

Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0036 – Sistemas Operacionais

Exercícios

Sincronização de threads

Prof. Gustavo Girão girao@imd.ufrn.br

Instruções

- Consultas são permitidas exceto:
 - Consulta ao colega
 - Cópia integral de códigos excetuando os fornecidos pelo professor via SIGAA
- Cada exercício vale 0,5 ponto
 - o TOTAL: 1,5 ponto

 Dadas duas matrizes quadradas A e B de dimensão M, um algoritmo de multiplicação de marizes que gera a matriz resultante C é dado por:

- Crie um programa em C que receba como parâmetro (utilizando argc, argv) o valor de M e que:
 - Crie M threads.
 - \circ Cada thread **x** (onde **0** <= **x** < **M**):
 - ♦ Realiza o calculo para a geração de UMA linha da matriz e;
 - ♦ Garanta exclusão mútua acessando a matriz B;

MD0036

Exercício 1 - exemplo

• Se n=3:

Matriz A

3	8	5
0	12	1
4	4	2

Matriz B

2	1	7
8	5	11
1	0	6

Matriz C

- Se n=3:
- Para gerar o elemento C[0][0]

Matriz A

3	8	5
0	12	1
4	4	2

Matriz B

2	1	7
8	5	11
1	0	6

Cálculo:

C[0][0] = (A[0][0] * B[0][0]) + (A[0][1] * B[1][0]) + (A[0][2]*B[2][0])

- Se n=3:
- Para gerar o elemento C[0][0]

Matriz A

3	8	5
0	12	1
4	4	2

Matriz B

2	1	7
8	5	11
1	0	6

$$C[0][0] = (3 * 2) + (8 * 8) + (5*1)$$

- Se n=3:
- Para gerar o elemento C[0][0]

Matriz A

3	8	5
0	12	1
4	4	2

Matriz B

2	1	7
8	5	11
1	0	6

Cálculo:

$$C[0][0] = (3 * 2) + (8 * 8) + (5*1)$$

 $C[0][0] = 6 + 64 + 5$

- Se n=3:
- Para gerar o elemento C[0][0]

Matriz A

3	8	5
0	12	1
4	4	2

Matriz B

2	1	7
8	5	11
1	0	6

75	

$$C[0][0] = (3 * 2) + (8 * 8) + (5*1)$$

 $C[0][0] = 6 + 64 + 5$
 $C[0][0] = 75$

Feito pela Thread O pois é o cálculo da linha O da matriz C

- Se n=3:
- Para gerar o elemento C[0][1]

Matriz A

3	8	5
0	12	1
4	4	2

Matriz B

2	1	7
8	5	11
1	0	6

75	

Cálculo:

$$C[0][1] = (A[0][0] * B[0][1]) + (A[0][1] * B[1][1]) + (A[0][2]*B[2][1])$$

- Se n=3:
- Para gerar o elemento C[0][1]

Matriz A

3	8	5
0	12	1
4	4	2

Matriz B

2	1	7
8	5	11
1	0	6

75	

$$C[0][1] = (3 * 1) + (8 * 5) + (5*0)$$

- Se n=3:
- Para gerar o elemento C[0][1]

Matriz A

3	8	5
0	12	1
4	4	2

Matriz B

2	1	7
8	5	11
1	0	6

75	

$$C[0][1] = (3 * 1) + (8 * 5) + (5*0)$$

 $C[0][1] = 3 + 40 + 0$

- Se n=3:
- Para gerar o elemento C[0][1]

Matriz A

3	8	5
0	12	1
4	4	2

Matriz B

2	1	7
8	5	11
1	0	6

Matriz C

75	43	

$$C[0][1] = (3 * 1) + (8 * 5) + (5*0)$$

 $C[0][1] = 3 + 40 + 0$
 $C[0][1] = 43$

- Faça um código C que resolva o problema do produtor, consumidor assumindo que:
- O tamanho do buffer é passado por parâmetro (argc, argv)
- Existem 5 threads:
 - 3 consumidoras e 2 produtoras
 - Garanta exclusão mútua no acesso ao buffer, independentemente se a thread é consumidora ou produtora e;
 - Faça com que qualquer thread produtora que tente escrever no buffer quando cheio durma e acorde quando o buffer tiver pelo menos uma posição livre e;
 - Qualquer thread consumidora que tente ler no buffer quando vazio durma e acorde quando o buffer tiver pelo menos um elemento dentro dele.

Implemente uma solução para o problema dos
Leitores-Escritores. Sua solução implementada em C
deve receber 2 parâmetros (por meio de argc, argv):
O número de leitores e o número de gravadores. Este
problema simula a tentativa de acesso simultâneo de
duas solicitações distintas a uma base de dados: para
ler ou para escrever. Entretanto, podem haver diversos
leitores e diversos gravadores.

- Garanta a exclusão mútua nesse caso, considerando:
 - A "base de dados" é simplesmente representada por uma variável inteira. Leitores lêem-a, Escritores incrementam-a.
 - Quando um gravador precisa ter acesso à base de dados, ele o faz de maneira exclusiva (i.e. nenhum outro leitor ou gravador tem acesso).
 - Quando um leitor precisa ter acesso à base de dados, outros leitores podem fazê-lo ao mesmo tempo. Entretanto, caso UM escritor queira ter acesso, nenhum leitor pode fazêlo.
 - O escritor faz chamada a uma função "escrevendo" que simplesmente espera 2 segundos (sleep(2)), escreve um novo valor na variável e imprime "Escritor #x: escrevendo dado y" (onde x é um identificador da thread e y é o novo valor da variável).
 - O leitor faz chamada a uma função "lendo" que simplesmente espera 1 segundo (sleep(1)), lê o novo valor da variável e imprime "Leitor #x: lendo dado y" (onde x é um identificador da thread e y é o valor atual da variável).