PROGRAMMING IN PYTHON II

Project Design and Outline

Michael Widrich
Institute for Machine Learning

Copyright statement:

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

Outline

1. Project design

- 1.1 Motivation
- 1.2 Overview
- 1.3 Project goal
- 1.4 Data
- 1.5 Hardware/Software
- 1.6 ML Methods
- 1.7 Evaluation
- 1.8 Python II Project

MOTIVATION

Motivation (2)

■ When designing or implementing an ML project, you have to consider and constantly re-evaluate multiple aspects

Motivation (2)

- When designing or implementing an ML project, you have to consider and constantly re-evaluate multiple aspects
- Spoiler alert: The choice of the ML method itself is only one aspect of many

Motivation (2)

- In this unit we will go through the outline of the project design
- We will cover the details during the semester
- We will use our ML project as example

OVERVIEW

Project Design

- Common important aspects (in my experience) as checklist:
 - 1. What is the project goal?
 - 2. What data do you have? What data do you need? What does the data look like?
 - 3. What hardware do you have? What hardware could you have?
 - 4. What ML method(s) should you use?
 - 5. How to evaluate the methods/models?

Project Design

- Common important aspects (in my experience) as checklist:
 - 1. What is the project goal?
 - 2. What data do you have? What data do you need? What does the data look like?
 - 3. What hardware do you have? What hardware could you have?
 - 4. What ML method(s) should you use?
 - 5. How to evaluate the methods/models?
- There is no one-fits-all solution! Specific tasks require specific considerations!

PROJECT GOAL

Project goal

- What is the project goal?

Project goal

- What is the project goal?
- Very important aspect and often overlooked
- Requires communication with people from different fields, including management
- DO NOT make simplifications here! Make sure you are aware of the real (end) goal and communicate this!
- Rinse and repeat to overcome language barriers

DATA

– What data do you have? What data do you need? What does the data look like?

- What data do you have? What data do you need? What does the data look like?
- Data is money. Big data is big money.

- What data do you have? What data do you need? What does the data look like?
- Data is money. Big data is big money.
- Sometimes the goals will follow from sufficiently large existing data
 - □ Best case but rather rare (our hunger for data is only limited by computational restrictions!)

- What data do you have? What data do you need? What does the data look like?
- Data is money. Big data is big money.
- Sometimes the goals will follow from sufficiently large existing data
 - □ Best case but rather rare (our hunger for data is only limited by computational restrictions!)
- Sometimes the goals will follow from existing but insufficiently large data
 - Common case
 - Has influence on choice of ML method
 - Allows for educated guesses at sufficiently large data size
 - Can be starting point for collecting more data

Data (2)

- Sometimes the goals are not backed up by any data
 - Very tricky and potentially dangerous!
 - You would have to make guesses about how much and which data would be needed
 - ☐ You would have to make guesses about the ML method performance in advance
 - You will need to interface with the data collection process
 - → First get small dataset, then collect more
 - You might waste a lot of time and money

Data (2)

- Sometimes the goals are not backed up by any data
 - ☐ Very tricky and potentially dangerous!
 - ☐ You would have to make guesses about how much and which data would be needed
 - ☐ You would have to make guesses about the ML method performance in advance
 - ☐ You will need to interface with the data collection process
 - → First get small dataset, then collect more
 - You might waste a lot of time and money
- A dataset might be unsuitable for your purposes
 - Biases, artifacts, labeling errors, ...

Data (3)

- Make the most of your data
 - ☐ Talk to experts in the field of application/read up on the topic
 - □ Perform analysis of the data (e.g. clustering) and look for possible issues (e.g. biases, batch-effects)
 - ☐ Check if there is auxilliary data available
 - Pre-training on similar data, unused sorted-out data, data that is not suitable for training but for evaluation, ...
 - Perform data preprocessing and augmentation
 - Normalization, oversampling, cross-validation splits, data augmentation, . . .

HARDWARE/SOFTWARE

Hardware/Software

– What hardware/software do you have? What hardware/software could you have?

Hardware/Software

- What hardware/software do you have? What hardware/software could you have?
- CPU, GPU, or TPU based?
- Size of RAM and disk storage?
- Hardware compatible with ML software? Software restrictions from company/collaborations?
- Short term or long project?
 - Rent or own? Little compute over long time or lots of compute over short term?
 - My recommendation: First design/implement/experiment on owned hardware, then perform final tuning on rented hardware if needed

ML METHODS

Methods

- What ML method(s) should you use?

Methods

- What ML method(s) should you use?
- Depends on goal, data, and hardware
- You will need a theoretical understanding of the methods to judge which ones to consider
 - Literature research
 - Later semesters of Al study
- Start with baselines/less complex methods and models
 - Statistics, logistic regression, SVM, ...
 - Check Supervised Learning before Reinforcement Learning and Unsupervised Learning

EVALUATION

Evaluation

– How to evaluate the methods/models?

Evaluation

- How to evaluate the methods/models?
- Which score/performance measure?
- Do you need to correct for biases?
- Which aspects of the goal are more important?
- What do you want to generalize to?

PYTHON II PROJECT

Python II Project: Goal (1)

Extrapolate image data

Python II Project: Goal (2)

- "Extrapolate image data"
- End goal: High score on challenge server leader-board
 - ☐ Image is fed into model and model extends image borders with new plausible pixels
 - Size of created pixel borders should be freely selectable
 - Images should be grayscale
 - Should work on all kinds of grayscale images

Python II Project: Goal (2)

- "Extrapolate image data"
- End goal: High score on challenge server leader-board
 - ☐ Image is fed into model and model extends image borders with new plausible pixels
 - ☐ Size of created pixel borders should be freely selectable
 - Images should be grayscale
 - □ Should work on all kinds of grayscale images
- What is "plausible"?
 - □ Luckily, the challenge server decides for us: "Plausibility" is measured by average negative squared error per pixel

Python II Project: Data (1)

- We will create our own dataset
- We will have the following data:
 - ☐ JPG images up to 850kB
 - 100 images per student
 - ☐ Assumption: We collect 30k valid images

Python II Project: Data (2)

- We will crop out small images and pretend they are the original images
 - → we do not need to collect labels!
- This is probably a case with sufficient data for training our methods
 - ☐ We can use data augmentation to increase the dataset size
 - We could use additional data from the internet but it will not be necessary
- We will have to
 - Clean up the raw data (exclude invalid files)
 - Preform analysis and preprocessing
 - □ Perform data augmentation

Python II Project: Hardware/Software and Methods

- Hardware/Software
 - ☐ Harware is up to you (see introduction slides)
 - Python 3.6 or higher (recommended: 3.7)
 - PyTorch
- Methods
 - ☐ Simple Convolutional Neural Network (CNN)
 - You may also use other NN types/more complex settings
 - Design and fine-tuning is up to you

Python II Project: Evaluation

- Challenge server score determines the evaluation method
 - □ Will use the squared error per pixel
- "Should work on all kinds of grayscale images"
 - → Will haunt us at evaluation section later in the semester but we will do our best

Assignment, UE lesson, next lecture

- Next lesson we will learn about
 - □ resources for ML,
 - version control using git,
 - hash values and hashing in Python

