ACTIVITY No. 2

OBJECTIVE

To represent set theoretic operations using Venn diagrams.

MATERIAL REQUIRED

Hardboard, white thick sheets of paper, pencils, colours, scissors, adhesive.

METHOD OF CONSTRUCTION

- 1. Cut rectangular strips from a sheet of paper and paste them on hardboard. Write the symbol U in the left/right top corner of each rectangle.
- 2. Draw circles A and B inside each of the rectangular strips and shade/colour different portions as shown in Fig. 1 to Fig. 10.

DEMONSTRATION

- 1. U denotes the universal set represented by the rectangle.
- 2. Circles A and B represent the subsets of the universal set U as shown in the Fig. 1 to 10.
- 3. A' denote the complement of the set A, and B' denote the complement of the set B as shown in the Fig. 3 and Fig. 4.
- 4. Coloured portion in Fig.1 represents $(A \cup B)$.

(Fig. 1)

5. Coloured portion in Fig. 2 represents $(A \cap B)$

(Fig.2)

6. Coloured portion in Fig.3 represents A' (Fig.3)

7. Coloured portion in Fig. 4 represents B' (Fig.4)

8. Coloured portion in Fig. 5 represents $(A \cap B)'$ (Fig. 5)

9. Coloured portion in Fig. 6 represents $(A \cup B)'$ (Fig. 6)

Class: XI Subject: Mathematics Date: 21/09/2021

10. Coloured portion in Fig. 7 represents (A - B) (Fig.7)

11. Coloured portion in Fig. 8 represents (B - A). (Fig. 8)

12. Fig. 9 shows disjoint sets i.e. $A \cap B = \emptyset$ (Fig. 9)

13. Fig. 10 shows $A \cap B = A$, if $A \subset B$, (Fig. 10)

Class: XI Subject: Mathematics Date: 21/09/2021

OBSERVATION

- 1. In figure No.1 the coloured portion represents: $(A \cup B)$
- 2. In figure No.2 the coloured portion represents: $(A \cap B)$
- 3. In figure No.3 the coloured portion represents: A'
- 4. In figure No.4 the coloured portion represents: B'
- 5. In figure No.5 the coloured portion represents: $(A \cap B)'$
- 6. In figure No.6 the coloured portion represents: $(A \cup B)'$
- 7. In figure No.7 the coloured portion represents: (A B)
- 8. In figure No.8 the coloured portion represents: (B A)
- 9. In figure No.9 shows: Disjoint sets A and B
- 10. In figure No.10 shows: $A \cap B = A$, if $A \subset B$

APPLICATION

Set theoretic representation of Venn diagrams are used in Logic and Mathematics.