# Chapter 27-28 Faraday's Law and Inductance

# § 1 Faraday's Law of Induction and Lenz's Law

(p629-633)



- Question: Can an electric current be produced by a magnetic field?
  - → M. Faraday (1791-1867) answered this question in 1831.







#### **Evaluate The Experiment of Induction**



#### From the experiment:

- Steady magnetic field can not produce any current.
- A time-varying magnetic field can induce an electric current.
- The galvanometer shows a lager induced current when the relative motion of the magnet is faster。
- ➤ It is the rate of change in the number of the magnetic field lines passing trough the loop that determine the induced emf in the loop.





#### Faraday's Law and Lenz's Law



# Faraday's law:

→ The emf induced in a circuit is equal to the time rate of change of magnetic flux through the circuit. through the circuit.

If the circuit is a coil consists of N turns:  $|\varepsilon| = N \left| \frac{d\Phi_B}{dt} \right|$ 

$$|\varepsilon| = \left| \frac{d\Phi_B}{dt} \right|$$

$$|\varepsilon| = N \left| \frac{d\Phi_B}{dt} \right|$$

How about the direction of the induced emf? —— determined by Lenz's law

#### Lenz's law

The polarity of the induced emf in a loop is such that it produces a current whose magnetic field opposes the change in magnetic flux through the loop.

#### Another statement:

→ The induced current is in a direction such that the induced magnetic field attempts to maintain the original flux through the loop.



#### How to Determine the Sign of Induced emf



# Complete Faraday's law:

$$\varepsilon = -\frac{d\Phi_B}{dt} = -\frac{d}{dt} \iint_{\substack{\text{surrounding} \\ \text{surface}}} \vec{B} \cdot d\vec{A}$$

→ A coil consists of N turns:

$$\varepsilon = -N \frac{d\Phi_B}{dt}$$

- The relationship between the direction of emf  $\mathcal{E}$  and the sign of  $\Phi_{\mathsf{B}}$ 
  - Using the right-hand rule to determine the sign of  $\Phi_{\rm B}$  and the sign of emf  $\mathcal{E}$ .





Positive flux  $(\Phi_B > 0)$ Flux becoming more positive  $(\frac{d\Phi_B}{dt} > 0)$ Induced emf is negative  $(\mathcal{E} < 0)$ 



Negative flux  $(\Phi_B < 0)$ Flux becoming more negative  $(\frac{d\Phi_B}{dt} < 0)$ Induced emf is positive  $(\mathcal{E} > 0)$ 



Positive flux  $(\Phi_B > 0)$ Flux becoming less positive  $(\frac{d\Phi_B}{dt} < 0)$ Induced emf is positive  $(\mathcal{E} > 0)$ 



Negative flux ( $\Phi_B < 0$ )
Flux becoming less negative ( $\frac{d\Phi_B}{dt} > 0$ )
Induced emf is negative ( $\mathcal{E} < 0$ )



#### What makes the magnetic flux change?



- What makes the magnetic flux change?
  - → Is the loop or coil moving or changing orientation? Motional emf.
  - → Is the magnetic field changing? Induced electric field as the non-electric field.



Motional emf



Induced emf





Example: A plane loop of area A is placed in a region where a uniform magnetic field is an angle  $\theta$  to the normal to the plane. The magnitude of the magnetic field varies with time according to the expression  $B = B_{max}e^{-\alpha t}$ . Find the induced emf in the loop as a function of time.

Solution: Choose the direction of area vector point to downward.

$$\Phi_B = \overrightarrow{B} \cdot \overrightarrow{A} = BA \cos \theta$$
$$= AB_{\text{max}} e^{-\alpha t} \cos \theta$$

$$\varepsilon = -\frac{d\Phi_B}{dt} = -\left(-\alpha A B_{\text{max}} e^{-\alpha t} \cos \theta\right)$$
$$= \alpha A B_{\text{max}} \cos \theta e^{-\alpha t}$$



# § 2 Motional emf (p634-635)



### Staring with the slide-wire generator

A U-shaped conductor in a uniform magnetic field B perpendicular to the plane, directed into page. A metal rode with length L across the two arms of the conductor, forming a circuit. The metal rode slides to the right with a constant velocity  $\vec{v}$ . Find the induced emf.

Choose the direction of area  $\overrightarrow{A}$  as directing into the page.

→ The magnetic flux through the circuit:

$$\Phi_B = BLvt$$

→ The induced emf:

$$\varepsilon = -\frac{d\Phi_B}{dt} = -BLv$$





#### The Origin of the Motional emf

- Additional insight into the origin of the induced emf:
  - → The magnetic force exerting on the moving charge in rode acts as the non-× electric force that produces the emf.
  - ▶ The magnetic force:  $\vec{F} = q\vec{v} \times \vec{B}$
  - → The emf along the rode:

$$\varepsilon = \int_{a}^{b} \overrightarrow{E}_{n} \cdot d\overrightarrow{s} = \int_{a}^{b} \frac{\overrightarrow{F}}{q} \cdot d\overrightarrow{s} = \int_{a}^{b} (\overrightarrow{v} \times \overrightarrow{B}) \cdot d\overrightarrow{s}$$
$$= -\int_{0}^{L} vBds = -BLv$$









- → The emf is induced in a conductor moving through a magnetic field, called motional emf.
- ➡ With Faraday's law, we cannot know which part of the circuit is the source of the emf. Here we know that the moving rode is the source of emf; within it, positive charge moves from lower to higher potential, and in the remainder of the circuit, charge moves from higher to lower potential.

#### **Definition of Motional emf**





- Definition of motional emf:
  - For moving current-carrying wire of any shape in a magnetic field

$$d\varepsilon = (\vec{v} \times \vec{B}) \cdot d\vec{s}$$

$$\varepsilon = \int_{L} (\vec{v} \times \vec{B}) \cdot d\vec{s}$$

→ For any closed conducting loop:

$$\varepsilon = \oint_{L} (\vec{v} \times \vec{B}) \cdot d\vec{s}$$









### Motional emf induced in a rotating bar

Example: A conducting bar of length l rotates with a angular speed  $\omega$  about a pivot at one end. l is perpendicular to the plane of rotation. Find the emf induced between the ends of the bar.

Solution: Choose the direction of integration to be from end O to end A.

$$\varepsilon = \int_{0}^{A} (\vec{v} \times \vec{B}) \cdot d\vec{s} = \int_{0}^{l} (-Bv) dr$$
$$= -\int_{0}^{l} B\omega r dr = -\frac{1}{2} B\omega l^{2}$$

The negative sign means that the real direction  $_{\times}$  of emf is opposite to the direction of integration, and potential at end A is lower than end O.  $^{\times}$ 





Loop

External

circuit

## The Alternating-current generator

Example: A N turns rectangular loop of area A is made to rotate in an external uniform magnetic field, with a angular velocity  $\omega$  about the axis.

Solution: Assume at time t=0, the direction of area  $\overrightarrow{A}$  is in alignment with  $\overrightarrow{B}$ . The flux through the loop

$$\Phi_B = \overrightarrow{B} \cdot \overrightarrow{A} = BA \cos \theta = BA \cos \omega t$$

By Faraday's law,

$$\varepsilon = -N \frac{d\Phi_B}{dt} = \omega NAB \sin \omega t = \varepsilon_{\text{max}} \sin \omega t$$



Externa

rotator



Slip rings

Brushes



Example: A rod with length *I*, mass *m*, and resistance *R* slides without friction down parallel conducting rails of negligible resistance. The rails are connected together at the bottom, forming a conducting loop with the rod as the top member. The plane of the rails makes an angle  $\theta$  with the horizontal, and a uniform vertical magnetic field *B* exists throughout the region. (1) What is the terminal speed of the rod? (2) What is the induced current in the rod when the terminal speed has been reached?

Solution: (1) Newton's law for the rod

$$m\frac{dv}{dt} = mg\sin\theta - F_B\cos\theta$$

The motional emf:

$$\varepsilon = |(\vec{v} \times \vec{B}) \cdot \vec{L}| = vBL\sin(90^{\circ} + \theta) = vBL\cos\theta$$

The current in the loop:

$$I = \frac{\varepsilon}{R} = \frac{vBL\cos\theta}{R}$$

The magnetic force acts on the rod

$$F_B = I \mid \overrightarrow{L} \times \overrightarrow{B} \mid = ILB = \frac{vB^2L^2\cos\theta}{R}$$



#### Example Cont'd



Newton's law for the rod becomes: 
$$m\frac{dv}{dt} = mg\sin\theta - \frac{vB^2L^2\cos^2\theta}{R}$$

When the rod reaches its terminal speed:

$$\frac{dv}{dt} = 0$$

The terminal speed:  $v = \frac{mgR}{R^2I^2} \frac{\sin \theta}{\cos^2 \theta}$ 

(2) When the rod reaches the terminal speed, the induced current is:

$$I = \frac{vBL\cos\theta}{R} = \frac{mg}{BL}\tan\theta$$



# § 3 Induced Electric Field (p635-637)



- What is the basis of induced emf when there is a changing flux trough a stationary conducting loop?
  - Now we can understand that magnetic force is the reason of the induced emf in a moving conductor.

▶ By Faraday's law, we only know the result that an induced emf also

occurs when there is a changing flux through a stationary conducting loop.

$$\varepsilon = -\frac{d\Phi_{B}}{dt}$$





▶ But up to now, we don't know what *force* makes the charges moves around the loop. It can't be a magnetic force because the conductor is not moving in the magnetic field. In fact it is not even in the magnetic field.



#### The Induced Electric Field as the Source of Induced emf



- Maxwell's suggestion: induced electric field
  - → There must be an induced electric field (non-electrostatic field) created in the conductor as a result of changing magnetic flux.
  - → This kind of electric field is induced even when no conductor is present.



#### The Easy Confused Points for Induced emf



### Easy confused points:

♦ We accustomed to thinking about electric field as being caused by electric charges. Now we know that a changing magnetic field can also act as a source of electric field.

\*\*Tolumber of partial field\*\*

\*\*Tolum



ightharpoonup By the definition of emf,  $\ensuremath{\mathcal{E}}$  is equal to the work done by a non-electrostatic field, induced electric field  $\overrightarrow{E}_i$ , per unit charge.

$$\varepsilon = \oint_{L} \vec{E}_{i} \cdot d\vec{s} = -\frac{d\Phi_{B}}{dt} = -\frac{d}{dt} \iint_{\text{the surface surround the loop}} \vec{B} \cdot d\vec{A} = \iint_{\text{the surface surround the loop}} -\frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

→ The line integral around a closed path is not zero. So the induced electric field is not conservative.

## General Form of Faraday's Law



 The relationship between the induced electric field and the changing magnetic field

$$\oint_{L} \vec{E} \cdot d\vec{s} = -\frac{d\Phi_{B}}{dt} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

The form  $\varepsilon = -d\Phi_B/dt$  is always true. But the equation above is valid only if the path around which we integrate is stationary.





#### The Features of Induced Electric Field



### The Comparison between the electrostatic field and induced electric field

|                                          | Electrostatic field $\vec{E}_s$                                                                               | Induced electric field $\overrightarrow{E}_i$                                                                           |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| The source of the field                  | The charges                                                                                                   | The changing magnetic field                                                                                             |
| Line integral<br>around a<br>closed path | $ \oint_{L} \vec{E}_{s} \cdot d\vec{s} = 0 $ Conservative                                                     | $\oint_{L} \vec{E}_{i} \cdot d\vec{s} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$ Non-conservative |
| Gauss's law                              | $\iint_{S} \vec{E}_{s} \cdot d\vec{A} = \frac{q_{\text{encl}}}{\mathcal{E}_{0}}$ Field lines begin and end on | $ \oint_{S} \overrightarrow{E}_{i} \cdot d\overrightarrow{A} = 0 $ Field lines form closed                              |
|                                          | charge                                                                                                        | loops                                                                                                                   |



#### Electric field induced by a changing magnetic field in a solenoid

Example: A long solenoid of radius R has n turns of wire per unit length and carries a time-varying current that varies sinusoidally as  $I=I_{max}\cos \omega t$ . (1) Determine the magnitude of the induced electric field outside the solenoid, a distance r>R from its long central axis. (2) Find the induced electric filed inside the solenoid, a distance r< R from its axis.

Solution: Choose a path for the line integral to be a circle of radius *r* centered on the solenoid.

By symmetry, the E is tangent to the circle and has constant magnitude on it.

$$\oint_{L} \vec{E} \cdot d\vec{s} = E \oint_{L} ds = E(2\pi r)$$

$$= -\frac{d\Phi_{B}}{dt} = -\frac{d}{dt} (B\pi R^{2}) = -\pi R^{2} \frac{dB}{dt}$$



$$E = -\frac{R^2}{2r}\frac{dB}{dt} = -\frac{R^2}{2r}\frac{d}{dt}(\mu_0 nI_{\text{max}}\cos\omega t) = \frac{\mu_0 nI_{\text{max}}\omega R^2}{2r}\sin\omega t \quad \text{for } r > R$$

#### Example Cont'd



For an interior point (r < R)

$$E(2\pi r) = -\frac{d\Phi_B}{dt} = -\frac{d}{dt}(B\pi r^2) = -\pi r^2 \frac{dB}{dt}$$

$$E = -\frac{r}{2}\frac{dB}{dt} = -\frac{r}{2}\frac{d}{dt}(\mu_0 nI_{\text{max}}\cos\omega t) = \frac{\mu_0 nI_{\text{max}}\omega}{2}r\sin\omega t \text{ for } r < R$$





Solution I: Using Faraday's law

Choose the loop abO.

$$\Phi_{B} = -BA_{abO} = -\frac{1}{2}BL\sqrt{R^{2} - \frac{L^{2}}{4}}$$

$$\varepsilon = \oint_{Oab} \vec{E} \cdot d\vec{s} = \int_{O}^{a} + \int_{a}^{b} + \int_{b}^{O} \vec{E} \cdot d\vec{s}$$

$$= \int_{a}^{b} \vec{E} \cdot d\vec{s} = \varepsilon_{ab} = -\frac{d\Phi_{B}}{dt} = A_{abO} \frac{dB}{dt}$$

$$\varepsilon_{ab} = \frac{L}{2}\sqrt{R^{2} - \frac{L^{2}}{4}} \frac{dB}{dt}$$



The potential at end b is higher than end a.

#### Example Cont'd



Solution II: By line integration of induced electric field.

We have know that:

$$E = \begin{cases} \frac{r}{2} \frac{dB}{dt} & \text{for } r < R \\ \frac{R^2}{2r} \frac{dB}{dt} & \text{for } r > R \end{cases}$$

$$\varepsilon_{ab} = \int_{a}^{b} \overrightarrow{E} \cdot d\overrightarrow{s} = \int_{-L/2}^{L/2} E \cos \theta ds$$

$$= 2 \int_{0}^{L/2} \frac{r}{2} \frac{dB}{dt} \cos \theta ds = \frac{dB}{dt} \int_{0}^{L/2} r \cos \theta ds$$

$$r = \frac{1}{\cos \theta} \sqrt{R^2 - \frac{L^2}{4}}$$



$$\varepsilon_{ab} = \sqrt{R^2 - \frac{L^2}{4}} \frac{dB}{dt} \int_0^{L/2} r \cos\theta ds = \frac{L}{2} \sqrt{R^2 - \frac{L^2}{4}} \frac{dB}{dt}$$

Example: A long, straight wire carries a time-varying current  $I = I_0 \sin \omega t$ . A rectangular wire loop of sides a and b is placed in the same plane as the straight current is, and a distance  $x_0$  from the straight current. The wire loop starts to move to the right at the speed of v at t = 0. Determine the induced emf in the wire loop at time t.

Solution I: Using Faraday's law

Choose the loop direction as shown in the Fig.

$$x = x_0 + vt$$

$$\Phi_B = \int_x^{x+a} \frac{\mu_0 I}{2\pi x} b dx = \frac{b\mu_0 I_0}{2\pi} \ln \frac{x+a}{x} \sin \omega t$$

$$\varepsilon = -\frac{d\Phi_B}{dt} = -\frac{b\mu_0 I_0}{2\pi} \left[ \frac{x}{x+a} \frac{x - (x+a)}{x^2} \frac{dx}{dt} \sin \omega t + \ln \frac{x+a}{x} \omega \cos \omega t \right]$$

$$= \frac{b\mu_0 I_0}{2\pi} \left| \frac{av}{x(x+a)} \sin \omega t - \ln \frac{x+a}{x} \omega \cos \omega t \right|$$



# Example Cont'd



$$\varepsilon = \frac{b\mu_0 I_0}{2\pi} \left[ \frac{av}{(x_0 + vt)(x_0 + a + vt)} \sin \omega t - \ln \frac{x_0 + a + vt}{x_0 + vt} \omega \cos \omega t \right]$$

Solution II: By calculation of motional emf and induced electric field.

$$\varepsilon = \varepsilon_m + \varepsilon_i$$

$$\varepsilon_{m} = vbB_{x} - vbB_{x+a} = \frac{vb\mu_{0}I}{2\pi} \left(\frac{1}{x} - \frac{1}{x+a}\right) = \frac{vb\mu_{0}I}{2\pi} \frac{a}{x(x+a)}$$
$$= \frac{b\mu_{0}I_{0}}{2\pi} \frac{av}{(x_{0} + vt)(x_{0} + a + vt)} \sin \omega t$$

$$\left. \mathcal{E}_{i} = -\frac{d\Phi_{B}}{dt} \right|_{x=\mathrm{const}} = -\frac{b\mu_{0}I_{0}}{2\pi} \ln \frac{x+a}{x} \omega \cos \omega t = -\frac{b\mu_{0}I_{0}}{2\pi} \ln \frac{x_{0}+a+vt}{x_{0}+vt} \omega \cos \omega t$$

# § 4 Self-Inductance (p645-647)



#### Inductor and self-induced emf:

◆ An inductor is a circuit element such as solenoid that stores energy in the magnetic field surrounding its current-carrying wires, just as a capacitor store energy in the electric field between its charged plates.

For a circuit including a solenoid





- lacktriangle The emf set up by changing self-current is called self-induced emf  $\mathcal{E}_L$
- ▶ By Lenz's law a self-induced emf always opposes the change in the current that caused the emf, and so tends to make it more difficult for variation in current to occur.





#### Definition of the Self-inductance



## Self-induced emf:

$$\varepsilon_L = -L \frac{dI}{dt}$$

- → The negative sign reflects Lenz's law.
- The self-inductance
  - → The proportionality constant L is called the self-inductance.
  - From Faraday's law

$$\varepsilon_L = -\frac{d(N\Phi_B)}{dt} \implies L\frac{dI}{dt} = \frac{d(N\Phi_B)}{dt}$$

▶ Integrating with respect to the time, and assuming that  $\Phi_B$ =0 when I=0

$$L = \frac{N\Phi_B}{I}$$
 SI unit: H (henry)

Note that, since  $\Phi_B$  is proportional to the current, the self-inductance is independent of I. (Like the capacitance) The self-inductance depends only on the geometry of the device.



#### Inductance of a solenoid

Example: Find the inductance of a uniformly wound solenoid having *N* turns and length *l*. Assume that *l* is long compared with the radius and the core of the solenoid is.

Solution: For an ideal solenoid, the interior magnetic field is uniform.

$$B = \mu_0 nI = \mu_0 \frac{N}{I} I$$

The magnetic flux through each turn is

$$\Phi_B = BA = \mu_0 \frac{NA}{l} I$$

$$L = \frac{N\Phi_B}{I} = \frac{\mu_0 N^2 A}{I} = \mu_0 \frac{N^2}{I^2} (AI) = \mu_0 n^2 V$$



#### Inductance of a coaxial cable

Example: A long coaxial cable consists of two concentric cylindrical conductors of radii a and b and length *I*. The conductors carry current *I* in opposite directions. Find the self-inductance of this cable. *I* 

Solution: Firstly, we find the magnetic flux through cross section between the two conductors.

The magnetic field between the conductors:  $B = \frac{\mu_0 I}{2\pi r}$  Divide the rectangular cross section into strips of width dr.

$$\Phi_{B} = \iint \vec{B} \cdot d\vec{A} = \int_{a}^{b} \left(\frac{\mu_{0}I}{2\pi r}\right) (ldr)$$

$$= \frac{\mu_{0}Il}{2\pi} \int_{a}^{b} \frac{dr}{r} = \frac{\mu_{0}Il}{2\pi} \ln\left(\frac{b}{a}\right)$$

$$L = \frac{\Phi_{B}}{I} = \frac{\mu_{0}l}{2\pi} \ln\left(\frac{b}{a}\right)$$



# § 5 RL Circuit (648-649)



#### **RL** circuit:

→ The switch jumps to 1 from 2. From Kirchhoff's loop rule

$$\varepsilon + \varepsilon_L - IR = 0$$





$$\varepsilon - L \frac{dI}{dt} - IR = 0$$
  $\frac{dI}{dt} = \frac{R}{L} \left( \frac{\varepsilon}{R} - I \right)$ 

$$\int_0^I \frac{dI}{I - \frac{\varepsilon}{R}} = -\int_0^t \frac{R}{L} dt$$

$$\int_0^I \frac{dI}{I - \frac{\mathcal{E}}{R}} = -\int_0^t \frac{R}{L} dt \qquad I = \frac{\mathcal{E}}{R} \left( 1 - e^{-\frac{R}{L}t} \right) = \frac{\mathcal{E}}{R} \left( 1 - e^{-\frac{t}{\tau}} \right)$$

→ Time constant of the RL circuit:

$$\tau = \frac{L}{R}$$

# § 6 Energy Stored in A Magnetic Field (647-648)



- Starting with a RL circuit:
  - ⇒ The switch jumps to 1 from 2.  $\varepsilon = IR + L\frac{dI}{dt}$

$$\int_0^t \varepsilon I dt = \int_0^t I^2 R dt + \int_0^t L I \frac{dI}{dt} dt$$

- → The term on left side:
  - The energy is supplied by the source.
- → The first term on right side:
  The energy is dissipated in the resistor.
- The second term on right side:

  The energy that is delivered to the inductor and is stored in the magnetic field through the coil.



$$U_B = \int_0^t LI \frac{dI}{dt} dt = \int_0^I LI dI = \frac{1}{2} LI^2$$

Which one is the storehouse of the energy, the inductor or the magnetic field?





#### The Energy Density in Magnetic Field



- Energy stored in magnetic field.
  - → Take a solenoid as an example.

$$B = \mu_0 nI$$
  $L = \mu_0 n^2 V$ 

$$U_{B} = \frac{1}{2}LI^{2} = \frac{1}{2} \left(\mu_{0} n^{2} V\right) \left(\frac{B}{\mu_{0} n}\right)^{2} = \frac{B^{2}}{2\mu_{0}} V \propto \begin{cases} B^{2} \\ V \end{cases}$$



- Energy is indeed stored in the space where the magnetic field exists.
- Energy density

$$u_B = \frac{U_B}{V} = \frac{B^2}{2\mu_0}$$

For a non-uniformed magnetic field

$$U_B = \iiint du_B = \iiint_V \left(\frac{B^2}{2\mu_0}\right) dV$$



# Energy in Electric and Magnetic Field



|                             | Electric field                                           | Magnetic field                                  |
|-----------------------------|----------------------------------------------------------|-------------------------------------------------|
| Energy stored in the device | A capacitor stores energy $U = \frac{1}{2}C(\Delta V)^2$ | An inductor stores energy $U = \frac{1}{2}LI^2$ |
| Energy density in the field | $u_E = \frac{1}{2} \varepsilon_0 E^2$                    | $u_B = \frac{1}{2\mu_0} B^2$                    |



#### The energy stored in a coaxial cable

Example: A long coaxial cable consists of two concentric cylindrical conductors of radii a and b and length *I*. The conductors carry current *I* in opposite directions. Find the energy stored in this cable.

#### Solution:

The magnetic field between the conductors is  $B = \mu_0 I / 2\pi r$ 

The magnetic field is zero inside the inner conductor r < a,

and outside the outer conductor r>b.

$$U_{B} = \iiint \left(\frac{B^{2}}{2\mu_{0}}\right) dV = \int_{a}^{b} \left[\frac{1}{2\mu_{0}} \left(\frac{\mu_{0}I}{2\pi r}\right)^{2}\right] (2\pi r l dr)$$
$$= \frac{\mu_{0}I^{2}l}{4\pi} \int_{a}^{b} \frac{dr}{r} = \frac{\mu_{0}I^{2}l}{4\pi} \ln\left(\frac{b}{a}\right)$$

$$U_B = \frac{1}{2}LI^2 = \frac{\mu_0 I^2 l}{4\pi} \ln\left(\frac{b}{a}\right) \qquad L = \frac{\mu_0 l}{2\pi} \ln\left(\frac{b}{a}\right)$$

