Análise Matemática III (Semestral) - LICENCIATURA EM ENG. INFORMÁTICA

Ano lectivo 2022/2023 17.10.22

Mini-teste 1-B Duração: 30min

Nome: Número:

Em cada questão deve assinalar a resposta correta. Cada questão vale 0,8 valores. Por cada questão errada é penalizado em 0,2 valores. Não é penalizado se não responder a uma questão.

1. Seja $z \in \mathbb{C}$ tal que |z| = 3. Então

(A)
$$8 \le |1 - z^2| \le 10$$

(B)
$$9 \le |1 - z^2| \le 10$$

(C)
$$1 < |1 - z^2| < 9$$

(**D**)
$$3 \le |1 - z^2| \le 9$$

(A)
$$8 \le |1 - z^2| \le 10$$
 (B) $9 \le |1 - z^2| \le 10$ (D) $3 \le |1 - z^2| \le 9$ (E) $\frac{17}{2} \le |1 - z^2| \le 10$

2. O conjunto determinado pela condição $|\overline{z} - i| \le 9, z \in \mathbb{C}$, é

- (\mathbf{A}) um círculo de raio 3 e centro i
- (\mathbf{B}) um círculo de raio 9 e centro i
- (C) um círculo de raio 9 e centro -i
- (**D**) um círculo de raio 3 e centro -i
- (\mathbf{E}) uma circunferência de raio 9 e centro -i

3. Os zeros do polinómio $-z^3 - 27$ são

(A)
$$z_0 = \frac{3}{2}(-1+i\sqrt{3}), z_1 = -3 \text{ e } z_2 = \frac{3}{2}(-1-i\sqrt{3})$$

(B)
$$z_0 = 3 + i3\sqrt{3}, z_1 = -3 \text{ e } z_2 = 3 - i3\sqrt{3}$$

(C)
$$z_0 = -1 + i\sqrt{3}$$
, $z_1 = -3$ e $z_2 = -1 - i\sqrt{3}$

(**D**)
$$z_0 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$
, $z_1 = -3$ e $z_2 = \frac{1}{2} - \frac{\sqrt{3}}{2}i$

(**E**)
$$z_0 = \frac{3}{2}(1 + i\sqrt{3}), z_1 = -3 \text{ e } z_2 = \frac{3}{2}(1 - i\sqrt{3})$$

4. O conjunto solução da igualdade $e^z = \frac{(1-i)^4}{1+i}$ é dado por

$$(\mathbf{A}) \left\{ \frac{3}{2} \ln 2 + i \left(\frac{3}{4} + 2k \right) \pi : k \in \mathbb{Z} \right\}$$

(A)
$$\{\frac{3}{2}\ln 2 + i(\frac{5}{4} + 2k)\pi : k \in \mathbb{Z}\}\$$
 (B) $\{\frac{3}{2}\ln 2 + i(\frac{5}{4} - 2k)\pi : k \in \mathbb{Z}\}\$ (C) $\{\frac{3}{2}\ln 2 + i(\frac{3}{4} + 2k)\pi : k \in \mathbb{N}\}$

(C)
$$\{\frac{3}{2}\ln 2 + i(\frac{3}{4} + 2k)\pi : k \in \mathbb{N}\}$$

(**D**)
$$\{\frac{3}{2}\ln 2 - i(\frac{5}{4} + 2k)\pi : k \in \mathbb{Z}\}\$$
 (**E**) $\{3\ln 2 - i(\frac{3}{4} - 2k)\pi : k \in \mathbb{Z}\}$

(E)
$$\{3\ln 2 - i(\frac{3}{4} - 2k)\pi : k \in \mathbb{Z}\}$$

5. A expressão analítica da função afim $f: \mathbb{C} \to \mathbb{C}$ que transforma a região D na região D', abaixo representadas,

é dada por

$$(\mathbf{A}) \ f(z) = \frac{9}{2}(1+i)z + 2 + i$$

$$(\mathbf{B}) \ f(z) = \frac{3\sqrt{2}}{2}(1+i)z + 2 + i$$

$$(\mathbf{C}) \ f(z) = \frac{9\sqrt{2}}{4}(1+i)z + 2 + i$$

$$(\mathbf{D}) \ f(z) = \frac{3\sqrt{2}}{4}(1+i)z + 2 + i$$

$$(\mathbf{E}) \ f(z) = \frac{9\sqrt{2}}{2}(1+i)z + 2 + i$$

(**D**)
$$f(z) = \frac{3\sqrt{2}}{4}(1+i)z + 2 + i$$
 (**E**) $f(z) = \frac{9\sqrt{2}}{2}(1+i)z + 2 + i$