上海大学 计算机学院 《计算机组成原理实验》报告三

姓名	胡才郁	学号	20121034	
时间,	周二 9-11	机位 _6_	指导教师 _	周时强

实验名称:	微指令系统实验
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>

## 一、实验目的

- 1. 读出系统已有的微指令, 并理解其含义。
- 2. 设计并实现微指令系统。

## 二、实验原理

译码器:译码器能够把人工设置的电键 ki 设置编码,并给出一个时钟脉冲能 代替我们来操作译码,从而产生控制信号,该器件就是指令译码器,也叫做控制 器。

微指令:把一个操作的控制总线编码放在一个存储单元中,同时给出调用这个单元的方法(例如:这个单元的地址),则对使用者而言,这个调用方法等价于控制总线编码本身,二者都称为微指令。

每条微指令有24位,相应地存放微指令的微程序存储器的每个地址单元也必须是24位。于是,生产商把3片8位存储器的对应地址并接在一起,构成一个24位的存储器。于是,每选中一个地址,就会有24位控制信号送上控制总线。

## 三、实验内容

- 1. 实验任务一:观察微指令寄存器地址为 31H 单元的内容;分析其控制功能;验证该功能是否实现。
  - (1) 实验步骤
  - 1、首先检查实验箱是否正常:将前面 16 个全部拨到 1 后面 8 个到 0, K3 要放在微程序状态下面,按下 Reset 键,除了 EM 可以不为 0 以外。实验箱上的其他所有都要为 0。
  - 2、进入微程序存储器模式(μEM 状态),在 Ader 中输入 30H,按下 NX 键,继续按 NX,观察到微指令寄存器地址为 41H 单元的内容。并按[TV/ME] 到 μ PC,在 μ pc 模式下验证功能:μ pc (31), pc (00), A (33), W(0), R (11)。
    - 3、按[STEP]脉冲键,执行31H地址存的指令,观察实验结果。
  - (2) 实验现象

在显示屏上观测到 EF FE 91H。



#### (3) 数据记录、分析与处理

	MH(高字节)						
C ₂₃	$C_{22}$	C ₂₁	$C_{20}$	C ₁₉	$C_{18}$	C ₁₇	C ₁₆
XRD	<b>EMWR</b>	EMRD	PCOE	<b>EMEN</b>	IREN	EINT	ELP
	MM(中字节)						
C ₁₅	C ₁₄	C ₁₃	$C_{12}$	C ₁₁	$C_{10}$	C ₉	C ₈
MAREN	MAROE	OUTEN	STEN	RRD	RWR	CN	FEN
ML(低字节)							
C ₇	C ₆	C ₅	C ₄	C ₃	$C_2$	$C_1$	$C_0$
$X_2$	$\mathbf{X}_1$	$X_0$	WEN	AEN	$S_2$	$S_1$	$S_0$

EF FE 91H = 1110 1111 1111 1110 1001 0001B

将二进制对应上图可知: A 与 W 的控制总线编码为 C2C1C0 = 001, C3 = 0, C7C6C5 = 001, C8 = 0, C20 = 0

即 S2S1S0 = 001 功能为 A-W, AEN = 0 X2X1X0 = 001 FEN = 0 PCOE = 0

F	F	F	Е	9	1
1111	1111	1111	1110	1001	0001
C2C1C0=001			S2S1S0	带进位减	
C3=0			AEN	写入 A 寄存器	
C7C6C5=100			X2X1X0	D寄存器输出	
C8=0			FEN	标志位	

### (4) 实验结论

分析可得微指令寄存器地址为 31H 单元内容为 A-W, 锁定了 WEN 选择 AEN, 处于 IA 状态,且 PCOE 以及 FEN 处于启动状态。

用 A = 33H, W = 11H 测试, 测试结果符合功能分析。

## 2. 编制一条微指令实现"A 非"运算后右移一位的值送 OUT; 把这条微指令放入微程序寄存器的 32H 单元;验证它的功能是否实现。

#### (1) 实验步骤

1、先实现"A 非"运算。实验箱"/A"对应的控制总线编码 C2C1C0 = 110. 右移一位的控制编码为 C7C6C5 = 101.

最后输出到 OUT 寄存器,则 C13 = 0.

经过分析可得,这条微指令编码为:

- 2、进入30H,给该地址打入FF FF FFH。进入31H,同理给该地址打入FF FF FFH。重新进入32H,给该地址打入FF DE BEH,确认指令修改成功。
  - 3、在 µ PC 模式下验证功能

赋初值 MPC (32) PC(XX) A(33) W(11) 按 STEP 执行。

#### (2) 实验现象

第一次按 STEP 键时,执行 30H 的指令,再次按 STEP 键时,执行 31H 的指令.第三次按 STEP 键后可以观测到 OUT 寄存器中数值为 66H。



#### (3) 数据记录、分析与处理

33H 取反后得 1100 1100, 右移一位得 0110 0110, 即为 66H。

1111	1111	1101	1110	1010	1110	
F	F	D	Е	В	Е	
C2C1C0=110			S2S1S0	A 非运算		
C7C6C5=010			X2X1X0	L寄存器输出		
C8=0			FEN	标志位,有运算操作		
C13=0			OUTEN	将结果输入到 OUT 寄存器		

#### (4) 实验结论

与实验操作后观测到 OUT 寄存器中数值 66H 一致,功能正确符合要求。 检验正确。

# 四、建议和体会

从本次实验开始,将由手动输入操作改为指令操作,实验过程当中,意识到提前预习的重要性,如果只是按照视频做出实验结果,那么便很难搞清楚原理。在进行实验以前,需要对我们将进行的每一条进行分析后在做,将 16 进制转化为 2 进制,再对照表得出每条指令的控制功能,这样在进行实验的时候我们才能知道是否符合预期。

在实验 2 中,把这条微指令放入微程序存储器的 32H 单元实验时,观察黄色和红色指示灯同样也很重要,因为微指令代替了我们手动键入值,所以观察实验指示灯对于操作也不可缺少。

# 五、思考题

此处分析在执行 32H 中的指令时,必须将 30H 与 31H 中指令置 FF FF FFH 的

原因。由于上方的二进制计数器 P0 与 P1 置为低电平,则 Q0 与 Q1 必须为 0,即 微程序存储器的地址控制选择时后两位必须为 00,形式如 XX XX XX 00H。32H 的二进制编码为 00 11 00 10H,由于微程序存储器的地址选择时后两位必须为 00,则最少要从 30H 中开始执行,即 00 11 00 00H。因此要将 30H 与 31H 中的指令置为 FF FF FFH,以免影响 32H 指令的执行效果。



如何给μPC 置初值?

首先按[TV/ME]键切换到  $\mu$  PC 模式,再通过小键盘直接输入需要输入的初始值到  $\mu$  PC。