ELEC 341 – Graded Assignments

Assignment A6 Proportional Control

10 Marks

Learning Objectives

Proportional (P) Control
Root Locus

Steady-State Error

Overshoot

Goal Overshoot

Matlab pzmap() rla()

© Leo Stocco 2023

In Fig 1, a Proportional Controller K controls a system Gs using a sensor Hs. Gs and Hs have the Open-Loop characteristics specified in Fig 2.

Q1 2 mark(s) Open-Loop TF

Compute the open-loop transfer function GH.

Design the feedback gain Kh.

Find the ultimate gain **Ku**.

input = Des Pos (m)	Output = Measured Pos (r
(pure)	LTI
(m/V)	Scalar
(V/m)	Scalar
	(pure) (m/V)

Q2 3 mark(s) Closed-Loop TF

Compute the closed-loop transfer function \mathbf{Gcl} with $\mathbf{K} = \mathbf{Ku/2}$.

Calculate the settle time **Ts** and steady-state error **Ess**.

Calculate the overshoot **OS**, and goal overshoot **GOS**.

Gcl	Input = Des Pos (m)	Output = Actual Pos (m)
 Q2.Gcl 	(pure)	LTI
 Q2.Ts 	(s)	Scalar
 Q2.Ess 	(%)	Scalar
 Q2.OS 	(%)	Scalar
 Q2.GOS 	(%)	Scalar

© Leo Stocco 2023

Tune the gain ${\bf K}$ to meet the following RCGs for a ${\bf Unit\ Step}$ input.

REQUIREMENTS:

GOS = 20%

Q3 2 mark(s) Tuned Gain

Specify your tuned gain **K**.

Calculate the resulting settle time **Ts** and steady-state error **Ess**.

Q3.K (V/m) Scalar
 Q3.Ts (s) Scalar
 Q3.Ess (%) Scalar

Q4 3 mark(s) Min Error

Specify the gain **K** that achieves the minimum possible steady-state error **Ess**. Calculate the resulting overshoot **OS**, and goal overshoot **GOS**.

Q4.K (V/m) Scalar
 Q4.Ess (%) Scalar
 Q4.OS (%) Scalar
 Q4.GOS (%) Scalar

© Leo Stocco 2023