# Tensor Field Networks

• • •

Chris Dryden, Peng Cheng

## **Point Cloud Networks**



### **Chemical Point Cloud**



### Existing CNNs: Translation Equivariance







Features



Windowed view

### Harmonic Networks

#### Spatial Domain



#### Frequency Domain



## Harmonic Networks - Rotation Equivariance

Frequency Domain



## Harmonic Networks - Spherical

#### Frequency Domain



|   |   |   |    | _ |
|---|---|---|----|---|
| 1 | 1 | 1 | -1 |   |
| 1 | 1 | 1 | 0  |   |
| 1 | 1 | 1 | 1  |   |

| 1223 | - 27 | 8 |
|------|------|---|
| 1    | 2    | 1 |
| 1    | 2    | 1 |
| _    |      |   |

#### Tensor-Field Model



## **Current Applications**

Scalable to size of a protein





WDR5

#### **Discussion Points -**

- Paper did not go in depth about the information stored in the points
  - More applications are possible. Would the chemical dataset work with chemical properties.
- Can it be applied to more traditional 3d-image sets?
  - Eg: Autonomous Driving
- Can we incorporate in this architecture other types of symmetries?
  - Ex: Mirror Symmetries, R-L Enantiomers
- Can this be applied to Neural-ODE's?