

Undergraduate Curriculum Considerations for Systems Engineering (SE)

Joseph J Simpson

Mary J Simpson

March 30, 2012

www.systemsconcept.org

SE Context Overview

Systems Engineering - What is it?

SE Core Concepts

- Integrated Problem Solving
- Communications
- Process Control
- Systems Integration
- Value Integration

Summary / Conclusion

Systems Engineering - What is It?

The application of general systems theory to the industrial process

- Rests on a strong foundation of systems science and theory.
- Applies to all types of industrial processes: information management, facility configuration, product definition, and value management.
- Focuses on integrated problem solving.

Systems Engineering Metrics

Subject Matter Experts (SMEs) – are used to convert *nonlinear technical metrics* to the required linear and additive metric for technical performance measure (TPM)

Ex. Environmental Engineering

Wastewater treatment 1950 to 1975:

Consisted mostly of *static structures* – pipes and pumps

Surface water run off and control 1975 to present:

Consists of *dynamic structures* with sensors, gates, pumps and *predictive modeling*

Surface water run off & control, current to future:

Is now being addressed by *distributed control structures* designed using *distributed models* of rain events

Ex. Environmental Engineering

Environmental design solutions

Have moved from *static structures and point solutions* to *dynamic distributed structures* that include sensors, predictive modeling, and adaptive system configurations

Traditional civil engineering domain tasks

Are being integrated with more system dynamic analysis and modeling approaches

These integrated approaches create more value, and achieve the same environmental goals.

Ex. Electrification of Transportation

Transitioning transportation to electric power is another major distributed systems problem area.

A national initiative requires conversion from oil-based fuel to electricity.

This presents a *large scale, socio-technical problem* that has:

- Existing components roads, electric distribution systems
- New components electric vehicles, charging station
- New design challenges

Demand for SE Capabilities

Systems engineers must have the skills to analyze, evaluate and communicate:

- System functions
- Requirements
- Alternative solutions

associated with these types of large scale projects

Phased design and development of loosely coupled distributed systems is at the heart of the practice of systems engineering.

Undergraduate study in systems engineering must prepare students to *effectively integrate with specialty engineering experts and executive management* to facilitate system solutions.

SE Core Concepts

Systems engineering concepts are distinct from other specialty engineering disciplines since they focus on integrated problem solving.

These concepts include:

- Communication
- Process Control (life cycle processes, team building, management skills)
- Systems Integration
- Value Integration

SE Core Concept Integrated Problem Solving

Integrated Problem Solving

Well-defined problem space:

Clearly states the *inputs, outputs and associated problem assumptions* (e.g., civil engineering - road design; electrical engineering - circuit design; software engineering - object design)

Closed solution space:

Has a well-defined, unique solution

A simple problem:

Has a *small number of variables, solution steps* and *acceptable solutions*

A complex problem:

Contains one or more simple problems with a large number of variables, solution steps and acceptable solutions.

Problem-Solving Knowledge & Skills

Systems Analysis

Structured, disciplined concepts

Structured, disciplined concepts

Analytical tools, including specifications

Structured, disciplined concepts

Analytical tools, including specifications

Systems engineering and systems approach

Structured, disciplined concepts

Analytical tools, including specifications

Systems engineering and systems approach

Extensive systems engineering

Problem Type

Well-defined problems, closed solutions

Ill-defined problems, closed solutions

III-defined problems, openended solutions

Complex illdefined problems, open-ended solutions

Mathematical Modeling

Domain & disciplinary knowledge

Domain & disciplinary knowledge

Linear programming; micro economics

Domain & disciplinary knowledge

Linear programming; micro economics

Multi-objective decision making

Risk analysis and management

Domain & disciplinary knowledge

Linear programming; micro economics

Multi-objective decision making

Risk analysis and management

Stochastic methods

Control theory

Problem-Solution Types

Complexity	Proble	em Space	Solution Space		
(# of Variables # of Individuals)	 	Well-Defined	Closed		
Simple	Simple, Well-Defined Problem with				
Simple	Closed Solution Space	ee -	Model		

Problem-Solution Types

Complexity	Problen	n Space	Soluti	on Space
(# of Variables # of Individuals)	 	Well-Defined	Closed	
Simple	Simple, Well-Defined Problem with			
Simple	Closed Solution Space			Model
Complex	Complex, Well-Defined Problem Set			
Complex	with Closed Solution Space			Model

Problem-Solution Types

Complexity	Probl	em Space	Solution Space			
(# of Variables # of Individuals)	III-Defined	Well-Defined	Closed	Open		
Simple	 					
Simple	EW Mo	odel —				
Simple	 		M.	odel		
Simple	Mo	odel —		Model		
Complex						
Complex	Mo	del				
Complex				Model		
Complex	Mo	del		Model		

SE Core Concept Communications

Communication Knowledge & Skills

Writing, speaking, computing and information literacy:

Integrated text processing system and web based information production and retrieval

Database design; information schema development:

Standard SQL, NoSQL and big-data concepts

Model- and simulation-based design capture:

Model system context, concept and solution sets

Optimizing design-capture process and environments:

Selection of best set of tools and processes for the current design task

Communication Knowledge & Skills

Communication Tools

Word processing environments; networked information systems

Word processing environments; networked information systems

Database design capture environments

Word processing environments; networked information systems

Database design capture environments

Shared vision/object based simulation environments

Learned Capabilities

Computing and information literacy

Database design capture

Model- and simulation-based design capture

Optimizing design capture process and environments

Communication Skills

Basic technical communications

Basic technical communications

Written and graphical design capture; natural language processing

Basic technical communications

Written and graphical design capture; natural language processing

Text, graph, and formal language representations; Abstract relation types

Automatic generation of specification and solutions

Basic technical communications

Written and graphical design capture; natural language processing

Text, graph, and formal language representations; Abstract relation types

Automatic generation of specification and solutions

Real time problem definition and solution analysis

Word processing environments; networked information systems

Database design capture environments

Shared vision/object based simulation environments

Optimizing specification and design environments

SE Core Concept Process Control Life Cycle Processes

Systems Engineering Processes

LIFE CYCLE 'PHASES'

Initialization

Implementation

Operations

Typical High-Tech Commercial Systems Integrator

Study Period			lmp	lementation F	Period	Operations Period			
Definition De	oncept efinition Phase	System Specification Phase	Acq. Prep. Phase	Source Select. Phase	Development Phase	Verification Phase	Deployment Phase	Operations & Maintenance Phase	Deactivation Phase

Typical High-Tech Commercial Manufacturer

Study Period			Implementation Period			Operations Period		
Product Requirements Phase	Product Definition Phase	Product Development Phase	Engr. Model Phase	Internal Test Phase	External Test Phase	Production	Manufacturing, Sales & Support Phase	Deactivation Phase

ISO/IEC 15288

US Department of Defense (DoD) 5000.2

US Department of Energy (DOE)

	Project Planning Period			Project Execution			Mission	
	Pre-Project Preconceptual Conceptual Design			Preliminary Design	Final Design	Construction	Acceptance	Operations
Typical	y y		V		Y		V	V
Decision Gates	New Initiative Concept			Development Approval		duction proval	Operational Approval	Deactivation Approval

SE Core Concept Process Control Team Building

Team Building Knowledge & Skills

Building Small Teams:

Informal teams of 3 to 12 individuals

Leadership and Formal Team Building:

Establish a leadership role with formal distributed teams

Creating Hierarchies of Product Teams:

Mapping team membership to product and processes

Managing Complex Team Structures:

Adapting organizational goals, objectives and processes to distributed teams working in a concurrent collaborative manner.

Team Building Knowledge & Skills

Team Building Tools

Developing Shared Visions

Team Processes

Building Small Teams

Team Work Concepts

Disciplined work habits

Developing Shared Visions

Team Architecture; group consensus building

Developing Shared Visions

Team Architecture; group consensus building

Formal engineering environments and design capture tools

Leadership and Formal Team Building

Creating
Hierarchies of
Product Teams

Disciplined work habits

Leadership and empowerment basics

Disciplined work habits

Leadership and empowerment basics

Group decision-making processes; risk analysis and management

Politics, cultures, and rice bowls

Developing Shared Visions

Team Architecture; group consensus building

Formal engineering environments and design capture tools

Team building in real world situations

Managing Complex Team Structures **Disciplined work habits**

Leadership and empowerment basics

Group decision-making processes; risk analysis and management

Politics, cultures, and rice bowls

SE Core Concept Process Control Management Processes

Management Process Knowledge & Skills

Personal time management:

Building a valued personal brand, dependable

Formal scheduling & resource allocation:

N Squared Charts, Design Structure Matrices, Gantt Charts, Critical Path Network

Planning, tasking, controlling complex tasks:

Design Structure Matrix and Critical Path Network Optimization

Managing life cycle implementation risks:

Integrated risk management approach across multiple system levels and value sets

Management Process Knowledge & Skills

Problem Definition Processes

Structured and disciplined planning concepts

Management Development Processes

Problem Solving Processes

Personal time management

Disciplined work habits

Structured and disciplined planning concepts

Critical path & other scheduling algorithms; basic life cycle models

Structured and disciplined planning concepts

Critical path & other scheduling algorithms; basic life cycle models

Systems engineering and program management plans and implementation

Formal scheduling & resource allocation

Planning, tasking, controlling complex tasks Disciplined work habits

Linear programming and micro economics

Disciplined work habits

Linear programming and micro economics

Work breakdown and tasking; risk analysis and management

Control and capability processes

Structured and disciplined planning concepts

Critical path & other scheduling algorithms; basic life cycle models

Systems engineering and program management plans and implementation

Engineering of complex systems with systems engineering processes

Managing life cycle implementation risks

Disciplined work habits

Linear programming and micro economics

Work breakdown and tasking; risk analysis and management

Control and capability processes

SE Core Concept Systems Integration

Systems Integration

Mission Function Identification and Control:

Customer primary function (what must be accomplished by the integrated system)

System Function Synthesis and Evaluation:

Function provided by the candidate system, alternative system functional configurations are identified and evaluated.

System Architecture Integration and Evaluation:

Integrated system architecture alternatives are identified and evaluated.

Integration Metrics:

Specific systems are evaluated for operational effectiveness, operational suitability, life-cycle cost and risk.

Systems Integration

SE Core Concept Value Integration

Value Integration

Select Key Mission Value Metrics:

Often cost per unit of system function (\$/sf)

Identify System Performance Metrics:

Metrics that clearly state how well a system must function Measured as a linear function of dollars and time

Select Decision Makers and Decision Process:

Identify decision makers, decision values and decision process

Perform Trade Study:

Structured process used to select the best system alternative

Value Integration

Value Integration of Client's Needs

Key Considerations

For a Changing Problem Space or System Environment

- 1 Political
 - Regulatory Infrastructure
 - Legal Infrastructure
 - Political Infrastructure
- 2 Economic
 - Economic Structure of Customers
 - Distribution of Resources
- 3 Technological
 - Existing Base
 - Operational Practices
 - State of Technology
- 4 Cultural
 - Public consciousness
 - Demographic features
 - Views/biases of power brokers

- 1. Are all four kinds of client needs addressed?
- 2. Are these needs prioritized (between each other) by the client? by provider?
- 3. Are there specific organizational components already assigned to incorporate these needs?
- 4. Since each aspect requires a different kind of client/provider interface, is there infrastructure to handle?
- 5. How are the interfaces between the political, economic, technological and cultural values/aspects handled internal to unit? to enterprise?

Summary / Conclusions

The systems engineering approach is based on:

- Define problems before seeking solutions
- Search for solutions that examines tradeoffs between alternative solution sets
- Utilize traceable integration process that verifies that the product meets requirements and performs needed functions
- Deploy information management system that can provide each team member and the customer with any information concerning the system that has been generated.

- Questions?
- Comments?

For additional information contact:

Joseph / Mary Simpson

Joe email: jjs0sbw@gmail.com

Mary email: mjs0sbw@gmail.com

System Concepts LLC

www.systemsconcept.org