ASSIGNMENT- Regression Algorithm

Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on several parameters. The Client has provided the dataset of the same. As a data scientist, you must develop a model which will predict the insurance charges.

1.3-Stage of Problem Identification:

- 1) Machine Learning
- 2) Supervised Learning
- 3) Regression

2. Rows and Columns:

Rows=1338

Columns=6

3. Pre-processed data:

Nominal: One Hot Encoding

Sex	Male	Female
Male	1	0
Female	0	1

Smoker	Yes	No
Yes	1	0
No	0	1

4.Implementation

1. Simple and Multiple Linear Algorithm R2 value is 0.78

2.Support Vector Machine:

S.No	Hyper Parameter	Linear R2-Value	RBF R2-Value	Poly R2-Value	Sigmoid R2-Value
1	C10	-113.0	-0.080	-1163348.2	0.013
2	C100	-146.1	-0.021	-32979013.9	-5.48
3	C500	-152.2	-6.231	-29631241.4	-0.54
4	C1000	-156.8	-0.015	-1054390.2	-4.54
5	C2000	-156.6	-0.049	-4507673.5	-16.3
6	C3000	-156.7	-0.065	-2700959.3	-58.5

The SVM Regression algorithm does not support predicting the insurance charges. All Parameters R2 Value gives poor model.

3.Decision Tree:

S.No:	Criterion	Splitter	R2-Value
1	Squared error	Best	0.69
2	Squared_error	Random	0.71
3	Friedman_mse	Best	0.69
4	Friedman_mse	Random	0.69
5	Absolute error	Best	0.64
<mark>6</mark>	Absolute error	Random	<mark>0.77</mark>
7	Poisson	Best	0.67
8	Poisson	Random	0.70

The Decision Tree Regression uses R2-value (absolute error and Random) =0.77.

4.Random Forest:

S.No:		Parameters	R2-Value
1	n_estimators=100	Random_state=0	0.85
2	Criterion =Squared_error	Random_state=0	0.85
3	Criterion =Friedman mse	Random state=0	0.85
4	Criterion =absolute error	Random state=0	0.85
5	Criterion =poisson	Random_state=0	0.85
<mark>6</mark>	Max_features=sqrt	Random_state=0	<mark>0.87</mark>
<mark>7</mark>	Max_features=log2	Random_state=0	<mark>0.87</mark>
8	Bootstrap=bool	Random_state=0	0.85
9	Oob_score=bool	Random_state=0	0.85

The Random forest Regression uses R2-value (max_features=sqrt,log2 and Random_state=0) =0.87.

5. Final Model:

Selected the final model as a Random Forest. It gives a good r2 value nearby 1. compare to other models all values are near by 0. The SVM algorithm is not working perfectly for this problem statement. As a data scientist, predicting the insurance charges using Random Forest Regression algorithm.

The final best model of the Machine Learning Regression algorithm:

The Random forest Regression uses R2-value (max features=sqrt,log2, and Random state=0) =0.87.