vendredi 8 février 2002 Durée : 2 heures Documents autorisés

PROGRAMMATION FONCTIONNELLE

Exercice 1:

Le but de cet exercice est d'écrire une fonction suite qui a comme argument une liste d'entiers 1 et qui retourne une liste construite à partir de 1 de la manière suivante :

```
si l est la liste vide suite retourne la liste vide;
```

- si 1 est la liste (1), suite retourne la liste (1 1) car 1 contient un 1;
- si l est la liste (1 1), suite retourne la liste (2 1) car l contient deux 1;
- si l est la liste (2 1), suite retourne la liste (1 2 1 1) car l contient \underline{un} 2 suivi de \underline{un} 1.
- si l est la liste (1 2 1 1), suite retourne la liste (1 1 1 2 2 1) car l contient <u>un</u> 1, suivi de <u>un</u> 2, suivi de <u>deux</u> 1;
- 1°) Ecrire une fonction f qui a comme argument une liste non vide d'entiers f et qui retourne une liste de deux sous-listes construite à partir de f de la manière suivante : si les f premiers éléments de f sont tous égaux à un entier f, la première sous-liste sera (f), et la seconde sera la liste f tronquée de ces f0 premiers éléments.

```
Par exemple (f '(1 1 1 2 2 1)) doit retourner ((3 1) (2 2 1)).
```

2°) En utilisant la fonction f, écrire la fonction suite.

Solution:

Exercice 2:

- 1°) Ecrire une fonction compose qui a comme arguments deux fonctions d'une seule variable, f et q, et qui retourne la fonction $f \circ g : x \square f(g(x))$.
- 2°) Ecrire une fonction trace qui a comme arguments une fonction d'une seule variable, f, et un entier n, et qui retourne la liste de fonctions (Id $f f^2 \dots f^n$), où Id désigne la fonction identité et f^n désigne la composition de f (n-1) fois par elle-même.
- 3°) Ecrire une fonction applique qui a comme arguments une liste de fonctions d'une seule variable, Lf, et une variable x et qui retourne la liste des applications des fonctions de Lf à la variable x.

Par exemple, l'évaluation de (applique (trace (lambda (x) (* x x)) 3) 2) doit retourner la liste (2 4 16 256).

Solution:

Exercice 3:

Etant donné un ensemble E, on appelle partition de E tout ensemble P_E de parties de E tel que:

$$\forall A \in P_E, A \neq \emptyset,$$

$$\forall (A, B) \in (P_E)^2, A \cap B = \emptyset,$$

$$\prod_{A \in P_E} A = E.$$

On note P_E^2 l'ensemble des partitions de E en deux parties.

Cet ensemble est forcément vide si *E* est de cardinalité inférieure à 2.

```
Pour E = \{3,4\}, on a P_E^2 = \{\{\{3\},\{4\}\}\}.

Pour E = \{2,3,4\}, on a P_E^2 = \{\{\{2,3\},\{4\}\},\{\{3\},\{2,4\}\},\{\{2\},\{3,4\}\}\}\}.

Pour E = \{1,2,3,4\}, on a P_E^2 = \{\{\{1,2,3\},\{4\}\},\{\{1,3\},\{2,4\}\},\{\{1,2\},\{3,4\}\}\}, \{\{2,3\},\{1,4\}\},\{\{3\},\{1,2,4\}\},\{\{2\},\{1,3,4\}\}, \{\{1\},\{2,3,4\}\}\}.
```

Ecrire une fonction P2 qui a comme argument une liste E, représentant un ensemble E, et telle que l'évaluation de l'expression (P2 E) retourne la liste représentant l'ensemble des partitions en deux parties de l'ensemble E.

Solution:

Exercice 4:

Ecrire une macro maplet qui a comme arguments un symbole x, une liste L, et une expression fonctionnelle E, dans laquelle figure le symbole x, et qui retourne la liste des évaluations de l'expression E obtenues en remplaçant dans E le symbole x par chacune des valeurs de la liste L.

Par exemple, l'évaluation de (maplet x (1 2 3 4) (* x x) doit retourner (1 4 9 16).

Solution:

```
(define-macro (maplet x L E)
  `(map (lambda (,x) ,E) ',L) )
```