## Normalizacja

- Anomalie wstawiania, usuwania i aktualizacji
- Nieformalne wytyczne dotyczące normalizacji
- Zależności funkcyjne i atrybuty podstawowe
- Postaci normalne

## Anomalie wstawiania, usuwania i aktualizacji

#### **SUPPLIES**

| <u>SUPNR</u> | <u>PRODNR</u> | PURCHASE_PRICE | DELIV_PERIOD | SUPNAME   | SUPADDRESS                        | <br>PRODNAME                           | PRODTYPE |  |
|--------------|---------------|----------------|--------------|-----------|-----------------------------------|----------------------------------------|----------|--|
| 21           | 0289          | 17.99          | 1            | Deliwines | 240, Avenue<br>of the<br>Americas | Chateau Saint Estève de Neri,<br>2015  | Rose     |  |
| 21           | 0327          | 56.00          | 6            | Deliwines | 240, Avenue<br>of the<br>Americas | Chateau La Croix Saint-Michel,<br>2011 | Red      |  |
|              |               |                |              |           |                                   |                                        |          |  |

### PO\_LINE

| <u>PONR</u> | <u>PRODNR</u> | QUANTITY | PODATE     | SUPNR |
|-------------|---------------|----------|------------|-------|
| 1511        | 0212          | 2        | 2015-03-24 | 37    |
| 1511        | 0345          | 4        | 2015-03-24 | 37    |
|             |               |          |            |       |

## Anomalie wstawiania, usuwania i aktualizacji

#### Supplier

| SUPNR | SUPNAME    | SUPADDRESS                  | SUPCITY       | SUPSTATUS |
|-------|------------|-----------------------------|---------------|-----------|
| 21    | Deliwines  | 240, Avenue of the Americas | New York      | 20        |
| 32    | Best Wines | 660, Market Street          | San Francisco | 90        |
|       |            |                             |               |           |

#### **Product**

| PRODNR | PRODNAME                                               | PRODTYPE | AVAILABLE_QUANTITY |
|--------|--------------------------------------------------------|----------|--------------------|
| 0119   | Chateau Miraval, Cotes de Provence Rose, 2015          | rose     | 126                |
| 0384   | Dominio de Pingus, Ribera del Duero, Tempranillo, 2006 | red      | 38                 |
|        |                                                        |          |                    |

### **Supplies**

| SUPNR | PRODNR | PURCHASE_PRICE | DELIV_PERIOD |
|-------|--------|----------------|--------------|
| 21    | 0119   | 15.99          | 1            |
| 21    | 0384   | 55.00          | 2            |
|       |        |                |              |

### Purchase\_Order

| PONR | PODATE     | SUPNR |
|------|------------|-------|
| 1511 | 2015-03-24 | 37    |
| 1512 | 2015-04-10 | 94    |
|      |            |       |

#### PO\_Line

| PONR | PRODNR | QUANTITY |
|------|--------|----------|
| 1511 | 0212   | 2        |
| 1511 | 0345   | 4        |
|      |        |          |

# Cechy dobrych projektów relacyjnych

Relacja in\_dep

| ID    | name       | salary | dept_name  | building | budget |
|-------|------------|--------|------------|----------|--------|
| 22222 | Einstein   | 95000  | Physics    | Watson   | 70000  |
| 12121 | Wu         | 90000  | Finance    | Painter  | 120000 |
| 32343 | El Said    | 60000  | History    | Painter  | 50000  |
| 45565 | Katz       | 75000  | Comp. Sci. | Taylor   | 100000 |
| 98345 | Kim        | 80000  | Elec. Eng. | Taylor   | 85000  |
| 76766 | Crick      | 72000  | Biology    | Watson   | 90000  |
| 10101 | Srinivasan | 65000  | Comp. Sci. | Taylor   | 100000 |
| 58583 | Califieri  | 62000  | History    | Painter  | 50000  |
| 83821 | Brandt     | 92000  | Comp. Sci. | Taylor   | 100000 |
| 15151 | Mozart     | 40000  | Music      | Packard  | 80000  |
| 33456 | Gold       | 87000  | Physics    | Watson   | 70000  |
| 76543 | Singh      | 80000  | Finance    | Painter  | 120000 |

- Jest powtarzanie informacji
- Konieczność użycia wartości null (jeżeli dodamy nowy wydział bez instruktorów)

## Cechy relacji in\_dep

- Anomalie problemy powstające w przypadku, gdy chcemy włączyć zbyt dużo informacji do pojedynczej relacji
  - redundancja informacje niepotrzebnie powielane w kilku krotkach
  - anomalia wprowadzania danych
  - anomalia usuwania danych
  - anomalia aktualizacji danych

| ID                              | пате            | salary                   | dept_name  | building  | budget                    |
|---------------------------------|-----------------|--------------------------|------------|-----------|---------------------------|
| 22222                           | Einstein        | 95000                    | Physics    | Watson    | 70000                     |
| 12121                           | W <sub>11</sub> | 90000                    | Finance    | Painter   | 120000                    |
| 32343                           | El Said         | 60000                    | History    | Painter   | 50000                     |
| EDG. 11-035-035-035-035-035-035 | Katz            | actual engles statements | J          | 98 125588 | 100000                    |
| 45565                           |                 | 75000                    | Comp. Sci. | Taylor    | 50 mm and 20 mm 5 mm 6 mm |
| 98345                           | Kim             | 80000                    | Elec. Eng. | Taylor    | 85000                     |
| 76766                           | Crick           | 72000                    | Biology    | Watson    | 90000                     |
| 10101                           | Srinivasan      | 65000                    | Comp. Sci. | Taylor    | 100000                    |
| 58583                           | Califieri       | 62000                    | History    | Painter   | 50000                     |
| 83821                           | Brandt          | 92000                    | Comp. Sci. | Taylor    | 100000                    |
| 15151                           | Mozart          | 40000                    | Music      | Packard   | 80000                     |
| 33456                           | Gold            | 87000                    | Physics    | Watson    | 70000                     |
| 76543                           | Singh           | 80000                    | Finance    | Painter   | 120000                    |

## Anomalie wstawiania, usuwania i aktualizacji

- Aby mieć dobry relacyjny model danych, wszystkie relacje w modelu powinny być znormalizowane
- Procedura formalnej normalizacji do transformacji modelu relacyjnego nieznormalizowanego w znormalizowany – dekompozycja tabel

## Korzyści:

- Na poziomie logicznym użytkownicy mogą łatwo zrozumieć znaczenie danych i formułować poprawne zapytania
- Na poziomie implementacyjnym przestrzeń dyskowa jest efektywnie wykorzystywana i zmniejsza się ryzyko niespójnych aktualizacji

## Dekompozycja

- Jedynym sposobem uniknięcia problemu powtarzania się informacji w schemacie jest zdekomponowanie go na dwa schematy
- Nie wszystkie dekompozycje są poprawne, np. dekompozycja

employee(ID, name, street, city, salary)

do

employee1 (ID, name)
employee2 (name, street, city, salary)

Problem, gdy dwóch pracowników z tym samym nazwiskiem

 Tracimy informację – nie możemy zrekonstruować pierwotnej relacji employee -- więc jest to dekompozycja stratna.



| ID                                         | name                     | street                         | city                                           | salary                           |
|--------------------------------------------|--------------------------|--------------------------------|------------------------------------------------|----------------------------------|
| :<br>57766<br>57766<br>98776<br>98776<br>: | Kim<br>Kim<br>Kim<br>Kim | Main<br>North<br>Main<br>North | Perryridge<br>Hampton<br>Perryridge<br>Hampton | 75000<br>67000<br>75000<br>67000 |

## Dekompozycja bezstratna

- Niech R będzie schematem relacji a  $R_1$  i  $R_2$  tworzą rozkład R, tzn  $R = R_1 \cup R_2$
- Mówimy, że **dekompozycja jest bezstratna** jeżeli nie ma utraty informacji poprzez zastąpienie R dwoma schematami relacji  $R_1 \cup R_2$
- Formalnie,

$$\prod_{R_1} (r) \bowtie \prod_{R_2} (r) = r$$

I odwrotnie, rozkład jest stratny, jeżeli

$$r \subset \prod_{R_1} (r) \bowtie \prod_{R_2} (r)$$

# Przykład bezstratnej dekompozycji

Dekompozycja R = (A, B, C)



$$\Pi_{A}(r) \bowtie \Pi_{B}(r) = 
\begin{vmatrix}
A & B & C \\
\alpha & 1 & A \\
\beta & 2 & B
\end{vmatrix}$$

## Normalizacja

- Decyzja, czy konkretna relacja R jest w "dobrej" postaci.
- W przypadku gdy relacja R nie jest w "dobrej" postaci, dekompozycja do zbioru relacji  $\{R_1, R_2, ..., R_n\}$  takich że
  - Każda relacja jest w dobrej postaci
  - Dekompozycja jest bezstratna
- Teoria oparta jest o:
  - zależności funkcyjne
  - zależności wielowartościowe

## Zależności funkcyjne

- Zależność funkcyjna X → Y, między dwoma zbiorami atrybutów X i Y implikuje, że wartość X jednoznacznie określa wartość Y
  - istnieje zależność funkcyjna od X do Y lub Y jest funkcyjnie zależne od X
- np.:
  - $-SSN \rightarrow ENAME$
  - -PNUMBER  $\rightarrow$  {PNAME, PLOCATION}
  - $-\{SSN, PNUMBER\} \rightarrow HOURS$

## Definicja zależności funkcyjnych

Niech r(R) będzie schematem relacji

$$\alpha \subseteq R \ i \ \beta \subseteq R$$

Zależność funkcyjna

$$\alpha \rightarrow \beta$$

zachodzi na R wtedy i tylko wtedy gdy dla każdej relacji r(R), jeżeli dowolne dwie krotki  $t_1$  i  $t_2$  w r są zgodne w atrybutach  $\alpha$ , są również zgodne w atrybutach  $\beta$ . Czyli,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

Np: Niech r(A,B) z następującą instancją r.

• W tej instancji  $B \rightarrow A$  zachodzi; a  $A \rightarrow B$  **NIE** zachodzi,

## Trywialne zależności funkcyjne

- Zależność funkcyjna jest trywialna jeżeli jest spełniona przez wszystkie relacje
  - − Np:
    - ID,  $name \rightarrow ID$
    - $name \rightarrow name$
  - Ogólnie, α → β jest trywialna jeżeli β ⊆ α

## Domknięcie zbioru zależności funkcyjnych

- Mając zbiór *F* zależności funkcyjnych, są pewne inne zależności funkcyjne, które są logicznie implikowane przez zbiór *F*.
  - Jeżeli  $A \rightarrow B$  i  $B \rightarrow C$ , można wywnioskować, że zachodzi  $A \rightarrow C$
  - etc.
- Zbiór wszystkich zależności funkcyjnych logicznie wynikający ze zbioru F jest domknięciem F.
- Domknięcie F oznaczane jako F<sup>+</sup>.

## Domknięcie zbioru zależności funkcyjnych

- Można obliczyć F<sup>+</sup>, domknięcie F, przez wielokrotne stosowanie Aksjomatów Armstronga:
  - Regula zwrotności: if  $\beta \subseteq \alpha$ , then  $\alpha \to \beta$
  - Regula rozszerzalności: if  $\alpha \rightarrow \beta$ , then  $\gamma \alpha \rightarrow \gamma \beta$
  - **Regula przechodniości:** if  $\alpha \to \beta$ , and  $\beta \to \gamma$ , then  $\alpha \to \gamma$
- Reguly te
  - generują tylko te zależności funkcyjne, które faktycznie zachodzą i
  - generują wszystkie zależności funkcyjne, które zachodzą.

## Domknięcie zbioru zależności funkcyjnych c.d.

- Dodatkowe reguly:
  - **Reguła unii**: Jeżeli zachodzi  $\alpha \to \beta$  i  $\alpha \to \gamma$ , to zachodzi  $\alpha \to \beta \gamma$ .
  - Reguła dekompozycji: Jeżeli zachodzi  $\alpha \to \beta \gamma$ , to zachodzi  $\alpha \to \beta i \alpha \to \gamma$ .
  - Reguła pseudoprzechodniości: Jeżeli zachodzi  $\alpha \to \beta$  i  $\gamma \beta \to \delta$ , to zachodzi  $\alpha \gamma \to \delta$ .
- Powyższe reguły można wywnioskować z aksjomatów Armstrong'a.

## Dekompozycja bezstratna a zależności funkcyjne

- Można użyć zależności funkcyjnych aby pokazać, że pewne dekompozycje są bezstratne.
- W przypadku  $R=(R_1,R_2)$ , wymagamy dla wszystkich możliwych relacji r o schemacie R  $r=\prod_{R_1}(r)\bowtie\prod_{R_2}(r)$
- Dekompozycja R do  $R_1$  i  $R_2$  jest bezstratna, jeżeli przynajmniej jedna z zależności jest w  $F^+$ :
  - $R_1 \cap R_2 \to R_1$
  - $-R_1 \cap R_2 \rightarrow R_2$
  - czyli gdy  $R_1 \cap R_2$  tworzy nadklucz albo dla  $R_1$  albo dla  $R_2$
- Np. in\_dep (ID, name, salary, dept\_name, building, budget) zdekomponowane do:
   instructor (ID, name, salary, dept\_name)

department (dept\_name, building, budget)

dept\_name → dept\_name, building, budget

|   | ID                    | пате           | salary         | dept_name          | building          | budget          |
|---|-----------------------|----------------|----------------|--------------------|-------------------|-----------------|
|   | HE WE LET DESCRIPTION | Einstein<br>Wu | 95000<br>90000 | Physics<br>Finance | Watson<br>Painter | 70000<br>120000 |
| - |                       | El Said        | 60000          | History            | Painter           | 50000           |

## Zależności funkcyjne i atrybuty podstawowe

- Atrybut podstawowy, to atrybut, który jest częścią klucza kandydującego
- Np.: R1(SSN, PNUMBER, PNAME, HOURS)
  - Atrybuty podstawowe: SSN i PNUMBER
  - Atrybuty nie-podstawowe: PNAME i HOURS

# Nieformalne wytyczne dotyczące normalizacji

- Zaprojektuj model relacyjny w taki sposób, aby łatwo było wyjaśnić jego znaczenie
  - MYRELATION123(<u>SUPNR</u>, SUPNAME, SUPTWITTER, PRODNR, PRODNAME, ...) versus SUPPLIER(<u>SUPNR</u>, SUPNAME, SUPTWITTER, PRODNR, PRODNAME, .....)
- Atrybuty z wielu typów encji nie powinny być łączone w jedną relację
  - SUPPLIER(<u>SUPNR</u>, SUPNAME, SUPTWITTER, .....)
- Unikaj nadmiernej liczby wartości NULL w relacji
  - SUPPLIER(SUPNR, SUPNAME, ...)
  - SUPPLIER-TWITTER(<u>SUPNR</u>, SUPTWITTER)

## Postaci normalne

- Pierwsza postać normalna (1 NF)
- Druga postać normalna (2 NF)
- Trzecia postać normalna (3 NF)
- Postać normalna Boyce-Codd'a (BCNF)
- Czwarta postać normalna (4 NF)

- Mówi, że każdy atrybut relacji musi być niepodzielny i mieć pojedynczą wartość
  - niedopuszczalne atrybuty złożone lub wielowartościowe (ograniczenie dziedziny)
- SUPPLIER(<u>SUPNR</u>, NAME(FIRST NAME, LAST NAME), SUPSTATUS)
- SUPPLIER(<u>SUPNR</u>, FIRST NAME, LAST NAME, SUPSTATUS)

- DEPARTMENT(<u>DNUMBER</u>, DLOCATION, DMGRSSN)
  - Założenie: oddział może mieć wiele lokalizacji i wiele oddziałów jest możliwych w danej lokalizacji
- DEPARTMENT (<u>DNUMBER</u>, DMGRSSN)
- DEP-LOCATION(DNUMBER, DLOCATION)

| DNUMBER | DLOCATION                 | DMGRSSN |
|---------|---------------------------|---------|
| 15      | {New York, San Francisco} | 110     |
| 20      | Chicago                   | 150     |
| 30      | {Chicago, Boston}         | 100     |

1 NF

#### **DEPARTMENT**

| DNUMBER | DMGRSSN |
|---------|---------|
| 15      | 110     |
| 20      | 150     |
| 30      | 100     |

#### **DEP-LOCATION**

| <u>DNUMBER</u> | DLOCATION     |  |
|----------------|---------------|--|
| 15             | New York      |  |
| 15             | San Francisco |  |
| 20             | Chicago       |  |
| 30             | Chicago       |  |
| 30             | Boston        |  |

- R1(<u>SSN</u>, ENAME, DNUMBER, DNAME, PROJECT(PNUMBER, PNAME, HOURS))
  - załóżmy, że pracownik może pracować nad wieloma projektami, a wielu pracowników może pracować nad tym samym projektem
- R11(SSN, ENAME, DNUMBER, DNAME)
- R12(SSN, PNUMBER, PNAME, HOURS)

- Zależność funkcyjna X → Y jest zupełną zależnością funkcyjną, jeżeli usunięcie dowolnego atrybutu A z X oznacza, że zależność już nie obowiązuje
  - np.: SSN, PNUMBER  $\rightarrow$  HOURS; PNUMBER  $\rightarrow$  PNAME
- Zależność funkcyjna X → Y jest zależnością
   częściową, jeżeli atrybut A z X można usunąć z X a
   zależność nadal obowiązuje
  - np.: SSN, PNUMBER  $\rightarrow$  PNAME

- Relacja R jest w drugiej postaci normalnej (2 NF) jeżeli spełnia 1 NF i każdy atrybut nie-podstawowy A w R jest zupełnie zależy funkcyjnie od dowolnego klucza R
- Jeżeli relacja nie jest w drugiej postaci normalnej należy:
  - zdekomponować ją i stworzyć nową relację dla każdego klucza częściowego wraz z zależnymi atrybutami
  - zostawić relację z oryginalnym kluczem głównym i wszystkim atrybutami, które są od niego zupełnie zależne funkcyjnie

- R1(SSN, PNUMBER, PNAME, HOURS)
  - załóżmy, że pracownik może pracować nad wieloma projektami; nad jednym projektem może pracować wielu pracowników, a projekt ma unikalną nazwę
- R11(<u>SSN</u>, <u>PNUMBER</u>, HOURS)
- R12(PNUMBER, PNAME)

| <u>SSN</u> | <u>PNUMBER</u> | PNAME  | HOURS |
|------------|----------------|--------|-------|
| 100        | 1000           | Hadoop | 50    |
| 220        | 1200           | CRM    | 200   |
| 280        | 1000           | Hadoop | 40    |
| 300        | 1500           | Java   | 100   |
| 120        | 1000           | Hadoop | 120   |



| <u>PNUMBER</u> | PNAME  |
|----------------|--------|
| 1000           | Hadoop |
| 1200           | CRM    |
| 1500           | Java   |

| <u>ssn</u> | <u>PNUMBER</u> | HOURS |
|------------|----------------|-------|
| 100        | 1000           | 50    |
| 220        | 1200           | 200   |
| 280        | 1000           | 40    |
| 300        | 1500           | 100   |
| 120        | 1000           | 120   |

## Trzecia postać normalna (3 NF)

- Zależność funkcyjna X → Y w relacji R jest zależnością
  przechodnią, jeżeli istnieje zbiór atrybutów Z, który nie
  jest ani kluczem kandydującym, ani podzbiorem żadnego
  klucza R, i zachodzą zarówno X → Z jak i Z → Y
- Relacja jest w trzeciej postaci normalnej (3 NF) jeżeli spełnia 2 NF i żaden nie-główny atrybut w R nie jest przejściowo zależny od klucza głównego
- Jeśli relacja nie jest w trzeciej postaci normalnej, należy rozłożyć relację R i stworzyć relację, która zawiera atrybuty nie-kluczowe, które funkcyjnie określają inne atrybuty nie-kluczowe

## Trzecia postać normalna (3 NF)

- R1(<u>SSN</u>, ENAME, DNUMBER, DNAME, DMGRSSN)
  - Załóżmy, że pracownik pracuje w jednym dziale, dział może mieć wielu pracowników, ale dział ma jednego kierownika
- R11(<u>SSN</u>, ENAME, *DNUMBER*)
- R12(<u>DNUMBER</u>, DNAME, *DMGRSSN*)

## Trzecia postać normalna (3 NF)

| <u>SSN</u> | NAME     | DNUMBER | DNAME     | DMGRSSN |
|------------|----------|---------|-----------|---------|
| 10         | O'Reilly | 10      | Marketing | 210     |
| 22         | Donovan  | 30      | Logistics | 150     |
| 28         | Bush     | 10      | Marketing | 210     |
| 30         | Jackson  | 20      | Finance   | 180     |
| 12         | Thompson | 10      | Marketing | 210     |



Jackson

Thompson



| DNUMBER | DNAME     | DMGRSSN |
|---------|-----------|---------|
| 10      | Marketing | 210     |
| 30      | Logistics | 150     |
| 20      | Finance   | 180     |

# Postać normalna Boyce-Codd'a (BCNF)

- Zależność funkcyjna X → Y jest trywialną
   zależnością funkcyjną, jeżeli Y jest podzbiorem X
  - np.: SSN, NAME  $\rightarrow$  SSN
- Relacja R jest w BCNF pod warunkiem, że każda z jej nietrywialnych zależności funkcyjnych X → Y, X jest nadkluczem—to znaczy X jest albo kluczem kandydującym albo jego nadzbiorem
- BCNF jest silniejsza niż 3NF
  - każda relacja w BCNF jest również w 3 NF (ale nie odwrotnie)

# Postać normalna Boyce-Codd'a (BCNF)

- R1(SUPNR, SUPNAME, PRODNR, QUANTITY)
  - Załóżmy, że dostawca może dostarczyć wiele produktów; produkt może być dostarczany przez wielu dostawców, a dostawca ma unikalną nazwę
- R11(SUPNR, PRODNR, QUANTITY)
- R12(<u>SUPNR</u>, SUPNAME)

## Czwarta postać normalna (4 NF)

- Istnieje wielowartościowa zależność od X do Y, X
   → Y, wtedy i tylko wtedy, gdy każda wartość X
   dokładnie określa zbiór wartości Y, niezależnie od
   innych atrybutów
- Relacja jest w 4 NF, jeżeli jest w BCNF i dla każdej z jej nietrywialnych zależności wielowartościowych X →→ Y, X jest nadkluczem—to znaczy X jest albo kluczem kandydującym lub jego nadzbiorem

## Czwarta postać normalna (4 NF)

- R1(course, instructor, textbook)
  - Załóżmy, że kurs może być prowadzony przez różnych instruktorów, a kurs wykorzystuje ten sam zestaw podręczników dla każdego instruktora
- R11(<u>course</u>, <u>textbook</u>)
- R12(course, instructor)

# Czwarta postać normalna (4 NF)

| COURSE              | INSTRUCTOR | воок                  |
|---------------------|------------|-----------------------|
| Database Management | Baesens    | Database cookbook     |
| Database Management | Lemahieu   | Database cookbook     |
| Database Management | Baesens    | Databases for dummies |
| Database Management | Lemahieu   | Databases for dummies |



| COURSE              | INSTRUCTOR |
|---------------------|------------|
| Database Management | Baesens    |
| Database Management | Lemahieu   |

| COURSE              | ВООК                  |
|---------------------|-----------------------|
| Database Management | Database cookbook     |
| Database Management | Databases for dummies |

## Przegląd kroków normalizacji i zależności

| Postać normalna | Rodzaj zależności               | Opis                                                                                                                                                                                                                  |
|-----------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2NF             | Zupełna zależność funkcyjna     | Zależność funkcjonalna X->Y jest zupełną zależnością funkcyjną, jeśli usunięcie dowolnego atrybutu A z X oznacza, że zależność już nie zachodzi                                                                       |
| 3NF             | Przechodnia zależność funkcyjna | Zależność funkcjonalna X->Y w relacji R jest zależnością przechodnią, jeśli istnieje zbiór atrybutów Z, który nie jest ani kluczem kandydującym, ani podzbiorem żadnego klucza R, i zachodzą zarówno X->Z, jak i Z->Y |
| BCNF            | Trywialna zależność funkcyjna   | Zależność funkcjonalną X->Y nazywamy<br>trywialną, jeśli Y jest podzbiorem X                                                                                                                                          |
| 4NF             | Wielowartościowa zależność      | Zależność X->>Y jest wielowartościowa wtedy i tylko wtedy, gdy każda wartość X dokładnie określa zbiór wartości Y, niezależnie od innych atrybutów 37                                                                 |