

Projet étudiant MASTER 1

DATA SCIENCE & INTELLIGENCE ARTIFICIELLE

SIGNAL, APPRENTISSAGE ET

MULTIMÉDIA: CLASSIFICATION

D'IMAGES

Proposé	par	•
-	_	

Mr Luc IHONOCK
Année: 2023/2024

Réalisé	par	•

> HYONTA KENGAP BLÉRIOT

> AJANG CHRIS-NELLY MESUMBE

PLAN

Introduction

#

La classification d'images aide à traiter de grandes quantités de données visuelles, essentielle pour divers domaines, notamment en Afrique avec ses enjeux uniques.

#

Au Cameroun, cette technologie peut transformer l'agriculture, la santé et l'environnement, en automatisant des tâches telles que la reconnaissance d'espèces ou le diagnostic médical.

#

Les réseaux de neurones (CNN) permettent une analyse d'images rapide et efficace, ouvrant la voie à des solutions adaptées aux besoins locaux.

Méthodologie

Dataset

Le modèle est entraîné sur le jeu de données CIFAR-10, comprenant 60 000 images réparties en 10 classes (avion, chat, chien, etc.), avec 6 000 images par classe. Ce dataset, équilibré et couramment utilisé, permet d'entraîner et d'évaluer les performances des algorithmes de classification d'images.

Modèle

Nous avons utilisé un réseau de neurones convolutionnel (CNN) pour classifier les images. Le modèle combine des couches convolutionnelles, des couches de pooling, et des couches entièrement connectées, optimisant l'extraction des caractéristiques visuelles. Les CNN sont choisis pour leur efficacité dans la reconnaissance et la classification d'images.

Méthodologie

Paramètres d'entraînement

• **Epochs**: 10

• Taux d'apprentissage : 0.001

• Taille de lot : 64

• Fonction de perte : Categorical Crossentropy

• Optimiseur : Adam

Métriques d'évaluation

- Précision (Accuracy) : Proportion d'instances correctement classées.
- Matrice de confusion : Outil pour visualiser les performances du modèle par rapport aux classes réelles.
- Rapport de classification : Comprenant la précision, le rappel, et le F1-score pour chaque classe.

Rapport de classification

	Précision	Rappel	F1-Score	Support
Classe				
airplane	0.76	0.72	0.74	1000
automobile	0.80	0.85	0.83	1000
bird	0.63	0.51	0.57	1000
cat	0.48	0.62	0.54	1000
deer	0.64	0.69	0.67	1000
dog	0.60	0.64	0.62	1000
frog	0.72	0.83	0.77	1000
horse	0.81	0.68	0.74	1000
ship	0.85	0.77	0.81	1000
truck	0.87	0.72	0.79	1000
			0.70	10000
accuracy				
Macro avg	0.72	0.70	0.71	10000
Weighted avg	0.72	0.70	0.71	10000

Matrice de confusion

Accuracy over Epochs

La courbe 'Train Accuracy' dépasse la 'Test Accuracy' après 4 époques, suggérant un surapprentissage, mais les courbes restent proches

Loss over Epochs

La courbe 'Train Loss' passe sous 'Test Loss' après 2 époques, indiquant un apprentissage efficace et une bonne performance générale.

Discussion

Interprétation des résultats

Les résultats montrent un bon fonctionnement global, mais des lacunes subsistent pour les classes "cat" et "bird". Le faible rappel indique que le modèle confond ces classes, probablement à cause de leurs similitudes visuelles.

Limites de l'étude

L'étude est limitée par le jeu de données standard, ne reflétant pas la diversité des images au Cameroun. De plus, l'entraînement sur peu d'époques pourrait restreindre les capacités d'apprentissage du modèle.

Implications Éthiques et Sociétales

Notre modèle de classification d'images atteint 70% de précision. Au Cameroun, il est essentiel d'aborder l'éthique, les biais des données et l'accès équitable aux technologies pour promouvoir un développement inclusif.

Conclusion

Résumé des points clés

Le modèle atteint 70% de précision avec des lacunes sur certaines classes.

L'adaptation aux données locales et des techniques avancées peuvent améliorer les performances.

Perspectives futures

Développer des modèles de classification d'images avec des données locales du Cameroun, comme des images de cultures ou d'animaux, serait bénéfique.

L'intégration de techniques d'augmentation de données et de transfert d'apprentissage pourrait améliorer les performances du modèle

Réflexions finales

Le modèle montre de bonnes performances, mais certaines classes restent problématiques, nécessitant des améliorations.

L'adaptation aux données locales camerounaises est cruciale pour maximiser l'impact du modèle.

Mercie pour votre attention

