SUPPLEMENT TO [BN93]

Notation 1.

- (1) For an abelian category \mathcal{A} , $\mathsf{Comp}(\mathcal{A})$ denotes the category of unbounded cochain complexes over \mathcal{A} and $K(\mathcal{A})$ denotes the corresponding homotopy category. For a morphism f in $\mathsf{Comp}(\mathcal{A})$, we write [f] to denote its image in $K(\mathcal{A})$ under the projection $\mathsf{Comp}(\mathcal{A}) \to K(\mathcal{A})$.
 - 1. DIRECT SUMS IN TRIANGULATED CATEGORIES

Proof of Lemma 1.1. Let $\{A_i\}_{i\in I}$ be an indexed collection of objects in $\mathsf{Comp}(\mathcal{A})$. Let $C := \bigoplus_{i\in I} A_i$ along with structure maps $\iota_j : A_j \to C$ be their coproduct in $\mathsf{Comp}(\mathcal{A})$. Let D be an object in

On Remark 1.4.

 $(1.3.2)\Rightarrow (1.3.1)$. Suppose that A and B are objects in a triangulated category (\mathcal{T}, Σ) with all countable direct sums. Let \mathcal{L} be a triangulated subcategory that is closed under countable direct sums. More precisely, we require not merely that countable direct sums in \mathcal{T} of objects in \mathcal{L} exist in \mathcal{L} but that any direct sum in \mathcal{T} of a collection of objects in \mathcal{L} is contained in \mathcal{L} . Thus \mathcal{L} is necessarily a replete triangulated subcategory of \mathcal{T} . Let

$$C := (B \oplus A) \oplus (B \oplus A) \oplus \dots$$
$$C' := (A \oplus B) \oplus (A \oplus B) \oplus \dots$$

Then, C, C' are contained in \mathcal{L} and $C' \cong A \oplus C$. Further, the triangle

$$C \longrightarrow C' \longrightarrow A \longrightarrow \Sigma C$$

is distinguished in \mathcal{T} . Thus, $A \in \mathcal{L}$.

On Rickard's criterion.

Definition 2 (Épaisse subcategories, [?]). Let \mathcal{T} be a triangulated category. A triangulated and full subcategory \mathcal{E} of \mathcal{T} is said to be *épaisse* if for all $f: X \to Y$ in \mathcal{T} that factors through an object in \mathcal{E} and is part of a distinguished triangle (X,Y,Z,f,g,h) in \mathcal{T} with Z contained in \mathcal{E} , both X and Y are contained in \mathcal{E} .

Proposition 3 (Rickard). Let \mathcal{E} be a triangulated and full subcategory of a triangulated category \mathcal{T} . Then, \mathcal{E} is épaisse if and only if every direct summand of an object in \mathcal{E} is contained in \mathcal{E} .

The following is proof is a slightly more detailed version of [?, Criterion 1.3]

Proof. Suppose first that \mathcal{E} is épaisse. Let A, B be objects in \mathcal{T} such that $A \oplus B$ is contained in \mathcal{E} . Then, the following triangle is distinguished

$$\Sigma^{-1}B \xrightarrow{0} A \longrightarrow A \oplus B \longrightarrow B$$

Since \mathcal{E} is épaisse, A is contained in \mathcal{E} .

Conversely, suppose that every direct summand of an object in \mathcal{E} is contained in \mathcal{E} .

1

REFERENCES

- [BN93] Bökstedt, Marcel, and Amnon Neeman. "Homotopy limits in triangulated categories." *Compositio Mathematica* 86, no. 2 (1993): 209-234.
- [Ric89] Rickard, Jeremy. "Derived categories and stable equivalence." Journal of pure and applied Algebra 61, no. 3 (1989): 303-317.