K - Nearest Neighbour(KNN)

Introduction

What is KNN?

K Nearest Neighbour is a simple algorithm that stores all the available cases and classifies the new data or case based on a similarity measure. It is mostly used to classifies a data point based on how its neighbours are classified.

- K-NN algorithm assumes the similarity between the new case/data and available cases and put the new case into the category that is most similar to the available categories.
- K-NN algorithm stores all the available data and classifies a new data point based on the similarity. This means when new data appears then it can be easily classified into a well suite category by using K- NN algorithm.
- K-NN is a **non-parametric algorithm**, which means it does not make any assumption on underlying data.
- It is also called a **lazy learner algorithm** because it does not learn from the training set immediately instead it stores the dataset and at the time of classification, it performs an action on the dataset.
- KNN algorithm at the training phase just stores the dataset and when it gets new data, then it classifies that data into a
 category that is much similar to the new data.

Why Do We Need KNN

Suppose there are two categories, i.e., Category A and Category B, and we have a new data point x1, so this data point will lie in which of these categories. To solve this type of problem, we need a K-NN algorithm. With the help of K-NN, we can easily identify the category or class of a particular dataset. Consider the below diagram:

How does K-NN work?

The K-NN working can be explained on the basis of the below algorithm:

- •Step-1: Select the number K of the neighbors
- •Step-2: Calculate the Euclidean distance of K number of neighbors
- •Step-3: Take the K nearest neighbors as per the calculated Euclidean distance.
- •Step-4: Among these k neighbors, count the number of the data points in each category.
- •Step-5: Assign the new data points to that category for which the number of the neighbor is maximum.
- •Step-6: Our model is ready.

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{p} (a_k - b_k)^2}$$

Minkowski Distance

$$dist = \sum_{k=1}^{p} |a_k - b_k|^r$$

Manhattan Distance

$$d(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

KNN Example

For example classifying Defaulter/Non-Defaulter based on Age and Loan.

We need to predict Andrew default status (Yes or No).

Customer	Age	Loan	Default
John	25	40000	N
Smith	35	60000	N
Alex	45	80000	N
Jade	20	20000	N
Kate	35	120000	N
Mark	52	18000	N
Anil	23	95000	Y
Pat	40	62000	Υ
George	60	100000	Y
Jim	48	220000	Υ
Jack	33	150000	Υ
Andrew	48	142000	?

We need to predict Andrew default status by using Euclidean distance Calculate Euclidean distance for all the data points.

Customer	Age	Loan	Default	Euclidean distance
John	25	40000	N	1,02,000.00
Smith	35	60000	N	82,000.00
Alex	45	80000	N	62,000.00
Jade	20	20000	N	1,22,000.00
Kate	35	120000	N	22,000.00
Mark	52	18000	N	1,24,000.00
Anil	23	95000	Υ	47,000.01
Pat	40	62000	Υ	80,000.00
George	60	100000	Υ	42,000.00
Jim	48	220000	Υ	78,000.00
Jack	33	150000	Υ	8,000.01
Andrew	48	142000	?	

First Step calculate the Euclidean distance dist(d) = Sq.rt $(x_1-y_1)^2 + (x_2-y_2)^2$ = Sq.rt(48-25)² + (142000 - 40000)² dist (d_1) = 1,02,000.

We need to calcuate the distance for all the datapoints

With K=5, there are two Default=N and three Default=Y out of five closest neighbors. We can say default status for Andrew is 'Y' based on the major similarity of 3 points out of 5.

Customer	Age	Loan	Default	Euclidean distance	Minimum Euclidean Distance
John	25	40000	N	1,02,000.00	
Smith	35	60000	N	82,000.00	
Alex	45	80000	N	62,000.00	5
Jade	20	20000	N	1,22,000.00	
Kate	35	120000	N	22,000.00	2
Mark	52	18000	N	1,24,000.00	
Anil	23	95000	Υ	47,000.01	4
Pat	40	62000	Υ	80,000.00	
George	60	100000	Υ	42,000.00	3
Jim	48	220000	Υ	78,000.00	
Jack	33	150000	Υ	8,000.01	1
Andrew	48	142000	?		

Let assume K = 5

Find minimum euclidean distance and rank in order (ascending)

In this case, 5 minimum euclidean distance. With k=5, there are two Default = N and three Default = Y out of five closest neighbors.

We can say Andrew default stauts is 'Y' (Yes)

Note: K-NN is also a lazy learner because it doesn't learn a discriminative function from the training data but "memorizes" the training dataset instead.

Pros of KNN

- 1. Simple to implement
- 2. Flexible to feature/distance choices
- 3. Naturally handles multi-class cases
- 4. Can do well in practice with enough representative data

Cons of KNN

- 1. Need to determine the value of parameter K (number of nearest neighbors)
- 2. Computation cost is quite high because we need to compute the distance of each query instance to all training samples.
- 3. Storage of data
- 4. Must know we have a meaningful distance function.

How to select optimal value of K for KNN

- 1. There are no pre-defined statistical methods to find the most favorable value of K.
- 2. Initialize a random K value and start computing.
- 3. Choosing a small value of K leads to unstable decision boundaries.
- 4. The substantial K value is better for classification as it leads to smoothening the decision boundaries.
- 5. Derive a plot between error rate and K denoting values in a defined range. Then choose the K value as having a minimum error rate.