· Decision Tree Example:

touthed	hair	breathes	1623	species
True	True	True	True	Mammal
True	True	True	True	Mammal
True	False	True	File	Reptile
False	True	True	True	Memmel
True	True	True	True	Memmel
True	True	True	True	Mammal
True	false	Faire	False	Reptile
True	False	True	febe	Reptile
True	True	True	True	Mammal
false	false	True	True	Reptile

- Find the entropy of class variable.

Here, species is my class variable.

Entropy species =
$$6$$
 = Mammale
= 4 = Reptile
= 10 = 10

Entropy-species = -[(6/10) x log (6/10) + (4/10) x log (4/10)]

$$= -(0.6)(-0.43) - (0.4)(-1.39)$$

$$= -(0.6)(-0.43) - (0.4)(-1.39)$$

$$= -(0.6)(-0.43) - (0.4)(-1.39)$$

$$E(s) = 0.438 + 0.598 = 0.966$$
.

- · Calculate Information Gain of remaining columns/features:
- For "toothed":

"Entropy shortcut:

Yes/No = any value

"O" its

entropy is O.

Yes/No = same

instances

entropy = 1.

$$E(s, toothed) = (8110) \times E(s, 3) + (2110) \times E(1, 1)$$

$$= (8110) (-(s18) (log_2(s18)) - (318)) + (2110) (318) + (2110) (318)$$

$$= \left(O.8\right) \left(-\left(o.65\right) \left(\frac{\log(2)}{\log(2/8)}\right) - \left(o.37\right) \left(\frac{\log(2)}{\log(3/8)}\right) + \left(o.7\right) (1)$$

$$= (0.8)(0.947) + (0.5)(1) = (0.8)(0.95) + (0.5)(1.0)$$

[0.96]

$$E(S, hair) = (610) \times E(60) + (410) \times E(04)$$

$$= (0.6) \times 0 + (0.4) \times 0.$$

$$= 0$$
 . IG (hair) = 0.966 - 0.

· For "breather",

$$O + (819.0)(9.0) =$$

$$= (0.7)(0.50) + 0$$

$$= (0.7)(0.50) + 0$$

$$= (0.7)(0.50) + 0$$

As,

Hair has dear

side of true and

false.

Hence,

16 ir done

- Animal has heir or note:
- Also we have taking decirion of legs.

- We have max hair value which in added took node.
- Also we are creating another root nock which is "legs".

Continue

For "toothed".

$$E(s, toothed) = (5/2) \times E(s,0) + (3/2) \times E(1,1)$$
= (0.31) × 0 + (0.28) × 1.

$$IG(toothed) = E(s) - E(s, toothed)$$

breaths :

$$E(s, \frac{\text{breaths}}{\text{testhed}}) = (7/4) \times E(6,1) + (0/4) \times E(0,0)$$

$$= .5917$$

So, toothed has max value of 19:

As,
All the true are mammals.

And false we have releabed "breaths"
because it is the temaining class.

For "breaths"

one value in left.

for mammals.

$$E(species) = 1 \text{ Mammal}$$
= 1 Reptile
= a total.

= $-(1/a)(\log_2(1/a)) - (1/a)(\log_2(1/a))$
= $(-0.5)(-1) + (-0.5)(-1)$
= $0.5 + 0.5$
= 1

$$E(s, \frac{1}{1}) = (2/2) \times E(1, 0) + (0/2) \in E(0, 0)$$

$$= 1 + 0$$

$$= 1$$

$$|G(breather)| = 1-1$$

