TRIGONOMETRY **Chapter 16 Session 2**

Identidades trigonométricas @ saco ouveros **fundamentales**

TRIGONOMETRÍA PARA LA VIDA

La trigonometría es importante en la humanidad porque con ella podemos calcular distancias como la del sol a la tierra sin la necesidad de recorrerla y se establecen por medio de triángulos, circunferencia u otros. La trigonometría en la vida real es muy utilizada, ya que podemos medir alturas o distancias, realizar medición de ángulo, entre otras cosas. Sirve para medir la distancia que hay entre dos puntos determinados empleando ciertos elementos como un triángulo rectángulo, escaleno, isósceles.

Identidades Trigonométricas Fundamentales

Identidades Recíprocas

$$senx.cscx = 1$$

$$cosx.secx = 1$$

$$tanx.cotx = 1$$

$$senx = \frac{1}{cscx}$$

$$cscx = \frac{1}{senx}$$

$$cosx = \frac{1}{secx}$$

$$secx = \frac{1}{cosx}$$

$$tanx = \frac{1}{cotx}$$

$$cotx = \frac{1}{tanx}$$

Identidades Por División

$$tanx = \frac{senx}{cosx}$$

$$cotx = \frac{cosx}{senx}$$

Identidades Pitagóricas

$$sen^{2}x + cos^{2}x = 1$$

$$sen^{2} = 1 - cos^{2}x$$

$$cos^{2}x = 1 - sen^{2}x$$

$$1 + tan^{2}x = sec^{2}x$$

$$tan^{2}x = sec^{2}x - 1$$

$$1 = sec^{2}x - tan^{2}x$$

$$1 + \cot^2 x = \csc^2 x$$

$$cot^2 x = \csc^2 x - 1$$

$$1 = \csc^2 x - \cot^2 x$$

Propiedades:

Si: sec x + tan x = a

Entonces:

$$sec x - tan x = \frac{1}{a}$$

Si: csc x + cot x = b

Entonces:

$$\csc x - \cot x = \frac{1}{b}$$

si: $\sec \phi - \tan \phi = \frac{3}{5}$, calcule:

 $P = 3(\sec\phi + \tan\phi) + 2$

Resolución:

Recordar:

Si: sec x + tan x = aEntonces:

$$\sec x - \tan x = \frac{1}{a}$$

Tenemos por dato

$$sec\phi - tan\phi = \frac{3}{5}$$

Por propiedad:

$$sec\phi + tan\phi = \frac{5}{3}$$

Nos piden:

$$P = 3(sec\phi + tan\phi) + 2$$

$$P = 3\left(\frac{5}{2}\right) + 2$$

Si: $\csc\alpha + \cot\alpha = 3$, calcule $E = 10 sen \alpha$

Resolución:

Tenemos:
$$csc\alpha + cot\alpha = 3$$
Por propiedad: $csc\alpha - cot\alpha = \frac{1}{3}$

$$csc\alpha - cot\alpha = \frac{1}{3}$$

$$2csc\alpha = \frac{10}{3}$$

$$csc\alpha = \frac{5}{3} \implies sen\alpha = \frac{3}{5}$$

Recordar:

Si: csc x + cot x = a**Entonces:**

$$\csc x - \cot x = \frac{1}{a}$$

Piden: $E = 10sen\alpha$

$$E = \frac{2}{10} \left(\frac{3}{5} \right)$$

$$\therefore E = 6$$

Si: $\sec \beta - \tan \beta = \frac{3}{5}$, calcule:

 $F = 10(sen\beta + cos\beta)$

Resolución:

Tenemos:
$$sec\beta - tan\beta = \frac{3}{5}$$

Tenemos: $sec\beta - tan\beta = \frac{3}{5}$ propiedad: $sec\beta + tan\beta = \frac{5}{3}$ Por propiedad:

$$2sec\beta = \frac{34}{15}$$

Piden:

$$F = 10(sen\beta + cos\beta)$$

$$F = 10\left(\frac{8}{17} + \frac{15}{17}\right) = 10\left(\frac{23}{17}\right)$$

$$\therefore F = \frac{230}{17}$$

Si:
$$\frac{1+\cos\alpha}{\sin\alpha} = 5$$

Calcule:
$$P = 13\cos\alpha$$

Resolución

Del dato:
$$\frac{1}{sen\alpha} + \frac{cos\alpha}{sen\alpha} = 5$$

Tenemos:
$$csc\alpha + cot\alpha = 5$$

Por $csc\alpha - cot\alpha = \frac{1}{2}$

propiedad: $csc\alpha - cot\alpha = \frac{1}{2}$

$$2csc\alpha = \frac{2}{3}$$

Piden:
$$P = 13\cos\alpha$$

$$P = 13\left(\frac{12}{13}\right)$$

$$\therefore P = 12$$

Si: $sen\phi + cos\phi = 1,2$

Reduzca: E = sen ϕ . cos ϕ + $\frac{7}{25}$

Resolución:

Del dato:
$$sen\phi + cos\phi = 1.2 = \frac{6}{5}$$

ELEVAMOS AL CUADRADO

$$sen^2\phi + 2sen\phi\cos\phi + \cos^2\phi = \frac{36}{25}$$

$$1 + 2sen\phi cos\phi = \frac{36}{25}$$

$$sen^2x + cos^2x = 1$$

$$2sen\phi cos\phi = \frac{11}{25}$$

$$sen\phi cos\phi = \frac{11}{50}$$

Piden:
$$E = sen\phi cos\phi + \frac{7}{25}$$

$$\mathbf{E} = \frac{11}{50} + \frac{7}{25} = \frac{25}{50}$$

$$\therefore E = \frac{1}{2}$$

Si: senx - cosx =
$$\frac{\sqrt{5}}{4}$$

Reduzca:
$$K = secx. cscx + \frac{1}{11}$$

Resolución:

Del dato:
$$sen x - cos x = \frac{\sqrt{5}}{4}$$

Elevamos al cuadrado

$$sen^2x - 2senx.\cos x + \cos^2 x = \frac{5}{16}$$

$$1 - 2senx. cosx = \frac{5}{16}$$

$$sen^2x + cos^2x = 1$$

$$\frac{11}{16} = 2senx.cosx$$

$$\frac{11}{32} = senx. cosx$$

$$secx. cscx = \frac{32}{11}$$

Piden:
$$K = secx.cscx + \frac{1}{11}$$

$$K = \frac{32}{11} + \frac{1}{11} = \frac{33}{11}$$

$$\therefore K = 3$$

Elimine x de las siguientes de las ecuaciones:

$$\cos x = \frac{1}{a+b}; \cot x = \frac{1}{a-b}$$

Resolución:

Del dato tenemos:

$$cosx = \frac{1}{a+b}$$

$$cotx = \frac{1}{a-b}$$

$$secx = a + b$$

$$tanx = a - b$$

Recordar:

Por identidad pitagórica:

$$1 + tan^2x = sec^2 x$$

$$1 + tan^2x = sec^2x$$

$$1 + (a - b)^2 = (a + b)^2$$

$$1 = (a + b)^2 - (a - b)^2$$

Por identidad de Legendre

$$4ab \equiv (a+b)^2 - (a-b)^2$$

$$\therefore 1 = 4ab$$

Como dato extra para reducir la expresión

E = 2cscx - senx el profesor de Trigonometría indicó usar las identidades trigonométricas fundamentales y la siguiente condición

$$1 + cos^2x = 2senx$$

Resolución:

Piden:
$$E = 2cscx - senx$$

$$E = 2\frac{1}{senx} - senx$$

$$E = \frac{2 - sen^2x}{senx} = \frac{2 - (1 - cos^2x)}{senx}$$

$$E = \frac{1 + \cos^2 x}{senx}$$

$$E = \frac{2senx}{senx}$$

Del dato tenemos: $1 + cos^2 x = 2senx$

$$\therefore E = 2$$