Решение задачи целочисленного программирования методом Гомори

Задание. Решите задачу методом Гомори:

$$\max Z = x_1 + 2x_2,$$

$$\begin{cases} 5x_1 + 7x_2 \le 21, \\ -x_1 + 3x_2 \le 8, \\ x_1, x_2 \ge 0, \ \textit{целые}. \end{cases},$$

$$|x_1, x_2| \ge 0$$
, целые.

Решение.

Сначала решаем задачу симплекс-методом без ограничений целочисленности.

$$Z = x_1 + 2x_2 \rightarrow \max,$$

$$\begin{cases} 5x_1 + 7x_2 \le 21, \\ -x_1 + 3x_2 \le 8, \\ x_1, x_2 \ge 0. \end{cases}$$

Приводим задачу к каноническому виду:

$$Z = x_1 + 2x_2 \rightarrow \max$$

$$\begin{cases} 5x_1 + 7x_2 + x_3 = 21, \\ -x_1 + 3x_2 + x_4 = 8, \\ x_{1,2,3,4} \ge 0. \end{cases}$$

Строим симплекс-таблицу:

Базис	План	x1	x2	х3	х4
х3	21	5	7	1	0
x4	8	-1	3	0	1
Z	0	-1	-2	0	0

В последней оценочной строке есть отрицательные оценки, поэтому нужно делать шаг симплекс-метода. Выбираем столбец с наименьшей оценкой (x_2) , а затем разрешающий элемент - по наименьшему отношению свободных членов к коэффициентам столбца (x_4). Результат шага запишем в таблицу (разрешающий элемент будем выделять серым). Аналогично будем повторять шаги.

Базис	План	x1	x2	х3	x4
х3	7/3	22/3	0	1	-7/3
x2	8/3	-1/3	1	0	1/3
Z	16/3	-5/3	0	0	2/3

Базис	План	x1	x2	х3	x4
x1	7/22	1	0	3/22	-7/22
x2	61/22	0	1	1/22	5/22
Z	129/22	0	0	5/22	3/22

Задача скачана с сайта www.MatBuro.ru

©МатБюро - Решение задач линейного программирования, ЭММ и т.п.

В последней строке нет отрицательных оценок, поэтому оптимальное решение найдено: $x_1 = 7/22\,,\; x_2 = 61/22\,,\; Z_{\rm max} = 129/22\,.$

Продолжим решение, используя алгоритм Гомори.

Найдем целые части оптимального решения: $\left[\frac{7}{22}\right] = 0$, $\left[\frac{61}{22}\right] = 2$.

Дробные части
$$\left\{\frac{7}{22}\right\} = \frac{7}{22} - 0 = \frac{7}{22}, \left\{\frac{61}{22}\right\} = \frac{61}{22} - 2 = \frac{17}{22}.$$

Выбираем переменную с наибольшей дробной частью, то есть x_2 (дробная часть 17/22).

Вводим дополнительное ограничение целочисленности:

$$0x_2 + \frac{1}{22}x_3 + \frac{5}{22}x_4 \ge \frac{17}{22}$$
, откуда $\frac{1}{22}x_3 + \frac{5}{22}x_4 - x_5 = \frac{17}{22}$.

Добавляем это ограничение к симплекс-таблице и получаем:

Базис	План	x1	x2	х3	х4	x5
x1	7/22	1	0	3/22	- 7/22	0
x2	2 17/22	0	1	1/22	5/22	0
х5	- 17/22	0	0	- 1/22	- 5/22	1
Z	5 19/22	0	0	5/22	3/22	0

Переходим к следующей таблице, делая шаг симплекс-метода:

Базис	План	x1	x2	х3	х4	x5
x1	1 2/5	1	0	1/5	0	-1 2/5
x2	2	0	1	0	0	1
x4	3 2/5	0	0	1/5	1	-4 2/5
Z	5 2/5	0	0	1/5	0	3/5

Получили нецелочисленное решение $x_1 = 1\frac{2}{5}, x_2 = 2, Z_{\text{max}} = 5\frac{2}{5}$.

Выбираем переменную с наибольшей дробной частью, то есть x_1 (дробная часть 2/5).

Вводим дополнительное ограничение целочисленности:

$$0x_1 + \frac{1}{5}x_3 + \frac{3}{5}x_5 \ge \frac{2}{5}$$
, откуда $\frac{1}{5}x_3 + \frac{3}{5}x_5 - x_6 = \frac{2}{5}$.

Добавляем это ограничение к симплекс-таблице и получаем:

	Базис	План	x1	x2	х3	x4	x5	х6
Ī	x1	1 2/5	1	0	1/5	0	-1 2/5	0

Задача скачана с сайта www.MatBuro.ru ©МатБюро - Решение задач линейного программирования, ЭММ и т.п.

	x2	2	0	1	0	0	1	0
	x4	3 2/5	0	0	1/5	1	-4 2/5	0
	х6	- 2/5	0	0	- 1/5	0	- 3/5	1
ſ	Z	5 2/5	0	0	1/5	0	3/5	0

Переходим к следующей таблице, делая шаг симплекс-метода:

Базис	План	x1	x2	х3	х4	х5	х6
x1	1	1	0	0	0	-2	1
x2	2	0	1	0	0	1	0
x4	3	0	0	0	1	-5	1
х3	2	0	0	1	0	3	-5
Z	5	0	0	0	0	0	1

Получили оптимальное целочисленное решение: $x_{\rm l}$ = 1, $x_{\rm 2}$ = 2, $Z_{\rm max}$ = 5 .