Refinements to BFS/DBS and informed (heuristic) search strategies

Announcements

- Assignment 0 (almost) released
 - Please make sure to login to your IU GitHub account https://github.iu.edu/ before the end of the day (how about now?)
- Don't forget the <u>Lecture 3 Review Quiz</u> due Sep 5 at 11:59pm
- Are you getting Canvas notifications?
 - If not, you can change them; go to Profile -> Settings -Notifications
 - Might consider notifications for Q&A Community and slack
- No class on September 5 (Labor day)

Refinements to BFS & DFS

Criterion	Breadth- First			Depth- Limited	Iterative Deepening	Bidirectional (if applicable)	
Complete? Time	$egin{aligned} \operatorname{Yes}^a \ O(b^d) \ O(b^d) \end{aligned}$	$egin{aligned} \operatorname{Yes}^{a,b} \ O(b^{1+\lfloor C^*/\epsilon floor}) \ O(b^{1+\lfloor C^*/\epsilon floor}) \end{aligned}$	$egin{aligned} No \ O(b^m) \ O(bm) \end{aligned}$	$egin{aligned} No \ O(b^\ell) \ O(b\ell) \end{aligned}$	$egin{aligned} \operatorname{Yes}^a \ O(b^d) \ O(bd) \end{aligned}$	$egin{array}{l} \operatorname{Yes}^{a,d} \ O(b^{d/2}) \ O(b^{d/2}) \end{array}$	
Space Optimal?	Yes^c	Yes	No	No	Yes^c	$\operatorname{Yes}^{c,d}$	

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs b for positive b optimal if step costs are all identical; b if both directions use breadth-first search.

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Time and space complexity is $O(b^{d/2}) \ll O(b^d)$ if both trees have the same branching factor b

Depth-Limited Search

```
For k = 0, 1, 2, ... do:

Perform depth-first search with depth cutoff k
```

- Three possible outcomes:
 - Solution
 - Failure (no solution)
 - Cutoff (no solution within cutoff)

Avoiding Revisited States

- Requires comparing state descriptions
- Breadth-first search:
 - Store all states associated with generated (expanded) nodes in VISITED
 - If the state of a new node is in VISITED, then discard the node

Avoiding Revisited States

- Requires comparing state descriptions
- Breadth-first search:
 - Store all states associated with generated (expanded) nodes in VISITED
 - If the state of a new node is in VISITED, then discard the node

Implemented as hash-table or as explicit data structure with flags

Heuristic search

Heuristic vs blind search

1	2	3			
4	5	6			
7	8				
Goal state					

8	2		
3	4	7	STATE
5	1	6	N_1

For a blind strategy, N_1 and N_2 are just two nodes (at some position in the search tree)

For a heuristic strategy, N₂ seems more promising than N₁ (fewer misplaced tiles)

Best-First Search

- Explores most "promising" state from FRINGE first
 - Typically implemented with a priority queue
 - Requires evaluation function $f(s) \ge 0$ that estimates the "cost" from initial state, through s, to a goal state
- Typical choices of f(s):
 - f(s) = h(s), where h estimates the cost of reaching a goalfrom s (greedy best first search)
 - f(s) = g(s) + h(s), where g is cost of path from start state to
 s and h estimates the cost of reaching a goal from s

Adding to our abstraction

- 1. Set of states S
- 2. Initial state s₀
- 3. A function SUCC: $S \rightarrow 2^S$ that encodes possible transitions of the system
- 4. Set of goal states
- 5. A cost function c() that calculates how "expensive" a given set of moves is
- 6. A heuristic function h() that estimates how "promising" a given state is

Heuristic function $h(s) \ge 0$

- Estimates the cost to go from state s to a goal state
 - The better the estimate, the more efficient the search
 - BUT we want to be able to compute it efficiently
 - Typically there are many possibilities, each with trade-offs
- How would you define h(s) for the 8-puzzle?

5		8
4	2	1
7	3	6

STATE(s)

1	2	3
4	5	6
7	8	

Goal state

8-Puzzle

f(s) = h(s) = number of misplaced numbered tiles

8-Puzzle

 $f(N) = h(N) = \Sigma$ distances of numbered tiles to their goals

$$h_1(s) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$$

$$h_2(s) = |x_N - x_g| + |y_N - y_g|$$

 X_N X_g (L₂ or Euclidean distance)

(L₁ or Manhattan distance)

What can go wrong?

h(s) = straight distance to the goal

Another idea: Pre-computation

E.g. assume environment is mostly static, use past best routes from some waypoints to estimate distances to goal

h(s) = pre-computed distance from waypoint to goal

Another idea: Pre-computation

E.g. assume environment is mostly static, use past best routes from some waypoints to estimate distances to goal

h(s) = pre-computed distance from waypoint to goal

Admissible Heuristic

An heuristic h(s) is admissible if for any state s,

$$0 \le h(s) \le h^*(s)$$

where $h^*(s)$ is the optimal cost from s to a goal.

- In other words, an admissible heuristic never overestimates the cost to the goal
 - We'll need to design h(s) so that it's always less than h*(s), even though we don't know h*(s)!

Which of these are admissible?

5		8
4	2	1
7	3	6

STATE(s)

Goal state

- $-h_1(N)$ = number of misplaced numbered tiles = 6
- $-h_2(N)$ = sum of Manhattan distances of tiles to goal positions

$$= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13$$

Which of these are admissible?

$$h_1(s) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$$

$$h_2(s) = |x_N - x_g| + |y_N - y_g|$$

Assume that the agent can move diagonally

How to create an admissible h?

- Often a challenge! A good h is admissible, fast to compute, and still a good estimate
- Admissible heuristics are often <u>optimal</u> solutions to simplified (<u>relaxed</u>) problems (with constraints ignored). E.g. for robot navigation:
 - Manhattan distance ignores obstacles
 - Euclidean distance ignores obstacles and constraint that robot moves on a grid
- Much more on this later!

$$h_1(s) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$$

$$h_2(s) = |x_N - x_g| + |y_N - y_g|$$

A* Search

- Best First Search with f(s) = g(s) + h(s), where:
 - -g(s) = cost of best path found so far to s
 - h(s) = admissible heuristic function
 - 1. If GOAL?(initial-state) then return initial-state
 - 2. INSERT(initial-node, FRINGE)
 - 3. Repeat:
 - 4. If empty(FRINGE) then return failure
 - s ← REMOVE(FRINGE)
 - 6. If GOAL?(s) then return s and/or path
 - 7. For every state s' in SUCC(s):
 - 8. INSERT(s', FRINGE)

8-Puzzle

f(s) = g(s) + h(s)with h(s) = number of misplaced numbered tiles

f(s) = h(s), with h(s) = Manhattan distance to the goal (not A*)

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

f(s) = h(s), with h(s) = Manhattan distance to the goal (not A*)

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

f(s) = g(s)+h(s), with h(s) = Manhattan distance to goal (A*)

8+3	7+4	6+5	5+6	4+7	3+8	2+9	3+10	4	5	6
7+2		5+6	4+7	3+8						5
6+1			3	2+9	1+10	0+11	1	2		4
7+0	6+1									5
8+1	7+2	6+3	5+4	4+5	3+6	2+7	3+8	4	5	6

1. Is A* complete?

2. Is A* optimal?

3. What is the running time of A*?

4. What are the memory requirements of A*?

Answer in the next class (and in the book, ch. 3.5)

Next class

- Finish heuristic (informed) search
- Local search