Лабораторная работа №5 Пользовательские процедуры и функции

- 2. Цель: Научиться разрабатывать алгоритмы с пользовательскими процедурами и функциями.
 - 3. Используемое оборудование: ПК, PascalABC.

Задание №1

Перевести дюймы в сантиметры от 1 до 100 дюймов. (1 дюйм=2.5 см). Результаты вывести в виде таблицы. Операторы для формирования вывода таблицы оформить в виде пользовательской процедуры.

5. d*2,5

Имя	Смысл	тип
d	дюймы	integer
S	Локальная переменная	real
	пользовательской	
	процедуры (сантиметры)	
a	Переменная	integer
	пользовательской	
	процедуры (дюймы)	

```
program m1;
   var
   d: integer;
   procedure pr(a: integer);
   var
    S: real;
   begin
    S:=a*2.5;
    if (a>=1) and (a<=9) then write ('| ',a,' |'); if (a>=10) and (a<=99) then write ('| ',a,' |');
                                                  |');
    if a=100 then write ('| ',a,' |');
    write (' ');
    write (S:3:1);
    if a<=3 then writeln (' |');
    if (a>=4) and (a<=39) then writeln (' |');
    if a>=40 then writeln (' |');
    writeln ('----');
    end;
   begin
    writeln ('----');
    writeln ('| Дюймы | Сантиметры |');
    writeln ('----');
   d:=1;
    for d:=1 to 100 do
   pr(d);
8. end.
```

L	Дюймы	- 1	Сантиметры
I	1	ı	2.5
ı	2	ı	5.0
ı	3	ı	7.5
I	4	I	10.0
I	5	I	12.5
I	6	I	15.0
I	7	ı	17.5
I	8	I	20.0
I	9	ı	22.5
I	10	ı	25.0
I	11	ı	27.5
I	12	ı	30.0
I	13	I	32.5
I	14	ı	35.0
I	15	I	37.5
I	16	I	40.0
I	17	ı	42.5
I	18	ı	45.0
I	19	ı	47.5
I	20	ı	50.0
I	21	I	52.5
I	22	ı	55.0
ī	23	ı	57.5

10. Для перевода дюймов в сантиметры использовалась формула (S:=d*2,5), чтобы перевести все дюймы в сантиметры использовали цикл от 1 до 100 и с шагом 1. В теле цикла значение переменной d «запускали» в пользовательскую процедуру, которая рассчитывала сантиметры, а также строила таблицу.

- 4. Найти площадь пятиугольника, если даны координаты его вершин.
- $d = \sqrt{(x1 x2)^2 + (y1 y2)^2}$ 5. 1) Нахождение расстояния между точками:

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$p = \frac{a+b+c}{2}$$

$$p = \frac{a+b+c}{2}$$

2) Площадь треугольника по формуле Герона:

Имя	Смысл	ТИП
q1	Абсцисса первой вершины	integer
	пятиугольника	
q2	Ордината первой вершины	integer
	пятиугольника	
w1	Абсцисса второй вершины	integer
	пятиугольника	
w2	Ордината второй вершины	integer
	пятиугольника	
e1	Абсцисса третьей вершины	integer
	пятиугольника	
e2	Ордината третьей вершины	integer
	пятиугольника	
r1	Абсцисса четвёртой вершины	integer
	пятиугольника	
r2	Ордината четвёртой	integer
	вершины пятиугольника	
t1	Абсцисса пятой вершины	integer
	пятиугольника	-
t2	Ордината пятой вершины	integer
	пятиугольника	-
S1	Площадь первого	real
	треугольника	
S2	Площадь второго	real
	треугольника	
S3	Площадь третьего	real
	треугольника	
R	Результирующая переменная	real
Х	Первая сторона треугольника	real
	(локальная переменная	
	пользовательской функции)	
у	Вторая сторона треугольника	real
,	(локальная переменная	
	пользовательской функции)	
Z	третья сторона треугольника	real
	(локальная переменная	
	пользовательской функции)	

```
var
    q1,q2,w1,w2,e1,e2,r1,r2,t1,t2: integer;
    S1, S2, S3, R: real;
   function fn(a,b,c: real): real;
    var p: real;
   begin
    p := (a+b+c)/2;
    fn:=sqrt(p*(p-a)*(p-b)*(p-c));
   function fn2(s,d,f,g,h,j: integer): real;
    var x,y,z: real;
   begin
    x:=sqrt((s-f)*(s-f)+(d-g)*(d-g));
    y:=sqrt((f-h)*(f-h)+(g-j)*(g-j));
    z:=sqrt((s-h)*(s-h)+(d-j)*(d-j));
    fn2:=fn(x,y,z);
    end;
   begin
    write ('Введите координаты первой вершины пятиугольника - ');
    read (q1); write (':'); readln (q2);
    write ('Введите координаты второй вершины пятиугольника - ');
    read (w1); write (':'); readln (w2);
    write ('Введите координаты третьей вершины пятиугольника - ');
    read (e1); write (':'); readln (e2);
    write ('Введите координаты четвёртой вершины пятиугольника - ');
    read (r1); write (':'); readln (r2);
    write ('Введите координаты пятой вершины пятиугольника - ');
    read (t1); write (':'); readln (t2);
    S1:=fn2(q1,q2,w1,w2,t1,t2);
    S2:=fn2(w1,w2,e1,e2,r1,r2);
    S3:=fn2(t1,t2,w1,w2,r1,r2);
    R:=S1+S2+S3;
    writeln (R:5:5);
8. end.
```

Окно вывода

program m2;

```
Введите координаты первой вершины пятиугольника - 0
:0
Введите координаты второй вершины пятиугольника - 1
:1
Введите координаты третьей вершины пятиугольника - 3
:2
Введите координаты четвёртой вершины пятиугольника - 4
:-1
Введите координаты пятой вершины пятиугольника - 2
:-2
9.00000
```

10. Для расчёта площади пятиугольника он разбивается на три треугольника, находятся стороны этих треугольников с помощью второй функции, далее вторая функция вызывает первую и считает в ней площадь треугольника и возвращает в виде результата. Таким образом мы получаем в переменной S1 – площадь первого треугольника, в S2 – второго, в S3 – третьего. В конце складываем площади треугольников и получаем площадь пятиугольника.

Задание №3

4. Вычислить площадь фигуры, заданной сторонами. Фигура не является прямоугольником, а треугольники, которые ее составляют, не являются прямоугольными.

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
$$p = \frac{a+b+c}{2}$$

7.

Имя	Смысл	тип
x1	Одна из сторон первого	real
	треугольника	
у1	Одна из сторон первого	real
	треугольника	
z1	Одна из сторон первого	real
	треугольника	
x2	Одна из сторон второго	real
	треугольника	
y2	Одна из сторон второго	real
	треугольника	
z2	Одна из сторон второго	real
	треугольника	

x3	Одна из сторон третьего	real
	треугольника	
у3	Одна из сторон третьего	real
	треугольника	
z3	Одна из сторон третьего	real
	треугольника	
x4	Одна из сторон четвёртого	real
	треугольника	
у4	Одна из сторон четвёртого	real
	треугольника	
z4	Одна из сторон четвёртого	real
	треугольника	
R	Результирующая	real
р	Полупериметр треугольника	real
	(локальная переменная	
	пользовательской функции)	

```
program m3;
   var
    x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4, R: real;
    function fn(a,b,c: real): real;
    p: real;
    begin
    p:=(a+b+c)/2;
    fn:=sqrt(p*(p-a)*(p-b)*(p-c));
    end;
   begin
    write ('Введите стороны треугольников, состовляющих фигуру - ');
    readln (x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4);
    R:=fn(x1,y1,z1)+fn(x2,y2,z2)+fn(x3,y3,z3)+fn(x4,y4,z4);
    writeln (R:3:5);
   end.
8.
```

```
Окно вывода

Введите стороны треугольников, состовляющих фигуру - 1
2
3
5
4
4
6
6
6
8
3
6
7
34.63906
```

10. Для расчёта площади фигура разбивается на треугольники, площадь этих треугольников считается по формуле Герона и все площади складываются.

Задание №4

4. С клавиатуры вводится число. Вывести на экран столько элементов ряда Фибоначчи, сколько указал пользователь. Вычисление ряда организовать в функцию.

5.

$$F_0=0, \qquad F_1=1, \qquad F_n=F_{n-1}+F_{n-2}, \quad n\geqslant 2, \quad n\in \mathbb{Z}.$$

7.

Имя	Тип	смысл
n	Количество чисел	integer
	Фибоначчи, выведенных на	
	экран (вводится с	
	клавиатуры)	
р	«первое число» из двух	integer
	предыдущих чисел	
V	«второе число» из двух	integer
	предыдущих чисел	
Z	Программная переменная,	integer
	«запоминающая»	
	предыдущее значение v	
i	Параметр цикла	integer

```
program m4;
    var
    n: integer;
   procedure pr(a: integer);
    var
     p, v, z, i: integer;
   begin
    p:=0;
    v := 1;
    if a>=3 then
      for i:=3 to a do
       begin
        write (p+v,' ');
        z:=v;
        v:=p+v;
        p:=z;
        end;
   end;
   begin
    write ('ВВедите колическтво чисел - ');
    readln (n);
    if n>=1 then write (0,' ');
    if n>=2 then write (1,' ');
    pr(n);
8. end.
       Окно вывода
       ВВедите колическтво чисел - 10
       0 1 1 2 3 5 8 13 21 34
     9.1
```

10. Если введённое число >=1 то выводится первое число Фибоначчи, после этого проверяется n>=2, если да, то выводится третье число Фибоначчи, а если же n>=3, то значение n запускается в пользовательскую процедуру, где с помощью цикла (сложения двух предыдущих чисел) считаются следующий числа Фибоначчи вплоть до n-ного.