stattrek.com

Statistics Formulas

This web page presents statistics formulas described in the Stat Trek tutorials. Each formula links to a web page that explains how to use the formula.

Parameters

- Population mean = $\mu = (\sum X_i)/N$
- Population standard deviation = σ = sqrt [Σ (X_i μ)² / N]
- Population variance = $\sigma^2 = \Sigma (X_i \mu)^2 / N$
- Variance of population proportion = σ_P^2 = PQ / n
- Standardized score = Z = (X μ) / σ
- Population correlation coefficient = $\rho = [1/N] * \Sigma \{ [(X_i \mu_X)/\sigma_X] * [(Y_i \mu_Y)/\sigma_y] \}$

Statistics

Unless otherwise noted, these formulas assume <u>simple random</u> <u>sampling</u>.

- Sample mean = $x = (\sum x_i)/n$
- Sample standard deviation = s = sqrt [Σ (x_i x)² / (n 1)]
- Sample variance = $s^2 = \sum (x_i x)^2 / (n 1)$
- Variance of sample proportion = $s_p^2 = pq / (n 1)$
- Pooled sample proportion = $p = (p_1 * n_1 + p_2 * n_2) / (n_1 + n_2)$
- Pooled sample standard deviation = s_p = $sqrt[(n_1 1) * s_1^2 + (n_2 1) * s_2^2]/(n_1 + n_2 2)]$
- Sample correlation coefficient = $r = [1/(n-1)] * \Sigma \{ [(x_i x)/s_x] * [(y_i y)/s_y] \}$

Correlation

- Pearson product-moment correlation = $r = \Sigma (xy) / sqrt [(\Sigma x^2)^* (\Sigma y^2)]$
- Linear correlation (sample data) = $r = [1/(n-1)] * \Sigma \{ [(x_i x)/s_x] * [(y_i y)/s_y] \}$
- Linear correlation (population data) = $\rho = [1/N] * \Sigma \{ [(X_i \mu_X) / \sigma_X] * [(Y_i \mu_Y) / \sigma_y] \}$

Simple Linear Regression

• Simple linear regression line: $\hat{y} = b_0 + b_1x$

- Regression coefficient = $b_1 = \sum [(x_i x)(y_i y)] / \sum [(x_i x)^2]$
- Regression slope intercept = b₀ = y b₁ * x
- Regression coefficient = b₁ = r * (s_y / s_x)
- Standard error of regression slope = s_{b_1} = sqrt [$\Sigma(y_i \hat{y}_i)^2 / (n 2)$] / sqrt [$\Sigma(x_i x)^2$]

Counting

- n factorial: n! = n * (n-1) * (n 2) * . . . * 3 * 2 * 1. By convention,
 0! = 1.
- Permutations of n things, taken r at a time: _nP_r = n! / (n r)!
- Combinations of *n* things, taken *r* at a time: ${}_{n}C_{r} = n! / r!(n r)! = {}_{n}P_{r} / r!$

Probability

- Rule of addition: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Rule of multiplication: P(A ∩ B) = P(A) P(B|A)
- Rule of subtraction: P(A') = 1 P(A)

Random Variables

In the following formulas, *X* and *Y* are random variables, and *a* and *b* are constants.

- Expected value of X = E(X) = μ_x = Σ [x_i * $P(x_i)$]
- Variance of X = Var(X) = σ^2 = $\Sigma [x_i E(x)]^2 * P(x_i) = \Sigma [x_i \mu_x]^2$ * $P(x_i)$
- Normal random variable = z-score = $z = (X \mu)/\sigma$
- Chi-square statistic = $X^2 = [(n-1)*s^2]/\sigma^2$
- f statistic = $f = [s_1^2/\sigma_1^2]/[s_2^2/\sigma_2^2]$
- Expected value of sum of random variables = E(X + Y) = E(X) +
 E(Y)
- Expected value of difference between random variables = E(X Y) = E(X) E(Y)
- Variance of the sum of independent random variables = Var(X + Y) = Var(X) + Var(Y)
- Variance of the difference between independent random
 variables = Var(X Y) = Var(X) + Var(Y)

Sampling Distributions

- Mean of sampling distribution of the mean = $\mu_x = \mu$
- Mean of sampling distribution of the proportion = $\mu_p = P$
- Standard deviation of proportion = σ_p = sqrt[P * (1 P)/n] =

sqrt(PQ/n)

- Standard deviation of the mean = $\sigma_x = \sigma/\text{sqrt}(n)$
- Standard deviation of difference of sample means = σ_d = sqrt[$(\sigma_1^2 / n_1) + (\sigma_2^2 / n_2)$]
- Standard deviation of difference of sample proportions = σ_d = $\frac{\sqrt{1 P_1}}{n_1} + \frac{P_2(1 P_2)}{n_2}$

Standard Error

- Standard error of proportion = SE_p = s_p = sqrt[p * (1 p)/n] = sqrt(pq / n)
- Standard error of difference for proportions = SE_p = s_p = sqrt{ p
 * (1-p)*[(1/n₁) + (1/n₂)]}
- Standard error of the mean = SE_x = s_x = s/sqrt(n)
- Standard error of difference of sample means = $SE_d = s_d = sqrt[$ $(s_1^2/n_1) + (s_2^2/n_2)]$
- Standard error of difference of paired sample means = $SE_d = s_d$ = { $sqrt [(\Sigma(d_i - d)^2 / (n - 1)] } / <math>sqrt(n)$
- Pooled sample standard error = s_{pooled} = $sqrt [(n_1 1) * s_1^2 + (n_2 1) * s_2^2] / (n_1 + n_2 2)]$
- Standard error of difference of sample proportions = s_d = sqrt{

$[p_1(1 - p_1) / n_1] + [p_2(1 - p_2) / n_2]$

Discrete Probability Distributions

- Binomial formula: $P(X = x) = b(x; n, P) = {}_{n}C_{x} * P^{x} * (1 P)^{n x} = {}_{n}C_{x} * P^{x} * Q^{n x}$
- Mean of binomial distribution = $\mu_X = n * P$
- Variance of binomial distribution = $\sigma_x^2 = n * P * (1 P)$
- Negative Binomial formula: $P(X = x) = b^*(x; r, P) = {}_{x-1}C_{r-1} * P^r * (1 P)^{X r}$
- Mean of negative binomial distribution = $\mu_x = rQ / P$
- Variance of negative binomial distribution = $\sigma_x^2 = r * Q / P^2$
- Geometric formula: P(X = x) = g(x; P) = P * Q^{x 1}
- Mean of geometric distribution = $\mu_x = Q / P$
- Variance of geometric distribution = $\sigma_x^2 = Q / P^2$
- Hypergeometric formula: $P(X = x) = h(x; N, n, k) = [_kC_x][_{N-k}C_{n-x}]/[_NC_n]$
- Mean of hypergeometric distribution = $\mu_X = n * k / N$
- Variance of hypergeometric distribution = σ_x² = n * k * (N k) *

$$(N-n)/[N^2*(N-1)]$$

- Poisson formula: $P(x; \mu) = (e^{-\mu}) (\mu^{x}) / x!$
- Mean of Poisson distribution = $\mu_x = \mu$
- Variance of Poisson distribution = $\sigma_x^2 = \mu$
- Multinomial formula: $P = [n! / (n_1! * n_2! * ... n_k!)] * (p_1^{n_1} * p_2^{n_2} * ... * p_k^{n_k})$

Linear Transformations

For the following formulas, assume that Y is a <u>linear transformation</u> of the random variable X, defined by the equation: Y = aX + b.

- Mean of a linear transformation = E(Y) = Y = aX + b.
- Variance of a linear transformation = Var(Y) = a² * Var(X).
- Standardized score = $z = (x \mu_x) / \sigma_x$.
- t statistic = t = $(x \mu_x) / [s/sqrt(n)]$.

Estimation

- Confidence interval: Sample statistic + Critical value * Standard error of statistic
- Margin of error = (Critical value) * (Standard deviation of statistic)

• Margin of error = (Critical value) * (Standard error of statistic)

Hypothesis Testing

- Standardized test statistic = (Statistic Parameter) / (Standard deviation of statistic)
- One-sample z-test for proportions: z-score = z = (p P₀) / sqrt(p
 * q / n)
- Two-sample z-test for proportions: z-score = z = z = [(p₁ p₂) d] / SE
- One-sample t-test for means: t statistic = $t = (x \mu) / SE$
- Two-sample t-test for means: t statistic = t = [(x₁ x₂) d] / SE
- Matched-sample t-test for means: t statistic = t = [(x₁ x₂) D]/
 SE = (d D) / SE
- Chi-square test statistic = X² = Σ[(Observed Expected)² / Expected]

Degrees of Freedom

The correct formula for degrees of freedom (DF) depends on the situation (the nature of the test statistic, the number of samples, underlying assumptions, etc.).

One-sample t-test: DF = n - 1

- Two-sample t-test: DF = $(s_1^2/n_1 + s_2^2/n_2)^2 / \{ [(s_1^2/n_1)^2/(n_1 1)] + [(s_2^2/n_2)^2/(n_2 1)] \}$
- Two-sample t-test, pooled standard error: DF = n₁ + n₂ 2
- Simple linear regression, test slope: DF = n 2
- Chi-square goodness of fit test: DF = k 1
- Chi-square test for homogeneity: DF = (r 1) * (c 1)
- Chi-square test for independence: DF = (r 1) * (c 1)

Sample Size

Below, the first two formulas find the smallest sample sizes required to achieve a fixed margin of error, using simple random sampling. The third formula assigns sample to strata, based on a proportionate design. The fourth formula, Neyman allocation, uses stratified sampling to minimize variance, given a fixed sample size. And the last formula, optimum allocation, uses stratified sampling to minimize variance, given a fixed budget.

- Mean (simple random sampling): $n = \{z^2 * \sigma^2 * [N/(N-1)]\}/\{ME^2 + [z^2 * \sigma^2/(N-1)]\}$
- Proportion (simple random sampling): n = [(z²*p*q) + ME²]
 /[ME² + z²*p*q/N]
- Proportionate stratified sampling: n_h = (N_h / N) * n

- Neyman allocation (stratified sampling): $n_h = n * (N_h * \sigma_h) / [\Sigma (N_i * \sigma_i)]$
- Optimum allocation (stratified sampling):
 n_h = n * [(N_h * σ_h) / sqrt(c_h)] / [Σ (N_i * σ_i) / sqrt(c_i)]