Metodi Matematici per l'Informatica

Esame (a.a. 20/21, I canale) - Docente: Lorenzo Carlucci - Data: 11 Gennaio 2021

Esercizio 1 Un "anagramma" è un riordinamento delle lettere di una parola. Sia P la parola formata concatenando il vostro nome e il vostro cognome (per esempio per Mario Rossi P è la stringa MARIOROSSI).

- $1. \ Quanti \ sono \ gli \ anagrammi \ della \ parola \ P ?$
- 2. Quanti non iniziano con la prima lettera di P?
- 3. Quanti iniziano o finiscono con le prime due lettere di P? (Suggerimento: usare il PIE)

Esercizio 2 Un esame è composto da due gruppi di 5 esercizi ciascuno.

- 1. Quanti sono i modi di scegliere 5 domande di cui 3 in un gruppo e 2 nell'altro?
- 2. Quanti sono i modi di scegliere 5 domande di cui almeno una in ogni gruppo?
- 3. Se rispondo a 7 domande e ciascuna risposta vale 1 punto se corretta e 0 se scorretta, in quanti modi posso totalizzare 5 punti (distinguendo tra le domande)?

Esercizio 3 Siano $f: X \to Y$ e $g: Z \to W$. Indicare se le seguenti affermazioni sono vere o false.

- 1. $f \cup g \ e$ una funzione con dominio $X \cup Z$ e codominio $Y \cup W$.
- 2. Se $X \cap Z \neq \emptyset$ allora $f \cap g$ è una funzione con dominio $X \cap Z$ e codominio $Y \cap W$.
- 3. Se $Z \subseteq X$ e f è iniettiva allora g è iniettiva.

Esercizio 4 Sia R la relazione $\{(1,2),(1,3),(2,4),(3,4),(4,5)\}.$

- 1. $R \ \dot{e} \ un \ ordine \ parziale \ su \ \{1, 2, 3, 4, 5\}$?
- 2. Calcolare $R \circ R$.
- 3. Calcolare la chiusura transitiva di R.

Esercizio 5 Indicare se le seguenti affermazioni sono vere o false.

- 1. $\mathcal{P}(\mathbb{N}) \{X \subseteq \mathbb{N} : X \text{ di cardinalità finita}\} \ e numerabile.$
- 2. Esiste una funzione suriettiva da \mathbb{R} in $\{0, -1, -2, -3, \dots\}$.
- 3. Ogni funzione da \mathbb{Q} in \mathbb{R} è iniettiva.

Esercizio 6 Dimostrare per Induzione che, per ogni $n \ge 1$,

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}.$$

Specificare il Caso Base, l'Ipotesi Induttiva e la dimostrazione del Passo Induttivo.

Esercizio 7 Trovare l'errore (o gli errori) nella seguente dimostrazione.

Teorema: Tutti i numeri primi sono divisibili per 2.

Dimostrazione: per dimostrare il Teorema è sufficiente dimostrare la seguente **Tesi**: per ogni $n \ge 1$, per ogni successione s_1, s_2, \ldots, s_n di n numeri primi che inizia con 2 (ossia $s_1 = 2$), tutti gli s_i ($1 \le i \le n$) sono divisibili per 2.

Base: n = 1: L'unica successione di un primo che inizia con 2 è $s_1 = 2$, e 2 è divisibile per 2.

Passo: Assumiamo la tesi per n e la dimostriamo per n+1. Sia $s_1, s_2, \ldots, s_n, s_{n+1}$ una successione di n+1 numeri primi che inizia con 2 (ossia: $s_1=2$). La successione s_1, s_2, \ldots, s_n è una successione di n primi che inizia con 2 dunque per ipotesi induttiva s_1, s_2, \ldots, s_n sono divisibili per 2. La successione $s_1, s_3, \ldots, s_n, s_{n+1}$ è una successione di n primi che inizia con 2 dunque per ipotesi induttiva tutti gli $s_1, s_3, \ldots, s_{n+1}$ sono divisibili per 2. Dunque tutti gli $s_1, s_2, \ldots, s_n, s_{n+1}$ sono divisibili per 2.

Esercizio 8 Un giocatore di strada particolarmente incline alla logica vi propone la seguente variante del gioco delle tre carte: vi mostra tre carte coperte ciascuna con una scritta. La prima e la seconda dicono "L'asso non è qui". La terza dice: "L'asso è la carta due". Sapete che solo una delle carte è un asso e che solo una delle scritte è vera. Formalizzare in logica proposizionale e decidere quale carta è l'asso (usando le tavole di verità).

Esercizio 9 La seguente formula proposizionale in CNF è soddisfacibile?

$$\{\{p,q,r\},\{p,q,\neg r\},\{p,\neg q,r\},\{p,\neg q,\neg r\},\{\neg p,q,r\},\{\neg p,q,\neg r\},\{\neg p,\neg q,r\},\{\neg p,\neg q,r\}\}\}.$$

Se si risponde SI definire un assegnamento che la soddisfa, se si risponde NO dimostrare l'insoddisfacibilità usando la regola di Risoluzione.

Esercizio 10 Consideriamo il linguaggio predicativo composto da tre predicati a un posto P(x), O(x), E(x), un predicato a due posti D(x,y) e, per ogni $n \in \mathbb{N}$, una costante c_n . Il linguaggio contiene anche il simbolo = di uguaglianza, sempre interpretato come l'identità.

- 1. Consideriamo la struttura con dominio \mathbb{N} in cui interpretiamo i simboli del linguaggio come segue: P(x) è "x è primo", E(x) è "x è pari", O(x) è "x è dispari", D(x,y) è "x è divisibile per y (senza resto)", c_n è interpretato come il numero n. Formalizzare la seguente proposizione: Nessun numero primo è divisibile per 4.
- 2. Tradurre in linguaggio naturale, usando l'interretazione dei simboli al punto precedente:

$$\forall x((P(x) \land E(x)) \rightarrow (c_2 = x)).$$

3. La formula precedente (punto 2) è vera nell'interpretazione descritta al punto 1? È vera in tutte le interpretazioni?