Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 6

Consigna

Se considera el espacio \mathbb{R}^3 con el producto interno definido por:

$$-\langle x,y \rangle = 2x_1y_1 + x_2y_2 + x_3y_3$$

donde $x=(x_1,x_2,x_3)$ e $y=(y_1,y_2,y_3)$, y el subespacio S generado por el vector (1,1,1). Hallar una base ortogonal de S^\perp .

Opciones:

- 1. $\{(3,-4,1),(1,1,-2)\}$
- 2. $\{(1,0,1),(-1,0,1)\}$
- 3. $\{(0,1,-1),(-1,1,1)\}$
- $4. \ \{(2,-1,-1),(0,1,-1)\}$
- 5. $\{(-1,0,2),(2,-5,1)\}$

Resolución

La mejor forma de resolver este ejercicio es comprobando que las bases cumplan las propiedades que tienen que cumplir:

Opción 1

Queremos verificar que:

- $\langle (3, -4, 1), (1, 1, 1) \rangle = 0$
- $\langle (1,1,-2), (1,1,1) \rangle = 0$
- $\langle (3, -4, 1), (1, 1, -2) \rangle = 0$

Si alguno de estos no se cumple, entonces no será una base ortogonal válida para S^{\perp} :

•
$$\langle (3, -4, 1), (1, 1, 1) \rangle = 6 - 4 + 1 = 3 \neq 0$$

Entonces, esta opción no es válida.

Opción 2

Queremos verificar que:

- $\langle (1,0,1), (1,1,1) \rangle = 0$
- $\langle (-1,0,1), (1,1,1) \rangle = 0$
- $\langle (1,0,1), (-1,0,1) \rangle = 0$

Si alguno de estos no se cumple, entonces no será una base ortogonal válida para S^{\perp} :

•
$$\langle (1,0,1), (1,1,1) \rangle = 2 + 0 + 1 = 3 \neq 0$$

Entonces, esta opción no es válida.

Opción 3

Queremos verificar que:

- $\langle (0,1,-1), (1,1,1) \rangle = 0$
- $\langle (-1,1,1), (1,1,1) \rangle = 0$ $\langle (0,1,-1), (-1,1,1) \rangle = 0$

Si alguno de estos no se cumple, entonces no será una base ortogonal válida para S^{\perp} :

- $\langle (0,1,-1), (1,1,1) \rangle = 0+1-1=0$
- $\langle (-1,1,1), (1,1,1) \rangle = -2 + 1 + 1 = 0$
- $\langle (0,1,-1), (-1,1,1) \rangle = 0+1-1=0$

Esta opción es la correcta, pues ambos sus vectores son ortogonales a todos los vectores de S, además la base es ortogonal pues los vectores que la componen son ortogonales entre si. A pesar de esto seguimos validando las demás opciones como práctica.

Opción 4

Queremos verificar que:

- $\langle (2,-1,-1), (1,1,1) \rangle = 0$
- $\langle (0,1,-1), (1,1,1) \rangle = 0$
- $\langle (2,-1,-1), (0,1,-1) \rangle = 0$

Si alguno de estos no se cumple, entonces no será una base ortogonal válida para S^{\perp} :

•
$$\langle (2,-1,-1), (1,1,1) \rangle = 4-1-1 = 2 \neq 0$$

Entonces, esta opción no es válida.

Opción 5

Queremos verificar que:

- $\langle (-1,0,2), (1,1,1) \rangle = 0$
- $\langle (2, -5, 1), (1, 1, 1) \rangle = 0$ $\langle (-1, 0, 2), (2, -5, 1) \rangle = 0$

Si alguno de estos no se
 cumple, entonces no será una base ortogonal válida par
a $S^\perp\!:$

- $\langle (-1,0,2), (1,1,1) \rangle = -2 + 0 + 2 = 0$
- $\langle (2,-5,1), (1,1,1) \rangle = 4-5+1=0$
- $\langle (-1,0,2), (2,-5,1) \rangle = -4 + 0 + 2 = -2 \neq 0$

Entonces, esta opción no es válida.