Building Features Using Scaling and Transformations

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Quantization (binning) of counts and values

MinMax scaling, MaxAbs scaling

Generating polynomial features

Power transformers and quantile transformers

Binarizer and KBinsDiscretizer

Binarizer

Converts continuous variable into a binary categorical variable based on a threshold specified by user

Binarizer

Continuous input

Binary categorical output

KBinsDiscretizer

Generalizes idea of binarizer; converts continuous data into categorical data arranged into a specified number of bins

KBinsDiscretizer

Before

After (3 bins)

KBinsDiscretizer Strategies

Uniform

Bin widths are constant in each feature

Quantile

All bins in each feature have approximately the same number of samples

K-means

Bins based on the centroids of a K-means clustering procedure

Converting continuous data to binary data using the binarizer

Using KBinsDiscretizer to create binned categories

Study outliers using category bins

MaxAbsScaler and MinMaxScaler

Max-Abs Scaler

$$z = \frac{x}{max(abs(x))}$$

Scales features such that values lie in the range [-1, 1], the maximum absolute value will be 1

MinMaxScaler

$$x_i$$
 - min(x) * (range_max - range_min)
 $z = \frac{x_i - min(x)}{max(x) - min(x)}$ + range_min

Scale the range of features to lie between a certain user specified range

MinMaxScaler

Before After

MinMaxScaler is very sensitive to outliers

Using the MaxAbsScaler to scale data

Using the MinMaxScaler to scale data

FunctionTransformer

FunctionTransformer

Used to define a user-defined function or function object to be applied as a data transformation step, such as in a pipeline

Using FunctionTransformers to specify custom transformations

PolynomialFeatures

PolynomialFeatures

Utility class for generating all polynomial combinations of features up to a specified degree.

$$y = Wx + b$$

$$f(x) = Wx + b$$

Relationship between y and x is a polynomial of degree 1

$$y = Vx^2 + Wx + b$$

$$f(x) = \sqrt{x^2 + Wx + b}$$

Now relationship between y and x is a polynomial of degree 2

Linear Fit Performs Poorly

Quadratic Fit Performs Well

Generate polynomials of a certain degree of all input features

Fit a simpler model on this polynomial data

Using PolynomialFeatures to generate polynomial inputs

Helps fit a simpler machine learning model

PowerTransformer

PowerTransformer

Map features from any distribution to be as close to a Gaussian distribution as possible; useful when zeromean, unit-variance normally distributed features are preferable.

Two Power Transforms

Box-Cox transform

Requires strictly positive input data

Yeo-Johnson transform

Supports both positive or negative data

PowerTransformer

Using the PowerTransformer to transform data to normal form

QuantileTransformer

QuantileTransformer

Transforms features to follow a uniform or a normal distribution using quantile information; non-linear and might distort correlations and linear relationships.

QuantileTransformer

Using the QuantileTransformer to transform bimodal data to normal form

Summary

Quantization (binning) of counts and values

MinMax scaling, MaxAbs scaling

Generating polynomial features

Power transformers and quantile transformers

Related Courses

Building Features from Image Data
Building Features from Text Data
Reducing Complexity in Data