Topic 61. Solubility Equilibria

- 61.1 The Solubility Product
- 6I.2 The Common-Ion Effect
- 61.3 Complex Ion Formation

The Solubility Product

- Solubility Product (K_{sp}) : the equilibrium constant for the equilibrium between an undissolved salt and its ions in a saturated solution.
- Ex) Bi_2S_3 (s) \leftrightarrow 2 $Bi^{3+}(aq) + 3 S^{2-}(aq)$ $K_{sp} = (a_{Bi3+})^2 (a_{S2-})^3$ For sparingly soluble salts, $K_{sp} = [Bi^{3+}] [S^{2-}]$
- A simple way to determine $K_{\rm sp}$ is to measure the molar solubility of the compound, the molar concentration of the compound in a saturated solution.

The Solubility Product

Compound	Formula	K_{sp}	Compound	Formula	K_{sp}
aluminum hydroxide	Al(OH) ₃	1.0×10^{-33}	lead(II) fluoride	PbF_2	3.7×10^{-8}
antimony sulfide	Sb_2S_3	1.7×10^{-93}	iodate	$Pb(IO_3)_2$	2.6×10^{-13}
barium carbonate	BaCO ₃	8.1×10^{-9}	iodide	PbI_2	1.4×10^{-8}
fluoride	BaF_2	1.7×10^{-6}	sulfate	$PbSO_4$	1.6×10^{-8}
sulfate	BaSO ₄	1.1×10^{-10}	sulfide	PbS	8.8×10^{-29}
bismuth sulfide	Bi_2S_3	1.0×10^{-97}	magnesium ammonium phosphate	MgNH ₄ PO ₄	2.5×10^{-13}
calcium carbonate	CaCO ₃	8.7×10^{-9}	carbonate	$MgCO_3$	1.0×10^{-5}
fluoride	CaF ₂	4.0×10^{-11}	fluoride	MgF_2	6.4×10^{-9}
hydroxide	Ca(OH) ₂	5.5×10^{-6}	hydroxide	$Mg(OH)_2$	1.1×10^{-11}
sulfate	CaSO ₄	2.4×10^{-5}	mercury(I) chloride	Hg_2Cl_2	2.6×10^{-18}
chromium(III) iodate	$Cr(IO_3)_3$	5.0×10^{-6}	iodide	Hg_2I_2	1.2×10^{-28}
copper(I) bromide	CuBr	4.2×10^{-8}	mercury(II) sulfide, black	HgS	1.6×10^{-52}
chloride	CuCl	1.0×10^{-6}	sulfide, red	HgS	1.4×10^{-53}
iodide	CuI	5.1×10^{-12}	nickel(II) hydroxide	Ni(OH) ₂	6.5×10^{-18}
sulfide	Cu ₂ S	2.0×10^{-47}	silver bromide	AgBr	7.7×10^{-13}
copper(II) iodate	$Cu(IO_3)_2$	1.4×10^{-7}	carbonate	Ag_2CO_3	6.2×10^{-12}
oxalate	CuC ₂ O ₄	2.9×10^{-8}	chloride	AgCl	1.6×10^{-10}
sulfide	CuS	1.3×10^{-36}	hydroxide	AgOH	1.5×10^{-8}
iron(II) hydroxide	Fe(OH) ₂	1.6×10^{-14}	iodide	AgI	8×10^{-12}
sulfide	FeS	6.3×10^{-18}	sulfide	Ag_2S	6.3×10^{-5}
iron(III) hydroxide	Fe(OH) ₃	2.0×10^{-39}	zinc hydroxide	$Zn(OH)_2$	2.0×10^{-17}
lead(II) bromide	$PbBr_2$	7.9×10^{-5}	sulfide	ZnS	1.6×10^{-24}
chloride	PbCl ₂	1.6×10^{-5}	warrous villation dust is		

The Common Ion Effect

- Common ion effect: the reduction in solubility of a sparingly soluble salt by the addition of a soluble salt that has an ion in common with it.
- Ex) The addition of a solution of Cl⁻ to a saturated solution of AgCl
- Qualitatively, the Le Chatelier's principle
- Quantitatively, the decrease in cation's concentration.

The Common Ion Effect

Before and after the addition of a salt

The Common Ion Effect

Zn acetate

Zn acetate + Na acetate

Complex Ion Formation

- How can we increase the solubility of a salt?
 → Finding a way to conceal the ions in solution, because then the dissolution process continues in a vain attempt to reach equilibrium.
- Ion can be concealed by making use of the fact that many metal cations are Lewis acids. When a Lewis acid and a Lewis base react, they form a coordination complex.
- Ex) AgCl (s) \leftrightarrow Ag⁺ (aq) + Cl⁻ (aq) $K_{sp} = [Ag^+][Cl^-]$ Ag⁺ (aq) + 2 NH₃ (aq) \leftrightarrow Ag(NH₃)₂⁺ (aq) $K_f = [Ag(NH_3)_2] / [Ag^+][NH_3]^2$ AgCl(s) + 2 NH₃ (aq) \leftrightarrow 2 Ag(NH₃)₂⁺ (aq) + Cl⁻ (aq) $K = K_{sp} \times K_f$

Complex Ion Formation

TABLE 61.2 Formation Constants of Complexes in Water at 25 °C					
Equilibrium	$K_{ m f}$				
$Ag^{+}(aq) + 2 CN^{-}(aq) \rightleftharpoons Ag(CN)_{2}^{-}(aq)$	5.6×10^{8}				
$Ag^{+}(aq) + 2 NH_3(aq) \Longrightarrow Ag(NH_3)_2^{+}(aq)$	1.6×10^{7}				
$Au^{+}(aq) + 2 CN^{-}(aq) \Longrightarrow Au(CN)_{2}^{-}(aq)$	2.0×10^{38}				
$Cu^{2+}(aq) + 4 NH_3(aq) \Longrightarrow Cu(NH_3)_4^{2+}(aq)$	1.2×10^{13}				
$Hg^{2+}(aq) + 4 Cl^{-}(aq) \Longrightarrow HgCl_4^{2-}(aq)$	1.2×10^{5}				
$Fe^{2+}(aq) + 6 CN^{-}(aq) \Longrightarrow Fe(CN)_6^{4-}(aq)$	7.7×10^{36}				
$Ni^{2+}(aq) + 6 NH_3(aq) \rightleftharpoons Ni(NH_3)_6^{2+}(aq)$	5.6×10^{8}				

Topic 6J. Precipitation

- 6J. I Predicting Precipitation
- 6J.2 Selective Precipitation
- 6J.3 Dissolving Precipitates
- 6J.4 Qualitative Analysis

Predicting Precipitation

- Q_{sp} vs K_{sp}
 - $Q_{sp} > K_{sp}$: precipitation
 - $Q_{sp} < K_{sp}$: dissolution

Selective Precipitation

- For selective precipitation
 A mixture of ions in solution can be separated by adding oppositely charged ions with which they form salts with very different solubilities..
- A sample of seawater contains 0.050 mol/L Mg²⁺ (aq) and 0.010 mol/L Ca²⁺ (aq).
 - (a) Determine the order in which ion precipitates as solid NaOH is added, and give the concentration of OH⁻ when precipitation of each begins.
 - (b) Calculate the concentration of the first ion when the second one starts to precipitate. $K_{sp} = 1.1 \times 10^{-11} \, (Mg(OH)_2)$ and $K_{sp} = 5.5 \times 10^{-6} \, (Ca(OH)_2)$

- The solubility of a solid can be increased by removing one of its ions from solution.
- I) Acid can be used to dissolve a hydroxide, sulfide, sulfite, or carbonate precipitate.

Fe(OH)₃ (s)
$$\leftrightarrow$$
 Fe³⁺ (aq) + 3 OH⁻ (aq)
ZnCO₃ (s) \leftrightarrow Zn²⁺ (aq) + CO₃²⁻ (aq)
CO₃²⁻ (aq) + 2 HNO₃ (aq) \leftrightarrow CO₂ (g) + H₂O (l) + 2 NO₃⁻ (aq)

2) Nitric acid can be used to oxidize metal sulfides to sulfur and a soluble salt.

CuS (s)
$$\leftrightarrow$$
 Cu²⁺ (aq) + S²⁻ (aq)
3 S²⁻ (aq) + 8 HNO₃ (aq) \leftrightarrow 3 S (s) + 2 NO (g) + 4 H₂O(l) + 6NO₃⁻ (aq)

3) Some solids can be dissolved by changing the temperature or by forming a complex ion.

Qualitative Analysis

- Pb^{2+} (aq) + CrO^{4-} (aq) \rightarrow $PbCrO_4$ (s)
- $Ag^{+}(aq) + 2 NH_{3}(aq) \rightarrow Ag(NH_{3})_{2}^{+}(aq)$ $Hg_{2}Cl_{2}(s) + 2 NH_{3}(aq) \rightarrow Hg(l) + HgNH_{2}Cl(s) + NH_{4}^{+}(aq) + Cl^{-}(aq)$
- $Ag(NH_3)_2^+$ (aq) + CI^- (aq) + 2 H_3O^+ (aq) $\rightarrow AgCI(s)$ + 2 NH_4^+ (aq) + 2 $H_2O(I)$

■ H_2S (aq) + 2 H_2O (I) \leftrightarrow H_3O^+ (aq) + S^{2-} (aq)

Topic 6K. Representing Redox Reactions

- 6K.I Half-Reactions
- 6K.2 Balancing Redox Equations

Half-Reactions

- Redox reaction: the joint process of electron loss and gain.
- Half-reaction is the oxidation or reduction part of a reaction considered alone.

$$Zn(s) + 2 Ag^{+} (aq) \rightarrow Zn^{2+} (aq) + 2 Ag (s)$$

 $Zn(s) \rightarrow Zn^{2+} (aq) + 2 e^{-}$
 $Ag^{+} (aq) + e^{-} \rightarrow Ag (s)$

Redox couple (Ox/Red)
 The redox couple consisting of Zn²⁺ and Zn: Zn²⁺/Zn.

Balancing Redox Equations

 Balance the net ionic equation for this skeletal reaction in an acidic aqueous solution.

$$MnO_4^-$$
 (aq) + $H_2C_2O_4$ (aq) $\to Mn^{2+}$ (aq) + CO_2 (g)

 Balance the net ionic equation for this skeletal reaction in a basic aqueous solution.

$$MnO_4^-$$
 (aq) + Br⁻ (aq) \rightarrow MnO₂ (s) + BrO₃⁻ (g)