NCSU Linear Algebra for Data Science Python

Applications of Matrix Algebra

Vector Space Model for text data, Latent Semantic Indexing (LSI) for text searches, matrix representation for graph/network data, Recommender Systems as matrix factorization

Nagiza F. Samatova, <u>samatova@csc.ncsu.edu</u> Professor, Department of Computer Science North Carolina State University

Text Analytics VECTOR SPACE MODEL

Text Analytics Example

Titles

C1: Human machine interface for LAB ABC computer applications

C2: A survey of user opinion of computer system response time

C3: The *EPS user interface* management system

C4: System and human system engineering testing of EPS

C5: Relation of *user*-percieved *response time* to error measurement

M1: The generation of random, binary, unordered *trees*

M2: the intersection graph of paths in trees

M3: Graph minors IV: Widths of trees and well-quasi-ordering

M4: Graph minors: A survey

Italicized words occur and multiple docs and are indexed

Term-Document Matrix

Terms	Documents								
	c1	c 2	c 3	c4	c 5	m1	m2	m3	m4
Human	1	0	0	1	0	0	0	0	0
Interface	1	0	1	0	0	0	0	0	0
Computer	1	1	0	0	0	0	0	0	0
User	0	1	1	0	1	0	0	0	0
System	0	1	1	2	0	0	0	0	0
Response	0	1	0	0	1	0	0	0	0
Time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
Survey	0	1	0	0	0	0	0	0	0
Trees	0	0	0	0	0	1	1	1	0
Graph	0	0	0	0	0	0	1	1	1
Minors	0	0	0	0	0	0	0	1	1

Vector Space Model

- Documents are represented as vectors in the "term space"
 - Terms are usually stems
 - Documents represented by binary or weighted vectors of terms
- Queries are represented the same as documents
- Query and Document weights are based on length and direction of their vector
- A vector distance measure between the query and documents is used to rank retrieved documents

Documents in 3D Space

Primary <u>assumption</u> of the Vector Space Model: **Documents that are "close together" in space are similar in meaning.**

SVD: Text Analytics LSI: LATENT SEMANTIC INDEXING

Document Space has High Dimensionality

- What happens beyond 2 or 3 dimensions?
- Similarity still has to do with how many tokens are shared in common.
- More terms -> harder to understand which subsets of words are shared among similar documents.
- Approaches to handling (reducing) high dimensionality: Clustering and Latent Semantic Indexing (LSI) (i.e., dimension reduction using SVD)

Rectangular Matrix Decomposition with SVD

Query: "Human Computer Interaction"

SVD to 2 dimensions:

Blue dots are terms
Documents are red squares
Purple star is a query
Dotted cone is cosine .9 from Query
-- even docs with no terms in common
(c3 and c5) lie within cone.

Dimension 2

SVD Decomposition of Term-Document Matrix

 T_0 has orthogonal, unit-length columns ($T'_0T_0=1$) D_0 has orthogonal, unit-length columns ($D'_0D_0=1$) S_0 is the diagonal matrix of singular values t is the number of rows in X d is the number of columns in X m is the rank of X (\leq = min(t,d)

Low-Dimensional Approximation of Term-Document Matrix

T has orthogonal, unit-length columns (T'T = 1) D has orthogonal, unit-length columns (D' D = 1) S_0 is the diagonal matrix of singular values t is the number of rows in X d is the number of columns in X m is the rank of X (<= min(t,d)

k is the chosen number of dimensions in the reduced model (k <= m)

Comparing Two Documents

 The dot product or cosine angle between two column vectors of the matrix X(hat) tells the extent to which two documents have a similar profile of terms/words

Matrices in Graphs / Networks GRAPHS: MOTIVATION

What apps naturally deal w/ graphs?

Social Networks

Drug Design, Chemical compounds

Semantic Web

Computer networks

World Wide Web

Sensor networks

Real-world Graphs, or Networks

- Graphs: consist of objects (vertices) & their relationships (edges/links)
 - Social: Facebook, Twitter, Linkedin
 - Physical: Internet, power-grid
 - Biological: Protein-protein interactions
 - Academic Collaboration: Citation, co-author

Can you think of real-world graphs/networks?

- What are their nodes/vertices?
- What are their relationships/edges/links?

Examples of Real-World Graphs

Graph / Network	Node / Vertex	Edge / Arc / Relationship
Internet	Computer/router	Cable/wireless data connection
WWW	Web page	Hyperlink
Facebook	Person	Friendship
Power Grid	Generating station	Transmission line
Airport Network	Airport in a city	Flight connection
US Roads	City	Roads
Neural Network	Neuron	Synapse

How Big Are These Graphs?

Graphs encode rich relationships

Graphs Challenge Many Algorithms

Massive scale

- Can't use conventional algorithms on large graphs
- The graph itself may not even fit in memory

Facebook: |V| = 721M, |E| = 137B

Common crawl: |V| = 3.5B, |E| = 128B

$$O(n^2)$$
 \otimes

Matrices in Graphs / Networks GRAPH THEORY PRIMER

Graphs

Graph with 7 nodes and 16 edges

$$G = (V, E)$$

$$V = \{v_1, v_2, ..., v_n\}$$

$$E = \{e_k = (v_i, v_j) \mid v_i, v_j \in V, k = 1, ..., m\}$$

Graph Theory

A graph is a collection of *vertices* (nodes) and *edges*.

A vertex represents some object.

An edge connects two vertices and represents some relationship between them.

Graph Representation as a Matrix

- Adjacency Matrix (vertex vs. vertex)
- Incidence Matrix (vertex vs. edge)
- Sparse (lots of zero's) vs. Dense Matrices

Adjacency Matrix Representation

The representation is *NOT unique*. Some algorithms are <u>order-sensitive</u>.

	A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A(1)	1	1	1	0	1	0	0	0
A(2)	1	1	0	1	0	1	0	0
A(3)	1	0	1	1	0	0	1	0
A(4)	0	1	1	1	0	0	0	1
B(5)	1	0	0	0	1	1	1	0
B(6)	0	1	0	0	1	1	0	1
B(7)	0	0	1	0	1	0	1	1
B(8)	0	0	0	1	0	1	1	1

	A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A(1)	1	1	0	1	0	1	0	0
A(2)	1	1	1	0	0	0	1	0
A(3)	0	1	1	1	1	0	0	0
A(4)	1	0	1	1	0	0	0	1
B(5)	0	0	1	0	1	0	1	1
B(6)	1	0	0	0	0	1	1	1
B(7)	0	1	0	0	1	1	1	0
B(8)	0	0	0	1	1	1	0	1

Types of Graphs BIPARTITE GRAPHS

Types of Graphs

Bipartite Graphs

A graph B is bipartite if its vertices V can be partitioned into two non-intersecting sets C and S such that all relationships/edges go between C and S (no edges go from C to C or from S to S.

Bipartite Graphs in Business Intelligence (BI)

Business, B	Customers, c	Services, s	Relationships, R
Amazon	Customers	Products	Purchasing
Netflix	Subscribers	Movies	Watching
Pandora	Subscribers	Songs	Listening to
CISCO	Manufacturers	Parts	Supplying to CISCO

Observations about Bipartite BI Graphs

- Adjacency matrix is very sparse: ($r_{cs} = 0$ or $r_{cs} = ???$)
- Relationships are not always binary, but weighted:

- $r_{cs} = *****$: How customer rated a product
- $r_{cs} = 25$: How many times subscriber listened to the song
- $r_{cs} = High$: How reliable manufacturer was in supplying the part
- Missing relationships ($r_{cs} = 0$ or $r_{cs} = ???$) are business opportunities:
 - Recommend new products to customers
 - Find reliable manufacturers
 - Ensure continued customer subscriptions to services

Business, B	Customers, C	Services, 8	Relationships, R
Amazon	Customers	Products	Purchasing /Rating
Netflix	Subscribers	Movies	Watching
Pandora	Subscribers	Songs	Listening to
CISCO	Manufacturers	Parts	Supplying to CISCO

Bipartite Graphs MISSING LINKS

Assumptions: Hidden Factors & Missing Links

There are <u>a few hidden</u> or <u>latent factors</u> $F = \{f_1, f_2, ..., f_h\}$ that define/drive the <u>relationships</u> between C and S.

These latent / hidden factors can be used to complete missing relationships between C and S.

Example: Hidden Factors & Missing Links

Bipartite Graph Representation LATENT FACTOR SPACE

Latent Factor Space View

Ex: User-Movie Relations in a Latent Factor Space

© 2019 Nagiza F. Samatova, NC State Univ. All rights reserved.

Latent Factor Space MATRIX FACTORIZATION / DECOMPOSITION

Matrix Factorization / Completion View

First Two Vectors from Matrix Decomposition

© 2019 Nagiza F. Samatova, NC State Univ. All rights reserved.

Matrix Factorization / Decomposition ALTERNATE LEAST SQUARES

Paatero, 1994

Matrix Completion, or Matrix Factorization

Customers:
$$C = \{c_1, c_2, ..., c_n\}$$

Services:
$$S = \{s_1, s_2, ..., s_m\}$$

Hidden Factors:
$$F = \{f_1, f_2, \dots, f_h\}$$

$$R_{n\times m} \approx \widehat{R} = C_{n\times h} \times S_{h\times m}^T$$

$$r_{i,j} \approx \overrightarrow{c_i} \times \overrightarrow{s_j^T}$$

vector product

R: sparse matrix

R: dense matrix

 $\boldsymbol{C} \times \boldsymbol{S}^T$: dense matrix

C: dense matrix

S: dense matrix

h = O(constant)

 $h \ll n$

 $h \ll m$

How to Find the "Best" \hat{R} ?

$$R_{n \times m} \approx \widehat{R} = C_{n \times h} \times S_{h \times m}^{T}$$
 $r_{i,j} \approx \overrightarrow{c_i} \times \overrightarrow{s_j^T}$
 $r_{i,j} \approx \overrightarrow{c_i} \times \overrightarrow{s_j^T}$
 $r_{i,j} \approx \overrightarrow{c_i} \times \overrightarrow{s_j^T}$

- For the sake of simplicity, <u>let's assume</u> that $S_{h \times m}^T$ is known.
- How to find $C_{n \times h}$?
- Can we multiply on the right by the inverse of $(S_{h\times m}^T)^{-1}$?
 - Note: Matrix inverse is only for squared matrices
 - But $S_{h\times m}^T$ is skinny, rectangular $(h \ll m)$
- How can we create a squared matrix?

$$R_{n\times m} \times S_{m\times h} \approx C_{n\times h} \times (S_{h\times m}^T \times S_{m\times h})$$

- $S^T \times S$ is an $h \times h$ squared matrix.
- Let's assume that $S^T \times S$ is invertible, then

$$\mathbf{R} \times \mathbf{S} \times \left(\mathbf{S}^T \times \mathbf{S}\right)^{-1} \approx \mathbf{C}$$

Assuming S is known and S^TS is invertible

Goal: Optimize the "best" approximation to the matrix C

$$R \times S \times (S^T \times S)^{-1} \approx C$$

Minimize Least Squares, or the Frobenius Norm

$$\|R \times S \times (S^T \times S)^{-1} - C\|_F \to min$$

$$E = R \times S \times (S^T \times S)^{-1} - C$$
 Error Matrix, E

$$\|\underline{\boldsymbol{E}}\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^h \underline{\boldsymbol{E}}_{ij}^2} = \sqrt{trace(\underline{\boldsymbol{E}}^T\underline{\boldsymbol{E}})}$$

Let's assume that $C_{n \times h}$ is known

$$R_{n imes m} pprox \widehat{R} = C_{n imes h} imes S_{h imes m}^T$$
 $r_{i,j} pprox \widehat{R}$ known unknown vector

$$r_{i,j} \approx \overrightarrow{c_i} \times \overrightarrow{s_j^T}$$
vector product

- 1. How to find $S_{h\times m}^T$?
- 2. What other assumptions should be made?
- 3. What is the optimization function?

Alternating Least Square

Optimization Problem: Find

$$R_{n\times m} \approx \widehat{R} = C_{n\times h} \times S_{h\times m}^{T}$$

Minimize Loss Function:

$$||R - C \times S^T||_F^2 \rightarrow min$$

or equivalently

$$min_{C,S} \sum_{u,i} (r_{ui} - C_u S_i^T)^2$$

- Optimizing C and S simultaneously is non-convex, hard
- If C or S are fixed, then the system of linear equations: convex & easy
 - Initialize S with random values
 - Solve for C
 - Fix C
 - Solve for S
 - Repeat ("Alternating")
 - Fixed number of iterations or
 - Till the Error stabilizes

