Анализ

Галкина

05.09.2022

Содержание

1	Ряды	2
	1.1 Числовые ряды	2 2
2	Знакопеременные ряды	8
	2.1 Свойства абсолютно сходящихся рядов	9
3	Действия над абсолютно сходящимися рядами	9
4	Перестановки условно-сходящихся рядов	10
5	Равномерная сходимсоть функциональных рядов	11
	5.1 Свойства равномерно сходящихся ф. п	11
6	Функциональные ряды.	12
	6.1 Свойства равномерно сходящихся рядов	15
7	Степенные ряды	16
	7.1 Базовые определения	16
	7.2 Формулы для вычисления радиуса сходимости	17

1 Ряды

- Числовые ряды
- Функциональные ряды (в т.ч. степенные, ряды Фурье)

1.1 Числовые ряды

Определение 1 Ряд - сумма счетного числа слагаемых:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$$

Определение 2 Частичная сумма S_n - сумма первых n слагаемых

Определение 3 Cумма pяда - nредел nоследовательности частичных cумм $S = \lim_{n \to \infty} S_n$

Если предел существует и конечен, то ряд сходится. Если предел бесконечен, ряд расходится.

Определение 4 Остаток ряда - разность между частичной суммой u суммой $R_k = S - S_k = \sum_{n=k}^{\infty} a_k$

Пример. Геометрический ряд $a + aq + aq^2 + \dots$ Имеем $S_n = \frac{1-q^n}{1-q}$. Имеем случаи:

1.
$$|q| < 1$$
: $S = \frac{a}{1-a}$

2.
$$|q| > 0$$
: $S = \infty$

3.
$$q = 1: S = \infty$$

Итак, ряд сходится только если |q| > 1.

Пример.
$$\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$$
. Введем $a_n = b_{n+1} - b_n$, $b_n = \sqrt{n+1} - \sqrt{n}$ Итак, $S = \lim_{n \to \infty}$ Пример. $\sum_{n=1}^{\infty} \frac{n}{2^n} = 2$

Теорема 1 (необходимое условие сходимости ряда).

Если ряд сходится, то предел общего члена равен 0.

Равносильная формулировка: $\lim_{n\to\infty} a_n \neq_0 \implies \sum_{n=1}^{\infty} a_n \ pacxodumcs$.

Доказательство. По условию, существвует число - предел ряда. Тогда $\lim_{n\to\infty}a_n=\lim_{n\to\infty}(S-S_n)=S-S=0.$

Пример. $\sum_{n=1}^{\infty} \sin nx$, $x \neq \pi k$, $k \in \mathbb{Z}$. Зафиксируем х. Допустим, что $\lim_{n\to\infty} \sin nx = 0$. Но это противоре чит тому, что $\sin^2 + \cos^2 = 1$. Значит, ряд расходится.

Пример. Гармонический ряд расходится, т.к. расходится последовательность частичных сумм: $S_{2^n}>1+\frac{1}{2}+2\cdot\frac{1}{4}\ldots=1+\frac{n}{2}$

Сходящиеся ряды образуют линйеное пространство!

Теорема 2 (критерий Коши сходимости ряда) Ряд $\sum_{n=1}^{\infty} a_n$ сходится $\iff \forall \varepsilon > 0 \exists N(\varepsilon) \forall n > N \forall p \in \mathbb{N} : |a_{n+1} + \ldots + a_{n+p}| < \varepsilon$

Доказательство. Ряд сходится \longleftrightarrow существует предел частичных сумм. Применим к ним критерий Коши: $|S_{n+p} - S_n| < \varepsilon$

Теорема 3 (критерий сходимости через остаток)

- 1. Если ряд сходится, что сходится любой из его остатков.
- 2. Если хотя бы один остаток сходится, то ряд тоже сходится.

Доказательство. 1. По условию, существует сумма ряда. Рассмотрим частичный остаток с фиксированным номером $N \in \mathbb{N}$, рассмотрим $\sigma = \sum_{k=N+1}^{N+n} a_k$ - последовательность частичных сумм ряда R_N . Предел сигм равен пределу $(S_{n+N} - S_N) = S - S_N$.

2. По условию, существует такое n_0 , что R_{n_0} сходится. Тогда $\exists \lim_{n\to\infty} \sigma_n = \sigma$, $\sigma_n = a_{n_0} + \ldots + a_{n_0+n}$. Пусть $n_0 + n = m$, тогда $\lim_{n\to\infty} S_m = \lim_{n\to\infty} (S_{n_0} + \sigma_{m-n_0}) = S_{n_0} + \sigma$, то есть основный рядсходится. \square

Теорема 4 (критерий сходимости для неотрицательных рядов) Пустьдан ряд. Тогда ряд сходится \Leftrightarrow последовательность частичных сумм ограничена сверху.

Доказательство. \Rightarrow . По услови, существует предел $limS_n = S \in \mathbb{R} \Rightarrow \{S_n\}_n \in \mathbb{N}$ - ограничена В другую сторону. По условию, $\{S_n\}$ ограничена сверху, \Rightarrow по тео реме Вейрштрасса для ограниченной неубывающей последовательности имеется предел \square

Признак сравнения. С чем же сравнивать? С геометрической прогрессией, с обобщенным гармоническим рядом (с произвольной степенью числа).

Теорема 5 (признак сравнения в оценочной форме) Дано $0 \le a_n \le b_n \ \forall n \in \mathbb{N}$: Тогда из сходимости В следует сходимость А, из расходимости А следует расходимость В. Доказательство. Докажем исходя из критерия сходимости.

1. Пусть A_n, B_n - частичные суммы своих рядов. Так как ряд В сходится, то существует верхний предел для его частичных сумм. Так как ряд А меньше Б, по транзитиавности неравенств верхняя граница В лежит выше чем А. ЧТо по тому же критерию дает сходимость. 2. \square

Пример. Рассмотрим $p<1,\ n^p<1,\ \frac{1}{n^p}>\frac{1}{n}$. Так как гармонический ряд расходится, то $sum\frac{1}{n^p}$ расходится.

Пример. Найти сумму. $\sqrt{2} + \sqrt{2 - \sqrt{2}} + \sqrt{2 - \sqrt{2 + \sqrt{2}}} + ..., a_{n+1} =$ $\sqrt{2-b_n},\ b_{n+1}=\sqrt{2+b_n}.$ Заметим, что $b_1=2\cos\frac{\pi}{4},\ b_2\cos\frac{\pi}{8}.$ Дальше эта формула выводится по индукции. $b_n=2\cos\frac{\pi}{2^{n+1}}.\ a_n=\sqrt{2-b_{n-1}}=$ $\sqrt{2-2\cos\frac{\pi}{2^n}}=2\sin\frac{\pi}{2^{n+1}}$ MTa, $a_n\leqslant 2\cdot\frac{\pi}{2^{n+1}}=\frac{\pi}{2^n}$

Теорема 6 (Признак сравнения в предельной форме)

Пусть даны неотрицательные ряды $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$. Если предел отношения общего члена

- 1. Равен конечной (ненулевой) константе. Тогда ряды сходятся или расходятся одновременно
- 1.1. В частности, при mkk=1, ряды эквивалентны. 2. Если $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$, то имеет место "В сходится \Rightarrow А сходится"3. Если этот предел равен ооо, то: "A сходится \Rightarrow B сходится"

Доказательство. По опреелению предела. $\lim_{n\to\infty}a_{\frac{n}{b_n}}=k$ для $\varepsilon=k/2>0\exists n_0(\varepsilon)\forall n>n_0: k/2<\frac{a_n}{b_n}<3k/2.$ тогда если В сходится, А сходится. 2. Пусть $\lim_{n\to\infty}a_{\frac{n}{b_n}}=0.$ Lkz $\varepsilon=1,$ тогда для этого эпсилон $\exists n_0$ утверждение следует из первого признака сравнения.

Пункт 3 напрямую следует из второго. \square

Пример. 3 $\sum_{n=1}^{\infty} (\frac{1}{n^{\alpha}} - \frac{1}{(n+1)^{\alpha}})$. Имеем $S_n = 1 - \frac{1}{(n+1)^{\alpha}}$ Прии альфа>0сходится к 1, при альфа<0 ряд расходится. (Іјнайддем область расходимости обобщенного гармонического рядва с помощью уже известного)

Теорема 7 (тертий признак сравнения.)

Пусть даны ряды A и B ($\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$), и выполняется $a_{n+1}/a_n \leqslant b_{n+1}/b_n$ Тогда B сходится \Rightarrow A сходится (если A расходится, B расходится)

Доказательство. так как все неравенства полоэительные, их всех можно перемножить: тогда утверждение следует из первого признака сравнения. 🗆

Теорема 8 (Признак Даламбера в оценочной форме)

Доказательство. □

Теорема 9 Признак даламбера в предельной форме: $\lim_{n\to\infty}$

Доказательство.

Теорема 10 (признак Даламбера в предельной форме)

Пусть дан знакоположительный ряд. Тогда

- 1. $\overline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n} = q < 1$, то ряд сходится.
- 2. $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = r > 1$, то ряд расходится.

Доказательство. Пусть верхний предел равен q<1. Возьмем $\varepsilon=\frac{1-q}{2}$. Тогда $\exists n_0\in \mathbb{N}\ \forall n>n_0: \frac{a_{n+1}}{a_n}\leqslant q+\varepsilon$. По теореме Больцано-Вейерштрасса. Тогда по признаку Даламебра в оценочной форме ряд сходится.

Далее, пусть существует нижний предел. Тогда ряд сходится по признаку Даламберав оценочной форме, или от противного: через отрицание необходимого признака.

□

Замечание. Если предел равен 1, то r = q = 1

Замечание. В отличие от признака Коши, в п.2 нельзя заменить нижний предел на верхний.

Замечание. Если все-таки получилась единица, то ряд может как сходиться, так и расходиться.

Теорема 11 (признак Коши в оценочной форме)

Пусть дан знакоположительный ряд. Пусть $\sqrt[n]{a_n} \leqslant q < 1$. Тогда ряд сходится.

Пусть $\sqrt[n]{a_n} \geqslant 1$. Тогда ряд расходится.

Доказательство. Сравним с геометрической прогрессией: $a_n \leqslant q^n \implies$ из сходимости прогрессии следует сходимость ряда. \square

Теорема 12 (признак Коши в предельной форме) Пусть $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = q$.

- 1. $q < 1 \implies pяд сходится.$
- $2. q > 1 \implies pяд pасходится.$

Доказательство. Аналогично признаку Даламбера. Избавимся от верхнего предела, взяв предел подпоследовательности. Значит, тогда все числа попадают в эпсилон-окрестность числа q. Но тогда не выполнено необходимое условие.

Пример. $\sum_{n=0}^{\infty} \left(\frac{2+(-1)^n}{5+(-1)^{n+1}}\right)^n$. Кошируя это ряд, взяв наибольшую подпоследовательность, получим предел $\frac{3}{4}$, значит, ряд сходится. Можно ещё просто втупую посчитать две подпоследовательности.

Пример. $\sum_{n=1}^{\infty} \left(\frac{1+\cos n}{2+\cos n}\right)^{2n-\ln n}$. Оценим это рядом $b_n = \left(\frac{1+n}{2+n}\right)^{2n-\ln n}$. В итоге получится, что ряд сходится.

Теорема 13 (признак Раабе в оценочной форме)

Пусть дан знакоположительный ряд с общим членом $a_n > 0$. Тогда:

- 1. Если $\frac{a_{n+1}}{a_n} \geqslant_1 \frac{1}{n}$, ряд расходится. 2. Если $\exists \alpha > 0 : \frac{a_{n+1}}{a_n} \leqslant 1 \frac{\alpha}{n}$ тогда ряд сходится.

Доказательство. 1. $\frac{a_{n+1}}{a_n}\geqslant \frac{n-1}{n},\, b_n=\frac{1}{n-1}.\, \frac{a_{n+1}}{a_n}\geqslant \frac{b_{n+1}}{b_n},\,$ если ряд b_n расходится, то ряд расходится по третьему признаку сравнения.

2. Пусть $\beta \in (1, \alpha)$, тогда $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^{\beta}}$ сходится. Далее, $\frac{b_{n+1}}{b_n} = (\frac{n}{n+1})^{\beta} =$ $(1-\frac{1}{n})^{-\beta} = 1-\frac{\beta}{n} + O*(\frac{1}{n^2}).$ 3atem, $-\frac{\beta}{n} > -\frac{\alpha}{n} \implies 1-\frac{\beta}{n} > 1-\frac{\alpha}{n}$ Так как $O(\frac{1}{n^2})$ - бесконечно малая более высокого порядка, чем $\frac{\alpha}{n}$ и $\frac{\beta}{n}$, то $\exists n_0 \in \mathbb{N} \ \forall n > n_0 : 1 - \frac{\alpha}{n} < 1 - \frac{\beta}{n} + O(\frac{1}{n^2})$. Правая часть равна $\frac{b_{n+1}}{b_n}$. По условию, $\frac{a_{n+1}}{a_n} \leqslant 1 - \frac{\alpha}{n}$. Из этих двух условий по свойству транзитивности неравенств получаем оценку $\frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}$, откуда следует сходимость ряда. 🗆

Теорема 14 (Признак Раабе в предельной форме) Пусть $\lim_{n\to\infty} n(1-\frac{a_{n+1}}{a_n})=R$. Тогда: 1. R<1 - ряд расходится

- 2. R > 1 ряд сходится.

Доказательство. □

Теорема 15 (признак Куммера)

Даны две последовательности a_n и c_n . Тогда:

- 1. Если $\exists \alpha > 0 \exists n_0 \in \mathbb{N} \ \forall n > n_0 : C_n C_{n+1} \cdot \frac{a_{n+1}}{a_n} \geqslant \alpha$ ряд сходится.
- 2. Если ряд $\sum_{n=1}^{\infty} \frac{1}{C_n}$ расходится и $C_n C_{n+1} \frac{a_{n+1}}{a_n} \leqslant 0$, то ряд расходится.

Доказательство. Пж убейте меня бля я больше не могу

Следствие 1. Признак Даламбера при $C_n \equiv 1$

Следствие 2. Признак Раабе. Возьмем $C_n = n-1$. Имеем 1. $n-1-n \cdot \frac{a_{n+1}}{a_n} \geqslant \alpha \implies 1 - \frac{1}{n} - \frac{a_{n+1}}{a_n} \geqslant \frac{\alpha}{n} \implies \frac{a_{n+1}}{a_n} \leqslant 1 - \frac{1+\alpha}{n}$. Подставляя в пункт

Теорема 16 (признак Бертрана/следствие из признака Куммера)

1.
$$C_n = (n-2)\ln(n-1)$$
. $\frac{a_{n+1}}{a_n} \geqslant_1 -\frac{1}{n} - \frac{1}{n\ln n}$ - ряд сходится 2.

Доказательство. □

Теорема 17 (признак Гаусса)

Пусть дан положительный ряд. Пусть его можно представить в виде

$$\frac{a_{n+1}}{a_n} = D - \frac{r}{n} + \frac{\theta_n}{n^{1+\alpha}}$$

Тогда:

- 1. Если D > 1 ряд расходится
- 2. Ecлu D < 1 ряд cxodumcs
- 3. Если $D=1, R\leqslant 1$ ряд расходится
- 4. Если D = 1, R > 1 ряд сходится.

Доказательство. 🗆

Теорема 18 (интегральный признак)

Пусть ряд знакопостоянен. Ряд $\sum_{n=1}^{\infty} a_n$ и интеграл $\int_{1}^{\infty} f(x)dx$ сходятся и расходятся одновременно, причем $f(n) = a_n$, функция определена, непрерывна, неотрицательна и невозрастающая на $[1,\infty)$. Оценка погрешности:

Доказательство. $\forall x \geqslant 1 \; \exists k \in \mathbb{N} : k \leqslant x \leqslant k+1$. По условию невозрастания имеем $f(k) \geqslant f(x) > f(k+1)$. $a_{k+1} < f(x) \leqslant a_k, \; a_{k+1} \; \Box$ **Пример.** Исследуем $\sum_{n=1}^{\infty} \frac{1}{n^p}$. Взятием интеграла получаем условия сходимости:

$$\left\{ {
m cxoдится} \ {
m при} \ p > 1 {
m pacxoдится} \ {
m при} \ p \leqslant 1 \right.$$

Признак Дирихле Пусть общий член ряда имеет вид a_nb_n . Тогда если:

1ю a_n монотонна и её предел равен нулю

2. Предел частичных сумм b_n ограничен

Доказазтельство. по критерию Коши. Фиксируем положительный ε . По условию, предел ряда A равен нулю, тогда для $\frac{\varepsilon}{6B} > 0$, $\exists n_0 = n_0(\varepsilon) \in \mathbb{N} \forall n > n_0 : |a_n| < \frac{\varepsilon}{6B}$

Пример. $\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n}$. По признаку Дирихле ряд сходится, так как частичные суммы синуса арифметической прогрессии сходятся.

Теорема 19 (признак Абеля)

Пусть общий член ряда имеет вид $a_n b_n$. Тогда если

- 1. Последовательность a_n монотонна и ограниченна
- 2. Последовательность b_n сходится.

Доказательство. Докажем по критерию Коши. Зафиксируем $\varepsilon > 0$. Так как сходится ряд b_n , то по критерию Коши для $\frac{\varepsilon}{3M} > 0$ найдется такой номер, начиная с которого модуль суммы р членов ряда b_n меньше, чем эта штука. Из неравенства Абеля получим $|\sum_{k=n+1}^{n+p} a_k b_k \leqslant \frac{\varepsilon}{3M}|$

□ Упражнение. Доказать признак Абеля, используя признак Дирихле.

Пример. $\sum_{n=2}^{\infty} (\sin n\alpha \cos \frac{\pi}{n}) / \ln \ln n$. Косинус монотонный и ограниченный, а все остальное сходится по Дирихле. Значит,ряд сходится по Абелю.

2 Знакопеременные ряды

Сформулируем признаки Коши и Даламбера для знакопеременных рядов. Доказательство чекаем в Фихтенгольце.

Теорема 20 (признак Даламбера)

Пусть a_n - общий член знакопеременного ряда. Пусть $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = q$. Получаем классическую абсолютную сходимость.

Доказательство. ПОЛНОСТЬЮ следует из признака Даламбера для знакопостоянных рядов. Единственно, что здесь нового - то, что при абсолютной расходимости в признаке Даламбера будет и условная расходимость, поскольку не выполняется необходимое условие сходимости ряда. Для некоторого эпсилон... $\left|\frac{|a_{n+1}|}{|a_n|}\right| - q| < \varepsilon$

Теорема 21 (признак Коши) Все аналогично. Из абсолютной расходимости следует расходимость.

Доказательство. Признак сравнения для знакопеременных рядов не работает. Приведем контрпример: $a_n = \frac{(-1)^{n+1}}{n}$, $b_n = a_n + \frac{1}{(n+1)\ln(n+1)}$. Предел отношения таких рядов равен 1, то есть они эквивалентны, но вот первый сходится, а второй - расходится (см. общий пример с степенями и логарифмами).

2.1 Свойства абсолютно сходящихся рядов

. Лемма. Если рядсходится абсолютно, то модуль его суммы не превосходит суммы его модулей.

Теорема 22 ()

Пусть дан ряд с общим членом a_n , и он сходится абсолютно. Обозначим его сумму, частичную сумму, сумму модулей и частичную сумму модулей как $S, S_n, \overline{S}, \overline{S_n}$. Тогда, если переставить слагаемые, новый ряд a_n^* сходится абсолютно.

Доказательство. Ещё один ворох обозначений: $\overline{S_n^*}, S_n^*$. Длялюбого эпсилон найдется номер такой, что $|\overline{S_n} - \overline{S}| < \frac{\varepsilon}{2}$. Из леммы следует, что $|S - S_n| < \frac{\varepsilon}{2}$. Перейдем к переставленному ряду. Выберем в нем номер, чтобы такая частичная сумма содержала все слагаемые, входящие в $S_{n(\varepsilon)}$. Взяв любое число m большее этого номера, $|S_m^* - S_{n(\varepsilon)}| < |\overline{S}| < \frac{\varepsilon}{2}$. В эту сумму ои все вошли. Остались толкьо те, которые $??? |S_m^* - S| = |S_m^* - S_{n(\varepsilon)}| + S_{n(\varepsilon)} - S| \leqslant 2 \cdot \frac{\varepsilon}{2}$. Мы доказали сходимость ряда. Абсолютная сходимость следует из таких же рассуждений для ряда с модулем.

3 Действия над абсолютно сходящимися рядами

Теорема 23 Если ряд сходится абсолютно, то ряд, умноженный на константу, сходится абсо лютно.

Доказательство. Зафиксируем ε . Найдем такой номер, что ряд из модулей меньше чем $\frac{\varepsilon}{|c|}$. И в общем эта штука сходится. \square

Теорема 24 Сумма абсолютно сходящихся рядов абсолютно сходится.

Доказательство. Сумма модулей больше модуля суммы. \square

Теорема 25 (О произведении абсолютносходящихся рядов) Сумма всевозможных произведений a_ib_j сходится абсолютно, и сумма ряда равна произведению сумм.

Доказательство. Введем две переменные с модулями. Введем новые обозначения, как в прошлой теореме. Пользуясь этой же теоремой, мы можем доказать абсолютную сходимость для хотя бы одного из упорядочиваний. Представим себе бесконечную матрицу $|a_ib_j|$. Будем рассматривать последовательность частичных сумм в угловых минорах. Для них имеем формулу $S_{n^2} = S'_n \cdot S''_n$. По условию,в правой части есть оба предела, а значит и слева тоже есть. И ещё, $S_{n^2} \leqslant S_m \leqslant S_{(n+1)^2}$. Ну кароч....че то мдэ, тут дофига текста. \square

Определение 5 (произведение рядов по Коши)

Пусть $S_a \cdot S_b = S_c$. имеемследующее произведение:

$$c_1 = a_1 b_1$$

$$c_2 = a_1 b_2 + a_2 b_1$$

$$c_3 = a_1b_3 + a_2b_2 + a_3b_3$$

То есть суммируем по диагональкам той бесконечной матрицы.

Пример 1.
$$a_n = \frac{1}{n(n+1)} = 1$$
, $b_n = \frac{n}{2^n}$. Тогда $\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{n+1-k}{k(k+1)-2^{n+1-k}}$.

Пример 2. Произведение расходящихся рядов $a_n = 1, 5^n, b_n = 1 - 1, 5^n$ в смысле Коши - сходится, так как $c_n = 0, 75^n$.

Заметим, что условной сходимости недостаточно! Так, для $a_n = b_n = (-1)^{n-1}/\sqrt{n}$ ничего не выйдет. Смиритесь. Ребят а че вы с пары то свалили. Чувствую себя лохом, и от этого неуютненько.

4 Перестановки условно-сходящихся рядов

Теорема 26 Лемма о сходимости. Ряд a_n сходится условно. Рассмотрим отдельно подпоследовательности из положительных и отрицательных членов. Тогда их суммы $+\infty$, $-\infty$ соответственно.

Доказательство. \square

Теорема 27 (Римана)

Если рядсходится услвоно, то для любого действительного числа найдется такая перестановка ряда, при которой ряд сходится к этому числу. Доказательство. По предыдущей лемме, ряд из положительных членов расходится, значит, найдется частичная сумма, большая чем искомое число. Дальше найдем такую частичну сумм из отрицатльных членов, чтобы, прибавв её к прошлому этапу, получили снова меньше чем число. И так далее. □

5 Равномерная сходимсоть функциональных рядов

Теорема 28 (критерий Коши равномерной сходимости) $f_n(x) \rightrightarrows f(x)$ на множестве $X \Leftrightarrow \forall \varepsilon > 0 \exists n_0(\varepsilon) \in \mathbb{N} \forall n > n_0 \forall p \in \mathbb{N} \forall x \in X : |f_{n+p}(x) - f_n(x)| < \varepsilon$

Доказательство. 1. Зафиксируем $\varepsilon > 0$. По условию, $f_n(x) \rightrightarrows f$ на X. Тогда для $\frac{\varepsilon}{2} > 0$

Следствие (метод граничной точки). Если $f_n(x) \in [a,b)$ и $f_n(x) \to f(x) \ \forall x \in_9 a,b,\ f_n(a)$ расходится. Тогда $f_n(x)$ не сходится равномерно к f(x) на (a,b).

Доказательство. Допустим, что сходимсоть равномерная. Тогда че топроисходит

Пример. $f_n(x) = n^{x+1}e^{-nx}, x > 0.$

5.1 Свойства равномерно сходящихся ф. п.

- 1. Линейные комбинации сходятся с соответствующим линейным комбинациям пределов.
- 2. Умножение на ограниченную на X функцию: $(qf_n) \Longrightarrow (qf)$
- 3. На любом подмножестве X функция равномерно сходится.
- 4. Если $\forall x \in x: f_n(x) \to f(x)$ и $E \subset X$ конечное множество, то на E функция сходится равномерно.
- 5. Функция, равномерно сходящаяся на двух множествах, равномерно сходится на их объединении.

Доказательство.

6 Функциональные ряды.

Определение 6 Область $X \subset D$ сходимости ряда $\sum_{n=1}^{\infty} a_n(x)$ - область, лежащая в области определения всех функций ряда и для каждого x на ней ряд сходится.

Пример. $\sum_{n=1}^{\infty} \frac{8^n}{n} (\sin x)^{3n}$. Область сходимости - $|\sin x| < \frac{1}{2}$.

Определение 7 Ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно к S(x) на X, если $S_n \rightrightarrows S$ на X (S_n - частичная сумма ряда).

Пример. Исследуем на равномерную сходимость ряд $\sum_{n=1}^{\infty} \frac{x(2n-1)}{((n-1)^2+x^2)(n^2+x^2)}, x \in [1,\infty)$. Здесь предел частичных сумм можно найти по определению: $S_n(x) = \sum_{n=1}^{\infty} a_k = x(\frac{1}{x^2} - \frac{1}{n^2+x^2})$. При фиксированном $x \in D$: $\lim_{n \to \infty} S_n(x) = \frac{1}{x}$, $S(x) = \frac{1}{x}$. Проверим, что остаток равномерно стремится к нулю (тогда это верно и для суммы): $R_n(x) = S(x) - S_n(x) = \frac{x}{n^2+x^2} \leqslant \frac{x}{2nx} = \frac{1}{2n} \to 0, \ n \to \infty$ (по методу оценки остатка). Итак, ряд сходится равномерно к своей сумме.

Пример. Исследуем на равномерную сходимость $\sum_{n=1}^{\infty} \frac{x^2(2n-1)}{((n-1)^2+x^2)(n^2+x^2)}, \ x \in [1,\infty)$. Имеем $S_n(x) = 1 - \frac{x^2}{n^2+x^2}, \ S(x) = 1$

Теорема 29 (необходимое условие равномерной сходимости ф.р) Ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно к S(x) на X. Тогда $a_n \Rightarrow 0$ на X.

Доказательство. По условию, $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n > n_0 \forall x \in X : |S_n(x) - S(x)| < \frac{\varepsilon}{2} \square$

Теорема 30 (критерий Коши равномерной сходимости функционального ряда)

 $\sum_{n=1}^{\infty} a_n(x) \ pавномерно \ cxoдится \ ha \ X \ \kappa \ S(x) \ morдa \ u \ moлько \ morдa, \ \kappao-rda \ nocnedoвательность частичных сумм равномерно \ cxoдится: <math>\forall \varepsilon > 0 \ \exists n_0(\varepsilon) \in \mathbb{N} \ \forall n > n_0 \ \forall p \in \mathbb{N} \ \forall x \in X : |\sum_{k=n+1}^{n+p} a_k(x)| < \varepsilon$

Доказательство. Прсото применим определение Коши сходимости. \square **Пример.** Докажем, что у ряда $\sum_{n=1}^{\infty} \frac{\sqrt{x}}{n^2 x^2 + \sqrt{n}}, \ x \in (0,1)$ нет равномерной

сходимости. Возьмем $x = \frac{1}{2n}$; $a_k(x) \geqslant \frac{1}{4n}$. Поэтому для $\varepsilon \geqslant \frac{1}{4}$ по критерию Коши ряд расходится.

Теорема 31 (метод граничной точки)

пусть дан ряд $\sum_{n=1}^{\infty} a_n(x)$, его члены непрерывны на отрезке [a,b] и ряд сходится на интервале (a,b), но расходится на конце интервала. Тогда равномерной сходимости нет.

Доказательство. Повторяет доказательство для последовательностей.

Пример. $\sum_{n=1}^{\infty} \frac{1}{n^x}$, $x \in (1,2)$. Ряд сходится на интрвале как обобщенный гармонический ряд. При x=1 ряд расходится, значит, равномерной сходимости нет.

Теорема 32 (признак Вейерштрасса равномерной сходимости ф.р./мажарантный Пусть дан ряд с общим членом $a_n(x)$ и мы можем оценить $|a_n(x)| \leq a_n$ (то есть мажорирующим рядом, не зависящим от x), причем $\sum_{n=1}^{\infty} a_n$ сходится. Тогда ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на том множестве, на котором верна оценка.

Доказательство. Испоьзуем критерий Коши: фиксируем некоторое $\varepsilon > 0$. Ряд a_n сходится, значит, по критерию коши $\forall \varepsilon > 0 \; \exists n_0(\varepsilon) \in \mathbb{N} \; \forall n > n_0 \forall p \in \mathbb{N} : \sum_{k=n+1}^{n+p} a_k < \varepsilon$. Из пункта 1 имеем $\forall x \in X \forall n \in \mathbb{N} : |a_n(x)| \leqslant a_k$. Тогда $|\sum_{k=n+1}^{n+p} a_k(x)| \leqslant \sum_{k=n+1}^{n+p} |a_k(x)| \leqslant \sum_{k=n+1}^{n+p} a_k < \varepsilon$. Тогда по критерию Коши для функционального ряда следует равномерная сходимость. \square Пример. Исследуем на равномерную сходимость $\sum_{n=1}^{\infty} \frac{\operatorname{arcctg}(nx)}{n}, \; x \in (\varepsilon, \infty), \; \varepsilon > 0$. Подставив ноль, по методу граничной точки нет равномерной сходимости.

Пример. Исследуем сходимость $\sum_{n=1}^{\infty} e^{-n^5 x^2} \sin nx$ на прямой. Спойлер: сходится равномерно. Сделаем оценку: $|a_n(x)| \leqslant e^{-n^5 x^2} n|x|$. Функция симметрична при замене $x \mapsto -x$, значит, будем оценивать на положительном луче, откинув модуль. Оценим максимумом, вычислив производную и решив уравнение. Имеем $x = \frac{1}{\sqrt{2n^5}}$. Подставляем: $f_n(x) \leqslant$

 $f(\frac{1}{\sqrt{2n^5}}) = \frac{1}{\sqrt{2e}n^{\frac{3}{2}}} = a_n$. Значит, $|a_n(x)| \leqslant |f_n(x)| \leqslant a_n \ \forall x \in \mathbb{R}$. Итак, сходимость равномерная.

Теорема 33 (признак Дирихле равномерной сходимости функционального ряда)

Дан ряд
$$\sum_{n=1}^{\infty} a_n(x)b_n(x)$$
 и

1. $\forall x \in X$: $\{a_n(x)\}$ монотонна по n;

2. $\exists M = const \ \forall x \in X \forall n \in N : |B_n(x)| \leqslant M, \ \textit{где } B_n(x)$ - частичные суммы ряда b_n .

Tогда ряд cxoдится равномерно на X

Доказательство. Фиксируем $\varepsilon > 0$. Так как $a_n \rightrightarrows 0$ на X, то для $\frac{\varepsilon}{6B} > 0$

Пример. $\sum_{n=1}^{\infty} \sin nx/n$. Исследовать на равномерную сходимость на интервалах $(\varepsilon, 2\pi - \varepsilon)$, $(0, 2\pi)$. Ну, раз говорят что уже было. То не пишем. На втором интервале нет равномерной сходимости по краевому критерию.

Теорема 34 (признак Абеля равномерной сходимости ф.р.)

Дан ряд
$$\sum_{n=1}^{\infty} a_n(x)b_n(x)$$
 $u \ \forall x \in X$:

- 1. $|a_n(x)| \leq M = const$ для всех n;
- 2. $\{a_n(x)\}$ мнонотонна; 3. $\sum_{n=1}^{\infty} b_n(x)$ равномерно сходится на X;

Tогда uсxодный ряд равномерно cxодиmcя на X.

Доказательство. По определению Коши. Фиксируем $\varepsilon > 0$. Так как ряд из b_n сходится равномерно, то по критерию Коши для $\frac{\varepsilon}{3M}>0$ $\exists n_0(\varepsilon)\ \forall n>$

$$n_0 \ \forall p \in \mathbb{N} \ \forall x \in X : |\sum_{k=n+1}^{n+p} b_k(x)| < \frac{\varepsilon}{3M}$$
. Тогда по неравенству Абеля

$$|\sum\limits_{k=n+1}^{n+p}b_k(x)a_k(x)|\leqslant rac{arepsilon}{3M}(|a_{n+1}|+2|a_{n+p}(x)|)<rac{arepsilon}{3M}3M=arepsilon.$$
 Тогда по критерию Коши этот ряд сходится равномерно на X . \square

Пример. Исследуем на равномерную сходимсоть ряд $\sum_{n=1}^{\infty} \frac{\cos nx \sin x a r c t g n x}{\sqrt{n^2 + x^2}}$.

Алгоритм:

- 1. Арктангенс монотонен и ограничен.
- 2. Все остальное сходится по Дирихле.

6.1Свойства равномерно сходящихся рядов

Теорема 35 (о непрерывности суммы равномерно сходящегося ряда)

Дан ряд
$$\sum_{n=1}^{\infty} a_n(x)$$
, причем
1. Все функции непрерывны намножестве

- 2. $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно к S(x) на X;

Tогда S(x) непрерывна на X.

Доказательство. По условию, сумма из $a_n(x)$ сходится равномерно на X к S(x), то есть $S_n(x) \rightrightarrows S(x)$ на $X, S_n(x)$ непрерывна как сумма. Тогда по теореме о непрерывности предела равномерно сходящейся последовательсноти, составленной из непрерывных функций, S(x) непрерывна. Другая формулировка:

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} a_n(x)$$

можно поменять сумму и предел. \square

Пример.
$$\sum_{n=1}^{\infty} \frac{\sin nx}{n} = f(x)$$
 - непрерывна на $(0, 2\pi)$

Теорема 36 (об интегрировании равномерно сходящегося ряда)

дан ряд
$$\sum_{n=1}^{\infty} a_n(x)$$
, причем

- 1. все функции непрерывны на отрезке [a, b];
- 2. $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на [a,b] κ s(x);

тогда в $\forall x, x_0 \in [a,b]$: $\int_x^x \left(\sum_{n=1}^\infty a_n(t)\right) dt$ можно менять интеграл и сумму.

Доказательство. Докажем, что $\int\limits_{x_0}^x S(t)dt = \sum\limits_{n=1}^\infty \int\limits_{x_0}^x a_n(t)dt.$ По предыдущей теореме S(t) непрерывна на [a,b], значит, интегрируема на нем по Риману. Обозначим $\sigma_n(x) = \sum_{k=1}^n \int_{x_0}^x a_k(t) dt$ и докажем, что $\sigma_n(x) \rightrightarrows \int_{x_0}^x S(t) dt$. Зафиксируем $\varepsilon > 0$. По условию, $S_n(t)$ равномерно сходится на [a,b] для $\frac{\varepsilon}{b-a} > 0$. $\exists n_0(\varepsilon) \ \forall n > n_0 \ \forall x \in [a,b] : |S_n(t) - S(t)| < \frac{\varepsilon}{b-a}$. Тогда

Теорема 37 (о дифференцировании равномерно сходящегося ряда) дан ряд $\sum_{n=1}^{\infty} a_n(x)$, причем

- 1. Производные всех функций непрерывны на отрезке [a,b];
- 2. $\sum_{n=1}^{\infty} a_n(x)$ сходится на [a,b] к s(x) (даже не нужна непрерывность);
- 3. Ряд из производных сходится равномерно на [a,b] к S(x); тогда в ряде можно менять производную и сумму.

Доказательство. Используем предыдущую теорему. Тогда $\int\limits_{x_0}^x \left(\sum\limits_{n=1}^\infty a_n'(t)\right) dt =$

 $\sum_{n=1}^{\infty} \int_{x_0}^{x} a'_n(t) dt$. Получаем, что в равенсте $\int_{x_0}^{x} S(t) dt = \sum_{n=1}^{\infty} (a_n(x) - a_n(x_0))$ справа стоит число (в силу непрерывности функции), ряд из $a_n(x_0)$ сходится по условию, следовательно, ряд из $a_n(x)$ сходится.

Теперь покажем равномерную сходимость. Для этого покажем, что остаток ряда из производных $r_n(x)$ равномерно стремится к нулю. Действительно, если ряд удовлетворяет теоереме об интегрировании, то и его остатки тоже. Зафиксируем $\varepsilon > 0$. По условию, остаток обычного ряда стремится к нулю: $R_n(x) \to 0$. тогда для $\frac{\varepsilon}{2} > 0$ $\exists n_1(\varepsilon) \ \forall n > n_1: |R_n(x_0)| < \frac{\varepsilon}{2}$. Также остаток ряда из производных равномерно стремится к нулю, тогда для $\frac{\varepsilon}{2(b-a)} > 0$ $\exists n_2(\varepsilon) \ \forall n > n_2 \ \forall x \in [a,b]: |r_n(x)| < \frac{\varepsilon}{2(b-a)}$. Тогда из звездочки следует !!!!!!!!!!???????

7 Степенные ряды

7.1 Базовые определения

Определение 8 $\mathit{Cmenehho\'u}$ ряд- ряд $\mathit{euda} \sum_{n=0}^{\infty} C_n (x-x_0)^n$

Числа C_n - коэффициенты степенного ряда, x_0 - число. Итак, степенной ряд - обобщение понятия многочлена. Область сходимости степенного ряда непуста, так как так лежит как минимум x_0 (в этом случае сумма ряда равна C_0). Сделав замену $t=x-x_0$, сведем любой степенной ряд к виду $\sum_{n=0}^{\infty} C_n t^n$.

Теорема 38 (лемма Абеля)

Если ряд $\sum_{n=0}^{\infty} c_n x^n$ сходится в точке x_0 и $|x| < |x_0|$, то ряд сходится сходится и в x, причем абсолютно.

Доказательство. По условию ряд сходится, значит, $c_n x^n \to 0$. Тогда существует константа M, большая чем все члены ряда. Тогда $|c_n x^n| = \left|c_n x_0^n \left(\frac{x}{x_0}\right)^n\right| \leqslant M \cdot \left|\frac{x}{x_0}\right|^n$. Ряд $\sum_{n=0}^\infty Mq^n$ сходится \Rightarrow ряд из модулей сходится, т.е. ряд сходится абсолютно. \square

Теорема 39 Пусть D - область сходимости ряда $\sum_{n=0}^{\infty} c_n x^n$, $R = \sup_{x \in D} |x|$. Тогда $(-R,R) \subset D \subset [-R,R]$.

Доказательство. По лемме Абеля, второе включение очевидно: $\forall x \in D: |x| \leqslant R \implies D \subset [-R,R]$. Пусть $x \in (-R,R)$. Тогда $|x| < R = R_1$. Тогда для него найдется $x_0 \in D: |x_0| > |x|$. Значит, ряд в точке x_0 сходится, и значит сходится в x. Значит, интервал лежит в области сходимости. \square

7.2 Формулы для вычисления радиуса сходимости

Пусть $\sum\limits_{n=0}^{\infty}c_nx^n=\sum\limits_{n=0}^{\infty}a_n$. По признаку Даламбера $\lim\limits_{n\to\infty}\frac{|a_{n+1}(x)|}{|a_n(x)|}=|x|\cdot\lim\limits_{n\to\infty}\frac{|c_{n+1}|}{|c_n|}<1$, то ряд сходится. Итак, если предел существует, то

$$R = \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|}$$

Аналогично, из признака Коши получим формулу Коши-Адамара:

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|c_n|}}$$

В общем случае алгоритм такой:

- 1. Найти радиус сходимости.
- 2. Выписываем интервал сходимости $(x_0 R, x_0 + R)$.
- 3. Исследуем на сходимость концы интервала.

Пример. Найдем область сходимости $\sum_{n=0}^{\infty} \frac{(x-6)^n}{(n+2)3^n}$. Применим признак Даламбера: $R = \lim_{n \to \infty} \frac{(n+3)3^{n+1}}{(n+2)3^n} = 3$. Интервал сходимости: (6-3,6+3). В

точке x=9 ряд расходится (т.к. гармонический), в точке x=3 - условная сходимость (по признаку Лейбница).

Пример. Найдем область сходимости $\sum_{n=0}^{\infty} \frac{n^2}{(n+1)^2} \cdot \frac{x^{2n}}{2^n}$. Заметим, что у этого ряда коэффициенты чередуются с нулем (лакунарный ряд). Используем два способа:

- 1. По формуле Коши-Адамара возьмем четные номера, так как на них доставляется супремум предела последовательности: $R = \frac{1}{\lim\limits_{n \to \infty} \left(\frac{n}{n+1}\right)^{\frac{1}{n}} \cdot \left(\frac{1}{2^{\frac{1}{2}}}\right)} =$
- $\sqrt{2}$. Интервал сходимости $(-\sqrt{2}, \sqrt{2})$, на концах расходится.
- 2. Исследуем как функциональный ряд по признаку Даламбера. $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = \frac{x^2}{2} \lim_{n\to\infty} \left(\frac{n^2+2n+1}{n^2+2n}\right)^2 = \frac{x^2}{2}$. Значит, ряд сходится, если $\frac{x^2}{2} < 1$, откуда мы получаем тот же интервал сходимости.

Теорема 40 (о равномерной сходимости степенного ряда) Степенной ряд сходится равномерно на любом отрезке, лежащем внутри интрвала сходимости.

Доказательство. Для простоты рассмотрим ряд с центром в нуле. Пусть ряд сходится на (-R,R). Возьмем $[a,b] \subset (-R,R)$. Обозначим d=max(|a|,|b|). Тогда ряд $\sum_{n=0}^{\infty} c_n d^n$ сходится, значит, его мы можем использовать для оценки сверху рядов на отрезке: $|c_n x^n| \leq |c_n d^n|$, значит, по признаку Вейерштрасса ряд сходится на [a,b]. \square

Теорема 41 (о непреывной сумме степенного ряда) Сумма степенного ряда непрерывна в любой точке из интервала сходимости.

Доказательство. Пусть $\sum_{n=0}^{\infty} c_n x^n$ сходится на (-R,R) к f(x). Степенные функции непрерывны на интервале (и вообще на всей прямой); по предыдущей теореме, на любом отрезке, лежащем в интервале, ряд равномерно сходится. Значит, по теореме о непрерывности суммы равномерно сходящегося ряда, сумма непрерывна на отрезке. Так как этот отрезок произволен, то сумма непрерывна на интервале. \square

Теорема 42 (об интегрировании и дифференцировании степенного ря- ∂a)

Пусть дан ряд $\sum_{n=0}^{\infty}c_n(x-x_0)^n=f(x),\ R$ - радиус сходимости. Тогда у

функции f(x) существуют производные любого порядка внутри интервала:

$$f' = \sum_{n=0}^{\infty} nc_n (x - x_0)^{n-1}$$

Интегрирование тоже почленное. Причем при дифференцировании и интегрировании радиус сходимости не меняется.

Доказательство. Следует из соотвествующих теорем для функциональных рядов. Последнее утверждение следует из формулы Коши-Адамара.

Пример. Вычислить сумму ряда $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$. Задания типа таких можно делать, используя свойства степенных рядов. Пусть $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$. Радиус сходимости $x \in [-1,1)$. Возьмем производную: $f'(x) = \sum_{n=1}^{\infty} x^{n-1} = \frac{1}{1-x}$. А вот теперь проинтегрируем: $\int_0^x \frac{dt}{1-t} = f(x) - f(0)$; $f(x) = -\ln(1-x) + f(0)$. Значит, сумма искомого ряда равна $f(\frac{1}{2}) = 2$. Цель этих телодвижений привести к виду геометричсекой прогрессии, которую легко посчитать.