Sensor Technology

Dr. E.SURESH BABU

Assistant Professor

Computer Science and Engineering Department

National Institute of Technology, Warangal. Warangal, TS, India.

Session Outline 1 Overview of Sensor Technology 2 Things 3 Sensors & Actuators 4 Microcontrollers 5 RFID Device 6 Other Devices

Overview of Sensor Technology

Challenges

- Sensor and actuator networks
- Device-to-Device (D2D) integration (Wireless Senor Networks)
- Cloud-to-Cloud (C2C) integration
- ❖ Device and Sensor-to-cloud (D2C) integration

Objects Layer/Device Layer

Objects Layer/Device Layer

- * Objects Layer, also known as Devices Layer,
 - √ The Physical Devices are used to collect the data
 - ✓ Physical devices include different types of sensors
 - Optical Sensors,

· Gesture and Proximity Sensors,

· Light Sensors,

- · Touch and Fingerprint Sensors,
- · Pressure Sensors, and More.

Objects Layer/Device Layer

- An Object (or Things) of the physical world (or physical Things) or the information world (or virtual things) that can be
- identified and integrated into communication networks.
- ❖ We can turn almost **Every Object into a "Thing".**

What is Things?

A Piece of Equipment with the mandatory capability of communication and the optional capabilities of Sensing, Actuation, Data Capture, Data Storage And Data Processing.

Device

- ❖ A **Device** is a **hardware component** which
 - ✓ is connected to Sensors and/or Actuators by wire or wirelessly
- ❖ A Device integrates all these components- processor, storage capacity to run software, Communication

Some of the Devices in IoT Thing Device Data-Carrying device Data-Capturing device Actuating Device Data Carrier General Device

Properties of Devices/Things

- A "Thing" has the following properties:
 - ✓ It's usually powered by **battery**. This implies **limited source of** energy.
 - ✓ It's generally small in size and low in cost. This limits their computing capability.
 - ✓ It doesn't usually perform complicated tasks.
 - ✓ Power consumption is the main design issue.

Observation

- ❖ The Thing must communicate through the Internet to be considered an IoT node.
- In the past, the Internet has historically connected resourcerich devices with lots of power, memory, and connection options.

To Connect Digital World and Physical World

- ❖ Requires the **standardized mechanisms** for the objects layer
 - ✓ To integrate and configure the heterogeneous types of sensors of the IoT device ecosystem.
- The device data that are collected at this object layer are transferred to the object abstraction layer (Communication Layer) using secure channels.

Sensors & Actuators

Actuators

- An Actuator is a hardware component which manipulates the physical environment.
- **Actuators**
 - ✓ Receive commands from their connected device and
 - ✓ Translate the electrical signals into some kind of physical action.

Sensor with Software Capability

- ❖ A Sensor is a hardware component which captures information on the physical environment
- ❖ A Sensor may be configured using software, but cannot run software by itself.

Actuator with Software Capability

- An Actuator is a hardware component which manipulates the physical environment.
- An Actuator may be configured using software, but cannot run software by itself.

Sensor Node Specification

- The overall architecture of a sensor node consists of:
 - \checkmark The sensor node processing subsystem running on sensor node main CPU
 - ✓ The sensor subsystem and
 - \checkmark The communication subsystem
- The processor and radio board includes:
 - ✓ TI MSP430 microcontroller with 10kB RAM
 - ✓ 16-bit RISC with 48K Program Flash
 - ✓ IEEE 802.15.4 compliant radio at 250 Mbps
 - ✓ 1MB external data flash
 - ✓ Runs TinyOS 1.1.10 or higher
 - ✓ Two AA batteries or USB
 - √ 1.8 mA (active); 5.1uA (sleep)

Crossbow Mote

TPR2400CA-TelosB

Definition of Mote

- ❖ Mote is Sensor Node,
 - ✓ Mote is a node in a sensor network that is capable of performing some processing, gathering sensory information and communicating with other connected nodes in the network.

Type of Motes

- ❖ There are **Various Types of Motes**. Few of them are
 - 1. Sky Mote
 - 2. Z1 Mote
 - 3. WiSMote
 - 4. Zolertia Zoul
 - 5. RE-Mote

Sky Mote

- Sky Mote low power wireless sensor. It is high reliability and ease of development.
- These kind of sensors usually include measuring of relative humidity, temperature and light via sensors.

Z1 Mote

- * Z1 Mote is a general purpose development platform for wireless
 sensor networks (WSN) designed for researchers and developers.
 - ✓ Equipped with two on board digital sensors (accelerometer and temperature),

WiSMote

- WiSMote is a sensor module well adapted to Wireless Sensor Network (WSN) applications.
 - ✓ The wireless link operates over the **2.4GHz ISM**
- WiSMote is able to monitor any kind of physical measurements in fields like environment, healthcare, smart building, logistics or industrial applications.

Microcontrollers

Microcontrollers

- The "smart" in a smart device is provided by a deeply embedded microcontroller.
- A microcontroller chip makes a substantially different use of the logic space available.

Microcontrollers

- ❖ A Microcontroller is a single chip that contains
 - √ The Core,
 - \checkmark The Nonvolatile memory for the program (ROM),
 - ✓ Volatile memory for input and output (RAM),
 - √ A Clock, and
 - \checkmark An I/O Control Unit.

Transceivers

- ❖ A Transceiver contains the electronics needed to transmit and receive data.
- Most IoT devices contain a wireless transceiver, capable of communication using Wi-Fi, ZigBee, or some other wireless scheme.

Other Device in IoT

Data-Carrying Device

Data-Carrying Device

- ❖ A device attached to a physical thing to indirectly connect the physical thing with the communication networks.
- * Radio-frequency Identification (RFID) tags are the example.
- ➤ A data-carrying device is capable of communication and may include other electronic capabilities.

Data-Capturing Device

Data-Capturing Device

- A reader/writer device with the capability to interact with physical things.
- > The interaction can happen indirectly via data-carrying devices, or directly via data carriers attached to the physical things.

General Device

General Device

- ❖ A general device has embedded processing and communication capabilities and may communicate with the communication networks via wired or wireless technologies..
- General devices include equipment and appliances for different loT applicator domains, such as industrial machines, home electrical appliances, and smartphones

Data Carrier

Data Carrier

- * A battery-free data carrying object attached to a physical thing that can provide information to a suitable data capturing device.
- > This category includes **bar codes and QR codes** attached to physical things.

