-198	295-342	Fig. 8b	61-102	148-168	265-294
LD2-10	Fig. 9a	91-105	148-198	298-345	Fig. 9b		142-162	259-28
LD2-11	Fig. 10a	91-105	148-198	295-342			142-162	259-28
LD2-14	Fig. 11a	91-105		295-342		-		259-28
	Fig. 12a	+		295-342	Fig. 12b		142-162	259-28
LD2-17				295-342	Fig. 131	64-96	142-162	
LD2-20	Fig. 13a					64-96	142-162	
LD1-6-17	Fig. 14a	-					142-162	
LD1/2-6-3	Fig. 15a			_			142-162	259-28
LD1/2-6-33	Fig. 16a	91-105	148-198	293-342	1118.10			

2. Polypeptides according to claim 1 which include Rhesus D-specific CDR 1, CDR 2 and CDR 3 regions of pairs of amino acid sequences V_H and V_L with the same identification numbers according to the figures given in the table of claim 1.

3. Polypeptides according to claim 1 which include regions with the amino acid sequences $V_{\rm H}$ and $V_{\rm L}$ and have identification numbers according to the figures given in the table of claim 1.

Sub /

- 4. Polypeptides according to claim 1, 2 or 3 characterised as antigen binding Fab fragments.
- 5. Polypeptides according to claim 1, 2-or 3 comprising immunoglobulin heavy and light chains capable of forming complete anti-Rhesus D antibodies.
 - 6. DNA sequences coding for polypeptides capable of forming antigen binding structures with specificity for Rhesus D antigens which include regions with the Rhesus D-specific CDR 1, CDR 2 and CDR 3 segments of pairs of DNA sequences V_H and V_L with the same or different identification numbers according to the figures given in the table below and functional equivalents thereof:

	V _H				V _L				
Identi- fication	Figure	CDR 1 base pair	CDR 2 base pair No.	CDR 3 base pair No.	Figure	CDR 1 base pair No.	CDR 2 base pair No.	CDR 3 base pair No.	
No.	F: 1-	91-105	148-198	295-342	Fig. 1b	64-96	142-162	259-288	
	Fig. la	91-105	148-198	295-342	Fig. 2b	64-96	142-162	259-288	
LD1-52	Fig. 2a		148-198	295-342	Fig. 3b	64-96	142-162	259-285	
LD1-84	Fig. 3a	91-105	148-198	295-342	Fig. 4b	64-96	142-162	259-285	
LD1-110	Fig. 4a	91-105		295-345	Fig. 5b	64-96	142-162	259-288	
LD1-117	Fig. 5a	91-105	148-198	<u> </u>	Fig. 6b	61-99	145-165	262-294	
LD2-1	Fig. 6a	91-105	148-198	295-342		64-96	142-162	259-282	
LD2-4	Fig. 7a	91-105	148-198	295-342	Fig. 7b	64-96	142-162	259-288	
LD2-5	Fig. 8a	91-105	148-198	295-342	Fig. 8b	61-102	148-168	265-294	
LD2-10	Fig. 9a	91-105	148-198	298-345	Fig. 9b	+	142-162	259-285	
LD2-11	Fig. 10a	91-105	148-198	295-342	Fig. 10b		142-162	259-28	
LD2-14	Fig. 11a	91-105	148-198	295-342				259-28	
LD2-17	Fig. 12a	91-105	148-198	295-342		_	142-162		
LD2-20	Fig. 13a	91-105	148-198	295-342	Fig. 13b		142-162	259-28	
	Fig. 14a		148-198	295-351	Fig. 14b	64-96	142-162	259-28	
LD1-6-17					Fig. 15t	64-96	142-162	259-28	
LD1/2-6-3	Fig. 15a	+				64-96	142-162	259-28	
LD1/2-6-33	Fig. 16a	91-105	140-190	273-342	17.8. 10.				

7. DNA sequences according to claim 6 coding for polypeptides capable of forming antigen binding attructures with specificity for Rhesus D antigens which include regions with the Rhesus D-specific CDR 1, CDR 2 and CDR 3 segments of pairs of DNA sequences V_H and V_L with the same

10

15

15

20

25

identification numbers according to the figures given in claim 6, and functional equivalents thereof.

- 8. DNA sequences according to claim 6 or 7 which include regions with the DNA sequences V_H and V_L with the identification numbers according to the figures given in claim 6.
 - 9. DNA sequences according to claim 6, 7 or 8 coding for polypeptides capable of forming antigen binding Fab fragments.
 - 10. DNA sequences according to claim 6, 7 or 8 coding for polypeptides capable of forming complete anti-Rhesus D antibodies.
- 11. A process for preparing recombinant polypeptides capable of forming antigen binding structures, e.g. Fab fragments, with specificity for Rhesus D antigens which process comprises the following steps in sequential order:
 - a) boosting of an individual capable of forming anti-Rhesus D antibodies with Rhesus D positive red blood cells,
 - b) isolating mononuclear cells from the individual,
 - c) isolating total RNA from the monoruclear cells,
 - d) preparing a cDNA by using an oligo(dT)primer and reverse transcribing of the mRNA with M-MuLV reverse transcriptase and amplifying the cDNA repertoire by a polymerase chain reaction using immunoglobulin gene family specific primers,
 - e) creating a phage display library by inserting the DNA coding for the heavy and light chain of the Fab polypeptide into a phagemid vector; the DNA for the heavy chain is inserted in frame to the gene coding for the phage protein pIII which allows the expression of a Fab pIII fusion protein on the surface of the phage,
 - f) transforming bacterial cells with the obtained recombinant plasmids, cultivating of the transformed bacterial cells and co-expression of the heavy and the light chain of a Fab on filamentous phage particles,

5

15

20

25

- g) amplifying the Fab carrying phage in bacteria,
- h) selecting individual phage clones by several rounds of panning on Rhesus positive red blood cells.
- i) isolating the plasmid DNA from the selected clones and cutting out the gIII gene,
- j) transforming bacterial cells with the obtained plasmid, cultivating of the transformed bacterial cells expressing the Fab, and isolating the Fab fragments.
- 12. A process for selecting recombinant polypeptides capable of forming antigen binding structures with specificity for Rhesus D antigens and in particular showing reactivity with the Partial Rhesus DVI Variant and without any evidence of reactivity with red blood cells of Rhesus negative phenotypes in particular without reactivity against the Rhesus alleles C, c, E, and e which process comprises the following steps in sequential order:
 - a) performing several negative absorptions on the following red blood cells: phenotype 1 (r'r Ccddee) treated with bromelase, phenotype 1 not treated with bromelase, phenotype 2 (ryry, CCddEE) treated with bromelase and phenotype 2 not treated with bromelase,
 - b) performing a positive absorption on DVI+ red blood cells with or without bromelase treatment,
 - c) determining the titer of phage binding to DVI+ red blood cells
 - d) repeating steps a), b) and c) until the titer of phage binding to DVI+ red blood cells has reached a satisfactory level.
 - 13. A process according to claim 12, wherein the recombinant polypeptides capable of forming antigen binding structures are Fab fragments.
- 14. Anti-Rhesus D antibodies having heavy and light chain variable regions comprising the Rhesus D-specific CDR 1, CDR 2 and CDR 3

sub 7

sequences of pairs of amino acid sequences V_{H} and V_{L} having the same or different identification numbers according to the table below:

	V _H				V _L				
Identi- fication No.	Figure	CDR 1 base pair No.	CDR 2 base pair No.	CDR 3 base pair No.	Figure	CDR 1 base pair No.	CDR 2 base pair No.	CDR 3 base pair No.	
LD1-40	Fig. la	91-105	148-198	295-342	Fig. 1b	64-96	142-162	259-288	
LD1-52	Fig. 2a	91-105	148-198	295-342	Fig. 2b	64-96	142-162	259-288	
LD1-84	Fig. 3a	91-105	148-198	295-342	Fig. 3b	64-96	142-162	259-285	
LD1-110	Fig. 4a	91-105	148-198	295-342	Fig. 4b	64-96	142-162	259-285	
LD1-117	Fig. 5a	91-105	148-198	295-345	Fig. 5b	64-96	142-162	259-288	
LD2-1	Fig. 6a	91-105	148-198	295-342	Fig. 6b	61-99	145-165	262-294	
LD2-4	Fig. 7a	91-105	148-198	295-342	Fig. 7b	64-96	142-162	259-282	
LD2-5	Fig. 8a	91-105	148-198	295-342	Fig. 8b	64-96	142-162	259-288	
LD2-10	Fig. 9a	91-105	148-198	298-345	Fig. 9b	61-102	148-168	265-294	
LD2-11	Fig. 10a	91-105	148-198	295-342	Fig. 10b	64-96	142-162	259-285	
LD2-14	Fig. 11a	91-105	148-198	295-342	Fig. 11b	64-96	142-162	259-285	
LD2-17	Fig. 12a	91-105	148-198	295-342	Fig. 12b	64-96	142-162	259-285	
LD2-20	Fig. 13a	91-105	148-198	295-342	Fig. 13b	64-96	142-162	259-285	
LD1-6-17	Fig. 14a	91-105	148-198	295-351	Fig. 14b	64-96	142-162	259-285	
LD1/2-6-3	Fig. 15a	91-105	148-198	295-342	Fig. 15b	64-96	142-162	259-285	
LD1/2-6-33	Fig. 16a	91-105	148-198	295-342	Fig. 16b	64-96	142-162	259-285	

15. Anti-Rhesus D artibodies having heavy and light chain variable regions comprising the Rhesus D-specific CDR 1, CDR 2 and CDR 3 sequences of pairs of amino acid sequences $V_{\rm H}$ and $V_{\rm L}$ having the same identification numbers as indicated in the table of claim 14.

16. Anti-Rhesus D antibodies according to claim 14 er 15 which include pairs of amino acid sequences V_H and V_L having the identification numbers according to the figures, as indicated in the table of claim 14.

17. Anti-Rhesus D antibodies according to claims 14, 15, or 16 wherein the immunoglobulin constant regions are of at least one of the defined isotypes IgG1, IgG2, IgG3 or IgG4.

10

5

10

15

20

18. A process for preparing complete anti-Rhesus D antibodies according to one of the claims 14 to 17, comprising in sequential order the steps of

- a) amplifying separately the members of a pair of a heavy chain V gene segment and a light chain V gene segment containing Rhesus D-specific CDR 1, CDR 2 and CDR 3 regions as depicted in Figs. 1a 16a and 1b 16b, respectively, from an anti-Rhesus D-Fab-encoding plasmid by carrying out a polymerase chain reaction with specific primers,
- b) preparing separately the genes of a complete anti-Rhesus D immunoglobulin heavy chain and a complete anti-Rhesus D immunoglobulin light chain in suitable plasmids containing the immunoglobulin constant region gene segments coding for either one of the human $\gamma 1$, $\gamma 2$, $\gamma 3$ and $\gamma 4$ heavy chains and for the human κ or λ light chain and transforming the obtained plasmids separately in suitable E. coli bacteria, and
- c) cotransfecting the obtained plasmids into suitable eukaryotic host cells, cultivating of the cells, separating the non-transformed cells, cloning of the cultures, selecting the best producing clone, using it as a production culture and isolating the complete antibodies from the supernatant of the cell culture.

19. A pharmaceutical composition comprising at least one polypeptide according to the definition of claim 1, 2 or 3 or at least one anti-Rhesus D antibody according to one of the claims 14 to 17 for the prophylaxis of haemolytic disease of the newborn for the treatment of idiopathic thrombocytopenic purpura and mistransfusions of Rhesus incompatible blood.

20. A diagnostic composition for Rhesus D typing comprising Fab fragments according to claim a canti-Rhesus D antibodies according to one of the claims 14 to 17.

als.

В