

### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:

C03C 13/00, 13/02, 25/06

(11) International Publication Number:

WO 89/12032:

(43) International Publication Date:

14 December 1989 (14.12.39) !

(21) International Application Number:

PCT/US89/02288

(22) International Filing Date:

25 May 1989 (25.05.89)

(30) Priority data:

201.513

1 June 1988 (01.06.88)

US

(71) Applicant: MANVILLE SALES CORPORATION [US/ US]; Manville Plaza, 5th Floor, P.O. Box 5108, Denver, CO 80217 (US).

(72) Inventors: OLDS, Leonard, Elmo ; 977 South Lake Guich Road, Castle Rock, CO 80104 (US). KIELMEYER, William, Henry; 3374 West Chenango Avenue, Englewood, CO 80110 (US).

(74) Agent: SCHRAMM. William. J.: Brooks & Kushman. 2000 Town Center. Suite 2000. Southfield. MI 48075 (US).

(81) Designated States: AT (European patent), AU, BE (Euro-) pean patent), BR. CH (European patent). DE (European 1 patent), DK. FI, FR (European catent), GB (European patent), IT (European patent), JP, KP, KR, LU (European patent), NL (European patent), NO. SE (European i

### Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PROCESS FOR DECOMPOSING AN INORGANIC FIBER

### (57) Abstract

Inorganic fibers which have a silicon extraction of greater than 0.02 wt% Si/day in physiological saline solutions. The fiber contains SiO2, MgO, CaO, and at least one of Al2O3, ZrO2, TiO2, B2O3, iron oxides, or mixtures thereof. Also disclosed are norganic fibers which have diameters of less than 3.5 microns and which pass the ASTM E-119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| ΑŤ | Austra                       | Fī         | Finland                      | МL | Mali                     |
|----|------------------------------|------------|------------------------------|----|--------------------------|
| ΑU | Australia                    | FR         | France                       | MR | Mauritania               |
| 88 | Barbados                     | GA         | Gabon                        | MW | Malawi                   |
| BE | Belguin                      | G <b>B</b> | United Kingdom               | NL | Netherlands              |
| 8F | Burkina Fasso                | HTU        | Hungary                      | NO | Norway                   |
| BG | Bulgaria                     | π          | Italy                        | RO | Romania                  |
| BJ | Benin                        | JP         | Japan                        | SD | Sudan                    |
| BR | Brazil                       | KP         | Democratic People's Republic | SΣ | Sweden                   |
| CF | Central African Republic     |            | of Korea                     | SN | Senegai                  |
| CG |                              | KR         | Republic of Korea            | SU | Soviet Union             |
| CH | Congo                        | ü          | Liechtenstein                | ďΩ | Chad                     |
|    | Swazerland                   | LK         | Sri Lanka                    | TG | Togo                     |
| CM | Cameroon                     |            | on Canaa                     |    | United States of America |
| DΕ | Germany, Federal Republic of | w          | Luxembourg                   | us | United States of America |
| DK | Denmark                      | MC         | Monaco                       |    |                          |
| 53 | Spain                        | MG         | Madagascar                   |    |                          |
|    |                              |            |                              |    |                          |

PCT/US89/02288

# PROCESS FOR DECOMPOSING AN INORGANIC FIBER

WO 89/12032

5

10

15

20

25

30

### FIELD OF INVENTION ---

This invention relates to inorganic fiber compositions and more particularly it relates to inorganic fiber compositions which can contain silica, magnesia, calcium oxide, alumina, and other oxides. Some of the inventive fibers have excellent fire ratings, some have especially low durabilities in physiological saline solutions, and some have combinations of these foregoing properties.

## BACKGROUND OF THE INVENTION

For many years, inorganic fibers generically referred to in the industry as "mineral wool fibers", made from slag, rock, fly ash, and other by-product raw materials have been manufactured. These fibers have been typically manufactured by melting the slag, rock, etc., containing such oxides as silica, alumina, iron oxide (ferrous and ferric), calcium oxide, and magnesia; allowing the molten material to be blown by gas or steam or to impinge on rotors at high speeds; and causing the resulting blown or spun fibers to be accumulated on a collecting surface. These fibers are then used in bulk or in the form of mates, blankets, and the like as both low and high temperature insulation. U.S. Patent No. 2,576,312 discloses a conventional mineral wool composition and method for making the same.

In the past, the industry has well recognized the standard drawbacks associated with conventional mineral wool fibers. Conventional mineral wool fibers may have high contents of undesired oxides which often

15

20

25

30

detract from their refractory properties. The conventional mineral wools are coarse, i.e. they have average fiber diameters of 4 to 5 microns (measured microscopically) and have high shot contents in the range of 30 to 50 weight percent. The coarseness of the fiber reduces the insulating value of the fiber and makes conventional mineral wool unpleasant to handle and unfriendly to the For example, because of their coarse fiber diameters, conventional mineral wool blankets must have bulk densities of from 4 to 8 pcf and even higher in order to pass the ASTM E-119 two hour fire test. On the other hand, fiber glass blankets are often made with bulk densities of 2 pcf or lower. While the fiber glass blankets are friendly because of their low bulk densities and relatively fine fiber diameter, they do not have sufficient fire resistance so as to pass even the one hour ASTM E-119 fire test.

Recently, another potential problem with traditional mineral wool and other types of fiber has been recognized. It is well known that inhalation of certain types of fiber can lead to elevated incidence of respiratory disease, including cancers of the lung and surrounding body tissue. Several occurrences are welldocumented in humans for several types of asbestos Although for other varieties of natural and manmade mineral fiber direct and unequivocal evidence for respiratory disease is lacking, the potential for such occurrence has been inferred from results of tests on laboratory animals. In the absence or insufficiency of direct human epidemiological data, results from fiber inhalation or implantation studies on animals provides the best "baseline information" from which to extrapolate disease potential.

10

15

20

25

30

Chronic toxicological studies on animals have, however, been able to statistically demonstrate the importance of three key factors that relate directly to the potential for respiratory disease and especially carcinoma: (a) dose of fiber received (including time of exposure); (b) dimension of the inhaled fiber; and (c) persistence of the fiber within the lung. The effects of dose and dimension have been well-characterized from such studies and as a result are fairly well known in regard to human disease potential. The dose is obviously a product of the environment in which the fiber is used and the manner in which it is used. The dimension and persistence of the fiber within the lung, on the other hand, are functions of the manner in which the fiber is formed and of its chemical composition. general, the smaller the fiber the more likely that it will become embedded in lung tissue when inhaled, thus increasing the danger of respiratory disease.

Although less is known about the link between persistence of the fiber within the lung and respiratory disease, increasing attention is being focused on this Biological persistence aspect of the health issue. refers to the length of time a fiber endures as an entity within the body. The physiochemical concept that most closely relates to persistence and is perhaps more easily quantified is that of "durability" - specifically, the chemical solubility (or resistance to solubility) of fibers in body fluids and the tendency of such fibers to maintain physical integrity within such an environment. In general, the less durable a fiber is, the less will be the potential health risk associated with the inhalation of that fiber. measuring the chemical durability of a fiber in body fluids is to measure its durability in physiological

25

saline solutions. This can be done by quantifying the rate of extraction of a chemical component of the fiber such as silicon into the physiological saline solution over a certain period of time.

5 Thus, as can be easily concluded from the foregoing discussion, conventional mineral wool fibers have several serious drawbacks. However, even the alternatives to mineral wools have problems. example, as mentioned earlier glass fibers have a fire resistance problem and whereas the refractory ceramic 10 fibers have been gaining increasing use in recent years as an alternative to mineral wool fibers because of their ultra-high temperature resistance and superior ability to pass all fire rating tests, their use is limited by the fact that they are relatively expensive 15 and have a relatively high chemical durability in physiological saline solutions as well.

In conclusion, there is a great need in the industry for low cost, friendly feeling low bulk density inorganic fibers which have good fire resistance properties as measured by their ability to pass the ASTM E-119 two hour fire test. Additionally, there is a tremendous demand for fibers which have especially low durabilities in physiological saline solutions. What would be particularly advantageous to the industry would be fibers with combinations of the above mentioned sought after properties. Also, advantageous would be fibers which also have excellent refractory properties as well, e.g. high continuous service temperatures.

15

20

25

30

## SUMMARY OF THE INVENTION

In one embodiment of the present invention, there are provided inorganic fibers having a silicon extraction of greater than about 0.02 wt% Si/day in physiological saline solutions and a composition consisting essentially of about 0-10 wt% of either  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides, or mixtures thereof; 35-70 wt%  $SiO_3$ ; 0-50 wt% MgO; and CaO.

In another embodiment of the present invention, there are provided inorganic fibers which have a 5 hour silicon extraction in physiological saline solutions of at least about 10 ppm. These fibers can broadly have compositions consisting essentially of the following ingredients at the indicated weight percentage levels:

0-1.5 wt% of either  $Al_3O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides, or mixtures thereof; 40--70 wt%  $SiO_2$ ; 0-50 wt% MgO; and CaO

1.5-3 wt% of either  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides, or mixtures thereof; 40-66 wt%  $SiO_2$ ; 0-50 wt% MgO; and CaO

3-4 wt% of either  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides, or mixtures thereof; 40-64 wt%  $SiO_2$ ; 0-50 wt% MgO; and CaO

4-6 wt% of either  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides, or mixtures thereof; 40-59 wt%  $SiO_2$ ; 0-25 wt% MgO; and CaO

6-8 wt% of either  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides, or mixtures thereof; 35-54 wt%  $SiO_2$ ; 0-25 wt% MgO; and CaO

8-10 wt% of either  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides, or mixtures thereof; 35-45 wt%  $SiO_2$ ; 0-20 wt% MgO; and CaO

25

In a preferred embodiment, inventive fibers with 5 hour silicon extractions of greater than about 20 ppm and most preferably greater than about 50 ppm are provided.

5 In another embodiment of the present invention there are provided inorganic fibers having a diameter of less than 3.5 microns and which pass the ASTM E-119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf; and having a composition consisting essentially of 10 0-10 wt% of either  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron about: oxides, or mixtures thereof; 58-70 wt%  $SiO_2$ ; 0-21 wt% MgO; 0-2 wt% alkali metal oxides; and CaO and wherein the amount of alumina + zirconia is less than 6 wt% and the amount of iron oxides or alumina + iron oxides is 15 less than 2 wt%. Preferably, the inventive fibers in this embodiment may have compositions consisting essentially of about:

0-1.5 wt% of either  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides, or mixtures thereof; 58.5-70 wt%  $SiO_2$ ; 0-21 wt% MgO; 0-2 wt% alkali metal oxides; and CaO

greater than 1.5 wt% up to and including 3 wt% of either  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides, or mixtures thereof; 58.5-66 wt%  $SiO_2$ ; 0-21 wt% MgO; 0-2 wt% alkali metal oxides; and CaO

greater than 3 wt% up to and including 4 wt% of either  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides, or mixtures thereof; 58-63 wt%  $SiO_2$ ; 0-8 wt% MgO; 0-2 wt% alkali metal oxides; and CaO

greater than 4 wt% up to and including 6 wt% of either Al<sub>2</sub>O<sub>3</sub>, ZrO<sub>2</sub>, TiO<sub>2</sub>, B<sub>2</sub>O<sub>3</sub>, iron oxides, or mixtures thereof; 58-59 wt% SiO<sub>2</sub>; 0-7 wt% MgO; 0-2% alkali metal oxides; and CaO.

10

As discussed herein earlier, there has been a demand in the industry for inorganic fibers with an excellent fire rating at low bulk densities and fibers with especially low chemical durabilities in physiological saline solutions. Therefore, each category of inventive fibers should fulfill a real need in the industry and should be available for applications where heretofore low cost, mineral wool type fibers have not been available. What is particularly advantageous about the present invention is the fact that fibers are provided where a special demand exists, i.e. applications in the industry where fibers with both an excellent fire rating and an especially low durability in physiological saline solutions are in demand.

Other features and aspects, as well as the various benefits and advantages, of the present invention will be made clear in the more detailed description which follows.

### DETAILED DESCRIPTION OF THE INVENTION

The inventive fiber compositions of the present invention can be made from either pure metal oxides or less pure raw materials which contain the desired metal oxides. Table 1 herein gives an analysis of some of the various raw materials which can be used to make inventive fiber compositions. Physical variables of the raw materials such as particle size may be chosen on the basis of cost, handleability, and similar considerations.

Except for melting, the inventive fibers are formed in conventional inorganic fiber forming equipment

10

15

and by using standard inorganic fiber forming techniques as known to those skilled in the art. Preferably, production will entail electric furnace melting rather than cupola melting since electric melting keeps molten oxides of either pure or less pure raw materials more fully oxidized thereby producing longer fibers and stronger products. The various pure oxides or less pure raw materials are granulated to a size commonly used for electric melting or they may be purchased already so granulated.

The granulated raw materials are then mixed together and fed to an electric furnace where they are melted by electric resistance melting with electrodes preferably positioned according to the teachings of U.S. Patent No. 4,351,054. Melt formation can be either continuous or batchwise although the former is preferred. The molten mixture of oxides is then fiberized as disclosed in U.S. Patent No. 4,238,213.

While the fiberization techniques taught in U.S. 4,238,213 are preferred for making the inventive fibers, other conventional methods may be employed such as sol-gel processes and extrusion through holes in precious metal alloy baskets.

The fibers so formed will have lengths in the range of from about 0.5 to 20 cm and diameters in the range of from about 0.05 to 10 microns with the average fiber diameter being in the range of about 1.5 to 3.5 microns. Table 2 shows the average fiber diameter (measured microscopically) and the unfiberized shot content of various inventive fibers. As may be seen, the average microscopic fiber diameter was 2.3 microns and the average unfiberized shot content was 27%.

WO 89/12032 PCT/US89/02288

-9-

For purposes of comparison, conventional mineral wool fibers were also tested with the results being given in Table 2 as numbers 226 and 229. These conventional fibers averaged 4.7 microns (measured microscopically) in diameter and had an average 40 wt% shot content. The continuous service temperature ranged from 1370°F to 1490°F, averaging 1420°F.

5

10

15

20

25

30

Table 3 contains an extensive chemical analysis of a number of inventive fibers. Because of the large number of fiber samples containing alumina additives made to the base calcium oxide/magnesia/silicasystem, only the average analysis of the minor constituent of these fibers are given in Table 3. The silica, alumina, magnesia, and calcium oxide contents for these fibers are given in Table 4.

As used herein, the "service temperature" of an inorganic fiber is determined by two parameters. The first is the obvious condition that the fiber must not soften or sinter at the temperature specified. this criterion which precludes the use of glass fibers at temperatures about 800°F to 1000°F (425° to 540°C). Additionally, a felt or blanket made from the fibers must not have excessive shrinkage when soaking at its service temperature. "Excess shrinkage" is usually defined to be a maximum of 5% linear or bulk shrinkage after prolonged exposure (usually for 24 hours) at the service temperature. Shrinkage of mats or blankets used as furnace liners and the like is of course a critical feature, for when the mats or blankets shrink they open fissures between them through which the heat can flow, thus defeating the purpose of the insulation. fiber rated as a "1500°F (815°C) fiber" would be defined

as one which does not soften or sinter and which has acceptable shrinkage at that temperature, but which begins to suffer in one or more of the standard parameters at temperatures above 1500°F (815°C).

5 The service temperatures for a representative number of fibers in the inventive compositional range are listed in Table 2. The continuous service temperature for constant silica/magnesia/calcium oxide ratios are given in Table 6. As may be seen in all cases, the lower the alumina content of the fiber, the higher the 10 service temperature will be, with the highest service temperature being at zero percent alumina for alumina contents less than 30%. Thus to attain the most desired properties of the inventive fiber it is not possible to accept any of the alumina contents resulting from 15 melting the traditional mineral wool raw materials. Rather, various amounts of sufficiently pure oxides will be required to dilute the alumina contents to the desired low levels. To attain fibers of the highest service temperatures, only pure raw materials with 20 essentially no significant amounts of alumina must be used.

A series of inventive fibers were also tested for their silicon extraction in a saline solution a saccording to the following procedure:

A buffered model physiological saline solution was prepared by adding to 6 liters of distilled water the following ingredients at the indicated concentrations:

Ingredient Concentration, q/1

MgCl<sub>2</sub>6H<sub>2</sub>O 0.160

NaCl 6.171

-11-

|   | KC1                                 | 0.311 |
|---|-------------------------------------|-------|
|   | Na <sub>2</sub> HPO <sub>2</sub>    | 0.149 |
|   | Na <sub>2</sub> SO.                 | 0.079 |
|   | CaCl <sub>2</sub> 2H <sub>2</sub> O | 0.060 |
| 5 | NaHCO <sub>2</sub>                  | 1.942 |
|   | $NaC_2H_3O_2$                       | 1.066 |

Before testing, this solution was buffered to a pH of 7.6 by bubbling with a gaseous mixture of 5%  $CO_2/95\%N_2$ .

10 One half (1/2) gram of each sample of fiber listed in Table 3 was then placed into separate closed, plastic bottles along with 50 cc of the prepared physiological saline solution and put into an ultrasonic bath for 5 hours. The ultrasonic vibration application was adjusted to give a temperature of 104°F at the end of 15 the 5 hour period. At the end of the test period, the saline solution was filtered and the solution chemically analyzed for silicon content. The silicon concentration in the saline solution was taken to be a measure of the amount of fiber which solubilized during the 5 hour test 20 The CaO and MgO contents of the fiber were similarly solubilized.

One of the inventive fibers was tested for silicon extraction in a physiological saline solution for periods of up to 6 months. Results were as follows:

|                |             | Steady State                         | Total      | Comments On         |
|----------------|-------------|--------------------------------------|------------|---------------------|
|                | Silicon     | Silicon Extraction                   | Amphoteric | Fiber Residue       |
| Fiber          | Extraction  | Rate For $0.20 \text{ m}^2/\text{g}$ | Oxides in  | After 6             |
| Number         | in 6 Months | Surface Area, \$ Si/day              | Fiber      | Months              |
| 29 (inventive) | %96         | 0.16%                                | 1.0%       | carbonate hydroxyl  |
| •              |             |                                      |            | apatite fiber,      |
|                |             |                                      |            | disintegrated into  |
|                |             |                                      |            | small particles     |
|                | ć           | 900                                  | ð<br>O     | slight fine grained |
| 137 (non-      | \$P         | \$6.40.0                             | •          | 4                   |
| inventive)     |             |                                      |            | Ilbers with         |
|                |             |                                      |            | uniform corrosion   |
|                |             |                                      | ,          |                     |
| 235 (non-      | 48          | 0.012%                               | 25.6%      | no fiber            |
| inventive)     |             |                                      |            | corrosion;          |
|                |             |                                      |            | some surface        |
|                |             |                                      |            | deposition          |

10

15

20

25

Categorization of oxides melts according to scales of acidity or basicity has been well known for many years. (See "A Scale of Acidity and Basicity in Glass," Glass Industry, February 1948, pp 73-74.) have now found that by strictly controlling the compositions of the oxide melts according to the acidic or basicity behavior of the respective oxides, fibers can be made which are surprisingly soluble in saline solu-Increasing the content of silica, alumina, and the amphoteric oxides in the fiber increases the acid ratio of the fiber composition. This tends to stabilize the system against silicon extraction by weak solutions as a result of relative changes in the interatomic bonding forces and extension of the silica network. Other amphoteric oxides besides alumina will have an alumina equivalency with respect to extraction by saline solutions. The amphoteric oxides zirconia and titania appear to have an alumina equivalency of close to 1 to We have found that in general for desired high saline solubility the amount of total amphoteric oxides must be kept below about 10% depending upon the amount of silica present. On the other hand, with the exception of iron and manganese oxides, the basic oxides can vary widely since their alumina equivalency is small. However, while iron and manganese oxides are generally considered to be basic in nature, their behavior with respect to saline solubility more closely relate to the amphoteric oxides, thus the amounts of iron and manganese oxides must be similarly limited.

Many of the fibers were tested for their fire resistance according to the following simulated fire rating test procedure:

10

15

For screening test purposes, a small furnace was constructed using an electrically heated flat-plate element at the back of the heat source. A 6 inch x 6 inch x 2 inch thick sample of 1 3/4 to 6 1/2 pcf density of each formulated fiber was mounted parallel with the element and 1 inch from it. Thermocouples were then positioned at the center of the fiber sample surfaces. A computer was used to control power via a simple on-off relay system to the heating element. The position of the relay was based on the reading of the thermocouple on the sample surface nearest the element and the programmed fire test heat-up schedule.

The furnace was heated so as to follow a standard ASTM E-119 time/temperature curve for the 2-hour test period. In the test utilized herein, failure of the fiber is considered to occur when the furnace is unable to maintain the standard temperature per ASTM E-119 because the fiber insulation has sintered sufficiently to allow heat to escape through the fiber layer.

The results of the testing of the fibers for 20 saline solubility and the two hour ASTM E-119 fire test are given in Table 4 for the fibers made with alumina addition and in Table 5 for the remaining fibers to which other oxidic constituents were added. additions included:  $B_2O_3$ ,  $P_2O_5$ ,  $TiO_2$ ,  $ZrO_2$ ,  $Fe_2O_3$  + MnO, 25 La2O, Cr2O, and Na2O. For glass fibers within the scope of the invention to function in an ASTM E-119 fire test, i.e. to withstand the rising temperatures of a simulated fire which can reach 1850°F in two hours, it is necessary that they convert from an amorphous condition to a 30 beneficial pseudo crystalline state during heat-up. The inventive fibers do this but can be assisted in this function by the inclusion of suitable crystal nucleating

-15-

agents. Such agents may include  $TiO_2$ ,  $ZrO_2$ , platinum,  $Cr_2O_2$ ,  $P_2O_5$ , and others. Such additions are within the scope-of this invention.

TABLE 1 RAW MATERIALS USED

|                   |                |                        | Pure Raw Materials          | als               |                    |            |
|-------------------|----------------|------------------------|-----------------------------|-------------------|--------------------|------------|
|                   | Silica<br>Sand | Quick<br>. <u>Lime</u> | Calcined<br><u>Dolomite</u> | Aluminum<br>Oxide | Magnesium<br>Oxide |            |
| ACIDIC OXIDES     |                |                        |                             |                   |                    |            |
| Sio2              | 0.66           | 0.34                   | 0.50                        | 0.02              | ٥.                 |            |
| AMPHOTERIC OXIDES | IDES           |                        |                             |                   | •                  |            |
| $\mathtt{TiO}_2$  | nil            | nil                    | nil                         | 0.002             | nil                |            |
| A1203             | 0.30           | 0.26                   | 0.50                        | 98.8              | 0.1                |            |
| BASIC OXIDES      |                |                        |                             |                   | )<br>,<br>,        |            |
| $Fe_2O_3$         | 0.30           | 0.05                   | 0.15                        | 0.02              | 0.7                | -1         |
| MnO               | !              | 1                      | !                           | ļ                 | 1                  | <b>5</b> – |
| Мдо               | 0.02           | 0.14                   | 40.0                        | nil               | 96.3               |            |
| CaO               | 0.03           | 97.75                  | 57.0                        | 0.01              | 2.0                |            |
| Na <sub>2</sub> O | 0.04           | 0.02                   | 0.01                        | 0.30              | 0.02               |            |
| K <sub>2</sub> O  | 0.01           | 0.01                   | nil                         | 0.01              | 0.01               |            |
| MISCELLANEOUS     |                |                        |                             |                   |                    |            |
| SO,               | !              | į                      | 0.4                         | 1                 | !                  |            |
| ູ່ເຂ              | i              | !                      | !                           | :                 | 1                  |            |
| ပ                 | ;              | :                      | ;                           | !                 | _ i_               |            |
| IOI               | 0.2            | 0.7                    | 3.0                         | 0.20              | 1.8                |            |
| TOTAL             | 99.90          | 99.27                  | 101.56                      | 99.36             | 101:33             |            |
|                   |                |                        |                             |                   |                    |            |

TABLE 1
RAW MATERIALS USED (continued)

|                                                |        | Less Pure Raw Materials  |                      |             |
|------------------------------------------------|--------|--------------------------|----------------------|-------------|
|                                                | Kaolin | Blast<br>Furnace<br>Slag | Nepheline<br>Syenite | Talc        |
| CIDIC OXIDES SiO <sub>2</sub> MPHOTERIC OXIDES | 50.5   | 35.16                    | 61.3                 | 61.2        |
| Tio                                            | 1.61   | 0.62                     | 0.003                | nil         |
| A1203                                          | 43.6   | 12.88                    | 23.4                 | -17-<br>L.0 |
| Fe,O,                                          | 08.0   | 0.20                     | 0.07                 | 0.85        |
| Mno                                            | 1      | 0.62                     | :<br>                | †<br>•      |
| MgO                                            | 0.01   | 16.06                    | 0.05                 | 31.7        |
| CaO                                            | 0.04   | 32.94                    | 0.58                 | 0.19        |
| Na,O                                           | 90.0   | . 0.45                   | 9.60                 | 1 1         |
| K <sub>2</sub> 0                               | 0.02   | 0.25                     | 4.50                 |             |
| ITSCELLANEOUS                                  |        |                          |                      | -           |
| So                                             | 1      | 0.28                     | 1                    | !           |
| າແນ                                            | !      | 1.03                     | :<br>1               | 1           |
| ပ                                              | i i    | 0.30                     | 1 1                  | 1 1         |
| ĪO                                             | 2.90   | 1 1                      | 0.62                 | 5.0         |
| FOTAL                                          | 99.54  | 100.79                   | 100.12               | 0.00        |

Calcined Dolomite: Ohio Lime NO. 16 Burnt Dolomitic Lime Quick Lime: Mississippi Lime - Pulverized Quick Lime Ottawa Silica - Sil-co-Sil Grade 295 Reynolds Calcined Alumina, RC-23 Magnesium Oxide: Baymag 56 Feed Grade Aluminum Oxide: Silica Sand:

Kaolin: American Cyanamide Andersonville Kaolin Blast Furnace Slag: Calumite Morrisville Slag Nepheline Syenite: Indusmin Grad A400 Talc: Pfizer Grade MP4426

Additives:

55.5% B<sub>2</sub>03 Soda Ash: 58.3% Na<sub>2</sub>0 Boric Acid:

98.5% Iron Oxides Magnetite Iron Concentrates: Zircon:

66.2% Zro2

Chromium Oxide: 99.5% Cr<sub>2</sub>0<sub>3</sub> Titanium Dioxide: 99% TiO $_2$ Manganese Oxide: 99% MnO<sub>2</sub>

Moly Corp. Lanthanum Carbonate:

TABLE 3 COMPOSITION OF FIBERS

|             |                |                                           |                                           |                         |           | AMERICANTER OXIDES                | DES                                    | 1                   |
|-------------|----------------|-------------------------------------------|-------------------------------------------|-------------------------|-----------|-----------------------------------|----------------------------------------|---------------------|
|             |                | ACIDIC OX                                 | KIDES                                     | 0110                    |           |                                   |                                        | SUB                 |
| TEST<br>NO. | B,0,           | <u>S10</u> 2                              | $P_205$                                   | TOTAL                   | T102      | $\underline{A1}_2\underline{o}_3$ | $\overline{2}\overline{\text{LO}}_{2}$ | TOTAL               |
|             | rton of        | composition of Fibers With                | Al,0, addi                                | Al, O, additions (minor | constitue | constituents only)                |                                        |                     |
| TEORINO     | 17 110 71      |                                           | 7                                         |                         |           |                                   |                                        | 0.02                |
| 1 to        | 00.00          | ì                                         | 00.0                                      | !                       | 0.01      | :                                 | †<br>• • • •                           | 1<br>0<br>1-<br>0 1 |
|             | l<br>I         | 1                                         | Į                                         | ;                       | !         | i<br>i                            |                                        |                     |
| Composi     | tion of        | Composition of Fibers with                | B203 additions                            | ions                    |           | (                                 | 1                                      | 90.0                |
| 164         | 0.32           | 64.8                                      |                                           | 65.12                   | !<br>1    | 90.0                              |                                        |                     |
| י אַ        | 0.52           | 63.9                                      | !                                         | 64.42                   | 1         | 1.20                              | !<br>!                                 | 02:1                |
| 601         | 0.64           | 64.6                                      | !                                         | 65.24                   | ;         | 90.0                              | 1                                      | 90.0                |
| 167         | 0.82           | 64.5                                      | \$<br>1                                   | 65.32                   | !         | 90.0                              | ! !                                    | 90.0                |
| 168         | 1.33           | 64.1                                      | !                                         | 65.43                   | l<br>l    | 90 <b>*</b> 0                     | ; ;                                    | 90.0                |
| 169         | 1.37           | 64.1                                      | !                                         | 65.47                   | !         | 0.00                              | 1                                      | 90.0                |
| 170         | 2.22           | 63.6                                      | †                                         | 65.82                   | 1         | 90.0                              | : :                                    | 90.0                |
| 171         | 8.41           | 59.6                                      | !                                         | 68.01                   | 1         | 0.0                               | l                                      |                     |
| Compos      | Composition of | Fibers with                               | 1 P <sub>2</sub> O <sub>5</sub> additions | tions                   | •         | or c                              | 0.04                                   | 0.48                |
| 2           | !              | 49.6                                      | 6.05                                      | 55.65                   | 0.06      | 0.38                              |                                        |                     |
| Compos      | Composition of | Fibers with                               | h Tio2 additions                          |                         | 6         | 4 1 4                             | 1                                      | 51.4                |
| 173         | }              | 48.6                                      | !                                         | 48.6                    | 10.0      | •<br>•                            |                                        |                     |
| Compos      | ition of       | Composition of Fibers with 2r02 additions | h Zro2 addi                               |                         | 5         | 88                                | 0.21                                   | 1.10                |
| 174         | i              | 63.5                                      | 1 1                                       | 63.5                    | 10.       | 0.33                              | 0.40                                   | 0.73                |
| 175         | !              | 59.2                                      | !                                         | 59.2                    | i 1       | 0.31                              | 0.42                                   | 0.73                |
| 176         | !              | 59.5                                      | !!                                        | 59.5                    | l<br>I    |                                   |                                        |                     |

-19-

TABLE 3 COMPOSITION OF FIBERS (CONTINUED)

|                      |                                           | TABLE 3<br>COMPOSITION OF FIBER                                     | TABLE 3 OF FIBERS (continued) |                     |
|----------------------|-------------------------------------------|---------------------------------------------------------------------|-------------------------------|---------------------|
|                      |                                           | -                                                                   | MISCELLANEOUS                 | -                   |
| ST.                  | <u>so</u> 3                               | Misc.                                                               | SUB<br><u>TOTAL</u>           | TOTAL               |
| omposition of        | Fibers with Al <sub>2</sub> 0             | omposition of Fibers with Al203 additions (minor constituents only) | constituents only)            |                     |
| 4                    | .05/                                      | .02                                                                 | /10.                          | .14                 |
| }                    | .20                                       |                                                                     | .22                           | .44                 |
| omposition of        |                                           | additions                                                           |                               |                     |
|                      | . ;                                       | <b>:</b>                                                            | 1 1                           | 100.48              |
| י ע<br>ע             | !                                         | t<br>1                                                              | !                             | 100.42              |
| , y                  | !                                         | 1                                                                   |                               | 100.5               |
| 9 7                  | I<br>I                                    | :                                                                   | !!                            | 100.58              |
| /0                   | . 1                                       | !                                                                   | i i                           | 100.39              |
| 80                   |                                           |                                                                     | !<br>!                        | 100.43              |
| 69                   |                                           | t<br>1                                                              |                               | 100 48              |
| 70                   | !                                         | ţ                                                                   | 1 1                           |                     |
| 17.                  | # I                                       | ŧ .                                                                 | !                             | 100.07              |
| composition of Fiber | f Fibers with P <sub>2</sub> 0            | rs with P <sub>2</sub> O <sub>5</sub> additions                     |                               | 1                   |
| 7                    | ļ                                         | 0.02                                                                | 0.02                          | 99.73               |
| Composition o        | composition of Fibers with TiO2 additions | 2_additions                                                         |                               |                     |
| 173                  | ;                                         |                                                                     | i<br>1                        | 100.0               |
| Composition o        | Composition of Fibers with ZrO2 additions | 2_additions                                                         |                               |                     |
| 174                  | ;                                         | 1 1                                                                 | \$<br>1                       | 100.52              |
| 175                  | !                                         |                                                                     | !                             | יים<br>קיים<br>קיים |
| 176                  | 1 1                                       | 1 1                                                                 | i<br>1                        | 67.66               |

TABLE 3 COMPOSITION OF FIBERS

|                  | SUB                           | TOTAL                                      | -                          | -    | 0.84 | 06.0           | 0.93    | ] . B.B. | ) <u> </u> | ) (    | 2.89   | 2.69          | 2.95  | 3.53                | ) (    | 3.68  | 3.65  | 3.62   | 3.50 | 3 7 6 | <u>0</u> ( | 3.73   | 4.25   | 4.34   | 7.87  |
|------------------|-------------------------------|--------------------------------------------|----------------------------|------|------|----------------|---------|----------|------------|--------|--------|---------------|-------|---------------------|--------|-------|-------|--------|------|-------|------------|--------|--------|--------|-------|
| 200              | A L DES                       | $\overline{z}\underline{r}\underline{o}_2$ |                            |      | 05.0 | 0.54           | 0.58    | 0.58     | 0.83       |        | . o    | 2.31          | 2.65  | 3.11                | ר<br>ר | 3.12  | 3.27  | 3.30   | 3.30 | 3, 16 | ) (        | 3.3/   | 3.67   | 3.69   | 4.50  |
| AMDHOTEDIO OVIDE | PHENOTERIC O                  | $A_{203}$                                  |                            |      | 0.34 | 0.36           | 0.35    | 1.29     | 0.32       | 2.03   |        | 0.38          | 0.30  | <b>0.42</b>         | 0.56   |       | 0.38  | 0.32   | 0.20 | 0.39  | 96 0       | 0.0    | 0.58   | 0.65   | 3,35  |
|                  |                               | <u>110</u> 2                               |                            |      | ;    | !              | !       | .01      | ;          | .02    |        | <b>!</b><br>! | 1     | !                   | !      |       | !     | į      | ;    | i     | ;          |        | i<br>i | ;      | .02   |
|                  | SUB                           |                                            | ZrO2 additions (Cont.)     | 50 7 | 7.00 | 0.09           | 59.2    | 54.3     | 59.2       | 46.85  | 59.4   |               | 39.05 | 57.96               | 57.80  | . 65  | 00.00 | 56.88  | 57.7 | 58.19 | 57.86      | λ<br>Α |        | 58.4   | 56.65 |
| XIDES            | P.02                          | 5-7-                                       | Zro2 add1                  | . ;  | ļ    | ļ <sup>.</sup> | !       | !        | !          | 1      | -      | !             |       | j<br>I              | !!     | ;     |       | !<br>! | !    | !     | !          | !      | ļ      | !<br>! | ;     |
| ACIDIC O         | <u>S10,</u>                   |                                            | campostrion or ribers with | 59.7 | 0.09 | , pr           | 2 · · · | 0.4°.3   | 23.5       | 46.85  | 59.4   | 59,05         | 57 96 | יים<br>היים<br>היים | 8./6   | 59.05 | 56 88 |        | 7.76 | 58.19 | 57.86      | 58.6   | 58.4   | , L    | 56.65 |
|                  | B <sub>2</sub> O <sub>3</sub> | +<br>+<br>+                                | JO UOTA                    | !    | ;    | ;              | į       | 1        | !          | !<br>! | !      | 1             | ;     | !                   |        | !     | !     | ļ      | i    | !     | ŀ          | . !    | !      | !      |       |
| TP C.T           | NO.                           | , accumos                                  |                            | 177  | 80   | 179            | 180     | ואנ      | 183        | 707    | 182(a) | 183           | 184   | 185                 | ) (    | 186   | 187   | 188    | 081  | 0 0   | 061        | :91    | .92    | 66     | )<br> |

TABLE 3
COMPOSITION OF FIBERS (continued).

|              | SUB<br>TOTAL      |                        | 39.16  | 38.78 | 37.98    | 43.12 | 37.73    | 49.98  | 36.96     | 38.07 | 38.72 | 38.14  | 39.51 | 40,45      | 39.0   | 38.65 | 38.88 | 36.22  | 35.79 | 35.36 |
|--------------|-------------------|------------------------|--------|-------|----------|-------|----------|--------|-----------|-------|-------|--------|-------|------------|--------|-------|-------|--------|-------|-------|
|              | <u>K</u> 20       |                        | 1      | !     | ;        | .02   | ;<br>    | .01    | <br> <br> | .01   | ;     | l<br>l | 1     | !          | !      | !     | i     | 1      |       | .01   |
|              | Na <sub>2</sub> 0 |                        | !      | 1     | 1<br>1   | . 04  | 1        | .05    |           | .03   | 1     | i      | !     | 1          | 1      | ľ     | ;     | 1      | 1     | .05   |
|              | <u>BaO</u>        |                        | !      | ŀ     | ;        | .01   | t<br>I   | .03    | 1         | 00.   | 1     | !      | !     | <br> <br>  | t<br>I | !     | 1     | 1      | -     | 00.   |
| S            | <u>Ca0</u>        | 7                      | 38.7   | .38.3 | 37.0     | 32.75 | 36.6     | 29.5   | 34.9      | 34.84 | 35.17 | 34.4   | 36.94 | 36.45      | 36.0   | 35.39 | 35.66 | 33.5   | 33.2  | 31.9  |
| BASIC OXIDES | <u>Li20</u>       | S (Cont                | 1 1    | ;     | ;        | 1     | <b>!</b> | 1      | l<br>I    | !     | 1     | ŀ      | !     | !<br>!     | 1      | !     | !     | i<br>i | !     | -     |
| BASI         | <u>O</u>          | ditions                | 0.46   | 0.48  | 0.98     | 10.20 | 1.13     | 20.6   | 2.06      | 3.08  | 3.55  | 3.74   | 2.57  | 4.00       | 3.00   | 3.26  | 3.22  | 2.72   | 2.59  | 3.35  |
|              | $\frac{C_{L}}{2}$ | ZrO2 additions (Cont.) | 1      | 1     | ij       | 1     | !        | :<br>! | ţ         | .05   |       | !!     | 1     | E<br>E     | :<br>: | i     | 1 1   | ŀ      | !     | 00.   |
|              | <u>La 203</u>     | bers with              | 1      | !     | <b>¦</b> | !     | 1        | !      |           | !     | !     | ţ      | 1     |            |        | i     | ;     | !      | 1     | }     |
|              | Mno               | of Fibe                | !<br>! | 1     | ;        | .01   | 1 1      | .01    | 1         | 00.   | !     | 1      | 1     | 1          | !      | 1     | 1 1   | ľ      | !     | 00.   |
|              | Fe03              | Composition of Fi      | 1      |       |          |       |          |        | 1         |       |       |        |       | !          |        |       | ;     | !      | ľ     | . 05  |
|              | rest<br>10.       | Compos                 | 177    | 80    | 179      | 081   | 181      | 182    | 182(a)    | 183   | 184   | 581    | 981   | <b>281</b> | 881    | 681   | 061   | 161    | 192   | 193   |

TABLE 3 COMPOSITION OF FIBERS (continued)

| 86<br>87<br>88<br>100.95<br>89<br>100.20<br>90<br>90<br>91<br>91<br>91<br>92<br>93<br>93<br>93<br>94<br>95<br>96<br>96<br>96<br>96 |
|------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                    |
|                                                                                                                                    |
| .0.                                                                                                                                |
|                                                                                                                                    |

TABLE 3 COMPOSITION OF FIBERS

|           |           | ACIDIC OXIDES             | IDES       |               |      | AMPHOTERIC OXIDES | DES          |           |
|-----------|-----------|---------------------------|------------|---------------|------|-------------------|--------------|-----------|
| EST<br>0. | $B_2O_3$  | <u>Si0</u> 2              | P205       | SUB           | TiO2 | A1203             | <u>2r0</u> 2 | SUB       |
| omposi    | tion of F | omposition of Fibers with | FeO, and N | Mno additions |      |                   |              |           |
| 94        | !         | 64.9                      | , ¦        | 64.9          | {    | 90.0              | ;            | 0.06      |
| 95        | i         | 49.8                      | ;          | 49.8          | .01  | 18.0              | .01          | 18.02     |
| 96        | ľ         | 50.4                      | 1          | 50.4          | .03  | 7.45              | .01          | 7.49      |
| 97        | i         | 64.34                     | !          | 64.34         | 1    | 90.0              | 1            | 0.06      |
| 86        | i         | 63.70                     | ;          | 63.70         | i    | 1.20              | 1            | 1.20      |
| 66        | i         | 63.54                     | i          | 63.54         | 1 1  | 1.20              | ;            | 1.20      |
| 00        | ł         | 38.9                      | ;          | 38.9          | .01  | 6.70              | .01          | 6.72      |
| 01        | ;         | 64.3                      | i          | 64.3          | 1 1  | 90.0              | :            | 0.06      |
| 03        | 1         | 44.6                      | !          | 44.6          | .01  | 0.92              | .01          | 0.94      |
| 03        | !         | 63.3                      | ļ          | 63.3          | ì    | 1.15              | !            | 1.15      |
| 04        | i         | 63.6                      | ;          | 63.6          | 1    | 90.0              | :            | 90.0      |
| 05        | 1         | 43.8                      | ;          | 43.8          | .01  | 15.26             | .01          | 15.28     |
| 90        | !         | 62.3                      | ł          | 62.3          | !    | 1.20              | ;            | 1.20      |
| 07        | :         | 63.3                      | ļ          | 63.3          | .    | 90.0              | ;            | 0.0       |
| 80        | 1         | 43.9                      | ;          | 43.9          | .01  | 14.3              | .01          | 14.32     |
| 60        | 1         | 62.0                      | i          | 62.0          | !    | 90.0              | <b>¦</b>     | 0.06      |
| 10        | ļ         | 0.09                      | ;          | 0.09          | ;    | 2.0               | i            | 2.0       |
| 11        | i<br>i    | 0.09                      | 1          | 0.09          | į    | ;                 | 1 1          | <br> <br> |

-25-

TABLE 3
COMPOSITION OF FIBERS (continued)

| Troub. |                   |      |           |                | BASI   | BASIC OXIDES | S          |            |                   |                  |              |
|--------|-------------------|------|-----------|----------------|--------|--------------|------------|------------|-------------------|------------------|--------------|
| NO.    | FeO <sub>3</sub>  | Mno  | $La_2$ 03 | $\frac{Cr}{2}$ | Mgo    | 1.120        | <u>Ca0</u> | <u>Ba0</u> | Na <sub>2</sub> 0 | K <sub>2</sub> O | SUB<br>TOTAL |
| Compo  | Composition of Fi | _    | bers with | FeO, and Mno   | od Mno | additions    | ns         |            | 1                 | 3                |              |
| 194    | 0.06              | 1    | 1         | ,<br>¦         | 8.72   |              | 26.6       | !          | <b>!</b>          | ;                | 15 10        |
| 195    | . 22              |      | ;         | !              | 0.2    | ;            | 31.5       | ł          | 1                 | j                | 00.00        |
| 196    | . 48              | .04  | ;         | ;              | 15.2   | ;            | 26.2       | ļ          | 0.7               | ע                | 31.32        |
| 197    | .50               |      | !         | !              | 7.80   | ļ            | 26.4       | !          | · ;               | . !<br>. !       | 46.04        |
| 198    | 69.               | 1    | ;         | 1              | 7.73   | 1            | 25.30      | 1          | 1                 | 1                | 73.72        |
| 199    | .72               | i    | . !       | !              | 7.70   | ;            | 25.04      | ;          | !                 | !                | 33.46        |
| 200    | .80               | ;    | 1.        | ļ              | 16.1   | 1            | 37.5       | !          | 1                 | !                | 54.40        |
| 201    | 96.               | ;    | !         | 1              | 8.6    | ;            | 26.4       | i          | ł                 | !                | 35.96        |
| 202    | 1.02              |      | ľ         | !              | 18.1   | i            | 32.8       | !          | i                 | !                | 52:55        |
| 203    | 1.61              |      | !         | !              | 7.98   | ;            | 25.4       | !          | 1                 | :                | 96.10        |
| 204    | 1.92              |      | !         | 1              | 8.6    | 1            | 26.1       | .          | <b>!</b>          |                  | מייים מיי    |
| 205    | 2.90              | .04  | }         | .14            | 22.7   | ;            | 15.05      | !          | .10               |                  | 30.02        |
| 206    | 3.05              |      | !         | !              | 8.0    | 1            | 25.0       | 1          | }                 | : ;              | 36.05        |
| 207    | 3.45              | !    | ţ         | Į,             | 8.0    | i            | 25.5       | ;          | ;                 | !                | 36.95        |
| 208    | 3.50              | ļ    | 1         | !              | 24.4   | :            | 13.7       | !          | :                 | ;                | 41.6         |
| 509    | 4.81              | i    | :         | i<br>i         | 8.0    | !            | 25.5       | 1          | ;                 | 1                | 38.31        |
| 210    | į                 | 8.0  | <b>!</b>  | !              | 30.0   | 1            | :          | :          | 1                 |                  | 38.0         |
| 211    | ;                 | 20.0 | !         | I<br>I         | 20.0   | !            | -          | ţ          | !                 | i                | 40.0         |

COMPOSITION OF FIBERS (continued).

| MISCELLANEOUS | SUB<br>TOTAL               |             | 100.34 | .07 | .07 | 99.1 | 98.62 | 98.20 | .07 | 100.32 | 97.46 | 99.44 | 100.28 | .13 | 99.55 | 100.31 | 99.82 | 100.37 | 100.0 |
|---------------|----------------------------|-------------|--------|-----|-----|------|-------|-------|-----|--------|-------|-------|--------|-----|-------|--------|-------|--------|-------|
|               | TEST SO <sub>3</sub> Misc. | position of |        |     |     | 197  |       |       |     |        | 202   |       | 204    |     |       | 207    | 208   |        | 010   |

TABLE 3 COMPOSITION OF FIBERS

|                   | SUB                           | TOTAL                      | -     | 90.0   | 90.0 | 90.0 | ) (  | 90.0                       |          | 0.51                       | ~        |      | 90.0         | 90:0 | 90,0   |      | 1:20 | 90.0 | 90.0      | 90.0     | 0    | 00.    | 90.0   |
|-------------------|-------------------------------|----------------------------|-------|--------|------|------|------|----------------------------|----------|----------------------------|----------|------|--------------|------|--------|------|------|------|-----------|----------|------|--------|--------|
| 00017             | 210                           | 2                          |       | 1      | 1    | !    | !    | •                          |          | 0.01                       |          |      | !<br>!       | !    | ;      | 1    |      | :    | ;         | i        | i    |        | !<br>: |
| AMPHOTEBTC OVIDES | Alo                           | 5-7                        |       | 90.0   | 90.0 | 90.0 | 90.0 |                            | 9        | U. 4                       |          | 90 0 | •            | 90.0 | 90.0   | 1.20 |      | 0.00 | 90.0      | 90.0     | 0.06 | 30.0   |        |
|                   | Tio                           | 7                          |       | 1<br>1 | !    | 1    | ļ    |                            |          | 70.0                       |          | !    |              | 1    | !      | 1    | ;    |      | !         | <b>!</b> | ;    | !      |        |
|                   | SUB                           | ditions                    | 1 88  | • • •  | 8·/c | 57.5 | 56.9 | tions                      | 62.6     | ions.                      |          | 64.7 | ¥ 7.9        |      | 64.4   | 63.5 | 64.3 |      | 7.40      | 64.0     | 63.0 | 60.3   |        |
| OXIDES            | P <sub>2</sub> 05             | La,                        | · · · | ļ      |      | ľ    | !    | Cr,0, additions            | ) !<br>! | Na O additions             | 7        | !    | ;            |      | J<br>I | !    | i    | !    |           | 1        | !    | l<br>i |        |
| ACIDIC OXIDES     | <u>S10</u> 2                  | Composition of Fibers with | 58.1  | 57.8   | , L  | , i  | 26.9 | composition of Fibers with | 62.6     | Composition of Fibers with |          | 64.7 | 64.5         | 7 79 | r<br>• | 63.5 | 64.3 | 64.2 | · · · · · | ) (      | 0.50 | 60.3   |        |
|                   | B <sub>2</sub> O <sub>3</sub> | sition of                  | !     | ;      | ;    | 1    |      | Sition of                  | !        | sition of                  | 1        | i    | ;            | ;    |        | !    | !    | ;    | ;         | !        | 1    | ;      |        |
| T.S.R.T.          | NO.                           | Compo                      | ;     | 213    | 214  | 215  |      | COMPO                      | 2216     | Compo                      | <u>-</u> | •    | <b>i</b> 218 | 1219 | 200    | 9 6  | 777  | 222  | 223       | 224      |      | 522    |        |

TABLE 3 (COMPOSITION OF FIBERS (CONTINUED)

| GIF          | SUB CaO BaO Na $_2$ O $_{ m K_2}$ O TOTAL |                                                   | 36.71 41.47 | 36.53 41.82 | 36.3 41.72  | 36.0 41.58 |                                                   | 34.10 0.00 0.03 0.01 36.61 |                          | 26.6 0.28 35.58 | 26.5 0:45 35.65 | 26.5 0.71 35.80 | 26.1 0.87 35.70 | 26.2 0.93 35.63 | 26.4 1.11 36.11 | 26.3 1.40 36.3 | 25.9 2.60 37.0 | 74.74 |
|--------------|-------------------------------------------|---------------------------------------------------|-------------|-------------|-------------|------------|---------------------------------------------------|----------------------------|--------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|-------|
| BASIC OXIDES | 1.4203 Cr.203 Mg0 1.120                   | ers with La <sub>2</sub> 0 <sub>3</sub> additions | 0.00 4.60   | 0.56 4.58   | 0.72 , 4.55 | 0.92 4.51  | ers with Cr <sub>2</sub> 0 <sub>3</sub> additions | 0.09 2.30                  | ers with Na, O additions | 7.8             | 7.8 B.7         | 8.6             | 8.5             | 8.5             | 8.6             | 8 8 6          | 8.5            |       |
|              | TEST FeO3 MnO                             | Composition of Fiber                              | 0.16        | 0.15        | 214 0.15    |            | Composition of Fibe                               | 216 0.08 .00               | sition of Fib            |                 | 1               |                 | 000             | (66             | 222             | 223            | 224            |       |

TABLE 3
COMPOSITION OF FIBERS (continued)

| į |               | TOTAL          |                                                                     |   | 99.63 | 89.66 | 99.28 | 98.54                                      |     | 99.72                                     |    | 100.34 | 100.21 | 100.26 | 100.40 | 66.66    | 100.37 | 100.36 | 100.06 | 100.1  |
|---|---------------|----------------|---------------------------------------------------------------------|---|-------|-------|-------|--------------------------------------------|-----|-------------------------------------------|----|--------|--------|--------|--------|----------|--------|--------|--------|--------|
|   | MISCELLANEOUS | SUB<br>TOTAL   |                                                                     | ! |       | i     | 1     | ;                                          |     | ;                                         |    | !<br>! | ;      | •      | !      | !        | •      | !      | :      | :      |
| • |               | Misc.          | Composition of Fibers with La <sub>2</sub> O <sub>3</sub> additions | 1 | !     | ;     | !     | Composition of Fibers with Cr.O. additions |     | th Na,O additions                         |    |        | !      | ľ      | 1      | :        | :      | !      | !      | !      |
|   |               | $\frac{50}{3}$ | tion of Fibers wi                                                   |   | ;     | i     | . 1   | tion of Fibers wit                         |     | Composition of Fibers with Na,0 additions | ļ  | ;      | i      | !      |        | <b>!</b> | } }    | }      | i<br>i | !<br>! |
|   | TEST          | NO.            | Compost                                                             | : | 213   | 214   | 215   | Composi                                    | 216 | Compost                                   | 17 | 218    | 219    | 220    | 22.1   | 222      | 223    | 224    | 225    | )      |

TABLE 3

COMPOSITION OF FIBERS

| Name   Page   Page |   |              | ACIDIC OXIDES | (IDES    |                |                          | AMPHOTERIC OXIDES | OXIDES                   |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|---------------|----------|----------------|--------------------------|-------------------|--------------------------|-------|
| SiQ2         E265         TOTAL         TIO2         A1203         ZEO2           Conventional Mineral Mools         40.0         0.37         9.1         0.03           40.0         -         40.0         0.37         9.1         0.03           39.9         0.02         39.92         1.11         12.85         0.03           37.65         0.84         38.49         2.35         9.85         0.04           41.75         0.12         41.87         1.07         16.0         0.04           37.1         -         41.67         1.07         16.0         0.03           37.1         -         31.0         -         47.5         0.02           37.1         -         47.5         0.02         -         6.02         -           50.0         -         31.0         -         40.0         -         6.03         -           50.0         -         50.0         -         46.0         -         6.03         -         -         6.03         -         -         6.03         -         -         6.03         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ŀ |              |               |          | SUB            |                          |                   |                          | รูกธ  |
| Conventional Mineral Mools           40.0         -         40.0         0.37         9.1         0.03           39.9         0.02         39.92         1.11         12.85         0.03           37.65         0.84         38.49         2.35         9.85         0.04           41.75         0.12         41.87         1.07         16.0         0.04           41.75         0.12         41.87         1.07         16.0         0.03           31.0         -         31.0         -         47.5         0.02           31.1         -         31.0         -         47.5         0.02           37.1         -         50.0         -         40.0         -         69.2         -           50.0         -         50.0         -         40.0         -         60.0         -           54.0         -         50.0         -         40.0         -         60.0         -         60.0         -         60.0         -         60.0         -         60.0         -         60.0         -         60.0         -         60.0         -         70.0         -         70.0         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 2 <u>0</u> 3 | <u>S10</u> 2  | $P_20_5$ | TOT'AL         | $\frac{\text{TiO}_2}{2}$ | $A1_20_3$         | $\frac{2 \text{ CO}}{2}$ | TOTAL |
| 40.0       -       40.0       0.37       9.1       0.03         39.9       0.02       39.92       1.11       12.85       0.03         37.65       0.84       38.49       2.35       9.85       0.03         41.75       0.12       41.87       1.07       16.0       0.04         41.75       0.12       41.87       1.07       16.0       0.03         31.0       -       31.0       -       47.5       0.03         50.0       -       37.1       -       59.2       -         50.0       -       50.0       -       40.0       -         58.47       1.15       59.62       0.98       24.54       0.03         58.1       -       52.0       -       46.0       -         52.0       -       52.0       1.76       44.4       .23         52.0       -       52.0       1.76       44.4       .23         49.8       -       49.8       1.60       38.3       9.32         48.6       -       47.8       1.50       34.4       15.1         46.2       -       46.2       1.40       1.50       34.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 |              | onvention     |          | 1 Wools        |                          |                   |                          |       |
| 39.9       0.02       39.92       1.11       12.85       0.03         37.65       0.84       38.49       2.35       9.85       0.04         41.75       0.12       41.87       1.07       16.0       0.04         of Refractory Fibers       Fibers with less than 25% Basic Oxides       0.03         31.0       -       47.5       0.03         50.0       -       37.1       -       47.5       0.02         50.0       -       37.1       -       40.0       -       -       69.2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td></td><td>ı</td><td>40.0</td><td>ı</td><td>40.0</td><td>0.37</td><td>9.1</td><td>0.03</td><td>9,50</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | ı            | 40.0          | ı        | 40.0           | 0.37                     | 9.1               | 0.03                     | 9,50  |
| 37.65       0.84       38.49       2.35       9.85       0.04         41.75       0.12       41.87       1.07       16.0       0.03         of Refractory Fibers       Fibers with less than 25\$ Basic Oxides         31.0       -       47.5       0.03         37.1       -       47.5       0.02         50.0       -       59.0       -       40.0       -         54.0       -       54.0       -       46.0       -         58.47       1.15       59.62       0.98       24.54       0.03         52.0       -       52.0       1.76       44.4       .23         52.0       -       52.0       1.76       38.3       9.32         49.8       -       49.8       1.50       38.3       9.32         47.8       -       47.8       1.50       34.4       15.1         46.2       -       46.2       2.4       1.51         46.2       -       47.8       1.50       34.4       15.1         46.2       -       46.2       2.8       1.40       20.7         28       -       46.5       1.50       31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | t            | 39.9          | 0.02     | 39.92          | 1.11                     | 12.85             | 0.03                     | 13.99 |
| of Refractory Fibers (Fibers with less than 25% Basic Oxides)       1.07       16.0       0.03         31.0       -       47.5       0.02         37.1       -       47.5       0.02         37.1       -       47.5       0.02         50.0       -       40.0       -       69.2       -         54.0       -       54.0       -       46.0       -         58.47       1.15       59.62       0.98       24.54       0.03         52.1       -       52.0       -       44.4       .23         52.0       -       52.0       1.76       44.4       .23         49.8       -       49.8       1.50       38.3       9.32         48.6       -       48.6       1.50       34.4       15.1         46.2       -       46.2       1.40       31.0       20.7         28       -       28       1       27.4       -         64.5       -       27.4       -       27.4       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | t            | 37.65         | 0.84     | 38.49          | 2.35                     | 9.85              | 0.04                     | 12,24 |
| Of Refractory Fibers With less than 25% Basic Oxides         31.0       -       47.5       0.02         37.1       -       47.5       0.02         50.0       -       40.0       -         54.0       -       46.0       -         58.47       1.15       59.62       0.98       24.54       0.03         58.47       1.15       59.62       0.98       24.54       0.03         52.1       -       52.0       1.76       44.4       .23         49.8       -       49.8       1.71       42.2       2.93         48.6       -       48.6       1.60       38.3       9.32         46.2       -       47.8       1.50       34.4       15.1         46.2       -       28       1.40       31.0       20.7         28       -       28       19       50       3         64.5       -       64.5       -       27.4       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 4            | 41.75         | 0.12     | 41.87          | 1.07                     | 16.0              | 0.03                     | 17,10 |
| of Refractory Fibers With less than 25% Basic Oxides         31.0       -       47.5       0.02         37.1       -       37.1       -       47.5       0.02         50.0       -       50.0       -       46.0       -         54.0       -       54.0       -       46.0       -         58.47       1.15       59.62       0.98       24.54       0.03         52.1       -       52.0       1.76       44.4       .23         49.8       -       49.8       1.71       42.2       2.93         48.6       -       47.8       1.50       38.3       9.32         46.2       -       46.2       1.40       31.0       20.7         28       -       28       1       1.40       31.0       20.7         64.5       -       64.5       -       27.4       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |              |               |          |                |                          |                   |                          | _     |
| 31.0       -       47.5       0.02         37.1       -       37.1       -       69.2       -         50.0       -       50.0       -       40.0       -         54.0       -       54.0       -       46.0       -         58.47       1.15       59.62       0.98       24.54       0.03         52.1       -       52.1       1.76       44.4       .23         52.0       -       52.0       1.76       44.4       .23         49.8       -       49.8       1.60       38.3       9.32         48.6       -       48.6       1.55       36.2       12.3         46.2       -       46.2       1.50       34.4       15.1         28       -       28       19       50       3         64.5       -       27.4       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 | of           | Refractory    | Fibers   | Fibers with 10 | ess than 25% Basic       | Oxides)           |                          |       |
| -       37.1       -       59.2       -         -       50.0       -       40.0       -         -       54.0       -       46.0       -         -       52.1       0.98       24.54       0.03         -       52.1       1.76       44.4       .23         -       49.8       1.71       42.2       2.93         -       48.6       1.60       38.3       9.32         -       47.8       1.50       34.4       15.1         -       46.2       1.40       31.0       20.7         -       28       19       50       3         -       64.5       -       27.4       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |              | 31.0          |          | 31.0           |                          | 47.5              | 0.02                     | 47.52 |
| -       50.0       -       40.0       -         -       54.0       -       46.0       -         7       1.15       59.62       0.98       24.54       0.03         -       52.1       1.76       44.4       .23         -       52.0       1.71       42.2       2.93         -       49.8       1.60       38.3       9.32         -       48.6       1.50       34.4       15.1         -       46.2       1.40       31.0       20.7         -       28       19       50       3         -       64.5       -       27.4       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | ı            | 37.1          | 1        | 37.1           | 1                        | 59.2              | ı                        | 59.2  |
| -       54.0       -       46.0       -         7       1.15       59.62       0.98       24.54       0.03         -       52.1       1.76       44.4       .23         -       49.8       1.71       42.2       2.93         -       48.6       1.60       38.3       9.32         -       47.8       1.55       36.2       12.3         -       46.2       1.40       31.0       20.7         -       28       19       50       3         -       64.5       -       27.4       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • | ı            | 50.0          | ı        | 50.0           |                          | 40.0              | t                        | 40.0  |
| 7       1.15       59.62       0.98       24.54       0.03         -       52.1       1.76       44.4       .23         -       49.8       1.60       38.3       9.32         -       48.6       1.55       36.2       12.3         -       47.8       1.50       34.4       15.1         -       46.2       1.40       31.0       20.7         -       28       19       50       3         -       64.5       -       27.4       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | ı            | 54.0          | ι        | 54.0           | 1                        | 46.0              | ı                        | 46.0  |
| -       52.1       1.76       44.4       .23         -       52.0       1.71       42.2       2.93         -       49.8       1.60       38.3       9.32         -       48.6       1.55       36.2       12.3         -       47.8       1.50       34.4       15.1         -       46.2       1.40       31.0       20.7         -       28       19       50       3         -       64.5       -       27.4       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | ı            | 58.47         | 1.15     | 59.62          | 0.98                     | 24.54             | 0.03                     | 25.55 |
| -       52.0       1.71       42.2       2.93         -       49.8       1.60       38.3       9.32         -       48.6       1.55       36.2       12.3         -       47.8       1.50       34.4       15.1         -       46.2       1.40       31.0       20.7         -       28       19       50       3         -       64.5       -       27.4       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 1            | 52.1          | ı        | 52.1           | 1.76                     | 44.4              | . 23                     | 46.39 |
| -       49.8       1.60       38.3       9.32         -       48.6       1.55       36.2       12.3         -       47.8       1.50       34.4       15.1         -       46.2       1.40       31.0       20.7         -       28       19       50       3         -       64.5       -       27.4       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |              | 52.0          | 1        | 52.0           | 1.71                     | 42.2              | 2.93                     | 46.84 |
| -       48.6       1.55       36.2       12.3         -       47.8       1.50       34.4       15.1         -       46.2       1.40       31.0       20.7         -       28       19       50       3         -       64.5       -       27.4       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | ı            | 49.8          | 1        | 49.8           | 1.60                     | 38.3              | 9.32                     | 49.22 |
| -       47.8       1.50       34.4       15.1         -       46.2       1.40       31.0       20.7         -       28       19       50       3         -       64.5       -       27.4       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 1            | 48.6          | t        | 48.6           | 1.55                     | 36.2              | 12.3                     | 50.05 |
| .2 - 46.2 1.40 31.0 20.7<br>- 28 19 50 3<br>.5 - 64.5 - 27.4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 1            | 47.8          | ı        | 47.8           | 1.50                     | 34.4              | 15.1                     | 51.00 |
| - 28 19 50 3<br>.5 - 64.5 - 27.4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | ı            | 46.2          | ı        | 46.2           | 1.40                     | 31.0              | 20.7                     | 53.10 |
| .5 - 64.5 - 27.4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | ı            | 28            | ı        | 28             | 19                       | 50                | E                        | 72    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 1            | 64.5          |          | 64.5           | 1                        | 27.4              | 1                        | 27.4  |

-31-

TABLE 3 (cont'd.)

|              | SUB<br>SUB<br>SC. TOTAL TOTAL                                                                                                    | 19 100.16<br>4 100.47<br>1 100.69 | 4 101.14                        | 0      | 99.66    | 100  | 100  | 100.11 | 99.62 | 99.91 | 100.04 | 99.65 | 99.78      | 100.23           | 100 | 100.3 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|--------|----------|------|------|--------|-------|-------|--------|-------|------------|------------------|-----|-------|
|              | SUB                                                                                                                              | 0.69                              | 0.64                            | 1      | 1        | ı    | ı    | 0.71   | ı     | ı     | ł      | ı     | i          | ı                | ı   | ı     |
| 2            | Misc.                                                                                                                            | 0.59<br>0.07<br>0.19              | 0.08                            | ı      | . 1      | ı    | 1    | 0.24   | ı     | ı     | ı      |       | 1          | ı                | ı   |       |
|              | 503                                                                                                                              | 0.1<br>0.67<br>0.42               | 0.56                            | ı<br>Q | ı        | i    | ı    | 0.47   | ı     | 1     | i      | ı     | ı          | 1                | ı   | 1     |
|              | SUB                                                                                                                              | 45.82                             | ).63 41.53 0<br>Basic Ovided    | 21.4   | 3.3      | 10.0 | ı    | 14.23  | 1.13  | 1.07  | 1.02   | 1.00  | . 98       | 0.93             | 1   | 8.4   |
| 31           | K20                                                                                                                              | 0.55<br>0.27<br>0.80              | _                               | 1      | ı        | ı    | 1 .  | 1.18   | 90.   | 90.   | 90.    | 90.   | 90.        | 90.              | ı   | ı     |
|              | Na <sub>2</sub> 0                                                                                                                | 0.54                              | 2.04<br>an 25                   | 20.2   | 3.1      | 4.4  |      |        | . 05  | . 05  | .05    | . U.S |            | 60.              | 1 . | ľ     |
|              | Bao                                                                                                                              | 0.04                              | ss th                           | 1      | ı        |      | , ,  | 0.54   | 1     | 1     | t i    | ı     | <b>l</b> 1 | ١,               | · • |       |
| ES           | <u>Ca0</u>                                                                                                                       | 36.5<br>38.55<br>23.55            | s (Fibers with less than 25%    | 1.2    | 0.5      | 9°6  |      | )      | 21.0  | 0.12  | 0.12   | 0.12  | 0.12       | 2<br>4<br>• 1    | ı   |       |
| BASIC OXIDES | MGO L1 <sub>2</sub> 0<br>neral Wools                                                                                             | 0.01<br>0.01<br>0.01              | bers                            | ı      | <i>i</i> | l i  | 0.02 | 30.1   | 1     | ı     | 1      | 1     | ı          | ,                | 4   |       |
| BASI         | Mineral                                                                                                                          | 11.2<br>6.05<br>12.95<br>6.45     | ers (Fi                         | ı      | 1 1      |      | 1.44 |        | 0.07  | 0.07  | 0.07   | 0.07  | 0.07       | i                | 1   |       |
|              | $\frac{Cr_2O_3}{ional}$                                                                                                          | 0.02<br>0.04<br>0.04              | Composition of Refractory Fiber | 1 1    | , ,      | 1    | 0.00 | ı      | ı     | 1     | ı      | ı     | ı          | ,                | i   |       |
|              | NO. FeO <sub>3</sub> MnO La <sub>2</sub> O <sub>3</sub> Cr <sub>2</sub> O <sub>3</sub> Composition of Conventional 226 0.47 0.64 | 111                               | efracto                         |        | ı        | i    | 1    | ı      | ı     | ı     | ı      | ı     | 1          | 1                | 1   |       |
|              | Mno<br>n of (                                                                                                                    | 0.24<br>0.22<br>0.23              | of R                            | l ı    | ı        | ı    | 0.02 | ı      | ı     | ŧ     | 1      | 1     | ı          | 1                | 1   |       |
|              | FeO <sub>3</sub><br>Ssitio                                                                                                       | 0.35<br>9.7<br>3.75               | sition<br>-                     | ı      | i        | 1    | 3.70 | .83    | .77   | .72   | .70    | .68   | . 63       | ı                | ı   |       |
| TEST         | NO.<br>Compo                                                                                                                     | 228                               | Compo<br>233                    | 232    | 233      | 234  | 235  | 236    | 237   | 238   | 339    | :40   | :41        | . <del>4</del> 2 | 43  |       |

|                | ADDITIONS                          |               |
|----------------|------------------------------------|---------------|
|                | LIMINA                             |               |
| 4              | WI T'H                             |               |
| ABLE           | MADE                               |               |
| . <del>.</del> | TEST RESULTS ON FIBERS MADE WITH A |               |
|                | ON                                 |               |
|                | RESULTS                            |               |
|                | TEST 1                             | · · · · · · · |

| -                   |
|---------------------|
| =                   |
| -                   |
| $\sim$              |
| $\boldsymbol{\Box}$ |
| _                   |
| -                   |
|                     |
| K                   |
|                     |
| -                   |
| Z                   |
| 7.7                 |
| =                   |
| $\mathbf{z}$        |
|                     |
| الم                 |
|                     |
| <u> </u>            |
| اے                  |
| =                   |
|                     |
| اند                 |
|                     |
|                     |

| DATA          |                  |            | Saline       | oral Extraction Thickness 2 Hour | ppm. Si Density                                                       |           |            |           | 30    | 51       | 69 .     | .39 70 2.0/1.87 F | 47         | .30 46    |            | ) u       | 0         | ı         | 59             | 80         | .61 49 2.0 /1.91 F | 61            | 74         | , c          | ט מ        |          |                 |  |
|---------------|------------------|------------|--------------|----------------------------------|-----------------------------------------------------------------------|-----------|------------|-----------|-------|----------|----------|-------------------|------------|-----------|------------|-----------|-----------|-----------|----------------|------------|--------------------|---------------|------------|--------------|------------|----------|-----------------|--|
|               |                  |            | İ            |                                  | 1                                                                     |           | 2.0/1.97   | 1         | 1     | 2.0/1.94 | 2.0/2.12 | 2.0/1.87          |            | I         | I          | 1         | 1.88/2.20 | 2.0 /1.97 | 2.0 /1.91      | 2.0 /1.91  | 2.0 /1.91          | 2.0 /1.91     | 2.0 /1 94  | 2 0 1/ 0 2   | 2.0 / 1.91 | 7.01     | †               |  |
|               | 3                | Jnou c     | Saline       | Extractio                        | . mdd                                                                 |           | <b>8</b> 3 | 89        | 30    | 51       | 69 .     | 70                | 47         | 46        | 40         |           | 0         | ı         | 59             | 80         | 49                 | 61 .          | 74         | , 8 <b>.</b> | 0 C        | א נ      | )<br>)          |  |
| WIND THE DATA |                  |            | E            | Total                            | Analytical                                                            | 6         | 100.20     | 100.47    | 79.66 | 09.60    | 100.57   | 99.39             | 99.97      | 100.30    | 100.10     | 99.56     | 0 0       | 99.83     | 50.64<br>50.64 | 99.94      | 99.61              | 100.54        | 99.22      | 99.39        | 99.32      | 100.98   | Failed          |  |
|               |                  |            | Basic Oxides | 201102                           | MgO Total                                                             | 10 8 46 0 |            | 36 5 44 1 |       |          |          | 0.23 42.75        | 7.39 42.59 | 17.6 42.2 | 6.84 41.94 | 3.95 41.1 | 6.2 41 05 |           | 4.33 41.33     | 4.79 40.59 | 0.31.41.21         | 26.3 41.7     | 5.36 40.46 | 0.27 40.57   | 5.6 40.1   | 6.2 41.7 |                 |  |
|               | I. WT&           |            | Basi         |                                  | <u>a0</u> -                                                           | 1.5       | ונכ        | <u>ب</u>  |       | · -      | <b>,</b> | ,                 | 12.4       | 24.5      | 35.0       | 36.95     | 34.75     |           |                |            | (                  |               | 35.0       | 40.2 (       | 34.4       | 35.4     | d = d **        |  |
|               | COMPOSITION, WT& | Amphoteric | Oxides       |                                  | <u>A1</u> 2 <sup>2</sup> 3 <u>Total</u> <u>C</u><br>Amphoteric Oxides | 0.35      | 0.42       | 1.02      | 0.10  | 0.42     | 0.24     |                   |            | 1.05      | 1.11       | 0.94      | 0.78      | 0.05      | 1.10           | 3 0        |                    | ٠. ت<br>د . ت | 0.11       | 0.07         | 0.53       | 0.43     |                 |  |
| •             | S                | Amph       | 0            | 1.4                              |                                                                       | •         | 0.40       | 1.00      | 0.08  | 0.40     | 0.20     | 6                 | •          | 1.03      | 1.09       | 0.92      | 0.75      | 0.03      | 1.08           | 0.03       | 22.0               |               | 0.09       | 0.05         | 0.49       | 0.41     | erizable        |  |
|               |                  | Acidic     | Oxides       | o i s                            |                                                                       | 53.8      | 53.9       | 54.5      | 55.9  | 56.0     | 56.35    | 56.4              |            | 97.0      | 57.0       | 57.25     | 57.8      | 58.1      | 58.2           | 58.3       | 58.4               |               | 08.0       | 58.7         | 58.5       | 58.8     | Not Fiberizable |  |
|               |                  |            |              | Q.                               | 0<br>t.                                                               | 20        | 21         | . 22      | 23    | 24       | 35       | 9;                | ŗ          | . :       | <b>∞</b>   | ō.        | 0         | -         | 7              | m          | 4                  | Ľ             | n          | 9            | 7          | m        | 11              |  |

## EXPERIMENTAL DATA

|             |                 |            |                  |                   |           |          |            |            | ,          | - 3 5      | -          |            |           |           |            |           |           |           |            |            |           |            |          |                 |
|-------------|-----------------|------------|------------------|-------------------|-----------|----------|------------|------------|------------|------------|------------|------------|-----------|-----------|------------|-----------|-----------|-----------|------------|------------|-----------|------------|----------|-----------------|
|             | <u>'rest</u>    | 2 Hour     | Test*            |                   | <b>a</b>  | <b>a</b> | <u>a</u>   | <u>-</u>   | 2          | 2          | <u>-</u>   | Ŀ          | í.        | <b>-</b>  | a,         | d         | <b>4</b>  | 2         | <b>-</b>   | <u>.</u>   | <u>-</u>  | <u>-</u>   |          |                 |
|             | E-119 Fire fest | Thickness  | Density          |                   | 2.0/1.86  | 2.0/1.97 | 2.0/1.90   | 2.5/1.4    | 2.0/1.95   | 2.0/1.92   | 2.0/1.90   | 2.0/1.89   | 2.0/1.88  | 2.0/1.91  | 2.0/2.01   | 2.0/1.98  | 2.0/1.95  | 2.0/1.91  | 2.0/1.89   | 2.0/1.95   | 2.0/1.94  | 2.0/1.93   |          | - • •           |
| 5 Hour      | Saline          | Extraction | ppm. Si          |                   | 29        | 49       | 89         | 47         | . 09       | 61         | 77         | 73         | 51        | 70        | 30         | 47        | 45        | 41        | 59         | 45         | 36        | 51         | 56       |                 |
|             |                 | Total      | Analytical       |                   | 99.45     | 99.21    | 100.09     | 101.11     | 99.94      | 100.11     | 99.87      | 99.95      | 100.8     | 6.66      | 100.86     | 100.55    | 100.78    | 100.58    | 99.30      | 99.97      | 100.68    | 76.99      | 100.17   | = Failed        |
|             |                 | ic Oxides  | MgO Total        |                   | 6.10 40.4 | 3.8 39.9 | 0.43 40.83 | 36.8 41.60 | 4.75 40.40 | 10.7 40.60 | 5.98 40.28 | 8.16 40.36 | 16.8 39.6 | 11.4 40.2 | 0.11 40.71 | 12.9 39.0 | 11.0 39.4 | 16.4 39.0 | 6.36 38.76 | 9.85 38.45 | 10.7 38.9 | 9.47 38.27 | 3. 39.10 | Poor, F         |
| WT\$        |                 | Basi       | Ca0              | les               | 34.2      | 35.9     | 40.3       | 4.7        | 35.55      | 29.8       | 34.2       | 32.1       | 22.5      | 28.7      | 40.5       | 25.8      | 28.1      | 22.3      | 32.3       | 28.5       | 27.9      | 28.7       | 36.      | = d **          |
| COMPOSITION | eric            | Oxides     | Total            | Amphoteric Oxides | 0.10      | 0.26     | 0.11       | 0.26       | 0.34       | 90.0       | 0.04       | 0.04       | 1.45      | 0.05      | 0.30       | 1.50      | 1.33      | 1.43      | 0.19       | 1.07       | 1.13      | 0.95       | 0.22     | e<br>U          |
| COME        | Amphoteric      | 0x1        | $A1_20_3$        |                   | 0.08      | 0.24     | 0.09       | 0.24       | 0.32       | 0.04       | 0.02       | 0.02       | 1.43      | 0.03      | 0.28       | 1.48      | 1.31      | 1.41      | 0.17       | 1.05       | 1.11      | 0.93       | 0.2      | Not Fiberizable |
|             | Acidic          | Oxides     | S10 <sub>2</sub> | 1 1/2\$           | 58.9      | 59.0     | 59.1       | 59.2       | 59.15      | 59.4       | 59.5       | 59.5       | 59.6      | 59.6      | 59.8       | 59.9      | 59.9      | 60.09     | 60.3       | 60.4       | 60.5      | 60.7       | 8.09     |                 |
|             |                 |            | NO.              | 0 to              | 39        | 40       | 41         | 42         | 43         | 44         | 45         | 46         | 47        | 48        | 20         | 51        | 52        | 53        | 54         | 55         | 56        | 57         | 58       | ii<br>≉         |

|                   |             | Test.           | 2 Hom:      | TPS:                            |                   | a          | . a.     | . 2.       | à          | ù          | <u>a</u> | <u>a</u> | ೭          | ď          | ď          | ď          | d          | ſτ       | c.        |            | 1 2.     | <u>-</u>   | Ŀ        |                 |
|-------------------|-------------|-----------------|-------------|---------------------------------|-------------------|------------|----------|------------|------------|------------|----------|----------|------------|------------|------------|------------|------------|----------|-----------|------------|----------|------------|----------|-----------------|
|                   |             | E-119 Fire Test | Thickness   | Density                         |                   | 2.0/1.97   | 2.0/1.88 | 2.0/1.92   | 2.0/1.82   | 2.0/1.95   | 2.0/1.96 | 2.0/1.91 | 2.0/2.01   | 2.0/1.88   | 2.0/1.88   | 2.0/1.99   | 2.0/1.91   | 2.0/1.88 | 2.0/2.00  |            | 2.0/1.87 | 2.0/1.91   | 2.0/1.88 |                 |
|                   | 5 Hour      | Saline          | Extraction  | ppm. Si                         |                   | 65         | 76       | 99         | 64         | 46         | 19       | 12.      | 52         | 17         | 7          | 49         | 37         | 46       | 35        | 44         | 30       | 25         | 46       |                 |
| EXPERIMENTAL DATA |             |                 | Total       | Analytical                      | -                 | 89.66      | 99.81    | 99.63      | 06.66      | 79.69      | 99.92    | 100.06   | 99.29      | 86.66      | 99.07      | 99.17      | 99.58      | 99.94    | 99.68     | 99.80      | 99.80    | 99.78      | 99.84    | F = Failed      |
| EXPERIM           |             |                 | asic Oxides | MgO Total                       |                   | 5.19 37.89 | 5 37.3   | 6.64 37.04 | 7.70 37.30 | 5.28 36.48 | 2 35.5   | 9 35.0   | 5.79 34.29 | 8 34.7     | 2.60 33.67 | 4.83 33.53 | 6.68 34.18 | 1 33.32  | 6.50 34.0 | 5.21 33.91 | 8 33.8   | 7.88 33.78 | 1 33.23  | = Poor,         |
|                   | 3,0         | ٠               | Basic (     |                                 |                   | 9          | .7 15.5  | Э          | .5         | .1         | .2 10.2  | .0 10.9  | 4          | .8 11.8    | 30.97 2.   |            | 4          | 12 30.1  | 4         |            | 9 11.8   |            | .12 30.1 | 4 * P           |
|                   | N, WT&      |                 |             | <u>Cao</u>                      | <u>kides</u>      | 32.        | 21.      | 30.        | 29         | 31         | 25       | 24       | 28.        | 22.8       | 30         | 28.6       | 27.        | 3.       | 27.       | 28.6       | 21.9     | 25.8       | Э.       |                 |
|                   | COMPOSITION | Amphoteric      | 0xides      | Total                           | Amphoteric Oxides | 0.04       | 0.06     | 0.04       | 0.05       | 0.04       | 1:27     | 1.51     | 1.15       | 1.43       | 1.25       | 1.49       | 0.05       | 1.17     | 0.03      | 0.04       | 0.05     | 0.05       | 1.17     |                 |
|                   | COM         | Ampho           | XO          | $\frac{A1}{2}$                  | 1                 | 0.02       | 0.04     | 0.02       | 0.03       | 0.02       | 1.25     | 1.49     | 1.13       | 1.41       | 1.23       | 1.47       | 0.03       | 1.15     | 0.01      | 0.02       | 0.03     | 0.03       | 1.15     | Not Fiberizable |
|                   |             | Acidic          | Oxides      | $\frac{\text{Si0}_2}{\text{2}}$ | 0 to 1 1/2\$      | 61.7       | 62.4     | 62.5       | 62.5       | 63.1       | 63.1     | 63.5     | 63.8       | 63.8       | 64.1       | 64.1       | 65.3       | 65.4     | 9.59      | 65.8       | 62.9     | 65.9       | 65.4     | dot Fibe        |
|                   |             |                 |             | NO.                             | 0 to              | 59         | . 09     | 61         | 62         | 63         | <b>?</b> | S<br>IR  | ğ<br>IT?   | 711<br>711 | 11         | <b>6</b> 9 | <b>FE</b>  | 171      | 72        | 73         | 74       | 75         | . 9/     | <br>            |

|                          |            | e Test        | 2 Hour           | Testar                    | :         | <b>4</b> .                          | <b></b>  | • •      | <b>:</b> | <u>.</u>   | ı .      | <u>.</u> 1 |             |                              | 4      | к <u>(</u> | <b>4</b> 9 | <b>L</b> | 1 2      | <b>.</b> 2 | . =      | . а      | . 1   | â        | -                    |
|--------------------------|------------|---------------|------------------|---------------------------|-----------|-------------------------------------|----------|----------|----------|------------|----------|------------|-------------|------------------------------|--------|------------|------------|----------|----------|------------|----------|----------|-------|----------|----------------------|
|                          |            | mbigle        | Thickness        | _VEIISTEY_                |           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 0/2 03 | (0.2/0.2 | 00 670 6 | 2.0/2.00   | 00 6/0 6 | 00.2/0.2   |             |                              | •      | 30 (70 6   | 2.0/1.88   | 2.0/1.05 | 2.071 99 | 2.0/1.82   | 2.0/1.87 | 2.0/2.06 |       | 2.0/1.98 |                      |
|                          | 5 Hour     | Bytraction    | pom si           |                           | 50        | 78                                  | 84       | · *      | 18       | 3.1        | 30       | 18         |             |                              | 1      | 5.1        | 39         | 65       | 4 4      | 18         | σ        | 25       | 11    | 29       |                      |
| <u>EXPERIMENTAL DATA</u> |            | Total         | Analytical       |                           | 99.88     | 100.18                              | 100.06   | 100.25   | 99.11    | 100.45     | 6.66     | 100.05     |             |                              | 100.17 | 100.27     | 99.58      | 99.89    | 100.71   | 99.33      | 99.40    | 99.24    | 99.91 | 99.85    | ed.                  |
| <b>М</b> ТИЗАХЗ          |            | ides          | Total            |                           | 33.02     | 33.03                               | 32.77    | 31.8     | 30.19    |            | 30.9     | 31.0       |             |                              | 48.1   | 45.6       | 41.0       | 41.8     | 40.43    | 38.1       | 37.4     | 37.1     | 37.5  | 38.0     | F = Failed           |
|                          |            | Basic Oxides  | MgO              | nt.)                      | 4.02 28.7 | 6.43 26.5                           | 67 24.0  | 30.1     | 1.09     | 21.3       | 12.7     | 23.8       |             |                              | 43.0   | 41.7       | 10.6       | 17.3     | 36.3     | 1.4        | 1.0      | 2.1      | 10.0  | 9.9      | Pass,                |
| 64<br>E                  | 1          | Bas           | <u>Ca0</u>       | les (Co                   | 4.02      | 6.43                                | 8.67     | 1.6      | 29.0     | 10.2       | 18.1     | 7.2        |             | des                          | 5.0    | 3.8        | 30.3       | 24.4     | 3.83     | 36.6       | 36.3     | 34.9     | 27.4  | 28.0     | = d *                |
| COMPOSTATON              | Amphoteric | Oxides        | Total            | Amphoteric Oxides (Cont.) | 0.61      | · 1                                 | 0.04     | ı        | 0.27     | ı          | 0.05     |            |             | 1/2% to 3% Amphoteric Oxides | 2.02   | 2.03       | 2.43       | 1.84     | 2.03     | 2.28       | 2.95     | 2.69     | 2.56  | 1.70     |                      |
| Ö                        | Ampho      | 0             | $A1_{2}0_{3}$    | - 1                       | 0.59      | ı                                   | 0.02     | ľ        | 0.25     | ı          | 0.03     |            |             | Ampho                        | 2.00   | 2.00       | 2.41       | 1.82     | 2.01     | 2.26       | 2.93     | 0.38     | 2.54  | 1.68     | rizable              |
|                          | Acidic     | <u>Oxides</u> | Si0 <sub>2</sub> | 0 1 1/2\$                 | 66.1      | 67.1                                | 67.2     | 68.4     | 9.89     | 68.8       | 68.89    | 0.69       |             | /2% to 3%                    | 50.0   | 52.6       | 56.1       | 56.2     | 58.1     | 58.9       | 29.0     |          | 59.8  | 60.1     | Not Fiberizable      |
|                          |            |               | NO.              | 0 to                      | 77        | 78                                  | 79       | 80       | 81       | 8 <b>6</b> | n<br>n   | 4<br>      | <b>~.</b> . | 1 1                          | 82     | 98         | 87         | 88       | 83       | 06         | 91       | 95       | 93    |          | <br>  <br>  <b>4</b> |

|                   |             | !               | -             |                        |                      | ٠        |          |          |            |          |          | <b>-</b> 3 | <b>6</b> – |          |          |        |          |          |                           |       |          |           |                 |
|-------------------|-------------|-----------------|---------------|------------------------|----------------------|----------|----------|----------|------------|----------|----------|------------|------------|----------|----------|--------|----------|----------|---------------------------|-------|----------|-----------|-----------------|
|                   |             | Test            | 2 Hour        | Test. * *              |                      | <b></b>  | <u>a</u> | 24       | <b>2</b> , | ÷        | a,       | a,         | <u>.</u>   | <b>a</b> | a.       | Ь      | ď        | ď        |                           | 1     | £.,      | <b>2.</b> |                 |
|                   |             | E-119 Fire Test | Thickness     | Density                |                      | 2.0/2.04 | 2.0/1.87 | 2.0/1.91 | 2.0/1.93   | 2.0/1.90 | 2.0/1.91 | 2.0/1.96   | 2.0/1.87   | 2.0/1.94 | 2.0/1.95 | ı      | 2.0/1.91 | 2.0/1.90 |                           | 1     | 2.0/1.96 | 2.0/2.06  |                 |
|                   | 5 Hour      | Saline          | Extraction    | ppm. Si                |                      | 50       | 18       | 61       | 51         | 55       | 13       | 18         | 37         | 38       | 12       | 17     | 33       | 2        |                           | 33    | 19       | 33        |                 |
| EXPERIMENTAL DATA |             |                 | Total         | Analytical             |                      | 100.18   | 100.04   | 100.03   | 99.01      | 99.28    | 99.02    | 99.66      | 99.05      | 99.11    | 100.4    | 100.57 | 99.73    | 99.47    |                           | 99.65 | 69.66    | 100.93    | Failed          |
| EXPERIME          |             |                 | des           | Total                  |                      | 37.7     | 36.4     | 36.9     | 34.3       | 34.4     | 34.1     | 35.1       | 33.4       | 33.3     | 34.3     | 33.15  | 32.5     | 30.9     |                           | 46.18 | 45.74    | 41.89     | li<br>Cen       |
|                   |             |                 | ic Oxides     | M90                    | ont.)                | 4.9      | 10.1     | 6.9      | 0.2        | 0.2      | 0.3      | 9.4        | 0.2        | 2.5      | 16.3     | 23.1   | 29.7     | 0.1      |                           | 40.9  | 0.64     | 33.7      | Pass,           |
|                   | MT8         |                 | Bas           | Ca0                    | 9                    | 32.7     | 26.2     | 29.9     | 34.0       | 34.1     | 33.8     | 25.6       | 33.1       | 30.7     | 17.7     | 9.74   | 2.7      | 30.7     |                           | 4.98  | 45.0     | 7.89      | 11<br>Q * *     |
|                   | COMPOSITION | Amphoteric      | Oxides        | <u>Total</u>           | 3% Amphoteric Oxides | 2.23     | 2.19     | 1.68     | 2.86       | 2.83     | 2.77     | 1.81       | 2.56       | 1.86     | 1.85     | 2.17   | 1.58     | 1.82     | Oxides                    | 3.52. | 3.60     | 3.79      | o)              |
|                   | 00          | Ampho           | ô             | $\frac{A1}{2}$         | & Ampho              | 2.21     | 2.17     | 1.66     | 2.84       | 2.81     | 2.75     | 1.79       | 2.54       | 1.84     | 1.83     | 2.15   | 1.56     | 1.80     | oteric                    | 3.5   | 3.58     | 3.77      | erizabl         |
|                   |             | Acidic          | <u>Oxides</u> | $\frac{\text{sio}}{2}$ | 1 1/2% to 3          | 60.2     | 61.4     | 61.4     | 61.8       | 62.0     | 62.1     | 62.7       | 63.0       | 63.9     | 64.1     | 65.1   | 9:59     | 66.7     | 3 to 4% Amphoteric Oxides | 49.8  | 50.3     | 55.1      | Not Fiberizable |
|                   |             |                 |               | NO.                    | 1 1/                 | 95       | 96       | 97       | 86         | 66       | 100      | 101        | 102        | 103      | 104      | 105    | 106      | 107      | 3 to                      | 108   | 109      | 110       | ii<br>*         |

| 4        |
|----------|
| $\equiv$ |
|          |
| ≈        |
| 뻭        |
| -        |
| 램        |
| 54       |
|          |
| ZΙ       |
|          |
| Σį       |
|          |
| ≃        |
| 2        |
| ۱,       |
| ×        |
| -11      |
|          |
|          |
|          |
|          |

|                  |                 |              |                     | : !                        |            |            |          |            |        |            |         | •          |            |               |             |                             |       |          |          |            |                   |
|------------------|-----------------|--------------|---------------------|----------------------------|------------|------------|----------|------------|--------|------------|---------|------------|------------|---------------|-------------|-----------------------------|-------|----------|----------|------------|-------------------|
|                  | 4000            | J. Hours     | 1011 7<br>1004      |                            | 1          | . 6        | . :      | . <u>c</u> | • !    | : 6        | . :     | _ 3        | <b>.</b> . | <b>.</b> , 2, |             |                             | ı     | ï        | . &      | . <u>:</u> | •                 |
|                  | E-119 Fire West | Thickness    | Density             |                            | 2, 0/2, 12 | 2.0/1.99   | 2.0/1.89 | 2.0/4.02   |        | 2.071.93   | 2 0/1 9 | 2 0 / 2 0  | 2.2/2.2    | 2.0/1.94      |             |                             | 1     | 2.0/1.88 | 2.0/1.99 | 2.0/2.00   |                   |
| 5 Hour           | Saline          | Extraction   | pom. Si             |                            |            | ı          | 19       | 40         | 51     | 9          | 20      | 38         | 2.8        | 18            |             |                             | 37    |          | 4        | 32         | ;                 |
|                  |                 | Total        | Analytical          |                            | 101.16     | 100.98     | 100.09   | 100.11     | 101.02 | 99.41      | 99.72   | . 66.19    | 69.67      | 99.38         |             |                             | 99.91 | 100.47   | 99.91    | 99.45      | ויים              |
|                  |                 | des          | Total               |                            | 41.85      | 40.78      | 39.8     | 40.28      | 40.45  | 0.75 38.55 | 38.5    | 0.67 37.17 | 0.24 37.04 | 34.34         |             |                             | 46.1  | 39.4     | 37.55    | 37.7       | = Pass F = Failed |
|                  |                 | Basic Oxides | MgO                 | -                          | 4.65       | 36.51 4.17 | 16.2     | 16.6       | 4.00   | 0.75       | 12.8    | 0.67       | 0.24       | 0.24          |             | -                           | 19.6  | 9.5      | 5.65     | 15.6       | . Pass.           |
| WT.8             |                 | Bas          | <u>Ca0</u>          | (Cont.)                    | 37.1       | 36.51      | 23.5     | 23.4       | 36.45  | 37.7       | 25.6    | 36.4       | 36.7       | 34.0          |             |                             | 26.4  | 30.1     | 31.8     | 22.0       | # b               |
| COMPOSITION, WT& | teric           | Oxides       | Total               | 3% to 4% Amphoteric Oxides | 3.66       | 3.65       | 3.54     | 3.08       | 3.64   | 3.31       | 3.07    | 3.77       | 3.78       | 3.79          |             | oxides                      | 4.06  | 5.22     | 5.41     | 4.70       |                   |
| COM              | Amphoteric      | OX           | $\frac{A1}{2}$      | photerio                   | 0.24       | 0.35       | 3.52     | 3.06       | 0.32   | 3.29       | 3.05    | 3.75       | 3.76       | 3.77          | ;<br>;<br>; | T CO OF WILDINGLETIC UXIDES | 4.04  | 5.20     | 5.40     | 4.68       | Not Fiberizable   |
|                  | Acidic          | Oxides       | No. $\sin \theta_2$ | 0 48 Am                    | 55.6       | 56.5       | 26.7     | 26.7       | 56.88  | 57.5       | 58.1    | 58.2       | 58.80      | 61.2          | 9<br>7<br>7 | dilla so                    | 49.7  | 55.8     | 56.85    | 57.0       | ot Fibe           |
| •                | •               | ٠,           | NO.                 | 38 t.                      | 111        | 112        | 113      | 114        | 1:15   | 115a       | 116     | 117        | 119        | 120           | 4           |                             | 121   | 122      | 123      | 124        | Z<br>  <br> *     |

| TA    |
|-------|
| I. DA |
| ENTA  |
| PERIM |
| ΕX    |

|              |            | !                   | <u>.</u> .           | k l                       |       | •        |            |          |          |          |            | . 0      |              |                            |        |       |                |        |          |        |          |                 |
|--------------|------------|---------------------|----------------------|---------------------------|-------|----------|------------|----------|----------|----------|------------|----------|--------------|----------------------------|--------|-------|----------------|--------|----------|--------|----------|-----------------|
|              | •          | Test                | Thom 7               | es: ×                     |       | ! 4      | 4 <b>6</b> | . 2      | . 6      | . 6      | <b>.</b> 1 | 2        | - <u>(</u> - |                            | ı      | ı     | ı              | I      | Ĺŧ       | • 1    | ŝ.       | •               |
|              |            | Thickness 1150 Test | Doneitu              | Vella LY                  | ı     | 2 071 97 | 2.0/2.0    | 2.0/3.17 | 2.0/1.98 | 2.0/2.04 |            | 2.072.01 | 2.0/2.04     |                            | 1      |       | 1              | 1      | 2.071.99 |        | 2.0/2.05 | _               |
|              | Saline     | Extraction          | is mud               |                           | 37    | . 9      | 19         | 18       | 7        | 4        | 2          | 2        | . 0          |                            | 12     | 13    | <sub>,</sub> m | 1.2    | 1.0      | 1.7    | 1.2      |                 |
|              |            | Total               | Analytical           |                           | 98.72 | 99.83    | 99.57      | 99.43    | 79.69    | 100.11   | 100.27     | 99.93    | 6.66         |                            | 100.17 | 98.69 | 99.45          | 101.02 | 100.05   | 101.37 | 100.37   | Failed          |
|              |            | des                 | Total                |                           | 52.6  | 45.2     | 43.8       | 41.5     | 37.3     | 37.6     | 35.6       | 35.2     | 33.1         |                            | 52.2   | 46.76 | 46.12          | 40.0   | 37.81    | 38.9   | 34.5     | F = Fai         |
|              |            | Basic Oxides        | MgO                  |                           | 14.0  | 0.3      | 18.4       | 15.2     | 6.5      | 6.9      | 29.7       | 4.0      | 5.1          |                            | 13.7   | 9.6   | 0.52           | 16.2   | 4.21     | 16.3   | 10.9     | = Pass,         |
| WT&          |            | Bas                 | Ca0                  |                           | 38.5  | 44.8     | 25.3       | 26.2     | 30.7     | 30.6     | 5.9        | 31.2     | 27.9         |                            | 38.4   | 36.7  | 45.5           | 23.7   | 33.5     | 22.5   | 23.5     | # # p           |
| COMPOSITION, | Amphoteric | Oxides              | Total                | 6 to 8% Amphoteric Oxides | 6.92  | 7.68     | 6.42       | 7.48     | 7.62     | 6.36     | 6.72       | 6.18     | 7.10         | 8 to 10% Amphoteric Oxides | 9.32   | 9.13  | 8.78           | 8.92   | 69.6     | 8.72   | 9.22     | a               |
| CO           | Ampho      | ô                   | A1203                | hoteric                   | 6.90  | 7.66     | 6.40       | 7.45     | 7.60     | 6.34     | 6.7        | 6.16     | 7.08         | photeri                    | 9.3    | 8.8   | 8.76           | 6.8    | 6.67     | 8.7    | 9.5      | erizable        |
|              | Acidic     | <u>Oxides</u>       | No. Sio <sub>2</sub> | 8 Amp                     | 39.5  | 46.9     | 49.3       | 50.4     | 54.7     | 56.1     | 57.9       | 58.5     | 59.7         | 10% Am                     | 38.6   | 42.8  | 44.5           | 52.1   | 52.5     | 53.7   | 56.6     | Not Fiberizable |
|              |            |                     | NO.                  | 6 to                      | 125   | 126      | 127        | 128      | 129      | 130      | 131        | 132      | 133          | 8 to                       | 134    | 135   | 136            | 137    | 138      | 139    | 140      | <br>  <br> -    |

-40-

EXPERIMENTAL DATA

|                             | COM                | COMPOSITION,                                                                        | MT%                        |              |       |                   | 5 Hour     |                  |               |
|-----------------------------|--------------------|-------------------------------------------------------------------------------------|----------------------------|--------------|-------|-------------------|------------|------------------|---------------|
| Acidic                      | Amphoteric         | teric                                                                               |                            |              |       |                   | Saline     | E-119 Fire Test. | Test.         |
| Oxides                      | 0×                 | Oxides                                                                              | Bas                        | Basic Oxides | des   | Total             | Extraction | Thickness        | 2 Hour        |
| 1 SiO <sub>2</sub> to 12% P | Al <sub>2</sub> 03 | . SiO <sub>2</sub> Al <sub>2</sub> O <sub>3</sub> Total<br>to 12% Amphoteric Oxides |                            | MgO          | Total | <u>Analytical</u> | ppm, Si    | Density          | Testar        |
| 1 41.0                      | 10.05              | 10.01                                                                               | 48.25                      | 0.3          | 48.70 | 99.87             | . 9        | 2.0/2.00         | <u> 24.</u>   |
| 2 51.3                      | 10.9               | 10.92                                                                               | 37.2                       | 0.2          | 37.5  | 77.66             | 0.8        | 2.0/2.04         | <b>14</b> 0.  |
| 3 52.4                      | 10.7               | 10.72                                                                               | 23.1                       | 16.1         | 39.3  | 102.42            | 0.7        | 2.0/2.00         | , <b>:</b> ±. |
| 4 52.7                      | 10.2               | 10.22                                                                               | 22.1                       | 16.0         | 38.2  | 101.12            | 0.5        | I                | . l.          |
| to 20% /                    | \mphoter.          | to 20% Amphoteric Oxides                                                            |                            |              |       | •                 |            |                  |               |
| 5 41.5                      | 13.0               | 13.02                                                                               | 44.2                       | 0.5          | 44.8  | 99.37             | 1.2        | I                |               |
| 6 49.8                      | 18.0               | 18.02                                                                               | 31.5                       | 0.2          | 32.02 | 99.89             | 0.5        | ı                | J.,           |
| 7 55.6                      | 12.9               | 12.92                                                                               | 13.2                       | 18.4         | 31.7  | 100.27            | 1.8        | 2.0/2.54         | <b></b>       |
|                             |                    | ٠                                                                                   |                            |              |       |                   |            |                  |               |
| to 30\$                     | Amphoter           | to 30% Amphoteric Oxides                                                            |                            |              |       |                   | •          |                  | ~             |
| 8 36.5                      | 28.4               | 28.42                                                                               | 34.4                       | 0.3          | 34.8  | 77.66             | 9.0        | i                | . <b>J</b>    |
| 9 40.3                      | 21.5               | 21.52                                                                               | 37.5                       | 0.3          | 37.9  | 77.66             | 8.0        | ı                | _1            |
| 0 42.6                      | 25.7               | 25.72                                                                               | 31.2                       | 0.3          | 31.6  | 76.66             | 9.0        | I                | . 1           |
| 1 48.4                      | 22.4               | 22.42                                                                               | 16.5                       | 12.6         | 29.5  | 100.07            | 0.5        | 2.0/2.01         | _ <b>64</b> _ |
| 2 59.9                      | 22.8               | 22.82                                                                               | 3.1                        | 14.0         | 17.2  | 76.66             | 0.7        | 2.0/2.01         | <b>54</b> ,   |
| 4                           | 1<br>4<br>0<br>1   |                                                                                     |                            |              |       |                   |            |                  |               |
| TO 408                      | Amphorer           | to 40% Amphoteric Oxides                                                            |                            |              |       |                   |            | -                |               |
| 3 45.9                      | 31.3               | 31.32                                                                               | 5.9                        | 16.7         | 22.7  | 99.97             | 2.3        | 1 .              | 1             |
| = Not Fil                   | Not Fiberizable    | a                                                                                   | ::<br>::<br>::<br>::<br>:: | = Pass,      | Ŀ     | = Failed          |            |                  |               |

TABLE 5
FIBERS MADE WITH VARIOUS ADDITIVE CONSTITUENTS

|                  |                      |                                                     | ANALYSES        |       |        |                                              | 5 Hour                          |                                  |                             |
|------------------|----------------------|-----------------------------------------------------|-----------------|-------|--------|----------------------------------------------|---------------------------------|----------------------------------|-----------------------------|
| NO.              | Acidic<br>NO. Oxides | Amphoteric<br>Oxides                                | Basic<br>Oxides | Misc. |        | <pre>% Additive<br/>Total (Incl.Total)</pre> | Saline<br>Extraction<br>PPM. Si | Thickness 2 Hour<br>Density Test | re Test.<br>2 Hour<br>Test. |
| Fib              | ers with             | Fibers with B <sub>2</sub> O <sub>3</sub> Additions |                 |       |        |                                              |                                 |                                  |                             |
| 164              | 65.12                | 90.0                                                | 35,3            | 1     | 100.48 | 0.32% B O                                    |                                 |                                  |                             |
| 591              | 64.42                | 1.20                                                | 34.8            | 1     | 100.42 | 0.52% "203                                   | r (                             | 2.0/1.94                         | <u>ට</u> . ෝ                |
| 991              | 65.24                | 90.0                                                | 35.2            | 1     | 100.5  | 0.64%                                        | 20                              | 2.0/1.88                         | 2                           |
| 191              | 65.32                | 0.06                                                | 35.2            | 1     | 100.58 | 0.82                                         | ል ል<br>ህ የ                      | 2.0/1.89                         | ച :                         |
| .68              | 65.43                | 90.0                                                | 34.9            | ı     | 100.39 | 1.338 "                                      |                                 | 2.0/2.00                         | <u>.</u>                    |
| 69.              | 65.47                | 90.0                                                | 34.9            | ı     | 100.43 | 1 278                                        | <b>/</b> **                     | 2.0/1.95                         | c.                          |
| .70              | 65.82                | 0.06                                                | y Pt            |       |        | : 4/5.1                                      | 4<br>2                          | 2.0/ -                           | <b>a</b>                    |
| 71               | נט פא                |                                                     | •               | I     | 100.48 | 2.22% "                                      | 46                              | 2.0/2.02                         | d                           |
| •                |                      | 0.0                                                 | 32.0            | ı     | 100.07 | 8.418 "                                      | 52                              | 2.0/6.45                         | а                           |
| ibe              | rs with              | ibers with P,Og addition                            |                 |       |        |                                              |                                 |                                  |                             |
| 72               | 55.65                | 0.48                                                | 43.58           | 0.02  | 99.7   | 6.06% P205                                   | 7.1                             | 2.0/1.94                         | ţ.                          |
| <u>ibe</u><br>73 | ibers with ?         | ibers with TiO <sub>2</sub> addition                |                 |       |        |                                              |                                 |                                  |                             |
| I                | )<br>,<br>!          |                                                     | ı               | ı     | 100.   | 10\$ Tio <sub>2</sub>                        | 0.4                             | 2.01/1.94                        | d.                          |

|      |                                |                            | ANALYSES   |       |        |              |         | 5 Hour     |                 |            |
|------|--------------------------------|----------------------------|------------|-------|--------|--------------|---------|------------|-----------------|------------|
|      |                                |                            |            |       |        |              |         | Saline     | E-119 Fire Test | re Test    |
|      | Acidic                         | Amphoteric                 | Basic      |       |        | % Additive   | tive    | Extraction | Thickness       | 2 Hour     |
| NO.  | <u>Oxides</u>                  | Oxides                     | Oxides     | Misc. | Total  | (Incl.Total) | otall   | ppm. Si    | Density_        | Test       |
|      |                                |                            |            |       |        |              |         |            |                 |            |
| Fibe | Fibers with 2r0 <sub>2</sub> - | ZrO <sub>2</sub> additions | <b>101</b> |       |        |              |         |            |                 |            |
| 174  | 63.5                           | 1.10                       | 35.92      | 1     | 100.52 | 0.21%        | $2r0_2$ | 25         | 2.0/2.01        | <b>-</b> 4 |
| 175  | 59.2                           | 0.73                       | 39.51      | i     | 99.44  | 0.40%        | =       | 48         | 2.0/2.00        | <b></b>    |
| 176  | 59.5                           | 0.73                       | 39.52      | 1     | 99.75  | 0.42%        | =       | 55         | 1               | ł          |
| 177  | 59.7                           | 0.84                       | 39.16      | 1     | 99.70  | 0.50%        | =       | 32         | . 1             | 1          |
| 178  | 0.09                           | 06.0                       | 38.78      | t     | 89.68  | 0.54%        | =       | 40         | 1               | ı          |
| 179  | 59.2                           | 0.93                       | 37:98      | ı     | 98.11  | 0.58%        | =       | 46         | 2.0/2.02        | ď          |
| 180  | 54.3                           | 1.88                       | 43.12      | .01   | 99.31  | 0.58%        | =       | 29         | 2.0/2.00        | î.         |
| 181  | 59.2                           | 1.15                       | 37.73      | ŧ     | 98.08  | 0.83%        | =       | 57         | 2.0/2.03        | ď          |
| 182  | 46.85                          | 2.89                       | 49.98      | .02   | 99.74  | 0.84%        | =       | 44         | 2.0/2.17        | Œ          |
| 182a | 59.4                           | 2.69                       | 36.96      | .02   | 99.05  | 2.31%        | =       | 25         | 2.0/2.00        | <b>-</b>   |
| 183  | 59.05                          | 2.95                       | 38.07      | ·     | 100.09 | 2.65%        | =       | 38         | 2.0/2.20        | 2          |
| 184  | 57.96                          | 3.53                       | 38.72      | 1     | 100.21 | 3.11%        | =       | 25         | 2.0/2.37        | =          |
| 185  | 57.80                          | 3.68                       | 38.14      | ı     | 99.65  | 3.12%        | =       | 10         | 2.0/2.03        | í.         |
| 981  | 59.05                          | 3.65                       | 39.51      | 1     | 102.21 | 3.27%        | =       | 15         | 2.1/2.11        | <u>a</u>   |
| 187  | 56.88                          | 3.62                       | 40.45      | 1     | 100.95 | 3.30%        | =       | 51         | 1               | i          |
| 188  | 57.7                           | 3.50                       | 39.0       | ı     | 100.20 | 3.30%        | =       | 13         | 2.0/2.06        | <u>-</u>   |
| 189  | 58.19                          | 3.75                       | 38.65      | 1     | 100.59 | 3.36%        | =       | 12         | . 1             | ı          |
| 061  | 57.86                          | 3.73                       | 38.88      | 1     | 100.47 | 3.378        | =       | ı          | 2.0/2.00        | <u>:-</u>  |
| 161  | 58.6                           | 4.25                       | 36.22      | i     | 99.07  | 3.67%        | =       | 7          | 2.0/2.00        | <u>-</u>   |
| 192  | 58.4                           | 4.34                       | . 35.79    | I     | 98.53  | 3.69%        | =       | e          | 2.0/2.00        | <u>-</u>   |
| 193  | 58.65                          | 7.87                       | 35.36      | .01   | 99.89  | 4.50%        | =       | 1.3        | 2.0/2.07        | <u>~</u>   |

|      |               |                                        |        |       |                |        | ٠            | 5 Hour             | •               |                |
|------|---------------|----------------------------------------|--------|-------|----------------|--------|--------------|--------------------|-----------------|----------------|
| Test | Test Acidic   | Amphoteric                             | Basic  |       |                | * Add  | % Additive   | Saline             | E-119 Fire Test | Test           |
| No.  | <u>Oxides</u> | Oxides                                 | Oxides | Misc. | Total          |        | (Incl.Total) | Extidction Ppm. Si | Thickness:      | 2 Hour<br>Test |
| Fibe | rs with       | Fibers with FeO <sub>1</sub> additions | us     |       |                |        |              |                    | ·               |                |
| 194  | 64.9          | 0.06                                   | 35.38  | ı     | 100.34         | 0.06\$ | FeO. 6 Mp    | u                  |                 |                |
| 195  | 49.8          | 18.02                                  | 31.92  | 0.07  | 99.81          | 0.22   |              | .,                 | 2.01/1.88       | <b>-</b>       |
| 196  | 50.4          | 7.49                                   | 42.04  | 0.07  | 100.00         | 0.52%  | =            | o. o .             | -               | i              |
| 197  | 64.34         | 90.0                                   | 34.7   | ı     | 99.1           | , C    | =            | 18                 |                 | 1              |
| 198  | 63.70         | 1.20                                   | 33.02  | ı     | 68.62          |        | =            | 51                 | 2.0/1.91        | <del>-</del>   |
| 199  | 63.54         | 1.20                                   | 33.46  | ı     | 20.00<br>98.00 | 6,000  |              | 24                 | 2.0/1.88        | ÷              |
| 200  | 38.9          | 6.72                                   | 54.40  | 0.07  | 100 00         | 6 27.0 | : :          | 32                 | 2.0/2.00        | <del>1</del>   |
| 201  | 64.3          | 0.06                                   | 35.13  | 6     | 60.001         | 908.0  | :            | 17                 |                 | ı              |
| 200  |               | ) (                                    | 06.00  | i     | 100.32         | 996.0  | =            | 45                 | 2.0/1.88        | 2              |
| 202  | 44.0          | 0.94                                   | 51.92  | ı     | 97.46          | 1.02%  | =            | 49                 |                 | i              |
| 203  | 63.3          | 1.15                                   | 34.99  | 1     | 99.44          | 1.61%  | =            | 12                 | 2 071 96        | ä              |
| 204  | 63.6          | 90.0                                   | 36.62  | . I   | 100.15         | 1.92%  | =            | <u> </u>           | 2 0/1 91        | <b>.</b> 2     |
| 205  | 43.8          | 15.28                                  | 40.94  | 0.13  | 100.02         | 2.94%  | :            |                    | 17:1            | <b>.</b>       |
| 206  | 62.3          | 1.20                                   | 36.05  | ı     | 99.55          | 3.05%  | =            |                    | - 0 6           | 1 -            |
| 207  | 63.3          | 90.0                                   | 36.95  | ı     | 100.31         | 3.45%  | =            | ` α[               | 2.0/1.90        | <b>.</b> .     |
| 208  | 43.9          | 14.32                                  | 41.6   | i     | 99.82          | 3.50%  | =            | )<br>1             | 2.0/1.08        | i.             |
| 209  | 62.0          | 0.06                                   | 38.31  | 1     | 100.37         | 4.81%  | =            | 3 ° C .            | 50 60           | 1 2            |
| 210  | 0.09          | 2.0                                    | 38.0   | ı     | 100.0          | 8.0%   | =            | 6                  | 2.0/1.98        | <b>:</b> :     |
| 211  | 0.09          | 1                                      | 40.0   | 1     |                | 20.0%  | =            | 7.0                | 2.0/2.00        | <b>:</b> , :   |

|          |                 |              |               |                            |                                |          |            |          |       | - 4                                                 | : 5 <del>-</del>         |   |                                        |              |          |          |           |          |          |          |           |         |          |
|----------|-----------------|--------------|---------------|----------------------------|--------------------------------|----------|------------|----------|-------|-----------------------------------------------------|--------------------------|---|----------------------------------------|--------------|----------|----------|-----------|----------|----------|----------|-----------|---------|----------|
|          | Teer            | 2 Hour       | <u> 1981.</u> | 1                          | <b>.</b> :                     | Ŀ        | <b>:</b> _ | Œ.       |       | 2                                                   | •                        |   | d                                      | <b>. :</b>   | <u>.</u> | 2.       | <u> </u>  | à        | <u>-</u> | <u>۽</u> | . 14      | . 1     | -        |
|          | E-119 Fire Test | Thickness    | _ Density_    | <br>                       | 76.1/0.7                       | 2.0/1.97 | 2.0/1.98   | 2.0/1.98 |       | 2.000                                               | 0.1.2/0.2                | - | 0 0/1 91                               | 10.1/0.7     | 2.0/1.97 | 2.0/1.97 | 2.0/1.90  | 2.0/1.90 | 2.0/1.99 | 5 071.99 | 27.17.000 | 2.0/2.2 | 2.0/1.8/ |
| 5 Hour   | Saline          | Extraction   | ppm. Si       |                            | 97                             | 69       | 78         | 7.0      |       |                                                     | 97                       |   | u<br>•                                 | <del>გ</del> | 57       | 54       | 30        | 51       | 57       | . 6      | ਹ †<br>†  | 20      | 70       |
|          |                 | tive         | <u>rotall</u> |                            | La <sub>2</sub> 0 <sub>3</sub> | =        | =          | =        |       |                                                     | $cr_{2}^{0}$ 3           |   | ,                                      | $Na_2O$      | =        | =        | =         | =        | =        | : :      | =         | =       | =        |
| Ì        |                 | % Additive   | (Incl.Total)  |                            | $0.00$ % La $_2$ 0 $_3$        | 0.56%    | 0.72%      | 900      | 9.76  |                                                     | 0.09% Cr <sub>2</sub> 03 |   | ,                                      | 0.28%        | 0.45%    | 0.71%    | 0.87%     | 0.93%    | 0 0      | 1.116    | 1.40%     | 2.60%   | 6.84%    |
|          |                 |              | Misc. Total   |                            | 99.63                          | 89.66    | 99.28      | ¥ 4 0 0  | 40.66 |                                                     | 99.72                    |   |                                        | 100.34       | 100.21   | 100.26   | 100.40    | 66 66    |          | 100.37   | 100.36    | 100.06  | 1001     |
| S        |                 |              |               |                            | ı                              | ı        | ı          |          | ı     |                                                     | i                        |   |                                        | 1            | ı        | 1        | ı         | 1        | l        | ı        | ı         | i       | 1        |
| ANALYSES |                 | Basic        | •             | Suo                        | 41.47                          | 41.82    | 41 72      | 1 · · ·  | 41.58 | ions                                                | 36.61                    |   | ons                                    | 35.58        | 35.68    | 35.80    | 25.25     |          | 15.61    | 36.11    | 36.3      | 37.0    | 39.74    |
|          |                 | Amphoteric   | Oxides        | ibers with La,0, additions | 90.0                           | 0.06     | 90.0       | 0.00     | 90.0  | ibers with Cr <sub>2</sub> 0 <sub>3</sub> additions | 0.51                     | • | ibers with Na <sub>2</sub> O additions | 0.06         | 90 0     | 90.0     | 0 6       | 1.20     | 90.0     | 90.0     | 90.0      | 0.06    | 90.0     |
|          |                 | טינטיטע דיים | Oxides        | with                       | 58.1                           | 57 B     |            | o./c     | 56.9  | s with                                              | 62.6                     |   | s with                                 | 64.7         |          |          | # · · · · | 63.5     | 64.3     | 64.2     | 64.0      | 63.0    | 60.3     |
|          | 1               | + U          |               | iber                       | 12                             |          | 7 .        | 14       | 15    | iber                                                | 16                       |   | iber                                   | 713          |          | 0 0      | 61;       | 520      | 121      | 322      | 223       | 224     | 225      |

|          | St.                                                                               |                                              | -46-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|----------|-----------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|          | re Test<br>2 Hour<br>Test.                                                        |                                              | rraaa111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ÷        |
|          | E-119 Fire Test<br>Thickness 2 Hour<br>Density Test                               | 2.0/3.50<br>2.0/5.23<br>2.0/3.42<br>2.0/3.86 | 2.0/2.10<br>2.0/5.38<br>2.0/2.00<br>2.0/2.00<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0/1.85 |
| 5 Hour   | Saline Extraction ppm. Si                                                         | 7<br>1.2<br>0.6<br>1.0                       | 2<br>0.6<br>0.8<br>0.3<br>1.0<br>0.4<br>0.3<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8      |
|          | <pre>% Additive (Incl.Total)</pre>                                                |                                              | less than 25% Basic Oxides)  - 99.92 99.6 100 100 99.62 99.62 99.65 99.65 99.78 100.23 100.23 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı        |
|          | <u>Total</u>                                                                      | 100.16<br>100.47<br>100.69<br>101.14         | an 25% Ba<br>99.92<br>99.6<br>100<br>100.11<br>99.62<br>99.91<br>100.04<br>99.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.3    |
| SES      | Misc.                                                                             | 0.69<br>0.74<br>0.61<br>0.64                 | less that the state of the stat | ı        |
| ANALYSES | Basic<br>Oxides<br>1 Fibers                                                       | 49.97<br>45.82<br>49.35<br>41.53             | with  4  4  5  7  7  7  8  8  8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0      |
|          | Test Acidic Amphoteric Basic  No. Oxides Oxides  Conventional Mineral Wool Fibers | 9.50<br>13.99<br>12.24<br>17.10              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F        |
|          | Test Acidic<br>No. Oxides<br>Conventional                                         | 40.0<br>39.92<br>38.49<br>41.87              | Refractory Fibers -         231       31.0       47.52         232       37.1       59.2         233       50.0       40.0         334       54.0       46.0         335       59.62       25.55         36       52.1       46.84         37       52.0       46.84         39       48.6       50.05         40       47.8       51.00         41       46.2       53.10         42       28       72         43       64.5       27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •        |
|          | Test<br>No.<br>Conve                                                              | 226<br>227<br>228<br>228                     | Refra 231 232 233 234 234 336 340 41 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |

TABLE 6

CONTINUOUS SERVICE TEMPERATURE FOR CONSTANT SiO<sub>2</sub>/CaO/MgO RATIOS

| 30   | Continuous Service Temperature for max 5% shrinkage |    | 1550    | 1520     | 1480     | 1600    | 1520     | 1500     |
|------|-----------------------------------------------------|----|---------|----------|----------|---------|----------|----------|
| 20   | for max 5                                           |    | 1420    | 1400     | 1350     | 1460    | 1410     | 1350     |
| 10   | <u>remperature</u>                                  | ů. | 1470    | 1420     | 1370     | 1460    | 1400     | 1360     |
| - 22 | Service                                             |    | 1480    | 1430     | 1380     | 1460    | 1420     | 1370     |
| 0    | Continuous                                          |    | 1480    | 1440     | 1400     | 1500    | 1430     | 1380     |
|      | Sio,/CaO/MqO Ratio                                  | 7  | 50/50/0 | 50/40/10 | 50/10/10 | 60/40/0 | 60/30/10 | 60/20/20 |

-48-

Reasonable modifications and variations are possible from the foregoing disclosure without departing from either the spirit or scope of the invention asdefined in the claims.

## CLAIMS

|    | 1. A process for decomposing a silica-                     |
|----|------------------------------------------------------------|
|    | containing fiber comprising the steps of:                  |
|    | <ol> <li>providing an inorganic fiber pre-</li> </ol>      |
| 5  | pared from a composition consisting essential-             |
|    | ly of:                                                     |
|    | (a) 0.06-10 wt% of a material                              |
|    | selected from the group consisting of                      |
|    | $Al_2O_3$ , $ZrO_2$ , $TiO_2$ , $B_2O_3$ , iron oxides and |
| 10 | mixtures thereof;                                          |
|    | (b) 35-70 wt% SiO <sub>2</sub> ;                           |
|    | (c) 0-50 wt% MgO; and                                      |
|    | (d) the remainder consisting essen-                        |
|    | tially of CaO, the total being 100% by                     |
| 15 | weight;                                                    |
|    | 2. subjecting the silica-containing                        |
|    | fiber to a physiological caling                            |
|    | fiber to a physiological saline fluid; and                 |
|    | <ol> <li>extracting the silica at a rate of</li> </ol>     |
|    | at least 5 parts per million (ppm) of silicon              |
| 20 | in 5 hours, thereby decomposing the silica-                |
|    | containing fiber.                                          |
|    |                                                            |

- The process of Claim 1 wherein the composition of subsection 1(a) ranges from 0.06-5 wt% of material selected from the group consisting of Al<sub>2</sub>O<sub>3</sub>,
   ZrO<sub>2</sub>, TiO<sub>2</sub>, B<sub>2</sub>O<sub>3</sub>, iron oxides and mixtures thereof.
  - 3. The process of Claim 1 wherein the composition of subsection l(c) ranges from 0.25-50 wt% MgO.
- 4. The process of Claim 1 wherein the composition consists essentially of:

15

20

-50-

|           | (a)                             | 0.06-1. | 5 Wt%  | of | A1.0 | ) <sub>3</sub> , 2ro <sub>3</sub> , |
|-----------|---------------------------------|---------|--------|----|------|-------------------------------------|
| $TiO_2$ , | B <sub>2</sub> O <sub>3</sub> , | iron    | oxides | a  | nd - | mixtures                            |
| there     | of;                             |         |        |    |      | 342 43                              |

- (b) 40-70 wt% SiO<sub>2</sub>;
- (c) 0-50 wt% MgO; and
  - (d) the remainder consisting essentially of CaO, the total being 100% by weight.
- 5. The process of Claim 4 wherein the composition in subsection 1(c) ranges from 0.25-50 wt% MgO.
  - 6. The process of Claim 1 wherein the composition consists essentially of:
    - (a) 1.5-3 wt% of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
      - (b) 40-66 wt% SiO2;
      - (c) 0-50 wt% MgO; and
    - (d) the remainder consisting essentially of CaO, the total being 100% by weight.
  - 7. The process of Claim 1 wherein the composition of subsection 1(c) ranges from 0.25-50 wt% MgO.
- 8. The process of Claim 1 wherein the composition consists essentially of:
  - (a) 3-4 wt% of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
    - (b) 40-63 wt% SiO,;
    - (c) 0-50 wt% MgO; and

15

. 30

| ( c     | i) | the re | main | der cor | nsistin | g ess | ≘n- |
|---------|----|--------|------|---------|---------|-------|-----|
| tially  | of | CaO,   | the  | total   | being   | 100%  | уď  |
| weight. | •  |        |      |         |         |       |     |

- 9. The process of Claim 8 wherein the composition of subsection 1(c) ranges from 0.25-50 wt% MgO.
  - 10. The process of Claim 1 wherein the composition consists essentially of:
    - (a) 4-6 wt% of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
      - (b) 40-60 wt% SiO<sub>2</sub>;
      - (c) 0-25 wt% MgO; and
    - (d) the remainder consisting essentially of CaO, the total being 100% by weight.
  - 11. The process of Claim 10 wherein the composition of subsection 1(c) ranges from 0.25-25 wt% MgO.
- 12. The process of Claim 1 wherein the 20 composition consists essentially of:
  - (a) 6-8 wt% of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
    - (b) 35-54 wt% Sio,;
    - (c) 0-25 wt% MgO; and
- 25 (d) the remainder consisting essentially of CaO, the total being 100% by weight.
  - 13. The process of Claim 12 wherein the composition of subsection 1(c) ranges from 0.25-25 wt% MgO.

- 14. The process of Claim 1 wherein the composition consists essentially of:
  - (a) 3-10 wt% of  $Al_2O_2$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
- (b) 35-54 wt% SiO<sub>2</sub>;
  - (c) 0-20 wt% MgO; and
  - (d) the remainder consisting essentially of CaO, the total being 100% by weight.
- 15. The process of Claim 14 wherein the composition of subsection 1(c) ranges from 0.25-20 wt% MgO.
  - 16. The process of Claim 1 wherein the fiber has a diameter of less than 3.5 microns.
- 17. The process of Claim 1 wherein the silicon extraction rate is at least 20 ppm, the Al<sub>2</sub>O<sub>3</sub> content is about 0.06-7 wt%, and the SiO<sub>2</sub> content is about 40-66 wt%.
- 18. The process of Claim 1 wherein the silicon extraction rate is at least about 50 ppm, the  $Al_2O_3$  content is about 0.06-3 wt%, and the  $SiO_2$  content is about 40-60 wt%.
- 19. The process of Claim 1 wherein the silicon extraction rate is at least about 50 ppm, the Al<sub>2</sub>O<sub>3</sub> content is about 0.06-0.75 wt%, and the SiO<sub>2</sub> content is about 40-60 wt%.
  - 20. A process of protecting a structural wall from fire comprising the steps of:

|    | <ol> <li>providing a fiber blanket having a</li> </ol> |
|----|--------------------------------------------------------|
|    | bulk density in the range of about 1.5 to              |
|    | about 3 lbs. per cubic foot (pcf); wherein the         |
|    | fiber blanket has the ability-to pass ASTM             |
| 5  | E-119 two-hour fire test; the fibers in the            |
| 3  | blanket have a diameter less than about 3.5            |
|    | microns; and the fiber is an inorganic fiber           |
|    | prepared from a composition consisting essen-          |
|    | tially of:                                             |
| 10 | (a) 0-7 wt% of $Al_2O_3$ , $ZrO_2$ , $TiO_2$ ,         |
| 10 | $B_2O_3$ , iron oxides and mixtures thereof;           |
|    | (b) 58-70 wt% SiO₂                                     |
|    | (c) 0-21 wt% MgO;                                      |
|    | (d) 0-2 wt% alkali metal oxide; and                    |
| 15 | (e) the remainder consisting essen-                    |
| 10 | tially of CaO, the total being 100% by                 |
|    | weight; and                                            |
|    | <ol> <li>placing the blanket next to the</li> </ol>    |
|    | wall, and thereby protecting the wall from             |
| 20 | fire.                                                  |
|    |                                                        |

- 21. The process of Claim 20 wherein the composition of subsection 1(a) ranges from 0.06-7 wt% of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof.
- 22. The process of Claim 20 wherein the composition of subsection 1(c) ranges from 0.25-21 wt% MgO.
  - 23. The process of Claim 20 wherein the composition consists essentially of:
    - (a) 0.06-3.0 wt% of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
      - (b) 58.5-70 wt% SiO<sub>2</sub>;

## SUBSTITUTE SHEFT

15

30

| ( | C) | 0-21 | wtg | MgO; |
|---|----|------|-----|------|
|---|----|------|-----|------|

- (d) 0-2 wt% alkali metal oxide; and
- (e) the remainder consisting essentially of Cao, the total being 100% by weight.
- 24. The process of Claim 20 wherein the composition of subsection 1(c) ranges from 0.25-21 wt% MgO.
- 25. The process of Claim 20 wherein the composition consists essentially of:
  - (a) from about 3 wt% up to and including 4 wt% of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
    - (b) 58-63 wt% SiO<sub>2</sub>;

0-8 wt% MgO;

- (c)
  - (d) 0-2 wt% alkali metal oxide; and
  - (e) the remainder consisting essentially of CaO, the total being 100% by weight.
- 26. The process of Claim 25 wherein the composition in subsection 1(c) ranges from 0.25-8 wt% MgO.
  - 27. The process of Claim 25 wherein the composition consists essentially of:
- (a) from about 4 wt% up to and including 6 wt% of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
  - (b) 58-61 wt% SiO<sub>2</sub>;
  - (c) 0-7 wt% MgO;
  - (d) 0-2 wt% alkali metal oxide; and

- (e) the remainder consisting essentially of Cao, the total being 100% by weight.
- The process of Claim 25 wherein the composition of subsection 1(c) ranges from 0.25-7 wt% 5 MgO.
  - An inorganic fiber having an average fiber diameter of less than about 3.5 microns, a silicon extraction rate greater than about 0.02 wt% Si/day in a physiological saline solution and having a composition consisting essentially of about:
    - 0.06-5.0 wt% of (a) selected from the group consisting of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
      - (b) 35-70 wt% SiO<sub>2</sub>;
      - (c) 0-50 wt% MgO; and
    - (d) the remainder consisting essentially of Cao, the total being 100 wt%.
- 30. An inorganic fiber having a silicon 20 extraction of at least about 10 ppm over a 5 hour period in physiological saline solution and having a composition consisting essentially of about:
  - 0.06-1.5 wt% of material (a) selected from the group consisting of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
    - (b) 40-70 wt% SiO<sub>2</sub>;
    - (c) 0-50 wt% MgO; and
  - (d) the remainder consisting essentially of CaO, the total being 100 wt%.

.10

15

25

- 31. An inorganic fiber according to Claim 30 having a silicon extraction of at least about 20 ppm, an average fiber diameter of less than about 3.5 microns, and having an SiO<sub>2</sub> content of about 40-66 wt%.
- 5 32. An inorganic fiber according to Claim 30 having a silicon extraction of at least about 50 ppm and having an SiO<sub>2</sub> content of about 40-60 wt% and a MgO content of about 0.25-25 wt%.
- 33. An inorganic fiber having a silicon extraction of at least about 10 ppm over a 5 hour period in physiological saline solutions and having a composition consisting essentially of about:
  - (a) 1.5-3 wt% of material selected from the group consisting of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof:
    - (b) 40-66 wt% Sio,;
    - (c) 0-50 wt% MgO; and
  - (d) the remainder consisting essentially of CaO, the total being 100 wt%.
  - 34. An inorganic fiber according to Claim 33 having a silicon extraction of at least about 20 ppm, an average fiber diameter of less than about 3.5 microns, and an MgO content of from about .25-50 wt%.
- 25 35. An inorganic fiber according to Claim 33 having a silicon extraction of at least about 50 ppm, an SiO<sub>2</sub> content of from about 40-54 wt%, and an MgO content of from about 0.25-18 wt%.
- 36. An inorganic fiber having a silicon30 extraction of at least about 10 ppm over a 5 hour period

10

25

30

in physiological saline solutions and having a composition consisting essentially of about:

- (a) 3-4 wt% of material selected from the group consisting of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
  - (b) 40-63 wt% SiO<sub>2</sub>;
  - (c) 0-50 wt% MgO; and
- (d) the remainder consisting essentially of CaO, the total being 100 wt%.
- 37. An inorganic fiber according to Claim 36 having a silicon extraction of at least about 20 ppm, an average fiber diameter of less than about 3.5 microns, and a SiO<sub>2</sub> content from about 40-58 wt%.
- 15 38. An inorganic fiber according to Claim 37 having a silicon extraction of at least about 50 ppm and an SiO<sub>2</sub> content of from about 40-52 wt% and a MgO content of from about .25-18 wt%.
- 39. An inorganic fiber having a silicon extraction of at least about 10 ppm over a 5 hour time period in a physiological saline solution and having a composition consisting essentially of about:
  - (a) 4-6 wt% of material selected from the group consisting of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof:
    - (b) 40-59 wt% SiO<sub>2</sub>;
    - (c) 0-46 wt% MgO; and
  - (d) the remainder consisting essentially of CaO, the total being 100 wt%.

| 40. An inorganic fiber according to Claim             | 30   |
|-------------------------------------------------------|------|
| having a silicon extraction of at least about 20 ppm, | an   |
| average fiber diameter of less than about 3.5 micron  | s.,. |
| and an SiO <sub>2</sub> content from about 40-58 wt%. |      |

- 41. An inorganic fiber having a diameter of 5 less than about 3.5 microns and which passes the ASTM E-119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf, said inorganic fiber having a composition consisting essentially of:
  - (a) .06-7 wt% of material selected from the group consisting of Al<sub>2</sub>O<sub>3</sub>, ZrO<sub>2</sub>, TiO<sub>2</sub>, B<sub>2</sub>O<sub>3</sub>, iron oxides and mixtures thereof:

20

10

- (b) 58-70 wt% SiO,;
- (c) 0-21 wt% MgO;
- 0.1-2 wt% alkali metal oxide; (d)

and

(e) the remainder consisting essentially of CaO, the total being 100 wt%; wherein the amount of alumina + zirconia is less than 6 wt% and the amount of iron oxides or alumina + iron oxides is less than 2 wt%.

- An inorganic fiber according to Claim 41 having a composition consisting essentially of about: 25
  - .06-1.5 wt% of material se-(a) lected from the group consisting of Al<sub>2</sub>O<sub>1</sub>, ZrO<sub>2</sub>, TiO<sub>2</sub>, B<sub>2</sub>O<sub>3</sub>, iron oxides and mixtures thereof; and

30

(b) 58.5-70 wt% SiO<sub>2</sub>.

20

25

- 43. An inorganic fiber according to Claim 42 having a silicon extraction of at least about 10 ppm over a 5 hour period in physiological saline solutions.
- 44. An inorganic fiber according to Claim 41 having a composition consisting essentially of about:
  - (a) greater than 1.5 wt% up to and including 3 wt% of material selected from the group consisting of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof; and
    - (b) 58.5-66 wt% SiO<sub>2</sub>.
  - 45. An inorganic fiber according to Claim 44 having a silicon extraction of at least about 10 ppm over a 5 hour period in a physiological saline solution.
- 15 46. An inorganic fiber according to Claim 41 having a composition consisting essentially of about:
  - (a) greater than 3 wt% up to and including 4 wt% material selected from the group consisting of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
    - (b) 58-63 wt% SiO<sub>2</sub>;
    - (c) .25-8 wt% MgO;
    - (d) .1-2 wt% alkali metal oxide;

and

- (e) the remainder consisting essentially of CaO, the total being 100 wt%.
- 47. An inorganic fiber according to Claim 46 having a silicon extraction of at least about 10 ppm over a 5 hour period in physiological saline soluti ns.



|        |   | 48. 2   | 'n. | inc | organic | fiber  | according  | to | Claim | 4 1 |
|--------|---|---------|-----|-----|---------|--------|------------|----|-------|-----|
| having | a | composi | iti | .on | consist | ing es | ssentially | οf | about |     |

- (a) greater than 4 wt% up to and including 6 wt% of material selected from the group consisting of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
  - (b) 58-59 wt% SiO<sub>2</sub>;
  - (c) .25-7 wt% MgO;
  - (d) .1-2 wt% alkali metal oxide;

10 and

- (e) the remainder consisting essentially of CaO, the total being 100 wt%.
- 49. An inorganic fiber according to Claim 48 having a silicon extraction of at least about 10 ppm over a 5 hour period in physiological saline solutions.
  - 50. An inorganic fiber having a silicon extraction of greater than about 0.02 wt% Si/day in a physiological saline solution, a continuous service temperature above about 1450°F and having a composition consisting essentially of about:
    - (a) .06-5 wt% of material selected from the group consisting of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof:

25

20 -

- (b) 40-70 wt% SiO<sub>2</sub>;
- (c) 0-6 wt% MgO; and
- (d) the remainder comprising essentially of CaO, the total being 100 wt%.
- 51. The fiber of Claim 50 wherein the composition of subsection (c) has an amount of 0.25-6 wt% MgO.

- 52. An inorganic fiber having a silicon extraction of greater than about 0.02 wt% Si/day in a physiological saline solution, having a continuous service temperature above about 1500°F and having a composition consisting essentially of about:
  - (a) .06-1.5 wt% of material selected from the group consisting of  $Al_2O_3$ ,  $ZrO_2$ ,  $TiO_2$ ,  $B_2O_3$ , iron oxides and mixtures thereof;
  - (b) 60-70 wt% SiO<sub>2</sub>;
    - (c) 0-1 wt% MgO; and
    - (d) the remainder consisting essentially of CaO, the total being 100 wt%.
- 53. The fiber of Claim 52 wherein the compo-15 sition of subsection (c) has an amount 0.25-1 wt% MgO.
  - 54. An inorganic fiber according to Claims 1 or 29 made from pure oxidic raw materials.
- or 29 or 41 in which at least a portion of the raw materials is selected from a group consisting of talc, metallurgical slags, siliceous rocks, kaolin, and mixtures thereof.
  - 56. An inorganic fiber having a composition consisting essentially of about:
    - (a) 8.0-9.3 wt% Al<sub>2</sub>O<sub>3</sub>;
    - (b) 39-52 wt% SiO<sub>2</sub>;
    - (c) 22-38 wt% CaO; and
    - (d) 7-14 wt% MgO, the total being 100 wt% and having a silica extraction in a saline solution of at least about 5 ppm over a 5 hour period.

25