Prépa Mastère Digital - Mathématiques Notions mathématiques fondamentales - Sommes

HETIC

Table des matières

1. Introduction

- 1.1 Somme d'entiers consécutifs
- 1.2 Somme des entiers pairs
- 1.3 Exercices
- 1.4 Correction des exercices

2. Somme de valeurs quelconques

- 2.1 Symbole Sigma
- 2.2 Multiplication par une constante
- 2.3 Somme de somme de deux termes
- 2.4 Linéarité de la somme
- 2.5 Exercices
- 2.6 Corrigés des exercices

Table des matières

- 1. Introduction
- 1.1 Somme d'entiers consécutifs
- 1.2 Somme des entiers pairs
- 1.3 Exercices
- 1.4 Correction des exercices
- 2. Somme de valeurs quelconques
- 2.1 Symbole Sigma
- 2.2 Multiplication par une constante
- 2.3 Somme de somme de deux termes
- 2.4 Linéarité de la somme
- 2.5 Exercices
- 2.6 Corrigés des exercices

1.1 Introduction - Somme d'entiers consécutifs

Exemple - Somme d'entiers consécutifs

• Intéressons nous à cette somme :

$$4+5+6+7+8+9+10$$

• Il existe une manière plus concise de l'écrire :

$$\sum_{i=4}^{i=10} i$$

$$\sum_{i=4}^{i=10} i \left\{ \begin{array}{l} \Sigma \text{ (symbole sigma)}: \text{ indique que l'on calcule une somme} \\ i=4 \text{ (en bas)}: \text{ la somme commence à 4} \\ i=10 \text{ (en haut)}: \text{ la somme finit à 10} \\ i \text{ (à droite)}: \text{ on somme (tous) les entiers de 4 à 10} \end{array} \right.$$

1.2 Introduction - Somme des entiers pairs

Exemple - Somme des entiers pairs

• Intéressons nous à cette somme :

$$2+4+6+8+10$$

• On peut réécrire cette somme ainsi :

$$2 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 + 2 \times 5$$

ullet Finalement, on peut l'écrire avec un symbole Σ ainsi :

$$\sum_{i=1}^{i=5} 2i \begin{cases} & \Sigma \text{ (à gauche)}: \text{ indique que l'on calcule une somme} \\ & i=1: \text{ la somme commence à 4} \\ & i=5: \text{ la somme finit à 5} \\ & 2i: \text{ on somme (tous) les doubles de } i \text{ (= } 2 \times i = 2i) \end{cases}$$

1.3 Introduction - Exercices

Exercice 1

- Soit S = 1 + 2 + 3 + 4 + 5
 - 1. Calculer S et 3S
 - 2. Ecrire S en utilisant le symbole Σ
 - 3. Calculer $S' = \sum_{i=1}^{i=5} 3i$
 - 4. Que remarquez-vous ?

Exercice 2

- Soit S = 4 + 8 + 12 + 16
 - 1. Ecrire S en utilisant le symbole Σ
 - 2. Est-ce que $S = 4 \times \sum_{i=1}^{i=4} i$?

1.4 Introduction - Correction des exercices

Exercice 1

- Soit S = 1 + 2 + 3 + 4 + 5
 - 1. S = 15 et $3S = 3 \times 15 = 45$
 - 2. $S = \sum_{i=1}^{i=5} i$
 - 3. $S' = \sum_{i=1}^{i=5} 3i$ $S' = 3 \times 1 + 3 \times 2 + 3 \times 3 + 3 \times 4 + 3 \times 5$ S' = 3 + 6 + 9 + 12 + 15 = 45
 - 4. On remarque que S' = 3S, donc :

$$3 \times \sum_{i=1}^{i=5} i = \sum_{i=1}^{i=5} 3 \times i$$

Que l'on peut aussi écrire :

$$3\sum_{i=1}^{i=5} i = \sum_{i=1}^{i=5} 3i$$

1.4 Introduction - Correction des exercices

Exercice 2

• Soit
$$S = 4 + 8 + 12 + 16$$

1.
$$S = \sum_{i=1}^{i=4} 4i$$

2.
$$S = 40$$
 et $4 \times \sum_{i=1}^{i=4} i = 4 \times (1 + 2 + 3 + 4) = 4 \times 10 = 40$
Donc:

$$S = \sum_{i=1}^{i=4} 4i = 4 \times \sum_{i=1}^{i=4} i$$

Table des matières

- 1. Introduction
- 1.1 Somme d'entiers consécutifs
- 1.2 Somme des entiers pairs
- 1.3 Exercices
- 1.4 Correction des exercices
- 2. Somme de valeurs quelconques
- 2.1 Symbole Sigma
- 2.2 Multiplication par une constante
- 2.3 Somme de somme de deux termes
- 2.4 Linéarité de la somme
- 2.5 Exercices
- 2.6 Corrigés des exercices

2.1 Somme de valeurs quelconques - Symbole Sigma

Exemple - Somme de valeurs quelconques

• Soit cette série de notes sur 10 (i désigne un élève) :

i	1	2	3	4	5
Xį	2	7	1	9	4

• Il existe une manière plus concise de l'écrire :

$$\sum_{i=1}^{i=5} x_i$$

$$\sum_{i=1}^{i=5} x_i \left\{ \begin{array}{l} \Sigma \text{ (symbole sigma)}: \text{ indique que l'on calcule une somme} \\ i=1 \text{ (en bas)}: \text{ la somme commence à 1} \\ i=5 \text{ (en haut)}: \text{ la somme finit à 5} \\ x_i \text{ (à droite)}: \text{ on somme les valeurs } x_i \text{ de la 1ère à la 5ème} \end{array} \right.$$

2.2 Somme de valeurs quelconques - Multiplication par une constante

Exemple - Multiplication par une constante

• Soit une série de valeurs x_i et la même série multipliée par 3

i	1	2	3	4
Xi	10	20	15	5
$3x_i$	30	60	45	15

- On a : $\sum_{i=1}^{4} x_i = 10 + 20 + 15 + 5 = 50$
- Et : $\sum_{i=1}^{4} 3 \times x_i = 30 + 60 + 45 + 15 = 150$
- Donc $3 \times \sum_{i=1}^{4} x_i = \sum_{i=1}^{4} 3 \times x_i$

2.2 Somme de valeurs quelconques - Multiplication par une constante

Formule - Multiplication par une constante

- Multiplier toutes les valeurs dans une somme par une constante, c'est multiplier par cette constance la somme des valeurs initiales
- Autrement dit :

$$\sum_{i=1}^{n} \lambda x_i = \lambda \sum_{i=1}^{n} x_i$$

2.3 Somme de valeurs quelconques - Somme de somme de deux termes

Exemple - Somme de somme de deux séries

• Soit deux séries de valeurs y_i et x_i

i	1	2	3	4
Xi	10	20	15	5
Уi	5	10	20	5

- On a : $\sum_{i=1}^{4} x_i = 10 + 20 + 15 + 5 = 50$
- Et : $\sum_{i=1}^{4} y_i = 5 + 10 + 20 + 5 = 40$
- $\sum_{i=1}^{4} (x_i + y_i) = (10+5) + (20+10) + (15+20) + (5+5) = 15+30+35+10=90$
- Finalement : $\sum_{i=1}^{4} (x_i + y_i) = \sum_{i=1}^{4} x_i + \sum_{i=1}^{4} y_i$

2.3 Somme de valeurs quelconques - Somme de somme de deux termes

Formule - Somme de somme de deux termes

•

$$\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$$

2.4 Somme de valeurs quelconques - Linéarité de la somme

Formule - Linéarité de la somme

• On peut résumer tout ceci ainsi :

$$\sum_{i=1}^{n} (x_i + \lambda y_i) = \sum_{i=1}^{n} x_i + \lambda \sum_{i=1}^{n} y_i$$

Exercice 1 (utilisez au maximum les formules vues ci-dessus !)

- Calculer les sommes suivantes :
 - 1.

$$\sum_{i=1}^{21} 3; \sum_{i=5}^{i=9} (i+1); \sum_{i=1}^{i=6} i^2; \sum_{i=2}^{i=4} \frac{1}{i}$$

- 2. Soit $x_1 = 1, x_2 = 10, x_3 = 100$ et $x_4 = 1000$
- 3. Calculer $\sum_{i=1}^{4} x_i$
- 4. Soit $y_i = x_i 1$ (les 4 valeurs de y sont égales aux 4 valeurs de x auxquelles on a retranché 1) Calculer $\sum_{i=1}^4 y_i$
- 5. Soit $y_i = 10 \times x_i$ (les 4 valeurs de y sont égales à celles de y fois 10) Calculer $\sum_{i=1}^{4} y_i$

Exercice 2 (utilisez au maximum les formules vues ci-dessus !)

• Soit cette série de notes sur 20 (i désigne un élève) :

i	1	2	3	4	5
Xį	20	17	11	12	?

• On sait aussi que

$$\frac{1}{5} \sum_{i=1}^{i=5} x_i = 14$$

- 1. Interpréter le fait que cette somme soit égale à 14
- 2. Ecrire une égalité pour exprimer la note du 5ème élève comme étant un nombre entier moins une somme
- 3. Calculer la note du 5ème élève
- 4. Calculer $\frac{1}{5}\sum_{i=1}^{5}(x_i-\bar{x})^2$ où \bar{x} est égal à la somme précédente. Quelle est cette quantité ?

Exercice 3 (utilisez au maximum les formules vues ci-dessus !)

4 amis vont au restaurant, soit m_i l'argent dépensé pour manger et b_i
 l'argent dépensé pour boire, par chacun des 4 convives.

i	1	2	3	4
b _i	?	?	?	?
m _i	15	17	11	12
$b_i + m_i$	25	20	25	32

- 1. Combien ont-ils dépensé en tout (les 4 amis, pour manger et boire) ?
- 2. Ecrire la somme d'argent dépensée en boisson par les 4 personnes comme la différence de deux sommes et la calculer.
- 3. Si le prix des boissons augmente de 100 %, de combien est le nouveau total ?

Exercice 4 (utilisez au maximum les formules vues ci-dessus !)

- Calculer $\sum_{i=1}^{i=1000} (i-(i-1))$
- Calculer $\sum_{i=1}^{i=5} i^2 (i-1)^2$
- Calculer $\sum_{i=1}^{4} 7i (6i 6)$
- Calculer $\sum_{i=1}^{5} i(i-1)$

2.6 Somme de valeurs quelconques - Corrigés des exercices

Exercice 1

1.
$$\sum_{\substack{i=1\\i=5\\i=5}}^{21} 3 = 21 \times 3 = 63$$

$$\sum_{\substack{i=5\\i=5\\i=1}}^{2} (i+1) = (5+1) + (6+1) + (7+1) + (8+1) + (9+1) = 40$$

$$\sum_{\substack{i=6\\i=1\\i=1\\i=1}}^{2} i^2 = 1 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 1 + 4 + 9 + 16 + 25 + 36 = 91$$

$$\sum_{\substack{i=4\\i=2\\i=2}}^{2} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{12 + 6 + 4 + 3}{12} = \frac{25}{12}$$

- 2. Soit $x_1 = 1, x_2 = 10, x_3 = 100$ et $x_4 = 1000$
- 3. $\sum_{i=1}^{4} x_i = 1 + 10 + 100 + 1000 = 1111$
- 4. $\sum_{i=1}^{4} y_i = \sum_{i=1}^{4} (x_i 1) = \sum_{i=1}^{4} x_i \sum_{i=1}^{4} 1 = 1111 4 = 1107$
- 5. $\sum_{i=1}^{4} y_i = \sum_{i=1}^{4} 10x_i = 10 \times \sum_{i=1}^{4} x_i = 10 \times 1111 = 11110$

2.6 Somme de valeurs quelconques - Corrigés des exercices

Exercice 2

• Soit cette série de notes sur 20 (i désigne un élève) :

i	1	2	3	4	5
Χį	20	17	11	12	?

On sait aussi que

$$\frac{1}{5}\sum_{i=1}^{i=5}x_i=14$$

- 1. Il s'agît de la moyenne de la série
- 2. La note de l'élève 5 est égale à $5 \times 14 \sum_{i=1}^{i=4} x_i = 70 \sum_{i=1}^{i=4} x_i$
- 3. Sa note est égale à 10 (= $70 \sum_{i=1}^{i=4} x_i = 70 (20 + 17 + 11 + 12)$)
- 4. Cette quantité est la variance de la série. Elle vaut : $(20-14)^2 + (17-14)^2 + (11-14)^2 + (12-14)^2 + (10-14)^2 = 36+9+9+4+16=74$

2.6 Somme de valeurs quelconques - Corrigés des exercices

Exercice 3

4 amis vont au restaurant, soit m_i l'argent dépensé pour manger et b_i
 l'argent dépensé pour boire, par chacun des 4 convives.

i	1	2	3	4
b _i	?	?	?	?
m _i	15	17	11	12
$b_i + m_i$	25	20	25	32

1.
$$\sum_{i=1}^{4} (m_i + b_i) = 25 + 20 + 25 + 32 = 97$$

2.
$$\sum_{i=1}^{4} b_i = \sum_{i=1}^{4} (b_i + m_i) - \sum_{i=1}^{4} m_i = 97 - (15 + 17 + 11 + 12) = 97 - 55 = 42$$

3. Dans ce cas la nouvelle somme vaut : $\sum_{i=1}^{4} (2b_i + m_i) = 2 \sum_{i=1}^{4} b_i + \sum_{i=1}^{4} m_i = 2 \times 42 + 55 = 84 + 55 = 139$