El nuevo modelo se define como

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$$
 con $q_A, q_R \notin Q$

Donde:

Q, Σ , Γ y q_0 se definen como en el modelo original

$$δ$$
: Q x Γ → Q ∪ {q_A, q_R} x Γ x {D, I, S}

q_A es el estado de aceptación, q_R es el estado de rechazo

M se detiene \Leftrightarrow M pasa al estado q_A o q_R

Observación: a diferencia de del modelo original, la función δ debe estar completamente definida (la MT no se detiene en ningún estado que no sea q_A o q_R) Por lo tanto la máquina siempre realiza al menos un paso de computación.

$$L(\mathbf{M}) = \{ w \in \Sigma^* \ / \ \mathbf{q}_0 w \ | \ ^+_{\mathbf{M}} \ \alpha_1 \mathbf{q}_{\mathbf{A}} \alpha_2, \ \mathbf{con} \ \alpha_1, \ \alpha_2 \in \Gamma^* \}$$
 Uno o más pasos de computación de M

Teorema: para toda MT M del modelo original existe una MT M' del modelo q_A q_R equivalente, es decir L(M) = L(M').

Demostración. Se construye una máquina M' a partir de la máquina M y se demuestra que son equivalentes.

Sea $M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$, se construye

 $M' = \langle Q, \Sigma, \Gamma, \delta', q_0, q_A, q_R \rangle$ con δ' definida de la sgte. manera:

a) Por cada $\delta(q_i, a_k) = (q_j, a_m, x)$ en M se define $\delta'(q_i, a_k) = (q_j, a_m, x)$ en M'

b) Por cada $\delta(q_i, a_k)$ no definida en M

 $\delta'(q_i,\,a_k)=(q_A,\,a_k,\,S)\;si\;q_i\in F$ se define en M' o $ii)\;\delta'(q_i,\,a_k)=(q_R,\,a_k,\,S)\;si\;q_i\not\in F$

Ahora hay que demostrar que L(M) = L(M')

Por lo tanto $L(M) \subseteq L(M')$

Se usará en la demostración la notación $\alpha(i)$ para denotar al i-ésimo elemento del string α

I)
$$L(M) \subseteq L(M')$$

Sea $w \in L(M) \Rightarrow$
 $\Rightarrow q_0 w \models^*_M \alpha_1 q \alpha_2$, con $q \in F y M$ se detiene (por def. $L(M)$)
 $\Rightarrow q_0 w \models^*_M \alpha_1 q \alpha_2$, con $q \in F y \delta(q, \alpha_2(1))$ no definido
 $\Rightarrow q_0 w \models^*_M \alpha_1 q \alpha_2 \qquad \models_M \alpha_1 q_A \alpha_2$
(por def. de δ' parte a) (por def. de δ' , parte b - i)
 $\Rightarrow w \in L(M')$

II) $L(M') \subseteq L(M)$? Vamos a probar por contrarecíproca Por contrarecíproca si $w \notin L(M) \Rightarrow w \notin L(M')$ es equivalente a $\text{si } w \in L(M') \Rightarrow w \in L(M)$ Sea w tal que $w \notin L(M) \Rightarrow$ pueden suceder dos cosas i) M loopea con input $w \Rightarrow M'$ loopea con input w(por def. de δ ' parte a) ii) M se detiene en un estado no final, es decir $\Rightarrow q_0 w \models_{M} \alpha_1 q \alpha_2$, con $q \notin F y M$ se detiene (por def. L(M)) \Rightarrow q₀w \vdash *_M α_1 q α_2 , con q \notin F y δ (q, α_2 (1)) no definido $\Rightarrow q_0 w \mid + M, \alpha_1 q \alpha_2 \mid -M, \alpha_1 q_R \alpha_2$ (por def. de δ' parte a) (por def. de δ' parte b-ii) $\Rightarrow w \notin L(M')$ De i) y ii) si $w \notin L(M) \Rightarrow w \notin L(M')$, por contrarrecíproca se tiene que $w \in L(M') \Rightarrow w \in L(M)$.

Por lo tanto $L(M') \subseteq L(M)$

De I) y II) se tiene que:

$$L(M) = L(M'),$$

por lo tanto M y M' son equivalentes

Teorema 2: sea M una MT del modelo $q_A q_R \Rightarrow$ existe una MT M' del modelo original tal que L(M) = L(M')

Demostración:

Sea $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$ se construye una máquina $M' \langle Q \cup \{q_A, q_R\}, \Sigma, \Gamma, \delta', q_0, F \rangle, F = \{q_A\} \ y \ \delta' = \delta$

Se debe demostrar que M y M' son equivalentes, es decir que L(M) = L(M')

I)
$$L(M) \subseteq L(M')$$
 ?

Sea $w \in L(M) \Rightarrow$
 $\Rightarrow q_0 w \models_{M}^+ \alpha_1 q_A \alpha_2$ (por def. $L(M)$)

 $\Rightarrow q_0 w \models_{M'}^+ \alpha_1 q_A \alpha_2$ (por def. de δ')

 \Rightarrow debido a que M' se detiene en q_A ya que $\delta'(q_A, x)$ no está definido para ningún x, y además $q_A \in F$, se tiene que $w \in L(M')$
 $\Rightarrow L(M) \subseteq L(M')$

II) $L(M') \subseteq L(M)$? Vamos a probar por contrarecíproca:

Sea w tal que $w \notin L(M) \Rightarrow$ pueden suceder dos cosas

- i) M loopea con input $w \Rightarrow M'$ loopea con input w (por construcción de M')
- ii) $q_0 w \models_{M} \alpha_1 q_R \alpha_2$
- \Rightarrow q₀w $\mid ^+_{M'}$ α_1 q_R α_2 (por construcción de M')
- \Rightarrow Debido a que M' se detiene en q_R ya que $\delta'(q_R, x)$ no está definido para ningún x y además $q_R \notin F$ se tiene que $w \notin L(M')$

De i) y ii) si $w \notin L(M) \Rightarrow w \notin L(M')$, por contrarrecíproca si

 $w \in L(M') \Rightarrow w \in L(M)$

Por lo tanto $L(M') \subseteq L(M)$

De I) y II) se tiene que L(M) = L(M'), por lo tanto M y M' son equivalentes

Caracterización de Lenguajes

Def.: un lenguaje L es recursivamente enumerable (RE) sii existe una MT M que lo acepte, es decir L = L(M).

Def.: un lenguaje L es recursivo o decidible (R) sii existe una MT M que lo acepta y siempre se detiene.

Nota: Llamaremos \mathscr{L} al conjunto de todos los lenguajes definidos sobre el alfabeto Σ , es decir $\mathscr{L} = \rho(\Sigma^*)$

Se tiene la siguiente situación:

$$R \subseteq RE \subseteq \mathcal{L}$$
 por las definiciones

Caracterización de Lenguajes

Interrogantes: ¿Las inclusiones son propias?

Es decir
$$\begin{cases} \mathcal{L} - RE \neq \emptyset? \\ \\ \mathcal{L} - RE \neq \emptyset? \end{cases}$$