GÉOMÉTRIE DE L'ESPACE

Marie-Christine Pérouème

15 mai 2010

Table des matières

1	Col	inéarité et Orthogonalité dans \mathbb{R}^3	1
	1.1	Produit scalaire sur \mathbb{R}^3	1
	1.2	Produit vectoriel de deux vecteurs de \mathbb{R}^3	2
			2
		1.2.2 Propriété fondamentale	3
	1.3	Produit mixte de trois vecteurs de \mathbb{R}^3	4
		1.3.1 Définition	4
			4
		1.3.3 Règle de Sarrus pour le calcul du déterminant	4
	1.4	Lien entre produit scalaire, produit vectoriel et produit mixte	5
2	Dro	pites et plans de l'espace	5
	2.1	Équations cartésiennes de plans	6
	2.2	Système d'équations cartésiennes de droites	6
	2.3	Intersection de deux plans	6
	2.4	Intersection d'une droite et d'un plan	7
3	Dis	tance d'un point à un plan ou une droite	7
	3.1	Projection orthogonale d'un point sur un plan	7
	3.2		8
4	Dis	tance entre deux droites	8
	4.1	Droites coplanaires	8
	4.2		9

1 Colinéarité et Orthogonalité dans \mathbb{R}^3

1.1 Produit scalaire sur \mathbb{R}^3

Soient $\vec{u}(a, b, c)$ et $\vec{v}(a', b', c')$ des vecteurs de \mathbb{R}^3 .

 \hookrightarrow On appelle produit scalaire des vecteurs \vec{u} et \vec{v} et on note $\langle \vec{u}, \vec{v} \rangle$ le réel :

$$\langle \vec{u}, \vec{v} \rangle = a.a' + b.b' + c.c'$$

On dit que les vecteurs \vec{u} et \vec{v} sont orthogonaux si leur produit scalaire est nul.

On a pour tout $\vec{u} \in \mathbb{R}^3$, $\langle \vec{u}, \vec{u} \rangle = a^2 + b^2 + c^3 \ge 0$. Cela justifie la définition suivante : $\overset{\sim}{}$ On appelle norme du vecteur \vec{u} et on note $||\vec{u}||$ le réel positif :

$$\|\vec{u}\| = \sqrt{a^2 + b^2 + c^2}.$$

1.2 Produit vectoriel de deux vecteurs de \mathbb{R}^3

1.2.1 Propriétes caractéristiques

Recherchons les vecteurs \vec{w} orthogonaux aux deux vecteurs \vec{u} et \vec{v} .

$$\vec{w}(x,y,z) \perp \vec{v} \iff \begin{cases} ax + by + cz = 0 \\ a'x + b'y + c'z = 0 \end{cases} \iff \begin{cases} ax + by = -cz \\ a'x + b'y = -c'z \end{cases}$$

Lorsque $\begin{vmatrix} a & b \\ a' & b' \end{vmatrix} = \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} \neq 0$, ce système admet pour toute valeur de z une solution :

$$\iff \begin{cases} x = \frac{\begin{vmatrix} -cz & b \\ -c'z & b' \end{vmatrix}}{\begin{vmatrix} a & b \\ a' & b' \end{vmatrix}} = \frac{\begin{vmatrix} b & b' \\ c & c' \end{vmatrix}}{\begin{vmatrix} a & a' \\ b & b' \end{vmatrix}}.z \\ y = \frac{\begin{vmatrix} a & -cz \\ a' & -c'z \end{vmatrix}}{\begin{vmatrix} a & b \\ a' & b' \end{vmatrix}} = \frac{\begin{vmatrix} c & c' \\ a & a' \\ b & b' \end{vmatrix}}{\begin{vmatrix} a & a' \\ b & b' \end{vmatrix}}.z \end{cases}$$

$$\iff \quad \vec{w} = \frac{z}{\begin{vmatrix} a & a' \\ b & b' \end{vmatrix}} \left(\begin{vmatrix} b & b' \\ c & c' \end{vmatrix}, \begin{vmatrix} c & c' \\ a & a' \end{vmatrix}, \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} \right).$$

De même, lorsque $\begin{vmatrix} b & c \\ b' & c' \end{vmatrix} = \begin{vmatrix} b & b' \\ c & c' \end{vmatrix} \neq 0$, un calcul similaire conduit à :

$$\vec{w}(x,y,z) \perp \vec{v} \iff \begin{cases} by + cz &= -ax \\ b'y + c'z &= -a'x \end{cases}$$

$$\iff \vec{w} = \frac{x}{\begin{vmatrix} b & b' \\ c & c' \end{vmatrix}} \begin{pmatrix} \begin{vmatrix} b & b' \\ c & c' \end{vmatrix}, \begin{vmatrix} c & c' \\ a & a' \end{vmatrix}, \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} \end{pmatrix}.$$

Enfin, lorsque $\begin{vmatrix} c & a \\ c' & a' \end{vmatrix} = \begin{vmatrix} c & c' \\ a & a' \end{vmatrix} \neq 0$, on obtient cette fois :

$$\vec{w}(x,y,z) \perp \vec{v} \iff \begin{cases} ax + cz &= -by \\ a'x + c'z &= -b'y \end{cases}$$

$$\iff \vec{w} = \frac{y}{\begin{vmatrix} c & c' \\ a & a' \end{vmatrix}} \begin{pmatrix} \begin{vmatrix} b & b' \\ c & c' \end{vmatrix}, \begin{vmatrix} c & c' \\ a & a' \end{vmatrix}, \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} \end{pmatrix}.$$

Dans ces trois cas, les vecteurs orthogonaux à \vec{u} et \vec{v} sont tous colinéaires à un vecteur fixe. Pour terminer notre étude, il nous reste encore à étudier le cas où les 3 déterminants sont nuls. On a alors :

$$\begin{vmatrix} b & b' \\ c & c' \end{vmatrix} = \begin{vmatrix} c & c' \\ a & a' \end{vmatrix} = \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} = 0 \iff \begin{pmatrix} b' \\ c' \end{pmatrix} = \lambda_1 \begin{pmatrix} b \\ c \end{pmatrix}, \begin{pmatrix} c' \\ a' \end{pmatrix} = \lambda_2 \begin{pmatrix} c \\ a \end{pmatrix}, \begin{pmatrix} a' \\ b' \end{pmatrix} = \lambda_3 \begin{pmatrix} a \\ b \end{pmatrix} \iff (a', b', c') = \lambda(a, b, c).$$

Notre discussion, peut donc se résumer ainsi :

 \hookrightarrow On appelle produit vectoriel des vecteurs \vec{u} et \vec{v} et on note $\vec{u} \wedge \vec{v}$ le vecteur :

$$\vec{u} \wedge \vec{v} = \left(\begin{vmatrix} b & b' \\ c & c' \end{vmatrix}, \begin{vmatrix} c & c' \\ a & a' \end{vmatrix}, \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} \right).$$

Le produit vectoriel de \vec{u} et de \vec{v} est nul si et seulement si les vecteurs \vec{u} et \vec{v} sont colinéaires :

$$\vec{u} \wedge \vec{v} = \vec{0} \iff \vec{u} = \vec{0} \text{ ou } \vec{v} = \lambda \vec{u}.$$

 $Si\ \vec{u} \wedge \vec{v} \neq \vec{0}$, les vecteurs orthogonaux à \vec{u} et \vec{v} sont exactement les vecteurs colinéaires à $\vec{u} \wedge \vec{v}$:

$$\langle \vec{u}, \vec{w} \rangle = \langle \vec{v}, \vec{w} \rangle = 0 \iff \vec{w} = \lambda \vec{u} \wedge \vec{v} \iff (\vec{u} \wedge \vec{v}) \wedge \vec{w} = \vec{0}.$$

1.2.2 Propriété fondamentale

Lorsque les vecteurs \vec{u} et \vec{v} ne sont pas colinéaires, tout vecteur de \mathbb{R}^3 "se décompose" à l'aide des vecteurs $\vec{u}, \vec{v}, \vec{u} \wedge \vec{v}$:

$$\forall w \in \mathbb{R}^3, \ \exists (\alpha, \beta, \gamma) \in \mathbb{R}^3, \qquad \vec{w} = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{u} \wedge \vec{v}.$$

 $\not E$ n effet soit $\vec{w} \in \mathbb{R}^3$, on a :

$$\vec{w} - x\vec{u} - y\vec{v} \perp \vec{v} \iff \begin{cases} \|\vec{u}\|^2 \cdot x + \langle \vec{u}, \vec{v} \rangle \cdot y = \langle \vec{u}, \vec{w} \rangle \\ \langle \vec{u}, \vec{v} \rangle \cdot x + \|\vec{v}\|^2 \cdot y = \langle \vec{v}, \vec{w} \rangle \end{cases}$$

Le déterminant de ce système est $D = ||u||^2 . ||u||^2 - \langle \vec{u}, \vec{v} \rangle^2$. Comme \vec{u} et \vec{v} ne sont pas colinéaires, on peut dire d'après le théorème de Cauchy-Schwartz, que D > 0. Le système admet donc une solution unique que nous noterons $(x, y) = (\alpha, \beta)$. D'après la propriété 1.2.2, puisque le vecteur $\vec{w} - \alpha \vec{u} - \beta \vec{v}$ est orthogonal à \vec{u} et \vec{v} , il est colinéaire à $\vec{u} \wedge \vec{v}$ et il existe $\gamma \in \mathbb{R}$ tel que :

$$\vec{w} - \alpha \vec{u} - \beta \vec{v} = \gamma \vec{u} \wedge \vec{v}.$$

Cela va nous permettre de caractériser les vecteurs orthogonaux à $\vec{u} \wedge \vec{v}$. On a en effet :

$$\langle \vec{u} \wedge \vec{v}, \vec{w} \rangle = \alpha \underbrace{\langle \vec{u} \wedge \vec{v}, \vec{u} \rangle}_{=0} + \beta \underbrace{\langle \vec{u} \wedge \vec{v}, \vec{v} \rangle}_{=0} + \gamma \underbrace{\langle \vec{u} \wedge \vec{v}, \vec{u} \wedge \vec{v} \rangle}_{= \|\vec{u} \wedge \vec{v}\|^2 \neq 0} = \gamma \|\vec{u} \wedge \vec{v}\|^2.$$

Il s'ensuit que :

$$\langle (\vec{u} \wedge \vec{v}), \vec{w} \rangle = 0 \quad \Longleftrightarrow \quad \vec{w} \perp \vec{u} \wedge \vec{v} \quad \Longleftrightarrow \quad \gamma = 0 \quad \Longleftrightarrow \quad \vec{w} = \alpha \vec{u} + \beta \vec{v}.$$

 \hookrightarrow On dit que le vecteur \vec{w} est une combinaison linéaire de \vec{u} et \vec{v} s'il existe des réels α et β tels que :

$$\vec{w} = \alpha \vec{u} + \beta \vec{v}$$
.

Les vecteurs orthonaux à $\vec{u} \wedge \vec{v}$ sont exactement les combinaisons linéaires de \vec{u} et \vec{v} .

1.3 Produit mixte de trois vecteurs de \mathbb{R}^3

1.3.1 Définition

 \hookrightarrow On appelle produit mixte ou déterminant des trois vecteurs $\vec{u}, \vec{v}, \vec{w}$ et on note $[\vec{u}, \vec{v}, \vec{w}]$ ou $\det(\vec{u}, \vec{v}, \vec{w})$ le réel :

$$[\vec{u}, \vec{v}, \vec{w}] = \det(\vec{u}, \vec{v}, \vec{w}) = \langle \vec{u} \wedge \vec{v}, \vec{w} \rangle$$
.

 ${}^{\circlearrowright}$ On dit que les vecteurs \vec{u},\vec{v},\vec{w} sont $\mathit{li\acute{e}s}$ si leur déterminant est nul.

On a donc, d'après l'étude du 1.2.2 :

$$[\vec{u}, \vec{v}, \vec{w}] = 0 \quad \Longleftrightarrow \quad \vec{u} = \vec{0} \text{ ou } \vec{v} = \lambda \vec{u} \text{ ou } \vec{w} = \alpha \vec{u} + \beta \vec{v}.$$

1.3.2 Propriétés

Le produit mixte ne dépend pas de l'ordre dans lequel on place le produit scalaire et le produit vectoriel :

$$[\vec{u}, \vec{v}, \vec{w}] = \langle \vec{u} \wedge \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{v} \wedge \vec{w} \rangle.$$

 $\mathbb{Z}_{\mathbf{D}}$ En effet, le vecteur $\vec{u} + \vec{w}$ est par construction orthogonal à $(\vec{u} + \vec{w}) \wedge \vec{v}$, on a donc :

$$0 = \langle (\vec{u} + \vec{w}) \wedge \vec{v}, \vec{u} + \vec{w} \rangle$$

$$= \underbrace{\langle \vec{u} \wedge \vec{v}, \vec{u} \rangle}_{=0} + \langle \vec{u} \wedge \vec{v}, \vec{w} \rangle + \langle \vec{w} \wedge \vec{v}, \vec{u} \rangle + \underbrace{\langle \vec{w} \wedge \vec{v}, \vec{w} \rangle}_{=0}.$$

D'où on déduit :

$$\langle \vec{u} \wedge \vec{v}, \vec{w} \rangle = - \langle \vec{w} \wedge \vec{v}, \vec{u} \rangle = \langle \vec{v} \wedge \vec{w}, \vec{u} \rangle = \langle \vec{u}, \vec{v} \wedge \vec{w} \rangle \,.$$

Le produit mixte change de signe si l'on échange deux vecteurs :

$$[\vec{u}, \vec{v}, \vec{w}] = -[\vec{v}, \vec{u}, \vec{w}] = -[\vec{u}, \vec{w}, \vec{v}] = -[\vec{w}, \vec{v}, \vec{u}].$$

🖾 On peut en effet écrire :

$$\begin{split} [\vec{v}, \vec{u}, \vec{w}] &= \langle \vec{v} \wedge \vec{u}, \vec{w} \rangle = -\langle \vec{u} \wedge \vec{v}, \vec{w} \rangle = -[\vec{u}, \vec{v}, \vec{w}] \\ [\vec{u}, \vec{w}, \vec{v}] &= \langle \vec{u}, \vec{w} \wedge \vec{v} \rangle = -\langle \vec{u}, \vec{v} \wedge \vec{w} \rangle = -[\vec{u}, \vec{v}, \vec{w}] \\ [\vec{w}, \vec{v}, \vec{u}] &= \langle \vec{w} \wedge \vec{v}, \vec{u} \rangle = -\langle \vec{v} \wedge \vec{w}, \vec{u} \rangle = -\langle \vec{u}, \vec{v} \wedge \vec{w} \rangle = -[\vec{u}, \vec{v}, \vec{w}]. \end{split}$$

Le produit mixte est linéaire par rapport à chacun des 3 vecteurs :

$$\begin{split} [\lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2, \vec{v}, \vec{w}] &= \lambda_1 [\vec{u}_1, \vec{v}, \vec{w}] + \lambda_2 [\vec{u}_2, \vec{v}, \vec{w}], \\ Et \ donc : & [\vec{u}, \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2, \vec{w}] = \lambda_1 [\vec{u}, \vec{v}_1, \vec{w}] + \lambda_2 [\vec{u}, \vec{v}_2, \vec{w}], \\ [\vec{u}, \vec{v}, \lambda_1 \vec{w}_1 + \lambda_2 \vec{w}_2] &= \lambda_1 [\vec{u}, \vec{v}, \vec{w}_1] + \lambda_2 [\vec{u}, \vec{v}, \vec{w}_2]. \end{split}$$

1.3.3 Règle de Sarrus pour le calcul du déterminant

Si
$$\vec{u} = (a, b, c), \vec{v} = (a', b', c'), \vec{w} = (a'', b'', c'')$$
 on a l'habitude de noter $\det(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} a & a' & a'' \\ b & b' & b'' \\ c & c' & c'' \end{vmatrix}$.

En développant on obtient :

$$\det(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} b & b' \\ c & c' \end{vmatrix} .a'' + \begin{vmatrix} c & c' \\ a & a' \end{vmatrix} .b'' + \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} .c''$$
$$= ab'c'' + bc'a'' + ca'b'' - ac'b'' - ba'c'' - cb'a''.$$

On retient cette formule sous la forme suivante appelée règle de Sarrus :

$$\det(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} a & a' & a'' \\ b & b' & b'' \\ c & c' & c'' \\ a & a' & a'' \\ b & b' & b'' \end{vmatrix} \begin{vmatrix} a & a' & a'' \\ b & b' & b'' \\ a & a' & a'' \\ b & b' & b'' \end{vmatrix} \cdot \begin{vmatrix} a & a' & a'' \\ b & b' & b'' \end{vmatrix}.$$

Cela permet de voir qu'on ne change pas le déterminant en "échangeant les lignes et les colonnes" :

rg

$$\begin{vmatrix} a & a' & a'' \\ b & b' & b'' \\ c & c' & c'' \end{vmatrix} = \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix}.$$

1.4 Lien entre produit scalaire, produit vectoriel et produit mixte

Soient \vec{u} et \vec{v} des vecteurs de \mathbb{R}^3 , on vérifie que :

$$\|\vec{u} \wedge \vec{v}\|^2 = a^2b'^2 + b^2c'^2 + c^2a'^2 + a^2c'^2 + b^2a'^2 + c^2b'^2 - 2(aba'b' + bcb'c' + aca'c')$$
$$\langle \vec{u}, \vec{v} \rangle^2 = a^2a'^2 + b^2b'^2 + c^2c'^2 + 2(aba'bb' + bcb'c' + aca'c').$$

Donc:

$$\begin{split} \|\vec{u}\wedge\vec{v}\|^2 + \left<\vec{u},\vec{v}\right>^2 &= a^2b'^2 + b^2c'^2 + c^2a'^2 + a^2c'^2 + b^2a'^2 + c^2b'^2 + a^2a'^2 + b^2b'^2 + c^2c'^2 \\ \|\vec{u}\wedge\vec{v}\|^2 + \left<\vec{u},\vec{v}\right>^2 &= \|\vec{u}\|^2.\|\vec{v}\|^2. \end{split}$$

 $On\ a\ donc:$

$$\begin{split} |\left\langle \vec{u}, \vec{v} \right\rangle| &\leq \|\vec{u}\|.\|\vec{v}\| \quad et \quad |\left\langle \vec{u}, \vec{v} \right\rangle| = \|\vec{u}\|.\|\vec{v}\| \iff \vec{u} \wedge \vec{v} = \vec{0} \iff \vec{u} \ colin\'{e}aire \ \grave{a} \ \vec{v}, \\ \|\vec{u} \wedge \vec{v}\| &\leq \|\vec{u}\|.\|\vec{v}\| \quad et \quad \|\vec{u} \wedge \vec{v}\| = \|\vec{u}\|.\|\vec{v}\| \iff \langle \vec{u}, \vec{v} \rangle = 0 \iff \vec{u} \ orthogonal \ \grave{a} \ \vec{v}. \end{split}$$

La norme du produit vectoriel s'interprète comme la surface du parallélogramme construit sur les vecteurs \vec{u} et \vec{v} .

Le déterminant s'interprète comme le volume (algébrique) du parallélépipède construit sur les vecteurs $\vec{u}, \vec{u}, \vec{w}$.

2 Droites et plans de l'espace

On note \mathcal{E} l'espace affine. Après le choix d'un repère $(0, \vec{\imath}, \vec{\jmath}, \vec{k})$ tout point M est caractérisé par ses coordonnées $(x, y, z) \in \mathbb{R}^3$ qui vérifient :

$$M(x, y, z)$$
 \iff $\overrightarrow{AM} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}.$

Dans ce chapitre le repère sera supposé orthonormé : nous verons dans un prochain chapitre comment les résultats obtenus sont modifiés quand on utilise un repère qui n'est pas orthonormé.

2.1 Équations cartésiennes de plans

Un plan \mathcal{P} de l'espace est définie par la donnée d'un point $A \in \mathcal{P}$ et de 2 vecteurs directeurs \vec{u} et \vec{v} non colinéaires ou de 3 points A, B, C non alignés de \mathcal{P} . Dans ce cas, on peut choisir $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ comme vecteurs directeurs. On note (A, \vec{u}, \vec{v}) le plan passant par A et dirigé par \vec{u} et \vec{v} et (ABC) le plan passant par A, B, C. On a donc :

$$\begin{array}{ccc} M \in (A, \vec{u}, \vec{v}) & \Longleftrightarrow & \overrightarrow{AM} \text{ combinaison linéaire de } \vec{u} \text{ et } \vec{v} \\ & \Longleftrightarrow & \overrightarrow{AM} \text{ orthogonal à } \vec{u} \wedge \vec{v} \\ & \Longleftrightarrow & \left\langle \overrightarrow{AM}, \vec{u} \wedge \vec{v} \right\rangle = \left[\overrightarrow{AM}, \vec{u}, \vec{v} \right] = 0. \end{array}$$

 \hookrightarrow On dit que le vecteur $\vec{n} = \vec{u} \wedge \vec{v}$ est un vecteur normal à \mathcal{P} et on note $\mathcal{P} = (A, \vec{n})$.

Désignons par (x_A, y_A, z_A) les coordonnées de A et (α, β, γ) celles de $\vec{u} \wedge \vec{v}$, on obtient alors une équation cartésienne de \mathcal{P} :

$$\mathcal{P}$$
: $\alpha x + \beta y + \gamma z = \alpha x_A + \beta y_A + \gamma z_A$.

Inversement, si $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$ et $(\alpha, \beta, \gamma) \neq (0, 0, 0)$, l'ensemble des points qui vérifient une équation du type \mathcal{P} : $\alpha x + \beta y + \gamma z = \delta$ est un plan de vecteur normal $\vec{n}(\alpha, \beta, \gamma)$.

2.2 Système d'équations cartésiennes de droites

Une droite \mathcal{D} de l'espace est définie par la donnée d'un point $A \in \mathcal{D}$ et d'un vecteur directeur \vec{u} ou de 2 points distints A, B de \mathcal{D} . Dans ce cas, on peut choisir $\vec{u} = \overrightarrow{AB}$ comme vecteur directeur. On note (A, \vec{u}) la droite passant par A et dirigé par \vec{u} et (AB)la droite par A, B. On a donc :

$$M \in (A, \vec{u}) \quad \Longleftrightarrow \quad \overrightarrow{AM} \text{ colinéaire à } \vec{u}. \quad \Longleftrightarrow \quad \overrightarrow{AM} \wedge \vec{u} = \vec{0}.$$

Désignons par (x_A, y_A, z_A) les coordonnées de A et (a, b, c) celles de \vec{u} . On obtient un système d'équations cartésiennes de \mathcal{D} :

$$\mathcal{D}: \begin{cases} c(y-y_A) - b(z-z_A) = 0 & L_1 \\ a(z-z_A) - c(x-x_A) = 0 & L_2 \\ b(x-x_A) - a(y-y_A) = 0 & L_3 \end{cases}$$

Ces équations ne sont pas indépendantes car on a $aL_1+bL_2+cL_3=0$. Ce système de 3 équations se réduit donc toujours à un système de 2 équations. Par exemple, lorsque $c \neq 0$, on peut éliminer l'équation L_3 alors que si $b \neq 0$ (resp. $a \neq 0$) on peut éliminer L_2 (resp. L_1).

Géométriquement l'interprétation est la suivante : Si $c \neq 0$, L_1 et L_2 sont les équations de 2 plans ; le premier de vecteur normal $\vec{n}_1(0,c,-b)$ et le second de vecteur normal $\vec{n}_2(-c,0,a)$. Ces plans n'étant pas parallèlles, leur intersection est une droite \mathcal{D} qui est contenue dans le plan d'équation L_3 .

2.3 Intersection de deux plans

Soient $\mathcal{P} = (A, \vec{n})$ et $\mathcal{P}' = (A', \vec{n}')$ des plans.

 \hookrightarrow Les plans \mathcal{P} et \mathcal{P}' sont parallèles si leurs vecteurs normaux sont colinéaires :

$$\mathcal{P} /\!\!/ \mathcal{P}' \qquad \Longleftrightarrow \qquad \vec{n} \wedge \vec{n}' = \vec{0}.$$

L'intersection de \mathcal{P} et \mathcal{P}' est :

$$\mathcal{P} \cap \mathcal{P}' = \begin{cases} \emptyset & \text{si } \mathcal{P} /\!\!/ \mathcal{P}' \text{ et } A' \notin \mathcal{P} \text{ i.e. } \vec{n} \wedge \vec{n}' = \vec{0} \text{ et } \overrightarrow{AA'} \wedge \vec{n} \neq 0 \\ \mathcal{P} = \mathcal{P}' & \text{si } \mathcal{P} /\!\!/ \mathcal{P}' \text{ et } A' \in \mathcal{P} \text{ i.e. } \vec{n} \wedge \vec{n}' = \vec{0} \text{ et } \overrightarrow{AA} \wedge \vec{n} = 0 \\ \mathcal{D} & \text{sinon.} \end{cases}$$

Dans le cas où les plans ne sont pas parallèles, pour déterminer un vecteur directeur de la droite $\mathcal{D} = \mathcal{P} \cap \mathcal{P}'$, remarquons que, comme $\mathcal{D} \subset \mathcal{P}$, tout vecteur directeur \vec{u} de \mathcal{D} est orthogonal à \vec{n} . De même, il doit être orthogonal à \vec{n}' . Cela signifie que l'on peut choisir comme vecteur directeur $\vec{u} = \vec{n} \wedge n'$.

L'intersection de deux plans \mathcal{P} et \mathcal{P}' dont les vecteurs normaux \vec{n} et \vec{n}' ne sont pas colinéaires est une droite dirigée par $\vec{n} \wedge n'$.

2.4 Intersection d'une droite et d'un plan

Soient $\mathcal{P} = (A, \vec{n})$ un plan et $\mathcal{D} = (B, \vec{u})$ une droite.

 \hookrightarrow La droite \mathcal{D} est parallèle au plan \mathcal{P} si ses vecteurs direteurs sont orthogonaux aux vecteurs normaux de \mathcal{P} :

$$\mathcal{D} /\!\!/ \mathcal{P} \qquad \Longleftrightarrow \qquad \langle ec{u}, ec{n}
angle = 0.$$

L'intersection de \mathcal{D} et de \mathcal{P} est alors :

de
$$D$$
 et de P est alors :
$$\mathcal{D} \cap \mathcal{P}' = \begin{cases} \emptyset & \text{si } \mathcal{D} /\!\!/ \mathcal{P} \text{ et } B \notin \mathcal{P} \text{ i.e. } \langle \vec{u}, \vec{n} \rangle = 0 \text{ et } \langle \overrightarrow{AB}, \vec{n} \rangle \neq 0 \\ \mathcal{D} & \text{si } \mathcal{P} /\!\!/ \mathcal{P}' \text{ et } B \in \mathcal{P} \text{ i.e. } \langle \vec{u}, \vec{n} \rangle = 0 \text{ et } \langle \overrightarrow{AB}, \vec{n} \rangle = 0 \end{cases}$$

$$\{C\} & \text{sinon}$$

Nous retiendrons de cette étude que l'intersection de trois plans $(\mathcal{P}_i)_{1 \leq i \leq 3}$ de vecteurs normaux respectifs $(\vec{n}_i)_{1 \leq i \leq 3}$ est un point si et seulement si l'intersection des plans \mathcal{P}_1 et \mathcal{P}_2 est une droite qui n'est pas parallèle à \mathcal{P}_3 ce qui se traduit par $\langle (\vec{n}_1 \wedge \vec{n}_2), \vec{n}_3 \rangle = [\vec{n}_1, \vec{n}_2, \vec{n}_3] \neq 0$.

En passant aux équations cartésiennes, on obtient :

🖙 Le système :

$$\begin{cases} a_1x + b_1y + c_1z &= d_1 \\ a_2x + b_2y + c_2z &= d_2 \\ a_3x + b_3y + c_3z &= d_3 \end{cases}$$

admet une solution unique si et seulement si le déterminant $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ n'est pas nul.

3 Distance d'un point à un plan ou une droite

3.1 Projection orthogonale d'un point sur un plan

Soit \mathcal{P} le plan passant par A et de vecteur normal \vec{n} . Pour tout point $M \in \mathcal{E}$, il existe un unique point $H \in \mathcal{P}$ tel que la droite (MH) est orthogonale à \mathcal{P} .

 \circ On appelle H le projeté orthogonal de M sur \mathcal{P} . Il vérifie :

$$\forall P \in \mathcal{P}, \quad \|\overrightarrow{MP}\|^2 = \|\overrightarrow{MH}\|^2 + \|\overrightarrow{HP}\|^2 \ge \|\overrightarrow{MH}\|^2.$$
 Et donc :
$$\|\overrightarrow{MH}\| = \min_{P \in \mathcal{P}} \|\overrightarrow{MP}\|.$$

 \hookrightarrow La distance $\|\overrightarrow{MH}\|$ s'appelle la distance de M à \mathcal{P} et se note $d(M,\mathcal{P})$. En pratique :

- On calcule H en disant que c'est le point d'intersection de \mathcal{P} et de la droite \mathcal{D} passant par M et dirigée par \vec{n} .
- On peut calculer $d(M, \mathcal{P})$ sans calculer H en remarquant que :

$$\left|\left\langle \overrightarrow{AM}, \overrightarrow{n} \right\rangle\right| = \left|\left\langle \overrightarrow{AH}, \overrightarrow{n} \right\rangle + \left\langle \overrightarrow{HM}, \overrightarrow{n} \right\rangle\right| = \|\overrightarrow{HM}\|.\|\overrightarrow{n}\|.$$

car \overrightarrow{AH} est perpendiculaire à \overrightarrow{n} et \overrightarrow{HM} est colinéaire à \overrightarrow{n} .

Lorsque \mathcal{P} est donné par une équation cartésienne $\alpha x + \beta y + \gamma z = \delta$ et M par ses coordonnées (x, y, z), on obtient :

rg

$$d(M, \mathcal{P}) = \frac{\left|\left\langle \overrightarrow{AM}, \overrightarrow{n} \right\rangle\right|}{\|\overrightarrow{n}\|} = \frac{|\alpha x + \beta y + \gamma z - \delta|}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}.$$

3.2 Projection orthogonale d'un point sur une droite

Soit \mathcal{D} la droite passant par A et dirigée par \vec{u} . Pour tout point $M \in \mathcal{E}$, il existe un unique point $H \in \mathcal{D}$ tel que la droite (MH) est orthogonale à \mathcal{D} .

 \hookrightarrow On appelle H le projeté orthogonal de M sur \mathcal{D} .

Il vérifie :

$$\forall P \in \mathcal{D}, \quad \|\overrightarrow{MP}\|^2 = \|\overrightarrow{MH}\|^2 + \|\overrightarrow{HP}\|^2 \ge \|\overrightarrow{MH}\|^2$$

$$Et \ donc : \qquad \|\overrightarrow{MH}\| = \min_{P \in \mathcal{D}} \|\overrightarrow{MP}\|.$$

 \hookrightarrow La distance $\|\overrightarrow{MH}\|$ s'appelle la distance de M à \mathcal{D} et se note $d(M,\mathcal{D})$. En pratique :

- On calcule H en disant que c'est le point d'intersection de \mathcal{D} et du plan \mathcal{P} passant par M et de vecteur normal \vec{n} .
- On peut calculer $d(M, \mathcal{D})$ sans calculer H en remarquant que :

$$\overrightarrow{AM} \wedge \overrightarrow{u} = \overrightarrow{AH} \wedge \overrightarrow{u} + \overrightarrow{HM} \wedge \overrightarrow{u} = \overrightarrow{HM} \wedge \overrightarrow{u}.$$

car \overrightarrow{AH} est colinéaire à \overrightarrow{u} . Comme de plus \overrightarrow{HM} est orthogonal à \overrightarrow{u} . :

$$\|\overrightarrow{AM} \wedge \overrightarrow{u}\| = \|\overrightarrow{HM}\|.\|\overrightarrow{u}\|$$
 d'où $d(M, \mathcal{D}) = \frac{\|\overrightarrow{AM} \wedge \overrightarrow{u}\|}{\|\overrightarrow{u}\|}.$

4 Distance entre deux droites

4.1 Droites coplanaires

 $^{\circ}$ On dit que des droites \mathcal{D} et \mathcal{D}' sont coplanaires s'il existe un plan \mathcal{P} qui les contient toutes deux.

Des droites parallèles sont coplanaires.

Des doites $\mathcal{D}(A, \vec{u}), \ \mathcal{D}(A, \vec{u})$ non parallèles $[\vec{u} \wedge \vec{u}' \neq \vec{0}]$ sont coplanaires si et seulement si :

$$\left\langle \overrightarrow{AA'}, \overrightarrow{u} \wedge \overrightarrow{u'} \right\rangle = 0.$$

 $\not E_{\mathfrak{D}}$ Si les droites \mathcal{D} et \mathcal{D}' sont parallèles [mais différentes] on peut écrire $\mathcal{D}(A, \vec{u}), \mathcal{D}'(A', \vec{u})$ avec $\overrightarrow{AA'} \wedge \vec{u} \neq \vec{0}$. Il existe alors un unique plan \mathcal{P} contenant \mathcal{D} et \mathcal{D}' à savoir le plan passant par A et dirigé par \vec{u} et $\overrightarrow{AA'}$:

$$M \in \mathcal{P}$$
 \iff $\left\langle \overrightarrow{AM}, \overrightarrow{u} \wedge \overrightarrow{AA'} \right\rangle = 0.$

Si les droites \mathcal{D} et \mathcal{D}' ne sont pas parallèles on peut écrire $\mathcal{D}(A, \vec{u}), \mathcal{D}'(A', \vec{u}')$ avec $\vec{u} \wedge \vec{u}' \neq \vec{0}$. Analyse: Un plan \mathcal{P} contenant \mathcal{D} et \mathcal{D}' est nécéssairement le plan \mathcal{P} passant par A et dirigé par \vec{u} et \vec{u}' :

$$M \in \mathcal{P} \qquad \Longleftrightarrow \qquad \left\langle \overrightarrow{AM}, \overrightarrow{u} \wedge \overrightarrow{u}' \right\rangle = 0.$$

Synthèse: Le plan $\mathcal{P}(A, \vec{u}, \vec{u}')$ contient la droite \mathcal{D} . Il contient la droite \mathcal{D}' ssi il passe par A'.

Solution Des droites \mathcal{D} et \mathcal{D}' sont coplanaires si et seulement si elles sont parallèles ou concourantes.

4.2 Perpendiculaire commune à deux droites

Soient \mathcal{D} et \mathcal{D}' des droites. On dit que la droite Δ est une perpendiculaire commune à \mathcal{D} et \mathcal{D}' si Δ rencontre \mathcal{D} et si la direction de Δ est orthogonale à celle de \mathcal{D} et de \mathcal{D}' .

– Si \mathcal{D} et \mathcal{D}' sont parallèles. Soit $A \in \mathcal{D}$ et H le projeté orthogonal de A sur \mathcal{D} et H le projeté orthogonal de A sur \mathcal{D}' . Alors, la droite $\Delta = (AH)$ est une perpendiculaire commune à \mathcal{D} et \mathcal{D}' .

On a alors:

$$\forall (M,M') \in \mathcal{D} \times \mathcal{D}', \quad \|\overrightarrow{MM'}\|^2 = \|\overrightarrow{MA} + \overrightarrow{AH} + \overrightarrow{HM'}\|^2 = \|\overrightarrow{MA}\|^2 + \|\overrightarrow{AH}\|^2 + \|\overrightarrow{HM'}\|^2.$$
On a donc :
$$\|\overrightarrow{MM'}\|^2 \ge \|\overrightarrow{AH}\|^2$$
et :
$$\lim_{(M,M') \in \mathcal{D} \times \mathcal{D}'} \|\overrightarrow{MM'}\| = \|\overrightarrow{AH}\| = \frac{\|\overrightarrow{AA'} \wedge \overrightarrow{u'}\|}{\|\overrightarrow{u}\|}.$$

– Si les droites \mathcal{D} et \mathcal{D}' sont concourantes, soit B leurs point d'intersection. La seule perpendiculaire commune á \mathcal{C} et \mathcal{D}' est la droite passant par B et dirigée par $\vec{u} \wedge u'$ et on a :

$$\min_{(M,M')\in\mathcal{D}\times\mathcal{D}'}\lVert\overrightarrow{MM'}\rVert = \lVert\overrightarrow{BB}\rVert = 0.$$

– Si les droites \mathcal{D} et \mathcal{D}' ne sont ni parallèles, ni concourantes, elles ne sont pas coplanaires. Dans ce cas, toute perpendiculaire commune à \mathcal{D} et \mathcal{D}' est nécessairement contenue dans le plan $P = (A, \vec{u}, \vec{u} \wedge \vec{u}')$ et aussi contenue de le plan $P = (A', \vec{u}', \vec{u} \wedge \vec{u}')$. Ces deux plans n'étant pas parallèles leur intersection est une droite :

$$\Delta = (A, \vec{u}, \vec{u} \wedge \vec{u}') \cap (A', \vec{u}', \vec{u} \wedge \vec{u}').$$

Les droites \mathcal{D} et Δ ne sont pas paralléles et sont coplanaires, elles sont donc concourantes. De mêlme, les droites \mathcal{D}' et Δ sont concourantes. Soient B le point d'intersection de \mathcal{D} et Δ et B' celui de \mathcal{D}' et Δ . On a :

$$\forall (M,M') \in \mathcal{D} \times \mathcal{D}', \quad \|\overrightarrow{MM'}\|^2 = \|\overrightarrow{MB} + \overrightarrow{BB'} + \overrightarrow{B'M'}\|^2 = \|\overrightarrow{MB}\|^2 + \|\overrightarrow{BB'}\|^2 + \|\overrightarrow{BM'}\|^2.$$
On a donc :
$$\|\overrightarrow{MM'}\|^2 \ge \|\overrightarrow{BB'}\|^2$$
et :
$$\lim_{(M,M') \in \mathcal{D} \times \mathcal{D}'} \|\overrightarrow{MM'}\| = \|\overrightarrow{BB'}\|.$$

 \Longrightarrow La distance $\|\overrightarrow{BB'}\|$ s'appelle <u>la distance</u> de \mathcal{D} à \mathcal{D}' et se note $d(\mathcal{D}, \mathcal{D}')$. En pratique, on peut calculer $\|\overrightarrow{BB'}\|$ sans calculer B et B' en remrquant que :

$$\left\langle \overrightarrow{AA'}, (\overrightarrow{u} \wedge \overrightarrow{u'}) \right\rangle = [\overrightarrow{AB} + \overrightarrow{BB'} + \overrightarrow{BA'}].(\overrightarrow{u} \wedge \overrightarrow{u'}) = \overrightarrow{BB'}.(\overrightarrow{u} \wedge \overrightarrow{u'})$$

car les vecteurs \overrightarrow{AB} et $\overrightarrow{A'B'}$ sont orthogonaux à $\overrightarrow{u} \wedge \overrightarrow{u'}$.

Et:
$$\left|\left\langle \overrightarrow{AA'}, (\vec{u} \wedge \vec{u}') \right\rangle\right| = \|\overrightarrow{BB'}\|.\|(\vec{u} \wedge \vec{u}')\|$$

car les vecteurs \overrightarrow{BB} " et $\overrightarrow{u} \wedge u'$ sont colinéaires. Ainsi :

$$d(\mathcal{D}, \mathcal{D}') = \frac{|\det(\overrightarrow{AA'}, \vec{u}, \vec{u}')|}{\|\vec{u} \wedge \vec{u}'\|}$$