Universidad Francisco Marroquín Facultad de Ciencias Económicas Computer Science

Catedrático: Fernandojosé Boiton Tello Lunes, Miércoles 17:30 hrs - 19:00 hrs

Programa de curso DATOS 2

Objetivos del curso

Brindar al estudiante los conceptos esenciales relacionados a las bases de datos no relacionales (NoSQL) y a las estrategias de acceso, obtención y distribución a la información como índices, búsquedas, llaves, grafos entre otros.

Se incluirá como materia del curso Patrones de Arquitectura para Datos con enfoque a Sistemas Distribuidos, Escalabilidad, Alta Disponibilidad e Integración de Sistemas como: Command and Query Responsibility Segregation (CQRS), conceptos básicos dentro de Domain Driven Design (DDD) para datos y Arquitectura Lambda para modos de procesamiento batch o stream ("realtime") para la interacción con sistemas de almacenamiento de información.

Oportunidades del curso

Al finalizar este curso el Estudiante será capaz de conocer el panorama general necesario para la aplicación de diferentes estrategias de almacenamiento de información según los requerimientos en cada etapa del ciclo de vida de los datos, en su creación, almacenamiento, utilización, así como en su propósito. Así mismo poder identificar qué arquitectura de almacenamiento es la mejor opción para un proyecto en específico.

Reglamento del curso

- Se considera importante el comportamiento en general: la disciplina, puntualidad en el curso, respeto al catedrático y al resto de sus compañeros.
- Los alimentos en clase, uso de aparatos eléctricos (salvo computadora cuando sea necesaria) y llamadas telefónicas no se permiten dentro del salón de clase. Evite salir y entrar constantemente.
- No se aceptará tarde la entrega de tareas ni se repondrán trabajos con ponderación. El mecanismo de entrega se definirá en cada asignación.

• Solo se aceptan ausencias justificadas con notificación por correo electrónico al catedrático y es indispensable el 90% de asistencia al curso para optar a nota del examen final.

Descripción de 18 semanas 2 veces por semana sesiones de 1.20 - horas cada una

T		
Tema	Tareas asignadas este día para la	
	siguiente sesión	
Definition and Introduction	Investigación: qué opciones de	
 NoSQL means 	replicación tiene y cómo se configuran	
 Context and History 	en un RDBMS a seleccionar por el	
 RDBMS Challenges 	alumno.	
 Caching when is good and when is not too good 		
 Reading and Reporting Databases 		
 Motivations and Drivers for other data 		
alternatives		
LAB/RESEARCH		
Configuración de Redis y JMeter		
Definition and Introduction	Investigación: Prepare una presentación	
Focusing on Events	donde incluya los siguientes temas:	
 Representing an Event 	- Seleccione un service bus	
 Using events to collaborate 	software y defienda por escrito	
 Event Sourcing 	por qué debe ser utilizado.	
 Handling Events 	- Seleccione un Message Queuing	
 Events and Commands 	software y defienda por escrito	
 Messaging / Queues / Service Bus 	por qué debe ser utilizado.	
 CQRS - Command and Query Responsibility 		
Segregation		
LAB/RESEARCH		
 Using an ORM 		
 Decoupling Data Access 		
 .Net Core Data Access 		
(https://devblogs.microsoft.com/dotnet/net-core		
-data-access/)		
Domain Driven Design	Reading: Caching Strategies and How to	
 Model Expressed in Software 	Choose the Right One"	
 Life Cycle of a Domain Object 		
Data		
• Datasets		
Different Data Types		
Structured Data Data		
Unstructured Data Carristructured Data		
Semi-structured Data MetaData		
MetaData Data Analysis		
Data AnalysisData Analytics		
Business Intelligence		
Key Performance Indicators		
LAB/RESEARCH	Reading:"Why you should use a graph	
Kafka	database"	
• ELK	datasase	
→ LLI\	1	

		T
Scalabi	lity and Availability	
•	Clusters	
•	Files Systems and Distributed File Systems	
•	Sharding	
•	Replication	
•	Combination of Strategies	
	combination of strategies	
NoSQL	Data Store Types	Reading: "Performance at Scale with
•	Sorted Ordered Column-Oriented Stores	Amazon ElastiCache"
•	Key/Value Stores	
•	Document Databases	
•	Indexers (Lucene/Solr, Sphinx)	
•	Graph Databases	
ΙΔR/RF	SEARCH	
<i></i> ⊕	Kafka y ELK: mejores prácticas de configuración	
Unders	tanding the Storage Architecture	
•	Column-Oriented Databases	
•	HBase Distributed Storage Architecture	
	Document Store Internals	
	Key/Value Stores	
•	 Under the Hood Memcached 	
	Redis Internals	an Bousiel 1
LAD/DE	Entregas en semana de Exam SEARCH	len Parcial 1
_		
•	Sphinx Standalone	
•	Sphinx+MySQL	
Unders	tanding the Storage Architecture	
•	Eventually Consistent Non-Relational Databases.	
	 Consistent Hashing 	
	<u> </u>	
	Object Versioning Coasia Based Marsharship and Hinted	
	 Gossip-Based Membership and Hinted 	
	Handoff	
	 Merkle Trees 	
Manag	ing Transactions and Data Integrity	Reading: "There is No Now"
ivialiag	RDBMS and ACID	Redding. There is NO NOW
•	Distributed ACID Systems	
•		
	O Consistency	
	Availability	
•	Partition Tolerance	
•	Upholding CAP	
	 Compromising on Availability 	
	 Compromising on Partition Tolerance 	
	 Compromising on Consistency 	
•	Monotonicity	
Manag	ng Transactions and Data Integrity	
•	CALM	
•	CRDT	
•	BASE	
•	Consistency implementations	
	 Distributed Consistency 	
	O Distributed Consistency	

		T	
	 Eventual Consistency 		
_	SEARCH		
Interac	tion with NoSQL Stores		
•	Performing CRUD Operations		
•	Querying NoSQL Stores		
•	Modifying Data Stores and Managing Evolution		
Data Pı	rocessing		
•	Parallel Data processing		
•	Distributed Data Processing		
•	Processing Workloads		
•	Batch Mode		
•	Real-time Mode		
•	Stream		
A "new	" paradigm for Big Data		
•	"NoSQL is not Panacea"		
•	What does a data system do?		
•	Properties of a (Big?) Data System		
•	Problems with fully incremental architectures		
•	Lambda Architecture		
•	Kappa Architecture		
Buildin	g Data Lakes		
•	What is a Data Lake?		
•	Data Ingestion Methods		
Buildin	g Data Lakes		
•	Data Cataloging		
•	Securing, Protecting and Managing Data		
•	Data Lake Monitoring		
•	Data Lake Optimization		
•	Querying		
•	Analytics		
	SEARCH		
•	Lambda Architecture for Batch and Stream		
	Processing		
	https://d1.awsstatic.com/whitepapers/lambda-ar		
	chitecure-on-for-batch-aws.pdf		
	since and a successful and span		
Perforr	nance Tuning	Reading: "Firing on All Cylinders The	
•	Goals of Parallel Algorithms	2017 Big Data Landscape – Matt Turck"	
•	Influencing Equations		
•	Partitioning		
Perform	nance Tuning		
•	Scheduling in Heterogeneous Environments		
	Additional Mapreduce Tuning		
	Additional Mapreadee Falling		
Indevin	ng and Ordering Data Sets	Reading: "The enterprise data lake:	
IIIUEAII	Essential Concepts	Better integration and	
	Indexing and Ordering	deeper analytics"	
	External Indexing Strategies		
IAD/DE			
-	LAB/RESEARCH Cloud Data Storages		
Cioua L			
•	Google App Engine		
•	Amazon SimpleDB, DynamoDB, Redshift		

How Big Data Power Business Reading: "It's Time To Upgrade Business (Big) Data Business Model Maturity Index Intelligence To Systems Of Insight" by Boris Evelson Data Analytics Lifecycle • (Big) Data Value Creation Drivers Envisioning Process Traditional BI/DWH vs Modern scale-out data architecture Entregas en Semana de Examen Parcial 2 What Do We Mean by Data-Driven **Data Collection Data Access** Reporting Alerting Hallmarks of Data-Driveness **Analytics Maturity Data Driven Culture** • Open, Trusting Culture • Broad Data Literacy Goals-First Culture Inquisitive, Questioning Culture Anti-HiPPO Culture Data Leadership **Big Data** Definition Characteristics Volume Velocity Variety Veracity 0 Value Properties of a (Big) Data System Robustness and fault tolerance Low latency reads and updates Scalability Generalization Extensibility Ad Hoc Queries Minimal maintenance debuggability Visualizations 13/11 -Entrega a finalizar semana de Examen final

Bibliografía

- 1. Professional NoSQL Shashank Tiwari Wrox
- 2. **Domain Driven Design** Tackling Complexity in the Heart of Software. Eric Evans Addison Wesley

- 3. **Big Data Principles and best practices of scalable real-time data systems** Nathan Marz *Manning*
- 4. **Big Data Fundamentals Concepts, Drivers & Techniques.** Thomas Erl *Prentice Hall*
- 5. Big Data Understanding How Data Powers Big Business Bill Schmarzo Wiley
- 6. Creating a Data-Driven Organization Carl Anderson O'Reilly

Evaluación

Research/Asistencia/Labs	30%
2 Evaluaciones Parciales (Proyectos)	30%
Total Zona	60%
Evaluación Final (Proyecto Completado)	40%
Puntuación Total	100%