Relations de comparaison, développements limités, applications aux formes indéterminées

1 Les relations \sim (équivalent à) et o (négligeable devant)

On parle ici de suites, mais tout s'adapte aux fonctions en $\pm \infty$, en x_0 .

- → Négligeabilité Notation $u_n = o(v_n)$ pour $u_n = \epsilon_n v_n$ avec $\epsilon_n \to 0$.
- \rightarrow Autres définitions : $o(v_n) = v_n.o(1)$, et $\frac{o(v_n)}{v_n} \rightarrow 0$.
- \rightarrow Équivalence Notation $u_n \sim v_n$ pour $u_n = (1 + \epsilon_n)v_n$ avec $\epsilon_n \rightarrow 0$.
- \rightarrow Autres définitions : $u_n = (1 + o(1))v_n = v_n + o(v_n)$, et $\frac{u_n}{v_n} \rightarrow 1$.
- → Interprétation graphique Allure de deux suites équivalentes, d'une suite nég. devant une autre. Conjecturer un résultat d'après un affichage Scilab.
- \rightarrow Linéarité $\lambda o(v_n) + \mu o(v_n) = o(v_n)$, mais on n'additionne pas des équivalents!

	Multiplicativité	Transitivité
\rightarrow	$o(u_n).o(v_n) = o(u_n v_n)$	Si $u_n = o(v_n)$ et $v_n = o(w_n)$, alors $u_n = o(w_n)$.
	si $a_n \sim a_n'$ et $b_n \sim b_n'$, alors $a_n b_n \sim a_n' b_n'$.	Si $u_n \sim v_n$ et $v_n \sim w_n$, alors $u_n \sim w_n$.

2 Développements limités à l'ordre 2

 \rightarrow Formule de Taylor Si $f: I \rightarrow \mathbb{R}$ est \mathcal{C}^2 au voisinage de x_0 , alors $x \rightarrow x_0$, et $h \rightarrow 0$:

$$f(x) = f(x_0) + f'(x_0) (x - x_0) + \frac{f''(x_0)}{2} (x - x_0)^2 + o(x - x_0)^2$$

$$f(x_0 + h) = f(x_0) + f'(x_0) h + \frac{f''(x_0)}{2} h^2 + o(h^2)$$

- → Cas des trinômes du second degré : La formule est alors exacte!
- → Formulaire pour $x \to 0$ $e^x \qquad \ln(1+x) \qquad (1+x)^a, \ a \in \mathbb{R}$ $1+x+\frac{x^2}{2}+o(x^2) \quad x-\frac{x^2}{2}+o(x^2) \quad 1+ax+\frac{a(a-1)}{2}x^2+o(x^2)$
- \rightarrow Cas particuliers pour $(1+x)^a$: On reconnaît le début de :
 - $\star~a=n\in\mathbb{N}$: la formule du binôme de Newton pour $x\in\mathbb{R}$:

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{1 \times 2 \times 3}x^3 + \dots + \binom{n}{k}x^k + \dots + nx^{n-1} + x^n$$

 $\star a = -1$: la somme des termes d'une suite géométrique :

$$\frac{1}{1-q} = 1 + q + q^2 + \ldots + q^n + \underbrace{\frac{q^{n+1}}{1-q}}_{=o_{q\to 0}(q^n)}, \quad \text{où } q = -x \neq 1$$

3 Application aux formes indéterminées

- → Principe des croissances comparées
 - * La limite des monômes en $r^n n^{\alpha} (\ln(n))^{\beta}$, pour $n \to \infty$. Variante pour les fonctions.
 - * Principe des comparaisons entre monômes de ce type.
 - * Trouver un équivalent d'une comb. lin. de tels monômes : le terme prépondérant.
- → Utiliser les dév. lim. pour lever des FI simples. Interprétation de taux d'accroissement.
- \rightarrow Exemple archiclassique : Pour $x \in \mathbb{R} : \left(1 + \frac{x}{n}\right)^n \rightarrow e^x$ (Euler ca.1730).