

 $\mathrm{CI}\text{-}2526$ Ene-Mar 2018

No es bastante todavía.—No basta demostrar una cosa; hay que persuadir a los hombres o elevarlos hasta ella. Por eso el iniciado tiene que aprender a decir su sabiduría, y a veces a expresarla de modo que suene a locura.

Aurora. Federico Nietzsche.

Tarea 2—Teroría de Conjuntos y Relaciones

NOMBRE CARNET NOTA

- 1. Use el Axioma de Fundamentación para demostrar que no existen conjuntos A,B,C tales que $A\in B\land B\in C\land C\in A.$
- 2. Demostrar las siguientes proposiciones
 - (i) $\cap \cap \langle A, B \rangle = A$
 - $(\mathrm{II}) \ \left[\cap \cup < A, B > \right] \cup \left[\cup \cup < A, B > \cup \cap < A, B > \right] = B.$
- 3. Use el axioma de fundamentación para probar que $A\subseteq A\times A\Longrightarrow A=\emptyset$. Sug.: Aplique el axioma al conjunto $A\cup (\cup A)$.
- 4. Si R es una relación de A en B, entonces $B_1 \subset B_2 \Rightarrow R^{-1}(B_1) \subseteq R^{-1}(B_2)$. Muestre un contra-ejemplo que ponga en evidencia que no es cierto que $R^{-1}(B_1) \subset R^{-1}(B_2)$.
- 5. Si R es una relación de A en B y $B_1, B_2 \subseteq B$, será cierto que

$$R^{-1}(B_1 \cap B_2) = R^{-1}(B_1) \cap R^{-1}(B_2)$$
.

- 6. Demuestre que $\widehat{A-B} = \widehat{A} \widehat{B}$
- 7. Demostrar las siguientes proposiciones
 - (I) $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
 - (II) $A \cdot (B \cap C) \subseteq (A \cdot B) \cap (A \cdot C)$
 - $\text{(III)} \ A \subset B \land C \subset D \Longrightarrow A \cdot C \subset B \cdot D$
- 8. Demuestre que R es una relación de equivalencia sobre A si y sólo si $R \cdot \hat{R} = R$.

Ejercicios Complementarios

- 1. Demuestre que $A \times (B C) = (A \times B) (A \times C)$.
- 2. Demuestre que si $B \subset C \land A \neq \emptyset$, entonces $A \times B \subset A \times C$.
- 3. Demuestre que si R y S son relaciones, entonces $\mathcal{D}(R) \mathcal{D}(S) \subseteq \mathcal{D}(R S)$.
- 4. Pruebe, si puede, que R(A) R(B) = R(A B). De lo contrario, muestre qué es lo que falla y por qué.
- 5. Demostrar que $R|_{(A-B)} = (R|_A) (R|_B)$.
- 6. Dada la relación R definida mediante el siguiente digrafo

y los conjuntos $B = \{a, b, c, e\}, C = \{a, b, c, e, f\}$ halle:

- a) Las relaciones R, R^2 , R^3 y $\widehat{R^2-R}$, sus matrices de adyacencias y sus digrafos asociados.
- b) Los conjuntos R(B), R(C), $R^{-1}(B)$ y $R^{-1}(C)$.
- c) Y las relaciones $R|_B$, $R|_C$ y $(R^2 R)|_B$, sus digrafos y sus matrices de adyacencias.