Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 4

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_3 = 4 + 2 \cdot 5 =$	3p
	=4+10=14	2p
2.	f(0)=-1	2p
	f(1) = -1, deci $f(0) = f(1)$	3 p
3.	3x+4=16	3p
	x = 4, care convine	2p
4.	$x + \frac{25}{100} \cdot x = 350$, unde x este prețul produsului înainte de scumpire	3р
	Prețul produsului înainte de scumpire este 280 de lei	2p
5.	$O(0,0)$ este mijlocul segmentului AB , deci $\frac{-4+a}{2}=0$ și $\frac{1+b}{2}=0$	3p
	a = 4, $b = -1$	2p
6.	$A_{\Delta ABC} = \frac{AB \cdot AC}{2}$	2p
	$\frac{AB^2}{2} = 8 \Leftrightarrow AB^2 = 16$, de unde obținem $AB = 4$	3р

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 5 & -2 \\ -1 & 1 \end{vmatrix} = 5 \cdot 1 - (-2) \cdot (-1) =$	3 p
	=5-2=3	2p
b)	$B(2) = \begin{pmatrix} 2 & -4 \\ 1 & -1 \end{pmatrix}$ şi $B(6) = \begin{pmatrix} 6 & -12 \\ 1 & -1 \end{pmatrix} \Rightarrow 3B(2) + B(6) = \begin{pmatrix} 12 & -24 \\ 4 & -4 \end{pmatrix} =$	3 p
	$=4\begin{pmatrix}3 & -6\\1 & -1\end{pmatrix}=4B(3)$	2p
c)	$ (B(-x)-B(x))\cdot (B(-x)+B(x)) = \begin{pmatrix} -2x & 4x \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 8x & -8x \\ 0 & 0 \end{pmatrix}, \text{ pentru orice număr} $	3 p
	real x	
	Cum $A + B(3) = \begin{pmatrix} 8 & -8 \\ 0 & 0 \end{pmatrix}$, obţinem $x = 1$	2p
2.a)	$3 \circ 4 = 3 \cdot 3 + 4 \cdot 4 - 25 =$	3 p
	=25-25=0	2p

b)	$(2x) \circ x = 10x - 25$, pentru orice număr real x	3p
	10x-25=5, de unde obținem $x=3$	2p
c)	$m^2 \circ 1 = 3m^2 - 21$ și $1 \circ m^2 = 4m^2 - 22$, pentru orice număr întreg m	2p
	$3m^2 - 21 \ge 4m^2 - 22 \Leftrightarrow -m^2 + 1 \ge 0$, deci $m \in [-1,1]$ și, cum m este număr întreg, obținem	3p
	m = -1 sau $m = 0$ sau $m = 1$	· P

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{2(3x+1)-2x\cdot 3}{(3x+1)^2} =$	3 p
	$= \frac{6x + 2 - 6x}{\left(3x + 1\right)^2} = \frac{2}{\left(3x + 1\right)^2}, \ x \in \left(-\frac{1}{3}, +\infty\right)$	2p
b)	$\lim_{x \to +\infty} \frac{2x}{3x+1} = \lim_{x \to +\infty} \frac{2x}{x\left(3+\frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{2}{3+\frac{1}{x}} = \frac{2}{3}$	3p
	Dreapta de ecuație $y = \frac{2}{3}$ este asimptota orizontală spre +\infty la graficul funcției f	2p
c)	$f''(x) = -\frac{12}{(3x+1)^3}, x \in \left(-\frac{1}{3}, +\infty\right)$	3 p
	$f''(x) \le 0$, pentru orice $x \in \left(-\frac{1}{3}, +\infty\right)$, deci funcția f este concavă	2p
2.a)	$\int_{1}^{4} (f(x) - \ln x + 1) dx = \int_{1}^{4} x^{2} dx = \frac{x^{3}}{3} \Big _{1}^{4} =$	3 p
	$=\frac{64}{3} - \frac{1}{3} = 21$	2p
b)	$\int_{2}^{4} \frac{x}{f(x) - \ln x} dx = \int_{2}^{4} \frac{x}{x^{2} - 1} dx = \frac{1}{2} \int_{2}^{4} \frac{\left(x^{2} - 1\right)'}{x^{2} - 1} dx = \frac{1}{2} \ln\left(x^{2} - 1\right) \Big _{2}^{4} =$	3p
	$= \frac{1}{2} \ln 15 - \frac{1}{2} \ln 3 = \frac{1}{2} \ln 5$	2p
c)	$\int_{1}^{a} \frac{f(x)}{x^{2}} dx = \int_{1}^{a} \left(1 + \frac{\ln x}{x^{2}} - \frac{1}{x^{2}} \right) dx = \int_{1}^{a} 1 dx + \int_{1}^{a} \left(-\frac{1}{x} \right) \ln x dx - \int_{1}^{a} \frac{1}{x^{2}} dx =$	3p
	$= x \begin{vmatrix} a - \frac{1}{x} \ln x \end{vmatrix} + \int_{1}^{a} \frac{1}{x^{2}} dx - \int_{1}^{a} \frac{1}{x^{2}} dx = a - 1 - \frac{\ln a}{a}, \text{ pentru orice } a \in (1, +\infty)$	Эþ
	$a-1-\frac{\ln a}{a} = \frac{a-\ln a}{a}$, de unde obținem $a=2$, care convine	2p