Виконавец: Симонова Вероніка

<u>Умова задачі</u>: Аналіз сімей, які отримують субсидій. В залежності від результатів розглядається питання про підвищення субсидій.

<u>Змінні</u>: 1) Величина субсидій (Т - сумарне значення)

- 2) Загальний прибуток на 1 сім'ю (У середнє значення)
- 3) Оренда квартири (Р частка сімей, що проживають в орендованому житлі)

Будували просту ВВбп 2 методом (розрахунок в Exsel)

	Номер блока	Номер домогосподарства	
1	9	1	
2	11 3		
3	23	2	
4	23	7	
5	39	2	
6	43	1	
7	52	7	
8	53	1	
9	59	1	
10	59	4	

N<-60*8

n<-10

T<-sum(st\$`9`)# сумарне значення субсидій за 10 господарств

T1<-N*T/n# оцінка сумарного значення за усім селом

Y<-mean(st\$`11`)# середне значення прибутку на одну сім'ю

P<-1-sum(as.numeric(st\$`14`<2))/10#P - частка сімей, що проживають в орендованому житлі

Результати:

Т	Υ	P
3827184	80464.1	0.1

Оцінки для дисперсії оцінок:

11<-mean(st\$`9`)#середнє значення субсидії

T1<-N^2*sum((st\$`9`-T11)^2)/(n-1)#дисперсія для субсидії

Y1<-1/(n-1)*sum((st\$`11`-Y)^2)#дисперсія для прибутку

P1<-P*(1-P)*n/(n-1)#дисперсія для частки

T1	Y1	P1
1.931034e+13	219901105	0.1

2. Для того, щоб оцінити розмір вибірки, необхідний для знаходження 95% довірчих інтервалів з точність в 10% для усіх параметрів дослідження одночасно, знайдемо відповідні розміри вибірки для кожного параметра. Тобто, такі n, що $P(|(y-y^n)/y^n| \le 0.1) \approx 0.95$, для відповідних y.

```
al<-0.05
e<-0.1
z<-qnorm(1-al/2)
CV<-c(sqrt(T1)/T2, sqrt(Y1)/Y,sqrt(P1)/P)
En<-z^2*CV^2/(e^2+CV^2*z^2/N)
```

Total	Mean	Proportion
247	13	427

Отже, якщо ми використаємо вибірку з 427 елементів, то зможемо розраховувати на задану точність оцінок.

```
n<-427
N<-480
i<-sample(1:N,n)
al < -0.05
z < -qnorm(1-al/2)
st1 < -data.frame(full\_stat\$`9`[i],full\_stat\$`11`[i],full\_stat\$`14`[i])
colnames(st1)<-c("T","Y","P")
T2 < -N*sum(st1$T)/n
Y<-mean(st1$`Y`)
T11<-sum(st1$T)/n
P<-1-sum(as.numeric(st1$P< 2))/n
T1<-N^2*sum((st1$T-T11)^2)/(n-1)
Y1<-sum((st1$Y-Y)^2)/(n-1)
P1 < -P^*(1-P)^*n/(n-1)
q<-c(T1,Y1,P1)
Q<-c(T2,Y,P)
val1<-Q-z*sqrt(q*(1/n-1/N))
val2 < -Q+z*sqrt(q*(1/n-1/N))
```

	θ^-	<i>θ</i> ^	<i>θ</i> ^+
Y	83428.42	84489.46	85550.51
Р	0.1340824	0.1451991	0.1563157
Т	1230482	1297786	1365091