Examples of CW-complexes

Hannah Scholz

Mathematical Institute of the University of Bonn

28.01.2024

Definition of CW-complexes

Let X be a Hausdorff space. A *CW-complex* on X consists of a family of indexing sets $(I_n)_{n\in\mathbb{N}}$ and a family of maps $(Q_i^n:D_i^n\to X)_{n\geq 0,i\in I_n}$ s.t.

- (i) $Q_i^n|_{\operatorname{int}(D_i^n)}:\operatorname{int}(D_i^n)\to Q_i^n(\operatorname{int}(D_i^n))$ is a homeomorphism. We call $e_i^n:=Q_i^n(\operatorname{int}(D_i^n))$ an (open) n-cell (or a cell of dimension n) and $\overline{e}_i^n:=Q_i^n(D_i^n)$ a closed n-cell.
- (ii) For all $n, m \in \mathbb{N}$, $i \in I_n$ and $j \in I_m$ where $(n, i) \neq (m, j)$ the cells e_i^n and e_i^m are disjoint.
- (iii) For each $n \in \mathbb{N}$, $i \in I_n$, $Q_i^n(\partial D_i^n)$ is contained in the union of a finite number of closed cells of dimension less than n.
- (iv) $A \subseteq X$ is closed iff $Q_i^n(D_i^n) \cap A$ is closed for all $n \in \mathbb{N}$ and $i \in I_n$.
- (v) $\bigcup_{n\geq 0}\bigcup_{i\in I_n}Q_i^n(D_i^n)=X.$

We call Q_i^n a characteristic map and $\partial e_i^n := Q_i^n(\partial D_i^n)$ the frontier of the *n*-cell for any i and n.

Examples of CW-complexes

We will look at the CW-complex structures on the following spaces:

- Ø: The empty set.
- Any finite set.
- [a, b]: Any closed interval.
- R: The real line.
- \blacksquare S^n : The *n*-dimensional sphere.

CW-complexes in Lean

Introduction

- I have defined and proven statements about CW-complexes as my bachelors thesis and as my work as a student research assistant.
- This version of CW-complexes is not (yet) in mathlib.
- Proven statements include constructions like subcomplexes and products.

The main issue is how to define the characteristic map. The three options I came up with are:

Use spherical coordinates

- Use spherical coordinates
 - + Easiest map

The main issue is how to define the characteristic map. The three options I came up with are:

Sphere: Inductive version

- Use spherical coordinates
 - + Easiest map
 - Spherical coordinates are not in mathlib

The main issue is how to define the characteristic map. The three options I came up with are:

Sphere: Inductive version

- Use spherical coordinates
 - + Easiest map
 - Spherical coordinates are not in mathlib
- Define the map explicitly

- Use spherical coordinates
 - + Easiest map
 - Spherical coordinates are not in mathlib
- Define the map explicitly
 - + Only relies on basic calculation

The main issue is how to define the characteristic map. The three options I came up with are:

Sphere: Inductive version

- Use spherical coordinates
 - Easiest map
 - Spherical coordinates are not in mathlib
- Define the map explicitly
 - + Only relies on basic calculation
 - A lot of ugly calculations

- Use spherical coordinates
 - + Easiest map
 - Spherical coordinates are not in mathlib
- Define the map explicitly
 - + Only relies on basic calculation
 - A lot of ugly calculations
- Compose the stereographic projection with a homeomorphism from \mathbb{R}^n to int(D^n)

- Use spherical coordinates
 - + Easiest map
 - Spherical coordinates are not in mathlib
- Define the map explicitly
 - + Only relies on basic calculation
 - A lot of ugly calculations
- Compose the stereographic projection with a homeomorphism from \mathbb{R}^n to $int(D^n)$
 - + All necessary properties on $int(D^n)$ are already in mathlib

- Use spherical coordinates
 - + Easiest map
 - Spherical coordinates are not in mathlib
- Define the map explicitly
 - + Only relies on basic calculation
 - A lot of ugly calculations
- Compose the stereographic projection with a homeomorphism from \mathbb{R}^n to $int(D^n)$
 - + All necessary properties on $int(D^n)$ are already in mathlib
 - Showing continuity on D^n is hard

Introduction

Sphere (Direct version): Defining the characteristic map

Sphere: Inductive version

Let n > 2.

stereographic' : $S^n \setminus \{p\} \to \mathbb{R}^n$ be the stereographic projection where p is the north pole of the sphere and unitBall : $\mathbb{R}^n \to \operatorname{int}(D^n)$ be the obvious map.

Then we define:

$$D^n o S^n, x \mapsto egin{cases} (\operatorname{unitBall} \circ \operatorname{stereographic}')^{-1}x & x \in \operatorname{int}(D^n) \\ p & x \in S^{n-1} \end{cases}$$

Sphere (Direct version): Difficulties

■ I lost a lot of time trying the explicit version of the characteristic map.

Sphere (Direct version): Difficulties

- I lost a lot of time trying the explicit version of the characteristic map.
- The maps stereographic' and unitBall are wrappers for a compositions of a bunch of different functions and are designed for a specific purpose.

Sphere (Direct version): Difficulties

- I lost a lot of time trying the explicit version of the characteristic map.
- The maps stereographic' and unitBall are wrappers for a compositions of a bunch of different functions and are designed for a specific purpose.
- I don't really understand filters.

I came up with the following two options:

Sphere: Inductive version

I came up with the following two options:

Use the function orthogonalProjection from mathlib

I came up with the following two options:

- Use the function orthogonalProjection from mathlib
 - + Possibly existing useful statements about the map

I came up with the following two options:

- Use the function orthogonalProjection from mathlib
 - + Possibly existing useful statements about the map
 - Very general map, therefore hard to work with explicitly

MI

Sphere (Inductive version): Choosing a characteristic map

I came up with the following two options:

- Use the function orthogonalProjection from mathlib
 - + Possibly existing useful statements about the map
 - Very general map, therefore hard to work with explicitly
- Define the function explicitly

Hannah Scholz

Sphere: Inductive version

I came up with the following two options:

- Use the function orthogonalProjection from mathlib
 - + Possibly existing useful statements about the map
 - Very general map, therefore hard to work with explicitly
- Define the function explicitly
 - Only relies on basic calculations

I came up with the following two options:

- Use the function orthogonalProjection from mathlib
 - + Possibly existing useful statements about the map
 - Very general map, therefore hard to work with explicitly
- Define the function explicitly
 - + Only relies on basic calculations
 - Need to describe properties of the map myself

Sphere (Inductive Version): Difficulties

Construction is relatively technical, it was hard to write code that looked okay and wasn't too slow.

Sphere (Inductive Version): Difficulties

- Construction is relatively technical, it was hard to write code that looked okay and wasn't too slow.
- I didn't expect to have to do actual work for the inclusion.

Sphere (Inductive Version): Difficulties

- Construction is relatively technical, it was hard to write code that looked okay and wasn't too slow.
- I didn't expect to have to do actual work for the inclusion.
- Finding partial maps is hard.

Direct version

Inductive version

- Direct version
 - + Simpler construction

Inductive version

- Direct version
 - + Simpler construction
 - The characteristic map is considerably harder.
- Inductive version

- Direct version
 - + Simpler construction
 - The characteristic map is considerably harder.
 - Spherical coordinated would probably eliminate that issue. The construction should be redone once they exist.
- Inductive version

Hannah Scholz

- Direct version
 - + Simpler construction
 - The characteristic map is considerably harder.
 - Spherical coordinated would probably eliminate that issue. The construction should be redone once they exist.
- Inductive version
 - + Significantly easier characteristic maps

- Direct version
 - + Simpler construction
 - The characteristic map is considerably harder.
 - Spherical coordinated would probably eliminate that issue. The construction should be redone once they exist.
- Inductive version
 - + Significantly easier characteristic maps
 - More technical construction

- Direct version
 - + Simpler construction
 - The characteristic map is considerably harder.
 - Spherical coordinated would probably eliminate that issue. The construction should be redone once they exist.
- Inductive version
 - + Significantly easier characteristic maps
 - More technical construction
 - Would be a nightmare to unfold.

- Direct version
 - + Simpler construction
 - The characteristic map is considerably harder.
 - Spherical coordinated would probably eliminate that issue. The construction should be redone once they exist.
- Inductive version
 - + Significantly easier characteristic maps
 - More technical construction
 - Would be a nightmare to unfold.
- I decided to set the direct version as the default

Future work

- Generalize from unit spheres in euclidean space to all spheres under more metrics.
- Do more examples.

