Biomathématiques 2

Analyse fonctionnelle

David Causeur

Laboratoire de Mathématiques Appliquées

Agrocampus Ouest

IRMAR CNRS UMR 6625

http://www.agrocampus-ouest.fr/math/causeur/

Modèles bio-mathématiques

- Modélisation compartimentale d'une cinétique

Croissance d'un organisme (Biologie du développement, Scott F. Gilbert)

Modèle mathématique de développement : f fonction

x : volume corporel, y : volume de la tête

$$y = f(x)$$

Modèle allométrique

Un modèle de développement : le modèle allométrique

Les accroissements relatifs infinitésimaux de y sont proportionnels au rapport y/x.

$$\lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} = \beta \frac{f(x)}{x}$$

où β est le coefficient d'allométrie.

Exercice. Si on considère que la taille d'un enfant à la naissance est de 50 cm, celle de sa tête du quart, tracer la courbe représentative de *f* dans les cas suivants :

- β < 1 (développement précoce)
- $\beta = 1$ (isométrie)
- $\beta > 1$ (développement tardif)

Dépôt des lipides chez le porc

Modèles bio-mathématiques

Modèle allométrique : x : poids de l'animal, y : poids des lipides

- Le modèle décrit-il bien la réalité ?
- Si oui, quelle valeur pour β ?

Efficacité d'un traitement fongicide

pour chaque plantule :

RACE sensible

RACE résistante

différentes doses

Régularité d'une fonction

Groupe	Race	Dose	Sporu-	Prop. de	Nombre de
			-lations	sporulations	plantules
1	S	0,001	5	0.71	7
2	S	0,001	6	0.86	7
3	S	0,001	7	1.00	7
4	S	0,001	7	1.00	7
5	S	0,001	7	1.00	7
6	S	0,001	5	0.71	7
7	S	0,02	7	1.00	7
8	S	0,02	7	1.00	7
:	÷	÷	÷	÷	

Efficacité d'un traitement fongicide

Modèle du risque de sporulation

Modèle probabiliste de la sporulation : pour chaque plantule,

$$Y = \begin{cases} 1 & \text{si sporulation} \\ 0 & \text{sinon} \end{cases}$$

Risque de sporulation : pour une plantule avec log-dose = x,

$$\mathbb{P}_{x}(Y=1) = \pi(x)$$

Modèle du risque de sporulation

Modèle probabiliste de la sporulation : pour chaque plantule,

$$Y = \begin{cases} 1 & \text{si sporulation} \\ 0 & \text{sinon} \end{cases}$$

Modèle probabiliste de la sporulation : pour chaque plantule,

$$Y = \left\{ egin{array}{ll} 1 & ext{si sporulation} \\ 0 & ext{sinon} \end{array}
ight.$$

Risque de sporulation : pour une plantule avec log-dose = x,

$$\mathbb{P}_{x}(Y=1) = \pi(x)$$

Modèle du risque :

Modèles bio-mathématiques

$$\ln\left[\frac{\pi(x)}{1-\pi(x)}\right] = \beta\left[x-\alpha\right]$$

Ajuster le modèle à des observations : évaluer α et β

Plan du cours

- Modèles bio-mathématiques
- Ponction à valeurs réelles Fonction d'une variable réelle Fonction de deux variables réelles
- 3 Régularité d'une fonction Continuité et dérivabilité Intégrale d'une fonction
- 4 Equations différentielles Equations linéaires Modélisation compartimentale d'une cinétique

Fonction d'une variable réelle

DÉFINITION

 $f: \mathcal{D}_f \to \mathbb{R}$ Fonction d'une variable réelle à valeurs réelles $x \mapsto f(x)$ image de x par f

DÉFINITION

- Si y = f(x), y est l'antécédent de x par f.
- Image de $f: \{f(x), x \in \mathcal{D}_f\}$

Courbe représentative d'une fonction

DÉFINITION

 C_f : courbe d'équation y = f(x) ou encore $\{(x, f(x)), x \in D_f\}$

Fonctions usuelles

f	f(x)	\mathcal{D}_{f}
Indicatrice	$\mathbb{1}_A(x) = 1$ si $x \in A$, 0 sinon	\mathbb{R}
Linéaire	$\beta_0 + \beta_1 x$	\mathbb{R}
Puissance	${m \chi}^{lpha}$	$\mathbb{R}_+^* =]0, +\infty[$
Polynômes	$\beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_k x^k$	\mathbb{R}
Exponentielle	exp(x)	\mathbb{R}
Logarithme	ln(x)	$\mathbb{R}_+^* =]0, +\infty[$

Exercice. Soit f la fonction définie par $f(x) = 2x^2 - 3x + 1$.

- Quelles sont les solutions de l'équation f(x) = 0 ?
- A l'aide de R, tracer C_f.

Opérations sur les fonctions

f et g deux fonctions

Somme

$$f+g$$
: $\mathcal{D}_f \cap \mathcal{D}_g \to \mathbb{R}$
 $x \mapsto f(x) + g(x)$

Produit

$$f \times g : \mathcal{D}_f \cap \mathcal{D}_g \to \mathbb{R}$$

 $x \mapsto f(x)g(x)$

Composition

$$f \circ g : \mathcal{D}_g \to \mathbb{R}$$

 $x \mapsto f[g(x)]$

DÉFINITION

g est l'inverse de f, notée $g = f^{-1}$, si, $\forall x \in \mathcal{D}_f$, $g \circ f(x) = x$.

DÉFINITION

f est inversible si f^{-1} existe.

Inverse d'une fonction

DÉFINITION

g est l'inverse de f, notée $g = f^{-1}$, si, $\forall x \in \mathcal{D}_f$, $g \circ f(x) = x$.

DÉFINITION

f est inversible si f^{-1} existe.

Exercice.

- Montrer que $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.
- En déduire l'inverse de $h(x) = \exp(3x + 2)$
- A l'aide de R, tracer C_h et C_{h-1}.

DÉFINITION

g est l'inverse de f, notée $g = f^{-1}$, si, $\forall x \in \mathcal{D}_f$, $g \circ f(x) = x$.

DÉFINITION

f est inversible si f^{-1} existe.

Exercice. Efficacité du fongicide

- Donner l'expression de $\pi(x)$ en fonction de α et β .
- A l'aide de R, tracer C_{π} pour différentes valeurs de α et β .

Inverses usuelles

f	f(x)	$f^{-1}(x)$
Indicatrice	$\mathbb{1}_A(x) = 1$ si $x \in A$, 0 sinon	-
Linéaire	$\beta_0 + \beta_1 x$	$(x-\beta_0)/\beta_1$
Puissance	${\it X}^{lpha}$	$x^{1/\alpha}$
Polynômes	$\beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_k x^k$	-
Exponentielle	exp(x)	ln(x)
Logarithme	ln(x)	exp(x)

Exercice. Efficacité du fongicide

- Donner l'expression de $\pi^{-1}(x)$ en fonction de α et β .
- Pour quelle dose de fongicide le risque de sporulation est-il < 5% ?

Limites d'une fonction

DÉFINITION

Soit $x_0 \in \mathcal{D}_f$ et $I \in \mathbb{R}$, $\lim_{x_0} f(x) = I$ si $\forall \varepsilon > 0$, $\exists \eta > 0$, $\forall x$ tel que $|x-x_0|<\eta,\ |f(x)-I|<\varepsilon.$

DÉFINITION

Soit $l \in \mathbb{R}$, $\lim_{+\infty} f(x) = l$ si $\forall \varepsilon > 0$, $\exists A, \forall x$ tel que x > A, $|f(x) - I| < \varepsilon$.

DÉFINITION

 $\lim_{x \to \infty} f(x) = +\infty$ si $\forall K > 0$, $\exists A$, $\forall x$ tel que x > A, f(x) > K.

Limites usuelles

f	f(x)	$\lim_{\infty} f(x)$
Indicatrice	$\mathbb{1}_{A}(X)$	0 si A intervalle fermé
Linéaire	$\beta_0 + \beta_1 x$	$+\infty$ si $eta_1>0$
Puissance	$\mathbf{\mathcal{X}}^{lpha}$	$+\infty$ si $lpha >$ 0, 0 si $lpha <$ 0
Polynômes	$\beta_0 + \beta_1 x + \ldots + \beta_k x^k$	-
Exponentielle	exp(x)	$+\infty$
Logarithme	ln(x)	$+\infty$
		$\lim_{x\to 0}\ln(x)=-\infty$

Exercice. Efficacité du fongicide

Calculer $\lim_{x\to -\infty} \pi(x)$ et $\lim_{x\to -\infty} \pi(x)$.

Ajustement d'un modèle de risque

Données : Dans le kème bac de 7 plantules, avec la log-dose x_k , on observe : N_k = nombre de plantules atteintes par le mildiou.

Modèle mathématique : $N_k \sim \mathcal{B}(7, \pi(x_k))$ avec

$$\ln\left[\frac{\pi(x_k)}{1-\pi(x_k)}\right] = \beta(x_k-\alpha)$$

Régularité d'une fonction

Groupe	Race	Dose	Sporu-	Prop. de	Nombre de
			-lations	sporulations	plantules
1	S	0,001	5	0.71	7
2	S	0,001	6	0.86	7
3	S	0,001	7	1.00	7
4	S	0,001	7	1.00	7
5	S	0,001	7	1.00	7
6	S	0,001	5	0.71	7
7	S	0,02	7	1.00	7
8	S	0,02	7	1.00	7
:	i	:	:	:	

Ajustement d'un modèle de risque

Données : Dans le kème bac de 7 plantules, avec la log-dose x_k , on observe : N_k = nombre de plantules atteintes par le mildiou.

Modèle mathématique : $N_k \sim \mathcal{B}(7, \pi(x_k))$ avec

$$\ln\left[\frac{\pi(x_k)}{1-\pi(x_k)}\right] = \beta(x_k-\alpha)$$

Proximité entre données et modèle : la vraisemblance.

$$V(\alpha, \beta) = \mathbb{P}_{x_1 = \ln 0.001}(N_1 = 5)\mathbb{P}_{x_2 = \ln 0.001}(N_1 = 6)\dots$$

Objectif: trouver α et β maximisant $\mathcal{V}(\alpha, \beta)$

Maximisation de la vraisemblance

Proximité entre données et modèle : la vraisemblance.

$$\mathcal{V}(\alpha,\beta) = \mathbb{P}_{x_1 = \ln 0.001}(N_1 = 5) \mathbb{P}_{x_2 = \ln 0.001}(N_1 = 6) \dots
= C_7^5 \pi(x_1)^5 [1 - \pi(x_1)]^2 C_7^6 \pi(x_2)^6 [1 - \pi(x_2)]^1 \dots
= \prod_{k=1}^K C_7^{n_k} \times \prod_{k=1}^K \pi(x_k)^{n_k} [1 - \pi(x_k)]^{7 - n_k}$$

Objectif: trouver α et β maximisant ln $\mathcal{V}(\alpha, \beta)$

$$\ln \mathcal{V}(\alpha, \beta) \propto \sum_{k=1}^{K} \frac{n_k}{7} \ln \pi(x_k) + (1 - \frac{n_k}{7}) \ln \left[1 - \pi(x_k)\right],$$

$$\propto \sum_{k=1}^{K} D\left[\frac{n_k}{7}, \pi_k(x)\right],$$

•00

DÉFINITION

f fonction de deux variables réelles à valeurs réelles

$$f: \mathcal{D}_f = \mathcal{D}_1 \times \mathcal{D}_2 \to \mathbb{R}$$

 $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \mapsto f(\mathbf{x}) \text{ image de x par } f$

DÉFINITION

- Si $y = f(x_1, x_2)$, y est l'antécédent de (x_1, x_2) par f.
- Image de f: $\{f(x), x \in \mathcal{D}_f\}$

Représentation d'une fonction de deux variables

DÉFINITION

$$C_f$$
 d'équation $y = f(x_1, x_2)$ ou encore $\{(x_1, x_2, f(x_1, x_2)), x = (x_1, x_2) \in \mathcal{D}_f\}$

000

Exercice. Efficacité du fongicide. A l'aide de R,

- Calculer $\mathcal{V}(\alpha, \beta)$ pour $-2 \le \alpha \le -1$ et $-1 \le \beta \le -0.5$?
- Représenter C_V en 3D.

00

DÉFINITION

Soit $x = (x_1, x_2)$, on appelle norme Euclidienne de x et on note ||x|| la fonction à valeurs réelles suivante :

$$x\mapsto ||x||=\sqrt{x_1^2+x_2^2}$$

DÉFINITION

Soit $x_0 \in \mathcal{D}_f$ et $I \in \mathbb{R}$, $\lim_{x_0} f(x) = I$ si $\forall \varepsilon > 0$, $\exists \eta > 0$, $\forall x$ tel que $||x - x_0|| < \eta$, $|f(x) - I| < \varepsilon$.

Plan du cours

- Modèles bio-mathématiques
- 2 Fonction à valeurs réelles Fonction d'une variable réelle Fonction de deux variables réelles
- Régularité d'une fonction Continuité et dérivabilité Intégrale d'une fonction
- 4 Equations différentielles Equations linéaires Modélisation compartimentale d'une cinétique

Accroissement d'une fonction

DÉFINITION

On appelle accroissement de f en x, et on note $\Delta_x(h)$, la fonction Δ_x suivante : Δ_x : $h \mapsto \Delta_x(h) = f(x+h) - f(x)$.

DÉFINITION

f est continue $si \forall x \in \mathcal{D}_f$, $\lim_{||h|| \to 0} \Delta_x(h) = 0$.

Exercice. Efficacité du fongicide

- Montrer que la fonction exp est continue.
- En déduire que $f: x \mapsto 1/(1 + \exp(-x))$ est continue.
- Si f et g sont continues, montrer que $f \circ g$ est continue.
- En déduire que $\pi(x)$ est continue.

Dérivabilité d'une fonction d'une variable réelle

DÉFINITION

On dit que f est dérivable en x si $\exists I$ tel que $\lim_{h\to 0} \Delta_x(h)/h = I$. On note alors I = f'(x) et on l'appelle dérivée de f en x.

En d'autres termes, si f est dérivable en x,

$$f(x+h)=f(x)+hf'(x)+h\varepsilon(h), \text{ avec } \lim_{h\to 0}\varepsilon(h)=0$$

DÉFINITION

Pour tout x, la droite d'équation y = f(x) + hf'(x) est appelée tangente à f en x.

Dérivées usuelles

f	f(x)	f'(x)
Indicatrice	$\mathbb{1}_{[a,b]}(x)$	0 si $x \neq a$ et $x \neq b$
Linéaire	$\beta_0 + \beta_1 x$	$eta_{ extsf{1}}$
Puissance	\mathbf{X}^{lpha}	$\alpha x^{\alpha-1}$
Polynômes	$\beta_0 + \beta_1 x + \ldots + \beta_k x^k$	$\beta_1 + \ldots + k \beta_k x^{k-1}$
Exponentielle	exp(x)	exp(x)
Logarithme	ln(x)	1/ <i>x</i>

PROPOSITION

Si f et g sont deux fonctions dérivables, alors

$$(f+g)': x \mapsto (f+g)'(x) = f'(x) + g'(x),$$

 $(fg)': x \mapsto (fg)'(x) = f'(x)g(x) + f(x)g'(x) \text{ et}$
 $(f/g)': x \mapsto (f/g)'(x) = [f'(x)g(x) - f(x)g'(x)]/g^2(x).$

Dérivées de fonctions composées

PROPOSITION

Si f et g sont deux fonctions dérivables, alors $(f \circ g)' : x \mapsto (f \circ g)'(x) = (f' \circ g)(x)g'(x)$.

Exercice. Si f est dérivable,

- Calculer la dérivée de $g(x) = [f(x)]^{\alpha}$.
- Calculer la dérivée de $g(x) = \exp[f(x)]$.
- Calculer la dérivée de $g(x) = \ln[f(x)]$.

Exercice. Efficacité du fongicide

- Montrer que $\pi'(x) = \beta \pi(x) [1 \pi(x)]$.
- Quel est le signe de $\pi'(x)$?
- Donner l'équation de la tangente à $\pi(x)$ en $x = \alpha$

Sens de variation d'une fonction

PROPOSITION

Si, $\forall x \in [a, b]$, f'(x) > 0, alors f est croissante sur [a, b]. Si, $\forall x \in [a, b]$, f'(x) < 0, alors f est décroissante sur [a, b].

PROPOSITION

Si, $\exists x_0 \in [a,b]$ tel que $f'(x_0) = 0$ et

- Pour $a < x < x_0$, f'(x) < 0,
- Pour $x_0 < x < b$, f'(x) > 0,

alors f atteint un minimum sur [a, b] en x_0 .

Exercice. Efficacité du fongicide Étudier les variations de $\pi'(x)$.

Ajustement d'un modèle du risque

Exercice. Efficacité du fongicide

On rappelle que $V \ln(\alpha, \beta) = \sum_{k=1}^{K} D[p_k, \pi_k(x)]$ où

- $p_k = n_k/7$
- $D(p,\pi) = p \ln(\pi) + (1-p) \ln(1-\pi)$

Soit
$$D_p: \pi \mapsto D[p, \pi]$$
.

- Montrer que D_p est maximale en $\hat{\pi} = p$.
- Que signifie ce résultat en pratique ?

Dérivabilité d'une fonction de deux variables réelles

DÉFINITION

On dit que f est dérivable en x si, pour tout $(x_1, x_2) \in \mathcal{D}_f$, les applications partielles $f_1 : t \mapsto f(t, x_2)$ et $f_2 : t \mapsto f(x_1, t)$ sont dérivables.

DÉFINITION

On appelle dérivée partielle de f par rapport à x_1 , et on note $\partial f/\partial x_1$ la fonction $f_1'(t)$. On appelle gradient de f, et on note ∇f , le vecteur de dérivées partielles :

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right)$$

Approximation et Point critique

Si f est dérivable en x, $f(x_1 + h_1, x_2 + h_2)$

$$= f(x) + h_1 \frac{\partial f}{\partial x_1}(x) + h_2 \frac{\partial f}{\partial x_2}(x) + ||h|| \varepsilon(h), \text{ avec } \lim_{h \to 0} \varepsilon(h) = 0$$

DÉFINITION

On appelle point critique de f un point $x \in \mathcal{D}_f$ tel que $\nabla f(x) = 0$. Les extrema d'une fonction continûment dérivable sont des points critiques.

Exercice. Efficacité du fongicide

- Montrer que $\partial \ln \mathcal{V}(\alpha, \beta)/\partial \alpha = \beta \sum_{k=1}^{K} \left[\pi_k(x) p_k \right]$
- Montrer que $\partial \ln \mathcal{V}(\alpha, \beta)/\partial \beta = \sum_{k=1}^{K} (x_k \alpha) \Big[p_k \pi_k(x) \Big]$

Ajustement d'un modèle de risque

Exercice. Efficacité du fongicide

Supposons que l'on ne dispose de mesures que pour deux doses de fongicides (K = 2).

- Calculer $\hat{\alpha}$ et $\hat{\beta}$ maximisant la vraisemblance.
- A l'aide de R, représenter le tracé de $\mathcal{C}_{\hat{\pi}}$ correspondant à cet ajustement.
- Comment la qualité d'ajustement dépend-t'elle du choix des deux doses.

Algorithme de Newton-Raphson

Objectif: trouver x tel que f(x) = 0.

Principe. Soit x_0 une valeur proche de x,

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0)$$

 $x \approx x_0 - f(x_0)/f'(x_0)$

Algorithme. Soit x_0 une valeur proche de x,

$$x_{n+1} = x_n - f(x_n)/f'(x_n)$$

Approximation d'une fonction à plusieurs composantes

Soit f_1 et f_2 des fonctions de $x = (x_1, x_2)$. Soit $f = (f_1(x), f_2(x))$ la fonction dont les deux composantes sont f_1 et f_2 :

$$f : \mathcal{D}_1 \times \mathcal{D}_2 \to \mathbb{R} \times \mathbb{R}$$
$$x = (x_1, x_2) \mapsto f(x) = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{bmatrix}.$$

Alors, pour tout $x = (x_1, x_2)$,

$$f(x+h) = f(x) + \mathcal{J}_f(x)h + ||h||\varepsilon(h), \text{ avec } \lim_{h\to 0} \varepsilon(h) = 0$$

où \mathcal{J}_f est appelée matrice Jacobienne de f:

$$\mathcal{J}_f(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) \end{pmatrix}$$

Algorithme de Newton-Raphson pour fonctions à plusieurs composantes

Objectif: trouver x tel que f(x) = 0.

Principe. Soit x_0 une valeur proche de x,

$$f(x) \approx f(x_0) + \mathcal{J}_f(x_0)(x - x_0)$$

$$x \approx x_0 - \mathcal{J}_f^{-1}(x_0)f(x_0)$$

Algorithme. Soit x_0 une valeur proche de x,

$$x_{n+1} = x_n - \mathcal{J}_f^{-1}(x_n)f(x_n)$$

Ajustement d'un modèle de risque

Exercice. Efficacité du fongicide

A l'aide de R,

- Écrire un programme qui calcule les valeurs de α et β maximisant la vraisemblance du modèle de risque de sporulation.
- Représenter les courbes d'efficacité du fongicide pour les races sensible et résistante du mildiou.

Modèle allométrique

Un modèle de développement : le modèle allométrique

Les accroissements relatifs infinitésimaux de y sont proportionnels au rapport y/x.

$$\lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} = \beta \frac{f(x)}{x}$$
$$f'(x) = \beta \frac{f(x)}{x}$$

où β est le coefficient d'allométrie.

Equation différentielle. Le modèle de développement est défini par une équation liant f' à f. On parle d'équation différentielle du 1er ordre.

Modèles de croissance d'une population

Soit q(t) l'effectif de la population au temps t:

$$q'(t) = \beta q(t)$$
 Modèle de Malthus $q'(t) = \beta q(t) \ln \left[\frac{K}{q(t)} \right]$ Modèle de Gompertz

Exercice.

- Donner l'expression de q(t) dans le modèle de Malthus.
- Montrer que, dans le modèle de Gompertz,

$$q(t) = K \exp\left[\ln\frac{q_0}{K}e^{-\beta t}\right]$$

[On posera
$$f(t) = \ln(q(t)/K)$$
]

Ajustement d'un modèle de Gompertz

On donne en ng/ml la concentration en progestérone plasmatique chez une vache au cours de la période d'activité du corps jaune durant le cycle

- () /	0 0.75	1 0.50	2 1.10	3 1.60	4 5.65	5 4.50	6 4.60	7 5.75	
t (jours) c (ng/ml)		9 6.15				13 7.85	14 7.00	15 8.20	16 8.25

Exercice.

Trouver les valeurs de K et de β du modèle de Gompertz s'ajustant le mieux aux données, au sens du critère des moindres carrés.

DÉFINITION

On appelle Intégrale de Riemann de f sur [a,b] l'aire comprise entre l'axe y=0 et C_f d'une part, et les axes verticaux x=a et x=b d'autre part. On la note $\int_a^b f(x)dx$.

PROPOSITION

Si $f = \mathbb{1}_{[a,b]}$, $\int_a^b f(x) dx = b - a$. Si f et g sont des fonctions,

$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx,$$
$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx,$$

Approximations de l'intégrale de Riemann

DÉFINITION

Soit $h_n = (b-a)/n$ et $x_k = a + kh_n$, k = 0, ..., n. On appelle Somme de Riemann de f sur [a, b] la quantité suivante :

$$S_n(f) = \sum_{k=1}^{n-1} (x_k - x_{k-1}) f(x_k) = \frac{b-a}{n} \sum_{k=1}^{n-1} f(x_k)$$

PROPOSITION

Si f est continue, $\lim_{n\to+\infty} S_n(f) = \int_a^b f(x) dx$.

Exercice. A l'aide de R, calculer le quantile d'ordre 0.975 de la loi normale standard.

Régularité d'une fonction

000000

DÉFINITION

On appelle fonction primitive de f une fonction F telle que F'(x) = f(x).

Proposition

$$\int_a^b f'(t)dt = f(b) - f(a).$$

Donc, la primitive de f qui s'annule en a est : $F(x) = \int_a^x f(t) dt$

Primitives usuelles

f	f(x)	f'(x)
Indicatrice	$\mathbb{1}_{[a,b]}(x)$	$x \operatorname{si} x \neq a \operatorname{et} x \neq b$
Linéaire	$\beta_0 + \beta_1 X$	$\beta_0 x + \beta_1 \frac{x^2}{2}$ $x^{\alpha+1}$
Puissance	${\it X}^{lpha}$	$\frac{x^{\alpha+1}}{\alpha+1}$
Polynômes	$\beta_0 + \beta_1 x + \ldots + \beta_k x^k$	$\beta_0 x + \ldots + \beta_k \frac{x^{k+1}}{k+1}$
Exponentielle	exp(x)	exp(x)
Logarithme	ln(x)	$x \ln(x) - x$

Dérivabilité à l'ordre n

DÉFINITION

On dit que f est dérivable à l'ordre 2 si f'(x) est elle-même dérivable. On note alors f''(x) la dérivée de f'(x) et on l'appelle dérivée seconde de f en x.

PROPOSITION

Pour tout x, f(x + h) =

$$f(x) + hf'(x) + \frac{h^2}{2}f''(x) + h^2\varepsilon(h)$$
, avec $\lim_{h\to 0}\varepsilon(h) = 0$

DÉFINITION

 $T_x^{(2)}: h \mapsto T_x^{(2)}(h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x)$ est appelé développement limité d'ordre 2 de f en x.

Dénaturation de la β -lactoglobuline

Exercice. La dynamique de dénaturation/agrégation de β -lactoglobuline repose sur l'équation suivante : $f'(t) = -k[f(t)]^{\nu}$ où f(t) est la quantité de protéines dans la solution au temps t, $1 < \nu < 2$ et k > 0.

A partir d'expériences on cherche à suivre l'évolution de l'ordre global de la réaction de disparition de la protéine native. Les résultats d'expériences menées avec des solutions modèles pour différentes concentrations en NaCl sont données dans le fichier betalacto.txt.

- Donner la forme générale de f(t).
- Ajuster f(t) pour chacune des solutions modèles.

Plan du cours

- 4 Equations différentielles Equations linéaires Modélisation compartimentale d'une cinétique

Equation différentielle linéaire du 1er ordre

DÉFINITION

On appelle équation différentielle homogène linéaire du 1er ordre toute équation de la forme suivante

$$a(x)f'(x) + b(x)f(x) = 0$$
(1)

PROPOSITION

Si $\varphi(x)$ désigne une primitive de -b(x)/a(x), les solutions de l'équation (1) sont de la forme

$$f(x) = \alpha \exp\left[-\varphi(x)\right]$$

Ajustement d'un modèle allométrique

Exercice. Modèle allométrique de croissance.

- Donner la forme générale du modèle allométrique.
- Ajuster un modèle allométrique aux données de croissance du dépôt de lipides chez le porc.

Dynamique de la digestion d'une molécule

Contexte : contrôle des rejets d'antibiotiques en environnement piscicole

Dynamique de la digestion d'une molécule

Contexte : contrôle des rejets d'antibiotiques en environnement piscicole

Tableau 1.1. Présentation d'un extrait du ieu de données

Tableau 1.1. I reschiation u un extrait uu jeu ue uomites									
	Temps	Masse	Masse	Qtite AO	Masse	Qtité AO	Qtité OA		
	(h)	indiv. (g)	Estomac (g)	Estomac (mg)	intestin (g)	Intestin (mg)	sang (mg)		
Poisson 1	1	500	3,02	8,29	1,13	0,07	0,001		
Poisson 11	2			-		1	1		
				0.05		4.70	0.00		
Poisson 81	12	500	5,44	6,35	9,9	4,73	0,09		
Poisson 205	192								
Poisson 209	192	500	0,06	0	1,86	0	0		

Dynamique de la digestion d'une molécule

Contexte : contrôle des rejets d'antibiotiques en environnement piscicole

Contexte : contrôle des rejets d'antibiotiques en environnement piscicole

Contexte : contrôle des rejets d'antibiotiques en environnement piscicole

Estomac Intestin $k_{21}^{}$ k_{12} k_{02}

Modélisation compartimentale

Dynamique de transfert entre compartiments

$$\begin{cases} q_1'(t) = -k_{21}q_1(t) + k_{12}q_2(t) & \text{Estomac} \\ q_2'(t) = k_{21}q_1(t) - [k_{12} + k_{02}]q_2(t) & \text{Intestin} \end{cases}$$

DÉFINITION

On appelle système linéaire d'équations différentielles du 1er ordre à coefficients constants tout système de la forme :

$$\begin{bmatrix} q_1'(t) \\ q_2'(t) \\ \vdots \\ q_m'(t) \end{bmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1m} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2m} \\ \vdots & \vdots & & \vdots \\ \alpha_{m1} & \alpha_{m2} & \dots & \alpha_{mm} \end{pmatrix} \begin{bmatrix} q_1(t) \\ q_2(t) \\ \vdots \\ q_m(t) \end{bmatrix}$$

Modélisation compartimentale

Dynamique de transfert entre compartiments

$$\begin{cases} q_1'(t) = -k_{21}q_1(t) + k_{12}q_2(t) & \text{Estomac} \\ q_2'(t) = k_{21}q_1(t) - [k_{12} + k_{02}]q_2(t) & \text{Intestin} \end{cases}$$

DÉFINITION

On appelle système linéaire d'équations différentielles du 1er ordre à coefficients constants tout système de la forme :

$$q'(t) = Aq(t)$$

Cas d'un système à deux compartiments

Exercice. Montrer que l'on peut ramener le système linéaire de deux équations différentielles suivant :

$$\begin{cases} q_1'(t) = \alpha_{11}q_1(t) + \alpha_{12}q_2(t) \\ q_2'(t) = \alpha_{21}q_1(t) + \alpha_{22}q_2(t) \end{cases}$$

à deux équations différentielles à coefficients constants.

Equation différentielle linéaire du 2nd ordre

DÉFINITION

On appelle équation différentielle homogène linéaire du 2nd ordre à coefficients constants toute équation de la forme suivante

$$af''(x) + bf'(x) + cf(x) = 0$$
 (2)

PROPOSITION

Si λ_1 et λ_2 désignent les racines du polynôme caractéristique associé à (2), alors les solutions de l'équation (2) sont de la forme $f(x) = a_1 \exp(\lambda_1 x) + a_2 \exp(\lambda_2 x)$ si $\Delta = b^2 - 4ac \ge 0$.

Cas d'un système à deux compartiments

Exercice. Montrer que les solutions du système linéaire de deux équations différentielles suivant :

$$\begin{cases} q'_{1}(t) = \alpha_{11}q_{1}(t) + \alpha_{12}q_{2}(t) \\ q'_{2}(t) = \alpha_{21}q_{1}(t) + \alpha_{22}q_{2}(t) \end{cases}$$

sont de la forme :

$$q(t) = a_1 V_1 \exp(\lambda_1 t) + a_2 V_2 \exp(\lambda_2 t),$$

où λ_1 et λ_2 sont les valeurs propres de la matrice

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$$

et V_1 et V_2 les vecteurs propres associés.

Dynamique de digestion d'une molécule

Exercice.

- Donner la forme générale du modèle à deux compartiments de digestion d'une molécule.
- Donner les valeurs des paramètres de ce modèle garantissant le meilleur ajustement aux données au sens des moindres carrés.