사물인터넷 (Internet of Things)

김태운

목차

- 사물인터넷(IoT) 요소 기술 및 아키텍처
- 사물인터넷(IoT) 플랫폼

- IoT 를 구성하는 요소 기술(key technologies)
 - 센싱 기술: 데이터를 수집하고 그것을 정보화(digitization) 하는 기술
 - 연결: 유무선통신 및 네트워크 인프라 기술(플랫폼 및 보안 기술 포함)
 - 사물 간 직접 통신(M2)을 통해 정보를 전달하는 기술
 - 데이터를 (클라우드) 서버에 전송하거나 서버로부터의 명령을 디바이스에 전달하는 기술
 - IoT 서비스 기술: 수집한 데이터의 분석 및 예측, 그리고 이를 통해 서비스를 제공하는 기술

- loT의 구성 요소
 - IoT는 기존의 다양한 정보통신 기술이 망라된 하나의 융합 기술로, 다음의 4가지 요소로 구성됨
 - 응용(applications) 서비스: 서비스 제공
 - 사용자가 접하게 되는 모든 응용 서비스
 - 예: 도시/의료/교통, 농/축/수산업, 에너지/환경/토목/자원, 방범/방재, 물류 관리 등 IoT 기술을 기반으로 제공하는 응용 서비스
 - 플랫폼(platform): 데이터 분석/처리
 - IoT 서비스와 관련된 데이터를 처리하기위한 미들웨어
 - 디바이스의 운용 관리(모니터링, 고장 탐지, 인증/과금 등)를 담당하며, 주로 클라우드 상에서 구축되며 플랫폼 사업자가 운용함
 - 데이터를 저장하는 스토리지 및 정보처리를 위한 서버도 플랫폼에 포함됨
 - IoT의 심장이라고 할 만큼, 모든 지능이 플랫폼에 집약되어 있음
 - 네트워크(network): 연결을 통한 데이터/명령 송수신
 - 통신 사업자가 구축해서 운용하는 유무선 네트워크로, 디바이스와 플랫폼 간의 연결을 제공
 - 유선 네트워크 예: Ethernet, DSL, PLC 등
 - 무선 네트워크 예: 4G, 5G, WiFi, Bluetooth, ZigBee 등
 - 디바이스(device): 데이터 생성/소비 주체
 - 최종 사용자가 사용하는 기기 또는 최종 사용자 주변의 기기로서, 데이터를 생성하거나 소비하는 장치를 말함
 - 일반적으로 센서와 컨트롤러(액츄에이터)를 말하며, 센서는 주변의 상황을 감지하고, 그에 따라 컨트롤러/액츄에이터를 통해 행동을 취함
 - 최종 사용자가 사용하는 스마트폰/태블릿/노트북 등도 디바이스에 해당함

- IoT 아키텍처(IoT 시스템 구조)
 - IoT 시스템을 개발하는데 있어서 기능의 분할이나 인터페이스의 설계 및 상호 접속을 위한 참조 모델 (reference model)을 말함
 - 수직형 vs 수평형 구조
 - IoT 시스템을 구현하는 두 가지 방법
 - 수직형 구조: 애플리케이션 별로 별도의 플랫폼을 가지는 것
 - 수평적 구조: 모든 애플리케이션이 하나의 공통된 플랫폼을 가지는 구조로, common API를 통해 각 서비스(app)와 연결됨

■ IoT 아키텍처(시스템 구조)

- 수직형 구조
 - 장점:
 - 기존의 독자적으로 사용하던 시스템을 그대로 사용 가능
 - 각 서비스가 서로 분리되어 있으므로 보안 위협이 상대적으로 낮음
 - 단점:
 - 각기 다른 인터페이스를 사용하여, 다른 서비스와의 연동이 불가능
 - 각기 특화된 기능을 사용하고 있어서, 기능 공유가 어려움
 - 신규 서비스 개발 시, 기존 기능의 재사용이 어렵고 동일한 기능일지라도 해당 서비스에 맞게 다시 개발해야 함
 - 서비스를 통합 관리하기 어렵고, 개별 관리가 필요함
 - 서비스간 정보 공유가 어려움

• 수평형 구조

- 장점:
 - 시스템 개발 비용 절약: 플랫폼이 제공하는 공통의 기능을 이용하므로 개발 비용이 절약되고 시간이 단축됨
 - 데이터 활용도 증대: 다양한 서비스로부터 수집된 데이터가 플랫폼에 축적되어, 활용도가 증대됨
- 단점:
 - 다양한 서비스가 동일한 플랫폼을 사용하므로 보안 위협에 치명적 손상을 받을 수 있고, 플랫폼에 장애 발생 시 모든 서비스가 영향을 받음 (single point of failure)
 - 참고: single point of failure (SPOF), 단일 장애점이란 전체 시스템을 구성하는 요소 중에서 해당 기능에 장애가 발생하면 전체 시스템이 중단되는 요소를 말함

- IoT 아키텍처 참조 모델(Reference Model)
 - 참고: 참조모델 이란?
 - 전체를 구성하는 각각의 구성요소를 그룹화한 뒤, 간략화 시킨 개념적 모델
 - 복잡한 실제 아키텍처 모델을 일일이 설명하기 어려울 때, 공통적인 기능을 하는 부분을 묶어서 블록 단위로 도식화하여 나타낸 모델
 - 예: OSI 7 계층 참조모델
 - 두 단말 간에 통신을 수행하기 위해 필요한 기능을 그룹화 하여, 7개의 계층으로 분할한 것

- IoT 아키텍처 참조 모델(Reference Model)
 - 한국정보통신기술협회(TTA)의 "사물인터넷 정의 및 참조 모델"(TTAK.KO-06.0346, 2013.12.18)
 - ITU-T Y.2060 "Overview of the Internet of Things" (2012) 를 기준으로 사물인터넷의 참조 모델을 정의하고, 참조 모델의 각 계층별 기능을 정의함
 - 해당 표준은 M2M 및 USN 등을 포괄하는 사물인터넷 분야에 적용 가능

아래의 4개 계층과 각 계층에 적용되는 관리 기능 및 보안 기능으로 구성됨

- 응용 계층
- 서비스 지원 및 응용 지원 계층
- 네트워크 계층
- 디바이스 계층

- IoT 아키텍처 참조 모델(Reference Model)
 - 한국정보통신기술협회(TTA) "사물인터넷 정의 및 참조 모델"(TTAK.KO-06.0346, 2013.12.18)
 - 응용 계층
 - 응용 계층은 다양한 사물인터넷 응용/서비스를 포함한다
 - 서비스 지원 및 응용 지원 계층
 - 공통 지원 기능: 다양한 사물인터넷 응용들에게 공통으로 필요한 기능으로 정보 처리 및 정보 저장 기능 등을 포함한다. 또한, 특정 응용 지원 기능의 요청에 따라 새로운 특정 응용 지원 기능을 구성하기 위해 사용될 수 있다.
 - 특정 응용 지원 기능: 특정한 응용에 특화된 기능으로 다양한 응용을 지원하기 위해 다양한 기능 그룹이 존재할 수 있다.
 - 네트워크 계층
 - 네트워킹 기능 자원 제어 , 이동성 관리, AAA(Authentication, Authorization and Accounting) 등 네트워크 연결을 위한 제어 기능을 수행한다
 - 전송 기능 사물인터넷 서비스 및 응용에 종속적인 정보, 사물인터넷과 관련된 제어 및 관리 정보의 전달을 위한 연결 기능을 수행한다.
 - 디바이스 계층
 - 디바이스 기능: 네트워크와 직접 통신, 게이트웨이의 기능을 활용한 네트워크와 간접 통신, Ad Hoc 네트워킹, Sleep & Wake-Up
 - 게이트웨이 기능: 다양한 인터페이스 지원, 프로토콜 변환
 - 관리기능
 - 기존의 전통적인 통신 시스템에서 필요로 하는 장애, 구성, 과금, 성능 및 보안에 필요한 관리 기능을 모두 포함한다.
 - 사물인터넷에서의 관리 기능은 공통 관리 기능과 특정 관리 기능으로 구분된다. 공통 관리 기능은 다음의 기능을 포함한다: 디바이스 관리, 로컬 네트워크 토폴로지 관리, 트래픽 관리
 - 보안기능
 - 응용 계층에서 권한 인증 응용 데이터 기밀성 및 무결성 보호 개인 정보 보호 , 보안 감사 및 안티 바이러스
 - 네트워크 계층에서 권한 인증 사용자 데이터 및 시그널링 데이터의 기밀성 및 시그널링 데이터의 무결성 보호
 - 디바이스 계층에서 권한 인증 정치 무결성 검증 액세스 제어 데이터 기밀성 및 무결성 보호

- IoT 아키텍처 참조 모델(Reference Model)
 - oneM2M 아키텍처 참조 모델
 - oneM2M 워킹 그룹 2에서는 oneM2M의 네트워크 아키텍처와 이를 구성하는 엔티티 및 공통서비스기능(CSF: Common Service Function)과 이를 제공하기 위한 공통 서비스 계층에서의 레퍼런스 포인트를 정의함
 - oneM2M에서 지원하는 네트워크 아키텍처는 애플리케이션 전용 노드(ADN: Application Dedicated Node), 애플리케이션 서비스 노드(ASN: Application Service Node), 중간노드(MN: Middle Node) 및 인프라 스트럭쳐 노드(IN: Infrastructure Node)로 구성됨(Release 1 규격 TS 0001, 2015.02월)

oneM2M의 아키텍처 레퍼런스 모델

Application Layer

Common Services Layer

Network Services Layer

- IoT 아키텍처 참조 모델(Reference Model)
 - oneM2M 아키텍처 참조 모델
 - oneM2M 레퍼런스 아키텍처의 모든 엔티티(AE, CSE, NSE)는 세가지 계층으로 분류되며, 각 엔티티의 기능은 다음과 같음

구분	내용
애플리케이션 엔티티	애플리케이션 엔티티는 End-to-End 사물인터넷 솔루션을 위한 <u>애플리케이션 로직</u> 을 제공함
(Application Entity)	(예: 화물추적, 원격모니터링, 원격검침 및 제어 등)
공통 서비스 엔티티	공통 서비스 엔티티는 사물인터넷의 다양한 애플리케이
(Common Service	션 엔티티들이 <u>공통적으로 사용 할 수 있는 기능</u> 들로 이
Entity)	루어진 플랫폼임
네트워크 서비스 엔	네트워크 서비스 엔티티는 공통 서비스 엔티티에 네트
티티 (Network	워크 서비스를 제공함(장치관리, 위치서비스, 장치 트리
Service Entity)	거링 등)

- IoT 아키텍처 참조 모델(Reference Model)
 - oneM2M 아키텍처 참조 모델
 - oneM2M 아키텍처에 의한 M2M 시스템 전체 구성

- IoT 아키텍처 참조 모델(Reference Model)
 - oneM2M 아키텍처 참조 모델
 - oneM2M 아키텍처에 의한 M2M 시스템 전체 구성
 - 애플리케이션 서비스 노드(ASN, Application Service Node)
 - M2M Application 뿐만 아니라 공통의 서비스 기능을 포함하는 일반 노드
 - 애플리케이션 전용 노드(AND, Application Dedicated Node)
 - M2M Application을 포함하는 M2M 디바이스로 M2M 서비스 로직 만을 포함하는 제한된 기능을 가지는 제한적 디바이스
 - 중간 노드(MN, Middle Node)
 - 디바이스 노드들과 네트워크 인프라 스트럭처를 연결해주는 게이트웨이 역할을 하는 노드
 - 인프라 스트럭처 노드(IN, Infrastructure Node)
 - 네트워크 인프라 스트럭처에 위치해 M2M 서비스를 제공해주는 노드
 - NoDN(Non-oneM2M Device Node)
 - NoDN 은 oneM2M 엔티티를 AE도 CSE도 가지지 않는 Node이며, 관리 등을 포함하여 상호 연동 할 목적을 위해 oneM2M 시스템에 붙어있는 노드를 나타냄
 - 참고
 - oneM2M 시스템에서 개별적 식별 가능한 논리적 엔티티를 Node라 함

사물인터넷

- IoT 아키텍처 참조 모델(Reference Model)
 - oneM2M 아키텍처 참조 모델
 - oneM2M에서 정의하는 공통 서비스 기능

- IoT 아키텍처 참조 모델(Reference Model)
 - ITU-T 참조 모델 Y.2060
 - TTA IoT 참조 모델의 근간이 되는 모델
 - ITU-T는 2012년 공적 표준화 단체 중 처음으로 'Overview of the Internet of things'라는 제목의 아키텍처 모델 표준(Y.2060)을 제정함
 - 사물인터넷을 '현존하거나 진화하는 ICT 기술을 바탕으로 물리적이거나 가상의 사물을 연결하여 진일보된 서비스가 가능한 정보사회를 위한 글로벌한 인프라'로 정의함
 - 각 계층별 기능은 한국정보통신기술협회(TTA)
 "사물인터넷 정의 및 참조 모델"(TTAK.KO-06.0346, 2013.12.18) 참고

〈Y.2060에서의 IoT Reference Model 〉

- <u>기능적 측면</u>에서의 IoT 시스템 아키텍처
 - 기능적 측면에서 IoT 시스템 구조를 3, 4, 5 계층 구조로 구분할 수 있음

- <u>기능적 측면</u>에서의 IoT 시스템 아키텍처
 - 본 강의에서 가정하는 4단계 IoT 시스템 아키텍처

⟨ IoT System Architecture ⟩ **Application Layer** 개인 IoT 서비스(예: 스마트 카, 헬스케어, 스마트 홈), 공공 IoT 서비스(예: 공공안 Smart 전, 환경, 에너지), 산업 IoT 서비스(예: 스마트 팜, 스마트 팩토리) 등 분야별. 그리 **Applications** Smart Applications/Management/Services 고 사용자 요구에 맞춘 응용 서비스 제공 **Data Processing Layer** Information 특정 응용 서비스에 종속되지 않는 플랫폼에서 동작하며, 데이터 수집 및 분석, 예 Processing Processing Unit 측, 추천 등 응용 서비스를 구현하기 위해 필요한 기능 수행 Data Analytics / Decision Unit **Network Layer** IoT 단말이 센싱을 통해 생성/획득한 데이터를 전달하는 역할 수행. 전송속도, 통신 Data 거리, 통신 방식 등 서로 다른 특성을 가지는 다양한 통신 기술이 있으며, 이 외에도 **Network Technologies** Transmission 전송 신뢰성 보장, 흐름 제어 등의 기술이 존재함 **Data Acquisition System** Sensing Layer 주로 IoT 단말에서 수행하는 기능이며, 사물 주변의 환경정보를 전기적인 신호로 Data 변경하는 센싱 기능, 그리고, 전기적인 신호를 물리적인 변화로 바꿔주는 엑츄에이 **Physical Objects** Acquisition 터 등이 해당 Sensors and Actuators

- 사물인터넷 플랫폼
 - 플랫폼이란 다양한 서비스를 제공할 수 있는 공통 기반 시스템을 의미
 - 사물인터넷 플랫폼은 서비스를 구성하기 위해 필요한 공통 요구 기능들을 포함하고 있으며, 개별 사물과 서비스에서 독립적으로 동작할 수 있어야 함
 - 플랫폼은 서버나 클라우드 형태로 제공될 수 있으며, 디바이스에서 직접 구동/실행할 수도 있음
 - 사물인터넷 플랫폼은 수직적 플랫폼에서 수평적 플랫폼으로 변화하고 있음

- 사물인터넷 플랫폼의 요건
 - 사물인터넷 서비스 구조상에서 사물과 서비스가 요구하는 공통기능을 제공하여, 다양한 사업자들이 쉽게 서비스를 생산, 관리할 수 있고 그 서비스를 사용할 고객(개발자, 서비스 이용자)에 대한 편의가 제공되어야 함

- 사물인터넷 플랫폼의 요소 기술
 - 식별 체계(Identification)
 - 어떤 대상을 유일하게 식별할 수 있는 방법을 제공하는 기술을 식별체계 기술이라 함
 - 사물인터넷 기술은 전세계적 규모로 확대될 수 있으므로, 모든 사물에 대해서 전지구적으로 유일한(globally unique) 디 바이스 식별자와 서비스별 식별자가 정의되어야 함
 - 예:
 - 학생번호, 주민등록번호, 자동차번호, 사원번호
 - 인터넷 자원 식별자(URI: Uniform Resource Identifier)
 - 국제 표준 도서 번호(ISBN: International Standard Book Number)
 - 전화번호(MSISDN: Mobile Station International Subscriber Directory Number)
 - IP주소(Internet Protocol 주소): v4, v6
 - 객체식별자(ODI: Object Identifier) 등

- 사물인터넷 플랫폼의 요소 기술
 - 검색 기능
 - 사용자가 원하는 서비스를 제공받기 위하여 필요한 정보나 리소스 등을 찾고, 찿아진 결과를 쉽게 활용할 수 있도록 제공 하는 기능
 - IoT에서의 검색 기능은 크게 두 가지로 분류: 클라이언트-서버, P2P

검색기능 구분	내용
클라이언트-서버	 클라이언트의 검색 요청에 대해 서버는 자신의 저장소에 존재하는 디렉토리로부터 검색 결과를 알려줌 일반적으로 글로벌 환경에서의 검색 서비스를 제공할 수 있음 대표적으로 oneM2M과 같은 표준이 이러한 방식을 채택함
P2P (Peer-to-Peer)	 리소스를 찾고자 하는 장치가 네트워크에 검색요청을 보내고, 검색요청을 받은 장치가 자신이 해당 리소스를 가지고 있을 경우 응답하거나, 모든 디바이스가 자신이 가지고 있는 리소스 정보를 주기적으로 광고함 네트워크상에서 리소스를 찾고자 하는 장치는 원하는 리소스에 대한 광고를 수신하여 리소스를 검색함

- 사물인터넷 플랫폼의 요소 기술
 - 장치 관리(디바이스 관리)
 - 사물인터넷 디바이스의 초기설정, 소프트웨어/펌웨어 다운로드, 디바이스의 고장 진단 및 배터리/메모리 등 하드웨어 모니터링, 디바이스 주변장치(USB, 카메라 등) 컨트롤, 시스템 리부팅, 시스템 로깅 등을 위한 기술임
 - 대표적 기술로 OMA(Open Mobile Alliance) DM(Device Management), OMA LWM2M(Lightweight M2M), BBF(Broadband Forum) TR-069 기술을 활용하거나 별도의 장치관련 프로토콜을 개발하여 사용하고 있음

- 사물인터넷 플랫폼의 요소 기술
 - 사물 가상화(디바이스 가상화) / virtualization
 - 물리적 환경에 존재하는 다양한 사물의 정보를 플랫폼 또는 디바이스에 표현하기 위해 추상화된 형태로 리소스를 생성하는 기술임
 - 추상화로 리소스는 실제 물리적 환경에 존재하는 사물을 대신하는 형태로 존재하며, 실제 물리적 환경에 존재하는 사물을 모니터링하거나 제어할 수 있음.
 - 사물 가상화를 통해 실세계에 존재하는 사물이 지원하는 네트워크, 정보체계 등에 관계없이 가상화 된 리소스를 손쉽게 서비스와 연결하거나, 이를 기반으로 새로운 서비스를 구성할 수 있음

- 사물인터넷 플랫폼의 요소 기술
 - 서비스 컴포지션(서비스 조합)
 - 서비스 조합이란 다양한 개별 서비스를 하나의 통합된 서비스로 만드는 것을 말함
 - 마치, 여러 명의 악기 연주자들을 하나로 모아서 교향악단을 조직하는 것과 같고, 그래서 서비스 조합을 서비스 오케스트레이션이라고도 함
 - 서비스 조합에서는 IoT 서비스 제공자가 사용자(App)로부터 특정 서비스를 요청 받았을 때, 플랫폼의 지휘자 (orchestrator)가 특정 서비스를 제공하는 데 필요한 모든 요소 서비스를 검색한 후 관련된 서비스를 찾아서 하나의 통합된 서비스로 만들어서 고객에게 제공해주는 방식으로 동작함
 - 서비스 컴포지션 기술은, 서비스 지향 구조(SOA, Service-Oriented Architecture)에서 다양한 서비스를 연동하기 위한 개념에서 출발했으며, Service Oriented 또는 Service Choreography 기술의 하부 기술로 사용됨

구분	내용
Service Orchestration	사용자 또는 어플리케이션으로부터 특정 서비스를 요청 받았을 때 사물인터넷 플랫폼의 오케스트레이터가 해당 서비스를 검색하고 이와 관련된 서비스를 찿아 제공해주는 기술
Service Choreography	Service Orchestration으로부터 특정서비스를 요청 받았을 때 정의한 순서 및 명시된 서비스에 따라 서비스를 검색하고 이를 기반 으로 서비스를 제공해주는 기술

- 사물인터넷 플랫폼의 요소 기술
 - 시맨틱 기술
 - 시맨틱 기술은, 현재의 인터넷과 같은 분산환경에서 리소스(웹 문서, 파일, 서비스 등)에 대한 정보와 리소스들의 관계-의미 정보를 기계가 처리할 수 있도록, 온톨로지(Ontology) 형태로 표현하고 이를 자동화된 기계가 처리하도록 하는 프레임워크 기술임
 - 시맨틱 기술은 주로 웹 기반의 어플리케이션 또는 서비스에서 의미적 상호운용을 위하여 사용되어왔으며, 이후 웹 뿐만 아니라 사물인터넷, 빅데이터 등 다양한 시스템까지 확장 사용됨

- 사물인터넷 아키텍처를 적용한 플랫폼
 - AllSeen Alliance의 AllJoyn
 - AllJoyn은 퀄컴, 마이크로소프트, LG, 소니, 파나소닉, 샤프 등이 멤버로 참여하고 있으며, LG는 HDTV 등 AllJoyn을 채택한 상용제품이 출시함
 - AllJoyn의 네트워크 아키텍처에서 '앱(App)'들은 '라우터(Router)'와 물리적 통신을 하며, 앱은 라우터를 통해서만 다른 앱과 통신이 가능함. 이들은 한 물리적 디바이스 내부에 같이 있을 수도 있고 다른 디바이스에 있을 수도 있음

- 사물인터넷 아키텍처를 적용한 플랫폼
 - OCF IoTivity (OCF: Open Connectivity Foundation)
 - IoTivity는 오픈소스 커뮤니티의 자발적인 참여를 통해 수십 억 개의 IoT 기기를 연결하는 데 쓰이는 프레임워크 표준을 개발함
 - IoTivity라고 불리는 RA(Reference Architecture, 참조 모델)는, 디바이스 제조자와 애플리케이션 제작자가 OCF 표준 호환 제품 및 서비스와 상호 운영되는 제품과 서비스를 제작할 수 있도록 하는 출발점으로 사용됨
 - IoTivity 아키텍처는 여러 기능들을 세분화하지 않고 일반화하여 AllJoyn에 비해서는 간단함
 - 중앙에 표현된 프레임워크 빌딩 블럭은 oneM2M 기준으로 보면 CSE와 대응됨
 - 현재는 프레임워크에 4개의 기능 빌딩 블럭을 정의했는데, 이는 oneM2M의 CSE내부에 정의되어 있는 12가지 기능들 중에 4가지와 그대로 일대일 대응됨

• 특징

- IoTivity는 리소스 기반 RESTful 아키텍처 모델을 기반으로 하고, 따라서 모든 사물을 리소스로 표현하고 CRUDN(Create, Read, Update, Delete and Notify) 오퍼레이션을 제공
- 데몬(Deamon)없이 CoAP(Constrained Application Protocol) 기반으로 설계되어 저사양, 저전력 기기 지원이 용이한 장점
- IoTivity 프레임워크는 크게 IoTivity 서비스와 관련된 기본 서비스(Basic Service)블록과 추가 서비스(Additional Service) 블록 그리고 OCF 표준 기반 구현 부분인 자원(Resource) 블록으로 구성
- 자원 블록은 OCF 표준 기반한 부분으로 일반 리소스 모델, 리소스 발견, 메시징, 식별자 및 주소표현, CRUDN 오퍼레이션, 보안 등 IoTivity 프레임워크의 근간을 이루는 핵심적인 부분임

사물인터넷

- 사물인터넷 아키텍처를 적용한 플랫폼
 - OCF IoTivity (OCF: Open Connectivity Foundation)
 - IoTivity의 프레임워크 구성요소

구분	내용
common solution	최종소비자, 회사, 산업계, 자동차 및 헬스분야 같은 여러 수직적인 상품시장들을 아우르고, OS, 플랫폼, 통신모드, 전송기술, 유스케이스 등 수평적인 기술요소들을 아우르는 상호 호환 솔루션을 정의함
established protocols	여러 전송기술들에 걸친 탐색과 연결을 위한 새로운 공통의 통신 프로토콜들에 대해 기존의 것들을 재사용하거나 새로운 것을 확립함
common approaches	보안과 식별성을 위해 공통적인 접근을 적용함
defined commonalities	공통적인 프로파일들, 객체모델들 그리고 개발자 API들을 정의함
interoperability	여러 시장들과 유스케이스들을 아우르는 디바이스와 응용의 상호호환성을 정의함
innovation opportunity	혁신을 위한 기회를 제공하고 차별화를 지원함
necessary connectivity	최소의 웨어러블 기기부터 가장 큰 차까지 모든 것을 연결함

- 사물인터넷 하드웨어 플랫폼
 - 아두이노(Arduino)
 - 2005년 이탈리아의 IDII(Interaction Design Institutelyera)가 개발한 오픈소스 하드웨어
 - 8-bit의 AVR CPU를 탑재한 저사양 마이크로 컨트롤러 보드
 - 여러 개의 디지털 및 아날로그 핀에 센서/액추에이터를 연결하거나 WiFi, Ethernet 등 통신 연결 모듈을 연결하거나 LCS 스크린, USB 어댑터 등을 연결하여 IoT 디바이스를 구축할 수 있음
 - 센서 및 액추에이터 제어에 중점을 둔 오픈소스 하드웨어로, 다양한 OS를 지원하는 IDE를 통해 컴파일 된 펌웨어를 USB로 쉽게 업로드 가능
 - 다양한 버전이 존재하며 각기 성능, 크기, 레이아웃이 상이함

Name	Processor	Operating/Input Voltage	CPU Speed	Analog In/Out	Digital IO/PWM	EEPROM [kB]	SRAM [kB]	Flash [kB]	USB	UART
101	Intel® Curie	3.3 V / 7-12V	32MHz	6/0	14/4	50	24	196	Regular	8.
Gemma	ATtiny85	3.3 V / 4-16 V	8 MHz	1/0	3/2	0.5	0.5	8	Micro	0
LilyPad	ATmega168V ATmega328P	2.7-5.5 V / 2.7-5.5 V	8MHz	6/0	14/6	0.512	1	16	NJ.	¥
LilyPad SimpleSnap	ATmega328P	2.7-5.5 V / 2.7-5.5 V	8 MHz	4/0	9/4	1	2	32	e.	3
LilyPad USB	ATmega32U4	3.3 V / 3.8+5 V	8 MHz	4/0	9/4	1	2.5	32	Micro	¥
Mega 2560	ATmega2560	5 V / 7-12 V	16 MHz	16/0	54/15	4	8	256	Regular	4
Micro	ATmega32U4	5 V / 7-12 V	16 MHz	12/0	20/7	1,	2.5	32	Micro	1
MKR1000	SAMDZI Cortex-MO+	3.3 V / 5V	48MHz	7/1	8/4	\$2	32	256	Micro	1
Pro	ATmega168 ATmega328P	3.3 V / 3.35-12 V 5 V / 5-12 V	8 MHz 16 MHz	6/0	14/6	0.512 1	1 2	16 32	8	1
Pro Mini	ATmega328P	3.3 V / 3.35-12 V 5 V / 5-12 V	8 MHz 16 MHz	6/0	14/6	1	2.	32	:	1
Uno	ATmega328P	5 V / 7-12 V	16 MHz	6/0	14/6	1	2.	32.	Regular	Ţ
Zero	ATSAMD21G18	3.3 V / 7-12 V	48 MHz	6/1	14/10	9	32	256	2 Micro	2
Due	ATSAM3X8E	3.3 V / 7-12 V	84 MHz	12/2	54/12	50	96	512	2 Micro	4
Esplora	ATmega32U4	5 V / 7-12 V	16 MHz	-	ŧ	1	2.5	32.	Micro	*
Ethernet	ATmega328P	5 V / 7-12 V	16 MHz	6/0	14/4	1	2	32.	Regular	13.
Leonardo	ATmega32U4	5 V / 7-12 V	16 MHz	12/0	20/7	T	2.5	32	Micro	1
Mega ADK	ATmega2560	5 V / 7-12 V	16 MHz	16/0	54/15	4	8	256	Regular	4
Mini	ATmega328P	5 V / 7-9 V	16 MHz	8/0	14/6	1	2	32		2
Nano	ATmega168 ATmega328P	5 V / 7-9 V	16 MHz	8/0	14/6	0.512 1	1 2	16 32	Mini	1
Yün	ATmega32U4 AR9331 Linux	5 V	16 MHz 400MHz	12/0	20/7	t	2.5 16MB	32 64MB	Micro	1
Arduino Robot	ATmega32u4	5 V	16 MHz	6/0	20/6	1 KB (ATmega32u4)/ 512 Kbit (I2C)	2.5 KB (ATmega32u4)	32 KB (ATmega32u4) of which 4 KB used by bootloader	1	1
MKRZero	SAMD21 Cortex-MO= 32bit low power ARM MCU	3.3 V	48 MHz	7 (ADC 8/10/12 bit)/1 (DAC 10 bit)	22/12	No	32 KB	256 KB	1	1

- 사물인터넷 하드웨어 플랫폼
 - 아두이노 우노(Arduino UNO)
 - 아두이노의 표준 보드로, 가장 널리 사용되는 모델(가격: 약 3만원)

마이크로 컨트롤러	ATmega328P
USB to serial chip	CH340G
SRAM	2 KB (ATmega328P)
EEPROM	1 KB (ATmega328P)
아날로그 I/O 핀	6 개
디지털 I/O 핀	14 개(중 PWM 6개)
작동전압	5 V
입력전압(권장)	7-12 V
입력전압(한계)	6-20 V
I/O 핀당 DC 전류	40 mA
USB 포트	type B USB
Clock Speed	16 MHz
가로 크기	약 68.6 mm
세로 크기	약 53.4 mm
무게	약 25 g

- 사물인터넷 하드웨어 플랫폼
 - 라즈베리파이(Raspberry Pi)
 - 영국의 라즈베리파이 재단에서 브로드콤(BroadComm)의 BCM 2835 칩을 기반으로 개발한 오픈소스 하드웨어
 - 교육용 단일보드 컴퓨터(SBC, Single Board Computer)로, 2012년에 버전 1이 최초 출시되었고, 버전 4까지 출시됨
 - Raspbian (Debian 계열의 리눅스) 운영체제 사용
 - 다양한 버전이 존재하며 각기 성능, 크기, 레이아웃이 상이함

Model	RPi 2 B	RPi 3 B	RPi 3 B+	RPi 4 B
SOC Type	Broadcom BCM2836	Broadcom BCM2837	Broadcom BCM2837B0	Broadcom BCM2711
CPU Clock	4 × Arm Cortex-A7, 900 MHz	4 × Arm Cortex-A53, 1.2 GHz	4 × Arm Cortex-A53, 1.4 GHz	4 × Arm Cortex-A72, 1.5 GHz
RAM	1 GB	1 GB	1 GB	1 GB/2 GB/4 GB
GPU	Broadcom VideoCore IV	Broadcom VideoCore IV	Broadcom VideoCore IV	Broadcom VideoCore VI
USB Ports	4	4	4	4 (2 × USB 3.0 + 2 × USB 2.0)
Ethernet	100 Mbit/s base Ethernet	100 Mbit/s base Ethernet	Gigabit Ethernet (max. 300 Mbps)	Gigabit Ethernet (no limit)
Power over Ethernet	No	No	Yes (requires separate PoE HAT)	Yes (requires separate PoE HAT)
WiFi	No	WiFi 802.11n	WiFi 802.11ac Dual Band	WiFi 802.11ac Dual Band
Bluetooth	No	4.1	4.2 BLE	5.0 BLE
Video Output	HDMI/35 mm Comp./DSI	HDMI/3.5 mm Comp./DSI	HDMI/3.5 mm Comp./DSI	micro-HDMI/3.5 mm Comp./DSI
Audio Output	I ² S/HDMI/3.5 mm Composite	I ² S/HDMI/3.5 mm Composite	12 S/HDMI/3.5 mm Composite	12 S/HDMI/3.5 mm Composite
Camera Input	15 Pin CSI	15 Pin CSI	15 Pin CSI	15 Pin CSI
GPIO Pins	40	40	40	40
Memory	MicroSD	MicroSD	MicroSD	MicroSD

- 사물인터넷 하드웨어 플랫폼
 - 라즈베리파이(Raspberry Pi) 4b
 - 가장 최근(2019)에 출시된 모델로, 메모리 용량을 다양하게 출시함

From **\$35**

You'll recognise the price along with the basic shape and size, so you can simply drop your new Raspberry Pi into your old projects for an upgrade; and as always, we've kept all our software backwardscompatible, so what you create on a Raspberry Pi 4 will work on any older models you own too.

Specifications

Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz

1GB, 2GB, 4GB or 8GB LPDDR4-3200 SDRAM (depending on model) 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE Gigabit Ethernet

2 USB 3.0 ports; 2 USB 2.0 ports.

Raspberry Pi standard 40 pin GPIO header (fully backwards compatible with previous boards) $\,$

2 × micro-HDMI ports (up to 4kp60 supported)

2-lane MIPI DSI display port

2-lane MIPI CSI camera port

4-pole stereo audio and composite video port

H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode)

OpenGL ES 3.1, Vulkan 1.0

Micro-SD card slot for loading operating system and data storage

5V DC via USB-C connector (minimum 3A*)

5V DC via GPIO header (minimum 3A*)

Power over Ethernet (PoE) enabled (requires separate PoE HAT)

Operating temperature: 0 - 50 degrees C ambient

- 사물인터넷 하드웨어 플랫폼
 - NVIDIA Jetson
 - 엔비디아(NVIDA)가 개발한 싱글보드 컴퓨터(SBC)
 - 인공지능(AI) 연산에 최적화된 엔비디아의 고성능 GPU를 활용할 수 있어 최근에는 AI가 접목된 프로젝트의 메인보드로 널리 쓰이는 추세

NVIDIA Jetson Family Specifications					
	Xavier NX (15W)	AGX Xavier	Jetson Nano (4GB)	Jetson Nano (2GB)	
CPU	4x/6x Carmel @ 1.4GHz or 2x Carmel @ 1.9GHz	8x Carmel @ 2.26GHz	4x Cortex-A57 @ 1.43GHz	4x Cortex-A57 @ 1.43GHz	
GPU	Volta, 384 Cores @ 1100MHz	Volta, 512 Cores @ 1377MHz	Maxwell, 128 Cores @ 920MHz	Maxwell, 128 Cores @ 920MHz	
Accelerators	2x NVDLA	2x NVDLA	N/A	N/A	
Memory	8GB LPDDR4X, 128-bit bus (51.2 GB/sec)	16GB LPDDR4X, 256-bit bus (137 GB/sec)	4GB LPDDR4, 64-bit bus (25.6 GB/sec)	2GB LPDDR4 64-bit bus (25.6 GB/sec)	
Storage	16GB eMMC	32GB eMMC	16GB eMMC	microSD	
USB	4x USB-A 3.1 Gen 2	2x USB-C 3.1 1x USB-A 3.0	4x USB-A 3.0	1x USB-A 3.0 2x USB-A 2.0 1x USB-C (Power)	
Al Perf.	21 TOPS	32 TOPS	N/A	N/A	
Dimensions	45mm x 70mm	100mm x 87mm	45mm x 70mm	45mm x 70mn	
TDP	15W	30W	10W	10W	
Price	\$399	\$699	\$99	\$59	

- 사물인터넷 하드웨어 플랫폼
 - Jetson Nano
 - Jetson 제품 시리즈 중 소형화하고 가격을 낮춰 라즈베리파이 급으로 경량화한 모델
 - 가격은 약 \$60

GPU	128-코어 엔비디아 맥스웰(NVIDIA Maxwell) 아키텍처 기반 GPU
CPU	쿼드코어(Quad-core) ARM A57
비디오	4K@30fps (H.264/H.265) / 4K@60fps (H.264/H.265) 인코드/디코드
카메라	MIPI CSI-2 DPHY 레인(lanes), 12x (모듈) and 1x (개발자 키트)
메모리	4GB 64-비트LPDDR4; 25.6 초당 기가바이트
연결	기가비트 이더넷(Gigabit Ethernet)
운영체제 지원	테그라(Tegra)용 리눅스
모듈 크기	70mm × 45mm
개발자 키트 크기	100mm × 80mm
	9

	Jetson nano	라즈베리IHOI4	라메판다알파
21	100mm x 80mm	85mm x 56mm	115mm x 78mm
운영체제	Linux(Debian, Ubuntu)	Linux(Debian, Ubuntu)	Windows 10
CPU	4 Core ARM Cortex A57	4 Core ARM Cortex A72	Intel 8th M3-8100Y
GPU	128 CUDA core (Maxwell)	Broadcom VideoCore IV	Intel HD Graphics 615
RAM	4GB DDR4	1GB ~ 4GB	8GBDDR4
전원	10W~20W	15W	36W ~ 45W

- 사물인터넷 하드웨어 플랫폼
 - Google Coral Dev Board
 - 기계학습에 특화된 단일 보드 컴퓨터(SBC)
 - 온-보드 Edge TPU는 초당 4 trillion operations (tera-operations) 연산을 수행할 수 있음
 - 소모 전력: 0.5 watts for each TOPS (또는 2 TOPS per watt)

Dev Board

A development board to quickly prototype on-device ML products. Scale from prototype to production with a removable system-on-module (SoM).

Description

Tech specs

Documentation

- 사물인터넷 하드웨어 플랫폼
 - 참고: USB 기반 딥러닝 가속기
 - 저전력/저성능 사물인터넷 하드웨어 플랫폼에서 머신러닝 및 딥러닝 처리속도 향상을 위한 USB 형태의 가속기 등장
 - 10만원대의 가격이며, USB 연결 가능한 대부분의 디바이스에 연결하며 딥러닝 처리속도 향상을 위해 사용

Google Coral USB Accelerator

ML accelerator	Google Edge TPU coprocessor: 4 TOPS (int8); 2 TOPS per watt
Connector	USB 3.0 Type-C* (data/power)
Dimensions	65 mm x 30 mm

Intel Neural Compute Stick 2

- Processor Intel Movidius Myriad X Vision Processing Unit (VPU) with 16 SHAVE cores (128-bit VLIW Vector Processors)
- Host Interface USB 3.0 Type-A port
- Dimensions 72.5 mm x 27 mm x 14 mm
- Operating temperature 0° C to 40° C

