1.3 Limite e continuidade

Limites

Resultados sobre limites Limites laterais Limites no infinito e limites infinitos

Continuidade

Resultados sobre continuidade pontual Resultados sobre funções contínuas

Limite de uma função num ponto

Sejam $f: D \longrightarrow \mathbb{R}$ uma função e $a \in D'$.

▶ [Limite] O número real ℓ é o limite segundo Cauchy de f(x), quando x tende para a, e escreve-se

$$\lim_{x \to a} f(x) = \ell$$

quando

$$\forall \varepsilon > 0, \ \exists \delta > 0: \ (x \in D \ \land \ 0 < |x - a| < \delta) \Longrightarrow |f(x) - \ell| < \varepsilon.$$

Observação

- $\forall \varepsilon>0, \ \exists \delta>0: \ (x\in D \ \land \ 0<|x-a|<\delta\,) \Longrightarrow \ |f(x)-\ell\,|<\varepsilon$ ler-se-á, por exemplo,
 - "dado um número positivo ε , arbitrariamente pequeno, existe um número real positivo δ , suficientemente pequeno, tal que, se $x \in D$, $x \neq a$ se a distância de x a a é menor do que δ , então a distância do correspondente f(x) a ℓ é menor do que ε ".
- A definição de limite apresentada permite calcular $\lim_{x\to a} f(x)$ com $a\in D'\setminus D$, ou seja, o ponto a pode não pertencer ao domínio de f.
- ► Caso $a \in D \cap D'$, o $\lim_{x \to a} f(x)$ não tem de ser f(a); o valor que f toma em a é irrelevante no cálculo do limite, já que só são considerados pontos do domínio de f próximos de a mas diferentes de a.

Resultados sobre limites

Teorema (Unicidade do limite)

Sejam $f: D \longrightarrow \mathbb{R}$ e $a \in D'$. Se

$$\lim_{x\to a} f(x) = \ell_1 \qquad \text{ e} \qquad \lim_{x\to a} f(x) = \ell_2 \qquad \text{ então} \qquad \ell_1 = \ell_2 \,.$$

Teorema

Seja $a \in \mathbb{R}$.

- $lackbox{ Se }k$ é uma constante então $\lim_{x\longrightarrow a}k=k$;

Teorema

Sejam $f,g\colon D\longrightarrow \mathbb{R}$ e $a\in D'.$ Se $\lim_{x\to a}g(x)=0$ e f é limitada então

$$\lim_{x \to a} \left[f(x) \cdot g(x) \right] = 0.$$

Teorema (Enquadramento)

Sejam $f, q, h: D \longrightarrow \mathbb{R}$ e $a \in D'$ tais que

$$h(x) \le f(x) \le g(x), \quad \forall x \in D \setminus \{a\}.$$

Se $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = \ell$ então também

$$\lim_{x \to a} f(x) = \ell .$$

Teorema (Aritmética dos limites)

Sejam $f, q: D \longrightarrow \mathbb{R}, a \in D'$. Suponha-se que existem

$$\ell = \lim_{x \to a} f(x)$$
 e $m = \lim_{x \to a} g(x)$.

Então:

$$\lim_{x \to a} (f \pm g)(x) = \ell \pm m; \qquad \qquad \lim_{x \to a} (f \cdot g)(x) = \ell m;$$

$$\lim (f \cdot g)(x) = \ell m$$

Limites laterais

Seja $f: D \longrightarrow \mathbb{R}$.

▶ Seja $a \in D'_+$. O número real ℓ diz-se o limite lateral à direita de f(x) quando x tende para a (por valores superiores a a) e escreve-se

$$\lim_{x \to a^+} f(x) = \ell$$

quando

$$\forall \varepsilon > 0, \ \exists \delta > 0: \ (x \in D \land 0 < x - a < \delta) \implies |f(x) - \ell| < \varepsilon$$

▶ Seja $a \in D'_-$. O número real ℓ diz-se o limite lateral à esquerda de f(x) quando x tende para a (por valores inferiores a a) e escreve-se

$$\lim_{x \to a^{-}} f(x) = \ell$$

quando

$$\forall \varepsilon > 0, \ \exists \delta > 0: \ (x \in D \land -\delta < x - a < 0) \Longrightarrow |f(x) - \ell| < \varepsilon$$

Teorema

Sejam $f: D \longrightarrow \mathbb{R}$ e $a \in (D'_- \cap D'_+)$. Então

$$\ell = \lim_{x \to a} f(x)$$

se e só se existem e são iguais a ℓ os correspondentes limites laterais, isto é,

$$\ell = \lim_{x \to a} f(x) \iff \left(\lim_{x \to a^+} f(x) = \ell \land \lim_{x \to a^-} f(x) = \ell\right)$$

 Para os limites laterais valem, com as devidas adaptações, os resultados anteriores sobre o limite.

1. Não existe $\lim_{x\to 0} \frac{|x|}{x}$.

De facto, os limites laterais são diferentes pois

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1$$

$$\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = 1$$

pelo que o limite proposto não existe.

Observação

► São exemplos de casos em que não existe

$$\lim_{x \to a} f(x)$$

- $\bullet \lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$
- $\bullet \ \lim_{x \to a} f(x) \quad \text{onde}$

$$f(x) = \left\{ \begin{array}{ll} 1, & x \quad \text{\'e racional;} \\ 0, & x \quad \text{\'e irracional} \end{array} \right. \quad \text{e} \quad a \in \mathbb{R}.$$

Limites no infinito e limites infinitos

Seja $f: D \longrightarrow \mathbb{R}$.

▶ O que acontece se D for ilimitado, à direita ou à esquerda, e se fizer $x \in D$ tender para $+\infty$ ou $-\infty$? Qual o significado de

$$\lim_{x \longrightarrow +\infty} f(x) = \ell \qquad \text{ou} \qquad \lim_{x \longrightarrow -\infty} f(x) = \ell?$$

▶ Dado $a \in D'$, qual o significado de

$$\lim_{x \to a} f(x) = +\infty \qquad \text{ou} \qquad \lim_{x \to a} f(x) = -\infty?$$

- ▶ [Limites no infinito] Seja $f: D \longrightarrow \mathbb{R}$.
 - Se D é um conjunto não majorado, diz-se que f(x) tende para ℓ quando x tende para $+\infty$, e escreve-se

$$\lim_{x \to +\infty} f(x) = \ell,$$

quando

$$\forall \varepsilon > 0, \ \exists A > 0 : (x \in D \land x > A) \Longrightarrow |f(x) - \ell| < \varepsilon$$

• Se D é um conjunto não minorado, diz-se que f(x) tende para ℓ quando x tende para $-\infty$, e escreve-se

$$\lim_{x \to -\infty} f(x) = \ell,$$

quando

$$\forall \varepsilon > 0, \ \exists A > 0 : (x \in D \land x < -A) \Longrightarrow |f(x) - \ell| < \varepsilon$$

- ▶ [Limites infinitos] Sejam $f: D \longrightarrow \mathbb{R}$ e $a \in D'$. Diz-se que:
 - f(x) tende para $+\infty$ quando x tende para a e escreve-se

$$\lim_{x \to a} f(x) = +\infty$$

quando

$$\forall L > 0, \exists \delta > 0 : (x \in D \land 0 < |x - a| < \delta) \implies f(x) > L$$

• f(x) tende para $-\infty$ quando x tende para a, e escreve-se

$$\lim_{x \to a} f(x) = -\infty$$

quando

$$\forall L > 0, \exists \delta > 0: (x \in D \land 0 < |x - a| < \delta) \implies f(x) < -L$$

12 / 25

- ► Se D é um conjunto não majorado, diz-se que
 - f(x) tende para $+\infty$ quando x tende para $+\infty$, e escreve-se

$$\lim_{x \to +\infty} f(x) = +\infty,$$

quando $\forall L>0\,,\;\exists A>0:(x\in D\,\wedge\,x>A)\Longrightarrow\,f(x)>L$

• f(x) tende para $-\infty$ quando x tende para $+\infty$, e escreve-se

$$\lim_{x \to +\infty} f(x) = -\infty,$$

quando $\forall L>0, \; \exists A>0: (x\in D \; \land \; x>A) \Longrightarrow \; f(x)<-L$

- ▶ Se D é um conjunto não minorado, diz-se que
 - f(x) tende para $+\infty$ quando x tende para $-\infty$, e escreve-se

$$\lim_{x \to -\infty} f(x) = +\infty,$$

quando $\forall L>0\,,\;\exists A>0: (\,x\in D\,\wedge\,x<-A\,)\Longrightarrow\,f(x)>L$

• f(x) tende para $-\infty$ quando x tende para $-\infty$, e escreve-se

$$\lim_{x \to -\infty} f(x) = +\infty,$$

quando $\forall L > 0, \exists A > 0 : (x \in D \land x < -A) \Longrightarrow f(x) < -L$

► [Indeterminações] Se

$$\lim_{x\to a} f(x) = +\infty \quad \mathrm{e} \quad \lim_{x\to a} g(x) = -\infty,$$

o que se pode dizer sobre o limite

$$\lim_{x \to a} [f(x) + g(x)]?$$

- Diz-se que $+\infty + (-\infty)$ é uma indeterminação.
- Alguns exemplos de outras indeterminações são:

$$0 \cdot \infty$$
, $\frac{\infty}{\infty}$, $\frac{0}{0}$, 1^{∞} , 0^{0} , ∞^{0} , 0^{∞} .

Função contínua

Seja $f: D \longrightarrow \mathbb{R}$ e $a \in D$.

A função f é contínua em $a \in D$ quando

$$\forall \varepsilon > 0, \, \exists \delta > 0: \, \left(x \in D \, \wedge \, |x - a| < \delta \, \right) \Longrightarrow \, |f(x) - f(a)| < \varepsilon$$

- \blacktriangleright De forma equivalente, diz-se que função f é contínua em $a\in D$ quando
 - ullet a é ponto isolado de D ou
 - $\bullet \ a \in D' \in \lim_{x \to a} f(x) = f(a),$
- Diz-se que f é contínua quando f é contínua em todo $x \in D$.

1. As funções seguintes são contínuas.

$$\begin{array}{ccc} f: \mathbb{Z} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x \end{array}$$

2. [Função característica] A função $f:\mathbb{R}\longrightarrow\mathbb{Z}$ definida por

$$f(x) = \max\{z \in \mathbb{Z} : z \le x\}$$

e denotada por [x] é contínua em $\mathbb{R} \setminus \mathbb{Z}$.

Observação

- ▶ Diz-se que $a \in D$ é um ponto de descontinuidade de $f: D \longrightarrow \mathbb{R}$, ou que f possui uma descontinuidade no ponto $a \in D$, quando se verificar uma das duas condições seguintes:
 - $a \in D'$ e não existe $\lim_{x \to a} f(x)$;
 - $a \in D'$ existe $\ell = \lim_{x \to a} f(x)$ e $\ell \neq f(a)$.

Resultados sobre continuidade pontual

- ▶ [Aritmética das funções contínuas] Sejam $f, g: D \longrightarrow \mathbb{R}$ duas funções contínuas em $a \in D$ e $\alpha \in \mathbb{R}$. Então as funções
 - \bullet f+g, αf e fg são contínuas em a;
 - $\bullet \ \frac{f}{g} \ \text{\'e contínua em} \ a \ \text{desde que} \ g(a) \neq 0.$
- ▶ [Continuidade da função composta] Sejam $f\colon D\longrightarrow \mathbb{R}$ e $g\colon B\longrightarrow \mathbb{R}$ tais que $f(D)\subset B$. Se f é contínua em $a\in D$ e g é contínua em b=f(a), então $g\circ f$ é contínua em a.
- ▶ [Continuidade da função inversa] Se I e J são intervalos reais e $f:I\longrightarrow J$ é uma função bijetiva e contínua, então f^{-1} é contínua.

1. Sejam $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ definidas, respetivamente, por

$$f(x) = 2x, g(x) = x^3.$$

As funções f e g são contínuas e a função composta

$$(g \circ f)(x) = 8x^3, \qquad x \in \mathbb{R}$$

é, também, uma função contínua.

- Haverá contradição com o teorema da continuidade da função composta?
 - Sejam $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ definidas respetivamente por

$$f(x) = 2,$$
 $g(x) = \begin{cases} 1, & x \neq 5 \\ 0, & x = 5 \end{cases}$

A função f é contínua, a função g é descontínua e a função composta $(g\circ f)(x)=1,\ x\in\mathbb{R}$ é contínua.

• Sejam $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ definidas respetivamente por

$$f(x) = \begin{cases} 2, & x \le 0 \\ -2, & x > 0 \end{cases}, \qquad g(x) = 5.$$

A função f é descontínua, a função g é contínua e a função composta $(g\circ f)(x)=5,\ x\in\mathbb{R}$ é contínua.

M.Isabel Caiado [MIEInf] Cálculo-2019-20 22 / 25

1. Haverá contradição com o teorema da continuidade da função inversa?

$$f(x) = \left\{ \begin{array}{ll} x+1, & 0 \leq x < 1 \\ \\ x, & 2 \leq x \leq 3 \end{array} \right.$$
 f é contínua

$$f^{-1}(x) = \begin{cases} x - 1, & 1 \le x < 2\\ x, & 2 \le x \le 3 \end{cases}$$

Resultados sobre funções contínuas

Teorema

Seja $f\colon D\longrightarrow \mathbb{R}$ uma função contínua. Se D é um intervalo fechado e limitado então f(D) é um intervalo fechado e limitado.

Teorema (de Weierstrass)

Se $f: D \longrightarrow \mathbb{R}$ é contínua e D é um intervalo fechado e limitado então f é limitada e atinge os seus extremos em D, isto é,

$$\exists a, b \in D : f(a) \le f(x) \le f(b), \forall x \in D$$

Teorema (de Bolzano)

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua. Então f([a,b]) contém o intervalo fechado de extremos f(a) e f(b).

Corolário

Seja $f\colon [a,b] \longrightarrow \mathbb{R}$ uma função contínua e tal que $f(a)\cdot f(b) < 0$. Então

$$\exists c \in]a,b[: f(c) = 0$$