Suggestion of CPA Attack and Countermeasure for Super-Light Block Cryptographic CHAM

Hyun-Jun Kim[†] · Kyung-Ho Kim[†] · Hyeok-Dong Kwon[†] · Hwa-Jeong Seo^{††}

ABSTRACT

Ultra-lightweight password CHAM is an algorithm with efficient addition, rotation and XOR operations on resource constrained devices. CHAM shows high computational performance, especially on IoT platforms. However, lightweight block encryption algorithms used on the Internet of Things may be vulnerable to side channel analysis. In this paper, we demonstrate the vulnerability to side channel attack by attempting a first power analysis attack against CHAM. In addition, a safe algorithm was proposed and implemented by applying a masking technique to safely defend the attack. This implementation implements an efficient and secure CHAM block cipher using the instruction set of an 8-bit AVR processor.

Keywords: Side Channel Attack, CHAM, CPA Attack, Masking, AVR

초경량 블록 암호 CHAM에 대한 CPA 공격과 대응기법 제안

김 현 $\mathcal{C}^{\dagger} \cdot$ 김 경 $\mathbf{z}^{\dagger} \cdot \mathbf{d}$ 혁 $\mathbf{S}^{\dagger} \cdot \mathbf{d}$ 화 정^{††}

요 약

초 경량암호 CHAM은 자원이 제한된 장치 상에서 효율성이 뛰어난 덧셈, 회전연산, 그리고 XOR 연산으로 이루어진 알고리즘이다. CHAM은 특히 사물인터넷 플랫폼에서 높은 연산 성능을 보인다. 하지만 사물 인터넷 상에서 사용되는 경량 블록 암호화 알고리즘은 부채널 분석에 취약할 수 있다. 본 논문에서는 CHAM에 대한 1차 전력 분석 공격을 시도하여 부채널 공격에 대한 취약성을 증명한다. 이와 더불어 해당 공격을 안전하게 방어할 수 있도록 마스킹 기법을 적용하여 안전한 알고리즘을 제안하고 구현 하였다. 해당 구현은 8-비트 AVR 프로세서의 명령어셋을 활용하여 효율적이며 안전한 CHAM 블록암호를 구현하였다.

키워드: 부채널 공격, CHAM, CPA 공격, 마스킹, AVR

1. 서 론

최근 가전제품, 모바일 장비, 웨어러블 디바이스 등 다양한 임베디드 시스템이 사물 인터넷 기술로 연결되어 정보를 주고 받고 있다. 이러한 기술은 안전한 보안 통신이 필요하다. 이를 위한 방법으로 메모리 공간이 작으며 비용이 낮은 사물 인터넷 플랫폼의 구현 및 배포가 쉬운 ARX (Add Rotation, Xor)기반 암호 알고리즘이 제안되고 있다. 이러한 알고리즘으로는 LEA, HIGHT, SIMON, SPECK, 그리고 CHAM이 있다[1-4].

그러나 이러한 임베디드 디바이스에 암호 알고리즘을 구현하게 되면서 발생하는 결함들로 인해 부채널 분석(side-channel analysis)에 취약할 수 있다. 부채널 분석이란 1999년 Kocher에 의해 처음으로 제안되었으며 구현 과정에서 설계자가 고려하지 못한 정보의 누출 정보를 통해 비밀 정보를 알아내는 공격 기법이다[5]. 이 중에 가장 효과적인 공격 방법은 전력 분석 공격(Power Analysis Attack) 방법이며, ARX 기반 알고리즘 LEA, HIGHT, SIMONE, 그리고 SPECK이 해당 공격 기법에 취약한 것으로 밝혀졌다[6-8]. 이러한 부채널 공격으로부터 안전성을 갖추기 위한 기법으로 마스킹 기법이 있다. 마스킹 기법이란 발생하는 중간 값을 랜덤하게 만들어 공격자에게 필요한 정보의 누출을 막는 대응기법이다.

본 논문에서는 8비트 프로세스 상에서 CHAM-64/128에 대한 전력 분석 공격 실 험을 통하여 마스터 키 값을 획득 할수 있음을 확인한다. 또한 이를 보안하기 위한 마스킹 기법을함께 제안하고 구현한다. 해당 구현은 8-비트 AVR 프로세서의 명령어셋을 활용하여 CHAM 블록암호를 구현하였다.

본 논문의 구성은 다음과 같다. 2장에서 CHAM에 대한 소개 그리고 부채널 공격 방법론에 대해 설명한다. 3장에서는

^{**} 이 성과는 부분적으로 2020년도 정부(과학기술정보통신부)의 재원으로 한국 연구재단의 지원을 받아 수행된 연구임(No. NRF-2017R1C1B5075742) 그리고 이 논문은 부분적으로 2020년도 정부(과학기술정보통신부)의 재원으 로 정보통신기술진흥센터의 지원을 받아 수행된 연구임(No.2018-0-00264, IoT 융합형 블록체인 플랫폼 보안 원천 기술 연구). 본 연구는 서화정 교수 의 한성대학교 교내학술연구비 지원과제임.

[※]이 논문은 2019년도 한국정보처리학회 추계학술발표대회에서 '초경량 블록 암호 CHAM에 대한 CPA 공격과 대응기법 제안'의 제목으로 발표된 논문 을 확장한 것임.

[†] 준 회 원: 한성대학교 IT융합공학부 석사과정

^{††} 종신회원: 한성대학교 IT융합공학부 조교수 Manuscript Received: December 24, 2019

Accepted: January 14, 2020

^{*} Corresponding Author: Hwa-Jeong Seo(hwajeong84@gmail.com)

^{**} This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

CHAM 64/128이 가지는 보안 취약점을 이 용한 공격 방법을 제시한다. 4장에서는 제안된 부채널 공격 기법을 방어하기 위한 CHAM 블록 암호에 대한 마스킹 기법을 제안하고이를 최적화 구현한 결과를 제시한다. 마지막으로 5장에서본 논문에 대한 결론을 내린다.

2. 관련 연구

2.1 국내 초경량 블록암호 CHAM

2017년 국가보안기술연구소 (NSR)에서 제안한 초경량 블록 암호 알고리즘 CHAM은 4-branch Feistel 구조의 블록 암호로 3가지의 암호화 모드를 제공한다. Table 1은 CHAM 패밀리의 목록과 매개 변수이다. 각 암호는 블록 크기가 n 비트이고 키 크기가 k 비트 일 때 CHAM-n/k로 표시된다. r과 w는 각각 라운드 수 및 워드의 비트 길이를 나타낸다.

Table 1. List of CHAM Ciphers and Their Parameters

Cipher	n	k	r	W	k/w
CHAM-64/128	64	128	80	16	8
CHAM-128/128	128	128	80	32	4
CHAM-128/256	128	256	96	32	8

Fig. 1. CHAM Key Schedule

CHAM은 Fig. 1 구조의 상태 정보를 유지하지 않는 stateless 키 스케줄과 Fig. 2 구조의 ARX 연산을 기반으로 하여 임베디드 디바이스에서 효율적이며 특히 저사양 디바이스 상에서더 효율적인 알고리즘이다. 또한 라운드키의 수는 라운드 수보다 훨씬 적으며 반복적으로 재사용하여 라운드 키를 저장하는 데 필요한 메모리 크기가 줄어 든다. 암호화는 8 비트 AVR 마이크로 컨트롤러의 작업 수를 최소화하기 위해 1 비트 및 8 비트 두 가지 유형의 왼쪽 회전을 사용한다.

2.2 상관 관계 전력분석(CPA)

전력 분석 공격은 전력 소비 모델과 측정된 전력 신호의 통계적 특성을 비교, 분석하여 암호화에 사용된 키를 찾아내 는 강력한 부채널 공격 방법이다. 전력 분석 공격에서 차분 전력 분석 공격(Differential Power Analysis, DPA)과 상관 계수 전력분석(Correlation Power Analysis, CPA)은 가장 대표적인 분석법으로 알려져 있다.

Fig. 2. Two Consecutive Round Functions

CPA의 과정은 암호화 알고리즘에서 추측하고자하는 비밀 키와 조작 가능한 정보로 이루어진 부분을 공격지점으로 설정하고 연산이 수행되는 부분의 소비전력을 소집한다. 그리고 추측하는 비밀키의 모든 경우에 대한 공격지점의 중간값을 해밍 웨이트(Hamming Weight) 모델로 변환한다. 위와 같은 방법으로 모델링된 전력 소비와 수집한 실제 전력 소비간의 피어슨 상관 계수를 계산하여 가장 높은 상관계수를 나타내는 추측키를 키로 결정한다.

2.3 마스킹 변환 기법

CHAM과 같은 ARX 구조의 알고리즘에 마스킹 기법이 적용되는 경우 불 마스킹 기법과 산술 마스킹을 상호 변환 하는 과정이 필요하다.

Goubin이 CHES 2001에서 제안한 방법인 불 마스킹과 산술 마스킹의 변환(B2A, Boolean to Arithmetic Masking Conversion)기법과 산술 마스킹과 부울 마스킹의 변환(A2B, Arithmetic to Boolean Masking Conversion)기법은 임의의 비트 크기에 대해 변환이 가능하다. Xor 연산 5개와 2개의산술 뺄셈 연산을 사용하여 부울 마스킹을 산술 마스킹으로 변환한다.

3. CHAM 64/128에 대한 CPA 부채널 공격

3.1 제안기법

본 논문에서는 CHAM-64/128에 대해 상관전력 분석(CPA) 기법을 사용한다. 입력 값을 알고 있다고 가정하고 공격을 시도하였다. 16bit의 라운드키를 8비트씩 나누어 추측키로 사용하여 연산을 감소시켰다.

Fig. 3. Attackable Intermediate Result of Odd Rounds

CHAM은 하나의 마스터키로부터 2개의 키값이 생성된다. 따라서 CHAM의 모든 라운드키를 계산하지 않고도 k/w만큼 의 라운드키를 알면 모든 키를 알 수 있다. 모든 경우의 마스 터키 값에 대해 생성되는 라운드키를 전 탐색 기법을 통해서 사전 연산하여 공격하면 획득한 라운드 키값을 통해 마스터 키 값을 알아낼 수 있다. 그리고 CHAM은 이전 라운드에서 연산한 값을 사용하여 연산하므로 각 라운드에 해당하는 라 운드 키 값을 알아낸 후 그 값을 다음 라운드에 사용하여 계 산해야 한다.

CHAM에서 공격 가능한 중간 값은 Fig. 3과 같이 X1의 평문값, 라운드키값, XOR 연산이 이루어지는 곳에 모듈러 덧셈 연산이 이루어진 값이다. 또한 왼쪽 회전 연산에서 16 비트로 공격한다면 같은 해밍 웨이트 값을 나타내므로 차이 가 없지만, 8비트씩 나누어 공격하면 다른 해밍 웨이트 값을 나타내므로 중간값으로 공격이 가능하다.

CHAM은 홀수 라운드와 짝수 라운드에서 다른 연산을 반 복하여 사용한다. 그렇기 때문에 홀수 라운드와 짝수 라운드 를 서로 다른 방법으로 CPA공격을 수행하였다.

먼저 8비트 프로세서의 특징으로 인해 홀수 라운드의 왼쪽 회전 연산 지점을 중간값으로 하였다. 라운드키의 우측부분 8bit(RK8-15)만 추측값으로 공격을 시도하여 상관계수가 가 장 높은 추측값을 라운드 키의 좌측 8bit로 선택한다.

라운드키의 좌측 부분 또한 8bit(RKO-7)만 추측값으로 넣 고 결과값 중 가장 상관계수 값이 높은 추측값을 라운드키의 좌측 8bit로 선택하여 획득한다. 이렇게 획득한 16bit의 라 운드키 값으로부터 마스터키 값을 획득할 수 있다.

짝수 라운드의 공격은 우측부분 8bit(RK8-15)는 모듈러 덧셈 연산 결과 값을 중간 값으로 공격을 시도하고 좌측 부분 에 8bit(RKO-7)는 ROL 연산 결과 값을 중간 값으로 하여 공 격한다. 먼저 우측부분 8bit(RK8-15)만 추측 값으로 CPA공 격을 시도하여 상관계수 값이 높은 추측값을 라운드키의 우측 8bit로 선택한다. 그리고 획득한 RK8-15 값과 RK0-7을 추 측값으로 하여 CPA공격을 시도하고 결과 값 중 상관계수 값 이 가장 높은 추측 값을 라운드 키의 좌측 8bit으로 선택한다.

3.2 공격 결과

실험은 CHAM-64/128를 대상으로 8비트 프로세스 XMEGA 보드에 Chipwhisperer를 사용하여 8라운드까지의 파형을 5.000개 수집하였다.

Fig. 4와 Fig. 5와 같이 1라운드연산에서 공격을 통해 나 오는 가장 높은 상관관계를 가지는 좌측과 우측의 8bit 값은 (0x03, 0xA9)이다. (0x03A9)의 라운드키 값을 통해 사용된 마스터키 값의 일부인 (0x2B7E)을 알아낼 수 있다. 나머지 7개의 라운드에서도 동일한 방법으로 올바른 마스터키 값을 알아내어 공격에 성공하였다. 1~8라운드의 전력파형과 입력 값을 알고 있는 경우 5분 이내에 모든 비밀 키를 찾을 수 있었다.

Fig. 4. Attack on the Left Side of the Roundkey Key in the First Round. The Highest Correlation Coefficient Value is Represented at (0x03).

Fig. 5. Attack on the Right Side of the Round Key in the First Round. It Shows the Highest Correlation Coefficient Value at (0xA9).

4. 부채널 공격에 안전한 CHAM

4.1 마스킹 변환 기법

CHAM과 같은 ARX 구조의 알고리즘에 마스킹 기법이 적 용되는 경우 불 마스킹 기법과 산술 마스킹을 상호 변환하는 과정이 필요하다.

Goubin이 CHES 2001에서 제안한 방법인 불 마스킹과 산술 마스킹의 변환(B2A, Boolean to Arithmetic Masking Conversion)기법과 산술 마스킹과 부울 마스킹의 변환(B2A, Arithmetic to Boolean Masking Conversion)기법은 임 의의 비트 크기에 대해 이 가능하다[9]. Fig. 6은 Goubin이 제안한 B2A 알고리즘이다. Xor연산 5개와 2개의 산술 뺄셈 연산을 사용하여 부울 마스킹을 산술 마스킹으로 변환한다.

Fig. 7은 Goubin이 제안한 A2B 알고리즘이다. k비트의 (2k+4)개의 XOR 연산, (2k+1)개의 AND 연산, 그리고 k개 의 논리 왼쪽 쉬프트 연산으로 산술 마스킹을 부울 마스킹으 로 변환한다.

Input : x', r_x Output: A	
$\begin{array}{l} 1.\ \varGamma = \gamma \\ 2.\ T = x' \oplus \varGamma \\ 3.\ T = \ T - \varGamma \\ 4.\ T = \ T \oplus x' \end{array}$	$5. \Gamma = \Gamma \oplus r_x$ $6.A = x' \oplus \Gamma$ $7.A = A - \Gamma$ $8.A = A \oplus T$

Fig. 6. Goubin's Boolean to Arithmetic Masking Conversion Algorithm

Input : A, r_x Output: x'	
Output: x $1. \Gamma = \gamma$ $2. T = 2\Gamma$ $3. x' = \Gamma \oplus r_x$ $4. \Omega = \Gamma \wedge x'$ $5. x' = T \oplus A$ $11. \text{f or } i = 1 \text{ to } k - 1 \text{ do}$ $11. 1\Gamma = T \wedge r_x$ $11. 2\Gamma = \Gamma \oplus \Omega$ $11. 3 T = T \wedge A$ $12. x' = x' \oplus T$	$\begin{aligned} 6. \varGamma &= \varGamma \oplus x' \\ 7. \varGamma &= \varGamma \wedge r_x \\ 8. \varOmega &= \varOmega \oplus \varGamma \\ 9. \varGamma &= \varGamma \wedge A \\ 10. \varOmega &= \varOmega \oplus \varGamma \\ 11.4 \varGamma &= \varGamma \oplus \varGamma \\ 11.5 T &= 2\varGamma \end{aligned}$

Fig. 7. Goubin's Arithmetic to Boolean Masking Conversion Algorithm

Input: x', y', r_x, r_y	
Output: $z^{'}$	
$1. C = \gamma$	$10, B = \Omega \ll 1$
$T = x' \wedge y'$	10. $D = \Omega 1$ 11. $C = C 1$
$\Omega = C \oplus T$	$11. C = C \otimes 1$ $12. z' = x' \oplus y'$
$4. T = x' \wedge r_y$	- 17
<i>a</i>	$13.r_z=r_x\!\oplus\!r_y$
$5.\Omega = \Omega \oplus T$	14. $T = C \wedge r_z$
$6. T = y' \wedge r_x$	$15.\Omega = \Omega \oplus T$
$7. \Omega = \Omega \wedge T$	$16. T = C \wedge r_z$
8. $T = r_x \wedge r_y$	$17. \Omega = \Omega \oplus T$
$9. \Omega = \Omega \wedge \mathring{T}$	
18. f or $i = 2 to k - 1 do$	
$18.1 T = B \wedge z'$	$18.4B = B \oplus T$
$18.2B = B \wedge r_z$	$18.5 B = B \ll 1$
*	$16.0D - D \ll 1$
$18.3B = B \oplus \Omega$	$20, z' \equiv z' \oplus C$
$19.z^{\prime}=z^{\prime}\!\oplus\!B$	$z_0 \cdot z = z \oplus C$

Fig. 8. KRJ Method Secure Addtion Masking Algorithm

부울 마스킹된 두 개의 데이터를 더하기 위해서는 B2A, 덧셈, A2B의 3단계를 거쳐야 한다. Karroumi는 이러한 번 거로움과 연산량을 개선하기 위해 Fig. 8과 같이 부울 마스킹된 두 개의 데이터를 입력받아 부울 마스킹된 덧셈 결과를 안전하게 출력할 수 있는 Secure Addition (SA)을 제안하였다 [10].

4.2 CHAM 1차 대응 기법 제안

대표적인 부채널 대응기법으로 예상 가능한 중간 값을 랜덤하게 만드는 마스킹 기법이 쓰인다. 임베디드 디바이스에서 요구 되는 저용량 및 저전력 등으로 인해 고차 마스킹을 쓰는 것

이 현실적이지 않기 때문에 1차 마스킹기법이 주로 쓰인다.

본 논문에서는 1차 부채널 공격에 안전한 CHAM 마스킹기법을 제안한다. 일반 구현방법과 동일하게 라운드 함수의입·출력 마스크 값을 동일하게 유지한다. 이때, 마스크 값은16비트의 난수를 사용하며, 효율성을 높이기 위해 모듈러 덧셈에 변환 기법 적용을 제외한 부분은 동일한 구조를 가진다. 그리고 B2A, A2B 연산을 동시에 수행할 수 있는 기법 중KRJ 기법을 사용하여 마스킹을 진행한다.

먼저 라운드키 생성 시, 마스크값 m1과 마스크값 m2를 1bit 의 왼쪽 회전 연산한 값을 짝수 라운드키 값에 XOR연산을 한다. 그리고 홀수 라운드의 라운드 키 값에 는 마스크값 m1과 마스크 값 m2를 8bit 왼쪽 회전 연산한 값을 XOR연산한다. 암호화 연산을 수행할 때 먼저 모든 평문값에 마스크값 m1값으로 Xor연산한다. 그 다음 연산인 입력값 Xi[1]은 라운드 키의 Xor연산 시에 m1에서 m2값으로 마스킹값이 변한 상태가 되며 Secure Addition연산 이후 결과값은 (m1 xor m2)가 마스 킹된 상태가된다. 다음으로왼쪽 회전연산이후에 짝수라운드연산은(m1 xor m2)왼쪽8bit회전연산을 수행하여마스크값을 제거한다. 홀수라운드의연산은 (m1 xor m2)왼쪽8bit회전연산을 수행하여마스크값을 제거한다. 항수한 하여마스크 값을 제거한다. 이러한 방법은 라운드마다반복된다.

제안 기법의 검증을 위해 III에서의 공격 과 동일한 환경과 공격을 시도였다. Fig. 9와 Fig. 10과 같이 모든 추측값에 대하여 낮고 특정 추측값에 대해 높은 상관관계를 나타 지 않았다. 그리고 Fig. 11과 Fig. 12와 같이 해당하는 실제값에 대한 상관관계가 드러나지 않아 안전한 마스킹이 적용됨을 확인하였다.

Fig. 9. Masking Scheme Suggested

Fig. 10. Attack on the Left Side of the Roundkey Key in the First Round

Fig. 11. Attack on the Left Side of the Roundkey Key in the First Round

Fig. 12. Attack on the Left Side of the Roundkey Key in the First Round. Comparison of the Actual Value(Red) with the Estimated Value(Green).

Fig. 13. Attack on the Right Side of the Roundkey Key in the First Round. Comparison of the Actual Value(Red) with the Estimated Value(Green).

5. 결 론

본 논문에서는 초경량 블록 암호 알고리즘 CHAM-64/128 을 대상으로 저사양 8비트 AVR 프로세서 상에서 전력 분석 공격에 대한 취약성을 확인하였다. 또한 이러한 공격 대응책으 로 CHAM에 효율적으로 적용할 수 있는 마스킹 구조를 제안 하였다. 결과적으로 CHAM에 대한 전력 분석 공격에 대한 취 약점 확인과 부채널 공격에 안전한 마스킹 기법을 제안하였다.

References

- [1] TTA, "128-bit Lightweight Block Cipher LEA," TTAK.KO-12.0223, Dec. 2013.
- [2] D. Hong, 2006, HIGHT: A New Block Cipher Suitable Forlow-resource Device, CHES 2006, LNCS 4249: 46~59
- [3] Ray Beaulieu, "The SIMON and SPECK Families of Lightweight Block Ciphers," 2013.
- [4] CHAM: A Family of Lightweight Block Ciphers for

Resource-Constrained Devices.

- [5] P. Kocher, J. Jaffe, and B. Jun, "Differential Power Analysis," Advances in Cryptology, CRYPTO'99, LNCS 1666, pp. 388-397, 1999.
- [6] J. Park, D. Hong, D. Kim, D. Kwon, and H. Park, "128-Bit Block Cipher LEA," TTAK.KO-12.0223, Dec. 2013.
- [7] Tae-jong Kim, Yoo-seung Won, Jin-hak Park, Hyun-jin An, and Dong-guk Han, "Side Channel Attacks on HIGHT and Its Countermeasures," *Journal of the Korea Institute of Information Security & Cryptology*, Vol.25, No.2, pp.457-465, 2015.
- [8] A. Biryukov, D. Dinu, and J. Großschädl, "Correlation Power Analysis of Lightweight Block Ciphers: From Theory to Practice," In: Manulis M., Sadeghi AR., Schneider S. (eds) Applied Cryptography and Network Security. ACNS 2016. Lecture Notes in Computer Science, Vol.9696. Springer, Cham. 2016.
- [9] L. Goubin, "A sound method for switching between Boolean and arithmetic masking," Cryptographic Hardware and Embedded Systems, CHES'01, LNCS 2162, pp.3-15, 2001.
- [10] M. Karroumi, B. Richard, and M. Joye, "Addition with blinded operands," Constructive Side-Channel Analysis and Secure Design, COSADE'14, LNCS 8622, pp.41-55, 2014.
- [11] Hwajeong Seo, "Memory-Efficient Implementation of Ultra-Lightweight Block Cipher Algorithm CHAM on Low-End 8-Bit AVR Processors," Journal of the Korea Institute of Information Security & Cryptology, Vol.28, pp.545-550, 2018.

김 현 준

https://orcid.org/0000-0002-6847-6772 e-mail:khj930704@gmail.com 2019년 한성대학교 IT응용시스템공학부 (학사)

2019년 ~ 현 재 한성대학교 IT융합공학부 석사과정

관심분야:시스템 보안, 부채널 분석, 블록체인

김 경 호

https://orcid.org/0000-0002-0945-3837 e-mail: pgm.kkh@gmail.com 2019년 한성대학교 IT응용시스템공학부 (학사)

2019년 ~ 현 재 한성대학교 IT융합공학부 석사과정

관심분야: 시스템 보안, 암호화 구현

권 혁 동

https://orcid.org/0000-0002-9173-512x e-mail:korlethean@gmail.com 2018년 한성대학교 정보시스템공학부 (학사)

2018년~현 재 한성대학교 IT융합공학부 석사과정

관심분야:블록체인, 모바일 보안

서 화 정

https://orcid.org/0000-0003-0069-9061 e-mail: hwajeong84@gmail.com 2010년 부산대학교 컴퓨터공학과(학사) 2012년 부산대학교 컴퓨터공학과(석사) 2012년 ~ 2016년 부산대학교 컴퓨터공학과 (박사)

2016년 ~ 2017년 싱가포르 과학기술청 연구원 2019년 ~ 현 재 한성대학교 IT융합공학부 조교수 관심분야: 정보보호, 암호화 구현, IoT