

Recap: JL lemma

JL lemma. For any $\varepsilon \in (0,1/2)$, point set $S \subset \mathbb{R}^d$ of cardinality |S| = n, and $k \in \mathbb{N}$ such that $k \geq \frac{16 \ln n}{\varepsilon^2}$, there exists a linear map $f : \mathbb{R}^d \to \mathbb{R}^k$ such that

$$(1-arepsilon) \| {m x} - {m y} \|_2^2 \ \le \ \| f({m x}) - f({m y}) \|_2^2 \ \le \ (1+arepsilon) \| {m x} - {m y} \|_2^2 \quad ext{for all } {m x}, {m y} \in {m S} \, .$$

Main probabilistic lemma

 \exists random linear map $m{M}\colon \mathbb{R}^d o \mathbb{R}^k$ such that, for any $m{u} \in \mathcal{S}^{d-1}$,

$$\mathbb{P}\Big(\Big|\|\boldsymbol{M}\boldsymbol{u}\|_2^2-1\Big|>arepsilon\Big) \leq 2\exp\Big(-\Omega(karepsilon^2)\Big).$$

JL lemma is consequence of main probabilistic lemma as applied to collection $T \subset S^{d-1}$ of $|T| = \binom{n}{2}$ unit vectors (+ union bound):

$$\mathbb{P}\bigg(\max_{\boldsymbol{u}\in\mathcal{T}}\Big|\|\boldsymbol{M}\boldsymbol{u}\|_2^2-1\Big|>\varepsilon\bigg) \leq |T|\cdot 2\exp\Big(-\Omega(k\varepsilon^2)\Big).$$

Related question

For $T \subseteq S^{d-1}$, expected maximum deviation

$$\mathbb{E} \max_{\boldsymbol{u} \in T} \left| \|\boldsymbol{M}\boldsymbol{u}\|_{2}^{2} - 1 \right| \leq ?$$

General questions

For arbitrary collection of zero-mean random variables $\{X_t : t \in T\}$:

$$\mathbb{E} \max_{t \in T} X_t \leq ?$$

$$\mathbb{E}\max_{t\in T}|X_t| \leq ?$$

Finite collections

Let $\{X_t : t \in T\}$ be a *finite* collection of *v*-subgaussian and mean-zero random variables. Then

$$\mathbb{E} \max_{t \in T} X_t \leq \sqrt{2\nu \ln |T|}.$$

- ▶ Doesn't assume independence of $\{X_t : t \in T\}$.
 - (Independent case is the worst.)
- ▶ Get bound on $\mathbb{E} \max_{t \in \mathcal{T}} |X_t|$ as corollary.
 - Apply result to collection

$${X_t: t \in T} \cup {-X_t: t \in T}.$$

5

Proof

Starting point is identity from two invertible operations ($\lambda > 0$):

$$\mathbb{E} \max_{t \in T} X_t = \frac{1}{\lambda} \ln \exp \left(\mathbb{E} \max_{t \in T} \lambda X_t \right)$$

Apply Jensen's inequality:

$$\leq \ \frac{1}{\lambda} \ln \mathbb{E} \exp \biggl(\max_{t \in T} \lambda X_t \biggr) \ = \ \frac{1}{\lambda} \ln \mathbb{E} \biggl(\max_{t \in T} \exp (\lambda X_t) \biggr)$$

▶ Bound max with sum, and use linearity of expectation:

$$\leq \frac{1}{\lambda} \ln \sum_{t \in \mathcal{T}} \mathbb{E} \exp(\lambda X_t)$$

► Exploit *v*-subgaussian property:

$$\leq \frac{1}{\lambda} \ln \sum_{t \in T} \exp \left(v \lambda^2 / 2 \right) = \frac{\ln |T|}{\lambda} + \frac{v \lambda}{2}$$

• Choose appropriate λ to conclude.

Alternative proof

Integrate tail bound: for any non-negative random variable Y,

$$\mathbb{E}(Y) = \int_0^\infty \mathbb{P}(Y \geq y) \, \mathrm{d}y.$$

For $Y := \max_{t \in T} |X_t|$, gives same result up to constants.

7

Infinite collections

For *infinite* collection of zero-mean random variables $\{X_t : t \in T\}$:

$$\mathbb{E} \sup_{t \in T} X_t \leq ?$$

- ▶ In general, can go $\rightarrow \infty$.
- ▶ To bound, must exploit *correlations* among the X_t .
 - ▶ E.g., in $\left\{\left|\|\boldsymbol{M}\boldsymbol{u}\|_2^2-1\right|:\boldsymbol{u}\in T\right\}$ for $T\subseteq S^{d-1}$, the random variables for \boldsymbol{u} and $\boldsymbol{u}+\boldsymbol{\delta}$, for small $\boldsymbol{\delta}$, are highly correlated.

Convex hulls of linear functionals

Let $T \subset \mathbb{R}^d$ be a finite set of vectors, and let X be a random vector in \mathbb{R}^d such that $\langle w, X \rangle$ is v-subgaussian for every $w \in T$. Then

$$\mathbb{E}\max_{\tilde{\boldsymbol{w}}\in\mathsf{conv}(T)}\langle\tilde{\boldsymbol{w}},\boldsymbol{X}\rangle \ \leq \ \sqrt{2v\ln|T|}\,.$$

Proof:

- ▶ Write $\tilde{\boldsymbol{w}} \in \text{conv}(T)$ as $\tilde{\boldsymbol{w}} = \sum_{\boldsymbol{w} \in T} p_{\boldsymbol{w}} \boldsymbol{w}$ for some $p_{\boldsymbol{w}} \geq 0$ that sum to one.
- Observe that

$$\langle \tilde{\boldsymbol{w}}, \boldsymbol{x} \rangle = \sum_{\boldsymbol{w} \in T} p_{\boldsymbol{w}} \langle \boldsymbol{w}, \boldsymbol{x} \rangle \leq \max_{\boldsymbol{w} \in T} \langle \boldsymbol{w}, \boldsymbol{x} \rangle.$$

- ▶ So max over $\tilde{\boldsymbol{w}} \in \text{conv}(T)$ is at most max over $\boldsymbol{w} \in T$.
- Conclude by applying previous result for finite collections.

9

Euclidean norm

Let \pmb{X} be a random vector such that $\langle \pmb{u}, \pmb{X} \rangle$ is v-subgaussian for every $\pmb{u} \in S^{d-1}$. Then

$$\mathbb{E} \, \| \boldsymbol{X} \|_2 \ = \ \mathbb{E} \, \max_{\boldsymbol{u} \in S^{d-1}} \langle \boldsymbol{u}, \boldsymbol{X} \rangle \ \leq \ 2 \sqrt{2 v \ln 5^d} \ = \ O \Big(\sqrt{v d} \Big) \, .$$

Key step of proof:

For any $\varepsilon > 0$, there is a finite subset $\mathcal{N} \subset S^{d-1}$ of cardinality $|\mathcal{N}| \leq (1+2/\varepsilon)^d$ such that, for every $\boldsymbol{u} \in S^{d-1}$, there exists $\boldsymbol{u}_0 \in \mathcal{N}$ with

$$\|\boldsymbol{u}-\boldsymbol{u}_0\|_2 \leq \varepsilon$$
.

- ▶ Such a set \mathcal{N} is called an ε -net for S^{d-1} .
- We need a 1/2-net, of cardinality at most 5^d .

Proof

▶ Write $u \in S^{d-1}$ as

$$\boldsymbol{u} = \boldsymbol{u}_0 + \delta \boldsymbol{q}$$
,

where $\boldsymbol{u}_0 \in \mathcal{N}$, $\boldsymbol{q} \in S^{d-1}$, $\delta \in [0, 1/2]$, so

$$\langle \boldsymbol{u}, \boldsymbol{X} \rangle = \langle \boldsymbol{u}_0, \boldsymbol{X} \rangle + \delta \langle \boldsymbol{q}, \boldsymbol{X} \rangle.$$

Observe that

$$\max_{\boldsymbol{u} \in S^{d-1}} \langle \boldsymbol{u}, \boldsymbol{X} \rangle \leq \max_{\boldsymbol{u}_0 \in \mathcal{N}} \langle \boldsymbol{u}_0, \boldsymbol{X} \rangle + \max_{\delta \in \left[0, 1/2\right]} \max_{\boldsymbol{q} \in S^{d-1}} \delta \langle \boldsymbol{q}, \boldsymbol{X} \rangle$$

$$\leq \max_{\boldsymbol{u}_0 \in \mathcal{N}} \langle \boldsymbol{u}_0, \boldsymbol{X} \rangle + \frac{1}{2} \max_{\boldsymbol{q} \in S^{d-1}} \langle \boldsymbol{q}, \boldsymbol{X} \rangle .$$

- ▶ So max over S^{d-1} is at most twice max over \mathcal{N} .
- ► Conclude by applying previous result for finite collections.

11

ε -nets for unit sphere

There is an ε -net for S^{d-1} of cardinality at most $(1+2/\varepsilon)^d$.

Proof:

- ▶ Repeatedly select points from S^{d-1} so that each selected point has distance more than ε from all previously selected points.
- ▶ Equivalent: repeatedly select points from S^{d-1} as long as balls of radius $\varepsilon/2$, centered at selected points, are disjoint.
 - (Process must eventually stop.)
- ▶ When process stops, every $u \in S^{d-1}$ is at distance at most ε from selected points.
 - ▶ I.e., selected points form an ε -net for S^{d-1} .
- ▶ If select N points, then the N balls of radius $\varepsilon/2$ are disjoint, and they are contained in a ball of radius $1 + \varepsilon/2$. So

$$N \operatorname{vol}((\varepsilon/2)B^d) \le \operatorname{vol}((1+\varepsilon/2)B^d)$$
.

▶ This implies $N \leq (1 + 2/\varepsilon)^d$.

Remarks

All previous results also hold with random variables are (v, c)-subexponential (possibly with c > 0), with a slightly different bound: e.g.,

$$\mathbb{E} \max_{t \in T} X_t \leq \max \left\{ \sqrt{2v \ln |T|}, \ 2c \ln |T| \right\}.$$

► Also easy to get probability tail bounds (rather than expectation bounds).

13

Subspace embeddings

Subspace JL lemma

Consider $k \times d$ random matrix M whose entries are iid N(0, 1/k). For a $W \subseteq \mathbb{R}^d$ be a subspace of dimension r,

$$\mathbb{E}\max_{\boldsymbol{u}\in S^{d-1}\cap W}\Bigl|\|\boldsymbol{M}\boldsymbol{u}\|_2^2-1\Bigr| \leq O\biggl(\sqrt{\frac{r}{k}}+\frac{r}{k}\biggr).$$

Bound is at most ε when $k \geq O\left(\frac{r}{\varepsilon^2}\right)$.

Implies existence of mapping $M: \mathbb{R}^d \to \mathbb{R}^k$ that approximately preserves all distances between points in W.

15

Proof of subspace JL lemma

Let columns of Q be ONB for W. Then

$$\max_{\boldsymbol{u} \in S^{d-1} \cap W} \left| \|\boldsymbol{M} \boldsymbol{u}\|_{2}^{2} - 1 \right| = \max_{\boldsymbol{u} \in S^{r-1}} \left| \boldsymbol{u}^{\top} \boldsymbol{Q}^{\top} (\boldsymbol{M}^{\top} \boldsymbol{M} - \boldsymbol{I}) \boldsymbol{Q} \boldsymbol{u} \right|$$

$$= \max_{\boldsymbol{u}, \boldsymbol{v} \in S^{r-1}} \boldsymbol{u}^{\top} \boldsymbol{Q}^{\top} (\boldsymbol{M}^{\top} \boldsymbol{M} - \boldsymbol{I}) \boldsymbol{Q} \boldsymbol{v} .$$

Lemma. For any $u, v \in S^{r-1}$,

$$X_{\boldsymbol{u},\boldsymbol{v}} := \boldsymbol{u}^{\top} \boldsymbol{Q}^{\top} (\boldsymbol{M}^{\top} \boldsymbol{M} - \boldsymbol{I}) \boldsymbol{Q} \boldsymbol{v}$$

is (O(1/k), O(1/k))-subexponential.

Proof of subspace JL lemma (continued)

For $u, v \in S^{r-1}$, $X_{u,v} := u^{\top} Q^{\top} (M^{\top} M - I) Q v$.

Let \mathcal{N} be 1/4-net for S^{r-1} .

▶ Write $\boldsymbol{u}, \boldsymbol{v} \in S^{r-1}$ as

$$\boldsymbol{u} = \boldsymbol{u}_0 + \varepsilon \boldsymbol{p}, \quad \boldsymbol{v} = \boldsymbol{v}_0 + \delta \boldsymbol{q},$$

where $\mathbf{u}_0, \mathbf{v}_0 \in \mathcal{N}$, $\mathbf{p}, \mathbf{q} \in \mathcal{S}^{r-1}$ and $\varepsilon, \delta \in [0, 1/4]$, so

$$X_{\boldsymbol{u},\boldsymbol{v}} = X_{\boldsymbol{u}_0,\boldsymbol{v}_0} + \varepsilon X_{\boldsymbol{p},\boldsymbol{v}} + \delta X_{\boldsymbol{u}_0,\boldsymbol{q}}.$$

► Therefore

$$\max_{\boldsymbol{u},\boldsymbol{v}\in S^{r-1}} X_{\boldsymbol{u},\boldsymbol{v}} \leq \max_{\boldsymbol{u}_0,\boldsymbol{v}_0\in\mathcal{N}} X_{\boldsymbol{u}_0,\boldsymbol{v}_0} + \frac{1}{2} \max_{\boldsymbol{p},\boldsymbol{q}\in S^{r-1}} X_{\boldsymbol{p},\boldsymbol{q}},$$

which implies

$$\max_{\boldsymbol{u},\boldsymbol{v}\in S^{r-1}} X_{\boldsymbol{u},\boldsymbol{v}} \leq 2 \max_{\boldsymbol{u}_0,\boldsymbol{v}_0\in\mathcal{N}} X_{\boldsymbol{u}_0,\boldsymbol{v}_0}.$$

Conclude by applying previous result for finite collections.

17

Application to least squares

Big data least squares

- ▶ Input: matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, vector $\mathbf{b} \in \mathbb{R}^n \ (n \gg d)$.
- ▶ Goal: find $\mathbf{x} \in \mathbb{R}^d$ so as to (approx.) minimize $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$.
- ▶ Computation time: $O(nd^2)$.
- ► Can we speed this up?

19

Simple approach

- ▶ Pick $m \ll n$.
- Let M be random $m \times n$ matrix (e.g., entries iid N(0, 1/m), Fast JL Transform).
- ▶ Let $\widetilde{\textbf{\textit{A}}} := \textbf{\textit{MA}}$ and $\widetilde{\textbf{\textit{b}}} := \textbf{\textit{Mb}}$.
- ▶ Obtain solution \hat{x} to least squares problem on (\tilde{A}, \tilde{b}) .

Simple (somewhat loose) analysis

- ▶ Let *W* be subspace spanned by columns of *A* and *b*.
 - ▶ Dimension is at most d + 1.
- ▶ If $m \ge O(d/\varepsilon^2)$, then **M** is subspace embedding for W:

$$(1-arepsilon)\|oldsymbol{x}\|_2^2 \leq \|oldsymbol{M}oldsymbol{x}\|_2^2 \leq (1+arepsilon)\|oldsymbol{x}\|_2^2 \quad ext{for all } oldsymbol{x} \in W$$
 .

▶ Let $\mathbf{x}_{\star} := \operatorname{arg\,min}_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$.

$$\begin{aligned} \|\mathbf{A}\hat{\mathbf{x}} - \mathbf{b}\|_2^2 &\leq \frac{1}{1 - \varepsilon} \|\mathbf{M}(\mathbf{A}\hat{\mathbf{x}} - \mathbf{b})\|_2^2 \\ &\leq \frac{1}{1 - \varepsilon} \|\mathbf{M}(\mathbf{A}\mathbf{x}_{\star} - \mathbf{b})\|_2^2 \\ &\leq \frac{1 + \varepsilon}{1 - \varepsilon} \|\mathbf{A}\mathbf{x}_{\star} - \mathbf{b}\|_2^2. \end{aligned}$$

▶ Running time (using FJLT): $O((m+n)d \log n + md^2)$.

21

Another perspective: random sampling

- ▶ Pick random sample of $m \ll n$ of rows of (\mathbf{A}, \mathbf{b}) ; obtain solution $\hat{\mathbf{x}}$ for least squares problem on the sample.
- ▶ Hope \hat{x} is also good for the original problem.
- ▶ In statistics, this is the *random design* setting for regression.
 - ▶ Random sample of covariates $\widetilde{\mathbf{A}} \in \mathbb{R}^{m \times d}$ and responses $\widetilde{\mathbf{b}} \in \mathbb{R}^m$ from full population (\mathbf{A}, \mathbf{b}) .
 - Least squares solution \hat{x} on (\tilde{A}, \tilde{b}) is *MLE* for linear regression coefficients under linear model with Gaussian noise.
 - ▶ Can also regard \hat{x} as *empirical risk minimizer* among all linear predictors under squared loss.

Simple random design analysis

- ▶ Let $\mathbf{x}_{\star} := \operatorname{arg\,min}_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$.
- With high probability over choice of random sample,

$$\|\mathbf{A}\hat{\mathbf{x}} - \mathbf{b}\|_2^2 \leq \left(1 + O\left(\frac{\kappa}{m}\right)\right) \cdot \|\mathbf{A}\mathbf{x}_{\star} - \mathbf{b}\|_2^2$$

(up to lower-order terms), where

$$\kappa := n \cdot \max_{i \in [n]} \|(\boldsymbol{A}^{\top} \boldsymbol{A})^{-1/2} \boldsymbol{A}^{\top} \boldsymbol{e}_i\|_2^2$$

and e_i is *i*-th coordinate basis vector.

- Write thin SVD of \boldsymbol{A} as $\boldsymbol{A} = \boldsymbol{USV}^{\top}$, where $\boldsymbol{U} \in \mathbb{R}^{n \times d}$. Then $(\boldsymbol{A}^{\top}\boldsymbol{A})^{-1/2}\boldsymbol{A}^{\top} = (\boldsymbol{VS}^2\boldsymbol{V}^{\top})^{-1/2}\boldsymbol{VSU}^{\top} = \boldsymbol{VU}^{\top}$.
- ▶ So $\kappa = n \cdot \max_{i \in [n]} \|\boldsymbol{U}^{\top} \boldsymbol{e}_i\|_2^2$.
 - ▶ $\|\boldsymbol{U}^{\top}\boldsymbol{e}_i\|_2^2$ is statistical leverage score for *i*-th row of \boldsymbol{A} : measures how much "influence" *i*-th row has on least squares solution.

23

Statistical leverage

- ▶ *i*-th statistical leverage score: $\ell_i := \|\boldsymbol{U}^{\top}\boldsymbol{e}_i\|_2^2$, where $\boldsymbol{U} \in \mathbb{R}^{n \times d}$ is matrix of left singular vectors of \boldsymbol{A} .
- Two extreme cases:

$$oldsymbol{U} = egin{bmatrix} oldsymbol{I}_{d imes d} \ oldsymbol{0}_{(n-d) imes d} \end{bmatrix} \qquad \Rightarrow \quad n \cdot \max_{i \in [n]} \ell_i = n \, .$$
 $oldsymbol{U} = rac{1}{\sqrt{n}} iggl[oldsymbol{H}_n oldsymbol{e}_1 & oldsymbol{H}_n oldsymbol{e}_2 & \cdots & oldsymbol{H}_n oldsymbol{e}_d iggr] \quad \Rightarrow \quad n \cdot \max_{i \in [n]} \ell_i = d \, ,$

where \boldsymbol{H}_n is $n \times n$ Hadamard matrix.

- First case: first *d* rows are the only rows that matter.
- ► Second case: all *n* rows equally important.

Ensuring small statistical leverage

- ► To ensure situation is more like second case, apply random rotation (e.g., randomized Hadamard transform) to **A** and **b**.
 - ▶ Randomly mixes up rows of (**A**, **b**) so no single row is (much) more important than another.
 - ▶ Get $n \cdot \max_{i \in [n]} \ell_i = O(d + \log n)$ with high probability.
- ▶ To get $1 + \varepsilon$ approximation ratio, i.e.,

$$\|\mathbf{A}\hat{\mathbf{x}} - \mathbf{b}\|_2^2 \leq (1 + \varepsilon) \cdot \|\mathbf{A}\mathbf{x}_{\star} - \mathbf{b}\|_2^2$$

suffices to have

$$m \geq O\left(\frac{d + \log n}{\varepsilon}\right).$$

25

Application to compressed sensing

Under-determined least squares

- ▶ Input: matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, vector $\mathbf{b} \in \mathbb{R}^n$ $(n \ll d)$.
- ▶ **Goal**: find sparsest $\mathbf{x} \in \mathbb{R}^d$ so as to minimize $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$.
- ▶ NP-hard in general.
- ▶ Suppose $\mathbf{b} = \mathbf{A}\bar{\mathbf{x}}$ for some $\bar{\mathbf{x}} \in \mathbb{R}^d$ with $nnz(\bar{\mathbf{x}}) \leq k$.
 - ▶ I.e., \bar{x} is k-sparse.
 - ▶ Is \bar{x} the (unique) sparsest solution?
 - ▶ If so, how to find it?

27

Null space property

Lemma. Null space of \boldsymbol{A} does not contain any non-zero 2k-sparse vectors \iff every k-sparse vector $\bar{\boldsymbol{x}} \in \mathbb{R}^d$ is the unique solution to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{A}\bar{\boldsymbol{x}}$.

- ▶ **Proof**. (⇒) Take any k-sparse vectors x and y with Ax = Ay. Want to show x = y.
 - ▶ Then $\mathbf{x} \mathbf{y}$ is 2k-sparse, and $\mathbf{A}(\mathbf{x} \mathbf{y}) = \mathbf{0}$.
 - ▶ By assumption, null space of \boldsymbol{A} does not contain any non-zero 2k-sparse vectors.
 - ▶ So x y = 0, i.e., x = y.
- ▶ (\Leftarrow) Take any 2k-sparse vector \mathbf{z} in the null space of \mathbf{A} . Want to show $\mathbf{z} = \mathbf{0}$.
 - ▶ Write it as z = x y for some k-sparse vectors x and y with disjoint supports.
 - ▶ Then $\mathbf{A}(\mathbf{x} \mathbf{y}) = \mathbf{0}$, and hence $\mathbf{x} = \mathbf{y}$ by assumption.
 - But x and y have disjoint support, so it must be that x = y = 0, so z = 0.

Null space property from subspace embeddings

If **A** is $n \times d$ random matrix with iid N(0,1) entries, then under what conditions is there no non-zero 2k-sparse vector in its null space?

- ▶ Want: for any 2k-sparse vector \mathbf{z} , $\mathbf{A}\mathbf{z} \neq \mathbf{0}$, i.e., $\|\mathbf{A}\mathbf{z}\|_2^2 > 0$.
- ▶ Consider a particular choice $\mathcal{I} \subseteq [d]$ of $|\mathcal{I}| = 2k$ coordinates, and the corresponding subspace $W_{\mathcal{I}}$ spanned by $\{e_i : i \in \mathcal{I}\}$.
 - Every 2k-sparse z is in $W_{\mathcal{I}}$ for some \mathcal{I} .
- ▶ Sufficient for **A** to be 1/2-subspace embedding for $W_{\mathcal{I}}$ for all \mathcal{I} :

$$\frac{1}{2} \| \pmb{z} \|_2^2 \le \| \pmb{A} \pmb{z} \|_2^2 \le \frac{3}{2} \| \pmb{z} \|_2^2$$
 for all $2k$ -sparse \pmb{z} .

29

Null space property from subspace embeddings (continued)

- ▶ Say **A** fails for \mathcal{I} if it is not a 1/2-subspace embedding for $W_{\mathcal{I}}$.
- ► Subspace JL lemma:

$$\mathbb{P}(\mathbf{A} \text{ fails for } \mathcal{I}) \leq 2^{O(k)} \exp(-\Omega(n)).$$

▶ Union bound over all choices of \mathcal{I} with $|\mathcal{I}| = 2k$:

$$\mathbb{P}(\boldsymbol{A} \text{ fails for some } \mathcal{I}) \leq \binom{d}{2k} 2^{O(k)} \exp(-\Omega(n)).$$

▶ To ensure this is, say, at most 1/2, just need

$$n \geq O\left(k + \log\left(\frac{d}{2k}\right)\right) = O(k + k \log(d/k)).$$

Restricted isometry property

 (ℓ, δ) -restricted isometry property (RIP):

$$(1-\delta)\|\pmb{z}\|_2^2 \le \|\pmb{A}\pmb{z}\|_2^2 \le (1+\delta)\|\pmb{z}\|_2^2$$
 for all ℓ -sparse \pmb{z} .

- Many algorithms can recover unique sparsest solution under RIP (with $\ell = O(k)$ and $\delta = \Omega(1)$).
 - ▶ E.g., Basis pursuit, Lasso, orthogonal matching pursuit.