UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 Listado 18 (Aplicaciones Lineales.)

- 1. En cada caso determine si la aplicación es lineal y demuestre su afirmación.
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^3$, T(x, y) = (xy, x y, 0).
 - b) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(u_1, u_2) = (u_1, -u_2)$ (reflexión sobre el eje X).
 - c) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(u_1, u_2) = (u_1, 0)$ (proyección ortogonal sobre el eje X).
 - d) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x_1, x_2) = (x_1 + 1, x_2)$.
 - e) $T: \mathbb{C} \to \mathbb{C}^2$, T(z) = (Re(z), Im(z)), considerando \mathbb{C} como e.v. sobre \mathbb{C} .
 - f) $T: \mathcal{M}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R}), T(A) = p, \text{ con } p(x) = a_{11}x^2 + tr(A), \forall x \in \mathbb{R}.$
 - q) $T: \mathcal{M}_3(\mathbb{R}) \to \mathbb{R}, T(A) = |A|.$
 - h) $T: \mathbb{R}^2 \to \mathbb{R}$, $T(x,y) = \frac{x^2}{y}$ si $y \neq 0$ y T(x,0) = 0. (En práctica e) y f))
- 2. Demuestre que las siguientes aplicaciones son lineales:
 - a) La proyección ortogonal $P: V \to S$ definida por:

$$P(v) = \sum_{j=1}^{p} \frac{\langle v, x_j \rangle}{\|x_j\|^2} x_j,$$

donde V es un e.v. con producto interior $\langle \cdot, \cdot \rangle$, S un s.e.v. de V y $\{x_1, x_2, \dots, x_p\}$ es una base ortogonal de S.

Como aplicación: defina la proyección ortogonal de \mathbb{R}^3 sobre el plano XY y encuentre P(1,2,3).

- b) $T: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}, \qquad T(A) = tr(A).$
- c) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(v) = R_{\alpha} v$, donde α es un número real fijo y R_{α} es la matriz:

$$R_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix},$$

es decir, T(v) es la rotación de v en el ángulo α .

d) $T: P_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}),$ (En práctica c) y d))

$$T(p) = \left[\begin{array}{cc} p'(0) & p'(1) \\ p(0) & p(1) \end{array} \right]$$

3. Encuentre un ejemplo de función NO lineal $f: V \to W$ tal que $f(\alpha v) = \alpha f(v)$ para todo $\alpha \in \mathbb{R}$ y $v \in V$, en los siguientes casos:

a)
$$V = W = \mathbb{R}^2$$
, b) $V = \mathbb{R}^2$, $W = \mathbb{R}$, c) $V = \mathcal{M}_n(\mathbb{R})$, $W = \mathbb{R}$.

4. Sea V un e.v. complejo con producto interior $\langle \cdot, \cdot \rangle$ y sea $w \in V$ fijo. Considere las funciones $T_1, T_2 : V \to V$ definidas por:

$$T_1(v) = \langle v, w \rangle w \quad \wedge \quad T_2(v) = \langle w, v \rangle w$$

- a) Muestre que $T_1(\theta) = T_2(\theta) = \theta$. Justifique su respuesta usando para ello las propiedades de espacios vectoriales. (En práctica a))
- b) Muestre que $\forall u, v \in V$, $T_i(u+v) = T_i(u) + T_i(v)$ i = 1, 2 y que, sin embargo, sólo una de ellas es lineal. ¿Qué sucede en el caso de V un e.v. real?.
- 5. Encuentre una aplicación lineal $T: \mathbb{R}^2 \to \mathcal{M}_2(\mathbb{R})$, tal que: **(En práctica)** $T(1,3) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ y $T(0,1) = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$.
- 6. Calcule el kernel, imagen, rango y nulidad de las siguientes aplicaciones lineales:

a)
$$T: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}^3$$
, $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b, b+c, d)$.

- b) $T: \mathcal{M}_3(\mathbb{R}) \to \mathcal{M}_3(\mathbb{R}), T(A) = \frac{1}{2}(A A^t).$
- c) $T: \mathcal{M}_3(\mathbb{R}) \to \mathcal{M}_3(\mathbb{R}), T(A) = \frac{1}{2}(A + A^t).$
- d) $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R}), T(p) = q, \text{ con } q(x) = p(x+1) + p(x-1) 2p(x), \forall x \in \mathbb{R}.$

e)
$$T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}, T(p) = \int_0^1 p(x) dx.$$
 (En práctica c) y d))

- 7. Para este problema suponga que V y W son espacios vectoriales de dimensión finita y que $T: V \to W$ es una aplicación lineal. (En práctica (b_1) y c))
 - a) Suponga que los espacios V y W son tales que $\dim(V) > \dim(W)$. Demuestre que T no puede ser inyectiva.
 - b) Suponga que $\dim(V) = \dim(W)$. Demuestre que si T es:
 - $(b_1)\ sobreyectiva,$ entonces Tes también inyectiva.
 - (b_2) inyectiva, entonces T es también sobreyectiva.
 - c) Suponga que V=W y que $T^2=T\circ T=\theta$ (la aplicación lineal que a todo vector lo envía al vector nulo). Demuestre que la aplicación $I-T:V\to V$ es invertible.
- 8. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por

$$T(x, y, z) = (x - 2y, y + z, x + y - z).$$

Usando el teorema de la dimensión demuestre que $\operatorname{Im}(T) = \mathbb{R}^3$.

9. Pruebe que no existe una aplicación lineal $T: \mathbb{R}^5 \to \mathbb{R}^2$ tal que (En práctica)

$$Ker(T) = \{(a, b, c, d, e) \in \mathbb{R}^5 : a = 3b \text{ y } c = d = e\}.$$

- 10. Si $T: \mathbb{R}^3 \to \mathbb{R}^2$ es la transformación lineal definida por T(x, y, z) = (x y, y + z). Determine: (En práctica c) y d))
 - a) La nulidad de T.
 - b) El rango de T.

- c) Encuentre la imagen por T de los subespacios $S_1 = \{(x, y, z) : x + y + z = 0\},$ $S_2 = \{(x, y, 0) : x, y \in \mathbb{R}\} \text{ y } S_3 = \{(x, y, z) : x = y = z\}.$
- d) Considere el subespacio $S_4 = \{(x, y, 0) : x = -y\}$. Note que S_4 es subespacio de S_1 . ¿Se cumple que $T(S_4)$ es un subespacio de $T(S_1)$?.
- 11. Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ la aplicación lineal definida por T(x,y,z) = (x+y,x-z). Calcule la matriz asociada a esta aplicación con respecto a las bases $B_{\mathbb{R}^3}$ y $B_{\mathbb{R}^2}$, donde
 - a) $B_{\mathbb{R}^3}$ y $B_{\mathbb{R}^2}$ son las bases canónicas.
 - b) $B_{\mathbb{R}^3} = \{(1,1,1), (0,2,1), (1,3,0)\}$ y $B_{\mathbb{R}^2} = \{(0,1), (-1,2)\}$.

Además, encuentre las matrices de paso entre las bases respectivas definidas en a) y b).

- 12. Sea $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_1(\mathbb{R})$ la aplicación lineal definida por $T(a_2x^2 + a_1x + a_0) = 2a_2x + a_1$. Calcule la matriz asociada a esta aplicación con respecto a las bases $B_{\mathcal{P}_2(\mathbb{R})}$ y $B_{\mathcal{P}_1(\mathbb{R})}$, donde
 - a) $B_{\mathcal{P}_2(\mathbb{R})}$ y $B_{\mathcal{P}_1(\mathbb{R})}$ son las bases canónicas.
 - b) $B_{\mathcal{P}_2(\mathbb{R})} = \{1 x, 1 + x, 1 + x + x^2\} \text{ y } B_{\mathcal{P}_1(\mathbb{R})} = \{1 + x, 1 x\}.$

Además, encuentre las matrices de paso entre las bases respectivas definidas en a) y b).

- 13. Sea $T: \mathbb{C}^2 \to \mathbb{C}^2$ el operador lineal definido por $T(z_1, z_2) = (z_1 + z_2, z_2)$.
 - a) Considere \mathbb{C}^2 como espacio vectorial complejo. Calcule la matriz asociada a T con respecto a la base $B_1 = \{(1+i, 1+i), (1-i, 1+i)\}.$
 - b) Considere ahora \mathbb{C}^2 como espacio vectorial real. Calcule la matriz asociada a Tcon respecto a la base $B_1 = \{(1,1), (1,-1), (i,0), (0,i)\}.$ (En Práctica b))
- 14. Calcule la matriz asociada a la aplicación $T: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}$ definida por T(A) = tr(A), con respecto a las bases canónicas. (En Práctica)
- 15. Sea T un operador lineal en V, e.v. de dimensión 3, cuya matriz con respecto a la base canónica de V es

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{array}\right).$$

Encuentre una base de Ker(T) e Im(T) y la definición de T si: (En Práctica b))

$$a) \quad V = \mathbb{R}^3$$

a)
$$V = \mathbb{R}^3$$
 b) $V = \mathcal{P}_2(\mathbb{R})$ c) $V = \mathbb{C}^3$

$$c)$$
 $V = \mathbb{C}^3$

JSA/RBP/RRS/GBG/AGS/RNG/LRS/BBM/ags Segundo Semestre de 2005.