Convex Optimization: Fall 2021, Homework #1 (Due: 10/08, 11 pm)

- 1. (10 points) Positive definite matrix A
 - a. Show that the eigenvalues of A are positive
 - b. Show that the determinant of A equals the product of its eigenvalues, i.e., $det(A) = \prod_{i=1}^{n} \lambda_i$.
 - c. Show that the positive definite matrix *A* is invertible.
- 2. (10 points) Show that the matrix $X = \begin{bmatrix} x & y \\ y & z \end{bmatrix}$ (where $x \ge 0$, $z \ge 0$, $xz \ge y^2$) is positive semidefinite. (Hint: Use the fact that the summation of eigenvectors is the same as the summation of diagonal terms, i.e., $tr(X) = \sum_i X_{ii} = \sum_i \lambda_i$.)
- 3. (10 points) Textbook (2.5)
- 4. (10 points) Textbook (2.12: a, b, c, d)
- 5. (10 points) Textbook (2.16)
- 6. (10 points) Let X_{opt} be the set of all optimal solutions of the following convex optimization:

$$X_{\mathrm{opt}} = \operatorname{argmin} \quad f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$

where $f_0(x)$ and $f_i(x)$ are convex functions. Show that X_{opt} is a convex set.

- 7. (10 points) Show that:
 - a. Exponential e^{ax} is convex on **R**, for any $a \in \mathbf{R}$.
 - b. Powers x^a is convex on \mathbf{R}_{++} when $a \ge 1$ or $a \le 0$, and concave for $0 \le a \le 1$.
 - c. Entropy function (in information theory) $f(x) = -\sum_{i=1}^{n} x_i \log x_i$ with dom $f(x) = \{x \in \mathbb{R}_{+t}^n | \sum_{i=1}^{n} x_i = 1\}$ is strictly concave.
 - d. Exponential e^{x^2} is convex on **R**.
- 8. (10 points) The Kullback-Leibler divergence is given by $D_{KL}(p,q) = \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i}$ where p_i and q_i represents two distributions. Show that $D_{KL}(p,q) \ge 0$. (Hint: Use Jensen's inequality)
- 9. (10 points) Derive the conjugates of the following functions:

a.
$$f(x) = |x|$$

b.
$$f(x) = \exp(x)$$

Convex Optimization: Fall 2021, Homework #1 (Due: 10/08, 11 pm)

10. (10 points) Show that $f: \mathbf{R} \to \mathbf{R}$ is convex if and only if $f''(x) \ge 0$.

11. (10 points) Textbook (3.19)

12. (10 points) Textbook (3.21)