ECS 171: Introduction to Machine Learning

Lecture 1

Instructor: Ilias Tagkopoulos

iliast@ucdavis.edu

Introduction

Physical Address for Prof. Ilias Tagkopoulos

Computer Science:

Office: 3063 Kemper Hall

Phone: (530) 752-4821

Fax: (530) 752-4767

Genome and Biomedical Sciences Facility:

Office: 5313 GBSF

Phone: (530) 752-7707

Fax: (530) 754-9658

Course Technical Announcements

- Syllabus, lecture slides, reading materials, homework and lab assignments will be uploaded to **SMARTSITE**
- Lectures: TTh, 4:40-6:00 pm, 126 Wellman
- **Discussion:** 9-9:50am 166 Chemistry
 - TA-led discussion on homework material
- Office hours: TTh, 10:30 11:30pm, 3063 Kemper Hall
- TA: Ameen Eetemadi (<u>eetemadi@ucdavis.edu</u>)
 Minseung Kim (<u>msgkim@ucdavis.edu</u>)
- Please contact the TAs directly for anything that has to do with the homework.

Course Technical Announcements

Grading:

4 sets (30%), midterm (20%), project (20%), final (30%)

Homework:

Due before class according to schedule.

Prerequisites: ECS 60 (Programming); STA 32/ECS 132 (Probability); Mat 22A (Linear Algebra) or **equivalent**

Important: If you would like to contact me, please <u>start your</u> <u>email subject</u> by "ECS 171" to ensure proper handling as your email may be discarded otherwise (filters)

Textbook

No textbook required.

However, we will quote some sections from these books:

The Murphy book is on reserve and available (VPN, campus) here:

http://site.ebrary.com/lib/ucdavis/detail.action?docID=10597102

Other supplementary books:

- "Pattern recognition and machine learning" by Christopher Bishop

Syllabus

Lecture	Date	Topic	Comments
1	9/24/2015	Introduction	HW1 posted
2	9/29/2015	Linear Regression	
3	10/1/2015	Other Regression methods	
4	10/6/2015	Classification	HW1 due - HW2 posted
5	10/8/2015	Artificial Neural Networks	Project Topics
6	10/13/2015	Artificial Neural Networks	
7	10/15/2015	Support Vector Machines	Projects Assigned
8	10/20/2015	Support Vector Machines	
9	10/22/2015	Support Vector Machines	HW2 due - HW3 posted
10	10/27/2015	Midterm	
11	10/29/2015	Classification issues: Kernels, Overfitting, Regularization	
12	11/3/2015	Dimensionality Reduction	
13	11/5/2015	Reinforcement Learning	
14	11/10/2015	Decision support: Markov Decision Processes	
15	11/12/2015	Graphical Models - Naïve Bayes	
16	11/17/2015	Clustering: K-means - Hierarchical	HW3 due - HW4 posted
17	11/19/2015	Special topics: Deep Learning	
18	11/24/2015		Project Reports Due
19	11/26/2015	NO CLASS (Thanksgiving)	HW4 due
20	12/1/2015	Project Presentation II	
21	12/3/2015	Project Presentation III - Overview	

Notes:

- 1. The syllabus is tentative we will adapt our schedule accordingly during the quarter
- 2. The TAs will lead the Wednesday discussion (no discussion session on Monday)
- 3. Final is on 12/10 3:30-5:30, 126 Wellman

Project?

Definition: Machine Learning

Machine learning: Algorithms and methods for building systems that learn how to perform tasks from data.

- "Field of study that gives computers the ability to learn without being explicitly programmed". A. Samuel (1959)
- Related to:
 - Data Mining
 - Pattern Recognition
 - Artificial Intelligence
 - Statistical Inference

- Learning categories and types
- <u>Supervised learning</u>: learn a mapping from input x to output y, given a labeled set of input-output pairs (training set $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$).
 - x_i can be a D-dimensional vector of **features** (also called attributes or covariates) for sample i
 - y_i is the response variable
 - When y_i is categorical (i.e. label of a class), then the task is to assign a class to a new sample and it is called classification.
 - When y_i is real-valued, then the task is called regression.
 - Examples: SVM, ANN, Linear Regression

Learning categories and types: Classification

Learning categories and types: Classification

In which case will a classifier perform best?

Learning categories and types: Object detection - recognition

- Object detection must be invariant in subtle changes
- Object recognition needs more features and data
 - Quite accurate: DeepFace (Facebook) almost as good as humans (97.25% vs. 97.53%)

DeepFace: Closing the Gap to Human-Level Performance in Face Verification

Yaniv Taigman Ming Yang Marc'Aurelio Ranzato Lior Wolf
Facebook AI Research Tel Aviv University
Menlo Park, CA, USA Tel Aviv, Israel

{yaniv, mingyang, ranzato}@fb.com

wolf@cs.tau.ac.il

Learning categories and types: Regression

Learning types

- Unsupervised learning: find the structure or patterns in the data (knowledge discovery).
 - Make assumptions about the sample/feature distributions or relationships in the data
 - Examples: K-means, SOM, Hierarchical clustering
- Reinforcement learning: Given a certain environment, find the policy (i.e. actions) that maximizes the cumulative reward.
 - Observability can be full or partial
 - States, actions, rewards, observations
 - Examples: (Partially Observable) Markov Decision Processes, Q-learning

Learning categories and types: Unsupervised learning

Learning categories and types: Reinforcement learning

Source: Google

Raoul Rañoa / @latimesgraphics

General overview of a machine learning workflow

Basic concepts

<u>Parametric vs. Non-parametric:</u> Models that have a fixed number of parameters are called <u>parametric</u>. Models where the number of parameters increases with data size are called <u>non-parameteric</u>.

- Parametric approaches assume a particular shape/distribution of the data. Non-parametric have no or minimal assumptions (same in statistics: Pearson vs. Spearman's rank correlation).
- Non-parametric approaches are better when we have no information about the underlying distribution but need more data.

Basic concepts

Other issues:

- Linearity
- Dataset issues: size and structure
- Independence
- Curse of Dimensionality
- Feature Selection
- Overfitting and Noise
- Bias variance trade-off
- Evaluation

Lecture 1

End of Lecture 1

Note: Please install and run either **Matlab** (if you have a license) or **Octave** (open source /GNU) as it will be needed for the homework assignments