321 (coin) Repeatedly flip a coin until you get a head. Prove that it takes n flips with probability 2^{-n} . With an appropriate definition of R, the program is $R \leftarrow t := t+1$. **if** $rand\ 2$ **then** ok **else** R **fi**

§ Starting with the right side, using 1/2 for $rand\ 2$ and $(t'>t) \times 2^{t-t'}$ for R: t:=t+1. if 1/2 then t'=t else $(t'>t) \times 2^{t-t'}$ fi substitution law $= if\ 1/2$ then t'=t+1 else $(t'>t+1) \times 2^{t+1-t'}$ fi replace if $= (t'=t+1)/2 + (t'>t+1) \times 2^{t+1-t'}/2$ $= (t'=t+1) \times 2^{t-t'} + (t'>t+1) \times 2^{t-t'}$ $= (t'>t) \times 2^{t-t'}$ = R

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder