Exercice 1. Deux calculs pour s'échauffer en ce matin glacial.

Nous noterons I et J les deux intégrales à calculer.

1. On réalise une intégration par parties avec les deux fonctions arctan et $x \mapsto -\frac{1}{2}x^{-2}$, toutes deux de classe \mathcal{C}^1 sur $\left[\frac{1}{\sqrt{2}},1\right]$:

$$I = \int_{1/\sqrt{3}}^{1} \frac{\arctan(x)}{x^3} dx = \left[-\frac{1}{2} x^{-2} \arctan(x) \right]_{\frac{1}{\sqrt{3}}}^{1} - \int_{1/\sqrt{3}}^{1} -\frac{1}{2} x^{-2} \cdot \frac{1}{1+x^2} dx$$
$$= -\frac{1}{2} \left[\frac{\pi}{4} - \frac{3\pi}{6} \right] + \frac{1}{2} \int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{x^2 (1+x^2)} dx,$$

en calculant $\arctan(1) = \frac{\pi}{4}$ et $\arctan(\frac{1}{\sqrt{3}}) = \frac{\pi}{6}$. En écrivant

$$\frac{1}{x^2(1+x^2)} = \frac{(1+x^2) - x^2}{x^2(1+x^2)} = \frac{1}{x^2} - \frac{1}{1+x^2},$$

on obtient

$$I = -\frac{\pi}{4} + \frac{1}{2} \left[-x^{-1} \right]_{\frac{1}{\sqrt{3}}}^{1} - \frac{1}{2} \left[\arctan(x) \right]_{\frac{1}{\sqrt{3}}}^{1},$$

soit après simplification

$$I = \frac{\pi}{12} + \frac{1}{2} \left(\sqrt{3} - 1 \right).$$

2. On pose
$$x = \sin t$$
.
$$\begin{vmatrix} x & \sin(t) \\ dx & \cos(t)dt \\ x = 0 & t = 0 \\ x = 1 & t = \frac{\pi}{2} \end{vmatrix}$$

$$J = \int_0^1 x^2 \sqrt{1 - x^2} dx = \int_0^{\frac{\pi}{2}} \sin^2(t) \sqrt{1 - \sin^2(t)} \cos(t) dt.$$

Or, pour $t \in [0, \frac{\pi}{2}]$, on a

$$\sqrt{1 - \sin^2(t)} = \sqrt{\cos^2 t} = |\cos t| = \cos(t).$$

Ainsi,

$$J = \int_0^{\frac{\pi}{2}} \sin^2(t) \cos^2(t) dt.$$

Un soupçon de trigonométrie pour linéariser (on pouvait s'en sortir avec de la duplication, mais les formules d'Euler, c'était très bien aussi!)

$$\sin^2(t)\cos^2(t) = \left(\frac{1}{2}\sin(2t)\right)^2 = \frac{1}{4}\sin^2(2t) = \frac{1-\cos(4t)}{8}.$$

Ainsi,

$$J = \int_0^{\frac{\pi}{2}} \frac{1 - \cos(4t)}{8} dt = \frac{1}{8} \int_0^{\frac{\pi}{2}} 1 dt - \frac{1}{2} \cdot 0 : \qquad \boxed{J = \frac{\pi}{16}}.$$

Exercice 2. Un théorème de point fixe.

- 1. La partie A est <u>non vide</u>. En effet, $f(a) \in [a,b]$ donc $a \le f(a)$ et $a \in A$. La partie A est aussi <u>majorée</u> par b. D'après l'axiome de la borne supérieure, $s = \sup(A)$ existe. Puisque $a \in A$, $a \le s$ et puisque b est un majorant de A, $s \le b$ (s est le plus petit des majorants) : $s \in [a,b]$.
- 2. Soit $x \in A$. Puisque s est un majorant de A, on a $x \leq s$. La croissance de f donne alors $f(x) \leq f(s)$. Or, $x \leq f(x)$ par définition de A donc par transitivité, $x \leq f(s)$. Ce qui précède prouve que f(s) est un majorant de A
- 3. On vient de prouver que f(s) est un majorant de A et le nombre s est par définition le plus petit des majorants de A: $s \leq f(s)$.
- 4. De l'inégalité précédente, par croissance de f, on déduit que $f(s) \leq f(f(s))$. Ceci montre que $f(s) \in A$ puis que $f(s) \leq s$ puisque s majore s.
- 5. Par antisymétrie, on conclut que f(s) = s. Ce qui achève de prouver que f possède un point fixe dans [a, b].

Exercice 3. Équation d'Euler.

1. (a) L'équation caractéristique a pour racine double -1 et $x \mapsto e^{-2x}$ est une solution particulière de (E'). Son ensemble de solutions S' est donc

$$S' = \{ x \mapsto e^{-2x} + \lambda x e^{-x} + \mu e^{-x} \mid (\lambda, \mu) \in \mathbb{R}^2 \}.$$

(b) La fonction exp est dérivable sur $\mathbb R$ et à valeurs dans $I=\mathbb R_+^*$, intervalle sur lequel y est dérivable. Ceci prouve que f est dérivable sur $\mathbb R$ comme composée. On montrerait de même que y_0' est dérivable sur $\mathbb R$. Pour $x\in\mathbb R$, on a

$$f'(x) = e^x y_0'(e^x)$$
 et $f''(x) = e^{2x} y_0''(e^x) + e^x y_0'(e^x)$.

(c) Pour x un réel, on

$$f''(x) + 2f'(x) + f(x) = e^{2x}y_0''(e^x) + e^xy_0'(e^x) + 2e^xy_0'(e^x) + y_0(e^x)$$
$$= (e^x)^2y_0''(e^x) + 3e^xy_0'(e^x) + y_0(e^x)$$
$$= \frac{1}{(e^x)^2} = e^{-2x}$$

où on a utilisé que y_0 est solution de (E).

Le calcul précédent démontre bien que f est solution de (E').

(d) D'après la question 1, il existe un couple $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall x \in \mathbb{R} \quad f(x) = e^{-2x} + \lambda x e^{-x} + \mu e^{-x}.$$

Ainsi, pour $x \in \mathbb{R}_+^*$,

$$y_0(x) = f(\ln(x)) = \frac{1}{x^2} + \lambda \frac{\ln(x)}{x} + \frac{\mu}{x}.$$

2. Notons S l'ensemble des solutions de l'équation (E). Nous avons prouvé que

$$S \subset \left\{ x \mapsto \frac{1}{x^2} + \lambda \frac{\ln(x)}{x} + \frac{\mu}{x} \mid (\lambda, \mu) \in \mathbb{R}^2 \right\}.$$

- 3. Il faut prouver l'autre inclusion, ce qui se fait bien.
- 4. Notons S'' l'ensemble des solutions de l'équation (E''). L'équation homogène se résout sans difficulté et la variation de la constante amène une solution particulière. On obtient

$$S'' = \left\{ x \mapsto -\frac{1}{x^2} + \frac{\lambda}{x} \mid \lambda \in \mathbb{R} \right\}$$

- 5. On dérive deux fois, on injecte... et ça marche.
- 6. La fonction y_0 est deux fois dérivable en tant que solution de (E) donc g est deux fois dérivable comme produit. Pour $x \in I$, on calcule

$$g(x) = xy_0(x)$$
 $g'(x) = y_0(x) + xy'_0(x)$, $g''(x) = 2y'_0(x) + xy''_0(x)$.

Pour prouver que g' est solution de (E''), calculons

$$xg''(x) + g'(x) = x^2 y_0''(x) + 2xy_0'(x) + xy_0'(x) + y_0(x) = 0,$$

puisque y_0 est solution de (E).

7. La question 2 nous donne que g' appartient à l'ensemble S'' déterminé en question 1 : il existe donc un réel λ tel que

$$\forall x \in I \quad g'(x) = -\frac{1}{x^2} + \frac{\lambda}{x}.$$

En primitivant, on en déduit l'existence d'une constante supplémentaire μ telle que

$$\forall x \in I \quad g(x) = \frac{1}{x} + \lambda \ln(x) + \mu.$$

Il nous reste à diviser par x pour obtenir que

$$\forall x \in I \quad y_0(x) = \frac{1}{x^2} + \lambda \frac{\ln(x)}{x} + \frac{\mu}{x}.$$

Ceci établit la même inclusion que dans la question 2, et nous concluons comme dans la question 3.

Problème. Étude d'une suite récurrente.

- 1. On rédige cette récurrence triviale dans les règles de l'art, puisque c'est la première de la copie.
- 2. Pour tout $n \in \mathbb{N}^*$, $u_n \ge \sqrt{n} \ge 1 > 0$. Alors $\frac{u_{n+1}}{u_n} = \frac{u_n}{\sqrt{n}} \ge 1$: la suite est croissante. Par ailleurs $u_n \ge \sqrt{n}$ donne par minoration: $\lim u_n = +\infty$.
- 3. On a $u_n^2 \to \ell^2$ par produit, et $\sqrt{n} \to +\infty$. Par opérations, sur les limites : $\frac{u_n^2}{\sqrt{n}} \to 0$. Par ailleurs $u_{n+1]} \to \ell$. En passant à la limite dans la relation de récurrence définissant u:
- 4. (a) On raisonne par récurrence sur n: c'est vrai pour n=k par hypothèse. Soit n un entier supérieur à k. On suppose $u_n < \sqrt{n}$. Alors $u_n^2 < n$ (on rappelle que $u_n \ge 0$) et puisque $u_{n+1} = \frac{u_n^2}{\sqrt{n}}$,

 $\ell = 0$

$$u_{n+1} < \frac{n}{\sqrt{n}} \quad \operatorname{car} u_n^2 < n$$

$$u_{n+1} < \sqrt{n} \quad \operatorname{donc} \quad u_{n+1} < \sqrt{n+1} \quad \operatorname{car} \sqrt{n} < \sqrt{n+1}.$$

$$u_n < \sqrt{n} \text{ pour tout } n \ge k$$

(b) Soit $n \geq k$. On vient de montrer que $\frac{u_n}{\sqrt{n}} < 1$. Puisque $u_n \geq 0$, on en déduit que $\frac{u_n^2}{\sqrt{n}} \leq u_n$, c'est-à-dire : $u_{n+1} \leq u_n$.

la suite
$$(u_n)_{n>k}$$
 est décroissante

(c) On sait que (u_n) est <u>minorée</u> par 0 et que (u_n) est <u>décroissante</u> à partir du rang k. On en déduit que u converge grâce au théorème de la limite monotone. D'après 3, sa limite ne peut être que 0.

$$(u_n)$$
 converge vers 0

5. Si la suite u converge, sa limite est nulle d'après 3. Par conséquent, à partir d'un certain rang on aura $u_n < 1$ (prendre « $\varepsilon = \frac{1}{2}$ » dans la définition de la convergence).

Réciproquement, s'il existe k > 2 tel que $u_k < 1$ alors a fortiori $u_k < \sqrt{k}$; la question 4 nous assure alors de la convergence de la suite.

$$(u_n)$$
 converge $\iff \exists k > 2 \text{ tq } u_k < 1$

6. Pour tout $n \in \mathbb{N}$, $v_{n+1} - v_n = w_{n+1} > 0$.

$$|v_n|_{n\in\mathbb{N}}$$
 est strictement croissante

7. On calcule:

$$v_n = \sum_{k=1}^n \frac{1}{2^{k+1}} \ln \left(k \left(1 + \frac{1}{k} \right) \right)$$

$$= \sum_{k=1}^n \frac{1}{2^{k+1}} \ln k + \sum_{k=1}^n \frac{1}{2^{k+1}} \ln \left(1 + \frac{1}{k} \right)$$

$$= \frac{1}{2} \sum_{k=1}^n \frac{1}{2^k} \ln k + \sum_{k=1}^n \frac{1}{2^{k+1}} \ln \left(1 + \frac{1}{k} \right)$$

$$= \frac{1}{2} \sum_{l=0}^{n-1} \frac{1}{2^{l+1}} \ln(l+1) + \sum_{k=1}^n \frac{1}{2^{k+1}} \ln \left(1 + \frac{1}{k} \right)$$

$$= \left[\frac{1}{2} v_{n-1} + \sum_{k=1}^n \frac{1}{2^{k+1}} \ln \left(1 + \frac{1}{k} \right) \right].$$

Or
$$v_{n-1} = v_n - w_n$$
, donc (...) $v_n = -w_n + \sum_{k=1}^n \frac{1}{2^k} \ln\left(1 + \frac{1}{k}\right)$.

8. Pour k=1 on obtient $\frac{1}{2^k} \ln \left(1+\frac{1}{k}\right) = \frac{1}{2} \ln 2$. Les autres termes de la somme étant positifs :

$$\left| \frac{1}{2} \ln 2 \le \sum_{k=1}^{n} \frac{1}{2^k} \ln \left(1 + \frac{1}{k} \right) \right|.$$

Par ailleurs, en utilisant la remarque de l'énoncé :

$$\sum_{k=1}^{n} \frac{1}{2^k} \ln\left(1 + \frac{1}{k}\right) \le \sum_{k=1}^{n} \frac{\ln 2}{2^k}$$

$$\sum_{k=1}^{n} \frac{1}{2^k} \ln\left(1 + \frac{1}{k}\right) \le (\ln 2) \underbrace{\left(1 - \frac{1}{2^n}\right)}_{\le 1}$$

$$\sum_{k=1}^{n} \frac{1}{2^k} \ln\left(1 + \frac{1}{k}\right) \le \ln 2$$

9. On sait que la suite (v_n) est <u>croissante</u> (question 6). De plus pour $n \ge 1$, d'après les questions 7 et 8,

$$v_n = \sum_{k=1}^n \frac{1}{2^k} \ln\left(1 + \frac{1}{k}\right) - w_n$$

$$v_n \le \sum_{k=1}^n \frac{1}{2^k} \ln\left(1 + \frac{1}{k}\right) \quad \text{car } w_n \ge 0$$

$$v_n \le \ln 2.$$

La suite (v_n) est donc majorée. On conclut que

$$(v_n)$$
 converge.

10. Des questions précédentes, il résulte :

$$\forall n \in \mathbb{N}^*$$
 : $\frac{1}{2} \ln 2 \le v_n - w_n \le \ln 2$.

Or $\lim v_n = V$ et $\lim w_n = 0$ (croissances comparées). Il vient par passage à la limite

$$\boxed{\frac{1}{2}\ln 2 \le V \le \ln 2}.$$

11. Pour tout $k \ge 1$, $\ln u_{k+1} = \ln \frac{u_k^2}{\sqrt{k}} = 2 \ln u_k - \frac{1}{2} \ln k$

 $\ln u_{k+1} - 2\ln u_k = -\frac{1}{2}\ln k \quad \text{donc} \quad \frac{1}{2^{k+1}}\ln u_{k+1} - \frac{1}{2^k}\ln u_k = -\frac{1}{2^{k+2}}\ln k.$

En sommant de k = 1 à k = n - 1, on trouve par télescopage

$$\frac{1}{2^n} \ln u_n - \frac{1}{2} \ln u_1 = -\sum_{k=1}^{n-1} \frac{1}{2^{k+2}} \ln k.$$

En isolant $\ln(u_n)$, $\ln u_n = 2^{n-1} \ln a - 2^{n-2} v_{n-2}$

12. Pour $k \geq 2$, on a :

 $u_k < 1 \iff \ln u_k < 0 \iff 2^{k-1} \ln a - 2^{k-2} v_{k-2} < 0 \iff 2 \ln a < v_{k-2}.$ La question 5 conclut.

13. On suppose $a < e^{V/2}$. Puisque $\lim v_n = V$ et $V > 2 \ln a$, on aura $v_n > 2 \ln a$ à partir d'un certain rang. En particulier il existe k > 2 tel que $v_k > 2 \ln a$, ce qui implique la convergence de la suite \mathbf{u} d'après la question précédente. On sait dans ce cas que $\lim u_n = 0$ (question 3).

$$(u_n)$$
 converge vers 0 si $a < e^{V/2}$

14. Si $a \ge e^{\frac{V}{2}}$, montrer que $\lim u_n = +\infty$. On suppose $a \ge e^{V/2}$. Puisque $(v_n)_{n \in \mathbb{N}}$ est strictement croissante de limite V, on aura

$$\forall k > 2 : v_{k-2} < V \le 2 \ln a.$$

D'après la question 12, la suite (u_n) est divergente. L'hypothèse de la question 4 est

$$\exists k \in \mathbb{N}^* : u_k < \sqrt{k}.$$

Elle n'est pas satisfaite car la conclusion de la question 4 n'est pas vérifiée. On a donc

$$\forall k \in \mathbb{N}^* : u_k \ge \sqrt{k}.$$

D'après la question 2, $\lim u_n = +\infty$.

$$\lim u_n = +\infty \text{ si } a > e^{V/2}$$