Mémoire M2

Wei ZHOU

16 septembre 2016

1 Introduction

Dans ce mémoire, nous allons étudier les interfaces dans le modèle de percolation Bernoulli sur le réseau ($\mathbb{Z}^2, \mathbb{E}^2$) avec une méthode dynamique.

2 Modèle

Nous présentons le modèle sur lequel nous allons travailler dans ce mémoire. Pour commencer, nous présentons les notations que nous allons utiliser.

Le réseau $(\mathbb{Z}^2, \mathbb{E}^2)$. Soit x, y deux points de \mathbb{Z}^2 , nous disons que x, y sont voisins s'ils sont à distance 1 en norme euclidienne. L'ensemble \mathbb{E}^2 est l'ensemble des paires $\{x, y\}$, où x, y sont deux points voisins de \mathbb{Z}^2 . Le réseau $(\mathbb{Z}^2, \mathbb{E}^2)$ est le graphe dont \mathbb{Z}^2 est l'ensemble des sommets et \mathbb{E}^2 est l'ensemble des arêtes.

Les boites $\Lambda(\ell, h)$. Nous notons $\Lambda(\ell, h)$ le rectangle $[-\ell, \ell] \times [-h, h]$. Nous notons aussi $T(\ell, h)$ le bord supérieur de $\Lambda(\ell, h)$, i.e. le segment $[-\ell, \ell] \times (0, h)$. Nous notons aussi $B(\ell, h)$ le bord inférieur de $\Lambda(\ell, h)$, i.e. $[-\ell, \ell] \times (0, -h)$. Les deux bords verticaux de la boîte $\Lambda(\ell, h)$ sont notés $V(\ell, h)$.

FIGURE 1 – La boîte $\Lambda(\ell, h)$

Les ensembles séparants. Soient A, B deux sous-ensembles de \mathbb{Z}^2 . Nous disons qu'un ensemble d'arêtes $S \subset \mathbb{E}^2$ sépare A et B si aucune partie connexe du graphe $(\mathbb{Z}^2, \mathbb{E}^2 \setminus S)$ n'intersecte simultanément A et B. Un tel ensemble est appelé un ensemble séparant pour A et B. Nous disons que S est un ensemble séparant minimal de A, B si aucun sous-ensemble strict de S ne sépare A et B.

Le graphe dual. Le graphe dual du réseau \mathbb{Z}^2 est le graphe de sommets les points de $\mathbb{Z}^{2*} = \mathbb{Z}^2 + (\frac{1}{2}, \frac{1}{2})$ et d'arêtes \mathbb{E}^{2*} , où \mathbb{E}^{2*} est l'ensemble des arêtes joignant deux sommets de \mathbb{Z}^{2*} à distance 1. Si e est une arête dans \mathbb{Z}^2 , nous notons e^* l'unique arête qui l'intersecte orthogonalement en son milieu. Désormais, les objets dans le graphe dual seront notés avec une *.

FIGURE 2 – un réseau \mathbb{Z}^2 et son dual (pointillée)

Les configurations. L'espace de configuration est $\Omega = \{0,1\}^{\mathbb{E}^2}$. Une configuration générique est notée $\omega = \{\omega(e), e \in \mathbb{E}^2\} \in \Omega$. L'arête e est ouverte si $\omega(e) = 1$ et fermée si $\omega(e) = 0$. Soit A un sous-ensemble de \mathbb{Z}^2 et ω une configuration, la configuration ω restreinte à A, notée $\omega_{|A}$, est la restriction de ω aux arêtes dont les 2 extrémités sont incluses dans A. Soit $e \in \mathbb{E}^2$ une arête et $\omega \in \Omega$ une configuration, nous définissons les configurations ω^e, ω_e par :

$$\forall f \in \mathbb{E}^2 \qquad \omega^e(f) = \left\{ \begin{array}{ll} \omega(f) & f \neq e \\ 1 & f = e \end{array} \right. \quad \omega_e(f) = \left\{ \begin{array}{ll} \omega(f) & f \neq e \\ 0 & f = e \end{array} \right..$$

Les configurations ω^e , ω_e sont obtenues à partir de ω en ouvrant ou fermant l'arête e.

Les chemins. Soient x et y deux sommets dans \mathbb{Z}^2 , un chemin entre x et y est une suite $x_0, e_0, x_1, e_1, \ldots, e_n, x_{n+1}$ de sommets x_i et d'arêtes e_i distincts où $x_0 = x$ et $x_{n+1} = y$ et e_i est l'arête joignant x_i à x_{i+1} . Nous disons que x et y sont reliés par un chemin ouvert dans la configuration ω , noté $x \longleftrightarrow y$, s'il existe un chemin qui relie x, y tel que toute arête de ce chemin est ouverte dans la configuration ω . Nous notons aussi $x \longleftrightarrow y$ l'événement complémentaire.

Dans ce mémoire, nous étudions en particulier les chemins entre un sommet de T(l,h) et un sommet de B(l,h). Nous notons $T \longleftrightarrow B$ s'il existe un tel chemin dans la configuration ω .

La probabilité de percolation. Soit un réel $p \in [0, 1]$. Sur l'espace Ω , nous considérons la tribu cylindrique \mathcal{F} . Nous considérons la probabilité produit

$$P_p = (p\delta_1 + (1-p)\delta_0)^{\otimes \mathbb{E}^2}.$$

Intuitivement, une configuration s'obtient en fermant indépendamment chaque arête du réseau \mathbb{Z}^2 avec une probabilité 1-p.

3 La percolation dynamique

Nous définissons d'abord la percolation dynamique sur le réseau $(\mathbb{Z}^2, \mathbb{E}^2)$. Il s'agit d'un processus $(X_t)_{t\geqslant 0}$ à temps continu à valeurs dans l'espace des configurations $\{0,1\}^{\mathbb{E}^2}$. Si e est une arête et $t\geqslant 0$, alors $X_t(e)\in\{0,1\}$ est l'état de l'arête e au temps t. La loi du processus $(X_t)_{t\geqslant 0}$ est définie de la manière suivante. Les processus $(X_t(e))_{t\geqslant 0,e\in\mathbb{E}^2}$ sont i.i.d.. Pour une arête e fixée, le processus $(X_t(e))_{t\geqslant 0}$ est un processus markovien de sauts à deux états $\{0,1\}$, qui saute de 0 vers 1 à taux p et de 1 vers 0 à taux 1-p.

Construction graphique. Nous allons construire la percolation dynamique sur un espace de probabilité qui nous permettra de réaliser des couplages utiles pour les preuves. Nous commençons avec un espace de probabilité (Φ, \mathcal{A}, P) sur lequel sont définis les objets suivants :

- Une famille $(N_t(e))_{t\geq 0}$ de processus de Poisson iid de paramètre 1 indexée par les arêtes $e \in \mathbb{E}^2$;
- Une famille de variables aléatoires $U_n(e)_{n\geqslant 1}, e\in \mathbb{E}^2$ iid de loi uniforme sur [0,1].

Soit e une arête de \mathbb{E}^2 , notons $(T_i(e))_{i\geqslant 1}$, les instants des sauts du processus de Poisson $(N_t(e))_{t\geqslant 0}$ associé à e. A l'instant $T_i(e)$, nous retirons l'état de l'arête à l'aide de la v.a. $U_i(e)$. Plus précisément, l'arête e ne peut changer

d'état qu'aux instants $(T_i(e))_{i\geqslant 1}$, et nous posons

$$X_{T_i(e)}(e) = \begin{cases} 1 & \text{si } U_i(e) < p, \\ 0 & \text{si } U_i(e) > p. \end{cases}$$

Nous définissons la suite $(\tau_i)_{i\geqslant 0}$ des instants de changement dans une boîte finie $\Lambda(\ell,h)$, en posant $\tau_0=0$ et pour tout $i\geqslant 0$:

$$\tau_{i+1} = \inf \left\{ t > \tau_i : X_t \mid_{\Lambda(\ell,h)} \neq X_{\tau_i} \mid_{\Lambda(\ell,h)} \right\}$$

Pour tout $i \ge 1$, il existe une unique arête e_i incluse dans $\Lambda(\ell, h)$ telle que $X_{\tau_i}(e_i) \ne X_{\tau_{i-1}}(e_i)$. Nous appelons la suite $(e_i)_{i \ge 1}$ la suite des arêtes modifiées.

4 Les chaînes de Markov conditionnées

Nous énonçons un théorème général sur les chaînes de Markov conditionnées que nous allons utiliser dans la construction de l'interface.

Soit $(Z_n)_{n\geqslant 0}$ une chaîne de Markov à valeurs dans un ensemble E fini, irréductible apériodique de probabilité invariante π . Soit $A\subset E$, nous définissons la chaîne $(Z_n)_{n\geqslant 0}$ conditionnée à rester dans A, notée $(Z_n^A)_{n\geqslant 0}$ par sa valeur initiale $Z_0\in A$ et sa probabilité de transition

$$p^{A}(x,y) = \begin{cases} p(x,y) & y \in A, x \neq y \\ 0 & y \notin A \\ 1 - \sum_{y \neq x} p^{A}(x,y) & x = y \end{cases}$$

Théorème 1. La chaîne $(Z_n^A)_{n\geqslant 0}$ admet une probabilité invariante qui est la probabilité invariante de la chaîne $(Z_n)_{n\geqslant 0}$ conditionnée à rester dans A, c'est à dire :

$$\forall x \in A \quad \pi^A(x) = \pi(x \mid A) = \frac{\pi(\{x\})}{\pi(A)}$$

5 L'interface

Nous allons proposer une définition d'interface à l'aide de la percolation dynamique. Soit $(X_t)_{t\geqslant 0}$ le processus de percolation dynamique de paramètre p dans $\Lambda(\ell,h)$ issu d'une configuration initiale X_0 appartenant à l'événement $\{T \longleftrightarrow B\}$ et $(\tau_i)_{i\geqslant 0}$ sa suite des instants de changement. Nous allons coupler the processus $(Y_t)_{t\geqslant 0}$ à valeurs dans $\{0,1\}^{\mathbb{E}^2}$ avec $(X_t)_{t\geqslant 0}$ comme suit. D'abord nous posons $Y_0 = X_0$. Ensuit, soit $i\geqslant 0$, pour tout $s\in [\tau_i,\tau_{i+1}[$,

nous posons $Y_s = Y_{\tau_i}$, et nous déterminons $Y_{\tau_{i+1}}$ en fonction de $X_{\tau_{i+1}}$ via la formule suivante :

$$Y_{\tau_{i+1}}(e) = \begin{cases} Y_{\tau_i}(e) & \text{si } e \neq e_{i+1} \\ 0 & \text{si } e = e_{i+1}, X_{\tau_{i+1}}(e_{i+1}) = 0 \\ 1 & \text{si } e = e_{i+1}, X_{\tau_{i+1}}(e_{i+1}) = 1, T \longleftrightarrow B \text{ dans } Y_{\tau_i}^{e_{i+1}} \\ 0 & \text{si } e = e_{i+1}, X_{\tau_{i+1}}(e_{i+1}) = 1, T \longleftrightarrow B \text{ dans } Y_{\tau_i}^{e_{i+1}} \end{cases}.$$

Remarquons que l'arête e_i devient différente dans les deux processus $(X_t)_{t\geqslant 0}$ et $(Y_t)_{t\geqslant 0}$ à l'instant τ_i si et seulement si e_i devient ouverte à τ_i dans $(X_t)_{t\geqslant 0}$ mais cette ouverture induit une connexion entre T et B dans la configuration $Y_{\tau_{i-1}}^{e_i}$. Dans ce cas, l'arête e_i reste fermée dans le processus $(Y_t)_{t\geqslant 0}$.

La chaîne de Markov $(X_{\tau_i})_{i\geqslant 0}$ est irréductible apériodique et d'espace d'états fini donc elle admet une unique probabilité invariante qui est simpla probabilité de la percolation Bernoulli de paramètre p. La chaîne $(Y_{\tau_i})_{i\geqslant 0}$ est aussi irréductible car toute configuration de $(Y_{\tau_i})_{i\geqslant 0}$ est reliée à la configuration où toutes les arêtes sont fermées. En effet, pour chaque arête e dans $\Lambda(\ell,h)$, et à chaque instant de saut $(T_i(e))_{i\geqslant 0}$, nous pouvons fermer e avec probabilité 1-p>0.

Nous appliquons le théorème 1 à $(X_{\tau_i})_{i\geqslant 0}$ avec A l'ensemble des configurations qui satisfont l'événement $\{T\longleftrightarrow B\}$. Nous obtenons que la probabilité invariante du processus $(Y_t)_{t\geqslant 0}$ est la loi de la percolation Bernoulli de paramètre p conditionnée par l'événement $\{T\longleftrightarrow B\}$.

Nous proposons la définition de l'interface en se servant du couplage.

Définition 1. Soit $(X_t, Y_t)_{t\geqslant 0}$ un couplage défini précédemment, nous définissons l'interface dans $\Lambda(\ell, h)$ au temps t, que nous notons $\mathcal{I}_t(\ell, h)$, comme l'ensemble aléatoire des arêtes qui sont ouvertes dans X_t et fermé dans Y_t :

$$\mathcal{I}_t(\ell, h) = \{ e \in \mathbb{E}^2 : X_t(e) = 1, Y_t(e) = 0 \}.$$

6 Les conditions aux bords

Nous fixons un entier h et nous allons étudier l'influence de ℓ sur la loi de l'interface dans la boîte $\Lambda(\ell,h)$. Pour cela, nous introduisons des conditions aux bords. Désormais, nous enlèverons h si cela ne cause pas de confusion. Nous notons $R(\ell)$ le rectangle $\Lambda(\ell,h)$ et $\partial^{in}\Lambda(\ell,h)$ son bord intérieur, c'est à dire :

$$\partial^{in}R(\ell) = \big\{\, x \in R(\ell) : \exists y \not\in R(\ell) \quad \langle x,y \rangle \in \mathbb{E}^2 \,\big\}.$$

Les conditions aux bords sont données par Π_{ℓ} une application de $\partial^{in}R(\ell)$ à l'ensemble $\{top, bot, null\}$. L'application Π_{ℓ} vaut top et bot sur les bords

horizontaux $T(\ell)$ et $B(\ell)$, plus précisément :

$$\forall x \in T(\ell) \cup B(\ell) \quad \Pi_{\ell}(x) = \begin{cases} top & \text{si } x \in T(\ell) \\ bot & \text{si } x \in B(\ell) \end{cases}.$$

Nous appelons une condition aux bords nulle si

$$\forall y \in V(\ell) \setminus \{(\pm \ell, \pm h)\} \quad \Pi_{\ell}(y) = null.$$

Soit $m > \ell$, et soit R(m) une boîte avec des conditions aux bords Θ . Soit ω la configuration de percolation dans R(m). Nous pouvons définir les conditions aux bords Π_{ℓ} induites sur $V(\ell)$ comme suit. Soit x un sommet dans $V(\ell, h)$,

$$\Pi_{\ell}^{\Theta}(x) = \begin{cases}
top & \text{si } \exists y \in \partial^{in} R(m) & \Theta(y) = top, x & \xrightarrow{\omega} y \\
bot & \text{si } \exists y \in \partial^{in} R(m) & \Theta(y) = bot, x & \xrightarrow{\omega} y \\
null & \text{si } \forall y \in \partial^{in} R(m) & \Theta(y) \neq null, x & \xrightarrow{\omega} y \\
R(m) \setminus R(\ell) & \Theta(y) \neq null, x & \xrightarrow{\omega} y
\end{cases}$$

avec la notation $x \overset{\Lambda(m,h)\backslash\Lambda(\ell,h)}{\longleftrightarrow} T(resp.B)$ signifie que le sommet x est relié à T(resp.B) uniquement par un chemin ouvert dont les arrêtes sont dans l'ensemble $(\Lambda(m,h)\setminus\Lambda(\ell,h))\cup\partial^{in}\Lambda(\ell,h)$.

FIGURE 3 – Exemples d'une condition aux bords

Nous généralisons désormais l'événement $\{T \longleftrightarrow B\}$ en tenant compte des conditions aux bords. Nous disons que $\{T \longleftrightarrow B\}$ arrive dans la boite $R(\ell)$ s'il existe une connexion entre deux sommets x,y tels que $\Pi_{\ell}(x) = top, \Pi_{\ell}(y) = bot$.

7 La propagation des conditions aux bords

Nous nous intéressons à la probabilité qu'une arête fixée soit dans l'interface. Nous considérons désormais le régime surcritique, qui correspond à $p > \frac{1}{2}$ en dimension 2. Soit e_0 l'arête d'extrémités (0,0) et (0,1). Notre objectif est de montrer que, à t fixé, la probabilité $P(e_0 \in I_t^{\ell})$ converge lorsque ℓ tend vers l'infini. Intuitivement, nous imaginons que l'influence des conditions aux bords disparaissent lorsque la taille de la boîte grandit.

Plus formellement, soit $R(\ell)$ une boite dans $(\mathbb{Z}^2, \mathbb{E}^2)$ et considérons deux conditions aux bords Π, Π' sur $R(\ell)$ qui diffèrent en un seul sommet v_0 . Nous considérons $(X_t)_{t\geq 0}$ le processus de percolation dynamique dans $R(\ell)$ et deux couplages (X,Y) et (X,Y') conditionnés par l'événement $\{T \longleftrightarrow B\}$ associés aux deux conditions aux bords Π, Π' .

Proposition 1. Soit $\theta > 0$ le premier instant où e_0 diffère dans les deux processus $(Y_t)_{t \geq 0}$ et $(Y'_t)_{t \geq 0}$, alors il existe un entier aléatoire $N \in \mathbb{N}$, une suite d'arêtes aléatoires e_1, \ldots, e_N et des instants aléatoires $0 < \theta_1 < \theta_2 < \cdots < \theta_N = \theta$ qui vérifient les conditions suivantes :

- 1. à l'instant θ_1 , il existe deux chemins fermés γ_1^* , ρ_1^* disjoints qui relient e_1^* et le bord vertical contenant v_0 ;
- 2. pour tout i > 1, à l'instant θ_i , il existe deux chemins fermés γ_i^* , ρ_i^* disjoints qui relient e_{i-1}^* et e_i^* .
- 3. pour tout $i \geq 1$, à l'instant θ_i , l'arête e_i devient différente dans les deux processus. Il existe un ensemble d'arêtes fermées S_i qui sépare $T(\ell)$ et $B(\ell)$ et un chemin fermé c_i^* disjoint de S_i tel que $c_i^* \subset (\gamma_i^* \cup \rho_i^*)$ et $|c_i^*| \geq \frac{1}{2} |\gamma_i^* \cup \rho_i^*|$

Démonstration. Nous notons $\tau_0 = 0$, et

$$\tau_i = \inf \{ s > \tau_{i-1} : \exists e \in R(\ell) \mid Y_{s^-}(e) = Y'_{s^-}(e), Y_s(e) \neq Y'_s(e) \}.$$

Par symétrie, nous pouvons supposer que v_0 soit dans le bord gauche et que e_1 est fermée dans le processus $(Y'_t)_{t\geqslant 0}$. Nous pouvons aussi supposer $\Pi'(v_0) = T$ sans perte de la généralité.

Nous considérons maintenant la première arête e_1 qui devient différente dans les deux boites. Cette arête devient différente car il si elle était ouverte dans la configuration Y'_{θ_1} , il existerait un chemin ouvert entre T et B alors que ce n'est pas le cas dans la configuration Y_{θ_1} . Il existe un chemin ouvert entre e_1 et le sommet v_0 . Nous considérons le cluster ouvert C_1 contenant ce chemin dans la configuration Y'_{θ_1} , il n'est pas connecté à B vu la condition $T \longleftrightarrow B$. De plus, le cluster C_1 n'est pas connecté à T car s'il l'était, l'événement $\{T \longleftrightarrow B\}$ arriverait dans la configuration Y_{θ_1} dans laquelle e_0 est ouverte. Il existe donc dans le graphe dual un chemin fermé C_1^* qui sépare le cluster

 C_1 de T et de B, et l'arête e_1^* sépare ce chemin en deux chemins disjoints que nous notons γ_1^* et ρ_1^* (voir Figure 4).

FIGURE 4 – L'instant θ_1 quand e_1 devient différente

Nous considérons maintenant le cas d'une arête e_i qui devient différente à cause des autres arêtes qui sont déjà différentes. Par symétrie, nous supposons que e_i est ouverte dans Y_{θ_i} et fermée dans Y'_{θ_i} et que dans la configuration Y'_{θ_i} , e_i est reliée à B.

Nous pouvons choisir une arête e_j avec j < i qui est devenue différente avant θ_i et qui est restée différente entre θ_j et θ_i . En plus, il existe un chemin ouvert qui les relie. En effet, nous considérons le cluster ouvert C_i dans Y_{θ_i} du sommet qui est séparé de B par l'arête e_i . Nous considérons R_i l'ensemble suivant :

$$R_i = \left\{ e = \langle x, y \rangle : x \in C_i, y \notin C_i, y \underset{Y'_{\theta_i}}{\leftrightarrow} T \cup \Pi'^{-1}(top), Y_{\theta_i}(e) \neq Y'_{\theta_i}(e) \right\}.$$

Cet ensemble n'est pas vide, car $e_i \overset{Y'_{\theta_i}}{\leftrightarrow} T$, mais pas dans Y_{θ_i} , donc il existe un tel $\langle x, y \rangle$ sur le bord extérieur de C_i qui diffère dans les deux configurations. Nous fixons un ordre arbitraire sur les arêtes \mathbb{E}^2 et nous ordonnons cet ensemble avec cet ordre. Notons e_j la première arête de R_i .

Comme pour la première arête e_0 , il y a un chemin ouvert qui relie e_i et e_j . Sans perte de généralité, nous supposons que e_j est reliée à T. Nous pouvons considérer le cluster ouvert du chemin c entre e_i, e_j dans Y'_{θ_i} arrêté à e_j et e_i . Ce cluster n'est pas connecté à T car e_i est ouverte, il n'est pas connecté à P dans P'_{θ_i} car P'_{θ_i} car P'_{θ_i} et un ensemble P'_{θ_i} d'arêtes fermées qui sépare ce chemin de P dans P'_{θ_i} et un ensemble P'_{θ_i} qui le sépare de P dans P'_{θ_i} . Nous pouvons supposer que P'_{θ_i} et un ensemble P'_{θ_i} sinon, nous avons deux ensembles qui séparent P et P dans P dui est de probabilité inférieure à P et nous avons le résultat voulu. Nous pouvons désormais

considérer un ensemble S^* formé par des arêtes qui sont soit fermées dans l'une des deux configurations et qui sépare le chemin c de T et de B. Quitte à prendre prendre l'ensemble minimal, nous pouvons supposer que S^* est un circuit qui relie e_i et e_j . Les deux arêtes e_i et e_j coupent cet ensemble en deux chemins fermés γ_i^* , ρ_i^* .

FIGURE 5 – L'instant θ_i quand e_i devient différente

Enfin, pour obtenir la suite $(e_i)_{i\geqslant 1}$ d'arêtes et les temps $(\theta_i)_{i\geqslant 1}$ comme dans l'énoncé, nous partons de l'instant θ pour trouver l'arête qui a causé la différence à e_0 , ensuite nous répétons cette procédure à l'instant où cette arête est devenue différente jusqu'à arriver au bord. Comme chaque ouverture ou fermeture d'une arête ne peut se produire qu'aux instants d'arrivée des processus de Poisson, il y a presque sûrement un nombre fini d'arêtes qui sont devenues différentes avant θ . Nous pouvons donc trouver une suite finie d'arêtes e_0, e_1, \ldots, e_N avec $e_N = e_0$ et des instants $\theta_1 < \cdots < \theta_N = \theta$ qui vérifient les deux premiers points de l'énoncé.

Nous considérons le contour fermé formé par les deux chemins fermés dans le graph dual γ_i^* et ρ_i^* , la condition $T \longleftrightarrow B$ impose qu'il existe un ensemble séparant K_i qui contient e_i dans la configuration où elle est fermée. Quitte à ouvrir les arêtes de K_i qui ne sont pas pivotes, nous pouvons supposer K_i minimal. Nous considérons le dual de K_i , qui est un chemin fermé simple de gauche à droite. Nous pouvons numéroter les arêtes de K_i de la façon suivante :

- nous posons $e_i^* = k_0$;
- si e_i^* est horizontale, nous posons k_{-1} l'arête qui partage le sommet gauche de e_i^* et k_1 l'arête qui partage le sommet droite. S'il e_i^* est verticale, nous posons k_{-1} l'arête en bas et k_1 celle en haut.
- Nous nous éloignons de e_i , jusqu'à avoir numéroté toutes les arêtes. Dans la direction négative, nous diminuons l'indice de 1 à chaque pas et nous augmentons de 1 par pas dans la direction positive.

Nous considérons maintenant l'arête minimale et l'arête maximale de l'ensemble $K_i \cap (\gamma_i^1 \cup \rho_i^2)$ que nous notons k_{min} et k_{max} . Les deux arêtes k_{min} et k_{max} coupe K_i en 3 parties disjointes : C_i^g un chemin entre le bord gauche et k_{min} ; C_i^d un chemin entre le bord droite et k_{max} ; l'union d'un chemin entre k_{min} et k_{max} et ces deux arêtes. De plus, les deux sommets qui séparent ces trois parties coupent le contour $\gamma_i^1 \cup \rho_i^2$ en deux chemins disjoints c_i^1 et c_i^2 . Quitte à échanger les numéros, nous supposons que $|c_i^1| \ge |c_i^2|$.

FIGURE 6 – construction d'un chemin fermé disjoint d'un ensemble séparant

Enfin nous posons $S_i^* = C_i^g \cup C_i^d \cup c_i^2$ un chemin fermé du bord gauche au bord droite dans le graphe dual et $c_i^* = c_i^1$. Nous posons S_i le dual de S_i^* qui est un cut. Or $|c_i^1| \ge |c_i^2|$, nous obtenons $|c_i^*| \ge \frac{1}{2} |\gamma_i^1 \cup p_i^2|$. Par construction, l'ensemble séparant S_i et le chemin fermé c_i^* sont disjoints.

8 Une inégalité BK temporelle

Nous énonçons ici pour le processus de percolation dynamique une inégalité de type BK. Nous commençons par généraliser la notion de l'occurrence disjointe pour des événements qui arrivenet à des instants différents.

Nous considérons d'abord le processus de percolation dynamique $(X_t)_{t\geqslant 0}$ qui est à valeurs dans $\{0,1\}^{\mathbb{E}^2}$, un événement croissant A qui dépend d'un nombre fini d'arêtes à l'instant s, et un autre événement croissant B qui dépend d'un nombre fini d'arête à l'instant t. Nous notons

$$K(\omega) = \{e : \omega(e) = 1\}$$

l'ensemble des arêtes ouvertes dans la configuration $\omega.$ Nous définissons l'occurrence disjointe comme suit :

Définition 2. Soit A, B définis précédemment, l'occurrence disjointe de A et B noté par $A \overset{s,t}{\circ} B$ par :

- $si \ s = t, \ A \stackrel{s,t}{\circ} B = \{(X_t)_{t \geqslant 0} : \exists \omega_1 \in A, \exists \omega_2 \in B \ K(\omega_1) \cap K(\omega_2) = \emptyset, K(\omega_1) \cup K(\omega_2) \subset K(X_t)\};$
- $si\ s < t$, $A \stackrel{s,t}{\circ} B = \{(X_t)_{t \ge 0} : \exists \omega_1 \in A, \exists \omega_2 \in B \quad K(\omega_1) \subset K(X_s), K(\omega_2) \subset K(X_t) \text{ et } \forall e \in K(\omega_1) \cap K(\omega_2) \quad \exists r \in [s,t] \ X_r(e) \ne X_s(e) \}.$

Nous énonçons l'inégalité de BK pour la percolation dynamique :

Proposition 2. Soit $\Lambda(\ell, h)$ une boîte de longueur ℓ , $0 < s \le t$, soit A et B des événements définis au début de la partie, alors $P(A \circ B) \le P(A)P(B)$.

 $D\'{e}monstration$. Pour le premier cas, c'est l'inégalité de BK classique. Nous traitons uniquement le deuxième cas où les instants sont différents. Soit $\Gamma = \{f : [s,t] \to \{0,1\} \text{ càdlàg}\}^{|\Lambda(\ell,h)|}$. Nous introduisons deux espaces de probabilité identiques $S_1 = (\Gamma_1, \mathcal{F}_1, P_1), S_2 = (\Gamma_2, \mathcal{F}_2, P_2)$, nous définissons S l'espace produit de S_1, S_2 . Nous écrivons $x \times y$ un point de $\Gamma_1 \times \Gamma_2$. Nous notons $A' = A \times \Gamma_2$, $B'_k = \{x \times y : (y_1, \dots, y_k, x_{k+1}, \dots, x_{|\Lambda(\ell,h)|}) \in B\}$. Nous notons P_{12} la probabilité produit de P_1, P_2 . Nous avons bien que $P(A \circ B) = P_{12}(A' \circ B'_0)$ et $P_{12}(A' \circ B'_{|\Lambda(\ell,h)|}) = P(A)P(B)$. Nous montrons maintenant :

$$\forall k > 0, P_{12}(A' \circ B'_{k-1}) \leqslant P_{12}(A' \circ B'_{k})$$

.

Soit M un événement, nous disons que e est pivot pour M si $(\omega^e \in M, \omega_e \notin M)$ ou $(\omega^e \notin M, \omega_e \in M)$, c'est à dire un changement de l'arête e change l'occurrence de M dans la configuration ω . Nous notons $e \triangleright M$ si e est pivot pour M.

Nous considérons d'abord le cas où e_k n'est pas pivot pour B. Nous vérifions facilement que

$$P_{12}(x \times y \in A' \circ B'_{k-1}, e_k \not\triangleright B) \leqslant P_{12}(x \times y \in A' \circ B'_k, e_k \not\triangleright B)$$

car il suffit de poser y_k une copie indépendante de x_k qui réalise $A \circ B_{k-1}$ pour obtenir $A \circ B_k$.

Nous considérons maintenant le cas e_k pivot pour B mais pas pour A. Par symétrie nous pouvons supposer $\omega^{e_k} \in B$. Il nous faut $x_k(t) = 1$ réaliser pour $A \circ B_{k-1}$ et $y_k(t) = 1$ pour réaliser $A \circ B_k$. Or x_k et y_k sont de même loi, nous avons $P_{12}(x_k(t) = 1) = P_{12}(y_k(t) = 1)$. D'où:

$$P_{12}(x \times y \in A' \circ B'_{k-1}, e_k \not\triangleright A, e_k \triangleright B) = P_{12}(x \times y \in A' \circ B'_k, e_k \not\triangleright A, e_k \triangleright B)$$

Il reste le cas où l'arête e_k est pivot pour A et B. Quitte à changer p en (1-p), nous pouvons supposer que $\omega^{e_k} \in A$, il faut donc distinguer deux cas :

• Si $\omega^{e_k} \in A, \omega^{e_k} \in B$, nous devons avoir $x_k(s) = 1, x_k(t) = 1, \exists r \in [s,t], x_k(r) = 0$ pour $A \circ B_{k-1}$. Pour $A \circ B_k$, il faut $x_k(s) = 1$ et $y_k(t) = 1$. Nous montrons que

$$P(x_k(s) = 1, x_k(t) = 1, \exists r \in [s, t], x_k(r) = 0) \leqslant P(x_k(s) = 1, y_k(t) = 1).$$

Nous considérons la première instant de saut de x_k , soit

$$T = \inf\{r > s, x_k(s) = 0\}$$

et nous conditionnons la première probabilité par $\{T=r\}$, et nous utilisons la propriété de Markov forte qui donne :

$$P(x_{k}(s) = 1, x_{k}(t) = 1, \exists r \in [s, t], x_{k}(r) = 0)$$

$$= E \left[\mathbf{1}_{x_{k}(s)=1} \mathbf{1}_{x_{k}(t)=1} \mathbf{1}_{T < t} \right]$$

$$= E \left[E[\mathbf{1}_{x_{k}(s)=1} \mathbf{1}_{x_{k}(t)=1} \mathbf{1}_{T < t} | T = r] \right]$$

$$= E \left[\mathbf{1}_{x_{k}(s)=1} \mathbf{1}_{T=r} E[\mathbf{1}_{x_{k}(t)=1} | T = r] \right]$$

$$= E \left[\mathbf{1}_{x_{k}(s)=1} \mathbf{1}_{T < t} P_{0}(x'_{k}(t-r) = 1) \right]$$

$$\leq E \left[\mathbf{1}_{x_{k}(s)=1} \mathbf{1}_{T < t} \right] P(y_{k}(t-r) = 1)$$

$$= P(x_{k}(s) = 1, T < t) P(y_{k}(t) = 1)$$

$$\leq P(x_{k}(s) = 1, y_{k}(t) = 1).$$

Avec x_k' le processus démarré à T. Nous avons $P_0(x_k'(t-r)=1) \leq P(y_k(t-r)=1)$ car $\{x_k(t-r)=1\}$ est un événement croissant. Nous avons $P(y_k(t-r)=1)=P(y_k(t)+1)$ car y_k est stationnaire à l'équilibre.

• Si $\omega^{e_k} \in A$, $\omega_{e_k} \in B$, nous devons avoir $x_k(s) = 1$, $x_k(t) = 0$ pour réaliser $A \circ B_{k-1}$ et $x_k(s) = 1$, $y_k(t) = 0$ pour réaliser $A \circ B_k$. Or l'événement $x_k(t) = 1$ est un événement croissant, nous avons

$$P_0(x_k(t-s)=1) \leqslant P(x_k(t-s)=1).$$

Par la propriété de Markov forte, nous avons :

$$P(x_k(s) = 0, x_k(t) = 1) = E[\mathbf{1}_{x_k(s)=0} P_0(x_k(t-s) = 1)]$$

$$\leq P(x_k(s) = 0) P(y_k(t) = 1)$$

Nous obtenons l'inégalité voulu en combinant les deux cas précédents :

$$P_{12}(A \circ B_{k-1}, e_k \triangleright A, e_k \triangleright B) \leqslant P_{12}(A \circ B_k, e_k \triangleright A, e_k \triangleright B).$$

Enfin, nous en déduisons l'inégalité de BK en effectuant une récurrence sur k.

9 Décroissance exponentielle pour la percolation dynamique

La probabilité qu'un chemin fermé décroît exponentiellement vite avec sa longueur dans la phase surcritique. Nous montrons ici une propriété similaire pour la percolation dynamique :

Proposition 3. Soient $p > \frac{1}{2}$, et deux instants 0 < s < t. Soient γ, ρ deux chemins fixés. Nous avons l'inégalité suivante :

$$P\left(\begin{array}{c} \gamma \ ferm\'e \ \grave{a} \ l'instant \ s \\ \rho \ ferm\'e \ \grave{a} \ l'instant \ t \\ \gamma, \rho \ ne \ sont \ pas \ d'occurrence \ disjointe \end{array}\right) \leqslant me^{-\lambda(t-s)}$$

avec λ une constante indépendante de γ, ρ .

 $D\'{e}monstration$. nous considérons une arête (x,y) fermé et une modification locale M pour l'ouvrir suivante : nous fermons deux arêtes perpendiculaires de même côté qui contiennent respectivement un sommet x,y et l'arête qui relie ces deux arêtes ; ensuite nous ouvrons l'arête (x,y). Chaque étape de la modification est déterminée par une horloge exponentielle et elle respecte la condition de $T \longleftrightarrow B$. Entre [0,1], cette modification a une probabilité positive r pour se réaliser. Nous en déduisons qu'il existe une constante λ pour qu'entre [s,t], la probabilité que cette modification ne se réalise pas est inférieur à $e^{-\lambda(t-s)}$.

Nous considérons maintenant deux arêtes e, e' voisines, nous pouvons choisir les arêtes que nous modifions pour que e, e' soient modifiées indépendamment. En effet, si les e, e' sont colinéaires alors nous effectuons les modifications à différents côtés; si e, e' sont perpendiculaires, alors nous effectuons la modification à l'extérieur de l'angle formé par e, e', voir figure 7.

FIGURE 7 – deux arêtes voisines et les arêtes à modifier en rouge

Nous avons donc

$$P(\gamma \stackrel{s,t}{\circ} \rho) \geqslant P(\forall e \in \gamma, M \text{ se réalise sur } e)$$

 $\geqslant (1 - e^{-\lambda(t-s)})^m \geqslant 1 - me^{-\lambda(t-s)}$

Nous introduisons la notion de space-time chemin, en prolongeant la connexion dans le temps, c'est-à-dire si une arête e=(x,y) reste ouverte (resp. fermée) entre s et t alors $(x,s)\longleftrightarrow (y,t)$ par un space-time chemin ouvert (resp.fermé). Nous montrons aussi une décroissance exponentielle avec les space-time chemin

Proposition 4. Soit $n \in \mathbb{N}$, t > 0, $p > \frac{1}{2}$, soit A(n,t) l'événement $(O,0) \leftrightarrow (n\mathbf{e}_1, nt)$ par un space-time chemin fermé où $\mathbf{e}_1 = (1,0)$, alors $\exists \gamma(p,t)$, une constante qui dépend de p,t tel que $P(A(n,t)) \leq e^{-\gamma(p,t)n}$.

Démonstration. Nous montrons cette équivalence par le lemme sous-additif. En fait,

$$P((O,0) \leftrightarrow ((n+m)\mathbf{e}_1, (n+m)t))$$

 $\geqslant P((O,0) \leftrightarrow (n\mathbf{e}_1, nt))P((n\mathbf{e}_1, nt) \leftrightarrow ((n+m)\mathbf{e}_1, (n+m)t))$
 $\geqslant P((O,0) \leftrightarrow (n\mathbf{e}_1, nt))P((O,0) \leftrightarrow (m\mathbf{e}_1, mt))$

Car nous avons l'invariance par translation. La suite $(-\ln P(A(n,t)))_{n\in\mathbb{N}}$ est sous-additive. Par le lemme sous-additif, nous obtenons :

$$\lim_{n} -\frac{1}{n} \ln P(A(n,t)) = \inf_{n} -\frac{1}{n} \ln P(A(n,t)) = \gamma(p,t)$$

Nous avons donc

$$\forall n, -\frac{1}{n} \ln P(A(n,t)) \geqslant \gamma(p,t).$$

10 La probabilité d'une influence du bord

Nous montrons maintenant que la probabilité que le bord influence une arête à l'intérieur de la boîte décroit exponentiellement avec la taille de la boite.

Théorème 2. Soit $p \geqslant \frac{1}{2}$, \bar{e} l'arête au centre de la boîte $\Lambda(l,h)$ avec deux processus Y,Y' définis avec deux conditions aux bords Π,Π' , il existe une constante $\lambda > 0$ tel que $P(Y(\bar{e}) \neq Y'(\bar{e})) \leqslant e^{-\lambda \ell} P(T \longleftrightarrow B \text{ entre } [0,t])$.

 $D\acute{e}monstration$. Nous utilisons les notations de la proposition 1 et son corollaire. D'après la proposition 1, nous savons qu'il existe une suite d'arêtes e_1, e_n qui sont reliées l'une après l'autre à différentes instants. Nous notons x_i, y_i les extrémités de c_i^* chemin fermé dans le graphe dual et de C_i le cut, nous notons aussi k_i le cardinal de $p_i^1 \cup p_i^2$. Nous séparons la suite en différentes sous suites selon l'indépendance, plus précisément, si c_j^* et c_{j+1}^* est de l'occurrence disjointe, alors nous coupons la suite à l'indice j. Ainsi, nous obtenons les indices j_1, \ldots, j_r telles que $\forall 1 \leqslant u \leqslant r, c_{j_u}^*$ et $c_{j_{u+1}}^*$ sont disjoints, $\forall j_k \leqslant v \leqslant j_{k+1}, c_k^*$ et c_{k+1}^* ne sont pas disjoints.

$$P(Y(\bar{e}) \neq Y'(\bar{e})) = P(\exists e_1, \dots, e_n, \forall i, \exists p_i^1, p_i^2, e_{i-1} \xrightarrow{p_i^1, p_i^2} e_i)$$

$$\leq P(\exists x_1, \dots, x_n, y_1, \dots, y_n c_1^*, \dots, c_n^*, C_1, \dots, C_n)$$

$$\leq \sum_{j_1, \dots, j_r} \prod_{1 \leq k \leq r} P \begin{pmatrix} \exists x_{j_{k-1}+1}, \dots, x_{j_k}, \\ y_{j_{k-1}+1}, \dots, y_{j_k}, \\ c_{j_{k-1}+1}, \dots, c_{j_k}^*, \\ C_{j_{k-1}+1}, \dots, C_{j_k} \text{ cut}, \\ \forall j_{k-1}+1 \leq m \leq j_k, x_m \xleftarrow{c_m^*} y_m, c_m^* \circ C_m \end{pmatrix}$$

Nous utilisons la proposition 4 pour majorer chaque terme du produit. Or les $\forall j_{k-1}+1\leqslant c_m^*\leqslant j_k$, les c_m^* ne sont pas d'occurrence disjointe, nous avons un space-time chemin σ_k qui relie $x_{j_{k-1}+1}$ et y_{j_k} . Donc elle est bornée par

$$|\sigma_k|^4 e^{-\gamma(p,\theta_{j_k}-\theta_{j_{k-1}+1})|\sigma_k|} P(\exists C_{j_{k-1}+1},\dots,C_{j_k} \text{ cut})$$

car $x_{j_{k-1}+1}$ et y_{j_k} sont dans un carré de taille inférieure à $|\sigma_k|$. Or $\exists \delta > 0$ tel que $\forall x > 1, x^4 e^{-x} \leqslant e^{-\delta x}$, nous avons

$$|\sigma_k|^4 e^{-\gamma(p,\theta_{j_k}-\theta_{j_{k-1}+1})|\sigma_k|} \leqslant |\sigma_k|^4 e^{-\gamma(p,t)|\sigma_k|} \leqslant e^{-\delta\gamma(p,t)|\sigma_k|}$$

Nous partons de \bar{e} , $x_{j_{n-1}+1}$ est de distance inférieure à $2|\sigma_r|$ de \bar{e} , nous avons donc

$$\sum_{1=j_1<\dots< j_r=n} \prod_{1\leqslant k\leqslant r} e^{-\delta\gamma(p,t)|\sigma_k|} P(\exists C_{j_{k-1}+1},\dots,C_{j_k} \text{ cut})$$

$$\leqslant P(\exists C_1,\dots,C_n \text{ cut}) \sum_{1=j_1<\dots< j_{r-1}} 4|\sigma_r|^2 e^{-\delta\gamma(p,t)|\sigma_r|} \prod_{1\leqslant k\leqslant r-1} e^{-\delta\gamma(p,t)|\sigma_k|}$$

$$\leqslant P(\exists C_1,\dots,C_n \text{ cut}) \sum_{1=j_1<\dots< j_{r-1}} 4e^{-\delta^2\gamma(p,t)|\sigma_r|} \prod_{1\leqslant k\leqslant r-1} e^{-\delta\gamma(p,t)|\sigma_k|}$$

$$\leqslant 4^r e^{-\delta^2\gamma(p,t)\sum_1^r |\sigma_k|} P(\exists C_1,\dots,C_n \text{ séparent } T,B)$$

Enfin, r est borné par une variable aléatoire de loi de Poisson de paramètre $\ell^2(1-p)t$, nous avons le résultat.