2) a. Clarity, (')
$$\in$$
 $C(x^{T})$.

Also, (-1) = $H \cdot (') - 3 \cdot (2)$. So (-1) \in $C(x^{T})$

Also, (-1) = $H \cdot (') - 3 \cdot (2)$. So (-1) \in $C(x^{T})$

Also, (-1) = $H \cdot (') - 3 \cdot (2)$. So (-1) \in $C(x^{T})$

Also, (-1) = $H \cdot (') = H \cdot (') = H$

d) M2: V-1/2 Y = (V-1/2 X)B+V-1/2 & 13 YX = XXB+ EX e) suppose I'B is estimable in MI A 3c St 7'= C'X A' = C'(V'12 V-42)X A 71 = (V12C) (V-112X) = C2 X* Thus IT B is estimable in M(2)

	= N4(Q, I) = 1/2 is a 4-dim. vector of indep. std normal RUs.
all x215 Neveral	We know that the square of a std. normal RN has X2 distring and that the sum of nindep. W. RVs is Xin
Established	> let \(\frac{1}{2} \frac{1}{2} \frac{1}{2} = \left(\frac{1}{3}
abore, so have	Then,
•	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	$= y^* + y^* + y^* + y^* + y^*$