Khôlles de Mathématiques

Kylian Boyet, George Ober, Hugo Vangilluwen, Jérémie Menard 29 novembre 2023

Deux classes d'équivalence sont disjointes ou confondues. Les classes d'équivalence constituent une partition de l'ensemble sur lequel on considère la relation d'équivalence.

Soit \mathcal{R} une relation d'équivalence sur E.

Soit $x \in E$.

La classe de x, notée \bar{x} , est l'ensemble des éléments de E en relation avec x.

$$\bar{x} = \{ y \in E \mid x\mathcal{R}y \} \tag{1}$$

Démonstration. Montrons que deux classes d'équivalence sont disjointes ou confondues. Soit $(x,y) \in E^2$ fq.

- Si $\bar{x} \cap \bar{y} = \emptyset$, rien à démontrer.
- Sinon $\bar{x} \cap \bar{y} \neq \emptyset$ donc $\exists z \in \bar{x} \cap \bar{y}$. Fixons un tel z. Soit $x' \in \bar{x}$ fq.

$$x' \in \bar{x} \implies x\mathcal{R}x' \underset{sym\acute{e}trie}{\Longrightarrow} x'\mathcal{R}x \\ z \in \bar{x} \implies x\mathcal{R}z \\ z \in \bar{y} \implies y\mathcal{R}z \underset{sym\acute{e}trie}{\Longrightarrow} z\mathcal{R}y \\ \end{cases} \xrightarrow{transitivit\acute{e}} x'\mathcal{R}z \\ \xrightarrow{transitivit\acute{e}} x'\mathcal{R}y \underset{sym\acute{e}trie}{\Longrightarrow} y\mathcal{R}x'$$

Donc $x' \in \bar{y}$ donc $\bar{x} \subset \bar{y}$.

En échangeant les rôles de x et y, on montre la deuxième inclusion $\bar{y} \subset \bar{x}$.

Montrons que les classes d'équivalence de E constituent une partition de E. Soit \mathcal{S} un système de représentant des classes fixé quelconque.

- Soit $s \in \mathcal{S}$ fq. $\bar{s} \neq \emptyset$ car $s\mathcal{R}s$ par réflexivité.
- Soit $(s, s') \in S^2$ fq. D'après la démonstration ci-dessus ci-dessus, $\bar{s} \cap \bar{s'} = \emptyset$ ou $\bar{s} = \bar{s'}$. Si $\bar{s} = \bar{s'}$ alors s et s' représente la même classe ce qui est impossible car un système de représentants des classes contient un unique représentant de chaque classe. Par conséquent, \bar{s} et $\bar{s'}$ sont disjoints.
- $\bigcup_{s\in\mathcal{S}}\bar{s}\subset E \text{ car } \forall s\in\mathcal{S}, \bar{s}\in E \text{ par définition d'une classe d'équivalence}.$

Réciproquement, soit $x \in E$ fq.

Par réflexivité de \mathcal{R} , $x \in \bar{x}$.

Par renexivite de K, $x \in \bar{x}$. Par définition d'un système de classe $\exists ! s_x \in \mathcal{S} : s_x \in \bar{x} \text{ donc } \bar{s_x} = \bar{x}$. Donc $x \in \bar{s_x} \subset \bigcup_{s \in \mathcal{S}} \bar{s}$.

Donc $E \subset \bigcup_{s \in S} \bar{s}$. Par double inclusion, $E = \bigcup_{s \in S} \bar{s}$.

Ainsi,

$$E = \coprod_{s \in \mathcal{S}} \bar{s} \tag{2}$$

2 Si A admet un plus grand élément c'est aussi sa borne supérieure. Si A admet une borne supérieure dans A c'est sont plus grand élément.

Soit (E, \leq) un ensemble ordonné, et A une partie non-vide de E.

Si A admet un plus grand élément alors A admet une borne supérieure et sup $A = \max A$.

Si A admet une borne supérieure appartenant à elle-même alors A admet un plus grand élément et max $A = \sup A$.

Démonstration. Soient un tel ensemble E et une telle partie A et notons M son plus grand élément. Posons l'ensemble des majorants de A, $M(A) = \{m \in E \mid \forall a \in A, \ a \leq m\}$. Par définition :

$$\forall m \in M(A), M \leq m,$$

car $M \in A$, mais comme $M \in M(A)$, on a directement que $M = \min M(A) = \sup A$.

Pseudo-réciproquement, soit A une partie de E admettant une borne supérieure dans elle même, notons cette borne S.

Comme $S \in M(A)$, par définition, S est plus grand que tous les éléments de A mais appartient à A, donc de tous les éléments de A, S est le plus grand.

3 Théorème de la division Euclidienne dans $\mathbb Z$

Pour tout couple d'entiers relatifs a et b, b non nul, il existe un unique couple d'entiers relatifs q et r tel que a=bq+r et $0\leq r\leq |b|-1$

$$\forall (a,b) \in \mathbb{Z}^2, \exists ! (q,r) \in \mathbb{Z} \times \mathbb{N} : \begin{cases} a = bq + r \\ r \in [0; |b| - 1] \end{cases}$$
 (3)

Démonstration. Existence Soient deux tels entiers (a,b) et deux couples ((q,r),(q',r')) tels que

$$\begin{cases} a = bq + r \\ 0 \le r \le |b| - 1 \end{cases} \qquad \begin{cases} a = bq' + r' \\ 0 \le r' \le |b| - 1 \end{cases}$$

Directement,

$$b(q - q') = r' - r,$$

mais comme $-(|b|-1) \le r'-r \le |b|-1$, il vient en divisant par |b| l'inégalité précédente :

$$-1 < q - q' < 1$$
,

puisque q et q' sont dans \mathbb{Z} leur différence est obligatoirement 0, ainsi q = q' ce qui implique r = r' et donc on a unicité de ladite écriture de a.

Unicité Posons pour $b \geq 1$, $\Omega = \{k \in \mathbb{Z} \mid kb \leq a\}$, non-vide car $-|a| \in \Omega$ (\mathbb{Z} archimédien suffit...), ainsi $\Omega \subset \mathbb{Z}$. Supposons qu'il existe un k dans Ω tel que k > |a|, si tel est le cas alors $k \notin \Omega$ (multiplier par b). De fait, Ω est majoré par |a|, il admet donc un plus grand élément noté q.

Posons r=a-bq. Par construction, a=bq+r et comme $q=\max\Omega$ et $\Omega\subset\mathbb{Z},\ q\in\mathbb{Z}$ donc $r\in\mathbb{Z}$. Par suite, $q\in\Omega$ donc $bq\leq a$ d'où $0\leq r$ et $q=\max\Omega$ donc b(q+1)>a d'où b>r, c'est-à-dire, $r\in\llbracket 0,|b|-1\rrbracket$.

Si b < 1, il suffit de prendre $q \leftarrow -q$ dans la preuve précédente. C'est donc l'existence de ladite écriture de a.

4 Une suite décroissante et minorée de nombres entiers relatifs est stationnaire

Démonstration. Soit $u \in \mathbb{Z}^{\mathbb{N}}$ une suite décroissante et minorée fixée quelconque. Considérons $A = \{u_n \mid n \in \mathbb{N}\}$ c'est-à-dire l'ensemble des valeurs prises par la suite u. A est :

- une partie de $\mathbb Z$ car u est à valeur dans $\mathbb Z$
- non vide car $u_0 \in A$
- minoré car u est minorée

Donc A admet un plus petit élément. Donc $\exists n_0 \in \mathbb{N} : u_{n_0} = minA$. Fixons un tel n_0 . Soit $n \in \mathbb{N}$ fq tq $n \ge n_0$.

$$\left. \begin{array}{l} u_n \in A \implies u_n \geqslant \min A = u_{n_0} \\ u \text{ est décroissante et } n \geqslant n_0 \text{ donc } u_n \leqslant u_{n_0} \end{array} \right\} \implies u_n = u_{n_0}$$

Ainsi, u est stationnaire.