Coloração de Aresta com Custo Mínimo

Alunos: Carla Nicole e Filipe Falcão **Disciplina:** Pesquisa Operacional

1. Problema

Seja um grafo G = (V, E). Devemos colorir todas as arestas de G, de forma que arestas adjacentes (que possuem um vértice em comum) não tenham a mesma cor. Além disso, cada cor do grafo possui um "custo" c_i :

preto
$$\rightarrow$$
 1
vermelho \rightarrow 2
azul \rightarrow 3
laranja \rightarrow 4

Logo, o objetivo do problema é colorir todas as arestas de G, de forma que o custo total (somatório de todos os custos c_i) seja minimizado.

2. Modelagem

2.1. Variáveis

Sejam: (i) V o conjunto de vértices de G; e (ii) C o conjunto de cores disponíveis. Temos que as variáveis do problema serão:

 x_{ijc} , onde $i,j \in V$ e $c \in C$. É uma variável booleana que terá o valor 1 quando a aresta que une os vértices i e j forem coloridas com a cor c.

 y_c , onde $c \in C$. É uma variável inteira que define a quantidade de vezes que uma cor c é utilizada no grafo.

2.2. Objetivo

O objetivo do problema será minimizar o somatório dos custos de cada cor utilizada para colorir o grafo. Logo, a função objetivo será:

$$min \sum_{c} c_i \cdot y_i$$

2.3. Restrições

São necessárias as seguintes restrições:

 $\sum_{c} x_{ijc} = 1$, é necessário para garantir que uma aresta tenha apenas uma cor.

 $x_{ijc}+x_{ijc}\leq 1$, é necessário para garantir que no caso de duas arestas adjacentes, estas não possuam uma mesma cor c .

 $x_{ijc} \leq y_c$, é necessário para garantir que $\,y_c\,$ seja sempre um limite superior de $\,x_{ijc}$.