Université de Nantes Machine Learning

M1 Informatique

Practice in Machine Learning

I Linear regression

During this practice, we are going to consider a dataset containing grades and chances of admission. It is available on the Madoc platform (admissiondata.csv).

- 1) Load the data, and, using the drop function of pandas library, remove the serial number column. Verify that there are no missing values.
- 2) Using the heatmap function of seaborn library, plot the correlation table of all the features. What can we observe?
- 3) We now consider that 'Chances of Admit' is the target. Produce a scatter plot of all the features (individually) as a function the target.
- 4) Split your data into a training set and a testing set, and then learn a linear model.
- 5) Using the metrics of regression (see https://scikit-learn.org/stable/modules/classes. html#regression-metrics), evaluate your model. What are the important features? Is there any link with the correlation table?

II Going further ...

The linear regression model is quite model, but already gives satisfying results, for this data. Now consider a new dataset, boston houses.

```
from sklearn.datasets import load_boston
dataset = load_boston()
print(dataset.DESCR)
```

For this dataset, process to same learning workflow, and compare the results with another regression method: Gradientboostedregression: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html This method has a number of parameters, that you may change in order to maximize the quality of the metrics.