1. 1. Vrai-Faux

Fesic 2002, exercice 1

Soit f la fonction définie par $f(x) = \frac{x}{2} - \frac{1}{\ln(\sqrt{x})}$, D son ensemble de définition et C sa courbe représentative.

- a. On a D = $]0, +\infty[$.
- b. La courbe C admet une droite asymptote en $+\infty$.
- c. Pour tout $x \in D$, on a: $f(x) < \frac{x}{2}$.
- d. Pour tout $x \in D$, on a: $f'(x) = \frac{1}{2} + \frac{2}{x(\ln x)^2}$.

Correction

- **a. Faux**: On doit avoir $\sqrt{x} \neq 1$ et x > 0 donc $D = [0, 1[\cup]1, +\infty[$.
- **b. Vrai :** $\lim_{x \to +\infty} f(x) = +\infty \frac{1}{+\infty} = +\infty$ et $\lim_{x \to +\infty} f(x) \frac{x}{2} = 0$ donc $y = \frac{x}{2}$ est asymptote de C.
- **c. Faux**: $f(x) < \frac{x}{2}$ si $-\frac{1}{\ln(\sqrt{x})} < 0$, soit $\ln(\sqrt{x}) > 0$ donc quand $\sqrt{x} > 1 \Rightarrow x > 1$.
- **d. Vrai :** Rappelons que $\left(\frac{1}{u}\right) = -\frac{u'}{u}$ et remarquons que $f(x) = \frac{x}{2} \frac{2}{\ln x}$; nous avons donc

$$f'(x) = \frac{1}{2} - 2\left(-\frac{1/x}{(\ln x)^2}\right) = \frac{1}{2} + 2\left(\frac{1}{x(\ln x)^2}\right).$$

1. 2. Fonction ln, EPF 2006

- 1. On considère la fonction $f: x \mapsto \frac{x}{x^2 + x + 1}$. Montrer que f est définie et dérivable sur \Box et déterminer la fonction dérivée f' de f.
- 2. On considère la fonction $g: x \mapsto \frac{\ln x}{(\ln x)^2 + \ln x + 1}$ et on désigne par Γ sa courbe représentative dans

un repère orthonormal d'unités graphiques 1 cm.

- a. Exprimer q en fonction de f et préciser l'ensemble de définition de q.
- b. Déterminer la fonction dérivée g' de g (on pourra utiliser la question 1.).
- c. Etudier le signe de g'.
- d. Déterminer les limites de g en o et $+\infty$.
- e. Dresser le tableau des variations de g.
- f. Construire la courbe Γ en précisant la tangente au poiint d'abscisse 1.

Correction

1. f est un quotient de fonctions dérivables et le dénominateur ne s'annule pas, elle est donc continue et dérivable sur \Box

$$f'(x) = \frac{x^2 + x + 1 - x(2x + 1)}{\left(x^2 + x + 1\right)^2} = \frac{-x^2 + 1}{\left(x^2 + x + 1\right)^2}.$$

2. a. $g(x) = \frac{\ln x}{\ln^2 x + \ln x + 1} = f(\ln x)$ donc, comme f est définie sur [0, g] est dé

b.
$$(f \circ g)' = g' \times (f' \circ g)$$
. $g'(x) = \frac{1}{x} f'(\ln x) = \frac{1}{x} \left[\frac{-\ln^2 x + 1}{(\ln^2 x + \ln x + 1)} \right]$.

c. Le signe de g' dépend de celui de $1 - \ln^2 x = (1 - \ln x)(1 + \ln x)$.

`	, ,			'	/ /		
	x	0		1/e		e	$+\infty$
	$1 - \ln x$		+		+	0	_
	$1 + \ln x$		=	0	+		+
	g'(x)		ı	0	+	0	-
	g(x)		0	-1		$\frac{1}{3}$	0

ww.devoir

d. En $+\infty$ g se comporte comme les termes de plus haut degré en ln, soit $\frac{\ln x}{\ln^2 x} = \frac{1}{\ln x} \to \frac{1}{+\infty} = 0$; en o

c'est pareil car ln x tend vers $-\infty$, donc encore o comme limite.

f. Tangente au point d'abscisse 1 : y = x - 1.

1. 3. Equation, France 2004

6 points

L'exercice comporte une annexe à rendre avec la copie.

Le but de ce problème est d'étudier, pour x et y éléments distincts de l'intervalle $]0; +\infty[$, les couples solutions de l'équation $x^y = y^x$ (E) et, en particulier, les couples constitués d'entiers.

- 1. Montrer que l'équation (E) est équivalente à $\frac{\ln x}{x} = \frac{\ln y}{y}$.
- 2. Soit h la fonction définie sur l'intervalle $]0; +\infty[$ par $h(x) = \frac{\ln x}{x}$. La courbe (C) représentative de la

fonction h est donnée en annexe ; x_0 est l'abscisse du maximum de la fonction h sur l'intervalle]0 ; $+\infty[$.

- a. Rappeler la limite de la fonction h en $+\infty$ et déterminer la limite de la fonction h en o.
- b. Calculer h'(x), où h' désigne la fonction dérivée de h; retrouver les variations de h. Déterminer les valeurs exactes de x_0 et $h(x_0)$.
- c. Déterminer l'intersection de la courbe (C) avec l'axe des abscisses.
- 3. Soit λ un élément de l'intervalle $\left]0;\frac{1}{e}\right[$.

Prouver l'existence d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a de l'intervalle a et d'un unique nombre réel a et

Ainsi le couple (a, b) est solution de (E).

4. On considère la fonction s qui, à tout nombre réel a de l'intervalle a, associe l'unique nombre réel a, associe l'unique nombre réel

Par lecture graphique uniquement et sans justification, répondre aux questions suivantes :

- a. Quelle est la limite de s quand a tend vers 1 par valeurs supérieures ?
- b. Quelle est la limite de s quand a tend vers e par valeurs inférieures ?
- c. Déterminer les variations de la fonction s. Dresser le tableau de variations de s.
- 5. Déterminer les couples d'entiers distincts solutions de (E).

Correction

1. (E): $x^y = y^x \Leftrightarrow \ln(x^y) = \ln(y^x) \Leftrightarrow y \ln x = x \ln y \Leftrightarrow \frac{\ln x}{x} = \frac{\ln y}{y}$: pour la première égalité, ln est bijective,

x et y sont strictement positifs ; la deuxième est une propriété de \ln , le reste est du calcul.

2. a.
$$\lim_{x \to \infty} \frac{\ln x}{x} = 0$$
; $\lim_{x \to 0^+} \frac{\ln x}{x} = \lim_{x \to 0^+} \frac{1}{x} \ln x = +\infty \times -\infty = -\infty$.

b.
$$h'(x) = \frac{\frac{1}{x}x - \ln x}{x^2} = \frac{1 - \ln x}{x^2}$$
; $1 - \ln x \ge 0 \Leftrightarrow \ln x \le 1 \Leftrightarrow x \le e = x_0$; $h(e) = \frac{\ln e}{e} = \frac{1}{e}$.

c.
$$h(x) = 0 \Leftrightarrow \ln x = 0 \Leftrightarrow x = 1$$
.

3. h est continue, monotone strictement croissante de]1; e vers 0; $\frac{1}{e}$ (voir les variations de

h); il existe donc un unique réel a tel que $h(a) = \lambda$; de même h **est continue, monotone strictement décroissante** de e; $+\infty$ [vers e] 0; e[(voir les variations de e); il existe donc un unique réel e tel que e(e) e) (sur chacun des intervalles considérés e0 est bijective, même si elle ne l'est pas globalement).

$$4. s(a) = b.$$

a. Quand a tend vers 1, λ tend vers 0, donc b tend vers $+\infty$.

b. Quand a tend vers e inférieurement, λ tend vers 1/e, donc b tend vers e supérieurement.

c. Lorsque a varie de 1 à e, b varie de $+\infty$ à e, donc s est décroissante.

5. Entre 1 et e il n'y a que deux entiers : 1 et 2 ; pour a = 1, $b = +\infty$... pour a = 2, b semble valoir 4. Vérifions en remplaçant dans (E) : $2^4 = 16$, $4^2 = 16$ ok !

1. 4. Dérivées et ln

Calculer la dérivée des fonctions suivantes :

1.
$$f(x) = (\ln x)^2 - 6 \ln x + 5$$
.

$$2. f(x) = 2x + \ln\left(\frac{x+1}{x}\right).$$

3.
$$f(x) = \frac{x + \ln x}{x^2}$$

Correction

1.
$$f'(x) = 2\frac{1}{x} \times \ln x - 6\frac{1}{x} = \frac{2\ln x - 6}{x}$$
.

3

2.
$$f(x) = 2x + \ln\left(\frac{x+1}{x}\right) = 2x + \ln(x+1) - \ln x \Rightarrow$$

$$f'(x) = 2 + \frac{1}{x+1} - \frac{1}{x} = \frac{2x(x+1) + x - x - 1}{x} = \frac{2x^2 + 2x - 1}{x} = 2x + 2 - \frac{1}{x} = 2 - \frac{1}{x(x+1)}.$$

3.
$$f(x) = \frac{x + \ln x}{x^2} = \frac{1}{x} + \frac{\ln x}{x^2}$$
,

$$f'(x) = -\frac{1}{x^2} + \frac{\frac{1}{x} \times x^2 - \ln x \times 2x}{x^4} = -\frac{1}{x^2} + \frac{x - 2x \ln x}{x^4} = -\frac{1}{x^2} + \frac{1 - 2\ln x}{x^3} = \frac{1 - 2\ln x - x}{x^3}.$$

1. 5. Primitives et ln

- 1. Calculer la dérivée de la fonction f définie par $f(x) = \ln\left(\frac{3+x}{3-x}\right)$ sur]0; 3[.
- 2. a. Déterminer toutes les primitives de la fonction h définie par : $h(x) = \frac{4x}{(3x^2+2)^3}$.
- b. Déterminer la primitive de h qui s'annule en 10.
- 4. Déterminer une primitive F de chacune des fonctions suivantes qui réponde à la condition posée :

a.
$$f(x) = \frac{x+0.5}{x^2+x+1}$$
 et $F(1) = 0$

b.
$$f(x) = \frac{\cos 2x}{\sin x \cdot \cos x}$$
 et $F(2) = 1$.

- 4. Calculer la dérivée de la fonction définie par $f(x) = \ln\left(\frac{1-x}{x+1}\right)$.
- 5. Trouver une primitive de la fonction définie par : $f(x) = \frac{x+1}{\left(x^2+2x\right)^3}$
- 6. a. Montrer qu'une primitive de $x\mapsto \frac{\ln x}{x}$ est $x\mapsto \frac{(\ln x)^2}{2}$. En déduire l'ensemble des primitives F de
- f. b. Déterminer la primitive de f qui s'annule pour x=1.

Correction

1.
$$f(x) = \ln(u(x)) \Rightarrow f'(x) = u'(x) \ln'(u(x)) = \frac{u'(x)}{u(x)}$$

avec
$$u(x) = \frac{3+x}{3-x}$$
 $u'(x) = \frac{1\times(3-x)-(-1)\times(3+x)}{(3-x)^2} = \frac{3-x+3+x}{(3-x)^2} = \frac{6}{(3-x)^2}$

d'où
$$f'(x) = \frac{u'(x)}{u(x)} = \frac{\frac{6}{(3-x)^2}}{\frac{3+x}{3+x}} = \frac{6}{(3-x)^2} \times \frac{3-x}{3+x} = \frac{6}{(3-x)(3+x)}.$$

2. a.
$$h(x) = \frac{4x}{(3x^2+2)^3} = \frac{4}{6} \times \frac{6x}{(3x^2+2)^3} = \frac{2}{3} \times \frac{u'(x)}{u(x)^3} = \frac{2}{3}u'(x)u(x)^{-3}$$
 avec $u(x) = 3x^2 + 2$ et $n-1 = -3 \Rightarrow n = -2$.

$$H(x) = \frac{2}{3} \times \frac{u(x)^{-2}}{-2} + K = -\frac{1}{3u(x)^{2}} + K = -\frac{1}{3(3x^{2} + 2)^{2}} + K \text{ (K r\'eel)}.$$

b.
$$H(10) = 0 \Leftrightarrow -\frac{1}{3(3 \times 10^2 + 2)^2} + K = 0 \Leftrightarrow K = \frac{1}{3 \times 302^2} = \frac{1}{273612}$$
 d'où $H(x) = -\frac{1}{3(3x^2 + 2)^2} + \frac{1}{273612}$.

4.
$$f(x) = \ln\left(\frac{1-x}{x+1}\right)$$
:

$$f(x) = \ln(u(x))$$
 avec $u(x) = \frac{1-x}{x+1}$ et $u'(x) = \frac{-1 \times (x+1) - (1-x) \times 1}{(x+1)^2} = \frac{-x-1-1+x}{(x+1)^2} = \frac{-2}{(x+1)^2}$;

$$f'(x) = \frac{u'(x)}{u(x)} = \frac{\frac{-2}{(x+1)^2}}{\frac{1-x}{x+1}} = \frac{-2}{(x+1)^2} \times \frac{x+1}{1-x} = \frac{-2}{(1+x)(1-x)} = \frac{2}{(1+x)(x-1)} = \frac{2}{x^2-1}.$$

5.
$$f(x) = \frac{x+1}{(x^2+2x)^3}$$
. Soit $u(x) = x^2 + 2x$, on a : $u'(x) = 2x + 2 = 2(x+1)$ et

$$f(x) = \frac{x+1}{\left(x^2 + 2x\right)^3} = \frac{1}{2} \times \frac{2(x+1)}{\left(x^2 + 2x\right)^3} = \frac{1}{2} \times \frac{u'(x)}{u^3(x)} = \frac{1}{2}u'(x) \times u^{-3}(x)$$

qui est de la forme $\frac{1}{2}u'(x)\times u^{n-1}(x)$ avec n-1=-3, ou n=-2.

Les primitives de telles fonctions sont de la forme :

$$F(x) = \frac{1}{2} \times \frac{u^n(x)}{n} = \frac{1}{2} \times \frac{(x^2 + 2x)^{-2}}{-2} = -\frac{1}{4} \times \frac{1}{(x^2 + 2x)^2} \text{ (+ constante...)}.$$

6. a. Dérivons $u(x) = \frac{(\ln x)^2}{2}$, $u'(x) = \frac{1}{2} \cdot 2 \cdot \frac{1}{x} \cdot \ln x = \frac{\ln x}{x}$ donc u est bien une primitive de $\frac{\ln x}{x}$.

Toutes les primitives sont alors de la forme u(x)+K.

b.
$$u(1) + K = 0 \iff K = -u(1) = -\frac{(\ln 1)^2}{2} = 0$$
.

1. 6. Calcul de limites

1. Soit
$$f(x) = \frac{\cos(\pi x^2 - \frac{\pi}{3}) + \frac{1}{2}}{x - 1}$$
; calculer $\lim_{x \to 1} f(x)$.

2.
$$f(x) = \ln\left(\frac{ex+3}{x+5}\right)$$
; calculer $\lim_{x \to +\infty} f(x)$.

3.
$$f(x) = \ln\left(\frac{x^2 + 3}{e^x}\right)$$
; calculer $\lim_{x \to +\infty} f(x)$.

$$4. \lim_{x \to +\infty} \frac{2\ln x + 1}{2x}.$$

5.
$$\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x} \right)$$
.

Correction

1.
$$\lim_{x \to 1} \frac{\cos(\pi x^2 - \frac{\pi}{3}) + \frac{1}{2}}{x - 1} = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1)$$
 avec
$$\begin{cases} f(x) = \cos(\pi x^2 - \frac{\pi}{3}) \\ f(1) = \cos(\pi - \frac{\pi}{3}) = \cos(\frac{2\pi}{3}) = -\frac{1}{2} \end{cases}$$

On calcule donc $f'(x) = -2\pi x \sin(\pi x^2 - \frac{\pi}{3})$ d'où $f'(1) = -2\pi \sin(\pi - \frac{\pi}{3}) = -2\pi \sin\frac{2\pi}{3} = -\frac{2\pi\sqrt{3}}{2} = -\pi\sqrt{3}$.

2.
$$\lim_{x \to +\infty} \frac{ex+3}{x+5} = e \Rightarrow \lim_{x \to +\infty} \ln\left(\frac{ex+3}{x+5}\right) = \ln e = 1.$$

3.
$$\lim_{x \to +\infty} \ln \left(\frac{x^2 + 3}{e^x} \right) = \lim_{x \to +\infty} \left[\ln(x^2 + 3) - \ln e^x \right] = \lim_{x \to +\infty} \left[\ln(x^2 \left(1 + \frac{3}{x^2} \right)) - x \right] = \lim_{x \to +\infty} \left[\ln x^2 + \ln \left(1 + \frac{3}{x^2} \right) - x \right],$$

or
$$\lim_{x \to +\infty} \ln\left(1 + \frac{3}{x^2}\right) = \ln 1 = 0$$
 et $\lim_{x \to +\infty} (\ln x^2 - x) = \lim_{x \to +\infty} (2\ln x - x) = \lim_{x \to +\infty} x \left(2\frac{\ln x}{x} - 1\right) = -\infty$ car $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.

4.
$$\lim_{x \to +\infty} \frac{2 \ln x + 1}{2x} = \lim_{x \to +\infty} \frac{\ln x}{x} + \lim_{x \to +\infty} \frac{1}{2x} = 0$$
 car $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ et $\lim_{x \to +\infty} \frac{1}{2x} = 0$

5.
$$\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right) = \lim_{x \to +\infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}} = \lim_{x \to 0+} \frac{\ln(1+X)}{X} = 1 \text{ d'après le cours.}$$

1. 7. Résolution (in)équations

1. Résoudre l'équation : $\ln(x^2 - 3x - 2) = \ln(2x - 6)$.

2. Résoudre l'inéquation :
$$e^{2\ln\left(\frac{1}{x}\right)+1} > 2e$$

3. Résoudre dans
$$\Box$$
 le système :
$$\begin{cases} \ln x - \ln y = 1 \\ x + y = 2e \end{cases}$$

4. Résoudre l'inéquation : $\ln(1+x) - \ln(1-x) > \ln 2x - \ln(1+x)$.

5. Résoudre : $1 + \ln(x + 3) = \ln(x^2 + 2x - 3)$.

6. Résoudre : $\ln(x^2 - 4e^2) < 1 + \ln(3x)$.

Correction

1. Domaine de définition : $D_1 = \left[-\infty; \frac{3 - \sqrt{17}}{2} \right] \cup \left[\frac{3 + \sqrt{17}}{2}; +\infty \right]$, par ailleurs 2x - 6 > 0 si et seulement

si x > 3. On a donc
$$D_f = D_1 \cap]3$$
; $+\infty [=] \frac{3 + \sqrt{17}}{2}$; $+\infty [$ car $\frac{3 + \sqrt{17}}{2} \approx 3,56$.

Pour la résolution : ln $a = \ln b$ équivaut à a = b donc, l'équation devient : $x^2 - 3x - 2 = 2x - 6$ ou encore $x^2 - 5x + 4 = 0$ d'où les solutions 1 et 4 ; mais seule 4 est valable.

2. Domaine de définition : il faut que x > 0, soit $D_f = [0] + \infty$

$$e^{2\ln\left(\frac{1}{x}\right)+1} > 2e \Leftrightarrow e^{-2\ln x + 1} > 2e \Leftrightarrow -2\ln x + 1 > \ln(2e) \Leftrightarrow -2\ln x > \ln 2 + \ln e - 1 \Leftrightarrow \ln x < -\frac{\ln 2}{2} \Leftrightarrow x < e^{-\frac{\ln 2}{2}}.$$
 On

peut simplifier un peu : $e^{-\frac{1}{2}\ln 2} = \left(e^{\ln 2}\right)^{-\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ et finalement $S = \left[0; \frac{\sqrt{2}}{2}\right]$.

3.
$$\begin{cases} \ln x - \ln y = 1 \\ x + y = 2e \end{cases} \Leftrightarrow \begin{cases} \ln \frac{x}{y} = \ln e \\ y = + y = 2e \end{cases} \Leftrightarrow \begin{cases} y = \frac{2e}{1+e} \\ x = \frac{2e^2}{1+e} \end{cases}$$
. Les deux solutions sont positives donc c'est

4. Attention à l'ensemble de définition : $1+x>0, 1-x>0, 2x>0 \Rightarrow x>-1, x<1, x>0 \Rightarrow x\in]0;1[$.

On a alors
$$\ln\left(\frac{1+x}{1-x}\right) > \ln\left(\frac{2x}{1+x}\right) \Leftrightarrow \frac{1+x}{1-x} - \frac{2x}{1+x} > 0 \Leftrightarrow \frac{1+2x+x^2-2x+2x^2}{(1-x)(1+x)} > 0 \Leftrightarrow \frac{1+3x^2}{(1-x)(1+x)} > 0$$
.

Le numérateur et le dénominateur sont positifs sur]o ; 1[, la solution est donc l'intervalle]o ; 1[.

5. $1 + \ln(x + 3) = \ln(x^2 + 2x - 3)$: il faut que x > -3 et que $x^2 + 2x - 3 = (x - 1)(x + 3) > 0$ (à l'extérieur des racines) donc D =]-3; $+\infty$ [.

$$1 + \ln(x+3) = \ln(x^2 + 2x - 3) \Leftrightarrow \ln e + \ln(x+3) = \ln(x^2 + 2x - 3) \Leftrightarrow \ln e(x+3) = \ln(x^2 + 2x - 3) \Leftrightarrow e(x+3) = x^2 + 2x - 3.$$

ln est une bijection :
$$x^2 + (2 - e)x - 3(1 + e) = 0$$
,
 $\Delta = (2 - e)^2 + 12(1 + e) = 4 - 4e + e^2 + 12 + 12e = e^2 + 8e + 16 = (e + 4)^2$.

$$x = \frac{-(2-e)\pm(e+4)}{2}, x_1 = -3 \notin D \text{ ou } x_2 = e+1 \in D. S = \{e+1\}.$$

6. $\ln(x^2 - 4e^2) < 1 + \ln(3x)$

Il faut que $x^2 - 4e^2 > 0$ et que 3x > 0 i.e. x > 0 et $x^2 > 4e^2$ c'est-à-dire (x > 0) et (x > 2e) ou x < -2e).

 $D =]2e ; +\infty [.$

 $\ln(x^2-4\mathrm{e}^2)<1+\ln(3x)\Leftrightarrow \ln(x^2-4\mathrm{e}^2)<\ln\mathrm{e}+\ln(3x)\Leftrightarrow \ln(x^2-4\mathrm{e}^2)<\ln(3\mathrm{e}x)\Leftrightarrow x^2-4\mathrm{e}^2<3\mathrm{e}x\Leftrightarrow x^2-4\mathrm{e}^2$ (E) $x^2 - 3ex - 4e^2 < 0$.

$$\Delta = 9e^2 + 16e^2 = 25e^2 = (5e)^2$$
, $x = \frac{3e \pm 5e}{2}$; (E) $\Leftrightarrow -e < x < 4e$. S =]2e; 4e[.

1. 8. Avec ROC

1. La fonction g est définie sur]o; $+\infty$ [par $g(x) = 2x\sqrt{x} - 3\ln x + 6$.

En utilisant les variations de g, déterminer son signe suivant les valeurs de x.

2. La fonction numérique f est définie sur]o,+∞[par

$$f(x) = \frac{3 \ln x}{\sqrt{x}} + x - 1.$$

- a. Démonstration de cours : au choix
- démontrer que $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$ et en déduire que $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$

ou bien

- démontrer que $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ et en déduire que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.
- b. Déterminer les limites de f en o et $+\infty$ (en $+\infty$, on pourra poser $X = \sqrt{x}$).
- c. Utiliser la première partie pour déterminer le sens de variation de f.
- 3. Soit Δ la droite d'équation y = x 1 et C la représentation graphique de f dans un repère orthonormé du plan. Montrer que Δ est asymptote de C et étudier leurs positions relatives, construire C et Δ .

Correction

1.
$$g'(x) = 2\sqrt{x} + 2x \frac{1}{2\sqrt{x}} - 3\frac{1}{x} = \frac{4x + 2x}{2\sqrt{x}} - \frac{3}{x} = \frac{3x}{\sqrt{x}} - \frac{3}{x} = 3\frac{x^2 - \sqrt{x}}{x\sqrt{x}}$$
.

On a alors $x^2 - \sqrt{x} \ge 0 \Leftrightarrow x^2 \ge \sqrt{x} \Leftrightarrow x^4 \ge x \Leftrightarrow x(x^3 - 1) \ge 0 \Leftrightarrow x \ge 1$ car x est positif.

A. TOUATI

Conclusion g est décroissante avant 1, croissante après ; on a un minimum en 1 qui vaut g(1)=2+0+6=8et est positif. Finalement g(x) est toujours positive.

2.
$$f(x) = \frac{3 \ln x}{\sqrt{x}} + x - 1$$

a. No comment

b. Comme $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$, si on pose $X = \sqrt{x}$, cela nous donne $\lim_{x\to +\infty} \frac{\ln x}{\sqrt{x}} = \lim_{X\to +\infty} \frac{\ln X^2}{X} = \lim_{X\to +\infty} 2\frac{\ln X}{X} = 0$.

En o, $\ln x$ tend vers $-\infty$ et $\frac{1}{\sqrt{x}}$ tend vers $+\infty$ donc $\frac{\ln x}{\sqrt{x}}$ tend vers $-\infty$ ainsi que f.

c.
$$f'(x) = 3\frac{\frac{1}{x}\sqrt{x} - \frac{1}{2\sqrt{x}}\ln x}{x} + 1 = 3\frac{\frac{2}{2\sqrt{x}} - \frac{1}{2\sqrt{x}}\ln x}{x} + \frac{x}{x} = \frac{\frac{3(2 - \ln x)}{2\sqrt{x}} + \frac{2x\sqrt{x}}{2\sqrt{x}}}{x} = \frac{6 - 3\ln x + 2x\sqrt{x}}{2x\sqrt{x}} = \frac{g(x)}{2x\sqrt{x}}.$$
Donc f est du signe de g et donc toujours positive, f est donc croissante.

3. On a $f(x)-(x-1)=\frac{3\ln x}{\sqrt{x}}$ qui tend vers o à l'infini et qui est positif (C au-dessus de Δ) lorsque x>1, négatif lorsque x < 1 (C en dessous de Δ) .

1. 9. Dérivation et encadrement

Le plan P est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$ (unité graphique 3 cm).

1. On considère la fonction définie sur $[0,+\infty[$ par : $\begin{cases} f(x) = \frac{\ln(x+1)}{x} & \text{si } x > 0 \\ f(x) = \frac{1}{x} & \text{si } x > 0 \end{cases}$

Montrer que f est continue en o.

2. a. Etudier le sens de variation de la fonction g définie sur $[0, +\infty[$ par $g(x) = \ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right)$.

Calculer g(0) et en déduire que sur \Box +: $\ln(1+x) \le \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right)$.

b. Par une étude analogue, montrer que si $x \ge 0$, alors $\ln(1+x) \ge x - \frac{x^2}{2}$.

c. Établir que pour tout x strictement positif on a $-\frac{1}{2} \le \frac{\ln(1+x)-x}{x^2} \le -\frac{1}{2} + \frac{x}{3}$.

En déduire que f est dérivable en zéro et que $f'(0) = -\frac{1}{2}$

3. a. Soit *h* la fonction définie sur $[0, +\infty[$ par $h(x) = \frac{x}{x+1} - \ln(1+x)$.

Étudier son sens de variation et en déduire le signe de h sur $[0,+\infty[$.

- b. Montrer que sur $[0,+\infty[$, $f'(x) = \frac{h(x)}{x^2}$.
- c. Dresser le tableau de variation de f en précisant la limite de f en $+\infty$
- d. On désigne par C la représentation graphique de f. Construire la tangente T à C au point d'abscisse o. Montrer que C admet une asymptote. Tracer la courbe C.

Correction

1.
$$\begin{cases} f(x) = \frac{\ln(x+1)}{x} & \text{si } x > 0 \\ f(0) = 1 \end{cases}$$
; f est continue en o ssi $\lim_{x \to 0} f(x) = f(0)$, or le cours donne justement la limite

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

2. a.
$$g'(x) = \frac{1}{1+x} - (1-x+x^2) = \frac{1-1-x+x+x^2-x^2-x^3}{1+x} = \frac{-x^3}{1+x} \le 0$$
. Donc g est décroissante et comme

$$g(o)=o$$
, on a également $g(x) \le 0$, soit $\ln(1+x) \le \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right)$.

b. On prend
$$k(x) = \ln(1+x) - x + \frac{x^2}{2} \Rightarrow k'(x) = \frac{1}{1+x} - 1 + x = \frac{1 - 1 - x + x + x^2}{1+x} = \frac{x^2}{1+x} \ge 0$$
 et $k(0) = 0$ donc

$$k(x) \ge 0$$
, soit $\ln(1+x) \ge x - \frac{x^2}{2}$.

$$\text{c. } x - \frac{x^2}{2} + \frac{x^3}{3} \ge \ln(1+x) \ge x - \frac{x^2}{2} \Leftrightarrow -\frac{x^2}{2} + \frac{x^3}{3} \ge \ln(1+x) - x \ge -\frac{x^2}{2} \Leftrightarrow -\frac{1}{2} + \frac{x}{3} \ge \frac{\ln(1+x) - x}{x^2} \le -\frac{1}{2}.$$

$$f$$
 dérivable en zéro: on calcule $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{\frac{\ln(1+x)}{x}-1}{x} = \lim_{x\to 0} \frac{\ln(1+x)-x}{x^2}$; or le résultat

précédent montre que cette limite est précisément $-\frac{1}{2}$ qui est donc f(0)

3. a.
$$h(x) = \frac{x}{x+1} - \ln(1+x)$$
, $h'(x) = \frac{1}{(x+1)^2} - \frac{1}{x+1} = \frac{1-x-1}{(x+1)^2} = \frac{-x}{(x+1)^2} \le 0$; on a $h(0) = 0$ et h décroissante donc $h(x) \le 0$.

b.
$$f'(x) = \frac{\frac{1}{1+x}x - \ln(1+x)}{x^2} = \frac{h(x)}{x^2} \le 0$$
.

c.
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln(1+x)}{x} \square \lim_{x \to \infty} \frac{\ln x}{x} = 0$$
.

1. 10. Fonction+équation, Am. Nord 06/2008, 6 pts

Soit f la fonction définie sur l'intervalle]1; $+\infty$ [par $f(x) = \ln x - \frac{1}{\ln x}$.

On nomme (C) la courbe représentative de f et (Γ) la courbe d'équation $y = \ln x$ dans un repère orthogonal $(O; \vec{i}, \vec{j})$.

- 1. Étudier les variations de la fonction f et préciser les limites en 1 et en $+\infty$.
- 2. a. Déterminer $\lim_{x\to +\infty} \left[f(x) \ln x \right]$. Interpréter graphiquement cette limite.
- b. Préciser les positions relatives de (C) et de (Γ).
- 3. On se propose de chercher les tangentes à la courbe (C) passant par le point O.
- a. Soit a un réel appartenant à l'intervalle $]1; +\infty[$. Démontrer que la tangente T_a à (C) au point d'abscisse a passe par l'origine du repère si et seulement si f(a)-af'(a)=0.

Soit g la fonction définie sur l'intervalle]1; $+\infty$ [par g(x)=f(x)-xf'(x).

- b. Montrer que sur $]1;+\infty[$, les équations g(x)=0 et $(\ln x)^3-(\ln x)^2-\ln x-1=0$ ont les mêmes solutions.
- c. Après avoir étudié les variations de la fonction u définie sur \mathbb{R} par $u(t) = t^3 t^2 t 1$, montrer que la fonction u s'annule une fois et une seule sur \mathbb{R} .
- d. En déduire l'existence d'une tangente unique à la courbe (C) passant par le point O.

La courbe (C) et la courbe (Γ) sont données ci-dessus. Tracer cette tangente le plus précisément possible sur cette figure.

4. On considère un réel m et l'équation f(x) = mx d'inconnue x.

Par lecture graphique et sans justification, donner, suivant les valeurs du réel m, le nombre de solutions de cette équation appartenant à l'intervalle]1;10].

Correction

1. On a $f = u - \frac{1}{u}$, avec $u(x) = \ln x$, dérivable et qui ne s'annule pas sur]1; $+\infty$ [. Donc f est dérivable sur]1; $+\infty$ [en tant que différence de deux fonctions dérivables sur]1; $+\infty$ [.

$$f' = u' - \left(\frac{1}{u}\right)' = u' - \frac{-u'}{u^2} = u' + \frac{u'}{u^2} \text{ avec } u'(x) = \frac{1}{x}. \text{ Donc } f'(x) = \frac{1}{x} + \frac{\frac{1}{x}}{(\ln x)^2} = \frac{1}{x} \left(1 + \frac{1}{(\ln x)^2}\right).$$

Comme x > 1, $\frac{1}{x} > 0$ et $1 + \frac{1}{\left(\ln x\right)^2} > 0$, c'est-à-dire f'(x) > 0. f est strictement croissante sur]1; $+\infty$ [.

 $\lim_{\substack{x \to 1 \\ x > 1}} \left(\ln x \right) = 0^+ \text{ d'où } \lim_{\substack{x \to 1 \\ x > 1}} \frac{1}{\left(\ln x \right)} = +\infty, \text{ donc } \lim_{\substack{x \to 1 \\ x > 1}} f\left(x \right) = -\infty \text{ (par somme des limites)}.$

 $\lim_{x \to +\infty} (\ln x) = +\infty \text{ d'où } \lim_{x \to +\infty} \frac{1}{(\ln x)} = 0, \text{ donc } \lim_{x \to +\infty} f(x) = +\infty \text{ (par somme des limites)}.$

2. a. $\lim_{x\to +\infty} (f(x) - \ln x) = \lim_{x\to +\infty} (-\frac{1}{\ln x}) = 0$. Les courbes (C) et (Γ) sont asymptotes en $+\infty$.

b. $f(x) - \ln x = -\frac{1}{\ln x}$; or, pour x > 1, $\ln x > 0$; donc $f(x) - \ln x < 0$, (C) est en dessous de (Γ).

3. a. T_a a pour équation y = f'(a)(x-a)+f(a)=f'(a)x+(f(a)-af'(a)); T_a passe par l'origine du repère si $0 = f'(a) \times 0 + f(a) - af'(a) \Leftrightarrow f(a) - af'(a) = 0$.

b. g(x) = 0 équivaut à f(x) - xf'(x) = 0; or $f'(x) = \frac{1}{x} \left(1 + \frac{1}{(\ln x)^2} \right)$ et $f(x) = \ln x - \frac{1}{\ln x}$, soit:

$$\ln x - \frac{1}{\ln x} - x \times \frac{1}{x} \left(1 + \frac{1}{\left(\ln x \right)^2} \right) = 0 \Leftrightarrow \ln x - \frac{1}{\ln x} - 1 - \frac{1}{\left(\ln x \right)^2} = 0 \Leftrightarrow \frac{\left(\ln x \right)^3 - \ln x - \left(\ln x \right)^2 - 1}{\left(\ln x \right)^2} = 0.$$

Par conséquent les équations g(x) = 0 et $(\ln x)^3 - (\ln x)^2 - \ln x - 1 = 0$ ont les mêmes solutions.

c. $u'(t) = 3t^2 - 2t - 1 = (t - 1)(3t + 1)$. $u'(t) \ge 0$ pour t appartenant à $\left[-\frac{1}{3}; 1 \right]$.

Avant 1 le maximum de u est négatif ; après 1, u passe de -2 à $+\infty$, on en déduit que la fonction u s'annule une seule fois sur \mathbb{R} .

d. T_a passe par l'origine du repère si $(\ln x)^3 - \ln x - (\ln x)^2 - 1 = 0$, c'est-à-dire si $u(\ln x) = 0$. Or la question 3. c. prouve que cette équation n'admet qu'une solution, que l'on notera a_0 , sur \mathbb{R} .

À l'aide de la calculatrice, on trouve $a_0 \approx 6,29$: il n'existe qu'une seule tangente à (C) passant par l'origine du repère.

- 4. Par lecture graphique : résoudre f(x) = mx revient à chercher l'intersection entre (C) et les droites passant par l'origine et de pente m; on a donc pour $1 \le x \le 10$ et $m_0 = \frac{f(10)}{10}$:
- si $m \le m_0$ l'équation f(x) = mx admet une seule solution ;
- si $m_0 \approx 0.187 \le m \le f'(a_0) \approx 0.2$ l'équation f(x) = mx admet deux solutions ;
- si $m > f'(a_0)$ l'équation f(x) = mx n'admet aucune solution.

1. 11. Ln et exp+intégrale Polynésie 09/2008 6 pts

On considère la fonction f définie sur \mathbb{R} par $f(x) = \ln(e^x + 2e^{-x})$.

La courbe (C) représentative de la fonction f dans un repère orthogonal est donnée ci-dessous.

Partie A - Étude de la fonction f

1. Montrer que, pour tout réel x, $f(x) = x + \ln(1 + 2e^{-2x})$.

On admet que, pour tout réel x, $f(x) = -x + \ln(2 + e^{2x})$.

2. Calculer $\lim_{x \to a} f(x)$ et montrer que la droite (d) d'équation y = x est asymptote à (C).

Étudier la position relative de (C) et de (d).

- 3. Calculer $\lim_{x \to -\infty} f(x)$ et montrer que la droite (d') d'équation $y = -x + \ln 2$ est asymptote à (C).
- 4. Étudier les variations de la fonction f. Montrer que le minimum de la fonction f est égal à $\frac{3}{2} \ln 2$.
- 5. Tracer les droites (d) et (d') sur la figure.

Partie B - Encadrement d'une intégrale

On pose
$$I = \int_{2}^{3} \left[f(x) - x \right] dx$$
.

- 1. Donner une interprétation géométrique de I.
- 2. Montrer que, pour tout $X \in [0; +\infty[$, $\ln(1+X) \le X$.

En déduire que $0 \le I \le \int_{2}^{3} 2e^{-2x} dx$ et donner un encadrement de I d'amplitude 0,02.

Correction

Partie A

1.
$$f(x) = \ln(e^x + 2e^{-x}) = \ln(e^x(1 + 2e^{-2x})) = \ln(e^x + \ln(1 + 2e^{-2x})) = x + \ln(1 + 2e^{-2x})$$
.

Remarque : si on met en facteur e^{-x} à la place de e^{x} , on a $f(x) = -x + \ln(2 + e^{2x})$.

2.
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x + \ln(1 + 2e^{-2x}) = +\infty + \ln(1 + 2 \times 0) = +\infty$$
;

 $\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} \ln\left(1 + 2e^{-2x}\right) = \ln\left(1 + 2 \times 0\right) = 0 : \text{la droite (d) d'équation } y = x \text{ est asymptote à (C)}.$

3.
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -x + \ln(2 + e^{2x}) = +\infty + \ln(2 + 0) = +\infty$$
;

 $\lim_{x \to -\infty} f(x) + x = \lim_{x \to -\infty} \ln\left(2 + e^{2x}\right) = \ln 2 \Rightarrow \lim_{x \to -\infty} f(x) - \left(-x + \ln 2\right) = 0 : \text{ la droite (d')} \quad y = -x + \ln 2 \text{ est asymptote à (C)}.$

4.
$$f'(x) = \frac{e^x - 2e^{-x}}{e^x + 2e^{-x}}$$
; $f'(x) \ge 0 \Leftrightarrow e^x \ge 2e^{-x} \Leftrightarrow e^{2x} \ge 2 \Leftrightarrow 2x \ge \ln 2 \Leftrightarrow x \ge \frac{1}{2}\ln 2$.

$$f\left(\frac{\ln 2}{2}\right) = \ln \left(e^{\frac{1}{2}\ln 2} + 2e^{-\frac{1}{2}\ln 2}\right) = \ln \left(\left(e^{\ln 2}\right)^{1/2} + 2\left(e^{\ln 2}\right)^{-1/2}\right) = \ln \left(2^{1/2} + 2^{1}2^{-1/2}\right) = \ln \left(2 \times 2^{1/2}\right) = \ln \left(2^{3/2}\right).$$

Partie B - Encadrement d'une intégrale

- 1. I représente l'aire comprise entre (C), la droite (y=x), les droites x=2 et x=3.
- 2. $\ln(1+X) \le X \Rightarrow \ln(1+2e^{-2x}) \le 2e^{-2x}$ car $2e^{-2x} > 0$. Par ailleurs on a $f(x) \ge x \Rightarrow I \ge 0$.

$$I = \int_{2}^{3} \left[f(x) - x \right] dx = \int_{2}^{3} \ln \left(1 + 2e^{-2x} \right) dx \le \int_{2}^{3} 2e^{-2x} dx = \left[\frac{2}{-2} e^{-2x} \right]_{2}^{3} = -e^{-6} + e^{-4} \approx 0,015 \text{ ; o,o1 est une}$$

estimation de I d'amplitude 0,02.

1. 12. Sommes partielles série harmonique, N. Calédonie 2007

Soit (u_n) la suite définie sur \square * par $u_n = \sum_{i=1}^{k=2n} \frac{1}{k} = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$.

PARTIE A

- 1. Montrer que pour tout n de \square *, $u_{n+1} u_n = \frac{-3n-2}{n(2n+2)(2n+1)}$.
- 2. En déduire le sens de variation de la suite (u_n) .
- 3. Établir alors que (u_n) est une suite convergente.

L'objectif de la partie B est de déterminer la valeur de la limite de la suite (u_n) . PARTIE B

Soit f la fonction définie sur l'intervalle]o; $+\infty$ [par : $f(x) = \frac{1}{x} + \ln\left(\frac{x}{x+1}\right)$.

1. a. Justifier pour tout entier naturel n non nul l'encadrement : $\frac{1}{n+1} \le \int_{n}^{n+1} \frac{1}{x} dx \le \frac{1}{n}$.

b. Vérifier que
$$\int_{n}^{n+1} \frac{1}{x} dx = \frac{1}{n} - f(n).$$

- c. En déduire que pour tout entier naturel n non nul, $0 \le f(n) \le \frac{1}{n(n+1)}$.
- 2. On considère la suite (S_n) définie sur $\square *$ par

$$S_n = \sum_{k=n}^{k=2n} \frac{1}{k \left(\ k+1 \right)} = \frac{1}{n \left(\ n+1 \right)} + \frac{1}{\left(\ n+1 \right) \left(\ n+2 \right)} + \ldots + \frac{1}{2n \left(\ 2n+1 \right)} \, .$$

- a. Montrer que pour tout entier naturel n non nul, $0 \le f(n) + f(n+1) + ... + f(2n) \le S_n$.
- b. Déterminer les réels a et b tels que pour tout réel x distinct de -1 et de $\mathbf o$, on ait

$$\frac{1}{x(x+1)} = \frac{a}{x} + \frac{b}{x+1}.$$

- c. En déduire l'égalité $S_n = \frac{n+1}{n(2n+1)}$.
- d. En utilisant les questions précédentes, déterminer alors la limite quand n tend vers $+\infty$ de

$$\sum_{k=n}^{k=2n} f(k) = f(n) + f(n+1) + \dots + f(2n).$$

- e. Vérifier que pour tout entier n > 1, $f(n) + f(n+1) + ... + f(2n) = u_n \ln\left(2 + \frac{1}{n}\right)$.
- f. Déterminer la limite de la suite (u_n) .

Correction

$$u_n = \sum_{k=n}^{k=2n} \frac{1}{k} = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$$
.

PARTIE A

1.
$$u_{n+1} - u_n = \left(\frac{1}{n+1} + \dots + \frac{1}{2n} + \frac{1}{2n+1} + \frac{1}{2n+2}\right) - \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}\right) = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n}$$
 d'où $u_{n+1} - u_n = \frac{-3n-2}{n(2n+2)(2n+1)}$.

- 2. La suite (u_n) est décroissante puisque -3n-2<0.
- 3. La suite est positive puisque somme de termes positifs ; elle est décroissante et minorée, elle converge bien

PARTIE B

1. a.
$$n \le x \le n+1 \Leftrightarrow \frac{1}{n+1} \le \frac{1}{x} \le \frac{1}{n} \Rightarrow \frac{1}{n+1} \le \int_{n}^{n+1} \frac{1}{x} dx \le \frac{1}{n}$$

b.
$$\int_{n}^{n+1} \frac{1}{x} dx = \left[\ln x \right]_{n}^{n+1} = \ln \left(n+1 \right) - \ln n = \ln \left(\frac{n+1}{n} \right) ;$$

par ailleurs
$$\frac{1}{n} - f(n) = \frac{1}{n} - \frac{1}{n} - \ln\left(\frac{n}{n+1}\right) = \ln\left(\frac{n+1}{n}\right)$$
 car $\ln\frac{a}{b} = -\ln\frac{b}{a}$.

c. Comme
$$\frac{1}{n+1} \le \int_{n}^{n+1} \frac{1}{x} dx \le \frac{1}{n}$$
, on a:

$$\frac{1}{n+1} \le \frac{1}{n} - f(n) \le \frac{1}{n} \Leftrightarrow \frac{1}{n+1} - \frac{1}{n} \le -f(n) \le 0 \Leftrightarrow 0 \le f(n) \le \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}.$$

2. a. Comme

$$0 \le f(n) \le \frac{1}{n(n+1)},$$

$$0 \le f(n+1) \le \frac{1}{(n+1)(n+2)},$$

...,

$$0 \le f(2n) \le \frac{1}{2n(2n+1)},$$

on somme toutes ces inégalités et on obtient :

$$0 \le f(n) + f(n+1) + \dots + f(2n) \le \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{2n(2n+1)} = S_n.$$

b. On a déjà le résultat au 1.c. : $\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$...

c. On remplace donc dans
$$S_n = \sum_{k=n}^{k=2n} \frac{1}{k(k+1)} = \frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{1}{2n} - \frac{1}{2n+1} = \frac{1}{n} - \frac{1}{2n+1}$$
 car

tous les termes intermédiaires s'éliminent ; $S_n = \frac{1}{n} - \frac{1}{2n+1} = \frac{2n+1-n}{n(2n+1)} = \frac{n+1}{n(2n+1)}$.

d. S_n tend vers o en $+\infty$; grâce aux « gendarmes » f(n)+f(n+1)+...+f(2n) tend également vers o.

e.
$$u_n = \sum_{k=n}^{k=2n} \frac{1}{k} = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$$
;

$$f(n) + f(n+1) + \dots + f(2n) = \frac{1}{n} + \ln\left(\frac{n}{n+1}\right) + \frac{1}{n+1} + \ln\left(\frac{n+1}{n+2}\right) + \dots + \frac{1}{2n} + \ln\left(\frac{2n}{2n+1}\right)$$

$$= \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} + \ln\left[\left(\frac{n}{n+1}\right)\left(\frac{n+1}{n+2}\right) \dots \left(\frac{2n}{2n+1}\right)\right]$$

$$= u_n + \ln\left[\frac{n}{2n+1}\right] = u_n - \ln\left[\frac{2n+1}{n}\right] = u_n - \ln\left[2 + \frac{1}{n}\right].$$

Les logarithmes se simplifient car tous les termes du produit à l'intérieur du crochet s'éliminent.

f. On sait déjà que f(n)+f(n+1)+...+f(2n) tend vers o ; le logaritheme tend vers ln2 donc u_n tend vers ln2.

1. 13. Fonction+aire+suite, Liban 2006

7 points

Partie A: étude d'une fonction

Soit *f* la fonction définie sur l'intervalle $[0; +\infty[$ par $f(x) = x \ln(x + 1)$.

Sa courbe représentative (C) dans un repère orthogonal $(O; \vec{u}, \vec{v})$ est donnée ci-dessous.

- 1. a. Montrer que la fonction f est strictement croissante sur l'intervalle $\left[\,0\,;+\infty\right[$.
- b. L'axe des abscisses est-il tangent à la courbe (C) au point O?
- 2. On pose $I = \int_0^1 \frac{x^2}{x+1} dx$.
- a. Déterminer trois réels a, b et c tels que, pour tout $x \ne -1$, $\frac{x^2}{x+1} = ax + b + \frac{c}{x+1}$.
- b. Calculer I.
- 3. À l'aide d'une intégration par parties et du résultat obtenu à la question 2, calculer, en unités d'aires, l'aire A de la partie du plan limitée par la courbe (C) et les droites d'équations x = 0, x = 1 et y = 0.
- 4. Montrer que l'équation f(x) = 0.25 admet une seule solution sur l'intervalle [0 ; 1]. On note α cette solution. Donner un encadrement de α d'amplitude 10⁻².

Partie B: étude d'une suite

A. TOUATI

La suite (u_n) est définie sur \square par $u_n = \int_0^1 x^n \ln(x+1) dx$.

- 1. Déterminer le sens de variation de la suite (u_n) . La suite (u_n) converge-t-elle ?
- 2. Démontrer que pour tout entier naturel n non nul, $0 \le u_n \le \frac{\ln 2}{n+1}$. En déduire la limite de la suite (u_n) .

Correction

Partie A: étude d'une fonction

Soit *f* la fonction définie sur l'intervalle $[0; +\infty[$ par $f(x) = x \ln(x+1)$.

1. a. $f'(x) = \ln(1+x) + \frac{x}{1+x}$; sur $[0; +\infty[$ les deux termes $\ln(1+x)$ et $\frac{x}{1+x}$ sont positifs donc f est croissante sur cet intervalle.

b. La tangente en O a pour équation $y = (\ln 1 + 0)(x - 0) + 0 = 0$ donc l'axe des abscisses est tangent à (C) au point O.

2. a.
$$\frac{x^2}{x+1} = \frac{x^2-1}{x+1} + \frac{1}{x+1} = x-1 + \frac{1}{x+1}$$
.

b.
$$I = \int_0^1 \frac{x^2}{x+1} dx = \int_0^1 x - 1 + \frac{1}{x+1} dx = \left[\frac{1}{2} x^2 - x + \ln|x+1| \right]_0^1 = -\frac{1}{2} + \ln 2$$
.

3.
$$\int_0^1 x \ln(1+x) dx = \left[\frac{1}{2}x^2 \ln(1+x)\right]_0^1 - \int_0^1 \frac{1}{2}x^2 \frac{1}{1+x} dx = \frac{1}{2}\ln 2 - \frac{1}{2}I = \frac{1}{4}.$$

4. La fonction f est continue, monotone strictement croissante et donc bijective de f(0)=0 vers $f(1)=\ln 2\approx 0.69$; comme $0.25\in[0;\ln 2]$, 0.25 a un unique antécédent dans [0;1]. On obtient

<u> </u>	
х	f(x)
0,56020942	0,24919239
0,56544503	0,25341558

d'où $\alpha \approx 0.56$.

Partie B: étude d'une suite

1.
$$u_{n+1} - u_n = \int_0^1 x^{n+1} \ln(x+1) dx - \int_0^1 x^n \ln(x+1) dx = \int_0^1 x^n (x-1) \ln(x+1) dx$$
; comme $(x-1)$ est

négatif et que les autres termes sont positifs sur [0;1], l'intégrale est négative et (u_n) est décroissante. Par ailleurs il est évident que (u_n) est positive donc (u_n) décroissante, minorée par 0 converge.

2. On a
$$\ln(x+1) < \ln 2$$
 sur [0; 1] donc $u_n = \int_0^1 x^n \ln(x+1) dx \le \int_0^1 x^n \ln 2 dx = \ln 2 \left[\frac{1}{n+1} x^{n+1} \right]_0^1 = \frac{\ln 2}{n+1}$.

On a donc bien $0 \le u_n \le \frac{\ln 2}{n+1}$. Comme $\frac{\ln 2}{n+1}$ tend vers o à l'infini, la suite converge vers o.

1. 14. Logarithme+ expo+ acc finis

Partie A

Le but de cette partie est d'étudier la fonction f définie sur]o; $+\infty$ [par

$$f(x) = x + \frac{2\ln x}{x}.$$

(C) est la courbe représentative de f dans un repère orthonormal (O; \vec{i} , \vec{j}) (unité graphique : 1 cm).

- 1. Étude de la fonction auxiliaire q définie sur]0; $+\infty$ [par $g(x) = x^2 + 2 + 2 \ln x$.
- a. Étudier le sens de variation de g et calculer g(1).
- b. En déduire le signe de g(x) pour tout x de]0; $+\infty$ [.
- 2. a. Calculer les limites de f en 0 et en $+\infty$.
- b. Étudier les variations de f et dresser son tableau de variations.
- c. Montrer que la droite Δ d'équation y=x est asymptote à (C) et étudier la position de (C) par rapport à Δ .
- d. Déterminer les coordonnées du point A de (C) sachant que (C) admet en A une tangente T parallèle à Δ .
- e. Tracer (C), Δ et T dans le repère (O; \vec{i} , \vec{j}).
- 3. Calculer, en cm², l'aire du domaine plan limité par Δ , la courbe (C) et les droites d'équations x=1 et x=e.
- 4. Montrer que l'équation f(x) = 0 admet une solution unique x_0 . Prouver que $\frac{1}{2} \le x_0 \le 1$.

Partie B

Le but de cette partie est de déterminer une valeur approchée de x_0 .

On désigne par h la fonction définie sur]o; $+\infty$ [par $h(x) = e^{-\frac{x^2}{2}}$.

- 1. Montrer que x_0 est l'unique solution de l'équation h(x) = x.
- 2. On note I l'intervalle $\left| \frac{1}{2} \right|$; 1 . Montrer que, pour tout x appartenant à I, h(x) appartient aussi à I.
- 3. a. Calculer la dérivée h' de h et la dérivée seconde h'' de h.
- b. Étudier les variations de h´ sur I.
- c. En déduire que, pour tout x de I, on a $|h'(x)| \le e^{-\frac{1}{2}}$.
- 4. On considère la suite définie par $u_0 = 1$ et $u_{n+1} = h(u_n)$ pour tout entier naturel n de \square .
- a. Montrer par récurrence que, pour tout n de $\square: \frac{1}{2} \le u_n \le 1$.
- b En utilisant l'inégalité des accroissements finis, montrer que, pour tout n de \square : $|u_{n+1} - \alpha| \le e^{-1/2} |u_n - \alpha|$.
- c. En déduire que, pour tout n de $\square : |u_n x_0| \le \frac{1}{2} e^{\frac{-n}{2}}$.
- 5. a. Déterminer le plus petit entier naturel n_0 tel que, pour tout entier $n \ge n_0$, on ait : $\frac{1}{2}e^{\frac{-n}{2}} < 10^{-2}$.
- b. Montrer que : $\left|u_{n_0}-x_0\right| \le 10^{-2}$. Que représente u_{n_0} relativement à x_0 ? Calculer u_{n_0} à 10^{-2} près par

Correction

Partie A

1. a.
$$g'(x) = 2x - \frac{2}{x} = \frac{2(x^2 - 1)}{x} = \frac{2}{x}(x - 1)(x + 1)$$
.

х		<i>x</i> `					
	x	-8	-1	0	1		8
	<i>g</i> '(<i>x</i>)		- 0 +	-	0	+	
	<i>g</i> (<i>x</i>)				3	,	

$$g(1) = 1^2 + 2 - 2 \times 0 = 3$$
.

b. 3 est un minimum de la fonction g sur]0; $+\infty$ [donc la fonction g est positive quel que soit x.

2. a.
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x + \frac{2\ln x}{x}) = \lim_{x \to 0^+} x + 2\lim_{x \to 0^+} \frac{\ln x}{x} = -\infty \text{ car } \lim_{x \to 0^+} \frac{\ln x}{x} = \lim_{x \to +\infty} \frac{\ln \frac{1}{X}}{\frac{1}{X}} = \lim_{x \to +\infty} (-X \ln X) = -\infty.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x + \frac{2\ln x}{x}) = \lim_{x \to +\infty} x + 2\lim_{x \to +\infty} \frac{\ln x}{x} = +\infty \text{ car } \lim_{x \to +\infty} \frac{\ln x}{x} = 0.$$

b.
$$f'(x) = 1 + \frac{2 \times \frac{1}{x} \times x - 2 \ln x \times 1}{x^2} = \frac{x^2 + 2 - 2 \ln x}{x^2} = \frac{g(x)}{x^2}$$
 du signe de $g(x)$, c'est à dire positif! f est donc strictement croissante sur $]o$; $+\infty$ [.

J	\mathbf{o} ; $+\infty$	⁾ [•		
	x	0		$+\infty$
	f'(x)		+	
	f(x)	-∞		+∞

- c. $\lim_{x \to +\infty} (f(x) x) = \lim_{x \to +\infty} \frac{2 \ln x}{x} = 0^+$, donc la droite d'équation y = x est asymptote à la courbe. Lorsque x < x
- 1 la courbe est en dessous de Δ , lorsque x > 1, la courbe est au-dessus.
- d. (C) admet en A une tangente de coefficient directeur 1 ssi $f'(x_A) = 1$:

$$f'(x_A) = 1 \Leftrightarrow \frac{g(x_A)}{x_A^2} = 1 \Leftrightarrow x_A^2 + 2 - 2\ln x_A = x_A^2 \Leftrightarrow 2 - 2\ln x_A = 0 \Leftrightarrow 2\ln x_A = 2 \Leftrightarrow \ln x_A = 1 \Leftrightarrow x_A = e ;$$

$$f(x_A) = f(e) = e + \frac{2 \ln e}{e} = e + \frac{2}{e} \approx 3,45$$
.

3. Il faut calculer $\int_{1}^{e} (f(x)-x)dx = 2\int_{1}^{e} \frac{\ln x}{x} dx$; or $\frac{1}{x}$ est la dérivée de $\ln x$, donc on a quelque chose de la

forme u'.u dont une primitive est $\frac{1}{2}u^2$: $\int_{1}^{e} (f(x)-x)dx = 2\int_{1}^{e} \frac{\ln x}{x} dx = 2\left[\frac{1}{2}(\ln x)^2\right]_{1}^{e} = 2\left[\frac{1}{2}-0\right] = 1$.

4. La fonction f est continue, strictement croissante, sur]0; $+\infty$ [, c'est donc une bijection de]0; $+\infty$ [sur \square . Il existe bien une valeur x_0 appartenant à]0; $+\infty$ [telle que $f(x_0) = 0$.

$$f\left(\frac{1}{2}\right) = \frac{1}{2} + \frac{2\ln\frac{1}{2}}{\frac{1}{2}} = \frac{1}{2} - 4\ln 2 < 0 \text{ et } f(1) = 1 + \frac{2\ln 1}{1} = 1 > 0 \text{ donc } \frac{1}{2} \le x_0 \le 1.$$

1. 15. Logarithme+primitive

L'objet de ce problème est d'étudier une fonction à l'aide d'une fonction auxiliaire et d'en déterminer une primitive.

Partie A

Soit f la fonction définie sur l'intervalle]-1; +\infty [par : $f(x) = \frac{x}{x+1} - 2\ln(x+1)$.

- 1. Calculer f(x), étudier son signe et en déduire le tableau de variation de la fonction f.
- 2. Calculer f(0). Montrer que l'équation f(x) = 0 admet exactement deux solutions dont l'une, que l'on désigne par α , appartient à [-0.72; -0.71].
- 3. Donner le signe de f(x), pour x appartenant à]-1; $+\infty$ [.

Soit g la fonction définie sur l'ensemble D =]-1; o[\cup]o; $+\infty$ [par : $g(x) = \frac{\ln(x+1)}{x^2}$.

- 1. Étude de *g* aux bornes de son ensemble de définition.
- a. Calculer les limites de g(x) quand x tend vers o par valeurs inférieures et quand x tend vers o par valeurs supérieures.

17

b. Calculer $\lim_{\substack{x \to -1 \\ x > -1}} g(x)$ et $\lim_{x \to +\infty} g(x)$.

- 2. Sens de variation de g
- a. Calculer g'(x) et déduire, à l'aide de la partie A, son signe.
- b. Montrer que $g(\alpha) = \frac{1}{2\alpha(\alpha+1)}$. En déduire une valeur approchée de $g(\alpha)$ en prenant $\alpha \approx -0.715$.
- 3. Tableau et représentation graphique de g.
- a. Dresser le tableau de variation de la fonction g.
- b. Représenter graphiquement la fonction g dans le plan rapporté à un repère orthonormal (unité graphique 2 cm).
- 4. Calcul d'une primitive de g:

Soit *h* la fonction définie sur D par : $h(x) = \frac{\ln(x+1)}{x^2} - \frac{1}{x(x+1)}$.

- a. Déterminer des fonctions u et v telles que l'on puisse écrire h(x) = u'(x).v(x) + u(x).v'(x) et en déduire une primitive de h.
- b. Après avoir vérifié que $\frac{1}{x(x+1)} = \frac{1}{x} \frac{1}{x+1}$, déterminer une primitive de $\frac{1}{x(x+1)}$.
- c. Déduire des questions précédentes, une primitive de g.

Correction

Partie A

$$f(x) = \frac{x}{x+1} - 2\ln(x+1), D_f =]-1; +\infty[.$$

1. f est dérivable comme somme de fonctions dérivables : en effet, $u: x \mapsto \frac{x}{x+1}$ est dérivable sur D_f et

 $v: x \mapsto x+1 = y \mapsto -2 \ln y$ est dérivable sur D_f.

$$f'(x) = \frac{x+1-x}{(x+1)^2} - 2\frac{1}{x+1} = \frac{1-2(x+1)}{(x+1)^2} = \frac{-2x-1}{(x+1)^2}.$$

2.
$$f'(x) \ge 0 \Leftrightarrow -2x - 1 \ge 0 \Leftrightarrow x \le -\frac{1}{2}$$
.

$$\lim_{\substack{x \to -1 \\ x > 1}} f(x) = \lim_{\substack{x \to -1 \\ x > 1}} \frac{x - 2(x+1)\ln(x+1)}{x+1} = -\infty \text{ car } \lim_{X \to 0} X \ln X = 0^{-}.$$

$$\lim_{x \to +\infty} \frac{x}{x+1} - 2\ln(x+1) = -\infty \text{ car } \lim_{x \to +\infty} \frac{x}{x+1} = 1 \text{ et } \lim_{x \to +\infty} -2\ln(x+1) = -\infty.$$

$$f(-1/2) = \frac{-1/2}{1/2} - 2\ln\frac{1}{2} = -1 + 2\ln 2 \approx 0.39, f(0) = 0.$$

3. f est continue et strictement croissante sur l'intervalle]-1; -1/2[et f(x) change de signe sur cet intervalle ; il existe donc un nombre α de]-1; -1/2[tel que $f(\alpha)=0$.

$$f(-0.71) \approx 0.027$$
 et $f(-0.72) \approx -0.025$ donc $-0.72 < \alpha < -0.71$.

Signe de f(x):

x	-1		α		0	+∞
f(x)		_	0	+	0	_

Partie B

$$g(x) = \frac{\ln(x+1)}{x^2}$$
, D =]-1; O[\cup]0; + ∞ [.

1. a.
$$\lim_{\substack{x \to 0 \\ x < 0}} g(x) = \lim_{\substack{x \to 0 \\ x < 0}} \frac{\ln(x+1)}{x} \times \frac{1}{x} = -\infty \text{ car } \lim_{\substack{x \to 0 \\ x < 0}} \frac{\ln(x+1)}{x} = 1 \text{ et } \lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty.$$

De même
$$\lim_{\substack{x \to 0 \\ x > 0}} g(x) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{\ln(x+1)}{x} \times \frac{1}{x} = +\infty$$
.

b.
$$\lim_{x \to -1} g(x) = -\infty$$
 et $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{\ln(x+1)}{(x+1)} \times \frac{x+1}{x^2} = 0$ car $\lim_{X \to +\infty} \frac{\ln X}{X} = 0$ et $\lim_{x \to +\infty} \frac{x+1}{x^2} = 0$.

A. TOUATI

0.0	g'(x) =	$\frac{1}{x+1} \times x^2 - \ln(x+1) \times 2x$	$\frac{x}{x+1} - 2\ln(x+1)$	f(x)
2. a.	g(x) –	${x^4}$	$-{x^3}$	$-{x^3}$.

х	-1		α		0	+∞
f(x)		I	0	+	0	_
χ^3		-		-		+
<i>g</i> '(<i>x</i>)		+	0	-		-

b.
$$g(\alpha) = \frac{\ln(\alpha+1)}{\alpha^2}$$
; or on sait que $f(\alpha) = 0$ donc $\frac{\alpha}{\alpha+1} - 2\ln(\alpha+1) = 0 \Leftrightarrow \ln(\alpha+1) = \frac{\alpha}{2(\alpha+1)}$.

On déduit que
$$g(\alpha) = \frac{\ln(\alpha+1)}{\alpha^2} = \frac{\alpha}{2(\alpha+1)} \times \frac{1}{\alpha^2} = \frac{1}{2\alpha(\alpha+1)} \approx -2,455$$
.

х	-1		α		0	+∞
g'(x)		+	0	-		-
g(x)				▲ -∞		+∞

4. a.
$$h(x) = \frac{\ln(x+1)}{x^2} - \frac{1}{x(x+1)}$$
. $u = \ln(x+1)$, $u' = \frac{1}{x+1}$, $v' = \frac{1}{x^2}$, $v = -\frac{1}{x} \Rightarrow h = uv' + u'v$.

La fonction $uv = -\frac{\ln(x+1)}{x}$ est une primitive de h.

b.
$$\frac{1}{x} - \frac{1}{x+1} = \frac{(x+1)-x}{x(x+1)} = \frac{1}{x(x+1)}$$
 donc la fonction $\ln(x) - \ln(x+1)$ est une primitive de $\frac{1}{x(x+1)}$.

c. Une primitive de la fonction
$$g(x) = \frac{\ln(x+1)}{x^2} = h(x) + \frac{1}{x(x+1)}$$
 est $-\frac{\ln(x+1)}{x} + \ln x - \ln(x+1)$.

1. 16. Logarithme

On considère la fonction f définie sur l'intervalle [o; $+\infty$ [par :

$$f(x) = x \ln\left(1 + \frac{1}{x^2}\right) \text{ si } x > 0 \text{ et } f(0) = 0.$$

On note (C) la courbe représentative de f dans un repère orthonormal $(O; \vec{i}, \vec{j})$ (unité graphique : 5 cm).

Le but du problème est d'étudier certaines propriétés de la fonction f.

Partie A: Etude d'une fonction auxiliaire

On considère la fonction g définie sur l'intervalle]o ; $+\infty$ [par : $g(x) = \ln\left(1 + \frac{1}{x^2}\right) - \frac{2}{x^2 + 1}$.

- 1. Calculer la dérivée g ' de g. Montrer que pour tout x de]o; $+\infty$ [, $g'(x) = \frac{2(x^2-1)}{x(x^2+1)^2}$.
- 2. Etudier le signe de g'(x) selon les valeurs de x. Déterminer la limite de g en $+\infty$. Déterminer la limite de g en 0.
- 3. Dresser le tableau des variations de g.
- 4. En déduire qu'il existe un unique nombre réel $\alpha > 0$ tel que $g(\alpha) = 0$. Vérifier que $0, 5 < \alpha < 0, 6$. Déduire des questions précédentes le signe de g(x) sur l'intervalle 0; $+\infty$ [.

On ne demande pas de construire la courbe représentative de la fonction g.

Partie B: Etude de la fonction f

- 1. a. Calculer la limite quand x tend vers $+\infty$ de xf(x) (on pourra poser $X = \frac{1}{x^2}$).
- b. En déduire que f(x) tend vers o quand x tend vers $+\infty$. Montrer que pour tout x de]o; $+\infty$ [, on a f'(x) = g(x). Dresser le tableau de variations de f sur]o; $+\infty$ [.
- 2. Etude de f en o
- a. Montrer que $x \ln \left(1 + \frac{1}{x^2}\right)$ tend vers o quand x tend vers o par valeurs suprieures. Que peut-on en conclure ?
- b. Etudier la dérivabilité de f en o.
- c. Préciser la tangente à la courbe de f au point O.
- 3. Donner l'équation de la tangente au point d'abscisse 1.
- 4. Donner l'allure de (C).

Correction

1. a. g est dérivable comme somme de fonctions dérivables. En effet, $\ln\left(1+\frac{1}{x^2}\right)$ est dérivable comme

composée de fonctions dérivables, de même que $-\frac{2}{x^2+1}$

$$g'(x) = \frac{-\frac{2x}{x^4}}{1 + \frac{1}{x^2}} + \frac{2 \times 2x}{\left(x^2 + 1\right)^2} = \frac{\frac{-2}{x^3}}{\frac{x^2 + 1}{x^2}} + \frac{4x}{\left(x^2 + 1\right)^2} = -\frac{2}{x\left(x^2 + 1\right)} + \frac{4x}{\left(x^2 + 1\right)^2} = \frac{-2\left(x^2 + 1\right) + 4x^2}{\left(x^2 + 1\right)^2} = \frac{2(x^2 - 1)}{\left(x^2 + 1\right)^2}.$$

b. Le signe de g'(x) est celui de $x^2 - 1 = (x - 1)(x + 1)$. Comme g' est définie sur $\begin{bmatrix} x \\ y \end{bmatrix}$, on a :

si 0 < x < 1, g'(x) est négatif;

 $\operatorname{si} x > 1$, g'(x) est positif.

2.
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \ln\left(1 + \frac{1}{x^2}\right) - \lim_{x \to +\infty} \frac{2}{x^2 + 1}$$
; $\lim_{x \to +\infty} \frac{1}{x^2} = 0$ donc $\lim_{x \to +\infty} \ln\left(1 + \frac{1}{x^2}\right) = \ln 1 = 0$ et $\lim_{x \to +\infty} \frac{2}{x^2 + 1} = 0$ donc $\lim_{x \to +\infty} g(x) = 0$

3.
$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \ln\left(1 + \frac{1}{x^2}\right) - \lim_{x \to 0} \frac{2}{x^2 + 1}$$
; $\lim_{x \to 0} \frac{1}{x^2} = +\infty$ donc $\lim_{x \to 0} \ln\left(1 + \frac{1}{x^2}\right) = \lim_{X \to +\infty} \ln X = +\infty$ avec

$$X = 1 + \frac{1}{x^2}$$
 et $\lim_{x \to 0} \frac{2}{x^2 + 1} = 2$ donc $\lim_{x \to 0} g(x) = +\infty$.

4. a.

$$g'(x)$$
 - 0 + 0 0 $g(x)$ -0,3

$$g(1) = \ln(1 + \frac{1}{1^2}) - \frac{2}{1^2 + 1} = \ln 2 - 1 \approx -0.3$$
.

4. b. La fonction est continue et dérivable sur]0 ; 1], de plus elle est strictement décroissante sur cet intervalle en changeant de signe, donc il existe une valeur $\alpha > 0$ telle que $g(\alpha) = 0$.

On a $g(0,5) \approx 0,009438$ et $g(0,6) \approx -0,141452$ donc $g(0,5) > 0 = g(\alpha) > g(0,6)$ et comme g est décroissante,

 $0.5 < \alpha < 0.6$.

5. Pour $0 < x < \alpha$, alors g(x) est positif; pour $x > \alpha$ alors g(x) est négatif.

A. TOUATI

1. a.
$$\lim_{x \to +\infty} xf(x) = \lim_{x \to +\infty} x^2 \ln\left(1 + \frac{1}{x^2}\right) = \lim_{x \to +\infty} \frac{\ln\left(1 + \frac{1}{x^2}\right)}{\frac{1}{x^2}} = \lim_{x \to 0} \frac{\ln(1+X)}{X} = 1$$
 (cours).

b.
$$\lim_{x \to +\infty} xf(x) = 1 \Leftrightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{x} = 0$$
.

2.
$$f(x) = x \ln(1 + \frac{1}{x^2}), f'(x) = 1. \ln(1 + \frac{1}{x^2}) + x. \frac{-\frac{2x}{x^4}}{1 + \frac{1}{x^2}} = \ln(1 + \frac{1}{x^2}) + x. \frac{-\frac{2}{x^3}}{\frac{x^2 + 1}{x^2}} = \ln(1 + \frac{1}{x^2}) - \frac{2}{x^2 + 1} = g(x).$$

			λ-		λ-	
	x	0		α		\$
	f'(x)		+	0	_	
	f(x)			$f(\alpha)$		
						0
U					_	

3. a.
$$\lim_{\substack{x \to 0 \\ x > 0}} x \ln\left(1 + \frac{1}{x^2}\right) = \lim_{\substack{x \to 0 \\ x > 0}} x \ln\left(\frac{x^2 + 1}{x^2}\right) = \lim_{\substack{x \to 0 \\ x > 0}} \left(x \ln(x^2 + 1) - x \ln x^2\right),$$
$$\lim_{\substack{x \to 0 \\ x > 0}} x \ln(x^2 + 1) = 0 \text{ car } \lim_{\substack{x \to 0 \\ x > 0}} \ln(x^2 + 1) = \ln 1 = 0.$$

$$\lim_{\substack{x \to 0 \\ x > 0}} x \ln(x^2 + 1) = 0 \quad \text{car } \lim_{\substack{x \to 0 \\ x > 0}} \ln(x^2 + 1) = \ln 1 = 0.$$

$$\lim_{\substack{x \to 0 \\ x > 0}} -x \ln x^2 = \lim_{\substack{x \to 0 \\ x > 0}} -\frac{2 \ln x}{\frac{1}{x}} = \lim_{\substack{x \to 0 \\ x > 0}} +\frac{2 \ln x^{-1}}{\frac{1}{x}} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{2 \ln \frac{1}{x}}{\frac{1}{x}} = \lim_{\substack{x \to +\infty \\ x > 0}} \frac{2 \ln X}{X} = 0^- \text{ avec } X = \frac{1}{x}.$$

Conclusion: $\lim_{x\to 0} x \ln\left(1 + \frac{1}{x^2}\right) = 0$.

b. f dérivable en o si et seulement si la limite de son taux d'accroissement est finie.

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \ln\left(1 + \frac{1}{x^2}\right) = +\infty$$

La fonction n'est donc pas dérivable en o

c. La tangente en O à f est verticale. Son équation est x = 0.

4. La tangente au point d'abscisse 1 a pour équation y = f'(1)(x-1) + f(1): $f(1) = \ln (1 + \frac{1}{12}) = \ln 2$, $f'(1) = g(1) = \ln 2 - 1$ d'où $y = (\ln 2 - 1)(x - 1) + \ln 2 \Leftrightarrow y = (\ln 2 - 1)x + 1$. 5.

Remarque:

On a vu dans la partie A que g'(1) = 0, or g'(1) = f''(1), c'est-à-dire la dérivée seconde de f en 1 : la courbe admet un point d'inflexion pour x = 1.

1. 17. Logarithme+ asymptote+primitives

Soit la fonction définie sur l'intervalle I =]4; + ∞ [par : $f(x) = -2x + 5 + 3 \ln \frac{x+1}{x-4}$ et (C) sa courbe

représentative dans le repère orthonormal $(O; \vec{i}, \vec{j})$, unité graphique : 1 cm.

- 1. Étude de f
- a. Étudier les limites de la fonction f aux bornes de I.
- b. Montrer que sur I, f'(x) est strictement négatif et dresser le tableau de variation de f.
- c. Montrer que la droite (D) d'équation y = -2x + 5 est une asymptote à (C). Préciser la position de (C) par rapport à (D).
- 2. Tracer la courbe (C) et la droite (D) dans le repère (O ; \vec{i} , \vec{j}).
- 3. Déterminer les coordonnées du point de (C) où la tangente Δ a un coefficient directeur égal à $-\frac{9}{2}$.

Donner une équation de Δ et la tracer dans le repère $(O; \vec{i}, \vec{j})$.

- 4. Calcul d'aire
- a. Déterminer, à l'aide d'une intégration par parties, les primitives sur]0; $+\infty$ [de la fonction $x \mapsto \ln x$.
- b. Montrer que la fonction $G: x \to (x+1) \ln (x+1) x$ est une primitive de la fonction $g: x \mapsto \ln (x+1)$ sur I.
- c. Montrer que la fonction $H: x \to (x-4) \ln (x-4) x$ est une primitive de la fonction $h: x \mapsto \ln (x-4)$ sur I.
- d. Déduire des questions précédentes le calcul de l'aire A du domaine plan délimité par la courbe (C), la droite (D) et les droites d'équations respectives x = 5 et x = 6.

On donnera la valeur exacte de A puis une valeur approchée à 10⁻² près.

- 5. Intersection de (C) et de l'axe des abscisses
- a. Montrer que l'équation f(x) = 0 admet dans I une unique solution, notée x_0 .
- b. Déterminer graphiquement un encadrement de x_0 d'amplitude 0,5.
- c. À l'aide de la calculatrice, déterminer un encadrement de x_0 d'amplitude 10^{-2} . On explicitera la méthode employée.

Correction

1. a. Lorsque x tend vers 4, $\frac{x+1}{x-4}$ tend vers $+\infty$ ainsi que $\ln \frac{x+1}{x-4}$ donc f tend vers $+\infty$.

Lorsque x tend vers $+\infty$, $\frac{x+1}{x-4}$ tend vers 1, $\ln \frac{x+1}{x-4}$ tend vers 0, -2x+5 tend vers $-\infty$ donc f tend vers $-\infty$.

b.
$$f'(x) = -2 + 3 \left[\ln \frac{x+1}{x-4} \right]' = -2 + 3 \left[\ln(x+1) - \ln(x-4) \right]' = -2 + 3 \left[\frac{1}{x+1} - \frac{1}{x-4} \right] = \frac{-2(x+1)(x-4) - 15}{(x+1)(x-4)}$$
.

Lorsque x > 4, x+1 est positif, x-4 est positif donc le numérateur est négatif et le dénominateur est positif. Moralité, f est négative.

c. $f(x)-(-2x+5)=\ln\frac{x+1}{x-4}$; nous avons dit que ce terme tend vers o lorsque x tend vers $+\infty$ donc la

droite (D) est une asymptote à (C). Lorsque x > 4, $\frac{x+1}{x-4} > 0$ donc (C) est au-dessus de (D).

2. a. On pose $u = \ln x$, $v' = 1 \Rightarrow u' = \frac{1}{x}$, v = x d'où une primitive de $\ln x$ est $x \ln x - \int \frac{1}{x} x dx = x \ln x - x$.

b. On dérive G:
$$G'(x) = 1 \cdot \ln(x+1) + (x+1) \cdot \frac{1}{x+1} - 1 = \ln(x+1)$$
.

c. Exactement pareil.

c. On cherche
$$A = \int_{5}^{6} f(x) - (-2x + 5)dx = \int_{5}^{6} \ln(x + 1) - \ln(4 - x)dx = [G(6) - G(5)] - [H(6) - H(5)]$$
;

$$G(6)-G(5) = 7 \ln 7 - 6 - 6 \ln 6 + 5 = 7 \ln 7 - 6 \ln 6 - 1$$

$$H(6)-H(5) = 2 \ln 2 - 6 - 1 \ln 1 + 5 = 2 \ln 2 - 1$$

et le résultat $A = 7 \ln 7 - 6 \ln 6 - 2 \ln 2 \approx 1,48 \text{ U}$.

1. 18. Fonction inconnue

Partie A

Soit la fonction f définie sur]0; $+\infty[$ par : $f(x) = ax + (bx + c) \ln x$ avec a, b et c des réels. La courbe (C) de f est donnée ci-dessous.

En utilisant ce graphique et en sachant que $f(2) = 2 - 3 \ln 2$, justifier que l'on a a = c = 1 et b = -2.

Partie B

On considère alors la fonction g définie sur $[0; +\infty[$ par : $g(x) = x + (1-2x) \ln x$.

- 1. a. Déterminer la limite de g en 0.
- b. Déterminer la limite de g en $+\infty$.
- 2. a. Déterminer la fonction dérivée de g.
- b. Etudier, pour x dans]0; $+\infty[$, le signe de $-2\ln x$ et celui de $\frac{1-x}{x}$. En déduire le signe de g'(x) et les variations de g.
- 3. Dresser le tableau complet des variations de g.
- 4. Soit la droite Δ d'équation y = x.
- a. Résoudre dans \Box l'équation $(1-2x)\ln x = 0$ et donner une interprétation graphique des solutions.
- b. Etudier la position de la courbe représentative de g par rapport à Δ .

Correction

Partie A

 $f(2) = 2 - 3 \ln 2 \Rightarrow 2a + (2b + c) \ln 2 = 2 - 3 \ln 2$; par ailleurs la dérivée s'annule en 1 et f(1) = 1:

$$f'(x) = a + b \ln x + \frac{bx + c}{x} \Rightarrow a + 0 + \frac{b + c}{1} = 0 \Leftrightarrow a + b + c = 0 \; ; \; f(1) = a + 0 = a = 1 \; .$$

On a donc $2+(2b+c)\ln 2 = 2-3\ln 2 \Leftrightarrow 2b+c=-3$; avec 1+b+c=0 on tire c=1 et b=-2.

Partie B

1. a. En o, $\ln x$ tend vers $-\infty$, donc q tend vers $-\infty$.

b. Mettons x en facteur:
$$g(x) = x \left[1 + (\frac{1}{x} - 2) \ln x \right] \rightarrow +\infty \left[1 + (0 - 2) + \infty \right] = -\infty$$
.

2. a.
$$g'(x) = 1 - 2\ln x + \frac{1 - 2x}{x} = \frac{x - 2x\ln x + 1 - 2x}{x} = \frac{1 - x - 2x\ln x}{x}$$
.

b. Mettons x en facteur : $g(x) = x \left[1 + (\frac{1}{x} - 2) \ln x \right] \rightarrow +\infty \left[1 + (0 - 2) + \infty \right] = -\infty$. 2. a. $g'(x) = 1 - 2 \ln x + \frac{1 - 2x}{x} = \frac{x - 2x \ln x + 1 - 2x}{x} = \frac{1 - x - 2x \ln x}{x}$. b. $-2 \ln x$ change de signe en 1, de même que $\frac{1 - x}{x}$ puisque x est positif. La dérivée est constituée de deux morceaux qui changent de signe au même endroit : avant 1 elle est positive, après 1 elle est négative.

3.

х	0		1		$+\infty$
g '(x) g(x)		+	0	_	
g(x)			1		
				_	
	∞			_	$-\infty$

4. a.
$$(1-2x)\ln x = 0 \Leftrightarrow \begin{cases} 1-2x=0 \\ \ln x = 0 \end{cases} \Leftrightarrow x = \frac{1}{2}$$
 ou $x = 1$: la courbe coupe la droite Δ en ces deux points.

b.
$$g(x)-x=(1-2x)\ln x$$
 est positif sur $\left[\frac{1}{2};1\right]$: C au-dessus de Δ ; sinon C est en dessous de Δ .

1. 19. Une fonction assez simple

On considère la fonction f définie sur $\square *_{+} par :$

$$f(x) = \frac{\ln x + x\epsilon}{x^2}$$

On note (C) la courbe représentative de f dans un repère $(O; \vec{u}, \vec{v})$, unité graphique 2 cm.

Partie A: Etude d'une fonction auxiliaire

On considère la fonction g définie sur \prod_{+}^{*} par : $q(x) = -2\ln x - xe + 1$.

- 1. Déterminer les limites de q en 0 et en $+\infty$.
- 2. Etudier le sens de variation de q.
- 3. Montrer que dans [0,5;1] l'équation g(x)=0 admet une solution unique α dont on déterminera une valeur approchée à 10⁻² près.
- 4. En déduire le signe de g(x) suivant les valeurs de x.

Partie B : Etude de la fonction f

- 1. Déterminer les limites de f aux bornes de son ensemble de définition.
- 2. Etudier le sens de variation de *f*.
- 3. Montrer que $f(\alpha) = \frac{1+\alpha e}{2\alpha^2}$ et en donner une valeur approchée à 10⁻¹ près.
- 4. Donner le tableau de variation de f.
- 5. Tracer (C).

Correction

A. 1.
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (-2 \ln x - xe + 1) = -2 \lim_{x \to +\infty} \ln x - e \lim_{x \to +\infty} x + 1 = -\infty$$

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \left(-2\ln x - xe + 1 \right) = -2\lim_{x \to 0} \ln x - e\lim_{x \to 0} x + 1 = +\infty$$

A. 1.
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (-2\ln x - xe + 1) = -2 \lim_{x \to +\infty} \ln x - e \lim_{x \to +\infty} x + 1 = -\infty,$$

 $\lim_{x \to 0} g(x) = \lim_{x \to 0} (-2\ln x - xe + 1) = -2 \lim_{x \to 0} \ln x - e \lim_{x \to 0} x + 1 = +\infty.$
2. $g'(x) = -2 \times \frac{1}{x} - e = \frac{-2 - ex}{x}$ du signe de $-2 - ex$; $-2 - ex > 0 \Leftrightarrow x < -2/e$ ce qui est impossible

puisque x est positif. La fonction g' est donc négative quel que soit x positif. Donc la fonction g est strictement décroissante sur 🗆 *+.

- $3. g(0,5) \approx 1,027$ et $g(1) \approx -1,718$ (à la calculatrice). La fonction g est continue, strictement décroissante, et change de signe sur l'intervalle [0,5;1] donc il existe une valeur unique α de cet intervalle telle que $g(\alpha) = 0$. A la calculatrice : $\alpha \approx 0.67$.
- 4. On en déduit que, quel que soit $x < \alpha$ on a g(x) positif, et $x > \alpha$, g(x) négatif.

B. 1.
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\ln x + xe}{x^2} = \lim_{x \to +\infty} \frac{\ln x}{x^2} + \lim_{x \to +\infty} \frac{e}{x} = 0$$
 car $\lim_{x \to +\infty} \frac{\ln x}{x^2} = \lim_{x \to +\infty} \frac{\ln x}{x} = 0$ et $\lim_{x \to +\infty} \frac{e}{x} = 0$.

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{\ln x + xe}{x^2} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{x\left(\frac{\ln x}{x} + e\right)}{x^2} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{\frac{\ln x}{x} + e}{x} = -\infty.$$

 $\mathbf{2}.f$ est dérivable sur son domaine de définition.

$$f(x) = \frac{\ln x + xe}{x^2} = \frac{\ln x}{x^2} + \frac{e}{x}, \ f'(x) = \frac{\frac{1}{x} \times x^2 - \ln x \times 2x}{x^4} - \frac{e}{x^2} = \frac{x - 2x \ln x - ex^2}{x^4} = \frac{1 - 2\ln x - ex}{x^3} = \frac{g(x)}{x^3}.$$

f' est donc du signe de g car x^3 est strictement positif sur \square *+.

Par conséquent, f' est positive quel que soit x inférieur à α et négative ailleurs et donc f croissante sur]o; α [et décroissante sur $]\alpha$; $+\infty$ [.

3. On sait que $g(\alpha) = 0$ c'est-à-dire que $1 - 2\ln \alpha - e\alpha = 0$ ou encore $\ln \alpha = \frac{1 - e\alpha}{2}$, soit

$$f(\alpha) = \frac{\ln \alpha + e\alpha}{\alpha^2} = \frac{\frac{1 - e\alpha}{2} + e\alpha}{\alpha^2} = \frac{1 + \alpha e}{2\alpha^2} \approx 3,165 \approx 3,2.$$

u	20				
\boldsymbol{x}	0		α		$+\infty$
f'(x)		+	0	_	
f(x)	-∞		f(α)		0

1. 20. Logarithmes

7 points

Partie A

On considère la fonction g définie sur]o; $+\infty$ [par $g(x) = -2x^2 - 1 + \ln x$.

1. Calculer g'(x) pour tout x de]0; $+\infty$ [. Étudier son signe sur]0; $+\infty$ [.

- 2. Dresser le tableau de variations de g sur]o; $+\infty$ [. (On ne demande pas les limites de g aux bornes de son ensemble de définition).
- 3. En déduire que pour tout x de]o ; $+\infty$ [, g(x) < o.

Partie B

Soit f la fonction définie sur]o; $+\infty$ [par $f(x) = -x + 1 - \frac{1}{2} \frac{\ln x}{x}$.

On désigne par C sa courbe représentative dans le plan muni d'un repère orthogonal $(O; \vec{i}, \vec{j})$ d'unités graphiques 2 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées.

- 1. a. Calculer la limite de f en o. Interpréter graphiquement ce résultat.
- b. Calculer la limite de f en $+\infty$.
- c. Démontrer que la droite Δ d'équation y = -x+1 est asymptote à la courbe C.
- d. Étudier la position relative de C et Δ sur]o; $+\infty$ [.
- 2. a. Calculer f'(x) pour tout x > 0.
- b. Vérifier que pour tout x de]o; $+\infty$ [, $f'(x) = \frac{g(x)}{2x^2}$.
- c. Déduire de la partie A. le tableau de variations de f sur]o ; $+\infty$ [.
- d. Calculer f(1). En déduire le signe de f sur]0; $+\infty$ [.
- 3. Dans le plan muni du repère $(O; \vec{i}, \vec{j})$, tracer la droite Δ et la courbe C.

Partie C (version 1)

- 1. Vérifier que la fonction F définie sur J0; $+\infty$ [par $F(x) = -\frac{1}{2}x^2 + x \frac{1}{4}(\ln x)^2$ est une primitive de f.
- 2. Calculer l'intégrale $I = \int_{1}^{e} f(x) dx$ (on donnera la valeur exacte).
- 3. a. Hachurer sur le graphique la partie E du plan limitée par la courbe C, l'axe des abscisses et les droites d'équations x=1 et x=e.
- b. Déduire de la question 2. de la partie C. la valeur exacte de l'aire S de E en cm², puis en donner la valeur arrondie en cm², au mm² près.

Partie C (version 2)

- 1. Démontrer qu'il existe une unique tangente à C parallèle à Δ , préciser les coordonnées du point de contact J et l'équation de cette tangente T. Tracer T dans le repère précédent.
- 2. Soit x un réel supérieur ou égal à 1. M et N sont les points d'abscisse x situés respectivement sur C et sur Δ .
- a. Préciser, en fonction de x, la valeur de la distance MN.
- b. Etudier sur [1; $+\infty$ [les variations de la fonction h définie sur [1; $+\infty$ [par $h(x) = \frac{1}{2} \frac{\ln x}{x}$.
- c. Déduire des questions précédentes que la distance MN est maximale lorsque M est en J et préciser la valeur de cette distance maximale.

Correction

Partie A

2.

- 1. $g(x) = -2x^2 1 + \ln x$, $g'(x) = -4x + \frac{1}{x} = \frac{1 4x^2}{x} = \frac{(1 2x)(1 + 2x)}{x}$. Sur]o; $+\infty$ [seul le terme 1 2x]
- change de signe : positif avant 1/2, négatif après 1/2.

3. Le maximum de g est $-\frac{3}{2} - \ln 2$ donc $g(x) \le g\left(\frac{1}{2}\right) = -\frac{3}{2} - \ln 2 < 0$.

Partie B

- 1. a. $f(x) = -x + 1 \frac{1}{2} \frac{\ln x}{x}$: $\frac{\ln x}{x} = \frac{1}{x} \ln x$; or en o $\ln x$ tend vers $-\infty$ et $\frac{1}{x}$ tend vers $+\infty$. Conclusion, f tend vers $+\infty$ quand x tend vers o; la droite x = 0 est asymptote de C.
- b. On sait que $\frac{\ln x}{x}$ tend vers o quand x tend vers $+\infty$ donc f tend vers $-\infty$ car -x+1 tend vers $-\infty$.

c. $f(x)-(-x+1)=-x+1-\frac{1}{2}\frac{\ln x}{x}+x-1=-\frac{1}{2}\frac{\ln x}{x}$ donc la droite $\Delta y=-x+1$ est asymptote à la courbe C.

d. Lorsque x > 1, $-\frac{1}{2} \frac{\ln x}{x} < 0$ car $\ln x > 0$. Donc sur $[1; +\infty[$ C est au-dessus de Δ ; sur]0;1] C est en dessous de Δ .

2. a. b. c. $f'(x) = -1 - \frac{1}{2} \frac{\frac{1}{x}x - \ln x}{x^2} = \frac{-2x^2 - 1 + \ln x}{2x^2} = \frac{g(x)}{2x^2}$. Donc $f'(x) = -1 - \frac{1}{2} \frac{\frac{1}{x}x - \ln x}{x^2} = \frac{-2x^2 - 1 + \ln x}{2x^2} = \frac{g(x)}{2x^2}$.

X	0 1	+∞
f(x)		
f(x)		8

d. f(1) = 0: lorsque x est inférieur à 1, f(x) > f(1) = 0 car f est décroissante. Lorsque x est supérieur à 1, f(x) < f(1) = 0.

3.

Partie C (version 1)

1.
$$F'(x) = -\frac{1}{2}(2x) + 1 - \frac{1}{4}(2\frac{1}{x}\ln x) = -x + 1 - \frac{1}{2}\frac{\ln x}{x} = f(x)$$
: F est une primitive de f.

2.
$$I = \int_{1}^{e} f(x) dx = F(e) - F(1) = \left[-\frac{1}{2}e^{2} + e - \frac{1}{4}(\ln e)^{2} \right] - \left[-\frac{1}{2}1^{2} + 1 - \frac{1}{4}(\ln 1)^{2} \right] = -\frac{1}{2}e^{2} + e - \frac{3}{4} \approx -1,726$$
.

3. b. L'unité d'aire est $1 \text{ cm} \times 2 \text{ cm} = 2 \text{ cm}^2$; on prend la valeur absolue de l'intégrale multipliée par l'unité d'aire, ce qui nous fait $e^2 - 2e + \frac{3}{2}$, soit environ 3,45 cm² au mm² près.

Partie C (version 2)

1. Pour avoir une tangente parallèle à Δ , il faut trouver x tel que f'(x) = -1, soit $\frac{-2x^2 - 1 + \ln x}{2x^2} = -1 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e$. L'ordonnée est alors $f(e) = -e + 1 - \frac{1}{2e}$; l'équation de T est $y = -x + e - e + 1 - \frac{1}{2e} = -x + 1 - \frac{1}{2e}$.

2. a. Comme C est en dessous de Δ , on a $MN = (-x+1)-f(x) = \frac{1}{2} \frac{\ln x}{x} = h(x)$.

b. $h'(x) = \frac{1}{2} \frac{1 - \ln x}{x^2}$ qui change de signe en x = e; la distance MN est maximale lorsque M est en J et

cette distance vaut $h(e) = \frac{\ln e}{2e} = \frac{1}{2e}$.

1. 21. Ln+second degré+intégrale, Antilles 2001

Le plan est rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$. On considère la fonction f, définie sur l'intervalle $]o; +\infty[$ par :

$$f(x) = -3 - \ln x + 2(\ln x)^2$$
.

On note (C) sa courbe représentative.

Partie A - Étude de la fonction f et tracé de la courbe (C)

- 1. a. Résoudre dans]o; $+\infty$ [l'équation f(x) = 0. (On pourra poser $\ln x = X$).
- b. Résoudre dans]o; $+\infty$ [l'inéquation f(x) > 0.
- 2. a. Déterminer les limites de f en 0 et en $+\infty$.
- b. Calculer f'(x).
- c. Étudier le sens de variation de f et dresser son tableau de variations.
- 3. Déterminer une équation de la tangente (T) à la courbe (C) au point d'abscisse $e^{\frac{3}{4}}$.
- 4. Tracer la courbe (C) et la droite (T). (Unité graphique : 2 cm sur chaque axe.)

Partie B - Calcul d'une aire

1. Restitution organisée des connaissances :

Démontrer que la fonction h, définie par $h: x \mapsto x \ln x - x$ est une primitive de la fonction logarithme népérien sur]0; $+\infty$ [(attention on ne demande pas simplement de le vérifier...)

2. On pose
$$I_1 = \int_{\frac{1}{e}}^{\frac{3}{e^2}} \ln x dx$$
 et $I_2 = \int_{\frac{1}{e}}^{\frac{3}{e^2}} (\ln x)^2 dx$.

- a. Calculer I_1 .
- b. Montrer que $I_2 = \frac{5}{4}e^{\frac{3}{2}} \frac{5}{e}$.
- c. Calculer $I = \int_{\frac{1}{e^{x}}}^{\frac{e^{x}}{2}} f(x) dx$. En déduire l'aire, en unités d'aire, de l'ensemble des points M(x; y) du plan

tels que
$$\frac{1}{e} \le x \le e^{\frac{3}{2}}$$
 et $f(x) \le y \le 0$.

Correction

Partie A $f(x) = -3 - \ln x + 2(\ln x)^2$.

1. a.
$$f(x) = -3 - \ln x + 2(\ln x)^2 = 0$$
: on pose $X = \ln x$ d'où $-3 - X + 2X^2 = 0 \Rightarrow X_1 = -1, X_2 = \frac{3}{2}$ d'où

$$x = e^{-1}$$
 ou $x = e^{\frac{3}{2}}$.

b.
$$-3 - X + 2X^2 > 0 \Leftrightarrow X = \ln x \in \left] -\infty; -1 \left[\bigcup \left[\frac{3}{2}; +\infty \right[\Leftrightarrow x \in \left] 0; e^{-1} \left[\bigcup \left[e^{\frac{3}{2}}; +\infty \right[\right] \right] \right]$$

2. a. Toujours avec $X = \ln x$, lorsque x tend vers o, X tend vers $-\infty$ donc $-3 - X + 2X^2$ se comporte comme $2X^2$ qui tend vers $+\infty$; lorsque x tend vers $+\infty$, X tend vers $+\infty$ donc $-3 - X + 2X^2$ se comporte comme $2X^2$ qui tend vers $+\infty$.

b.
$$f'(x) = -\frac{1}{x} + 2 \times 2 \times \frac{1}{x} \times \ln x = \frac{-1 + 4 \ln x}{x}$$
.

c.
$$f$$
 est croissante lorsque $4 \ln x - 1 > 0 \Leftrightarrow \ln x > \frac{1}{4} \Leftrightarrow x > e^{\frac{1}{4}}$. $f\left(e^{1/4}\right) = -3 - \frac{1}{4} + 2\frac{1}{16} = -\frac{25}{8}$.

	•		7 10	
x	0	1/4		$+\infty$
		e^4		
Signe $\operatorname{de} f(x)$	_	О	+	
Variation de f	+∞	$\frac{-25}{8}$		+∞

3.
$$f\left(e^{\frac{5}{4}}\right) = -3 - \frac{5}{4} + 2\frac{25}{16} = \frac{-24 - 10 + 25}{8} = -\frac{9}{8}$$
; $f'\left(\frac{5}{4}\right) = \frac{-1 + 4\frac{5}{4}}{e^{5/4}} = 4e^{-5/4}$; $y = 4e^{-5/4}\left(x - e^{5/4}\right) - \frac{9}{8}$.

4.

Partie B

1. Restitution organisée des connaissances : on fait une intégration par parties en posant u'=1 et $v = \ln x$ d'où on tire $\int \ln x dx = x \ln x - \int x \times \frac{1}{x} dx = x \ln x - \int 1 dx = x \ln x - x$.

2. On pose
$$I_1 = \int_{\frac{1}{e}}^{\frac{3}{e^2}} \ln x dx$$
 et $I_2 = \int_{\frac{1}{e}}^{\frac{3}{e^2}} (\ln x)^2 dx$.

a.
$$I_1 = \int_{\frac{1}{e}}^{\frac{3}{e^2}} \ln x dx = \left[x \ln x - x \right]_{1/e}^{e^{3/2}} = e^{\frac{3}{2}} \frac{3}{2} - e^{\frac{3}{2}} - \frac{1}{e} (-1) + \frac{1}{e} = \frac{1}{2} e^{\frac{3}{2}} + \frac{2}{e}.$$

b. $I_2 = \int_{\frac{1}{e}}^{\frac{1}{e^2}} (\ln x)^2 dx$: intégration par parties en posant u' = 1 et $v = (\ln x)^2$, soit u = x, $v' = 2\frac{1}{x} \ln x$, soit

$$I_2 = \int_{\frac{1}{e}}^{\frac{3}{e^2}} (\ln x)^2 dx = \left[x (\ln x)^2 \right]_{1/e}^{e^{3/2}} - \int_{\frac{1}{e}}^{\frac{3}{e^2}} 2 \ln x dx = e^{\frac{3}{2}} \frac{9}{4} - \frac{1}{e} - 2I_1 = \frac{9}{4} e^{\frac{3}{2}} - \frac{1}{e} - e^{\frac{3}{2}} - \frac{4}{e} = \frac{5}{4} e^{\frac{3}{2}} - \frac{5}{e}.$$

c.
$$I = \int_{\frac{1}{e}}^{\frac{3}{2}} -3 - \ln x + 2(\ln x)^2 dx = -3\left(e^{\frac{3}{2}} - \frac{1}{e}\right) - I_1 + 2I_2 = -3e^{\frac{3}{2}} + \frac{3}{e} - \left(\frac{1}{2}e^{\frac{3}{2}} + \frac{2}{e}\right) + 2\left(\frac{5}{4}e^{\frac{3}{2}} - \frac{5}{e}\right) = -e^{\frac{3}{2}} - \frac{9}{e}$$
.

Comme on a pu le remarquer les bornes $\frac{1}{e} \le x \le e^{\frac{3}{2}}$ correspondent précisément aux valeurs de x pour lesquelles f s'annule. La valeur de I est négative car f est négative sur cet intervalle ; on a donc l'aire, en unités d'aire, égale à $-I = e^{\frac{3}{2}} + \frac{9}{e} \approx 7.8$.

1. 22. Ln et calculatrice, N. Caledonie 2005

6 points

Le plan est rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$.

Soit f la fonction définie sur]-1; $+\infty$ [par : $f(x) = x^2 - 2, 2x + 2, 2\ln(x+1)$.

1. Faire apparaître sur l'écran de la calculatrice graphique la courbe représentative de cette fonction dans la fenêtre $-2 \le x \le 4$, $-5 \le y \le 5$.

Reproduire sur la copie l'allure de la courbe obtenue grâce à la calculatrice.

- 2. D'après cette représentation graphique, que pourrait-on conjecturer :
- a. Sur les variations de la fonction *f*?
- b. Sur le nombre de solutions de l'équation f(x) = 0?
- 3. On se propose maintenant d'étudier la fonction f.
- a. Étudier le sens de variation de la fonction f.
- b. Étudier les limites de la fonction f en -1 et en $+\infty$, puis dresser le tableau de variations de f.
- c. Déduire de cette étude, en précisant le raisonnement, le nombre de solutions de l'équation f(x) = 0.
- d. Les résultats aux questions 3. a. et 3. c. confirment-ils les conjectures émises à la question 2.?
- 4. On veut représenter, sur l'écran d'une calculatrice, la courbe représentative de la fonction f sur l'intervalle [-0,1; 0,2], de façon à visualiser les résultats de la question 3.
- a. Quelles valeurs extrêmes de l'ordonnée y proposez-vous pourmettre en évidence les résultats de la question 3. c. dans la fenêtre de votre calculatrice?
- b. À l'aide de la calculatrice determiner une valeur approchée par défaut à 10-2 près de la plus grande solution α de l'équation f(x) = 0.
- 5. Soit *F* la fonction définie sur]-1; $+\infty$ [par $F(x) = \frac{1}{3}x^3 1, 1x^2 2, 2x + 2, 2(x+1)\ln(x+1)$.
- a. Démontrer que F est une primitive de f sur]-1; $+\infty[$.
- b. Interpréter graphiquement l'intégrale $\int_{0}^{\alpha} f(x)dx$
- c. Calculer $\int_{a}^{\alpha} f(x)dx$ et exprimer le résultat sous la forme $b\alpha^3 + c\alpha^2$ (b et c réels).

Correction

$$f \text{ sur }]-1; +\infty [par : f(x) = x^2 - 2, 2x + 2, 2\ln(x+1).$$

- 2. a. f semble croissante.

b. Il semble n'y avoir qu'une solution à l'équation
$$f(x) = 0$$
, mais c'est douteux.
3. a. $f'(x) = 2x - 2, 2 + \frac{2,2}{x+1} = \frac{2x^2 + 2x - 2, 2x - 2, 2 + 2, 2}{x+1} = \frac{2x^2 - 0, 2x}{x+1} = \frac{x(2x - 0, 2)}{x+1}$; on a deux racines, o et

- 0,1; le signe du trinôme donne f croissante avant 0, décroissante entre 0 et 0,1 puis de nouveau croissante.
- b. En −1, $\ln(x+1)$ tend vers $-\infty$ de même que f; en $+\infty$ les croissances comparées donnent le terme x^2 gagnant et f tend vers $+\infty$.
- c. f s'annule donc deux fois : en o évidemment puis une deuxième fois après 0,1 puisque f est croissante entre 0,1 et +∞ et passe d'un nombre négatif à des valeurs positives.

x	-1	0	0,1	+∞
f'		+ 0	- o	
f		, ,	-0,000	+∞

d. Evidemment non...

4. a. Le minimum est aux environs de -0,0003, et on peut prendre $f(0,2) \approx 0,0011$ en positif.

b. On a $\alpha \approx 0,1517$, soit 0,15 à 10⁻² près.

5.
$$F(x) = \frac{1}{3}x^3 - 1,1x^2 - 2,2x + 2,2(x+1)\ln(x+1)$$
.

a. On dérive F:

$$F'(x) = \frac{1}{3} \cdot 3x^2 - 1, 1 \cdot 2x - 2, 2 + 2, 2 \left[1 \cdot \ln(x+1) + (x+1) \frac{1}{x+1} \right] = x^2 - 2, 2x - 2, 2 + 2, 2 \ln(x+1) + 2, 2 = f(x).$$

b. $\int_0^\alpha f(x)dx$ représente l'aire algébrique (ici négative) comprise entre la courbe de f, les droites x = 0 et

c.
$$\int_{0}^{\alpha} f(x)dx = F(\alpha) - F(0) = \frac{1}{3}\alpha^{3} - 1, 1\alpha^{2} - 2, 2\alpha + 2, 2(\alpha + 1)\ln(\alpha + 1) \text{ ; comme } f(\alpha) = 0, \text{ on a}$$
$$\alpha^{2} - 2, 2\alpha + 2, 2\ln(\alpha + 1) = 0 \Leftrightarrow 2, 2\ln(\alpha + 1) = 2, 2\alpha - \alpha^{2},$$

soit

$$\int_0^{\alpha} f(x)dx = \frac{1}{3}\alpha^3 - 1,1\alpha^2 - 2,2\alpha + (\alpha + 1)(2,2\alpha - \alpha^2) = -\frac{2}{3}\alpha^3 + 0,1\alpha^2.$$