Ispitna pitanja i zadaci iz Elektroničkih mjerenja i komponenti (3.dio)

Teorijska pitanja

1. Objasniti koja svojstva pasivnih komponentni možemo mjeriti i kako, te navesti načine napajanja, mjerenja i načine spajanja. Nabrojati mjerne metode.

Što možemo mjeriti

- 1. $|Z|, \varphi$ apsolutnu vrijednost i fazni kut impedancije
- 2. R, X otpor, reaktanciju
- 3. *G*, *B* vodljivost (konduktancija), susceptancija
- 4. $R, L, C + Q, tg\varphi$ otpor, faktor dobrote, faktor disipacije

Načini napajanja

- 1. konstantnim naponom (CV = constant voltage)
- 2. konstantnom strujom (CC = constant current)
- 3. konstantnom snagom (CP = constant power)

Utjecaj parazitnih elemenata nastoji se smanjiti spajanjem napajanja mjerenog dvopola putem strujnih priključnica (uobičajena oznaka HC, LC) i mjerila napona putem mjernih naponskih priključnica (uobičajena oznaka HP, LP). Osim toga, svi se kablovi oklapaju, a oklop se spaja na uzemljenje.

Načini mjerenja

Način mjerenja	Raspon	Priključnice
Dvopolni	100 Ω - 10 kΩ	Dvije: mjerne (+, -)
Tropolni	$100~\Omega$ - $10~\text{M}\Omega$	Tri: mjerne (+, -), uzemljenje
Četveropolni	10 mΩ - 10 kΩ	Četiri: naponske, strujne
Peteropolni	$10~\text{m}\Omega$ - $10~\text{M}\Omega$	Pet: naponske, strujne i uzemljenje
1' Ls ₁	Rs ₁ DUT	Rs ₂ Ls ₂ 2'

Slika 1

Kad je $|Z_{DUT}|$ velik parazitni elementi nadomjesne sheme manje utječu na točnost mjerenja.

Načini spajanja

Slika 2

- 1. Za mali $|Z_{DUT}|$ loše budući da je unutarnji otpor ampermetra spojen u seriju s impedancijom mjerenog dvopola
- 2. DUT neuzemljen nijedna priključnica mjerenog dvopola nije spojena na masu; DUT uzemljen preko impedancije ampermetra

Slika 3

- 1. $|Z_{DUT}|$ mali, loše
- 2. $|Z_{DUT}|$ veliki, neuzemljen

Prvi način spajanja je bolji za malu impedanciju $|Z_{DUT}|$, a drugi način je bolji za veliku impedanciju $|Z_{DUT}|$ (bar sam ja to tako shvatio kroz računanje impedancija).

Mjerne metode

- 1. mosne metode
- 2. U-I metode
- 3. rezonancijske metode
- 4. pretvorba mjerne veličine (u T ili f)
- 5. analizator mreža
- 6. reflektometrija

2. Objasniti mosnu metodu, dobre i loše strane.

Mosna metoda

Slika 4

$$\frac{Z_1}{Z_2} = \frac{Z_3}{Z_4}$$

Dobre strane:

- točnost $(10^{-3} \div 10^{-4} \%)$

Loše strane:

- rasipni kapaciteti ightarrow DUT ovisi o ω , Z_{uk} , Z_{DUT}
- vrlo teško podešavanje nule (dijagonale)
- ni CC ni CV (ne zna se niti struja i, niti napon u na otporu \rightarrow teško odrediti disipaciju)
- 3. Objasniti dobre i loše strane rezonancijskih metoda i način rada Q metra.

Rezonancijska metoda

Loše strane:

- mala točnost $(2 \div 5 \%)$
- potreba za izračunavanjem vrijednosti parametara DUT-a

Dobre strane:

- široko frekvencijsko područje (16 Hz ÷ 300 MHz)
- namještanje ω

Način rada Q metra

Slika 5

 L_{Sx} , R_{Sx} — ako ga želimo dovesti u rezonanciju dvopol mora biti induktivnog karaktera

$$U_C = \frac{U_g}{R_{Sx}} \left| \frac{1}{\omega C_S} \right| = U_g \frac{\omega L_{Sx}}{R_{Sx}} = kQ$$

$$\frac{1}{\omega C_S} = \omega L_{Sx} \rightarrow \text{ni CV ni CC}$$

Slika 6 Serijska supstitucija

Slika 7 Paralelna supstitucija

1. Zatvorena sklopka:

$$Q = \frac{\omega_{mj} L_S}{R_S}$$

$$L_S = \frac{1}{\omega_{mj}^2 C_{S1}}$$

$$R_S = \frac{1}{\omega_{mj} C_{S1} Q}$$

2. Otvorena sklopka:

$$Q = \frac{\omega_{mj} (L_S + L_x)}{R_S + R_x}$$

$$L_S + L_x = \frac{1}{\omega_{mj}^2 C_{S2}}$$

$$L_x = \frac{1}{\omega_{mj}^2} \left(\frac{1}{C_{S2}} - \frac{1}{C_{S1}} \right)$$

$$C_{S1} > C_{S2} \to L$$

$$C_{S1} < C_{S2} \to C$$

$$C_{S1} = C_{S2} \to R$$

4. Nacrtati shemu digitalnog Q metra i objasniti način rada.

Slika 8

Slika 9

$$\frac{R_{sx}}{2L_{sx}}t = \frac{\omega_0 R_{sx}}{2\omega_0 L_{sx}}t = \frac{2\pi t}{2QT_0} = \frac{\pi n T_0}{QT_0}$$

$$f_{mj} = \frac{1}{T_0} \qquad T = nT_0$$

Dobre strane:

- CV, malena L_S , nema promjenjivi oscilator

Loše strane:

- inherentna točnost ±1 (pogreška brojila)
- 5. Objasniti način rad U-I metode te navesti nedostatke.

U-I metoda

Loše:

- mala točnost
- ne može se namještati frekvencija
- 6. Objasniti način rada s pretvorbom mjerene veličine u vrijeme ili frekvenciju.

Točnost ovisi o: $2 \div 5 * 10^{-3}\%$

$$\begin{split} U_i &= \frac{U_3}{RC} \cdot t \\ &= -\frac{k_3 \varphi_x}{RC} \cdot t \\ \Delta T &= T_2 - T_1 \\ U_k &= \frac{k_3}{RC} \Delta T \cdot \varphi_x \qquad \qquad \varphi_x = \frac{U_k RC}{k_3 \Delta T} = \frac{k_4}{\Delta T} \end{split}$$

7. Nabrojati svojstva kojima se opisuje kakvoća mjernog izvora i ukratko ih opisati.

Svojstva:

- Stabilnost mjera sposobnosti održavanja stalne vrijednosti
 - Stabilnost frekvencije
 - o Stabilnost amplitude
- Točnost izlazne veličine za standardne izvore
- Točnost skale mjera točnosti s kojom se pomoću korisniku dostupnih komandi može namjestiti željena vrijednost izlazne veličine
 - Iskazivanje kao:
 - Postotak namještene vrijednosti (analogni instrumenti) do 0,5 %
 - Postotak pune skale (digitalni instrumenti) do 0,0001%
- 8. Objasniti razliku između stabilnosti i točnosti.

Stabilnost

- mjera sposobnosti izvora da održava namještenu vrijednost
- navodi se:
 - o dugotrajna (long term) stabilnost
 - kratkotrajna (short term) stabilnost
- za istosmjerne izvore stabilnost se određuje kao postotno odstupanje stvarne vrijednosti od namještene tijekom vremena
- red veličine dugotrajne stabilnosti 0,1 0,0001% namještene vrijednosti po danu, tjednu itd.
- za mjerne izvore periodičkih veličina određuje se stabilnost frekvencije izlaznog signala:
 - kao postupno odstupanje stvarne vrijednosti frekvencije tijekom vremena od namještene i iskazuje se za određeno razdoblje (dan, tjedan, mjesec, pa čak i godinu.)
 - \circ red veličine dugotrajne stabilnosti kreće se od 10^{-2} do 10^{-12}

Točnost

- izvor daje upravo onu vrijednost izlazne veličine koju želimo
- izražava se u postotnom ili relativnom odstupanju od nazivne veličine
- definira se za izvore koji daju stalnu ili niz stalnih izlaznih veličina, npr. za standardne izvore

Primjer

Ako se za neki izvor od 500 kHz zna da mu je točnost 10^{-6} , onda to znači da on na izlazu daje $500\ 000 \pm x\ Hz$, gdje x može biti bilo koji broj između 0 i 9.

9. Objasniti zašto unutrašnji otpor mjernih izvora predstavlja problem i navesti njegov red veličine.

Unutrašnji otpor kod mjernih izvora predstavlja problem jer zbog njega izvor nema konstantni izlazni napon odnosno struju na svojim vanjskim priključnicama – iznos napona ili struje ovisi o impedanciji tereta.

Red veličine unutrašnjeg otpora mjernih izvora:

- kod preciznih izvora istosmjernog napona: od $0.1 m\Omega$
- kod izvora sinusnog napona i posebnih valnih oblika standardizirane vrijednosti: $50~\Omega$, $75~\Omega$, $100~\Omega$, $600~\Omega$, $1k\Omega$ itd.
- kod izvora konstante struje: $3 10000 M\Omega$
- 10. Objasniti pojam valovitost kod izvora istosmjernog napona i struje.

Valovitost

Definira se s pomoću faktora valovitosti:

$$r = \frac{u_{ef}}{U_0}$$

Gdje je uef efektivna vrijednost superponirane izmjenične komponente, a U0 srednja vrijednost ispravljenog istosmjernog napona

Vrijednost faktora valovitosti stabiliziranih izvora istosmjernog napona kreće se u rasponu: 0.001% < r < 1%

Valovitost izlaznog napona ovisi o:

- · promjeni ulaznog napona
- promjeni otpora trošila
- 11. Objasniti pojam stabilizacije kod izvora istosmjernog napona i struje.

Stabilizacija

Stabilizacija je uklanjanje neželjenog kolebanja napona i struje

Stabilizacija podrazumijeva održavanje konstantnosti izlaznog napona i struje uz predviđene promjene:

- ulaznog napona
- izlaznog opterećenja
- temperature

Relativna promjena izlaznog napona:

$$\frac{dU_{t}}{U_{t0}} = \frac{1}{k_{n}} \cdot \frac{dU_{ul}}{U_{ul0}} + \frac{1}{k_{i}} \cdot \frac{dI_{t}}{I_{t0}}$$

Gdje su k_n i k_i i koeficijenti naponske i strujne stabilizacije.

Stabilizator je to bolji što su vrijednosti koeficijenata \boldsymbol{k}_n i \boldsymbol{k}_i veće.

12. Objasniti izvore referentnog napona, dati primjer te opisati njihovu temperaturnu ovisnost.

Izvori referentnog napona

Izvori male snage, veoma stabilnog napona točno poznate vrijednosti

Redovito se izvode stabilizirani s pomoću Zener diode

• Takve diode izvode se kao posebne elektroničke komponente (npr. ADR01, LM 4030)

Temperaturna ovisnost

Primjer:

Slika 10 LM 4030 - temperaturna ovisnost

Termostatiranjem i pažljivom konstrukcijom moguće je postići vrhunska svojstva:

- faktor naponske i strujne stabilizacije bolji od 0,000 01%
- mogućnost ugađanja napona s razlučivošću 1 🗹 V

13. Objasniti pojam faktora izobličenja ili distorzije mjernih izvora sinusnog valnog oblika.

Faktor izobličenja (distorzije)

Mjeri odstupanje generiranog valnog oblika od sinusnog

Izražava se s pomoću faktora harmoničnog izobličenja kn koji je mjera utjecaja viših harmoničnih članova (na frekvencijama $n*\omega_0$, gdje je ω_0 osnovna frekvencija), gdje su U_n amplitude viših harmoničkih članova.

$$k_n = \frac{\sqrt{U_2^2 + U_3^2 + \dots + U_n^2}}{U_1}$$

14. Nabrojati i opisati izvedbe izlaznih stupnjeva mjernih izvora.

Slika 11 Asimetričan ulaz

Slika 12 Plivajući ulaz

Slika 13 Simetričan ulaz

Asimetričan izlaz:

 Dvije priključnice od kojih je jedna interno u samom izvoru vezana za masu mjernog uređaja

Plivajući izlaz:

• Tri priključnice, a nijedna izlazna stezaljka nije uzemljena, već se po potrebi može kratko spojiti s masom bilo +, bilo - priključnica

Simetričan izlaz:

- Tri priključnice, napon + stezaljke uvijek jednak je naponu stezaljke prema masi, samo sa suprotnim predznakom
- 15. Objasniti temeljni princip rada oscilatora.

Oscilatori

- Pojačanje je definirano s: A = u2/u1
- Čimbenik povratne veze: $\beta = u3/u2$
- Za trajno održavanje sinusne oscilacije: $u_3=u_1$ i po modulu i po fazi
- Uloga četveropola povratne veze jest u vraćanju na ulaz dijela pojačanog napona $u_3=\beta\cdot \mathbb{D}_2=u_1$ uz uvjet $u_3=u_1$ dobiva se Barkhausenov uvjet: $\beta\cdot A=1$
- 16. Objasniti izvedbu mjernog izvora za niske frekvencije realiziranog kako RC oscilator s Wienovim mostom.

Kontinuirana promjena frekvencije promjenom vrijednosti potenciometra R, skokovita promjenom vrijednosti kondenzatora C.

Radi jednostavnosti: $R_1=R_2=R$, $C_1=C_2=C$

$$f_0 = \frac{1}{2\pi RC}$$

Faktor povratne veze mora biti:

$$\beta = \frac{u_2}{u_1} = \frac{1}{3} \operatorname{uz} \varphi = 0^{\circ}$$

Za trajno podržavanje sinusnih oscilacija mora biti:

$$A = 3$$
, odnosno: $R_3 = R_4$

17. Objasniti izvedbu mjernog izvora za visoke frekvencije realiziranog s LC oscilatorom, te Hartleyevim oscilatorom.

Izvor s LC oscilatorom

Dobra svojstva:

- jednostavnost,
- stabilnost frekvencije, i
- malo izobličenje valnog oblika

Stabilnost frekvencije izravno je razmjerna faktoru dobrote Q:

$$Q = \frac{R_p}{\omega_0 L}$$

Krug oscilira na frekvenciji:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Hartley-ev oscilator

- eta grana određena je odvojkom na zavojnici L
- od 30 *kHz* do nekoliko *MHz*
- 18. Kako se realizira mjerni izvor visoke frekvencije s kremenom kristala te koje su mu prednosti.

Oscilator s kremenom kristala

19. Što su to vobleri i kako rade?

Vobleri

- Mjerni izvori kojima se frekvencija može neprekinuto mijenjati u točno određenu iznosu i točno određenu vremensku intervalu.
- Frekvencija se mijenja naponskim upravljanjem jednog od parametara koji u oscilatoru određuju frekvenciju
- Rabe se u frekvencijskoj analizi četveropola
- Prikaz na zaslonu katodnog osciloskopa
- Trenutna frekvencija: $f = f_0(1 + k \cdot u_m)$, gdje je f_0 osnovna ili nosiva frekvencija
- Modulacijski napon može biti linearan ili logaritmički

20. Objasniti rad generatora funkcija i dati njegovu blok shemu.

Generator funkcija

Mjerni izvori koji osim sinusnog valnog oblika mogu generirati i druge valne oblike: trokutasti i pravokutni, te asimetrične osnovne valne oblike (impulsi, pilasti napon)

Prednosti:

- širok frekvencijski opseg (od 0,0005 Hz do nekoliko MHz)
- mogućnost istodobnog generiranja različitih valnih oblika
- upotreba istog izvora za mjerenje odziva sustava na: sinusnu pobudu (stacionarno stanje), pravokutni napon (prijelazne pojave)
- konstrukcijskih jednostavno izvesti promjenu frekvencije u širokom opsegu (1: 100, pa čak $1:10^5$) primjena kao vobler

21. Kako se sintetizira sinusni valni oblik?

Koristi se četveropol čija je prijenosna karakteristika podešena tako da uz trokutasti napon na ulazu, daje sinusni na izlazu.

ovisi o željenoj frekv. rezolucijije diodno-otpornička mreža, a prijenosna karakteristika sastavljena je od osječaka pravaca.

22. Kako rade sintetizatori frekvencije?

Sintetizatori frekvencije su izvori promjenljive (podesive), veoma stabilne frekvencije.

Stabilni oscilatori (npr. kremeni) daju samo jednu frekvenciju, i osim u vrlo uskim granicama nije ju moguće promijeniti.

Izlazna frekvencija sintetizatora frekvencije dobiva se množenjem, dijeljenjem, zbrajanjem, odbijanjem osnovne frekvencije standardnog oscilatora, a upotrebom selektivnih filtara izdvajaju se tražene frekvencije.

Stabilni kremeni oscilator dovodi se na neki nelinearni element (obično "step-recovery" dioda) koja generira spektar frekvencija bogat višim harmonicima.

S pomoću uskopojasnog filtra izdvaja se niz frekvencija, koje se dovode na niz djelitelja (\div 10), a njihov broj ovisi o željenoj frekvencijskoj rezoluciji.

23. Objasniti načelo direktne digitalne sinteze.

DDS (Direct Digital Synthesis)

24. Što su to analizatori spektra te što prikazuju?

Spektar signala

- Prikaz signala u području frekvencija (za razliku od prikaza u vremenskoj domeni)
- Spektar nastaje rastavljanjem signala na sinusne titraje
- Matematički se spektar F(ω) signala f(t) dobiva pomoću Fourierove transformacije:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

Analizator spektra

Uređaj koji prikazuje spektar signala.

Prikazuje se:

- spektar amplituda
- spektar faza
- energetski spektar (kvadrat amplituda)

25. Koje sve spektre razlikujemo te ih pojedinačno pojasniti?

Vrste spektra

- diskretni spektar periodičke funkcije
- kvaziharmonički spektar miješanje signala dviju frekvencija
- kontinuirani spektar neperiodičke funkcije

26. Opisati rad analizatora spektra s paralelnim načinom analize.

- Cjelokupan periodički signal dovede se na ulaz paralelno smještenih pojasnih filtara
- Dobivaju se amplitude na frekvencijama na koje su filtri podešeni
- Ako harmonički članovi spektra padaju u propusno područje filtra, izlazni naponi filtra očitovat će se kao amplitude spektra
- Sastoji se od: širokopojasnog pojačala, stupnja za miješanje, jednostavnih i jeftinih filtara, pretvornika izmjeničnog u istosmjerni napon

Prednosti:

- kratko vrijeme analize
- promatranje spektra jednokratnih impulsa

Nedostaci:

• složeni i skupi: sastoje se od mnogo filtara

- 27. Objasniti princip miješanja frekvencija.
 - Omogućuje transpoziciju spektra signala iz jednog frekvencijskog područja u drugo
 - Provodi se dovođenjem spektra signala i napona poznate frekvencije na nelinearni element (najčešće dioda) čime se javljaju i drugi harmonički članovi, kao i zbroj i razlika frekvencija

Aproksimacija karakteristike diode:

$$i = a_0 + a_1 u + a_2 u^2$$

Suma napona koja se dovodi na nelinearni element:

$$u_1 + u_2 = U_1 \sin \omega_1 t + U_2 \sin \omega_2 t$$

Struja na diodi:

$$\begin{split} & i = a_0 + a_1 U_1 \sin \omega_1 t + a_1 U_2 \sin \omega_2 t + \frac{a_2}{2} U_1^2 + \frac{a_2}{2} U_2^2 - \\ & - \frac{a_2}{2} U_1^2 \cos 2\omega_1 t - \frac{a_2}{2} U_2^2 \cos 2\omega_2 t + \frac{a_2}{2} U_1 U_2 \cos \left(\omega_1 - \omega_2\right) t - + \frac{a_2}{2} U_1 U_2 \cos \left(\omega_1 + \omega_2\right) t \end{split}$$

Za krivulju n-tog reda postoje:

- harmonički članovi n-tog reda
- zbroj i razlike frekvencija oblika: $n \cdot \omega_1 \pm m \cdot \omega_2$

Produkt dvaju sinusoida:

$$\sin \omega_1 t \cdot \sin \omega_2 t = -\frac{1}{2} \Big[\cos \left(\omega_1 + \omega_2 \right) t - \cos \left(\omega_1 - \omega_2 \right) t \Big]$$

- 28. Opisati rad analizatora spektra sa slijednim načinom analize.
 - Spektar se analizira samo jednim filtrom
 - Miješa se ulazni signal i napon oscilatora (heterodinski princip), čime se frekvencije ulaznog signala redom transponiraju u pojasno područje filtra
 - Područje frekvencija od 5Hz do 33GHz, a s posebnim predmješalom do 325GHz

Princip rada:

- ulazni signal frekvencije spektra f_{xn} miješa se promjenjivom frekvencijom oscilatora fop dajući sumu $f_{xn}+f_{op}$ i razliku $f_{xn}-f_{op}$ frekvencija
- uskopojasnim filtrom izdvaja se $f_m = f_{xn} f_{op}$
- slijedi demodulacija i niskofrekvencijsko pojačanje čime se dobiva vrijednost amplitude signala i vertikalni otklon na zaslonu katodne cijevi
- · pilasti napon:
 - daje horizontalni otklon na zaslonu, i upravlja promjenjivom frekvencijom oscilatora:
 - linearno: $f_{ov} = f_0(1 + k_n \square u_v)$
 - logaritamski: $f_{op} = f_0 \cdot log(1 + k_n \square u_p)$
- promjenom frekvencije oscilatora f_{op} , uz čvrstu centralnu frekvenciju f_m pojačavaju se različite frekvencije $f_{xn}=f_{op}+f_m$, a budući da se linearna promjena pilastog napona može napisati kao $u_p=k_p\cdot t$ dobivamo: $f_{op}=f_0(1+k_n\, \mathbb{E} k_p\cdot t)$ koja se još naziva klizna frekvencija
- 29. Kako se definira klizna frekvencija i objasniti što se dešava pri velikim brzinama njezine promjene.

Klizna frekvencija

$$f_{ov} = f_0(1 + k_n \mathbf{Z} k_v \cdot t)$$

Brzina promjene klizne frekvencije:

$$\gamma = \frac{df_{op}(t)}{dt} = k_n \, \mathbb{E} k_p \cdot f_0$$

Velika brzina promjene klizne frekvencije izaziva niz izobličenja i pogrešaka u prikazu spektra:

- 1. smanjuje se amplituda A pojedinih komponenata spektra
- 2. pomiče se središnja frekvencija f_{sr} propusnog područja filtra
- 3. proširuje se propusno područje filtra ΔF_{din}
- 30. Objasniti princip rada digitalnih analizatora spektra.

Analiza spektra može se provesti računski tako da se numerički računaju pojedini koeficijenti Fourier-ova reda, prema izrazima u diskretnoj formi:

$$A_k = \sum_{i=0}^{M-1} Y_i(i\Delta t) \cos \frac{2\pi i}{M} k$$

$$B_k = \sum_{i=0}^{M-1} Y_i(i\Delta t) \sin \frac{2\pi i}{M} k$$

Gdje k poprima vrijednosti iz niza prirodnih brojeva: k = 1, 2, 3, ...

Amplituda svakog člana računa se prema izrazu:

