1.

2.(e) epoch from 1:100black for train accuracy, red for test accuracy with H=20, n=0.1

choose epoch=50
(f_n)
 x is epoch from 1:50
 circles is training accuracy, solid points are test accuracy
H=20
 n=c(0.01, 0.1, 0.3) from top to bottom

increase n increase both accuracy and, smooth the curve choose $n\!=\!0.01$

(f_h)

x is epoch from 1:50 circles is training accuracy, solid points are test accuracy H=c(5,20,40,100) from bottom to top, green for 100, blue for 40 n=0.1

choose H=40

```
2.(g)
[73] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 5 1 1 1 7 1 1
[217] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
[313] 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 4 3 3 3 3 3 3 3 3 3
[337] 3 3 3 4 3 3 3 4 8 3 3 3 3 3 1 4 4 3 3 3 3 3 3
[385] 3 3 1 3 3 3 3 3 3 3 3 7 3 3 3 3 3 4 1 3 3 3 3
[721] 5 5 5 5 5 5 6 4 5 5 5 5 9 5 5 5 5 5 5 5 5 5 9
[769] 5 5 5 9 5 5 5 5 5 6 6 6 6 4 6 6 6 6 6 6 6 6 5 6
[1081] 7 3 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9 8 8 7 8 8 8
```

```
[1489] 10 10 10 10 10 10 4 4 10 8 10 10 10 10 10 10 10 10 4 10 10 10 10
[1513] 10 10 10 10 10 10 10 10 10 10 10 10 3 4 10 2 10 10 10 10 10 10 10
[1705] 11 11 11 11 11 11 11 11 11
3.(a)
Minimize margin
           1/2||w||^2
Minimize soft error
           C \sum \xi(t)
s.t.
         r(t)(wx(t) + w0) \ge 1-\xi(t),
               \xi(t)>0
                          for all x(t)
Lp = 1/2||w||^2 + C \sum_{t=0}^{\infty} \xi(t) - \sum_{t=0}^{\infty} \alpha(t) (r(t) (w x(t) + w 0) - 1 + \xi(t)) - \sum_{t=0}^{\infty} \mu(t) \xi(t)
minimize
      w, w0, \xi (t)
maximize
      \alpha (t)
\partial L_D / \partial w = 0
              w=\sum \alpha(t) r(t) x(t)
           =>
\partial \text{Lp} / \partial \text{w0} = 0
               \sum \alpha (t) r(t) = 0
\partial \text{Lp} / \partial \xi(t) = 0
                C - \alpha(t) - \mu(t) = 0
plug back to Lp maximize \alpha(t)
 Ld=-\sum \alpha(t)\alpha(s)r(t) r(s) x (t)(t)x(t) + \sum \alpha(t)
 subject to \sum \alpha(t)r(t) = 0 and 0 \le \alpha(t) \le C,
with KKT condition
 \alpha(t) \{ r(t) (wx(t) + b) - 1 + \xi i \} = 0
 u(t)\xi(t) = 0
or
\alpha i = 0
     r(t)(w x(t) + w0) \ge 1
     r(t) (wx(t) + w0) \le 1
\alpha i = C
0 < \alpha i < C  r(t) (w x (t) + w0) = 1
```

	3(b).									
i	` '	1/100000	1/10000	0.0001	0.001	0.01	1	10	100	1000
linear	0.0984127	7 0.0984127	7 0.1892063	0.8120635	0.8766667	0.9168254	0.9293651	0.9279365	0.9255556	0.9228571
polynomial 2	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.4490476	0.7979365	0.9349206	0.9714286	0.9730159	0.9704762
Polynomial 3	0.0984127	7 0.0984127	7 0.0984127	0.1285714	0.4684127	0.7844444	0.9222222	0.9714286	0.9749206	0.9688889
Polynomial 4	0.0984127	7 0.0984127	7 0.0984127	0.1280952	0.3819048	0.6701587	0.8360317	0.9350794	0.9552381	0.951904
Radial 10^-6	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.9852381
Radial 10^-5	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.9852381
Radial 10^-4	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.9852381
Radial 10^-3	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.9852381
Radial 10^-2	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.9852381
Radial 10^-1	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.9852381
Radial 1	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.9852381
Radial 10	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.9852381
Radial 100	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.9852381
Radial 1000	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.9852381
Radial 10000	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.9852381
Radial 100000	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.9852381
Radial 100000	0.0984127	7 0.0984127	7 0.0984127	0.0984127	0.7371429	0.9034921	0.9714286	0.9877778	0.9855556	0.985238

