PGB2022

Dr. Agnieszka A. Golicz agnieszka.golicz@agrar.uni-giessen.de

Genome sequencing technology

Sanger sequencing

- Older technology
- Reads ~1000 bp
- Very accurate

Second generation sequencing (Illumina)

- Reads ~200 bp
- More error prone
- But cheaper!

Technological limitation – we can not sequence (read) the whole chromosome at once Sequencing read – a short sequence representing a fragment of the DNA

Genome sequencing

Read mapping

Read mapping

Bioinformatics file formats

- > Dealing with large quantities of data
- > Automated processes
- > Require standardized file formats
 - > FASTA
 - > FASTQ
 - > SAM/BAM
 - > VCF
 - > GFF

FASTA file format

FASTQ file format

Using programs with command line options and arguments

Comparing genomes – sequence variants

Types of structural variants

Looking for structural variants with long reads

Structural variant report

Pick one variant from SV.mRNA.overlap.tsv Please note the ID of the variant and send it to me including your name in the email.

- 1. Short introduction what are structural variants. Why are they important?
- 2. How was the structural variant identified?
- 3. Describe the structural variant. Include an image from IGV.
- 4. What are the possible consequences of this structural variant? Does it interrupt a gene, which part of the gene?

Please include at least 5-10 references.