Foundations of Machine Learning CentraleSupélec Paris — Fall 2017

8. Nearest neighbors

Chloé-Agathe Azencott

Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr

Practical matters

- Class representatives
 - William PALMER william.palmer@student.ecp.fr
 - Léonard BOUSSIOUX leonard.boussioux@student.ecp.fr
- Kaggle project

Learning objectives

- Implement the nearest-neighbor and k-nearest-neighbors algorithms.
- Compute distances between real-valued vectors as well as objects represented by categorical features.
- Define the decision boundary of the nearestneighbor algorithm.
- Explain why kNN might not work well in high dimension.

Nearest neighbors

How would you color the blank circles?

How would you color the blank circles?

Partitioning the space

The training data partitions the entire space

Nearest neighbor

• Learning:

Store all the training examples

• Prediction:

- For x: the label of the training example closest to it

• Learning:

Store all the training examples

• Prediction:

- Find the k training examples closest to x
- Classification?

Learning:

Store all the training examples

Prediction:

- Find the k training examples closest to x
- Classification

Majority vote: Predict the class of the most frequent label among the k neighbors.

Learning:

Store all the training examples

• Prediction:

- Find the k training examples closest to x
- Classification

Majority vote: Predict the class of the most frequent label among the k neighbors.

– Regression?

Learning:

Store all the training examples

Prediction:

Find the k training examples closest to x

Classification

Majority vote: Predict the class of the most frequent label among the k neighbors.

Regression

Predict the average of the labels of the k neighbors.

Choice of k

• Small k: noisy

The idea behind using more than 1 neighbor is to average out the noise

Large k: computationally intensive

If
$$k = n$$

Choice of k

Small k: noisy

The idea behind using more than 1 neighbor is to average out the noise

• Large k: computationally intensive

If k=n, then we predict

- for classification: the majority class
- for regression: the average value
- Set k by cross-validation
- Heuristic: k ≈ √n

Non-parametric learning

Non-parametric learning algorithm:

- the complexity of the decision function grows with the number of data points.
- contrast with linear regression (≈ as many parameters as features).
- Usually: decision function is expressed directly in terms of the training examples.
- Examples:
 - kNN (this chapter)
 - tree-based methods (Chap. 9)
 - SVM (Chap. 10)

Instance-based learning

Learning:

Storing training instances.

Predicting:

 Compute the label for a new instance based on its similarity with the stored instances.

- Also called lazy learning.
- Similar to case-based reasoning
 - Doctors treating a patient based on how patients with similar symptoms were treated,
 - Judges ruling court cases based on legal precedent.

Instance-based learning

Learning:

Storing training instances.

Predicting:

- Compute the label for a new instance based on its similarity with the stored instances.
 - _____ where the magic happens!
- Also called lazy learning.
- Similar to case-based reasoning
 - Doctors treating a patient based on how patients with similar symptoms were treated,
 - Judges ruling court cases based on legal precedent.

Computing distances & similarities

Distance

$$d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$$

Distance

$$d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$$

1.
$$d(\boldsymbol{x}, \boldsymbol{x}) = 0$$

2.
$$d(\boldsymbol{x}, \boldsymbol{z}) = d(\boldsymbol{z}, \boldsymbol{x})$$

3.
$$d(\boldsymbol{x}, \boldsymbol{z}) \leq d(\boldsymbol{x}, \boldsymbol{u}) + d(\boldsymbol{u}, \boldsymbol{x})$$

 $oldsymbol{x} \in \mathbb{R}^p$

Euclidean distance

$$d(\mathbf{x}^1, \mathbf{x}^2) = ||\mathbf{x}^1 - \mathbf{x}^2||_2 = \sqrt{\sum_{j=1}^p (x_j^1 - x_j^2)^2}$$

 $oldsymbol{x} \in \mathbb{R}^p$

Euclidean distance

$$d(\boldsymbol{x}^1,\boldsymbol{x}^2) = ||\boldsymbol{x}^1-\boldsymbol{x}^2||_2 = \sqrt{\sum_{j=1}^p \left(x_j^1-x_j^2\right)^2}$$
 • Manhattan distance

$$d(\mathbf{x}^1, \mathbf{x}^2) = ||\mathbf{x}^1 - \mathbf{x}^2||_1 = \sum_{j=1}^p |x_j^1 - x_j^2|$$

Why is this called the Manhattan distance?

 $oldsymbol{x} \in \mathbb{R}^p$

Euclidean distance

$$d(\boldsymbol{x}^1,\boldsymbol{x}^2) = ||\boldsymbol{x}^1-\boldsymbol{x}^2||_2 = \sqrt{\sum_{j=1}^p \left(x_j^1-x_j^2\right)^2}$$
 • Manhattan distance

$$d(\mathbf{x}^1, \mathbf{x}^2) = ||\mathbf{x}^1 - \mathbf{x}^2||_1 = \sum_{j=1}^{n} |x_j^1 - x_j^2|$$

• Lq-norm: Minkowski distance
$$\sum_{j=1}^p |x^j|^{1/q}$$

$$d(\boldsymbol{x}^1, \boldsymbol{x}^2) = ||\boldsymbol{x}^1 - \boldsymbol{x}^2||_q = \left(\sum_{j=1}^p |x^1_j - x^2_j|^q\right)^{1/q}$$

- L1 = Manhattan.
- L2 = Euclidean.
- L_∞ (?)

 $oldsymbol{x} \in \mathbb{R}^p$

Euclidean distance

$$d(\boldsymbol{x}^1,\boldsymbol{x}^2) = ||\boldsymbol{x}^1-\boldsymbol{x}^2||_2 = \sqrt{\sum_{j=1}^p \left(x_j^1-x_j^2\right)^2}$$
 • Manhattan distance

$$d(\mathbf{x}^1, \mathbf{x}^2) = ||\mathbf{x}^1 - \mathbf{x}^2||_1 = \sum_{j=1}^{n} |x_j^1 - x_j^2|$$

• Lq-norm: Minkowski distance
$$\sum_{j=1}^p |x^j|^{1/q}$$

$$d(\boldsymbol{x}^1, \boldsymbol{x}^2) = ||\boldsymbol{x}^1 - \boldsymbol{x}^2||_q = \left(\sum_{j=1}^p |x^1_j - x^2_j|^q\right)^{1/q}$$

- L1 = Manhattan.
- L2 = Euclidean.
- $L_{\infty} = \max_{j} (|x_j^1 x_j^2|)$

Similarity between instances

$$s = \frac{1}{1+d}$$

Pearson's correlation

$$\rho(\boldsymbol{x},\boldsymbol{z}) = \frac{\sum_{j=1}^{p} \left(x_{j} - \bar{x}\right) \left(z_{j} - \bar{z}\right)}{\sqrt{\sum_{j=1}^{p} \left(x_{j} - \bar{x}\right)^{2}} \sqrt{\sum_{j=1}^{p} \left(z_{j} - \bar{z}\right)^{2}}}$$
• Assuming the data is centered
$$\bar{x} = \frac{1}{p} \sum_{j=1}^{p} x_{j}$$

$$\rho(\boldsymbol{x}, \boldsymbol{z}) = \frac{\sum_{j=1}^{p} x_j z_j}{\sqrt{\sum_{j=1}^{p} x_j^2} \sqrt{\sum_{j=1}^{p} z_j^2}}$$

Geometric interpretation?

Similarity between instances

Pearson's correlation (centered data)

$$\rho(\boldsymbol{x}, \boldsymbol{z}) = \frac{\sum_{j=1}^{p} x_{j} z_{j}}{\sqrt{\sum_{j=1}^{p} x_{j}^{2}} \sqrt{\sum_{j=1}^{p} z_{j}^{2}}} = \frac{\langle \boldsymbol{x}, \boldsymbol{z} \rangle}{||\boldsymbol{x}||.||\boldsymbol{z}||} = \cos \theta$$

 Cosine similarity: the dot product can be used to measure similarities.

- Ex: a feature that can take 5 values
 - Sports
 - World
 - Culture
 - Internet
 - Politics
- Naive encoding: x₁ in {1, 2, 3, 4, 5}:
 - Why is Sports closer to World than Politics?
- One-hot encoding: x₁, x₂, x₃, x₄, x₅
 - Sports: [1, 0, 0, 0, 0]
 - Internet: [0, 0, 0, 1, 0]

- Represent object as the list of presence/absence (or counts) of features that appear in it.
- Example: small molecules

features = atoms and bonds of a certain type

- C, H, S, O, N...

Binary representation

Hamming distance

Number of bits that are different

$$d(\boldsymbol{x}^1,\boldsymbol{x}^2) = \sum_{j=1}^P (x_j^1 \text{ XOR } x_j^2)$$
 Equivalent to

Binary representation

Hamming distance

Number of bits that are different

$$d(\boldsymbol{x}^1,\boldsymbol{x}^2) = \sum_{j=1} (x_j^1 \ \mathrm{XOR} \ x_j^2)$$
 Equivalent to

$$d(\mathbf{x}^1, \mathbf{x}^2) = \sum_{j=1}^p |x_j^1 - x_j^2| = \sum_{j=1}^p (x_j^1 - x_j^2)^2$$

Binary representation

0 1 1 0 0 1 0 0 0 1 0 1 0 0 1

Tanimoto/Jaccard similarity

Number of shared features (normalized)

$$s(\mathbf{x}^1, \mathbf{x}^2) = \frac{\sum_{j=1}^{p} (x_j^1 \text{ AND } x_j^2)}{\sum_{j=1}^{p} (x_j^1 \text{ OR } x_j^2)}$$

Counts representation

0 1 2 0 0 1 0 0 0 4 0 1 0 0 7

no occurrence
of the 1st feature

occurrences
of the 10th feature

MinMax similarity

Number of shared features (normalized)

$$s(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}) = \frac{\sum_{j=1}^{p} \min(x_{j}^{1}, x_{j}^{2})}{\sum_{j=1}^{p} \max(x_{j}^{1}, x_{j}^{2})}$$

If x is binary, MinMax and Tanimoto are equivalent

$$s(\mathbf{x}^{1}, \mathbf{x}^{2}) = \frac{\sum_{j=1}^{p} (x_{j}^{1} \text{ AND } x_{j}^{2})}{\sum_{j=1}^{p} (x_{j}^{1} \text{ OR } x_{j}^{2})}$$

Features

 Compute the Hamming distance and Tanimoto and MinMax similarities between these objects:

Features

 Compute the Hamming distance and Tanimoto and MinMax similarities between these objects:

- A = 100011010110 / 300011010120
- B = 111011011110 / 211021011120
- C = 111011010100 / 311011010100

Hamming distance

$$d(A, B) = 3$$
 $d(A, C) = 3$

$$d(A, C) = 3$$

$$d(B, C) = 2$$

Tanimoto similarity

$$s(A, B) = 6/9$$
 $s(A, C) = 5/8$

$$S(A, C) = 5/8$$

$$s(B, C) = 7/9$$

$$= 0.67$$

$$= 0.63$$

$$= 0.78$$

MinMax similarity

$$s(A, B) = 8/13$$
 $s(A, C) = 7/11$ $s(B, C) = 8/13$

$$s(A, C) = 7/11$$

$$s(B, C) = 8/13$$

$$= 0.62$$

$$= 0.64$$

Features

When new data has unknown features: ignore them.

Back to nearest neighbors

Advantages of kNN

- Training is very fast
 - Just store the training examples.
 - Can use smart indexing procedures to speed-up testing (slower training).
- Keeps the training data
 - Useful if we want to do something else with it.
- Rather robust to noisy data (averaging k votes)

Can learn complex functions

Drawbacks of kNN

- Memory requirements
- Prediction can be slow.
 - Complexity of labeling 1 new data point

Drawbacks of kNN

- Memory requirements
- Prediction can be slow.

Complexity of labeling 1 new data point: $\mathcal{O}(pn + n \log k)$ But kNN works best with lots of samples...

- → Efficient data structures (k-D trees, ball-trees)
 - construction space: $\mathcal{O}(pn)$ time: $\mathcal{O}(n \log n)$
 - query: $\mathcal{O}(p \log n)$ if $p < 20, \mathcal{O}(pn)$ otherwise
- → Approximate solutions based on hashing
- kNN are fooled by irrelevant attributes.

E.g. p=1000, only 10 features are relevant; distances become meaningless.

Decision boundary of kNN

- Classification
- Decision boundary: Line separating the positive from negative regions.
- What decision boundary is the kNN building?

Voronoi tesselation

- Voronoi cell of x:
 - set of all points of the space closer to x than any other point of the training set
 - polyhedron

Voronoid tesselation of the space: union of all

Voronoi cells.

Draw the Voronoi cell of the blue dot.

Voronoi tesselation

- Voronoi cell of x:
 - set of all points of the space closer to x than any other point of the training set
 - polyhedron

Voronoid tesselation of the space: union of all

Voronoi cells.

Voronoi tesselation

• The Voronoi tesselation defines the decision boundary of the 1-NN.

 The kNN also partitions the space (in a more complex way).

Curse of dimensionality

- Remember from Chap 3
- When p

 ¬ the proportion of a hypercube outside of its inscribed hypersphere approaches 1.
- Volume of a p-sphere: $\frac{2r^2\pi^{p/2}}{p\Gamma(p/2)}$

- What this means:
 - hyperspace is very big
 - all points are far apart
 - dimensionality reduction needed.

kNN variants

ε-ball neighbors

- Instead of using the k nearest neighbors, use all points within a distance ε of the test point.
- What if there are no such points?

kNN variants

Weighted kNN

 Weigh the vote of each neighbor according to the distance to the test point.

$$w_l = \exp\left(\frac{1}{2}d(\boldsymbol{x}, \boldsymbol{x}^l)\right)$$

Variant: learn the optimal weights [e.g. Swamidass,
 Azencott et al. 2009, Influence Relevance Voter]

Collaborative filtering

 Collaborative filtering: recommend items that similar users have liked in the past

similar users = users with similar tastes

- item-based kNN
 - similarity between items: adjusted cosine similarity

Sum over the users that rated both item A and item B

$$s(A,B) = \frac{\sum_{u} (R(u,A) - \bar{R}(u))(R(u,B) - \bar{R}(u))}{\sqrt{\sum_{u} (R(u,A) - \bar{R}(u))^{2} \sum_{u} (R(u,B) - \bar{R}(u))^{2}}}$$

Rating of item A by user u

Average rating by user u

Collaborative filtering

– score of item A for user u:

$$S(u, A) = \frac{\sum_{B \in \mathcal{N}_u^k(A)} s(A, B) R(u, B)}{\sum_{B \in \mathcal{N}_u^k(A)} |s(A, B)|}$$

k nearest neighbors of A according to s among the items rated by user u

Summary

kNN

- very simple training
- prediction can be expensive
- Relies on a "good" distance/similarity between instances
- Decision boundary = Voronoi tesselation
- Curse of dimensionality: hyperspace is very big.

References

- A Course in Machine Learning. http://ciml.info/dl/v0_99/ciml-v0_99-all.pdf
 - **kNN:** Chap 3.2 3.3
 - Categorical variables: Chap 3.1
 - Curse of dimensionality: Chap 3.5
- More on
 - Kd-trees

```
https://www.ri.cmu.edu/pub_files/pub1/moore_andrew_1991_
1/moore_andrew_1991_1.pdf
```

http://www.alglib.net/other/nearestneighbors.php

Voronoi tessellation

http://philogb.github.io/blog/2010/02/12/voronoi-tessellation/

Lab

```
from sklearn import neighbors
from sklearn import metrics

aurocs_clf = []
# Create a range of values of k. We will use this throughout the lab.
k_range = range(1,40,2)

for k in k_range:
    clf = neighbors.KNeighborsClassifier(n_neighbors=k)
    y_pred = cross_validate(X_clf, y_clf, clf, cv_folds)

    fpr, tpr, thresholdss = metrics.roc_curve(y_clf, y_pred[:,1])
    aurocs clf.append(metrics.auc(fpr,tpr))
```

Nearest neighbours classification - cross validated AUC.


```
# Find the best parameter
print clf_knn_opt.best_params_

{'n_neighbors': 25}
```

Even though we use the same scoring strategy, we don't get the same optimum. That's because the cross-validation evaluation strategy is different: scikit-learn compute one AUC per fold and averages them.

ROC Curves comparison for logistic regression and k-nearest neighbours classifier.


```
classifiers = {}
y preds
           = {}
# Fix a set of distance metrics to use
d metrics = ['euclidean', 'cityblock', 'correlation', 'cosine']
aurocs
         = {}
for m in d metrics:
   aurocs[m] = []
   for k in k range:
       classifiers[m] = neighbors.KNeighborsClassifier(n neighbors=k, metric=m)
       y preds[m] = cross validate(X clf, y clf, classifiers[m], cv folds)
       fpr, tpr, thresholds = metrics.roc curve(y clf, y preds[m][:,1])
                            = metrics.auc(fpr, tpr)
       auc
       aurocs[m].append(auc)
       print 'Metric = %-12s | k = %3d | AUC = %.3f.' %(m, k, aurocs[m][-1])
```

```
for i in range(len(d_metrics)):
    plt.plot(k_range, aurocs[d_metrics[i]])

plt.plot(k_range, [logreg_l2_auc for kval in k_range])

plt.xlabel('Number of nearest neighbors', fontsize=14)
plt.ylabel('Cross-validated AUC', fontsize=14)
plt.title('Nearest neighbors classification', fontsize=14)

legends = [m for m in d_metrics]
legends.append('Logistic regression')
plt.legend(legends, fontsize=12)
```

Computing nearest neighbors based on **correlation** works better than based on Minkowski distances. Indeed this allows to compare the **profiles** of the gene expressions (which genes have high expression / low expression simultaneously). Still logistic regression works best.

