

WitMotion Shenzhen Co., Ltd

Datasheet

AHRS IMU Sensor | SINDT

The Robust Acceleration, Angular velocity & Angle Detector

The SINDT is a IMU sensor device, detecting acceleration, angular velocity as well as angle. The robust housing and the small outline makes it perfectly suitable for industrial applications such as condition monitoring and predictive maintenance. Configuring the device enables the customer to address a broad variety of application by interpreting the sensor data by smart algorithms and Kalman filtering.

BUILT-IN SENSORS

Accelerometer

Gyroscope

Tutorial Link

Google Drive

Link to instructions DEMO: WITMOTION Youtube Channel SINDT Playlist

If you have technical problems or cannot find the information that you need in the provided documents, please contact our support team. Our engineering team is committed to providing the required support necessary to ensure that you are successful with the operation of our AHRS sensors.

Contact

Technical Support Contact Info

Application

- AGV Truck
- Platform Stability
- Auto Safety System
- 3D Virtual Reality
- Industrial Control
- Robot
- Car Navigation
- UAV
- Truck-mounted Satellite Antenna Equipment

Contents

Tutorial Link	2 -
Contact	2 -
Application	2 -
Contents	3 -
1 Overview	4 -
2 Features	5 -
3 Specification	6 -
3.1 Parameter	6 -
3.2 Size	7 -
3.3 Axial Direction	8 -
4 PIN Definition	9 -
5 MODBUS Communication Protocol	10 -
5.1 Register List	10 -
5.2 MODBUS Write Format	17 -
5.2.1 Example1: Calibrate Acceleration	18 -
5.2.2 Example2:Set Baud Rate	19 -
5.2.3 Example3:Set Modbus address	20 -
5.3 MODBUS Read Format:	21 -
5.3.1 Read Acceleration:	22 -
5.3.2 Read Angular Velocity:	23 -
5.3.3 Read Angle Output:	23 -
5.3.4 Quaternion output:	24 -

1 Overview

SINDT's scientific name is AHRS IMU sensor. A sensor measures 3-axis angle, angular velocity and acceleration. Its strength lies in the algorithm which can calculate three-axis angle accurately.

SINDT is employed where the highest measurement accuracy is required. SINDT offers several advantages over competing sensor:

- Heated for best data availability: new WITMOTION patented zero-bias automatic detection calibration algorithm outperforms traditional accelerometer sensor
- High precision Roll Pitch Yaw (X Y Z axis) Acceleration + Angular Velocity + Angle output
- Low cost of ownership: remote diagnostics and lifetime technical support by WITMOTION service team
- Developed tutorial: providing manual, datasheet, Demo video, PC software, 51 serial, STM32, Arduino, and Matlab sample code, communication protocol
- WITMOTION sensors have been praised by thousands of engineers as a recommended attitude measurement solution

2 Features

- The default baud rate of this device is 9600 and could be changed.
- The interface of this product only leads to a serial port
- The module consists of a high precision gyroscope, accelerometer sensor.
 The product can solve the current real-time motion posture of the module quickly by using the high-performance microprocessor, advanced dynamic solutions and Kalman filter algorithm.
- The advanced digital filtering technology of this product can effectively reduce the measurement noise and improve the measurement accuracy.

3 Specification

3.1 Parameter

Parameter	Specification
Working Voltage	RS485:9-36V
> Current	<40mA
> Size	55mm x 36.8mm X 24mm
Data	Angle: X Y Z, 3-axis
	Acceleration: X Y Z, 3-axis
	Angular Velocity: X Y Z, 3-axis
	Time, Quaternion
> Interface	Serial RS485 level
Baud rate	(4800,9600(default),19200,38400,57600,
	115200,230400,460800,921600)

Measureme	nt Range & A	ccuracy	
Sensor		Measurement Range	Accuracy/ Remark
> Acceler	ometer	X, Y, Z, 3-axis	Accuracy: 0.01g
		±16g	Resolution: 16bit
			Stability: 0.005g
> Gyrosco	pe	X, Y, Z, 3-axis	Resolution: 16bit
		-±2000°/s	Stability: 0.05°/s
> Angle/	Inclinometer	X, Y, Z, 3-axis	Accuracy:X, Y-axis: 0.05°
		X, Z-axis: ±180°	Z-axis: 1°
		Y ±90°	(Angle of Z-axis will have
		(Y-axis 90° is singular	accumulated error)
		point)	

3.2 Size

Parameter	Specification	Tolerance	Comment
Length	55	±0.1	
Width	36.8	±0.1	Unit: millimeter.
Height	24	±0.1	
Weight	100	±1	Unit: gram

3.3 Axial Direction

The coordinate system used for attitude angle settlement is the northeast sky coordinate system. Place the module in the positive direction, as shown in the figure below, direction right is the X-axis, the direction forward is the Y-axis, and direction upward is the Z-axis. Euler angle represents the rotation order of the coordinate system when the attitude is defined as Z-Y-X, that is, first turn around the Z-axis, then turn around the Y-axis, and then turn around the X-axis.

4 PIN Definition

PIN	Color	Function
> VCC	RED	Input Supply RS485 : powered by 9-36V
> B	GREEN	RS485 : B
> A	YELLOW	RS485 : A
> GND	BLACK	Ground GND

5 MODBUS Communication Protocol

Level: RS485 level

Baud rate: 4800, 9600 (default), 19200 38400, 57600, 115200, 230400,

460800, 921600, stop bit and parity stop bit and parity bit 0

HWT901B RS485 module can be accessed entirely through RS485, the default address is 0x50, can be hanged by serial port instruction or MODBUS write

address.

5.1 Register List

The data in each address of the module is 16 bits of data, which is 2 bytes. The address and meaning of the register are as follows:

Address	Symbol	Meaning
0x00	SAVE	Save
0x01	CALSW	Calibration
0x02	RSV	Reserved
0x03	RSV	Reserved
0x04	BAUD	Baud rate
0x05	AXOFFSET	X axis Acceleration bias
0x06	AYOFFSET	Y axis Acceleration bias
0x07	AZOFFSET	Z axis Acceleration bias
0x08	GXOFFSET	X axis angular velocity bias
0x09	GYOFFSET	Y axis angular velocity bias
0x0a	GZOFFSET	Z axis angular velocity bias
0x0b~0x19	RSV	Reserved
0x1a	ADDR	Modbus address
0x1b	RSV	Reserved
0x1c	RSV	Reserved
0x30	MMYY	Month , Year
0x31	HHDD	Hour , Day
0x32	SSMM	Second , Minute
0x33	MS	Millisecond
0x34	AX	X axis Acceleration
0x35	AY	Y axis Acceleration

0x36	AZ	Z axis Acceleration
0x37	GX	X axis angular velocity
0x38	GY	Y axis angular velocity
0x39	GZ	Z axis angular velocity
0x3a	RSV	Reserved
0x3b	RSV	Reserved
0x3c	RSV	Reserved
0x3d	Roll	X axis Angle
0x3e	Pitch	Y axis Angle
0x3f	Yaw	Z axis Angle
0x40	TEMP	Temperature
0x41~0x50	RSV	Reserved
0x51	Q0	Quaternion Q0
0x52	Q1	Quaternion Q1
0x53	Q2	Quaternion Q2
0x54	Q3	Quaternion Q3

Details:

Save:

Save	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												0
Addr:00H		Save[15:0]												
Mode		W												
Value	0: 9	0: Save all register												
	1: F	1: Restore to factory setting												

Calibration:

Calibration	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:01H		CALSW[15:0]														
Mode		W														
Value	0:): Finish calibration(quit calibration)														
	1:	Acce	elera	tion	calib	ratio	n									
	3:	3: Reset height to 0														
	7: Magnetic calibration															

Baud rate:

											1					
Baud rate	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:04H		BAUD[15:0]														
Mode		R/W														
Value	1: 4	1: 4800														
	2: 9	2: 9600														
	3: 3	3: 19200														
	4: 3	3840	0													
	5: 5	5760	0													
	6: :	1152	00													
	7: 2	2304	00													
	8: 4	8: 460800														
	9: 9	9: 921600														

X axis Acceleration bias:

AXOFFSET	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:05H		AXOFFSET[15:0]														
Mode		R/W														
Value		X axis Acceleration bias														

Y axis Acceleration bias:

AYOFFSET	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:06H		AYOFFSET[15:0]														
Mode		R/W														
Value		Y axis Acceleration bias														

Z axis Acceleration bias:

AZOFFSET	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:07H		AZOFFSET[15:0]														
Mode								R/W	/							
Value					-	Z axi	s Ac	cele	ratio	n bi	as					

X axis angular velocity bias:

GXOFFSET	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:08H		GXOFFSET[15:0]														
Mode								R/W	I							
Value					Х	axis	angı	ılar	velo	city	bias	;				

Y axis angular velocity bias:

												T			1	
GYOFFSET	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:09H		GYOFFSET[15:0]														
Mode								R/W	/							
Value					Y	axis	angı	ılar	velo	city	bias	,				

Z axis angular velocity bias:

GZOFFSET	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:0aH		GZOFFSET[15:0]														
Mode								R/W	I							
Value					Ζi	axis a	angı	ılar	velo	city	bias	;				

Modbus address:

GZOFFSET	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:1aH		ADDR[15:0]														
Mode								R/W	I							
Value						М	odb	us a	ddre	ess						

Month , Year:

MMYY	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:30H			М	onth	[7:0]					•	Year	[7:0]		
Mode								R/V	٧							
Value							Moi	nth ,	Yea	r						

Hour, Day:

HHDD	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:31H			F	lour[7:0]							Day[7:0]		
Mode								R/V	V							
Value							Нс	ur ,	Day	•						

Second , Minute:

SSMM	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:33H			Se	cond	d[7:0)]					М	inut	e[7:	0]		
Mode								R/V	V							
Value						S	Seco	nd ,	Minu	ute						

Millisecond:

MS	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:33H		MS[15:0]														
Mode								R/V	V							
Value							Mi	llise	cond							

X axis Acceleration:

AX	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:34H		AX[15:0]														
Mode								R								
Value						Х	axis	Acce	elera	tion						

Y axis Acceleration:

AY	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:35H		AY[15:0]														
Mode								R								
Value						Υa	axis	Acce	elera	tion						

Z axis Acceleration:

AZ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:36H		AZ[15:0]														
Mode								R								
Value						Z	axis	Acce	elera	tion						

X axis angular velocity:

GX	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:37H		GX[15:0]														
Mode								R								
Value						X ax	is a	ngul	ar ve	eloci	ty					

Y axis angular velocity:

GY	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:38H		GY[15:0]														
Mode								R								
Value						Y ax	is aı	ngula	ar ve	eloci	ty					

Z axis angular velocity:

GZ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:39H		GZ[15:0]														
Mode								R								
Value						Z ax	is a	ngul	ar ve	eloci	ty					

X axis Angle:

Roll	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:3dH		Roll[15:0]														
Mode								R								
Value							X a	xis A	Angle	e						

Y axis Angle:

Pitch	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:3eH		Pitch[15:0]														
Mode								R								
Value							Y a	xis A	Angle	e						

Z axis Angle:

Yaw	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:3fH		Yaw[15:0]														
Mode								R								
Value							Z a	xis A	Angle	е						

Temperature:

TEMP	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:40H		TEMP[15:0]														
Mode								R								
Value							Ten	nper	atur	е						

Quaternion:

Value

Quaternien	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Quaternion	13	14	13	12	11	_	_		_	_	_	4)		Т Т	U
Addr:51H						Qua	tern	ion (Q0[:	15:0]					
Mode								R								
Value							Qu	ater	nior	ո Q0						
Quaternion	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:52H						Qua	tern	ion	Q1[:	15:0]					
Mode		R Quaternian Q1														
Value		Quaternion Q1														
		Quaternion Q1														
Quaternion	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:53H						Qua	tern	ion (Q2[:	15:0]					
Mode								R								
Value							Qu	ater	nior	ո Q2						
Quaternion	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Addr:54H						Qua	tern	ion	Q3[:	15:0]					
Mode								R								

Quaternion Q3

5.2 MODBUS Write Format

Device	0x06	Reg H	Reg L	Data H	Data L	CRCH	CRCL
address							
0x50	Write	Register	Register	Date	Date	CRC check	CRC check
(default)		high	low	high	low	high	low

Note: device address(MODBUS address) can be changed according to 5.2, default is 0x50,it can changed according to their own needs, device address angle:0x00-0x7F.

According to this date format, the baud rate, return rate and other data can be changed.

5.2.1 Example1:Calibrate Acceleration

Assume the device is 0x50.

Step 1: Send "unlock" commands 0x50 06 00 69 B5 88 22 A1

Place the sensor on a plat interface firstly

Step 2: Set the CSW register to acceleration calibration mode $0x50\ 06\ 00\ 01\ 00\ 01\ 14\ 4B$

After sending the command, please kindly wait for 3-5 seconds.

Step 3: Set the CSW register to normal mode 0x50 06 00 01 00 00 D5 8B

Step 4: Send "Save Configuration" command 0x50 06 00 00 00 00 84 4B

5.2.2 Example2:Set Baud Rate

Assume the device address is 0x50.

If you want to change the baud rate from 9600 to 115200.

Step 1.First you should send unlock command to your device use baud rate 9600.

the unlock command is write 0xB588 to register 0x69.

Send: 0x50 06 00 69 B5 88 22 A1

2. Send baud rate set command:

Send: 0x50 0x06 0x00 0x04 0x00 0x06 0x45 0x88

- 3. Then change your master device's baud rate to 115200.
- 4. Send save config command: 0x50 06 00 00 00 00 84 4B

5.2.3 Example3:Set Modbus address

Assume the device is 0x50. If you want to change address to 0x51, instructions as below.

Step 1: Send "unlock" commands 0x50 06 00 69 B5 88 22 A1

Step 2: Change the device address from 0x50 to 0x51 0x50 06 00 1a 00 51 64 70

Step 3: Send "Save Configuration" command 0x51 06 00 00 00 00 84 4B

Note: Sending frequency shall be 0.5s between each command.

5.3 MODBUS Read Format:

Device	Read	Reg H	Reg L	regNum H	regNum	CRC	CRCL
address					L	Н	
0x50	0x03	RegH(First	RegL(First	Register	Register	0x00	0x00
(default)		Reg)	Reg)	number	number		
				high	low		

Example:

Read X Y Z angle

0x50 0x03 0x00 0x3d 0x00 0x03 0x99 0x86

(0x3d is the Modbus register address of X-axis angle. 0x99 0x86 needs to be calculated, refer to the CRC calculation part of the communication protocol)

Data Format:

0x50	0x03	0xN	Data H	Data L		CRCH	CRCL
Device	Read	Register	First	First	N	CRC	CRC
address	funct	Number	data	data low	data	check	check
	ion	=(0-0x7F)	high	position		high	low
			position			postion	postion

Example:

Read X Y Z angle:180° 90° 30°

0x50 0x03 0x06 0x80 0x00 0x40 0x00 0x15 0x55 0x14 0x49

5.3.1 Read Acceleration:

Send:

50 03 00 34 00 03 49 84

Tips: 50 is device address, 49 84 is the CRC.

For CRC calculation method, please search CRC calculator on Google.

Return:

MODADDR	0X	0X	AxH	AxL	AyH	Ау	AzH	AzL	CRC	CRC
	03	06				L			Н	L

Calculation:

a x = ((AxH << 8)|AxL)/32768*16g(g is Gravity acceleration, 9.8m/s 2)

a y = ((AyH < < 8)|AyL)/32768*16g(g is Gravity acceleration, 9.8m/s 2)

a z =((AzH << 8)|AzL)/32768*16g(g is Gravity acceleration, 9.8m/s 2)

CRCH:CRC Stop bit High CRCL:CRC Stop bit Low

Note:

- 1. The data is transmitted in accordance with the 16 hexadecimal, notASCII code
- 2. Each data is transmitted in a low byte and a high byte, and the two is combined into a short type of symbol. Such as X axis acceleration data Ax, where AxL is the low byte,AxH is high byte.

The conversion method is as follows:

Assuming Data is the actual data, DataH for its high byte, DataL for its low byte part,then: Data= ((short) DataH<<8) |DataL. Here we must pay attention to that force the DataH to be converted into a symbol of the short type of data and then after shift 8 bit, and the type of Data is also a symbol of the short type, so it can show a negative.

5.3.2 Read Angular Velocity:

MODADD	0X0	0X0	wxH	wxL	wy	wyL	wzH	wzL	CRC	CRC
R	3	6			Н				Н	L

Calculated formular:

w x = ((wxH < < 8)|wxL)/32768*2000(°/s)

w y = ((wyH < < 8)|wyL)/32768*2000(°/s)

wz = ((wzH < < 8)|wzL)/32768*2000(°/s)

CRCH:CRC Stop bit High CRCL:CRC Stop bit Low

5.3.3 Read Angle Output:

MODADD	0X0	0X0	Roll	RollL	Pitch	Pitc	Yaw	Yaw	CRC	CRC	
R	3	6	Н		Н	hL	Н	L	Н	L	

Calculated formular:

Roll(x axis)Roll=((RollH<<8)|RollL)/32768*180(°)

Pitch(y axis)Pitch=((PitchH<<8)|PitchL)/32768*180(°)

Yaw(z axis)Yaw = ((YawH < < 8)|YawL)/32768*180(°)

Note:

- 1. Attitude angle use the coordinate system for the Northeast sky coordinate system, the X axis is East,the Y axis is North, Z axis toward sky. Euler coordinate system rotation sequence defined attitude is z-y-x, first rotates around the Z axis. Then, around the Y axis, and then around the X axis.
- 2. In fact, the rotation sequence is Z-Y-X, the range of pitch angle (Y axis) is only ± 90 degrees, when the pitch angle (Y axis) is bigger than 90 degrees and the pitch angle (Y axis) will become less than 90 degrees. At the same time, the Roll Angle(X axis) will become larger than 180 degree. Please search on Google about more information of Euler angle and attitude information.
- 3. Since the three axis are coupled, the angle will be independent only when the angle is small. It will be dependent of the three angle when the angle is large when the attitude angle change, such as when the X axis close to 90 degrees, even if the attitude angle around the X axis, Y axis angle will have a big change, which is the inherent characteristics of the Euler angle

5.3.4 Quaternion output:

MODAD	0X	0X	Q0	Q0	Q1	Q	Q2	Q2	Q3H	Q3L	CRC	CR
DR	03	08	Н	L	Н	1L	Н	L			Н	CL

Calculation:

Q0=((Q0H<<8)|Q0L)/32768 Q1=((Q1H<<8)|Q1L)/32768 Q2=((Q2H<<8)|Q2L)/32768 Q3=((Q3H<<8)|Q3L)/32768

CRCH:CRC Stop bit high CRCL:CRC stop bit low