

Berufsmaturität: Hauptklausur

Fach:	Mathematik			
Dauer:	45 min (Die Zeitangaben sind als Richtwerte zu verstehen)			
Punkte max:	50			
Hilfsmittel:	gemäss Hilfsmittelliste			
Klasse:	BMGS-BMWDD-18M-S3-BE-Fr-0224			
Datum:	09.05.2025			
Lehrperson:	Stefan Mühlebach			
Serie:	251-A			
Name, Vorname:	_			
Punkte:	Note:			

Aufgabe 1: Wurzelgleichung (9 Min)

10 Punkte

Bestimme Definitions- und Lösungsmenge der folgenden Wurzelgleichung:

$$\sqrt{x^2 + \sqrt{4x + 5}} = x + 1$$

Aufgabe 2: Potenzfunktionen (9 Min)

10 Punkte

Gegeben sind die beiden Funktionen

$$f(x) = -x^{-3} \qquad g(x) = x^6$$

1. Ergänze die nachfolgende Tabelle mit den fehlenden Funktionswerten. Runde auf 2 Stellen nach dem Dezimalpunkt. (2 P)

x	-2	-1	-0.5	0	0.5	1	2
f(x)							
g(x)							

2. Zeichne die beiden Funktionen in das untenstehende Koordinatensystem. (4P)

3. Nun wird die Funktion f um Eins nach oben (d.h. in positiver y-Richtung) und die Funktion g um Eins nach unten (d.h. in negativer y-Richtung) verschoben. Gib die Funktionsgleichungen der verschobenen Funktionen an. (4 P)

Aufgabe 3: Datenanalyse (9 Min)

10 Punkte

Für eine Person (Jahrgang 1992) wurde für die Gemeinde Ettingen (BL) stichprobenmässig ein Vergleich der Krankenkassenprämien vorgenommen:

412, 352, 366, 383, 412, 364, 453, 386, 386, 414, 393, 340

- 1. Bestimme den Mittelwert und beschreibe die Rechnung, welche dahinter steht. (2P)
- 2. Bestimme den Median und erkläre dieses Resultat in kurzen Worten. (1P)
- 3. Bestimme die Standardabweichung. (2 P)
- 4. Erstelle den Boxplot dieser Datensammlung. Beschrifte die Quartilsgrenzen mit den entsprechenden Werten. (5 P)

Aufgabe 4: Zinseszins (9 Min)

10 Punkte

Nach 6 Jahren hebt Anna das Geld, das sie vor 6 Jahren zu 2% Zins angelegt hat, ab. Sie erhält Fr. 9572.—

- 1. Welchen Betrag hat Anna vor 6 Jahren einbezahlt? (Resultate auf ganzen Franken runden). (2 P)
- 2. Welche Summe hatte sie vor zwei Jahren auf ihrem Konto? (2 P)
- 3. Nach wieviel Zeit hatte sie Fr. 9000.— auf ihrem Konto? (3 P)
- 4. Bei welchem Zinssatz hätte sie den Endbetrag von Fr. 9572.— schon nach 4 Jahren erreicht? (3 P)

Aufgabe 5	Wahrscheinlichkeitsrechnung	(9 Min)
-----------	-----------------------------	---------

10 Punkte

Aus einer Urne mit 3 blauen und 2 weissen Kugeln werden hintereinander 3 Kugeln ohne Zurücklegen gezogen.

Erstelle den Baum	, welche dieses Experiment beschreibt.	$(6\mathrm{P})$
O.1 1. TTT 1 1 .		

Gib die Wahrscheinlichkeiten der folgenden Ereignisse an:

1. «3 blaue	e Kugeln»	(1P)

Aufgabe 6: Lineare Optimierung (9 Min)

10 Punkte

Bestimme die maximalen x-, und y-Werte des folgenden LUS für die untenstehende Zielfunktion. Verwende dazu das nachstehende Koordinatensystem.

LUS

- 1. $10x + 20y \le 800$
- $2. \ 50x + 60y \le 3600$
- 3. $y \le 30$
- 4. $x \ge 0, y \ge 0$

Zielfunktion Z = 20x + 30y

