التطورات غير الرتيبة

الكتاب الثاني

التطورات الإهتزازية

الوحدة 07

GUEZOURI Aek – L. Maraval - Oran

الدرس الأول: الاهتزازات الميكانيكية

أفريل 2015

ما يجب أن أعرفه حتى أقول: إنى استوعبت هذا الدرس

- 1 يجب أن أعرف أن ليس كل حركة ذهاب وإياب هي حركة اهتزازية ، بل يجب أن تحدث حول وضع توازن .
 - 2 يجب أن أعرف كيفية إيجاد المعادلة التفاضلية لحركة نواس مروني بالطريقتين الحركية والطاقوية .
 - 3 يجب أن أعرف كيفية إيجاد المعادلة التفاضلية لحركة نواس بسيط بالطريقة الطاقوية .
 - 4 يجب أن أعرف معانى المفردات التالية:
 - اهتزازات حرّة
 - اهتزازات حرّة متخامدة
 - اهتزازات حرة غير متخامدة
 - اهتز از ات مغذاة
 - 5 يجب أن أحسن استعمال البيانات في هذا الدرس.

ملخص الدرس

1 - النواس المروني الأفقى

$$\frac{d^2x}{dt^2} + \frac{h}{m}\frac{dx}{dt} + \frac{k}{m}x = 0$$
: المعادلة التفاضلية

حيث : h: معامل الاحتكاك المائع : k: ثابت مرونة النابض

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$
: بإهمال الاحتكاك يكون

$$x = X \cos(\omega_0 t + \varphi)$$

$$v = \frac{dx}{dt} = -X\omega_0 \sin(\omega_0 t + \varphi)$$

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -X\omega_0^2 \cos(\omega_0 t + \varphi) = -\omega_0^2 x$$

$$T_0 = rac{2\pi}{\omega_0} = 2\pi\sqrt{rac{m}{k}}$$
 : الدور الذاتي

،
$$oldsymbol{N}_0 = rac{1}{oldsymbol{T}_0}$$
 : التواتر الذاتي

$$oldsymbol{\omega}_0 = 2 oldsymbol{\pi} oldsymbol{N}_0$$
 : النبض الذاتي

$$\omega_0 t + \varphi$$
: صفحة الحركة

$$\phi$$
 الصفحة الابتدائية

تمثيل المطال والسرعة والتسارع:

$$\varphi = 0$$
 ناخذ من أجل التبسيط

الطاقة الكلية للجملة (جسم – نابض)

$$\varphi = 0$$
 نأخذ

$$E_c = \frac{1}{2} m X^2 \omega_0^2 \sin^2(\omega_0 t + \varphi)$$

$$E_p = \frac{1}{2} k X^2 \cos^2(\omega_0 t + \varphi)$$

$$E = E_p + E_c = \frac{1}{2} k X^2$$

2 - النواس المرونى الشاقولى

في وضع التوازن:

. الشكل 1-1:P=T=k ، حيث Δl استطالة النابض عند التوازن

 $P \sin \alpha = T = k \Delta l : 2 -$ الشكل

المعادلة التفاضلية في كل شكل هي :

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

الشكل - 1

الشكل - 2

 $\vec{P}^{\;lack}$

 $\frac{dt^2}{dt^2} + \frac{x}{m}x = 0$

سواء كان النابض أفقيا أو شاقوليا أو مائلا فإن :

$$T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$$

THE THE STATE OF T

$$\theta = \theta_0 \cos(\omega_0 t + \varphi)$$

$$\frac{d\theta}{dt} = -\theta_0 \omega_0 \sin(\omega_0 t + \varphi)$$

$$\frac{d^2 \theta}{dt^2} = -\theta_0 \omega_0^2 \cos(\omega_0 t + \varphi) = -\omega_0^2 \theta$$

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0$$
: المعادلة التفاضلية

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\theta = 0$$
: من أجل السعات الصغيرة

$$\boldsymbol{\omega}_0 = \sqrt{\frac{\mathbf{g}}{I}}$$
: النبض الذاتي

$$m{T}_0 = 2m{\pi}\sqrt{rac{m{l}}{m{g}}}$$
 : الدور الذاتي

$$heta$$
 المطال الزاوي

$$heta$$
 المطال الزاوي $heta$ المطال الزاوي الأعظمي $heta_0$

$$lacksquare$$
 صفحة الحركة $(\omega_0 t + arphi)$

$$\phi$$
 الصفحة الابتدائية

تمثيل المطال الزاوي والسرعة الزاوية والتسارع الزاوي

الطاقة الكلية للجملة (نواس – أرض)

 $\varphi = 0$ نأخذ

1 - الحركة الاهتزازية الميكانيكية

هي كل حركة ذهاب وإياب لجملة حول وضع توازن هذه الجملة.

حركة الطفلة صعودا ونزولا ليست اهتزازية ، لأنها لا تملك وضع توازن .

المعادلة الزمنية لحركة هزّاز من الشكل:

 $x = X \cos(\omega_0 t + \varphi)$

AB : طول المسار

x : المطال

 $oldsymbol{OG_1} = |oldsymbol{OG_2}| = X$ ، المطال الأعظمي (السّعة) دائما موجب : X

(سميناه ذاتيًا لأنه لم يتحكم فيه هزاز آخر) النبض الذاتي ω_0

صفحة الحركة : $oldsymbol{\omega}_0 t + oldsymbol{arphi}$

(t=0 الصفحة الابتدائية (الصفحة من أجل : ϕ

 \vec{R}

1 - 1 - حركة النواس المروني

النواس المروني الأفقى: (تجرى التجربة فوق طاولة هوائية للتخلص من الاحتكاك الصلب)

حالة الاحتكاك المائع (الاحتكاك مع الغازات أو السوائل):

قوة الاحتكاك : معاكسة دائما لشعاع السرعة وتتناسب معها .

$$\vec{f} = -h\vec{v} = -h\frac{dx}{dt}\vec{i}$$

حيث h معامل الاحتكاك المائع (مع الهواء في هذه الحالة) .

قوّة الإرجاع التي يؤثر بها النابض:

- حاملها محور النابض
- $ec{T}=-k\;xec{i}$ تكون جهتها حيث دائما تحاول إرجاع الجسم نحو وضع التوازن
- . شدّتها k، ثابت مرونة النابض x هي فاصلة مركز عطالة الجسم x ثابت مرونة النابض .

 $ec{P} + ec{R} = 0$ قوة الثقل $ec{P}$ وقوة رد فعل المستوى $ec{R}$ تتكافآن بحيث

حسب القانون الثاني لنيوتن : $\vec{P} + \vec{R} + \vec{f} + \vec{r} = m \vec{a}$ ، وبالتعويض نكتب : $\vec{P} + \vec{R} + \vec{r} + \vec{r} = m \vec{a}$ ، وباختصار تمن

هذه المعادلة التفاضلية حلها ليس من البرنامج.

• إذا كانت قوة الاحتكاك ضعيفة تكون الاهتزازات حرّة متخامدة

شبه دورية . السعة تتناقص بمرور الزمن وشبه الدور $T \approx T_0$ (الشكل المقابل)

Ò

• إذا كانت قوة الاحتكاك معتبرة تكون الإهتزازات لا دورية ، فبمجرد أن تظهر الإهتزازات تتخامد ويتوقف الجسم عن الحركة.

• بإهمال الاحتكاك تكون الاهتزازات حرّة غير متخامدة

$$(2) \qquad \frac{d^2x}{dt^2} + \frac{k}{m} x = 0$$

المعادلة التفاضلية نتحصل عليها بوضع h=0 في المعادلة (1) ، أي : حل هذه المعادلة التفاضلية من الشكل:

$$x = X \cos(\omega_0 t + \varphi)$$

. $a = \frac{d^2x}{dt^2} = -\omega_0^2 X \cos(\omega_0 t + \varphi) = -\omega_0^2 x$ باشتقاق عبارة المطال بالنسبة للزمن مرة ثم مرة أخرى نتحصل على التسارع

$$T_0=rac{2\pi}{\omega_0}=2\pi\sqrt{rac{m}{k}}$$
 والدور الذاتي $\omega_0^2=rac{k}{m}$ بمطابقة هذه العلاقة مع العلاقة مع العلاقة أ

$$\omega_0^2 = \frac{k}{m}$$

x(t) تمثیل

t	0	$\frac{T_0}{4}$	$\frac{T_0}{2}$	$\frac{3T_0}{4}$	T_0
x	X	0	-X	0	X

v(t) تمثیل

a(t) تمثیل

t	0	$\frac{T_0}{4}$	$\frac{T_0}{2}$	$\frac{3T_0}{4}$	T_0
v	0	$-X \omega_0$	0	$X \omega_0$	0

t	0	$\frac{T_0}{4}$	$\frac{T_0}{2}$	$\frac{3T_0}{4}$	T_0
а	$-X \omega_0^2$	0	$+ \times \omega_0^2$	0	$-X \omega_0^2$

ightharpoons a				
$X\omega_0^2$				
				,
0 T_0	T_0	$3T_0$	T_0	→ <i>t</i>
$\frac{1}{4}$	$\frac{3}{2}$	4		
$-X\omega_0^2$				

حالة الاحتكاك الصلب (الاحتكاك مع السطوح):

في هذه الحالة تكون قوة الاحتكاك ثابتة مهما كان الزمن .

: وبالإسقاط
$$\vec{P} + \vec{R} + \vec{f} + \vec{T} = m \vec{a}$$

-kx+f=ma

$$\frac{d^2x}{dt^2} + \frac{k}{m}x - \frac{f}{m} = 0$$
 : المعادلة التفاضلية

الطاقة الكلية للجملة (نابض _ جسم)

نعتبر الوضع المرجعي للطاقة الكامنة الثقالية هو المستوي الأفقى الذي يتحرك فوقه الجسم ونهمل الاحتكاك بنوعيه.

$$E = E_C + E_{Pe} = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$$

$$E = \frac{1}{2}mX^{2}\omega_{0}^{2} \sin^{2}(\omega_{0}t + \varphi) + \frac{1}{2}kX^{2}\cos^{2}(\omega_{0}t + \varphi)$$

$$E = \frac{1}{2}kX^2$$

$$E=rac{1}{2}mX^2rac{k}{m}sin^2\left(\omega_0t+arphi
ight)+rac{1}{2}kX^2cos^2\left(\omega_0t+arphi
ight)$$
 : ولدينا $\omega_0^2=rac{k}{m}$

مخطط الطاقة

نلاحظ أنه كلما كانت الطاقة الحركية معدومة تكون الطاقة الكامنة عظمى ، والعكس كذلك .

النواس المروني الشاقولي:

عند التوازن (x=0) یکون $\mathcal{H}=m$ عند التوازن m عند التوازن x=0 عند التوازن عند التوازن x=0 عند التوازن x=0

في اللحظة $\vec{P} + \vec{f} + \vec{T} + \vec{\Pi} = m \ \vec{a}$: نطبق القانون الثاني لنيوتن

$$P\vec{i} - hv\vec{i} - kx\vec{i} - \Pi\vec{i} = m \ a\vec{i}$$
: Ox بالإسقاط على المحور

$$mg - hv - k(\Delta l + x) - \Pi = m \ a$$

: وبالتالي ، $mg = k \ \Delta l + \Pi$ ، ولدينا عند التوازن ، $mg - hv - k\Delta l - kx - \Pi = m \ a$

: ومنه المعادلة التفاضلية ، $k \Delta l + \Pi - hv - k\Delta l - kx - \Pi = m a$

$$\frac{d^2x}{dt^2} + h\frac{dx}{dt} + \frac{k}{m}x = 0$$

1 - 2 - حركة النواس الثقلي

تعريف: النواس الثقلي هو كل جسم قابل للدور ان حول محور لا يمر من مركز ثقله.

a = OG هي الدوران ومركز ثقل النواس هي الدوران ومركز الدوران الدوران ومركز الدوران ومركز الدوران ومركز

وضع التوازن المستقر للنواس الثقلى:

يكون النواس في وضع توازنه المستقر عندما يكون مركز ثقله على الشاقول المار من O وأسفله.

النواس الثقلى البسيط

إذا ربطنا جسما بواسطة خيط معلق أو سلك وكانت أبعاد الجسم مهملة أمام طول الخيط ، نكون قد شكلنا نواسا ثقليا بسيطا .

النواس الثقلي هو النواس الذي يهتز بفعل ثقله ، وهو إما نواس ثقلي مركب أو نواس ثقلي بسيط.

نقتصر في در استنا على النواس الثقلي البسيط.

 $OG \approx l$ من أجل نواس بسيط يكون

نواس ثقلي مركب

المعادلة التفاضلية

نحرف الخيط ابتداء من وضع توازن النواس (G_0) بزاوية θ_0 ونتركه بدون سرعة .

نطبّق مبدأ إنحفاظ الطاقة للجملة (نواس – أرض) عندما يصبح الخيط صانعا مع الشاقول الزاوية θ .

$$E_C + E_{PP} = E$$

$$\frac{1}{2}mv^2 + mgh + E_{PP0} = E$$

ومي قيمة للطاقة الكامنة الثقالية تتعلق بالوضع المرجعي ، فإذا كان الوضع المرجعي هو $E_{\rm PP0}$. $E_{\rm PP0}=0$

(3)
$$\frac{1}{2}m\left(\frac{d\theta}{dt}\right)^{2}l^{2} + mg\left(l - l\cos\theta\right) + E_{PP0} = E$$

مع العلم أن السرعة الخطية (v) تساوي السرعة الزاوية $(\frac{d\theta}{dt})$ نصف القطر (v)

باشتقاق طرفي العلاقة (3) بالنسبة للزمن:

$$(4) \qquad \frac{d^{2}\theta}{dt^{2}} + \frac{g}{l}\sin\theta = 0 \quad \text{eais} \quad 2 \times \frac{1}{2}m\left(\frac{d\theta}{dt}\right) \times l^{2}\left(\frac{d^{2}\theta}{dt^{2}}\right) + mgl\frac{d\theta}{dt}\sin\theta = 0$$

. (rd) بالراديان θ معنيرة تكون كذلك θ ، وفي هذه الحالة يكون $\theta pprox \sin heta pprox \sin heta$ ، حيث θ بالراديان

تصبح المعادلة التفاضلية (4) بالشكل:

(5)
$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\theta = 0$$

$$heta= heta_0\cos(oldsymbol{\omega}_0 t+oldsymbol{arphi})$$
 : وهي معادلة تفاضلية حلها من الشكل

الفاصلة الزاوية (المطال الزاوي) ، السعة الزاوية (المطال الزاوي الأعظمي) : heta

الصفحة الابتدائية : $oldsymbol{arphi}$: الصفحة الابتدائية : $oldsymbol{\omega}_0$: النبض الذاتي $oldsymbol{\omega}_0$

(7)
$$\frac{d^2\theta}{dt^2} + \omega_0^2 \theta = 0$$
 أي $\frac{d^2\theta}{dt^2} = -\omega_0^2 \theta$ باشتقاق المعادلة الزمنية (6) مرّتين بالنسبة للزمن نجد باشتقاق المعادلة الزمنية

$$oldsymbol{T}_0=2\pi\sqrt{rac{oldsymbol{l}}{oldsymbol{g}}}$$
 بمطابقة العلاقتين (5) و (7) نجد

$$\omega_0 = \sqrt{\frac{g}{l}}$$

تصحيح الدور : لاحظ في هذا الجدول أنه كلما كانت الزاوية صغيرة يكون $hetapprox \sin hetapprox \sin heta$ ، فمن أجل $heta=10^\circ$ تكون الدقة في المساواة تقترب من $\frac{1}{1000}$ ، أي أن الرقم الثالث بعد الفاصلة في كل من θ و $\sin \theta$ هو نفسه تقريبا .

hetaاذن يمكن اعتبار من الآن heta= heta إذا كانت

$oldsymbol{ heta}(^{\circ})$	3	7	9	10	16	22
$\theta(rd)$	0,0523	0,1218	0,1570	0,1744	0,2791	0,3837
sin θ	0,0523	0,1218	0,1564	0,1736	0,2756	0,3746

إذا كانت السعة معتبرة (حوالي $^{\circ}22^{\circ}$) نصحّح الدور بالعلاقة T_0 أذا كانت السعة معتبرة (حوالي $^{\circ}22^{\circ}$) نصحّح الدور بالعلاقة الصغيرة

$$({
m rd})$$
 اي $\frac{l}{g}$ ، $T_0=2\pi\sqrt{rac{l}{g}}$ السعة المعتبرة مقاسة ب

 $heta= heta_0\cosrac{2\pi}{T_0}$ وبالتالي نكتب $\phi=0$ ، وبالتالي نكتب : $m{ heta}(t)$: للتبسيط نأخذ الصفحة الابتدائية

t	0	$\frac{T_0}{4}$	$\frac{T_0}{2}$	$\frac{3T_0}{4}$	T_0
θ	θ_0	0	$-\theta_0$	0	θ_0

$igwedge^{ heta}$	
θ_0	
0	t
$\frac{T_0}{4}$	$\frac{T_0}{2}$ $\frac{3T_0}{4}$ T_0
$-\theta_0$	2 4

$$\frac{d\theta}{dt} = -\theta_0 \omega_0 \sin \frac{2\pi}{T_0}$$
: $\frac{d\theta}{dt}(t)$ تمثیل السرعة الزاویة

t	0	$\frac{T_0}{4}$	$\frac{T_0}{2}$	$\frac{3T_0}{4}$	T_0
$\frac{d\theta}{dt}$		$-\theta_0 \omega_0$	0	$\theta_0 \omega_0$	0

$\frac{d^2\theta}{dt^2} = -\omega_0^2 \theta$:	$\frac{d^2\theta}{dt^2}(t)$	التسارع الزاوي	تمثيل
ai		ui		

t	0	$\frac{T_0}{4}$	$\frac{T_0}{2}$	$\frac{3T_0}{4}$	T_0
$\frac{d^2\theta}{dt^2}$	$-\theta_0 {\omega_0}^2$	0	$+ \theta_0 \omega_0^2$	0	$-\theta_0 {\omega_0}^2$

الطاقة الكلية للجملة (نواس – أرض)

نهمل تأثير الهواء.

مخطط الطاقة

arphi = 0 نعتبر

نعتبر الوضع المرجعي للطاقة الكامنة الثقالية المستوي الأفقي المار من $E=E_C+E_{PP}$

مركز عطالة الجسم عند وضع التوازن.

$$E_C = \frac{1}{2}m\left(l\frac{d\theta}{dt}\right)^2 = \frac{1}{2}ml^2\theta_0^2\omega_0^2\sin^2(\omega_0 t + \varphi)$$

$$E_{PP} = mgh = mgl(1 - cos \theta)$$

من أجل زاوية
$$\theta$$
 صغيرة لدينا $\cos \theta \approx 1 - \frac{\theta^2}{2}$ ، وبالتالي تصبح من أجل زاوية θ صغيرة لدينا من أجل زاوية θ من أجل زاوية ألم نام ألم نام ألم زاوية ألم نام ألم نام

$$. E_{PP} = \frac{1}{2} mgl\theta_0^2 \cos^2(\omega_0 t + \varphi)$$

$$E=rac{1}{2}ml^2 heta_0^2\,\omega_0^2\,\sin^2\left(\omega_0t+arphi
ight)+rac{1}{2}mgl heta_0^2\,\cos^2\left(\omega_0t+arphi
ight)$$
 : الطاقة الكلية هي

$$E = \frac{1}{2}ml^2\theta_0^2 \frac{g}{l} sin^2(\omega_0 t + \varphi) + \frac{1}{2}mgl\theta_0^2 cos^2(\omega_0 t + \varphi)$$
: لاينا $\omega_0^2 = \frac{g}{l}$

$$E = \frac{1}{2} mgl\theta_0^2 \left[sin^2 (\omega_0 t + \varphi) + cos^2 (\omega_0 t + \varphi) \right]$$

$E = \frac{1}{2} mgl\theta_0^2$

2 - تغذية الإهتزازات

يمكن بواسطة عامل خارجي تعويض الطاقة الضائعة بفعل الإحتكاك في نواس مروني ، وبدون التأثير على السعة والدور ، فتصبح بذلك إهتزازات النواس غير متخامدة .

ملاحظة

شعبة العلوم التجريبية غير معنية بالنواس المروني الشاقولي وحالة وجود الإحتكاك في النواس المروني الأفقي