

Latency-aware Spatial-wise Dynamic Networks

Yizeng Han¹*, Zhihang Yuan²*, Yifan Pu¹*, Chenhao Xue², Shiji Song¹, Guangyu Sun², and Gao Huang¹ ¹Tsinghua University, Beijing, China; ²Peking University, , Beijing, China *Equal contribution. Corresponding author.

Background

> Spatial Redundancy

- Some image regions are less important.
- Treat them equally cause computation redundancy.

> Spatial-wise Dynamic Computation

Adaptive allocating more computation to more informative regions (e.g. foreground).

Observation & Motivation

Realistic speedup is hardly attained

- Real latency is affected by three key factors
 - Algorithm design
 - Scheduling Strategy
 - Hardware Property
- Most existing works only consider part of them We propose a co-design framework!

Method

> Co-design Framework

Algorithm design: Coarse-grained spatially adaptive

Larger S: more contiguous memory access & less flexibility

Scheduling strategy: Operator fusion

Hardware awareness: Latency prediction model

Consider both computation and data movement. Guide the choice of S of each model block.

Experiments

➤ Latency prediction model guide S design

Latency prediction results on different stages

> Real speedup is achieved on GPU

ResNet on server GPU (Nvidia Tesla V100)

 \triangleright Ablation study on granularity (S)

> Visualization on computed regions

