

AAP

## (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property  
Organization  
International Bureau



(43) International Publication Date  
10 September 2004 (10.09.2004)

PCT

(10) International Publication Number  
**WO 2004/075713 A2**

- |                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification <sup>7</sup> :                                                                                             | A61B              | (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW. |
| (21) International Application Number:                                                                                                              | PCT/CA2004/000281 | (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).                                                                                        |
| (22) International Filing Date: 26 February 2004 (26.02.2004)                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (25) Filing Language:                                                                                                                               | English           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (26) Publication Language:                                                                                                                          | English           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (30) Priority Data:<br>60/450,406 26 February 2003 (26.02.2003) US                                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (71) Applicant (for all designated States except US): MOUNT SINAI HOSPITAL [CA/CA]; 600 University Avenue, Room 970, Toronto, Ontario M5G 1X5 (CA). |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (72) Inventor; and                                                                                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (75) Inventor/Applicant (for US only): DIAMANDIS, Eleftherios, P. [CA/CA]; 44 Gerrard Street West, Suite 1504, Toronto, Ontario M5G 2K2 (CA).       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (74) Agent: KURDYDYK, Linda; McCarthy Tetrault, 66 Wellington Street West, Suite 4700, P.O. Box 48, Toronto Dominion Bank Tower (CA).               |                   | <b>Published:</b><br>— without international search report and to be republished upon receipt of that report                                                                                                                                                                                                                                                                                                                                                                                          |

*[Continued on next page]*

- (54) Title: MULTIPLE MARKER ASSAY FOR DETECTION OF OVARIAN CANCER



WO 2004/075713 A2

- (57) Abstract: Methods for diagnosing and monitoring ovarian cancer in a subject comprising measuring a plurality of kallikrein polypeptides, and optionally CA125, or nucleic acids encoding the polypeptides in a sample from the subject. The kallikrein polypeptides include kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10 and kallikrein 11.



*For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.*

**TITLE:** Multiple Marker Assay for Detection of Ovarian Cancer**FIELD OF THE INVENTION**

The invention relates to compositions, kits, and methods for detecting, characterizing, preventing, and treating ovarian cancer.

**5    BACKGROUND OF THE INVENTION**

Epithelial ovarian carcinoma is the most common and most lethal of all gynecologic malignancies. Only 30% of ovarian tumors are diagnosed at an early stage (Stage I/II), when survival rates reach 90%. The rest are diagnosed at an advanced stage, with survival rates of less than 20% ( Greenlee RT, Hill-Harmon MB, Murray T, et al., 2001. *CA Cancer J Clin* .2001;51:15-36). Currently, the only well-accepted serological marker is CA125, a large glycoprotein of unknown function (Meyer T, Rustin GJ, *Br J Cancer* .2000;82:1535-1538). However, CA125 has limitations as a diagnostic, prognostic and screening tool (Holschneider CH, Berek JS, *Semin Surg Oncol* .2000;19:3-10). Consequently, there is a need to enhance the overall diagnostic/prognostic capability of CA125.

Kallikreins are a subgroup of secreted serine proteases, encoded by highly conserved and tightly clustered multigene families in humans, rats and mice. The human kallikrein gene family resides on chromosome 19q13.4 and is comprised of 15 members, whose genes are designated as *KLK1* to *KLK15* and the corresponding proteins as hK1 to hK15 ( Yousef GM, Diamandis EP., *Endocr Rev* .2001;22:184-204); Yousef GM, Chang A, Scorilas A, et al., *Biochem Biophys Res Commun*. 2000;276:125-133; Diamandis EP, Yousef GM, Clements J, et al. *Clin Chem* .2000;46:1855-1858). Kallikreins are expressed in a wide variety of tissues and are found in many biological fluids (e.g. cerebrospinal fluid, serum, seminal plasma, milk, etc.) where they are predicted to process specific substrates. Kallikreins may participate in cascade reactions similar to those involved in digestion, fibrinolysis, coagulation, wound healing and apoptosis (( Yousef GM, Diamandis EP., *Endocr Rev* .2001;22:184-204)). Many kallikreins have been found to be differentially expressed in endocrine-related malignancies (Diamandis EP, Yousef GM, *Expert Rev. Mol. Diagn* .2001;1:182-190), including prostate ( Barry MJ. Clinical practice, *N Engl J Med* .2001;344:1373-1377; Rittenhouse HG, Finlay JA, Mikolajczyk SD, et al., *Crit Rev Clin Lab Sci* .1998;35:275-368; and Yousef GM, Scorilas A, Jung K, et al., *J Biol Chem* .2001;276:53-61), ovarian ( Kim H, Scorilas A, Katsaros D, et al., *Br J Cancer*, 2001;84:643-650; Anisowicz A, Sotiropoulou G, Stenman, et al., *Mol Med* .1996;2:624-636; Tanimoto H, Underwood LJ, Shigemasa K, et al., *Cancer* .1999;86:2074-2082; Magklara A, Scorilas A, Katsaros D, et al., *Clin Cancer Res* .2001;7:806-811; Yousef GM, Kyriakopoulou LG, Scorilas A, et al., *Cancer Res* .2001;61:7811-7818; Luo L, Bunting P, Scorilas A, Diamandis EP., *Clin Chim Acta* .2001;306:111-118), breast ( Yousef GM, Magklara A, Chang A, et al., *Cancer Res* .2001;61:3425-3431; Yousef GM, Chang A, Diamandis EP; *J Biol Chem* .2000;275:11891-11898; and Yousef GM, Magklara A, Diamandis EP, *Genomics* .2000;69:331-341), and testicular cancer ( Luo LY, Rajpert-De Meyts ER, Jung K, et al.,2001;85:220-224). In addition, many kallikrein genes examined thus far are under steroid hormone regulation, implicating a role for kallikreins in endocrine-related tissues (Yousef GM, Diamandis EP., *Endocr Rev* , 2001;22:184-204). Furthermore, hK6, hK10 and hK11 have been recently identified as novel serological ovarian cancer biomarkers ( Luo L, Bunting P, Scorilas A, Diamandis EP., *Clin Chim Acta* .2001;306:111-118 Diamandis EP, Yousef GM, Soosaipillai AR, Bunting P., *Clin Biochem* . 2000;33:579-

583, and Diamandis EP, Okui A, Mitsui S, et al., *Cancer Res.* 2002;62:295-300).

#### SUMMARY OF THE INVENTION

The present invention seeks to overcome the drawbacks inherent in the prior art and seeks to provide sensitive and accurate multimarker methods for the detection of ovarian cancer. A plurality of kallikrein polypeptides and polynucleotides encoding the polypeptides, optionally in combination with CA125 and polynucleotides encoding CA125 can have particular application in the detection of ovarian cancer. A plurality of kallikrein markers (i.e. two or more of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11) and polynucleotides encoding the polypeptides, optionally in combination with CA125 and polynucleotides encoding CA125, constitute biomarkers for the diagnosis, monitoring, progression, treatment, and prognosis of ovarian cancer, and they may be used as biomarkers before surgery or after relapse.

In accordance with the methods of the invention, the presence of levels of markers in a sample can be assessed, for example by detecting the presence in the sample of (a) polypeptides or polypeptide fragments corresponding to the markers; (b) metabolites which are produced directly or indirectly by polypeptides corresponding to the markers; (c) transcribed nucleic acids or fragments thereof having at least a portion with which the markers are substantially identical; and/or (c) transcribed nucleic acids or fragments thereof, wherein the nucleic acids hybridize with the markers.

In an aspect of the invention, a method is provided for detecting ovarian cancer in a patient comprising detecting a plurality of kallikrein polypeptides, optionally in combination with CA125, in a sample from the patient wherein the method provides substantially increased sensitivity compared to methods using CA125 alone. In an embodiment, sensitivity is increased by at least 0.5%, 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, and 35% compared to using CA125 alone.

In an embodiment, the invention provides a method for detecting a plurality of kallikrein markers, and optionally CA125, associated with ovarian cancer in a patient comprising:

- 25 (a) obtaining a sample from a patient;
- (b) detecting or identifying in the sample kallikrein markers, optionally in combination with CA125, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and
- (c) comparing the detected amounts with amounts detected for a standard.

30 The term "detect" or "detecting" includes assaying, assessing, imaging or otherwise establishing the presence or absence of the target kallikrein and CA125 polypeptides or polynucleotides encoding the polypeptides, subunits thereof, or combinations of reagent bound targets, and the like, or assaying for, imaging, ascertaining, establishing, or otherwise determining one or more factual characteristics of ovarian cancer, metastasis, stage, or similar conditions. The term encompasses diagnostic, prognostic, and 35 monitoring applications. The kallikrein polypeptides and CA125 can be detected individually, sequentially, or simultaneously.

According to a method involving kallikrein markers optionally in combination with CA125, the levels in the sample of the kallikrein markers (2, 3, 4, 5, or 6) and optionally CA125, wherein the markers comprise or are selected from kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein

11, are compared with the normal levels of the kallikrein markers, and optionally CA125, in samples of the same type obtained from controls (e.g. samples from individuals not afflicted with ovarian cancer). Significantly different levels in the sample of the kallikrein markers (and optionally CA125) relative to the normal levels in a control is indicative of ovarian cancer.

5        In an embodiment, the invention provides a method for diagnosing and monitoring ovarian carcinoma in a subject comprising detecting in a sample from the subject kallikrein markers, and optionally CA125, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11. The kallikrein markers and CA125 can be detected using antibodies that bind to the kallikrein markers and CA125 or parts thereof.

10      Thus, the invention provides a method of assessing whether a patient is afflicted with or has a predisposition for ovarian cancer, the method comprising comparing:

(a)     levels of kallikrein markers, and optionally CA125, in a sample from the patient, wherein the kallikrein markers comprise kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and

15      (b)    normal levels of kallikrein markers, and optionally CA125, in samples of the same type obtained from control patients not afflicted with ovarian cancer, wherein significantly different levels of the kallikrein markers and optionally CA125, relative to the corresponding normal levels of the kallikrein markers, and optionally CA125, is an indication that the patient is afflicted with ovarian cancer.

20      In an embodiment of a method of assessing whether a patient is afflicted with ovarian cancer (e.g. screening, detection of a recurrence, reflex testing), the method comprises comparing:

(a)     levels of kallikrein markers, and optionally CA125, in a patient sample, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and

25      (b)    normal levels of the kallikrein markers, and optionally CA125, in a control non-ovarian cancer sample.

A significant difference between the levels of the kallikrein markers, and optionally CA125, in the patient sample and the normal levels is an indication that the patient is afflicted with ovarian cancer.

The invention further relates to a method of assessing the efficacy of a therapy for inhibiting ovarian cancer in a patient. This method comprises comparing:

(a)     levels of kallikrein markers, and optionally CA125, in a first sample obtained from the patient prior to providing at least a portion of the therapy to the patient, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11 ; and

35      (b)    levels of the kallikrein markers, and optionally CA125, in a second sample obtained from the patient following therapy.

A significant difference between the levels of the kallikrein markers, and optionally CA125, in the second sample, relative to the first sample, is an indication that the therapy is efficacious for inhibiting ovarian cancer.

The "therapy" may be any therapy for treating ovarian cancer including but not limited to chemotherapy, immunotherapy, gene therapy, radiation therapy, and surgical removal of tissue. Therefore, the method can be used to evaluate a patient before, during, and after therapy, for example, to evaluate the reduction in tumor burden.

5 In an aspect, the invention provides a method for monitoring the progression of ovarian cancer in a patient, the method comprising:

- (a) detecting in a patient sample at a first time point, kallikrein markers, and optionally CA125, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and
- 10 (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the levels detected in (a) and (b), and therefrom monitoring the progression of ovarian cancer in the patient.

In another aspect, the invention provides a method for assessing the aggressiveness or indolence of ovarian cancer (e.g. staging), the method comprising comparing:

- 15 (a) levels of kallikrein markers, and optionally CA125, in a patient sample, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and
- (b) normal levels of the kallikrein markers, and optionally CA125 in a control sample.

A significant difference between the levels in the sample and the normal levels is an indication that 20 the cancer is aggressive or indolent.

The invention provides a method for determining whether ovarian cancer has metastasized or is likely to metastasize in the future, the method comprising comparing:

- 25 (a) levels of kallikrein markers, and optionally CA125, in a patient sample, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and
- (b) normal levels (or non-metastatic levels) of the kallikrein markers, and optionally CA125, in a control sample.

A significant difference between the levels in the patient sample and the normal levels is an indication that the cancer has metastasized or is likely to metastasize in the future.

30 The invention also provides a method for assessing the potential efficacy of a test agent for inhibiting ovarian cancer in a patient, and a method of selecting an agent for inhibiting ovarian cancer in a patient.

The invention further provides a method of inhibiting ovarian cancer in a patient comprising:

- 35 (a) obtaining a sample comprising cancer cells from the patient;
- (b) separately maintaining aliquots of the sample in the presence of a plurality of test agents;
- (c) comparing levels of kallikrein markers, and optionally CA125, in each of the aliquots, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11;
- (d) administering to the patient at least one of the test agents which alters the levels of the

kallikrein markers, and optionally CA125, in the aliquot containing that test agent, relative to other test agents.

The invention also contemplates a method of assessing the ovarian carcinogenic potential of a test compound comprising:

- 5           (a)     maintaining separate aliquots of ovarian cells in the presence and absence of the test compound; and
- (b)     comparing levels of kallikrein markers, and optionally CA125, in each of the aliquots, wherein the markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11.

10           A significant difference between the levels of the kallikrein markers, and optionally CA125, in the aliquot maintained in the presence of (or exposed to) the test compound relative to the aliquot maintained in the absence of the test compound, indicates that the test compound possesses ovarian carcinogenic potential.

In preferred embodiments of the methods of the invention, the kallikrein markers comprise a plurality of kallikrein markers, for example, at least three, four, five, or six of the markers. In particular, a 15           plurality of kallikrein markers may be selected from the group consisting of kallikrein 5, kallikrein 7, kallikrein 8, and kallikrein 10, from the group consisting of kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11, or from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10 and kallikrein 11.

20           Other methods of the invention employ one or more polynucleotides capable of hybridizing to polynucleotides encoding kallikrein markers, and optionally CA125. Methods for detecting polynucleotides encoding a kallikrein markers, and optionally CA125, can be used to monitor ovarian cancer by detecting the nucleic acids.

25           Thus, the present invention relates to a method for diagnosing and monitoring ovarian cancer in a sample from a subject comprising isolating nucleic acids, preferably mRNA, from the sample; and detecting polynucleotides encoding kallikrein markers, and optionally CA125, in the sample. The presence of different levels of polynucleotides encoding kallikrein markers, and optionally CA125, in the sample compared to a standard or control is indicative of disease, disease stage, and/or prognosis, e.g. longer progression-free and overall survival.

30           In an embodiment, the invention provides methods for determining the presence or absence of ovarian cancer in a subject comprising (a) contacting a sample obtained from the subject with oligonucleotides that hybridize to polynucleotides encoding kallikrein markers, and optionally CA125; and (b) detecting in the sample levels of nucleic acids that hybridize to the polynucleotides relative to a predetermined cut-off value, and therefrom determining the presence or absence of ovarian cancer in the subject. Within certain embodiments, mRNA is detected via polymerase chain reaction using, for example 35           oligonucleotide primers that hybridize to polynucleotides encoding kallikrein markers, and optionally CA125, or complements of such polynucleotides. Within other embodiments, the amount of mRNA is detected using a hybridization technique, employing oligonucleotide probes that hybridize to polynucleotides encoding kallikrein markers, and optionally CA125, or complements of such polynucleotides.

When using mRNA detection, the method may be carried out by combining isolated mRNA with

reagents to convert to cDNA according to standard methods; treating the converted cDNA with amplification reaction reagents (such as cDNA PCR reaction reagents) in a container along with an appropriate mixture of nucleic acid primers; reacting the contents of the container to produce amplification products; and analyzing the amplification products to detect the presence of polynucleotides encoding kallikrein markers, and optionally CA125, in the sample. For mRNA the analyzing step may be accomplished using Northern Blot analysis to detect the presence of polynucleotides encoding kallikrein markers, and optionally CA125. The analysis step may be further accomplished by quantitatively detecting the presence of polynucleotides encoding kallikrein markers, and optionally CA125, in the amplification product, and comparing the quantity of markers detected against a panel of expected values for the known presence or absence of the kallikrein markers in normal and malignant tissue derived using similar primers.

In embodiments of the methods of the invention, a plurality (e.g. three, four, five or six) polynucleotides encoding kallikrein polypeptides are employed. In particular, a plurality of polynucleotides encoding kallikrein markers may be selected from the group consisting of polynucleotides encoding (i) kallikrein 5, kallikrein 7, kallikrein 8, and kallikrein 10; (ii) polynucleotides encoding kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and (iii) polynucleotides encoding kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10 and kallikrein 11.

The invention also provides a diagnostic composition comprising a plurality of kallikrein polypeptides and optionally CA125 polypeptide, or polynucleotides encoding the polypeptides, or agents that bind to the polypeptides or polynucleotides.

In an embodiment, the composition comprises probes that specifically hybridize to polynucleotides encoding kallikrein markers, and optionally CA125, or fragments thereof. In another embodiment a composition is provided comprising specific primer pairs capable of amplifying polynucleotides encoding kallikrein markers, and optionally CA125, using polymerase chain reaction methodologies. In a still further embodiment, the composition comprises agents that bind to kallikrein markers, and optionally CA125, (e.g. antibodies) or fragments thereof. Probes, primers, and agents can be labeled with detectable substances.

In an aspect the invention provides an *in vivo* method comprising administering to a subject agents that have been constructed to target kallikrein markers, and optionally CA125.

The invention therefore contemplates an *in vivo* method comprising administering to a mammal imaging agents that carry labels for imaging and that bind to kallikrein markers, and optionally CA125, and then imaging the mammal.

Still further the invention relates to therapeutic applications for ovarian cancer employing kallikrein markers, and optionally CA125, nucleic acids encoding the polypeptides, and/or agents identified using methods of the invention.

The invention also includes kits for carrying out methods of the invention. In an embodiment, the kit is for assessing whether a patient is afflicted with ovarian cancer and it comprises reagents for assessing kallikrein markers, and optionally CA125, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11.

In another aspect the invention relates to a kit for assessing the suitability of each of a plurality of test compounds for inhibiting ovarian cancer in a patient. The kit comprises reagents for assessing kallikrein

markers, and optionally CA125, wherein the markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11. The kit may also comprise a plurality of test agents or compounds.

5 The invention contemplates a kit for assessing the presence of ovarian cancer cells, wherein the kit comprises antibodies specific for selected kallikrein markers, and optionally CA125, wherein the markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11.

10 Additionally the invention provides a kit for assessing the ovarian carcinogenic potential of a test compound. The kit comprises ovarian cells and reagents for assessing kallikrein markers, and optionally CA125, wherein the markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11.

15 In an aspect the invention provides a method of treating a patient afflicted with ovarian cancer comprising providing to cells of a patient antisense oligonucleotides complementary to polynucleotides encoding kallikrein markers, and optionally CA125, which are overexpressed in ovarian cancer. In an alternative method, expression of genes corresponding to kallikrein markers, and optionally CA125, which are underexpressed in ovarian cancer are increased.

20 The invention relates to a method of inhibiting ovarian cancer in a patient at risk for developing ovarian cancer comprising inhibiting or increasing expression (or overexpression) of genes encoding kallikrein markers and optionally CA125, wherein the markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11, that are either overexpressed or underexpressed, in ovarian cancer.

25 Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples while indicating preferred embodiments of the invention are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

#### DESCRIPTION OF THE DRAWINGS

The invention will now be described in relation to the drawings in which

Figure 1 is a graph showing hk5 concentration in serum from non-cancer and cancer patients.

30 Figure 2 is a graph showing hk6 concentration in serum from non-cancer and cancer patients.

Figure 3 is a graph showing hk7 concentration in serum from non-cancer and cancer patients.

Figure 4 is a graph showing hk8 concentration in serum from non-cancer and cancer patients.

Figure 5 is a graph showing hk10 concentration in serum from non-cancer and cancer patients.

Figure 6 is a graph showing hk11 concentration in serum from non-cancer and cancer patients.

35 Figure 7 is a graph showing CA125 concentration in serum from non-cancer and cancer patients.

Figure 8 is a ROC curve illustrating the added value of using kallikreins and CA125 together in a multivariate function.

#### DETAILED DESCRIPTION OF THE INVENTION

The invention relates to newly discovered correlations between expression of certain markers and

ovarian cancer. The combinations of markers described herein may provide sensitive methods for detecting ovarian cancer. The levels of expression of a combination of markers described herein may correlate with the presence of ovarian cancer or a pre-malignant condition in a patient. Methods are provided for detecting the presence of ovarian cancer in a sample, the absence of ovarian cancer in a sample, the stage of an ovarian cancer, the grade of an ovarian cancer, the benign or malignant nature of an ovarian cancer, the metastatic potential of an ovarian cancer, assessing the histological type of neoplasm associated with the ovarian cancer, the indolence or aggressiveness of the cancer, and other characteristics of ovarian cancer that are relevant to prevention, diagnosis, characterization, and therapy of ovarian cancer in a patient. Methods are also provided for assessing the efficacy of one or more test agents for inhibiting ovarian cancer, assessing the efficacy of a therapy for ovarian cancer, monitoring the progression of ovarian cancer, selecting an agent or therapy for inhibiting ovarian cancer, treating a patient afflicted with ovarian cancer, inhibiting ovarian cancer in a patient, and assessing the carcinogenic potential of a test compound.

#### Glossary

The terms "sample", "biological sample", and the like, mean a material known or suspected of expressing or containing a plurality of kallikrein markers or polypeptides (2, 3, 4, 5, or 6 polypeptides), and optionally CA125 polypeptide, or polynucleotides encoding the polypeptides. The test sample can be used directly as obtained from the source or following a pretreatment to modify the character of the sample. The sample can be derived from any biological source, such as tissues, extracts, or cell cultures, including cells (e.g. tumor cells), cell lysates, and physiological fluids, such as, for example, whole blood, plasma, serum, saliva, ocular lens fluid, cerebral spinal fluid, sweat, urine, milk, ascites fluid, synovial fluid, peritoneal fluid and the like. The sample can be obtained from animals, preferably mammals, most preferably humans. The sample can be treated prior to use, such as preparing plasma from blood, diluting viscous fluids, and the like. Methods of treatment can involve filtration, distillation, extraction, concentration, inactivation of interfering components, the addition of reagents, and the like. Nucleic acids and polypeptides may be isolated from the samples and utilized in the methods of the invention. In a preferred embodiment, the sample is a serum sample.

The term "subject" or "patient" refers to a warm-blooded animal such as a mammal, which is suspected of having ovarian cancer, or a condition, disease, or syndrome associated with ovarian cancer. Preferably, "subject" refers to a human.

"CA125", "CA125 polypeptide", or "carbohydrate antigen 125" refers to a high-molecular weight mucin, which can be defined by its ability to bind to monoclonal antibody OC125. The CA125 protein core comprises a short cytoplasmic core tail, a transmembrane domain, and a large and heavily glycosylated extracellular domain dominated by a repeat domain of 156 amino acids rich in serine, threonine, and proline (Yin BW and Lloyd KO, J Biol Chem. 2001, 276:27371-27375; O'Brian TJ et al, Tumor Biol., 2001 22:348-366; and Hovig E. et al, Tumor Biol. 2001, 22:345-347). The sequence of CA125 is shown in GenBank Accession No. NP\_078966, AAL65133 and AF414442 (SEQ ID NO. 1). The term includes the native-sequence polypeptides, isoforms, precursors and chimeric polypeptides. The term also includes the native sequence polypeptide, including polypeptide variants and polypeptides with substantial sequence identity (e.g. at least about 45%, preferably 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or

99% sequence identity) to the sequence of GenBank Accession No.NP\_078966 (SEQ ID NO. 1), and that preferably retain the immunogenic activity of the corresponding native sequence polypeptide.

"Kallikrein polypeptides" or "kallikrein markers" comprise kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11. The term includes the native-sequence polypeptides, isoforms, precursors and chimeric polypeptides. The amino acid sequences for native kallikrein polypeptides employed in the present invention include the sequences found in GenBank for each polypeptide as shown in Table 1, and in SEQ ID NO: 3 (kallikrein 5), NO.6 (kallikrein 6), NO. 10 (kallikrein 7), NO. 13 (kallikrein 8), NO. 16 (kallikrein 10), and NOS. 19 and 20 (kallikrein 11), or a portion thereof. Other useful polypeptides are substantially identical to these sequences (e.g. at least about 45%, preferably 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity), and preferably retain the immunogenic activity of the corresponding native-sequence kallikrein polypeptide.

A "native-sequence polypeptide" comprises a polypeptide having the same amino acid sequence of a polypeptide derived from nature. Such native-sequence polypeptides can be isolated from nature or can be produced by recombinant or synthetic means.

The term "native-sequence polypeptide" specifically encompasses naturally occurring truncated or secreted forms of a polypeptide, polypeptide variants including naturally occurring variant forms (e.g., alternatively spliced forms or splice variants), and naturally occurring allelic variants.

The term "polypeptide variant" means a polypeptide having at least about 70-80%, preferably at least about 85%, more preferably at least about 90%, most preferably at least about 95% amino acid sequence identity with a native-sequence polypeptide, in particular having at least 70-80%, 85%, 90%, 95% amino acid sequence identity to the sequences identified in the GenBank Accession Nos. in Table 1 and Accession No. NP\_078966, AF414442 and AAL65133 and shown in SEQ ID NOS: 1, 2, 3, 6, 10, 13, 16, 19 and 20. Such variants include, for instance, polypeptides wherein one or more amino acid residues are added to, or deleted from, the N- or C-terminus of the full-length or mature sequences of SEQ ID NOS: 1, 2, 3, 6, 10, 13, 16, 19 and 20, including variants from other species, but excludes a native-sequence polypeptide.

An allelic variant may also be created by introducing substitutions, additions, or deletions into a nucleic acid encoding a native polypeptide sequence such that one or more amino acid substitutions, additions, or deletions are introduced into the encoded protein. Mutations may be introduced by standard methods, such as site-directed mutagenesis and PCR-mediated mutagenesis. In an embodiment, conservative substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which an amino acid residue is replaced with an amino acid residue with a similar side chain. Amino acids with similar side chains are known in the art and include amino acids with basic side chains (e.g. Lys, Arg, His), acidic side chains (e.g. Asp, Glu), uncharged polar side chains (e.g. Gly, Asp, Glu, Ser, Thr, Tyr and Cys), nonpolar side chains (e.g. Ala, Val, Leu, Iso, Pro, Trp), beta-branched side chains (e.g. Thr, Val, Iso), and aromatic side chains (e.g. Tyr, Phe, Trp, His). Mutations can also be introduced randomly along part or all of the native sequence, for example, by saturation mutagenesis. Following mutagenesis the variant polypeptide can be recombinantly expressed and the activity of the polypeptide may be determined.

- 10 -

5 Polypeptide variants include polypeptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of a native polypeptide which include fewer amino acids than the full length polypeptides. A portion of a polypeptide can be a polypeptide which is for example, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 or more amino acids in length. Portions in which regions of a polypeptide are deleted can be prepared by recombinant techniques and can be evaluated for one or more functional activities such as the ability to form antibodies specific for a polypeptide.

10 A naturally occurring allelic variant may contain conservative amino acid substitutions from the native polypeptide sequence or it may contain a substitution of an amino acid from a corresponding position in a CA125 or kallikrein polypeptide homolog, for example, the murine CA125 or kallikrein polypeptide.

15 Percent identity of two amino acid sequences, or of two nucleic acid sequences identified herein is defined as the percentage of amino acid residues or nucleotides in a candidate sequence that are identical with the amino acid residues in a CA125 or kallikrein polypeptide or nucleic acid sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid or nucleic acid sequence identity can be achieved in various conventional ways, for instance, using publicly available computer software including the GCG program package (Devereux J. et al., Nucleic Acids Research 12(1): 387, 1984); BLASTP, BLASTN, and FASTA (Atschul, S.F. et al. J. Molec. Biol. 215: 403-410, 1990). The BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S. et al. NCBI NLM NIH Bethesda, Md. 20894; Altschul, S. et al. J. Mol. Biol. 215: 403-410, 1990). Skilled artisans can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. Methods to determine identity and similarity are codified in publicly available computer programs.

20 CA125 and kallikrein polypeptides include chimeric or fusion proteins. A "chimeric protein" or "fusion protein" comprises all or part (preferably biologically active) of a CA125 or kallikrein polypeptide operably linked to a heterologous polypeptide (i.e., a polypeptide other than the same CA125 or kallikrein polypeptide). Within the fusion protein, the term "operably linked" is intended to indicate that the CA125 or kallikrein polypeptide and the heterologous polypeptide are fused in-frame to each other. The heterologous polypeptide can be fused to the N-terminus or C-terminus of the CA125 or kallikrein polypeptide. A useful fusion protein is a GST fusion protein in which a kallikrein polypeptide is fused to the C-terminus of GST sequences. Another example of a fusion protein is an immunoglobulin fusion protein in which all or part of a CA125 or kallikrein polypeptide is fused to sequences derived from a member of the immunoglobulin protein family. Chimeric and fusion proteins can be produced by standard recombinant DNA techniques.

25 CA125 and kallikrein polypeptides may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods, or by any combination of these and similar techniques.

30 "CA125 polynucleotides" or "polynucleotides encoding CA125" include nucleic acids that encode a native-sequence polypeptide, a polypeptide variant including a portion of a CA125 polypeptide, an isoform, precursor, and chimeric polypeptide. A nucleic acid sequence encoding native CA125 employed in the

present invention includes the nucleic acid sequence in GenBank Accession No. AF414442 and SEQ ID NO. 2, or a fragment thereof.

“Kallikrein polynucleotides” or “polynucleotides encoding kallikrein markers/polypeptides” refers to kallikrein 5 nucleic acids (KLK5), kallikrein 6 nucleic acids (KLK6), kallikrein 7 nucleic acids (KLK7), 5 kallikrein 8 nucleic acids (KLK8), kallikrein 10 nucleic acids (KLK10), and/or kallikrein 11 nucleic acids (KLK11). The term includes nucleic acids that encode a native-sequence polypeptide, a polypeptide variant including a portion of a kallikrein polypeptide, an isoform, precursor, and chimeric polypeptide.

The polynucleotide sequences encoding native kallikrein polypeptides employed in the present invention include the nucleic acid sequences of the GenBank Accession Nos. identified in Table 1, and in 10 SEQ ID NOS: 4 and 5 (KLK5), NOS. 7, 8, and 9 (KLK6), NOS. 11 and 12 (KLK7), NOS. 14 and 15 (KLK8), NOS. 17 and 18 (KLK10), and NOS. 21 and 22 (KLK11), or a fragment thereof.

Polynucleotides encoding kallikrein polypeptides and CA125 include nucleic acid sequences complementary to these polynucleotides, and polynucleotides that are substantially identical to these sequences (e.g. at least about 45%, preferably 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 15 98%, or 99% sequence identity).

CA125 and kallikrein polynucleotides also include sequences which differ from a nucleic acid sequence of GenBank Accession Nos. identified in Table 1 and SEQ ID NOS: 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 17, 18, 21, and 22, due to degeneracy in the genetic code. As one example, DNA sequence polymorphisms within the nucleotide sequence of a CA125 or kallikrein polypeptide may result in silent mutations which do 20 not affect the amino acid sequence. Variations in one or more nucleotides may exist among individuals within a population due to natural allelic variation. DNA sequence polymorphisms may also occur which lead to changes in the amino acid sequence of CA125 or a kallikrein polypeptide.

CA125 and kallikrein polynucleotides also include nucleic acids that hybridize under stringent conditions, preferably high stringency conditions to a nucleic acid sequence of the GenBank Accession Nos. 25 identified in Table 1 and SEQ ID NOS: 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 17, 18, 21, and 22. Appropriate stringency conditions which promote DNA hybridization are known to those skilled in the art, or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. For example, 6.0 x sodium chloride/sodium citrate (SSC) at about 45°C, followed by a wash of 2.0 x SSC at 30 50°C may be employed. The stringency may be selected based on the conditions used in the wash step. By way of example, the salt concentration in the wash step can be selected from a high stringency of about 0.2 x SSC at 50°C. In addition, the temperature in the wash step can be at high stringency conditions, at about 65°C.

CA125 and kallikrein polynucleotides also include truncated nucleic acids or fragments and variant forms of the polynucleotides that arise by alternative splicing of an mRNA corresponding to a DNA.

35 The CA125 and kallikrein polynucleotides are intended to include DNA and RNA (e.g. mRNA) and can be either double stranded or single stranded. A polynucleotide may, but need not, include additional coding or non-coding sequences, or it may, but need not, be linked to other molecules and/or carrier or support materials. The polynucleotides for use in the methods of the invention may be of any length suitable for a particular method.

A plurality of kallikrein polypeptides or kallikrein polynucleotides are generally detected in the present invention. "Plurality" refers to 2, 3, 4, 5, or 6 kallikrein polypeptides or polynucleotides, in particular 3, 4, 5, or 6, preferably 4, 5, or 6, more preferably 5 or 6 kallikrein polypeptides or polynucleotides.

In an embodiment a plurality of kallikrein polypeptides is selected from the group consisting of

- 5 kallikrein 5, kallikrein 7, and kallikrein 8; kallikrein 5, kallikrein 8, and kallikrein 10; kallikrein 7, kallikrein 8, and kallikrein 10; kallikrein 5, kallikrein 7, kallikrein 8, and kallikrein 10; kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; or kallikrein 5, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11. In another embodiment, a plurality of kallikrein polypeptides is selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10 and kallikrein 11.

- 10 In an embodiment, a plurality of kallikrein polynucleotides is selected from the group consisting of KLK5, KLK7, and KLK8; KLK5, KLK8 and KLK10; KLK7, KLK8 and KLK10; KLK5, KLK7, KLK8, and KLK10; KLK7, KLK8, KLK10 and KLK11, or KLK5, KLK7, KLK8, KLK10 and KLK11. In another embodiment, a plurality of kallikrein polynucleotides is selected from the group consisting of KLK5, KLK6, KLK7, KLK8, KLK10, and KLK11.

15 **General Methods**

A variety of methods can be employed for the diagnostic and prognostic evaluation of ovarian cancer involving kallikrein polypeptides, and optionally CA125 polypeptide, and polynucleotides encoding the polypeptides, and the identification of subjects with a predisposition to such disorders. Such methods may, for example, utilize polynucleotides encoding kallikrein polypeptides, and optionally CA125, and 20 fragments thereof, and binding agents (e.g. antibodies aptamers) against kallikrein polypeptides, and optionally CA125 polypeptide, including peptide fragments. In particular, the polynucleotides and antibodies may be used, for example, for (1) the detection of either over- or under-expression of kallikrein polynucleotides, and optionally CA125, relative to a non-disorder state; and (2) the detection of either an over- or an under-abundance of kallikrein polypeptides, and optionally CA125, relative to a non-disorder 25 state or the presence of modified (e.g., less than full length) kallikrein polypeptides, and optionally CA125, that correlate with a disorder state, or a progression toward a disorder state.

The invention also contemplates a method for detecting ovarian cancer comprising producing a profile of levels of a plurality of kallikrein markers, and optionally CA125, in cells from a patient, wherein the markers are kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11, and 30 comparing the profile with a reference to identify a protein profile for the test cells indicative of disease.

The methods described herein may be used to evaluate the probability of the presence of malignant or pre-malignant cells, for example, in a group of cells freshly removed from a host. Such methods can be used to detect tumors, quantitate their growth, and help in the diagnosis and prognosis of disease. The methods can be used to detect the presence of cancer metastasis, as well as confirm the absence or removal 35 of all tumor tissue following surgery, cancer chemotherapy, and/or radiation therapy. They can further be used to monitor cancer chemotherapy and tumor reappearance.

The methods described herein can be adapted for diagnosing and monitoring ovarian cancer by detecting a plurality of kallikrein polypeptides, and optionally CA125 polypeptide, or nucleic acids encoding the polypeptides in biological samples from a subject. These applications require that the amount of

- 13 -

polypeptides or nucleic acids quantitated in a sample from a subject being tested be compared to a predetermined standard. The standard may correspond to levels quantitated for another sample or an earlier sample from the subject, or levels quantitated for a control sample. Levels for control samples from healthy subjects or ovarian cancer subjects may be established by prospective and/or retrospective statistical studies.

- 5     Healthy or normal subjects who have no clinically evident disease or abnormalities may be selected for statistical studies. Diagnosis may be made by a finding of statistically different levels of a plurality of kallikrein polypeptides, and optionally CA125, or nucleic acids encoding same, compared to a control sample or previous levels quantitated for the same subject. A "significant difference" in levels of kallikrein markers or polynucleotides encoding the kallikrein markers in a patient sample compared to a control or  
10    standard (e.g. normal levels or levels in other samples from a patient) may represent levels that are higher or lower than the standard error of the detection assay, preferably the levels are at least about 1.5, 2, 3, 4, 5, or 6 times higher or lower, respectively, than the control or standard. The difference in levels of markers or polynucleotides may be a "statistically significant difference"

**Nucleic Acid Methods/Assays**

- 15    As noted herein an ovarian cancer may be detected based on the levels of polynucleotides encoding kallikrein polypeptides, and optionally CA125, in a sample. Techniques for detecting polynucleotides such as polymerase chain reaction (PCR) and hybridization assays are well known in the art.

Nucleotide probes for use in the detection of nucleic acid sequences in samples may be constructed using conventional methods known in the art. Suitable probes may be based on nucleic acid sequences encoding at least 5 sequential amino acids from regions of nucleic acids encoding kallikrein polypeptides, and optionally CA125, preferably they comprise 15 to 40 nucleotides. A nucleotide probe may be labeled with a detectable substance such as a radioactive label that provides for an adequate signal and has sufficient half-life such as  $^{32}\text{P}$ ,  $^3\text{H}$ ,  $^{14}\text{C}$  or the like. Other detectable substances that may be used include antigens that are recognized by a specific labeled antibody, fluorescent compounds, enzymes, antibodies specific for a labeled antigen, and luminescent compounds. An appropriate label may be selected having regard to the rate of hybridization and binding of the probe to the nucleotide to be detected and the amount of nucleotide available for hybridization. Labeled probes may be hybridized to nucleic acids on solid supports such as nitrocellulose filters or nylon membranes as generally described in Sambrook et al, 1989, Molecular Cloning, A Laboratory Manual (2nd ed.). The nucleic acid probes may be used to detect polynucleotides encoding kallikrein polypeptides, and optionally CA125, preferably in human cells. The nucleotide probes may also be useful in the diagnosis of ovarian cancer involving polynucleotides encoding kallikrein polypeptides, and optionally CA125, in monitoring the progression of such disorder; or monitoring a therapeutic treatment.

Probes may be used in hybridization techniques to detect nucleic acids encoding a plurality of kallikrein polypeptides, and optionally CA125. The technique generally involves contacting and incubating nucleic acids (e.g. recombinant DNA molecules, cloned genes) obtained from a sample from a patient or other cellular source with probes under conditions favorable for the specific annealing of the probes to complementary sequences in the nucleic acids. After incubation, the non-annealed nucleic acids are removed, and the presence of nucleic acids that have hybridized to the probe if any are detected.

The detection of polynucleotides encoding kallikrein polypeptides and optionally CA125, may involve the amplification of specific gene sequences using an amplification method such as polymerase chain reaction (PCR), followed by the analysis of the amplified molecules using techniques known to those skilled in the art. Suitable primers can be routinely designed by one of skill in the art.

5 By way of example, oligonucleotide primers may be employed in a PCR based assay to amplify a portion of nucleic acids encoding each of a plurality of kallikrein polypeptides, and optionally CA125, derived from a sample, wherein the oligonucleotide primers are specific for (i.e. hybridize to) polynucleotides encoding each of the plurality of kallikrein polypeptides, and optionally CA125. The amplified cDNA is then separated and detected using techniques well known in the art, such as gel 10 electrophoresis.

In order to maximize hybridization under assay conditions, primers and probes employed in the methods of the invention generally have at least about 60%, preferably at least about 75% and more preferably at least about 90% identity to a portion of polynucleotides encoding a plurality of kallikrein polypeptides, and CA125. The primers and probes may be at least 10 nucleotides, and preferably at least 20 15 nucleotides in length. In an embodiment the primers and probes are at least about 10-40 nucleotides in length.

Hybridization and amplification techniques described herein may be used to assay qualitative and quantitative aspects of expression of polynucleotides encoding kallikrein polypeptides, and optionally CA125. For example, RNA may be isolated from a cell type or tissue known to express these 20 polynucleotides and tested utilizing the hybridization (e.g. standard Northern analyses) or PCR techniques referred to herein.

The primers and probes may be used in the above-described methods *in situ* i.e directly on tissue sections (fixed and/or frozen) of patient tissue obtained from biopsies or resections.

In an aspect of the invention, a method is provided employing reverse transcriptase-polymerase 25 chain reaction (RT-PCR), in which PCR is applied in combination with reverse transcription. Generally, RNA is extracted from a sample tissue using standard techniques (for example, guanidine isothiocyanate extraction as described by Chomcynski and Sacchi, Anal. Biochem. 162:156-159, 1987) and is reverse transcribed to produce cDNA. The cDNA is used as a template for a polymerase chain reaction. The cDNA is hybridized to sets of primers specifically designed against each of a plurality of kallikrein polynucleotide 30 sequences, and optionally CA125. Once the primer and template have annealed a DNA polymerase is employed to extend from the primer, to synthesize a copy of the template. The DNA strands are denatured, and the procedure is repeated many times until sufficient DNA is generated to allow visualization by ethidium bromide staining and agarose gel electrophoresis.

Amplification may be performed on samples obtained from a subject with suspected ovarian cancer 35 and an individual who is not afflicted with ovarian cancer. The reaction may be performed on several dilutions of cDNA spanning at least two orders of magnitude. A statistically significant difference in expression in several dilutions of the subject sample as compared to the same dilutions of the non-cancerous sample may be considered positive for the presence of ovarian cancer.

Oligonucleotides or longer fragments derived from polynucleotides encoding each of a plurality of

- 15 -

kallikrein polypeptides and optionally CA125, may be used as targets in a microarray. The microarray can be used to simultaneously monitor the expression levels of large numbers of genes. The information from the microarray may be used to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

5        The preparation, use, and analysis of microarrays are well known to a person skilled in the art. (See, for example, Brennan, T. M. et al. (1995) U.S. Pat. No. 5,474,796; Schena, et al. (1996) Proc. Natl. Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995), PCT Application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R. A. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M. J. et al. (1997) U.S. Pat. No. 5,605,662.)

10      Thus, the invention also includes an array comprising a plurality of polynucleotides encoding kallikrein marker(s), and optionally CA125 polynucleotides. The array can be used to assay expression of kallikrein polynucleotides, and optionally CA125 polynucleotides in the array. The invention allows the quantitation of expression of a plurality of kallikrein polynucleotides, and optionally CA125 polynucleotides.

15      In an embodiment, the array can be used to monitor the time course of expression of a plurality of kallikrein polynucleotides, and optionally CA125 polynucleotides, in the array. This can occur in various biological contexts such as tumor progression.

The array is also useful for ascertaining differential expression patterns of a plurality of kallikrein polynucleotides and optionally CA125 polynucleotides, in normal and abnormal cells. This provides a battery of polynucleotides that could serve as molecular targets for diagnosis or therapeutic intervention.

20      **Protein Methods**

Binding agents specific for a plurality of kallikrein markers and CA125 may be used for a variety of diagnostic and assay applications. There are a variety of assay formats known to the skilled artisan for using a binding agent to detect a target molecule in a sample. (For example, see Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988). In general, the presence or absence of an ovarian cancer in a subject may be determined by (a) contacting a sample from the subject with binding agents for a plurality of kallikrein polypeptides, and optionally CA125; (b) detecting in the sample levels of polypeptides that bind to the binding agents; and (c) comparing the levels of polypeptides with a predetermined standard or cut-off value.

30      "Binding agent" refers to a substance such as a polypeptide or antibody that specifically binds to a kallikrein or CA125 polypeptide. A substance "specifically binds" to a polypeptide if it reacts at a detectable level with the kallikrein or CA125 polypeptide, and does not react detectably with peptides containing unrelated sequences or sequences of different polypeptides. Binding properties may be assessed using an ELISA, which may be readily performed by those skilled in the art (see for example, Newton et al., *Develop. Dynamics* 197: 1-13, 1993).

35      A binding agent may be a ribosome, with or without a peptide component, an aptamer, an RNA molecule, or a polypeptide. A binding agent may be a polypeptide that comprises a kallikrein polypeptide or CA125 polypeptide sequence, a peptide variant thereof, or a non-peptide mimetic of such a sequence. By way of example a kallikrein polypeptide sequence may be a peptide portion of a kallikrein polypeptide that is capable of modulating a function mediated by the kallikrein polypeptide.

- 16 -

An aptamer includes a DNA or RNA molecule that binds to polynucleotides and polypeptides. An aptamer that binds to a polypeptide (or binding domain) of a kallikrein polypeptide or a polynucleotide encoding a kallikrein polypeptide can be produced using conventional techniques, without undue experimentation. [For example, see the following publications describing *in vitro* selection of aptamers: Klug 5 et al., Mol. Biol. Reports 20:97-107 (1994); Wallis et al., Chem. Biol. 2:543-552 (1995); Ellington, Curr. Biol. 4:427-429 (1994); Lato et al., Chem. Biol. 2:291-303 (1995); Conrad et al., Mol. Div. 1:69-78 (1995); and Uphoff et al., Curr. Opin. Struct. Biol. 6:281-287 (1996)].

In certain other preferred embodiments, the binding agent is an antibody.

In an aspect the present invention provides a diagnostic method for monitoring or diagnosing 10 ovarian cancer in a subject by quantitating a plurality of kallikrein polypeptides, and optionally CA125, in a biological sample from the subject comprising reacting the sample with antibodies specific for a plurality of kallikrein polypeptides, and optionally CA125, which are directly or indirectly labelled with detectable substances, and detecting the detectable substances.

In an aspect of the invention, a method for detecting ovarian cancer is provided comprising:

- 15 (a) obtaining a sample suspected of containing a plurality of kallikrein polypeptides, and optionally CA125, wherein the kallikrein polypeptides comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10 and kallikrein 11;
- (b) contacting the sample with antibodies that specifically bind to the plurality of kallikrein 20 polypeptides, and optionally CA125, under conditions effective to bind the antibodies and form complexes;
- (c) measuring the amount of kallikrein polypeptides, and optionally CA125, present in the sample by quantitating the amount of the complexes; and
- (d) comparing the amount of kallikrein polypeptides, and optionally CA125, present in the 25 samples with the amount of polypeptides in a control, wherein a change or significant difference in the amount of polypeptides in the sample compared with the amount in the control is indicative of ovarian cancer.

In an embodiment, the invention contemplates a method for monitoring the progression of ovarian cancer in an individual, comprising:

- 30 (a) contacting antibodies which bind to each of a plurality of kallikrein polypeptides, and optionally CA125, with a sample from the individual so as to form binary complexes comprising each of the antibodies and polypeptides in the sample;
- (b) determining or detecting the presence or amount of complex formation in the sample;
- (c) repeating steps (a) and (b) at a point later in time; and
- 35 (d) comparing the result of step (b) with the result of step (c), wherein a difference in the amount of complex formation is indicative of the stage and/or progression of the ovarian cancer in said individual.

The amount of complexes may also be compared to a value representative of the amount of the complexes from an individual not at risk of, or afflicted with, ovarian cancer at different stages.

- 17 -

Thus, antibodies specifically reactive with each of a plurality of kallikrein polypeptides, and CA125, or derivatives, such as enzyme conjugates or labeled derivatives, may be used to detect a plurality of kallikrein polypeptides, and optionally CA125, in various samples (e.g. biological materials). They may be used as diagnostic or prognostic reagents and they may be used to detect abnormalities in the levels of expression of a plurality of kallikrein polypeptides, and optionally CA125, or abnormalities in the structure, and/or temporal, tissue, cellular, or subcellular location of a plurality of kallikrein polypeptides, and optionally CA125. Antibodies may also be used to screen potentially therapeutic compounds *in vitro* to determine their effects on ovarian cancer involving a plurality of kallikrein polypeptides, and optionally CA125, and other conditions. *In vitro* immunoassays may also be used to assess or monitor the efficacy of particular therapies.

Antibodies may be used in any known immunoassays that rely on the binding interaction between antigenic determinants of a plurality of kallikrein polypeptides, and optionally CA125, and the antibodies. Examples of such assays are radioimmunoassays, enzyme immunoassays (e.g. ELISA), immunofluorescence, immunoprecipitation, latex agglutination, hemagglutination, and histochemical tests. These terms are well understood by those skilled in the art. A person skilled in the art will know, or can readily discern, other immunoassay formats without undue experimentation.

In particular, the antibodies may be used in immunohistochemical analyses, for example, at the cellular and sub-subcellular level, to detect a plurality of kallikrein polypeptides, and optionally CA125, to localize them to particular ovarian tumor cells and tissues, and to specific subcellular locations, and to quantitate the level of expression.

Antibodies for use in the present invention include monoclonal or polyclonal antibodies, immunologically active fragments (e.g. a Fab or (Fab)<sub>2</sub> fragments), antibody heavy chains, humanized antibodies, antibody light chains, genetically engineered single chain F<sub>v</sub> molecules (Ladner et al, U.S. Pat. No. 4,946,778), chimeric antibodies, for example, antibodies which contain the binding specificity of murine antibodies, but in which the remaining portions are of human origin, or derivatives, such as enzyme conjugates or labeled derivatives.

Antibodies including monoclonal and polyclonal antibodies, fragments and chimeras, may be prepared using methods known to those skilled in the art. Isolated native or recombinant kallikrein polypeptides or CA125 may be utilized to prepare antibodies. See, for example, Kohler et al. (1975) Nature 256:495-497; Kozbor et al. (1985) J. Immunol Methods 81:31-42; Cote et al. (1983) Proc Natl Acad Sci 80:2026-2030; and Cole et al. (1984) Mol Cell Biol 62:109-120 for the preparation of monoclonal antibodies; Huse et al. (1989) Science 246:1275-1281 for the preparation of monoclonal Fab fragments; and, Pound (1998) Immunochemical Protocols, Humana Press, Totowa, N.J for the preparation of phagemid or B-lymphocyte immunoglobulin libraries to identify antibodies. The antibodies specific for kallikrein polypeptides or CA125 used in the methods of the invention may also be obtained from scientific or commercial sources.

In an embodiment of the invention, antibodies are reactive against kallikrein polypeptides or CA125 if they bind with a  $K_d$  of greater than or equal to  $10^{-7}$  M.

Antibodies that bind to kallikrein polypeptides or CA125 may be labelled with a detectable

substance and localised in biological samples based upon the presence of the detectable substance. Examples of detectable substances include, but are not limited to, the following: radioisotopes (e.g., <sup>3</sup>H, <sup>14</sup>C, <sup>35</sup>S, <sup>125</sup>I, <sup>131</sup>I), fluorescent labels (e.g., FITC, rhodamine, lanthanide phosphors), luminescent labels such as luminol, enzymatic labels (e.g., horseradish peroxidase, beta-galactosidase, luciferase, alkaline phosphatase, acetylcholinesterase), biotinyl groups (which can be detected by marked avidin e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods), and predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, labels are attached via spacer arms of various lengths to reduce potential steric hindrance. Antibodies may also be coupled to electron dense substances, such as ferritin or colloidal gold, which are readily visualised by electron microscopy.

Indirect methods may also be employed in which the primary antigen-antibody reaction is amplified by the introduction of a second antibody, having specificity for the antibody reactive against a kallikrein polypeptide or CA125. The second antibody may be labeled with a detectable substance to detect the primary antigen-antibody reaction. By way of example, if the antibody having specificity against a kallikrein polypeptide is a rabbit IgG antibody, the second antibody may be goat anti-rabbit gamma-globulin labelled with a detectable substance as described herein.

Methods for conjugating or labelling the antibodies discussed above may be readily accomplished by one of ordinary skill in the art. (See for example Inman, Methods In Enzymology, Vol. 34, Affinity Techniques, Enzyme Purification: Part B, Jakoby and Wilchek (eds.), Academic Press, New York, p. 30, 1974; and Wilchek and Bayer, "The Avidin-Biotin Complex in Bioanalytical Applications," Anal. Biochem. 171:1-32, 1988 re methods for conjugating or labelling the antibodies with enzyme or ligand binding partner).

Cytochemical techniques known in the art for localizing antigens using light and electron microscopy may be used to detect a plurality of kallikrein polypeptides, and optionally CA125. Generally, antibodies may be labeled with detectable substances and kallikrein polypeptides, and optionally CA125, may be localised in tissues and cells based upon the presence of the detectable substance.

In the context of the methods of the invention, the sample, binding agents (e.g. antibodies) for a plurality of kallikrein polypeptides, and CA125 may be immobilized on a carrier or support. Examples of suitable carriers or supports are agarose, cellulose, nitrocellulose, dextran, Sephadex, Sepharose, liposomes, carboxymethyl cellulose, polyacrylamides, polystyrene, gabbros, filter paper, magnetite, ion-exchange resin, plastic film, plastic tube, glass, polyamine-methyl vinyl-ether-maleic acid copolymer, amino acid copolymer, ethylene-maleic acid copolymer, nylon, silk, etc. The support material may have any possible configuration including spherical (e.g. bead), cylindrical (e.g. inside surface of a test tube or well, or the external surface of a rod), or flat (e.g. sheet, test strip). Thus, the carrier may be in the shape of, for example, a tube, test plate, well, beads, disc, sphere, etc. The immobilized material may be prepared by reacting the material with a suitable insoluble carrier using known chemical or physical methods, for example, cyanogen bromide coupling. Binding agents (e.g. antibodies) may be indirectly immobilized using second binding agents specific for the first binding agent. For example, mouse antibodies specific for a kallikrein polypeptide may

be immobilized using sheep anti-mouse IgG Fc fragment specific antibody coated on the carrier or support.

Where radioactive labels are used as a detectable substance, a plurality of kallikrein polypeptides, and optionally CA125, may be localized by radioautography. The results of radioautography may be quantitated by determining the density of particles in the radioautographs by various optical methods, or by counting the grains.

Time-resolved fluorometry may be used to detect a signal. For example, the method described in Christopoulos TK and Diamandis EP Anal Chem 1992;64:342-346 may be used with a conventional time-resolved fluorometer.

Therefore, in accordance with an embodiment of the invention, a method is provided wherein antibodies specific for each of a plurality of kallikrein polypeptides, and optionally CA125, are labelled with enzymes, substrates for the enzymes are added wherein the substrates are selected so that the substrates, or a reaction product of the enzymes and substrates, form fluorescent complexes with lanthanide metals. Lanthanide metals are added and the plurality of kallikrein polypeptides, and optionally CA125, are quantitated in the sample by measuring fluorescence of the fluorescent complexes. Antibodies specific for CA125 and each of a plurality of kallikrein polypeptides may be directly or indirectly labelled with enzymes. Enzymes are selected based on the ability of a substrate of the enzyme, or a reaction product of the enzyme and substrate, to complex with lanthanide metals such as europium and terbium. Examples of suitable enzymes include alkaline phosphatase and  $\beta$ -galactosidase.

Examples of enzymes and substrates for enzymes that provide such fluorescent complexes are described in U.S. Patent No. 5,312,922 to Diamandis. By way of example, when the antibody is directly or indirectly labelled with alkaline phosphatase the substrate employed in the method may be 4-methylumbelliferyl phosphate, 5-fluorosalicyl phosphate, or diflunisal phosphate. The fluorescence intensity of the complexes is typically measured using a time-resolved fluorometer e.g. a CyberFluor 615 Imunoanalyzer (Nordion International, Kanata, Ontario).

Antibodies specific for a plurality of kallikrein polypeptides and CA125 may also be indirectly labelled with enzymes. For example, an antibody may be conjugated to one partner of a ligand binding pair, and the enzyme may be coupled to the other partner of the ligand binding pair. Representative examples include avidin-biotin, and riboflavin-riboflavin binding protein. In another embodiment, antibodies specific for the anti-kallikrein antibodies or anti- CA125 antibodies are labeled with an enzyme.

In accordance with an embodiment, the present invention provides means for determining a plurality of kallikrein polypeptides, and optionally CA125, in a sample, in particular a serum sample, by measuring a plurality of kallikrein polypeptides, and optionally CA125, by immunoassay. It will be evident to a skilled artisan that a variety of immunoassay methods can be used to measure a plurality of kallikrein polypeptides and CA125 in serum. In general, an immunoassay method may be competitive or noncompetitive. Competitive methods typically employ immobilized or immobilizable antibodies to each of a plurality of kallikrein polypeptides, and optionally CA125, and a labeled form of each of a plurality of kallikrein polypeptides, and optionally CA125. Kallikrein polypeptides and CA125 and labeled kallikrein polypeptides and CA125 compete for binding to anti-kallikrein antibodies and anti-CA125 antibodies. After separation of the resulting labeled kallikrein polypeptides and CA125 that have become bound to anti-

kallikrein polypeptides and anti- CA125 (bound fraction) from that which has remained unbound (unbound fraction), the amount of the label in either bound or unbound fraction is measured and may be correlated with the amount of kallikrein polypeptides, and optionally CA125, in the test sample in any conventional manner, e.g., by comparison to a standard curve.

5 In an aspect, a non-competitive method is used for the determination of a plurality of kallikrein polypeptides, and optionally CA125, with the most common method being the "sandwich" method. In this assay, two types of antibodies specific for each of a plurality of kallikrein polypeptides, and optionally CA125 are employed. One type of antibody is directly or indirectly labeled (sometimes referred to as the "detection antibody") and the other is immobilized or immobilizable (sometimes referred to as the "capture antibody"). The capture and detection antibodies can be contacted simultaneously or sequentially with a test sample. Sequential methods can be accomplished by incubating capture antibodies with the sample, and adding the detection antibodies at a predetermined time thereafter (sometimes referred to as the "forward" method); or the detection antibodies can be incubated with the sample first and then the capture antibodies added (sometimes referred to as the "reverse" method). After the necessary incubation(s) have occurred, to 10 complete the assay, the capture antibodies are separated from the liquid test mixture, and labels are measured in at least a portion of the separated capture antibody phase or the remainder of the liquid test mixture. Generally the labels are measured in the capture antibody phase since it comprises kallikrein polypeptides, and optionally CA125, bound by ("sandwiched" between) the capture and detection antibodies. In an embodiment, the label may be measured without separating the capture antibodies and liquid test mixture.

15 20 In a typical two-site immunometric assay for a plurality of kallikrein polypeptides, and optionally CA125, one or both of the capture and detection antibodies are polyclonal antibodies or one or both of the capture and detection antibodies are monoclonal antibodies (i.e. polyclonal/polyclonal, monoclonal/monoclonal, or monoclonal/polyclonal). The labels used with the detection antibodies can be selected from any of those known conventionally in the art. The labels may be an enzyme or a chemiluminescent moiety, but it can also be a radioactive isotope, a fluorophor, a detectable ligand (e.g., detectable by a secondary binding by a labeled binding partner for the ligand), and the like. Preferably 25 antibodies are labelled with enzymes which are detected by adding substrates that are selected so that a reaction product of the enzymes and substrates forms fluorescent complexes. Capture antibodies may be selected so that they provide a means for being separated from the remainder of the test mixture.

30 35 Accordingly, the capture antibodies can be introduced to the assay in an already immobilized or insoluble form, or can be in an immobilizable form, that is, a form which enables immobilization to be accomplished subsequent to introduction of the capture antibodies to the assay. An immobilized capture antibody may comprise an antibody covalently or noncovalently attached to a solid phase such as a magnetic particle, a latex particle, a microtiter plate well, a bead, a cuvette, or other reaction vessel. An example of an immobilizable capture antibody is antibody which has been chemically modified with a ligand moiety, e.g., a hapten, biotin, or the like, and which can be subsequently immobilized by contact with an immobilized form of a binding partner for the ligand, e.g., an antibody, avidin, or the like. In an embodiment, a capture antibody may be immobilized using a species specific antibody for the capture antibody that is bound to the solid phase.

A particular sandwich immunoassay method of the invention employs two types of antibodies, first antibodies are reactive against each of a plurality of kallikrein polypeptides, and optionally CA125, and second antibodies having specificity against antibodies reactive against each of a plurality of kallikrein polypeptides, and optionally CA125, labelled with enzymatic labels, and fluorogenic substrates for the enzymes. An enzyme may be alkaline phosphatase (ALP) and the substrate is 5-fluorosalicyl phosphate. ALP cleaves phosphate out of the fluorogenic substrate, 5-fluorosalicyl phosphate, to produce 5-fluorosalicylic acid (FSA). 5-Fluorosalicylic acid can then form a highly fluorescent ternary complex of the form FSA-Tb(3+)-EDTA, which can be quantified by measuring the Tb<sup>3+</sup> fluorescence in a time-resolved mode. Fluorescence intensity is measured using a time-resolved fluorometer as described herein.

The above-described immunoassay methods and formats are intended to be exemplary and are not limiting.

#### Computer Systems

Computer readable media comprising a plurality of kallikrein markers, and optionally CA125, is also provided. "Computer readable media" refers to any medium that can be read and accessed directly by a computer, including but not limited to magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. Thus, the invention contemplates computer readable medium having recorded thereon markers identified for patients and controls.

"Recorded" refers to a process for storing information on computer readable medium. The skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising information on a plurality of kallikrein markers, and optionally CA125.

A variety of data processor programs and formats can be used to store information on a plurality of kallikrein markers, and optionally CA125, on computer readable medium. For example, the information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. Any number of dataprocessor structuring formats (e.g., text file or database) may be adapted in order to obtain computer readable medium having recorded thereon the marker information.

By providing the marker information in computer readable form, one can routinely access the information for a variety of purposes. For example, one skilled in the art can use the information in computer readable form to compare marker information obtained during or following therapy with the information stored within the data storage means.

The invention provides a medium for holding instructions for performing a method for determining whether a patient has ovarian cancer or a pre-disposition to ovarian cancer, comprising determining the presence or absence of a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, and based on the presence or absence of the plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, determining whether the patient has ovarian cancer or a pre-disposition to

ovarian cancer, and optionally recommending treatment for the ovarian cancer or pre-ovarian cancer condition.

The invention also provides in an electronic system and/or in a network, a method for determining whether a subject has ovarian cancer or a pre-disposition to ovarian cancer associated with a plurality of kallikrein markers, and optionally CA125, and/or polynucleotides encoding same, comprising determining the presence or absence of a plurality of kallikrein markers, and optionally CA125, and/or polynucleotides encoding same, and based on the presence or absence of the plurality of kallikrein markers, and optionally CA125, and/or polynucleotides encoding same, determining whether the subject has ovarian cancer or a pre-disposition to ovarian cancer, and optionally recommending treatment for the ovarian cancer or pre-ovarian cancer condition.

The invention further provides in a network, a method for determining whether a subject has ovarian cancer or a pre-disposition to ovarian cancer associated with a plurality of kallikrein markers, optionally CA125 and/or polynucleotides encoding same, comprising: (a) receiving phenotypic information on the subject and information on a plurality of kallikrein markers, optionally CA125 and/or polynucleotides encoding same associated with samples from the subject; (b) acquiring information from the network corresponding to the plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same; and (c) based on the phenotypic information and information on the plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, determining whether the subject has ovarian cancer or a pre-disposition to ovarian cancer; and (d) optionally recommending treatment for the ovarian cancer or pre-ovarian cancer condition.

The invention still further provides a system for identifying selected records that identify an ovarian cancer cell. A system of the invention generally comprises a digital computer; a database server coupled to the computer; a database coupled to the database server having data stored therein, the data comprising records of data comprising a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, and a code mechanism for applying queries based upon a desired selection criteria to the data file in the database to produce reports of records which match the desired selection criteria.

In an aspect of the invention a method is provided for detecting an ovarian cancer cell using a computer having a processor, memory, display, and input/output devices, the method comprising the steps of:

- 30       (a) creating records of a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, isolated from a sample suspected of containing an ovarian cancer cell;
- (b) providing a database comprising records of data comprising a plurality of kallikrein markers, optionally CA125, wherein the markers are kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11, and/or comprising polynucleotides encoding same; and
- 35       (c) using a code mechanism for applying queries based upon a desired selection criteria to the data file in the database to produce reports of records of step (a) which provide a match of the desired selection criteria of the database of step (b) the presence of a match being a

positive indication that the markers of step (a) have been isolated from a cell that is an ovarian cancer cell.

The invention contemplates a business method for determining whether a subject has ovarian cancer or a pre-disposition to ovarian cancer associated with a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, comprising: (a) receiving phenotypic information on the subject and information on a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, associated with samples from the subject; (b) acquiring information from a network corresponding to the plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same; and (c) based on the phenotypic information, information on a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, and acquired information, determining whether the subject has ovarian cancer or a pre-disposition to ovarian cancer; and (d) optionally recommending treatment for the ovarian cancer or pre-ovarian cancer condition.

#### Imaging Methods

Antibodies specific for each of a plurality of kallikrein polypeptides, and optionally CA125, may also be used in imaging methodologies in the management of ovarian cancer. The invention provides a method for imaging tumors associated with a plurality of kallikrein polypeptides, and optionally CA125.

In an embodiment the method is an *in vivo* method and a subject or patient is administered imaging agents that carry imaging labels and are capable of targeting or binding to each of a plurality of kallikrein polypeptides, and optionally CA125. In the method each imaging agent is labeled so that it can be distinguished during the imaging. The imaging agents are allowed to incubate *in vivo* and bind to the plurality of kallikrein polypeptides, and optionally CA125, associated with ovarian tumors. The presence of label is localized to the ovarian cancer, and the localized label is detected using imaging devices known to those skilled in the art.

The imaging agents may be antibodies or chemical entities that recognize the plurality of kallikrein polypeptides, and optionally CA125. In an aspect of the invention an imaging agent is a polyclonal antibody or monoclonal antibody, or fragments thereof, or constructs thereof including but not limited to, single chain antibodies, bifunctional antibodies, molecular recognition units, and peptides or entities that mimic peptides. The antibodies specific for kallikrein polypeptides and CA125 used in the methods of the invention may be obtained from scientific or commercial sources, or isolated native or recombinant kallikrein and CA125 polypeptides may be utilized to prepare antibodies etc as described herein.

An imaging agent may be a peptide that mimics the epitope for an antibody specific for kallikrein polypeptide or CA125 and binds to kallikrein polypeptide or CA125. The peptide may be produced on a commercial synthesizer using conventional solid phase chemistry. By way of example, a peptide may be prepared that includes either tyrosine, lysine, or phenylalanine to which N<sub>2</sub>S<sub>2</sub> chelate is complexed (See U.S. Patent No. 4,897,255). The anti-kallikrein peptide conjugate is then combined with a radiolabel (e.g. sodium <sup>99m</sup>Tc pertechnetate or sodium <sup>188</sup>Re perrhenate) and it may be used to locate a tumor producing a plurality of kallikrein polypeptides, and optionally CA125.

Imaging agents carry labels to image the plurality of kallikrein polypeptides and CA125. Agents may be labelled for use in radionuclide imaging. In particular, agents may be directly or indirectly labelled

with a radioisotope. Examples of radioisotopes that may be used in the present invention are the following:

<sup>27</sup>Ac, <sup>211</sup>At, <sup>128</sup>Ba, <sup>131</sup>Ba, <sup>7</sup>Be, <sup>204</sup>Bi, <sup>205</sup>Bi, <sup>206</sup>Bi, <sup>76</sup>Br, <sup>77</sup>Br, <sup>82</sup>Br, <sup>109</sup>Cd, <sup>47</sup>Ca, <sup>11</sup>C, <sup>14</sup>C, <sup>36</sup>Cl, <sup>48</sup>Cr, <sup>51</sup>Cr, <sup>62</sup>Cu,

<sup>64</sup>Cu, <sup>67</sup>Cu, <sup>165</sup>Dy, <sup>155</sup>Eu, <sup>18</sup>F, <sup>153</sup>Gd, <sup>66</sup>Ga, <sup>67</sup>Ga, <sup>68</sup>Ga, <sup>72</sup>Ga, <sup>198</sup>Au, <sup>3</sup>H, <sup>166</sup>Ho, <sup>111</sup>In, <sup>113m</sup>In, <sup>115m</sup>In, <sup>123</sup>I, <sup>125</sup>I, <sup>131</sup>I,

<sup>189</sup>Ir, <sup>191m</sup>Ir, <sup>192</sup>Ir, <sup>194</sup>Ir, <sup>52</sup>Fe, <sup>55</sup>Fe, <sup>59</sup>Fe, <sup>177</sup>Lu, <sup>15</sup>O, <sup>191m-191</sup>Os, <sup>109</sup>Pd, <sup>32</sup>P, <sup>33</sup>P, <sup>42</sup>K, <sup>226</sup>Ra, <sup>186</sup>Re, <sup>188</sup>Re, <sup>82m</sup>Rb,

5 <sup>153</sup>Sm, <sup>46</sup>Sc, <sup>47</sup>Sc, <sup>72</sup>Se, <sup>75</sup>Se, <sup>105</sup>Ag, <sup>22</sup>Na, <sup>24</sup>Na, <sup>89</sup>Sr, <sup>35</sup>S, <sup>38</sup>S, <sup>177</sup>Ta, <sup>96</sup>Tc, <sup>99m</sup>Tc, <sup>201</sup>Tl, <sup>202</sup>Tl, <sup>113</sup>Sn, <sup>117m</sup>Sn, <sup>121</sup>Sn, <sup>166</sup>Yb, <sup>169</sup>Yb, <sup>175</sup>Yb, <sup>88</sup>Y, <sup>62</sup>Zn and <sup>65</sup>Zn. Preferably the radioisotope is <sup>131</sup>I, <sup>123</sup>I, <sup>125</sup>I, <sup>111</sup>I, <sup>99m</sup>Tc, <sup>90</sup>Y, <sup>186</sup>Re, <sup>188</sup>Re, <sup>32</sup>P, <sup>153</sup>Sm, <sup>67</sup>Ga, <sup>201</sup>Tl, <sup>77</sup>Br, or <sup>18</sup>F, and it is imaged with a photoscanning device.

Procedures for labeling biological agents with the radioactive isotopes are generally known in the art. U.S. Pat. No. 4,302,438 describes tritium labeling procedures. Procedures for iodinating, tritium labeling, and <sup>35</sup>S labeling especially adapted for murine monoclonal antibodies are described by Goding, J. W. (supra, pp 124-126) and the references cited therein. Other procedures for iodinating biological agents, such as antibodies, binding portions thereof, probes, or ligands, are described in the scientific literature (see Hunter and Greenwood, Nature 144:945 (1962), David et al., Biochemistry 13:1014-1021 (1974), and U.S. Pat. Nos. 3,867,517 and 4,376,110). Iodinating procedures for agents are described by Greenwood, F. et al., Biochem. 10: 89:114-123 (1963); Marchalonis, J., Biochem. J. 113:299-305 (1969); and Morrison, M. et al., Immunochemistry, 289-297 (1971). <sup>99m</sup>Tc-labeling procedures are described by Rhodes, B. et al. in Burchiel, S. et al. (eds.), Tumor Imaging: The Radioimmunochemical Detection of Cancer, New York: Masson 111-123 (1982) and the references cited therein. Labelling of antibodies or fragments with technetium-99m are also described for example in U.S. Pat. No. 5,317,091, U.S. Pat. No. 4,478,815, U.S. Pat. No. 4,478,818, U.S. Pat. No. 4,472,371, U.S. Pat. No. Re 32,417, and U.S. Pat. No. 4,311,688. Procedures suitable for <sup>111</sup>In-labeling biological agents are described by Hnatowich, D. J. et al., J. Immunol. Methods, 65:147-157 (1983), Hnatowich, D. et al., J. Applied Radiation, 35:554-557 (1984), and Buckley, R. G. et al., F.E.B.S. 166:202-204 (1984).

An imaging agent may also be labeled with a paramagnetic isotope for purposes of an *in vivo* method of the invention. Examples of elements that are useful in magnetic resonance imaging include gadolinium, terbium, tin, iron, or isotopes thereof. (See, for example, Schaefer et al., (1989) JACC 14, 472-480; Shreve et al., (1986) Magn. Reson. Med. 3, 336-340; Wolf, G L., (1984) Physiol. Chem. Phys. Med. NMR 16, 93-95; Wesbey et al., (1984) Physiol. Chem. Phys. Med. NMR 16, 145-155; Runge et al., (1984) Invest. Radiol. 19, 408-415 for discussions on *in vivo* nuclear magnetic resonance imaging.)

30 In the case of radiolabeled agents, the agents may be administered to the patient, localized to the tumor having a plurality of kallikrein polypeptides, and optionally CA125, with which the agents bind, and detected or "imaged" *in vivo* using known techniques such as radionuclear scanning using, for example, a gamma camera or emission tomography. [See for example, A. R. Bradwell et al., "Developments in Antibody Imaging", Monoclonal Antibodies for Cancer Detection and Therapy, R. W. Baldwin et al., (eds.), 35 pp. 65-85 (Academic Press 1985)]. A positron emission transaxial tomography scanner, such as designated Pet VI located at Brookhaven National Laboratory, can also be used where the radiolabel emits positrons (e.g., <sup>11</sup>C, <sup>18</sup>F, <sup>15</sup>O, and <sup>13</sup>N).

Whole body imaging techniques using radioisotope labeled agents can be used for locating both primary tumors and tumors which have metastasized. Antibodies specific for a plurality of kallikrein

polypeptides, and optionally CA125, or fragments thereof having the same epitope specificity, are bound to a suitable radioisotope, or a combination thereof, and administered parenterally. For ovarian cancer, administration preferably is intravenous. The bio-distribution of the labels can be monitored by scintigraphy, and accumulations of the labels can be related to the presence of ovarian cancer cells. Whole body imaging techniques are described in U.S. Pat. Nos. 4,036,945 and 4,311,688. Other examples of agents useful for diagnosis and therapeutic use that can be coupled to antibodies and antibody fragments include metallothionein and fragments (see, U.S. Pat. No. 4,732,864). These agents are useful in diagnosis, staging and visualization of cancer, in particular ovarian cancer, so that surgical and/or radiation treatment protocols can be used more efficiently.

10      **Screening Methods**

The invention also contemplates methods for evaluating test agents or compounds for their ability to inhibit ovarian cancer or potentially contribute to ovarian cancer. Test agents and compounds include but are not limited to peptides such as soluble peptides including Ig-tailed fusion peptides, members of random peptide libraries and combinatorial chemistry-derived molecular libraries made of D- and/or L-configuration amino acids, phosphopeptides (including members of random or partially degenerate, directed phosphopeptide libraries), antibodies [e.g. polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, single chain antibodies, fragments, (e.g. Fab, F(ab)2, and Fab expression library fragments, and epitope-binding fragments thereof)], nucleic acids (e.g. antisense, interference RNA) and small organic or inorganic molecules. The agents or compounds may be endogenous physiological compounds or natural or synthetic compounds.

15      The invention also provides a method for assessing the potential efficacy of a test agent for inhibiting ovarian cancer in a patient, the method comprising comparing:

- (a) levels of a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in a first sample obtained from a patient and exposed to the test agent, wherein the markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11, and
- (b) levels of the plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in a second sample obtained from the patient, wherein the sample is not exposed to the test agent, wherein a significant difference in the levels of expression of a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in the first sample, relative to the second sample, is an indication that the test agent is potentially efficacious for inhibiting ovarian cancer in the patient.

20      The first and second samples may be portions of a single sample obtained from a patient or portions of pooled samples obtained from a patient.

25      In an aspect, the invention provides a method of selecting an agent for inhibiting ovarian cancer in a patient comprising:

- (a) obtaining a sample comprising cancer cells from the patient;
- (b) separately maintaining aliquots of the sample in the presence of a plurality of test agents;
- (c) comparing a plurality of kallikrein markers, optionally CA125, and/or polynucleotides

- 26 -

encoding same, in each of the aliquots, wherein the markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and

- 5 (d) selecting one of the test agents which alters the levels of the kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in the aliquot containing that test agent, relative to other test agents.

Still another aspect of the present invention provides a method of conducting a drug discovery business comprising:

- 10 (a) providing one or more methods or assay systems for identifying agents that inhibit ovarian cancer in a patient;
- (b) conducting therapeutic profiling of agents identified in step (a), or further analogs thereof, for efficacy and toxicity in animals; and
- (c) formulating a pharmaceutical preparation including one or more agents identified in step (b) as having an acceptable therapeutic profile.

15 In certain embodiments, the subject method can also include a step of establishing a distribution system for distributing the pharmaceutical preparation for sale, and may optionally include establishing a sales group for marketing the pharmaceutical preparation.

The invention also contemplates a method of assessing the ovarian carcinogenic potential of a test compound comprising:

- 20 (a) maintaining separate aliquots of ovarian cells in the presence and absence of the test compound; and
- (b) comparing a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in each of the aliquots, wherein the markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11.

25 A significant difference between the levels of the markers in the aliquot maintained in the presence of (or exposed to) the test compound relative to the aliquot maintained in the absence of the test compound, indicates that the test compound possesses ovarian carcinogenic potential.

#### Kits

30 The methods described herein may be performed by utilizing pre-packaged diagnostic kits comprising at least a plurality of kallikrein nucleic acids or binding agents (e.g. antibodies) or CA125 nucleic acids or binding agents described herein, which may be conveniently used, e.g., in clinical settings, to screen and diagnose patients, and to screen and identify those individuals afflicted with or exhibiting a predisposition to ovarian cancer.

35 Thus, the invention also contemplates kits for carrying out the methods of the invention. Such kits typically comprise two or more components required for performing a diagnostic assay. Components include but are not limited to compounds, reagents, containers, and/or equipment.

In an embodiment, a container with a kit comprises binding agents as described herein. By way of example, the kit may contain antibodies specific for a plurality of kallikrein polypeptides, and optionally

CA125, antibodies against the antibodies labelled with enzymes; and substrates for the enzymes. The kit may also contain microtiter plate wells, standards, assay diluent, wash buffer, adhesive plate covers, and/or instructions for carrying out a method of the invention using the kit.

In an aspect of the invention, the kit includes antibodies or antibody fragments which bind specifically to epitopes of each of a plurality of kallikrein polypeptides, and optionally CA125, and means for detecting binding of the antibodies to epitopes associated with tumor cells, either as concentrates (including lyophilized compositions), which may be further diluted prior to use or at the concentration of use, where the vials may include one or more dosages. Where the kits are intended for *in vivo* use, single dosages may be provided in sterilized containers, having the desired amount and concentration of agents. Containers that provide a formulation for direct use, usually do not require other reagents, as for example, where the kit contains radiolabelled antibody preparations for *in vivo* imaging.

A kit may be designed to detect the level of polynucleotides encoding kallikrein polypeptides, and optionally CA125 polynucleotides, in a sample. Such kits generally comprise oligonucleotide probes or primers, as described herein, that hybridize to a plurality of polynucleotides encoding kallikrein polypeptides and optionally CA125. Such oligonucleotides may be used, for example, within a PCR or hybridization procedure. Additional components that may be present within the kits include second oligonucleotides and/or diagnostic reagents to facilitate detection of a plurality polynucleotides encoding kallikrein polypeptides, and optionally CA125 polynucleotides.

The reagents suitable for applying the screening methods of the invention to evaluate compounds may be packaged into convenient kits described herein providing the necessary materials packaged into suitable containers.

#### Applications

Kallikrein polypeptides (in particular, kallikrein 5, 6, 10 and 11), optionally in combination with CA125, are targets for ovarian cancer immunotherapy. Such immunotherapeutic methods include the use of antibody therapy, *in vivo* vaccines, and *ex vivo* immunotherapy approaches.

In one aspect, the invention provides antibodies specific for a plurality of kallikrein polypeptides (for example, kallikreins 5, 6, 10 and 11) and optionally CA125, that may be used systemically to treat ovarian cancer. Preferably antibodies are used that target the tumor cells but not the surrounding non-tumor cells and tissue. Thus, the invention provides a method of treating a patient susceptible to, or having a cancer that expresses a plurality of kallikrein polypeptides, and optionally CA125, comprising administering to the patient an effective amount of antibodies that bind specifically to a plurality of kallikrein polypeptides, and optionally CA125. In another aspect, the invention provides a method of inhibiting the growth of tumor cells expressing a plurality of kallikrein polypeptides, and optionally CA125, comprising administering to a patient antibodies which bind specifically to the plurality of kallikrein polypeptides, and optionally CA125, in amounts effective to inhibit growth of the tumor cells. Antibodies specific for a plurality of kallikrein polypeptides, and optionally CA125, may also be used in a method for selectively inhibiting the growth of, or killing a cell expressing a plurality of kallikrein polypeptides, and optionally CA125, comprising reacting antibody immunoconjugates or immunotoxins with the cell in an amount sufficient to inhibit the growth of, or kill the cell.

By way of example, unconjugated antibodies specific for a plurality of kallikrein polypeptides, and optionally CA125, may be introduced into a patient such that the antibodies bind to cancer cells expressing a plurality of kallikrein polypeptides, and optionally CA125, and mediate growth inhibition of such cells (including the destruction thereof), and the tumor, by mechanisms which may include complement-mediated

5 cytolysis, antibody-dependent cellular cytotoxicity, altering the physiologic function of a plurality of kallikrein polypeptides, and optionally CA125, and/or the inhibition of ligand binding or signal transduction pathways. In addition to unconjugated antibodies, antibodies specific for a plurality of kallikrein polypeptides, and optionally CA125, conjugated to therapeutic agents (e.g. immunoconjugates) may also be used therapeutically to deliver the agents directly to tumor cells expressing a plurality of kallikrein  
10 polypeptides, and optionally CA125, and thereby destroy the tumor. Examples of such agents include abrin, ricin A, *Pseudomonas* exotoxin, or diphtheria toxin, proteins such as tumor necrosis factor, alpha-interferon, beta-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, and biological response modifiers such as lymphokines, interleukin-1, interleukin-2, interleukin-6, granulocyte macrophage colony stimulating factor, granulocyte colony stimulating factor, or other growth factors.

15 Cancer immunotherapy using antibodies specific for a plurality of kallikrein polypeptides, and optionally CA125, may utilize the various approaches that have been successfully employed for cancers, including but not limited to colon cancer (Arlen et al., 1998, Crit Rev Immunol 18: 133-138), multiple myeloma (Ozaki et al., 1997, Blood 90: 3179-3186; Tsunenati et al., 1997, Blood 90: 2437-2444), gastric cancer (Kasprzyk et al., 1992, Cancer Res 52: 2771-2776), B-cell lymphoma (Funakoshi et al., 1996, J  
20 Immunther Emphasis Tumor Immunol 19: 93-101), leukemia (Zhong et al., 1996, Leuk Res 20: 581-589), colorectal cancer (Moun et al., 1994, Cancer Res 54: 6160-6166); Velders et al., 1995, Cancer Res 55: 4398-4403), and breast cancer (Shepard et al., 1991, J Clin Immunol 11: 117-127).

In the practice of a method of the invention, antibodies specific for a plurality of kallikrein polypeptides, optionally in combination with antibodies specific for CA125, capable of inhibiting the growth  
25 of cancer cells expressing a plurality of kallikrein polypeptides, and optionally CA125, are administered in a therapeutically effective amount to cancer patients whose tumors express or overexpress a plurality of kallikrein polypeptides, and optionally CA125. The invention may provide a specific, effective and long-needed treatment for ovarian cancer. The antibody therapy methods of the invention may be combined with other therapies including chemotherapy and radiation.

30 Patients may be evaluated for the presence and levels of a plurality of kallikrein polypeptides, and optionally CA125, expression and overexpression in tumors, preferably using immunohistochemical assessments of tumor tissue, quantitative imaging as described herein, or other techniques capable of reliably indicating the presence and degree of expression of a plurality of kallikrein polypeptides, and optionally CA125. Immunohistochemical analysis of tumor biopsies or surgical specimens may be employed for this  
35 purpose.

Antibodies specific for a plurality of kallikrein polypeptides and CA125 useful in treating cancer include those that are capable of initiating a potent immune response against the tumor and those that are capable of direct cytotoxicity. In this regard, the antibodies may elicit tumor cell lysis by either complement-mediated or antibody-dependent cell cytotoxicity (ADCC) mechanisms, both of which require an intact Fc

portion of the immunoglobulin molecule for interaction with effector cell Fc receptor sites or complement proteins. In addition, antibodies specific for a plurality of kallikrein polypeptides and CA125 that exert a direct biological effect on tumor growth are useful in the practice of the invention. Such antibodies may not require the complete immunoglobulin to exert the effect. Potential mechanisms by which such directly cytotoxic antibodies may act include inhibition of cell growth, modulation of cellular differentiation, modulation of tumor angiogenesis factor profiles, and the induction of apoptosis. The mechanism by which a particular antibody exerts an anti-tumor effect may be evaluated using any number of *in vitro* assays designed to determine ADCC, antibody-dependent macrophage-mediated cytotoxicity (ADMMC), complement-mediated cell lysis, and others known in the art.

10 The anti-tumor activity of a combination of antibodies specific for a plurality of kallikrein polypeptides and optionally CA125, may be evaluated *in vivo* using a suitable animal model. Xenogenic cancer models, wherein human cancer explants or passaged xenograft tissues are introduced into immune compromised animals, such as nude or SCID mice, may be employed.

15 The methods of the invention contemplate the administration of combinations, or "cocktails" of different individual antibodies recognizing epitopes of a plurality of kallikrein polypeptides, and optionally CA125. Such cocktails may have certain advantages inasmuch as they contain antibodies that bind to different epitopes and/or exploit different effector mechanisms or combine directly cytotoxic antibodies with antibodies that rely on immune effector functionality. Such antibodies in combination may exhibit synergistic therapeutic effects. In addition, the administration of the antibodies may be combined with other 20 therapeutic agents, including but not limited to chemotherapeutic agents, androgen-blockers, and immune modulators (e.g., IL2, GM-CSF). The antibodies may be administered in their "naked" or unconjugated form, or may have therapeutic agents conjugated to them.

25 The antibodies specific for a plurality of kallikrein polypeptides and optionally CA125, used in the practice of the method of the invention may be formulated into pharmaceutical compositions comprising a carrier suitable for the desired delivery method. Suitable carriers include any material which when combined with the antibodies retains the anti-tumor function of the antibodies and is non-reactive with the subject's immune systems. Examples include any of a number of standard pharmaceutical carriers such as sterile phosphate buffered saline solutions, bacteriostatic water, and the like (see, generally, Remington's Pharmaceutical Sciences 16.sup.th Edition, A. Osal, Ed., 1980).

30 Antibody formulations may be administered via any route capable of delivering the antibodies to the tumor site. Routes of administration include, but are not limited to, intravenous, intraperitoneal, intramuscular, intratumor, intradermal, and the like. Preferably, the route of administration is by intravenous injection. Antibody preparations may be lyophilized and stored as a sterile powder, preferably under vacuum, and then reconstituted in bacteriostatic water containing, for example, benzyl alcohol preservative, 35 or in sterile water prior to injection.

Treatment will generally involve the repeated administration of the antibody preparation via an acceptable route of administration such as intravenous injection (IV), at an effective dose. Dosages will depend upon various factors generally appreciated by those of skill in the art, including the type of cancer and the severity, grade, or stage of the cancer, the binding affinity and half life of the antibodies used, the

- 30 -

degree of expression of a plurality of kallikrein polypeptides, and optionally CA125, in the patient, the extent of circulating kallikrein polypeptide antigens, and optionally CA125 antigens, the desired steady-state antibody concentration level, frequency of treatment, and the influence of any chemotherapeutic agents used in combination with a treatment method of the invention.

5 Daily doses may range from about 0.1 to 100 mg/kg. Doses in the range of 10-500 mg antibodies per week may be effective and well tolerated, although even higher weekly doses may be appropriate and/or well tolerated. A determining factor in defining the appropriate dose is the amount of antibodies necessary to be therapeutically effective in a particular context. Repeated administrations may be required to achieve tumor inhibition or regression. Direct administration of antibodies specific for a plurality of kallikrein  
10 polypeptides and optionally CA125 is also possible and may have advantages in certain situations.

Patients may be evaluated for a plurality of kallikrein polypeptides and optionally CA125, preferably in serum, in order to assist in the determination of the most effective dosing regimen and related factors. The assay methods described herein, or similar assays, may be used for quantitating circulating kallikrein polypeptide and optionally CA125 levels in patients prior to treatment. Such assays may also be  
15 used for monitoring throughout therapy, and may be useful to gauge therapeutic success in combination with evaluating other parameters, such as serum kallikrein polypeptides, and optionally CA125, levels.

The invention further provides vaccines formulated to contain a plurality of kallikrein polypeptides, and optionally CA125, or fragments thereof. The use in anti-cancer therapy of tumor antigens in a vaccine for generating humoral and cell-mediated immunity is well known and, for example, has been employed in  
20 prostate cancer using human PSMA and rodent PAP immunogens (Hodge et al., 1995, Int. J. Cancer 63: 231-237; Fong et al., 1997, J. Immunol. 159: 3113-3117). These methods can be practiced by employing a plurality of kallikrein polypeptides, and optionally CA125, or fragments thereof, or nucleic acids and recombinant vectors capable of expressing and appropriately presenting the kallikrein and optionally CA125, immunogens.

25 By way of example, viral gene delivery systems may be used to deliver nucleic acids encoding a plurality of kallikrein polypeptides, and optionally CA125. Various viral gene delivery systems which can be used in the practice of this aspect of the invention include, but are not limited to, vaccinia, fowlpox, canarypox, adenovirus, influenza, poliovirus, adeno-associated virus, lentivirus, and sindbis virus (Restifo, 1996, Curr. Opin. Immunol. 8: 658-663). Non-viral delivery systems may also be employed by using naked  
30 DNA encoding a plurality of kallikrein polypeptides, and optionally CA125, or fragments thereof introduced into the patient (e.g., intramuscularly) to induce an anti-tumor response.

Various *ex vivo* strategies may also be employed. One approach involves the use of cells to present kallikrein and optionally CA125 antigens to a patient's immune system. For example, autologous dendritic cells which express MHC class I and II, may be pulsed with a plurality of kallikrein polypeptides, and optionally CA125, or peptides thereof that are capable of binding to MHC molecules, to thereby stimulate ovarian cancer patients' immune systems (See, for example, Tjoa et al., 1996, Prostate 28: 65-69; Murphy et al., 1996, Prostate 29: 371-380).

Anti-idiotypic antibodies specific for a plurality of kallikrein polypeptides, and optionally CA125, can also be used in anti-cancer therapy as a vaccine for inducing an immune response to cells expressing the

polypeptides. The generation of anti-idiotypic antibodies is well known in the art and can readily be adapted to generate anti-idiotypic antibodies that mimic an epitope on a kallikrein polypeptide or CA125 (see, for example, Wagner et al., 1997, *Hybridoma* 16: 33-40; Foon et al., 1995, *J Clin Invest* 96: 334-342; Herlyn et al., 1996, *Cancer Immunol Immunother* 43: 65-76). Such antibodies can be used in anti-idiotypic therapy as presently practiced with other anti-idiotypic antibodies directed against tumor antigens.

Genetic immunization methods may be utilized to generate prophylactic or therapeutic humoral and cellular immune responses directed against cancer cells expressing a plurality of kallikrein polypeptides, and optionally CA125. Constructs comprising DNA encoding kallikrein and optionally CA125 polypeptides/immunogens and appropriate regulatory sequences may be injected directly into muscle or skin of an individual, such that the cells of the muscle or skin take-up the construct and express the encoded kallikrein or CA125 polypeptides/immunogens. The polypeptides/immunogens may be expressed as cell surface proteins or be secreted. Expression of the polypeptides/immunogens results in the generation of prophylactic or therapeutic humoral and cellular immunity against the cancer. Various prophylactic and therapeutic genetic immunization techniques known in the art may be used.

The invention further provides methods for inhibiting cellular activity (e.g., cell proliferation, activation, or propagation) of a cell expressing a plurality of kallikrein polypeptides, and optionally CA125. This method comprises reacting immunoconjugates of the invention (e.g., a heterogeneous or homogenous mixture) with the cell so that the kallikrein polypeptides, and optionally CA125, form complexes with the immunoconjugates. A subject with a neoplastic or preneoplastic condition can be treated when the inhibition of cellular activity results in cell death.

In another aspect, the invention provides methods for selectively inhibiting a cell expressing a plurality of kallikrein polypeptides, and optionally CA125, by reacting a combination of immunoconjugates of the invention with the cell in an amount sufficient to inhibit the cell. Amounts include those that are sufficient to kill the cell or sufficient to inhibit cell growth or proliferation.

Vectors derived from retroviruses, adenovirus, herpes or vaccinia viruses, or from various bacterial plasmids, may be used to deliver nucleic acids encoding a plurality of kallikrein polypeptides, and optionally CA125, to a targeted organ, tissue, or cell population. Methods well known to those skilled in the art may be used to construct recombinant vectors that will express antisense nucleic acid molecules for kallikrein polypeptides and CA125. (See, for example, the techniques described in Sambrook et al (supra) and Ausubel et al (supra)).

Genes encoding a plurality of kallikrein polypeptides, and optionally CA125, can be turned off by transfecting a cell or tissue with vectors that express high levels of a desired kallikrein or CA125 polypeptide-encoding fragments. Such constructs can inundate cells with untranslatable sense or antisense sequences. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until all copies are disabled by endogenous nucleases.

Modifications of gene expression can be obtained by designing antisense molecules, DNA, RNA or PNA, to the regulatory regions of genes encoding kallikrein polypeptides, and optionally CA125, i.e., the promoters, enhancers, and introns. Preferably, oligonucleotides are derived from the transcription initiation site, e.g., between -10 and +10 regions of the leader sequence. The antisense molecules may also be designed

so that they block translation of mRNA by preventing the transcript from binding to ribosomes. Inhibition may also be achieved using "triple helix" base-pairing methodology. Triple helix pairing compromises the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Therapeutic advances using triplex DNA were reviewed by Gee J E et al (In: Huber B E and B I Carr (1994) Molecular and Immunologic Approaches, Futura Publishing Co, Mt Kisco N.Y.).

Ribozymes are enzymatic RNA molecules that catalyze the specific cleavage of RNA. Ribozymes act by sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. The invention therefore contemplates engineered hammerhead motif ribozyme molecules that can specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding a plurality of kallikrein polypeptides, and optionally CA125.

Specific ribozyme cleavage sites within any potential RNA target may initially be identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences, GUA, GUU and GUC. Once the sites are identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be determined by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Methods for introducing vectors into cells or tissues include those methods discussed herein and which are suitable for *in vivo*, *in vitro* and *ex vivo* therapy. For *ex vivo* therapy, vectors may be introduced into stem cells obtained from a patient and clonally propagated for autologous transplant into the same patient (See U.S. Pat. Nos. 5,399,493 and 5,437,994). Delivery by transfection and by liposome are well known in the art.

Kallikrein polypeptides, optionally CA125 polypeptide, and/or polynucleotides encoding the polypeptides, and fragments thereof, antibodies and/or agents identified using a method of the invention, or combinations thereof, may be used in the treatment of ovarian cancer or diseases, conditions or syndromes associated with ovarian cancer, in a subject. A combination of kallikrein polypeptides and/or polynucleotides encoding the kallikreins (e.g. kallikreins 7 and 8) and inhibitors (antisense, antibodies, or agents) of other kallikreins (e.g. kallikreins 5, 6, 10 and 11) and/or CA125 may be used in a prognostic or therapeutic method of the invention. The polypeptides, polynucleotides, and agents may be formulated into compositions for administration to subjects suffering from ovarian cancer. Therefore, the present invention also relates to a composition comprising a plurality of kallikrein polypeptides and optionally CA125, or nucleic acids encoding the polypeptides, or a fragment thereof, or an agent identified using a method of the invention, and a pharmaceutically acceptable carrier, excipient or diluent. A method for treating or preventing ovarian cancer in a subject is also provided comprising administering to a patient in need thereof, a plurality of kallikrein polypeptides and optionally CA125, or nucleic acids encoding the polypeptides, an agent identified in accordance with a method of the invention, and/or a composition of the invention.

The active substance may be administered in a convenient manner such as by injection (subcutaneous, intravenous, etc.), oral administration, inhalation, transdermal application, or rectal administration. Depending on the route of administration, the active substance may be coated in a material to

protect the substance from the action of enzymes, acids and other natural conditions that may inactivate the substance.

The compositions described herein can be prepared by per se known methods for the preparation of pharmaceutically acceptable compositions which can be administered to subjects, such that an effective quantity of the active substance is combined in a mixture with a pharmaceutically acceptable vehicle. Suitable vehicles are described, for example, in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA 1985). On this basis, the compositions include, albeit not exclusively, solutions of the active substances in association with one or more pharmaceutically acceptable vehicles or diluents, and contained in buffered solutions with a suitable pH and iso-osmotic with the physiological fluids.

The compositions are indicated as therapeutic agents either alone or in conjunction with other therapeutic agents or other forms of treatment (e.g. chemotherapy or radiotherapy). The compositions of the invention may be administered concurrently, separately, or sequentially with other therapeutic agents or therapies.

15 The following non-limiting examples are illustrative of the present invention:

**Example 1**

To investigate the additional discriminatory value of the kallikreins to CA125 a logistic regression model was developed. Included in the study were serum samples from 39 ovarian cancer patients and 194 non-cancer females. The age of the patients was as follows: median = 59, range 32-82. The age of the controls was as follows: median = 46; range = 22-77. The model was adjusted for the following variables: f(x) = -0.29 hK5\* +0.12\* hK6-0.65\*hK7-0.6\*hK8+1.09\*hK10+0.98\*hK11+0.057\*CA125-0.62. For these data, the crude odds ratio and the 95% confidence interval were found to be 2.71 and 1.91-3.84 (p<0.001). The log likelihood scores for this multivariate logistic regression model, which incorporated the combined variables for each patient was calculated. From these data, by picking different thresholds for the regression function values, a ROC curve was devised which shows the added value of using kallikreins and CA125 together in a multivariate function. (AUC, 0.99; 95%CI, 0.96-1.00). (See Figure 8.) Statistically significant correlations between age and other studied variables were not observed.

**Example 2**

30 Statistically significant differences in serum kallikrein concentration was found between patient and control subjects for kallikreins hK5 (p<0.0001), hK7 (p=0.007), hK8 (p=0.005), hK10 (p=0.0003) and CA125 (p<0.0001) by the Mann-Whitney test. The diagnostic sensitivity (SENS) and specificity (SPEC) for each one of these markers were as follows (SENS/SPEC; both as %): 31/95 (hK5); 62/71 (hK7); 62/70 (hK10); 54/54 (hK11); 89/94 (CA125). When these data were combined in a logistic regression model, kallikreins 5 and 10 did not contribute to a great extent to the sensitivity and specificity of CA125. The area 35 under the curve of CA125 alone (93%) improved by a further 1% when adding hK6, by 2% when adding hK11, 3% when adding hK7 and 5% when adding hK8. The combination of CA125 and hK8 resulted in an AUC of 98%.

Below is a summary of each marker and its ability to separate the cases and controls.

- hK5: high values associated with cancer  
 test+ is hK5>0.10, test- is hK5<=0.10  
 sensitivity=31%, specificity=95%,  
 AUC=.62, p(AUC)=.02
- 5 Wilcoxon rank sum test has p<.0001.  
 Of the 233 persons analyzed, 207 have value zero for hK5 (27 cases, 180 controls).  
 Possible good marker
- hK6: high values associated with cancer  
 10 test+ is hK6>6.3, test- is hK6<=6.3  
 sensitivity=69%, specificity=40%,  
 AUC=.50, p(AUC)=1.00  
 Wilcoxon rank sum test has p=.91.  
 Not a good marker
- 15 hK7: low values associated with cancer  
 test+ is hK7<2.05, test- is hK7>=2.05  
 sensitivity=62%, specificity=71%,  
 AUC=.64, p(AUC)=.006
- 20 Wilcoxon rank sum test has p=.007.  
 Possible good marker
- hK8: low values associated with cancer  
 test+ is hK8<13.0, test- is hK8>=13.0  
 25 sensitivity=72%, specificity=42%,  
 AUC=.64, p(AUC)=.006  
 Wilcoxon rank sum test has p=.005  
 Possible good marker
- 30 hK10: high values associated with cancer  
 test+ is hK10>1.42, test- is hK10<=1.42  
 sensitivity=62%, specificity=70%,  
 AUC=.68, p(AUC)=.0004  
 Wilcoxon rank sum test has p=.0003.
- 35 Best single kallikrein marker
- hK11: high values associated with cancer  
 test+ is hK11>0.14, test- is hK11<=0.14  
 40 sensitivity=54%, specificity=54%,  
 AUC=.58, p(AUC)=.12  
 Wilcoxon rank sum test has p=.11.  
 Not a good marker
- CA125: high values associated with cancer  
 45 test+ is Ca125>34, test- is Ca125<=34  
 sensitivity=89%, specificity=94%,  
 AUC=.933, p(AUC)<.0001  
 Wilcoxon rank sum test has p<.0001.  
 Good marker
- 50 After some further multivariate analysis of only the kallikrein markers, the combination of hK 7, 8, 10 and 11 was a preferred set. This combination was arrived at by looking at the incremental AUC as markers were combined. Below is a summary of all the models tried:
- 55 hK10 alone, AUC=.68  
 hK10+hK7: AUC=.88

- 35 -

hK10+hK7+hK8: AUC=.90  
 hK10+hK7+hK8+hK11: AUC=.925  
 Multivariate model of hK7, hK8, hK10, hK11, call it hK7\_8\_10\_11

- 5    hK7\_8\_110\_11:  
 Calculate SA=2.00-1.49(hK7)-.34(hK8)+1.16(hK10)+3.50(hK11)  
 high values associated with cancer  
 test+ is SA>-1.15, test- is SA<=-1.15  
 sensitivity=87%, specificity=89%,  
 10    AUC=.93, p(AUC)<.0001  
 Wilcoxon rank sum test has p<.0001.  
 Good marker

The hK marker that added the most to CA125 was also investigated.

- 15    CA125 alone, AUC=.933  
 CA125+hK8: AUC=.978  
 Multivariate model of Ca125, hK8, call it Ca125\_hK8

- 20    Ca125\_hK8:  
 SC=-1.71+.086(Ca125)-.47(hK8).  
 high values associated with cancer  
 test+ is SC>-2.52, test- is SC<-2.52  
 sensitivity=97%, specificity=90%,  
 AUC=.978, p(AUC)<.0001  
 25    Wilcoxon rank sum test has p<.0001.  
 Good marker

Below is a summary of the above analyses:

- a)    The preferred kallikrein marker alone is hK10, AUC=.68
- 30    b)    CA125 has an AUC of .933
- c)    The preferred combination of kallikrein markers increases the AUC up to .925, which is close to the CA125 AUC of .933
- d)    Adding a kallikrein marker to CA125 can increase the AUC up to .978

- 35    How does CA125 alone compare with the multivariate kallikrein model hK7\_8\_10\_11?  
 (based on 39 cases and 186 controls evaluated with CA125)

|    |                 | Sensitivity | Specificity | misclassification                     |
|----|-----------------|-------------|-------------|---------------------------------------|
| 40 | CA125           | 90%         | 94%         | 12FP, 4FN, total 16 pts misclassified |
|    | hK7_8_10_11     | 85%         | 89%         | 31FP, 4FN, total 35 pts misclassified |
|    | both positive   | 77%         | 100%        | 0FP, 9FN, total 9 pts misclassified   |
|    | either positive | 97%         | 82%         | 33FP, 1FN, total 34 pts misclassified |

- 45    How does CA125 alone compare with the multivariate model of CA125 plus hK8?  
 (based on 39 cases and 186 controls evaluated with CA125)

|    |           | Sensitivity | Specificity | misclassification                     |
|----|-----------|-------------|-------------|---------------------------------------|
| 45 | CA125     | 90%         | 94%         | 12FP, 4FN, total 16 pts misclassified |
|    | CA125_hK8 | 95%         | 91%         | 17FP, 2FN, total 19 pts misclassified |

Kallikrein markers approach CA125 in terms of AUC and sensitivity, but their specificity is not as high. Adding hK8 to CA125 improves sensitivity but specificity is lower than CA125 alone.

Summary

- 5           a)     The best kallikrein marker alone is hK10, area under the ROC curve (AUC) = .68.  
              b)     CA125 has an AUC of .933. Adding a single kallikrein marker to CA125 can get the AUC up to .978. Adding hK8 to CA125 improves sensitivity but specificity is lower compared with CA125 alone.  
              c)     The best combination of kallikrein markers gets the AUC up to .925, which is close to the  
10           CA125 AUC of .933. Kallikrein markers approach CA125 in terms of AUC and sensitivity, but their specificity is lower.

15           The present invention is not to be limited in scope by the specific embodiments described herein, since such embodiments are intended as but single illustrations of one aspect of the invention and any functionally equivalent embodiments are within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

20           All publications, patents and patent applications referred to herein are incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety. All publications, patents and patent applications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing the domains, cell lines, vectors, methodologies etc. which are reported therein  
25           which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

30           It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to "a host cell" includes a plurality of such host cells, reference to the "antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Below full citations are set out for the references referred to in the specification.

- 37 -

Table 1

| Kallikrein Polypeptide | Kallikrein Nucleic Acid Designation | GenBank Accession No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kallikrein 5           | KLK5                                | AAD26429, AF135028, AF168768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Kallikrein 6           | KLK6                                | AAB66483, AF013988 (CDS 174..881), AF149289 (CDS join 3567..3606, 4346..4502, 8122..8369, 9791..9927, 11805..11957) U62801 (CDS 246..980)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Kallikrein 7           | KLK7                                | AAC37551, L33404 (CDS 16..777), AF166330 (CDS join 3237..3309, 3722..3869, 4566..4813, 5129..5265, 7362..7517) (mRNA join(1756..1785, 3179..3309, 3722..3869, 4566..4813, 5129..5265, 7362..8265) /product="stratum corneum chymotryptic enzyme" /note="alternatively spliced" ; mRNA join (1756..1785, 3179..3309, 3722..3869, 4566..4813, 5129..5265, 7362..7991) /note="alternatively spliced"; mRNA join (1821..1864, 3179..3309, 3722..3869, 4566..4813, 5129..5265, 7362..8265) /product="stratum corneum chymotryptic enzyme" /note="alternatively spliced"; mRNA join (1821..1864, 3179..3309, 3722..3869, 4566..4813, 5129..5265, 7362..7991) /note="alternatively spliced" |
| Kallikrein 8           | KLK8                                | BAA28673, AB009849 (CDS 35..817), AF095743 (CDS join 1035..1104, 1619..1778, 1944..2206, 4304..4437, 5974..6129, mRNA 500..670, 1027..1104, 1619..1778, 1944..2206, 4304..4437, 5974..6174), AB010780 (CDS join 1..39, 418..712, 878..>946), AF055982                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kallikrein 10          | KLK10                               | AAC14266, AF055481 (CDS join 614..701, 2455..2635, 3589..3863, 4195..4328, 4793..4945, mRNA join 48..120, 605..701, 2455..2635, 3589..3863, 4195..4328, 4793..5474), NM_002776 (CDS 220..1050)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Kallikrein 11          | KLK11                               | BAA33404, AAD47815, AB012917 (CDS 26..874), AF164623 (CDS 4224..4263, 5061..5217, 5545..5810, 6627..6763, 7158..7310) (mRNA join (2313..2398, 4189..4263, 5061..5217, 5545..5810, 6627..6763, 7158..7622)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

- 38 -

**Table 2**  
**Descriptive statistics for hk5, hk6, hk7, hk8, hk10 and hk11 serum protein levels in controls and patients with ovarian cancer**

|                           | Mean  | Standard Error | Median | Range      | p value* |
|---------------------------|-------|----------------|--------|------------|----------|
| <b><u>hk5 (ng/ml)</u></b> |       |                |        |            |          |
| Non cancer (N=194)        | 0.063 | 0.029          | 0.00   | 0.00-4.50  |          |
| Cancer (N=39)             | 0.48  | 0.18           | 0.00   | 0.00-5.70  |          |
| % Increase**              | 661%  | --             | --     | --         | <0.001   |
| 5                         |       |                |        |            |          |
| <b><u>hk6(ng/ml)</u></b>  |       |                |        |            |          |
| Non cancer (N=194)        | 6.96  | 0.18           | 6.60   | 1.60-15.30 |          |
| Cancer (N=39)             | 9.88  | 2.20           | 6.60   | 1.50-70.80 |          |
| % Increase**              | 42%   | --             | --     | --         | 0.91     |
| 5                         |       |                |        |            |          |
| <b><u>hk7(ng/ml)</u></b>  |       |                |        |            |          |
| Non cancer (N=194)        | 2.60  | 0.071          | 2.67   | 0.30-6.00  |          |
| Cancer (N=39)             | 2.49  | 0.41           | 1.80   | 0.00-10.80 |          |
| % Decrease**              | 4%    | --             | 33%    | --         | 0.007    |
| 5                         |       |                |        |            |          |
| <b><u>hk8(ng/ml)</u></b>  |       |                |        |            |          |
| Non cancer (N=194)        | 11.74 | 0.27           | 11.70  | 2.40-22.20 |          |
| Cancer (N=39)             | 11.91 | 1.88           | 6.90   | 0.00-46.20 |          |
| % Decrease**              | --    | --             | 41%    | --         | 0.005    |
| 5                         |       |                |        |            |          |
| <b><u>hK10(ng/ml)</u></b> |       |                |        |            |          |
| Non cancer (N=194)        | 1.16  | 0.051          | 1.08   | 0.00-4.20  |          |
| Cancer (N=39)             | 6.51  | 2.46           | 1.59   | 0.27-90.0  |          |
| % Increase**              | 461%  | --             | 40%    | --         | <0.001   |
| 5                         |       |                |        |            |          |
| <b><u>hK11(ng/ml)</u></b> |       |                |        |            |          |
| Non cancer (N=194)        | 0.21  | 0.018          | 0.12   | 00-1.30    |          |
| Cancer (N=39)             | 0.79  | 0.21           | 0.18   | 0.00-5.52  |          |
| % Increase**              | 276%  | --             | 50%    | --         | 0.011    |

\* Calculated by the Mann Whitney test

\*\* Calculated by assuming that value in non-cancerous tissue is 100%

- 39 -

**Table 3**  
**Correlations between the studied variables in 194 non-cancer cases**

| <b>variable</b> |                      | <b>hK5</b>   | <b>hK6</b>   | <b>hK7</b>   | <b>hK8</b>   | <b>hK10</b>  | <b>hK11</b>  | <b>CA125</b> |
|-----------------|----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| <b>hK5</b>      | <i>r<sub>s</sub></i> | 1.000        | 0.034        | -0.053       | 0.066        | 0.134        | 0.150        | 0.101        |
|                 | <i>p</i>             |              |              | <b>0.642</b> | <b>0.462</b> | <b>0.359</b> | <b>0.062</b> | <b>0.037</b> |
| <b>hK6</b>      | <i>r<sub>s</sub></i> | 0.034        | 1.000        | 0.114        | 0.298        | 0.191        | 0.120        | -0.160       |
|                 | <i>p</i>             | <b>0.642</b> |              | <b>0.115</b> | <b>0.000</b> | <b>0.008</b> | <b>0.097</b> | <b>0.029</b> |
| <b>hK7</b>      | <i>r<sub>s</sub></i> | -0.053       | 0.114        | 1.000        | 0.497        | 0.321        | 0.399        | 0.135        |
|                 | <i>p</i>             | <b>0.462</b> | <b>0.115</b> |              | <b>0.000</b> | <b>0.000</b> | <b>0.000</b> | <b>0.066</b> |
| <b>hK8</b>      | <i>r<sub>s</sub></i> | 0.066        | 0.298        | 0.497        | 1.000        | 0.263        | 0.396        | 0.048        |
|                 | <i>p</i>             | <b>0.359</b> | <b>0.000</b> | <b>0.000</b> |              | <b>0.000</b> | <b>0.000</b> | <b>0.519</b> |
| <b>hK10</b>     | <i>r<sub>s</sub></i> | 0.134        | 0.191        | 0.321        | 0.263        | 1.000        | 0.176        | 0.035        |
|                 | <i>p</i>             | <b>0.062</b> | <b>0.008</b> | <b>0.000</b> | <b>0.000</b> |              | <b>0.014</b> | <b>0.638</b> |
| <b>hK11</b>     | <i>r<sub>s</sub></i> | 0.150        | 0.120        | 0.399        | 0.396        | 0.176        | 1.000        | 0.125        |
|                 | <i>p</i>             | <b>0.037</b> | <b>0.097</b> | <b>0.000</b> | <b>0.000</b> | <b>0.014</b> |              | <b>0.090</b> |
| <b>CA125</b>    | <i>r<sub>s</sub></i> | 0.101        | -0.160       | 0.135        | 0.048        | 0.035        | 0.125        | 1.000        |
|                 | <i>p</i>             | <b>0.172</b> | <b>0.029</b> | <b>0.066</b> | <b>0.519</b> | <b>0.638</b> | <b>0.090</b> |              |

- 40 -

**Table 4**  
**Correlations between the studied variables in 39 ovarian cancer cases**

| variable     |          | hK5          | hK6          | hK7          | hK8          | hK10         | hK11         | CA125        |
|--------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| <b>hK5</b>   | $r_s$    | 1.000        | 0.475        | 0.553        | 0.554        | 0.618        | 0.584        | 0.507        |
|              | <i>p</i> | .            | <i>0.002</i> | <i>0.000</i> | <i>0.000</i> | <i>0.000</i> | <i>0.000</i> | <i>0.001</i> |
| <b>hK6</b>   | $r_s$    | 0.475        | 1.000        | 0.327        | 0.513        | 0.470        | 0.661        | 0.530        |
|              | <i>p</i> | <i>0.002</i> | .            | <i>0.042</i> | <i>0.001</i> | <i>0.003</i> | <i>0.000</i> | <i>0.001</i> |
| <b>hK7</b>   | $r_s$    | 0.553        | 0.327        | 1.000        | 0.695        | 0.690        | 0.748        | 0.262        |
|              | <i>p</i> | <i>0.000</i> | <i>0.042</i> | .            | <i>0.000</i> | <i>0.000</i> | <i>0.000</i> | <i>0.107</i> |
| <b>hK8</b>   | $r_s$    | 0.554        | 0.513        | 0.695        | 1.000        | 0.602        | 0.783        | 0.443        |
|              | <i>p</i> | <i>0.000</i> | <i>0.001</i> | <i>0.000</i> | .            | <i>0.000</i> | <i>0.000</i> | <i>0.005</i> |
| <b>hK10</b>  | $r_s$    | 0.618        | 0.470        | 0.690        | 0.602        | 1.000        | 0.706        | 0.548        |
|              | <i>p</i> | <i>0.000</i> | <i>0.003</i> | <i>0.000</i> | <i>0.000</i> | .            | <i>0.000</i> | <i>0.000</i> |
| <b>hK11</b>  | $r_s$    | 0.584        | 0.661        | 0.748        | 0.783        | 0.706        | 1.000        | 0.556        |
|              | <i>p</i> | <i>0.000</i> | <i>0.000</i> | <i>0.000</i> | <i>0.000</i> | <i>0.000</i> | .            | <i>0.000</i> |
| <b>CA125</b> | $r_s$    | 0.507        | 0.530        | 0.262        | 0.443        | 0.548        | 0.556        | 1.000        |
|              | <i>p</i> | <i>0.001</i> | <i>0.001</i> | <i>0.107</i> | <i>0.005</i> | <i>0.000</i> | <i>0.000</i> | .            |

- 41 -

Table 5

|           | CANCER | CONTROL |       |        |       |       |      | Wilcoxon<br>p(median) | Wilcoxon<br>p(median) | AUC (so)<br>(aucituchi) | AUC (so)<br>(aucituchi) | SENSITIVITY<br>SPECIFICITY |
|-----------|--------|---------|-------|--------|-------|-------|------|-----------------------|-----------------------|-------------------------|-------------------------|----------------------------|
|           |        | n       | mean  | median | sd    | min   | max  |                       |                       |                         |                         |                            |
| HK5       | 39     | 0.48    | 0.00  | 1.14   | 0.00  | 6.70  | 194  | 0.06                  | 0.00                  | 4.60                    | 0.32 (0.5)              | 31% HK5                    |
| HK6       | 39     | 9.88    | 6.60  | 13.77  | 1.50  | 70.80 | 6.97 | 6.60                  | 2.60                  | 1.60                    | 0.95 (0.5)              | 95% HK6                    |
| HK7       | 39     | 2.49    | 1.80  | 2.54   | 0.00  | 10.80 | 194  | 2.60                  | 0.99                  | 0.30                    | 0.00 (0.5)              | 40% HK7                    |
| HK8       | 39     | 11.91   | 6.90  | 11.80  | 0.00  | 45.20 | 194  | 11.74                 | 11.70                 | 3.80                    | 0.94 (0.5)              | 71% HK7                    |
| HK10      | 39     | 0.52    | 0.00  | 1.50   | 0.27  | 50.00 | 194  | 1.17                  | 1.08                  | 0.72                    | 0.00 (0.5)              | 72% HK8                    |
| HK11      | 39     | 0.80    | 0.18  | 1.36   | 0.00  | 5.62  | 194  | 0.21                  | 0.12                  | 0.26                    | 0.00                    | 62% HK10                   |
| CA125     | 39     | 64.9    | 27.7  | 97.1   | 20    | 4494  | 186  | 24                    | 21                    | 9                       | 0                       | 54% HK11                   |
| CA125 HK8 | 39     | 46.64   | 15.02 | 62.86  | -4.51 | 277   | 97.1 | 20                    | 4494                  | 186                     | >0.001 >34              | 94% CA125                  |
| CA125 HK8 | 39     | 46.64   | 15.02 | 62.86  | -4.51 | 32.55 | 186  | -5.07                 | -4.92                 | 1.91                    | <0.001 >32              | 65% CA125 HK8              |
| CA125 HK8 | 39     | 46.64   | 15.02 | 62.86  | -4.51 | 32.55 | 186  | -5.07                 | -4.92                 | 1.91                    | <0.001 >32              | 97% CA125 HK8              |

We Claim:

1. A method for detecting a plurality of kallikrein markers associated with ovarian cancer in a patient comprising:
  - 5 (a) obtaining a sample from a patient;
  - (b) detecting in the sample a plurality of kallikrein markers and optionally CA125, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and
  - (c) comparing the detected amounts with amounts detected for a standard.
- 10 2. A method for diagnosing and monitoring ovarian cancer in a subject comprising detecting in a sample from the subject a plurality of kallikrein markers, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein.
- 15 3. A method as claimed in claim 1 or 2 wherein the plurality of kallikrein markers are detected using antibodies that bind to each of the plurality of kallikrein markers or parts thereof
4. A method as claimed in claim 1, 2, 3 which further comprises detecting CA125.
- 15 5. A method of detecting ovarian cancer in a patient, the method comprising comparing:
  - 20 (a) levels of a plurality of kallikrein markers, and optionally CA125, in a sample from the patient, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and
  - (b) normal levels of expression of the plurality of kallikrein markers, and optionally CA125, in a control sample, wherein a significant difference in levels of kallikrein markers and optionally CA125, relative to the corresponding normal levels, is indicative of ovarian cancer.
- 25 6. A method for monitoring the progression of ovarian cancer in a patient, the method comprising: (a) detecting in a sample from the patient at a first time point, a plurality of kallikrein markers, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; (b) repeating step (a) at a subsequent point in time; and (c) comparing levels detected in steps (a) and (b), and thereby monitoring the progression of ovarian cancer.
- 30 7. A method for determining in a patient whether ovarian cancer has metastasized or is likely to metastasize in the future, the method comprising comparing (a) levels of a plurality of kallikrein markers, and optionally CA125, in a patient sample, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and (b) normal levels or non-metastatic levels of the kallikrein markers and optionally CA125, in a control sample wherein a significant difference between the levels of expression in the patient sample and the normal levels or non-metastatic levels is an indication that the ovarian cancer has metastasized.
- 35 8. A method for assessing the aggressiveness or indolence of ovarian cancer comprising comparing:

- 43 -

- (a) levels of expression of a plurality of kallikrein markers, and optionally CA125, in a patient sample, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and (b) normal levels of expression of the plurality of markers and optionally CA125, in a control sample, wherein a significant difference between the levels in the patient sample and normal levels is an indication that the cancer is aggressive or indolent.
- 5
9. A method for diagnosing and monitoring ovarian cancer in a sample from a subject comprising isolating nucleic acids from the sample; and detecting in the sample polynucleotides encoding a plurality of kallikrein markers, and optionally CA125, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein.
- 10
10. A method as claimed in claim 9 wherein significant differences in the levels of the polynucleotides in the sample compared to a control is indicative of disease, disease stage, and/or prognosis.
11. A method for determining the presence or absence of ovarian cancer in a subject comprising: (a) contacting a sample obtained from the subject with oligonucleotides that hybridize to polynucleotides encoding kallikrein markers, and optionally CA125, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and (b) detecting in the sample a level of nucleic acids in the sample that hybridize to the polynucleotides relative to a predetermined cut-off value, and therefrom determining the presence or absence of ovarian cancer in the subject.
- 15
12. A method as claimed in claim 11, wherein the nucleic acids are mRNA and the levels of nucleic acids are detected by polymerase chain reaction.
13. A method as claimed in claim 11 wherein the nucleic acids are mRNA and the amounts of mRNA are detected using a hybridization technique, employing oligonucleotide probes that hybridize to kallikrein markers, and optionally CA125.
- 20
14. A method for assessing the potential efficacy of a test agent for inhibiting ovarian cancer in a patient, the method comprising comparing: (a) levels of a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in a first sample obtained from a patient and exposed to the test agent, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11, and (b) levels of the plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in a second sample obtained from the patient, wherein the sample is not exposed to the test agent, wherein a significant difference in the levels of expression of the plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in the first sample, relative to the second sample, is an indication that the test agent is potentially efficacious for inhibiting ovarian cancer in the patient.
- 25
15. A method of claim 14 wherein the first and second samples are portions of a single sample obtained from the patient.
- 30
16. A method of claim 14 wherein the first and second samples are portions of pooled samples obtained
- 35

from the patient.

17. A method of assessing the efficacy of a therapy for inhibiting ovarian cancer in a patient, the method comprising comparing: (a) levels of a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in a first sample obtained from the patient, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11, and (b) levels of the kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in a second sample obtained from the patient following therapy, wherein a significant difference in the levels of expression of the kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in the second sample, relative to the first sample, is an indication that the therapy is efficacious for inhibiting ovarian cancer in the patient.
18. A method of selecting an agent for inhibiting ovarian cancer in a patient the method comprising (a) obtaining a sample comprising cancer cells from the patient; (b) separately exposing aliquots of the sample in the presence of a plurality of test agents; (c) comparing levels of a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in each of the aliquots, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and (d) selecting one of the test agents which alters the levels of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in the aliquot containing that test agent, relative to other test agents.
19. A method of inhibiting ovarian cancer in a patient, the method comprising (a) obtaining a sample comprising cancer cells from the patient; (b) separately maintaining aliquots of the sample in the presence of a plurality of test agents; (c) comparing levels of a plurality of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in each of the aliquots, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; and (d) administering to the patient at least one of the test agents which alters the levels of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in the aliquot containing that test agent, relative to other test agents.
20. A method of assessing the ovarian cell carcinogenic potential of a test compound, the method comprising: (a) maintaining separate aliquots of ovarian cells in the presence and absence of the test compound; and (b) comparing expression of a plurality of markers, optionally CA125, and/or polynucleotides encoding same, in each of the aliquots, wherein the markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11, and wherein a significant difference in levels of kallikrein markers, optionally CA125, and/or polynucleotides encoding same, in the aliquot maintained in the presence of the test compound, relative to the aliquot maintained in the absence of the test compound, is an indication that the test compound possesses ovarian cell carcinogenic potential.
21. A method of inhibiting ovarian cancer in a patient at risk for developing ovarian cancer, the method comprising inhibiting expression of genes encoding kallikrein markers and optionally CA125, wherein the kallikrein markers comprise or are selected from the group consisting of kallikrein 5,

- kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11.
22. A method of any preceding claim wherein the plurality comprises at least three of the markers.
23. A method of any preceding claim wherein the plurality comprises at least five of the markers.
24. A method of any preceding claim wherein the plurality of kallikrein markers is selected from the  
5 group consisting of kallikrein 5, kallikrein 7, and kallikrein 8; kallikrein 5, kallikrein 8, and  
kallikrein 10; kallikrein 7, kallikrein 8, and kallikrein 10; kallikrein 5, kallikrein 7, kallikrein 8, and  
kallikrein 10; kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11; kallikrein 5, kallikrein 7,  
kallikrein 8, kallikrein 10, and kallikrein 11; or kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8,  
kallikrein 10 and kallikrein 11.
- 10 25. A method of any proceeding claims wherein the kallikrein markers are kallikrein 7, kallikrein 8,  
kallikrein 10 and kallikrein 11.
26. A method of any preceding claim wherein the patient sample comprises serum obtained from the  
patient.
27. A kit for carrying out a method as claimed in any preceding claim.
- 15 28. A kit for assessing whether a patient is afflicted with ovarian cancer, the kit comprising reagents  
that specifically bind with a plurality of kallikrein markers and optionally CA125, wherein the  
kallikrein markers comprise or are selected from the group consisting of kallikrein 5, kallikrein 6,  
kallikrein 7, kallikrein 8, kallikrein 10, and kallikrein 11.
29. A kit for assessing the suitability of each of a plurality of agents for inhibiting ovarian cancer in a  
20 patient, the kit comprising: (a) the plurality of agents; and (b) reagents for detecting a plurality of  
kallikrein markers and optionally CA125, wherein the kallikrein markers comprise or are selected  
from the group consisting of kallikrein 5, kallikrein 6, kallikrein 7, kallikrein 8, kallikrein 10, and  
kallikrein 11.
30. A kit as claimed in claim 28 or 29 wherein the reagents are antibodies that specifically bind with  
25 protein or protein fragments corresponding to kallikrein markers and optionally CA125.

1/8

**Figure 1**

2/8

Figure 2



3/8

Figure 3



4/8

Figure 4



5/8

**Figure 5**

6/8

Figure 6



7/8

Figure 7



8/8

Figure 8



## Sequence Listing

SEQ ID NO. 1

CA125 amino acid

5        1 mlkpsglpgs ssptrslmtg srstkatpem dsgltgatls pktstgaivv tehtlpftsp  
       61 dktlasptss vvgrrtqsgl vmissalpe stgmthseqr tpspslpqvn gtpsrnypat  
       121 smveglsspr trtsstegnf tkeastytl vettsgpvte kytvptetst tegdstetpw  
       181 dtryipvkic spmktfadst askenapvsm tpaettvtds htpgrtnpsf gtlyssfltl  
       241 spkgtpnsrg etsllelist tgpfsspep gsaghhsrist saplssasav ldnkisetsi  
 10        301 fsgqltsp1 sgvpearas tmplsnaips mtlslaetsa ervrstissl gtpsistkqt  
       361 aetilthaf aetmdipstt iaktlasewl gspgtlgts tsalttsp5 ttlvseetnt  
       421 hhstegkete gtlntsmtpl etsapgeese mtatlvtlg ftildskirs psqvssshpt  
       481 relrttgsts grqssstaah gssdilratt sstskasswt sestaqqfse pqhtqvwets  
       541 psmkterppa stsvaaipp svpsvsvsgft tlktstkgi wleetsadtl igestagptt  
 15        601 hqfvaptgis mtggssstrgs qgtthlltra tasssetsadl tlatngvpvs vspavskaa  
       661 gssppggtkp sytmvssvip etsslqssaf regtsgltp lntrhpfssp epdsaghtki  
       721 stsipllssa svledkvts atfshhkats sittgtpeis tktkpsav1 ssmtlsnaat  
       781 spervrnats plthpspsge etagsvlts tsaettdspn ihptgltse ssespstlsl  
       841 psvegvkttf tsgeeteets npsvsgpets vsrvrttlas tsvptpvfpt  
 20        901 mdtwptrsaq fssshlvsel ratesstsvtn stgsalpkis hltgtatmsq tnrdtfndsa  
       961 apqsttwpet sprfktglps atttvstsat slsatvmvsk ftspatssme atsirepstatt  
       1021 ilttettnpg gsmavastni pigkyiteg rldtshlpig ttasssetsmd ftmakesvsm  
       1081 svspsqsmda agsstpgrts qfvdtfsddv yhltsreiti prdgtsalt pgmtathpps  
 25        1141 pdpgsarstw lgilssspss ptkvttmst fstqrvtts imdtvetsrw nmpnlpstt  
       1201 ltpsnipptsg aigkstlvp1 dtppatslase aseggplts typestntps ihlgahasse  
       1261 spstiklma svvkgpgsytp ltfpsieithi hvstarmays sgsspmemt getntgstwd  
       1321 ptyyitttdp kdtessaqvst phsvrtrrtt enhptkesatt paaysgspki ssspnltspa  
       1381 tkawtitdtt ehstqlhytk laekssqfet qsapgpvsvv 1ptspigts tleltsdvpg  
       1441 eplvlapseq ttitlpmatw ltslsteema stdldissps spmstfaifp pmstphels  
 30        1501 kseadtsair ntdsttldqh lgirslgrtg dltpitpl tttwtsvieh stqaqdtsa  
       1561 tmspthvtqs 1kdqtsipas aspshltevy pelgtqgrss seattfwkps tdtlsreiet  
       1621 gptniqstpp mdnttgsss svgtlgiah1 pigtsspaet stnmallerst statvsmagt  
       1681 mgliivtsapg rsisqslgrv ssvissestt gvtddskgss prlntqgnta lsslepysa  
       1741 egsmqstts1 ltsqpptdv efiggptfw kevttvmtsd iskssartes ssatlmstal  
 35        1801 gstentgkek lrtasmdlps ptpsmevtpw isltltsnapn ttdsldlshg vhtssagtl  
       1861 tdrslntgvt rasrlengsd tsskslsmgn stthsmtdt ksevsssihp rpetsapga  
       1921 ttlstpgrn1 aisltlpfss ipveevistg itsgpdinsa pmthspitpp tivwtstgti  
       1981 eqstqplhav ssekvsqvtq stpyvnsavv saepthensv ssqssstsspy ssasleslds  
 40        2041 tisrrnaits wlwdltslp tttwpstsls ealssghsgv snpssttgef plfsaastsa  
       2101 akqrnpetet hgpqntaast lntdassvtg lsetpvgasi ssevplpmai tsrsdvsqlt  
       2161 seastamps1 tassagktlt rtislptses lvsfrmmkd1 wtvsiplgsh ptnttetsip  
       2221 vnsagppgls tvasdvidtp sdgaesipt sfspspdtet ttishfpekt thsfrtissl  
       2281 theltsrvtp ipgdwmssam stkp1gasps itlgerxit1 saapttspiv ltasftetst  
       2341 vslndnettvk dtsildarkt nelpsdssss sdintias stmdvktas isptsisagmt  
 45        2401 assspslfss dppqvpstt etntatpsv ssntysldgg sngvgptst1 ppftithpve  
       2461 tssallawsr pvrftstmv1 tdtasgenpt ssnsvvtsvp apgtwasvga ttdlpamgfl  
       2521 ktspageahs llastiepat aftphlsavv vtgssatsea slttseska ihsspqtptt  
       2581 ptsganwets atpesllvv1 etsdtltsk ilvtdtilfs tvstppskfp stgtlsgasf  
       2641 pt1lpdtptai plitateptss latsfdstpl vtiasdslgt vpettltmse tsngdalv1k  
 50        2701 tvsnprdr1 gitiqgvtes plhpsstsp1 kivaprntt egsitvalst 1pagttgslv  
       2761 fsqssenset talvdssag1 eraspvmltt gsgqmassgg irsgsthstg tktfss1plt  
       2821 mnpgveta1s eittnr1tat qstapkgipv kptsaesg11 tpvsasssp1 kafasl1ttap  
       2881 p1stwipqst1 ltfevfsevps ldtksas1pt pgqslntipd sdastasssl skspeknpra  
       2941 rmmtstka1 assfqstgft etpegsasps magheprvpt sgtgdpryas esmsypdp1sk  
 55        3001 assamtstsl asklttlf1st gqaarsgssss spislsteke tsflsptast srkts1flgp  
       3061 smarqpn1lv hlqtsalt1s ptstlnmsqe eppeltssqt iaeeegttae tq1ltftpse  
       3121 tptsl1pvss pteptarrks spetwassis vpkts1vet tdgt1vttik mssqaaqgn1s  
       3181 twpapaeetg tsgat1spgs pevsttlkim sskepsi1pe irstvxrnspw ktpettvpme  
       3241 ttvepvt1q1s talgsgst1 sh1ptg1ttsp1 tksptenmla ter1vs1sp1sp1 peawtnlysg

3301 tpggtrqsla tmssvslesp tarsitgtqg qsspelvskt tgme fsmwhg stgg ttgdth  
 3361 vslstssnil edpvtspnsv ssldkskhk tettvstai psvlnnkim aaeqgtsrsv  
 3421 deaysstsw sdqtsgsdit lgaspdvtnt lyitstaqt slvslpsgdq gitssltnpsg  
 3481 gktssassvt spsigtslrv anvsavksdi aptaghlsqt sspaevsild vttaptgps  
 3541 ttittmgtns isttppnpev gmstmdstpa terrttsteh psts wstaaas dswtvtdmmts  
 3601 nlkvarspgt istmhttsfl asssteldems tphgritvig tslvtpssda savktetsts  
 3661 ertlpsdtt astpistfsr vqrmsisvpd ilstswtpss teaedpvsm vstdhastkt  
 3721 dpnplstfl fdslstldwd tgrslessata ttsapqgatt pgelletmi spatsqlpfs  
 3781 ighitsavtp aamarssgvt fspdpstskk aeqtstqlpt tsaahpgqvps raaattldvi  
 3841 phtaktpdat fqrgqgtalt tearatsdsw nekekstpsa pwitemmnsv sedtikevts  
 3901 sssvlkdpey aghk lgiwdd fipkfgkaah mrepllsp qdkeaihpst ntvettgwvt  
 3961 ssehashstl paahassklit spvvttstre qaivemstt wpestrarte pnsfltielr  
 4021 dvspymdtss ttqtsiissp gstatkgr teitsskris ssflaqsmrs sdspseairtr  
 4081 lsnfpamtes ggmilamqts ppgatalsap tldtsatasw tgtplattq ftysekttlf  
 4141 skgpedtsqp sppsveetss ssslvpihat tpsnillts qghspstpp vtsvflsets  
 4201 glgktdmsr islepgtslp pnlsstagea lstyearst kaihhsadta vtnmeatsse  
 4261 yspipgktp skatsplvts himgditsst svfgssette ietvssvnnq lgerstsqva  
 4321 ssatetstvi thvssgatt hvtktqatfs sgtissphq fitstntftd vstnpstslsli  
 4381 mtessgvit tqtgtptaat qgyplldst mpyletptla vtpdfmqsek ttliskgpkd  
 4441 vtwtspsva etsypsslt flvttippat stlgqghtss pvsatstvts glvkttdmln  
 4501 tsmepvtvsnq qnlunpsnei latlattdi etihpsinka vtmagtassa hvhstlpvs  
 4561 sepratstpm vpassemgdal asisipgset tdiegeptss ltagrkenst lgemnssstes  
 4621 niilsnvsvg aiteatkmev psfdatfipr paqstkpfdi fsvassrlsn sppmtisthm  
 4681 ttttgssga tskipalaldt stletsagtp svvtegfaah kittamndv kdvsqttnppf  
 4741 qdeasspssq apvlvtlps svaftpgwhs tsspvsmssv ltsslvktag kvdtsletvt  
 4801 sspqsmntl ddisvtsaat tdiethpsi ntvvtnvggta gafeshstv saypepskv  
 4861 spnvttstme dtisrsipk eskktrtete ttssltpklr etsisqeits stetsvpyk  
 4921 elgtattevs rtdvtsssst sfpgpdqstv sldistett rlstspimte saeitittq  
 4981 gphgatsqdt ftmdpsntt qagihsamth gfsldvttl msripqdvs w tsspvdkts  
 5041 spsflspsa mttttslisst lpedklsspm tslltsglvk itdirltrle ptvsslpnf  
 5101 stdskilats kdsdkdtkeif psinteevn kannsghesh spaladsetp kattqmvtt  
 5161 tvgdapapts mpvhgssett nikreptyfl tprlretsts qessfptdts flskvptgt  
 5221 itevsstgvn ssskistpdh dkstvppdtf tgeiprvtts siktksaemt ittqasppes  
 5281 ashstlpldt sttlsggth stvtqgfpys evttlmgmp gnvswmtpv veetssvss  
 5341 msepamtsp svsstspqsi pssplpvta ptsvlvttd vlgttspesv tssppnlssi  
 5401 therpatykd tahteaamh stntavtnvg tsqsgshqsqs svladsetsk atplmsttst  
 5461 lgdtvstst prisqtnqiq teptaslspr lresstst ssttetntaf syvptgaitq  
 5521 asretesssrt tsisldldrpt iapdistgmi trlfspimt ksaemtvttq ttttgatsqg  
 5581 ilpwdtstt fgggthstvs qgfpheitt lrsrtpgdvs wmttppveet ssgfslmeps  
 5641 mtspspvss stpesipsspl pvtalltsvl vtttnvlgg spetvtsspp nlsptqerl  
 5701 ttykdtahste amhasmhtnt avanvgtsis ghesqssvpa dshtskatsp mgiftfamgd  
 5761 svststpaff etrigtests slipglrdtx tseeintvte tsvtsevpt ttttevsrte  
 5821 vitssrttis gpdhskmspy istetitrts tfpfvtgstt maitnqtpgpi gtisqatltl  
 5881 dtstasweg thspvtqrfp hseettttmsr stkgvswqsp psveetssps spvlpait  
 5941 hsslysavsg ssptsalpvt sltsgrrkt idmldthsel vtsslpssass fsegilts  
 6001 stntetihfs entaetnmgtn tnmehklhhs vsihsqphq tppkvgsmm edaivststp  
 6061 gspetknvdr dtspltpel kedstalvma stteavtvfs svldaatev sraevtyydp  
 6121 tfmpasaqst kspdispeas sshsnspplt isthktiatq tgpsgvtsg qltldstia  
 6181 tsagtparts qdfvdsetts vmmndlndvl ktspfsaaa nsllsqapll vttspvpts  
 6241 tlqehstssl vsvtspvpt laki tdmtn lepvtrspqn lrntlatsea ttdthtmhps  
 6301 intamanvgt tsspmefyft vspdsdpkyka tsavvists gdsivstsmr raaamkkies  
 6361 etffslifrl retstsqkig sssdtstvfd kaftaattev srtelesssrt tsiggttekpt  
 6421 mspdtstrsv tmlstfaglt kseertiatiq tgphratssq tltwdtsitt sqagthsamt  
 6481 hgfsqldst ltsrvpeyis gtsppsvk tssssllspp aitspspvpt tlpesrpssp  
 6541 vhltspqslg lkvtttdmlas vaslppnlgas tshkiptse dikdtekmp strnaiavtnvg  
 6601 tttskesys svpayseppk vtspmvtsfn irdtivtsm pgsseitrie mestfsvah  
 6661 lkgtstsqdp ivsteksvavl hklttgatet srtevassrr tsipgpdhst espdistevi  
 6721 psplislgit essnmtiitr tgpllgstsq gftfldptt ssragthsma tqefphsemt  
 6781 tvmnkdpel swtippsiek tsfssslmps pamtspvss tlpktihttp spntslltps  
 6841 lvmttdtlgt spepttsspp nlsstshvil ttdedttiae amhpststaa tnvettcsg  
 6901 gsqssvltts ektkatapmd ttstmghtt vtsmsvssset tkikrestys ltpglrets

6961 sqnasfstdt sivlsevptg ttaevsrtrev tssgrtsipg psqstvlpei strtmtrfa  
 7021 sptmtesaem tiptqtgpag stsgdltld tsstksqakt hstltqrph semtllmsrg  
 7081 pgdmwqssp slenpsslps llslpattsp ppisstlpvt issplpvts lltsspvtt  
 7141 dmlhtspelv tssppklsht aderlgtgkd ttateavhps tntaaasnvi psfghespss  
 5 7201 aladsetska tpmfitstq edttvaistp hfletsriqk esisslspkl retgssvets  
 7261 saietsavls evsigattei srtevtsssr tsisgsaest mlpeistrkr iikfptspil  
 7321 aessemtikt qtspgstse stftldtstt pslvithstm tqrlphseit tlvsrgagdv  
 7381 prppslpvee tppssqlsl samispwpvs stlpasshss sasvtspltp gqvkttevld  
 7441 asaepetssp pslsstavei latsevtttd ekihpfpnta vtkvgtsssg hespssvlpd  
 10 7501 settkatsam gtisimgdts vstltpalns trkiqpsas slttrlrets tseetslate  
 7561 antvlskvst gattevsrte aifsrtssm gpeqstmsqd isigtipris assvltessak  
 7621 mtittqgps estlestlnl ntattpwve tsiviqgfp hpemttsmgr gpggvswpwp  
 7681 pfvketspps splslpavts phpvsttfla hippspvttpl slltsgpatt tdilgtstep  
 7741 gtssssslst tsherrltyk dtahteavhps stntggtnva ttssgyksqs svladsspmc  
 15 7801 ttstmgdtsv ltstpalet rriqtelass ltpglressg segtssgtkm stvlskvptg  
 7861 atteiskedv tsipgpaqst ispdistrtv swfstspvmt esaeitmth tsplgattqg  
 7921 tstatlatsstt sltmthstis qgfshsqmst lmzrgpedvs wmspplekt rpsfslmssp  
 7981 attpspvss tlpesisspp lpvtslltsg laktdmlhi ssepvttnspa nlsstsveil  
 8041 atsevtttdte kthpssnrtv tvgtsssg estsfvlads qtskvspmv itstmedtsv  
 20 8101 sttpgffet sriqteptt ltlglrkts segtlattem stvlsgvptg ataevsrtev  
 8161 tssertsisg faqltvspet stetitrlpt ssintesaem miktqtdppg stpesthvd  
 8221 isttpnwvet hstvtqrdfsh semtllvsrs pgdmlwpssq sweetssass llslpattsp  
 8281 spvssstlved fpsaslpvts lltpglvitt drmgisrepg tsstsnlsst sherltled  
 8341 tvtdedmqps thtavtnvrt sisghesqss vlsdsetpka tpmgattytm getsvsists  
 25 8401 dffetsriqi etpsslltsgl retssseris sategstvls evpsgattev srtevisrg  
 8461 tsmgpdqft ispdistea tlrlstpm esaeasaitie tgspgatseg tltdtstt  
 8521 fwagthstas pgfshsemmt lmsrtpgdp wpslpsveea ssrsssllssp amtstsffsa  
 8581 lpesisssph ptvalltlgp vkttdmlrsts sepetssppn lsstsaeilatsevtdrek  
 8641 ihpsntpvv nvgtviykh1 spssvadlv tktptspmat tstlgntsvs tstpaftetm  
 30 8701 mtgptssllts gtreistsqg tssatersas lsgmptgatt kvsrtealsl grstpgpaq  
 8761 stispeiste titristplt ttgsaemt ptkghsgass qgtftldtss raswpgthsa  
 8821 athrspshsgm tpmssrgped vswpsrpsve ktsppssllvs lsavtspspl ystpsesshs  
 8881 splrvtslft pvmkktdml dtslepvtts ppsmnitsde slatskatme teaiqlsent  
 8941 avtqmgmtisa rgefyssypg lpepskvts vvtastikdi vsttipasse itriemests  
 35 9001 tltpptprets tsgqehsatk pstvpykalt satiedsmq vmsssrgpdp dqstmsqd  
 9061 sevitrlsts pikaeemt ittqtgspga tsrgtldtstt sttfmsgths tasqgfhsq  
 9121 mtalmsrtpg dwplshpsv eeassasfaf sspvmtsssp vsstlpdsih ssplpvtssl  
 9181 tsglvkttel lgssepetts sppnlsstsia eilattevtt dteklemtnv vtsgythesp  
 9241 ssvladsvtt katssmgity ptgdtnvlt pafsdtsri qtksklsltp glmetsisee  
 40 9301 tssatekstv lssvptgatt evsreiaiss srtsipgpaq stmssdtsme titristplt  
 9361 rkestdmait ptkgpgats qgtftldss taswpgthsa ttqrfpqsvv ttpmsrgped  
 9421 vswpsplsve knsppssllvs sssvtspspl ystpsgsrhs spvvpvtsift simmkatdml  
 9481 daslepetts apnmntsde slatskatte teaihvftent aashvettasa teelyssspg  
 9541 fseptkvisp vvtssssirdm mvsttmgss gitrielesm ssllptglret rtsgditstt  
 45 9601 etstvlykms sgtpevsrt evmpssrti pgpaqstmsl disdevvtrl stspimtesa  
 9661 eitittqgy slatsqvtlp lgtsmtflsg thstmsqgl hsemtnlmsr gpeslswtsp  
 9721 rfvettrsss sltsplltts lsvpsstl1d sspssplpvt slilpglvkt tevldtsesp  
 9781 ktssspnlss tsveipatse imtdtekihp ssntavakvr tsssvheshs svladsetti  
 9841 tipsmgitsa vddttvftsn pafsetrrrip teptfslltpg fretstseet tsitetsavl  
 9901 ygvpssat vsmteimssn rthipdssq tmsppdiitev itrlssssmm sestqmttt  
 9961 qksspgataaq stlrlattta plarhstvp prflhsemmt lmsrspenps wkspfvekt  
 10021 sssssllslp vttspvssst lpgsipsssf svtslltppm vkttdtstep gtsslspnlsg  
 10081 tsveilaase vttddtekihp sssmavtnv ttssghelys svsihsepsk atypvgtpss  
 10141 maetsistem panfettgfe aepfshltsg frktnmsldt ssvtkntnps spgsthllqg  
 55 10201 sktdftssak tsspdwppas qyteipvdii tpfnaaspit estgitsfpe srftmavtes  
 10261 thhlstdllp saetistgtv mpslseamt fattgvprai esggspfsrt espggdatls  
 10321 tiaealpsst pvpfssstft ttdstipal heitssatp yrvttslgte ssttegrlvm  
 10381 vstldtssqp grtsstpld trmtesvelg tvtsayqvps lstrlrltdg imehitkipn  
 10441 eaahrgtirp vkgpqtstsp aspkglhtgg tkrmettta lkttttalkt tsratltsv  
 10501 ytpylgtltp lnasrqmast iltemmittp yvfpdvpett ssatlgae tstdalprtt  
 10561 svlnresetts aslvsrsqae rsvpiqtlv sssepdtas wvihpaeip tvsktpnff

10621 hseldtvsst atshgadvss aiptnispsse ldaltpvlti sgtdtstfp tltksphete  
 10681 trttwlthpa etsstiprti pnfshhesda tpsiatpsga etssaipmt vspgaedlvt  
 10741 sqvtsgtdr nmptltsip gpeptiasl vthpeaqtsa aiptstispa vsrlvtsmvt  
 10801 slaaktsttn raltnspgep attvslvthp aqtsptvpwt tsiffhsksd ttpsmttshg  
 5 10861 aesssavptp tvstevpgvv tpltvssrav isttipiltl spgepetps matshgeas  
 10921 saiptptvsp gpvgvvtslv tssrvatstt ipiltsfslge pettppsmats hgtagsavp  
 10981 tlvpevgmav tsvvassrav tsttlptl spgepetps matshguaeas stvptvpshev  
 11041 pgvvtstvts ssgvnststip tlispgele ttpsmatshg aeassavptp tvspgvsgvv  
 11101 tpltvssrav tsttipiltl sssepsttsp matshgveas savltvpshev pgmvtslvts  
 11161 sravtsttip tlissdepe tttslvthse akmisaptl avsptvqglv tsvltssgse  
 10 11221 tsafsnltva ssqpetds wahpgteass vvptltvstg epftnisltv hpaessstlp  
 11281 rttsrfshse ldtmptstvts peassssas ttispgipgv ltslvtsogr dissatfptv  
 11341 espheseata swvthpavts ttvprtpny shsepdtts iatpsgaaat sdfptitvsp  
 11401 dvpdmvtsqv tssgtdtsit iptltsfslge petttsfity sethtssai tlpvspgask  
 11461 mltslvissg tdsttfptl tetpyepett aiqlihpaet ntvmvkttpk fshsksdttl  
 15 11521 pvaitspgpe assavsttti spdmsslvtv lpssgtdts ttfptlsetp yepettvtwl  
 11581 thpaetsttv sgtipnfhhr gsdtapsmtv spgvdtrsgv ptttippssip gvvtsgvtss  
 11641 atdtstaapt ltpspgepet tassathpgt qtgftvpirt vpssepdtna swvthppqts  
 20 11701 tpvrsrttssf shsspdatpv matsprteas savltsisp apemvtsqit ssgaatsttv  
 11761 ptlthspgmp ettallsthp rtgtsktpfa stvfpqvsset tasltirpgt etstalptqt  
 11821 tsslfplllvt gtsrvdlspt aspgvsaakta plsthpgett stmiptstls lglettgll  
 11881 atsssaetst stltltvpsa vsglssasit tdkpqtvts ntetspsvts vgppefsrtv  
 11941 tgttmtlips emtpppktsh gegvapptil rttmveatnl attgsaptva ktttfntla  
 12001 gslftplttt gmstlasessv tsrtsynhrs wisttssy whole wrywpatstp vtstfsgpis  
 25 12061 tssipsstaa tpfmvpftl nftitnlqye edmrhpgsrk fnaterelgg llkplfrnss  
 12121 leylysgcrl aslrpekdss amavdaictch rpdpedlgd rerlywelsn ltnqigelgp  
 12181 ytdlrsnslyv ngfthrssmp ttstpgtstv dvgtsgtss spsptaagpl lmpftlnfti  
 12241 tlqyeedmr tgsrkfntm esvlqgllkp lfkntrvgpl ysgcrlllr pekdaatgv  
 12301 daichrldp kspglnreqt ywelskltnd ieelpytl rnslyvngft hqssvsttst  
 30 12361 pgtstvdlrt sgtppsalssp timaagpllv pftlnftit lqygedmhp gsrkfntter  
 12421 vlggllgplif kntsrgplys gcrltslrse kdgaatgvda icihhldpks pglrnrelyw  
 12481 elsqqltngik elgpytldr slyvngfthr tsvpttstpg tsvtdlgts tpfslpspat  
 12541 agplvlvftl nftitnlkye edmrhpgsrk fnttervlg llgpmfknts vgllysgcrl  
 12601 tllrsekdg atgvdaictch rldpkspgld reqlywelsq ltnqikelgp ytdlrsnslyv  
 35 12661 ngfthwipvp tssptgstv dlagsgtppsl psptaagpll vpftrlnfit nlgyeedmhh  
 12721 pgsrkfntte rvlqgllgpm fkntsvgllly sgrcrltllr ekdgaatgv aichrldpk  
 12781 spgvdreqlly welsqltngi kelgpytldr nslyvngfth qtsapntstp gtstvdlgts  
 12841 gtpsslpst sagpllvftl lnftitnlqy eedmrhpgsr kfntrervlg gllkplfkst  
 12901 svgplysgcr ltlrsekdg aatgvdaict hrldpkspg dreqlywels qltnqikelg  
 40 12961 pytldrnsly vngfthqtsa pntstpgtst vdlgtsgtss slpsptsagg llvptlnft  
 13021 itnlqyeedm hhpgsrknt tervlqgllg pmfkntsvgl lysgcrllt rpekngaatg  
 13081 mdaicshrl pkspglnreq lywelsqlth gikelgpyt drnslyvngf thrssavapts  
 13141 tpgtstvdlg tsstpsslpst pttavplv ftlnftitl qygedmrhpg srkfntterv  
 13201 lqglgplfk nsstvpgly crlislrlsek dgaatgvda cthhlpmpsp gldreqlywq  
 45 13261 lsqmtngike lgyptldrns lyvngfthrs sgltsptw stvdlgtsgt pspvpsptta  
 13321 gpllpftln ftitnlqyee dmhrhpgsrk nttervlgq lspifknssv gplysgcrlt  
 13381 slrpekdgaa tgmdavclynh npnkrpgrldr eqlywelsql thnitelgpy sldrdslvyn  
 13441 gftqnsvpt tssptgstv wattgtppsf pghepgpli ipftfnftit nlhyeenmqh  
 13501 pgsrkfntte rvlqgllkpl fkntsvgpl sgrcrltslr ekdgaatgmd avclyhpnpk  
 50 13561 rpgldreqlly welsqlthni telgpytsdr dslyvngfth qnsvpttstp gtstvwyatt  
 13621 gtpssfpgh tpgpllipft fnftitnlhy eenmqhpgsr kfntrervlg gllkplfknt  
 13681 svgplysgcr ltlrpekha aatgvdtict hrvdpigppl drerlywels qltnsitelg  
 13741 pytldrdsly vngfnprssv ptstpgtst vhlatsgtp slpghtapvp llipftlnft  
 13801 itnlhyeenm qhpgsrknt tervlqgllk plfkntsvgp lygcrllt rpekheaatg  
 13861 vdticthrvd piggllxex lywelsxltx xixelgpyt drxslyvngf thxcsxptts  
 13921 tpgtstvxg tsstpsslpst xtsagpllv ftlnftitl qyeedmhpg srkfntterv  
 13981 lqglgpmfk ntstvgllysg crlrlrpek nagaatgmadi cshrlrdpksp gldreqlywe  
 14041 lsqtlhgike lgyptldrns lyvngfthrs svaptstpgt stvdlgtsgt psslpstta  
 14101 vpllpftln ftitnlqyge dmhrhpgsrk nttervlgq lgpflknssv gplysgcrlt  
 14161 slrsekdgaa tgvdaictch lnpqspgldr eqlywqlsqm tngikelgpy tldrnsnslyvn  
 60 14221 gfthrssglt tstpwstvd lgtsgtpspv pspttagpli vpftrlnfit nlgyeedmhr

14281 pgsrkfnate rvlqgllspi fknssvgly sgcrltslrp ekdgaatgmd avclysnpk  
 14341 rpgldreqly welsqlthni telgpysldr dalyvngfth qssmtttrtp dtstmhlat  
 14401 rtpaslsgrp taspllvft incitnlqy eedmrtsgr kfntmesvlg gllkplfknt  
 14461 svglysgcr ltlrpkdg aatgvdaict hrldpkspgl nreqlywels kltndieelg  
 5 14521 pyltdrxnsly vngfthqssv sttstpgtst vdlrtsgtvs slssptimxx xpllxpftxn  
 14581 xtitnlxxxx xmxxpgsrkf nttervlqgl lrlpkntsv sslysgcrlt llrpekdga  
 14641 trvdactyr pdpkspgldr eqlywelsql thsitelgpy tldrvslyvn gfnprssvpt  
 14701 tstdpgtstvh latsgtpssl pgtxxopl1 xpftxnxxt nlxxxxxmxx pgsrkfnnte  
 14761 rvlqgllkpl frssleyly sgcrltslrp ekdssamavd aicthrpdpd dlglrrely  
 10 14821 welsnltngi qelgpytldr nslyvngfth rssglttstp wtstvdlgts gtpspvpsspt  
 14881 tagpllpvpt lnftitnlqy eedmhrpgsr rfnttervlq glltpfknt svglysgcr  
 14941 ltlrpekkqe aatgvdtict hrvdpgvdt hrdlyrlywels qltnsiteg pyltdrdsl  
 15001 vngfnpwssv pttstpgtst vhlatstgtp slpghtapvp llipftlnft itdlhyeenm  
 15061 qhpgrkfnt tervlqgllk plfkstsvpg lysgcrll1 rpekhgaatg vdaictlrl  
 15 15121 ptgpgrdrer lywelsqltn svtelgpyt drdslyvngf thrssvptts ipgtsavhle  
 15181 tshtpsalpg htapgpllp ftlnftitnl qyeedmrhpg srkfntterv lqgllkplfk  
 15241 ntsvsslysg crtlrlrpek dgaatrvdav cthrdpksp gldrerlywk lsqtlhgite  
 15301 lgpytldrhs lyvngfthqs smtttrtpdt stmbhlatrst paslsgptta spllvlf  
 15361 ftitnlryee nmhhpgsrkf nttervlqgl lrlpkntsv gplysgcrlt tlrpkkdga  
 20 15421 tkvdaictyr pdpkspgldr eqlywelsql thsitelgpy tqdrdslyvn gfthrssvpt  
 15481 tsigptsvah letsgtpasl pgtxxopl1 vpftlnfti nlgyeedmrh pgsrkfnnte  
 15541 rvlqgllkpl fkstsvpgly sgcrltslrp ekrgaatgv dicthrldp npgldreqly  
 15601 welskltrgi ielgpylldr gslyvngfth rtspvtsttsp gtstvdlgts gtpfslpspa  
 15661 xxpxpllxpft xnxtitnlxx xxmxxpgsr kfnttervlq tllgpmfknt svgllysgcr  
 25 15721 ltlrlsekdg aatgvdaict hrldpkspg dreqlywels qltnikeg pyltdrxnsly  
 15781 vngfthwipv ptsstpgtst vdlgsgtspes lpspttagpl lvpftlnfti tnkyeedmh  
 15841 cpgsrkfntt ervlqsl1gp mfknstsvpgl ysgcrll1r sekdaatgv daicthrldp  
 15901 kspgvdrqel ywelsqltnq ieklgyptld rnslyvngfth htqtsapnst pgtstvdlgt  
 15961 sgtsslspsp txoxpllxpf txnxntitnl xxmxxpgs rkgnttexv qllxpxfk  
 30 16021 xsvgxllysgc rlxtrxeke gaatgxdaic xhxxxpkxp lxxexlywel sxltxxixel  
 16081 gpytldrxxs1 yvngfthwip vptsstpgtst tvdlgsgtspes slpspttagp lvpftlnft  
 16141 itnlkyeedm hcpgsrkfnt tervlqsl1g pmfkntsvpg lysgcrll1r rsekdgaaatg  
 16201 vdaicthrvd pkspgvdrq lywelsqltn gikelgpyt drnslyvngf thqtsapnts  
 16261 tpgtstvxg tshtpsalpg xtsgpplvp ftlnftitnl qyeedmrhpg srkfntterv  
 35 16321 lqgllgpmfk ntsgvlllysg crtlrlrpek ngattgmadi cthrdpksp glxxexlywe  
 16381 lsxlttxxie lgyptldrxxs1 lyvngfthxx sxtptstpgt stvxxgtsqt pssxpxxtxx  
 16441 xpllxpftxn xtitnlxxxx xmxxpgsrkf nttervlqgl lkplfrnssl eylysgcrla  
 16501 slrpekdssa mavdaicthr pdpedlglr erlywelsnl tngiqelgpy tldrnslvyn  
 16561 gfthrssmpt tstdpgtstvd vgtsqtpss pspttagpl ipftlnftit nlgygedmgh  
 40 16621 pgsrkfnnte rvlqgllgpi fkntsvpgly sgcrltslrp ekdgaatgvd aicihhldpk  
 16681 spglrnrely welsnltngi kelgpytldr nslyvngfth rtspvtsttsp gtstvdlgts  
 16741 gtpfslpspa tagpllvft lnftitnlky eedmhrpgsr kfnttervlq tllgpmfknt  
 16801 svgllysgcr ltlrlsekdg aatgvdaict hrldpkspg xlxxlywels xltxxixelg  
 16861 pyltdrxsly vngfthxxs pttstpgtst vxxgtsqtpes sxpxttxxp llxpxftxnxt  
 45 16921 itnlxxxxxm xxpgsrkfnt tervlqgllr pvfkntsvpg lysgcrll1r rpkkdgaatk  
 16981 vdaicthyrd pdkspgldreq lywelsqltn sitelgpyt drdslyvngf thrssvptts  
 17041 ipgtsavhle ttgtpssafpg htepgpllp ftfnftitnl ryeemmqhpg srkfntterv  
 17101 lqglltplfk ntsgvlysg crtlrlrpek qeaatgvdti cthrvdpigp gldrerlywe  
 17161 lsqtnsite lgyptldrds lyvdfgnpws svptstpgt stvhlatstg psplpghtap  
 50 17221 vpllipftln ftitnlhyee nmqpgsrkf nttervlqgl lkplfkstsv gplysgcrlt  
 17281 llrpekhgaa tgvdaitclr ldpptgpgldr erlywelsql tnsitelgpy tldrnslvyn  
 17341 gfnpwssvpt tstdpgtstvh latsgtpssl pgtxxopl1 vpftlnftit nlkyeedmh  
 17401 pgsrkfnnte rvlqslhgp fmknstsvpgly sgcrll1r ekdgaatgvd aicthrldpk  
 17461 spglxxexly welslxrxxi xelgpytldr xslyvngfth xxmxxptsttsp gtstvxxgts  
 55 17521 gtpssxpxttx xpxpllxpft xtitnlxx xxmxxpgsr kfnttexv qllxpxfk  
 17581 svxlysgcr ltxtrxeke aatgxdaicx hxxxpkxp gldrerlywels xltnsiteg  
 17641 pyltdrsly vngfthrssm pttspgtsa vhletsgtap slpghtapvp lvpftlnft  
 17701 itnlqyeedm rhpgsrkfnt tervlqgllk plfkstsvpg lysgcrll1r rpekrqaatg  
 17761 vdticthrl plnpglxex lywelslxr xixelgpyt drxslyvngf thxxsxpstts  
 60 17821 tpgtstvxg tshtpsalpg xttxxpllxp fttxnxntitnl xxmxxpgsr kfnttexv  
 17881 lqgllxpxfk nxsvgxllysg crlxtrxeke xgaatgxai cxhxxpkxp glxxexlywe

17941 lsxltxxixe lgyptldr xs lyvngfhprs svpttstpgt stvhlatsgt psslpghtap  
 18001 vpllipftln ftitnlhyee nmqhpgrkfn nttervlqgl lgpmpfkntsv gllyscrclt  
 18061 llrpeknaga tgmdaicsh r ldpkspglxx exlywelsxl txxixelgpy tldrxslyvn  
 18121 gftthxxsxpt tsgptstvx xgtsgtssx pxcttxxopl xpftxnxtit nlxxxxxcmxx  
 5 18181 pgssrkfntte xvlqgllxpx fknxevgxl sgcrltxlr ekxgaatgxd aicxhxxxpk  
 18241 xpglxexly welsxltxxi xelgpytldr xslyvngfth qnsvpsttstp gtstvywatt  
 18301 gtpssfpgh epgpllipft fnftitnlhy eenmqhpgr kfntrervlq glltpfknt  
 18361 svpglysgcr ltlrpeke aatgvdtict hrvdpgp gl xxexlywels xltxxixelg  
 18421 pytldr xsly vngfthxx pttsgtst vxxtsgtssx pxkfnxsvx lysgcrltxl rxekxaatg  
 10 18481 itnxxxxxxxx xpgsrkfnt tevlgllxpx fknxevgxl lyxelgpyt drxslyvngf thrssvppts  
 18541 xdaicxhxxx pkxpglxex lywelsxltx xelgpyt drxslyvngf hyeenmqhp grkfntrerv  
 18601 spgstvhla tsxtpsslpq htavppli fltnftitl hyeenmqhp gllxfknt  
 18661 lqgllkplfk stsvpglysg crtlrpeke hgaatgvda ctlrlpdptp glxxexlywe  
 18721 lsxltxxixe lgyptldr xs lyvngfthxx sxpttstpgt stvxxgtsgt psspxxtxx  
 15 18781 xpllxpftxn xtitnlxxxx xmxpgrkfn nttxevlqgl lpxxfkntsv gklysgcrclt  
 18841 xlrrexkxgan txdai cxhx xpxkpxglxx exlywelsxl txxixelgpy tldrxslyvn  
 18901 gftthrtsvt tsgptstvhl atsgtppsl pghtapvpl ipftlnftit nlqyeedmhr  
 18961 pgssrkfntte rvlqgllsp i fknssvgp sgcrltsrp ekdgaaatgmd avclyhpnpk  
 19021 rpgldreqly celsqltmi telgpytsdr dlyvngfth qnsvpsttstp gtstvywatt  
 20 19081 gtpssfpgh xpxpllxpx nxxtitnlxx xmxpgrkfn kfntrervlq gllpxxfknt  
 19141 svgxlysgcr ltxlxrxe kx aatgxdaicx hxxopkxpgl xxexlywels xltxxixelg  
 19201 pytldr xsly vngfthwssg lttstpwst vdltsgtssx pvpsttapp lvpftlnft  
 19261 itnlyeedm hrpgsrkfna tervlqlls pifkntsvp lysgcrlt rpekaatg  
 19321 vdticthrvrd ppgpllxex lywelsxltx xelgpyt drxslyvngf thoxsxptts  
 25 19381 tpgsttvxg tsxtpssxpx xtxxoplxpx ftxnxtitl xmxpgrkfn srkfntrtexv  
 19441 lqgllxpxfk nxsvgxl ysg crltxlxek xgaatgvda ckhxxopkxpgl glxxexlywe  
 19501 lsxltxxixe lgyptldr xslyvngfthrs fgltsptw stvdlgtsgt pspvpsptta  
 19561 gpllpftln ftitnlhyee dmhrpgsrkfn nttervlqgl ltplfrntsv sslysgcrclt  
 19621 llrpekdga trvdavctrh pdpkspglxx exlywelsxl txxixelgpy tldrxslyvn  
 30 19681 gftthxxsxpt tsgptstvx xgtsgtssx pxxttxxopl xpftxnxtit nlxxxxxcmxx  
 19741 pgssrkfntte xvlqgllxpx fknxevgxl sgcrltxlr ekxgaatgxd aicxhxxxpk  
 19801 xpglxexly welsxltxxi xelgpytldr xslyvngfth wipvptsttstp gtstvdlgs  
 19861 tpsslpstt apglvpftl nftitnlqy edmgphgrk fnttervlqg llgpfiknts  
 19921 vgplysgcr tlsekdga atgvdaicih hldpkspglxx exlywelsxl txxixelgpy  
 35 19981 ytdlxslly vngfthxxp tsgptstvxxg tsgtsgtssx pxxttxxopl lxpftxnxti  
 20041 tnlxxxxxx xpgsrkfnt evlgllxpx fknxevgxl ysgcrltxlr xekxaatgx  
 20101 daicxhxxxk xpglxexly welsxltxxi xelgpyt drxslyvngfth qtfapntst  
 20161 pgtstvdlgt sgtppslps tsagpllvf tlnftitnlq yeemmhpgs rkfntrervl  
 20221 qgllgpmfkn tsvglllysgc rltlrrpekn gaatrvdavc thrpdpkspg lxxexlywel  
 40 20281 sxltxxixel gpytldr xsly vngfthxxs xpttstpgt tvxxgtsgt psspxxtapv  
 20341 pllipftlnf titnlhyeen mghpgsrkfn ttervlqgl kplfketsvg plyscrcrlt  
 20401 lrpekgaa gvdai ct r dptgpgrldre rlywelsqlt nsvtelgpyt lrdalivng  
 20461 ftqrsrvptt srgttsavhl etsgtppaslp ghtapgplv pftlnftitn lgyevdmhrp  
 20521 gsrkfntter vlgllkplf kstsvgplys crltxl rpekn gaatgvdt icthrlpdln  
 20581 pgldreqlyw elskltrgii elgpylldrg slyvngfthr nfvpitstpg tsvhlgts  
 20641 tpsslpriiv pgpllvfptl nftitnlqye eamrhpggrk fnttervlqg lirplfknts  
 20701 igplysscr tlrlpekdka atrvdaicth hdpdqspgln reqlwelsq lthgitelg  
 20761 ytdlxslly vngfthwspip tsgptstviv nlgtsgipps lpettxxopl lxpftxnxti  
 20821 tnlxxxxxx xpgsrkfnt ervlqgllk lfkstsvgpl ysgcrltllr pekdgvatr  
 20881 daictrhpd kipgldrql welsqlhs itelgpyt rdslyvngft qrssvpsttst  
 20941 pgtftvqpet setpsllppg tatgvpllp tlnftitnlq yeemmhpgs rkfntrervl  
 21001 qgllgpmfkn tsvslysgc rltlrrpekn gaatrvdavc thrpdpkspg ldrerlywkl  
 21061 sqlthitel gpytldr hsly vngfthqss mttrrtptds tmhlatrt p aslsqpttas  
 21121 pllvlfint titnlryeen mhhpgsrkfn ttervlqgl rpvfkntsvg plyscrcrlt  
 21181 lrpkfdgaat kvdaitcyr dpkspgldre qlywelsqlt hsitelgpyt lrdalivng  
 21241 ftqrsrvptt srgtptvdl gtsgtpvskp gpsaasplv lftlnftitn lryeenmqhp  
 21301 gsrkfntter vlgllrlsif kstsvgplys crltxl rpe kdgtatgvda icthhpdpk  
 21361 prldreqlyw elsglthnit elghyalnd slfvngfthr sssttstpg tptvylgask  
 21421 tpasifgpsa ashllilftl nftitnlrye enmwpgsrkfn nttervlqgl lrpdkntsv  
 21481 gplysgsrll lrlpekdgea tgvdaicth pdptgpgrld eqlylelsql thsitetgpy  
 21541 tldrdalivn gftsrssvpt tsgtgvseep ftlnftinl rymadmgqpg slkfnitdnv

21601 mkhllsplfq rsslgarytg crvialrsvk ngaetrvdl1 ctlyqlsgp glpikqvfhe  
 21661 lsqgthgitr lgpysldkds lyngynepg ldepptpkp attflpplse attamgyh1k  
 21721 tltlnftism lqyspdmgkg satfnstegv lghllrp1fq kssmgpfylg cqlislrpek  
 21781 dgaatgvdtt ctyhpdpvgp gldiqqlywe lsqqlthgvtq lgfyvldrds lfingyapqn  
 5 21841 lsirgeyqin fhivvnwnlsn pdptsseyit l1rdiqdkvt tlykgsqlhd tfrfc1vtln  
 21901 tmdsvlvtvk alfssnlps lveqvfldkt lnasfhwlgs tyqlvdihvt emessvygpt  
 21961 sssstqhfy1 nftitnlpys qdkaqpgrttt yqrnrknied alnqlfrnss iksyfsdcqv  
 22021 stfrsypnrh htgvds1cnf splarrvdrv aiyeeflrm1 rmgqlqnft ldrssvlvdg  
 22081 yspmrneplt gnsdlpfwav iliglagllg litclicgvl vttrrrkkeg eynvqqqcpg  
 10 22141 yyqshldled lq

## SEQ ID NO. 2

15 CA125 nucleic acid Genbank No. AF414442

## CDS 205..66663

1 aagcggtgc aattcccccc aacccctccata catacggcag ctcttc taga cacaggaaaa  
 61 cccaggctaa atgcggggac cccagccata tctccacccc tgagaatattt tggagtttca  
 121 gggagcttag aagctctgca gaggccaccc tctctgaggg gattttctt agacccat  
 20 181 ccagaggcaa atgttgaccc gtccatgtcg aaaccctcg gccttcctgg gtcatcttct  
 241 cccaccccgct ccttgcgtac agggagccagg agcaactaaag ccacaccaga aatggattca  
 301 ggactgacag gagccaccc tgcacctaag acatctacag gtgcaatcg ggtgacagaa  
 361 catactctgc ccttacttc cccagataag accttggcca gtcctacatc ttccgttgt  
 421 ggaagaacca cccagtctt ggggtgtatc tcctctgtc tccctgagtc aacctctaga  
 481 ggaatgacac actccgcgaca aagaaccagg ccatecgatc gtcccccaggta caatggaaact  
 541 ccctcttaga actaccctgc tacaagcatc gtttcaggat tgagtcccc aaggaccagg  
 601 accagtccca cagaaggaaa ttttaccaaa gaagcatcaatacacaact cactgttagag  
 661 accacaactg gcccaggatc tggaaactac acatccca ctgagaccc aacaactgaa  
 721 ggtgacagca cagagacccc ctgggacaca agatataatc ctgtaaaaat cacaatctca  
 781 atgaaaacat ttgcagattc aactgcattc aaggaaaatg ccccaatgtc tatgactcca  
 841 gctgagacca cagttactga ctcacatact ccaggaagga caaaccatc atttggaca  
 901 ctttattctt ctttccttgc cctatcaccc aaaggaccc caaatccag aggtgaaaca  
 961 agcctggaac tgattctatc aaccactggata tatecccttc ctctccctgc acctggctct  
 1021 gcaggacaca gcagaataag taccagtgcg cctttgtcat catctgcattc agttctcgat  
 1081 aataaaatat catattctca gcccaggatc tcacccccc tctgtctcc  
 1141 ggggtgcccgg aggccaggacg cagcacaatg cccaaactcg ctatccctt ttccatgaca  
 1201 ctaagcaatg cagaacaacaa tggcggaaagg gtcagaagca caatccctc tctgggact  
 1261 ccatcaatataccaaagca gacagcagag actatccca cttccatgc cttcgcttag  
 1321 accatggata tacccagcac ccacatgcc aagactttgg cttcagaatg gttggaaagt  
 40 1381 ccaggtaccc ttggtggcac cagcacttca ggcgtgacaa ccacatctcc atctaccact  
 1441 ttagtctcg aggagacccaa caccatcac tccacgatc gaaaggaaac agaaggaaact  
 1501 ttgaatacat ctatgactcc acttgagacc tctgtctcg gagaagatgc cgaaatgact  
 1561 gcccacccctt ccccccactt aggttttaca actctgtaca gcaagatcg aagtccatct  
 1621 caggctctt catccccaccc aacaagagatc tggcggaaagg cggcggac ccctgggagg  
 1681 cagagtccca gcacagctgc ccacgggagc tctgacatcc tgaggcacaac cacttccagc  
 1741 acctcaaaag catcatcatg gaccagtgaa agcacatcg agcaattttg tgaacccca  
 1801 cacacacatg ggggtggagac aagtccatgc atgaaaacac agagacccccc agcatcaacc  
 1861 agtgtggcag cccctatcac cacttctgtt ccctcgtgg tctctggctt caccaccctg  
 1921 aagaccagct ccacaaaagg gatttggctt gaaagaaatctgcagacac actccatcg  
 50 1981 gaatccacag ctggcccaac caccatcgatcc tttgtgttc ccactggat ttcaatgaca  
 2041 ggaggcagca gacccaggaa aagccaggcc acacccccc tactcaccag agccacagca  
 2101 tcatactgaga catccgcaga ttgactctg gccacgaacg gtgtcccagg ctccgtgtct  
 2161 ccagcagtga gcaagacggc tgctggctca agtccctccag gagggacaaa gccatcatat  
 2221 acaatggttt ctctgtcat ccctgagaca tcatacttc acgtccatcg tttcaggaa  
 2281 ggaaccagcc tgggactgac tccattaaac actagacatc cttctcttc ccctgaacca  
 2341 gactctgcag gacacacccaa gataaggacc acgattctc tgggtgcatt tgottcagtt  
 2401 cttgaggata aagtgtcagc gaccaggaca ttctcaacacc acaagccac ctatctatt  
 2461 accacacggga ctctgtaaat ctcaacaaag acaaagccca gtcagccgt tctttccctcc  
 2521 atgaccctaa gcaatgcagc aacaagtccctt gaaagagtca gaaatgcaac ttccctctg

2581 actcatccat ctccatcagg ggaagagaca gcaggagggt tcctcactct cagcacctct  
 2641 gctgagacta cagactcacc taacateccac ccaactggaa cactgacttc agaatcgta  
 2701 gagagtccata gcactctcag cttccaaagt gtctctggag taaaaccac atttctca  
 2761 tctactctt ccactcatet atttactagt ggagaagaaa cagagaaac ttcaaatcca  
 5 2821 tctgtgtctc aacctgagac ttctgttcc agagtaagga ccacccggc cagcacctct  
 2881 gtccttaccc cagtattccc caccatggac acctggccta cacgttcgc tcagttctt  
 2941 tcatecccacc tagtgagtga gctcagact acgagcaga cctcagttac aaactcaact  
 3001 ggtttagctc ttctctaaat atctcaccc actgggacgg caacaatgtc acagaccaat  
 3061 agagacacgt ttaatgactc tgctgcaccc caaagcacaa ttggccaga gactgtccc  
 10 3121 agattcaaga cagggttacc ttccagcaaca accactgtt caacctctg cacttcttc  
 3181 tctgtactg taatggtctc taaaatctc tttccagcaaa ctatccat ggaagcaact  
 3241 tctatcaggg aaccatcaac aaccatccctc acaaagagaa ccacgaatgg cccaggctot  
 3301 atggctgtgg ttcttaccaa catcccaatt gaaagggtt acattactga aggaagattg  
 3361 gacacaagcc atctgccccat ttggaccaca gttccctgt agacatctat ggatttacc  
 15 3421 atggccaaag aaagtgtctc aatgtcagta tctccatctc agtccatgg tgctgtggc  
 3481 tcaagcactc caggaaggac aagccaaattc gttgacacat ttctgtatga tgcttatcat  
 3541 ttaacatcca gagaattac aataacttaga gatggaaacaa gtcagctt gactccacaa  
 3601 atgatcggaa ctccacccctc atctcctgtat cttccatctc ctggctctg ctggcttggc  
 20 3661 atcttgtctc catctccatctc tttccatctact cccaaatgtca caatgtc cacatttca  
 3721 actcagagag tcaaccacaag catgataatg gacacagggtt aaactgtcg gtggacatg  
 3781 cccaaacttac ttccacccat ttccctgaca ccaagtaataa ttccaaacaa tggtgcata  
 3841 gaaaaaaagca ccctgggtcc ctggacact ccattccatg ccacatcatt ggaggcatca  
 3901 gaagggggac ttccaaaccc cagcacctac cctgaatcaa caaacacacc cagcacccac  
 3961 ctggagcac acgcttagttc agaaaatgtca agcaccatca aacttaccat ggctttagta  
 25 4021 gtaaaacctg gtccttacac acctctcacc ttcccctca tagagacca cattatgtta  
 4081 tcaacagcca gaatgggtt ctcttctggg tttccatctg agatgacagc tcctggagag  
 4141 actaactatgt gtatgttcc ggacccccc accatcatca ccactacggg tcctaaggat  
 4201 acaagttcag ctcaggatctc tacaccctcc tcagtgaggaa cactcagaac cacagaaaaac  
 4261 catccaaaga cagagtccgc cacccttgc gtttactctg gaagttctaa aatctcaagt  
 4321 tcacccaaatc tcaaccatgtcc ggcacaaaaa gcatggacca tcacagacac aacttcaac  
 4381 tccactcaat tacattacac aaaattggca gaaaaatcat ctggatttga gacacagtca  
 4441 gtcaggacat ctgtctgtt agtaatccctt acctccctta ccatttggaa cagcacattg  
 4501 gaactaactt ctgtatgtcc aggggaaacc ctggctctt ctccctgtga gcagaccaca  
 4561 atactctcc ccatggacac atggctgtatg accagtttga cagggaaat ggcttcaaca  
 4621 gacccgtata ttccaaatgtcc aagtttccatcc atgagttat ttgttccat tccacccat  
 4681 tccacccat tccatgttcc ttccaaatgtca gaggcagata ccagtccat tagaaatata  
 4741 gattcaacaa cgttggatca gcaacttggaa atcaggatgtt tggcggaaac tggggactta  
 4801 acaactgttcc ctatcaccctt actgacaacc acgtggacca gtgtgatgttcaac  
 4861 caagcacagg acacccttcc tgcaacatgtt agtccatctc acgttgacaca gtcactcaaa  
 4921 gatcaaactat ctatcaccat ctcaggatcc cttccatctt ttactgttctt ctaccctgag  
 4981 ctccggacca aaggggaaag ctccctgttag gcaaccactt ttggaaaacc atctacagac  
 5041 acactgttcc gagatgttca gactggccca acaaaccatcc aatccactcc acccatggac  
 5101 aacacaacaa cggggacatc tagatgttca gtcaccctgg gcatggccca cttccat  
 5161 ggaacatccctt ccccatgtt gacatggacaa aacatggdacttggaaagaa aagtcttaca  
 5221 gccactgttcc ctatggctt gacatgggaa cttccatgttcc ctatgttcc agggaaagac  
 5281 atcagccatgtt cttccatgttcc agtttccatctt gtccttcttctt agtccatcttcc tggggactt  
 5341 acagattctt gtaaggaaag cagcccaagg ctgaacacac agggaaatac agtccatctcc  
 5401 ttccctcttcc aaccctgttcc ttgttccatgtt gacatggacaa gtcaccctgg gcatggccca  
 5461 tcatctccatcttcc caactcttcc ttgttccatgtt gacatggacaa gtcaccctgg gcatggccca  
 5521 ttccatgttcc ctatggctt gacatgggaa cttccatgttcc ctatgttcc agggaaagac  
 5581 gtcacccttcc ttccatgttcc ttgttccatgtt gacatggacaa gtcaccctgg gcatggccca  
 5641 acgtcccttcc ttgttccatgtt gacatggacaa gtcaccctgg gcatggccca  
 5701 tcatctccatcttcc caactcttcc ttgttccatgtt gacatggacaa gtcaccctgg gcatggccca  
 5761 accagctctg caggactttt ggccactgtac aggttccatgtt gacatggacaa gtcaccctgg gcatggccca  
 5821 tccatgttcc ttccatgttcc ttgttccatgtt gacatggacaa gtcaccctgg gcatggccca  
 5881 cacacttccatcttcc ttgttccatgtt gacatggacaa gtcaccctgg gcatggccca  
 5941 gagacccatgttcc ttgttccatgtt gacatggacaa gtcaccctgg gcatggccca  
 6001 agcttaatccatgttcc ttgttccatgtt gacatggacaa gtcaccctgg gcatggccca  
 6061 tcaggaccatcttcc ttgttccatgtt gacatggacaa gtcaccctgg gcatggccca  
 6121 gtatggacatcttcc ttgttccatgtt gacatggacaa gtcaccctgg gcatggccca  
 6181 gaaaaatgtt ccgttccatgtt gacatggacaa gtcaccctgg gcatggccca

6241 tcccctaccc atgagaattc agtctttctt ggaagcagca catcctctcc atattcctca  
 6301 gcctcaactt aatccttggg ttccacaatc agtaggagga atgcaatcac ttctggcta  
 6361 tgggacotca ctacatctt cccccactaca acttggccaa gtactagttt atctgaggca  
 6421 ctgtccctcg gccattctgg gggttcaaacc ccaagttcaa ctacgactga attccactc  
 6481 ttttcagctg catccacatc tgctgtaaag caaaagaatc cagaacacaga gaccatgg  
 6541 ccccagaata cagccgcgag tactttgaac actgtatgcac ctcggcac aggttttct  
 6601 gagactcctg tgggggcaag tatcatgtct gaagtcctc ttccaatggc cataacttct  
 6661 agatcagatg ttcttggcct tacatctgag agtactgtta acccgagttt aggacacagcc  
 6721 tcttcagcgg gggccaaatt aactaggaca atatccctgc ccacttcaga gtctttgg  
 6781 tccttagaa tgaacaaggaa tccatggaca gtgtcaatcc ctttggggtt ccatccaaact  
 6841 actaatacag aaacaagcat cccagtaaac acgcgcaggc caccctggctt gtcacagta  
 6901 gcatcagatg taatttgacac accttcagat ggggtgtgaga gtattttccat tgatctt  
 6961 tccccctccc ctgatactga agtgacaact atctcacatt tcccaaaaaa gacaactcat  
 7021 tcatttagaa ccatttcatc tctcaactcat gagttgactt caagagtgc acctattc  
 7081 ggggatttggg tgagttcagc tatgtctaca aagccccacag gagccagttt ctcattaca  
 7141 ctgggagaga gaaggacaat caccttcgtc gtcaccaacca cttccccat agttctca  
 7201 gctagtttca cagagaccag cacagtttca ctggataatg aaactacagt aaaaacctca  
 7261 gatatccttgc acgcacggaa aacaaatggat cttcccttcg atagcgttc ttcttcgtat  
 7321 ctgtatcaaca cttccatagc ttcttcactt atggatgtca ctaaaacacgc ctccatc  
 7381 cccatcagtaa ctccatggat gacacaaatgatc tccatcccactt ctcttc ttcagataga  
 7441 ccccaagggttcc cccatcactac aacagagaca aatacagcca cctctccatc tgttcc  
 7501 aacaccttatt ctcttggatgg ggggtccaaat gtgggtggca ctccatccac ttaccaccc  
 7561 tttaacaatca cccaccctgt cgagacaacg tggcccttat tagctggc tagaccagta  
 7621 agaacttca gacccatggt cagcaatgc actgccttcg gaaaaatcc tacctctagc  
 7681 aattctgtgg tgacttctgt tccagcaccat ggtacatggg ccagtgttagg cagactact  
 7741 gacttacatc ccatgggtt tctcaagaca agtctctgcag gagaggcaca ctcacttctca  
 7801 gcatcaactt tggaccaggc cactgccttc actcccccatttctcactgcagc agtgttca  
 7861 ggatccatgt ctatcatcaga agccatgtt ctcactacaa gtgaagcaaa agcattcat  
 7921 tcttcaccac agaccccaac tacacccacc tctggagacaa actggaaac ttca  
 7981 cctgagagcc ttttggtagt cactggactt taagacacaa cacttacccaa aagatttt  
 8041 gtcacagata ccattttgtt ttcaactgtt tccacgcac cttctaaatttccaaatgc  
 8101 gggactctgt ctggagcttc ctccctact ttactcccg acactccacg catccctctc  
 8161 actgccactg agccaacaacg ttcatctgtt acatccttgc attccaccccc actgggtact  
 8221 atagcttctgg atagcttctgg cacatggccca gagactaccc tgaccatgtc agagac  
 8281 aatgtgtatg cactgggtt taagacacaa agtacccacatgggatccatccatcc  
 8341 actatccaag gagaacaga aagtccactt ctcacttctt ccacttcccc ctctaaatg  
 8401 gttgtccac ggaataacaaatc ctatggatgtt tgcacatccatccatccatcc  
 8461 gcccggactt ctgggtccct tgcacatgtt cagatgttccatccatccatccatcc  
 8521 ttggtagact catcactgtt gcttggatgg gcatctgttgc tgccactaac  
 8581 cagggtatgg ctatgttgc aggaatcaga agtgggttca ctcactcaac tgaaaccc  
 8641 acattttctt ctctccctt gaccatgaaac ccagggttgc ttacagccat gtctgaaatc  
 8701 accaccaaca gactgacacg tactcaatca acagcacca aagggtatacc tgtaagccc  
 8761 accatgttgc agtcaggccctt ctcacacccat gtctctgtt ctcacacccat  
 8821 ttggcttccatc tgcacatgtt ctcacttccatccatccatccatccatccatcc  
 8881 ttggatgtttt ctgggttccatccatccatccatccatccatccatccatccatccatcc  
 8941 cagttccatccatccatccatccatccatccatccatccatccatccatccatccatcc  
 9001 tctccagaaaaaaaacccaaag ggcaggatgtt atgacttccatccatccatccatcc  
 9061 tcatttcaat caacatgtt tactgaaacc ctcacttccatccatccatccatcc  
 9121 gggcatgaaac ccacatgttgc cacttcacatccatccatccatccatccatccatcc  
 9181 atgttccatccatccatccatccatccatccatccatccatccatccatccatccatcc  
 9241 aaactcacaatc ctctccatccatccatccatccatccatccatccatccatccatcc  
 9301 ataagcttccatccatccatccatccatccatccatccatccatccatccatccatcc  
 9361 aagacttccatccatccatccatccatccatccatccatccatccatccatccatcc  
 9421 cagacttccatccatccatccatccatccatccatccatccatccatccatccatcc  
 9481 cctgagtttccatccatccatccatccatccatccatccatccatccatccatccatcc  
 9541 acgttaacccatc tcaaccatc tgacatccatccatccatccatccatccatccatcc  
 9601 gaacccacag ccacaaacaaatgatgttccatccatccatccatccatccatccatcc  
 9661 gccaagacccatccatccatccatccatccatccatccatccatccatccatccatcc  
 9721 agccaggcag cacaaggaaa ttccacatgttccatccatccatccatccatccatcc  
 9781 ccacccacag ccacaaacaaatgatgttccatccatccatccatccatccatccatcc  
 9841 aacccacccatccatccatccatccatccatccatccatccatccatccatccatccatcc

9901 ccagaaacaa ctgttccat ggagaccaca gtggAACAG tcaccTTCA gtcCACAGCC  
 9961 ctaggaagtgcagcaccAG catCTCTCAC ctGCCCACAG gaACCACATC accAACCAAG  
 10021 tcaccaacAG aaaATATGTT ggCTACAGAA aggGTCTCC tCTCCATC cCCACCTGAG  
 10081 gcttggacca acCTTATTc tggAACTCCA ggAGGGACCA ggcAGTCACT ggcACAATG  
 5 10141 tcCTCTGTCT CCCTAGAGTC accAACTGCT agaAGCATCA caggGACTGG tcaGCAAAGC  
 10201 agtCCAGAAC tgGTTCAAA gacaACTGGA atGGAATTCT ctATGTGGCA tggCTCTACT  
 10261 ggAGGGACCA caggGGACAC acATGTCTCT ctGAGCACAT ctTCCAAATA cCTTGAAGAC  
 10321 cctGTAACCA gcccAAACTC tGtgAGCTCA ttGACAGATA aatCCAAACA taaaACCAGG  
 10381 acatGGTAA gCACCAcAGC catTCCCTCC ACTGTCTGA ataATAAGAT aatGGCAGCT  
 10 10441 gaacaACAGA caAGTCGATC tGtgATGAG gCTTATTCT CAACTAGTTc ttGTCAGAT  
 10501 cagACATCTG ggAGTGACAT CACCCCTGGT GCACTCTCTG ATGTCAACAA cacATTAC  
 10561 atCACCTCCA cAGCACAAAC CACCTACTA tGtgCTCTGC CCTCTGGAGA cCAAGGCATT  
 10621 acaAGCCTCA cCAATCCCTC aggAGGAAA AcaAGCTCTG CGTCATCTGT cACATCTCCT  
 10681 tcaATAGGGC ttGAGACTCT gAGGGAAT gtaAGTGCAG tgAAAAGTGA cATTGCCCT  
 15 10741 actGCTGGC atCTATCTCA gACTTCATCT CCTCGGGAG tgAGCATCT GGAAGTAAAC  
 10801 acAGCTCTCA CTCCAGGTAT CTCCACCAc ATCACCAcA tggGAACCAA CTCAATCTCA  
 10861 actACACAC cCAACCCAGA AGTGGGTATG AGTACCATGG ACAGCACCCCC GGCACAGAG  
 10921 aggGCACAA CTCTACAGA ACACCCCTCC ACCTGGTCTT CCACAGCTGC ATCAAGATCC  
 20 10981 tggACTGTCA cAGCATGAC tttCAACTTG AAAGTTGCAA GATCTCTGG AACAATTCC  
 11041 acaATGCTCA cAACTTCATT CTTAGCTCA AGCAGTAAG TAGACTCCAT GTCTACTCCC  
 11101 catGGCCGTA taACTGTcat tggAACCCAGC CTGGTCACTC CATCCTCTGA tgCTTCAGOT  
 11161 gtaAAAGACAG agACCAGTAC aAGTGAAGA ACATTGAGTC CTTCAAGACAC AACTGCTACT  
 11221 actCCCATCT CAACTTTTC tCGTGTCCAG AGGATGAGCA TCTCAGTTCC TGACATTTA  
 11281 agtACAAGTT ggACTCCAG tagTACAGAA GCAGAAGATG TGCTGTTC AATGGTTCT  
 25 11341 acAGATCATG CTAGTACAAAG gACTGACCCCA aATAcGCCc TGTCACCTT TCTGTTGAT  
 11401 totCTGTCCA CTTGACTG ggACACTGGG AGATCTCTG CATCAGCCAC AGCCACTACCC  
 11461 tcAGCTCTC AGGGGGCCAC AACTCCCCAG GAACtCTACT tgGAAACCAT GATCAGGCCA  
 11521 gCTACCTCAc AGTTGCCCTT CTCTATAGG CACATTACAA GTGCACTGC ACCAGCTGC  
 11581 atGGCAAGGA gCTCTGGAGT TACTTTCTA AGACCAgATC CCACAAGCAA AAAGGCAGAG  
 30 11641 cAGACTTCCA CTCAGCTTCC CACCAcACT tCTGCACATC CAGGGCAGGT GCCAGATCA  
 11701 gcAGCAACAA CTCCTGGATGT GATCCCACAC ACAGCAAAAAA CTCCAGATGC AACTTTCAg  
 11761 agacaAGGGC agACAGTCTT tacaACAGAG GCAAGAGTA CATCTGACTC CTGGAATGAG  
 11821 aaAGAAAAT CAACCCCAAG tGCACTCTGG ATCACTGAGA tGATGAATTc TGTCTCAGAA  
 11881 gataCCATCA AGGAGGTTAC CAGCTCTCC AGTGTATTAA AGGACCCCTGA ATACGCTGGA  
 35 11941 cATAAACTTG GATCTGGGA CGACTTCATC CCCAAAGTTG gAAAAGCAGC CCATATGAGA  
 12001 gagTTGCCCTTCTCTGAGTCC ACCACAGGAC AAAGAGGAA TTCACCTTC TACAACACAA  
 12061 gtagAGACCA CAGGCTGGT CACAAGTTCC AACATGCTC CTCATCCAC TATCCAGCC  
 12121 cactCAGeGT CATCCTAAACT CACATCTCCA GTGGTTACAA CCTCCACCAg GGAACAAGCA  
 12181 atAGTTCTA tGTCACAAAC CACATGGCCA GAGTCTACAA GGGCTAGAAC AGAGCTTAAT  
 40 12241 tcCTCTTGTa CTATTGAACT gAGGGACGTC AGCCCTTACA TGGACACCAg CTCAACCCCA  
 12301 cAAACAAGTA tTATCTCTC CCCAGGTTC ACTGCGATCA CCAAGGGCC TAGAACAGAA  
 12361 attACCTCTCt CTAAAGAGAT ATCCAGCTCA ttCCCTGGCC AGTCTATGAG GTEGTAGAC  
 12421 agCCCTCTAG AAGCCATCAC CAGGCTGTCT AACTTCTCTG CCACTGACAGA ATCTGGAGGA  
 12481 atGATCTCTG CTATGCAACAC AAGTCCACCTT GGCCTACAT CACTAAGTGC ACCTACTTG  
 45 12541 gataCATCAG CCACAGCCTC CTGGACAGGG ACTCCACTGG CTACGACTCA GAGATTACA  
 12601 tactCAGAGA AGACCACCTCT CTTAGCAAA GGTCTGTAGG ATACATCACA GCCAAGCCCT  
 12661 CCCTCTGTGG AAGAAACCAg CTCTCTCTC TCCCTGGTAC CTATCCATGC TACAACCTCG  
 12721 CCTTCAATA TTtGTTGAC ATCACAAGGG CACAGTCCCT CCTCTACTCC ACCTGTGACC  
 12781 tCAGTTTCT tGTCAGAC CTCTGGCTG gggAAAGACCA CAGACATGTC GAGGATAAGC  
 12841 ttGGAACCTG GCACAAAGTTT ACCTCCCAAT ttGAGCAGTA CAGCAGGTGA GGCCTTATCC  
 50 12901 attATGAGA CCTCCAGAGA tacaAAAGGC ATTATCATT CTGAGACAC AGCAAGTGCAG  
 12961 aATATGAGG CAAACAGGTT tGAATATTCT CCTATCCAG GCCATACAAA GCCATCCAAA  
 13021 gCCACATCTC CATTGGTTAC CTCCACATC ATGGGGGACA TCACCTTTC CACATCAGTA  
 13081 tttGGCTCTT CCGAGACAC AGAGATTGAG ACAGTGTCTT CTGTGAACCA GGGACTTCAG  
 13141 gagAGAGCA CATCCAGGT GGCCAGCTCT GCTACAGAGA CAAGCACTGT CATTACCCAT  
 13201 gtGTCAGTG GTGATGCTAC TACTCATGTC ACCAAGACAC AAGCCACTT CTCTAGCGGA  
 13261 acATCCATCT CAAGCCCTCA tCAGTTTATA ACTTCTACCA ACACATTAC AGATGTGAGC  
 13321 accAAACCCCT CCACCTCTCT GATAATGACA GAATCTTAG GAGTACCCAT CACCACCCAA  
 13381 acAGGTCTA CTGGAGCTGC AACACAGGGT CCATATCTCT TGGACACATC AACCATGCCT  
 60 13441 tactTGACAG AGACTCCATT AGCTGTGACT CCAGATTtA TGCAATCAGA GAAGACCACT  
 13501 cTCATAAGCA AAGGTCCCAA GGATGTGACC TGGACAAGCC CTCCCTCTG GGCAGAAACC

13561 agctatccct cttcccgtac accttttgg gtcacaacca tacctcctgc cacttccacg  
 13621 ttacaaggc aacatacata ctctcctgtt tctgcgactt cagttctac ctctggactg  
 13681 gtgaagacca cagatatgtt gaacacaacg atgaaacctg tgaccaattc acctaaaaat  
 13741 ttgaacaatc catcaaatac gatactggcc acttggcag ccaccacaga tatagagact  
 5 13801 attcatcctt ccataaaca agcagtgacc aatatggga ctgccagtc agcacatgt  
 13861 ctgcattcca ctctcccgat cagctcgaaa ccatctacag ccacatctcc aatgggtct  
 13921 gcctccagca tgggggacgc tcttgcgtt atatcaatac ctggttctga gaccacagac  
 13981 attgagggag agccaacatc ctccctgact gctggacaa aagagaacag cacccctccag  
 14041 gagatgaact caactacaga gtcacaaatc atcccttcca atgtgtctgt gggggctatt  
 10 14101 actaagggca caaaaatggg agtccccctt tttgtatgca cattcatacc aactcctgct  
 14161 cagtcacaa agtccccaga tattttctca gtatcccgaa gtgactttc aaactctct  
 14221 cccatgacaa tatctaccca catgacccac accccacag ggtctctgg agtacatca  
 14281 aagattccac ttgccttaga cacaatcaacc ttggaaacct cagcaggac tccatcagt  
 14341 gtgactgagg ggttgcacca ctcaaaaata accactgca tgaacaatga tgcaggac  
 15 14401 gtgtcacaga caaacccctt ctccctggat gaagccagct ctcccttcc tcaaggac  
 14461 gtccttgtca caacccattacc ttcttcgtt gcttcacac cgcaatggca cagttac  
 14521 tctctgttt ctatgtccctc agttttactt ctccactgg taaagaccgc aggcaagg  
 14581 gatacaagct tagaaacact gaccatgtca ctcacaaatg tgaccaacac tttggatgac  
 14641 atatcggtca ctcccgacg caccacatg atagagacaa cgcacccctt cataaaca  
 20 14701 gtatgtacca atgtggggac caccgggtca gcatgttacatc caccatctac tgctct  
 14761 taccacagac catctaaatg cacaatccca aatgttacca cttccacccat ggaagacacc  
 14821 acaatttccc gatcaataacc taaatcttca aagactacaa gaactgagac tgagacaact  
 14881 tcctccctga ctccctaaatc gagggagacc agcatctcc aggagatcac ctgcgtccaca  
 14941 gagacaagca ctgttcccta caaagagctc actgggtccca ctaccggat atccaggaca  
 25 15001 gatgtactt cctctagcag tacatcttc cttggccctg atcagtccac agtgcacta  
 15061 gacatctcca cagaaacccaa caccaggctt tttttccca caataatgac agaatctgca  
 15121 gaaataacca tccaccacca aacagggttcatgggctt catcacaggat tacatttacc  
 15181 atggaccat caaatacaac ccccccggca gggatccat cagctatgac tcatggatt  
 15241 tcacaattgg atgtggggac tcttatgacca agaattccac aggatgtatc atgacaatg  
 30 15301 cttccctctg tgataaaaac cagctccccc ttttccttc tgccttcacc tgcataatgacc  
 15361 acacccccc tgatttcttcc taccttacca gaggataacg ttcctctcc tatgacttca  
 15421 ctttcaccc ctggcttagt gaagattaca gacatattac gtacacgctt ggaacccctg  
 15481 accagctcac ttccaaattt cagcagccac tcagataaga tactggccac ttctaaagac  
 15541 agtaaaagaca caaaggaaat ttttcccttctt ataaacacag aagagaccaat tgtaaaagcc  
 35 15601 aacaactctg gacatgttcc cccatccccctt gcaactggctg actcagagac acccaaaagcc  
 15661 aacaactaaa tggttacac caccactgtt ggagatccag ctcccttccac atcaatgcca  
 15721 gtgcattgtt cctctgagac tacaacattt aagagagacg caacatattt ctgtacttct  
 15781 agactgagag agaccaggatc ctctcaggag tccagcttc ccacggacac aagttttctt  
 15841 cttccaaatg tccccactgg tactattact gaggttccca gtacagggtt caactcttct  
 40 15901 agcaaaaatcc caacccca ccatgataag tccacagtgc cacctgacac ctccacagg  
 15961 gagatccccca gggtcttcac cttcccttattt aagacaaaat ctgcagaaat gacatcacc  
 16021 accaaagcaa gtctcttgc gtcgtcatcg cacagtaccc ttcccttggc cacatcaacc  
 16081 acactttccc aggggggac tcattcaact gtgactcagg gattccatca ctcaaggatg  
 16141 accatctca tggcatggg tcttggaaat gtgtcatgg tgcacactcc ccctgtggaa  
 45 16201 gaaaccagat ctgtgtcttc cctgtatgtt tcaatggccca tgacatcccc ttctcctgtt  
 16261 tcctccacat caccacagag catccccctt ttcctcttc ctgtgactgc acttcctact  
 16321 tctgttctgg tgacaaaccac agatgtgtt ggcacaaacaa gcccagatgc tgtaaccagg  
 16381 tcaccccttca atttgagcag catcaactcat gagagacccg ccacttacaa agacactgca  
 16441 cacacagaag cggccatgca tcattccaca aacaccgcag tgaccaatgt aggacttcc  
 50 16501 gggctggac ataaatcaca atcctctgtt ctgtgtactt cagagacatc gaaagccaca  
 16561 cctctgtatc gtaccaccc tccatgggg gacacaatgtt ttcccttgc aactcctaat  
 16621 atctctcaga ctaacccaaat tcaacacagat ccaacacatc ccctgagcc tagactgagg  
 16681 gagagcagca cgtctgagaa gaccagatca acaacagaga caaatactgc cttttctt  
 16741 gtgcctccatc gtgttattac tcaggctcc agaacagaaa ttccctcttag cagaacatcc  
 55 16801 atctcagacc ttgtatggcc cacaatagca cccgacatctt ccacaggaat gatcaccagg  
 16861 ctccctaccc ccccccattcat gacaaaatctt gcaacatgtt ccgtcaccac tcaaaacaact  
 16921 actcctgggg ctacatcaca gggatccctt ctttggacatc catcaaccac acttttccag  
 16981 ggaggactc attcaaccgt gtctcaggaa ttccctactt cagagataac cacttctcg  
 17041 agcagaaccc ctggagatgt gtcatggatc acaactcccc ctgtgaaaga aaccagctt  
 17101 gggtttcccc tgatgttccatc ttccatgaca tcccttccctc ctgttccctc cacatccaca  
 17161 gagagcatcc cccctcttcc tccctctgtt actgcacttc ttacttctgt tctggatc

|    |       |              |              |             |             |             |             |
|----|-------|--------------|--------------|-------------|-------------|-------------|-------------|
|    | 17221 | accaccaatg   | tattgggcac   | aacaaggcca  | gagaccgtaa  | cgagttcacc  | tccaaattta  |
| 5  | 17281 | agcagccccca  | cacaggagag   | actgaccact  | tacaaaagaca | ctgcgcacac  | agaagccatg  |
|    | 17341 | catgcttcca   | tgcatacataaa | cactgcagtg  | gccaacgtcg  | ggacctccat  | ttctggacat  |
|    | 17401 | gaatcacaat   | cttctgtccc   | agctgattca  | cacacatcca  | aagccacatc  | tccaatgggt  |
|    | 17461 | atccaccccteg | ccatggggga   | tacaatgttt  | tctacatcaa  | cttcctgcctt | ctttgagact  |
|    | 17521 | agaattcaga   | ctgaatcaac   | atcctctttt  | attctggat   | taagggacac  | caggacgtct  |
|    | 17581 | gaggagatca   | acactgtgac   | agagaccage  | actgtcctt   | cagaatgtcc  | cactactact  |
| 10 | 17641 | actactgagg   | tctccaggac   | agaatgttac  | atcttcagca  | gacaacccat  | ctcaggcct   |
|    | 17701 | gatcattcca   | aaatgtcacc   | ctacatctcc  | acagaaaacca | tccacaggct  | tcctaccattt |
|    | 17761 | cctttgtaa    | caggatccac   | agaaatggcc  | atcaccacacc | aaacagggtcc | tatagggact  |
|    | 17821 | atctcacagg   | ctacccttac   | cctggacaca  | tcaagcacag  | cttcctggga  | agggactcac  |
|    | 17881 | tcacacctgt   | ctcagagatt   | tccacactca  | gaggagacca  | ctactatgag  | cagaagtact  |
| 15 | 17941 | aaggggcgtgt  | catggcaaaag  | ccctccctct  | gttggagaaa  | ccagttctcc  | ttcttccccca |
|    | 18001 | gtgccttac    | ctgcaataac   | cttacattca  | tctctttatt  | ccgcagttac  | aggaagttagc |
|    | 18061 | ccccactctg   | ctctccctgt   | gacttccctt  | ctcacctctg  | gcaggaggaa  | gaccatagac  |
|    | 18121 | atgttggaca   | cacactcaga   | acttgtgacc  | agctcccttac | caagtgcag   | tagcttctca  |
|    | 18181 | ggtgagatac   | tcacttctga   | agcttccaca  | aatacagaga  | caattcttt   | ttcagagaac  |
|    | 18241 | acagcagaaaa  | ccaaatatggg  | gaccaccaat  | tctatgcata  | aactacatcc  | ctctgtctca  |
| 20 | 18301 | atccactccc   | agccatccgg   | acacacaccc  | ccaaaggta   | ctggatctat  | gatggaggac  |
|    | 18361 | gctattgttt   | ccacatcaac   | acctgggttct | cctgagacta  | aaaatgttga  | cagagactcea |
|    | 18421 | acatccccctc  | tgactcctga   | actgaaagag  | gacagcaccg  | ccctgggtat  | gaactcaact  |
|    | 18481 | acagagtcac   | acactgtttt   | ctccagtg    | tccctggatg  | ctgctactga  | ggtctccagg  |
| 25 | 18541 | gcagaagtc    | ctactataga   | tcctacattc  | atgcaggtt   | ctgctcagtc  | aacaaagtcc  |
|    | 18601 | ccagacattt   | cacccatgg    | caggcagg    | cattctaact  | cttcctccctt | gacaatatct  |
|    | 18661 | acacacaaga   | ccatcgccac   | acaaacagg   | cttcctgggg  | tgacatctt   | tggccaaact  |
|    | 18721 | accctggaca   | catcaaccat   | agccaccc    | gcaggaactc  | catcagccag  | aactcaggat  |
|    | 18781 | ttttagatt    | cagaaacaac   | cagtgtcat   | aacaatgatc  | tcaatgtat   | gttqaagaca  |
| 30 | 18841 | agccctttct   | ctgcagaaga   | agccacactt  | ctctttctc   | aggcacctct  | ccttgtgaca  |
|    | 18901 | acctcacctt   | ctctgttaac   | ttccacattt  | caagagcaca  | gtacctctc   | tcttgttct   |
|    | 18961 | gtgacccatcag | tacccacccc   | tacactggcg  | aagatcaca   | acatggacac  | aaacttagaa  |
|    | 19021 | cctgtgactc   | gttcacccatc  | aaatttaaagg | aacacccctt  | ccacttcaga  | agccacccaca |
|    | 19081 | gatacacaaca  | caatgtatcc   | tttataaaac  | acagaaatgg  | ccaaatgtggg | gaccacccat  |
| 35 | 19141 | tcaccaaata   | aattctattt   | tactgtctca  | cctgactcag  | accatataaa  | agccacatcc  |
|    | 19201 | gcagtagttt   | tcacttccac   | ctcgggggac  | tcaatagttt  | ccacatca    | gcctgatoc   |
|    | 19261 | tctgcgtat    | aaaagattga   | gtctgagaca  | actttctcc   | tgatatttag  | actgaggagg  |
|    | 19321 | actagcacct   | cccagaaaaat  | tggctcatcc  | tcagacacaa  | gcacggcttt  | tgacaaagca  |
| .  | 19381 | ttcactgtcg   | ctactactga   | ggctccaga   | acagaactca  | cetcctctag  | cagaacatcc  |
|    | 19441 | atccaaaggca  | ctgaaaaggcc  | cacaatgtca  | ccggacaccc  | ccacaagatc  | tgtcaccatg  |
| 40 | 19501 | ctttcttactt  | ttgctggct    | gacaaaatcc  | gaagaaagg   | ccattggcc   | ccaaacagg   |
|    | 19561 | cctctatagg   | cgacatcaca   | gggtacccctt | acctgggaca  | catcaatcac  | aacccatccag |
|    | 19621 | gcagggaccc   | actcagctat   | gactcatgg   | ttttcaataat | tagattgtc   | cacttccatc  |
|    | 19681 | agtagagttc   | ctgagtagat   | atcagggaca  | agccacccctt | ctgtggaaaa  | aaccacgtct  |
|    | 19741 | tccttctccc   | ttctgtctt    | accagaata   | acctcaccgt  | ccctgttacc  | tactacatta  |
| 45 | 19801 | ccagaaagta   | ggccgttcc    | tcctgttcat  | ctgacttca   | tccccaccc   | tggcttagtg  |
|    | 19861 | aagaccacag   | atatgtggc    | atctgtggcc  | agtttaccc   | caaacttggg  | cagcacccatc |
|    | 19921 | cataagatac   | cgactactt    | agaagacatt  | aaagatacag  | agaaaatgt   | tccttccaca  |
|    | 19981 | aacatagcag   | taaccatgt    | ggggaccacc  | acttctgaaa  | aggaatctt   | ttcgtctgtc  |
| 50 | 20041 | ccagccctact  | cagaaccacc   | caaagtccac  | tctccatgg   | ttacatgtt   | caacataagg  |
|    | 20101 | gacaccattt   | ttttccatcc   | catgcctgg   | tcctgttgc   | ttacaaggat  | tgagatggag  |
|    | 20161 | tcacaccattt  | ccgtggctca   | tggctgttgc  | ggaaaccgac  | ccctccagga  | ccccatctgt  |
|    | 20221 | tcacacagaga  | aaagtgttgt   | ccttcacaa   | ttgaccactg  | gtgctactga  | gacccatctgg |
|    | 20281 | acagaagttt   | cctcttctag   | aagaacatcc  | attccaggcc  | ctgatcattc  | cacagagtca  |
|    | 20341 | ccagacatct   | ccactgttgt   | gatccccagc  | ctgccttatct | cccttggcat  | tacagaatct  |
| 55 | 20401 | tcaaataat    | ccatcatcac   | tcgaacagg   | cctcccttgc  | gtctacatc   | acagggcaca  |
|    | 20461 | tttaccccttgg | acaccaaaac   | tacatctcc   | agggcaggaa  | cacactcgat  | ggcgaactcg  |
|    | 20521 | gaatccatc    | actcagaaaat  | gaccactgtc  | atgaaaacagg | accctggat   | tctatcatgg  |
|    | 20581 | acaatccctc   | cttctataga   | gaaaaccagg  | ttctctctt   | ccctgtatgc  | ttcaccagcc  |
|    | 20641 | atgacttca    | tcctgtttt    | ctcaacattt  | ccaaagacca  | ttcacaccac  | tccttctcc   |
| 60 | 20701 | atgacccatc   | tgctcacc     | tagcttagt   | atgaccacag  | acacccatgg  | caagggccca  |
|    | 20761 | gaacccatc    | ccagttcacc   | tccaaat     | agcagttaccc | cacatgttat  | actgacaaaca |
|    | 20821 | gatgaaagaca  | ccacagctat   | agaagccat   | catccctcca  | caagcacacg  | agcgaactaat |

|    |       |             |             |             |             |             |              |
|----|-------|-------------|-------------|-------------|-------------|-------------|--------------|
|    | 20881 | gtggaaacca  | cctgttctgg  | acatgggtca  | caatcctctg  | tcctaactga  | ctcagaaaa    |
|    | 20941 | accaaggcca  | cagctccaat  | ggataccacc  | ttcacccatgg | ggcataacaac | tgtttccaca   |
| 5  | 21001 | tcaatgtctg  | tttcctctga  | gactacaaaa  | attaagagag  | agtcaacata  | ttcccttgact  |
|    | 21061 | cctgactga   | gagagaccag  | cattcccaa   | aatgcacgt   | tttccactga  | cacaagtatt   |
|    | 21121 | gttctttcag  | aagtccccac  | tggtaactact | gctgagggtct | ccaggacaga  | agtcacccctc  |
|    | 21181 | tctggtagaa  | catccatccc  | tggcccttct  | cagtcacacag | tttgcacaga  | aatatccaca   |
|    | 21241 | agaacaatga  | caaggcttt   | tgcctcgccc  | accatgacag  | aatcgcaga   | aatgaccatc   |
| 10 | 21301 | cccactcaa   | caggcttctt  | ttggtcttca  | tcacaggata  | cctttaccc   | ggacacatcc   |
|    | 21361 | accacaaaagt | cccaggcaaa  | gactcatca   | acttttactc  | agagattcc   | acatccatcg   |
|    | 21421 | atgaccactc  | tcatgacgag  | agggtcttgg  | gatatgtcat  | ggcaaagctc  | ttccctctctg  |
|    | 21481 | aaaaatccca  | gctctctccc  | ttccctgtct  | tctttacctg  | ccacaacctc  | aceteectccc  |
| 15 | 21541 | atttcttcca  | cattaccagt  | gactatctcc  | tcctcttcctc | ttctgtgac   | ttcaacttctc  |
|    | 21601 | acctttagcc  | cggtAACGAC  | cacagacatg  | ttacacacaa  | gcccagaact  | tgtaccagg    |
|    | 21661 | tcaccccaa   | agctgaccca  | cacttcagat  | gagagactga  | ccactggcaa  | ggacaccaca   |
|    | 21721 | aatacagaag  | ctgtgcattcc | ttccacaaaac | acagcagcgt  | ccaatgttgg  | gattcccaagc  |
|    | 21781 | tttggacatg  | aatcccccctt | ctctgcctt   | gctgactcg   | agacatccaa  | agccacatca   |
|    | 21841 | ccaaatgttt  | ttacccctcc  | ccaggaggat  | aaactgttg   | ccatataac   | cccttcactt   |
|    | 21901 | ttggagacta  | gcagaattca  | gaaagagtc   | atttctccc   | tgagccctaa  | attgaggggg   |
| 20 | 21961 | acaggcagtt  | ctgtggagac  | aagctcagcc  | atagagacaa  | gtgtgtctt   | tttgaagt     |
|    | 22021 | tccattgtgt  | ctactactga  | gatctccagg  | acagaagtca  | ccctctctag  | cagaacatcc   |
|    | 22081 | atctctgttt  | ctgctgatgc  | cacaatgtt   | ccagaaatat  | ccaccacaag  | aaaaatcatt   |
|    | 22141 | aagtccctca  | cttcccccatt | cctggcagaa  | tcatcagaaa  | tgaccatcaa  | gaccacaaaca  |
|    | 22201 | agtccttcctg | ggtctatcac  | agagagatcc  | tttacattag  | acacatcaac  | cactccctcc   |
|    | 22261 | ttggtaataa  | cccattegc   | tatgactctag | agattggccac | actcagat    | aaacctctt    |
| 25 | 22321 | gtgagtagag  | tgctggggaa  | tgtgcacccgg | cccagcttc   | ccctctgtt   | ttttccacaa   |
|    | 22381 | cctccatctt  | cccagctgtc  | tttatctgtcc | atgatctc    | cttctctgt   | ttttccacaa   |
|    | 22441 | ttaccagcaa  | gtagccactc  | ctttctgtct  | tctgtgactt  | cacccttcac  | accaggccaa   |
|    | 22501 | gtgaagacta  | ctgagggttt  | ggacgcaatg  | gcagaacctg  | aaaccaggttc | acctccaaat   |
|    | 22561 | tttggcagca  | cctcagttga  | aatactggcc  | acctctgaag  | tcaccacaga  | tacggagaaa   |
| 30 | 22621 | attcatcttt  | tccccaaacac | ggcagtaacc  | aaagtggaa   | cttccagttc  | ttggacatggaa |
|    | 22681 | tccccccttc  | ctgtcttact  | tgactcagag  | acaaccaag   | ccacatccgc  | aatgggttacc  |
|    | 22741 | atctccatta  | tggggatata  | aagtgtttt   | acatctaact  | ctgccttact  | taactactgg   |
|    | 22801 | aaaatttcgt  | cagaggccac  | ttccctactt  | accaccatg   | tgaggggac   | cagcacctct   |
| 35 | 22861 | gaagagacca  | gttttagccac | agaagcaaac  | actgtttttt  | cttaaagtgtc | cactgtgtct   |
|    | 22921 | actactgagg  | tctccaggac  | agaagccatc  | tccttttagca | gaacatccat  | gtcaggccct   |
|    | 22981 | gaggcgttca  | caatgtcaca  | agacatctcc  | ataggaacca  | tccccaggat  | tttgccttcc   |
|    | 23041 | tctgtcttca  | cagaatctgc  | aaaaatgacc  | atcacaaccc  | aaacagggtcc | ttcggagtt    |
|    | 23101 | acactagaaa  | gtacccttaa  | tttgaacaca  | gcaaccacac  | cctcttgggt  | ggaaacccac   |
| 40 | 23161 | tctatagtaa  | ttcagggttt  | ttcacaccca  | gagatgacca  | cttccatggg  | cagaggctt    |
|    | 23221 | ggagggtgtt  | catggcttgc  | ccctccctt   | gtgaaagaaa  | ccagcccttc  | atctccccc    |
|    | 23281 | ctgtctttac  | ctccctcttgc | ctcaccttc   | cctgtttca   | ccacatctt   | agcacatata   |
|    | 23341 | cccccccttc  | cccttctgt   | gacttca     | ctcaccttc   | gccccggc    | acccacatag   |
|    | 23401 | atcttgggta  | caagcacaga  | acctggaaac  | agttcatttt  | caagtttgag  | caccacaccc   |
| 45 | 23461 | catgagagac  | tgaccactta  | caaagacact  | gcacatacag  | aagccgtca   | tcctccacaa   |
|    | 23521 | aacacaggag  | ggaccatgt   | ggcaaccacc  | agctctggat  | ataaaatcaca | gtctctgttc   |
|    | 23581 | ctagctgact  | catctccaaat | gtgttaccacc | ttcacccatgg | gggatacaag  | tgttctcaca   |
|    | 23641 | tcaactctgt  | ccttcttgc   | gacttaggagg | attcagacag  | agctagcttc  | cccccgtacc   |
|    | 23701 | cctggattga  | ggggatccac  | tggctctgaa  | gggacacat   | caggcaccac  | gatgagact    |
|    | 23761 | gtctctctca  | aagtccccac  | tgtgtctact  | actgagatct  | ccaaaggaa   | cgtccatcc    |
| 50 | 23821 | atccccaggc  | ccgtccaaat  | cacaatata   | ccagacatct  | ccaaaggaa   | cgtcagctgg   |
|    | 23881 | ttctcttcat  | ccccctgtcat | gacagaatca  | gcgaaaataa  | ccatataac   | ccatataatgt  |
|    | 23941 | cctttagggg  | ccacaacaca  | aggcaccatg  | actttggcca  | cgtcaagcac  | aaccttcttg   |
|    | 24001 | acaatgacac  | actcaactat  | atctcaagga  | ttttcacact  | cacagatgag  | cactttatgt   |
|    | 24061 | aggaggggtc  | ctgaggatgt  | atcatggat   | agccctcccc  | ttctggaaaa  | aactagaccc   |
| 55 | 24121 | tccttttctc  | tgatgttcttc | accagccaca  | acttcacctt  | ctcctgtttc  | ttccacattt   |
|    | 24181 | ccagagacca  | tctcttcttc  | tccttcttc   | gtgacttcac  | tcctcacgtc  | tggcttggca   |
|    | 24241 | aaaacttcac  | atatgttca   | aaaaagctca  | gaacctgtaa  | ccaaacttc   | tgcataatttg  |
|    | 24301 | agcagcacat  | cagttaaaaat | actggccac   | tctgaatgtca | ccacagatca  | agagaaaaact  |
|    | 24361 | catcccttcc  | caaacagaaac | agtgaccat   | gtggggaccc  | ccagttctgg  | acatgaatcc   |
| 60 | 24421 | acttcctttt  | tccttagtgc  | ctcacagaca  | tccaaagtca  | catctccaaat | ggttattacc   |
|    | 24481 | tccaccatgg  | aggatacgc   | tgtctccaca  | tcaactctgt  | gcttttttta  | gacttagcaga  |

24541 attcagacag aaccaacatc ctccttgacc ctggactga gaaagaccag cagctctgag  
 24601 gggaccagct tagccacaga gatgagact gtccttctg gagtccccac tgggtccact  
 24661 gctgaagtct coaggacaga agtcacctc tctagcagaa catccatctc aggtttgct  
 24721 cagtcacag tgcacccaga gactccaca gaaaccatca ccagactccc tacctccagc  
 5 24781 ataatgacag aatcagcaga aatgatgatc aagcacaaa cagatcctcc tgggtctaca  
 24841 ccagagagta ctcatactgt ggacatatac acaacacca actggtaga aaccactcg  
 24901 actgtgactc agagattttc acactcagag atgaccactc ttgtgagcag aagccctgg  
 24961 gatatgttat ggcttagtca atcctctgtg gaagaaacca gctctgcctc ttccctgt  
 25021 tctctgcctg ccacgacactc accttctctt gttctctta cattagtaga ggatttccct  
 10 25081 tccgcttctc ttctctgtac ttctcttctc accectggcc tgggtataac cacagacagg  
 25141 atggcataa gcaagaaaa tggaaaccatg tccacttcaa atttgagcag cacctccat  
 25201 gagagactga caacttgcgg agacactgta gatacagaag acatgcggcc ttccacac  
 25261 acagcagtga ccaacgtgg gacctccatt tctggacatc aatcacaatc ttctgtecta  
 25321 tctgactcag agacacccaa agccacatct ccaatgggtt ccacccatcac catggggaa  
 15 25381 acgagtgttt ccatatccac ttctgacttc tttgagacca gcagaattca gatagaacca  
 25441 acatccccc tgacttctgg attgaggag accagcagct ctgagaggat cagctcagcc  
 25501 acagaggaa gcaactgtcc ttctgaatgtt cccagtgtt ctaccactga ggtctccagg  
 25561 acagaagtga tatcctctag gggaaacatcc atgtcaggcc ctgatcagtt caccatatca  
 25621 ccagacatct ctactcaga gatcaccagg ctttctactt ccccccattt gacagaatca  
 20 25681 gcagaaatgtt ccatcactat tgagacaggt ttcctgggg ctacatcaga ggttaccctc  
 25741 acctggaca ctcacaacaaac aaccttttttgc ttcaggaccc actcaactgc atctccagg  
 25801 ttttcacact cagagatgac cactttatg agtagaactc ctggagatgt gccatggccg  
 25861 agectccct ctgtggaga agccagctt gtctcttctt cactgtctt acctgcctatg  
 25921 acctcaactt ctttttctc cgcattacca gagacatct ctcctctcc tcacatctgt  
 25 25981 actgcacttc tcaacccttgg cccagtgttgg accacagaca tggcgcac aagtcagaa  
 26041 cctggaaacca gtcacccatc aaatttggcc agcacccatc ctgaaatatt agccacgtct  
 26101 gaagtccacca aagatagaga gaaaattcat ccctccatca acacacccatgt agtcaatgt  
 26161 gggactgtga ttataaaaca tctatccatct ttcctgttgg tggctgactt agtgcacaaca  
 26221 aaacccacat ctcacatggc taccacccatc acttcgggaa atacaatgtt ttcacatca  
 30 26281 actccctgccttcccaacatc tatgtgaca cagccaactt ctcctcttgc ttctggatta  
 26341 agggagatca gtacccatc agagaccagg tcagcaacag agagaatgtc ttctttct  
 26401 ggaatgcaca ctgggtctac tactaagggtc tccagaacag aagccctctt cttaggcaga  
 26461 acatccaccc cagggtccatc tcaatccaca atatcaccag aaatctccac gaaaccatc  
 26521 actagaatttt ctactccctt caccacgaca ggatcaggcc aatgaccat caccacccaaa  
 35 26581 acaggtcatt ctggggcatc ctcacaaggat acctttaccc tggacacatc aaggagagcc  
 26641 tcctggcccg gaactcactc agctgcaact cacagatctc cacaactcagg gatgaccact  
 26701 cctatgagca gaggtccatc ggatgttca tggccaaaggcc gecatcgtt ggaaaaaaact  
 26761 agccctccat ctccctgttgc ttcttctatcc acgttacatc caccctcgcc actttattcc  
 26821 acaccatctg agagtagcca ctcatcttcc ctccgggttgc ttcttttccatctgtc  
 40 26881 atgatgaaga ccacagacat gttggacaca agcttggaa ctgtgaccac ttccatccccc  
 26941 agtataataa tccatctcaga tgagatctg gccacttcta aagccaccat ggagacagag  
 27001 gcaattcage tttcagaaaa cacagctgtg actcagatgg gcaccatcag cgctagacaa  
 27061 gaatttctt ctccttattcc aggccatccca gagccatcaca aagtgcacatc tccatgtgt  
 27121 acctcttcca ccataaaaaga catttttctt acaccatcatc ctgttccctc tgagataaca  
 45 27181 agaatttggaa tggagtcaac atccacccctg aacccacccatc caagggagac cagcaccc  
 27241 caggagatcc actcagccac aaaggccaaacccatc actgttccctt acaaggccact cactatgt  
 27301 acgattgagg actccatgac acaaggatccatc tccatctgac gaggacccatc ccctgatc  
 27361 tccacaatgt cacaaggacat atccatgttca gtgatcaca ggctcttctc ctcacccatc  
 27421 aaggcagaat ctacagaaat gaccattacc accccaaacccatc gttctctgg ggctacatca  
 50 27481 aggggtaccc ttacccatc cacttcaaca acttttacccatc cagggacccatc ctcaactgc  
 27541 tctcaaggat ttccacactc acatgttccatc gtccttcttgc gttagactcc tggagatgt  
 27601 ccatggctaa gcatccctc tggaaagaa gccagctgtt ctccttctc actgttccatc  
 27661 cctgtcatca ctcatcttcc tcccttttccatc caccatcatc caccatcttcc  
 27721 tcgcttccatc tgacatcatc tccatctca gggctgggttgc agaccacaga gcttgggg  
 55 27781 acaagctcag aacccatc gatccatccccc ccaaaatttgc gcaaccatc agtgcacatca  
 27841 ctggccacca ctgaaggatcc tacagataca gagaacttgg agatgacccatc tgggttacc  
 27901 tcagttata cacatgatcc tccatcttccatc gtccttcttgc actcactgttccatc  
 27961 acatcttccatc tgggttacccatc gatccatccccc gggatccatc atcaaccatc  
 28021 gccttcttgc acaccatgttccatc gatccatccccc gggatccatc tccatcttccatc  
 28081 atggagatccatc gatccatcttgc agaccacccatc tccatcttccatc tccatcttccatc  
 60 28141 agtgttccatc ctgggttccatc tactggatccatc tccatcttccatc tccatcttccatc

28201 acatccatcc caggcccgc tcaatccaca atgtcatcg acacccatc gaaaccatc  
 28261 actagaattt ctacccccc cacaaggaaa gaatcaacag acatggccat ccccccaaa  
 28321 acaggtcctt ctggggctac ctgcggggt accttaact tggactcata aagcacagcc  
 28381 tcctggccag gaactcactc agctacaact cagagattc cacagtcatg ggtgacaact  
 5 28441 cctatgagca gaggtcctga ggatgtgtca tggccaagcc cgctgtctgt gaaaaaaac  
 28501 agecctccat ctccccttgt atcttcata tcagtaacct caccttcgc actttatcc  
 28561 acaccatctg ggagtagcca ctccctctct gtcctgtca ttctctttt cactctatac  
 28621 atgatgaagg ccacagacat gttggatgca agtttggaaac ctgagaccac ttcaagtc  
 28681 aatatgaata tcaacctcaga tgagatctg gccacttcta aagccaccac ggagacagag  
 10 28741 gcaattcagc ttttgaaaa tacagcagcg tcccatgtgg aaaccacccatg tgctacagag  
 28801 gaactctatt ctcttcccc aggcttcata gaccaacaa aagtgtatc tccagtggtc  
 28861 accttccttcttataagaa caacatgggt tccacaaacaa tgcctggctc ctctggcatt  
 28921 acaaggattt agatagatc aatgtcatc ctgaccctgt gactgaggg gaccagaacc  
 28981 tcccaggaca tcaacctcatc cacagagaca agcaactgtcc tttacaagat gtcccttgtt  
 15 29041 gccactctcg aggtctccag gacagaagtt atgcccata gcagaacatc cattctggc  
 29101 cctgtcagt ccacaatgtc actagacatc tccgtatgg ttgtcaccatg gctgtctacc  
 29161 tctccatca tgacagaatc tgcagaaata accatcacca cccaaacagg ttattcttg  
 29221 getacatcccc aggttacccct tcccttggcc acctcaatga cctttttgtc agggaccac  
 29281 tcaactatgt ctcaaggact ttcacactca gagatgacca atcttatgag caggggtctt  
 20 29341 gaaagtctgt ctggcggag ccctcggtt gtggaaacaa cttagatcttcc ctcttc  
 29401 acatcattac ctctcacac ttcacttttctt cctgtgtctt ccacattact agacagtagc  
 29461 cccctcttc ctcttcctgt gacttcactt atcctccatc gcctggtaa gactacagaa  
 29521 gtgtggata caagctcaga gcctaaaacc agttcatctc caaattttag cagcacatca  
 29581 gtgaaatac cggccaccc tggaaatcatg acagatacag agaaaattca tccttc  
 25 29641 aacacagcgg tggccaaagt gaggacatcc agttctgttca atgaatctca ttcttc  
 29701 ctactgtact cagaaacaa cataaccata cttcaatgg gtatcacatc cgctgtggac  
 29761 gataccatgt tttcacatc aaatctgc ttctctgaga cttaggaggat tccgacagag  
 29821 ccaacatttctt cattgtactc tggattcagg gagactagca cctctgaa gaccacatca  
 29881 atcacagaaa caagtgcgtt cctttatggta gtggccacta gtgtactact tgaagtctt  
 30 29941 atgacagaaa tcatgtcttca taatagaaca cacaatccctg actctgtatca gtccacatg  
 30001 tctccagaca tcatcaatgc agtgtatcacc aggtctctt ctcataatc gatgtc  
 30061 tcaacacaaa tgaccatcac caccaaaaaa agttctctg gggctacatc acagagtact  
 30121 cttacccctgg ccacaacaac agcccccttg gcaaggaccc actcaactgt tccttc  
 30181 tttttacact cagagatgac aactctttagt agttaggatc ctgaaaatcc atcatgg  
 35 30241 agctctccct ttgtggaaaa aactgtctt tcatcttctt tgggtgtctt acctgtc  
 30301 acctcacctt ctgtttcttcc cacattaccgc cagagtatcc cttccctctt tttttctgt  
 30361 atttcactcc tcaatccctgg catgggtaa actacagaca caagcacaga acctggaaacc  
 30421 agtttatctc caaatctgag tggcaatctca gttgaaatatac tggctgttcc tgaagtctt  
 30481 acagatacag agaaaattca tccttcatac agcatggcag tgaccaatgt gggaaacc  
 40 30541 agttctggac atgaactata ttccctgtt tcaatccact cggaggccatc caaggctaca  
 30601 taccctgtgg gtactccctc ttccatggct gaaacatctt tttccatc aatgc  
 30661 aattttgaga ccacaggatt tgaggcttag ccattttctc atttgactt tggatttag  
 30721 aagacaaaca tgccttggc caccatgtca gtcacaccac caaatacacc ttcttc  
 30781 gggccactt acttttaca ggttccaaag actgttccatc cctcttcgc aaaaacatca  
 45 30841 tccccagact ggcctccgc ctcacatgtt actgaaatcc cagtggacat aatcaccc  
 30901 ttaatgtt cttccatctat tacgggttc actgggatata cttccctcc agaattccagg  
 30961 tttactatgt ctgtaaatcaga aagtactcat catctgatgtt cagatttgc gccttc  
 31021 gagactatcc ccaactggcact agtgtatgc ttcataatcagg aggccatgac ttcat  
 31081 accactggag ttccacgagc catctcgatgtt tcaatgttccatc cattctctg  
 50 31141 ggccttgggg atgctactt tccatgttccatc cacttcgttgc gacagatc  
 31201 ccatttcctt ctcaatccatc cacttccatc gatttccatc ccattccatc cttccat  
 31261 ataacttcctt cttcgtatc cccatatagt gttggacacca gtttggggac agagac  
 31321 actactgtt gacgttggatgtt gttggatgttccatc cttcaatccatc accaggc  
 31381 acatcttcaa caccatccatc ggtatccatc atgacagatc gctgttgc gggaaac  
 31441 acaagtgttcc atcaatgttcc ttcacttctca acacggatccatc tggcattat  
 31501 gaacacatca caaaaatacc caatgttccatc gacacatc gttggatgttccatc  
 31561 ggccttccatc catccatc gctgttccatc cttcaatccatc gttggatgttccatc  
 31621 agaatggaga ccacccaccc agctttgttccatc accaccatca gacgttgc gttgg  
 31681 agagccaccc tggatgttccatc cccacttggt gttggatgttccatc tccatc  
 31741 gcatcaaggc aaatggccatc cacaatccatc acagaaatgt gttggatgttccatc  
 60 31801 ttccctgtatgttccatc gacatccatc tggatgttccatc gctgttccatc agaaacc  
 31801 ttccctgtatgttccatc gacatccatc tggatgttccatc gctgttccatc agaaacc

|    |       |             |             |              |             |              |             |
|----|-------|-------------|-------------|--------------|-------------|--------------|-------------|
| 5  | 31861 | acagcttc    | ccaggacaac  | cccatctgtt   | ctcaatagag  | aattcagagac  | cacagccata  |
|    | 31921 | ctggctctc   | gttctgggg   | agagagaagt   | ccggttattc  | aaactctaga   | tgtttcttc   |
|    | 31981 | agtgagccag  | ataacaacagc | ttcatgggtt   | atccatctcg  | cagagaccat   | ccaaactgtt  |
|    | 32041 | tccaagacaa  | cccccaattt  | ttccacagt    | gaattagaca  | ctgtatcttc   | cacagccacc  |
|    | 32101 | agtcatgggg  | cagacgtcg   | ctcagccatt   | ccaacaata   | tctcacccat   | tgaactagat  |
|    | 32161 | gcaactgcac  | cactggtc    | tatttgcggg   | acagatacta  | gtacaacatt   | ccaaacactgt |
|    | 32221 | actaagtccc  | cacatggaaac | agagacaaga   | accatctggc  | tcactcatcc   | tgagagacc   |
|    | 32281 | agtcacta    | ttcccgaaac  | aatccccaaat  | tttctcatc   | atgaatcaga   | tgccacacet  |
|    | 32341 | tcaatagcca  | ccagtcctgg  | ggcagaaaacc  | agttcgtca   | ttccaattat   | gactgtctca  |
| 10 | 32401 | cctgggtcag  | aagatctggt  | gacccatcag   | gtcactagt   | ctggcacaga   | cagaaatatgt |
|    | 32461 | actattccaa  | ctttgcact   | ttctccctgtt  | gaaccaaaga  | cgatagccctc  | attagtcacc  |
|    | 32521 | catcctgaaag | cacagacaag  | ttcggccatt   | ccaacttcaa  | ctatctcgcc   | tgctgtatca  |
|    | 32581 | cggttggta   | cctcaatgtt  | caccagttt    | gcggcaaaaga | caagtacaac   | taatcgagct  |
|    | 32641 | ctgacaaact  | ccccctgtga  | accagctaca   | acagttcat   | tggtaacgca   | tcctgcacag  |
|    | 32701 | accagcccaa  | cagttccctg  | gacaacttcc   | attttttcc   | atgtaaatac   | agacaccaca  |
|    | 32761 | ccttcaatga  | ccaccgtca   | ttgggcagaa   | ttccaggatc  | ctgttccaaac  | tccaaactgtt |
|    | 32821 | tcaactgagg  | taccaggat   | agtgcaccc    | ttggtcacca  | gttctagggc   | agtgtatcgt  |
|    | 32881 | acaactattc  | caattctgac  | ttttctctt    | ggtgaaccag  | agaccacacc   | tccatggcc   |
| 20 | 32941 | accagtcatg  | gggaagaagg  | cagttctgt    | attccaaactc | caactgtttc   | acctggggta  |
|    | 33001 | ccaggagtgg  | tgacccctct  | ggtcaactgt   | tctaggcag   | tgacttagtac  | aactattcca  |
|    | 33061 | attctgactt  | tttctcttgg  | tgaaccagag   | accacaccc   | aatggccac    | cagtcatggg  |
|    | 33121 | acagaagctg  | gctcagctgt  | tccaaactgtt  | ttacctggg   | taccaggaat   | gttgacccct  |
|    | 33181 | ctgggtctga  | tttctagggg  | agtaaccegt   | acaacttcc   | caactctgac   | tctttctctt  |
|    | 33241 | gttgaaccag  | agaccacacc  | ttcaatggcc   | accagtcag   | ggcagaagc    | cgactcaact  |
| 25 | 33301 | gttccaatctg | tttacactga  | ggtaccagga   | gtggtaact   | ctctgttccat  | tagttctagt  |
|    | 33361 | ggagtaaaca  | gtacaaggat  | tccaaactct   | atttcttcc   | ctgttcaact   | agaaaccaca  |
|    | 33421 | ccttcaatgg  | ccaccgtca   | ttgggcagaa   | gccagtcag   | ctgttccaaac  | tccaaactgtt |
|    | 33481 | tcacctgggg  | tatcaggat   | ggtgcaccc    | ctggtacta   | gttccaggc    | agtgaccagt  |
|    | 33541 | acaactattc  | caattctaa   | tctttctct    | agtgcaccc   | agaccacacc   | tccatggcc   |
| 30 | 33601 | accagtcatg  | gggtagaagg  | cagtcagct    | gttcaactgt  | tttacactga   | ggtaccaggaa |
|    | 33661 | atgtgtaccc  | ctctggtca   | tagttctaga   | gcagtaacca  | gtacaactat   | tccaaactctg |
|    | 33721 | atatttttt   | ctgtatgaa   | agagaccaaa   | acttctatgg  | tcaccatcc    | tgaggccaaag |
|    | 33781 | atgatttcag  | ccatccaaac  | tttagctgtc   | tcccccact   | tacaagggg    | gtgtacttca  |
| 35 | 33841 | ctggtcacta  | gttctgggtc  | agagaccat    | gcgttttcaa  | atctaactgt   | tgctcaactgt |
|    | 33901 | caaccagaga  | ccatagactc  | atgggtcgct   | catctggga   | .cagaagcaag  | ttctgttgtt  |
|    | 33961 | ccaaactttga | ctgttccac   | ttgtgagccg   | tttacaaaata | tctcatttgtt  | cacccatctt  |
|    | 34021 | gcagagagta  | gctcaactct  | ttccaggaca   | acctcaaggt  | tttccacag    | tgaatttagac |
|    | 34081 | actatgcctt  | ctacagtca   | cagtcctgt    | gcagaatcca  | gctcagccat   | tccaaactact |
| 40 | 34141 | atttcacctg  | gtataccagg  | tgtgtctgac   | tcactggta   | ctagtcctgg   | gagagacatc  |
|    | 34201 | agtgcaccc   | ttccaacat   | gcctgatc     | ccacatgaat  | cagaggcaac   | agccctcatgg |
|    | 34261 | gttactcatc  | ctgcgtc     | cagcacaacaa  | tttccaggaa  | caaccctaa    | tatttctcat  |
|    | 34321 | agtgaaccag  | acaccacacc  | ataatagcc    | accagtcgt   | ggcagaagc    | cacttcagat  |
|    | 34381 | tttccaacaa  | taactgtctc  | acctgtatgt   | ccagatatgg  | taacccatcaca | ggtcaactgt  |
| 45 | 34441 | tctgggacag  | acaccagat   | aactattca    | actctactc   | tttcttctgg   | tgagccagag  |
|    | 34501 | accacaacot  | catttatc    | ctattctgt    | acacacacaa  | gttcagccat   | tccaaactctc |
|    | 34561 | cctgtctccc  | ctggtgcata  | aaagatgt     | acctcaactgg | tcatcgttcc   | tgggacagac  |
|    | 34621 | aggactacaa  | cttcccaac   | actgacggag   | accccatatg  | aaccagagac   | aacagccata  |
|    | 34681 | cagctcatc   | atccgtc     | gaccaacaca   | atgggtccca  | agacaactcc   | caagtttcc   |
|    | 34741 | catagtaatg  | cacacaccac  | actcccaga    | gccatcacca  | gtctgggca    | agaaggccat  |
| 50 | 34801 | tcagctgtt   | caacgacaac  | tatctcacat   | gatatgtc    | atctggtgac   | ctactggtc   |
|    | 34861 | cctagttctg  | ggagacacac  | cagtcaca     | tttccaaat   | tgatgttgc    | ccctatgtaa  |
|    | 34921 | ccagagacta  | cagtcacgt   | gctcactcat   | cctgcagaaa  | ccagcacaac   | ggtttctggg  |
|    | 34981 | acaattccca  | acttttccca  | tagggatca    | gacactgcac  | cctcaatgtt   | caccagtct   |
|    | 35041 | ggagtagaca  | cgaggtcagg  | tgttccaaact  | acaaccatcc  | cacccagtat   | accagggta   |
| 55 | 35101 | gtgacccatc  | aggctactag  | ttctgcaaca   | gacactgt    | cagttattcc   | aactttgact  |
|    | 35161 | ccttctctgt  | gtgaaccaga  | gaccacagcc   | tcatcgtca   | cccatccctgg  | gacacagact  |
|    | 35221 | ggcttcactg  | ttccaatttc  | gactgttcc    | tctagtgagc  | ccatataat    | ggcttccctgg |
|    | 35281 | gtcactcatc  | ttccacagac  | cagcacaacat  | tttccaggaa  | caacccctcc   | tttttccat   |
|    | 35341 | agtagtccag  | atgcccacacc | tgtatgtcc    | accagtcata  | ggacacaaagc  | cagttcagtt  |
| 60 | 35401 | gtactgacaa  | caatctcacc  | ttgtgcacca   | gagatgttga  | ttcacagat    | cactgttt    |
|    | 35461 | ggggcagcaa  | ccagtcaca   | ttgttccaaact | ttgacttcat  | ctctctggat   | gcccagagacc |

35521 acagccttat tgaggcacca tcccagaaca gggacaaga taacatttc tgcttcaact  
 35581 gtgtttctc aagtatcaga gaccacagcc tcactcacca tttagacctgg tgcaagact  
 35641 agcacagctc tcccaactca gacaacatcc tctctctca ccctacttg aacttggaaacc  
 35701 agcagagttt atcttaagttc aactgcttca cctgggtttt ctgcaaaaac agccccactt  
 5 35761 tccacccatc cagggacaga gaccacgaca atgattccaa cttcaactt ttcccttgg  
 35821 ttactagaga ctacaggctt actggccacc agcttccatc cagagaccag cagact  
 35881 ctaactctga ctgtttcccc tgctgtctc gggcttcca gtgcctctat aacaactgt  
 35941 aagccccaaa ctgtgacccctt ctggaacaca gaaaccttccatc catctgtaaac ttcaacttgg  
 10 36001 ccccccagaat tttccaggac tgcacaggc accactatga ctttgatacc atcagagat  
 36061 ccaacaccac ctaaaaccatc tcatggggaa ggtagtggatc caaccactat cttgagaact  
 36121 acaatggttt aagccactaa tttagtacc acaggttca gttttttttt ggcacactt  
 36181 acaccaccc tcaatacatac ggctggaaagc ctcttactt ctctgaccac acctggatg  
 36241 tccacccatgg ecctctgagag tgcacactca agaacaagttt ataccatcg gtctggatc  
 15 36301 tccacccatca gcaaggatataa cgcctggatc tggaccctgg ccaccacac tccactgt  
 36361 tctcattttt ccccaaggat ttccacatcc tccatccccca gtcacacagc agccacatc  
 36421 cccatcatgg tggccatcc cctcaacttc accatcacca acctgcagta cgaggaggac  
 36481 atggggcacc ctgggtccag gaagttcaac gtcacacagaa gagaactgca gggctgtctc  
 36541 aaacccttgtt tcaagatag cagtctggaa tacctctatt caggctgcag actagccctca  
 36601 ctcaggccag agaaggatag ctgcacatggatc gcaatctgcac acatcgccct  
 20 36661 gaccctgaag accctggact ggacacagag cgactgtact gggagctgaa caatctgaca  
 36721 aatggcatcc aggagctggg cccctacacc ctggaccggg acagttctta tgtaatgg  
 36781 ttcacccatc gaagctctat gcccaccacc accactctgg ggacccatcc acgtggatgt  
 36841 ggaacctcag ggactccatc ctccagcccc accccccacgg ctgctggccc tctctgt  
 36901 ccgttcaccc tcaacttcac catccaaac ctgcagttac agggaggacat gctcgcact  
 36961 ggctccagga agttcaacac catggagatc gtctgcagg gtctgtccaa gcccgg  
 37021 aagaaacacca gtgttggcc tctgtactt ggctgcagat tgacccatc caggcccc  
 37081 aaagatgggg cggccactgg agttggatc atctgcaccc accgccttga cccaaaagg  
 37141 cttggactca acacggagca gctgtactgg gagctaaatc aactgacca tgacattgaa  
 37201 gagctggggcc cttacacccctt ggacacggaa acgtctctatg tcaatggttt caccatc  
 37261 agctctgtt ccaccaccc cactctggg acctccacag tggatctcg aacctc  
 37321 actccatctt ccctctccag ccccaacattt atggctgttgc gcccctctt ggtaccatt  
 37381 accctcaact tcaaccatcac caacatgcag tatggggagg acatgggtca ccctggctcc  
 37441 aggaagtca acacccacca gagggtccctg cagggtctgc ttggccat attcaagaac  
 37501 accagtgtt ggcctctgtt ctctggctgc agactgaccc ctctcaggc tgagaaggat  
 35 37561 ggagcagcca otggagtttgc tggccatcattt ttgacccaa aagecccttgg  
 37621 ctcaacacccatc accgttgc tggggagctg agccacttca ccaatggcat caaagagct  
 37681 ggccttaca ccctggacag gaacagtctc tatgtcaatg gtttccatca tcggacc  
 37741 gtgcacccatca ccacgcactcc tggggacttcc acagtggacc ttggaaaccc agggacttca  
 37801 ttctccctcc caagcccccc aactgttgc cctctcttgc tgctgttca cctcaactt  
 40 37861 accatcacca acctgaatgta tgaggaggac atgcacccatc ctggctccag gaagtcaac  
 37921 accactgaga ggttctgtca gacttgc tggctctatgt tcaagaacac cagtttggc  
 37981 ctctgtact ctggctgcag actggacttgc ttcaggctcc agaaggatgg agcagccact  
 38041 ggagtggatc coacttcac ccacccgtt gaccccaaaa gcccggact ggacacagag  
 38101 cagctatactt ggagctggatc ccacgttgc aatggcatca aagactgggg cccctacacc  
 45 38161 ctggacacccatc tggccatc ttcacccattt ggatccctgt gcccaccac  
 38221 agcaactctt ggcacccatc agtggacccctt gggctcaggaa ctccatcttcc cctccccc  
 38281 cccacacccatc ctggccctt cttggatccca ttcacccatca acttcacccat caccaccc  
 38341 cagttacggagg agacatgcac tcaaccaccc tccaggaaatc tcaacacccat cggccgg  
 38401 ctggacccatc tggccatc ttcacccattt ggatccctgt gtcacttgc  
 38461 tggccatc tggccatc ttcacccattt ggatccctgt gtcacttgc  
 38521 tggccatc tggccatc ttcacccattt ggatccctgt gtcacttgc  
 38581 ctggccatc tggccatc ttcacccattt ggatccctgt gtcacttgc  
 38641 ctctatgtca atgggttccatc ccacccatc ttcacccatc ttcacccat  
 38701 tccacacttgg accctggggactt ctcaggactt ccacccatcc tccacccatc ttcacccat  
 55 38761 ggccttccatc tggccatc ttcacccatc ccaacccatc gtcacttgc  
 38821 gacatgcggc accccatccatc cggccatc ttcacccatc ccaacccatc gtcacttgc  
 38881 ctnaagccccatc ttttcaatggatc cccatccatc ttcacccatc ccaacccatc gtcacttgc  
 38941 ttggctcaggat cccatccatc ttcacccatc cccatccatc ttcacccatc  
 39001 ctggccatc ttcacccatc cggccatc ttcacccatc ccaacccatc gtcacttgc  
 39061 accatggca tcaaaatggatc gggccatc ttcacccatc ccaacccatc gtcacttgc  
 39121 ggttccatc atccatccatc ttcacccatc ccaacccatc gtcacttgc

|    |       |             |             |             |            |            |             |
|----|-------|-------------|-------------|-------------|------------|------------|-------------|
| 5  | 39181 | cttgggaccc  | caggagactcc | atcctccctc  | cccagcccta | catctgtgg  | ccctctccct  |
|    | 39241 | gtgcattca   | ccctcaactt  | caccatcacc  | aacctgcagt | acgaggagga | catgcatacc  |
|    | 39301 | ccaggctcca  | gaaagttcaa  | caccacggag  | cggttctgc  | agggtctgct | ttgtcccatg  |
|    | 39361 | ttaagaaca   | ccagtgttgg  | ccttctgtac  | tctggctgca | gactgaccc  | gctcaggcc   |
|    | 39421 | gagaagatg   | gggcaggcc   | tggaaatggat | gccatctgca | gccaccgtct | tgaccccaaa  |
|    | 39481 | agccctggac  | tcaacagaga  | gcacgtgtac  | tgggagctg  | gccagctgac | ccatggcata  |
|    | 39541 | aaagagtcgg  | gccccatcac  | cctggacagg  | aacacgtct  | atgtcaatgg | tttcacccat  |
| 10 | 39601 | cggactctg   | tgccccccac  | cagcaccc    | gggacttcca | cagtggccat | ttggggactca |
|    | 39661 | gggactccat  | cctccctccc  | cagccccaca  | acagctgttc | ctctctgg   | ggccgttcc   |
|    | 39721 | ctcaacttta  | ccatcaccaa  | tctgcagttat | ggggaggaca | tgctgcaccc | ttggtccagg  |
|    | 39781 | aagttcaaca  | ccacagagag  | ggtctgcag   | ggtctgttgg | gtccctgtt  | caagaactcc  |
|    | 39841 | agtgtcgccc  | ctctgtactt  | tggctgcaga  | ctgatctc   | tcaggtctga | gaaggatggg  |
| 15 | 39901 | gcagccactg  | gagtggatgc  | catctgcacc  | caccaccc   | accctcaaag | ccctggactg  |
|    | 39961 | gacaggggagc | agctgtactg  | gcacgtgac   | cagatgacca | atggcatcaa | agagctggg   |
|    | 40021 | cctctacacc  | tggacccggaa | cagtctctac  | gtcaatggtt | tcacccatcg | gagctctggg  |
|    | 40081 | ctcaccacca  | gcactcttgg  | gacttccaa   | gttgaccc   | gaacctcagg | gactccatcc  |
|    | 40141 | cccgccccca  | gccccacaa   | tgtggccct   | ctccctgtgc | cattcaccc  | caacttcc    |
|    | 40201 | atcaccacca  | tgcagttatg  | ggaggacatg  | catcgccctg | gatcttagaa | gttcaacacc  |
| 20 | 40261 | acagagaggg  | tcctgcagg   | tctgttttt   | cccatttca  | agaactccag | ttgtggccct  |
|    | 40321 | ctgtactctg  | gctgcagact  | gacctcttc   | aggccc     | aggatggggc | agcaactgg   |
|    | 40381 | atggatgtgt  | tctgccttca  | ccaccctaa   | ccaaaagac  | ctggactgga | cagagagcg   |
|    | 40441 | ctgtacttgg  | agctaagcca  | gctgaccc    | aacatctact | agctggggcc | ctacagcctg  |
|    | 40501 | gacaggggaca | gtctctatgt  | caatggttt   | accatcaga  | actctgtg   | ccaccaccgt  |
| 25 | 40561 | actccttggg  | cctccacatg  | gtactggca   | accactgg   | ctccatctc  | tttccccccg  |
|    | 40621 | cacacagagc  | ctggccctct  | cctgtatcca  | ttcacttca  | acttacccat | ccaaacac    |
|    | 40681 | cattatgagg  | aaaacatgca  | acaccctgg   | tccaggaa   | tcaacaccac | ggagagggtt  |
|    | 40741 | ctgcagggtc  | tgctcaagcc  | cttgg       | aaacaccatg | ttggccctct | gtactctgg   |
|    | 40801 | tgcagactga  | cctctctca   | gccc        | gagaag     | gatggggcag | caactggaa   |
| 30 | 40861 | tgcctctacc  | accctaa     | catca       | ctggggcc   | caagecttga | cagggacagt  |
|    | 40921 | ctaaggccgc  | tgaccc      | catactg     | ctggggcc   | ccacccat   | ttctgggacc  |
|    | 40981 | ctctatgtca  | atgggttcc   | ccatc       | gatgggg    | ccatcc     | ttatggaa    |
|    | 41041 | tccacagatgt | actgggg     | cact        | ccatctct   | ttccggcc   | cacagac     |
|    | 41101 | ggcccttcc   | tgat        | tttccatt    | tttaccat   | ccaaacttgc | ttatggaa    |
| 35 | 41161 | aacatgcaac  | accctgg     | caggaa      | tttccat    | ttatggaa   | ttatggaa    |
|    | 41221 | ctcaaggccct | tgttcaagaa  | cacc        | actgttgc   | tttccat    | ttatggaa    |
|    | 41281 | ttgctcagac  | ctgagaagca  | tgagg       | ccat       | tttccat    | ttatggaa    |
|    | 41341 | gttgatccca  | tcggac      | actgg       | tttccat    | tttccat    | ttatggaa    |
|    | 41401 | accaacagca  | tttcc       | gggac       | ccat       | tttccat    | ttatggaa    |
| 40 | 41461 | ggcttcaacc  | ctcg        | ggact       | tgttcc     | tttccat    | ttatggaa    |
|    | 41521 | ttggcaacct  | ttgg        | acttcc      | cctgg      | tttccat    | ttatggaa    |
|    | 41581 | attacattca  | ccctca      | acttcc      | tttccat    | tttccat    | ttatggaa    |
|    | 41641 | cctgg       | tttcc       | tttcc       | tttccat    | tttccat    | ttatggaa    |
|    | 41701 | ttcaagaaca  | ccag        | tgtt        | ccctct     | tttccat    | ttatggaa    |
|    | 41761 | gagaagcatg  | aggc        | gaccc       | tgttcc     | tttccat    | ttatggaa    |
| 45 | 41821 | ggacctggac  | tgnac       | agn         | tttccat    | tttccat    | ttatggaa    |
|    | 41881 | nnngagtcgg  | gncc        | cttac       | tttccat    | tttccat    | ttatggaa    |
|    | 41941 | cngancatcg  | ngcc        | ccacc       | cagc       | tttccat    | ttatggaa    |
|    | 42001 | gggactccat  | cctc        | cttcc       | ngnc       | tttccat    | ttatggaa    |
| 50 | 42061 | ctcaacttca  | ccat        | ccat        | ccat       | tttccat    | ttatggaa    |
|    | 42121 | aagttcaaca  | ccac        | ggc         | tttccat    | tttccat    | ttatggaa    |
|    | 42181 | agtgtcgccc  | ttctgtact   | tgg         | ctg        | tttccat    | ttatggaa    |
|    | 42241 | gcagccactg  | gaatggatgc  | cat         | ctg        | tttccat    | ttatggaa    |
|    | 42301 | gacagagagc  | agctgtact   | ggag        | ctg        | tttccat    | ttatggaa    |
| 55 | 42361 | cctcacaccc  | ttgg        | acagg       | tttccat    | tttccat    | ttatggaa    |
|    | 42421 | gccccccacca | gcac        | tct         | tttccat    | tttccat    | ttatggaa    |
|    | 42481 | tcctccccca  | gcccc       | ccacaa      | agct       | tttccat    | ttatggaa    |
|    | 42541 | atccacca    | tgc         | atgtt       | tttccat    | tttccat    | ttatggaa    |
|    | 42601 | acagagaggg  | tct         | tttcc       | tttccat    | tttccat    | ttatggaa    |
| 60 | 42661 | ctgtactctg  | gtgc        | agact       | tttccat    | tttccat    | ttatggaa    |
|    | 42721 | ttggatgcca  | tct         | ccac        | tttccat    | tttccat    | ttatggaa    |
|    | 42781 | ctgtacttgc  | ag          | tg          | tttccat    | tttccat    | ttatggaa    |

42841 gacccgaaaca gtctctacgt caatggttt acccatcgga gctctggct caccaccgc  
 42901 actccttga ctcccacagt tgaccttggg acctcaggga ctccatcccc cgccccagc  
 42961 cccacaactg ctggccctet cctggtgcca ttcaccccaa acttcaccaat caccacactg  
 43021 cagtatgagg aggacatgca tcgccttggg tctaggaatgt tcaacgcac agagagggtc  
 5 43081 ctgcagggtc tgcttagtcc catattcaag aactccagtg ttggccctct gtactctggc  
 43141 tgcagactga cctctctcg gcccggagaag gatggggcagc caactggaaat ggatgtgtc  
 43201 tgcctctacc accctaattcc caaaaagacct ggactggaca gagagcagct gtactggag  
 43261 ctaagccage tgacccacaa catcaactgag ctggggccct acagcttggg cagggcagct  
 43321 ctctatgtca atggtttcaac ccatacgacgct tctatgacga ccaccagaac tcctgatacc  
 10 43381 tcccaaatgc acctggcaac ctcgagaatcc caatacaatc tgcaccatca ccaacactgca gtacgaggag  
 43441 agccctctcc tggtgcattt cacaatcaatc tgcaccatca ccaacactgca gtacgaggag  
 43501 gacatgcgtc goactgggtc cagggaaatcc aacccatgg agagtgctt gcagggtotg  
 43561 ctcaagccct tggtaagaa caccaggatggt ggccctctgt actctggctg cagattgacc  
 43621 ttgcgtcaggc ccaagaaaaga tggggcagcc actggagtttgg atgcacatcg caccacccgc  
 15 43681 ctgcacccca aaagccctgg actcaacagg gaggcagctgt actggagact aagcaaactg  
 43741 accaatgaca tggaaagactt gggcccttac accctggaca ggaacagactt ctatgtcaat  
 43801 ggitttcaccc atcagaggtc tgggtccacc accagactc ctgggaccc tacagtggat  
 43861 ctcaagaccc cttggactcc atccctccatttcc cttggggccca caattatgnc nnctgnccct  
 43921 ctccgtntnc cttccatccnt caacttncatc atcacaatcc tgcantangn ggannacatg  
 20 43981 cmncncncng gntccaggaa gttcaacacc acnagagggg tcttacaggg tctgtcagg  
 44041 ccctgttca agaacacccgg tgcactctt ctgtactctt gttcagactt gacccctgtc  
 44101 aggccctgaga agggatggggc agccaccaga gtggatgtc cctgcacca cccgcctgtat  
 44161 cccaaaagcc ctggacttggg cagagagca ctataactggg agctgagccca gctaaccac  
 44221 agcatcaactg agctgggacc ctacccctg gacagggtca gtctctatgt caatggctt  
 44281 aaccctcgga gctctgtgcc aaccacccgg actccctggg cctccacatg gcacccggca  
 44341 acctctggga ctccatcttc cctgcctggc cacacancnn ctgnccctct cctgtnccn  
 44401 ttccatcttca actttnccat cacaatccgt cantanggg annacatgcn ncncncngn  
 44461 tccaggaaatg tcaacaccac ngaggggtt cttgggggtc tgcacttacc cttttcagg  
 44521 aatacgatgc tggaaatacc tcttccatcc tgcagactt gctactctt gccagagaag  
 44581 gatacgatgc ccatggcactt ggtatggccatc tgcacacatc gcccgttcc tgaagactt  
 44641 ggactggaca gagagcgact gtactggggc ctgagcaatc tgacaaatgg catccaggag  
 44701 ctggggccctt acacccttggg ccggaaatgtt ctctacgtca atggtttcaac ccatcgaggc  
 44761 tctgggttca ccaccagcac tccttggactt tccacaggatgg accttggaaac ctcaaggact  
 44821 ccatccccccg tccccccggc cacaactgtt ggcctctcc tggtgcattt caccctcaac  
 30 44881 ttccatcttca ccaacccgtca gttatggggag gacatggccatc gcccgttcc tgaagactt  
 44941 aaccacccgg aggggggtt cttgggggttcttccatcc ttttcaagaa caccaggatgg  
 45001 ggcctcttca actctgggttcc cttgggggttccatcc ttttcaagaa caccaggatgg  
 45061 actggggatgg acaccatctt taccaccggc gttatccca tggggcccttgg actggacaga  
 45121 gagccggctat actggggatgg gggccggatc accaacacggc tccatcgatc gggaccctac  
 45181 accctggata gggacaggctt ctatgtcaat ggcttcaacc cttggagctc tttggcaacc  
 45241 accaggactc ctggggaccc tcaactgttccatcc ttttcaaccc cttggactcc atccctccct  
 45301 cttggccatca cagcccttgc cccctcttgc ataccatcc tccatcgatc ttttcaaccc  
 45361 gacccgttca atgaagaaaa catggccatcc ttttcaaccc cttggactccatcc ttttcaaccc  
 45421 aggggttctgc aggggttctgc ttttcaaccc cttggactccatcc ttttcaaccc  
 45481 tctgggttca gactgttccatcc ttttcaaccc cttggactccatcc ttttcaaccc  
 45541 gccatctgtca cccctccgtt ttttcaaccc cttggactccatcc ttttcaaccc  
 45601 tggggatgg ttttcaaccc cttggactccatcc ttttcaaccc  
 45661 gacacttcttca atgttcaatgg ttttcaaccc cttggactccatcc ttttcaaccc  
 45721 gggaccccttgc cttggactccatcc ttttcaaccc cttggactccatcc ttttcaaccc  
 50 45781 gccccttgc cttccatcc ttttcaaccc cttggactccatcc ttttcaaccc  
 45841 gaggaggaca ttttcaaccc ttttcaaccc cttggactccatcc ttttcaaccc  
 45901 ggtctgttca agcccttgc ttttcaaccc cttggactccatcc ttttcaaccc  
 45961 ctggccatcc ttttcaaccc cttggactccatcc ttttcaaccc  
 46021 catgttccatcc ttttcaaccc cttggactccatcc ttttcaaccc  
 46081 cagctgttccatcc ttttcaaccc cttggactccatcc ttttcaaccc  
 46141 gtcaatgggg ttttcaaccc cttggactccatcc ttttcaaccc  
 46201 atgcacccgttca aacccttgc ttttcaaccc cttggactccatcc ttttcaaccc  
 46261 ctccctgggttca ttttcaaccc cttggactccatcc ttttcaaccc  
 46321 catcacccttgc gtttcaaccc cttggactccatcc ttttcaaccc  
 46381 cttgtgttca agaaccacccg ttttcaaccc cttggactccatcc ttttcaaccc  
 46441 aggcccaaga agggatggggc agggccatcc ttttcaaccc cttggactccatcc ttttcaaccc

46501 cccaaaagcc ctggactgga cagagagcag ctatactggg agctgagcca gctaaccac  
 46561 agcatcactg agctggccc ctacacccag gacaggaca gtcttatgt caatggcttc  
 46621 accatcgga gctctgtgcc aaccaccagt attcctggga cctctgcagt gcacctggaa  
 46681 acctctggga ctccagcc cctccctggc cacacagcc ctggccctt cctggtgcca  
 5 46741 ttcacccctca acttcaactat caccAACCTG cagtatgagg aggacatgeg tcaccctgg  
 46801 tccaggaagt tcaacaccac ggagagagtc ctgcagggtc tgctcaagcc cttgttcaag  
 46861 agcaccagtg ttggccctt gtactctggc tgcagactga cttgtcttag gcctgaaaaa  
 46921 cgtggggcag ccaccggcgt ggacaccatc tgacttcaacc gccttgaccc tctaaaccca  
 46981 ggactggaca gagagcagct atactgggg ctgagacaaac tgaccctgg catcategag  
 10 47041 ctggccctt acctctggcagaggcgt ctctatgtca atggtttac ccattggacc  
 47101 tctgtccccca ccaccggcac tccctggacc tccacagtttgg accttggaaac ctcaggact  
 47161 ccatttccccca tcccaagccc cgcancnctt gncctctcc tgntnccntt caccncteac  
 47221 ttnaccatca ccaacactgca ntangnggan nacatgcnncc ncccnngntc caggaagttc  
 15 47281 aacaccacng agagggtctt gcagactctg ctgggtctta tggtaagaa caccagtgtt  
 47341 ggcctctgt actctggctg cagactgacc ttgctcagggt ccgagaagga tggagcagcc  
 47401 actgggatgg atgcccattgt caccacccgt ctggaccctt aaagccctgg agtggacagg  
 47461 gagaactat actgggagct gggcagcttccatgtcaatggatccc tggatccc  
 47521 accctggaca ggaaacagtct ctatgtcaatggatccc tggatccc  
 47581 agcagactc ctgggaccc cagatggac tgggtcttag ggactccatc ctccctcccc  
 20 47641 agccccacaa ctgctggccc tctccctggt ccgttccatcc tcaacttcaac catccaac  
 47701 ctgaagtacg aggaggacat gcatggccctt ggctccagga agttaacacac cacagagaga  
 47761 gtctgcaga gtctgttgg tcccatgttca aagaacacca gtgttggccc tctgtactct  
 47821 ggctgcagac tgaccttgc cagggtccag aaggatggag cagccactgg agtggatgcc  
 47881 atctgcaccc accgtcttgc ccccaaaggc cctggagttt acagggagca gctatactgg  
 47941 gagetggagcc agctgaccaa tggcatcaaa gagctgggtc ctttccatcc ggacagaaac  
 48001 agtctctatg tcaatggttt caccatcag acctctgtcc ccaacaccat cactctgg  
 48061 acctccacag tggaccttgg gacccatggg accttccatcc ccctacannc  
 48121 nctgncctc tctgtntcc ntcaccnctt aacttnacca tcaaccaccc gcantangng  
 48181 gannacatgc nnccnccnngg ntccaggaaat tcaacacca cngagngnt nctgagggt  
 30 48241 ctgttcccccc cnntttcaaa gaacnccatgt gtncccttc ttttactctgg ctgcagactg  
 48301 acctnnctca ggnncngagaa gnatggngca gcaactggan tggatgccc ctgcancac  
 48361 cncnntnanc cccaaagnncc tggactgnac agngagcngc tntactggg gctnagccan  
 48421 ctgaccaann ncatcnnnna gctgggnccc tacaccctgg acaggnacag tctctatgtc  
 48481 aatggtttca ccatttttttgc cccctgtggcc accagcagca ctccctgggactc  
 35 48541 gacccctgggat caggactcc accttccctt cccagccccc caactgttgg cccttcttg  
 48601 gtccctgttca ccctcaactt caccatcacc aacatgttgg acggaggagga catgcattgc  
 48661 cctggcttca ggaagtttca caccacacag agatgttgc agatgttgc tggatccatg  
 48721 ttcaagaaca ccagtgttgg ccctctgttgc tctggcttca gacttgcaccc gctcaggatcc  
 48781 gagaaggatg gaggccac tggatggat gcatcttca cccaccgtgt tgacccaaaa  
 40 48841 agccctggag tggacaggga gcaagtttac tggatggat gcaactgtac caatggccatc  
 48901 aaagagctgg gtccttacac cctggacaga aacatgttgc atgttcaatgg ttttaccat  
 48961 cagacccatcg cggccaaacac cagacttccatc gggacccatca cagtgnacntt ngnacccnt  
 49021 gggactccat cctccntcc cngccncaca tctgttgc gcttcttggt gccatttacc  
 49081 cttcaacttca cccatcaccat cctgttgc gaggaggaca tgcatttccatcc aggttccagg  
 45 49141 aatgttcaaca cccacggagcg ggtccctgtt gtttccatgtt caagaacacc  
 49201 agtgttgcggcc ttctgtactc tggatggat gcaactgtac tggatggat gaaatgggg  
 49261 gcaaccactg gaatggatgc catcttgcacc caccgttgc accccaaaag ccctggactg  
 49321 nacagngagc ngctntactg ggatgttgc gatgttgc accnttgc annccatcnn ngagctgggn  
 49381 cccatcaccat tggacaggna gatgttgc gtttccatgtt ttttaccatcc ganctctng  
 49441 cccacccatca gcaacttccatc gtttccatccatca gtttccatcc gtttccatcc  
 49501 tccctccccn cncnccacanc nnctgncctt ctccctgttcc ctttaccatcc caacttnc  
 49561 atccaccaacc tgcantangng gannacccatc gntccaggaa gtttcaacacc  
 49621 acngagaggg ttctgttgc gtttccatccatca gtttccatccatca gtttccatcc  
 49681 ctctatttgc gtttccatccatca gtttccatccatca gtttccatccatca gtttccatcc  
 55 49741 gtggatggca ttttccatccatca gtttccatccatca gtttccatccatca gtttccatcc  
 49801 ctgttgcggcc agtgcggat gtttccatccatca gtttccatccatca gtttccatccatca  
 49861 gaccggaaaca gtttccatccatca gtttccatccatca gtttccatccatca gtttccatccatca  
 49921 actcttgggat cccatccatccatca gtttccatccatca gtttccatccatca gtttccatccatca  
 49981 cccacggatc ttttccatccatca gtttccatccatca gtttccatccatca gtttccatccatca  
 50041 ctttccatccatca gtttccatccatca gtttccatccatca gtttccatccatca gtttccatccatca  
 50101 ctgttgcggcc ttttccatccatca gtttccatccatca gtttccatccatca gtttccatccatca

50161 tgcagactga cctcttcag gtctgagaag gatggaggag ccactggagt ggatgccatc  
 50221 tgcattccatc atcttgaccc caaaagccct ggactcaaca gagagccgct gtactggag  
 50281 ctgagccaac tgaccaatgg catcaaagag ctggccccc acaccctggc caggaacagt  
 50341 ctctatgtca atggttcac ccateggacc tctgtgcaca ccaccagcac tcctggacc  
 5 50401 tccaaagtgac acctttggaa ctcagggact ccattctccc tcccaagccc cgcaactgct  
 50461 ggcctctcc tggctgttt caccctcaac ttacccatca ccaacctgaa gtatgaggag  
 50521 gacatgcata gcccggctc caggaagtta aacaccactg agagggctt gcagactctg  
 50581 cttggctcta tggcaagaa caccagtgtt ggcctctgt actctggctg cagactgacc  
 10 50641 ttgctcaggc cggagaaggc tggagcagcc actggagtgg atgcacatctg caccacccgt  
 50701 cttgacccccaa agccctggactg actgnacagn gagcnctnt acttggagct naggcanctg  
 50761 accaannnca tchnnngact gggnccttaa accctggaca ggnacagtct ctatgtcaat  
 50821 ggtttcaccc atcnganctc tgnngccacc accacactc tgggacactc cacagtgnac  
 50881 ntnggnaccc tngggactcc atcctccntc cccngccnca cancnctgn ccctctctg  
 15 50941 ntncnntca cncntcaactt naccatcacc aacctgcant angngganna catgcnncnc  
 51001 cncngntca ggaagttcaa caccacngag agagtccctc agggtctgtc cagggctgtg  
 51061 ttcaagaaca ccagtgtgg ccctctgtac tctggctca gactgacctt gtcaggccc  
 51121 aagaaggatg gggcagccac caaagtggat gccatctgca cctaccggcc tgatccaaa  
 51181 agccctggac tggacagaga gccagctatac tggagctga gccagctaac ccacagcatc  
 51241 actgagctgg gcccctacac ccaggacagg gacagtctt atgtcaatgg cttcacccat  
 20 51301 cggagctctg tgcaccaacc cagtagtccctt gggacctctg cagtgacactt gaaaccact  
 51361 ggactccat ctccttcctt cggccacaca gaggctggcc ctctctgtat accattcaat  
 51421 ttcaacttta ccatcaccaa cctgcgttat gaggaaaaca tgcaacaccc tggttccagg  
 51481 aagtcaaca ccacggagag ggttctgcag ggtctgtca cgccttggta caagaacacc  
 51541 agtgttggcc ctctgtactc tggctgcaga ctgacacttc tcagacactga gaagcaggag  
 25 51601 gcagccactg gagtggacac catctgtacc caccggcttg atcccatcg acctggactg  
 51661 gacagagagc ggctatactg ggagctggc cagctgacca acagcatcac agagctgg  
 51721 ccctacaccc tggataggga cagtctctat gtcgtatgc tcaacccttg gagctctgtg  
 51781 ccaacacca gcaactctgg gaccccttca gtcgacccctt gactccatcc  
 51841 cccctgcctg gccacacagc ccctgtccct ctgttgcatac cattcacccct caacttacc  
 30 51901 atcaccgacc tgcattatga agaaaacatg caacaccctg gttccaggaa gttcaacacc  
 51961 acggagaggg ttctgcaggg tctgtcaag cccttgcata agagcaccag cgttggccct  
 52021 ctgtactctg gtcgcagact gacccctgca agacgttgc aacatggggc agccactgg  
 52081 gtggacgcca tctgcacccct ccgccttgat cccactgttc ctggacttggc cagagacgg  
 52141 ctatactggg agctgagcc gtcgacccatc agcatcacag agctgggacc ctacaccctg  
 35 52201 gatagggaca gtcttgcataatgt caatgggttca aacccttggc gtcgttgc aaccacc  
 52261 actccctggaa ctcacacagc gcacccggaa acctctggc ctccatctc cctgcctggc  
 52321 cacaacactg ctggccctct cctgggtccg ttcaccctca acttcacccat cacaaccc  
 52381 aagtacggagg aggacatgca ttggccctggc tccaggaatg tcaacaccac agagagatc  
 52441 ctgcagagtc tgcacccgttcc catgttcaag aacaccatgt ttggccctct gtaactctgg  
 40 52501 tgcagactga cttgtctca gtcggagaag gatggaggag ccactggagt ggatgccatc  
 52561 tgcacccacc gtcttgcaccc caaaagccct ggactgnaca gngagcnct ntactggag  
 52621 ctnagccanc tgaccaannn catcnngnac ctggccccc acaccctggc cagnacagt  
 52681 ctctatgtca atggttcac ccacccnganc tctggacccca ccaccagcac tcctggacc  
 52741 tccacagtgna acntnggnac ctccctggact ccaccccttcc cnccnntc  
 52801 gnccctctcc tgnntccntt caccntcaac ttnaccatca ccaacctgca ntangnggan  
 52861 nacatgcnnc nccnggntc caggaagtta aacaccacng agnngntnt gcaaggctg  
 52921 ctnnnncccn tnttcaagaa cnccactgtt ggcctctgt actctggctg cagactgacc  
 52981 tnnntcaggn cmagaagna tggngcagcc actggantgg atgcacatctg canccaccnn  
 53041 ctnnanccca aaagmcctgg actgnacagn gagcnctnt acttggagct naggcanctg  
 53101 accaacagca tcaacagact gggaccctac accctggata gggacagtct ctatgtcaat  
 53161 ggtttcaccc atcgaagactc tatgcccacc accagtattc ctggacccctc tgcacgtgcac  
 53221 ctggaaacct ctgggactcc agccctccctc cttggccaca cagccctgg ccctctctg  
 53281 gtccattca cccctcaactt cactatccca aaccctggat atgaggagga catgcgtcac  
 53341 cctggttcca ggaagttcaa caccacggag agactctgc agggctctgca aagccctt  
 55 53401 ttcaagagca ccagtgtgg ccctctgtac tctggctca gactgacctt gtcaggct  
 53461 gaaaaacgtg gggcagccac cggcgtggac accatctgca ctcaccgcct tgaccctcta  
 53521 aaccctggac tgnacagngna gcnctntac tgggacttca gccanctgac caannncatc  
 53581 nnngagctgg gnccctacac cttggacagg nacagtctt atgtcaatgg tttcaccc  
 53641 cnganctctg ngeccaccac cagcactctt gggacttca cagtgnacnt ngnaccten  
 53701 gggactccat ctcctccntcc cngccnccaca ncnnctgncc ctctctgtnt nccttcacc  
 60 53761 ntcaacttta ccatcaccaa cctgcantana gnggnanaca tgcnnncncc ngnntccagg

53821 aagttaaca caacngagng ngtnctgcag ggtctgcnn nnccntntt caagaacncc  
 53881 agtgtnggcc ntctgtactc tggctgcaga ctgacctnc teaggmcnga gaagnatgg  
 53941 gcagccactg gantggatgc catctganc cacnnntn anccaaaag ncctggactg  
 54001 nacmgngac ngctntactg ggagctnacg canctgacca annncatcn ngagctgg  
 5 54061 ccctacaccc tggacaggna cagtccttat gtcatatggg ttcaccctcg gagctcttg  
 54121 ccaaccacca gcactcctgg gacctccaca gtgcacctgg caacctctgg gactccatcc  
 54181 tccctgcctg gcccacacagc ccctgtcccc ctcttgatac cattcaccc caactttacc  
 54241 atcacaacc tgcattatga agaaaaacatg caacaccctg gttccaggaa gttcaacacc  
 54301 acggagcggg tcttcgcaggg tctgttggg cccatgtca agaacacaag tgcggcett  
 10 54361 ctgtactctg gtgcagact gacccctgc aggcttgaga agaatggggc agccactgg  
 54421 atggatgcca tctgcagcc caagtgttgc cccaaaagcc ctggactgna cagngagcng  
 54481 ctntactggg agctnagcca ntgcaccaan nnacntnng agctgggncc ctacaccctg  
 54541 gacagggnaca gtctctatgt caatgttcc acccatcnga nctctgngcc caccaccagc  
 15 54601 actccctggga cttccacagt gnacntnggn acctcnggg ctccatcctc cntcccnnc  
 54661 cnacacnccn ctgnccctt cctgnntccn ttcacntca acttnaccat cacaaccc  
 54721 cantangngg annacatgcn nnccnnggn tccaggaagt tcaacaccac ngagngng  
 54781 ctgcagggtc tgctnnnncc ctnntcaag aacnccactg tnngccntct gtactctgg  
 54841 tgcagactga cctnnntcag gncngagaag natggngcag ccactggant ggatgccc  
 20 54901 tgcancaccn nnctnncncc caaaagncc ggactgnaca gngagcngct ntactgg  
 54961 ctngccanc tggacannn catcnnggg ctggncctt acaccctggc cagnacag  
 55021 ctctatgtca atggtttac ccatacggac tctgtgcacca ccaccaggatc tcctgg  
 55081 tccacagtgt actgggcaac cacttggact ccataccttcc tccccggca cacaagg  
 55141 ggcctctcc tgataccatt cacttcaac tttaccatca ccaacctgca ttatgagg  
 55201 aacatgcaac accctggttc caggaagtcc aacaccacgg agagggttct gcagggtct  
 25 55261 ctcaacggccct tggtaagaa caccaggatg ggcctctgt actctggctg cagaactg  
 55321 ttgcctagac ctgagaagca ggaggcagcc actggatgtt acaccatcg tacccaccc  
 55381 gttatccca tggacactgg actgnacagn gagengctt actggagct nagccanctg  
 55441 accaannnca tcmnnngagct gggnccttac accctggaca ggnacagtct ctatgt  
 55501 gtttacccct atcnganc tgnngccacc accaggactc ctggacccctc caca  
 30 55561 ntnggnaccc tngggactcc atcctccntc cccngcnca cancnctgn ccctctcc  
 55621 ntncnttca cncntcaactt naccatcacc aacctgcant angnganna catgcnnc  
 55681 cncngntcca ggaagttcaa caccacmgag nngntctgc agggtctgt nnnccntn  
 55741 ttcaagaacn ccagtgttng ccntctgtac tctggctgca gactgacctn nctcagg  
 55801 gagaagnatg gngcagccac tggantggat gccatgtca nccacnnn tnanccaaa  
 35 55861 agnctggac tgnacagnna gngctntac tggagatcna gcanctgac caannncatc  
 55921 nnngagctgg gnccttacac cctggacagg nacactctt atgtcaatgg ttccaccc  
 55981 cggagctctg tgccaaaccac cagcacttcc gggacccctca cagtgaccc ggcac  
 56041 gggactccat cttccctgcc tggccacaca gcccctgtcc ctctcttgc accattcacc  
 56101 ctcaacttta ccatcaccaa cctgcattat gaagaaaaca tgcaacaccc tgg  
 40 56161 aagttaaca caacggagag ggttctgcag ggtctgtca agcccttgtt caagagc  
 56221 agtgttggcc ctctgtactc tggctgcaga ctgacctgc tcagacctga gaaacatgg  
 56281 gcagccactg gatggacgc catctgcacc ctccgcctt atcccaactgg tcctggact  
 56341 nacmgngac ngctntactg ggagctnacg canctgacca annncatcn ngagctgg  
 56401 ccctacaccc tggacaggna cagtccttat gtcatatggt tcaaccatcn ganctctg  
 45 56461 cccaccacca gcactcctgg gaccccttca gtnacntng gnacctcng gactccatcc  
 56521 tccntccccn gcccacanc nnctgnccct ctcctgnntc cttccacccn caacttnacc  
 56581 atcacaacc tgcantangn ggannacatg cncnccnc gntccaggaa gttcaacacc  
 56641 acngagngng ntctgcaggg tctgttcccc nnctnttca agaacnccag tgtnng  
 56701 ctgtactctg gtcagact gacccntncc aggnacnaga agnatggngc agccactgg  
 56761 ntggatgcca tctgcanc tccnnntnan cccaaaagnc ctggactgna cagngagc  
 56821 ctntactggg agctnagcca ntgcaccaan nnacntnng agctgggncc ctacaccctg  
 56881 gacagggnaca gtctctatgt caatgttcc acccatcgga cttctgtcc caccacc  
 56941 actccctggga cttccacagt gacccctggca acctctggca ctccatcctc ctgcctgg  
 57001 cacacagccc ctgtccctt ctgtatcca ttccaccctca actttaccat cacaaccc  
 55 57061 cagtagtggagg aggacatgca tggccctggta tcttaggaat tcaacaccac agagagg  
 57121 ctgcagggtc tgcttagtcc cattttcaag aactccatg tggccctct gtactctgg  
 57181 tgcagactga cctctctcag gcccggagaag gatggggcag caacttggat ggatg  
 57241 tgccttacc accctaatec caaaagact gggctggaca gagacgact gtactgc  
 57301 ctaageccagc tgacccacaa catcaactgag ctggccctt acacgctggc caggg  
 57361 ctctatgtca atggtttac ccatacggac tctgtgcacca ccaccaggatc tcctgg  
 60 57421 tccacagtgt actgggcaac cactggact ccataccttcc tccccggca caca  
 nnccntncc

57481 gncctctcc tgnntccntt caccntcaac tttnaccatca ccaacactgca ntangnggan  
 57541 nacatgcnncc nccnnggntc caggaagttc aacaccacng agnngngtnt gcagggtctg  
 57601 ctnnnncccn tnttcaagaa cnccagtgn ggcmtctgt actctggctg cagactgacc  
 57661 tnnctcaggn cnmagaagna tggngcagcc actggantgg atgcatctg canccacnn  
 57721 ctnnanccca aaagnccctgg actgnacagn gagnctnt actggagact nacccanctg  
 57781 accaannnca tcnnngagct gggncctac accctggaca ggnacagtt ctatgtcaat  
 57841 ggtttcaccc attggagctc tgggtcacc accagcaactc cttggacttc cacatggac  
 57901 cttgaaacct cagggactcc atccccgtc cccagccca caactgctgg ccctctctg  
 57961 gtgcattca ccttaaactt caccatcacc aacctgcagt atgaggagga catgcattgc  
 58021 cctggatcta ggaagttcaa cgccacagac agggtcctgc agggtctgt tagtcccata  
 58081 ttcaagaaca ccagtgtgg ccctctgtac totgtgtca gactgaccc tgcagaccc  
 58141 gagaagcagg agcgagccac tggagtggac accatgtca cccacccgt tgatcccata  
 58201 ggactctggac tgnacagzga gcnactntac tggagctna gccanctgac caannmcate  
 58261 nnngagctgg gncctcac ac cctggacagg nacagtctt atgtcaatgg tttcacccat  
 58321 cnganctctg ngccccaccac cagcaactt gggaccttca cagtgnacnt ngnacctcn  
 58381 gggactccat cctccntcc cngccnaca ncnnctgncc ctctctgtt nccnttcacc  
 58441 ntcaacttina ccatcacca cctgcantan gnggannaca tgcnnncncc ngnntccagg  
 58501 aagtcaaca ccacngnagng ngtntcgcg ggtctgtctt nnccntntt caagaacncc  
 58561 agtgtngggc nctgtactc tggctgcaga ctgacccntnc tcaggncnng gaagnatgg  
 58621 gcaggccactg gantggatgc catctgcanc caccnnctn anccaaaag ncctggactg  
 58681 nacagngagc ngctntactg ggagctnacg canctgacca annncatcn ntagtgggn  
 58741 ccctacaccc tggacaggna cagttcttat gtcaatggt tcacccatcg gagcttggg  
 58801 ctcaccacca geactccctg gacttccaca gttgacccctt gAACCTCAGG GACTCCATCC  
 58861 cccgtccccca gccccacaaac tgcgtggccctt ctcctggcattcaccctt aaacttcacc  
 58921 atcacaacc tgcgttatga ggaggacatg catcgccctg gtcggaggaa gttcaacacc  
 58981 acggagaggg tccttcagggg tttgttttacg cccttggttca ggaacaccag tgtagctt  
 59041 ctgtactctg gtgcagact gaccccttc agggctgaga aggtggggc aecaccaga  
 59101 gtggatgtc tctgcaccc tctgtctgc acccaaagcc ctggactgna cagnagcng  
 59161 ctntactggg agctnagcca nctgaccaan nncatcmng agtgggncc ctacaccctg  
 59221 gacaggnaca gtctctatgt caatggttt accatcnca nctctngcc caccaccac  
 59281 actctggga cctccacagt gnacntnggn acctcnngga ctccatctc cncctccncc  
 59341 cncacancnn ctgnccctt cctgnntccn ttcaccntca acttnaccat caccaacactg  
 59401 cantangngg annacatgn nccnccnngn tccaggaat tcaacaccac ngagngntn  
 59461 ctgcagggtc tgcnnnnccn ctnnttcaag aacnccatgt tggccttctt gtactctgg  
 59521 tgcaactgta cctnctcag gnngagaag natggngcag ccactggant ggatggccatc  
 59581 tgcanccacc nncntnanc caaaaagccct ggactgnaca gngagcngt ntactggag  
 59641 ctnagccanc tgaaccaannn catcnnngag ctgggnccctt acaccctgga cagnacag  
 59701 ctctatgtca atgggttccat ccattggatc cctgtgtccca ccagcagcac tcttggacc  
 59761 tccacagtgg accttgggtc agggacttca tccctccctt ccagccccc aactgctgg  
 59821 cctctctgg taccattca cctcaactt accatcacca acctgcagta tggggaggac  
 59881 atgggtcacc ctggctccag gaagttcaac accacagaga gggtcctgca gggtcgtctt  
 59941 ggtcccatat tcaagaacac cagttgttgc cctctgtact ctggctgcag actgacccct  
 60001 ctcaggctcc agaaggatgg agcagccact ggagtggatg ccacatgcat ccacatctt  
 60061 gacccaaaaa gccctggact gnacagngag cngctntact gggagctnag ccacntgacc  
 60121 aannncatcn nngagctggg nccctacacc ctggacagn agactctata tgcataatgg  
 60181 ttcacccatc ngnactctn gcccaccacc agcactctt ggaccccttcc acgtgnacntn  
 60241 ggnacctcng ggactccatc ctccntccccc ngccmccan cnctgnccct tctctgtnt  
 60301 ccnttccacn tcaacttnac catcacaacc ctgcantang ngannacat gcnncnccn  
 60361 ggnctccagga agtcaacac caenngagn gtnctgcagg gtctgetnnn nccntnttc  
 60421 aagaacnccca gtgnngccm tctgtactct ggctgcagac tgacccnnct cagncnngag  
 60481 aagnatggng cagccactgg antggatgcc atctgcanc accnnctna nccaaaaagn  
 60541 cctggactgn acagngagcn gctntactgg gagctnagcc anctgacccaa nnncatcmnn  
 60601 gagctggnc cctacaccctt ggacaggnc agtctatgt tcaatggttt caccatcg  
 60661 accttgcgc ccaacaccag cactctggg acctccacag tggacccctt gacccctt  
 60721 actccatctt ccctccccat ccctacatctt ctggccctt tccctggcattcaccctt  
 60781 aacttccacca tcaaccaacctt gcaatgcag gaggacatgc atcaccaccagg ctccaggaa  
 60841 ttcaacacca cggagcgggt cctgcagggt ctgttggc ccatgttcaaa gaacaccagg  
 60901 gtccggccctt tgcgtactctgg ctgcagactg accttgcctca ggcctgagaa gaatggggca  
 60961 gccaccacag tggatgtctgt ctgcacccat ctgcctgacc cccaaagccc tggactgnac  
 61021 agnagcngc tntactggg gctnagccan ctgaccaann ncatcmng gctgggnccc  
 61081 tacaccctgg acaggnacag tctctatgtc aatggttca cccatcngan ctctgngccc

61141 accaccagca ctccctggac ctccacagtg nacntngna cctcnnggac tccatcctcc  
 61201 ntccccngcc ncacagcccc tgccctctc ttgataccat tcaccccaa ctttaccatc  
 61261 accaacctgc attatgaaga aaacatgcaa caccctgtt ccaggaagtt caacaccacg  
 61321 gagagggttc tgcagggtct gtcagactgaa cttgctcaga cctgagaaac atggggcagc cactggatgt  
 61381 tacttggct gcagactgac cttgatccc acttgtctg gactggacag agagcggt  
 61441 gacgcacatct gacccctccg cttgatccc acttgtctg gactggacag agagcggt  
 61501 tactgggagc tgagccagct gaccaacagg gttacagagc tggcccccata caccctggac  
 61561 agggacagtc tctatgtcaa tggcttcacc cagcgagct ctgtgccaac caccagtatt  
 61621 cctgggacct ctgcagtgca cttggaaacc tctgggactc cagccctccct ccctggccac  
 61681 acagccccctg gcctctctt ggtgcatttc accctcaatc tcaactatcac caacactgcag  
 61741 tatgagggtgg acatgcgtca ccctggttcc aggaagtca acaccacggg gagagtctg  
 61801 cagggtctgc taaaagccctt gtcaagagg accagtggtgc cccctctgtt ctctgggtgc  
 61861 agatgacact tgcgtcaggcc tggaaaccgt gggcagggc cccgcgtggg caccatctgc  
 61921 actcaccggcc ttgaccctctt aaaccctggaa ctggacagag agcagctata ctggagctg  
 61981 agcaaaactga cccgtggcat catcgagctg ggccccctacc ttctggacag aggagcttc  
 62041 tatgtcaatg gttcacccca tggaaactttt gtgcacccatca ccagcactcc tggacactcc  
 62101 acatgacacc taggaaccttc tggaaacttca ttctccctac ttagacccat agtgcctggc  
 62161 cctctccctgg tgcatttcac cctcaacttc accatcacca acttgcaatc tgaggaggcc  
 62221 atgegacacc ctggcattccg gaagttcaat accacggaga gggctctaca gggctgtc  
 62281 aggccctgt tcaagaatac cagttatcgcc cctctgtact ccagctgcag actgacattt  
 62341 ctcaaggccag aqaaaggacaa ggcgcaccc agagtgatgatccatctgtac ccaccaccc  
 62401 gaccctcaaa gcctggact gaacagagag cagctgtact gggagctgag ccagctgacc  
 62461 caeggcattca ctgagctggg cccctacacc ctggacaggg acagttctta tgcgtatgg  
 62521 ttcaacttggg gtagcccccattt acggaccacc agcactctg ggacccctat agtgaacactg  
 62581 ggaacctctg gtagcccccattt ttccctccctt gaaactacan mnctgnccc tctcctgn  
 62641 ccnttcacccn tcaacttnac catcaccacat ctgcantang nggannacat gcnnncnn  
 62701 ggntccaggg agttcaacac cacngagagg gttctgcagg gtctgtcaa gccttgg  
 62761 aagacacca gtgttggccc tctgtattctt ggtgcagac tgacccctgt cagccctgag  
 62821 aaggacggg agtggacccg atggacccg acggccctgt gaaactacan mnctgnccc tctcctgn  
 62881 ctggggcttag acagacagca gctatactgg gagctgagcc agctgacccca cagcatca  
 62941 gaggtgggac ctacaccctt ggataggac agtctctatg tcaatggttt caccctgg  
 63001 agctctgtgc caaccaccag cactcctggg acttccatag tacagccggg aacccctgag  
 63061 actccatcat ccctccctgg cccccacacc actgtccctg ttctgtgccc attaccctc  
 63121 aattttacca tcaactaaccctt gcaatgttgg gaggacatgc atgcctggg ctccaggaa  
 63181 ttcaacacca cggagagggtt ctttcagggt ctgtttatgc ctttggctaa gaacaccagg  
 63241 gtcagctctc tgactctgg ttgcagactg accttgcata ggcctggaaa ggatggggca  
 63301 gcccaggag tggatgtgtt ctgcattccat cttctgcacc cccaaaggccc tggactggac  
 63361 agagacggc tttttttttttt gttttttttttt gttttttttttt gttttttttttt gttttttttttt  
 63421 tacaccctgg acaggcacat tttttttttttt tttttttttttt tttttttttttt tttttttttttt  
 63481 accaccagaa ctccgtatac ctccacaatg cacctggcaa cctcgagaac tccagccctcc  
 63541 ctgtctggac ctacgaccgc cagccctctc ctgggtctat tcacaattaa ttccaccatc  
 63601 actaacctgc ggttatgagga gaacatgcat caccctgtct ttagaaagtt taacaccacg  
 63661 gagagatgtcc ttccagggtct gtcaggccct gttttttttttt tttttttttttt tttttttttttt  
 63721 tacttggctt gcaatgttgg cttttttttttt tttttttttttt tttttttttttt tttttttttttt  
 63781 gatccatctt gacccatccccc cccatccccc aaaaaggccccc gactggacag agacccatcc  
 63841 tactggggac tgagccatctt aacccacacc actgtggatcc tggggccctt caccctgg  
 63901 agggacagtc tctatgtcaa tggtttccata cttttttttttt tttttttttttt tttttttttttt  
 63961 cctgggaccc ccacagtggaa cttttttttttt tttttttttttt tttttttttttt tttttttttttt  
 64021 tcggctgcca gcccctctt ggtgttattt actctcaact tcaccatcac caacccatcc  
 64081 tatgaggaga acatgcagca ccctggctcc aggaagtcttca acaccacggg gagggcc  
 64141 caggccctgc tcaatgttccctt gttcaagggc accagtggtgc cccctctgtt ctctggctgc  
 64201 agactgtactt tgcgtcaggcc tggaaaggat gggacccgca ctggagttgg tgcacatctgc  
 64261 accaccaccctt tttttttttttt tttttttttttt tttttttttttt tttttttttttt tttttttttttt  
 64321 agccagctga cccacaatattt cttttttttttt tttttttttttt tttttttttttt tttttttttttt  
 64381 ttgttcaatgttccactca tggatgttccctt gttttttttttt tttttttttttt tttttttttttt  
 64441 acagtgttac tggggatgttccctt tttttttttttt tttttttttttt tttttttttttt tttttttttttt  
 64501 catccctgttca tactatttccat cttttttttttt tttttttttttt tttttttttttt tttttttttttt  
 64561 atgtggcctt gttccaggaa gttcaacactt acagagagggg tttttttttttt tttttttttttt tttttttttttt  
 64621 cccttggccatca agaaaccacccat tttttttttttt tttttttttttt tttttttttttt tttttttttttt  
 64681 agggccagaga aagatggggg agccacccggg gttggatggca tttttttttttt tttttttttttt tttttttttttt  
 64741 cccacaggccctt tttttttttttt tttttttttttt tttttttttttt tttttttttttt tttttttttttt tttttttttttt

64801 agcatcaactg agctgggccc ctacacactg gacagggaca gtctctatgt caatggttc  
 64861 acccatcgga gctctgtacc caccaccagg acgggggttgc tcagcgagga gccattcaca  
 64921 ctgaacttca ccatcaacaa cctgcgtac atggcgagaa tggcccaacc cgctccctc  
 64981 aagttaacaaca tcacagacaa cgtcatgaag cacctgtca gtctttgtt ccagaggagc  
 5 65041 agcctgggtg cacggtagac aggctgcagg gtcatgcac taaggctgt gaagaacggt  
 65101 gctgagacac gggtggacct cctctgcacc tacctgcagc ccctcagcgg cccaggcttg  
 65161 cctatcaagc aggtgttcca tgagctgagc cagcagaccc atggcatcac ccggctggc  
 65221 ccctactctc tgacaaaaga cagcctctac cttAACCGTT acaatgaacc tggcttagat  
 65281 gagctctcta caactccaa gcccggcacc acattccgtc ctccctctc agaagccaca  
 65341 acagccatgg ggtaccaccc taatggccaa gggctcagct acatcaact tcaccatctc caatctccag  
 10 65401 tattcaccag atatggccaa gggctcagct acatcaact ccaccgggg ggttccatc  
 65461 cacctgtca gacccttgtt ccagaagagc agdatgggc ccttctactt ggggtggccaa  
 65521 ctgatctccc tcaggcctga gaaggatggg gcagccactg gtgtggacac caccgtcacc  
 65581 taccaccctg accctgtggg ccccggtctg gacatacagc agctttactg ggagctgagt  
 15 65641 cagctgaccc atgggttcac ccaactgggc ttctatgtcc tggacaggga tagccttcc  
 65701 atcaatggct atgcacccca gaatttatca atccgggggg agtaccagat aaatttccac  
 65761 attgtcaact ggaacacctcg taatccagac cccacatctc cagagtacat caccctgtg  
 65821 agggacatcc aggacaaggc caccacactc tacaaaaggca gtcaactaca tgacacattc  
 20 65881 cgcttctgcc tggtcaccaa cttgacgtat gactccgtt tggtcactgt caaggcattt  
 65941 ttcttcctcca atttggaccc cggcgttgg gacggatgtt ttcttagataa gaccctgaat  
 66001 gcctcattcc atttggctggg ctccacccatc cagttgggg acatccatgt gacagaaatg  
 66061 gagtcatcag ttatcaacc aacaagcaggc tccagccacc agcacttca cctgaatttc  
 66121 accatcacca acctaccata ttcccaggac aaagcccaggc caggcaccac caattaccag  
 66181 aggaacaaaa ggaatattga ggatgcgtc aaccaactt tccgaaacag cagcatcaag  
 25 66241 agtttatttt ctgactgtca agttcaaca ttcaaggctgtt tccccaaacag gcaccacacc  
 66301 ggggtggact ccctgtgtaa ctctcgccca ctggctcggg gagtagacag agttgcattc  
 66361 tatgaggaat ttctcggat gacccggat ggtacccaggc tgcagaactt caccctggac  
 66421 agggcagggt tccttgcgtt tggttattt cccaaacagaa atgaccctt aactgggaat  
 66481 tctgacccctc ccttctgggc tggcatcctc atcggcttgg caggactctt gggactcatc  
 30 66541 acatgcctga tctgcgggtt ccttgcgttgc accccggggc ggaagaagga aggagaatac  
 66601 aacgtccaggc aacagtgcacc aggctactac cagtcacacc tagacctgga ggatctgcaaa  
 66661 tgactggAAC ttggcgggtc ctgggggtc ttccccccat ccagggtcca aagaagcttg  
 66721 gctggggcag aaataaaacca tatttggcggg aaaaaaaaaaaaaaaa

## 35 SEQ ID NO. 3

hk5 amino acid

MATARPPWMWVLICALITALLGVTEHVLANNNDVSCDHPNSNTVPSGSNQDLGAGAGEDARSDDSSRIINGSD  
 CDMHTQPWQAALLLRPNQLYCGAVLVPQWLTAACRKKVFRVRILGHYSLSPVYESGQQMFQGVKSIPHG  
 40 YSHPGHSNDLMLIKLNRRIRPTKDVPRINVSSHCPASGTCKCLVSGWGTTKSPQVHFPKVLQCLNISVLSQKR  
 CEDAYPRQIDDTMFCAGDKAGRDSQGDGGPVVCNGSLQGLVSWGDYPCARPNRPGVYTNLCKFTKWIQET  
 IQANS

## 45 SEQ ID NO. 4

KLK5 CDS

ggtgtctgtg cgtcctgcac ccacatcttt ctctgtcccc tccttgcctt gtctggaggc  
 tgcttagactc ctatcttctg aattctatag tgcctgggtc tcagcgcaatg gccatgtgg  
 50 gcccgtcctt gtgggttccctc tctacttggg gaaatcaggat gcaaggccca tggctacac  
 aagacccccc tggatgtggg tgctctgtgc tctgtatcaca gccttgcattt tgggggtcac  
 agagcatgtt ctgcaccaaca atgatgttcc ctgtgaccac ccctctaaaca ccgtccctc  
 tgggagcaac caggacactgg gagctggggc cggggaaagac gcccgggtcg atgacagcag  
 cagccgcattc atcaatggat ccgactgcga tatgcacacc cagccgtggc aiggccgcgt  
 gttgtcaagg cccaaacccaggc tctactgcgg ggcgggttgc gtgcattccac agtggctgt  
 55 cacggccggcc cactgcaggaa agaaatgtt cagactccgt ctggccact actccctgtc  
 accagtttat gaatctgggc agcagatgtt ccaggggttc aaatccatcc cccacccctgg  
 ctactccac cctggccact ctaacgcact catgtcatc aaactgaaca gaagaattcg  
 tcccactaaa gatgtcaggac ccatcaacgt ctccctctcat tgccctctg ctggacaaa

5           gtgcttggtg tctggctggg ggacaaccaa gagccccaa gtgcacttcc ctaaggctc  
 ccagtgcctg aatatcagcg tgctaagtca gaaaagggtgc gaggatgctt acccgagaca  
 gatacatgac accatgttct ggcgggtga caaagcagggt agagactcct gccagggtga  
 ttctgggggg cctgtggct gcaatggc cctgcaggga ctgcgttcctt ggggagatta  
 10          cccttgtgcc cggcccaaca gaccgggtgt ctacacgaac ctgcgtcaagt tcaccaagtg  
 gatccaggaa accatccagg ccaactctg agtcatccca ggactcagca caccggcattc  
 cccacctgtc gcagggacag ccttgacact ccttcagac cctcattcct tcccagagat  
 gttgagaatg ttcatcttc cagccctga ccccatgtct cctggactca gggtctgtt  
 15          cccccacatt gggctgaccg tgcgtctcta gttgaaccctt gggacaattt tccaaaactg  
 tccagggcgg gggttgcgtc tcaatctccc tggggactt tcatcctcaa gctcaggc  
 catcccttct ctgcagctc gacccaaatt tagtcccaga aataaaactga gaagtggaaa  
 aaaaaaaa

## 15   SEQ ID NO. 5

## KLK5 nucleic acid

20          gggcccagag tgaaggcaag agaaggagtt gagagctccc tctgcaaagt ggcttggagtc  
 tcccctgcct aaaaatgcagg gagagggagg cagaaagaca gggaaagagga aggggtgggg  
 aagaaagaga gagagagaga gagacagaat aacacaacta cagaaacaca gagagaacac  
 acagagagcc tgggacacag ggacacacag agtcatcgag aaaaagagaag atagagaaag  
 acacaaatgg agacacagag gtgtaaagaa agagatggaa acagatccc agatacacgc  
 aaaggggcag aagcacagtt ttcagggtgg tgcgttatgtt catcttctttt tttttttttt  
 tttttttttt tttttgagac ggagtctcgc tctgtcgccc aggctggagt gcagtggcgg  
 25          gatctggct cactgcaagc tccgcctccc gggttcacgc cattctcctg cctcagcc  
 ccaagtagct gggactacag ggcgcgcgc ctagccccc ctaattttttt tgatTTT  
 ttagagacgg ggtttcaccc ttttagccgg gatggcctcg atctcctgac ctcgtatcc  
 gcccgcctcg gcctccaaa gtgctggat tacaggcgtg agccaccgc cccggccatg  
 atcatcttct tgcgtatgtt gatgtgacaa gtacctaag ccatcagact ctacccttta  
 30          aatatgcagt ttggccagg caccgtgct catgctgtt attccagcac ttggggaggc  
 agagggtgggt gaatacttg aggccaggag tttgagacca gcctggccaa catgtgaaa  
 ctctgtcttt actaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaatc agccgggtgt cgtggggcac  
 acctgttaatc ccagctatgc tggaggctga ggcacgagag tcaacttgaac cctggaggcg  
 gaggttgcag tggcccgaga tcacatcacc gcctccgc cttggcgaca gagcaagact  
 35          ctgtctcaaa taataataata aacaaacgaa caacgatgtt gtttacccctt agtttatatct  
 aaaaaaaaaaa tgctgtcaac aaatgagca gaatgtaaat aaaggaaat aaatggccca  
 agaactctaa gttatatttg acaaatttattt cagaaccttt aaaaaagaaaaa gaatcacaga  
 ggcatalogaaa gacaggaggaa aacaggaggaa cagaaacacc tggggccaa ggagaacaaa  
 acaaggctcc taagacagac aggaggaggaa agagagagag tgatgtgagag acagacagag  
 40          aaaaagacag agagagagag acagagacag agagacagag aggccaggagg gatagaaaga  
 gagagagggg tggagagaga cacgagatattt tgagagagac tcagaaagat agccggaggga  
 gaaccacaga gagatggaag aagactctga aaaaaaaccga gagacaaaga tggaaagagg  
 agtatcgagg gtgaacagac agtgggtgaa tgagaaaaat gcagagaaga aagcaagcaa  
 tccaggccgc aaaaatagtg acccagagtt ggtgagaagc cagatccctt aaggctgggg  
 45          aggcaggggaa gggctggcc tggcttcgg agaccctcc ccatttcgg ggccaggagg  
 gttagggagt acattccggc ctgggtgggg ggtgtctgg ggggtggagat agggggagca  
 ggaggagcta ttgctaaggc ccgataggca cctcatttgcc cggaaatgtg ccccaaggagg  
 cagtgggtgg ttataactca ggcccggtgc ccagggccca ggaggaggca gtggccagga  
 aggcacaggc ctgagaagtc tggcgtctgg ctggagacaa atccccccacc cccttacccctgg  
 50          gggacaggggc aagtggagacc tggtgagggt ggctcagcagc gcaggggaaagg agaggtgtt  
 gtgcgtcctg caccacatc ttctctgtc ccctccttgc cctgtctgg ggctgtctaga  
 ctccatatctt ctgaaatttcta tagtgcctgg gtctcagcgc agtgcggatg gtggccctgc  
 ctgtgtttc ctctctacct gggaaataa ggttagggggag ggaggggaaag tgggttaagg  
 gctccccggc tgcctggc ctcccaaccc tctgacattc cccatccagg tgcaggcggcc  
 55          atggctacag caagacccccc ctggatgtgg gtgcgtctgt ctctgtatc acgttgc  
 ctgggggtca caggtAACCA gaactctggg gtgggggggt tggggattt ggaggactgt  
 ctctgcggca cttagagcgc tgcgtccctgg ggaactgtgt gacgcctggc atgactccgg  
 gaccgggtga atgtgatct ctgtctgtac ttgtgggtgt ggcgtatcgtat gtggccctgt

5 gactgccacg gtgtgtgtcg gggaggggga tgcctttcc catatcaggta gactgtgcgg  
 caggggcac tgacccttgc aggctgtgtc tggctgttttg tgattgtgtc tgcatatca  
 attgtgtgtc gtcacacgc tggctgttttg aatgcattgtc gcaactggggg tggttactgt  
 gtgttgcgtc gtgtgtgtc acttggcatt gtatgtact gcaggatctc gcagttccgt  
 10 tccctgaggc cccgggattt cgtgcacaaa aatgggtcat caccatggaa agctgtact  
 gtgtgtgtc tgcaggcgt tatgtgttgc tggctgtgtc tgacgttatgc gatccccgt  
 tttgtgaccg tggactacc tgaagctctg tggtaggggtc actgtatgtc actgtgtgt  
 tctgtgtgag gcccgttaaa tggactgtc tggtaggtgtc tgcaactgtc tggctggagt  
 ttctgtctc gcctggaggg atagagggtc cagggttagc tatctctggg agatgggtc  
 15 cagggtactg acttgcagtgc tggcctgtc tgcagaagag tatgtggcag tctgaacatc  
 tgtgcacaca cggcatctgt gcgtggcact gagacactgt gatgagggt gtgcgtatccc  
 gctaggctgc cccggagcgt gtgtacctgg agacagagct gtatgttgc tgcacctgt  
 gaggcaacat gggcgtgtct gcagaactgc gtgcgtgttgc gctgttact gctgttgtc  
 gctgtgttgc tgggtgtact tggtaggtgtc tgtagtgc tggtaggtgtc agtctggagt  
 20 gaaccaggcc gggcgcgggtc gtcacccgc tgaatcccag ccctttgggaa ggccgaggca  
 ggcggatcac ctggatggc gagatggc ccaggcgtc acacatggag aaccccgct  
 ctactaaaaaa tacaaaaaaat tagctgtgtc ggtggcgcgt ccctgtataatc ccagctactc  
 gggagactgg ggcagaaaaaa tcgcttgcac ccggaggtg gaggttgcgg tgagccgaga  
 tcgcgcatt gcactccacgc ctggcaaca agagcggaaac tccgtctcga aaaaaaaaaa  
 25 gaaaaaaaaa agggtaagaa ccagtgaatg ggcacggggag gactgtatgtat gtagtggggc  
 atgcatgtatc tctgttaggtc tggtaggtgtc aggaggagat tgacaggatt gagaaggcat  
 gtttcatct gagaatttcgc aaaccttaggc ctgtcttcc cttccatgtc gccccctaag  
 ctgagccctt ctggtaggtc cctgtttgc gaccccttgc tccggccatc agtctgtacc  
 ccacctccctt tcctcaacca cgcccttgc ctagactcta gtggaccccg cctaaggcca  
 30 caccctttgc ggccaggcgc cacccttat tctgtggta cttcttagaa ccccttcaa  
 agtcagact tttttttttt ttttttggaa gacagtcttgc ctctctctcc caggctggag  
 tgcagtggcg tggatctcggtc tcaactgcac ctctgcctcc cagggtcaag tgattctgt  
 gcttcacccctt cctgagtagc tggtagtaca ggtgcgcgc accacgcctg gctaatttt  
 gtgtttagt tagagcaggat gtttacactt gttggccagg ctggctcaatc actcccaacc  
 35 tcaggtgatc cggcccccctt ggcctccca gttgtgggg tttacaggcgt gaggccaccgc  
 ccccaagccca aagtccagcgc tctttatagg agactctaact atgttaaccctt gaccctggcc  
 ctaactaagt caattccaaa ccccttctcc cttccagccccc tgaccccaact cactgaggcc  
 tgaccccaact tctttaggacc agttccatcc ctaaaggccctt ggtctccctt ccattccca  
 gctccagcccccc ccacagctttt ggcactaccc ctgagcttgc ccaggaatcc tggatccat  
 40 ttatccctca catgtatgtc tagccatcc caggaatctt tgaggtccat ttagatgtca  
 gtaacccttac ctggccctgg gctctgtctt tgaggttgc gctggccctt agaggtgcca  
 ctcttattctt ccaggccctt cccctgcctt ctcagcatgtt cagacacccca ccctctatgt  
 ggtctggccctt ctggatcttgc aaacccatccc ccaggcccaag ccccttgcctt gagccccc  
 caaccatccatcc tccgttccca ggcacatgttgc tggccaaacaa tgatgtttcc tggtagccacc  
 45 cctctaaacac ctggcccttgc gggaccaacc aggacccctgg agctggggcc ggggaagac  
 cccggctggaa tgacagcgc acggccatc tcaatggatc ctagtgcggat atgcacaccc  
 agccgtggca gggcggcgatc ttgctaaaggcc ccaacccatgtt ctactggggcc ggggtgttgg  
 tgcatccaca ttggatctgc acggccggcc actgcaggaa gaagtgcgtt gggatccaa  
 gaggagggtt ggtggggacgc gggaaatgggg ggtgggggtt gggaaatgggg ggtgggggttgg  
 50 tcatggagggtt gggggcttgc gggggacgggg aatgggggtt ggggggttgc tggaaagggt  
 ggggttgggg ggtatgggggtt gggatgggg aatgggggtt gggatgggtt gggataggac  
 taaggatggaa ttggatgggg gggatgggg gggatgggtt gggatgggtt gggataggat  
 tggttgggg ggtatgggg gggatgggtt gggatgggtt gggatgggtt gggatgggtt  
 55 tggatgggtt gggatgggtt gggatgggtt gggatgggtt gggatgggtt gggatgggtt  
 gatggccgtt gggatgggtt gggatgggtt gggatgggtt gggatgggtt gggatgggtt  
 agatgggtt gggatgggtt gggatgggtt gggatgggtt gggatgggtt gggatgggtt  
 cagatgggtt gggatgggtt gggatgggtt gggatgggtt gggatgggtt gggatgggtt  
 aacggccatca tggatgggtt gggatgggtt gggatgggtt gggatgggtt gggatgggtt  
 atcaacgttca cttcttgcattt gggatgggtt gggatgggtt gggatgggtt gggatgggtt

|    |             |             |             |             |             |              |
|----|-------------|-------------|-------------|-------------|-------------|--------------|
|    | acaaccaaga  | ggcccccagg  | ttagtgtcca  | ggttcttctt  | gataccgacc  | catctctgcc   |
|    | gccttcatc   | tttctccact  | tctcattgtg  | ttcctgtttg  | acagtgcact  | cccttaaggt   |
|    | cctccagtgc  | ttgaatatca  | gcgtgctaag  | tcagaaaagg  | tgcgaggatg  | cttacccgag   |
|    | acagatagat  | gacaccatgt  | tctgcgccgg  | tgacaaaagca | ggtagagact  | cctgcaggt    |
| 5  | gaggacacct  | ctctttattc  | agcagataca  | cactgagtgc  | caactcggt   | acatggagcg   |
|    | ttgccaattt  | ctgagaatcc  | agcaattgcc  | aagacagtca  | ggacccctgt  | tctcacagag   |
|    | ctcataccct  | agagtagtgg  | tgtttagat   | aaataatgt   | gagctgctt   | tgtcatttcc   |
|    | agtttttag   | tagccacat   | aaaacaggta  | aaaaaggctg  | ggcgcagtgg  | ctcacacctg   |
|    | taatcccgac  | actttgggg   | gctgaggcag  | gcatgatccc  | tttggcagg   | agtttgagac   |
| 10 | tagctggcc   | aacatggcga  | aactctgtct  | ctaaaaaaaaa | ataaaaaaaat | tagctggca    |
|    | tggggcggg   | cgcctgtat   | ctcagctgt   | caggaggccg  | agacacaaga  | atcacaaaaa   |
|    | ccaggaggt   | ggaggttgca  | gtgagctgag  | atcgtgccac  | tcaactccaa  | ctgggagaca   |
|    | gagtacact   | tttgcctcaa  | aaagaaaaaa  | aaaaacaagt  | aaaaaaagaaa | cagggtgaagt  |
|    | taactttat   | aacccaatgt  | atccccaaata | caatcatttc  | aaagtgtat   | taatataaaa   |
| 15 | caattatgaa  | tgagataactt | tacattctt   | tcttggttt   | atattaagtc  | tttggaaagt   |
|    | agtatatatg  | ttatgctgac  | agcacatctc  | aatttggact  | agctacattt  | caggtgccta   |
|    | gtagccacat  | gtggctagca  | gttactgtat  | tgatggcac   | ggatctagag  | ggaaagatca   |
|    | gggctgtttt  | gtatgggtgg  | gcaggttgg   | cactgcataa  | agataccata  | tctaataagg   |
|    | gcactccgtg  | ttacagatgt  | cagtttggc   | agtttcagg   | cgtgtggtag  | ttaagtgtct   |
| 20 | tgtttcaaca  | aatctgtaa   | tatgacagtt  | ttctagcaag  | tgctggtaaa  | atatcttgag   |
|    | gaaggaaaag  | agaaaatctgg | taggtatttt  | tacaagagaa  | tatthaatac  | aggggattaa   |
|    | ttgcaaaagct | gctggaaaggg | ctggaggaac  | aaagttaaaaa | aataaaaaaac | tctgtggtca   |
|    | agaatctgca  | taaataatggc | aatttcagag  | atgtgtttaag | gttaacccca  | aaataaaaaca  |
|    | tggttttagg  | atagtaaaca  | ataaggccca  | atattcaaaa  | aggtgttcag  | gggagcctcc   |
| 25 | ttggagaggt  | ggcattttgg  | cagagaatgg  | atgacacaaa  | gaagcttaaac | tctgtgaagt   |
|    | taaggggaaa  | gaaaaggcgc  | gtgc当地ggc   | cctgaggcag  | taaggaattt  | ggctgttca    |
|    | aagaagaaga  | ggaaaccaat  | gcaactggag  | aaacaaaagt  | ggggcaacag  | tagaaagtga   |
|    | cgctggaggt  | gttagcaggg  | gcgaatgctc  | tgc当地gtt    | tcttggtcac  | caacacagag   |
|    | cttccctatg  | ttctaatgg   | agctgtatct  | gttggaggaa  | acagaatttta | aaatcaaaact  |
| 30 | gttacatcaa  | ccagcacccct | tctctgtatt  | caggctccca  | agggatctag  | aaggacgtaa   |
|    | gttaacaaggc | tctcatttagc | aggggtgtgt  | tttcaacagt  | agtttaggaag | ctggggattc   |
|    | aggagtactc  | cagtc当地at   | gctatggaaa  | gctccccccca | aattgtacaa  | acgtacaaa    |
|    | tgc当地acac   | ccccagctct  | ccccatttct  | tctctgtgc   | ctgggtgtgg  | gggggtgggt   |
|    | tgc当地gggg   | aaaactttt   | acagaagaaa  | gcacatctcg  | gccccggcgt  | gtggc当地aca   |
| 35 | cctgtatatcc | caacacttt   | ggagggcgg   | ggccgggtat  | cactaggc    | ggagatggag   |
|    | accatcttgg  | ctgacacgg   | gaaaccctgt  | ctctactaaa  | aacacaaaaa  | attagccggg   |
|    | cgtgtggca   | ggcgcctgt   | gtcccaaggta | ctcggggaggc | tgagggcagga | aatggcctg    |
|    | aaccggggag  | gccc当地act   | cagtggccg   | agttgcacc   | actgc当地cc   | agcctggc当地   |
|    | acacagttag  | actccgtct   | aaaaaaaaaa  | aaagaaaaaga | aaagaaat    | aatcttattc   |
| 40 | aagtgggtgc  | atttaaaact  | atttagcctt  | tctgttaggca | aggttagat   | cttgggttcc   |
|    | cagacctaa   | ggtgtttttt  | tggtgttttt  | ttcataccgg  | tgtgtggct   | gggtgtggcc   |
|    | actaaaagct  | acaagcaaga  | aataataaca  | actacaacaa  | tactaatacc  | aatagtataa   |
|    | aaataatagc  | atctggctaa  | ttgctggaca  | ctgttttaag  | tgggttgc    | catgc当地tcc   |
|    | attaactcat  | ttacctgtt   | ttatggccc   | tattttacaa  | acaaggagcc  | aaggctcaga   |
| 45 | gcagttact   | aacagcctct  | aaaaaaaac   | tctgc当地ga   | tattaaattt  | aaaaaaaataat |
|    | gagagaaaatt | aaaccacaag  | aaagttgaaa  | tttagaggt   | caggcagta   | agettgtttt   |
|    | cttggaaaca  | gtgtctgct   | ctggggaaaaa | ggcaagtctt  | ggcttccct   | ataattgata   |
|    | ccaggactct  | gtatttcata  | ttttgc当地tgc | atgtaagtaa  | gaaatgaagc  | cgggtgcaat   |
|    | ggc当地atg    | agtaatccca  | gcactctgg   | agactgaagt  | ggaaagatca  | cttgagctca   |
| 50 | ggagttcaag  | accagcctgg  | gcaactaaaa  | ataaaaaaaaa | aaaaatact   | aattgtttttt  |
|    | attttagtag  | attttattca  | taccacttac  | atcatttattt | tagtgc当地    | atatttattt   |
|    | cttttctttt  | cttttctttt  | cttttttag   | acgggatctc  | gctctgtc    | ccaggtggaa   |
|    | gtgcaatggc  | accatataat  | ctcactgc    | catgc当地ctc  | ctgggttcaa  | gcatttcttcc  |
|    | cacccatggcc | tcccaaggat  | ctgggataac  | agccacccac  | cattatgc    | ggcttattttt  |
| 55 | ttttttatgg  | agatggggg   | ttccaccatg  | ttggccaggc  | tggcttgc    | atcctgc当地tcc |
|    | ccagtatct   | gcctgccttg  | gcctccaaa   | ttgctggat   | tacagggtgt  | agccaccgtg   |
|    | cccaagggtgg | agatagacat  | ttcttotctac | ctcaaacaga  | gttccactca  | agctactttt   |
|    | cattttcttc  | ataaaatatta | gccc当地gtgc  | tattttgcac  | caggaatgtt  | tccagggtgt   |
|    | gtggatatgg  | catcaggc    | aaacagacca  | aaacttctgt  | ccgcgtggac  | ctcatgttcc   |

5 ccaagtggaa gacaggcaat aaagagatag ataaaatatgt agtaaattaa aaaaaaaaaa  
 aattagccgg gtgtggtggc ttgcacctgt agttccagct acttgggagg ctgaggtgg  
 agaattgcctt gagcccaaac gtttgaggt gcggtaagcc atgactgcac tgctgcactc  
 cagacacgag cctgggtgac aaagaacagac gttttgtca gaaagaaaaa aaaaagagac  
 gaaggagga aggagagaga aagaaggaa ggaaggagaa agaaaaggaa aaaaatgact  
 gaaaggaagg aaggaaggag aaagaaggaa agaaaggaa agaaaaggaa agaaaggaaag  
 aaagaaggaa gaaaagagag aggaaggaa gaaagaaggaa aaaaatgact  
 gttgaagagc agttagtatt attataggag ggttaattata gggaggtatg gggattgaa  
 gacaggaaac acaaattatgt ccaagcgaat ggatttctat tggaggtatg tctgcccta  
 10 gaagacactg gcaataccag gagacatttt tgggtgtcac aactatatgg agggcatta  
 ctggcaacta atggatagat gccaagtgtg ctgttcaaca tgctatgtat cacacggcg  
 gcctccacaa caaaccattt tccagctca gatgccaca gtgcccagat cgaggaaccc  
 tcatccaggg gctgagaacc gtatTTTgc agaaggagg tataaggatg gttgggtgaa  
 gaatggggaa ggaagggtgt tgccatgaa gagaataaag gcctgcacag gctggaggggg  
 15 agagtggag agaaaggggag gcggagagat acacatgtag ggagacaggc tggacacagaa  
 agtagagac agatttcgag atgtggagag gaagggtcac agaccccccc gaaatgtat  
 gtggacaaca gaaatctgaa agaggaatg ggagtggaga gtgacaaatg ggtctaaag  
 gttgaacttgc gaggccaggc atgggtgtc acgcctgtaa tcccaacact ttggaggtgt  
 aggtggcga atcacttgc gccaggatg cgagaccgc ctggccaaca tggtaaacc  
 20 ccgtctctac aaaaaaaaaaata caaaaaattt gcccgggtgtg gtgatggaca cctgtatca  
 cagctacttgc ggaggctgag gcaggagaat tgcttgcacc cgggagatgg aggctgcagt  
 gagctgaggt caggccactg cgctccaaacc tggcaacag agtaagactc catctaaaa  
 aaaaaaaaaaagc tggatttggaa gtgaaatatt aataacattt tccctctctc tccctttgaa  
 tgtgtctcca tctctgtctt ttctgcatt tcttcatttc tttactttcc atctctgtt  
 25 gtctgttccc atctgttctt ccatctatgg gcatctctgg gtctctcatg ttccttctg  
 cccactttgc cacatctctg cctctctcat gccccccctt ctctctgtca gggtgattct  
 gggggcctg tggctctgaa tggctccctg caggactcg tggctctggg agattaccc  
 tggcccccgc ccaacacagg ggggtgtatc acgaaacctt gcaagttcac caagtggatc  
 cagggaaacca tccaggccaa ctccctgatc atccaggac tcagcacacc ggcattccca  
 30 cctgtgcag ggacagccct gacactctt tcagaccctc attccttccc agagatgtt  
 agaatgttca tctctccagc ccctgacccc atgtctctg gactcagggt ctgcttcccc  
 cacattgggc tgaccgtgtc tctcttagttt aaccctggga acaatttcca aaactgttca  
 gggccggggt tgctgttcaat tccctctgg gcactttcat cctcaagctc agggcccatc  
 ccttctctgc agctctgacc caaatattgtt cccagaaata aactgagaag  
 35

## SEQ ID NO.: 6

## hk6 amino acid

40 MKKLMVVLSLIAAAWAEEQNKLVHGGPCDKTSHPYQAALYTSGHLLCGGVLIHPLWVLTAHKKPNLQVFL  
 GKHNLRQRESSQEQQSSVRAVIHPDYDAASHDQDIMLRLARPAKLSELIQPLPLERDCSANTTSCHILGWG  
 KTADGDFPDTIQCAYIHLVSREECEHAYPGQITQNMLCAGDEKYGDSCQGDGGPLVCGDHRLGLVSWGNI  
 PC GSKEKPGVYTNVCRYTNWIQKTIQAK

## 45 SEQ ID NO. 7

## KLK6 nucleic acid

## CDS 147.. 881

50 gtcgaccac gctgtccggct ggctggctcg ctctctctg gggacacaga ggtcggcagg  
 cagcacacag agggacactac gggcagctgt tccttccccca gactcaagaa tccccggagg  
 cccggaggcc tgcagcaggaa gcccgcattga agaactgtat ggtgggtctg agtctgtt  
 ctgcagctg ggcagaggag cagaataatgt tggtgcattt cggaccctgc gacaagacat  
 ctcaccctt ccaagctgc ctctacaccc cggggcactt gctctgtggg ggggtcttta  
 tccatccact gtgggtcttc acagctcccc actgaaaaa accgaatctt caggcttcc  
 55 tggggaaagca taacattcgg caaaggggaga gttcccagga gcagagtttctt ctttgtccgg  
 ctgtgttca ccctgactat gatgcccca gccatgacca ggacatcatg ctgttgcgc  
 tggcagcccc agccaaactc tctgaactca tccagccctt tccctctggag agggactgt

cagccaacac caccagctgc cacatcctgg gctggggcaa gacagcagat ggtgattcc  
 ctgacaccat ccagtgtca tacatccacc ttgtgtccccg tgaggagtgt gagcatgcct  
 accctggcca gatcaccccg aacatgttgt gtgctgggaa tgagaagtac gggaaaggatt  
 cctgccaggg tgattctggg ggtccgtgg tatgtggaga ccaccccgaa ggccttgcgt  
 5 catgggtaa catcccctgt ggtcaaaagg agaagccagg agtctacacc aacgtctgca  
 gatacacgaa ctggatccaa aaaaccatc aggccaagtg accctgacat gtgacatcta  
 cctcccgacc taccacccca ctggctgtt ccagaacgtc tctcacctag accttgcc  
 ccctcccttc ctgcccagct ctgaccctga tgcttaataa acgcagcgc ac tgagggtcc  
 10 tgattctccc ttgttttacc ccagctccat ccttgcacatca ctggggagga cgtgatgagt  
 gaggacttgg gtcctcggtc ttaccccccac cactaagaga atacagggaaa atcccttcta  
 ggcatctcct ctcccccaacc cttccacacg tttgatttct tcctgcacag gcccagcc  
 gtgctctggaa tcccagctcc gctgcttact gtcgtgtcc cttgggatg tacctttctt  
 cactgcagat ttctcacctg taagatgaag ataaggatga tacagtctcc ataaggcagt  
 ggctgttggaa aagatthaag gtttcacacc tatgacatac atggaatagc acctgggcca  
 15 ccatgcactc aataaagaat gaattttatt atgaaaaaaaaaaaaaaaaaaaaaaa  
 agggccggcc C

## SEQ ID NO. 8

## KLK6 nucleic acid

20 mRNA join(2001..2185,3084..3135,3559..3606,4346..4502,  
 8122..8369,9791..9927,11805..12483)  
 CDS join (3567..3606,4346..4502,8122..8369,9791..9927, 11805..11957)  
 25 acactaaaa aatcttctga cttaaaaaaa aaagtatggt gattggaaaaa tgtaaatgtg  
 catgcgtgtc tggcatcaca ttcatggc caggacttcc ctggatgcta aaggtccctca  
 aatggcaggc tggggggctg ggacttggc ccaaggaga tggggaccctt gggcacgtct  
 gtgagggag gggcaaggc acgacaaaggc acaggaaaggcttctctgggg caagggata  
 30 agagaacaga gggatctgg tccagggtgg agagggtcag ctctgagttt ggggttgggg  
 tgggggtaca gagggaaagg gaccccccag agagggagg cagaggata gggcctggc  
 actgggtgt gcaacatcag acttgctgtc tggatggata gcacgtctt agaagaagg  
 gctgaggtaa gttggggacca aatgtggatgg gggaccccg gaggtatac tgaatacc  
 agtagtcttc atccctggag tggatgggggg tgcacaatgc aagatgacaa ttagattcaa  
 tgcaagacaa agaaaagggt tggctggaa cagtgctca tggcttatggt cccagctc  
 35 gggaaagactg aggcgggggg gtcgcttgg cccaggaggg ttgaggctgc caccggcaag  
 gatcggtcca ctgcactcca gcctaggcga cagaacaaga ctttgcctca aaagaaaaaa  
 gaacttttt tttaaggtt cctgtatgc ccagcccaag cagggtctga gccagacttc  
 attccatatca ttgtcccttat tacgcgtga ctcccccttc ctcatcttc tccactctgc  
 cacgcacaca cccctcaccctt ccagccata ccaaccaccc caaccactgc ctgtggttt  
 40 ccatgtgcac ccaggccagg cattttcactc gccttccttc ctgacacctt cctggctca  
 ctttcttaggc ccaaggtaa agacaccttcc ctaaatcttc ccaagatccct ctgtactgc  
 ccagcaccac catcttata cagcccccac tcgtcccaatggctctccg atttctgttt  
 aactccatgc ctctcgctgt tggccatc ctcatataa agtccctcaag tcccttcca  
 tcctgttagc ttctcatcg ctgggaatc atcccgctt cttctgggg aaactgactc  
 45 ctttctggc acacacagtgc ttaaaaaaagg gggaaatctaa gaagagaccc aggagaagat  
 aagcacggag agtcagagaa tcaagggaa agaaaaggag agaggccggg cacagtggct  
 cacacccgtt atccagact ttggggggcc aaggtgggtt gatcacctga ggtcaggagt  
 ttgagaccag ctggccaaatggtaac ctctccctt taaaataac aaaaacatt  
 tagccggcg tgggtgggg tggctgtat cccagctact tggaaagctg aggcaggaga  
 50 actgtttgaa ctcaggaggc ggaggttgc gtaacttgc atcacaccac tgcactcc  
 cctgagtgac agagcaagac tccgtcaaa aaaaagaaaag aaaaagaaa aagaaggaa  
 gaaagaaaaga aggaaggaaag gaagggagga agggagagag gaagggagag aggaaggag  
 agagaaaaaa aagaggggag agagacacaa atacagagac tggatggga gagagagaga  
 gatggaaatgc cccctccctt catggccagg gagacagat gggcaagaga cctcagggg  
 55 gggcaactt ggaggagaag gaccaggagg atgtggatgtt ccggaaatctc cagtcaggc  
 cagggtggca gtcagagact gcaaaaggagg actgtcagac agggacaaaaa ggaaggccatt  
 gatgttaaccg ccctcccgcc tggccgcgg aagagggatgg gggccggag ctgctggag  
 catggcaactg gggtgttggg agggccggacaa agcccgattt tttctggggcc tttccccat

|    |             |             |             |             |             |             |
|----|-------------|-------------|-------------|-------------|-------------|-------------|
|    | cgcgccgtggg | cctgtcccc   | agccggggc   | aggggcgggg  | gccagtgtgg  | tgacacacgc  |
| 5  | tgttagctgtc | tcccccggct  | gctggctgc   | tctctcttgg  | ggacacagag  | gtcgccaggc  |
|    | agcacacaga  | gggaccta    | ggcagggtgt  | tgagtcaccc  | caaccgcact  | gaacctgggc  |
|    | agctgtttc   | ccagtgcgg   | agggtctag   | agcccgagg   | gagggcctgc  | aggtccctgg  |
| 5  | gtggcacaga  | gagtgtctgg  | ggtgcaggga  | ggcctggggc  | accatctgt   | tgccccagag  |
|    | gccggaaattt | gtcttcagac  | actttttt    | tccaaaaccc  | ggaggtctaa  | ggactgagcc  |
|    | gactagaact  | tcctctgcct  | cagattcagg  | ccccagcccc  | tcctccctca  | gaccaggag   |
|    | tttaggtctt  | agcccctct   | ccctcagacc  | caggagtcca  | agttcccacc  | tcctccctca  |
| 10 | gactcaggag  | tccaggcccc  | cagccctcc   | tcctctcagac | ccaggagtcc  | aagtctcac   |
|    | ctccctccctc | agaccccgga  | gtccaggccc  | caagccccctc | ctccctcaga  | cgcaagggtc  |
|    | caggccccca  | gcccctctc   | ctcagactc   | aggagtccag  | gcccccaagc  | ccctccctcc  |
|    | tcagaccccg  | gagtccaggc  | cctcagtc    | ctcaggacc   | agtgtccct   | tcctggagg   |
|    | cctggtcagg  | ggtcaccaag  | agcagacgcgt | ggggccggga  | ggaatgtgt   | tgggaggcct  |
| 15 | ggtaaggag   | aaaaagggtt  | tagccagtct  | cctggctctag | ggacactgaga | gacagggtt   |
|    | aaaaggacgt  | tccagaagca  | tctgggaca   | gaaccagcc   | tttccaggg   | ggccctgggag |
|    | ctgggggtgt  | gtgtctggca  | gtccctgcag  | ccctgggctc  | tgccggccct  | gcgtctcc    |
|    | cttggtctgt  | ccactgcata  | tgagtgtctt  | ctctcctcac  | ggctccccgc  | atttctaact  |
|    | ctttctgcct  | cctcgtctca  | aagcttgc    | ttttcccgac  | tcaagaatcc  | ccggaggccc  |
| 20 | ggaggccctgc | agcagggttag | atcacagaca  | tcacagaacc  | tgccgggtgg  | gcgggggtgg  |
|    | tggccattgc  | gcacagagcc  | aggctccag   | aaaactccc   | atacagagga  | agaacgttag  |
|    | ggcccccata  | ggtaaccctc  | tcctgtcgac  | agaaggc     | atcagtgc    | aagaaagttag |
|    | aaagatctaa  | tcagaatctc  | accatgggtt  | actggaccag  | tggacgtagt  | tgaattctct  |
|    | ttggcactgt  | tttcgtggat  | cctcttggaa  | gatgtgggt   | gaggaagaat  | aaatcaggag  |
| 25 | getagatggg  | aaggacagag  | gtcaaggcag  | gagaccatag  | caggccagga  | aggaaggaga  |
|    | ggatgcagag  | ggagcagaca  | gaggatggg   | gggagggtc   | aggcgtgac   | taatggacca  |
|    | tgtggcttcc  | cctctttagga | gcccgcatt   | agaagctgt   | ggtgtgtgt   | agtcttatt   |
|    | ctgcagggtt  | ggaaagggtt  | tttggatggg  | ggaggcttgc  | agacagggtt  | gggcttgtt   |
|    | atggagaaga  | ggctggattt  | ggggatgggg  | atatgcacag  | ggttgggtgt  | ggggagctt   |
| 30 | gaaatgagga  | agacgttgg   | gattaggct   | aggggtgggg  | atacagatag  | ggaggggtgtt |
|    | gggaggtggg  | tttgaagata  | tgagggttt   | gggtgggggt  | ggctttaggg  | atggggatct  |
|    | aaacatagaa  | gaggtaggag  | gtaggttgg   | aaatggaga   | gagcccg     | ataggggata  |
|    | cagtgggtt   | tgtaatggg   | atggggtaag  | tttgggagt   | gaaatacaga  | gaagctttt   |
|    | ttttttgaga  | cagggtctca  | ctctgtcacc  | caggctggg   | tgtatgttca  | tgatccatag  |
|    | ttcactgcag  | acttgaactc  | ttgggtctca  | agtgcacc    | ccacctcagc  | ctcccaagta  |
| 35 | gctgggacta  | caggcgat    | ccaccatacc  | ctgtctattt  | gtgtgtgtgt  | gtgtgtgtgt  |
|    | gtgtgtgtgt  | gtgtgtgtgg  | agatgagg    | tcactgttt   | accgaggctg  | gtctcaaact  |
|    | cctgggctca  | acgcac      | ctgcctcage  | tggattaca   | ggcataagcc  | actgcac     |
|    | accaatcttgc | actggagtt   | atgttgggg   | ggatgcgtt   | ggtttctcca  | gaactctct   |
|    | ctgactcaga  | tcttcttctc  | ctcagcctgg  | gcagaggagc  | agaataagtt  | gtgtcatggc  |
| 40 | ggaccctgc   | acaagacatc  | tcacccctac  | caagctgccc  | tctacac     | gggcacactt  |
|    | ctctgtgtt   | gggtcctt    | ccatccact   | tgggtctca   | cagtc       | cc          |
|    | ccgtgatct   | acactgtaaa  | tgaacagcag  | atgcgtact   | accctgaggg  | tgttcttata  |
|    | atgtcaggca  | ggaggtgaca  | taggatccc   | ccccatccc   | gcacgaggcc  | atctgtatag  |
|    | caggtgcatt  | cggctgttgc  | ttaatttgat  | acttaatgt   | tgccaggccc  | tgccggcata  |
| 45 | gcagtggaaa  | agaaaataaa  | aaaaagaaaa  | aaaaaaaaaa  | caagcaaaat  | tgctgtttt   |
|    | ctgaacttac  | tttctaattt  | ggaaattgg   | tcattttggg  | acctgcaggg  | cgtgtatggc  |
|    | atttggattt  | aattctgagc  | acagtaggaa  | gccactggc   | agttttgttt  | ttgttgggtt  |
|    | tttgggggtt  | gagacacat   | ctcgcttgc   | cacccagg    | ggagtgtat   | ggcatgtatct |
|    | cagctca     | caac        | ctcc        | ccagcgat    | tcctgcctca  | gcacccaa    |
| 50 | tagctgat    | tacagggtgt  | caccac      | cttggctaa   | ttttgtatgt  | tttgttagaga |
|    | cgggtttca   | ccatgttggc  | caggctggc   | tgaactct    | gacctcaggt  | gatccccc    |
|    | cctccccc    | ccaaagact   | gggat       | gcatgagcc   | ccaccacacc  | cagctgtt    |
|    | tacatttttca | caagcac     | ggtaccac    | tggacgttgg  | tctgggcaag  | agagaggag   |
|    | ggagggccac  | gtgggggtt   | ttgttctt    | ccggc       | aggagggtt   | tttgaa      |
| 55 | ggcggtcgca  | gtggggatgg  | aggatgtt    | aatatcttgg  | atgttggaa   | tgtgtact    |
|    | agccacaga   | atctggcaac  | gaggacacagg | aggagagaga  | agaagcacgg  | ctgggttcc   |
|    | tgtatgttgc  | ctgaacaact  | gggtt       | ccacgtt     | ctctgat     | tggagaggg   |
|    | aaagagaaac  | aggccgggtt  | taggac      | agcatctgac  | attttgc     | tttgcacat   |
|    | agttggat    | gcccgggaga  | tgtcc       | gggagge     | ggaggact    | ggagctcaga  |

ggagaggta gggctggagg taaaaatgaa ggcacatcgta gcaaacaggt gtatttaaag  
 ccatggact agatgagata atccaaaag ctggcatagt tggaggagct ggagggccca  
 ggacaaaac cctgggcgt gatcctcaact agtcagattc acgacagctg ccacttgtt  
 gatgctaact accaatcagg tgctgagtga aaccatgtac acacctttcc tggaatgccc  
 5 accacaaggg actcttgca ccattttca aatgaggaaa ctgagggtca gggaaatagc  
 aagtgacaat ccctgggtg gttccccctga ccccaaggag accttggatg actctcacca  
 ccatcattca ttcccttgat gtacatttgac taagggcacc tgctaagtgc cacattcgag  
 ttggcagtg gagattcagc aatggatggg acacacacgt catccctgcc ctcggagca  
 caaggacaga aaggtgcaga caagcaaagt gagggtggg catggtggtc caccctgt  
 10 atccagcac ttgggaggc cgaggtgggt ggattacctg agttcgagac cagctggcc  
 aacatggctc aaccctgtct ctactgaaaa tacaaaaat tagccaggcg tgggtggg  
 cttctgtat tccagcaact tgggaggcta aggcaaggaga attgcttgaa cgtggaggc  
 ggaggttgca gtgagccag atcgcgcac tgcactccag cctgaaccac agagcggag  
 tctgtctaaa aaaaaaaaaa gaaagaaag aagcagcaa ttgggctggc cgtggtggt  
 15 catgcctgta atcccagcac ttgggaggc cgaggcggtt ggatcactcg agcccaggag  
 tacaaagctg cagttagtgc tgatctacag aacaccactg cagatccagc ctgggtgaca  
 gaggcggacc ctgtctcaaa aaaacaaca aacaaaagaa gcaaaccctt caaaaaccca  
 tataattaca aattatgaa gaaaagaatc cgggtaccta ctttagatgg aggagggtca  
 ggaaggactt ttaatgaga taaaatcaa gcggaggcat gaagatgggaa aaggaatgt  
 20 tcagggcaga gaaaggctg tgataacacc cctgggtga ggaccgtctt gatatttc  
 agaaaaataaa atttccctt cactggggg cagaagggtc tgggagataa ggtggaaag  
 tgactacagc cagatcacac aggggctcca gtgccaagtg gaggagccca ggcttattc  
 ttaggacaat ggggagccat gggtgatgtc tgagcaaggg agtactctc tggatcagga  
 atatgtatca aacacctatac ctgtgccagg tgctgatcaa cgcactggag atactatata  
 25 tgaatagaac aaaaatcccc atcttgacat cctagagctg cactgtctaa tatggtagcc  
 atcagccaca tatagcaaat tacattgaaa ttaatgaaat gaaaatcca caagccatat  
 ttcaagtact cagcagccac ctgttagctt tggtcccccc agccacctct ggacagtgc  
 gatcgagatc atggcatgtc agcatttagt ggacagcatt gctctgcaag gaggagaaat  
 aacacaatga gtaaatattt aacaataat atatagoagg tcggatgatt gtgataggt  
 30 ctctggtggc acagaaagca ggggaggagg ataggaattt cctactaaca ggtatttga  
 ttttaattgg gcaactaagg aaggcttccc tgagggcga catttaaagg aagtgggg  
 gtgagctatg cagatacttg gaggacagac ttgctggcag agggAACAGC agtgcaaaagg  
 ccctgggtt ggaagatcac tattgttgc aaggcaagac agggaaagcca gcggtggct  
 ggagcagagg gagagaaggg gagtgggg ggagaagatg tctgtgagat gatggggcag  
 35 tgcttgcaag gcctgggtg ccacgttgg aactttggct ttgattctga gtgagatggg  
 agtcataatggg ggggctgagc agaggaggca caggaccaac ttacattgtt aaaaatatctc  
 tgggtgctt gtggaggatg gactgtgggg gaccagagac agagcaggaa gcccagttag  
 gaggctactg ctctagttca ggttaggaatg gaaaaggcag ctcaaaccac gatggtagcc  
 gtggaaagg tgagatgtgg ccagattctg gatatgttc agagaggca aaggaattct  
 40 ggacagctt gatgtaggc atgaaataaa gagagtgaag aatagcccc aagattattc  
 tgaaaggatg gaatttgcattt acatcatgtt gggaaagact gtgggaggag caggccagcg  
 attcatgact tcccagccct ctctgaagcc tcaactgcag cccaaaggctt ccagggtgaga  
 cccagccctt ttcccttcca ggaatcttca ggtttccctg gggaaagcata accttcggca  
 aaggagatg tcccaggagc agatctgt tgcggggctt gtatccacc ctgactatga  
 45 tgcccccgc catgaccagg acatcatgtt gttggccctg gcacgccccag ccaaactctc  
 tgaactcatc cagcccccttc ccctggagag gactgtcgc ccaacacca ccagctgcca  
 catctgggc tggggcaaga cagcagatgg tcagtagtgg gaggctgggt gggagcaggc  
 tactggctac ttggggaaatg gtgccaagg atggggagtg gaaaattgg tgagggccca  
 tggaaagatg ggctaattgtt gaggaccaat gggacagggtt tcataatgggaa gaaaggtaa  
 50 gggggaggga gaggtaattt gggagctggg ccagttagtgc aacagccaaat gggaaatgt  
 gaccaatggg tgaatagcat gggagagatg gaacataaga tgaagggtca ataaagagg  
 aaggctactg gggagatgtc aatcaggaaat gatgtcaaaat gtcaaagggg actgtatagg  
 attcattgaa cagcaggaatg gaataatggaa gaaaggactg atggaaagaaag agaaaccaat  
 aaaggcacaatg agccaaactgaa aggtgttgc ttgagacagt gatgggggtt atagctgtat  
 55 gaagaggcactt taaggggaaa ggtcaatggg tccagaggag tcaactagagg aaaaaacagg  
 tccaaatagat cagcaggatc catgaagggtt ggcctgtgt tgaaggggcca ataaagg  
 tgaaccattt gatgtggggc cagtggggag gcaaggacaaat tggggggagga tgcggcaagt  
 tagaaaaaggc ccaatggggc aggtggacca ttggatgttgc ggcttaatagg aagggagac  
 cagttggggc tgggtgaggcc agttgaaaaa ggaccaaggaa gggaaaggcaga ccaataggaa

gagagagggccca atgaggggagg gcaggggccag ttagggaaagg accaatgagg aaggtaggacc  
atggagggaa gggccaataag aaaggggagga tcctatgaggg aggggtgggaa cagttagaaa  
aggaccaatg atggagggtgg accattggat gaagaaccaa tagaaaggaa gaaccaatgg  
gagagggcat ggccagttag gaaaagacca atggtcacag agtgaccaat caagatgaat  
5 caatgggcag gaagtgttca atgaagaatg gactactgtat caggagggtt acagtagagg  
aggcgtaac agaggaagag tcctccaggta caactgaaac tactgaagaa ggtggacc  
gtggaagaga gaaaagtggta ggaggggacct aagagaaaag gaaaaccaat aggaatgg  
gactcctggta gaagagacta ttaatgagga agacagccaa tggggggaa gaatgataga  
aagaggggacc aattaggagg caggggacgt ggtatgaga tgtaagaatg agagacaac  
10 aggaagagggg gtgccaataag aaaagggggg ccaatagagg atggaggact tatagggtt  
gggggggtac tggggaggat gggggaggta caaggccctg gctgagttctg gcccacatct  
cccctaacag gtgtatcc tgacccatc cagtgtgtcat acatccacat ggtgtccct  
gaggagtgtg agcatgccta ccctggccag atcacccaga acatgttgtg tgctgggat  
gagaagtacg ggaaggattc ctgcccaggta aggtgaccccg gatctgcac ttacacagcc  
15 agggacagga cgaagtccaca aaaacatggc cagacacagg aagagagaga cacaggccaa  
aagagagctt tacagagaca gatagagaca ggctgaggga gaacccaagc cttgaaaaga  
agagacttag ttcaacacac agagacacag tcagggatat gcagagatataaagacac  
ccacgcagaga caggaagtgc agagacaagg atggaggccg cgggatcaag aaccagagag  
20 gccaggagca gcggtctatg cctgtatcc cggcactttg ggaggccgaa gcaggaggat  
caccttaggtt caggagttcg agaccagcct gatcaacatg gtgaaacctt atctctacta  
aaaatacaca gatttagatg ggcacagtgg ctcatgcctg taatccacgc accttgggat  
gccgaagcag aacccttatctt ggggttcagg agttcgagac cagcctgtatc aacatgttga  
25 cccagcacct ctactaaaaaa tacaaaaattt aggatgggca cagtggtca tgccctgtat  
ctggccgata tgggaggccg aagcaggagg atcacccggg gtcaagagat tgagaccagc  
caggcgcctg tggtaaaacc ctatcttac taaaaataca aaaatagct gggctgttg  
ggcggagggtt aagattccgtt ctcaaaaaaaaaa aaccaaaaaaa caaaaattac gagaatact  
30 ctgttagtccc agtactctgg gaggctgagg ctggagaatt tgaaacttgcg  
ggctgcagtg tctaaaaaaca aaaagaacca aagagaagta gtaagggaaac gcaagcatgg  
ccttcctcaa acagagcccc cacgagtcct getcagaaac tgggacac  
agacactagc tggggaaagg ggactccctc cgaataactt gcttaaaccc aggaggcaga  
gtcatccatc caggctctcc tctttatgcc agaatgacta ggggacagag ccagactctg  
35 agaccaacca agggggagac acaggcagaa acggagacac aggcagaaac agggacagag  
acaggggaaag cgatacatag caagttggac gcaaagaaaag ggcagggtgg cgagactgtc  
ctaaagacac gaggtggaga ggtgtccctg gacagaatag tgccaggcat atcttcct  
ggccctcccc tacctctcc acctgggtt ttcgtctcc tcctccctt ctcctctc  
40 ctctcttcc tccctctctc ctcctccat catcttccat tttctcttct ctctccatcg  
gtctctcac ctctgcctt ctccacacct ctcaatctcc attcttaat tgtttctt  
tcttgctctc tatgttccctc tgcatctgg cattcttac tctgtgtt tgagtctct  
ttattctctc tctaccatc tctctctgtg ctttgggtt tcttactgtc tctctctct  
tctctctgtc cctgagtctt tctctccatc tttcagtaag tacctctgtc ctttcttacc  
45 tctctctctg tcacacacac acacacacac acacacacac acacacacac  
tctgggtttc tatctgttac tgactttctc cctctttctc tttctcttct  
cgctggatg tggagaccac ctccgaggcc ttgtgtcatc ggttaacatc ccctgtggat  
caaaggagaa gccaggagtc tacaccaacg tctgcagata cacacacac  
ccattcaggc caagtgcaccc tgacatgtga catcttaccc  
50 ctgttccag aacgtctctc acctagacct tgccctccctt cctctctc  
ccctgtatgt taataaacgc aegcgcgtga ggtcctgtat cctctctgtt  
ctccatccctt gcatctactgg ggaggacgtg ataggatggg tttacccat  
ccccaccactt aagagaatac agggaaatcc ctcttaggca tctctctcc  
cacacgtttg attttcttctc gcagaggccc agccacgtt  
55 ctatctgtcg gtgtccccctt gggatgttacc ttttcttactt ctttactt  
atgaagataa ggtatgataca gtctccatataa ggcagtggtt ctttactt  
cacacctatg acatacatgg aatagcacct gggccaccat gtttactt  
ttt

**SEQ ID NO. 9****KLK6 nucleic acid**

5 CDS 246..980

aggcggacaa agccccgatty ttccctgggcc ctttcccat cgccgcctggg cctgctcccc  
agccccgggc agggggcgccc gccagtgtgg tgacacacgc ttagatgtgc tccccggctg  
gctggctcgc tctctcctgg ggacacagag gtcggcaggc agcacacaga gggacctacg  
10 ggcagctgtt ctttcccccc actcaagaat ccccgaggc ccggaggccct gcagcaggag  
cggccatgaa gaagctgatg gtggtgctga gtctgattgc tgcagcctgg gcagaggagc  
agaataagtt ggtgcattgc ggaccctgcg acaagacatc tcacccctac caagctgccc  
tctacacctc gggccacttg ctctgtgtg gggtccttat ccattccactg tgggtctca  
15 cagctgccc ctgaaaaaaaa ccgaatcttcc aggttcttcc ggggaagcat aaccttcggc  
aaaggagag ttcccaggag cagatgttgc ttgtccgggc tggatccac cctgactatg  
atgcgcgcag ccatgaccag gacatcatgc tggcgcctt ggcacgcggc gccaaactct  
ctgaactcat ccagccctt cccctggaga gggactgtc agccaacacc accagctgcc  
acatccctggg ctggggcaag acagcagatg tggatccc tgacaccatc cagtgtcat  
20 acatccaccc ggtgtccgt gaggagtgatg agcatgccta ccctggccag atcaccac  
acatgttgc tggctgggat gagaagtgatg ggaaggattc ctgcccagggt gattctgggg  
gtccgcgtgt atgtggagac cacccgcgcg gccttgcgc atgggttaac atccccctgt  
gatcaaaggaa gaagccggagat gtcacacca acgtctgcg atacacgaac tggatccaaa  
aaaccattca ggcattgtt ccgtgacatg tgacatctac ctcccgaccc accacccac  
25 tggctgggtt cagaacgtt ctcacccatc ccttccttc tgcccaactc  
tgaccctgtat gcttaataaa cgcacgcacg tgagggtcct gattctccct ggtttaccc  
cagctccatc ttgcattcac tggggaggac gtgtatgttgg aggacttggg tcctcggtct  
taccccccacta actaagagaa tacagaaaa tcccttctat gcatctccct tcccaaccc  
ttccacacgt ttgatttctt cctgcaggagg cccagccacg tggatggaaat cccagctccg  
ctgcttactg tgggtgtccc cttggatgtt accttcttcc actgcagatt tctcacctgt  
30 aagatgaaga taaggatgtt acatgttccca tcaggcagtg tggatggaaat agatgtt  
tttccacacccatc tggatagca cctggccgc catgcactca ataaagaatg  
tatttt

35

**SEQ ID NO. 10****hk7 amino acid**

MARSLLPLQILLSLAETAGEEEAQGDKIIDGAPCARGSHPWQ  
40 VALLSGNQLHCGGVLVNERWVLTAAHCKMNEYTVHLGSDTLGDRRAQRRIKASKSFRHP  
GYSTQTHVNNDLMLVKLNSQARLSSMVKKVRLPSRCEPPGTCTVSGWGTTSVDVTFP  
SDLMCVDVKLISPQDCTKVYKDLENSMLCAGIPDSKNACNGDGGPLVCRGTLQGL  
VSWGTFPCGQPNDPGVYTQVCKFTKWINDTMKKR

45

**SEQ ID NO. 11****KLK7 nucleic acid**

CDS 16..777

50 ggatttccgg gtcgcattggc aagatccctt ctcctggccc tgcagatccct actgtatcc  
ttaggccttgg aaactgtcagg agaagaagcc cagggtgaca agattattga tggcgcggcc  
tgtgtcaagag gtcgcgcaccc atggcagggtt gcccgtctca gtggcaatca gtcgcactgc  
ggaggcgtcc tggcaatgtt ggcgtgggtt ctcactgcgc cccactgcac gatgtatgg  
tacaccgtgc acctggcagtg tggatgtt ggcgcacagga gagtgcagag gatgtatgg  
55 tcgaagtcat tccgcaccc cggctactcc acacagaccc atgttaatgtt cctcatgttc

5           gtgaagctca atagccaggc caggctgtca tccatggta agaaagtca gctgccctcc  
cgctgcgaac cccctgaaac cacctgtact gtctccggct ggggcaactac cacgagccca  
gatgtgacct ttccctgtga cctcatgtgc gtggatgtca agctcatctc cccccaggac  
tgcacgagg tttacaaggaa cttaactggaa aatttccatgc tttgcgtctgg catccccac  
10          tccaagaaaa acgcctgcaa tggtgactca gggggaccgt tttgtgtca aggtaccctg  
caaggtctgg tttccctgggg aactttccct tgcggccaaac ccaatgaccc aggagtctac  
actcaagtgt gcaagttcac caagtggata aatgacacca tgaaaaagca tcgctaaccgc  
cacactgagt taattaactg tttgcgttcca acagaaaatg cacaggagtg aggacccga  
tgacctatga agtcaaattt gactttaccc ttccctcaaag atatattaa acctcatgcc  
cttgtgataa accaatcaaa ttggtaaaga cctaaaacca aaacaaataa agaaacacaa  
aaccctcaa

## SEQ ID NO. 12

## KLK7 nucleic acid

15

mRNA

join(1756..1785,3179..3309,3722..3869,4566..4813,5129..5265,7362..8265)  
/product="stratum corneum chymotryptic enzyme" /note="alternatively  
spliced"

20

mRNA join(1756..1785,3179..3309,3722..3869,4566..4813,  
5129..5265,7362..7991) /note="alternatively spliced"

mRNA

25

join(1821..1864,3179..3309,3722..3869,4566..4813,5129..5265,7362..8265)  
/product="stratum corneum chymotryptic enzyme" /note="alternatively  
spliced"

mRNA

30

join(1821..1864,3179..3309,3722..3869,4566..4813,5129..5265,7362..7991)  
/note="alternatively spliced"

CDS join(3237..3309,3722..3869,4566..4813,5129..5265, 7362..7517)

35

ggcatggtgg tgcacgcctg taatccagct actcaggact ctgaggcagg agaatcactt  
gaacacgggg gagtggaggt tgcagtggc cgagatcgct ccattgcact ccagcctggg

40

tgcacagagcc agagtccatc aaaaaaaaaaaa aaaataaga aagattcttc ttcctcttat  
gtgtccatgc agtctcatca tttagtacc acttggtaatg aggaacatgc catatctgg

45

tttctgttcc tgccttagtt tggtaaggta atggcctcca gtcatttc cgtccctaca  
aaggacatga tcgtgttcc ttttatggc acgttagttt caattgtgtta tacgtaccac

50

atttcttaa tccagtcttat cactgtggc catttaggtt gattccctgt gtttgctgtt  
gtcaatagttt ctacaatggc cgtacgttc catgtgtt taaacagaat gatttatatt

55

ccttggta cacacactgg ggctttagag agggggaga gtggggagaa ggagaggatc  
agaaaaaaaaat aactaatggg tactaggcattt aatacctggg tgattaaata atctgtataa

caaacccttca tggcgacgt tcacctacgc aacaaacctg cacatcctgc acatgtaccc  
ccgaactgaa aagttaaaaaa aagaaaaata aatatttgc tataaattaa taaatgaagc

cctcaaaaaat gttctatttag ataatgtta gtacagacat ttttggata aatacataat  
atacaaagaa atctatgtat aacatgatta aaatggccat aagaacatag atcctaaaca

60

tggcaaatat tagtgggttggg gggtaggaa aagcgttggg tttacttac acctctctgt  
tagagttggg aatgggttca ggcgttaatta caggcacgac tgggatcgc ttggacaagt

65

tcccccaggc gggccagaat taggatgttag ggtctaggcc acccctgaga ggggggtgagg

gcaagaaaaat ggccccagaa gccggggcgc gttggctcagc cctgtaatcc cagcactttg

cggggccgag gggggcacaat catgggtca ggagatcgag accattctgg ccaacatagt

70

gaaacccggcgt ctctactaaa aatacaaaaaa ttagctgggaa gtgggtggcgt gttgcctgtaa

tcccaggta tcggggaggct gaggcaggag aatcacttgc acctggggagg cggagctggc

agtgagccga gatcgccca ccgcacttca gcctggcgat agagagagac tccatccaaa

aaaaagaaaaaag gaagggaggagg gaagaaaaaaa agaaaaaccgc cccagagaag

gaccggagcc agaggcattt ctctgagctc agcgactgct tgaatccgc tcctgccc  
 çagacccagc gcacccggc cctccccca gagcagccag gagggactgt gggaccagaa  
 5 tgtgcggggg cgccaggagtc gggcacccgc cgtccctcg aggaggggtg gagagagat  
 gcagtggc caattgcctc cgctgcgtca gggttccaga taaccagaac cgcaaatgca  
 ggcgggggtg tcccaagatc ggctccgc gcacccagg gcgtggggc cggcatgg  
 gcccgggggtg atataagagg acggccaggc agaggatga agatttgga gcccagctgt  
 gtgcagcccc aagtccggaa ttggatcaca tcagatcc tcgagggtgaa aagaggctc  
 10 atcaagggtg cacctgttagg ggagaggggtg atgcgtggc caagcctgac tctgcctcg  
 agaggtaggg gctgcagctt agactcccg tcctgagcag tgagggcctg gaagtctgca  
 atttggggcc ttttagggaa aaacgaacta cagagtca agtttgggtt ccacaggaa  
 gggcaagatc ggagccatagaa ttccctggc tctagggatc tgaagaacag gaattttgg  
 tctgagggag gagggggctgg ggttctggac tcctgggtt gaggaggagg ggcctgggg  
 cctggactcc tgggtctgag ggaggagggg ctgggggtt cactcctgg gtctgaggaa  
 15 ggaggggctg ggggcctgaa tcctggc tggaggagga ggggctgggaa cctggactcc  
 tagtctgag ggaggaggag ctggggcctg gactcctggg tctgagggag gaggggttgg  
 ggcctggact cctgggttgg agggaggagg ggctggggcc tggactcctg ggtctgagg  
 aggagggttgg ggggcctgaa tcctggc tggaggagga ggggctggg cctggactcc  
 tgggtctgag ggaggagggg ctggggcctg gactcctggg tctgagggag gagggactga  
 20 gacccgtact cctaggctg agggaggagg gactggggc tggactcctg ggtctgagg  
 aggaggagct gggggcctg actcctggg tctgagggagg aggggctggg gcctggactc  
 ctgggtctgaa gggaggagggg gttggggctt ggactcctgaa ggctgaggaa ggagggactt  
 ggacctggac tccttaggtt gaggaggagg gagctggggg cctggactcc tagtctgag  
 ggaggcgggg ctgggggctt gactcctgg gttctggggaa ggagggggtt gggcctggac  
 25 tcctgagcctt gagggaggagg ggacttggac ctggactcctt aggtctgagg gaggaggagg  
 tggggcctg gactcctgg tctgagggag gaggggctgg gggcctggac tcctgggtt  
 gagggaggaa ggtcttaggg tctggactct tgggtatgag ggaggaggagg gtttaggggt  
 tggacttctg agttaagga aggaggaggc agaaaagga atttctgggt ctgagggagg  
 30 aggggctggg gttctggacc cctaggctg agggaggagg ggctggggcc tggaccctg  
 ggtctgaggg aggggggggtt gggccggta tcctgggtc tggggggggg ggggctgggg  
 cctggaccctt tgggtctgag tggggagggg ctggccctgaa atgctttctc ctttcagct  
 ccacggagg aggcccttc tcggccctgaa gcccctggac gctcagcag ggcaccatgg  
 caagatccct ttcctggccc tcgacatct tactgtatc cttagcctt gaaactgcag  
 gagaagaagg taaaagctgg actggggatc ctgacccctac tcaggggccc ccactgaccc  
 35 ttcctcaaggaa tcctggctgatc cagaaccctt ccctctcaa acagcttcca tcctggagg  
 accagactgt cggctgaagg ccccgctt cctgcttctg ctgactcagg gggctctgt  
 cccctccagg ccctggctcc tggcteagg gtctctctg gttccccag atgagatgcg  
 cctcctgggt ttctgagttt gtccttctg tctgtctcta tccctatctc ttgctttctc  
 tgtatcttc cacacatctt catctgtctc tggccatctc tggactctggg aatccctgag  
 40 gtgcagccctc agccttcccc taatgctagc taccacgtg tcctccatg tctccatcca  
 gcccagggtg acaagattat tggatggcc ccatgtgcaaa gagggctccca cccatggcag  
 gtggccctgc tcaatggccaa tcagctccac tggcgaggcg tcctggtcaa tgagcgtgg  
 gtgtctactg ccggccactg caagatgaag tagtggccg ccaagtctct gctggagggt  
 caccacgtc tccatgtc tgggggggtt gaaggcagt cttctgtgc ctacggctt  
 attctctctc tctctgggtt ctgactcttc tctctggc tctgtatcc cctctccctg  
 45 gggctctgtc cccctctctc cctggctctc tggccatctc tggactctggc tctgtcccc  
 tctctctgaa tctctgttcc cctctctctg tggactctgtt cccattctc tctaggtctc  
 tggccccctt cctctctctc tgggtctctg tcctctctc tctggatctc tggccccctc  
 tctctctggg tctctgttcc cctctctctg ggtctctgtc ccctctctc tctctgtgc  
 tctctccccctt cctctctctc tggactctgtc tcctctctc tctctgtgt tctctctccc  
 50 ccctctctc tctctgggtt tggatctctg tggactctgtt cccattctc tctaggtctc  
 gctctgtccc cctctctctc tggatctctg tggactctgtt cccattctc tctaggtctc  
 cctctctctg tggactctgtc cccctctctc tctctgggtt tggactctgtt cccctctccc  
 caggcttggc tggatctctg cccatgtcactgtc tggactctgtt aatctgtgaa tgactcactt  
 55 cgcgtgtactt acaccgtgca cctggggactt gatacgtgg ggcacaggag agctcagg  
 atcaaggccct cggccatccca ggtacttcca cacagacccca tggtaatgac  
 ctcatgtcg tggatctctg tggactctgtt cccatgtcactgtc tggactctgtt gaaatgcagg  
 ctggccctccc gctgcgaacc cctggaaacc acctgtactg tctccggctg gggcactacc  
 acgagccctt atggtaggtt gctcgttcca cccaggatgt caggccccag ccctctccc  
 tcagaccctt gggccatccca cccatgtcactgtc tggactctgtt gaaatgcagg

5 agccccctcc tccttcggacc caggaggccta ggccccccage ccctccctcc tcagaccccg  
gagtcccgac cccagcccc cctccctcg acccagcagt cctggggccc agacccctcc  
ccctcgaaac caggagccg aacaacagcc ctctggtcc tegccccat cctctctgac  
tgacagctct ccctgtctcc ccctgcagtg acctttccct ctgacctcat gtgcgtggat  
gtcaagctca tctcccccga ggactgcacg aaggtttaca aggacttaact gaaaaattcc  
atgtgtcgcc ctggcatccc cgactccaag aaaaacgcct gcaatgtgag accctcccc  
ccaattccctc cccagtcctg ggtacccctgt ctgcatgcc cagggacaga gttgacccg  
10 agtgcactggg taccaagccc ggcctgccc tccccccagg cctggctcc tcagtttt  
ccacccctatt ctctgcctag gtcagggtt gggatgttact tagggccaa tggtggccctg  
gggatgagac agagagttt ataggggtga gaaagtgggg gtgggaccag ggaaggagac  
tgagggtctg gcctcaggcc caaaccttaa gggggcacca aaaacccctcg tgattgat  
aaatcataat gcaatatttaa aaaaataaaa taaaaactca tgcaagact catgatggac  
aaaatgtcac attttttaaa aagagcagg gatatcttact gaattttccc ttgcctgtaag  
tactagcgtg gtcagcaca ggcgtgtact ggcactgtct tcattttaaa tggatgatcc  
15 atgccccatca tgcagtttt tgatttacat ttgatttctg taagtactgc attgaagtt  
tgtgtattgc agttacttag atttttgtcc tgaagctgat gactcactca cctgaccctg  
gcctggctcc cggggaaaac actcttctc tccacccctt ctctgttccc ttttctggc  
ctttgtcat cccctctgtt tctgaacagt ctcccacat ctcttcttgc gacataattt  
catttcatte ttttcttctt tgtttttctt ctgtgttgag ctatgttgc ctccctccct  
20 tttttcttctt ccattccccc ctctctgtcc tctgtcttctt cccttcttctt ctgtgttccc  
tctctgtctc cccctccccc ttcctcttcc ctgccccccct gctcttctt ttttcttctt  
tcatctctct cccctcatctc tccttgcctt ctccctttta cccacttctt ctttcttctt  
cttctatctc ttcctctcc ctggccgtcc cccatctctg tttttttttt ttttcttctt  
25 ttctcttctt ctcttccagg ctctctctcc ttccccccacc cccatcttcc ttttcttctt  
acacccctcc ccccttcttcc ttgttcttcc ttttcttctt ctttcttctt ctttcttctt  
tctcttcttcc ttcttcttccc acacccctcc catctccctc atctttttt ttttcttctt  
tctcccttctt tttttccac cccatctct ttttcttctt ctttcttctt ctttcttctt  
tcttcttcat ctcttcttctt ctctctctcc ttcccttctt ctttcttctt ctttcttctt  
30 ctctgtctct ccacacccat cctccctgtt cacatctgca ctttcttctt ctttcttctt  
tgggatggtg agtggtaggg atagaggaga tggagagag atgactgtcc tagagaatag  
gggttcccc acagagcccc acactcagaa gggtctcaaa cttagtctaa tgcaagact  
gaaatttctca ataatttttg aacaaggc cctgcatttt tgcaatccctt ctttcttctt  
35 aaatttatgtt actggtcttc accctggctt ccgagaccat ctttcttctt ctttcttctt  
cacagggcac gcatccaccc cttggagatg atgttcttcc tccacttgc ttggagcagg  
gtcttaaca ttggaaaata aagagtgtc tgatcttggg agccccccccc ctttcttctt  
atggtctca ttggccaagg gtcaaaaccag tgctttcaaa ggacacttagt ttttcttctt  
actagcttc ccattagttt ccagagacaa tgatgttctt ctttcttctt ctttcttctt  
40 tccataatgtt gcaagacaaa gaccgataac tgagaaatgt ctcttcttctt ctttcttctt  
gatcttggc caaaggtaat ctccggctt attccctcta ggttgactca gggggaccgt  
ttgtgtcgag aggtaccctg caaggcttgg tgctctggg aactttccct tgcggccaaac  
ccaatgaccc aggagtctac actcaagtgt qcaagttcac caagtggata aatgacacca  
tgaaaaagca tcgcttaacgc cacactgagt taattaactg ttttcttctt ctttcttctt  
45 cacaggagtg aggacggcga tgacctatga agtcaaattt ttttcttctt ctttcttctt  
atataattaa accaaccctca tgccctgtt ataaccat ctttcttctt ctttcttctt  
acccaaacaa ataaagaaa acaaaaccct cagtgttgg ggaagacact tggtaacact  
actctcaaac actggaaactg gacgttgcgt aagtcttac taatctttagg aagaacctac  
acaccggagac ctttattcac caccttgc ccaacttactt ctttcttctt ctttcttctt  
50 tgaacaaaaaa aaaatccaaa atgttagaaca agacttgaat ttttcttctt ctttcttctt  
acagaatgtt agtggaaacca tcaaaacatgt tccaaaagta ttaccatgtt atttttac  
tctggcttgg cacaacgtt gttttttt tttggagacaga ccagatgttcc taaataatag  
aatgcagtga tgcaatctt gtcactgtca acctccggctt gttttttt ctttcttctt  
gtgttccagg ctcccaaggta cctgggacta cagggtgtca ctttcttctt ctttcttctt  
55 ttttcttctt ttttcttctt acagggttcc accatgttgg ctttcttctt ctttcttctt  
tgacccctcaga tgatccaccc accttggctt cccaaagtgc ccacccatcc ttttcttctt  
accacccggccca gcccacaatg atattacaaa ctttattttt ctttcttctt ctttcttctt  
tcagtattat tcaagaacat ttaggttata ggatgtttaaa tgacaaaagg aaggacaaaa  
atataatatgtt atgtgaccctt acccataaaaa aatgaaaat ttttcttctt ctttcttctt

acacatgtcc cagactgcat actggggtcg tcatgaggtg tctccttcct tctgtgtact  
 tttccttcaa tgtcaacttataacatga aaaataaagg tggggaaaaaa agtctgaaga  
 tctaagattt gagagaggtt accttcagg aaggagact agaaagaaaat atgtgcctgg  
 ttttgcggcc ttgtcctgccc ggcctgttc cagggcatat ttccatttcc cagatctcg  
 5 ttttcctgt ctgtaaaatg ggagagagag gaaaggatgg agagaggaag aaggaaggga  
 ggaggaggaa gagaacaggc caatttcattc agcgtggaa ggggtgtgaa atgtttctg  
 agcatctcac gagtgacaag tgaggaggaa ggctggcggt ttcagaggg attggatga  
 cagtagacag gacacagggg tccacgggg gtctgccaga agtaagcaaa cagtccggaa  
 ggaagatggg ggcacctgtc ccccaagaag ggagggaaag gaacctcgaa aagcggtag  
 10 gatgagggg gagtccctgtc tgactcagag cctggccaca gccccagcca tctaacatca  
 aagatccctct gtgtggtcac acctcagacg ctgctgaccg aggagccact ccagccagg  
 acacccctc ctacctgttc ttccctttt tcccccagaa ttccctcccc accaagatcc  
 tccagatcct tcccctcctt atctcatctc cctctgagtc ttcctctaacc caggcaccac  
 agccctgtca tattgcagaa attctgcago cgctaattct gattctccca tataggaggc  
 15 taacacagaa aacgcaggag tccaggcccc cagccctcc ttccctcagac ccaggagtcc  
 agacccccc ccccaacccc tcctccctca gaccaggag cccaggtccc cagcccttc  
 tgtttctggg cctgtcaagt ttaagaatgt caaacatttt cgaccagtca ttcccttgaa  
 gtttttagatctc tattttctctc ctcttcgtca aggcaactca acattcaatc tgaaatttt  
 aaaagtaaca aaacatigca tttgcactaa gtcaaggccatgg agatccctgg ccctggccct  
 20 ctgctctcct atacgcaggc tacaggtaga ttggtttgcata gatactgaga tggtaactaat  
 gttgattttt ttaagtaat tcaatttttt ttggtaagc agtatagtgt ggtagtaag  
 ggactagctc tggatcttgg ctcttgggt tcaaatccca gttctagtcc ctacaagcta  
 tttcccttta agctcattac ttcccctgtc cctttccctt catccttgaa atggagaaaa  
 aagcacctac tttcttaggt tattacagag attcaataag ttaatataca gaaagtgc  
 25 aaacattgt

## SEQ ID NO. 13

Hk8 amino acid

30 MGRPPRRAAKTWMFLLLGGAWAGHSRAQEDKVLGGHECQPQHSQ  
 PWQAALFQGQQQLLCGGVLVGGNWLTAHHCKPKYTVRLGDHSLQNKGPEQEIPVVQ  
 SIPHPYCYNSSDVEDHNHDIMLLQLRDOASLGSKVVKPISLADHCTQPGQKCTVSGWGT  
 TSPRENFPDTLNCAEVKIFPQKKCEDAYPGQITDGMVCAGSSKGADTCQGDGGPLVC  
 DGALQGITSWGSDPCGRSDKPGVYTNICRYLDWIKKIIGSKG

35

## SEQ ID NO. 14

KLK8 nucleic.acid

40 CDS 35..817

gtgaccccgcc ccctggattc tggaaagacct caccatggga cgcggccgac ctctgtcgcc  
 caagacgtgg atgttcctgc ttgtctggg gggagcctgg gcaggacact ccagggcaca  
 ggaggacaag gtgtctgggg gtcatgagtg ccaacccat tcgcagccctt ggcaggccgc  
 45 ctgttcccg ggcaggcaac tactctgtgg cgggttcctt ttaggtggca actgggtctt  
 tacagctgcc cactgtaaaaa aaccgaaata cacatgacg ctggagacc acaggctaca  
 gaataaaatg gcccaggac aagaatacc tggatgttcag tccatccac acccctgtca  
 caacaggcgc gatgtggagg accacaacca tggatgtatc ctttcttcaac tgcgtgacca  
 ggcatccctg gggtccaaag tggaaagccat cagctggca gatcattgca cccagctgg  
 50 ccagaagtgc accgtctca gctggggcac tggatgttcactt ccccgagaga attttcttga  
 cactctcaac tggatgttcactt tcccccagaag aagtgtgagg atgcttaccc  
 gggccagatc acagatggca tggatgttcactt aggacaggcgc aaaggggctg acacgtgcca  
 gggcattct ggaggcccc tggatgttcactt tggatgttcactt cagggcatca catcctgggg  
 55 ctcagacccc tggatgttcactt ccgacaaacc tggatgttcactt accaacatct gcccgttaccc  
 ggactggatc aagaagatca taggcagcaa gggctgttaccc taggataagc actagatctc  
 ccttaataaa ctcacaactc tctgttcc

SEQ ID NO. 15

### KLK8 nucleic acid

5 CDS join (<1..39, 418..712, 878..>946)

Exon <1..39

Exon 418..712

Exon 878..946

10 tctcggttc ccgggttactg gcagcagccc cctccccc caaaagatca ggttccaagg  
tttcctttt aaaagtactt agaattcage cccagctct ctcccccctc acaccaggaa  
atccaggccc cttagcccc ctccttcaga cccaggagtc ctggccctca gcagccccc  
cctcccttag acccaggatg ctggcccc agccctctt cggtcagacc taaatcccg  
15 gtcccagtcc ctcccttctt agathtagga gtccaggccc ccagcctctc ctccctcaga  
cccaggaaatc caggccccca gcctccccc ctctcagaac taaaatcttg gcccccaagcc  
ctttatgttt cagatcgtag agtctcagca ccgagtcctt ctctcccta gcctcaggag  
tctgagattc cagccctcc tccctcaaga ttacgttcc aatcccctcc gcccctctc  
actcacaccc atgttccag ttcccagaag ctccttcaggc tctagtgcag gaggagaagg  
aggaggagca ggagggtggag attcccaagt aaaaggctcc agaatcgtgt accaggcaga  
20 gaactgaagt actggggctt cctccactgg gtccgaatca gtaggtgacc cggccctgg  
atttggaaag gtgagggtcga gaggtaactca gatacagaca tcaggcccccc gacccttctt  
ctccagattt caggagccca gcctcaggatg cccttcctt tgagatccca gcaactggaa  
ccccggcttc ctccctccca taattagga gtcccaagtc ccagctccctt gttccctcag  
25 acccagaatc cgaggactcc cccctccctt ggaatgtagg aatccagttc cccagctcc  
tccttcctcc agagaagccc agaacagccc cagatactct cggctgcctc cccagtgccc  
aaatcccgaa ctgggagctc aggetccccc ttctgttta cggggccccc ccttcatt  
tcccaagacct caccatggga cggcccccgc acgtcccccgc caagacgtgg atgttccctg  
tcttgctggg gggagctgg gcaggtgagg agggttgcgg aggccctccgg aggggggggg  
30 tctgaaggca gcagtggcgc tggggagttt gtgggaatgc cgcgggggtt atgtgggtgc  
gtgtgcacgg atgtgaagag tgcgatacgg tgcaggagcc tctgtgggtt ttccctcagg  
tggacagagg caagaaaacag gtacgcacag gttaggatgt gttccgtgtat gctgtaaatt  
gtctgaatag ctacagccct tggggctgc ttgttgggg gcatagattt acctggaggt  
actcggggcc ttagactca tggaaagca tggggggca ttcttgggtt tggactctt  
gtatgtac acatggactg aaatgagtgt cccctgtgg cagcgtgtgg aagcctggac  
35 ctccacta atttgtatgc ggagaactt ccgtgtgtcc atttgaaccc acagtggct  
tcccaagccct cgcactgccc cagagggtgg cgatccaaacc ctctccctcc tgctgcagg  
cactccaggg cacaggagga caagggtctg ggggtcatg atgccaaccc cattcgcag  
ccttggcagg cggccctgtt ccaggcccg caactactt gttccgtgt tctttaggt  
ggaactggg ttcttacagg tggccactgt aaaaaaccgt gatgtggatga tggggcaga  
40 ggtcagctgg ggcttaaggaa aagagggggc tggggtttcg actcaggaag gagagagctg  
aggactggac ttctgggtctt gaaggaggag ggggtgggg gcaataaccc tgcctgggt  
ccaaactata cccaccatta caggaataac acatgtacgcc tgggagacca cagcctacag  
aataaaagatg gcccagagca agaaataacct gtgttctgtt ccattccacca cccctgtact  
aacacgcacg atgtggggaa ccacaaccat gatgtatgc ttcttcaact gctgtacc  
45 gcatccctgg ggtccaaagt gaagcccatc agcctggcag atcattgcac ccagccctgg  
cagaagtgc cctgttcagg ctggggact gtcaccagtc cccgaggttag tggctgtc  
cactaatggg agggagggaa ggagctggg ggcccagttt aaccaaaagttt attggcaaaag  
cttggtcccc cagaggggaga caaagaaggaa aagtgtatca tgatgttgg attcacaagg  
aggagtctata tgagaaggctt cgaagatctg actactaaca agatgtgtgaa gagaagaac  
50 caactacgat atttgttaago agggccagaa aagcccatcc tttatggcgg agacactac  
cctatggac ttttgggtttt ataggatttt atataatctt aacacactt ggatattttt  
gacttctcag agggccagga aacacggctc ctaacccat tttttttttt ttttgggggg  
ttttttttt tttttttttt ttttgggggg ggacacagttt tttttttttt ttttgggggg  
gagtgcagtgc cacaatctc agctcaatc aatctcttcc ttttggggttt aagcgattt  
55 cgaaccttag cttcccgatg agctggattt acaggccccc gcccacccgc gacttattt  
tttgtttttt tttttttttt ttttgggggg ggacacagttt ttttgggggg aactcttcc  
cctcaagtga tttttttttt ttttgggggg ggacacagttt ttttgggggg aactcttcc  
gcccctggcc tttttttttt ttttgggggg ggacacagttt ttttgggggg aactcttcc



tcccccttta aaaaataattt

**SEQ ID NO. 16**

5 Hk10 amino acid

MRAPHLHLSAASGARALAKLLPLLMAQLWAAEAALLPQNDTRLD  
 PEAYGAPCARGSQPWQVSLFNGLSPHCAGVLVDQSWVLTAAHCGNPKLWARVGDDHLL  
 LLQGEQLRRRTSRSVHPKYHQGSGPILPRTDEHDIMLLKLARPVPGPRVRALQLPY  
 10 RCAQPGDQCQVAGWGTTAARRVKYNGLTCSSITILSPKECEVFYPGVVTNNMICAGL  
 DRGQDPQCSDSGGPLVCDETLQGILSWGVPYPCGSAQHPAVYTQICKYMSWINKVIRSN

**SEQ ID NO. 17**

15 KLK10 nucleic acid

Gene 1...1580  
 CDS 220...1050

20 catcctgccca cccctagcct tgctgggac gtgaaccctc tccccgcgcc tgggaaggct  
 tcttggcacc gggacccgga gaatccccac ggaagccagt tccaaaaggg ataaaaagg  
 ggcgttcgg gcactgggag aagcctgtat tccagggccc ctcccagagc aggaatctgg  
 gaccaggag tgccagccct acccacgcag atcctggcca tgagagctcc gcacccctcac  
 ctctccgccc cctctggcgc ccggcgtctg gcgaaagctgc tgccgctgct gatggcgc  
 25 ctctggggccg cagaggcggc gctgtcccccaaaaacgaca cgcgcgttggc ccccgaagcc  
 tatggctccc cgtgcgcgcg cggctcgca ccttggcagg ttcgcgtctt caacggccctc  
 tcgttccact ggcgcgggtgt cctggggac cagagttggg tgctgacggc cgcgcactgc  
 gaaacaaga cactgtgggc tcgagttaggg gatgaccacc tgctgcttct tcagggagag  
 cagctccgccc ggaccactcg ctctgttgc catccaaagt accaccaggc ctcaggcccc  
 30 atcctgcca ggcgaacggg tgagcacatgt ctcatgtgc tgaagctggc caggccccgt  
 gtgtctggggc cccgcgtccg ggcctgcag ctcccttacc gctgtgtca gcccggagac  
 cagtgcagg ttgctggctg gggcaccacg gccgcggga gagtgaagta caacaaggc  
 ctgacactgct ccagcatcac tattcctgagc cctaaagagt gtgagggtctt ctaccctggc  
 gtgttcacca acaacatgtatgtctggc ctggaccggg gccaggacc ttgcccaggat  
 35 gactctggag gccccctggt ctgtacgcg accctccaag gcatccctc gtgggggtgt  
 taccctgtg gctctgccc gcatccagct gtctacaccc agatctgcaa atacatgtcc  
 tggatcaata aagtcatcag ctccaaactga tccagatgct acgctccagc tgatccagat  
 gttatgctcc tgctgatcca gatgcccaga ggctccatcg tccatcctct tcctccccag  
 tcggctgaac tctcccttg tctgcactgt tcaaacctct gccgcctc acacctctaa  
 40 acatctcccc ttcacacca ttccccccatt ctctgcctgt actgaagctg  
 aaatgcagga agtggggca aagggttatt ccagagaagc caggaaggcc gtcatcaccc  
 agcctctgag agcagttaact ggggtcaccc aacctgactt cctctgcac tccctgctgt  
 gtgactttgg gcaaggccaa gtcctaccc tttagacatgt tggaggaga ctatgatata acatgttat  
 45 gtaaatcttc atggtgattt tcatgttaagg cttaacacag tgggtggta gttctgacta  
 aaggttacct gttgtcgtga

**SEQ ID NO. 18**

KLK10 nucleic acid

50

Gene 1..5574

mRNA join(48..120,605..701,2455..2635,3589..3863,4195..4328, 4793..5474)

CDS join(614..701,2455..2635,3589..3863,4195..4328,4793..4945)

Promoter 1..47

55 5'UTR join(48..120,605..613)

exon 48..120

## exon 605...701

ttgggtcaa aaggaaaggt cccgceaggg gtccctggc agaggatacc agcggcagac  
 cacaggcagg gcagaggcac gtctggtcc cctccctcct tcctatcgcc gactcccagg  
 5 tgaactacc tgcaccccac ccgggtttgg gtggatttgcg agaggatggg tggaaacccc  
 cggccacag gcaggagccg gcttagagcc tcggtttc cactgcggga cgccgaagtc  
 cccccctgt gaggttggaa aaggagtc cactgtcc gacgcctcgga tccccacccc  
 ggcgtgaag ggggggaaa cctcggcgc ggctggctg cagccagggt agctggggcg  
 10 cggagagcgc tccactcggt cacagggagg acggaaagat gccgcgaggg gctgtattag  
 gtaatttgt cccattaccc tggtccagcc cgaatctccc gtctgccagc ccctgggtt  
 atcggctgca ggtaaaagg gtgttgcgg gctgggggtgg cccaggctgg gccgatggc  
 gccgcgaggt gggggctct aacggagcat ctgttttaac ccccccctgc acacacccc  
 15 gcatcctg gccatgagaa ctccgcaccc ccacctctcc gccgcctctg ggcgggggc  
 tctggcgaag ctgctgccgc tgctgtatggc gcaactctgg gtaagggtgg gggacagggg  
 gcggggagag gcgccgggtgg gaggcacggg cgggaggggca atgtgttccc gtcaccaagc  
 cccgcgcacc ttcctccccc cgagacccca gcacccaccc agcgcctccgg agcacggccc  
 gcccccaagt cagctggcc cttcttctgg ctggccccc ggtgaccccg ccccaactcag  
 20 gcccgtccg atttctgcca cccggatctt cgccttccg tggacttctt ggcgtttct  
 ttctctctt cttagccgc cccatcccg cccatccca tttagacta ccgtgttttgc  
 tttttttgt tggtttttt gagaaggat ctcgttctgt cggccagggt ggagtgcagt  
 ggcgcgatct cggctactg caagcttgc cttccgggtt cacaccattc tcctgcctca  
 25 gcctcccgag tagctggac tacaggcgc cgcacccaag cccggcttagt ttttttatt  
 ttttagtagag atgggatttc accgtgtct cgcattcttgc gctctgtat ccgcctgcct  
 cggccctccca aagtgttggg attacaagcg tgagccaccc ccccgccca caccacagt  
 ttttatctg agtcttgcc taccgtttt tgccctctcc cctcaactttt tttcttcctc  
 30 tttccctttc tctctttttt ttctttttt ttctttttt tttttttttt gttttttttt  
 tccttccttc ttcccttcttcc ttcccttctgt ttgttttttcc ttctttttt tttttttt  
 ttatttttt ttcttttttctt ttctgtttt ttcttttttcc ttctttttt tttcccttctt  
 tttttttttt tttttttttagt acaggccagt gctctgtctc cgtggctggaa gtacagtggc  
 35 ccaatcagag ctcaactgcag cctcgaccc ctgggctcaa ggcataactca gcctccagag  
 tagctggatc cacaggcatc caccacaca tccggctttt tttttttttt tttttttttt  
 ttttttttagt acagggtctc actctgtcgc ccagactggaa gtgcgttggc ccaatctcg  
 ctcattgcac ctcacccctt ctgggctcaa ggcatactcc caccctcagcc tcccaagtag  
 ctgtactac aggccatgc ctccgcact actttttgt tttttttttt gttttttttt  
 40 tttttttttt ttttttttagt actgggtctt gctgtttgc cggggctggt tttttttttt  
 cgggttcaacc gcctcggtt cccaaagtgc tgggattaca ggcgtaaacc actgcggccc  
 accccctctcc tgggtttcaa tcccggtttt ttatttcacac cccttcctctt ccccgatcccc  
 cgagttctat ccccgaccc ttacctcccc gccgcgttca atccccggcc ctctatcgac  
 45 cagcgcgtt ctatccgcgtt ctccaggcgc gctgcgttca gtcctgccttcc tccagaccca  
 ccctattctg ttcattact ccacgttacc ctatccgc ttccttcac tttcagcgc  
 ttcttcctt cccattccctt cgggtcagcc gaaacccca atatccctt accaccctcg  
 cgttctggctt ggttttttttccggatcccg cagtccttgc ccacagccca gtcggccaccc  
 caaaccacaga ccctggccctt cgtgttttgc ttccgtttcc tttttttctt ccagccgcag  
 50 agggccgcgtt gtcggccatccaa aacgcacacgc gtttttttttccggatcccg cgaaggccat  
 ggcggccgg ctcgcagcc tggcgttcc cgccttccttcc ttttttttttccggatcccg  
 gggttgcgtt ggttttttttccggatcccg tggcgttcc cgccttccttcc ttttttttttccgg  
 55 atttctggcc cctgtactcc tctccctgtt atttccttgc atttccttgc agctcttagga ggagggtgg  
 gcttgcaccc gatagaagcc agggtccggt gtttttttttccggatcccg tggcgttcc  
 gttcacttcg tggcgttcccg ttttttttttccggatcccg ttttttttttccggatcccg  
 ggagggtggcc tggcgttcccg ggttttttttccggatcccg ttttttttttccggatcccg  
 ggggtggatca cctgtactcc ggttttttttccggatcccg ttttttttttccggatcccg  
 ctcaactaaa aataaaaataa aaaaaaat aaaaaat tttt aaaaaatatta aaaaaaaaaa  
 aaggctgggt gtttttttttccggatcccg ttttttttttccggatcccg ttttttttttccggatcccg  
 ggagaactgc ttttttttttccggatcccg ttttttttttccggatcccg ttttttttttccggatcccg  
 ttttttttttccggatcccg ttttttttttccggatcccg ttttttttttccggatcccg  
 aatgtggaa ggttttttttccggatcccg ttttttttttccggatcccg ttttttttttccggatcccg  
 aatgtggaa ggttttttttccggatcccg ttttttttttccggatcccg ttttttttttccggatcccg

tcagagctca aacaactgat tcctcctccc catgtccact gaggtccccct tctcccacaa  
 ggcctcttc cctcagactc ttccatatctc caggccctgc ttcaactgccc acctgcttc  
 ccagtccctg tgaagggtt gccttcacat gcctcttcct tccccccaggc cactgtggc  
 5 tcgagtaggg gatgaccacc tgctgcttc tcagggcgag cagtcggc ggacgactcg  
 ctctgttgc catcccaagt accaccaggc ctcagggccc atcctgccaa ggcgaacgga  
 tgagcacat ctcatgtc taaagctgc cagggccgtg gtgcggggc cccgcgtccg  
 ggcctcgcag cttccctacc gctgtgtca gccccggagc cagtgcggc ttgctgctg  
 10 gggcaccacg gcccggcggg gaggcaagag ctggggctct gaggccagaa cctcaggagg  
 agggggctga gggcctgaac ccctgggtct gaggaggat gggctggggg ctggattcct  
 ggatctgagg gaggacgggc tggggctta gatgcctggg tctgtgagtc tgagggagg  
 aggggctggg ggcctggact cctgggtcta agtggggagg ggctggggc aggattctg  
 agtctgaagg aggagggggct ggggctttagg atagaacgg tcttgatct ggactcctgg  
 15 ctccttcaagg attggggct ggacccaggg attactggca tattctccct tcagtgaagt  
 acaacaaggg ctcgacactc tccagcatca ctatctgag ccctaaagag tgtgaggtct  
 tctaccctgg cgtgttgcacc aacaacatgat tatgtgctgg actggaccgg ggcaggacc  
 cttgccagg agggtctgaa cagggagagt ctctgactcc tggggggag gacagggagg  
 ttatggaaa agagcagacc ctgtgcccga tcccaaactc cattccaaa cccatccttgc  
 20 acccccaactc ttacccagac ctaacccctt cctcatccct atcctcaatc ccattttcat  
 cctaaccctt cccattttccct atcctcaagg cattttcat cccttccat tccatgaact  
 acaatccaa cccaaatgtc actgtgcctt cattttcatc cccatccata acctccatc  
 acctgaagtc cacctccatt cctaccttcc agctcatacc taattccaaac cccatccat  
 cctcgctttt atcccaaccc aacccttcc ttcccccacca ctgccccaga tcccaaagtg  
 25 acagctctca ctgtggcaca ttatgttgc tctcttcc tggccacccccc agagtgactc  
 tggaggcccc ctggtctgtc acgagaccctt ccaaggcatc ctctcggtt gtttttaccc  
 ctgtggctctt gcccagcatc cagctgtcta caccaggatc tgcaaataca tgcctggat  
 caataaaagtc atacgctcca actgatccag atgctacgct ccagctgatc cagatgttat  
 gctcctgctg atccagatgc ccaggggtc catcgtccat cctcttccctt cccagtcggc  
 tgaactctcc ctttgtctgc actgttcaaa cctctgcccgc cttccacacc tctaaacatc  
 30 tccctctca ctcatttccctt ccacccatcc ccatcttctg cctgtactga agctgaaatg  
 caggaagtgg tggcaaagggtt tattccaga gaagccagga agccggcatc caccggcct  
 ctgagagcag ttactggggt caccacactt gacttccctt gccactcccc gctgtgtgac  
 tttggccaaag ccaagtggcc tctctgaacc tcagtttctt catctgcaaa atgggaacaa  
 tgacgtgcctt acctttaga catgttgc gggactatg atataacatg tttatgtaaa  
 35 tcttcattgtt atgttcatgtt aaggcttaac acagtgggtt gttttctt gtttttaccc  
 acctgttgc ttgtatcttgc cacgtccggg tggaaagctg tggccaggaa agaagtgcac  
 agggtagcccc ccaatccaa cttccatcc ccaaccctta gggatgtgg aaga

## SEQ ID NO. 19

40 Hk11 amino acid

MQRLRWLRDWKSSGRGLTAAKEPGARSSPLQAMRILQLILLALA  
 TGLVGGETRIIKGFECKPHSQWPQAALFEKTRLLCGATLIAPRWLTAHCLKPRYIV  
 HLQHNLQKEEGCEQTRTATESFPHPGFNNSLPNKDHNDIMLVKMASPVSIWAVRP  
 45 LTLSSRCVTAGTSCLISWGSTSSPQLRLPHTLRCANITIIEHQKCEAYPGNITDTM  
 VCASVQEGGKDSCQGDGGPLVCNQSLQGIISWGQDPCAIRKPGVYTKVCKYVDWIQ ETMKNN

## SEQ ID NO. 20

50 Hk11 amino acid

MRILQLILLALATGLVGGETRIIKGFECKPHSQWPQAALFEKTR  
 LLCATLIAPRWLTAHCLKPRYIVHLQHNLQKEEGCEQTRTATESFPHPGFNNSL  
 PNKDHNDIMLVKMASPVSIWAVRPLTSSRCVTAGTSCLISWGSTSSPQLRLPHT  
 LRCANITIIEHQKCEAYPGNITDTMVCASVQEGGKDSCQGDGGPLVCNQSLQGIIS  
 55 WGQDPCAIRKPGVYTKVCKYVDWIQETMKNN

## SEQ ID NO. 21

## KLK11 nucleic acid

5            aggaatctgc gctcggttgc cgcatcgca gaggttgagg tggctgcggg actggaaatgc 61  
       atcgggcaga ggtctcacag cagccaagga acctggggcc cgctccccc ccctccaggc 121  
 catgaggatt ctgcgtttaa tcctgcttgc tctggcaaca gggcttgtag ggggagagac 181  
 caggatcatc aagggggttc agtgcagacc tcactcccaag ccctggcagg cagcccttt 241  
 cgagaagacg cggctactct gtggggcgac gctcatcgcc cccagatggc tcctgacagc 301  
 agccactgc ctcaagcccc gctacatagt tcacctgggg cagcacaacc tccagaagga 361  
 ggagggtgt gaggcagaccc ggacagccac tgagtccctc ccccaccccg gcttcaacaa 421  
 10          cagcctcccc aacaaagacc accgcaatga catcatgctg gtgaagatgg catcgccagt 481  
 ctccatcacc tgggctgtgc gaccctcac cctctccca cgctgtgtca ctgctggcac 541  
 cagctgcctc atttccggct ggggcagcac gtccagcccc cagttacgccc tgcctcacac 601  
 cttgcgtatgc gccaacatca ccatcattga gcaccagaag tgtgagaacg cctacccgg 661  
 caacatcaca gacaccatgg tgtgtgccag cgtgcaggaa gggggcaagg actcctgcca 721  
 15          gggacttcc gggggccctc tggctgttaa ccagtcttcc caaggcattt tctcctgggg 781  
 ccaggatccg tggcgtatca cccgaaagcc ttgggtctac acgaaagtct gcaaataatgt 841  
 ggactggatc caggagacga tgaagaacaa tttagactggc cccacccacc acagcccatc 901  
 accctccatt tccacttggt ttgggttcc ttggactctt gtaataaga aaccctaagc 961  
 20          caagaccctc tgcaacattt ctggggccct cctggactac aggagatgt gtcacttaat 1021  
 aatcaacctg ggggtcgaaa tcagtgagac ctggattcaa attctgcctt gaaatattgt 1081  
 gactctggga atgacaacac ctggtttggt ctctgttgc tccccagccc caaagacagc 1141  
 tcctggccat atatcaaggt ttcaataat atttctaaa tgagtg

## SEQ ID NO. 22

## KLK11 nucleic acid

gene 2313..7622

25          mRNA join(2313..2398,4189..4263,5061..5217,5545..5810,  
               6627..6763,7158..7622)

CDS join(4224..4263,5061..5217,5545..5810,6627..6763, 7158..7310)

35          tgataatagt gttctctctc ctcattggtc agggcccaag ccattgtcct tgagagaatg 61  
 ctcgactctt tatgttgtct tgacagccctc ccctgagatt ggtcatatat gactgtgtc 121  
 tctctccatca ttggtcaggg ccccgccat tgccttgcg agaacatctg tccttttatgg 181  
 agttccaccc ttcttccctg ggattggccc cttagagacag ttggttttctt cttttggta 241  
 gccattggca ttgtccctcc ggaaatgtat tataactctt tgcataatga ccagacttgg 301  
 40          agccctcccc aaggcccaagg actgggttga aggggtgggg agggaaacac aaataagatg 361  
 ttcctctgt ttagacatca cttcttcc cttccagggt gattctgggg gccccctgtt 421  
 gtgtggggga gtccttcaag gtcgtgttc ctgggggtct gtggggccct gtggacaaga 481  
 tggcatccct ggagtctaca cctatattt caagatgtg gactggatcc ggatgtatcat 541  
 gaggaaacaac tgacctgttt cttccaccc caccggccacc ctttaacttg ggtaccctc 601  
 45          tggccctcag agcacaataa ttcctccat cacttccctt agctccactc ttgttgcct 661  
 gggaaacttct tggaaacttta actctgtcca gcccctctaa gaccacacg cgggggtgaga 721  
 gaagtgtgca atagtctgga ataaatataa atgaaggagg ggcctatgtt gtcatttgc 781  
 agtcctcatg ctgggttgcgat ctggaaagag gactcagcag tttccctatc tcataggatg 841  
 agaaacagag ctcaaataag gccaggcaca gtggccaca cctgtaatcc catcacttg 901  
 50          ggaagctgag gcagggtggat cacctgagggt caggaactcg ggaccagcc ggtcaacata 961  
 gtgaaacccc aactctacta aaaatgaaaa aattagccag gcatgggtgc gcatgcctgt 1021  
 aatcccagct actcaggagg ctgagacagg agaatagcat gaaacccgtga ggcagaggct 1081  
 gcagcgagcc gagattgaac cattacacte cagccctggc gacagagcga gactccatct 1141  
 55          caaaaacaaa caaaacaaaaa acccagtgtt cttttttttt gggggctttt cttttttttt 1201  
 tactcagaaa tggagttttt aatgtttttt ttaataatat tttttttttt tttttttttt 1261  
 cgcctgtat cccagactt tggggggccg aggtggggagg atggcttgcgat ctcagattc 1321  
 gagatcagcc tggcaacaca gtggaaatctt gtcactacaa aaacacaaaa aattagctgg 1381

gtgtgggtggt gcgtgcctgt agtcccagct acttgggaag ctgagggtggg aggatcaccc 1441  
 gagccgggaa ggtggaggct gcaaagagcc gagatcatgc cactgcac tc cagcctggc 1501  
 aataaaagtga gacccatgtct caaaaacaaa aaccaggca tataaataag acacatgttt 1561  
 ctcatctgg cataatagaa atagtgc cca gagttataa gctttcaag agtccacaaa 1621  
 5 agaccggaaa aagaaaaaga aaattgttag ctccaaaata ccagatgaaa gctgcaagt 1681  
 caacatttat gaccatttaa tccaatgtcc ataaaacgta gcattcttc cactagccaa 1741  
 ctgcagttta ctttcttgta atgaagcata cattgtatct ttaatgtggg acgtggctt 1801  
 gtttaataaa gcaagggtt ggagtgcagg ctggaaagc aggagagctc agcctacgtc 1861  
 10 tttaattccctc ctggccacc cttggattct gtctccactg ggactcaaga ggtgaggaga 1921  
 gaccatctcc ccaa atgcac tgaaggaaa ctggaggagg gaggaggatga ggggtgatca 1981  
 taccoagcgg a ggcacattt ctgagcccc cccgactctg ctctttccaa gtggaccctc 2041  
 ctggaa ggcct gatcccaacc tcccctgca gcaggctgt cacccccattc ttcagatga 2101  
 agaaactgag cttgcagg gttggatccc ttgtccccac gtcataagg tagtcatagt 2161  
 agtaggaaga ggaaggaccc aggttgggg ccaggctgg ctgctgtca aacctaggcc 2221  
 15 cttccctgca ttgctccaca cctggctcagg ggagagaggg gaggaaagcc aaggaaagg 2281  
 acctaactga aaacaaacaa gctgggagaa gcaggaatct gcgcctgggt tccgcagatg 2341  
 cagaggttga ggtggctcg g gactgaaag tcatcggca gaggcttcac agcagccagt 2401  
 aagtgaacag ctggactcgg gtcgcctgg cggcaggag aagcggcag gggaaagggtc 2461  
 20 agcagaggag cgaggccccca gaggacccct ggggtggcgc acagccaaagg gctctgttcc 2521  
 ctggccttggc ctggccttcc acaggccctg acctgcctcc cccaccctcc ggtctgccc 2581  
 ctgtgccttgg cagcagcccccc acctgtgtga catcccgac caccctccctt ctccttgca 2641  
 aggagaagg ggcggccctag gggaggccag gggccaccc gggctggggc tggagagg 2701  
 gagttggctgg gacggggagaaa aagagagaga cggagattag atgaaagaag agggattca 2761  
 25 agacaaatttgc ccaagatgc agtcagagag actgactgag agacacaaag atagaaggaa 2821  
 ttagagaaag ggcacacac agccagacag agagagaaga gtggagatgg agacagg 2881  
 gaggacagag aaaggcagac agacacatag ggacagaaag agaaaaatca cacaaggatca 2941  
 gaattactga atgacaggaa atgacacata gaacgagaca cagattcaga gactcaggc 3001  
 agggaaaggaa aggctgcaga cagacagaca gacagaggaa ggctgagaca caggagaag 3061  
 30 aggggttgg agaggtggca caggcaggca gccagtgcct cagaggcctc cggggagg 3121  
 ctcacacac accccgcccc gggcattaa ggcaggcctt ggaggccagt catcctggc 3181  
 ccccccaggccccc gccagccgc ctgcctggc ctcgcaccc ggcgcctcaa 3241  
 cccagctac ctgcgtgtc tgccgcact gccgtctcc cccgcactgg gcccccaag 3301  
 cccagcccccc agagctgtg agtccaggag gaaagggaag ctgcctcc cctgcagg 3361  
 35 gtcgcctc cccaggacca cctgtccac tcggccaccc atttcttc ctgcctgtc 3421  
 ttcttgc tgggtgggg ttcctggcct ctctctacac ctctccaccc ctatggctgt 3481  
 cccgcgcctc agttacctt aatctccatg gcttcagtg ctgagctggc cctctgtcc 3541  
 caccctccgt ggcaggcga gggaggcga ctggccctcc ctcgaccac cccgcgcac 3601  
 ctttgttgg ctgtcctca aaaggcagg ggttggcgg acaggcttc agcaaggccg 3661  
 gtgtatggggg tcccagacat tgcgtggc tgagccccct actccctcc agcagaccc 3721  
 40 aaaggctcca tatgcctcg ctgcgaagac aataaaaag ggtggctac ggaacgg 3781  
 ctggttcccc ttgtccttcc accccaaatct gctggggctt gcccaccc caaggcaaga 3841  
 aggaaaacat cctctgacat gtggcgggaa ggtcccatgg ctgacttgaa caggccgaa 3901  
 ccatggcttgc acagctcaaa gcccctccca acgacttcca catggttctt ggtatctgg 3961  
 aagcttcttag ctgtgaccac gcccttccca aggccaccc acacaccta gatatat 4021  
 45 aagtgtttgg agatctgtgatgtggagaa acaggggatt tccccaccc tttttctccc 4081  
 aagtggggag cgggagcagg tgaggagag aggagaggc atgaggccgc ccccccctcc 4141  
 cgatccccc gtaaatgtat gcccggccat gtcctccctt gttcccgag gaaacctggg 4201  
 cccgcctccccc cccctccca gccatgaggaa ttctgcgtt aatctgtcc gtcctggca 4261  
 caggtaacca ggggatgggg gcaggccagg atccctccctt ttaatctctt gggatccc 4321  
 50 aaccctctgt gtctggacac tgacaggcgtt gatccaaat tacagaacaa cccataaggc 4381  
 acctgaactg gaggcgtggt catgaggccc tggatggccct ttagataat cccttaaat 4441  
 gccaaaggag gagaggctaa gggggtcgta aagggtcccg tggaggggctt gaggaaatg 4501  
 gagttggggg agcagtcact caaagccccc aggacagggg ctactgacca accatgtgg 4561  
 aagtatttcc ttcccttccca tttccagaga caaatgttgc ctctattgtc caggctgg 4621  
 55 tgccgtgggt ccaacacggc tcactgcagt ctgcattcc cgggcttaag tgatccctaa 4681  
 gccatctcag cttcccccgtt agctggacc acaggccaccc gccaccaagc caggctaa 4741  
 gtttaattgtt tgtagagat gggggaggag gtcctactat tttgcctag gtcgtatctg 4801  
 aactccctggg ctcaagtaat ccccccaccc tagcctctca aagtgtggg attacaggca 4861  
 tgagccactt catttgaccc tatggaaatg ttttccatctt ttaatacccg accccacat 4921

|    |             |             |             |             |             |             |      |
|----|-------------|-------------|-------------|-------------|-------------|-------------|------|
|    | ccaggggcaac | ccagagggac  | accagaccag  | ggcccagacc  | acccactctc  | tttctctcct  | 4981 |
|    | ccccacccccc | atttctggg   | gtccttcctgg | tctaccacct  | ctccttcctg  | agccccctct  | 5041 |
| 5  | tttgctctca  | ccccctccag  | ggctttagg   | gggagagacc  | aggatcatca  | aggggttcaa  | 5101 |
|    | gtgcaaggct  | cactcccage  | cctggcaggc  | agcccgttcc  | gagaagacgc  | ggctactctg  | 5161 |
|    | tggggcgacg  | ctcatcgccc  | ccagatggct  | cctgacagca  | gcccactgcc  | tcaaggccgt  | 5221 |
|    | ggtgccccggg | ctggggcggt  | gcccgggtgg  | ggggctggga  | atggggagat  | ggatggagag  | 5281 |
| 10 | aagctcaggg  | atagggggtc  | tggtaagggg  | attagagatg  | gggatgggta  | gtgtcagcaa  | 5341 |
|    | ggttcatggg  | ctcgagttgg  | tattgaaggt  | ggggggatga  | atggggttgg  | gatggggcta  | 5401 |
|    | tggctggaa   | ggggggcttc  | gtgggagacg  | tggaagagg   | tggaagcaga  | gcgatgttcc  | 5461 |
|    | ttcatcctca  | aaggtgtcac  | tcaccccttc  | ccccatgtc   | tcccccggacc | tttccttcctc | 5521 |
| 15 | caactactgt  | ctctccccc   | tcagccgcta  | catagttccac | ctggggcagc  | acaacctcca  | 5581 |
|    | gaaggaggag  | ggctgtgagc  | agaccggcag  | agccactgag  | tccctccccc  | accccggtct  | 5641 |
|    | caacaacagc  | ctccccaaaca | aaacccacccg | caatgacatc  | atgtgtgttgc | agatgycatc  | 5701 |
|    | gcoagtctcc  | atcacctggg  | ctgtgcgacc  | cctcaccctc  | tccctacgct  | gtgtcaatgc  | 5761 |
| 20 | tggcaccagc  | tgcctcattt  | ccggctgggg  | cagcactc    | agcccccaat  | gttaggagcac | 5821 |
|    | cagagggaa   | cctggcaggg  | gttgggagg   | agggagtgtt  | caggattgtg  | gaagggttca  | 5881 |
|    | gggcatcaga  | gatgcgggtt  | acagtgcga   | tgtggataaa  | gtttagagga  | tgtgtggaaa  | 5941 |
|    | acgtcaggat  | aggggggtgg  | ggacaaaagt  | tggggcttgc  | gagtcagacg  | gacgggatata | 6001 |
| 25 | gcaatcatac  | atccataacc  | tcctgttgc   | aagaccttag  | gcaagcagct  | tcacccctct  | 6061 |
|    | gaatcttgat  | tttcttctct  | ataaaatgag  | aatgattata  | cccacctgtc  | aggattggat  | 6121 |
|    | tagagataat  | gtatatcaag  | caactgacat  | aaatcattta  | ttggatagca  | ggctgggcac  | 6181 |
|    | cgtggctcac  | gcctgtaaatc | ccagcacttt  | gggaggccga  | ggtgggaaga  | tcacctgagg  | 6241 |
| 30 | tcaggacttt  | gataccagcc  | tggccaaacgt | gttgaatacc  | catctctact  | aaaaatgtga  | 6301 |
|    | aaatttagtt  | ggcgtgggtt  | tgtgcgcct   | taatcccagc  | tactcgggag  | gtttagggcag | 6361 |
|    | gagaatcgct  | taaacttggg  | agacggagg   | tgcgtgagc   | caagatcacc  | ccactgcact  | 6421 |
|    | ccagcctggg  | caacagaga   | agacttgc    | tgcgggggg   | aaaaaaaaaa  | gttggatagc  | 6481 |
| 35 | attgtgttgc  | ctatgttac   | aagaagagag  | gtgagttggc  | tgcgtctaag  | gacaggattt  | 6541 |
|    | ccccaggggg  | cgggatcaca  | gcaagcactg  | cattagggg   | gttggcaggg  | ggctctattc  | 6601 |
|    | cacagccccct | cacgctgtt   | ccacagtagc  | cctgcctc    | accttgcgt   | gcccacacat  | 6661 |
|    | caccatcatt  | gagcaccaga  | agtgtgagaa  | cgcctacccc  | ggcaacatca  | cagacaccat  | 6721 |
| 40 | ggtgtgtgcc  | agcgtgcagg  | aagggggcaa  | ggactcctgc  | caggtcagtg  | ttgtctccaa  | 6781 |
|    | ccacagcccc  | atccccatcc  | ccagcttcaa  | tgacatcttt  | accgacatcc  | acaatttcat  | 6841 |
|    | ccccaaacctc | aacccggccg  | ccccgtcaac  | tcccaatcca  | tcttccccc   | tgttcccggt  | 6901 |
|    | tctgacccca  | gcacaaaactt | cagcttccatc | cccggttcca  | caccatttcc  | agctccaacc  | 6961 |
| 45 | atccccaaac  | tcgttttgc   | gcctaacc    | atcccttata  | ccacccatata | tcccaatctt  | 7021 |
|    | atcgctaaac  | ctatcaccc   | tcccagtgc   | tacccatct   | gtctcgcc    | cactcctaag  | 7081 |
|    | cacccgtcccc | acccctcc    | tggctaaac   | cacatgtcaac | gttttctctg  | accgacatcc  | 7141 |
|    | tctctccccc  | tgcccaggt   | gactcgggg   | ggcccttgcgt | ctgtaaccag  | tctcttcaag  | 7201 |
| 50 | gcattatctc  | ctggggccag  | gatccgtgt   | cgatcacc    | aaagcctgtt  | gtctcacacg  | 7261 |
|    | aagtctgcaa  | atatgtggac  | tggatccagg  | agacgtatgg  | gaacaatttag | actggacc    | 7321 |
|    | cccacccacag | cccatcaccc  | tccatttcca  | cttgggtttt  | gttctcttgc  | cactctgtt   | 7381 |
|    | ataagaaacc  | ctaagccaa   | accctctacg  | aacatctttt  | gggcctctg   | gactacagg   | 7441 |
|    | gatgtgtca   | cttaataatc  | aacctgggt   | tgcataatcg  | tgagacctgg  | attcaattt   | 7501 |
| 55 | tgccttgaaa  | tattgtgact  | ctgggaatga  | caacacctgg  | tttgcctct   | gtttagatccc | 7561 |
|    | cagccccaaa  | gacagctc    | ggccatata   | caaggttca   | ataaaatattt | gtctaaatgg  | 7621 |
|    | tgaatctact  | gagtgtttac  | tatgtgtct   | accctgtatcc | aatggctttt  | attttatttt  | 7681 |
|    | attttttgcac | agagtctc    | tctgtc      | ccatgtggat  | acagtgggtc  | tatctctgt   | 7741 |
|    | cactgcaacc  | tccacccct   | gggttcaacg  | aatttccctg  | cctcagcc    | ctgaatagct  | 7801 |
|    | gggattacag  | gtgcctacca  | ccacatccgg  | ctaatttttgc | tattttttag  | tagagatggg  | 7861 |
|    | gcttcaccat  | gttggccagg  | ctgggtctcg  | actctgtacc  | tcatgtatc   | tgccctccct  | 7921 |
|    | ggcctcccaa  | actccctgg   | ttacagacgt  | gaggccacccg | gccccccccc  | ctttcattta  | 7981 |
|    | ttaattaaaa  | gaaattaaat  | taattaaat   | atttaggaga  | cagtcttgc   | ctgttgc     | 8041 |
|    | ggtggaggt   | cgtaaacaat  | cacagtcac   | ggcaatctca  | atcccttgcgg | gtcaagtgt   | 8101 |
|    | tgcctccct   | cagcccccac  | agttagtggg  | actacaggca  | catgccccca  | agccccacta  | 8161 |
| 55 | atttttgtat  | ttttctgt    | gacagaggtc  | tcatgtatgtt | ggccggcgtt  | gtctcaaact  | 8221 |
|    | cctgggctca  | agcagtctgt  | cctccctc    | ctccaaaatgt | gttggagat   | caggcatgag  | 8281 |
|    | tcgctgtgc   | tggcctccaa  | gca         | atgtatcaac  | ttaaatcctca | caaaaccctg  | 8341 |
|    | tgaggtcggt  | actgttttca  | tac         | tatgttgc    | aaacagacac  | agagaagcaa  | 8401 |
|    | agtcaacttgc | tcacagtca   | gtggcttagga | gagcaaggat  | ctgaagcaag  | gcgatctt    | 8461 |

aattaccaag tcatgttccct ggagtaaggc tctgtttgtt tccttcctg taaaatgctg 8521  
catgaaaaag tataacacag taagtaaaga agtcagttag cctgcacata ctaagaccta 8581  
accaaaggag ctattgttt ttctccaact tccatgatag gtaatttagat agtggagacc 8641  
5 tctgctggcc aatatggtag ccactaaccg cagctggctc ttccaattaa aattacataa 8701  
agccagaaaat gtaactcctc tgctcactt gtttatatctc caaggctgga tagccacatg 8761  
tgactgggtg tgctggatt agctagtgcata tataaaacat cactgcagaa agttcagctg 8821  
agcagacactg agtttagatgg cctctgaaga ggatgtcccc cggagagaat ccagaactca 8881  
ggatctttttt tttttttttt ctttgcaca gagtcttgct ctgtcaccca ggctggagtg 8941  
10 cagtggcggtg atctcggtc actgcaactt ctgcctcccc ggttcaagca attctcctgc 9001  
ctcagcctcc ctatgtactg ggactacagg cctgtccaa catccccagc taatttttgt 9061  
gtcttttag tagagatggg gtttcaactat gttggccagg ctggctcga actcctgacc