Documentation for python package 'qrbma'

Muhammad Fawdy Renardi Wahyu*

October 29, 2024

Mathematical Explanation of Operations in the Script

1. Data Preparation

a. Loading Data

Data is loaded from the Excel file ALL_DATA.xlsx for each sheet listed in names. Each sheet represents a different economic variable. The data in each sheet is read and stored in cell_array, containing:

- First column: Data from the sheet (excluding the first column and first row).
- Second column: Sheet name (variable name).
- Third column: Transformation code (tcode_numbers).

b. Data Transformation

To make the data stationary, each time series is transformed according to its specific tcode using the function transx.

Let x_i be the raw data for the i-th variable and $tcode_i$ the transformation code for that variable. The transformation is done as follows:

• **If** $tcode_i = 5$: (Annualized growth rate)

$$y_i = 400 \times \operatorname{transx}(x_i, tcode_i)$$

• If $tcode_i = 4$ or $tcode_i = 2$: (Log or difference)

$$y_i = 4 \times \operatorname{transx}(x_i, tcode_i)$$

^{*}Corresponding author. Muhammad Fawdy Renardi Wahyu is affiliated with the Universitas Gadjah Mada, Indonesia. This study does not reflect the view of my institution. All errors are my own. Address: Department of Economics, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia. Email: muhammad.fawdy.r@mail.ugm.ac.id

• Otherwise:

$$y_i = transx(x_i, tcode_i)$$

The function transx applies the transformation based on the given transformation code (differencing, logarithm, etc.).

c. Stacking Time Series

All transformed time series are stacked into the matrix all_series of size $T \times K$, where T is the number of time observations and K is the number of variables.

2. Defining Dependent and Independent Variables

a. Dependent Variable

The main dependent variable is inflation (Y_{raw_full}), which is computed using the function yfcsta:

$$Y_{\text{raw-full}} = \text{yfcsta}(y_1, tcode_1, n_{\text{fore}})$$

Where:

- y_1 : Transformed time series for the inflation variable.
- *tcode*₁: Transformation code for the inflation variable.
- n_{fore} : Forecast horizon (in this case, $n_{\text{fore}} = 1$).

The lagged dependent variable ($Y_{raw_full_lags}$) is also set up as:

$$Y_{\text{raw-full lags}} = y_1$$

b. Independent Variables

The independent variables (Z_{raw}) are all other variables except inflation:

$$Z_{\text{raw}} = \text{all_series}[:, 2:]$$

c. Adjusting Data Size

Due to the use of lags and forecast horizon, the data is adjusted by removing the last observations:

$$\begin{split} Y_{\text{raw_full}} &= Y_{\text{raw_full}}[:-n_{\text{fore}}] \\ Y_{\text{raw_full_lags}} &= Y_{\text{raw_full_lags}}[:-n_{\text{fore}}] \\ Z_{\text{raw}} &= Z_{\text{raw}}[:-n_{\text{fore}},:] \end{split}$$

d. Creating Lag of the Dependent Variable

Using the function mlag2, a lagged version of the dependent variable is created:

$$ylag = mlag2(Y_{raw_full_lags}, lags - 1)$$

With lags = 2, the lag used is 1.

e. Constructing the Matrix of Independent Variables X and Dependent Variable Y If lags > 0:

$$X = \begin{bmatrix} \mathbf{1}, Y_{\text{raw_full_lags}}[lags - 1 :], ylag[lags - 1 :], Z_{\text{raw}}[lags - 1 :] \end{bmatrix}$$
$$Y = Y_{\text{raw_full}}[lags - 1 :]$$

Here, 1 is a vector of ones representing the intercept in the regression.

3. Calculating OLS Coefficients

The OLS coefficients β_{OLS} are calculated as:

$$\beta_{\text{OLS}} = (X^{\top}X)^{-1}X^{\top}Y$$

The OLS error variance σ_{OLS}^2 is computed with:

$$\sigma_{\text{OLS}}^2 = \frac{(Y - X\beta_{\text{OLS}})^{\top} (Y - X\beta_{\text{OLS}})}{T - p - 1}$$

Where:

- *T*: Number of observations.
- *p*: Number of parameters (number of columns in *X*).

4. Defining Bayesian Priors

a. Prior for Regression Coefficients β

The prior for β is assumed to be a multivariate normal distribution:

$$\beta \sim \mathcal{N}(0, V)$$

With the prior covariance matrix $V = 9I_p$, where I_p is the identity matrix of size $p \times p$.

b. Prior for Error Variance σ^2

The prior for σ^2 is assumed to be an Inverse-Gamma distribution:

$$\sigma^2 \sim \mathrm{IG}(a_0, b_0)$$

With $a_0 = 0.1$ and $b_0 = 0.1$.

5. Gibbs Sampling Procedure

For each iteration in Gibbs sampling, and for each quantile q, the following steps are performed:

a. Calculating Parameters au_q^2 and $heta_q$

$$\tau_q^2 = \frac{2}{\alpha_q (1 - \alpha_q)}$$

$$\theta_q = \frac{1 - 2\alpha_q}{\alpha_q(1 - \alpha_q)}$$

Where α_q is the quantile level (e.g., 0.05, 0.10, ..., 0.95).

b. Updating Error Variance σ_q^2

Compute the posterior parameters for σ_q^2 :

$$a_1 = a_0 + \frac{3T}{2}$$

Calculate the sum of squared errors (sse):

$$sse = (Y - X\beta_q - \theta_q z_q)^2$$

Calculate a_2 :

$$a_2 = b_0 + \sum_{t=1}^{T} \left(\frac{\sec_t}{2z_{qt}\tau_q^2} \right) + \sum_{t=1}^{T} z_{qt}$$

Update σ_q^2 by drawing from an Inverse-Gamma distribution:

$$\sigma_q^2 \sim \text{IG}(a_1, a_2)$$

c. Updating Regression Coefficients β_q

Define the diagonal matrix *U*:

$$U = \operatorname{diag}\left(\frac{1}{\sqrt{\sigma_q^2 \tau_q^2 z_q}}\right)$$

Compute the centered vector Y_{tilde} :

$$Y_{\text{tilde}} = Y - \theta_q z_q$$

Calculate the posterior covariance V_{β_q} and posterior mean μ_{β_q} :

$$V_{\beta_q} = \left(X^\top U X + V^{-1}\right)^{-1}$$

$$\mu_{\beta_q} = V_{\beta_q} \left(X^\top U Y_{\text{tilde}} \right)$$

Draw β_q from a multivariate normal distribution:

$$\beta_q \sim \mathcal{N}\left(\mu_{\beta_q}, V_{\beta_q}\right)$$

d. Updating Latent Variable z_{qt} for t = 1, ..., T

For each *t*, calculate the parameters:

$$k1_t = \frac{\sqrt{\theta_q^2 + 2\tau_q^2}}{\left| Y_t - X_t \beta_q \right|}$$

$$k2_t = \frac{\theta_q^2 + 2\tau_q^2}{\tau_q^2}$$

Draw z_{qt} from an Inverse-Gaussian distribution (using the function draw_ig):

$$z_{qt} = \max\left(\frac{1}{\operatorname{draw.ig}(k1_t, k2_t)}, 1 \times 10^{-4}\right)$$

e. Storing Sample Results

After discarding the burn-in period, samples of β_q are stored:

$$beta_draws[:,q,irep-nburn] = \beta_q$$

6. Additional Functions

a. Transformation Function transx

Transforms the data based on the transformation code *tcode*.

b. Function mlag2

Creates a lagged version of vector or matrix *X* with lag *p*:

$$X_{\text{lag}}[p:] = X[:-p]$$

c. Function draw_ig

Generates samples from the Inverse-Gaussian distribution with parameters μ and λ .

7. Final Results

After running the Gibbs sampling iterations, the final output is the posterior distribution of the regression coefficients β for each quantile q. This distribution can be used for prediction and further analysis of the effects of independent variables on various quantiles of inflation.

Additional Notes

- **Prior and Posterior Distributions:** In the Bayesian context, we update the prior distribution to the posterior distribution based on the observed data and specified model.
- Using Gibbs Sampling: Gibbs sampling is used due to the complex model structure and latent variables z_{qt} , which make the posterior distribution analytically intractable.
- Latent Variable z_{qt} : The latent variable z_{qt} handles heteroskedasticity in the quantile regression model, allowing different error variances across quantiles.