Microprocessor architecture and registers

UCS1502 MICROPROCESSORS AND INTERFACING

Ms. S. Angel Deborah AP/CSE

Learning Objective

- To understand the Architecture of 8086 microprocessor
- To understand the purpose of registers

Overview

- Block Diagram of 8086
- Different categories of registers
- Purpose of each register

Block Diagram of 8086

8086 Registers

General Purpose

Status and Control

Index

BP BP	
SP	
SI	

Segment

cs

SS

DS ES

General purpose registers

• AX

- Accumulator Register
- Preferred register to use in arithmetic, logic and data transfer instructions because it generates the shortest Machine Language Code
- Must be used in multiplication and division operations
- Must be used in I/O operations

BX

- Base Register
- Serves as an address register

General purpose registers

• CX

- Count register
- Used as a loop counter
- Used in shift and rotate operations

• DX

- Data register
- Used in multiplication and division
- Also used in I/O operations

Pointer and Index Registers

- All 16 bits wide, L/H bytes are not accessible
- used as memory pointers
- Example: MOV AH, [SI]
 - Move the byte stored in memory location whose address is contained in register SI to register AH
- IP is not under direct control of the programmer

Pointer and Index Registers

- Contain the offset addresses of memory locations
- Can be used in arithmetic and other operations
- SP: Stack pointer
 - Used with SS to access the stack segment
- BP: Base Pointer
 - Primarily used to access data on the stack
 - Can be used to access data in other segments

Pointer and Index Registers

- SI: Source Index register
 - Required for some string operations
 - When string operations are performed, the SI register points to memory locations in the data segment which is addressed by the DS register.
 - SI is associated with the DS in string operations.
- DI: Destination Index register
 - Required for some string operations
 - When string operations are performed, the DI register points to memory locations in the data segment which is addressed by the ES register.
 - DI is associated with the ES in string operations.
- The SI and the DI registers may be used to access data stored in arrays

Segment Register

- CS, DS, SS and ES
- Stores the memory addresses of instructions and data
- Memory Organization
 - Each byte in memory has a 20 bit address starting with 0 to 2²⁰-1 or 1 MB of addressable memory
 - Addresses are expressed as 5 hex digits from 00000 FFFFF
 - Problem: But 20 bit addresses are TOO BIG to fit in 16 bit registers!
 - Solution: Memory Segment
 - Block of 64K (65,536) consecutive memory bytes
 - A segment number is a 16 bit number
 - Segment numbers range from 0000 to FFFF
 - Within a segment, a particular memory location is specified with an offset
 - An offset also ranges from 0000 to FFFF

Memory Organisation

Computing Physical Address

SEGMENT	SEGMENT REGISTER	OFFSET REGISTER
Code Segment	CSR	Instruction Pointer (IP)
Data Segment	DSR	Source Index (SI)
Extra Segment	ESR	Destination Index (DI)
Stack Segment	SSR	Stack Pointer (SP) / Base Pointer (BP)

Flag register

Check your understanding

- What is the difference SI and SP?
- Why do we need segment registers?

Summary

- Architecture of 8086
- Registers and its purpose

Reference

• Doughlas V Hall, "Microprocessors and Interfacing, Programming and Hardware", TMH, 2012.

Thank you