Progetto Programmazione Multi-Obiettivo Relazione Gruppo 3

Gentilini Alessandro

Piccinini Chiara

Sergio Rebecca

Zampolini Matteo

A.A. 2024-2025

Problema calcolo percorsi efficienti

Consideriamo un problema di TSP bi-obiettivo su una matrice 6x6 di località, in cui gli obiettivi da minimizzare sono il *tempo di percorrenza* (obiettivo T) e il *costo di trasporto* (obiettivo C).

Punto 1: Ricerca delle soluzioni efficienti estreme

Passo di inizializzazione

Per determinare il punto $V^{(TL)}$, cioè la soluzione efficiente di *tempo di percorrenza minima*, si usa il gradiente g = (422, 1) (dove 422 è la somma dei valori di costo di trasporto); si ottiene il punto di coordinate (81, 93), corrispondente al percorso:

|--|

Per determinare il punto $V^{(BR)}$, cioè la soluzione efficiente di *costo di trasporto minimo*, si usa il gradiente g = (1, 658) (dove 658 è la somma dei valori di tempo di percorrenza); si ottiene il punto di coordinate (113, 51), corrispondente al percorso:

	_				_	
1	5	1 3	1 2	1 4	6	1 1
•	_	_	_	-	_	

Passo iterativo

Iterazione 1

Partiamo da $E=\{V^{(TL)}\}\ e\ L\setminus E=\{V^{(BR)}\}\ ;$ dunque $L=V^{(TL)}=(81,93)\ ed\ R=V^{(BR)}=(113,51)$. Il gradiente risultante è g=(42,32), con K=6378.

Il valore ottimo del problema scalarizzato è F.O. = 6162, che è *minore* di K e vene quindi generato un nuovo punto denominato $V^{(1)}$ = (85, 81), corrispondente al percorso:

1	6	3	2	5	4	1

Il nuovo punto viene inserito nella parte L/E.

Iterazione 2

Abbiamo $E=\{V^{(TL)}\}\ e\ L\setminus E=\{V^{(BR)},\ V^{(1)}\};\ L=V^{(TL)}=(81,93)\ ed\ R=V^{(1)}=(85,81).$ Il gradiente risultante è g=(12,4) e K=1344.

Il valore ottimo del problema scalarizzato è F.O. = 1344, che è *uguale* a K, quindi non viene generato un nuovo punto e il punto $R = V^{(1)} = (85, 81)$ viene inserito nella lista E.

Iterazione 3

Abbiamo $E=\{V^{(TL)}, V^{(1)}\}\ e\ L\setminus E=\{V^{(BR)}\};\ L=V^{(1)}=(85,81)\ ed\ R=V^{(BR)}=(113,51).$ Il gradiente risultante è $\textbf{g}=\textbf{(30,28)}\ e\ K=\textbf{4818}.$

Il valore ottimo del problema scalarizzato è F.O. = 4778, che è *minore* di K, quindi viene generato un nuovo punto, denominato $V^{(2)}$ = (93, 71), corrispondente al percorso:

1 6 2	5	3	4	1
-------	---	---	---	---

Il nuovo punto viene inserito nella parte L/E.

Iterazione 4

Abbiamo $E=\{V^{(TL)}, V^{(1)}\}\ e\ L\setminus E=\{V^{(BR)}, V^{(2)}\}\ L=V^{(1)}=(85,81)\ ed\ R=V^{(2)}=(93,71)$. Il gradiente risultante è g=(10,8) e K=1498.

Il valore ottimo del problema scalarizzato è F.O. = 1498, che è *uguale* a K, quindi non viene generato un nuovo punto e il punto $R = V^{(2)} = (93, 71)$ viene inserito nella lista E.

Iterazione 5

Abbiamo $E=\{V^{(TL)}, V^{(1)}, V^{(2)}\}\ e\ L\setminus E=\{V^{(BR)}\};\ L=V^{(2)}=(93,71)\ ed\ R=V^{(BR)}=(113,51).$ Il gradiente risultante è g=(20,20) e K=3280.

Il valore ottimo del problema scalarizzato è F.O. = 3280, che è *uguale* a K; quindi, non viene generato un nuovo punto e il punto $R = V^{(BR)} = (113, 51)$ viene inserito nella lista E.

Abbiamo così terminato il processo di iterazioni e abbiamo ottenuto il seguente risultato finale:

	Т	С
V ^(TL)	81	93
V ⁽¹⁾	85	81
V ⁽²⁾	93	71
V ^(BR)	113	51

Punto 2: esplorazione di un triangolo

Assumendo che il decisore consideri ottimale un rapporto *Costo di trasporto/Tempo di percorrenza* a = C/T = 21/40, il triangolo da esplorare è quello delimitato dalle soluzioni estreme $V^{(2)} = (93, 71)$ (estremo in alto) e $V^{(BR)} = (113, 51)$ (estremo in basso); la retta che contiene i suddetti punti è definita dal gradiente q = (20, 20) e da un valore K = 3280.

Il seguente grafico mostra i triangoli definiti dalle soluzioni estreme e la retta di equazione $C = \alpha T$.

Punto 2.a: Goal Programming

Si determina la coppia di valori target (T_r , T_c) = (108, 57). Utilizzando tale coppia di target si applica il Goal Programming nelle quattro versioni seguenti.

MIN-SUM: si trova la soluzione **MS** = (111, 55), corrispondente al percorso:

1	5	2	3	4	6	1

MIN-MAX: si trova la soluzione **MM** = (105, 59), corrispondente al percorso:

1	4	3	2	5	6	1

Weighted MIN-SUM: si trova la soluzione WMS = (111, 55), corrispondente al percorso:

1	5	2	3	4	6	1

Weighted MIN-MAX: si trova la soluzione **WMM** = (105, 59), corrispondente al percorso:

Punto 2.b: Metodo ε-constrained

Per lo svolgimento di questo metodo abbiamo deciso di mantenere come funzione obiettivo il tempo di percorrenza, cercando di minimizzarlo, e di conseguenza di inserire nel modello un limite superiore all'altra variabile, ovvero il costo di trasporto. Abbiamo quindi come soluzione iniziale l'estremo in alto a sinistra della ipotenusa, ovvero il vertice $V^{(2)}$ = (93, 71). Indichiamo con UB_S l'upper bound decrescente imposto sull'obiettivo del costo di trasporto.

Abbiamo poi terminato il processo di iterazioni quando è stata ottenuta nuovamente la soluzione corrispondente al vertice in basso a destra, $V^{(BR)} = (113, 51)$.

Iterazione 1: Partendo dal punto di coordinate $V^{(2)} = (93, 71)$, con $UB_s = 70$ si trova il punto $S^{(1)} = (99, 65) = SNE1$, corrispondente al percorso:

	_	_	_	_	_	
1	1 7		. 2	1 1	1 6	1 1
1				l 4		

Iterazione 2: UB_s = 64 si trova il punto $S^{(2)}$ = (103, 63), corrispondente al percorso:

1	5	6	2	3	4	1

Iterazione 3: $UB_s = 62$ si trova il punto $S^{(3)} = (105, 59) = MM = WMM = SNE2, corrispondente al percorso:$

1	4	3	2	5	6	1

Iterazione 4: UB_S = 58 si trova il punto $S^{(4)} = (111, 55) = MS = WMS$, corrispondente al percorso:

1 5 2	3	4	6	1

Iterazione 5: $UB_s = 54$ si trova il punto $S^{(5)} = (113, 51)$, cioè il punto nell'estremo in basso a destra del triangolo, corrispondente al percorso:

	_	_	_		_	
1	. 5	. ≺	,	Δ	h	1 1
-			_	•		

Il seguente grafico mostra tutti i punti corrispondenti alle soluzioni efficienti del triangolo esaminato. Osservando il grafico si può notare che l'unico punto trovato che non è una SNE è il punto $S^{(2)} = (103, 63)$.

Triangolo soluzioni efficienti

