WHAT IS CLAIMED IS:

- 1. A transparent, non-elastomeric, high index, impact resistant polythiourethane/urea material comprising the reaction product of :
 - a) at least one (α, ω) -diiso(thio)cyanate prepolymer having a number average molecular weight ranging from 100 to 3000 gmol⁻¹, said prepolymer being free from disulfide (-S-S-) linkage, and
 - b) at least one aromatic primary diamine, in an equivalent molar ratio amine function / iso(thio)cyanate function (NH₂/NCX, X=0,S) ranging from 0.5 to 2, preferably 0.90 to 1.10, said aromatic primary diamine being free from disulfide (-S-S-) linkage, and

wherein, at least one of the prepolymer or the diamine contains one or more S atoms in its chain.

- 2. The material of claim 1, wherein the equivalent ratio NH_2/NCX ranges from 0.93 to 0.95.
- 3. The material of claim 1, wherein the (α, ω) -diiso(thio)cyanate cycloaliphatic or aromatic prepolymer is the reaction product of at least one (α, ω) diol or dithiol prepolymer and at least one cycloaliphatic or aromatic diiso(thio)cyanate.
- 4. The material of claim 3, wherein the (α, ω) diol or dithiol prepolymer contains at least one S atom in its chain.
- 5. The material of claim 3, wherein the (α, ω) diol or dithiol prepolymer is a polysulfide or a mixture of polysulfides.
- 6. The material of claim 5, wherein the polysulfide or mixture of polysulfides is selected from the group consisting of:

- Prepolymers of formula :

$$HS - CH(CH_3)CH_2 - S \Big]_X \left[CH_2CH_2S - \frac{1}{y} H \right]_X$$

in which x and y are such that the number average molecular weight of the prepolymer ranges from 100 to 3000 gmol⁻¹;

- 7. The material of claim 5, wherein the polysulfide is an hyperbranched polysulfide.
- 8. The material of claim 1, wherein the aromatic diamine contains at least one S atom in its molecule.
- 9. The material of claim 8, wherein the diamine is selected from

$$H_2N$$
 S
 S
 S
 S
 S
 S
 S
 S
 NH_2
 NH_2
 NH_2
 NH_2

in which R is H or an alkyl group and R' is an alkyl group, and mixtures thereof.

- 10. The material of claim 1, wherein in step (2) the (α, ω) -diiso(thio)cyanate prepolymer is also reacted with a di-, tri- or tetra alcohol, a di-, tri or tetrathiol or a mixture thereof.
- 11. The material of claim 10, wherein the di-, tri- and tetra alcohols and thiols are selected from the groups consisting of :

HS CH₂CH₂ S CH₂CH₂ SH

$$C\left(CH_2O-C-CH_2CH_2SH\right)_4$$

and mixtures thereof.

12. The material of claim 1 having a refractive index, n_D^{25} , higher than 1.53.

- 13. The material of claim 1 having a refractive index, n_D^{25} , of at least 1.55.
- 14. The material of claim 1 having a refractive index, n_D^{25} , of at least 1.57.
- 15. An optical article made from a material according to claim 1.
- 16. The optical article of claim 15, wherein said article is selected from the group consisting of sun lenses, ophthalmic lenses and protective lenses.
- 17. A polysulfide of formula:

$$HS - (CH_2) - S - (CH_2) - ($$

wherein n is such that the number average molecular weight of the polysulfide ranges from 500 to 1500 gmol⁻¹.

- 18. The polysulfide of formula 17 having a number average molecular weight ranging from 650 to 1350 gmol⁻¹.
- 19. A process for making a polysulfide of formula:

wherein n is such that the number average molecular weight of the polysulfide ranges from 500 to 1500 gmol⁻¹, which comprises irradiating with a UV light a mixture of 2-mercaptoethylsulfide and allylsulfide in the presence of a photoinitiator.

20. The process of claim 19, wherein the photoinitiator is added in several shots during the irradiation process.

21. A process for making a polysulfide of formula:

$$\text{HS----(CH_2)} \frac{}{2} \text{S----(CH_2)} \frac{}{3} \text{S-----(CH_2)} \frac{}{3} \text{S-----(CH_2)} \frac{}{3} \text{S-----(CH_2)} \frac{}{2} \text{S-------} \text{SH}$$

wherein n is such that the number average molecular weight of the polysulfide ranges from 500 to 1500 gmol⁻¹, which comprises thermally polymerizing a mixture of 2-mercaptoethylsulfide and allylsulfide in the presence of a thermal initiator.