$Manuale\ base\ GNU/Octave$

Nicola Ferru

10 giugno 2023

Capitolo 1

Introduzione

Definizione 1 GNU/Octave è un applicativo per il calcolo matriciale che consente di svilgere tutte le operazioni base e non solo a riguardo, dallo somma, divisione, moltiplicazioni e sottrazioni tra matrici, calcolo del determinante, del grado e tanto altro.

1.1 Pacchetti e impostazioni base

1.1.1 Pacchetti

Nome	Descrizione
fuzzy-logic-toolkit	Un toolkit di logica fuzzy per lo più compatibile con MATLAB per Octave
symbolic	Aggiunge funzionalità di calcolo simbolico a GNU Octave
Circuit Simulator (OCS)	Risolvere equazioni di circuiti elettrici DC e transitori.
Control	Strumenti CACSD (Computer-Aided Control System Design) per GNU Octave,
	basati sulla libreria SLICOT.
instrument-control	Funzioni I/O di basso livello per interfacce seriali, i2c, parallele, tcp, gpib, vxi11,
	udp e usbtmc.

Tabella 1.1: pacchetti utili

1.1.2 Impostazioni e formati

Nome	Descrizione	
rat	aspetto rateo (invece dei numeri reali rende numeri frazionari)	

Tabella 1.2: Impostazioni e formati

Capitolo 2

Funzioni base

2.1 Addizioni e sottrazioni tra matrici

$$A = \begin{vmatrix} 2 & 0 \\ 3 & -1 \end{vmatrix}, B = \begin{vmatrix} 4 & -1 \\ 1 & 2 \end{vmatrix} \in M_2(\mathbf{R})$$
 (2.1)

Calcolare 2A - 3B e 3A - 2B, per svolgerlo non è complesso, infatti, il primo step è moltiplicare le matrici per il valore presente esternamente e poi fare la sottrazione tra matrici, il risultato è il seguente:

$$2A - 3B = 2 \begin{vmatrix} 2 & 0 \\ 3 & -1 \end{vmatrix} - 3 \begin{vmatrix} 4 & -1 \\ 1 & 2 \end{vmatrix} = \begin{vmatrix} 2 \cdot 2 & 2 \cdot 0 \\ 2 \cdot 3 & 2 \cdot -1 \end{vmatrix} + \begin{vmatrix} -3 \cdot 4 & -3 \cdot 1 \\ -3 \cdot 1 & -3 \cdot 2 \end{vmatrix}$$
$$= \begin{vmatrix} 4 & 0 \\ 6 & -1 \end{vmatrix} + \begin{vmatrix} -12 & 3 \\ -3 & -6 \end{vmatrix} = \begin{vmatrix} -8 & 3 \\ 3 & -8 \end{vmatrix}$$

stessa cosa ma con valori inversi

$$3A - 2B = \begin{vmatrix} -2 & 2 \\ 7 & -7 \end{vmatrix}$$

2.1.1 Soluzione per Octave o Mathlab

```
1000  %% Prima operazione

A = [ 2, 0; 3, -1]; % Crea la prima matrice

1002 B= [ 4, -1; 1, 2]; % Crea la seconda matrice

ris = 2*A-3*B; % svolge la prima operazione (2A-3B).

1004 ris % stampa il risultato

1006 %% seconda operazione

ris = 3*A-2*B;

ris
```

Listing 2.1: svolgimento di una sottrazione tra matrixi 2x2