Rattrapage 2009

[Durée deux heures. Aucun document n'est autorisé. Seule les reponses soigneusement justifiées seront prise en compte.]

1. Temps d'arrêt.

Soient T et S des temps d'arrêt par rapport à une filtration $(\mathcal{F}_n)_{n\geqslant 1}$ donnée et soit $(X_n)_{n\geqslant 1}$ un processus adapté à la même filtration.

- a) Montrer que $\max(T, S)$ et $\min(T, S)$ sont des t.a.s.
- b) Montrer que la v.a. X_T est \mathcal{F}_T mesurable.
- c) Montrer que si $S \leq T$ alors $\mathcal{F}_S \subseteq \mathcal{F}_T$.

2. Arrêt optimal en horizon fini.

Soit $(Y_n)_{1 \leq n \leq N}$ le processus des gains pour un problème d'arrêt optimal en horizon fini N pour la filtration $(\mathcal{F}_n)_{1 \leq n \leq N}$.

- a) Donner la définition d'enveloppe de Snell $(Z_n)_n$ de $(Y_n)_n$.
- b) Donner la formule récursive satisfaite par l'enveloppe de Snell $(Z_n)_n$.
- c) Soit $T^* = \inf\{k: 1 \le k \le N \text{ et } Y_k = Z_k\}$. Montrer que T^* est un temps d'arrêt.
- d) Montrer que $Z_{n \wedge T^*}$ est une martingale.
- e) Montrer que $\mathbb{E}[Z_1] = \sup_T \mathbb{E}[Y_T] = J_T$, le gain moyen optimal du problème d'arrêt.

3. Le problème de Moser

On considère une suite iid $(X_n)_{1 \leq n \leq N}$ tel que $X_n \geq 0$, $\mathcal{F}_n = \sigma(X_1, ..., X_n)$ la filtration associée et $Y_n = X_n$ le processus des gains. On veut déterminer le gain optimal moyen $J_T = \sup_T \mathbb{E}[Y_T]$.

- a) Montrer que Z_n est mesurable par rapport à $\sigma(X_n)$.
- b) Montrer que $\mathbb{E}[Z_n] = \mathbb{E}[\sup (X_n, \mathbb{E}[Z_{n+1}])]$ pour tout n < N.
- c) Montrer que $\mathbb{E}[Z_n]$ est une fonction décroissante de n.
- d) Montrer que une règle optimale est $T^* = \inf_N \{k < N : X_k \geqslant \mathbb{E}[Z_{k+1}]\}$ (où $\inf_N A = \inf_A \text{ si } A \neq \emptyset$ et $\inf_N \emptyset = N$).

3. Horizon infini.

On considère un problème d'arrêt en horizon infini. On suppose que $\mathbb{E}[(\sup_{n\geqslant 1} Y_n)_+] < \infty$. Soit T un t.a et $\tilde{T} = \inf\{n\geqslant 1: \mathbb{E}[Y_T|\mathcal{F}_n] \leqslant Y_n\}(+\infty \text{ si l'ensemble est vide})$. On rappelle que S est un temps d'arrêt regulier si et seulement si pour tout $n\geqslant 1$ on a que $\mathbb{E}[Y_S|\mathcal{F}_n] > Y_n$ sur l'evenement $\{S>n\}$.

- a) Montrer que $\tilde{T} \leqslant T$.
- b) Montrer que $\mathbb{E}[Y_T] \leq \mathbb{E}[Y_{\tilde{T}}]$.
- c) Montrer que \tilde{T} est un t.a. régulier.
- d) Montrer que si T_1 et T_2 sont t.a. réguliers alors $\mathbb{E}[Y_{\max(T_1,T_2)}] \geqslant \max(\mathbb{E}[Y_{T_1}],\mathbb{E}[Y_{T_2}])$.