

Teorija Informacij in sistemov, predavanje

ULotric

2. Kodiranje

2.1 Lastnost

kodov

2.2 Kraftova neenakost

2.3 Shannonov prvi teorem

3. Stiskanje

3.1 Shannonov kod

3.2 Fanojev kod

Teorija Informacij in sistemov, predavanje $2\,$

Uroš Lotrič

Univerza v Ljubljani, Fakulteta za računalništvo in informatiko

ULotric

2. Kodiranje

2.1 Lastnost kodov

2.2 Kraftova neenakost

2.3 Shannonov prvi teorem

3. Stiskanje

3.1 Shannono kod

- ▶ Vzemimo, da vsako sporočilo ustreza enemu dogodku.
- ▶ Sporočila so lahko: znaki abecede, števke 0-9, 0 in 1, ...
- ▶ Kod sestavljajo kodne zamenjave, ki so sestavljene iz znakov kodne abecede. Število znakov v kodni abecedi označujemo z r.
- ▶ Kodno abecedo največkrat predstavljata znaka 0 in 1, lahko je tudi večja.
- ► Kod je dodelitev kodnih zamenjav znakom osnovne abecede
- ► Primer: A 0, B 01, C 010
- ▶ Mnogi kodi so zelo splošno uporabljani:
 - ▶ Morsejeva koda $\{., -, presledek\}, SOS = ... - ...$
 - ▶ koda ASCII: A 1000001, B 1000010

2.1 Povprečna dolžina kodnih zamenjav

Teorija Informacij in sistemov, predavanje

ULotric

2. Kodiranje

2.1 Lastnosti kodov

2.2 Kraftova neenakost

2.3 Shannonov prvi teorem

3. Stiskanje

3.1 Shannond kod

3.2 Fanojev

- ▶ Pomembna lastnost koda je dolžina kodnih zamenjav
- Kratke kodne zamenjave so bolj zaželene
 - ► Morse: E = ., A = .-, Y = . -
- ▶ Če so $\{p_1, \ldots, p_n\}$ verjetnosti znakov $\{s_1, \ldots, s_n\}$ osnovnega sporočila in $\{l_1, \ldots, l_n\}$ dolžine prirejenih kodnih zamenjav je povprečna dolžina kodne zamenjave $L = \sum_{i=1}^{n} p_i l_i$
- ▶ Kod je **optimalen**, če ima najmanjšo možno povprečno dolžino kodnih zamenjav za kodiranje smo uporabili najmanjše možno število znakov
- Kod je idealen, če je povprečna dolžina kodnih zamenjav enaka entropiji

2.1 Tipi kodov 1

Teorija Informacij in sistemov, predavanje

ULotric

2. Kodiranje

2.1 Lastnosti kodov

2.2

Kraftova neenakost

2.3 Shannonov prvi teoren

3. Stiskanje

3.1 Shannond kod

3.2 Fanojev

 osnovnim simbolom lahko priredimo poljubne kodne zamenjave

- ▶ vse kodne zamenjave niso uporabne
- singularni kodi: različnim znakom je prirejena ista kodna zamenjava
- nesingularnost ni dovolj: ne vemo kje se znak začne in kje konča
- ▶ Primeri kodov $(A = \{s_1, s_2, s_3\}, B = \{0, 1\})$:

A	$p(s_i)$	Kod 1	Kod 2	Kod 3	Kod 4	Kod 5
s_1	0,5	00	0	1	0	0
s_2	0,3	01	1	10	10	0
s_3	0,2	10	01	100	11	1
L		2	1.2	1.7	1.5	1

2.1 Tipi kodov 2

Teorija Informacij in sistemov, predavanje 2 ULotric 2. Kodiranje

2.1 Lastnosti kodov

2.2 Kraftova

neenakost

Shannonov prvi teorem

3. Stiskanje

3.1 Shannonov kod

- ► Kod je **enakomeren**, če je dolžina vseh kodnih zamenjav enaka.
- ► Kod je **enoznačen**, če lahko poljuben niz znakov dekodiramo na en sam način.
- ▶ Kod je **trenuten**, če lahko osnovni znak dekodiramo takoj, ko sprejmemo celotno kodno zamenjavo. To velja le, če kod ne vsebuje kodne zamenjave, ki bi bila predpona kakšni drugi kodni zamenjavi.

2.1 Kodna drevesa

Teorija Informacij in sistemov, predavanje 2

ULotric

- Z. Kodiranje
- 2.1 Lastnosti kodov
- 2.2 Kraftova neenakost
- 2.3 Shannonov prvi teorem
- 3. Stiskanje
- 3.1 Shannono kod
- 3.2 Fanojev

- ▶ Kodno drevo: vsako vozlišče ima največ toliko vej kot je različnih znakov v abecedi B. Veje vodijo do naslednjih vozlišč
- Vozlišča, ki predstavljajo kodne zamenjave označimo z debelo piko
- Primeri kodnih dreves za prejšnjo tabelo

2.2 Kraftova neenakost 1

Teorija Informacij in sistemov, predavanje 2

ULotric

2. Kodiranje

2.1 Lastnosti

2.2 Kraftova

2.3 Shannonov prvi teorem

3. Stiskanje

3.1 Shannono kod

3.2 Fanojev kod ▶ Za dolžine kodnih zamenjav $\{l_1, \ldots, l_n\}$ in r znaki kodirne abecede obstaja trenutni kod, če in samo če velja

$$\sum_{i=1}^{n} r^{-l_i} \le 1$$

- ▶ Primer: enakomerni kod za n znakov, $B = \{0,1\}$: $n2^{-l} \le 1 \to n \le 2^l$, $l = 5 \to n = 32$ število različnih kodnih zamenjav, ki jih lahko tvorimo iz 5 znakov
- ▶ Skica dokaza s kodnim drevesom:

2.3 Povprečna dolžina zamenjav in entropija 1

Teorija Informacij in sistemov, predavanje 2

ULotric

2. Kodiranje

2.1 Lastnosti kodov

2.2 Kraftova neenakost

2.3 Shannonov prvi teorem

3. Stiskanje

3.1 Shannond kod

$$H_r(X) \le L \to \frac{H(X)}{\log r} \le L$$

- ▶ Dokažimo: $H(X) L \log r \le 0$ (uporabimo tangento na logaritem in Kraftovo neenakost)
- ▶ Najkrajše povprečne kodne zamenjave imamo, če je $H_r(X) = L \rightarrow l_i = -\log_r p_i$
- ▶ zgornje je res samo, če je za vsak i l_i celo število, drugače $l_i = [-\log_r p_i]$
- kljub zaokrožitvi imajo bolj verjetni znaki krajše kodne zamenjave

2.3 Povprečna dolžina zamenjav in entropija 2

Teorija Informacij in sistemov, predavanje 2

ULotric

2. Kodiranje

2.1 Lastnosti

kodov

Kraftova neenakost

2.3 Shannonov prvi teorem

3. Stiskanje

3.1 Shannon kod

3.2 Fanojev kod

$L < H_r(X) + 1 \to L < \frac{H(X)}{\log r} + 1$

- Dokaz za zgornjo mejo (upoštevamo zaokrožitev navzgor)
- ▶ omejitev povprečne dolžine kodnih zamenjav

$$H_r(X) \le L < H_r(X) + 1$$

$$\frac{H(X)}{\log r} \le L < \frac{H(X)}{\log r} + 1$$

Kod je **gospodaren**, če je L znotraj zgornjih mej.

učinkovitost koda

$$\eta = \frac{H(x)}{L\log r} \quad , \quad 0 < \eta \le 1$$

2.3 Shannonov prvi teorem

- Prva ideja: krajše kodne zamenjave za bolj verjetne znake (pravkar obdelali)
- Druga ideja: združevanje znakov v večje, sestavljene znake in kodiranje sestavljenih znakov
 - $(X, X, \dots, X) = X^n, H(X^n) = nH(X)$
 - ► $H(X^n) \le L_n < H(X^n) + 1 \to nH(X) \le L_n < nH(X) + 1$
 - ▶ $H(X) \le L_n/n < H(X) + 1/n$ ▶ zgornja meja povprečne dolžine kodne zamenjave na
- znak L_n/n se v limiti $n \to \infty$ približuje H(X)reorem: Za nize neodvisnih znakov dolžine $n(X^n)$ obstajajo kodi za katere velja

$$\lim_{n \to \infty} \frac{L_n}{n} = H(X)$$

pri čemer je H(X) entropija vira X.

- Posledica: z večanjem n se zgornja meja lahko poljubno približa entropiji
- Cena: kompleksno kodiranje in zakasnitev pri dekodiranju

Informacij in sistemov, predavanje 2 ULotric

Teorija

Lastnosti kodov 2.2 Kraftova

neenakost

Shannonov prvi teorem 3. Stiskanje

Kodiranje

2.1

2.3

3.1

kod

kod

3.1 Shannonov kod 1

Teorija Informacij in sistemov, predavanje

ULotric

- 2. Kodiranje
- 2.1 Lastnost
- 2.2
- Kraftova neenakost
- 2.3 Shannonov prvi teorem
- 3. Stiskanje
- 3.1 Shannonov kod
- 3.2 Fanojev kod

- znake razvrstimo po padajočih verjetnostih
- \blacktriangleright število znakov v vsaki kodni zamenjavi določimo iz enačbe $l_k = \lceil -\log_r p_k \rceil$
- ▶ za vse simbole izračunamo kumulativne verjetnosti $P_k = \sum_{i=1}^{k-1} p_i$
- \triangleright P_k pretvorimo v bazo r. Kodno zamenjavo predstavlja prvih l_k znakov necelega dela števila

3.1 Shannonov kod 2

Teorija Informacij in sistemov, predavanje 2

ULotric

2. Kodiranje

2.1

kodov

2.2 Kraftova

Kraftova neenakost

2.3 Shannonov prvi teorem

3. Stiskanje

3.1 Shannonov kod

- ► Primer 1: $\{0.5, 0.25, 0.125, 0.125\}$ $L = 7/4, H = 7/4, \eta = 1$
- ► Primer 2: $\{0.39, 0.19, 0.16, 0.13, 0.13\}$ $L = 2.61, H = 2.17, \eta = 0.83$
- ▶ Kod ni najboljši: za verjetnosti {0.9,0.1} dobimo namesto kodnih zamenjav dolžine 1, eno dolžine 1 in drugo dolžine 4!

3.2 Fanojev kod

Teorija Informacij in sistemov, predavanje 2

ULotric

2. Kodiranje

2.1

2.2

Kraftova neenakost

Shannonov prvi teoren

3. Stiskanje

3.1 Shannone kod

- ▶ znake razvrstimo po padajočih verjetnostih
- ightharpoonup Znake razdelimo v r čim bolj enako verjetnih skupin
- ightharpoonup Vsaki skupini priredimo enega od r znakov kodne abecede
- Deljenje ponovimo na vsaki od skupin. Ponavljamo, dokler je mogoče
- ► Primer 1: $\{0.5, 0.25, 0.125, 0.125\}$, $L = 7/4, H = 7/4, \eta = 1$
- ► Primer 2: $\{0.39, 0.19, 0.16, 0.13, 0.13\}$, $L = 2.26, H = 2.17, \eta = 0.96$