1. Explique sucintamente por que razão é necessário corrigir a lei de Ampére com a inclusão de uma corrente de deslocamento.

(3 valores)

2. Um fio condutor rectilíneo (muito comprido) transporta uma corrente alternada $I(t) = I_0 \cos(\omega t)$, que retorna por uma superfície cilíndrica condutora (raio a) coaxial com o fio (ver figura).

a) Mostre que, no espaço entre condutores, o campo eléctrico \vec{E} e o campo magnético \vec{B} são (em primeira aproximação) descritos por:

$$\vec{E} = \frac{\mu_0 \omega I_0 \sin(\omega t)}{2\pi} \ln\left(\frac{a}{s}\right) \hat{z}$$

$$\vec{B} = \frac{\mu_0 I_0 \cos(\omega t)}{2\pi s} \hat{\varphi}$$

Explique convenientemente as suas contas.

b) Obtenha a densidade de corrente de deslocamento e a corrente de deslocamento total que se estabelece no espaço entre condutores.

Nota: Pode ser útil saber que $\int_0^a s \ln(s) \ ds = \frac{a^2}{2} \ln(a) - \frac{a^2}{4}$.

c) Calcule o vector de Poynting e a densidade volúmica de momento linear electromagnético no espaço entre condutores.

(6 valores)

3. Uma esfera metálica de raio α e carga eléctrica Q é revestida por uma coroa esférica dieléctrica $(\vec{D} = \varepsilon \vec{E})$ de espessura $(b-\alpha)$ (ver figura).

- a) Calcule o campo eléctrico e o deslocamento eléctrico, usando o facto de, por simetria, $\nabla \times \vec{P} = 0$. Por que razão é necessário invocar esta última condição?
- b) Calcule a polarização induzida na coroa dieléctrica e as densidades superfíciais de cargas ligadas que se estabelecem nas suas superfícies. (Nota: $\vec{P}=\varepsilon_0\chi\vec{E}$)
- c) Calcule a energia desta configuração electrostática de cargas.

(6 valores)

4. Duas cargas de sinais opostos estão separadas por uma distância 2a. Determine a força que uma exerce sobre a outra integrando o tensor de Maxwell sobre o plano equidistante das cargas (ver figura). Explique as suas contas.

$$(T_{ij}=\varepsilon_0\big[E_iE_j-\frac{1}{2}\delta_{ij}E^2\big]+\frac{1}{\mu_0}\big[B_iB_j-\frac{1}{2}\delta_{ij}B^2\big]$$
)

Pode se útil lembrar que $\int_0^\infty \frac{a^2r}{(a^2+r^2)^3} dr = \frac{1}{(2a)^2}$

(5 valores)