3 Обратный оператор

Опр. Пусть X, Y — линейные пространства. Оператор A, действующий из $D(A) \subset X$ в Y, называется *обратимым*, если для каждого $y \in \text{Im } A$ существует единственный его прообраз $x \in D(A)$ такой, что Ax = y.

Если A обратим, то оператор, ставящий в соответствие элементу $y \in \operatorname{Im} A$ его прообраз x, называется обратным к A и обозначается через A^{-1} .

Теорема 3.1. Обратный оператор A^{-1} существует тогда и только тогда, когда $\operatorname{Ker} A = O$.

Доказательство. Пусть A – обратимый оператор. Если $\operatorname{Ker} A \neq O$, то существует элемент $x \in D(A), x \neq 0$ такой, что Ax = 0. Но тогда у элемента $0 \in Y$ существует два прообраза: $x, 0 \in X$, что противоречит обратимости A.

Пусть теперь $\operatorname{Ker} A = O$. Предположим, что для некоторого $y \in \operatorname{Im} A$ существуют два прообраза x_1, x_2 . Тогда

$$A(x_1 - x_2) = Ax_1 - Ax_2 = y - y = 0 \implies x_1 - x_2 \in \text{Ker } A \Rightarrow x_1 - x_2 = 0.$$

Следовательно A обратим.

Теорема доказана.

Теорема 3.2. Оператор A^{-1} , обратный к линейному оператору A, также линеен.

Доказательство. Пусть $y_1, y_2 \in \text{Im } A$ и $Ax_1 = y_1, Ax_2 = y_2$. Тогда

$$A(\alpha x_1 + \beta x_2) = \alpha y_1 + \beta y_2.$$

Следовательно

$$\alpha x_1 + \beta x_2 = A^{-1}(\alpha y_1 + \beta y_2).$$

Теорема доказана.

Теорема 3.3. Пусть X, Y – нормированные пространства. Для того, чтобы линейный оператор A, действующий из X на Y, имел непрерывный обратный, необходимо и достаточно, чтобы существовала постоянная m>0 такая, что

$$||Ax||_Y \geqslant m||x||_X \quad \forall x \in X \tag{3.1}$$

Доказательство. <u>Необходимость</u>. Пусть существует непрерывный обратный оператор A^{-1} . Тогда

$$||x||_X = ||A^{-1}Ax|| \le ||A^{-1}|| ||Ax||_Y \Rightarrow ||A^{-1}||^{-1} ||x||_X \le ||Ax||_Y,$$

то есть неравенство (3.1) выполняется с $m = ||A^{-1}||^{-1}$.

<u>Достаточность</u>. Пусть выполнено (3.1). Тогда $\ker A = O$ и поэтому оператор A обратим и определен на Y (поскольку $\operatorname{Im} A = Y$). Из (3.1) для $x = A^{-1}y$ следует, что

$$||x||_X \leqslant m^{-1} ||Ax||_Y \iff ||A^{-1}y||_Y \leqslant m^{-1} ||y||_Y \quad \forall y \in Y,$$

в силу чего $||A^{-1}|| \le m^{-1}$.

Теорема доказана.

Опр. Говорят, что линейный оператор $A: X \to Y$ непрерывно обратим, если ${\rm Im}\, A=Y,$ оператор A обратим и $A^{-1}\in \mathscr{L}(Y,X).$

Следующая теорема является одной из основных теорем линейного функционального анализа.

Теорема 3.4. (Теорема Банаха об обратном операторе)

Пусть $A \in \mathcal{L}(X,Y)$, где X,Y – банаховы пространства, причем $\operatorname{Im} A = Y$. Если оператор A обратим, то $A^{-1} \in \mathcal{L}(Y,X)$.

Мы приводим теорему Банаха об обратном операторе без доказательства.

Понятие о прямых и обратных задачах

Прямая задача.

По заданному $x \in X$ определить $y \in Y$ такое, что

$$y = Ax$$
.

Как правило, x неизвестно, а известно $x^* \approx x$. Тогда вычисляется

$$y^* = Ax^* \approx y = Ax.$$

Если оператор A – линейный и ограниченный, то

$$y^* - y = A(x^* - x) \implies ||y^* - y||_Y \le ||A|| ||x^* - x||_X.$$

Обратная задача.

По заданному $y \in Y$ определить $x \in X$ такое, что

$$Ax = y$$
.

Как правило, y неизвестно, а известно $y^* \approx y$. Тогда вычисляется x^* такое, что

$$Ax^* = y^*$$
.

Если оператор A – линейный и обратимый, а обратный оператор A^{-1} - ограниченный, то

$$A(x^* - x) = y^* - y \quad \Rightarrow x^* = A^{-1}(y^* - y) \quad \Rightarrow ||x^* - x||_X \leqslant ||A^{-1}|| ||y^* - y||_Y.$$

Для решения обратной задачи справедлива оценка

$$\frac{\|x^* - x\|_X}{\|x^*\|_X} \leqslant \|A\| \|A^{-1}\| \frac{\|y^* - y\|_Y}{\|y^*\|_Y}.$$

Нередко обратная задача имеет вид

$$x = Ax + y$$

где $A:X\to X$ и $x,y\in X$, то есть вид

$$(I - A)x = y.$$

Пусть $A: X \to X$. Рассмотрим следующее уравнение:

$$x = Ax + y, (3.2)$$

где $y \in X$ – заданная правая часть, $x \in X$ – искомое решение. Это уравнение можно записать в эквивалентном виде

$$(I - A)x = y. (3.3)$$

Приведем теорему о достаточных условиях существования ограниченного обратного оператора $(I-A)^{-1}$.

Теорема 3.5. Пусть $A \in \mathcal{L}(X)$, где X – банахово пространство, $u \|A\| < 1$. Тогда оператор $(I - A)^{-1}$ существует, ограничен и представляется рядом Неймана

$$(I - A)^{-1} = \sum_{k=0}^{\infty} A^k.$$
 (3.4)

Доказательство. Существование и единственность решения уравнения (3.3) при любом $y \in X$ следует из принципа сжимающих отображений.

Действительно, запишем уравнение (3.2) в виде

$$x = Bx$$
, где $Bx = Ax + y$.

Заметим, что

$$||Bx_1 - Bx_2|| = ||Ax_1 + y - Ax_2 - y|| = ||A(x_1 - x_2)|| \le ||A|| ||x_1 - x_2||.$$

Значит, отображение $B: X \to X$ – сжимающее.

Следовательно оператор $(I - A)^{-1}$ существует и определен на X.

Заметим, что последовательность $\sum_{k=0}^{n} A^k$ фундаментальна в $\mathcal{L}(X)$. Действительно,

$$\|\sum_{k=n}^{m} A^{k}\| \leqslant \sum_{k=n}^{m} \|A^{k}\| \leqslant \sum_{k=n}^{m} \|A\|^{k} \leqslant \|A\|^{n}/(1 - \|A\|) \quad \forall m > n.$$

Поскольку пространство $\mathscr{L}(X)$ банахово, ряд $\sum\limits_{k=0}^{\infty}A^k$ сходится.

Для любого n имеем

$$\left[\sum_{k=0}^{n} A^{k}\right](I - A) = I - A^{n+1}.$$

Так как $A^{n+1} \to 0$, то предельный переход дает

$$\left[\sum_{k=0}^{\infty} A^k\right](I-A) = I.$$

Следовательно

$$\sum_{k=0}^{\infty} A^k = (I - A)^{-1}.$$

Заметим, что

$$||(I-A)^{-1}|| \le \sum_{k=0}^{\infty} ||A||^k = \frac{1}{1-||A||}.$$
 (3.5)

Теорема доказана.

Вернемся еще раз к вопросу о разрешимости уравнения x = Ax + y в условиях теоремы 3.5. Напомним, что отображение Bx = Ax + y является сжимающим.

Из доказательства принципа сжимающих отображений следует, что при любом $x_0 \in X$ метод простой итерации

$$x_{n+1} = Ax_n + y, \quad n \geqslant 0$$

сходится.

Возьмем $x_0 = 0$. Тогда

Так как $x_n \to x$ при $n \to \infty$, то

$$x = \sum_{k=0}^{\infty} A^k y.$$

Ряд, стоящий в правой части этого равенства, принято называть **рядом Неймана**.