Tutorial de SciPy

Una introducción a las herramientas esenciales para cálculos matemáticos

Índice

- 1. Introducción a SciPy
- 2. Derivación con SciPy
- 3. Resolución de Ecuaciones Diferenciales
- 4. Cálculo del Gradiente
- 5. Integración Numérica
- 6. Encontrar Raíces de Funciones
- 7. Derivadas Parciales

1. Introducción a SciPy

SciPy es una biblioteca de Python que se utiliza para cálculos matemáticos de alto nivel. Contiene módulos para optimización, álgebra lineal, integración, interpolación, y muchas otras tareas.

2. Derivación con SciPy

Para derivar una función en SciPy, puedes usar:

• scipy.derivative(): Esta función te permite calcular la derivada de una función en un punto dado.

```
from scipy.misc import derivative

def f(x):
    return x**2

deriv = derivative(f, 1.0)
    print(deriv)
```

Diferenciales

SciPy proporciona herramientas para resolver ecuaciones diferenciales ordinarias:

• **scipy.odeint()**: Esta función resuelve ecuaciones diferenciales ordinarias.

```
from scipy.integrate import odeint

def model(y, t):
    k = -0.3
    dydt = k * y
    return dydt

y0 = 5
```

4. Cálculo del Gradiente

El gradiente es un vector que apunta en la dirección de la máxima tasa de incremento de una función.

• scipy.gradient(): Calcula el gradiente de una función.

```
import numpy as np
from scipy import gradient

f = np.array([1, 2, 4, 7, 11, 16], dtype=float)
g = gradient(f)
print(g)
```

5. Integración Numérica

SciPy ofrece varias funciones para realizar integración numérica:

• scipy.integrate.quad(): Para integración numérica de una función de una variable.

```
from scipy.integrate import quad

result, error = quad(lambda x: x**2, 0, 1)
print(result)
```

6. Encontrar Raíces de Funciones

Para encontrar dónde una función se cruza con el eje x (sus raíces):

• scipy.fsolve(): Encuentra las raíces de una función.

```
from scipy.optimize import fsolve

def f(x):
    return x**2 - 4

root = fsolve(f, 1) # Aproximación inicial de 1
print(root)
```

7. Derivadas Parciales

Las derivadas parciales miden cómo una función cambia cuando se varía una de sus variables, manteniendo las otras constantes.

• scipy.partial_derivative() (hipotético, para propósitos ilustrativos): Calcula la derivada parcial de una función.

Aquí iría un ejemplo si scipy tuviera una función directa para derivadas parciales.

Conclusión

SciPy es una herramienta poderosa para cálculos matemáticos. Con su amplia gama de funciones, puedes resolver una variedad de problemas matemáticos y científicos.

Este tutorial proporciona una introducción básica a algunas de las funciones más comunes de SciPy.

Puedes expandirlo aún más según las necesidades específicas de tu presentación. ¡Espero que te sea útil!