CG1111: Engineering Principles and Practice I

DC Circuit Principles:

Thevenin Equivalent Circuit

Concept of Equivalent Circuit

Simple equivalent circuit with just 1 source & 1 resistance

- Sometimes, we have a load that is connected to a complex circuit via only two terminals
- If we are only interested in the I-V characteristics across the load, it is useful to model the complex circuit using a very simple "equivalent circuit" that gives the <u>same I-V characteristics</u>

Thevenin Equivalent Circuit

- The equivalent circuit is called a "Thevenin equivalent circuit" if it consists of just an ideal voltage source and a series resistance
 - -Ideal voltage source called "Thevenin voltage" (V_T)
 - -Series resistance called "Thevenin resistance" (R_T)

Recall: Battery's Equivalent Circuit

© Encyclopædia Britannica, Inc.

 Battery's equivalent circuit is actually a Thevenin equivalent circuit!

Finding Thevenin Voltage

- Notice that the open-circuit voltage V_{oc} of a Thevenin equivalent circuit is equal to its V_{T} ?
- Recall that the I-V behaviour of the Thevenin equivalent circuit must be the same as the I-V behaviour of the complex circuit

Hence, V_T can be obtained by finding V_{oc} across the 2 terminals of the complex circuit

Finding Thevenin Resistance

• Notice that we can find R_T using Ohm's Law if we know its short-circuit current I_{sc} ?

$$R_{\rm T} = \frac{V_{\rm T}}{I_{\rm sc}}$$

• To be an equivalent circuit, the $I_{\rm sc}$ of our Thevenin equivalent circuit must be equal to the $I_{\rm sc}$ of the complex circuit

Hence, R_T can be obtained using Ohm's Law after / finding I_{sc} across the 2 terminals of the complex circuit

Experimental Method to Find R_T

• If we were to determine $R_{\rm T}$ experimentally using the previous approach, there is a risk that $I_{\rm sc}$ may be large

 It is safer to connect the circuit to multiple resistive loads and then use an alternative

graphical approach

Another Analytical Method to Find R_T

- If the original electrical circuit consists of independent voltage sources only,
 - 1. Replace all voltage sources with a short-circuit (0 V); this results in a purely resistive network
 - 2. Find the equivalent resistance between the two terminals

Example

Find the Thevenin equivalent circuit across nodes a & b

[Answer: $V_T = 15 \text{ V}$, $R_T = 4 \Omega$]

Thevenin Equivalent Circuit of Two Parallel Batteries

Finding Thevenin Voltage V_{T}

Thevenin Equivalent Circuit of Two Parallel Batteries

Finding Thevenin Resistance R_T

THANK YOU