PATENT ABSTRACTS OF JAPAN

* Publication number (KOKOKU): 62-21380 (Date: 12.05.1987)

(11)Publication number (KOKAI):

57-040525

(43)Date of publication of application: 06.03.1982

(51)Int.CI.

CO8G 63/68

(21)Application number: 55-116336

(71)Applicant: TOYOBO CO LTD

(22)Date of filing:

22.08.1980

(72)Inventor: KODERA YOSHIICHI

MIZUMURA YUTAKA

MIYAKE HIDEO

(54) AQUEOUS DISPERSION

(57)Abstract:

PURPOSE: To prepare an aqueous dispersion having excellent storage stability and giving a film having high water resistance, by mixing a polyester resin consisting of a specific polycarboxylic acid component and a polyol component, a water-soluble organic compound, and water, at specific ratios. CONSTITUTION: The objective dispersion is prepared by mixing (A) a polyester resin having a molecular weight of 2,500W30,000, and a softening point of 40W 200° C, and consisting of (i) a polycarboxylic acid component composed of 92.6W 99.9mol% of an aromatic dicarboxylic acid which does not contain a sulfonic acid metal salt group and 0.1W7.4mol% of an aromatic dicarboxylic acid containing sulfonic acid metal salt group, and (ii) a polyol component composed of 10W 100mol% of diethylene glycol and 0W90mol% of a 2W8C aliphatic glycol, a 6W15C cycloaliphatic glycol, or adduct of bisphenol A and ethylene oxide or propylene oxide. (B) a water-soluble

I s + B + C = i d o (實費比)

正 れノおノビニ 5~60~0~ 99/9月~ 95. (重量比)

型 サイバ = 6/23 n 3 ~ 4 0 / 7 9 (直重比)

organic compound having a boiling point of 60W200° C, and (C) water, at the ratios which satisfy the conditions of formula I, formula II and formula III.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 1481895

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

99日本国特許庁(JP)

① 特許出頭公告

9特 許 公 報(B2)

昭62-21380

@Int_Cl_4	識別記号	庁内整理番号	00 公告	昭和62年(1987)5月12日
C 08 L 67/02 C 08 K 5/05 5/06	кју	6845—4 J		
5/07 5/10 // C 09 D 3/64 C 09 J 3/16	K!V PKV JFR	6845-4 J 6516-4 J 7102-4 J		発明の数 1 (全9頁)

43発明の名称 水分散体

> 20特 顧 昭55-116336

❸公 聞 昭57-40525

❷出 願 昭55(1980)8月22日

母昭57(1982)3月6日

砂発 明 者 寺 小 宜 京都市伏見区桃山毛利長門西町62番地の2 砂発 明 者 水 村 裕 磁質県磁質郡志賀町高城434番地の17 ⑫発 明 奎 芝 男 大津市あかね町17番13号 ①出 類 人 東洋紡績株式会社 大阪市北区堂島浜2丁目2番8号

査 官 仁木 由美子

1

切特許請求の範囲

1 (A)ポリカルボン酸成分がスルホン酸金属塩基 を含有しない芳香族ジカルボン酸92.6~99.9モル %およびスルホン酸金属塩基含有芳香族ジカルボ ジェチレングリコール10~100モル%および炭素 数2~8の脂肪族グリコール、炭素数6~15の脂 現族グリコールまたはピスフェノールAのエチレ ンオキサイドまたはプロピレンオキサイド付加物 化点が40~200°Cの非晶性のポリエステル樹脂と (B)沸点が60~200℃であり、脂肪族および脂環族 のアルコール、エーテル、エステルおよびケトン 化合物の群から選ばれた1種以上の水溶性有機化 1). 2) および3) の配合比を満足することを 特徴とする水分散体。

式1)A+B+C=100

(重量比)

式2) A/B/C=5~50/0~29/28~95

(重量比)

式3) B/C=0/100~30/70

(重量比)

発明の詳細な説明

本発明はポリエステル樹脂の水分散体に関す る。さらに詳しくは耐水性に優れた皮膜を形成し 得る粒子径が微少で、貯蔵安定性に優れたポリエ 25 原料やポリアルキレングリコールまたは脂肪族ジ

ステル樹脂の水分散体に関する。

従来から塗料、インキ、コーティング剤、接着 剤および繊維製品や紙等の各種処理剤の分野で有 機溶剤が多量に用いられてきているが、近年石油 ン酸0.1~7.4モル%からなり、ポリオール成分が 5 資源の節約および環境汚染防止の観点より有機溶 剤の使用は非常に困難な状況となりつつある。そ こで種々の方法、例えば、(1)ハイソリッドタイプ (2)非水系ディスパージョンタイプ、(3)水系ディス パージョンタイプ、(4)エマルジョンタイプ、(5)無 0~90モル%からなる分子量が2500~30000、軟 10 溶剤タイプ等が提案されすでに実施されているも のも多い。これらの中でも水系ディスパージョン タイプはその取り扱い易さ故に最も汎用性があ り、有望視されている。

一方、現在使用されている樹脂の多くは疎水性 合物およびICI水を含み、かつIAI。IBIおよびICIが式 15 であり、これを如何に水に分散または水に可溶化 させるかが大きな課題である。さらに、一旦何ら かの方法により、水に対する観和性を付与された 樹脂から形成される皮膜に耐水性を付与するかも 重要な課題である。これらの技術的解決はいかな 20 る樹脂についても共通したものであり、ポリェス テル樹脂も例外ではない。

> すでにポリエステル樹脂を水に分散または水に 可溶化させる方法としては親水性の原料を共重合 する方法、例えばスルホン酸金属塩基を含有する

カルボン酸等を単独または併せて共重合する方法 等が知られている。しかしいずれの方法において も優れた水に対する溶解性または分散性を付与す るためには多量の上記した親水性原料の使用を必 要とし、得られた皮膜の耐水性は非常に劣つたも 5 のとなる。

例えば特公昭47-40873号公報では、十分に水 に消散させるためには全酸成分に対して8モル% 以上のスルホン酸金属塩基含有化合物と全グリコ リコールの使用が必要であることが記載されてい る。かかるポリエステル樹脂の耐水性が劣つたも のであることは容易に想像できる。すなわち、十 分水に消散し得るということは乾燥後形成される 皮膜の耐水性が劣ることを意味する。この場合、15 皮膜が水と接すると密着性が低下するばかりでな く、色相の変化が起り、したがつて塗料、イン キ、コーテイング剤、接着剤等の使用に耐えな い。特に繊維処理剤として用いた場合、染色工程 業性が低下する。さらには製品の耐洗濯性が劣 り、実用に耐えない。

ステル樹脂の機械的な特性を低下させることは衆 知の通りである。

このような親水性の付与と耐水性の付与という 相矛盾する性能付与の問題を克服しなければその 実用的なものとはならない。

そこで、本発明者達は耐水性を低下させること のないポリエステル樹脂の水分散体について鋭意 30 ン酸金属塩基を含有しない芳香族ジカルボン酸は 研究してきた結果、ようやく本発明に到達した。

すなわち本発明はWiポリカルボン酸成分がスル ホン酸金属塩基を含有しない芳香族ジカルボン酸 92.6~99.9モル%およびスルホン酸金属塩基含有 芳香族ジカルボン酸0.1~7.4モル%からなり、ポ 35 散しなくなる。 リオール成分がジェチレングリコール10~100モ ル%および炭素数2~8の脂肪族グリコール、炭 素数6~15の脂環族グリコールまたはピスフェノ ールAのエチレンオキサイドまたはプロピレンオ 2500~30000、軟化点が40~200°Cの非晶性のポリ エステル樹脂と(B)沸点が60~200℃であり、脂肪 族および脂環族アルコール、エーテル、エステル およびケトン化合物の群から選ばれた1種以上の

の水溶性有機化合物およびICI水を含み、かつWi (B)および(C)が式1),2)および3)の配合比を 満足することを特徴とする水分散体である。

式1) A+B+C=100 (重量比) 式2) A/B/C=5~60/0~29/28~95~ ····(盘量比)

式3) B/C=0/100~30/70 (重量比) 本発明の水分散体はMスルホン酸金属塩基含有 ポリエステル樹脂をICI水またはIBI沸点が60~200 ール成分に対して20モル%以上のポリエチレング 10 ℃の水溶性有機化合物およびICI水に特定の割合に て配合することにより、親水性の付与と耐水性付 与という相矛盾した性能を有する水分散体が得ら れる。また本発明の水分散体では粒子径1 μ以下 の安定なものが得られる。

本発明のポリエステル樹脂はポリカルボン酸成 分がスルホン酸金属塩基を含有しない芳香族ジカ ルポン酸92.6~99.9モル%、スルホン酸金属塩基 含有芳香族ジカルボン酸0.1~7.4モル%からな り、ポリオール成分がジエチレングリコール10~ で温水に浸漬されるが、不十分な耐水性のため作 20 100モル%、炭素数 2 ~ 8 の脂肪族グリコール、 **炭素数6~12の脂環族グリコールまたはビスフェ** ノールAのエチレンオキサイドまたはプロピレン。 三方多量の脂肪族ジカルボン酸の使用はポリエニーオキサイド付加物 0 ~90モル%からなる分子量 2500~30000、軟化点が40~200℃のポリエステル 25 樹脂である。

> スルホン酸金属塩基を含有しない芳香族ジカル ボン酸としては例えばテレフタル酸、バイソフタル 酸、オルソフタル酸、2,6ーナフタレンジカル ボン酸等を挙げることができる。これらのスルホ ポリカルボン酸成分の92.6~99.9モル%であるこ とが必要である。92.6%未満の場合にはポリエス テル樹脂の機械的強度が劣り、好ましくない。 99.9モル%を越えるとポリエステル樹脂が系に分

さらにpーヒドロキシ安息香酸、pー(2ーヒ ドロキシエトキシ)安息香酸あるいはヒドロキシ ピパリン酸、ソーブチロラクトン、モーカプロラ クトン等を必要により使用することができる。ま キサイド付加物 0 ~90モル%からなる分子量が 40 た必要により、トリメリツト酸、ピロメリツト酸 等の3官能以上のポリカルボン酸を全ポリカルボ ン酸成分に対して1.0モル%未満であれば使用す ることができる。

ジエチレングリコールは全グリコール成分の10

殷に多量の水溶性有機化合物を必要とする。

~100モル%であることが必要である。10モル% 未満の場合は密着性が低下するばかりでなく、分

炭素数2~8の脂肪族グリコールとしてはエチ レングリコール、1,2ープロピレングリコー5 ル、1、3ープロパンジオール、1、4ープタン ジオール、ネオペンチルグリコール、1,5ーペ ンタンジオール、1,6-ヘキサンジオール等を 挙げることができる。炭素数6~12の脂環族グリ ール等を挙げることができる。炭素数2~8の脂 肪族グリコール、炭素数6~12の脂環族グリコー ル、またはピスフエノールAのエチレンオキサイ ドまたはプロビレンオキサイド付加物は全ポリオ -ル成分に対して90~0モル%である。

また必要によりトリメチロールプロパン、トリ メチロールエタン、グリセリン、ペンシエリスリ トール等の3官能以上のポリオールが全ポリオー ル成分に対して1.0モル%未満であつてもよい。 150~10000のポリエチレングリコールは必要によ り全ポリオール成分に対して20重量%未満であれ ば使用してもよい。ポリアルキレングリコール、量を大きくすることが困難になつてしまう。 特にポリエチレング・リコールが20重量%を越える

スルホン酸金属塩基含有芳香族ジカルボン酸と してはスルホテレフクル酸、5ースルホイソフタ ル酸、4ースルホフタル酸、4ースルホナフタレ ノキシ」イソフタル酸等の金属塩をあげることが できる。金属塩としてはLi, Na, K, Mg, Ca, Cu, Fe等の塩が挙げられる。特に好ましいもの としては5ーナトリウムスルホイソフタル酸であ は全ポリカルボン酸成分に対して0.1~7.4モル% であり、好ましくは全ポリカルポン酸成分に対し て1.0~7.0モル%の範囲である。スルホン酸金属 塩基含有芳香族ジカルボン酸を全く使用しない場 合はポリエステル樹脂の水に対する分散性は非常 40 較的親水性の高いものは水溶性有機化合物をかな に悪い。該金属塩基含有芳香族ジカルボン酸の量 が増加するに従つて良好な分散性を示すようにな り、さらに増加すると容易に水に溶解するように なる。しかしながら7.5%を越えると得られたポ

IDDE

リエステル樹脂の水に対する分散性および溶解性 自体は良好であるが、これを逸布し乾燥した後に 得られる皮膜の耐水性は非常に劣つたものとな る。

本発明においてポリエステル樹脂は単独、ある いは必要により2種以上併用することができる。

本発明のポリエステル樹脂は本質的に非晶性で あり、軟化点が40~200℃の範囲にある。特に好 ましくは60~180℃である。明確な結晶融解点を コールとしては 1, 4 ーシクロヘキサンジメタノ 10 有する結晶性ポリエステルの場合、得られた水分 散体は貯蔵安定性が悪く容易に相分離を起こし安 定な水分散体を得ることができない。 ポリエステ ル樹脂の軟化点が40℃に達しない場合、得られた 皮膜は粘着性が強くしかも耐水性が劣る。一方、 15 軟化点が200℃を越えると水に対する分散性が悪

本発明のポリエステル樹脂の分子量は2500~ 30000の範囲であり、特に好ましくは3000~20000 である。分子量が2500に達しない場合は得られた さらにポリアルキレングリコール、特に分子量 20 皮膜の機械的な性質、特に可撓性が劣り好ましく ない。さらに分子量が30000を越えると水分散体 の粘度が高くなるため、ポリエステル樹脂の含有

本発明のポリエステル樹脂は公知の任意の方法 とポリエステル樹脂の軟化点が低下し、好ましく 25 によつて製造されることができる。また、このよ うにして得られたポリエステル樹脂は溶融状態ま たは後述する水溶性有機化合物との溶液状態でア ミノ樹脂、エポキシ化合物、イソシアネート化合 物などと混合することもできる。あるいはこれら ソー2,7-ジカルボン酸、5(4ースルホフエ 30 の化合物と一部反応させることもでき、得られた 部分反応生成物は同様に水分散体の原料として供 されることも可能である。

本発明に用いられる水溶性有機化合物はポリエ ステル樹脂の意識的に低められた水に対する親和 る。スルホン酸金属塩基含有芳香族ジカルボン酸 35 性を高め、水に対する分散性を補助する目的で使 用されるものである。すなわち、本発明のポリエ ステル樹脂と少量の水溶性有機化合物および水と の三者が共存した状態で良好な水分散体が得られ る。但し、本発明のポリエステル樹脂の中でも比 らずしも必要としない。

> 本発明に用いられる水溶性有機化合物は20°Cで 1 ℓの水に対する溶解度が20 9 以上の有機化合物 であり、具体的には脂肪族および脂環族のアルコ

る。

(重量比)

7

ール、エーテル、エステル、およびケトン化合物 等が挙げられる。具体的には例えばメタノール、 エタノール、nープロパノール、iープロパノー ル、nーブタノール、iーブタノール、secーブ 類、エチレングリコール、プロピレングリコール 等のグリコール類、メチルセロソルブ、エチルセ ロソルブ、nーブチルセロソルブ、lertーブチル セロソルブ、3ーメチルー3ーメトキシブタノー ル、n-ブチルセロソルブアセテート等のグリコ 10 水溶性有機化合物の配合比は20重量%以下であ ール誘導体、ジオキサン、テトラハイドロフラン 等のエーテル類、酢酸エチル等のエステル類、メ チルエチルケトン、シクロヘキサノン、シクロオ クタノン、シクロデカノン、イソホロン等のケト ロソルブ、エチルセロソルブ、イソプロパノール 等である。これらの水溶性有機化合物は単独また は2種以上を併用することができる。これらの水 溶性有機化合物の沸点は60~200℃の範囲にある ポリエステル樹脂をこの有機化合物に混合または 溶解あるいは有機化合物と水との混合物に分散さ せるに十分な温度を保つことが困難である。さら に沸点が200℃を越えると得られた水分散体を強 化合物としてアミド系あるいはスルホン酸エステ ル系化合物を用いた場合は乾燥性が劣ると同時に 水分散体の貯蔵安定性が劣つたものとなってしま

と個水溶性有機化合物とを50~200℃であらかじ め混合し、これにICI水を加えるかあるいはIAIとIBI との混合物を水に加え40~120℃で攪拌すること により製造される。あるいはICI水中へまたはICI水 ステル樹脂を添加し、40~100℃で攪拌して分散 させる方法によつても製造される。

いずれの方法においてもMポリエステル樹脂、 (B)水溶性有機化合物および(C)水の配合比は水分散 体の性能を保持するうえで重要な要素であり、式 40 リグリシジルイソシアヌレート、1, 4ージグリ 1)、2) および3) の配合比を満すことが必要 である。

式1) A+B+C=100 (重量比)

式2) A/B/C=5~60/0~29/28~95

式3) B/C=0/i00~30/70 (重量比) 水分散体に含まれるMポリエステル樹脂の配合 比が(A)+(B)+(C)の絵量に対して5 重量%に達しな タノール、tertーブタノール等の一価アルコール 5 い場合または60重量%を越える場合は水分散体の 粘度が低くまたは高くなり過ぎ好ましくない。水 分散体に含まれるIBの水溶性有機化合物の配合比 が(A)+(B)+(C)の総量に対して29重量%を越えると 乾燥性が低下し好ましくない。特に好ましくは(B)

本発明の水分散体はWI, (B)および(C)からなる組 成物はそのままでも使用されるが、さらに架橋剤 であるアミノ樹脂、エポキシ化合物およびイソシ ン類などである。特に好ましいのはn-ブチルセ 15 アネート化合物の群より選ばれた1種以上の化合 物を配合して使用することができる。

アミノ樹脂としては例えば尿素、メラミン、ベ ンゾグアナミン等のホルムアルデヒド付加物、さ らに炭素数が1~6のアルコールによるアルキル ことが必要である。沸点が60℃に達しない場合は *20* 化物をあげることができる。また必要によりホル マリンの併用により好ましい効果をあげることも できる。

_エポキシ化合物としてはピスフエノールAのジ グリシジルエーテルおよびそのオリゴマー、水梁 布した後、速い乾燥性が得られない。また水溶性 25 化ビスフェノールAのジグリシジルエーテルおよ びそのオリゴマー、オルソフタル酸ジグリシジル エステル、イソフタル盬ジグリシジルエステル、 テレフタル酸ジグリシジルエステル、pーオキシ 安息香酸グリシジルエステルエーテル、テトラハ 本発明における水分散体はWポリエステル樹脂 30 イドロフタル酸ジグリシジルエステル、ヘキサハ イドロフタル酸ジグリシジルエステル、コハク酸 ジグリシジルエステル、アジピン酸ジグリシジル エステル、セバシン酸ジグリシジルエステル、エ チレングリコールジグリシジルエーテル、プロピ とIB水溶性有機化合物との混合溶液中へIAポリエ 35 レングリコールジグリンジルエーテル、1, 4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテルおよびポ リアルキレングリコールジグリシジルエーテル 類、トリメリツト酸トリグリシジルエステル、ト シジルオキシベンゼン、ジグリシジルメチルヒグ ントイン、ジグリシジルエチレン尿素、ジグリシ ジルプロピレン尿素、グリセロールポリグリシジ ルエーテル、トリメチロールエタンポリグリシジ

ルエーテル、トリメチロールプロパンポリグリシ ジルエーテル、ペンタエリスリトールポリグリシ ジルエーテル、グリセロールアルキレンオキサイ ド付加物のポリグリシジルエーテル等を挙げるこ とができる。

さらにイソシアネート化合物としては芳香族、 脂肪族、芳香脂肪族のジイソシアネート、 3 価以 上のポリイソシアネートがあり、低分子化合物、 高分子化合物のいずれでもよい。たとえばテトラ ソシアネート、トルエンジイソシアネート、ジフ エニルメタンジイソシアネート、水素化ジフェニ ルメタンジイソシアネート、キシリレンジイソシ アネート、水素化キシリレンジィソシアネート、 シアネートの3量体などのイソシアネート化合 物、あるいはこれらのイソシアネート化合物の過 剰量と、たとえばエチレングリコール、プロピレ ングリコール、トリメチロールプロパン、グリセ タノールアミン、ジエタノールアミン、トリエタ ノールアミン等の低分子活性水素化合物又は各種..... ポリエーテルポリオール類、ポリエステルポリオ ール類、ポリアミド類等の高分子活性水素化合物 などとを反応させて得られる末端イソシアネート 25 基含有化合物等が挙げられる。

イソシアネート化合物としてはブロック化イソ シアネートであつてもよい。 イゾシアネートプロ ツク化剤としては、たとえばフェノール、チオフ エノール、メチルチオフエノール、エチルフエノ 30 1 ール、クレゾール、キシレノール、レゾルシノー ル、ニトロフエノール、クロロフエノール等のフ エノール類、アセトキシム、メチルエチルケトオ キシム、シクロヘキサノンオキシム等のオキシム 類、メタノール、エタノール、プロパノール、ブ 35 3 タノール等のアルコール類、エチレンクロルヒド リン、1、3ージクロロー2ープロパノール等の ハロゲン置換アルコール類、tープタノール、t ーペンタノール、tーブタンチオール等の第3級 アルコール類、εーカプロラクタム、8ーパレロ 40 6 ラクタム、γープチロラクタム、βープロピルラ クタム等のラクタム類が挙げられ、その他にも芳 香族アミン類、イミド類、アセチルアセトン、ア セト酢酸エステル、マロン酸エチルエステル等の

活性メチレン化合物、メルカプタン類、イミン 類、尿素類、ジアリール化合物類重亜硫酸ソーダ なども挙げられる。プロック化イソシアネートは 上記イソシアネート化合物とイソシアネートブロ 5 ツク化剤とを従来公知の適宜の方法により付加反 応させて得られる。

これらの架橋剤には硬化剤、あるいは促進剤を 併捐することもできる。架橋剤の配合方法として はONポリエステル樹脂に混合する方法、直接水分 メチレンジイソシアネート、ヘキサメチレンジイ 10 散体に配合する方法、さらにあらかじめ(B)水溶性 有機化合物またはICI水との混合物に溶解または分 散させる方法等があり、架橋剤の種類により任意 に選択することができる、

本発明の水分散体は他の制脂、例えばポリアク イソホロンジイソシアネート、イソホロンジイソ 15 リル酸塩およびポリピニルアルコール等の水溶 液、水溶性アルキツド、アクリルエマルジョン、 アクリルハイドロゾル等と併用されることもでき

本発明の水分散体は逸得、インキ、コーティン リン、ソルビトール、エチレンジアミン、モノエ 20 グ剤および繊維製品や紙等の処理剤の分野に使用 され、従来にない優れた耐水性を発揮するもので ある。さらにサイジング剤として用いることも可 能である。本発明の水分散体には顔料、染料、各 種添加剤などを配合することができる。

> 以下に実施例によって本発明をさらに詳しく説 明するが、本発明はこれらの実施例に限定される a commente plane ものではない。

実施例中、単に部とあるのは重量部を示す。 種々の特性の評価は下記の方法に従った。

- 分子量 分子量測定装置(日立製作所製115 形)を使用し測定した。
- 2 軟化点および結晶融点 全自動融点測定装置 (METTLER社製MODEL FP-1) を使用し 測定した。
- 水分散体の粒子径 グラインドメーターおよ び光学顕微鏡により測定した。
- 4 粘度 25°においてB型粘度計により測定し た。
- 5 密着性 ASTDM-3359に準拠した。
- **塗膜表面の粘着性 指触により判定した。**、
- 7 耐汚染性 マジツクペンで線画し、24時間後 メタノールで拭き取り、その状態を目視判定し
- 8 エリクセン値 JIS Z-2247に準拠した。

- 9 耐水性 JIS5400に準拠した。
- 10 光沢 光沢計(日本電色工業社製TYPE-VG107) により測定した。
- 11 機械強度 H型テンシロン (東洋測器(W製) を用い、20日本/分の引張り速度で測定した。 製造例 1

ジメチルテレフタレート43部、ジメチルイソフ タレート190部、エチレングリコール103部、ジェ チレングリコール58部、酢酸亜鉛0.08部、三酸化 アンチモン0.08部を反応容器に仕込み140°C~220 10 通りである。 ℃で3時間かけてエステル交換反応を行つた。次*

*いで5ーナトリウムスルホイソフクル酸9部を派 加し、220°C~260°Cで1時間かけてエステル化反 応を行つた後、240℃~270℃で減圧下(10~0.2 mHg) で2時間かけて重縮合反応を行い、分子 5 量18000、軟化点140°Cのポリエステル樹脂(A-1)を得た。

さらに第1表に示した原料を用いる以外は全く 同様にして、ポリエステル樹脂(A-2)~(A -10) を得た。それらの特性値は第1要に示した

裘

				本発	明のポ	リエス	テル볍	脂	H	紋ポリ	エステ	ル樹脂	i
組成成分	}(モル%)*	およびれ	存性値	A-1	A-2	A-3	A-4	A-5	A-6	A7	A-8	A-9	A-10
ポリカ	テレフタ	ル酸		22								70	24
ルボン 酸成分	イソフタ	ル酸		75	93	95	96	97	100	88	93	27	30
	5-ナトリ ソフタル	ウムス/ 酸	レホイ	3	7	5	4	3		12	7	3	6
	アジピン	酸											40
ポリオ	エチレン	グリコ・	- ル	43		15	20					92	50
一ル成分	ジェチレ	ングリ	コール	57	100	- 85	75	60	-100	100	100	8	50
	1,4-シクメタノー	ロヘキ・	サンジ	• .		-		40					
	ポリエチ ル(M100		リコー				5	·		ž	-		,
特性値	分子	盘		18000	20500	19000	17000	16500	14500	19600	2000	16000	17000
	軟 化	点	(℃)	140	138	139	128	178	127	137	38	201**	83

*) ポリエステル中のモル%(核磁気共鳴スペクトルにて測定した)。

実施例 1

ルセロソルブ140部とを容器中に仕込み、150°C~ 170°Cで約3時間提拌し、均一で粘稠な溶融液を 得た後、激しく攪拌しながら水560部を徐々に添 加し、約1時間後に均一で淡青白色の水分散体 (B-1)を得た。

得られた水分散体の粒子径は1μ以下であつ た。この水分散体を一5℃で20日間放置したが、 外観変化は全く見られず、一方粘度変化もなくき わめてすぐれた貯蔵安定性を示した。

ポリエステル樹脂(A-1)300部とn-ブチ 35 得られた水分散体を厚さ125μのポリエチレン テレフタレートフィルム上に、パーコーター#20 を用いて固型膜厚が10μになるように強布した 後、100℃で20分間乾燥した。得られた皮膜の密 着性は非常に良好であり、水に浸漬した場合の白 40 化もなく、すぐれた耐水性を示した。

実施例 2~5

第2 衷に示した配合で、実施例1 と同じ方法に より水分散体(Bー2)~(Bー5)を得た。

^{**)} 結晶融点。

14

第	2	一支

		2,	実	施	<i>9</i> 1		M V	比	較	校等等例		
水分散体組成		1	2	3	4	5	1	2	3	4	3 ,5	
水分散体番号		B-1	B-2	B-3	B-4	B-5	B-6	B-7	%-8	B-9	B-10	
ポリエステル樹脂	(部)	(A-1) 300	(A-2) 150	(A-3) 150	(A-4) 150	(A-5) 300	(A-6) 150	(A-7) 100	(A-8) 150	(A-9) 150	(A-10) 150	
n-ブチルセロソルブ	(部)	140		50	70	140	250			250	100	
イソプロバノール	(部)			50								
水	(部)	560	850	750	780	560	600	900	850	600	750	

得られた水分散体の性能は第3表に示した。

さらに水分散体 (B-2) ~ (B-5) を用い 実施例 1 と同様にして厚さ125 μのポリエチレン 15 テレフタレートフィルム上に皮膜を形成した。 得 られた皮膜の性能を第 4 表に示した。

比較例 1~5

第2表に示した配合比で実施例1と同様にして

水分散体 $(B-6) \sim (B-10)$ を得た。得られた水分散体の性能は第3表に示した。

さらに水分散体(B-7)~(B-9)を実施例1と同様にして厚さ125μのポリエチレンテレフタレートフィルム上に流布し、皮膜を形成した。それらの皮膜の性能を第4表に示した。

第 3 表

	مال.	/\ #L &				実	施	Ø			比	較	<i>6</i> 71	
		T RX P	本の性値	.	-1-	2	- 3	4	5	_1_	- 2	3	4	-5-
水		分.	散	体	B-1	B-2	B-3	B-4	B-5	B-6	B-7	B-8	B-9	B-10
分	散	性	分散	状態*	0	0	0	0	0	×	0	0	Δ	.0
			粒子包	ξ (μ)	<1	<1	<1	<1	<1	-	<1	<1	<2000	<1
貯蔵 (10°	医安全 C×2	定性(0日)	外観	変化	変化なし	変化なし	変化なし	変化なし	変化なし	_	態	変化なし	分離	た
			粒径	変化	n	"	<i>11</i>	n	n	_	変化なし	"	_	変化なし

*) O 分散性良好

- × 全く分散せず(分離)
- △ 分散性不良(白濁するが粒度分布が大きい)

第 4 3

	d-	P.C.	_	J.4.	685			実	施	691			比	較	例
	D.	膜	0)	Œ	HE.		1	2	3	4	5	7	8	9	10
水		分		散		体	B-1	B-2	B-3	B-4	B-5	B-7	B-8	B-9	B-10
外					***	観	良好	不良※) 不連続膜	不良 (粘着性大)						

			_		·					en i de la companya di a	
	- Jak	AE.	-	実	施	6 1		ai .	比讚	数	61 100 1
皮膜	の性	能	1	2	.3 :	4	5	7 -	8	9 💯	#C/410 (#F
密	着	性	100/	100/ 100	100/ 100	100/ 100	100/ 100	100/ 100	86/ 100	測定不能	90/100
※※)耐水性	13日)	密着性	100/ 100	100/ 100	100/ 100	100/ 100	100/ 100	45/ 100	40/ 100		40/100
	浸渍後	外観	変化なし	変化なし	変化なし	変化なし	変化なし	白化	やや白化		白化
	(50°C) 1時間) 浸漬後	密着性	100/ 100	100/ 100	100/ 100	100/ 100	100/ 100	溶出	容出		溶出
	交演统	外観	変化なし	わず かに 白化	変化なし	わず かに 白化	変化なし				

- ※) 途布後乾燥時に結晶化し連続膜を形成しない。
- ※※) 浸漬後表面の水を拭き取り評価した。

実施例 6~8

水分散体(B-2) および(B-3) の各々 100部にスミテックスM-3 (住友化学工業間 20 製) 3部およびスミテックスACX (住友化学工業間製) 0.03部を加え、よく授拌混合して均一な処理剤を調製した。これに未加工のポリエステル不織布原反を浸漬した後100℃で5分間乾燥後、180℃で4分間焼付け、硬化処理したポリエステ 25 ル不織布を得た。ポリエステル不織布原反に対する固型分の付着量は20重量%であつた。得られたポリエステル不織布の性能を第5 表に示した。比較例 6,7

水分散体(B-7)および(B-10)を用いる 30 以外は実施例6と全く同様にして、硬化処理した ポリエステル不織布を得た。得られたポリエステ ル不織布の性能を第5妻に示した。

第 5 妻

	エステル		実施	包例	比	文例
1\#0X1	けいて土壌	5	6	7	6	7
水分	散	体	B-2	B-3	B-7	B-10
付着量	(重量)	%)	20	21	20	19
粘	着	性	なし	なし	なし	あり
機械的 性質	5 %เติ (kg/5	力(=)	21	22	21	16

	ステル	実力	包	比	₹ <i>6</i> ¶
7\7	がの性能	6	7	6	7
	破断強度 (kg/5cm)	43	45	41	50
	破断伸度(%)	30	32	29	45
	引裂強度 (kg)	2	1.5	0.5	6
耐熱性 (110℃)	5 %応力 (kg/5cm)	8	10	5	0.5
	破断強度 (kg/5cm)	22	27	12	4.0
耐沸水性	5 %応力 (kg/5cm)	10	18	0.8	2
(一時間)	破断強度 (kg/5cm)	30	35	3.5	8

実施例 8,9

水分散体(B-1)および(B-5)の各々100部に、スミーマールM-50(前出)10部、シリコーン化合物XF-3913(前出)の50重量%エ40タノール溶液0.5部および酸化チタン10部とを加えあらかじめ撹拌混合した後、三本ロールで練合し、白色強料を得た。得られた強料をパーコーター#26で軟鋼板上に固型膜厚10μになるように塗布し、150°Cで10分間焼付を行つた。得られた逸

35

15

膜の性能を第6姿に示した。 比较例 8.9

水分散体(B-1)の代りに水分散体(B-7) および (B-10) を用いる以外は実施例8と 全く同様にして強料および強膜を得た。得られた 5 安定性を評価した。結果は第6表に示した。 透膜の性能を第6 衷に示した。

6

性	能	実施	5例	比	效例
1 .	BE	8	9	8	9
エリクセン	/値(==)	>7	>7	>7	6
密着	性	100/ 100	100/ 100	100/ 100	100/ 100
耐水性 (50℃× 150hrs)	光沢保 持率	97	98	45	40
150015)	密着性	100/ 100	100/ 100	55/ 100	34/ 100
耐汚多	快性"	0	Δ	×	×

*) 〇 完全に消える。

× ほとんど消えない。

△ 一部消えずに残る。

実施例 10

実施例3で得られた水分散体 (B-3) 100部 25 にトリーnーブチルアミン塩酸塩の水溶液(10重 量%) 0.1部を添加し、激しく混合したところ、 何ら粘度変化及び外観変化がなかつた。さらに室

温で24hrs放置したが、粘度変化及び外視変化は 認められず、非常に安定であった。 実施例11および比較例10, 11

第6衷で示した様な水分散体と添加剤を用い、

第 6 表

水分散	女体の添加剤	奥加	6例	比	交例
ic XI s	トる安定性	- 1G s	-11 🖇	10 🎘	.11
水	分散体(部)	(B-3) 100	(B-5) 100	(A-9) 100	(A-9) 100
(部)	トリ-n-ブ チルアミン 塩酸塩	9,1	<u> </u>	0.1	
(da)	酢酸ナトリ ウム	_	0.1		0.1
外観	直後	変化なり	変化なし	粒状 物発 生	分離
	24時間後	TR.	"	分離	固化
容液粘度	直 後	変化ない	変化なし	急な度昇	
*	24 時間後	,,	少なな	流動 性し	流動なし

(*):10wt%の水溶液