Machine Learning / Tree based methods

Decision Trees

Regression

Variance

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{n} (x_i - c)^2$$

 $c=\bar{x}$ produce the lowest value of σ^2

Domain partitioning

$$f(x_1, x_2) = y$$

Step 1, find *j* and *s* that Minimize:

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \bar{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \bar{y}_{R_2})^2$$

j = 1, ..., ns = cuttoff

Decision Trees

Classification

Proportions

$$p_{mk} \coloneqq \frac{1}{N_m} \sum_{x_i \in R_m} \mathbb{I}(y_i = k)$$

$$N = 7$$

$$p_{m1} = \frac{1}{7}$$

$$p_{m2} = \frac{2}{7}$$

$$p_{m3} = \frac{4}{7}$$

Impurity functions. Misclassification

$$H(X_m) = 1 - \max_k(p_{mk})$$

$$\frac{2}{3} + \frac{1}{4} = \frac{11}{12}$$

Impurity functions. Misclassification

$$H(X_m) = 1 - \max_k(p_{mk})$$

$$\frac{1}{4} = \frac{11}{12} \qquad \qquad \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

Impurity functions. Misclassification

$$H(X_m) = 1 - \max_k(p_{mk})$$

$$\frac{2}{3} + \frac{1}{4} = \frac{11}{12}$$

$$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

Impurity functions. Gini Index

$$H(X_m) = \sum_k p_{mk} (1 - p_{mk})$$

- Find the maximum of y = x(1 x)
- Plot it

If only 2 classes, consider the following 2 cases

$$a) p_1 \gg p_2$$

$$(b)p_1 \approx p_2$$

https://scikit-learn.org/stable/modules/tree.html#classification-criteria

Impurity functions

$$p_{mk} \coloneqq \frac{1}{N} \sum_{x_i \in R_m} \mathbb{I}(y_i = k)$$

$$H(X_m) = 1 - \max_k(p_{mk})$$

Misclassification

$$H(X_m) = \sum_{k} p_{mk} (1 - p_{mk})$$
 Gini Index

$$H(X_m) = -\sum_{l} p_{mk} \log(p_{mk})$$
 Entropy

Iris dataset

```
petal length (cm) <= 2.45
               gini = 0.667
              samples = 150
           value = [50, 50, 50]
              class = setosa
                            False
         True
                      petal width (cm) <= 1.75
   gini = 0.0
                              gini = 0.5
 samples = 50
                           samples = 100
value = [50, 0, 0]
                         value = [0, 50, 50]
 class = setosa
                          class = versicolor
                 gini = 0.168
                                        gini = 0.043
                samples = 54
                                       samples = 46
               value = [0, 49, 5]
                                     value = [0, 1, 45]
              class = versicolor
                                      class = virginica
```


Homework assigment

Train and fine-tune a Decision Tree for the moons dataset.

- a. Generate a moons dataset using make_moons (n_samples=10000, noise=0.4).
- b. Split it into a training set and a test set using train_test_split().
- c. Use grid search with cross-validation (with the help of the GridSearchCV class) to find good hyperparameter values for a DecisionTreeClassifier.

Hint: try various values for max leaf nodes.

d. Train it on the full training set using these hyperparameters, and measure your model's performance on the test set. You should get roughly 85% to 87% accuracy.