ERGAN: Generative Adversarial Networks for Entity Resolution

Jingyu Shao ¹, Qing Wang ¹, Asiri Wijesinghe ¹, and Erhard Rahm ²

¹Research School of Computer Science Australian National University

²Database Group, University of Leipzig

November 20, 2020

Acknowledgement: This work was partially funded by the Australian Research Council (ARC) under Discovery Project DP160101934

Introduction: Challenges in ER

Two main challenges in solving Entity Resolution (ER) tasks:

(a) Entire Data Distribution

(b) Samples with limited labels

Introduction: Challenges in ER

Two main challenges in solving Entity Resolution (ER) tasks:

The imbalanced class problem:
 The number of matches (record pairs referring to the same pairs)

The number of matches (record pairs referring to the same entity) is far less than the number of non-matches.

Introduction: Challenges in ER

Two main challenges in solving Entity Resolution (ER) tasks:

(b) Samples with limited labels

- The imbalanced class problem:
 - The number of matches (record pairs referring to the same entity) is far less than the number of non-matches.
- The overfitting problem:

The number of labeled instances is limited and a learning model is powerful enough to remember all the features of training instances.

Introduction: GANs

Generative adversarial network (GAN) is a powerful technique for image generation and natural language processing (NLP).

Figure: An overview of GANs

Framework Overview

Framework Overview

Label Generator G

The *label generator* G - aims to generates pseudo labels for unlabeled instances.

Label Generator G

- The goal of the label generator G is to learn a conditional distribution $p_g(Y|X^U) \approx p(Y|X^U)$.
 - where X^{U} refers to all unlabeled instances and Y refers to their labels.
- To simulate the conditional distribution $p(Y|X^U)$, the label generator G receives feedback (i.e. gradients) from the discriminator D and is trained iteratively through backpropagation.

Diversity Module

The *diversity module* enriches the diversity of both labeled and unlabeled instances during the sampling process.

Diversity Module

- Different from GANs, we consider the diversity of instances in the minibatch sampling process.
- For all instances in X, we have $X = \bigcup_{i=1}^b X_i$ and $\bigwedge_{1 \le i \ne j \le b} X_i \cap X_j = \emptyset$. where X_i refers to subspaces.

Diversity Module

• A minibatch of m instances is selected from X^U according to the following objective function:

maximize
$$||\mathbf{v}||_{2,1}$$
 s.t. $\sum_{i,j} v_i^j = m$

• Let $\mathbf{v} = (\mathbf{v}_1,...,\mathbf{v}_b)$ be a vector corresponding to b subspaces, and $||\mathbf{v}||_{2,1}$ is a $l_{2,1}$ -norm function, i.e.

$$||\mathbf{v}||_{2,1} = \sum_{i=1}^{b} ||\mathbf{v}_i||_2 = \sum_{i=1}^{b} \sqrt{\sum_{j=1}^{n_i} v_i^{j^2}}$$

where:

$$- \mathbf{v}_i = (v_i^1, \dots, v_i^{n_i})^T;$$

$$- \mathbf{v}_i \in [0,1]^{n_i};$$

$$- n_i = |X_i^U|.$$

Objective Function of G

 G updates its parameters according to the following objective function:

$$\mathcal{L}_G = \min_G \quad \mathbb{E}_{x \sim p(X_i^U)}[\log(1 - D(x, G(x)))] \tag{1}$$

where:

- $G(x_i)$ is the pseudo label of x_i generated by G;
- $-x_i$, $G(x_i)$ is a pseudo labeled instance sent to the discriminator D;
- -D(x,G(x)) is the feedback from the discriminator D.

Discriminator D

The $discriminator\ D$ - aims to distinguish instances with pseudo labels from instances with real labels.

Discriminator D

- The goal of D is to distinguish whether a labeled instance (x, G(x)) is from the real distribution p(X, Y)
- Given a pair (x, G(X)) as input, D generates a scalar value in [0,1] to indicate the probability that G(x) is the same as the real label y of x.

Propagation Module

The propagation module guarantees the selection of high-quality unlabeled instances for training the discriminator D when the labeled instances are not sufficient.

Propagation Module

- Different from GANs, the discriminator D in ErGAN is designed to approximate the true joint distribution p(X,Y) progressively through a propagation module.
- The higher score of $D(x_i, G(x_i))$ indicates the higher correctness of $G(x_i)$ to the real label y_i .
- \bullet A minibatch of γ pseudo labeled instances are propagated according to the following objective function:

$$\underset{\Delta X^t \subseteq X^t}{\operatorname{argmax}} \sum_{x \in \Delta X^t} D(x, G(x))$$

where:

- $-(X^t,G(X^t))$ denote all pseudo labeled instances at the *t*-th iteration;
- $|\Delta X^t| = \gamma;$

Propagation Module

• Then, this subset of pseudo labeled instances $(\Delta X^t, \hat{Y})$ is propagated into the set of labeled instances $(X^*, Y)^t$ to train D.

Figure: An overview of label propagation

Objective Function of D

• The objective function of *D* at the t-th iteration of propagation is defined as:

$$\mathcal{L}_{D} = \max_{D} \mathbb{E}_{x \sim p(X_{i}^{U})} \log[(1 - D(x, G(x)))] + \lambda \mathbb{E}_{(x,y) \sim (X^{*}, Y)^{t}} \log[D(x, y)]$$
(2)

where:

- λ refers to a weighted term.
- $-(X^*,Y)^t$ refers to the labeled instances in t-th iteration.

Hyper-parameters in the Algorithm

- The number of subspaces *b* is decided based on the number of attributes in each dataset.
- n is a hyper-parameter referring to the number of iterations for converging G and D.
- Propagation iterations t is decided by the total number X^U of unlabeled instances and the number γ of instances being propagated in each iteration, i.e. $t = \lceil \frac{|X^U|}{\gamma} \rceil$.

Experimental Setup: Datasets

Dataset	#Attributes (A)	#Instances (X)	Imbalance Rate	#Subspaces (b)
Cora	4	837,865	1:49	16
DBLP- ACM	4/4	6,001,104	1:2,698	16
DBLP- Scholar	4/4	168,112,008	1:71,233	16
NCVoter	18/18	1,000,000	1:4,202	64

Experimental Setup: Baselines

- Unsupervised methods: Two-Steps and Iterative Term-Entity Ranking and CliqueRank (ITER-CR)
- Semi-supervised methods: Semi-supervised Boosted Classifier (SBC)
- Fully supervised methods: Magellan and eXtreme Gradient boosting (XGboost)
- Deep Learning based methods: DeepMatcher (DM) and Deep Transfer active learning (DTAL).

Experimental Setup: Ablation Study

Some variants of **ErGAN** used in the ablation study:

- **ErGAN+WE** refers to the model of ERGAN augmented with word embeddings for attribute values.
- ullet ErGAN-D refers to a model being obtained by removing the diversity module from ${\rm ErGAN}$
- ullet ErGAN-P refers to a model being obtained by removing the propagation module from ${\rm ErGAN}$
- ErNN refers to a model whose GANs architecture is replaced by a single multi-layer perceptron.

Results: 60% Training

	Datasets						
Method	Cora	DBLP-	DBLP-	NCVoter			
	Cora	ACM	Scholar				
2S	62.69	91.43	68.78	98.96			
ITER-CR*	89.00	_	_	-			
SBC	85.71	97.09	85.47	99.78			
SVM	88.95	97.19	85.71	98.48			
LR	80.25	95.56	83.84	99.37			
XGBoost	91.34	97.20	86.63	100			
ERGAN	93.03	98.23	88.32	100			
DM	98.58	98.29	94.68	100			
DTAL*	$98.68_{\pm0.26}$	$98.45_{\pm 0.22}$	$92.94_{\pm0.47}$	_			
ERGAN+WE	98.72 _{±0.15}	$98.51_{\pm 0.23}$	$94.73_{\pm 0.35}$	100			

Results: 0.1% - 10% Training

Results: Ablation Study

Datasets	Cora			DBLP-ACM				
Datasets	0.1%	1%	20%	60%	0.1%	1%	20%	60%
ERNN	84.46	90.67	91.43	92.78	88.05	95.68	98.20	98.22
Ergan-D	79.87	85.14	91.27	92.97	0	93.30	97.16	98.21
Ergan-P	85.18	90.76	91.42	93.03	92.67	95.96	98.21	98.23
ErGAN	87.45	91.07	91.54	93.03	96.89	96.93	98.22	98.23
Datasets	DBLP-Scholar			NCVoter				
	0.1%	1%	20%	60%	0.1%	1%	20%	60%
ERNN	82.76	83.17	86.71	87.73	99.39	100	100	100
Ergan-D	0	78.85	83.43	88.29	0	99.58	100	100
Ergan-P	83.43	85.34	86.55	88.32	99.39	99.79	100	100
ERGAN	84.23	85.85	86.86	88.32	99.45	100	100	100

Conclusion

- ullet We have proposed a novel method, called ${\rm ErGAN}$, to solve the ER classification problem with very limited labeled instances.
- ERGAN incorporates the diversity of instances into sampling, prior to training the models. ERGAN consists of a label generator G to generate pseudo labels for unlabeled instances, and a discriminator D to distinguish instances with pseudo labels from instances with real labels.
- \bullet This method can be extended with word embedding for handling attribute values, leading to an enhanced method, called $\rm ERGAN{+}WE.$
- Our experimental results show that the performance of our methods beats all the baselines.

Thank You!

Q & A

Email: Jingyu.shao@anu.edu.au