### OPERATING SYSTEM SCHEDULING ALGORITHMS

 $http://www.tutorialspoint.com/operating\_system/os\_process\_scheduling\_algorithms.htm \\ Copyright @ tutorialspoint.com/operating\_system/os\_process\_scheduling\_algorithms.htm \\ Copyright & (Copyright) \\ Copyright & (Co$ 

We'll discuss four major scheduling algorithms here which are following

- First Come First Serve FCFS Scheduling
- Shortest-Job-First SJF Scheduling
- · Priority Scheduling
- Round RobinRR Scheduling
- Multilevel Queue Scheduling

#### First Come First Serve FCFS

- Jobs are executed on first come, first serve basis.
- · Easy to understand and implement.
- Poor in performance as average wait time is high.

| Process | Arrival Time | Execute Time | Service Time |
|---------|--------------|--------------|--------------|
| P0      | 0            | 5            | 0            |
| P1      | 1            | 3            | 5            |
| P2      | 2            | 8            | 8            |
| P3      | 3            | 6            | 16           |



Wait time of each process is following

| Process | Wait Time : Service Time - Arrival Time |  |
|---------|-----------------------------------------|--|
| Po      | O - O = O                               |  |

| P1 | 5-1=4       |
|----|-------------|
| P2 | 8 - 2 = 6   |
| Р3 | 16 - 3 = 13 |

Average Wait Time: 0 + 4 + 6 + 13 / 4 = 5.55

### Shortest Job First SJF

- Best approach to minimize waiting time.
- Impossible to implement
- Processer should know in advance how much time process will take.

| Process | Arrival Time | Execute Time | Service Time |
|---------|--------------|--------------|--------------|
| P0      | 0            | 5            | 0            |
| P1      | 1            | 3            | 3            |
| P2      | 2            | 8            | 8            |
| P3      | 3            | 6            | 16           |



Wait time of each process is following

| Process | Wait Time : Service Time - Arrival Time |  |
|---------|-----------------------------------------|--|
| Po      | 3 - 0 = 3                               |  |
| P1      | O - O = O                               |  |
| P2      | 16 - 2 = 14                             |  |
|         |                                         |  |

Average Wait Time: 3 + 0 + 14 + 5 / 4 = 5.50

### **Priority Based Scheduling**

- Each process is assigned a priority. Process with highest priority is to be executed first and so on.
- Processes with same priority are executed on first come first serve basis.
- Priority can be decided based on memory requirements, time requirements or any other resource requirement.

| Process | Arrival Time | Execute Time | Priority | Service Time |
|---------|--------------|--------------|----------|--------------|
| P0      | 0            | . 5          | 1        | 0            |
| P1      | 1            | 3            | 2        | 3            |
| P2      | 2            | 8            | 1        | 8            |
| P3      | 3            | 6            | 3        | 16           |



Wait time of each process is following

| Process | Wait Time : Service Time - Arrival Time |  |
|---------|-----------------------------------------|--|
| Po      | 9 - 0 = 9                               |  |
| P1      | 6 - 1 = 5                               |  |
| P2      | 14 - 2 = 12                             |  |
| Р3      | 0 - 0 = 0                               |  |

Average Wait Time: 9 + 5 + 12 + 0 / 4 = 6.5

## **Round Robin Scheduling**

- Each process is provided a fix time to execute called quantum.
- Once a process is executed for given time period. Process is preempted and other process executes for given time period.
- Context switching is used to save states of preempted processes.

Quantum = 3



Wait time of each process is following

| Process | Wait Time : Service Time - Arrival Time |  |
|---------|-----------------------------------------|--|
| Po      | 0 - 0 + 12 - 3 = 9                      |  |
| P1      | 3 - 1 = 2                               |  |
| P2      | 6-2+14-9+20-17=12                       |  |
| Р3      | 9 - 3 + 17 - 12 = 11                    |  |

Average Wait Time: 9 + 2 + 12 + 11 / 4 = 8.5

# **Multi Queue Scheduling**

- Multiple queues are maintained for processes.
- Each queue can have its own scheduling algorithms.
- Priorities are assigned to each queue.

