DM547 januar 2019 (uddrag) Facitliste

(Korrekte svar er markeret med fed skrift)

Spørgsmål 1 (11%)

Hvilke af følgende udsagn er sande?

Which of the following propositions are true?

Svar 1.a:
$$\exists n \in \mathbb{Z} : n^2 + 1 = 82$$

Svar 1.b:
$$\exists n \in \mathbb{Z} : \exists k \in \mathbb{Z} : n+k=n-k$$

Svar 1.c:
$$\forall n \in \mathbb{Z} : n^2 \in \mathbb{N}$$

Svar 1.d:
$$\forall n \in \mathbb{Z} : \exists k \in \mathbb{N} : \sqrt{n+k} \in \mathbb{N}$$

Svar 1.e:
$$\forall n \in \mathbb{N} : \forall k \in \mathbb{Z} : n \neq k$$

Svar 1.f:
$$\exists n \in \mathbb{N} : 1^n \neq 1$$

Svar 1.g:
$$\exists ! n \in \mathbb{Z} : n^2 = 9$$

Svar 1.h:
$$\exists n \in \mathbb{N} : \exists k \in \mathbb{N} : n^2 + k^2 = 17$$

Spørgsmål 2 (11%)

Hvilke udsagn er ækvivalente med $\neg \, (p \vee q)?$

Which propositions are equivalent to $\neg (p \lor q)$?

Svar 2.a:
$$p \Rightarrow q$$

Svar 2.b:
$$\neg p \Rightarrow q$$

Svar 2.c:
$$p \oplus q$$

Svar 2.d:
$$\neg p \land \neg q$$

Svar 2.e:
$$\neg (p \Rightarrow q)$$

Svar 2.f:
$$\neg (\neg p \Rightarrow q)$$

Svar 2.g:
$$\neg p \land (p \oplus \neg q)$$

Svar 2.h:
$$(\neg p \lor q) \land \neg q$$

Spørgsmål 3 (10%)

Denne opgave handler om at bevise, at $3^n - 1$ er et lige tal, for alle $n \in \mathbb{N}$. Hvilke af nedenstående argumenter udgør gyldige induktionsbeviser?

This question is about proving that $3^n - 1$ is an even number, for all $n \in \mathbb{N}$. Which of the below arguments constitute valid proofs by induction.

Svar 3.a: Basis: $3^0 - 1 = 0$ er et lige tal.

Induktionsskridt: For $n \ge 1$ gælder:

$$3^n - 1 = 3 \cdot 3^{n-1} - 1$$

= $3 \cdot (3^{n-1} - 1) + 2$
= $3 \cdot 2k + 2$, hvor $k \in \mathbb{Z}$, ifølge induktionsantagelsen
= $2 \cdot (3k + 1)$, hvor $3k + 1 \in \mathbb{Z}$

Svar 3.b: Basis: $3^0 - 1 = 0$ er et lige tal.

Induktionsskridt: For $n \geq 0$ gælder:

$$\begin{aligned} 3^{n+1}-1 &= 3 \cdot 3^n - 1 \\ &= 3 \cdot (3^n - 1) + 2 \\ &= 3 \cdot 2k + 2, \text{ hvor } k \in \mathbb{Z}, \text{ifølge induktionsantagelsen} \\ &= 2 \cdot (3k+1), \text{ hvor } 3k+1 \in \mathbb{Z} \end{aligned}$$

Svar 3.c: Basis: $3^0 - 1 = 0$ og $3^1 - 1 = 2$ er lige tal.

Induktionsskridt: For $n \geq 2$ gælder:

$$3^{n} - 1 = 3 \cdot 3^{n-1} - 1$$

$$= 3 \cdot (3^{n-1} - 1) + 2$$

$$= 3 \cdot 2k + 2, \text{ hvor } k \in \mathbb{Z}, \text{ifølge induktionsantagelsen}$$

$$= 2 \cdot (3k + 1), \text{ hvor } 3k + 1 \in \mathbb{Z}$$

Svar 3.d: **Basis:** $3^2 - 1 = 8$ er et lige tal.

Induktionsskridt: For $n \geq 3$ gælder:

$$3^n - 1 = 3 \cdot 3^{n-1} - 1$$

= $3 \cdot (3^{n-1} - 1) + 2$
= $3 \cdot 2k + 2$, hvor $k \in \mathbb{Z}$, ifølge induktionsantagelsen
= $2 \cdot (3k + 1)$, hvor $3k + 1 \in \mathbb{Z}$

Svar 3.e: Basis: $3^0 - 1 = 0$ er et lige tal.

Induktionsskridt: For $n \ge 0$ gælder:

$$3^{n} - 1 = 2k$$
, hvor $k \in \mathbb{Z}$ \Leftrightarrow $3^{n} = 2k + 1$, hvor $k \in \mathbb{Z}$ \Leftrightarrow $3^{n+1} = 6k + 3$, hvor $k \in \mathbb{Z}$ \Rightarrow $3^{n+1} - 1 = 2 \cdot (3k + 1)$, hvor $3k + 1 \in \mathbb{Z}$

Svar 3.f: Basis: $3^0 - 1 = 0$ er et lige tal.

Induktionsskridt: For $n \ge 1$ gælder:

$$3^n - 1 = \frac{1}{3} \cdot 3^{n+1} - 1$$

= $\frac{1}{3} \cdot 2k$, hvor $k \in \mathbb{Z}$, ifølge induktionsantagelsen
= $2 \cdot \frac{k}{3}$, hvor $\frac{k}{3} \in \mathbb{Z}$

Spørgsmål 4 (10%)

Lad $R = \{(a, a), (a, b), (b, a), (c, c)\}$ være en relation på mængden $\{a, b, c\}$. Hvilke udsagn er sande?

Let $R = \{(a, a), (a, b), (b, a), (c, c)\}$ be a relation on the set $\{a, b, c\}$. Which statements are true?

Svar 4.a: R er ikke refleksiv.

R is not reflexive.

Svar 4.b: R er symmetrisk.

R is symmetric.

Svar 4.c: R er anti-symmetrisk.

R is anti-symmetric.

Svar 4.d: R er transitiv.

R is transitive.

Svar 4.e: R er ikke en ækvivalensrelation.

R is not an equivalence relation.

Svar 4.f: R er en partiel ordning.

R is a partial order.

Spørgsmål 5 (4%)

Angiv den transitive lukning af relationen $\{(a,b),(c,d),(d,e)\}$. Select the transitive closure of the relation $\{(a,b),(c,d),(d,e)\}$.

Svar 5.b:
$$\{(a,b),(c,d),(d,e)\}$$

Svar 5.c:
$$\{(a,b),(c,d),(c,e),(d,e)\}$$

Svar 5.d:
$$\{(a,b), (b,a), (c,d), (d,c), (d,e), (e,d)\}$$

Svar 5.e:
$$\{(a, a), (a, b), (b, b), (c, c), (c, d), (d, d), (d, e)\}$$

Svar 5.f:
$$\{(a,b), (b,c), (c,d), (d,e)\}$$

Svar 5.g:
$$\{(a,b),(b,c),(c,d),(d,e),(e,a)\}$$