2. Klausur zu Analysis 1 für Ingenieure und Informatiker

Gesamtpunktzahl: 110 Punkte Hinreichende Punktzahl zum Bestehen der Klausur: 45 Punkte

- 1. Es seien $n \in \mathbb{N}$ und $x \in \mathbb{R} \setminus \{-1, 1\}$. Bestimme, falls existent, folgende Grenzwerte.
 - a) $\lim_{n \to \infty} \left(1 + \frac{1}{3n} \right)^{2n}$,
 - b) $\lim_{x\to 0} (\log(x)\log(1-x)).$

(4+9 Punkte)

2. Zeige mit Hilfe der Definition der Folgenkonvergenz, dass die Folge $(a_n)_{n\in\mathbb{N}}$ gegeben durch

$$a_n = \frac{2n^2 - 3}{-3n^2 + 2n - 1}, n \in \mathbb{N}$$

konvergiert.

(9 Punkte)

- 3. Untersuche die nachstehenden Reihen auf Konvergenz und absolute Konvergenz.
 - a) $\sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{k+1}{k+2} \right)^2,$
 - b) $\sum_{k=0}^{\infty} \left(\frac{1}{4} + \sqrt{k^2 + k} k \right)^k$.

(5+9 Punkte)

4. Bestimme $a, b \in \mathbb{R}$, sodass

$$f(x) = \begin{cases} \frac{x}{a - \frac{2}{3}}, & \text{für } x > 1\\ bx^3 + 1, & \text{für } x \le 1 \end{cases}$$

stetig in $x_0 = 1$ ist und f(-1) = -1 gilt.

(7 Punkte)

5. Bestimme mit Hilfe der Definition der Differenzierbarkeit die Ableitung der Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto x^{-2}$ im Punkt $x_0 \in \mathbb{R} \setminus \{0\}$.

(5 Punkte)

6. Zeige, dass

$$\arctan(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$$

für alle $x \in (-1, 1)$.

 ${\it Hinweis:}$ Es darf ohne Beweis verwendet werden, dass der Konvergenzradius der Reihe R=1 ist.

(7 Punkte)

- 7. Es sei $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ gegeben durch $f(x) = \frac{4x}{(x+1)^2}$.
 - a) Zeige, dass für alle $n \in \mathbb{N}_0$ und alle $x \in \mathbb{R} \setminus \{1\}$ die n-te Ableitung von f gegeben ist durch

$$f^{(n)}(x) = (-1)^n n! \frac{4(x-n)}{(x+1)^{n+2}}.$$

- b) Stelle eine zu f gehörige Potenzreihe mit dem Entwicklungspunkt $x_0 = 0$ auf.
- c) Bestimme <u>alle</u> $x \in \mathbb{R}$, für welche die Potenzreihe aus Teilaufgabe b) absolut konvergiert.

(10+4+8 Punkte)

- 8. a) Formuliere den ersten Mittelwertsatz der Differentialrechnung.
 - b) Zeige die Ungleichung

$$\log(1+x) \le \frac{x}{\sqrt{1+x}}, \quad \forall x > 0.$$

Hinweis: Betrachte dazu die Hilfsfunktion $f(t) := \log(1+t) - \frac{t}{\sqrt{1+t}}$. Es darf außerdem ohne Beweis verwendet werden, dass $(1+t)^{\frac{1}{2}} \le 1 + \frac{t}{2}$ für $t \ge 0$.

(5+10 Punkte)

- 9. Bestimme folgende bestimmte und unbestimmte Integrale.
 - a) $\int_0^{\frac{\pi}{4}} \sin(x)e^x \, \mathrm{d}x,$
 - b) $\int \frac{dx}{2x^2 + 2x + 5}$.

Hinweis: Die Funktion $f(x) = 2x^2 + 2x + 5$ besitzt keine reellen Nullstellen.

(8+10 Punkte)

Viel Erfolg!