Introdução

•00000

Porque estudar grafos?

- Arcabouço matemático com aplicação em diversas áreas do conhecimento
- Utilizados na definição e/ou resolução de problemas
- Estudar grafos é mais uma forma de solucionar problemas computáveis
- Os estudos teóricos em grafos buscam o desenvolvimento de algoritmos mais eficientes.
- Abstração matemática que representa situações reais através de um diagrama.

Introdução

Porque estudar grafos?

- Arcabouço matemático com aplicação em diversas áreas do conhecimento
- Utilizados na definição e/ou resolução de problemas
- Estudar grafos é mais uma forma de solucionar problemas computáveis
- Os estudos teóricos em grafos buscam o desenvolvimento de algoritmos mais eficientes.
- Abstração matemática que representa situações reais através de um diagrama.

Áreas de conhecimento

Genética, química, pesquisa operacional, telecomunicações, engenharia elétrica, redes de computadores, conexão de vos aéreos, restrições de precedência, fluxo de programas, dentre outros

Introdução

000000

Pontes de Königsberg

O rio Pregel divide o centro da cidade de Königsberg (Prússia no século XVII, atual Kaliningrado, Rúsia) em quatro regiões. Essas regiões são ligadas por um complexo de sete (7) pontes, conforme mostra a figura. Discutia-se nas ruas da cidade a possibilidade de atravessar todas as pontes, voltando ao lugar de onde se saiu, sem repetir alguma. Havia-se tornado uma lenda popular a possibilidade da façanha quando **Euler**, em 1736, provou que **não existia caminho** que possibilitasse tais restrições.

Subgrafos

Operações

Motivação

Pontes de Königsberg

- Resolvido em 1736 por Leonhard Euler
- Necessário um modelo para representar o problema
- Abstração de detalhes irrelevantes:
 - Àrea de cada ilha
 - Formato de cada ilha
 - Tipo da ponte, etc.

Introdução

000000

Pontes de Königsberg

- Resolvido em 1736 por Leonhard Euler
- Necessário um modelo para representar o problema
- Abstração de detalhes irrelevantes:
 - Årea de cada ilha
 - Formato de cada ilha
 - Tipo da ponte, etc.
- Euler generalizou o problema através de um modelo de grafos

Problemas das 3 casas

Introdução

000000

É possível conectar os 3 serviços às 3 casas sem haver cruzamento de tubulação?

Colorir um mapa

Introdução

000000

Quantas cores são necessárias para colorir o mapa do Brasil, sendo que estados adjacentes não podem ter a mesma cor?

Caminho mínimo

Introdução

00000

De forma a reduzir seus custos operacionais, uma empresa de transporte de cargas deseja oferecer aos motoristas de sua frota um mecanismo que os auxilie a selecionar o melhor caminho (o de menor distância) entre quaisquer duas cidades por ela servidas, de forma a que sejam minimizados os custos de transporte.

Introdução

Grafo direcionado

Par G=(V,E), onde V é um conjunto finito e E é uma relação binária em V.

- Grafo orientado.
- Dígrafo.

Grafo direcionado

Par G=(V,E), onde V é um conjunto finito e E é uma relação binária em V.

- Grafo orientado.
- Dígrafo.

Grafo não direcionado

Par G=(V,E) onde o conjunto de arestas E consiste em pares de vértices não orientados. A aresta (v_i, v_j) e (v_j, v_i) são consideradas a mesma aresta.

Grafo não orientado.

Loop

Introdução

uma aresta associada ao par de vértices (v_i, v_i)

Operações

Loop

Introdução

uma aresta associada ao par de vértices (v_i, v_i)

Arestas paralelas

quando mais de uma aresta está associada ao mesmo par de vértices

Loop

uma aresta associada ao par de vértices (v_i, v_i)

Arestas paralelas

quando mais de uma aresta está associada ao mesmo par de vértices

Grafo simples

um grafo que não possui loops e nem arestas paralelas

Loop

uma aresta associada ao par de vértices (v_i, v_i)

Arestas paralelas

quando mais de uma aresta está associada ao mesmo par de vértices

Grafo simples

um grafo que não possui loops e nem arestas paralelas

Vértices adjacentes

Dois vértices são ditos adjacentes se eles são pontos finais de uma mesma aresta

Grau de um vértice

- Grafo não direcionado:
 - grau d(v) número de arestas que incidem em v.
- Grafo direcionado:
 - grau de entrada d⁻(v)número de arestas que chegam em v
 - grau de saída d⁺(v)número de arestas que saem em v

Operações

Introdução

Grau de um vértice

- Grafo não direcionado:
 - grau d(v) número de arestas que incidem em v.
- Grafo direcionado:
 - grau de entrada $d^-(v)$ número de arestas que chegam em v
 - grau de saída $d^+(v)$ número de arestas que saem em v

Um laço conta duas vezes para o grau de um vértice

Grau de um vértice

- Grafo não direcionado:
 - grau d(v) número de arestas que incidem em v.
- Grafo direcionado:
 - grau de entrada $d^-(v)$ número de arestas que chegam em v
 - grau de saída $d^+(v)$ número de arestas que saem em v

Um laço conta duas vezes para o grau de um vértice

Isomorfismo

Introdução

Grau de um vértice

- Grafo não direcionado:
 - grau d(v) número de arestas que incidem em v.
- Grafo direcionado:
 - grau de entrada $d^-(v)$ número de arestas que chegam em v
 - grau de saída $d^+(v)$ número de arestas que saem em v

Um laço conta duas vezes para o grau de um vértice

Introdução

Grau de um vértice

- Grafo não direcionado:
 - grau d(v) número de arestas que incidem em v.
- Grafo direcionado:
 - grau de entrada d⁻(v)número de arestas que chegam em v
 - grau de saída d⁺(v)número de arestas que saem em v

Um laço conta duas vezes para o grau de um vértice

Subgrafos

Introdução

Grau de um vértice

- Grafo não direcionado:
 - grau d(v) número de arestas que incidem em v.
- Grafo direcionado:
 - grau de entrada $d^-(v)$ número de arestas que chegam em v
 - grau de saída $d^+(v)$ número de arestas que saem em v

Um laço conta duas vezes para o grau de um vértice

Sequência de graus

Consiste em escrever em ordem crescente o grau de todos os seus vértices

 Duas arestas não paralelas são adjacentes se elas são incidentes a um vértice comum

• Quando um vértice v_i é o vértice final de alguma aresta e_j , v_i e e_j são incidentes

• Um grafo no qual todos os vértices possuem o mesmo grau é chamado de grafo regular.

Introdução

 Um vértice com nenhuma aresta incidente é chamado de vértice isolado.

• Um vértice com grau 1 é chamado de vértice pendente

 Um grafo sem nenhuma aresta é chamado de grafo nulo. Todos os vértices em um grafo nulo são vértices isolados

Grafos valorado e rotulado

Grafo rotulado

Introdução

Um grafo G(V,A) é dito ser rotulado em vértices (ou arestas) quando a cada vértice (ou aresta) estiver associado um rótulo

Grafos valorado e rotulado

Grafo rotulado

Introdução

Um grafo G(V,A) é dito ser rotulado em vértices (ou arestas) quando a cada vértice (ou aresta) estiver associado um rótulo

PAA

Grafo valorado

Um grafo G(V,A) é dito ser valorado quando existe uma ou mais funções relacionando V e/ou A com um conjunto de números.

GRAFOS

<u>Terminologia</u>

Introdução

Grafo completo

Um grafo G=(V,E) é completo se para cada par de vértices v_i e v_i existe uma aresta entre v_i e v_i . Em um grafo completo quaisquer dois vértices distintos são adjacentes (K_n)

Arestas no grafo completo

Seja K_n um grafo completo com n vértices. O número de arestas é:

$$|E| = \frac{(n-1) \times n}{2}$$

Introdução

Grafo conexo

Existe pelo menos um caminho entre todos os pares de vértices

Grafo bipartido

Um grafo é dito ser bipartido quando seu conjunto de vértices Vpuder ser particionado em dois subconjuntos V_1 e V_2 , tais que toda aresta de G une um vértice de V_1 a outro de V_2 .

Introdução

Grafo conexo

Existe pelo menos um caminho entre todos os pares de vértices

Grafo bipartido

Um grafo é dito ser bipartido quando seu conjunto de vértices V puder ser particionado em dois subconjuntos V_1 e V_2 , tais que toda aresta de G une um vértice de V_1 a outro de V_2 .

Introdução

Grafo bipartido completo

Um grafo é dito ser bipartido quando seu conjunto de vértices V puder ser particionado em dois subconjuntos V_1 e V_2 , tais que toda aresta de G une um vértice de V_1 a outro de V_2 , e que todo vértice de V_1 é adjacente a todo vértice de V_2 .

Introdução

Grafo bipartido completo

Um grafo é dito ser bipartido quando seu conjunto de vértices Vpuder ser particionado em dois subconjuntos V_1 e V_2 , tais que toda aresta de G une um vértice de V_1 a outro de V_2 , e que todo vértice de V_1 é adjacente a todo vértice de V_2 .

Arestas no grafo bipartido completo

Seja K_{mn} um grafo bipartido completo com n vértices em V_1 e m vértices em V_2 . O número de arestas é:

$$|E| = n \times m$$

Propriedade de grau

Grau par

Introdução

O número de arestas incidentes a um vértice v_i é chamado de grau, $d(v_i)$, do vértice i. A **soma** dos graus de todos os vértices de um grafo G é duas vezes o número de arestas de G.

$$\sum_{i=1}^n d(v_i) = 2e$$

Propriedade de grau

Grau par

Introdução

O número de arestas incidentes a um vértice v_i é chamado de grau, $d(v_i)$, do vértice i. A **soma** dos graus de todos os vértices de um grafo G é duas vezes o número de arestas de G.

$$\sum_{i=1}^n d(v_i) = 2e$$

TEOREMA: Vértice de grau ímpar

O número de vértices de grau ímpar em um grafo é par

$$\sum_{i=1}^{n} d(v_i) = \sum_{d(v_j)par} d(v_j) + \sum_{d(v_k)impar} d(v_k)$$

Subgrafos