A DESCRIPTION OF THE FAILURE DISTRIBUTIONS OF SELECTED MINUTENAN III GUID (U) AIR FORCE INST OF TECH MRIGHT-PATTERSON AFB ON SCHOOL OF SYST A E SISK SEP 86 AFIT/GLM/LSM/86S-76 F/G 16/2 AD-A174 313 1/1 UNCLASSIFIED NL

CROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

A DESCRIPTION OF THE FAILURE
DISTRIBUTIONS OF SELECTED MINUTEMAN III
GUIDANCE SYSTEM ELECTRONIC CARDS

THESIS

Albert E. Sisk Captain, USAF

AFIT/GLM/LSM/86S-76

This document has been approved for public retorns and sale; its distribution is unlimited.

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

86 11 25 014

AFIT/GLM/LSM/86

contract degraphes haracte appears.

A DESCRIPTION OF THE FAILURE DISTRIBUTIONS OF SELECTED MINUTEMAN III GUIDANCE SYSTEM ELECTRONIC CARDS

THESIS

Albert E. Sisk Captain, USAF

AFIT/GLM/LSM/86S-76

Approved for public release; distribution unlimited

The contents of the document are technically accurate, and no sensitive items, detrimental ideas, or deleterious information is contained therein. Furthermore, the views expressed in the document are those of the author and do not necessarily reflect the views of the School of Systems and Logistics, the Air University, the United States Air Force, or the Department of Defense.

Accesion For NTIS CRA&I DTIC TAB

Unannounced Justification

A DESCRIPTION OF THE FAILURE DISTRIBUTIONS OF SELECTED MINUTEMAN III GUIDANCE SYSTEM ELECTRONIC CARDS

THESIS

Presented to the Faculty of the School of Systems and Logistics of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Logistics Management

Albert E. Sisk, B.S.
Captain, USAF

September 1986

Approved for public release; distribution unlimited

Acknowledgements

The author wishes to express his thanks and appreciation to the many individuals who assisted in this effort and provided guidance and motivation throughout its preparation.

Major Phillip E. Miller provided the necessary sense of purpose, motivation, and, most importantly, sense of humor to guide this effort. Without him, there would be no report.

Lt Col Carlos Talbott provided much technical assistance and background for the processes used in this research.

STATES CONTRACT STATES STATES STATES STATES

Equally important is a very close friend, Captain

Judyann L. Munley. She listened to all of the complaints,

worries, and frustrations, and always provided a look at

the positive side - this research would eventually be

finished.

Mr. Bob Wallin and Mr. Aksel Aydoner, OOALC/MMEAS, who provided the data used in this research and any background information that I could have possibly dreamed up.

My wife Janet, whose understanding, patience, and love saw us through this difficult year.

Table of Contents

																							Page
Acknow	wledg	geme	nts	•	•			•	•				•	•	•			•	•	•	•	•	ii
List o	of F	igur	es	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	V
List	of Ta	able	s.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vi
Abstra	act .			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vii
I.	Int	rođu	cti	on	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
		Bac	kgr	ou	nd	•		•	•			•	•	•	•	•	•	•	•	•	•	•	1
		Gen	era.	Ŀ.	LSS	sue	≟ _	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
		Spe	cif.	ic	Pı	O	5 16	em:	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	3
		Res	ear	ch	Ob	οje	≥ct	iv	ve s	3	•	•	•	•	•	•	•	•	•	•	•	•	4
II.	Lite	erat	ure	Re	evi	iev	V	•	•	•			•	•	•	•	•	•	•	•	•	•	6
		Haz	arđ	F	ıno	et:	ior	ıs				•		•		•		•	•	•	•	•	6
		Haz	ard	P.	Lot	S	•		•		•	•		•		•	•	•				•	7
		Bat	htul	b (Cur	· ve	•	_	_	_	_	_	_			_	_	_				_	8
		Tot	al '	ri,	ne	ΔI	์ ว ๆ	יבי פבי	2 +	D1	o+		•	-	•	•	•		•	•		•	9
		Fai																				•	14
														•					•		•	•	15
		Exp																			•	•	
		Wei					ıre) I														•	17
		Rel	iab:	il :	ity	7	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
		Mai:	nta:	ina	abi	11	its	, 5	Str	at	eg	γie	es.	•	•	•				•			20
		Sum																			•	•	22
III.	Meti	nođo	log	Y	•			•	•					•		•	•				•	•	24
		Par	tic	ula	ar	Me	etł	100	3								•		•	•	•		24
		Data	a De	250	eri	tal	ic	n		_	_					_			_		_		25
		Data	a S	ء 1 د	act	·ic	n n			•	•		•	-	•	•	•	•		•		•	26
															•	•	•	•	•	•	•	•	32
		Sum	mar)	Y	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	32
IV.	Resu	ılts	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33
		BQE											•		•	•	•				•	•	33
		BQQ	Ca	rd	Ty	/pe) F	les	sul	ts	3	•	•						•	•			37
		BTJ																					41
		SUQ										•	_	_	_	-	•	-	•	-	•		45
		SYL										•	•	:	•	•	•	•	•	•	•	•	49
		Sum			_	_															•	•	53
			uca L	7		•	•	•	•	•	•	•	•	-		•		•			•	•	در

																					Page
v.	Cor	clus	sion	s	and	Red	COI	nmer	nda	ti	ons	s	•	•	•	•	•	•	•	•	55
			sear nclu																		55 55
			comm																		58
		_	nmar																		59
Append	lix	A:	Ori	gi	nal	Dat	ta	and	i F	or	mat	t.	•	•	•	•	•	•	•	•	61
Append	xif	B:	For	tr	an 1	Pro	gra	ams	•	•	•	•	•	•	•	•	•	•	•		62
Append	lix	C:	Tab	le	of	Rai	ndo	om (Jni	.ts	•	•	•	•	•	•		•	•	•	63
Append	lix	D:	Tot	al	Ti	me d	מכ	Tes	st	Pr	ogı	ran	n		•		•		•	•	64
Append	lix	E:	GRA	FT	ALK	Cor	nma	and	St	ru	cti	ure	9	•	•	•	•	•	•	•	66
Biblio	ogra	phy		•	•		•		•	•	•	•	•	•	•	•		•	•	•	67
Vita .					•						•	•									69

List of Figures

Figure	F	Page
1.	Halley's Mortality Table Hazard Function	7
2.	Bathtub Curve	8
3.	Sample TTT Plot Using Calculations from Table I	12
4.	Weibull Probability Densities	19
5.	Weibull Hazard Functions	19
6.	Sample GRAFTALK Plot	31
7.	BQE 1st Lifetime Plot	34
8.	BQE 2nd Lifetime Plot	35
9.	BQE 3rd Lifetime Plot	36
10.	BQQ 1st Lifetime Plot	38
11.	BQQ 2nd Lifetime Plot	39
12.	BQQ 3rd Lifetime Plot	40
13.	BTJ lst Lifetime Plot	42
14.	BTJ 2nd Lifetime Plot	43
15.	BTJ 3rd Lifetime Plot	44
16.	SUQ 1st Lifetime Plot	46
17.	SUQ 2nd Lifetime Plot	47
18.	SUQ 3rd Lifetime Plot	48
19.	SYL 1st Lifetime Plot	50
20.	SYL 2nd Lifetime Plot	51
21.	SYL 3rd Lifetime Plot	52

List of Tables

Table		Page
I.	Calculations for Constructing a TTT Plot	11
II.	Sorted Data File	27
III.	BQE Card Type Summary	37
IV.	BQQ Card Type Summary	41
v.	BTJ Card Type Summary	45
VI.	SUQ Card Type Summary	49
VII.	SYL Card Type Summary	53

Abstract

This research described the failure distributions of selected Minuteman III guidance system electronic cards and was the first attempt to use the Total Time on Test graphical technique to detect failure patterns. The data analysis was performed by using a Zenith 100 computer program that performed the Total Time on Test calculations and the Reliability Data Acquisition and Analysis Techniques software package.

The objectives of the research were to 1) describe the failure distributions of selected Minuteman III electronic cards, 2) determine if the corresponding hazard function demonstrated infant mortality, useful life, or wearout, and 3) suggest management strategies to deal with wearout or infant mortality.

Five individual cards were selected and the first three lifetimes of each card were examined. Nine of the fifteen cards indicated an exponential failure distribution, the other six were identified as either a Weibull or a normal failure distribution.

The results of this research indicate that some of the lifetimes did show signs of wearout; however, it was determined that no management actions were required because of the large mean lifetimes of the cards affected.

A DESCRIPTION OF THE FAILURE DISTRIBUTIONS OF SELECTED MINUTEMAN III GUIDANCE SYSTEM ELECTRONIC CARDS

I. Introduction

Background

The reliability of military systems after long periods of dormancy has been a major concern throughout military history. A system which is taken out of storage is expected to complete its mission without performance degrading malfunctions. As military systems continue to become more complex, their expected response time has also shortened. To meet these requirements, reliability must increase. Newer missile systems are being developed, as much as possible, to be deployed as "wooden rounds." other words, the system would require very minimal field level maintenance. Any corrective maintenance would be accomplished at depot level. This concept would deliver the missile to the operational unit as an "all up round" (totally assembled) and would require no installation of any parts, components, or subsystems. This concept applies to the missile only, not to any launch support system or launch platform (19:7).

The Minuteman Intercontinental Ballistic Missile (ICBM) weapon system has been deployed in its role of strategic nuclear deterrence since the early 1960s. When it was first deployed as the Minuteman I, its guidance system had a typical lifetime (mean time between failure [MTBF]) of approximately 600 hours (15:122). Since that time the Minuteman II and the Minuteman III versions of the weapon system have been deployed. The Minuteman III version now has a MTBF on the guidance system in excess of 10,000 hours (11:124). In other words, the Minuteman guidance system reliability improvement has gone from more than one failure per month per site to one failure every fifteen months per site. The Minuteman II system is currently undergoing a major modification that will allow it to meet or exceed the MTBF standard established by the Minuteman III. These improved MTBF standards are being established by a weapon system that was designed during the 1950s and was expected to function for only ten years. However, Minuteman has been deployed for more than 20 years and is currently scheduled to be on alert through the year This is indicative of what a reliability and maintainability enhancement program can achieve if given sufficient funds and management attention.

General Issue

The problem for this research is detecting if infant mortality, wearout, or useful life exists in electronic

components and its effect on the reliability and maintainability (R & M) of Air Force weapon systems.

The emphasis on R & M is increasing because of the impact of R & M on weapon system readiness, as well as on operational and support costs. Many factors influence R & M; however, this research effort will focus on a method for detection of failure distributions in electronic cards of the Minuteman III guidance system. This is important because infant mortality increases maintainability costs and reduces reliability because of increased failures early in a system's life. Wearout, on the other hand, may limit readiness due to increased failures in a system's life.

Specific Problem

SCOOKING PERSONAL SCOOK

The research question is defined as detecting which failure distribution exists in specific Minuteman III guidance system electronic cards. The specific problem for this research is the identification of infant mortality, wearout, or useful life in Minuteman III guidance system electronic cards. Infant mortality is characterized by a decreasing rate of failure early in the life of a component or system. Wearout occurs when there is an increasing rate of failure late in the life of a component or system.

Useful life is characterized by a constant rate of failure. The reliability of an item is the probability of that item being able to perform its function for a specific period of time in its environment. Stated simply, reliability is

the chance the item will work when it is supposed to. If failure rates are high, as in infant mortality, the chances of the item working when required are reduced. Traditional measures of reliability such as mean time between failures cannot signal infant mortality or wearout. For this reason, we need new methods of detecting these problems. There has been much research done on methods of detecting various failure modes and the one that this research effort will use is the Total on Test (TTT) graphical technique.

Research Objectives

The objectives of this research effort are to:

- Describe the failure distributions of electronic cards in the Minuteman III guidance system.
- Determine if the corresponding hazard function demonstrates infant mortality, wearout, or useful life.
- 3. Suggest management strategies for reducing any infant mortality in the Minuteman III guidance system, and if evidence of wearout exists, suggest preventive maintenance strategies for management consideration.

This portion of the thesis introduced the subjects of reliability, maintainability, infant mortality, wearout and useful life. Methods for detecting infant mortality, wearout, and useful life were identified. We have also discussed the specific problem for this research —

detecting infant mortality, wearout, or useful life in certain electronic cards in the Minuteman III guidance system. The next portion of the thesis will discuss some of the pertinent literature available on these topics.

II. <u>Literature Review</u>

This portion of the thesis will examine some of the literature on the types of failure characteristics and their impact on weapon system readiness. We focus on the reliability topics of decreasing, constant, and increasing hazard functions, as well as the total times on test transform technique which is a useful graphical representation of the hazard function. Our interest in the hazard functions is motivated by a recognition that management policy can offset the negative effects of infant mortality or wearout without resorting to expensive redesign.

Hazard Functions

The hazard function is defined as the probability of failure in a finite interval of time. It is the instantaneous failure rate at age t. The hazard function is a measure of proneness to failure as a function of age and is used by life insurance companies to forecast human mortality (14:25). Halley's mortality table is illustrated in Figure 1 as an example of a hazard function and demonstrates that as age initially increases, the hazard function decreases. Then as age increases, so does the hazard function (14:25).

Figure 1. Halley's Mortality Table Hazard Function (14:25)

This research is concerned with finding whether or not the hazard function of a particular group of electronic cards from the Minuteman guidance system increases or decreases with age.

Hazard Plots

personal accessor interesting tenesions personal total

The hazard plot can be used for checking failure distributions and can provide a quick method for estimating distribution parameters, the percentage of components failing by a certain age, percentiles of the distribution, the failure rate of the components as a function of their age, and conditional failure probabilities for units of any age (2:113).

Bathtub Curve

The bathtub curve, as illustrated in Figure 2, is generally used to illustrate three hazard functions: decreasing, constant, and increasing. Some products will have a decreasing hazard function early in life and an increasing hazard function as the age of the product increases (14:26). If a decreasing hazard function is present, management actions, such as the use of a burn-in period or environmental stress testing, can be initiated. These actions could lead to considerable time and cost savings because of the increase in useful life of an item.

A decreasing hazard function during the early life of an item is often called infant mortality. It often occurs as a result of poorly designed items, improper manufacturing techniques, or misuse (11:203). Some

Figure 2. Bathtub Curve (14:27)

electronic components are subjected to a burn-in process to reduce infant mortality effects prior to being put into service. When this burn-in is accomplished, the components ideally enter service in the lowest portion of the hazard function and the reliability of the components is increased (14:26). This portion of a component's life is also referred to as useful life (9:26). During the component's useful life, the hazard function is essentially constant and the exponential distribution can be used to describe its life.

An increasing hazard function during the component's life can be said to correspond to wear-out failure. Such hazard functions often indicate that failures are due to the product wearing out (14:26). If wearout is indicated, preventive maintenance strategies may be considered by management to improve reliability.

Total Time on Test Plot

The failure of a component may, in many situations, be costly and possibly even dangerous. In the case of the components being examined, a failure is obviously costly in terms of weapon system readiness, as well as the manhours required to repair the component. If this research is able to determine that used units are more prone to failure than newer ones, perhaps it may be to our benefit to replace a used component after a certain period of time (7:467).

Barlow and Campo developed a method that aids in the determination of the failure distribution of an item using observed data (4:451-481). Their technique is called the Total Time on Test Plot (TTT) and graphically represents a transform of the empirical failure distribution for the item being examined. The data is ranked from shortest to longest lifetime and the total time on test statistic is calculated as

$$T(X_{(i)}) = \sum_{j=1}^{i} (n-1+j) (X_{(j)} - X_{(j-1)})$$
 (2.1)

where

i = 1, 2, ... n

n = the sample size

 $T(X_{(0)}) = 0$

 $T(X_{(i)}) =$ the total time on test statistic, and

 $X_{(i)} =$ the ith ordered lifetime.

Use of TTT plots allows easy identification of increasing failure rate (IFR) and decreasing failure rate (DFR) distributions. A constant failure rate distribution, or exponential distribution, is represented by a 45 degree line commencing at the origin and proceeding up and to the right. If the TTT plot identifies an IFR, the plot would be distinguished by its convex shape. In other words, the plot would bow away from the horizontal axis (i/n). The DFR is represented by a concave plot that bows toward the

horizontal axis (i/n) (4:451-481). This method of hazard rate identification will be used to analyze the Minuteman guidance system failure data obtained from Hill AFB,

Utah. Table 1 shows the calculations necessary for the construction of an example TTT plot and the TTT plot is illustrated in Figure 3. The lifetimes used in Table 1 were ordered prior to accomplishing the computations. The computations were performed using Equation 2.1, the total time on test equation.

An important feature of the TTT plot is that it allows failure distribution analysis when only incomplete data are available. Incomplete data can be one of three types:

1) a grouped data, 2) truncated data, and 3) censored data. Grouped data records failures in terms of a specific time period. Truncated data occurs when collection is terminated at an arbitrary time. Censored data involves

TABLE I
Calculations for Constructing a TTT Plot

ith Failure	X _(i)	T(X(i)	u _i	i/n
1	5 hours	20 hours	. 4	.25
2	10 hours	35 hours	.7	.50
3	15 hours	45 hours	.9	.75
4	20 hours	50 hours	1.0	1.00

Figure 3. Sample TTT Plot Using Calculations from Table I

the termination of collection after a specific number of failures. Each of these types of data can be analyzed by modifying the TTT plot through the total time on test equation, Equation 2.1. However, the technique does have limitations. When actual data is used, sample size, removal of unfailed parts (withdrawal), and truncation can affect the results (4:451).

Barlow and Proschan identify tests that can be used to help identify the particular failure distribution when truncated data is used. An exponential distribution can be identified by a "crossings test"; how many times the plot crosses the 45 degree line (4:456). If the failure rate is

exponential and n is the number of failures, the probability of the TTT plot being entirely above or below the 45 degree line is 1/n. Another test is the total area between the TTT plot and the 45 degree line that is compared to a tabulated statistic (4:470). Barlow and Proschan also show that the TTT plot from a truncated sample will always be farther away from the 45 degree line than plots of the same size that come from complete data (4:472).

Truncations and withdrawals can also be dealt with by graphic estimation of a distribution and plotting of the TTT transform for the full sample size. Barlow and Proschan provide a review of failure processes and the normal, lognormal, gamma, and Weibull distributions (5:9-44).

Another tool used in this research to determine failure distributions is the Reliability Data Acquisition and Analysis Techniques (RDAAT) software package that is available for the Zenith 100 computer. The program was written for the Air Force by the BDM Corporation. The basic purpose of RDAAT is to establish a more accurate approach to reliability analysis using state-of-the-art statistical techniques. These techniques will provide more accurate reliability estimates of systems and line replaceable units (LRUs) by determining more accurate life predictions and providing insight into forecasting and manpower requirements (16:1,2).

600000

Statistical inferences are made by identifying the best fit for the failure distribution of the data. The RDAAT program does this by applying goodness-of-fit test statistics and hazard plotting techniques to the data (16:5). The software will check the goodness-of-fit for the Weibull, normal, lognormal, exponential, exponential power, logistic, and extreme value distribution functions.

The basic tests used to check the fit of the curves generated are the Smith-Bain and Tiku goodness-of-fit tests that are in the RDAAT software package. Both of these tests are considered to be more powerful statistics than either the Chi-square or Kolmogorov-Smirnov goodness-of-fit tests when incomplete data is used (16:5; 18:261).

Failure Distributions

Failure distributions are attempts to describe mathematically the length of life of a material, structure, or a component. The modes of possible failure for the item in question will affect the form of the failure distribution (5:9).

A variety of distributions have been used to describe the life length of electronic and mechanical components. Here, we discuss the exponential and the Weibull distributions because of their applicability to this research. The exponential distribution is often used to describe useful life and the Weibull distribution is often used to describe infant mortality or wearout (14:27).

Exponential Failure Distribution

A characteristic of the exponential distribution is that it has an instantaneous failure rate that is constant over time. For example, the chance of failure for an old item that has not failed over a specified period of time is the same as that for an unfailed new item over the same length of time (14:26). While the exponential distribution has a number of desirable mathematical properties, its uses are limited because of the following property: it can be proven that if the life length of an item has the exponential distribution, previous use does not affect its future life length. The exponential distribution is the only distribution with this property (5:15).

The exponential distribution has been used as a model for the life of many components because this distribution describes components subject to chance failures. In other words, the probability of failure of an item is the same at any point in age. The exponential distribution may be used to describe the time between failures for items that can be repaired and is also used to describe produce life after units have gone through a burn-in up to the time they start to wear out (14:18). The exponential distribution consists of outcomes $t \ge 0$ and the probability density function (pdf)

$$f(t) = (1/\theta) \exp(-t/\theta), t>0,$$
 (2.2)

where the parameter Θ (theta) is called the distribution mean, and must be positive. Θ is expressed in the same units as t, such as hours, cycles, years, etc. (14:18).

The mean of the exponential distribution is

$$E(X) = \int_{0}^{\infty} \exp(-x/\theta) dx = \theta$$
 (2.3)

This shows why the parameter θ is called the mean time to failure (MTTF). In terms of the failure rate λ , $E(X)=1/\lambda$. When θ is called the MTBF, it is being used to describe repairable equipment with exponentially distributed time between failures.

The reliability function $R(\mathbf{x})$ for a life distribution is

$$R(x)=P(X>x) = \int_{x}^{\infty} f(x)dx. \qquad (2.4)$$

This is the probability of a component surviving beyond age x. It is also called the survivorship function. Statisticians and actuaries have long worked with cumulative distributions for the fraction failing, but public relations minded engineers have turned them around and called them reliability functions (14:21).

The mathematical representation of the hazard function is

$$h(t) = f(t)/R(t)$$
 (2.5)

and is the instantaneous failure rate at age t. It is also the ratio of the probability density function at time t to the probability of survival through the interval (0,t). The hazard function is also called the hazard rate, mortality rate, and the force of mortality (14:25).

Weibull Failure Distribution

The Weibull distribution has been found to be useful in a wide variety of applications, especially those that apply to product life. One of the reasons that this distribution has proved so popular is that it has a large number of shapes that make it very flexible in fitting data (14:36).

The literature suggests that this distribution may be used to describe single components that will cause a system failure (14:36). For example, the failure characteristics of a "weakest link" type of component could be described by the Weibull distribution. The electronic cards in the Minuteman III guidance system are a "weakest link" type of component. The failure of one of the electronic cards in the Minuteman III guidance system will cause a system failure.

The Weibull probability density function is

$$f(x) = (\beta/\alpha^{\beta})x^{\beta-1}\exp[-(x/\alpha)\beta], x>0.$$
 (2.6)

The parameter $\mathfrak g$ (beta) is called the shape parameter and is positive. The parameter $\mathfrak a$ (alpha) is called the scale

parameter and is also positive. Alpha is in the same units as age x and beta is a dimensionless pure number (14:36).

For the special case of \emptyset = 1, the Weibull distribution is the exponential distribution. Figure 4 shows examples of Weibull probability densities with various shape parameters.

Figure 5 shows Weibull hazard functions. Note that the hazard function for B = 1 (the exponential distribution) is a constant failure rate, the hazard function for B = .5 is decreasing, and the hazard function for B = .5 is increasing. This ability to describe the various failure rates are why the Weibull distribution is popular for describing the lifetimes of data (14:39).

Reliability

COSTICUE VIXORIXI PARTERS

Just as the tensions of the cold war continue to be a fact of life, weapon and space systems reliability has become a factor that influences the bargaining position of nations. If a war should start, weapon system reliability will help determine a nation's chance of survival. Electronics reliability is at the heart of the question because few weapons or space systems can reach their targets or objectives without reliable systems or subsystems (13:1). When reliability is considered from an economic viewpoint, high reliability is desired to reduce overall operations and support costs (1:3).

Figure 4. Weibull Probability Densities (14:37)

Figure 5. Weibull Hazard Functions (14:39)

A widely accepted definition of reliability is "the probability of a device performing its purpose adequately for the period of time intended under the operating conditions encountered." "This definition implies that reliability is the probability that the device will not fail to perform as required for a certain length of time" (6:22). In short, reliability is adequate performance over time; i.e., it is a measure of how long an item will operate before it fails. It is a straightforward concept that encompasses the ability to depend on something and is a necessary requirement for any operational equipment (12:24).

Maintainability Strategies

Like reliability, maintainability is an engineering discipline. It was developed to provide designers with a source of specialized skills and knowledge related to supporting and maintaining systems. The requirement came from the increasing complexity, size, and number of items that make up a system. As systems become more complex, they also become more costly to support and maintain (9:1).

The primary push for maintainability comes from the DOD and its military programs. However, general industry is also taking steps to advance this concept in support of their products and to help combat rising costs. The basic principles of the military specifications and standards of private industry are the same; they differ only in the particular needs of each user (9:4).

The objective of maintainability should be to design and develop complete systems that can be serviced in the least amount of time, cost, and with a minimum expenditure of support resources without affecting the performance or safety of the system (9:1). However, if there is evidence of wearout, then some preventive maintenance program may enhance the reliability and maintainability of a deployed system.

The study of reliability and maintainability has resulted in several methods for determining optimum preventive maintenance strategies for many types of components. Talbott (17:1-2) covers four strategies of preventive maintenance which are based on age and condition. first strategy is age replacement. Age replacement is used when the age and condition of the system is known and is the replacement or repair of the item to an "as new" condition. This method replaces the item(s) of interest at failure and at a predetermined point in time without regard to the age of the item(s). Block replacement requires information about the item's condition, but not its age. These two conditions have the uncertainty of not knowing the item's lifetime. If failure cannot be detected except by inspection, then the item's condition is also unknown between inspections. The third maintenance strategy, called maintenance inspection, involves periodic inspection of the items at specific time intervals and replaces only

items that have failed. Talbott's last strategy is called blind replacement. This method replaces items without regard to their condition at a predetermined time interval and does not require inspection of the items between the time intervals. This method is practical if the cost of replacement is less than the cost of inspection. Talbott points out that a failed unit is not replaced at time of failure when using the last two methods and that these strategies should be considered for use only when failure of the item of interest is not fatal to the entire system (17:1-2).

In order for any of these strategies to be effective, the serviceability of the system should not be a factor. For example, a critical part that would be cheap to replace at specific time intervals should not be buried deep in the center of the system and take an excessive amount of time to replace.

Summary

This review examined the literature on reliability, maintainability, hazard functions, failure rates, and the total time on test method of graphically representing a hazard function. Planned maintenance strategies were also discussed. The strategies presented provide managers with four options to use in improving the reliability and maintainability of deployed systems.

The literature authored by Talbott, Barlow and Proschan, Barlow and Campo, and Bergman provided much of the direction for this research effort. Each author has provided substantial insight to the areas of reliability, maintainability, hazard functions and rates, and failure rate distributions. However, the total time on test statistic, introduced by Barlow and Campo and modified by Bergman, is used extensively in this research effort.

ACCIONE SECTION REPRESENT TOTAL

III. Methodology

This chapter describes the methods used to determine the failure distributions and corresponding hazard functions of the Minuteman III guidance system electronic cards that were selected for this research. Here we also describe the data used in this research, how the data was segregated by card type, the sampling plans used, and the computer program used to analyze the data. We also describe the particular location within the Minuteman III guidance system of the individual electronic cards selected for this research.

Particular Method

The general method of detecting infant mortality, wearout, or useful life in the electronic cards of the Minuteman III guidance system was done by computer analysis of lifetime failure data. Lifetime failure data were provided by the statistical analysis branch of the Material Management Engineering Division located at Ogden Air Logistics Center (OOALC/MMEAS). This group is located at Hill AFB, Utah, and their function is to do statistical analysis of Minuteman failure data. The data was sent to us in magnetic tape format.

The data were analyzed on a Zenith 100 Computer, utilizing a computer program written by Major John Kutzke,

an Air Force Institute of Technology (AFIT) instructor. The computer program was used to construct total time on test (TTT) plots of the failure data. A total time on test plot, which plots the total time on test or time exposed to risk versus calendar time, provided information about the failure rate function and assisted us in the determination of whether or not infant mortality, wearout, or useful life existed in the components being examined.

Burn-in periods and environmental stress testing are possible methods for dealing with infant mortality. The maintenance strategies discussed in Chapter II are possible methods for dealing with wearout. Both strategies are possible methods for improving system reliability.

Data Description

The data was provided by OOALC/MMEAS to the researcher on a magnetic tape configured in a 116-column record length, 30 records per block, 3480 blocks format. It was formatted at 5250 bytes per inch (BPI) and labeled in the Extended Binary Coded Decimal Interchange Code (EBCDIC) format. This format is not compatible with the magnetic tape reading equipment available for research support at AFIT. The tape was reformatted into a 116-column record length, 60 records per block, 6960 blocks, unlabeled, American Standard Code Information Interchange (ASCII) format. This format is compatible with the tape reading equipment available in the AFIT computer support area.

A sample of the data and the data format are contained in Appendix A. All of the data were configured sequentially by card type (alphabetically) and by serial number within each card type. Air Force Logistics Command (AFLC) Regulation 66-308, Attachment 3, provides a complete description of the data format.

Data was provided on 44 different types of electronic cards. The cards were from two main locations within the Minuteman III guidance system, the stabilized platform and the missile guidance set control. Five cards were selected for analysis, four are from the guidance set control, and the other is from the stabilized platform. These cards were selected because they had more than two lifetimes and had a large population. The card that was selected from the stabilized platform has started on its sixteenth lifetime. This card was selected so that we could examine those lifetimes for any changes in its failure distribution or mean lifetimes.

Data Selection

7-800000 k30003-

In preparation for analysis, the data was segregated into particular lifetimes by card type using a Fortran program prepared by the researcher. Each of these segregated lifetimes contained 1) electronic cards that had failed a certain number of times, and 2) electronic cards that had been temporarily removed from service for reasons other than failure, but had not yet failed again. For

example, all electronic cards that had experienced a single failure were sorted into one file, all electronic cards that had experienced two failures were sorted into another file, and so on until all available lifetimes were segregated. However, each of these files also contained entries for cards that had been temporarily removed form service for reasons other than failure. There were cards included in the data that had not yet experienced failure and they were also sorted into a segregated file. An example of a sorted data file containing failures and removals is shown in Table II.

Each of the segregated lifetimes was broken down into one file containing failures only, and another file that contained electronic cards that were removed for reasons other than failure. Each lifetime would therefore contain

TABLE II
Sorted Data File

Card Number	Serial Number	Hours	Failures	Hours Since Last Failure
вкм	988	61361	1	61631 (failure)
BKM	988	78120	2	16489 (failure)
ВКМ	988	82294	2	20663 (removal)
BKM	992	50954	1	50954 (failure)
ВКМ	992	81447	2	30493 (removal)

failures and temporary removals for reasons other than failure. Failures are identified as uncensored data and removals identified as censored data. The data was then analyzed using each card type's individual lifetimes as a separate group.

The Fortran programs in Appendix B were written by the researcher and used to separate all of the data into individual files. One program was used to separate all of the data into individual lifetimes, and each separation required that the program be changed to read a different file, write the new information to a different file, and read a different number of records. A different program was used to separate the electronic cards that had failures from those electronic cards that did not. This program is also included in Appendix B.

The columns of information selected from the entire data base for this research were the card type, item serial number, the cumulative operational hours, cumulative verified failures, and hours since last verified failure. The individual data files ranged in size from 2184 entries to 21 entries. Sampling levels and plans from Military Standard 105D, Table 7-1 and Table 7-2, were used to select the sample sizes from the individual data sets that had populations too large for the Zenith 100 to calculate. The sample sizes from Military Standard 105D were chosen because the standard has been proven to be mathematically

and statistically sound (10:1). Individual samples were selected from the large files by the use of random numbers from the random number table in the <u>CRC Standard Mathematical Tables</u> text. A sample of the random number table used is shown in Appendix C.

After all of the data was segregated into individual files, each file was printed in hard copy so that samples could be selected and all necessary data was readily available for input into the Zenith 100 computer. The data entered was the difference between the cumulative operational hours and the hours since the last failure. the case of the electronic cards with no failures or only one failure, these hours represented cumulative operational hours until data selection was made. For the electronic cards with more than one failure, these hours represented the difference between the cumulative operational hours and the hours since last verified failure. The electronic cards that were used as censored data used the difference between the current removal hours and the last removal for a reason other than a failure. In many cases, individual cards had more than one removal between failures. above process was repeated, when required, for each removal for reasons other than failure.

The program used by the Zenith 100 computer for data manipulation is Total Time on Test 1 (TTT1). The program is an adaptation of a Fortran program written by Lt Col

AND THE PROPERTY SERVICES SERVICES

Carlos Talbott, HQ USAF/LE-RD, in support of his doctoral dissertation research. The program was rewritten in ZBASIC programming language by Major John Kutzke, AFIT/LSM, and modified by Captain William Rimpo and the researcher. A printout of the program is provided in Appendix D. The program performs all calculations required in support of the Total Time on Test Transform described in Chapter II of this thesis.

The data was input by individual lifetime into the Zenith 100 computer and calculations performed by the TTTl program. When calculations are completed, the TTTl program provides a data file that can be plotted using the Total Time on Test graphical technique. The data for this research was plotted using the GRAFTALK software that is available for the Zenith 100 computer. An example of the command formats used by the GRAFTALK software for this research is provided in Appendix E.

The GRAFTALK plots were used to perform a portion of the data analysis. The plots gave a visual indication of whether or not infant mortality, wearout, or useful life was occurring in the individual data file. The plots were also used in determining possible failure distributions for the individual data files. An example of a GRAFTALK plot is shown in Figure 6.

Another tool employed to assist the researcher in determining individual failure distributions was the

Figure 6. Sample GRAFTALK Plot

Sex defined to the second

Paragraphic Recognition Index. Res. 1845-545-51

Reliability Data Acquisition and Analysis Techniques (RDAAT) program for the Zenith 100 computer. The program was written for the Air Force by the BDM Corporation.

According to the BDM Corporation, the basic use for RDAAT is to establish a more accurate approach to reliability analysis using state-of-the-art statistical techniques (16:1-2). These techniques will provide more accurate reliability estimates of systems, and line replaceable units (LRUs) by determining more accurate life predictions and providing insight into forecasting and manpower requirements.

Five electronic cards were selected as subjects for this research. The cards that were selected are from the missile guidance set control, the x, y, and z ECA accelerometers, the 4.8 kilocycle power supply, the 400 cycles per second fan power supply, and the Minuteman III stabilized platform.

Summary

The results of these applied methods will allow us to complete the research objectives of describing the failure distributions of selected electronic cards in the Minuteman III guidance system and determine if the corresponding hazard functions demonstrate infant mortality, wearout, or useful life. By accomplishing these objectives, we will also answer the research question of whether or not infant mortality, wearout, or useful life exists in these electronic cards.

This portion of the research has explained the methodology used to reduce the initial data file into segregated lifetimes so that an analysis could be performed on each lifetime to determine: 1) if a particular failure distribution is present, 2) if infant mortality or wearout is present, or 3) if the lifetime is in useful life. The next chapter of this research will report the results of the data analysis, give a graphical representation of the identified failure distribution, and report on the results of the RDAAT statistical analysis.

IV. Results

This portion of the research reports the results of the data analysis performed using the total time on test graphical method and the Zenith 100 computer RDAAT statistical program. We report the failure distribution, hazard function, and indicated lifetime pattern for each of the five types of electronic cards examined. This research examined the first three lifetimes of each of the five card types for the indicated failure distribution, hazard function and lifetime pattern. The results will be reported in lifetime order by particular card type serial number prefix.

BQE Card Type Results

services coccess secretary

The first electronic card type to be reported on is from the 4.8 kilocycle power supply and has a serial number prefix of BQE. The total time on test plot for the first lifetime, shown in Figure 7, indicates the possibility of a Weibull distribution. The RDAAT statistical program gives the Weibull distribution hazard plot a .94 correlation coefficient and a shape parameter of 1.51. The RDAAT statistical program also indicates that a normal distribution may be the correct failure distribution and the normal distribution has a .97 correlation coefficient shown on its hazard plot. The Tiku goodness-of-fit test

Figure 7. BQE 1st Lifetime Plot

for the normal distribution gives a .00003 chance of rejecting the null hypothesis when the normal distribution is, in fact, correct. These statistical tests give the indication of wearout existing in the first lifetime of this particular electronic card. The mean lifetime is 48623.69 hours for this electronic card.

The second lifetime total time on test plot for the BQE electronic card type, shown in Figure 8, indicates the possibility of an exponential distribution. The RDAAT hazard plot for the exponential distribution gives a .99 correlation coefficient and the Smith-Bain goodness-of-fit test indicates a .013 chance of rejecting the null

Figure 8. BQE 2nd Lifetime Plot

hypothesis when the exponential distribution is correct. The Tiku goodness-of-fit test indicates a .003 chance of rejecting the null hypothesis. The RDAAT statistical program also indicates that the Weibull distribution has a .95 correlation coefficient on its hazard plot with a .88 shape parameter. These statistical tests give the indication that this electronic card is in useful life. The mean lifetime is 10083.83 hours for this electronic card.

The third lifetime total time on test plot for the BQE electronic card type, shown in Figure 9, indicates the possibility of an exponential distribution. The RDAAT

Figure 9. BQE 3rd Lifetime Plot

hazard plot for the exponential distribution gives a .98 correlation coefficient and the Tiku goodness-of-fit test indicates a .0005 chance of rejecting the null hypothesis when the exponential distribution is correct. The RDAAT statistical program also indicates that the Weibull failure distribution hazard plot has a correlation coefficient of 1.0 with a 1.31 shape parameter. These statistical tests give the indication that this electronic card is in useful life. The mean lifetime is 16100.42 hours for this electronic card. Table III summarizes the results for the BQE electronic card.

TABLE III
BQE Card Type Summary

Card Type	Lifetime	Mean Life (hours)	Tested Distribution	RDAAT Correlation Coefficient	Goodness- of-fit	
				(Hazard Plot)	Tiku	Smith-Bain
BQE	1	48623.69	Normal Meibull β=1.51	.97 .94	.00003	
	2	10083.83	Exponential Weibull β=.88	.99 .95	.003	.013
	3	16100.42	Exponential Weibull β=1.31	.98 1.0	.0005	

BQQ Card Type Results

The second electronic card type to be reported on is from the 400 cycles per second fan power supply and has a serial number prefix of BQQ. The first lifetime total time on test plot, shown in Figure 10, indicates the possibility of an Weibull failure distribution. The RDAAT hazard plot for the Weibull distribution gives a .98 correlation coefficient and a shape parameter of 1.12. The RDAAT program also gives the normal failure distribution hazard plot a .98 correlation coefficient and the Tiku goodness-of-fit test indicates a .0284 chance of rejecting the null hypothesis when the normal failure distribution is correct. These statistical tests indicate that this electronic card

Figure 10. BQQ 1st Lifetime Plot

may be experiencing wearout. The mean lifetime is 46778.39 hours for this electronic card.

The second lifetime total on test plot for the BQQ electronic card, shown in Figure 11, indicates the possibility of an exponential failure distribution. The RDAAT program hazard plot for the exponential distribution gives a 1.0 correlation coefficient. The Smith-Bain goodness-of-fit test indicates a .01 chance of rejecting the null hypothesis and Tiku goodness-of-fit test indicates a .0000 chance of rejecting the null hypothesis when the exponential distribution is correct. The RDAAT statistical program also indicates the Weibull failure distribution

Figure 11. BQQ 2nd Lifetime Plot

hazard plot has a correlation coefficient of .99 with a .70 shape parameter. The Smith Bain goodness-of-fit test indicates a .50 chance of rejecting the null hypothesis when the Weibull distribution is correct. These statistical tests give the indication that this electronic card is in useful life. The mean lifetime is 8175.70 hours for this electronic card.

The third lifetime total on test plot for the BQQ electronic card, shown in Figure 12, indicates the possibility of a Weibull failure distribution. The RDAAT program hazard plot for the Weibull distribution

Figure 12. BQQ 3rd Lifetime Plot

gives a .98 correlation coefficient and a shape parameter of 1.04. The RDAAT program also gives the normal failure distribution a .98 correlation coefficient and the Tiku goodness-of-fit test indicates a .0000 chance of rejecting the null hypothesis when the normal distribution is correct. These statistical tests indicate that this electronic card may be experiencing wearout. The mean lifetime is 23216.02 hours for this electronic card. Table IV summarizes the results for the BQQ electronic card.

TABLE IV
BQQ Card Type Summary

Card Type	Lifetime	ime Mean Life (hours)	Tested Distribution	RDAAT Correlation Coefficient	Goodness- of-fit	
				(Hazard Plot)	Tiku	Smith-Bain
600	1	46778.38	Normal Weibull 6=1.12	.98 .98	.0284	
	2	8175.70	Exponential Weibull \$\beta = .7	1.0	.0000	.01 .50
	3	23216.02	Normal Weibull β=1.04	.98 .98	.0000	

BTJ Card Type Results

The third electronic card type to be reported on is from the missile guidance set control and has a serial number prefix of BTJ. The first lifetime total time on test plot for the BTJ electronic card, shown in Figure 13, indicates a normal failure distribution. The RDAAT program hazard plot for the normal distribution gives a .97 correlation coefficient. The Smith-Bain goodness-of-fit test indicates a .01 chance of rejecting the null hypothesis and the Tiku goodness-of-fit test indicates a .0000 chance of rejecting the null hypothesis when the normal distribution is correct. The RDAAT statistical program also indicates that the Weibull failure distribution hazard plot has a

somer semior conser

COCCOCCO PROPERTY SERVICES CONTROL DOCUMENT

Figure 13. BTJ 1st Lifetime Plot

correlation coefficient of .96 and a .81 shape parameter. The Smith-Bain goodness-of-fit test indicates a .07 chance of rejecting the null hypothesis when the Weibull distribution is correct. These statistical tests indicate that this electronic card may be experiencing wearout. The mean lifetime is 34938.01 hours for this electronic card.

The second lifetime total time on test plot for the BTJ electronic card, shown in Figure 14, indicates an exponential failure distribution. The RDAAT program hazard plot gives a .99 correlation coefficient for the exponential distribution and the Tiku goodness-of-fit test

Figure 14. BTJ 2nd Lifetime Plot

indicates a .0000 chance of rejecting the null hypothesis when the exponential distribution is correct. The RDAAT program hazard plot for the Weibull failure distribution indicates a 1.0 correlation coefficient and a 1.16 shape parameter. These statistical tests indicate that this electronic card is in useful life. The mean lifetime is 14145.02 hours for this electronic card.

The third lifetime total time on test plot for the BTJ electronic card, shown in Figure 15, indicates an exponential failure distribution. The RDAAT program hazard plot gives a .96 correlation coefficient for the

Figure 15. BTJ 3rd Lifetime Plot

exponential distribution and the Tiku goodness-of-fit test indicates a .0000 chance of rejecting the null hypothesis when the exponential distribution is correct. The RDAAT program hazard plot for the Weibull failure distribution indicates a .96 correlation coefficient and a .72 shape parameter. These statistical tests indicate that this electronic card is in useful life. The mean lifetime is 11762.23 hours for this electronic card. Table V summarizes the results for the BTJ electronic card.

TABLE V
BTJ Card Type Summary

Card Type	Lifetime	Mean Life (hours)	Tested Distribution	RDAAT Correlation Coefficient	Goodness- of-fit	
				(Hazard Plot)	Tiku	Smith-Bain
BIJ	1	34938.01	Normal Weibull B=.81	.97 .96	.0000	.01 .07
	2	14145.02	Exponential Weibull 8=1.16	.99 1.0	.0000	
	3	11762.23	Exponential Weibull β=.72	.96 .96	.0000	

SUQ Card Type Results

The next electronic card type to be reported on is from the x, y, or z ECA accelerometer and has a serial number prefix of SUQ. The first lifetime total time on test plot, shown in Figure 16, indicates an exponential failure distribution. The RDAAT program hazard plot gives a .72 correlation coefficient for the exponential distribution and the Tiku goodness-of-fit test indicates a .0948 chance of rejecting the null hypothesis when the exponential distribution is correct. The RDAAT program hazard plot gives a .92 correlation coefficient for the normal distribution and the Tiku goodness-of-fit test indicates a .0000 chance of rejecting the null hypothesis when the normal distribution is correct. These statistical

Figure 16. SUQ 1st Lifetime Plot

tests indicate that this electronic card may be experiencing wearout. The mean lifetime is 45472.72 hours for this electronic card.

The second lifetime total time on test plot for the SUQ electronic card, shown in Figure 17, indicates a normal failure distribution. The RDAAT program hazard plot gives a .99 correlation coefficient for the normal distribution. The Weibull distribution hazard plot as a .96 correlation coefficient with a shape parameter of 1.42. The Smith-Bain goodness-of-fit test indicates a .021 chance of rejecting the null hypothesis and the Tiku goodness-of-fit test indicates a .0024 chance of rejecting the null hypothesis

Figure 17. SUQ 2nd Lifetime Plot

for the normal distribution. The Smith-Bain test indicates a .31 chance of rejecting the null hypothesis for the Weibull distribution. These statistical tests indicate that this electronic card may be experiencing wearout. The mean lifetime is 41551.59 hours for this electronic card.

The third lifetime total time on test plot for the SUQ electronic card, shown in Figure 18, indicates a possible exponential failure distribution. However, the plot does give indications of early infant mortality. The RDAAT program hazard plot gives a .95 correlation

Figure 18. SUQ 3rd Lifetime Plot

coefficient for the exponential distribution and the Tiku goodness-of-fit test indicates a .0000 chance of rejecting the null hypothesis when the exponential distribution is correct. The RDAAT program also indicates that the Weibull failure distribution has a .96 correlation coefficient with a .68 shape parameter. These statistical tests indicate that this electronic card is in useful life. The mean lifetime is 11206.53 hours for this electronic card. Table VI summarizes the results for the SUQ electronic card.

TABLE VI
SUQ Card Type Summary

Card Type		Mean Life (hours)	Tested Distribution	RDAAT Correlation Coefficient (Hazard Plot)	Goodness- of-fit	
					Tiku	Smith-Bain
SUQ	1	45472.72	Exponential Normal	.72 .92	.094B .0000	
	2	41551.59	Normal Weibull β=1.42	.99 .96	.0024	.0210 .31
	3	11206.53	Exponential Weibull β=.68	.95 .96	.0000	

SYL Card Type Results

The last electronic card type to be reported is from the Minuteman III stabilized platform and has a serial number prefix of SYL. The first lifetime total time on test plot, shown in Figure 19, indicates an exponential failure distribution. The RDAAT program hard plot gives a .97 correlation coefficient for the exponential distribution. The Smith-Bain goodness-of-fit test indicates a .01 chance of rejecting the null hypothesis and the Tiku goodness-of-fit indicates a .0000 chance of rejecting the null hypothesis when the exponential distribution is correct. The RDAAT program hazard plot for the Weibull failure distribution indicates a .99

Figure 19. SYL 1st Lifetime Plot

TOSESSE. TESTAGE

STATES OF

correlation coefficient and a .99 shape parameter. The Smith-Bain goodness-of-fit test indicates a .195 chance of rejecting the null hypothesis when the Weibull distribution is correct. These statistical tests indicate that this electronic card is in useful life. The mean lifetime is 11359.13 hours for this electronic card.

The second lifetime total time on test plot for the SYL electronic card, shown in Figure 20, indicates an exponential failure distribution. The RDAAT program hazard plot gives a .98 correlation coefficient for the exponential distribution. The Smith-Bain goodness-of-fit test indicates a .01 chance of rejecting the null

Figure 20. SYL 2nd Lifetime Plot

STATES STATES

777

12.00 12.00 Report 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 1

hypothesis and the Tiku goodness-of-fit indicates a .0000 chance of rejecting the null hypothesis when the exponential distribution is correct. The RDAAT program hazard plot for the Weibull failure distribution indicates a .99 correlation coefficient and a .84 shape parameter. The Smith-Bain goodness-of-fit test indicates a .50 chance of rejecting the null hypothesis when the Weibull distribution is correct. These statistical tests indicate that this electronic card is in useful life. The mean lifetime is 11476.12 hours for this electronic card.

The third lifetime total time on test plot for the SYL electronic card, shown in Figure 21, indicates an

Figure 21. SYL 3rd Lifetime Plot

exponential failure distribution. The RDAAT program hazard plot gives a 1.0 correlation coefficient for the exponential distribution. The Smith-Bain goodness-of-fit test indicates a .01 chance of rejecting the null hypothesis and the Tiku goodness-of-fit indicates a .0000 chance of rejecting the null hypothesis when the exponential distribution is correct. The RDAAT program hazard plot for the Weibull failure distribution indicates a .98 correlation coefficient and a .76 shape parameter. The Smith-Bain goodness-of-fit test indicates a .405 chance of rejecting the null hypothesis when the Weibull distribution is correct. These statistical tests indicate

that this electronic card is in useful life. The mean lifetime is 12111.20 hours for this electronic card. Table VII summarizes the results for the SYL electronic card.

TABLE VII
SYL Card Type Summary

Card Type	Lifetime Mean Life (hours)	Life	Tested Distribution	RDAAT Correlation Coefficient	Goodness- of-fit	
			(Hazard Plot)	Tiku	Smith-Bain	
SYL	1	11359.13	Exponential	.97	.0000	.01
			Weibull β=.99	.99		.195
	2	11476.12	Exponential	.98	.0000	.01
			Weibull β=.84	.99		.50
	3	12111.20	Exponential Weibull	1.0 .98	.0000	.01 .405

Summary

September September September States

Use of the total time on test graphical procedure and the RDAAT statistical program has allowed us to determine the most probable failure distributions, hazard functions, and lifetime patterns for the electronic cards examined in this research. Use of these procedures has also allowed us to answer the questions that prompted this research effort:

1. Does infant mortality exist in electronic cards of the Minuteman III guidance system?

- 2. Are electronic cards of the Minuteman III guidance system wearing out?
- 3. Are the electronic cards in the Minuteman III guidance system in useful life?

The next portion of the research effort will include conclusions, recommendations to management, and other possible uses of these findings.

V. Conclusions and Recommendations

This chapter will present our conclusions based on our findings and recommendations for future study and research. The goal of this research was to describe the failure distributions of selected electronic cards from the Minuteman III guidance system and to detect what failure pattern existed in those cards.

Research Objectives

The objectives of this research were:

- 1. To describe the failure distributions of selected electronic cards in the Minuteman III guidance system.
- 2. To determine if the corresponding hazard function demonstrated infant mortality, wearout, or useful life.
- 3. To suggest management strategies to deal with infant mortality or wearout.

This research was also accomplished because the Total

Time on Test graphical technique had not been used to

determine failure distributions for Minuteman failure data.

Conclusions

The BQE electronic card had a first mean lifetime of 48623 hours, a second mean lifetime of 10083 hours, and a third mean lifetime of 16100 hours. The first lifetime failure distribution was Weibull with a shape parameter of 1.51, which would indicate wearout. The two remaining

lifetimes examined for this card indicated exponential failure distributions. From this failure distribution, we can conclude that the card was in useful life. Noting the significant difference in the mean lifetimes on this card, we can conclude that this card was not repaired to as good as new condition.

The BQQ electronic card had a first mean lifetime of 46778 hours, a second mean lifetime of 8175 hours, and a third mean lifetime of 23216 hours. The first lifetime failure distribution was Weibull with a shape parameter of 1.12. The third lifetime for this card also indicated a Weibull distribution and had a shape parameter of 1.04. Recall that a Weibull distribution with a shape parameter of 1 is the exponential distribution. Both of these lifetimes have shape parameters that are very close to 1, indicating that these lifetimes may not be wearing out, but rather are in useful life. The second mean lifetime of this card was significantly less than either of the other two. We cannot conclude why this occurred; however, it is interesting to note that the third mean lifetime of this card increased significantly over the second. This card type also has significant differences between the mean lifetimes and because of that we can conclude that this card was not repaired to as good as new condition.

The BTJ electronic card had a first mean lifetime of 34938 hours, a second mean lifetime of 14145 hours, and a

third mean lifetime of 11762 hours. The first lifetime had a normal failure distribution and the second and third lifetimes had exponential failure distributions. The normal distribution gives the indication that the first lifetime may have been showing signs of wearout. The second and third lifetimes were both in useful life. However, there is also a significant difference in the mean lifetimes for this card type. The largest difference is between the first and second lifetime. The second mean lifetime is less than 50 percent of the first mean lifetime. Again, we can conclude that this card was not repaired to as good as new condition.

testes constant tentantes strategies constant tentantes and tentantes

PROPERTY MESSAGES | BANKASO POSSOCO

The SUQ electronic card had a first mean lifetime of 45472 hours, a second mean lifetime of 41551 hours, and a third mean lifetime of 11206 hours. The first lifetime failure distribution was normal, indicating possible wearout. The second lifetime also indicated a normal failure distribution or a Weibull failure distribution with a 1.42 shape parameter, which would also indicate possible wearout. The third lifetime had an exponential failure distribution and would indicate useful life. Note that the first two mean lifetimes are quite high and that the third lifetime is significantly less. This would tend to indicate that during the second repair cycle of this card, it was not repaired to as good as new condition.

The SYL electronic card was the only card selected from the stabilized platform of the guidance system. It was selected because it had the most lifetimes of any of the cards on which we had data. The first mean lifetime of the SYL electronic card was 11359 hours, the second mean lifetime was 11476 hours, and the third mean lifetime was 12111 hours. All three lifetimes had exponential failure distributions, indicating useful life, and there were no significant differences between the lengths of the mean lifetimes.

Recommendations for Further Research

Based on the findings of this research, three areas are recommended for further research.

- 1. Further research needs to be accomplished to determine if the differences in the mean lifetimes within a specific card type is significant.
- 2. Determine why only one card type (SYL) has a significant failure history beyond three lifetimes and, since this card is from the stabilized platform, attempt to determine if the stabilized platform is a limiting factor in guidance system reliability.
- 3. Further use of the Total Time on Test performance is necessary to validate its applicability to this type of data.

Summary

CONTROL SERVING STREET, SERVINGS

Through the use of the Total Time on Test graphical technique and the RDAAT statistical package, we have described the failure distributions and hazard functions for five selected electronic cards. Recall that the failure distributions and hazard functions described are for the first three lifetimes of these selected electronic cards.

Nine of the fifteen lifetimes examined indicated that the exponential distribution correctly identified the failure pattern of those electronic cards. be concluded that the lifetimes that show an exponential failure distribution have a constant failure rate and are in useful life. The other six lifetimes were identified as either a Weibull with a shape parameter greater than one, or a normal distribution. It can be concluded that the lifetimes that show a normal failure distribution or a Weibull failure distribution, with a shape parameter greater than one, are indicating signs of wearout. However, two of the lifetimes that indicated a Weibull distribution had shape parameters very close to one. occurred in one type of electronic card (BQQ) and could lead to the conclusion that these lifetimes are, in fact, failing exponentially and are in useful life, not wearout. The other four lifetimes that indicate wearout failure distributions have mean lifetimes, derived from the RDAAT

Statistical package, that exceed 34900 hours. Recall from Chapter I that the system mean time between failure is approximately 10000 hours. With this in mind, a card with wearout characteristics and a mean lifetime of 34900 hours may not require any management action. Data was provided for 44 electronic cards; however, the five selected for this research were the only cards that had significant numbers of failures beyond two lifetimes. The system has been in constant operation since the early 1970s and, as reported in Chapter I, is improving its reliability performance with age. Perhaps further research will indicate possible trends that require management action such as preventive maintenance.

version editation fraction, editions, respected seconds, separate societies, assessed societies,

Appendix A. Original Data and Format

NBKM0989S01083G7073117504E03466400000000003466405002005002 00346640500200346640500200346640500200000 00590500201

NBKM0993S05296D10830098311E0584870000000005848708439608439 60584870843960584870843960584870843960000 01030843961

Column	Element
1	Filler
2	Item Serial Number
9-13	System Serial Number
14-16	Site
17	Operational Mode
18-21	Install Date (YYMM)
22-25	Remove Date
26	Filler
27-32	Operational Hours (Cumulative)
33-34	Cumulative Primary Failure Count
35-36	Filler
37-38	Cumulative Verified Failures
39-40	Filler
41-42	Cumulative Total Removals
43-60	Filler
61-66	Hours Since Last Verified Failure
67-84	Filler
85-90	Hours Since Last Removal
91-96	Filler
97	Primary Failure Indicator (0 or 1)
98	Filler
99	Verified Failure Indicator (0 or 1)
100	Filler
101	Removal Indicator (0 or 1)
102-104	Failure Diagnostic Code
105-116	Filler

Appendix B. Fortran Programs

This program was used to read the original data file and selected all electronic cards that had a failure indicated in columns 37-38.

```
CHARACTER*3, CARD
     INTEGER SN, FAIL, HOURS, CHGHR
     OPEN (UNIT=8, FILE='INPUTFILENAME')
     OPEN (UNIT-2, FILE-'OUTPUTFILENAME')
     READ (8,100) CARD, SN, HOURS, FAIL, CHGHR
     I=I+1
     IF (FAIL .GT. 0) WRITE (2,110)CARD, SN, HOURS, FAIL, CHGHR
     IF (I .EQ. 320000) GOTO 999
     GOTO 99
100
     FORMAT (2X,A3,I4,17X,I6,4X,82,23X,I6,50X
110
     FORMAT (5X, A3, 3X, I4, I6, 3X, I2, 3X, I6)
999
     STOP
     END
```

Variations of this program were used to sort the failures selected by the program above into individual data files. The only changes required were to the input filename (line 3), the output filename (line 4), the 'if' statement specifying what was being selected (line 7), and the size of the file being read (line 8).

```
CHARACTERS*3, CARD, BQE, BQQ, BTJ, SUQ, SYL
     INTEGER SN, FAIL, HOURS, CHGHR
     OPEN (UNIT=8, FILE='INPUTFILENAME')
     OPEN (UNIT=2, FILE='OUTFUTFILENAME')
     READ 98,2100) CARD, SN, HOURS, FAIL, CHGHR
     I=I+1
     IF (CARD. EQ. BQE) WRITE (2,110) CARD, SN, HOURS, FAIL, CHGHR
     IF (I. EQ. 10000) GOTO 999
     GOTO 99
100
     FORMAT (5X,A3,3X,14,3X,16,3X,12,3X,16)
110
     FORMAT (5X,A3,3X,14,3X,16,3X,12,3X,16)
999
     STOP
     END
```

Appendix C. Table of Random Units

PROBABILITY AND STATISTICS

Table of Random Units

A TABLE OF 14,000 RANDOM UNITS (Continued)

														_
Line/Col.	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(1
51	10408	81899	04153	53381	79401	21438	83035	92350	36693	31238	59649	91754	72772	023
52	18629	81953	05520	91962	04739				94730		35090		86772	1
53	73115	35101	47498	87637		71060				20286	23153	72924	35165	
54	57491	16703		49323	45021	33132				45393	44812	12515	98931	912
55	30405	83946	t .	14422	15059	45799	1			74353	68663	30429	70735	
	1	""		1	, , ,	10703	1	13,32	100000	1 4.,55	00000	3012.5	101.55	""
- 56	16631	35006	85900	98275	32388	52390	16815	69298	82732	38480	73817	32523	41961	444
57	96773	20206		78985	05300					19687	11052	ı	60383	
58	38935		14349	82674	66523	44133		35552		19124	63318	29686	03387	598
59	31624		17403	53363	44167	64486				31601	12614		60332	
60	78919		23632	27889	47914		37680		72152	39339	34806		85001	87
•	10010		2.0002	2100	177311	1/2304	31000	20001	12132	38338	מטמרני	Uasiou	POINT	101
61	03931	33309	57047	74211	63445	17361	62825	39908	05607	91284	68833	25570	38818	46
62	74426	33278	43972	10119	89917	15665	52872		73144	88662	88970	1	51805	1
63	09066	00903	20795	95452	92648	45454			1			74492		
64	42238	12426	87025	14267					16553		79375	97596	16296	
65	16153	,			20979	04508	64535	,	86064	29472	47689	05974	52468	16
0.5	10123	08002	26504	41744	81959	65642	74240	56302	00033	67107	77510	70625	28725	34
			00000				1	1	l					
66	21457		29820		29400				33310		95240	15957	16572	
67	21581	57RU2			17937	37621	47075		97403	48626	68995	43805	33386	
68	55612	78095	83197	33732	05810	, -			16489	03264	88525	42786	05269	92
69	44657		99324	51281	R4463	60563	79312	93454	68876	25471	93911	25650	12682	73.
70	91340	84979	46949	81973	37949	61023	43997	15263	80644	43942	89203	71795	99533	50:
	1) .	ļ	J	1	1		l		l	Į.
71	91227	21199	31935			05462	35216		29891	68607	41867	14951	91696	
72	50001	38140	66321	,		0953R	12151	06878	91903	18749	34405	56087	82790	701
73		05224		28609	81406		25549		42627	45233	57202	94617	23772	078
74	27504			41575			64482	73923	36152	05184	94142	25299	84387	341
75	37169	94851	39117	89632	00959	16447	65536	49071	39782	17095	02330	74301	00275	483
		1		(1		i	l)		!
76		70225		38351	19444	66499	71945	05422	13442	78675	18048	66938	93654	591
77	37449	30362	06694	54690	04052	53115	62757	95348	78662	11163	81651	50245	34971	529
78	46515	70331	85922	38329	57015	15765	97161	17869	45349	61796	66345	81073	49106	791
79	30986	81223	42416	58353		30502			05174		54339	58861	74818	469
80	63798	64995	46583			78128		42865	92520		80377	35909	81250	543
81	82486	84846	99254	67632	43218	50076	21361	64816	51202	88124	41870	52689	51275	83
82	21885	32906	92431	09060	64297					05155			28225	
83	60336	99782	07408	53458	13564			29789	85205		12535	12133	14645	23.
84	43937	46591	24010	25560	86355	33941	25786		71899		95434	98227	21924	19:
85	97656	63175	89303	16275	07100	92063	21942	18611	47348	20203	18534	03862	78095	
	1 1						.,,,,,,		17.330	2.,,2,,,,	1007	1,1,1102	1.10.10	•••
86	03299	01221	05418	38982	55758	92237	26750	86367	21216	98442	กดากา	56617	91511	7.59
87					07785	76020		25651	83325		85076	72811	22717	505
88	85036	68335		03129	65651	11977	02510		99447	- 1	34327	15152	55230	93
89	18039	14367	61337	06177	12143	46609	32989	74014	64708		35398	58408	13261	471
90		15656	60627	36478	65648	16764	53412					82163	60859	
	"""		u		03040	10101	.5.1712	108019	07832	41574	17639	62100	OUNDO	13.
91	79556	29068	04142	16268	15387	12856		20200	00.470		00220	100442	9200	000
92	92608		27072	32534	17075	27698	66227	38358	22478		88732		82558	052
93		25835		67006				63863	11951		88022	56148	34925	
94		- 1	,	-,		02753	14827	22235			37543	11601	35503	851
95				97901	28395	14186	00821	80703	70426		76310	89717	37890	401
P.J	50937	33300	26695	62247	69927	76123	50842	43834	86654	70959	79725	93872	28117	192
96	42400	70077				.								
90 97						79180	97526	43092			80799		71255	642
98						36692		35275			53203		47625	886
98 99	, ,							901R3						907
AA				61583	14972	90053	89534	76036	49199	43716	97548	04379	46370	286
100	38534		انتمتم	87258										-

(8:557)

Appendix D. Total Time on Test Program

```
10 'TOTAL TIME ON TEST PLOTTING TECHNIQUE
20 'WRITTEN BY CAPT WILLLIAM RIMPO, MAJ JOHN KUTZKE, AND LTCGL CARLOS TALBOTT
30
40 CLS:PRINT"TOTAL TIME ON TEST ANALYSIS OF FAILURE DATA"
50 PRINT
60 PRINT "THIS PROGRAM CALCULATES A TOTAL TIME ON TEST STATISTIC FOR FAILURE 70 PRINT "DATA FROM A COMPLETE LIFE TEST, AS WELL AS FROM FIELD FAILURE DATA 80 PRINT "CONTAINING CENSORED UNITS.
90 PRINT
100 DIM A(500),TTT(500),STTT(500),B(500,21),C(500),LAST(500)
110 DEFINT G-J
120
130 PRINT "WELCOME TO TOTAL TIME ON TEST.
140 PRINT "IF YOU WOULD LIKE TO USE AN EXISTING DATABASE ON FILE, PRESS F.
150 PRINT "IF YOU WOULD LIKE TO CREATE A NEW DATA FILE, PRESS C.
160 PRINT "IF YOU WOULD LIKE TO ENTER DATA MANUALLY, PRESS M.
170 CLOSE #7
180 LET K=0
230 I=1
240 1
250 'ARRAY C(I) STORES FAILURE INDICATOR: 1 FOR FAILURE, 0 FOR CENSORED DATA 260 'ARRAY A(I) STORES LIFETIMES
270 '
280 1
290 LINE INPUT "MY DATA FILE IS: ";E$
300 I=1
310 OPEN "I".#1, E$
320 IF EOF (1) THEN 660
330 INPUT #1,C(1),A(1):PRINT C(1),A(1)
340 IF C(1)=1 THEN K=K+1
350 LET I=I+1
360 COTO 320
370 PRINT
380 CLS:PRINT "YOU ARE ABOUT TO CREATE A DATAFILE WHICH YOU WILL NAME. 390 PRINT "PLEASE REMEMBER YOU FILE NAME. AFTER THE LAST INPUT TYPE -1 400 PRINT "TO END DATA ENTRY.
410
420 LINE INPUT"MY DATA FILE NAME WILL BE:"; E$
430
430 OPEN "O".#7.E$
450 INPUT "ENTER 1 FOR FAILED UNIT, O FOR UNFAILED/WITHDRAWN UNIT";C(I)
460 INPUT "ENTER FAILURE/CENSORED TIME.";A(I)
470 IF C(I)=-1 THEN 500
480 WRITE#7,C(I),A(I)
490 PRINT: GOTO 450
500 CLOSE #7
510 GOTO 300
520
530 CLS: INPUT"ENTER NUMBER OF LIFETIMES": N
540 PRINT N
550 FOR I=1 TO N
560 INPUT "ENTER 1 FOR FAILED UNIT, 0 FOR UNFAILED/WITHDRAWN UNIT": C(1)
570 PRINT C(I)
580 INPUT"ENTER LIFETIME";A(I)
590 PRINT A(1)
600
610 'K COUNTS THE NUMBER OF FAILURES
620 '
630 IF C(I)=1 THEN K=K+1
640 PRINT K
650 NEXT I
660 N=I-1
670 REALNI-N
690 'OPENS FILES TO STORE TIT STATISTICS
700
```

```
710 OPEN "O".8."AGE1.DAT"
720 '
730 'HERE THE ARRAY A(I) RECORDS UNORDERED LIFETIMES
740 'NOW SORT A(I) TO ORDERED LIFETIMES
750 '
750 '
760 LET F=0
770 FOR I=1 TO N-1
780 IF A(I)<=A(I+1) THEN GOTO 830
750 LET TEMP=A(I)
795 LET TEMPC=C(I)
800 LET A(I)=A(I+1)
805 LET C(I)=C(I+1)
 810 LET A(I+1) - TEMP
 815 LET C(I+1)=TEMPC
 820 LET F=1
 830 NEXT I
 840
 850 'IF Fal THEN ORDER ISN'T PERFECT YET
860
870 IF F=1 GOTO 760
880 LINE INPUT "MY ORDERED DATA FILE IS:"; F$
890 OPEN "O".#5, F$
900 PRINT."THE SET OF ORDERED LIFETIMES IS:"
 910 FOR I=1 TO N
 920 PRINT, I, " "C
930 WRITE #5,C(I),A(I)
                                 "C(I),A(I)
 940 NEXT I
 950 CLOSE #5
 960
 970 'TOTAL TIME ON TEST SUBROUTINE
 980
 990 LET G=0
 990 LET G=0

1000 FOR J=1 TO N

1010 IF C(J)=1 THEN G=G+1

1020 IF J=1 THEN TTT(J)=N*A(J)

1030 IF J=1 GOTO 1050
 1040 LET TTT(J)=TTT(J-1)+(N-J+1)*(A(J)-A(J-1))
1050 IF C(J)=1 THEN TEMP=TTT(J)
1060 LET LAST(G)=TEMP
 1070 NEXT J
 1080
 1090 'SCALED TTT SUBROUTINE
 1100 'CALCULATES A SCALED TTT FOR FAILURES ONLY.
 1110 '
 1120 FOR I=1 TO G
 1130 '
 1130

1140 STTT(1)=LAST(1)/LAST(G)

1150 IF 1=G THEN PRINT#8,0;0

1160 IF 1=G THEN PRINT#6,1;1

1170 IF 1=G THEN PRINT#8,0;0
 1180 NEXT I
 1190 PRINT
  1200 PRINT "
                                            SCALED TTT
                                                                   ٧s
                                                                              PERCENT FAILURES
 1210 FOR F=1 TO K
1220 PRINT#8,STTT(F);F/K
 1230 PRINT, STTT(F),"",F/K
1240 NEXT F
  1250
 1260 END
```

2

Appendix E. GRAFTALK Command Structure

- 1. (GRAFTALK PROMPT)
- 2. . TITLE (OPTIONAL, NAMES YOUR GRAPH. UNDERLINE THE SPACE BETWEEN THE WORDS, AFTER THE FIRST WORD OF THE TITLE) <RETURN>
- 3. .X NAME (OPTIONAL, NAMES THE X-AXIS. UNDERLINE THE SPACE BETWEEN THE WORDS, AFTER THE FIRST WORD OF THE TITLE) <RETURN>
- 4. .Y NAME (OPTIONAL, NAMES THE Y-AXIS. UNDERLINE THE SPACE BETWEEN THE WORDS, AFTER THE FIRST WORD OF THE TITLE) <RETURN>
- 5. .X INTERVAL (OPTIONAL, DIVIDES THE X-AXIS AS YOU DECIDE. 20 IS A GOOD NUMBER <RETURN>
- 6. .Y RANGE -1 4 (OPTIONAL. SETS THE LOWER AND UPPER VALUES FOR THE Y AXIS DISPLAY. THESE VALUES DEPEND ON EACH OUTPUT. -1 AND 4 ARE FOR SAMPLE PROBLEM.) < RETURN >
- 7. .X RANGE -1 4 (OPTIONAL. SETS THE LOWER AND UPPER VALUES FOR THE Y AXIS DISPLAY. THESE VALUES DEPEND ON EACH OUTPUT. -1 AND 4 ARE FOR SAMPLE PROBLEM.)<RETURN>
- 8. .X AXIS POSITION 0 (THE X AXIS WILL BE PERPENDICULAR TO THE Y AXIS AT THE 0 POSITION ON THE Y AXIS) <RETURN>
- 9. .Y AXIS POSITION 0 (THE X AXIS WILL BE PERPENDICULAR TO THE Y AXIS AT THE 0 POSITION ON THE Y AXIS) <RETURN>
- 10. .DATAFILE BLOCK1.DAT (YOU ARE BRINGING THE DATAFILE YOU CREATED IN SCREEN INTO GRAFTALK) <RETURN>
- 11. .VIEW (OPTIONAL, ALLOWS YOU TO SEE AND ALTER, IF DESIRED, DATA FILE. TO EXIT VIEW, HIT CNTRL AND G AT THE SAME TIME.
- 12. .PLOT C1 VS C2 (YOU WILL PLOT A CHART USING COLUMN 1 AND COLUMN 2 OF YOUR DATA FILE) <RETURN>
- 13. .DATAFILE BLOCK2.DAT (NOW, YOU ARE BRINGING THE SECOND DATA FILE YOU CREATED IN SCREEN INTO GRAFTALK. THIS NEW DATAFILE WILL REPLACE THE OLD ONE) <RETURN>
- 14. .PLOT C1 VS C2 (THIS SECOND PLOT WILL OVERLAY THE FIRST USING THE SAME CHART VALUES) <RETURN>
- 15. .EXIT (TO EXIT GRAFTALK AND RETURN TO OPERATING SYSTEM)
 NOTE: YOU CAN OUTPUT THIS TO THE PRINTER BY TYPING DUMP
 <RETURN> TO EXIT GRAFTALK TYPE EXIT <RETURN>

Bibliography

- 1. Armstadter, Bertram L. Reliability Mathematics: Fundamentals, Practices, Procedures. New York: McGraw Hill, Inc., 1971.
- 2. Barlow, Richard E. "Analysis of Retrospective Failure Data Using Computer Graphics," <u>Proceedings of the 1978 Annual Reliability and Maintainability Symposium.</u>
 IEEE Press, Inc., 1978.
- Barlow, Richard E. "Geometry of the Total Time on Test Transform," <u>Naval Research Logistics Quarterly</u>, 26: 393-402 (Fall 1979).
- 4. Barlow, Richard E. and Raphael Campo. "Total Time on Test Processes and Applications to Failure Data Analysis," Reliability and Fault Tree Analysis, Edited by R. E. Barlow, J. Fussel, and N. D. Singpurwalla. Philadelphia: SIAM, 451-481, 1975.
- 5. Barlow, Richard E. and Frank Proschan. Mathematical Theory of Reliability. New York: John Wiley and Sons, Inc., 1965.
- 6. Bazovsky, Igor. Reliability Theory and Practice. Englewood Cliffs NJ: Prentice-Hall, Inc., 1962.

SOUTH STATES OF THE SOUTH SOUTH SECTION SECTION SECTION

- 7. Bergman, Bjorn. "Some Graphical Methods for Maintenance Planning," Proceedings of the 1977 Annual Reliability and Maintainability Symposium. IEEE Press, New York, 1978.
- 8. Beyer, William H. <u>CRC Standard Mathematical Tables</u>. Boca Raton FL: CRC Press, Inc., 1981.
- 9. Blanchard, Benjamin S., Jr. and E. Edward Lowery.

 Maintainability Principles and Practices. New York:

 McGraw-Hill Book Company, 1969.
- 10. Department of Defense. <u>Sampling Procedures and Tables</u>
 <u>for Inspection by Attributes</u>. <u>MIL-STD-105D</u>.

 Washington: Government Printing Office, 19 April 1963.
- 11. Juran, J. M. and Frank M. Gryna, Jr. Quality Planning and Analysis. New York: McGraw Hill Book Company, 1980.

- 12. Kniss, James R. "Developing Reliable Systems: Fact Versus Fiction," <u>National Defense</u>, 68: 24-27 (March 1984).
- 13. Myers, Richard H., Kam L. Wong, and Harold M. Gordy.

 Reliability Engineering for Electronic Systems. New
 York: John Wiley and Sons, Inc., 1964.
- 14. Nelson, Wayne. <u>Applied Life Data Analysis</u>. New York: John Wiley and Sons, Inc., 1982.
- 15. Russ, Lt Gen Robert D. "Fourth Wheel on the Acquisition Wagon," <u>Air Force Magazine</u>, <u>12</u>: 122-125 (March 1985).
- 16. Smith, Dr. R. M. and others. Reliability Data
 Acquisition and Analysis Techniques System
 Documentation. BDM/H-850881-TR, Draft. The BDM
 Corporation, Huntsville AL, 1985.
- 17. Talbott, Lt Col Carlos M., Jr. <u>Graphical Techniques</u> for <u>Maintenance Planning</u>. PhD Dissertation. School of Engineering and Applied Science, George Washington University, Washington DC, February 1986.
- 18. Tiku, M. L. "Goodness of Fit Statistics Based on the Spacings of Complete or Censored Samples," <u>Australian Journal of Statistics</u>, 22: 260-275 (Fall 1980).
- 19. Trapp, R. D. and others. An Approach for Assessing Missile System Dormant Reliability, Final Report. The BDM Corporation, Albuquerque NM, 1981.

VITA

Captain Albert E. Sisk was born on 16 April 1947 in Joplin, Missouri. He graduated from high school in Hays, Kansas in 1965. He enlisted in the Air Force in May 1966 and was released from active duty in March 1970. He attended Southern Illinois University at Edwardsville and received a Bachelor of Science in Special Education in March 1975. Upon graduation, he was commissioned in the Air Force through the ROTC program. He was called to active duty in July 1975 and completed Operational Readiness Training for the Minuteman III ICBM weapon system in October 1975. He then served as a Missile Launch Officer at F. E. Warren AFB, Wyoming until September 1979. He then served as a Test Manager in SAC's TOPHAND program for the Minuteman Test Launch Program at Vandenberg AFB, California until August 1983. He then served as a SAC Liason for the Minuteman weapon system at Hill AFB, Utah until he entered the School of Systems and Logistics, Air Force Institute of Technology, Wright-Patterson AFB OH, in May 1985.

Permanent Address: 2505 Old Collinsville Road
Belleville, Illinois 62221

Control of the Contro

SECUR TO CLASSIFICATION OF THE	SPAGE										
		REPORT DOCUME	NTATION PAG	E							
UNIASSIFIED	ATION		16. RESTRICTIVE M	IARKINGS	AD-AIT	1313					
2. SECLE TY CLASSIFICATION AL	3. DISTRIBUTION/AVAILABILITY OF REPORT										
26 DECLASSIFICATION/DOWNGRA	DING SCHEE	DULE	Approved for public release; distribution unlimited.								
4 PERFORMING ORGANIZATION	REPORT NUM	BER(S)	5. MONITORING OF	GANIZATION RE	PORT NUMBERIS	;)					
AFIT/GLM/LSM/86S-76											
68. NAME OF PERFORMING ORGAN		6b. OFFICE SYMBOL (If applicable)	78. NAME OF MONITORING ORGANIZATION								
School of Systems and I		AFIT/LS									
6c. ADDRESS (City, State and ZIP Co.			7b. ADDRESS (City.	State and ZIP Cod	e)						
Air Force Institute of Wright-Patterson AFB											
8. NAME OF FUNDING/SPONSORIE ORGANIZATION	NG	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER								
8c ADDRESS (City, State and ZIP Co	de)	<u> </u>	10. SOURCE OF FU	NDING NOS.							
			PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT					
11. TITLE (Include Security Classifica See Box 19	tion)										
12 PERSONAL AUTHOR(S) Albert E. Sisk, B.S.,	Captain	, USAF		· · · · · · · · · · · · · · · · · · ·							
13a TYPE OF REPORT MS Thesis	13b. TIME C	OVERED TO	14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT 1986 September 80								
16. SUPPLEMENTARY NOTATION											
17. COSATI CODES		18 SUBJECT TERMS (C.	on tinue on reverse if n	ecemany and identi	fy by black number	.,					
FIELD GROUP SU	B. GR.	Total Ti	5 (Continue on reverse if necessary and identify by block number) Time on Test reliability								
14 04		Minutema	man III failure distributions								
Title: A DESCRIPTION OF THE FAILURE DISTRIBUTIONS OF SELECTED MINUTEMAN III GUIDANCE SYSTEM ELECTRONIC CARDS Thesis Advisor: Phillip E. Miller, Major, USAF Assistant Professor of Logistics Management											
20. DISTRIBUTION/AVAILABILITY	OF ABSTRA	CT	21. ABSTRACT SECURITY CLASSIFICATION								
UNCLASSIFIED/UNLIMITED 🗷 SA	UNCLASSIFIED										
228. NAME OF RESPONSIBLE INDIV			22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL (Include Area Code)								
Phillip E. Miller, Ma	ijor, USA	F	513-255-5023 AFIT/LSM								

This research described the failure distributions of selected Minuteman III guidance system electronic cards and was the first attempt to use the Total Time on Test graphical technique to detect failure patterns. The data analysis was performed by using a Zenith 100 computer program that performed the Total Time on Test calculations and the Reliability Data Acquisition and Analysis Techniques software package.

The objectives of the research were to 1) describe the failure distributions of selected Minuteman III electronic cards, 2) determine if the corresponding hazard function demonstrated infant mortality, useful life, or wearout, and 3) suggest management strategies to deal with wearout or infant mortality.

Five individual cards were selected and the first three lifetimes of each card were examined. Nine of the fifteen cards indicated an exponential failure distribution, the other six were identified as either a Weibull or a normal failure distribution.

The results of this research indicate that some of the lifetimes did show signs of wearout; however, it was determined that no management actions were required because of the large mean lifetimes of the cards affected.

12-86

07/6