Wykład 12 Macierz w postaci kanonicznej Jordana

Niech A - macierz kwadratowa stopnia n o elementach z ciała \mathbb{K} .

Jak obliczyć np. A^{100} ?

Czasami to nie jest trudne, np.

1. Jeśli
$$A$$
 jest macierzą diagonalną tzn. $A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$, to $A^k = \begin{bmatrix} a_{11}^k & 0 & \cdots & 0 \\ 0 & a_{22}^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn}^k \end{bmatrix}$.

2. Niech $B = N \cdot A \cdot N^{-1}$, wtedy $B^k = N \cdot A^k \cdot N^{-1}$.

Przykład. Niech A będzie macierzą przekształcenia liniowego $\varphi: V \to V$ w bazie \mathcal{A} przestrzeni liniowej V, zaś B macierzą tego samego przekształcenia w bazie \mathcal{B} .

Uwaga. Jeśli macierz

$$A = \left[\begin{array}{cccc} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{array} \right]$$

jest macierzą przekształcenia liniowego $\phi: V \to V$ w bazie $\mathcal{A} = (v_1, v_2, \dots, v_n)$ tz. $\mathbf{A} = \mathbf{M}_{\mathcal{A}}^{\mathcal{A}}(\phi)$, to $\phi(v_1) = a_{11} \cdot v_1, \ \phi(v_2) = a_{22} \cdot v_2, \dots, \ \phi(v_n) = a_{nn} \cdot v_n$, czyli

$$\phi(\operatorname{Lin}(v_i)) \subseteq \operatorname{Lin}(v_i)$$

dla każdego $i = 1, \ldots, n$.

Podprzestrzenie niezmiennicze

Definicja 1 Podprzestrzeń U przestrzeni liniowej V nad ciałem \mathbb{K} nazywamy **podprzestrzenią niezmienniczą** względem przekształcenia liniowego $\phi: V \to V$, $gdy \ \phi(U) \subseteq U$, $(czyli \ \forall u \in U)$, $\phi(u) \in U$.

Uwaga. Jeżeli U jest podprzestrzenią niezmienniczą przestrzeni V względem przekształcenia liniowego $\phi: V \to V$ i $(v_1, \dots v_k)$ - baza U oraz $\mathcal{A} = (v_1, \dots, v_k, v_{k+1}, \dots, v_n)$ - baza V, to macierz przekształcenia ϕ w bazie \mathcal{A} ma postać:

$$M_{\mathcal{A}}^{\mathcal{A}}(\phi) = \begin{bmatrix} A_1 & A_3 \\ \hline \mathbf{0} & A_2 \end{bmatrix},$$

gdzie A_1 - macierz kwadratowa stopnia $k,\ A_2$ - macierz kwadratowa stopnia $n-k,\ \mathbf{0}$ - macierz zerowa.

Dlaczego? Rozważmy *i*-tą kolumnę macierzy $M_A^A(\phi)$, $i \leq k$. Zawiera ona współczynniki wektora $\phi(v_i)$. Ponieważ $\phi(v_i) \in U$, to współczynniki przy v_{k+1}, \ldots, v_n są równe zero.

Gdyby dodatkowo przestrzeń $W = \text{Lin}(v_{k+1}, \dots, v_n)$ była podprzestrzenią niezmienniczą względem ϕ , to macierz przekształcenia miałaby postać:

$$M_{\mathcal{A}}^{\mathcal{A}}(\phi) = \begin{bmatrix} \begin{array}{c|c} A_1 & \mathbf{0} \\ \hline \mathbf{0} & A_2 \end{array} \end{bmatrix}.$$

Wtedy $V = U \cup W$ i $U \cap W = \{\mathbb{O}\}.$

Wektory własne

Definicja 2 Wektor $v \in V$, $v \neq \mathbb{O}$, nazywamy **wektorem własnym** przekształcenia $\phi : V \to V$, jeśli istnieje $\lambda \in \mathbb{K}$, takie że $\phi(v) = \lambda \cdot v$. Wtedy λ nazywamy **wartością własną** przekształcenia ϕ , a v - wektorem własnym odpowiadającym wartości własnej λ .

Uwaga. Wektor $v \in V$, $v \neq \mathbb{O}$, jest wektorem własnym przekształcenia ϕ wtedy i tylko wtedy, gdy $\operatorname{Lin}(v)$ jest jednowymiarową podprzestrzenią przestrzeni V niezmienniczą względem przekształcenia ϕ .

Wielomian charakterystyczny

Niech
$$A=M_{\mathcal{A}}^{\mathcal{A}}(\phi)=\left[egin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}
ight]$$
 będzie macierzą przekształcenia

$$\phi: V \to V$$

w pewnej bazie A. Wówczas, jeśli v jest wektorem własnym przekształcenia ϕ , to

$$\phi(v) = A \cdot v = \lambda \cdot v \Leftrightarrow (A - \lambda \cdot E) \cdot v = \mathbb{O}$$

to równanie ma **niezerowe** rozwiązania $\Leftrightarrow \det(A - \lambda \cdot E) = 0$.

$$\det(A - \lambda \cdot E) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$
 jest wielomianem stopnia n zmiennej λ .

Nazywamy go wielomianem charakterystycznym przekształcenia ϕ lub wielomianem charakterystycznym macierzy A.

Niech C będzie macierzą przekształcenia ϕ w bazie \mathcal{B} :

$$C = M_{\mathcal{B}}^{\mathcal{B}}(\phi) = M_{\mathcal{B}}^{\mathcal{A}}(id) \cdot M_{\mathcal{A}}^{\mathcal{A}}(\phi) \cdot M_{\mathcal{A}}^{\mathcal{B}}(id) = B^{-1} \cdot A \cdot B,$$

$$\det(C - \lambda \cdot E) = \det(A - \lambda \cdot E)$$

Wniosek 1 Wielomian charakterystyczny nie zależy od macierzy przekształcenia, tylko od samego przekształcenia.

Uwaga. Wartości własne przekształcenia ϕ są pierwiastkami wielomianu charakterystycznego.

Uwaga. $\det(A - \lambda \cdot E) = (-1)^n \lambda^n + (-1)^{n-1} \lambda^{n-1} \cdot A_1 + \ldots + (-1) \lambda \cdot A_{n-1} + A_n$, gdzie A_k jest sumą minorów głównych k-tego stopnia macierzy A.

Wyznaczanie wektorów własnych odpowiadających wartości własnej λ_0

- 1. Zbiór wektorów własnych odpowiadających wartości własnej λ_0 uzupełniony o wektor \mathbb{O} tworzy podprzestrzeń przestrzeni V, ozn. $N_{\lambda_0}^{(1)}$.
- 2. Macierz $[A \lambda_0 \cdot E]$ jest macierzą pewnego przekształcenia liniowego $\psi : V \to V$. Wtedy $N_{\lambda_0}^{(1)} = \ker \psi$ i $\dim N_{\lambda_0}^{(1)} = \dim V r[A \lambda_0 \cdot E]$.

Uwaga.

- 1. $1\leqslant {\rm dim}N_{\lambda_0}^{(1)}\leqslant k,$ gdzie k krotność pierwiastka λ_0 w wielomianie charakterystycznym.
- 2. $N_{\lambda_0}^{(1)}$ jest podprzestrzenią niezmienniczą względem ϕ .
- 3. Jeśli $\lambda_1 \neq \lambda_2$ wartości własne, to $N_{\lambda_1}^{(1)} \cap N_{\lambda_2}^{(1)} = \{\mathbb{O}\}.$

Twierdzenie 2 Wektory własne odpowiadające różnym wartościom własnym tego samego przekształcenia są liniowo niezależne.

Wniosek 3 Niech V - przestrzeń liniowa nad ciałem \mathbb{K} , dimV = n, $\phi: V \to V$ - przekształcenie liniowe. Jeśli ϕ ma n różnych wartości własnych $\lambda_1, \lambda_2, \ldots, \lambda_n$, to odpowiadające im wektory własne (v_1, v_2, \ldots, v_n) tworzą bazę \mathbb{B} przestrzeni V i macierz przekształcenia ϕ w tej bazie jest macierzą diagonalną i ma postać

$$M_{\mathcal{B}}^{\mathcal{B}}(\phi) = \left[egin{array}{cccc} oldsymbol{\lambda_1} & 0 & \cdots & 0 \ 0 & oldsymbol{\lambda_2} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & oldsymbol{\lambda_n} \end{array}
ight].$$

Twierdzenie 4 Jeśli $\lambda_1, \ldots, \lambda_k$ - różne wartości własne i $\dim N_{\lambda_i}^{(1)} = k_i$, gdzie k_i - krotność pierwiastka λ_i w wielomianie charakterystycznym, to macierz przekształcenia ϕ w bazie utworzonej z wektorów własnych jest diagonalna.