Predicting Cancellations for Hotel Bookings

Matt Mascarelli

Context

→ Cancellations = Revenue Loss

• In the dataset there is approximately €34,446,903 worth of potential revenue if all of the bookings are successful. The cancellations account for about 33% of that, which is a significant loss.

€11,478,718 LOSS

Plan

How can we mitigate this loss?

- ◆ Cancellation policy **区**
- ◆ Overbooking **X**
- ♦ Incentives ✓

How can we determine which bookings to offer incentives to?

- Machine Learning
- Predict high risk bookings

Problem Statement

 How can a hotel reduce their revenue loss by 20% for next year by targeting customers that are likely to cancel with incentives to retain their reservation?

The Data

Two Hotels in Portugal:

- 1) Hotel 1(Resort): 40,060 rows
- 2) Hotel 2(City): 79,330 rows
- 3) Bookings are between 2015-2017

After Cleaning:

- 86,207 rows
- 19 features

Training and Testing:

- Train Set: 68,965 rows
- Test Set: 17,242 rows

[Reference: https://www.sciencedirect.com/science/article/pii/S2352340918315191#bib4]

Results

Of the 4,784 canceled bookings in the test data,

76%

are correctly predicted to cancel.

Features:

Car Spaces

Binary:

0 = No car space

1 = Car space

- → 8% of bookings required a space
 - 0 cancellations

Lead Time

Number of days between reservation and arrival

Median Lead Time:

- Canceled: 80 days
- Successful: 38 days

Special Requests

Binary:

0 = No requests

1 = Requests

- Approximately 50/50 split between groups
- No Requests: 34% canceled
- Requests: 22% canceled

Reserved Room Type vs Assigned Room Type

Binary:

- 0 = Different Room Type
- 1 = Same Room type
 - → 14.5% of bookings received a different room type
 - Only 5% cancelled

Market Segment

Categorical Feature

Online TA

- → 59% of bookings
 - ◆ 36% canceled

Offline TA/TO

- → 16% of bookings
 - ♦ 15% canceled

Agent Type

Categorical Feature:

Popular Agent:

- → 66.8% of bookings
 - ◆ 33.5% canceled

No Agent:

- → 13.7% of bookings
 - 12.8% canceled

Booking Changes

Binary:

0 = No changes

1 = Changes

→ No changes: 30% canceled

→ Changes: 16% canceled

Previous cancellation rate

Group A: 0% PCR

- 98% are in this group
- 26% canceled

Group B: 100% PCR

- 1.2% are in this group 98% canceled AGAIN

Group C: Everyone else

- 0.8% are in this group
- People who cancel previously, tend to cancel again

Room Cost

Total cost of the room

Median Room Cost:

- Canceled: €364
- Successful: €280

The Model

- Models used: logistic regression, decision tree, random forest, Xgboost, LightGBM
- Best Model: LightGBM

- Recall: 76% (True positive Rate)
- Precision: 56%

Confusion Matrix - LightGBM Classifier

Predicted Booking Status

Important Features

Are the False Positives an Issue? (No, but maybe)

- 12,458 Successful bookings
 - 2,838 are false positives (22.7%)
- Successful booking = revenue gain
- Booking retention could be costly
 - 6,483 Bookings predicted to cancel
 - Complementary Rooms, meals, other services
 - Note: financial data not readily available to calculate profit.

Decision Threshold

IsCan	celed	predictions	probability_sucessful	probability_canceled
X	0	1	0.412427	0.587573
V	1	1	0.118317	0.881683
V	0	0	0.949426	0.050574
X	1	0	0.635925	0.364075
V	0	0	0.701680	0.298320

Predictions in Practice

Bookings Predicted to Cancel:

- 1. At least 70% probability (High Risk):
 - a. Email/phone call to customer
 - b. Offer Complimentary nights, meals, etc. (if costs allow)

- 2. Less than 70% probability (Low Risk):
 - a. Email/phone call to customer

Further Work

- Financial Data
 - a. How many incentives can the hotel actually offer? (nights, meals, etc.)
- 2. Weather Forecast Data
 - a. Could improve model accuracy

