Exploratory Visualization of Forest Fire Data

Eda AYDIN

03 04 2021

Contents

Exploring Data Through Visualization: Independent Investigations	1
The Importance of Forest Fire Data	2
Data Processing	3
When Do Most Forest Fires Occur?	3
Plotting Other Variables Against Time	5
Examining Forest Fire Severity	6
Outlier Problems	7
Exploring Data Through Visualization: Independent Investigat: Load the package and we'll need for the project	ions
library(tidyverse)	
## Attaching packages tidyverse 1.3.0	
## v ggplot2 3.3.3 v purrr 0.3.4 ## v tibble 3.1.0 v dplyr 1.0.5 ## v tidyr 1.1.3 v stringr 1.4.0 ## v readr 1.4.0 v forcats 0.5.1	
## Warning: package 'tibble' was built under R version 4.0.4	
## Warning: package 'tidyr' was built under R version 4.0.4	
## Warning: package 'dplyr' was built under R version 4.0.4	

```
## -- Conflicts -----
                                                 ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                     masks stats::lag()
forest_fires <- read_csv("forestfires.csv")</pre>
##
## -- Column specification -----
## cols(
##
     X = col_double(),
##
     Y = col double(),
    month = col_character(),
##
##
     day = col character(),
##
    FFMC = col_double(),
    DMC = col_double(),
##
     DC = col double(),
##
##
     ISI = col_double(),
     temp = col_double(),
##
##
     RH = col_double(),
     wind = col_double(),
##
##
     rain = col_double(),
     area = col_double()
##
## )
```

The Importance of Forest Fire Data

```
# What columns are in the dataset?

colnames(forest_fires)

## [1] "X" "Y" "month" "day" "FFMC" "DMC" "DC" "ISI" "temp"
## [10] "RH" "wind" "rain" "area"
```

We know that the columns correspond to the following information:

- X: X-axis spatial coordinate within the Montesinho park map: 1 to 9
- Y: Y-axis spatial coordinate within the Montesinho park map: 2 to 9
- month: Month of the year: 'jan' to 'dec'
- day: Day of the week: 'mon' to 'sun'
- FFMC: Fine Fuel Moisture Code index from the FWI system: 18.7 to 96.20
- DMC: Duff Moisture Code index from the FWI system: 1.1 to 291.3
- DC: Drought Code index from the FWI system: 7.9 to 860.6
- $\mathbf{ISI}:$ Initial Spread Index from the FWI system: 0.0 to 56.10
- temp: Temperature in Celsius degrees: 2.2 to 33.30
- RH: Relative humidity in percentage: 15.0 to 100
- wind: Wind speed in km/h: 0.40 to 9.40
- rain: Outside rain in mm/m2: 0.0 to 6.4
- area: The burned area of the forest (in ha): 0.00 to 1090.84

A single row corresponds to the location of a fire and some characteristics about the fire itself Higher water presence is typically associated with less fire spread, so we might expect the water-related variables ("DMC" and "rain") to be related with "area".

Data Processing

When Do Most Forest Fires Occur?

```
# Which months do forest fires happen the most?

fires_by_month <- forest_fires %>%
   group_by(month) %>%
   summarize(total_fires = n())

fires_by_month %>%
   ggplot(aes(x=month, y=total_fires)) +
   geom_col() +
   labs(
        title = "Number of forest fires in data by month",
        x = "Month",
        y = "Fire count"
   )
```

Number of forest fires in data by month


```
# Which days of the week do forest fires happen the most?

fires_by_day <- forest_fires %>%
    group_by(day) %>%
    summarize(total_fires = n())

fires_by_day %>%
    ggplot(aes(x = day, y= total_fires)) +
    geom_col() +
    labs(
        title= "Number of forest in data by day of the week",
        x = "Day of the week",
        y = "Fire count"
    )
```

Number of forest in data by day of the week

Plotting Other Variables Against Time

```
forest_fires_long <- forest_fires %>%
  pivot_longer(
    cols = c("FFMC", "DMC", "DC", "ISI", "temp", "RH", "wind", "rain"),
    names_to = "data_col",
    values_to = "value"
)

forest_fires_long %>%
  ggplot(aes(x = month, y = value)) +
  geom_boxplot() +
  facet_wrap(vars(data_col), scale = "free_y") +
  labs(
    title= "Variable changes over month",
    x = "Month",
    y = "Variable value"
)
```

Variable changes over month

Examining Forest Fire Severity

We're trying to see how each of the variables in the dataset relate to "area". We can leverage the long format version of the data we created to use with "facet_wrap()".

```
forest_fires_long %>%
   ggplot(aes(x=value, y=area)) +
   geom_point() +
   facet_wrap(vars(data_col), scales = "free_x") +
   labs(
     title = "Relationships between other variables and area burned",
     x = "Value of column",
     y = "Area burned (hectare)"
   )
```


Outlier Problems

It seems that there are two rows where "area" that still hurt the scale of the visualization. Let's make a similar visualization that excludes these observations so that we can better see how each variabe relates to "area".

```
forest_fires_long %>%
  filter (area <300) %>%
  ggplot(aes(x = value, y = area)) +
  geom_point() +
  facet_wrap(vars(data_col), scales = "free_x") +
  labs(
    title = "Relationships between other variables and area burned (area < 300)",
    x = "Value of column",
    y = "Area burned (hectare)"
)</pre>
```

Relationships between other variables and area burned (area < 300)

