Modelos Computacionais

Luís Morgado

Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Electrónica e Telecomunicações e de Computadores

Modelos Computacionais

Quais os limites computacionais dos computadores?

- O que podem fazer
- O que nunca poderão fazer

O que pode ser calculado através de um procedimento algorítmico (mecânico, automático)

Necessidade de definição precisa:

- Computador
- Algoritmo
- Computabilidade

Modelos computacionais formais:

 Meios de definir de forma rigorosa (e abstracta) diferentes versões de máquinas computacionais

Modelação de um Sistema Computacional

Organização de um sistema

- Organização no espaço (estática)
 - Estrutura
- Organização no tempo
 - Dinâmica

Estrutura

 Denota as partes e as relações entre partes de um sistema

Dinâmica:

 Denota a forma como as partes e as relações entre partes de um sistema evoluem no tempo

Comportamento

 Denota a forma como o sistema age ou reage perante os estímulos do ambiente envolvente

Modelação de um Sistema Computacional

Aspectos a definir:

- Entradas
- Saídas
- Transformação

Domínios de valores?

- Computação analógica
 - Domínios contínuos (valores reais∈ℝ)
- Computação digital (simbólica)
 - Domínios discretos (valores inteiros ∈ N)
 - Paradigma predominante actualmente

Modelo Computacional Formal

- Entradas e saídas abstraídas em termos dos conjuntos de símbolos que nelas podem ocorrer:
 - Esses conjuntos de símbolos são designados alfabetos
 - Alfabeto de entrada Σ

Modelo simbólico

- Alfabeto de saída Z
- Função de transformação do sistema descrita com base numa função de saída λ:
 - Função de saída:
 - $\lambda: \Sigma \to \mathbf{Z}$

Exemplo: Agente Prospector

Pretende-se a concepção de um agente para operar num ambiente composto por três tipos de elementos: alvos, bases e obstáculos. Quando o agente detecta um alvo deve pegar o alvo, quando detecta uma base deve largar o alvo que transportar, quando detecta um obstáculo deve rodar à direita. No caso de não ser detectado qualquer elemento o agente deve avançar em frente.

Exemplo: Agente Prospector

Entradas:

- Alvo detectado
- Base detectada
- Obstáculo detectado
- Vazio detectado

Representação simbólica

ALVO

BASE

OBST

VAZIO

 $\Sigma = \{ ALVO, BASE, OBST, VAZIO \}$

Saídas:

Pegar alvo

Largar alvo

Rodar à direita

Avançar em frente

PEG

LARG

ROD

AVAN

 $Z = \{ PEG, LARG, ROD, AVAN \}$

Exemplo

Função de saída:

```
\lambda: \Sigma \to Z
\lambda = \{
ALVO \to PEG,
BASE \to LARG,
OBST \to ROD,
VAZIO \to AVAN
\}
```

REGRAS

COMPORTAMENTO REACTIVO

Entrada derivada:

```
VAZIO = \neg ALVO \land \neg BASE \land \neg OBST
```

Exemplo: Agente Prospector

Descrição combinatória

Ancoragem simbólica (Symbolic grounding)

Dinâmica de um Sistema Computacional

Modelação da Dinâmica

A dinâmica pode ser expressa como uma função de transformação que, perante o estado actual e as entradas actuais, produz o estado seguinte e as saídas seguintes.

Esta caracterização de um sistema computacional é **independente da forma concreta como este possa ser implementado** em termos físicos. O suporte físico pode ser, por exemplo, mecânico, electrónico, biológico.

Espaço de Estados

Espaço de Estados

Espaço de Estados

Espaço de Fase

Domínios de valores discretos

Domínios de valores contínuos

Suporte de descrição do **comportamento** de um sistema

Caracterização Qualitativa

ABSTRACÇÃO

- Entradas e saídas abstraídas em termos dos conjuntos de símbolos que nelas podem ocorrer
 - Esses conjuntos de símbolos são designados alfabetos
 - Consideremos um *alfabeto de entrada* Σ e um *alfabeto de saída* Z
- Estado interno do sistema descrito em termos de um conjunto de estados possíveis
- Função de transformação do sistema descrita com base em duas funções distintas δ e λ
 - Função de transição de estado
 - $\delta: Q \times \Sigma \to Q$
 - Função de saída
 - $\lambda: Q \times \Sigma \rightarrow Z$

Um modelo formal de computação pode ser descrito como um quíntuplo $(Q, \Sigma, Z, \delta, \lambda)$, onde:

- -Q é o **conjunto de estados** que caracterizam o sistema.
- $-\sum$ é o conjunto de símbolos de entrada (o **alfabeto de entrada**).
- -Z é o conjunto de símbolos de saída (o *alfabeto de saída*).
- $-\delta: Q \times \Sigma \to Q$ é a função de transição de estado.
- $-\lambda: Q \times \Sigma \to Z$ é a função de saída.

Este tipo de modelo descreve um mecanismo computacional designado *Máquina de Estados*:

- A sua implementação física implica que o número de estados possíveis seja finito.
- Máquinas de Estados Finitos.

Duas formulações distintas da função de saída *λ*:

 Máquinas de Mealy, nas quais a função de saída depende das entradas, ou seja:

$$\lambda: Q \times \Sigma \to Z$$

 Máquinas de Moore, nas quais a função de saída não depende das entradas, ou seja:

$$\lambda: Q \to Z$$

- Modelos sem estado
 - Presente
- Modelos com estado
 - Passado, presente

Aplicação Prática

Exemplo

Sistema de Regulação Automática de Temperatura

O sistema de controlo recebe do exterior uma entrada que pode assumir valores com as seguintes representações simbólicas:

- T_REG : indica que a temperatura está dentro dos limites definidos;
- T_BAIXA : indica que a temperatura está abaixo do limite mínimo;
- T_ALTA : indica que a temperatura está acima do limite máximo.

Por sua vez, o sistema produz uma saída para controlo dos mecanismos de aquecimento e de arrefecimento, a qual pode assumir valores com as seguintes representações simbólicas:

- AQ : sistema de aquecimento é activado;
- AR : sistema de arrefecimento é activado.

Na ausência dos valores AQ ou AR à saída do sistema de controlo, os mecanismos de aquecimento e de arrefecimento respectivos mantêm-se inactivos.

- O sistema de controlo é caracterizado por três estados:
 - q_{inactivo} : os sistemas de aquecimento e de arrefecimento estão inactivos;
 - q_{aquecimento}: apenas o sistema de aquecimento está activo;
 - $q_{\text{arrefecimento}}$: apenas o sistema de arrefecimento está activo.

Exemplo

Da descrição do problema podemos identificar:

• Um conjunto de símbolos de entrada (o alfabeto de entrada):

•
$$\Sigma = \{ T_REG, T_BAIXA, T_ALTA \}$$

Um conjunto de símbolos de saída (o alfabeto de saída):

Um conjunto de estados que caracterizam o sistema de controlo:

•
$$Q = \{ q_{\text{inactivo}}, q_{\text{aquecimento}}, q_{\text{arrefecimento}} \}$$

Função de transição de estado:

$$\delta: \mathbf{Q} \times \Sigma \to \mathbf{Q}$$

Q Σ	T_REG	T_BAIXA	T_ALTA
$q_{inactivo}$	$q_{inactivo}$	<i>Q</i> aquecimento	$q_{ m arrefecimento}$
$q_{ m aquecimento}$	$q_{inactivo}$	$q_{ m aquecimento}$	$q_{ m arrefecimento}$
<i>Q</i> arrefecimento	$q_{inactivo}$	$q_{ m aquecimento}$	$q_{ m arrefecimento}$

Função de saída:

$$\lambda: \mathbf{Q} \to \mathbf{Z}$$

Q	Z
<i>q</i> _{inacti∨o}	
$q_{ m aquecimento}$	AQ
$q_{ m arrefecimento}$	AR

Diagrama de Transição de Estado

Latência de transição?

Exemplo: Caso Prático 1

Personagem virtual

Bibliografia

[Martin, 2003]

J. Martin, Introduction to Languages and the Theory of Computation, McGraw-Hill, 2003.

[Sipser, 2005]

M. Sipser, Introduction to the Theory of Computation, Thomson, 2005.