Circuits

RLC circuits

Spring 2022

Natural response

Same voltage v(t) for the 3 elements. Initial conditions:

- $I_L(0^+) = I_0$ (inductor)
- $\mathbf{v}(0^+) = V_0$ (capacitor)

KCL

$$i_R(t) + i_L(t) + i_C(t) = 0$$

Integro-differential equation

This last equation is not very handy.

Let's differentiate it once with respect to time.

$$C\frac{d^2v(t)}{dt^2} + \frac{1}{R}\frac{dv(t)}{dt} + \frac{1}{L}v(t) = 0$$

Natural Response

Rewriting the equation

We set the following 2 variables:

• resonant frequency:
$$\omega_0 = \frac{1}{\sqrt{LC}}$$

The differential equation is now:

Natural Response

Solution

Let's try a similar solution to what we obtained for first-order circuits: $v(t) = A \cdot e^{s \cdot t}$

$$As^2e^{st} + 2\xi\omega_0Ase^{st} + \omega_0^2Ae^{st} = 0$$

Supposing that $Ae^{st} \neq 0$ (incompatible with initial conditions), we then must respect:

$$s^2 + 2\xi\omega_0 s + \omega_0^2 = 0$$

Characteristic equation (quadratic)

3 possibilities:

- 2 distinct real roots
- 2 non distinct real roots
- 2 complex roots (conjugate)

Natural Response

Discrimant

$$\Delta = (\xi \omega_0)^2 - {\omega_0}^2 = {\omega_0}^2 (\xi^2 - 1)$$

3 possibilities:

- $\Delta > 0$ (meaning $\xi > 1$): 2 real roots (**overdamped**)
- $\Delta = 0$ (meaning $\xi = 1$): 2 non distinct real roots (**critically damped**)
- Δ < 0(meaning ξ < 1): 2 complex conjugate roots (**underdamped**)

Role of the resitor R

Supposing that L and C have been fixed (and so is ω_0), we can notice that the damping ratio ξ depends on R

For example, modifying R may have an impact on the discriminant.

In the next slides, we are going to check the 3 possibilities separately

$\Delta > 0$ (meaning $\xi > 1$): 2 real roots

$$s = -\xi \omega_0 \pm \sqrt{{\omega_0}^2 (\xi^2 - 1)} = -\omega_0 (\xi \pm \sqrt{\xi^2 - 1})$$

Both roots are **negative**.

$$s_1 = -\omega_0 \left(\xi + \sqrt{\xi^2 - 1} \right)$$

$$s_2 = -\omega_0 \left(\xi - \sqrt{\xi^2 - 1} \right)$$

Final solution

We finally have:

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

with two constants A_1 and A_2 to determine from initial conditions

Initial conditions:

- $i_L(0^+) = 30 \,\text{mA (inductor)}$
- $\mathbf{v}(0^+) = 12 \, \mathrm{V} \, \text{(capacitor)}$

Evaluate the different values

$$\bullet \omega_0 = \frac{1}{\sqrt{LC}} = 10\,000\,\mathrm{rad/s}$$

•
$$\xi = \frac{1}{2R} \sqrt{\frac{L}{C}} = 1.25$$
 (no unit)

$$\sqrt{\xi^2 - 1} = 0.75$$

•
$$s_1=-\omega_0\left(\xi+\sqrt{\xi^2-1}
ight)=-20\,000\,\mathrm{rad/s}$$

$$\qquad \mathbf{s}_2 = -\omega_0 \left(\xi - \sqrt{\xi^2 - 1}\right) = -5000 \, \mathrm{rad/s}$$

Solution

$$v(t) = A_1 e^{-20000t} + A_2 e^{-5000t}$$

Determination of constants

We know that
$$v(0^+) = 12 \, \text{V}$$
 $\Longrightarrow A_1 + A_2 = 12 \, \text{V}$

We also know that
$$i_L(0^+)=30\,\mathrm{mA}$$

$$i_L(t)=-i_R(t)-i_C(t)=-\frac{v(t)}{R}-C\frac{dv(t)}{dt}$$

$$\frac{dv(t)}{dt}=-20000A_1e^{-20000t}-5000A_2e^{-5000t}$$

$$i_L(0^+)=-\frac{12\,\mathrm{V}}{200\,\Omega}+0.2\,\mathrm{\mu F}\left(20000A_1+5000A_2\right)=30\,\mathrm{mA}$$

$$\Longrightarrow 20000A_1+5000A_2=450\,000\,\mathrm{V/s}$$

Final solution

 $v(t) = 26e^{-20000t} - 14e^{-5000t}$

$\Delta < 0$ (meaning $\xi < 1$): 2 compex conjugate roots

$$s = -\xi \omega_0 \pm j \sqrt{\omega_0^2 (1 - \xi^2)} = -\omega_0 (\xi \pm j \sqrt{1 - \xi^2})$$

We can set $\omega_d = \omega_0 \sqrt{1 - \xi^2}$, named the **natural resonant frequency**

- $s_1 = -\xi\omega_0 + j\omega_d$
- $s_2 = -\xi \omega_0 j\omega_d$

Final solution

We finally have:

$$v(t) = e^{-\xi\omega_0 t} \left(A_1 e^{j\omega_d t} + A_2 e^{-j\omega_d t} \right)$$

with two constants A_1 and A_2 to determine from initial conditions

Complex voltage?

$$v(t) = e^{-\xi\omega_0 t} \left(A_1 e^{j\omega_d t} + A_2 e^{-j\omega_d t} \right)$$

The voltage v(t) is, of course, real.

Actually the 2 constants A_1 and A_2 are complex in order to obtain a real voltage.

Another way to write the voltage equation is:

$$v(t) = e^{-\xi\omega_0 t} \left(B_1 \cos(\omega_d t) + B_2 \sin(\omega_d t) \right)$$

with B_1 and B_2 are 2 real constants

Initial conditions:

- $i_L(0^+) = 30 \,\text{mA (inductor)}$
- $v(0^+) = 12 \, V \text{ (capacitor)}$

Evaluate the different values

•
$$\omega_0 = \frac{1}{\sqrt{IC}} = 10\,000\,\text{rad/s}$$

•
$$\xi = \frac{1}{2R} \sqrt{\frac{L}{C}} = 0.8$$
 (no unit)

- $\sqrt{1-\xi^2} = 0.6$
- $\xi \omega_0 = 8000 \, \text{rad/s}$

Solution

$$v(t) = e^{-8000t} \left(B_1 \cos(6000t) + B_2 \sin(6000t) \right)$$

Determination of constants

We know that $v(0^+) = 12 \,\mathrm{V}$

$$B_1=12\,\mathsf{V}$$

We also know that
$$i_L(0^+) = 30 \text{ mA}$$
 $i_L(t) = -i_R(t) - i_C(t) = -\frac{v(t)}{R} - C\frac{dv(t)}{dt}$ $\frac{dv(t)}{dt} = -2000 \left(4v(t) - 3e^{-8000t} \left(-B_1 \sin(6000t) + B_2 \cos(6000t)\right)\right)$ $i_L(0^+) = -\frac{12 \text{ V}}{312.5 \Omega} + 0.2 \,\mu\text{F} \left(2000(48 \,\text{V} - 3B_2)\right) = 30 \,\text{mA}$ $\implies B_2 = -41 \,\text{V}$

Final solution

 $v(t) = e^{-8000t} \left(12\cos(6000t) - 41\sin(6000t) \right)$

$\Delta = 0$ (meaning $\xi = 1$): 2 real non distinct roots

$$s = -\omega_0$$

In that particular case only, the solution form we assumed at the beginning is not complete.

Actually the solution will be in the form:

$$v(t) = (A_1 + A_2 t)e^{-\omega_0 t}$$

Initial conditions:

- $i_L(0^+) = 30 \,\text{mA (inductor)}$
- $\mathbf{v}(0^+) = 12 \, \mathrm{V} \, \text{(capacitor)}$

Evaluate the different values

$$\omega_0 = \frac{1}{\sqrt{LC}} = 10\,000\,\mathrm{rad/s}$$

Solution

$$v(t) = (A_1 + A_2 t)e^{-10000t}$$

Determination of constants

We know that $v(0^+) = 12 \,\mathrm{V}$

$$A_1 = 12 \, V$$

We also know that
$$i_L(0^+)=30\,\mathrm{mA}$$

$$i_L(t)=-i_R(t)-i_C(t)=-\frac{v(t)}{R}-C\frac{dv(t)}{dt}$$

$$\frac{dv(t)}{dt}=-10000v(t)+A_2e^{-10000t}$$

$$i_L(0^+)=-\frac{12\,\mathrm{V}}{250\,\Omega}+0.2\,\mathrm{\mu F}\,(10000\cdot12\,\mathrm{V}-A_2)=30\,\mathrm{mA}$$

$$\Longrightarrow A_2=-270\,000\,\mathrm{V/s}$$

Final solution

 $v(t) = 12e^{-10000t} - 270000te^{-10000t}$

Circuits - Spring 2022 - Pingping DING