Drug Consumption Analysis

Manasa Kandimalla Carlos Antonio McNulty Shyam Patel

Problem Statement

Which personality traits (e.g., neuroticism, extraversion, openness to experience, agreeableness, conscientiousness, impulsiveness, sensation) and other factors (e.g., age, gender, education) make one susceptible to the usage of various illegal drugs?

Data Sources

E. Fehrman, V. Egan and E. M. Mirkes (2016).

UCI Machine Learning Repository

[https://archive.ics.uci.edu/ml/datasets/Drug+consumption+%28quantified%29]. Leicester, UK:

University of Leicester, Department of

Mathematics.

Data Sources

- 1,885 respondents
- NEO-FFI-R (neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness)
- BIS-11 (impulsivity)
- ImpSS (sensation seeking)
- Level of education
- Age
- Gender
- Country of residence
- Ethnicity

Illegal Drugs

Amphetamines

Amyl nitrite

Benzodiazepine

Cannabis

Cocaine

Crack

Ecstasy

Heroin

Ketamine

LSD

Methadone

Mushrooms

Drug Usage

Illegal Drug Usage by Personality Trait

	t-statistic	p-value
Nscore	6.3434	2.6924e-10
Escore	-3.4179	0.0003
Oscore	13.2261	1.8035e-34
Ascore	-6.3017	1.8286e-10
Cscore	-12.7530	1.2412e-32

Illegal Drug Usage and Frequency by Gender

Heatmap of Correlation Matrix

														_	1.00
Age -	1	0.12		0.34	-0.054	-0.11	-0.039	-0.22	0.086		-0.16	-0.3	-0.2		
Gender -	0.12	1		0.23	0.0024	0.098	0.049	-0.13	0.23		-0.17	-0.25	-0.18		
Education -	0.18	0.2	1	0.22	-0.024	-0.073	0.1	0.058	0.11	0.23	-0.15	-0.14	-0.1	- (0.75
Country -	0.34	0.23	0.22	1	-0.12	-0.1	0.093	-0.35		0.21	-0.25	-0.34	-0.3		
Ethnicity -	-0.054	0.0024	-0.024	-0.12	1	0.046	0.02	0.085	-0.037	-0.042	0.076	0.083		- 0	0.50
Nscore -	-0.11	0.098	-0.073	-0.1	0.046	1	-0.42	-0.005	-0.21	-0.37	0.16	0.052	0.12		
Escore -	-0.039	0.049	0.1	0.093	0.02	-0.42	1	0.25		0.31	0.12	0.23	-0.075	- (0.25
Oscore -	-0.22	-0.13	0.058	-0.35	0.085	-0.005	0.25	1	0.045	-0.05	0.27	0.43	0.24		
Ascore -	0.086	0.23	0.11		-0.037	-0.21		0.045	1	0.25	-0.23	-0.21	-0.15		
Cscore -			0.23	0.21	-0.042	-0.37	0.31	-0.05	0.25	1	-0.33	-0.22	-0.25	- (0.00
Impulsive -	-0.16	-0.17	-0.15	-0.25	0.076	0.16	0.12	0.27	-0.23	-0.33	1	0.61	0.24		
SS-	-0.3	-0.25	-0.14	-0.34	0.083	0.052	0.23	0.43	-0.21	-0.22	0.61	1	0.3	-	-0.25
Drug User -	-0.2	-0.18	-0.1	-0.3		0.12	-0.075	0.24	-0.15	-0.25	0.24	0.3	1		
	Age	Gender	Education	Country	Ethnicity	Nscore	Escore	Oscore	Ascore	Cscore	Impulsive	SS	Drug User		

Data Modeling: Decision Tree Classifier

- Used Pearson correlation heatmap to select variables
 - Age, Country, Oscore, Cscore, Impulsive and SS were found to be highly correlated with the output variable Drug User
- 475 nodes, may be evidence of overfitting
- 10-fold cross validation \rightarrow 79.0% mean **accuracy**

87.4% mean **F1 score**

Data Modeling: k-Nearest Neighbors Classifier

- Used same 6 independent variables (Age, Country, Oscore, Cscore, Impulsive and SS)
- 10-fold cross validation $\rightarrow 80.9\%$ mean **accuracy** 88.8% mean **F1 score**

Data Modeling: Decision Tree vs k-Nearest Neighbors

↑ **Precision** of 85.4% ↓ **Recall** of 84.2%

↓ Precision of 85.1%
↑ Recall of 90.6%

Data Modeling: Random Forest Classifier

- Used Grid Search
 - 30,240 base estimators
 - evaluated using 10-fold cross validation
 - 100 iterations.
- 10-fold cross validation
 - 91.3% mean accuracy
 - 84.4% mean **F1 score**
- 82.7% **accuracy** on the test set
- 90.2% **F1 score** on the set

Data Modeling Clustering

- Silhouette Coefficient as the Evaluation Metric
- Clusters with 8 subsets of features
- Hierarchical Clustering with Single Linkage, Hierarchical Clustering with Complete Linkage, K-Means Clustering, DBSCAN applied to each cluster.
- Hierarchical Clustering performed the best and DBSCAN performed the worst.

Data Modeling Clustering

Cluster with only Non-Illegal Drugs(alcohol VS Nicotine)

Cluster with only Personality Traits(Ascore VS Nscore)

Data Modeling Clustering

Silhouette Coefficients

	Туре	Single Linkage	Complete Linkage	K-Means	DBSCAN
0	All Features	0.507951	0.662999	0.183011	-0.189872
1	Non_Illegal	0.823376	0.793181	0.225031	0.094018
2	Illegal	0.608208	0.541589	0.448770	0.516004
3	Only Drugs	0.779997	0.743257	0.268466	-0.066339
4	Not Using Drugs	-0.211147	-0.211147	0.158041	-0.115110
5	Personality Traits	-0.322901	-0.322901	0.189828	0.312260
6	Personality Traits and Non-Illegal drugs	0.220068	0.220068	0.166378	-0.211882
7	Personality traits and Illegal Drugs	-0.267331	-0.267331	0.240112	-0.112099

Conclusions

- We observed that the clusters that are made up of Only Illegal, Only Non-Illegal and Only Drugs have the highest Silhouette Coefficient which means they are good clusters compared to the others.
- The best performing binary classifier was the random forest classifier with a mean accuracy of 91.2% when tested with 10-fold cross validation. On the test set, it had an accuracy of 82.7% and an F1 score of 90.2%.
- We are satisfied with our model's ability to predict drug usage by using personality traits and other characteristics.