Applications of almost compatible functions for limited information strategies in infinite length games

BEST 2015 - San Francisco State University

Steven Clontz http://stevenclontz.com

Auburn, AL

June 16, 2016

A topological space X is Menger if for every sequence $\langle \mathcal{U}_0, \mathcal{U}_1, \ldots \rangle$ of open covers of X there exists a sequence $\langle F_0, F_1, \ldots \rangle$ such that F_n is covered by some finite subcollection of \mathcal{U}_n and $X = \bigcup_{n < \omega} F_n$.

Proposition

X is σ -relatively-compact \Rightarrow *X* is Menger \Rightarrow *X* is Lindelöf.

A topological space X is Menger if for every sequence $\langle \mathcal{U}_0, \mathcal{U}_1, \ldots \rangle$ of open covers of X there exists a sequence $\langle F_0, F_1, \ldots \rangle$ such that F_n is covered by some finite subcollection of \mathcal{U}_n and $X = \bigcup_{n < \omega} F_n$.

Proposition

X is σ -relatively-compact \Rightarrow *X* is Menger \Rightarrow *X* is Lindelöf.

Game

Let $Men_{C,F}(X)$ denote the $Menger\ game\$ with players $\mathscr{C},\mathscr{F}.$

 \mathscr{F} wins the game if $X = \bigcup_{n \leq \omega} F_n$, and \mathscr{C} wins otherwise.

Theorem (Hurewicz 1926 [1])

X is Menger if and only if $\mathscr{C} \not \upharpoonright Men_{C,F}(X)$.

Theorem (Telgarsky 1984 [5], Scheepers 1995 [4])

Let X be metrizable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

Theorem (Fremlin, Miller 1988 [2])

There are ZFC examples of non- σ -compact subsets of the real line which are Menger.

Theorem (Hurewicz 1926 [1])

X is Menger if and only if $\mathscr{C} \not \upharpoonright Men_{C,F}(X)$.

Theorem (Telgarsky 1984 [5], Scheepers 1995 [4])

Let X be metrizable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

Theorem (Fremlin, Miller 1988 [2])

There are ZFC examples of non- σ -compact subsets of the real line which are Menger.

Theorem (Hurewicz 1926 [1])

X is Menger if and only if $\mathscr{C} \not \upharpoonright Men_{C,F}(X)$.

Theorem (Telgarsky 1984 [5], Scheepers 1995 [4])

Let X be metrizable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

Theorem (Fremlin, Miller 1988 [2])

There are ZFC examples of non- σ -compact subsets of the real line which are Menger.

Assume κ is an uncountable cardinal.

Example

Let $\kappa^\dagger = \kappa \cup \{\infty\}$, with κ discrete and neighborhoods of ∞ being co-countable. Then $\mathscr{F} \uparrow \mathit{Men}_{C,F}\left(\kappa^\dagger\right)$ but κ^\dagger is not σ -compact.

A perfect information strategy uses full information of the previous moves of the opponent. ($\mathscr{A} \uparrow G$)

Definition

A k-tactical strategy only uses the last k previous moves of the opponent. ($\mathscr{A} \ \uparrow \ G$)

Definition

A *k-Markov strategy* only uses the last *k* previous moves of the opponent and the round number. $(\mathscr{A} \uparrow G)$ $\underset{k-\text{mark}}{\wedge} G$

A perfect information strategy uses full information of the previous moves of the opponent. ($\mathscr{A} \uparrow G$)

Definition

A k-tactical strategy only uses the last k previous moves of the opponent. ($\mathscr{A} \ \uparrow \ G$)

Definition

A k-Markov strategy only uses the last k previous moves of the opponent and the round number. ($\mathscr{A} \ \uparrow \ G$)

A perfect information strategy uses full information of the previous moves of the opponent. ($\mathscr{A} \uparrow G$)

Definition

A k-tactical strategy only uses the last k previous moves of the opponent. ($\mathscr{A} \uparrow G$)

Definition

A k-Markov strategy only uses the last k previous moves of the opponent and the round number. ($\mathscr{A} \ \uparrow \ G$)

A perfect information strategy uses full information of the previous moves of the opponent. ($\mathscr{A} \uparrow G$)

Definition

A k-tactical strategy only uses the last k previous moves of the opponent. ($\mathscr{A} \ \uparrow \ G$)

Definition

A k-Markov strategy only uses the last k previous moves of the opponent and the round number. ($\mathscr{A} \ \uparrow \ G$)

emma

 $\mathscr{F} \uparrow \underset{mark}{\mathsf{Men}_{C,F}}(X)$ if and only if X is σ -relatively-compact.

Lemma

Let X be second-countable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if $\mathscr{F} \uparrow Men_{C,F}(X)$

The result then follows as metrizable + Lindelöf \Leftrightarrow regular + second countable.

Lemma

 $\mathscr{F} \uparrow \underset{mark}{\mathsf{Men}}_{C,F}(X)$ if and only if X is σ -relatively-compact.

Lemma

Let X be second-countable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if $\mathscr{F} \uparrow Men_{C,F}(X)$

The result then follows as $metrizable + Lindel\"{o}f \Leftrightarrow regular + second countable.$

Lemma

 $\mathscr{F} \uparrow \underset{mark}{\bigwedge} \mathsf{Men}_{C,F}(X)$ if and only if X is σ -relatively-compact.

Lemma

Let X be second-countable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if

$$\mathscr{F} \uparrow Men_{C,F}(X)$$

The result then follows as $metrizable + Lindel\"{o}f \Leftrightarrow regular + second countable$

Lemma

 $\mathscr{F} \uparrow \underset{mark}{\mathsf{Men}_{C,F}}(X)$ if and only if X is σ -relatively-compact.

Lemma

Let X be second-countable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if

$$\mathscr{F} \uparrow Men_{C,F}(X)$$

The result then follows as metrizable + Lindelöf \Leftrightarrow regular + second countable.

$$\mathscr{F}\uparrow \mathit{Men}_{\mathit{C},\mathit{F}}\left(\kappa^{\dagger}\right)\text{, but }\mathscr{F}\underset{\mathsf{mark}}{\not\uparrow} \mathit{Men}_{\mathit{C},\mathit{F}}\left(\kappa^{\dagger}\right).$$

Proposition

$$\mathscr{F}$$
 \uparrow $Men_{C,F}(X)$ if and only if \mathscr{F} \uparrow $Men_{C,F}(X)$.

Example

$$\mathscr{F} \uparrow \underset{2\text{-mark}}{\uparrow} Men_{C,F} \left(\omega_1^{\dagger}\right)$$

What about for $\kappa > \omega_1$? As we'll see, this question may not be answerable in ZFC

$$\mathscr{F}\uparrow \mathit{Men}_{\mathit{C},\mathit{F}}\left(\kappa^{\dagger}\right),\,\mathsf{but}\,\,\mathscr{F}\,\,\underset{\mathsf{mark}}{\not\uparrow}\,\,\mathit{Men}_{\mathit{C},\mathit{F}}\left(\kappa^{\dagger}\right).$$

Proposition

$$\mathscr{F} \underset{(k+2)\text{-mark}}{\uparrow} Men_{C,F}(X)$$
 if and only if $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Men_{C,F}(X)$.

Example

$$\mathscr{F} \uparrow \underset{\text{2-mark}}{\uparrow} Men_{C,F} \left(\omega_1^{\dagger}\right)$$

What about for $\kappa > \omega_1$? As we'll see, this question may not be answerable in ZFC

$$\mathscr{F}\uparrow \mathit{Men}_{\mathit{C},\mathit{F}}\left(\kappa^{\dagger}\right)$$
, but $\mathscr{F}\underset{\mathsf{mark}}{\uparrow} \mathit{Men}_{\mathit{C},\mathit{F}}\left(\kappa^{\dagger}\right)$.

Proposition

$$\mathscr{F} \underset{(k+2)\text{-mark}}{\uparrow} Men_{C,F}(X)$$
 if and only if $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Men_{C,F}(X)$.

Example

$$\mathscr{F} \underset{\text{2-mark}}{\uparrow} \textit{Men}_{\textit{C,F}} \left(\omega_{\textit{1}}^{\dagger} \right)$$

What about for $\kappa > \omega_1$? As we'll see, this question may not be answerable in ZFC

$$\mathscr{F}\uparrow \mathit{Men}_{\mathit{C},\mathit{F}}\left(\kappa^{\dagger}\right)$$
, but $\mathscr{F}\underset{\mathsf{mark}}{\not\uparrow}\mathit{Men}_{\mathit{C},\mathit{F}}\left(\kappa^{\dagger}\right)$.

Proposition

$$\mathscr{F} \underset{(k+2)\text{-mark}}{\uparrow} Men_{C,F}(X)$$
 if and only if $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Men_{C,F}(X)$.

Example

$$\mathscr{F} \underset{\text{2-mark}}{\uparrow} \textit{Men}_{\textit{C,F}} \left(\omega_{\textit{1}}^{\dagger} \right)$$

What about for $\kappa > \omega_1$? As we'll see, this question may not be answerable in *ZFC*.

The game $Men_{C,F}(\kappa^{\dagger})$ essentially involves choosing countable and finite subsets of κ , such as in this game due to Scheepers [3]:

Game

Let $Sch_{C,F}^{\cup,\subset}(\kappa)$ denote Scheepers's *strict countable-finite game* in which each round $\mathscr C$ chooses $C_n \in [\kappa]^{\leq \omega}$ such that $C_n \supseteq \bigcup_{i < n} C_i$, followed by $\mathscr F$ choosing $F_n \in [C_n]^{<\omega}$. $\mathscr F$ wins if $\bigcup_{n < \omega} F_n = \bigcup_{n < \omega} C_n$, and $\mathscr C$ wins otherwise.

 $Sch_{C,F}^{\cup,\subset}(\kappa)$ is more restrictive than the Menger game, but this is easily remedied.

Game

Let $Sch_{C,F}^{\cap}(\kappa)$ denote the *intersection countable-finite game* in which each round $\mathscr C$ chooses $C_n \in [\kappa]^{\leq \omega}$, followed by $\mathscr F$ choosing $F_n \in [C_n]^{<\omega}$. $\mathscr F$ wins if $\bigcup_{n < \omega} F_n \supseteq \bigcap_{n < \omega} C_n$, and $\mathscr C$ wins otherwise.

Theorem

$$\mathscr{F}\underset{2-\mathit{mark}}{\uparrow} \mathsf{Sch}_{C,F}^{\cap}\left(\kappa\right)$$
 if and only if $\mathscr{F}\underset{2-\mathit{mark}}{\uparrow} \mathsf{Men}_{C,F}\left(\kappa^{\dagger}\right)$.

 $Sch_{C,F}^{\cup,\subset}(\kappa)$ is more restrictive than the Menger game, but this is easily remedied.

Game

Let $Sch_{C,F}^{\cap}(\kappa)$ denote the *intersection countable-finite game* in which each round $\mathscr C$ chooses $C_n \in [\kappa]^{\leq \omega}$, followed by $\mathscr F$ choosing $F_n \in [C_n]^{<\omega}$.

 \mathscr{F} wins if $\bigcup_{n<\omega} F_n\supseteq\bigcap_{n<\omega} C_n$, and \mathscr{C} wins otherwise.

Theorem

$$\mathscr{F} \underset{\text{2-mark}}{\uparrow} \mathit{Sch}_{C,F}^{\cap}(\kappa) \text{ if and only if } \mathscr{F} \underset{\text{2-mark}}{\uparrow} \mathit{Men}_{C,F}\left(\kappa^{\dagger}\right).$$

Perhaps this game is too dissimilar to the original. One may prefer to investigate either of these variants as well:

Game

Let $Sch_{C,F}^{\cup,\subseteq}(\kappa)$ denote the *nonstrict countable-finite game* in which each round $\mathscr C$ chooses $C_n\in [\kappa]^{\leq \omega}$ such that $C_n\supseteq \bigcup_{i< n} C_i$, followed by $\mathscr F$ choosing $F_n\in [C_n]^{<\omega}$. $\mathscr F$ wins if $\bigcup_{n<\omega} F_n\supseteq \bigcup_{n<\omega} C_n$, and $\mathscr C$ wins otherwise.

Game

Let $Sch_{C,F}^{1,\subseteq}(\kappa)$ denote the *initial countable-finite game* in which each round $\mathscr C$ chooses $C_n \in [\kappa]^{\leq \omega}$ such that $C_n \supseteq \bigcup_{i < n} C_i$, followed by $\mathscr F$ choosing $F_n \in [C_n]^{<\omega}$. $\mathscr F$ wins if $\bigcup_{n < \omega} F_n \supseteq C_0$, and $\mathscr C$ wins otherwise.

Perhaps this game is too dissimilar to the original. One may prefer to investigate either of these variants as well:

Game

Let $Sch_{C,F}^{\cup,\subseteq}(\kappa)$ denote the *nonstrict countable-finite game* in which each round $\mathscr C$ chooses $C_n \in [\kappa]^{\leq \omega}$ such that $C_n \supseteq \bigcup_{i < n} C_i$, followed by $\mathscr F$ choosing $F_n \in [C_n]^{<\omega}$. $\mathscr F$ wins if $\bigcup_{n < \omega} F_n \supseteq \bigcup_{n < \omega} C_n$, and $\mathscr C$ wins otherwise.

Game

Let $Sch_{C,F}^{1,\subseteq}(\kappa)$ denote the *initial countable-finite game* in which each round $\mathscr C$ chooses $C_n \in [\kappa]^{\leq \omega}$ such that $C_n \supseteq \bigcup_{i < n} C_i$, followed by $\mathscr F$ choosing $F_n \in [C_n]^{<\omega}$. $\mathscr F$ wins if $\bigcup_{n < \omega} F_n \supseteq C_0$, and $\mathscr C$ wins otherwise.

Observe that there is no direct implication connecting

$$\mathscr{F} \underset{2\text{-mark}}{\uparrow} Men_{C,F}\left(\kappa^{\dagger}\right) \text{ and } \mathscr{F} \underset{2\text{-tact}}{\uparrow} Sch_{C,F}^{\cup,\subset}\left(\kappa\right).$$

Observe that there is no direct implication connecting

$$\mathscr{F} \underset{\text{2-mark}}{\uparrow} \mathsf{Men}_{\mathcal{C},\mathcal{F}}\left(\kappa^{\dagger}\right) \text{ and } \mathscr{F} \underset{\text{2-tact}}{\uparrow} \mathsf{Sch}_{\mathcal{C},\mathcal{F}}^{\cup,\subset}\left(\kappa\right).$$

The following was introduced by Scheepers to study k-tactics in his original countable-finite game.

Definition

For two functions f,g we say f is almost compatible with $g(f|^*g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa)$ states that there exist functions $f_A:A\to\omega$ for each $A\in [\kappa]^{\leq\omega}$ such that $|\{\alpha\in A:f_A(\alpha)\leq n\}|<\omega$ for all $n<\omega$ and $|\{a\in A:f_A(\alpha)\leq n\}|<\omega$ for all $|\{a\in A:f_A(\alpha)\}|<\omega$ fo

The following was introduced by Scheepers to study k-tactics in his original countable-finite game.

Definition

For two functions f, g we say f is almost compatible with g $(f||^*g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa)$ states that there exist functions $f_A:A\to\omega$ for each $A\in[\kappa]^{\leq\omega}$ such that $|\{\alpha\in A:f_A(\alpha)\leq n\}|<\omega$ for all $n<\omega$ and $|f_A||^*f_B$ for all $|f_A||$

The following was introduced by Scheepers to study k-tactics in his original countable-finite game.

Definition

For two functions f, g we say f is almost compatible with g $(f||^*g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa)$ states that there exist functions $f_A:A\to\omega$ for each $A\in[\kappa]^{\leq\omega}$ such that $|\{\alpha\in A:f_A(\alpha)\leq n\}|<\omega$ for all $n<\omega$ and $f_A\|^*f_B$ for all $A,B\in[\kappa]^\omega$.

Proposition

 $S(\omega_1)$.

Proposition

 $\kappa > \mathfrak{c}$ implies $\neg S(\kappa)$.

Theorem

For any cardinal κ , $\mathit{ZFC} + S(\kappa)$ is consistent.

Proposition

 $S(\omega_1)$.

Proposition

 $\kappa > \mathfrak{c}$ implies $\neg S(\kappa)$.

Theorem

For any cardinal κ , ZFC + S(κ) is consistent.

Proposition

 $S(\omega_1)$.

Proposition

 $\kappa > \mathfrak{c}$ implies $\neg S(\kappa)$.

Theorem

For any cardinal κ , ZFC + $S(\kappa)$ is consistent.

Let \mathfrak{z} be the supremum of cardinals κ where $S(\kappa)$.

Question

 $S(\mathfrak{z})$?

Question

What is the relationship of \mathfrak{z} to other small cardinals such as \mathfrak{t} , \mathfrak{b} , \mathfrak{d} , etc.?

Let \mathfrak{z} be the supremum of cardinals κ where $S(\kappa)$.

Question

 $S(\mathfrak{z})$?

Question

What is the relationship of \mathfrak{z} to other small cardinals such as \mathfrak{t} , \mathfrak{b} , \mathfrak{d} , etc.?

Let \mathfrak{z} be the supremum of cardinals κ where $S(\kappa)$.

Question

 $S(\mathfrak{z})$?

Question

What is the relationship of \mathfrak{z} to other small cardinals such as \mathfrak{t} , \mathfrak{b} , \mathfrak{d} , etc.?

Ouestion

Should all the arrows be two-sided?

Question

Should all the arrows be two-sided?

Definition

A space X is *robustly Menger* if there exist functions $r_{\mathcal{V}}: X \to \omega$ for each open cover \mathcal{V} of X such that for all open covers \mathcal{U}, \mathcal{V} and numbers $n < \omega$, the following sets are finitely coverable by \mathcal{V} :

$$c(V, n) = \{ x \in X : r_V(x) \le n \}$$
$$p(U, V, n+1) = \{ x \in X : n < r_U(x) < r_V(x) \}$$

Theorem

 $\mathscr{F} \uparrow Men_{C,F}(X)$ implies X is robustly Menger implies

 $\mathscr{F} \overset{\text{mark}}{\uparrow} Men_{C,F}(X).$

Theorem

 $S(\kappa)$ implies κ^{\dagger} is robustly Menger.

Question

Does $\mathscr{F} \uparrow \underset{2\text{-mark}}{\wedge} Men_{C,F}(X)$ imply X is robustly Menger?

Theorem

 $\mathscr{F} \uparrow Men_{C,F}(X)$ implies X is robustly Menger implies

 $\mathscr{F} \overset{\text{mark}}{\uparrow} \underset{\text{2-mark}}{\text{Men}_{C,F}}(X).$

Theorem

 $S(\kappa)$ implies κ^{\dagger} is robustly Menger.

Question

Does $\mathscr{F} \uparrow \underset{2\text{-mark}}{\wedge} Men_{C,F}(X)$ imply X is robustly Menger?

Theorem

 $\mathscr{F} \uparrow_{mark} Men_{C,F}(X)$ implies X is robustly Menger implies

 $\mathscr{F} \overset{\text{mark}}{\uparrow} \underset{\text{2-mark}}{\text{Men}_{C,F}}(X).$

Theorem

 $S(\kappa)$ implies κ^{\dagger} is robustly Menger.

Question

Does $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Men_{C,F}(X)$ imply X is robustly Menger?

Let $R_{\mathbb{Q}}$ be the real line with the basis generated by open intervals with or without the rationals removed.

Theorem

 $R_{\mathbb{Q}}$ is second countable and $\mathscr{F} \uparrow Men_{C,F}(R_{\mathbb{Q}})$.

Corollary

 $\mathscr{F} \uparrow Men_{C,F}(R_{\mathbb{Q}})$, even though it isn't σ -compact.

Let $R_{\mathbb{Q}}$ be the real line with the basis generated by open intervals with or without the rationals removed.

Theorem

 $R_{\mathbb{Q}}$ is second countable and $\mathscr{F}\uparrow Men_{C,F}\left(R_{\mathbb{Q}}\right)$.

Corollary

 $\mathscr{F} \ \ \mathop{\uparrow}_{\substack{\text{mark}}} \ \mathsf{Men}_{\mathcal{C},\mathcal{F}}(\mathsf{R}_{\mathbb{Q}})$, even though it isn't σ -compact.

Let R_{ω} be the real line with the basis generated by open intervals with any countable set removed.

Theorem

$$\mathscr{F}\uparrow Men_{C,F}\left(R_{\omega}
ight)$$
, but $\mathscr{F}\uparrow Men_{C,F}\left(R_{\omega}
ight)$.

Theorem

 $S(\mathfrak{c})$ implies R_{ω} is robustly Menger.

Question

Does there exist a space such that $\mathscr{F} \uparrow Men_{C,F}(X)$ but X is not robustly Menger or $\mathscr{F} \uparrow Men_{C,F}(X)$?

Let R_{ω} be the real line with the basis generated by open intervals with any countable set removed.

Theorem

$$\mathscr{F} \uparrow Men_{C,F}(R_{\omega})$$
, but $\mathscr{F} \not\uparrow Men_{C,F}(R_{\omega})$.

Theorem

 $S(\mathfrak{c})$ implies R_{ω} is robustly Menger.

Question

Does there exist a space such that $\mathscr{F} \uparrow Men_{C,F}(X)$ but X is not robustly Menger or $\mathscr{F} \uparrow Men_{C,F}(X)$?

Let R_{ω} be the real line with the basis generated by open intervals with any countable set removed.

Theorem

$$\mathscr{F}\uparrow \mathit{Men}_{C,F}(R_{\omega})$$
, but $\mathscr{F}\uparrow \mathit{Men}_{C,F}(R_{\omega})$.

Theorem

 $S(\mathfrak{c})$ implies R_{ω} is robustly Menger.

Let R_{ω} be the real line with the basis generated by open intervals with any countable set removed.

Theorem

$$\mathscr{F}\uparrow \mathit{Men}_{C,F}(R_{\omega})$$
, but $\mathscr{F}\uparrow \mathit{Men}_{C,F}(R_{\omega})$.

Theorem

 $S(\mathfrak{c})$ implies R_{ω} is robustly Menger.

Question

Does there exist a space such that $\mathscr{F} \uparrow Men_{C,F}(X)$ but X is not robustly Menger or $\mathscr{F} \uparrow Men_{C,F}(X)$?

Witold Hurewicz

Über eine Verallgemeinerung des Borelschen Theorems.

Math. Z., 24(1):401-421, 1926.

Arnold W. Miller and David H. Fremlin.

On some properties of Hurewicz, Menger, and Rothberger.

Fund. Math., 129(1):17-33, 1988.

Marion Scheepers.

Concerning *n*-tactics in the countable-finite game.

J. Symbolic Logic, 56(3):786-794, 1991.

Marion Scheepers.

A direct proof of a theorem of Telgársky.

Proc. Amer. Math. Soc., 123(11):3483-3485, 1995.

Rastislav Telgársky.

On games of Topsøe.

Math. Scand., 54(1):170-176, 1984.

 $\begin{array}{c} {\rm Motivation} \\ {\rm Countable\text{-}Finite\ Games\ and\ } {\cal S}(\kappa) \\ {\rm Applications} \end{array}$

Questions?

