CSDS302 HW6 - Trevor Swan (tcs94)

5.2

3

For each positive integer n, let P(n) be the formula

$$1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

a

Write P(1). Is P(1) true?

The expression given can be written as the following;

$$1^2+2^2+\cdots+n^2=\sum_{i=1}^n i^2=rac{n(n+1)(2n+1)}{6}$$

- Therefore $P(1) = \sum\limits_{i=1}^{1} i^2 = 1 \leftarrow ext{LHS}$
- The expression given evaluated for $P(1) = \frac{1(1+1)(21+1)}{6} = \frac{6}{6} = 1 \leftarrow \text{RHS}$

The two results, or sides of the equation, are equal so P(1) is true.

b

Write P(k)

Generating this expression is as simple as substituting k for n in the given formula.

$$\boxed{1^2+2^2+\cdots+k^2=rac{k(k+1)(2k+1)}{6}}$$

C

Write P(k+1)

Generating this expression involves substituting k+1 in the formula given for every instance of the variable n.

$$1^2 + 2^2 + \dots + (k+1)^2 = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$$

d

In a proof by mathematical induction that the formula holds for every integer $n \ge 1$, what must be shown in the inductive step?

∧ Answer ∨

The inductive step must show that if P(k) is true, then P(k+1) is also true.

This would involve assuming $1^2 + 2^2 + \cdots + k^2 = \frac{k(k+1)(2k+1)}{6}$ is true and then using that statement to prove that $\frac{(k+1)(k+2)(2k+3)}{6}$ is also true. The second statement is P(k+1).

Prove the statement using mathematical induction. Do not derive them from theorem 5.2.1 or theorem 5.2.2.

For every integer $n \ge 1$

$$1+6+11+16+\ldots+(5n-4)=\frac{n(5n-3)}{2}$$

∧ Answer ∨

Step 1:
$$a = 1 \rightarrow P(1) = 1 = \frac{1(5(1)-3)}{2}$$

This expression can be simplified to 1=1 which is true \checkmark

Step 2: Assume P(k) is true

Assume
$$1+6+11+16+\ldots+(5k-4)=\frac{k(5k-3)}{2}$$
 is true

WTS: $1+6+11+16+\ldots+(5(k+1)-4)=\frac{(k+1)(5(k+1)-3)}{2}$?

 $1+6+11+16+\ldots+(5k-4)+(5k+1)=\frac{(k+1)(5k+2)}{2}$

Substitute Assumed: $\frac{k(5k-3)}{2}+(5k+1)=\frac{(k+1)(5k+2)}{2}$

Rewrite: $\frac{k(5k-3)}{2}+\frac{2(5k+1)}{2}=\frac{(k+1)(5k+2)}{2}$

Expand Terms: $\frac{5k^2-3k}{2}+\frac{10k+2}{2}=\frac{(k+1)(5k+2)}{2}$

Simplify: $\frac{5k^2+7k+2}{2}=\frac{(k+1)(5k+2)}{2}$

Because the two sides of the proof are equal, we can say that for every integer $n \geq 1$, $1+6+11+16+\ldots+(5n-4)=\frac{n(5n-3)}{2}$ is true by mathematical induction. \Box

12

Prove the statement using mathematical induction.

$$\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$$
 for every integer $n\geq 1$

∧ Answer ∨

Step 1:
$$a = 1 \rightarrow P(1) = \frac{1}{1 \cdot 2} = \frac{1}{1+1}$$

This expression can be simplified to $\frac{1}{2} = \frac{1}{2}$ which is true \checkmark

Step 2: Assume P(k) is true

This assumption means that $\frac{k}{k+1}$ is true.

RHS:
$$\frac{1}{n(n+1)} = \frac{n}{n+1} \mid_{(k+1)} = \frac{k+1}{(k+1)+1} = \frac{k+1}{k+2}$$
WTS: $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{(k+1)((k+1)+1)} \equiv \frac{k+1}{k+2}$

Below I will refer to $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{(k+1)((k+1)+1)}$ as 'LHS'

LHS =
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(k+1)(k+2)}$$

= $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}$
Use Assumption: = $\frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$
Rewrite: = $\frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)}$
Simplify: = $\frac{k(k+2)+1}{(k+1)(k+2)}$
= $\frac{k^2 + 2k + 1}{(k+1)(k+2)}$
= $\frac{(k+1)^2}{(k+1)(k+2)}$
= $\frac{k+1}{k+2}$

The expression derived above is equivalent to the substitution of k+1 in the statement that is assumed to be true. Because these statements are equal, we can say that

$$\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$$
 for every integer $n\geq 1$ is true through mathematical

induction.

29

Use the formula for the sum of the first n integers and/or the formula for the sum of a geometric sequence to evaluate the sum or to write it in closed form.

 $1-2+2^2-2^3+\ldots+(-1)^n2^n$ where n is any positive integer

∧ Answer ∨

To start we can rewrite the expression in terms of powers of negative two.

$$1-2+2^2-2^3+\ldots+(-1)^n2^n\equiv (-2)^0+(-2)^1+(-2)^2+(-2)^3+\cdots+(-2)^2$$

Therefore we can derive the following conclusion:

$$1 - 2 + 2^{2} - 2^{3} + \dots + (-1)^{n} 2^{n} = (-2)^{0} + (-2)^{1} + (-2)^{2} + (-2)^{3} + \dots + (-2)^{2}$$

$$= \sum_{i=0}^{n} (-2)^{n}$$

$$Theorem 5.2.3: \sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}$$

$$\therefore = \frac{(-2)^{n+1} - 1}{(-2) - 1}$$

$$= \frac{(-1)^{n+1} 2^{n+1} - 1}{-3} \quad \leftarrow \text{Exponent Rules}$$

$$= \frac{1 - (-1)^{n+1} 2^{n+1}}{3} \quad \leftarrow \text{Simplify Negatives}$$

 \therefore The sum of the given formula is $\boxed{\frac{1-(-1)^{n+1}2^{n+1}}{3}}$

$$\left[rac{1-(-1)^{n+1}2^{n+1}}{3}
ight]$$

5.3

4

For each positive integer n, let P(n) be the sentence that describes the following divisibility property:

 $5^n - 1$ is divisible by 4.

a

Write P(0). Is P(0) true?

$$P(0) = 5^0 - 1 = 1 - 1 = 0$$

0 is divisible by any integer, and the conclusion can be written as:

4|0. Therefore the given statement evaluated at 0, P(0) is true.

b

Write P(k)

This statement can be derived by substituting k in for n

$$P(k) = 5^k - 1$$
 is divisble by 4

c

Write P(k+1)

This statement can be derived by substituting (k + 1) in for n

$$P(k) = 5^{k+1} - 1$$
 is divisble by 4

d

In a proof by mathematical induction that this divisibility property holds for every integer $n \ge 0$, what must be shown in the inductive step?

The inductive step must show that P(k+1) is true based on the assumption that P(k) is true.

7

For each positive integer n, let P(n) be the sentence

In any round-robin tournament involving n teams, the teams can be labeled $T_1, T_2, T_3, \ldots, T_n$, so that T_i beats T_{i+1} for every $i = 1, 2, \ldots, n$.

a

Write P(2). Is P(2) true?

In any round-robin tournament involving 2 teams, the teams can be labeled T_1, T_2 , so that T_2 beats T_3 .

b

Write P(k).

∧ Answer ∨

In any round-robin tournament involving k teams, the teams can be labeled $T_1, T_2, T_3, \ldots, T_k$, so that T_k beats T_{k+1} for every $i=1,2,\ldots,k$.

\mathbf{c}

Write P(k+1)

In any round-robin tournament involving k+1 teams, the teams can be labeled $T_1, T_2, T_3, \ldots, T_{k+1}$, so that T_{k+1} beats T_{k+2} for $i = 1, 2, \ldots, k+1$.

d

In a proof by mathematical induction that P(n) is true for each integer $n \ge 2$, what must be shown in the inductive step?

Answer ∨

To prove this using mathematical induction, we would have to show that in any round-robin tournament involving k+1 teams, the teams can be labeled $T_1, T_2, T_3, \ldots, T_{k+1}$, so that T_{k+1} beats T_{k+2} for $i=1,2,\ldots,k+1$. This would have to be proved for all integers k such that $k\geq 2$, in any round-robin tournament involving k teams, the teams can be labeled T_1,T_2,T_3,\ldots,T_k , so that T_k beats T_{k+1} for every $i=1,2,\ldots,k$.

15

Prove the statement by mathematical induction

 $n(n^2+5)$ is divisible by 6, for each integer $n\geq 0$

∧ Answer ∨

Step 1:
$$a = 0 \rightarrow 6|0(0^2 + 5) = 6|0$$

0 is divisible by any number, so 6|0 is true.

Step 2: Assume P(k) is true.

This means $P(k) = 6 \mid k(k^2 + 5)$ is true.

By the definition of divisibility, this means there exists an integer m such that $k(k^2 + 5) = 6m$. We will assume the previous expression is true.

WTS:
$$(k+1)((k+1)^2 + 5) = 6m$$
 for some integer m

$$(k+1)((k+1)^2+5) = (k+1)(k^2+2k+1+5)$$
 $= (k+1)(k^2+2k+6)$ Combine Terms
 $= k^3+2k^2+6k+k^2+2k+6$ Distribute
 $= k^3+3k^2+8k+6$ Combine Terms
 $= k^3+5k+3k^2+3k+6$ Break up Terms
 $= k(k^2+5)+3k^2+3k+6$ Split first terms
 $= 6m+3k^2+3k+6$ Substitute Given
 $= 6m+3k(k+1)+6$ Break up Terms
 $\star_1 = 6m+3(2l)+6$ Break up Terms
 $\star_1 = 6m+6l+6$ Multiply
 $= 6(m+l+6)$ Factor out 6

 $\star_1: k \text{ and } k+1 \text{are consecutive so one must be even with a product } 2l$

6(m+l+1) is divisibe by 6 because m+l+1 is an integer so $6|6(m+l+1) \to 6(m+l+1) = 6q$ where q=m+l+1, an integer. This is done through the definition of divisibility, proving that P(k+1) is divisible by 6.

Therefore, through mathematical induction, we can say that $n(n^2 + 5)$ is divisible by 6 for each integer $n \ge 0$.

5.4

10

The introductory example solved with ordinary mathematical induction in Section 5.3 can also be solved using strong mathematical induction. Let P(n) be "any n¢ can be obtained using a combination of 3ϕ and 5ϕ coins." Use strong mathematical induction to prove that P(n) is true for every integer $n \ge 8$.

Step 1: Basis Step

Show P(14), P(15), and , P(16) are true

P(14): 14 = 3a + 5b	True when $a=3,b=1$	\checkmark
P(15):15=3a+5b	True when $a=0,b=5$	\checkmark
P(16):16=3a+5b	Truw when $a=2,b=2$	\checkmark

Step 2: Inductive Step

Show that for every integer $k \ge 16$, if P(i) is true for each integer from 16 through k, then P(k+1) is also true.

Inductive Hypothesis: Any $i \not\in can$ be obtained using a combination of $3 \not\in can$ and $5 \not\in can$ for all integers $i \ge 16$.

P(k+1): We must show that any $(k+1)\phi$ can be obtained using a combination of 3ϕ and 5ϕ coins.

Since $k \ge 16$, $k-2 \ge 14$ and P(14) is true from earlier. This means P(k-2) is true from the basis step. This means there are two positive integers a and b where 5a+3b=k-2 is true.

We want to prove k + 1 is true, so we will add 3 to each side of the equation.

$$5a+3b=k-2$$
 True $5a+3b+3=k-2+3$ Add 3 to each side $5a+3(b+1)=k+1$ Combine terms $5a+3c=k+1$ For some integer c

Becuase b is an integer, b+1 is also an integer. This means that $(k+1)\phi$ can be written as a sum of 5ϕ and 3ϕ coins. By strong mathematical induction, we can thus say that "Any $n\phi$ can be obtained using a combination of 3ϕ and 5ϕ coins."

13

Use strong mathematical induction to prove the existence part of the unique factorization of integers theorem (Theorem 4.4.5). In other words, prove that every integer greater than 1 is either a prime number or a product of prime numbers.

Step 1: Basis Step

Show that P(2) is true:

2 is either prime or a product of prime numbers.

P(2): n=2; 2 is prime so the given sentence is true.

Step 2: Inductive Step

Show that for every integer $k \geq 2$, if P(i) is true for each integer from 2 through k, then P(k+1) is also true.

Inductive Hypothesis: Any integer i is either prime or a product of prime numbers if $2 \le i \le k$.

P(k+1): We must show that any integer k+1 is either prime or a product of prime numbers.

Case 1: k + 1 is prime

k+1 is prime in this case so the given property holds true.

Case 2: k + 1 is not prime

k+1 is not prime, so it is composite. Composite numbers can be writen as $k+1=a\cdot b$, for 1< a,b< k+1 by definition.

 $a ext{ or } b \neq 1 ext{ because } k+1 ext{ is not a prime number in this case.}$

We will assume the inductive hypothesis is true, so a and b can be written as a product of prime numbers as follows:

$$a = (p_1 \cdot p_2 \cdot p_3 \dots p_i) \ b = (q_1 \cdot q_2 \cdot q_3 \dots q_j)$$

For some integers i, j and primes p_i, q_j .

Therefore $k+1=a\cdot b=(p_1\cdot p_2\cdot p_3\dots p_i)\cdot (q_1\cdot q_2\cdot q_3\dots q_j)$ is also a product of prime numbers. By strong mathematical induction, we can say that every integer greater than 1 is either a prime number or a product of prime numbers.

16

Use strong mathematical induction to prove that for every integer $n \ge 2$, if n is even, then any sum of n odd integers is even, and if n is odd, then any sum of n odd integers is odd.

Step 1: Basis Step

Show that the statement is true for P(2), and P(3).

For integers q, r, s and the definition of even and odd:

$$P(2): (2q+1)+(2r+1)=2q+2r+2=2(q+r+1)$$
 Even $P(3): (2q+1)+(2r+1)+(2s+1)=2q+2r+2s+2+1$ $=2(q+r+s+1)+1$ Odd

These two cases show that the statement holds true here.

Step 2: Inductive Step

Show that for every integer $k \geq 2$, if P(i) is true for each integer from 2 through k, then P(k+1) is also true.

Inductive Hypothesis: For every integer $i \ge 2$, if i is even, then any sum of i odd integers is even, and if i is odd, then any sum of i odd integers is odd.

P(k+1): We must show that the statement is true for some integer k+1

Case 1: k + 1 is even

We can set up a summation to represent the sum of k + 1 odd integers.

Becasue k + 1 is even, we can define an integer n where 2n = k + 1 by the definition of an even number.

$$\sum_{i=1}^{2n} (2i+1) = (2\cdot 1 + 1) + (2\cdot 2 + 1) + \dots + (2(2n) + 1)$$
 $= 2(1+2+3+\dots+2n) + 2n$
 $= 2(1+2+3+\dots+i) + 2n$ Let $i = 2n$

Because i is even, we can use the inductive hypothesis to say that the first i odd integers is sum is even.

$$2(1+2+3+\cdots+i)+i=2a+i$$

This is true for some integer a. The sum of even integers is even, so we can say that the sum of an even number of odd integers is even.

Case 2: k+1 is odd

We can set up a summation to represent the sum of k+1 odd integers. Because k+1 is odd, we can define an integer m where 2m+1=k+1 by the definition of an odd number.

$$\sum_{i=1}^{2m+1} (2i+1) = (2\cdot 1+1) + (2\cdot 2+1) + \cdots + (2(2m+1)+1) = 2(1+2+3+\cdots + (2m+1)) + (2m+1) = 2(1+2+3+\cdots + i) + (2m+1)$$
 Let $i=2m+1$

Because i is odd, we can use the inductive hypothesis to say that the first i odd integers sum is odd.

$$2(1+2+3+\ldots)+2m+1=2b+i$$

This is true for some integer b. The sum of an even integer and an odd integer is always odd, so we can say that the sum of i odd integers is odd.

The two cases presented lead to a true conclusion with respect to the assumption and k + 1. This allows us to conclude that for every integer $n \ge 2$, if n is even, then any sum of n odd integers is even, and if n is odd, then any sum of n odd integers is odd.

17

Compute $4^1, 4^2, 4^3, 4^4, 4^5, 4^6, 4^7, 4^8$. Make a conjecture about the units digit of 4^n where n is a positive integer. Use strong mathematical induction to prove your conjecture.

Computation

$$4^{1} = 4$$
 $4^{2} = 16$
 $4^{3} = 64$
 $4^{4} = 256$
 $4^{5} = 1024$
 $4^{6} = 4096$
 $4^{7} = 16384$
 $4^{8} = 65536$

Conjecture

The units digit of 4^n for some positive integer n is 4 when n is odd and 6 when n is even.

Proof

Let P(n) be the statement, if n is odd, then 4^n has a units digit of 4, and the units digit is 6 is n is even.

Step 1: Basis Step

Using the computation above, we can see that $P(1): 4^1 = 4$, when n = 1, an odd number. Therefore P(1) is true. We can also see that $P(2): 4^2 = 16$, when n = 2, an even number. Therefore P(2) is also true.

Step 2: Inductive Step

Show that for every integer $k \ge 1$, if P(i) is true for each integer from 1 through k, then P(k+1) is also true.

Inductive Hypothesis: For any integer $k \ge 2$, each integer i such that $0 < i \le k$, the units digit of 4^i is 4 if i is odd and 6 if i is even.

P(k+1): We must show that 4^{k+1} has a units digit of 4 when k+1 is odd and 6 when k+1 is even.

Case 1: k+1 is odd

Let k be some even integer so that k + 1 is odd.

$$egin{array}{lll} 4^{k+1} = & 4^k \cdot 4 & ext{Exponent Properties} \ & \star_1 = & (10q+6) \cdot 4 & ext{Inductive Hypothesis} \ & = & 40q+24 & ext{Distribute} \ & = & 40q+20+4 & ext{Split Terms} \ & = & 10(4q+2)+4 & ext{Distributive} \ & = & 10r+4 & ext{For some integer } r \end{array}$$

 \star_1 : Let q be some non-negative integer.

Because the expression can be written as 10r + 4, then the units digit must be 4 for some odd integer k + 1.

Case 2: k+1 is even

Let k be some odd integer so that k + 1 is even.

 \star_2 : Let l be some non-negative integer.

Because the expression can be written as 10r + 6, then the units must be 6 for some even integer k + 1.

Because the two possible cases lead to correct conclusions with respect to the assumption, we can say that the units digit of 4^n for some positive integer n is 4 when n is odd and 6 when n is even.

5.6

4

 $d_k = k(d_{k-1})^2,$ for every integer $k \geq 1$ $d_0 = 3$

∧ Answer ∨

$$k=1:d_1=1(d_0)^2, d_0=3 o d_1=9$$
 (2)

$$k = 2: d_2 = 2(d_1)^2, d_1 = 9 \rightarrow d_2 = 162$$
 (3)

$$k = 3: d_3 = 3(d_2)^2, d_2 = 162 \rightarrow d_3 = 78732$$
 (4)

 $d_0 = 3$ is given, so the first 4 terms of the recursively defined sequence are:

12

Let s_0, s_1, s_2, \ldots be defined by the formula $s_n = \frac{(-1)^n}{n!}$ for every integer $n \ge 0$. Show that this sequence satisfies the following recurrence relation for every integer $k \ge 1$:

$$s_k = rac{-s_{k-1}}{k}$$

∧ Answer ∨

Let k be an integer with $k \ge 1$. Then $k-1 \ge 0$ is also true. Because $s_n = \frac{(-1)^n}{n!}$ is true for all integers $n \ge 0$, we can say that $s_n = \frac{(-1)^n}{n!}$ is true for both n = k and n = k - 1. This observation yields the following expressions for $k \ge 1$:

$$s_k = rac{(-1)^k}{k!} \quad ext{and} \quad s_{k-1} = rac{(-1)^{k-1}}{(k-1)!}$$

I will prove the recurrence relation with the brute force method.

$$s_k = \frac{(-1)^k}{k!}$$
 $= \frac{(-1)^k}{k(k-1)!}$ Factorial Rules
 $= \frac{(-1)^1(-1)^{k-1}}{k(k-1)!}$ Exponent Rules
 $= \frac{-(-1)^{k-1}}{k(k-1)!}$ Simplify
 $= \frac{-(-1)^{k-1}}{k(k-1)!} \cdot \frac{1}{k}$ Factor out
 $= -s_{k-1} \cdot \frac{1}{k}$ Substitute s_{k-1}
 $s_k = \frac{-s_{k-1}}{k}$ Combine Terms

The conclusion derived above is equivalent to that proposed in the question, so the recurrence relation has been proved to be true.

38

Compound Interest: Suppose a certain amount of money is deposited in an account paying 3% annual interest compounded monthly. For each positive integer n, let S_n = the amount on deposit at the end of the nth month, and let S_0 be the initial amount deposited.

a

Find a recurrence relation for S_0, S_1, S_2, \ldots , assuming no additional deposits or withdrawals during the year. Justify your answer.

∧ Answer ∨

The interest is compounded monthly, so the monthly interest rate is:

$$\frac{3\%}{12} = 0.25\% = 0.0025$$

This means the amount deposited at the first month is $S_1 = S_0 + 0.0025 \cdot S_0$, where S_0 is the previous month.

This relationship is true for all months, so we can define the recurrence relation:

$$\boxed{S_k = S_{k-1} + 0.0025S_{k-1} = 1.0025S_{k-1}}$$

b

If $S_0 = \$10,000$, find the amount of money on deposit at the end of one year.

The end of the year is the 12thmonth, so we can write the relation above as:

$$egin{aligned} S_{12} =& 1.0025 S_{11} \ =& (1.0025)^{12} \cdot S_0 \ =& (1.0025)^{12} \cdot 10000 \ =& \$10,304.16 \ \end{bmatrix}$$

C

Find the APY for the account.

The Annual percentage yield (APY) is the percentage increase in the value of the account over a one-year period.

$$\frac{10,304.16-10,000}{10,000}=0.030416=\boxed{3.0416\%}$$

Thank you to Trevor Nichols for copying textbook questions into a markdown format