АСТРАДЬ

Содержание

1	Небесная механика	2
	1.1 Закон сохранения энергии и типы орбит	2

1 Небесная механика

1.1 Закон сохранения энергии и типы орбит

Для движения тела в гравитационном массы m в поле массы M со скорость v на расстоянии r от гравитационного центра справедливо следующее соотношение:

$$\frac{mv^2}{2} - \frac{GMm}{r} = E_0,\tag{1}$$

где E_0 — константа, равна сумме кинетической и потенциальной энергии тела. Если $E_0>0$, то траектория тела — $\mathit{eunep6ona}$, ветви которой асимптотически приближаются к двум прямым.

Если $E_0 = 0$, то траектория тела — *параболу*. При параболической и гиперболический траекториях движение не ограничено.

Если $E_0 < 0$, то траектория тела — *эллипс*. При эллиптической траектории движение ограничено.

Параболическая скорость — минимальная скорость, при которой тело покидает центральную массу M. Она также называется вторая космическая скорость. Выражение для нее имеет следующий вид:

$$v_2 = \sqrt{\frac{2GM}{r}} \tag{2}$$

На рис. 1 представлены примеры возможных траекторий тела относительно центрального (точка ${\bf C}$).

При $v_0 > v_2$ (параболическая скорость) — тело движется по гиперболе, при $v_0 = v_2$ — тело движется по параболе, а при $v_0 < v_2$ — по эллипсу.

Рис. 1: Возможные траектории тела