Hotels

Christina Liang

```
library(tidyverse)
library(infer)

hotel_bookings <- read.csv("~/R/DIIG/hotel_bookings.csv")</pre>
```

First, I made some new variables and did some data cleaning:

New variable for total amount of nights stayed:

```
hotel_bookings <- hotel_bookings %>%
mutate(total_nights = stays_in_week_nights + stays_in_weekend_nights)
```

Changing the month of arrival into chronologically-ordered levels:

I also changed the is_canceled variable from numeric to categorical, as 0 and 1 represent a booking being cancelled or not.

```
hotel_bookings$is_canceled <- as.factor(hotel_bookings$is_canceled)</pre>
```

I created a variable for the total number of guests during the duration of the stay:

```
hotel_bookings <- hotel_bookings %>%
  mutate(total_guests = adults + children + babies)
```

First, I visualized the distribution of visits to the hotels based on month of the year, to find that there was an increase in volume of arrivals in the warmer months.

Distribution of Arrivals at Hotel by Month of the Year Faceted by City vs. Resort Hotel

`summarise()` regrouping output by 'hotel' (override with `.groups` argument)

Mean Average Daily Rate by Hotel


```
group_by(hotel, arrival_date_month) %>%
summarise(meanadr = mean(adr))

## `summarise()` regrouping output by 'hotel' (override with `.groups` argument)

## # A tibble: 24 x 3
```

```
## # Groups:
               hotel [2]
##
      hotel
                 arrival_date_month meanadr
      <chr>
##
                 <fct>
                                        <dbl>
    1 City Hotel January
                                        82.6
##
    2 City Hotel February
                                        85.1
##
                                        92.6
##
    3 City Hotel March
   4 City Hotel April
                                       111.
##
    5 City Hotel May
                                        122.
##
   6 City Hotel June
                                       119.
   7 City Hotel July
                                       111.
   8 City Hotel August
                                       115.
## 9 City Hotel September
                                       110.
## 10 City Hotel October
                                       100.
## # ... with 14 more rows
```

hotel_bookings %>%

For this data challenge, I'll mainly be focusing on Resort Hotels, so I filtered the "City Hotels" out of my dataset.

```
resort_bookings <- hotel_bookings %>%
filter(hotel == "Resort Hotel")
```

Question: what predicts cancellations?

How does having kids influence rates?

```
logit_mod1 <- glm(is_canceled ~ arrival_date_month + total_nights,</pre>
                  data = resort_bookings, family = "binomial", maxit = 100)
logit_mod2 <- glm(is_canceled ~ adults + children + babies + meal,</pre>
                  data = resort_bookings, family = "binomial", maxit = 100)
logit_mod2
##
## Call: glm(formula = is_canceled ~ adults + children + babies + meal,
       family = "binomial", data = resort_bookings, maxit = 100)
##
##
## Coefficients:
                                      children
                                                       babies
##
     (Intercept)
                         adults
                                                                       mealFB
##
        -1.85054
                        0.41463
                                       0.32996
                                                      -0.64143
                                                                      1.36302
##
          mealHB
                        mealSC mealUndefined
##
         0.22745
                       -2.19245
                                      -0.05317
##
## Degrees of Freedom: 40059 Total (i.e. Null); 40052 Residual
## Null Deviance:
                        47330
## Residual Deviance: 46310
                                AIC: 46330
logit_mod3 <- glm(is_canceled ~ adr + required_car_parking_spaces + total_of_special_requests,</pre>
                  data = resort_bookings, family = "binomial", maxit = 100)
```

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred