\mathbf{QUIZ}

INTRO TO REAL ANALYSIS

Problem 1. Using the definition of functional limit, prove that

$$\lim_{x \to 2} (3x + 4) = 10.$$

Problem 2. Consider the (erroneous) claim that

$$\lim_{x \to 10} \frac{1}{[[x]]} = \frac{1}{10},$$

where [[x]] denotes the greatest integer less than or equal to x.

- (a) Find the largest δ that represents a proper response to the challenge of $\epsilon = \frac{1}{2}$. That is, find the largest δ for which $0 < |x - 10| < \delta$ implies $|f(x) - \frac{1}{10}| < \epsilon = \frac{1}{2}$. (b) Find the largest δ that represents a proper response to $\epsilon = \frac{1}{50}$. (c) Find the largest ϵ challenge for which there is no suitable δ response possible.

Date: October 09, 2017.

1