Moens' theorem and fibered toposes

Jonas Frey

June 24 2014

Plan of talk

- Elementary toposes and Grothendieck toposes
- Realizability toposes
- Fibered categories
- Characterizing realizability toposes

Elementary toposes

Definition (Lawvere, ca. 1970)

An **elementary topos** is a category \mathcal{E} with

- finite limits
- exponential objects B^A for $A, B \in \mathcal{E}$ (cartesian closed)
- a subobject classifier, i.e. a morphism $\mathbf{t}: \mathbf{1} \to \Omega$ such that for every monomorphism $m: U \rightarrowtail A$ there exists $\chi: A \to \Omega$ making

a pullback.

Grothendieck toposes

Grothendieck toposes

Grothendieck toposes can equivalently be defined in the following ways:

- Introduced around 1960 by G. as categories of sheaves on a site
- ② Characterized 1963 by Giraud as locally small ∞-pretoposes with a separating set of objects
- ③ Equivalently: elementary topos ℰ admitting a (necessarily unique) bounded geometric morphism ℰ → Set

Grothendieck toposes

Grothendieck toposes

Grothendieck toposes can equivalently be defined in the following ways:

- Introduced around 1960 by G. as categories of sheaves on a site
- ② Characterized 1963 by Giraud as locally small ∞-pretoposes with a separating set of objects
- ③ Equivalently: elementary topos ℰ admitting a (necessarily unique) bounded geometric morphism ℰ → Set

What do all these words mean??

Locally small, separating set

- C is called locally small, if the 'homsets' C(A, B) are really sets, as
 opposed to proper classes
- A separating set of objects in C is a family (C_i)_{i∈I} of objects indexed by a set I such that for all parallel pairs f, g: A → B we have

$$(\forall i \in I \ \forall h : C_i \rightarrow A . \ fh = gh) \Rightarrow f = g.$$

∞-PretoposesRegular categories

$$\infty$$
-pretopos = exact ∞ -extensive category
= effective regular ∞ -extensive category

Definition

A **regular category** is a category with finite limits and pullback-stable regular-epi/mono factorizations.

An equivalence relation in a f.l. category C is a jointly monic pair
 r₁, r₂: R → A such that for all X ∈ C, the set

$$\{(r_1x,r_2x)\mid x:X\to R\}$$

is an equivalence relation on $\mathbb{C}(X, A)$

• The kernel pair of any morphism $f: A \rightarrow B$ – given by the pullback

$$X \longrightarrow A$$

$$r_2 \bigvee_{r_1} r_1 \bigvee_{r_1} f$$

$$A \xrightarrow{f} B$$

is always an equivalence relation

Definition

An **exact** (or **effective regular**) category is a regular category in which every equivalence relation is a kernel pair.

∞-Pretoposes

Extensive categories

Assume ℂ has finite limits and small coproducts

Coproducts in ℂ are called disjoint, if the squares

$$\begin{array}{cccc}
0 \longrightarrow A_{i} & & A_{i} \longrightarrow A_{i} \\
\psi & \psi & (i \neq j) & \text{and} & \psi & \psi \\
A_{j} \Rightarrow \coprod_{i \in I} A_{i} & & A_{i} \Rightarrow \coprod_{i \in I} A_{i}
\end{array}$$

are always pullbacks

• Coproducts in \mathbb{C} are called **stable**, if for any $f: B \to \coprod_{i \in I} A_i$, the family

$$(B_i \xrightarrow{\sigma_i} B)_{i \in I}$$
 given by pullbacks $A_i \xrightarrow{\sigma_i} B$ $A_i \xrightarrow{\sigma_i} B$

represents B as coproduct of the B_i

Definition

An ∞ -(I)extensive category is a category $\mathbb C$ with finite limits and disjoint and stable small coproducts.

∞-Pretoposes

Examples

- Complete lattices (A, ≤) viewed as categories have finite limits and small coproducts, but these are not disjoint – coproducts are stable precisely for complete Heyting algebras
- Top (topological spaces) and Cat (small categories) are ∞-extensive but not regular
- Monadic categories over Set are always exact and have small coproducts, but are rarely extensive

Definition

An ∞ -pretopos is a category which is exact and ∞ -extensive.

Examples

- · Grothendieck toposes
- the category of small presheaves on Set

Geometric morphisms

A geometric morphism E → S between toposes E and S is an adjunction

$$(\Delta: \mathcal{S} \to \mathcal{E}) \dashv (\Gamma: \mathcal{E} \to \mathcal{S})$$

of f.l.p. functors (\triangle is the 'inverse image part'; Γ the 'direct image part')

- (△ ⊢ Γ) is called **bounded**, if there exists B ∈ E such that for every E ∈ E there exists a subquotient span B × △(S) ← → E
- It is called localic if it is bounded by 1
- If $\triangle \dashv \Gamma : \mathcal{E} \rightarrow \mathbf{Set}$, then we necessarily have

$$\Delta(J) = \sum_{j \in J} 1$$
 and $\Gamma(A) = \mathcal{E}(1, A)$

for $J \in \mathbf{Set}$ and $A \in \mathcal{E}$

Grothendieck toposes

Grothendieck toposes

Grothendieck toposes can equivalently be defined in the following ways:

- Introduced around 1960 by G. as categories of sheaves on a site
- ② Characterized 1963 by Giraud as locally small ∞-pretoposes with a separating set of objects
- ③ Equivalently: elementary topos \mathcal{E} admitting a (necessarily unique) bounded geometric morphism \mathcal{E} → Set
- Inspired by 3, define a Grothendieck topos over an (elementary) base topos S as a bounded geometric morphism E → S

Grothendieck toposes

Grothendieck toposes

Grothendieck toposes can equivalently be defined in the following ways:

- Introduced around 1960 by G. as categories of sheaves on a site
- ② Characterized 1963 by Giraud as locally small ∞-pretoposes with a separating set of objects
- ③ Equivalently: elementary topos \mathcal{E} admitting a (necessarily unique) bounded geometric morphism \mathcal{E} → Set

Remark

Without the bound in 3, \mathcal{E} need not be cocomplete. Example: subcategory of $\overline{\mathbb{Z}}$ on actions with uniform bound on the size of orbits.

Realizability toposes

Realizability toposes

- Were introduced in 1980 by Hyland, Johnstone, and Pitts
- Not Grothendieck toposes
- Most well known: Hyland's effective topos Eff 'Universe of constructive recursive mathematics'
- usually constructed via triposes

Partial combinatory algebras

Definition

A **PCA** is a set \mathcal{A} with a partial binary operation

$$(-\cdot-):\mathcal{A}\times\mathcal{A}\rightharpoonup\mathcal{A}$$

having elements $k, s \in A$ such that

(i)
$$k \cdot x \cdot y = x$$
 (ii) $s \cdot x \cdot y \downarrow$ (iii) $s \cdot x \cdot y \cdot z \leq x \cdot z \cdot (y \cdot z)$

for all $x, y, z \in A$.

Example

First Kleene algebra: (\mathbb{N}, \cdot) with

$$n \cdot m \simeq \phi_n(m)$$
 for $n, m \in \mathbb{N}$,

where $(\phi_n)_{n\in\mathbb{N}}$ is an effective enumeration of partial recursive functions.

Fibrations from PCAs

PCA \mathcal{A} gives rise to indexed preorders $fam(\mathcal{A}), rt(\mathcal{A}) : \mathbf{Set}^{op} \to \mathbf{Ord}$.

• Family fibration: $fam(A)(J) = (A^J, \leq)$, with

$$\varphi \leq \psi$$
 : \Leftrightarrow $\exists e \in A \ \forall j \in J . \ e \cdot \varphi(j) = \psi(i)$

for $\varphi, \psi: J \to A$.

• Realizability tripos: $rt(A)(J) = ((PA)^J, \leq)$, with

$$\varphi \leq \psi$$
 : \Leftrightarrow $\exists e \in \mathcal{A} \ \forall j \in J \ \forall a \in \varphi(j) \ . \ e \cdot a \in \psi(i)$

for $\varphi, \psi : J \to PA$.

Observations

- fam(A) has indexed finite meets
- rt(A) models full 1st order logic
- both have generic predicates
- rt(A) is free cocompletion of fam(A) under \exists (Hofstra 2006)

Realizability toposes

Definition

- The realizability topos RT(A) over A is the category of partial equivalence relations and compatible functional relations in A (details omitted)
- The constant objects functor Δ : Set → RT(A) maps J ∈ Set to (J, δ_J) (discrete/diagonal equivalence relation)
- RT(A) is never a Grothendieck topos (except for the trivial pca)
- Δ is bounded by 1, but not the inverse image part of a geometric morphism
- it makes sense to compare constant objects functors and inverse image functors, since both are instances of the same construction in the context of triposes

Fibered Categories

\triangle and gluing fibrations

Goal: Understand inverse image functors

$$(\Delta: \mathbf{Set} \to \mathcal{E}) \dashv \Gamma$$

and constant objects functors

$$\Delta: \textbf{Set} \to \textbf{RT}(\mathcal{A})$$

better by looking at their gluing fibrations, defined by the pullback

Fibered category theory

References

- Jean Bénabou, Fibered categories and the foundations of naive category theory, 1985
- Thomas Streicher, Fibred categories à la Jean Bénabou, unpublished, 1999-2012
- Peter Johnstone, Sketches of an Elephant, 2003

Idea/Philosophy

- Elementary category theory: finitary conditions, first order axiomatizable, no size conditions, avoid ZFC (f.l. category, elementary topos)
- Naive category theory: not concerned about formal, foundational aspects, use size conditions and make reference to Set freely
- Bénabou proposes fibrations to reconcile both, fibrations allow to express 'non-finitary conditions' in an elementary manner
- generalize and form analogies from family fibrations

Family fibrations

Definition

Let C be a category.

The category Fam(ℂ) has families (C_i)_{i∈I} of objects of ℂ as objects; a morphism (C_i)_{i∈I} → (D_i)_{i∈J} is a pair

$$(u:I\rightarrow J,(f_i:C_i\rightarrow D_{ui})_{i\in I}.$$

The family fibration of ℂ is the functor

$$\begin{array}{ccccc} \mathrm{fam}(\mathbb{C}) & : & \mathrm{Fam}(\mathbb{C}) & \to & \mathbf{Set} \\ & & & (C_i)_{i \in I} & \mapsto & I \\ & & & (u,(f_i)_{i \in I}) & \mapsto & u \end{array}$$

mapping $(C_i)_{i\in I}$ fam $(\mathbb{C}): \mathrm{Fam}(\mathbb{C}) \to \mathbf{Set}$ of a category \mathbb{C} is the fibration having

Local smallness

Definition

Let $P: \mathbb{X} \to \mathbb{B}$ be a fibration, $I \in \mathbb{B}$, $X, Y \in P(I)$. A family of morphisms

from X to Y is a span X
ightharpoonup f where P(c) = P(f) and c is cartesian. P is called **locally small**, if for every pair $X, Y \in P(I)$ there exists a *universal* family of morphisms (terminal among such spans).

Lemma

A category $\mathbb C$ is locally small, iff $fam(\mathbb C)$ is locally small in the above sense.

Finite limit fibrations

... towards extensive fibratiions and Moens' theorem

Definition

Let $\mathbb B$ be a f.l. category. A **finite limit fibration** on $\mathbb B$ is a fibration $P: \mathbb X \to \mathbb B$ satisfying either of the following equivalent definitions.

- X has finite limits and P preserves them
- All fibers P(I) have finite limits, and they are preserved under reindexing

Lemma

A category \mathbb{C} has finite limits iff $fam(\mathbb{C})$ is a finite limit fibration.

Extensive fibrations

Let $P: \mathbb{X} \to \mathbb{C}$ be a finite limit fibration.

- P is said to have internal sums, if it is also an opfibration
 (P^{op}: X^{op} → C^{op} is a fibration), and cocartesian maps in X are stable
 under pullback along cartesian maps ('Beck-Chevalley condition')
- P is said to have stable internal sums, if cocartesian maps are stable under pullback along arbitrary maps in X
- Internal sums are called disjoint, if the mediating arrow m in the diagram

is cocartesian for every cocartesian map $\sigma: A \to S$ in X

 An extensive fibration is a finite-limit fibration with stable disjoint internal sums.

Lemma

A category \mathbb{C} is ∞ -extensive iff $fam(\mathbb{C})$ is extensive.

Moens' theorem

- Fundamental fib's $cod(\mathbb{D}) : \mathbb{D} \downarrow \mathbb{D} \to \mathbb{D}$ of f.l. cat's are extensive
- Extensive fib's are stable under pullback along f.l.p. functors $\Delta : \mathbb{C} \to \mathbb{D}$
- Thus, gluing fibrations $\mathrm{gl}_{\Delta}(\mathbb{D}):\mathrm{Gl}_{\Delta}(\mathbb{D})\to\mathbb{C}$ are extensive

Theorem (Moens' theorem)

The assignment $\Delta \mapsto \operatorname{gl}_{\Delta}(\mathbb{D}) = \Delta^* \operatorname{cod}(\mathbb{D})$ gives rise to a biequivalence

$$\mathsf{ExtFib}(\mathbb{C}) \simeq \mathbb{C} /\!\!/ \mathsf{Lex}$$

between the 2-category $\operatorname{ExtFib}(\mathbb{C})$ of extensive fibrations on \mathbb{C} and the pseudo-co-slice 2-category $\mathbb{C}/\!\!/ \operatorname{Lex}$ of f.l. categories under \mathbb{C} .

$\text{ExtFib}(\mathbb{C}) \to \mathbb{C} /\!\!/ \text{Lex}$

The functor corresponding to a fibration $P: \mathbb{X} \to \mathbb{C}$ is given by

$$\Delta: \mathbb{C} \rightarrow \mathbb{X}(1)$$
 1 +++++> $\sum_{C} 1$
 $C \mapsto \sum_{C} 1$ $C \longrightarrow 1$

Gluing fibrations for Grothendieck toposes and realizability toposes

• For Grothendieck toposes \mathcal{E} with geometric morphism $\Delta \dashv \Gamma : \mathcal{E} \to \textbf{Set}$, we have

$$\operatorname{gl}_{\Delta}(\mathcal{E}) \simeq \operatorname{fam}(\mathcal{E})$$

- Thus, when studying Grothendieck toposes △ ¬ Γ : E → Set relative to a base topos S, the fibration gl_△(E) is an adequate substitute for the family fibration
- For realizability toposes with c.o.f. $\Delta: \mathbf{Set} \to \mathbf{RT}(\mathcal{A})$, the fibrations $\operatorname{gl}_{\Delta}(\mathbf{RT}(\mathcal{A}))$ and $\operatorname{fam}(\mathbf{RT}(\mathcal{A}))$ are different
- We will see just how different

Gluing and local smallness

Theorem

If $\Delta: \mathcal{S} \to \mathcal{E}$ is a f.l.p. functor between toposes, then $\operatorname{gl}_{\Delta}(\mathcal{E})$ is a locally small fibration iff Δ has a right adjoint

 Thus, gluing fibrations gl_△(RT(A)) of realizability toposes are not locally small

We have two ways of looking at realizability toposes

- From the point of view of ordinary CT, toposes RT(A) are locally small, but not cocomplete
- Viewed as gluing fibrations, they have small sums, but are not locally small

Characterizing Realizability Toposes

Motivation

- Peter Johnstone pointed out the lack of a 'Giraud style' theorem for realizability toposes
- It seemed easier to characterize the gluing fibrations gl_Δ(RT(A)) (or equivalently the functors Δ : Set → RT(A)) than the 'bare' toposes
- Fibrationally realizability toposes resemble presheaf toposes

Moens' theorem for fibered pretoposes

- A pre-stack is a fibration P: X → R on a regular category R where the reindexing functors e*: P(I) → P(J) are full and faithful for all regular epis e: J → I
- All fibrations on Set are pre-stacks with AC, and without still most
- A fibered pretopos is an extensive pre-stack P: X → R with exact fibers
- $fam(\mathcal{E})$ is a fibered pretopos iff \mathcal{E} is an ∞ -pretopos

Theorem (Moens' theorem for fibered pretoposes)

The assignment $\Delta \mapsto \operatorname{gl}(\Delta)$ gives rise to a biequivalence

$$\mathsf{PretopFib}(\mathbb{R}) \simeq \mathbb{R} /\!\!/ \mathsf{Ex}$$

between the 2-category $\mathsf{PretopFib}(\mathbb{R})$ of fibered pretoposes on \mathbb{R} and the pseudo-co-slice 2-category $\mathbb{R}/\!\!/\!\!/\mathsf{Ex}$ of exact categories under \mathbb{C} .

Fibered presheaf construction

Theorem

Let ℝ be a regular category The forgetful functor

$$\mathsf{PretopFib}(\mathbb{R}) \to \mathsf{Lex}(\mathbb{R}),$$

where $Lex(\mathbb{R})$ is the category of finite-limit pre-stacks on \mathbb{R} , has a left biadjoint $\mathscr{C} \mapsto \widehat{\mathscr{C}}$, called **fibered presheaf construction**.

- If \mathbb{C} is a small category with finite limits, then $\widehat{fam}(\mathbb{C}) = fam(\mathbf{Set}^{\mathbb{C}^{op}})$
- For any PCA \mathcal{A} we have $\widehat{fam}(\widehat{\mathcal{A}}) = \operatorname{gl}_{\Delta}(\mathbf{RT}(\mathcal{A}))$

Characterization of fibrations of presheaves

Which fibered pretoposes $P: \mathbb{X} \to \mathbb{R}$ are of the form $\mathscr{X} \simeq \widehat{\mathscr{C}}$?

Theorem (Bunge 77)

A locally small ∞ -pretopos \mathcal{E} is a presheaf topos iff it has a separating family of **indecomposable projective** objects.

In a similar way, we can show:

Theorem

A fibered pretopos $\mathscr{X}: |\mathscr{X}| \to \mathbb{R}$ is a fibration of presheaves iff

- the subfibration of X on indecomposable projectives is closed under finite limits, and
- Every X ∈ |X| can be covered by an internal sum of indecomposable projectives.

... where indecomposable projectives in fibrations are defined on the next slide

Indecomposables and projectives

Let $\mathscr{X}: |\mathscr{X}| \to \mathbb{R}$ be a fibered pretopos.

Definition

• Call $P \in |\mathcal{X}|$ projective, if given c, e, f as in the diagram

where c is cartesian and e is vertical and a regular epimorphism in its fiber, we can fill in d, g with d epicartesian such that the square commutes.

• Call $X \in |\mathcal{X}|$ indecomposable, if for every diagram

in $|\mathcal{X}|$ where c is cartesian and d is cocartesian, there exists a *unique* mediating arrow m.

Characterizing fibered realizability toposes

With a bit of work one can prove the following

Theorem

Gluing fibrations $\operatorname{gl}_{\Delta}(\operatorname{RT}(\mathcal{A}))$ of realizability toposes can be characterized as fibered pretoposes $P: \mathbb{X} \to \operatorname{Set}$ such that

- P is a fibered cocompletion (previous theorem)
- the fibers of P are lccc
- The subfibration Q ⊆ P on indecomposable projectives is posetal, has a
 discrete generic predicate, and Q(1) ≈ 1

[discrete means right orthogonal to cartesian maps over surjective functions]

Characterizing realizability toposes

In realizability toposes, we have $(\mathbf{RT}(\mathcal{A})(1,-):\mathbf{RT}(\mathcal{A})\to\mathbf{Set})\dashv\Delta$, thus the global sections functor is uniquely determined and does not contain additional information. Thus, our analysis yields a characterization of 'bare' toposes after all:

Theorem

A locally small category \mathcal{E} is equivalent to a realizability topos $\mathbf{RT}(\mathcal{A})$ over a PCA \mathcal{A} , if and only if

- \bigcirc \mathcal{E} is exact and locally cartesian closed,
- ② \mathcal{E} has enough projectives, and the subcategory $\operatorname{Proj}(\mathcal{E})$ of projectives is closed under finite limits,
- ③ the global sections functor Γ : E → Set has a right adjoint Δ factoring through Proj(E), and
- **④** there exists a separated and discrete projective $D \in \mathcal{E}$ such that for all projectives $P \in \mathcal{E}$ there exists a closed $u : P \to D$.