Brůna et al.

Poster P00711

Gene Prediction

GALBA

The Idea

Accuracy Metrics

Development Steps

Accuracy Results
Effect of Mutations
Annotated Reference

Species Availability

Proteins Only: How Accurately Can We Annotate Large Genomes?

Plant and Animal Genome 31

Tomáš Brůna,
Heng Li,
Joseph Guhlin,
Daniel Honsel,
Steffen Herbold,
Mario Stanke,
Natalia Nenasheva,
Matthis Ebel,
Lars Gabriel,
Katharina J. Hoff

Contact: katharina.hoff@uni-greifswald.de, Poster PO0711

Twitter: @katharina_hoff

Bruna et al.

Poster P00711

Gene Prediction

GALBA The Idea

.

Accuracy Metrics

Development Steps

Accuracy Results
Effect of Mutations
Annotated Reference
Species

Availability

Contents

- **1** Gene Prediction
- **2** GALBA
- 3 The Idea
- **4** Accuracy Metrics
- **5** Development Steps
- 6 Accuracy Results
 Effect of Mutations
 Annotated Reference Species
- 7 Availability

Structural Genome Annotation Problem

Input

- genome assembly
- extrinsic evidence, e.g. protein sequences of related species

Output

protein-coding genes: exon-intron structures (.gff)

Bruna et al.

Poster PO0711

Brůna et al. BMC Bioinformatics (2023) 24:327 https://doi.org/10.1186/s12859-023-05449-z **BMC Bioinformatics**

Gene Prediction

GALBA The Idea

Accuracy Metrics

Development Steps

Accuracy Results
Effect of Mutations
Annotated Reference
Species

Availability

RESEARCH

Open Access

Galba: genome annotation with miniprot and AUGUSTUS

Tomáš Brůna¹, Heng Li^{2,3}, Joseph Guhlin⁴, Daniel Honsel⁵, Steffen Herbold⁶, Mario Stanke⁷, Natalia Nenasheva⁷, Matthis Ebel⁷, Lars Gabriel⁷ and Katharina J. Hoff^{7*}

- 752 docker pulls
- 4 citations (Google Scholar Jan 2nd 2024)

Brůna et al.

Poster P00711

Gene Prediction

GALBA

The luea

Accuracy Metrics

Development Steps

Accuracy Results
Effect of Mutations
Annotated Reference
Species

Availability

Miniprot

Bioinformatics, 39(1), 2023, btad014 https://doi.org/10.1093/bioinformatics/btad014 Advance Access Publication Date: 17 January 2023 Original Paper

Genome analysis

Protein-to-genome alignment with miniprot

Heng Li ® 1,2

"Miniprot is a fast protein-to-genome aligner comparable to existing tools in accuracy. Its primary use case is to assist gene annotation."

genome.fa proteins.fa miniprot AUGUSTUS Training and prediction augustus.gtf

Do we need another pipeline?

- ~1000 vertebrate genomes: no RNA-Seq
- BRAKER2 less accurate in large genomes
- Free Open Source Software

Brůna et al.

Poster P00711

Gene Prediction

GALBA

The Idea

Acquirocy Moto

Accuracy Meti

Development Steps

Accuracy Results
Effect of Mutations

Annotated Reference Species

Availability

Measuring Accuracy of Genome Annotation

Experiments

Accuracy assessment using genome-wide predictions:

Species	Genome Size (Mb)	# Genes in Annotation
Arabidopsis thaliana (thale cress)	119	27,444
Bombus terrestris (bumble bee)	249	10,581
Caenorhabditis elegans (nematode)	100	20,172
Danio rerio (zebrafish)	1,345	25,611
Drosophila melanogaster (fruit fly)	137	13,928
Gallus gallus (chicken)	1,040	17,279
Medicago truncatula (barrelclover)	420	44,464
Mus musculus (mouse)	2,650	22,378
Parasteatoda tepidariorium (house spider)	1,445	18,602
Populus trichocarpa (poppy)	389	34,488
Solanum lycopersicum (tomato)	772	33,562

Protein sequence donor list at https://doi.org/10.1186/s12859-023-05449-z

Accuracy metrics

Precision: Percentage of correctly found genes/transcripts/exons in the **predicted gene set**.

Recall: Percentage of correctly found genes/transcripts/exons in the reference annotation.

F1-Score: 2 · Recall · Precision
Recall + Precision

Brůna et al.

Poster P00711

Gene Prediction

GALBA

The Idea

Accuracy Metrics

Accuracy Results
Effect of Mutations
Annotated Reference

Species Availability

GALBA: Using Proteins of Related Species

Donor proteins from

dsim D. s

D. simulans

D. ananassae,D. pseudoobscura,

D. willistoni.

D. WIIIISTONI,

D. virilis,

D. grimshawi

Idea for DIAMOND filter from Tolman *et al.* (2023) DIAMOND: Buchfink *et al.* (2015)

Bruna et al.

Poster PO0711

Gene Prediction

GALBA

The Idea

Accuracy Metrics

Development Steps

Accuracy Results

Effect of Mutations

Annotated Reference Species

Availability

Accuracy of GALBA with Different Protein Donors

Drosophila melanogaster

Image: Brûna *et al.* https://doi.org/10.1186/s12859-023-05449-z, Fig. 2 BRAKER2: Bruna *et al.* (2021); OrthoDB: Kuznetsov *et al.* (2023)

Brůna et al.

Poster PO0711

Gene Prediction

GALBA

The Idea

....

Accuracy Metrics

Development Steps

Accuracy Results
Effect of Mutations

Annotated Reference Species

Availability

Accuracy in Reference Species

Brůna et al.

Poster PO0711

Gene Prediction

GALBA

The Idea

Accuracy Metrics

Development Steps

Accuracy Results
Effect of Mutations
Annotated Reference

Species Availability

Proteins Only (GALBA, BRAKER2, FunAnnotate) vs. BRAKER3 with RNA-Seq & Proteins

→ Use BRAKER3 with RNA-Seg if available!

Bruna et al.

Poster P00711

Gene Prediction

GALBA The Idea

Accuracy Metrics

•

Development Steps

Accuracy Results
Effect of Mutations
Annotated Reference
Species

Δvailahili

Availability

GitHub

https://github.com/Gaius-Augustus/GALBA

Docker/Singularity

```
singularity build galba.sif \
  docker://katharinahoff/galba:latest
```

singularity exec galba.sif galba.pl [OPTIONS]

Licenses

- GALBA: Artistic License
- all dependencies have Open Source Licenses

Brůna et al.

Poster P00711

Gene Prediction

The Idea

Accuracy Metrics

Development Steps

Accuracy Results
Effect of Mutations
Annotated Reference
Species

Availabilit

Summary

- GALBA is a fully automated pipeline for protein coding gene annotation in eukaryotes
- protein sequences of n ≥ 1 related species serve as evidence
- GALBA has good accuracy in large vertebrate genomes
- precision improvement slightly decreases recall
- RNA-Seq & proteins are superior to proteins only
- GALBA is freely available and easy to execute

Brůna et al.

Poster P00711

Gene Prediction **GALBA**

The Idea

Accuracy Metrics Development Steps

Accuracy Results

Effect of Mutations Annotated Reference Species

GALBA Contributors

Heng Li

Joseph Guhlin

Natalia Nenasheva

Ethan Tolman Also: Daniel Honsel, & Steffen Herboldt

Paul Frandsen

Matthis Ebel

Mario Stanke

Katharina Hoff

Bruna et al.

Poster P00711

Gene Prediction

GALBA

The Idea

Accuracy Metrics

Development Steps

Accuracy Results
Effect of Mutations
Annotated Reference
Species

Availabili

Funding

- German Research Foundation grant 277249973 to K.J.H.
- Project Data Competency granted to K.J.H. and M.S. by the government of Mecklenburg-Vorpommern
- US National Institute of Health grant R01HG010040 to H.L.
- German Research Foundation grant 391397397 to S.H. and M.S.

Brůna et al.

Poster P00711

Gene Prediction

GALBA

The Idea

Accuracy Metrics

Development Steps

Accuracy Results
Effect of Mutations
Annotated Reference

Species

Availabilit

Thank you for your attention!

Brůna et al.

Poster PO0711

Gene Prediction

The Idea

Accuracy Metrics

Development Steps

Accuracy Results
Effect of Mutations
Annotated Reference
Species

Availahilit

References

- Bruna et al. (2023) "Galba: genome annotation with miniprot and AUGUSTUS"
- Bruna et al. (2020) "GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins"
- Bruna et al. (2021) "BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database"
- Li (2023) "Protein-to-genome alignment with miniprot."
- Tolman et al. (2023) "Newly Sequenced Genomes Reveal Patterns of Gene Family Expansion in select Dragonflies (Odonata: Anisoptera)"
- Stanke et al. (2008) "Using native and syntenically mapped cDNA alignments to improve de novo gene finding."
- Buchfink et al. (2015) "Fast and sensitive protein alignment using DIAMOND."
- Kuznetsov et al. (2023) "OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity."
- FunAnnotate: https://github.com/nextgenusfs/funannotate