Função do 1º Grau: Conceitos e Aplicações

Professor: Jefferson

Nome: _____ Turma: ____

1. Conceito

Uma função do 1^{0} grau (ou função afim) é uma relação matemática expressa por:

$$f(x) = ax + b$$
 ou $y = ax + b$

onde:

- a é o coeficiente angular (inclinação da reta)
- b é o coeficiente linear (ponto onde a reta corta o eixo y)
- \bullet x é a variável independente
- f(x) ou y é a variável dependente

Exemplos

- f(x) = 2x + 1 (a = 2, b = 1)
- y = -x + 3 (a = -1, b = 3)
- $f(x) = \frac{1}{2}x 4$ $(a = \frac{1}{2}, b = -4)$

2. Gráfico

O gráfico de uma função do 1^{0} grau é sempre uma ${\bf reta}$. Para construí-lo:

- 1. Encontre dois pontos quaisquer
- 2. Marque-os no plano cartesiano
- 3. Trace a reta que passa por eles

3. Coeficientes

Coeficiente Angular (a)

- Determina a **inclinação** da reta
- Calculado por: $a = \frac{\Delta y}{\Delta x} = \frac{y_2 y_1}{x_2 x_1}$
- Se a > 0: função crescente
- Se a < 0: função decrescente

Coeficiente Linear (b)

- \bullet Ponto onde a reta corta o eixo y
- Corresponde ao valor de f(0)

4. Zero da Função (Raiz)

O zero da função é o valor de x que torna f(x) = 0:

$$ax + b = 0 \Rightarrow x = -\frac{b}{a}$$

É o ponto onde a reta corta o eixo x.

Exemplo

Para f(x) = 2x - 4:

$$2x - 4 = 0 \Rightarrow x = 2$$

5. Estudo do Sinal

- f(x) > 0 para valores de x acima da raiz (se a > 0) ou abaixo (se a < 0)
- f(x) < 0 para valores de x abaixo da raiz (se a > 0) ou acima (se a < 0)

6. Aplicações Práticas

Exemplo 1: Taxa de Serviço

Um técnico cobra R\$ 50,00 de visita mais R\$ 30,00 por hora de trabalho. A função que representa o custo C em relação às horas h é:

$$C(h) = 30h + 50$$

Exemplo 2: Vendas

Um vendedor tem salário composto por R\$ 800,00 fixos mais R\$ 2,00 por item vendido. A função salário S em relação aos itens v é:

$$S(v) = 2v + 800$$

Exercícios Básicos (1-10)

- 1. Dada f(x) = 3x 6, determine:
 - a) Coeficiente angular
 - b) Coeficiente linear
 - c) Zero da função
- 2. Classifique como crescente ou decrescente:
 - a) y = 5x 2
 - b) f(x) = -x + 4
- 3. Calcule f(2) para:
 - a) f(x) = 4x 3
 - b) f(x) = -2x + 5
- 4. Encontre o ponto onde corta o eixo y:
 - a) $y = \frac{1}{2}x + 3$
 - b) f(x) = -3x 1
- 5. Determine a função que passa por:
 - a) (0,2) e (1,5)
 - b) (2,4) e (3,1)

Exercícios Intermediários (11-20)

- 6. Construa os gráficos de:
 - a) y = 2x 4
 - b) f(x) = -x + 3
- 7. Resolva:
 - a) Se f(x + 1) = 3x 2, encontre f(4)
 - b) Se f(2) = 7 e f(5) = 13, determine f(x)
- 8. Aplicações:
 - a) Um táxi cobra R\$ 5,00 de bandeirada mais R\$ 2,80/km. Escreva C(x)
 - b) Calcule o custo para 15 km
- 9. Estude o sinal:
 - a) f(x) = 6x 12
 - b) y = -4x + 8
- 10. Problemas:
 - a) Uma empresa tem custo fixo R\$ 1.200,00 e custo variável R\$ 8/unidade. Escreva C(x)
 - b) Se vende por R\$15/unidade, qual o lucro para 300 unidades?

Exercícios Avançados (21-30)

- 11. Determine k para que:
 - a) f(x) = (k-2)x + 5 seja crescente
 - b) f(x) = (3k+1)x 4 seja decrescente
- 12. Verifique se pertence à função:
 - a) (3,10) pertence a y = 4x 2?
 - b) (-2, -7) pertence a f(x) = 3x 1?
- 13. Sistemas:
 - a) Em qual ponto y = 2x 3 intercepta y = -x + 6?
 - b) Resolva o sistema: $\begin{cases} y = 3x 4 \\ y = -2x + 6 \end{cases}$
- 14. Funções definidas por partes:
 - a) Dada $f(x) = \begin{cases} 2x+1, & \text{se } x \ge 0 \\ -x+3, & \text{se } x < 0 \end{cases}$ calcule f(2) e f(-1)
- 15. Problemas complexos:
 - a) Um celular custa R\$ 1.200,00 à vista ou R\$ 200,00 de entrada mais 12 parcelas de R\$ 90,00. Em quantos meses a compra a prazo iguala o valor à vista?
 - b) Dois táxis têm modelos: Taxi A: R\$ 4,00 bandeirada + R\$ 2,50/km; Taxi B: R\$ 3,00 bandeirada + R\$ 2,80/km. A partir de quantos km o Taxi A fica mais barato?