Contents

Problem 1: XOR Problem	
Problem 2: L ₂ Regularized Linear Regression Via Stochastic Gradient Descent)
Problem 3: Logistic Sigmoid Identity	
7 a. Prove $\sigma(-x) = 1 - \sigma(x) \ \forall x$	
b. Prove $\sigma'^{(x)} = \frac{\partial \sigma}{\partial x}(x) = (1 - \sigma(x)) \ \forall x$	}
Problem 4: Regularization to encourage symmetry	
Problem 5: Linear-Gaussian Prediction Model	

Problem 1: XOR Problem

The state of the s
-> After understanding the NN model, modifying the given data to mode the material equations more Consistant.
given data to make the matrix equations
Consistant.
W = [w] (weight material)
we materia
$M6E \implies J(g) = 1 \le (J(x) - f(x(g)))$
1 = 0 0 1 ×1
Y= [0] 1 1 0] y(2) y(2) y(3) y(4)
y(2) y(2) y(3) y(4)
~ (i) = [v.] (volate)
$\frac{\mathbf{\chi}^{(i)} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 = 1 \end{bmatrix}$
_ x3=1_
$\frac{\mathbf{x}^{(i)}}{\mathbf{x}_{2}} = \begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} = 1 \end{bmatrix}$
→ Now writing MSE loss →
$\mathcal{J}(0) = \frac{1}{4} \stackrel{\mathcal{Z}}{\times} \left(f(x) - f(x; 0) \right)^{2}$
4 x ∈ X
3 - 1 4 (11) 211)
4 x EX

 $\hat{y} = \mathbf{z}^{(t)} \mathbf{W}$ (Since this includes the bias no need for entra (+b) term) $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$ -> differentiating with respect to Tw (il whole 0 60th w(w, 8 w,) & b) J(0) = Jw 1 & (y(i)-x(i)W)2 $= \underbrace{15}_{4i=1} \nabla w \left(y^{(i)} - x^{(i)} \right)^{2}$ = 1 \(\frac{2}{1}\) \(\frac{2}\) \(\frac{2}{1}\) \(\frac{2}\) \(\frac{2 $= -\frac{1}{2} \underbrace{\frac{9}{8} \cancel{x}}_{1} (1) \left(\cancel{y}_{1} (1) - \cancel{x}_{1} (1) \overrightarrow{w} \right)$ equating JJ(0) to zero $0 = -\frac{1}{2} \underbrace{\xi}_{i=1}^{4} \underline{\chi}^{(i)} (y^{(i)} - \underline{\chi}^{(i)} \underline{W})$ $\underset{\ell=1}{\overset{4}{\sum}} \chi^{(\ell)} \chi^{(\ell)} W = \underset{\ell=1}{\overset{4}{\sum}} \chi^{(\ell)} \gamma^{(\ell)}$

```
\mathbf{W} = \left(\underbrace{\underbrace{\mathbf{z}}_{i=1}^{2} \mathbf{x}^{(i)} \mathbf{x}^{(i)}}_{i=1}\right) \underbrace{\mathbf{z}_{i}^{(i)} \mathbf{y}^{(i)}}_{i}
      > This equation can also be expresented in terms
\mathscr{E} = (\mathbf{Z}\mathbf{Z}^{\mathsf{T}})^{-1}\mathbf{Z}\mathbf{Y}
     9. W = WX-11 21 WZ = (3
                                                                -1
                           0 0 1 1 0 1
                                               001
                                                0 1
                                               1 0 1
                                              1 1 1 1
                           2 1 2
                           1 2 2
                            1 0 -0.5
                                                               Calculated
                            6 1 -0.5
                                                               MATLAB
                           -0.5 -0.5 0.75
         2Y = 0 0 1 1 0 0 1 1 =
                      0 1 0 1
                                             1
          .. W = (22T) 2Y
                    = \begin{bmatrix} 1 & 0 & -0.5 \\ 0 & 1 & -0.5 \\ -0.5 & -0.5 & 0.75 \end{bmatrix}

\begin{bmatrix}
1+(-(0.5) \times 2) \\
1+(-(0.5) \times 2)
\\
(-0.5)+(-0.5)+(2\times0.75)
\end{bmatrix} =

                 w_1 = 0
                                                        b= 0.5
             : W1 = 0
                                      w_2 = 0
```

Problem 2: L₂ Regularized Linear Regression Via Stochastic Gradient Descent

- We developed a 2-layer neural network using the data given in homework 1. The file is saved as *homework2_590146168_249812226.py*.
- The model is trained using Linear regression via stochastic gradient descent method.
- There are 4 Hyperparameters that can be altered:
 - \circ Mini-Batch Size \circ Learning Rate \circ Number of Epochs \circ
 - L₂ Regularization Strength
- The training data is split into Training (80%) and Validation (20%) dataset.
- We have selected a set of 10 values for each hyperparameter i.e., 10⁴ combinations.
- The weights are initialized randomly and this same weight is used for training the model for each set of hyperparameters to keep the results fair.
- Once training is done, we calculate the cost on validation set. If the cost is minimum, the best hyperparameter is updated. This process is done till all hyperparameters are checked.
- It took approximately 22 hours to check all 10⁴ combinations.
- At the end we obtain the best set of hyperparameters. Using these hyperparameters we train the model on validation + training dataset.
- Now this trained model is used to calculate the cost (unregularized MSE) for the test dataset and the result is reported below:

Problem 3: Logistic Sigmoid Identity

a. Prove $\sigma(-x) = 1 - \sigma(x) \ \forall x$

1.45=	1	- I would be the state of the s
201160	1+e-(-7)	1+2×
		X O O D D
		and to little the
R. H. S =	1 - 1	= 1+e-2-1,
	5 1+0-	1+2-2
WIN	(air)	1(8)= 1 6 /1(x)-1
V 4 -	0-2	No. H
Rothley May	1+0-2	
		1+W-x 3(d, w, x)
The Court =	1_1_	dioding numerator &
Carl Charles	1+ex	(dividing numerator & donound nater by e-n)
L. H.S	=- RIOH.S	(* 2-1)- E
	L.H.S = R.H.S =	$1 + e^{-(-x)}$ $R. H. S = 1 - 1$ $= e^{-x}$ $1 + e^{-x}$ $= 1$ $1 + e^{x}$

b. Prove $\sigma'^{(x)} = \frac{\partial \sigma}{\partial x}(x) = (1 - \sigma(x)) \ \forall x$

b. Pro	$\operatorname{ve} \sigma^{(x)} = \frac{\partial \sigma}{\partial x}(x) = (1 - \sigma(x)) \forall x$
6	Prove that $\sigma'(x) = \frac{\partial \sigma}{\partial x}(x) = \sigma(x)(1 - \sigma(x)) \forall x$.
→	5(x) = 1 d+ J = (x) 1 + 2 = (x)
	$\sigma^{3}(x) = \frac{\partial}{\partial x} \left(\frac{1}{1 + e^{-x}} \right) =$
	$= -\frac{1}{(1+e^{-x})^2} \cdot (-e^{-x}) = \frac{1}{(1+e^{-x})^2}$
	$= \left(\frac{1}{1+e^{-x}}\right) \cdot \left(\frac{e^{-x}}{1+e^{-x}}\right)$
	$= \left(\frac{1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{+x}}\right) = \frac{L_0 H_0 B}{1}$
-	$= \sigma(x) \left(1 - \sigma(x)\right) \qquad \left\{ \frac{1}{1 + e^{+x}} = \left(1 - \sigma(x)\right) \right\}$
	L. H. S = R. H. S from last proof

Problem 4: Regularization to encourage symmetry

	Regularization to encourage symmetry
(4)	12 segularization > 2
	JMSE (W) = 1 & (y(i) - y(i)) + & ww 2n i=1 (y(i) - y(i)) + & ww regularization term
	JMSE CWS - 2n i=1 2n , 2n
	does to the too
	-> our goal - discourage the weights from becoming too asymmetric.
	let W= [w1]
	- awarding to our goal we should add (wz-wz) to the first (w) for regularization. & (wz-wz) ensures the weights are as similar to each other as possible. - the squared term ensures regularization is non-negative.
	". Now, we are adviced to use & W'IW for regularization
3	. let als asseme a square matrix 5 such that
	$S = \begin{bmatrix} S_1 & S_2 \\ S_3 & S_4 \end{bmatrix}$
	S follows the fellowing property,
0	$ \left(\begin{array}{c} \left(W_2 - W_1 \right)^2 = \left[\left(W_1 W_2 \right) \right] \left[\begin{array}{c} S_1 & S_2 \\ S_3 & S_4 \end{array} \right] \left[\begin{array}{c} W_1 \\ W_2 \end{array} \right] $
20200-	$(w_2 - w_1)^2 = S_1 w_1^2 + w_1 w_2 (S_2 + S_3) + S_4 w_2^2$
	-> now empanding the Lottes
to	$w_2^2 - zw_1w_2 + w_1^2 = S_1w_1^2 + w_1w_2(S_2 + S_3) + S_4w_2^2$
	-> So from comparision we get to know that
	S1 = 1 S1 = 1 temped emenallal at mollal 2
	$S_2 + S_3 = -2$ $\Rightarrow S_2 = -1$ & $S_3 = -1$
	0° 5 = 1 -1 1

Problem 5: Linear-Gaussian Prediction Model

(5)
$$P(y|x) = N(M=x^TW, \sigma^2) = 1$$
 or $(-(y-x^TW)^2)$
 \Rightarrow or fected value of Y is x^TW
 \Rightarrow 16 variance of Y is (or tant (σ^T) for all fessible x .

Collection of classet $D = S(x^U, y^U) \frac{3}{2^{t-1}} \rightarrow MLE$ for $W \& \sigma$
 $\Rightarrow MLE - \text{ obtimizing on } W \& \sigma^2$
 $P(D|W, \sigma^2) = T P(y^U|x^U, W, \sigma^2)$

Considering the conditional independence)

 \Rightarrow maximizing log $P(D|W, \sigma^2)$

$$= \sum_{l=1}^{\infty} \log \left(\frac{1}{\sqrt{2\pi}\sigma^2} \cdot \exp\left(-\frac{y_U}{2\sigma^2} \times W \right)^2\right)$$
 $= \sum_{l=1}^{\infty} \log \left(\frac{1}{\sqrt{2\pi}\sigma^2} \cdot \exp\left(-\frac{y_U}{2\sigma^2} \times W \right)^2\right)$
 $= \sum_{l=1}^{\infty} \log \left(\frac{1}{\sqrt{2\pi}\sigma^2} \cdot \exp\left(-\frac{y_U}{2\sigma^2} \times W \right)^2\right)$
 $= \sum_{l=1}^{\infty} \log \left(\frac{1}{\sqrt{2\pi}\sigma^2} \cdot \exp\left(-\frac{y_U}{2\sigma^2} \times W \right)^2\right)$
 $= \sum_{l=1}^{\infty} \log \left(\frac{1}{\sqrt{2\pi}\sigma^2} \cdot \exp\left(-\frac{y_U}{2\sigma^2} \times W \right)^2\right)$
 $= \sum_{l=1}^{\infty} \log \left(\frac{1}{\sqrt{2\pi}\sigma^2} \cdot \exp\left(-\frac{y_U}{2\sigma^2} \times W \right)^2\right)$
 $= \sum_{l=1}^{\infty} \log \left(\frac{1}{\sqrt{2\pi}\sigma^2} - \frac{1}{2\sigma^2} \left(\frac{y_U}{2\sigma^2} \times W \right)^2\right)$
 $= \sum_{l=1}^{\infty} \log \left(\frac{1}{\sqrt{2\pi}\sigma^2} - \frac{1}{2\sigma^2} \left(\frac{y_U}{2\sigma^2} \times W \right)^2\right)$

The strictly differentiating west to
$$W$$

$$= 0 - \sum_{i=1}^{\infty} \chi(x_i) (y_i) - \chi(y_i)$$

$$= 0 + \sum_{i=1}^{\infty} \chi(y_i) (y_i) - \chi(y_i)$$

$$= 0 + \sum_{i=1}^{\infty} \chi(y_i) (y_i) - \chi(y_i)$$

$$= \sum_{i=1}^{\infty} \chi(y_i) = \sum_{i=1}^{\infty} \chi(y_i) (y_i)$$

$$= \sum_{i=1}^{\infty} \chi(y_i) = \sum_{i=1}^{\infty} \chi(y_i) (y_i)$$

$$= \sum_{i=1}^{\infty} \chi(y_i) = \sum_{i=1}^{\infty} \chi(y_i) (y_i) - \sum_{i=1}^{\infty} (y_i) - \chi(y_i)$$

$$= \sum_{i=1}^{\infty} (-1) \log (210^2) - \sum_{i=1}^{\infty} (y_i) - \chi(y_i) - \chi(y_i)$$

$$= \sum_{i=1}^{\infty} (-1) \log (210^2) - \sum_{i=1}^{\infty} (y_i) - \chi(y_i) - \chi(y_i)$$

$$= \sum_{i=1}^{\infty} (-1) \log (210^2) - \sum_{i=1}^{\infty} (y_i) - \chi(y_i) - \chi(y_i)$$

$$= \sum_{i=1}^{\infty} (-1) \log (210^2) - \sum_{i=1}^{\infty} (y_i) - \chi(y_i) - \chi(y_i) - \chi(y_i)$$

$$= \sum_{i=1}^{\infty} (-1) \log (210^2) - \sum_{i=1}^{\infty} (y_i) - \chi(y_i) - \chi(y_i)$$

$$= \sum_{i=1}^{\infty} (-1) \log (210^2) - \sum_{i=1}^{\infty} (y_i) - \chi(y_i) - \chi(y_i)$$

$$= \sum_{i=1}^{\infty} (y_i) - \chi(y_i) - \chi(y_i)$$

End Of Assignment