UNIVERSIDAD DEL CAUCA

Ecuaciones de Bessel y Legendre

Proyecto Ecuaciones Diferenciales

Presentado por : Juan Esteban Rivera Cortes

Índice general

Capítulo 1

Ecuaciones de Bessel

Una Ecuación de Bessel de orden v tiene la forma:

$$x^{2}y'' + xy' + (x^{2} - v^{2})y = 0 (1.1)$$

Para hallar las soluciones de la ecuación (1,1), haremos desarrollo en series de potencias.

Como el punto x=0 es un punto singular regular de la ecuacion de Bessel, indica que admite solucion en serie de potencias de la forma:

$$y = \sum_{n=0}^{\infty} c_n x^{n+r}$$
, derivando: $y' = \sum_{n=0}^{\infty} c_n (n+r) x^{n+r-1}$,

$$y'' = \sum_{n=0}^{\infty} c_n(n+r)(n+r+1)x^{n+r-2}$$

al sustituir en (1,1)

$$x^{2}y'' + xy' + (x^{2} - v^{2})y = x^{2} \sum_{n=2}^{\infty} c_{n}(n+r)(n+r+1)x^{n+r-2} +$$

$$x \sum_{n=1}^{\infty} c_n (n+r) x^{n+r-1} + (x^2 - v^2) \sum_{n=0}^{\infty} c_n x^{n+r}$$

= $\sum_{n=0}^{\infty} c_n (n+r) (n+r-1) x^{n+r} + \sum_{n=0}^{\infty} c_n (n+r) x^{n+r} + \sum_{n=0}^{\infty} c_n x^{n+r+2} - \sum_{n=0}^{\infty} c_n (n+r) x^{n+r} + \sum_{n=0}^{\infty} c_n x^{n+r+2} - \sum_{n=0}^{\infty} c_n x^{n+r} + \sum_{n=0}^{\infty} c_$

$$v^{2} \sum_{n=0}^{\infty} c_{n} x^{n+r}$$

$$= c_{0}(r^{2} - r + r - v^{2})x^{r} + x^{r} \sum_{n=1}^{\infty} c_{n}[(n+r)(n+r-1) + (n+r) - v^{2}]x^{n} + x^{r} \sum_{n=0}^{\infty} c_{n} x^{n+2}$$

$$x^{r} \sum_{n=0}^{\infty} c_{n} x^{n+2}$$

$$= c_{0}(r^{2} - v^{2})x^{r} + x^{r} \sum_{n=1}^{\infty} c_{n}[(n+r)^{2} - v^{2}]x^{n} + x^{r} \sum_{n=0}^{\infty} c_{n} x^{n+2}$$

por tanto la ecuación indicial es: $r^2 - v^2 = 0$ y las raices indiciales son $r_1 = v$

y $r_2 = -v$, si r
 toma el valor v, al resolver el cuadrado,
simplificar y factorizar, se obtiene:

$$x^{v} \sum_{n=1}^{\infty} c_{n} n(n+2v) x^{n} + x^{v} \sum_{n=0}^{\infty} c_{n} x^{n+2}$$
$$x^{v} [(1+2v)c_{1}x + \sum_{n=2}^{\infty} c_{n} n(n+2v) x^{n} + \sum_{n=0}^{\infty} c_{n} x^{n+2}]$$

haciendo las siguientes sustituciones k=n-2 y k=n respectivamente, se obtiene:

$$x^{v}[(1+2v)c_{1}x+\sum_{k=0}^{\infty}[c_{k+2}(k+2)(k+2+2v)+c_{k}]x^{k+2}]$$

dado que $(1+2v)c_1x=0$ se obtiene que $c_1=0$, al despejar c_{k+2} , se tiene:

$$c_{k+2} = \frac{-c_k}{(k+2)(k+2+2v)}$$
, para $k = 0, 1, 2, \dots$

realizando las iteraciones:

$$c_2 = \frac{-c_0}{(2)(2+2v)} = \frac{-c_0}{2^2(1+v)}$$

$$c_3 = \frac{-c_1}{(3)(3+2v)} = 0$$

$$c_4 = \frac{-c_2}{(4)(4+2v)} = \frac{c_0}{2^4 \cdot 2(1+v)(2+v)}$$

$$c_5 = \frac{-c_3}{(5)(5+2v)} = 0$$

$$c_6 = \frac{-c_4}{(6)(6+2v)} = \frac{-c_0}{2^6 \cdot 2 \cdot 3(1+v)(2+v)(3+v)}$$

en general, se tienen solo los coheficientes pares:

$$c_{2k} = \frac{(-1)^k c_0}{2^{2k} k! (1+v)(2+v) \cdots (k+v)}$$
 (1.2)

tomando:

$$c_0 = \frac{1}{2^v \Gamma(1+v)} \tag{1.3}$$

al sustituir (1,3) en (1,2) y hacer n=k

$$c_{2n} = \frac{(-1)^n}{2^{2n+\nu}n!(1+\nu)(2+\nu)\cdots(n+\nu)\Gamma(1+\nu)}$$
(1.4)

se sabe que la funcion Gamma tiene la propiedad:

$$x\Gamma(x) = \Gamma(x+1) \tag{1.5}$$

de esta manera aplicando (1,5) de forma iterativa:

$$(n+v)\cdots(2+v)(1+v)\Gamma(1+v)$$

$$= (n+v)\cdots(2+v)\Gamma(2+v+1)$$

$$= (n+v)\cdots(3+v)\Gamma(3+v+1)$$

en general se tiene:

$$=\Gamma(n+v+1)$$

sustituyendo en (1,4), se obtiene:

$$c_{2n} = \frac{(-1)^n}{2^{2n+v}n!\Gamma(n+v+1)}$$

a la función que se forma por $y = \sum_{n=0}^{\infty} c_{2n} x^{2n+v}$, la llamaremos:

$$J_v(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(n+v+1)} (\frac{x}{2})^{2n+v}$$

si v>0 y converge en el intervalo $(0,\infty)$ de aquí podemos hallar la solucion correspondiente a $r_2=-v$

$$J_{-v}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(n-v+1)} \left(\frac{x}{2}\right)^{2n-v}$$

para plantear la solucion general se deben atender dos casos:

CASO I.

 $r_1 - r_2 = 2v$ un número no entero

aquí la solución general seria $y = c_1 J_v(x) + c_2 J_{-v}(x)$

CASO II

 $r_1 - r_2 = 2v$ un número entero

para ello se podrian presentar dos posibilidades

que v=m sea un entero,en este caso podria existir una solucion de la forma:

$$y_1(x) = \sum_{n=0}^{\infty} c_n x^{n+r_1} \operatorname{con} c_0 \neq 0$$

$$y_2 = Cy_1 \ln x + \sum_{n=0}^{\infty} b_n x^{n+r_2} \operatorname{con} b_0 \neq 0$$

tambien se puede dar el caso donde v es la mitad de un entero impar, cuyo caso no tendria ningun problema ya que J_v y J_{-v} son linalmente independientes.

por tanto la solución de (1,1) es

$$y = c_1 J_v(x) + c_2 J_{-v}(x) si \ v \ no \ es \ un \ entero$$
 (1.6)

1.1. Apliaciones

1.1.1. Ecuaciones Diferenciales

Permite transformar algunas ecuaciones diferenciales de orden 2, para poder estudiar problemas en la frontera

1.1.2. Musica

Sirven para representar la defleccion de un instrumento de precusion que es sometido a una vibracion

1.1.3. Ingenieria Civil

Sirven para representar la vibracion de estructuras con amortiguacion sometidas a fuerzas externas

1.1.4. Fisica

Sirven para represtar la solucion de la ecuacion de schrodinger, campos electricos y mecanica cuantica

Capítulo 2

Ecuaciones de Legendre

la ecuación de legendre de orden n tiene la forma:

$$(1 - x^{2})y'' - 2xy' + n(n+1)y = 0 (2.1)$$

para la solucion de esta ecuación, primero analicemos que el punto x=0 es un punto ordinario, por tanto admite solucion en series de potencias de la forma:

$$y = \sum_{k=0}^{\infty} c_k x^k$$
, derivando

$$y' = \sum_{k=1}^{\infty} c_k k x^{k-1}$$

$$y'' = \sum_{k=2}^{\infty} c_k k(k-1) x^{k-2}$$

sustituyendo en la ecución (2,1) se tiene:

$$(1-x^2) \sum_{k=2}^{\infty} c_k k(k-1) x^{k-2} - 2x \sum_{k=1}^{\infty} c_k k x^{k-1} + n(n+1) \sum_{k=0}^{\infty} c_k x^k = 0$$

$$= \sum_{k=2}^{\infty} c_k k(k-1) x^{k-2} - x^2 \sum_{k=2}^{\infty} c_k k(k-1) x^{k-2} - 2x \sum_{k=1}^{\infty} c_k k x^{k-1}$$

$$+ n(n+1) \sum_{k=0}^{\infty} c_k x^k$$

$$= \sum_{k=2}^{\infty} c_k k(k-1) x^{k-2} - \sum_{k=2}^{\infty} c_k k(k-1) x^k - 2 \sum_{k=1}^{\infty} c_k k x^k$$

$$+ n(n+1) \sum_{k=0}^{\infty} c_k x^k$$

al igualar las potencias de x y los indices de la sumatoria obtenemos:

$$= [n(n+1)c_0 + 2c_2] + [(n-1)(n+2)c_1 + 6c_3]x +$$

$$\sum_{k=2}^{\infty} [(k+2)(k+1)c_{k+2} + (n-k)(n+k+1)c_k]x^k = 0$$

como se busca que los coheficientes sean cero, se tiene:

$$n(n+1)c_0 + 2c_2 = 0 \to c_2 = \frac{-n(n+1)c_0}{2!}$$

$$(n-1)(n+2)c_1 + 6c_3 = 0 \to c_3 = \frac{-(n-1)(n+2)c_1}{3!}$$

$$(k+2)(k+1)c_{k+2} + (n-k)(n+k+1)c_k \to c_{k+2} = \frac{-(n-k)(n+k+1)c_k}{(k+2)(k+1)} \text{ para}$$

$$k = 2, 3, 4, \dots$$

aplicando la relación de recurrencia:

$$c_{4} = -\frac{(n-2)(n+3)}{4 \cdot 3}c_{2} = \frac{(n-2)n(n+1)(n+3)}{4!}c_{0}$$

$$c_{5} = -\frac{(n-3)(n+4)}{5 \cdot 4}c_{3} = \frac{(n-3)(n-1)(n+2)(n+4)}{5!}c_{1}$$

$$c_{6} = -\frac{(n-4)(n+5)}{6 \cdot 5}c_{4} = -\frac{(n-4)(n-2)n(n+1)(n+3)(n+5)}{6!}c_{0}$$

$$c_{7} = -\frac{(n-5)(n+6)}{7 \cdot 6}c_{5} = -\frac{(n-5)(n-3)(n-1)(n+2)(n+4)(n+6)}{7!}c_{1}$$

la serie de potencias converge para |x| < 1 de este modo, las dos soluciones linealmente independientes son:

$$y_1(x) = c_0 \left[1 - \frac{n(n+1)}{2!} x^2 + \frac{(n-2)n(n+1)(n+3)}{4!} x^4 - \frac{(n-4)(n-2)n(n+1)(n+3)(n+5)}{6!} x^6 + \cdots \right]$$

$$y_2(x) = c_1 \left[x - \frac{(n-1)(n+2)}{3!} x^3 + \frac{(n-3)(n-1)(n+2)(n+4)}{5!} x^5 - \frac{(n-5)(n-3)(n-1)(n+2)(n+4)(n+6)}{7!} x^7 + \cdots \right]$$

hay que notar en ambas soluciones que dependiendo del valor de n, una de las dos soluciones sera un polinomio con una cantidad finita de términos

.

2.1. Aplicaciones

2.1.1. Fisica

Permite expresar la factorizacion del operador hamiltoniano y generalizando estos operadores usados en la fisica cuantica

2.1.2. Matematicas

Permite representar Armonicos esfericos

Bibliografía

- [1] Denis G. Zill.ecuaciones Diferenciales con aplicaciones de modelado, 2009
- [2] Lorena terrios. Notas de Ecuaciones Diferenciales, Universidad del Cauca.
- [3] https://http://mauricioanderson.com/curso-latex-introduccion-instalacion-estructura/