Assignen I (Solution)

$$P(\alpha) = (x - x)(x - x) G$$

$$(x_0-x_1)(x_0-x_1)$$

$$\frac{(x-x_1)(x-x_2)f_0}{(x_0-x_1)(x-x_2)} + \frac{(x-x_0)(x-x_2)f_1}{(x_1-x_0)(x_1-x_2)}$$

$$+ (x-x_0)(x-x_1)f_2$$

$$P_{2}(x) = (x-1)(x-3)(-1) + (x-0)(x-3) \times 0$$

$$+ (x-0)(x-1)(8)$$

$$=-(2(-1)(x-3) + 8x(x-1)$$

$$= -2x^2 - 6 + 8x + 8x^2 - 8x$$

$$=$$
 $6x^2 - 6 = x^2 - 1$

3. xi for f, fz 20 0 1 1.718 1.4765 20, 1 2.718 4.67) $\alpha_2 = 1$ $\alpha_1 = 1.718$, $\alpha_2 = 1.4765$ $P_{2}(\infty) = a_{0} + a_{1}(sc-sc_{0}) + a_{2}(xc-x_{0}(xx_{0}))$ = 1 + 1.718(xc-s) + 1.4765 sc(sc-1)1.4765x2+1+0.2415x P2 (x= 0.15) = 3.3221+1+.36225 2 4.6844 The actual function is emp(oc) exp(1.5) = 4. 4817 1/. ceros = 4.6844-4.4817 ×100 4.68 44 ever - 4.6844-4.4817 = .2027 The actual value and interpolated value are always difference. Here determine the interpolating polynamial.

hence larger the error.

Assignment 2.				Date
ř		0	, , , , , , , , , , , , , , , , , , ,	
1. d	$\frac{1}{c} = \alpha$	+ 4	y (0) = 1	; h= 0.1; y (0.3)=
	2/y)= 3	x+y.	; }	i+1 = yi+f(xi1)
x_{η}	yn.	yn	h yn	アション・ナム
	1.0	1.0	0.1	
0.1	1.	1.2	.12	
0.2	1.22	1.42	0/42	
0.3	1.362			
			2 %	
R. X	n yn	35	hyn	(h=0.15)
ე	1-0	· p	0.15	3:55 = 2(11)
0.	15 1.15	1.3	0.195	THE SET
•30 1.345				
	e .	- High		
The bredicted values are different				
begane we have chosen a d'h. L				
The predicted value are different because we have chosen a different plep size. The value 1:312 is more accurate because the stap size is amalled on that calculation.				
accurate beroama le statista				
is analles for that calculation				
-			ניייי בק	104171

3. dy = x+y ; y(0)=1; h=0.1 f(x,y)= x+y yi+1+p= yi+h=f(xi+yi) Yi+1= Yi+ h (Yi+ Yi+1)/2 Ti yi hyi gith hyith hyar gretty 0 1 0.1 1.1 0.12 011 1.11 0.1 1.11 -121 1-231 01431 0132 1.242 0.2 1.242 01442 1.3862 0.169 4566 1.396 0.3 1.397 (three decimin) accuracy. x0=0; y0=1 aregiven y1p=1+0.1(0+1)=1.1 yip = f(0.1, yip) = 0.1+1.1=1.2 hy/2v = 0.1 + 0/2/2 = 0/1 91,c= 1+ ·11= 1011 $x_1 = 0 + 1 = 61$ $y_1 = 1 \cdot 11$ $y_{2p} = 1 \cdot 11 + 0 \cdot 1 \left(\cdot 1 + 1 \cdot 11 \right)$ Jap= 1.231; hy2b= 0.1 (00+1.231) = 01431 hyav = (1431+121)/2 = 132 yac = 1.11+ . 132 = 1.242 x2=0.3; 42=1.242 43p=1.242+0.1(.3+1.242) 92p=1.242+01442=1.3862 hy3> = 0.1 f (23, 43) = 0.1 (0.3+1.3862) = .168 hy'sp = . 169 (nounding off)

Scanned with Cam

After V=0, the Vin decelerating so the velocity grows like concave down and approaches UT as t-30. V>VJ: Lee Solution 1 V voil 1 again go towards up an t-30. The v curve decreases toward VT in a concave up 00. Refer to \$513 of the nonlinear dynamics ppt to understand how to draw the griphs.

Solution Assignment 4.

I=
$$\int f(x) dsc = \int \int \frac{f(x)}{f(x)} p(x) dx$$

Generate random nots (m) a coording to prabibility distribution $p(x)$.

$$I = \int \int \int \frac{f(x_i)}{f(x_i)} dx$$

Given: $M = 10,000$. $p(x_i) = exp(-x_i)$, $a = 0$; $b = \overline{0}$.

 $10,000$ random not in anotat according to the probable distribution $p(x_i) = exp(-x_i)$. Assuming Normalization was done. $f(x_i) = exp(-x_i^2)$; $p(x_i) = exp(-x_i^2)$

The i=1, M

Rend (2n.12t) x

The i=1, M

Rend (2n.12t) x

The i=1 of $f(x_i)$

Rend (2n.12t) x

The i=1 of $f(x_i)$

Rend (2n.12t) $f(x_i)$

Rend (2n.12t) $f(x_i)$

Rend (2n.12t) $f(x_i)$

Read pg 19 Appt Monte Carlo Integnation.

Scanned with Cam