UHF RFID RF1y 系列读写器通信协议

(V1.6)

修订历史

版本	修改内容	日期
1.0	起草	2018.05.03
1.1	优化协议结构,校验和完善协议指令	2018.05.10
1.2	增加嵌入读指令	2018.06.05
1.3	增加嵌入写指令	2018.07.09
1.4	添加触发指令	2018.08.30
1.5	IO 口和触发动作的改动	2019.05.24
1.6	添加心跳包配置指令	2020.02.22

目录

1.‡	概述	1
2.	协议指令格式	1
3.	协议指令说明	2
	3.1 标签应用指令	2
	3.1.1 单次盘点标签 (01h)	2
	3.1.2 时间段盘点标签(02h)	4
	3.1.3 写标签数据(03h)	5
	3.1.4 读标签数据(04h)	6
	3.1.5 锁标签(05h)	7
	3.1.6 杀死标签(06h)	9
	3.1.7 区块写标签数据(07h)	10
	3.1.8 块擦除(08h)	11
	3.1.9 连续盘点标签(11h)	11
	3.1.10 停止连续盘点(12h)	13
	3.1.11 载波控制(20h)	13
	3.2 扩展应用指令	14
	3.2.1 连续盘点标签指定区域数据(A1h)	14
	3.2.2 时间段盘点标签指定区域数据(A2h)	
	3.2.3 连续盘点标签并写入指定区域数据(A3h)	17
	3.2.4 时间段盘点标签并写入指定区域数据(A4h)	
	3.3 设置配置指令	20
	3.3.1 天线设置(41h)	
	3.3.2 功率设置(42h)	
	3.3.3 跳频表设置(43h)	
	3.3.4 区域设置(44h)	
	3.3.5 Gen2 协议设置(45h)	
	3.3.6 波特率更改(50h)	
	3.3.7 GPIO 设置(51h)	
	3.3.8 蜂鸣器控制(52h)	
	3.3.9 触发设置(53h)	
	3.3.10 触发动作设置(54h)	
	3.3.11 保存配置(5Fh)	27

3.3.12 心跳包配置 (BFh)	28
3.4 获取配置指令	29
3.4.1 获取设备信息(70h)	29
3.4.2 获取天线(71h)	30
3.4.3 获取功率(72h)	30
3.4.4 获取跳频表(73h)	31
3.4.5 获取区域(74h)	32
3.4.6 获取 Gen2 协议(75h)	
3.4.7 获取 GPIO 状态(81h)	
3.4.8 获取触发方式(83h)	34
3.4.9 获取触发动作(84h)	35
3.4.10 获取温度(90h)	35
3.4.11 获取 SN 码(91h)	36
付录	36

1.概述

UHF RFID读写器通信协议是RFID读写设备和上位机完成通信所必须遵循的规则和约定。该协议定义了数据单元使用的指令格式、数据单元应该包含的信息与含义、连接方式、信息发送和接收的时序,从而确保数据顺利地传送到确定的位置。

UHF RFID 读写设备与上位机采用异步串行接口(UART)进行数据通信。读写器在任何时刻都只能执行一条指令,并且指令串行执行。主机发送指令给读写器后,需要等待读写器回复后才可发下一条指令。 所有指令的总长度不能大于256个字节。

串口波特率默认为115200。

本协议适用于RF1y系列读写器。

2. 协议指令格式

协议指令分为两部分: 主机发给读写器的命令帧和读写器回复主机的应答帧。 命令帧格式如下:

Header	Data Length	Code	Data	Xor	End
2 byte	1 byte	1 byte	0-N byte	1 byte	1 byte

命令帧格式解析

Header: 2 byte, 定义指令帧头, 固定为 AA 55

Data Length: 1 byte,表示数据部分的长度,Code与Xor之间的数据长度(不包含Code和Xor)

Code: 1 byte, 具体的指令编号, 详看下文所示

Data: 0 - 249 byte, 指令携带的数据

Xor: 1 byte, Data Length 到 Data 所有数据相异或的校验数值

End: 1 byte, 定义帧尾, 固定为0x0D

应答帧格式如下:

Header	Data Length	Code	Status	Data	Xor	End
2 byte	1 byte	1 byte	1 byte	0-N byte	1 byte	1 byte

应答帧格式解析

Header: 2 byte, 定义指令帧头, 固定为 BB DD

Data Length: 1 byte,表示数据部分的长度,Status与Xor之间的数据长度(不包含Status和Xor)

Code: 1 byte, 具体的指令编号, 详看下文所示

Data: 0 - 248 byte, 指令携带的数据

Status: 1 byte, 具体状态码定义, 详见附录

Xor: 1 byte, Data Length 到 Data 所有数据相异或的校验数值

End: 1 byte, 定义帧尾, 固定为 0x0D

3. 协议指令说明

协议指令主要分为以下四类,具体如下:

标签应用指令: 0x00 - 0x3F

设置配置指令: 0x40 - 0x6F

获取配置指令: 0x70 - 0x9F

扩展应用指令: 0xA0 - 0xBF

指令中常用到的选择字段如下表格所示:

字段	长度	描述
Select Bank	1 byte	01 EPC, 02 TID, 03 User
Select Address	4 byte	单位为 bit
Select Length	1 byte	单位为 bit
Select Data	N byte	匹配字段,根据长度来匹配

3.1 标签应用指令

标签应用指令具体描述如下表格所示:

指令码	指令功能描述
0x01	单次盘点标签(01h)
0x02	时间段盘点标签(02h)
0x03	写标签数据(03h)
0x04	读标签数据(04h)
0x05	锁标签 (05h)
0x06	杀死标签(06h)
0x07	块写标签数据(07h)
0x08	块擦除(08h)
0x11	连续盘点标签(11h)
0x12	停止连续盘点(12h)
0x20	载波控制(20h)

3.1.1 单次盘点标签 (01h)

指令功能: 在超时时间内获取最先寻到的标签。

命令帧解析

指令码: 01h

数 据

- Time out 超时时间,单位 ms

- Select Bank 选择区域, 01 EPC, 02 TID, 03 User

- Select Address 选择起始地址(单位 bit)

- Select Length 选择匹配数据长度(单位 bit)

- Select Data 选择匹配数据

例:单次盘点标签,超时100ms

Header	Length	Code	Time out	Xor	End
AA 55	02	01	00 64	67	0D

例:选择性单次盘点标签

Header	Length	Code	Time out	Select Bank	Select A	Address	Select Length
AA 55	14	01	00 64	01	00 00 00	0 20	60
Select Data				Xor	End		
E2 00 41 37 46 09 01 39 27 40 07 4C				FF	0D		

应答帧解析

指令码: 01h

数 据:

- Status 状态码,对应状态码定义见附录

- Count 读取的次数
- RSSI 信号强度
- Ant 天线端口

- PC EPC 区域, 地址为 10h-20h

- EPC 读到标签的 EPC

例: 在天线端口 1 寻到标签 11 22 33 44 55 66 77 88 99 00 11 22

Header	Length	Code	Status	Count	RSSI	Ant	PC
BB DD	11	01	00	01	СВ	01	00 00
EPC				Xor	End		
11 22 33 4	•				0D		

注意: 单次盘点标签时, PC总是0x0000。

例:没有寻到标签

Header	Length	Code	Status	Xor	End
BB DD	00	01	40	41	0D

3.1.2 时间段盘点标签 (02h)

指令功能: 获取规定时间内盘点到的标签。(高级扩展: 时间段盘点标签指定区域数据)

命令帧解析

指令码: 02h

数 据

- Time out 超时时间,单位 ms

- Select Bank 选择区域, 01 EPC, 02 TID, 03 User

- Select Address 选择地址(单位 bit)

- Select Length 选择匹配数据长度(单位 bit)

- Select Data 选择匹配数据

例:在 1000ms 时间段内盘点标签

Header	Length	Code	Time out	Xor	End
AA 55	02	02	03 E8	EB	0D

例:在1000ms时间段内选择性盘点标签

Header	Length	Code	Time out	Select Bank	Select Address		Select Length
AA 55	14	02	03 E8	01	00 00 00 20		60
Select Data			Xor	End			
E2 00 41 37 46 09 01 39 27 40 07 4C			73	0D			

应答帧解析

指令码: 02h

数 据:

- Status 状态码,对应状态码定义见<u>附录</u>

- Tag Count 盘点到的标签个数

- Count 读取的次数
- RSSI 信号强度
- Ant 天线端口

- PC EPC 区域, 地址为 10h-20h

- EPC 读到标签的 EPC

例:时间段内盘点到两个标签(非选择性盘点)

Header	Length	Code	Stauts	Tag Count
BB DD	23	02	00	02
Count	RSSI	Ant	PC	EPC
02	DE	01	30 00	E2 00 41 37 46 09 01 31 27 40 07 3C
Count	RSSI	Ant	PC	EPC
03	DD	01	30 00	E2 00 41 37 46 09 01 39 27 40 07 4C
Xor	End			
59	0D			

注意:每一包数据最多256个字节,当盘存到的标签数量过多时,可能会分多个数据帧返回。

例: 1000ms 内选择性盘点到一个标签

Header	Length	Code	Stauts	Tag Count
BB DD	12	02	00	01
Count	RSSI	Ant	PC	EPC
02	DE	01	30 00	E2 00 41 37 46 09 01 39 27 40 07 4C
Xor	End			
38	0D			

3.1.3 写标签数据(03h)

指令功能: 在指定标签指定内存写入数据

命令帧解析

指令码: 03h

数 据

- Time out 超时时间,单位 ms

- Access Password 访问密码

- Select Bank 选择区域, 01 EPC, 02 TID, 03 User

- Select Address 选择地址(单位 bit)

- Select Length 选择匹配数据长度(单位 bit)

- Select Data 选择匹配数据

- Write Bank 写入标签区域, 00 Reserved, 01 EPC, 02 TID, 03 User

- Write Address 写入地址(单位 word)

- Word Count 写入的数据量(单位 word)

- Write Data 写入数据

例:写入标签,超时100ms

Header	Length	Code	Time out Access Password Sele		Select	t Bank	
AA 55	26	03	00 64	0 64 00 00 00 00 (01	
Select Add	lress	Select Length	Select Data	Select Data			Write Bank
00 00 00 2	0	60	E2 00 41 37 4	46 09 01 39 27	10 07 4C	2	03
Write Add	ress	Word Count	Write Data Xor			End	
00 00 00 0	0	04	00 11 22 33 44 55 66 77		C8		0D

应答帧解析

指令码: 03h

数 据

- Status 状态码,对应状态码定义见附录

例:写入成功

Header	Length	Code	Status	Xor	End
BB DD	00	03	00	03	0D

例:写入失败

Header	Length	Code	Status	Xor	End
BB DD	00	03	46	42	0D

3.1.4 读标签数据(04h)

指令功能: 读取标签指定区域内存数据

命令帧解析

指令码: 04h

数 据

- Time out 超时时间,单位 ms

- Access Password 访问密码

- Select Bank 选择区域, 01 EPC, 02 TID, 03 User

- Select Address 选择地址(单位 bit)

- Select Length 选择匹配数据长度(单位 bit)

- Select Data 选择匹配数据

- Read Bank 读取标签区域,00 Reserved, 01 EPC, 02 TID, 03 User

- Read Address 读取地址(单位 word) - Length 读取长度(单位 word)

例:在 100ms 内读取标签数据(通常超时时间大于 50ms)

Header	Length	Code	Time out	Access Pas	sword	Select Bank	
AA 55	1E	04	00 64	00 00 00 00	0	01	
Select A	ddress	Select Length	Select Data	Select Data			Read Bank
00 00 00	20	60	E2 00 41 3	7 46 09 01 3	9 27 40	07 4C	03
Read Ad	dress	Lenth	Xor End				
00 00 00	00	02	F1	0D			

应答帧解析

指令码: 04h

数 据

- Status 状态码,对应状态码定义见附录

例:读取标签成功,读到标签数据为11223344

Header	Length	Code	Status	Data	Xor	End
BB DD	04	04	00	11 22 33 44	44	0D

例: 读取标签失败

Header	Length	Code	Status	Xor	End
BB DD	00	04	42	46	0D

3.1.5 锁标签(05h)

指令功能:锁定指定标签内存区域中的数据,防止被修改或者被读取,保护标签

命令帧解析

指令码: 05h

数 据

- Time out 超时时间,单位 ms

- Access Password 访问密码

- Select Bank 选择区域, 01 EPC, 02 TID, 03 User

- Select Address 选择地址(单位 bit)

- Select Length 选择匹配数据长度(单位 bit)

- Select Data 选择匹配数据

- Lock Parameter 锁定参数, 3 bytes (23-20 保留, 19-10 Mask, 9-0 Action)

锁定参数解析

19	18	17	16	15	14	13	12	11	10	
Kill Mask	Kill Mask		Access Mask		EPC Mask		TID Mask		USER Mask	
跳过	跳过	跳过	跳过	跳过	跳过	跳过	跳过	跳过	跳过	
/写入	/写入	/写入	/写入	/写入	/写入	/写入	/写入	/写入	/写入	
9	8	7	6	5	4	3	2	1	0	
Kill Actio	n	Access Act	tion	EPC Acti	ion	TID Acti	on	User Act	ion	
读取/写	永 久	读取/写	永 久	写入口	永久锁	写入口	永久锁	写入口	永 久	
入口令	锁定	入口令	锁定	\$	定	令	定	令	锁定	

注: Kill和Access字段有读取/写入口令功能,其他字段只有写入口令功能。

锁定参数Mask和Action字段功能

写入口令	永久锁定	描述
0	0	在开放状态或保护状态下可以写入相关存储体
0	1	在开放状态或保护状态下可以永久写入相关存储体,或者
		可以永远不锁定存储体
1	0	在保护状态下可以写入相关存储体但在开放状态下不行
1	1	在开放状态或保护状态下可以写入相关存储体
读取/写入口令	永久锁定	描述
0	0	在开放状态或保护状态下可以读取和写入相关口令位置
0	1	在开放状态或保护状态下可以永久读取和写入相关口令位
		置,或者可以永远不锁定口令位置
1	0	在保护状态下可以读取和写入相关口令位置但在开放状态
		下不行
1	1	在开放状态或保护状态下可以读取和写入相关口令位置

注: 上表中逻辑值为Mask和Action相关字段按位相与得到的数值。例如,当Kill Mask位的值为10,Kill Action对应的值为11,那么按位相与后得到10,,其字段功能对应如上表10所述: 在保护状态下可以读取和写入相关口令位置但在开放状态下不行。

例: 永久锁死杀死密码和访问密码。

Header	Length	Code	Time out	Access Password	Select Bank	
AA 55	1B	05	00 64	00 00 00 00	01	
Select Address		Select Length	Select Data			
00 00 00 2	0	60	E2 00 41 37	46 09 01 39 27 40 0	07 4C	
Lock Parai	meter	Xor	End			
0F 03 C0		FE	0D			

应答帧解析

指令码: 05h

数 据

- Status 状态码,对应状态码定义见附录

例:锁成功

]	Header	Length	Code	Status	Xor	End
]	BB DD	00	05	00	05	0D

例: 锁失败

Header	Length	Code	Status	Xor	End
BB DD	00	05	41	44	0D

3.1.6 杀死标签(06h)

指令功能: 杀死指定标签。注意: 杀死不可恢复, 慎用!

命令帧解析

指令码: 06h

数 据

- Time out 超时时间,单位 ms

- Select Bank 选择区域, 01 EPC, 02 TID, 03 User

- Select Address 选择地址(单位 bit)

- Select Length 选择匹配数据长度(单位 bit)

- Select Data 选择匹配数据

例: 杀死标签命令

Header	Length	Code	Time out Kill Password Select E		ank	
AA 55	18	06	00 64	11 22 33 44	01	
Select Add	lress	Select Length	Select Data			Xor
00 00 00 20		60	E2 00 41 3	37 46 09 01 39 27 40	07 4C	В0

End 0D

应答帧解析

指令码: 06h

数 据

- Status 状态码,对应状态码定义见附录

例: 杀死成功

Header	Length	Code	Status	Xor	End
BB DD	00	06	00	06	0D

例: 杀死失败

Header	Length	Code	Status	Xor	End
BB DD	00	06	4A	4C	0D

3.1.7 区块写标签数据(07h)

指令功能: 快速往标签写入大量数据, 需要标签支持

命令帧解析:

指令码: 07h

数 据

- Time out 超时时间,单位 ms

- Access Password 访问密码

- Select Bank 选择区域, 01 EPC, 02 TID, 03 User

- Select Address 选择地址(单位 bit)

- Select Length 选择匹配数据长度(单位 bit)

- Select Data 选择匹配数据

- Write Bank 写入标签区域, 00 Reserved, 01 EPC, 02 TID, 03 User

- Write Address 写入地址(单位 word)

- Word Count 写入的数据量(单位 word)

- Write Data 写入数据

例: 块写数据命令

Header	Length	Code	Time out Access Password Select		Select Ba	ank
AA 55	26	07	03 E8 00 00 00 00 01			
Select Add	lress	Select Length	Select Data			Write Bank
00 00 00 2	0	60	E2 00 41 37	46 09 01 39 27 40 07	4C	03
Write Add	ress	ss Word Count Write Data		Xor	End	
00 00 00 0	00	04	00 11 22 33 44 55 66 77 43		43	0D

应答帧解析:

指令码: 07h

数 据

- Status 状态码,对应状态码定义见附录

例:写入成功

Header	Length	Code	Status	Xor	End
BB DD	00	07	00	07	0D

例: 写入失败

Header	Length	Code	Status	Xor	End
BB DD	00	07	01	06	0D

3.1.8 块擦除 (08h)

指令功能:通过这个简单的指令,实现擦除内存内的大量数据(全部擦除为0)。

命令帧解析:

指令码: 08h

数 据

- Time out 超时时间,单位 ms

- Access Password 访问密码

- Select Bank 选择区域, 01 EPC, 02 TID, 03 User

- Select Address 选择地址(单位 bit)

- Select Length 选择匹配数据长度(单位 bit)

- Select Data 选择匹配数据

- Mem Bank 擦除标签区域, 00 Reserved, 01 EPC, 02 TID, 03 User

- Address 擦除地址(单位 word) - Length 擦除长度(单位 word)

例: 块擦除命令

Header	Length	Code	Time out Access Password Select Bank				
AA	1E	08	00 64	00 00 00	00	01	
Select Add	ress	Select Length	Select Data				Mem Bank
00 00 00 2	0	60	E2 00 41 3	37 46 09 01	1 39 27 40 0	7 4C	03
Address		Lenth	Xor	End			
00 00 00 00 02		FD	0D				

应答帧解析:

指令码: 08h

数 据

- Status 状态码,对应状态码定义见附录

例:擦除成功

Header	Length	Code	Status	Xor	End
BB DD	00	08	00	08	0D

例:擦除失败

Header	Length	Code	Status	Xor	End
BB DD	00	08	40	48	0D

3.1.9 连续盘点标签(11h)

指令功能:在设定时间内连续的盘点标签,并持续返回标签数据。(高级扩展:连续盘点标签指定区域数据)

命令帧解析

指令码: 11h

数 据

- Time out 超时时间,单位 ms,当为 0 时,无限时连续盘点。

- Select Bank 选择区域, 01 EPC, 02 TID, 03 User

- Select Address 选择地址(单位 bit)

- Select Length 选择匹配数据长度(单位 bit)

- Select Data 选择匹配数据

例:连续盘点标签

Header	Length	Code	Time out	Xor	End
AA 55	02	11	00 00	13	0D

例:连续选择性盘点标签

Header	Length	Code	Time out	Select Bank	Selec	t Address	Select Length
AA 55	14	11	00 00	01	00 00	0 00 20	60
Select Da	Select Data			Xor	End		
E2 00 41	E2 00 41 37 46 09 01 39 27 40 07 4C			8B	0D		

应答帧解析

指令码: 11h

数 据:

- Status 状态码,对应状态码定义见附录

例:连续盘点标签执行成功

Header	Length	Code	Status	Xor	End
BB DD	00	11	00	11	0D

发送连续盘点标签成功的应答帧后,读写器会按照<u>单次盘点标签</u>的应答帧格式连续地返回所寻到的标签。超过1S没寻到标签,也会返回空数据帧。

例:返回空数据帧,指令如下(如果没有寻到标签,一秒返回一次空数据帧)。

Header	Length	Code	Status	Xor	End
BB DD	00	01	40	41	0D

例:返回所寻到的标签

Header	Length	Code	Status	Count	RSSI	Ant	PC
BB DD	11	01	00	01	СВ	01	30 00
EPC				Xor	End		

C9

0D

3.1.10 停止连续盘点(12h)

停止连续盘点是指:停止所有连续盘点的工作

命令帧解析

指令码: 12h

数 据

- Time out 超时时间,单位 ms, 默认为 0x0000

例:停止连续盘点命令

Header	Length	Code	Time out	Xor	End
AA 55	02	12	00 00	10	0D

应答帧解析

指令码: 12h

数 据

- Status 状态码,对应状态码定义见附录

例:停止连续盘点成功

Header	Length	Code	Status	Xor	End
BB DD	00	12	00	12	0D

3.1.11 载波控制 (20h)

指令功能: 发送连续的射频载波信号

命令帧解析

指令码: 20h

数 据

- Time out 载波发送持续时间,单位 ms,0 表示无限时长

- Switch 控制码, 1 开, 0 关

例: 开始发送载波,持续时间为100ms (应答帧要在载波发送完成后才会回复)

Header	Length	Code	Time out	Switch	Xor	End
AA 55	03	20	00 64	01	46	0D

例: 开始发送载波,持续时间为无限长 (立即回复)

Header	Length	Code	Time out	Switch	Xor	End
AA 55	03	20	00 00	01	22	0D

例: 关闭连续载波(立即回复,与无限时长配合使用)

AA 55	03	20	00 00	00	23	0D	

应答帧解析

指令码: 20h

数 据

- Status 状态码,对应状态码定义见附录

例:载波控制设置成功

Header	Length	Code	Status	Xor	End
BB DD	00	20	00	20	0D

3.2 扩展应用指令

获取配置指令具体描述如下表格所示:

指令码	指令功能描述
0xA1	连续盘点标签指定区域数据(A1h)
0xA2	时间段盘点标签指定区域数据(A2h)
0xA3	连续盘点标签并写入指定区域数据(A3)
0xA4	时间段盘点标签并写入指定区域数据(A4)

3.2.1 连续盘点标签指定区域数据(A1h)

指令功能: 连续盘点标签的同时嵌入读取指定区域数据指令

命令帧解析

指令码: Alh

数 据

- Time out 超时时间,单位 ms,当为 0 时,无限时连续盘点。

- Access Password 访问密码

- Read Bank 读取标签区域, 00 Reserved, 01 EPC, 02 TID, 03 User

- Read Address 读取地址(单位 word) - Length 读取长度(单位 word)

例: 盘点标签指定区域数据

Header	Length	Code	Time out	Access Password		Read Bank
AA 55	0C	A1	00 00	00 00 00 00		03
Read Address		Length	Xor	End		
00 00 00 00		02	AC	0D		

例:选择性盘点标签指定区域数据

Header	Length	Code	Time out	Access Password	Select Bank
--------	--------	------	----------	-----------------	-------------

AA 55	1E	A1	00 00	00 00 00 0	0	01	
Select Add	lress	Select	EPC	Read Bank			
		Length					
00 00 00 2	00 00 00 20 60 11 22 33 44 55 66 77 8				8 99 00 11 2	22	03
Read Addr	ess	Length	Xor	End			
00 00 00 0	0	02	DD	0D			

应答帧解析

指令码: Alh

数 据

- Status 状态码,对应状态码定义见<u>附录</u>

- Count 读取的次数

- RSSI 信号强度

- Ant 天线端口

- PC EPC 区域, 地址为 10h-20h

- EPC 读到标签的 EPC

- Length 读取到的数据长度,单位 bit

- Data 读取到的数据

例:连续盘点标签成功

Header	Length	Code	Status	Xor	End
BB DD	00	A1	00	A1	0D

紧接着连续返回盘点的标签,具体如下:

例:返回盘点的标签

Header	Length	Code	Stauts	Count	RSSI	Ant
BB DD	17	A1	00	СВ	01	
PC	EPC		Length	Data		
30 00	11 22 33 4	4 55 66 77 8	8 99 00 11 2	22	00 20	11 22 33 44
Xor	End					
0B	0D					

3.2.2 时间段盘点标签指定区域数据(A2h)

指令功能: 规定时间内盘点标签并读取指定区域数据

命令帧解析

指令码: A2h

数 据

- Time out 超时时间,单位 ms

- Access Password 访问密码

- Select Bank 选择区域, 01 EPC, 02 TID, 03 User

- Select Address 选择地址(单位 bit)

- Select Length 选择匹配数据长度(单位 bit)

- Select Data 选择匹配数据

例:时间段盘点标签指定区域 1000ms

Header	Length	Code	Time out	Access Password		Read Bank
AA 55	0C	A2	03 E8	00 00 00 00		03
Read Address		Length	Xor	End		
00 00 00 00		02	44	0D		

例:选择性盘点标签指定区域数据 1000ms

Header	Length	Code	Time out	Access Password Select Bank			
AA 55	1E	A2	03 E8	00 00 00 00	0	01	
Select Add	lress	Select	EPC				Read
		Length					Bank
00 00 00 2	0	60	11 22 33 4	4 55 66 77 8	8 99 00 11 2	2	03
Read Addr	ess	Length	Xor	End			
00 00 00 0	0	02	35	0D			

应答帧解析

指令码: A2h

数 据:

- Status 状态码,对应状态码定义见附录

- Tag Count 盘点到的标签个数

- Count 读取的次数

- RSSI 信号强度

- Ant 天线端口

- PC EPC 区域, 地址为 10h-20h

- EPC 读到标签的 EPC

- Length 读取到的数据长度,单位 bit

- Data 读取到的数据

例: 盘点到多个标签

Header	Length	Code	Stauts	Tag Count					
BB DD	2F	A2	00	02					
Count	RSSI	Ant	PC	EPC					
02	DE	01	30 00	E2 00 41 37 46 09 01 31 27 40 07 3C					
Length	Data	Data							
00 20	11 22 33 44								
Count	RSSI	Ant	PC	EPC					
03	DD	01	30 00	E2 00 41 37 46 09 01 39 27 40 07 4C					
Length	Data		Xor	End					
00 20	12 34 56 7	8	NN	0D					

注意:每一包数据最多256个字节,当盘存到的标签数量过多时,可能会分多个包返回。

3.2.3 连续盘点标签并写入指定区域数据(A3h)

指令功能:连续盘点标签的同时写入指定区域数据指令

命令帧解析

指令码: A3h

数 据

- Time out 超时时间,单位 ms,当为 0 时,无限时连续盘点。

- Access Password 访问密码

- Select Bank 选择区域, 01 EPC, 02 TID, 03 User

- Select Address 选择地址(单位 bit)

- Select Length 选择匹配数据长度(单位 bit)

- Select Data 选择匹配数据

- Write Bank 读取标签区域,00 Reserved, 01 EPC, 02 TID, 03 User

- Write Address 读取地址(单位 word) - Length 读取长度(单位 word)

- Write Data 写入数据

例:盘点标签并写入指定区域数据

Header	Length	Code	Time out	Access Password		Read Bank
AA 55	10	A3	00 00	00 00 00 00		03
Write Address Length W		Write Data		Xor	End	
00 00 00 0	0	02	11 22 33 44		F6	0D

例:选择性盘点标签指定区域数据

Header	Length	Code	Time out Access Password Select Ban			k	
AA 55	1A	A3	00 00	00 00 00 00 00 01			
Select Add	lress	Select	EPC Writ				Write
		Length					Bank
00 00 00 2	0	20	55 66 77 8	8			03
Write Add	ress	Length	Write Data Xor End			End	
00 00 00 0	0	02	11 22 33 4	11 22 33 44 31 0D			

应答帧解析

指令码: A3h

数 据

- Status 状态码,对应状态码定义见<u>附录</u>

- Count 读取的次数

- RSSI 信号强度

- Ant 天线端口

- PC EPC 区域, 地址为 10h-20h

- EPC 读到标签的 EPC

- Length 读取到的数据长度,单位 bit

- Data 读取到的数据

例:连续返回盘点写入标签执行成功

Header	Length	Code	Status	Xor	End
BB DD	00	A3	00	A3	0D

紧接着连续返回盘点并成功写入的标签,格式如下:

例:成功盘点标签

Header	Length	Code	Stauts	Count	RSSI	Ant	PC
BB DD	11	A3	00	01	СВ	01	30 00
EPC				Xor	End		
11 22 33 44 55 66 77 88 99 00 11 22				6B	0D		

注意:每一包数据最多256个字节,当盘存到的标签数量过多时,可能会分多个包返回。

注意:如果没盘点到标签,每隔 1S 将会返回空数据包。

例: 返回空数据帧, 指令如下。

Header	Length	Code	Status	Xor	End
BB DD	00	01	40	E3	0D

3.2.4 时间段盘点标签并写入指定区域数据(A4h)

指令功能: 规定时间内盘点标签并写入指定区域数据

命令帧解析

指令码: A4h

数 据

- Time out 超时时间,单位 ms

- Access Password 访问密码

- Select Bank 选择区域, 01 EPC, 02 TID, 03 User

- Select Address 选择地址(单位 bit)

- Select Length 选择匹配数据长度(单位 bit)

- Select Data 选择匹配数据

- Write Bank 写入区域

- Write Address 写入地址

- Write Data 写入数据

例:时间段盘点标签并写入指定区域

Header	Length	Code	Time out	Access Password		Read Bank
AA 55	10	A4	03 E8	00 00 00 0	0	03
Write Add	ress	Length	Write Data	ı	Xor	End
00 00 00 0	0	02	11 22 33 4	4	E5	0D

例:选择性盘点标签并写入指定区域数据

Header	Length	Code	Time out	Time out Access Password Select Ban			k
AA 55	1D	A4	03 E8	03 E8		01	
Select Add	ress	Select	EPC	EPC			
		Length	Ba			Bank	
00 00 00 2	0	38	11 22 33 4	4 55 66 77			03
Write Add	ress	Length	Write Data Xor End			End	
00 00 00 0	0	02	11 22 33 4	11 22 33 44 OE OD		0D	

应答帧解析

指令码: A4h

数 据:

- Status 状态码,对应状态码定义见附录

- Tag Count 写入成功的标签个数

- Count 读取的次数

- RSSI 信号强度

- Ant 天线端口

- PC EPC 区域, 地址为 10h-20h

- EPC 读到标签的 EPC

例:写入盘存到的两个标签

Header	Length	Code	Status	Tag Count
BB DD	23	A4	00	02
Count	RSSI	Ant	PC	EPC
02	DE	01	30 00	E2 00 41 37 46 09 01 31 27 40 07 3C
Count	RSSI	Ant	PC	EPC
03	DD	01	30 00	E2 00 41 37 46 09 01 39 27 40 07 4C
Xor	End			
NN	0D			

3.3 设置配置指令

设置配置指令具体描述如下表格所示:

指令码	指令功能描述
0x41	天线设置(41h)
0x42	功率设置(42h)
0x43	调频表设置(43h)
0x44	区域设置(44h)
0x45	Gen2 协议设置(45h)
0x50	波特率更改(50h)
0x51	GPIO 设置(51h)
0x5F	保存设置(5Fh)

3.3.1 天线设置(41h)

指令功能:将天线切换到指定的端口。读写器都是分时复用工作的,同一时刻只能在一个端口工作。 查看<u>获取天线</u>

命令帧解析

指令码: 41h

数 据

- Option 选项值, 01 设置单次标签操作天线号, 02 设置多次标签操作天线号

- Ant 天线端口号

例:设置单次标签操作,天线使用端口1

Header	Length	Code	Option	Ant	Xor	End
AA 55	02	41	01	01	43	0D

注意: option 为 01 时,可作用于单次盘点标签、写标签数据、读标签数据、锁标签、杀死标签、区块写标签数据、块擦除和载波控制。

例:设置多次标签操作,天线搜索顺序为1,2,2,3,3,4(以四端口为例)

Header	Length	Code	Option	Ant	Xor	End
AA 55	07	41	02	01 02 02 03 03 04	41	0D

注意: option 为02时,仅作用于<u>时间段内盘点标签</u>和<u>连续盘点标签</u>,按照天线顺序依次使用,出现次数越高,执行时间越长,最多可以设置32个。

应答帧解析

指令码: 41h

数 据

- Status 状态码,对应状态码定义见附录

例:设置成功

Header	Length	Code	Status	Xor	End
BB DD	00	41	00	41	0D

3.3.2 功率设置(42h)

指令功能:设置每一个天线端口的读写功率,查看获取功率

命令帧解析

指令码: 42h

数 据

- Ant 天线端口号

- Read Power 读功率 (盘点标签,读数据),单位: dBm/100

- Write Power 写功率 (锁指令, 杀死指令, 写数据, 擦除), 单位: dBm/100

例:设置每一个天线端口的功率

Header	Length	Code	Ant	Read	Write	Ant	Read
				Power	Power		Power
AA 55	14	42	01	09 C4	0B B8	02	09 C4
Write	Ant	Read	Write	Ant	Read	Write	Xor
Power		Power	Power		Power	Power	
0B B8	03	09 C4	0B B8	04	09 C4	0B B8	52
P. 1		•	•	•	•	•	

End 0D

应答帧解析

指令码: 42h

数 据

- Status 状态码,对应状态码定义见附录

例: 功率设置成功

Header	Length	Code	Status	Xor	End
BB DD	00	42	00	42	0D

3.3.3 跳频表设置 (43h)

指令功能: 在区域频段内设置跳频点。(跳频点不在该区域会显示设置失败,每一个跳频点都是 24bit,单位 kHz。) 查看<u>获取跳频表</u>

命令帧解析

指令码: 43h

数 据

- Freq#n 第几个频点

例:设置9个跳频点

Header	Length	Code	Freq#1		Freq#2		
AA 55	1B	43	0D 36 D0		0D 3A B8		
Freq#3		Freq#4		Freq#5		Freq#6	
0D 3E A0		0D 42 88		0D C3 70		0D C7 58	
Freq#7		Freq#8		Freq#9		Xor	End
0D CB 40		0D CF 28		0D D3 10		E6	0D

应答帧解析

指令码: 43h

数 据

- Status 状态码,对应状态码定义见附录

例:设置成功

Header	Length	Code	Status	Xor	End
BB DD	00	43	00	43	0D

3.3.4 区域设置(44h)

指令功能:设置读写器的工作区域,查看获取区域

命令帧解析

指令码: 44h

数 据

- Region 区域代码

Region	Region Num	Frequency
China1	01	840000 kHz – 845000kHz
China2	02	920000kHz - 925000kHz
Europe	03	865100kHz – 867900kHz

Europe2	04	869000kHz - 869850kHz
Europe3	05	865600kHz – 867600kHz
US	06	917000kHz – 927000kHz
NA	07	902000kHz – 928000kHz
Korea	08	910000kHz – 914000kHz
Korea 2	09	917300kHz – 920300kHz
Japan	0A	920600kHz – 923400kHz
Australia	0B	920750kHz – 925250kHz
India	0C	865200kHz – 866800kHz
Open	00	860000kHz – 960000kHz

例:设置读写器工作区域为: China1

Header	Length	Code	Region Num	Xor	End
AA 55	01	44	01	44	0D

注意:设置区域时,会把原来的调频表清掉,恢复为默认调频点。

应答帧解析

指令码: 44h

数 据

- Status 状态码,对应状态码定义见附录

例:区域设置成功

Header	Length	Code	Status	Xor	End
BB DD	00	44	00	44	0D

3.3.5 Gen2协议设置(45h)

指令功能:设置读写器 gen2 协议,查看获取 Gen2 协议

命令帧解析

指令码: 45h

数 据

- Q (4 bit) 0000 动态 Q 值,0001 静态 Q 值

- Va(4 bit) 静态 Q值,只有 Q 为 1 时有效

- Se(4 bit) Session 值, S0(0000), S1(0001), S2(0010), S3(0011)

- T (4 bit) Target 值, A(0000), B(0001), AB(0010), BA(0011)

- M(4 bit) Target Code 值, FM0(0000), M2(0001), M4(0010), M8(0011)

- BL(4 bit) BLF 值, 250kHz(0000), 320kHz(0010), 640kHz(0100)

- Ta(4 bit) Tari 值, 25us(0000), 12.5us(0001), 6.25us(0010)

- Rev 保留,默认为 0 (需要扩展时使用)

例: 静态 Q 值, Q=5, S0, A, M4, 250kHz, 6.25us

Header	Length	Code	Q	Va	Se	T	M	BL	Ta	Rev	Rev
AA 55	08	45	1	5	0	0	2	0	2	0	00
Rev	Rev	Rev	Xor		End						
00	00	00	49		0D						

应答帧解析

指令码: 45h

数 据

- Status 状态码,对应状态码定义见附录

例:设置成功

Header	Length	Code	Status	Xor	End
BB DD	00	45	00	45	0D

3.3.6 波特率更改(50h)

指令功能: 更改读写器串口通信波特率,上电默认值,115200。(无保存功能)

命令帧解析

指令码: 50h

数 据

- Baudrate 波特率值,读写器目前支持 9200, 19200, 38400, 57600, 115200, 230400, 460800,

921600

例: 设置波特率 115200

Header	Length	Code	Baudrate	Xor	End
AA 55	04	50	00 01 C2 00	97	0D

应答帧解析

指令码: 50h

数 据

- Status 状态码,对应状态码定义见附录

例:设置成功(回复设置成功帧后,波特率设置才会生效)

Header	Length	Code	Status	Xor	End
BB DD	00	50	00	50	0D

3.3.7 GPIO设置(51h)

GPIO 设置是指:设置 GPIO 端口的状态。查看获取 GPIO 状态

命令帧解析

指令码: 51h

数 据

- Port 输出端口号
- Value 电平值, =1 为高, =0 为低, =FF 电平反转, 闪烁模式下表示设置的初始电平值
- Delay 电平持续时间, 00 表示一直为高或者低或者闪烁
- Syntropy 电平闪烁模式维持设置电平值持续时间
- Reverse 电平闪烁模式反向设置电平值持续时间
- 例:输出端口 1,电平设置为高持续 100ms 后被拉低(注意:如果 IO 之前为高,100ms 后也会被拉低)

Header	Length	Code	Port	Value	Delay	Xor	End
AA 55	04	51	01	01	00 64	31	0D

例:输出端口1,电平设置为高并维持1000ms,在这1000ms内闪烁开启,首先同向电平(即高电平)维持100ms,转反向电平(即低电平)维持100ms,然后反复闪烁状态,直到1000ms时间结束,电平被拉低。

Header	Length	Code	Port	Value	Delay	Syntropy	Reverse	Xor	End
AA 55	08	51	01	01	03 84	00 64	00 64	DE	0D

应答帧解析

指令码: 51h

数 据

- Status 状态码,对应状态码定义见附录

例:设置成功

Header	Length	Code	Status	Xor	End
BB DD	00	51	00	51	0D

3.3.8 蜂鸣器控制 (52h)

指令功能: 用于指令控制蜂鸣器鸣响,或设置寻到标签后蜂鸣器自动鸣响。

命令帧解析

指令码: 52h

数 据

-Option 00 控制蜂鸣器, 01 寻标签声音

-Switch 00 关、01 开

-Delay 持续时间 00 00 表示一直响

例: 蜂鸣器响 100ms

Header	Length	Code	Option	Switch	Delay	Xor	End
AA 55	04	52	00	01	00 64	33	0D

例:每次寻到标签后蜂鸣器响 50ms

Header	Length	Code	Option	Switch	Delay	Xor	End
AA 55	04	52	01	01	00 32	64	0D

应答帧解析

指令码: 52h

数 据

-Status 状态码,00表示成功,其他表示失败;

例:设置成功

Header	Length	Code	Status	Xor	End
BB DD	00	52	00	52	0D

3.3.9 触发设置 (53h)

指令功能:设置输入端口的触发动作方式,查看获取触发设置

命令帧解析

指令码: 53h

数 据

-Port 输入端口

-Trigger 00 关闭触发、01 上升沿触发、02 下降沿触发、03 任意沿触发

例:设置端口1触发方式为上升沿

Header	Length	Code	Port	Trigger	Xor	End
AA 55	02	53	01	01	51	0D

应答帧解析

指令码: 53h

数 据:

-Status <u>状态码</u>, 00 表示成功, 其他表示失败;

例:设置成功

Header	Length	Code	Status	Xor	End
BB DD	00	53	00	53	0D

3.3.10 触发动作设置 (54h)

指令功能:设置输入端口的触发动作,查看获取触发动作

命令帧解析

指令码: 54h

数 据

- Port 输入端口
- Option 选项, 01 主动作、02 主动作执行成功关联动作、03 主动作执行失败关联动作
- Action 去掉 Header 和 End 的协议,删除动作,Action 为 0xFFFF

例:设置输入端口 1 的主触发动作为时间段盘点标签

Header	Length	Code	Port	Option	Action
AA 55	07	54	01	01	02 02 03 E8 EB
Xor	End				
53	0D				

例:设置输入端口1的触发动作执行成功之后输出端口1拉高1S

Header	Length	Code	Port	Option	Action
AA 55	09	54	01	02	04 51 01 01 03 84 D2
Xor	End				
5E	0D				

例:设置输入端口1的出发动作执行失败之后输出端口2拉高1S

Header	Length	Code	Port	Option	Action
AA 55	09	54	01	03	04 51 02 01 03 84 D1
Xor	End				
5F	0D				

应答帧解析

指令码: 54h

数 据

- Status: 状态码,00表示成功,其他表示失败;

例:设置成功

Header	Length	Code	Status	Xor	End
BB DD	00	54	00	54	0D

3.3.11 保存配置 (5Fh)

指令功能:下次启动将自动加载到当前配置。保存参数包括区域,功率,天线,gen2协议等。

命令帧解析

指令码: 5Fh

数 据

- Key 键值, 防止被误操作

- Option 选项, =0 恢复默认设置, =1 保存配置

例:恢复默认设置

Header	Length	Code	Key	Option	Xor	End
AA 55	05	5F	"SAVE"	00	NN	0D

应答帧解析

指令码: 5Fh

数 据

- Status 状态码,对应指令码见附录

例:设置成功

Header	Length	Code	Status	Xor	End
BB DD	00	5F	00	5F	0D

3.3.12 心跳包配置 (BFh)

指令功能:设置心跳返回的时间,返回信息等,仅在网口端返回。

命令帧解析

指令码: BFh

数 据

- Mode 返回模式,00 严格按时间返回,01 空闲时返回

- Time 返回时间,单位 S,0 关闭,最大 255

- Rev 保留

例:空闲时返回,时间间隔 10S

Header	Length	Code	Mode	Time	Rev	Xor	End
AA 55	03	BF	01	0A	01	В6	0D

应答帧解析

指令码: BFh

数 据

- Status 状态码,对应指令码见<u>附录</u>

- Systick 系统时间

例:设置成功,立马返回一次心跳帧

Header	Length	Code	Status	Systick	Rev	Xor	End
BB DD	00	BF	00	5F	-	NN	0D

3.4 获取配置指令

获取配置指令具体描述如下表格所示:

指令码	指令功能描述
0x70	获取版本号(70h)
0x71	获取天线(71h)
0x72	获取功率(72h)
0x73	获取跳频表(73h)
0x74	获取区域(74h)
0x75	获取 Gen2 协议(75h)
0x81	获取 GPIO 状态(81h)
0x90	获取温度(90h)
0x91	获取 SN 码(91h)

3.4.1 获取设备信息 (70h)

指令功能: 获取读写器、主板及设备的型号及软硬件版本信息。

命令帧解析

指令码: 70h

数据

- Option 00 读写器型号

01 读写器硬件版本号

02 读写器固件版本号

03 主板硬件版本号

04 主板固件版本号

05 生产厂商

06 设备型号

例: 获取读写器固件版本号

Header	Length	Code	Option	Xor	End
AA 55	00	70	02	70	0D

应答帧解析

指令码: 70h

数 据

- Status 状态码,对应状态码定义见附录

- Content 内容信息

例: 获取成功

Header	Length	Code	Status	Content	Xor	End
BB DD	07	70	00	"1.0.5"	NN	0D

3.4.2 获取天线 (71h)

指令功能: 获取标签操作天线号, 查看天线设置

命令帧解析

指令码: 71h

数 据

- Option 选项值, 01 获取单天线模式天线号, 02 获取多天线模式天线号

例: 获取单次标签操作天线值

Header	Length	Code	Option	Xor	End
AA 55	01	71	01	71	0D

例: 获取多次标签操作天线顺序标签

Header	Length	Code	Option	Xor	End
AA 55	01	71	02	72	0D

应答帧解析

指令码: 71h

数 据

- Status 状态码,对应状态码定义见附录

- Ant 当前使用天线端口号,或者顺序表

例: 获取天线成功(单次标签操作天线号)

Header	Length	Code	Status	Option	Ant	Xor	End
BB DD	02	71	00	01	01	73	0D

例: 获取天线成功(多次标签操作天线号)

Header	Length	Code	Status	Option	Ant	Xor	End
BB DD	04	71	00	02	01 02 03	77	0D

3.4.3 获取功率 (72h)

指令功能: 获取各个天线端口读写功率, 查看功率设置

命令帧解析

指令码: 72h

数 据

例: 获取各天线功率

Header	Length	Code	Xor	End
AA 55	00	72	72	0D

应答帧解析

指令码: 71h

数 据

- Status 状态码,对应状态码定义见附录

- Ant 当前使用天线端口号

- Read Power 读功率

- Write Power 写功率(锁指令,杀死指令,写数据)

例: 功率获取成功

Header	Length	Code	Status	Ant	Read	Write	Ant	Read
					Power	Power		Power
BB DD	14	72	00	01	09 C4	0B B8	02	09 C4
Write	Ant	Read	Write	Ant	Read	Write	Xor	End
Power		Power	Power		Power	Power		
0B B8	03	09 C4	0B B8	04	09 C4	0B B8	62	0D

3.4.4 获取跳频表 (73h)

指令功能: 获取当前区域内跳频表, 查看跳频表设置

命令帧解析

指令码: 73h

数 据

例: 获取跳频表

Header	Length	Code	Xor	End
AA 55	00	73	73	0D

应答帧解析

指令码: 73h

数 据

- Status 状态码,对应状态码定义见<u>附录</u>

- Ant 当前使用天线端口号

- Read Power 读功率

- Write Power 写功率(锁指令,杀死指令,写数据)

例: 获取跳频表成功

Header	Length	Code	Status	Freq#1		Freq#2
BB DD	18	73	00	0D 3A B8		0D 3E A0
Freq#3		Freq#4		Freq#5		Freq#6
0D 42 88		0D C3 70		0D C7 58		0D CB 40
Freq#7		Freq#8		Xor	End	
0D CF 28		0D D3 10		3E	0D	

3.4.5 获取区域(74h)

指令功能: 获取读写器的工作区域, 查看区域设置

命令帧解析

指令码: 74h

数 据

例: 获取区域

Header	Length	Code	Xor	End
AA 55	00	74	74	0D

应答帧解析

指令码: 74h

数 据

- Status 状态码,对应状态码定义见<u>附录</u>

- Region 区域代码

Region	Region Num	Frequency
China1	01	840000 kHz – 845000kHz
China2	02	920000kHz – 925000kHz
Europe	03	865100kHz – 867900kHz
Europe2	04	869000kHz – 869850kHz
Europe3	05	865600kHz - 867600kHz
US	06	917000kHz – 927000kHz
NA	07	902000kHz – 928000kHz
Korea	08	910000kHz – 914000kHz
Korea 2	09	917300kHz – 920300kHz
Japan	0A	920600kHz - 923400kHz
Australia	0B	920750kHz – 925250kHz
India	0C	865200kHz - 866800kHz
Open	00	860000kHz – 960000kHz

例: 获取成功

Header	Length	Code	Status	Region Num.	Xor	End
BB DD	01	74	00	00	75	0D

3.4.6 获取Gen2协议(75h)

指令功能: 获取读写器 Gen2 协议配置, 查看 Gen2 协议配置

命令帧解析

指令码: 75h

数 据

例: 获取读写器协议配置

Header	Length	Code	Xor	End
AA 55	00	75	75	0D

应答帧解析

指令码: 75h

数 据

- Status 状态码,对应状态码定义见附录

- Q (4 bit) 0000 动态 Q 值, 0001 静态 Q 值

- Va(4 bit) 静态 Q 值, 只有 Q 为 1 时有效

- Se(4 bit) Session 值, S0(0000), S1(0001), S2(0010), S3(0011)

- T (4 bit) Target 值, A(0000), B(0001), AB(0010), BA(0011)

- M(4 bit) Targen Code 值, FM0(0000), M2(0001), M4(0010), M8(0011)

- BL(4 bit) BLF 值, 250kHz(0000), 320kHz(0010), 640kHz(0100)

- Ta(4 bit) Tari 值, 25us(0000), 12.5us(0001), 6.25us(0010)

- Rev 保留, 默认为 0

例: 获取成功, 静态 Q值, Q=5, S0, A, M4, 250kHz, 6.25us

Header	Length	Code	Status	Q	Va	Se	T	M	BL	Ta	Rev
BB DD	08	75	00	1	5	0	0	2	0	2	0
Rev	Rev	Rev	Rev	Xor		End					
00	00	00	00	79		0D					

3.4.7 获取GPIO状态 (81h)

指令功能: 获取 GPIO 状态值。查看 GPIO 设置

命令帧解析

指令码: 81h

数 据

例: 获取 GPIO 设置

Header	Length	Code	Xor	End
AA 55	00	81	81	0D

应答帧解析

指令码: 81h

数 据

- Status 状态码,对应状态码定义见<u>附录</u>

- Dir (8 bit) 0000 1100 GPIO3/4 输入,其余为输出

- Level(8 bit) 0000 0001 GPIO1 口高电平, 其余 GPIO 为低电平

例:成功获取 GPIO 状态

Header	Length	Code	Status	Dir	Level	Xor	End
BB DD	02	81	00	0C	01	8E	0D

3.4.8 获取触发方式 (83h)

指令功能: 查看触发设置。

命令帧解析

指令码: 83h

数 据

- Port 输入端口

例: 获取输入端口 1 的触发方式

Header	Length	Code	Port	Xor	End
AA 55	01	83	01	83	0D

应答帧解析

指令码: 83h

数 据

- Status 状态码

- Trigger 00 关闭触发、01 上升沿触发、02 下降沿触发、03 任意沿触发

例: 获取到触发方式为: 上升沿触发

Header	Length	Code	Status	Trigger	Xor	End
BB DD	01	83	00	01	83	0D

3.4.9 获取触发动作(84h)

指令功能: 查看触发动作设置

命令帧解析

指令码: 84h

数 据

- Port 获取输入端口

- Option 选项, 01 主动作、02 主动作执行成功反馈动作、03 主动作执行失败反馈动作

例: 获取输入端口 1 的动作

Header	Length	Code	Port	Option	Xor	End
AA 55	02	84	01	01	86	0D

应答帧解析

指令码: 84h

数 据

- Status <u>状态码</u>

- Action 协议动作

例: 获取到输入端口 1 的动作为: 蜂鸣器响 100ms

Header	Length	Code	Status	Option	Action
BB DD	08	84	00	01	04 52 00 01 00 64 33
Xor	End				
8D	0D				

3.4.10 获取温度(90h)

指令功能: 获取读写器内部温度

命令帧解析

指令码: 90h

数 据

例:

Header	Length	Code	Xor	End
AA 55	00	90	90	0D

应答帧解析

指令码: 90h

数 据

- Status 状态码,对应状态码定义见附录

- Temp 温度值

例: 获取温度值为 36 摄氏度

Header	Length	Code	Status	Temp	Xor	End
BB DD	01	90	00	24	B5	0D

3.4.11 获取SN码 (91h)

指令功能: 获取读写器系列号 (每个读写器有各自唯一的 SN 码)

命令帧解析

指令码: 91h

数 据

例: 获取 SN 码

Header	Length	Code	Xor	End
AA 55	00	91	91	0D

应答帧解析

指令码: 91h

数 据

- Status 状态码,对应状态码定义见附录
- SN系列号, ASCII 码表示, 长度 < 32 byte

例: 获取读写器 SN 系列号为: 04180509013743018

Header	Length	Code	Status	SN	Xor	End
BB DD	11	91	00	"04180509013743018"	NN	0D

4. 附录

STATUS_SUCCESS_CODE	00h
FAULT_MSG_WRONG_NUMBER_OF_DATA	10h
FAULT_INVALID_OPCODE	11h
FAULT_UNIMPLEMENTED_OPCODE	12h
FAULT_MSG_POWER_TOO_HIGH	13h

FAULT_MSG_INVALID_FREQ_RECEIVED	14h
FAULT_MSG_INVALID_PARAMETER_VALUE	15h
FAULT_MSG_POWER_TOO_LOW	16h
FAULT_MSG_WRONG_NUM_BITS_TO_TX	17h
FAULT_MSG_TIMEOUT_TOO_LONG	18h
FAULT_UNIMPLEMENTED_FEATURE	19h
FAULT_INVALID_BAUD_RATE	1Ah
FAULT_NO_TAGS_FOUND	40h
FAULT_WRITE_PASSED_LOCK_FAILED	41h
FAULT_PROTOCOL_NO_DATA_READ	42h
FAULT_AFE_NOT_ON	43h
FAULT_PROTOCOL_WRITE_FAILED	44h
FAULT_NOT_IMPLEMENTED_FOR_THIS_PROTOCOL	45h
FAULT_PROTOCOL_INVALID_WRITE_DATA	46h
FAULT_PROTOCOL_INVALID_ADDRESS	47h
FAULT_GENERAL_TAG_ERROR	48h
FAULT_DATA_TOO_LARGE	49h
FAULT_PROTOCOL_INVALID_KILL_PASSWORD	4Ah
FAULT_TEST_FAILED	4Bh
FAULT_PROTOCOL_KILL_FAILED	4Ch
FAULT_PROTOCOL_BIT_DECODING_FAILED	4Dh
FAULT_PROTOCOL_INVALID_EPC	4Eh
FAULT_PROTOCOL_INVALID_NUM_DATA	4Fh
FAULT_GEN2_PROTOCOL_OTHER_ERROR	51h
FAULT_GEN2_PROTOCOL_MEMORY_OVERRUN_BAD_PC	52h
FAULT_GEN2_PROTOCOL_MEMORY_LOCKED	53h
FAULT_GEN2_PROTOCOL_INSUFFICIENT_POWER	54h
FAULT_GEN2_PROTOCOL_NON_SPECIFIC_ERROR	55h
FAULT_GEN2_PROTOCOL_UNKNOWN_ERROR	56h
FAULT_VERIFY_FAILED	57h
FAULT_AHAL_INVALID_FREQ	70h
FAULT_AHAL_CHANNEL_OCCUPIED	71h
FAULT_AHAL_TRANSMITTER_ON	72h

FAULT_AHAL_ANTENNA_NOT_CONNECTED	73h
FAULT_AHAL_TEMPERATURE_EXCEED_LIMITS	74h
FAULT_AHAL_HIGH_RETURN_LOSS	75h
FAULT_AHAL_PLL_NOT_LOCKED	76h
FAULT_AHAL_INVALID_ANTENNA_CONFIG	77h
FAULT_SYSTEM_UNKNOWN_ERROR	9Fh