1 2.1

题目1. 设m位正整数,(a,m)=1. 我们用 a^{-1} 表示同余方程 $ax\equiv 1\pmod m$ 的任何一个整数解(即 $a^{-1}\in\mathbb{Z},aa^{-1}\equiv\pmod m$). 证明

解答.

题目2. 设正整数n的十进制表示为

$$n = a_0 + a_1 \cdot 10 + a_2 \cdot 10^2 + \dots + a_k \cdot 10^k$$

证明

题目6. (1) 证明: $\exists n \ge 3$ 时, $\phi(n)$ 为偶数

解答.

题目7. 设m和n是正整数, $n=nt(t\in\mathbb{Z})$. 证明:模n的每个同余类都是模m的t个同余类之并。

题目10. 设 $a, m \in \mathbb{Z}, m \ge 2, (a, m) = 1$, 计算

$$\sum_{x=0}^{m-1} \left[\frac{ax}{m} \right]$$

2 2.2

题目1. 设a是环 \mathbb{Z}_m 中非零元素,如果存在 \mathbb{Z}_m 中非零元素 $\beta(\neq 0')$,使得 $\alpha\beta=0'$,称a零因子,证明

解答.

题目2.

- (1) 对与环 \mathbb{Z}_m 中任何元素 α , m个 α 相加为0′
- (2) 设p为素数,对于域 \mathbb{Z} 中非零元素 α 和正整数n,证明:n个 α 相加为0′当且仅当 $p \mid n$

题目3. 证明当p为奇素数时

解答.

题目4. 对于整数 $m \ge 2$ 证明: $(m-1)! \equiv -1 \pmod (m)$ 当且仅当m时素数

题目5. 证明,若 $Z_m^\star = a_1, \ldots, a_\phi(m)$,则 $Z_m^\star = a_1^{-1}, \ldots, a_{\phi(m)}^{-1}$.如何将它转述成同于的语言?