Satisfiability Checking Lazy SAT-Modulo-Theories (SMT) Solving

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 16/17

The Xmas problem

There are three types of Xmas presents Santa Claus can make.

- Santa Claus wants to reduce the overhead by making only two types.
- He needs at least 100 presents.
- He needs at least 5 of either type 1 or type 2.
- He needs at least 10 of the third type.
- Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
- Santa Claus is late, and he has only 3 hours left.
- Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
- He has 300 EUR for presents in total.

$$(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0) \land p_1 + p_2 + p_3 \ge 100 \land$$

 $(p_1 \ge 5 \lor p_2 \ge 5) \land p_3 \ge 10 \land p_1 + 2p_2 + 5p_3 \le 180 \land$
 $3p_1 + 2p_2 + p_3 \le 300$

Logic: First-order logic over the integers with addition.

Boolean abstraction

$$\underbrace{(p_{1} = 0 \lor p_{2} = 0 \lor p_{3} = 0)}_{\textbf{a}_{1}} \land \underbrace{p_{1} + p_{2} + p_{3} \ge 100}_{\textbf{a}_{2}} \land \underbrace{(p_{1} \ge 5 \lor p_{2} \ge 5)}_{\textbf{a}_{6}} \land \underbrace{p_{3} \ge 10}_{\textbf{a}_{7}} \land \underbrace{p_{1} + 2p_{2} + 5p_{3} \le 180}_{\textbf{a}_{8}} \land \underbrace{3p_{1} + 2p_{2} + p_{3} \le 300}_{\textbf{a}_{9}}$$

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9 Assignment to decision variables: false

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

 $DL1: a_1: 0$

DL2: a_2 : 0, a_3 : 1 DL3: a_5 : 0, a_6 : 1

Solution found for the Boolean abstraction.

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$$
 $DL1: a_1: 0$ $DL2: a_2: 0, a_3: 1$ $DL3: a_5: 0, a_6: 1$

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_3 , a_6

$$(\underbrace{p_1 = 0}_{a_1} \lor \underbrace{p_2 = 0}_{a_2} \lor \underbrace{p_3 = 0}_{a_3}) \land \underbrace{p_1 + p_2 + p_3 \ge 100}_{a_4} \land \underbrace{(\underbrace{p_1 \ge 5}_{a_5} \lor \underbrace{p_2 \ge 5})}_{a_6} \land \underbrace{p_3 \ge 10}_{a_7} \land \underbrace{p_1 + 2p_2 + 5p_3 \le 180}_{a_8} \land \underbrace{3p_1 + 2p_2 + p_3 \le 300}_{a_9}$$

Encoding:

$$a_4: p_1 + p_2 + p_3 \ge 100$$
 $a_7: p_3 \ge 10$ $a_8: p_1 + 2p_2 + 5p_3 \le 180$
 $a_9: 3p_1 + 2p_2 + p_3 \le 300$ $a_3: p_3 = 0$ $a_6: p_2 \ge 5$

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9:3p_1+2p_2+p_3\leq 300$$

$$a_3:p_3=0$$

$$a_6: p_2 \ge 5$$

No.

Reason:
$$p_3 = 0 \land p_3 \ge 10$$
 are conflicting.

Add clause $(\neg a_3 \lor \neg a_7)$.

$$(a_1 \vee a_2 \vee a_3) \wedge a_4 \wedge (a_5 \vee a_6) \wedge a_7 \wedge a_8 \wedge a_9 \wedge (\neg a_3 \vee \neg a_7)$$

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

 $DL1: a_1: 0$

 $DL2: a_2: 0, a_3: 1$

 $DL3: a_5: 0, a_6: 1$

Conflict resolution is simple, since the new clause is already an asserting one.

$$(a_1 \vee a_2 \vee a_3) \wedge a_4 \wedge (a_5 \vee a_6) \wedge a_7 \wedge a_8 \wedge a_9 \wedge (\neg a_3 \vee \neg a_7)$$

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, \textcolor{red}{a_3}: \textcolor{red}{0}$

 $DL1: a_1: 0, a_2: 1$ $DL2: a_5: 0, a_6: 1$

Solution found for the Boolean abstraction.

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$$
 $DL1: a_1: 0, a_2: 1$ $DL2: a_5: 0, a_6: 1$

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_2 , a_6

$$(\underbrace{p_{1} = 0}_{a_{1}} \lor \underbrace{p_{2} = 0}_{a_{2}} \lor \underbrace{p_{3} = 0}_{a_{3}}) \land \underbrace{p_{1} + p_{2} + p_{3} \ge 100}_{a_{4}} \land (\underbrace{p_{1} \ge 5}_{a_{5}} \lor \underbrace{p_{2} \ge 5}_{a_{6}}) \land \underbrace{p_{3} \ge 10}_{a_{7}} \land \underbrace{p_{1} + 2p_{2} + 5p_{3} \le 180}_{a_{8}} \land \underbrace{3p_{1} + 2p_{2} + p_{3} \le 300}_{a_{9}} \land (\neg a_{3} \lor \neg a_{7})$$

Encoding:

$$a_4: p_1 + p_2 + p_3 \ge 100$$
 $a_7: p_3 \ge 10$ $a_8: p_1 + 2p_2 + 5p_3 \le 180$
 $a_9: 3p_1 + 2p_2 + p_3 \le 300$ $a_2: p_2 = 0$ $a_6: p_2 \ge 5$

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9:3p_1+2p_2+p_3\leq 300$$

$$a_2:p_2=0$$

$$a_6: p_2 \ge 5$$

No.

Reason:
$$p_2 = 0 \land p_2 \ge 5$$
 are conflicting.

Add clause $(\neg a_2 \lor \neg a_6)$.

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7) \land (\neg a_2 \lor \neg a_6)$$

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$

 $DL1: a_1: 0, a_2: 1$ $DL2: a_5: 0, a_6: 1$

Conflict resolution is simple, since the new clause is already an asserting one.

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7) \land (\neg a_2 \lor \neg a_6)$$

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$

 $DL1: a_1: 0, a_2: 1, a_6: 0, a_5: 1$

Solution found for the Boolean abstraction.

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$$
 $DL1: a_1: 0, a_2: 1, a_6: 0, a_5: 1$

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_2 , a_5

$$\underbrace{ (p_1 = 0 \lor p_2 = 0 \lor p_3 = 0)}_{a_1} \land \underbrace{ p_1 + p_2 + p_3 \ge 100}_{a_4} \land$$

$$\underbrace{ (p_1 \ge 5 \lor p_2 \ge 5)}_{a_5} \land \underbrace{ p_3 \ge 10}_{a_7} \land \underbrace{ p_1 + 2p_2 + 5p_3 \le 180}_{a_8} \land$$

$$\underbrace{ 3p_1 + 2p_2 + p_3 \le 300}_{a_9} \land (\neg a_3 \lor \neg a_7) \land (\neg a_2 \lor \neg a_6)$$

Encoding:

$$a_4: p_1 + p_2 + p_3 \ge 100$$
 $a_7: p_3 \ge 10$ $a_8: p_1 + 2p_2 + 5p_3 \le 180$
 $a_9: 3p_1 + 2p_2 + p_3 \le 300$ $a_2: p_2 = 0$ $a_5: p_1 \ge 5$

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1+p_2+p_3 \geq 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9:3p_1+2p_2+p_3\leq 300$$

$$a_2: p_2 = 0$$

$$a_5: p_1 \geq 5$$

Yes. E.g., $p_1 = 90$, $p_2 = 0$, $p_3 = 10$ is a solution.

Less lazy SMT-solving

Requirements on the theory solver

- Incrementality: In less lazy solving we extend the set of constraints.
 The solver should make use of the previous satisfiability check for the check of the extended set.
- (Preferably minimal) infeasible subsets: Compute a reason for unsatisfaction
- **Backtracking**: The theory solver should be able to remove constraints in inverse chronological order.

More involved SMT-structures

- This approach strictly divides between logical (Boolean) structure and theory constraints.
- There are other approaches, which do not divide Boolean and theory solving so strictly.
- One idea: Propagate in the SAT-solver bounds on theory variables.