Click Through Rate Prediction

Classification Assignment

2023/08/15

Topic CONTENTS

Data Analysis and Preparation

Model Building

Model Evaluation

Final Result

Problem Statement

Most of the websites you visit include ads. The online advertising industry is huge, and players such as Google, Amazon, and Facebook generate billions of dollars by targeting the correct audiences with relevant ads. Most of the decisions about ads are data-driven solutions such as the following:

- How do you know which ad to use and who to target?
- Many companies advertise products in the same category, so how do you decide whose ad to display?
- Which ad should be placed on which part of the web page?
- Should a particular ad be pushed on a mobile device or remain on a desktop or laptop?

These decisions depend on numerous factors, including when the ad is placed, the site it is placed on, the characteristics of the people who will see the ad, the overall demographics, and more.

An important exercise marketing companies need to do before making any of the above decisions is a click-through rate (CTR) prediction. The objective is to predict whether the audience will click on an ad or not and thus help the marketing team answer ad placement-related questions.

PART 01

Data Analysis and Preparation

Flow of the assignment

rows

value

EDA

Checking for Null Values

*******Check count	of	Null	Values*
click	0		
C1	0		
banner_pos	0		
site_id	0		
site_domain	0		
site_category	0		
app_id	0		
app_domain	0		
app_category	0		
device_id	0		
device_ip	0		
device_model	0		
device_type	0		
<pre>device_conn_type</pre>	0		
C14	0		
C15	0		
C16	0		
C17	0		
C18	0		
C19	0		
C20	0		
C21	0		
month	0		
dayofweek	0		
day	0		
hour	0		
y	0		
dtype: int64			

Duplicate record Check

Checking duplicate rows

data[data.duplicated()].shape
(658, 27)

Shape of data after dropping duplicates

data[data.duplicated()].shape
(0, 27)

Unique values count

*******Check count	of Unique Values****
click	2
C1	7
banner_pos	7
site_id	1485
site_domain	1331
site_category	19
app_id	1354
app_domain	96
app_category	21
device_id	16801
device_ip	78013
device_model	3145
device_type	4
device_conn_type	4
C14	1722
C15	8
C16	9
C17	399
C18	4
C19	64
C20	154
C21	60
month	1
dayofweek	7
day	10
hour	24
у	2
dtype: int64	

Checking for Target Data Imbalance

Understanding the click rate based on the different banner positions

Getting insights on click rate based on the device type of the customer

Click Rate by dayofweek

Click Rate by C15

Click Count per day

This graph gives better understanding of clicks per day

Hourly Click Rate

Deep understanding of click throughout the day for better understanding

PART 02 Model Building

Machine Learning Models used

Logistic Regression

Decision Tree Classifier

Random Forest Classifier

Why Those 3 models

As our dataset has a categorical target dataset hence a classification based

Classification

Logistic Regression

Logistic regression is a machine learning algorithm that is used to predict the probability of a binary outcome (yes/no, true/false)

Random Forest

A random forest classifier is a machine learning algorithm that uses multiple decision trees to predict the class of an input.

XGBoost Classifier

XGBoost classifier is a machine learning algorithm that uses gradient boosting to perform classification tasks.

It's fast, accurate & scalable.

PART 03 Conclusion

Comparing with the results of the model

	Accuracy	Recall	Precision	f1_score	ROC_AUC
Logistic regression	0.830051	0.003579	0.253521	0.007057	0.542474
Decision Tree Classifier	0.830051	0.003579	0.253521	0.007057	0.542474
RandomforestClassifier	0.796866	0.184095	0.321975	0.234252	0.584781
LogisticRegression_after_feature_selection	0.830084	0.003777	0.263889	0.007448	0.547672
DecisionTree_after_feature_selection	0.768782	0.207555	0.264371	0.232543	0.555099
RandomForest_after_feature_selection	0.795792	0.182704	0.317554	0.231954	0.582390
LogisticRegression_after_resampling	0.593299	0.601020	0.595328	0.598161	0.593264
DecisionTree_after_resampling	0.815892	0.888634	0.777579	0.829405	0.822714
RandomForest_after_resampling	0.832119	0.910168	0.788933	0.845225	0.840472

As per the results we can certainly say that after resampling models are performing better and Random forest Classifier is producing better results after resampling.

THANK YOU

Reporter: Kaustubh Nitin Patil