МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательнский университет ИТМО"

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №6

по дисциплине
"ИНФОРМАТИКА"
"Работа с системой компьютерной вёрстки Т_ЕХ"

Вариант №33

Выполнил: Студент группы Р3118 Павлов Александр Сергеевич Преподаватель: Балакшин Павел Велерьевич

Санкт-Петербург, 2021

ние приводится к виду $4\cos y = -3\cos 3y$, или $\cos y =$ $-3\cos 3y - 3\cos y = -6\cos y * \cos 2y$,

2. 9109. Указание. Пусть A = xyzt, где x, y, z, t - цифры. Из условия после преобразований получим уравнение 111(x-t) + 10(y-z)=10, откуда x=t, y-z=1.

3. $(3; +\infty)$ при $a \le 2;$

 $(2; a) \cup (3; +\infty)$ при $2 < a \le 3;$

 $(2;3) \cup (a;+\infty)$ при a > 3

Указание. Исходное неравенство равносильно совокупности двух систем:

$$\left\{ \begin{array}{ll} x-a>0, \\ \log_3(x-2)>0 \end{array} \right. \quad \text{или} \quad \left\{ \begin{array}{ll} x-a<0, \\ \log_3(x-2)<0. \end{array} \right.$$

4.
$$\frac{d^2 \sin \phi \sin \alpha (1 + 2 \cos 2\phi)}{8 \cos^3 \phi} \times \sqrt{4 \cos^2 \alpha \cos^2 \phi + \sin^2 \alpha (1 - 2 \cos 2\phi)^2}$$
 при $0 < \phi < \pi/4$;

при
$$0 < \phi < \pi/4$$
;
$$\frac{1}{4}d^2 \sin 2\alpha \sin 2\phi \frac{\sqrt{4\cos^2\phi + \lg^2\alpha(2\sin\phi - \cos 2\phi)^2}}{2\sin\phi - \cos 2\phi}$$

при $\pi/4 \le \phi < \pi/2$

Указание. Пусть O - центр описанной около

треугольника ABC окружности, O_1 — точка пересечения высот равного ему треугольника $A_1B_1C_1$ (рис. 5). Если $0{<}\phi{<}\pi/4$, треугольник ABC остроугольный и точки O и O_1 лежат внутри треугольников ABC и $A_1B_1C_1$ соответственно, так что в этом случае сечение является трапецией (рис. 6). При $\pi/4 \le \phi < \pi/2$ треугольники ABC и $A_1B_1C_1$ либо прямоугольные (при $\phi = \pi/4$), либо тупоугольные, а сечение будет треугольником (рис. 7).

В первом случае $AB=d\sin\alpha$, $BB_1=d\cos\alpha$. Пусть O_2- точка пересечения высот треугольника АВС (рис. 8). Тогда $BO=AB/(2\cos\phi),~BO_2=BC~ imes~\cos2\phi/\cos\phi$ и $OO_2=|BO |BO_2| = d \sin \alpha |1 - 2 \cos 2\phi| / (2 \cos \phi)$. Высоту OO_1 трапеции находим из соотношения

$$OO_1^2 = OO_2^2 + BB_1^2.$$

Для вычисления оснований трапеции - отрезков MN и M_1N_1 - воспользуйтесь подобием соответствующих треугольников:

$$MN = AC \cdot \frac{BO}{BD}; M_1N_1 = AC \cdot \frac{BO_2}{BD}$$

Если $\pi/4 \le \phi < \pi/2$, сечение — треугольник с основанием, равным $AC = 2d \sin \alpha \sin \phi$ и высотой KL.

Puc. 8.

Puc. 9.

При вычислении KL нужно, как и раньше, найти $OO_2 =$ $O_2D + OB - BD$ (рис. 9), заметить, что $KL = BD/\cos\gamma$, где γ — угол наклона секущей плоскти к плоскости основания и воспользоваться тем, что $\operatorname{tg} \gamma = B_1 B / OO_2$.

Вариант 2

1.
$$\frac{\pi}{4}(4k+1)$$
; $-\frac{\pi}{4} + (-1)^k \arcsin \frac{4-\sqrt{17}}{\sqrt{2}} + \pi k, k \in \mathbb{Z}$.

3. $x_1 = -(c+63); x_2 = 1-c$. Оба корня положительны при c < -63.

4. Если $0 < \gamma \le \arccos \frac{1}{3}$, имеются два существенно различных случая: $R_1 = \frac{h}{2} \sqrt{\frac{3\cos\gamma - 1}{\cos\gamma}}$ (сечение параллельно плоскости основания) и

 $R_2 = h\sqrt{2} \frac{\operatorname{ctg} \gamma \cdot \operatorname{tg} \gamma/2}{\sqrt{2 + \operatorname{ctg}^2 \gamma}}$ (сечение параллельно бо-

ковой грани). Если $\arccos \frac{1}{3} < \gamma < \pi/2$, остаются только сечения, параллельные боковым граням, при этом $R = R_2$.

Физика

Билет 1

1. Полное ускорение \vec{a} складывается из нормального $\vec{a_n}$ и тангенциального $\vec{a_{\tau}}$:

$$a = \sqrt{a_n^2 + a_\tau^2}.$$

Нормальное ускорение равно $a_n = v^2/R$, а скорость тела v при постоянном тангенциальном ускорении линейно растет со временем: $v = a_{\tau}t$. В результате

получаем $a = \sqrt{((a_{\tau}t)^2/R)^2 + a_{\tau}^2} = a_{\tau}\sqrt{1 + (a_{\tau}t^2/R)^2}.$

2. Средняя энергия атома аргона \overline{E} связана с температурой T соотношением $\overline{E} = 3/2kT$, где k- постоянная Больцмана. Температуру найдем из уравнения Клайперона-Менделеева: $T = pV/(\nu R)$. Тогда $\overline{E}={}^3/2kpV/(\nu R)={}^3/2pV/(\nu N_A)=1,2\cdot 10^{-23}$ Дж, где $N_A=6\cdot 10^23$ моль $^{-1}$ - число Авогадро. 3. Потенциал шарика возрастает до тех пор, пока кингетическая энергия самых быстрых вылетающих из него фотоэлектронов достаточна для того, чтобы они смогли преодолеть возникающий задерживающий потенциал и удалиться от шарика на бесконечно большое расстояние. Поэтому уравнение Эйнштейна для фотоэффейта запишется в виде

$$hc/\lambda = A + e\phi_{max}$$

откуда находим искомую работу выхода A:

$$A = hc/\lambda - e\phi_{max} = 4{,}36 \text{ sB}.$$

4. Поскольку сила, действующая на протон со стороны магнитного поля, не изменяет величину скорости v, а начальная скорость протона равна нулю, закон сохранения энергии - для момента, когда протон находится в точке A, и для начального момента - запишется в виде

$$mv^2/2 - eEh = 0.$$

Второй закон Ньютона для протона в точке A, в проекциях на ось Y, выглядит так:

$$-ma = eE - evB$$
.

Таким образом, ускорение протона равно

$$a = (e/m)(B\sqrt{2(e/m)Eh} - E) = 10^{12} \text{ m/c}^2.$$

Билет 2

- 1. На рисунке (см. рис. 2 в статье) представлены графики изобарны процессов. Давление газа в состоянии 1 мекныше, чем в состоянии 4.
- **2**. На частицу в магнитном поле действует сила Лоренца F = |q|vB, сообщающая ей центростремительное ускорение $a = v^2/R = F/m = |q|vB/m$. Отсюда

$$|q| = mv/(BR)$$
.

Правило нахождения направления силы \vec{F} дает ответ на вопрос о знаке заряда - он отрицательный.

3. Ускорение системы, состоящзей из нити и обоих тел, равно

$$a = F/(m_1 + m_2 + m).$$

Тело A движется под действием силы натяжения нити в точке соединения с этим телом, поэтому

$$T_A = m_2 a = F m_2 / (m_1 + m_2 + m).$$

Ускорение тела B обсуловлено действием на него силы \vec{F} и силы натяжения нити в точке соединения с ним:

$$m_1 a = F - T_B,$$

следовательно,

$$T_B = F - m_1 a = F(m_2 + m)/(m_1 + m_2 + m).$$

4. Пользуясь свойством обратимости хода лучей, точку S можно рассматривать как мнимое изображение. Тогда формула линзы запишется в виде

$$\frac{1}{d} - \frac{1}{l} = D,$$

где d - расстояние от линзы до точки пересечения лучей, преломившихся в линзе. Отсюда

$$d = l/(1 + Dl) = 13,6$$
cm.

Puc. 10. Билет 3

1. Уравнение движения тела, брошенного под углом к горизонту, имеет вид

$$\vec{r} = \vec{r_0} + \vec{v_0}t - \vec{g}t^2/2,$$

где \vec{r} — радиус-вектор тела в произвольный момент движения $t,~\vec{r_0}$ — начальный радиус-вектор, $\vec{v_0}$ — начальная скорость тела.

2. Внутренняя энергия ν молей одноатомного газа связана с его температурой соотношением $U = 3/2\nu RT$.

Теперь из уравнения Клапейрона-Менделеева легко найти давление газа:

$$p = \nu RT/V = 2U(3V) = 1$$
atm.

3. Лучи, преломившиеся в линзе и отразившиеся от зеркала, вновь преломляются в линзе. Поэтому оптическая система "линза+зеркало" равна удвоенной оптической силе линзы, а уравнение этой системы имеет вид

$$\frac{1}{d} + \frac{1}{f} = \frac{2}{F}.$$

Отсюда получаем f = Fd/(2d - F) = -20 см.

Изображение мнимое и находится на расстоянии 20 см от линзы.

4. Запишем второй закон Ньютона для системы в целом: $m\vec{a}=\vec{F},$ а также для одной из муфточек (рис.10): $m_M\vec{a}=\vec{T}+\vec{F}+\vec{N}+\vec{F},$ где m_M- масса муфточки, $\vec{T}-$ сила натяжения нити, $\vec{F}-$ сила упругости пружины, $\vec{N}-$ сила нормальной реакции стержня, $\vec{F}-$ сила кулоновского взаимодействия муфточек. Запишем эти уравнения в проекциях на оси X и Y соответственно: ma=F,

$$0 = -T\sin(\alpha/2) + k(l_0 - l) + q^2/(4\pi\varepsilon_0 l^2),$$

где l- расстояние между муфточками. Заметим также, что силы T и F связаны соотношением

$$F = 2T\cos(\alpha/2)$$
,

а величина l может быть выражена через l_0 :

$$l = l_0 \sin(\alpha/2)$$
.

Замечание. Во всей промышленной продукции группа A в 1913 году составлялс 35,1%, а в 1970 году 74,8%.

Таблица

Год	Группа	Группа
	A	В
1913	100	100
1917	81	67
1928	155	120
1932	424	187
1937	1013	373
1940	1340	460
1945	1504	273
1950	2746	566
1955	5223	996
1960	8936	1498
1965	14156	2032
1970	21359	3281

Исходные документы:

ние приводится к виду 4 $\cos y = -3 \cos 3y$, или $\cos y = -3 \cos 3y - 3 \cos y = -6 \cos y \cdot \cos 2y$. 2. 9109. Указание. Пусть A = xyzt, где x, y, z, t — цифры. Из условия после преобразований получим уравнение 111(x-t)+10(y-t)-z)=10, откуда x=t, y-z=1.

3. (3; +∞) при a ≤ 2;

 $(2; a) \cup (3; +\infty)$ при $2 < a \le 3;$ $(2; 3) \cup (a; +\infty)$ при a > 3

У казание. Исходное неравенство равносильно совокупности двух систем:

$$\begin{cases} x-a>0, & x-a<0, \\ \log_3(x-2)>0 & \log_3(x-2)<0. \end{cases}$$

4.
$$\frac{d^2 \sin \varphi \sin \alpha (1+2\cos 2\varphi)}{8\cos^3 \varphi} \times \frac{1}{\sqrt{4\cos^2 \alpha \cos^2 \varphi + \sin^2 \alpha (1-2\cos 2\varphi)^2}}$$

при $0 < \phi < \pi/4$;

$$\frac{1}{4} d^2 \sin 2\alpha \sin 2\varphi \frac{\sqrt{4\cos^2 \varphi + \lg^2 \alpha (2\sin \varphi - \cos 2\varphi)^2}}{2\sin \varphi - \cos 2\varphi}$$

при $\pi/4 \leqslant \varphi < \pi/2$.

У казание. Пусть О — центр описанной около треугольника ABC окружности, O_1 — точка пересечения высот равного ему треугольни-ка $A_1B_1C_1$ (рис. 5). Если $0 < \phi < \pi/4$, треугольник ABC остроугольный и точки O и O_1 лежат внутри треугольников ABC и $A_1B_1C_1$ соответственно, так что в этом случае сечение является трапецией (рис. 6). При $\pi/4 \leqslant \varphi < \pi/2$ треугольники ABC и $A_1B_1C_1$ либо прямоугольные (при $\phi = \pi/4$), либо тупоугольные, а сечение будет треугольником (рис. 7).

В первом случае $AB=d\sin\alpha$, $BB_1=d\cos\alpha$. Пусть O₂ — точка пересечения высот треугольника ABC (рис. 8). Тогда $BO=AB/(2\cos\varphi)$, $BO_2=BC\times\cos2\varphi/\cos\varphi$ и $OO_2=|BO-BO_2|=d\sin\alpha|1-2\cos2\varphi|/(2\cos\varphi)$. Высоту OO_1 трапеции находим из соотношения

$$OO_1^2 = OO_2^2 + BB_1^2$$
.

Для вычисления оснований трапеции — отрезков MN и M₁N₁ — воспользуйтесь подобием соответствующих треугольников:

$$MN = AC \cdot \frac{BO}{BD}$$
; $M_1N_1 = AC \cdot \frac{BO_2}{BD}$.

Если $\pi/4 \leqslant \phi < \pi/2$, сечение — треугольник с основанием, равным $AC = 2d \sin \alpha \sin \varphi$, и высо-

Puc. 8.

Puc. 9.

той KL. При вычислении KL нужно, как и раньше, найти $OO_2 = O_2D + OB - BD$ (рис. 9), заметить, что $KL{=}BD/\cos\gamma$, где γ — угол наклона секущей плоскости к плоскости основания и воспользоваться тем, $tg \gamma = B_1B/OO_2$.

Вариант 2

1.
$$\frac{\pi}{4} (4k+1); -\frac{\pi}{4} + (-1)^k \arcsin \frac{4-\sqrt{17}}{\sqrt{2}} + \frac{\pi}{4}k, k \in \mathbb{Z}$$

2. 60 ч.

3. $x_1 = -(c+63)$; $x_2 = 1-c$. Оба корня положительны при c < -63.

4. Если 0<γ≤атссов 1/3, имеются два различных шественно случая: $R_1 =$

$$=\frac{h}{2}\sqrt{\frac{3\cos\gamma-1}{\cos\gamma}}$$
 (сечение параллельно

плоскости основания) и $R_2 = \hbar\sqrt{2} \frac{\text{ctg } \gamma \cdot \text{tg } \gamma/2}{\sqrt{2 + \text{ctg}^2} \gamma}$

(сечение параллельно боковой грани). Если агссов $1/3 < \gamma < \pi/2$, остаются только сечения, параллельные боковым граням, при этом $R=R_2$.

Физика

Билет 1

1. Полное ускорение а складывается из нормального \vec{a}_n и тангенциального \vec{a}_{τ} :

$$a = \sqrt{a_n^2 + a_1^2}.$$

Нормальное ускорение равно $a_n = v^2/R$, а скорость тела v при постоянном тангенциальном ускорении линейно растет со временем: v == =а, t. В результате получаем

$$a = \sqrt{((a_t t)^2/R)^2 + a_t^2} = a_t \sqrt{1 + (a_t t^2/R)^2}$$

2. Средняя энергия атома аргона Е связана с температурой T соотношением $\bar{E} = \frac{3}{2}kT$, где k — постоянная Больцмана. Температуру найдем из уравнения Клапейрона — Менделеева: $T = pV/(\nu R)$. Тогда

$$\vec{E} = {}^3/{}_2 k p V/(vR) = {}^3/{}_2 p V/(vN_A) = 1,2 \cdot 10^{-23}$$
 Дж, где $N_A = 6 \cdot 10^{23}$ моль⁻¹ — число Авогадро.

3. Потенциал шарика возрастает до тех пор, пока кинетическая энергия самых быстрых вылетающих из него фотоэлектронов достаточна для того, чтобы они смогли преодолеть возникающий задерживающий потенциал и удалиться от шарика на бесконечно большое расстояние. Поэтому уравнение Эйнштейна для фотоэффекта запишется в виде

$$hc/\lambda = A + e\varphi_{\max}$$

откуда находим искомую работу выхода А:

$$A = hc/\lambda - e\varphi_{\text{max}} = 4,36$$
 aB.

4. Поскольку сила, действующая на протои со стороны магнитного поля, не изменяет величину скорости v, а начальная скорость протона равна нулю, закон сохранения энергии — для момента, когда протон находится в точке A, и для начального момента — запишется в виде

$$mv^2/2 - eEh = 0$$
.

Второй закон Ньютона для протона в точке A, в проекциях на ось Y, выглядит так:

$$-ma = eE - evB$$
.

Таким образом, ускорение протона равно равно

$$a = (e/m) (B \sqrt{2(e/m)Eh} - E) = 10^{12} \text{ m/c}^2$$
.

Билет 2

1. На рисунке (см. рис. 2 в статье) представлены графики изобарных процессов. Давление газа в состоянии 1 меньше, чем в состоянии 4. 2. На частицу в магнитном поле действует сила Лоренца F = |q|vB, сообщающая ей центростремительное ускорение $a = v^2/R = F/m = |q|vB/m$. Отсюда

$$|q| = mv/(BR)$$
.

Правило нахождения направления силы \vec{F} дает ответ на вопрос о знаке заряда — он отрицательный.

3. Ускорение системы, состоящей из нити и обоих тел, равно

$$a = F/(m_1 + m_2 + m).$$

Тело A движется под действием силы натяжения нити в точке соединения с этим телом, поэтому

$$T_A = m_2 a = F m_2 / (m_1 + m_2 + m).$$

Ускорение тела B обусловлено действием на него силы F и силы натяжения нити в точке соединения с ним:

$$m_1 a = F - T_{B^*}$$

следовательно,

$$T_B = F - m_1 a = F(m_2 + m)/(m_1 + m_2 + m).$$

 Пользуясь свойством обратимости хода лучей, точку S можно рассматривать как мнимое изображение. Тогда формула линзы запишется в виде

$$\frac{1}{d} - \frac{1}{l} = D,$$

где d — расстояние от линзы до точки пересечения лучей, преломившихся в линзе. Отсюда

$$d = l/(1 + Dl) = 13,6$$
 cm.

Puc. 10.

Вилет 3
1. Уравнение движения тела, брошенного под углом к горизонту, имеет вид

$$\vec{r} = \vec{r}_0 + \vec{v}_0 t - \vec{g} t^2 / 2$$

где \tilde{r} — радиус-вектор тела в произвольный момент движения t, \tilde{r}_0 — начальный радиус-вектор, \tilde{v}_0 — начальная скорость тела.

2. Внутренняя энергия v молей одноатомного газа связана с его температурой соотношением

$$U=3/NRT$$
.

Теперь из уравнения Клапейрона — Менделеева легко найти давление газа:

$$p = vRT/V = 2U/(3V) = 1$$
 atm.

3. Лучи, преломившиеся в линэе и отразившиеся от зеркала, вновь преломляются в линэе. Поэтому оптическая сила системы «линза + + зеркало» равна удвоенной оптической силе линзы, а уравнение этой системы имеет вид

$$\frac{1}{d} + \frac{1}{f} = \frac{2}{F}.$$

Отсюда получаем

$$f = Fd/(2d - F) = -20$$
 cm.

Изображение мнимое и находится на расстоянии 20 см от линзы.

 Запишем второй закон Ньютона для системы в целом:

$$m\vec{a} = \vec{F}$$
.

а также для одной из муфточек (рис.10):

$$m_{\mathsf{M}}\vec{a} = \vec{T} + \vec{F}_{\mathsf{yn}} + \vec{N} + \vec{F}_{\mathsf{K}},$$

где $m_{\rm M}$ — масса муфточки, \vec{T} — сила натяжения нити, $\vec{F}_{\rm уn}$ — сила упругости пружины, \vec{N} — сила нормальной реакции стержня, $\vec{F}_{\rm K}$ — сила кулоновского взаимодействия муфточек. Запишем эти уравнения в проекциях на оси X и Y соответственно:

$$ma = F$$
,
 $0 = -T \sin(\alpha/2) + k(l_0 - l) + q^2/(4\pi\epsilon_0 l^2)$,

где l — расстояние между муфточками. Заметим также, что силы T и F связаны соотношением

$$F = 2T \cos(\alpha/2)$$
,

а величина l может быть выражена через l_0 : $l = l_0 \sin{(\alpha/2)} \; .$

Замечание. Во всей промышленной продукции группа А в 1913 году составляла 35,1%, а в 1970 году 74,8%.

Габлина

Large Large	Группа Группа		
Год			
d Billy is	Marie A d	В	
1913	100	100	
1917	81	67	
1928	155	120	
1932	424	187	
1937	1013	373	
1940	1340	460	
1945	1504	273	
1950	2746	566	
1955	5223	996	
1960	8936	1498	
1965	14156	2032	
1970	21359	3281	

