Robotics

Estimation and Learning with Dan Lee

Week 3. Robotic Mapping

3.2 Occupancy Grid Mapping 3.2.1 Occupancy Grid Map

Occupancy: binary R.V.

```
m_{x,y}: {free, occupied} \rightarrow { 0, 1}
```

```
[Review – Into Probability]
Given some probability space (\Omega, P),
a random variable X: \Omega \to R is a function that maps the sample space to the reals.
```

Occupancy: binary R.V.

$$m_{x,y}$$
: {free, occupied} \rightarrow { 0, 1}

Occupancy grid map

: fine-grained grid map where an occupancy variable associated with each cell

		\mathcal{X}					
		$m_{1,1}$	$m_{1,2}$	$m_{1,3}$			
у				:			
	•					$m_{x,y}$	

- Occupancy grid mapping
 - : A Bayesian filtering to maintain a occupancy grid map.

Measurement

a range sensor

a range sensor

• Measurement $z \sim \{0, 1\}$

Measurement model

$$p(z|m_{x,y})$$

$$p(z=1|m_{x,y}=1)$$
 : True **occupied** measurement

$$p(z=0|m_{x,y}=1)$$
 : False **free** measurement

$$p(z = 1 | m_{x,y} = 0)$$
 : False **occupied** measurement

$$p(z=0|m_{x,y}=0)$$
 : True **free** measurement

• Measurement $z \sim \{0, 1\}$

Measurement model

$$p(z|m_{x,y})$$

[Review – Into Probability] $P(A^{C}|B) = 1 - P(A|B)$

$$p(z = 1|m_{x,y} = 1)$$

$$p(z = 0|m_{x,y} = 1) = 1 - p(z = 1|m_{x,y} = 1)$$

$$p(z = 1|m_{x,y} = 0)$$

$$p(z = 0|m_{x,y} = 0) = 1 - p(z = 1|m_{x,y} = 0)$$

Measurement Model

 $p(z|m_{x,y})$

Posterior Map

Measurement Model

$$p(z|m_{x,y})$$

Prior Map

Posterior
$$p(z|m_{x,y})p(m_{x,y})$$

$$p(m_{x,y}|z) = \frac{p(z|m_{x,y})p(m_{x,y})}{p(z)}$$

Evidence