Tag 2: Komplexe Zahlen in der Form $re^{i\varphi}$

Aufgabe 1

1. Sei $x \in \mathbb{R}$. Leite aus der Eulerschen Formel $(e^{ix} = \cos x + i \sin x)$ die folgenden Formeln her:

(a)
$$|e^{ix}| = 1$$

(c)
$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

(b)
$$e^{-ix} = \cos x - i \sin x = \overline{e^{ix}}$$

(d)
$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

2. Laut Potenzgesetz gilt für alle reellen Zahlen x, y, dass

$$e^{i(x+y)} = e^{ix}e^{iy}$$
 und $e^{i(x-y)} = e^{ix}e^{-iy}$.

Benutze die Eulersche Formel, um hieraus die Additionstheoreme für "sin" und "cos" zu folgern.

Aufgabe 2

1. Wandle die folgenden komplexen Zahlen aus der Darstellung a+bi in die Darstellung $re^{i\varphi}$ um:

(a)
$$1 + i$$

(b)
$$-1 - \frac{\sqrt{3}}{2}i$$

(d)
$$-1$$

2. Wandle die folgenden komplexen Zahlen aus der Darstellung $re^{i\varphi}$ in die Darstellung a+bi um:

(a)
$$2e^{2i\pi}$$

(c)
$$2\sqrt{3}e^{i\frac{2\pi}{3}}$$

(b)
$$5e^{i\cdot 3,5\pi}$$

(d)
$$4\sqrt{2}e^{i\cdot 1.25\pi}$$

Aufgabe 3

Im Folgenden seien r, s, φ, ϑ relle Zahlen. Leite Formeln für das komplex Konugierte, das Inverse, den Betrag und die Multiplikation her für komplexe Zahlen in der Darstellung $z = re^{i\varphi}$:

1

(a)
$$\left| re^{i\varphi} \right| = ?$$

(c)
$$\frac{1}{re^{i\varphi}} = ?$$

(b)
$$\overline{re^{i\varphi}} = ?$$

(d)
$$re^{i\varphi} \cdot se^{i\vartheta} = ?$$

Aufgabe 4

Finde alle komplexen Zahlen z sodass $z^3 = 9i$. Wieviele Lösungen gibt es?