Faculty: SIT

Semester: SUM'19

Course Title: Mathematics-II

Course Teachers: ALL

Time: 2 Hours

Department: CSE Exam: Term-Final Code: MAT-121 Sections: ALL

Total Marks: 40

Answer any 5 questions.

Question no. 1

- as the sum of a symmetric & a skew-symmetric matrix.
- (b). Give an example of a 6×6 skew-symmetric matrix.

Question no. 2

$$M = \begin{pmatrix} 5 & 0 & 0 \\ 111 & -14 & 0 \\ 802 & 9 & 17 \end{pmatrix}.$$

- (a). Find eigenvalues of M.
- (b). Find an spectrum of M5.
- (c). Find an spectrum of M-1.
- (d). Find an spectrum of M^T.

Question no. 3

- (a) Find M^{-1} if $M = \begin{pmatrix} -2 & 0 & -2 \\ -4 & -2 & 0 \\ 3 & 1 & -1 \end{pmatrix}$.
- (b). Give an example of a 6×6 orthogonal matrix.

Question no. 4

$$M = \begin{pmatrix} 9 & -2 & -5 & 2 & 4 \\ 5 & 3 & -9 & -1 & -2 \\ 4 & -5 & 4 & 3 & 6 \end{pmatrix}$$

- (a). Find the rank of M;
- (b). Find the RREF of M;
- (c). Find the NF of M.

Question no. 5

Solve:

$$9p - 2q - 5r + 2s = 4$$

 $5p + 3q - 9r - s = -2$
 $4p - 5q + 4r + 3s = 6$

Find the general solution. Find 2 particular solutions.

6 + 2

2

1.5

1.5 1

6

2

4

3

1

Question no. 6 Suppose $S(a,b) = (4a-2b, 4b, -b)$, $T(p,q,r) = (-q+2r, 3p-4r, r, p-q-r)$, $U(x,y,z) = (x+y, y-z, 271)$).
(a). Which of the above transformations are linear?	5
(b). Find ToS & ToS (2,-1)	2 +
Question no. 7	
(a). T means a 120° clockwise rotation. Find T(2,-4).	2
(b). If $w = (15,-10,-60)$ is sheared along Y-axis by factor $\frac{1}{5}$, then find $T(w)$.	2
(c). S is a reflection about the YZ-plane. Find S(-1, -2, -3).	2
(d). If T means 9 times dilation of a vector, find T(-1/3, 5/3).	2
Question no. 8 (answer any 8)	1×8
(a). How many eigenvalues do belong to a 3×5 matrix?	
(b). How many eigenvalues do belong to a 36×36 matrix?	
(c). S: $\mathbb{R}^6 \to \mathbb{R}^7$ is a linear transformation. Find S(0,0,0,0,0,0).	
(d). Find T(-117,15, 6), if T is an orthogonal projection on the ZX-plane.	
(e). Which matrices do have inverses?	
(f). $\Gamma\left(\frac{1}{2}\right) = ?$	
(g). $B(1,1) = ?$	
(h). Define the rank of a matix.	
(i). Evaluate: $275 \text{ tr}(I_8) - \text{tr} (345 I_5) + 2003 \text{ tr} (B)$, where B is any skew-symmetric matrix.	
(j). Write 1 difference between a matrix & a determinant.	
(k). Give an example of a 8×8 scalar matrix.	

: the end: