维保线下热门店预测V1.0

背景:在维保店粒度的热门店预测的基础上,爱萍姐提出,除店的预测单量排序外,还希望获得具体有哪些人选择这些门店。桑哥在此基础上出了一版司机粒度的维保意愿预测,根据意愿构建维保店排序,特征主要考虑基于geohash的轨迹特征,V1.0在此基础上增加了司机的特征,细化了轨迹特征,提高了预测效果与排序效果。

具体的工作:

特征添加:

粲哥第一版特征:

来源表格	特征
am_dw.mta_haixiu_pid_driving_info_other_result_1_daily	stay_time_cut ,geohash_6_nums ,geohash_5_nums ,geohash_6_hours ,geohash_6_avg_hour ,geohash_6_max_hour ,geohash_6_min_hour ,is_ordered(作为label,表示在该geohash下订单)
am_dw.dim_mta_store_info	mta_haixiu_store_geohash_6(用于筛选数据,而非作为特征)

在此基础上增加了司机特征,细化了轨迹特征,新增的特征为:

来源表格	特征
am_dw.mta_haixiu_pid_driving_info_other_result_1_daily(细化轨迹特征)	geohash_5_hours ,geohash_5_avg_hour ,geohash_5_max_hour ,geohash_5_min_hour ,rank_geo_6 ,rank_geo_5
am_dw.csum_driver_integrate_info(增加司机特征)	driver_type ,driver_join_model ,driver_verify_status ,is_auth_driver,order_finish_count_ld ,order_finish_count_lw ,order_finish_distance_ld ,order_finish_distance_lw ,order_finish_distance_lm ,morning_peak_order_finish_distance_ld ,morning_peak_order_finish_distance_lw ,morning_peak_order_finish_distance_lm ,might_peak_order_finish_distance_ld ,night_peak_order_finish_distance_lw ,night_peak_order_finish_distance_lw ,night_peak_order_finish_distance_lw ,night_peak_order_finish_distance_lw
am_dw.dwd_mta_store_info_extend(细化轨迹特征)	num_store

特征说明:

以下特征均是对每天的每人统计	
stay_time_cut	在geohash块待的时间长短
geohash_6_nums	与该geohash7属于一个geohash6的数量
geohash_5_nums	与该geohash7属于一个geohash5的数量
geohash_6_hours	在该geohash6待的总小时数(向下取整)

geohash_5_hours	在该geohash5待的总小时数(向下取整)
geohash_6_avg_hour	在该geohash6待的平均时间点(小时)
geohash_5_avg_hour	在该geohash5待的平均时间点(小时)
geohash_6_max_hour	在该geohash6待的最大时间点(小时)
geohash_5_max_hour	在该geohash5待的最大时间点(小时)
geohash_6_min_hour	在该geohash6待的最小时间点(小时)
geohash_5_min_hour	在该geohash5待的最小时间点(小时)
rank_geo_6	该geohash6待的时间的排序
rank_geo_5	该geohash5待的时间的排序
以下特征直接来源于专快司机信息汇总表	
driver_type	司机类型(1: 加盟司机: 2: 自营车司机; 3: 营运司机)
driver_join_model	合作模式(1: 普通加盟车; 2: 自营长包车; 3: 直营京B; 4: 加盟豪华车; 5: 对公司司机)
driver_verify_status	当前状态(0: 未审核; 1: 已审核; 2: 已锁定; 3: 已禁用; 4: 未完成注册; 5: 已删除; 8: 不知道
is_auth_driver	是否认证司机(1: 是; 0: 否)
order_finish_count_1d	最近1天完成订单数
order_finish_count_1w	最近7天完成订单数
order_finish_count_lm	最近30天完成订单数
order_finish_distance_1d	最近1天完成订单公里数
order_finish_distance_lw	最近7天完成订单公里数
order_finish_distance_lm	最近30天完成订单公里数
morning_peak_order_finish_distance_1d	最近1天完成早高峰订单公里数
morning_peak_order_finish_distance_1w	最近7天完成早高峰订单公里数
morning_peak_order_finish_distance_1m	最近30天完成早高峰订单公里数
night_peak_order_finish_distance_1d	最近1天完成晚高峰订单公里数
night_peak_order_finish_distance_lw	最近7天完成晚高峰订单数公里数
night_peak_order_finish_distance_lm	最近30天完成晚高峰订单数公里数
以下特征来源于维保店信息表(包括线下)	
num_store	该geohash7有几家维保店(根据geohash7匹配)

数据:

从am_dw.mta_haixiu_pid_driving_info_other_result_1_daily中取出20180715 - 20180806所有司机每一天的所有轨迹,并拼接各个相关表形成特征表am_temp.xsc_mta_pre_data_xie

预处理:

采样:正样本数量较少只有3000+,而负样本非常多,训练与验证的总数据选用全部3000+的正样本与20万采样后的负样本(选择20180715-20180803 数据用于训练,20180804-20180806作为验证)。

模型:

该问题的特征是二分类,数据极不平衡,且评价首要指标为排序正确,而非意愿预测正确

使用xgboost模型训练二分类问题;根据不平衡问题的特点设定参数 (min_child_weight, scale_pos_weight, max_delta_step);同时评价指标的要求是:选择阈值,保证准确率为1的情况下,False Negative的数量越大越好。

模型参数:

```
params={'booster':'gbtree',
  'objective': 'binary:logistic',
  'eval_metric': 'auc',
  'learning_rate':0.01,
  'max_depth':4,
  'lambda':10,
  'n_estimators':100000,
  'subsample':0.9,
  'colsample_bytree':0.9,
  'min_child_weight':0.1,
  'scale_pos_weight':5,
  'seed':1,
  'nthread':4,
  'silent':1,
  'max_delta_step':10}
```

结果:

特征重要度:

可以看出新加入的特征起到了非常大的作用

排序对比:

我们选择20180715-20180803的数据来训练,选择2018-08-04,2018-08-05,2018-08-06这3天的数据来判断结果好坏。分别根据 $is_ordered$ 和pred来排序。

因为只需要排序正确,因此我们提高准确率而压低召回率,保证排序的正确性。保证排序后,如果想要获得每个油站较为准确的预测人数,可以通过减小阈值实现。

选择阈值为0.985:

AUC: 0.9852, F1-score: 0.5737, Precision: 0.9961

	mta_haixiu_store_geohash_6	pred
0	wtw93p	55
	wtw3ch	48
2	wtw33d	47
	wtw6h5	25
4	wtw3dr	25
	wtw3qr	18
	wtw2f9	18
	wtw3cb	15
8	wtw3tb	14
	wtw3z5	12
10	wtw6hg	11
11	wtw3nk	11
12	wtw3vr	8
13	wtw3u5	6
14	wtw35k	2
15	wtw652	1

	mta_haixiu_store_geohash_6	is_ordered
0	wtw93p	105
	wtw3ch	81
2	wtw33d	66
3	wtw6h5	59
4	wtw3qr	51
	wtw2f9	44
6	wtw3tb	36
7	wtw3dr	35
8	wtw3cb	32
9	wtw6hg	25
10	wtw3z5	22
11	wtw3nk	22
12	wtw3u5	20
13	wtw3vr	15
14	wtw652	12
15	wtw35k	8

对每个店预测人数的分布:

