CSC165H1 Winter 2018: Problem Set 2

By: Jacob Chmura, Conor Vedova, Eric Koehli February 7, 2018

1 AND vs. IMPLIES

(a) We are going to prove the statement: $\forall n \in \mathbb{N}, n > 15 \Rightarrow n^3 - 10n^2 + 3 \geqslant 165$. In this proof, we use the known fact about inequalities such that if a > b > 0 and c > d > 0, then ac > bd > 0.

Proof. Let $n \in \mathbb{N}$. Assume n > 15.

$$n > 15$$

 $n - 10 > 5$
 $n^2 - 10n > 5 \cdot 15 = 75$ (By fact)
 $n^3 - 10n^2 > 75 \cdot 15 = 375$
 $n^3 - 10n^2 + 3 > 378$
 $n^3 - 10n^2 + 3 \ge 165$

(b) We are going to disprove the statement: $\forall n \in \mathbb{N}, n > 15 \land n^3 - 10n^2 + 3 \ge 165$. In other words, we are going to prove the negation of this statement:

$$\exists n \in \mathbb{N}, n \leq 15 \lor n^3 - 10n^2 + 3 < 165.$$

Proof. Let
$$n = 1$$
. Then $n = 1 \leq 15$.

2 Ceiling functions

(a) Fact 1: $\forall x \in \mathbb{R}, \forall k \in \mathbb{Z}, k \geqslant x \Rightarrow k \geqslant \lceil x \rceil$.

Fact 2: $\forall x \in \mathbb{R}, \forall k \in \mathbb{Z}, \lceil x+k \rceil = \lceil x \rceil + k$. We will use fact 2 to prove the following statement: $\forall n, m \in \mathbb{N}, n < m \Rightarrow \left\lceil \frac{m-1}{m} \cdot n \right\rceil$.

Proof. Let $n, m \in \mathbb{N}$. Assume n < m.

$$\left[\frac{m-1}{m} \cdot n\right] = \left[\frac{nm}{m} - \frac{n}{m}\right] \\
= \left[n - \frac{n}{m}\right] \\
= \left[-\frac{n}{m} + n\right] \\
= \left[-\frac{n}{m}\right] + n \qquad \text{(By fact 2 and } \mathbb{N} \subseteq \mathbb{Z}\text{)} \\
= 0 + n = n \blacksquare \qquad \text{(Since } 0 \leqslant n < m\text{)}$$

(b) Prove that,

 $\forall n, m \in \mathbb{N}, 50 \mid nextFifty(n) \land 50 \mid m \Rightarrow nextFifty(n) \leqslant m \land nextFifty(n) \geqslant n$. For this proof, we will prove the contrapositive statement:

 $\forall n, m \in \mathbb{N}, nextFifty(n) > m \lor nextFifty(n) < n \Rightarrow 50 \nmid nextFifty(n) \lor 50 \nmid m.$

Proof. Let $n, m \in \mathbb{N}$.

Case 1: Assume nextFifty(n) > m. From our assumptions, we know that

$$50 \cdot \left\lceil \frac{n}{50} \right\rceil > m \Rightarrow \left\lceil \frac{n}{50} \right\rceil > \frac{m}{50}$$

It follows that $50 \nmid m$.

Case 2: Assume nextFifty(n) < n. From our assumptions,

$$50 \cdot \left\lceil \frac{n}{50} \right\rceil < n \Rightarrow \left\lceil \frac{n}{50} \right\rceil < \frac{n}{50}$$

It follows that $50 \nmid nextFifty(n)$.

TODO: This isn't complete.

3 Divisibility

(a) Prove the statement:

Prove the statement $\forall n \in \mathbb{N}, n \leq 2300 \Rightarrow (49 \mid n \Leftrightarrow 50(nextFifty(n) - n) = nextFifty(n)).$

We'll split this proof into two parts. For part 1, we will prove: $\forall n \in \mathbb{N}, n \leq 2300 \Rightarrow (49 \mid n \Rightarrow 50(nextFifty(n) - n) = nextFifty(n))$.

Proof. Let $n \in \mathbb{N}$. Assume that $n \leq 2300$ and assume that $\exists k \in \mathbb{Z}, n = 49k$. Let k be this number. We want to show that if the above is true, then $50 \left(nextFifty(n) - n \right) = nextFifty(n)$. Since n ranges from $0 \leq n \leq 2300$, it follows that k ranges from $0 \leq 49k \leq 2300 \Rightarrow 0 \leq k \leq 46$. Then,

$$50 \cdot \left(50 \left\lceil \frac{n}{50} \right\rceil - n\right) = 50 \cdot \left(50 \left\lceil \frac{49k}{50} \right\rceil - 49k\right)$$

$$= 50 \cdot \left(50 \left\lceil \frac{50 - 1}{50} \cdot k \right\rceil - 49k\right)$$

$$= 50 \cdot \left(50k - 49k\right)$$

$$= 50k$$
(By 2b since k i 50)
$$= 50k$$

On the other hand,

$$50 \cdot \left\lceil \frac{n}{50} \right\rceil = 50 \cdot \left\lceil \frac{49k}{50} \right\rceil$$
$$= 50 \cdot \left\lceil \frac{50 - 1}{50} \cdot k \right\rceil$$
$$= 50k$$

This completes the proof of part 1. We now need to prove,

$$\forall n \in \mathbb{N}, n \leqslant 2300 \Rightarrow \Big(50 \big(nextFifty(n) - n\big) = nextFifty(n) \Rightarrow 49 \mid n\Big).$$

Proof. Let $n \in \mathbb{N}$. Assume $n \leq 2300$ and that $50 \cdot \left(50 \cdot \left\lceil \frac{n}{50} \right\rceil - n\right) = 50 \left\lceil \frac{n}{50} \right\rceil$. We want to show that $\exists k_1 \in \mathbb{Z}, n = 49k_1$. Let $k_1 = \left\lceil \frac{n}{50} \right\rceil$. We have,

$$49k_1 = 49 \left\lceil \frac{n}{50} \right\rceil$$

$$= \left\lceil \frac{49n}{50} \right\rceil$$

$$= \left\lceil \frac{50 - 1}{50} \cdot n \right\rceil = n$$
(By 2b)

(b) Disprove the statement:

 $\forall n \in \mathbb{N}, \left(49 \mid n \Leftrightarrow 50 \cdot (nextFifty(n) - n) = nextFifty(n)\right)$. Which is logically equivalent to:

$$\forall n \in \mathbb{N}, \left(49 \mid n \Rightarrow 50(nextFifty(n) - n) = nextFifty(n)\right) \land \left(50(nextFifty(n) - n) = nextFifty(n) \Rightarrow 49 \mid n\right).$$

For this proof, we will prove that the negation is true. That is, we will prove the following statement:

$$\exists n \in \mathbb{N}, \left(49 \mid n \land 50 \cdot (nextFifty(n) - n) \neq nextFifty(n)\right) \lor \left(50 \cdot (nextFifty(n) - n) = nextFifty(n) \land 49 \nmid n\right)$$

Proof. Let n = 2450.

Then $\exists k \in \mathbb{Z}, n = 49k$. Let k = 50. Also,

$$50 \cdot \left(50 \cdot \left\lceil \frac{n}{50} \right\rceil - n\right) = 50 \cdot \left(50 \cdot \left\lceil \frac{2450}{50} \right\rceil - 2450\right)$$
$$= 50 \cdot \left(50 \cdot \left\lceil 49 \right\rceil - 2450\right)$$
$$= 50 \cdot \left(50 \cdot 49 - 2450\right)$$
$$= 50 \cdot \left(2450 - 2450\right)$$
$$= 50 \cdot 0 = 0$$

On the other hand,

$$50 \cdot \left\lceil \frac{n}{50} \right\rceil = 50 \cdot \left\lceil \frac{2450}{50} \right\rceil$$
$$= 50 \cdot \left\lceil 49 \right\rceil$$
$$= 50 \cdot 49 = 2450$$

Since $50 \cdot \left(50 \cdot \left\lceil \frac{n}{50} \right\rceil - n\right) \neq 50 \cdot \left\lceil \frac{n}{50} \right\rceil$, this completes the proof.

4 Functions

- (a) Let Bounded(f): $\exists k \in \mathbb{R}, \forall n \in \mathbb{N}, f(n) < k$, where $f : \mathbb{N} \to \mathbb{R}^{\geq 0}$ define the statement "f is bounded".
- (b) Prove $\forall f_1, f_2 : \mathbb{N} \to \mathbb{R}^{\geq 0}$, $Bounded(f_1) \wedge Bounded(f_2) \Rightarrow Bounded(f_1 + f_2)$. Proof. Let $f_1(n), f_2(n) : \mathbb{N} \to \mathbb{R}^{\geq 0}$. Assume $f_1(n)$ and $f_2(n)$ are bounded. That is, we assume

 $\exists k_1, k_2 \in \mathbb{R}, \forall n \in \mathbb{N}, f_1(n) < k_1 \land f_2(n) < k_2$. Let k_1 and k_2 be these values. We want to show that

 $\exists k \in \mathbb{R}, \forall n \in \mathbb{N}, (f_1 + f_2)(n) < k.$ Let $k = k_1 + k_2$. Then from our assumptions, we have,

$$f_1(n) < k_1$$
 and $f_2(n) < k_2$
 $f_1(n) + f_2(n) < k_1 + k_2$ (Adding the respective sides)
 $(f_1 + f_2)(n) < k_1 + k_2$ (By the definition of function addition)
 $(f_1 + f_2)(n) < k$

Since this shows that $f_1 + f_2$ is also bounded, this completes the proof.

(c) Prove or disprove the statement:

 $\forall f_1, f_2 : \mathbb{N} \to \mathbb{R}^{\geq 0}, Bounded(f_1 + f_2) \Rightarrow Bounded(f_1) \wedge Bounded(f_2).$ Proof. Let $f_1, f_2 : \mathbb{N} \to \mathbb{R}^{\geq 0}$. Assume $f_1 + f_2$ is bounded. That is, we assume $\exists k \in \mathbb{R}, \forall n \in \mathbb{N}, (f_1 + f_2)(n) < k$. Let k be this value. We want to show that $\exists k_1, k_2 \in \mathbb{R}, \forall n \in \mathbb{N}, f_1(n) < k_1 \wedge f_2(n) < k_2$. Let $k_1 = k$ and $k_2 = k$. Then, from our assumptions, we have

$$(f_1 + f_2)(n) < k$$

 $f_1(n) + f_2(n) < k$ (By the definition of function addition)
 $f_1(n) < k$ and $f_2(n) < k$ (Since $f_1(n), f_2(n) \in \mathbb{R}^{\geq 0}$)
 $f_1(n) < k_1$ and $f_2(n) < k_2$

Since this shows that f_1 and f_2 are bounded, this completes the proof.

This is now a biconditional statement.