Exercice 1 - corrigé

On s'intéresse au problème d'optimisation linéaire suivant : maximiser f(x, y) = 4x + 8y, sous les contraintes

$$-3x + 2y < 10 \tag{1}$$

$$x - 2y \ge -12 \tag{2}$$

$$3x + 4y \leq 44$$

$$x, y \geqslant 0$$
(3)

On initialise avec le sommet $S_0 = (0,0)$:

1. Création du sommet S_1 :

- (a) Choisissez-vous de commencer par augmenter x, ou y? Pourquoi? On commence par faire augmenter y, car le coefficient de y dans f, 8, est plus grand que le coefficient de x.
- (b) Jusqu'à quelle valeur peut-on augmenter cette variable en restant dans les contraintes? Quelle est l'équation la plus contraignante? Quelles sont les coordonnées de S_1 ?

On remplace x par 0 dans le système de contraintes :

On peut donc augmenter y jusqu'à 5. L'équation la plus contraignante est l'équation (1). On obtient $S_1 = (0, 5)$.

2. Création du sommet S_2 :

- (a) Si on quitte S_1 pour un autre sommet, selon quelle direction se déplacera-t-on? L'équation la plus contraignante à l'étape précédente étant la (1), on suivra la direction de la droite $D_1: y = 5 + 1.5x$. Comme on a augmenté y en premier, on suivra cette direction en augmentant x.
- (b) Quitter S_1 selon cette direction fera-t-il augmenter f? Si on suit cette direction en augmentant x, f vaudra:

$$f(x,y) = 4x + 8 \times (5 + 1.5x) = 4x + 40 + 12x = 16x + 40.$$

Comme 16 > 0, f augmentera alors.

(c) Si oui, en allant le plus loin possible dans cette direction, que trouvez-vous comme sommet S_2 ?

On remplace y par 5 + 1.5x dans le système de contraintes :

On peut donc aller jusqu'à x = 1, l'équation la plus contraignante étant la (2).

3. Création du sommet S_3 :

- (a) Si on quitte S_2 pour un autre sommet, selon quelle direction se déplacera-t-on? Comme l'équation la plus contraignante est la (2), on se déplacera le long de la droite $D_2: y = 6 + 0.5x$, en augmentant x.
- (b) Quitter S_2 selon cette direction fera-t-il augmenter f? Le long de la direction D_2 , la valeur de f est

$$f(x,y) = 4x + 8 \times (6 + 0.5x) = 4x + 48 + 4x = 8x + 48.$$

Et cette valeur augmente lorsque x augmente car 8 > 0.

(c) Si oui, en allant le plus loin possible dans cette direction, que trouvez-vous comme sommet S_3 ?

On remplace y par (6 + 0.5x) dans le système de contraintes

On augmenter x jusqu'à x=4, l'équation la plus contraignante étant la (3). On obtient $S_3=(4,8)$.

4. Création du sommet S_4 :

- (a) Si on quitte S_3 pour un autre sommet, selon quelle direction se déplacera-t-on? L'équation la plus contraignante à l'étape précédente étant la (3), on se déplacera selon $D_3: y = 11 - 0.75x$ en augmentant x.
- (b) Quitter S_3 selon cette direction fera-t-il augmenter f? Selon cette direction f vaut

$$f(x,y) = 4x + 8 \times (11 - 0.75x) = 4x + 88 - 6x = 88 - 2x.$$

Comme x augmente et -2 négatif, on voit que f diminue si on se déplace dans cette direction. Il ne faut donc pas partir du point S_3 .

 S_3 est donc le sommet de l'ensemble admissible en lequel f réalise son maximum.