Stochastic Processes

University of Tehran

Instructor: Dr. Ali Olfat Fall 2024

Homework 5

Due: 1403/9/2

Problem 1

Let X(t) be a Markov stochastic process and assume $t_1 \leq t_2 \leq \cdots \leq t_n$. Prove that:

$$f_{X_1}\bigg(x_1;t_1\mid X(t_2)=x_2,\ldots,X(t_n)=x_n\bigg)=f_{X_1}\bigg(x_1;t_1\mid X(t_2)=x_2\bigg)$$

Problem 2

Let X(t) be Poisson process with uniform density λ . The process X(t) jumps at Poisson points $t_i \geq 0, i = 1, 2, \ldots$. Find the pdf of the random variable $T_n = t_{i+n} - t_i$ for $n \geq 1$.

Problem 3

Let $W(t) = \int_0^t X(\alpha) d\alpha$ be a Wiener process where X(t) is a zero-mean stationary white Gaussian process with $R_X(\tau) = N_0 \delta(\tau)$. Suppose we want to estimate W(2) given W(1) by MMSE criterion. Find the estimator and its mean square error.

Problem 4

Consider the Wiener process W(t) of problem 3, and define $Y(t) = W^2(t)$.

- (a) Find the pdf $f_Y(y;t)$.
- (b) Is Y(t) an independent increment process? Explain.

Problem 5

The stochastic process X(t) is defined as

$$X(t) = A\cos(2\pi Ft + \theta)$$

where A is a constant, F is a uniform random variable on [2, 4], and θ is a uniform random variable on $[0, 2\pi]$ and independent of F. Find the mean and the autocorrelation function of X(t). Is X(t) wide sense stationary?

Problem 6

Let X(t) be a zero-mean stationary (WSS) Gaussian process with autocorrelation function $R_X(\tau)$. Define the stochastic process $Y(t) = Ae^{jX(t)}$, where A is a Poisson random variable with parameter a and independent of X(t). Find the mean and the autocorrelation function of Y(t). Is Y(t) wide sense stationary?

Problem 7

Let X(t) be a zero-mean stationary (WSS) Gaussian process with autocorrelation $R_X(\tau) = sinc^2(\tau)$. Suppose that $X_1 = X(0), X_2 = X(\frac{1}{2})$ and $X_3 = X(1)$.

- (a) Determine the value of $Y = E\{X_3 \mid X_2\}$.
- (b) Find the value of $Pr\{|X_1 + 3Y| > 1\}$.
- (c) Define

$$\begin{cases} Z_1(t) = X_1 \cos(t) + X_3 \sin(t) \\ Z_2(t) = X_1 \sin(t) + X_3 \cos(t) \end{cases}$$

Find the autocorrelation and cross-correlation functions of $Z_1(t)$ and $Z_2(t)$. Are $Z_1(t)$ and $Z_2(t)$ jointly wide sense stationary? Are they individually wide sense stationary?

- (d) Find the pdf of $Z_3(t) = X_3t + X_2$.
- (e) Find the variance of $\frac{1}{n} \sum_{k=1}^{n} X(\frac{k}{2})$.

Problem 8

Let $U(n), n \in \mathbb{Z}$ be an i.i.d. sequence of Gaussian random variables, with zero mean and unit variance. Let X(t) denote the continuous-time random process obtained by linearly interpolating between the U's, i.e. X(t) = U(t) for any $t = n \in \mathbb{Z}$, and X(t) is affine on each interval of the form [n, n+1] for $n \in \mathbb{Z}$.

- (a) Find and sketch the first order marginal density $f_X(x;t)$.
- (b) Is the random process X(t) wide sense stationary? Justify your answer.