FCC PART 15C TEST REPORT FOR CERTIFICATION On Behalf of

Voxx Accessories Corp.

Wireless Speaker

Model Number: SP891B

FCC ID: VIXSP891B

Prepared for: Voxx Accessories Corp.

3502 Woodview Trace, Suite 220, Indianapolis,

IN 46268

Prepared By: EST Technology Co., Ltd.

Santun(guantai Road), Houjie Town, DongGuan City,

GuangDong, China.

Tel: 86-769-83081888-808

Report Number: ESTE-R1411007

Date of Test : Oct 29,2014~ Nov 10, 2014

Date of Report: Nov 11, 2014

TABLE OF CONTENTS

Descr	iption	<u>Page</u>
TEST R	REPORT VERIFICATION	3
1.	GENERAL INFORMATION	5
	1.1. Description of Device (EUT)	5
2.	SUMMARY OF TEST	6
	2.1. Summary of test result	
	2.2. Test Facilities	
	2.3. Assistant equipment used for test	
	2.4. Block Diagram	8
	2.5. Test mode	9
	2.6. Channel List for Bluetooth	9
	2.7. Test Equipment	10
3.	MAXIMUM PEAK OUTPUT POWER	11
	3.1. Limit	11
	3.2. Test Procedure	11
	3.3. Test Result	11
	3.4. Test Data	12
4.	20 DB BANDWIDTH	16
	4.1. Limit	16
	4.2. Test Procedure	16
	4.3. Test Result	16
	4.4. Test Data	17
5.	CARRIER FREQUENCY SEPARATION	21
	5.1. Limit	21
	5.2. Test Procedure	21
	5.3. Test Result	21
	5.4. Test Data	22
6.	NUMBER OF HOPPING CHANNEL	26
	6.1. Limit	26
	6.2. Test Procedure	26
	6.3. Test Result	26
	6.4. Test Data	27
7.	DWELL TIME	29
	7.1. Limit	29
	7.2. Test Procedure	29
	7.3. Test Result	29
	7.4. Test Data	30
8.	RADIATED EMISSIONS	33
	8.1. Limit	33
	8.2. Block Diagram of Test setup	34
	8.3. Test Procedure	
	8.4. Test Result	34

EST Technology Co., Ltd

	8.5.	Test Data	35
9.	BANI	DEDGE COMPLIANCE	71
	9.1.	Limit	71
	9.2.	Block Diagram of Test setup	71
	9.3.	Test Procedure	71
	9.4.	Test Result	71
	9.5.	Test Data	72
10.	Powi	ER LINE CONDUCTED EMISSIONS	88
	10.1.	Limit	88
	10.2.	Test Procedure	88
11.	ANTE	ENNA REQUIREMENTS	91
	11.1.	Limit	91
	11.2.	Result	91
12.	TEST	SETUP PHOTO	92
13	Рнот	COS OF EUT	94

Test Report Verification

Address: 35 Manufacturer Address: To E.U.T: Wi SP Model Number: (co sar Power Supply: Do Test Voltage: Do Trade Name: 80	langzhou Changjia b-ying Industrial Ga wn, Nansha district reless Speaker 891B omes in color variat me the only differen C 3.7V From Interna C 5V From USB for C 3.7V	e, Suite 220, Indianap Electronic Co., Ltd. rden, Taishi Industria e, Guangzhou, China ions, but are electrica ice is the color)	al Zone, Yuwotou, Dongchong		
Manufacturer Address: To E.U.T: Wi SP Model Number: (cc sai Power Supply: DC Test Voltage: DC Trade Name: 80	langzhou Changjia b-ying Industrial Ga wn, Nansha district reless Speaker 891B omes in color variat me the only differen C 3.7V From Interna C 5V From USB for C 3.7V	Electronic Co., Ltd. rden, Taishi Industria r, Guangzhou, China ions, but are electrica ice is the color) al Battery	al Zone, Yuwotou, Dongchong		
Manufacturer Address: To E.U.T: Wi SP Model Number: (cc sar Power Supply: DC Test Voltage: DC Trade Name: 80	o-ying Industrial Gawn, Nansha district reless Speaker 891B omes in color variat me the only different C 3.7V From Internation USB for C 3.7V	ions, but are electricate is the color)			
Address: To E.U.T: Wi SP Model Number: (cc sai Power Supply: DC Test Voltage: DC Trade Name: 80	wn, Nansha district ireless Speaker 891B omes in color variat me the only different C 3.7V From Interna C 5V From USB for C 3.7V	ions, but are electricate is the color)			
E.U.T: Wind SP Model Number: (constant state of the state	reless Speaker 891B omes in color variat me the only differen C 3.7V From Interna C 5V From USB for C 3.7V	ions, but are electrica ace is the color)	ılly and mechanically the		
Model Number: (cc sar Power Supply: DC Test Voltage: DC Trade Name: 80	891B omes in color variat me the only different C 3.7V From Internate C 5V From USB for C 3.7V	al Battery	ılly and mechanically the		
Model Number: (constant property of the stant property of the stan	omes in color variation the only different 3.7V From Internate 5V From USB for 2.3.7V	al Battery	ally and mechanically the		
Power Supply: DC Test Voltage: DC Trade Name: 80	me the only different C 3.7V From Interna C 5V From USB for C 3.7V	al Battery	lly and mechanically the		
Power Supply: DC DC Test Voltage: DC Trade Name: 80	C 3.7V From Interna C 5V From USB for C 3.7V	al Battery			
Test Voltage: DC Trade Name: 80	C 5V From USB for C 3.7V	2			
Test Voltage: DC Trade Name: 80	C 3.7V 8	Charging			
Trade Name: 80	8				
		Serial No.:			
Date of Receipt: Oc	et 29, 2014	Date of Test:	Oct 29,2014~ Nov 10, 2014		
Test Specification: FC	CC Rules and Regul	ations Part 15 Subpar	rt C:2013		
- Al	NSI C63.4:2009				
			T Technology Co., Ltd The		
LOCT RACILLY	measurement results were contained in this test report and EST Technology				
Co	Co., Ltd. was assumed full responsibility for the accuracy and completeness				
			ows that the EUT to be		
			FCC Rules and Regulations Part		
15	Subpart C requiren	nents.	mnology Co		
TI		1 , 1 1	1		
	1 11		only and shall not be reproduced		
ın	part without writter	approval of EST Tec			
D 11	m . 11		Date. Nov 11, 2014		
Prepared by:	Tested b	y:	Approved by Author		
/			T 11		
Ada	ton	u /	Trementhe		
N					
Ada / Assistant	Tony.Tang	/ Engineer	IcemanHu / Manager		
Other Aspects:					
None.					
Abbreviations: OK/P=passed	fail/F=failed n.	a/N=not applicable	E.U.T=equipment under tested		
This test report is based on a sin	ale evaluation of one se	ample of above mentioned	l products ,It is not permitted to be		

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

Product Name : Wireless Speaker

Model Number : SP891B

FCC ID : VIXSP891B

Operation frequency : 2402MHz~2480MHz

Number of channel : 79

Antenna : Internal antenna, 0 dBi gain

Modulation : FHSS (GFSK, $\pi/4$ -DQPSK, 8-DPSK)

Sample Type : Prototype production

EST

2. SUMMARY OF TEST

2.1. Summary of test result

Description of Test Item	Standard	Results
Maximum Peak Output Power	FCC Part 15: 15.247(b)(1) DA 00-705	PASS
20dB Bandwidth	FCC Part 15: 15.215 DA 00-705	PASS
Carrier Frequency Separation	FCC Part 15: 15.247(a)(1) DA 00-705	PASS
Number Of Hopping Channel	FCC Part 15: 15.247(a)(1)(iii) DA 00-705	PASS
Dwell Time	FCC Part 15: 15.247(a)(1)(iii) DA 00-705	PASS
Radiated Emission	FCC Part 15: 15.209 FCC Part 15: 15.247(d) ANSI C63.4: 2003 DA 00-705	PASS
Band Edge Compliance	FCC Part 15: 15.247(d) DA 00-705	PASS
Power Line Conducted Emissions	FCC Part 15: 15.207 ANSI C63.4: 2009 DA 00-705	PASS
Antenna requirement	FCC Part 15: 15.203	PASS

EST

2.2. Test Facilities

EMC Lab : Certificated by CNAL, CHINA

Registration No.: L5288

Date of registration: October 28, 2011

Certificated by FCC, USA Registration No.: 989591

Date of registration: November 20, 2013

Certificated by Industry Canada Registration No.: 9405A-1

Date of registration: January 03, 2013

Certificated by VCCI, Japan

Registration No.: R-3663 & C-4103 Date of registration: July 25, 2011

Certificated by TUV Rheinland, Germany Registration No.: UA 50195514 0001 Date of registration: January 07, 2011

Certificated by TUV/PS, Shenzhen

Registration No.: SCN1017

Date of registration: January 27, 2011

Certificated by Intertek ETL SEMKO Registration No.: 2011-RTL-L1-18 Date of registration: April 28, 2011

Certificated by Siemic, Inc. Registration No.: SLCN021

Date of registration: November 8, 2011

Certificated by Nemko, Hong Kong

Registration No.: 175193

Date of registration: May 4, 2011

Name of Firm : EST Technology Co., Ltd.

Site Location : San Tun Management Zone, Houjie Town, Dongguan,

Guangdong, China

2.3. Assistant equipment used for test

2.3.1. PC

Manufacturer : DELL

M/N : Laititude E6420 Adapter : M/N: DA90PM111

Input: AC 100-240V~50/60Hz 1.5A

Output: DC 19.5V/4.62A

2.4. Block Diagram

For radiated emissions test: EUT was placed on a turn table, which is 0.8 meter high above ground.EUT was be set into BT test mode by software before test.

EUT

(EUT: Wireless Speaker)

2.5. Test mode

The test software was used to control EUT work in Continuous TX mode, and select test channel, wireless mode

Mode	Channel	Frequency
	Low	2402MHz
GFSK	Middle	2441MHz
	High	2480MHz
	Low	2402MHz
8-DPSK	Middle	2441MHz
	High	2480MHz

2.6. Channel List for Bluetooth

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	_	_

2.7. Test Equipment

2.7.1. For conducted emission test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde & Schwarz	ESHS30	832354	June,28,14	1 Year
Artificial Mains Networ	Rohde & Schwarz	ENV216	101260	June,28,14	1 Year
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	101100	June,28,14	1 Year

2.7.2. For radiated emission test(30-1000MHz)

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde & Schwarz	ESVS10		June,28,14	
Spectrum Analyzer	Agilent	E4411B	MY5014069 7	June,28,14	1 Year
Bilog Antenna	Teseq	CBL 6111D	27090	June,28,14	1 Year
Signal Amplifier	Agilent	310N	187037	June,28,14	1 Year

2.7.3. For radiated emission test(above 1GHz)

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Horn Antenna	SCHWARZB	BBHA 9120 D	BBHA9120D1	June,28,1	1 Year
	ECK		002	4	1 Teal
Signal Amplifier	SCHWARZB ECK	BBV9718	9718-212	June,28,1 4	1 Year
Spectrum Analyzer	Agilent	E4408B	MY44211139	June,28,1 4	1 Year
RF Cable	Hubersuhner	RG 214/U	513423	June,28,1 4	1 Year

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 10 of 99

3. MAXIMUM PEAK OUTPUT POWER

3.1. Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts, the e.i.r.p shall not exceed 4W

3.2. Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

3.3. Test Result

EUT: Wireless Speaker M/N: SP891B								
Test date: 20		Test site: RF site	Tested b	y: Tony Tang	<u> </u>			
Modo	Freq	Result	L	imit	Margin			
Mode	(MHz) (dBm)	(dBm)	dBm	W	(dB)			
	2402	0.139	21.00	0.125	20861			
GFSK	2441	-0.362	21.00	0.125	21.362			
	2480	-1.268	21.00	0.125	22.268			
	2402	-0.983	21.00	0.125	21.983			
8-DPSK	2441	-1.494	21.00	0.125	22.494			
	2480	-2.394	21.00	0.125	23.394			
Conclusion:	Conclusion: PASS							

EST Technology Co., Ltd

3.4. Test Data

GFSK 2402 MHz

GFSK 2441 MHz

GFSK 2480 MHz

8-DPSK 2402 MHz

8-DPSK 2441 MHz

8-DPSK 2480 MHz

4. 20 DB BANDWIDTH

4.1. Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

4.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.3. Test Result

EUT: Wireless Speaker M/N: SP891B					
Test date: 20		Test site: RF site	Tested by	: Tony Tang	
Mode	Freq (MHz)	20dB Bandwidth (MHz)	Limit (kHz)	Conclusion	
	2402	1.053	/	PASS	
GFSK	2441	1.059	/	PASS	
	2480	1.047	/	PASS	
	2402	1.340	/	PASS	
8-DPSK	2441	1.341	/	PASS	
	2480	1.336	/	PASS	

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 16 of 99

4.4. Test Data

GFSK 2402MHz

GFSK 2441MHz

GFSK 2480MHz

8-DPSK 2402MHz

8-DPSK 2441MHz

8-DPSK 2480MHz

5. CARRIER FREQUENCY SEPARATION

5.1. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

5.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The carrier frequency was measured by spectrum analyzer with 100kHz RBW and 100kHz VBW.

5.3. Test Result

EUT: Wireless Speaker M/N: SP891B						
Test date: 20			Test site: RF site Tested by: Tony Ta	ng		
Mode	Channel	Channel				
		separation	Limit	Conclusion		
		(MHz)				
	Low CH	1.000		PASS		
GFSK	Mid CH	1.000		PASS		
	High CH	1.000	> 2/3 of the 20dB Bandwidth or	PASS		
	Low CH	1.013	25[kHz](whichever is greater)	PASS		
8-DPSK	Mid CH	1.006		PASS		
	High CH	1.006		PASS		

5.4. Test Data

GFSK Low Channel

Mid Channel

8-DPSK Low Channel

Mid Channel

6. NUMBER OF HOPPING CHANNEL

6.1. Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels

6.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The number of hopping channel was measured by spectrum analyzer with 300kHz RBW and 300kHz VBW.

6.3. Test Result

EUT: Wireless Speaker M/N: SP891B								
Test date: 2014-11-07 Test site: RF site Tested by: Tony.Tang								
Mode	Number o	f hopping channel	Limit	Conclusion				
GFSK		79	>15	PASS				
8-DPSK		79	>15	PASS				

6.4. Test Data

GFSK

8-DPSK

7. DWELL TIME

7.1. Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

7.2. Test Procedure

- (1.) Connect EUT antenna output to spectrum analyzer by RF cable.
- (2.) Measure the hopping number and on time of each pulse with spectrum analyzer in zero span Set, and calculate dwell time formula Dwell time=total hops*pulses on time.
- DH1 Packet permit maximum 1600/79/2=10.12 hops per second in each channel(1 time slot RX,1 time slot TX). So, total hops is 10.12*31. 6=320. 0
- DH3 Packet permit maximum 1600/79/4=5.06 hops per second in each channel(3 time slot RX,1time slot TX).So, total hops is 5.06*31. 6=160. 0
- DH5 Packet permit maximum 1600/79/6=3.37 hops per second in each channel(5 time slot RX,1time slot TX).So, total hops is 3.37*31. 6=106. 6
- 3DH1 Packet permit maximum 1600/79/2=10.12 hops per second in each channel(1 time slot RX,1 time slot TX).So, total hops is10.12*31.6=320.0
- 3DH3 Packet permit maximum 1600/79/4=5.06 hops per second in each channel(3 time slot RX,1time slot TX).So, total hops is5.06*31.6=160.0
- 3DH5 Packet permit maximum 1600/79/6=3.37 hops per second in each channel(5 time slot RX,1time slot TX).So, total hops is 3.37*31.6=106.0

7.3. Test Result

EUT: Wireless Speaker M/N:SP891B Test Date: 2014-11-07 Test Engineer: Tony								
Mode	Dwell time	Pulses on Total hops L		Limit	Conclusion			
		time						
DH1	137.60ms	0.43ms	320.0	<400ms	PASS			
DH3	275.20ms	1.72ms	160.0	<400ms	PASS			
DH5	309.14ms	2.90ms	106.6	<400ms	PASS			
3DH1	128.00ms	0.40ms	320.0	<400ms	PASS			
3DH3	273.60ms	1.71ms	160.0	<400ms	PASS			
3DH5	311.27ms	2.92ms	106.6	<400ms	PASS			
Note Dwell time :total hops*pulses on time								

7.4. Test Data

DH1 pulses on time:0.43ms

DH3 pulses on time:1.72ms

DH5 pulses on time:2.90ms

3DH1 pulses on time:0.40ms

3DH3 pulses on time:1.71ms

3DH5 pulses on time:2.92ms

8. RADIATED EMISSIONS

8.1. Limit

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

15.209 Limit

FREQUENCY		DISTANCE	FIELD STRENGTHS LIMIT		
M	Ήz	Meters	μV/m	dB(μV)/m	
30 ~	88	3	40.0		
88 ~	216	3	150	43.5	
216 ~ 960		3	200	46.0	
960 ~ 1000		3	500	54.0	
Above 1000		3	\•	/)/m (Peak) /m (Average)	

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 33 of 99

8.2. Block Diagram of Test setup

8.3. Test Procedure

EUT was placed on a turn table, which is 0.8 meter high above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. Power on the EUT and let it working in test mode, then test it. EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

The bandwidth of the EMI test receiver (R&S ESVS10) is set at 120kHz for frequency range from 30MHz to 1000 MHz.

The bandwidth of the Spectrum's VBW is set at 1MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure above 1GHz

PEAK detector, 1MHz/1MHz for PAEK measurement,

PEAK detector, 1MHz/10Hz for Average measurement

The frequency range from 30MHz to 10th harmonic (25GHz) are checked.

8.4. Test Result

30MHz—25GHz Radiated emissison Test result						
EUT: Wireless Speaker						
M/N: SP891B						
Power: DC 3.7V						
Test date: 2014-11-02~11-05 Test site: 3m Chamber Tested by: Tony Tang						
Test mode: Tx Mode						
Pass						

Note: 1. For emissions above 1GHz, if peak level comply with average limit, then the average level is deemed to comply with average limit.

2. The frequency 2402MHz . 2441MHz and 2480MHz is fundamental frequency which no limit, the limit on plots is automatically generated by the software, it's not fundamental limit, we can't remove it.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 34 of 99

8.5. Test Data

30 MHz - 1000 MHz

Site no. : 3m Chamber Data no. : 179

Dis. / Ant. : 3m 27137 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 B

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2402MHz

		Ant.	Cable		Emission	ı			
	_			_	Level (dBuV/m)		_	Remark	
1	48.43	8.37	0.98	17.12	26.47	40.00	13.53	QP	
2	111.48	10.60	1.44	14.60	26.64	43.50	16.86	QP	
3	119.24	11.11	1.42	17.01	29.54	43.50	13.96	QP	
4	159.98	10.36	1.71	12.48	24.55	43.50	18.95	QP	
5	230.79	9.49	2.05	22.67	34.21	46.00	11.79	QP	
6	264.74	12.94	2.28	11.96	27.18	46.00	18.82	QP	

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 35 of 99

Site no. : 3m Chamber Data no. : 180
Dis. / Ant. : 3m 27137 Ant. pol. : VERTICAL

Limit : FCC PART 15 B

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2402MHz

	-	Factor	Loss	Reading	Emission Level (dBuV/m)	Limits	_	Remark	
1	227.88	9.46	2.09	13.15	24.70	46.00	21.30	QP	
2	397.63	15.96	2.68	5.99	24.63	46.00	21.37	QP	
3	436.43	16.18	2.84	17.14	36.16	46.00	9.84	QP	
4	478.14	17.40	3.07	9.21	29.68	46.00	16.32	QP	
5	516.94	17.95	3.15	10.93	32.03	46.00	13.97	QP	
6	596.48	19.54	3.35	6.37	29.26	46.00	16.74	QP	

Site no. : 3m Chamber Data no. : 181
Dis. / Ant. : 3m 27137 Ant. pol. : VERTICAL

Limit : FCC PART 15 B

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2441MHz

	-	Factor	Loss	Reading	Emission Level (dBuV/m)	Limits	_	Remark	
1	227.88	9.46	2.09	14.08	25.63	46.00	20.37	QP	
2	397.63	15.96	2.68	6.54	25.18	46.00	20.82	QP	
3	436.43	16.18	2.84	17.19	36.21	46.00	9.79	QP	
4	478.14	17.40	3.07	8.70	29.17	46.00	16.83	QP	
5	516.94	17.95	3.15	13.19	34.29	46.00	11.71	QP	
6	596.48	19.54	3.35	6.16	29.05	46.00	16.95	QP	

Data no. : 182

Site no. : 3m Chamber Dis. / Ant. : 3m 27137 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 B

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2441MHz

	_	Factor	Loss	Reading	Emission Level (dBuV/m)	Limits	_	Remark	
1	48.43	8.37	0.98	12.16	21.51	40.00	18.49	QP	
2	114.39	10.85	1.42	13.92	26.19	43.50	17.31	QP	
3	124.09	11.31	1.53	12.46	25.30	43.50	18.20	QP	
4	164.83	9.77	1.66	10.89	22.32	43.50	21.18	QP	
5	225.94	9.47	1.99	21.70	33.16	46.00	12.84	QP	
6	264.74	12.94	2.28	10.26	25.48	46.00	20.52	QP	

Dis. / Ant. : 3m 27137 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 B

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2480MHz

	_	Factor	Loss	Reading	Level (dBuV/m)	Limits	_	Remark
1	48.43	8.37	0.98	14.65	24.00	40.00	16.00	QP
2	109.54	10.44	1.40	13.52	25.36	43.50	18.14	QP
3	119.24	11.11	1.42	11.66	24.19	43.50	19.31	QP
4	174.53	8.99	1.68	12.45	23.12	43.50	20.38	QP
5	232.73	9.59	2.08	23.62	35.29	46.00	10.71	QP
6	256.98	12.63	2.17	12.65	27.45	46.00	18.55	QP

Site no. : 3m Chamber Data no. : 184
Dis. / Ant. : 3m 27137 Ant. pol. : VERTICAL

Limit : FCC PART 15 B

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2480MHz

_		_	Factor	Loss	Reading	Emission Level (dBuV/m)	Limits	_	Remark
	1	227.88	9.46	2.09	14.26	25.81	46.00	20.19	QP
	2	397.63	15.96	2.68	7.30	25.94	46.00	20.06	QP
	3	436.43	16.18	2.84	18.29	37.31	46.00	8.69	QP
	4	478.14	17.40	3.07	8.00	28.47	46.00	17.53	QP
	5	518.88	17.96	3.15	14.21	35.32	46.00	10.68	QP
	6	596.48	19.54	3.35	6.30	29.19	46.00	16.81	QP

Site no. : 3m Chamber Dis. / Ant. : 3m 27137 Data no. : 185 Ant. pol. : VERTICAL

Limit : FCC PART 15 B
Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V : SP891B M/N

: 8-DPSK TX 2402MHz Test Mode

		Ant.	Cable		Emission			
	-			_	Level (dBuV/m)		_	Remark
1	227.88	9.46	2.09	14.26	25.81	46.00	20.19	QP
2	397.63	15.96	2.68	7.30	25.94	46.00	20.06	QP
3	436.43	16.18	2.84	19.29	38.31	46.00	7.69	QP
4	478.14	17.40	3.07	8.00	28.47	46.00	17.53	QP
5	518.88	17.96	3.15	14.21	35.32	46.00	10.68	QP
6	596.48	19.54	3.35	5.30	28.19	46.00	17.81	QP

Data no. : 186

Site no. : 3m Chamber Dis. / Ant. : 3m 27137 Ant. pol. : HORIZONTAL

: FCC PART 15 B

Env. / Ins. : Temp:25.6';Humi:56%;Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

: DC 3.7V Power : SP891B M/N

Test Mode : 8-DPSK TX 2402MHz

	-	Factor	Loss	Reading	Emission Level (dBuV/m)	Limits	_	Remark
1	114.39	10.85	1.42	9.97	22.24	43.50	21.26	QP
2	155.13	10.67	1.69	10.34	22.70	43.50	20.80	QP
3	225.94	9.47	1.99	21.67	33.13	46.00	12.87	QP
4	232.73	9.59	2.08	20.02	31.69	46.00	14.31	QP
5	250.19	11.82	2.11	15.01	28.94	46.00	17.06	QP
6	256.98	12.63	2.17	11.83	26.63	46.00	19.37	OP

Dis. / Ant. : 3m 27137 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 B

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2441MHz

	_	Factor	Loss	Reading	Emission Level (dBuV/m)	Limits	_	Remark	
1	48.43	8.37	0.98	14.28	23.63	40.00	16.37	QP	
2	114.39	10.85	1.42	13.46	25.73	43.50	17.77	QP	
3	121.18	11.20	1.40	12.40	25.00	43.50	18.50	QP	
4	162.89	10.01	1.67	12.95	24.63	43.50	18.87	QP	
5	232.73	9.59	2.08	20.25	31.92	46.00	14.08	QP	
6	264.74	12.94	2.28	12.11	27.33	46.00	18.67	QP	

Site no. : 3m Chamber Data no. : 188
Dis. / Ant. : 3m 27137 Ant. pol. : VERTICAL

Limit : FCC PART 15 B

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2441MHz

		Ant.	Cable		Emission				
	-			_	Level (dBuV/m)		_	Remark	
1	230.79	9.49	2.05	12.04	23.58	46.00	22.42	QP	
2	397.63	15.96	2.68	7.60	26.24	46.00	19.76	QP	
3	439.34	16.23	2.89	17.87	36.99	46.00	9.01	QP	
4	478.14	17.40	3.07	7.95	28.42	46.00	17.58	QP	
5	518.88	17.96	3.15	12.91	34.02	46.00	11.98	QP	
6	599.39	19.58	3.47	7.86	30.91	46.00	15.09	OP	

Site no. : 3m Chamber Dis. / Ant. : 3m 27137 Data no. : 189 Ant. pol. : VERTICAL

: FCC PART 15 B Limit

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

: DC 3.7V Power M/N : SP891B

Test Mode : 8-DPSK TX 2480MHz

	-	Factor	Loss	Reading	Emission Level (dBuV/m)	Limits	_	Remark
1	230.79	9.49	2.05	13.56	25.10	46.00	20.90	QP
2	397.63	15.96	2.68	7.30	25.94	46.00	20.06	QP
3	439.34	16.23	2.89	18.30	37.42	46.00	8.58	QP
4	478.14	17.40	3.07	8.75	29.22	46.00	16.78	QP
5	518.88	17.96	3.15	12.78	33.89	46.00	12.11	QP
6	599.39	19.58	3.47	10.34	33.39	46.00	12.61	QP

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 45 of 99

Dis. / Ant. : 3m 27137 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 B

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2480MHz

	-	Factor	Loss	Reading	Emission Level (dBuV/m)	Limits	_	Remark
1	51.34	6.92	0.89	13.03	20.84	40.00	19.16	QP
2	225.94	9.47	1.99	17.66	29.12	46.00	16.88	QP
3	233.70	9.64	2.09	15.57	27.30	46.00	18.70	QP
4	256.98	12.63	2.17	10.00	24.80	46.00	21.20	QP
5	315.18	13.39	2.42	5.21	21.02	46.00	24.98	QP
6	512.09	17.94	3.19	2.38	23.51	46.00	22.49	OP

1000 MHz - 18000 MHz

Site no. : 3m Chamber Data no. : 193

Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2402MHz

		Ant.	Cable	Amp		Emission			
	Freq.				_	Level		_	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	2402.00	27.61	6.62	34.18	94.85	94.90	74.00	-20.90	Peak
2	4804.00	31.25	11.77	31.81	37.20	48.41	74.00	25.59	Peak
3	6508.00	34.25	12.23	32.03	33.44	47.89	74.00	26.11	Peak
4	8004.00	37.01	11.40	31.22	32.01	49.20	74.00	24.80	Peak
5	9653.00	37.98	11.67	31.89	32.25	50.01	74.00	23.99	Peak
6	14549.00	41.77	10.92	33.26	30.26	49.69	74.00	24.31	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007

Page 47 of 99

Data no. : 194

Site no. : 3m Chamber Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

: FCC PART 15C PEAK

Env. / Ins. : Temp:25.6';Humi:56%;Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

: DC 3.7V Power : SP891B M/N

: GFSK TX 2402MHz Test Mode

		Ant.	Cable	Amp	mp Emission					
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark	
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		
1	2402.00	27.61	6.62	34.18	91.27	91.32	74.00	-17.32	Peak	
2	4808.00	31.25	11.77	31.81	34.40	45.61	74.00	28.39	Peak	
3	7188.00	36.43	11.53	32.14	34.73	50.55	74.00	23.45	Peak	
4	9313.00	37.94	11.62	32.15	33.13	50.54	74.00	23.46	Peak	
5	11149.00	39.42	11.18	33.94	32.74	49.40	74.00	24.60	Peak	
6	14549.00	41.77	10.92	33.26	31.50	50.93	74.00	23.07	Peak	

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Site no. : 3m Chamber Data no. : 197
Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2441MHz

	_			-		Emission			_
	-					g Level		_	Remark
	(MHz)	(QB/M)	(ab)	(ab)	(abuv)	(dBuV/m)	(abuv/m)	(QB)	
1	2441.00	27.60	6.67	34.12	92.56	92.71	74.00	-18.71	Peak
2	4825.00	31.28	11.84	31.83	35.97	47.26	74.00	26.74	Peak
3	7324.00	36.55	11.57	31.99	34.17	50.30	74.00	23.70	Peak
4	9874.00	38.15	11.62	31.77	31.37	49.37	74.00	24.63	Peak
5	10894.00	39.41	11.29	33.46	32.33	49.57	74.00	24.43	Peak
6	14464.00	41.85	10.93	32.96	29.99	49.81	74.00	24.19	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2441MHz

-				_	•		_	Remark
2441.00	27.60	6.67	34.12	97.35	97.50	74.00	-23.50	Peak
4774.00	31.20	11.62	31.79	35.46	46.49	74.00	27.51	Peak
7154.00	36.25	11.52	32.21	33.89	49.45	74.00	24.55	Peak
9364.00	38.02	11.64	32.06	34.04	51.64	74.00	22.36	Peak
9993.00	38.12	11.59	31.78	34.38	52.31	74.00	21.69	Peak
14464.00	41.85	10.93	32.96	32.14	51.96	74.00	22.04	Peak
	(MHz) 2441.00 4774.00 7154.00 9364.00 9993.00	(MHz) (dB/m) 2441.00 27.60 4774.00 31.20 7154.00 36.25 9364.00 38.02 9993.00 38.12	(MHz) (dB/m) (dB) 2441.00 27.60 6.67 4774.00 31.20 11.62 7154.00 36.25 11.52 9364.00 38.02 11.64 9993.00 38.12 11.59	(MHz) (dB/m) (dB) (dB) 2441.00 27.60 6.67 34.12 4774.00 31.20 11.62 31.79 7154.00 36.25 11.52 32.21 9364.00 38.02 11.64 32.06 9993.00 38.12 11.59 31.78	(MHz) (dB/m) (dB) (dB) (dBuV) 2441.00 27.60 6.67 34.12 97.35 4774.00 31.20 11.62 31.79 35.46 7154.00 36.25 11.52 32.21 33.89 9364.00 38.02 11.64 32.06 34.04 9993.00 38.12 11.59 31.78 34.38	(MHz) (dB/m) (dB) (dB) (dBuV) (dBuV/m) 2441.00 27.60 6.67 34.12 97.35 97.50 4774.00 31.20 11.62 31.79 35.46 46.49 7154.00 36.25 11.52 32.21 33.89 49.45 9364.00 38.02 11.64 32.06 34.04 51.64 9993.00 38.12 11.59 31.78 34.38 52.31	(MHz) (dB/m) (dB) (dB) (dBuV) (dBuV/m) (dBuV/m) 2441.00 27.60 6.67 34.12 97.35 97.50 74.00 4774.00 31.20 11.62 31.79 35.46 46.49 74.00 7154.00 36.25 11.52 32.21 33.89 49.45 74.00 9364.00 38.02 11.64 32.06 34.04 51.64 74.00 9993.00 38.12 11.59 31.78 34.38 52.31 74.00	2441.00 27.60 6.67 34.12 97.35 97.50 74.00 -23.50 4774.00 31.20 11.62 31.79 35.46 46.49 74.00 27.51 7154.00 36.25 11.52 32.21 33.89 49.45 74.00 24.55 9364.00 38.02 11.64 32.06 34.04 51.64 74.00 22.36

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 50 of 99

Data no. : 199

Site no. : 3m Chamber
Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

: FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

: Tony Engineer

: Wireless Speaker EUT

: DC 3.7V Power M/N : SP891B

Test Mode : GFSK TX 2480MHz

	Freq.	Factor	Loss	Factor	Reading	Emission Level (dBuV/m)	Limits	_	Remark
1	2480.00	27.58	6.71	34.03	94.89	95.15	74.00	-21.15	Peak
2	5318.00	31.71	12.21	32.27	34.90	46.55	74.00	27.45	Peak
3	7426.00	36.56	11.60	31.95	34.25	50.46	74.00	23.54	Peak
4	8684.00	37.32	11.45	32.43	33.97	50.31	74.00	23.69	Peak
5	11149.00	39.42	11.18	33.94	32.21	48.87	74.00	25.13	Peak
6	14498.00	41.88	10.93	33.08	30.97	50.70	74.00	23.30	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Site no. : 3m Chamber Data no. : 200
Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2480MHz

		Ant.	Cable	Amp	Amp Emission				
	Freq.	Factor	Loss	Factor	Reading	g Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
	2480.00	27 50	 6 71	24 02	02 02	02 10	74 00	_10 10	Peak
_									
3	7834.00	36.68	11.47	31.40	33.72	50.47	74.00	23.53	Peak
4	10129.00	38.33	11.52	32.01	33.01	50.85	74.00	23.15	Peak
5	13308.00	39.62	11.47	34.86	32.05	48.28	74.00	25.72	Peak
6	14413.00	41.80	10.92	32.78	30.05	49.99	74.00	24.01	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6';Humi:56%;Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2402MHz

		Ant.	Cable	Amp	Emission				
	Freq.	Factor	Loss	Factor	Reading	f Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	2402.00	27.61	6.62	34.18	85.87	85.92	74.00	-11.92	Peak
2	4842.00	31.31	11.92	31.85	35.19	46.57	74.00	27.43	Peak
3	6984.00	35.46	11.51	32.47	31.82	46.32	74.00	27.68	Peak
4	8259.00	36.67	11.43	31.53	32.80	49.37	74.00	24.63	Peak
5	10044.00	38.18	11.56	31.85	32.06	49.95	74.00	24.05	Peak
6	14498.00	41.88	10.93	33.08	30.55	50.28	74.00	23.72	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Site no. : 3m Chamber Data no. : 210
Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2402MHz

					-		Emission				
		Freq.	Factor	Loss	Factor	Reading	g Level	Limits	Margin	Remark	
		(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		
-											
	1	2402.00	27.61	6.62	34.18	86.51	86.56	74.00	-12.56	Peak	
	2	4842.00	31.31	11.92	31.85	34.34	45.72	74.00	28.28	Peak	
	3	7443.00	36.54	11.61	31.93	33.17	49.39	74.00	24.61	Peak	
	4	8633.00	37.24	11.45	32.31	34.05	50.43	74.00	23.57	Peak	
	5	10928.00	39.45	11.29	33.52	32.01	49.23	74.00	24.77	Peak	
	6	14634.00	41.48	10.91	33.56	31.11	49.94	74.00	24.06	Peak	

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2441MHz

		Ant.	Cable	Amp		Emission			
	Freq.	Factor	Loss	Factor	Reading	f Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	2441.00	27.60	6.67	34.12	89.38	89.53	74.00	-15.53	Peak
2	4978.00	31.52	12.52	31.99	34.65	46.70	74.00	27.30	Peak
3	8004.00	37.01	11.40	31.22	32.03	49.22	74.00	24.78	Peak
4	10214.00	38.48	11.47	32.17	31.69	49.47	74.00	24.53	Peak
5	11183.00	39.40	11.15	34.00	31.17	47.72	74.00	26.28	Peak
6	14549.00	41.77	10.92	33.26	29.60	49.03	74.00	24.97	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Site no. : 3m Chamber Data no. : 214
Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2441MHz

		Ant.	Cable	Amp		Emission			
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	2441.00	27.60	6.67	34.12	86.63	86.78	74.00	-12.78	Peak
	4859.00								Peak
3	7324.00	36.55	11.57	31.99	33.41	49.54	74.00	24.46	Peak
4	9109.00	37.59	11.51	32.42	33.29	49.97	74.00	24.03	Peak
5	10333.00	38.68	11.40	32.40	32.48	50.16	74.00	23.84	Peak
6	14498.00	41.88	10.93	33.08	30.87	50.60	74.00	23.40	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Site no. : 3m Chamber Data no. : 215
Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2480MHz

		Ant.	Cable	Amp		Emission			
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.00	27.58	6.71	34.03	84.25	84.51	74.00	-10.51	Peak
2	5964.00	32.70	12.11	32.28	34.33	46.86	74.00	27.14	Peak
3	8004.00	37.01	11.40	31.22	33.16	50.35	74.00	23.65	Peak
4	10163.00	38.39	11.50	32.08	33.05	50.86	74.00	23.14	Peak
5	10843.00	39.35	11.30	33.36	32.45	49.74	74.00	24.26	Peak
6	14192.00	41.63	10.91	33.39	31.33	50.48	74.00	23.52	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2480MHz

		Ant.	Cable	Amp		Emission			
	Freq.				_	Level (dBuV/m)		Margin (dB)	Remark
1	2480.00	27.58	6.71	34.03	85.59	85.85	74.00	-11.85	Peak
2	5063.00	31.58	12.51	32.11	34.77	46.75	74.00	27.25	Peak
3	7358.00	36.56	11.58	31.99	33.21	49.36	74.00	24.64	Peak
4	9534.00	37.97	11.70	31.92	32.31	50.06	74.00	23.94	Peak
5	10673.00	39.17	11.30	33.04	31.72	49.15	74.00	24.85	Peak
6	14498.00	41.88	10.93	33.08	30.45	50.18	74.00	23.82	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

18000MHz - 25000MHz

Site no. : 3m Chamber Data no. : 203

Dis. / Ant. : 3m ANT ABVOE 18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2402MHz

	Ant.	Cable	Amp					
-				_		Limits (dBuV/m)	_	Remark
19911.00 23005.00								Peak Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

 The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007

Page 59 of 99

Site no. : 3m Chamber Data no. : 204
Dis. / Ant. : 3m ANT ABOVE 18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2402MHz

	Ant. Cable Amp Emission								
	-				_		Limits (dBuV/m)	_	Remark
1	20135.00	46.07	19.74	36.59	12.19	41.41	74.00	32.59	Peak
2	21591.00	45.95	20.39	35.26	12.77	43.85	74.00	30.15	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Site no. : 3m Chamber Data no. : 205
Dis. / Ant. : 3m ANT ABOVE 18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2441MHz

-	Factor	Loss	Factor	Reading	Limits (dBuV/m)	_	Remark
20996.00							

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Site no. : 3m Chamber Dis. / Ant. : 3m ANT ABVOE 18G Data no. : 206

Ant. pol. : HORIZONTAL

: FCC PART 15C PEAK Limit

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

: Wireless Speaker EUT

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2441MHz

	Ant.	Cable	Amp	Emission						
-				_		Limits (dBuV/m)	_	Remark		
20436.00 22193.00								Peak Peak		

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Dis. / Ant. : 3m ANT ABVOE 18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2480MHz

	Ant.	Cable	Amp Emission						
 -				_		Limits (dBuV/m)	_	Remark	
20723.00 23096.00								Peak Peak	

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 63 of 99

Site no. : 3m Chamber Data no. : 208
Dis. / Ant. : 3m ANT ABOVE 18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2480MHz

	Ant. Cable Amp Emission									
	-				_		Limits (dBuV/m)	_	Remark	
1	21115.00	46.22	20.18	35.69	14.64	45.35	74.00	28.65	Peak	
2	23369.00	45.67	21.48	33.46	13.94	47.63	74.00	26.37	Peak	

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Site no. : 3m Chamber Data no. : 219
Dis. / Ant. : 3m ANT ABOVE 18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2402MHz

	Ant.	Cable	Amp	I	Emission			
 -				_	Level (dBuV/m)		_	Remark
0254.00 2417.00								Peak Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Dis. / Ant. : 3m ANT ABVOE 18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2402MHz

	Ant.	Cable	Amp		Emission			
-				_		Limits (dBuV/m)	_	Remark
20884.00 23803.00								Peak Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Dis. / Ant. : 3m ANT ABVOE 18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2441MHz

		Ant.	Cable	Amp		Emission				
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark	
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		
										-
1	20443.00	46.01	19.88	36.30	15.91	45.50	74.00	28.50	Peak	
2	22151.00	45.73	20.65	34.74	16.14	47.78	74.00	26.22	Peak	

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 67 of 99

Site no. : 3m Chamber Data no. : 222
Dis. / Ant. : 3m ANT ABOVE 18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2441MHz

	Ant. Cable Amp Emission									
	-				_	Level (dBuV/m)		_	Remark	
1	20583.00	46.04	19.94	36.18	14.23	44.03	74.00	29.97	Peak	
2	22221.00	45.74	20.69	34.66	14.24	46.01	74.00	27.99	Peak	

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 68 of 99

Site no. : 3m Chamber Data no. : 223
Dis. / Ant. : 3m ANT ABOVE 18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2480MHz

		Ant. Cable Amp Emission							
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
	21129.00	46 22	20 10	25 60	14 21	44 02	74 00	29 07	Peak
2	23649.00	45.67	21.73	33.17	13.48	47.71	74.00	26.29	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Dis. / Ant. : 3m ANT ABVOE 18G Ant. pol. : HORIZONTAL

: FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

: DC 3.7V Power : SP891B M/N

Test Mode : 8-DPSK TX 2480MHz

	Ant.	Cable	Amp		Emission			
-				_		Limits (dBuV/m)	_	Remark
21178.00 22942.00								Peak Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 70 of 99

9. BAND EDGE COMPLIANCE

9.1. Limit

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

9.2. Block Diagram of Test setup

9.3. Test Procedure

EUT was placed on a turn table, which is 0.8 meter high above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. Power on the EUT and let it working in test mode, then test it. EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of emissions

Peak: RBW = 1MHz, VBW = 1MHz, Detector=PEAK detector, Sweep time = auto. AV: RBW = 1MHz, VBW = 10Hz, Detector=PEAK detector, Sweep time = auto.

9.4. Test Result

EUT: Wireless Speaker
M/N: SP891B
Power: DC 3.7V
Test date: 2014-11-05 Test site: 3m Chamber Tested by: Tony Tang
Test mode: Tx Mode (Hopping On & No Hopping)
Pass

Note: 1. For emissions above 1GHz, if peak level comply with average limit, then the average level is deemed to comply with average limit.

2. The frequency 2402MHz . 2441MHz and 2480MHz is fundamental frequency which no limit, the limit on plots is automatically generated by the software, it's not fundamental limit, we can't remove it.

EST Technology Co.,Ltd Report No. ESTE-R1411007 Page 71 of 99

9.5. Test Data

Site no. : 3m Chamber Data no. : 195

Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2402MHz(No Hopping)

		Ant.	Cable	Amp		Emission			
	-				_	Level (dBuV/m)		_	Remark
1	2333.77	27.73	6.54	34.23	36.13	36.17	74.00	37.83	Peak
2	2390.00	27.64	6.62	34.19	40.54	40.61	74.00	33.39	Peak
3	2401.97	27.61	6.62	34.18	92.45	92.50	74.00	-18.50	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 72 of 99

Site no. : 3m Chamber Data no. : 196 Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

: FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

: Wireless Speaker EUT

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2402MHz(No Hopping)

		Ant.	Cable	Amp					
	-				_		Limits	_	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	2371.17	27.67	6.60	34.20	44.90	44.97	74.00	29.03	Peak
2	2390.00	27.64	6.62	34.19	44.75	44.82	74.00	29.18	Peak
3	2401.97	27.61	6.62	34.18	95.80	95.85	74.00	-21.85	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 73 of 99

Site no. : 3m Chamber Data no.: 201
Dis. / Ant. : 3m ANT 1-18G Ant. pol.: VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2480MHz(No Hopping)

	Ant.	Cable	Amp		Emission			
Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark
(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
2479.93	27.58	6.71	34.03	94.08	94.34	74.00	-20.34	Peak
								Peak
2487.80	27.58	6.73	34.03	47.35	47.63	74.00	26.37	Peak
	(MHz) 2479.93 2483.50	Freq. Factor (MHz) (dB/m) 	Freq. Factor Loss (MHz) (dB/m) (dB) 2479.93 27.58 6.71 2483.50 27.58 6.71	Freq. Factor Loss Factor (MHz) (dB/m) (dB) (dB) 2479.93 27.58 6.71 34.03 2483.50 27.58 6.71 34.03	Freq. Factor Loss Factor Reading (MHz) (dB/m) (dB) (dB) (dBuV) 2479.93 27.58 6.71 34.03 94.08 2483.50 27.58 6.71 34.03 50.49	Freq. Factor Loss Factor Reading Level (MHz) (dB/m) (dB) (dB) (dBuV) (dBuV/m) 2479.93 27.58 6.71 34.03 94.08 94.34 2483.50 27.58 6.71 34.03 50.49 50.75	Freq. Factor Loss Factor Reading Level Limits (MHz) (dB/m) (dB) (dB) (dBuV) (dBuV/m) (dBuV/m) 2479.93 27.58 6.71 34.03 94.08 94.34 74.00 2483.50 27.58 6.71 34.03 50.49 50.75 74.00	Ant. Cable Amp Emission Freq. Factor Loss Factor Reading Level Limits Margin (MHz) (dB/m) (dB) (dB) (dBuV) (dBuV/m) (dBuV/m) (dB) 2479.93 27.58 6.71 34.03 94.08 94.34 74.00 -20.34 2483.50 27.58 6.71 34.03 50.49 50.75 74.00 23.25 2487.80 27.58 6.73 34.03 47.35 47.63 74.00 26.37

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2480MHz(No Hopping)

				-		Emission			
	-				_	(dBuV/m)		_	Remark
1	2479.98	27.58	6.71	34.03	96.20	96.46	74.00	-22.46	Peak
2	2483.50	27.58	6.71	34.03	52.34	52.60	74.00	21.40	Peak
3	2485.23	27.58	6.71	34.03	51.10	51.36	74.00	22.64	Peak
4	2488.23	27.58	6.73	34.03	49.44	49.72	74.00	24.28	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Site no. : 3m Chamber Data no. : 211
Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2402MHz(No Hopping)

		Ant.	Cable	Amp		Emission				
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark	
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		
1	2376.12	27.64	6.60	34.19	46.04	46.09	74.00	27.91	Peak	•
_	2390.00								Peak	
3	2401.64	27.61	6.62	34.18	92.60	92.65	74.00	-18.65	Peak	

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Data no. : 212

Site no. : 3m Chamber Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

: DC 3.7V Power : SP891B M/N

: 8-DPSK TX 2402MHz(No Hopping) Test Mode

		Ant.	Cable	Amp		Emission			
	-				_	Level (dBuV/m)		_	Remark
1	2353.79	27.70	6.58	34.22	38.66	38.72	74.00	35.28	Peak
2	2390.00	27.64	6.62	34.19	40.04	40.11	74.00	33.89	Peak
3	2401.64	27.61	6.62	34.18	88.69	88.74	74.00	-14.74	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 77 of 99

Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2480MHz(No Hopping)

		Ant.	Cable	Amp	Emission				
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
	2470 70	27.50		24 02	01 45	01 71	74.00	17 71	D1-
	2479.73	27.50	6./I	34.03	91.45	91./1	/4.00	-1/./1	Peak
2	2483.50	27.58	6.71	34.03	50.45	50.71	74.00	23.29	Peak
3	2484.10	27.58	6.71	34.03	51.32	51.58	74.00	22.42	Peak
4	2486.93	27.58	6.71	34.03	41.67	41.93	74.00	32.07	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 78 of 99

Site no. : 3m Chamber Data no. : 218
Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2480MHz(No Hopping)

		Ant.	Cable	Amp	Emission				
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.73	27.58	6.71	34.03	90.33	90.59	74.00	-16.59	Peak
2	2483.50	27.58	6.71	34.03	49.69	49.95	74.00	24.05	Peak
3	2483.98	27.58	6.71	34.03	51.60	51.86	74.00	22.14	Peak
4	2486.05	27.58	6.71	34.03	43.93	44.19	74.00	29.81	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Site no. : 3m Chamber Data no. : 225 Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

: FCC PART 15C PEAK Limit

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

: DC 3.7V Power M/N : SP891B

Test Mode : GFSK TX 2402MHz(Hopping On)

		Ant.	Cable	Amp		Emission			
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	2367.87	27.67	6.58	34.20	45.14	45.19	74.00	28.81	Peak
2	2390.00	27.64	6.62	34.19	42.02	42.09	74.00	31.91	Peak
3	2404.94	27.61	6.64	34.18	93.55	93.62	74.00	-19.62	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 80 of 99

Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2402MHz (Hopping On)

		Ant.	Cable	Amp		Emission			
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	2358.52	27.67	6.58	34.20	49.66	49.71	74.00	24.29	Peak
2	2390.00	27.64	6.62	34.19	42.42	42.49	74.00	31.51	Peak
3	2401.97	27.61	6.62	34.18	93.55	93.60	74.00	-19.60	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2480MHz(Hopping On)

	Freq			-	Emission r Reading Level Limits Mar				Demark
	-				-	(dBuV/m)		_	
1	2478.98	27.58	6.71	34.03	95.52	95.78	74.00	-21.78	Peak
2	2483.50	27.58	6.71	34.03	49.52	49.78	74.00	24.22	Peak
3	2488.30	27.58	6.73	34.03	49.64	49.92	74.00	24.08	Peak
4	2491.68	27.58	6.73	34.03	49.78	50.06	74.00	23.94	Peak
5	2496.30	27.57	6.73	34.00	49.95	50.25	74.00	23.75	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Site no. : 3m Chamber Data no. : 228
Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : GFSK TX 2480MHz(Hopping On)

		Ant.	Cable	Amp		Emission			
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.10	27.58	6.71	34.03	94.45	94.71	74.00	-20.71	Peak
2	2483.50	27.58	6.71	34.03	48.02	48.28	74.00	25.72	Peak
3	2484.10	27.58	6.71	34.03	50.79	51.05	74.00	22.95	Peak
4	2497.05	27.57	6.73	34.00	47.46	47.76	74.00	26.24	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Page 83 of 99

Site no. : 3m Chamber Data no. : 229 Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

: FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

: Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2402MHz (Hopping On)

		Ant.	Cable	Amp		Emission			
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	2370.84	27 67	6 60	34 20	44 08	44 15	74 00	20 85	Peak
2	2389.54	27.64	6.62	34.19	47.58	47.65	74.00	26.35	Peak
3	2390.00	27.64	6.62	34.19	41.34	41.41	74.00	32.59	Peak
4	2403.84	27.61	6.64	34.18	88.85	88.92	74.00	-14.92	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. The emission levels that are 20dB below the official limit are not reported.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 84 of 99

Data no. : 230

Site no. : 3m Chamber Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

: FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

: Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2402MHz(Hopping On)

		Ant.	Cable	Amp		Emission			
	-				_		Limits (dBuV/m)	_	Remark
1	2338.72	27.73	6.56	34.23	44.49	44.55	74.00	29.45	Peak
2	2370.62	27.67	6.60	34.20	44.90	44.97	74.00	29.03	Peak
3	2390.00	27.64	6.62	34.19	41.77	41.84	74.00	32.16	Peak
4	2404.39	27.61	6.64	34.18	88.04	88.11	74.00	-14.11	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. The emission levels that are 20dB below the official limit are not reported.

Page 85 of 99

Dis. / Ant. : 3m ANT 1-18G Ant. pol. : HORIZONTAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2480MHz (Hopping On)

		Ant.	Cable	Amp	Emission				
	Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	2478.80	27.58	6.71	34.03	93.16	93.42	74.00	-19.42	Peak
2	2483.50	27.58	6.71	34.03	51.39	51.65	74.00	22.35	Peak
3	2483.85	27.58	6.71	34.03	51.51	51.77	74.00	22.23	Peak
4	2490.55	27.58	6.73	34.03	49.23	49.51	74.00	24.49	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

Site no. : 3m Chamber Data no. : 232
Dis. / Ant. : 3m ANT 1-18G Ant. pol. : VERTICAL

Limit : FCC PART 15C PEAK

Env. / Ins. : Temp:25.6'; Humi:56%; Press:101.52kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 3.7V M/N : SP891B

Test Mode : 8-DPSK TX 2480MHz (Hopping On)

			Ant.	Cable	Amp	Emission					
		Freq.	Factor	Loss	Factor	Reading	Level	Limits	Margin	Remark	
		(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		
-											
	1	2479.80	27.58	6.71	34.03	88.38	88.64	74.00	-14.64	Peak	
	2	2483.50	27.58	6.71	34.03	46.07	46.33	74.00	27.67	Peak	
	3	2484.05	27.58	6.71	34.03	50.79	51.05	74.00	22.95	Peak	
	4	2484.60	27.58	6.71	34.03	50.31	50.57	74.00	23.43	Peak	
	5	2486.60	27.58	6.71	34.03	46.32	46.58	74.00	27.42	Peak	

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

10. POWER LINE CONDUCTED EMISSIONS

10.1.Limit

	Maximum RF Line Voltage					
Frequency	Quasi-Peak Level	Average Level				
	dB(µV)	$dB(\mu V)$				
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*				
500kHz ~ 5MHz	56	46				
5MHz ~ 30MHz	60	50				

Notes: 1. * Decreasing linearly with logarithm of frequency.

10.2.Test Procedure

The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT was charged form PC's USB port which connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#).. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2009 on Conducted Emission Test.

The bandwidth of test receiver (R & S ESHS30) is set at 10kHz.

The frequency range from 150kHz to 30MHz is checked.

10.3. Test Result

0.15MHz—30MHz Conducted emissison Test result									
EUT: Wireless Speaker M/N:SP891B									
Power: DC 5V From PC Input AC 120V/60Hz									
Test date: 2014-11-05 Test site: 3m Chamber Tested by: Tony.Tang									
Test mode: Tx Mode									
Pass									

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 88 of 99

^{2.} The lower limit shall apply at the transition frequencies.

10.4. Test data

Site no. : EST Conduction Shielded RoomData no. : 393 Limit : FCC PART 15B QP LINE Phase : LINE

Env. / Ins. : Temp:24.3'C Humi:58% Press:101.50kPa

Ingineer : Tony

CUT : Wireless Speaker

Power : DC 5V From PC Input AC 120V/60Hz

M/N : SP891B Fest Mode : TX Mode

		LISN	Cable		Emission			
	Freq.	Factor	Loss	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB)	(dB)	(dBuV)	(dBuv)	(dBuv)	(dB)	
1	0.18	9.61	9.80	27.17	46.58	64.42	17.84	QP
2	0.18	9.61	9.80	18.17	37.58	54.42	16.84	Average
3	0.25	9.61	9.82	23.37	42.80	61.86	19.06	QP
4	0.25	9.61	9.82	17.37	36.80	51.86	15.06	Average
5	0.44	9.61	9.81	19.44	38.86	57.07	18.21	QP
6	0.44	9.61	9.81	7.44	26.86	47.07	20.21	Average
7	0.58	9.60	9.82	20.38	39.80	56.00	16.20	QP
8	0.58	9.60	9.82	9.38	28.80	46.00	17.20	Average
9	3.45	9.63	9.85	23.32	42.80	56.00	13.20	QP
10	3.45	9.63	9.85	11.32	30.80	46.00	15.20	Average
11	5.19	9.65	9.85	24.35	43.85	60.00	16.15	QP
12	5.19	9.65	9.85	16.35	35.85	50.00	14.15	Average

Site no. : EST Conduction Shielded RoomData no. : 395
Limit : FCC PART 15B QP LINE Phase : NEUTRAL

Env. / Ins. : Temp:24.3'C Humi:58% Press:101.50kPa

Engineer : Tony

EUT : Wireless Speaker

Power : DC 5V From PC Input AC 120V/60Hz

M/N : SP891B Test Mode : TX Mode

		LISN	Cable		Emission			
	Freq.	Factor	Loss	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB)	(dB)	(dBuV)	(dBuv)	(dBuv)	(dB)	
1	0.18	9.56	9.80	26.66	46.02	64.33	18.31	OP
_	0.10						10.31	QP
2	0.18	9.56	9.80	18.66	38.02	54.33	16.31	Average
3	0.24	9.60	9.82	23.68	43.10	62.00	18.90	QP
4	0.24	9.60	9.82	16.68	36.10	52.00	15.90	Average
5	0.56	9.60	9.82	20.62	40.04	56.00	15.96	QP
6	0.56	9.60	9.82	9.62	29.04	46.00	16.96	Average
7	0.78	9.62	9.81	23.10	42.53	56.00	13.47	QP
8	0.78	9.62	9.81	7.10	26.53	46.00	19.47	Average
9	2.64	9.63	9.84	24.32	43.79	56.00	12.21	QP
10	2.64	9.63	9.84	7.32	26.79	46.00	19.21	Average
11	5.62	9.65	9.85	24.93	44.43	60.00	15.57	QP
12	5.62	9.65	9.85	17.93	37.43	50.00	12.57	Average

11. ANTENNA REQUIREMENTS

11.1.Limit

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2.Result

The antennas used for this product are integral Patch Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 0dBi.

EST Technology Co., Ltd Report No. ESTE-R1411007 Page 91 of 99

12. TEST SETUP PHOTO

Conducted Test

Radiated Test (30-1000 MHz)

Radiated Test (1000-25000 MHz)

13.PHOTOS OF EUT

External Photos

EST Technology Co.,Ltd Report No. ESTE-R1411007

Page 94 of 99

External Photos

EST Technology Co., Ltd

External Photos

Internal Photos M/N: SP891B

Internal Photos

Bluetooth Antenna

EST

