Exercise

Hidden Markov Models

Task 1. A Hidden Markov Model λ is used to predict the outcome of drawing colored balls from a series of four urns (see figure). The emissions b_i describe the distribution of red (r) and green (g) balls in the respective urn.

For the emission probabilities it holds:

$$B = \begin{pmatrix} b_1(r) & b_1(g) \\ b_2(r) & b_2(g) \\ b_3(r) & b_3(g) \\ b_4(r) & b_4(g) \end{pmatrix} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \\ 0.5 & 0.5 \\ 0.8 & 0.2 \end{pmatrix}$$

- a) Specify the missing model parameters λ !
- b) Draw the possible state sequences Q_i for an observation of length 3 into the following Trellis diagram.

Consider the path $Q = \{1, 3, 4\}$ as an example and assume that the observation sequence is $O = \{r, g, r\}$.

c) What are the path probability $P(Q|\lambda)$, the observation probability $P(O|Q,\lambda)$ and the production probability $P(O,Q|\lambda)$ for this path?

Task 2. Given a pattern recognizer with three Hidden Markov Models and an observation sequence $O = \{o_1, o_2, o_3\} = \{1.1, -0.9, 0.3\}.$

The emission functions are Gaussian distributed (see formula) with the parameters from Table 1. An observation o is a single real number. There is an **additional requirement** that the last observation must always be emitted from the last state.

$$b_i(o) = \frac{1}{\sqrt{2\pi} \cdot \sigma_i} \cdot e^{-\frac{1}{2} \left(\frac{o - \mu_i}{\sigma_i}\right)^2}$$

State	Class A	Class B	Class C
s_1	$\mu = 2, \sigma = 2$	$\mu = 1, \sigma = 1$	$\mu = 0, \sigma = 1$
s_2	$\mu = -2, \sigma = 1$	$\mu = -1, \sigma = 2$	$\mu = 0, \sigma = 3$
s_3	$\mu = 0, \sigma = 1$	$\mu = -1, \sigma = 3$	$\mu = 1, \sigma = 2$
s_4	$\mu = 1, \sigma = 3$	$\mu = 0, \sigma = 2$	
s_5	$\mu = 0, \sigma = 2$		_

Table 1: Parameters of the emission functions

- a) Specify the model parameters A and Π for each of the three HMMs!
- b) Determine all solution paths Q for each HMM!
- c) Calculate the production probability for each path for the given observation sequence O!
- d) Which class is the observation sequence assigned to if only the best path (among all HMMs) is considered?
- e) What is the overall production probability of the individual HMMs and why does it not make sense to use this quantity as an evaluation criterion?

