WEINTRAUB SPEECH SEPARATION SYSTEM

Figure 1: Block Diagram of Weintraub Speech Separation System

x[n] - Input Noisy Speech Signal

y[n] - Enhanced Speech Signal

C - Number of Channels

 $h_i[n]$ - Impulse response of the Gammatone Filter; $1 \leq i \leq C$

Speech Analysis

$$\begin{split} g_i[n] &= x[n] * h_i[n] \\ &= \sum\nolimits_{m=0}^{\infty} x[m]. \, h_i[n\text{-}m] \end{split}$$

where $h_i[n] = An^{N-1} \exp(-2\pi b_i n) \cos(2\pi f_i n + \emptyset) u[n];$

A - amplitude,

Ø - phase,

N - filter order,

 f_{i} - center frequency of the i^{th} filter,

 b_i - bandwidth of the i^{th} filter.

Binary T-F Mask Computation

Speech Energy : $SE_{i,j} = \sum_{m=jR}^{jR+L-1} (gS_i[m])^2$

Noise Energy : $NE_{i,i,j} = \sum_{m=jR}^{jR+L-1} (gN_i[m])^2$

where $SE_{i,j}$ - energy of the speech signal in i^{th} channel, j^{th} frame

NE_{i,j} - energy of the noise signal in ith channel, jth frame

gSi - filtered response of speech signal in ith channel

gN_i - filtered response of noise signal in ith channel

L - Frame length

R - Window shift (L/2)

The T-F Binary Mask is defined as

$$M(i,j) = \begin{bmatrix} 1 & \text{if } SE_{i,j} > NE_{i,j} \\ 0 & \text{otherwise} \end{bmatrix}$$

Speech Synthesis

$$\begin{split} k_i[n] &= f_i[n] * h_i[n] \; ; \; \text{where} \; f_i[n] = g_i[\text{-}n] \\ &= \sum\nolimits_{m=0}^{\infty} f_i[m] \; h_i[\text{n-m}] \end{split}$$

$$\begin{aligned} s_{i,j}[m] &= \sum_{m=jR}^{jR+L-1} t_i[m] \; p_{i,j}[jR-m] \; \text{where} \; t_i[n] = k_i[-n] \\ \text{and} \; p_{i,j} &= \begin{bmatrix} w[n] & \text{if} & M(i,j) = 1 \\ 0 & \text{otherwise} \end{bmatrix} \end{aligned}$$

w[n] is the sliding cosine window defined as,

$$w[n] = \begin{cases} 1 + \cos((2\pi(n-1)/L - \pi)/2 & 0 \le n \le L-1 \\ 0 & \text{otherwise} \end{cases}$$
 and finally,
$$y[n] = \sum_{i=1}^{C} s_i[n]$$

PROPOSED SPEECH SEPARATION SYSTEM

Figure 2: Block Diagram of Proposed Speech Separation System

x[n] - Input Noisy Speech Signal

y[n] - Enhanced Speech Signal

C - Number of Channels

 $h_i[n]$ - Impulse response of the Gammatone Filter; $1 \leq i \leq C$

Speech Analysis

$$g_i[n] = x[n] * h_i[n]$$

where $h_i[n] = An^{N-1} \exp(-2\pi b_i n) \cos(2\pi f_i n + \emptyset) u[n];$

A - amplitude,

Ø - phase,

N - filter order,

fi - center frequency of the ith filter,

b_i - bandwidth of the ith filter.

$$\begin{split} g_i[n] &= x[n] * h_i[n] \\ &= \sum\nolimits_{m=0}^{\infty} x[m] \; h_i[n\text{-}m] \end{split}$$

Binary T-F Mask Computation

Speech Energy : $SE_{i,j} = \sum_{m=jR}^{jR+L-1} (gS_i[m])^2$

Noise Energy : $NE_{i,i,j} = \sum_{m=iR}^{jR+L-1} (gN_i[m])^2$

where $SE_{i,j}$ - energy of the speech signal in ith channel, jth frame

NE_{i,j} - energy of the noise signal in ith channel, jth frame

gS_i - filtered response of speech signal in ith channel

gN_i - filtered response of noise signal in ith channel

L - Frame length

R - Window shift (L/2)

The T-F Binary Mask is defined as

$$M(i,j) = \begin{cases} 1 & \text{if } SE_{i,j} > NE_{i,j} \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{split} & \frac{\textbf{T-F Mask based Noise Suppression}}{s_{i,j}[m] = \sum_{m=jR}^{jR+L-1} g_i[m] \ p_{i,j}[jR-m] \ where \ p_{i,j} = \int_{0}^{w[n]} \inf_{if} \ M(i,j) = 1} \\ & 0 \quad \text{if} \quad M(i,j) = 0 \end{split}$$

Here w[n] is the sliding synthesis window (cosine window)

$$w[n] = \begin{bmatrix} 1 + \cos(2\pi(n-1)/L - \pi)/2 & 0 \le n \le L-1 \\ 0 & \text{otherwise} \end{bmatrix}$$

Speech Synthesis

$$\begin{split} k_i[n] &= f_i[n] * h_i[n] \\ &= \sum\nolimits_{m=0}^{\infty} f_i[m] \; h_i[n\text{-}m]; \text{ where } f_i[n] = s_i[\text{-}n] \end{split}$$

$$t_i[n] = k_i[-n]$$

and finally,

$$y[n] = \sum_{i=1}^{C} t_i[n]$$