

ECE 383 - Embedded Computer Systems II Lecture 3 - Combinational Element, unsigned,

UNITED STATES constraints file, synthesis

AIR FORCE ACADEMY

Lesson Outline

- 1. Synthesis
- 2. Constraints file
- 3. Combinational Element
- 4. Unsigned Numeric Standard
- 5. Combinations

Figure 3-29: SB484, SBG484, SBV484, and RS484 Packages—XC7A200T Pinout Diagram

https://www.xilinx.com/support/documentation/user_guides/ug475_7Series_Pkg_Pinout.pdf

13 January 2021

Synthesis

Synthesis

lec 01. xde

- Insert this code into your Majority.xdc file
 - Inputs from switches and outputs to LEDs

```
# This is slide switch SW0
set_property -dict { PACKAGE_PIN E22 IOSTANDARD LVCMOS12 } [get_ports { a }]; #IO_L22P_T3_16 Sch=sw[0]
# This is slide switch SW1
set_property -dict { PACKAGE_PIN F21 IOSTANDARD LVCMOS12 } [get_ports { b }]; #IO_25_16 Sch=sw[1]
# This is slide switch SW2
set_property -dict { PACKAGE_PIN G21 IOSTANDARD LVCMOS12 } [get_ports { c }]; #IO_L24P_T3_16 Sch=sw[2]
# This is LED Led(0)
set_property -dict { PACKAGE_PIN T14 IOSTANDARD LVCMOS25 } [get_ports { f }]; #IO_L15P_T2_DQS_13 Sch=led[0]
```


Constraints file

Constraints file

- Nexyx Video Master XDC

 http://www.pinesps.//datasheets/NexysVideo_Master.xdc

Combinational Element

Combinational Element – Common error

- Common error that may come up in your designs
- You cannot use a signal listed on the entity as an out port, on the right hand side of a signal assignment statement.

```
entity circuit is

port (clk, data: in std_logic;

q, not_q: out std_logic);

end circuit;

architecture error of circuit is

begin

q <= some cool logical stuff using clk and data;

not_q <= not q; 
Nope, because q is an ontent, not input

end error;
```


Combinational Element – Solution

- Solution
- assign "some cool logical stuff using clk and data" to a temporary variable

```
entity circuit is
  port (clk, data: in std_logic;
        q, not_q: out std_logic);
end circuit;
architecture error of circuit is
    signal temp std_logic;
begin
  temp <= some cool logical stuf using clk and data;
  q <= temp;
  not_q <= not temp;</pre>
<u>end error:</u>
```


Combinational Element - Design: think in terms of B.B.B.s. Mux

Simplify muxes using conditional signal assignment statement

Example:

```
yo when S = "00" else

y1 when S = "01" else

y2 when S = "10" else

y3;
```

- Draw this Circuit assuming 8-bit inputs
- Now build 4-1 mux w/ 2-1 muxes 🤭 🖔

So far we mostly used STD_LOGIC_1164 library library IEEE; use IEEE.STD_LOGIC_1164.all;

Library Contents:

http://www.csee.umbc.edu/portal/help/VHDL/packages/std logic 1164.vhd

- Numeric_Std Library supports 2 main datatypes
 - Signed and Unsigned
 - Library Contents:

http://www.csee.umbc.edu/portal/help/VHDL/packages/nu

architecture structure of lec3 is begin cu <= "1000" when (au > bu) else "0110" when (au = bu) else "0001": $su \le au + bu$; $du \le au - bu$; "1000" when (as > bs) else "0110" when (as = bs) else "0001"; ss <= as + bs; ds <= as - bs;

Signed vs Unsigned

- Computer/ALU has no clue if your operands are signed or unsigned
 - 2's complement math treats them the same
 - Answer is the same... only the flags(z, v, s, c) are different

Unsigned

Α	В	Value A	Value B	A >? B	A =? B	A B</th <th>A + B</th> <th>A - B</th>	A + B	A - B
0010	0100							
1011	0001							
0110	1010							
0111	1000							

Signed

Α	В	Value A	Value B	A >? B	A =? B	A B</th <th>A + B</th> <th>A - B</th>	A + B	A - B
0010	0100							
1011	0001							
0110	1010							
0111	1000							

		0.000000 us				
Name	Value	0 us	1 us	2 us	3 us	
▶ 🌄 au[3:0]	2	2	1 us			
▶ 🌄 bu[3:0]	4	4	1	10	(8)	
▶ 🌄 cu[3:0]	0001	0001	1000	00	01	
▶ 🌄 du[3:0]	14	14	10	12	15	
▶ 🌄 su[3:0]	6	6	12	0	15	
▶ 🌄 as[3:0]	2	2	-5	6	7	
▶ 🐝 bs[3:0]	4	(4)	(1	-6	(-8	
▶ 🔣 cs[3:0]	0001	(00	01	10	opo	
▶ 🌃 ds[3:0]	-2	-2	-6	-4	-1	
▶ 🌃 ss[3:0]	6	(6	-4	0	-1	
		X1: 0.000000 us				

- You will typically use STD_LOGIC_VECTOR and UNSIGNED
- You may need to convert between the two

```
a: std_logic_vector(7 downto 0);
b: unsigned(7 downto 0);
c: std_logic_vector(7 downto 0);
b <= unsigned(a);
c <= std_logic_vector(b);</pre>
```


- Common Combinations if/then/else
- All conditional statements consist of three parts:
 - the condition to be checked (the if clause)
 - the statement to be evaluated when the condition is true (the then clause)
 - the statement to be evaluated when the condition is false (the else clause)
- Typically, the condition being evaluated seeks the relative magnitude of two unsigned binary numbers, requiring a comparator.
- The then and else clauses will typically require some logic or arithmetic operation

In order to illustrate the hardware realization of a conditional statement, consider the following example:

```
C: if (a<4) then z=y+3 else z=y+7
```

VHDL:
$$z \le y+3$$
 when $(a < 4)$ else $y+7$;

Implement with Adders, Comparitors, Muxs

In order to illustrate the hardware realization of a conditional statement, consider the following example:

C: if (a<4) then z=y+3 else z=y+7

VHDL: $z \le y+3$ when (a < 4) else y+7;

- However, this circuit is not minimal, one of the adders can be removed.
- How?
- Practice on Homework

F=1 if 8-bit input is divisable by 17

Do HW#3 clue below: brute force?

	decim	J	
i	17*i	hex	binary
1	17	11	10001
2	34	22	100010
3	51	33	110011
4	68	44	1000100
5	85	55	1010101
6	102	66	1100110
7	119	77	1110111
8	136	88	10001000
9	153	99	10011001
10	170	AA	10101010
11	187	ВВ	10111011
12	204	CC	11001100
13	221	DD	11011101
14	238	EE	11101110
15	255	FF	11111111

Solution to worksheet

Unsigned

Α	В	Value A	Value B	A >? B	A =? B	A B</th <th>A + B</th> <th>A - B</th>	A + B	A - B
0010	0100	2	4	No	No	Yes	0110	14 (ie -2)
1011	0001	11	1	Yes	No	No	1100	10
0110	1010	6	10	No	No	Yes	0000 OF	12 (ie -4)
0111	1000	7	8	No	No	Yes	1111	15 (ie -1)

Signed

Α	В	Value A	Value B	A >? B	A =? B	A B</th <th>A + B</th> <th>A - B</th>	A + B	A - B
0010	0100	2	4	No	No	Yes	6	-2
1011	0001	-5	1	No	No	Yes	-4	-6
0110	1010	6	-6	Yes	No	No	0	-4
0111	1000	7	-8	Yes	No	No	-1	-1