Sentence Semantics

SLP3 Ch 15, 16, 19; INLP Ch 12, 13

Semantics

- Semantics studies meaning, connecting language to the real world
 - Lexical semantics: the meanings of words (last chapter)
 - Sentence semantics (this chapter)
- Implicit vs. explicit meaning representation

Vector Representation of Sentences

- Many options of modeling and learning
- Models
 - Pooling of word embeddings
 - The last hidden vector of an RNN
 - Concatenation of the last hidden vectors in two directions of a bi-RNN
 - Representation of [CLS] in BERT
 - Recursive neural networks based on parse trees
 - ...
- Learning
 - Sentence-level tasks: NSP, NLI, ...

Vector Representation of Sentences

- Pros:
 - Seamless integration with downstream neural models
 - Impressive performance on many NLP tasks
- Cons:
 - Blackbox: not interpretable

Symbolic Representation of Sentences

Pros:

- Interpretable
- Seamless integration with symbolic knowledge bases and inference engines

Cons:

- Many forms of representations, unclear which one is "best"
- Difficult to build an accurate semantic parser

Formal Meaning Representation

Meaning Representations

- Unambiguity: one representation should have exactly one meaning
- Canonical form: one meaning should have exactly one representation
- Verifiability: ability to ground with knowledge bases
- Inference ability: should be able to draw conclusions
- Expressiveness: should be able to handle a wide variety of subject matter

Meaning Representations

- Special-purpose representations
 - Database query
 - Robot control commands
 - **...**
- General-purpose representations
 - Formal logic
 - Semantic graphs

Database queries

 To facilitate data exploration and analysis, you might want to parse natural language into database queries (SQL)

```
which country had the highest carbon emissions last year
```

```
SELECT country.name
FROM country, co2_emissions
WHERE country.id = co2_emissions.country_id
AND co2_emissions.year = 2014
ORDER BY co2_emissions.volume DESC
LIMIT 1;
```


Robot control

For a robot control application, you might want a customdesigned procedural language:

Go to the third junction and take a left.

Intents and arguments

For smartphone voice commands, you might want relatively simple meaning representations, with intents and arguments:

directions to SF by train

```
(TravelQuery
  (Destination /m/0d6lp)
  (Mode TRANSIT))
```

angelina jolie net worth

```
(FactoidQuery
  (Entity /m/0f4vbz)
  (Attribute /person/net_worth))
```

text my wife on my way

```
(SendMessage
  (Recipient 0x31cbf492)
  (MessageType SMS)
  (Subject "on my way"))
```

play sunny by boney m

```
(PlayMedia
  (MediaType MUSIC)
  (SongTitle "sunny")
  (MusicArtist /m/017mh))
```


First-Order Logic (FOL)

- Term: a constant or a variable
- Formula: defined recursively
 - If R is an n-ary relation and $t_1, ..., t_n$ are terms, then $R(t_1, ..., t_n)$ is a formula.
 - If ϕ is a formula, then its negation, $\neg \phi$, is a formula.
 - If ϕ and ψ are formulas, then binary logical connectives can be used to create formulas:
 - $\triangleright \phi \land \psi, \phi \lor \psi, \phi \Rightarrow \psi, \dots$
 - If ϕ is a formula and v is a variable, then quantifiers can be used to create formulas:
 - ▶ Universal quantifier: $\forall v, \phi$
 - ▶ Existential quantifier: $\exists v, \phi$

Translating Between FOL and Natural Language

- Alice is not tall
 - $\rightarrow Tall(a)$
- Some people like Broccoli
 - $ightharpoonup \exists x, Human(x) \land Likes(x, br)$
- If a person likes Thai, then he isn't a friend with Donald
 - $\forall x, Human(x) \land Likes(x, th) \Rightarrow \neg Friends(x, d)$
- $\forall x, Restaurant(x) \Rightarrow (Longwait(x) \lor \neg Likes(a, x))$
 - Every restaurant has a long wait or is disliked by Adrian
- $\forall x, \exists y, \neg Likes(x, y)$
 - Everybody has something he doesn't like
- $\rightarrow \exists y, \forall x, \neg Likes(x, y)$
 - There exists something that nobody likes

- Flavor 0
 - Node: word
 - Edge: relation
 - Ex: DELPH-IN Minimal Recursion Semantics (DM)

Ex: Prague Semantic Dependencies (PSD)

- Flavor 1
 - Node: arbitrary part of the sentence (sub-word, multiple words, no word)
 - Edge: relation
 - Ex: Elementary Dependency Structures (EDS)

- Flavor 1
 - Node: arbitrary part of the sentence (sub-word, multiple words, no word)
 - Edge: relation

- Flavor 2
 - Node: not necessarily corresponding to words (unanchored)
 - Edge: relation
 - Ex: Abstract Meaning Representation

- Flavor 2
 - Node: not necessarily corresponding to words (unanchored)

- Flavor 0
 - Node: word
 - Edge: relation
- Flavor 1
 - Node: arbitrary part of the sentence (sub-word, multiple words, no word)
 - Edge: relation
- Flavor 2
 - Node: not necessarily corresponding to words (unanchored)
 - Edge: relation

Semantic Parsing

- Translating a sentence to its semantic representation
 - Syntax-driven approach
 - Neural approach

Syntax-Driven Semantic Parsing

The Principle of Compositionality

- The meaning of a NL phrase is determined by the meanings of its sub-phrases.
- Phrase ⇒ sub-phrases: this is syntax!
- Syntax-driven semantic parsing
 - follow a constituency syntactic tree from bottom up
 - repeatedly compose semantics of sub-phrases together
- First of all, we need a way to express semantics of phrases
 - We've already talked about sentence meaning representations, e.g., FOL
 - But phrases are incomplete pieces of meanings

λ-Calculus

- Informally, two extensions over FOL
 - λ-abstraction
 - If ϕ is a FOL formula and v is a variable, then $\lambda v \cdot \phi$ is a λ -term, meaning an unnamed function or map from values (of v) to formulas (usually involving v)
 - Notational conventions:

$$\lambda x.(\lambda y.f(x,y)) = \lambda x.\lambda y.f(x,y) = \lambda xy.f(x,y)$$

- Application (or λ-reduction)
 - If we have $\lambda v. \phi$ and ψ , then $[\lambda v. \phi](\psi)$ is a formula.
 - It can be reduced by substituting every instance of v in ϕ with ψ

λ-Calculus Examples

- $\lambda x. Likes(x, NLP)$
 - A map of someone to a statement that he likes NLP
 - \triangleright [$\lambda x. Likes(x, NLP)$](a) reduces to Likes(a, NLP)
- $\lambda x. \lambda y. Friends(x, y)$
 - A map of thing x to a map of thing y to a statement that x and y are friends
 - $[\lambda x. \lambda y. Friends(x, y)](a)$ reduces to $\lambda y. Friends(a, y)$
 - $[[\lambda x. \lambda y. Friends(x, y)](a)](b)$ reduces to $[\lambda y. Friends(a, y)](b)$, which reduces to Friends(a, b)
- $\lambda f.f(a,b)$
 - A map of relation f to a statement that a and b have relation f
 - $[\lambda f. f(a,b)](\lambda x. \lambda y. Friends(x,y))$ reduces to $[\lambda x. \lambda y. Friends(x,y)](a,b)$, which reduces Friends(a,b)

Example CFG

- NNP → Adrian
- ▶ $VBZ \rightarrow likes$
- NNS → restaurants
- \triangleright NP \rightarrow NNP
- ▶ $NP \rightarrow JJ NNS$
- $VP \rightarrow VBZ NP$
- \rightarrow S \rightarrow NP VP

Semantic Attachments to CFG

- ▶ NNP \rightarrow Adrian $\{a\}$
- ▶ VBZ \rightarrow likes $\{\lambda f y. \forall x f(x) \Rightarrow Likes(y, x)\}$
- ▶ JJ \rightarrow expensive $\{\lambda x. Expensive(x)\}$
- ▶ NNS \rightarrow restaurants $\{\lambda x. Restaurant(x)\}$
- NP → NNP {NNP. sem} an undetermined formula of NNP
- ► NP \rightarrow JJ NNS $\{\lambda x$. JJ. sem $(x) \land NNS$.sem $(x)\}$
- ▶ $VP \rightarrow VBZ NP \{VBZ.sem(NP.sem)\}$
- \triangleright S → NP VP {VP.sem(NP.sem)}

 $\lambda v. Expensive(v) \land Restaurant(v)$

S: VP.sem(NP.sem) NP: NNP.sem VP: VBZ.sem(NP.sem) Example VBZ: ... NNP: a NP: λv . JJ.sem $(v) \wedge$ NNS.sem(v)Adrian likes NNS: λw . Restaurant(w) JJ: λz . Expensive(z) expensive restaurants VP: VBZ.sem(NP.sem) NP: λv . Expensive(v) \wedge Restaurant(v) VBZ: $\lambda f. \lambda y. \forall x f(x) \Rightarrow Likes(y, x)$ likes expensive restaurants $[\lambda f. \lambda y. \forall x f(x) \Rightarrow Likes(y, x)](\lambda v. Expensive(v) \land Restaurant(v))$ VBZ.sem **NP.sem** $\lambda y. \forall x [\lambda v. Expensive(v) \land Restaurant(v)](x) \Rightarrow Likes(y, x)$ $\lambda y. \forall x, Expensive(x) \land Restaurant(x) \Rightarrow Likes(y, x)$

$$[\lambda y. \forall x, Expensive(x) \land Restaurant(x) \Rightarrow Likes(y, x)](a)$$

$$VP.sem \qquad \qquad NP.sem$$

 $\forall x, Expensive(x) \land Restaurant(x) \Rightarrow Likes(a, x)$

Neural Semantic Parsing

Neural Models

- Sequence-to-sequence (to be introduced later)
 - Input: sentence
 - Output:
 - Logic formula
 - Linearized semantic graph (e.g., depth-first traversal)

Neural Models

- Parsing to semantic graph
 - Transition-based method
 - Similar to transition-based parsing, but with actions that build a graph instead of a tree

Image from Jiawei et al. AMR Parsing with Action-Pointer Transformer. 2021.

- Graph-based method
 - First generate a set of nodes (using seq2seq or seq2set) and then predict edges between them (like dependency parsing)
 - Or, generate nodes and edges alternately

Neural Models

- A variety of other methods...
- Many ongoing researches

Learning

- Supervised learning
 - Challenge: manual annotation of semantic representations is difficult and costly
- Weakly supervised learning
 - Correct semantic representation not available
 - But in many scenarios, semantic representation is executable and we know the correct outcomes
 - Ex. The correct SQL for a NL question is not known, but the correct answer is known
 - ▶ "What is the capital of France?" ⇒ Paris
 - Supervised learning with latent variables, reinforcement learning

Semantic Role Labeling

Semantic Role Labeling (SRL)

- Semantic parsing produces the complete meaning representation of a sentence
- SRL only identifies predicate-argument structures in a sentence
 - A shallow semantic representation
 - No fine-grained meaning representation inside each argument

Examples: Who did What to Who(m)?

- XYZ corporation bought the stock.
- They sold the stock to XYZ corporation.
- The stock was bought by XYZ corporation.
- ▶ The purchase of the stock by XYZ corporation...
- ▶ The stock purchase by XYZ corporation...
- Predicates (bought, sold, purchase) represent an event
- Semantic roles express the abstract role that arguments of a predicate can take in the event

Two widely used semantic role specifications

FrameNet

- more roles
- define roles specific to a group of predicates

PropBank

- fewer roles
- define generalized semantic roles (prototypes)

XYZ corporation bought the stock

More specific

buyer

agent

The volitional causer of an event

More general

proto-agent

PropBank

- Data resource: annotated on top of the Penn Treebank (so arguments are always constituents).
- Each verb sense has a specific set of roles.
 - I.e., semantic roles in PropBank are verb-sense specific.
- These roles are given numbers rather than names (e.g., Arg0, Arg1).

PropBank Roles

- Arg0: PROTO-AGENT
 - Volitional involvement in event or state
 - Sentience (and/or perception)
 - Causes an event or change of state in another participant
 - Movement (relative to position of another participant)
- Arg1: PROTO-PATIENT
 - Undergoes change of state
 - Causally affected by another participant
 - Stationary relative to movement of another participant

PropBank Roles

- Arg0: PROTO-AGENT
- Arg1: PROTO-PATIENT
- Arg2-5 are not really that consistent
 - Arg2: usually: benefactive, instrument, attribute, or end state
 - Arg3: usually: start point, benefactive, instrument, or attribute
 - Arg4: usually: the end point

PropBank Roles

Arg-M: modifiers or adjuncts of the predicate

ArgM-TMP when? yesterday evening, now LOC where? at the museum, in San Francisco DIR where to/from? down, to Bangkok MNR how? clearly, with much enthusiasm PRP/CAU because ..., in response to the ruling why? REC themselves, each other ADV miscellaneous **PRD** secondary predication ...ate the meat raw

- Arg1: logical subject, patient, thing falling
- Arg2: extent, amount fallen
- Arg3: starting point
- Arg4: ending point
- ArgM-LOC: medium

- Sales fell to \$251.2 million from \$278.8 million.
- ▶ The average junk bond fell by 4.2%.
- The meteor fell through the atmosphere, crashing into Palo Alto.

- Arg1: logical subject, patient, thing falling
- Arg2: extent, amount fallen
- Arg3: starting point
- Arg4: ending point
- ArgM-LOC: medium

- Sales fell to \$251.2 million from \$278.8 million.
- ▶ The average junk bond fell by 4.2%.
- The meteor fell through the atmosphere, crashing into Palo Alto.

- Arg1: logical subject, patient, thing falling
- Arg2: extent, amount fallen
- Arg3: starting point
- Arg4: ending point
- ArgM-LOC: medium

- Sales fell to \$251.2 million from \$278.8 million.
- ▶ The average junk bond fell by 4.2%.
- The meteor fell through the atmosphere, crashing into Palo Alto.

- Arg1: logical subject, patient, thing falling
- Arg2: extent, amount fallen
- Arg3: starting point
- Arg4: ending point
- ArgM-LOC: medium

- Sales fell to \$251.2 million from \$278.8 million.
- ▶ The average junk bond fell by 4.2%.
- The meteor fell through the atmosphere, crashing into Palo Alto.

- Arg1: logical subject, patient, thing falling
- Arg2: extent, amount fallen
- Arg3: starting point
- Arg4: ending point
- ArgM-LOC: medium

- Sales fell to \$251.2 million from \$278.8 million.
- ▶ The average junk bond fell by 4.2%.
- The meteor fell through the atmosphere, crashing into Palo Alto.

- Arg1: logical subject, patient, thing falling
- Arg2: extent, amount fallen
- Arg3: starting point
- Arg4: ending point
- ArgM-LOC: medium

- Sales fell to \$251.2 million from \$278.8 million.
- ▶ The average junk bond fell by 4.2%.
- The meteor fell through the atmosphere, crashing into Palo Alto.

fall.08 (fall back, rely on in emergency)

- Arg0: thing falling back
- Arg1: thing fallen back on

Example:

World Bank president Paul Wolfowitz has fallen back on his last resort.

fall.08 (fall back, rely on in emergency)

- Arg0: thing falling back
- Arg1: thing fallen back on

Example:

World Bank president Paul Wolfowitz has fallen back on his last resort.

fall.08 (fall back, rely on in emergency)

- Arg0: thing falling back
- Arg1: thing fallen back on

Example:

World Bank president Paul Wolfowitz has fallen back on his last resort.

fall.10 (fall for a trick; be fooled by)

Arg1: the fool

Arg2: the trick

Example:

Many people keep falling for the idea that lowering taxes on the rich benefits everyone.

fall.10 (fall for a trick; be fooled by)

Arg1: the fool

Arg2: the trick

Example:

Many people keep falling for the idea that lowering taxes on the rich benefits everyone.

fall.10 (fall for a trick; be fooled by)

- Arg1: the fool
- Arg2: the trick

Example:

Many people keep falling for the idea that lowering taxes on the rich benefits everyone.

FrameNet https://framenet.icsi.berkeley.edu

- Roles are specific to a frame.
- Frames can be any content word (verb, noun, adjective, adverb)
- About 1,000 frames, each with its own roles
- Both frames and roles are hierarchically organized
- Annotated without syntax, so that arguments can be anything

- This frame consists of words that indicate the change of an ITEM's position on a scale (the ATTRIBUTE) from a starting point (INITIAL VALUE) to an end point (FINAL VALUE)
- It consists of the following words:
 - Verbs: advance, climb, decline, decrease, diminish, dip, double, drop, dwindle, edge, explode, fall, fluctuate, gain, grow, increase, jump, move, mushroom, plummet, reach, rise, rocket, shift, skyrocket, slide, soar, swell, swing, triple, tumble
 - Nouns: decline, decrease, escalation, explosion, fall, fluctuation, gain, growth, hike, increase, rise, shift, tumble
 - Adverb: increasingly

- Item: entity that has a position on the scale
- Attribute: scalar property that the <u>Item</u> possesses
- Difference: distance by which an <u>Item</u> changes its position
- Final state: <u>Item</u>'s state after the change
- Final value: position on the scale where <u>Item</u> ends up
- Initial state: <u>Item</u>'s state before the change
- Initial value: position on the scale from which the <u>Item</u> moves
- Value range: portion of the scale along which values of <u>Attribute</u> fluctuate
- Duration: length of time over which the change occurs
- Speed: rate of change of the value
- Group: the group in which an <u>Item</u> changes the value of an <u>Attribute</u>

Examples

```
[ITEM Oil] rose [ATTRIBUTE in price] [DIFFERENCE by 2%].

[ITEM It] has increased [FINAL_STATE to having them 1 day a month].

[ITEM Microsoft shares] fell [FINAL_VALUE to 7 5/8].
```

[ITEM Colon cancer incidence] fell [DIFFERENCE by 50%] [GROUP among men].

a steady *increase* [INITIAL_VALUE from 9.5] [FINAL_VALUE to 14.3] [ITEM in dividends]

a [DIFFERENCE 5%] [ITEM dividend] increase...

Hierarchical organization

Semantic Role Labeling

- Input: a sentence x
- Output:
 - A collection of **predicates**, each consisting of:
 - ▶ A label, sometimes called the frame
 - A span

- In some settings, predicates are given.
- A set of arguments, each consisting of:
 - A label, usually called the role
 - A span

Methods

- As sequence labeling
 - Use the BIO scheme to represent predicate and argument spans and labels
 - One tag sequence for each predicate

Example

You	can't	blame	the	program	for	being	unable	to	identify	it
B-ARG0	0	B-V	B-ARG1	I-ARG1	B-ARG2	I-ARG2	I-ARG2	I-ARG2	I-ARG2	I-ARG2
0	Ο	Ο	B-ARG0	I-ARG0	0	Ο	Ο	Ο	B-V	B-ARG1

Methods

- Graph-based methods
 - First predict predicate and argument spans
 - Then predicate roles as dependency arcs

Example

Methods

- Graph-based methods
 - Predict both spans and roles as dependency arc

Example

Summary

Sentence Semantics

- Vector vs. symbolic representation of sentences
- Formal Meaning Representation
 - Special-purpose representations
 - General-purpose representations: formal logic, semantic graphs
- Syntax-Driven Semantic Parsing
 - λ-Calculus, Semantic Attachments to CFG
- Neural Semantic Parsing
 - Seq2seq, parsing to graph, ...
- Semantic Role Labeling
 - PropBank, FrameNet
 - Methods: sequence labeling, graph-based methods