Amendments to the Claims:

Please amend the claims as specified below. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A compound of the formula I or II

in which

- R¹ is hydrogen, or branched and or unbranched C₁-C₆-alkyl, it also being possible for one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where R¹¹ is hydrogen or C₁-C₄-alkyl, and
- R² is hydrogen, chlorine, bromine, iodine, fluorine, CF₃, nitro, NHCOR²¹, NR²²R²³, OH, O-C₁-C₄-alkyl, O-C₁-C₄-alkylphenyl, NH₂, CN, a straight or branched C₁-C₆ alkyl, OR²⁴ or phenyl, it also being possible for the phenyl rings to be substituted by at most two radicals R²⁴, and R²¹ and R²² independently of one another are hydrogen or C₁-C₄-alkyl, and R²³ is OH, C₁-C₆-alkyl, chlorine, bromine, iodine, fluorine CF₃, nitro or NH₂ hydrogen, C₁-C₄-alkyl, or phenyl, and R²⁴ is <u>OH, C₁-C₆-alkyl, O-C₁-C₆-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro or NH₂, and</u>
- x may be 0, 1 or 2 and
- R³ is -O (CH₂)₀(CHR²¹)_m-(CH₂) G, where R²¹ is hydrogen, OH, C₁-C₄-alkyl or O-C₄-C₄-alkyl, m and o are, independently of one another, 0,1 or 2 and n is 1,2,3 or

 $\begin{array}{lll} & -D \cdot (F^1)_p \cdot (E)_q \cdot (F^2)_n \cdot G \cdot D \cdot (F^1)_D \cdot (E)_q \cdot (F^2)_p \cdot G, & \text{where p, q and r may not} \\ & \text{simultaneously be 0, or } \underline{R^3} \text{ is } & -E \cdot (D)_w \cdot (F^2)_s \cdot (G)_v \cdot E \cdot (D)_g \cdot (F^2)_s \cdot (G)_c, & \text{it also being} \\ & \text{possible for the radical E to be substituted by one or two radicals A, and if } v = 0, E \\ & \text{is imidazole, pyrrole, pyridine, pyrimidine, piperazine, pyrazine, pyrrolidine or} \\ & \text{piperidine, or } R^3 \text{ is B and} \end{array}$

R⁴ is hydrogen, chlorine, fluorine, bromine, iodine, branched and or unbranched C₁-C₆-alkyl, OH, nitro, CF₃, CN, NR⁴¹R⁴², NH-CO-R⁴³, or O-C₁-C₄-alkyl, where R⁴¹ and R⁴² independently of one another are hydrogen or C₁-C₄-alkyl and

R⁴³ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkylphenyl or phenyl, and

D is S or O

E is phenyl, imidazole, pyrrole, thiophene, pyridine, pyrimidine, piperazine, pyrazine, furan, thiazole, isoxazole, pyrrolidine, pipendine, isoxazole, pyrrolidine, piperidine, or trihydroazepine, and

F¹ is a chain of 1 to 8 carbon atoms, it[[,]] also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and

 F^2 is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and

p may be 0 or 1

q may be 0 or 1, and

r may be 0 or 1 and

s may be 0 or 1

u may be 0 or 1 1

v may be 0 or 1

G may be NR⁵¹ R⁵² or

where

 R^{51} is hydrogen or branched-and or unbranched C_1 - C_6 -alkyl, or $(CH_2)_r$ -K and

R⁵² is hydrogen, branched and or unbranched C₁-C₆-alkyl, phenyl, COCH₂, COCF₃,

in which

R⁵³ may be branched or unbranched O-C₁-C₆-alkyl, phenyl, or branched or unbranched C₁-C₄-alkylphenyl, where in the case of R⁵² and R⁵³, independently of one another, one hydrogen of the C₁-C₆-alkyl radical may be substituted replaced by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and_or phenyl, it also being[[.]] possible for the carbocycles of the radicals R⁵² and R⁵³ independently of one another to carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl, OH, F, Cl, Br, I, CF₃, NO₂, NH₂, CN, COOH, COOC₁-C₄-alkyl COOC₁-C₄-alkyl, C₄-C₄-alkylamino C₁-C₄ alkylamino, CCl₃, C₁-C₄-dialkylamino, SO₂-C₁-C₄-alkyl, SO₂phenyl, CONH-C₁-C₄-alkyl, CONH-

C4alkylphenyl, NHSO2-C1-C4-alkyl, NHSO2phenyl, S-C1-C4-alkyl,

 $\label{eq:chocker} CHO,\ CH_2-O-C_1-C_4-alkyl,\ -CH_2O-C_1-C_4-alkylphenyl,\ -CH_2OH,\ -SO-\ C_1-C_4-alkylphenyl,\ -SO_2NH_2,\ -SO_2NH-\ C_1-C_4-alkylphenyl,\ -SO_2NH_2,\ -SO_2NH-\ C_1-C_4-alkylphenylph$

B may be

and

- A may be hydrogen, chlorine, bromine, iodine, fluorine, CF₃, nitro, OH, O-C₁-C₄-alkyl, O- C₁-C₄-alkylphenyl, NH₂, branched and or unbranched C₁-C₆-alkyl, CN or NH-CO-R³³ where R³³ is hydrogen; or C₁-C₄-alkyl, or phenyl and
- t is 0, 1, 2, 3 or 4 and
- K is a phenyl, which may carry at most two substitutents on the ring, comprising NR^{k1}R^{k2} where wherein R^{k1} and R^{k2} are as defined for R⁴¹ and R⁴² respectively, NH-C₁-C₄-alkylphenyl, pyrrolidine, piperidine, 1, 2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an alkyl-radical, or homopiperazine, which may also be substituted by an alkyl-radical C₁-C₆-alkyl radical, and C₄-alkylphenyl, pyrrolidine, piperidine, 1, 2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, or

homopiperazine, which may also be substituted by an alkyl radical C₄-C₆-alkyl, and

R⁵ may be hydrogen, C₁-C₆-alkyl, or NR⁷R⁹ and

and

- R^7 is hydrogen, $CI-C_6$ -alkyl C_1-C_6 -alkyl, $CI-C_4$ -alkylphenyl. C_1-C_4 -alkylphenyl, or phenyl, it also being possible for the rings to be substituted by up to two radicals R^{71} , and
- R⁷¹ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro, or NH₂, and
- R⁸ is hydrogen, C₁-C₆-alkyl, phenyl, or C₁-C₄-alkylphenyl, it also being possible for the ring to be substituted by up to two radicals R⁸¹ and
- R⁸¹ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro, or NH₂ and
- R⁹ is hydrogen, COCH₃, CO-O- C₁-C₄-alkyl, COCF₃, branched and or unbranched C₁-C₆-alkyl, it being possible for one or two hydrogens of the €₄-C₆-alky C₁-C₆-alkyl radical to be substituted replaced in each case by one of the following radicals: OH, O- C₁-C₄-alkyl and phenyl, and for the phenyl ring also to carry one or two of the following radicals: iodine, chlorine, bromine, fluorine, branched and or unbranched C₁-C₆-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, OH, O-C₁-C₄-alkyl, CN, CF₃, or SO₂- C₁-C₄-alkyl,

or a tautorneric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

2. (Currently Amended) A compound of the formula I or II as claimed in claim I

in which

 R^1 is hydrogen, or branched and or unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where

R¹¹ is hydrogen or C₁-C₄-alkyl, and

R² is hydrogen, chlorine, fluorine, bromine, iodine, branched and or unbranched C₁-C₆-alkyl, nitro, CF₃, CN, NR²1R²², NH-CO-R²³, TNH-CO-R²³, or OR²¹, where

R²¹ is and R²² are, independently of one another, hydrogen or C₁-C₄-alkyl, and

R²³ is hydrogen, C₁-C₄-alkyl, OH or O- C₁-C₄-alkyl and

 R^3 is $-O - (CH_2)_{a-} - (CH_2)_{a-} - (CH_2)_{a-} - G - O - (CH_2)_{a-} - (CH_2)_{n-} - (CH_2)_{n-} - R^5$ where

R³¹ is hydrogen, C₁-C₄-alkyl, OH or O- C₁-C₄-alkyl,

m, o are, independently of one another, 0, 1 or 2, and

n is 1, 2, 3 or 4 and

R⁴ is hydrogen, branched and or unbranched C₁-C₆-alkyl, chlorine, bromine, fluorine, nitro, cyano, NR⁴¹R⁴², NH-CO-R⁴³, or OR⁴¹, where

 R^{41} and R^{42} are, independently of one another, hydrogen or C_l - C_4 -alkyl, and

R43 is C1-C4-alkyl or phenyl, and

G- R^5 is $NR^{51}R^{52}$ or one of the following radicals

where

 R^{53}

R⁵¹ is hydrogen or branched and or unbranched C₁-C₆-alkyl, and
R⁵² is hydrogen, or branched and or unbranched C₁-C₆-alkyl, phenyl,

is branched or unbranched O-C₁-C₆-alkyl, phenyl, \underline{or} branched or unbranched C₁-C₄-alkylphenyl, where one hydrogen in the C₁-C₆-alkyl radical in R⁵² and R⁵³ are, independently of one another, optionally substituted replaced by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and \underline{or} phenyl, where the carbocycles of the R⁵² and R⁵³ radicals may also, independently of one another, carry one or two of the following radicals:

 $\label{eq:continuous} branched or unbranched O-C_1-C_4-alkyl, OH, \\ F, Cl, Br, I, CF_3, NO_2, NH_2, CN, COOH, COOC_1-C_4-alkyl, C_1-C_4 alkylamino, \\ CCl_3, C_1-C_4-dialkylamino, SO_2-C_1-C_4-alkyl, SO_2phenyl, CONH_2, CONH-C_1-C_4-alkyl, CONHphenyl, CONH-C_1-C_4-alkyl, Phenyl, CONH-C_1-C_4-alkyl, NHSO_2-C_1-C_4-alkyl, NH$

 $\label{eq:chocondition} CH_0, CH_2-O-C_1-C_4-alkyl, -CH_2O-C_1-C_4-alkyl-phenyl, -CH_2OH, -SO-C_1-C_4-alkyl, -SO-C_1-C_4-alkyl-phenyl, -SO_2NH_2, -SO_2NH-C_1-C_4-alkyl or two radicals form a bridge <math display="inline">-O-(CH)_{1,2}-O-,$

or a tautorneric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

3. (Currently Amended) A compound of the formula I or II as claimed in claim-1

in which

 R^1 is hydrogen, <u>or</u> branched <u>and or</u> unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where

R¹¹ is hydrogen or C₁-C₄-alkyl, and

R² is hydrogen, chlorine, fluorine, bromine, iodine, branched and or unbranched C₁-C₆-alkyl, nitro, CF₃, CN, NR²¹R²², NH-CO-R²⁴; NH-CO-R²³, or OR²¹, where

 R^{21} is and R^{22} are, independently of one another, hydrogen or C_1 - C_4 -alkyl, and

R²³ is hydrogen, C₁-C₄-alkyl or phenyl, and

R³ is

and

R³¹ is hydrogen, CHO or -O-(CH₂)₀-(CHR³²)_m-(CH₂)_n-R⁵ where

R³² is hydrogen and O-(CH₂)₀-(CHR²²)_m-(CH₂)_n-G where R³⁴ is hydrogen, C₁-C₄alkyl, OH and O-C₄-C₄alkyl, C₁-C₄-alkyl, OH or O-C₁-C₄-alkyl,
m, o independently of one another are 0, 1 or 2 and n is 1, 2, 3 or 4, and
R⁴ is hydrogen, or branched and or unbranched C₁-C₂-alkyl, chlorine, bromine.

R⁴ is hydrogen, <u>or</u> branched and or unbranched C₁-C₆-alkyl, chlorine, bromine, fluorine, nitro, cyano, NR⁴¹R⁴², NH-CO-R⁴³, <u>or</u> OR⁴¹, where

 R^{41} and R^{42} are, independently of one another, hydrogen or C_1 - C_4 -alkyl and R^{43} is C_1 - C_4 -alkyl or phenyl, and

G- R^5 is $NR^{51}R^{52}$ or one of the radicals below

where

R⁵¹ is hydrogen and or branched and or unbranched C₁-C₆-alkyl, and

R⁵² is hydrogen, COCH₃, CO-O-C₁-C₄-alkyl, COCF₃, branched and or unbranched C₁-C₆-alkyl, it being possible for one hydrogen of the C₁-C₆-alkyl radical to be substituted replaced by one of the following radicals: OH. O-C₁-C₆-alkyl and or

phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched and or unbranched C_1 - C_4 -alkyl, nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -dialkylamino, OH, O- C_1 - C_4 -alkyl, CN, or SO₂- C_1 - C_4 -alkyl,

or a tautorneric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

- 4. (Currently Amended) A compound as claimed in elaims 1, 2 and 3 where R² is in position 3 and R³ is in position 4 or R² is in position 4 and R³ is in position 3 relative to the benzimidazole ring.
- 5. (Currently Amended) A compound as claimed in elaim 1 claims 1, 2 and 3 where \mathbb{R}^1 and \mathbb{R}^4 are hydrogen.
- 6. (Currently Amended) A compound as claimed in elaim-1 claims 1, 2 and 3 where R² is hydrogen, or branched or unbranched C₁-C₆-alkyl, nitro, CN, NH₂, or O-C₁-C₄-alkyl.
- 7. (Currently Amended) A compound as claimed in claim 1, of the formula I or II

in which

- R^1 is hydrogen, or branched or unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where
- R11 is hydrogen or C1-C4-alkyl, and

R² is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C₁-C₆alkyl, nitro, CF₃, CN, NR²¹R²², NH-CO-R²³, or OR²¹, where

 R^{21} and R^{22} are, independently of one another, hydrogen or C_1 - C_4 -alkyl, and R^{23} is hydrogen, C_1 - C_4 -alkyl or phenyl, and

(i) for R² being R³ is

 R^{31} is hydrogen or $-(CH_2)_w - F_7 - (CH_2)_n - R^5$, where

w is 1 or 2 and

p is 1 or 2 and

R⁵² may be hydrogen, or branched or unbranched C₁-C₆-alkyl, where one hydrogen of the C₁-C₆-alkyl radical may be replaced by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bramine, fluorine, branched or unbranched C₁-C₄-alkyl, nitro, amino, C₁-C₃-alkylamino, C₁-C₄-dialkylamino, OH, O-C₁-C₄-alkyl, CN, or SO₂-C₁-C₄-alkyl;

...

(ii) for R3 being R3 is

$$-N$$
 R^3

 R^{31} is hydrogen or $-(CH_2)_w$ - G_7 $-(CH_2)_p$ - R^5 , where

p is 1 or 2 and

R⁵² may be hydrogen, or branched or unbranched C₁-C₆-alkyl, where one hydrogen of the C₁-C₆-alkyl radical may be substituted by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched or unbranched C₁-C₄-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, OH, O-C₁-C₄-alkyl, CN, or SO₂-C₁-C₄-alkyl;

and or

(iii) for R2-being R3 is

where R⁵²_T is hydrogen, or branched and or unbranched C₁-C₆-alkyl, where one hydrogen of the C₁-C₆-alkyl radical may be substituted replaced by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched and or unbranched C₁-C₄-alkyl, nitro, amino, C₁-C₄-alkylamino, OH, O-C₁-C₄-alkyl, CN, or SO₂-C₁-C₄-alkyl,

or a tautorneric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

8. (Previously Presented) A compound as claimed in claim 1, where R^3 is -D- $(F^1)_p$ - $(E)_q$ - $(F^2)_r$ -G, where D is O, F^1 is a C_1 - C_4 carbon chain, p is 1, q is 0 and r is 0.

9. (Currently Amended) A compound as claimed in claim 1, where \mathbb{R}^5 is a 6-membered ring selected from

and R^{52} is an optionally substituted a phenyl ring.

10. (Previously Presented) A drug comprising besides conventional vehicles and ancillary substances a compound as claimed in claim 1.

11-13 (Cancelled)

14. (Currently Amended) The method as elaimed in claim 11 A method for treating a disorder in which pathologically elevated PARP activities occur, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from said disorder wherein the disorder is stroke and or craniocerebral trauma

15. (Cancelled)

- 16. (Currently Amended) The method as claimed in claim 11 wherein the disorder is damage due to A method for treating ischemia, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from ischemia.
- 17. (Currently Amended) The method as claimed in claim 11 wherein the disorder is: A method for treating epilepsy, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from epilepsy.
- 18. (Currently Amended) The method as claimed in claim 11 wherein the disorder is damage due to A method for treating damage to the kidneys after renal ischemia, damage caused by drug therapy or damage resulting after kidney transplants, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from damage to the kidneys after renal ischemia, damage caused by drug therapy or damage resulting after kidney transplants.
- 19. (Currently Amended) The method as claimed in claim 11 wherein the disorder is damage due to A method for treating damage to the heart after cardiac ischemia, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from damage to the heart after cardiac ischemia.

- 20. (Currently Amended) The method as claimed in claim 11 wherein the disorder is A method for treating a microinfarct said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from a microinfarct.
- 21. (Currently Amended) The method as claimed in claim 11 wherein the disorder is A method for treating under vascularization of critically narrowed coronary arteries said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from under vascularization of critically narrowed coronary arteries.
- 22. (Currently Amended) The method as claimed in claim 11 wherein the disorder is A method for treating an acute myocardial infarct and damage during and after medical or mechanical lysis thereof, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from an acute myocardial infarct and damage during and after medical or mechanical lysis thereof.
- 23. (Currently Amended) The method as claimed in claim 11 wherein the disorder is A method for treating a tumor, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from a tumor or metastasis I thereof.
- 24. (Currently Amended) The method as elaimed in claim 11 wherein the disorder is A method for treating sepsis, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from sepsis of multiorgan failure.
- 25. (Cancelled).
- 26. (Currently Amended) The method as claimed in claim 11 wherein the disorder is Amethod for treating diabetes mellitus, said method comprising administering an effective

amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from diabetes mellitus.

Claims 27-38 (Canceled)