第十二章练习题

- 1.若级数 $\sum_{n=1}^{\infty} u_n$ 收敛于s,则级数 $\sum_{n=1}^{\infty} (u_n + u_{n+1})$ 收敛于 ().
 - **A.** 2*s*

- **B.** $2s + u_1$ **C.** $2s u_1$ **D.** $u_1 2s$
- **2.若级数** $\sum_{n=0}^{\infty} (u_n + 2)^2$ **收敛,则** $\lim_{n \to \infty} u_n = ($).
 - **A.** 1
- **B.** 2
- **C.** -1
- **D.** -2
- 3. $\sum_{n=0}^{\infty} (\sqrt{n+2} + \sqrt{n} 2\sqrt{n+1}) = ($).
 - A. $-\frac{1}{\sqrt{2}+1}$ B. $\frac{1}{\sqrt{2}+1}$ C. $\frac{1}{\sqrt{2}-1}$ D. $\frac{1}{1-\sqrt{2}}$

- **4.**设a > 0, b > 0,则级数 $\sum_{n=1}^{\infty} \frac{(a+1)(2a+1)\cdots(na+1)}{(b+1)(2b+1)\cdots(nb+1)}$ 在()时收敛.
 - **A.** a > b
- **B.** a < b
- C. $a \ge b$
- **D.** $a \leq b$

- 5.当()时,级数 $\sum_{n=1}^{\infty}\frac{1}{n^a \ln n}$ 收敛.
- **A.** a > 1 **B.** a < 1 **C.** a > 2
 - **D.** a < 2
- 6.若两个级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 都收敛,则().

 - A. $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散 B. $\sum_{n=1}^{\infty} \max\{|u_n|, |v_n|\}$ 可能收敛也可能发散

 - C. $\sum_{n=1}^{\infty} (|u_n| |v_n|)$ 发散 D. $\sum_{n=1}^{\infty} (u_n + v_n)^2$ 可能收敛也可能发散
- 7.设级数 $\sum_{n=1}^{\infty} (-1)^n a_n = -1$, $\sum_{n=1}^{\infty} a_{2n-1} = 4$, 则级数 $\sum_{n=1}^{\infty} a_n = ($). A. 7 B. 4 C. 9

- 8.设 $u_n = (-1)^n \ln(1 \frac{1}{\sqrt{n}}) (n \ge 2)$,则 ().
 - A. $\sum_{n=0}^{\infty} u_n$ 和 $\sum_{n=0}^{\infty} u_n^2$ 都收敛
- B. $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} u_n^2$ 都发散
- C. $\sum_{n=1}^{\infty} u_n$ 收敛,但 $\sum_{n=1}^{\infty} u_n^2$ 发散 D. $\sum_{n=1}^{\infty} u_n$ 发散,但 $\sum_{n=1}^{\infty} u_n^2$ 收敛

- 9.设 $0 \le u_n < \frac{1}{n}$) $(n = 1, 2, \dots)$, 则下列级数中收敛的是().

- A. $\sum_{n=1}^{\infty} \sqrt{u_n}$ B. $\sum_{n=1}^{\infty} u_n$ C. $\sum_{n=1}^{\infty} (-1)^n u_n$ D. $\sum_{n=1}^{\infty} (-1)^n u_n^2$ 10. 下列级数中条件收敛的是 ().
 - **A.** $\sum_{n=1}^{\infty} (-1)^n \frac{n-1}{n+1}$

- **B.** $\sum_{n=0}^{\infty} (-1)^n \frac{1}{n^{\frac{3}{2}}}$
- C. $\sum_{n=0}^{\infty} (-1)^n \frac{n+a}{n^2}$ (常数a > 0)
- D. $\sum_{n=1}^{\infty} \frac{1}{n}$
- 11.若幂级数 $\sum_{n=1}^{\infty} a_n(x-1)^n$ 在 x=3 处条件收敛,则幂级数的收敛半径为(
 - A. 1
- B. 2
- C. 3
- D. 4
- 12. 函数 $f(x) = \frac{1}{(2-x)^2}$ 展开成 (x-1) 幂级数为().
 - **A.** $\sum_{i=1}^{\infty} n(x-1)^{n-1}$ **B.** $\sum_{i=1}^{\infty} n(x-1)^{n}$ **C.** $\sum_{i=1}^{\infty} (x-1)^{n}$ **D.** $\sum_{i=1}^{\infty} (x-1)^{n-1}$

- 13. 幂级数 $\sum_{n=0}^{\infty} (-1)^n \frac{2n-1}{2^n} x^{2n-2}$ 的收敛区间为().

 - A. $\left(-\frac{1}{2}, \frac{1}{2}\right)$ B. $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ C. $\left(-\sqrt{2}, \sqrt{2}\right)$ D. (-2, 2)
- 14. 若级数 $\sum_{i=1}^{\infty} a_n (x+1)^n$ 在 x=1 处收敛,则该级数在 $x=-\frac{5}{2}$ 处().
 - A. 绝对收敛
- B.条件收敛
- C.发散 D. 敛散性不能确定
- 15.当 |x| < 5 时,函数 $f(x) = \frac{1}{5-x}$ 的麦克劳林展开式是().

- **A.** $\sum_{n=1}^{\infty} \frac{1}{5^n} x^n$ **B.** $\sum_{n=1}^{\infty} \frac{1}{5^{n+1}} x^n$ **C.** $\sum_{n=1}^{\infty} \frac{1}{5^n} x^n$ **D.** $\sum_{n=1}^{\infty} \frac{1}{5^{n+1}} x^n$
- 16.级数 $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ 的收敛域是().

- A. (-1,1) B. (-1,1] C. [-1,1) D. [-1,1]
- 17.设函数 $f(x) = xe^x$ 展开成 x 幂级数为 $\sum_{n=1}^{\infty} a_n x^n$,则系数 a_3 =().

A.
$$-\frac{1}{3}$$
 B. $\frac{1}{3}$ C. $-\frac{1}{2}$ D. $\frac{1}{2}$

$$B.\frac{1}{3}$$

$$C.-\frac{1}{2}$$

$$D.\frac{1}{2}$$

18. $f(x) = a^{x}(a > 0, a \neq 1)$ 展开成幂级数是(

A.
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\mathbf{B.} \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}$$

$$C.\sum_{n=0}^{\infty}\frac{(\ln a)^n x^n}{n!}$$

A.
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 B. $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}$ C. $\sum_{n=0}^{\infty} \frac{(\ln a)^n x^n}{n!}$ D. $\sum_{n=0}^{\infty} \frac{(\ln a)^n x^n}{n!}$

19.函数 $\int_0^x t \cos t dt$ 在 x = 0 处的幂级数展开式为().

A.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!(2n)}$$

A.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!(2n)}$$
 B.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+2}}{(2n)!(2n+2)}$$

C.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{(2n-1)!}$$

D.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n)!(2n+1)}$$

20.级数 $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}$ 的和函数是().

A.
$$e^{-x^2}$$

$$\mathbf{B}. \ e^{x^2}$$

C.
$$-e^{-x^2}$$

A. e^{-x^2} B. e^{x^2} C. $-e^{-x^2}$ D. 不存在

21 若正项 $\sum_{n=1}^{\infty} a_n$ 级数收敛,则().

A.
$$\sum_{n=1}^{\infty} a_n^2$$
发散

B.
$$\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$$
收敛

$$C.\sum_{n=1}^{\infty}\frac{a_n}{1+a_n}$$
发散

D.
$$\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{n}}$$
发散

22 若级数 $\sum_{i=1}^{\infty} u_n$ 收敛,则必收敛的级数是 ().

A.
$$\sum_{n=1}^{\infty} (-1)^n \frac{u_n}{n}$$

B.
$$\sum_{n=1}^{\infty} u_n^2$$

C.
$$\sum_{n=1}^{\infty} (u_{2n-1} - u_{2n})$$

$$D. \quad \sum_{n=1}^{\infty} (u_n + u_{n+1})$$

23 设 $f(x) = \begin{cases} 2x, -\pi < x \le 0 \\ 4x, 0 < x \le \pi \end{cases}$,则将f(x)作周期延拓,展开的傅里叶

级数在 $x = \pi$ 点收敛于(

24 已知 $f(x) = \begin{cases} -\frac{\pi}{4}, & -\pi < x \le 0 \\ \frac{\pi}{4}, & 0 \le x < \pi \end{cases}$ 的傅里叶级数为 $\sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1}$

则 $1+\frac{1}{5}-\frac{1}{7}-\frac{1}{11}+\frac{1}{13}+\frac{1}{17}+\cdots=$ ().

A. $\frac{\pi}{3}$

C. $\frac{\pi}{\epsilon}$

25 以为周期的函数 $f(x) = \hat{x} - 1, x \in [\pi, \pi]$ 它的傅里叶级数为

 $\frac{\pi}{3} - 1 - 4 \sum_{i=1}^{\infty} \frac{(-1)^{i}}{n^{2}} \cos nx$,则该级数的和函数为(

A. $s(x) \equiv f(x), x \in (-\infty, +\infty)$

B. $s(x) = \begin{cases} f(x), & x \neq k\pi \\ 1, & x = k\pi \end{cases} (k = 0, \pm 1, ...)$

C. $s(x) = \begin{cases} f(x), & x \neq k\pi \\ \frac{1}{2}, & x = k\pi \end{cases} (k = 0, \pm 1, ...)$

D. $s(x) = \begin{cases} f(x), & x \neq k\pi \\ \frac{\pi^2 - 1}{2}, & x = k\pi \end{cases} (k = 0, \pm 1, ...)$

26 $1.1 + \frac{2}{\sqrt{5}} + \frac{4}{5} + \frac{8}{5\sqrt{5}} + \dots = ()$.

A. $5 + 2\sqrt{5}$ B. $5-2\sqrt{5}$ C. $2\sqrt{5}$ D. 5

- 设级数 $\sum_{n=1}^{\infty} \frac{1}{1+a^n} (a>0)$ 收敛,则a满足().
- A. a=1 B. a>1 C. a=0 D. $a \le 1$
- 28 设级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛区间为(-3,3),则 $\sum_{n=0}^{\infty} a_n (x-1)^{n+1}$ 的收敛区间为(-3,3)

- A. (2,4) B. (-1,4) C. (-2,4) D. (-2,2)
- 29 如果级数 $\sum_{n=0}^{\infty} a_n$ 绝对收敛,且 $\lim_{n\to\infty} na_n$ 存在,则 $\lim_{n\to\infty} na_n = ($).
- A. 1 B. -1 C. 2
- 30 $f(x)=\hat{x}+2x+$ 在 x=处的幂级数展开式为 ().
- A. $4+4(x-1)+(x-1)^2$ B. $4-4(x-1)+(x-1)^2$
- C. $4+4(x-1)-(x-1)^2$ D. $4-4(x-1)-(x-1)^2$