

Nat 5 Nat 5 Nat 5 Nysics 2022 Marking Scheme

Grade	Mark R	equired	% andidated askinging and
Awarded	/125	%	% candidates achieving grade
Α	63+	63%	34.9%
В	51+	51%	20.9%
С	40+	40%	18.2%
D	28+	28%	14.5%
No award	<28	<28%	11.5%

Section:	Multiple Choice	Extended Answer	Assignment	
Average Mark:	14.7 /25	38.4 /75	No Assignment in 2022	

2022 Nat5 Physics Marking Scheme

Question	Answer	%			Physics (Covered					
		Correct	Vector Quantity	force	velocity	displacement	acceleration	weight			
1	Ε	61	Scalar Quantity	energy	speed	distance	time	mass			
2	С	73	☑A Toy car must ☑B Toy car must ☑C Average spec ☑D Average spec	MA Toy car must have velocity above zero at point P MB Toy car must have higher velocity at point Q than it had at point P MC Average speed of 1 m s⁻¹ and 3 m s⁻¹ is 2 m s⁻¹ MD Average speed of 2 m s⁻¹ and 3 m s⁻¹ would be 2.5 m s⁻¹ ME Average speed must be between 2m s⁻¹ and 3 m s⁻¹							
3	D	63	Area 1 Distance = area under graph $= \frac{1}{2} \times 8 \times 6$ Distance $= \frac{1}{2} \times 8 \times 6$ Area 3 Distance = $\frac{1}{2} \times 8 \times 6$ Distance = $\frac{1}{2} \times 6 \times 6 \times 6$ Distance = $\frac{1}{2} \times 6 \times $								
			= 24 m Total Distance =			า	= 120				
4	В	22	The rocket pushe reaction force du			he water prov	vides an equal b	out opposite			
5	В	32	$E_p = ?$ m=0.25kg $E_p = n$	$E_p = m$ g h $E_k = 4.9 \text{ J}$ of potential energy from 6.0m to 4.0m.							
6	В	19	Statement I - In There is gravity in s it is dependent of distance of the obj planet/moo	pace and on the ect from	Statement II - Astronauts fall to same accelera their spacecraf ne feeling of weig	earth at tion as t giving	Statement III Astronauts fall to acceleration as t iving the feeling o Acceleration = un	earth at same heir spacecraft f weightlessness.			
7	C	66	Longest — diameter of gala	xy >	radius of orbi	t of Moon	> radiu	Shortest us of Earth			
8	А	82	☑B if Z if geostat ☑C X and Y are c ☑D X and Y are c	☑A Period of orbits for X, Y and Z increase in order. Z has a period of orbit of 24 hours ☑B if Z if geostationary then its period of orbit must be 24 hours. ☑C X and Y are closer to Earth than Z so must have period of orbits less than 24 hours ☑D X and Y are closer to Earth than Z so must have period of orbits less than 24 hours ☑E if Z if geostationary then its period of orbit must be 24 hours.							
9	А	83	☑A R+S would slow ☑B Q+S rockets ☑C P+Q would in ☑D P+R rockets ☑E P+Q+R+S roc	would cancel ncrease the s would cancel	each other ou peed of spaced each other ou	t and would it craft in same of tand would it	not change the direction of tran not change the	speed vel speed			

						\A/					
			Mass (kg)	Weight (N)	g	1111	g		W =	m x g	
10	10 D 81		0.50	4.4	$g = \frac{W}{m}$	$=\frac{4.4}{0.50}$ =	8.8		W =	6.0kg x 8.8N kg ⁻¹	
10			2.5	22	$g = \frac{W}{m}$	-= <u>22</u> 2.5 =	8.8		W =	52.8N	
			4.0	35	$g = \frac{W}{m}$	$=\frac{3.5}{4.0}$ =	8.75				
			Q = ?			I = 2.0 A			t = 5	minutes = 5x60 s	
11	С	79			Q	= I = 2.0		t .co			
					Q Q	= 2.0 = 600 C	x 5	(60			
			Stateme	nt I - Correc t	t Sta	tement II -	Incorr	ect	Statem	ent III - Correct	
12	D	49	_	e gradient of a h the greater th	_	reater the gra V-I graph the			_	ndient of line Q is as current increases	
12	D	49		sistance	le on	resistan	_	tile	_	resistance of Q is	
			∴ P has highe	r resistance th	an R ∴ R h	nas <i>lower</i> resi	stance t	han Q	decreasing	as current increases	
			_	=						each branch	
12	_	20		•						each branch	
13	E	39		-						ce current at A ₂	
			☑E Current	•						ce current at A ₂	
			A		В	C	<u> </u>		D	E	
1 1	D	77				\Diamond	\				
14	В	77	-1-1								
			Loudspeal	ker Thei	rmistor	Lamp)		Fuse	LDR	
				t I - Incorrec		atement II			1	nent III - Correct	
4 -	6	2.5	_	the specific hea ne more heat is		rizontal porti esents the ch				heat of fusion for X is an Y as the horizontal	
15	D	35	needed to rais	e the tempera	ture from	re from solid to liquid. Line X has a			line is longer for X than Y		
			of the solid. the higher spe	This means Y h		r horizontal li higher meltir				ing more energy is d to melt X than Y	
			E =?			n = 1.6 kg	-8 poe	<u> </u>		= 3.34x10 ⁵ J kg ⁻¹	
16	D	45			E =	m	Х		l		
10	D	45			E =	1.6	X	3.34	x10 ⁵		
			W = ?		E =	5.3x10 ⁵ m = 70.0 k				g = 9.8 N kg ⁻¹	
					V	V = m	Χ {	g		g = 3.0 14 kg	
						V = 70.0 V = 686N	x 9	.8			
17	Ε	48			v	v – 0001N					
			P = ?		-	F = 686N				$A = 8.0 \times 10^{-4} \text{ m}^2$	
			$P = \frac{F}{A} = \frac{686}{8.0 \times 10^{-4}} = 8.6 \times 10^{5} Pa$								
					Α	8.0010	-4			1	
			E _k = ?			1.38x10 ⁻²³				100°C = 373K	
			E _k = ?	F	k _B =	1.38x10 ⁻²³				100°C = 373K	
10		64	E _k = ?	E				Т		100°C = 373K	
18	E	64	E _k = ?		$k_B = \frac{3}{2}$	1.38x10 ⁻²³ K _B	J K ⁻¹	Т	T =	100°C = 373K	
18	E	64	E _k = ?		$k_B = \frac{3}{2}$	1.38x10 ⁻²³	J K ⁻¹	Т	T =	100°C = 373K	

19	Α	81	☑A sound waves are longitudinal waves with a speed of 340m s ⁻¹ in air ☑B radio waves are transverse waves with a speed of 3x10 ⁸ m s ⁻¹ ☑C ultraviolet waves are transverse waves with a speed of 3x10 ⁸ m s ⁻¹ ☑D infrared waves are transverse waves with a speed of 3x10 ⁸ m s ⁻¹ ☑E visible light are transverse waves with a speed of 3x10 ⁸ m s ⁻¹					
20	D	39						
21	С	83	Infrared and ultraviolet should be the opposite sides of the visible light band Infrared and Infrared and Infrared and Infrared and Infrared and Infrared and Infrared Microwave Radio & TV Infrared Microwave R					
22	E	58	10mm of aluminium will stop beta particles. There will be no beta particles at P or Q Alpha particles are stopped by 100mm aluminium in addition to a piece of paper. Only gamma is penetrating enough to pass through 10mm of aluminium.					
23	Α	78	$A = \frac{N}{t} = \frac{3000}{2x60} = 25 \text{ Bq}$					
24	D	48	 ☑A beta radiation would not be able to leave the body to get to the detector ☑B beta radiation would not be able to leave the body to get to the detector ☑C The half-life is too short and much of the substance will have decayed. ☑D Gamma is emitted and half-life is short so not much remains in the body for long ☑E The half-life is too long and the substance will remain in the body for many years. 					
25	С	64	Number of lives = $\frac{\text{time elapsed}}{\text{half-life}} = \frac{120\text{s}}{30\text{s}} = 4$ $3200 \text{ Bq} \rightarrow 1600 \text{ Bq} \rightarrow 800 \text{ Bq} \rightarrow 400 \text{ Bq} \rightarrow 200 \text{ Bq}$					

Question	Answer	Physics Covered						
1a(i)	190 km	$x = \sqrt{(130)^2 + (140)^2}$ 140km $x = \sqrt{16900 + 19600}$ $x = \sqrt{36500}$ $x = 190 \text{ km}$						
1a(ii)	223	$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{130}{140} = 0.929$ $\therefore \theta = 43^{\circ}$ Bearing = $180^{\circ} + 43^{\circ} = 223$						
1b(i)	110 m s ⁻¹	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
1b(ii)	110 m s ⁻¹ at bearing 043	Velocity = 110 m s ⁻¹ Bearing from Glasgow to Aberdeen = 220 – 180 = 043						
2a(i)	Graph showing:	1 mark 1 mark 1 mark suitable all points plotted accurately best fit straight line scales, labels and units to ± half a division						
2a(ii)	0.57m							
2a(iii)	One answer from:	Place carbon paper Place sand tray Use video under landing site under landing site analysis						
2b(i)	Any suitable variable							
2b(ii)	Answer to include:	1 mark Description of how independent variable will be changed. 1 mark Indication of how a fair test is achieved.						
3a(i)	4.8x10 ⁶ N	$W = ? \qquad m = 1.3x10^6 \text{ kg} \qquad g = 3.7 \text{ N kg}^{-1}$ $W = m \qquad x \qquad g \qquad \text{(1 mark)}$ $W = 1.3x10^6 \qquad x \qquad 3.7 \qquad \text{(1 mark)}$ $W = 4.8x10^6 \text{ N} \qquad \text{(1 mark)}$						
3a(ii)	Two answers from:	Direction Up ↑ One from: thrust rocket thrust engine thrust (1 mark) Direction Up ↓ One from: weight pull of gravity gravitational pull force due to gravity' force from exhaust gases on rocket						
3a(iii)	5.5 m s ⁻²	$F_{un} = \text{engine thrust} - \text{weight}$ $F_{un} = 1.2x10^7 - 4.8x10^6$ $F_{un} = 7.2x10^6 \text{ N} \qquad \text{(1 mark)}$ $F = m \qquad x \qquad a \qquad \text{(1 mark)}$ $7.2x10^6 = 1.3x10^6 x \qquad a \qquad \text{(1 mark)}$ $a = 5.5 \text{ m s}^{-2} \qquad \text{(1 mark)}$						

3b	Answer to include:	1 mark Acceleration increases
36	Answer to include.	1 mark Weight/mass decreases (as fuel is used) or Gravitational field strength decreases
4	Open ended question:	1 mark Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem. Candidate has demonstrated a good understanding of the physics involved. They make some statement(s) that are relevant to the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.
5a(i)	8.1x10 ¹⁸ m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5a(ii)	1.5x10 ⁸ m s ⁻¹	5% of $3.0x10^8 \text{ m s}^{-1} = \frac{5}{100} \times 3.0x10^8 \text{ m s}^{-1} = 1.5x10^7 \text{ m s}^{-1}$
5a(iii)	5.4x10 ¹¹ s	d = v x t
5b	One answer from:	The light/EM radiation from the supernova has <u>or</u> The EM radiation takes 860 years to reach Earth not reached the Earth yet
5c(i)	Line spectrum Or Adorrption	Type of Spectra Continuous Spectrum Adsorption Line Spectrum Emission Line Spectrum Diagram Colour spectrum with no lines Colour Spectrum with black lines. At various points. Black background with coloured lines
5c(ii)	Answer to include:	Lines in this spectrum can be matched compared with lines in the spectrum from the element.
6a	Answer to include:	1 mark Resistor 1 1 mark Lower resistance (produces a larger current)
6b	1.2 V	$V_{s} = 6.0 \text{ V} \qquad V_{2} = ? \qquad R_{1} = 16.0 \Omega \qquad R_{2} = 4.0 \Omega$ $V_{2} = \frac{R_{2}}{R_{1} + R_{2}} \times V_{s} \qquad \text{(1 mark)}$ $V_{2} = \frac{4.0}{16.0 + 4.0} \times 6.0 \qquad \text{(1 mark)}$ $V_{2} = 1.2 \text{ V} \qquad \text{(1 mark)}$
6c(i)	3.2 Ω	$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \qquad \text{(1 mark)}$ $\frac{1}{R_{T}} = \frac{1}{4.0} + \frac{1}{16.0} \qquad \text{(1 mark)}$ $\frac{1}{R_{T}} = \frac{5}{16}$ $R_{T} = 3.2 \Omega \qquad \text{(1 mark)}$
6c(ii)	Answer to include:	1 mark (Reading on ammeter) increases 1 mark Total resistance decreases
7a	3 A	Power Rating = 0.35 kW = 350 W • Devices with a Power Rating of 720 W or below have a 3A fuse fitted • Devices with a Power Rating above 720 W have a 13A fuse fitted.
7b	150 Ω	$P = 0.35 \text{ kW} = 350 \text{ W} \qquad V = 230 \text{ V} \qquad R = ?$ $P = \frac{V^2}{R} \therefore 350 = \frac{(230)^2}{R} \therefore R = \frac{52900}{350} = 150 \Omega$ $\frac{\text{(1 mark)}}{\text{(1 mark)}} \qquad \frac{\text{(1 mark)}}{\text{(1 mark)}} \qquad \frac{\text{(2 mark)}}{\text{(2 mark)}} = 150 \Omega$

7c(i)	or V	Diodes and LEDs must have the correct orientation if they are to work in a Circuit. The triangular shape points to the negative end of the power supply.								
7c(ii)	Answer to include:			nark Voltage nark Transist			esistor increas	es		
7c(iii)	One answer from:	То	To adjust the moisture level at which the control the moisture level at which the fan						1	
8a	7.6 A	P = 1750 W		P = I .750 = I I = 7.6	x	V 230	(1 mark) (1 mark) (1 mark)	V = 23	,0 V	
8b(i)	237°C	$E_h = 126000 \text{ J}$ E 126000 ΔT Final	= = =	c 902 215°C	x x	m 0.650		$\Delta T = \Delta T$ (1 mark ΔT (1 mark 1 mark ΔT (1 mark ΔT (1 mark ΔT (2 mark ΔT (2 mark ΔT	k) k)	
8b(ii)	One answer from:		surroundings <u>Heat</u> (energy) is lost to the clothes							
9a	One of the 3 methods shown:	$\frac{p}{T} = \frac{121 \times 10^3}{323}$ $\frac{\text{Alternative Me}}{\text{Use of } \frac{p_1}{T_1} = \frac{1}{1}$ $\frac{1 \text{ mark: all four }}{1 \text{ mark: all calc}}$	Use of $\frac{p_1}{T_1} = \frac{p_2}{T_2}$ to verify relationship Graph 1 mark: all four sets of data (min 3 calculations) 1 mar					$\frac{128 \times 10^3}{343} = 373$ $\frac{p}{T} = \frac{132 \times 10^3}{353} = 374$ p: $\frac{p}{T}$ = constant ative Method 2: Graphical Method drawn on graph paper with		
9b	138kPa – 142kPa	Tempera (°C) 50 60		Temperature (K) 323 333 343	Pres (kF 12 12 12	21 -	Difference 3 4 4	Estimate (kPa) - - -		
		80		353 363	13	32	(4)	136		
		100		373		<u></u>	(4)	140		
9c	One answer from:	Repeat the experiment Stir the water	(dd more water in the beaker) Reduce the leng of the connec		Have mo flask in th	ne water Take reading	Increase the range temperatures) gs at more (different res within the range	:)	

		1 mark (The increase in temperature) increases the kinetic energy of the gas particles/the particles move faster.						
9d	Answer to include:	1 mark The partic		<u>or</u> tv	The particles hit the tyre walls with greater force.			
		1 mark Pressure (in the						
				0.12m				
10a(i)	0.020m	λ = -	Distance of waves Number of waves	= 6	= 0.020m			
		Number of waves N = 6	t = 0.	40s	f = ?			
10a(ii)	15Hz		$f = \frac{N}{t} = \frac{1}{0}$	$\frac{6}{100} = 15$ Hz				
				nark)				
		ν =	? f = 15Hz		= 0.20m			
			$v = f \rightarrow$		nark)			
10a(iii)	0.3m s ⁻¹		v = 15 >	(0.20 (1m	nark)			
			•					
			$v = 0.3 \text{ m s}^{-1}$	•	nark)			
		1 mark diffraction of wa	yyos into	di	irection of water waves —————			
		right' shadow'						
4.01-	Diameter in	of the plastic	_					
10b	Diagram showing	<u>1 mark</u>						
		consistent wave	•					
		before and a						
44 ()	f	plastic blo			plastic block			
11a(i)	refraction	Refraction occurs when w	aves pass from one i	medium to ai	notner ————————————————————————————————————			
			air	glass				
4.4 (11)								
11a(ii)	Diagram showing:	normal						
		/ /						
			ray of red light					
			L					
		Change of properties	Change of Mo Less dense to mo		Change of Medium More dense to less dense			
		Change of properties	e.g. air to g		e.g. glass to air			
11a(iii)	less	Speed of waves	Speed decre		Speed increases			
		Wavelength of wave	Wavelength de	ecreases	Wavelength increases			
		Direction of wave	Bends towards		Bends away from normal			
		P = 25 W	E = 42.5x1		t = ?			
11b	1.7x10 ⁻³ s	p – <u>E</u> · 25 –	42.5x10 ⁻³ · + -	- 25 v 12	$5x10^{-3} = 1.7x10^{-3} s$			
		$P = \frac{E}{t} \therefore 25 = \frac{42.5 \times 10^{-3}}{t} \therefore t = 25 \times 42.5 \times 10^{-3} = 1.7 \times 10^{-3} \text{ s}$						
12a(i)	Answer to include:	As the distance increases	(1 mark) the infrared radiation	n detected d	ecreases (1 mark)			
	7 HISWELL CO HICIGACT		nark Similar shape t					
12a(ii)	Answer to include:		nark Line always be					
		1 mark	2 marks		3 marks			
431	Onen er ded e	Candidate has demonstrated a limited understanding of the physics involved. They	Candidate has demonstrated a reasonable understanding of the	involved. They sho	nonstrated a good understanding of the physics by a good comprehension of the physics of the			
12b	Open ended question:	make some statement(s) that are relevant to the situation, showing that they have	physics involved. They make some statement(s) that are relevant to the	This type of respor	e a logically correct answer to the question posed. nse might include a statement of the principles singer as a greation, and the application of those to			
		understood at least a little of the physics within the problem.	situation, showing that they have understood the problem.	respond to the proble	nip or an equation, and the application of these to em. The answer does not need to be 'excellent' or e' for the candidate to gain full marks.			
10		II I Mark II	easily) absorbed by		na has a short(er) range in air			
13a	Answer to include:		-		·			
		1 mark Alpha is the most ionising						

		Sour		Х	Υ		Z
13b(i)	Z	Estimate of (time taken for 10)		80 days	20 da	iys	250 days
		1 mark	The half-life	of the sources are	too short		
13b(ii)	Answer to include:	1 mark	The smoke	detectors would fonly work need to be not last 1		e replace	ort time ed frequently
		H = ? <u>For 1 hour</u> :		D = 4.5 μGy = 4.	5x10 ⁻⁶ Gy	,	W _r = 20
		Н	=	D	X	W_{r}	(1 mark)
12-	7 210-4 6	Н	=	4.5x10 ⁻⁶	X	20	(1 mark)
13c	7.2x10 ⁻⁴ Sv	Н	=	9.0x10 ⁻⁵ Sv			
		For 8 hours: H	=	9.0x10 ⁻⁵ Sv	x	8	(1 mark)
		Н	=	7.2x10 ⁻⁴ Sv			(1 mark)
14a	nucleus splits into two or more smaller nuclei						
		P = 150MW = 2		E = ?			= 1 hour = 60x60s
			$P = \frac{E}{t}$	(1 n	nark)		
		150	$0x10^6 = {60}$	E(1 n	nark)		
14b(i)	1.9x10 ²² fissions		1x10 ¹¹ J				
		Number of fis	Number of fissions = $\frac{5.4 \times 10^{11}}{2.9 \times 10^{-11}}$				
		Number of fis	sions = 1.	9x10 ²² (1 n	nark)		
14b(ii)	One answer from:	Requ high temp		Difficult to control/contain		strong	Requires g magnetic fields