O Impacto Inflacionário da Abertura Financeira: Evidências para o período pós-Real

Helder Ferreira de Mendonça ** Manoel Carlos de Castro Pires ***

RESUMO

No anos 1990 desenvolveu-se a idéia de que a liberalização da conta de capitais seria capaz de disciplinar a condução da política monetária para a busca da estabilidade de preços. O objetivo do artigo é realizar uma análise empírica para o caso brasileiro no período posterior à introdução do Plano Real (por meio da aplicação de VAR) com o intuito de avaliar se o aumento da liberalização da conta de capitais contribuiu para a estabilidade de preços. Os resultados encontrados sugerem que uma redução na liberalização da conta de capitais é capaz de atenuar a pressão inflacionária e que a duração deste efeito depende do regime de câmbio em vigor.

Palavras-chave: inflação, liberalização financeira, credibilidade.

ABSTRACT

In the 1990s the idea that capital account liberalization represented a mechanism for disciplining the conduction of the monetary policy in the search for price stability was developed. The goal of the paper is to investigate in an empirical analysis (through application of VAR) the Brazilian case with the objective of evaluating if the increase in the capital account liberalization after the introduction of the Real Plan contributed to price stability. The findings denote that a decrease in the capital account liberalization is capable of attenuating inflationary pressure and that the duration of this effect depends on the exchange regime used.

Key words: inflation, capital account liberalization, credibility.

JEL Classification: E31, E63.

^{**} Professor do Departamento de Economia da UFF e Pesquisador do CNPq.

^{***} Da Coordenação de Finanças Públicas (CFP) do IPEA e Doutorando em Economia da UNB.

1. Introdução

O trilema da economia aberta ou trindade inconsistente, um resultado sumariado por Obstfeld e Taylor (1998) a partir do modelo Mundell-Fleming, afirma que a conjugação de três condições: a mobilidade de capitais, o câmbio fixo, e a autonomia para realizar políticas monetárias independentes; não representa uma combinação factível para o mundo real. Nesse sentido, uma das condições supracitadas deve ser abandonada para que as outras duas possam vigorar. Durante o sistema de Bretton Woods a opção encontrada foi a exclusão da mobilidade de capitais combinada a um sistema de taxas de câmbio fixas, porém ajustáveis, com a autonomia de políticas econômicas.

Com o aumento da mobilidade de capitais no início dos anos 1970 e a conseqüente derrocada do sistema de Bretton Woods, tornou-se crescente a adoção de regimes cambiais intermediários por diversos países. A justificativa para esse comportamento se deve ao fato de que tal estrutura não cria os desalinhamentos excessivos de um regime de câmbio flutuante e permite alguma independência para a realização de políticas econômicas. Não obstante, a maioria dos países que adotaram a estrutura sobredita foi alvo de ataques especulativos que culminaram com a flexibilização ou mesmo o abandono desse tipo de regime de câmbio.

A partir do meado dos anos 1990 tornou-se fundamental para avaliar os regimes cambiais a necessidade de evitar o problema de inconsistência temporal na condução das políticas econômicas e a prevenção de crises. Sob essa perspectiva, a idéia de que escolhas bipolares (adoção de um regime de câmbio fixo ou flexível) seriam superiores à adoção de arranjos cambiais intermediários tornou-se dominante. A justificativa para essa visão é que os arranjos intermediários seriam difíceis de serem sustentados e mais propensos a crises.

Todavia, no final dos anos 1990, a visão supracitada passou a ser criticada por diversos autores. Frankel (1999), mostrando-se contrário à visão bipolar, defende o argumento de que a obtenção de alguma estabilidade cambial concomitante à independência monetária seria factível devido à existência de graus variáveis de mobilidade

de capitais entre as opções extremas de total controle de capitais e de perfeita mobilidade de capitais¹.

Independente da opção utilizada para o regime de câmbio, a abordagem convencional do mercado de ativos implica que, em equilíbrio, o rendimento de dois ativos semelhantes mensurados na mesma moeda deve ser igual. A equação da paridade descoberta dos juros revela que tomando as expectativas como dadas a política monetária deve respeitar uma restrição que determina o nível de taxa de juros consistente com o equilíbrio externo. Destarte, conclui-se que independente do regime cambial em vigor a mobilidade de capitais tem o efeito de reduzir a autonomia das políticas econômicas domésticas. Este resultado foi classificado por Dornbusch (1998) como o primeiro corolário da mobilidade de capitais.

Concomitante às transformações ocorridas quanto ao uso do regime de câmbio ao longo dos anos 80 e 90, a teoria referente à credibilidade da condução da política econômica apresentou avanços significativos nesse período. A antiga literatura sobre regras *versus* discrição, que se concentrava nas intenções e na capacidade do responsável pela política, foi alterada de forma substancial pelos estudos desenvolvidos por Kydland e Prescott (1977) e Barro e Gordon (1983)².

A mudança na análise sobre regras *versus* discrição culminou com a necessidade de serem desenvolvidas estruturas para a política monetária que tivessem como preocupação básica a estabilidade de preços. Com essa finalidade, Rogoff (1985) elaborou o artigo que serve como referência básica para a literatura sobre a proposição de um banco central

¹ Além dos pontos acima, Levy-Yeyati e Sturzenegger (2002) e Fischer (2001) mostram argumentos contrários à aplicabilidade da visão bipolar ao caso de países em desenvolvimento. Os primeiros autores salientam que para a validade da "abordagem bipolar" seria necessária uma exposição a fortes fluxos de capitais, enquanto que Fischer (2001) salienta o fato de que os países que não se encontram nessa situação possuem um grande conjunto de opções de regimes cambiais intermediários. A idéia de que, no contexto das escolhas bipolares, os regimes de câmbios flexíveis seriam mais adequados para países de mercado emergente também é alvo de críticas. Segundo Calvo e Reinhart (2002), a preocupação dos bancos centrais com o impacto de variações na taxa de câmbio sobre a inflação e sobre os sistemas financeiros nacionais tem levado à intervenção deliberada na flutuação das moedas (utilização ativa de reservas e de taxa de juros) mesmo que os países tenham anunciado que adotam taxas de câmbio flexíveis. Este tipo de procedimento foi batizado por Reinhart (2000) como "medo de flutuar" (fear of floating).

² Antes desses estudos os principais argumentos para o uso de regras consistiam no conhecimento imperfeito sobre a economia e a tendência das autoridades políticas em conduzir a política econômica para fins inadequados do ponto de vista do bem-estar social (ver, Friedman, 1968). Esta perspectiva sobre regras ou discrição foi alterada de forma que as regras passaram a ser entendidas como um compromisso para a autoridade política.

independente. A idéia é que um banco central independente seria capaz de remover o viés inflacionário da condução da política monetária, pois deixaria de ceder às pressões do governo para o financiamento de déficits.³ Em geral, os modelos sobre credibilidade têm mostrado a importância de um anúncio crível para a condução da política econômica com o objetivo de reduzir a incerteza dos agentes econômicos e os sacrifícios das autoridades monetárias em atingir seus objetivos de longo prazo.

De forma análoga à proposição de independência do banco central a idéia de liberalização da conta de capitais representa uma restrição à condução da política monetária. A necessidade de um comportamento conservador para a política se justifica pelo fato de que o responsável por sua condução é penalizado por meio de uma fuga de capitais (substituição de moedas). Os agentes reagem dessa forma quando percebem uma perda no valor dos ativos que estão retendo devido a uma política monetária mais frouxa. Neste sentido, para o caso de relaxamento na administração da política monetária poderia haver dois resultados possíveis: (i) perda de reservas, no caso de um regime de câmbio intermediário; ou (ii) desvalorização cambial, no caso de um regime de câmbio flutuante (Gruben e McLeod, 2001). Assim, o aumento da elasticidade de substituição da moeda doméstica por moeda estrangeira, resultado da política de liberalização, tornaria a política monetária mais disciplinada e conservadora (avessa à inflação)⁴.

A idéia central contida no artigo é de que a liberalização da conta de capitais restringe o grau de autonomia da política monetária doméstica e contribui para a redução das taxas de inflação. Com base nesse argumento é feita uma análise empírica para o caso brasileiro com o objetivo de avaliar se o aumento da liberalização da conta de capitais no período posterior à introdução do Plano Real contribuiu para a estabilidade de preços. Além desta introdução, o artigo encontra-se dividido em mais três seções. A segunda seção

³ Cukierman (1994) destaca o fato de que a experiência de países que convivem com elevada inflação tem demonstrado que a conquista da estabilidade tem sido obtida via desenvolvimento. Portanto, tal objetivo, não pode ser alcançado somente pela delegação de autoridade para o BC. Além disso, a discussão sobre a independência do BC não depende apenas do aspecto econômico, mas também do político. Para uma análise sobre a teoria da independência do BC, ver Berger, de Haan, e Eijffinger (2001).

⁴ No que se refere às evidências empíricas, observa-se que o estudo de *cross country* tem sido utilizado na maioria das vezes para avaliar a relação entre a liberalização da conta de capitais e a taxa de inflação. Ademais, os resultados encontrados na literatura não se mostram unívocos. Rodrik (1998) não encontrou evidências de que a liberalização da conta de capitais causou impacto significativo sobre a taxa de inflação no período 1975-1989. Por outro lado, Gruben e McLeod (2002) encontraram evidências de que a liberalização da conta de capitais ou da conta corrente contribuiu para uma redução de 3% a 6% na taxa de inflação anual média.

apresenta a metodologia que será empregada para a obtenção de um índice de controle de capitais; a terceira seção analisa as evidências empíricas entre o índice obtido e os índices de preços (IPCA e IGP-DI) por meio da aplicação de Vetores Auto Regressivos para o período posterior à introdução do Plano Real; por último, é apresentada a conclusão do artigo.

2. Metodologia

Com o objetivo de realizar a análise empírica foi construído um índice de controle de capitais (ICC) de janeiro de 1995 a dezembro de 2002. Para aferir o ICC foram levados em conta os decretos restritivos e os liberalizantes emitidos a cada mês. Estes decretos foram codificados em variáveis *dummies* com +1 para decretos restritivos (significando elevação nas restrições ao fluxo de capitais) e –1 para decretos liberalizantes (significando redução na restrição ao fluxo de capitais). Para cada mês foi realizado o saldo entre os decretos restritivos e liberalizantes. Assim, se em um mês o valor obtido foi negativo o índice indica uma redução das restrições ao fluxo de capitais⁵.

Em geral, este tipo de índice para avaliar a existência ou não de controles de capitais em uma economia tem sido alvo de duas críticas principais: (i) não leva em conta a importância relativa de cada decreto no aspecto qualitativo; e (ii) a emissão de um decreto restritivo não impede a ocorrência de transações no caso de haver presença de corrupção na administração pública. Embora a crítica apresentada no segundo ponto mostre-se razoável, no período recente Vieira e Holland (2003) e Cardoso e Goldfajn (1997) realizaram estudos empíricos com base em índices apoiados na legislação. Os resultados encontrados pelos autores mencionados sugerem que a utilização desses índices mostra-se relevante para a análise sobre a liberalização da conta de capitais.

A crítica contida no primeiro ponto não deve ser negligenciada, uma vez que o índice baseado na utilização de *dummies* pode conter erros de medida por não conseguir

⁵ A metodologia supracitada levou em consideração apenas a legislação referente aos capitais de curto prazo (fluxos de portfólio). A justificativa teórica para esta escolha está no fato de que, de acordo com o modelo apresentado, a política monetária se torna disciplinada em razão da possibilidade de fuga de capitais. Tal fuga de capitais se torna uma possibilidade real quando os fluxos de curto prazo se tornam mais relevantes do que os investimentos diretos uma vez que estes últimos não são influenciados por fatores macroeconômicos de curto prazo.

avaliar as diferenças qualitativas entre os decretos. Com o objetivo de eliminar o problema apontado o ICC foi ajustado a partir de seus determinantes. De acordo com Cardoso e Goldfajn (1997), a necessidade da utilização de controle de capitais se deve aos seguintes motivos: (i) considerando-se o caso de regime de câmbio fixo, um influxo de capitais promoveria uma expansão da base monetária devido ao acúmulo de reservas que culminaria com um processo inflacionário; (ii) eliminar a tendência para a apreciação da taxa de câmbio real, uma vez que, haveria prejuízo para o saldo da balança comercial (aumento das importações e redução das exportações); (iii) inibir o aumento da dívida pública resultante do uso de políticas de esterilização mantidas por meio de elevadas taxas de juros; e (iv) contribuiria para evitar fuga de capitais em momentos de crises financeiras.

Além dos pontos mencionados acima, Bartolini e Drazen (1997) afirmam que os países emergentes têm um grande incentivo em impor controle de capitais depois de terem adotado medidas liberalizantes no período anterior. A justificativa para este procedimento se deve ao fato de que associado à liberalização haveria um aumento no influxo de capitais para o país que adotou essa postura. Portanto, haveria motivos para o surgimento do problema de inconsistência temporal na política anunciada. Em função da forte entrada de capitais o governo ficaria tentado a impor controles sobre o fluxo no período seguinte, pois dessa forma evitaria a saída dos capitais que ingressaram no período anterior e aumentaria a receita governamental por meio da tributação incidente sobre os capitais que saíssem do país.

Levando em conta as observações acima, o ICC foi ajustado (ICCajust) a partir de seus determinantes. Para este ajuste foram considerados: a taxa de crescimento da base monetária; o saldo da conta corrente como proporção do PIB; a taxa de crescimento da dívida pública; *dummy* para o trimestre em que ocorreu a crise Russa; os fluxos efetivos como proporção do PIB; a taxa de juros norte-americana (*prime rate*); e o *ICC* defasado em um período.⁶

A figura 1 mostra a evolução do ICC ajustado para o período compreendido entre janeiro de 1995 e dezembro de 2002. Conforme pode ser observado, o ICC ajustado situou-

⁶ Em estimações prévias uma dummy para a crise asiática foi testada e rejeitada. Além disto, várias especificações com defasagens alternativas foram testadas. Os resultados apresentados referem-se ao melhor ajuste obtido.

se abaixo do valor zero durante a maior parte do tempo. Logo, observa-se que houve uma tendência liberalizante ao longo do período no Brasil.

Figura 1 Evolução do ICC e ICC ajustado

Com o intuito de avaliar a existência de uma quebra estrutural para o ICC devido à mudança do regime cambial ocorrida em janeiro de 1999, realizou-se o teste de estabilidade de parâmetros de Chow (tabela 1).⁷ Para a realização do teste os dados foram divididos em dois subperíodos de forma que se for observada uma diferença significativa para as estimações relativas a cada subperíodo há uma mudança estrutural na relação sob análise. O primeiro intervalo de tempo se estende de fevereiro de 1995 a dezembro de 1998 - período de utilização de um regime de câmbio semifixo; enquanto que o segundo subperíodo compreende os meses de janeiro de 1999 a dezembro de 2002 - período em que o regime de câmbio se tornou flutuante. O resultado obtido (vide tabela 1) mostra que houve uma mudança estrutural. Logo, é indicado fazer a análise do período que se estende de fevereiro de 1995 a dezembro de 2002 por meio dos dois subperíodos mencionados. Uma outra

⁷ O teste de Chow compara a soma do quadrado dos resíduos obtida pela estimação da equação que abrange toda a amostra com a soma dos quadrados dos resíduos das equações estimadas para cada subperíodo.

justificativa para a escolha desses subperíodos se deve ao fato de que os efeitos esperados da liberalização da conta de capitais apresentam diferenças significativas em função do regime de câmbio em vigor.

Tabela 1
Teste de Chow - estabilidade dos parâmetros (1995:2 – 2002:12)

$ICC = b_0 + b_1 jurosEUA + b_2 Fluxo + b_3 ICC_{-1} + b_4 Divida + b_5 CC + b_6 BM$							
Estatística F	4,624387	Probabilidade	0,000216				
Razão de Verossimilhança	31,94033	Probabilidade	0,000042				

Nota: Subperíodos 1995:2/1998:12, 1999:1/2002:12.

Para o cálculo do ICCajust foram feitas duas regressões (método mínimos quadrados – vide tabelas 2 e 3). Em ambas as regressões a estatística F mostrou que as variáveis, em seu conjunto, são diferentes de zero. Contudo, deve-se notar que o ajuste para o período de câmbio flutuante possui uma qualidade significativamente inferior.

Tabela 2 ICCajust 1995/1998 – determinantes (Variável explicada – ICC)

10	Cujust 1770/1770	were minimum () w	in tel crip ilenini	100)
Variável	Coeficiente	Desv. Padrão	Estatística-t	Probabilidade
Constante	0,410526	9,850573	0,041675	0,9670
JurosEUA	-0,030412	1,898115	-0,016022	0,9873
Fluxo	0,059843	0,068968	0,867696	0,3909
ICC(-1)	-0,189571	0,119193	-1,590447	0,1198
Dívida	0,816116	0,228346	3,574037	0,0010
CC	0,422158	0,128836	3,276710	0,0022
Base Mon.	-2,703659	1,378255	-1,961654	0,0570
D Rússia	0,904297	0,539181	1,677169	0,1015
		Obs 47	$R^2 0,43$	Estat-F 4,26

Nota: Estatísticas-t consideram o teste de heterocedasticidade de White (1980).

Tabela 3 ICCajust 1999/2002 – determinantes (Variável explicada – ICC)

Variável	Coeficiente	Desv. Padrão	Estatística-t	Probabilidade
Constante	0,524875	0,258731	2,028648	0,0490
JurosEUA	-0,187573	0,077681	-2,414665	0,0203
Fluxo	0,044864	0,033788	1,327836	0,1916
ICC(-1)	-0,000934	0,179383	-0,005208	0,9959
Dívida	-0,050076	0,030301	-1,652610	0,1060
CC	0,051360	0,069847	0,735317	0,4663
Base Mon.	-1,577087	0,069847	-0,855421	0,3973
		Obs 48	R^2 0,25	Estat-F 2,31

Nota: Estatísticas-t consideram o teste de heterocedasticidade de White (1980).

A justificativa para a diferença entre os ajustes nos dois períodos é explicada pelo fato de que em um regime de câmbio flutuante, a presença de controles de capitais não é necessária para a manutenção do regime cambial. Por outro lado, em um regime de câmbio semifixo, controles de capitais podem contribuir para a manutenção do regime. Conforme atestado por Cardoso e Goldfajn (1997) os controles de capitais foram endógenos para o período em que havia a preocupação de regular a taxa de câmbio. Essa constatação é confirmada por meio da figura 1, uma vez que os controles foram menos utilizados no período posterior à flexibilização da taxa de câmbio (principalmente a partir de 2001). Além disto, deve-se ressaltar que os dois subperíodos em consideração contemplam diferentes diretorias que estiveram à frente do Banco Central do Brasil (BCB). Logo, existe a possibilidade de haver funções de reação distintas do BCB para os dois subperíodos.

3. Análise empírica para o caso brasileiro

Com o objetivo de verificar se o aprofundamento no processo de liberalização da conta de capitais contribuiu para o combate à inflação no período posterior à introdução do Plano Real é empregado um modelo de vetor auto-regressivo (VAR) na análise. Para tanto, foi mensurado o grau de liberalização da conta de capitais no Brasil por meio do índice apresentado na seção anterior (ICCajust). Além do ICCajust acumulado no período de janeiro de 1995 a dezembro de 2002 é utilizado no estudo os índices de preço (IPCA e IGP-DI) e a taxa de câmbio (R\$/US\$ - comercial – venda – média R\$ - mensal). A justificativa para a utilização de dois índices de preços na análise advém do fato de que a principal diferença entre o IGP-DI e o IPCA é que o primeiro considera preços no atacado, com ponderação duas vezes superior a dos preços ao consumidor, e custos da construção civil, além dos preços ao consumidor. Neste estudo o ponto importante de distinção entre esses índices refere-se à maior sensibilidade do IGP-DI às alterações na taxa de câmbio, em função dos repasses mais rápidos e completos aos preços internos no atacado. Destarte, depreciações na taxa de câmbio provocam um aumento no nível geral de preços acima do

⁸ A justificativa para a utilização dos dois índices para a mensuração da inflação se deve ao fato de haver dissensões significativas entre esses índices quando se considera os impactos da taxa de câmbio.

nível de preços ao consumidor.

Uma primeira condição a ser avaliada para a implementação de um modelo VAR consiste em verificar se as séries ICCajust, IPCA, IGP-DI e câmbio possuem raiz unitária para os subperíodos 1995-1998 e 1999-2002. Com o objetivo de testar a existência ou não de raiz unitária das séries supracitadas foi realizado o teste ampliado de Dickey-Fuller (ADF) e o teste Phillip-Perron (PP).

Devido ao baixo poder dos testes ADF e PP em rejeitar a hipótese nula de raiz unitária e aos problemas de distorção do valor do teste quando a distribuição dos resíduos contém componentes de média móvel; Kwiatkowski, Phillips, Schmidt, and Shin (1992) - KPSS – desenvolveram um teste para testar a estacionariedade da série que também foi aplicado.

A tabela 4 apresenta um resumo do resultado dos testes ADF, PP e KPSS para as séries em consideração. ¹⁰ Como os testes ADF e PP apresentam evidências distintas do KPSS, para as séries câmbio (nos dois períodos), IGP-DI e IPCA (1995-1998), é necessário utilizar outros critérios de decisão mais subjetivos. Para tanto, é feita uma análise dos correlogramas das séries, onde a queda lenta do coeficiente de autocorrelação amostral evidencia a existência de raiz unitária e a queda rápida evidencia a estacionariedade. Por meio de inspeção gráfica dos correlogramas dos valores originais das séries supracitadas (vide figura A.1.1 e A.1.2 no apêndice) verifica-se que as séries câmbio (para ambos os períodos) e IGP-DI (1995-1998) são I(1), enquanto que a série IPCA é I(2) para o período 1995-1998.

Tabela 4 Resumo dos Testes de Raiz Unitária e Estacionariedade

Resumo dos Testes de Raiz, Ottidita e Estacionariedade						
(1999-2002)	ADF	PP	KPSS			
Câmbio	I(1)	I(1)	I(0)			
ICCajust	I(0)	I(0)	I(0)			
IGP-DI	I(0)	I(0)	I(0)			
IPCA	I(0)	I(0)	I(0)			
(1995-1998)						
Câmbio	I(1)	I(1)	I(0)			
ICCajust	I(0)	I(0)	I(0)			
IGP-DI	I(2)	I(2)	I(1)			
IPCA	I(2)	I(2)	I(1)			

⁹ Ver Enders (1995) e Maddala e Kim (1998).

¹⁰ O apêndice A.1 apresenta os testes de raiz unitária e estacionariedade para as séries.

Com o objetivo de analisar a relação entre os índices de preço, o câmbio e o controle de capitais para antes e depois da mudança do regime cambial ocorrida em janeiro de 1999, são elaborados dois VAR para cada período. O primeiro (modelo 1) é formado pelo conjunto de variáveis câmbio, ICCajust e IGP-DI; enquanto que o segundo (modelo 2) é constituído por câmbio, ICCajust e IPCA. Em relação à definição do modelo aplicado para a elaboração dos VAR foram utilizados os critérios de Akaike (AIC), Schwarz (SIC) e Hannan-Quinn (HQ). Conforme pode ser observado pelos resultados presentes nas tabelas A.2.1 e A.2.2 (vide apêndice) é adequada a utilização de três defasagens e o uso de constante para o modelo 1 (ambos os períodos). Para o modelo 2 também é aplicada constante para ambos os períodos, sendo que para o primeiro é aplicada uma defasagem enquanto que para o segundo é utilizado duas defasagens. A curta defasagem dos VAR é consistente com o fato de se estar utilizando séries de freqüência mensal.

Assumindo-se que os erros são ortogonalizados pela decomposição de Cholesky para a estimação do VAR, isto implica que o ordenamento das variáveis é de crucial importância para a análise da função impulso-resposta e da decomposição da variância. Conforme pode ser observado pelo teste de precedência temporal de Granger (1969) (vide tabelas A.3.1 e A.3.2 – apêndice) - a ordenação que se mostra razoável para análise de ambos os modelos é dada por: ICCajust, câmbio e o índice de preço correspondente. Esse resultado é consistente com a análise que se pretende realizar, uma vez que é esperado que o uso (ausência) de controles de capitais tenha algum efeito sobre o nível geral de preços na economia. Ademais, o fato de a taxa de câmbio preceder os índices de preços mostra-se compatível com a idéia de que a mesma é um importante mecanismo de transmissão para a flutuação dos precos.

3.1.1. Período 1995-1998

Devido ao fato dos dados utilizados na amostra serem mensais, a tabela 5 mostra a explicação da variância das variáveis que compõem os modelos 1 e 2 em 12 meses. O mesmo período é assumido quando é feita a análise impulso-resposta para o VAR. De acordo com a tabela 5 verifica-se que a explicação da variância da liberalização da conta de capitais por meio dos índices de preços e da taxa de câmbio é inexpressiva para ambos os

modelos. Em relação à variância da variável câmbio verifica-se que a importância relativa da liberalização da conta de capitais tem papel diferenciado nos dois modelos. No modelo 1 a importância relativa do ICC ajustado é de aproximadamente 8%, enquanto que no modelo 2 a relevância cai para quase a metade do caso anterior. Por outro lado, a importância relativa dos índices de preços na explicação da variância do câmbio tem papel semelhante nos dois modelos.

A grande diferença entre os modelos consiste na análise da variância para os índices de preços. No modelo 1 o ICC ajustado na explicação da variância do IGP-DI tem início com 10%, mas decresce em seguida e estaciona para um nível próximo a 7%. No modelo 2 ocorre o inverso, o ICC ajustado tem uma importância relativa inicial de cerca de 6% e se estabiliza a partir do segundo mês para aproximadamente 11%. Esse resultado sugere que a magnitude da importância do ICC para a variância dos índices de preços depende, em alguma medida, da sensibilidade do índice de preços ao câmbio. No caso em consideração, observa-se que a menor sensibilidade do índice de preços à taxa de câmbio faz com que o ICC ajustado tenha um papel mais proeminente na explicação da variância do IPCA.

Tabela 5 Decomposição da variância

	Decomposição da variancia									
	Modelo 1									
Mês		ICCajust			Dcambio			DIGP-DI		
	ICCajust	Dcambio	DIGP-DI	ICCajust	Dcambio	DIGP-DI	ICCajust	Dcambio	DIGP-DI	
3	96,85093	1,537223	1,611852	4,291132	91,02380	4,685063	6,469850	14,27462	79,25553	
6	96,09393	1,818630	2,087437	7,435322	84,48271	8,081972	6,742989	16,23667	77,02034	
9	95,95402	1,915309	2,130674	7,493371	84,39412	8,112509	6,780336	16,22029	76,99937	
12	95,94634	1,917489	2,136171	7,510102	84,35715	8,132747	6,773530	16,24986	76,97661	
				N	Iodelo 2					
Mês		ICCajust			Dcambio			DIPCA,2		
	ICCajust	Dcambio	DIPCA,2	ICCajust	Dcambio	DIPCA,2	ICCajust	Dcambio	DIPCA,2	
3	99,31896	0,066935	0,614104	3,618263	89,20546	7,176272	10,58279	3,783925	85,63328	
6	99,31536	0,069765	0,614880	3,624454	89,19748	7,178066	10,59507	3,783814	85,62111	
9	99,31535	0,069766	0,614881	3,624456	89,19747	7,178070	10,59508	3,783814	85,62110	
12	99,31535	0,069766	0,614881	3,624456	89,19747	7,178070	10,59508	3,783814	85,62110	

A figura 3, referente ao modelo 1, mostra que os efeitos de choques externos, transmitidos pelas variáveis em consideração para o ICC ajustado e a taxa de câmbio não apresentam significância estatística. Além do esperado efeito de curto prazo da taxa de câmbio sobre o IGP-DI (vide segundo gráfico localizado na última linha), observa-se que os impactos decorrentes de choques externos transmitidos pela variável IGP-DI para si

mesma tendem a decrescer à medida que o tempo passa (vide terceiro gráfico da linha supradita). Da mesma forma como foi detectado pela análise da decomposição da variância, observa-se que os efeitos de choques externos, transmitidos pela variável ICCajust sobre o IGP-DI (gráfico localizado no canto inferior esquerdo) indicam uma queda gradual à medida que o tempo avança. Em outras palavras, um aumento no ICCajust (aumento da restrição ao movimento de capitais) está associado a uma redução da taxa de inflação que é eliminada a partir do quinto mês.

Figura 3
Funções de Resposta a Impulso para o VAR - Modelo 1

A análise das funções de impulsos-respostas para o modelo 2 (vide figura 4) é bastante similar à do modelo anterior. A principal diferença refere-se à menor duração da

resposta do IPCA aos choques transmitidos pelo ICC ajustado (gráfico localizado no canto inferior esquerdo).

Figura 4
Funções de Resposta a Impulso para o VAR - Modelo 2

3.1.2. Período 1999-2002

A análise da decomposição da variância (vide tabela 6) mostra um comportamento distinto daquele observado para o período anterior. No modelo 1 é observado que o câmbio passa a ser a variável-chave na explicação da variância das demais variáveis. Destaque para

a importância relativa do câmbio para a variância do IGP-DI (86%). Da mesma forma que no período anterior, a importância do ICC ajustado na explicação da variância do IGP-DI iniciou-se próxima a 10%. Entretanto, ela decresce rapidamente a partir do terceiro mês e torna-se inexpressiva. Também é importante ressaltar que embora o ICC ajustado não se mostre relevante na explicação da variância do IGP-DI é observado que o mesmo é relevante para a análise da variância da taxa de câmbio (33%).

Tabela 6 Decomposição da variância

	Modelo 1								
Mês		ICCajust			Dcambio		IGP-DI		
	ICCajust	Dcambio	IGP-DI	ICCajust	Dcambio	IGP-DI	ICCajust	Dcambio	IGP-DI
3	90,43472	8,552426	1,012858	32,09686	67,17004	0,733095	6,914772	53,95105	39,13418
6	75,50000	17,99034	6,509658	34,40732	64,82332	0,769364	2,246180	77,33646	20,41736
9	66,90228	27,00672	6,091005	33,56271	65,02304	1,414251	1,610005	84,14098	14,24902
12	62,75204	30,61880	6,629160	32,89835	65,66160	1,440046	1,041204	85,95597	13,00282
				N	Iodelo 2				
Mês		ICCajust			Dcambio			DIPCA,2	
	ICCajust	Dcambio	IPCA	ICCajust	Dcambio	IPCA	ICCajust	Dcambio	IPCA
3	89,66663	1,891947	8,441420	32,22426	66,15628	1,619451	2,597151	5,520326	91,88252
6	85,30345	4,397936	10,29862	34,46080	63,70287	1,836322	2,922985	16,97544	80,10157
9	82,62324	5,287819	12,08895	34,42060	63,63895	1,940447	1,954795	21,52596	76,51924
12	79,72466	6,097620	14,17772	34,37177	63,59191	2,036328	1,495005	23,66284	74,84216

O modelo 2 apresenta resultados distintos do anterior no que se refere à importância da taxa de câmbio para a explicação da variância das outras variáveis. Verifica-se que ao contrário do modelo 1, a variância do índice de preços é explicada, em grande medida, pela própria variável. Ademais, o ICC ajustado não se mostra significante para a explicação da variância do IPCA. O ponto comum entre os dois modelos é a influência expressiva do ICC ajustado sobre a variância da taxa de câmbio (34%).

A análise impulso-resposta para os modelos 1 e 2 (vide figuras 5 e 6) revela que um aumento no ICCajust (aumento da restrição ao movimento de capitais — vide segundo gráfico localizado na primeira linha) tende a provocar uma pequena redução tanto no IGP-DI quanto no IPCA que tende a perdurar ao longo do tempo (gráficos localizados no canto inferior esquerdo). Também é observado que para ambos os modelos, uma desvalorização cambial tende a provocar uma elevação nos índices de preços que não se dissipa (segundo gráfico situado na última linha). Quanto ao impacto originário de um choque externo sobre os valores passados dos próprios índices de preços é observado a existência de um padrão

de regularidade que praticamente não se altera durante os 12 meses (gráfico localizado no canto inferior direito). Os demais casos não apresentam significância estatística.

Figura 5
Funções de Resposta a Impulso para o VAR - Modelo 1

Estes resultados mostram que com os vários choques que atingiram a economia brasileira, os controles de capitais se caracterizaram como um instrumento que não pode ser negligenciado na absorção de choques, pois com flutuação cambial e mobilidade de capitais, a taxa de câmbio pode ficar sobrecarregada em exercer este papel. Assim, com a

introdução de controles de capitais pode-se alcançar a estabilidade da taxa de câmbio e, por conseguinte, atenuar a pressão inflacionária na medida em que este instrumento minimiza o efeito de choques na economia.

Figura 6
Funções de Resposta a Impulso para o VAR - Modelo 2

4. Considerações Finais

O crescente processo de interdependência das economias devido à aceleração da globalização a partir do final do século XX tem levado a uma revisão na condução das

políticas econômicas. Neste sentido, os objetivos da política monetária, em um ambiente de abertura financeira, deveriam ser facilitados dado o incentivo que o banco central tem em adotar uma política monetária responsável buscando, assim, evitar uma possível fuga de capitais.

As evidências empíricas encontradas para o caso brasileiro mostram que os possíveis benefícios para o controle da inflação, não se mostraram efetivos. Pelo contrário, a adoção de controles de capitais está associada a uma atenuação da pressão inflacionária. Em relação ao regime cambial, as evidências apontam para uma relação permanente entre controles de capitais e redução da inflação durante o período em que o câmbio permaneceu flutuante. No caso do período em que o regime de câmbio permaneceu semi-fixo, esta relação se deu de forma temporária. Portanto, os resultados encontrados neste artigo se aproximam mais daquele obtido no estudo de Rodrik (1998) do que aquele obtido por Gruben e McLeod (2002).

Além das evidências empíricas a favor da adoção de controle de capitais como mecanismo capaz de atenuar a inflação no caso brasileiro, a liberalização da conta de capitais pode aumentar a volatilidade da atividade econômica real na presença de choques externos, que são exógenos à política econômica doméstica. Em momentos de crises nos mercados financeiros internacionais, os investidores tornam-se mais avessos ao risco, e por conseguinte, vendem títulos adquiridos em países que possuem elevado risco país (Boyd e Smith, 1997). Como consequência, esses países sofrem perda de reservas ou desvalorização da taxa de câmbio mesmo que suas políticas monetárias sejam consistentes. O caso brasileiro no período analisado, referente ao regime de câmbio flexível, ilustra bem esse comportamento. Ademais, a literatura mostra evidências (ver Edwards. 2001; e Chinn e Ito, 2002) de que a maior parte dos países emergentes que liberalizou as contas de capitais obteve taxas mais baixas de crescimento econômico e taxas mais altas de instabilidade econômica real.

Em suma, a experiência brasileira mostra que a liberalização da conta de capitais não tem se mostrado capaz de combater a inflação. Ademais, há o risco de haver custos sociais elevados devido ao aumento na volatilidade da atividade econômica real. Isto não significa que o país deva se fechar ao fluxo de capitais e sim que deva existir um nível de abertura que permita reduzir os custos da abertura financeira e que permita que os

benefícios realmente apareçam. Portanto, uma fonte potencial de pesquisa em adição a este trabalho consiste em avaliar qual o grau de liberalização ótimo para que a sociedade não incorra em custos desnecessários. Em outras palavras, o grau de liberalização da conta de capitais deve ser aquele que minimize de forma simultânea a taxa de inflação e a volatilidade do produto.

Referências Bibliográficas

- BARRO, R. J. e GORDON, D. (1983) "Rules, Discretion and Reputation in a Model of Monetary Policy." *Journal of Monetary Economics*, 12, North-Holland, 101-121.
- BARTOLINI, L. e DRAZEN, A. (1997). "Capital Account Liberalization as a Signal." *The American Economic Review*, V. 87, N. 1. March, 138-154.
- BERGER, H.; de HAAN, J.; e EIJFFINGER, S.C.W. (2001). "Central Bank Independence: An Update of Theory and Evidence." *Journal of Economic Surveys*, V. 15, N. 1, 3-40.
- BOYD, J.H. e SMITH, B.D. (1997) "Capital Market Imperfections, International Credit Markets and Nonconvergence." *Journal of Economic Theory*, V. 73, N. 2, 335-364.
- CALVO, G.A., e REINHART, C. (2002), "Fear of Floating." *The Quarterly Journal of Economics*, V. 117, N. 2, 379-408.
- CARDOSO, E. e GOLDFAJN, I. (1997). "Capital Flows to Brazil: The Endogeneity of Capital Controls." *IMF working paper nº 115*, September.
- CHINN, M. e ITO, H. (2002) "Capital Account Liberalization, Institutions and Financial Development: Cross Country Evidence." NBER, N. 8967, June.
- CUKIERMAN, A. (1994) "Central Bank Independence and Monetary Control." *The Economic Journal*, V. 104, N. 1, November, 437-448.
- DORNBUSCH, R. (1998). "Capital Controls: An Idea Whose Time is Past." In: Kenen, P. (ed.), Should the IMF pursue Capital Account Convertibility? *Princeton Essays in International Finance, N. 207.* Princeton University Press.
- DRAZEN, A. (2000) "Political Economy in Macroeconomics." Princeton University Press.
- EDWARDS, S. (2001) "Capital Mobility and Economic Performance: are Emerging Economies Different?" NBER, N. 8076, January.
- ENDERS, W. (1995), "Applied Econometric Time Series", John Wiley & Sons.
- FISCHER, S. (2001), "Exchange Rate Regimes: Is the Bipolar View Correct?" *Journal of Economic Perspective*, XV, 3-24.
- FRANKEL, J. (1999), "No Single Currency Regime is Right for all Countries or at all Times", NBER*Working Paper* 7338.
- FRIEDMAN, M. (1968) "The Role of Monetary Policy", *American Economic Review*, March, 1-17.
- GRUBEN, W. e McLEOD, D. (2002). "Capital Account Liberalization and Inflation." *Economics Letters*, V. 77, N. 2., p. 221-225.
- ______. (2001). "Capital Account Liberalization and Disinflation in the 1990s." Federal Reserve Bank of Dallas, Center for Latin American Economics, Working Paper 0101.
- KYDLAND, F. E. e PRESCOTT, E. C. (1977) "Rules Rather than Discretion: the Inconsistency of Optimal Plans." *Journal of Political Economic*, V. 85, N. 3, 473-492.

- LEVY-YEYATI, E. e STURZENEGGER, F. (2002) "Classifying Exchange Rate Regimes: Deeds versus Words." Universidad Torcuato Di Tella.
- MADDALA, G.S. e KIM, I.M. (1998), "Unit Roots, Cointegration and the Structural Change", Cambridge University Press.
- OBSTFELD, M. E TAYLOR, A.M. (1998) "The Great Depression as a Watershed: International Capital Mobility over the Long Run." (In) Bordo, M.; Goldin, C.; e White, E. (eds), *The Defining Moment: The Great Depression and the American Economy in the Twentieth Century.*" Chicago: University of Chicago Press, 353-402.
- REINHART, C.M. (2000). "The Mirage of Floating Exchange Rates. *The American Economic Review*. V. 90, N. 2, May, p. 65-70.
- RODRIK, D. (1998). "Who Needs Capital Account Convertibility?" In: Kenen, P. (ed.), Should the IMF pursue Capital Account Convertibility? *Princeton Essays in International Finance N. 207*. Princeton University Press.
- ROGOFF, K. (1985) "The Optimal Degree of Commitment to an Intermediate Monetary Target." *The Quarterly Journal of Economics*, November, 1169-1189.
- VIEIRA, F. e HOLLAND, M. (2003) "Country Risk Endogeneity, Capital Flows and Capital Controls in Brazil." *Revista de Economica Política*, V. 23, N. 1 (89), jan-mar, 12-38.

Apêndice

Figura A.1.1 Correlograma das séries 1995-1998

5

-0,542061

Figura A.1.2 Correlograma das séries 1999-2002

Tabela A.2.1 Critério de AIC, SIC e HQ para o VAR (1995-1998)

	Modelo 1							
Def.		com constante			sem constante			
	AIC	SIC	HQ	AIC	SIC	HQ		
0	-4,001624	-3,878750	-3,956312					
1	-4,522290	-4,030792*	-4,341040	-3,734231	-3,365608	-3,598294		
2	-4,569640	-3,709519	-4,252454	-4,280797	-3,543551	-4,008923		
3	-4,982117*	-3,753373	-4,528994*	-4,863459*	-3,757589*	-4,455648*		
4	-4,962765	-3,365398	-4,373706	-4,814723	-3,340230	-4,270976		
			Mod	elo 2				
Def.		com constante		sem constante				
	AIC	SIC	HQ	AIC	SIC	HQ		
0	-0,323011	-0,198892	-0,277517					
1	-0,771438*	-0,274961*	-0,589460*	-0,551854*	-0,179496*	-0,415370*		
2	-0,561074	0,307760	-0,242612	-0,319538	0,425178	-0,046570		
3	-0,479185	0,762008	-0,024239	-0,310536	0,806537	0,098915		
4	-0,606200	1,007350	-0,014770	-0,474711	1,014720	0,071225		

0,185853

-0,334193

1,527596

0,348226

1,443847

Nota: * indica a ordem do VAR selecionado pelo critério.

Tabela A.2.2 Critério de AIC, SIC e HQ para o VAR (1999-2002)

Critério de AIC, SIC e HQ para o VAR (1999-2002)									
	Modelo 1								
Def.		com constante			sem constante				
	AIC	SIC	HQ	AIC	SIC	HQ			
0	9,157012	9,273962	9,201207						
1	3,487811	3,955611	3,664593	3,753261	4,104111	3,885848			
2	2,198322	3,016973*	2,507691	2,340915	3,042615*	2,606088			
3	1,928228*	3,097728	2,370184*	2,074810	3,127361	2,472571*			
4	1,971727	3,492078	2,546270	2,033776*	3,437177	2,564123			
			Mod	elo 2					
Def.		com constante			sem constante				
	AIC	SIC	HQ	AIC	SIC	HQ			
0	12,37548	12,49243	12,41968						
1	6,723506	7,191306	6,900288	7,059742	7,410592	7,192329			
2	6,290628*	7,109278*	6,599997*	6,399924*	7,101625*	6,665098*			
3	6,356615	7,526115	6,798571	6,515870	7,568420	6,913630			
4	6,388377	7,908728	6,962920	6,447429	7,850830	6,977776			

Nota: * indica a ordem do VAR selecionado pelo critério.

Tabela A.3.1 Teste de Precedência Temporal de Granger (1995-1998)

Modelo 1 - VAR(3)	,	8 (,
Hipótese nula:	Obs	Estatística-F	Probabilidade
DCAMBIO não Granger causa ICCAJUST	44	0,42538	0,73595
ICCAJUST não Granger causa DCAMBIO		1,50275	0,22984
DIGP_DI não Granger causa ICCAJUST	44	0,16425	0,91976
ICCAJUST não Granger causa DIGP_DI		0,79144	0,50645
DIGP_DI não Granger causa DCAMBIO	45	1,28145	0,29461
DCAMBIO não Granger causa DIGP_DI		4,81447	0,00614
Modelo 2 - VAR(1)			
DCAMBIO não Granger causa ICCAJUST	46	0,04027	0,84190
ICCAJUST não Granger causa DCAMBIO		0,61450	0,43739
DIPCA,2 não Granger causa ICCAJUST	46	0,30994	0,58060
ICCAJUST não Granger causa DIPCA,2		3,39949	0,07211
DIPCA,2 não Granger causa DCAMBIO	47	2,84611	0,09867
DCAMBIO não Granger causa DIPCA,2		3,28100	0,07692

Tabela A.3.2 Teste de Precedência Temporal de Granger (1999-2002)

Teste de l'recedencia l'emporta de Granger (1777 2002)							
Modelo 1 - VAR(3)							
Hipótese nula:	Obs	Estatística-F	Probabilidade				
DCAMBIO não Granger causa ICCAJUST	48	2,18833	0,10398				
ICCAJUST não Granger causa DCAMBIO		6,19757	0,00143				
IGP-DI não Granger causa ICCAJUST	48	4,01512	0,01356				
ICCAJUST não Granger causa IGP-DI		4,84588	0,00561				
IGP-DI não Granger causa DCAMBIO	48	0,49041	0,69087				
DCAMBIO não Granger causa IGP-DI		2,74120	0,05544				
Modelo 2 - VAR(2)							
DCAMBIO não Granger causa ICCAJUST	48	2,98608	0,06105				
ICCAJUST não Granger causa DCAMBIO		9,49325	0,00038				
IPCA não Granger causa ICCAJUST	48	7,49318	0,00161				
ICCAJUST não Granger causa IPCA		0,02033	0,97989				
IPCA não Granger causa DCAMBIO	48	0,35650	0,70217				
DCAMBIO não Granger causa IPCA		6,69858	0,00293				