NULL INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 98/53319 (11) International Publication Number: **A2** G01N 33/574, C12Q 1/68 (43) International Publication Date: 26 November 1998 (26.11.98)

US

PCT/US98/10277 (21) International Application Number:

20 May 1998 (20.05.98) (22) International Filing Date:

(63) Related by Continuation (CON) or Continuation-in-Part

(CIP) to Earlier Application 60/047.352 (CON) US Filed on 21 May 1997 (21.05.97)

21 May 1997 (21.05.97)

(71) Applicant (for all designated States except US): THE JOHNS HOPKINS UNIVERSITY [US/US]; Suite 2-100, 2024 E. Monument Street, Baltimore, MD 21205 (US).

(72) Inventors; and

(30) Priority Data:

60/047.352

(75) Inventors/Applicants (for US only): VOGELSTEIN, Bert [US/US]; The Johns Hopkins University, Suite 2-100, 2024 E. Monument Street, Baltimore, MD 21205 (US). KIN-ZLER, Kenneth, W. [US/US]; The Johns Hopkins University, Suite 2-100, 2024 E. Monument Street, Baltimore, MD 21205 (US).

(74) Agents: KAGAN, Sarah, A. et al.; Banner & Witcoff, Ltd., 11th floor, 1001 G Street, N.W., Washington, DC 20001-4597

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: GENE EXPRESSION PROFILES IN NORMAL AND CANCER CELLS

(57) Abstract

As a step towards understanding the complex differences between normal and cancer cells, gene expression patterns were examined in gastrointestinal tumors. More than 300,000 transcripts derived from at least 45,000 different genes were analyzed. Although extensive similarity was noted between the expression profiles, more than 500 transcripts that were expressed at significantly different levels in normal and neoplastic cells were identified. These data provide insights into the extent of expression differences underlying malignancy and reveal genes that are useful as diagnostic or prognostic markers.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Gene Expression Profiles in Normal and Cancer Cells

This invention was made with support from the National Institutes of Health, Grant No. GM07309, CA57345, and CA62924. The U.S. government therefore retains certain rights in the invention.

TECHNICAL FIELD OF THE INVENTION

This invention is related to the diagnosis of cancer, and tools for carrying out such diagnosis.

BACKGROUND OF THE INVENTION

10

15

5

Much of cancer research over the past 50 years has been devoted to the analyses of genes that are expressed differently in tumor cells compared to their normal counterparts. Although hundreds of studies have pointed out differences in the expression of one or a few genes, no comprehensive study of gene expression in the cancer cell has been reported. It is therefore not known how many genes are expressed differentially in tumor versus normal cells, whether the bulk of these differences are cell autonomous rather than being dependent on the tumor microenvironment, and whether most differences are cell-type specific or tumor specific. Thus there is a need in the art for information on the molecular changes that occur in cells during cancer development and progression.

SUMMARY OF THE INVENTION

According to one embodiment of the invention, a method is provided for diagnosing colon cancer in a sample suspected of being neoplastic. The method comprises the steps of:

5

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 3;

10

identifying the first sample as neoplastic when the level of the at least one transcript is found to be lower in the first sample than in the second sample.

15

According to another embodiment of the invention, another method is provided for diagnosing colon cancer in a sample suspected of being neoplastic. The method comprises the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2;

20

identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

25

In another embodiment of the invention an isolated and purified human nucleic acid molecule is provided. The molecule comprises a SAGE tag selected from SEQ ID NO:1-732.

In yet another aspect of the invention an isolated nucleotide probe is provided. The probe comprises at least 12 nucleotides of a human nucleic acid molecule, wherein the human nucleic acid molecule comprises a SAGE tag selected from SEQ ID NO: 1-732.

According to another aspect of the invention a method is provided for diagnosing pancreatic cancer in a sample suspected of being neoplastic. The method comprises the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a pancreatic tissue suspected of being neoplastic and the second sample is of a normal human colon tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4;

identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

According to still another embodiment of the invention a method of diagnosing cancer in a sample suspected of being neoplastic is provided. The method comprises the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a tissue suspected of being neoplastic and the second sample is of a normal human tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5;

identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

According to another embodiment of the invention a method is provided to aid in the determination of a prognosis for a colon cancer patient. The method comprises the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic colonic tissue and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 3;

10

5

15

20

determining a poorer prognosis if the level of the at least one transcript is found to be lower in the first sample than in the second sample.

According to another aspect of the invention a method to aid in determining a prognosis for a patient with colon cancer is provided. The method comprises the steps of:

comparing the level of at least one transcript in a first tissue sample to a second sample, wherein the first sample is of a colonic cancer tissue and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

In yet another embodiment of the invention a method is provided for diagnosing colon cancer in a sample suspected of being neoplastic. The method comprises the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 3;

identifying the first sample as neoplastic when the level of expression of the protein is found to be lower in the first sample than in the second sample.

In another aspect of the invention a method of diagnosing colon cancer in a sample suspected of being neoplastic is provided. The method comprises the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript

5

10

15

20

25

identified by a tag selected from the group consisting of those shown in Table 2;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

5

According to another embodiment of the invention a method is provided to aid in determining a prognosis of a patient having pancreatic cancer. The method comprises the steps of:

10

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic pancreatic tissue and the second sample is of a normal human colon tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4;

determining a poorer prognosis if transcription is found to be higher in the first sample than in the second sample.

15

In yet another aspect of the invention a method to aid in providing a prognosis for a cancer patient is provided. The method comprises the steps of:

20

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic tissue and the second sample is of a normal human tissue of the same tissue type, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5;

determining a poorer prognosis if transcription is found to be higher in the first sample than in the second sample.

25

According to still another aspect of the invention, a method is provided for diagnosing pancreatic cancer in a sample suspected of being neoplastic. The method comprises the steps of:

comparing the level of expression of at least one protein

encoded by a transcript in a first sample of a tissue to a second sample, wherein the first sample is of a pancreatic tissue suspected of being neoplastic and the second sample is of a normal human colon tissue, wherein said protein is

encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4:

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

According to yet another aspect of the invention a method is provided for diagnosing cancer in a sample suspected of being neoplastic. The method comprises the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a tissue suspected of being neoplastic and the second sample is of a normal human tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

In still another embodiment of the invention a method is provided to aid in the determination of a prognosis of a colon cancer patient. The method comprises the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic colonic tissue and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 3;

determining a poorer prognosis if the level of expression is found to be lower in the first sample than in the second sample.

In still another embodiment of the invention a method is provided to aid in determining a prognosis for a patient with colon cancer. The method comprises the steps of:

comparing the level of expression of at least one protein in a first tissue sample to a second sample, wherein the first sample is of a colonic cancer tissue and the second sample is of a normal human colonic tissue, and

10

5

15

20

25

wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

5

In still another aspect of the invention a method is provided to aid in determining a prognosis of a patient having pancreatic cancer. The method comprises the steps of:

10

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic pancreatic tissue and the second sample is of a normal human colon tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

15

According to even a further aspect of the invention a method is provided to aid in providing a prognosis for a cancer patient. The method comprises the steps of:

20

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic tissue and the second sample is of a normal human tissue of the same tissue type, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

25

In still another embodiment of the invention a method of treating a cancer cell is provided. The method comprises the step of:

administering to a cancer cell an antibody which specifically binds to a protein encoded by a transcript identified by a tag selected from the group consisting of those shown in Tables 2, 4, and 5, wherein the antibody is linked to a cytotoxic agent.

In another aspect of the invention an antibody linked to a cytotoxic agent is provided. The antibody specifically binds to a protein encoded by a transcript identified by a tag selected from the group consisting of those shown in Tables 2, 4, and 5.

5

According to another aspect of the invention, a method of detecting colon cancer in a patient is provided. The method comprises the steps of:

10

comparing the level of at least one protein or transcript in a first body sample to a second body sample, wherein the first sample is a body sample of the patient and the second sample is of a normal human, wherein the protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

15

identifying neoplasia when the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

In another aspect of the invention a method of detecting pancreatic cancer in a patient is provided. The method comprises the steps of:

20

comparing the level of at least one protein or transcript encoded by a transcript in a first sample of a tissue to a second sample, wherein the first sample is of the patient and the second sample is of a normal human, wherein said protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown Table 4, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

25

identifying neoplasia when the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

Also provided by the present invention is a method of detecting cancer in a patient. The method comprises the steps of:

30

comparing the level of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of patient and the second sample is of a normal human, wherein said protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown Table 5, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

5

identifying neoplasia when the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

Additionally provided by the present invention is a method to aid in the determination of a prognosis for a colon cancer patient. The method comprises the steps of:

10

comparing the level of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of a colon cancer patient and the second sample is of a normal human, wherein the protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown in Table 3, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum:

15

determining a poorer prognosis if the level of the at least one protein or transcript is found to be lower in the first sample than in the second sample.

20

Provided by another embodiment of the invention is a method to aid in determining a prognosis for a patient with colon cancer. The method comprises the steps of:

25

comparing the level of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of a colonic cancer patient and the second sample is of a normal human, wherein the protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

determining a poorer prognosis if the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

According to still another aspect of the invention, a method to aid in determining a prognosis of a patient having pancreatic cancer is provided. The method comprises the steps of:

comparing the level of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of a pancreatic cancer patient and the second sample is of a normal human, wherein said protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown Table 4, wherein said first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

determining a poorer prognosis if the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

Also provided by the present invention is a method to aid in providing a prognosis for a cancer patient. The method comprises the steps of:

comparing the level of expression of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of a cancer patient and the second sample is of a normal human, wherein said protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown Table 5, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

determining a poorer prognosis if the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

The present invention further includes antisense oligonucleotides complementary in whole or in part to SEQ ID NOS:1-732.

5

15

20

10

15

20

25

This invention also provides a method for screening for candidate agents that modulate the expression of a polynuleotide selected from the group consisting of the polynucleotides in SEQ ID NOS.1-732 or their respective complements, by contacting a test agent with a pancreatic or colon cell and monitoring expression of the polynucleotide, wherein the test agent which modifies the expression of the polynucleotide is a candidate agent.

The present invention provides the art with new methods and reagents for diagnosing and prognosing cancers. In addition, some of the newly disclosed genes may play an important role in the development of cancers.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1. Comparison of expression patterns in colorectal cancers and normal colon epithelium. (FIG. 1A) A semi-logarithmic plot reveals 51 tags that were decreased more than 10 fold in primary CR cancer cells whereas 32 tags were increased more than 10 fold. 62,168 and 60,878 tags derived from normal colon epithelium and primary CR cancers, respectively, were used for this analysis. The relative expression of each transcript was determined by dividing the number of tags observed in tumor and normal tissue as indicated. To avoid division by 0, a tag value of 1 was used for any tag that was not detectable in one of the samples. These ratios were then rounded to the nearest integer and their distribution plotted on the abscissa. The number of genes displaying each ratio was plotted on the ordinate. Tu: CR tumors; NC: Normal colon. (FIG. 1B and FIG. 1C) Differentially expressed genes in colorectal cancers. The number of transcripts found to be differentially expressed (P < 0.01) are presented as Venn diagrams. Diagrams of transcripts that were decreased (FIG. 1B) or increased (FIG. 1C) in CR cancers compared to normal colon epithelium. Comparisons were between primary tumors and cells in culture as indicated.

Fig. 2. Northern blot analysis of genes differentially expressed in gastrointestinal neoplasia. Northern blot analysis was performed on total RNA (5 μg isolated from primary CR carcinomas (T) and matching normal colon epithelium (N), or pancreatic carcinomas. The top panel in each case show an

10

15

20

example of the ethidium bromide stained gels prior to transfer. The number of SAGE tags observed in the original analysis is indicated to the right of each blot. (FIG. 2A) Examples of transcripts that were decreased or increased in CR cancers. (FIG.2B) Examples of transcripts increased in pancreatic cancers (10). (FIG.2C) Examples of transcripts elevated in cancer which were or were not cancer type specific. Probes used for Northern blot analysis were as follows (Human SAGE Tag unique identifier, gene name, (GenBank accession number)): (FIG. 2A) H204104, Guanylin (M95714); H259108, (see Table 2); H1000193, (see Table 2); H998030, (see Table 2). (FIG. 2B) H294155, RIG-E (U42376); H560056, TIMP-1 (S68252). (FIG. 2C) H802810, EST338411 (W52120); H85882, 1-8D (X57351); H618841, GA733-1 (X13425).

Tables 2-5. Transcripts Differentially Expressed in Human Cancer.

Tag sequence represents the NlaIII site plus the adjacent 11 bp SAGE tag. Tag number indicates a SAGE UID (unique identifier). NC, TU, CL, PT, PC, refers to the number of the indicated tag observed in RNA isolated from normal colorectal epithelium, primary colorectal cancers, colorectal cancer cell lines, primary pancreatic cancers, or pancreatic cancer cell lines, respectively. The Accession and Gene Name refer to representative GenBank entries that contain the tag sequence.

Table 2 Transcripts increased in colorectal cancer.

Table 3 Transcripts decreased in colorectal cancer.

Table 4 Transcripts increased in pancreatic cancer.

Table 5 Transcripts increased in pancreatic and colorectal cancer.

25 **DETAILED DESCRIPTION**

The inventors have discovered sets of human genes which are either upregulated or downregulated in cancer cells, as compared to normal cells. Specifically, certain genes have been found to be upregulated or downregulated in colorectal and/or pancreatic cancer cells, when compared to normal colon

cells. These sets of differentially regulated genes can be used as diagnostic markers, either individually or in sets of, for example, 2, 5, 10, 20, or 30.

Genes whose expression was detected to be increased in colorectal cancer are shown in Table 2. Genes whose expression was detected to be decreased in colorectal cancer are shown in Table 3. Genes whose expression was detected as increased in pancreatic cancer are shown in Table 4. Genes whose expression was detected as increased in both pancreatic cancer and colorectal cancer are shown in Table 5. These latter genes likely play a role in neoplastic development generally.

10

15

5

Tag sequences, as provided herein, uniquely identify genes. This is due to their length, and their specific location (3') in a gene from which they are drawn. The full length genes can be identified by matching the tag to a gene data base member, or by using the tag sequences as probes to physically isolate previously unidentified genes from cDNA libraries. The methods by which genes are isolated from libraries using DNA probes are well known in the art. See, for example, Veculescu et al., Science 270: 484 (1995), and Sambrook et al. (1989), MOLECULAR CLONING: A LABORATORY MANUAL, 2nd ed. (Cold Spring Harbor Press, Cold Spring Harbor, New York). Once a gene or transcript has been identified, either by matching to a data base entry, or by physically hybridizing to a cDNA molecule, the position of the hybridizing or matching region in the transcript can be determined. If the tag sequence is not in the 3' end, immediately adjacent to the restriction enzyme used to generate the SAGE tags, then a spurious match may have been made. Confirmation of the identity of a SAGE tag can be made by comparing transcription levels of the tag to that of the identified gene in certain cell types.

20

25

In addition to the sequences shown in SEQ ID NOS: 1-732, or their complements, this invention also provides the anti-sense polynucleotide stand, e.g. antisense RNA to these sequences or their complements. One can obtain an antisense RNA using the sequences provided in SEQ ID NOS: 1-732 and the methodology described in Vander Krol et al. (1988) BioTechniques 6:958.

The invention also encompasses polynucleotides which differ from that of the polynucleotides described above, but which produce the same phenotypic effect, such as the allele. These altered, but phenotypically equivalent polynucleotides are referred to "equivalent nucleic acids." This invention also encompasses polynucleotides characterized by changes in non-coding regions that do not alter the phenotype of the polypeptide produced therefrom when compared to the polynucleotide herein. This invention further encompasses polynucleotides, which hybridize to the polynucleotides of the subject invention under conditions of moderate or high stringency.

10

15

20

25

5

The polynucleotides can be conjugated to a detectable marker, e.g., an enzymatic label or a radioisotope for detection of nucleic acid and/or expression of the gene in a cell. A wide variety of appropriate detectable markers are known in the art, including fluorescent, radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal. In preferred embodiments, one will likely desire to employ a fluorescent label or an enzyme tag, such as urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmental undesirable reagents. In the case of enzyme tags, colorimetric indicator substrates are known which can be employed to provide a means visible to the human eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples. Briefly, this invention further provides a method for detecting a single-stranded polynucleotide identified by SEQ ID NOS.1-732 or its complement, by contacting target single-stranded polynucleotides with a labeled, single-stranded polynucleotide (a probe) which is at least 10 nucleotides of the complement of SEQ ID NOS: 1-732 (or the corresponding complement) under conditions permitting hybridization (preferably moderately stringent hybridization conditions) of complementary single-stranded polynucleotides, or more preferably, under highly stringent hybridization conditions. Hybridized polynucleotide pairs are separated from un-hybridized, single-stranded polynucleotides. The hybridized polynucleotide

10

15

20

25

pairs are detected using methods well known to those of skill in the art and set forth, for example, in Sambrook et al. (1989) supra.

The polynucleotides of this invention can be isolated using the technique described in the experimental section or replicated using PCR. The PCR technology is the subject matter of United States Patent Nos. 4,683, 195. 4,800,159, 4,754,065, and 4,683,202 and described in PCR: The Polymerase Chain Reaction (Mullis et al. eds, Birkhauser Press, Boston (1994)) or MacPherson et al. (1991) and (1994), supra, and references cited therein. Alternatively, one of skill in the art can use the sequences provided herein and a commercial DNA synthesizer to replicate the DNA. Accordingly, this invention also provides a process for obtaining the polynucleotides of this invention by providing the linear sequence of the polynucleotide, nucleotides, appropriate primer molecules, chemicals such as enzymes and instructions for their replication and chemically replicating or linking the nucleotides in the proper orientation to obtain the polynucleotides. In a separate embodiment, these polynucleotides are further isolated. Still further, one of skill in the art can insert the polynucleotide into a suitable replication vector and insert the vector into a suitable host cell (procaryotic or eucaryotic) for replication and amplification. The DNA so amplified can be isolated from the cell by methods well known to those of skill in the art. A process for obtaining polynucleotides by this method is further provided herein as well as the polynucleotides so obtained.

RNA can be obtained by first inserting a DNA polynucleotide into a suitable host cell. The DNA can be inserted by any appropriate method, e.g., by the use of an appropriate gene delivery vector or by electroporation. When the cell replicates and the DNA is transcribed into RNA; the RNA can then be isolated using methods well known to those of skill in the art, for example, as set forth in Sambrook et al. (1989) supra. For instance, mRNA can be isolated using various lytic enzymes or chemical solutions according to the procedures set forth in Sambrook et al. (1989), supra or extracted by nucleic-acid-binding resins following the accompanying instructions provided by manufactures.

Polynucleotides having at least 10 nucleotides and exhibiting sequence complementarity or homology to SEQ ID NOS: 1-732 find utility as hybridization probes. In some aspects, the full coding sequence of the transcript, i.e., for SEQ ID NOS: 1-732, are known. Accordingly, any portion of the known sequences available in GenBank, or homologous sequences, can be used in the methods of this invention.

It is known in the art that a "perfectly matched" probe is not needed for a specific hybridization. Minor changes in probe sequence achieved by substitution, deletion or insertion of a small number of bases do not affect the hybridization specificity. In general, as much as 20% base-pair mismatch (when optimally aligned) can be tolerated. Preferably, a probe useful for detecting the aforementioned mRNA is at least about 80% identical to the homologous region of comparable size contained in the previously identified sequences identified by SEQ ID NOS:1-732, which correspond to previously characterized genes or SEQ ID NOS:1-732, which correspond to known ESTs. More preferably, the probe is 85% identical to the corresponding gene sequence after alignment of the homologous region; even more preferably, it exhibits 90% identity.

These probes can be used in radioassays (e.g. Southern and Northern blot analysis) to detect, prognose, diagnose or monitor various pancreatic or colon cells or tissue containing these cells. The probes also can be attached to a solid support or an array such as a chip for use in high throughput screening assays for the detection of expression of the gene corresponding to one or more polynucleotide(s) of this invention. Accordingly, this invention also provides at least one of the transcripts identified as SEQ ID NOS:1-732, or its complement, attached to a solid support for use in high throughput screens.

The total size of fragment, as well as the size of the complementary stretches, will depend on the intended use or application of the particular nucleic acid segment. Smaller fragments will generally find use in hybridization embodiments, wherein the length of the complementary region may be varied,

15

10

5

20

25

such as between about 10 and about 100 nucleotides, or even full length according to the complementary sequences one wishes to detect.

Nucleotide probes having complementary sequences over stretches greater than 10 nucleotides in length are generally preferred, so as to increase stability and selectivity of the hybrid, and thereby improving the specificity of particular hybrid molecules obtained. More preferably, one can design polynucleotides having gene-complementary stretches of more than 50 nucleotides in length, or even longer where desired. Such fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means, by application of nucleic acid reproduction technology, such as the PCR technology with two priming oligonucleotides as described in U.S. Pat. No. 4,603,102 or by introducing selected sequences into recombinant vectors for recombinant production. A preferred probe is about 50-75 or more preferably, 50-100, nucleotides in length.

The polynucleotides of the present invention can serve as primers for the detection of genes or gene transcripts that are expressed in pancreatic or colon cells. In this context, amplification means any method employing a primer-dependent polymerase capable of replicating a target sequence with reasonable fidelity. Amplification may be carried out by natural or recombinant DNA-polymerases such as T7 DNA polymerase, Klenow fragment of E.coli DNA polymerase, and reverse transcriptase.

A preferred amplification method is PCR. However, PCR conditions used for each reaction are empirically determined. A number of parameters influence the success of a reaction. Among them are annealing temperature and time, extension time, Mg²⁺ ATP concentration, pH, and the relative concentration of primers, templates, and deoxyribonucleotides. After amplification, the resulting DNA fragments can be detected by agarose gel electrophoresis followed by visualization with ethidium bromide staining and ultraviolet illumination.

The invention further provides the isolated polynucleotide operatively linked to a promoter of RNA transcription, as well as other regulatory

5

10

15

20

25

10

15

20

sequences for replication and/or transient or stable expression of the DNA or RNA. As used herein, the term "operatively linked" means positioned in such a manner that the promoter will direct transcription of RNA off the DNA molecule. Examples of such promoters are SP6. T4 and T7. In certain embodiments, cell-specific promoters are used for cell-specific expression of the inserted polynucleotide. Vectors which contain a promoter or a promoter/enhancer, with termination codons and selectable marker sequences. as well as a cloning site into which an inserted piece of DNA can be operatively linked to that promoter are well known in the art and commercially available. For general methodology and cloning strategies, see Gene Expression Technology (Goeddel ed., Academic Press, Inc. (1991)) and references cited therein and Vectors: Essential Data Series (Gacesa and Ramji, eds., John Wiley & Sons, N.Y. (1994)), which contains maps, functional properties, commercial suppliers and a reference to GenEMBL accession numbers for various suitable vectors. Preferable, these vectors are capable of transcribing RNA in vitro or in vivo.

Fragment of the sequences shown in SEQ ID NOS:1-732 or their respective complements also are encompassed by this invention, preferably at least 10 nucleotides and more preferably having at least 18 nucleotides. Larger polynucleotides, e.g., cDNA or genomic DNA, which hybridize under moderate or stringent conditions to the polynucleotide sequences shown in SEQ ID NOS:1-732, or their respective complements, also are encompassed by this invention.

In one embodiment, these fragments are polynucleotides that encode polypeptides or proteins having diagnostic and therapeutic utilities as described herein as well as probes to identify transcripts of the protein which may or may not be present. These nucleic acid fragments can by prepared, for example, by restriction enzyme digestion of the polynucleotide of SEQ ID NOS:1-732, or their complements, and then labeled with a detectable marker. Alternatively, random fragments can be generated using nick translation of the molecule. For

30

methodology for the preparation and labeling of such fragments, see Sambrook et al., (1989) supra.

Expression vectors containing these nucleic acids are useful to obtain host vector systems to produce proteins and polypeptides. It is implied that these expression vectors must be replicable in the host organisms either as episomes or as an integral part of the chromosomal DNA. Suitable expression vectors include viral vectors, including adenoviruses, adeno-associated viruses, retroviruses, cosmids, etc. Adenoviral vectors are particularly useful for introducing genes into tissues in vivo because of their high levels of expression and efficient transformation of cells both in vitro and in vivo. When a nucleic acid is inserted into a suitable host cell, e.g., a procaryotic or a eucaryotic cell and the host cell replicates, the protein can be recombinantly produced. Suitable host cells will depend on the vector and can include mammalian cells, animal cells, human cells, simian cells, insect cells, yeast cells, and bacterial cells constructed using well known methods. See Sambrook et al. (1989) supra. In addition to the use of viral vector for insertion of exogenous nucleic acid into cells, the nucleic acid can be inserted into the host cell by methods well known in the art such as transformation for bacterial cells; transfection using calcium phosphate precipitation for mammalian cells; or DEAE-dextran; electroporation; or microinjection. See Sambrook et al. (1989) supra for this methodology. Thus, this invention also provides a host cell, e.g. a mammalian cell, an animal cell (rat or mouse), a human cell, or a procaryotic cell such as a bacterial cell, containing a polynucleotide encoding a protein or polypeptide or antibody.

25

20

5

10

15

When the vectors are used for gene therapy in vivo or ex vivo, a pharmaceutically acceptable vector is preferred, such as a replication-incompetent retroviral or adenoviral vector. Pharmaceutically acceptable vectors containing the nucleic acids of this invention can be further modified for transient or stable expression of the inserted polynucleotide. As used herein, the term "pharmaceutically acceptable vector" includes, but is not limited to, a vector or delivery vehicle having the ability to selectively target

10

15

20

and introduce the nucleic acid into dividing cells. An example of such a vector is a "replication-incompetent" vector defined by its inability to produce viral proteins, precluding spread of the vector in the infected host cell. An example of a replication-incompetent retroviral vector is LNL6 (Miller, A.D. et al. (1989) BioTechniques 7:980-990). The methodology of using replication-incompetent retroviruses for retroviral-mediated gene transfer of gene markers is well established (Correll et al. (1989) PNAS USA 86:8912; Bordignon (1989) PNAS USA 86:8912-52; Culver, K. (1991) PNAS USA 88:3155; and Rill, D.R. (1991) Blood 79(10):2694-700. Clinical investigations have shown that there are few or no adverse effects associated with the viral vectors, see Anderson (1992) Science 256:808-13.

Compositions containing the polynucleotides of this invention, in isolated form or contained within a vector or host cell are further provided herein. When these compositions are to be used pharmaceutically, they are combined with a pharmaceutically acceptable carrier.

This invention further encompasses genes, either genomic or cDNA, which code for a polypeptide or protein in the cell of interest. The genes specifically hybridize under moderate or stringent conditions to a polynucleotide identified by SEQ ID NOS: 1-732 or their respective complements. The process of identification of larger fragment or the full-length coding sequence to which the partial sequence depicted in SEQ ID NOS:1-732 hybridizes preferably involves the use of the methods and reagents provided in this invention, either singularly or in combination.

Five methods are disclosed herein which allows one of skill in the art to isolate the gene or cDNA corresponding to the transcripts of the invention.

RACE-PCR Technique

One method to isolate the gene or cDNA which code for a polypeptide or protein and which corresponds to a transcript of this invention, involves the 5'-RACE-PCR technique. In this technique, the poly-A mRNA that contains the coding sequence of particular interest is first identified by hybridization to

30

10

15

20

25

30

a sequence disclosed herein and then reverse transcribed with a 3'-primer comprising the sequence disclosed herein. The newly synthesized cDNA strand is then tagged with an anchor primer of a known sequence, which preferably contains a convenient cloning restriction site attached at the 5'end. The tagged cDNA is then amplified with the 3'-primer (or a nested primer sharing sequence homology to the internal sequences of the coding region) and the 5'-anchor primer. The amplification may be conducted under conditions of various levels of stringency to optimize the amplification specificity. 5'-RACE-PCR can be readily performed using commercial kits (available from, e.g., BRL Life Technologies Inc, Clotech) according to the manufacturer's instructions.

Identification of known genes or ESTs

In addition, databases exist that reduce the complexity of ESTs by assembling contiguous EST sequences into tentative genes. For example, TIGR has assembled human ESTs into a datable called THC for tentative human consensus sequences. The THC database allows for a more definitive assignment compared to ESTs alone. Software programs exist (give examples) that allow for assembling ESTs into contiguous sequences from any organism.

Isolation of cDNAs from a library by probing with the SAGE transcript or tag

Alternatively, mRNA from a sample preparation was used to construct cDNA library in the ZAP Express vector following the procedure described in Velculescu et al. (1997) Science 270:484. The ZAP Express cDNA synthesis kit (Stratagene) was used accordingly to the manufacturer's protocol. Plates containing 250 to 2000 plaques are hybridized as described in Rupert et al. (1988) Mol. Cell. Bio. 8:3104 to oligonucleotide probes with the same conditions previously described for standard probes exxcept that the hybridization temperature is reduced to room temperature. Washes are performed in 6X standard-saline-citrate 0.1% SDS for 30 minutes at room temperature. The probes are labeled with 32P-ATP through use of T4 polynucletoide kinase.

Table 2 - Transcripts increased in colon cancer

Transcripts increased in only colon primary tumors compared to normal colon (61 genes)

NC: Normal Colon

TU, Colon Primary Turnor CL, Colon Cancer Cell Line PT: Pancreatic Primary Turnor PC: Pancreatic Cancer Cell Line

		The Ninmhon	UN	TI	5	7	PC	Accession	Gene Name	
-	Tag Sequence	I ag ivumuer	2	2		: 5	33	T	H saniens mitochondrial EST sequence (1-t-12) from	
I۷	CATGCACCTAATTGG	H285759	219	â	=	<u>.</u>		T	Control of the contro	
14	CATGTGATTTCACTT	H933704	452	595	235	8	314		Human cytochrome c oxidase subulin ili (COLL) pse	
: <	CATOCOTOTA A TOCO	H388150	433	549	380	443	197	270701	H.sapiens mKNA (retal orain culva cz. 11).	
<	22210010101							X71347	H.sapiens HNF1-C mRNA.	
1								X71346	H.sapiens HNF1-B mRNA.	
- 1	0040404000	H201282	293	227	28	4	8	U09500	Human mitochondrion cytochrome b gene, partial cds	
۲1:	CATGCACIACICACC	H753750	392	517	389	453	절	X66785	H.sapiens mRNA for transacylase (DBT).	
⋖∥	CATGOTOAAACCCCA(G)	20100111						X17648	Human mRNA for granulocyte-macrophage colony-stimu	-
- 1					Ī			U09087	Human thymopoietin beta mRNA, complete cds.	
- 1								009088	Human thymopoietin gamma mRNA, complete cds.	_
- 1						T		U20770	Human metastasis suppressor (KAII) mRNA, complete	
- 1:	V DOO VILLED COOK	1687015	32	372	9	62	=	W15552	2b91h11.s1 Soares parathyroid tumor Nb1/PA 140mo sap	
< I	CATGGGGTTTAGGGA	1100111	;			T	T	W32091	zc05d03.s1 Soares parathyroid tumor Nb1IPA Homo sap	
- 1								R62866	yi 11d07.r1 Homo sapiens cDNA clone 138925 5'.	_
- 12	A A COTTON	H130369	32	272	33	23	2	X89839	H.sapiens mitochondrial DNA for loop attachment se	
٠1;	CATGACITICCAAA	H965434	2	271	9	R	~	T11555	A 1486F Homo sapiens cDNA clone A 1486 similar to Mi	
S1;	TOTOTOTOTO	H175877	36	218	7	20	2	T15773	IB1870 Homo sapiens cDNA 3'end similar to Human mi	_
11:	CATGAGGGTGTTTTC	H177315	93	213	=	- 84 84	28	X12544	Human mRNA for HLA class II DR-beta (HLA-DR B).	_
<u>`</u>	CALGAGGICAGGAGA							S73483	phosphorylase kinase catalytic subunit PHKG2 homol	_
- 17	LUCUTACION	H1025122	124	194	63	E	2	X74301	H.sapiens mRNA for MHC class II transactivator.	_
41	CAIGITGGCCAGGC	11020011						U28687	Human zinc finger containing protein ZNF157 (ZNF15	٠,
- 1						Γ		U29119	Human leiomyoma LM-196.4 ectopic sequence from HMG	_
- 1								U56236	Human Fc alpha receptor b mRNA, complete cds.	_
- 17	TOTTOTOTOTO	H214616	6	98	17	4	6	W03751	za62h11.r1 Soares fetal liver spleen INFLS Homo sa	
31	CALGALCACCECTE							W03770	za63f10.r1 Soares fetal liver spleen INFLS Homo sa	_
							١			

. . . .

		Ī	ľ	f	-	t	WOA748	2842 09 c1 Soares fetal liver spleen INFLS Homo sa
		1	1	1	†	†	T	A 7200 Homo capiene CDNA clone A 730 similar to Mito
CATGGGGGTCAGGGG	H696691	33	2	=	<u>-</u>	<u> </u>	1	zc26a12.s1 Soares senescent fibroblasts NbHSF Homo
1. 1	11541780	ř	144	2	23	2		Human fetal brain cDNA 3'-end GEN-007C04.
CATGGCTAGGTITAL	1041107	3					D53694	Human fetal brain cDNA 3'-end GEN-117E01.
OH TO THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OW	H150096	26	132	35	0	<u>∞</u>		Unknown
15 CATGCCCGIACAIC	H183018	=	E	7	=	7	DS1021	Human fetal brain cDNA 3'-end GEN-007D07.
16 CATGAGTAGGIGGCC	0100011	2		1	T		D51052	Human fetal brain cDNA 3'-end GEN-009C05.
			T	T	T		D52836	Human fetal brain cDNA 3'-end GEN-089E01.
	U388278	2	124	15	=	23	D83195	Human DNA for Deoxyribonuclease I precursor.
CATGCCTGTAGICCC	013666	64	122	78	77	2	D54113	Human fetal brain cDNA 5'-end GEN-129805.
CATGAGCCCACAAC	H377364	\$	2	25	7	9	F15796	H.sapiens mitochondrial EST sequence (102-25) from
CATGCALLIGIAALA	H874182	28	200	4	0	13		
CATGICCCGIACCI	H606582	23	73	∞	9	16	Z59183	H.sapiens CpG island DNA genomic Msc1 tragment, c1
CATGGCCAACCICCI			T				D52905	Human fetal brain cDNA 5'-end GEN-091U11.
1100001100001	H609624	29	27	7	4	16	F16449	H.sapiens mitochondrial EST sequence (129-09) from
CATGGCCAICCCII	077770111	35	19	82	35	14	U06452	Human melanoma antigen recognized by 1-cells (MAK)
CATGTTGGTCAGG	H881603	3 2	6	=	2	56		(VC) (VC)
CAIGICLIAITAAG	920100H	2	47	2	-	4	D51004	Human fetal brain cDNA 3'-end GEN-006D02.
CATGLIACITATACI	2017711						1.49057	Homo sapiens retinal fovea EST HFD010904 sequence.
				T	T		D\$1071	Human fetal brain cDNA 3'-end GEN-010E01.
101001001	U718755	13	45	-	4	2		
CATGATGGCAGGAGI	1171377	1	44	7	-	~		
CATGCTAAGGCGAGG	1171774	1	4	2	2	2	103592	Human ADP/ATP translocase mRNA, 3' end, clone pHA I
28 CATGGGIGAGACACI	9505011	٧	5	1-	8	32	X57352	Human 1-8U gene from interferon-inducible gene fam
29 CATGACCTGIALCC	U170101	٥	30	0	-	0	H01571	yj33e06.rl Homo sapiens cDNA clone 150562 5' simil
CATGCCAGICCGCCI	2007200	,					H03072	lyj46g12.r1 Homo sapiens cDNA clone 151846 5' simil
	H802810	_	37	0	-	0	T25155	EST730 Homo sapiens cDNA clone 34C11.
CAIGINALITIOCC	H901764	9	37	7	3	5	D50972	Human fetal brain cDNA 3'-end GEN-004A05.
CATGLIAGCIIGIII	11777						D\$1211	Human fetal brain cDNA 3'-end GEN-017E08.
				T			D\$2162	Human fetal brain cDNA 31-end GEN-069F04.
							T23865	seq2012 Homo sapiens cDNA clone Cot1374Ft-4HB3MA-3
010000000000000000000000000000000000000	A57576	0	35	-	0	0	M32053	Human H19 RNA gene, complete cds.
CATGGCCACCCCTG	H708764	=	35	61	8	2	X67247	H.sapiens rpS8 gene for ribosomal protein S8.
CATGTATIAAGGIG	H817627		35	~	-	14	T11939	A953F Homo sapiens cDNA clone A953 similar to Mito
CATGLACIOCICOGA								

16 CATGGTGAAACCCA 17 CATGGAAACTGAACA 18 CATGACTTTTTAAAA 19 CATGTCAGTGGTGGT 40 CATGTCAGTGGTGGTT 41 CATGGGGGGGGGGT 42 CATGGGGGGGGGGT 43 CATGGGGGGGGGGT 44 CATGGGGGGGGGGAACTA 46 CATGGGGGGGGAACTA 47 CATGGGGGGTAACTA 48 CATGGGGTATTAACCA 48 CATGGGCTACACCTT	H753749 H131009 H131009 H555450 H863923 H7916 H699051 H883029 H47683 H708358	0 0 0 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	31 26 27 21 22 22 21 22 23 24 19 19 19 10 <th>22 7 4 4 7 7 7 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>30 30 30 5 1 5 2 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</th> <th>4</th> <th></th> <th>ye42f01.s1 Homo sapiens cDNA clone 120409 5 simil za35b09.r1 Soares fetal liver spleen 1NFLS Homo sa za63g03.r1 Soares fetal liver spleen 1NFLS Homo sa za63g03.r1 Soares fetal liver spleen 1NFLS Homo sa Human line-1 element DNA, host sequence flanking thuman line-1 element DNA, host sequence flanking thuman methionine aminopeptidase mRNA, complete cds yw57b10.r1 Homo sapiens cDNA clone 256315 5 simil Human keratinocyte cDNA, clone 667. Human keratinocyte cDNA, clone 713. FB3BS Homo sapiens CDNA clone FB3B5 3'end. H. sapiens CpG island DNA genomic Msel fragment, cl. H. sapiens CpG island DNA genomic Msel fragment, cl. L. sapiens CpG island DNA genomic Msel fragment, cl. L. sapiens CpG island DNA genomic Msel fragment, cl. L. Sapiens CpG island DNA genomic Msel fragment, cl. L. Sapiens CpG island DNA genomic Msel fragment, cl. L. Sapiens CpG island DNA genomic Msel fragment, cl. L. Sapiens CpG island DNA genomic Msel fragment, cl. L. Sapiens senescent fibroblasts Nb11SF 1lumo TCS-translocated in liposarcoma [human, inRNA, 1824 TLS-translocated in liposarcoma [human, inRNA, 1824 TLS-translocated in liposarcoma [human, inRNA, 1824 TLS-translocated in liposarcoma [human, inRNA, 1824 Human parathymosin niRNA, complete cds. Human marathymosin niRNA, complete cds. Human mrRNA for T cell receptor V beta 14 CDR3, par Human mRNA for T cell receptor V beta 14 CDR3, par Human mrRNA for T cell receptor V beta 14 CDR3, par</th>	22 7 4 4 7 7 7 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 30 30 5 1 5 2 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4		ye42f01.s1 Homo sapiens cDNA clone 120409 5 simil za35b09.r1 Soares fetal liver spleen 1NFLS Homo sa za63g03.r1 Soares fetal liver spleen 1NFLS Homo sa za63g03.r1 Soares fetal liver spleen 1NFLS Homo sa Human line-1 element DNA, host sequence flanking thuman line-1 element DNA, host sequence flanking thuman methionine aminopeptidase mRNA, complete cds yw57b10.r1 Homo sapiens cDNA clone 256315 5 simil Human keratinocyte cDNA, clone 667. Human keratinocyte cDNA, clone 713. FB3BS Homo sapiens CDNA clone FB3B5 3'end. H. sapiens CpG island DNA genomic Msel fragment, cl. H. sapiens CpG island DNA genomic Msel fragment, cl. L. sapiens CpG island DNA genomic Msel fragment, cl. L. sapiens CpG island DNA genomic Msel fragment, cl. L. Sapiens CpG island DNA genomic Msel fragment, cl. L. Sapiens CpG island DNA genomic Msel fragment, cl. L. Sapiens CpG island DNA genomic Msel fragment, cl. L. Sapiens CpG island DNA genomic Msel fragment, cl. L. Sapiens senescent fibroblasts Nb11SF 1lumo TCS-translocated in liposarcoma [human, inRNA, 1824 TLS-translocated in liposarcoma [human, inRNA, 1824 TLS-translocated in liposarcoma [human, inRNA, 1824 TLS-translocated in liposarcoma [human, inRNA, 1824 Human parathymosin niRNA, complete cds. Human marathymosin niRNA, complete cds. Human mrRNA for T cell receptor V beta 14 CDR3, par Human mRNA for T cell receptor V beta 14 CDR3, par Human mrRNA for T cell receptor V beta 14 CDR3, par
CATGAGGGTGTTTCC CATGCAAGGACCAGC	H175870 H272467	-0	5 5	00	0	0 0	DS1783 D13138	Human fetal brain cDNA 5'-end GEN-031 C02. Human mRNA for dipeptidase. Homo saniens (clones MDP4, MDP7) microsomal dipept
				1	1	1	000017	Homo sapiens (clones MDF4, MDF7) interesoring upper RDP=renal dipeptidase [human, kidney, Genomic, 357 umm alpha, I collagen gene 3' end with polyA sit
CATGTGGAAATGACC CATGATCCGCCTGCC	H950498 H219514	0 -	13	0 %	167	0 -	M10629 H11641 R95667	Human alpha-i collagen gene, 3 end with poly 3 simila ym 17e04.si Homo sapiens cDNA clone 199288 3 simila yq51a09.si Homo sapiens cDNA clone 199288 3 simil
53 CATGTCCCGTACAC 54 CATGATGTAAAAAT	H875282 H241665	-0	= 13	00	12	- =	M74090	Human TB2 gene mRNA, 3' end.

								103801	Human lysozyme mRNA, complete cds with an Alu repe
							1		
								M19045	Human lysozyme mRNA, complete cas.
					ļ	1	ļ		
13	CELLATIONACIONACIONACIONACIONACIONACIONACIONAC	H337244	0	=	0	0	0		
2	CALOCCAGCCCCC	00000	٩	2	-	7	-	X57351	Human 1-8D gene from interferon-inducible gene Jam
3	SK ICATGACCATTCTGCT	H82887	>	2	-	3	,		18 I VINCE THE
3						_		X02490	Human interferon-inducinie mriva (cDiva 1-9).
				T	ļ	1	ļ		
;	JUL VUUV JUV TUL	H165175	0	2	0	- -	>		
<u>``</u>	S/ CAIGAGGACCAICGC		Į,	5	۲	3	-	103040	Hilman SPARC/osteonectin mRNA, complete cds.
0	CATCATCTCACCT(A)	H243747	> -	2	>	6	,	25000	
ŝ	CV10V1010101V7	2500:0:	,	-	1	7	P	1155217	Human RNA fragment from patients with Cronn's dise
ŝ	40 ICATGCAGTTGGTTGT	H310975	2	2	?	-	-		
	* OU CHOLOR OF THE	7861311	٥	9	7	15	<u></u>		
9	60 ICATGGCCCICICCA	11013002	,	:	1	1	1		The state of the state (HTR3) many complete
	VUUV TTO TELEVITOR	H002010	_	9	m	~	9	M94083	Human chaperonini-like process (1112) since significant
9	61 CATGITAGATAAGCA	217771			1		T	1 27706	1 27704 Human chaneronin protein (Tcb20) gene complete cds
L						-		27/170	

Transcripts increased in both colon primary tumors and colon cancer cell lines compared to normal colon (47 genes)

NC. Normal Colon
TU: Colon Primary Tumor
CL: Colon Cancer Cell Line
PT: Pancreatic Primary Tumor
PC: Pancreatic Cancer Cell Line

_			_		_	_	_	_	_		_	_	_	_			7	┰	_	_					7	т	_	_	_	
Cene Name	Himan ribosomal protein L28 mRNA, complete cds.	Himsp mRNA for LLRep3.		H.sapiens DDC1 IIINNA	H.sapiens mRNA for 23 kD nignty basic protein	H.sapiens mRNA for elongation factor 2.	H. sapiens S19 ribosomal protein mRNA, complete cds	Himan acidic ribosomal phosphoprotein P2 mRNA, com	Leaniene has mRNA for uracil DNA glycosylase.	11	nullal glyclaudilydo Free	H.sapiens mKNA for cionigation factor 1 Summer	Human pancreatic tumor-related protein mixtury,	H.sapiens mRNA for ribosomal protein L8.	H saniens mRNA for ribosomal protein L3.	11 soul gene mRNA complete cds.	nullial Hove Benedictive to the Company of the Company	Human Wilm's tumor-related protein (Vivi) mixix, with	laminin receptor homolog (3' region) [human, mKNA	H.sapiens mRNA for ORF.	Human mRNA for ribosomal protein L32	Human ribosomal protein S4 (RPS4X) isoform mRNA, c	Uimen gent nontein mRNA, complete cds.	DNIA Garibosome protein S18	H.sabjens mky for noosonial protein 515.	Homo sapiens 18S ribosomal protein (HNE3) IIINNA 304	Human mRNA for T-cell cyclophilin.	Human DNA for insulin-like growth factor II (IOF-2);	Human Bak mRNA, complete cds.	
Accession	1114060	2021.2	V1/200	X64707	X56932	Z11692	MR1757	M17887	V62770	6//SCV	70701	Z11531	M55409	Z28407	V73460	Sec. A	M/3/91	M64241	S35960	X80822	CALLON	MARAGE	SAT CON	M22140	X69150	L06432	Y00052	X07868	U16811	
۵	2	2 2	\$	250	147	8	12	100	3	2		152		156	2	3	2			215	: 5	3 5	*		250	L	5	0	8	<u>:</u>
ş	- [3	2	178	98	٤	3	: ;		इ		45		48	:	3	91			٢	k	اة	٨		25		8	-	· 2	
į	3	2	318	246	167	101		3 8	777	8		156		13		114	167			183		≘ 3	2		83		2	8	1	
Į	5	<u></u>	153	142	=				ž	ē		103		š	1	22	2			ē	7	50	8		61		1	1	3 5	2
	Ž	S	22	87	44	=	*	2	2	46		2		Ę	3	36	47			ļ	40	\$	3		42		28	3	3	
	Tag_Number	H599350	H239533	H155689	11121113	C111/1H	H148949	H502724	H671654	H807748		H959498		2003311	H2277/	H660601	H174037				H44683	H935680	H861056		H965603		11370360	2002/50	218812	H482584
	# Tag Sequence	CATG	TATUUTUUT	2 CAIGAIGGGGGG	3 CATGCCCGICCGGAA	4 CATGAGGCTACGGAA	SCATGAGCACCTCCAG	6 CATGCTGGGTTAATA	7 CATGGGATTTGGCCT	* CATCATCAATA	_		y CATOLOGOCANAGO		10 CATGAATCCTGTGGA	11 CATGGGACCACTGAA	12 CATCACCOTTCAA	12 CATGAGGGCTTCCAR			13 CATGAAGGTGGAGGA	14 CATGTGCACGTTITC	15 CATGTCAGATCTTTG		O VOLTOTO TO TO	16 CA1G1GG1G1GAGG	1	17 CATGCCTAGCIGGAI	18 CATGCTTGGGTTTTG	19 CATGCTCCTCACCTG

. . . .

D14530 Human homolog of yeast ribosomal protein S28, comp	T	Т	T	Т	Human acture 1100sounai processo 1 10	П	M24194 Human MHC protein homologous to chicken o compress	U14967 Human ribosomal protein L21 mRNA, complete cds.	X55954 Human mRNA for HL23 ribosomal protein homologue.	X52839 Human mRNA for ribosomal protein L17.	H38868 yp61a04.rl Homo sapiens cDNA clone 191886 5 simil	H71935 ys15f12.rl Homo sapiens cDNA clone 214893 3.	Z43914 H. sapiens partial cDNA sequence; crone C-10003.	T48545 hbc3221 Homo sapiens cDNA cione ilucazza a cuie.		\neg		103799 Human colin carcinoma laminin-binding protein mixes	U02032 Human ribosomal protein L23a mKNA, parlial cus.	U14970 Human ribosomal protein S5 mRNA, complete cas.	X58965 H.sapiens RNA for nm23-H2 gene.	M36981 Human putative NDP kinase (nm23-H25) mkiva, compres	L16785 Homo sapiens c-myc transcription factor (put) mKNA	L10376 Human (clone CTG-B33) mRNA sequence.	S80520 CAG-isl 7 (trinucleotide repeat-containing sequenc	M77349 Human transforming growth factor-beta induced gene	X58536 Human mRNA for HLA class I locus C neavy chain.	X00497 Human mRNA for HLA-DR antigens associated invarian	X16934 Human hB23 gene for B23 nucleophosmin.	Y00345 Human mRNA for polyA binding protein.	Г	Γ	Г	W46476 324128 3'.	X72718 H.sapiens DNA for orphan TCR V-beta segment (alici	
103	╀	1	1	4	8	146	77	19	L		84			_	64	0	57	-	38	98	 %	_	-	3	\vdash	- 	82	2	77	25	m	+	+	9		
\vdash	╁	+	+	+	ᅱ	24 1	┝	╀	╀╴	╀	21	╁	-	-	72 ,	0	15	-	30	╀	╀	\vdash	+	27	╀	72	4	14	000	=	: =	+	\dagger	•	1	
87	+	+	4		_	┝	╀	╀	╀	╀	2	╀	├	-	2	20	-	+	09	╀	╁	╀	+	9	╀	2	╁	╀	╀	; ;	1/2	+	†	15		
-	╁	+	-	_	154	7	╀	+	╀	╀	+	╀	-	-	╀	┝	╀	╀	900	╀	╁	╀	╀	900	╀	24	╀	╀	╀	╀	+	+	+	- 71	+	1
-	4	4	8	57	98	18	╀	4-	╀	╀	18	╀	-	Ļ	44	42	╀	╀	+	+	╀	╀	+	١	+	7	╀╴	╁	+	+	-	1	+		╁	1
		78	0	15	12	24		12	3 2	1	<u> </u> *		╀	+	10	10	=	+	ľ	/ 5	-	+	+	+	+	+	+	+	T	+	+	+	+		+	$\frac{1}{2}$
	H507577	H416261	H274492	H79065	H1000193	P098C517	1608751	H998030	0306361	H233200	0000	H119809			HS07455	802871	ACSACS11	47C47CH	100000	1555511	H390092	1000711		1700011	H302307	0000000	1000011	H / 60291	117/4401	H918713	H2056	H948604		1303071	H493231	
	20 CATGCTGTTGGTGAT	CATGCGCCGGACAC	22 CATOCAATAAATGTT	22 CATOCATCATCATCATCATCATCATCATCATCATCATCATCATC	23 CAIGACAICAIC	24 CAIGIICAAIAAAA	25 CATGGAACACAICLA	26 CATGTTATGGGATCT	27 CATGCCATAATAGGT	28 CATGATTCTCCAGTA		29 CATGACTCCAAAAA				_	31 CATGTACAAAAICUA	32 CATGGAAAAATGGII		33 CATGAAGAAGATAGA	14 CATGCCTTCGAGATC	35 CATGACTGGGTCIAL			36 CATGCAGCTCACTGA		37 CATGGTGTGTTIGTA	38 CATGGTGCGCTGAGC	39 CATGGTTCACATTAG	40 CATGTGAAATAAAAC	41 CATGAAAAGAACTT	42 CATGTGCTGCCTGTT			43 CATGCTGATGGCAGA	

147976	Soares fetal heart NoHHIYW Homo sapiens Court Cloud States	3.	EST176663 Colon carcinoma (Caco-2) cell line II rigillo sapiens	AA305589 cDNA 5' end	The section binding protein (filamin) (AB	X53416 Human mixix lot active all active act	In. man mand for fibronectin (FN precursor).	X0Z/01 Hullian IIII Co. Co.	775205 Heaniens isoform gene for L-type calclum channe		
		7 H121311		AA305589	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	X53410	170000	10/70Y	201707	777777	
		7				17	ľ	>		0	
		~			I	82		0 11 28 67	ļ	0 0 12 0 0 0	
		91	T			6		78	ŀ	_	
		12 16				12		_		0	
		c	ì			٥	Ņ	_	·	_ _	
		1161610	11717111			112 10466 0 12 19 82 17	20101	9010000	1777100	177071	1150411
			14 CATGACTCGCICIGI			00.00	LIVE TO TO TO TAKE A CONTRACT	TO	46 CATGATCTTGITACI	A COROCERO	V 17 17 A C C C C C C C C C

cell lines compared to normal colon (181 genes) Transcripts increased in only colon cancer

NC: Normal Colon

TU: Colon Primary Tumor CL: Colon Cancer Cell Line PT: Pancreatic Primary Tumor PC: Pancreatic Cancer Cell Line

														_		_	-	_	_		_	_	_	_		_	_	
Gene Name	The Day of the standarion factor 1-alpha	CIO TITO TO TO THE TITO TO THE TITO TO THE TITO	Human ribosomal protein 512.	Human cytokeratin 18.	Homo sapiens metallopanstimulin (MPS1)	H.sapiens B1 mRNA for mucin.	H.sapiens FRGAMMA mRNA (819bp) for folate receptor	H.sapiens mRNA for lung amiloride sensitive Na+ ch	Human FR-gamma' mRNA, complete cds.	Human folate receptor 3 mRNA, complete cds.	Human L41 ribosomal protein	ye02f02.rl Homo sapiens cDNA clone 1165/1 5.	11 sanions ribosomal protein L37a.	illeannal protein S16	Human mossing process of	Human inymosili octa 10	H.sapiens mKNA for ribosonial protein 23:	Human ribosomal protein LZ/a	H.sapiens ribosomal protein LII.	Human ribosomal protein S6	Human ribosomal protein 5.28 mKNA, compress cos	Human mRNA for ribosomal protein L1/	Human ribosomal protein L33	Human acidic ribosomal phosphoprotein PU	Human M2-type pyruvate kinase mRNA, complete cds.	Human TCB gene encoding cytosolic thyroid hormone-	Human ferritin L chain	
1	T		╗	X12883	L19739	X83412	732564	X76180	U08470	U08471	S64030	T91925	00777	7,000V	M60854	M92381	X69181	U14968	X79234	103537	U58682	X52839	U12465	M17885	M23725	M26252	M11147	1
150	2	42	125	202	2	Ē		T	1		358	6	,	7			16 i	142	49	120	70	65	184	145	55		145	
		2	50	36	72	13	3				9	ş	1	٦	હ	203	38	83	53	28	44	44	22	27	4	L	8	<u>:</u>
	_	487	265	245	ě	ž		T	T		179	72	2	2	22	136	133	=	Ξ	100	105	103	8	2	8		18	4
		62	99	æ	5	; ?	;	1	T	T	128	١	7	9	39	06	37	53	64	39	85	48	43	4	<u>e</u>	1	18	-1
I	NC TU	_	22	3	5	3 =	5				Ĭ	2	•	3	20	90	30	38	42	8	32	2	2	15	٦	1		1
	Tag Number	H978825	H615043	87777011	76790011	0600/7H	Ē				111027448	024/70111	H906438	626EEH	11374027	H696375	H41531	14567488	P09PCPH	H618199	HS49145	H857362	H416106	1475448	1000018	01/75561	00103511	H329102
	Tag Sequence	CATCTCTCTCAGAG	CA10101010101010101010101010101010101010	2 CA IGGCCGAGGAGG	CATGCAAACCAICCA	4 CATGCACAAACGGTA	5 CATGAAAAAAAA					6 CATGTTGGTCCICIO	7 CATGTCTCCATACCC	P CATGAAGACAGTGGC	1		10 CATOGOGOGOGO			13 CATGCGC IGGI ICCA		15 CATGOACGACGACGACGACGACGACGACGACGACGACGACGACGA	16 CAIGICACCACACC	17 CATGCGCCGCCGCC	18 CATGCTCAACAICIC	19 CATGTGGCCCCACCC		20 CATGCCCTGGGTTCT
	L		_1			L_	<u> </u>	<u></u>	——	لـــا	لـــا		1					_1						_				

1 10101

	П			L 19527 Homo sapiens ribosomal protein LZI (RPLZI)	X63237 H.sapiens Uba80 mRNA for ubiquitin.	Π	X69391 H.sapiens ribosomal protein L6.	Т	Τ	Т	П	yws4e05.r1 Homo sapiens cDNA clone 23000	T49412 ya75b09.r1 Homo sapiens CUNA clone 0/461 3		X07270 Human heat shock protein hsp86.		X74070 H.sapiens transcription factor BTF 3.		X84694 H.sapiens mRNA for elongations factor Tu-mitochondria	L38995 Homo sapiens nuclear-encoded mitochondrial elongalation lactor	S75463 P43=mitochondrial elongation factor homolog (human	H48893 yq80b12.r1 Homo sapiens cDNA clone 202079 5'	X71973 H.sapiens GPx-4 mRNA for phospholipid hydroperoxidase		H80294 yu59g01.s1 Homo sapiens cDNA clone 230448 3.	R74294 yi57f06.r1 Homo sapiens cDNA clone 143363 5.		F17005 H.sapiens EST sequence (011-11-18) from skeietat muscie	H10519 y190g04.r1 Homo sapiens cDNA clone 43303 3.	T	1	X56998 Human UbA32 adrenal mKNA lot dodulini-32 animo con	T	X52317 Human instone fizh-z-
Н			_	_	_	1	╀	+	+	- F		Ш	<u>-</u>	F	_	<u>∞</u>	26 X	40	<u>×</u>		S	H 91	X 701	0	25 H	-	1	86 F	7	٥	4	4	4	9
0 22	81 8	15 42	35 49	12 87	14 15	╁	+	╬	+	+	32 10	10 14		-	14 25	3	8	22 4	⊢	-	\vdash	-	= 8	8	4	┝	6	61	_	0	25	-	-	7
43	42	┝	┝	╁	╁	╁	┿	2 2	+	+	38	37	\vdash	╁	37	├	38	35	╁	+	+	35	╁╌	╌	=		e	e	59	59	29	28	8	27
8	9	 	┞	╀	╁	+	+	+	<u> </u>	+	2	├-	-	+	=	╀	╀	Ł	╀	+-	\dagger	1=	- -	5	2	1	<u>س</u>	28	2	9	6	7	82	4
8	9	+	╀	╄	╁	┿	+	+	×	+	=	-	T	\dagger	=	-	1=	-		1	†	=	2	0	1~		-	2	-	0	∞	2	6	3
H610939	H678334	992826H	H968173	2900011	2077/01	H28/3/	H837237	H803369	H770486		H 5 5 8 9 4 3	H217399			11534522	HS01287	15210CH	1307611	1667783	1007100		11319307	200712H	H76231	14528067	10077011	1153 1798	H988366	H1023249	H874103	H246019	H298495	H777109	H552683
- 1		Т.	_	52 CATGTGIACCIGIAA	53 CATGGGCAAGAAAA	54 CATGAACTAACAAAA	SS CATGTATACGCTCAG	$\overline{}$	_		TT		S9 CAIGAICCACAICGC			\neg	-	62 CATGCTGAGACAAG	63 CATGAACGACCICGI	64 CATGGCATAGGCIGC						68 CATGGAAAIGIAAGA		$\overline{}$	70 CAIGITACCATATCA			CATGOAGATCTTGT	7	\neg

		63693711	-	-	77	0	M33680	Human 26-kDa cell surface protein TAPA-1
77	CATGCTAAAAAAAA	H436/33	+	-	╁	1	Ļ	Homo sapiens dbpB-like protein
7.8	CATGGGGTTTTTATI	H /04500	7	- 0	12	┿	\perp	Human translational initiation factor 2 beta subunit
25	CATGCCGATCACCGG	1507051	- 4		1 %	+-	L	za92a11.r1 Soares fetal lung NbHL19W Homo sapiens
80	CATGCCACAAGA	COPCCI	,	+		╁	D20503	Human HL60 3'directed Mbol cDNA, HUMGS01477, clone
			1	+	T		N91592	Soares fetal lung NbHL19W Homo sapiens cDNA clone 303055 3.
			T	+		\vdash		yv84c07.s1 Homo sapiens cDNA clone 249420 3' similar to contains Alu
					-		H83884	repetitive element;.
		H908171	-	=	92	=	3 222572	H.sapiens CDEI binding protein mRNA.
<u>~</u>	CAIGICICIACCAC	21/202/11			┯	-	L09209	Homo sapiens amyloid protein homologue mRNA, compl
				\dagger	\dagger	\vdash	L19597	Human binding protein mRNA, partial cds.
						-	S60099	APPH=amyloid precursor protein homolog [human, pla
	O V V O O O STATE O O TO TO	793597H	-	6	22	3	-	2b06f02.rl Soares fetal lung NbHL 19W Homo sapiens
82	CATGGTTCCCCAAG	1100011				\vdash	N28502	yx36f06.r1 Homo sapiens cDNA clone 263843 5
				-		-	N35630	yx62a03.r1 Homo sapiens cDNA clone 266284 5
		9C7887H	,	ļ-	22	3 13	3 240265	H. sapiens partial cDNA sequence; clone c-1xe03.
8	CATGCCTGTCCAGCC	1100011	·	+		╁╴	W02723	2c65c03.s1 Soares fetal heart NbHH19W Homo sapiens
				T	T	\vdash	N24893	yx99h09.s1 Homo sapiens cDNA clone 269921 3'.
				\dagger		\vdash	N32178	yy25b09.s1 Homo sapiens cDNA clone 272249 3'.
	A OTOT A OT A CASE OF	H865501	~	2	22	5 7	-	y134b10.s1 Homo sapiens cDNA clone 160123 3' simil
84	CATGICALCAICTUA	2000011	·				H26394	y148e12.s1 Homo sapiens cDNA clone 161518 3' simil
				T		\vdash	H69857	yr88d02.s1 Homo sapiens cDNA clone 212355 3' simil
				†	T	\vdash	H70714	yu69b11.s1 Homo sapiens cDNA clone 239037 3' simil
1	TOTTOCOTO	H358783	~	000	22	16 31	1 X55110	Human mRNA for neurite outgrowth-promoting protein
<u>ڇ</u>		HK17048	E	-	24	0	X03168	Human mRNA for S-protein.
98	CATOOCCOOCCOTO			T	T	\vdash		zo32d09.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 588593
		H1021233	2	_	24	7	2 AA143561	3' similar to contains LTR7.t1 LTR7 repetitive element
8	CATOLIUCICAAAAA	2000				\vdash		zo01g11.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 566468
							AA152342	
								_
							AA115727	
8	CATCAAAATCAGGA	H262987	9	2	24	2	15 R76502	yi61f09.rl Homo sapiens cDNA clone 143753 5'.
8	_						T32681	EST52915 Homo sapiens cDNA 5' end similar to None.
							T34662	EST72468 Homo sapiens cDNA 5' end similar to None.
6	CATCAACATGTGGG	H533435	Ŀ	~	2	4	7 H04634	yj49h03.r1 Homo sapiens cDNA clone 152117 5'.
2								

F00364 H. sapiens partial cDNA sequence; clone 76D12; ver	8 23 6 4 H01503	H84813 yv86c02.s1 Homo sapiens cDNA clone 249602 3' simil	H84956 Jv88f07.s1 Homo sapiens cDNA clone 249829 3' simil	5 23 9 5 L38961	13 23 10 10 J04026 Human thioredoxin (TXN) mRNA	4 22 0 4 DI1078	0 22 0 19 X53279	~	4 22 2 4 X07674	8 22 27 19 Y00433	7 21 9 6 X67951 H.sapiens mRNA for proliferation-associated gene	3 21 2 24 U38846	D16933 Human HepG2 3' region cDNA, clone hmd4111.	3 20 47 107 U42376 Human retinoic acid induced RIG-E	3 20 4 1	7 20 3 22 F17524 H.sapiens EST sequence (012-T2-32) from skeletal m	7 20 3 7	6 19 12 7 W52942	3 19 5 3 R21316 yg48h11.rl Homo sapiens cDNA clone 35917 5' simila	99500X 0 0 61 0	5 19 6 5 M80244	6 18 18 15 H27927 J158c11.s1 Homo sapiens cDNA clone 162452 3' simil	3 18 5 20	7 18 5 15 AA299898	5 18 8 17 U09510	10 18 4 4 X76013	7 17 0 5 W16529	W35192 zc70b05.r1 Soares fetal heart NbHH19W Homo sapiens	W52451 2c45d09.rl Soares senescent fibroblasts NbHSF Homo	1 17 0 3 D38251	6 17 13 31 D52570 Human fetal brain cDNA 5'-end GEN-081G12.	D52758	D55953 Human fetal brain cDNA 5'-end GEN-407H12.
	·			~	=	4	0	-	4	∞	7	~		~	2	7	-	ာ	2	0	2	ဖ	~	7	2	2	7			E	9		
	0			4	9	-	0	7	~	4	E	3		0	2	4	4	-	E	0	0	2	2	2	~	~	0			0	-		
	H761150			H654464	H1046401	H1023250	H589267	H166539	H651359	H490889	H132098	H346761		H294155	H631331	11989024	H122449	H861095	11679936	H951912	H386904	11607318	H249854	H529899	H686319	H855049	H11785			H288373	H28872		
	CATCGTGCTCATTCA	20000		CATCCCTITACTITG	CATGETTECTGAAAA	CATOTTOCTCACACA	CATOCATTICIOAGC	CATOACCACCACC	CATOCOTTAACOTGG	CATOCTCTTCGAGAA	CATCACAAAAACC	CATGCCCAGGGAGAA		CATGCACTTCAAGGG	CATGGGGAGAGAGG	CATCTTACCTOTTC	CATCACTCTCOAG	CATOACICIOCCA	TLLLLLL CV TGGGGGGGTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TOWN TO THE PROPERTY OF THE PR	VATGCTGCTG	CATGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	CATGATTATTTTCT	TO CATGGA ACCCTGGGA	TO A TOGGCTGATGTGG	12 CATGTCAATAAGAA	CATGAAGTGAAGAT			CATGCACGCGCTCAA	CATCAACTAATACTA	חשעושעוסטואאו	

M12529 Human apolipoprotein E	X16539 H. sapiens RNA for neuroleukin gene.		M86667 H.sapiens NAP (nucleosome assembly protein)	П				П				\neg	F16507 H.sapiens EST sequence (147-09) from skeletal musc	TS0201 yb77h05.rl Homo sapiens cDNA clone //241 > simila		M38188 Human unknown protein from ctone prior / 4 mnns, comp		D83174 Human collagen binding protein 2.	X70940 H.sapiens clongation factor I alpha-2.	T30623 EST19638 Homo sapiens cDNA 5' end similar to None.	HUMGS0004747, Human Gene Signature, 3 - directed CD17A	Coloii sequence.	zm62d06.s1 Stratagene fibroblast (#937212) Homo sapiens culvA cione	AA111865 5302193'	W56516 zd16c08.rl Soares fetal heart NbHH19W Homo sapiens	H30299 yo77d04.rl Homo sapiens cDNA clone 183943 5' simil	H50265 yo28c02.rl Homo sapiens cDNA clone 179234 5.		W04495 za58b10.rl Soares fetal liver spleen INFLS Homo sa	П			T35470 EST85850 Homo sapiens cDNA 5' end similar to None.	T35536 EST86951 Homo sapiens cDNA 5' end similar to None.
0	-		2	0	3	3	\$	01			4		7		91	0	0	5	2	11						Ξ		4	L		12	=	0	Ц
48	1	1	~	4	2	2	3	7		L	7		∞	L	0	4	0	23	0	3		_	_		L	5		9	╀	igert	9	~	~	Н
12	<u> </u>	1	2	2	2	9	9	=	L		2		2		2	2	2	=	2	2			L		L	4	-	=	L	igert	=	=	1	
٧	<u>-</u>	1	0	<u> -</u>	0	0	2	~		L	5	_	9	L	∞	<u>س</u>	2	2	0	2	_		L		L	F	-	4	-	+	۴	╀	╀	╀
,	1	1	0	0	0	0	7	-	L	L	0	1	-	-	上	0	0	-	0	0	-		╀		\vdash	F	+	+	-	+	P	10	10	+
67700011	1376003	H819213	H228867	H302741	H228867	H228867	H762554	H762197			HS61787		H633002		H256497	H524541	H577840	H155632	H910430	H18469						H980130	25120	H822331	1024301		H\$08767	H673954	H975194	
	117 CATGCGACCCCACGC	118 CATGTAGAAAAAAA	O V V V TLATOR V V C C	AICTIONAGO	120 CATGCAGCTOCCCAT	21 CATCATCTTGAAGG	121 CATOATOTOGO	CATOCTCACCCAA	001000000000000000000000000000000000000		ATUTOVULAGO	UAUCAGCIGGA	TOOOLOGOOT	חרותתאמתמת	A TTOCOTT A A A	DATIOOCITA A	CATGGAAAAATTAA	CATGOORTCACAG	CAIGAGCCIIIGIIG	CATGLOCACOTOC							CATGIGITCAGGACC	CTAATO	CATGIAGAIAGG		COTTANTOR	CATUCITARICCION	CATGGGCAGAGGACC	CAIGIGACIGAAGCC

TESTA TEST STAFF Homo saniens CDNA 5' end similar to None.	Т	П	N78931 za92h06.s1 Homo sapiens cDNA clone 300059 3.	H90469 yv01e06.r1 Homo sapiens cDNA clone 241474 5' simil	R76765 yi63g01.rl Homo sapiens cDNA clone 143952 5' simil	T35045 EST79335 Homo sapiens cDNA similar to None	H51447 yo31805.rl Homo sapiens cDNA clone 179504 5.	W46469 zc32c05.rl Soares senescent fibroblasts NbHSF Homo	W51800 zc48e04.rl Soares senescent fibrobiasts NbHSF Homo		J04799 Human prothymosin-alpha	D80012 Human KIAA0190 protein	U02389 Human hLON ATP-dependent protease mKNA	T29819 EST96617 Homo sapiens cDNA 5' end similar to A I P-d	X14850 Human histone H2A.X.	J04088 Human DNA topoisomerase II (top2) mRNA	K01891 Human beta globin retrovirus-like repetitive element	1188396 EST28e05 Homo sapiens cDNA clone 28cU3	X74796 H. sapiens p85Mcm mRNA.	D28480 Human mRNA for hMCM2, complete cds.	D55716 Human B lymphoma mRNA for P1cdc47, complete cds.	T30327 EST14849 Homo sapiens cDNA 5' end similar to None.	T34394 EST66942 Homo sapiens cDNA 5' end similar to None.	T47475 yb14c03.rl Homo sapiens cDNA clone 71140 5.	T50289 yb14h08.rl Homo sapiens cDNA clone 71199 5.	Unknown		П	╗	٦	Z49216 H.sapiens mitoxantrone-resistance associated mixing.	Unknown	Unknown	M93651 Human set gene	
ŀ	+			13			6				2	12	2		9	2	H	-	∞	-	-	=	-	-	-	_	7	4	12	0	4	-	0	8	
+	1	+	\vdash	0	\vdash		2	\vdash	t	\dagger	8	∞	7		-	-	0		-			9	T		T	2	2	4	4	0	5	-	0	7	
t	12	!	T	=	T	T	1=		T	1	2	2	2	Γ	=	2	5	T	2			=				=	=	12	12	12	12	12	12	11	
f	†-	+		4		T	6	1	\dagger	\dagger	2	~	~		-	-	0	T	7			~	T			-	2	9	~	0	~	-	0	2	
Ī	-	→		-			6	·		T	-	0	-		-	-	0		-	·		0				0	0	0	0	0	0	0	0	0	
	3077531	H5 /6495		H765573	212211		אסגואסט	1001001			H1003313	H\$15821	H125315		H526495	2760761	H16303		P1190PH	110/11		H53129	721001			H890535	H697495	H329737	H1048113	H977034	H345789	H63325	H548203	H921067	
		CATGGATAGTTGTGG		74747	CALGGIGGIGGACAC		1100	CATGTGGGGIACCII			11441	CAIGITCALLAIANI	CATGCTICIOINIACO	CALGACIGOCGAAGI	V DEU U	CATGGAAAGAGCIGA	CATGCAACICIATGO	CATGAAATTIGGTGC		CATGUIGLACITACI		V C V C V	CALGAALALIGAGAA			JUJUUJUJUJU	CA I GI COCCOOCO	CATOCOAGAAGAAGAA	CATCTTTTGATAAA	CATCTCTCAGAGACC	CATOCCCACGCTAG	CATCAATTCTCTAA		155 CATGRACTCCGGGT	

1 LATOTACTICAC	H884181	0	~	=	14		X15804	Human alpha-actinin.
15) CATGTATCTAC	H843485	0	4	=	7	5	T19569	609F Homo sapiens cDNA clone 609 simitar to SET protein
S CATOLATICIATION OF A CATOLATIC	H114144	0	0	=	-	=	236249	HHEA 18W H. sapiens partial cDNA sequence; clone HEA 18W;
OACHOACHOCOCHA CA	H348481	C	c	=	-	•	AA207189	2q73e07.r1 Stratagene neuroepithelium (#937231)Homo sapiens cDNA clone 647268 5' similar to TR:E16910 E16910 ENDONUCLEASE.;
160 CATGCCATTCCTCGA	H540023	0	-	=	m	-	92408N	za98h04.s1 Homo sapiens cDNA clone 300631 3'.
101						T		ze90d01.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone
							AA025809 366241 3'	
								2585h05.s1 Soares NbHTGBC Homo sapiens cDNA clone 704313
							AA279492	3'
162 CATGGACGCGAACT	H550274	0	_	=	9	0		Unknown
_								zk84f04.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone
LAT CATGCCGGACTGGGG	H631275	0	0	1.1	_	-	AA098867	489535 3' similar to SW: A5 XENLA P28824 A5 PROTEIN PRECURSOR
_	H656453	0	1	=	0	2	R48460	yj67c12.rl Homo sapiens cDNA clone 153814 5.
							}	zp01c02.r1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA
					_		AA173819	clone 595106 5'
	H1022502	0	2	=	7	-	L19183	HUMMAC30X Human MAC30 mRNA, 3' end.
200000000000000000000000000000000000000					T	\vdash	H61710	yr24a07.s1 Homo sapiens cDNA clone 206196 3.
					T	T	H77330	yul 1f12.s1 Homo sapiens cDNA clone 233519 3'.
							N69482	za 18d05.s1 Homo sapiens cDNA clone 292905 3.
166 CATGGCAGACATTGA	H598335	0	7	2	4	6	H41078	yp52c11.s1 Homo sapiens cDNA clone 191060 3' simil
167 CATGCACTTGAAAA	H294401	0	_	2	5	0	H04630	yj49g03.r1 Homo sapiens cDNA clone 152116 5'.
-	H719435	0	0	2	24	0	R77027	yi66e12.r1 Homo sapiens cDNA clone 144238 5'.
_	H1007018	0	-	2	4	12	R32331	yh68g02.s1 Homo sapiens cDNA clone 134930 3' simil
	-497192	0	∞	01	-	01	T86566	yd77g07.r1 Homo sapiens cDNA clone 114300 5' simil
171 CATGGTGAAAAAA	H753665	0	2	2	9	7	S77357	transcript ch 111 [human, RF1, RF48 stomach cancer c
1	H506149	0	9	2	٥	_	M34338	Human spermidine synthase
	-835515	0	_	01	0	2	U03911	Human mutator gene (hMSH2)
174 CATGATGTAGTAGTG	H242380	0	5	01	6	7	D55671	Human heterogeneous nuclear ribonucleoprotein
175 CATGGACCCACTACC	HS45906	0	-	10	3	-	103569	Human lymphocyte activation antigen 4F2 large subunit
176 CATGAAATAGGTTTT	H12992	0		10	9	3	D53402	Human fetal brain cDNA 5'-end GEN-108D03.
							T61971	yb96f02.r1 Homo sapiens cDNA clone 79035 5'.
							D61243	Human fetal brain cDNA 5'-end GEN-171G06.
							N77240	yv44d02.r1 Homo sapiens cDNA clone 245571 5'.
177 CATGCCGGGCGTGGT	H371131	0	0	2	-	2	T35761	EST90898 Homo sapiens cDNA 5' end similar to EST c

1 SETA0710 Homo caniens cDNA 5' end similar to None.	0 8 10 3 3 131901 5314013 110113 241401		X98264 [HSMPP41 H.sapiens mRNA for M-phase phosphoprotein, mpp4, 1523bp		Unknown	The Daily for VIA A0246 narial cris	0 9 10 6 2 D8/433 Human mKNA 101 KIANOZAO BAIRO, Parian Sa	
20.5	13130		X9826				D8/43	
Ľ	7		<u>-</u>		_	ŀ	7	
ŀ	2		_		-	ļ	9	
ľ	2		=		9		2	
	00		^	•	4		6	
	0		0	۰	0	1	0	
	H555168		18481	10101	1232027	1202041	H610614	:
	178 LATEGACTGAGCTTG	0.0000000000000000000000000000000000000	H 4 4 00 00 00 00 00 00 00 00 00 00 00 00	1.79 ICATGAAACCCCAA1		00000000000000000000000000000000000000	TOUCK TATION TO TOUR	181 CATGGCCCACATCGCA

Table ? - Transcripts decreased in colon cancer

Transcripts decreased in only colon primary tumors compared to normal colon (51 genes)

NC: Normal Colon

TU Colon Primary Tumor CL: Colon Cancer Cell Line PT. Pancreatic Primary Tumor PC: Pancreatic Cancer Cell Line

		3	⊢	-	10	٥	Accession	Gene Name
# Tag sequence	Tag Number	ادِ	+	_1	+			Transmitted for hete offin
CATGGCTTTATTTGT	H654591	184	110	185	203		X00351	היינים ביינים סרים בליות אינים היינים הייני
2 CATGCTAGCTCACG	H468434	170	61	130	8	2	X04098	Human mRNA for cytoskeletal gamma-actin.
2 CATCOA A ACCATOCA	H263478	137	83	245	36	502 X	X12883	Human mRNA for cytokeratin 18.
CATOCATACATA	H513181	8	23	36	53	104 E	104 D00017	Human lipocortin II mRNA.
CATGCTICCAGCTAGCT	H348922	15	27	38	37	46 X	X04106	Human mRNA for calcium dependent protease (small subunit)
CATGCCCCAGIIGCI	H581974	53	4	42	9	32 2	265513	H.sapiens CpG island DNA genomic Msel tragment, cl
2 CATGOTGTACAGACA	H504098	S	22	26	9	32 V	W61077	zd30d02.rl Soares fetal heart NbHH19W Homo sapiens
* CATGOGGACTCACTG	H427848	47	15	56	<u>∞</u>	4	D60944	Human fetal brain cDNA 5-end GEN-141 DOZ.
	H349801	47	10	21	2	∞		Unknown
IN CATGCCTGGAAGAGG	H387107	46	19	39	41	_	J02783	Human thyroid hormone binding protein (200) intract,
11 CATGGCCTGGCCATC	H621140	46	61	24	91	2	N33042	yy05d05.s1 Homo sapiens cDINA clone 2/0345 5
13 CATGAGGAGGAGGAG	H150053	43	12	26	24	20	W07627	zb06a05.rl Soares fetal lung NbHL19W Homo sapiens
13 CATGAACGTGCAGGG	H28235	42	9	57	2	01	X01630	Human mRNA for argininosuccinate synthetase.
13 CATGGGGGGGGGA	H615802	9	2	16	17	8	D43682	Human mRNA for very-long-chain acyl-CoA dehydrogen
14 CATOTOGOGAGAGGA	H960651	40	~	36	10	5	D29146	Human keratinocyte cDNA, clone 173.
15 CATOCOTOCOTTICA	H648575	38	2	20	9	39 F	K00557	human alpha-tubulin mRNA, 3' end.
17 CATGTGGCCATCTGC	H955615	37	5	15	61	81	AA341633	AA341633 EST47188 Fetal kidney II Homo sapiens CUNA 3 end
18 CATGCGTTCCTGCGG	H456167	35	4	8	<u>~</u>		X77956	H.sapiens Id1 mKNA.
10 CATGTGCATCTGGTG	H937452	33	6	Ξ	=		X87949	H. sapiens mRNA for Bill protein.
20 CATGGTGACCTCCTT	H755160	33	7	12	v	=	J04823	Human cytochrome c oxidase subunit VIII (COAs) mixed
21 CATGTAGCTCTATGG	H826831	33	5	18	٥	<u> </u>	U16798	Human Na, K-A TPase alpha-i subunit mKNA, complete c
22 CATGOTTOCTAGGG	H760267	56	7	76	19	27	R50350	gb/R50350/R50350 yj59c04.s1 Homo sapiens cDNA clone 100000 0
יין כיאוססוססוססוססיין						-	R50013	yj59c04.r1 Homo sapiens cDNA clone 153030 5.
						Ĭ	C02981	Human Heart cDNA, clone 3NHC0642.

					!			
				l	-			EST30445 Homo sapiens cDNA 3 end similar to norquiror
!	6767071	7.0	<u> </u>	2	٠,	26 T	T31329	cytochrome-c reductase, 6.4 kDa.
23 CATGGGGCGCTGTGG	H694/6/	3 5		3 2	┿	+-		Unknown
24 CATGCCTCCAGTAC	H382130	3 6	2		╁	Т	H63643	yr34d11.r1 Homo sapiens cDNA clone 207189 5' simil
25 CATGCCTGTGACAGC	H38802/	7	1	: -	+	Т	W60924	zd27c08.rl Soares fetal heart NbHH19W Homo sapiens
26 CATGTCACAGTGCCT	H856806	7 6	1	•	╀	\top	1.25081	Human GTPase (rhoC) mRNA, complete cds.
27 CATGAATAAAGGCTA	H49320	3 5	1		╁	1	D45887	Human mRNA for calmodulin, complete cds.
28 CATGTTGTTGAA	H1031929	3 6	1	: =	╀	Т-	N62815	yy66b11.s1 Homo sapiens cDNA clone 278493 3'.
29 CATGAAGGTAGCAGA	H441/9	3 2	7	15	╀	1	R68653	yi14b06.s1 Homo sapiens cDNA clone 139187 3'.
30 CA I GG I G I G G G G G	D026344	21	-	~	1	E X	X90858	H.sapiens mRNA for uridine phosphorylase.
31 CATGTGCAGCGCLIG	1739607	ج ا	-	4	0	E H	H19458	yn54c02.s1 Homo sapiens cDNA clone 172226 3' simil
32 CATGATGGCACGGAG	1408126	3 8	1	0	-	T	T30468	EST17149 Homo sapiens cDNA 5' end similar to None.
33 CATGGCCAGACACC	0709051	3	-	12	64	Т	V00491	Human gene for alpha 1 globin.
34 CATGCTTCTTGCCCC	H515990	3 9	,	-	2	1	X51345	Human jun-B mRNA for JUN-B protein.
35 CATGACCCACGTCAG	H80455	ì	1,		-	Т	R72429	vi90e08.s1 Homo sapiens cDNA clone 156038 3'
36 CATGGGCTGCCTGCC	H686438	2	1	+	,	1	104401	Signature 1 Homo saniens cDNA clone 153787 3.
				1	†	<u> </u>	46449	377553 s.1 Homo caniens cDNA clone 154253 3'.
					1	뷔	K32128	y / LUUS, al LIOMO Suprementation of Calaba III is
OLUUJUU OVUJITA ET	HS67660	18	2	14	9	× 9	X12910	Human Na+, K+ A I Pase gene exons 1 - 3 (aipila III 13
S/ CATGOAGGGCCGG	1481847	12	-	3	2	2		Unknown
	U153100	2	1~	=	,	~	X81006	H.sapiens HCG I mRNA.
39 CATGAGCCCGALCAC	COLCCIA	2 2	1	2	-	12	T08666	Homo sapiens porin (por) mRNA, complete cds and tr
40 CATGGTTCAGCTGTC	H//4/00		1	! 0	+	_	1104627	Human 78 kDa gastrin-binding protein mRNA, complet
41 CATGCCTCGCTCAGT	H383443	٤		• •	1	Т	770711	Human BENE mRNA, partial cds.
42 CATGCAAATAAAGT	H265219	2	-	•	, ,	1	1100760	Human semanhorin V mRNA, complete cds.
43 CATGTGCCGCCGCA	H940378	~	-	»	╡	Т	12020	Human Dengs 2' directed Mhol cDNA, clone \$150.
	H601752	15	0	٥	4	Т	D12036	numan nepoz 3 - medical propositive element mRNA
	H502137	14	-	~	_	\neg	077396	Human INF-aiphia induction icapositive control
A CATGGCCATTGGAG	H611305	13	-	9	13		229093	H. sapiens EUUKI gene tol receptor tytosing Kinds
	H32792	12	0	2	7	0	T94990	ye38a04.s1 Homo sapiens cLINA cione 119762 3
47 CATGAAGAAACCTC						_	N69310	za25g05.s1 Homo sapiens cDNA clone 293624 3.
					-	T		2b86e03.s1 Soares senescent fibroblasts NbHSF Homo sapiens cDNA
						<u> </u>	N98502	clone 310492 3'
	H538878	2	0	9	9	4	F18838	H.sapiens EST sequence (007-XI-01) from skeletal m
48 CATGGAAIGAIIICI	01000011	:				T		zr21b10.s1 Stratagene NT2 neuronal precursor 937230 Homo sapiens
TTJJTDGTJJJJTT	H621272	12	0	6	3	8	AA226928	cDNA clone 664027 3'
49 CA100CC1001CC11	H610579	E	0	-	-	0	M60047	Human heparin binding protein (HBp17) mKNA
SO CCATGOCCCACACAG								

2245e09.11 Soares senescent fibroblasts NbHSF Homo 2 W52456 H671052 1 CATGGGATTCCAGTT

"NSDOCID: <WO_ 9853319A2_1 >

Transcripts decreased in both colon primary tumors and colon cancer cell lines compared to normal colon (130 genes)

NC: Normal Colon
TU: Colon Primary Tumor
CL: Colon Cancer Cell Line
PT: Pancreatic Primary Tumor
PC: Pancreatic Cancer Cell Line

				T							1	<u>.</u>	T	1					100	9484	Z bi		ا	2		ñ
					.21) f	nRNA	5			1	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HUMGS02706 Human colon 3'directed Mbol cDNA, HUMGS02709,		3.			ste cde		100	vv07h09.r1 Homo sapiens cDNA clone 242081 5' similar to SP:A 39484	A39484 ANDROGEN-WITHDRAWAL APOPTOSIS PROTEIN RVPI,	-13)1	Polo ANGO COST	2005a11.rl Soares fetal lung NbHLI9W Homo sapiens conversions		sapiens cDNA cloi
Cone Name		D	edneuce (noz 1 13		equence (009-T1-	protein (FABP) n	viewatively	Se faitchilatively	educace (1-1-42)	A CIONE GUAGO	A clone 1007 /0	'directed Mbot ct		1A clone 117195	6	complete cds.	A Power	ין ווואואר, כטוויף	rotein.	AA clone 242081	DRAWAL APOP	sequence (011-TI		IBHLI9W HOMO	7.	(#937204) Homo
		Human mRNA for cytokeratin o.	H.sapiens mitochondrial EST sequence (002113)		Useriese mitochondrial EST sequence (009-T1-21) f	Floydo II. Sapiciis III. Carr. soid binding protein (FABP) mRNA	ratily actu Dinding	c-erbB3=receptor tyrosine Killase (alternatively of	H. sapiens mitochondrial ES1 sequence (1-1-02) itom	ya04c01.r2 Homo sapiens cDNA cione 60480 3	yl41a01.s1 Homo sapiens cDNA clone 100/103	06 Human colon	.3.	TOKIKA WEADING SI Homo sapiens cDNA clone 117195 3.	190100 Jeconom mDNA for M6 antipen	X04304 In.Sapiens illican ich in mPNA complete cds.	IIII II CIIGIII IIIII	L15203 Human secretory protein (P1.B) mixing, compress com	X93036 H.sapiens mRNA for MAT8 protein.	Homo sapiens cD	DROGEN-WITH	H.sapiens mitochondrial EST sequence (011-T1-13) 1	Human mRNA for keratin 19.	2005a11.rl Soares fetal lung NbHL19W Homo sapiens CUNA	PRECURSOR (HUMAN);	2031h04.51 Stratagene colon (#937204) Homo sapiens cDNA clone
				П	\neg	Taplicia iii	Human liver		H.sapiens mi		_	HUMGS027	D25586 clone cm1673	La COHODAN	T conico	n.sapiciis iii	Human Icit	Human secr	6 H.sapiens m	vv07h09.r1		1 -	_	zb05a11.rl		_
	Accession	X12882	F15636		21.0040	110940	M10050	S61953	F15506	T39321	H24673		D25586	10K1K	201061	X0430	M1114	L1520	X9303		H93844	↓_	Y00503		W16632	
	2	663	497	-	-	232	0	13	204	0					1		369	٣	2	1	39	180	219	_	2	_1_
	ጀ	136	142		1	43	0	30	71	-						<u>4</u>	235	Ξ	5	!	40	i R	5	L		2
	CL	304	402	3	7	93	4	27	132	0						2	\$	0	4	<u>}</u>	0	Ì	12			*
	TU	100	S	707	2	348	35	108	242	131						88	75	22	18	3	- 5	ៀន	X F			2
	NC.	Ę	3 8	8	705	512	504	486	195	276		T				256	202	Š		2	3		2 2			178
	Tee Number	001.001	20170, H	H460920	H610997	H90022	HR1583	0892270	19653011	UCASEOR	20056					H617195	H1026814	LA 70577	1156141	H6006/0		H224923	H2/13/4	710464		H782013
		nence	CTAC	TTCA	TCAC	₩	V220	ADIO.	5122	CAAA	AGATA					1000	2000	77111	CCGAA (or U)	CCTCA		99999	TCCCC	AAGIC		GTTAA
3		Tag Sequence	CATGCCTCCAGCTAC	CATGCTAAGACTTCA	CATOCOCOAGGTCAC	01100001	CATUALLLIGGER	CATGACALIGGGIGA	ATGGCGAAA	CATGAGCCCTACAAA	CATGGACCCAAGAIA					OUDDITUDOUS	CAIGOCCOOC	10 CA1G11GGGG111CC	CATGCTCCACCCGAA (or U)	12 CATGGCAGGGCCTCA		13 CATGATCGTGGCGGG	14 CATGCAAGCATCCCC	15 CATGGACATCAAGIC		6 CATGGTTGTGGTTAA
		_	<u></u>	1	1	7	귀	2	9	위	<u> </u>	-	-		\dagger	+	<u></u>	5	=	2	T	13	4	2		9

97 z192h02.s1 Stratagene colon (#937204) Homo sapiens cDNA clone	AA133597 5121153	T53199 ya86c05.s1 Homo sapiens cDNA clone 68552 3'.		M16364 Human creatine kinase-B mRNA, complete cds.		R09410 repetitive element	_		yq04h09.s1 Homo sapiens cDNA clone 196001 3' sımılar	١	Т	W90374 CDNA clone 418222 3' similar to contains Alu repetitive element	X52003 H.sapiens pS2 protein gene.	M18981 Human prolactin receptor-associated protein (PRA)	M64303 Human galactoside-binding protein mRNA.	Vicase Unimon mRNA for carcinoembryonic antigen pCEA80-11.	11.2012 Human Mul antigen (H. A-B) mRNA, complete cds.		191437 Hilling Company Himan Gene Signature, 3'-directed cDNA sequence	CA104/ Inchigosoft Strategies Colon (#937204) Homo sapiens CDNA	LECT	zighno si Stratagene colon (#937204) Homo sapiens cDNA	A A 0 S 4 0 7 2 c lone 50 9 8 1 9 3'	zo18g08.s1 Stratagene colon (#937204) Homo sapiens cDNA clone	AA132736 587294 3' similar to SW:LEG4 RAT P38552 GALECTIN-4	X04412 Human mRNA for plasma gelsolin.	-	zo35c09.s1 Stratagene colon (#937204) Homo sapiens cDIVA cione	AA146606 588880 3'	zo35g09.s1 Stratagene colon (#93/204) Homo sapiens Colon Civil	AA 146775 588928 3'	2074g11.s1 Stratagene pancreas (#93/200) Hollio Sapiells CLIVA College A A 161043 \$92676 31	
-	_		0	2	╄	4 H	╁	_	-	_	+		<u> </u>	181	┿	┿		-	-	٥		+	<	-		7	2	-	21 A		≤	₹	=
-		+	6	~	╀		+		-		\dagger		792	╄	╁	╬	┿	-	╁	2		\dagger		\dagger		R	84		14	-			1
F		+	-	12	1	4	+		\dagger		t		-	╁	<u> </u>	<u>-</u>	1	+	+	-		\dagger		T		1	32		_				1
\ 		\dagger	12	╁	┿	 9	;		\dagger		\dagger		ļ	;	₽ ;	\$	×	4	8	2		1		1		1	12		7				7
-		\dagger	174	: ;	<u> </u>	163	1		\dagger		†		15		3	3	2	5	2	2		+		1		122	122		115				
			10077654	201460	H284132	00000711	H300200						1110311	HOLLINGE	H350116	H1001401	H256186	H493039	H149715	H655433						H857781	11636011	11700011	H657337				
				CTAGTGCTCCIACC	18 CATGCACCCTGATG		19 CATGCCGCTGCACTC							20 CATGCTGGCCCTCGG	21 CATGCCCCTGGATC	CATGTTCACTGTGAG	CATGATTGGAGTGCT	CATGCTGACCTGTGT	CATGAGCAGATCAGG	26 CATGGGAAACAGAA								28 CATGTGCAGCACAAG	A A CHORD A A COCHE CO	29 CATGGGAACTGTGAA			

				\vdash	┝	_	2	z183108.s1 Stratagene colon (#937204) Homo sapiens cDINA cione
						AAO	AA088704 511239 3	1239 3'
0100000	H404117	14	32	24	8	40 H00	H00427 y	yj23g11.rl Homo sapiens cDNA clone 149636 5'.
30 CATGCGAGGGCCAG				\vdash		_	2	2063d03.s1 Stratagene pancreas (#937208) Homo sapiens culnA clone
						AAI	58715 5	AA158715 591557 3'
			 			Ĕ -	T08562 E	EST06454 Homo sapiens cDNA clone HIBBG31 3' end.
		T	T	t	-			zm21a12.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone
						AA0	78845 5	AA078845 526270 3'
A A A COCCURATION	H790417	=	t	-	0	0 X7.	X73502 F	H. Sapiens mRNA for cytokeratin 20.
31 CATGIAAAI IUCAAA	C3C363H	E	36	48	45	43 J03	J03191	Human profilin mRNA, complete cds.
32 CATGGGCTGGGGGCC	1761760	2 2	1 5	╀	╁	┝	U02629 F	Human smooth muscle myosin alkali light chain mRNA
33 CATGGTGCTGAATGG	H/01539		3 :	┿	╁	╄	i .	Human M4-50 mRNA for HLA class I antigen.
14 CATGGTGCACTGAGC	H758243	3	<u> </u>	ا	┿	+	Т	U saniens mitochondrial EST sequence (001724) from
15 CATGTTTAACGGCCG	H1032614	2	=	4	_		7,001	-174-07 of Stratagene Colon (#937204) Homo sapiens cDNA clone
		3		,		7	309925	A A A S 3 3 K 60 \$103.72 3' similar to contains A lu repetitive element
14 CATGCCCTCCCGAAG	H357729	<u>s</u>	=	+	+	_		UNINGSOADT Himan colon 1'directed Mbol cDNA, HUMGS04077,
						-		
						D2	D25711 c	clone cm 1210
				-	-			H.sapiens CpG DNA, clone 140c4, reverse read cpg 14(191110c1101101114
	7875	105	~	72	4	27 25	Z56800 E	EST
37 CATGAGGTGGCAAGA	VOLVOCE	3	=	-	0	0 W	M95174	Human guanylin mRNA, complete cds.
38 CATGATACTCCAULC	1484087	2 =	22	-	╁	191	 	Unknown
39 CATGCTCGCGCTGGG	140420		+		╁			vn01b01.rl Homo sapiens cDNA clone 167113 5' similar to SP:ZK783.1
	H697514	82	32	28	37	65 R9	R90863	CE00760;
10 CA100000CA0000					-	17	T24702	EST277 Homo sapiens cDNA clone 10H4.
	Нетаков	02	2	42	28	87 X	X95404	H.sapiens mRNA for non-muscle type cofilin.
41 CATGGAAGCAGGAC	0338660	7,5	2	2	2	9X 91	X67325	H.sapiens p27 mRNA.
42 CATGCCAGGGGAGA	COCOCCI	2	=	۽	9	31 FI		H.sapiens mitochondrial EST sequence (009T28) from
43 CATGACACAGCAGA	H/0211		1	:	+	╀	T	za 6 6 a 03.51 Homo sapiens cDNA clone 292684 3' similar to contains Alu
	H134304	9	29		<u>س</u>	92	N69361	repetitive element; contains element L1 repetitive element
44 CATGAGAATAGCTTG	10020				T			ze30b10.s1 Soares retina N2b4HR Homo sapiens cDNA clone
						AAC	816510	AA015918 360475 3' similar to contains Alu repetitive element
					T			y114h01.s1 Homo sapiens cDNA clone 158257 3' similar to contains Alu
						H2	H26689	repetitive element; contains TARI repetitive element;
						_		zr79h11.s1 Soares NhHMPu S1 Homo sapiens cDNA clone 081937 3
45 CATOCOCTGTGGGGT	H424875	68	6	٥	2	23 AA	256365	23 AA226365 similar to WP:C33A12.7 CE05353
40 CA10000101010								

zc39e11.s1 Soares senescent fibroblasts NbHSF Homo sapiens cDNA	W47357 clone 324716 3'	$\overline{}$	W19276 clone 310877 3'	R07159 yf13h12.s1 Homo sapiens cDNA clone 126791 3'.	L02785 Homo sapiens colon mucosa-associated (DRA) mRNA	U11862 Human clone HP-DAO1 diamine oxidase	N93240 2b68b06.s1 Homo sapiens cDNA clone 308723 3'.	NIB1986 Normalized infant brain, Bento Soares Homo sapiens cDNA	T16906 3'end.		H78256 SP:SBP MOUSE P17563 SELENIUM-BINDING	EST47523 Homo sapiens cDNA 3' end similar to similar to Selenium-	T32362 binding protein, liver.	V00493 Human messenger RNA for alpha globin.	Unknown	X51346 Human jun-D mRNA for JUN-D protein.	R34039 yh83f04.r1 Homo sapiens cDNA clone 136351 5'.	H03961 1944e07.s1 Homo sapiens cDNA clone 151620 3'.	R33498 yh83f04.s1 Homo sapiens cDNA clone 136351 3'.	_	AA053043 510082 5'	F17394 H.sapiens mitochondrial EST sequence (007T13) from	Z13009 H.sapiens mRNA for E-cadherin.			M20469 Human brain-type clathrin light-chain b mKNA,		T	U79725 Human A33 antigen precursor mRNA, complete cds	Unknown	H11216 ym14f06.r1 Homo sapiens cDNA clone 47991 5.	H52178 yt85h08.s1 Homo sapiens cDNA clone 231135 3'.	T40539 ya05b02.s1 Homo sapiens cDNA clone 60555 3'.
					0	9	2							0	14	3	7				0	30	8	31	0	8		=	-	14	24		
\mid		+		-	0	7	-	-		_	_	L		~	1	5	E	╀		\perp	-	-	12	8	0	32	_	∞	0	14	1 22		\vdash
-		+		\vdash	P	0	-	-		_		L		l°	7	25	2	╀		-	0	=	17	15	0	13	_	5 5	0	1	7 14	\vdash	\vdash
-		+		+	5	9	E	+		\vdash		\vdash		-	7	9	╀	+	╀	-	9	=	20	2	4	=	_	5 15		01 1	3 17	H	-
-		+	_	-	8	8	64	-		_		-		2	S	2	10	1	-	+	~	S	49	8	48	47	_	46	45	44	43	┞	╁
					H314109	H614731	H161769							H344474	H550554	H87386	0919100	1120100			11862097	H723890	H977640	H650847	H929299	H686744		H800074	H545514	H673210	H41344		
					CATTAGGTTTAG	46 CATUCATAGOOT	4/ CATOLOGICATOR	48 CATGAGCICITOGAG						TOOODAACCOTT	49 CATOCACCACC	SO CALGACTOR OF THE PROPERTY O	SI LA IUALCECECECE	S2 CATGATGCGGGAGAA				SA CATOCTA AGTGTACT	s CATCTCTCTCTG					19 CATGTAATCCCAGCA	60 CATGGACCAGTGGCT	AL CATGGCACGTGCT	CATCAAGGACCTTT	02 CA 100000000000000000000000000000000000	

CATCGCAGCTCCTGT									100505 4	A A 10300 FST12940 Uterus tumor I Homo sapiens cDNA 3' end
CATGGCAGCTCCTGT H59903 43 8 17 24 13 W02429 CATGTGCCAGCTCCTGT H59903 43 8 17 24 13 N20225 CATGTGTCCTGGTTC H972720 43 12 14 25 5 U03106 CATGTGTCCTGGTTC H65878 42 16 7 12 11 W37827 CATGTAGGATGGGGG H828331 41 6 11 6 9 U51478 CATGACTGTGGCGGC H126619 41 7 1 4 35 CATGACTGTGGCGGC H126619 40 7 13 17 24 AA180815 CATGACTGTAGCAGTGT H53508 40 12 0 3 0 T11144 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGATGGCCCC H167606 40 11 4 5 AA143765					T	-		_		zaS2d02.r1 Soares fetal liver spleen INFLS Homo sapiens cDNA clone
CATGTGTCCTGGTTC H972720 43 12 14 25 5 U03106 CATGTGTCCTGGTTC H65878 42 16 7 12 11 W37827 CATGACAAACCCCA H65831 41 6 11 6 9 U51478 CATGTAGGATGGGGG H828331 41 6 11 6 9 U51478 CATGTAGGATGGCGG H126619 41 7 1 4 35 CATGACTGTGGCGGC H126619 40 7 13 17 24 AA180815 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGTGCCCC H167606 40 11 4 5 AA143765			H599903	43	∞	=	24	+	$\overline{}$	296103 5. 2944611 c1 Homo sapiens cDNA clone 264596 3'.
CATGTGTCCTGGTTC H972720 43 12 14 25 5 U03106 CATGACAAACCCCCA H65878 42 16 7 12 11 W37827 CATGACAAACCCCCA H828331 41 6 11 6 9 U51478 CATGTAGGATGGGGG H828331 41 6 11 6 9 U51478 CATGTAGCATCGAGGGG H828331 41 7 1 4 35 CATGTAGCATCGCGGG H126619 41 7 1 24 AA180815 CATGTAGCATCACAAATA H53508 40 12 0 3 0 T11144 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGTGCCC H167606 40 11 4 4 5 AA143765					1	\dagger	\dagger		_	yz13c12.s1 Homo sapiens cDNA clone 282934 3'.
CATGTGTCCTGGTTC H972720 43 12 14 25 5 U03106 CATGACAAACCCCCA H65878 42 16 7 12 11 W37827 CATGACAAACCCCCA H65878 42 16 7 11 W32410 CATGAGATGGGGG H828331 41 6 11 6 9 U51478 CATGACTGTGGCGGC H126619 41 7 13 17 24 AA180815 CATGACTGTGGCGGC H130287 40 7 13 17 24 AA180815 CATGAATCACAATA H53308 40 12 0 3 0 T11144 CATGAGGTGCC H167606 40 12 0 3 0 T11144 CATGAGGATGCCC H167606 40 11 4 5 AA193299						T	T		T	2b38c11.s1 Soares parathyroid tumor NbHPA Homo sapiens cDNA
CATGGTGTCCTGGTTC H972720 43 12 14 25 5 U03106 CATGACAAACCCCCA H65878 42 16 7 12 11 W37827 CATGACAAACCCCCA H828331 41 6 11 6 9 U51478 CATGACTGGGGGG H828331 41 6 11 6 9 U51478 CATGACTGTGGCGCC H126619 41 7 1 4 35 CATGACTGTGCCGCC H730287 40 7 13 17 24 AA180815 CATGATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGATGGTCCC H167606 40 11 4 5 AA193595 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA193299								_		clone 305876 3'.
CATGACAAACCCCA H65878 42 16 7 12 11 W37827 CATGACAAACCCCCA H628331 41 6 11 6 9 U51478 CATGTAGGATGGGGG H828331 41 6 11 6 9 U51478 CATGACTGTGGCGGC H126619 41 7 1 4 35 CATGACTGTGGCGGC H126619 40 7 13 17 24 AA180815 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGATGGTCCC H167606 40 11 4 5 AA13765			H972720	43	12	4	25	Н	-	Human wild-type p53 activated fragment-1 (WAF-1) mK
CATGACAAACCCCCA H65878 42 16 7 12 11 W37827 W15332 CATGTAGGATGGGGG H828331 41 6 11 6 9 U51478 CATGTAGCATGGCGGC H126619 41 7 1 4 35 CATGACTGTGGCGGC H126619 41 7 1 4 35 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGTGCCC H167606 40 11 4 5 AA143765							-			zc1101.s1 Soares parathyroid tumor NbHPA Homo sapiens CDINA
CATGAGGATGGGGG H828331 41 6 11 6 9 US1478 CATGACTGTGGCGC H126619 41 7 1 4 35 CATGACTGTGGCGC H126619 41 7 1 4 35 CATGACTGTGGCGCC H126619 41 7 1 3 17 24 AA180815 CATGACTGTAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765	ž	CATGACAAACCCCCA	H65878	42	91	-		-	\neg	clone 322009 3
CATGTAGGATGGGGG H828331 41 6 11 6 9 U51478 CATGTAGGATGGGGGC H126619 41 7 1 4 35 CATGACTGTGGCGGC H126619 41 7 1 4 35 CATGACTGTGGCGGC H126619 41 7 1 4 35 CATGATAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGATAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA119299	5									gb W 5332 W 5332 zc16d10.st Soarcs paramytord terror 1200.st
CATGTAGGATGGGGG H828331 41 6 11 6 9 US1478 CATGTAGGATGGCGG H126619 41 7 1 4 35 CATGTAGCATGGCGGC H126619 41 7 1 4 35 CATGTAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGGTAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGGTAGCAGTGT H53508 40 12 0 3 0 T11144 CATGAATCACAATA H53508 40 12 0 3 0 T11144 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA113765			·						_	Homo sapiens cDNA clone 322483 3
CATGTAGGATGGGGG H828331 41 6 11 6 9 U51478 CATGTAGCATGGGGG H126619 41 7 1 4 35 CATGACTGTGGCGGC H126619 41 7 1 4 35 CATGACTGTGGCGGC H126619 41 7 1 4 35 CATGATGAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765									_	2c04g10.s1 Soares parathyroid tumor NoHPA flomo sapiens Const
CATGTAGGATGGGGG H828331 41 6 11 6 9 US1478 CATGTAGGATGGCGG H126619 41 7 1 4 35 CATGACTGTGGCGGC H126619 41 7 1 4 35 CATGACTGTGGCGGC H126619 41 7 1 4 35 CATGATAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGAATCACAATA H53508 40 12 0 3 0 T11144 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765										clone 321378 3'
CATGTAGGATGGGGG H828331 41 6 11 6 9 US1478 CATGAGGATGGCGGC H126619 41 7 13 17 24 AA180815 CATGGTAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGGTAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765									N32312	yw82c01.s1 Homo sapiens cDNA clone 258720 3.
CATGATGAGGAGGTGT H126619 41 7 1 4 35 CATGATAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGATAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765			HR28331	4	9	=	9	-		Human sodium/potassium-transporting ATPase beta-3
CATGGTAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGGTAGCAGGTGT H730287 40 7 13 17 24 AA180815 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765			H126619	14	-	-	\vdash	35		Unknown
CATGGTAGCAGGTGT H730287 40 7 13 17 24 AA180815 R34696 R34696 R34696 R34696 CATGAATCACAAATA H53508 40 12 0 3 0 T11144 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA113765							-			zp44f11.s1 Stratagene muscle 937209 Homo sapiens cUNA clone
CATGAGGATGGTCCC H167606 40 11 4 4 5 AA119299	,	TOTOOVOOTOOT	H730287	40	7	13			A180815	612333 3' similar to contains Alu repetitive element;
CATGAGGATGGTCCC H167606 40 11 4 4 5 AA119769	89 9	CATGGTAGCAGGTGT								yh87e04.s1 Homo sapiens cDNA clone 136734 3' similar to contains Alu
CATGAGGATGGTCCC H167606 40 11 4 4 5 AA119769										repetitive element;.
CATGAGGATGGTCCC H167606 40 11 4 4 5 AA119299										yh87e04.s1 Homo sapiens cDNA clone 136734 3' similar to contains Alu
CATGAGGATGGTCCC H167606 40 11 4 4 5 AA149765										repetitive element;
CATGAGGATGGTCCC HI67606 40 12 0 3 0 TIII44 AA058357 C05803 C05803 C05803 CATGAGGATGGTCCC HI67606 40 II 4 4 5 AA143765 AA179299							- 			zq06e03.s1 Stratagene muscle 937209 Homo sapiens cUNA clone
CATGAGGATCCCAAATA H53508 40 12 0 3 0 T11144 AA058357 AA058357 C05803 C05803 CA10406 40 11 4 4 5 AA143765								<u> </u>	A 194497	628924 3' similar to contains Alu repetitive element
CATGAATCACAATA H53508 40 12 0 3 0 T11144 AA038357 AA038357 C05803 C05803 CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765										hbc760 Homo sapiens cDNA clone hbc760 3'end similar to nonspacific
CATGAGGATGGTCCC H167606 40 11 4 4 5 AA179299			H53508	40	12	0	3	•		crossreacting antigen.
CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765	જી		2000001					\vdash		z167e01.s1 Stratagene colon (#937204) Homo sapiens cDNA clone
CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765								_	A058357	509688 3' similar to TR:G189087
CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765								-	C05803	similar to none
CATGAGGATGGTCCC H167606 40 11 4 4 5 AA143765 AA179299							Γ			zo31e02.s1 Stratagene colon (#937204) Homo sapiens cDNA clone
AA179299			H167606	8	=	4	4		A143765	588506 3'
AA179299 612377 3'	2						-			zp45b09.s1 Stratagene HeLa cell s3 937216 Homo sapiens cDNA clone
								_	A179299	612377 3'

								zk10e12.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone
							AA029975 470158 3'	470158 3'
89 CATGGGAGGTGGGGC	H666539	30	9	2	32	22	1	H.sapiens granulin mRNA, complete cds.
90 CATGTTCCACTAACC	H1003970	30	7	3	91	17	_	gblU53204[HSU53204 Human plectin (PLECI) mRNA, complete cds
91 CATGGTCTGGGGGAT	H752297	29	-	3	6	3	T60135	yc22a06.s1 Homo sapiens cDNA clone 81394 3.
								gbjU67963JHSU67963 Human Iysophospholipase homolog (HU-KS)
				1	1	1	130403	MKNA
	H084414	29	٠,	•	•	•	R23595	yh39a12.rl Homo sapiens CDNA Clone 132094 3 Similar to go.D20129 RIBONUCLEASE PANCREATIC PRECURSOR (HUMAN)
92 CATOLIAACCCTCC				1			1	yj83c08.s1 Homo sapiens cDNA clone 155342 3' similar to gb:D26129
							R69445	RIBONUCLEASE PANCREATIC PRECURSOR (HUMAN);
								yi84h01.s1 Homo sapiens cDNA clone 145969 3' similar to gb:D26129
							R79191	RIBONUCLEASE PANCREATIC PRECURSOR (HUMAN);
						T		yj56c03.s1 Homo sapiens cDNA clone 152740 3' similar to gb: D26129
							R49965	RIBONUCLEASE PANCREATIC PRECURSOR (HUMAN);
								zv35h12.r1 Soares ovary tumor NbHOT Homo sapiens cDNA clone
							•	755687 5' similar to TR:G459890 G459890 OVEREXPRESSED IN
83 CATGATGATGATGAT	H231029	28	~	~	4	9	4A410947	AA410947 TESTICULAR TUMORS
מוסיים ומסיים ולא				Γ			H02520	H02520 yj40c11.r1 Homo sapiens cDNA clone 151220 5'.
				Γ	T			zo12g08.r1 Stratagene colon (#937204) Homo sapiens cDNA clone
								586718 5' similar to TR:G459890 G459890 OVEREXPRESSED IN
				-			AA130551	AA130551 TESTICULAR TUMORS.
							_	zd33c10.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone
94 CATGCACCTGTCATC	H286420	28	5	0	2	4	W68230	342450 3' similar to contains Alu repetitive element
								yp90a02.s1 Homo sapiens cDNA clone 194666 3' similar to contains Alu
							R89822	repetitive element;
							A A 0 51122	2K69e08.51 Soares pregnant uterus Northo Homo saptens Colore Cloude A A 0531272 48R 102 3' similar to contains element MER6 repetitive element
	147887A	27	-	1-	24	2	V00594	Human mRNA for metallothionein from cadmium-treated cells
y) CATOOATCCCAACTO						+		yp21d05.r1 Homo sapiens cDNA clone 188073 5' similar to gb:J05021
% CATGCTTAGAGGGGT	H510123	27	_	2	6	9	H43742	EZRIN
97 CATGATGGCCCATAC	H238925	27	4	3	1	0		emb Y09616 HSICE H.sapiens mRNA for putative carboxylesterase
	H591884	27	-	0	2	0	V00497	V00497 Human messenger RNA for beta-globin.
20 00								

99 CATGTACCTCTGATT	H810468	27	2	7	E	12 X65	X65614	H.sapiens mRNA for calcium-binding protein S100P.
ION CATGATGATGCACC	H233106	28	0	2	0	2		
								emb Z69881 HSSERCA3M H.sapiens mRNA for adenosine
101 CA FGTTCTGTAGCCC	H1014566	25	5	0	4	寸		triphosphatase, calcium
102 CATGCCTGTCTGCCA	H388582	24	-	2	_	3 T99568		ye65c02.r1 Homo sapiens cDNA clone 122594 5.
						T87	T87539	yd89f09.s1 Homo sapiens cDNA clone 115433 3'.
				T	\vdash			gblAA347726/AA347726 EST54132 Fetal heart II Homo sapiens cDNA
103 CATGTATGATGAGCA	H844682	23	4	0	-	0	7.	S' end similar to transmembrane secretory component
104 CATGCTGGCAAAGGT	H500747	23	0	0	0	0	_	
105 CATGCTTGATTCCCA	H517078	23	4	4	17	7 142	\neg	Homo sapiens bone-derived growth factor (BPGF-1) m
106 CATGCTTGACATACC	H516402	22	0	0	7	2 X68	X68277	phase
								Human N-benzoyl-L-tyrosyl-p-amino-benzoic acid hydrolase
107 CATGGCTGGCACATT	H649492	22	S	0	0	0 M82		alpha subunit (PPH alpha) mRNA, complete cds
108 CATGTCTGAATTATG	H909556	21	_	-	_	91X 1	X16354	Human mRNA for transmembrane carcinoembryonic antigen (CEA)
			-					H.sapiens mRNA for Gal-beta(1-3/1-4)GIcNAcalpha-2,3-
100 CATGGGAAGAGCACT	H657554	21	_	_		3 X74	X74570 s	sialyltransferase
						_		yo45d01.s1 Homo sapiens cDNA clone 180865 3' similar to contains
LIGICATGGCTCTTCCCCA	H646998	70	7	-	_	0 R87	R87768	PTRS repetitive element
							Î	yo36g07.s1 Homo sapiens cDNA clone 180060 3' similar to contains
						R85	R85880	PTR5 repetitive element
LI CATGAAATCTGGCAC	1114245	2	2	0	4	3 1.20	L20826	Human I-plastin mRNA, complete cds.
112 CATGTAATTTGCATT	H802708	6	7	0	-	7 ZS0	152052	HSB4BMR H.sapiens mRNA for B4B
					-	170	U77085	Human epithelial membrane protein (CL-20) mRNA, complete cds
						Y07	Y07909	HSPAPR H.sapiens mRNA for Progression Associated Protein
113 CATGGTGGGGGGC	H764570	8-	-	-	∞	2 R48	R48529	yj64g10.rl Homo sapiens cDNA clone 153570 5'.
								EST10a24 Clontech adult human fat cell library HL1108A Homo
CATGITATGGTGTGA	H998127	17	0	0	_	0 727	T27534	sapiens cDNA clone 10a24.
11 SICATGGGAGAACAGC	H663571	13	-	2	4	0 T86	T86124	yd84b04.s1 Homo sapiens cDNA clone 114895 3.
					┞			zo15g05.s1 Stratagene colon (#937204) Homo sapiens cDNA clone
						AAI	31008	AA131008 587000 3'
						R49	R49945	yj58g11.s1 Homo sapiens cDNA clone 152996 3'.
						T57	T57044	ya84h01.s1 Homo sapiens cDNA clone 68401 3'.
116 CATGCCAACACCAGC	H328787	12	-	0	0	0		
HITICATGAGGTGACTGGG	H178299	11	0	0	0	0		
HECATGGCCATCCTCCA	H609654	92	0	0	0	0		gb R73013 R73013 yj94a09.r1 Homo sapiens cDNA clone 156376 5'

			ļ	ŀ	ŀ	ŀ	6100077	11. man ananine murleatide-hinding regulatory protein
	H1039799	15	_	0	4	4	MOYOLS	חחווומוו פתמוווור וותכוכסיות סיייניים פייים
	H860776	15	_	_	_	0		
T								yv72h06.s1 Soares fetal liver spleen INFLS Homo sapiens
			-					cDNA clone 248315 3' similar to contains element PTR7 repetitive
	H1006014	14	_	0	0	2	N58523	element
	H814011	4	-	0	0	0		Unknown
	H477216	14	0	-	4	2		Unknown
	H662543	13	-	0	-	0	M29540	M29540 Human carcinoembryonic antigen mKNA (CEA), complete cus.
								HUMGS04154 Human colon 3 directed Mool CUNA, HUMGS04154,
	H653988	12	0	0	0	1	D25786	D25786 clone cm0215.
								yc36e02.rl Homo sapiens cDNA clone \$2778 5' similar to go:LU/105
							T73613	T73613 LIVER CARBOXYLESTERASE PRECURSOR
	H86138	12	0	0	0	-		Unknown
T	H491894	12	0	0	7	2		gb T95615 T95615 ye40e03.s1 Homo sapiens cDNA clone 120220 3:
			T					zr19b11.s1 Stratagene NT2 neuronal precursor 937230 Homo sapiens
	C0117CH	=	c	0	7	0	AA226797	0 AA226797 cDNA clone 663837 3'
	7011/71		·	T				2097h01.51 Stratagene NT2 neuronal precursor 937230 Homo sapiens
							AA218730	AA218730 CDNA clone 649969 3'
			T					vp37f10.r1 Homo sapiens cDNA clone 191563 5' similar to gb:M90657
	H743610	=	0	0	••	8	H38178	TUMOR-ASSOCIATED ANTIGEN L6 (HUMAN);.
	U 1042445	E	٥	6	0	0		Unknown
	21040440		,	·				

cell lines compared to normal colon (78 genes) Transcripts decreased in only colon cancer

NC: Normal Colon
TU Colon Primary Tumor
CL. Colon Cancer Cell Line
PT. Pancreatic Primary Tumor
PC: Pancreatic Cancer Cell Line

Gene Name	U soniene mitochondrial ES	_	_ 1	L08441 Human autonomously replicating sequence (1930)	F15553 H.sapiens mitochondrial ESI sequence (0011114)	X51525 Human cortex mRNA containing an Alu repetitive element	1	Т	1	7		_		Т	\neg	U46913 Human EST overexpressed in pancreatic cancer (x531)	X05607 Human mRNA for cysteine proteinase inhibitor precursor	D54113 Human fetal brain cDNA 5'-end GEN-129B05.	X14758 Human mRNA for adenocarcinoma-associated antigen		7	Т	T	\neg	П	S79597 [tRNASer(UNC) [human, muscie, Menar/Melan Svenaps	T48809 yb05c03.r1 Homo sapiens cDNA clone 70276 5 contai	M69023 Human globin gene.	
H	+	+	\dashv	314 I	161	-	╀	+	+	+	+	+	-	-	107	49	34	╀	╁	+	+	+	┥	15	5	_	~	9	
+	+	+	249	80	2	╁	╀	+	╅	-	-	\$	89	4	183	41	75	24	1 2	1	1	3	8	27	23	9	2	23	
ŀ	+	4======================================	158 2	235	114	╁	┿	+	4	8	5	94	91	63	17	17	2	╀	+	 	₽	+	2	21	18	2	15	-	-
-	+	755 4	566	595 2	╀	+	┿	4	527	169	127	183	160	194	901	186	╀	╀	╀	 	41	271	35	37	56	56	12	3	1
H	ر ک	612 7	603 5	452 5	╁	╬	+	369	293 5	200	184	147	145	124	86	16	╁	╀	+	+	┪	23	49	49	45	44	42	۱۶	1
L			\vdash	H	+	+	+			7	H	-	┞	-	┞	+	╀	+	+	+	+	-	_	┞	┞	╀	╁	+	\dashv
	Tag Number	H285759	H260227	H033704	77500111	H10020	H335432	H114966	H291282	H1272	H478249	H885334	H103075	H1025322	H1027595	H214616	104171	H941030	H13040	H196339	H656389	H965434	H527436	H763719	H765509	11704160	LASEACH	2010011	H071073
	H Tao sequence	+	2 CATCATTTGAGAAGC	2 CAIGAITIGAGAAGG	3 CATGIGATIICACII	4 CATGTTCATACACCI	SCATGCCACTGCACTC	6 CATGACTAACACCT	1	S CATGARACATICTC	\top		1) CATGACGCAGGAGA	7	Т	_	14 CATGAICACGCCIC	15 CATGTGCCTGCACCA	16 CATGAGACCCACAAC	17 CATGAGTTTGTTAGT	18 CATGGGAACAACAG	19 CATGTGGTGTATGCA	┰	TO CATOCICCION OF THE PROPERTY		22 CATGOTOGIOCITO	\neg	24 CATGGIGGCGGGIGC	25 CATGTAGACTAGCAA

. _ . _ -

D51017 Human fetal brain cDNA 3'-end GEN-007C04.			F16326 muscle	EST186995 HCC cell line (matastasis to liver in mouse) II Homo	AA315049 sapiens cDNA 5' end	F01150 H. sapiens partial cDNA sequence; clone A6A03; ver	N29971 yw53h01.s1 Homo sapiens cDNA clone 255985 3'.	K02883 Human MHC class I HLA-A2 gene, complete cds.	R09140 yf25f12.s1 Homo sapiens cDNA clone 127919 3'.	R76005 y122c10.s1 Homo sapiens cDNA clone 158934 3'.	T33596 EST58371 Homo sapiens cDNA 3' end similar to None	F16449 H.sapiens mitochondrial EST sequence (129-09)	Г	AA292959 726187 3'	zt31c11.r1 Soares ovary tumor NbHOT Homo sapiens cDNA clone	AA292466 723956 5' similar to TR:G205858 G205858 RAT ORF	2b62d07.s1 Soares fetal lung NbHL19W Homo sapiens cDNA clone	308173 3' similar to PIR:A39484 A39484 androgen-withdrawal	N92384 apoptosis protein RVPI, prostatic - rat	zb19c06.s1 Homo sapiens cDNA clone 302506 3' similar to	PIR:A39484 A39484 androgen-withdrawal apoptosis protein RVP1,	N80203 prostatic - rat;	zk39d06.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA	clone 485195 3' similar to PIR:A39484 A39484 androgen-	AA039323 withdrawal apoptosis protein RVP1	U21468 Human partial cDNA sequence with CCA repeat region	M34088 Human episialin variant A mRNA, 3' end.	Unknown	T10098 seq816 Homo sapiens cDNA clone b4HB3MA-COT8-HAP-Ft	X83228 H.sapiens mRNA for LI-cadhcrin.	L27415 Homo sapiens huntingtin (HD) gene, exon 66.	C004/0 directed cDNA sequence.	N63531 yy62g08.s1 Homo sapiens cDNA clone 278174 3.
13	E		6		2	36	2	12	5			91		7		2										01	17	0	4	7	2	~	
25	29		19		∞	11	و	191	20	_		4		_		_										2	45	0	3	0	2		
13	+		=		=	Ξ	0	6	,		Ĺ	7		_												-	0	-	2	7	-	 4	
144	377	-	170		13	<u>~</u>	=	4	32			12		6	-	∞				-			-			218	2	6	Ξ	6	1	2	
38	3/2	<u>;</u>	37		33	33	32	32	32		_	2		78		76							_			1%	22	24	24	22	21	21	
HKA1780	4687015	C16/00L	169669H		H261569	H294488	H386963	H132598	H489822			HK00624	170/0011	H610922		H956860										H175872	H387596	H188027	H353760	H2235	H607977	H167659	
- 1		CATGGGCIIIAGGGA	A TGGGGGTCAGGG	_	O CATGATTTCTAAAA	-		Т		33 CA10C1C10CCC1C			34 CATGOCCATCCCCTT		CATOOCCCAOCCC	, OTOTOGOOOGOTOTO	Se CATOTOCOCOTOTO				-					32 CATGAGGGTGTTTC			┰		Т	 43 CATGAGGATGTGGG	T^-

.

					Ì		Ī		Some 1 Commence Continue Capter (#037719) Homo saniens
								0.733714	2060104.31 Surangene Oranian Canada (1757-177)
					1	\dagger	1	21020100	And the Source overy fumor NBHOT Homo sapiens cDNA clone
		707000.	۶	,		~	4	A A 4 1 10 12 756074 3'	556074 3'
4	CATGTATAGTCCTCT	H838494	3	1	-	1	\top		2192g08.s1 Stratagene colon (#937204) Homo sapiens cDNA clone
								AA133595 512126 3'	12126 3'
				T		T			zi56b12.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone
								AA292774	726335 3'
,	CATCCCTCTCTT	H710520	20	7	2	~	2	R53216	yj73h02.r1 Homo sapiens cDNA clone 154419 5' simil
3 4	_	H24r121	19	4	0	3	3	D20113	Human HL60 3'directed Mbol cDNA, HUMGS01080, clone
3 5	_	H496981	61	2	0	_	4	\neg	Unknown
÷		H1013522	61	4	-	8	2	U35048	Human TSC-22 protein mRNA, complete cds.
Ş Ç	Т	H33355	18	4	7	7	8	R81767	yj05g03.r1 Homo sapiens cDNA clone 147892 5.
\$ 3	7	H183018	8	131	7	17	7	D51021	Human fetal brain cDNA 3'-end GEN-007D07.
<u>ک</u> :	CAluadiaddiocc	H77551	80	2	2	0	∞	D26146	Human DNA for putative protein kinase.
<u> </u>	_	H655547	18	13	6	2	-	M11465	Human alpha-1-antitrypsin mRNA, complete cds.
2		906CEH	-	4	0	2	-	R78188	yi81g01.rl Homo sapiens cDNA clone 145680 5'.
<u>کا:</u>	CALGARGARAGETC	H70965	17	4	0	0	0	M22406	Human intestinal mucin mRNA, partial cds, clone SM
조 :		H144707	12	18	0	0	0	T24507	EST082 Homo sapiens cDNA clone 3E6
2	CATUAUATCCCAAGG					T			za63a11.s1 Homo sapiens cDNA clone 297212 3' similar to
						···		N79237	PIR:S49589 S49589 cortical granule lectin - African clawed frog ;
					T		T	T31354	EST30893 Homo sapiens cDNA 5' end similar to None
	_	1100311	7	1	6	6	0	Т	yq92e02.s1 Homo sapiens cDNA clone 203258 3' simil
ŷ.		#1220FU	2 2		,	-	0	1	Human RASF-A PLA2 mRNA, complete cds.
5	-+	H293000	2	1	,	~	1	AA374631	A A 374631 EST86866 HSC172 cells I Homo sapiens cDNA 5' end
S.S.	CATGGCTTTGC111G	H034970	2	-	1	,			zn93g08.r1 Stratagene lung carcinoma 937218 Homo sapiens
						_		AA137163	AA137163 cDNA clone 565790 5'
						T			zk10f05.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA
								AA029320	AA029320 clone 470145 3'
	A STITUTE OF STITLE A	11948543	15	2	0	-	0	D25681	Human colon 3'directed Mbol cDNA, HUMGS04047, clon
									zr72g02.s1 Soares NhHMPu S1 Homo sapiens cDNA clone 668978
					-			AA253331	3,
								H05110	yl75f07.s1 Homo sapiens cDNA clone 43778 3.
5	TTOOTOUT	H341720	15	∞	-	_	으		Unknown
3 :	\neg	H529013	14	23	0	0	0	AA297150	AA297150 EST112734 Colon I Homo sapiens cDNA 5' end
9	CATGGAACAGCICAC	11/4/11			1				

.

M25629 Human kallikrein mRNA, complete cds, clone clone p	+	Т	AA026974 clone 469290 3'	similar to gb:M61900 Human prostaglandin D synthase gene,	AA405031 complete cds. (HUMAN);	gblU66894 HSU66894 Human epithelium-restricted Ets protein ESX	U66894 mRNA,	Human epithelial-specific transcription factor ESE-1b (ESE-1)	D25996 Human colon 3'directed Mbol cDNA, HUMGS06//2	Unknown	ze88g07.s1 Soares fetal heart NDHH I 9 W Homo sapiens CDIVA CIONE	AA071520 366108 3'	za90h10.s1 Soares fetal lung NbHL19W Homo sapiens cDNA cione	N90742 299875 3:	zn52h06.s1 Stratagene muscle 937209 Homo sapiens cDNA clone	AA086292 561851 3'	D11499 Human HepG2 3'-directed Mbol cDNA, clone a-33.	T16031 IB2474 Homo sapiens cDNA 3'end.		N73771 za61h02.s1 Homo sapiens cDNA clone 297075 3.	zh75f08.s1 Soares fetal liver spleen INFLS S1 Homo sapiens cDINA	W90388 clone 417927 3'	F03786 H. sapiens partial cDNA sequence; clone c-29h08.	U14631 Human 11 beta-hydroxysteroid dehydrogenase type 11	ya31a06.s5 Homo sapiens cDNA clone 62194 3' contains Alu	T41121 repetitive element,	Unknown	\neg	Z58486 Unknown	Unknown
0	,						•		 0	1		0					0	0	ı	2				0		3	0	0	0	٥
-		Ì					6		 -	-		7					٥	_	9	3				0	L	~	2	0	0	0
c	}-	1					0		 ٥	٥	L	•					0	0	٥	0	L		Ŀ	0		٥	0	0	0	0
4	٦						6		 _	9		~					4	7	<u> -</u>	7				2		9	4	7	7	-
14	2	<u>+</u>					13		13	2		=======================================					12	12	12	12				2		=	Ε	Ξ	=	E
11505406	H092400	11354776					H176584	10000111	H265232	H503809		H774358					H49304	H658173	H670333	H715099				H817957		H360008	H440966	H611590	H616862	H666014
	62 CATGGGGCTACGICC	61 CATGCCGGCTCCTC						64 CATGAGGTACTA	O TTO A A TA A A TTA		00 CA10C10100000		67 CATGOTICAATCCCT				\neg	\neg		/U CAIGOGAIGGCITA:	/I (A1000100cccood			\neg	72 CATGIACIOIACITO	73 CATGCCCTTGCACTC	_	\neg		7 CATGGAGGCGCTCA

zd42c12.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone	68073 343318 3' similar to contains Alu repetitive element;
	W68(
	0
	٥
	=
	=
	H874226
	78 CATGTCCCGTTACA H
	8,

Table 4 - Transcripts increased in pancreas_cancer .

SAGE Tags elevated only in Pancreatic Tumor Normal Colon Tul Colon Tumor CC Colon Cancer Cell Line PT Pancreatic Tumor PC Pancreatic Cell Line

		\ clone	9000	alion &	90010	Cloud	alone	- clone	AC 176174	2154e04.51 Soares ovary tumor NDHO1 Homo sapiens Civing Civing 1201.77		Italagene							3840 5'	3840 3'	27 logul st Stratagene colon (#937204) Homo sapiens cDNA clone 511558	0.000	2019e04.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 38/338		
		2k95b03.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone	NO	ZK51c03.s1 Soares pregnant uterus NoHPU Homo sapiciis cuina cione	INC	zl33c08.s1 Soares pregnant uterus NbHPU Homo sapiens civing civing	MO	2071h12.s1 Stratagene pancreas (#937208) Homo sapiens CDINA CIOUC	PANGE	IS COINT O	1 20 00	2078c07.s1 Stratagene pancreas (#937208) Homo 20/8c07.s1 Stratagene							zv16g01.r1 Soares NhHMPu S1 Homo sapiens cDNA clone 753840 5'	15 JAN STANDARY SI Homo saniens CDNA clone 753840 3'	ns cDNA c		ens cDNA o		
	37455 3'	U Homo sa		у ношо к		Homo sa		s) Homo s		от саріс		8) Homo z		54129 5	9335 3'		nRNA.	97047 3	spiens cDl	aniens cDN	Іото sapic		Homo sapio		
	vh95b04.s1 Homo sapiens cDNA clone 137455 3'	rus NbHP		rus Nort		NPHPL NPHPL		s (#93720	2011	NOHO! H		s (#937208		yj70h01.s1 Homo sapiens cDNA clone 154129 3	yb99f08.s1 Homo sapiens cDNA clone 79335 3'	in 13	H. sapiens spasmolytic polypeptide (SP) mRNA.	za61d12.s1 Homo sapiens cDNA clone 297047 3	1 Ното ѕ	1 Homo s	937204)		1937204) 1		
	iens cDN	gnant ute		gnant ute		gnant ute		e pancrea		ury turmor		e pancrea	ошо	iens cDN	iens cDN	cytokera	polypep	iens cDN	hHMPu S	S (G) (I)	e colon (#		e colon (#		
	fomo sap	oares pre		oares pre		oares pre		Stratagen		oares ova		Stratagen	37208) H	forno sap	lomo sap	RNA for	asmolytic	Ното ва	Soares N	Monage	Stratagen	- Aman	Stratagen		
Gene Name	Sb04.s1	5503.s1	490541 3'	1c03.s1	486340 3'	3c08.s1 S	503726 3'	71h12.s1	592391 3'	4e04.s1 S		78c07.s1	pancreas (#937208) Homo	0h01.s1	99f08.s1	H. sapiens mRNA for cytokeratin 13	sapiens sp	61d12.s1	16g01.rl	17 19	10g01.51	10,515.31	19e04.s1		
Γ	Τ	182		zk:		zl3								/ix	R	H	H	82	Г		Т				
Accession	338305		AA126719		AA044296		AA131586		AA15798		AA292929		AA159306	R54012	T62936	X52426	X51698	N70419	AA411599		AA410508	AA1157			AA1328/3
F	Example: D 38305	Simples							Examples AA157983							Examples X52426	Examples X51698	Examples N70419				Examples AA115723			
									<u> </u>				_							_	_	<u></u>		_	
L																13			┸	_	\downarrow	~		_	
12	되	7		1		-		+	2 21			\downarrow		\downarrow	\downarrow			1-	+	\vdash	-		1		
	NC I'u	<u>-</u>		+		+		+	~	+		+		\dagger	\dagger	+	╬	1	1	\dagger	\dashv		+		_
		0		\dagger		†		\dagger		†		\dagger		Ť	1	9			1			_	1		
		H9222							10408	17400						000011	11,000	HISOUS	H14802			777.			
ŀ	-	-		+		+		+		+		+		1	+	+	+	+	+	+		-	+		
Pancreatic Cell Line	ence	ACCA								TTTA							GGCT	GGGT	CAAC				rrrgr		
creatic	Tag Sequence	CATGAAAGCAAACCA								2 CATGAAAGCAGTTTA							3 CATGAAAGCGGGGCT	4 CATGAAATCCTGGGT	5 CATGAAATGGACAAC				6 CATGAACCAGTTTGT		
PC Pan	Ē	ATGAA								ATGA				ļ			ATGA	ATGA	ATGA				CATGA		
ã	-	-					-		-	<u>2</u>		-					3	7	5	+		+	<u>3</u>		_

		-	-					
							AA279290	2s84a06.s1 Soares NbHTGBC Homo sapiens cDNA clone 704146 3'
		\vdash	+					2/1202.51 Soares fetal heart NbHH19W Homo sapiens cDNA clone
							AA046253	376682 3'
LECATGACAACTCAATA	H67396	2	7	1 16	37	Examples Z58016	258016	H. sapiens CpG DNA, clone 26c7,
								000 000 A MAG aminos amolt (A0CE 604) and a contract of the co
		_						2029CUZSI DITRIBENE CONON (#927204) MUNIO SAPIENS CUMA CIONE DEGLEO SE CIONE DEGLEO SE CONTROL SE C
		+	-		1		AA131668	Similar to 5 W. Disa MOOSE F. Zeooz Dizani i front Eth 15
								2207e06.rl Soares melanocyte ZNDHM Homo sapiens CUNA clone 2918/4
							W02958	5,
		 -	-					zo70e05.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone
JOTOTO A O A O E A O E A O	H71151	0	=	0	14	Examples	Examples AA1556464 592256 3'	592256 3'
00.000000000000000000000000000000000000		+	-					ze90h09.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone
					-		AA025673	366305 3'
		+	-				N70895	za89h12.s1 Homo sapiens cDNA clone 299783 3'
THEODETHEODERS	H85924	-	∞ ∞	5 13	4	Examples X02491		Human interferon-inducible mRNA (cDNA 9-27): membrane
יייייייייייייייייייייייייייייייייייייי		\dagger	\vdash		T			Human interferon-inducible protein 9-27 mRNA
		\dagger	-				X84958	H.sapiens mRNA for interferon-induced 17kDa membra
A DA A THE DO O GRAD ST	H90050	-	4	2 13	7	Examples X56841		H.sapiens HLA-E gene.
		+	\vdash				X64879	H.sapiens mRNA for HLA-E heavy chain (exons 4 - 7)
TO TATE A CONTROLL	H91579	49	22 45	5	8	Examples M21186		Human neutrophil cytochrome b light chain p22A
		-	-					Human p22-phox (CYBA) gene, exons 3 and 4
OUCATGACCTGTGACCA	H97158	0	<u></u>	0 28	12	Examples D00244		Human Pro-urokinase gene,
		-	L				K02286	Human urokinase gene, 3' end
		\vdash	_					Human pro-urokinase mRNA, complete cds
		-	-				X02419	Human uPA gene for urokinase-plasminogen activator
PICATGACGCCCTGCTC	H103912	0	-	= 0	2	Examples L08835		Human myotonic dystrophy kinase (DM kinase) gene
_		\vdash	-					Homo sapiens myotonin protein kinase (DM) mRNA
22 CATGACGTGGTGATG	H113380	2	4	4	20	Examples H44451		yo75f06.s1 Homo sapiens cDNA clone 183779 3'
			_		_			2042(07.s) Stratagene endothelial cell 937223 Homo sapiens cDNA clone 189573 3' similar to SW-L10K RAT 005310 LEYDIG CELL TUMOR 10
							AA157329	KD PROTEIN
			-					2c32g06.s1 Soares senescent fibroblasts NbHSF Homo sapiens cDNA clone 3240s8 3' similar to SW-L10K RAT 005310 LEYDIG CELL TUMOR 10
	-						W46455	KD PROTEIN
		1	-					

23 Francia CTCAGCCCGG	H119383	0	<u>~</u>	21	3 Exar	Examples M92357	Homo sapiens B94 protein mRNA, complete cds.
	H123521	0	0		22 Exar	Examples X64875	H. sapiens mRNA for insulin-like growth factor binding protein 3
CATGACTGAGGAAA			-	-	_	1701160	Human growth hormone-dependent insulin-like growth factor binding
		-	+	+		M35878	Human insulin-like growth factor-binding protein-3
		-	\dagger	\downarrow	-	S56205	insulin-like growth factor binding protein 3 {3' region}
	H124264	-	0		9 Exar	Examples U65932	Human extracellular matrix protein 1 (ECM1) mRNA
Zar GAL GACT GCCCGCTG		+		-		U65937	Human extracellular matrix protein 1 (ECM1) gene, exon 9
		I	+	-			zo03f09.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 566633
	H126208	4	6	~	22 Exar	Examples AA148916	3'
26 CATGACTGTALLILC	00707111		+				zo12a11.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 586652
			_			AA129137	3,
		T	╁				zi85g09.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 311436
				_		AA115437	31
			\dagger	+	-		2187e07.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 511620
				_		AA126967	3,
	7010707	-	9	-	16 Exar	Examples R24613	yh36c03.r1 Homo sapiens cDNA clone 131812
27 CATGAGCACTGCAGC	23003111	1	1			Framples H43243	vp05e05.r1 Homo sapiens cDNA clone 186560 5'
28 CATGAGCAGGAGCGT	H15005	- 0	+			Examples X54942	H sapiens ckshs2 mRNA for Cks1 protein homologue
29 CATGAGCTGTATTCT	770701H		7	+		,	2k50g07.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone
	1162446		12	0	13 Exar	Examples AA044081	486300 3'
NO PATGAGGATGACCCC	0147010	1	-1				zk50g07.r1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone
							486300 5' similar to PIR. A40533 A40533 cAMP-dependent protein kinase
						AA044211	major membrane substrate
	H178129	4 2	6	18		Examples X14787	Class A, Human mRNA for thrombospondin.
CATCAGGICIICAAI	1178603		7		11 Exa	Examples R27738	yh64f11.s1 Homo sapiens cDNA clone 134541 3'
2 CATCAGG GCGGGG				-			yj22fi2.s1 Homo sapiens cDNA clone 149519 3' similar to SP. ZK637.5
				***		H00276	CE00436 ARSA
				-			zm19d07.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone
	H183787	3	=	15	73 Exa	Examples AA076235	526093 3'
SECATION OF THE SECAN					i_	H13159	yj16c04.s1 Homo sapiens cDNA clone 148902 3'
	-	+		+			zo71e11.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone
						AA146632	592364 3'
F	H204740	-	m	<u>s</u>	9 Exa	Examples X80062	H.sapiens SA mRNA.
34 CATGATACITIAAII	21.10411	+	_	+		1001691	Human annexin V (ANXS) gene
	1	$\frac{1}{2}$	_	$\frac{1}{2}$			

.

		\vdash	_				X12454	Human mRNA for vascular anticoagulant
		+	igdash				M18366	Human placental anticoagulant protein (PAP) mRNA
		╁	-		T		M21731	Human lipocortin-V mRNA, complete cds
		\vdash	-		T		J03745	Human endonexin II mRNA, complete cds
		-	L					GAMMA-INTERFERON-INDUCIBLE PROTEIN IP-30 PRECURSOR
CATGATCAAGAATCC	H213518	7	2	25	-	Examples 103909	103909	(HUMAN)
					\vdash			EST97384 Thymus II Homo sapiens cDNA 3' end similar to interferon,
					\exists		aa383911	gamma transducer 1
ATGATCAAGGGTGT	H213679	12	9 25	12	156	Examples U09953	U09953	Human ribosomal protein L9 mRNA
		$ \cdot $			\prod		U21138	Human ribosomal protein L9 mRNA, complete cds
							D14531	Human mRNA for human homologue of rat ribosomal protein
		-	<u> </u>		2		A A 0.622.60	zm03a05.s1 Stratagene corneal stroma (#937222) Homo sapiens cDNA
CATGATCAAGTTCGA	H213/31	5	9	1	2	CAMINDIC	Examples Adoughest	
38 CATGATCCGGCGA	H219750	16	7 14	12	04	Examples L42856	L42856	RNA polymerase II transcription factor SIII p18 subunit mRNA
CATGATGAACTTCG	H229502	-	0	11	4	Examples Z59242	259242	H.sapiens CpG DNA, clone 13a10, reverse read cpg1
		Н						
UI CATGATGCGAAAGGC	H235531	2	3 12	ω.	77	Examples Z25820	225820	H.sapiens mRNA for mitochondrial dodecenoyl-CoA dehydrogenase
		\vdash	L		\vdash		L24774	Homo sapiens delta3, delta2-CoA-isomerase mRNA
1) CATGATGTCTTCGTT	H243676	0	1	0	4	Examples M84711	M84711	40S RIBOSOMAL PROTEIN S3A (HUMAN)
42 CATCATGTCTTTTCT	H243710	-	2 1	14	2	Examples M62403	M62403	Human insulin-like growth factor binding protein 4
			_				000001	Human insulin-like growth factor binding protein-4 (IGFBP4) gene,
	2077701	-	1	1	12	D20982	733457	promoter and complete cus H caniens mits 1 gene
CATGATGTGTAACGA	/0444711	1			+		M80563	Human CAPL protein mRNA, complete cds
11 CATGCAACTTAAAGC	H270083	-	1 2	2	-	Examples N23207	N23207	yx70b09.s1 Homo sapiens cDNA clone 267065 3' similar to gb:L12350 THROMBOSPONDIN 2 PRECURSOR (HUMAN)
				[2125e11.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone 714188
15 CATGCACCTGTCCTT	H286424	0	2	=	=	Examples	Examples AA285023	3' similar to gb:M33680 CD81 ANTIGEN (HUMAN)
		\dashv			1		M33680	CD81 antigen
CATGCACTCAATAAA	H291889	0	0 2	6	2	Examples D78203		Neurosin
		-	L					M esception

. _ . _ .

	15000511			-	01	Examples	Examples AA 149942	2068d04.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone 592039 3' similar to TR:E218488 E218488 TRYPTASE
17 CATGCAGCCTGGGGC	1,2000	-						zp66b09.r1 Stratagene endothelial cell 937223 Homo sapiens cDNA clone
								625145 5' similar to gb:M16937 HOMEOBOX PROTEIN HOX-B7
18 CATGCAGCGCGCCT	H301462	4	11 12	2	21	Examples	Examples AA187553	(HUMAN); contains element MERZZ repetitive element
		\dashv	-		1		M10937	וווווווווווווווווווווווווווווווווווווו
JACATGCAGGTTGTCCT	H307126	0	9	0	2	No Match		ANGW 013 minimum.
SOCATGCAGTCTCTCAA	H309109	2	9 9	7	2	Examples U14972	U14972	Human noosomal protein 5 to invasa
CASTOCOTACOCAC	H316857	0	3		<u>E</u>	Examples U27293	U27293	Human reukomene A4 nyurotase Bene
יו כאופראו פראו פראו		\vdash	-				103459	Human leukotriene A-4 hydrolase mKNA, complete cus
		+	\vdash				J02959	Human leukotriene A-4 hydrolase mRNA, complete cas
	H325080	6	2	5 13	3	Examples X82434	X82434	H.sapiens mRNA for emerin
S2 CATGCAITICLICALI	H333138	-		<u> </u>	7	Examples M88338	M88338	Human serum constituent protein (MSE55) mRNA
SICATGUACCCCCCACC	90902511	۲	1=	22	56	Examples U14971	U14971	Human ribosomal protein S9 mRNA
A CATGCCAGTGGCCCG	13330031	3 0	-	19	2	Examples L01697	L01697	Homo sapiens alpha-1 type XV collagen mRNA
SSCATGCCATTTTCIGG	1344601	9 2	L	180		Examples X54079	X54079	Human mRNA for heat shock protein HSP27.
\$6 CATGCCCAAGCTAGC	120++CU	+		_L			223090	H.sapiens mRNA for 28 kDa heat shock protein
		+	+				X16477	Human mRNA fragment for estrogen-regulated 24k protein
		\dagger	+	\prod			S74571	estrogen receptor-related protein=27-kda heat shock protein
	00767611	-	1,	10	19	Fyamples X69392	X69392	H. sapiens mRNA for ribosomal protein L26.
ST UNTSUCCATCCGAAA	H34/489	- 1		1			L07287	Human ribosomal protein L26 (RPL26) gene
	1750000	1	-	14	25	Examples U40434	U40434	Human mesothelin or CAK1 antigen precursor mRNA
SACATGCCCCCTGCAGA	CCOOCCU	+	-	1				Human mRNA for pre-pro-megakaryocyte potentiating factor, complete
-							D49441	cds.
E	H151481	10	0	8	Ε	Examples U12819	U12819	Human p16-INK4 (p16) gene
N CATGCCCGCALAGAI	:	+	L				U38945	Human hypothetical 18.1 kDa protein (CDKN2A) mRNA
		+	+	1				MTS1=multiple tumor suppressor 1/cyclin-dependent kinase 4 inhibitor
							S69804	pl6
		\dagger	+	1			S69822	CDK41=cyclin-dependent kinase 4 inhibitor
		+	+	1				tumor suppressor gene, P16/MTS1/CDKN2=cell cycle cycle negative
-	٠						S78535	regulator beta form
	11367967	-	-	\$ 14	34	Examples 247319	247319	H. sapiens mRNA for expressed sequence tag (clone 21fi7119)
60 CATGCCCTCCTGGGG	11337807	•	1	ŧ		1		

.

		-					A A 198406	2160h12.s1 Soares testis NHT Homo sapiens cDNA clone 726791 3'
	100000	+		14	100	Examples U21049		Human DD96 mRNA
61 CATGCCGGCCCTACC	H3/0034	-	,	: 	8	Examples X03212		KERATIN, TYPE II CYTOSKELETAL 7
62 CATGCCTGGTCCCAA	C76/9CU	,	-				37	zp73f01.s1 Stratagene HeLa cell s3 93/216 Homo sapiciis curio cione 625849 3'
		+			\dagger		Т	zp35g11.s1 Stratagene muscle 937209 Homo sapiens cDNA clone 611492
	H192709	٠	3	7	23	Examples AA176457	П	3' similar to TR: G663269 G663269 BOLA
63 CATGCCTTTGAACAG		\vdash	-				1737677	zp35e11.s1 Stratagene muscle 93/209 monto septens contraction of the circular to TR-G661269 G663269 BOLA.
		_1			+		Т	Human interferon-inducible mRNA fragment
64 CATGCGCCGACGATG	H415844			ণ্	- 2	Examples T53402		ya88g05.s1 Homo sapiens cDNA clone 68792 3'
65 CATGCTCAACAGCAA	H475429	7	2		+	2		
								2d47g08.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone
							W69493	343838 3' similar to PIR.S24168 S24168 hypothetical protein - human
	00.730.73	+	-	۶	┢	Examples X13916		Human mRNA for LDL-receptor related protein
66 CATGCTCAACCCCC	H4/34/0	- -			<u> =</u>	Examples X80335	X80335	H.sapiens (24) Ferritin H pseudogene.
67 CATGCTGAGAAACTG	H4935/0	╗┤═	1 V	15	i F	Examples X04828	X04828	Human mRNA for G(i) protein alpha-subunit
68 CATGCTGAGTCTCCC	+C+46+L			١	1	Ryamples 1114966	1114966	Human ribosomal protein L5 mRNA
69 CATGCTGCTATACGA	H498887	=	_اد	丄	FF	Framoles T90665	T90665	yd41g08.s1 Homo sapiens cDNA clone 110846 3'
70 CATGCTGCTGAGTGA	H49924 /	+	<u>-</u>	┸	+			EST43791 Fetal brain I Homo sapiens cDNA 3' end similar to steroid
							AA338799	hormone receptor hERR1
		\dagger	+	Ţ	\dagger		H97236	yv98b06.s1 Homo sapiens cDNA clone 250739 3'
	7251037	1=	0	ľ	2	Examples C14084	C14084	Human fetal brain cDNA 3'-end GEN-018D10
71 CATGCTGGCGCCGA1	H513181		_	۱۳	Š	Examples	D00017	Human lipocortin II mRNA
72 CATGCTTCCAGCTAA	H514022	1_		1_	-	Examples 219574	219574	H.sapiens gene for cytokeratin 17.
73 CATGCTTCCTTGCCT	77011011	†	_	1_			X62571	H.sapiens mRNA for keratin-related protein
		\dagger	+				X05803	Human radiated keratinocyte mRNA 266
	1422108	10	-	91	4	Examples X79067	K79067	H.sapiens ERF-1 mRNA 3' end.
74 CATGCTTTCTTCCT	08177611	1	14 2		15	Examples X51779	X51779	Human mRNA containing an Alu repeat
75 CATGGAAAAAAAAA	(0757CU	+	1				X82240	H.sapiens mRNA for Teell leukemia/lymphoma 1
	USDSTAR	4	7 14	8	22	Examples		Human mRNA encoding phosphoglycerate kinase.
76 CATGGAAACAAGATG	TICE STATE	1	1		T		D29018	Human keratinocyte cDNA, clone 001
		1	+	I	T		1,00160	Human phosphoglycerate kinase (pgk) mRNA
5	AFA772A	8	35	10	38	Examples X05344	X05344	Human mRNA for cathepsin D
77 CATGGAAATACAGTT	VCT/17CU	7						

.

		-		ţ	ŀ		1611933	Himan cathensin D mRNA, complete cds
		4		+	\dagger		T	wd27ff3 s1 Homo sapiens cDNA clone 110909 3' similar to SP-R151.9
	H527929		7 5	4	76	Examples T90296		CE00827
N CATGGAAA1GA1GAG		-					142	EST23523 Adipose tissue, brown Homo sapiens cDNA 3' end
		+	I	t	+			zp64f07.s1 Stratagene endothelial cell 937223 Homo sapiens CLINA Clone
	Athr: D		7 16	9	28	Examples AA181811		624997 3'
CATGGAAGATGTGTG	OCECCO.			1				Zi06c06.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA ctone 491530 3' similar to WP:ZK652.2 CE00448
				1	- -	Evenue 1 21950		Human peripheral benzodiazepine receptor related mRNA
NO CATGGAATTTTATAA	H540621	-	2	1	9	Cyambics		Human peripheral benzodiazepine receptor (hpbs) mRNA
	H\$40673	-	2 10	1	12	No Match		10474
CATGGACAAAAAAA	C/00+CII	-		-	7	Examples U19718	Γ	Human microfibril-associated glycoprotein (Mr AP2).
CATGGACCACCTTTA	H345152		\perp	: 5	1 =	Examples M75165		H. sapiens epithelial tropomyosin (TM1) mRNA
CATGGACCAGGCCCT	H343430	5	7	1	†			Human fibroblast muscle-type tropomyosin mRNA
		+	-	1	\dagger			Human tropomyosin-1 (TM-beta) mRNA, complete cds
		+	1	1	1	Frample M74092		Human cyclin mRNA
CATGGACCCCAAGGC		_		ļ	₹	Examples 137033		Homo saniens FK-506 binding protein homologue
SATGGACCCTGCCCT	H546710	31	36 20	=		Evanipies		2b37g02.51 Soares parathyroid tumor NbHPA Homo sapiens cDNA clone
	C708042	_	-	13		Examples N90046		305810 3'
N. NATHOANCTATCICI	70001011	<u>, -</u>	_	1_				2106a10.s1 Soares pregnant uterus NoHPU Homo sapiens cuina cione
							AA115048	491514 3'
	1661315	-	4	32	<u></u>	Examples M63193	M63193	Human platelet-derived endothelial cell growth factor
CATGGACGGCGCAGG	7200511	\ -	L	丄	=	Examples M61764	M61764	Human gamma-tubulin mRNA,
NN CATGGACTCTCTI	2196561	10	┸	L	2	Examples D17793	D17793	Human mRNA (HA1753) for ORF
NO CATGGAGAGCT116C	95009511	1	L	۶	E	Examples S68252	568252	TIMP-1=metalloproteinase inhibitor
OU CATGGAGAGTGTCTG	000000	1		1_			X02598	EPA glycoprotein (erythroid-potentiating activity)
		+	\downarrow		T		X03124	tissue inhibitor of metalloproteinase 2
Aptaboacoacoacoacoacoacoacoacoacoacoacoacoaco	H561807		0	E	12	No Match		
TO TURNOVO IVO IV		-	-		13	Gyamulec	Example: A A 2 14 5 2 3	2789c01.s1 Soares NbHTGBC Homo sapiens cDNA clone 682848 31
U2 CATGGAGGGAGTTCC	H567480	-	2			mudumpy 7	N30324	yw/35d01.s1 Homo sapiens cDNA clone 258049 3'
	1970787	-	7		2	Examples X70070	X70070	H sapiens mRNA for neurotensin receptor.
UN CATGGAGTCCGGAGC	7970751	1	L	٦	12	Examples H57673	H57673	yr27a10.s1 Homo sapiens cDNA clone 206490 3'
11 CATGGAGTTATGTTG	loco7/CH	5	╝	╛	1			

.

95 CATGGAGTTCGACCT 96 CATGGATTGAACCTC 97 CATGGATTGAACCTC 98 CATGGCAAAAAAAA 99 CATGGCATTTAAATA 100 CATGGCCACCCCAATAA 101 CATGGCCGCCCCAATAA 101 CATGGCCGCTACTTC 102 CATGGCCGCTACTTC 103 CATGGCCGCTACTTC 104 CATGGCCGTCGGAGG 105 CATGGCCGTCGGAGG 106 CATGGCCTACTTC 107 CATGGCCGTCGGAGG 107 CATGGCCGTCGGAGG 108 CATGGCCGTCGGAGG 107 CATGGCCGTCGGAGG 107 CATGGCCGTCGGAGG 107 CATGGCCGTCGGAGG 107 CATGGCCGTCGGAGG 107 CATGGCCGTCGGAGG 107 CATGGCCTACTTTCAGGAG 107 CATGGCCTACCCGAGG 107 CATGGCCTACCCGAGG 107 CATGGCCTACTTTTCAGGAC 107 CATGGCTCACTTTTCAGGAC 107 CATGGCTCACTTTTCAGGAC 107 CATGGCTCACTTTTCAGAC 107 CATGGCTCACTTTTCAGGAC 107 CATGGCTCACTTTTCAGGAC 107 CATGGCTCACTTTTCAGAC 107 CATGGCTCACTTTCAGAC 107 CATGGCTCACTTTTCAGAC 107 CATGGCTCACTTTTCAGAC 107 CATGGCTCACTTTTCAGAC 107 CATGGCTCACTTTTCAGAC 107 CATGGCTCACTTTTCAGAC 107 CATGGCTCACTTCACTTTCAGAC 107 CATGGCTCACTTCACTTCACTTCACTTCACTTCACTTCA

M73239 Human (clone SF1) hepatocyte growth factor (HGF)	M73240 M73240 10 13 2 70 1 Examples X02920	H655547 10 13 7 7 X01683	V00496 Human messenger KNA 101 appla-1-anturypsiii 100067 Human alpha-1 antitrypsin gene, 3' end	H658059 0 0 4 6 16 Examples AA127040		H4347	H666943 6 5 0 10 52 CAMPED TO Examples N74310	H05/30/ 0 1 H92750	Try 1084 cen 2772 Homo sapiens cDNA clone ssb4HB3MA(extended-ft-6) 3'	124004 7 7 12 8 21 Examples X17567	H671455 3 / 13 5 21 M34081	11/27220 0 0 0 22 Examples M69054	H0//330 M62402	H677753 0 1 4 7 14 Examples N74323	H46766	H41102 yn88a08.51 Homo Saptens CDIAA Cloud 1.52-0.5 June caniene CDIAA	CTGG H686815 0 1 3 13 22 Examples AA074777 Clone 344601 3	A A 062735	Т	AA112905 530351 3'	H688713 25 7 9 0 72	H690863 2 3 1 16 2	H690890 1 0 1 14 1 No Match	H693112 1 1 3 39 2 Examples V00523	X00274	Iroi 171 Himan H.A-DR alpha-chain mKNA
		ON CATGGGAAAAGTGGT		COSAGGABAGGATAGA	DODGO DOGGO W		CATGGGAGTCATTGT	112 CATGGGAGTGTGCGT			111 CATGGGATTGTCTGG		111 CATGGGCCCCTCACC		The Categorica Isas		116 CATGGGCTGGTCTGG					CALGGGGAAGCAAC	TIN CAT GGGGAGGGT GG	CAT GGGGGGGTAGCA	(A)	

100202 human hla-dr heavy chain gene; 3' flank	H215401 1 4 10 10 14 Examples U18009 Human chromosome 17q21 mRNA clone LF113.	T33413	T33339 EST57474 Homo sapiens cDNA 3' end similar to None	1778778 7 3 1 16 30 Examples M59911 Human integrin alpha-3 chain mRNA	23 10 16 15 50 Examples X87689	o o o 10 1 Examples L12350	25 35 45 76 29 Examples D21261	D29543	1757571 0 5 7 12 2 Examples H51290 Jyp07a05.81 Homo sapiens cDNA clone 186704 3	N20338	zo76e09.s1 Stratagene pancreas (#937208) Homo sapiens CUNA clone	AA158271 592840 3'	H752531 0 0 0 1 13 No Match	0 1 2 1 10 No Match	25 14 42 15 89 Examples X87373	0 2 8 1 10 Examples X08058	0 3 2 11 25 Examples X51439	2 9 9 13 26	1 1 3 6 34 Examples U62800	14 17 15 39 30 Examples H46430		AA047563 376786 3'	=		M24283	103132 Human intercellular adhesion molecule-1 (ICAM-1)		178 110 14 340 139 Examples M17987	1	-	No. No. No.
	\pm	1		-	2	1	2 2		-	,			0	L	25	0	0	1	+	-				0			H781873	178	-		3 6
		CATGGGTGGGGAGAI			22 CATGGTACTGTAGCA	23 CATGGTACTGTGGCT	124 CATGGTCAAAATTTC	125 CATGGTCTGGGGCTT		126 CATGGTCTGTGAGAG				CATGGICIGIGGAGG	CATGGTC11GAAGCC	129 CAT GGT GAAGGCAGT	(0) CAT GGT GAAT GACGG	CATGGTGCGGAGGAC	CATGGTGCTGGAGAA	CATGGTGGAGGGCAC	11 CATGGTGGTACAGGA				CATGGI LACI GCAG			CATGGTTGTCTTT66	CALGGIIGIGGIIAN	13 CAT 66111 AAA1 CGA	19 CATGTAAGGCTTAAC

H. sapiens mRNA for Sm protein G Human placental tissue factor (two forms) mRNA Human tissue factor mRNA, complete cds Human tissue factor mRNA, complete cds Human tissue factor gene, complete cds Human mRNA for translationally controlled tumor protein Human mRNA for translationally controlled tumor protein Human transglutaminase mRNA Human HepC2 3-directed Mbol cDNA, clone s247 Husapiens vimentin gene Human mRNA for vimentin. H. sapiens vimentin gene Human vimentin (HuVim2) mRNA Human vimentin (HuVim3) mRNA, 3' end 2b57a08.s1 Homo sapiens cDNA clone 307670 3' NIB978 Normalized infant brain, Bento Soares Homo sapiens cDNA 3' end H. sapiens mRNA for amphiglycan H. sapiens mRNA for ryudocan core protein Human mRNA for ryudocan core protein Human mRNA for ryudocan core protein Human mRNA for guetalloproteinase 2 (3'-end region)	yz93b03.s1 Homo sapiens cDNA clone 290573 3 Human lactate dehydrogenase-A gene	Human mRNA for lactate dehydrogenase-A Human pseudogene for lactate dehydrogenase-A		CTGTGG, Class A, Human mRNA for fibronectin receptor beta subunit.
X85373 102931 M16553 M27436 X64899 X16064 X16064 M98479 D12149 X80909 X56134 Z19554 M14144 M25246 N92906 N92906 N92906 D13292 M77233 S48568	N71680 X03083	X02152 X02153		67670X
Examples X85373 No Match No Match No Match No Match M27436 Examples X64899 X16064 X16064 Examples M98479 Examples M92868 Examples M92868	Examples N71680 Examples X03083		No Match	Examples X07979
10 10 11 11 11 11 11 11 11 11 11 11 11 1	13		2	=
10 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 20		0	9
1 1 4 2 1 1 1 4 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 <td>4 3</td> <td></td> <td>1 6</td> <td>3</td>	4 3		1 6	3
1 1 1 1 1 1 1 1 1 1	0 4	-	- -	0
	H916232 H916372	↓ 	H920392	H920525
H802793 H806901 H808925 H827437 H831616 H831816 H856209 H868569 H871920 H871920 H871920	H910H		H92	H92
	-	+	+	
CAT TAAT TAAT TAAT TAAT TAAT TAAT TAAT	CTG		CTG	TAC
CATGTAATTTTGGAT II CATGTACATTTTCAT II CATGTACCCTACAT II CATGTACCCTTCTAT II CATGTACCCTTCTAT II CATGTACCTTCTAT II CATGTACATCTACAT II CATGTACATTTTCTCC II CATGTATTTTTCTCC II CATGTATTTTCTCC II CATGTCAAATCGAAA III CATGTCCAAATCGAT III CATGTCCATCTGTTG III CATGTCCATCTGTTG III CATGTCCATCTGTTG III CATGTCCATCTGTTG III CATGTCCATCTGTTG III CATGTCCATCTGTTG III CATGTCCATCTTATC III CATGTCATCTTATCT III CATGTCATCTTATC III CATGTCATCTTATCT III CATGTCATCT	CATGTCTTGTAACTG		150 CATGTGAAGTCACTG	157 CATGTGAAGTTATAC
TTAGATT TAGATT T	TCT		STGA	GTGA
CATG	SA CATO	5	CATC	CAT

- - - - - - - -

2k05h07.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone	G2/MITOTIC-SPECIFIC CYCLIN B1 (HUMAN)	yc22c04.s1 Homo sapiens CDNA clone 140702 3'		2091f03.s1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA clone 594269 3' similar to SW:NGAL_HUMAN P80188 NEUTROPHIL	GELATINASE-ASSOCIATED LIPOCALIN PRECONSOR	SDIDGOS, SI HOURD SEPTEMS CONTROPHIL GELATINASE-	ASSOCIATED LIPOCALIN PRECURSOR	rm90h04 s1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA	clone 545239 3' similar to SW:NGAL_HUMAN P80188 NEUTROPHIL	GELATINASE-ASSOCIATED LIPOCALIN FACCOLOGY	1 CHOSTODA Home capiens cDNA clone 511044	zl81e07.s1 Stratagene colon (#y37204) Hollio saprollo	3,	Thurst lone caniens cDNA clone	zk10a01.s1 Soares pregnant uterus ivora o mono saprana con contra	470088 3'	yv66e10.s1 Soares fetal liver spicen living sapicing control living control living control living sapi	247722 3' TTS TOWN OF THE SADIENS	zn76c02.s1 Stratagene N12 itemoniar procursor contractions of the state section 3.	Time conjugate kingse (GUK1) mRNA	Homo sapiens guanting familian of apolipoprotein Cl	number in the section in B many	Homo sapicitis cautepsin D. ind.	Human camepsin o proteinase incertification	Human enigma gene	Homo sapiens noosomal protein E27 (19 227)	Human gene for fusione H1(0).	2k23g08.s1 Soares pregnant utetus tyotta o tromo september	471422 31	
	99				Examples AA169614		N79823			Examples AA075896	ļ		Examples AA100279			Examples AA029262		N54281		AA1140/3	L76200	X002/0	L16510	M14221	Examples L35240	L38941	Examples X03473		Examples AA034505	
	Examples AA027860 Examples M25753				Examples		Examples N79823			Examples	No Match		Examples	No Match		Examples					Examples L76200	Examples	Examples L16510	i	Example	Examples L38941	Example		Example	
+	2 9	H	+		43	_	19			83		T	12	3		16					48	4	27		~	20	15			
H	= -	$\dagger \dagger$	+		13		Ξ			25			7	12		4					7 22	3 37	3 76		3 22	81	6 25	1_	1 21	
F	2 8				13 3	_	- 4	_		31 10	\vdash	+	3	5	L	9	1		-		15	3	15 13	\vdash	m	21 26	↓-	+	=	
-	0-	+	\dashv		-	ł	(4)	-		13	١.	+	0	۲	╬		+		╁		8	0	=		 	000	1	1	6	
	H932731	0130010			H939841		H030840			H939851	11020303	720754	H941856	11044038	H344030	1040560	1747.000	-			H953251	H955723	H962086		H975446	H076644	198787011	13,000	H997944	
	158 CATGTGATGTCTGGT	150 CATGTGCCATCTGTA				160 CATGTGCCCTCAAAA		In CATGTGCCTCAGAS			162 CATGTGCCCTCAGGA	162 CATGTGCCCTCAGGC		163 CATGTGCCTTACTTT	164 CATGTGCGCTGGCCC		Ins CATGTGCTTCATCTG				55450F0400F040	The CA16166ACT	167 CATGI GCCCCCAGGI	168 CATGI GGG1 GAGCCA	6000	169 CATGTGTGAGCCCC1	170 CATGTGTGCTAAATG	1-1 CATGTGTGTGTTTGT		

2131b06.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone 723923	31 Labello el Soares pregnant uterus NbHPU Homo sapiens cDNA clone	472050 3'	yu38d04.s1 Homo sapiens cDNA clone 236071 3	EST04595 Homo sapiens CDINA Cloud in DOXOL	NIB1599 Normalized infant brain, Bento Soares Homo sapiens cDNA	3'end similar to EST04595 H. sapiens cDNA clone Hr BDX32	2e97h02.s1 Soares fetal heart North19W notice sapicies Contractions	300303 3	2105a03.51 Soares NbHTGBC Homo sapiens cDNA clone 712204 3'	vm05a09.s1 Homo sapiens cDNA clone 46675 3'	H. sapiens mRNA for tyrosine kinase receptor.	Human mRNA for collagen VI alpha-1	H. sapiens gene for glutaminyl-tRNA synthetase	2k73h10.s1 Soares pregnant uterus NbHPU Homo sapiens culn's cione	488515 3'	yz36b07.s1 Homo sapiens cDNA clone 263109 3	2721 03 s1 Source testis NHT Homo sapiens cDNA clone 727828 3	H conjens (5) Ferritin H pseudogene.	Human mRNA for apoferritin H chain type	Himan appleration H gene exons 2-4	Human ferritin heavy chain mRNA, complete cds	Human ferritin heavy chain mRNA, complete cds	Human interferon-inducible mRNA (cDNA 6-26).	Himan promyelocytic leukemia cell mRNA	Himan thumbsin heta-4 mRNA, complete cds	Truman my most compared by Clone 302294 3'	201 /806.51 HOURS SAPERING THINGT HOMO SAPIENS CONA clone 724131	2133002.51 Soules Over Junio 1990 Salaba 18,200 Salaba 18,200 Salaba 1990 Sala	31 Soares fetal heart NbHH19W Homo sapiens cDNA clone	347396 3'	
	AA235464	AA037024	H53629	T06706		T16635		Examples AA0200/8	A A 280283	H10141	X66029	088512	X72414		Examples AA044568	N71899	202007	AA400/22	X80330	V02/88	1707164	1 2004 1	Y02403	M11048	2 61 223	M1//35	N78832		AA411095	W81693	110,000
			Examples H53629					Examples			Evamples X66029	Cydinpies	Examples A 12000		Examples				Examples X80330				Tuesmale	Examples A0247			Examples N78832				
-			m					~		†	1	1	寸		24				8	1			15	Ì		٦					
-			2	╁	-		+	24		1	10	P	23		0	1			84 235					183			E1 0				\Box
			10					3		1		٥ ٥	2	+	11 16		-	_	25	4	\dashv	4	- 1	106	-		-	-			\dashv
}		_	-	1	├-		+	٣	-	\dashv	+	0	+	+		_1_	-		202	1	1	1	1	~	-		0	\vdash			
			11003443	CLECOOLL		•		H1014660				H1021276	H1023520		073760111	H1024700			H1026814					H1027595			TTTT		•		
				CATGTTCATTGTAGA				つける ないけいせいせい	CALGINITOTOTOTO			STSCCCCGTG				TATGTTGGAGATCTC			PACATGTTGGGGTTTCC					179 CATGTTGGTGAAGGA			A A A CHOOL CHARLES	NO CATGITICCOICMA			

.

7	_	Т	7		Т	1		T		ì		
III. man brain tune clathrin light-chain a mRNA	nullidal Older Operation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hunan lymphocyte clathin lignt-chant A mooth	tu conjens mRNA for connective tissue growth factor	ANGE : 11. STORY IN THE STORY I	Human connective tissue grown factor filtrand	178008 of Home caniens cDNA clone 44273 3	VI/OCCOSSI INCINCTOR STATE OF THE STATE OF T	FST94173 Homo sapiens cDNA 3 end similar to resident	Strings S1 Home caniens CDNA clone 667170 3	AA253218 zr53g10.s1 Soares Nutiviru 31 million suprem		
10,000	Examples M204 / 1	M20472	2700043	Examples A /894 /	U14750	001.500	H06492	175057	133734	AA253218		
		-	1	_	-	1				L	$\frac{1}{1}$	
	_	+	-	16	+	-					_	İ
	3	1		0	1		_	1	_	ļ	_	
	5	<u>}</u>		٥	<u>`</u>		-	1		+	_	
	700000111	H1030720		103150111	TOCITOI E		300000111	H1044777			_	
		SICATGTTTCCTTCCTT			INT CATGTTTGCACCTTT			CHAPTERTANA				
		N I CA	+	-	C			100	7			

Table 5 - Transcripts increased in pancreas and colorectal cancer

SAGE tag that were elevated in both in coloreactal and pancreatic tumor,

and are likely to be specific for tumor in general.	
umor in g	
ific for t	
be speci	
ikely to	,
nd are l	

					D
	Ton Segmence	Тав	Tag Number	Accession	Descrip
1	1 ag 3cd delice		-950498 M10629		d with polyn
7	1 GGMAA1 GAC	-	-294155 042376		SOT (E)
7	2 CATG CACITCAMES	-		U56145	
		(Q / E	-243747	303040	Human SPARC/osteonectin mRNA, complete cds.
	CATG ATGICAAGAG			M25746	- 1
			-610466X53416	453416	Human mRNA for actin-binding protein (filamin) (AB
4	CATG GCCCAAGGAC	+	1220106 X02761		
2	CATG ATCTTGTTAC T		22777	Τ	human fibronectin (fn) 3' coding region and flank,
		1	35 26 3 V 105007	Т	
9	6 CATG GTGCGCTGAG C	1	- / 67097 -	00000	
				M26432	prote
1	CATG ACAGGCTACG G	_	-76231 M95787	M95787	בבאטם אוויסטרוו ווימסביבי
		-		M83106	Human SM22 mkNA, 3 enu.
a	o CATG GTGTGTTGT A	_	-769020 M77349	M77349	ning growth ractor Deta
0	CARO CARTICIONG C		-589267 X53279	X53279	Human mRNA for placental-like aikaline phospheres
		-		X55958	- 1
				104948	Human alkaline phosphatase (ALP-1) mRNA, complete
		1	0000	05000 857351	Human 1-8D gene from interferon-inducible gene fam
10	CATG ACCATTCTGC T		70000-	100100	interferon-inducible mRNA (cDNA 1-8).
				X02490	nullan interior in the section of
-	11 CATG TCCTTCTCA C	_	-884181 X15804	X15804	arpina ac
-	12 CATG CTTCTGTGTA C,	Ι,	-515821 D80012	D80012	mRNA for KIAAU190
: =	13 CATG ATGTAAAAA T		-241665	241665 M74090	TB2 gene mkNA,
1:		_		303801	comptere cas with an inter
		-		M19045	cds.
			-673954	673954 X17620	Human mRNA for Nm23 protein, involved in developme
1 4	14 CA16 GGCAGAGGAG	-		X75598	H. sapiens nm23H1 gene.
		1	63130	531201162962	Himan Int-6 mRNA, complete cds.
15		1	2150-	10001	Himan Heng2 3' region cDNA, clone hmd2c11.
1.0			-1048113/010691-	169910	1 Z
=	17 CATG CAGCTGGCCA T	_	-302741 X53/43	X53/43	

.

	- [
	L13799	9
T GOOTGOT CASE	-79065 L0650S	LIZ MKNA, COMPIECE COS
	-507577 D14530	o i
CATG CTGITGGIGA	-249854 X57959	somal protein
37 CATG ATTAILLIE	X57958	H. sapiens mRNA for ribosomal protein L7.
	X52967	
	L16558	RNA, complete
d Joakhamann of the	-655115 L06498	520) mRNA,
	-672265 L19527	sapiens ribosomal protein L27 (RPL27) mRNA,
39 CATG GCCAAGAGA	L25346	sapiens ribosomal protein L27 (homologue of
d anathrape	-490889 Y00433	Human mRNA for glutathione peroxidase (EC 1.11.1.9
40 CAIG CICIICGAGA	Y00483	
	x13710	H. sapiens unspliced mRNA for glutathione peroxidas
	X13709	Human gpx1 mRNA for gluthatione peroxidase.
	1000000	uman alutathione peroxidase (GPXI) mRNA, complete
	M21304	" 1 1 mena fragment DNA binding protein UPI
41 CATG CTGTTGATTG C	-50/455 X0434/	Himms clone C4F 3.2 (CAC)n/(GTG)n repeat-containin
	000347	" complete cds
42 CATG CTGGGTTAAT A	-502724 MB1757	1
43 CATG ATGGCTGGTA T	-239533 X1 /206	HUMAN MINNS TOT BOAR WITH SMAIL RNAS (EBER
44 CATG GATGCTGCCA A	-583573 X59357	Human mknA for Epstern Barr True associated Dro
	L21756	Danie associate
	D17652	S.
	876343	oint) [hum
C TABABUTTOO DEAD 1.	-390692 014970	Human ribosomal protein S5 mRNA, complete cds.
CAIG CCITCACCT	-482584 016811	Human Bak mRNA, complete cds.
	023765	
S STATELLER G	-978825 X16869	elongation factor 1-alpha (clone
-	X16872	1-alpha
	X03558	
	017182	
	017245	HepG2 3' region Mbol cDNA,
	017259	HepG2 3' region Mbol cDNA,
	017276	HepG2 3'
	12.12.	١

- - - -

		man alongation factor 1 alpha mRNA, 3' end.
	Т	1-
	M29548	
	L41490	oncogene rit I many complete
	L41498	cogene PTI-1 mkna, complete
A DEARAGONER DESCRIPTION	-988366 057846	Human ribosomal protein L39 mRNA, complete cus:
CATG TIACCATATO	-621035 X71973	H. sapiens GPx-4 mRNA for phospholipid nydroperoxid
1	-383489 226876	H. sapiens gene for ribosomal protein L38.
1	-803369 X69391	
51 CATG TACAAGAGA A	-803369017554	
	-803369 S71022	neoplasm-related C140 product (human, thyroid carc
1	-24951 V00598	١
52 CATG AACGACCICG 1	24051 000599	beta-tubulin.
	0000010042-	Himan mpNa for neurite outgrowth-promoting protein
53 CATG CCCTGCCTTG T	-358783 X5511U	munding man tot to TAR RNA binding (SRB) mRNA, co
SA CATG CCCAGGGAGA A	-346761038846	Human Stimutator of the haddell.
	D16933	Human HepG2 3' region conn, cronc min
5 4000000000000000000000000000000000000	-148949 211692	Congacton races
AGCACCI CCI	-416261 X73974	
-	D23660	200
	-458753 M33680	TAPA-1 mR
	019000000000000000000000000000000000000	
58 CATG GGCTGATGTG G	-686319 009310	STATES
	185600	for alvey
	D30658	1-Cell minut for 9-1-7-
SOCOTO ATTCTCCAGT A	-253260 X55954	Human mkNA for nuch ittogement process
	X52839	Human mRNA for ribosomat protests profesh
COLCATG GAAAAATGGT T	-524524 X61156	H. sapiens mkna for taminini Dinging Processin (
	X15005	Human mRNA for potential lamining from thosom
	043901	Human 37 kD laminin receptor precursor/pro recommend
	303799	amin
	M14199	MKNA, J
	-302367 087735	d' comprere
	110376	
	\$80520	ntaining
	-200576 014973	Human ribosomal protein S29 mRNA, complete cds.
62 CATG ATAATTCTTT 6		

.

		-	1,31610	Г	Homo sabiens (clone cori-1c15) S29 ribosomal prote
			2000	T	anione mana for ribosomal protein 18.
63	CATG AATCCTGTGG	4	-5522/22840/		The saprens minister of mRNA complete cds.
6.4		A	-51925 M64716		•
5					
		A (C,	-		
3,5	SS CATG AAAAAAAAA	G, T)	-1 X83412		H. sapiens Bl mRNA for mucin.
3			232564		H. sapiens FRGAMMA mknA (elspp) Lot totate toog
			232633		- 1
			X76180		H. sapiens mRNA for lung amiloride sensitive Nat Cil
		-	008470		
			008471		.l
			U48697	Г	
			D28532	Γ	
			M55914	Γ	۲ı
			106175	Г	Homo Sapiens P5-1 mRNA, complete cds.
			573775	Π	calcium-binding protein
		+	877393	T	, RF1, RF48 stomach c
		+	3E003K	Τ	H. sapiens mRNA for mitochondrial phosphate carrier
		+	235945 X79238	Т	H. sapiens mRNA for ribosomal protein L30.
99	CATG CCAGAACAGA	<u></u>	1.16991	Τ	Human thymidylate kinase (CDC8) mRNA, complete cds
			COLUMN	Т	u carione mRNA for ORF.
67	CATG AAGGTGGAGG	A	-44683 X80822	T	1. Saptens minn tot on the propessed pseudodene.
ay	ABICATE CCTAGCTGGA	T	-379369 X52856		Human Cycloputtin tetated processed Free S
3			X52857		Human cyclophilin-related processed pseudogene.
		-	X52854		ss I
			X52851		1111n (EC 3.2.1.
		-	Y00052		Human mRNA for T-cell cyclophilin.
0	CATE GAACACATCC	A	-528694 X63527		mRNA for ribosomal protein
			286982		breast cancer cerr
ľ	SOLADADORA DEAD	٢	-41531 X69181		
5	CATE AAGGAGATGG	,	X15940	Γ	Human mRNA for ribosomal protein L31.
		,	-171113 229650	Γ	H. sapiens SMCX mRNA.
7.1	CATG AGGCTACGGA	€	11723	Ţ	Himan Heng2 3' region Mbol cDNA, clone hmd4c12m3.
		1	2000	Т	Himan Ger of gene for glutathione S-transferase pi
72	72 CATG AGGTCCTAGC	٥	-177610 XU8U90	٦	2000

		and the state of Aliterthione Setransferase
	X06547	BENA IOI CLASS L. VILLESCILLOID
	X15480	Human mRNA for anionic glutathione-5-transferase (
	X08058	Human glutathione S-transferase pl gene.
	012472	glutathione S-transferase (GST phi)
	021689	Ė١
	062589	Human glutathione S-transferase Plc (GSTplc) mRNA,
	M69113	se-III
	M24485	Homo sapiens (clone pHGST-pi) glutathione S-transf
S SACTTOTOT OF A SEC	-965603 X69150	H. sapiens mRNA for ribosomal protein S18.
CA16 1661611	M96153	Homo sapiens apolipoprotein B gene sequence.
	106432	ابر
14 CATC CTCBACATCT C	-475448 M17885	tein PO mR
CAIG CICARCHICE	-769045 L25899	Human ribosomal protein L10 mRNA, complete cds.
	-174037 X58125	Human (D9S55) DNA segment containing (TG)24 repeat
	D17268	2.1
	M73791	Human novel gene mRNA, complete cds.
	M64241	s tumor-related protein (Q
	835960	lan, mE
上 ししつしきがない ジャー・	-671654 M17887	Human acidic ribosomal phosphoprotein P2 mRNA, com
//CATG GGAIIIGGG	M11147	Human ferritin L chain mRNA, complete cds.
	M12938	
	M10119	subunit mRNA, co
	-246019 X04409	s) alpha-
	X04408	Human mRNA for coupling protein G(s) alpha subunit
	60095X	inding
	X07036	Human mRNA stimulatory GTP-binding protein alpha s
	M21142	alpha
	M14631	Human guanine nucleotide-binding protein G-s, alph
SPICATE TETACCIETA A	-968173 236832	H.sapiens (xs31) mRNA, 835bp.
	K00558	nplete cds.
BO CATG TRECCCACC C	-955718 X56494	ype and M2-type pyru
	M23725	Human M2-type pyruvate kinase mRNA, complete cds.
	M26252	Human TCB gene encoding cytosolic thyroid hormone-

.

	72673X 83C90C	H sapiens rpS8 gene for ribosomal protein S8.
CATG TAATAAAGGI	- 100315 V80401	BRNA
82 CATG GCATAATAGG I	1114967	Human ribosomal protein L21 mRNA, complete cds.
	025789	Human ribosomal protein L21 mRNA, complete cds.
	L38826	
SA CATE TACCATERAT A	-807748 X53778	H.sapiens hng mRNA for uracil DNA glycosylase.
בשום ישכטיים	034995	tion library
	302642	ogenase
	M36164	Human glyceraldehyde-3-phosphate dehydrogenase mRN
	M33197	glyceraldehyde-3-phosphate dehydrogenase
SA CATE ATTTGTCCCA G	-260949 X14957	
	X14958	protei
	M23614	gene),
	M23619	-1
	117131	-I(Y))
	M23615	protein isoform mRNA (HMGI gene),
	M23616	gene),
	M23617	protein isoform mRNA
	M23618	Human HMG-Y protein isoform mRNA (HMGI gene), clon
CANCERT CANCELL CANCELLE C	-567488 014968	Human ribosomal protein L27a mRNA, complete cds.
CATE GASSONIES	-416106 012465	Human ribosomal protein L35 mRNA, complete cds.
CATG GTGAAACCCA	-753749 263072	H.sapiens CpG island DNA genomic Msel fragment, cl
CATG GTGAAACCCA	-753749 X16294	Human repetitive DNA containing interspersed repea
	-33979 x66699	L3/a.
	L06499	Homo sapiens ribosomal protein L37a (RPL3/A) mKNA,
	L22154	Human ribosomal protein L37a mRNA sequence.
90 CATG CCCCAGCCAG T	-348755 X55715	OS ribosomal protein s3.
	014990	ribosomal protein S3 (rpS3) mRNA,
	U14991	(rpS3) mRNA, o
	014992	mRNA,
	842658	S3 ribosomal protein [human, colon, mRNA, 826 nt].
91 CATG TGGGCAAAGC C	-959498 X63526	H.sapiens mRNA for protein homologous to elongatio
	211531	H.sapiens mRNA for elongation factor-1-gamma.

.

	M55409	- 1
-	7600th 02000	
92 CATG TGAGGGAATA A	-928269 M10036	
93 CATG GACGACACGA G	-549145 U58682	(XPSQX) VS
	M58458	omal processi 31 (most)
	M22146	Human scar protein mknA, complete cus:
A ACCORDING CEACLE	-26261 223063	٦١,
	L10612	Human glycosylation-inhibiting ractor money, compre
	M95775	Homo sapiens macrophage migration innibitory facto
	L19686	indibitory
	M25639	Human migration inhibitory factor (MIF) mann, comp
THE TOWN OF THE	-935680 X03342	Human mRNA for ribosomal protein L32.
	K03002	chromosome 15 gene With Homotogy
OF CATE CACAAACGGT A	-278636 057847	MPS1) mRN
	L19739	metallopanstimutin
T TO GGAGTGGACA T	-667269 L11566	ibosomal protein LIB (Krhis)
	-615043 254999	island UNA genomic rise itagment
	257572	genomic maci tradiment
	256073	genomic Mser tradiment
	X53505	ribosomal protein 512.
	-696375 M92381	RNA, complete
99 CATG GGGAAATCG C		complete cds.
	0000	ribosomal protein L28 mRNA,
100 CATG GCAGCCATCC G	COCKTO DECREC-	Hangs 3' region MboI cDNA, clone hmd5d04m3.
	01/23/	SZ6 mRNA.
101 CATG TAAGGAGCTG A	0///X18967-	u carione mRNA for ribosomal protein S26.
	FCOGOX	10
102 CATG GGCAAGCCCC A	-672342 012404	-pwn for ribosoma
	X79239	ens make tot tibosomus pro-
	L01124	Somal process State (Negra)
103 CATG GTTCCCTGGC C	-775658 X65923	H.sapiens fau mRNA.
	002523	naogene,
104 CATG CCGTCCAAGG G	-374027 M60854	for homologue to ve
CATG TIGGICCICI G	-1027448 212962	H. sapiens make to the control of clone 786) [human,
	864030	

	875201	element) [numan, instruction
	875337	Sublamity
J Egggomotor care co.	-695980 249148	29.
	010248	
	049083	heparin binding process nie
	D16992	71
	D16911	region cDNA, clone hmd3b09.
	103537	S6 mRNA, complete
	M20020	Human ribosomal protein S6 mRNA, complete cds.
109 CATG ACGITCICIT C	-114144	EST
110 CATG TCTCCATACC C	-906438	EST
1	-555450	EST
112 CATG CTTAATCCTG A	-508767	E-NO.
113 CATG GGTTGGCAGG G	-719435	ES3.
CATG	-613862	FI (
115 CATG AACAGAAGCA A	-18469	1.53.T
116 CATG CTGCCGAGCT C	-497192	EST
117 CATG TTCCTCGGGC A	-1007018	EST.
	-28872	103
119 CATG TAGATAATGG C	-822331	101 101
120 CATG GCCACACCCC A,C	-607318	FST.
121 CATG GAACCCTGGG A	-529899	E.V.T.
122 CATG AACTAAAAA A	-28673	1831
123 CATG GAAATGTAAG A	-528067	EV.
124 CATG ACTCCAAAAA A	-119809	in the state of t
125 CATG GTTCGTGCCA A	-777109	1 E C 1
126 CATG TTACCTCCTT C	-989024	
127 CATG GCACAAGAAG A	-594051	EST
128 CATG CCCTGGGTTC T	-359102	EST
129 CATG GCCTGTATGA G	-621369	EST
130 CATG CCCGTCCGGA A	-355689	EST
131 CATG AGGAAAGCTG C	-163999	E01
132 CATG TCAGATCTTT G	-861056	EST

EST EST EST EST

133 CATG CCAGGAGGAA T 134 CATG TCACCCACAC C 135 CATG GTGTTGCACA A 136 CATG GCGTGTCCG C	-338081	0000	-85/307	30000	200601-	-618199		
IMIMIMIM	£ 4.00	TAICATG CCAGGAGGAM		34 CATG TCACCCACAC	GTGTTGCACA	200000000000000000000000000000000000000	136 CATG GCCGTGTCC	

10

15

20

Isolation of partial cDNA (3' fragment) by 3' directed PCR reaction

This procedure is a modification of the protocol described in Polyak et al. (1997) Nature 389:300. Briefly, the procedure uses SAGE tags in PCR reaction such that the resultant PCR product contains the SAGE tag of interest as well as additional cDNA, the length of which is defined by the position of the tag with respect to the 3' end of the cDNA. The cDNA product derived from such a transcript driven PCR reaction can be used for many applications.

RNA from a source believed to express the cDNA corresponding to a given tag is first converted to double-stranded cDNA using any standard cDNA protocol. Similar conditions used to generate cDNA for SAGE library construction can be employed except that a modified oligo-dT primer is used to dreive the first strand synthesis. For example, the oligonucleotide of compositon 5'-B-TCC GGC GCG CCG TTT T CC CAG TCA CGA(30)-3', contains a poly-T stretch at the 3' end for hybridization and priming from poly-A tails, an M13 priming site for use in subsequent PCR steps, a 5' Biotin label (B) for capture to strepavidin-coated magnetic beads, and an AscI restriction endonuclease site for releasing the cDNA from the streptavidin-coated magnetic beads. Theoretically, any sufficiently-sized DNA region capable of hybridizing to a PCR primer can be used as well as any other 8 base pair recognizing endonuclease.

cDNA constructed utilizing this or similar modified oligo-dT primer is then processed exactly as described in U.S. Patent No. (insert) up until adapter ligation where only one adapter is ligated to the cDNA pool. After adapter ligation, the cDNA is released from the streptavidin-coated magnetic beads and is then used as a template for cDNA amplification.

Various PCR protocols can be employed using PCR priming sites within the 3' modified oligo-dT primer and the SAGE tag. The SAGE tag-derived PCR primer employed can be of varying length dictated by 5' extension of the tag into the adaptor sequence. cDNA products are now available for a variety of applications.

30

10

15

20

This technique can be further modified by: (1) altering the length and/or content of the modified oligo-dT primer; (2) ligating adaptors other than that previously employed within the SAGE protocol; (3) performing PCR from template retained on the streptavidin-coated magnetic beads; and (4) priming first strand cDNA synthesis with non-oligo-dT based primers.

Isolation of cDNA using GeneTrapper or modified GeneTrapper Technology

The reagents and manufacturer's instructions for this technology are commercially available from Life Technologies, Inc., Gaithersburg, Maryland. Briefly, a complex population of single-stranded phagemid DNA containing directional cDNA inserts is enriched for the target sequence by hybridization in solution to a biotinylated oligonucleotide probe complementary to the target sequence. The hybrids are captured on streptavidin-coated paramagnetic beads. A magnet retrieves the paramagnetic beads from the solution, leaving nonhybridized single-stranded DNAs behind. Subsequently, the captured single-stranded DNA target is released from the biotinylated oligonucleotide. After release, the cDNA clone is further enriched by using a nonbiotinylated target oligonucleotide to specifically prime conversion of the single-stranded target to double-stranded DNA. Following transformation and plating, typically 20% to 100% of the colonies represent the cDNA clone of interest. To identify the desired cDNA clone, the colonies may be screened by colony hybridization using the 32P-labeled oligonucleotide as described above for solution hybridization, or alternatively by DNA sequencing and alignment of all sequences obtained from numerous clones to determine a consensus sequence.

The genes which are identified herein as being differentially expressed in normal and cancer cells can be used diagnostically and prognostically. Transcription levels in a test sample suspected of being neoplastic can be determined and compared to the levels in normal colon cells. The test sample may be from any tissue suspected of neoplasia, and particularly from either suspected colorectal or suspected pancreatic cancer cells. The control cells for

30

the purposes of comparison are normal cells, preferably of the same tissue type as the test sample, e.g., colon cells, or pancreatic duct epithelial cells. Upregulation of transcription or downregulation of transcription is therefore diagnostic of the neoplastic state, depending on what gene is used as a test reagent. Similarly, transcription levels can be monitored to assess patent responses to anti-tumor therapies. Transcription levels will also provide prognostic information. For example, the level of transcription in a test sample can be compared to levels found in bona fide normal and tumor cells. More extreme deviations from normal expression levels indicate a poorer prognosis.

10

5

Transcription levels can be determined according to any means known in the art. These include, without limitation, Northern blots, nuclear run-on assays, *in vitro* transcription assays, primer extension assays, quantitative reverse transcriptase-polymerase chain reactions (RT-PCR), and hybrid filter binding assays. These techniques are well known in the art. See J.C. Alwine, D.J. Kemp, G.R. Stark, *Proc. Natl. Acad. Sci. U.S.A.* 74, 5350 (1977); K. Zinn, D. Di-Maio, T. Maniatis, *Cell* 34, 865 (1983); G. Veres, R.A. Gibbbs, S.E. Scherer, C.T. Caskey, *Science* 237, 415 (1987).

15

20

25

30

Similarly, upregulated genes and downregulated genes can be detected by measuring expression of their protein products. This can be done by any means known in the art, including but not limited to Western (immuno) blot, enzyme linked immunoadsorbent assay, radioimmunoassay, and enzyme assay. Such techniques are well known in the art. Protein products can be detected in tissue samples of a test patient, using a suspect sample as a test sample, and a matched normal tissue sample from the same tissue type as a control. If normal tissue is not available then a closely related tissue type can be used. Desirably both the samples being compared will be from the same individual. Alternatively, aberrant expression levels of protein products can be detected in body samples, such as blood, serum, feces, urine, sputum. As a control, a normal matched sample can be used from a healthy individual. Aberrant expression levels of transcripts can also be detected in such body samples, particularly in blood and serum.

WO 98/53319

Probes for use in the assays for transcription levels of particular genes or sets of genes may be RNA or DNA. The probes will be isolated substantially free of other cellular RNAs or DNAs. If the reagent contains one probe then it will comprise at least 50% of the nucleic acids in the reagent composition. If the reagent contains more than one probe, then the proportion will decrease accordingly, so that specific probes will still comprise at least 50% of the nucleic acids in the reagent composition.

Probes can be labeled according to any means known in the art. These may include radioactive labels, fluorescent labels, enzymatic labels, and binding partner labels such as biotin. Means for labeling and detecting probes are well known in the art. Probes comprise at least 10, 11, 12, 15, 20, or 30 contiguous nucleotides of a selected gene.

This invention provides proteins or polypeptides expressed from the polynucleotides of this invention, which is intended to include wild-type and recombinantly produced polypeptides and proteins from procaryotic and eucaryotic host cells, as well as muteins, analogs and fragments thereof. In some embodiments, the term also includes antibodies and anti-idiotypic antibodies.

It is understood that functional equivalents or variants of the wild-type polypeptide or protein also are within the scope of this invention, for example, those having conservative amino acid substitutions. Other analogs include fusion proteins comprising a protein or polypeptide.

The proteins and polypeptides of this invention are obtainable by a number of processes well known to those of skill in the art, which include purification, chemical synthesis and recombinant methods. Full length proteins can be purified from a colon or pancreatic cell or tissue lysate by methods such as immunoprecipitation with antibody, and standard techniques such as gel filtration, ion-exchange, reversed-phase, and affinity chromatography using a fusion protein as shown herein. For such methodology, see for example Deutscher et al. (1999) Guide To Protein Purification: Methods In Enzymology (Vol. 182, Academic Press). Accordingly, this invention also

10

5

15

20

25

provides the processes for obtaining these proteins and polypeptides as well as the products obtainable and obtained by these processes.

The proteins and polypeptides also can be obtained by chemical synthesis using a commercially available automated peptide synthesizer such as those manufactured by Perkin Elmer/Applied Biosystems, Inc., Model 430A or 431A, Foster City. The synthesized protein or polypeptide can be precipitated and further purified, for example by high performance liquid chromatography (HPLC). Accordingly, this invention also provides a process for chemically synthesizing the proteins of this invention by providing the sequence of the protein and reagents, such as amino acids and enzymes and linking together the amino acids in the proper orientation and linear sequence.

Alternatively, the proteins and polypeptides can be obtained by well-known recombinant methods as described, for example, in Sambrook et al., (1989), supra, using the host cell and vector systems described above.

Also provided by this application are the polypeptides and proteins described herein conjugated to a detectable agent for use in the diagnostic methods. For example, detectably labeled proteins and polypeptides can be bound to a column and used for the detection and purification of antibodies. They also are useful as immunogens for the production of antibodies as described below. The proteins and fragments of this invention are useful in an in vitro assay system to screen for agents or drugs, which modulate cellular processes.

The proteins of this invention also can be combined with various liquid phase carriers, such as sterile or aqueous solutions, pharmaceutically acceptable carriers, suspensions and emulsions. Examples of non-aqueous solvents include propyl ethylene glycol, polyethylene glycol and vegetable oils. When used to prepare antibodies, the carriers also can include an adjuvant that is useful to non-specifically augment a specific immune response. A skilled artisan can easily determine whether an adjuvant is required and select one. However, for the purpose of illustration only, suitable adjuvants include, but

15

5

10

20

25

are not limited to Freund's Complete and Incomplete, mineral salts and polynucleotides.

This invention also provides a pharmaceutical composition comprising any of a protein, analog, mutein, polypeptide fragment, antibody, antibody fragment or anti-idiotipic antibody of this invention, alone or in combination with each other or other agents, and an acceptable carrier. These compositions are useful for various diagnostic and therapeutic methods.

Antibodies can be generated using the proteins encoded by the transcripts identified by the tags disclosed herein. Use of all or portions of the protein as immunogens is routine in the art. Similarly, fusion proteins can be used as immunogens. Antibodies can be affinity purified using the proteins or portions thereof used as immunogens. Similarly, monoclonal antibodies specifically immunoreactive with the protein sequences of the invention can be generated according to techniques which are well known in the art.

Antibodies can be used analytically to quantitate the expression of particular transcripts identified herein as upregulated or downregulated in cancer. In addition, antibodies can be conjugated or non-covalently linked to cytotoxic agents, such as cytotoxins, radionuclides, chemotherapeutic drugs, etc. Such antibodies can be used therapeutically to specifically target cancer cells in which the protein antigens are upregulated. These include the proteins encoded by the transcripts identified by the tags shown in Tables 2, 4, and 5. Means of making such linked cytotoxic antibodies and of administering the same are well known in the art.

Also provided by this invention is an antibody capable of specifically forming a complex with the proteins or polypeptides as described above. The term "antibody" includes polyclonal antibodies and monoclonal antibodies. The antibodies include, but are not limited to mouse, rat, and rabbit or human antibodies.

Laboratory methods for producing polyclonal antibodies and monoclonal antibodies, as well as deducing their corresponding nucleic acid sequences, are known in the art, see Harlow and Lane (1988) supra and

10

5

15

20

25

10

15

20

Sambrook et al. (1989) supra. The monoclonal antibodies of this invention can be biologically produced by introducing protein or a fragment thereof into an animal, e.g., a mouse or a rabbit. The antibody producing cells in the animal are isolated and fused with myeloma cells or heteromyeloma cells to produce hybrid cells or hybridomas. Accordingly, the hybridoma cells producing the monoclonal antibodies of this invention also are provided.

Thus, using the protein or fragment thereof, and well known methods, one of skill in the art can produce and screen the hybridoma cells and antibodies of this invention for antibodies having the ability to bind the proteins or polypeptides.

If a monoclonal antibody being tested binds with the protein or polypeptide, then the antibody being tested and the antibodies provided by the hybridomas of this invention are equivalent. It also is possible to determine without undue experimentation, whether an antibody has the same specificity as the monoclonal antibody of this invention by determining whether the antibody being tested prevents a monoclonal antibody of this invention from binding the protein or polypeptide with which the monoclonal antibody is normally reactive. If the antibody being tested competes with the monoclonal antibody of the invention as shown by a decrease in binding by the monoclonal antibody of this invention, then it is likely that the two antibodies bind to the same or a closely related epitope. Alternatively, one can pre-incubate the monoclonal antibody of this invention with a protein with which it is normally reactive, and determine if the monoclonal antibody being tested is inhibited in its ability to bind the antigen. If the monoclonal antibody being tested is inhibited then, in all likelihood, it has the same, or a closely related, epitopic specificity as the monoclonal antibody of this invention.

The term "antibody" also is intended to include antibodies of all isotypes. Particular isotypes of a monoclonal antibody can be prepared either directly by selecting from the initial fusion, or prepared secondarily, from a parental hybridoma secreting a monoclonal antibody of different isotype by using the sib selection technique to isolate class switch variants using the

30

procedure described in Steplewski et al. (1985) Proc. Natl. Acad. Sci. 82:8653 or Spira et al. (1984) J. Immunol. Methods 74:307.

This invention also provides biological active fragments of the polyclonal and monoclonal antibodies described above. These "antibody fragments" retain some ability to selectively bind with its antigen or immunogen. Such antibody fragments can include, but are not limited to:

- (1) Fab,
- (2) Fab',
- (3) F(ab')2,
- (4) Fv, and
- (5) SCA

A specific example of "a biologically active antibody fragment" is a CDR region of the antibody. Methods of making these fragments are known in the art, see for example, Harlow and Lane, (1988) supra.

The antibodies of this invention also can be modified to create chimeric antibodies and humanized antibodies (Oi, et al. (1986) BioTechniques 4(3):214). Chimeric antibodies are those in which the various domains of the antibodies' heavy and light chains are coded for by DNA from more than one species.

The isolation of other hybridomas secreting monoclonal antibodies with the specificity of the monoclonal antibodies of the invention can also be accomplished by one of ordinary skill in the art by producing anti-idiotypic antibodies (Herlyn, et al. (1986) Science 232:100). An anti-idiotypic antibody is an antibody which recognizes unique determinants present on the monoclonal antibody produced by the hybridoma of interest.

Idiotypic identity between monoclonal antibodies of two hybridomas demonstrates that the two monoclonal antibodies are the same with respect to their recognition of the same epitopic determinant. Thus, by using antibodies to the epitopic determinants on a monoclonal antibody it is possible to identify other hybridomas expressing monoclonal antibodies of the same epitopic specificity.

10

5

15

20

25

10

15

20

It is also possible to use the anti-idiotype technology to produce monoclonal antibodies which mimic an epitope. For example, an anti-idiotypic monoclonal antibody made to a first monoclonal antibody will have a binding domain in the hypervariable region which is the mirror image of the epitope bound by the first monoclonal antibody. Thus, in this instance, the anti-idiotypic monoclonal antibody could be used for immunization for production of these antibodies.

As used in this invention, the term "epitope" is meant to include any determinant having specific affinity for the monoclonal antibodies of the invention. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics.

The antibodies of this invention can be linked to a detectable agent or label. There are many different labels and methods of labeling known to those of ordinary skill in the art.

The antibody-label complex is useful to detect the protein or fragments in a sample, using standard immunochemical techniques such as immunohistochemistry as described by Harlow and Lane (1988) supra. Competitive and non-competitive immunoassays in either a direct or indirect format are examples of such assays, e.g., enzyme linked immunoassay (ELISA) radioimmunoassay (RIA) and the sandwich (immunometric) assay. Those of skill in the art will know, or can readily discern, other immunoassay formats without undue experimentation.

The coupling of antibodies to low molecular weight haptens can increase the sensitivity of the assay. The haptens can then be specifically detected by means of a second reaction. For example, it is common to use haptens such as biotin, which reacts avidin, or dinitropherryl, pyridoxal, and fluorescein, which can react with specific anti-hapten antibodies. See Harlow and Lane (1988) supra.

25

The monoclonal antibodies of the invention also can be bound to many different carriers. Thus, this invention also provides compositions containing the antibodies and another substance, active or inert. Examples of well-known carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses and magnetite. The nature of the carrier can be either soluble or insoluble for purposes of the invention. Those skilled in the art will know of other suitable carriers for binding monoclonal antibodies, or will be able to ascertain such, using routine experimentation.

10

5

Compositions containing the antibodies, fragments thereof or cell lines which produce the antibodies, are encompassed by this invention. When these compositions are to be used pharmaceutically, they are combined with a pharmaceutically acceptable carrier.

15

The present invention also provides a screen for various agents which modulate the expression of a gene in a pancreatic or colon cell. To practice the method in vitro, suitable cell cultures or tissue cultures are first provided. The cell can be a cultured cell or a genetically modified cell in which a trancript from SEQ ID NOS:1-732, or their complements, is expressed. Alternatively, the cells can be from a tissue biopsy. The cells are cultured under conditions (temperature, growth or culture medium and gas (CO₂)) and for an appropriate amount of time to attain exponential proliferation without density dependent constraints. It also is desirable to maintain an additional separate cell culture; one which does not receive the agent being tested as a control.

20

As is apparent to one of skill in the art, suitable cells may be cultured in microtiter plates and several agents may be assayed at the same time by noting genotypic changes, phenotypic changes or cell death.

25

When the agent is a composition other than a DNA or RNA, the agent may be directly added to the cell culture or added to culture medium for addition. As is apparent to those skilled in the art, an "effective" amount must be added which can be empirically determined. When the agent is a polynucleotide, it may be directly added by use of a gene gun or

electroporation. Alternatively, it may be inserted into the cell using a gene delivery vehicle or vector as described above.

An agent is a potential therapeutic if it alters the expression of gene in the cell. Altered expression can be detected by assaying for altered mRNA expression or protein expression using the probes, primers and antibodies as described herein.

For the purposes of this invention, an "agent" is intended to include, but not be limited to a biological or chemical compound such as a simple or complex organic or inorganic molecule, a peptide, a protein (e.g. antibody) or a polynucleotide (e.g. anti-sense). A vast array of compounds can be synthesized, for example polymers, such as polypeptides and polynucleotides, and synthetic organic compounds based on various core structures, and these are also included in the term "agent". In addition, various natural sources can provide compounds for screening, such as plant or animal extracts, and the like. It should be understood, although not always explicitly stated that the agent is used alone or in combination with another agent, having the same or different biological activity as the agents identified by the inventive screen. The agents and methods also are intended to be combined with other therapies.

20

5

10

15

The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples which are provided herein for purposes of illustration only, and are not intended to limit the scope of the invention.

EXAMPLE 1

25

This example demonstrates the characterization of the general transcription of human colorectal epithelium, colorectal cancers, and pancreatic cancers.

We used the recently developed SAGE (serial analysis of gene

expression) method to identify and quantify a total of 303,706 transcripts derived from human colorectal (CR) epithelium, CR cancers or pancreatic cancers (Table 1A) (3). These transcripts represented approximately 48,741

different genes (4) that ranged in average expression from 1 copy per cell to as many as 5,300 copies per cell (5). The number of different transcripts observed in each cell population varied from 14,247 to 20,471. The bulk of the mRNA mass (75%) consisted of transcripts expressed at more than five copies per cell on average (Table 1B). In contrast, the majority (86%) of transcripts were expressed at less than 5 copies per cell, but in aggregate this low abundance class represented only 25% of the mRNA mass. This distribution was consistently observed among the different samples analyzed and was consistent with previous studies of RNA abundance classes based on RNA-DNA reassociation kinetics (Rot curves). Monte Carlo simulations revealed that our analyses had a 92% probability of detecting a transcript expressed at an average of three copies per cell (7).

10

Table 1 - Summary of SAGE Analysis

A. Overall Summary

	Normal	Colon	Colon	Pancreatic T	Pancreatic C. II :	i y
	Colon	Lumors	Cell Lines	Lumors	Cell Lines	I otal
Total Tags	62,168	80,878	60,373	61,592	58,695	303,706
Unique Genes¹ GenBank²	14,721 8,753 (59)	19,690 10,490 (53)	17,092	20,471 11,547 (56)	14,247 8,922 (63)	48,741 26,339 (54)

¹ Indicates the number of different genes represented by the total tags analyzed (4).

² Indicates the number of genes that matched an entry in GenBank. The number in parentheses indicates the corresponding percentage of total unique tags.

Table 1 - Summary of SAGE Analysis

B. Summarized by Abundance Classes*

6,209 (30) 4,241 (68) 595 (26) 553 (93) 55 (19) 54 (98) Total Pancreatic Cell 3 168 (65) 4,895 (31) 529 (90) 585 (27) 70 (100) 70 (26) Lines **Pancreatic** 6,146 (36) 4,054 (66) 32 (100) 609 (93) 657 (29) Tumors 32 (11) 3,682 (64) 5,733 (34) Cell Lines 579 (94) 618 (27) 53 (98) 54 (19) Colon 3,204 (64) 5,011 (29) 470 (21) 429 (91) Tumors 52 (96) 54 (25) Colon 4,569 (27) 2,893 (63) 545 (84) 645 (28) Normal 59 (95) 62 (29) Colon > 50 and < 500 Unique Genes Unique Genes Unique Genes > 5 and \leq 50 Copies/Cell GenBank GenBank GenBank > 500

41,882 (25)	21,491 (51)	
8,697 (16)	5,155 (59)	
13,636 (24)	6,852 (50)	
10,687 (20)	5,879 (55)	
14,155 (25)	6,805 (48)	
9,445 (16)	5,256 (56)	
≤ 5 Unique Genes	GenBank	

*For unique genes, the first number denotes the number of different genes (4) represented in the indicated abundance class. The number in parentheses indicates the mass fraction (X100) of total transcripts represented by the indicated abundance class. For GenBank entries, the first number indicates the number of different genes that matched an entry in GenBank in the indicated abundance class. The number in parentheses indicates the corresponding percentage of total genes.

10

15

20

25

Many of the SAGE tags appeared to represent previously undescribed transcripts, as only 54% of the tags matched entries in GenBank (Table 1). Twenty percent of these matching transcripts corresponded to characterized mRNA sequence entries in GenBank, whereas 80% matched uncharacterized EST entries. As expected, the likelihood of a tag being present in the databases was related to abundance; GenBank matches were identified for 98% of the transcripts expressed at more than 500 copies per cell but for only 51% of the transcripts expressed at \leq 5 copies per cell. Because the SAGE data provide a quantitative assay of transcript abundance, unaffected by differences in cloning or PCR efficiency, these data provide an independent and relatively unbiased estimate of the current completeness of publicly available EST databases.

EXAMPLE 2

This example demonstrates a comparison of the expression pattern of normal colon epithelium and primary colon cancers.

Comparison of expression patterns between normal colon epithelium and primary colon cancers revealed that the majority of transcripts were expressed at similar levels (Fig. 1A). However, the expression profiles also revealed 289 transcripts that were expressed at significantly different levels [P < 0.01, (8)]. Of these 289, 181 were decreased in colon tumors compared to normal colon (average decrease 10-fold; Fig. 1B; examples in Fig. 2A). Conversely, 108 transcripts were expressed at higher levels in the colon cancers than in normal colon (average increase 13-fold; Fig. 1C; examples in Fig. 2A). Monte Carlo simulations indicated that the analysis would have detected over 95% of those transcripts expressed at a 6-fold or greater level in normal vs. tumor cells or vice versa (9). Because relatively stringent criteria were used for defining differences [P < 0.01, (8)], the number of differences reported above is likely to be an underestimate.

10

15

EXAMPLE 3

This example demonstrates the similarities and differences between cancer cell line transcription and transcription of primary cancer tissues.

To determine how many of the 289 differences were independent of the cellular microenvironment of cancers in vivo, SAGE data from CR cancer cell lines was compared to that from primary CR cancer tissues (Fig. 1B, 1C). Perhaps surprisingly, the majority of transcripts (130 of 181) that were expressed at reduced levels in cancer cells in vivo were also expressed at significantly lower levels in the cell lines (Fig. 1B). Likewise, a significant fraction of the transcripts expressed at increased levels in primary cancers were also expressed at higher levels in the CR cancer cell lines (Fig. 1C). Thus, many of the gene expression differences that distinguish normal from tumor cells in vivo persist during in vitro growth. However, despite these similarities there were also many differences. For example, only 47 of 228 genes expressed at higher levels in CR cancer cell lines were also expressed at high levels in the primary CR cancers.

In combination, comparing the expression pattern of CR cancer cells (in vivo or in vitro) to normal colon revealed 548 differentially expressed transcripts (Fig. 1B,C, Tables 2 and 3). The average difference in expression for these transcripts was 15 fold. Although the ability to detect differences is influenced by the magnitude of the variance with the power to detect smaller differences being less, 92 transcripts that were less than three fold different were identified among the 548 transcripts. However, those genes exhibiting the greatest differences in expression are likely to be the most biologically important.

25

10

15

20

EXAMPLE 4

This example demonstrates the similarities and differences between colorectal cancer transcription and pancreatic cancer transcription.

To determine whether the changes noted in CR cancers were neoplasia or cell type specific, we performed SAGE on mRNA derived from pancreatic cancers. A total of 404 transcripts were expressed at higher levels in pancreatic cancers compared to normal colon epithelium (examples in Fig. 2B). The majority (268) of these transcripts were pancreas-specific (10) (Example in Fig. 2C) although 136 were also expressed at high levels in CR cancers. These 136 transcripts constituted 47% of the 289 transcripts increased in CR cancers relative to normal colon and are likely to be related to the neoplastic process rather than to the specific cell type of origin.

EXAMPLE 5

This example demonstrates the reproducibility of the transcription patterns observed among a larger number of cancer samples.

One question that arose from these data is the potential heterogeneity of expression between individual tumors. The SAGE data were acquired from two examples of each tissue type (normal colon, primary CR cancer, CR cancer cell line, etc.). To examine the generality of these expression profiles, we arbitrarily selected 27 differentially expressed transcripts and evaluated them in six to twelve samples of normal colon and primary cancers by Northern blot analysis (11). In general, expression patterns were very reproducible among different samples. Of 10 genes with elevated expression in normal colon relative to CR cancers as determined by SAGE, each was detected in the normal colon samples and was expressed at considerably lower levels in tumors (examples in Fig. 2A). Similarly, most of the genes identified by SAGE as increased in CR or pancreatic cancers were confirmed to be reproducibly expressed in the majority of primary cancers examined by Northern blot (examples in Fig. 2A). It is important to note, however, that there were differences among the cancers, with a few cancers exhibiting particularly high or low levels of individual transcripts. Such differences in gene expression

30

undoubtedly contribute to the observed heterogeneity in biological properties of cancers derived from the same organ.

EXAMPLE 6

5

10

15

20

25

30

This example demonstrates the identities of some of the transcripts which were found to be differentially expressed in tumor and normal tissues. What are the identities of the differentially expressed genes? Of the 548 differentially expressed transcripts, 337 were tentatively identified through database comparisons. When tested, the great majority (93%) of these identifications proved to be legitimate (13), as expected from previous SAGE analyses. Although a large number of differentially expressed genes were identified, some simple patterns did emerge. For example, genes that were expressed at higher levels in normal colon epithelium than in CR tumors were often differentiation-related. These genes included liver fatty acid binding protein, cytokeratin 20, carbonic anhydrase, guanylin and uroguanylin, which are known to be important for the normal physiology or architecture of the colon epithelium (Table 2). On the other hand, genes that were increased in CR cancers were often related to the robust growth characteristics that these cells exhibit. For example, gene products associated with protein synthesis, including 48 ribosomal proteins, five elongation factors, and five genes involved in glycolysis were observed to be elevated in both CR and pancreatic cancers compared to normal colon cells. Although the majority of the transcripts could not have been predicted to be differentially expressed in cancers, several have previously been shown to be dysregulated in neoplastic The latter included IGFII, B23 nucleophosmin, the Pi form of glutathione S-transferase, and several ribosomal proteins which were all increased in cancer cells as previously reported. Likewise, Dra and gelsolin were both decreased in cancer as previously reported. Surprisingly, two widely studied oncogenes, c-fos and c-erbb3, were expressed at much higher levels in normal colon epithelium than CR cancers, in contrast to their up-regulation in transformed cells.

In summary, these data provide basic information necessary for understanding the gene expression differences that underlie cancer phenotypes. They additionally provide a necessary framework for interpreting the significance of individual differentially expressed genes. Although this study demonstrated that a large number of such differences exist (approximately 500 at the depth of analysis employed), it was equally remarkable that the fraction of transcripts exhibiting significant differences was relatively small, representing 1.5 % of the transcripts detected in any given cell type (26). The fact that many, but not all, of the differences were preserved during in vitro culture demonstrates the utility of cultured lines for examination of some aspects of gene expression, but also provides a note of caution in relying on such lines to perfectly mimic tumors in their natural environment. Finally, the finding that hundreds of specific genes are expressed at different levels in CR cancers, and that some of these are also expressed differentially in pancreatic cancers, provides a wealth of new reagents for future biologic and diagnostic experimentation.

10

5

10

15

20

REFERENCES AND NOTES

- M. D. Adams, et al., Nature 377, supp. 28, 3 (1995); M. Schena, D. Shalon, R. W. Davis, P. O. Brown, Science 270, 467 (1995); J. Derisi, et al., Nature Genetics 14, 457 (1996); T. M. Gress, et al., Oncogene 13, 1819 (1996); D. J. Lockhart, et al., Nature Biotechnology 14, 1675 (1996); M. Schena, et al., Proc Natl Acad Sci USA 93, 10614 (1996).
- V. E. Velculescu, L. Zhang, B. Vogelstein, K. W. Kinzler, Science 270, 484 (1995); V. E. Velculescu, et al., Cell 88, 243 (1997).
- of tags (30,000) were derived from two different patients for each tissue. For primary tumors (two CR carcinomas and two pancreatic adenocarcinomas), RNA was isolated from portions of tumors judged to contain 60%-90% tumor cells by histopathology. The cells grown in vitro were derived from CR (SW837, Caco2) and pancreatic (ASPC-1, PL45) cancer cell lines. CR epithelial cells were isolated from sections of normal colon mucosa from two patients using EDTA as previously described [S. Nakamura, I. Kino, S. Baba, Gut 34, 1240 (1993)]. Histopathology confirmed that the isolated cells were greater than 90% epithelial. Isolation of Poly-A RNA and SAGE was performed as previously described (2). SAGE data was analyzed by means of SAGE software and GenBank Release 95 as previously described (2).
- 4. A total of 69,393 different SAGE tags were identified among the 303,706 tags analyzed. A small fraction of these different tags were likely due to sequencing errors. SAGE analysis of yeast (2), wherein the entire genomic sequence is known, demonstrated a sequencing error rate of ~ 0.7%, translating to a SAGE tag error rate of 6.8% (1 0.993¹⁰). Because these sequencing mistakes are essentially random, they do not substantially affect the analysis although they could artificially inflate the number of unique genes identified. Therefore, to be conservative, we reduced our estimate of unique genes identified by this maximum tag error rate (e.g., 6.8% of 303,706 total tags). The number of different tags derived from the same gene due to alternative splicing was assumed to be negligible.

30

5. Abundances can be simply determined by dividing the observed number of tags for a given transcript by the total number of tags obtained. An estimate of approximately 300,000 transcripts per cell was used to convert the abundances to copies per cell [N. D. Hastie, J. O. Bishop, *Cell* 9, 761 (1976)].

5

J. O. Bishop, J. G. Morton, M. Rosbash, M. Richardson, *Nature* 250, 199 (1974); B. Lewin, Gene Expression Vol 2 (John Wiley and sons, New York 1980).

10

7. Computer simulations indicated that analysis of 300,000 tags would yield a 92 % chance of detecting a tag for a transcript whose expression was at least three copies per cell on average among the tissues examined and assuming 300,000 transcripts per cell.

15

20

25

- 30
- 8. To minimize the number of assumptions and to account for the large number of comparisons being made, Monte Carlo analysis was used for determining statistical significance. The null hypothesis was that the level, kind, and distribution of transcripts were the same for cancer and normal cells. For each transcript, 100,000 simulations were performed to determine the relative likelihood due to chance alone ("p-chance") of obtaining a difference in expression equal to or greater than the observed difference, given the null hypothesis. This likelihood was converted to an absolute probability value by simulating 40 experiments in which a representative number of transcripts (27,993 transcripts in each experiment) was identified and compared. The distribution of transcripts used for these simulations was derived from the average level of expression observed in the original samples. The distribution of the p-chance scores obtained in the 40 simulated experiments (false positives) was then compared to those obtained experimentally. Based on this comparison, a maximum value of 0.0005 was chosen for p-chance. This yielded a false positive rate that was no higher than 0.01 for the least significant p-chance value below the cutoff.

9. Two hundred simulations assuming an abundance of 0.0001 in one sample and 0.0006 in a second sample revealed a significant difference (P < 0.01, [8]) 95% of the time.

10

15

20

25

- 10. It is not possible to obtain pancreatic ductal epithelium, from which pancreatic carcinomas arise, in sufficient quantities to perform SAGE. It is therefore not possible to determine whether these transcripts were derived from genes that were highly expressed only in pancreatic cancers or were also expressed in pancreatic duct cells.
- 11. Total RNA isolation and Northern blot analysis was performed as described [W. S. el-Deiry, et al., Cell 75, 817 (1993)].
- 12. A. H. Owens, D. S. Coffey, S. B. Baylin, Eds., Tumor Cell Heterogeneity: Origins and Implications (Academic Press, New York, 1982).
- 13. Northern blot analyses were done on 45 of the 337 differentially expressed transcripts with tentative database matches. In three cases, the pattern of expression was not differentially expressed as predicted by SAGE and, for the purposes of this calculation, were presumed to represent incorrect database matches.
- D. C. Rubin, D. E. Ong, J. I. Gordon, *Proc Natl Acad Sci U S A* 86, 1278 (1989); K. Okubo, J. Yoshii, H. Yokouchi, M. Kameyama, K. Matsubara, *DNA Res* 1, 37 (1994).
 - 15. R. Moll, et al., Differentiation 53, 75 (1993).
- 16. J. Sowden, S. Leigh, I. Talbot, J. Delhanty, Y. Edwards, Differentiation 53, 67 (1993).
- 17. F. J. de Sauvage, et al., Proc Natl Acad Sci USA 89, 9089 (1992).
 - 18. R. C. Wiegand, et al., FEBS Lett 311, 150 (1992).
- J. V. Tricoli, et al., Cancer Res 46, 6169 (1986); S. Lambert,
 J. Vivario, J. Boniver, R. Gol-Winkler, Int J Cancer 46, 405 (1990).
 - 20. W. Y. Chan, et al., Biochemistry 28, 1033 (1989).
- J. D. Hayes, D. J. Pulford, Crit Rev Biochem Mol Biol 30, 445
 (1995).
- G. F. Barnard, et al., Cancer Res 52, 3067 (1992); P. J. Chiao,
 D. M. Shin, P. G. Sacks, W. K. Hong, M. A. Tainsky, Mol Carcinog 5, 219
 (1992); N. Kondoh, C. W. Schweinfest, K. W. Henderson, T. S. Papas,

10

Cancer Res 52, 791 (1992); G. F. Barnard, et al., Cancer Res 53, 4048 (1993); M. G. Denis, et al., Int J Cancer 55, 275 (1993); J. M. Frigerio, et al., Hum Mol Genet 4, 37 (1995).

- 23. C. W. Schweinfest, K. W. Henderson, S. Suster, N. Kondoh, T. S. Papas, *Proc Natl Acad Sci U S A* **90**, 4166 (1993).
- M. Tanaka, et al., Cancer Res 55, 3228 (1995); D. Medina, F.
 S. Kittrell, C. J. Oborn, M. Schwartz, Cancer Res 53, 668 (1993).
- A. D. Miller, T. Curran, I. M. Verma, Cell 36, 51 (1984); M.
 H. Kraus, W. Issing, T. Miki, N. C. Popescu, S. A. Aaronson, Proc Natl Acad
 Sci USA 86, 9193 (1989).
- 26. In the case of normal and neoplastic colon cancer tissue, 548 differentially transcripts were identified among the 36,125 unique transcripts.
 - 27. All references cited are hereby incorporated by reference herein.
- Sequences tags in Tables 2-4 are consecutively numbered to form SEQ ID NOS: 1-732.

10

15

20

CLAIMS

1. A method of diagnosing colon cancer in a sample suspected of being neoplastic, comprising the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 3;

identifying the first sample as neoplastic when the level of the at least one transcript is found to belower in the first sample than in the second sample.

2. A method of diagnosing colon cancer in a sample suspected of being neoplastic, comprising the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2;

identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

- 3. The method of claim 1 wherein a comparison of at least two of said transcripts is performed.
- 4. The method of claim 2 wherein a comparison of at least two of said transcripts is performed.

- 5. The method of claim 1 wherein a comparison of at least five of said transcripts is performed.
- 6. The method of claim 2 wherein a comparison of at least five of said transcripts is performed.
- The method of claim 1 wherein a comparison of at least ten of said transcripts is performed.
 - 8. The method of claim 2 wherein a comparison of at least ten of said transcripts is performed.
 - 9. The method of claim 1 wherein a comparison of at least twenty of said transcripts is performed.
 - 10. The method of claim 2 wherein a comparison of at least twenty of said transcripts is performed.
 - 11. The method of claim 1 wherein a comparison of at least thirty of said transcripts is performed.
- 15 12. The method of claim 2 wherein a comparison of at least thirty of said transcripts is performed.
 - 13. An isolated and purified human nucleic acid molecule which comprises a SAGE tag selected from SEQ ID NO:1-732.
 - 14. The nucleic acid molecule of claim 13 which is a cDNA molecule.

15

- 15. The nucleic acid molecule of claim 13 wherein the SAGE tag is located at the 3' end of the molecule, adjacent to the 3'-most NlaIII restriction enzyme site.
- 16. An isolated nucleotide probe comprising at least 10 nucleotides of a human nucleic acid molecule, wherein the human nucleic acid molecule comprises a SAGE tag selected from SEQ ID NO: 1-732.
 - 17. The probe of claim 16 which comprises the selected SAGE tag.
 - 18. A diagnostic reagent for evaluating neoplasia of a colorectal tissue, comprising at least 2 probes according to claim 16.
- 10 19. The diagnostic reagent of claim 18 which comprises at least 5 probes according to claim 16.
 - 20. The diagnostic reagent of claim 18 which comprises at least 10 probes according to claim 16.
 - 21. The diagnostic reagent of claim 18 which comprises at least 20 probes according to claim 16.
 - 22. The diagnostic reagent of claim 18 which comprises at least 30 probes according to claim 16.
 - 23. A diagnostic reagent for evaluating neoplasia of a colorectal tissue, comprising at least 2 probes according to claim 17.
 - 24. A method of diagnosing pancreatic cancer in a sample suspected of being neoplastic, comprising the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a pancreatic tissue suspected of being neoplastic and the second sample is of a normal human colon tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4;

identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

25. A method of diagnosing cancer in a sample suspected of being neoplastic, comprising the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a tissue suspected of being neoplastic and the second sample is of a normal human tissue of the same tissue type, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5;

identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

26. A method to aid in the determination of a prognosis for a colon cancer patient, comprising the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic colonic tissue and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 3;

determining a poorer prognosis if the level of the at least one transcript is found to be lower in the first sample than in the second sample.

27. A method to aid in determining a prognosis for a patient with colon cancer, comprising the steps of:

5

20

25

comparing the level of at least one transcript in a first tissue sample to a second sample, wherein the first sample is of a colonic cancer tissue and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

28. A method of diagnosing colon cancer in a sample suspected of being neoplastic, comprising the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 3;

identifying the first sample as neoplastic when the level of expression of the protein is found to be lower in the first sample than in the second sample.

29. A method of diagnosing colon cancer in a sample suspected of being neoplastic, comprising the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

10

5

15

20

10

15

20

25

30. A method to aid in determining a prognosis of a patient having pancreatic cancer, comprising the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic pancreatic tissue and the second sample is of a normal human colon tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

31. A method to aid in providing a prognosis for a cancer patient, comprising the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic tissue and the second sample is of a normal human tissue of the same tissue type, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

32. A method of diagnosing pancreatic cancer in a sample suspected of being neoplastic, comprising the steps of:

comparing the level of expression of at least one protein encoded by a transcript in a first sample of a tissue to a second sample, wherein the first sample is of a pancreatic tissue suspected of being neoplastic and the second sample is of a normal human colon tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

10

15

20

25

33. A method of diagnosing cancer in a sample suspected of being neoplastic, comprising the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a tissue suspected of being neoplastic and the second sample is of a normal human tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

34. A method to aid in the determination of a prognosis for a colon cancer patient, comprising the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic colonic tissue and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 3;

determining a poorer prognosis if the level of expression is found to be lower in the first sample than in the second sample.

35. A method to aid in determining a prognosis for a patient with colon cancer, comprising the steps of:

comparing the level of expression of at least one protein in a first tissue sample to a second sample, wherein the first sample is of a colonic cancer tissue and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

36. A method to aid in determining a prognosis of a patient having pancreatic cancer, comprising the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic pancreatic tissue and the second sample is of a normal human colon tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

10

15

5

37. A method to aid in providing a prognosis for a cancer patient, comprising the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic tissue and the second sample is of a normal human tissue of the same tissue type, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

38. A method of treating a cancer cell, comprising the step of:

20

administering to a cancer cell an antibody which specifically binds to a protein encoded by a transcript identified by a tag selected from the group consisting of those shown in Tables 2, 4, and 5, wherein the antibody is linked to a cytotoxic agent.

25

39. An antibody linked to a cytotoxic agent, wherein the antibody specifically binds to a protein encoded by a transcript identified by a tag selected from the group consisting of those shown in Tables 2, 4, and 5.

40. A method of detecting colon cancer in a patient, comprising the steps of:

comparing the level of at least one protein in a first body sample to a second body sample, wherein the first sample is a body sample of the patient and the second sample is of a normal human, wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

10

5

identifying neoplasia when the level of the at least one protein is found to be higher in the first sample than in the second sample.

41. A method of detecting pancreatic cancer in a patient, comprising the steps of:

comparing the level of at least one protein encoded by a transcript in a first sample of a tissue to a second sample, wherein the first sample is of the patient and the second sample is of a normal human, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

20

15

identifying neoplasia when the level of the at least one protein is found to be higher in the first sample than in the second sample.

42. A method of detecting cancer in a patient, comprising the steps of:

a second sample, wherein the first sample is of patient and the second sample is of a normal human, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5, wherein the first and second body sample is a sample selected from the group consisting

of blood, urine, feces, sputum, and serum;

identifying neoplasia when the level of the at least one protein is found to be higher in the first sample than in the second sample.

43. A method to aid in determining a prognosis for a patient with colon cancer, comprising the steps of:

5

comparing the level of at least one protein in a first sample to a second sample, wherein the first sample is of a colonic cancer patient and the second sample is of a normal human, wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

10

determining a poorer prognosis if the level of the at least one protein is found to be higher in the first sample than in the second sample.

44. A method to aid in determining a prognosis of a patient having pancreatic cancer, comprising the steps of:

15

comparing the level of at least one protein in a first sample to a second sample, wherein the first sample is of a pancreatic cancer patient and the second sample is of a normal human, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4, wherein said first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

20

determining a poorer prognosis if the level of the at least one protein is found to be higher in the first sample than in the second sample.

45. A method to aid in providing a prognosis for a cancer patient, comprising the steps of:

25

comparing the level of expression of at least one protein in a first sample to a second sample, wherein the first sample is of a cancer patient and the second sample is of a normal human, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those

10

15

20

shown Table 5, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

determining a poorer prognosis if the level of the at least one protein is found to be higher in the first sample than in the second sample.

46. A method of detecting colon cancer in a patient, comprising the steps of:

comparing the level of at least one transcript in a first body sample to a second body sample, wherein the first sample is a body sample of the patient and the second sample is of a normal human, wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

identifying neoplasia when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

47. A method of detecting pancreatic cancer in a patient, comprising the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of the patient and the second sample is of a normal human, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

identifying neoplasia when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

25 48. A method of detecting cancer in a patient, comprising the steps of:

comparing the level of at least one transcript in a first sample to
a second sample, wherein the first sample is of patient and the second sample
is of a normal human, wherein said transcript is identified by a tag selected

10

15

20

25

from the group consisting of those shown Table 5, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

identifying neoplasia when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

49. A method to aid in determining a prognosis for a patient with colon cancer, comprising the steps of:

comparing the level of at least one transcript in a first sample to a second sample, wherein the first sample is of a colonic cancer patient and the second sample is of a normal human, wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

50. A method to aid in determining a prognosis of a patient having pancreatic cancer, comprising the steps of:

comparing the level of at least one transcript in a first sample to a second sample, wherein the first sample is of a pancreatic cancer patient and the second sample is of a normal human, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4, wherein said first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

51. A method to aid in providing a prognosis for a cancer patient, comprising the steps of:

10

PCT/US98/10277

comparing the level of expression of at least one transcript in a first sample to a second sample, wherein the first sample is of a cancer patient and the second sample is of a normal human, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

117

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

52. A method for screening for candidate agents that modulate the expression of a polynuleotide selected from the group consisting of the polynucleotides in SEQ ID NOS:1-732 or their respective complements, comprising contacting a test agent with a colon or pancreatic cell and monitoring expression of the polynucleotide, wherein the test agent which modifies the expression of the polynucleotide is a candidate agent.

FIG. 2

A.

	1	2	3	SAGE	Data
	T N 1	T N 1	N	T	N
1			4		
	to a land to				
H204104				11	102
	-			1	37
H259108		W		1	31
H1000193	941) v (ter.	56	12
H998030	W •	•	!	55	7

B.

				ancre Tume					Nor Co	mal Ion	SAGE I)ata
	1	2	3	4	5	6	7	8	1	2	Pancreatic Tumors	Normal Colon
				-	H		1	H	H	H		
	-								1			
H294155	•	•		-	•	. •)		47	0
H560056								to)		32	0

C.

	CR Tumors			Pancreatic Tumors			Normal Colon		S		_		
	1	2	3	1	2	3	1	2	3	CR	Pancreatic		
	 		ł							lumors	Tumors	Colon	
H802810	H)						27	0	1	
H85882				-		-)		• •	10	26	0	
H618841				•		-	,	,		8	62	0	

PCT

N. JALD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 98/53319
C12Q 1/68, G01N 33/574	A3	(43) International Publication Date: 26 November 1998 (26.11.98
(21) International Application Number: PCT/US (22) International Filing Date: 20 May 1998 (floor, 1001 G Street, N.W., Washington, DC 20001–459
(30) Priority Data: 60/047,352 21 May 1997 (21.05.97) (63) Related by Continuation (CON) or Continuation-in (CIP) to Earlier Application US 60/047,35 Filed on 21 May 1997 ((71) Applicant (for all designated States except US): THE HOPKINS UNIVERSITY [US/US]; Suite 2–100, Monument Street, Baltimore, MD 21205 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): VOGELSTE [US/US]; The Johns Hopkins University, Suite 2–10 E. Monument Street, Baltimore, MD 21205 (UZLER, Kenneth, W. [US/US]; The Johns Hopkins sity, Suite 2–100, 2024 E. Monument Street, Baltim 21205 (US).	52 (CON 21.05.9° E JOHN , 2024 1 EIN, Be 100, 202 IS). KIN s Unive	GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SI TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasia patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Europea patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CR CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending the claim and to be republished in the event of the receipt of amendments.
in gastrointestinal tumors. More than 300,000 transcripts of similarity was noted between the expression profiles, more	ences be derived than 500	tween normal and cancer cells, gene expression patterns were examined from at least 45,000 different genes were analyzed. Although extensive transcripts that were expressed at significantly different levels in normal to the extent of expression differences underlying malignancy and reveal

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fi	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

Inter nal Application No
PL JS 98/10277

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12Q1/68 G01 G01N33/574 According to international Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12Q G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Χ SUGIO K ET AL.: "Differential expression 1,3,13, of c-myc gene and c-fos gene in 16,17,28 premalignant and malignant tissues." CANCER RESEARCH, vol. 48, no. 17, 1988, pages 4855-4861, XP002089885 see the whole document X VAN BELZEN N ET AL.: "Detection of 1,3,5,7, 9.11 different gene expression in differentiating colon carcinoma cells by differential display" JOURNAL OF PATHOLOGY, vol. 178, no. Suppl., - 1996 page 2A XP002089886 see abstract 26,28,34 Y -/--X Further documents are listed in the continuation of box C. X Patent family members are listed in annex. * Special categories of cited documents : "I later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the last which is not considered to be of particular relevance invention *E* earlier document but published chor after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention citation or other special reason :23 specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means document published prior to the international filling date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 24. 05. 1999 13 January 1999 Name and mailing address of the ISA Authorized officer European Patent Office, P. 3, 5818 Patentiaan 2 NL - 2280 HV Risk + Tel. (+31-70) 340-20-2. Tr. 31 651 epo ni. Knehr, M Fax: (+31-70) 340-3218

Form PCT/ISA/210 (second sneet) (July 1992

INTENATIONAL SEARCH REPORT

Interi Inal Application No PCT/US 98/10277

WO 95 21944 A (SMITHKLINE BEECHAM CORP; ROSENBERG MARTIN (US); DEBOUCK CHRISTINE) 17 August 1995 see the whole document EP 0 284 362 A (ICI PLC) 28 September 1988	Relevant to claim No. 26,28,34
WO 95 21944 A (SMITHKLINE BEECHAM CORP; ROSENBERG MARTIN (US); DEBOUCK CHRISTINE) 17 August 1995 see the whole document	
;ROSENBERG MARTIN (US); DEBOUCK CHRISTINE) 17 August 1995 see the whole document	26,28,34
ED A 28/ 362 A (ICT DIC) 28 September 1988	
Er 0 204 302 A (101 FEC) 20 September 1980	1,3,5,7, 9,11, 13-23, 26,28, 34,52
see abstract see page 2, line 44 - line 51 see page 10, line 12 - line 15; claims 1,9; figure 2	
EP 0 761 822 A (UNIV JOHNS HOPKINS MED) 12 March 1997 see the whole document	1,3,5,7, 9,11, 13-23, 26,28, 34,52
see the whole document	
WO 95 11923 A (DANA FARBER CANCER INST INC; CHEN LAN BO (US); BAO SHIDENG (CN); L) 4 May 1995	1,3,5,7, 9,11, 13-18, 23,26, 28,34,52
see the whole document	20,51,52
VELCULESCU V E ET AL: "SERIAL ANALYSIS OF GENE EXPRESSION" SCIENCE, vol. 270, 20 October 1995, pages 484-487, XP002053721 cited in the application see the whole document	1,3,5,7, 9,11, 13-18, 23,26, 28,34,52
SCHWEINFEST C W ET AL.: "Subtraction hybridization cDNA libraries from colon carcinoma and hepatic cancer" GENETIC ANALYSIS TECHNIQUES AND APPLICATIONS, vol. 7, 1990, pages 64-70, XP002089887 see the whole document	1,3,5,7, 9,11, 13-18, 23,26
WO 97 14812 A (CHIRON CORP) 24 April 1997 see the whole document	52
GRESS T M ET AL.: "A pancreatic cancer-specific expression profile" ONCOGENE, vol. 13, 1996, pages 1819-1830, XP002089888 see the whole document	
	see page 2, line 44 - line 51 see page 10, line 12 - line 15; claims 1,9; figure 2 EP 0 761 822 A (UNIV JOHNS HOPKINS MED) 12 March 1997 see the whole document W0 95 11923 A (DANA FARBER CANCER INST INC; CHEN LAN BO (US); BAO SHIDENG (CN); L) 4 May 1995 see the whole document VELCULESCU V E ET AL: "SERIAL ANALYSIS OF GENE EXPRESSION" SCIENCE, vol. 270, 20 October 1995, pages 484-487, XP002053721 cited in the application see the whole document SCHWEINFEST C W ET AL.: "Subtraction hybridization cDNA libraries from colon carcinoma and hepatic cancer" GENETIC ANALYSIS TECHNIQUES AND APPLICATIONS, vol. 7, 1990, pages 64-70, XP002089887 see the whole document W0 97 14812 A (CHIRON CORP) 24 April 1997 see the whole document W0 97 14812 A (CHIRON CORP) 24 April 1997 see the whole document GRESS T M ET AL.: "A pancreatic cancer-specific expression profile" ONCOGENE, vol. 13, 1996, pages 1819-1830, XP002089888

INTERNATIONAL SEARCH REPORT

PC7, JS 98/10277

		PCT, US 98/10277
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 95 19369 A (UNIV VANDERBILT) 20 July 1995 see the whole document	
A	GRESS T ET AL.: "Identification of genes with pancreatic cancer specific expression by use of cDNA representational difference analysis" GASTROENTEROLOGY, vol. 110, no. 4 Suppl., 1996, XP002089889 see abstract	
P,X	ZHANG L E AL.: "Gene expression profiles in normal and cancer cells." SCIENCE, vol. 276, 1997, pages 1268-1272, XP002089890 see the whole document	1,3,5,7, 9,11, 13-23, 26,28, 34,52
P,X	VAN BELZEN N ET AL.: "A novel gene which is up-regulated during colon epithelial cell differentiation and down-regulated in colorectal neoplasms" LABORATORY INVESTIGATION, vol. 77, no. 1, 1997, pages 85-92, XP002089891 see the whole document	1,3,5,7, 9,11,13, 14, 16-18, 23,26, 28,34

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 98/10277

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see FURTHER INFORMATION sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: see FURTHER INFORMATION sheet, subject 1.
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International Application No. PCT/ US 98 / 10277

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1,3,5,7,9,11,13-23,26,28,34,52 (partial)

INVENTION 1:

An isolated and purified human nucleic acid molecule comprising SEQ ID NO:291 of table 3 (INVENTION 1), an isolated nucleotide probe hybridizing to it, a diagnostic reagent comprising at least two of such probes, methods of diagnosing or prognosing colon cancer using them, and a method for screening for agents modulating the expression of such a sequence using them.

2. Claims: 1,3,5,7,9,11,13-23,26,28,34,52 (partial)

INVENTION 2 to INVENTION 259:

An isolated and purified human nucleic acid molecule comprising SEQ ID NO:292 of table 3 (INVENTION 2), an isolated nucleotide probe hybridizing to it, a diagnostic reagent comprising at least two of such probes, methods of diagnosing or prognosing colon cancer using them, and a method for screening for agents modulating the expression of such a sequence using them.

...ibidem for each of the SEQ ID Nos:293 to 549 (INVENTION 3 to INVENTION 259) as specified in table 3, separately.

3. Claims: 2,4,6,8,10,12-23,27,29,35,38-40,43,46,49, 52 (partial)

INVENTION 260 to INVENTION 549:

An isolated and purified human nucleic acid molecule comprising SEQ ID NO:1 of table 2 (INVENTION 260), an isolated nucleotide probe hybridizing to it, a diagnostic reagent comprising at least two of such probes, methods of diagnosing or prognosing colon cancer using them, a method of treating a cancer cell using them, an antibody linked to a cytotoxic agent used in such a method, and a method for screening for agents modulating the expression of such a sequence using them.

...ibidem for each of the SEQ ID Nos:2 to 290 (INVENTION 261 to INVENTION 549) as specified in table 2, separately.

4. Claims: 13-24,30,32,36,38,39,41,44,47,50,52 (partial)

INT NATIONAL SEARCH REPORT

International Application No. PCT/ US 98/10277

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

INVENTION 550 to INVENTION 732:
An isolated and purified human nucleic acid molecule comprising SEQ ID NO:550 of table 4 (INVENTION 550), an isolated nucleotide probe hybridizing to it, a diagnostic reagent comprising at least two of such probes, methods of diagnosing or prognosing pancreatic cancer using them, a method of treating a cancer cell using them, an antibody linked to a cytotoxic agent used in such a method, and a method for screening for agents modulating the expression of such a sequence using them.

...ibidem for each of the SEQ ID Nos:551 to 732 (INVENTION 551 to INVENTION 732) as specified in table 4, separately.

5. Claims: 24,30,32,36,38,39,41,44,47,50 (partial)

INVENTION 733 to INVENTION 734:
Methods of diagnosing or prognosing pancreatic cancer
relying on a human nucleic acid molecule comprising SEQ ID
NO:733 of table 4 (INVENTION 733), a method of treating a
cancer cell using it, and an antibody linked to a cytotoxic
agent used in such a method.

...ibidem for SEQ ID Nos:734 (INVENTION 734) as specified in table 4.

6. Claims: 25.31.33.37-39.42.45,48,51 (partial)

INVENTION 735 to INVENTION 870:
Methods of diagnosing or prognosing cancer relying on a
human nucleic acid molecule comprising SEQ ID NO:735 of
table 5 (INVENTION 735), a method of treating a cancer cell
using it, and an antibody linked to a cytotoxic agent used
in such a method.

...ibidem for each of the SEQ ID Nos:736 to 870 (INVENTION 736 to INVENTION 870) as specified in table 5, separately.

INTERNATIONAL SEARCH REPORT

.ormatı

patent family members

Inte. 14 Application No PC1, US 98/10277

				101/03	30/102//
Patent document cited in search report		Publication date	Patent fam member(Publication date
WO 9521944	A	17-08-1995		3989 A 8800 T	27-11-1996 09-09-1997
EP 0284362	A	28 - 09-1 988	AU 133 DK 15 FI 88 JP 103	5169 B 7888 A 9788 A 1388 A 4291 A 7055 A,B	02-07-1992 22-09-1988 24-09-1988 24-09-1988 03-02-1989 01-04-1988
EP 0761822	A	12-03-1997	US 586 AU 656 AU 701 CA 218 GB 230 IE 8 JP 1051	5937 A 6330 A 1496 A 8896 A 5379 A 5241 A 0465 B 1002 T 0363 A	09-12-1997 02-02-1999 20-03-1997 01-04-1997 13-03-1997 02-04-1997 12-08-1998 27-10-1998 20-03-1999
WO 9511923	A	04-05-1995	EP 072 US 588	5380 A 5799 A 9159 A 2235 A	04-05-1995 14-08-1996 30-03-1999 16-02-1999
WO 9714812	A	24-04-1997		4196 A 2651 A	07-05-1997 09-09-1998
WO 9519369	A	20-07-1995	AU 183 CA 221	7125 A 1795 A 0396 A	14-10-1997 01-08-1995 20-07-1995 05-11-1997