12.1 Vectors in the Plane

R = Set of real numbers

Rd = Set of pairs of real numbers. We usually graph this set on xy-plane.

algebra: if
$$P = (a_1, b_1)$$

Q = (az, bz), then the vector v can be given by

$$\vec{V} = \langle \alpha_2 - \alpha_1, b_2 - b_1 \rangle$$
.

 $= \langle \alpha_1, b_2 \rangle$ where

 $= \langle \alpha_1, b_2 \rangle$ where

$$\alpha = \alpha_2 - \alpha_1$$

$$b = b_2 - b_1$$

$$\sqrt{y} = \frac{b}{a} \times + (y - intercept)$$

magnitude =
$$||\vec{v}|| = \int_{a^2+b^2}^{a^2+b^2}$$

direction = $\frac{b}{a}$

If initial P of \vec{v} is the origin, the coordinates of \vec{v} coincide with the terminal Q.

Vector Operations

vector addition

scalar multiplication

algebra:
$$\vec{V} = \langle a, b \rangle$$

 $\vec{u} = \langle c, d \rangle$
 $\vec{V} + \vec{u} = \langle a + c, b + d \rangle$

$$\frac{64}{145} = a^{2} + 7\left(\frac{8}{5145} - \frac{96}{5145}\right)$$
 $\frac{4}{5} = a$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} -8 \\ \hline \end{array} & \begin{array}{c} -96 \\ \hline \end{array} \end{array} \end{array} \end{array}$$

More on Scaling vectors

Vectors Vand w are parallel if $\vec{v} = c \cdot \vec{u}$ for some $c \in \mathbb{R}^{+}$.

Secondarizety

geometrically al gebra V and w pt in the same or opposite direction. The vector $\vec{O} = \langle 0,0 \rangle$ is the Zero vector

A vector with length 1 is a unit vector. To normalize a vector, divide by magnitude

 $\overrightarrow{v} \longrightarrow \frac{\overrightarrow{v}}{\|\overrightarrow{v}\|}$ length 1 Silvil length I of for CER".

Ex2 Find a vector of longth 12 that makes an angle of 507/6 with the positive x-axis.