rca_tre_operandi

Corso di ASE anno 18/19

Gruppo 14 PREVITERA GABRIELE PENNONE MIRKO PENNA SIMONE

Contents

1	Clas	s Index														1
	1.1	Class I	_ist										 	 	 	 1
2	Clas	ass Documentation											3			
	2.1	carry_s	/_save_logic Entity Reference										 3			
		2.1.1	Detailed	Description									 	 	 	 3
		2.1.2	Member	Data Docum	entation .								 	 	 	 3
			2.1.2.1	IEEE									 	 	 	 4
			2.1.2.2	STD_LOGI	C_1164 .								 	 	 	 4
	2.2	d_edge	e_in Entity	Reference .									 	 	 	 4
		2.2.1	Member	Data Docum	entation .								 	 	 	 4
			2.2.1.1	ieee									 	 	 	 4
			2.2.1.2	std_logic_1	164								 	 	 	 5
	2.3	d_edge	ge_out Entity Reference							 5						
		2.3.1	Member Data Documentation								 5					
			2.3.1.1	ieee									 	 	 	 5
			2.3.1.2	std_logic_1	164								 	 	 	 6
	2.4	full_ade	der Entity I	Reference .									 	 	 	 6
		2.4.1	Detailed	Description									 	 	 	 6
		2.4.2	Member Data Documentation										 	 	 	 6
			2.4.2.1	IEEE									 	 	 	 7
			2.4.2.2	STD_LOGI	C_1164 .								 	 	 	 7
	2.5	rca_tre	_operandi	Entity Refer	ence								 	 	 	 7
		2.5.1	Member	Data Docum	entation .										 	7

ii CONTENTS

		2.5.1.1	IEEE	 	 	7
		2.5.1.2	STD_LOGIC_1164	 	 	8
2.6	rca_tre	e_operand	timing Entity Reference	 	 	8
	2.6.1	Detailed	Description	 	 	8
	2.6.2	Member	Data Documentation	 	 	8
		2.6.2.1	IEEE	 	 	9
		2.6.2.2	STD_LOGIC_1164	 	 	9
2.7	ripple_	_carry_add	er Entity Reference	 	 	9
	2.7.1	Detailed	Description	 	 	9
	2.7.2	Member	Data Documentation	 	 	10
		2.7.2.1	c_in	 	 	10
		2.7.2.2	c_out	 	 	10
		2.7.2.3	IEEE	 	 	10
		2.7.2.4	S	 	 	10
		2.7.2.5	STD_LOGIC_1164	 	 	10
		2.7.2.6	width	 	 	10
		2.7.2.7	Y	 	 	10

Index

11

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

entity carry_save_logic	3
entity d_edge_in	4
entity d_edge_out	5
entity full_adder	6
entity rca_tre_operandi	7
entity rca_tre_operandi_timing	
Uncomment the following library declaration if instantiating any Xilinx primitives in this code	8
entity ripple carry adder	9

2 Class Index

Chapter 2

Class Documentation

2.1 carry_save_logic Entity Reference

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Generics

• width NATURAL:= 4

Ports

```
    X in STD_LOGIC_VECTOR(width-1 downto 0)
    Y in STD_LOGIC_VECTOR(width-1 downto 0)
    Z in STD_LOGIC_VECTOR(width-1 downto 0)
    T out STD_LOGIC_VECTOR(width-1 downto 0)
    somme dei 3 bit di stesso peso di X, Y e Z
    CS out STD_LOGIC_VECTOR(width-1 downto 0)
    riporti uscenti dai carry save blocks
```

2.1.1 Detailed Description

Descrizione Somma tre stringhe di bit per poter realizzare la logica di un carry save e viene posto prima del ripple carry in un carry save adder

2.1.2 Member Data Documentation

2.1.2.1 IEEE

```
IEEE [Library]
```

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 -

2.1.2.2 STD_LOGIC_1164

```
STD_LOGIC_1164 [Package]
```

last changes: <14/11/2018><13/11/2018><log> create

The documentation for this class was generated from the following file:

· carry_save_logic.vhd

2.2 d_edge_in Entity Reference

Libraries

• ieee

Use Clauses

- std_logic_1164
- all

Generics

• width natural:= 8

Ports

- clock in STD_LOGIC
- D in STD_LOGIC_VECTOR(width- 1 downto 0)
- Q out STD_LOGIC_VECTOR(width- 1 downto 0)

2.2.1 Member Data Documentation

2.2.1.1 ieee

```
ieee [Library]
```

D Flip-Flop (ESD book Chapter 2.3.1) by Weijun Zhang, 04/2001

```
2.2.1.2 std_logic_1164
```

```
std_logic_1164 [Package]
```

Flip-flop is the basic component in sequential logic design we assign input signal to the output at the clock rising edge

The documentation for this class was generated from the following file:

• d_edge_in.vhd

2.3 d_edge_out Entity Reference

Libraries

• ieee

Use Clauses

- std_logic_1164
- all

Generics

• width natural:= 8

Ports

- clock in STD_LOGIC
- D in STD_LOGIC_VECTOR(width- 1 downto 0)
- Q out STD_LOGIC_VECTOR(width- 1 downto 0)

2.3.1 Member Data Documentation

2.3.1.1 ieee

```
ieee [Library]
```

D Flip-Flop (ESD book Chapter 2.3.1) by Weijun Zhang, 04/2001

2.3.1.2 std_logic_1164

```
std_logic_1164 [Package]
```

Flip-flop is the basic component in sequential logic design we assign input signal to the output at the clock rising edge

The documentation for this class was generated from the following file:

• d_edge_out.vhd

2.4 full_adder Entity Reference

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Ports

• x in STD_LOGIC

full_adder input : addendo

y in STD_LOGIC

full_adder input : addendo

• c_in in STD_LOGIC

full_adder input : carry in ingresso

s out STD_LOGIC

full_adder output : somma

c_out out STD_LOGIC

full_adder output : carry

2.4.1 Detailed Description

Descrizione Somma i 3 bit in ingresso (2 addendi e 1 carry in ingresso). In uscita abbiamo il risultato della somma sul bit S e il riporto sul bit C.

2.4.2 Member Data Documentation

2.4.2.1 IEEE IEEE [Library] FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 – 2.4.2.2 STD_LOGIC_1164 STD_LOGIC_1164 [Package] last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

• full_adder.vhd

2.5 rca_tre_operandi Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Generics

• width natural:= 128

Ports

```
    X in STD_LOGIC_VECTOR(width-1 downto 0)
    Y in STD_LOGIC_VECTOR(width-1 downto 0)
    Z in STD_LOGIC_VECTOR(width-1 downto 0)
```

• S out STD_LOGIC_VECTOR(width+ 1 downto 0)

2.5.1 Member Data Documentation

2.5.1.1 IEEE

```
IEEE [Library]
```

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 -

2.5.1.2 STD_LOGIC_1164

```
STD_LOGIC_1164 [Package]

last changes: <14/11/2018> <13/11/2018> <log> create
```

The documentation for this class was generated from the following file:

· carry_save.vhd

2.6 rca_tre_operandi_timing Entity Reference

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Generics

• width natural:= 4

Ports

- · clock in STD_LOGIC
- X in STD_LOGIC_VECTOR(width- 1 downto 0)
- Y in STD_LOGIC_VECTOR(width- 1 downto 0)
- Z in STD_LOGIC_VECTOR(width- 1 downto 0)
- S out STD_LOGIC_VECTOR(width+ 1 downto 0)

2.6.1 Detailed Description

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

Uncomment the following library declaration if using arithmetic functions with Signed or Unsigned values

2.6.2 Member Data Documentation

2.6.2.1 IEEE

```
IEEE [Library]
```

Company: Engineer:

Create Date: 14:00:52 02/16/2019 Design Name: Module Name: rca_tre_operandi_timing - Behavioral Project Name: Target Devices: Tool versions: Description:

2.6.2.2 STD_LOGIC_1164

```
STD_LOGIC_1164 [Package]
```

Revision: Revision 0.01 - File Created Additional Comments:

The documentation for this class was generated from the following file:

· carry_save_timing.vhd

2.7 ripple_carry_adder Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Generics

• width NATURAL:= 8

Ports

- X in STD_LOGIC_VECTOR(width 1 downto 0)
- Y in STD_LOGIC_VECTOR(width 1 downto 0)
- c_in in STD_LOGIC
- S out STD_LOGIC_VECTOR(width 1 downto 0)
- c_out out STD_LOGIC

ripple_carry_adder output: carry

2.7.1 Detailed Description

Descrizione Somma le 2 stringe di bit in ingresso (2 addendi) e 1 bit (carry in ingresso). Caratterizzato da una serie di full_adder in cascata che propagano il riporto.

In uscita abbiamo il risultato della somma sul bit S e il riporto sul bit C.

2.7.2 Member Data Documentation

• ripple_carry_adder.vhd

```
2.7.2.1 c_in
c_in in STD_LOGIC [Port]
ripple_carry_adder input: addendo
2.7.2.2 c_out
c_out out STD_LOGIC [Port]
ripple_carry_adder output: carry
ripple_carry_adder output: somma
2.7.2.3 IEEE
IEEE [Library]
FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 -
2.7.2.4 S
S out STD_LOGIC_VECTOR(width - 1 downto 0 ) [Port]
ripple_carry_adder input : carry in ingresso
2.7.2.5 STD_LOGIC_1164
STD_LOGIC_1164 [Package]
last changes: <11/11/2018><15/10/2018><log> Aggiunta doc doxygen
2.7.2.6 width
width NATURAL:= 8
                       [Generic]
usato per definire il parallelismo del ripple_carry_adder
2.7.2.7 Y
Y in STD_LOGIC_VECTOR(width - 1 downto 0 ) [Port]
ripple_carry_adder input: addendo
The documentation for this class was generated from the following file:
```

Index

```
c_in
                                                             ripple_carry_adder, 10
     ripple_carry_adder, 10
                                                        std_logic_1164
                                                             d_edge_in, 4
c_out
     ripple_carry_adder, 10
                                                             d_edge_out, 5
carry_save_logic, 3
                                                        width
     IEEE, 3
                                                             ripple_carry_adder, 10
     STD_LOGIC_1164, 4
                                                        Υ
d_edge_in, 4
                                                             ripple_carry_adder, 10
    ieee, 4
    std_logic_1164, 4
d_edge_out, 5
    ieee, 5
    std_logic_1164, 5
full_adder, 6
    IEEE, 6
     STD_LOGIC_1164, 7
IEEE
    carry_save_logic, 3
    full_adder, 6
    rca_tre_operandi, 7
    rca_tre_operandi_timing, 8
     ripple_carry_adder, 10
ieee
    d_edge_in, 4
    d_edge_out, 5
rca_tre_operandi, 7
     IEEE, 7
     STD_LOGIC_1164, 7
rca_tre_operandi_timing, 8
     IEEE, 8
     STD_LOGIC_1164, 9
ripple_carry_adder, 9
    c_in, 10
    c_out, 10
     IEEE, 10
     S, 10
     STD_LOGIC_1164, 10
    width, 10
    Y, 10
    ripple_carry_adder, 10
STD_LOGIC_1164
    carry_save_logic, 4
    full_adder, 7
     rca\_tre\_operandi, \textcolor{red}{7}
```

rca_tre_operandi_timing, 9