Oleksii Sokoliuk

 \bigcirc GitHub | $\boxed{\mathbb{N}}$ iNSPIRE | $\boxed{\hspace{0.1cm}}$ oleksii.sokoliuk@mao.kiev.ua | $\boxed{\hspace{0.1cm}}$ 0000-0003-4503-7272

RESEARCH INTERESTS

I'm a cosmologist, mainly interested in the complicated, high resolution simulations of the Large Scale Structure of the Universe within the non-standard theories of modified gravitation or dark matter. As well, I'm trying to alleviate H_0 , σ_8 and other cosmological tensions using MG theories, find new physics in higher order weak lensing statistics.

WORK EXPERIENCE

Visiting Student - KICC, University of Cambridge Aug - Seg	ot 2024
--	---------

- Supervisor: Prof. John Webb, Project: Direct detection of the cosmic web at z = 2.48

Research Scholar - Main Astronomical Observatory, NAS of Ukraine 2021 - Present

Laboratory for the Large Scale Structure of the Universe

Research Scholar - Taras Shevchenko National University of Kyiv 2019 - Present

Kyiv Astronomical Observatory, Lisnyky Observational Station

EDUCATION

BSc (Honours) Physics - University of Aberdeen, UK

Sept 2023 - Jun 2027

- Supervisor: Prof. Charles Wang

Talks & Poster Presentations

[1] Astronomy Group, University of St. Andrews	1 Apr 2025
Lunchtime Talks (planning to attend)	(invited talk)
[2] Mullard Space Science Laboratory, University College London	23 Jan 2025
UCL Astrophysics seminar	(invited talk)
[3] GRANDMA collaboration (a part of LIGO/VIRGO) Seminar/Telecon	05 Dec 2024 (invited talk)

[4] Institute for Computational Cosmology, Durham University
Friday Lunchtime Astrophysics Talks (FLAT)

14 Jun 2024
(invited talk)

[5] Kobe International Conference Center, Kobe Port Island
CCP2023 - 34th IUPAP Conference on Computational Physics

4 Aug - 8 Aug 2023
(contributed talk)

[6] Faculdade de Ciências da Universidade de Lisboa
CosmoVerse@Lisbon, First Annual Conference

30 May - 1 Jun 2023
(poster)

[7] Faculty of Physics, Odesa I.I. Mechnikov National University
XXI Gamow International Astronomical Conference-School

16 Aug - 20 Aug 2021
(contributed talk)

[8] Faculty of Physics, Taras Shevchenko National University of Kyiv 26 Apr - 30 Apr 2021 27-th Young Scientists' Conference on Astronomy and Space Physics (contributed talk)

Selected Publications

As of Jan 2025, 22 papers were published in international, peer reviewed journals with 13 papers published as a first author, 2 as a second author. In total, those papers have > 270 citations and h-index of 10

according to NASA ads and > 250 citations, h-index of 10 according to Web of Science. Here are some selected publications:

- [1] Fabiano F. Santos (including <u>Oleksii Sokoliuk</u>) et al. "Holographic boundary conformal field theory within Horndeski gravity". In: *JHEP* 12 (2025), p. 217.
- [2] Oleksii Sokoliuk et al. "AdS Black Hole Thermodynamics and Microstructures from f(Q) Gravitation". In: Fortschritte der Physik 72.1 (2024), p. 2300043.
- [3] Sanjay Mandal, Oleksii Sokoliuk, et al. " H_0 tension in torsion-based modified gravity". In: Nucl. Phys. B 993 (2023), p. 116285.
- [4] Oleksii Sokoliuk, Simran Arora, et al. "On the impact of f(Q) gravity on the large scale structure". In: Mon. Not. Roy. Astron. Soc. 522.1 (2023), pp. 252–267.
- [5] <u>Oleksii Sokoliuk</u>, Alexander Baransky, and P. K. Sahoo. "Compact stars admitting Finch-Skea symmetry in the presence of various matter fields". In: *Chin. Phys. C* 47.1 (2023), p. 015104.
- [6] Fabiano F. Santos, <u>Oleksii Sokoliuk</u>, and Alexander Baransky. "Holographic Complexity of Braneworld in Horndeski Gravity". In: *Fortschritte der Physik* 71.2-3 (2023), p. 2200141.
- [7] Fabiano F. Santos (including <u>Oleksii Sokoliuk</u>) et al. "AdS/BCFT Correspondence and Horndeski Gravity in the Presence of Gauge Fields: Holographic Paramagnetism/ Ferromagnetism Phase Transition". In: *Fortschritte der Physik* 71.12 (2023), p. 2300008.
- [8] Oleksii Sokoliuk and Alexander Baransky. "Cosmological constraints on bulk viscous f(Q, T) gravity". In: Astron. Nachr. 343.5 (2022), e220003.
- [9] <u>Oleksii Sokoliuk</u>, Alexander Baransky, Andrew Khorolskiy, et al. "An X-Ray and Optical Study of the UGSU-Type Dwarf Nova Gaia18awg". In: *Journal of Physical Studies* 26.3 (Sept. 2022), pp. 3901–3909.
- [10] Oleksii Sokoliuk, Alexander Baransky, and P. K. Sahoo. "Kuchowicz gravastars in the braneworld formalism". In: *Phys. Lett. B* 829 (2022), p. 137048.
- [11] Oleksii Sokoliuk, Alexander Baransky, and P. K. Sahoo. "Probing the existence of the ZTF Casimir wormholes in the framework of f(R) gravity". In: Nucl. Phys. B 980 (2022), p. 115845.
- [12] Oleksii Sokoliuk, Alexander Baransky, and Praduymn Kumar Sahoo. "Non-singular T-K axion stars with/without the dynamical bosonic field in the presence of negative Λ term". In: *Phys. Dark Univ.* 35 (2022), p. 100972.
- [13] Oleksii Sokoliuk, Zinnat Hassan, et al. "Traversable wormholes with charge and non-commutative geometry in the f(Q) gravity". In: Annals Phys. 443 (2022), p. 168968.
- [14] Oleksii Sokoliuk, Sanjay Mandal, et al. "Generalised Ellis-Bronnikov wormholes in f(R) gravity". In: Eur. Phys. J. C 82.4 (2022), p. 280.
- [15] Oleksii Sokoliuk, Sneha Pradhan, et al. "Buchdahl quark stars within f(Q) theory". In: Eur. Phys. J. Plus 137.9 (2022), p. 1077.
- [16] <u>Oleksii Sokoliuk</u>, Subhrat Praharaj, et al. "Accretion flows around exotic tidal wormholes I. Raytracing". In: *Astron. Astrophys.* 665 (2022), A139.
- [17] <u>Oleksii Sokoliuk</u> and Alexander Baransky. "On the existence and stability of traversable wormhole solutions in modified theories of gravity". In: *Eur. Phys. J. C* 81.8 (2021), p. 781.

Observations of near-earth objects and comets were published in 14 Minor Planet Electronic Circulars (MPEC \mathfrak{G}) and observations of Gamma Ray Bursts in GRB Coordinates Network (GCN \mathfrak{G}).

Collaborative Papers

Additionally, within several collaborations, I have actively contributed to various publications, engaging in tasks such as observations, data analysis, figure/table creation, and text revision:

- [1] T Hussenot-Desenonges (including <u>Oleksii Sokoliuk</u>) et al. "Multi-band analyses of the bright GRB 230812B and the associated SN2023pel". In: *Mon. Not. Roy. Astron. Soc.* (2024), stae503.
- [2] Jialian Liu (including <u>Oleksii Sokoliuk</u>) et al. "Early-time Observations of SN 2023wrk: A Luminous Type Ia Supernova with Significant Unburned Carbon in the Outer Ejecta". In: *Astrophys. J.* 973.2 (2024), p. 117.
- [3] I. Tosta e Melo (including <u>Oleksii Sokoliuk</u>) et al. "Ready for O4 II: GRANDMA observations of Swift GRBs over eight weeks in spring 2022". In: *Astron. Astrophys.* 682 (2024), A141.
- [4] D. A. Kann (including <u>Oleksii Sokoliuk</u>) et al. "GRANDMA and HXMT Observations of GRB 221009A: The Standard Luminosity Afterglow of a Hyperluminous Gamma-Ray Burst—In Gedenken an David Alexander Kann". In: *Astrophys. J. Lett.* 948.2 (2023), p. L12.
- [5] V. Aivazyan (including <u>Oleksii Sokoliuk</u>) et al. "GRANDMA observations of ZTF/Fink transients during summer 2021". In: *Mon. Not. Roy. Astron. Soc.* 515.4 (2022), pp. 6007–6022.

Conference Proceedings & Other

- [1] Cristina Andrade (including <u>Oleksii Sokoliuk</u>) et al. "GRANDMA Observations of SN 2023wrk, a Luminous Type Ia Supernova with Significant Unburned Carbon in the Outer Ejecta". In: *Research Notes of the AAS* 8.10 (Oct. 2024), p. 273.
- [2] S. Agayeva (including <u>Oleksii Sokoliuk</u>) et al. "The GRANDMA network in preparation for the fourth gravitational-wave observing run". In: *Observatory Operations: Strategies, Processes, and Systems IX* 12186 (Aug. 2022), 121861H.

IN PREPARATION & UNDER REVIEW

- [1] Kenneth M. Lanzetta (including <u>Oleksii Sokoliuk</u>) et al. "Direct Images of the Cosmic Web of Intergalactic and Circumgalactic Gas in the Distant Universe". In: *arXiv* (Dec. 2024).
- [2] Oleksii Sokoliuk. "Probing Physics beyond Λ CDM with JWST data up to $z \sim 17$ ". In: Astron. Astrophys. (2024).
- [3] <u>Oleksii Sokoliuk</u> et al. "The LANCELOT project: Cosmological simulations for Large Scale Structure in the modified theories of gravitation with massive neutrinos". In: *Mon. Not. Roy. Astron. Soc.* (2024).

Peer Review

- ➤ European Physical Journal C (2022)
- ➤ New Astronomy (2022)
- ➤ Foundations of Physics (2022, 2024)
- ➤ Scientific Reports (2023)
- ➤ Annalen der Physik (2023)
- ➤ Indian Journal of Physics (2023)

- ➤ Physics of the Dark Universe (2023 (2))
- ➤ Pramana (2024)

➤ Int. J. Mod. Phys. A (2024)

➤ Physics Letters B (2024)

- 1 Tamana (2024)
- ➤ Annals of Physics (2024 (3))

MEMBERSHIPS

- International Society for Relativistic Quantum Information (ISRQI)
- International Society for Quantum Gravity (ISQG)
- Global Rapid Advanced Network Devoted to the Multi-messenger Addicts (GRANDMA)
- Assembling Galaxies Of Resolved Anatomy (AGORA)
- Insitute of Physics (IoP) Associate Member
- American Astronomical Society (AAS) Undergraduate Student Member

AWARDS & GRANTS

Monetary awards - 8400\$ total:

- ◆ CA21136 ITC Conference Grant for CCP2023 2200\$
- ♦ CA21136 STSM Grant 2200\$
- ♦ CA21136 Conference Grant for CosmoVerse@Lisbon 1000\$
- ♦ CA21136 Conference Grant for CosmoVerse@Krakow 1000\$ (declined due to personal reasons)
- ♦ Scholarship of the President of Ukraine 1000\$
- ♦ MAO NAS travel grant 2×500 \$

Computing time allocations - 0.85M CPUh total:

- ♦ Co-PI: 300k CPUh on IUCAA Pegasus, with Prof. Jiajun Zhang as Co-PI and Prof. P. K. Sahoo as PI
- ♦ Co-PI: ~200k CPUh on Australian NCI Gadi with Subhrat Praharaj as PI
- ♦ Co-PI: ~300k CPUh on IUCAA Pegasus with Prof. P. K. Sahoo as PI
- ♦ Co-PI: ~50k CPUh on OzSTAR with Prof. John Webb as PI

Observational proposals - 21ks total:

- ◆ PI: Target of Opportunity (TOO) observation of Gaia18awg by SWIFT space telescope (ID: 13502, ~3k seconds)
- ◆ PI: Target of Opportunity (TOO) observation of Gaia18awg by XMM-Newton space telescope (ID: 08711910011, ~18k seconds)

Public Outreach

- □ Short article "Is Modified Gravity an Illusion?" for CosmoVerse COST action in a series of articles for general public "Learn about Cosmology"
- ☐ Interview for CosmoVerse COST action in a "Meet our scientists" dissemination activity
- U Volunteer for Astronomy night under "Curiosity in Action" program (funded by STFC)

☐ Demonstrat	passador Scotland, volunteering to promote science to the general public for for the STEM Summer Showcase 2024 at UoA eaker for ~ 250 people of general public at the event "Stargazing in the Botanic Gardens"			
SKILLS				
Languages	Ukrainian (native tongue), Russian (native tongue), English (\sim C2, very fluent)			
Programming Languages	Python (advanced), LATEX(advanced), Mathematica (advanced), MAT-LAB (intermediate), Haskell (intermediate), Futhark/ML (beginner), C/C++ (beginner)			
Software	N-body/SPH/Lattice simulations: Gadget-2/4, ME/MP/MG/Axion-Gadget, SWIFT, zwindstroom, NGenIC, 2LPTic, monofonIC, MUSIC, CosmoLattice Approximate simulations, emulators: COLA, MG-PICOLA, LPICOLA, forge. Post-processing: eht-imaging, UFalcon, DeepSphere, GLAMER, eMaNu, swift-simio, VELOCIRaptor/ROCKSTAR, SAGE/RSAGE/cifog, L-Galaxies.			
	GRMHD, ray-tracing: iharmd3D, athena++, BHAC, RAPTOR, gyoto. Cosmology, MCMC: CAMB/MGCAMB, CLASS/MG-CLASS I/II, reps, pymc3, emcee, Cobaya/MGCobaya. Parallel Computing: MPI, OpenMP, Slurm, worked with Cray/ARM			

PROJECTS

CA21106 - COSMIC WISPers in the Dark Universe

Oct 2022 - Oct 2026

- Working Group 2: WISPs Dark Matter and Cosmology

CA21136 - CosmoVerse

Oct 2022 - Oct 2026

- Working Group 3: Fundamental Physics

Mathematical Modeling in Interdisciplinary Research of Processes and Systems

Based on Intelligent Supercomputer, Grid and Cloud Technologies

Jan 2021 - Jan 2025

- Grant for the Lab of LSS, MAO NAS of Ukraine

DEVELOPED SOFTWARE & SIMULATIONS

RAMA	Code can be used with reps output to find z , l at which N-body simulation coincide with the desired cosmology in the presence of massive neutrinos. Available at RAMA \square .	
MG-SWIFT	Modification of the standard N-body/SPH SWIFT code to include such cosmologies as $f(Q)/f(T)$ gravitation, Palatini- $f(R)$ gravitation with the help of linearly interpolated Hubble parameter and effective gravitational constant, which are updated every step using provided data from tables. Available at MG-SWIFT.	
zwindstroom	With the help of Willem Elbers, modified initial conditions generator monofonIC to include massive neutrinos and non-standard cosmologies simultaneously. Available at MG-monofonic .	
LANCELOT	A suite of 12 high resolution N-body simulations with more than 13.5 billion particles in total as well as 24TB of output. From the simulation snapshots, many quantities such as void/halo catalogues, power spectrum and HMF are being derived. Currently in development.	
Condor	Emulator of non-linear $P(k)$ for Jordan-Brans-Dicke cosmology, based on 200 Comoving Lagrangian Approximation simulations of structure formation with Latin hypercube parameter sampler. Currently in development.	
Anthology of Inflation	A project, aimed to study 27 single-parameter models of inflation using $N=256$ lattice simulations of reheating, primordial power spectrum of curvature perturbations and gravitational waves. Currently in development, some of the code is available via the link ASPIC.	

REFERENCES

NAME POSITION EMPLOYER E-MAIL WEBSITE	Dr. P. K. Sahoo Professor Department of Mathematics BITS Pilani pksahoo @hyderabad.bits-pilani.ac.in www.bits-pilani.ac.in	NAME POSITION EMPLOYER E-MAIL WEBSITE	Dr. Irina Vavilova Professor Lab for Large Scale Structure MAO NASU irivav @mao.kiev.ua www.mao.kiev.ua
NAME POSITION EMPLOYER E-MAIL	Dr. Charles Wang Professor Department of Physics University of Aberdeen c.wang	NAME POSITION EMPLOYER E-MAIL	Dr. Alexander Baransky Senior Scholar Lisnyky Observational Station Kyiv Astronomical Observatory abaransky
Website	@abdn.ac.uk www.abdn.ac.uk	Website	<pre>@ukr.net www.orcid.org</pre>