4.1 Линеаризация дифференциальных уравнений систем автоматического регулирования.

Положим, что динамическое уравнение звена имеет произвольный нелинейный вид:

假设连杆的动力学方程具有任意非线性形式:

$$F(x_1, x_2, \dot{x}_2, \dot{x}_3, \dot{x}_3, \dot{x}_3, \dot{x}_3) = \phi(f, \dot{f}) \tag{4.1}$$

В общем случае нелинейное уравнение приводится к линейному путем линеаризации.

在一般情况下,非线性方程通过线性化转化为线性方程。

Допустим, что установившийся процесс имеет место при некоторых постоянных значениях

$$x_1 = x_1^0, x_2 = x_2^0, x_3 = x_3^0, f = f^0$$
.

Тогда уравнение установившегося состояния для данного звена можно записать в виде :

假设在某些常数值 $x_1 = x_1^0, x_2 = x_2^0, x_3 = x_3^0, f = f^0$ 下存在稳定过程。

那么, 该环节稳定状态的方程可以写成如下形式

$$F(x_1^0, x_2^0, 0, x_3^0, 0, 0, 0) = \phi(f^0, 0)$$
 (4.2)

Рис.4.1.

В основе линеаризации нелинейных уравнений лежит представление о том, что в исследуемом динамическом процессе переменные x_1, x_2, x_3 изменяются так, что их отклонение от установившихся значений x_1^0, x_2^0, x_3^0 остается все время малым. Обозначим указанные отклонения через $\Delta x_1, \Delta x_2, \Delta x_3$

非线性方程线性化的基础是这样一种观点,即在研究的动态过程中,变量 x_1,x_2,x_3 的变化方式使得它们相对于稳定值 x_1^0,x_2^0,x_3^0 的偏差始终保持很小。我们用 $\Delta x_1,\Delta x_2,\Delta x_3$ 来表示这些偏差。

$$x_1 = x_1^0 + \Delta x_1, \ x_2 = x_2^0 + \Delta x_2, \ x_3 = x_3^0 + \Delta x_3, \ \dot{x}_2 = \dot{x}_2^0 + \Delta \dot{x}_2, \ \dot{x}_3 = \dot{x}_3^0 + \Delta \dot{x}_3, \ \dot{x}_3 = \ddot{x}_3^0 + \Delta \ddot{x}_3, \ \ddot{x}_3 = \ddot{x}_3^0 + \Delta \ddot{x}_3, \ \ddot{x}_3 = \ddot{x}_3^0 + \Delta \ddot{x}_3.$$

Рис.4.2.

Если установившееся значение не зависит от времени, то

如果设定的值不依赖于时间,那么

$$\dot{x}_2=\Delta\dot{x}_2, \qquad \dot{x}_3=\Delta\dot{x}_3, \qquad \ddot{x}_3=\Delta\ddot{x}_3, \qquad \ddot{x}_3=\Delta\ddot{x}_3.$$

Условие малости обычно выполняется. Внешнее воздействие f не зависит от работы автоматической системы, изменение его может быть произвольным, и поэтому правая часть уравнения обычно линеаризации не подлежит (хотя в отдельных случаях это возможно).

小条件通常是满足的,**外部作用f不依赖于自动系统的运行**,其变化可能是任意的,因此线性化方程的右侧通常不适用(尽管在个别情况下这是可能的)。

Разложим функцию F в ряд и оставим только слагаемые первого порядка малости

将函数F展开为级数,并只保留一阶无穷小项

$$F^{0} + \left(\frac{\partial F}{\partial x_{1}}\right)^{0} \cdot \Delta x_{1} + \left(\frac{\partial F}{\partial x_{2}}\right)^{0} \cdot \Delta x_{2} + \left(\frac{\partial F}{\partial \dot{x}_{2}}\right)^{0} \cdot \Delta \dot{x}_{2} + \left(\frac{\partial F}{\partial x_{3}}\right)^{0} \cdot \Delta x_{3} + \left(\frac{\partial F}{\partial \dot{x}_{3}}\right)^{0} \cdot \Delta \dot{x}_{3} + \left(\frac{\partial F}{\partial \dot{x}_{3}}\right)^{0} \cdot \Delta \ddot{x}_{3} + \left(\frac{\partial F}{\partial \dot{x}_{3}}\right)^{0} \cdot \Delta \ddot{x}_{3} + \dots = \phi(f, \dot{f})$$

$$where \quad \left(\frac{\partial F}{\partial q_{j}}\right)^{0} = \left(\frac{\partial F}{\partial q_{j}}\right)$$

$$(4.3)$$

$$when \qquad q_j = q_j^0(q_j = x_1, x_2, \ldots) \qquad and \quad F^0 = F(x_1^0, x_2^0, 0, x_3^0, 0, 0, 0).$$

Все частные производные в полученном выражении постоянные коэффициенты.

所得表达式中的所有偏导数均为常数系数。

Они будут переменными, если функция F содержит в явном виде t, или если $x_1^0(t), x_2^0(t), x_3^0(t)$ 如果函数F中明确包含t,或者 $x_1^0(t), x_2^0(t), x_3^0(t)$,它们将成为变量

Вычтя из уравнения (4.3) уравнение установившегося состояния и отбросив члены второго и более порядка малости получим линеаризованное уравнение

从方程(4.3)中减去稳态方程,并忽略二阶及更高阶的小量,我们将得到线性化方程。

$$\left(\frac{\partial F}{\partial x_{1}}\right)^{0} \cdot \Delta x_{1} + \left(\frac{\partial F}{\partial x_{2}}\right)^{0} \cdot \Delta x_{2} + \left(\frac{\partial F}{\partial \dot{x}_{2}}\right)^{0} \cdot \Delta \dot{x}_{2} + \left(\frac{\partial F}{\partial x_{3}}\right)^{0} \cdot \Delta x_{3} + \left(\frac{\partial F}{\partial \dot{x}_{3}}\right)^{0} \cdot \Delta \dot{x}_{3} + \left(\frac{\partial F}{\partial \dot{x}_{3}}\right)^{0} \cdot \Delta \dot{x}_{3} + \left(\frac{\partial F}{\partial \dot{x}_{3}}\right)^{0} \cdot \Delta \ddot{x}_{3} + \ldots = \phi(f, \dot{f}) - \phi(f^{0}, 0)$$

$$(4.4)$$

Полученное уравнение описывает динамический процесс в системе, но:

- 1. является приближенным;
- 2. неизвестными функциями времени являются не полные x_1, x_2, x_3 , а их отклонения $\Delta x_1, \Delta x_2, \Delta x_3$;
- 3. полученное уравнение является линейным относительно $\Delta x_1, \Delta x_2, \Delta \dot{x}_2, \Delta x_3, \dots, \Delta \ddot{x}_3$ с постоянными коэффициентами.

得到的方程描述了系统中的动态过程,但是:

- 1. 该方程是近似的
- 2. 关于时间的未知函数不是完整的 x_1, x_2, x_3 ,而是它们的偏差 $\Delta x_1, \Delta x_2, \Delta x_3$;
- 3. 得到的方程对于 $\Delta x_1, \Delta x_2, \Delta \dot{x}_2, \Delta x_3, \ldots, \Delta \ddot{x}_3$ 是线性的,且系数为常数。

Уравнение (4.4) называется **дифференциальным уравнением звена** (системы) в отклонениях, или **уравнением в вариациях**. Геометрическая интерпретация **процесса линеаризации** показана на рис.4.3. Видно, что линеаризация эквивалентна переходу начала координат в точку C.

方程(4.4)被称为**环节(系统)的偏差微分方程**,或**变分方程**。线性化过程的几何解释如图4.3所示。可以看出,线性化相当于将坐标原点移动到点C。

Следует отметить, что линеаризация недопустима в системах со скачкообразными(跳跃式的) зависимостями (релейные системы, сухое трение и др.). Преобразуем линеаризованное уравнение (4.4). Запишем выходную величину и ее производные в левой части, а входную и все остальные - в правой. Разделим обе части преобразованного уравнения на $\left(\frac{\partial F}{\partial x_3}\right)^0$ для того, чтобы сама выходящая величина записывалась в уравнении с коэффициентом 1.

需要指出的是,线性化在具有跳跃式依赖关系的系统(继电器系统、干摩擦等)中是不可行的。我们对线性化方程(4.4)进行变换。将输出量及其导数写在方程左边,而输入量及其他所有量写在右边。将变换后的方程两边同时除以 $\left(\frac{\partial F}{\partial x_3}\right)^0$,以便使输出量在方程中的系数为1。

Введем при этом следующие обозначения:

在此我们引入以下符号:

$$egin{aligned} &rac{\left(rac{\partial F}{\partial ilde{x}_3}
ight)^0}{\left(rac{\partial F}{\partial x_3}
ight)^0} = T_3^3; & rac{\left(rac{\partial F}{\partial ilde{x}_3}
ight)^0}{\left(rac{\partial F}{\partial x_3}
ight)^0} = T_2^2; & rac{\left(rac{\partial F}{\partial ilde{x}_3}
ight)^0}{\left(rac{\partial F}{\partial x_3}
ight)^0} = T_1; \ & -rac{\left(rac{\partial F}{\partial x_2}
ight)^0}{\left(rac{\partial F}{\partial x_3}
ight)^0} = K_2; & -rac{\left(rac{\partial F}{\partial ilde{x}_2}
ight)^0}{\left(rac{\partial F}{\partial x_3}
ight)^0} = K_2'; & rac{f(t)-f^0}{\left(rac{\partial F}{\partial x_3}
ight)^0} = \phi_1. \end{aligned}$$

Тогда уравнение (4.4.) примет вид:

$$T_3^3 \Delta \ddot{x}_3 + T_2^2 \Delta \ddot{x}_3 + T_1 \Delta \dot{x}_3 + \Delta x_3 = k_1 \Delta x_1 + k_2 \Delta x_2 + k_2' \Delta \dot{x}_2 + \phi_1$$

или в операторной форме:

$$(T_3^3p^3 + T_2^2p^2 + T_1p + 1)\Delta x_3 = k_1\Delta x_1 + (k_2'p + k_2)\Delta x_2 + \phi_1$$
(4.5)

Если
$$\left(\frac{\partial F}{\partial x_3}\right)^0$$
=0,то все члены уравнения (4.4) делят на $\left(\frac{\partial F}{\partial \dot{x}_3}\right)^0$ и т.д.

Разделим левую и правую части уравнения (4.5) на выражение, стоящее в скобках слева и введем обозначения:

将方程(4.5)的左右两边同时除以左边括号中的表达式,并引入以下符号:

$$W_1(p) = rac{K_1}{T_3^3 p^3 + T_2^2 p^2 + T_1 p + 1}; \quad W_2(p) = rac{K_2' p + K_2}{T_3^3 p^3 + T_2^2 p^2 + T_1 p + 1};
onumber \ W_\phi(p) = rac{\phi_1}{T_3^3 p^3 + T_2^2 p^2 + T_1 p + 1}.$$

Тогда можно записать:

$$\Delta x_3 = W_1(p)\Delta x_1 + W_2(p)\Delta x_2 + W_{\phi}(p)\phi_1 \tag{4.6}$$

В дальнейшем значок Δ будем опускать, подразумевая под x_1, x_2, x_3 малые отклонения величины. В этом случае систему можно представить в соответствии с рис.4.4.

此后,我们将省略符号 Δ ,认为 x_1 、 x_2 、 x_3 是该量的微小偏差。在这种情况下,系统可以按照图4.4所示来表示。

Рис.4.4.←

Если обозначить отклонение выходной величины через x_2 , а входной через x_1 , то вместо (4.5) можно записать:

如果用 x_2 表示输出量的偏差,用 x_1 表示输入量的偏差,那么可以写成 (4.5) 的形式:

$$(T_3^3 p^3 + T_2^2 p_2 + T_1 p + 1) \mathbf{x}_2 =$$

$$= \mathbf{K}_1 y_1 + (K_2' + K_2) x_1 + \phi_1$$
 (4.7)

В зависимости от вида левой и правой части уравнения (4.7) приняты следующие названия звеньев:

根据方程(4.7)左右两边的形式,采用了以下环节名称:

N÷	Наименование левой части	Уравнение⊲
1←	Идеальное⊂	x_2 \leftarrow
2←	Апериодическое 1-го порядка $^{\scriptscriptstyle riangle}$	$(T_1p+1)\mathbf{x}_2 \leftarrow$
3←	Апериодическое 2-го порядка<□	$(T_2^2 p^2 + T_1 p + 1) x_2 ; T_1 \ge 2T_2 $
4←	Колебательное←	$(T_2^2 p^2 + T_1 p + 1) x_2 ; T_1 < 2T_2 $
5←	Гармоническое колебательное	$(T_2^2 p^2 + 1) x_2 \in$
	Неустойчивое апериодическое 1-го порядка ^с	(11) 2
7←	Неустойчивое апериодическое 2-го порядка [□]	$(T_2^2 p^2 - T_1 p + 1) x_2 ; T_1 \ge 2T_2 < 1$

N÷	Наименование правой части⊖	Уравнение←
1	$\Pi pocmoe^{\subset}$	Kx_1 \leftarrow
2←	Дифференцирующее⊖	$\mathit{Kpx}_1{\mathrel{arphi}}$
3←	Интегрирующее⊖	$\frac{K}{p}x_1$
4←	C введением производной $^{\scriptscriptstyle extsf{C}}$	$(K+K'p)x_1$ \leftarrow
5←	С введением интеграла	$\left(K + \frac{K'}{p}\right) x_1 \in \mathbb{R}$
6←	Суммирующее⊂	$Kx_1 + K_1z + K_2y $
7←	С введением обратной связи⊲	$K(x_1 - x_{oc}) \leftarrow$

Правая часть показывает на что реагирует звено (т.е. что у него на входе), а левая часть показывает, как отрабатывается воздействие в звене.

右侧显示环节对什么做出反应(即其输入是什么),而左侧显示环节中作用是如何实现的。

4.2 Моделирование типовых звеньев САУ(典型自动化控制系统元件的建模)

Типовыми линейными звеньями САУ являются усилительное, суммирующее, дифференцирующее апериодическое, интегро-дифференцирующее и колебательное. Типовыми нелинейными звеньями являются: усилительное с ограничением, релейное, усилительное с зоной нечувствительности, усилительное с люфтом, гистерезисное.

自动化控制系统的典型线性环节有放大环节、求和环节、非周期微分环节、积分微分环节和振荡环节。 典型非线性环节有: 带限幅的放大环节、继电器环节、带不灵敏区的放大环节、带不灵敏区的继电器环 节、带死区的放大环节、滞环环节。

Данные необходимые для моделирования типовых звеньев, приведены в таблице 3. Для каждого звена указаны описывающая его функция (т.е. зависимость между входной X и выходной Z величиной звена), схема модели звена, функция описывающая модель (т.е. зависимость между входным u_0 и выходным и напряжениями модели), и выражения, определяющие параметры модели через параметры звена и масштабы , $K_x = \frac{X}{u_0}$ и $K_z = \frac{Z}{u_0}$.

用于模拟典型环节所需的数据见表3。对于每个环节,都给出了描述其的函数(即环节的输入量X与输出量Z之间的关系)、环节的模型示意图、描述模型的函数(即模型的输入电压 u_0 与输出电压u之间的关系),以及通过环节参数和比例系数 $K_x=\frac{X}{u_0}$ 和 $K_z=\frac{Z}{u_0}$ 来确定模型参数的表达式。

Работа моделей линейных типовых звеньев в пояснениях не нуждается. Работу моделей нелинейных звеньев следует пояснить.

线性典型环节模型的工作原理无需解释。非线性环节模型的工作原理需要进行说明。

В схеме модели усилительного звена с ограничением оба вентиля остаются закрытыми до тех пор, пока выходное напряжение u не станет равным $+u_or$ или $-u_or$. Когда один из диодов открывается, сопротивление шунтируется цепью, составленной из открывшегося диода и части подключенного к нему потенциометра. Если сопротивление этой цепи мало по сравнению с r_1 , то коэффициент усиления модели изменяется от $\frac{r_0}{r_c}$ до нуля.

在具有限幅的放大级模型电路中,两个二极管一直保持关闭状态,直到输出电压U等于 $+u_or$ 或 $-u_or$ 。 当其中一个二极管导通时,分流电阻被由导通二极管及其连接的部分电位器组成的电路所旁路。如果该电路的电阻与 r_1 相比很小,那么模型的放大系数将从 $\frac{r_0}{r}$ 变化到零。

Схема модели релейного звена получается из предыдущей при $r_0=\infty$. В этом случае до открытия вентилей $u=-ku_0$, где $k\approx 10^5$ — коэффициент усиления усилителя без обратной связи. Абсолютное значение выходного напряжения, равное напряжению запирания вентилей, достигается при $|u_0|=\frac{u_0r}{k}\approx 0$. Это означает, что практически выходное напряжение достигает предельного значения при малейшем отклонении входного напряжения от нуля.

继电器环节模型的方案是由前一个方案在 $r_0=\infty$ 时得到的。在这种情况下,在阀门打开之前, $u=-ku_0$,其中 $k\approx 10^5$ 是无反馈放大器的放大系数。当 $|u_0|=\frac{u_0r}{k}\approx 0$ 时,输出电压的绝对值等于阀门闭锁电压。这意味着,实际上,当输入电压偏离零的程度最小时,输出电压就达到了极限值。

Воспроизведение зоны нечувствительности в моделях усилительного и релейного звеньев с зоной нечувствительности достигается включением во входную цепь операционного усилителя вентильных ограничителей.

在具有死区的放大和继电环节模型中,死区的再现是通过将限幅器接入运算放大器的输入电路来实现的。

1.Усилительное звено: Z=aX	u ₀ r ₁ u	$u=-ku_0; k=\frac{r_0}{r_1}$	$k = \frac{aK_X}{K_Z}$
Z .Суммирующее $Z = \sum a_i X_i$		$u = -\sum_{i} k_{i} u_{i}$ $k = \frac{r_{0}}{r_{i}}$	$k_i = \frac{a_i K_{X_i}}{K_Z}$
3.Интегрирующее $Z = \frac{a}{p}X, \ p = \frac{d}{dt}$	C C U D U	$u = -\frac{k}{p_M} u_0$ $k = \frac{1}{rC}; p_M = \frac{d}{dt_M}$	$k = \frac{aK_t K_X}{K_Z}$
4.Апериодичес- кое $Z = \frac{ap}{Tp+1}$	C C r ₂	$u = -\frac{k_1}{p_M + k_2} u_0$ $k_1 = \frac{1}{r_1 C}; k_2 = \frac{1}{r_2 C}$	$k_1 = \frac{K_t}{T} \qquad ;$ $k_2 = \frac{ak_2K_X}{K_Z}$
5.Диффференци -рующее апериодическое $Z = \frac{ap}{Tp+1} X$		$u = -\frac{k_1 p_M}{p_M + k_2 k_3 k_4} u_0$ $k_1 = \frac{r_0}{r_1} ; k_2 = \frac{r_0}{r_2} ;$ $k_3 = \frac{1}{r_3 C} \; ; k_4 = \frac{1}{r_4 C}$	
6.Интегро- дифференцирую щее $Z = a \frac{T_1 p + 1}{T_2 p + 1} X$ $T_1 < T_2$		$u = -\frac{k_1(p_M + k_4)}{p_M - k_2 k_3 + k_4} u_0$ $k_1 = \frac{r_0}{r_1} ; k_2 = \frac{r_0}{r_2} ;$ $k_3 = \frac{1}{r_3 C} \; ; k_4 = \frac{1}{r_4 C}$	$k_1 = \frac{aT_1k_X}{T_2K_Z};$ $k_2k_3 =$ $= K_t(\frac{1}{T_1} - \frac{1}{T_2})$ $k_4 = \frac{K_t}{T}$

7.Интегро- дифференцирую щее $Z = a \frac{T_1 p + 1}{T_2 p + 1} X$ $T_1 > T_2$	r_6 r_6 r_8 r_8	$u = -\frac{k_1(p_M + k_4)}{p_M + k_2 k_3 k_5 - k_4} u_0$ $k_1 = \frac{r_0}{r_1} ; k_2 = \frac{r_0}{r_2} ;$ $k_3 = \frac{1}{r_3 C} \; ; k_4 = \frac{1}{r_4 C} \; ;$ $k_5 = \frac{r_6}{r_5}$	$k_2k_3 =$
8.Колебательное $Z = \frac{a}{T^2 p^2 + 2\xi T p + 1} X$	r ₃ r ₆ r ₅	$u = \frac{k_1}{p_M^2 + k_3 p_M + k_2 k_5} u_0$ $k_1 = \frac{1}{r_1 C}; k_2 = \frac{1}{r_2 C};$ $k_3 = \frac{1}{r_3 C}; k_4 = \frac{1}{r_4 C} = 1$ $k_5 = \frac{r_6}{r_5}$	$k_3 = \frac{2\xi K_t}{T}$
9.Усилительное с ограничением	+E ₀ -E ₀ -E ₀ -U ₀	$k_{1} = \frac{r_{0}}{r_{1}} = tg\beta$	$k_1 = \frac{K_X t g \alpha}{K_Z}$ $u_{0\Gamma} = \frac{Z_{0\Gamma}}{K_Z}$
10.Релейное z +Z ₀ г	+E ₀ -E ₀ +U ₀ -U ₀	u+u ₀ r u ₀ u=-sign u ₀	$u_{0\Gamma} = \frac{Z_{0\Gamma}}{K_Z}$

