$\forall S$ ssa di \mathbb{R}^n , denotiamo con W_S la giacitura di S. $X \cdot Y$ prodotto scalare ordinario in \mathbb{R}^n

Definizione $v \in \mathbb{R}^n$ è ortogonale al ssa S se $v \in W_S^{\perp}$

Esempio Se *H* è l'iperpiano di equazione $B \cdot X + d = 0$, allora *B* è ortogonale ad *H*.

Definizione S, S' ssa di \mathbb{R}^n . Si dice che S e S' sono ortogonali (e scriviamo $S \perp S'$) $\Leftrightarrow W_S \subseteq W_{S'}^{\perp}$ ($\Leftrightarrow W_{S'} \subseteq W_S^{\perp}$)

Esempi

- 1. r retta di equazione parametrica X=At+C, r' retta di equazione parametrica X=A't+C' hanno giacitura $W_r=\operatorname{Span}\ (A)$, $W_{r'}=\operatorname{Span}\ (A')$ quindi $r\bot r'\Leftrightarrow W_r\subseteq W_{r'}^\bot\Leftrightarrow A\in (\operatorname{Span}\ (A'))^\bot\Leftrightarrow A\cdot A'=0$
- 2. r retta di equazione X=At+C, H iperpiano di equazione $B\cdot X+d=0$. Allora $W_H=\{X\mid B\cdot X=0\}$ e $W_H^\perp=\operatorname{Span}(B)$ da cui segue che $r\perp H\Leftrightarrow A\parallel B$

Proposizione S ssa di \mathbb{R}^n , dim S = k

- 1. Se S' è ortogonale ad S, dim $S' \leq n k$.
- 2. $\forall d \in \{0,\dots,n-k\} \quad \exists S' \text{ ssa } \operatorname{di} \mathbb{R}^n \text{ t.c. } \left\{ \begin{array}{c} S' \bot S \\ \operatorname{dim} S' = d \end{array} \right.$
- 3. Tutti i ssa S' di \mathbb{R}^n t.c. $\begin{cases} S' \perp S \\ \dim S' = n k \end{cases}$ sono paralleli tra loro e ciascuno di essi interseca S in uno ed un solo punto
- 4. $\forall P \in \mathbb{R}^n \quad \exists ! \text{ ssa } S' \text{ t.c. } \left\{ \begin{array}{c} S' \bot S \\ \dim S' = n k \\ P \in S' \end{array} \right.$

Dimostrazione

- 1. $W_S \subseteq W_{S'}^{\perp}$. Poiché dim $W_S = k$, allora dim $(W_{S'}^{\perp}) \ge k$ e quindi dim $S' = \dim W_{S'} \le n k$
- 2. Basta prendere S' t.c. $\left\{ \begin{array}{c} W_{S'} \subseteq W_S^\perp \\ \dim S' = \dim W_{S'} = d \end{array} \right.$
- 3. Sia $S=R+W_S$ e sia S' t.c. $\begin{cases} S'\bot S \\ \dim S'=n-k \end{cases}$. Allora $S'=Q+W_{S'}$ e $W_{S'}\subseteq W_S^\bot$. Poiché dim $W_{S'}=n-k=0$ dim $W_{S'}=n-k=0$ (cioè tutti questi ssa hanno giacitura W_S^\bot , dunque sono paralleli tra loro) Consideriamo uno di questi ssa $S'=Q+W_S^\bot$

4. Basta prendere $S' = P + W_S^{\perp}$

Caso particolare r retta in \mathbb{R}^3 , $P \in \mathbb{R}^3$. Allora $\exists !$ piano H passante per P ed ortogonale ad r. Tale piano interseca r in uno ed un solo punto P_0

Osservazione Se r ha equazione parametrica X = At + C, allora $W_r = \operatorname{Span}(A)$. Deve essere $W_r \subseteq W_H^{\perp}$ e quindi $W_r = W_H^{\perp}$ cioè $W_H^{\perp} = \operatorname{Span}(A)$. Allora H ha equazione cartesiana $A \cdot X = A \cdot P$

Osservazione Si può estendere la nozione di ortogonalità a due iperpiani in \mathbb{R}^n . Se $H = \{X \mid B \cdot X + d = 0\}$ e $H' = \{X \mid B' \cdot X + d' = 0\}$ allora le giaciture $B \cdot X = 0$ e $B' \cdot X = 0$ sono ortogonali ai vettori B e B'. Diciamo che B e B' sono ortogonali $\Leftrightarrow B \perp B' \Leftrightarrow B \cdot B' = 0$

Esempio due piani in \mathbb{R}^3

DISTANZA DI UN PUNTO DA UN SOTTOSPAZIO AFFINE

S ssa di \mathbb{R}^n , $P \in \mathbb{R}^n$

Definizione $d(P,S) = \inf\{d(P,X) \mid X \in S\}$

Proposizione $\exists P_0 \in S \text{ t.c. } d(P,S) = \mid\mid P - P_0 \mid\mid \text{ (e quindi l'inf è un minimo)}$

Dimostrazione Sia dim S=k. Per la proposizione precedente, $\exists !S'$ ssa t.c. $\begin{cases} S' \bot S \\ \dim S' = n-k \\ P \in S' \end{cases}$. Allora $S \cap S' = \{P_0\}$

Osservazione $(P - P_0) \perp S$

Voglio provare che $d(P,S)=\mid\mid P-P_0\mid\mid$, ossia che $\forall x\in S, x\neq P_0$, si ha $d(P,X)>\mid\mid P-P_0\mid\mid$. Infatti $d(P,X)^2=\mid\mid P-X\mid\mid^2=\mid\mid (P-P_0)+(P_0-X)\mid\mid^2=((P-P_0)+(P_0-X))\cdot((P-P_0)+(P_0-X))=d(P,P_0)^2+d(P_0,X)^2+2(P_0-X)\cdot(P-P_0)>\mid\mid P-P_0\mid\mid^2=0$ perché $(P-P_0)\perp s$

Caso Particolare: distanza punto-iperpiano H iperpiano di equazione $B \cdot X + d = 0$, $P \in \mathbb{R}^n$. Allora $d(P, H) = \frac{|B \cdot P + d|}{||B||}$

Dimostrazione $d(P, H) = ||P - P_0||$ dove $P_0 = H \cap r$ con r la retta per P ortogonale ad H. r ha equazione X = Bt + P.

Calcolo $r \cap H$: $B \cdot (Bt + P) + d = 0$ cioè $t = \frac{-d - B \cdot P}{B \cdot B}$ ossia $P_0 = r \cap H = \frac{-d - B \cdot P}{B \cdot B}B + P$ $d(P, H) = ||P - P_0|| = ||\frac{B \cdot P + d}{B \cdot B}B|| = \frac{|B \cdot P + d}{||B||^2} ||B|| = \frac{|B \cdot P + d}{||B||}$

Esercizio Calcolare la distanza di un punto P da una retta r di \mathbb{R}^3 .

Definizione (Distanza fra due sottospazi affini di \mathbb{R}^n) $d(S, S') = \inf_{def} \{d(X, Y) \mid X \in S, Y \in S'\}$

Casi particolari in \mathbb{R}^3

Distanza di due piani H_1, H_2 di \mathbb{R}^3

- se $H_1 \cap H_2 \neq \emptyset$ $d(H_1, H_2) = 0$
- se $H_1 \parallel H_2$, allora $d(H_1, H_2) = d(P, H_2) \forall P \in H_1$, che si può calcolare con la formula precedente

Distanza retta-piano

- Se $r \cap H \neq \emptyset$ d(r, H) = 0
- Se $r \parallel H$, allora $d(r, H) = d(P, H) \forall P \in r$ che si calcola con la formula

Distanza retta-retta

- se $r_1 \cap r_2 \neq \emptyset$ $d(r_1, r_2) = 0$
- se $r_1 \parallel r_2 \implies d(r_1, r_2) = d(P, r_2) \forall P \in r_1$

Resta da esaminare il caso di due rette sghembe r_1 $X = A_1t + C_1$, r_2 $X = A_2t + C_2$. Poiché r_1 e r_2 non sono parallele, A_1 e A_2 sono linearmente indipendenti.

Provo che
$$\exists$$
! retta l t.c.
$$\begin{cases} &l\cap r_1\neq\emptyset\\ &l\cap r_2\neq\emptyset\\ &l\perp r_1 \ \mathrm{e}\ l\perp r_2 \end{cases}$$
 In tal caso se $P_1=l\cap r_1 \ \mathrm{e}\ P_2=l\cap r_2$ allora $d(r_1,r_2)=\mid\mid P_1-P_2\mid\mid$

Dimostrazione Il generico punto di r_1 è $P(t) = A_1t + C_1$. Il generico punto di r_2 è $Q(\theta) = A_2\theta + C_2$. La retta l congiungente P(t) e $Q(\theta)$ è ovviamente incidente sia a r_1 che ad r_2 ; provo che $\exists t \quad \exists \theta$ t.c. essa è ortogonale sia a r_1 che a r_2 .

Poiché
$$l$$
 è parallela al vettore $P(t)-Q(\theta)=A_1t+C_1-A_2\theta-C_2$, basta imporre
$$\left\{\begin{array}{ll} (A_1t+C_1-A_2\theta-C_2)\cdot A_1=0\\ (A_1t+C_1-A_2\theta-C_2)\cdot A_2=0 \end{array}\right.$$

La matrice dei coefficienti di questo sistema lineare
$$2\times 2$$
 è $M=\begin{pmatrix}A_1\cdot A_1 & -A_1\cdot A_2\\A_1\cdot A_2 & -A_2\cdot A_2\end{pmatrix}$ det $M=-(A_1\cdot A_1)(A_2\cdot A_2)+(A_1\cdot A_2)^2$. Se $A_1=(\alpha_1,\beta_1,\gamma_1)$ $A_2=(\alpha_2,\beta_2,\gamma_2)$ si ha det $M=-(\alpha_1\beta_2-\alpha_2\beta_1)^2-(\alpha_1\gamma_2-\alpha_2\gamma_1)^2-(\beta_1\gamma_2-\beta_2\gamma_1)^2$. Se fosse det $M=0$, la matrice $\begin{pmatrix}--A_1---\\--A_2---\end{pmatrix}=\begin{pmatrix}\alpha_1&\beta_1&\gamma_1\\\alpha_2&\beta_2&\gamma_2\end{pmatrix}$ avrebbe rango 1: assurdo perché A_1 e A_2 sono linearmente indipendenti.

Quindi det $M \neq 0$ e allora il sistema ammette un'unica soluzione (t_0, θ_0) . I punti $P(t_0)$ e $Q(\theta_0)$ sono quelli cercati.