CSD1100

Boolean Algebra

Vadim Surov

Introduction

- Objectives for next few weeks
 - Understand the relationship between Boolean logic and digital computer circuits.
 - Learn how to design simple logic circuits.
 - Understand how digital circuits work together to form complex computer systems.

Introduction

- In the nineteenth century George Boole suggested that logical thought could be represented through mathematical equations.
- Computers, as we know them today, are implementations of Boole's Laws of Thought.

Introduction

- In the middle of the twentieth century, computers were commonly known as "thinking machines" and "electronic brains."
- Nowadays, we rarely ponder the relationship between electronic digital computers and human logic.
 Computers are accepted as part of our lives.
- Next few weeks, you will learn the simplicity that constitutes the essence of the machine.

Boolean Algebra

- Boolean algebra is a mathematical system for the manipulation of variables that can have one of two values:
 - true and false
- true AKA 1, on, high (>3v), any sequence of bits when at least 1 bit is 1.
- false AKA 0, off, low (<1v), any sequence of 0s

Boolean Algebra

- Boolean expressions are created by performing operations on Boolean variables.
- Common Boolean operators include
 - AND (&, ^(caret), *(multiplication))
 - o OR (|, v, +)
 - NOT (¬(elbow), ¬(overbar), '(prime mark))

Boolean Operators

- A Boolean operator can be completely described using a truth table.
- In the table, X and Y are variables.
- Truth tables for other operators on next slide

X	Y	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1

Boolean Operators

X	Y	X OR Y
0	0	0
0	1	1
1	0	1
1	1	1

X	NOT X
0	1
1	0

Boolean Operators

The AND operator is also known as a Boolean product:

The OR operator is the Boolean sum or addition:

$$x OR y x+y$$

 The NOT operation is most often designated by an overbar when writing. When typing a prime mark ' is used instead.

$$NOT x \overline{x} x'$$

Boolean Expressions. Example 1

 Boolean expression is a logical statement that is either 1 or 0.

 To make evaluation of the Boolean expression easier, the truth table contains extra columns to hold evaluations of subparts of the expression.

Boolean Expressions. Example 1. xz'+y

X	у	z	z'	xz'	xz'+y
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	0	1

Boolean Expressions. Example 2. XOR

- x ⋅ y'+x' ⋅ y
- Also known as boolean operator XOR

X	Y	X XOR Y
0	0	0
0	1	1
1	0	1
1	1	0

Boolean Expressions And Precedence

- As with common arithmetic, Boolean operations have rules of precedence. This is how we chose the expression subparts during evaluation.
- The NOT operator has highest priority, followed by AND and then OR.

Boolean operator	Priority	
NOT	1 (highest)	
AND	2	
OR	3 (lowerst)	

Boolean Expression Simplification

- Digital computers contain circuits that implement Boolean logic.
- The simpler that we can make a Boolean expression, the smaller the circuit that will result.
- With this in mind, we always want to reduce our Boolean expressions to their simplest form.
- There are a number of Boolean identities that help us to do this.

Boolean Identities

Logical Inverse	0' = 1 1' = 0
Involution / Double Complement	A'' = A

Boolean Identities

Dominance	A+1=1	A · 0=0
Identity	A+0=A	A · 1=A
Idempotence	A+A=A	$A \cdot A = A$
Complementarity	A+A'=1	A · A'=0
Commutativity	A+B=B+A	A·B=B·A

Boolean Identities

Associativity	(A+B)+C = A+(B+C)	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$
Distributivity	A+(B·C)=(A+B)· (A+C)	$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$
Absorption	$A \cdot (A+B) = A$	$A+(A\cdot B)=A$
DeMorgan's	(A+B)' = A' · B'	(A · B)' = A'+B'

Canonical Forms

- Through our exercises in simplifying Boolean expressions, we see that there are numerous ways of stating the same Boolean expression.
 - These "synonymous" forms are logically equivalent.
 - Logically equivalent expressions <u>have identical truth</u> <u>tables</u>.
- In order to eliminate as much confusion as possible, designers express Boolean expressions in standardized or canonical form.

Canonical Forms

- There are two canonical forms for Boolean expressions:
 Sum-Of-Products (SOP) and Product-Of-Sums (POS).
 - Recall the Boolean product is the AND operation and the Boolean sum is the OR operation.
- In **SOP** form, AND'ed variables are OR'ed together.
 - For example: x · y + x · z + y · z
- In POS form, OR'ed variables are AND'ed together:
 - \circ For example: $(x+y) \cdot (x+z) \cdot (y+z)$

Sum-Of-Products

- Inspect the truth table and start from the first row.
- For all the input variables in a given row whose output is 1:
 - If the value of variable P is 1, then write P
 - If the value of variable P is 0, then write P'
- Connect all the input variables in the row with the '.'
 operator.
- Repeat for all the rows in the truth table where the output is
 1.
- When all rows (with output =1) have been translated to Boolean expressions, connect these expressions with the '+' operator

SOP Example

We note that this expression is not in simplest terms. Our aim is only to rewrite our function in canonical SOP form.

x	у	Z	xz'+y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Product-Of-Sum

- Inspect the truth table and start from the first row.
- For all the input variables in a given row whose output is 0:
 - If the value of variable P is 1, then write P'
 - If the value of variable P is 0, then write P
- Connect all the input variables in the row with the '+' operator.
- Repeat for all the rows in the truth table where the output is
 0.
- When all rows (with output =0) have been translated to Boolean expressions, connect these expressions with the
 '.' operator

POS Example

We note that this expression is not in simplest terms. Our aim is only to rewrite our function in canonical POS form.

X	у	z	xz'+y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1