

Funktionale Programmierung

Bäume (kurze Einführung)

WS 2019/2020

Prof. Dr. Margarita Esponda

Was ist ein Baum?

Eine spezielle Graph-Struktur ohne Zyklen

- 1. Er hat eine Wurzel.
- 2. Alle Knoten ausser der Wurzel haben genau eine Verbindung mit einem Vorfahren.
- 3. Es existiert <u>genau</u> ein Weg zwischen der Wurzel und jedem beliebigen Knoten.

Eigenschaften von Bäumen

Zwischen zwei beliebigen Knoten in einem Baum existiert genau ein Pfad, der sie verbindet.

Ein Baum mit N Knoten hat N-1 Kanten.

Eigenschaften von Bäumen?

Nehmen wir an, wir haben einen Baum t, dann gilt:

- * |t| bezeichnet die Größe des Baumes t oder die gesamte Anzahl seiner Knoten.
- * Die **Tiefe** (*Level*) eines Knotens ist sein Abstand zur Wurzel. Die Tiefe der Wurzel ist gleich **0**.
- * die Höhe h(t) ist der maximale Abstand zwischen der Wurzel und den Knoten.
- * Blätter sind Knoten ohne Kinder.
- * Die Pfadlänge des Baumes sei definiert als die Summe der Tiefen aller Knoten des Baumes.

Eigenschaften von Bäumen

|t| = gesamte Anzahl seiner Knoten = 10

$$h(t) = 3$$

$$Tiefe(n) = 1$$

$$Pfadlänge(t) = 19$$

Binärbäume

Bäume, in dem jeder Knoten höchstens zwei Kinder hat.

Ein Binärbaum mit N inneren Knoten hat N+1 äußere Knoten oder Blätter.

Binäre Suchbäume

Binäre Suchbäume sind sortierte Binärbäume, d.h. die gespeicherten Elemente im Baum werden nach bestimmten Regeln einsortiert.

Beispiel:

Eigenschaften von Binär-Bäumen

Rekursive Definitionen:

Anzahl der inneren Knoten

$$|t| = |t_l| + |t_r| + 1$$

Höhe des Baumes

$$h(t) = 1 + \max(h(t_l), h(t_r))$$

Innere Pfadlänge des Baumes (Summe der Tiefen aller inneren Knoten)

$$\pi(t) = \pi(t_l) + \pi(t_r) + |t| - 1$$

Eigenschaften von Binär-Bäumen

Rekursive Definitionen:

$$|t| = |t_l| + |t_r| + 1$$
 = 3 + 3 + 1 = 7

$$h(t) = 1 + \max(h(t_l), h(t_r)) = 2$$

$$\pi(t) = \pi(t_l) + \pi(t_r) + |t| - 1 = 10$$

Balancierter Binärbaum

Maximale Anzahl von Objekten, die gespeichert werden können

Vollständige Binärbäume

Ein vollständiger binärer Baum hat $2^h - 1$ innere Knoten und 2^h Blätter Mit $\mathbf{h} = \text{Tiefe des Baumes}$

$$n = 2^{h+1} - 1$$
 \downarrow
 $n + 1 = 2^{h+1}$
 \downarrow
 $log_2(n+1) = log_2(2^{h+1})$
 \downarrow
 $log_2(n+1) = h+1$
 \downarrow
 $h = \lceil log_2(n+1) \rceil - 1$

Suchen (Bäume vs. Listen)

Ein vollständiger binärer Baum hat 2h – 1 innere Knoten und 2h Blätter

$$n = 2^{h+1} - 1$$
 \downarrow
 $n + 1 = 2^{h+1}$
 \downarrow
 $\log_2(n+1) = \log_2(2^{h+1})$
 \downarrow
 $\log_2(n+1) = h+1$
 \downarrow
 $h = \lceil \log_2(n+1) \rceil - 1$

