Congratulations! You passed!

 $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} There was less information in the images \\ \hline \end{tabular}$

 \bigodot $\mbox{\bf Correct}$ Yes! Removing some convolutions modifies the training results.

 $\textbf{Grade received} \ 100\% \quad \textbf{To pass} \ 80\% \ \text{or higher}$

Go to next item

Week 4 Quiz

Latest Submission Grade 1009	Latest	Submission	Grade	1009
------------------------------	--------	------------	-------	------

1.	Using Image Generator, how do you label images?	1/1 point
	TensorFlow figures it out from the contents	
	You have to manually do it	
	It's based on the directory the image is contained in It's based on the file name	
	Of It's based on the file name	
	Correct That's right! The directory of the image is the label.	
2.	What method on the Image Generator is used to normalize the image?	1/1 point
	rescale	
	O normalize_image	
	○ Rescale_image	
	O normalize	
	You've got it! This is the correct method for normalizing images.	
3.	How did we specify the training size for the images?	1/1 point
	The target_size parameter on the training generator	
	The training_size parameter on the training generator	
	The training_size parameter on the validation generator	
	The target_size parameter on the validation generator	
	Exactly! target_size specifies the image training size	
4.	When we specify the input_shape to be (300, 300, 3), what does that mean?	1/1 point
	Every Image will be 300x300 pixels, with 3 bytes to define color	
	O Every Image will be 300x300 pixels, and there should be 3 Convolutional Layers	
	There will be 300 horses and 300 humans, loaded in batches of 3	
	There will be 300 images, each size 300, loaded in batches of 3	
	Correct Nailed it! input_shape specifies image resolution.	
5.	If your training data is close to 1.000 accuracy, but your validation data isn't, what's the risk here?	1/1 point
	No risk, that's a great result	1/1point
	You're overfitting on your training data	
	O You're overfitting on your validation data	
	O You're underfitting on your validation data	
	Great job! The analysis corresponds too closely to the training data, and may therefore fail to fit additional data.	
6.	Convolutional Neural Networks are better for classifying images like horses and humans because:	1/1 point
	✓ In these images, the features may be in different parts of the frame	
	Correct Correct The receptive fields of different neurons partially overlap such that they cover the entire visual field.	
	Correct. The receptive fields of different field offs partially overlap such that they cover the entire visual field.	
	There's a wide variety of humans	
	Correct You've got it! CNNs are better in this case as they are independent from prior knowledge and human intervention in feature extraction.	
	✓ There's a wide variety of horses	
	Correct Way to go! CNNs are better in this case as they are independent from prior knowledge and human intervention in feature extraction.	
7.	After reducing the size of the images, the training results were different. Why?	1/1 point
	○ The training was faster	
	There was more condensed information in the images	
	We removed some convolutions to handle the smaller images	