Министерство образования и науки Российской Федерации

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

В.А. Булычев

ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Методические указания к выполнению домашней работы по дисциплине «Теория вероятностей и математическая статистика»

УДК 519.2 ББК 22.17 Б 84

необходимый теоретический материал.

© Булычев В.А.

© КФ МГТУ им. Н.Э.Баумана, 2018

Методические указания составлены в соответствии с учебным планом КФ МГТУ им.Н.Э.Баумана по направлениям подготовки бакалавров и специалистов.

Методические указания рассмотрены и одобрены:
- кафедрой «Высшая математика» (ФН3-КФ) протокол № 7 от 21.02.2018 г.
Зав. каф. ФНЗ-КФ К.фм.н., доцент Рамазанов А.К.
- методической комиссией факультета ФН-КФ протокол № 3 от 29.03.2018 г.
Председатель метод. комиссии к.х.н., доцент Анфилов К.Л.
- методической комиссией факультета КФ МГТУ им.Н.Э.Баумана протокол № 3_ от <i>ОЗ</i> , <i>ОУ</i> 2018 г.
Председатель метод. комиссии
Аннотация
В методических указаниях рассмотрены методы решения восьми задач типового варианта домашней работы «Основные понятия теории вероятностей» по дисциплине «Теория вероятностей и математическая статистика». Приведены примеры оформления и типовых расчетов. Даны ссылки на

ОГЛАВЛЕНИЕ

Введение
Задача №1
Задача №2
Задача №3
Задача №4
Задача №5
Задача №6
Задача №7
Задача №8
Список литературы

Введение

Цель домашней работы – закрепить и проверить основные умения и навыки, полученные студентами в курсе теории вероятностей:

- вычисление вероятностей случайных событий в заданных условиях;
- использование основных свойств и формул для вычисления вероятностей сложных событий;
- построение распределений случайных величин;
- вычисление числовых характеристик случайных величин по их распределениям.

Домашняя работа содержит 8 задач по следующим темам курса:

Задача №1 – вероятность суммы независимых событий.

Задача №2 – геометрическое определение вероятности.

Задача №3 – независимость событий; формулы сложения и умножения вероятностей.

Задача №4 – выбор с возвращением и без возвращения; испытания Бернулли; гипергеометрическое распределение вероятностей.

Задача №5 -формула Муавра-Лапласа.

Задача №6 – формулы сложения и умножения вероятностей; испытания Бернулли; формула полной вероятности.

Задача №7 – дискретные случайные величины; закон распределения; математическое ожидание и дисперсия.

Задача №8 – непрерывные случайные величины; плотность распределения; функция распределения; математическое ожидание и дисперсия.

Весь необходимый теоретический материал содержится в пособиях и учебниках [1]-[3]. Далее будут разобраны задачи типового варианта домашней работы.

Задача №1

Вероятность того, что выстрел попадёт в цель, равна 0,4. Сколько нужно сделать выстрелов, чтобы вероятность хотя бы одного попадания была больше 0,995?

Решение. Пусть

$$A_i = \{i$$
-ый выстрел попадёт в цель $\}$ $(i = 1, 2, ...)$.

Тогда

$$A = \{$$
хотя бы один из n выстрелов попадёт в цель $\} = A_1 + A_2 + ... + A_n$.

Поскольку все события A_i независимы, то удобно перейти к противоположному событию \overline{A} и найти P(A) по следующей формуле:

$$P(A) = 1 - P(\overline{A}) = 1 - P(\overline{A}_1 \cdot \overline{A}_2 \cdot ... \cdot \overline{A}_n) = 1 - P(\overline{A}_1) P(\overline{A}_2) ... P(\overline{A}_n) = 1 - (1 - 0.4)^n = 1 - 0.6^n$$

По условию задачи нам нужно найти такое n, чтобы P(A) > 0,995. Получаем показательное неравенство, которое можно решить простым подбором или логарифмированием:

$$1-0,6^{n} > 0,995$$

$$0,6^{n} < 1-0,995$$

$$0,6^{n} < 0,005$$

$$n > \frac{\ln 0,005}{\ln 0.6} \approx 10,372$$

Ответ: 11 выстрелов.

На некоторое обслуживающее устройство поступают две заявки. Каждая может поступить в любой момент времени в течение 160 минут. Время обслуживания первой заявки — 20 минут, второй — 40 минут. При поступлении заявки на занятое устройство она не принимается. При поступлении заявки на свободное устройство (даже в последний момент времени), она обслуживается. Найти вероятность того, что: **a)** обе заявки будут обслужены; **б)** будет обслужена ровно одна заявка.

Решение. Обозначим события, о которых идёт речь в задаче:

 $A = \{$ обе заявки будут обслужены $\};$

 $B = \{$ будет обслужена ровно одна заявка $\}$.

По условию задачи хотя бы одна заявка должна быть обслужена (т.е. не может быть не обслужено ни одной), поэтому события A и B являются противоположными, а значит, достаточно найти вероятность одного из них, например A - тогда P(B) = 1 - P(A).

Рассмотрим геометрическую модель данного опыта, которая состоит в том, что на отрезке [0;160] выбираются две случайные точки t_1 и t_2 (моменты поступления первой и второй заявок). Если $t_1 < t_2$, то событие A происходит тогда и только тогда, когда $t_1 + 20 \le t_2$:

Рис. 1.

Если $t_2 < t_1$, то событие A происходит тогда и только тогда, когда $t_2 + 40 \le t_1$:

Рис. 2.

Чтобы вычислить вероятность события A перейдём от выбора двух случайных точек t_1 и t_2 на отрезке к выбору случайной точки $M(t_1,t_2)$ в квадрате на плоскости Ot_1t_2 :

Рис. 3.

Множество благоприятных исходов для события A представляет собой объединение двух треугольников (на рис. 3 закрашены в голубой цвет):

- при $t_1 < t_2$ это треугольник $t_2 \ge t_1 + 20$;
- при $t_2 < t_1$ это треугольник $t_2 \le t_1 40$.

Площадь области A равна сумме площадей этих треугольников:

$$S(A) = \frac{1}{2}140^2 + \frac{1}{2}120^2 = 17000$$
.

По формуле геометрической вероятности получаем:

$$P(A) = \frac{17000}{160^2} = 0,664.$$

Ответ:

$$P(A) = 0,664$$

 $P(B) = 1 - P(A) = 0,336$

Задача №3

Задана структурная схема надежности системы, состоящей из пяти элементов (рис. 4). Событие A_i состоит в безотказной работе i-го элемента в течение некоторого промежутка времени. Вероятности безотказной работы элементов заданы: $P(A_i) = 0,6$ при i = 1,3,5 и $P(A_j) = 0,8$ при j = 2,4. Все события A_i независимы в совокупности. Событие A состоит в безотказной работе всей системы. Требуется: **a)** выразить событие A через A_i или \overline{A}_i (i=1,2,3,4,5); **b)** найти вероятность P(A) безотказной работы системы.

Рис. 4.

Решение. Выразим событие, стоящее в безотказной работе блока B (рис. 5):

Рис. 5.

Поскольку устройства 2 и 3 соединены последовательно, то $B = A_1 A_2$.

Выразим событие, стоящее в безотказной работе блока C (рис. 6):

Рис. 6

Поскольку устройства $\,B\,$ и 4 соединены параллельно, то $\,C=B+A_4=A_2A_3+A_4$.

Наконец, выразим событие A : $A = A_1 C A_5 = A_1 (A_2 A_3 + A_4) A_5$.

При вычислении вероятности P(A) будем пользоваться независимостью событий $A_1,...,A_5$.

$$P(B) = P(A_2A_2) = P(A_2)P(A_3) = 0.8 \cdot 0.6 = 0.48$$

$$P(C) = P(B + A_4) = P(B) + P(A_4) - P(B)P(A_4) = 0,48 + 0,8 - 0,48 \cdot 0,8 = 0,896$$

$$P(A) = P(A_1CA_5) = P(A_1)P(C)P(A_5) = 0.6 \cdot 0.896 \cdot 0.6 = 0.323$$

Ответ:

$$A = A_1(A_2A_3 + A_4)A_5$$
$$P(A) = 0.323$$

Задача №4

Из 15-ти тем, вынесенных на письменный экзамен по теории вероятностей, студент успел подготовить только 10. На экзамене он должен решить 6 задач. Найдите вероятность того, что среди них окажется ровно 2 по выученным темам при условии, что:

а) темы задач могут повторяться; б) темы всех задач разные.

Решение. В пункте **а) (выбор с возвращением)** мы имеем дело с испытаниями Бернулли. Будем считать успехом получение задачи по выученной теме. Тогда вероятность успеха $p = \frac{5}{15} = \frac{1}{3}$,

вероятность неудачи $q=1-p=\frac{2}{3}$. Студент получает 6 задач, - значит, проводится N=6 испытаний.

Требуется вычислить вероятность того, что в этих 6-ти испытаниях будет получено k=2 успеха. Используем для её вычисления формулу Бернулли:

$$P(A) = P_{N}(k) = C_{N}^{k} p^{k} q^{N-k}$$

$$P(A) = P_6(2) = C_6^2 \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^4 = 15 \cdot \frac{2^4}{3^6} = \frac{80}{243} = 0,329$$

В пункте **б)** (выбор без возвращения) можем считать, что из 15-ти тем одновременно выбираются 6, по которым будут даны задачи. Общее число равновозможных исходов такого опыта будет $C_{15}^6 = 5005$. Число благоприятных исходов вычисляется по правилу умножения: $C_5^2 \cdot C_{10}^4 = 2100$. По классической формуле вычисления вероятности (число благоприятных исходов делить на число всех возможных) получаем:

$$P(B) = \frac{C_5^2 \cdot C_{10}^4}{C_{15}^6} = \frac{2100}{5005} = \frac{60}{143} = 0,420$$

Ответ:

$$P(A) = 0.329$$

$$P(B) = 0,420$$

Задача №5

Вероятность успешной сдачи экзамена на получение водительских прав равна 0,6. Найдите вероятность того, что в группе из 180 претендентов экзамен сдадут не менее 100 человек.

Решение. Для решения этой задачи используем модель испытаний Бернулли. Будем рассматривать сдачу экзамена одним претендентом как одно испытание Бернулли с вероятностью успеха p=0,6. Всего проводится 180 таких испытаний. Нас интересует вероятность того, что число успехов будет больше или равно 100:

$$P(100;180) = ?$$

Поскольку N > 100 и $Np = 180 \cdot 0, 6 = 108 > 10$, то для вычисления этой вероятности можно использовать интегральную формулу Муавра-Лапласа:

$$P(100;180) = \Phi(x_2) - \Phi(x_1)$$
,

где $\Phi(x)$ - функция Лапласа,

$$x_2 = \frac{k_2 - Np}{\sqrt{Npq}} = \frac{180 - 108}{\sqrt{43, 2}} = \frac{72}{6,57} \approx 10,95$$
$$x_1 = \frac{k_1 - Np}{\sqrt{Npq}} = \frac{100 - 108}{\sqrt{43, 2}} = \frac{-8}{6,57} \approx -1,217$$

$$P(100;180) = \Phi(10,95) - \Phi(-1,217) = 0,5 + \Phi(1,217) = 0,5 + 0,388 = 0,888$$

Ответ: P(100;180) = 0,888.

Задача №6

В отдел технического контроля поступает партия, содержащая 25 изделий, среди которых имеется 5 бракованных. Контролер отбирает для проверки 3 изделия, при этом в бракованном изделии он обнаруживает брак с вероятностью 0,9. Партия бракуется, если среди трех отобранных для проверки изделий обнаружено хотя бы одно бракованное. Найдите вероятность того, что данная партия изделий будут забракована.

Решение. В этой задаче случайный эксперимент состоит из двух этапов:

- сначала из 25 изделий случайно выбираются 3;
- затем каждое из изделий тестируется на наличие брака, причём брак обнаруживается не наверняка, а с вероятностью 0,9.

Исходя из этого, решим задачу с использованием формулы полной вероятности. Рассмотрим полную систему гипотез:

 $H_0 = \{$ в полученной на первом этапе выборке 0 бракованных изделий $\}$;

 $H_1 = \{$ в полученной на первом этапе выборке 1 бракованное изделие $\}$;

 $H_2 = \{$ в полученной на первом этапе выборке 2 бракованных изделия $\};$

 $H_3 = \{$ в полученной на первом этапе выборке 3 бракованных изделия $\}$.

При выборе трёх деталей из 25-ти имеется C_{25}^3 равновозможных исходов. Количество благоприятных исходов для каждого из событий $H_0,...,H_3$ находим по формуле умножения:

$$m_0 = C_5^0 \cdot C_{20}^3$$
, $m_1 = C_5^1 \cdot C_{20}^2$, $m_2 = C_5^2 \cdot C_{20}^1$, $m_3 = C_5^3 \cdot C_{20}^0$.

Отсюда

$$P(H_0) = \frac{C_5^0 \cdot C_{20}^3}{C_{25}^3} = \frac{1 \cdot 1140}{2300} = 0,496;$$

$$P(H_1) = \frac{C_5^1 \cdot C_{20}^2}{C_{25}^3} = \frac{5 \cdot 190}{2300} = 0,413;$$

$$P(H_2) = \frac{C_5^2 \cdot C_{20}^1}{C_{25}^3} = \frac{10 \cdot 20}{2300} = 0,087;$$

$$P(H_3) = \frac{C_5^3 \cdot C_{20}^0}{C_{25}^3} = \frac{10 \cdot 1}{2300} = 0,00435.$$

Требуется найти вероятность события $A=\{$ в полученной выборке будет обнаружена хотя бы одна бракованная деталь $\}$. Рассмотрим противоположное событие $\overline{A}=\{$ в полученной выборке не будет обнаружено ни одной бракованной детали $\}$ и найдём его вероятность по формуле полной вероятности. Для этого вычислим сначала условные вероятности \overline{A} относительно $H_0,...,H_3$:

$$P(\overline{A} \mid H_0) = 1$$
, $P(\overline{A} \mid H_1) = 0.1$; $P(\overline{A} \mid H_2) = 0.1^2 = 0.01$; $P(\overline{A} \mid H_3) = 0.01^3 = 0.001$.

По формуле полной вероятности получаем:

$$P(\overline{A}) = P(H_0)P(\overline{A} | H_0) + P(H_1)P(\overline{A} | H_1) + P(H_2)P(\overline{A} | H_2) + P(H_3)P(\overline{A} | H_3) =$$

$$= 1 \cdot 0,496 + 0,1 \cdot 0,413 + 0,01 \cdot 0,087 + 0,001 \cdot 0,00435 = 0,538$$

Отсюда

$$P(A) = 1 - P(\overline{A}) = 1 - 0,538 = 0,462$$
.

Ответ:

$$P(A) = 0,462$$

Задача №7

Одновременно подбрасывают две игральные кости; x - число очков на первом кубике, y - на втором. Случайная величина $\xi = \frac{x-y}{2}$. Найдите а) закон распределения случайной величины ξ ; б) математическое ожидание $E(\xi)$; в) дисперсию $D(\xi)$ и стандартное отклонение $\sigma(\xi)$.

Решение. Эксперимент с двумя кубиками имеет 36 равновозможных исходов. Чтобы найти значения случайной величины $\xi = \frac{x-y}{2}$ и их вероятности, заполним таблицу значений ξ для каждого исхода опыта:

y	1	2	3	4	5	6
1	0	-0,5	-1	-1,5	-2	-2,5
2	0,5	0	-0,5	-1	-1,5	-2
3	1	0,5	0	-0,5	-1	-1,5
4	1,5	1	0,5	0	-0,5	-1
5	2	1,5	1	0,5	0	-0,5
6	2,5	2	1,5	1	0,5	0

а) Закон распределения случайной величины ξ представим в виде таблицы:

ξ	-2,5	-2	-1,5	-1	-0,5	0	0,5	1	1,5	2	2,5
D	1_	2	3	4	_5_	6	_5_	4	3		
I I	36	36	36	36	36	36	36	36	36	36	36

Для наглядности нарисуем полигон вероятностей:

б) Математическое ожидание можно вычислить несколькими способами:

C п о с о б $\ 1$. Посчитаем $\ E(\xi)$ по определению, используя полученный закон распределения:

$$E(\xi) = -2.5 \cdot \frac{1}{36} - 2 \cdot \frac{1}{36} - \dots + 2 \cdot \frac{1}{36} + 2.5 \cdot \frac{1}{36} = 0$$

С п о с о б 2 . Воспользуемся линейностью математического ожидания и выразим $E(\xi)$ через E(x) и E(y) :

$$E(\xi) = E\left(\frac{x-y}{2}\right) = \frac{1}{2}E(x) - \frac{1}{2}E(y) = \frac{1}{2}\cdot 3, 5 - \frac{1}{2}\cdot 3, 5 = 0$$

С п о с о б $\,$ 3 . Из симметрии закона распределения относительно точки $\,$ 0 сразу получаем, что $E(\xi)=0$.

в) Дисперсию тоже можно вычислить несколькими способами:

С п о с о б 1 . Посчитаем $D(\xi)$ по формуле

$$D(\xi) = E(\xi^2) - E^2(\xi)$$
.

Для этого сначала найдём закон распределения для $\,\xi^2\,$:

ξ^2	0	0,25	1	2,25	4	6,25
P	6	10	8	6	4	2
1	36	36	36	36	36	36

$$E(\xi^2) = 0 \cdot \frac{6}{36} + 0,25 \cdot \frac{10}{36} + 1 \cdot \frac{8}{36} + 2,25 \cdot \frac{6}{36} + 4 \cdot \frac{4}{36} + 6,25 \cdot \frac{2}{36} = \frac{2,5 + 8 + 13,5 + 16 + 12,5}{36} = \frac{52,5}{36} = 1,458$$

$$D(\xi) = E(\xi^2) - E^2(\xi) = 1,458 - 0^2 = 1,458$$

С п о с о б 2 . Воспользуемся тем, что случайные величины x и y независимы и выразим $D(\xi)$ через D(x) и D(y) :

$$D(\xi) = D\left(\frac{x-y}{2}\right) = \frac{1}{4}D(x) + \frac{1}{4}D(y) = \frac{1}{4} \cdot \frac{35}{12} + \frac{1}{4} \cdot \frac{35}{12} = \frac{35}{24} = 1,458$$

Стандартное отклонение находим как корень из дисперсии:

$$\sigma(\xi) = \sqrt{1,458} = 1,208$$
.

Ответ:

$$E(\xi) = 0$$

 $D(\xi) = 1,458$
 $\sigma(\xi) = 1,208$

Задача №8

Непрерывная случайная величина ξ имеет плотность распределения вероятностей

$$p(x) = \frac{3e^{-3|x|}}{2}$$
 при $-\infty < x < +\infty$.

- **а)** Постройте график плотности распределения вероятностей p(x).
- **б)** Найдите функцию распределения F(x) и построить её график.
- в) Вычислите вероятность попадания случайной величины в интервал (-1; 2).
- г) Найдите математическое ожидание, дисперсию и среднеквадратическое отклонение.

Решение. а) График p(x) легко получается из графика экспоненты элементарными преобразованиями:

Рис. 8.

б) Чтобы вычислить функцию распределения, избавимся от модуля и представим плотность в следующем виде:

$$p(x) = \begin{cases} \frac{3e^{3x}}{2}, & x < 0\\ \frac{3e^{-3x}}{2}, & x \ge 0 \end{cases}$$

Рассмотрим два случая:

1) при x < 0:

$$F(x) = \int_{-\infty}^{x} p(t)dt = \int_{-\infty}^{x} \frac{3e^{3t}}{2}dt = \frac{e^{3t}}{2} \Big|_{-\infty}^{x} = \frac{e^{3x}}{2}$$

2) при $x \ge 0$:

$$F(x) = \int_{-\infty}^{x} p(t)dt = \int_{-\infty}^{0} \frac{3e^{3t}}{2}dt + \int_{0}^{x} \frac{3e^{-3t}}{2}dt = \frac{1}{2} - \frac{e^{-3t}}{2} \Big|_{0}^{x} = \frac{1}{2} - \frac{e^{-3x}}{2} + \frac{1}{2} = 1 - \frac{e^{-3x}}{2}$$

Таким образом,

$$F(x) = \begin{cases} \frac{e^{3x}}{2}, x < 0\\ 1 - \frac{e^{-3x}}{2}, x \ge 0 \end{cases}$$

Построим график F(x):

Рис. 9.

в) Вычислить вероятность попадания случайной величины ξ в интервал можно с помощью функции распределения:

$$P(-1 < \xi < 2) = F(2) - F(-1) = \left(1 - \frac{e^{-6}}{2}\right) - \frac{e^{-3}}{2} = 0,974.$$

г) Найдём математическое ожидание $\,\xi\,$:

$$E(x) = \int\limits_{-\infty}^{+\infty} x \cdot p(x) dx = 0$$
 - в силу симметричности функции $p(x)$ относительно $x = 0$.

Дисперсию будем считать по формуле $D(\xi) = E(\xi^2) - E^2(\xi)$, поэтому найдём сначала $E(\xi^2)$:

$$E(\xi^{2}) = \int_{-\infty}^{+\infty} x^{2} \cdot p(x) dx = 2 \int_{-\infty}^{0} x^{2} \frac{3e^{3x}}{2} dx = \int_{-\infty}^{0} x^{2} de^{3x} = x^{2} e^{3x} \Big|_{-\infty}^{0} - \int_{-\infty}^{0} 2x e^{3x} dx =$$

$$= -\int_{-\infty}^{0} \frac{2}{3} x de^{3x} = -\frac{2}{3} x e^{3x} \Big|_{-\infty}^{0} + \int_{-\infty}^{0} \frac{2}{3} e^{3x} dx = \frac{2}{9} e^{3x} \Big|_{-\infty}^{0} = \frac{2}{9} = 0,222$$

$$D(\xi) = E(\xi^{2}) - E^{2}(\xi) = 0,222 - 0^{2} = 0,222$$

$$\sigma(\xi) = \sqrt{D(\xi)} = \sqrt{0,222} = 0,471$$

Ответ:

$$F(x) = \begin{cases} \frac{e^{3x}}{2}, x < 0\\ 1 - \frac{e^{-3x}}{2}, x \ge 0 \end{cases}$$

$$E(\xi) = 0$$

 $D(\xi) = 0,222$
 $\sigma(\xi) = 0,471$

Список литературы

- 1. Теория вероятностей: учебник для вузов/ В.А. Печинкин, О.И. [и др.] под ред. В.С. Зарубина, А.П.Крищенко. М.:Изд-во МГТУ им. Н.Э.Баумана, 2006. 456 с. (Сер. Математика в техническом университете, Вып. XVI).
- 2. Гмурман, В.Е. Теория вероятностей и математическая статистика: учеб.пособие для вузов / В.Е. Гмурман.- 12-е изд.- М.: Юрайт, 2014.- 479 с.
- 3. Рамазанов А.К., Рожкова Е.И. Теория вероятностей и математическая статистика: методические рекомендации для самостоятельной работы и выполнения домашних заданий. Калуга: КФ МГТУ им.Н.Э.Баумана, 2015.- 46 с.