Table of Contents

1 Introduction	1
2 Background	3
2.1 Microbiomes	3
2.1.1 The Rhizosphere and Phycosphere	4
2.2 Metagenomics & 16S rRNA Profiling	4
2.2.1 Metagenomics Costs & Possible Solution	5
2.3 Bridging the Microbiomes	6
2.3.1 Chlamydomonas and the ICL	6
2.4 Spectroscopy	7
2.4.1 Spectrophotometry & the Beer-Lambert Law	8
2.4.2 Fluorescence Spectroscopy	9
3 Methodology	10
3.1 Growing Chlamydomonas & Strains	10
3.1.1 Media	11
3.2 Experiments & Data	11
3.2.1 Tecan & Photobioreactor	11
3.2.2 Screening Experiments	12
3.2.3 PBR Experiments	13
3.2.4 PBR Correlating Data Usage	13
3.3 Modeling I	14
3.3.1 Extension of the Beer-Lambert Law	15
3.3.2 Forced Constraints on Modeling	16
3.3.3 Exclusion of Fluorescence Measurements & Models	16
3.3.4 Calibration Samples Preparation for Modeling	17
3.4 Data Processing	19
3.5 Modeling II	19
3.5.1 Obtaining the Extinction Coefficients	20

3.5.2 General Form of Predictive Models	21
3.5.3 Model Application to PBR Data	22
3.6 K-Space & Model Optimization	22
3.6.1 K-Space Calculation	23
3.6.2 Theory of Model Optimization	23
3.7 Absorbances to Cell-Counts	24
4 Results & Analysis	26
4.1 Modeling III	26
4.1.1 Single-Strain Calibration Contributions	27
4.1.2 SynCom Calibration	28
4.1.3 Analysis of General Model Behavior	31
4.1.4 Models 4 & 5	31
4.2 Pivoting the Thesis Scope	34
4.3 Modeling IV: Engineering Solutions	35
4.3.1 Special K	35
4.3.2 Optimization of Model S	38
4.4 Pivoting back to Analysis	41
4.4.1 Analysis of Screen 4	42
4.4.2 Model Transferability to Photobioreactor (PBR)	44
4.4.3 PBR Data Modeling	46
5 Discussion	54
5.1 Summary of Results	54
5.1 Implications	55
5.1 Limitations	56
5.1 Recommendations	56
6 Conclusion	57
References	58
Appendix	61

Declaration of Authorship

ABSTRACT

A high-throughput method for studying host-microbiota interactions is being development at the Max Planck Institute for Plant Breeding Research. This high-throughput system models phycospheres—the aquatic analogue of a rhizosphere—by leveraging an absorbance measuring photobioreactor and rationally composed combinations of microorganisms or synthetic communities (SynComs). The SynComs are comprised of harvested and indexed soil bacteria and the ubiquitous freshwater microalgae, *Chlamydomonas reinhardtii* (CC-1690) that serves as host. The aqueous nature of the system makes it a good candidate to be measured using absorbance spectrophotometry, and the Beer-Lambert law is applied to determine the fractions of bacteria and host in the system. Multiple Beer-Lambert models are created and deployed on existing and continuously generated data. The complexity of the system, however, does not allow for the trivial application of these models. The analysis of the calibration data used to create the models suggest the existence of an optimal model and is subsequently found. The existence of this model facilitates the determination of correction factors that allow the initially created model's predictions to be optimized and are subsequently applied to the data under study.