

de Huelva

3 ROBOTS MÓVILES

- 3.1 Introducción: Preliminares y Conceptos.
- 3.2 Características de los Robots Móviles.
- 3.3 Estrategias de Control.
- 3.4 Seguimiento de Trayectorias.
- 3.5 Algoritmoms de Planificación.
- 3.6 Introducción a la Localización.
- 3.7 Control reactivo
- 3.8 Slam
- 3.9 Navegación Topológica

Las tres Grandes Áreas de la Navegación Planificada

Las tres Grandes Áreas de la Navegación Planificada

Planning Algorithms (2006) by Steven M. LaValle

Robot Motion Control

Principles of Robot Motion (2005)

by Howie Choset, S Thrum et al

Robot Localization

Probabilistic Robotics (2006)

by S Thrum et al

3.4 Seguimiento de Trayectorias y Camino: Algoritmos de path tracking

•Dada una trayectoria o camino, se pretende que el robot la siga de la forma más aproximada posible:

☐ Seguimiento de Trayectoria.

☐ Seguimiento de Caminos.

• Existen numerosos métodos de seguimiento, basados en: Teoría de control no lineal, control predictivo, linealización del modelo cinemático, métodos geométricos.

• Seguimiento de Trayectorias:

- \square Se especifica la evolución temporal de la posición [x(t), y(t)] y de la velocidad $[\dot{x}(t), \dot{y}(t)]$.
- \square Para cada instante t_0 se calcula el error en posición y en velocidad teniendo en cuenta la posición y velocidad del robot y la posición y velocidad planificadas para ese instante: $[x(t_0), \dot{y}(t_0)]$ $[\dot{x}(t_0), \dot{y}(t_0)]$.

• Seguimiento de Caminos:

- \square Se especifica la serie de configuraciones que compone el camino [x, y]
- \square Para cada instante t_0 se calcula el error en posición teniendo en cuenta la posición del robot y un punto seleccionado del camino.

Seguimiento de Caminos

- •Dentro de los métodos geométricos, el más conocido y sencillo es el de **Persecución Pura (Pure Pursuit)**.
- •Permite seguir cualquier tipo de camino o ruta
- •Puede demostrarse que para trayectorias suficientemente suaves permite asegurar bajo error en posición y orientación.

Pure Pursuit

- En cada instante se obtine el punto del camino más cercano a la posició actual del vehículo (x_n,y_n) .
- El punto objetivo (x_t,y_t) se calcula escogiendo el punto del camino que dista un valor s de (x_n,y_n) .
- Se aplica el algoritmo de control para converger al puto objetivo.
- Se realizan los cálculos para cada vez que se ejecuta el bucle de control.

de Huelva

Algortimo Pure Pursuit

Pure_pursuit () {

```
definicion camino
valores iniciales
v=v<sub>0</sub> // se mantiene constante la velocidad
while(!fin)
   posicion actual=estimacion posicion() // en nuestro caso odometria
   punto=punto mas cercano()
   punto objetivo=punto+distancia
   rho=calcula curvatura(posicion actual, punto objetivo)
   potencia=calculo potencia(v, rho)
  actuacion(potencia) // se manda al robot los valores de control calculados
```


Algortimo Pure Pursuit

¡¡¡¡Atención!!!

El punto se mueve según lo hace el vehículo, es éste el que 'empuja el punto hacia adelante'

