Norme	Notation	Définition	Cas
Manhattan, L^1	$ x _{1}$	$\sum_{i=1}^{n} x_i $	LASSO
Euclidien, L^2	$ x _{2}$	$\sqrt{\sum_{i=1}^{n} x_i^2}$	Ridge
p -norme, L^p	$ x _p$	$\left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}}$	Inégalité de Hölder
Infini, L^{∞}	$ x _{\infty}$	$\max_{i} x_i $	Convergence uniforme

□ Dépendance linéaire – Un ensemble de vecteurs est considéré comme étant linéairement dépendant si un des vecteurs de cet ensemble peut être défini comme une combinaison des autres.

 $Remarque: si \ aucun \ vecteur \ ne \ peut \ être \ noté \ de \ cette \ manière, \ alors \ les \ vecteurs \ sont \ dits \ linéairement \ indépendants.$

 \square Rang d'une matrice – Le rang d'une matrice donnée A est notée $\operatorname{rang}(A)$ et est la dimension de l'espace vectoriel généré par ses colonnes. Ceci est équivalent au nombre maximum de colonnes indépendantes de A.

□ Matrice semi-définie positive – Une matrice $A \in \mathbb{R}^{n \times n}$ est semi-définie positive et est notée $A \succeq 0$ si l'on a :

$$A = A^T$$
 et $\forall x \in \mathbb{R}^n, \quad x^T A x \geqslant 0$

Remarque : de manière similaire, une matrice A est dite définie positive et est notée $A \succ 0$ si elle est semi-définie positive et que pour tout vector x non-nul, on a $x^TAx > 0$.

□ Valeur propre, vecteur propre – Étant donné une matrice $A \in \mathbb{R}^{n \times n}$, λ est une valeur propre de A s'il existe un vecteur $z \in \mathbb{R}^n \setminus \{0\}$, appelé vecteur propre, tel que :

$$Az = \lambda z$$

□ Théorème spectral – Soit $A \in \mathbb{R}^{n \times n}$. Si A est symmétrique, alors A est diagonalisable par une matrice orthogonale réelle $U \in \mathbb{R}^{n \times n}$. En notant $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$, on a :

$$\exists \Lambda \text{ diagonal}, \quad A = U \Lambda U^T$$

 \square Décomposition en valeurs singulières – Pour une matrice A de dimensions $m \times n$, la décomposition en valeurs singulières est une technique de factorisation qui garantit l'existence d'une matrice unitaire U $m \times m$, d'une matrice diagonale Σ $m \times n$ et d'une matrice unitaire V $n \times n$, tel que :

$$A = U \Sigma V^T$$