EDCO3A ESTRUTURAS DE DADOS 1

Aula 06 - Árvores AVL Profa Tamara Angélica Baldo

Material do Prof. Rafael G. Mantovani

Universidade Tecnológica Federal do Paraná (UTFPR) Engenharia de Computação

Licença

Este trabalho está licenciado com uma Licença CC BY-NC-ND 4.0:

maiores informações:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt BR

Roteiro

- 1 Introdução
- 2 Árvores
- AVLs Inserção em
 - AVLs
 - A Rotações simples
 - **B** Rotações duplas
- 4 Referências

Roteiro

- 1 Introdução
- 2 Árvores
- AVLs Inserção em
 - AVLs
 - A Rotações simples
 - **B** Rotações duplas
- 4 Referências

Desbalanceamento

Árvore balanceada

(elementos distribuídos homogeneamente)

Árvore balanceada

(elementos distribuídos homogeneamente)

Folhas em no máximo 2 níveis distintos

Roteiro

- 1 Introdução
- 2 Árvores
- AVLs Inserção em
 - AVLS
 - A Rotações simples
 - **B** Rotações duplas
- 4 Referências

AVL = Gregory Adelson-Velsky, Evgenii Landis (1962)

AVL = Gregory Adelson-Velsky, Evgenii Landis (1962)

Fator de balanceamento

bF = hD - hE

AVL = Gregory Adelson-Velsky, Evgenii Landis (1962)

a) Sub-árvores de mesma altura (bF = 0)

Fator de balanceamento

$$bF = h - h$$

$$bF = 0$$

b) Sub-árvore da direita é maior (bF = +1)

c) Sub-árvore da esquerda é maior (bF = -1)

Fator de balanceamento

$$bF = h-(h+1)$$

 $bF = -1$

Todos os nós possuem fator de balanceamento {-1,0,+1}

Todos os nós possuem fator de balanceamento {-1,0,+1}

Se (algum fator > +1 ou < -1):

Desbalanceamento

Se (algum fator > +1 ou < -1):

Desbalanceamento

NoAVL

- 1. inteiro chave
- 2. NoAVL* filho à direita
- 3. NoAVL* filho à esquerda
- 4. NoAVL* pai [opcional]
- 5. inteiro fatorBalanceamento

Exercício 01

Implementar Tipos Abstratos necessários para Árvores AVL

Roteiro

- 1 Introdução
- 2 Árvores
- AVLs Inserção em
 - AVLs
 - A Rotações simples
 - **B** Rotações duplas
- 4 Referências

Sequencia = $\{13, 14, 15, 12, 11, 17, 16, 8, 9, 1\}$

Sequencia = $\{13, 14, 15, 12, 11, 17, 16, 8, 9, 1\}$

0 13

Sequencia = $\{13, 14, 15, 12, 11, 17, 16, 8, 9, 1\}$

Sequencia = $\{13, 14, 15, 12, 11, 17, 16, 8, 9, 1\}$

Roteiro

- 1 Introdução
- 2 Árvores
 - AVLs
- 3 Inserção em
 - AVLS
 - A Rotações simples
 - **B** Rotações duplas
- 4 Referências

1) Rotação simples p esquerda

1) Rotação simples p esquerda

Rotação simples p esquerda

- 1. u = p->direita
- 2. p->direita = u->esquerda
- 3. $u \rightarrow esquerda = p$
- 4. p->balance = 0
- 5. p = u

Sequência = $\{13, 14, 15, 12, 11, 17, 16, 8, 9, 1\}$

2) Rotação simples p direita

2) Rotação simples p direita

2) Rotação simples p direita

Rotação simples p direita

- 1. $u = p \rightarrow esquerda$
- 2. p->esquerda = u->direita
- 3. u->direita = p
- 4. $p \rightarrow balance = 0$
- 5. p = u

Roteiro

- 1 Introdução
- 2 Árvores
- AVLs Inserção em
 - AVLs A Rotações simples
 - **B** Rotações duplas
- 4 Referências

3) Rotação dupla p esquerda

3) Rotação dupla p esquerda

3) Rotação dupla p esquerda

4) Rotação dupla p direita

4) Rotação dupla p direita

4) Rotação dupla p direita

Exercício 02

 Desenhe os passos de inserção para árvores AVLs em cada uma das seguintes sequências de números. Lembre-se de indicar as todas rotações realizadas:

- a) 1, 2, 3, 4, 5, 6, 7
- b) 50, 25, 10, 5, 7, 3, 30, 20, 8, 15
- c) 5 40 35 41 79 42 36 18 50 12

Exercício 03

Descreva em pseudocódigo um algoritmo para inserção em árvores AVL

Exercício 04

 Implemente o algoritmo para inserção em árvores AVL. Se necessário, implemente funções adicionais para auxiliar no processo.

Roteiro

- 1 Introdução
- 2 Árvores
- AVLs Inserção em
 - AVLs
 - A Rotações simples
 - **B** Rotações duplas
- 4 Referências

Referências sugeridas

[Cormen et al, 2018]

[Tenenbaum et al, 1995]

Referências sugeridas

[Ziviani, 2010]

[Drozdek, 2017]

Perguntas?