1. a. Let
$$\vec{u}, \vec{v}$$
 be vectors in V .

$$\vec{U} + \vec{V} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} + \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} U_1 + V_1 \\ U_2 + V_2 \end{bmatrix}$$

Since
$$\vec{u}$$
 and $\vec{\nabla}$ are in V , $u_1 \ge 0$, $u_2 \ge 0$, $v_1 \ge 0$, $v_2 \ge 0$.
Thus $u_1 + v_1 \ge 0$ and $u_2 + v_2 \ge 0$.

So
$$\vec{u} + \vec{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$$
 is in V .

b. Let
$$\vec{u} = []$$
 and $c = -1$.

Then
$$c\bar{u} = -1 = -1 = -1$$
 which is not in V.

$$H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \le 1 \right\}$$

Let
$$\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Both \vec{u} and \vec{v} are in \vec{H} .

$$\vec{u} + \vec{v} = [0] + [0] = [1]$$
 is not in H.

6. The zero polynomial is not of the form $a+t^2$ for some a in IR. Thus the set of all such polynomials is not a subspace of IPn.

OR

The set of all solynomials of the form $a+t^2$

The set of all polynomials of the form a+t2 for some a in IR is not closed under vector addition. For example.

 $(1+t^2)+(2+t^2)=3+2t^2$ which is not of the form $a+t^2$ for some a in IR.

The set of all polynomials of degree at most 3, with integer coefficients is not closed under scalar multiplication. For example,

 $\frac{1}{2}(t^3-t+1) = \frac{1}{2}t^3-\frac{1}{2}t+\frac{1}{2}$ would not have integer coefficients. 8. Let $S = \{ p(t) \text{ in } | P_n : p(0) = 0 \}$.

The zero polynomial in IPn is $Ot^n + Ot^{n-1} + ... + Ot + O$ or just O. S contains the zero polynomial, since P(t) = O for all t.

(2) Let p(t) and q(t) be polynomials in S. (p+q)(t) = p(t) + q(t) and so

$$(p+q)(0) = p(0) + q(0) = 0 + 0 = 0$$
.

Thus (A+q)(t) is in S.

(This can also be explained as the sum of polynomials with zero constant term, is a polynomial with zero constant term.)

3) Let p(t) be a polynomial in S, and c a constant in 18.

$$(CP(t) = C \cdot p(t))$$
 and so

$$(cp)(0) = c \cdot p(0) = c \cdot 0 = 0$$

Thus (cp)(t) is in S.

(This can also be explained as the product of a polynomial with zero constant term and a constant, is a polynomial with zero constant term.)

By the Subspace theorem, S is a

H= Span $\{\begin{bmatrix} 1\\ 2\end{bmatrix}\}$, This means H is a subspace by theorem 1.

subspace of 19.

II. If \vec{x} is a vector in \vec{W} then $\vec{x} = \begin{bmatrix} 5b+2c \\ b \end{bmatrix} = \begin{bmatrix} 5b \\ b \end{bmatrix} + \begin{bmatrix} 2c \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

for some constants b, c.

Thus $W = span \left\{ \begin{bmatrix} 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\}$.

By Theorem 1, W is a subspace of 183.

a. No, \$\vec{n}\$ is not in \{\vec{v}_1, \vec{v}_2, \vec{v}_3\} There are three vectors in &v, v, v, v3} b. There are an infinite number of vectors in Span & V, , V2, V3 }. C. In other words, is wi a linear combination of V, V2, Vs? 1 2 4 3 1 2 4 3 0 1 2 1 2 0 1 2 1 -1 3 6 2 0 5 10 5 There is an infinite number of solutions, so wis a linear combination of v, , v, v, Note V, + V2 = W.

Note $\vec{V}_1 + \vec{V}_2 = \vec{W}$. Thus \vec{W} is in the subspace spanned by $\vec{V}_1, \vec{V}_2, \vec{V}_3$.

Notice that
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 is not in the set of vectors of the form $\begin{bmatrix} 3a+b \\ a-5b \end{bmatrix}$ is not a subspace of $\begin{bmatrix} a-b \\ b-2 \end{bmatrix} = \begin{bmatrix} q \\ 0-q \\ 0 \end{bmatrix} + \begin{bmatrix} b \\ -1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$ for some constants a,b,c

Where $\begin{bmatrix} a \\ b \\ -1 \end{bmatrix} = \begin{bmatrix} a \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix}$

(2) Let A,B be matrices in H.

$$A+B = \begin{bmatrix} a_1 & a_2 \\ 0 & a_3 \end{bmatrix} + \begin{bmatrix} b_1 & b_2 \\ 0 & b_3 \end{bmatrix} = \begin{bmatrix} a_1+b_1 & a_2+b_2 \\ 0 & a_3+b_3 \end{bmatrix}$$

Thus A+B is in H.

3) Let A be a matrix in H and ca real number.

$$CA = C\begin{bmatrix} a_1 & a_2 \\ o & a_3 \end{bmatrix} = \begin{bmatrix} ca_1 & ca_2 \\ o & ca_3 \end{bmatrix}$$

Thus cA is in H.

By the Subspace Theorem, H is a subspace of Mexz.

26. a) Axiom 3 (vector addition is associative)

b) Axiom 5 (\vec{u} + ($-\vec{u}$) = \vec{o})

c) Axiom 4 (\vec{u} + \vec{o} = \vec{u})

42.3