Decomposição LU

Manaíra Lima e Loïc Cerf

27 de agosto de 2013 UFMG – ICEx – DCC

Exercício

Resolver, pelo método de decomposição LU com pivotação

parcial, o sistema
$$\begin{cases} x_1 + 3x_2 + 5x_3 = 0 \\ 2x_1 + 4x_2 + 7x_3 = 1 \\ x_1 + x_2 = -2 \end{cases}$$

Calcular o determinante da matriz dos coeficientes.

O sistema na forma matricial:

$$Ax = b \text{ com } A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 7 \\ 1 & 1 & 0 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \text{ e } b = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}.$$

A

	m		Α		operações	p
L_1		1	3	5		1
L_2		2	4	7		2
L_3		1	1	0		3

A

	m		Α		operações	p
L_1		1	3	5		1
L_2		2	4	7		2
L_3		1	1	0		3

A

	m		Α		operações	p
L_1	$\frac{1}{2}$	1	3	5		1
L_2	_	2	4	7		2
L_3		1	1	0		3

A

	m		Α		operações	p
L_1	0, 5	1	3	5		1
L_2		2	4	7		2
L_3		1	1	0		3
L_4		0			$-0,5 \times L_2 + L_1$	1

Decomposição LU 4 / 11 Manaíra Lima e Loïc Cerf

	m		Α		operações	p
L_1	0, 5	1	3	5		1
L_2		2	4	7		2
L_3		1	1	0		3
L_4		0	1		$-0,5 \times L_2 + L_1$	1

Decomposição LU 4 / 11 Manaíra Lima e Loïc Cerf

A

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3		1	1	0		3
L_4		0	1	1,5	$-0,5 \times L_2 + L_1$	1

Decomposição LU 4 / 11 Manaíra Lima e Loïc Cerf

A

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	$\frac{1}{2}$	1	1	0		3
L_4	_	0	1	1,5	$-0,5 \times L_2 + L_1$	1

A

	m		Α		operações	p
L_1	0, 5	1	3	5		1
L_2		2	4	7		2
L_3	0,5	1	1	0		3
L_4		0	1	1,5	$-0.5\times L_2+L_1$	1
L_5		0			$-0,5\times L_2+L_3$	3

A

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0,5	1	1	0		3
L_4		0	1	1,5	$-0,5 \times L_2 + L_1$	1
L_5		0	- 1		$-0.5\times L_2+L_3$	3

A

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0,5	1	1	0		3
L_4		0	1	1,5	$-0,5 \times L_2 + L_1$	1
L_5		0	-1	-3,5	$-0,5\times L_2+L_3$	3

A

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0,5	1	1	0		3
L_4		0	1	1,5	$-0,5 \times L_2 + L_1$	1
L_5		0	- 1	-3,5	$-0,5\times L_2+L_3$	3

A

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0,5	1	1	0		3
L_4		0	1	1,5	$-0,5 \times L_2 + L_1$	1
L_5	$\frac{-1}{1}$	0	– 1	-3,5	$-0,5\times L_2+L_3$	3

A

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0,5	1	1	0		3
L_4		0	1	1,5	$-0,5 \times L_2 + L_1$	1
L_5	- 1	0	-1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0		$-(-1) \times L_4 + L_5$	3

A

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0,5	1	1	0		3
L_4		0	1	1,5	$-0.5\times L_2+L_1$	1
L_5	- 1	0	-1	-3,5	$-0.5\times L_2+L_3$	3
L_6		0	0	- 2	$-(-1) \times L_4 + L_5$	3

A

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0,5	1	1	0		3
L_4		0	1	1,5	$-0,5 \times L_2 + L_1$	1
L_5	- 1	0	- 1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0	-2	$-(-1) \times L_4 + L_5$	3

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0,5	1	1	0		3
L_4		0	1	1,5	$-0,5\times L_2+L_1$	1
L_5	- 1	0	-1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0	-2	$-(-1) \times L_4 + L_5$	3

$$U = \begin{bmatrix} & & \\ & & \end{bmatrix}$$
, $L = \begin{bmatrix} & & \\ & & \end{bmatrix}$ e $Pb = \begin{bmatrix} & & \\ & & \end{bmatrix}$.

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0, 5	1	1	0		3
L_4		0	1	1,5	$-0,5\times L_2+L_1$	1
L_5	- 1	0	-1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0	-2	$-(-1) \times L_4 + L_5$	3

$$U = \begin{bmatrix} 2 & 4 & 7 \\ & & & \end{bmatrix}, L = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$
 e $Pb = \begin{bmatrix} & & \\ & & & \end{bmatrix}$.

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0, 5	1	1	0		3
L ₄		0	1	1,5	$-0,5\times L_2+L_1$	1
L_5	- 1	0	-1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0	-2	$-(-1) \times L_4 + L_5$	3

$$U = \begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \end{bmatrix}, L = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0, 5	1	1	0		3
L_4		0	1	1,5	$-0.5\times L_2+L_1$	1
L_5	- 1	0	-1	-3,5	$-0.5\times L_2+L_3$	3
L_6		0	0	-2	$-\left(-1\right) \times L_{4}+L_{5}$	3

$$U = \begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix}, L = \begin{bmatrix} \\ \\ \end{bmatrix} e Pb = \begin{bmatrix} \\ \\ \end{bmatrix}.$$

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0, 5	1	1	0		3
L_4		0	1	1,5	$-0,5\times L_2+L_1$	1
L_5	- 1	0	-1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0	-2	$-(-1) \times L_4 + L_5$	3

$$U = \begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1, 5 \\ 0 & 0 & -2 \end{bmatrix}, L = \begin{bmatrix} 1 & 0 & 0 \\ & & & \end{bmatrix} e Pb = \begin{bmatrix} & & \\ & & & \end{bmatrix}.$$

	m		Α		operações	р
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0, 5	1	1	0		3
L_4		0	1	1,5	$-0,5\times L_2+L_1$	1
L_5	- 1	0	-1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0	-2	$-(-1) \times L_4 + L_5$	3

$$U = \begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1, 5 \\ 0 & 0 & -2 \end{bmatrix}, L = \begin{bmatrix} 1 & 0 & 0 \\ & 1 & 0 \end{bmatrix} e Pb = \begin{bmatrix} \\ \\ \end{bmatrix}.$$

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0, 5	1	1	0		3
L_4		0	1	1,5	$-0,5\times L_2+L_1$	1
L_5	- 1	0	-1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0	-2	$-(-1) \times L_4 + L_5$	3

$$U = \begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix}, L = \begin{bmatrix} 1 & 0 & 0 \\ 0,5 & 1 & 0 \end{bmatrix} e Pb = \begin{bmatrix} \\ \end{bmatrix}.$$

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0, 5	1	1	0		3
L_4		0	1	1,5	$-0,5\times L_2+L_1$	1
L_5	- 1	0	-1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0	-2	$-(-1) \times L_4 + L_5$	3

$$U = \begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix}, L = \begin{bmatrix} 1 & 0 & 0 \\ 0,5 & 1 & 0 \\ & & 1 \end{bmatrix} e Pb = \begin{bmatrix} \\ \\ \end{bmatrix}.$$

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0,5	1	1	0		3
L_4		0	1	1,5	$-0,5 \times L_2 + L_1$	1
L_5	- 1	0	- 1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0	-2	$-(-1) \times L_4 + L_5$	3

$$U = \begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix}, L = \begin{bmatrix} 1 & 0 & 0 \\ 0,5 & 1 & 0 \\ 0,5 & 1 \end{bmatrix} e Pb = \begin{bmatrix} \\ \\ \end{bmatrix}.$$

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0,5	1	1	0		3
L ₄		0	1	1,5	$-0.5\times L_2+L_1$	1
L_5	-1	0	- 1	-3,5	$-0.5\times L_2+L_3$	3
L_6		0	0	-2	$-(-1) \times L_4 + L_5$	3

$$U = \begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix}, L = \begin{bmatrix} 1 & 0 & 0 \\ 0,5 & 1 & 0 \\ 0,5 & -1 & 1 \end{bmatrix} e Pb = \begin{bmatrix} \\ \\ \end{bmatrix}.$$

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0, 5	1	1	0		3
L_4		0	1	1,5	$-0,5\times L_2+L_1$	1
L_5	- 1	0	-1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0	-2	$-(-1) \times L_4 + L_5$	3

$$U = \begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix}, L = \begin{bmatrix} 1 & 0 & 0 \\ 0,5 & 1 & 0 \\ 0,5 & -1 & 1 \end{bmatrix} e Pb = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

	m		Α		operações	p
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0, 5	1	1	0		3
L ₄		0	1	1,5	$-0,5\times L_2+L_1$	1
L_5	- 1	0	-1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0	-2	$-(-1) \times L_4 + L_5$	3

$$U = \begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix}, L = \begin{bmatrix} 1 & 0 & 0 \\ 0,5 & 1 & 0 \\ 0,5 & -1 & 1 \end{bmatrix} e Pb = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

	m		Α		operações	р
L_1	0,5	1	3	5		1
L_2		2	4	7		2
L_3	0,5	1	1	0		3
L ₄		0	1	1,5	$-0,5\times L_2+L_1$	1
L_5	- 1	0	-1	-3,5	$-0,5\times L_2+L_3$	3
L_6		0	0	-2	$-\left(-1\right) \times L_{4}+L_{5}$	3

$$U = \begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix}, L = \begin{bmatrix} 1 & 0 & 0 \\ 0,5 & 1 & 0 \\ 0,5 & -1 & 1 \end{bmatrix} e Pb = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}.$$

Fazendo Ux = y, Ly = Pb.

Fazendo
$$Ux = y$$
, $\begin{bmatrix} 1 & 0 & 0 \\ 0,5 & 1 & 0 \\ 0,5 & -1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$.

Fazendo
$$Ux = y$$
, $\begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.5 & -1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$.

Soluções do sistema triangular inferior obtidas pelas substituições sucessivas:

$$y_1 = 1$$

Fazendo
$$Ux = y$$
, $\begin{bmatrix} 1 & 0 & 0 \\ 0,5 & 1 & 0 \\ 0,5 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$.

Soluções do sistema triangular inferior obtidas pelas substituições sucessivas:

$$y_1 = 1$$

Fazendo
$$Ux = y$$
, $\begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.5 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$.

$$y_1 = 1$$

 $y_2 = 0 - 0, 5 \times 1$

Fazendo
$$Ux = y$$
, $\begin{bmatrix} 1 & 0 & 0 \\ 0,5 & 1 & 0 \\ 0,5 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -0,5 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$.

$$y_1 = 1$$

 $y_2 = -0, 5$

Fazendo
$$Ux = y$$
, $\begin{bmatrix} 1 & 0 & 0 \\ 0,5 & 1 & 0 \\ 0,5 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -0,5 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$.

$$y_1 = 1$$

 $y_2 = -0.5$
 $y_3 = -2 - 0.5 \times 1 - (-1) \times (-0.5)$

Fazendo
$$Ux = y$$
, $\begin{bmatrix} 1 & 0 & 0 \\ 0,5 & 1 & 0 \\ 0,5 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -0,5 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$.

$$y_1 = 1$$

 $y_2 = -0, 5$
 $y_3 = -3$

Então,
$$Ux = \begin{bmatrix} 1 \\ -0.5 \\ -3 \end{bmatrix}$$

Então,
$$\begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -0,5 \\ -3 \end{bmatrix}$$

Então,
$$\begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1, 5 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -0, 5 \\ -3 \end{bmatrix}$$

Soluções do sistema triangular superior obtidas pelas substituições retroativas:

$$x_3 = \frac{-3}{-2}$$

Então,
$$\begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1,5 \end{bmatrix} = \begin{bmatrix} 1 \\ -0,5 \\ -3 \end{bmatrix}$$

Soluções do sistema triangular superior obtidas pelas substituições retroativas:

$$x_3 = 1, 5$$

Então,
$$\begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1,5 \end{bmatrix} = \begin{bmatrix} 1 \\ -0,5 \\ -3 \end{bmatrix}$$

Soluções do sistema triangular superior obtidas pelas substituições retroativas:

$$\begin{array}{l} x_3 = 1,5 \\ x_2 = \frac{-0,5-1,5\times1,5}{1} \end{array}$$

Então,
$$\begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ -2,75 \\ 1,5 \end{bmatrix} = \begin{bmatrix} 1 \\ -0,5 \\ -3 \end{bmatrix}$$

Soluções do sistema triangular superior obtidas pelas substituições retroativas:

$$x_3 = 1,5$$

 $x_2 = -2,75$

Então,
$$\begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ -2,75 \\ 1,5 \end{bmatrix} = \begin{bmatrix} 1 \\ -0,5 \\ -3 \end{bmatrix}$$

Soluções do sistema triangular superior obtidas pelas substituições retroativas:

$$x_3 = 1, 5$$

 $x_2 = -2, 75$
 $x_1 = \frac{1-4\times(-2,75)-7\times1,5}{2}$

Então,
$$\begin{bmatrix} 2 & 4 & 7 \\ 0 & 1 & 1,5 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 0,75 \\ -2,75 \\ 1,5 \end{bmatrix} = \begin{bmatrix} 1 \\ -0,5 \\ -3 \end{bmatrix}$$

Soluções do sistema triangular superior obtidas pelas substituições retroativas:

$$x_3 = 1, 5$$

$$x_2 = -2,75$$

$$x_1 = 0,75$$

Resultado

$$\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 7 \\ 1 & 1 & 0 \end{bmatrix} x = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} \Leftrightarrow x = \begin{bmatrix} 0,75 \\ -2,75 \\ 1,5 \end{bmatrix}.$$

$$\det(A) = (-1)^p \prod_{i=1}^3 u_{ii}$$

onde p é o número de permutações necessárias para colocar os índices das linhas pivotais em ordem crescente.

$$\det(A) = (-1)^p \prod_{i=1}^3 u_{ii}$$

onde p é o número de permutações necessárias para colocar os índices das linhas pivotais em ordem crescente.

p	linhas	pi	votais		
0	2	1	3		

$$\det(A) = (-1)^p \prod_{i=1}^3 u_{ii}$$

onde p é o número de permutações necessárias para colocar os índices das linhas pivotais em ordem crescente.

p	linhas	s piv	votais	
0	2	1	3	trocar 2 com 1
1	1	2	3	

$$\det(A) = (-1)^{\color{red} 1} \prod_{i=1}^3 u_{ii}$$

p	linhas	pi	votais	
0	2	1	3	trocar 2 com 1
1	1	2	3	ordem crescente

Manaíra Lima e Loïc Cerf Decompos

$$\det(A) = (-1)^1 \times 2 \times 1 \times (-2)$$

p	linhas	piv	votais	
0	2	1	3	trocar 2 com 1
1	1	2	3	ordem crescente

Manaíra Lima e Loïc Cerf Decomposition

$$det(A) = 4$$

p	linhas	pi	votais	
0	2	1	3	trocar 2 com 1
1	1	2	3	ordem crescente

Manaíra Lima e Loïc Cerf Decompos

Exercício

Vimos que 1 é autovalor de
$$B = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 3 & 2 & -2 & 1 \\ 1 & -5 & 5 & 3 \\ 0 & 0 & 0 & i \end{bmatrix}$$
.

- Sem nenhum cálculo, qual a quantidade de soluções do sistema Bx = x
- 2 Resolver Bx = x usando duas casas decimais.

Formulário

•
$$\exists v \neq 0 \mid Av = \lambda v$$

•
$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_i$$

$$\bullet$$
 $PA = LU$

•
$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

• $det(A) = (-1)^{t} \prod_{i=1}^{n} u_{ii}$

Exercício para entregar

Usando duas decimais, calcular o determinante

$$\left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 6 & 10 & 4 & 5 \\ -1 & 1 & 0 & -1 \\ 0 & 1 & -3 & 0 \end{array}\right].$$

Formulário

•
$$\exists v \neq 0 \mid Av = \lambda v$$

•
$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$

•
$$PA = LU$$

de

© 2013 Manaíra Lima e Loïc Cerf

These slides are licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.

Manaíra Lima e Loïc Cerf