T2 - Análise de Circuitos em Corrente Alternada

André Cruz - a92833; Beatriz Demétrio - a92839; Carlos Ferreira - a92846 9 de março de 2021

1 Valores Teóricos

Figure 1: Circuito com os repetivos valores a calcular

Temos os seguintes valores para os componentes apresentados:

$$\begin{split} R_S &= 50 \, \Omega \\ R_L &= 100 \, \Omega \\ R_C &= 100 \, \Omega \\ V_S &= 10 \, V \\ L &= 1 \, mH = 1 \times 10^{-3} H \\ C &= 1 \, \mu F = 1 \times 10^{-6} F \end{split}$$

1.1 Frequência 2 kHz

1.1.1 Obtenção da Impedância Total

Para o ramo que contém o condensador C e a resistência R_C , a impedância do condensador é igual a:

$$Z_C = \frac{-i}{2\pi f C} = \frac{-i}{2 \times \pi \times 2 \times 10^3 \times 1 \times 10^{-6}} = -79,58i\,\Omega$$

Como o condensador e a resistência estão em série, então vamos ter que:

$$Z_1 = Z_C + R_C = 100 - 79,58i = 127.80 \lfloor -38,51^{\circ} \Omega$$

Para o ramo que contém a bobine L e a resistência R_L , a impedância da bobine é igual a:

$$Z_L = 2\pi f Li = 2 \times \pi \times 2 \times 10^3 \times 1 \times 10^{-3} = 12,57i \Omega$$

Como a bobine e a resistência estão em série, então vamos ter que:

$$Z_2 = Z_L + R_L = 100 + 12,57i = 100,79 | 7,16^{\circ} \Omega$$

Como Z_1 e Z_2 estão em paralelo, vai-se ter que:

$$Z_3 = \frac{Z_1 \times Z_2}{Z_1 + Z_2} = 59,54 - 13,56i = 61,07 \lfloor -12,83^\circ \Omega$$

Como \mathbb{Z}_3 e \mathbb{R}_S estão em série, por isso a impedância total do circuito é:

$$Z_T = Z_3 + R_S = 109,54 - 13,56i = 110,38\Omega | -7,05^{\circ}$$

Logo, a reactância total é igual a 13,56 Ω e a resistência total é igual a 110,38 $\Omega.$

1.1.2 Cálculos dos valores pedidos na tabela

Considerando que V_S é o valor eficaz, vamos ter que os valores de V_{in} e de I_{in} são:

•
$$I_{in} = \frac{V_S}{Z_T} = \frac{10}{109.54 - 13.56i} = 89,91 \times 10^{-3} + 11,13 \times 10^{-3}i = 0.0906 \lfloor 7,05^{\circ} A \rfloor$$

•
$$V_{in} = V_S - V_{R_S} = V_S - I_{in}R_S = 5,50 - 0,56i = 5,53 \lfloor -5,77^{\circ} A \rfloor$$

Assumindo que a fase de V_{in} é igual a 0°, então vamos ter que:

- $V_{in} = 5,53|0^{\circ}V$
- $I_{in} = 0,0906 | 12,82^{\circ} A$

•
$$I_1 = \frac{V_{in}}{Z_2} = \frac{5.53 \lfloor 0^{\circ}}{100.79 \lfloor 7.16^{\circ}} = 0,0544 - 0,00684i = 0.0549 \lfloor -7.16^{\circ} A$$

•
$$I_2 = \frac{V_{in}}{Z_1} = \frac{5.53\lfloor 0^{\circ}}{127.80\lfloor -38.51^{\circ}} = 0.0339 + 0.0270i = 0.0433\lfloor 38.51^{\circ} A$$

•
$$V_1 = I_1 \cdot R_L = 100 \times 0,0549 \lfloor -7,16^{\circ} = 5,49 \lfloor -7,16^{\circ} V \rfloor$$

•
$$V_2 = I_2 \cdot R_C = 100 \times 0,0433 \lfloor 38,51^\circ = 4,33 \lfloor 38,51^\circ V$$

1.1.3 Verificação das Leis de Kirchoff

Verificando as leis de Kirchoff das malhas e dos nós, obteve-se o seguinte:

- $I_{in} = I_1 + I_2 \simeq 0,0883 + 0.0202i = 0,0906 \lfloor 12,82^{\circ} A \Longrightarrow$ é o que verificamos anteriormente. Logo, é verdadeira esta afirmação e por isso verifica-se a lei dos nós.
- $-V_{in}+V_L+V_1=0 \Leftrightarrow -V_{in}+I_1\cdot Z_L+V_1=0 \Leftrightarrow 0,00015+0.00024i=0 \Longrightarrow$ como estes valores são muito pequenos e temos que considerar que foram feitos vários arredondamentos e conversões, então poderemos considerar que esta afirmação é verdadeira. Logo, verificamos a lei das malhas.
- $-V_1 V_L + V_C + V_2 = 0 \Leftrightarrow -V_1 I_1 \cdot Z_L + I_2 \cdot Z_C + V_2 = 0 \Leftrightarrow -0,0034 0,0029i = 0 \Longrightarrow$ como estes valores são muito pequenos e temos que considerar que foram feitos vários arredondamentos e conversões, então poderemos considerar que esta afirmação é verdadeira. Logo, aqui também verificamos a lei das malhas.

1.1.4 Cálculo das Potências

• Potência Ativa:

$$P = V_{ef} \cdot I_{ef} \cdot \cos(\theta_V - \theta_I) \Leftrightarrow P = 5,53 \times 0,0906 \times \cos(-12,82^\circ) \Leftrightarrow P = 488,53 \, mW$$

• Potência Reativa

 $Q = V_{ef} \cdot I_{ef} \cdot \sin(\theta_V - \theta_I) \Leftrightarrow Q = 5,53 \times 0,0906 \times \sin(-12,82^\circ) \Leftrightarrow Q = -111,17 \, mVAr \Longrightarrow$ Portanto, podemos dizer que este circuito com uma frequência de 2 kHz é predominantemente capacitivo.

• Potência Aparente

$$S = \sqrt{P^2 + Q^2} \Leftrightarrow S = \sqrt{(488, 53)^2 + (-11, 17)^2} \Leftrightarrow S = 501, 02 \, mVA$$

• Fator de Potência

$$pf = \cos(-12, 82^{\circ}) = 0,975$$

1.2 Frequência 20 kHz

1.2.1 Obtenção da Impedância Total

Para o ramo que contém o condensador C e a resistência R_C , a impedância do condensador é igual a:

$$Z_C = \frac{-i}{2\pi f C} = \frac{-i}{2 \times \pi \times 20 \times 10^3 \times 1 \times 10^{-6}} = -7,96i\,\Omega$$

Como o condensador e a resistência estão em série, então vamos ter que:

$$Z_1 = Z_C + R_C = 100 - 7,96i = 100,32[-4,55^{\circ}\Omega]$$

Para o ramo que contém a bobine L e a resistência R_L , a impedância da bobine é igual a:

$$Z_L = 2\pi f Li = 2 \times \pi \times 20 \times 10^3 \times 1 \times 10^{-3} = 125,66i \Omega$$

Como a bobine e a resistência estão em série, então vamos ter que:

$$Z_2 = Z_L + R_L = 100 + 125,66i = 160,59 | 51,49^{\circ} \Omega$$

Como Z_1 e Z_2 estão em paralelo, vai-se ter que:

$$Z_3 = \frac{Z_1 \times Z_2}{Z_1 + Z_2} = 66,58 + 19,67i = 69,42 \lfloor 16,46^{\circ} \Omega$$

Como \mathbb{Z}_3 e \mathbb{R}_S estão em série, por isso a impedância total do circuito é:

$$Z_T = Z_3 + R_S = 116,58 + 19,67i = 118,23|9,58^{\circ}\Omega$$

Logo, a reactância total é igual a 19,67 Ω e a resistência total é igual a 116,58 $\Omega.$

1.2.2 Cálculos dos valores pedidos na tabela

Considerando que V_S é o valor eficaz, vamos ter que os valores de V_{in} e de I_{in} são:

•
$$I_{in} = \frac{V_S}{Z_T} = \frac{10}{116.58 + 19.67i} = 0,0834 - 0,0141i = 0,0846 \lfloor 9,58^{\circ}A$$

•
$$V_{in} = V_S - V_{R_S} = V_S - I_{in}R_S = 5,83 + 0,705i = 5,87 \lfloor 6,895^{\circ} A \rfloor$$

Assumindo que a fase de V_{in} é igual a 0° , então vamos ter que:

- $V_{in} = 5.87 | 0^{\circ} V$
- $I_{in} = 0.0846 | -16.475^{\circ} A$

•
$$I_1 = \frac{V_{in}}{Z_2} = \frac{5.87 \lfloor 0^{\circ}}{160.59 \lfloor 51.49^{\circ}} = 0,0228 - 0,0286i = 0,0366 \lfloor -51,49^{\circ}A_{in} \rfloor$$

•
$$I_2 = \frac{V_{in}}{Z_1} = \frac{5.87 \lfloor 0^{\circ}}{100.32 \lfloor -4.55^{\circ}} = 0.0583 + 0.00464i = 0.0585 \lfloor 4.55^{\circ} A$$

•
$$V_1 = I_1 \cdot R_L = 100 \times 0,0366 \lfloor -51,49^{\circ} = 3,66 \lfloor -51,49^{\circ} V \rfloor$$

•
$$V_2 = I_2 \cdot R_C = 100 \times 0,0585 \lfloor 4,55^{\circ} = 5,85 \lfloor 4,55^{\circ} V$$

1.2.3 Verificação das Leis de Kirchoff

Verificando as leis de Kirchoff das malhas e dos nós, obteve-se o seguinte:

- $I_{in} = I_1 + I_2 \Leftrightarrow I_{in} \simeq 0,0811 0,02396i \Leftrightarrow I_{in} \simeq 0,0846 \lfloor -16,46^{\circ} A \Longrightarrow \acute{e}$ o que verificamos anteriormente. Logo, é verdadeira esta afirmação e por isso verifica-se a lei dos nós.
- $-V_{in}+V_L+V_1=0 \Leftrightarrow -V_{in}+I_1\cdot Z_L+V_1=0 \Leftrightarrow 0,00267+0,00101i=0 \Longrightarrow$ como estes valores são muito pequenos e temos que considerar que foram feitos vários arredondamentos e conversões, então poderemos considerar que esta afirmação é verdadeira. Logo, verificamos a lei das malhas.
- $-V_1 V_L + V_C + V_2 = 0 \Leftrightarrow -V_1 I_1 \cdot Z_L + I_2 \cdot Z_C + V_2 = 0 \Leftrightarrow -0,0043 + 0,00052i = 0 \Longrightarrow$ como estes valores são muito pequenos e temos que considerar que foram feitos vários arredondamentos e conversões, então poderemos considerar que esta afirmação é verdadeira. Logo, aqui também verificamos a lei das malhas.

1.2.4 Cálculo das Potências

• Potência Ativa:

$$P = V_{ef} \cdot I_{ef} \cdot \cos(\theta_V - \theta_I) \Leftrightarrow P = 5,87 \times 0,08458 \times \cos(16,48^\circ) \Leftrightarrow P = 476,09 \, mW$$

Potência Reativa

 $Q = V_{ef} \cdot I_{ef} \cdot \sin(\theta_V - \theta_I) \Leftrightarrow Q = 5,87 \times 0,08458 \times \sin(16,48^\circ) \Leftrightarrow Q = 140,84 \, mVAr \Longrightarrow$ Portanto, podemos dizer que este circuito com uma frequência de 20 kHz é predominantemente indutivo.

• Potência Aparente

$$S = \sqrt{P^2 + Q^2} \Leftrightarrow S = \sqrt{(476, 09)^2 + (140, 84)^2} \Leftrightarrow S = 496, 49 \, \text{mVA}$$

• Fator de Potência

$$pf = \cos(16, 48^{\circ}) = 0,959$$

1.3 Cálculo do valor do condensador C_1

Só podemos fazer este cálculo, de forma a que o fator de potência seja unitário (isto é, igual a 1), para circuitos predominantemente indutivos. Daí podermos fazer só para a frequência de 20k Hz. A corrente que irá passar neste condensador, que irá ser colocado em paralelo com o gerador, terá que ser a componente reativa da corrente eficaz. Por isso, iremos ter que:

$$I_C = I\sin(\theta_V - \theta_I) = 0.08458 \times \sin(16.46^\circ) = 23.97 \, mA$$

Não nos podemos esquecer que esta corrente está avançada 90° em relação à tensão V_{in} , que nós tomamos como referência.

Temos que a impedância desse condensador será igual a:

$$Z_C = X_C = \frac{V_{in}}{I_C} = \frac{5,87}{0,02397} = 244,889 \,\Omega$$

Portanto, para calcular o valor do condensador que teremos que colocar em paralelo de forma a tornar o fator de potência unitário tem o seguinte valor:

$$C = \frac{1}{2\pi f X_C} = \frac{1}{2 \times \pi \times 20 \times 10^3 \times 244,889} = 32,49 \, nF$$

2 Valores Práticos

2.1 Valores medidos dos fasores das várias grandezas

De forma a obter os valores eficazes dos fasores para posterior comparação com os valores teóricos, e com recurso ao sistema de simulação Tina-TI de simulação foram adicionados todos os multímetros necessários, ilustrados na imagem seguinte:

Figure 2: Circuito com respetivos multímetros

Tal como nos valores teóricos, V_{in} apresentou, para $f=2\,kHz$, uma fase de $\approx -5,77^\circ$, tal como apresentado na figura ${\bf 3}$ e, para $f=20\,kHz$,uma fase de $\approx 6,88^\circ$, tal como apresentado na figura ${\bf 4}$. Para que esta fase fosse 0° , e sabendo que V_{in} corresponde à d.d.p. do conjunto "fonte de tensão + resistência interna", aplicou-se uma fase oposta à apresentada inicialmente em V_{in} de forma a anular esta, tal como apresentado nas figuras ${\bf 5}$ e ${\bf 6}$.

Considerou-se $V_S=10\,V$ um valor eficaz, pelo que se procedeu à sua conversão para posterior indicação da amplitude nas configurações da fonte de tensão.

Figure 3: Análise AC de V_{in} , para f = 2 kHz

Figure 4: Análise AC de V_{in} , para $f=20\,kHz$

Figure 5: Características AC da fonte de tensão para $f=2\,kHz$

Figure 6: Características AC da fonte de tensão para $f=20\,kHz$

Foram recolhidos os seguintes valores:

Frequência	Fasor		
(kHz)		RMS	Fase (°)
2	V_{in}	5,53V	0
	V_1	5,49V	-7, 16
	V_2	4,33V	38,51
	I_{in}	90,6mA	12,83
	I_1	54,89mA	-7, 16
	I_2	43,29mA	38,51
20	V_{in}	5,87V	0
	V_1	3,66V	-51,49
	V_2	5,85V	4,55
	I_{in}	84,58mA	-16,46
	I_1	36,56mA	-51,49
	I_2	58,54mA	4,55

Table 1: Valores práticos dos fasores, obtidos com recurso ao TINA-TI

Comprova-se que os valores obtidos se aproximam dos calculados.

2.2 Impedância, reatância e resistência totais do circuito

Para obtenção dos valores da impedância, reatância e resistência totais do circuito, substituiu-se a fonte de tensão por um Ohmímetro o qual, após indicada a frequência desejada, apresenta os valores pretendidos quando analisado em AC. As figuras 7 e 8 indicam os valores obtidos para $f=2\,kHz$ e $f=20\,kHz$,respetivamente:

Figure 7: Valores da impedância, reatância e resistência totais do circuito para $f=2\,kHz$

Figure 8: Valores da impedância, reatância e resistência totais do circuito para $f=20\,kHz$

Comprova-se que os valores obtidos são idênticos aos calculados previamente.

2.3 Verificação das Leis de Kirchoff

Sendo que os valores necessários para a verificação das Leis de Kirchoff são bastante próximos dos calculados teoricamente, conclui-se que as leis permanecem válidas para os recolhidos através do *TINA-TI*, pelo que não se considerou necessário repetir os cálculos.

2.4 Cálculo das Potências

A potência ativa, reativa e o fator de potência do circuito para as duas frequências foram obtidos com recurso ao medidor de potências virtual do TINA-TI. A montagem do circuito segue-se na figura ${\bf 9}$.

Figure 9: Circuito com medidor de potências

Foram obtidos os seguintes valores:

Frequência (kHz)		
2	pf	975m
	P	488,72mW
	Q	-111,27mVAr
	S	501,23mVA
20	pf	959m
	P	476,33mW
	Q	140,73mVAr
	S	496,68mVA

Table 2: Valores das potências, obtidos com recurso ao TINA-TI

Comparando os valores obtivos com os calculados, conclui-se que estes são aproximadamente semelhantes.

2.5 Cálculo do valor do condensador C_1

Tal como descrito na parte teórica, a adição do condensador em paralelo com o gerador para que o fator de potência seja unitário (=1) só é possível em circuitos predominantemente indutivos (onde $Q < 0 \, VAr$). Novamente se conclui, analisando os valores da tabela $\bf 2$, que esta correção do pf apenas é possível para o circuito com $f=20 \, kHz$. Teoricamente obteve-se que o condensador pretendido terá como valor $C_1=32,49 \, nF$. Através do simulador, confirmou-se a veracidade do valor do condensador calculado, representado na figura $\bf 10$ onde pf=1 e a fase do circuito é $\approx 0^{\circ}$.

Figure 10: Circuito com a adição do C_1 para $f = 20 \, kHz$