

## Continuous Assessment Test - II

Programme Name & Branch: B. Tech.

Course Name & Code: Applied Linear algebra & MAT-3004

Slot: C2+TC2+TCC2

Exam Duration: 90 minutes

Maximum Marks: 50

## Answer All the Questions $(5 \times 10 = 50)$

1. Let V, W be the subspaces of the vector space  $P_3(\mathbb{R})$  spanned by  $v_1(x) = 3 - x + 4x^2 + x^3$ 

$$v_2(x) = 5 + 5x^2 + x^3$$
,  $v_3(x) = 5 - 5x + 10x^2 + 3x^3$  and  $w_1(x) = 9 - 3x + 3x^2 + 2x^3$   
 $w_2(x) = 5 - x + 2x^2 + x^3$ ,  $w_3(x) = 6 + 4x^2 + x^3$  respectively. Find the dimensions and bases for  $V + W$  and  $V \cap W$ . (10M)

- 2. (a) Find the equation of a circle that passes through the three points (2,-2), (3,5) and (-4,6) in the plane  $\mathbb{R}^2$ . (4M)
  - (b) Let  $P_3$  denote the vector space of all polynomials of degree 3 or less with real coefficients. Consider the ordered basis  $B = \{1 + x, 1 + x^2, x - x^2 + 2x^3, 1 - x - x^2\}$ . Write the coordinate vector for the polynomial  $f(x) = -3 + 2x^3$  in terms of the basis B. (6M)
- 3. Let  $T: \mathbb{R}^3 \to \mathbb{R}^3$  be defined as T(x, y, z) = (3x, x y, 2x + y + z). Prove that T is invertible and find  $T^{-1}$ . Also prove that  $(T^2 I)(T^2 3I) = \overline{0}$  (10M)
- 4. Find the matrix representations  $[T]_{\alpha}$  and  $[T]_{\beta}$  of each of the following linear transformations T on  $\mathbb{R}^3$  with respect to the standard basis  $\alpha = \{\overline{e_1}, \overline{e_2}, \overline{e_3}\}$  and  $\beta = \{\overline{e_3}, \overline{e_2}, \overline{e_1}\}$ ;

(a) 
$$T(x, y, z) = (2x-3y+4z, 5x-y+2z, 4x+7y)$$
.

(b) 
$$T(x, y, z) = (2y + z, x - 4y, 3x)$$
.

Also find the matrix representation  $[T]^{\beta}_{\alpha}$  of each of the linear transformations T. (10M)

5. Let  $\alpha$  be the standard basis for  $\mathbb{R}^3$ , and let  $S, T : \mathbb{R}^3 \to \mathbb{R}^3$  be two linear transformations given by

$$S\left(\overline{e_1}\right) = (2, 2, 1), \ S\left(\overline{e_2}\right) = (0, 1, 2), \ S\left(\overline{e_3}\right) = (-1, 2, 1) \text{ and } T\left(\overline{e_1}\right) = (1, 0, 1) \ T\left(\overline{e_2}\right) = (0, 1, 1).$$

$$T\left(\overline{e_3}\right) = (1, 1, 2) \text{ Compute } [S + T]_{\alpha}, \ [2T - S]_{\alpha} \text{ and } [T \circ S]_{\alpha}. \tag{10M}$$



SPARCH YIT QUESTION PAPERS ON TELEGRAM YO JOIN