Esercizio 4.1)

Determinare la tensione di nodo v_x.

$$[v_x = 18 V]$$

Esercizio 4.2)

Determinare la tensione di nodo v_x.

$$[v_x = 10 V]$$

Esercizio 4.3)

Usando il metodo ai nodi, determinare i_x.

$$[i_x = -12 \text{ mA}]$$

Esercizio 4.4)

Usando il metodo ai nodi, calcolare v_x.

$$[v_x = 1.5 V]$$

Esercizio 4.5)

Usando il metodo ai nodi, calcolare i_x.

$$[i_x = 2.4 A]$$

Esercizio 4.6)

Determinare la corrente di maglia i_x.

$$[i_x = -48 \text{ mA}]$$

Esercizio 4.7)

Determinare la corrente di maglia i_x.

$$[i_x = -24 \text{ mA}]$$

Esercizio 4.8)

Determinare tensione e resistenza del circuito equivalente di Thevenin.

[Req = 13.6 ohm, Veq = 12 V]

Esercizio 4.9)

Determinare tensione e resistenza del circuito equivalente di Thevenin.

[Req =
$$3$$
 ohm, Veq = -6 V]

Esercizio 4.10)

Determinare tensione e resistenza del circuito equivalente di Thevenin.

[Req =
$$2/5$$
 ohm, Veq = $0 V$]

Esercizio 4.11)

Determinare corrente e resistenza del circuito equivalente di Norton.

