## **Berth Allocation**

The problem considers a port terminal quay of total length  $L \in \mathbb{N}$ , as shown in Figure 1. A set V of vessels are scheduled to arrive at the terminal on a weekly basis. Each vessel  $i \in V$  has scheduled arrival and departure times  $start_i, end_i \in \mathbb{N}$ , respectively, which correspond to exact hours within the week. For example, a vessel i with  $start_i = 10$  and  $end_i = 30$  must be moored at the quay from Monday 10am to Tuesday 6am. Each vessel is also characterised by its length  $\ell_i \in \mathbb{N}$ , in meters. Each vessel must be assigned to a berthing position in the quay, where it remains moored for its entire stay. The assignment of a vessel  $i \in V$  to a position  $k \in [0, L]$  is represented by a Berth Allocation (BA)  $A_i = k$ , which indicates that i covers part  $[k, k + \ell_i]$  of the quay, as shown for Vessel 5 in Figure 1. Vessels with overlapping stays must not only moor at non-overlapping berthing positions, but must also ensure they respect a minimum safety distance  $d \in \mathbb{N}$ .



Figure 1: Setting configuration. Vessels are represented by rectangles. Vertical axis = time and horizontal axis = space.

Note that the arrival schedule is cyclic and is repeated every week. In this manner when  $start_i > end_i$  for a vessel i, it is assumed that its arrival

time is before and its departure time after Sunday 23.59, which should be considered for time-space overlaps as shown for Vessels 1 and 4 in Figure 2.



Figure 2: Cyclic schedule representation. Vessel 4 arrives on Sunday and departs on Monday. The yellow, transparent rectangle visualises its stay for the previous calendar week.

## Flexible berthing windows

Vessels are also allowed to shift their berthing time window for a maximum time of s hours later, as long as their stay **duration** remains unchanged and that they arrive at an exact hour. For example, given s = 3, a vessel i with  $start_i = 10$  and  $end_i = 30$  can be moored at the quay within one of the windows [10, 30], [11, 31], [12, 32] and [13, 33]. Vessel 6's stay in Figure 1 is shifted 1 hour later than its scheduled berthing time window, which is depicted by the transparent rectangle.

## Quay Crane assignments

A set of Quay Cranes (QCs) C are located uniformly along the quay. Each QC  $c \in C$  has a base position  $p_c$  and may operate within a limited range of fixed length r, serving part  $[p_c, p_c + r]$  of the quay as shown in Figure 1. Each crane may serve only one vessel at any time and must be assigned to it for its entire stay. Each vessel i is finally characterized by a number  $q_i$  which indicates the minimum number of QCs which must be serving it during its stay. In order for a QC c to be compatible with a vessel i assigned at a position k, it must hold that  $p_c \leq k < k + \ell_i \leq p_c + r$ , as it holds for Vessel 8 and QCs 1, 2 and 3 in Figure 1.