Оглавление

1	Пос	строение множества вещественных чисел	2
	1.1	Множества	2
	1.2	Сечения	2
	1.3	Сумма сечений	3
	1.4	Теоремы сечений	4

Глава 1

Построение множества вещественных чисел

Лекция 1: Введение

14.09.2023

1.1 Множества

```
Определение 1. Множества X и У равны, если: \forall a \in X : a \in Y
```

 $\forall a \in X : a \in I$ $\forall b \in Y : b \in X$

Определение 2. $x \subset Y$ если:

 $\forall a \in X : a \in Y$

Определение 3. 1. $a \in A \cup B \Leftrightarrow a \in A \lor a \in B$

 $2. \ a \in A \cap B \Leftrightarrow a \in A \land a \in B$

3. $a \in A \setminus B \Leftrightarrow a \in B \land a \notin B$

Определение 4. (Декартово произведение множеств) $A \times B = \{(a,b): \forall a \in A, \forall \in B\}; A, B \neq \varnothing$

Определение 5. $F:A \to B$ - функция, такая, что: $\forall a \in A$ сопостовляет $b = F(a) \in B$

1.2 Сечения

Определение 6. Множество $\alpha \subset \mathbb{Q}$ называется сечением, если:

• I. $\alpha \neq \emptyset$

- ullet II. если $p \in \alpha$, то q
- III. в α нет наибольшего

Пример. 1.
$$p^* = \{r \in \mathbb{Q} : r < p\}$$
 - нет наибольшего
2. $\sqrt{2} = \{p \in \mathbb{Q} : p \le 0 \lor p > 0 \land p^2 < 2\}$

Теорема 1. (Утверждение 1) Если
$$p \in \alpha \land q \notin \alpha$$
, то $q > p$

Доказательство. Если $p \in \alpha$ и $q \leq p$, то из (II.) следует. что $q \in \alpha$

Теорема 2. (Утверждение 2)
$$\alpha < \beta \land \beta < \gamma \Rightarrow \alpha < \gamma$$

Доказательство.
$$\begin{cases} \alpha < \beta \Rightarrow \exists p \in \beta, p \notin \alpha \\ \beta < \gamma \Rightarrow \exists p \in \gamma, q \notin \beta \end{cases} \Rightarrow p < q \Rightarrow \alpha < \gamma$$

Доказательство. Предположим, что
$$\alpha < \beta$$
 и $\beta < \alpha$, тогда:
$$\begin{cases} \exists p \in \alpha, p \notin \beta \\ \exists q \in \beta, q \notin \alpha \end{cases} \Rightarrow \begin{cases} p > q \\ q > p \end{cases}$$
 - Противоречие, тогда $\alpha \neq \beta$

1.3 Сумма сечений

Теорема 4. Пусть α, β - сечения, тогда: $\alpha + \beta = \{p + q : p \in \alpha, q \in \beta\}$ - тоже сечение.

Доказательство. • (I.) Пусть $\exists s \notin \alpha, \exists t \notin \beta,$ тогда

$$\forall p \in \alpha, q \in \beta : \begin{cases} p < s \\ q < t \end{cases} \Rightarrow p + q < s + t \Rightarrow \alpha + \beta \neq \mathbb{Q}$$

• (II.)
$$r \in \alpha + \beta, r_1 < r$$

$$r = p + q, p \in \alpha, q \in \beta$$

$$r_1 = p + q_1, r_1 < r \Rightarrow q_1 < q \Rightarrow q_1 \in \beta \Rightarrow p + q_1 \in \alpha + \beta$$

• (III.) $\exists p_1 \in \alpha, p > p_1 \Rightarrow p_1 + q > p + q = r, p_1 + q \in \alpha + \beta \text{ - нет наибольшего}$

Теорема 5. (Свойства суммы сечений)

- 1. $\alpha + \beta = \beta + \alpha$
- 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \beta)$
- 3. $\alpha + 0^* = \alpha$, где $0^* = \{ p \in \mathbb{Q} : p < 0 \}$

Доказательство. Свойства 1 и 2 справедливы в силу коммутативности и ассоциативности рациональных чисел.

Докажем свойство 3:

- 1. Пусть $p \in \alpha, q \in 0^*$, тогда: $p + q , т.е. <math>\alpha + 0^* \subset \alpha$
- 2. Пусть $p\in\alpha$, тогда: $\exists p_1>p\Rightarrow p_1\in\alpha, p=p_1+(p-p_1)$, при том $p_1\in\alpha, p-p_1\in0^*\Rightarrow p\in\alpha+0^*\Rightarrow\alpha\subset\alpha+0^*$

$$\begin{cases} \alpha \subset \alpha + 0^* \\ \alpha + 0^* \subset \alpha \end{cases} \Rightarrow \alpha = \alpha + 0^*$$

1.4 Теоремы сечений

Теорема 6. (Теорема 2) Пусть α - сечение, $r \in \mathbb{Q}^+$, тогда $\exists p \in \alpha \land q \notin \alpha$: q - не наименьшее верхнее (не входящее в сечение) число q-p=r

Доказательство. Пусть $p_0 \in \alpha, p_1 = p_0 + r$

- 1. Возможно, $p_1 \notin \alpha$, тогда:
 - (a) если p_1 не наименьшее в верхнем классе, то $q=p_1$
 - (b) если же наименьшее, то $p = p_0 + \frac{r}{2}, q = p_1 + \frac{r}{2}$
- 2. Если $p_1 \in \alpha$, тогда:

Положим $p_n=p_1+nr$ для $n=0,1,2,\ldots$ Тогда $\exists !m:$ $p_m\in\alpha$ и $p_{m+1}\notin\alpha$

- (a) Если p_{m+1} не наименьшее в верхнем классе, то выберем $p=p_m, q=p_{m+1}$
- (b) Если же наименьшее, то $p = p_m + \frac{r}{2}, q = p_{m+1} + \frac{r}{2}$

Теорема 7. (Существование противоположного элемента) Пусть α - сечение, тогда $\exists ! \beta : \alpha + \beta = 0^*$

Доказательство. (нужно доказать единственность и существование)

Глава 1. ПОСТРОЕНИЕ МНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ 4

1. Докажем единственность: пусть $\exists \beta_1, \beta_2$, удовлетворяющие условию, тогда:

$$\beta_2 = 0^* + \beta_2 = (\alpha + \beta_1) + \beta_2 = (\alpha + \beta_2) + \beta_1 = 0^* + \beta_1 = \beta_1$$

2. Докажем существование: пусть

 $\beta = \{p : -p \notin \alpha, -p \text{ не является наименьшим в верхнем классе } \alpha\}$

- (I.) Очевидно, что $\beta \neq \emptyset$, \mathbb{Q}
- (II.) Возьмем $p \in \beta, q -p \Rightarrow -q$ в верхнем классе α , но не наименьшее $\Rightarrow q \in \beta$
- (III.) Если $p \in \beta$, то -p не наименьшее в верхнем классе α , значит $\exists q: -q < -p$ и $-q \notin \alpha$ Положим $r = \frac{p+q}{2}$, тогда: $-q < -r < -p \Rightarrow$ -r не наименьшее в верхнем классе α . Значит, нашли такое r > p, что $r \in \beta$

Теперь проверим, что $\alpha + \beta = 0^*$:

- 1. Возьмем $p\in\alpha, q\in\beta$ По определению $\beta:-q\notin\alpha\underset{\mathrm{Yfb.}\ 1}{\Rightarrow}-q>p\Leftrightarrow p+q<0\Rightarrow p+q\in0^*\Rightarrow\alpha+\beta\subset0^*$
- 2. Возьмем по Теореме (2) $q-p=r\Leftrightarrow p-q=-r\in 0^*$ т.к. $q\notin \alpha$, то $-q\in \beta$, значит $p-q=p+(-q)\in \alpha+\beta\Rightarrow 0^*\subset \alpha+\beta$

$$\begin{cases} \alpha + \beta \subset 0^* \\ 0^* \subset \alpha + \beta \end{cases} \Rightarrow \alpha + \beta = 0^*$$