Capturing photons with the 3D-Flow Architecture

Electronic Channels (or wires)

The total energy of the incident photon that was split among several neighboring channels must be reconstructed.

Photon's arrival time, local maxima, centroid, depth-of-interaction (DOI) must be calculated

How do we sont this out?

FIG. 1

FIG. 2C

†

Time	Proc (1d)	Reg (1d)	Proc (2d)	Reg (2d)	Proc (3d)	Reg (3d)	Proc (4d)	Reg (4d)	Proc (5d)	Reg (5d)
	data #	data #	data#	data #						
3t										
4t	-	21								
St	-	51	2							
ęt et	_	Þi	2	13			<u>.</u>			
71	_	is	2	4 i	3	•				
8t	9	T	2	Si Si	3	ķi				
34	9	7.1	7	I.	3	Si .	4			
10t	9	8!	7	r2	3	r1	4	i5		
114	9	6!	1	<u>8</u> 2	3	r2	4	1.1	5	
12t	9	110	7	6!	8	F3	4	r2	S.	r.
131	=	9.	7	110	æ	61	4	r3	5	r2
14t	11	i12	7	r6	œ	i10	6	r4	S	r3

FIG. 2B

m 1 0.5

FIG. 3

PRIOR ART PET with SHORT FOV

3 possible coincidence detection (LOR) 4 with SEPTA-in: AD, BE, CF DETECTOR

with SEPTA-out: AD, AE, AF, BD, BE, BF, CD, CE, CF FIG. 4B

INCREASING THE FOV

j.

36 possible coincidence detection (LOR) when DOUBLING the FOV:

AD, AE, AF, BD, BE, BF, CD, CE, CF, GM, GN, GP, HM, HN, HP, LM, LN, LP, AM, AN, AP, BM, BN, BP, CM, CN, CP, GD, GE, GF, HD, HE, HF, LD, LE, LF.

FIG. 4C

DEFMP

81 possible coincidence detection (LOR) when the FOV is three times in length.

The 3D-CBS, with over 1 meter FOV, has the capability to capture in 3-D hundreds of times the number of LORs that can capture the current PET when is used in 2-D mode. The limit for each location of the body is about ± 45° the angle with a ring (or TOF₁ - TOF₂ < time window)

FIG. 4D

FIG. 8