02. Introduzione agli Algoritmi

Corso di Algoritmi e Linguaggi di Programmazione Python/C

Outline

- Formulare un problema
 - Il problema come quesito
 - L'ente risolutore
 - Gli elementi noti e le condizioni fissate
- Risolvere un problema
 - Costruire la soluzione
 - Un esempio
- Caratteristiche degli algoritmi risolutivi
 - Caratteristiche principali
 - Determinismo
 - Input, Output e Variabili

Formulare un problema

- Il dizionario De Mauro Paravia definisce un problema come un:
 - "...quesito da risolvere mediante la determinazione di uno o più enti, partendo da elementi noti e condizioni fissate in precedenza."
- Analizziamo più nel dettaglio questa definizione.

Il problema come quesito

"...quesito da risolvere mediante la determinazione di uno o più enti, partendo da elementi noti e condizioni fissate in precedenza."

- Esempi concreti di problema:
 - Come calcolare l'ipotenusa di un triangolo rettangolo?
 - Come montare il mobile IKEA appena acquistato?

L'ente risolutore

"...quesito da risolvere mediante la determinazione di uno o più enti, partendo da elementi noti e condizioni fissate in precedenza."

- Per i problemi precedenti, l'ente risolutore è:
 - lo studente (o la calcolatrice);
 - il montatore.

Gli elementi noti e le condizioni fissate

"...quesito da risolvere mediante la determinazione di uno o più enti, partendo da elementi noti e condizioni fissate in precedenza."

- Ad esempio:
 - la lunghezza dei cateti, e le regole fissate dal teorema di Pitagora;
 - la posizione del mobile e gli attrezzi necessari.

Risolvere un problema

- Abbiamo determinato il cosa, il chi ed il da dove partire.
 - Per quello che riguarda l'ultimo aspetto, abbiamo visto come siano importanti condizioni iniziali e vincoli, passati sotto forma di dati iniziali del problema.
- Occorre determinare il come, trovando un metodo di risoluzione.
 - Individuiamo la relazione tra il problema
 P ed una o più istanze dell'insieme delle soluzioni S.

Costruire la soluzione (1)

- Costruire la soluzione significa individuare il modo in cui possono combinarsi una serie di operazioni atomiche.
 - Un'operazione atomica non è ulteriormente divisibile: ad esempio, la somma di due numeri è un'operazione atomica, mentre la risoluzione di un'equazione di primo grado non lo è.

Costruire la soluzione (1)

- Le operazioni atomiche possono combinarsi:
 - in modo sequenziale, ovvero concatenando un'azione all'altra;
 - in modo *parallelo*, quando due o più operazioni sono svolte contemporaneamente.
- La soluzione è un operatore composto da diverse azioni atomiche.
- Un algoritmo è la serie di operazioni atomiche da seguire.

Un esempio di risoluzione di problema (1)

Formulazione

 Dati due numeri interi a e b, rappresentativi della lunghezza dei due cateti di un triangolo rettangolo, calcolare l'ipotenusa c.

Dati

a e b

Un esempio di risoluzione di problema (2)

- Algoritmo risolutivo (in operazioni "quasi" atomiche)
 - Calcolare il quadrato di a.
 - Calcolare il quadrato di b.
 - Sommare i quadrati calcolati ai punti precedenti.
 - Calcolare la radice quadrata della somma ottenuta al punto precedente.

Caratteristiche degli algoritmi risolutivi

Caratteristiche principali:

- finitezza, sia spaziale, sia temporale
- generalità
- non ambiguità
- eseguibilità

Determinismo

- L'algoritmo è deterministico se ad ogni step si conosce in maniera univoca l'istruzione da eseguire successivamente.
- Input, Output e Variabili
 - Input: i dati rappresentativi della situazione iniziale.
 - Output: il valore restituito dall'algoritmo.
 - Variabili: dati di supporto usati per la risoluzione dell'algoritmo.

Domande?

42