

M.D. ARGYLE, R.L. COWAN, R.V. FOX, G.S. GROENEWOLD, S.K. JANIKOWSKI, R.S. MARTINEZ, D.A. NOWERS, A. NOWERS, M.T. SAYER

IDAHO NATIONAL ENGINEERING LABORATORY EG&G IDAHO, INC. IDAHO FALLS, IDAHO 83415-2050

MARCH 1995

FINAL REPORT

JANUARY 1990 - SEPTEMBER 1990

APPROVED FOR PUBLIC RELEASE:

Approved for public releases

Distribution Unlikelied

ENVIRONICS DIVISION

CONFINING LAYER

Air Force Civil Engineering Support Agency Civil Engineering Laboratory Tyndall Air Force Base, Florida 32403

MOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Weither the United States Government mor any agency thereof, nor any employees, nor any of their contractors, subcontractors, or their employees make any warranty, expressed or implied, or assume any level liability or responsibility for the accuracy, completeness, or usefulness or any privately camed rights. Reference herein to any specific commercial process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor, or subcontractor thereof. The views and opinions or the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency, contractor, or subcontractor thereof.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligations, whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

The following commercial products (requiring Trademark) are mentioned in this report. Because of the frequency of usage, the Trademark was not indicated. If it becomes necessary to reproduce any segment of this document containing any of these names, this notice must be included as part of that reproduction.

Allied-Kelite Div., Witco Chemical Corp.; Wiklad 797 McGean-Rohco, Inc.; Rostrip 999-SP Electrolytic Silver Stripper Beuhler; Micropolist II Bioanalytical Systems, Inc.; BAS CV-27 Circuit Chemistry Corp.; Cirstrip NCN-CU EG&G, PARC; Model 378 Electrochemical Impedance System Electrochemicals; Mickel-Sol Process Enthone-OMI, Inc.; Emplate Ni-425 Enthone-OMI, Inc.; XPS-306 Frederick Gumm Chemical Co.; CLEPO 204 HACH Company; Analytical Reagents Kratos: HPLC systems Lotus Development Corp.; 1-2-3 Release 3.1 MaT Chemicals, Inc.; Ni-plex 100 Metalx, Inc.; B-9 Mickel Strippers Occupational Health Systems; MSDS information Patclin Chemical Company; Patstrip Ni Pratt & Whitney Aircraft Division of United Technologies Corp.; Nickel-boron coatings (NB-772) Pure Coatings, Inc.; NiBron Yellow Springs Instruments, Inc.; Dissolved Oxygen probes

Mention of the products listed above does not constitute Air Force endorsement or rejection of this product, and use of information contained herein for advertising purposes without obtaining clearance according to existing contractual agreements is prohibited.

Please do not request copies of this report from HQ AFCESA (Air Force Civil Engineering Support Agency). Additional copies may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal government agencies and their contractors registered with Defense Technical Information Center should direct requests for copies of this report to:

Defense Technical Information Center Cameron Station Alexandria, Virginia 22314

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting builden for this collection of information is estimated to average. Inour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the pataleged and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection or information, including suggestions for reducting this burden to. Washington Research and Expert Services Directorate for information Operations and Papeling 121s Jefferson Davis on away. Suit ex 121st Armston 1A 22222-4302, and to the Office of Management and Budget, Papelings Reduction Project (0746-0188), Washington, DC 2003.

Davis Highway, 50 te 1214, Amington I. A. 222224502, and to the Office 57 Management and Bodget, Paper Work Reddition	C) #11 (0 / 0 4 · 0 · 0 0), 4 * 0 3 · · · · · · · · · · · · · · · · · ·
1. AGENCY USE ONLY (Leave blank) 2. REPORT_DATE 3. REPORT TYPE A March 1995	ND DATES COVERED Final
4. TITLE AND SUBTITLE	5. FUNDING NUMBERS
Demonstration of NonCyanide Strippers to Replace Cyanide Strippers,Part 2 of 2	DE-AC07-76ID01570
6. AMTD. Argyle, R.L. Cowan, R.V. Fox, G.S. Groenewold, S.K. Janikowski, R.S. Martinez, D.A. Nowers, A. Nowers, M.T. Sayer	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
Idaho National Engineering Laboratory EG&G Idaho, Inc. Idaho Falls, Idaho 83415-2050	EGG-WTD-10087
9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES)	10. SPONSORING MONITORING AGENCY REPORT NUMBER
HQ AFCESA Tyndall AFB, FL 32403	ESL-TR-92-12 Part 2 of 2
11. SUPPLEMENTARY NOTES	
Prepared for the United States Air Force through the U.	S. Department of Energy.
12a. DISTRIBUTION AVAILABILITY STATEMENT	126. DISTRIBUTION CODE
Unlimited Distribution	
This report is divided into parts. Part 1 consists of the and Appendixes A through F, pages 1-204. Part 2 consists K, pages 205-361. The objective of the work described in develop and demonstrate an improved means to replace cyan stripping solution in the plating shops at the Air Logis program, 35 commercial strippers, 3 Air Force process so nickel stripper were tested. First, these strippers were laboratory scale. If a stripper proved worthwhile in the scaled up in a field test. The next step was to implement products into the plating shop at Kelly AFB. Two stripper and Rostrip 999-sp Electrolytic Silver stripper, have be implemented into the plating shop at Kelly These stripper replace the cyanide stripping processes formerly used by	s of Appendixes G through n this report was to nide containing metal tics Centers. During the lutions, and a generic e evaluated on a e laboratory, it then was nt the most worthwhile ers, B-9 Nickel Stripper en successful and ers will effectively the Air Force.
14. SUBJECT TERMS	15. NUMBER OF PAGES
Plating Strippers (U), Red Water Problem (U) Noncyanide Strippers (U), Electroless Nickel (U) Biodegradability and compatibility testing (U)	16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION OF ABSTRACT	FICATION 20. LIMITATION OF ABSTRACT

UNCLASSIFIED

UL

UNCLASSIFIED

UNCLASSIFIED

APPENDIX G

STRIPPING RATE DATA FOR IMPLEMENTED STRIPPERS AND ALTERNATIVE PLATE MATERIALS PERFORMED FOR THE PLATING SHOP AT KELLY AFB

93
3
13.
-

Stripper	Test Date	Coupon Material	modno)	Coupon Density # (g/cm3)	Unmaske tength	Unmasked Dimensions	ions thick	hole	Suface Area (cm2)	Initial Mass (grams)	Finat Mass (grams)	Change Mass (grams)	Total Time (hours)	Stripping Rate (mil/hr)	Average S.R. (mil/hr)
Implements Niplex 100	Implementation Monit Niplex 100 Stripper	Implementation Monitoring 2 KAFB, Bldg 301 Niplex 100 Stripper Temp 143F pH 9.9	FB, Bt		Implementati ir agitation		Tank #127 7 months old								
Niplex Niplex	7-2-91	S-IN	382	8.8	2.039	1.037	0.076	0.237	31.26	21.4730	21.3214			1.07E-01	1.06E-01
Niplex	7-2-91	Ni-pun	36	8.9	2.025	1.014	0.071	0.237	30.14	18.0724			2.0	7.48E-03	8.08E-03
Niplex	7-2-91	mid-ji	75	8.90	2.021	1.013	0.071	0.238	30.05	17.9236	-			8.68E-03	
Niplex	7-2-91	- d-	9 6	8	2.022	1.005	20.0	0.234	30.92	17.9178		0.1024		7.57E-02	6.53E-02
Niplex	7-2-91	C4340	20	7.84	2.010	1.014	0.062	0.249	29.34	15.1978		0.0000	,,,	4.28E-05	2.14E-05
Niplex	7-2-91	04340	25	7.8	2.007	1.022	0.062	0.250	29.51	15.2738	-	0.000		0.00E+00	
Niplex	7-2-91	DOAC	32	8.20	1.978	0.997	0.080	0.250	29.67	18.6438	18.6457	0.0001	54.0 54.0	6.74E-06 6.78E-06	6.76E-06
Niplex 100	Stripper	Temp 146F	F PH	10.3	air agitation	٥	months old	PI							
Niplex	9-5-91	Ni-S K	43	8.90	2.039	1.009	0.072	0.242	30.24	19.2508	-	0.0507		3.71E-02	
Niplex Niplex	9-5-91	MI-P K	7,0	8.90	2.015	1.057	0.081	0.243	31.73	19.8762		0.0180		1.25E-02	
Niplex	9-5-91	C4340	22	7.84	2.000	1.026	0.062	0.253	29.50	15.2617	15.2616	0.0001	24.0	-2.64E-05 7.09E-06	
Implementation Mon CLEPO 204 Stripper	Stripper	Implementation Monitoring & KAFB, CLEPO 204 Stripper Temp 130F	FB, BI	Bldg 301 10 PH 10.2 me	Implementa nechanical	Implementation Tank echanical agitation	¥	10 6 months old	_						
CLEPO	2-25-91		67	8.90	2.017	1,030	0.072	0.250	30.46	18.501A	16. 50AR	1 0050	0 7	7 24E-01	
CLEPO	2-25-91		20	8.90	2.005	1.020	0.070	0.250	29.90	16.7804	5	0.4524		1.67E-01	
CLEPO	2-25-91	C4340	5 8	2.5	2.009	.000	0.080	0.250	30.01	17.3652	•	0.0002		1.39E-05	
CLEPO	2-25-91		22	8.03	2.000	1.000	0.003	0.250	28.82	14.8723	14.8/1/	0.000		4.03E-05	
CLEPO	2-25-91		2	7.70	5.009	1.002	0.068	0.250	29.35	14.2746			24.0	0.00E+00	
CLEPO	2-25-91	1-718	2 0	8.60	2.003	.000	0.063	0.250	28.92	16.1909				-6.60E-06	
CLEPO	2-25-91		22	7.80	2.000	1.000	0.062	0.250	28.82	15.2086	15.2090	-0.0004	24.0	-1.16E-05	
CLEPO 204	Stripper	Temp 130F	五	10.0 me	echanical	agitation		10 months old	70						
CLEPO	16-9-9	S-Ni	67	8.90	2.012	1.022	290.0	0.242	29.91	16.5970	16.3664	0.2306	2.0	1.71E-01	
CLEPO	6-6-91	Z - Z	20	8.50	2.004	1.017	0.067	0.243	20.02	16 3286	19.3684	0.1054	2.0	7.56E-02 5.61E-02	
CLEPO	16-9-9	C4340	38	7.84	2.024	1.025	0.067	0.245	30.15	15.2910	15.2910	0.0000	24.0	0.00E+00	
CLEPO	16-9-9	DOAC	8	8.20	2.007	1.007	790.0	0.251	29.40	17.8383	17.8382	0.0001	24.0	6.81E-06	
CLEPO	6-6-91	5100 410ss	22	2.03	2.000	1.010	0.058	0.250	29.00	14.2746	14.2748	-0.0002	24.0	-1.41E-05	
CLEPO	6-6-91	1-718	18	8.60	2.010	1.004	0.063	0.248	29.14	16, 1910	16, 1910	0000	0.42	0.005+00	
CLEPO	6-6-91	HA-188	64	9.70	1.989	1.005	0.065	0.249	28.99	17.1108	17.1108	0.0000	24.0	0.00E+00	
רנני	5	D45-11	c	1.00	1.990	1.003	0.003	0.250	28.95	15.2090	15.2090	0.0000	24.0	0.00E+00	

Stripper	Test Date	Coupon C Material	Coupon Densi	Density . (g/cm3)	Unmaske Length	Urmasked Dimensionsin inches ength width thic	ons thick	s hote	Suface Area (cm2)	Initial Mass (grams)	final Mass (grams)	Change Mass (grams)	Total Time (hours)	Stripping Rate (mil/hr)	Average S.R. (mil/hr)
CLEPO 204	CLEPO 204 Stripper	Temp 130F	품	10.5 med	mechanical	egitation		3 months old				: : : : :		1	
CLEPO CLEPO CLEPO CLEPO	9-5-91 9-5-91 9-5-91 9-5-91	Ni-S K Ni-P K D6AC C4340	41 97 38	8.90 8.90 8.20 7.84	2.023 2.013 2.030 1.988	1.050 1.008 1.009	0.073 0.072 0.083 0.061	0.246 0.243 0.251 0.259	31.16 29.84 30.72 29.27 0.00	19.2996 17.6906 20.7033 15.0279	18.6031 17.6025 20.7030 15.0278	0.6965 0.0881 0.0003 0.0001	2.0 24.0 24.0	4.94e-01 6.53e-02 1.95e-05 7.15e-06	
Alternati Nickel-Bo	Alternative Coatings Nickel-Boron and NiB	Alternative Coatings Nickel-Boron and NiBron Testing													
CLEPO 204 CLEPO CLEPO CLEPO	7-25-91 7-26-91 7-26-91 7-26-91	CLEPO 204 Testing (used implemented stripper) CLEPO 7-23-91 Ni-8 A 8.90 CLEPO 7-26-91 NIBRON 1 8.90 CLEPO 7-26-91 NIBRON 2 8.90	ented a	8.90 8.90 8.90 8.90	130F 2.563 4.001 4.000	рн 10.0 1.125 1.016 1.032	mechan 0.013 0.022 0.027	nechanical agitation .013 0.403 36.40 .022 0.190 53.90 .027 0.193 55.13	tation 36.40 53.90 55.13	5.3348 18.7228 19.0223	3.9944 17.7318 17.9858	1.3404 0.9910 1.0365	0.00	1.63E+00 8.13E-01 8.32E-01	8.22E-01
Metalx B-9 B-9 B-9	Testing 7-23-91 7-26-91	(used implemented Ni-B B NIBRON 3	mented B 3	stripper) 8.90 8.90	2.563 3.995	рн 10.0 1.344 1.033	0.013 0.027	egitation 0.400 0.188	43.70	6.0414 18.5778	5.9831	0.0583	1.0	5.90E-02 7.25E-02	
Generic S Generic Generic	itripper Ter 7-29-91 7-29-91 es minimum	heric Stripper Testing (used longevity solumeric 7-29-91 Ni-B N/A 8.90 neric 7-29-91 NIBRON N/A 8.90 Denotes minimum stripping rate since all	longev N/A N/A rate s		solution) 1 3.90 2.678 3.90 4.000 all coating w	tion) 128-130F pH 10.2 2.678 1.261 0.013 4.000 1.015 0.037 coating was removed during	pH 10.2 0.013 0.037 d during	9.9.E	ical 42.83 55.12	agitation 5.4101 19.2099	4.0182	1.3919	1.0	1.44E+00 8.14E-01	:
Titanium	and Chromi	Titanium and Chromium Tests in Generic	Gener	ic Stripper		Temp 130F p	PH 10.3	mechani	mechanical agitation	tation					
Generic Generic Generic Generic	8-14-91 8-14-91 8-14-91 8-14-91	==55	23 X X X	4.50 4.50 7.20 7.20	1.012 0.995 2.057 2.055	0.563 0.545 1.040 1.041	0.025 0.025 0.075 0.075	0.000 0.000 0.243 0.244	8.36 8.00 31.51 31.51	1.8067 1.7232 19.5751 19.4436	1.8068 1.7233 19.5759 19.4442	-0.0001 -0.0001 -0.0008 -0.0008	24.0 24.0 24.0	-4.36E-05 -4.56E-05 -5.78E-05 -4.34E-05	-4.46E-05
Wax Tests	i in Generic	c Stripper	Тещ	130F pH	H 10.2	mechanical agitation	l agitat	ion							
Generic Generic	9-24-91 9-24-91	Vax	N/N N/A		inital 00 Inital 00	1.2048"	final Of final O	00 1.2045" 00 1.4996"	3.3	11.1350 13.0822	11.0730	0.0620	19.0		
Enthone, Inc.		Enplate Ni-425 !	Stripping	æ	te Tests										
Generic S Generic Generic Generic Generic	Stripper 9-4-91 9-4-91 9-4-91 9-4-91 9-4-91	Temp 130F Ni-425 Ni-425 Ni-425 Ni-425 Ni-425	ph 10.2 382 384 1 2 3		mechanical agitation 1.90 4.006 3.000 1.90 4.006 3.078 1.90 4.006 3.078 1.90 4.006 3.078 1.90 4.006 3.078	3.000 3.000 3.000 3.000 3.000 3.000	0.013 0.013 0.013	0.245 0.124 0.245 0.124 0.245	155.86 160.36 155.86 160.36 155.86	20.2026 20.8754 20.2026 20.8754 20.1947	20.1947 20.8661 20.1947 20.8661 20.1494	0.0079 0.0093 0.0093 0.0093 0.0453	2.0 2.0 2.0 2.0 2.0	9.97E-04 1.14E-03 1.12E-03 1.28E-03 5.36E-04	1.07E-03 1.20E-03 5.43E-04
)	•						2	70000	20.03		0.43	7.47E-04	

Stripper	Test Date	Coupon Material	Coupon	Coupon Density # (g/cm3)	Unmask	Unmasked Dimensionsin inches length width thick	sions	hole	Suface Area (cm2)	Initial Mass (grams)	final Mass (grams)	Change Mass (arems)	Total Time	Stripping Rate	Average S.R.
Metalx B-9 B-9 B-9 B-9	9 Stripper 9-4-91 9-4-91 9-4-91	Temp 144F Ni-425 Ni-425 Ni-425			air agitation 4.020 2. 4.020 2. 4.020 2.	tion 2.988 2.988 2.988	0.013 0.013 0.013	0.237	155.82 155.82 155.82	20.3360	20.3220 20.3220 20.3220	0.0140	1	1.77E-03 1.99E-03	
	9-4-91 9-4-91 9-4-91 9-4-91	Temp 146F NI-425 NI-425 NI-425	₹8 % ~ •	10.3 8.90 8.90 8.90	4.007 3. 4.007 3. 4.007 3.	100 3.022 3.022 3.022	0.013 0.013 0.013	0.116 0.116 0.116	157.51 157.51 157.51	20.7756 20.7756 20.7756		0.0056 0.0056 0.0056	2.3	6.99E-04 7.86E-04 4.98E-04	
CLEPO 204 CLEPO CLEPO CLEPO	Stripper 9-4-91 9-4-91 9-4-91	Temp 136F Ni-425 Ni-425 Ni-425	₹%⋄ 5	10.5 me 7.84 8.90 8.90	4.006 4.006 4.006 4.006	agitation 3.040 3.040 3.040	0.013 0.013 0.013	0.134 0.134 0.134	158.36 158.36 158.36	20.7876 20.7876 20.7814	20.7814 20.7814 20.7438	0.0062 0.0062 0.0376	2.3	8.74E-04 8.66E-04 4.38E-04	
AF C-106 Process C106 9-11- C106 9-11-	22	Temp 130F Ni-425 Ni-425	PH 12.8 N/A N/A	8.90 8.90	netic stirring 4.005 3.0 4.005 2.1	7. 1.053 3.053 2.877	0.013	0.119	159.04	20.3560 19.2870	20.3333 19.2472	0.0227	2.0	3.16E-03 5.89E-03	4.52E-03
Witco, Corp.		Niklad* 797 Stripping Rate Tes	ping R	ate Tests	25										
Generic Stripper Generic 9-18- Generic 9-18-	0.0	Temp 133F 1 Nik-797 1 Nik-797	pH 10.2 A B	₩ ₩	mechanical ag 1.90 3.997 1.90 3.998	agitation 3.003 3.004	0.017	0.123	156.51 156.58	26.0321	23.3364	2.6957	0.0	7.62E-01	7.52E-01
CLEPO 204 Stripper CLEPO 9-18-9	Stripper 9-18-91	Temp 136F Nik-797	рн 10.2 С		mechanical	agitation 3.004	0.016	0.126	156.53	25.8560	71.17 52	6620.3		7.42E-01	
Metalx B-9 Stripper B-9 9-18-91		Temp 142F Nik-797		PH 10.0 ai	air agitation 3.997 3	ion 3.004	0.017	0.131	156.54	26.0737	24.6565	217	2	7 005-01	
Niplex 100 Stripper Niplex 9-18-91	Stripper 9-18-91	Temp 146F Nik-797	₹≖	10.0 aí 8.90	air agitation 3.996 3	ion 3.004	0.017	0.135	156.49	26.0320	25.6428	0.3892	1.0	1.106-01	
MetalX B-9 Regenerants Testing Regenerated with 5% Reservol-P	Regenerant 1 with 5% F		130F 2 (Na m-NBS)	>	.0	magnetic agitation	itation								
B-9 Regen B-9 Regen B-9 Regen B-9 Regen B-9 Regen	7-26-91 7-26-91 7-26-91 7-26-91 7-26-91	Ni-S Ni-P K Ni-P K C4340 D6AC	424 4 5 69 28	8.90 8.90 8.90 7.84 8.20	2.038 2.014 2.008 2.008 2.001	1.041 1.010 0.997 1.028 1.003	0.076 0.086 0.093 0.062 0.077	0.236 0.243 0.241 0.253 0.259	31.36 30.74 30.73 29.66 29.66	21.2035 21.7366 22.8118 15.4223 19.0309	20.8769 21.4786 22.5747 15.4216 19.0302	0.3266 0.2580 0.2371 0.0007 0.0007	2.0 2.0 24.0 24.0	2.30e-01 1.86e-01 1.71e-01 4.94e-05 4.70e-05	1.78E-01

Average S.R.	(mil/hr)	1.11E-02		1.43E-01	
Stripping Rate	(mil/hr)	7.63E-03 1.07E-02 1.14E-02 6.66E-03	4.58E-03	2.15E-01 1.42E-01 1.45E-01 6.34E-05 1.79E-04	
Total Time	(hours)	2.0 2.0 24.0	24.0	2.0 24.0 24.0	
Change Mass	(grams)	0.0108 0.0149 0.0157 0.0942	0.0693	0.3166 0.1826 0.1964 0.0009 0.0026	
Finat	(Strains)	21.0495 21.2760 20.8431 15.1478	20.32B6	23.3898 16.5634 19.5624 15.4556	
Initial Mass		21.0603 21.2909 20.8588 15.2420	50.3979	23.7064 16.7460 19.7588 15.4565 19.0781	
Suface Area		31.32 30.67 30.51 29.58	******	32.51 28.52 30.01 29.72 29.06	
hole	- 1	0.238 0.241 0.243 0.254		0.235 0.241 0.243 0.253	
ions thick		0.085 0.085 0.085 0.062 0.083		0.080 0.072 0.080 0.082 0.081	
Coupon Coupon Densityin inches		1.039 1.002 0.997 1.025 0.997		1.065 0.960 1.008 1.030 0.960	
Urmask Length	0	2.044 2.024 2.027 2.008 2.018		2.055 2.010 1.991 2.008 2.013	
Density (g/cm3)	pH 11.10	8.90 8.90 7.84 8.20	₩ 10.0	8.90 8.90 7.84 8.20	
uodno)	liamine	432 6 70 29	6-8	434 30 30	
Coupon	Ethylened	NÍ-S NÍ-P K NÍ-P K C4340 D6AC	6X MetalX	NÍ-S NÍ-P K NÍ-P K C4340 D6AC	
Test Date	d with 5%	7-26-91 7-26-91 7-26-91 7-26-91 7-26-91	with 5.4	7-26-91 NI-S 7-26-91 NI-P K 7-26-91 NI-P K 7-26-91 C4340 7-26-91 D6AC	
Stripper	Regenerated with 5% Ethylenediamine	B-9 Regen B-9 Regen B-9 Regen B-9 Regen B-9 Regen	Regenerated with 5.46% MetalX B-9 pH 10.0	B-9 Regen B-9 Regen B-9 Regen B-9 Regen B-9 Regen	

APPENDIX H

GRAPHICAL PRESENTATION OF THE IMPLEMENTATION AND FIELD TEST DATA FROM PHASE I OF THE DNCYS PROGRAM (FY-91)

Metalx Inc.'s B-9 Nickel Stripper

Metalx Inc.'s B-9 Nickel Stripper

Metalx B-9 Implementation Tests

Nickel Stripping Tests (2nd Batch)

Comparison Testing of Silver Strippers

Rostrip 999-SP vs AFB C-101 Process

⊠ Rostrip 999−SP* **ℤ** C−101**

* Conditions: ambient temp., pH 12.0, 3.8 Volt, 6.0 Amp

**Conditions: ambient temp., pH 13.0, 4.0 Volt, 6.0 Amp

* Conditions: ambient temp., pH 12.0, 3.8 Volt, 6.0 Amp

**Conditions: ambient temp., pH 13.0, 4.0 Volt, 6.0 Amp

Broad pH Tests (250 mL Volume)

Plate Metal Longevity Tests at 130F

Generic Nickel Stripper Plate Metal Loading Tests at 130F

Plate Metal Regeneration Tests at 130F

Alternative Plate Material Stripping

Alternative Plate Material Stripping

** Nickel-Boron stripping rate is higher than shown.

APPENDIX I

EXPERIMENTAL DATA FROM BIOREACTOR TESTING

The Tables on the following pages contain the data obtained from the bench-scale bioreactor experiments. The following legend supports the data found below.

Numbers reported in ppm:

TOC (Total Organic Carbon)

COD (Chemical Oxygen Demand)

ED (Ethylenediamine)

Amm. (Ammonia) in the form NH₄⁺.

NO₃ (Nitrate)

NO, (Nitrite)

SO₄² (Sulfate)

PO₄3- (Phosphate)

DO (Dissolved Oxygen)

MLSS (Mixed-Liquor-Suspended-Solids)

Numbers having other units:

SOUR (Specific Oxygen Uptake Rate) reported in mg Oxygen consumed per mL per minute.

SSV 15 (Sludge Settled Volume) at 15 minutes.

SSV 30 (Sludge Settled Volume) at 30 minutes.

SSV 45 (Sludge Settled Volume) at 45 minutes.

SVI (Sludge Volume Index) reported in mL per gram.

Other abbreviations or information:

pH is self explanatory.

pH Bioreact. = the pH of the fluid in the bioreactor.

Ef. = effluent

In. = influent

NT = not taken

	700 I-	TOC ES	con to	COD Ef.	FD In	FD Ff.	Amm.	In.	Amm. Ef.
Time 0 Hr 24 24 24 32 48 50 77 84 96 108 108 108 108 108 108 108 108	TOC In. 65.7 65.7 110.5 110.5 110.7 100.7	TOC Ef. 66.1 66.1 59.9 76.5 77.3 80.9 71.5 90.1 82.6 89.7 89.5 63.6 89.7 89.4 91.9 91.9 91.3 92.5 83.5 87.9 91.3 92.5 95.3 135.4 105.0 103.8 79.4 97.3 86.6 111.5 131.4	30 30 157 157 131 131 131 131 131 147 146 116 116 116 116 116 117 117 117 117 11	26 26 26 120 17 124 113 61 46 73 147 153 193 128 89 70 75 75 115 215 88 90 116 43 0 65 92 86 65 77 122 95 112 188 188 178 188 188 188 188 188 188 188	0 47.8 47.8 44.0 44.3 44.0 49.0 73.6 74.9 76.7 76.7 79.1 79.0 197.0	0 0 10.0 8 4 8 6 7 7 3 7 8 9 6 8 5 8 7 8 8 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Time	TOC In.	TOC Ef.	COD In.	COD Ef.		ED Ef.		n. Amm. Ef.
600	120.6	94.9	492	185	347.9	0	0	125.7
606	120.6	81.6	492	233	347.9	0	0	125.7
624	120.6	86.4	489	223	347.9	0	0	112.4
630	179.1	83.5	489	115	347.9	0	0	134.7
648	179.1	84.3	489	118	347.9	0	0	131.7
672	179.1	95.6	696	91	384.7	0	0	114.1
696	256.2	99.6	696	162	384.7	0	0	147.8
702	256.2	128.3	696	87	384.7	0	0	138.8
720	256.2	120.0	692	72	384.7	0	0	144.6
720	256.2	120.0	692	72	630.9	0	0	144.6
726	241.8	119.9	774	35	630.9	0	0	120.2
744	205.0	87.6	774	46	630.9	0	0	123.8
768	205.0	126.6	774	175	630.9	0	0	119.1
774	205.0	140.5	675	65	630.9	0	0	119.1
792	222.6	125.9	675	105	630.9	0	0	119.1
798	222.6	125.0	710	133	630.9	0	0	119.1
816	223.0	101.0	710	111	630.9	0	0	119.1
840	223.0	95.5	710	71	630.9	0	0	119.1
864	223.0	84.6	710	78	630.9	0	0	119.1
870	246.0	96.3	777	58	630.9	0	0	119.1
888	246.0	92.6	777	41	630.9	0	0	119.1
894	256.2	114.5	696	95	699.2	0	0	144.6
912	241.8	112.8	692	63	699.2	0	0	130.5
918	241.8	105.5	692	159	699.2	0	0	137.6
318	241.8	105.5	032	1 133	1 033.2	J	, ,	1 20/10

Time NO ₂ In. NO ₂ Ef. NO ₂ In. NO ₂ Ef. SO ₂ In. SO ₂ Ef. PO ₂ In.	PO, ³⁻ Ef.
0 3.3 1.4 0 0 81.9 112.6 1.6	2.2
24 3.3 1.4 0 0 81.9 112.6 1.6	2.2
24 4.6 1.8 0.98 0 127.9 186.0 1.6	2.0
32 4.6 1.8 0.98 NT 127.9 NT 1.6	NT
48 4.2 NT 0.89 NT 112.4 NT 0	NT
54 4.2 2.9 0.89 0 112.4 217.7 0	2.93
60 4.2 3.9 0.89 0 112.4 195.0 0	2.4
72 2.3 3.2 0 0 204.5 138.3 0	2
78 2.3 1.9 0 0 204.0 222.2 0	2.2
84 2.3 1.1 0 0 204.0 243.8 0	2.5
96 17.8 0 9.2 0 168.3 139.0 0	2.5
17.0	2.6
102 17.8 11.5 9.2 2.4 168.3 246.7 0 108 17.8 14.7 9.2 3.8 168.3 250.9 0	3.0
100 17.0 17.7	3.3
120 0.0 12.0 0.0 1.72.2 1.6	7.4
120 0.0 1.6	3.0
132 0.0	3.9
177 7.5	3.4
100 0.0 1.3	2.9
192 0.1 7.3 1.3	4.9
190 0.1	4.6
210 0.1 2.0 1.3	9.7
222 8.0 9.0	8.9
240 8.0 5.9 4.5 0 226.0 246.0 8.6 264 8.0 6.3 4.5 0 226.0 279.7 8.6	9.6

					2	2	3	3
Time	<u>NO, In.</u>		NO ₂ In.		50,2- In.			
264	8.4	0	4.5	0	320.9	365.9	13.8	7.9
270	8.4	5.0	4.5	0	320.9	350.0	13.8	8.0
288	8.4	5.7	4.5	0	320.9	363.6	13.8	8.3
294	8.4	6.8	4.5	0	320.9	385.6	13.8	8.8
312	8.4	5.1	4.5	0	403.6	358.1	7.9	8.1
318	8.4	5.1	4.5	0	403.6	360.2	7.9	8.2
336	8.4	5.0	4.5	0	403.6	306.6	7.9	7.4
360	8.1	5.0	0	0	399.3	405.1	7.5	8.1
366	8.1	5.5	0	0	399.3	380.7	7.5	8.5
384	8.1	5.5	0	0	399.3	380.7	7.5	8.5
390	9.1	4.9	4.6	0	401.4	343.6	7.8	8.8
408	9.1	6.5	4.6	0	401.4	320.5	7.8	7.7
414	9.1	0	4.6	0	401.4	456.3	7.8	8.2
432	7.7	0	3.9	0	433.5	437.7	7.9	7.6
438	7.7	0	3.9	0	433.5	438.1	7.9	7.8
456	7.7	0	3.9	0	433.5	462.8	7.9	7.5
462	7.7	0	3.9	0	433.5	462.8	7.9	7.5
480	7.7	0	3.9	0	433.5	462.8	7.9	7.5
504	7.7	0	3.9	0	433.5	432.8	7.9	7.5
528	7.7	0	3.9	0	433.5	432.8	7.9	7.5
552	7.7	0	3.9	0	433.5	432.8	7.9	7.5
576	8.6	0	3.9	0	461.1	483.1	0	0
600	8.6	6.2	0	0	461.1	486.3	0	0
606	8.6	6.2	0	0	461.1	486.3	0	0
624	7.3	0	0	0	309.2	486.7	0	0
630	7.3	5.5	0	3.7	309.2	410.3	0	0
648	7.3	5.5	0	3.7	309.2	410.3	0	0
672	10.2	0	0	0	542.8	347.3	0	0
696	10.2	0	0	0	542.8	530.0	0	0
702	10.2	0	0	0	542.8	451.4	0	0
720	6.0	0	0	0	530.6 530.6	534.3 467.9	Ŏ	0
726	6.0	4.7	0	0	530.6	585.9	0	0
744	6.0	0	0	0	530.6	610.4	0	Ö
768	6.0	0	0	0		619.5	0	Ö
774	6.0	5.0	0	0	530.6 530.6	692.6	Ö	0
792	6.0	4.6	0	0	530.6	644.6	Ö	Ŏ
798	6.0	0	0		692.9	794.3	14.4	ő
816	7.4	0	6.3	0		785.0	14.4	7.4
840	7.4	0	6.3	0	692.9 732.0	729.0	7.4	8.0
864	10.6	4.9	0	4.2	732.0	674.0	7.4	0
870	10.6	4.6	0	3.7	732.0	773.0	7.4	ŏ
888	10.6	0	0	3.7	732.0	758.0	7.4	0
894	10.6	0		4.8	646.0	756.0	0	Ö
912	5.7	5.1	5.4		646.0	756.0	0	ŏ
918	5.7	5.1	5.4	4.8	1 040.0	1 /30.0	U	

	20	COUD	MI CC	CCV 15	CCV 20	SSV 45	SVI
<u>Time</u>		SOUR	MLSS	SSV 15	SSV 30 115	100	37.7
0	8.9	0.15	3050 3050	140 140	115	100	37.7
24	8.9	0.15	4130	170	135	120	32.7
24	9.1	0.18	NT T	NT	NT	NT	NT
32	9.5	0.16	3350	180	160	100	47.7
48	9.2	0.12	2660	150	120	110	45.1
54	9.1	0.12	NT	NT	NT	NT	NT
60	9.7	0.05	2760	110	90	80	32.6
72	9.7	0.08	2770	170	140	125	50.5
78 84	8.9	0.07	NT	NT	NT	NT	NT
96	9.4	0.16	3080	125	100	90	32.5
102	8.8	0.12	2930	90	75	70	25.6
108	9.4	0.09	NT	NT	NT	NT	NT
	9.0	0.18	2780	85	70	65	25.2
120 126	9.2	0.22	4280	170	140	125	32.7
132	9.1	0.27	NT	NT	NT	NT	NT
144	8.8	0.15	3670	160	130	115	35.4
168	9.5	0.14	3260	130	105	95	32.2
192	10.5	0.14	3010	130	105	95	34.9
198	9.4	0.09	1750	155	125	110	71.4
216	8.9	0.22	5330	255	200	180	37.5
222	8.5	0.27	6020	250	200	180	33.2
240	8.6	0.20	4520	230	185	165	40.9
264	9.3	0.28	5930	275	220	195	37.1
264	8.3	0.22	4500	220	175	160	38.9
270	6.7	0.45	2070	160	130	120	62.8
288	9.6	0.49	8430	365	290	260	34.4
294	8.4	0.42	7130	405	320	280	44.9
312	9.3	0.42	5880	340	270	240	45.9
318	8.4	0.38	6780	325	255	225	37.6 39.8
336	9.2	0.28	5900	295	235	195	43.8
360	9.2	0.18	5020	280	220	185	37.3
366	9.3	0.21	5630	265	210	185	42.2
384	8.9	0.24	4980 5590	265 260	210	180	37.6
390	8.8		4490	160	140	125	31.2
408	8.3	0.42	3470	120	105	95	30.2
414 432	7.7	0.51	4310	160	130	120	30.1
432	8.5 8.2	0.35	4500	155	130	120	28.8
456	8.2	0.41	4380	220	180	160	41.1
462	8.3	0.56	5550	245	200	185	36.0
480	8.1	0.35	5250	235	195	170	37.1
504	8.4	0.27	5600	250	210	190	37.5
528	8.7	0.44	5210	250	205	180	39.3
552	9.1	0.36	4950	230	190	170	38.4
576	8.2	0.22	5280	250	205	180	38.8
600	8.3	0.36	5030	250	210	90	41.7
606	9.4	0.19	6230	285	235	210	37.7
624	8.1	0.43	5490	260	215	195	39.2
630	8.4	0.34	4630	230	185	165	40.0
648	7.4	0.79	4470	230	190	170	42.5

Time	DO	SOUR	MLSS	SSV 15	SSV 30	SSV 45	SVI
672	7.3	2.23	4580	225	185	170	40.4
696	6.4	0.37	5080	245	200	180	39.4
702	7.9	0.76	4920	240	200	175	40.6
720	6.2	1.09	5940	295	245	220	41.2
726	6.8	0.61	4320	260	220	195	30.9
744	6.9	0.77	5860	325	270	240	46.1
768	4.3	0.73	5940	310	250	220	42.1
774	5.5	0.59	5430	300	250	220	46.0
792	3.5	0.92	5760	305	250	220	43.0
798	4.1	0.66	5880	295	240	220	40.8
816	6.8	0.66	5940	300	250	220	42.1
840	4.5	0.45	4960	300	240	220	48.4
864	3.3	0.08	5420	300	240	220	44.3
870	4.2	1.30	5090	280	225	200	44.2
888	2.5	0.07	4920	275	220	200	44.7
894	3.6	0.64	4670	270	220	200	47.1
912	3.5	0.92	4710	270	220	195	46.7
918	7.8	2.70	4890	270	220	200	45.0

Time_	pH In.	pH Bioreact.	pH Ef.
0	7	8.2	8.07
24		8.2	8.07
24	7	8	7.93
32	7	7.84	7.89
48	7 7 7 7 7 7 7 7 7	8	NT
54	7	7.9	7.77
60	7	8.11	7.73
72	7	8.12	8.0
78	7	7.3	7.75
84	7	NT	NT
96	7	8.23	8.09
102	7	8.05	7.82
108	7	NT	NT
120	7	8.12	7.82
126	7 7 7 7 7 7 7 7	7.91	7.6
132	7	NT	NT
144	7	7	8.22
168	7	8.37	8.11
192	7	7	7.94
198	7	8.08	8.08
216	7	8.11	7.8
222	7	7.82	7.53
240	7	8 8	8.05
246	7	8	8.03
264	7	8.4	8.2
270	7 7 7 7	8.17	7.94
288	7	8.18	8.14
294	7	8.06	8.05
312	7	8.28	8.02
318	7	8.1	8.15

Time	pH In.	pH Bioreact.	pH Ef.
336	7	8.02	8.18
360	7	8.09	8.13 8 8.26
366	7	8.08	8 26
384 390	7	8.21 8.18	7.9
408	7	1 7 07	7.9 8.05 7.79 7.91
414	7	7.77	7.79
432 438	7	8.17	7.91
438 456	7	8	7.89 7.89
462	7	7.77 8.17 8 8 7.97	7.9 8.12 7.86
480	7	7.97 7.8	8.12
504	7	7.8	7.86
528	7	7.89 8.09	7.01
552 576	7	7.99	8.14
600	7	8	7.81 7.96 8.14 8
606 624 630	7	8	8.04
624	7	7.8	7.96
648	7	7.99 8 8 7.8 7.93 8.05 8	8.02 7.86 8.1 8.2 8.1 8
672	7	8	8.2
696	7	8.1	8.1
702 720 726	7	8	8
720 726	7	8 8.2	8.2
744	7	8.2	8.1
768	7	8.2 7.9 8 7.9 8 8 7.8	7.88
774 792	7	8	8.2
792 798	7	7.9	7.8
816	7	8	7.9
840	7	7.8	7.8
864	7	7.8	7.9
870 888	7	7.7	7.7
894	7	7.8	7.6
912	777777777777777777777777777777777777777	7.9	8.1 7.88 8.2 7.9 7.8 7.9 7.8 7.7 7.6 7.8 7.7
918	7	8	7.9

Time	TOC In.	TOC Ef.	COD In.	COD Ef	. ED In.	ED Ef.	Amm.	In.	Amm.	Ef.
0 Hrs. 24 32 48 54 50 72 78 60 72 78 60 126 126 132 148 198 198 198 198 198 198 198 198 198 19	65.8 70.0 59.6 58.7 58.0 71.0 100.0 96.2 96.2 109.7 115.9 115.9 115.9 115.9 102.3 104.7 107.9 107.9 104.7 107.9 104.7 107.9 104.7 104.7 104.7 105.6 76.4 104.0 113.4 113.5 113.5 113.6 113.	65.5 62.2 58.4 46.5 48.2 52.3 48.8 101.9 99.6 114.5 100.4 111.2 88.3 74.7 88.3 74.7 88.3 79.7 88.3 79.7 88.3 77.0 65.5 64.3 50.6 64.3 50.8	30 23 23 19 60 60 100 118 118 110 110 144 144 156 175 175 175 175 105 107 107 178 178 178 224 226 222 222 222 222 222 231 277 277	26 20 53 35 35 54 17 20 4 64 163 170 125 170 121 125 170 125 170 125 170 170 170 170 170 170 170 170 170 170	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	938.58863.665 938.333.661.3 100000000000000000000000000000000000	000000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Time 630 648 672 696 702 720 726 744 768 774 792 798 816 840	TOC In. 138.1 138.1 143.2 143.2 143.2 144.8 118.8 144.8 150.1 150.1 156.6 156.6	. TOC Ef 54.8 60.5 60.8 59.0 67.4 83.0 75.7 75.6 79.5 75.0 61.8 80.0 92.9 79.6	. COD In. 277 277 228 228 302 302 322 322 322 322 327 327 327 327	70 44 83 35 67 57 31 62 58 152 53 74 33 40	ED In. EI 81.8 0 81.8 0 81.8 0 81.8 0 81.8 0 81.8 0 88.6 0 88.6 0 130.8 0 130.8 0 157.4 0	D Ef. Amm. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	In. Amm. Ef. 29.5 34.3 30.8 31.1 29.5 29.5 29.5 29.5 29.5 29.5 28.7 28.7 28.7 31.0 34.3
Time 0 24 32 48 54 60 72 78 96 102 108 120 126 132 144 168 198 216 222 240 264 270 288 294 318 336 360	NO ₃ In. 2.9 2.9 2.9 4.2 4.2 4.2 2.5 0.95 2.5 18.7 18.7 8.8 8.8 8.6 6.8 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	NO ₃ Ef. 0.83 1.8 1.8 9.7 4.9 3.4 1.0 9.5 6.2 9.5 6.2 9.7 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	NO ₂ In. 0 0 0 0.95 0.95 0.95 0 0 14.3 14.3 9.8 9.8 9.8 9.8 9.8 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	NO ₂ Ef	SO,2- In. 91.2 91.2 91.2 72.6 72.6 72.6 238.0 241.9 238.0 241.9 281.9 247.0 247.0 247.0 247.0 210.3 210.3 210.3 210.3 210.3 307.8 307.8 307.8 307.8	SO, 2- Ef 84.0 118.0 118.0 114.5 134.3 112.7 93.2 172.2 238.7 305.2 305.2 305.2 305.2 317.3 248.1 303.4 313.5 269.2 317.3 292.1 309.8 248.6 290.7 314.3 297.5 315.5 275.1 295.3 307.7 319.9 284.3 282.8 284.7	PO, 3- In. PO, 3- Ef. 1.6 1.6 2.0 1.6 2.0 1.1 0 2.3 0 2.2 0 2.2 1.8 2.7 0 2.3 1.7 2.4 1.7 2.4 1.7 2.5 1.8 2.1 1.8 3.6 1.8 4.1 2.0 3.8 2.3 3.4 2.1 2.5 2.1 2.7 2.1 3.9 2.1 11.3 2.1 2.1 2.7 2.1 3.9 2.1 11.3 2.1 9.4 2.1 9.3 8.2 8.2 8.7

332.0 332.0

00000

360

366

8.3

8.3

7.5

8.4

0

Ō

282.8 284.7 297.6

7.4

7.4

8.6

8.9

Time	NO. In.	NO. Ff.	NO ₋ In.	NO. Ff.	SO, ²⁻ In.	SO,2- Ef.	PO, 3- In	. PO, 3- Ef.
384	8.3	8.7	0	4.3	332.0	221.0	7.4	7.8
390	8.7	7.1	0	0	221.0	331.5	7.4	9.2
408	8.7	7.0	0	3.7	221.0	300.5	7.4	9.7
414	8.7	7.8	0	0	221.0	259.5	7.4	9.4
432	8.7	10.3	0	3.7	221.0	245.4	7.4	9.7
438	8.7	11.6	0	0	221.0	265.0	7.4	9.9
456	8.7	9.9	0	3.7	221.0	247.8	7.4	8.9
462	8.7	9.9	0	3.7	221.0	247.8	7.4	8.9
480	10.4	14.5	0	0	228.1	271.3	0	0
504	10.4	14.5	0	0	228.1	271.3	0	0
528	10.4	14.5	0	0	228.1	271.3	0	0
552	10.4	14.5	0	0	228.1	271.3	0	0
576	10.4	14.5	0	0	228.1	271.3	0	0
600	10.4	17.5	0	0	228.1	271.3	0	0
606	10.4	17.5	0	0	228.1	271.3	0	0
624	6.6	17.5	0	0	228.1	284.6	0	0
630	6.6	17.5	0	0	228.1	284.6	0	0
648	6.6	15.0	0	0	228.1	274.5	0	0
672	9.9	7.8	0	0	333.7	247.7	0	0
696	9.9	11.9	0	0	333.7	303.8	0	0
702	9.9	13.2	0	0	333.7	309.1	0	7.5
720	9.9	13.2	0	0	333.7	304.3	0	0
726	9.9	14.2	0	0	333.7	306.0	0	0
744	9.9	15.9	0	0	333.7	358.2	0	0
768	7.4	13.6	0	0	437.0	400.0	8.02	0
774	7.4	18.6	0	0	437.0	402.8	8.02	0
792	7.4	17.0	0	0	437.0	427.9	8.02	0
798	7.4	17.6	0	0	437.0	424.0	8.02	0
816	0	16.2	4.2	0	412.0	458.0	0	0
840	0	20.5	4.2	0	412.0	415.0	U i	, U

Time	DO	SOUR	MLSS	SSV 15	SSV 30	SSV 45	SVI
0	9.0	0.11	2730	130	105	95	38.5
24	9.0	0.09	2720	110	90	85	33.1
32	9.6	0.13	NT	NT	NT	NT	NT
48	9.1	0.03	2510	180	140	125	55.8
54	8.9	0.06	2080	115	100	90	48.1
60	9.5	0.05	NT	NT	NT	NT	NT
72	9.6	0.11	2450	105	90	85	36.7
72	9.3	0.13	2430	110	95	90	39.1
78	8.9	0.10	NT	NT	NT	NT	NT
96	9.5	0.25	2490	90	70	65	28.1
102	8.9	0.09	2390	70	60	55	25.1
108	9.2	0.11	NT	NT	NT	NT	NT
120	8.8	0.18	2730	75	60	60	22.0
126	9.3	0.22	3530	140	115	100	32.6
132	9.0	0.27	NT	NT	NT	NT	NT
144	8.8	0.12	3420	150	120	110	35.1
168	9.8	0.21	2740	110	90	85 .	32.9
192	10.3	0.17	3090	135	110	100	35.6

Time	DO	SOUR	MLSS	SSV 15	SSV 30	SSV 45	SVI
198	9.3	0.10	2110	90	75	70	35.6
216	8.9	0.28	5520	260	205	180	37.1
222	8.7	0.30	5350	260	205	180	38.3
240	8.8	0.18	4520	240	195	170	43.1
264	8.7	0.26	5930	290	235	205	39.6
264	8.5	0.21	4520	220	190	170	42.0
270	7.1	0.43	1820	170	140	130	76.9
288	9.2	0.37	8250	365	290	255	35.2
294	8.9	0.33	8140	380	305	270	37.5
312	9.6	0.48	6950	355	285	250	41.0
318	8.7	0.32	7700	350	280	245	36.4
336	9.1	0.27	6240	315	250	220	40.0
360	9.5	0.19	5049	295	240	215	47.5
366	9.3	0.23	5310	275	215	190	40.5
384	9.1	0.14	4600	260	210	185	45.7
390	9.5	0.29	5780	275 260	220	195	38.1
408 414	9.1 9.3	0.18	4980 5000	245	210 195	185 180	42.2
432	9.6	0.15	7070	330	260	230	39.0 36.7
438	8.5	0.13	7090	500	375	315	52.8
456	9.5	0.13	5580	300	240	215	43.0
462	9.5	0.30	6060	310	250	220	41.2
480	9.4	0.19	4780	245	195	180	40.8
504	9.3	0.12	4420	215	180	160	40.7
528	8.8	0.09	3860	190	155	140	40.2
552	10.5	0.12	3460	175	140	130	40.5
576	9.2	0.17	4340	210	170	155	40.1
600	9.1	0.09	3710	170	140	130	37.7
606	10.2	0.07	4360	205	165	150	37.8
624	9.2	0.11	3750	160	130	125	34.7
630	9.3	0.13	3680	170	140	130	38.0
648	8.9	0.09	3380	155	130	120	38.5
672	8.6	0.10	2760	135	110	100	39.9
696	9.6	0.09	3270	140	120	110	36.7
702	10.2	0.15	3610	160	135	125	37.4
720	8.6	0.23	3800	175	145	135	38.2
726	8.5	0.28	3400	170	140	130	41.2
744	8.7	0.20	3320	190	155	145	46.7
768	8.3	0.19	3410	150	130	120	38.1
774	6.9	0.19	3460	145	125	115	36.1
792 798	7.5 8.0	0.13 0.16	3600 3370	145	120 110	115	33.3
816	8.3	0.16	3370	130 150	140	105 120	32.6 41.3
840	9.7	0.17	3490	140	120	110	34.4
J-0	3.7	0.23	3730	140	120	1 110	JT.7

Time	pH In.	pH Bioreact.	pH Ef.	m-NBA In.	m-NBA Ef.
0	7.05	8.2	8.07	0	0
24	7	7.77	7.84	0	0
32	7	7.96	7.88	0	0
48	7	8	NT	0	0

Time	pH In.	pH Bioreact.	pH Ef.	m-NBA In.	m-NBA Ef.
54	7	7.75	7.77	0	0
60	7	8.15	7.63	0	0
72	7	8.21	7.95	0	0
72	7	8	7.71	9.1	0
72	4	NT	NT	9.1	4
78	7				5.9
96	7 7	8.3	8.1	9.1	
102	7	8.14	7.97	9.1	9.0
108	7	NT	NT	9.1	9.1
120	7	8.11	7.76	14.3	12.4
126	7	7.98	7.53	14.3	12.7
132	7	NT	NT	14.3	12.9
144	7	7	8.21	16.5	15.0
168	7	8.41	8.24	19.8	15.2
192	7	7	7.9	19.8 19.8 19.8	19.0
198	7	8.2	8.2	19.8	18.3
216	7	8.16	7.84	8.3	12.9 15.0 15.2 19.0 18.3 19.1
	7	7.87	7.58	8.3	10.1
222	7			8.3	7.0
240	7	8 8	8		6.6
264	7		8	8.8	
264	7	8.3	8.2	8.8	6.6
270	7	8.16	7.82	8.8	4.5
288	7	8.16	7.96	8.8	3.8
294	7	7.97	7.93	8.8	3.4
312	7 7 7 7 7	8.18	7.97	8.8	2.6
318	7	7.98	7.96	8.8	2.1
336	7	8.06	8.14	8.8	1.5
360		8	7.92	8.8	0
366	7	7.94	7.95	8.8	0
384	7	8.13	8.16	8.8	0
390	7	8.08	7.79	8.8	0
408	7	7.75	7.8	8.8	0
414	7	7.73	7.72	8.8	0
432	7	7.94	7.85	8.8	Ö
438	7	7.91	7.59	8.8	Ö
	7	7.9	7.9	17.5	Ŏ
456			7.8	17.5	ŏ
462	7	7.8	7.02	17.5	ŏ
480	7	7.92	7.82	17.5	Ŏ
504	7	8	7.97	17.9	0
528	7	7.96	7.5	17.9	
552	7	7.98	7.68	17.9	0
576	7	7.85	7.92	17.9	0
600	7	8	8	17.9	0
606	7	8	8 7.5	17.9	0
624	7	7.7	7.5	17.9	0
630	7	7.89	7.6	24.1	0
648	7	8	8	24.1	0
672	7	8	8.08	24.1	0
696	7	8.04	7.7	24.1	0
702	7	7.95	7.6	24.1	0
720	7	7.9	7.9	24.1	0
726	7	7.9	7.9	26.8	0

Time_	pH In.	pH Bioreact.	pH Ef.	m-NBA In.	m-NBA Ef.
744	7	8.08	7.7	26.8	0
768	7	7.9	7.89	26.8	0
774	7	7.8	7.5	39.4	0
792	7	8	7.5	39.4	0
798	7	7.9	7.8	39.4	0
816	7	8.06	7.67	47.8	0
840	7	7.8	7.9	47.8	0
	•				

Time	TOC In.	TOC Ef.	COD In.	COD Ef	. ED In	. ED Ef.	Amm. I	n. Amm.	Ef.
0	65.7	65.6	30	18	0	0	0	0	
24	70.0	59.3	23	21	0	0	0	0	
32	70.0	58.0	23	87	0	0	0	0	
48 54	59.7 58.7	58.0 48.9	19 42	13 43	0	0	0	0	
60	58.7	50.5	42	46	Ö	Ö	Ö	Ŏ	
72	0	52.3	o l	25	Ŏ	ŏ	Ö	ŏ	
78	45.6	45.6	18	23	0	0	0	0	
84	45.6	52.1	18	0	0	0	0	0	
96	79.4	66.5	35	15	0	0	0	0	
102	79.4	59.6	35	82	0	0	0	0	
108 120	79.4 83.6	85.7 74.2	35 39	47 20	0	0	0	0	
126	83.6	63.3	39	87	Ŏ	Ö	ŏ	Ö	
132	83.6	62.7	39	10	Ö	Ö	Ö	Ŏ	
144	92.4	57.7	32	25	0	0	0	0	
168	87.0	65.3	42	0	0	0	0	0	
192	75.9	70.8	7	12	0	0	0	0	
198 216	75.9 75.9	58.8 57.0	7	25 30	0	0	0	0	
222	67.5	45.1	55	123	Ö	Ö	Ö	Ö	
240	67.5	59.6	55	26	Ö	ŏ	Ŏ	Ŏ	
264	67.5	59.6	55	0	0	0	0	0	
264	87.0	65.4	98	25	0	0	0	0	
270	87.0	57.7	98	30	0	0	0	0	
288 294	67.8 67.8	58.6 55.8	57 57	44 22	0	0	0	0	
312	67.8	58.3	57	43	Ö	Ö	Ŏ	ŏ	
318	61.0	55.8	31	17	0	0	Ō	0	
336	61.0	50.6	31	15	0	0	0	0	
360	72.3	57.0	50	13	0	0	0	0	
366	72.3	56.8	50	18	0	0	0	0	
384 390	72.3 103.3	60.2 54.0	50 204	26 20	0	0	0	0	
408	103.3	71.0	204	40	ŏ	Ö	Ö	Ŏ	
414	103.3	64.6	204	23	0	0	0	0	
432	76.2	68.4	81	48	0	0	0	0	
438	76.2	60.0	81	57	0	0	0	0	
456	76.2	51.5	81 81	22 32	0	0	0	0	
462 480	76.2 75.4	55.3 39.1	145	51	Ö	Ö	Ö	Ŏ	
504	75.4	52.3	145	70	Ŏ	ō	Ö	Ŏ	
528	63.3	52.5	71	31	0	0	0	0	
552	63.3	55.4	71	31	0	0	0	0	
576	41.9	43.6	85	22	0	0	0	0	
600	41.9	36.3 40.2	85 85	92 105	0	0	0	0	
606 624	41.9 58.1	44.1	41	20	ŏ	Ŏ	Ö	ō	
56 4	JJ.1							4	

Time	TOC In.	TOC Ef.	COD In.	COD Ef.	ED In	. ED Ef.	Amm. In	. Amm. Ef.
630	58.1	46.4	41	24	0	0	0	0
648	58.1	48.5	41	18	0	0	0	0
672	55.7	50.0	20	11	0	0	0	0
696	55.7	53.9	20	15	0	0	0	0
702	55.7	43.6	20	15	0	0	0	0
720	51.7	47.3	35	18	0	0	0	0
726	51.7	48.4	35	35	0	0	0	0
744	51.7	48.2	35	10	0	0	0	0
768	62.2	42.6	81	19	0	0	0	0
774	62.2	60.6	81	28	0	0	0	0
792 709	62.2	72.1 60.6	81	58	0	0	0 0	0
798 816	62.2	64.0	81 111	0 6	0	ō	0	0
840	61.1	53.0	111	94	Ö	ŏ	Ö	0
864	46.8	54.0	32	49	Ö	ŏ	Ö	0
870	46.8	42.5	32	30	Ö	ŏ	Ö	ŏ
888	46.8	40.9	32	66	Ŏ	Ŏ	Ö	ŏ
894	46.8	36.0	32	46	Ö	ŏ	Ŏ	ő
912	56.7	42.4	40	21	Ŏ	ō	Ö	Ŏ
918	56.7	36.4	40	17	0	0	Ö	O
					-	1		
~•	WO	WO : EC	WO	NO : 50	00.2-		2	3 3
Time	NOz In.	NO, Ef.	NO ⁵ IU	. NO ₂ Ef	. SO, 2-	In. SO,	2- Ef. PO	3- In. PO,3

Time	NO _z In.	NO, Ef.	NO, In.	NO, Ef.	SO,2- In.	SO,2- Ef.	PO, 3- In	. PO, 3- Ef.
0	2.9	1.9	0	0	91.2	132.2	1.6	2.3
24	2.9	1.9	0	0	91.2	132.2	1.6	2.3
32	2.9	0.91	0	0	91.2	99.1	1.6	1.9
48	4.2	2.4	0.95	0	72.6	106.0	0	1.9
54	4.2	2.4	0.95	0	72.6	106.0	Ö	1.9
60	4.2	3.2	0.95	Ö	72.6	113.3	Ŏ	2.4
72	2.2	3.2	0	Ŏ	117.5	120.8	3.2	2.2
78	2.2	2.1	Ö	Ö	117.5	203.2	3.2	2.6
84	2.2	1.6	Ö	Ö	117.5	209.2	3.2	2.4
96	19.2	1.3	14.9	o o	159.2	172.0	1.7	2.5
102	19.2	11.4	14.9	9.1	159.2	130.4	1.7	2.2
		1				130.4		
108	19.2	11.4	14.9	9.1	159.2		1.7	2.2
120	8.1	3.3	8.5	2.2	128.5	45.9	2.8	0
126	8.1	9.0	8.5	3.2	128.5	165.7	2.8	3.4
132	8.1	9.8	8.5	1.5	128.5	182.0	2.8	4.5
144	4.6	5.6	3.2	2.1	268.7	144.2	1.9	4.0
168	6.1	1.9	2.3	0	153.8	174.4	2.2	3.3
192	5.6	3.3	1.7	0	114.2	164.5	2.2	2.6
198	5.6	3.8	1.7	0	114.2	151.3	2.2	11.9
216	5.6	3.8	1.7	0	114.2	155.0	2.2	4.3
222	7.5	7.4	4.8	0	226.4	195.4	8.6	8.4
240	7.5	7.1	4.8	0	226.4	245.1	8.6	9.9
264	7.5	7.1	4.8	0	226.4	226.9	8.6	9.5
264	0	6.5	0	0	184.8	212.1	8.3	0
270	0	5.9	0	0	184.8	177.1	8.3	8.1
288	0	5.9	0	0	184.8	192.5	8.3	9.5
294	o l	7.2	Ō	Ö	184.8	198.1	8.3	9.5
312	0	7.6	0	Ö	184.8	197.1	8.3	8.9

Time	NO ₇ In.	NO. Ef.	NO, In.	NO, Ef.	SO, ²⁻ In.	SO,2- Ef.	PO, 3- In	. PO, ³⁻ Ef.
318	7.7	6.2	0	0	158.9	183.0	0	8.8
336	7.7	6.2	0	0	158.9 240.4	156.7	0	8.6
360 366	8.3 8.3	6.1 6.1	0	0	240.4	161.6 166.7	7.3 7.3	8.7 8.9
384	8.3	5.8	Ŏ	ŏ	240.4	236.8	7.3	9.6
390	8.8	7.2	4.4	Ō	125.8	296.8	7.8	12.5
408	8.8	4.7	4.4	0	125.8	160.9	7.8	9.8
414	8.8	0	4.4	0	125.8	143.6	7.8	9.9
432 438	7.2 7.2	0	3.7 3.7	0	114.8 114.8	117.0 128.9	7.9 7.9	9.2 9.6
456	7.2	0	3.7	ŏ	114.8	134.8	7.9	8.5
462	7.2	ŏ	3.7	Ŏ	114.8	134.8	7.9	8.5
480	8.4	4.6	0	0	114.8	122.0	0	0
504	8.4	4.6	0	0	114.8	122.0	0	0
528	8.4	4.6	0	0	114.8	122.0	0	0
552 576	8.4 8.2	4.6 5.2	0	0	114.8 160.6	122.0 166.0	0	0
600	8.2	7.1	Ö	ŏ	160.6	168.8	ŏ	Ö
606	8.2	6.7	Ö	Ö	160.6	147.0	0	0
624	8.3	6.3	0	0	95.0	162.3	0	0
630	8.3	7.0	0	0	95.0	104.0	0	0
648 672	8.3 10.2	7.5 6.8	0	0	95.0 138.5	98.3 110.7	0	7.5
696	10.2	9.4	Ŏ	Ö	138.5	121.0	ŏ	8.1
702	10.2	10.0	Ö	0	138.5	126.7	0	7.4
720	6.6	9.6	0	0	146.3	124.0	0	0
726	6.6	8.8	0	0	146.3	118.0	0	0
744 768	6.6 9.9	7.5 7.3	0	0	146.3 219.0	154.0 162.0	0	0
774	9.9	8.2	Ö	Ö	219.0	174.0	Ŏ	ő
792	9.9	8.8	Ŏ	Ö	219.0	209.0	0	0
798	9.9	10.6	0	0	219.0	209.0	0	0
816	7.9	8.5	6.1	0	247.0	217.0	15.2	8
840 864	7.9 9.9	7.2 8.6	6.1 0	0	247.0 154.0	228.0 269.0	15.2 0	9.8 0
870	9.9	8.6	0	Ö	154.0	218.0	Ŏ	Ŏ
888	9.9	11.3	Ŏ	ŏ	154.0	169.0	0	7.6
894	9.9	11.4	0	0	154.0	162.0	0	0
912	6.1	11.5	5.2	0	135.0	168.0	0	7.5
918	6.1	11.5	5.2 (0	135.0	168.0	0	7.5

DO	SOUR	MLSS	SSV 15	SSV 30	SSV 45	SVI
9.1	0.16	2370	110	95	90	40.1
9.2	0.12	2560	120	100	90	39.1
9.6	0.15	NT	NT	NT	NT	NT
	0.07	2190	130	110	100	50.2
9.2	0.09	2120	120	100	90	47.2
9.8	0.03	NT	NT	NT	NT	NT
9.7	0.12	2520	90	80	70	35.7
	9.2 9.6 9.4 9.2 9.8	9.1 0.16 9.2 0.12 9.6 0.15 9.4 0.07 9.2 0.09 9.8 0.03	9.1 0.16 2370 9.2 0.12 2560 9.6 0.15 NT 9.4 0.07 2190 9.2 0.09 2120 9.8 0.03 NT	9.1 0.16 2370 110 9.2 0.12 2560 120 9.6 0.15 NT NT 9.4 0.07 2190 130 9.2 0.09 2120 120 9.8 0.03 NT NT	9.1 0.16 2370 110 95 9.2 0.12 2560 120 100 9.6 0.15 NT NT NT 9.4 0.07 2190 130 110 9.2 0.09 2120 120 100 9.8 0.03 NT NT NT	9.1 0.16 2370 110 95 90 9.2 0.12 2560 120 100 90 9.6 0.15 NT NT NT NT NT 9.4 0.07 2190 130 110 100 90 9.2 0.09 2120 120 100 90 90 9.8 0.03 NT NT NT NT NT

Time	DO	SOUR	MLSS	SSV 15	SSV 30	SSV 45	SVI
78	9.5	0.07	2310	120	100	90	43.2
84	8.9	0.11	NT	NT	NT	NT	NT
96	9.5 8.8	0.19	2550	100	80	80	31.4
102 108	9.5	0.14	2270 NT	80 NT	70 NT	70 NT	30.8 NT
120	9.2	0.24	2550	90	75	70	29.4
126	9.3	0.24	3200	165	135	125	42.2
132	9.2	0.18	NT	NT	NT	NT	NT
144	9.1	0.06	3070	155	130	115	42.3
168 192	10.5	0.16	2530	120	100	90	39.5
198	10.2 9.3	0.17	2490 1980	145 95	105 80	105 75	42.1
216	9.2	0.21	5270	290	230	205	40.4
222	8.9	0.23	4920	250	200	175	40.6
240	9.2	0.18	4330	220	180	160	41.5
264	8.9	0.17	5330	270	210	190	39.3
264	8.5	0.14	3420	185	140	130	40.9
270	7.9	0.26	1600	155	130	120	81.2
288 294	9.5 9.4	0.39	6920 6080	335 330	270 260	240	39.0 42.8
312	9.9	0.24	5680	290	230	205	40.5
318	9.0	0.28	5450	275	220	185	40.6
336	9.2	0.15	5150	250	195	175	37.8
360	9.8	0.13	4160	220	175	155	42.1
366 384	9.6 9.5	0.13	4080	200	160	140	39.2
390	9.8	0.11 0.18	3950 4130	190 200	150 160	140 145	38.0 38.7
408	9.4	0.12	2480	100	80	75	32.3
414	9.2	0.33	1360	55	50	45	36.7
432	9.9	0.14	2110	70	65	60	30.8
438	9.3	0.03	1390	50	45	40	32.3
456 462	9.8 9.7	0.29 0.16	2940 4460	100	85	80	28.9
480	9.6	0.14	3890	190 190	160 155	150 140	35.8 39.8
504	9.4	0.12	4460	195	160	150	35.9
528	9.2	0.04	4290	200	160	150	37.3
552	10.9	0.12	3510	160	130	120	37.0
576	9.5	0.07	3970	195	160	145	40.3
600 606	9.3 10.5	0.12 0.14	4310 5400	200 240	160	145	37.1
624	9.5	0.14	4440	240	190 190	175 170	35.1 42.8
630	9.5	0.12	3720	170	130	125	34.9
648	9.3	0.07	3260	160	130	120	39.9
672	9.2	0.10	2940	135	110	100	42.5
696	9.6	0.09	3270	130	110	100	36.1
702	10.2	0.07	2880	125	105	95	36.4
720 726	9.5	0.19 0.27	2480 3510	140 160	115 130	105 120	56.4 47.6
744	9.1	0.06	3480	185	150	135	47.8
768	9.3	0.15	2880	140	110	100	38.2
774	8.8	0.28	3100	125	100	90	32.3

Time	DO	SOUR	MLSS	SSV 15	SSV_30	SSV 45	SVI
792	9.1	0.08	3450	130	110	100	31.9
798	8.6	0.11	3320	125	100	95	30.1
816	9.2	0.04	3150	180	105	100	33.3
840	10.4	0.07	2910	140	105	100	36.1
864	7.7	0.08	3080	135	110	100	35.7
870	13.6	0.16	2590	125	100	90	38.6
888	9.1	0.06	2550	125	100	95	39.2
894	7.6	0.08	1950	100	80	75	41.0
912	8.2	0.07	2070	110	90	80	43.4
918	8.9	0.06	2400	100	80	75	33.3

<u>Time</u>	pH In.	pH Bioreact.	pH Ef.
0	7	8.2	8.0
24	7	7.7	7.8
32	7	8.0	7.9
48	7	8.0	NT
54	7 7 7 7	7.6	NT 7.8
60	7	8.1	7.7
72	7	8.2	7.9 7.7
78	7	8.0	7.7
84	7	NT 8.3	NT
96	7	8.3	8.1
102	7	8.1	8.0
108	7	NT	NT 7.7
108 120 126 132 144	7	8.1	7.7
126	/	7.9	7.5
132	/	NT 7.0	NT
144	7	7.0	8.2
168 192 198	7	8.3	8.2 7.8 8.0 7.8 7.5
100	7	7.8 8.2 8.1 7.8	8.0
216	7	Q 1	7.8
216 222 240 264 264 270 288 294	7	7.8	7.5
240	7	8.0	8.0
264	7	8.0	8.0
264	7	8.3	8.1
270	7	8.1	8.0 8.1 7.8
288	7	8.1	8.0
294	7	8.0	7.9
312	7	8.1	7.9
318	7	8.0	8.0
336	7	8.0	8.1
360	7	8.0	8.1 7.9
366	7	8.0	7.9
384	777777777777777777777777777777777777777	8.1	8.1 7.7 7.7 7.6
390	7	8.1 7.7 7.7	7.7
408	7	7.7	7.7
414	7	7.7	7.6
432	7	7.9	7.7

Time	pH 7	In.	pH Bi	oreact	pH Ef.
438	7		7.9		7.6
456 462	7 7		7.9		7.9 7.8
480	7		7.8 7.9		7.8
504	7		7.9		7.8
528	7		7.9		7.8
552	7 7 7 7		8.0		7.7
576	7		7.8		7.9
600 606	7 7 7		7.9 8.0		7.9 7.8
624	7	1	7.7		7.8
630	7		7.9		7.7
648	7		8.0		7.9
672 696	7		8.0		8.0
702	7 7 7 7 7		7.9 7.9		7.7 7.7 7.8
720	7		7.8		7.8
726	7	ĺ	7.9		8.0
744	7	l	8.2		7.8
768 774	7		8.0		7.8
792	7		7.8 8.1		7.7
798	7		7.9	İ	7.7
816	7 7 7 7 7 7 7		8.0		7.6 7.7 7.7 7.7
840	7		7.8	İ	7.7
864 870			7.9		7.9
888	7		7.8 7.7		7.6 7.5
894	7		7.8	ĺ	7.5
912	7 7 7 7		7.9		7.5
918	7	1	8.1		7.7

Column #4 Data

7.	TOC T-	TOC ES	COD I-	COD ES	ED I=	ED EF	Amm T-	. Amm 55
Time	TOC In.	TOC Ef. 69.1	COD In.	25	ED In.	0	Amm. Ir	1. Amm. Ef.
24	81.4	77.3	26	27	ŏ	ŏ	Ö	ŏ
32	81.0	74.8	26	28	0	0	0	0
48	64.5	68.7	31	68	0	0	0	0
54	59.7	66.8	42	56	0	0	0	0
60	59.0	73.3	42	46	0	0	0	0
72	75.0	70.5	48	36	0	0	0	0
78 84	75.0 75.0	74.0 81.6	48 48	23	ŏ	ŏ	0	0
96	89.1	80.5	35	13	ŏ	ŏ	Ö	Ŏ
102	89.1	79.7	35	35	Ŏ	0	0	0
108	89.1	63.6	35	33	0	0	0	0
120	91.5	89.5	34	25	0	0	0	0
126	91.5	86.8	34	64	0	0	0	0
132 144	91.5 75.0	87.5 83.9	34 25	0 10	ŏ	Ö	Ö	0
168	82.9	80.3	0	23	ŏ	ŏ	Ö	Ŏ
192	76.3	83.4	55	46	0	0	0	0
198	76.3	75.5	55	46	0	0	0	0
216	76.3	68.8	55	21	0	0	0	0
222	71.7	65.4	35	56	0	0	0	0
240 264	71.7	78.1 74.9	35 35	39 0	0	Ö	0	Ŏ
264	98.9	75.4	104	29	ŏ	Ŏ	Ö	Ō
270	98.9	71.6	104	23	0	0	0	0
288	76.3	74.9	69	58	0	0	0	0
294	76.3	69.0	69	19 58	0	0	0	0
312 318	76.3 68.4	71.7 68.5	69 22	17	0	0	ŏ	Ö
336	68.4	61.7	22	14	ŏ	Ö	Ö	Ō
360	76.8	69.4	46	19	0	0	0	0
366	76.8	68.1	46	12	0	0	0	0
384	76.8	72.6	46	28	0	0	0	0
390	109.3 109.3	64.9 81.4	205 205	24 40	0	0	0	0
408 414	109.3	74.1	205	22	Ö	Ö	Ö	Ŏ
432	84.4	74.7	90	34	0	0	0	0
438	84.4	68.0	90	38	0	0	0	0
456	84.4	57.3	90	16	0	0	0	0
462	84.4	58.5	90	16	0	0	0	0
480 504	51.7 51.7	49.3 61.7	110 110	61 8	0	0	0	0
504 528	66.5	64.0	53	56	ŏ	Ö	Ŏ	Ö
552	66.5	63.3	53	63	0	0	0	0
576	48.8	50.2	70	32	0	0	0	0
600	48.8	47.8	70	101	0	0	0	0
606	48.8	52.1	70	117	0	0	ł U	, 0

<u>Time</u>	TOC In	. TOC Ef	. COD I	n. COD E	f. ED In	ED E	Λ	In A. 50
624	66.1	58.2	41	45	0	10	1 0	In. Amm. Ef.
630	66.1	57.9	41	18	0	Ŏ	0	0
648	66.1	59.3	41	53	Ö	0	0	0
672	61.4	59.8	29	28	Ŏ	Ŏ	0	0
696	61.4	63.4	29	40	Ō	Ŏ	Ŏ	1 -
702	61.4	55.9	29	25	0	Ŏ	ŏ	0
720	68.1	57.1	33	11	O	Ŏ	Ö	0
726	68.1	57.7	33	32	0	Ŏ	0	0
744	68.1	59.8	33	14	Ö	Ŏ	Ŏ	0
768	61.7	49.9	49	16	Ö	Ŏ	Ö	0
774	61.7	71.3	49	35	Ŏ	Ŏ	o	0
792	61.7	82.7	49	67	0	Ö	Ŏ	0
798	61.7	70.9	49	1	0	Ŏ	ŏ	Ö
816	67.4	76.8	8	4	0	Ŏ	Ö	Ö
840	67.4	67.8	8	53	0	Ŏ	Ö	Ö
864	53.5	56.5	22	42	0	l o	Ŏ	ŏ
870	53.5	52.9	22	65	0	o l	Ŏ	Ö
888	53.5	51.1	22	46	0	o l	ŏ	0
894	53.5	35.8	22	35	0	Ö	Ŏ	Ö
912	61.2	54.3	40	18	0	0	Ŏ	Ö
918	61.2	49.9	40	22	0	0	Ŏ	Ö
				-	' '		•	, •

Time	NO _z In.	NO _z ° Ef	NO ₂ In	. NO ₂ Ef	. 50. ²⁻ Ir	50 2- E	F DO 3-	In. PO, ³⁻ Ef.
0 24	3.2 3.2	1.9	1 0	0	/9./	/9.5	10	10. PU, EF.
32	3.2	1.9	0	0	79.7 79.7	79.5 79.5	0	0
48	4.1	3.2	0	Ŏ	72.5	71.7	0 2.1	2.0
54 60	4.1 4.1	3.2	0	0	72.5	71.7	2.1	2.0
72	2.5	3.2	0	0	72.5	71.7	2.1	2.0
78	2.5	2.4	Ö	0	204.5	139.0 77.7	0	1.9
84 96	2.5 17.1	1.8	0	0	204.5	90.0	0	7.4
102	17.1	1.1	13.2	6.4	123.7 123.7	107.6	1.9	1.9
108	17.1	13.6	13.2	6.4	123.7	195.2 195.2	1.9	2.9
120 126	8.3 8.3	7.7 10.0	9.7	8.6	109.1	110.0	1.8	1.9
132	8.3	9.9	9.7 9.7	7.4 5.5	109.1 109.1	141.0	1.8	2.7
144	4.9	9.6	3.4	6.4	138.3	129.8	1.8	3.9
168 192	6.6 6.2	3.7	2.5	0	140.0	160.4	1.8	3.3
198	6.2	4.5 5.7	2.0	0	102.5 102.5	130.3	2.1	2.2
216	6.2	5.7	2.0	o	102.5	117.5 127.3	2.1	3.5
222 240	8.4	8.3	4.9	0	190.9	146.8	8.6	9.7
264	8.4	7.8	4.9 4.9	0	190.9 190.9	159.9	8.6	9.0
264	0	7.0	4.5	ŏ	135.4	171.4 180.1	8.6 8.4	9.4
270 288	0	5.7 5.8	4.5	0	135.4	121.5	8.4	9.0
		3.0	4.5	0	135.4	131.0	8.4	10.3

Time	NO_T In	NO, Ef.	NO. In.	NO_ Ff.	50, ²⁻ In.	SO, ²⁻ Ef.	PO,3- In	. PO, ³⁻ Ef.
294	0 3 111	7.5	4.5	0	135.4	146.5	8.4	8.9
312	0	7.6	4.5	0	135.4	161.7	8.4	9.4
318	7.3	8.4	3.8	0	140.9	166.9	8.3	9.5
336	7.3	7.3	3.8	0	140.9	141.4	8.3	8.9
360	7.9	6.9	0	0	193.5	148.0	7.6	9.1
366	7.9	7.4	0	0	193.5	135.9	7.6	13.7
384	7.9	7.4	0 4.2	0	193.5 100.3	135.9 191.3	7.6 7.5	13.7 9.8
390 408	8.2 8.2	6.9 4.6	4.2	0	100.3	130.9	7.5	9.7
414	8.2	0	4.2	0	100.3	115.6	7.5	10.6
432	6.1	Ö	0	Ŏ	104.5	117.4	7.6	11.4
438	6.1	Ö	0	0	104.5	119.5	7.6	9.6
456	6.1	0	0	0	104.5	119.5	7.6	9.6
462	6.1	0	0	0	104.5	119.5	7.6	9.6
480	6.1	4.6	0	0	104.5	116.9	7.6	0
504	6.1	7.6	0	0	104.5	127.2	7.6	0
528	9.5	7.6 7.3	3.7 3.7	0	150.3 150.3	120.3 162.5	0	0
552 576	9.5 7.8	7.3 5.5	3.7	0	141.8	170.4	ŏ	Ŏ
600	7.8	7.9	Ö	ŏ	141.8	135.8	ŏ	ŏ
606	7.8	7.8	Ö	ŏ	141.8	131.8	Ŏ.	Ō
624	7.8	15.4	0	0	86.8	288.7	0	0
630	7.8	7.5	0	0	86.8	93.3	0	0
648	7.8	9.0	0	0	86.8	92.7	0	0
672	1.7	8.7	0	0	105.0	97.0	0	7.4
696	1.7	11.7 12.1	0	0	105.0 105.0	102.0 101.0	0	7.5 7.5
702 720	1.7 6.9	11.3	Ö	0	127.0	100.0	10.3	0
726	6.9	11.2	Ö	ŏ	127.0	112.0	10.3	ŏ
744	6.9	8.6	Ö	Ŏ	127.0	109.0	10.3	0
768	9.3	8.4	0	0	184.0	115.0	7.8	0
774	9.3	8.2	0	0	184.0	175.0	7.8	0
792	9.3	9.3	0	0	184.0	180.0	7.8	0
798	9.3	9.3	0	0	184.0	198.0	7.8	0 7.5
816	7.9	8.3	6.1	0	215.0 215.0	181.0 259.0	15.5 15.5	7.5 7.7
840 864	7.9 10.6	7.3 6.8	6.1	0	134.0	246.0	0	8.8
870	10.6	7.8	Ö	ŏ	134.0	180.0	Ö	0
888	10.6	10.2	Ŏ	Ö	134.0	142.0	0	0
894	9.8	6.5	0	4.3	134.0	119.0	0	7.6
912	10.1	6.5	0	4.3	123.0	119.0	0	7.6
918	10.1	6.0	0	0	123.0	116.0	0	7.6

Time	DO _	SOUR	MLSS	SSV 15	SSV 30	SSV 45	SVI
0	9.0	0.10	2730	110	*90	80	33.0
24	8.9	0.05	2430	95	80	70	32.9
32	9.5	0.12	NT	NT	NT	NT	NT
48	9.1	0.04	1960	110	90	80	45.9
54	9.0	0.07	1990	80	70	60	35.2

Time	DO	SOUR	MLSS	SSV 15	SSV 30	SSV 45	SVI
60	9.6	0.02	NT	NT	NT	I NT	NT
72	9.8	0.12	2050	105	60	55	29.3
78	9.4	0.04	1960	80	70	70	35.7
84	9.0	0.06	NT	NT	NT	NT	NT
96	9.2	0.15 0.15	2320 2070	80	70	60	30.2
102 108	9.0 9.1	0.10	NT NT	55 NT	50 NT	45 NT	24.2 NT
120	9.0	0.15	2250	70	60	55	26.7
126	9.3	0.21	3840	155	125	110	32.6
132	8.8	0.20	NT	NT	NT	NT	NT
144	8.5	0.06	3210	135	110	100	34.2
168	9.7	0.22	2590	100	85	80	32.8
192	10.2	0.11	3270	130	100	95	30.5
198 216	9.2 8.8	0.09	2220 5230	110 260	85 205	80 185	36.0 39.2
222	8.3	0.19	4740	240	190	170	40.0
240	9.0	0.17	4220	215	170	150	40.2
264	8.5	0.14	5360	255	200	175	37.3
264	8.3	0.12	3780	190	150	135	39.6
270	6.6	0.22	1540	165	140	130	90.9
288	8.3	0.32	9560	490	390	340	40.8
294 312	8.6 9.5	0.27	8380	510 470	400	350	47.7
312	8.2	0.20	7630 7510	385	380 305	330 215	49.8 40.6
336	9.0	0.15	6030	340	260	230	43.1
360	9.3	0.11	5760	310	240	210	41.7
366	9.3	0.14	5330	270	210	185	39.4
384	9.1	0.09	4710	240	190	170	40.3
390 408	9.1	0.16	4850	240	185	165	38.1
414	7.8 7.8	0.17 0.26	3330 3180	190 145	150 130	135 115	45.0 40.8
432	9.4	0.15	5880	220	215	190	36.5
438	8.8	0.08	5290	240	190	170	35.9
456	9.5	0.19	5000	245	195	175	39.0
462	9.2	0.20	6580	300	240	215	36.4
480	8.4	0.11	5710	260	215	190	37.7
504	8.3	0.08	5290	250	200	180	37.8
528 552	8.3 9.9	0.08	5090 5110	250 250	200 200	175 180	39.3 39.1
576	9.0	0.09	5110	260	200	180	39.1
600	8.6	0.10	4920	250	210	185	42.6
606	9.8	0.09	5930	280	220	190	37.1
624	9.1	0.07	5320	260	200	180	37.6
630	9.0	0.12	4520	220	170	150	37.6
648	8.8	0.05	4160	200	160	140	38.5
672 696	8.9	0.08	2810 3530	170 180	135 140	120 130	48.0 39.7
702	9.5	0.04	2820	140	110	100	39.7
720	7.1	0.07	2260	190	150	130	66.4
726	7.6	0.07	3740	230	185	160	49.5
744	7.1	0.05	3350	210	165	145	49.3

Time	DO	SOUR	MLSS	SSV 15	SSV 30	SSV 45	SVI
768	7.4	0.10	3110	200	160	140	51.4
774	5.2	0.07	2840	180	140	125	49.3
792	6.7	0.11	3270	200	160	140	48.9
798	6.4	0.02	2950	190	150	130	50.8
816	7.2	0.06	2700	180	125	120	46.3
840	6.5	0.10	NT	140	115	100	NT
864	6.0	0.02	2520	170	135	120	53.6
870	8.7	0.08	1530	205	160	140	104.5
888	4.9	0.02	1220	200	160	140	131.1
894	5.2	0.03	1030	170	140	120	135.9
912	6.4	0.12	940	180	145	130	154.2
918	8.0	0.53	3480	150	120	110	34.5

Time pH In. pH Bioreact. pH Ef. 0 8.5 8.3 8.1 24 8.5 8.2 8.1 32 8.5 8.1 8.0 48 8.5 8.2 NT 54 8.5 8.3 8.1 60 8.5 8.3 8.1 60 8.5 8.3 8.3 72 8.5 8.3 8.3 78 8.5 8.3 8.3 78 8.5 8.3 8.3 78 8.5 8.3 8.2 84 NT NT NT NT 96 8.5 8.4 8.3 102 8.5 8.3 8.2 108 NT NT NT 120 8.5 8.2 7.9	,			
0 8.5 8.3 8.1 24 8.5 8.2 8.1 32 8.5 8.1 8.0 48 8.5 8.2 NT 54 8.5 8.3 8.1 60 8.5 8.3 8.0 72 8.5 8.3 8.3 78 8.5 8.3 8.2 84 NT NT NT 96 8.5 8.4 8.3 102 8.5 8.3 8.2 108 NT NT NT 120 8.5 8.2 7.9	Time	pH In.	pH Bioreact.	pH Ef.
24 8.5 8.2 8.1 32 8.5 8.1 8.0 48 8.5 8.2 NT 54 8.5 8.3 8.1 60 8.5 8.3 8.0 72 8.5 8.3 8.3 78 8.5 8.3 8.2 84 NT NT NT 96 8.5 8.4 8.3 102 8.5 8.3 8.2 108 NT NT NT 120 8.5 8.2 7.9	0	8.5	8.3	8.1
32 8.5 8.1 8.0 48 8.5 8.2 NT 54 8.5 8.3 8.1 60 8.5 8.3 8.0 72 8.5 8.3 8.3 78 8.5 8.3 8.2 84 NT NT NT NT 96 8.5 8.4 8.3 102 8.5 8.3 8.2 108 NT NT NT NT 120 8.5 8.2 7.9	24	8.5	8.2	8.1
48 8.5 8.2 NT 54 8.5 8.3 8.1 60 8.5 8.3 8.0 72 8.5 8.3 8.3 78 8.5 8.3 8.2 84 NT NT NT 96 8.5 8.4 8.3 102 8.5 8.3 8.2 108 NT NT NT 120 8.5 8.2 7.9			8.1	
54 8.5 8.3 8.1 60 8.5 8.3 8.0 72 8.5 8.3 8.3 78 8.5 8.3 8.2 84 NT NT NT 96 8.5 8.4 8.3 102 8.5 8.3 8.2 108 NT NT NT 120 8.5 8.2 7.9				NT
60 8.5 8.3 8.0 72 8.5 8.3 8.3 78 8.5 8.3 8.2 84 NT NT NT 96 8.5 8.4 8.3 102 8.5 8.3 8.2 108 NT NT NT 120 8.5 8.2 7.9				
72 8.5 8.3 8.3 78 8.5 8.3 8.2 84 NT NT NT NT 96 8.5 8.4 8.3 102 8.5 8.3 8.2 108 NT NT NT NT 120 8.5 8.2 7.9				
78 8.5 8.3 8.2 84 NT NT NT NT 96 8.5 8.4 8.3 102 8.5 8.3 8.2 108 NT NT NT NT 120 8.5 8.2 7.9				8.3
84 NT NT NT 96 8.5 8.4 8.3 102 8.5 8.3 8.2 108 NT NT NT 120 8.5 8.2 7.9				
96 8.5 8.4 8.3 102 8.5 8.3 8.2 108 NT NT NT 120 8.5 8.2 7.9				
102 8.5 8.3 8.2 108 NT NT NT 120 8.5 8.2 7.9				
108 NT NT NT 120 8.5 8.2 7.9				8.2
120 8.5 8.2 7.9				NT
126 8.5 8.4 8.1	126	8.5	8.4	8.1
132 NT NT NT	132			NT
144 8.5 8.5 8.5	144			8.5
168 8.5 8.5 8.3	168		8.5	8.3
192 8.5 8.5 8.0	192	8.5	8.5	8.0
198 8.5 8.3 8.0	198			8.0
216 8.5 8.2 7.9	216			7.9
222 8.5 8.0 7.7	222			7.7
240 8.5 8.2 8.2				8.2
264 8.5 8.1 8.0				8.0
264 8.5 8.2 8.2				8.2
270 8.5 8.2 7.0	270	8.5		7.0
288 8.5 8.2 8.0		8.5	8.2	8.0
294 8.5 8.0 7.8	294	8.5	8.0	7.8
312 8.5 8.1 7.9				7.9
318 8.5 8.0 8.0		8.5		8.0
336 8.5 8.0 8.1	336	8.5	8.0	8.1
360 8.5 8.1 7.9		8.5	8.1	7.9
366 8.5 8.1 8.0		8.5		
384 8.5 8.1 8.1		8.5		8.1
390 8.5 8.1 7.7		8.5		7.7
408 8.5 7.7 7.7		8.5		7.7
414 8.5 7.6 7.5	414	8.5		7.5

Time	pH In.	pH Bioreact.	pH Ef.
432	8.5	7.9	7.8
438	8.5	7.9	7.7
456	8.5	8.0	8.0
462	8.5	7.8	7.8
480	8.5	7.9	7.8
504	8.5	7.8	7.7
528	8.5	7.8	7.6
552	8.5	7.9	7.8
576	8.5	7.7	7.9
600	8.5	7.9	7.9
606 624	8.5 8.5	7.9 7.7	7.8 7.9
630	8.5	7.9	7.7
648	8.5	8.1	7.9
672	8.5	8.1	7.9
696	8.5	8.0	7.8
702	8.5	7.9	7.8
720	8.5	7.9	7.9
726	8.5	7.9	7.9
744	8.5	8.2	7.9
768	8.5	8.1	8.0
774 792	8.5 8.5	8.0	7.8
798	8.5	8.1 8.0	7.8 7.9
816	8.5	8.0	7.8
840	8.5	7.8	7.7
864	8.5	7.9	7.9
870	8.5	7.9	7.7
888	8.5	7.9	7.7
894	8.5	8.0	7.6
912	8.5	8.0	7.6
918	8.5	8.0	7.7

Time	TOC In	TOC Ef	. COD In.	COD Ef	. ED In	. ED Ef	. Amm.	In.	Amm.	Ef.
0	65.7	69.7	30	41	0	0	0		0	
24	81.4	74.5	26	25	0	0	0		0	
32	81.4	74.5	26	83	0	0	0		0	
48	64.5	69.3	31	33	0	0	0		0	
54 60	59.7	68.5	42	60	0	0	0	- 1	0	
72	59.7 80.8	72. 5 93.1	42 48	33 22	0	0	0		0	
72	108.0	93.1	137	22	18.3	ŏ	Ö		0	
78	108.0	75.9	137	120	18.3	18.4	Ö	ł	0	
96	108.0	102.0	137	123	18.9	18.4	ō		ŏ	
102	108.0	118.0	137	137	18.9	18.4	0		0	
108	1109.0	108.0	137	140	18.9	18.4	0		0	
120	111.7	111.4	114	104	28.7	20.3	0		0	
126	111.7	105.5	147	145	28.7	27.9	0	1	0	
132 144	120.1 124.8	111.6 127.5	147 155	107 167	28.7	27.9	0		0	
168	124.8	121.9	155	155	34.5 34.5	36.0 36.7	0		0	
192	134.8	132.3	167	167	43.3	38.5	ŏ		Ö	
198	146.4	139.9	170	173	55.9	45.7	ŏ		ŏ	
216	146.4	142.1	176	180	55.9	60.0	0		2.7	
222	146.4	146.4	176	195	55.9	25.0	0		7.0	
240	82.9	106.0	147	69	24.6	19.5	0		0	
264	82.9	111.6	155	0	24.6	0	0]	11.3	
264 270	82.9 84.7	111.6 96.7	155 155	104	24.6	0	0	1	11.3	
288	84.7	77.7	155	93 96	24.6 24.6	0	0		16.2 15.8	
294	84.7	95.1	198	77	24.6	ŏ	ŏ		18.7	
312	124.8	97.5	198	77	24.6	Ö	Ö		12.1	
318	124.8	92.0	95	62	29.5	13.2	0	l	13.2	
336	132.5	79.3	193	50	29.5	0	0	- 1	12.7	
360	132.5	90.5	193	39	29.5	0	0	- 1	14.2	
366	132.5	86.3	193	47	29.5	0	0	- 1	13.9	
384 390	127.2 127.2	89.7 80.6	198 198	50 49	29.5 29.5	0	0		14.0 13.4	
408	148.3	90.1	217	28	59.2	o	ŏ		13.4	
414	148.3	81.8	217	21	59.2	ŏ	ŏ		15.5	
432	148.3	86.4	217	63	59.2	Ō	Õ	- 1	18.5	
438	148.3	83.8	255	78	59.2	0	0		11.8	
456	147.6	76.9	255	48	59.2	0	0		28.4	
462	147.6	72.5	220	53	59.7	0	0		28.4	
480	147.6	62.3	220	76 130	59.7	0	0		28.4	
504 528	120.1 120.1	78.0 77.8	220	138 54	59.7 59.7	0	0		28.4 28.4	
552	134.8	77.0	231	113	59.7	Ö	0		28.4	
576	150.5	63.7	217	55	62.8	ŏ	ŏ		28.4	•
600	150.5	63.7	217	75	62.8	Ŏ	Ŏ		28.4	
606	150.5	66.1	217	99	62.8	0	0		18.7	
624	150.5	72.0	217	42	62.8	0	0		23.1	

Time	TOC In.	TOC Ef.	COD In.	COD Ef.	ED In.	ED Ef.	Amm.	In. Amm. Ef.
630	150.0	64.5	217	40	62.8	0	0	25.7
648	150.0	74.7	217	62	82.1	0	0	29.3
672	159.0	80.9	289	40	82.1	0	0	29.8
696	159.0	93.1	289	83	82.1	0	0	29.8
702	159.0	83.3	289	102	85.3	0	0	29.8
720	159.0	82.0	289	52	85.3	0	0	30.0
726	159.0	80.8	289	38	85.3	0	0	30.3
744	159.0	84.9	289	53	85.3	0	0	31.0
768	159.0	67.7	317	62	108.7	0	0	32.0
774	160.0	96.5	317	66	108.7	0	0	28.5
792	160.0	107.0	324	97	108.7	0	0	32.2
798	160.0	95.0	377	46	127.0	0	0	26.1
816	166.5	99.7	377	110	127.0	0	0	34.6
840	166.5	102.6	377	84	127.0	0	0	34.6

Time	NO _z In.	NO, Ef.	NO ₂ In.	NO, Ef.	SO ₂ - In.	SO, ²⁻ Ef.	PO,3- In	. PO, ³⁻ Ef.
0	3.2	1.0	0 2	0	79.7	96.3	0	1.9
24	3.2	1.0	0	0	79.7	96.3	0	1.9
32	3.2	1.0	0	0	79.7	96.3	0	1.9
48	4.0	3.2	0.94	0	49.9	92.6	0	2.1
54	4.0	4.4	0.94	0	49.9	85.8	0	2.2
60	4.0	3.7	0.94	0	49.9	57.9	0	2.2
72	2.2	3.7	0	0	117.5	58.1	3.2	2.1
78	0.94	3.1	2.4	0	224.7	131.8	0	9.8
84	0.94	1.7	2.4	0	224.7	140.5	0	2.0
96	15.3	0.7	13.0	0	234.2	184.9	1.6	1.9
102	15.3	6.8	13.0	9.7	234.2	258.5	1.6	2.0
108	15.3	7.2	13.0	15.8	234.2	299.7	1.6	2.1
120	8.0	2.9	12.2	12.9	235.3	228.0	1.8	1.9
126	8.0	4.5	12.2	10.8	235.3	244.5	1.8	2.6
132	8.0	5.2	12.2	3.9	235.3	199.8	1.8	2.9
144	4.5	4.5	3.1	3.2	213.3	196.5	2.0	5.2
168	9.3	1.7	2.1	0	232.9	265.8	1.8	2.8
192	5.5	2.9	2.9	0	218.7	269.3	2.0	2.7
198	5.5	2.6	2.9	0	218.7	184.6	2.0	2.8
216	5.5	1.5	2.9	0	218.7	219.3	2.0	4.2
222	9.3	1.5	4.9	0	233.3	219.3	8.0	4.2
240	9.3	7.7	4.9	0	233.3	178.6	8.0	9.5
264	9.3	5.7	4.9	0	233.3	249.3	8.0	8.5
264	7.7	5.2	3.9	0	259.6	240.7	7.7	8.0 8.0
270	7.7	5.2	3.9	0	259.6	240.7	7.7	9.25
288	7.7	6.3	3.9	0	259.6	237.2	7.7	9.25
294	7.7	7.1	3.9	0	259.6	264.3	7.7 7.7	9.3 8.8
312	7.7	6.9	3.9	0	259.6	272.5	7.7	8.8
318	7.4	6.9	3.6	0	259.1	271.1	7.6	8.5
336	7.4	8.2	3.6	0	259.1	227.3	7.0	8.7
360	7.5	6.8	3.6	3.7	306.1	263.4 259.8	7.7	9.0
366	7.5	10.7	3.6	0	306.1	439.0	1.1	3.0

Time	NO, In.	NO. Ef.		NO2 Ef.	SO, 2- In.	SO, 2- Ef.	PO,3- In	. PO, ³⁻ Ef.
384	7.5	10.7	3.6	0	306.1	259.8	7.7	9.0
390	8.4	7.4	4.3	0	187.0	279.3	7.8	9.1
408	8.4	7.0	4.3	3.7	187.0	268.4	7.8	9.3
414	8.4	8.5	4.3	3.7	187.0	285.5	7.8	9.3
432	8.4	9.3	4.3	0	225.1	226.6	8.7	9.7
438	8.4	9.0	4.3	0	225.1	205.9	8.7	9.3
456	8.4	8.1	4.3	3.9	225.1	251.8	8.7	9.2
462	8.4	8.1	4.3	3.9	225.1	251.8	8.7	9.2
480	8.4	7.1	4.3	0	225.1	220.7	8.7	9.2
504	8.4	7.1	4.3	0	225.1	220.7	8.7	9.2
528	6.3	7.1	0	0	243.7	220.7	0	0
552	6.3	7.1	0	0	243.7	220.7	0	0
576	6.4	10.0	0	0	287.2	247.9	0	0
600	6.4	17.1	0	0	287.2	261.3	0	0
606	6.4	13.7	0	0	287.2	277.5	0	0
624	6.5	14.7	0	0	241.3	284.9	0	0
630	6.5	14.7	0	0	241.3	284.9	0	0
648	6.5	12.6	0	0	241.3	262.9	0	0
672	9.7	11.7	0	0	321.0	267.0	0	0
696	9.7	11.5	0	0	321.0	294.0	0	0
702	9.7	15.2	0	0	321.0	339.0	0	7.4
720	5.5	13.6	0	0	378.0	320.0	8.9	0
726	5.5	13.1	0	0	378.0	275.0	8.9	0
744	5.5	14.9	0	0	378.0	360.0	8.9	0
768	7.2	15.7	0	0	382.0	381.0	8.1	0
774	7.2	16.4	0	4.1	382.0	323.0	8.1	0
792	7.2	15.3	0	0	382.0	393.0	8.1	0
798	7.2	15.7	0	4.5	382.0	409.0	8.1	0
816	0	18.5	0	0	375.0	446.0	7.9	6.1
840	0	19.4	0	5.0	375.0	411.0	7.9	0

Time	DO	SOUR	MLSS	SSV 15	SSV 30	SSV 45	SVI
0	8.9	0.14	2810	140	120	110	42.7
24	9.1	0.07	3010	135	110	100	36.5
32	9.5	0.12	NT	NT	NT	NT	NT
48	9.3	0.09	2570	140	120	110	46.6
54	9.0	0.03	2090	100	85	80	40.7
60	9.7	0.03	NT	NT	NT	NT	NT
72	9.7	0.06	2320	85	75	70	32.3
78	9.3	0.04	1580	78	70	60	44.3
84	9.0	0.06	NT	NT	NT	NT	NT
96	9.3	0.12	1780	40	40	40	22.5
102	8.8	0.05	1830	40	35	35	19.1
108	9.5	0.04	NT	NT	NT	NT	NT
120	9.1	0.06	1850	30	30	30	16.2
126	9.1	0.27	3040	100	85	80	28
132	9.1	0.24	NT	NT	NT	NT	NT
144	8.8	0.11	3070	160	135	120	35.8
168	9.8	0.14	3070	130	105	95	34.2
192	10.4	0.10	2810	105	85	80	30.7

198 9.5 0.07 1880 110 90 80 47.9 216 9.1 0.19 5230 275 220 195 42.0 222 8.8 0.22 4930 270 220 190 44.6 264 8.9 0.14 5890 300 235 215 39.8 264 8.9 0.14 5890 300 235 215 39.8 264 8.8 0.10 4290 170 130 120 30.3 270 7.7 0.38 1570 135 110 105 70.0 288 9.4 0.25 66840 320 255 230 37.3 294 8.6 0.32 6290 305 250 225 39.7 312 9.9 0.31 5420 280 220 195 40.6 318 9.0 0.27 5530 260 210	Time	DO	SOUR	MLSS	SSV 15	SSV 30	SSV 45	SVI
222 8.8 0.22 4930 270 220 190 44.6 240 9.1 0.17 4310 250 200 180 46.4 264 8.9 0.14 5890 300 235 215 39.8 264 8.8 0.10 4290 170 130 120 30.3 270 7.7 0.38 1570 135 110 105 70.0 288 9.4 0.25 6840 320 255 230 37.3 294 8.6 0.32 6290 305 250 225 39.7 312 9.9 0.31 5420 280 220 195 40.6 318 9.0 0.27 5530 260 210 185 37.0 336 9.1 0.18 5840 280 225 200 38.5 360 9.7 0.14 4480 230 180	198	9.5	0.07	1880	110	90	80	
222 8.8 0.22 4930 270 220 190 44.6 264 8.9 0.14 5890 300 235 215 39.8 264 8.8 0.10 4290 170 130 120 30.3 270 7.7 0.38 1570 135 110 105 70.0 288 9.4 0.25 6840 320 255 230 37.3 294 8.6 0.32 6290 305 250 225 39.7 312 9.9 0.31 5420 280 220 195 40.6 318 9.0 0.27 5530 260 210 185 37.0 336 9.1 0.18 5840 280 225 200 38.5 360 9.7 0.14 4480 230 180 160 40.2 366 9.6 0.12 4470 225 180		9.1	0.19	5230	275	220	195	42.0
240 9.1 0.17 4310 250 200 180 46.4 264 8.9 0.14 5890 300 235 215 39.8 264 8.8 0.10 4290 170 130 120 30.3 270 7.7 0.38 1570 135 110 105 70.0 288 9.4 0.25 6840 320 255 230 37.3 294 8.6 0.32 6290 305 250 225 39.7 312 9.9 0.31 5420 280 220 195 40.6 318 9.0 0.27 5530 260 210 185 37.0 336 9.1 0.18 5840 280 225 200 38.5 360 9.7 0.14 4480 230 180 160 40.2 366 9.6 0.12 4470 225 180	222	8.8	0.22	4930	270	220	190	44.6
264 8.9 0.14 5890 300 235 215 39.8 264 8.8 0.10 4290 170 130 120 30.3 270 7.7 0.38 1570 135 110 105 70.0 288 9.4 0.25 6840 320 255 230 37.3 294 8.6 0.32 6290 305 250 225 39.7 312 9.9 0.31 5420 280 220 195 40.6 318 9.0 0.27 5530 260 210 185 37.0 360 9.1 0.18 5840 280 225 200 38.5 366 9.6 0.12 4470 225 180 160 40.3 384 9.4 0.17 4010 230 180 160 44.9 390 9.5 0.18 4540 225 180	240	9.1	0.17	4310	250	200	180	
264 8.8 0.10 4290 170 130 120 30.3 270 7.7 0.38 1570 135 110 105 70.0 288 9.4 0.25 6840 320 255 230 37.0 312 9.9 0.31 5420 280 220 195 40.6 318 9.0 0.27 5530 260 210 185 37.0 336 9.1 0.18 5840 280 225 200 38.5 360 9.7 0.14 4480 230 180 160 40.2 366 9.6 0.12 4470 225 180 160 40.3 384 9.4 0.17 4010 230 180 160 44.3 390 9.5 0.18 4540 225 180 160 39.6 408 9.3 0.14 3410 160 135		8.9		5890	300	235	215	
270 7.7 0.38 1570 135 110 105 70.0 288 9.4 0.25 6840 320 255 230 37.3 294 8.6 0.32 6290 305 250 225 39.7 312 9.9 0.31 5420 280 220 195 40.6 318 9.0 0.27 5530 260 210 185 37.0 336 9.1 0.18 5840 280 225 200 38.5 360 9.7 0.14 4480 230 180 160 40.2 366 9.6 0.12 4470 225 180 160 44.9 390 9.5 0.18 4540 225 180 160 44.9 390 9.5 0.18 4540 225 180 160 39.6 414 9.5 0.23 3290 150 125			0.10			130	120	
294 8.6 0.32 6290 305 250 225 39.7 312 9.9 0.31 5420 280 220 195 40.6 318 9.0 0.27 5530 260 210 185 37.0 336 9.1 0.18 5840 280 225 200 38.5 360 9.7 0.14 4480 230 180 160 40.2 366 9.6 0.12 4470 225 180 160 40.3 384 9.4 0.17 4010 230 180 160 44.9 390 9.5 0.18 4540 225 180 160 39.6 414 9.5 0.23 3290 150 125 120 37.9 432 10.0 0.15 3470 160 135 125 39.6 432 10.0 0.13 3640 125 120								70.0
312 9.9 0.31 5420 280 220 195 40.6 318 9.0 0.27 5530 260 210 185 37.0 336 9.1 0.18 5840 280 225 200 38.5 360 9.7 0.14 4480 230 180 160 40.2 366 9.6 0.12 4470 225 180 160 40.3 384 9.4 0.17 4010 230 180 160 44.9 390 9.5 0.18 4540 225 180 160 39.6 408 9.3 0.14 3410 160 135 125 39.6 414 9.5 0.23 3290 150 125 120 37.9 438 9.3 0.14 3640 125 120 100 34.3 456 9.9 0.21 4390 210 170								
318 9.0 0.27 5530 260 210 185 37.0 336 9.1 0.18 5840 280 225 200 38.5 360 9.7 0.14 4480 230 180 160 40.2 366 9.6 0.12 4470 225 180 160 40.3 384 9.4 0.17 4010 230 180 160 44.9 390 9.5 0.18 4540 225 180 160 39.6 408 9.3 0.14 3410 160 135 125 39.6 414 9.5 0.23 3290 150 125 120 37.9 432 10.0 0.15 3470 160 135 125 38.9 438 9.3 0.14 3640 125 120 100 34.3 456 9.9 0.21 4390 210 170								
336 9.1 0.18 5840 280 225 200 38.5 360 9.7 0.14 4480 230 180 160 40.2 366 9.6 0.12 4470 225 180 160 40.3 384 9.4 0.17 4010 230 180 160 44.9 390 9.5 0.18 4540 225 180 160 39.6 408 9.3 0.14 3410 160 135 125 39.6 414 9.5 0.23 3290 150 125 120 37.9 432 10.0 0.15 3470 160 135 125 38.9 438 9.3 0.14 3640 125 120 100 34.3 456 9.9 0.21 4390 210 170 155 38.7 462 9.6 0.35 5140 240 190								
360 9.7 0.14 4480 230 180 160 40.2 366 9.6 0.12 4470 225 180 160 40.3 384 9.4 0.17 4010 230 180 160 44.9 390 9.5 0.18 4540 225 180 160 39.6 408 9.3 0.14 3410 160 135 125 39.6 414 9.5 0.23 3290 150 125 120 37.9 432 10.0 0.15 3470 160 135 125 38.9 438 9.3 0.14 3640 125 120 100 34.3 456 9.9 0.21 4390 210 170 155 38.7 462 9.6 0.35 5140 240 190 180 36.9 480 9.7 0.13 3930 190 155								
366 9.6 0.12 4470 225 180 160 40.3 384 9.4 0.17 4010 230 180 160 44.9 390 9.5 0.18 4540 225 180 160 39.6 408 9.3 0.14 3410 160 135 125 39.6 414 9.5 0.23 3290 150 125 120 37.9 432 10.0 0.15 3470 160 135 125 38.9 438 9.3 0.14 3640 125 120 100 34.3 456 9.9 0.21 4390 210 170 155 38.7 462 9.6 0.35 5140 240 190 180 36.9 480 9.7 0.13 3930 190 155 145 39.4 504 9.5 0.06 3730 170 140				4				
384 9.4 0.17 4010 230 180 160 44.9 390 9.5 0.18 4540 225 180 160 39.6 408 9.3 0.14 3410 160 135 125 39.6 414 9.5 0.23 3290 150 125 120 37.9 432 10.0 0.15 3470 160 135 125 38.9 438 9.3 0.14 3640 125 120 100 34.3 456 9.9 0.21 4390 210 170 155 38.7 462 9.6 0.35 5140 240 190 180 36.9 480 9.7 0.13 3930 190 155 145 39.4 504 9.5 0.06 3730 170 140 130 37.5 528 9.3 0.06 3270 140 120								
390 9.5 0.18 4540 225 180 160 39.6 408 9.3 0.14 3410 160 135 125 39.6 414 9.5 0.23 3290 150 125 120 37.9 432 10.0 0.15 3470 160 135 125 38.9 438 9.3 0.14 3640 125 120 100 34.3 456 9.9 0.21 4390 210 170 155 38.7 462 9.6 0.35 5140 240 190 180 36.9 480 9.7 0.13 3930 190 155 145 39.4 504 9.5 0.06 3730 170 140 130 37.5 528 9.3 0.06 3270 140 120 110 36.7 552 11.0 0.2 3820 170 140								
408 9.3 0.14 3410 160 135 125 39.6 414 9.5 0.23 3290 150 125 120 37.9 432 10.0 0.15 3470 160 135 125 38.9 438 9.3 0.14 3640 125 120 100 34.3 456 9.9 0.21 4390 210 170 155 38.7 462 9.6 0.35 5140 240 190 180 36.9 480 9.7 0.13 3930 190 155 145 39.4 504 9.5 0.06 3730 170 140 130 37.5 528 9.3 0.06 3270 140 120 110 36.7 552 11.0 0.2 3820 170 140 130 36.6 576 9.6 0.11 4690 215 175								
414 9.5 0.23 3290 150 125 120 37.9 432 10.0 0.15 3470 160 135 125 38.9 438 9.3 0.14 3640 125 120 100 34.3 456 9.9 0.21 4390 210 170 155 38.7 462 9.6 0.35 5140 240 190 180 36.9 480 9.7 0.13 3930 190 155 145 39.4 504 9.5 0.06 3730 170 140 130 37.5 528 9.3 0.06 3270 140 120 110 36.7 552 11.0 0.2 3820 170 140 130 36.6 576 9.6 0.11 4690 215 175 160 37.3 600 9.3 0.12 4680 230 185								
432 10.0 0.15 3470 160 135 125 38.9 438 9.3 0.14 3640 125 120 100 34.3 456 9.9 0.21 4390 210 170 155 38.7 462 9.6 0.35 5140 240 190 180 36.9 480 9.7 0.13 3930 190 155 145 39.4 504 9.5 0.06 3730 170 140 130 37.5 528 9.3 0.06 3270 140 120 110 36.7 528 9.3 0.06 3270 140 120 110 36.7 528 9.3 0.06 3270 140 120 110 36.7 528 9.3 0.06 3270 140 120 110 36.7 552 11.0 0.2 3820 170 140				4				
438 9.3 0.14 3640 125 120 100 34.3 456 9.9 0.21 4390 210 170 155 38.7 462 9.6 0.35 5140 240 190 180 36.9 480 9.7 0.13 3930 190 155 145 39.4 504 9.5 0.06 3730 170 140 130 37.5 528 9.3 0.06 3270 140 120 110 36.7 528 9.3 0.06 3270 140 120 110 36.7 528 9.3 0.06 3270 140 120 110 36.7 528 9.3 0.06 3270 140 120 110 36.7 552 11.0 0.2 3820 170 140 130 36.6 576 9.6 0.11 4690 215 175				7				
456 9.9 0.21 4390 210 170 155 38.7 462 9.6 0.35 5140 240 190 180 36.9 480 9.7 0.13 3930 190 155 145 39.4 504 9.5 0.06 3730 170 140 130 37.5 528 9.3 0.06 3270 140 120 110 36.7 552 11.0 0.2 3820 170 140 130 36.6 576 9.6 0.11 4690 215 175 160 37.3 600 9.3 0.13 4750 215 170 155 35.7 606 10.5 0.05 4450 200 160 100 35.9 624 9.2 0.12 4680 230 185 165 39.5 630 9.3 0.12 4180 200 160								
462 9.6 0.35 5140 240 190 180 36.9 480 9.7 0.13 3930 190 155 145 39.4 504 9.5 0.06 3730 170 140 130 37.5 528 9.3 0.06 3270 140 120 110 36.7 552 11.0 0.2 3820 170 140 130 36.6 576 9.6 0.11 4690 215 175 160 37.3 600 9.3 0.13 4750 215 170 155 35.7 606 10.5 0.05 4450 200 160 100 35.9 624 9.2 0.12 4680 230 185 165 39.5 630 9.3 0.12 4180 200 160 150 38.3 648 9.2 0.09 3900 195 160 145 41.0 672 9.2 0.17 3660 190 155								
480 9.7 0.13 3930 190 155 145 39.4 504 9.5 0.06 3730 170 140 130 37.5 528 9.3 0.06 3270 140 120 110 36.7 552 11.0 0.2 3820 170 140 130 36.6 576 9.6 0.11 4690 215 175 160 37.3 600 9.3 0.13 4750 215 170 155 35.7 606 10.5 0.05 4450 200 160 100 35.9 624 9.2 0.12 4680 230 185 165 39.5 630 9.3 0.12 4180 200 160 150 38.3 648 9.2 0.09 3900 195 160 145 41.0 672 9.2 0.17 3660 190 155								
504 9.5 0.06 3730 170 140 130 37.5 528 9.3 0.06 3270 140 120 110 36.7 552 11.0 0.2 3820 170 140 130 36.6 576 9.6 0.11 4690 215 175 160 37.3 600 9.3 0.13 4750 215 170 155 35.7 606 10.5 0.05 4450 200 160 100 35.9 624 9.2 0.12 4680 230 185 165 39.5 630 9.3 0.12 4180 200 160 150 38.3 648 9.2 0.09 3900 195 160 145 41.0 672 9.2 0.17 3660 190 155 140 42.3 696 9.7 0.14 3980 180 150								
528 9.3 0.06 3270 140 120 110 36.7 552 11.0 0.2 3820 170 140 130 36.6 576 9.6 0.11 4690 215 175 160 37.3 600 9.3 0.13 4750 215 170 155 35.7 606 10.5 0.05 4450 200 160 100 35.9 624 9.2 0.12 4680 230 185 165 39.5 630 9.3 0.12 4180 200 160 150 38.3 648 9.2 0.09 3900 195 160 145 41.0 672 9.2 0.17 3660 190 155 140 42.3 696 9.7 0.14 3980 180 150 135 37.7 702 10.3 0.14 3580 160 130								
552 11.0 0.2 3820 170 140 130 36.6 576 9.6 0.11 4690 215 175 160 37.3 600 9.3 0.13 4750 215 170 155 35.7 606 10.5 0.05 4450 200 160 100 35.9 624 9.2 0.12 4680 230 185 165 39.5 630 9.3 0.12 4180 200 160 150 38.3 648 9.2 0.09 3900 195 160 145 41.0 672 9.2 0.17 3660 190 155 140 42.3 696 9.7 0.14 3980 180 150 135 37.7 702 10.3 0.14 3580 160 130 120 36.3 720 9.5 0.24 3470 190 155								
576 9.6 0.11 4690 215 175 160 37.3 600 9.3 0.13 4750 215 170 155 35.7 606 10.5 0.05 4450 200 160 100 35.9 624 9.2 0.12 4680 230 185 165 39.5 630 9.3 0.12 4180 200 160 150 38.3 648 9.2 0.09 3900 195 160 145 41.0 672 9.2 0.17 3660 190 155 140 42.3 696 9.7 0.14 3980 180 150 135 37.7 702 10.3 0.14 3580 160 130 120 36.3 720 9.5 0.24 3470 190 155 140 44.7 726 9.5 0.32 4060 180 150								
600 9.3 0.13 4750 215 170 155 35.7 606 10.5 0.05 4450 200 160 100 35.9 624 9.2 0.12 4680 230 185 165 39.5 630 9.3 0.12 4180 200 160 150 38.3 648 9.2 0.09 3900 195 160 145 41.0 672 9.2 0.17 3660 190 155 140 42.3 696 9.7 0.14 3980 180 150 135 37.7 702 10.3 0.14 3580 160 130 120 36.3 720 9.5 0.24 3470 190 155 140 44.7 726 9.5 0.32 4060 180 150 140 36.9 744 9.1 0.11 3790 190 150								37.3
606 10.5 0.05 4450 200 160 100 35.9 624 9.2 0.12 4680 230 185 165 39.5 630 9.3 0.12 4180 200 160 150 38.3 648 9.2 0.09 3900 195 160 145 41.0 672 9.2 0.17 3660 190 155 140 42.3 696 9.7 0.14 3980 180 150 135 37.7 702 10.3 0.14 3580 160 130 120 36.3 720 9.5 0.24 3470 190 155 140 44.7 726 9.5 0.32 4060 180 150 140 36.9 744 9.1 0.11 3790 190 150 140 39.6 768 9.2 0.18 3710 180 150								35.7
624 9.2 0.12 4680 230 185 165 39.5 630 9.3 0.12 4180 200 160 150 38.3 648 9.2 0.09 3900 195 160 145 41.0 672 9.2 0.17 3660 190 155 140 42.3 696 9.7 0.14 3980 180 150 135 37.7 702 10.3 0.14 3580 160 130 120 36.3 720 9.5 0.24 3470 190 155 140 44.7 726 9.5 0.32 4060 180 150 140 36.9 744 9.1 0.11 3790 190 150 140 39.6 768 9.2 0.18 3710 180 150 140 40.4 774 9.5 0.57 3700 170 140								35.9
630 9.3 0.12 4180 200 160 150 38.3 648 9.2 0.09 3900 195 160 145 41.0 672 9.2 0.17 3660 190 155 140 42.3 696 9.7 0.14 3980 180 150 135 37.7 702 10.3 0.14 3580 160 130 120 36.3 720 9.5 0.24 3470 190 155 140 44.7 726 9.5 0.32 4060 180 150 140 36.9 744 9.1 0.11 3790 190 150 140 39.6 768 9.2 0.18 3710 180 150 140 40.4 774 9.5 0.57 3700 170 140 125 37.8	624	9.2						
648 9.2 0.09 3900 195 160 145 41.0 672 9.2 0.17 3660 190 155 140 42.3 696 9.7 0.14 3980 180 150 135 37.7 702 10.3 0.14 3580 160 130 120 36.3 720 9.5 0.24 3470 190 155 140 44.7 726 9.5 0.32 4060 180 150 140 36.9 744 9.1 0.11 3790 190 150 140 39.6 768 9.2 0.18 3710 180 150 140 40.4 774 9.5 0.57 3700 170 140 125 37.8	630	9.3	0.12	4180	200			
696 9.7 0.14 3980 180 150 135 37.7 702 10.3 0.14 3580 160 130 120 36.3 720 9.5 0.24 3470 190 155 140 44.7 726 9.5 0.32 4060 180 150 140 36.9 744 9.1 0.11 3790 190 150 140 39.6 768 9.2 0.18 3710 180 150 140 40.4 774 9.5 0.57 3700 170 140 125 37.8			0.09	3900	195	160		
702 10.3 0.14 3580 160 130 120 36.3 720 9.5 0.24 3470 190 155 140 44.7 726 9.5 0.32 4060 180 150 140 36.9 744 9.1 0.11 3790 190 150 140 39.6 768 9.2 0.18 3710 180 150 140 40.4 774 9.5 0.57 3700 170 140 125 37.8				3660	190	155	140	42.3
720 9.5 0.24 3470 190 155 140 44.7 726 9.5 0.32 4060 180 150 140 36.9 744 9.1 0.11 3790 190 150 140 39.6 768 9.2 0.18 3710 180 150 140 40.4 774 9.5 0.57 3700 170 140 125 37.8							135	37.7
726 9.5 0.32 4060 180 150 140 36.9 744 9.1 0.11 3790 190 150 140 39.6 768 9.2 0.18 3710 180 150 140 40.4 774 9.5 0.57 3700 170 140 125 37.8						130	120	36.3
744 9.1 0.11 3790 190 150 140 39.6 768 9.2 0.18 3710 180 150 140 40.4 774 9.5 0.57 3700 170 140 125 37.8							140	44.7
768 9.2 0.18 3710 180 150 140 40.4 774 9.5 0.57 3700 170 140 125 37.8							140	
774 9.5 0.57 3700 170 140 125 37.8								
/92 8./ 0.18 35/0 160 130 120 36 4								
				1			120	36.4
	798							
	816 840		1					
840 10.9 0.47 4260 170 140 130 32.9	U+U	10.3	0.4/	4200	1/0	1 140	120	32.9

Time	pH In.	pH Bioreact	. pH Ef.	m-NBA In.	m-NBA Ef.
0	8.5	8.3	8.2	0	0
24	8.5	8.2	8.1	0	0
32	8.5	8.2	8.1	0	0
48	8.5	8.2	NT	0	0

Time	nI Ha	. pH Bioreac	t. pH Ff	. <u>m-NBA</u> In	. m-NBA Ef.
54 60 77 84 10 10 10 10 10 10 10 10 10 10 10 10 10	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	8.3 8.4 8.7 8.5 8.3 8.7 8.5 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	8.2 8.3 8.3 8.1 8.3 8.1 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	0 0 0 8.3 8.4 9.1 9.1 10.3 14.3 14.3 15.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 9.2 9.2 10.1 10.1 10.1 10.1 10.1 10.1 10.1 110.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	0 0 0 1.6 6.1 9.5 9.1 10.7 9.1 7.5 8.7 7.1 13.6 10.2 9.8 9.8 9.8 4.2 2.8 1.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Time	pH In.	pH Bioreact.	pH Ef.	m-NBA In.	m-NBA Ef.
744	8.5	8.4	8.0	23.6	0
768	8.5	8.2	8.2	23.6	0
774	8.5	8.1	7.9	23.6	0
792	8.5	8.3	7.9	23.6	0
798	8.5	8.2	8.1	23.6	0
816	8.5	8.3	8.0	23.6	0
840	8.5	8.2	8.1	23.6	0

Time	TOC In	. TOC Ef	. COD In	. COD Ef	. ED In	. FD Ff	. Amm .	In. Amm. Ef.
0	67.9	69.4	30	18	0	0	0	0
24	67.9	69.4	30	18	0	0	0	0
24	89.5	71.8	82	18	31.2	0	0	0
32	89.5	104.9	82	73	31.2	11.2	0	0
48	89.7	101.6	82	104	31.2	30.6	0	0
54	90.3	107.5	85	114	39.4	33.6	0	0
60	90.3	101.3	101	113	39.4	42.7	0	0
72 70	90.3	108.2	103	110	39.4	41.5	0	0
78 84	99.6 99.6	108.1 108.0	103 103	77	46.4	49.5	0	0
96	99.6	108.7	103	81 93	46.4 46.4	49.5	0	0
102	100.9	108.6	113	103	58.8	46.4 52.3	0	0
108	101.0	111.4	113	113	58.8	53.4	0	0
120	101.0	109.0	116	124	58.8	58.0	ŏ	ő
126	107.2	116.4	116	135	59.6	63.1	ŏ	ŏ
132	107.2	114.6	116	146	59.6	60.0	Ö	0
144	110.2	104.6	125	150	71.7	65.8	0	0
168	110.2	106.9	125	158	71.7	68.9	0	0
192	110.2	92.2	125	124	71.7	67.4	0	0
198	125.1	95.3	128	136	82.0	79.0	0	0
216	125.1	83.9	143	158	82.0	80.1	0	4.2
222 240	125.1	89.0	143	164	82.0	76.6	0	11.0
240 264	135.0 135.0	83.9 118.1	186 186	189 81	100.6 100.6	100.4 53.4	0	26.3
264	151.6	83.9	210	81	193.8	53.4	0	26.1
270	151.6	108.6	210	93	193.8	19.0	ŏ	54.1
288	151.6	86.9	210	97	193.8	15.0	Ö	67.3
294	151.6	116.1	210	65	193.8	11.1	0	33.1
312	150.9	115.6	210	97	193.8	11.5	0	70.8
318	147.1	86.1	340	85	211.8	9.5	0	72.5
336	160.0	94.7	340	104	211.8	10.1	0	74.2
360	160.0	95.5	340	85	211.8	11.1	0	69.2
366	199.7	97.9	395	45	258.8	10.5	0	70.5
384 390	199.7 204.0	84.2 127.2	395	33 37	258.8	9.4	0	75.6
408	204.0	123.9	504 504	45	268.2 268.2	9.4	0	67.6 67.6
414	204.0	126.1	504	43	268.2	ŏ	Ö	85.1
432	204.0	129.1	538	144	268.2	ŏ	Ö	67.61
438	204.0	98.5	538	87	268.2	ŏ	ŏ	100.1
456	204.0	94.5	545	75	268.2	0	Ō	100.1
462	204.0	77.7	545	121	268.2	0	0	100.1
480	204.0	93.3	504	52	268.2	0	0	100.1
504	204.0	94.0	504	58	268.2	0	0	100.1
528	211.2	104.5	690	104	319.2	0	0	100.1
552	211.2	83.0	690	120	319.2	0	0	116.0
576 600	234.8	86.1	696	180	375.0	0	0	119.0
600 606	234.8 234.8	89.2	696	75	375.4	0	0	119.0
300	234.0	97.1	696	45	375.4	0	0	119.0

Time	TOC In.		COD In.	COD Ef.	ED In. ED Et	. Amm. In	. Amm. Ff.
624	234.0	95.9	701	89	397.0 0	0	119.0
630	234.0	92.8	701	103	397.0 0	0	124.0
648	234.0	76.6	701	53	397.0 0	0	127.8
672	240.0	76.6	730	73	466.7 0	0	120.0
696	240.0	150.5	730	257	466.7 154.0	10	127.8
702	240.0	140.2	730	284	466.7 154.0	0	122.0
720	266.0	148.0	730	283	634.0 134.0	0	130.0
726	266.0	138.0	774	273	634.0 121.0		124.0
744	266.0	118.7	774	54	634.0 0	0	110.0
768	266.0	95.4	774	49	634.0 0	0	136.0
774	266.0	140.0	774	61	634.0 0	0	136.0
792	266.0	168.9	774	185	634.0 0	0	136.0
798	266.0	146.0	774	42	634.0 0	0	136.0
816	266.0	157.7	774	70	634.0 0	0	136.0
840	266.0	146.0	774	98	634.0 0	0	136.0
864	266.0	154.0	774	185	634.0 0	0	136.0
870	266.0	125.0	774	104	634.0 0	0	136.0
888	266.0	124.0	774	92	634.0 0	o	136.0
894	275.0	112.0	794	68	714.0 0	o	144.0
912	275.0	130.0	794	57	714.0 0	Ö	147.0
918	275.0	120.0	794	42	714.0 0	Ŏ	147.8
	·	·	•	'	•	'	

Time	NO _z In.	NO, Ef	. NO ₂ In.	NO ₂ Ef	_SO, ²⁻ In	. SO, ²⁻ Ef	. PO, ³⁻ Ir	n. PO, ³⁻ Ef.
0	2.9	1.8	0	0	148.9	89.9	0	1.9
24	2.9	1.8	0	0	148.9	89.3	0	1.9
32	2.9	1.8	0	0	148.9	89.3	0	1.9
48	4.0	2.5	0.9	0	74.5	101.8	1.8	0
54	4.0	3.3	0.9	0	74.5	88.1	1.8	2
60	4.0	1.8	0.9	0	74.5	131.1	1.8	1.9
72	2.5	3.8	0	0	137.4	98.9	0	2.1
78	2.5	1.2	0	0	137.4	117.9	Ō	2.4
84	2.5	1.5	0	0	137.4	122.3	Ö	2.1
96	14.9	0.7	12.2	0	97.4	196.9	Ö	2.2
102	14.9	14.6	12.2	10.2	97.4	196.9	Ö	2.2
108	14.9	14.6	12.2	10.2	97.4	146.6	Ö	2.1
120	10.2	10.9	13.3	12.8	103.9	142.3	Ö	2.2
126	10.2	10.8	13.3	7.8	103.9	137.3	Ö	2.2
132	10.2	10.5	13.3	6.5	103.9	149.4	Ŏ	3.4
144	4.4	8.1	3.2	5.9	140.7	116.7	2.5	2.4
168	5.2	5.1	2.1	0	138.3	125.0	1.8	2.4
192	5.5	4.8	1.8	0.7	100.1	138.7	1.9	2.1
198	5.5	3.8	1.8	0	100.1	148.3	1.9	8.3
216	5.5	3.4	1.8	0	100.1	114.3	1.9	3.6
222	7.7	6.8	4.4	0	175.8	142.8	7.9	10.3
240	7.7	6.1	4.4	0	175.8	172.5	7.9	8.7
264	7.7	6.9	4.4	0	175.8	202.6	7.9	9.4
264	4.6	5.1	5.8	3.7	262.1	202.6	8.4	9.4
270	4.6	4.7	5.8	0	227.1	227.1	8.3	8.3
288	4.6	5.5	5.8	0	227.1	271.2	8.3	8.5

60 9.8 0.05 NT NT NT NT NT NT NT 72 9.7 0.09 3070 115 95 85 30.9 78 9.6 0.04 2170 112 90 85 41.5 84 9.1 0.05 NT N	Time	DO	SOUR	MLSS	SSV 15	SSV 30	SSV 45	SVI
72 9.7 0.09 3070 115 95 85 30.9 78 9.6 0.04 2170 112 90 85 41.5 84 9.1 0.05 NT NT <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
78 9.6 0.04 2170 112 90 85 41.5 84 9.1 0.05 NT		,						
84 9.1 0.05 NT								
96 9.6 0.16 2850 120 90 80 31.6 102 8.9 0.12 2010 70 60 55 29.9 108 9.6 0.08 NT NT <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
102 8.9 0.12 2010 70 60 55 29.9 108 9.6 0.08 NT NT </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ł</td> <td></td>							ł	
108 9.6 0.08 NT NT NT NT NT NT 120 9.2 0.12 2530 70 60 60 23.7 126 9.5 0.19 3110 160 130 120 41.8 132 9.3 0.15 NT NT <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
120 9.2 0.12 2530 70 60 60 23.7 126 9.5 0.19 3110 160 130 120 41.8 132 9.3 0.15 NT NT NT NT NT NT 144 9.0 0.11 2830 135 110 100 38.9 168 10.4 0.10 2540 90 75 70 29.5 192 10.4 0.09 2570 110 90 80 35.0 198 9.4 0.09 2270 95 80 75 35.2 216 9.3 0.17 5160 260 210 185 40.7 222 8.8 0.22 4940 255 205 180 41.4 240 9.3 0.16 4900 270 215 190 43.8 264 9.0 0.19 5330 290 230								
126 9.5 0.19 3110 160 130 120 41.8 132 9.3 0.15 NT N						1	I .	
132 9.3 0.15 NT NT NT NT NT NT 144 9.0 0.11 2830 135 110 100 38.9 168 10.4 0.10 2540 90 75 70 29.5 192 10.4 0.09 2570 110 90 80 35.0 198 9.4 0.09 2270 95 80 75 35.2 216 9.3 0.17 5160 260 210 185 40.7 222 8.8 0.22 4940 255 205 180 41.4 240 9.3 0.16 4900 270 215 190 43.8 264 9.0 0.19 5330 290 230 205 43.1 264 8.8 0.47 3700 150 120 110 32.4 270 7.2 0.39 1590 95 80 75								
144 9.0 0.11 2830 135 110 100 38.9 168 10.4 0.10 2540 90 75 70 29.5 192 10.4 0.09 2570 110 90 80 35.0 198 9.4 0.09 2270 95 80 75 35.2 216 9.3 0.17 5160 260 210 185 40.7 222 8.8 0.22 4940 255 205 180 41.4 240 9.3 0.16 4900 270 215 190 43.8 264 9.0 0.19 5330 290 230 205 43.1 264 8.8 0.47 3700 150 120 110 32.4 270 7.2 0.39 1590 95 80 75 50.3 288 9.1 0.27 6430 270 215 190 33.4 294 9.1 0.18 3850 145 120	132							
168 10.4 0.10 2540 90 75 70 29.5 192 10.4 0.09 2570 110 90 80 35.0 198 9.4 0.09 2270 95 80 75 35.2 216 9.3 0.17 5160 260 210 185 40.7 222 8.8 0.22 4940 255 205 180 41.4 240 9.3 0.16 4900 270 215 190 43.8 264 9.0 0.19 5330 290 230 205 43.1 264 8.8 0.47 3700 150 120 110 32.4 270 7.2 0.39 1590 95 80 75 50.3 288 9.1 0.27 6430 270 215 190 33.4 294 9.1 0.18 3850 145 120 110 31.2 312 9.7 0.22 3430 135 110 100 32.1 318 8.2 0.29 3690 120 100 90 27.1 336 9.5 0.1	144							
192 10.4 0.09 2570 110 90 80 35.0 198 9.4 0.09 2270 95 80 75 35.2 216 9.3 0.17 5160 260 210 185 40.7 222 8.8 0.22 4940 255 205 180 41.4 240 9.3 0.16 4900 270 215 190 43.8 264 9.0 0.19 5330 290 230 205 43.1 264 8.8 0.47 3700 150 120 110 32.4 270 7.2 0.39 1590 95 80 75 50.3 288 9.1 0.27 6430 270 215 190 33.4 294 9.1 0.18 3850 145 120 110 31.2 312 9.7 0.22 3430 135 110 100 32.1 318 8.2 0.29 3690 120 100							70	
198 9.4 0.09 2270 95 80 75 35.2 216 9.3 0.17 5160 260 210 185 40.7 222 8.8 0.22 4940 255 205 180 41.4 240 9.3 0.16 4900 270 215 190 43.8 264 9.0 0.19 5330 290 230 205 43.1 264 8.8 0.47 3700 150 120 110 32.4 270 7.2 0.39 1590 95 80 75 50.3 288 9.1 0.27 6430 270 215 190 33.4 294 9.1 0.18 3850 145 120 110 31.2 312 9.7 0.22 3430 135 110 100 32.1 318 8.2 0.29 3690 120 100 90 27.1 336 9.5 0.11 3430 140 110				2570	110	90	80	
216 9.3 0.17 5160 260 210 185 40.7 222 8.8 0.22 4940 255 205 180 41.4 240 9.3 0.16 4900 270 215 190 43.8 264 9.0 0.19 5330 290 230 205 43.1 264 8.8 0.47 3700 150 120 110 32.4 270 7.2 0.39 1590 95 80 75 50.3 288 9.1 0.27 6430 270 215 190 33.4 294 9.1 0.18 3850 145 120 110 31.2 312 9.7 0.22 3430 135 110 100 32.1 318 8.2 0.29 3690 120 100 90 27.1 336 9.1 0.15 3220 125 105 95 32.6 360 9.3 0.11 3180 110 90	198			2270	95		75	35.2
240 9.3 0.16 4900 270 215 190 43.8 264 9.0 0.19 5330 290 230 205 43.1 264 8.8 0.47 3700 150 120 110 32.4 270 7.2 0.39 1590 95 80 75 50.3 288 9.1 0.27 6430 270 215 190 33.4 294 9.1 0.18 3850 145 120 110 31.2 312 9.7 0.22 3430 135 110 100 32.1 318 8.2 0.29 3690 120 100 90 27.1 336 9.1 0.15 3220 125 105 95 32.6 360 9.5 0.11 3430 140 110 105 32.0 360 9.3 0.11 3180 110 90 85 28.3 384 9.3 0.12 2840 100 85				5160	260	210	185	40.7
264 9.0 0.19 5330 290 230 205 43.1 264 8.8 0.47 3700 150 120 110 32.4 270 7.2 0.39 1590 95 80 75 50.3 288 9.1 0.27 6430 270 215 190 33.4 294 9.1 0.18 3850 145 120 110 31.2 312 9.7 0.22 3430 135 110 100 32.1 318 8.2 0.29 3690 120 100 90 27.1 336 9.1 0.15 3220 125 105 95 32.6 360 9.5 0.11 3430 140 110 105 32.0 360 9.3 0.11 3180 110 90 85 28.3 384 9.3 0.12 2840 100 85 80<								
264 8.8 0.47 3700 150 120 110 32.4 270 7.2 0.39 1590 95 80 75 50.3 288 9.1 0.27 6430 270 215 190 33.4 294 9.1 0.18 3850 145 120 110 31.2 312 9.7 0.22 3430 135 110 100 32.1 318 8.2 0.29 3690 120 100 90 27.1 336 9.1 0.15 3220 125 105 95 32.6 360 9.5 0.11 3430 140 110 105 32.0 360 9.3 0.11 3180 110 90 85 28.3 384 9.3 0.12 2840 100 85 80 29.9								
270 7.2 0.39 1590 95 80 75 50.3 288 9.1 0.27 6430 270 215 190 33.4 294 9.1 0.18 3850 145 120 110 31.2 312 9.7 0.22 3430 135 110 100 32.1 318 8.2 0.29 3690 120 100 90 27.1 336 9.1 0.15 3220 125 105 95 32.6 360 9.5 0.11 3430 140 110 105 32.0 360 9.3 0.11 3180 110 90 85 28.3 384 9.3 0.12 2840 100 85 80 29.9								
288 9.1 0.27 6430 270 215 190 33.4 294 9.1 0.18 3850 145 120 110 31.2 312 9.7 0.22 3430 135 110 100 32.1 318 8.2 0.29 3690 120 100 90 27.1 336 9.1 0.15 3220 125 105 95 32.6 360 9.5 0.11 3430 140 110 105 32.0 360 9.3 0.11 3180 110 90 85 28.3 384 9.3 0.12 2840 100 85 80 29.9	264							
294 9.1 0.18 3850 145 120 110 31.2 312 9.7 0.22 3430 135 110 100 32.1 318 8.2 0.29 3690 120 100 90 27.1 336 9.1 0.15 3220 125 105 95 32.6 360 9.5 0.11 3430 140 110 105 32.0 360 9.3 0.11 3180 110 90 85 28.3 384 9.3 0.12 2840 100 85 80 29.9								
312 9.7 0.22 3430 135 110 100 32.1 318 8.2 0.29 3690 120 100 90 27.1 336 9.1 0.15 3220 125 105 95 32.6 360 9.5 0.11 3430 140 110 105 32.0 360 9.3 0.11 3180 110 90 85 28.3 384 9.3 0.12 2840 100 85 80 29.9								
318 8.2 0.29 3690 120 100 90 27.1 336 9.1 0.15 3220 125 105 95 32.6 360 9.5 0.11 3430 140 110 105 32.0 360 9.3 0.11 3180 110 90 85 28.3 384 9.3 0.12 2840 100 85 80 29.9								
336 9.1 0.15 3220 125 105 95 32.6 360 9.5 0.11 3430 140 110 105 32.0 360 9.3 0.11 3180 110 90 85 28.3 384 9.3 0.12 2840 100 85 80 29.9								
360 9.5 0.11 3430 140 110 105 32.0 360 9.3 0.11 3180 110 90 85 28.3 384 9.3 0.12 2840 100 85 80 29.9								
360 9.3 0.11 3180 110 90 85 28.3 384 9.3 0.12 2840 100 85 80 29.9								
384 9.3 0.12 2840 100 85 80 29.9								
390 951024130901125 1105 195 1340	390	9.5	0.12	3090	125	105	95	34.0
408 9.1 0.15 2240 75 65 60 29.0								
414 8.6 0.14 1600 60 55 50 34.3								
432 8.2 0.16 2390 50 45 40 18.8								
438 7.8 0.08 2840 80 75 70 26.4								
456 7.9 0.20 4530 195 160 145 35.2						160	145	35.2
462 8.4 0.24 4580 205 170 150 37.1					205		150	
480 8.8 0.21 3420 160 145 125 42.4			0.21	3420	160	145	125	42.4
504 9.1 0.16 2980 140 120 110 40.3	504	9.1	0.16	2980				
528 9.3 0.30 3000 135 115 105 38.3	528	9.3	0.30					
552 10.4 0.24 2910 130 110 100 37.8	552		0.24		130			
576 9.0 0.57 3510 160 135 120 38.4			0.57					
600 8.8 0.15 3710 140 120 110 32.3			0.15					
606 10.2 0.07 3500 140 120 110 34.2	606		0.07					
624 8.8 0.17 4100 165 140 120 34.1	624		0.17					34.1
630 8.9 0.15 3500 140 120 105 34.3	630		0.15					
648 8.6 0.11 3070 145 120 110 39.1								
672 8.4 0.45 1760 85 70 65 39.8								
696 8.9 0.51 1930 60 50 50 25.9 702 9.5 0.49 1820 50 45 45 24.7	700							
· · · · · · · · · · · · · · · · · · ·								
720 8.6 0.47 1800 130 105 95 58.3 726 8.1 1.40 2710 140 120 110 44.3		Q 1						
744 8.0 0.27 2910 160 130 120 44.7								

Time	DO _	SOUR	MLSS	SSV 15	SSV 30	SSV 45	SVI
768	7.7	0.15	2860	160	130	115	45.5
774	6.7	0.29	2870	140	120	100	41.8
792	6.9	0.44	3210	160	130	120	39.3
798	7.7	0.36	3270	150	130	115	39.8
816	9.4	0.16	3340	160	130	120	38.9
840	8.4	0.25	2880	150	120	110	41.7
864	9.3	0.56	2780	150	120	110	43.2
870	9.5	0.89	2510	140	115	105	45.8
888	6.7	0.04	2530	140	115	100	45.4
894	6.8	0.66	2660	140	120	110	45.1
912	6.8	0.75	2640	160	130	120	49.2
918	7.2	1.00	2830	130	110	100	38.8

Time	pH In.	pH Bioreact.	pH Ef.
0	8.5	8.3	8.2
24	8.5	8.3	8.2
32	8.5	7.4	8.2
48	8.5	8.2	NT
54	8.5	8.2	8.2
60	8.5	8.3	8.1
72	8.5	8.4	8.3
78	8.5	8.3	8.3
84	NT	NT	NT
96	8.5	8.5	8.4
102 108	8.5 NT	8.4 NT	8.4 NT
120	8.5	7.8	8.0
126	8.5	8.9	8.3
132	NT	NT NT	NT
144	8.5	8.5	8.6
168	8.5	8.6	8.6
192	8.5	8.5	8.3
198	8.5	8.3	8.3
216	8.5	8.3	8.1
222	8.5	8.2	8.0
240	8.5	8.3	8.3
264	8.5	8.3	8.2
264	8.5	8.5	8.4
270	8.5	8.4	8.3
288	8.5	8.5	8.4
294	8.5	8.4	8.4
312	8.5	8.5	8.3
318	8.5	8.4	8.4
336	8.5	8.4	8.3
360	8.5	8.4	8.3 8.3
366 384	8.5 8.5	8.4 8.4	8.5
390	8.5	8.4	8.3
408	8.5	8.2	8.3
414	8.5	8.2	8.1

Time	pH In.	pH Bioreact.	pH Ef.
432	8.5	8.2	8.2
438	8.5	8.2	8.1
456	8.5	8.3	8.3
462	8.5	8.2	8.2
480	8.5	8.3	8.4
504	8.5	8.3	8.3
528	8.5	8.4	8.4
552	8.5	8.4	8.3
576	8.5	8.3	8.4
	8.5	8.2	8.2
600	8.5	8.4	8.3
606		8.3	8.4
624	8.5		8.2
630	8.5	8.3	8.3
648	8.5	8.3	8.4
672	8.5	8.4	
696	8.5	8.4	8.4
702	8.5	8.3	8.3
720	8.5	8.4	8.4
726	8.5	8.2	8.2
744	8.5	8.4	8.4
768	8.5	8.3	8.4
774	8.5	8.3	8.3
792	8.5	8.4	8.3
798	8.5	8.3	8.3
816	8.5	8.4	8.3
840	8.5	8.2	8.3
864	8.5	8.2	8.3
870	8.5	8.2	8.2
888	8.5	8.2	8.2
894	8.5	8.2	8.1
912	8.5	8.3	8.2
918	8.5	8.3	8.2
- 1 -	3.0		•

APPENDIX J

GRAPHICAL PRESENTATION OF BIOREACTOR TEST DATA

EVENTS:

- A. At 24 hours the influent
 was spiked with 47.8 ppm
 ethylenediamine.
 Ethylenediamine was detected
 in the effluent at 32 hours.
- B. At 78 hours the influent ethylenediamine was increased to 73.6 ppm.
- C. At 144 hours the influent ethylenediamine was increased to 88.7 ppm.
- D. At 192 hours the influent flow rate was decreased from 14 mL per minute to 9 mL per minute. This changed to contact time from 5.3 hours to 8.3 hours.
- E. After increasing the contact time, ethylenediamine was removed within 24 hours.

EVENTS:

- spent CLEPO 204 solution. At 72 hours the influent The ethylenediamine concentration was was spiked with a 32.7 ppm.
- 9 mL per minute. This changed from 14 mL per minute to the contact time from 5.3 At 192 hours the influent Now rate was decreased hours to 8.3 hours. m.

Э

be detected in the effluent. At 222 hours (30 hours after the influent flow ethylenediamine could rate adjustment) no ນ່

0

Ethylenediamine

75

100

(mqq)

50

25

Influent and Effluent Ethylenediamine.

EVENTS:

18.3 ppm ethylendiamine. A. At 72 hours the influent was spiked with spent CLEPO 204 which had

Contact Time.

Contact Time. 5.3 Hour

B

50

(mqq)

8.3 Hour

- decreased to 9 mL per minute from 14 mL per minute. retention time from 5.3 influent flow rate was hours to 6.3 hours. This increased the At 192 hours the B.
- Observed ethylenediamine removal began at 222 hours. ပ

ပ

effluent at 264 hours. Ethylenediamine was not detected in the Ġ.

0

Ethylenediamine

25

Contact Time.

25

5.3 Hour

to 9 mL per minute. This At 192 hours the influent flow rate was decreased from 14 mL per minute retention time from changed the fluid B.

B

m-nitrobenzoate could be detected in the At 336 hours no effluent. ပ

5.3 to 8.3 hours.

0

S

400

Ö

15

m-Nitrobenzoate

10

20

(mqq)

Influent and Effluent Ethylenediamine. 5.3 v.s. 8.3 Hour Contact Time.

- A. At 24 hours the influent was spiked with 31.2 ppm ethylenediamine.
- 3. At 192 hours the influent flow rate was decreased from 14 mL per minute to 9 mL per minute. This changed the retention time from 5.3 hours to 8.3 hours.
- At 264 hours the effluent ethylenediamine begins to drop off.

At 408 hours the effluent ethylenediamine concentration is zero.

APPENDIX K

AIR FORCE DOCUMENTS AND AFTO 22 FORMS

DEPARTMENT OF THE AIR FORCE HEADQUARTERS SAN ANTONIO AIR LOGISTICS CENTER (AFLC) KELLY AIR FORCE BASE, TEXAS 78241-5000

REPLY TO

f: Kurt Greebon (LPPTAH) & Ray Martinez (EG&G Idaho, Inc.)

SUBJECT:

Non-Cyanide Nickel Strippers

TO:

Gary L. Herrin Karen Solari In Turn

- 1. A request by Karen Solari was made to determine whether or not the non-cyanide nickel strippers will strip the various electroless coatings which might be scheduled for use in the SA-ALC Plating Shop. These coatings consist of the following:
- a. The nickel-boron coating that Pratt and Whitney Engine Mfg. originally planned to use.
- b. The Nibron, a nickel-boron coating sold by the Pure Coatings, Inc. has been selected for use in lieu of the above coating by Pratt-Whitney and the Air Force.
- c. The two proprietary coatings, Niklad 797 and Enplate Ni 425, electroless nickel compounds which Nancy Stapper prototyped and selected as possible replacement for the presently used generic electroless nickel compound.
- 2. This testing had not been completed because test panels with the Niklad 797 coatings were not available until late September. The results obtained for the various coating is as follows and are graphically illustrated on attachment No.1 and 2.
- a. The Pratt-Whitney nickel-boron coating was found to be easily removed (stripped) by several strippers. The results revealed that the Clepo 204 and the EG&G generic formulation are best suited for this stripping application.
- b. The Nibron, nickel-boron electroless coating sold by the Pure Coatings, Inc. is also best removed by the Clepo 204 and the EG&G generic formulation.
- c. The Niklad 797 electroless nickel coating was found to be removed best by the EG&G generic formulation and the Metalx B-9 strippers. The stripping rate test results for the Enplate Ni425 revealed that none of the non-acid/non-cyanide strippers nor the cyanide nickel stripper were able to remove this coating at an acceptable production rate.

- 3. Based on information obtained from Nancy Stapper, Pratt-Whitney engineers involved with the testing of the Niklad 797 are very impressed with their test results on this electroless nickel coating. Their initial test results are so encouraging that they are considering its use for the nickel boron applications.
- 4. We recommend the use of Niklad 797 coating if it meets all the metal-lurgical requirements for aircraft engine parts applications. The use of this coating as opposed to the use of a high phosphorous electroless nickel coating will allow implementation without refurbishment problems. Presently there are no known immersion non-acid strippers that will remove high phosphorous nickel coatings.

Kurt W. Greebon/Chemist

Chemical Processes Laboratory

Ray Martinez, Chemist

EG&G Idaho, Inc.

DEPARTMENT OF THE AIR FORCE HEADQUARTERS SAN ANTONIO AIR LOGISTICS CENTER (AFLC) KELLY AIR FORCE BASE, TEXAS 78241-5000

HEPLY TO

Kurt Greebon (LPPTAH) & Ray Martinez (EG&G Idaho, Inc.)

SUBJECT:

Implementation of Non-Cyanide Strippers

Jesse L. Herrera/LPPTA
Gary Herrin/LPPTAH

The results to be discussed in this report were obtained from the implementation of two non-cyanide metal strippers at the plating shop (Bldg 301) at SA/ALC, Kelly AFB in San Antonio, Texas. Implementation of these strippers meets some of the goals established in the Non-Cyanide Metal Stripper Replacement Program contract. These accomplishments should help the Air Force meet their goal of making their metals plating/refurbishment shops safer for the workers through utilization of safer chemicals.

One of the non-cyanide metal strippers implemented was B-9 nickel stripper which is manufactured by Metalx, Inc. This stripper is recommended by the manufacturer for stripping nickel coatings from steel base metal parts and was implemented at the plating shop on May 6, 1991. This stripper was selected for implementation due to its excellent basis metals protection, good stripping rate for nickel coatings, and rinsing properties. Based on the field optimization test data, this stripper was the best available stripper which would meet the requirements established by the KAFB Plating Shop management. This stripper will remove both the sulfamate (electrolytic) and phosphorus (electroless) nickel coatings at an acceptable production rate in the temperature range of 140°±5°F and meets the basis metals protection, personal safety and rinsing requirements. During the implementation period 06 May - 06 Sept 1991, 566 aircraft parts were evaluated. These parts represented a cross section of parts from three different A/C engines and other aircraft parts which are currently processed at the plating shop. A list of these parts is cited below. All aircraft parts used to evaluate this stripper showed good basis metals protection and satisfactory nickel stripping rates. Most of these parts stripped completely in a time period of four to eight hours. The exception to this time period occurred only whenever the solution stripping rate deteriorated to a level that required more than one work shift to complete the stripping process on some parts. Other conditions such as heavy buildup nickel and nickel base metallized coatings also required more than one shift to completely strip the parts. The stripper solution pH values were very stable and did not vary more than 0.3 pH unit during the evaluation. The only corrosion problems experienced occurred on one twenty four hour basis metals control test where the C4340 and D6AC, low alloy steel, test coupons developed signs of corrosion and significant weight loss. Two other basis metals which showed a small effect were the Haynes 188 and the 17-4PH, high alloy coupons. These corrosion effects are illustrated by the

forty day results on the Metalx B-9 Implementation Basis Metals Protection graph presentation in attachment No.1 of this report. On this particular control test the strip tank was heavily loaded with engine parts and as a result the basis metals coupons were in direct contact with the engine parts. This conclusion is the only explanation for the above mentioned corrosion effects problem and is based on the abnormal smut residue found on the surfaces of the C-4340 and the D6AC test coupons. This smut residue is common on most nickel coated parts while they are being stripped.

Aircraft parts Evaluated:

F-100	A/C Engine Parts:	
	Bracket assy., bleed valve	84
	Plate assy	25
	Nuts, brg. retainer	27
	Bushing assy	19
T-56	A/C Engine Parts:	
	Compressor Wheels	66
	Tie Bolts	25
	Bolts, shear	7
	Shaft, prop	34
	Seals, Labyrinth	8
TF-39	A/C Engine Parts:	
	Bolts, coupling	20
	Nuts, coupling	15
	Turbine Wheels	15
	Thrust Bearings, Lock prop	22
GT Engi	ine Parts:	
	Breech Caps	17
	Turbine Wheels	76
B-52	Aircraft Parts:	
	Engine mount	12
	Bolt cones	17

	Lock Pins	10
	Supports	14
	Brackets	39
C-5	Aircraft Parts:	
	Brackets	14

The implementation testing followed the addition method as outlined in the technical bulletin provided by Metalx, Inc. This method of stripper utilization was selected to prolong the solution bath life due to the continuous twenty-four type of stripping operation which is used at the plating shop. Unfortunately, during the first month of this implementation, the initial make-up bath experienced several over-heating conditions as a result of the shop air compressor failures. These air compressor failures produced over-heating of the stripper solution due to lack of air agitation. These over-heating conditions resulted in premature deterioration of the solution and subsequent poor stripper stability. The stripping rates for both nickel coatings started at reasonably high rates, then the strip rates started to fall dramatically. After the fourth week of operation, a regeneration addition of the stripper was required. This addition provided regeneration to an acceptable rate, however, the enchanced stripping rate did not last for more than a week. The next addition also dramatically improved the stripping rate, but it appears that the stripping rate also falls rather fast after one This pattern of addition then loss of stripper efficiency continued for almost two months. Each time a new addition was made, the bath regenerated just slightly less than it had for the previous addition. graphical presentation of these strip rate results refer to attachment No. 2. By extrapolating the decline in stripping rate, it was estimated that the bath would last between 4 to 5 months before disposal would be required. Discussion of this implementation results with the stripper manufacturer of this product led to an offer by him to supply 1250 pounds of the stripper at no cost to EG&G Idaho, Inc. or the Air Force for retesting purposes. Discussions with the plating shop laboratory personnel, Gary Herrin and Kurt Greebon, and Mark Argyle of EG&G led to the decision to retest this product. This retesting decision was agreed to in the interest of making a fair evaluation of this product under proper shop operating conditions. few weeks remained budgeted to complete this implementation evaluation, Mr Gary Herrin, the acting laboratory supervisor agreed that his laboratory personnel would complete the evaluation of this stripper. The new make-up batch was prepared on August 10, 1991 and fortunately, no overheating conditions have been experienced through the sixth week of operation. The new batch stripping rates for both the phosphorous and sulfamate nickel coatings have remained very stable and the basis metals protection have been satisfactory. These control test results are included in attachments No.3 and No. 4 of this report. No solution odor or emission problems were encountered during the evaluation period. The present push/pull ventilation system handled the production use of this stripper well enough to contain whatever solution vapors are emitted without any problems. Based on the test results for the 2nd batch, the 1st regeneration will be necessary in the 7th or 8th week.

Based on the implementation evaluation results, Metalx B-9 Nickel Stripper can be used in lieu of the T.O. 42C2-1-7, Table 13-1, step 3, cyanide base nickel stripper, (C-106 stripper) applications requiring the stripping of electroless nickel coating from steel base metal parts at the temperature range of $140^{\circ}\pm5^{\circ}$ F. An AFTO Form 22 has been prepared and is included as attachment No. 7, for use to make the required T.O. 42C2-1-7 change. The benefits that the Air Force can realize by the use of B-9 nickel stripper are improved worker safety, less waste generation because of it's superior stability over cyanide type stripper, and better stripping production.

The McGean-Rohco, Inc. Electrolytic Rostrip* 999-SP Stripper was implemented to strip silver coatings at the SA/ALC Plating Shop on June 14, 1991. During the implementation period, 14 Jun - 14 Sept, 1991, a total of one hundred and forty four aircraft engine parts were evaluated. These parts represented cross section of those that are currently stripped in this production application and are listed below. The Rostrip* Stripper was evaluated with respect to strip rate, basis metals protection, rinsing and fume properties in a production environment. All aircraft parts used for this stripper evaluation were successfully stripped and no corrosion problems were experienced. With a few exceptions, all parts were stripped in a time period of 15 to 30 minutes. Some parts did require additional rinsing as opposed to what is required when the cyanide silver stripper is used. No odor or vapor problems were encountered during the evaluation of this stripper. Basis metals protection and stripping rate control tests were also performed to correlate the results of the A/C parts with the test coupons. The implementation of this stripper has yielded mixed results. This stripper was not originally formulated as a silver stripper and the implementation control coupon tests results verified this fact. The field test results from last year indicated that this stripper would work well for stripping silver from low alloy and stainless steel parts. The problem arises when other metal alloys are used. High alloys such as Haynes 188 and Inconel 718 showed severe etching when used in this stripper. The solution does not remain clear and quickly develops a grayish colored sludge which interferes in the inspection of the parts during stripping while agitating the solution. Since the stripping rate is not enhanced by agitation of the solution this inspection problem can be reduced by eliminating the agitation. Despite these problems, the silver stripping rate is excellent at all pH levels tested and at ambient temperatures. A comparison of strip rate and basis metals protection between the cyanide and Rostrip* 999-SP Silver Strippers are illustrated on graph attachments No.5 and No.6.

Implementation A/C Parts Evaluated:

TF-39 Engine Parts:

Nuts,	spanner10
Nuts,	split09
Nuts,	Coupling12
Seals	, Labyrinth10

Tubes, adaptors LPT & HPT26
Bolts, Coupling FAN, HPT04
Bolts, Coupling Fan, LPT04
Adaptor, HPT Rotor02
T-56 Engine Parts
Shaft, Prop12
Gear, Sun08
Gear, Spur06
Hub, Sun Gear02
Hub Flange, Sun Gear02
Shaft Assy, Alter Drive03
Shaft Assy, Hyd. Pump Drive-03
Sleeve, Oil Inlet08
F-100 Engine Parts:
Nuts, Bearing03
Idler Gears10
C-5 Aircraft Parts:

Bushings-----10

Based on information obtained from the plating shop laboratory acting supervisor (Mr. Gary Herrin) concerning Silver Stripping Processes, changes were made to control the silver recovery. These changes consist of eliminating the use of the large nitric acid tank solutions and instead using a small tank solution of nitric acid to strip silver off all stainless steel and other high alloy steel parts only. These silver stripping process changes should support the full production implementation of this non-cyanide silver stripper for use in lieu of the presently used cyanide stripper. Based on this implementation evaluation results the use of this stripper must be in conjunction with the use of nitric acid stripper for stripping high alloy metals such as the Haynes 188 and Inconel 718 types of metals. The low-alloy steel parts which cannot be stripped in acidic solutions can be stripped in the Rostrip* stripper. At this time, there are no known non-cyanide immersion strippers capable of removing silver coating other than nitric acid type strippers. Based on these evaluation results, the McGean-Rohco Electrolytic Stripper Rostrip* 999 SP can be used as cited above in lieu of Air Force

stripper T.O. 42C2-1-7, Table 16-1, C-101, cyanide stripper. An AFTO Form 22 has been prepared and is included as an attachment No.8, for submission to make the required T.O. 42C2-1-7 change. The benefits that can be realized by the Air Force by use of this silver stripper are worker safety (less hazardous stripper from the stand point of the elimination of the toxic cyanide) and less costly waste generation because the Rostrip* can be regenerated and is considerably less costly to dispose. NOTE: *Rostrip is a registered trade name of McGean-Rohco, Inc.

Based on the experience gained by the 1990 and 1991 implementation of noncyanide nickel strippers (Clepo 204 and Metalx B-9) a considerable reduction in waste generation has been accomplished. This waste generation reduction is equivalent to approximately 73% and is based on the following stripper utilization as compared to Environmental Management Office reported cyanide stripper waste of 20,558 gal in 1989.

The maximum volume of the noncyanide electroless nickel stripper (Metalx B-9 or Ni-plex 100) required for one year operation is 5,000 gal.

The maximum volume of the noncyanide electrolytic nickel stripper (Clepo 204) required for one year operation is 660 gals.

The reduction in nickel stripper waste is equal to:

20,558 gals (cn stripper waste) - 5,660 gals. (noncyanide waste) = 14,989 gal (waste reduction)

The annual savings will be: 14,898 gal X \$2.59 (Waste Treatment cost per gal) = \$38,585.82

% Waste reduction = 100- 5,660 gal noncyanide waste X 100 = 72.5 20,558 gal noncyanide waste

This noncyanide waste can further be reduced by the utilization of a smaller size tank of 1000 to 1200 gallons for the electroless nickel stripping process. The use of a 1000 gal size tank can reduce this waste total volume to 2,660 gal or if the 1200 gal tank is used, the total waste would be 3,060 gallons.

KURT W. GREEBON

CHEMIST

cc: KAREN SOLARI

EG&G IDAHO, INC.

Metalx Inc.'s B-9 Nickel Stripper

*Conditions: ambient temp., pH 13.0, 4.0 Volt, 6.0 Amp

TECHNICAL ORDER SYSTEM PUBLICATION IMPROVEMENT REPORT AND REPLY FORM APPROVED OMB NO. 21-R0207														
1. TO: (Major Command or equivalent) 2.TO:(Orgn having Mgmt Responsibility 3. FROM (Orgn reporting) YR MO DAY														
SA-ALC	TIRTR/SFTT		LPPTAE	I	910930									
		NUMBER	B. PARAGR		FIGURE NUMBER									
	T 89 1	3-3	13-7		BLE 13-1, Step 3									
DOC T S		IMPROVEMENT PEPORT NUMBER												
1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20 2	21 22 23 24 25 26	27 28 29 30	31 32 33 34 35 36 37	38 39 40 41 42 43 44 45									
X Y A H / 2 C 2 - 1 - 7														
10. BRIEF SUMMARY OF DEFICIENCY	AND RECOMMENDED	CHANGE (Use con	tinuation sheet	e if necessary)										
Deficiency: The currently cited stripper solution, C-106, for removing electroless nickel														
	ium guanide fro	m 10 to 14	oz. Der	gailon, as one	or the									
formulation ingredien and if accidently mix	ad with an acid	will produc	ce highly	foxic nadroca	yanic acid. in [
	ed of waste are	generated	because 1	t nas a snort	SetAICA TITE.									
This waste is difficu	lt to treat by i	industrial '	waste tre	atment facili	ties and at									
times disposal by con	tractor is the c	only alterna	WOTAG.		•									
Recommended Change:				de Shan Na	7 of Table 13-1									
Recommended Change. Recommend that ni be replaced by Metalx	R-0 A non-cva	anide nicke	l stribbe	r, that has a	amberion									
	dan danuica life	and is sa	ier to us	e. Inis suri	hher was seen									
tested by EG&G Idaho,	Inc. on an Air	Force cont	ract and	found to be s	atisfactory for									
this application. (Continued)														
(constructor)														
11. REPORTED BY (Initiator's Signature	OAS and Extension)	2. APPROVED BY	y(Supervisor's Signature)	13. QUALITY	CONTROL (Signature)									
MAJUR COMMAND	PROVED DISAPPRO		IGNATURE (M	ajor Command Authori	17. DATE									
TR DATE RECEIVED		RANSFER NOW	/5	2										
CODE	<u></u> 9	CODE OF	•-	Reserved)	79 80									
16 47 48 49 50 51 52 53 54	55 56 57 58 59 60 61 62	63 64 65 66 67	68 69 70 71 7	2/3/2/3/01/10										
TR DATE FROM MGR	ACTION TAKE	N	DATE	(Reserved)										
CODE YR MO DAY	53 56 57 58 59 60 61 62	63 64 65 66 67	R MO DAY 68 69 70 71 7	2 73 74 75 76 77 78	79 80									
D B A														
	19 TO: (Organiz	ation Reporting In	aprovement)	20. FROM (SM/IM)	1									
18. TO: (Major Command or equivalent)	13. 10. (5.22				•									
21. REMARKS Use continuation sheet	e if necessary)			•										
21. 12.11.														
22. DATE OF REPLY 23. REPLY	8Y (Signature, OAS, Ext.	eneion)		24. APPROVED BY (Supervieor)									
				74 WUICH ARE 0850										

AFTO FORM, 22

ATCH #7

Continuation Sheet:

Metalx B-9 and Ni-plex 100 Nickel Strippers:

Recommendation: (Continued)

Also recommended to be included as an alternate stripper for this application is Ni-Plex 100 nickel stripper. This product was also tested in a field optimization study and found to be satisfactory.

These products are manufactured by the following companies:

Metalx B-9 Nickel Stripper

Metalx, Inc.

RT., Box 683

Lenoir, NC 28645

Phone: Toll Free 1-800-752-7649

Ni-plex 100 Stripper M&T Chemicals, Inc.

Rathway, New Jersey

07065-0970

Phone: (201) 499-0200

Operating Conditions:

Stripper concentration - These one component strippers can be used in either a Batch Method at 2.5 pounds per gallon or by an Addition Method at 1.5 pounds per gallon. We recommend the use of the addition method for continuous shift operations.

Operating Temperature Range ----- 120° - 150°F

Operating pH range, Metalx B-9 ---- 9.5 - 10.5 Ni-plex 100 ---- 8.5 - 10.5

Method of Agitation - Mechanical Impeller, Air (gentle) or pump circulation.

Solution Preparation:

- 1. Add water to a 50% level of the operating tank volume.
- 2. Heat solution to 120°F.
- 3. Add the required amount (1.5 or 2.5 pounds) of stripper compound.
- 4. Add water to the required operating volume level.
- 5. Start agitation system and allow compound to completely dissolve.
- 6. Determine pH of the solution and if below the range, adjust pH value to the required range with small additions of soda ash.

NOTE: If production flow allows, turn off heat when solution is not being used. For additional information refer to product bulletins.

TECHNICAL ORDER SYSTEM PUBLICATION IMPROVEMENT REPORT AND REPLY FORM APPROVED OMB NO. 21-R0207															- 1															
1. TO: (Mejor Command or equivalent) 2.TO:(Orgn having Mgmt for the T.O.)											Re	epone	15111	ty	3. F	RO) M	Orgn	rep	ort	ing)						4.REPORT DATE	:::	
100								ידים	p / c	FT	T							LP	РТА	н									9 1 0 9 3 C	
SA-ALC TIRTR/SFTT												N	UMBE	R	_	_	_	PAF			Н	U	мв	.R	_	9	. F	IGI	URE NUMBER	71
13 MAR /9 1 0011 03											16	16-5 16-						5-7						_		ſΑ	BL	E 16-1,Step	3	
DOC	TROM T											NUMBER								IMPROVEMENT PE										
1 2 3	4 5 6	7 8	9 10	111	2 13	14	15 1	6 17	18	19	20 2	21 2	22 23	24	25	26 2	7 2	8 29	30	31	32	33	34	35	3	6	37	38	39 40 41 42 43 44	45
x Y A H 4 2 C 2 - 1 - 7																														
10. BRIEF SUMMARY OF DEFICIENCY AND RECOMMENDED CHANGE (Use continuation sheets if necessary) Deficiency:																														
The currently cited stripper solutions, C-101 and C-106, for removing silver																														
l .	tings o																-		_											- 1
			•															•										-	anide are	
					-											-				_		-			_		-		ocyanic to treat.	
															-	_							-				-		and must	
	dispose									~,	•••	-			•	140		٠.		4 <u></u>			•		•	• •	•		. and mast	
			,																											
Rec	ommende																													
									-						-	•										-			ted in Step	
•													•																A non- nmentally	
	e to us																													
1	tract a													-							• ••	٠.		••	_	••		••		1
											٠.					••														
(Co	ntinued	i)																												
11. REP	ORTED BY	(Initi	ator's	Signe	ture	· OA	S and	Ez	ene	on)	1:	2. A	PPR	OVE	O B	Y(Su	iper	rvi eq	٠.			1	3. (QU	AL	iT'	Υ (ON	NTROL (Signature)	
																											,			
				(Chec			-61-	h /						- 17	4	SIGN	AT	1100	(14)	-1	C	<u></u>					1		17. DATE	_
14 MAJ	OR COMM.	AND				30V			DIS	APF	ROV	/EC			_	31011		V	(144	.,0.							.,,			
	TR	DATE	RECE		1		E TO			R								(Reserved)												
	CODE	YR	MO	DA'	Y	YR	57 5	0 5	AY 9 60	51	52	CODE 33					9 7	70 7	1 72	72 73 74 75 76 77 78 79							79	80		
	-5 4/ -0	49 30	31 32	-	+	730	3//3	+	1	<u> </u>	32	7	-	1	-	100	+	+	+			+			T					
	DAA																													
	TR	DATE	FROM	4 MGF	,			ACT	100	TA	KEN				1	RESC	DAT		N			(F	es:	erv	ed)				
	CODE	YR	МО	DAY	<u> </u>								1	, ,		YR) [1	T-4	1	170	. [-	-1		70	100		
	46 47 48	49 50	51 52	53 5	4 5	5 56	57 5	8 5	9 60	61	62	53	64 65	66	67	68 6	9 /	0/	1/2	/3	1	1/3	1/6	+	+	-	/3	30		
	D B A																	Ì												
18. TO:	(Major Com	mend	or equi	ivaler	1()		19). T	0: (res	nisa	tto	n Rep	ortin	e L	mpro	v ocz	ent)	2	0. 1	FRO	M	(5)	4/1	M)	_	_			
18. TO: (Major Command or equivalent) 19. TO: (Organization Reporting Improvement) 20. FROM (SM/IM)																								1						
																				i										
						.,																								
	MARKS U	e cont	inuatio	on ah	0(*	il ne	C000	ery)		•					-	,					-									
	MARKS U	e cont	inuetic	on she	•o(#	il ne		ery)		-			_																	
	MARKS U	e cont	inuetic	on she	ote	if ne	0000	ery)									ā			_										
	MARKS U	e cont	inuetic	on ahe	ote	il ne	00000	ery)		•							į.		_1_											
	MARKS U	e cont	inuetic	an ahe	o(#	if ne		ery)									į,										•			
	MARKS U	e cont	inuetic	on she		il ne	00000	ery)		•							ā		_i_							_	•			
21. RE	MARKS U			an she						S, E	zter.	nei o	TV				A.			4.	AP	PR	ov	ΕD	8	Υ (Suţ	oerv	risor)	
21. RE										S, E	zter	1810	1 1)				4			4.	AP	PR	ov:	ED	В	Y (Suţ	Der V	r(s or)	

AFTO FORM 22

ATCH. #8

REPLACES AFTO FORMS 22 AND 22A WHICH ARE OBSOLETE

Rostrip* Electrolytic Stripper 999-SP is manufactured by McGean-Rohco, Inc. 1250 Terminal Tower, Cleveland, Ohio 44113, (216) 621-6425.

Operating Conditions:

- 1. 1-2 pounds per gallon of water.
- 2. pH range 10-12.
- 3. Use stainless steel cathodes.
- 4. Ambient operating temperature.
- 5. 50 ASF Maximum current density.
- 6. 0-10 volts rectifier.
- 7. Reverse current (part is anode).

NOTE: For additional operating requirements refer to product data bulletin.

*Rostrip is a registered trade mark.