算法课程设计

周翔辉 # 11603080122 2018 年 12 月

目录

1	基本的递归算法			
	1.1	二项式	的计算	1
			直接采用递归算法	
		1.1.2	采用备忘录方法	2
		1.1.3	采用迭代算法	9

1 基本的递归算法

1.1 二项式的计算

完成二项式公式计算,即 $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$ 公式解释为了从 n 个不同元素中抓取 k 个元素 (C_n^k) ,可以这样考虑,如果第一个元素一定在结果中,那么就需要从剩下的 n-1 个元素中抓取 k-1 个元素 (C_{n-1}^{k-1}) ;如果第一个元素不在结果中,就需要从剩下的 n-1 个元素中抓取 k 个元素 (C_{n-1}^k) 。要求分别采用以下方法计算,并进行三种方法所需时间的经验分析。

1.1.1 直接采用递归算法

分析题目可知,计算二项式公式的递推公式为 $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$, 而递归的终止条件就为当 k=1 and k < n 或 k=n 或 n-k=1 时分别返回 n,1,n 。

算法 CalculateBinomialRecursion (k, n)

```
// 计算二项式公式使用递归
// 输入: 二项式公式的 k,n
// 输出: 二项式公式的值
if k > 0 && n > 0
        if k = 1 and n = 1
        return 1
        else if k = 1
        return n
        else
        return CalculateBinomialRecursion (k - 1, n - 1)
        + CalculateBinomialRecursion (k, n - 1)
return 0
```

```
\left|\begin{array}{cc} {}_{12} & {}_{\text{return}} & 0 \\ {}_{13} & \end{array}\right|
```

1.1.2 采用备忘录方法

1.1.3 采用迭代算法

- 1. 直接采用递归算法
- 2. 采用备忘录方法
- 3. 采用迭代算法