Fondamenti dell'Informatica

Esercitazione 3

(CON RISPOSTE)

Esercizio 1. Relazioni 1

Sia $U = \{marco, giulio, sara, luca, daniela, carlo\}$ un insieme di individui. Si considerino le relazioni $R_1 \subseteq U \times U$ e $R_2 \subseteq U \times U$ definite come segue:

```
R_1 = \{\langle marco, giulio \rangle, \langle giulio, sara \rangle, \langle sara, luca \rangle, \langle carlo, daniela \rangle, \langle carlo, luca \rangle \}
```

```
R_{2} = \{\langle giulio, sara \rangle, \langle sara, luca \rangle, \langle carlo, daniela \rangle, \langle sara, giulio \rangle, \langle luca, sara \rangle, \langle daniela, carlo \rangle\}
```

- 1. Rappresentare R_1 ed R_1 mediante:
 - grafo bipartito
 - matrice booleana
 - grafo orientato
- 2. Elencare (qualora esistano) sul grafo che rappresenta R_1 :
 - tutti i cammini di lunghezza 4
 - tutti i cammini di lunghezza 3
 - \bullet tutti i semicammini di lunghezza 5
- 3. Per i grafi che rappresentano R_1 e R_2 dire se:
 - sono connessi
 - contengono cicli o semicicli
 - contengono nodi sorgente o pozzo
- 4. Di che proprietà gode R_2 ? Come si dovrebbe estendere il grafo che rappresenta R_2 per rendere ad R_2 una relazione transitiva? Se inoltre si aggiungono tutte le copie $\langle x, x \rangle$ alla relazione, che tipo di relazione si ottiene?

Risposta 1.

$$R_{1} = \{ \langle m, g \rangle, \langle g, s \rangle, \langle s, l \rangle, \langle c, d \rangle, \langle c, l \rangle \}$$

$$R_{2} = \{ \langle g, s \rangle, \langle s, l \rangle, \langle c, d \rangle, \langle s, g \rangle, \langle l, s \rangle, \langle d, c \rangle \}$$

- grafo bipartito
- matrice booleana
- grafo orientato

Risposta 1.

Per il grafo che rappresenta R_1 elencare:

- \bullet tutti i cammini di lunghezza 4
- tutti i cammini di lunghezza 3
- tutti i semicammini di lunghezza 5

Per i grafi che rappresentano R_1 e R_2 dire se:

- sono connessi
- contengono cicli o semicicli
- contengono nodi sorgente o pozzo

Risposta 1.

Di che proprietà gode R_2 ? Come si dovrebbe estendere il grafo che rappresenta R_2 per rendere ad R_2 una relazione transitiva? Se inoltre si aggiungono tutte le copie $\langle x, x \rangle$ alla relazione, che tipo di relazione si ottiene?

Esercizio 2. Relazioni 2

Siano $A = \{1, 2, 3, 4, 5, 6\}$ e

$$R_1 = \{ \langle x, y \rangle \mid y = x + 2 \}$$

$$R_2 = \{ \langle x, y \rangle \mid x + y > 6 \}$$

$$R_3 = I_A$$

Determinare le proprietà di R_1, R_2, R_3 (tra riflessiva, simmetrica, antisimmetrica, transitiva)

Risposta 2.

1.
$$R_1 = \{ \langle 1, 3 \rangle, \langle 2, 4 \rangle, \langle 3, 5 \rangle, \langle 4, 6 \rangle \}$$

2.
$$R_2 = \{ <1, 6>, <2, 5>, <2, 6>, <3, 4>, <3, 5>, <3, 6>, <4, 3>, <4, 4>, <4, 5>, <4, 6>, <5, 2>, <5, 3>, <5, 4>, <5, 5>, <5, 6>, <6, 1>, <6, 2>, <6, 3>, <6, 4>, <6, 5>, <6, 6> \}$$

3.
$$R_3 = \{ \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle, \langle 5, 5 \rangle, \langle 6, 6 \rangle \}$$

Esercizio 3. Relazioni 3 (EXTRA)

Costruire (se possibile, o giustificare se non è possibile) rilazioni R su A tali che

- 1. R è simmetrica e antisimmetrica
- 2. R è riflessiva e contiene 4 coppie ordinate
- 3. $I_A \cap R = \emptyset$ e R è transitiva
- 4. $I_A \not\subseteq R$ e Rè transitiva e simmetrica
- 5. R non è ne simmetrica ne antisimmetrica