

EEE 51: Second Semester 2017 - 2018 Lecture 6

Single-Stage Amplifiers Current Sources

Today

- Wrap up single-stage amplifiers
- Current Sources

The Common-Collector Amplifier

DC Analysis:

$$V_{IN} - V_{BE,Q} - I_{E,Q} R_L = 0$$

$$V_{IN} - V_T \ln \left(\frac{I_{C,Q}}{I_S}\right) - I_{C,Q} \left(1 + \frac{1}{\beta}\right) R_L = 0$$
 Non-linear!

Simplify?
$$V_{BE,Q} = 0.7 \text{V}$$

$$I_{C,Q} = \frac{V_{IN} - 0.7V}{\left(1 + \frac{1}{\beta}\right)R_L} \approx \frac{V_{IN} - 0.7V}{R_L}$$

$$V_{OUT} = I_{E,Q}R_L \approx I_{C,Q}R_L = V_{IN} - 0.7V$$
 Emitter follower

Forward-active region check: $V_{CE} = V_{CC} - V_{OUT} > V_{CE,sat}$

Common-Collector Small Signal Analysis (1)

Common-Collector Small Signal Analysis (2)

Short the output to ground:

 $R_i = r_{\pi}$

Common-Collector Small Signal Analysis (3)

Common-Collector Small Signal Analysis (4)

The Common-Drain Amplifier

DC Analysis:

$$V_{IN}-V_{GS,Q}-I_{S,Q}R_L=0$$

$$V_{IN}-\left(V_{TH}+\sqrt{\frac{I_{D,Q}}{k}}\right)-I_{D,Q}R_L=0$$
 Quadratic

$$\begin{split} V_{OUT} &= I_{D,Q} R_L = V_{IN} - V_{GS} \\ &= V_{IN} - \left(V_{TH} + \sqrt{\frac{I_{D,Q}}{k}}\right) \end{split}$$
 Source follower

Saturation region check:

$$V_{DS} = V_{DD} - V_{OUT} > V_{GS} - V_{TH} = V_{IN} - V_{OUT} - V_{TH}$$

Common-Drain Small Signal Model

Single-Stage Amplifiers

	CE/CS	CB/CG	CC/CD
$G_{\scriptscriptstyle m}$	g_m	$-g_m$	$-g_m$
R_o	$r_{_{\!o}} \parallel R_{_{\!L}}$	$r_o \parallel R_L$	$\frac{R_L}{1 + g_m R_L}$
R_{i}	r_{π}	$\frac{1}{g_m}$	r_{π}
$A_{_{\scriptscriptstyle \mathcal{V}}}$	$-g_m(r_o \parallel R_L)$	$g_m(r_o \parallel R_L)$	$\frac{g_m R_L}{1 + g_m R_L}$

Can we use this diverse set of characteristics to create better amplifiers?

Input Resistance Revisited (1)

Common-Base/Common-Gate Amplifier

Derived assuming no-load conditions

If we derive R_i with the <u>output open circuited</u>, we get:

$$R_i = r_\pi \parallel \frac{1}{g_m} + \frac{R_L}{g_m r_o} \approx \frac{1}{g_m} + \frac{R_L}{g_m r_o}$$

Dependent on R_L!

Input Resistance Revisited (1)

Common-Collector/Common-Drain Amplifier

If we derive R_i with the <u>output open circuited</u>, we get:

$$R_i \approx r_\pi \left(1 + g_m R_L \right)$$

Dependent on R_L!

Bilateral Behavior

CB/CG and CC/CD

Current Sources

Recall: When can we achieve a gain close to a_o?

What Are Current Sources?

Practical Current Sources

We can't really make a perfect current source (yet)...

But we can get very close

Current source metrics?

- 1. Output resistance
- 2. Minimum output voltage

Current Source Output Resistance, Rout

$$i_{DC} = I_{source} + \frac{v_{DC}}{R_{out}}$$

Voltage dependent!

Implications of Using Current Source for Biasing

Can We Increase R₁ Arbitrarily?

What happens to the output DC voltage?

$$V_{OUT} = V_{CC} - I_{C,Q} R_L$$

For the same current, increasing R_L reduces V_{OUT}

To remain in the forward-active region:

$$V_{OUT} = V_{CE,Q} > V_{CE,sat}$$

$$R_L < \frac{V_{CC} - V_{CE,sat}}{I_{C,Q}}$$

To increase R_{I} , we can increase V_{CC}

- → Is this a good idea?
- \rightarrow Tradeoff between A, and $V_{cc}!$

Biasing The BJT Using A Current Source

Output DC voltage?

$$V_{OUT} = V_{CC} - \left(I_{C,Q} - I_{bias}\right)R_L$$

But...

$$R_L \to \infty$$
 $I_{bias} \to I_{C,Q}$

Can increase R_L indefinitely without having to increase V_{CC} !

In practice, this usually means we can get away with <u>lower supply voltages</u> if we use current sources!

Resistor vs. Current Source Biasing

Linear vs. Non-linear

How Do We Build Current Sources?

Transistor Output Characteristics (hmmm...)

A BJT Current Source

In the forward-active region:

Additional metric: V_{\min}

$$V_{\min} = V_{CE,sat}$$

 i_{DC}

A MOSFET Current Source

In the saturation region:

Additional metric: V_{\min}

$$\overline{V_{\min} = V_{GS} - V_{TH}}$$

A Simple BJT Current Source

Provide V_{BE} using a voltage divider

Next Meeting

- Current Mirrors
- Differential Circuits