Linux 2

ITINF 2021

Lektion 2

Uppvärmning

- Kommentarer / önskemål efter första dagen?
- Skicka förslag på grupper till grupparbetet denna veckan

Idag

- Allmänt om server, uppbyggnad
- Miljöer för utveckling, test och drift
- Repetition: Filer och filrättigheter
- Filöverföringar om ftp, scp etc
- NFS, olika typer av filsystem

Miljöer och uppbyggnad

Hur passar en server in

Linux-server

- Behöver först och främst veta vad just denna server är till för
- Använder sällan annat än kommandorad
- Fysiska och virtuella servrar

Applikationens livscykel

Tidslinje för ett system

Miljoer

Traditionell uppsättning miljöer

Mer minimalistisk (och vanligare)

Dev-miljö ("utveckling")

- Har utvecklingsverktyg (debugger, profilering, etc)
- Koppling till versionshantering (commit -> deploy)
- Test-data i databas
- Oftast på privat internt nätverk

Test-miljö

- Har testverktyg (profilering, automat-testning, UI-tester, etc)
- Har ofta även utvecklingsverktyg
- Också test-data
- Oftat också på privat internt nätverk

Prod-miljö ("drift", "produktion")

- Bara drift-verktyg, dvs inga utvecklings- eller testverktyg
- Äkta data ("prod-databas")
- Regelbunden backup
- Redundans: flera servrar för ökad driftssäkerhet
- Tillgång endast för administratörer (eller helst ingen access alls!)

Regler och konfiguration

Allmäna regler

- Ha inte saker installerade som inte behövs på Servrar ha mindsetet "less is more"
- Koll på användare / vem som har tillgång till miljöerna
- Resursplanering utifrån serverns funktion

Att ha koll på

- Vilka program / paket behövs för det som skall finnas på servern?
- Vilka portar behöver vara öppna?
- Var i n\u00e4tverket skall servern vara?
- Vilka skall ha tillgång till den?
- Vad för övervakning behövs?
- Vilka backuper behövs?

Antag att ditt team utvecklar en Java- applikation med webbinterface, användardata i en MySQL-databas, samt ett antal informationsfiler som kan laddas ned från webben.

Vad behöver ni på en utvecklingsserver respektive på en driftsserver? Fundera på alla verktyg som kan behövas.

Filer och filsystem

Filer

- En Unix-princip är att allt är filer
- Filer har en ägare och rättigheter sätts på nivåerna ägare, grupp, övriga ("världen")
- Filen har förstås en typ / ett format till skillnad från i en del andra miljöer är det inte hårt kopplat till någonting i filens namn
 - o file <filename> gissar vad det är för sorts fil
- Verktyg för att hitta och hantera filer

Filrättigheter

Filrättigheter

- Tre set av rättigheter: |user|group|world|
- Tre typer av rättigheter: rwx (read, write, execute)
- Exempel: -rwxrwxr-x 1 nevyn nevyn 0 aug 9 19:53 minfil
- Kan även uttryckas som siffror
 - \circ r = 4, w = 2, x = 1
 - \circ rwx = 4 + 2 + 1 = 7
 - \circ rw- = 4 + 2 = 6
 - -rwxrw-r-- blir alltså 764 . "allt" blir 777 .

Ändra filrättigheter

- chown byt ägare
 - chown nevyn minfil
- chgrp byt grupp
 - chgrp wheel minfil
- båda samtidigt
 - chown nevyn:wheel minfil

Ändra filrättigheter

- chmod ändra rättigheter
 - chmod u+rwx minfil
 - chmod g-wx minfil
 - chmod o+x minfil
 - chmod 777 minfil

Filrättigheter

- Första tecknet då?
 - betyder vanlig fil, e g -rwxrwxr-x
 - o d betyder directory, e g drwxrwxr-x
 - o betyder "character special", en device, e g crwxrwxr-x
- "Sticky bit"
 - Hindrar andra än ägaren från att manipulera filen
 - Exempel: drwxrwxr-t 2 nevyn nevyn 4096 aug 9 19:58 foobar
 - chmod +t <fil>

Repetition: Kopiera, flytta, etc

- cp kopiera filer
 - o cp fil1 fil2
 - cp -r dir1 dir2
- mv flytta/döp om filer
 - o mv fil1 fil2
- rm ta bort filer
 - o rm fill
 - o rm −r dir1

- touch markera en fil som läst
 - touch fil1
- mkdir skapa mapp
 - mkdir minmapp
 - mkdir -p /var/log/minapp/errors

- Gör ett directory filexempel, lägg in filer med namnen test1 ... test10 i det (använd gärna en loop).
- Gör ett script som hittar alla filer i det directory där det körs som har namn som börjar med test. Låt det kopiera varje sådan fil till en som har samma namn med tillägget ".bak".
- Testa att köra scriptet som olika användare. Testa sedan att sätta sticky bit på directory filexempel och se hur det blir när ni försöker köra scriptet som olika användare.

```
for i in {1..10}
do
   touch test$i
done
```

```
#!/bin/bash
for i in `ls test*`
do
   cp $i $i.bak
done
```

Skriva, ändra och hitta filer

Skriv till filer

- Skriv över fil1:
 - echo "hej" > fil1
- Lägg till i slutet av fil1 (append):
 - echo "hej" >> fil1
- Skicka stderr till en fil med 2>
 - echo "hej" >> fil1 2>&1
- Input från fil1:
 - cat < fil1</pre>

Regular expressions-repetition (söka/ersätta)

- Användbart för att hitta strängar och för att byta ut strängar
- Exempel (från Linux 1):
 - \$\{\arr[*]//rad//foo}\
- Ytterligare verktyg: sed
 - o Exempel: cat fil1 | sed 's/abc/ABC/g'

- Skapa en fil fil1 med ett antal namn:
 - Tintin
 - Milou
 - Haddock
 - Kalkyl
 - Dupond
 - Dupont
- Gör ett skript som går igenom filen, byter ut "Milou" mot "Milou Hund" och skriver resultatet till en fil fil2.
- Extraövning: Gör nu samma sak på (minst) ett annat sätt.

```
#!/bin/bash
while read a
do
    echo ${a//Milou/Milou Hund}
done < fil1 > fil2
```

Använda sed istället!

- Som scriptet nyss:
 - sed 's/Milou/Milou Hund/g' < fil1 > fil2
- Eller gör ersättningen i samma fil:
 - sed -i -e 's/Milou/Milou Hund/g' fil1

Hitta filer

- Find
 - find {sök i vilken mapp} {sökpredikat och andra uttryck}
 - find . -name "*.sh"
 - find . -newermt "2022-08-10"
 - Och till och med saker som

```
find . -name "*.png" -exec convert {} -resize 64x64 thumbs/{}
\;
```

• Oändligt med varianter! Se man find.

• Gör ett script som hittar alla filer som heter något som slutar på "sh" (i det directory där scriptet körs plus underdirectories) och som skriver ut resultatet av ett ls -l för de filerna.

```
#!/bin/bash
for i in `find . -name "*sh"`
do
    ls -l $i
done
```

Överföra filer

Överföra filer: ftp, scp

- ftp Osäkert (allt i klartext) och krångligt (kontrollkanal och datakanal)
- scp tänk cp över ssh
 - scp <from> <to>
 - betyder "en annan dator", e gscp lokalfil annandator:distansfil
 - o ladda upp: scp file <user>@<host>:</some/file>
 - o ladda ner: scp <user>@<host>:</some/file> <dest>

Överföra filer: rsync, en bättre scp

- Bra för backup och nerladdning av kod -- laddar bara upp/ner filer som skiljer sig från den andra datorn!
- -r betyder "rekursivt", dvs kopiera allt i mappen. -a samma plus behåller modifikations-datum och andra flaggor
- -z komprimerar innan överföring: tar mer CPU men sparar bandbredd
- --delete: filer raderas remote om de tagits bort lokalt.
- Exempel: rsync -avz --delete ./src serv:/u/src

Överföra filer: sftp

- sftp tänk SSL/TLS-säkrad ftp
 - sftp remote_user@remote_ip
- några sftp-kommandon
 - o ls
 - o cd <dir>
 - get <file>
 - put <file>

Testa att hämta följande fil med scp respektive med sftp. Använd nedanstående uppgifter (eller kör mot localhost).

IP: maniac.nevyn.nu

Filnamn: message.txt

User: linux2

Pass: nackademin

Fråga: vad behöver du ha igång på din dator för att scp/sftp skall fungera?

Överföra filer över http och dylikt

- wget -- enkel hämtning från främst http(s)
 - wget https://www.dn.se/
 - wget -0 test.html https://www.dn.se/
- curl -- i princip samma som wget men mycket mer kraftfullt, många olika protokoll och funktioner
 - curl https://www.dn.se/
 - curl -X POST http://www.yourwebsite.com/login/ -d
 - 'username=yourusername&password=yourpassword'

- Hämta data från https://www.nackademin.se med wget
- Hämta data från https://www.nackademin.se med curl
- Kan du logga in i studentportalen med curl?

Bonus: jq

Tolka och sök i JSON! Extremt användbart, speciellt i kombination med curl.

```
$ curl -s http://api.open-notify.org/iss-now.json | jq '.iss_position.longitude'
"117.1762"
```

Filtrac

- tree ett verktyg för att enkelt visualisera filträd
 - apt install tree

```
nevyn@linmishi ~/D/n/nackademin-linux2 (main)> tree .

    00-gruppuppgift.md

  00-lektionsplan.md
  - 01-extralabb.md
   01-lektion.md
   02-lektion.md
  - ima
       alm.png
       companies.png
       gnu-linux-distribution-timeline.png
      - minimal.png
       passwd-file.png
       pki.png
      tidslinje.png
      traditional.png
       unix-family.jpg
    README.md
    renders
        00-gruppuppgift.pdf
       00-lektionsplan.pdf
       01-lektion.pdf
2 directories, 18 files
```

tree

- begränsa hur många nivåer ner den söker sig:
 - -L <antal>
- Enbart directories:
 - o -d
- Skriv ut hela sökvägen
 - o -f
- Skriv ut filrättigheterna
 - -p

- Installera tree (om du inte redan har den).
- Titta på vad som ligger på din Linux-burk genom att göra ett "träd" från /
 - Tips: Det blir betydligt enklare och tar mindre lång tid om du nöjer dig med att titta på första nivån
- Gör nu samma sak som nyss men med alla filrättigheter utskrivna

- tree -L 1 /
- tree -L 1 -p /

Filsystem

 Olika sätt att lagra data. Linux har stöd för över 100 olika filsystemstyper

mount

- mount gör ett filsystem tillgängligt
 - Tar en "device", e g /dev/sdb2
 - Och gör den tillgänglig vid "mount point", dvs ett ställe i ditt existerande filträd (nånstans under /)
 - /mnt används för temporära mountningar
 - o /media/{nånting} vanligt för extra hårddiskar
 - kan vara precis varsomhelst, e g /opt/data
- /etc/fstab

Filsystemstyper: Journaling FS

"A journaling file system is a file system that keeps track of changes not yet committed to the file system's main part by recording the intentions of such changes in a data structure known as a "journal", which is usually a circular log.

(Wikipedia)

• Exempel: Ext4, ZFS, ReiserFS

"

Filsystemstyper: Versioning FS

" A versioning file system is any computer file system which allows a computer file to exist in several versions at the same time. Thus it is a form of revision control.

(Wikipedia)

• Exempel: NILFS

22

Filsystemstyper: Distributed FS

"Distributed file systems do not share block level access to the same storage but use a network protocol. These are commonly known as network file systems, even though they are not the only file systems that use the network to send data

(Wikipedia)

• Exempel: NFS

"

Filsystemstyper

- Standard i de flexta moderna Linux-system är ext4
- macOS använder apfs (tidigare hfs+)
- Windows använder ntfs (tidigare ext32, ibland exfat)

Mounta external filsystem: NFS

- mount -t nfs <ip>:<path> <dir>
- Eg: mount -t nfs 10.0.1.10:/backups /var/backups

Tillbakablick, reflektion, kommentarer ...