Stochastic Simulation Simulated annealing

Bo Friis Nielsen

Institute of Mathematical Modelling

Technical University of Denmark

2800 Kgs. Lyngby – Denmark

Email: bfni@dtu.dk

A general optimisation problem

- $f^* = \min_{x \in \mathcal{S}} f(x)$
- The set ${\cal S}$ can be quite general
- $x^* = \operatorname{argmin}_{x \in \mathcal{S}} f(x)$
- Note x^* might not be unique so we can define the set $\mathcal M$ of minimising points
- $\mathcal{M} = \{x \in \mathcal{S} | f(x) = f^*\}$ Assume $|\mathcal{M}| < \infty$, that is the cardinality of \mathcal{M} (number of elements in \mathcal{M}) is finite
- This will typically be the case for discrete optimisation, where also $|\mathcal{S}| < \infty$.

Optimisation problem - probability distribution

We introduce a probability distribution over ${\mathcal S}$ to be

$$P_{T}(x) = \frac{e^{-f(x)/T}}{\sum_{y \in \mathcal{S}} e^{-f(y)/T}} = \frac{e^{-f(x)/T}}{|M|e^{-f^{*}/T} + \sum_{y \in \mathcal{S} \setminus \mathcal{M}} e^{-f(y)/T}}$$
$$= \frac{e^{(f^{*}-f(x))/T}}{|M| + \sum_{y \in \mathcal{S} \setminus \mathcal{M}} e^{(f^{*}-f(y))/T}}$$

- we have a probability function with an "easy" to calculate expression multiplied with a difficult to calculate constant
- For fixed T we can sample, states x with low "energy" (low valuels of f(x)) will be more frequent/likely
- As $T \to 0$ the distribution will degenerate to states with minimum energy

Simulated annealing

- Stochastic algorithm for optimisation
- Large scale (typically discrete) problems
- Attempts to find the global optimum in presence of multiple local optima

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$

- One among many stochastic optimisation methods
 - a metaheuristic
- Simulated annealing one of the first, inspired from Metropolis-Hastings - Kirkpatrick paper Science 1983
- Alternatives: Stochastic gradient and several other

Physical inspiration

Steel and other materials can exist in several crystalline structures.

One - the ground state - has lowest energy.

The material may be "caught" in other states which are only locally stable.

This is likely to happen when welding, machining, etc.

By heating the material and **slowly** cooling, we ensure that the material ends in the ground state.

This process is called **annealing**.

P.d.f. of the state at fixed temperature

Use $X \in \mathcal{S}$ to denote the state of the system (e.g., positions of atoms).

Let U(x) denote the energy of state $x \in \mathcal{S}$.

According to statistical physics, if the temperature is T, the p.d.f. of X is the Canonical Distribution

$$f(x,T) = c_T \cdot \exp\left(-\frac{U(x)}{T}\right)$$

So states with low U are more probable; in particular at low T.

Note the normalization constant c_T is unknown; can be found by integration, but our algorithms will not require it.

Example energy potential

DTU

Corresponding p.d.f., for T=0.2,1,5

DTU -

An algorithm for Simulated Annealing

Let the temperature be a decreasing function of time or iteration number - k.

At each time step, update the state according to the random walk Metropolis-Hastings algorithm for MCMC, where the target p.d.f. is $f(x,T_i)$.

I.e., permute the state X_i randomly to generate a candidate Y_i . If the candidate has lower energy than the old state, accept. Otherwise, accept only with probability

$$\exp(-(U(Y_i) - U(X_i))/T_i)$$

for a symmetric proposal distribution (to keep the probabilistic interpretation)

Different issues

- Try with different schemes for lowering the temperature
- Alternative initial solutions
- Different candidate generation algorithms
- Refine with local search

DTU —

Travelling salesman problem (TSP)

A basic problem in combinatorial optimisation

Given n stations, and an n-by-n matrix A giving the cost of going from station i to j.

Find a route S (a permutation of $1, \ldots, n$) which

- starts and ends at station 1, $S_1 = 1$
- has minimal total cost

$$\sum_{i=1}^{n-1} A(S_i, S_{i+1})$$

Cost matrix - an example

Town	Town to					
from	1	2	3	4	5	6
1	_	5	3	1	4	12
2	2	-	22	11	13	30
3	6	8	-	13	12	5
4	33	9	5	_	60	17
5	1	15	6	10	_	14
6	24	6	8	9	40	_

• Initial solution: $\{1,2,3,4,5,6,1\}$ initial cost:

$$5+22+13+60+14+24=138$$

Exercise 7

- 1. Implement simulated annealing for the travelling salesman. As proposal, permute two random stations on the route. As cooling scheme, you can use e.g. $T_k = 1/\sqrt{1+k}$. or $T_k = -\log(k+1)$, feel free to experiment with different choices. The route must end where it started. Initialise with a random permutation of stations.
 - (a) Have input be positions in the plane of the n stations. Let the cost of going $i \mapsto j$ be the Euclidian distance between station i and j.
 - Plot the resulting route in the plane.
 - Debug with stations on a circle.
 - (b) Then modify your programme to work with costs directly and apply it to the cost matrix from the course homepage.