MECHANISTIC INTERPRETABIL-

ITY ON (MULTI-TASK) IRRE-

DUCIBLE INTEGER IDENTIFIERS

Noah Syrkis

February 26, 2025

1 | Mechanistic Interpretability

2 | Modular Arithmetic

3 | Grokking on $\mathcal{T}_{\text{miiii}}$

4 | Embeddings

5 | Neurons

"This disgusting pile of matrices is actually just an astoundingly poorly written, elegant and consice algorithm" — Neel Nanda¹

¹Not verbatim, but the gist of it

▶ Sub-symbolic nature of deep learning obscures model mechanisms

- ▶ Sub-symbolic nature of deep learning obscures model mechanisms
- ▶ No obvious mapping from the weights of a trained model to math notation

- ▶ Sub-symbolic nature of deep learning obscures model mechanisms
- ▶ No obvious mapping from the weights of a trained model to math notation
- ▶ MI is about reverse engineering these models, and looking closely at them

- ▶ Sub-symbolic nature of deep learning obscures model mechanisms
- ▶ No obvious mapping from the weights of a trained model to math notation
- ▶ MI is about reverse engineering these models, and looking closely at them
- ▶ Many low hanging fruits / practical botany phase of the science

- ▶ Sub-symbolic nature of deep learning obscures model mechanisms
- ▶ No obvious mapping from the weights of a trained model to math notation
- ▶ MI is about reverse engineering these models, and looking closely at them
- ▶ Many low hanging fruits / practical botany phase of the science
- ▶ How does a given model work? How can we train it faster? Is it safe?

1.1 | Grokking

► Grokking [1] is "sudden generalization"

Figure 1: Grokking

1.1 | Grokking

- ► Grokking [1] is "sudden generalization"
- ▶ MI (often) needs a mechanism

Figure 1: Grokking

1.1 | Grokking

- ► Grokking [1] is "sudden generalization"
- ► MI (often) needs a mechanism
- ▶ Grokking is thus convenient for MI

Figure 1: Grokking

2 | Modular Arithmetic

- ▶ "Seminal" MI paper by Nanda et al. (2023) focuses on modular addition (\mathcal{T}_{nanda})
- ▶ Their final setup trains on p = 113
- ► They train a one-layer transformer
- \blacktriangleright We call their task $\mathcal{T}_{\mathrm{nanda}}$

$$\mathcal{T}_{\mathrm{nanda}} = (x_0 + x_1) \operatorname{mod} p, \forall x_0, x_1 \quad (1.1)$$

$$\mathcal{T}_{\mathrm{miiii}} = \left(x_0 p^0 + x_1 p^1\right) \bmod q, \forall q < p(1.2)$$

2 | Modular Arithmetic

- ▶ "Seminal" MI paper by Nanda et al. (2023) focuses on modular addition (\mathcal{T}_{nanda})
- ▶ Their final setup trains on p = 113
- ► They train a one-layer transformer
- \blacktriangleright We call their task $\mathcal{T}_{\mathrm{nanda}}$
- \blacktriangleright And ours we call $\mathcal{T}_{\mathrm{miiii}}$

$$\mathcal{T}_{\text{nanda}} = (x_0 + x_1) \operatorname{mod} p, \forall x_0, x_1 \quad (1.1)$$

$$\mathcal{T}_{\mathrm{miiii}} = \left(x_0 p^0 + x_1 p^1\right) \operatorname{mod} q, \forall q < p(1.2)$$

2 | Modular Arithmetic

- $ightharpoonup \mathcal{T}_{\mathrm{miiii}}$ is non-commutative ...
- \blacktriangleright ... and multi-task: q ranges from 2 to 109^1
- $ightharpoonup \mathcal{T}_{\mathrm{nanda}}$ use a single layer transformer
- ▶ Note that these tasks are synthetic and trivial to solve with conventional programming
- ▶ They are used in the MI literature to turn black boxes opaque

¹Largest prime less than p = 113

Figure 2: $\mathbb{N} < p^2$ multiples of 13 or 27 (left) 11 (mid.) or primes (right)

3 | Grokking on $\mathcal{T}_{\text{miiii}}$

- ► For two-token samples, plot them varying one on each axis (Figure 3)
- ▶ When a matrix is periodic use Fourier
- ► Singular value decomposition

Left side singular value vectors capturing 50 % of the variance (nanda)

Figure 3: Top singular vectors of $\mathbf{U}_{W_{E_{\mathcal{T}_{\mathrm{nanda}}}}}$ (top), varying x_0 and x_1 in sample (left) and freq. (right) space in $W_{\mathrm{out}_{\mathcal{T}_{\mathrm{miiii}}}}$

3 | Grokking on $\mathcal{T}_{\text{miiii}}$

- ▶ The model groks on $\mathcal{T}_{\text{miiii}}$ (Figure 4)
- ▶ Needed GrokFast [3] on compute budget
- ► Final hyperparams are seen in Table 1

rate	λ	wd	d	lr	heads
$\frac{1}{10}$	$\frac{1}{2}$	$\frac{1}{3}$	256	$\frac{3}{10^4}$	4

Table 1: Hyperparams for $\mathcal{T}_{\text{miiii}}$

Figure 4: Training (top) and validation (bottom) accuracy during training on $\mathcal{T}_{\text{miiii}}$

4 | Embeddings

How the embedding layer deals with the difference between $\mathcal{T}_{\rm nanda}$ and $\mathcal{T}_{\rm miiii}$

4.1 | Correcting for non-commutativity

▶ The position embs. of Figure 5 reflects that $\mathcal{T}_{\text{nanda}}$ is commutative and $\mathcal{T}_{\text{miiii}}$ is not

Positional embeddings

Figure 5: Positional embeddings for $\mathcal{T}_{\text{nanda}}$ (top) and $\mathcal{T}_{\text{miiii}}$ (bottom).

4.1 | Correcting for non-commutativity

- ▶ The position embs. of Figure 5 reflects that $\mathcal{T}_{\text{nanda}}$ is commutative and $\mathcal{T}_{\text{miiii}}$ is not
- ▶ Maybe: this corrects non-comm. of $\mathcal{T}_{\text{miiii}}$?
- \blacktriangleright Corr. is 0.95 for $\mathcal{T}_{\mathrm{nanda}}$ and -0.64 for $\mathcal{T}_{\mathrm{miiii}}$

Positional embeddings

Figure 5: Positional embeddings for $\mathcal{T}_{\text{nanda}}$ (top) and $\mathcal{T}_{\text{miiii}}$ (bottom).

4.2 | Correcting for multi-tasking

- ▶ For $\mathcal{T}_{\text{nanda}}$ token embs. are essentially linear combinations of 5 frequencies (ω)
- \blacktriangleright For $\mathcal{T}_{\mathrm{miiii}}$ more frequencies are in play
- \blacktriangleright Each $\mathcal{T}_{\mathrm{miiii}}$ subtask targets unique prime
- ▶ Possibility: One basis per prime task

Figure 6: $\mathcal{T}_{\text{nanda}}$ (top) and $\mathcal{T}_{\text{miiii}}$ (bottom) token embeddings in Fourier basis

4.3 | Sanity-check and task-mask

- ▶ Masking $q \in \{2, 3, 5, 7\}$ yields we see a slight decrease in token emb. freqs.
- \blacktriangleright Sanity check: $\mathcal{T}_{\text{baseline}}$ has no periodicity
- ▶ The tok. embs. encode a basis per subtask?

Figure 7: $\mathcal{T}_{\text{baseline}}$ (top), $\mathcal{T}_{\text{miiii}}$ (middle) and $\mathcal{T}_{\text{masked}}$ (bottom) token embeddings in Fourier basis $_{10 \text{ of } 19}$

5 | Neurons

- Figure 8 shows transformer MLP neuron activations as x_0 , x_1 vary on each axis
- \blacktriangleright Inspite of the dense Fourier basis of $W_{E_{\mathcal{T}_{\mathrm{miiii}}}}$ the periodicity is clear

Figure 8: Activations of first three neurons for $\mathcal{T}_{\text{nanda}}$ (top) and $\mathcal{T}_{\text{miiii}}$ (bottom)

5 | Neurons

- ► (Probably redundant) sanity check: Figure 9 confirms neurons are periodic
- \blacktriangleright See some freqs. ω rise into significance
- ▶ Lets log $|\omega > \mu_{\omega} + 2\sigma_{\omega}|$ while training

Figure 9: FFT of Activations of first three neurons for $\mathcal{T}_{\text{nanda}}$ (top) and $\mathcal{T}_{\text{miiii}}$ (bottom)

Figure 10: Neurons as archive for $\mathcal{T}_{\text{basline}}$

Figure 11: Neurons as algorithm $\mathcal{T}_{\text{miiii}}$

Evolution of active frequencies (ω) through time (log)

Figure 12: Number of neurons with frequency ω above the theshold $\mu_{\omega} + 2\sigma_{\omega}$

- ▶ Neurs. periodic on solving $q \in \{2, 3, 5, 7\}$
- ▶ When we generalize to the reamining tasks, many frequencies activate (64-sample)
- ▶ Those ω 's are not useful for memory and not useful after generalization

time	256	1024	4096	16384	65536
$ \omega $	0	0	10	18	10

Table 2: active ω 's through training

Figure 13: Figure 12 (top) and validation accuracy from Figure 4 (bottom)

- ▶ GrokFast [3] shows time gradient sequences is (arguably) a stocastical signal with:
 - ► A fast varying overfitting component
 - ► A slow varying generealizing component
- \blacktriangleright My work confirms this to be true for $\mathcal{T}_{\text{miiii}}$...
- ... and observes a structure that seems to fit *neither* of the two

- ► Future work:
 - ▶ Modify GrokFast to assume a third stochastic component
 - ▶ Relate to signal processing literature
 - ▶ Can more depth make tok-embedding sparse?

References

- [1] A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra, "Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets," no. arXiv:2201.02177. arXiv, Jan. 2022. doi: 10.48550/arXiv.2201.02177.
- [2] N. Nanda, L. Chan, T. Lieberum, J. Smith, and J. Steinhardt, "Progress Measures for Grokking via Mechanistic Interpretability," no. arXiv:2301.05217. arXiv, Oct. 2023.
- [3] J. Lee, B. G. Kang, K. Kim, and K. M. Lee, "Grokfast: Accelerated Grokking by Amplifying Slow Gradients," no. arXiv:2405.20233. Jun. 2024.

A | Stochastic Signal Processing

We denote the weights of a model as θ . The gradient of θ with respect to our loss function at time t we denote g(t). As we train the model, g(t) varies, going up and down. This can be thought of as a stocastic signal. We can represent this signal with a Fourier basis. GrokFast posits that the slow varying frequencies contribute to grokking. Higer frequencies are then muted, and grokking is indeed accelerated.

B | Discrete Fourier Transform

Function can be expressed as a linear combination of cosine and sine waves. A similar thing can be done for data / vectors.

C | Singular Value Decomposition

An $n \times m$ matrix M can be represented as a $U\Sigma V^*$, where U is an $m \times m$ complex unitary matrix, Σ a rectangular $m \times n$ diagonal matrix (padded with zeros), and V an $n \times n$ complex unitary matrix. Multiplying by M can thus be viewed as first rotating in the m-space with U, then scaling by Σ and then rotating by V in the n-space.