Vprašanja in odgovori: Združeno

Patrik Žnidaršič

Verzija iz dne 26. oktober 2021

Kazalo

1	Ana	liza	2
	1.1	Števila	 3
		1.1.1 Naravna števila	 3
		1.1.2 Racionalna števila	 3
		1.1.3 Realna števila	 4
		1.1.4 Intervali	 5
2	Log	ika in množice	7
	2.1	Množice in preslikave	 8
		2.1.1 Osnovno o množicah	 8
		2.1.2 Konstrukcije množic	 8
		2.1.3 Preslikave	8
		2.1.4 Uporabne preslikave	 9
		2.1.5 Izomorfizem	 9
	2.2	Simbolni zapis	 9
		2.2.1 Logične formule	 10
	2.3	Definicije in dokazi	 10
		2.3.1 Dokazovanje	 11
3	Alg	ebra	12
	3.1	Vektorski prostor \mathbb{R}^3	 13
		3.1.1 Koordinatni sistem in vektorji v prostoru	13
		3.1.2 Skalarni produkt	13
		3.1.3 Vektorski produkt	14
		3.1.4 Mešani produkt	14
	3.2	Premice in ravnine v \mathbb{R}^3	15
		3.2.1 Enačbe ravnin	15
		3.2.2 Razdalja do ravnine	16
		3.2.3 Enačbe premic	16
		3.2.4 Razdalja do premice	17
	3.3	Osnovne algebraične strukture	17
		3.3.1 Operacije na množicah	
4	Pro	$\mathbf{seminar} \ \mathbf{A}$	18
	4.1	Mestni zapis števil	
	4.2	Zaporedja	
	1.2	Pogetavljanje izragov	

4.4 Kompleksna števila					20
------------------------	--	--	--	--	----

Poglavje 1

Analiza

1.1 Števila

1.1.1 Naravna števila

Kako označimo naslednjika naravnega števila n?

$$n^+$$

Kaj so Peanovi aksiomi?

So aksiomi, ki definirajo množico \mathbb{N} skupaj s pravilom, ki vsakemu naravnemu številu n priredi naslednjika n^+ $(n, n^+ \in \mathbb{N})$:

- Za vsaka $n, m \in \mathbb{N}$ in $m^+ = n^+$ velja m = n
- \bullet Obstaja število $1\in\mathbb{N},$ ki ni naslednjik od nobenega naravnega števila
- Aksiom popolne indukcije: Če $A \subset \mathbb{N}$ in če je $1 \in A$ in če je za vsak $n \in A$ tudi $n^+ \in A$, potem je $A = \mathbb{N}$.

Kdaj je množica dobro urejena? Povej primer takšne množice. Povej primer množice, ki ni dobro urejena.

Kadar ima vsaka neprazna podmnožica najmanjši element. Dobro urejena je npr. N, ne pa Z.

1.1.2 Racionalna števila

Kdaj ulomka $\frac{m}{n}$ in $\frac{k}{l}$ predstavljata isto število?

Kadar je ml = nk.

Kaj so ulomki?

Množica $\mathbb{Z} \times \mathbb{N} = \{(m, n); m \in \mathbb{Z}, n \in \mathbb{N}\}.$

Kaj je racionalno število?

Množico $\mathbb{Z} \times \mathbb{N}$ razdelimo na ekvivalenčne razrede:

$$(m,n) \sim (k,l) \Leftrightarrow ml = nk \quad \forall m,k \in \mathbb{Z}, \forall n,l \in \mathbb{N}$$

Racionalno število je ekvivalenčni razred urejenih parov in ga označimo z $\frac{m}{n}$:

$$\frac{m}{n} = \{(k, l), ml = nk\}$$

Kateri trije aksiomi veljajo za grupe? Kateri dodatni velja za Abelove grupe?

Za grupe veljajo naslednji aksiomi: (prikazani simboli za množico A in dvočlen operator $+: A \times A \to A$)

4

- 1. Asociativnost: $(a+b)+c=a+(b+c) \quad \forall a,b,c \in A$
- 2. Obstoj enote: obstaja $0 \in A$, tako da za vsak $a \in A$ velja 0 + a = a + 0 = a

3. Obstoj inverznega elementa: za vsak $a \in A$ obstaja inverzni element $-a \in A$, tako da velja a + (-1) = (-a) + a = 0

Za Abelove (oz. komutativne) grupe velja tudi aksiom komutativnosti:

$$a+b=b+a \quad \forall a,b \in A$$

Povej primer Abelove grupe.

Abelova grupa: $(\mathbb{Q}, +)$ ali $(\mathbb{Q} \setminus \{0\}, \cdot)$

Kako označimo enoto in inverzni element a za seštevanje in množenje?

Za seštevanje: 0, -aZa množenje: $1, a^{-1}$

Povej pravilo krajšanja za seštevanje v grupi A z operacijo $+: A \times A \rightarrow A$

Naj bodo $a, x, y \in A$. Če velja a + x = a + y, potem je x = y.

Kaj je komutativen obseg? Kako ga še drugače imenujemo? Povej primer.

To je množica A z operacijama $+,\cdot$, kjer je (A,+) Abelova grupa za seštevanje, $(A\setminus\{0\},\cdot)$ Abelova grupa za množenje, veljata pa še dva aksioma:

- 1. $1 \neq 0$ (enota za seštevanje ni enaka enoti za množenje)
- 2. Aksiom distributivnosti: Za vse $a, b, c \in A$ velja a(b+c) = ab + ac.

Komutativen obseg imenujemo tudi polje. Primer je $(\mathbb{Q}, +, \cdot)$

Kaj je urejen obseg?

To je obseg, ki ima urejenost, ki ustreza naslednjima aksiomoma:

- 1. Za vsako število $a \in A, a \neq 0$ velja, da je natanko eno od števil a, -a pozitivno.
- 2. Za vsaki pozitivni števili $a, b \in A$ sta a + b in $a \cdot b$ pozitivni.

Kako je definirana urejenost v urejenem obsegu?

$$a < b \Leftrightarrow b - a$$
 je pozitivno $a, b \in A$

1.1.3 Realna števila

Kaj je Dedekinov rez? Definiraj množico realnih števil. Kako jo označimo?

To je vsaka podmnožica $A \subset \mathbb{Q}$, za katero velja:

- 1. $A \neq \emptyset, A \neq \mathbb{Q}$
- 2. za vsak $p \in A$ in za vsak $q \in \mathbb{Q}, q < p$, je tudi $q \in A$
- 3. za vsak $p \in A$ obstaja $q \in A$, da je q > p

Realna števila so množica vseh rezov. Označimo jo z \mathbb{R} .

Kako je definiran nasprotni element reza A?

$$-A = \{ p \in \mathbb{Q}; \text{ obstaja } r \in \mathbb{Q}, r > 0 : -p - r \notin A \}.$$

Kdaj je rez A pozitiven?

Kadar $0^* \subset A \wedge 0^* \neq A$.

Naj bo B urejen obseg. Kdaj je množica $A \subset B$ navzgor omejena? Kako imenujemo najmanjšo od vseh zgornjih mej, če obstaja?

Kadar obstaja $M \in B$, da velja $a \leq M$ za vsak $a \in A$.

Najmanjšo zgornjo mejo imenujemo natančna zgornja meja ali supremum množice A; označimo ga s sup A.

Kaj je maksimum množice A?

To je največji element množice A, če obstaja. Označimo ga s max A.

Kako imenujemo najmanjšo od vseh spodnjih mej množice? Kaj je minimum množice?

Natančno spodnjo mejo imenujemo infimum in jo označimo inf A (kjer je A množica). Minimum množice A je najmanjši element množice, če obstaja. Označimo ga z min A.

Kaj pravi Dedekindov aksiom? Kateri obseg ga izpolnjuje?

Vsaka neprazna množica navzgor omejena podmnožica v A ima natančno zgornjo mejo. Izpolnjuje ga obseg $(\mathbb{R}, +, \cdot, <)$.

Kakšna je razlika med algebrajskimi in transcendentnimi števili?

Algebrajska števila so rešitve polinomskih enačb s celimi koeficienti. Transcendentna števila so vsa ostala racionalna števila.

Katere so posledice Dedekindovega aksioma?

- 1. \mathbb{Z} v \mathbb{R} ni navzgor omejena.
- 2. Za vsako realno število a obstaja $m \in \mathbb{Z}, m > a$.
- 3. (Arhimedska lastnost): Naj bosta $a, b \in \mathbb{R}, a, b > 0$. Potem obstaja $n \in \mathbb{N}, na > b$.
- 4. Naj bo a pozitivno realno število. Potem obstaja $n \in \mathbb{N}, 1/n < a$

1.1.4 Intervali

Kakšen je zaprti in kakšen odprti interval?

Zaprti: [a, b]Odprti: (a, b)

Kaj je $\epsilon\text{-okolica}$ točke a?Kaj je okolica točke a?

 ϵ -okolica je interval $(a - \epsilon, a + \epsilon)$.

Okolica točke aje vsaka taka podmnožica v $\mathbb{R},$ ki vsebuje kakšno $\epsilon\text{-okolico}$ točke a.

Poglavje 2

Logika in množice

2.1 Množice in preslikave

2.1.1 Osnovno o množicah

Kaj je ekstenzionalnost množic?

To je pravilo, ki trdi, da sta množici enaki, če imata iste elemente; oz. če je vsak element prve množice tudi element druge množice, in obratno.

Kako zapišemo prazno množico in standardni enojec?

```
Prazna množica: \{\} ali \emptyset
Standardni enojec: 1 = \{()\}
```

Kaj je enojec?

Množica A je enojec, kadar velja:

- obstaja $x \in A$
- če $x \in A$ in $y \in A$, potem x = y

2.1.2 Konstrukcije množic

Kaj sta zmnožek in vsota množic? Kako se drugače imenujeta?

Zmnožek ali $kartezični \ produkt$ množic A in B je nova množica $A \times B$, katere elementi so urejeni pari $(x,y), x \in A, y \in B$.

Vsota ali koprodukt množic A in B je množica A + B, katere elementi so in₁ x za $x \in A$ ter in₂ y za $y \in B$.

Kaj je projekcija $\operatorname{pr}_i u$ in kaj injekcija $\operatorname{in}_i x$?

```
\operatorname{pr}_i u označuje i-to komponento urejenega para u. in<sub>i</sub> x je simbol, s katerim ločimo elemente različnih množic pri seštevanju.
```

2.1.3 Preslikave

Katere tri komponente ima preslikava?

```
Domeno, kodomeno in prirejanje.
Prirejanje mora biti: (za preslikavo f: A \to B)
```

- Celovito: Za vsak $x \in A$ obstaja $y \in B$, ki mu je prirejen.
- Enolično: Če sta elementu $x \in A$ prirejena elementa y in $z \in B$, potem y = z.

Kaj je eksponent množic A in B?

To je množica B^A , katere elementi so preslikave z domeno A in kodomeno B.

Koliko je preslikav $A \to \emptyset$ in koliko preslikav $\emptyset \to A$?

Preslikava $\emptyset \to A$ je ena sama. Preslikav $A \to \emptyset, A \neq \emptyset$ ni.

2.1.4 Uporabne preslikave

Kaj je identiteta?

Je preslikava $id_A: A \to A$ za poljubno množico A; $id_A: x \mapsto x$.

Kaj je kompozitum preslikav? Povej dve njegovi računski lastnosti.

Kompozitum preslikav $f:A\to B$ in $g:B\to C$ je preslikava $g\circ f:A\to C$, ki $x\mapsto g(f(x))$. Kompozitum je asociativen in ima nevtralen element - identiteto.

Kaj je evalvacija? Kako jo še imenujemo?

Evalvacija, aplikacija ali uporaba je preslikava, ki sprejme preslikavo in argument, ter preslikavo uporabi na argumentu.

$$\operatorname{ev}: B^A \times A \to B$$

 $\operatorname{ev}: (f, x) \mapsto f(x)$

2.1.5 Izomorfizem

Kdaj je $f:A\to B$ inverz $g:B\to A$? Kako imenujemo preslikavo, ki ima inverz? Kako označimo inverz take preslikave?

Kadar velja $f \circ g = \mathrm{id}_B$ in $g \circ f = \mathrm{id}_A$. Preslikavo f z inverzom imenujemo *izomorfizem* in jo označimo z f^{-1} .

Kaj velja za kompozitum dveh izomorfnih preslikav f,g? Kaj velja za njegov inverz?

Tudi kompozitum je izomorfizem. Za njegov inverz velja: $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Kdaj sta dve množici A, B izomorfni? Kako to zapišemo?

Množici sta izomorf
ni, če obstaja izomorfizem iz A v B. To zapišem
o $A\cong B.$

Katere tri lastnosti veljajo za \cong ?

Refleksivnost, simetričnost, tranzitivnost.

2.2 Simbolni zapis

Povej primer levo in primer desno asocirane operacije.

Levo asocirana: $+, -, \times, \dots$ Desno asocirana: $\Rightarrow, \rightarrow, \dots$

Kaj so implicitni argumenti? Povej primer.

To so argumenti operatorja, ki jih pogosto izpustimo; takrat mora bralec iz konteksta izvesti, kaj naj bi te argumenti bili; npr. množici v zapisu projekcije $\operatorname{pr}_{1}^{A,B}$.

Kakšna je razlika med implicitnimi argumenti in privzeto vrednostjo? Povej primer privzete vrednosti.

Pri privzeti vrednosti smo dogovorjeni, s čim naj nadomestimo izpuščeno vrednost, pri implicitnih argumentih pa so vrednosti vedno drugačne in razvidne iz konteksta. Primer je $\log x = \log_{10} x$.

2.2.1 Logične formule

Kateri dve vrsti logičnih formul poznamo? Kaj je razlika med njima?

- Izjavni račun: Zapisujemo izjave z osnovnimi vezniki
- Predikatni račun: Za zapisovanje uporabimo tudi predikate, t.j. operatorje $=, \neq, \leq, \ldots, \forall, \exists$.

Kako zapišemo resnico, neresnico, negacijo, konjunkcijo in disjunkcijo?

- Resnica: T
- Neresnica: ⊥
- Negacija: ¬
- Konjunkcija: \wedge
- Disjunkcija: V

Kako se imenujeta argumenta pri implikaciji? Kako se jih na dolgo bere?

 $Antecedent \Rightarrow Konsekvent$

Antecedent je zadosten pogoj za konsekvent. Konsekvent je potreben pogoj za antecedent.

Katera kvantifikatorja poznamo?

Univerzalni kvantifikator (\forall) in eksistenčni kvantifikator (\exists) .

2.3 Definicije in dokazi

Kako dokažeš enolični obstoj? Kako ga označiš?

Tako da dokažeš, da sta dve vrednosti, pri katerih pogoj drži, nujno enaki. Označimo z ∃!.

Kaj je operator enoličnega opisa?

To je operator $\iota x \in A.\phi(x)$, s katerim določimo enolično opisan element; pod pogojem, da velja $\exists ! x \in A.\phi(x)$.

Kaj je kontekst? Kako vanj uvedemo novo spremenljivko?

Kontekst je skupek vseh trenutno veljavnih simbolov in predpostavk. Vanj uvedemo novo spremenljivko z definicijo (x := ...) ali prosto ("Naj bo $x \in A$ ").

2.3.1 Dokazovanje

Kako se s pravili vpeljave dokaže implikacijo, ekvivalenco, univerzalno izjavo in eksistenčno izjavo?

Za implikacijo predpostavimo levo stran in dokažemo desno. Za ekvivalenco dokažemo obe implikaciji. Za univerzalno izjavo dokažemo $\phi(x)$ za poljuben $x \in A$. Za eksistenčno izjavo podamo nek x, dokažemo $x \in A$ in dokažemo

Poglavje 3

Algebra

3.1 Vektorski prostor \mathbb{R}^3

3.1.1 Koordinatni sistem in vektorji v prostoru

Kakšen je pozitivno orientiran koordinatni sistem?

Tak, kjer je ordinatna os za 90° pozitivno rotirana od abscisne osi.

Kaj sestavlja koordinatni sistem v prostoru?

Tri medsebojno paroma pravokotne številske premice, ki se sekajo v koordinatnem izhodišču.

Kaj je krajevni vektor točke $T = (x, y, z) \in \mathbb{R}^3$?

To je usmerjena daljica z začetkom v izhodišču in koncem v točki T.

Kaj je vektor?

Vektor $\vec{a} = (x, y, z)$ je množica vseh usmerjenih daljic, ki jih dobimo z vzporednim premikom krajevnega vektorja do točke T(x, y, z).

Kaj je linearna kombinacija vektorjev $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$?

To je vsak izraz oblike $\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \ldots + \alpha_n \vec{a}_n$, kjer so $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$.

Kdaj so vektorji $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ linearno neodvisni? Kdaj sta dva vektorja \vec{a} in \vec{b} linearno odvisna?

Kadar nobeden izmed vektorjev ni enak kakšni linearni kombinaciji ostalih.

Dva vektorja sta linearno odvisna, kadar velja $\vec{a} = \alpha \vec{b}$ ali $\vec{b} = \beta \vec{a}$ za neka $\alpha, \beta \in \mathbb{R}$. To je natanko takrat, ko sta vzporedna.

Kaj je baza prostora \mathbb{R}^3 ? Kaj je standardna baza?

Baza prostora je množica treh linearno neodvisnih vektorjev. Standardna baza so vektorji $\vec{i} = (1,0,0), \vec{j} = (0,1,0), \vec{k} = (0,0,1).$

3.1.2 Skalarni produkt

Kaj je skalarni produkt vektorjev $\vec{a}_1 = (x_1, y_1, z_1)$ in $\vec{a}_2 = (x_2, y_2, z_2)$?

To je število $\vec{a}_1 \cdot \vec{a}_2 = x_1 x_2 + y_1 y_2 + z_1 z_2$.

Kaj je norma vektorja \vec{a} ? Kaj predstavlja?

To je število $\|\vec{a}\| = \sqrt{\vec{a} \cdot \vec{a}}$. Predstavlja dolžino vsake usmerjene daljice, ki predstavlja vektor \vec{a} .

Naštej 4 lastnosti skalarnega produkta.

1. Komutativnost: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$.

2. Distributivnost: $(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$.

3. Homogenost: $(\alpha \vec{a}) \cdot \vec{b} = \alpha (\vec{a} \cdot \vec{b})$.

4. Pozitivna definitnost: $\vec{a} \cdot \vec{a} \ge 0$ in $\vec{a} \cdot \vec{a} = 0 \Leftrightarrow \vec{a} = \vec{0}$.

Kako izračunaš kot med dvema vektorjema \vec{a} in \vec{b} ? Kaj je kriterij za pravokotnost vektorjev?

$$\cos \phi = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}$$

Kjer je ϕ kot med vektorjema.

Kriterij za pravokotnost: $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$.

3.1.3 Vektorski produkt

Kaj je vektorski produkt vektorjev \vec{a} in \vec{b} ?

To je vektor $\vec{a} \times \vec{b}$, za katerega velja:

• pravokoten je na \vec{a} in na \vec{b} .

 \bullet dolžina je ploščina paralelograma, napetega na krajevna vektorja \vec{a} in $\vec{b}.$

• trojica $(\vec{a}, \vec{b}, \vec{a} \times \vec{b})$ je pozitivno orientirana.

Kakšen je predpis za vektorski produkt?

$$(x_1, y_1, z_1) \times (x_2, y_2, z_2) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

Povej 3 lastnosti vektorskega produkta.

• Antikomutativnost: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$.

• Distributivnost: $\vec{a} \times (\vec{a} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$.

• Homogenost: $(\alpha \vec{a}) \times \vec{b} = \vec{a} \times (\alpha \vec{b}) = \alpha (\vec{a} \times \vec{b})$

3.1.4 Mešani produkt

Kaj je mešani produkt vektorjev $\vec{a}, \vec{b}, \vec{c}$? Kakšen je njegov predpis?

To je število $[\vec{a}, \vec{b}, \vec{c}] = (\vec{a} \times \vec{b}) \cdot \vec{c}$.

$$[\vec{a}, \vec{b}, \vec{c}] = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

15

Kakšna je geometrijska interpretacija mešanega produkta?

Mešani produkt $[\vec{a}, \vec{b}, \vec{c}]$ je volumen paralelepipeda, napetega na vektorje \vec{a}, \vec{b} in \vec{c} , pomnožen z orientacijo urejene trojice $(\vec{a}, \vec{b}, \vec{c})$.

Kako izračunamo prostornino nepravilnega tetraedra, določenega z vektorji $\vec{a}, \vec{b}, \vec{c}$?

$$V = \frac{1}{6} \left| [\vec{a}, \vec{b}, \vec{c}] \right|$$

Povej 2 lastnosti mešanega produkta.

- 1. Asociativnost v vseh faktorjih: $[\vec{a}_1 + \vec{a}_2, \vec{b}, \vec{c}] = [\vec{a}_1, \vec{b}, \vec{c}] + [\vec{a}_2, \vec{b}, \vec{c}]$.
- 2. Homogenost: $\alpha[\vec{a}, \vec{b}, \vec{c}] = [\alpha \vec{a}, \vec{b}, \vec{c}] = [\vec{a}, \alpha \vec{b}, \vec{c}] = [\vec{a}, \vec{b}, \alpha \vec{c}].$

Kaj je Lagrangeva identiteta?

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \begin{vmatrix} \vec{a}\vec{c} & \vec{a}\vec{d} \\ \vec{b}\vec{c} & \vec{b}\vec{d} \end{vmatrix}$$

3.2 Premice in ravnine v \mathbb{R}^3

3.2.1 Enačbe ravnin

Kaj je enačba ravnine?

Enačba ravnine Σ je taka enačba v spremenljivkah x, y, z, da velja:

- Če točka T(a,b,c) leži na Σ , potem a,b,c zadoščajo enačbi.
- Če $T \notin \Sigma$, pa a, b, c ne zadoščajo enačbi.

Kaj je normala ravnine? Koliko normal ima ravnina? Kaj še potrebujemo, da natanko določimo ravnino, poleg normale?

Normala ravnine je poljuben neničelen vektor, ki je pravokoten na ravnino.

Ravnina ima več normal, vse izmed katerih so si vzporedne.

Ravnina je natanko določena z normalo in eno točko na ravnini.

Kakšne splošne oblike je enačba ravnine? Kako iz te oblike preberemo normalo? Ali je enačba ravnine enolična?

Splošna oblika: ax + by + cz + d = 0, a, b, c niso vsi 0.

Normala take ravnine je (a, b, c).

Enačba ravnine ni enolična, saj lahko enačbo pomnožimo z poljubnih neničelnim skalarjem, in še vedno predstavlja isto ravnino.

Kaj je normalna enačba ravnine? Kako je z njeno enoličnostjo?

To je poseben primer enačbe ravnine ax + by + cz + d = 0, kjer ima normala (a, b, c) dolžino 1. Je enolična do predznaka natančno, lahko je pomnožimo z -1.

Podaj enačbo ravnine skozi tri nekolinearne točke $(x_0, y_0, z_0), (x_1, y_1, z_1), (x_2, y_2, z_2)$.

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0$$

3.2.2 Razdalja do ravnine

Kaj je razdalja med točko T_1 in ravnino? Navedi njeno formulo z uporabo normale \vec{n} , krajevnega vektorja do točke na ravnini $\vec{r_0}$ ter krajevnega vektorja do točke T_1 , $\vec{r_1}$.

To je najkrajša razdalja Δ med T_1 in kakšno točko na ravnini.

$$\Delta = \left| rac{ec{n}(ec{r}_1 - ec{r}_0)}{\|ec{n}\|}
ight|$$

Navedi formulo za razdaljo točke $T(x_0, y_0, z_0)$ od ravnine z enačbo ax + by + cz + d = 0.

$$\Delta = \left| \frac{ax_0 + by_0 + cz_0 + d}{\sqrt{a^2 + b^2 + c^2}} \right|$$

Kaj je razdalja med dvema vzporednima ravninama?

To je razdalja med poljubno točko na eni ravnini in drugo ravnino.

Kaj je razdalja med premico in njej vzporedno ravnino?

To je razdalja med poljubno točko na premici in ravnino.

3.2.3 Enačbe premic

Kaj je enačba premice v prostoru?

Sistem dveh linearnih enačb v spremenljivkah x, y, z, da velja: T(a, b, c) leži na premici natanko takrat, ko a, b, c zadostujejo obema enačbama.

Kaj je smerni vektor premice? Kaj še potrebujemo, da premico popolnoma definiramo?

Smerni vektor premice je poljuben neničelni vektor, ki je premici vzporeden. Da enolično določimo premico, potrebujemo še eno točko na premici.

Povej vektorsko enačbo premice ter enačbo premice po komponentah.

$$\vec{r} = \vec{r}_0 + \lambda \vec{s}$$

Kjer je \vec{r} poljuben vektor, \vec{r}_0 krajevni vektor do točke na premici, λ neko realno število in \vec{s} smerni vektor premice.

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Kjer so x, y, z koordinate do poljubne točke, x_0, y_0, z_0 koordinate točke na premici ter a, b, c komponente smernega vektorja premice.

3.2.4 Razdalja do premice

Povej enačbo za razdaljo točke T_1 s krajevnim vektorjem \vec{r}_1 od premice z enačbo $\vec{r} = \vec{r}_0 + \lambda \vec{s}$.

$$\Delta = \frac{\|(\vec{r}_1 - \vec{r}_0) \times \vec{s}\|}{\|\vec{s}\|}$$

Čemu je enaka razdalja med dvema vzporednima premicama?

Razdalji med poljubno točko na eni premici in drugo premico.

Povej enačbo za razdaljo med dvema mimobežnima premicama. Kdaj se nevzporedni premici sekata?

$$\Delta = \frac{|[\vec{r}_2 - \vec{r}_1, \vec{s}_1, \vec{s}_2]|}{\|\vec{s}_1 \times \vec{s}_2\|}$$

Kjer sta \vec{r}_1, \vec{r}_2 krajevna vektorja do dveh točk na premicah (ena točka na premico), \vec{s}_1 in \vec{s}_2 pa smerna vektorja premic.

Dve nevzporedni premici se sekata, kadar je navedeni mešani produkt 0.

3.3 Osnovne algebraične strukture

3.3.1 Operacije na množicah

Kaj je binarna notranja operacija na množici A? Kako v splošnem imenujemo njen izhod?

To je preslikava $A \times A \to A, (x, y) \mapsto x \circ y.$ $x \circ y.$ v splošnem imenujemo kompozitum.

Kaj je dvočlena zunanja operacija?

To je preslikava množic A in R s predpisom $R \times A \to A$.

Kako imenujemo množico, na kateri je definirana vsaj ena operacija?

Algebraična struktura.

Poglavje 4

Proseminar A

4.1 Mestni zapis števil

Kako zapišemo število $n \in \mathbb{N}$ z osnovo c?

Število zaporedoma delimo s c, ostanek pri deljenju pa zapišemo na ustrezno mesto. Ker potence c, c^2, c^3, \ldots naraščajo preko vsake meje, lahko tako zapišemo vsako naravno število.

Kako razširimo mestni zapis na racionalna števila? Kakšna slabost se tako prikaže?

Tako, da primerjamo število tudi z negativnimi eksponenti. Slabost je, da tako dobljen zapis ni enoličen.

4.2 Zaporedja

Kaj je aritmetično zaporedje? Kako izračunamo vsoto prvih n členov takega zaporedja?

To je zaporedje, kjer je razlika med sosednjima členoma konstantna.

$$S_n = \frac{n(a_0 + a_n)}{2} = \frac{n(2a + (n-1)d)}{2} = na + \frac{n(n-1)}{2}d$$

Kaj je geometrijsko zaporedje? Kako izračunamo vsoto prvih n členov takega zaporedja?

To je zaporedje, kjer je kvocient med dvema sosednjima členoma konstanten.

$$S_n = \frac{a_1(q^n - 1)}{q - 1}$$

Če pa je q=1:

$$S_n = na_1$$

Kako izračunamo vsoto neskončnega geometrijskega zaporedja?

Če je |q| < 1:

$$S = \frac{a_1}{1 - q}$$

4.3 Razstavljanje izrazov

Razstavi a^2-b^2 , a^3-b^3 , a^3+b^3 , a^n-b^n in a^n+b^n za nek $n\in\mathbb{N}$. Ali obstaja kakšna omejitev glede izbire n?

$$a^2 - b^2 = (a - b)(a + b)$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + b^{n-1})$$

$$a^{n} + b^{n} = (a+b)(a^{n-1} - a^{n-2}b + \dots + b^{n-1})$$

Zadnji razcep velja le za lihe n.

4.4 Kompleksna števila

Kaj je kompleksno število? Kaj je njegovo konjugirano število?

Kompleksno število je urejen par realnih števil, zapišemo ga z $z=x+yi; \, x,y\in\mathbb{R}, i^2=-1.$ Njegovo konjugirano število je $\overline{z}=x-yi.$