

INTRODUCTION TO UNIVERSALITY

Phase Transitions in Random Graphs

Alberto Pezzotta

July 3, 2015

UNIVERSALITY

IN PHASE TRANSITIONS

AN EXAMPLE FROM COLD ATOMS PHYSICS

(Chen et al., "Critical behaviours of contact near phase transitions", 2014)

RANDOM GRAPHS

WHY RANDOM GRAPHS?

Newman et al., "Random graphs as models of networks", 2002

WHY RANDOM GRAPHS?

Newman et al., "Random graphs as models of networks", 2002

· Model real networks:

- possibility of tailoring the random graph;
- · sacrifice some features (e.g., clustering coefficient);
- interpolating between random graphs and networks (e.g., WS and NW small world)

WHY RANDOM GRAPHS?

Newman et al., "Random graphs as models of networks", 2002

· Model real networks:

- possibility of tailoring the random graph;
- · sacrifice some features (e.g., clustering coefficient);
- interpolating between random graphs and networks (e.g., WS and NW small world)
- · Make connection with statistical mechanics:
 - · universal properties?
 - phase transitions → giant component

$$p_k = \text{degree dist.}$$

$$g_0(z) = \text{generating function of } p_k = \sum_k p_k \, z^k$$

$$p_k \rightsquigarrow g_0(z)$$

$$q_k$$
 = excess degree dist = $(k + 1)p_{k+1}/\langle k \rangle_p$
 $g_1(z)$ = generating function of $q_k = \sum_k q_k z^k$

Newman et al., 2001

$$p_k \rightsquigarrow g_0(z)$$

$$q_k \quad \rightsquigarrow \quad g_1(z) = \frac{g_0'(z)}{g_0'(1)}$$

 $ho_{\rm t}$ = branch size dist $ho_{\rm t}(z)$ = generating function of $ho_{\rm t}$

$$p_k \rightsquigarrow g_0(z)$$

$$q_k \quad \rightsquigarrow \quad g_1(z) = \frac{g_0'(z)}{g_0'(1)}$$

$$\rho_{t} \sim h_{1}(z)$$

$$\begin{split} \pi_s &= \text{component size dist} = \sum_k P(s|k) p_k \\ P(s|k) &= \sum_{\{t_k\}} \delta(s-1, \, \sum_{m=1}^k t_m) \prod_{m=1}^k \rho_{t_m} \end{split}$$

$$p_k \rightsquigarrow g_0(z)$$

$$q_k \quad \rightsquigarrow \quad g_1(z) = \frac{g_0'(z)}{g_0'(1)}$$

$$\rho_{t} \quad \leadsto \quad h_{1}(z)$$

$$\begin{split} \pi_{s} &= \sum_{k} P(s|k) p_{k} \,; \qquad h_{0}(z) = \text{gen. f. of } \pi_{s} = \sum_{s} \pi_{s} \, z^{s} \\ P(s|k) &= \sum_{\{t_{k}\}} \delta(s-1, \, \sum_{m=1}^{k} t_{m}) \prod_{m=1}^{k} \rho_{t_{m}} \end{split}$$

Newman et al., 2001

$$p_k \rightsquigarrow g_0(z)$$

$$q_k \quad \rightsquigarrow \quad g_1(z) = \frac{g_0'(z)}{g_0'(1)}$$

$$\rho_{t} \quad \rightsquigarrow \quad h_{1}(z) = z g_{1}(h_{1}(z))$$

$$\pi_s \quad \leadsto \quad h_0(z) = z g_0(h_1(z))$$

TREE assumption

$$P(s|k) = \sum_{\{t_k\}} \delta(s-1, \sum_{m=1}^k t_m) \prod_{m=1}^k \rho_{t_m}$$

$$p_k$$
 normalized to 1: $g_0(1) = \sum_k p_k = 1$

$$p_k$$
 normalized to 1: $g_0(1) = \sum_k p_k = 1$

NOT the same for π_s , because

 $TREE \equiv SMALL$ components

$$h_0(1) = 1 - S$$

S = (relative) size of a giant component

$$p_k$$
 normalized to 1: $g_0(1) = \sum_k p_k = 1$

NOT the same for π_s , because

$TREE \equiv SMALL$ components

$$h_0(1) = 1 - S$$

S = (relative) size of a giant component

$$\begin{cases} h_1(z)=z\,g_1(h_1(z))\\ h_0(z)=z\,g_0(h_1(z)) \end{cases} \Rightarrow \begin{cases} h_1(1)=u=g_1(u)\\ h_0(1)=g_0(u)=1-S \end{cases}$$

$$\begin{cases} u = g_1(u) \\ S = 1 - g_0(u) \end{cases}$$

$$\begin{cases} u = g_1(u) \\ S = 1 - g_0(u) \end{cases}$$

Phase transition

Critical point at κ such that

$$g_1'(1) = 1 = \langle k \rangle_q$$

$$\begin{cases} u = g_1(u) \\ S = 1 - g_0(u) \end{cases}$$

Phase transition

Critical point at κ such that

$$g_1'(1) = 1 = \langle k \rangle_q$$

Remarks:

$$\left\{ \begin{aligned} &u=g_1(u)\\ &S=1-g_0(u) \end{aligned} \right.$$

Phase transition

Critical point at κ such that

$$g_1'(1) = 1 = \langle k \rangle_q$$

Remarks:

 $\cdot \kappa \to \infty \equiv$ power law \leadsto always giant component

$$\begin{cases} u = g_1(u) \\ S = 1 - g_0(u) \end{cases}$$

Phase transition

Critical point at κ such that

$$g_1'(1) = 1 = \langle k \rangle_q$$

Remarks:

- $\cdot \kappa \to \infty \equiv$ power law \leadsto always giant component
- · linear increase at criticality \leadsto connection with percolation (??)

Erdös-Renyi random graph G_{n,p} (Erdös and Rényi, 1960):

- · n vertices \rightsquigarrow n(n 1)/2 possible edges (links);
- · each edge drawn with probability p (independently);

Erdös–Renyi random graph G_{n,p} (Erdös and Rényi, 1960):

- · n vertices \rightsquigarrow n(n 1)/2 possible edges (links);
- · each edge drawn with probability p (independently);
- · in the limit $n \to \infty$, degree \sim Poisson, with c = np

$$p_k = \frac{c^k e^{-c}}{k!}$$
 \Rightarrow $S = 1 - e^{-cS}$

Erdös–Renyi random graph G_{n,p} (Erdös and Rényi, 1960):

- · n vertices \rightsquigarrow n(n 1)/2 possible edges (links);
- · each edge drawn with probability p (independently);
- · in the limit $n \to \infty$, degree \sim Poisson, with c = np

$$p_k = \frac{c^k e^{-c}}{k!}$$
 \Rightarrow $S = 1 - e^{-cS}$

Erdös-Renyi random graph G_{n,p} (Erdös and Rényi, 1960):

- · n vertices \rightsquigarrow n(n 1)/2 possible edges (links);
- each edge drawn with probability p (independently);
- · in the limit $n \to \infty$, degree \sim Poisson, with c = np

$$p_k = \frac{c^k e^{-c}}{k!}$$
 \Rightarrow $S = 1 - e^{-cS}$

Known properties:

- equivalency to Potts model (at the level of Large Deviations, Engel et al., 2004);
- · ph. transition in the universality class of **percolation**, $(q \rightarrow 1) \text{-Potts}$

$$\begin{split} \varphi(\mathsf{G}) &= \text{\# conn. comps in G/N;} \quad \mathsf{c} = \mathsf{average \ degree} \\ \mathsf{R}_\mathsf{N}(\varphi;\mathsf{c}) &= \sum_\mathsf{G} \mathcal{P}(\mathsf{G}) \, \delta(\varphi - \varphi(\mathsf{G})) \sim \mathsf{exp}\{-\mathsf{Nr}(\varphi;\mathsf{c})\} \end{split}$$

$$\begin{split} \varphi(\mathsf{G}) &= \# \text{ conn. comps in } \mathsf{G}/\mathsf{N}; \quad \mathsf{c} = \text{average degree} \\ & \mathsf{R}_\mathsf{N}(\varphi;\mathsf{c}) = \sum_\mathsf{G} \mathcal{P}(\mathsf{G}) \, \delta(\varphi - \varphi(\mathsf{G})) \sim \mathsf{exp}\{-\mathsf{Nr}(\varphi;\mathsf{c})\} \\ & \Rightarrow \, \mathsf{Y}_\mathsf{N}(\mathsf{q};\mathsf{c}) = \sum_\mathsf{C} \mathcal{P}(\mathsf{G}) \, \mathsf{q}^{\mathsf{N}\varphi} = \int_0^1 \mathsf{d}\varphi \, \mathsf{R}_\mathsf{N}(\varphi;\mathsf{c}) \, \mathsf{q}^{\mathsf{N}\varphi} \sim \mathsf{exp}\{-\mathsf{Ny}(\mathsf{q};\mathsf{c})\} \end{split}$$

$$\begin{split} \varphi(G) &= \text{\# conn. comps in } G/N; \quad c = \text{average degree} \\ &R_N(\varphi;c) = \sum_G \mathcal{P}(G) \, \delta(\varphi - \varphi(G)) \sim \text{exp}\{-Nr(\varphi;c)\} \\ &\Rightarrow Y_N(q;c) = \sum_G \mathcal{P}(G) \, q^{N\varphi} = \int_0^1 d\varphi \, R_N(\varphi;c) \, q^{N\varphi} \sim \text{exp}\{-Ny(q;c)\} \end{split}$$

Large deviations: rate and cumulant generating functions

$$\mathbf{r}(\varphi;\mathbf{c}) = \sup_{\mathbf{q} \geq \mathbf{0}} \{\varphi \, \ln \mathbf{q} - \mathbf{y}(\mathbf{q};\mathbf{c})\} \quad \leftrightarrow \quad \mathbf{y}(\mathbf{q};\mathbf{c}) = \sup_{\varphi \in [0,1]} \{\varphi \, \ln \mathbf{q} - \mathbf{r}(\varphi;\mathbf{c})\}$$

$$\varphi(\mathsf{G}) \texttt{= \# conn. comps in G/N;} \quad \texttt{c = average degree}$$

$$\mathsf{R}_\mathsf{N}(\varphi; \mathsf{c}) = \sum_\mathsf{G} \mathcal{P}(\mathsf{G}) \, \delta(\varphi - \varphi(\mathsf{G})) \sim \mathsf{exp}\{-\mathsf{Nr}(\varphi; \mathsf{c})\}$$

$$\Rightarrow \ Y_N(q;c) = \sum_G \mathcal{P}(G) \, q^{N\varphi} = \int_0^1 d\varphi \, R_N(\varphi;c) \, q^{N\varphi} \sim exp\{-Ny(q;c)\}$$

Large deviations: rate and cumulant generating functions

$$\mathbf{r}(\varphi;\mathbf{c}) = \sup_{\mathbf{q} \geq \mathbf{0}} \{\varphi \, \ln \mathbf{q} - \mathbf{y}(\mathbf{q};\mathbf{c})\} \quad \leftrightarrow \quad \mathbf{y}(\mathbf{q};\mathbf{c}) = \sup_{\varphi \in [0,1]} \{\varphi \, \ln \mathbf{q} - \mathbf{r}(\varphi;\mathbf{c})\}$$

Potts model:
$$E[\{\sigma_i\}] = -\frac{1}{N} \sum_{i \in I} \delta_{\sigma_i \sigma_j}$$
, where $\sigma_i \in \{0, \dots, q-1\}$

$$Z_{N}(q;T) = \sum_{f,\sigma_{i}} e^{(1/NT)\sum_{i < j} \delta_{\sigma_{i}\sigma_{j}}}$$

$$\varphi(G)$$
 = # conn. comps in G/N; c = average degree
$$R_N(\varphi;c) = \sum_G \mathcal{P}(G) \, \delta(\varphi - \varphi(G)) \sim \exp\{-Nr(\varphi;c)\}$$

$$\Rightarrow \ Y_N(q;c) = \sum_G \mathcal{P}(G) \, q^{N\varphi} = \int_0^1 d\varphi \, R_N(\varphi;c) \, q^{N\varphi} \sim exp\{-Ny(q;c)\}$$

Large deviations: rate and cumulant generating functions

$$\mathbf{r}(\varphi;\mathbf{c}) = \sup_{\mathbf{q} \geq \mathbf{0}} \{ \varphi \, \ln \mathbf{q} - \mathbf{y}(\mathbf{q};\mathbf{c}) \} \quad \leftrightarrow \quad \mathbf{y}(\mathbf{q};\mathbf{c}) = \sup_{\varphi \in [0,1]} \{ \varphi \, \ln \mathbf{q} - \mathbf{r}(\varphi;\mathbf{c}) \}$$

Potts model:
$$E[\{\sigma_i\}] = -\frac{1}{N} \sum_{i=1}^{N} \delta_{\sigma_i \sigma_j}$$
, where $\sigma_i \in \{0, \dots, q-1\}$

$$Z_N(q;T) = \sum_{\{\sigma_i\}} e^{(1/NT)\sum_{i < j} \delta_{\sigma_i \sigma_j}} = \sum_{\{\sigma_i\}} \prod_{i < j} (1 + w \delta_{\sigma_i \sigma_j})$$

$$\varphi(\mathsf{G}) \texttt{= \# conn. comps in G/N;} \quad \texttt{c = average degree}$$

$$\mathsf{R}_\mathsf{N}(\varphi; \mathsf{c}) = \sum_\mathsf{G} \mathcal{P}(\mathsf{G}) \, \delta(\varphi - \varphi(\mathsf{G})) \sim \mathsf{exp}\{-\mathsf{Nr}(\varphi; \mathsf{c})\}$$

$$\Rightarrow \ Y_N(q;c) = \sum_G \mathcal{P}(G) \, q^{N\varphi} = \int_0^1 d\varphi \, R_N(\varphi;c) \, q^{N\varphi} \sim exp\{-Ny(q;c)\}$$

Large deviations: rate and cumulant generating functions

$$\mathsf{r}(\varphi;\mathsf{c}) = \sup_{\mathsf{q} \geq \mathsf{0}} \{ \varphi \, \ln \mathsf{q} - \mathsf{y}(\mathsf{q};\mathsf{c}) \} \quad \leftrightarrow \quad \mathsf{y}(\mathsf{q};\mathsf{c}) = \sup_{\varphi \in [0,1]} \{ \varphi \, \ln \mathsf{q} - \mathsf{r}(\varphi;\mathsf{c}) \}$$

Potts model:
$$E[\{\sigma_i\}] = -\frac{1}{N} \sum_{i \neq i} \delta_{\sigma_i \sigma_j}$$
, where $\sigma_i \in \{0, \dots q-1\}$

$$Z_N(q;T) = \sum_{\{\sigma_i\}} \prod_{j < i} (1 + w \delta_{\sigma_i \sigma_j})$$
 (where $w = e^{1/NT} - 1$)

$$\varphi(\mathsf{G}) \texttt{= \# conn. comps in G/N;} \quad \texttt{c = average degree}$$

$$\mathsf{R}_\mathsf{N}(\varphi; \mathsf{c}) = \sum_\mathsf{G} \mathcal{P}(\mathsf{G}) \, \delta(\varphi - \varphi(\mathsf{G})) \sim \mathsf{exp}\{-\mathsf{Nr}(\varphi; \mathsf{c})\}$$

$$\Rightarrow \ Y_N(q;c) = \sum_G \mathcal{P}(G) \, q^{N\varphi} = \int_0^1 d\varphi \, R_N(\varphi;c) \, q^{N\varphi} \sim exp\{-Ny(q;c)\}$$

Large deviations: rate and cumulant generating functions

$$r(\varphi;c) = \sup_{q \ge 0} \{\varphi \ln q - y(q;c)\} \quad \leftrightarrow \quad y(q;c) = \sup_{\varphi \in [0,1]} \{\varphi \ln q - r(\varphi;c)\}$$

Potts model:
$$E[\{\sigma_i\}] = -\frac{1}{N} \sum_{i \in I} \delta_{\sigma_i \sigma_j}$$
, where $\sigma_i \in \{0, \dots q-1\}$

$$Z_{N}(q;T) = \sum_{\{\sigma_{i}\}} \prod_{i < j} (1 + w\delta_{\sigma_{i}\sigma_{j}}) = \sum_{G} w^{N_{e}(G)} \prod_{k=0}^{N_{e}(G)} \delta_{\sigma_{i_{k}}\sigma_{j_{k}}}$$

$$\varphi(\mathsf{G})$$
 = # conn. comps in G/N; c = average degree
$$\mathsf{R}_\mathsf{N}(\varphi;\mathsf{c}) = \sum_\mathsf{G} \mathcal{P}(\mathsf{G}) \, \delta(\varphi - \varphi(\mathsf{G})) \sim \mathsf{exp}\{-\mathsf{Nr}(\varphi;\mathsf{c})\}$$

$$\Rightarrow \ Y_N(q;c) = \sum_G \mathcal{P}(G) \, q^{N\varphi} = \int_0^1 d\varphi \, R_N(\varphi;c) \, q^{N\varphi} \sim exp\{-Ny(q;c)\}$$

Large deviations: rate and cumulant generating functions

$$\mathbf{r}(\varphi;\mathbf{c}) = \sup_{\mathbf{q} \geq \mathbf{0}} \{\varphi \, \ln \mathbf{q} - \mathbf{y}(\mathbf{q};\mathbf{c})\} \quad \leftrightarrow \quad \mathbf{y}(\mathbf{q};\mathbf{c}) = \sup_{\varphi \in [\mathbf{0},\mathbf{1}]} \{\varphi \, \ln \mathbf{q} - \mathbf{r}(\varphi;\mathbf{c})\}$$

Potts model:
$$E[\{\sigma_i\}] = -\frac{1}{N} \sum_{i=1}^{N} \delta_{\sigma_i \sigma_j}$$
, where $\sigma_i \in \{0, \dots, q-1\}$

$$Z_N(q;T) = \sum_G w^{N_e(G)} \prod_{k=0}^{N_e(G)} \delta_{\sigma_{i_k}\sigma_{j_k}} = \sum_G w^{N_e(G)} q^{N\varphi(G)}$$

$$\varphi(\mathsf{G})$$
 = # conn. comps in G/N; c = average degree
$$\mathsf{R}_\mathsf{N}(\varphi;\mathsf{c}) = \sum_\mathsf{G} \mathcal{P}(\mathsf{G}) \, \delta(\varphi - \varphi(\mathsf{G})) \sim \mathsf{exp}\{-\mathsf{Nr}(\varphi;\mathsf{c})\}$$

$$\Rightarrow \ Y_N(q;c) = \sum_G \mathcal{P}(G) \, q^{N\varphi} = \int_0^1 d\varphi \, R_N(\varphi;c) \, q^{N\varphi} \sim exp\{-Ny(q;c)\}$$

Large deviations: rate and cumulant generating functions

$$\mathbf{r}(\varphi;\mathbf{c}) = \sup_{\mathbf{q} \geq \mathbf{0}} \{\varphi \, \ln \mathbf{q} - \mathbf{y}(\mathbf{q};\mathbf{c})\} \quad \leftrightarrow \quad \mathbf{y}(\mathbf{q};\mathbf{c}) = \sup_{\varphi \in [0,1]} \{\varphi \, \ln \mathbf{q} - \mathbf{r}(\varphi;\mathbf{c})\}$$

Potts model:
$$E[\{\sigma_i\}] = -\frac{1}{N} \sum_{i \neq i} \delta_{\sigma_i \sigma_j}$$
, where $\sigma_i \in \{0, \dots q-1\}$

$$Z_N(q;T) = \sum_{\{\sigma_i\}} e^{(1/NT)\sum_{i < j} \delta_{\sigma_i \sigma_j}} = \sum_G w^{N_e(G)} q^{N\varphi(G)}$$

$$w = e^{1/NT} - 1 \equiv \frac{c}{N} \quad \Leftrightarrow \quad T \equiv \frac{1}{N \ln(1 + c/N)} \sim \frac{1}{c}$$

$$w = e^{1/NT} - 1 \equiv \frac{c}{N} \quad \Leftrightarrow \quad T \equiv \frac{1}{N \ln(1 + c/N)} \sim \frac{1}{c}$$

Then equivalence is established:

$$Z_N(q;T=1/c)\simeq e^{Nc/2}\,Y_N(q;c)\qquad \text{or}\qquad f(q;1/c)\simeq -\frac{1}{2}-\frac{1}{c}y(q;c)$$

$$w = e^{1/NT} - 1 \equiv \frac{c}{N} \quad \Leftrightarrow \quad T \equiv \frac{1}{N \ln(1 + c/N)} \sim \frac{1}{c}$$

Then equivalence is established:

$$Z_N(q;T=1/c) \simeq e^{Nc/2} \, Y_N(q;c)$$
 or $f(q;1/c) \simeq -\frac{1}{2} - \frac{1}{c} y(q;c)$

In terms of fractions $x(\sigma; {\sigma_i}) = \frac{1}{N} \sum_i \delta_{\sigma\sigma_i}$:

$$f(\{x(\sigma)\}_{\sigma=0}^{q-1}; 1/c) = -\sum_{\sigma=0}^{q-1} \left\{ \frac{1}{2} x(\sigma)^2 - \frac{1}{c} x(\sigma) \ln x(\sigma) \right\}$$

$$W = e^{1/NT} - 1 \equiv \frac{c}{N} \Leftrightarrow T \equiv \frac{1}{N \ln(1 + c/N)} \sim \frac{1}{c}$$

Then equivalence is established:

$$Z_N(q; T = 1/c) \simeq e^{Nc/2} Y_N(q; c)$$
 or $f(q; 1/c) \simeq -\frac{1}{2} - \frac{1}{c} y(q; c)$

In terms of fractions $x(\sigma; {\sigma_i}) = \frac{1}{N} \sum_i \delta_{\sigma\sigma_i}$:

$$f(\{x(\sigma)\}_{\sigma=0}^{q-1}; 1/c) = -\sum_{\sigma=0}^{q-1} \left\{ \frac{1}{2} x(\sigma)^2 - \frac{1}{c} x(\sigma) \ln x(\sigma) \right\}$$

Equilibrium solution encoding symmetry breaking:

$$x(0) = [1 + (q - 1)s]/q$$
; $x(\sigma > 0) = (1 - s)/q$

Solutions in the q \rightarrow 1 limit:

$$c \le 1: s^* = 0;$$

 $c > 1: s^* = 1 - e^{-cs^*} \rightsquigarrow Erd\ddot{o}s$ -Renyi equation

 Connection with Random Matrix Theory

- Connection with Random Matrix Theory, spectra of
 - adjacency matrix (Bandyopadhyay and Jalan, 2007; Kühn, 2008; Zhan et al., 2010)

- Connection with Random Matrix Theory, spectra of
 - adjacency matrix (Bandyopadhyay and Jalan, 2007; Kühn, 2008; Zhan et al., 2010)
 - Laplacian matrix (Kim and Motter, 2007).

- Connection with Random Matrix Theory, spectra of
 - adjacency matrix (Bandyopadhyay and Jalan, 2007; Kühn, 2008; Zhan et al., 2010)
 - Laplacian matrix (Kim and Motter, 2007).
- Universality of phase transitions in generic degree distribution random graphs (Dorogovtsev et al., 2008; Cohen et al., 2002).

REFERENCES

J. N. Bandyopadhyay, S. Jalan, Phys. Rev. E 76 (2007).

A.-L. Barabási, R. Albert, Science 286, 509–512 (1999).

B. Bollobás, Random graphs, (Springer, 1998).

Y. Chen, Y. Jiang, X. Guan, Q. Zhou, Nature Comm. **5** (2014).

R. Cohen, D. ben Avraham, S. Havlin, Phys. Rev. E 66 (2002).

S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, Rev. Mod. Phys. 80 (2008).

A. Engel, R. Monasson, A. Hartmann, Journal of Statistical Physics 117 (2004).

P. Erdös, A. Rényi, Publ. Math. Inst. Hung. Acad. Sci 5, 17–61 (1960).

D.-H. Kim, A. E. Motter, Phys. Rev. Lett. 98 (24 2007).

R. Kühn, Journal of Physics A: Mathematical and Theoretical 41 (2008).

M. E. J. Newman, S. H. Strogatz, D. J. Watts, http://arxiv.org/abs/cond-mat/0202208 (2002).

M. E. J. Newman, S. H. Strogatz, D. J. Watts, Phys. Rev. E 64 (2001).

M. Newman, Physical Review E 76 (2007).

C. Zhan, G. Chen, L. F. Yeung, Physica A 389 (2010).