ANOVA y Análisis de Componentes Principales

Unidad 2: Estadística Básica y Aplicada

Nicolás Sidicaro Octubre 2025

Parte 1: ANOVA

Analysis of Variance

Motivación: El problema de las comparaciones

Situación: Queremos comparar salarios entre 5 industrias diferentes.

Opción ingenua: Hacer múltiples t-tests

- Industria A vs B
- Industria A vs C
- Industria B vs C
- ... (10 comparaciones en total)

Problema: Con cada test hay 5% de probabilidad de error tipo I

$$P(\text{al menos un error}) = 1 - (0.95)^{10} = 0.40$$

Con 10 tests, hay 40% de probabilidad de encontrar al menos una diferencia falsa.

ANOVA: La solución

Análisis de Varianza (ANOVA) resuelve este problema con un único test omnibus:

- H_0 : Todas las medias grupales son iguales ($\mu_1=\mu_2=\ldots=\mu_k$)
- ullet H_1 : Al menos una media es diferente

Ventajas:

- Controla el error tipo I familiar-wise
- Un solo p-valor para la pregunta global
- Descompone la varianza total en componentes interpretables

¿Cuándo usar ANOVA?

- Comparar 3+ grupos en una variable continua
- Diseño experimental con múltiples tratamientos
- Datos que cumplen supuestos paramétricos

La lógica de ANOVA

ANOVA descompone la **varianza total** en dos fuentes:

$$SS_{Total} = SS_{Between} + SS_{Within}$$

Varianza Between-groups (SS_B) :

- ¿Qué tan diferentes son las medias grupales?
- Atribuible al factor de interés

Varianza Within-groups (SS_W) :

- ¿Qué tan variables son los datos dentro de cada grupo?
- Error aleatorio, variabilidad natural

Estadístico F: Compara ambas fuentes

$$F = rac{MS_{Between}}{MS_{Within}} = rac{SS_B/(k-1)}{SS_W/(n-k)}$$

Si F es grande o la variación entre grupos es mucho mayor que dentro de grupos o evidencia contra H_0

Descomposición de ANOVA

$$SST = SSB + SSW$$

Suma de Cuadrados Totales (SST):

$$SST = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - ar{y})^2$$

Suma de Cuadrados Entre Grupos (SSB):

$$SSB = \sum_{i=1}^k n_i ({ar y}_i - {ar y})^2$$

Suma de Cuadrados Dentro de Grupos (SSW):

$$SSW = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - {ar y}_i)^2$$

Notación:

- k = número de grupos
- ullet n_i = número de observaciones en el grupo i
- ullet y_{ij} = observación j del grupo i
- ullet $ar{y}_i$ = media del grupo i
- $ar{y}$ = media general

Generación de datos: Salarios por sector

Sector	N	Media	SD
Educación	30	45.2	7.0
Finanzas	30	84.3	14.7
Manufactura	30	48.3	10.3
Salud	30	54.1	9.1
Tecnología	30	77.1	10.0

Visualización de los datos

ANOVA en R: Implementación

Interpretación:

- Si $Fvalue < \alpha \rightarrow \text{Rechazamos } H_0$
- Al menos un sector tiene salario promedio diferente
- El sector explica una parte significativa de la variabilidad salarial

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Post-hoc: ¿Qué grupos difieren?

ANOVA solo responde "hay diferencias", no indica cuáles.

Solución: Comparaciones post-hoc con corrección por comparaciones múltiples.

```
# Test de Tukey (controla error familiar-wise)
comparaciones ← emmeans(modelo_anova, pairwise ~ sector, adjust = "tukey")
```

Comparación	Diferencia	p-valor	Sig.
Educación - Finanzas	-39.10	0.0000	***
Educación - Manufactura	-3.15	0.7743	
Educación - Salud	-8.87	0.0119	***
Educación - Tecnología	-31.94	0.0000	***
Finanzas - Manufactura	35.95	0.0000	***
Finanzas - Salud	30.23	0.0000	***
Finanzas - Tecnología	7.15	0.0701	
Manufactura - Salud	-5.71	0.2252	

ANOVA vs Regresión: Son equivalentes

```
# Opción 1: ANOVA
modelo_anova ← aov(salario ~ sector, data = salarios)
# Opción 2: Regresión con dummies (EQUIVALENTE)
modelo_regresion ← lm(salario ~ factor(sector), data = salarios)
```

```
## Analysis of Variance Table
                                                    ###
##
                                                    ## Call:
                                                    ## lm(formula = salario ~ factor(sector), data = salarios)
## Response: salario
                                           Pr(>F) ##
##
                 Df Sum Sg Mean Sg F value
## factor(sector)
                 4 37735 9433.8 85.07 < 2.2e-16 ## Residuals:
## Residuals
                145 16080
                            110.9
                                                           Min
                                                                     1Q Median
                                                    ##
                                                                                              Max
                                                                                      30
## ---
                                                    ## -28.7927 -6.8327 -0.6807
                                                                                  6.6443 27.5103
## Signif. codes: 0 '*** 0.001 '** 0.05 '.' ##.1 ' ' 1
                                                    ## Coefficients:
                                                    ##
                                                                               Estimate Std. Error t value Pr(>|t|)
                                                    ## (Intercept)
                                                                                 45.195
                                                                                            1.923 23.507 < 2e-16
                                                    ## factor(sector)Finanzas
                                                                                 39.098
                                                                                            2.719 14.380
                                                                                                           < 2e-16
                                                    ## factor(sector)Manufactura
                                                                                  3.152
                                                                                            2.719
                                                                                                   1.159 0.24820
                                                    ## factor(sector)Salud
                                                                                                   3.261 0.00139
                                                                                  8.866
                                                                                            2.719
                                                    ## factor(sector)Tecnología
                                                                                            2.719 11.749 < 2e-16
                                                                                 31.945
                                                    ## ---
                                                    ## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
                                                    ###
                                                    ## Residual standard error: 10.53 on 145 degrees of freedom
                                                    ## Multiple R-squared: 0.7012, Adjusted R-squared: 0.693
                                                    ## F-statistic: 85.07 on 4 and 145 DF, p-value: < 2.2e-16
```

¿Entonces por qué usar ANOVA?

- 1. Framework conceptual: Pensar en "grupos" vs "predictores"
- 2. Diseño experimental: Lenguaje natural para A/B/C/D testing
- 3. **Post-hoc integrado**: Tukey, Bonferroni ya implementados
- 4. Más fácil y rápido: Directamente devuelve si hay diferencias o no las hay, sin depender de cuál es la categoría base.

Two-Way ANOVA: Interacciones

Pregunta: ¿La brecha salarial de género varía por sector?

Two-Way ANOVA en R

```
# ANOVA con dos factores e interacción
modelo 2way ← aov(salario ~ genero * sector, data = salarios genero)
summarv(modelo 2wav)
                Df Sum Sq Mean Sq F value
                                           Pr(>F)
##
                     8286
                             8286
                                  82.65 3.62e-15 ***
## genero
## sector
           2 26171
                            13085 130.52 < 2e-16 ***
## genero:sector 2
                             1329 13.26 6.67e-06 ***
                     2658
## Residuals
               114 11429
                           100
```

Interpretación:

• genero: Efecto principal significativo (brecha promedio existe)

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

- **sector**: Efecto principal significativo (sectores difieren)
- **genero:sector**: Interacción significativa (la brecha **varía** por sector)

Supuestos de ANOVA

ANOVA requiere verificar tres supuestos:

- 1. Independencia: Las observaciones son independientes
 - Crítico, violación grave
 - Verificar por diseño del estudio
- 2. Normalidad: Los residuos siguen distribución normal
 - Test de Shapiro-Wilk, Q-Q plots
 - Robusto con n grande (TCL)
- 3. **Homogeneidad de varianzas**: Varianzas iguales entre grupos
 - Test de Levene
 - Si se viola: Welch ANOVA

Verificación de supuestos en R

Test de Levene: Homogeneidad de varianzas

```
# Test de Levene
leveneTest(salario ~ sector, data = salarios)

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 4 4.5581 0.001697 **

## 145
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Interpretación:

- ullet Si p>0.05 o No rechazamos H_0
- Las varianzas son homogéneas
- ANOVA estándar es apropiado

Si se violara (p < 0.05): Usar oneway.test() con corrección de Welch

```
# Alternativa robusta a heterogeneidad
oneway.test(salario ~ sector, data = salarios, var.equal = FALSE)
```

Alternativa no paramétrica: Kruskal-Wallis

ANOVA no paramétrico: Test de Kruskal-Wallis

```
# Alternativa cuando normalidad no se cumple
kruskal.test(salario ~ sector, data = salarios)

##

## Kruskal-Wallis rank sum test
##

## data: salario by sector

## Kruskal-Wallis chi-squared = 105.01, df = 4, p-value < 2.2e-16</pre>
```

Basado en rangos, no asume normalidad.

Resumen: ANOVA

Usar ANOVA cuando:

- Comparar 3+ grupos
- Diseño experimental (A/B/C/D testing)
- Se quieren descomponer las varianza explícitamente
- Necesitas comparaciones post-hoc con control de error (ej. para ver qué grupos difieren entre sí)

Pasar a regresión cuando:

- Predictores continuos
- Modelos complejos con muchas variables
- Necesitas regularización o ML

Recordar:

- ANOVA = regresión con dummies
- ullet Verificar supuestos (especialmente con n < 30)
- Post-hoc con corrección (Tukey, Bonferroni)

Parte 2: PCA

Principal Component Analysis

Motivación: La maldición de la dimensionalidad

Problema frecuente en economía:

Datos de 30 países con 20 indicadores económicos:

- PIB per cápita, inflación, desempleo, Gini, esperanza de vida...
- Variables correlacionadas entre sí
- Difícil visualizar, interpretar y modelar

Desafios:

- 1. Multicolinealidad: Variables redundantes generan inestabilidad
- 2. **Visualización**: Imposible graficar 20 dimensiones
- 3. Interpretación: ¿Qué patrones hay en los datos?
- 4. Complejidad: Modelos con muchos predictores tienden al overfitting

Solución: Reducir dimensiones preservando información

PCA: Idea intuitiva

Análisis de Componentes Principales busca nuevas variables (componentes) que:

- 1. Son **combinaciones lineales** de las variables originales
- 2. Capturan la **máxima varianza** de los datos
- 3. Son **no correlacionadas** entre sí (ortogonales)
- 4. Están ordenadas por importancia (PC1 explica más que PC2, etc.)

Analogía: Imaginar una nube de puntos en 3D

- PC1: dirección de mayor dispersión (eje principal)
- PC2: segunda mayor dispersión, perpendicular a PC1
- PC3: tercera mayor dispersión, perpendicular a PC1 y PC2

PCA encuentra automáticamente estos ejes en p dimensiones.

Ejemplo visual: De 2D a 1D

Fundamento matemático

PCA busca una matriz de pesos W que maximiza la varianza de los datos proyectados:

$$\max_{w_1} \operatorname{Var}(Xw_1) = \max_{w_1} w_1^T \Sigma w_1$$

sujeto a $||w_1||=1$

Donde:

- X: matriz de datos centrados $(n \times p)$
- Σ : matriz de covarianza (p imes p)
- w_1 : vector de pesos del primer componente (p imes 1)

Solución: w_1 es el **eigenvector** asociado al **mayor eigenvalue** de Σ

Los siguientes componentes (w_2, w_3, \ldots) son eigenvectors de eigenvalues decrecientes, con ortogonalidad:

$$w_i^T w_j = 0 ext{ para } i
eq j$$

Implementación en R: Datos de países

```
# Datos de desarrollo económico (simulados)
set.seed(2025)
paises 		 tibble(
   pais = paste("País", 1:50),
   pib_percapita = rnorm(50, mean = 25000, sd = 15000),
   esperanza_vida = rnorm(50, mean = 72, sd = 8),
   años_educacion = rnorm(50, mean = 12, sd = 3),
   gini = rnorm(50, mean = 40, sd = 10),
   acceso_internet = rnorm(50, mean = 60, sd = 25)
) %>%
   mutate(across(where(is.numeric), ~pmax(., 0)))
```

pais	pib_percapita	esperanza_vida	años_educacion	gini	acceso_internet
País 1	34311.4	75.0	14.1	35.2	55.1
País 2	25534.6	62.2	11.2	38.5	0.0
País 3	36597.3	70.7	15.1	36.6	42.4
País 4	44087.3	80.7	12.7	28.1	57.8
País 5	30564.6	74.9	8.0	37.8	55.6

Matriz de correlaciones

PCA paso a paso

Standard deviation 1.1297 1.0481 0.9989 0.9435 0.8587 ## Proportion of Variance 0.2552 0.2197 0.1995 0.1780 0.1475 ## Cumulative Proportion 0.2552 0.4749 0.6745 0.8525 1.0000

```
# PCA (scale = TRUE estandariza)
datos_pca ← paises %>% select(-pais)
pca_resultado ← prcomp(datos_pca, scale = TRUE)

# Resumen
summary(pca_resultado)

## Importance of components:
## PC1 PC2 PC3 PC4 PC5
```

Scree plot: ¿Cuántos componentes retener?

Criterios: (1) Eigenvalue > 1, (2) Codo, (3) Varianza acumulada 70-90%

Loadings: ¿Qué representa cada componente?

Variable	PC1	PC2	PC3
pib_percapita	-0.407	-0.485	-0.062
esperanza_vida	-0.035	0.773	-0.312
años_educacion	0.613	0.133	0.199
gini	0.203	-0.215	-0.926
acceso_internet	0.646	-0.322	0.046

Interpretación de PC1:

PC1 parece capturar nivel de desarrollo:

- Alto PC1 → mayor PIB, mayor esperanza de vida, más educación
- Bajo PC1 → lo opuesto

Biplot: Observaciones + Variables

Tamaño muestral: Limitación crítica

Regla fundamental: $n \geq 5p$ (mínimo), $n \geq 10p$ (ideal)

Donde n = observaciones, p = variables

Ratio n:p	Evaluación	Acción
< 2:1	X Crítico	NO hacer PCA
2:1 - 5:1	⚠ Problemático	PCA con advertencias
5:1 - 10:1	Aceptable	Validar con KMO
> 10:1	✓ Ideal	PCA confiable

Además: n < 50 ightarrow evitar PCA, $n \geq 200$ ightarrow zona cómoda

Problema en economía: Frecuentemente tenemos pocos países/años pero muchas variables

Test de adecuación: KMO

Kaiser-Meyer-Olkin: Mide si PCA es apropiado para los datos

```
# Calcular KMO
kmo_resultado ← KMO(datos_pca)
print(kmo_resultado$MSA)
```

[1] 0.4944231

Interpretación:

- KMO > 0.9: Excelente
- KMO > 0.8: Bueno
- KMO > 0.7: Aceptable
- KMO > 0.6: Mediocre
- KMO < 0.6: Inaceptable para PCA

Test de Bartlett

```
# Test de esfericidad de Bartlett
bartlett_test 		 cortest.bartlett(cor(datos_pca), n = nrow(datos_pca))
print(bartlett_test)

## $chisq
## [1] 3.972002
##
## $p.value
## [1] 0.9486012
```

Interpretación:

##

\$df

[1] 10

- H_0 : Matriz de correlación = identidad (variables independientes)
- ullet p < 0.05 o Rechazamos H_0 o Variables correlacionadas o OK para PCA extstyle

Si p>0.05 o Las variables son independientes o PCA no tiene sentido

Limitaciones de PCA

1. Asume relaciones lineales

- PCA solo captura correlaciones lineales
- Alternativa: Kernel PCA, UMAP

2. Sensibilidad a outliers

- Outliers extremos distorsionan componentes
- Considerar PCA robusto

3. Interpretación no garantizada

- Los componentes son matemáticos, no necesariamente sustantivos
- Puede no haber interpretación económica clara

Limitaciones de PCA

1. Pérdida de interpretabilidad

- Variables originales tienen significado directo
- Componentes son combinaciones abstractas

2. No es feature selection

- PCA transforma variables, no las selecciona
- Alternativa: Lasso, Random Forest

Casos de uso en Economía

1. Índices compuestos

- Índice de desarrollo humano
- Índice de competitividad nacional
- Índice de riesgo país

2. Reducción dimensional para ML

- Feature engineering antes de clustering
- Evitar multicolinealidad en regresión
- Compresión de datos

Casos de uso en Economía

3. Visualización

- Graficar países en "espacio económico"
- Detectar patrones y outliers
- Identificar grupos naturales

4. Análisis exploratorio

- Entender estructura de correlaciones
- Identificar dimensiones latentes
- Detectar redundancia en variables

Ejemplo aplicado: Crear índice de desarrollo

```
# Usar PC1 como indice (si tiene interpretación válida)
paises_con_indice ← paises %>%
  mutate(
    indice_desarrollo = pca_resultado$x[, 1],
    indice_norm = scales::rescale(indice_desarrollo, to = c(0, 100))
)

# Ranking de países
ranking ← paises_con_indice %>%
  select(pais, indice_norm) %>%
  arrange(desc(indice_norm)) %>%
  mutate(ranking = row_number(), indice_norm = round(indice_norm, 1))
```

País	Índice (0-100)	Ranking
País 8	100.0	1
País 43	98.0	2
País 31	84.6	3
País 10	83.8	4
País 16	82.8	5

Resumen: PCA

Usar PCA cuando:

- Muchas variables correlacionadas
- $n \geq 5p$ (mínimo), idealmente $n \geq 10p$
- KMO > 0.6, Bartlett significativo
- Objetivo: reducción dimensional, no interpretación forzada

No usar PCA cuando:

- ullet n muy pequeño relativo a p
- Variables no correlacionadas
- Interpretabilidad es crítica
- Necesitas selección de variables

Recordar:

- PCA es matemático, interpretación no garantizada
- Verificar tamaño muestral SIEMPRE
- Validar con KMO y Bartlett
- Considerar alternativas (Lasso, FA) según objetivo

Comparación final: ANOVA vs PCA

Aspecto	ANOVA	PCA
Tipo	Supervisado	No supervisado
Variables	1 continua	Múltiples continuas
Objetivo	Comparar grupos	Reducir dimensiones
Supuestos	Normalidad, homogeneidad	Linealidad, n/p
Output	p-valor, diferencias	Componentes, varianza
Interpretabilidad	Alta	Variable

Son herramientas complementarias: ANOVA para inferencia causal sobre grupos, PCA para exploración y reducción dimensional.

¿Preguntas?

Nicolás Sidicaro - FCE-UBA

Octubre 2025