Лекция 2

10 сентября 2024

1 Модели вещественных чисел

Некоторые возможные модели действительных чисел:

- 1. Бесконечная периодическая десятичная дробь (\mathbb{R}_a) (Если вещественная дробь периодическая, то число является рациональным, если не периодическая иррациональное).
- 2. Точка на числовой оси (\mathbb{R}_b) .

Обе реализации равноправны: между их объектами можно установить биективное соответствие $f: \mathbb{R}_a \to \mathbb{R}_b$, которое сохраняет арифметические операции и отношение порядка:

- f(x+y) = f(x) + f(y)
- $f(xy) = f(x) \cdot f(y)$
- $x \le y \Leftrightarrow f(x) \le f(y)$

Требования к аксиоматике:

- 1. Непротиворечивость.
- 2. Независимость (ни одна аксиома не может быть получена как следствие из других аксиом).
- 3. Полнота (между различными моделями можно установить изоморфизм).

2 Простейшие следствия аксиом сложения

Теорема 1

В множестве \mathbb{R} существует единственный 0.

Доказательство.

Предположим, что существуют два нуля 0_1 и 0_2 . Докажем, что они всегда совпадают. По определению: $0_1 = 0_1 + 0_2 = 0_2 + 0_1 = 0_2$.

Теорема 2

B множестве $\mathbb R$ у каждого элемента имеется единственный противоположный элемент.

Доказательство.

Рассмотрим произвольный $x \in \mathbb{R}$. Пусть x_1 и x_2 – элементы противоположные x. Докажем, что $x_1 = x_2$. $x_1 = x_1 + 0 = x_1 + (x + x_2) = (x_1 + x) + x_2 = 0 + x_2 = x_2$.

Теорема 3

Уравнение a + x = b в \mathbb{R} имеет (единственное) решение x = b + (-a).

Доказательство.

Воспользуемся теоремой 2: $a+x=b \Leftrightarrow (x+a)+(-a)=b+(-a) \Leftrightarrow x+(a+(-a))=b+(-a) \Leftrightarrow x+0=b+(-a) \Leftrightarrow x=b+(-a)$.

Замечание: выражение b + (-a) принято записывать как b - a (разность элементов b и а).

3 Простейшие следствия аксиом умножения

Аналогичные теоремы имеют место быть для операции умножения (доказательства этих теорем с точностью до замены символа и названия операции дословно повторяют доказательства предыдущих трех теорем).

Теорема 4

В \mathbb{R} существует единственная единица.

Теорема 5

Для каждого отличного от нуля элемента $x \in \mathbb{R}$ существует единственный обратный элемент.

Теорема 6

Уравнение $a \cdot x = b$ при любом $a \neq 0$ имеет единственное решение $b \cdot a^{-1}$.

4 Аксиома полноты (непрерывности), существование верхней (нижней) грани числового множества

Определение 1

Некоторое подмножество $X \subset \mathbb{R}$ ограничено сверху (снизу), если $\exists c \in \mathbb{R} : \forall x \in X \ x \leq c \ (c \leq x)$. При этом число с называется верхней границей (мажорантой) (нижней границей (минорантой)) множества X.

Определение 2

Множество, ограниченное сверху и снизу, называется ограниченным.

<u>Замечание</u>: если множество ограничено сверху (снизу), то у него бесконечно много мажорант (минорант).

Определение 3

Элемент $a \in X \subset \mathbb{R}$ называется наибольшим (максимальным) элементом X, если $\forall x \in X \ x \leq a$.

Замечание 1: аналогично определяется наименьший (минимальный) элемент.

3амечание 2: максимальный (минимальный) элемент множества X обозначается как $\max X$ $(\min X)$.

Замечание 3: не во всяком (даже ограниченном) множестве имеется максимальный (минимальный) элемент.

Определение 4

Наименьшее из чисел (обозначим его s), ограничивающих множество X сверху, называется верхней гранью (точной верхней гранью) X (обозначается как $s = \sup X$).

Замечание 1: данное определение обозначает, что выполнены два условия:

- 1. s это одна из мажорант X.
- 2. $\forall s' < s \; \exists x' \in X : s' < x' \; (то есть s не может быть уменьшено).$

<u>Замечание 2</u>: аналогично определяется понятие точной нижней грани $(i = \inf X)$. Домашнее задание: записать точное определение инфимума.

5 Связь между супремумом и инфимумом, макисимумом и минимумом

Утверждение 6

 $\sup X := \min\{c \in \mathbb{R} : \forall x \in Xx \le c\}. \text{ inf } X := \max\{c \in \mathbb{R} : \forall x \in Xx \ge c\}.$

Замечание: поскольку не всякое множество имеет максимальный (минимальный) элемент, необходимо доказать корректность сформулированных утверждений.

Теорема 7 – Принцип верхней грани

Всякое непустое ограниченное сверху подмножество $\mathbb R$ имеет единственную точную верхнюю грань.

Доказательство.

- 1. Докажем единственность. В силу аксиомы антисимметричности $((x \le y) \land (y \le x) \implies x = y)$ минимальный элемент может быть только один. Тем самым осталось убедиться лишь в существовании верхней грани.
- 2. Докажем существование. Пусть $X \subset \mathbb{R}$, а множество $Y = \{y \in \mathbb{R} : \forall x \in X \implies (x \leq y)\}$ (множество верхних границ). По условию эти множества не пусты. Тогда по аксиоме полноты $\exists c \in \mathbb{R} : \forall x \in X, \ \forall y \in Y \implies (x \leq c \leq y)$. Другими словами, такое число c (существование которого гарантировано аксиомой полноты) является для X мажорантой, а для Y минорантой. Будучи мажорантой $X, c \in Y$; в то же время, как миноранта $Y, c = \min Y = \sup X$.

Домашнее задание: доказать аналогичное утверждение для инфимума.