CMPS/MATH 2170 Discrete Mathematics – Fall 23

10/3/23

Midterm

Name:

- Put your name on the exam.
- This exam is closed-book, closed-notes, and closed-calculators. You are allowed to use a helper sheet (one single-sided letter page).
- If you have a question, stay seated and raise your hand.
- Please try to write legibly if we cannot read it you may not get credit.
- **Do not waste time** if you cannot solve a question immediately, skip it and return to it later.

1) Logic	15
2) Rules of Inference	10
3) Functions	15
4) Proof By Contradiction	15
5) Counterexample	5
6) Sets	10
7) Functional Completeness	10
8) Summations	10
Bonus	10
Total	100

page points: 10 total points: 10

1 Logic (15 points)

1. Equivalence (5 points)

Let p and q be propositions. Use a truth table to determine whether $(p \lor q) \to p$ is equivalent to $q \to p$.

$\mid p$	q	$p \lor q$	$(p\vee q)\to p$	$q \rightarrow p$
Τ	Т	Т	${ m T}$	Т
Т	F	T	${ m T}$	Τ
F	$\mid T \mid$	Γ	${ m F}$	F
F	F	F	${ m T}$	Γ

Are $(p \lor q) \to p$ and $q \to p$ equivalent? Justify your answer.

Answer:

Yes. The two columns corresponding to these propositions are identical in the table above.

2. Negation (5 points)

Simplify the following Boolean formula such that it contains no negation operators \neg , but possibly \leq symbols.

$$\neg ((\exists p \in \mathbb{N}) \ (\forall q \in \mathbb{Z}) : \ p > q)$$

(Hint: Use $a \le b \equiv \neg(a > b)$.)

Answer:

$$(\forall p \in \mathbb{N})(\exists q \in \mathbb{Z}) : p \leq q$$

3. Translation (5 points)

Express the following sentence as a logic formula with quantifiers:

page points: 15 total points: 10

"For every positive integer, there is a different integer with the same square."

Answer:

$$(\forall n \in \mathbb{N} - \{0\})(\exists m \in \mathbb{Z}) : m \neq n \land m^2 = n^2$$

page points: 15 total points: 25

2 Rules of Inference (10 points)

Consider the following collection of premises:

Use rules of inference to infer "It is night." from these premises. You may use the rules in Zybooks table 3.8 and table 1.5.1.

	Proposition	Symbol	
	Pracula is out	D	
	It is raining	R	
The	full moon shines	M	
	It is night	N	

Statement number	Statement	Justification
1	$D \to (R \vee N \vee M)$	Premise
2	D	Premise
3	$\neg R$	Premise
4	$M \to N$	Premise
5	$R \vee N \vee M$	Modus Ponens 1,2
6	$R \vee (N \vee M)$	Associative law 5
7	$N \vee M$	Disjunctive Syllogism, 3,6
8	$\neg M \lor N$	Conditional identity 4
9	$M \vee N$	Commutative identity 7
10	$N \vee N$	Resolution 8,9
11	N	Idempotent law 10

page points: 10 total points: 35

[&]quot;If Dracula is out, then it is raining or it is night or the full moon shines."

[&]quot;Dracula is out."

[&]quot;It is not raining."

[&]quot;Whenever the full moon shines, it is night."

3 Functions (15 points)

Let $f(x) = 7x - \frac{1}{2}$.

1. (10 points) Give a domain and a codomain for which f is bijective. Use the definitions of surjective, injective, and bijective to prove that f is bijective.

(Solution 1) Let $A = B = \emptyset$. Then $f : A \to B$ is a bijection. Let us show that it is an injection. By definition, we must show that $\forall x, y \in A, f(x) = f(y) \implies x = y$. This holds trivially, since there are no $x, y \in A$.

Now let us show that f is a surjection. By definition, we must show that $(\forall y \in B)(\exists x \in A) f(x) = y$. Again, since $B = \emptyset$, this is true trivially.

(Alternatively, one could pick $A = \{0\}, B = \{-\frac{1}{2}\}.$)

(Solution 2) Let $A = B = \mathbb{Q}$. The $f: A \to B$ is a bijection. First, we show that f is an injection. Let $x, y \in A$. Assume that f(x) = f(y). Then $fx - \frac{1}{2} = 7y - \frac{1}{2}$, so 7x = 7y, and after dividing by 7, we find x = y. This shows that f is injective.

To show that f is a surjection, let $z \in B$. Let $w = \frac{1}{7}(z + \frac{1}{2})$. Because \mathbb{Q} is closed under addition and multiplication, $w \in \mathbb{Q} = A$. We defined w so that it satisfies $f(w) = 7w - \frac{1}{2} = 7(\frac{1}{7}(z + \frac{1}{2})) - \frac{1}{2} = z$. Since z was arbitrary, this shows (by universal generalization) that $(\forall z \in B)(\exists w \in A)f(w) = z$, which is the definition of f being surjective.

2. (5 points) Give a domain and a codomain for which f is injective but not surjective. Justify your answer shortly.

(Solution 1)Let the domain be $A = \emptyset$ and let the codomain be $B = \mathbb{R}$. Then f is injective but not surjective. f is injective trivially, because $(\forall x, y \in \emptyset) : f(x) = f(y)$.

The function f is not surjective because, for example, the element $10 \in \mathbb{R}$ has no preimage under f.

(Solution 2) Let $A = \mathbb{Q}$ and let $B = \mathbb{R}$. The function f is injective because $f: A \to \mathbb{Q}$ is injective by problem 1 (solution 2), and because $\mathbb{Q} \subset \mathbb{R}$. The function f cannot be surjective because $|\mathbb{Q}| < |\mathbb{R}|$.

page points: 15 total points: 50

4 Proof By Contradiction (15 points)

Consider the theorem below.

Theorem: If x is irrational then $\frac{x}{2}$ is irrational.

Prove the theorem using a proof by contradiction.

Assume for the sake of contradiction that $x \in \mathbb{R} - \mathbb{Q}$ yet $\frac{x}{2} \in \mathbb{Q}$. Then $\exists a, b \in \mathbb{Z}$ with $b \neq 0$ such that $\frac{x}{2} = \frac{a}{b}$. Multiplying both sides of this equation by 2 results in the equation $x = \frac{2a}{b}$. Since $2a \in \mathbb{Z}$ and $b \neq 0$, we have shown that $x \in \mathbb{Q}$, but this contradicts that $x \in \mathbb{R} - \mathbb{Q}$.

From the contradiction, we learn that our initial assumption was wrong, so there is no $x \in \mathbb{R} - \mathbb{Q}$ such that $\frac{x}{2} \in \mathbb{Q}$. In other words, if x is irrational, then $\frac{x}{2}$ is irrational.

5 Counterexample (5 points)

Disprove the following statement:

$$(\forall x, y \in \mathbb{Q}) : x^2 + y^2 + xy \ge x + y$$

Set $x = y = \frac{1}{2}$. Then we find that

$$\frac{3}{4} = (\frac{1}{2})^2 + (\frac{1}{2})^2 + (\frac{1}{2} + \frac{1}{2}) < \frac{1}{2} + \frac{1}{2} = 1,$$

and this is ca counterexample to the claim.

page points: 20 total points: 70

6 Sets (10 points)

Let $A = \{1, 3, 5, 7\}$, $B = \{1, 2, 3, 4\}$ and $C = \{1, 2, 3, 4, 5, 6, 7\}$. Please fill in the blanks below. (2 points each).

$$A - C = \emptyset$$

$$B \cap C = \{1, 2, 3, 4\}$$

$$A \cap B = \{1, 3\}$$

$$|A \times B| = 16$$

$$|2^{A \cap B}| = 4$$

(Hint: In order to find $|2^{A\cap B}|$ and $|A\times B|$ you do not need to specify the power set.)

7 Functional Completeness (10 points)

Recall that the nor operator \downarrow is defined by $p \downarrow q = \neg (p \lor q)$. Show that \downarrow is functionally complete by expressing each operation in the set $\{\land, \neg\}$ in terms of \downarrow .

Let p and q be propositions. Then $\neg p = \neg (p \lor p) = p \downarrow p$. This expresses \neg in terms of \downarrow .

Since $p \downarrow q = \neg (p \lor q) = \neg p \land \neg q$, it follows that $(\neg p) \downarrow (\neg q) = \neg p \land \neg q$. Using that $\neg p = p \downarrow p$ and $\neg q = q \downarrow q$, we find that $p \land q = (p \downarrow p) \downarrow (q \downarrow q)$. This expresses \land in terms of \downarrow .

page points: 20 total points: 90

8 Summations (10 points)

1. (1 point) Express $5 + 15 + 25 + 35 + 45 + \cdots + 95 + 105$ in summation notation.

$$\sum_{k=0}^{10} 5 + 10k$$

2. (8 points) Calculate the value of the expression from part 1.

$$\sum_{k=0}^{10} 5 + 10k = \sum_{k=0}^{10} 5 + 10 \sum_{k=0}^{10} k = 55 + 10 \frac{10 \cdot 11}{2} = 55 + 550 = 605$$

3. (1 point) How many terms are in the series? (For example, the series 1+2+3 has 3 terms.)

There are 11 terms.