ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОВРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Работа 3.4.4. Петля гистерезиса (статический метод)

Работу выполнил:

Долгов Александр Алексеевич, группа Б01-106

Содержание

1	Аннотация	3
2	Теоретические сведения	3
3	Методика измерений	3
4	Экспериментальная установка	5
5	Оборудование и экспериментальные погрешности	5
	5.1 Параметры установки	5
	5.2 Погрешности измеряемых величин	6
6	Измерения и обработка их результатов	6
	6.1 Калибровка гальванометра	6
	6.2 Наблюдение предельной петли гистерезиса	6
7	Вывод	6
8	Приложения	7
	8.1 Таблицы	7
	8.2 Графики	ç

1 Аннотация

В данной работе начальная кривая намагничивания ферромагнетиков и предельная петля гистерезиса исследовались статическим методом.

2 Теоретические сведения

Если состояние некоторой системы зависит не только от мгновенных значений внешних параметров, но и от истории их изменения, то говорят, что в системе имеет место гистерезис. Примером является зависимость намагниченности M от напряжённости магнитного поля H в ферромагнетиках.

На практике магнитные свойства ферромагнетиков изучают путём измерения не зависимости M(H), а зависимости B(H). Исследование образца обычно начинается в полностью размагниченном состоянии (H=0,B=0). При увеличении поля H индукция магнитного поля изменяется согласно соотношению:

$$B(H) = \mu_0(H + M(H)) \tag{1}$$

Множество точек, удовлетворяющих уравнению (1), называется кривой намагничивания. Если кривая начинается в точки (H=0,B=0) - начальной кривой намагничивания. Наклон кривой характеризуется дифференциальной магнитной приницаемостью

$$\mu_{\text{дифф}} = \frac{1}{\mu_0} \frac{\text{B}}{\text{H}}$$

Рассмотрим процесс гистерезиса в ферромагнетиках более детально. Пусть начальное состояние образца задаётся условиями (H=0,B=0). Вудем увеличивать поле H до тех пор, пока поле M меняется. Это перестанет происходить, при достижении некоторого поля H_s . Пусть полю H_s соответствует поле B_s , которое назовём undykuu-eŭ насыщения. Точку (H_s,B_s) на координатной плоскости назовём точкой C. Достигнув точки C, будем уменьшать поле H. Вследствие взаимодействия доменов друг с другом путь пойдёт не по начальной кривой, а выше неё.

При H=0 в образце сохраняется собственная намагниченность. Соответствующее значение индукции магнитного поля B_r называют остаточной индукцией. Значение B=0 достигается лишь при $H=-H_c$, где величина $H_c>0$ называется коэрцитивным полем (коэрцитивной силой). При дальнейшем умешьшении поля H до $-H_s$, образец выходит на насыщение в противоположную сторону. Если в точке C насыщение не было достигнуто, то аналогичным образом получится цикл меньшей площади. Если в точке C насыщение всё же было достигнуто, то полученный цикл называется предельной петлёй гистерезиса.

Характерный вид петли гистерезиса изображён на рисунке 1.

Рис. 1 Характерный вид петли гистерезиса

3 Методика измерений

На тороидальный сердечник, изготовленынй из исследуемого образца, равномерно намотана намагничивающая обмотка с числом витков N, а поверх неё - измерительная обмотка с числом виков N' (см. рис. 2). При скачкообразном изменении тока в намагничивающей обмотке в измерительно обмотке возникает ЭДС индукции. Ток, вызванный этой ЭДС, регистрируется гальванометром Γ , работающим в баллистическом (импульсном) режиме, то есть его отклонение пропорционально полному заряду Δq , протёкшему через него.

Поле H в сердечнике пропорционально току I в намагничивающей обмотке, а изменение магнитной индукции заряду Δq . Таким образом, изменяя токи I и суммируя отклонения Δq гальванометра Γ , можно получить зависимость B(H) для материала сердечника.

Рис. 2 Характерный вид петли гистерезиса

Поле Н для тороидальной катушки можно найти по формуле:

$$H = \frac{IN_0}{2\pi R},\tag{2}$$

где N_0 - число витков, R - расстояние от оси тора. Пусть в намагничивающей катушке ток скачкообразно изменился на величину ΔI . Тогда поле в тороиде изменится пропорционально: $\Delta H \propto \Delta I$. Изменение поля H в свою очередь приводит к изменению магнитного потока Φ в сердечнике, и в измерительной обмотке сечения S с числом витков N' возникает ЭДС индукции:

$$\mathscr{E} = -\frac{d\Phi}{dt} = -SN'\frac{dB}{dt}$$

Поскольку гальванометр работает в баллистическом режиме, то при протекании импульса тока первый отброс "зайчика пропорционален величине прошедшего через гальванометр заряда:

$$\Delta x = \frac{\Delta q}{h}$$

где b - константа, называемая баллистической постоянной гальванометра. Свяжем Δx и ΔB :

$$|\Delta x| = \frac{1}{b} \left| \int I dt \right| = \frac{1}{bR} \left| \int \mathscr{E} dt \right| = \frac{SN'}{bR} \left| \int dB \right| = \frac{SN'}{bR} |\Delta B|, \tag{3}$$

где R - сопротивление измерительного тороида.

Баллистическую постоянную можно определить, если провести аналогичные измерения, взяв вместо тороида с сердечником пустотелый соленоид с числом витков N_c , на который намотана короткая измерительная катушка с числом витков N_c' (см. рис. 3). Магнитная индукция в пустом соленоиде находится по формуле:

где l_c - длина пустотелого соленоида, I_c - сила текущего через него тока. Показания гальванометра при изменении тока в соленоиде находятся по формуле, аналогичной (3):

$$|\Delta x_{c}| = \frac{S_{c}N_{c}'}{bR_{c}}|\Delta B_{c}|,$$

С учётом (4) имеем:

$$|\Delta x_{\rm c}| = \frac{S_{\rm c} N_{\rm c}' N_{\rm c}}{b R_{\rm c} I_{\rm c}} |\Delta I_{\rm c}|, \tag{5}$$

Рис. 3 Схема для калиброки гальванометра

где R_c - полное сопротивление измерительной цепи соленоида, S_c - площадь поперечного сечения соленоида. Разделив (3) на (5), получим формулу, не содержающую баллистической постоянной:

$$|\Delta \mathbf{B}| = \mu_0 \frac{N_c'}{N'} \frac{R}{R_c} \frac{S_c}{S} \frac{N_c}{l_c} \frac{|\Delta \mathbf{I}_c|}{|\Delta \mathbf{x}_c|} |\Delta \mathbf{x}|$$
(6)

4 Экспериментальная установка

Схема экспериментальной установки представлена на рисунке 4. Генератор токов намагничивания (ГТН) позволяет скачками менять токи в намагничивающей обмотке тороида. Одинаковые скачки ΔI вызывают разные отклонения зайчика гальванометра Δx на разных участках петли. Поэтому генератор меняет ток неравномерно: большими скачками выблизи насыщения и малыми вблизи нуля.

Ток в намагничивающей обмотке измеряется цифровым мультиметром А. Переключатель Π_1 позволяет менять направление тока в первичной обмотке. Чувствительность гальванометра Γ во вторичной обмотке цепи можно менять с помощью магазина сопротивлений R_M . Ключ K_1 предохраняет гальванометр от перегрузок и замыкается только на время измерений отклонения зайчика. Ключ K_0 служит для мгновенной остановки зайчика. Переключателем Π_2 можно изменять направление тока через гальванометр.

Схема на рисунке 5 отличается от схемы на рисунке 4 только тем, что вместо тороида в ней подключён калибровочный соленоид.

Рис. 4 Схема установки для исследования петли гистерезиса

Рис. 5 Схема установки для калибровочного гальванометра

5 Оборудование и экспериментальные погрешности

5.1 Параметры установки

Количество витков в намагничивающей обмотке тороида: N = 1750

Количество витков в измерительной обмотке тороида: N' = 300

Количество витков в намагничивающей катушке: $N_c = 940$

Количество витков в измерительной катушке: $N_c' = 500$

Диаметр тороида: d=1 см

Диаметр соленоида: $d_c = 7$ см

Средний диаметр тороида (среднее расстояние до его оси): D = 10 см

Длина соленоида: $l_c = 80$ см

Сопротивление цепи тороида: R = 5.6 Ом

Сопротивление цепи соленоида: $R_c = 46~\text{Ом}$

5.2 Погрешности измеряемых величин

Из формулы (2) получаем выражение для погрешности напряжённости магнитного поля:

$$\sigma_{H} = \frac{N}{\pi D} \sigma_{I},$$

В ходе работы сила тока измерялась с абсолютной погрешностью $\sigma_{\rm I}=10^{-4} A.$ Следовательно:

$$\sigma_{H} = 0.6 \frac{A}{M}$$

Величина Δx измерялась с абсолютной погрешностью $\sigma_x = 0.5~\mathrm{mm}$.

Запишем формулу (6) в более компактном виде:

$$|\Delta B| = k|\Delta x|, \ k = \mu_0 \frac{N_c'}{N'} \frac{R}{R_c} \frac{d_c^2}{d^2} \frac{N_c}{l_c} \frac{|\Delta I_c|}{|\Delta x_c|}$$

Таким образом, погрешность σ_k коэффициента k вычисляется по формуле:

$$\sigma_k = k \sqrt{\left(\frac{\sigma_I}{\Delta I}\right)^2 + \left(\frac{\sigma_x}{\Delta x_c}\right)^2}$$

Соответственно, погрешность σ_B величины $|\Delta B|$ вычисляется по формуле:

$$\sigma_{B} = |\Delta B| \sqrt{\left(\frac{\sigma_{k}}{k}\right)^{2} + \left(\frac{\sigma_{x}}{\Delta x}\right)^{2}}$$

6 Измерения и обработка их результатов

6.1 Калибровка гальванометра

Для калибровки гальванометра была проведено одно измерение $|\Delta x_c|(I)$. Результаты следующие:

$$|\Delta I_c| = 1.301 \text{ A}$$

$$|\Delta x| = 49 \text{ mm}$$

Таким образом:

$$k = (3.20 \pm 0.03) \frac{T_{\rm JI}}{M}$$

6.2 Наблюдение предельной петли гистерезиса

По описанной выше схеме была измерена зависимость $\Delta I(\Delta x)$, по которой восстановлена зависимость B(H). Результаты измерений и промежуточных расчётов представлены в таблице 1. По этим данным также построен график 1

7 Вывод

Вид предельной петли гистерезиса совпадает с ожидаемым. Тем не менее, начальная кривая намагничивания происходит выше, чем должна по предсказаниям теории. Это возможно объяснить тем, что в ходе исследования начальной кривой образец не был должным образом размагничен, и следовательно в нём присутствовало ненулевое поле M.

8 Приложения

8.1 Таблицы

Таблица 1 Исследование предельной петли гистерезиса

I, A	Δx , mm	Н, А/м	ΔВ, мТл	σ _В , мТл
1.7294	71	963.3	-227	3
0.941	53	524.2	-170	2
0.5844	14	325.5	-45	2
0.4873	11	271.4	-35	2
0.3977	9	221.5	-29	2
0.3549	5	197.7	-16	2
0.3241	7	180.5	-22	2
0.2836	5	158.0	-16	2
0.2459	7	137.0	-22	2
0.1862	8	104.0	-27	2
0.1098	15	61.2	-48	2
0	45	0	-144	2
-0.1097	55	-61.1	-176	2
-0.186	82	-103.6	-263	3
-0.2466	77	-137.4	-247	3
-0.2847	87	-158.6	-279	3
-0.3238	54	-180.4	-173	2
-0.3545	60	-197.5	-192	3
-0.3977	80	-221.5	-256	3
-0.4853	48	-270.3	-154	2
-0.584	88	-325.3	-282	3
-0.9412	81	-524.3	-259	3
-1.7296	-65	-963.5	208	3
-0.9425	-43	-525.0	138	2
-0.5846	-21	-325.6	67	2
-0.4873	-11	-271.4	35	2
-0.3981	-5	-221.8	16	2
-0.3551	-4	-197.8	13	2
-0.3242	-5	-180.6	16	2
-0.2856	-7	-159.1	22	2
-0.2468	-7	-137.5	22	2
-0.1862	-10	-103.7	32	2
-0.1098	-14	-61.2	45	2
0	-45	0	144	2
0.1097	-55	61.1	176	2
0.1861	-81	103.7	259	3
0.2482	-73	138.3	234	3
0.2842	-91	158.3	291	3
0.324	-59	180.5	189	3
0.3547	-65	197.6	208	3
0.3978	-85	221.6	272	3
0.4854	-52	270.4	166	2
0.5841	-98	325.4	314	4
0.942	-87	524.7	27	3
1.723		959.8	0	

Таблица 2 Исследование начальной кривой намагничивания

I, A	Δx , mm	Н, А/м	Δ В, м T л	σ _В , мТл
0	-47	0	150.5	3.4
0.1098	-39	61.2	124.9	2.8
0.1861	-62	103.7	198.5	0.6
0.2476	-47	137.9	150.5	0.5
0.2848	-55	158.6	176.1	0.4
0.3239	-33	180.4	105.7	0.3
0.3547	-38	197.6	121.7	0.4
0.3977	-63	221.5	201.7	0.2
0.4853	-48	270.3	153.7	0.3
0.584	-10	325.3	326.6	0.3
0.9431	-93	525.3	297.8	0.6
1.7303		963.9	0	

8.2 Графики

График 1. Предельная петля гистерезиса и начальная кривая намагничивания

