UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION — 15 December 1997

FOURTH YEAR GASDYNAMICS — AER-410 F

Examiner: Professor J. J. Gottlieb

Instructions: (a) open book test (D) — notes and textbook permitted,

(b) answer or attempt all questions if you can, and

(c) relative mark values for questions are indicated.

20% 1. Consider the steady flow of a compressible gas from location (1) to another location (2) farther along a duct between which there can occur a change in area, heat transfer, viscous losses and shaft work. Derive the following expression

$$\frac{p_{02}}{p_{01}} \frac{T_{01}^{1/2}}{T_{02}^{1/2}} \frac{A_2}{A_1} = \frac{M_1}{M_2} \left(\frac{1 + \frac{\gamma - 1}{2} M_2^2}{1 + \frac{\gamma - 1}{2} M_1^2} \right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

for the conservation of mass in terms of the stagnation pressure (p_0) and temperature (T_0) , flow Mach number (M) and area A at locations (1) and (2).

- 20 % 2. A conventional shock tube with air in the driver $(a_4 = 288 \text{ m/s})$ and air in the channel $(p_1 = 102 \text{ kPa}, a_1 = 288 \text{ m/s})$ is used to produce a flow of speed $u_2 = 200 \text{ m/s}$ between the shock and contact surface.
 - a) Determine the shock Mach number M_s and shock pressure p_2 .
 - b) Determine the sound speed a_3 in region 3 and driver pressure p_4 .
 - c) Determine the test time between the shock and contact surface for a test section located 5 m downstream of the diaphragm.
- $20\,\%$ 3. A picture of a supersonic flow field shows that the flow is deflected or turned by a $\delta=20$ degree wedge and thereby produces an oblique shock wave with an angle $\beta=20$ degrees from the wedge surface (that is a wave angle $\varepsilon=40$ degrees). Determine the flow Mach numbers M_1 and M_2 of the flows on both sides of the oblique shock wave.
- 20% 4. Air flows from a reservoir $(T_0 = 300 \text{ K})$ through a short convergent nozzle, then along a constant-area duct, and finally exits at sonic speed $(M_e = 1)$ into the surrounding atmosphere $(p_{\text{atm}} = 1 \text{ atm})$. Heat addition to the flow in the duct increases the stagnation temperature by 400 K.

page 1 of 2 pages

- a) Determine the Mach number M_1 of the flow in the duct before heat addition.
- b) Determine the stagnation pressure p_0 in the reservoir.
- c) Draw a temperature-entropy diagram to illustrate relevant flow states including the reservoir and atmosphere.
- 20% 5. The blow-down wind tunnel shown in the diagram is designed with a reservoir volume $V = 500 \text{ m}^3$, test section area $A_{\rm ts} = 1 \text{ m}^3$, flow Mach number in the test section $M_{\rm ts} = 3$, and air flow discharge from the tunnel exit via a free jet into the atmosphere ($p_{\rm atm} = 1 \text{ atm}$, $T_{\rm atm} = 300 \text{ K}$). The initial reservoir pressure $p_{0i} = 15$ atm and initial sound speed $a_{0i} = 300 \text{ m/s}$. Heat transfer directly to the reservoir air maintains an essentially constant reservoir temperature during the wind-tunnel run.
 - a) What are the flow Mach number M_t and area A_t at the throat (that is the minimum flow area)?
 - b) What type of free jet exits at the start of the wind-tunnel run (i.e., subsonic, supersonic, type of shock or rarefaction wave pattern)? Justify your answer.
 - c) Describe how wind-tunnel shutdown occurs (i.e., loss of supersonic flow in the test section). Determine the test section pressure $p_{\rm ts}$ and reservoir pressure $p_{\rm 0}$ when shutdown occurs.
 - d) Start with the integral equation for the conservation of mass and derive expressions for the change of reservoir density and pressure as a function of time. Note that the reservoir temperature can be assumed constant because of heat transfer and the rapid expansion to the throat can be assumed isentropic.
 - e) Calculate the wind-tunnel test time (i.e., the time for the reservoir pressure to drop from the initial pressure to the shutdown pressure).
 - f) Start with the integral equation for the conservation of energy and derive an expression for the amount of heat transfer to maintain a constant reservoir temperature during the wind-tunnel run.

