

Práctica Nº4: Vectores

- 1) Trazar un sistema de coordenadas y localizar los puntos cuyas coordenadas son:
 - a) (3, 4, 5)
 - **b)** (-3, 4, 5)
 - c) (-3,0,0)
 - **d)** (0,3,0)
 - e) (-3, -4, -5)
- 2) Trazar los siguientes vectores con los puntos iniciales ubicados en el origen.
 - a) $\vec{v}_1 = (3,6)$
 - **b)** $\vec{v}_2 = (-4, -8)$
 - c) $\vec{v}_3 = (5, -4)$
 - **d)** $\vec{v}_4 = (3, 3, 0)$
 - e) $\vec{v}_5 = (0, 0, -3)$
- 3) Encontrar las componentes del vector que tiene punto inicial P_1 y punto terminal P_2 .
 - a) $P_1(3,-7,2)$; $P_2(-2,5,-4)$
 - **b)** $P_1(-1,0,2)$; $P_2(0,-1,0)$
 - c) $P_1(4,8)$; $P_2(3,7)$
 - **d)** $P_1(-5,0)$; $P_2(-3,1)$
- 4) Sean $\vec{u} = (-3,1,2)$, $\vec{v} = (4,0,-8)$ y $\vec{w} = (6,-1,-4)$. Encontrar las componentes de:
 - a) $\vec{v} \vec{w}$
 - **b)** $6\vec{u} + 2\vec{v}$
 - c) $-\vec{v} + \vec{u}$
 - **d)** $5(\vec{v} 4\vec{u})$
 - **e)** $-3(\vec{v} 8\vec{w})$
 - f) $(2\vec{u} 7\vec{w}) (8\vec{v} + \vec{u})$
- 5) Encontrar la norma de \vec{v} .
 - a) $\vec{v} = (4, -3)$
 - **b)** $\vec{v} = (2,3)$
 - c) $\vec{v} = (-7, 2, -1)$
 - **d)** $\vec{v} = (0, 6, 0)$
- 6) Encontrar \vec{u} . \vec{v}
 - a) $\vec{u} = (2,3), \vec{v} = (5,-7)$
 - **b)** $\vec{u} = (-6, -2), \vec{v} = (4, 0)$
 - c) $\vec{u} = (1, -5, 4), \vec{v} = (3, 3, 3)$
 - **d)** $\vec{u} = (-2,2,3), \vec{v} = (1,7,-4)$

Instituto de Formación Técnica Superior N°4 Tecnicatura Superior en Desarrollo de Software Elementos de Análisis Matemático - 1° Año Prof. Matías Cerdeira

- 7) Determinar si \vec{u} y \vec{v} forman un ángulo agudo, un ángulo obtuso o son ortogonales.
 - **a)** $\vec{u} = (6, 1, 4), \vec{v} = (2, 0, -3)$
 - **b)** $\vec{u} = (0,0,-1), \vec{v} = (1,1,1)$
 - c) $\vec{u} = (-6, 0, 4), \vec{v} = (3, 1, 6)$
 - **d)** $\vec{u} = (2,4,-8), \vec{v} = (5,3,7)$
- 8) Sean $\vec{u} = (3, 2, -1), \vec{v} = (0, 2, -3), \vec{w} = (2, 6, 7)$. Calcular:
 - a) $\vec{v} \times \vec{w}$
 - **b)** $\vec{u} \times (\vec{v} \times \vec{w})$
 - c) $(\vec{u} \times \vec{v}) \times (\vec{v} \times \vec{w})$
 - d) $\vec{u} \times (\vec{v} 2\vec{w})$
- 9) Encontrar un vector que sea ortogonal tanto a \vec{u} como a \vec{v} .
 - a) $\vec{u} = (-6,4,2), \vec{v} = (3,1,5)$
 - **b)** $\vec{u} = (-2, 1, 5), \vec{v} = (3, 0, -3)$