Departamento de Matemáticas $1^{\underline{0}}$ Bachillerato

24 - Complejos

1. p045e01 - Calcula:

(a)
$$(7-2i)^2 + (3+4i)(5-2i)$$

Sol: 68 - 14i

(b)
$$(2+i)^2(3-2i) + (5-i)i^2$$

Sol: 12 + 7i

(c)
$$(\sqrt{3}-2i)^2+(2\sqrt{3}-5i)(1-2i)$$

Sol: $-11 + 2\sqrt{3} + i\left(-8\sqrt{3} - 5\right)$

(d)
$$(i^7-1)(i^{16}+i^3-i^9)^5+(1-2i)^5(1+i)$$

Sol: 0

(e)
$$(1+i)^2 + \frac{1+i}{1-i}$$

Sol: 3*i*

2. p045e02 - Halla el valor de k, sabiendo que se cumple:

(a)
$$(k+5i) + (3+i) = (1+5i) + (-k+i)$$

Sol: [-1]

(b)
$$(1+3i)(k+2i) = 13+59i$$

Sol: $\{k:19\}$

(c)
$$k + \frac{4}{5}i = \frac{5+i}{3-i}$$

Sol: $\left[\frac{7}{5}\right]$

3. p045e03 - Calcula el inverso de los siguientes números complejos:

(a)
$$-1 + 2i$$

Sol: $-\frac{1}{5} - \frac{2i}{5}$

(b)
$$3 - \sqrt{2}i$$

Sol: $\frac{3}{11} + \frac{\sqrt{2}i}{11}$

(c) $\frac{1}{3} - \frac{1}{2}i$

Sol: $\frac{12}{13} + \frac{18i}{13}$

4. p045e04y14 - Calcular el valor de k para que la siguiente expresión sea a) real y b) imaginario:

(a)
$$\frac{k-2i}{3+4i}$$

Sol:
$$\frac{3k}{25} - \frac{4ik}{25} - \frac{8}{25} - \frac{6i}{25} \rightarrow \left[-\frac{3}{2} \right] \wedge \left[\frac{8}{3} \right]$$

(b)
$$k-2+(\frac{1}{4}+k)i$$

Sol:
$$k + ik - 2 + \frac{i}{4} \to \left[-\frac{1}{4} \right] \wedge [2]$$

5. p045e05 - Determina el valor que debe tener k para que la siguiente expresión sea un número real.

(a)
$$(k-i)^3$$

Sol:
$$k^3 - 3ik^2 - 3k + i \to \left[-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3} \right]$$

6. p
045e11 - Dado el siguiente número z, calcula el valor de z $\cdot \overline{z}$

(a)
$$\sqrt{3} - 2i$$

Sol: 7

(b) 4-2i

Sol: $-\frac{i}{2}$

7. p045e17 - Calcula

(a) (5-i)(3+2i)

Sol: 17 + 7i

(b) $(2 + \frac{1}{3}i)(-5 - i)(2 - i)(2 + i)$

Sol: $-\frac{145}{3} - \frac{55i}{3}$

(c) $(3 - \frac{1}{4}i)(2 - i)(3 + 2i)$

Sol: $\frac{97}{4} + i$

(d) $\frac{2-i}{1+3i}$

Sol: $-\frac{1}{10} - \frac{7i}{10}$

(e) $\frac{\sqrt{2}-3i}{2+i}$

Sol: $-\frac{3}{5} + \frac{2\sqrt{2}}{5} - \frac{6i}{5} - \frac{\sqrt{2}i}{5}$

 $(f) \quad \frac{1}{3-i}$

Sol: $\frac{3}{10} + \frac{i}{10}$

 $(g) \quad \frac{3i}{2-4i}$

Sol: $-\frac{3}{5} + \frac{3i}{10}$

(h) $\frac{5-i}{i}$

Sol: -1 - 5i

(i) $\frac{1+2i}{3+3i}$

Sol: $\frac{1}{2} + \frac{i}{6}$

 $(j) \quad (\sqrt{2} - i) \frac{\sqrt{2} + i}{1 - 2i}$

Sol: $\frac{3}{5} + \frac{6i}{5}$

(k) $(2\sqrt{3} - i)\frac{\sqrt{3}i}{1+i}$

Sol: $\frac{\sqrt{3}}{2} + 3 - \frac{\sqrt{3}i}{2} + 3i$

 $(1) \qquad \frac{1-i}{3+2i} \, \frac{2i}{1+i}$

Sol: $\frac{6}{13} - \frac{4i}{13}$

 $(m) \quad \frac{\sqrt{2}}{-2-i} \frac{1}{2+3i}$

Sol: $-\frac{\sqrt{2}}{65} + \frac{8\sqrt{2}i}{65}$