

3. Búsqueda avanzada

Heurísticos de Búsqueda Iñigo Lopez-Gazpio · inigo.lopez@ehu.eus

INFORMATIKA FAKULTATEA FACULTAD DE INFORMÁTICA

¿ Cuál es el problema de los algoritmos de búsqueda local?

Problemas – El criterio para terminar el algoritmo

- ¿ Espacio de estados completamente analizado ?
- ¿ Tiempo de ejecución ?
- ¿ Número de iteraciones ?
- ¿ Estricta mejora del fitness del estado actual ?

Normalmente la no mejora en el vecindario provoca la terminación

Ejemplo: algoritmo Basic Hill-Climbing

```
Función EXPAND
bestSuccessor = currentNode's firstSuccessor
FOR EACH of the rest of currentNode's Successors DO
    Compute f(successor)
    IF f(successor) "better than" f(bestSuccessor) THEN
         bestSuccessors.append( successor )
RETURN bestSuccessors
```

¿ A qué problema estamos haciendo referencia?

El problema de los óptimos locales

Búsqueda local - Ejemplo

¿ A dónde transicionamos si el fitness del actual candidato es 11 ?

¿ Soluciones posibles contra el problema de los óptimos locales ?

Soluciones posibles contra el problema de los óptimos locales

- 1. Cambiar la inicialización
- 2. Cambiar el landscape (el entorno)
- 3. Aceptar soluciones peores (a corto plazo)

Búsqueda local - 1. Cambiar la inicialización

Búsqueda local - 1. Cambiar la inicialización

Variantes del algoritmo Basic Hill-Climbing

Stochastic Hill-Climbing

- Selección entre el vecindario de manera aleatoria (esta probabilidad es dinámica y varía)
- Mayor complicación para encontrar un óptimo global

- Random-Restart Hill-Climbing

- Lanzamos N veces el algoritmo Hill-Climbing (de manera independiente)
- Muy potente si se paraleliza y $N \rightarrow \infty$

Local Beam Search

- En lugar de 1 candidato (current) mantenemos K candidatos en todo momento (en la misma ejecución)
- El vecindario se calcula en base a los K candidatos actuales

- (Stochastic) Multi-start Local Search

Una combinación de lo anterior. Local Beam Search + aleatoriedad en la inicialización + aleatoriedad selección

- Greedy Randomized Adaptive Search (GRASP)

Formulación incremental estocástica + Búsqueda local

Iterated Local Search

Añadir perturbación o mutación en el candidato

GRASP - Greedy Randomized Adaptive Search Procedure

¿ Problemas?

Los algoritmos incrementales son deterministas y tienden a producir los mismos resultados

Solución

Añadir aleatoriedad

ess
5
0
1
5

Fitness
25
10
11
15

Opción	Fitness
A	25
В	10
С	11
D	15

Opción	Fitness
A	25
В	10
С	11
Ð	15

<u>GRASP</u> + Stochastic. Ejemplo

Elaboramos una selección de las mejores opciones. (longitud **k**)

Opción	Fitness
Α	25
В	10
С	11
D	15

<u>GRASP</u> + Stochastic. Ejemplo

Elaboramos una selección de las mejores opciones. (longitud **k**)

Opción	Fitness
A	25
D	15

Opción	Fitness
Α	25
В	10
С	11
D	15

Elegir opción final de manera aleatoria

GRASP + Stochastic. Ejemplo

Elaboramos una selección de las mejores opciones. (longitud **k**)

Opción	Fitness
A	25
D	15

Opción	Fitness
А	25
В	10
С	11
D	15

Elegir opción final de manera aleatoria

GRASP + Stochastic. Ejemplo

¿ Puedes describir el comportamiento del algoritmo en referencia al hiperparámetro k ?

¿ Cuánta perturbación ?

Se consiguen distintos comportamientos para los algoritmos.

Un grado demasiado elevado hará nuestros algoritmos altamente ineficientes

Búsqueda local - 2. Cambiar el landscape (el entorno)

Búsqueda local - 2. Cambiar el landscape (el entorno)

Métodos para relajar el entorno

- Variable Neighborhood Descent (VND)
 - Método que permite explorar vecindades más lejanas (Hiperparámetro k)
- Variable Neighborhood Search (VNS)
 - VND + estocástico
- <u>Métodos Smoothing</u>
 - Relajamos la función objetivo (Similar a admisibilidad / dominancia para el algoritmo A*)

<u>VND</u> - Variable Neighborhood Descent

```
Procedure VND: Given N_k, (k=1,...,k_{max}) and some x \in X
01. Begin
       Repeat
02.
           k=1;
03.
04.
           Repeat
05.
                x' \leftarrow local-search(x, N_k(x));
                if (f(x') < f(x)) then x \leftarrow x'
06.
                else k\leftarrow k+1;
07.
          until k = k_{max};
08.
       until (some stop condition is satisfied)
09.
10. end.
```

VNS - Variable Neighborhood Search

```
Procedure VND: Given N_k, (k=1,...,k_{max}) and some x \in X
01. Begin
       Repeat
02.
03.
           k=1;
04.
          Repeat
                                   (x, N_k(x)); x' \leftarrow Random (N_k(x))
05.
                                                  X'' \leftarrow local\_search(N_k(x'))
               if (f(x') < f(x)) then x \leftarrow x'
06.
                else k\leftarrow k+1;
07.
          until k = k_{max};
08.
       until (some stop condition is satisfied)
09.
10. end.
```


Métodos smoothing

Métodos smoothing

```
Input:
   SMOOTHING (f,a) - función que modifica la función objetivo
   LOCAL\_SEARCH (s,f) - algoritmo heurístico búsqueda local
   WHILE A > 1 DO
     = SMOOTHING (f,a)
   s'' = LOCAL_SEARCH (s', f')
   a = UPDATE (a)
END
```

Búsqueda local - 3. Aceptar soluciones peores (a corto plazo)

Búsqueda local - 3. Aceptar soluciones peores (a corto plazo)

Métodos más conocidos

- Simulated annealing (SA)
 - Algoritmo basado en la temperatura para el dilema de la exploración vs explotación
- Tabu search (TS)
 - Buffer o memoria para candidatos prohibidos
- Algoritmos con energía de exploración (e.g. Algoritmo del demonio)
 - Explorar soluciones "malas" consume energía de exploración

SA - Simulated Annealing - Motivación

El **destemple** es un tratamiento metalúrgico térmico que se utiliza en la forja para que los materiales tengan mayor flexibilidad.

En este proceso, si la **temperatura** es la adecuada, las moléculas se mueven a su posición **óptima de mínima energía**.

Moléculas — Candidatos

Energía Fitness

$$P(s_i \to s_j) = \frac{P(s_i)}{P(s_j)} = e^{-\frac{\Delta E}{T}}$$

$$P(s_i \to s_j) = e^{-\frac{f(s_j) - f(s_i)}{T}}$$

Aceptamos transicionar a una solución peor en base a dos factores:

- Energía / Diferencia entre el fitness
- 2. Temperatura / Iteraciones del algoritmo

¿ Por qué ? Principalmente dos factores

- 1. Escapar de óptimos locales
- 2. Regular la exploración y la explotación

Comportamiento

- Si el sucesor tiene un fitness mayor, aceptamos la solución
- Si el sucesor tiene un fitness menor, aceptamos o no la solución según un criterio


```
Make the initialNode with the initial problem state
currentNode = initialNode
i = 1
T = temperatureFunction(i)
WHILE T != \emptyset AND i < MAX_VALUE DO
    successors = EXPAND currentNode's state
    nextNode = randomly selected successor among Successors
    \Delta E = f(currentNode) - f(nextNode) (minimization problem)
    IF \Lambda F \rightarrow \emptyset THFN
        CurrentNode = NextNode
    ELSE
        currentNode = NextNode only with probability e^{\Delta E/T}
    T = temperatureFunction(++i)
RETURN currentNode's state
```

Valores altos para ΔE / T

- La tasa de aceptación es baja
- Exploration vs <u>exploitation</u>

Valores bajos para ΔE / T

- La tasa de aceptación es alta
- **Exploration** vs exploitation

La tasa de aceptación basada en ΔE / T

- Es pequeña si ΔE es grande
- Es pequeña si la Temperatura es baja

Nota: Recuerda que si $\triangle E > 0$ entonces la solución se acepta directamente

 $\Delta E = fitness(current) - fitness(new)$

Ī

Ejercicio en clase - completa esta tabla !

ΔΕ

	1	10	50	100	150	250	500
1							
10							
50							
100							
150							
250							
500							

$$P = e^{-\frac{\Delta E}{T}}$$

Funciones para la temperatura

Existen múltiples funciones de temperatura...

¿ Se te ocurre alguna opción ?

Se permiten soluciones malas...

... pero las **registramos en un buffer**

Greedy Hill Climbing

Elegimos la mejor solución existente en el vecindario para transicionar

Búsqueda tabú

Elegimos la mejor solución existente en el vecindario para transicionar

Es posible repetir candidatos!

Buffer Tabú

Registramos candidatos visitados

Memoria

 S_4

 S_3

 S_2

Buffer Tabú

Registramos candidatos visitados

Memoria

 S_6

 S_5

 S_4

Buffer Tabú

Registramos candidatos visitados

Registramos las acciones

Memoria

 m_5 m_4 m_3

Se utilizan memorias de capacidades diferentes Intensificar vs. diversificar

Aspiration criteria

Permitir soluciones o movimientos tabú Con el único objetivo de mejorar el fitness

Intensificar (memoria medio plazo)

Reutilizar los factores más frecuentes de las soluciones buenas

Diversificar (memoria largo plazo)

Reutilizar los factores menos frecuentes de todas las soluciones

```
1 sBest ← s0
  bestCandidate ← s0
   tabuList + []
   tabuList.push(s0)
   while (not stoppingCondition())
       sNeighborhood ← getNeighbors(bestCandidate)
       bestCandidate ← sNeighborhood[0]
       for (sCandidate in sNeighborhood)
 8
            if ( (not tabuList.contains(sCandidate)) and (fitness(sCandidate) > fitness(bestCandidate)) )
10
                bestCandidate + sCandidate
11
            end
12
       end
       if (fitness(bestCandidate) > fitness(sBest))
13
            sBest ← bestCandidate
14
15
       end
       tabuList.push(bestCandidate)
16
       if (tabuList.size > maxTabuSize)
17
            tabuList.removeFirst()
18
       end
19
20
   end
   return sBest
```


TS - Tabu Search - Ejercicio

Tabu List

Short term memory

Aspiration criteria
Actions stored

Intensification

Medium term memory

Diversification

Long term memory

https://en.wikipedia.org/wiki/Tabu_search

Algoritmo del demonio

Algoritmo del demonio

Algoritmo del demonio Energía Óptimo global

Algoritmo del demonio

