MA2252 Introduction to Computing

Lecture 15
Taylor series

Sharad Kumar Keshari

School of Computing and Mathematical Sciences
University of Leicester

Learning outcomes

At the end of lecture, students will be able to

- understand Taylor polynomials
- understand Taylor series
- find Taylor series approximations and estimate error

Introduction

Many functions in Mathematics can be approximated by polynomials upto desired accuracy.

To perform such approximations, we need to understand **Taylor polynomials** of a function.

Taylor polynomials

A Taylor polynomial of a function f(x) centered at x = a is a polynomial approximation of f(x).

Figure: Brook Taylor

Question: Find a quadratic polynomial to approximate f(x) near x = a.

$$P_{2}^{(n)} = f_{2}^{(n)}(x-a)^{2} + f_{2}^{(n)}(x-a) + f_{3}^{(n)}$$

$$= f_{3}^{(n)} + f_{3}^{(n)}(x-a) + f_{3}^{(n)}(x-a)^{2}$$

A nth order Taylor Polynomial is given as

$$p_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^n(a)}{n!}(x-a)^n.$$
 (1)

- $p_0(x) = f(a)$ (constant function)
- $p_1(x) = f(a) + \frac{f'(a)}{1!}(x-a)$ (linear approximation)
- $p_2(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2$ (quadratic approximation)

at N= (0=0) **Example:** The Taylor polynomials of $f(x) = \cos x$ upto degree 6:

•
$$n = 0$$
: $p_0(x) = 1$

•
$$n=2$$
: $p_2(x)=1-\frac{x^2}{2}$

•
$$n = 0$$
: $p_0(x) = 1$
• $n = 2$: $p_2(x) = 1 - \frac{x^2}{2}$
• $n = 4$: $p_4(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24}$

$$n = 4: \quad p_4(x) = 1 - \frac{1}{2} + \frac{1}{24}$$

$$n = 6: \quad p_6(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720}.$$

$$p_2(x) = f(0) + f'(0)(x-0) + f'(0)(x-0) + f'(0) = 0$$
ote: It is possible that a *nth* order Taylor polynomial is not of d

Note: It is possible that a *nth* order Taylor polynomial is not of degree n.

Example: Write a script file to plot the Taylor polynomials of $\cos x$ upto degree 6.

Demo

Taylor series

A Taylor series is an infinite series expansion of a function at a given point in its domain.

Taylor series of a real-valued function f(x) at x = a is defined as

$$f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$
 (2)

or

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!} (x - a)^{n}$$
 (3)

Taylor series (contd.)

ies.

When a = 0, we obtain a Maclaurin series.

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \cdots$$
 (4)

Taylor series (contd.)

Example: Find the Taylor series of $\cos x$ at x = 0. $f(x) = f(b) + f'(0)x + f''(0)x^{2} + f'''(0)x^{3}$ $5inx = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} = 1 - \frac{x^{2}}{2!} + \frac{x^{7}}{4!} - \frac{x^{6}}{4!} + \frac{x^{1}}{4!} - \frac{x^{1}}{4!} + \frac{x^{1}}{4!} + \frac{x^{1}}{4!} - \frac{x^{1}}{4!} + \frac{x$

Taylor's theorem

Theorem

Suppose a function f(x) has n+1 continuous derivatives in an open interval I containing x=a then $\forall n$ and $\forall x \in I$,

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f''(n)}{2!}(x-a)^n + R_n(x)$$
 (5)
where
$$R_n(x) = \frac{f^{n+1}(c)}{(n+1)!}(x-a)^{n+1}$$
 Taylor (6)
for some c between a and x.

Here, $R_n(x)$ is called the Taylor remainder or error term.

Error estimation

We don't know the exact value of $R_n(x)$ since exact value of c is unknown. However, an upper bound on the error term can still be found.

If $|f^{n+1}(x)| \leq M$ for all t between a and x, then

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$

Error estimation (contd.)

$$COSN = 1 - N^{2} + N^{4} + \cdots$$

$$P_{2}(N)$$

$$P_{2}(N)$$

$$R_{2}(N)$$

$$R_{2}(N)$$

$$R_{3}(N)$$

Example: Find the maximum error if $p_2(x) = 1 - \frac{x^2}{2}$ is used to estimate the value of cos(x) at x = 0.3. Verify that the error estimate in MATLAB is less than the maximum error.

find the maximum error.

$$f(x) = 65x \\
f'(x) = 65x \\
f'(x$$

Error estimation (contd.)

$$|R_{2}(M)| = |sinc||x|^{3}$$

$$|R_{2}(M)| = |sinc||x|^{3}$$

$$|Sinc||x|^{3} = |Sinc||x|^{3}$$

$$|R_{2}(M)| = |sinc||x|^{3}$$

$$|R_{2}(M)| = |sinc||x|^{3}$$

$$|R_{2}(M)| = |sinc||x|^{3}$$

$$|Sinc||x|^{3} = |Sinc||x|^{3}$$

Applications of Taylor series

Some applications:

- Small-angle approximations e.g. $\sin \theta \approx \theta$ for small values of θ .
- Finding non-elementary definite integrals e.g. $\int_1^2 \frac{\sin x}{x} dx$
- Deriving formulas for numerical differentiation and integration (we'll study later in this course)

End of Lecture 15

Please provide your feedback • here