## Chapter 1

## Introduction

In particle physics we are concerned about small objects and their interactions. The smallest of these objects are referred to as *elemental particles*. Their dynamics are governed by the laws of nature. These laws are organised through symmetries, which can be mathematically described through group theory. Since the 1970 the symmetries of nature are best described by the *Standard Model* (SM).

The SM classifies all known elementary particles and describes three of the four fundamental forces: the electromagnetic, weak and strong force, excluding the gravitational force. The particles representing matter are contained in two groups of fermionic, spin-1/2 particles. The former group, the leptons consist of: the electron (e), the muon  $(\mu)$ , the tau  $(\tau)$  and their corresponding neutrinos  $\nu_e$ ,  $\nu_\mu$  and  $\nu_\tau$ . The latter group, the quarks contain: u, d (up and down, the so called light quarks), s (strange), c (charm), b (bottom or beauty) and t (top or truth). The three fundamental forces interact with carrier particles, the so-called bosons: the photon for the electromagnetic, the Z-or W-Boson for the weak and the gluon (g) for the strong interaction. and strong (g) gluon) interactions. The before mentioned Leptons solely interact through the electromagnetic and the weak force (also referred to as electroweak interaction), whereas the quarks additionally interact through the strong force. A short summary of the taxonomy of the SM can be seen in fig. 1.1

From a more mathematical point of view the SM is a gauge quantum field theory (QFT). QFT is the combination of classical field theory, special relativity and quantum mechanics. Its fundamental objects are ruled through its gauge-group  $SU(3) \times SU(2) \times U(1)$ . Each of subgroups introduces a global and a local gauge symmetry. The global symmetry introduces the charges, which fields are carrying. The local symmetry introduce the gauge-fields, which represent the previously mentioned force carriers. Naively every subgroup  $^1$  of the gauge-group of the standard model is responsible for one of the three forces:

<sup>&</sup>lt;sup>1</sup>Actually U(1) and SU(2) have to be regarded as combined group to be mapped to the electromagnetic-and weak-force in form of the electroweak interaction.



Figure 1.1: Taxonomy of the Standard Model.

- U(1) the abelian gauge group governs the representation of quantum electrodynamics (QED), which is commonly known as the electric force. Its global and local symmetry introduces the electric charge and the photon-field.
- SU(2) Is the non-abelian symmetry group responsible for the weak-interaction. It introduces the  $W^+, W^-$  and Z bosons and the weak charge. The gauge groups U(1) and SU(2) have been combined to the electroweak interaction.
- SU(3) The SU(3)-group is also non-abelian and governs the strong interactions, which are summarised in the theory of quantum chromodynamics (QCD). The group yields the three colour charges and due to its eight-dimensional adjoint-representation, eight different gluons.

Unfortunately we are still not able to include gravity, the last of the four forces, into the SM. There have been attempts to describe gravity through QFT with the graviton, a spin-2 boson, as mediator, but there are unsolved problems with the renormalisation of general relativity (GR). Until now GR and quantum mechanics (QM) remain incompatible.

Apart from gravity no being included, the SM has a variety of flaws. One of them is being dependent on many parameters. Every parameters has to be fitted to experimental data and there are ongoing discussions about the naturalness and fine-tuning of these parameters. In total the Lagrangian of the SM contains 19 parameters. These parameters are represented by ten masses, four CKM-matrix parameters, the QCD-vacuum angle, the Higgs-vacuum expectation value and three gauge coupling constants. Highly accurate values with low errors are crucial for theoretical calculated predictions. One of the major error inputs of



Figure 1.3: Feynman diagram of common decay of a  $\tau$ -lepton into pairs of lepton-antineutrino or quark-antiquark by the emission of a W boson.

every theoretical output are uncertainties in these parameters. In this work we will focus on one of the parameters, namely the strong coupling  $\alpha_s$ .

The strong coupling is currently measured in six different ways: through  $\tau$ -decays, QCD-lattice computations, deep inelastic collider results and electroweak precision fits [PSG2018]. We have plotted the values of each of the methods in fig. 1.2. During this work we will focus on the subfield of  $\tau$ -decays to measure the value of the strong coupling  $\alpha_s(m_\tau)$  at the  $\tau$ -scale. We will see that in QCD the value of the coupling "constant" depends upon the scale. The  $\tau$  is an elementary particle with negative electric charge and a spin of 1/2. Together with the lighter electron and muon it forms the group of charged Leptons<sup>2</sup>. Even though it is an elementary particle it decays via the weak interaction with a lifetime of  $\tau_{\tau} = 2.9 \times 10^{-13} \,\mathrm{s}$  and has a mass of 1776.86(12) MeV[PDG2018]. It is furthermore the only lepton massive enough to decay into hadrons, thus of interest for our QCD study. The final states of a decay are limited by conservation laws. In case of a  $\tau$ -decay they must conserve the electric charge (-1) and invariant mass of the system. Thus, we can see from the corresponding Feynman diagram fig. 1.3  $^3$  the  $\tau$  decays by the emission of a W-boson and a tau-neutrino  $\nu_{\tau}$  into pairs of  $(e^-, \bar{\nu}_e), (\mu^-, \bar{\nu}_\mu)$  or  $(q, \bar{q})$ . We are foremost



Figure 1.2: The six different subfields and their results for measuring the strong coupling  $\alpha_s$  [PDG2018].

interested into the hadronic decay channels, meaning  $\tau$ -decays that have quarks in their final states. Quarks have never been measured isolated, but appear al-

<sup>&</sup>lt;sup>2</sup>Leptons do not interact via the strong force.

 $<sup>^3</sup>$ The  $\tau$ -particle can also decay into strange quarks or charm quarks, but these decays are rather uncommon due to the heavy masses of s and c.

| Name | Symbol  | Quark content                                | Rest mass $(MeV)$           |
|------|---------|----------------------------------------------|-----------------------------|
| Pion | $\pi^-$ | $ar{u}d$                                     | $139.57061(24)\mathrm{MeV}$ |
| Pion | $\pi^0$ | $(u\bar{u}-d\bar{d})/\sqrt{2}$               | $134.9770(5){ m MeV}$       |
| Kaon | $K^-$   | $ar{u}s$                                     | $493.677(16){ m MeV}$       |
| Kaon | $K^0$   | $dar{s}$                                     | $497.611(13){ m MeV}$       |
| Eta  | $\eta$  | $(u\bar{u} + d\bar{d} - 2s\bar{s})/\sqrt{6}$ | $547.862(17){ m MeV}$       |

Table 1.1: List of mesons produced by a  $\tau$ -decay. Rare final states with branching Ratios smaller than 0.1 have been omitted. The list is taken from [**Davier2006**] with corresponding rest masses taken from [**PDG2018**].

ways in combination of *mesons* and *baryons*. Due to its mass of  $m_{\tau} \approx 1.8 \,\text{GeV}$  the  $\tau$ -particle decays into light mesons (pions- $\pi$ , kaons-K, and eta- $\eta$ , see table 1.1), which can be experimentally detected. The hadronic  $\tau$ -decay provides one of the most precise ways to determine the strong coupling [Pich2016] and can be calculated to high precision within the framework of QCD.

Having introduced the experimental side of the determination of  $\alpha_s$ , we are missing out the theoretical side. The theory describing strong interactions is QCD. As the name suggest<sup>4</sup> QCD is characterised by the colour charge and is a non-abelian gauge theory with symmetry group SU(3). Consequently every quark has next to its type one of the three colours blue, red or green and the colour force is mediated through eight gluons, which each being bi-coloured<sup>5</sup>, interact with quarks and each other. The strength of the strong force is given by the coupling constant  $\alpha_s$ , which depends on the renormalisation-scale  $\mu$ . We often chosen the renormalisation-scale in a way that the coupling constant  $\alpha_s(q)$ depends on the energy  $q^2$ . Thus the coupling varies with energy: it increases for low energies<sup>6</sup>. This behaviour of the strong coupling has two main implications. The first one states, that for low energies the coupling is too strong for isolated quarks to exist. Until now we have not been able to observe an isolated quark and all experiments can only measure quark compositions. These bound states are called hadrons and consist of two or three quarks 7, which are referred to as mesons<sup>8</sup> or baryons <sup>9</sup> respectively. This phenomenon, of quarks sticking together as hadrons is referred to as *confinement*. As the fundamental degrees of freedom of QCD are given by quarks and gluons, but the observed particles are hadrons we need to introduce the assumption of quark-hadron duality to match the theory to the experiment. This means that a physical quantity should be similarly describable in the hadronic picture or quark-gluon picture and that both descriptions are equivalent. As we will see in our work quark-hadron duality is violated for low energies. These so-called duality violations have an

<sup>&</sup>lt;sup>4</sup>Chromo is the Greek word for colour.

 $<sup>^5\</sup>mathrm{Each}$  gluon carries a colour and an anti-colour.

<sup>&</sup>lt;sup>6</sup>In contrast to the electromagnetic force, where  $\alpha(q^2)$  decreases!

<sup>&</sup>lt;sup>7</sup>There exist also so-called *Exotic hadrons*, which have more than three valence quarks.

<sup>&</sup>lt;sup>8</sup>Composite of a quark and an anti-quark.

<sup>&</sup>lt;sup>9</sup>Composite of three quarks or three anti-quarks.

impact on our strong coupling determinations and can be dealt with either suppression or the inclusion of a model [Pich2006, Cata2008]. Throughout this work we will favour and argument for the former approach. The second implication concerns perturbation theory (PT). The lower the energies we deal with, the higher the value of the strong coupling and the contributions of non-perturbative (NP) effects. Currently there are three solutions to deal with NP effects:

- Chiral Perturbation Theory (CHPT): Introduced by Weinberg [Weinberg1978] in the late seventies. CHPT is an effective field theory constructed with a Lagrangian symmetric under a chiral-transformation in the limit of massless quarks. It's limitations are based in the chiral symmetry, which is only a good approximation for the light quarks u, d and in some cases s.
- Lattice QCD (LQCD): Is the numerical approach to the strong force. Based on the Wilson Loops [Wilson1974] we treat QCD on a finite lattice instead of working with continuous fields. LQCD has already many applications but is limited due to its computational expensive calculations.
- QCD Sum Rules (QCDSR): Was also introduced in the late seventies by Shifman, Vainstein and Zakharov [Shifman1978, Shifman1978a]. It relates the observed hadronic picture to quark-gluon parameters through a dispersion relation and the use of the Operator Product Expansion (OPE), which treats NP effect through the definition of vacuum expectation values, the so-called QCD condensates. It is a precise method for extracting the strong coupling  $\alpha_s$  at low energies, although limited to the unknown higher order contributions of the OPE.

In this work we focus on the determination of the strong coupling  $\alpha_s$  within the framework of QCDSR for  $\tau$ -decays which has been exploited in the beginning of the nineties by Braaten, Narison and Pich [Braaten1991]. Within this setup we can measure  $\alpha_s(m_{\tau}^2)$  at the  $m_{\tau}$  scale. As the strong coupling gets smaller at higher energies, so do the errors. Thus if we obtain the strong coupling at a low scale we will obtain high precision values at the scale of the Z-boson mass  $m_Z$ , which is the standard scale to compare  $\alpha_s$  values.

The QCDSR for the determination of  $\alpha_s$ , from low energies, contain three major issues.

- 1. There are two different approaches to treat perturbative and non-perturbative contributions. In particular, there is a significant difference between results obtained using fixed-order (FOPT) or contour improved perturbation theory (CIPT), such that analyses based on CIPT generally arrive at about 7% larger values of  $\alpha_s(m_{\tau^2})$  than those based on FOPT [PDG2018]. There have been a variety of analyses on the topic been performed [Pich2013, Caprini2009, Jamin2005] and we will favour the FOPT approach, but generously list our results for the CIPT framework.
- 2. There are several prescriptions to deal with the NP-contributions of higher order OPE condensates. Typically terms of higher dimension have been

- neglected, even if they knowingly contribute. In this work we will include every necessary OPE term.
- 3. Finally there are known DV leading to an ongoing discussion of the importance of contributions from DV. Currently there are two main approaches: Either we neglect them, arguing that they are sufficiently suppressed due to pinched weights [Pich2016] or model DV with sinusoidal exponentially suppressed function [Cata2008, Boito2011a, Boito2014] introducing extra fitting parameters. We will argue for the former method, implementing pinched weights that sufficiently suppress DV contributions such as having only a negligible effect on our analysis.

In the first chapter of this work we want to summarise the necessary theoretical background for working with the QCDSR. Starting with the basics of QCD we want to motivate the *renormalisation group equation* (RGE), which is responsible for the running of the strong coupling. We then continue with the some aspects of the two-point function and its usage in the dispersion relation, which connects the hadronic picture with the quark-gluon picture. ...