

(1) Veröffentlichungsnummer: 0 460 451 A1

=US 5,266,A1

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 91108248.5

(51) Int. Cl.5: C25B 3/02

(2) Anmeldetag: 22.05.91

(P)

Priorität: 31.05.90 DE 4017575 31.05.90 DE 4017576

43 Veröffentlichungstag der Anmeldung: 11.12.91 Patentblatt 91/50

Benannte Vertragsstaaten: BE CH DE FR GB IT LI NL Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38

Erfinder: Hermeling, Dieter, Dr. Zum Ordenswald 73 f W-6730 Neustadt(DE)

W-6700 Ludwigshafen(DE)

Verfahren zur Herstellung von alpha-Hydroxymethylacetalen und alpha-Hydroxymethyl-ketalen.

Terfahren zur Herstellung von α-Hydroxymethylacetalen und α-Hydroxymethylketalen der allgemeinen Formel I

in der die Substituenten

R1, R2, R3 unabhängig voneinander Wasserstoff, C1- bis C20-Alkyl, C2- bis C20-Alkenyl, C2- bis C20-Alkinyl, C3- bis C12-Cycloalkyl, C4- bis C20-Cycloalkyl-alkyl, C1- bis C20-Hydroxyalkyl, gegebenenfalls durch C₁- bis C₈-Alkyl, C₁- bis C₈-Alkoxy, Halogen, C₁- bis C₄-Halogenalkyl, C₁- bis C4-Halogenalkoxy, Phenyl, Phenoxy, Halogenphenyl, Halogenphenoxy, Carboxy, C2- bis C8-Alkoxycarbonyl oder Cyano substituiertes Aryl oder C7- bis C20-Arylalkyl, oder R1 und R2 oder R² und R³ gemeinsam eine gegebenenfalls durch C₁- bis C₈-Alkyl, C₁- bis C₈-Alkoxy und/oder Halogen ein- bis zweifach substituierte (CH₂)_n- oder (CH = CH)_m-Gruppe, in der n für 1 bis 10 und m für 1 bis 3 steht und

R⁴ C1- bis C8-Alkyl

bedeuten, indem man eine Carbonylverbindung der allgemeinen Formel II

in der R1, R2 und R3 die obengenannte Bedeutung haben, mit einem Alkanol der allg meinen Formel III

R4-OH (III),

in der R^4 die obengenannte Bedeutung hat, in Gegenwart eines Hilfselektrolyten und 0,1 bis 5 Gew.% Wasser elektrochemisch oxidiert bzw. die Herstellung von α -Hydroxymethylarylketonen (I) aus Arylmethylketonen (II') mit einem Aldehyd (III') in Gegenwart eines Hilfselektrolyten und 0 bis 5 Gew.-% Wasser durch elektrochemische Oxidation.

. Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von α -Hydroxymethylacetalen und α -Hydroxymethylketalen durch elektrochemische Oxidation von Carbonylverbindungen mit Alkanolen in Gegenwart eines Hilfselektrolyten und gegebenenfalls Wasser.

Aus J.Chem.Soc. Perkin I, 73-77, (1986) ist die elektrochemische Oxidation von aliphatischen Aldehyden und Ketonen unter basischen Bedingungen zu α-Hydroxyacetalen und -ketalen bekannt. Die Oxidation unter neutralen Bedingungen führt nur zu geringen Ausbeuten (JP-A 57/188 684).

In der JP-A-57/188 686 wird die α -Hydroxylierung von aliphatischen Aldehyden und Ketonen in neutraler Lösung in Gegenwart größerer Mengen Wasser direkt zu den α -Hydroxyldehyden und α -Hydroxyketonen beschrieben. Nach diesen Methoden sind jedoch zahlreiche α -Hydroxyverbindungen nicht oder nur schwer zugänglich.

Aus Tetrahedron Letters 25, 691-694 (1984) und aus J. Org. Chem., 51, 130-135 (1986) ist die Herstellung von α -Hydroxymethylarylketalen aus schwer zugänglichen Ausgangsverbindungen unter basischen Bedingungen in mehrstufigen Reaktionen mit langen Reaktionszeiten bekannt.

Die elektrochemische Oxidation von aliphatischen Aldehyden und Ketonen mit anodisch erzeugtem "J " in Gegenwart eines Alkohols unter basischen Bedingungen zu den entsprechenden α-Hydroxyacetalen und -ketalen ist in J. Chem. Soc., Perk. I, 73-77 (1986) beschrieben. Die Oxidation unter neutralen Bedingungen liefert nur geringe Ausbeuten (JP-A-57/188 684). Die Bildung von α-Hydroxyverbindungen aus aromatischen Ketonen ist nicht beschrieben. Vielmehr ist aus Tetrahedron Letters 30, 371-374 (1989) bekannt, daß Arylketone unter ähnlichen Bedingungen, d.h. in alkoholischer Lösung, aber mit Jod/Lithiumperchlorat als Hilfselektrolyt entweder gar nicht oxidiert werden oder nur zu den Ketalen reagieren. In Gegenwart von Orthoestern unter ansonsten unveränderten Bedingungen findet keine 2-Hydroxylierung sondern eine 1,2-Umlagerung des Arylrestes zu 2-Alkyl-2-arylessigsäureestern statt.

Der Erfindung lag daher die Aufgabe zugrunde, den zuvor genannten Nachteilen abzuhelfen.

Demgemäß wurde ein neues und verbessertes Verfahren zur Herstellung von α -Hydroxymethylacetalen und α -Hydroxymethylketalen der allgemeinen Formel I

35

40

30

in der die Substituenten

R¹, R², R³ unabhängig voneinander Wasserstoff, C₁- bis C₂₀-Alkyl, C₂- bis C₂₀-Alkenyl, C₂- bis C₂₀-Alkinyl, C₃- bis C₁₂-Cycloalkyl, C₄- bis C₂₀-Cycloalkyl-alkyl, C₁- bis C₂₀-Hydroxyalkyl, gegebenenfalls durch C₁- bis C₃-Alkyl, C₁- bis C₃-Alkoxy, Halogen, C₁- bis C₄-Halogenalkyl, C₁- bis C₄-Halogenalkoxy, Phenyl, Phenoxy, Halogenphenyl, Halogenphenoxy, Carboxy, C₂- bis C₃- Alkoxycarbonyl oder Cyano substituiertes Aryl oder C₁- bis C₂₀-Arylalkyl, oder R¹ und R² oder R² und R³ gemeinsam eine gegebenenfalls durch C₁- bis C₃-Alkyl, C₁- bis C₃-Alkoxy und/oder Halogen ein- bis zweifach substituierte (CH₂)n- oder (CH=CH)m-Gruppe, in der n für 1 bis 10 und m für 1 bis 3 steht und

45 R⁴ C₁- bis C₈-Alkyl

bedeuten, gefunden, welches dadurch gekennzeichnet ist, daß man eine Carbonylverbindung der allgemeinen Formel II

55

50

in der R¹, R² und R³ die obengenannte Bedeutung haben, mit einem Alkanol der allgemeinen Form I III R⁴-OH (III),

in der R^4 die obengenannte Bedeutung hat, in Gegenwart eines Hilfselektrolyten und 0,1 bis 5 Gew.% Wasser elektrochemisch oxidiert, ein Verfahren zur Herstellung von α -Hydroxymethylarylketalen der allgemeinen Formel I'

5

10

15

20

25

in der die Substituenten

R31 Wasserstoff, C1- bis C20-Alkyl, C2- bis C20-Alkenyl, C2- bis C20-Alkinyl, C2- bis

C20-Alkoxyalkyl, C4- bis C20-Alkenyloxyalkyl, C3- bis C12-Cycloalkyl oder C4- bis

C₂₀-Cycloalkyl-alkyl, C₁- bis C₈-Alkyl und

R⁵'.R⁶'.R⁷'.R⁸'.R⁹' ui

unabhängig voneinander Wasserstoff, C₁- bis C₈-Alkyl, C₁- bis C₈-Alkoxy, C₂- bis C₈-Alkenyl, C₃- bis C₈-Alkenyloxy, C₂- bis C₈-Alkinyl, C₃- bis C₈-Alkinyloxy, Halogaphanoxy, Carboxy, C₂-

Halogen, Cyano, Phenyl, Phenoxy, Halogenphenyl, Halogenphenoxy, Carboxy, C2-bis C_8 -Alkoxycarbonyl, C_3 - bis C_8 -Alkoxycarbonyl, C_3 - bis C_8 -Alkoxycarbonyl oder R^5 ' und R^6 ' oder R^6 ' und R^7 ' gemeinsam eine gegebenenfalls durch C_1 - bis C_8 -Alkyl, C_1 - bis C_8 -Alkoxy und/ oder Halogen ein- bis zweifach substituierte (CH₂)n'- oder (CH = CH)m'-Gruppe, in der n' für 1 bis 10 und m' für 1

bis 3 steht,

gefunden, welches dadurch gekennzeichnet ist, daß man ein Arylmethylketon der allgemeinen Formel II'

30

35

50

55

in der R31 die oben genannten Bedeutungen haben, mit einem Alkanol der allgemeinen Formel III'

40 R4'-OH (III'),

in der R⁴¹ die oben genannten Bedeutungen hat, in Gegenwart eines Hilfselektrolyten und 0,1 bis 5 Gew.-% Wasser elektrochemisch oxidiert.

Als Ausgangsverbindungen zur Herstellung der erfindungsgemäßen α-Hydroxymethylacetale und α-Hydroxymethylketale I bzw. Arylmethylketone I' kommen prinzipiell alle Aldehyde und Ketone der allgemeinen Formeln II und II' in Betracht, die unter den Elektrolysebedingungen inerte Substituenten tragen.

Als Substituenten R¹ bis R⁴, R³¹ bis R³¹ und Indices n, n', m und m' in den Formeln I bis III und I' bis III' kommen unabhängig voneinander für das Verfahren folgende Bedeutungen in Betracht: R¹, R², R³

- Wasserstoff,
- unverzweigtes oder verzweigtes C₁- bis C₂₀-Alkyl, vorzugsweise unverzweigtes oder verzweigtes C₁bis C₁₂-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, nPentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, n-Hexyl, iso-Hexyl, sec.Hexyl, n-Heptyl, iso-Heptyl, n-Octyl, iso-Octyl, n-Nonyl, iso-Nonyl, n-Decyl, iso-Decyl, n-Undecyl, isoUndecyl, n-Dodecyl und iso-Dodecyl,
- unverzweigtes oder verzweigtes C₂- bis C₂₀-Alkenyl, vorzugsweise unverzweigtes oder verzweigtes C₂- bis C₈-Alkenyl, wie Allyl, 2-Buten-1-yl, 4-Buten-2-yl, 4-Buten-1-yl, 2-Penten-1-yl und 2,2-Dimethylpenten-1-yl,

- unverzweigtes oder verzweigtes C₂- bis C₂₀-Alkinyl, vorzugsweise unverzweigtes oder verzweigtes C₂- bis C₈-Alkinyl, wie Propinyl, 1,1-Dimethyl-2-propinyl, 1-Methyl-2-propinyl, 1-Butinyl, 2-Butinyl und 4,4-Dimethylbut-2-in-1-yl,
- C₃- bis C₁₂-Cycloalkyl, bevorzugt C₃- bis C₈-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohexyl, Cyclohexyl, Cyclohexyl,
- C₄- bis C₂₀-Cycloalkyl-alkyl, bevorzugt C₄- bis C₈-Cycloalkylalkyl, wie Cyclopentyl-methyl, 2-Cyclopentyl-ethyl, 1-Cyclopentyl-ethyl, Cyclohexyl-methyl, 1-Cyclohexylethyl und 2-Cyclohexyl-ethyl,
- unverzweigtes oder verzweigtes C₁- bis C₂₀-Hydroxyalkyl, bevorzugt unverzweigtes oder verzweigtes C₁- bis C₈-Hydroxyalkyl, wie Hydroxymethyl, 1-Hydroxyethyl, 2-Hydroxyethyl, 1-Hydroxypropyl, 2-Hydroxypropyl und 3-Hydroxypropyl,
- Aryl, wie Phenyl, 1-Naphthyl und 2-Naphthyl, bevorzugt Phenyl,
- ein- bis dreifach durch C₁- bis C₃-Alkyl substituiertes Aryl, bevorzugt ein- bis dreifach durch C₁- bis C₄-Alkyl substituiertes Phenyl, wie 2-Methylphenyl, 4-Methylphenyl, 2-Ethylphenyl, 4-Ethylphenyl, 3-Methylphenyl, 2,4-Dimethylphenyl, 3,4-Dimethylphenyl und 3,4,5-Trimethylphenyl,
- ein- bis dreifach durch C₁- bis C₈-Alkoxy substituiertes Aryl, bevorzugt ein- bis dreifach durch C₁- bis C₄-Alkoxy substituiertes Phenyl, wie 2-Methoxyphenyl, 2-Ethoxyphenyl, 3-Methoxyphenyl, 4-Methoxyphenyl, 3-Ethoxyphenyl, 4-Ethoxyphenyl, 3,4-Dimethoxyphenyl und 3,4,5-Trimethoxyphenyl,
 - ein- bis dreifach durch C₁- bis C₄-Halogenalkyl substituiertes Aryl, bevorzugt ein- bis dreifach durch
 C₁ bis C₂-Fluor- und Chloralkyl Phenyl, besonders bevorzugt ein- bis dreifach durch Trifluormethyl und Trichlormethyl, substituiertes Phenyl, wie 4-Trifluormethylphenyl und 4-Trichlormethylphenyl,
 - ein- bis dreifach durch C₁- bis C₄-Halogenalkoxy substituiertes Aryl, bevorzugt ein- bis dreifach durch C₁- bis C₂-Fluor- und Chloralkoxy Phenyl, besonders bevorzugt ein- bis dreifach durch Trifluormethoxy und Trichlormethoxy substituiertes Phenyl, wie Trifluormethoxyphenyl,
 - ein- bis dreifach durch Halogen substituiertes Aryl, bevorzugt ein- bis dreifach durch Fluor oder Chlor substituiertes Phenyl, wie 4-Chlorphenyl, 3,4-Dichlorphenyl, 4-Bromphenyl, 4-Fluorphenyl und 4-Fluor-3-chlorphenyl,
 - ein- bis dreifach durch Halogenphenyl substituiertes Aryl, bevorzugt ein- bis dreifach durch Fluorund/oder Chlorphenyl substituiertes Phenyl wie (4-Chlorphenyl)-phenyl,
 - ein- bis dreifach durch Halogenphenoxy substituiertes Aryl, bevorzugt ein- bis dreifach durch Fluorund/oder Chlorphenoxy substituiertes Phenyl, wie (4-Fluorphenoxy)-phenyl,
 - ein- bis dreifach durch Carboxy substituiertes Aryl, bevorzugt ein- bis dreifach durch Carboxy substituiertes Phenyl, wie 2-Carboxyphenyl, 3-Carboxyphenyl und 4-Carboxyphenyl,
 - ein- bis dreifach durch C₂- bis C₈-Alkoxycarbonyl substituiertes Aryl, bevorzugt ein- bis dreifach durch C₂- bis C₄-Alkoxycarbonyl substituiertes Phenyl, wie 4-Methoxycarbonylphenyl, 4-Ethoxycarbonylphenyl, 2-Methoxycarbonylphenyl, 2-Ethoxycarbonylphenyl und 3-Methoxycarbonylphenyl,
 - ein- bis dreifach durch Cyano substituiertes Aryl, bevorzugt ein- bis dreifach durch Cyano substituiertes Phenyl, wie 2-Cyanophenyl, 3-Cyanophenyl und 4-Cyanophenyl,
 - C₇- bis C₂₀-Arylalkyl, bevorzugt C₇- bis C₁₂-Arylalkyl wie Benzyl, Phenylethyl, Phenylpropyl und Phenylisopropyl,
- im Arylteil ein- bis dreifach durch Halogen substituiertes C₇- bis C₂₀-Aryl-alkyl, bevorzugt im Phenylteil ein- bis dreifach durch Fluor oder Chlor C₇- bis C₁₀-Phenyl-alkyl, wie 4-Fluorbenzyl, 4-Chlorbenzyl, 2,4-Dichlorbenzyl und 3,4-Dichlorbenzyl,
 - im Arylteil ein- bis dreifach durch C₁- bis C₈-Alkyl substituiertes C₇- bis C₂₀-Aryl-alkyl, bevorzugt im Phenylteil ein- bis dreifach durch C₁- bis C₄-Alkyl substituiertes C₇- bis C₁₀-Phenyl-alkyl, besonders bevorzugt im Phenylteil ein- bis dreifach durch C₁- bis C₂-Alkyl substituiertes C₇- bis C₁₀-Phenylalkyl, wie 4-Methylbenzyl, 4-Ethylbenzyl und 4-Methylphenethyl,
 - im Arylteil ein- bis dreifach durch C₁- bis C₈-Alkoxy substituiertes C₇- bis C₂₀-Aryl-alkyl, bevorzugt im Phenylteil ein- bis dreifach durch C₁- bis C₄-Alkoxy C₇- bis C₁₀-Phenylalkyl, besonders bevorzugt im Phenylteil ein- bis dreifach durch C₁- bis C₂-Alkoxy substituiertes C₇- bis C₁₀-Phenylalkyl, wie 4-Methoxybenzyl, 4-Ethoxybenzyl und 4-Methoxyphenethyl,
 - im Arylteil ein- bis dreifach durch C₁- bis C₄-Halogenalkyl, substituiertes C₇- bis C₂₀-Arylalkyl, bevorzugt im Phenylteil ein- bis dreifach durch C₁- bis C₂-Fluor- und Chloralkyl substituiertes C₇- bis C₁₀-Phenylalkyl, besonders bevorzugt im Phenylteil ein- bis dreifach durch Trifluormethyl und Trichlormethyl substituiertes C₇-C₁₀-Phenylalkyl, wie 4-Trifluormethylbenzyl und 4-Trichlormethylbenzyl,
 - im Arylteil ein- bis dreifach durch C₁- bis C₄-Halogen-alkoxy substituiertes C₇- bis C₂₀-Arylalkyl, bevorzugt im Phenylteil ein- bis dreifach durch C₁- bis C₂-Halogenalkoxy substituiertes C₇- bis C₁₀-Phenylalkyl, besonders bevorzugt ein- bis dreifach durch Trifluormethoxy und Trichlormethoxy substi-

5

10

20

25

30

35

45

50

- tuiertes C7- bis C10-Phenylalkyl, wie 4-Trifluormethoxybenzyl und 4-Trichlormethoxybenzyl,
- ein- bis dreifach durch Halogenphenyl substituiertes C₇- C₂₀-Arylalkyl, bevorzugt ein- bis dreifach durch Fluor- und/oder Chlorphenyl substituiertes C₇- bis C₁₂-Phenylalkyl, wie 4-Chlorphenethyl und 4-Fluorphenethyl,
- ein- bis dreifach durch Halogenphenoxy substituiertes C₇- C₂₀-Arylalkyl, bevorzugt ein- bis dreifach durch Fluor- und/oder Chlorphenoxy substituiertes C₇- bis C₁₂-Phenylalkyl, wie 2-Chlorphenoxym thyl und 4-Chlorphenoxymethyl,
 - ein- bis dreifach durch Carboxy substituiertes C₇- C₂₀-Arylalkyl, bevorzugt ein- bis dreifach durch Carboxy substituiertes C₇- bis C₁₂-Phenylalkyl, wie 4-Carboxybenzyl, 4-Carboxyphenethyl, 2-Carboxybenzyl und 2-Carboxyphenylethyl,
 - ein- bis dreifach durch C₂- bis C₈-Alkoxycarbonyl substituiertes C₇- C₂₀-Arylalkyl, bevorzugt ein-bis dreifach durch C₂- bis C₄-Alkoxycarbonyl substituiertes C₇- bis C₁₂-Phenylalkyl, wie 4-Methoxycarbonylbenzyl, 2-Methoxycarbonylbenzyl, 4-Ethoxycarbonylbenzyl und 2-Ethoxycarbonylbenzyl,
 - ein- bis dreifach durch Cyano substituiertes C₇- C₂₀-Arylalkyl, bevorzugt ein- bis dreifach durch Cyano substituiertes C₇- bis C₁₂-Phenylalkyl, wie 2-Cyanobenzyl, 4-Cyanobenzyl, 2-Cyanophenethyl und 4-Cyanophenethyl,
 - durch ein, zwei oder drei Phenylgruppen substituiertes Phenyl, wie 2-(Phenyl)phenyl, 3-(Phenyl)-phenyl, 4-(Phenyl)-phenyl und 3,4-(Diphenyl)-phenyl,
 - durch ein, zwei oder drei Phenoxygruppen substituiertes Phenyl, wie 4-Phenoxyphenyl und 2-Phenoxyphenyl,
 - durch Halogen und C₁- bis C₄-Alkyl zwei- oder dreifach substituiertes Phenyl, wie 2-Methyl-4-chlorphenyl und 3-Methyl-4-fluorphenyl,
 - durch Halogen und C₁- bis C₄-Alkoxy zwei- oder dreifach substituiertes Phenyl, wie 3-Chlor-4methoxyphenyl,
- durch Halogen und C₁- bis C₄-Halogenalkyl zwei- oder dreifach substituiertes Phenyl, wie 2-Chlor-4trifluormethylphenyl,
 - durch Halogen und Phenoxy zwei- oder dreifach substituiertes Phenyl, wie 3-Chlor-4-phenoxyphenyl,
 - durch C₁- bis C₄-Alkyl und C₁- bis C₄-Alkoxy zwei- oder dreifach substituiertes Phenyl, wie 2-Methyl-4-methoxyphenyl,
- durch C₁- bis C₄-Alkyl und C₁- bis C₄-Halogenalkyl zwei- oder dreifach substituiertes Phenyl, wie 3-Methyl-4-trichlormethylphenyl,
 - durch C₁- bis C₄-Alkyl und Phenoxy zwei-oder dreifach substituiertes Phenyl, wie 2-Methyl-4phenoxyphenyl,
 - durch C₁- bis C₄-Alkoxy und C₁- bis C₄-Halogenalkyl zwei- oder dreifach substituiertes Phenyl, wie 3-Trifluormethyl-4-methoxyphenyl,
 - durch C₁ bis C₄-Alkoxy und Phenoxy zwei-oder dreifach substituiertes Phenyl, wie 3-Methoxy-4phenoxyphenyl,
 - durch C₁- bis C₄-Halogenalkyl und Phenoxy zwei-oder dreifach substituiertes Phenyl, wie 3-Trifluormethyl-4-phenoxyphenyl,
- durch Halogen, C₁- bis C₄-Alkyl und C₁-bis C₄-Alkoxy dreifach substituiertes Phenyl, wie 2-Chlor-3-tert.-butyl-4-methoxyphenyl,
 - durch Halogen, C₁- bis C₄-Alkyl und C₁-bis C₄-Halogenalkyl dreifach substituiertes Phenyl, wie 2-Methyl-3-chlor-4-trifluormethylphenyl,
 - durch Halogen, C₁- bis C₄-Alkyl und Phenoxy dreifach substituiertes Phenyl, wie 4-Chlor-2-ethyl-3-phenoxyphenyl,
 - durch Halogen, C₁- bis C₄-Alkoxy und C₁-bis C₄-Halogenalkyl dreifach substituiertes Phenyl, wie 3-Chlor-4-methoxy-3-trifluormethylphenyl,
 - durch Halogen, C₁- bis C₄-Alkoxy und Phenoxy dreifach substituiertes Phenyl, wie 2-Fluor-4-ethoxy-3phenoxyphenyl.
- durch Halogen, C₁- bis C₄-Halogenalkyl und Phenoxy dreifach substituiertes Phenyl, wie 4-Fluor-3trifluormethyl-2-phenoxyphenyl,
 - durch C₁- bis C₄-Alkyl, C₁- bis C₄-Alkoxy und C₁- bis C₄-Halogenalkyl dreifach substituiertes Phenyl, wie 4-Methyl-3-methoxy-2-trichlormethylphenyl,
 - durch C₁- bis C₄-Alkyl, C₁- bis C₄-Alkoxy und Phenoxy dreifach substituiertes Phenyl, wie 4-Methyl-3-ethoxy-2-phenoxyphenyl,
 - durch C₁- bis C₄-Alkyl, C₁- bis C₄-Halogenalkyl und Phenoxy dreifach substituiertes Phenyl, wie 2-Methyl-4-trifluormethyl-3-phenoxyphenyl,
 - durch C₁- bis C₄-Alkoxy, C₁- bis C₄-Halogenalkyl und Phenoxy dreifach substituiertes Phenyl, wie 4-

10

15

20

35

45

Methoxy-2-trichlormethyl-3-phenoxyphenyl,

R1 und R2 oder R2 und R3 gemeinsam

- (CH₂)n, wie CH₂, (CH₂)₂, (CH₂)₃, (CH₂)₄, (CH₂)₅ und (CH₂)₆, bevorzugt (CH₂)₃, (CH₂)₄, (CH₂)₅, (CH₂)₆, besonders bevorzugt (CH₂)₃ und (CH₂)₄,
- (CH = CH)m, wie (CH = CH), (CH = CH)₂, (CH = CH)₃, bevorzugt (CH = CH)₂, (CH = CH)₃ besonders
 n
- 1 bis 6, vorzugsweise 3 bis 6, besonders bevorzugt 3 und 4, m
- 10 1 bis 3, vorzugsweise 2 und 3, besonders bevorzugt 2.
 R3'
 - Wasserstoff

5

25

30

35

40

50

55

45 R4"

- unverzweigtes oder verzweigtes C₁- bis C₂₀-Alkyl, vorzugsweise C₁- bis C₁₂-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, tert.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Octyl, n-Nonyl, iso-Nonyl, n-Decyl, iso-Decyl, n-Undecyl, iso-Undecyl, n-Dodecyl und iso-Dodecyl, besonders bevorzugt unverzweigtes oder verzweigtes C₁- bis C₈-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, tert.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Octyl,
- unverzweigtes oder verzweigtes C₂- bis C₂₀-Alkenyl, vorzugsweise unverzweigtes oder verzweigtes C₂- bis C₈-Alkenyl, wie Vinyl, Allyl, Buten-1-yl, Buten-2-yl, Buten-3-yl, Penten-1-yl, Penten-2-yl, Penten-3-yl, Penten-4-yl, Hexen-2-yl, Hexen-3-yl und Hexen-4-yl,
 - unverzweigtes oder verzweigtes C_2 bis C_{20} -Alkin-yl, vorzugsweise unverzweigtes oder verzweigtes C_2 bis C_8 -Alkinyl, wie Ethinyl, 1-Propin-3-yl, 1-Butin-3-yl, 1-Pentin-3-yl, 1-Hexin-5-yl, 1-Heptin-6-yl und 1-Octin-7-yl,
 - unverzweigtes oder verzweigtes C₂- bis C₂₀-Alkoxyalkyl, bevorzugt unverzweigtes oder verzweigtes C₂- bis C₃-Alkoxyalkyl, wie Methoxymethyl, Ethoxymethyl, n-Propoxymethyl, iso-Propoxymethyl, n-Butoxymethyl, iso-Butoxymethyl, sec.-Butoxymethyl, tert.-Butoxymethyl, n-Pentoxymethyl, iso-Pentoxymethyl, sec.-Pentoxymethyl, neo-Pentoxymethyl, 1,2-Dimethylpropoxymethyl, n-Hexoxymethyl, iso-Hexoxymethyl, sec.-Hexoxymethyl, n-Heptoxymethyl, iso-Heptoxymethyl, Methoxy-1-ethyl, Ethoxy-1-ethyl, n-Propoxy-1-ethyl, iso-Propoxy-1-ethyl, iso-Butoxy-1-ethyl, sec.-Pentoxyl-ethyl, tert.-Pentoxy-1-ethyl, neo-Pentoxy-1-ethyl, n-Pentoxy-1-ethyl, n-Hexoxy-1-ethyl, iso-Hexoxyl-ethyl, iso-Hexoxyl-ethyl, sec.-Hexoxy-1-ethyl, methoxy-2-ethyl, n-Propoxy-2-ethyl, n-Propoxy-2-ethyl, iso-Butoxy-2-ethyl, sec.-Butoxy-2-ethyl, tert.-Butoxy-2-ethyl, n-Pentoxy-2-ethyl, iso-Pentoxy-2-ethyl, 1,2-Dimethyl-iso-Pentoxy-2-ethyl, 1,2-Dimethyl-iso-Pent
 - propoxy-2-ethyl, n-Hexoxy-2-ethyl, iso-Hexoxy-2-ethyl und sec.-Hexoxy-2-ethyl,
 unverzweigtes oder verzweigtes C₄- bis C₂₀-Alkenyloxyalkyl, bevorzugt unverzweigtes oder verzweigtes C₄- bis C₈-Alkenyloxyalkyl, wie Allyloxymethyl, Allyloxy-1-ethyl, Allyloxy-2-ethyl, Allyloxy-1-propyl und Allyloxy-2-propyl,
 - C₃- bis C₁₂-Cycloalkyl, bevorzugt C₃- bis C₈-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohexyl, Cyclohexyl,
 - C₄- bis C₂₀-Cycloalkyl-alkyl, bevorzugt C₄- bis C₈-Cycloalkylalkyl, wie Cyclopentyl-methyl, 2-Cyclopentyl-ethyl, 1-Cyclopentyl-ethyl, Cyclohexyl-methyl, 1-Cyclohexylethyl, und 2-Cyclohexylethyl,
 - C₁- bis C₈-Alkyl, vorzugsweise unverzweigtes C₁- bis C₈-Alkyl wie Methyl, Ethyl, Propyl, Butyl, n-Pentyl, n-Hexyl, n-Heptyl oder n-Octyl, besonders bevorzugt unverzweigtes C₁- bis C₄-Alkyl wie Statistics.
 - R⁵',R⁶',R⁷',R⁸',R⁹'
 - unabhängig voneinander
 - Wasserstoff
 - C₁- bis C₈-Alkyl, bevorzugt C₁- bis C₄-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl oder tert.-Butyl, besonders bevorzugt Methyl oder Ethyl.
 - C₁- bis C₈-Alkoxy, bevorzugt C₁- bis C₄-Alkoxy wie Methoxy, Ethoxy, n-Propoxy, iso-Propoxy, n-Butoxy, iso-Butoxy, sec.-Butoxy oder tert.-Butoxy, besonders bevorzugt Methoxy oder Ethoxy,
 - C₂- bis C₈-Alkenyl, bevorzugt C₂- bis C₄-Alkenyl wie Vinyl, Allyl, 3-Buten-1-yl, 2-Buten-1-yl und 1-Buten-1-yl,
 - C₃- bis C₃-Alkenyloxy, bevorzugt C₃- bis C₅-Alkenyloxy wie Allyloxy, Buten-1-yloxy, Buten-2-yloxy,

Buten-3-yloxy, Penten-1-yloxy, Penten-2-yloxy, Penten-3-yloxy, Penten-4-yloxy, Hexen-1-yloxy und Hexen-2-yloxy,

- C2- bis C8-Alkinyl, bevorzugt C2- bis C4-Alkinyl wie Ethinyl, 2-Propin-1-yl und 3-Butin-1-yl,
- C₃- bis C₈-Alkinyloxy, bevorzugt C₃-bis C₄-Alkinyloxy wie Propinyloxy und Butinyloxy,
- Halogen wie Fluor, Chlor, Brom oder lod, b vorzugt Fluor, Chlor und Brom,
- Cyano,
- Phenyl,
- Phenoxy,
- Halogenphenyl, bevorzugt Chlorphenyl wie 2-Chlorphenyl und 4-Chlorphenyl,
- Halogenphenoxy, bevorzugt Chlorphenoxy wie 2-Chlorphenoxy und 4-Chlorphenoxy, 10
 - Carboxy,

15

20

30

- C2- bis C8-Alkoxycarbonyl, bevorzugt C2-bis C4-Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, n-Butoxycarbonyl, Isobutoxycarbonyl und tert.-Butoxycar-
- C₃- bis C₈-Alkenyloxycarbonyl, bevorzugt C₃-bis C₆-Alkenyloxycarbonyl wie Allyloxycarbonyl, Buten-1-yloxycarbonyl, Penten-1-yloxycarbonyl und Hexen1-yloxycarbonyl,
 - C₃- bis C₈-Alkinyloxycarbonyl, bevorzugt C₃-bis C₅-Alkinyloxycarbonyl wie Propinyloxycarbonyl und Butinvloxycarbonyl,

R5' und R6' oder R6' und R7' gemeinsam

- (CH₂)n, wie CH₂, (CH₂)₂, (CH₂)₃, (CH₂)₄, (CH₂)₅ und (CH₂)₆, bevorzugt (CH₂)₃, (CH₂)₄, (CH₂)₅, (CH₂)₇ 6, besonders bevorzugt (CH2)3 und (CH2)4,
- (CH=CH)m, wie (CH=CH), (CH=CH)₂, (CH=CH)₃, bevorzugt (CH=CH)₂, (CH=CH)₃ besonders bevorzugt (CH = CH)2,
- 1 bis 10, vorzugsweise 3 bis 6, besonders bevorzugt 3 und 4, 25
 - 1 bis 3, vorzugsweise 2 und 3, besonders bevorzugt 2.

Alle Reste R5 bis R9 können ungleich Wasserstoff sein, bevorzugt sind 0 bis 3 ungleich Wasserstoff, besonders bevorzugt sind 0 bis 2 ungleich Wasserstoff.

Ein- bis dreifach substituiert bedeutet ein-, zwei- oder dreifach substituiert.

Um eine für die Elektrolyse ausreichende Leitfähigkeit des Elektrolyten zu gewährleisten, wird der Elektrolysemischung ein vorzugsweise halogenhaltiger Hilfselektrolyt zugefügt. Als Hilfselektrolyte kommen beispielsweise elementares Halogen, Alkylhalogenid und Halogenwasserstoff, bevorzugt werden Jodide oder Bromide eingesetzt, wie Ammoniumhalogenide, z.B. Ammoniumbromid, Ammoniumiodid und Tetrabutylammoniumiodid und besonders bevorzugt Metallhalogenide wie Natriumbromid, Natriumiodid, Kaliumiodid und Kaljumbromid, in Betracht.

Die Zusammensetzung des Elektrolyten kann in weiten Grenzen gewählt werden. Der Elektrolyt enthält im allgemeinen 0 bis 5 Gew.-% Wasser. Die Elektrolyten können beispielsweise folgende Zusammensetzungen haben:

1 bis 49, vorzugsweise 5 bis 30 Gew.-% Keton der Formel II 50 bis 98,9, vorzugsweise 70 bis 95 Gew.-% Alkanol R2-OH

0,1 bis 5, vorzugsweise 0,5 bis 3 Gew.-% Hilfselektrolyt und

0,1 bis 5, vorzugsweise 0,5 bis 3 Gew.-% Wasser.

Vorzugsweise nimmt man die elektrochemische Oxidation bei Stromdichten von 0,5 bis 25 A/dm² und bei Temperaturen von (-20) bis 60°C, insbesondere 0 bis 40°C vor. Höhere Temperaturen sind möglich, bringen aber im allgemeinen keine Vorteile. Die Reaktion kann bei vermindertem oder erhöhtem, vorzugsweise jedoch bei Normaldruck (Atmosphärendruck) und in an sich üblichen Elektrolysezellen durchgeführt werden. Vorzugsweise arbeitet man mit ungeteilten Durchflußzellen.

Als Anodenmaterialien eignen sich beispielsweise Edelmetalle wie Platin oder Oxide wie Rutheniumund Chromoxid oder RuO_xTiO_x-Mischoxide und bevorzugt Graphit.

Als Kathodenmaterialien kommen in der Regel Eisen, Stahl, Nickel und Edelmetalle wie Platin und bevorzugt Graphit in Betracht.

Die Aufarbeitung erfolgt in an sich bekannter Weise, vorzugsweise werden die erfindungsgemäßen Verbindungen I destillativ aufgearbeitet.

Bevorzugte Verbindungen I sind nachfolgend tabellarisch aufgeführt:

8

	R1	R 2	R 3	R4
5	Methy l	4-Methoxyphenyl	••	M- 11 . 1
J	Methy l	2-Methoxyphenyl	H H	Methyl Methyl
	2-Methoxyphenyl	Methyl	н	Methyl
	Pheny l	Propyl	н	Methyl
10	Methyl	2-Fluorphenyl	н	Methyl
	Methy l	2-Methyl-buten-2-yl	н	Methy1
	2,5-Dimethyl-hexen-2-yl	н	Н	Methyl
	Dimethoxymethyl	H	н	Methyl
15	tertButyl	н	н	Methyl
	tertButyl	4-Fluorphenyl	н	Methyl
	Methy l	4-Fluorphenyl	н	Methyl

Die Hydroxymethylarylketale I unf VI stellen wichtige Vorprodukte für Hyroxyphenone dar und können zu Pflanzenschutzmitteln, Photoinitiatoren, Riechstoffen und pharmazeutischen Produkten umgesetzt werden.

25 Beispiele 1 bis 8

Die Ausgangsverbindungen II wurden in einer ungeteilten Zelle mit II bipolaren Elektroden in einem Elektrolyten, der 45 g Kaliumjodid als Hilfselektrolyt enthielt, einer Elektrolyse unterworfen. Anode wie Kathode bestanden aus Graphit. Die Stromdichte betrug 3,3 A/dm² und die Elektrolysetemperatur 25°C. Der Elektrolyt wurde mit einem Durchfluß von 200 l/h durch die Zelle gepumpt. Die genaue Zusammensetzung des Elektrolyten wie auch weitere Einzelheiten der Beispiele 1 bis 4 und der Versuche 5 bis 8, die zum Vergleich ohne Zusatz von Wasser durchgeführt wurden, sind in Tabelle A zusammengestellt.

35

20

40

45

50

5	Selektivität [%]	52	30
10	Ausbeute	83 48 48 48	57 34 41,5 28
15 20	Ladungsmenge	2,4 4, 2,5 3	3,24 2
20	7	191 15 12, 5 15	1 1 1 1
25	Methanol/ W Menge [g] M	2490 2292, 5 2640 2565	2505 2295 2655 2505
35		anon/150 taldehyd/300	wasser 50 -butanon/160 -acetaldehyd/300 50
40 45	verbindung II/ Menge [g]	Cyclohexanon/450 3,3-Dimethyl-2-butanon/150 4-Fluor-phenyl-acetaldehyd/300 Propiophenon/300	versuche ohne Zusatz von Wasser 5 Cyclohexanon/450 6 3,3-Dimethyl-2-butanon/160 7 4-Fluor-phenyl-acetaldehyd, 8 Propiophenon/450
50	Tabelle A Beispiel		versuche o 5 6 7 8

55 Beispiele 9 bis 13

Die Ausgangsverbindungen II' wurden in einer ungeteilten Zelle mit 11 bipolaren Elektroden in einem Elektrolyten, der 45 g Kaliumiodid als Hilfselektrolyten enthielt, einer Elektrolyse unterworfen. Anode wie

auch Kathode bestanden aus Graphit. Die Stromdichte betrug 3,3 A/dm² und die Elektrolysetemperatur 25°C. Der Elektrolyt wurde mit einem Durchfluß von 200 l/h durch die Zelle gepumpt. Die genaue Zusammensetzung des Elektrolyten wie auch weitere Einzelheiten der Beispiele sind in Tabelle B zusammengestellt:

10		Selektivität	[%]	52	72	37	26	53
15		Ausbeute	[%]	87	89	30	55	53
20		Ladungsmenge	[F/mol]	٣	4,5	٣	10	3,5
25		Wasser- Li gehalt	Menge [g]	06	t	1	15	15
<i>30 35</i>		Alkanol/ Menge [g]		MeOH/2565	MeOH/2505	MeOH/2505	MeOH/2640	MeOH/2690
40							1/300	/250
45		ung II'/ al		henon/300	henon/450	Valerophenon/450	p-Methoxypropiophenon/300	p-Methylpropiophenon/250
50	83	Beispiel Verbindung		Propiophenon	Butyrop	Valerop	D-Metho	p-Methy
55	Tabelle B	Beispiel		თ	10		12	13

Patentansprüche

5

10

15

20

25

30

40

55

 Verfahren zur Herstellung von α-Hydroxymethylacetalen und α-Hydroxymethylketalen der allgemeinen Formel I

in der die Substituenten

R1, R2, R3

unabhängig voneinander Wasserstoff, C_1 - bis C_{20} -Alkyl, C_2 - bis C_{20} -Alkenyl, C_2 - bis C_{20} -Alkinyl, C_3 - bis C_{12} -Cycloalkyl, C_4 - bis C_{20} -Cycloalkyl-alkyl, C_1 - bis C_{20} -Hydroxyalkyl, gegebenenfalls durch C_1 - bis C_8 -Alkyl, C_1 - bis C_8 -Alkoxy, Halogen, C_1 - bis C_4 -Halogenalkyl, C_1 - bis C_4 -Halogenalkoxy, Phenyl, Phenoxy, Halogenphenyl, Halogenphenoxy, Carboxy, C_2 - bis C_8 - Alkoxycarbonyl oder Cyano substituiertes Aryl oder C_7 - bis C_2 0-Arylalkyl, oder C_1 - bis C_2 0-Arylalkyl, oder C_1 - bis C_3 0-Alkoxy und/oder Halogen ein- bis zweifach substituierte (C_1 1- bis C_3 1-Alkyl, C_1 1- bis C_3 1-Alkoxy und/oder Halogen ein- bis zweifach substituierte (C_1 2- C_1 2- oder (C_1 3- C_2 4- C_1 3- oder (C_1 4- C_2 4- C_1 5- C_2 5- oder C_3 5- oder (C_1 5- C_3 5- oder C_3 5- oder C_3 6- oder C_3 6- oder C_3 6- oder C_3 7- oder (C_1 5- C_3 5- oder C_3 6- oder C_3 6- oder C_3 6- oder C_3 6- oder C_3 7- oder (C_1 5- C_3 6- oder C_3 6- oder C_3 6- oder C_3 6- oder C_3 7- oder C_3 8- oder C_3 8-

R⁴ C₁- bis C₈-Alkyl bedeuten, dadurch gekennzeichnet, daß man eine Carbonylverbindung der allgemeinen Formel II

O | R2 | R1 | C | R3 | (II),

in der R¹, R² und R³ die obengenannte Bedeutung haben, mit einem Alkanol der allgemeinen Formel III R⁴-OH (III),

in der R⁴ die obengenannte Bedeutung hat, in Gegenwart eines Hilfselektrolyten und 0,1 bis 5 Gew.% Wasser elektrochemisch oxidiert.

2. Verfahren zur Herstellung von α -Hydroxymethylarylketalen der allgemeinen Formel I

R6' R4' R4'

R6' CH-R3' (I'),

R7' R8' OH

in der die Substituenten

 R^{3}

Wasserstoff, C₁- bis C₂₀-Alkyl, C₂- bis C₂₀-Alkenyl, C₂- bis C₂₀-Alkinyl, C₂bis C₂₀-Alkovyalkyl, C₂- bis C₂₀-Alkenylovyalkyl, C₂- bis C₂₀-Cycloalkyl, cdor

bis C₂₀-Alkoxyalkyl, C₄- bis C₂₀-Alkenyloxyalkyl, C₃- bis C₁₂-Cycloalkyl oder

C₄- bis C₂₀-Cycloalkyl-alkyl,

R^{4'} C₁- bis C₈-Alkyl und

R⁵',R⁶',R⁷',R⁸',R⁹

unabhängig voneinander Wasserstoff, C_1 - bis C_8 -Alkyl, C_1 - bis C_8 -Alkoxy, C_2 - bis C_8 -Alkenyl, C_3 -bis C_8 -Alkenyloxy, C_2 - bis C_8 -Alkinyloxy, Halogen, Cyano, Phenyl, Phenoxy, Halogenphenyl, Halogenphenoxy, Carboxy, C_2 - bis C_8 -Alkoxycarbonyl, C_3 - bis C_8 -Alkenyloxycarbonyl, C_3 - bis C_8 -Alkinyloxycarbonyl oder R^5 und R^6 oder R^6 und R^7 gemeinsam eine gegebenenfalls durch C_1 - bis C_8 -Alkyl, C_1 - bis C_8 -Alkoxy und/oder Halogen ein- bis zweifach substituierte $(CH_2)_n$ '- oder $(CH = CH)_m$ '-Gruppe, in der n' für 1 bis 10 und m' für 1 bis 3 steht,

dadurch gekennzeichnet, daß man ein Arylmethylketon der allgemeinen Formel II'

10

15

5

in der R3 die oben genannten Bedeutungen haben, mit einem Alkanol der allgemeinen Formel III'

R4'-OH (III'),

in der R⁴ die oben genannten Bedeutungen hat, in Gegenwart eines Hilfselektrolyten und 0,1 bis 5 Gew.-% Wasser elektrochemisch oxidiert.

25

35

40

20

- Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man die Umsetzung in Gegenwart eines Hilfselektrolyten und 0,1 bis 5 Gew.-% Wasser durchführt.
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man für die elektrochemische Oxidation einen Elektrolyten der Zusammensetzung

1 bis 49 Gew.% Carbonylverbindung der Formel II, 50 bis 98,9 Gew.% eines Alkanols der Formel III, 0,1 bis 5 Gew.% eines Hilfselektrolyten und 0,1 bis 5 Gew.% Wasser

verwendet.

- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die elektrochemische Oxidation an Graphitelektroden durchführt.
- 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die elektrochemische Oxidation bei Temperaturen von (-20) bis 60°C und bei Stromdichten von 0,5 bis 25 A/dm² durchführt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Hilfselektrolyte Jodide oder Bromide einsetzt.

50

Europäisches Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 91 10 8248

	EINSCHLÄGI	GE DOKUMENTE			·
Kategorie	Kennzeichnung des Dokuments der maßge	mit Angabe, soweit erforderlich, blichen Telle	Betr Ansp	rifft ruch	KLASSIFIKATION DER ANMELDUNG (Int. CI.5)
×	ZEITSCHRIFT FÜR NATURF 31B, Nr. 2, 1976, Seiten 175- "Elektrochemische Synthese Hydroxylierung von Isobutyra * Das ganze Dokument *	177; B.F. BECKER et al.: n, V. Die anodische alpha-	1,4,5	,6	C 25 B 3/02
P,A	TETRAHEDRON, Band 47, N 895-905, Pergamon Press plo "Electrochemical oxidation of presence of alkali metal brom * Das ganze Dokument *	e; G.I. NIKISHIN et al.: ketones in methenol in the			
					RECHERCHIERTE SACHGEBIETE (Int. Cl.5)
					C 25 B 3
	Der vorliegende Recherchenbericht wur	de für alle Patentansprüche erstellt			
	Recherchenort	Abschlußdatum der Reche	<u> </u>		Prüfer
	Den Haag	13 September 9	1		GROSEILLER PH.A.
A C	KATEGORIE DER GENANNTEN I : von besonderer Bedeutung allein b : von besonderer Bedeutung in Verb anderen Veröffentlichung derselber : technologischer Hintergrund : nichtschriftliche Offenbarung : Zwischenilteratur : der Erfindung zugrunde liegende Th	DOKUMENTE etrachtet ndung mit einer n Kategorie	E: älteres Pat nach dem D: in der Anm L: aus andere &: Mitglied de	Anmelded eldung an en Gründe er gleiche	nent, das jedoch erst am oder Jatum veröffentlicht worden ist ngeführtes Dokument en angeführtes Dokument en Patentfamilie,

T: der Erfindung zugrunde liegende Theorien oder Grundsätze