复旦大学经济学院

2022~2023 学年第二学期期末考试试卷

B卷 (共 6 页)

课程名称:	线性代数	课程作	代码: MAT	TH120044.01-05
开课院系:	经济学院	考试刑	》式: 闭卷	
姓名:	学号:		专业:	
提示:请同学	们秉持诚实守信宗	旨,谨守考试纪律	1,摒弃考试(作弊。学生如有违反学校
考试纪律的行为,	学校将按《复旦大	学学生纪律处分别	《例》规定予	以严肃处理。
题号	_		=	总分
得分				
() (A) (AB) (C) AB ~ 2、行列式	$\begin{vmatrix} ac & ae \\ -dc & de \\ -cf & -ef \end{vmatrix} =$		(////	lui ipi
		ocdef (C)	-4abcdef	(D) -abcdef
6, x, 7, 2,	则 $x =$			4 行元素的余子式依次为
I、A.B.C为n阶矩	(B) 7 阵,且 <i>ABC</i> = <i>I</i> ,贝	则下列说法错误的	是	
() (A) $A,B,$	C均可逆 (B) B-	$^{1} = CA$ (C)	$C = B^{-1}A^{-1}$	(D) $B^{-1}C^{-1} = A$
	2 3 5 B 为 3 阶非零			
() (A) 0	(B) -	·2 (C) 1	(D) -1
$b \cdot A = \begin{pmatrix} a_1 b_1 & a_1 \\ a_2 a_1 & a_2 \\ \dots \\ a_n b_1 & a_2 \end{pmatrix}$	$\begin{pmatrix} a_1b_2 & \dots & a_1b_n \\ a_2b_2 & \dots & a_2b_n \\ \dots & \dots & \dots \\ a_nb_2 & \dots & a_nb_n \end{pmatrix}$	$a_i, b_i \neq 0, \mathbb{H}\sum_{i=1}^n$	$a_i b_i \neq 0$ 则	下列说法错误的是
(A) A相(C) A的(A)	似于对角矩阵 不同特征值为 22 。。) A只有两个) A的秋等于	线性无关的特征向量 1

7、已知实对称矩阵 A 的对应于 3 个不同特征值的 $\alpha_3 = (-1,1,1)^T$,则 $t = (B)-2$ 8、已知向量组(P): $\alpha_1,\alpha_2,,\alpha_s$ 与向量组(Q): (A) 若(P)可以由(Q)线性表示,且 $s \le t$	(C) 2	(D) 1
(B) 若(P)等价于(Q),则 $s = t$ (C) 若 $r(\alpha_1, \alpha_2,, \alpha_s) = r(\beta_1, \beta_2,, \beta_t)$ (D) 若(P)线性无关,且(P)可以由(Q)	线性表示, 则 c < t	
9、设三阶矩阵 A 满足 $\left A + \frac{1}{3}I\right = 0, A - I = 0, A - I = 0$	$ A-3I =0, \ \text{Wild}$	* + 2.4-1/等于
() (A) $\frac{1}{3}$ (B) $-\frac{1}{3}$	(C) 1	(D) -1
10、n阶实对称矩阵A,B特征值相同,则下列说法 () (A) A与B相似 (C) A、B相似于同一对角阵	結误的是(B) A、B特征向(D) A = B 	日量相同
二、计算题 (54 分,每小题 9 分): 1、设 3 阶矩阵 $A = (\alpha_1, \alpha_3, \alpha_4)$, $B = (\alpha_2, \alpha_3, \alpha_4)$ 量. 若 $ A = 2$, $ B = \frac{1}{2}$,求 $ A + B $	4),其中 α ₁ ,α ₂ ,α ₃	3, α 4 均为 3 维列向

2、用克莱姆法则求下列线性方程组的解

$$\begin{cases} x_1 - x_2 + x_3 = 1 \\ x_1 + 2x_2 + x_3 = 1 \\ 2x_1 + x_2 + 3x_3 = 1 \end{cases}$$

3.
$$\[\] B = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}, \ \ \] \[(I - C^{-1}B)^{\mathsf{T}}C^{\mathsf{T}}A = I, \ \, \] \[\] \[A, A^{-1} \]$$

4、求下列向量组的极大无关组,并将其余向量用极大无关组线性表示 $\alpha_1 = (2,-1,0,1), \qquad \alpha_2 = (-1,1,3-2), \qquad \alpha_3 = (2,1,2,-1),$ $\alpha_4 = (0,1,6,-3), \qquad \alpha_5 = (3,0,-1,1)$

5、设 n 阶矩阵 $A \neq 0$, $A^m = 0$ (m 为正整数), 求 |kI + A|

6、将矩阵
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -2 & -1 \end{pmatrix}$$
 对角化

- 三、证明题(16分,每小题8分);
- 1、设A为可逆矩阵, $M=\begin{pmatrix}A&B\\C&D\end{pmatrix}$ 是分块矩阵,已知r(A)=r(M)。证明: $D=CA^{-1}B$

2、设 \mathbf{A} 为n阶矩阵,证明: $r(\mathbf{A}^n) = r(\mathbf{A}^{n+1})$

复旦大学经济学院

2022~2023 学年第二学期期末考试试卷

B卷答案

6. B 7. C 8. D 9. D 10. B

二、1、10

2,
$$x_1 = 2$$
, $x_2 = 0$, $x_3 = -1$

$$3 \cdot A = \begin{pmatrix} \frac{1}{2} & & \\ & \frac{1}{2} & \\ & & 1 \end{pmatrix}, A^{-1} = \begin{pmatrix} 2 & & \\ & 2 & \\ & & 1 \end{pmatrix}$$

4、 $\alpha_1,\alpha_2,\alpha_3$ 是极大无关组, $\alpha_4=\alpha_1+2\alpha_2,\ \alpha_5=-\alpha_2+\alpha_3$

 $5, k^n$

6.
$$P = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & -1 & -2 \end{pmatrix}$$
, $P^{-1}AP = \begin{pmatrix} -1 & & \\ & 1 & \\ & & 2 \end{pmatrix}$

=,

1、要点:
$$r(M) = r(PMQ)$$
,其中 $P = \begin{pmatrix} I & 0 \\ -CA^{-1} & I \end{pmatrix}$, $Q = \begin{pmatrix} I & -A^{-1}B \\ 0 & I \end{pmatrix}$,

$$\mathbb{M}PMQ = \begin{pmatrix} A & 0 \\ 0 & B - CA^{-1}B \end{pmatrix},$$

$$r(PMQ) = r(A) + r(D - CA^{-1}B)$$
,由此可得 $r(D - CA^{-1}B) = 0$

2、要点: $A^n x = 0$ 与 $A^{n+1} x = 0$ 同解。若 $A^{n+1} x = 0$ 而 $A^n x \neq 0$,则可以证明x,Ax, $A^2 x$,…, $A^n x$ 线性无关,但这n + 1个n维向量又一定线性相关,矛盾。

方法二: A相似于约当标准形 J,而 $A^n \sim J^n$,分块对角阵的秩等于对角小块的秩之和。若约当块的特征值是 0,则 $r(J_i^n) = r(J_i^{n+1}) = 0$,若约当块的特征值不是 0,则 $r(J_i^n) = r(J_i^{n+1}) = J_i$ 的阶数