La Macchina di Turing: linguaggi riconosciuti e linguaggi decisi

Oggi

- Obiettivo: diversi «usi» della MdT
 - MdT riconosce un linguaggio
 - MdT decide un linguaggio
 - MdT calcola una funzione

Una MdT

Una Turing Machine è

- una macchina a stati finiti con un nastro semi-infinito
- ▶ La testina può muoversi in entrambe le direzioni.
- ▶ Può leggere, scrivere in ogni cella del nastro
- Quando la MdT raggiunge uno stato accept/reject allora accetta/rifiuta immediatamente.

Descrizione formale MdT

Una Macchina di Turing è una settupla $(Q, \Sigma, \Gamma, \delta, q_o, q_{accept}, q_{reject})$

- ► Insieme Stati Q
- ► Alfabeto di lavoro Σ (_ ∉ Σ)
- **▶** Γ : Alfabeto del nastro ($_$ \in Γ , Σ \subset Γ)
- ▶ $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: funzione transizione
- $ightharpoonup q_0$: stato iniziale
- q_{accept}: stato accept
- ▶ q_{reject}: stato reject

Una MdT

Il contenuto significativo del nastro è una stringa $w \in \Gamma^*$, con la convenzione che il suo ultimo carattere (se $w \neq \epsilon$) non sia blank.

La stringa w PUO' contenere blank al suo interno.

A volte nel progetto di una MdT si definiscono delle transizioni per scrivere un carattere speciale nella prima cella del nastro, per meglio individuarla.

Stati e Transizioni

MdT all'opera su *aaaabbbb*

Una computazione del DFA

E' sufficiente elencare gli stati: q_0 , q_1 , q_2 , q_3 . E possiamo ricostruire tutta la computazione: il resto lo sappiamo.

Una computazione della MdT

Esempio: la sequenza 1, 2, 2, 2, 3, 4, 1, 5 è una computazione valida del MdT su *ab*?

Devo tenere traccia di altre informazioni per poter verificare i passi.

Configurazione di una MdT

Occorre fare un'istantanea di stato, posizione e contenuto significativo del nastro correnti

 $a_a a a b q_2 b b$

Configurazione di una MdT

La configurazione C = u q v corrisponde a

Configurazione di una MdT

Descrizione concisa della situazione del calcolo di una MdT ad un certo istante, anche detta descrizione istantanea.

Configurazione di una MdT $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$

$$C = u q v$$

- $q \in Q$ è lo stato corrente
- $u v \in \Gamma^*$ è il contenuto significativo del nastro (senza _ finali, se $u v \neq \varepsilon$)
- La testina è posizionata sul primo simbolo di v, se $v \neq \varepsilon$, su altrimenti

Configurazione di una MdT: esempi

Qual è la configurazione corrispondente?

La configurazione corrispondente è: u q v = abaab q bb

Configurazione di una MdT: esempi

Quale situazione rappresenta la configurazione

$$u q v = a_bab q ba$$
?

Contenuto significativo del nastro è $u v = a_bab ba$

Configurazioni particolari

In una configurazione C = u q v, sia u che v possono essere ε

- Se $u = \varepsilon$, C = q v, allora la testina è posizionata sulla prima lettera di v nella prima cella del nastro (contenuto significativo nastro è ε v = v)
- Se $v = \varepsilon$, C = u q, allora la testina è posizionata sulla prima cella della porzione di nastro contenente solo _ (ricorda che uv=u è la porzione significativa del nastro, senza la coda infinita di _)
- u q è equivalente a $u q_{-}$; la parte vuota del nastro è riempita con tutti

Computazione di una MdT: passo verso sinistra

Supponiamo che $C = u a q_i b v$

Se $\delta(q_i, b) = (q_j, c, L)$ quale sarà la successiva configurazione C?

Diremo che C produce C', in simboli $C \rightarrow C'$

Computazione di una MdT: passo verso destra

Supponiamo che $C = u a q_i b v$

Se $\delta(q_i, b) = (q_j, c, R)$ quale sarà la successiva configurazione C?

Diremo che C produce C', in simboli $C \rightarrow C'$

Casi particolari

La definizione generale è più complessa perché bisogna considerare anche i casi particolari (C = qv, C = uq con u, v eventualmente uguali a ϵ).

Ad esempio $q_i bv$ produce $q_j cv$ se $\delta(q_i, b) = (q_j, c, L)$.

 q_ibv produce cq_jv se $\delta(q_i,b)=(q_j,c,R)$.

Passo di computazione

Siano C_1 , C_2 due configurazioni di una MdT M.

Se C_1 produce C_2 , scriveremo

$$C_1 \rightarrow C_2$$

La trasformazione \rightarrow di C_1 in C_2 prende il nome di **passo di computazione**.

Corrisponde a un'applicazione della funzione di transizione di M.

Esempio

$$\delta(q_0,0) = (q_0,0,R), \quad \delta(q_0,1) = (q_0,1,R),$$
 $\delta(q_0,\sqcup) = (q_1,\sqcup,L),$
 $\delta(q_1,1) = (q_2,1,L), \quad \delta(q_2,0) = (q_3,0,L),$
 $\delta(q_3,1) = (q_{accept},1,L)$

$$q_011
ightarrow 1q_01
ightarrow 11q_0
ightarrow 1q_11
ightarrow q_211
ightarrow q_{reject}11$$
 $q_0101
ightarrow 1q_001
ightarrow 10q_01
ightarrow 101q_0
ightarrow 10q_11
ightarrow 1q_201
ightarrow q_3101
ightarrow q_{accept}101$

Computazione di una MdT

Siano C, C' configurazioni. $C \to^* C'$ se esistono configurazioni C_1, \ldots, C_k , $k \ge 1$ tali che

- **1** $C_1 = C$,
- 2 $C_i \rightarrow C_{i+1}$, per $i \in \{1, ..., k-1\}$, (ogni C_i produce C_{i+1})
- **3** $C_k = C'$.

Diremo che $C \to^* C'$ è una **computazione** (di lunghezza k-1).

Configurazioni

Una configurazione C si dice:

- iniziale su input w se $C = q_0 w$, con $w \in \Sigma^*$
- di accettazione se $C = u q_{accept} v$
- di rifiuto se $C = u q_{reject} v$

Poiché non esistono transizioni da q_{accept} e da q_{reject} , allora le configurazioni di accettazione e di rifiuto sono dette configurazioni di arresto.

Parola accettata o rifiutata

Definizione

Una MdT M accetta una parola $w \in \Sigma^*$ se esiste una computazione $C \to^* C'$, dove $C = q_0 w$ è la configurazione iniziale di M con input $w \in C' = uq_{accept} v$ è una configurazione di accettazione.

Una MdT M rifiuta una parola $w \in \Sigma^*$ se esiste una computazione $C \to^* C'$, dove $C = q_0 w$ è la configurazione iniziale di M con input w e $C' = uq_{reject}v$ è una configurazione di rifiuto.

Risultati di una computazione

Tre possibili Risultati computazione:

- 1. M accetta se si ferma in q_{accept}
- 2. M rifiuta se si ferma in q_{reject}
- 3. *M* cicla/loop se non si ferma mai

Mentre M funziona non si può dire se è in loop; si potrebbe fermare in seguito oppure no.

Esempio

$$\delta(q_0,0) = (q_0,0,R), \quad \delta(q_0,1) = (q_0,1,R),$$
 $\delta(q_0,\sqcup) = (q_1,\sqcup,L),$
 $\delta(q_1,1) = (q_2,1,L), \quad \delta(q_2,0) = (q_3,0,L),$
 $\delta(q_3,1) = (q_{accept},1,L)$

$$\begin{array}{l} q_0101 \rightarrow 1q_001 \rightarrow 10q_01 \rightarrow 101q_0 \rightarrow 10q_11 \rightarrow 1q_201 \rightarrow \\ q_3101 \rightarrow q_{accept}101 \end{array}$$

 $q_0101 \rightarrow^* q_{accept}101$: 101 è accettata.

$$q_011 o 1q_01 o 11q_0 o 1q_11 o q_211 o q_{reject}11$$
 $q_011 o^* q_{reject}11$: 11 è rifiutata.

Esempio di non terminazione

cicla e non si ferma mai

aba non è accettata.

È errato dire che aba è rifiutata.

Esempio di non terminazione

Esempio:
$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$
, con $Q = \{q_0, q_{accept}, q_{reject}\}, \Sigma = \{a, b\}, \Gamma = \{a, b, \bot\}, \delta(q_0, a) = (q_0, a, R), \delta(q_0, b) = (q_0, b, L), \delta(q_0, \bot) = (q_{accept}, \bot, L).$

$$q_0aba
ightarrow aq_0ba
ightarrow q_0aba
ightarrow aq_0ba
ightarrow \dots$$

$$q_0 aba \rightarrow^* q_0 aba$$

cicla e non si ferma mai

aba non è accettata.

È errato dire che aba è rifiutata.

Linguaggio riconosciuto da una MdT

Definizione

Sia $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ una MdT. Il linguaggio L(M) riconosciuto da M, è l'insieme delle stringhe che M accetta:

$$L(M) = \{ w \in \Sigma^* \mid \exists u, v \in \Gamma^* \ q_0 w \to^* u q_{accept} v \}.$$

Quindi

$$L(M) = \{ w \in \Sigma^* \mid M \text{ accetta } w \}.$$

Decidere

$$L(M) = \{ w \in \Sigma^* \mid M \text{ accetta } w \}$$

$$R(M) = \{ w \in \Sigma^* \mid M \text{ rifiuta } w \}$$

In generale $L(M) \cup R(M)$ non coincide con Σ^* .

Se $L(M) \cup R(M) = \Sigma^*$, allora M si arresta su ogni input.

In tal caso M è chiamata un decisore (o decider) ed L(M) è il linguaggio deciso da M.

Dal punto di vista delle macchine

Definizione

Una MdT $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ è un decisore (o decider) se, per ogni $w \in \Sigma^*$, esistono $u, v \in \Gamma^*$ e $q \in \{q_{accept}, q_{reject}\}$ tali che

$$q_0w \rightarrow^* uqv$$

Definizione

Una MdT M decide un linguaggio L se M è un decisore e L = L(M).

In tal caso L è deciso da M.

Dal punto di vista dei linguaggi

Definizione

Un linguaggio $L \subseteq \Sigma^*$ è Turing riconoscibile se esiste una macchina di Turing $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ tale che:

1 M riconosce L (cioè L = L(M) = { $w \in \Sigma^* \mid \exists u, v \in \Gamma^* \ q_0 w \to^* u q_{accept} v$ }).

Definizione

Un linguaggio $L \subseteq \Sigma^*$ è decidibile se esiste una macchina di Turing $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ tale che:

- 1 M riconosce L (cioè $L = L(M) = \{ w \in \Sigma^* \mid \exists u, v \in \Gamma^* \ q_0 w \to^* u q_{accept} v \}$).
- 2 M si arresta su ogni input (cioè per ogni $w \in \Sigma^*$, $q_0 w \to^*$ uqv con $q \in \{q_{accept}, q_{reject}\}$).

Vedremo che l'insieme dei linguaggi decidibili è un sottoinsieme proprio dell'insieme dei linguaggi Turing riconoscibili.

Come conseguenza delle definizioni, un linguaggio L è Turing riconoscibile ma non decidibile se:

- 1 esiste una MdT che riconosce L (quindi accetta tutte e sole le stringhe di L)
- 2 non esiste nessuna MdT M tale che M accetta tutte le stringhe in L e rifiuta tutte le stringhe che appartengono al complemento \overline{L} di L.

Non confondere la proprietà di un linguaggio (essere o non essere Turing riconoscibile, essere o non essere decidibile) con la proprietà di una MdT (essere o non essere un decider).

Esempio:
$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$
, con $Q = \{q_0, q_{accept}, q_{reject}\}, \Sigma = \{a, b\}, \Gamma = \{a, b, \sqcup\}, \delta(q_0, a) = (q_0, a, R), \delta(q_0, b) = (q_0, b, L), \delta(q_0, \sqcup) = (q_{accept}, \sqcup, L).$

M non è un decider ma $L(M) = a^*$ è decidibile.

Il linguaggio a* è decidibile

Una macchina di Turing che decide a*

Una macchina di Turing che non è un decisore e che riconosce a^*

Non è un decisore perché su *aba* (e non solo) cicla e non si ferma mai

Linguaggi T-riconoscibili, decidibili e regolari

Ogni linguaggio regolare è Turing riconoscibile?

Ogni linguaggio regolare è decidibile?

Ogni linguaggio decidibile è regolare?

Ogni linguaggio Turing riconoscibile è regolare?

Esempio

Consideriamo il linguaggio

$$L = \{0^{2^n} \mid n > 0\}$$

insieme stringhe di 0 la cui lunghezza è potenza di 2

Nota. Il linguaggio non è regolare

Vogliamo costruire una MdT M_2 che lo decide.

Esempio

Come riconoscere se il numero di 0 è una potenza di 2?

Innanzitutto deve essere pari; se dispari rifiuto.

Se pari?

Le potenze di 2 hanno la caratteristica che dividendo ripetutamente per 2 trovo sempre numeri pari, fino ad arrivare ad 1.

MdT per 0²ⁿ

Esercizio svolto

Ogni linguaggio regolare L è decidibile.

Dato un $(Q, \Sigma, \delta, q_0, F)$ un **DFA** che riconosce L, costruire una MdT $(Q', \Sigma, \Gamma, \delta', q'_0, q_{accept}, q_{reject})$ che decide L.