1. จากปัญหา fractional knapsack จงเขียนโปรแกรมแบบ greedy เพื่อค้นหาเซตของ item ที่มีน้ำหนัก (weight) รวม ไม่เกินขนาดของถุง (weight) W และมีมูลค่ารวม (value) สูงสุด

ข้อมูลนำเข้า

บรรทัดที่ 1 จำนวนเต็ม n W แทนจำนวน item และน้ำหนักของถุง โดยที่ 1 < n <= 10 และ 1.0 <= W <= 3.000.0 คั่นด้วยช่องว่าง

บรรทัดที่ 2 รายการจำนวนเต็ม n รายการ แทนน้ำหนักของ item แต่ละชิ้น บรรทัดที่ 3 รายการจำนวนเต็ม n รายการ แทนมูลค่าของ item แต่ละชิ้น

ข้อมูลส่งออก

เซต n แสดงสัดส่วนการเลือก item แต่ละรายการเป็นคำตอบ โดยที่ 0.0 หมายถึง item ไม่ถูกเลือก และ 1.0 หมายถึงเลือกทั้งชิ้น ทศนิยม 2 ตำแหน่ง

บรรทัดถัดไปมูลค่ารวมสูงสุดของ item ที่ถูกเลือก ทศนิยม 2 ตำแหน่ง

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
4 25	0.28 1.00 0.00 1.00
18 15 10 5	38.94
25 24 5 8	
3 5	1.00 1.00 0.67
1 2 3	4.33
1 2 2	

- 2. ต้องการจัดเก็บไฟล์ข้อมูลจำนวน n ไฟล์ ซึ่งมีความยาวของแต่ละไฟล์แทนด้วย l1, l2, l3, ..., ln ลงบนเทป (tape) บันทึกข้อมูลความยาวไม่จำกัด โชคไม่ดีที่ว่าการเข้าถึงไฟล์ข้อมูลแต่ละไฟล์จะต้องเริ่มจากต้นเทปเสมอ ซึ่งจะส่งผลกระทบกับเวลารวมเฉลี่ยในการเข้าถึงไฟล์ (mean retrieval time) ทุกไฟล์บนเทป ตัวอย่างเช่น สมมติให้ f1, f2 และ f3 มีความยาวของไฟล์ 10, 5 และ 13 ตามลำดับ
 - หากจัดเก็บไฟล์ f1 ตามด้วย f2 และ f3 จะได้เวลารวมเฉลี่ยของการเข้าถึงทั้ง 3 ไฟล์ คือ (10 + (10+5) + (10+5+13))/3 = 17.67
 - หากจัดเก็บไฟล์ f2 ก่อนตามด้วย f1 และ f3 จะทำให้เวลารวมเฉลี่ยมีค่าเท่ากับ 16.00 จงเขียนโปรแกรม greedy เพื่อหาวิธีจัดเก็บไฟล์เหล่านี้ให้เวลารวมเฉลี่ยมีค่าน้อยที่สุด

ข้อมูลนำเข้า

บรรทัดแรก จำนวนเต็ม n แทนจำนวนไฟล์ที่ต้องการจัดเก็บ 1 < n <= 100

บรรทัดสอง รายการจำนวนเต็ม n รายการ แทนความยาวของแต่ละไฟล์ 1 <= fi <= 1,000 คั่นด้วย ช่องว่าง

ข้อมูลส่งออก

เวลารวมเฉลี่ยที่น้อยที่สุดในการเข้าถึงทุกไฟล์บนเทป ทศนิยม 2 ตำแหน่ง

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก			
3	16.00			
10 5 13				
6	28.17			
7 8 15 6 12 9				

3. ตารางเวลารถไฟ n ขบวน แต่ละขบวนจะประกอบไปด้วย เวลามาถึง (arrival time) และเวลาออก (departure time) หากต้องการสร้างชานชลา (platform) เพื่อให้รถไฟแต่ละขบวนสามารถเข้าออกได้ตาม เวลาที่ระบุโดยไม่มีการ delay จงเขียนโปรแกรมแบบ greedy เพื่อค้นหาจำนวนชานชลาที่น้อยที่สุดจาก ตารางเวลาของรถไฟที่กำหนดให้

ข้อมูลนำเข้า

บรรทัดที่ 1 จำนวนเต็ม n แทนจำนวนรถไฟที่เข้าออกสถานี โดยที่ 1 <= n <= 500 n บรรทัดถัดไป แต่ละบรรทัดแสดงทศนิยม ta tb แทนเวลาเข้าและออกของรถไฟแต่ละขบวน คั่นด้วย ช่องว่าง โดยที่ ta < tb

ข้อมูลส่งออก

จำนวนชานชลาที่น้อยที่สุดที่รถไฟแต่ละขบวนสามารถเข้าออกได้โดยไม่เกิดการ delay

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
6	2
2.00 2.30	
2.10 3.40	
3.00 3.20	
3.20 4.30	
3.50 4.00	
5.00 5.20	
3	1
9.00 9.40	

9.10 12.00	
12.01 13.50	

4. เส้นตรง (line) ประกอบไปด้วยจุดเริ่มต้น xi และจุดสิ้นสุด xj แทนด้วย (xi, xj) โดยที่ xi <= xj หากมีเส้นตรง ทั้งหมด n เส้น และต้องการรวมเส้นตรงเหล่านี้เป็นเส้นเดียวเป็น (xa, xb) โดยใช้เส้นตรงเหล่านี้ให้น้อยที่สุด ตัวอย่างเช่น สมมติมีเส้นตรง 10 เส้น ได้แก่ (1,2), (3,5), (1,5), (2,4), (4,5), (3,6), (2,7), (7,9), (4,8), (1,3) หากต้องการรวมเป็นเส้นตรง (1,9) คำตอบที่น้อยที่สุดคือ 3 เส้น ได้แก่ (1,5), (4,8), (7,9) จงเขียนโปรแกรม greedy เพื่อหาคำตอบดังกล่าว

ข้อมูลนำเข้า

บรรทัดที่ 1 จำนวนเต็ม n แทนจำนวนเส้นตรง โดยที่ 1 <= n <= 500 n บรรทัดถัดไป แต่ละบรรทัดแสดงเส้นตรงแทนด้วยคู่ลำดับของจุดเริ่มต้นและจุดสิ้นสุด xi และ xj คั่นด้วยช่องว่าง โดยที่ -50,000 <= xi, xj <= 50,000 และ xi <= xj บรรทัดสุดท้าย แทนด้วยคู่ลำดับ xa xb แทนเส้นตรงที่ต้องการ

ข้อมูลส่งออก

จำนวนเส้นตรงที่น้อยที่สุดซึ่งถูกเลือกเพื่อสร้างเส้นตรง (xa, xb)
บรรทัดถัดไป แต่ละบรรทัด แทนรายการเส้นตรง (xi, xj) ที่ถูกเลือก เรียงลำดับตาม xi และ xj น้อยไปมาก

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
10	3
1 2	1 5
3 5	4 8
1 5	7 9
2 4	
4 5	
3 6	
2 7	
7 9	
4 8	
1 3	
1 9	

5. ตารางด้านล่างแสดงกิจกรรมที่ต้องการใช้ห้องประชุมในช่วงเวลาต่างๆ

กิจกรรม	1	2	3	4	5	6	7	8	9	10
เวลาเริ่ม	1	3	0	5	3	5	6	8	8	2
เวลาสิ้นสุด	4	5	6	7	8	9	10	11	12	13

หากมีห้องประชุมว่างทั้งหมด k ห้อง จงเขียนโปรแกรมแบบ greedy เพื่อค้นหาจำนวนกิจกรรมสูงสุดที่สามารถจัด ได้ กำหนดให้ greedy criterion จะเลือกกิจกรรมที่ใช้เวลานานที่สุดก่อน (longest first strategy)

ข้อมูลนำเข้า

บรรทัดที่ 1 จำนวนเต็ม n และ k แทนจำนวนกิจกรรมและจำนวนห้องประชุม n+1 บรรทัดถัดไป คู่ลำดับจำนวนเต็ม s และ t แทนเวลาเริ่มต้นและเวลาสิ้นสุดของแต่ละกิจกรรม โดย 1<= s, t <= 20 และ s < t

ข้อมูลส่งออก

จำนวนกิจกรรมสูงสุดที่สามารถจัดได้

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
10 3	5
1 4	
3 5	
0 6	
5 7	
3 8	
5 9	
6 10	
8 11	
8 12	
2 13	