CPSC 330 Lecture 16: DBSCAN, Hierarchical Clustering

Happy Halloween

Announcements

- HW5 extension: Was due yesterday
- HW6 is due next week Wednesday.
 - Computationally intensive
 - You need to install many packages

Imports

iClicker Exercise 16.1

Select all of the following statements which are TRUE.

- a. Similar to K-nearest neighbours, K-Means is a non parametric model.
- b. The meaning of *K* in K-nearest neighbours and K-Means clustering is very similar.
- c. Scaling of input features is crucial in clustering.
- d. In clustering, it's almost always a good idea to find equalsized clusters.

K-means Limitations

Shape of clusters

• Good for spherical clusters of more or less equal sizes

K-Means: failure case 1

• K-Means performs poorly if the clusters have more complex shapes (e.g., two moons data below).

K-Means: failure case 2

• Again, K-Means is unable to capture complex cluster shapes.

K-Means: failure case 3

• It assumes that all directions are equally important for each cluster and fails to identify non-spherical clusters.

Can we do better?

DBSCAN

- Density-Based Spatial Clustering of Applications with Noise
- A density-based clustering algorithm

```
1 X, y = make_moons(n_samples=200, noise=0.08, random_state=42)
2 dbscan = DBSCAN(eps=0.2)
3 dbscan.fit(X)
4 plot_original_clustered(X, dbscan, dbscan.labels_)
```


How does it work?

DBSCAN Analogy

Consider DBSCAN in a social context:

- Social butterflies ():
 Core points
- Friends of social butterflies who are not social butterflies: Border points
- Lone wolves (🍑):
 Noise points

Two main hyperparameters

- eps: determines what it means for points to be "close"
- min_samples: determines the number of neighboring points we require to consider in order for a point to be part of a cluster

DBSCAN: failure cases

- Let's consider this dataset with three clusters of varying densities.
- K-Means performs better compared to DBSCAN. But it has the benefit of knowing the value of *K* in advance.

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]

Hierarchical clustering

Dendrogram

- Dendrogram is a treelike plot.
- On the x-axis we have data points.
- On the y-axis we have distances between clusters.

Flat clusters

- This is good but how can we get cluster labels from a dendrogram?
- We can bring the clustering to a "flat" format use fcluster

Flat clusters

- 1 from scipy.cluster.hierarchy import fcluster
- 2 # flattening the dendrogram based on maximum number of clusters.
- 3 hier_labels1 = fcluster(linkage_array, 3, criterion="maxclust")
- 4 plot_dendrogram_clusters(X, linkage_array, hier_labels1, title="flattened w

Linkage criteria

- When we create a dendrogram, we need to calculate distance between clusters. How do we measure distances between clusters?
- The **linkage criteria** determines how to find similarity between clusters:
- Some example linkage criteria are:
 - Single linkage → smallest minimal distance, leads to loose clusters
 - Complete linkage → smallest maximum distance, leads to tight clusters
 - Average linkage → smallest average distance between all pairs of points in the clusters
 - Ward linkage → smallest increase in within-cluster variance, leads to equally sized clusters

Activity

Examples

• Fill in the table below in this Google doc: https://shorturl.at/3yOdg

Clustering Method	KMeans	DBSCAN	Hierarchical Clustering
Approach			
Hyperparameters			
Shape of clusters			
Handling noise			

Class demo

