אוטומטים 2 - מטלה 1

2040838939 בעם דומוביץ

313418923 - הודיה טביביאן

שאלה 1

 $PrefixW(L)=\{w\in L|\ \exists u\in L\ s.t.\ w\neq u\ {
m and\ w}\ {
m is\ prefix\ of\ u}\}:$ עבור שפה ברך לכל $C\subseteq \sum^*$ מעדן את היחס תוכחה/הפרך לכל , היחס תוכחה/הפרך לכל , היחס תוכחה מגדית:

- $L=\{a^1,a^2,....,a^6\}$ נגדיר את •
- $PrefixW(L) = \left\{ \{a^1, a^2,, a^5\} \right\}$ מתקיים ש:
 - : PrefixW(L) יהיו מחלקות השקילות יהיי •

$$A_0 = \{\varepsilon\}, A_1 = \{a^1\},A_5 = \{a^5\}, A_6 = \sum * \setminus \{\varepsilon, a^1, a^2, ..., a^5\}$$

. PrefixW(L) אלו שתי בעבור אחרות שייכות למחלקות אייכות אך אך שנילים בשפה a^1,a^6 אלו שתי מילים פוער מילים שייכות אחרות שייכות שייכות אחרות בעבור

שאלה 2

תהי $L\subseteq \sum^*$ תהי

אינסופית שקילות מכילה מחלקת אז R_L אינסופית היא שפה אולרית, אז תכילה אינסופית שקילות אינסופית

- $L=\left\{ a^{n^{2}}|n\in\mathbb{N}
 ight\}$ תהי השפה ullet
- $xz \in L \Leftrightarrow yz \in L$ ישנו z מפריד כך ש מפריד כך ש הראנו בתרגול שיש לשפה או אינסוף מחלקות שקילות, ולכן לכל
 - ומתקיים שכל מחלקת שקילות היא סופית ורגלורית.

ב. אם L היא שפה רגולרית, אז R_L מכילה מחלקת שקילות אינסופית.

הוכחה:

- $index(R_L) < \infty \iff$ רגורלית L , ע"פ משפט נרוד סע"פ •
- . נשים לב שכל מילה בשפה היא מעל בשנה \sum^* , ולכן ולכן ישנה המתייחסת למילים האינסופיות.
 - . נתבונן בחלוקה כלשהי של R_L אם ישנה של המייצגת מילה אינסופית שלה פיימנו. נתבונן בחלוקה כלשהי של
- אחרת (כל המחלקות למילים בשפה סופיות, ולכן) , ישנה $A' \in R_L$ מחלקת שקילות עבור כל המלים האינסופיות שלא בשפה ולכן גם כאן ישנה מחלקת שקילות אינסופית.

שאלה 3

 $L=\left\{w\in\left\{a,b,c\right\}^*| ext{the k'th last symbol of w is b}
ight.$ מכיל לפחות $L=\left\{w\in\left\{a,b,c\right\}^*| ext{the k'th last symbol of w is b}
ight.$ מצבים הוכחה:

על פי מסקנה ממשפט נרוד מספר המצבים המינמלי לDFA הוא כמספר השקילות של , L על פי מסקנה ממשפט המינמלי לDFA המינמלי מספר מסקנה משפט נרוד מספר מספר מסקנה ממשפט נרוד מספר מסקנה מימנו.

- k נשים לב שמצד אחד מילים באורך הגדול מk הן שרשור של מילה באורך עם תחילית כלשהי , כיוון שאנו מסתכלים על האותיות האחרונות.
 - . b היתה אל מהסוף, לא מצד שני מילים שני מילים היא ממו , k היא מאות הקצר פאורך מ
 - פעת נוכל להתבונן באפשרויות השונות להרכבת מילה באורך k. לכל אות יש 2 אפשרויות:
 - b לבחור באות -
 - (לא משנה לנו מה נבחר) c או a או –
 - עם סדר) עם חזרות שכזו נגדיר כמחלקת שקילות $^{-}$ סה"כ יש 2k אפשרויות (עם חזרות, עם סדר) ullet
 - R_L פרדת עבור יחס שקילות נפרדת עבור יחס ullet
 - יהיו 2 S^1, S^2 מחלקות שקילות שונות זו מזו: –
 - לכן קיים אינדקס i עבור S^1 כך שi מסמל את הb לכן קיים אינדקס עבור
 - ולכן האחרון האחרון במילה b מסמל את הb כך שj כך עבור c
 - $y \in S^2$ א ב $x \in S^1$ יהיו -
 - כעת , נפצל למקרים:
 - $xa^{j-1} \notin F$ אבל $ya^{j-1} \in F$ נקבל ש: a^{j-1} נקבל אם נשרשר אם ובפרט i < j אבל $i \neq j$ אם *
- h אם i באינדקס b באינדקס h כלשהו בה"כ לכשהו בה"כ h באינדקס וו מזו, קיים אינדקס h מהסוף אז מכך שהמחלקות שונות או מזו, קיים אינדקס $a^{j-1} \notin F$ אבל $a^{j-1} \in F$ ונשרשר נקבל: $a^{j-1} \in F$ ונשרשר נקבל:

שאלה 4

תהי $x,y\subseteq \sum^*$ קיימת קבוצה אינסופית , $I\subseteq \mathbb{N}$ הוכח או הפרך: אם L רגולרית, אז לכל $x,y\subseteq \sum^*$ קיימת הפרך: אם R_L אחת) של אחלקת שקילות (אחת) אוכלת במחלקת שקילות (אחת)

הוכחה:

- $A = \left\{ xy^i | i \in \mathbb{N}
 ight\}$ היא תת קבוצה איל $\left\{ xy^i | i \in I
 ight\}$ הקבוצה •
- R_A נניח כי קבוצה זו מתפרסת על כל מחלקות השקילות של האוטומט ullet
- S_{∞} ב סמנה ב , R_L היימת אינסופית שקילות קיימת הגולרית ל קיימת סחלקת האינו שלשפה ב ב2ג הראינו שלשפה הגולרית
 - . $S_k = S_\infty \cap \left\{ xy^i | i \in \mathbb{N}
 ight\}$ נגדיר קבוצה חדשה ullet
 - בהכרח קיים חיתוך כזה והוא אינסופי.
 - . וקיבלנו את הדרוש, ו וקיבלנו את יים, עבורם גדיר את הקבוצה אינסופת של יים, עבורם גדיר את קיבלנו אינסופת של יים, אינסופת אינסופת אינסופת של יים, אינסופת אינס

שאלה 5

הוכח באמצעות משפט נרוד, שהשפה הבאה $L=\left\{x\in\left\{a,b\right\}^*|\#_a(x)=2\#_b(x)
ight\}$ אינה רגולרית. $index(R_L)=\infty$ צריך להראות ש

. הראנו בכיתה שתנאי מספיק להראות שקיימת $A\subseteq \sum^*$ אינסופית, באינסופית, אינסופית מספיק להראות מספיק להראות משליה אינסופית, אינסופית משליה מספיק להראות אינסופית משליה משלים משליה משליה משליה משליה משליה משליה משליה משליה משליה מש

- $|\mathbb{N}|=leph_0$ כי אינסופית אינסופית , $A=\left\{a^{2i}|i\in\mathbb{N}
 ight\}$ השקילות מחלקות העקילות
 - $a^{2j}b^i
 otin L$ אבל אבל $a^{2i}b^i \in L$ אבל אבל הן נשרשר להן ונשרשר אבל , $i \neq j$ עם אבל יהיו
 - (נרוד) אינה אינה אינה שקילות שקילות אינה אינה אינה סחלקות שקילות ∞

שאלה 6

תהי $R_{L,5}=\left\{(x,y)\subseteq\left(\sum^*
ight)^2\,|\,\, orall z\subseteq\sum\,\,xz\in L\Leftrightarrow yz\in L\lor|z|>5
ight\}$ במילים . $L\subseteq\sum^*$ תהי מגדיר יחס

R_L מעדן את מעדן $R_{L,5}$, L לכל.1

- $L = \left\{ arepsilon, a, a^7
 ight\}$ נגדיר את •
- $A_0=\left\{arepsilon
 ight\}A_1=\left\{a
 ight\},A_2=\left\{a^7
 ight\},A_3=\sum^*\setminus\left\{A_0\cap A_1\cap A_2
 ight\}\,R_L$ נגדיר את מחלקות השקילות ל
- z ושנו , $xz=aa^6=a^7\in L$ ו $yz=a^6a^7=a^{13}\notin L$ אז א $y=a^7$ ו ו x=a ויהיו ווכר את הסבר: בחר את מפריד ומכאן שהם במחלקות שקילות שונות
 - $A_0=\left\{arepsilon
 ight\},A_1=\left\{a,a^7
 ight\},A_3=\sum^*\setminus\left\{A_0\cap A_1
 ight\}\,:\,R_{L,5}$ נגדיר את מחלקות השקילות ל
 - הסבר: נפצל למקרים
 - R(x,y) אז לכל z שניקח אז $x=y=a^7$ או x=y=a
 - אז: $y=a^7$ א x=a אם בהכ *
 - $R_{L,5}(x,y)$ ולכן $xz \notin L \iff yz \notin L$ אז ולכן |z| < 5 . לכל z
 - $(x,y)\in R_{L,5}$ ולכן ולכן אז מהגדרת ממקודם a^6 אז ממקודם ולכן מפריד מפריד מפריד מפריד z

$R_{L,5}$ מעדן את R_L , L כל.2

- $R_L(x,y)\subseteq R_{L,5}$ צ"ל ש
- $xz \in L \Leftrightarrow yz \in L$ יהיה z כך ש: $x,y \in R_L$ יהיו
 - נפצל למקרים:
 - . מהנחה $xz \in L \Leftrightarrow yz \in L$ אז $|z| \leq 5$ מהנחה -
- $xz \in L \Leftrightarrow yz \in L$ אם אם לנו קיום התנאי |z| > 5 אם -
 - . כנדרש, $(x,y) \in R_{L.5}$ כנדרש.

. שקילות א מחלקות מעדן את את שקילות. פווסף ל אינו לפחות מעדן את $R_{L,5}$ שקילות. 3

- $L = \{a^1, a^2\}$ נבחר את השפה
- :הן (4 יש א $R_{L,5}$ ו ל ו א השקילות השקילות א סחלקות השקילות ל
- $A_0 = \{\varepsilon\} A_1 = \{a\}, A_2 = \{a^2\}, A_3 = \sum^* \setminus \{A_0 \cap A_1 \cap A_2\}$
 - . כך שz מפריד, |z| < 5 כך מפריד.
 - $R_{L.5}\subseteq R_L$:ובפרט יתקיים ש
- אז מספר אם אינטואציה הראנו בכיתה שאם היחס מעדן אז מספר מספר אינטואציה הראנו בכיתה בכיתה מעדן אז מספר הוחס מעדן אז פותר אז $index(R_{L,5}) \geq index(R_L)$
 - $index(R_L) \geq index(R_{L.5})$:ש יתקיים שלכל שלכל שלכל הראנו שלכל
 - $index(R_L) \geq index(R_{L,5}) \geq index(R_L)$: רבטה"כ