## Задача 9-2. Велокомпьютер



Современный велокомпьютер позволяет в процессе движения измерять практически все кинематические параметры велосипедиста: дальность поездки S, её время t, мгновенную скорость v(t) и среднюю скорость  $v_{\rm cp}$  за все время движения, максимальную мгновенную скорость  $v_{\rm max}$  за всю прогулку, полный пробег вашего велосипеда и т.д. Предположим, что велосипедист начал движение по прямому шоссе (в одну сторону), предварительно сбросив показания счетчика дальности на нуль  $(S=0.0\ {\rm km})$ .

## Часть 1. «Эволюция» средней скорости

- **1.1** Пусть за время t велосипедист проехал расстояние S, тогда его средняя скорость равна  $v_{\rm cp}(t)=S/t$ . Затем за промежуток времени  $\Delta t$  он проехал расстояние  $\Delta S$ . Чему равна средняя скорость  $v_{\rm cp}(t+\Delta t)$  велосипедиста за время  $t+\Delta t$ ? Найдите изменение  $\Delta v_{\rm cp}=v_{\rm cp}(t+\Delta t)-v_{\rm cp}(t)$  средней скорости велосипедиста за промежуток времени  $\Delta t$ . При малом  $\Delta t$  ( $\Delta t \ll t$ ) изменение  $\Delta v_{\rm cp}$  средней скорости можно представить в виде  $\Delta v_{\rm cp}=A\cdot\Delta S+B\cdot\Delta t$ . Установите размерности полученных коэффициентов A и B и найдите их явные выражения через величины S и t.
- 1.2 Рассчитайте  $\Delta v_{\rm cp}$  для значений S=15 км,  $\Delta S=0.10$  км, t=30 мин,  $\Delta t=30$  с.
- **1.3** Получите соотношение между величинами  $S, t, \Delta S$  и  $\Delta t$ , при котором значение средней скорости  $v_{cp}$  не изменится после прохождения велосипедистом малого участка дистанции  $\Delta S$ .

## Часть 2. «Странная» гонка

Рассмотрим движение велосипедиста, при котором он половину пути (S/2) разгонялся с некоторым постоянным ускорением a, а затем половину пути (S/2) тормозил с таким же по модулю ускорением.

- **2.1** Найдите зависимость скорости v(t) велосипедиста от времени и на выданном бланке постройте график полученной зависимости. Определите максимальное значение скорости  $v_{max}$  велосипедиста при таком движении и расстояние  $S_1$  от места старта, на котором оно будет зафиксировано велокопьютером.
- **2.2** Найдите зависимость средней скорости  $v_{\rm cp}(t)$  велосипедиста от времени и на этом же бланке постройте график полученной зависимости.
- **2.3** Найдите максимальное значение  $v_{\rm cp}^{max}$  средней скорости велосипедиста при таком движении, а также расстояние  $S_2$  от места старта, на котором оно будет зафиксировано велокомпьютером.
- 2.4 Вычислите  $v_{max}$  ,  $S_1$  ,  $v_{cp}^{max}$  ,  $S_2$  для значений S=1.0 км, a=0.50 м/с $^2$

## Часть 3. Произвольный закон движения

**3.1** Зависимость S(t) пути от времени (закон движения) велосипедиста представлен на графике. Используя график, найдите максимальную среднюю скорость  $v_{cn}^{max}$ 



велосипедиста на всей дистанции и расстояние  $S_3$ , на котором она была зафиксирована велокомпьютером.

Примечание: при малых x ( $x \to 0$ ) справедливо равенство  $\frac{1}{1+x} \approx 1-x$ .