

Светодиоди

1

Принцип на действие

Принципът им на действие се основава на процесите на рекомбинация, протичащи в право включен *PN* преход. При право включване започва инжекция на токоносители.

Инжектираните електрони от n-областта рекомбинират с дупките от p-областта. Електроните имат повисоко енергийно ниво и при падането на нивата на дупките губят енергия.

Енергията се излъчва под формата на квантове светлина – фотони.

Явлението се нарича електролуминисценция.

3

Дължина на вълната

$$W_c$$
 $hv = \frac{hc}{\lambda} = \Delta W$
 $\lambda = \frac{hc}{\Delta W} = \frac{1200}{\Delta W}$
 W_v

 λ = 0.38 – 0.76 μm видима област

 $\Delta W = 1.6 - 3.1 \text{ eV (GaP, SiC, GaAlAs, GaAsP)}$

Колкото по-голяма е широчината на забранената зона, толкова по-голяма е енергията на излъчения фотон и толкова по-висока е честотата на излъчената светлина (респективно по-къса дължината на вълната й).

Violet ~ 3.17eV
Blue ~ 2.73eV
Green ~ 2.52eV
Yellow ~ 2.15eV
Orange ~ 2.08eV
Red ~ 1.62eV

5

Спектрална характеристика

Спектралната характеристика дава зависимостта на интензитета на излъчване на светодиода от дължината на вълната. Тя се определя от вида на полупроводниковия материал и легиращите примеси в него.

Нобелова награда за физика - 2014

"for the invention of **efficient** blue light-emitting diodes which has enabled bright and energy-saving white light sources"

© Nobel Media AB. Photo: A. Mahmoud Isamu Akasaki

© Nobel Media AB. Photo: A. Mahmoud **Hiroshi Amano**

© Nobel Media AB. Photo: A. Mahmoud Shuji Nakamura

13

Ефективност на светлинните източници 70 lm/W 16 lm/W 0,1 lm/W 0,1 lm/W Indiana Elight centuryl OIL LAMP [approx. 15 000 B.C.] Light Bulb [19th century] Indiana Elight Centuryl Indiana Eli

Качество на бялата светлина color rendering index (CRI) Spectra From Common Sources of Visible Light Light source CCT (K) Low-pressure sodium (LPS/SOX) 1800 Relative Energy 091 High-pressure sodium (HPS/SON) 2100 24 Incandescent Halophosphate warm-white fluorescent 2940 51 Halophosphate cool-white fluorescent 4230 64 Halophosphate cool-daylight fluorescent 6430 76 White Standard LED Lamp 2700-5000 83 50 $\textbf{High-CRI} \ \underline{\textbf{LED}} \ \textbf{lamp (blue LED)}$ 2700-5000 95 Ceramic discharge metal-halide lamp 5400 96 Ultra-high-CRI <u>LED</u> lamp (violet LED) 2700-5000 99 600 700 Incandescent/halogen bulb 3200 400 500 100 Wavelength (Nanometers)

15

Поради по-широката забранена зона на материалите, светодиодите имат значително по-голям пад в права посока от Ge и Si изправителни диоди.

VA характеристика на червен и зелен светодиод

17

Светлинна характеристика

Представлява зависимостта на излъчения светлинен поток Φ от тока I_{F} , протичащ през диода.

Областта на насищане при големи стойности на тока се дължи на нарастване на относителния дял на безизлъчвателната рекомбинация при загряване на прехода.

Оразмеряване на схема със светодиод

Задача: Проектирайте схема на захранване на син (бял, червен,...) светодиод. Захранващото напрежение е 12V.

- Намерете каталожни данни и изберете конкретен модел светодиод.
- От каталожните данни изберете **подходящ ток през диода**. Той не трябва да надхвърля указаната максимална стойност, но и не трябва да е твърде малък защото излъчването ще е слабо.
- Скицирайте схема на свързване на светодиод.
- Оразмерете схемата

Намерете каталожни данни и изберете конкретен модел светодиод.

Google search: blue led datasheet (white led datasheet, ...)

https://cree-led.com/media/documents/C503B-BCS-BCN-GCS-GCN-1094.pdf

https://www.vishay.com/docs/81159/vlhw5100.pdf

21

От каталожните данни изберете подходящ ток през диода. Той не трябва да надхвърля указаната максимална стойност, но и не трябва да е твърде малък защото излъчването ще е слабо.

ABSOLUTE MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Items	Symbol	Absolute Maximum Rating	Unit		
		Blue/Green			
Forward Current	I _F	30	mA		
Peak Forward Current Notes	$I_{\sf FP}$	100	mA		
Reverse Voltage	V _R	5	V		
Power Dissipation	P _D	120	mA V mW °C (RELATIVE		
Operation Temperature	T _{opr}	-40 ~ +95	°C		
Storage Temperature	T _{stg}	-40 ~ +100	(RELATIVE LLI		
Lead Soldering Temperature	T _{sol}	Max. 260°C for 3 s (3 mm from the base of t	ec. max.		

Note:

1. Pulse width ≤ 0.1 msec, duty $\leq 1/10$.

Добра идея е да изберете стойността на If за която са дадени типични стойност на Uf.

TYPICAL ELECTRICAL & OPTICAL CHARACTERISTICS (T, = 25°C)

Characteristics	20 10	Color	Symbol	Condition	Unit	Minimum	Typical	Maximum
Forward Voltage		Blue/Green	V _F	$I_F = 20 \text{ mA}$	٧		3.2	3.6
Reverse Current		Blue/Green	I _R	$V_R = 5 V$	μΑ			100
Dominant Wavelength	Blue	$\lambda_{_{D}}$	$I_F = 20 \text{ mA}$	nm	465	470	480	
		Green	λ _D	$I_F = 20 \text{ mA}$	nm	520	527	535
London Takasalka	Blue	C503B-BCS/BCN-030	I_{v}	$I_F = 20 \text{ mA}$	mcd	1520	4100	
Luminous Intensity	Green	C503B-GCS/GCN-030	I _v	$I_F = 20 \text{ mA}$	mcd	5860	12500	
50% Power Angle	C503	BB-BCS/BCN/GCS/GCN-030	201/2	$I_F = 20 \text{ mA}$	deg	30		

Избираме If = 20mA, при което Uf = 3.2V

23

- Скицирайте схема на свързване на светодиод.
- Оразмерете схемата

D1: I_D1 = 20mA, U_D1=3.2V U1 = 12V

означения I_{D1} => I_D1 U_{D1} => U_D1 $I = U1 / R1 - \Gamma PE W KA!$ $I = U_R1 / R1 - O K!$

R1 = U_R1 / I_R1 – закон на Ом

U1 = U_R1 + U_D1 – закон на Кирхоф U_R1 = U1 – U_D1 = 12V – 3.2V = 8.8V

 $I_R1 = I_D1 = 20mA$

R1 = 8.8V / 20mA = 0.44 kOhm = 440 Ohm

P_R1 = U_R1 * I_R1 = 8.8V * 0.02A = 0.176W

	E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)	E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)	E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)								
14-6					(continued)				(continued)		***************************************									
Избор на стандартна стойност	100	100	00 100	100	220	220 220	215	215	6	470	464	464								
на резистора	1.1.9%			102				221				475								
			105	105			226	226			487	487								
				107				232				499								
		110	110	110		240	237	237		510	511	511								
				113			243				523									
			115	115			249	249			536	536								
R1 = 8.8V / 20mA = 0.44 kOhm = 440 Ohm				118				255				549								
	120	120	20 121	121	270	270 270	261	261		560	562	562								
				124				267				576								
			127	127			274	274			590	590								
				130				280				604								
R=442 Ohm, 2%		130	133	133		300	287	287		620	619	619								
				137				294				634								
			140	140			301	301			649	649								
				143				309				665								
	150	150	147	147	330	330	316	316	680	680	681	681								
			,,,,	,,,,	100							150				324				698
						154	154			332	332			715	715					
				158				340				732								
		160	162	162		360	348	348		750	750	750								
				165				357				768								
						169	169			365				787	787					
				174				374			1.5	806								
	180	180	178	178	390	390	383	383	820	820	825	825								
		80 100		100		182	390	000	000	392	020	OZO	020	845						
						187	187			402	402			866	866					
			.01	191			.02	412			550	887								
		200	196	196		430	422	422		910	909	909								
			200	190	200		430	422	432		910	909	931							
						205	205			442				953	953					
				205	210			442	442			903	976							
				210				453				9/0								

Задача: Да се оразмери схемата, така че през диодите да тече ток 20mA.

От графиката: If = 20mA -> Uf = 3.5V

U_R1 = U1 - 3 .Uf = 12 - 10.5 = 1.5V

R1 = U_R1 / I_R1 = U_R1 / If = 1.5V / 20mA = 0.075 kOhm = 75 Ohm

P_R1 = U_R1 * I = 1.5V * 20mA = 30mW

(б) Волт-амперна характеристика на светодиод