

A motivating example

- Goal: $p(spam \mid email-features, \theta)$. (Cormack and Lynam, 2005)
- Approach: find model θ that maximizes likelihood of training data.
- But: training data is observed over time (on-line learning).
- Moreover: we need to penalize complex models $\, heta$.

What is stochastic approximation, briefly

- Original Problem: (Spall, 2003; Kushner and Yin, 2003; Bottou, 1998)
 - 1. Minimize f(x), or find $F(x) = \nabla f(x) = 0$.
 - 2. We only observe **noisy**, **unbiased** $g_k \approx F(x_k)$.
- Robbins & Monro algorithm:
 - 1. $x_{k+1} = x_k a_k g_k$
 - 2. $\{a_k\}$ is a sequence of decreasing step sizes.
- Problem in this talk:

minimize f(x)subject to $c(x) \le 0$.

Motivating example (continued)

• nonsmooth, unconstrained objective:

minimize $-\log p(spam \mid email-features, \theta) + \lambda \|\theta\|_1$

• change θ to x to obtain **smooth**, **constrained** objective:

minimize $-\log p(spam \mid email-features, x) + \lambda \sum_i x_i$ subject to $x \ge 0$.

$$||u||_1 \equiv \sum_i |u_i|$$

One possible approach

Projected gradient

(Bertsekas, 1999; Poljak, 1978)

- ✓ Has convergence guarantees.
- Not always efficient to compute projection.
- ✗ Big steps may be biased⇒ slow progress.

The interior-point approach

Projected gradient

- ✓ Has convergence guarantees.
- X Only feasible for simple constraints.
- X Large steps may be biased.

Primal-dual Interior-point method

- ✓ Also has convergence guarantees.
- ✓ Works for many types of constraints.
- ✓ Steps are never biased.

The interior-point approach

Our problem:

minimize f(x)subject to $c(x) \le 0$.

The barrier function:

(Fiacco and McCormick, 1968)

$$f_{\mu}(x) \equiv f(x) - \mu \sum_{i=1}^{m} \log(-c_i(x))$$

The interior-point approach

- Primal interior-point method: solve sequence $F_{\mu}(x) = \nabla f_{\mu}(x) = 0$ for decreasing $\mu > 0$.
- **But:** we cannot assess convergence to each subproblem $F_{\mu}(x) = 0!$

Adapted from Fiacco and McCormick (1968).

The "primal-dual" approach

(M. H. Wright, 1992; S. J. Wright, 1996; many others...)

- minimize f(x)Recall problem: "dual" variables subject to $c(x) \le 0$.
- Introduce Lagrange multiplier-like variables \dot{z} .
- Use Robbins-Monro to solve moving target:

$$F_{\mu}(x,y) \equiv \begin{bmatrix} \nabla f(x) + \nabla c(x)^T z \\ c(x) \bullet z + \mu \end{bmatrix} = \begin{bmatrix} \text{gradient of Lagrangian} \\ \text{complementarity} \end{bmatrix} = 0.$$

$$\text{Take steps}$$

$$x_{k+1} = x_k + \hat{a}_k \quad \Delta x_k$$

"noisy" estimate

search direction

Why does this work?

- Central path ⇒
 numerically stable.
- 2. Primal-dual search direction keeps us on central path, even with noisy gradients.

A small experiment

Problem: linear regression + L1 penalty (Lasso)

minimize
$$||Ax - b||^2 + \lambda \sum_i x_i$$

subject to $x \ge 0$.

- Question: how well does on-line estimate recover exact solution?
- Synthetic data.
- Repeat for k = 1 to 100, step sizes $a_k = 1/(k_0 + k)$.

A small experiment

- Compared these methods:
 - Projected gradient
 - Primal-dual interior-point
 - Sub-gradient (Shalev-Shwartz et al, 2007; Hazan, 2007)
 - Smoothed approximation
 - Augmented Lagrangian (Wang and Spall, 2003)

Some empirical evidence

(step sizes are $a_k = 1/(k_0 + k)$.)

Some empirical evidence

Shrinkage effect

In summary

• Robbins-Munro solved F(x) = 0 with updates

$$x_{k+1} = x_k - a_k g_k.$$

• We solve sequence $F_{\mu}(x,z) = 0$ with updates

$$x_{k+1} = x_k + \hat{a}_k \Delta x_k$$

$$z_{k+1} = z_k + \hat{a}_k \Delta z_k$$

where $(\Delta x, \Delta z)$ is the solution to the "perturbed" KKT conditions.

Thank you!

