

- States S = (A, B, C, D, E, F, G, H, I)
- Actions $\mathcal{A} = (UP, DOWN, LEFT, RIGHT)$
- Policy $\mathcal{P} = From$ every state, choose each action with probability 0.25
- Reward $(\mathcal{R} = -1)$ per step
- Discount Factor $(\gamma = 1)$

- Undiscounted MDP ($\gamma = 1$)
- Non-terminal states (A, B, D, E, F, H)
- Terminal State (C, G, I)
- Agent follows a uniform random policy

Rules:

- From each state, actions move you in that direction if possible, otherwise you stay in the same square.
- Reward is -1 until the terminal state is reached.

Goal

- The goal is to reach state C, G, I which gives **0** reward and ends the episode.
- To reach the goal, we need to find the optimal policy π_*

0	0	0
0	0	0
0	0	0

value functions at k = 0

 $uniform\ random\ policy\ at\ k=0$

Step 1: Compute the value function of states A,B,D,E,F,H at k=1

	$v_k(s)$	$v_{k+1}(s)$	$v_{k+2}(s)$
Α	0		5
В	0	?	3
D	0	?	3
E	0	?	3
F	0	?	?
Н	0	?	5

 $v_{k+1}(A) = \frac{1}{4} \left[\left(-1 + v(A) \right) + \left(-1 + v(B) \right) + \left(-1 + v(D) \right) + \left(-1 + v(A) \right) \right]$ $v_{k+1}(A) = \frac{1}{4} \left[\left(-1 + 0 \right) + \left(-1 + 0 \right) + \left(-1 + 0 \right) \right]$ $v_{k+1}(A) = -1$

	$v_k(s)$	$v_{k+1}(s)$	$v_{k+2}(s)$
Α	0	-1	?
В	0	?	?
D	0	?	?
Е	0	?	?
F	0	?	?
Н	0	Ş	Ş

-1	В	С
D	E	F
G	Н	1

 $v_{k+1}(B) = \frac{1}{4} \left[\left(-1 + v(A) \right) + \left(-1 + v(C) \right) + \left(-1 + v(E) \right) + \left(-1 + v(B) \right) \right]$ $v_{k+1}(B) = \frac{1}{4} \left[\left(-1 + 0 \right) + \left(-1 + 0 \right) + \left(-1 + 0 \right) + \left(-1 + 0 \right) \right]$

		$v_k(s)$	$v_{k+1}(s)$	$v_{k+2}(s)$
1	А	0	-1	?
J	В	0	-1	?
	D	0	?	?
	Е	0	?	?
	F	0	?	?
	Н	0	?	?

-1	-1	С
D	E	F
G	Н	-

 $v_{k+1}(D) = \frac{1}{4} [(-1 + v(D)) + (-1 + v(E)) + (-1 + v(G)) + (-1 + v(A))]$ $v_{k+1}(D) = \frac{1}{4} [(-1 + 0) + (-1 + 0) + (-1 + 0) + (-1 + 0)]$ $v_{k+1}(D) = -1$

	$v_k(s)$	$v_{k+1}(s)$	$v_{k+2}(s)$
А	0	-1	?
В	0	-1	?
D	0	-1	?
Е	0	?	?
F	0	?	?
Н	0	?	Ş

-1	-1	С
-1	E	F
G	н	1

 $v_{k+1}(E) = \frac{1}{4} \left[\left(-1 + v(D) \right) + \left(-1 + v(F) \right) + \left(-1 + v(H) \right) + \left(-1 + v(B) \right) \right]$ $v_{k+1}(E) = \frac{1}{4} \left[\left(-1 + 0 \right) + \left(-1 + 0 \right) + \left(-1 + 0 \right) \right]$ $v_{k+1}(E) = -1$

	$v_k(s)$	$v_{k+1}(s)$	$v_{k+2}(s)$
А	0	-1	?
В	0	-1	?
D	0	-1	?
Е	0	-1	?
F	0	?	?
Н	0	?	Ş

-1	-1	С
-1	-1	F
G	Н	1

 $v_{k+1}(F) = \frac{1}{4} \left[\left(-1 + v(E) \right) + \left(-1 + v(F) \right) + \left(-1 + v(I) \right) + \left(-1 + v(C) \right) \right]$ $v_{k+1}(F) = \frac{1}{4} \left[\left(-1 + 0 \right) + \left(-1 + 0 \right) + \left(-1 + 0 \right) + \left(-1 + 0 \right) \right]$ $v_{k+1}(F) = -1$

	$v_k(s)$	$v_{k+1}(s)$	$v_{k+2}(s)$
А	0	-1	?
В	0	-1	?
D	0	-1	5
Е	0	-1	?
F	0	-1	?
Н	0	?	;

-1	-1	С
-1	-1	-1
G	Н	1

 $\begin{aligned} v_{k+1}(H) &= \frac{1}{4} \left[\left(-1 + v(G) \right) + \left(-1 + v(I) \right) + \left(-1 + v(H) \right) + \left(-1 + v(E) \right) \right] \\ v_{k+1}(H) &= \frac{1}{4} \left[\left(-1 + 0 \right) + \left(-1 + 0 \right) + \left(-1 + 0 \right) + \left(-1 + 0 \right) \right] \\ \hline v_{k+1}(H) &= -1 \end{aligned}$

	$v_k(s)$	$v_{k+1}(s)$	$v_{k+2}(s)$
Α	0	-1	?
В	0	-1	?
D	0	-1	?
Е	0	-1	?
F	0	-1	?
Н	0	-1	?

-1	-1	С
-1	-1	-1
G	-1	1

Step 1: Compute the value function of states A, B, D, E, F, H at k = 1

-1	-1	0
-1	-1	-1
0	-1	0
	k = 1	

^{7.} Put the new value functions in the 3x3 grid

Step 2: Compute the action-value function and update the policy of states A, B, D, E, F, H at k = 1

;	?	
;	?	?
	?	

Step 2: Compute the action-value function and update the policy of state A at k=1

8.
$$q_{k+1}(A, LEFT) = -2$$

9.
$$q_{k+1}(A, RIGHT) = -2$$

10.
$$q_{k+1}(A, UP) = -2$$

$$11. q_{k+1}(A, DOWN) = -2$$

12. $\pi_{k+1}(A) = \{ \text{LEFT, RIGHT, U} \}$	JP,
DOWN}	

Step 2: Compute the action-value function and update the policy of state B at k=1

13.
$$q_{k+1}(B, LEFT) = -2$$

14.
$$q_{k+1}(B, RIGHT) = -1$$

15.
$$q_{k+1}(B, UP) = -2$$

16.
$$q_{k+1}(B, DOWN) = -2$$

17.
$$\pi_{k+1}(B) = \{\text{RIGHT}\}$$

Step 2: Compute the action-value function and update the policy of state D at k=1

18.
$$q_{k+1}(D, LEFT) = -2$$

19.
$$q_{k+1}(D, RIGHT) = -2$$

$$20. q_{k+1}(D, UP) = -2$$

$$21.q_{k+1}(D,DOWN) = -1$$

22.
$$\pi_{k+1}(D) = \{DOWN\}$$

k = 1

Step 2: Compute the action-value function and update the policy of state E at k=1

23.
$$q_{k+1}(E, LEFT) = -2$$

24.
$$q_{k+1}(E, RIGHT) = -2$$

25.
$$q_{k+1}(E, UP) = -2$$

$$26. q_{k+1}(E, DOWN) = -2$$

27.
$$\pi_{k+1}(E) = \{\text{LEFT, RIGHT, UP, DOWN}\}$$

k = 1

Step 2: Compute the action-value function and update the policy of state F at k=1

28.
$$q_{k+1}(F, LEFT) = -2$$

29.
$$q_{k+1}(F, RIGHT) = -2$$

$$30. q_{k+1}(F, UP) = -1$$

$$31. q_{k+1}(F, DOWN) = -1$$

32.
$$\pi_{k+1}(F) = \{\text{UP, DOWN}\}$$

k = 1

Step 2: Compute the action-value function and update the policy of state H at k=1

$$33. q_{k+1}(H, LEFT) = -1$$

34.
$$q_{k+1}(H, RIGHT) = -1$$

$$35. q_{k+1}(H, UP) = -2$$

$$36. q_{k+1}(H, DOWN) = -2$$

37.
$$\pi_{k+1}(H) = \{\text{LEFT, RIGHT}\}$$

k = 1

Step 2: Compute the action-value function and update the policy of states A, B, D, E, F, H at k = 1

$$39. v_*(A) = ?$$

$$v_{k+2}(A) = \frac{1}{4}[(-1-1) + (-1-1) + (-1-1) + (-1-1)]$$

$$v_{k+2}(A) = -2$$

$$40. v_*(B) = ?$$

$$v_{k+2}(B) = \frac{1}{4}[(-1-1) + (-1+0) + (-1-1) + (-1-1)]$$

$$v_{k+2}(B) = -1.75$$

$$41. v_*(D) = ?$$

$$v_{k+2}(D) = \frac{1}{4}[(-1-1) + (-1-1) + (-1+0) + (-1-1)]$$

$$v_{k+2}(D) = -1.75$$

$$42. v_*(E) = ?$$

$$v_{k+2}(E) = \frac{1}{4}[(-1-1) + (-1-1) + (-1-1) + (-1-1)]$$

$$v_{k+2}(E) = -2$$

$$43. v_*(F) = ?$$

$$v_{k+2}(F) = \frac{1}{4}[(-1-1) + (-1-1) + (-1+0) + (-1+0)]$$

$$v_{k+2}(F) = -1.50$$

-2	-1.75	
-1.75	-2	-1.50
	٠٠	

$$44. v_*(H) = ?$$

$$v_{k+2}(H) = \frac{1}{4}[(-1+0) + (-1+0) + (-1-1) + (-1-1)]$$

$$v_{k+2}(H) = -1.50$$

-2	-1.75	
-1.75	-2	-1.50
	-1.50	

45. $q_*(A|LEFT) = -3$ $q_*(A|RIGHT) = -2.75$ $q_*(A|DOWN) = -2.75$ $q_*(A|UP) = -3$

46. $q_*(B|LEFT) = -3$ $q_*(B|RIGHT) = -1$ $q_*(B|DOWN) = -3$ $q_*(B|UP) = -2.75$

47. $q_*(D|LEFT) = -2.75$ $q_*(D|RIGHT) = -3$ $q_*(D|DOWN) = -1$ $q_*(D|UP) = -3$

48. $q_*(E|LEFT) = -2.75$ $q_*(E|RIGHT) = -2.50$ $q_*(E|DOWN) = -2.50$ $q_*(E|UP) = -2.75$

49. $q_*(F|LEFT) = -2.75$ $q_*(F|RIGHT) = -2.50$ $q_*(F|DOWN) = -1$ $q_*(F|UP) = -1$

50. $q_*(H|LEFT) = -1$ $q_*(H|RIGHT) = -1$ $q_*(H|DOWN) = -2.50$ $q_*(H|UP) = -3$

Step 3: Use DP to find the optimal policy π_* of states A, B, D, E, F, H

51.
$$\pi_*(A) = \{RIGHT, DOWN\}$$

$$52 \pi_*(B) = \{RIGHT\}$$

53.
$$\pi_*(D) = \{DOWN\}$$

54.
$$\pi_*$$
 (*E*) = {RIGHT, DOWN}

55.
$$\pi_*$$
 (*F*) = {UP, DOWN}

Final Step: Map the optimal value function v_* and the optimal policy π_*

-2	-1.75	0
-1.75	-2	1.50
0	1.50	0

57. Put the optimal value functions in the 3x3 grid

58. Put the optimal policy in the 3x3 grid