Лекция 9

Кольцо многочленов

Содержание лекции:

В настоящей лекции мы кратко рассмотрим основные понятия, связанные с кольцом многочленов и операциями в нем. Данная структура является основополагающей ряда разделов математики и часто служит источником нетривиальных примеров для алгебры и анализа.

Ключевые слова:

Многочлен, коэффициенты многочлена, степень многочлена, сумма и произведение многочленов, ассоциированные многочлены, делимость, остаток от деления, корень многочлена.

${f A}$ вто ${}^{{}_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	ры	KVD	ca:

Трифанов А.И.

Москаленко М.А.

Ссылка на ресурсы:

9.1 Основные определения

 $Nota\ bene$ Пусть \Bbbk - некоторое поле.

Многочленом от одной переменной с коэффициентами из поля **k** будем называть бесконечную формальную сумму следующего вида:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots,$$

в которой отличны от нуля только *некоторые* коэффициенты $a_0, a_1, a_2, \ldots \in \mathbb{k}$, а x называется формальной переменной.

Nota bene Множество многочленов от переменной x будем обозначать через $\mathbb{k}[x]$. Пусть далее $p,q\in\mathbb{k}[x]$, так что

$$p(x) = \sum_{n=0}^{\infty} a_n x^n, \quad q(x) = \sum_{m=0}^{\infty} b_m x^m,$$

 $\mathbf{C}\mathbf{y}\mathbf{m}\mathbf{m}\mathbf{o}\mathbf{\ddot{u}}$ двух многочленов p и q называется такой многочлен h=p+q, что

$$h(x) = \sum_{k=0}^{\infty} c_k x^k, \quad c_k = a_k + b_k.$$

Произведением двух многочленов p и q называется такой многочлен $g = p \cdot q$, что

$$g(x) = \sum_{j=0}^{\infty} d_j x^j, \quad d_j = \sum_{i=0}^{j} a_i b_{j-i}.$$

Теорема 9.1. Множество k[x], наделенное операциями сложения и умножения является коммутативным ассоциативным кольцом.

Проверим аксиомы кольца:

• (k[x], +) - абелева группа, в которой

$$0(x) = 0, \quad (-p)(x) = -p(x).$$

- $(\mathbb{k}[x], \cdot)$ коммутативный моноид, в котором 1(x) = 1.
- Пусть $p,q,r \in \Bbbk[x],$ проверим дистрибутивность:

$$(p+q)\cdot r = \sum_{k=0} d_k x^k, \quad p\cdot r = \sum_{n=0} \alpha_n x^n, \quad q\cdot r = \sum_{m=0} \beta_m x^m.$$

тогда имеет место

$$d_k = \sum_{i=0}^k (a_i + b_i)c_{k-i} = \sum_{i=0}^k (a_i c_{k-i}) + \sum_{i=0}^k (b_i c_{k-i}) = \alpha_k + \beta_k,$$

КОЛЬЦО МНОГОЧЛЕНОВ

Лемма 9.1. Отображение $\sigma : \mathbb{k} \to \mathbb{k}[x]$, так что $\alpha \mapsto \alpha \cdot 1(x)$, является вложением.

Очевидно, что $\sigma \in \operatorname{Hom}(\Bbbk, \Bbbk[x])$ и далее

$$\alpha \in \ker \sigma \quad \Rightarrow \quad \sigma(\alpha) = \alpha \cdot 1(x) = \alpha \cdot 1 + 0 \cdot x + \dots = 0.$$

Nota bene Под записью $\alpha \cdot p(x), \alpha \in \mathbb{k}$ понимают многочлен $\sigma(\alpha) \cdot p(x)$.

Два многочлена p и q называются **ассоциированными** (обозначают $p \sim q$), если

$$\exists \alpha \in \mathbb{k}, \quad \alpha \neq 0: \quad p = \alpha \cdot q.$$

Лемма 9.2. Ассоциированность - отношение эквивалентности.

 $Nota\ bene$ Классы в $\Bbbk[x]/_\sim$ по этому отношению составляют многочлены, отличающиеся на скалярный множитель.

9.2 Степень многочлена

Степенью $\deg(p)$ многочлена $p \in \mathbb{k}[x]$ называется максимальный номер его ненулевого коэффициента. Если $\deg p = n \in \mathbb{N}_0$ то коэффициент a_n называется **станим** коэффициентом многочлена p.

Nota bene Для нулевого многочлена 0(x) положим $deg(0) = -\infty$.

Лемма 9.3. Пусть $p, q \in \mathbb{k}[t]$ тогда имеют место следующие свойства:

$$\deg(p \cdot q) = \deg(p) + \deg(q), \quad \deg(p+q) \le \max \{\deg(p), \deg(q)\}.$$

Пусть $\deg(p) = n$ и $\deg(q) = m$, и при этом

$$p = \sum_{i} a_i x^i, \quad q = \sum_{j} b_j x^j, \quad p \cdot q = \sum_{k} c_k x^k,$$

тогда будем иметь

$$c_{n+m} = \sum_{i=0}^{n-1} a_i b_{n+m-i} + a_n b_m + \sum_{i=n+1}^{n+m} a_i b_{n+m-i} = a_n b_m \neq 0.$$

При k > n + m имеем $c_k = 0$ и, следовательно, $\deg(p \cdot q) = n + m$. При $k > \max \{\deg(p), \deg(q)\}$ следует доказательство второго свойства:

$$a_k = b_k = 0 \quad \Rightarrow \quad c_k = a_k + b_k = 0.$$

9.3 Делимость в кольце многочленов

Теорема 9.2. Пусть $p, q \in \mathbb{k}[x]$, причем $q \neq 0$, тогда

$$\exists!\, g,r \in \mathbb{k}[x]: \quad p = g \cdot q + r, \quad \deg(r) < \deg(q).$$

ightharpoons

Пусть deg(p) = n и deg(q) = m, а также

$$p(x) = a_n x^n + \ldots + a_0, \quad q(x) = b_m x^m + \ldots + b_0.$$

Используем индукцию по n. В качестве базы при n < m подходит $g = 0, \quad r = p$. Пусть теперь $n \geq m$ и для многочленов степени меньшей n утверждеие доказано. Так как

$$\tilde{p}(x) = p(x) - \frac{a_n}{b_m} x^{n-m} q(x), \quad \deg(\tilde{p}) < n,$$

то по индукционному предположению

$$\tilde{p} = g_1 \cdot q + r$$
, $\deg(r) < m \implies p(x) = \left(g_1(x) + \frac{a_n}{b_m} x^{n-m}\right) q(x) + r(x)$.

Теперь докажем единственность. Пусть

$$g_1q + r_1 = p = g_2q + r_2$$
, $\deg(r_1) < m$, $\deg(r_2) < m \implies r_1 - r_2 = q \cdot (g_2 - g_1)$.

При $g_1 \neq g_2$, имеем:

$$\deg((g_2 - g_1)q) = \deg(g_2 - g_1) + \deg(q) \ge m,$$

$$\deg(r_1 - r_2) \le \max(\deg(r_1), \deg(r_2)) < m.$$

Противоречие. Значит $g_1 = g_2$ и $r_1 = r_2$.

4

Говорят, что многочлен q **делит многочлен** p (пишут $q \mid p$), если существует такой многочлен h, что $p = h \cdot q$.

Лемма 9.4. Свойства делимости в k[x]:

1. Если $q \mid p$ и $r \mid q$, тогда $r \mid p$:

$$f = pg, \quad g = qh \quad \Rightarrow \quad f = (pq)h.$$

2. Пусть $r \mid p, q$, тогда $\forall g_1, g_2 \in \mathbb{k}[t]$ $r \mid (g_1p + g_2q)$:

$$p = \alpha \cdot r, \quad q = \beta \cdot r, \quad \alpha, \beta \in \mathbb{k}[x] \quad \Rightarrow \quad g_1 p + g_2 q = (\alpha \cdot g_1 + \beta \cdot g_2) \cdot r.$$

3. Пусть $q \mid p$, причем $p, q \neq 0$, тогда $\deg(p) \geq \deg(q)$:

$$p = gq, \quad g \in \mathbb{k}[t], \quad g \neq 0 \quad \Rightarrow \quad \deg(p) = \deg(g) + \deg(q) \geq \deg(g).$$

Лемма 9.5. Ассоциированность и делимость:

1. Пусть $q \mid p$, $p, q \neq 0$ и $\deg(p) = \deg(q)$, тогда $p \sim q$:

$$\deg(q) = \deg(p) = \deg(g) + \deg(q) \quad \Rightarrow \quad \deg(g) = 0 \quad \Rightarrow \quad g \in \mathbb{k}.$$

2. Пусть $q \mid p, \quad p, q \neq 0$ и $p \mid q$, тогда $p \sim q$:

$$\deg(p) \geq \deg(q), \quad \deg(q) \geq \deg(p) \quad \Rightarrow \quad \deg(p) = \deg(q).$$

9.4 Корень многочлена

Пусть $p \in \mathbb{k}[x]$ и $\alpha \in \mathbb{k}$. Число α называется корнем многочлена p степени m, если

$$(x-\alpha)^m \mid (p(x), (x-\alpha)^{m+1} \not\mid p(x).$$

Теорема 9.3. (Безу) Остаток от деления $p \in \mathbb{k}[x]$ на $(x-\alpha)$ равен $p(\alpha)$

▶

По теореме от делении с остатком имеем:

$$p(x) = (x - \alpha)g(x) + r(x), \quad \deg(r) \le \deg(x - \alpha) = 1.$$

Следовательно, $r(x) = r \in \mathbb{k}$ и

$$p(\alpha) = 0 \cdot g(\alpha) + r.$$

4

Nota bene Если $p \in \mathbb{k}[x]$ и α - корень p(x), тогда $(x - \alpha) \mid p(x)$.

Теорема 9.4. (OTA) Любой многочлен из $\mathbb{C}[x]$ имеет корень из \mathbb{C} .