

# Assessing the Relationship Between Music-Sharing Tweet Popularity and Long-Term Spotify Streaming Popularity

Elizabeth Kiel '23 | Data Science Major Capstone

#### **Research Question**

To what extent can the popularity metrics of a tweet containing a music-sharing link predict a song's future popularity?

# Background

Musical artists are increasingly attempting to understand and leverage social media to promote their music to wider audiences [3][4]. A better understanding of social media metrics in relation to long-term streaming popularity may improve strategic promotional efforts.

Twitter may be considered the nexus of the online music community, given the immense volume of music-related content on the platform [1]. Spotify is the most popular subscription-based streaming service in the world with over 350 million users [2].

#### **Data**

## Description

To operationalize music sharing on social media, Professor Mustafaraj and I used the Twitter API to collect ~4 million tweets containing the the Spotify track sharing URL stem ("open.spotify.com") in March 2022. The Twitter API also provided the popularity metrics selected for the final data set:

- Tweet popularity metrics: like\_count, retweet\_count, reply\_count, quote\_count
- Tweet author popularity metrics: # following, # of followers, verified status

To measure long-term popularity, I took a random sample of ~150,000 tracks shared in the tweets in February and March 2023. Popularity scores were collected by passing the unique track or album ID to the Spotify API.

#### Cleaning

The following variables were created or modified:

- follow ratio: # following/# followers
- frequency: # of times track/album appeared in sample
- verified: re-coded from Boolean to binary value
- popularity: tracks/albums with a popularity score of 0 were excluded from the datas set to better meet normality assumption of the response variable (*Figure I*)



Figure I. Popularity score distribution before (left) and after (right) scores equal to 0 were eliminated

# Data Modeling: First Order Model

First using the song data, I ran a multiple linear regression in R to identify the Twitter popularity metrics associated wth long-term Spotify popularity score. To select model variables, I performed a stepwise elimination on the full model to minimize AIC.

Using the linear regression diagnostic plots generated by R, I eliminated influential outlier points identified in the regression diagnostic model plots. Utilizing the MASS package in R, I performed a Box-Cox transformation on the response variable,  $\lambda$  = 1.1515. I refit the data, which yielded a first-order model ( $R^2$  = 0.03031,  $R^2_{adi}$  = 0.03025, F = 533.8, p < 2.2\*10-<sup>16</sup>) of the form:

 $\begin{aligned} Popu \hat{l}arity_i &= 72.95 + 0.0469 \cdot Frequency_i + 0.1028 \cdot ReplyCount - .0318 \cdot RetweetCount_i + .9373 \cdot QuoteCount_i - .0004 \cdot Following_i + .000008 \cdot Followers_i - 19.37 \cdot Verified_i - .3000 \cdot FollowRatio_i \end{aligned}$ 

|               | Estimate    | SE          | t-value | p        |
|---------------|-------------|-------------|---------|----------|
| Intercept     | 72.95       | 0.103       | 708.215 | 0*       |
| Frequency     | 0.04685     | 0.0007377   | 63.51   | 0*       |
| Reply Count   | 0.1028      | 0.04137     | 2.486   | 0.01294* |
| Retweet Count | -0.03178    | 0.01962     | -1.619  | 0.10541  |
| Quote Count   | 0.9373      | 0.1787      | 5.245   | 0*       |
| Following     | -0.0004262  | 0.00003925  | -10.859 | 0*       |
| Followers     | 0.000008366 | 0.000005909 | 1.416   | 0.15683  |
| Verified      | -19.37      | 2.736       | -7.079  | 0*       |
| Follow Ratio  | -0.02997    | 0.009877    | -3.035  | 0.00241* |

<sup>\*</sup> p-value < a = 0.05

Figure II. Regression coefficient output for first-order model

# **Data Modeling: Interaction Model**

To select model variables for an interaction model, I performed a stepwise process on the first-order model bounded by the second-order model with all interactions to minimize the AIC. This yielded a second-order model that included all 7 variables from the first-order model, as well as 22 interaction terms ( $R^2 = 0.03145$ ,  $R^2_{adi} = 0.03129$ , F = 201.7,  $p < 2.2*10-^{16}$ ).

#### Discussion

- The first-order model describes a positive relationship between popularity of a track and frequency of appearance in the data set, reply count, quote count, and # of followers. It describes a negative relationship between popularity and retweet count, # following, verified status, and follow ratio.
- Like count was excluded as a variable from the first-order model during variable screening
- Overall, the models suggest that the Twitter popularity metrics do not account for much of the variation in Spotify popularity one year after the Tweet

#### **Limitations & Data Ethics**

When interpreting these results, it is important to consider that:

- Approximately 8% (n = 12,432) data points were excluded from analysis due to popularity scores < 0



Figure III. Linear regression assumptions for the first-order model were not met

### References

[1] Bengtsson, Linda Ryan, and Jessica Edlom. "Mapping transmedia marketing in the music industry: a methodology." Media and Communication 9.3 (2021): 164-174.

[2] "Music Streaming App Revenue and Usage Statistics (2023)." Business of Apps, 1 Feb. 2023,

https://www.businessofapps.com/data/music-streaming-market/. [3] Salo, Jari, Mikko Lankinen, and Matti Mäntymäki. "The use of social media for artist marketing: Music industry perspectives and consumer motivations." International Journal on Media Management 15.1 (2013):

[4] Toscher, Benjamin. "Resource Integration, Value Co-Creation, and Service-dominant Logic in Music Marketing: The Case of the TikTok Platform." International Journal of Music Business Research 10.1 (2021): 33-50.