Lineare Algebra I

LERNZUSAMMENFASSUNG

Lukas Bach

zum Modul Lineare Algebra I am Karlsruher Institut für Technologie

Inhaltsverzeichnis

1	Gru	ppen, Ringe, Körper	4		
	1.1	Assoziativität	4		
	1.2	Kommutativität	4		
	1.3	Distributivität	4		
	1.4	Gruppe	4		
	1.5	Untergruppenkriterium	4		
	1.6	Ring	4		
	1.7	Teilring	5		
	1.8	Körper	5		
2	Vek	torraum, Untervektorraum	5		
	2.1	Vektorraum	5		
	2.2	Untervektorraum	5		
	2.3	Untervektorraumkriterium	6		
3	Hon	• • • • • • • • • • • • • • • • • • •	6		
	3.1	Gruppenhomomorphismus	6		
	3.2	Ringhomomorphismus	6		
	3.3	Lineare Abbildung	6		
4	Basen berechnen 7				
	4.1	Basis von Vektorraum berechnen	7		
	4.2		7		
	4.3		7		
	4.4		7		
	4.5	Ist eine Summe direkt?	7		
5	Abb	ildungsmatrix	8		
	5.1	Beispiel	8		
6	Mat		8		
	6.1	Bild berechnen	8		
	6.2	Kern berechnen	9		
	6.3		9		
	6.4	Dimensionsformel	9		
	6.5	Rangsatz	9		
7	Det	erminanten und Ähnliches	9		
	7.1	Nützliche Determinantenregeln	9		
	7.2	Charakteristisches Polynom	9		
	7.3	Eigenwerte	0		
	7.4	Eigenraum, Eigenvektoren	0		
	7.5	Vielfachheiten 10	n		

7.6	Ähnlichkeit und Ähnlichkeitsinvarianzen	10
7.7	Matrix diagonalisierbar	11
7.8	Matrix invertierbar	11

1 Gruppen, Ringe, Körper

1.1 Assoziativität

$$\forall m_1, m_2, m_3 \in M : m_1 \star (m_2 \star m_3) = (m_1 \star m_2) \star m_3$$

1.2 Kommutativität

$$\forall m_1, m_2 \in M : m_1 \star m_2 = m_2 \star m_1$$

1.3 Distributivität

$$\forall m_1, m_2, m_3 \in M : m_1 \star (m_2 + m_3) = m_1 \star m_2 + m_1 \star m_3$$
$$(m_2 + m_3) \star m_1 = m_2 \star m_1 + m_3 \star m_1$$

1.4 Gruppe

G ist eine Gruppe genau dann, wenn folgende Aussagen wahr sind:

- 1. Assoziativität
- 2. Neutralelement

$$\exists e_G \in G \ \forall g \in G : g \star e_G = g = e_G \star g$$

3. Unter Inversenbildung abgeschlossen $\forall g \in G \ \exists g^{-1}: g \star g^{-1} = e_G = g^{-1} \star g$

1.5 Untergruppenkriterium

H ist genau dann eine Untergruppe von G, wenn die folgenen Aussagen wahr sind:

- 1. $H \subseteq G$
- 2. $H \neq \emptyset$ (Insbesondere $e_G \in H$)
- 3. $\forall h_1, h_2 \in H : h_1 \star h_2^{-1} \in H$

1.6 Ring

R R ist mit den Verknüpfungen +, \cdot ist genau dann ein Ring, wenn die folgenden Aussagen wahr sind:

- 1. (R, +) ist eine <u>kommutative</u> Gruppe
- $2. \cdot ist assoziativ$
- 3. Neutral element für $\exists 1_R \in R \ \forall r \in R: 1_R \cdot r = r = r \cdot 1_R$
- 4. Ring ist distributiv

1.7 Teilring

T ist genau dann ein Teilring vom Ring R, wenn folgende Aussagen wahr sind:

- 1. $T \subseteq R$
- 2. $1_R \in T$
- 3. T ist multiplikativ und additiv abgeschlossen $\forall t_1, t_2 \in T : t_1 + t_2 \in T, t_1 \cdot t_2 \in T$
- 4. $\forall t \in T : -t \in T$, was letztendlich zeigt dass T selbst ein Ring ist

1.8 Körper

Ein kommutativer Ring K ist genau dann ein Körper, wenn $1_K \neq 0_K$ gilt und jedes Element außer null invertierbar ist.

2 Vektorraum, Untervektorraum

Im folgenden sei K ein Körper.

2.1 Vektorraum

V ist genau dann ein K-Vektorraum, wenn die folgenden Aussagen wahr sind:

- 1. V ist kommutative Gruppe (V, +)
- 2. Skalarmultiplikation ist definiert:
 - Neutral element existiert $\forall v \in V : 1_K \cdot v = v$
 - Assoziativität $\forall a,b \in K, v \in V: a \cdot (b \cdot v) = (a \cdot b) \cdot v$
 - Distributivität

$$\forall a, b \in K \forall v \in V : a \cdot (u + v) = a \cdot u + a \cdot v$$
$$(a + b) \cdot v = a \cdot v + b \cdot v$$

2.2 Untervektorraum

U ist genau dann ein Untervektorraum auf dem Körper K von dem K-Vektorraum V, wenn die folgenden Aussagen wahr sind:

- 1. $U \subseteq V$
- 2. U ist Untergruppe von V für +
- 3. Skalarmultiplikation ist definiert: $\forall a \in K, u \in U : a \cdot U$

2.3 Untervektorraumkriterium

U ist genau dann ein Untervektorraum auf dem Körper K von dem K-Vektorraum V, wenn die folgenden Aussagen wahr sind:

- 1. $U \subseteq V$
- 2. $U \neq \emptyset$
- 3. Additiv abgeschlossen: $\forall u_1, u_2 \in U : u_1 + u_2 \in U$
- 4. Skalarmultipl. abgeschlossen: $\forall u \in U, a \in K : a \cdot u \in U$

3 Homomorphismen

3.1 Gruppenhomomorphismus

$$\Phi: (G, \star) \to (H, \diamond)$$
 ist ein Gruppenhomomorphismus : $\Leftrightarrow \forall g_1, g_2 \in G: \Phi(g_1 \star g_2) = \Phi(g_1) \diamond \Phi(g_2)$

 Φ ist genau dann injektiv, wenn gilt: $f^{-1}(\{e_H\}) = \{e_G\}$.

3.2 Ringhomomorphismus

Analoge Definition zum Gruppenhomomorphismus, ist allerdings für beide Verknüpfungen strukturerhaltend.

$$\Phi: (G, \oplus, \otimes) \to (H, \bullet, \circ) \text{ ist ein Ringhomomorphismus } :\Leftrightarrow \\ \forall g_1, g_2 \in G: \Phi(g_1 \oplus g_2) = \Phi(g_1) \bullet \Phi(g_2) \\ \forall g_1, g_2 \in G: \Phi(g_1 \otimes g_2) = \Phi(g_1) \circ \Phi(g_2)$$

3.3 Lineare Abbildung

Die folgenden Aussagen sind äquivalent zueinander:

- $\Phi: V \to W$ über K ist eine lineare Abbildung.
- Φ ist additiv und homogen.
- $\forall x, y \in V, a \in K : \Phi(a \cdot x + y) = a \cdot \Phi(x) + \Phi(y)$

4 Basen berechnen

4.1 Basis von Vektorraum berechnen

- 1. Alle Vektoren aus dem Erzeugendensystem des Vektorraums nebeneinander in Matrix schreiben
- 2. Matrix transponieren
- 3. Gaußen, Nullzeilen wegstreichen
- 4. Matrix transponieren
- 5. Spalten der Matrix sind jetzt die Vektoren der Basis des Vektorraums

4.2 Basis von Summe von Vektorräumen berechnen

- 1. Vektoren der Basen der Vektorräume in ein gemeinsames Erzeugendensystem zusammenfassen
- 2. Erzeugendensystem wie oben beschrieben zu Basis umformen

4.3 Basis von Schnittmenge von Vektorräumen berechnen

Angenommen man berechnet $U \cap V$, sei $B = (u_1, u_2, \dots, u_n)$ eine Basis von U.

- 1. Vektoren der Basen der Vektorräume nebeneinander in Matrix schreiben ($\underline{\text{nicht}}$ transponieren!)
- 2. Gaußen, in Gauß-Normalform bringen
- 3. mit (-1)-Trick Lösungen ablesen. Nun geht man für jeden Lösungsvektor $(x_1, x_2, \dots, x_n, x_{n+1}, \dots, x_k)^T$ aus Skalaren wie folgt vor:

$$\bullet \ b_i = x_1 \cdot u_1 + x_2 \cdot u_2 + \dots + x_n \cdot u_n$$

4. Die Basis von $U \cap V$ besteht nun aus allen b_i mit $i \in \{1, \dots, n\}$

4.4 Dimension

Die Dimension eines Vektorraums ist die Kardinalität seiner Basis.

4.5 Ist eine Summe direkt?

$$U + V = U \oplus V \Leftrightarrow dim(U + V) = dim(U) + dim(V)$$

5 Abbildungsmatrix

 $D_{BA}(\Phi)$ ist eine Abbildungsmatrix, die von der Basis A zur Basis B mit Φ abbildet. Seien $\Phi: X \to Y$, A Basis von X, B Basis von Y. Man bestimmt $D_{BA}(\Phi)$ wie folgt:

- 1. Alle Basiselemente von A mit Φ abbilden
- 2. Jedes Bild eines Basiselements nun mit der Summe von Vielfachen von Basiselementen aus B darstellen
- 3. Die durch die Vervielfachung der einzelnen Basiselemente gewonnenen Koeffizienten geordnet und spaltenweise in Matrix schreiben

5.1 Beispiel

Beispielrechnung entstammt der Altklausur Herbst 2012, I.2 b)

$$\Phi: \mathbb{C}^{2x^2} \to \mathbb{C}^{2x^2}, X \mapsto \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix} \cdot X$$

$$A = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$\Phi(A) = \left\{ \begin{pmatrix} 1 & 0 \\ -2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -2 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 0 & 2 \end{pmatrix} \right\}$$

$$\Phi(A)_{1} = \begin{pmatrix} 1 & 0 \\ -2 & 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + (-2) \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 0 \\ -2 \\ 0 \end{pmatrix}$$

Analog $\Phi(A)_2, \Phi(A)_3, \Phi(A)_4$

$$\Rightarrow D_{AA}(\Phi) = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -2 & 0 & 2 & 0 \\ 0 & -2 & 0 & 2 \end{pmatrix}$$

6 Matrizen allgemein

6.1 Bild berechnen

- 1. Matrix transponieren
- 2. Zeilenstufenform mittels Gauß erzeugen

- 3. Matrix transponieren
- 4. alle Spalten, die nicht die Form $(0,0,\cdots,0)^T$ haben, sind Teil des Bildes Beispiel:

$$Bild(\begin{pmatrix} 1 & 3 & 0 & 7 & 2 \\ 2 & 4 & 0 & 8 & 4 \\ 3 & 5 & 0 & 9 & 6 \end{pmatrix}) = \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}, \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \right\rangle$$

6.2 Kern berechnen

- Falls Determinante der (quadr.) Matrix $\neq 0 \rightarrow$ Kern enthält nur Nullvektor
- \bullet Sonst: Matrix mit Gauß-Algorithmus lösen und Lösung mit (-1)-Trick ablesen.

6.3 Rang berechnen

Rang(A) = Anzahl der Stufen (Zeilen) der Matrix A in Stufenform.

6.4 Dimensionsformel

$$dim(U+V) = dim(U) + dim(V) - dim(U \cap V)$$

6.5 Rangsatz

dim(Bild(f)) + dim(Kern(f)) = dim(V) mit f: V \rightarrow W lineare Abbildung

7 Determinanten und Ähnliches

7.1 Nützliche Determinantenregeln

$$det\begin{pmatrix} x_1 & * & * & * \\ 0 & x_2 & * & * \\ 0 & 0 & x_3 & * \\ 0 & 0 & 0 & x_4 \end{pmatrix}) = x_1 \cdot x_2 \cdot x_3 \cdot x_4$$
$$det\begin{pmatrix} A & * \\ 0 & B \end{pmatrix} = det(A) \cdot det(B)$$

7.2 Charakteristisches Polynom

$$CP_x(A) = det(A - x \cdot I)$$

7.3 Eigenwerte

Eigenwerte einer Matrix sind die Nullstellen ihres Charakteristischen Polynoms, lassen sich einfach ablesen da das CP meist als Linearfaktorzerlegung gegeben ist.

Eigenwerte einer linearen Abbildung Φ sind genau die Werte λ_i , für die gilt: $\Phi(v) = \lambda_i v$.

7.4 Eigenraum, Eigenvektoren

Eigenraum zur Matrix A und dem Eigenwert $\lambda = Eig(A, \lambda) = Kern(A - \lambda \cdot I)$ Eigenvektoren sind die Vektoren, die im Eigenraum des zugehörigen Eigenwerts liegen. Eigenraum einer linearen Abbildung $\Phi: V \to V$ hat die Form $Eig(\Phi, \lambda_i) = \{v \in V : \Phi(v) = \lambda_i \cdot v\}$ mit $v_i \in Eig(\Phi, \lambda_i)$ als Eigenvektoren.

7.5 Vielfachheiten

Algebraische Vielfachheit ($\mu_a(A,\lambda)$) ist die Vielfachheit vom Eigenwert λ als Nullstelle im charakteristischen Polynom.

$$CP_x(A) = (x-2)^3(x+4)(x-3)^2 \Rightarrow \mu_a(A,2) = 3, \mu_a(A,-4) = 1, \mu_a(A,3) = 2$$

Geometrische Vielfachheit $(\mu_g(A, \lambda) = dim(Eig(A, \lambda)))$ bezeichnet die Anzahl von Eigenvektoren im Eigenraum zum jeweiligen Eigenwert λ .

7.6 Ähnlichkeit und Ähnlichkeitsinvarianzen

Eine Matrix $A \in K^{nxn}$ ist genau dann ähnlich zu einer Matrix \tilde{A} , wenn es eine invertierbare Matrix B gibt, sodass gilt:

$$A = B^{-1}\tilde{A}B$$

Die folgenden Eigenschaften sind Ähnlichkeitsinvarianten, also Eigenschaften die zwischen Matrizen und zu ihnen ähnlichen Matrizen gleich sind.

- Spur (Summe der Diagonaleinträge)
- Rang
- Minimalpolynom (und Verschwindungsideal)
- Determinante

7.7 Matrix diagonalisierbar

 $A \in K^{n \times n}$ ist diagonalisierbar \Leftarrow A hat genau n <u>verschiedene</u> Eigenwerte $A \in K^{n \times m}$ ist diagonalisierbar $\Leftrightarrow \forall \lambda : \mu_a(A,\lambda) = \mu_g(A,\lambda)$ $A \in K^{n \times n}$ ist diagonalisierbar $\Leftrightarrow D = diag(\lambda_1,\lambda_2,\cdots) = B^{-1}AB$ mit $B = [v_1,v_2,\cdots]$

Wobei im letzten Fall v_i die Eigenvektoren von A und λ_i die Eigenwerte von A sind. Die letzte Gleichung sagt also aus, dass es, genau dann wenn A diagonalisierbar ist, eine Diagonalmatrix (aus Eigenwerten von A) gibt, die ähnlich zu A ist.

Eine lineare Abbildung $\Phi: V \to V$ heißt diagonalisierbar, wenn eine Basis B existiert, sodass die Darstellungsmatrix $D_{BB}(\Phi)$ eine Diagonalmatrix ist.

7.8 Matrix invertierbar

 $A \in K^{nxn}$ ist invertierbar $\Leftrightarrow det(A) \neq 0$

$$\left(A \in K^{2x2}\right)^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$