

17. Introduction to Network Security

Seongil Wi

- HW3 Will be Released
- Related to web security
- CTF-style homework (5 problems)
- Last homework! ☺

Network Overview

Computer Network

 A telecommunications network that allows computers to exchange data

Computer Network

- A telecommunications network that allows computers to exchange data
- Networked computing devices pass data to each other along data connections

Why is it Important?

Everything is connected!

Internet

- An inter-net: a network of networks
 - The interconnected set of networks of the Internet Service Providers (ISPs) – e.g., KT, SKT, or LGU+
- Networks are connected using routers that support communication in a hierarchical fashion
- About 17,000 different networks make up the Internet

Protocol

• A system of digital **rules** for data exchange between computers

Protocol

13

A system of digital rules for data exchange between computers

Recap: HTTP Request

List of HTTP headers, Method File path **Protocol** as key-value pair Request /cse467.html HTTP/1.1 Host: websec-lab.com Accept-Language: en Request Connection: keep-alive headers User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64;)
Referer: http://google.com **Body** (empty)

Protocol

- A system of digital rules for data exchange between computers
- Many layered protocols

OSI Model

OSI: Open System Interconnection model

- Definition
 - A conceptual model that characterizes the internal functions of a communication system by partitioning it into abstraction layers

OSI Model

Layer

Network Process to Application

Presentation

Data Representation and Encryption

Session

Interhost Communication

Transport End-to-End Connections

End-to-End Connections and Reliability

Network Path Determination

Path Determination and IP (Logical Addressing)

Data Link

MAC and LLC (Phyiscal addressing)

Physical

Media, Signal, and Binary Transmission

Benefits:

- Manageable
- Standardizes interfaces
- Ensures interoperability
- •

Protocol

OSI 7 Layer Model

TCP/IP Protocol

7 Layer	Application Layer	400,140,7000,63000,00,141,170,741,171	Application					
6 Layer	Presentation Layer		telnet FTP DHCP TFTP					
5 Layer	Session Layer		HTTP SMTP DNS SNMP					
4 Layer	Transport Layer		TCP Transport UDP					
3 Layer	Network Layer		Internet ICMP ARP RARP IP					
2 Layer	DataLink Layer	•	Network Interface					
1 Layer	Physical Layer							

Data Encapsulation

19

- *
- A system of digital rules for data exchange between computers
- Many layered protocols

High-level idea

Data Encapsulation

A system of digital rules for data exchange between computers

Many layered protocols

Protocol

21

- *
- A system of digital rules for data exchange between computers
- Many layered protocols

Protocol

- *
- A system of digital rules for data exchange between computers
- Many layered protocols

Network 1

Network 2

Data De-Encapsulation

23

- *
- A system of digital rules for data exchange between computers
- Many layered protocols

header header request

Frame IP TCP HTTP Frame header header request footer

Protocol Example: Internet Protocol (IP)

- The principal communications protocol
- Characteristics of IP
 - -Connectionless: mis-sequencing
 - -Unreliable: may drop packets...
 - -Best effort: ... but only if necessary
 - -Datagram: individually routed

IP Datagram

VER 4 bits	HLEN 4 bits	DS 8 bits	Total length 16 bits				
Identification 16 bits			Flags 3 bits	Fragmentation offset 13 bits			
Time to live Protocol 8 bits 8 bits			Header checksum 16 bits				
Source IP address							
Destination IP address							
Option							

26

Protocol Example: ICMP

- Internet Control Message Protocol (ICMP)
 - Used by a router/end-host to report some types of error
 - E.g., Destination Unreachable: packet can't be forwarded to its destination
 - E.g., Time Exceeded: Time To Live (TTL) reached zero, or fragment didn't arrive in time
- Encapsulated in the IP packet

```
$ ping google.com
PING google.com (142.250.206.238): 56 data bytes
64 bytes from 142.250.206.238: icmp_seq=0 ttl=115 time=31.598 ms
64 bytes from 142.250.206.238: icmp_seq=1 ttl=115 time=35.777 ms
64 bytes from 142.250.206.238: icmp_seq=2 ttl=115 time=40.632 ms
64 bytes from 142.250.206.238: icmp_seq=3 ttl=115 time=35.873 ms
...
```

Protocol Example: TCP and UDP

27

- TCP and UDP
 - Transmission Control Protocol (TCP)
 - User Datagram Protocol (UDP)
- Core protocols of the Internet

		1	FCP Segme	ent	Header	Forma	nt	
Bit#	0	7	8	15	16	23	24	31
0	Source Port			Destination Port				
32	Sequence Number							
64	Acknowledgment Number							
96	Data Offset	Res	Flags		Window Size			
128	Header and Data Checksum			Urgent Pointer				
160	Options							

UDP Datagram Header Format								
Bit #	0	7	8	15	16	23	24	31
0	Source Port			Destination Port				
32	Length			Header and Data Checksum				

Transmission Control Protocol (TCP)

- Key features
 - Connection oriented: How?
 - Reliable: How?
 - Ordered: How?
 - Traffic (congestion) control: How?

Transmission Control Protocol (TCP)

30

- Key features
 - Connection oriented: How? → Three-way handshake
 - Reliable: How? → Retransmission with ACK
 - Ordered: How? → Sequence number with SEQ
 - Traffic (congestion) control: How? → Congestion control with window size

3

Introduction to Network Security

Introduction to Network Security

32

- Attacks
 - Old days (First network attack, 1980s)
 - Worm
 - Advanced
 - Network attacks via web: Drive-by-download
 - Network attacks via Bot: Control victim
 - Network attacks via Denial-of-Service (DoS): flood a victim
 - Others: spoofing, flooding, ...
- Defenses
 - Firewalls
 - Intrusion Detection System (IDS)
 - Intrusion Prevention System (IDS)
 - Secure Protocols (IPSec, SSL/TLS)

Worm

Worm – History

- Morris worm, 1988
 - Infected approximately 6,000 machines (10% of the whole computers)
 - Cost ~ \$10 million in downtime and cleanup
- CodeRed worm, 2001
 - Direct descendant of Morris' worm
 - Infected more than 500,000 servers
 - Caused ~ \$2.6 Billion in damages

• . . .

CodeRed Case

 On July 19, 2001 more than 359,000 computers were infected with the CodeRed worm in less than 14 hours

CodeRed Case

- How it works?
 - Attacking IIS web servers
 - Buffer overflow
 - Send the following packet any open 80

GET

38

Worm – Process

- 1. Scan: find a victim
- 2. Infect: deliver a malicious payload

1. Scan: Find a Victim

How to find a victim?: scan a network

- Send packets to find a host with open network services

■ E.g., a host serving Apache web server

Find reachable hosts and the services they offer

40

1. Scan: Find a Victim

- Use a protocol
 - -TCP: SYN scan
 - Check if a recipient returns a SYN/ACK packet
 - UDP: Send a UDP packet to a random port
 - If a port is open: no response
 - If a port is closed: ICMP port unreachable
 - ICMP: ping scan
 - Check if a host is reachable

Nmap

• Used to discover hosts and services on a computer network by sending packets and analyzing the responses

Nmap Example


```
—[x]−[ucihamadara@parrot]−[~]
 --- $sudo nmap 192.168.1.22
[sudo] password for ucihamadara:
Starting Nmap 7.80 ( https://nmap.org ) at 2020-03-17 14:56 EDT
Nmap scan report for basicpentest (192.168.1.22)
Host is up (0.0068s latency).
Not shown: 996 closed ports
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
MAC Address: 08:00:27:66:44:4C (Oracle VirtualBox virtual NIC)
Nmap done: 1 IP address (1 host up) scanned in 1.53 seconds
```

2. Infect: Deliver a Malicious Payload

43

- How to deliver?
 - Data payload (with binary) through a network
- How to infect a host?
 - Usually buffer overflow
 - Heap-based attacks

Denial of Service (DoS)

Denial of Service (DoS)

 Disrupting the use of networks, systems, or applications (availability)

- How to do?
 - By sending large number of network flows exhausting service provider's resources

Distributed Denial-of-Service (DDoS)

 Employ multiple (compromised) computers to perform a coordinated and widely distributed DoS attack

(D)DoS Attack Surface

- Any part of your network or services that is vulnerable to an attack
 - Network interfaces
 - Infrastructure
 - Firewall/IPS
 - Servers
 - Protocols
 - Applications
 - Databases

DDoS Trend

구글·아마존, 전례 없는 강도의 디도스 공격 당해

기사입력: 2023년10월12일 11:15 최종수정: 2023년10월12일 11:16

[서울=뉴스핌]박공식 기자 = 구글, 아마존, 클라우드플레어 을 당한 것으로 알려졌다.

알파벳 소유의 구글은 10일(현지시간) 블로그 포스트에 자 었던 사상 최대의 공격보다 7배 이상 많은 악성 트래픽 공격 키피디아의 9월 한 달 자료 요청 건수를 능가하는 악성 트리

Ping Flood Attack

 The computing device is flooded with tons of Internet Control Message Protocol (ICMP) ping response

Recap: ICMP

- Internet Control Message Protocol (ICMP)
 - Used by a router/end-host to report some types of error
 - E.g., Destination Unreachable: packet can't be forwarded to its destination
 - E.g., Time Exceeded: Time To Live (TTL) reached zero, or fragment didn't arrive in time
- Encapsulated in the IP packet

```
$ ping google.com
PING google.com (142.250.206.238): 56 data bytes
64 bytes from 142.250.206.238: icmp_seq=0 ttl=115 time=31.598 ms
64 bytes from 142.250.206.238: icmp_seq=1 ttl=115 time=35.777 ms
64 bytes from 142.250.206.238: icmp_seq=2 ttl=115 time=40.632 ms
64 bytes from 142.250.206.238: icmp_seq=3 ttl=115 time=35.873 ms
...
```

Recap: ICMP

- Internet Control Message Protocol (ICMP)
 - Used by a router/end-host to report some types of error
 - E.g., Destination Unreachable: packet can't be forwarded to its destination
 - E.g., Time Exceeded: Time To Live (TTL) reached zero, or fragment didn't arrive in time

Ping Flood Attack – Method: Spoofing

Use of forged source IP address

Method: Spoofing

- How to
 - Network RAW socket programming
 - Nmap
 - My own IP address is 10.0.0.1
 - \$ nmap -e eth0 -S 10.0.0.5 20.0.0.1
 - Use the network interface eth0 to send a spoofed packet (10.0.0.5) to 20.0.0.1

– . . .

Ping Flood Attack

 The computing device is flooded with tons of Internet Control Message Protocol (ICMP) ping response

Ping Flood Attack

*

 The computing device is flooded with tons of Internet Control Disrupt the use of Message Protocol (ICMP) ping response victim's system ICMP echo response ICMP echo request

Src: 10.0.0.5 → Dest: 20.0.0.1 0.0.0.5 → Dest: 20.0.0.1 $Src: 10.0.0.5 \rightarrow Dest: 20.0.0.1$ Src: 10.0.0.5 Dest: 20.0.0.1 **Attacker Victim** IP address: 10.0.0.5

Problem?

 The computing device is flooded with tons of Internet Control Disrupt the use of Message Protocol (ICMP) ping response victim's system ICMP echo response ICMP echo request
Src: 10.0.0.5 → Dest: 20.0.0.1 0.0.0.5 → Dest: 20.0.0.1 $Src: 10.0.0.5 \rightarrow Dest: 20.0.0.1$ Src: 10.0.0.5 Dest: 20.0.0.1 **Victim** Attacker IP address: 10.0.0.5 Limitation: disrupt the use of my (attacker) system

Smurf Attack

57

*

• Idea: sending ping request to broadcast address

Smurf Attack

Idea: sending ping request to broadcast address

Idea: sending ping reques

Limitation #2: There may not be many computers on the same network

Amplification Attack

- Idea: controlling the size of responses, not the number of responses
- Example: DNS Amplification Attack

Amplification Attack

- Idea: controlling the size of responses, not the number of responses
- We can leverage many protocols (which give long responses compared to short requests)
 - DNS: Domain Name Server
 - NTP: Network Time Protocol
 - SSDP: Simple Service Discovery Protocol
 - CHARGEN:

— ...

SYN Flooding Attack

TCP SYN Flooding Attack

63

- Establish a connection between the server and the client
 - Used in TCP/IP networks (e.g., the Internet)

Establish a connection between the server and the client

 Used in TCP/IP networks (e.g., the Internet) Generate random number Generate Server Alice random number SYN (seq=x, src=Alice) Backlog queue (x)Src: Alice SYN-ACK (seq=y, ack=x+1) Client seq: x Server seq: y

Store "half-open" connections while awaiting the third handshake message

Establish a connection between the server and the client

Establish a connection between the server and the client

Used in TCP/IP networks (e.g., the Internet)

Backlog queue
Removed

Generate

random number

Establish a connection between the server and the client

Used in TCP/IP networks (e.g., the Internet)

Generate random number (y)

Problem?

TCP SYN Flooding Attack

TCP SYN Flooding Attack

TCP SYN Flooding Attack

TCP SYN Flooding Attack

- Floods the server with SYN Packets
 - No further connections

Why is it Vulnerable?

73

TCP backlog issue - Limited size

OS	Backlog queue size
Linux 1.2.x	10
FreeBSD 2.1.5	128
WinNT 4.0	6

- -Backlog timeout: 3 minutes
- -Attacker need only send 128 SYN packets every 3 minutes

How to Mitigate SYN Flooding Attack?

- Set the Queue Size for TCP Backlog
 - \$ sysctl -w net.ipv4.tcp_max_syn_backlog=1024
 - ✓ Limitation: Arms race! Attackers can easily win
- Set the Firewalls
 - E.g., Blocks if similar packets exceed 10 per second

```
$ iptables -A INPUT -p TCP --dport 80 --syn -m limit 10/second -j ACCEPT
$ iptables -A INPUT -p TCP --dport 80 --syn -j DROP
```

✓ Limitation: Performance

SYN Cookie

SYN Cookie

• Idea: DO NOT store! DO recompute!

SYN Cookie

• Idea: DO NOT store! DO recompute!

Compute SYN Cookie SYN Cookie = $H(Server_{ip}, Client_{ip}, Server_{port}, Client_{port})$

Verify (Recompute)

 $ack == 1 + \overline{H(Server_{ip}, Client_{ip}, Server_{port}, Client_{port})}$

SYN Cookie

• Idea: DO NOT store! DO recompute!

\$ sysctl -w net.ipv4.tcp_syncookies=1

Compute SYN Cookie SYN Cookie = $H(Server_{ip}, Client_{ip},$

 $Server_{port}$, $Client_{port}$)

Verify (Recompute)

ack == $1 + H(Server_{ip}, Client_{ip}, Server_{port}, Client_{port})$

SYN Cookie

- Idea: DO NOT store! DO recompute!
- SYN Cookie = $H(Server_{ip}, Client_{ip}, Server_{port}, Client_{port})$

Secure enough?

SYN Cookie

- Idea: DO NOT store! DO recompute!
- SYN Cookie = $H(Server_{ip}, Client_{ip}, Server_{port}, Client_{port})$
- Limitation: SYN cookie value is **public** because: $H, Server_{ip}, Client_{ip}, Server_{port}, Client_{port}$ are all public
 - Attackers can send massive valid SYN cookie!

• Idea: $H(Server_{ip}, Client_{ip}, Server_{port}, Client_{port}, Secret)$ where Secret is randomly generated by the server

Botnet

Definition: Bot

- Bot (Zombie):
 - A software application that runs automated tasks over the Internet
 - Compromised computer controlled by malware (bot-code) without owner consent/knowledge

Definition: Botnet

- Botnet:
 - A collection of bots communicating with other similar programs in order to perform tasks

83

Botnet Threat

- Infects huge amount of computers
- Infected computers are under control of botnet attacker

- They can make profit for botnet attacker
 - -Infect new hosts
 - Send spam/phishing email
 - -Perform DDoS attacks for some rewards

— . . .

Command and Control (C&C) Server

- Essential for operation and support of botnet
- Two styles
 - Centralized
 - -P2P

Centralized C&C

- Pros: Simple to deploy, cheap, short latency for large scale attacks
- Cons: Easiest to eliminate

Centralized Botnet C&C

P2P C&C

- Pros: Resilient to failures, hard to discover, hard to defend
- Cons: Hard to launch large scale attacks
 - Because P2P technologies (Napster, Gnutella...) are currently only capable of supporting very small groups (<50 peers)

Peer-to-Peer Botnet

87

Summary

- Worm: first network attack
- Denial of Service (DoS)
 - Distributed DoS (DDoS)
 - Ping Flood Attack
 - Smurf Attack
 - Amplification Attack
 - SYN Flooding Attack
- SYN Flooding Attack
- Botnet

Question?