CM-202 - Laboratório 2- Planejamento de Caminho com RRT

David Costa Pereira

August 22, 2024

1 Simulações planPathRRT

1.1 Caso A

Rodando o plan PathRRT para o caso A usando $p \in \{0,01;0,1;0,9\}$. Cada um dos casos são exibidos abaixo.

Figure 1: Árvores com todos os nós. Os caminhos encontrados estão em vermelho.

Como o valor de p significa a probabilidade de sorteamos o objetivo em cada iteração, um maior p implica em um caminho mais direcionado ao objetivo. Na Figura 1a observamos uma árvore mais ramificada, isso é esperado, uma vez que o valor de p é baixo, mais pontos distintos do objetivo são sorteados, implicando em uma

árvore mais "dispersa". Já no caso representado na Fig. 1b percebe-se uma árvore muito mais direcionada que o primeiro caso, o que condiz com uma probabilidade maior de sortear o objetivo em cada iteração. A Figura 1c mostra o caso em que p é muito alto, deixando a árvore muito direcionada, praticamente um caminho direto ao objetivo, somente contornando os obstáculos e com poucas ramificações.

1.2 Caso B

Figure 2: Caminho para o conjunto de obstáculos B.

1.3 Caso C

Figure 3: Caminho para o conjunto de obstáculos C.

1.4 Caso D

Figure 4: Caminho para o conjunto de obstáculos D.

2 Simulações Monte Carlo RRT

Caso	A	В	\mathbf{C}	D
instâncias resolvidas (%)	100	100	100	72,5
Média dos caminhos encontrados	70,935000	70,770000	76,120000	108,696552
Desvio padrão dos caminhos encontrados	3,149663	3,895249	3,005121	4,503585
Média do número de iterações até parar	238,35	258,04	296,835	763,17
Desvio padrão do número de iterações até parar	38,5261	57,3716	42,5712	183,849

Como observado na tabela, o caso D foi o com o pior desempenho. Isso era esperado, uma vez que só existe uma passagem para a parte inferior do mapa. No mapa D a disposição dos obstáculos cria uma zona de alta densidade onde é difícil encontrar caminhos que evitem colisões. Isso faz com que o algoritmo precise explorar mais o espaço e pode levar a um aumento no número de iterações necessárias para encontrar um caminho. Junto ao fato de que o caminho médio em D ser maior que os demais, levando a mais iterações e, por consequência uma maior taxa de falha (limite de iterações atingido). Outro ponto a ser analisado é que o "Desvio padrão dos caminhos encontrados" e o "Desvio padrão do número de iterações até parar" são maiores no caso D, indicando que a variabilidade dos resultados é maior. Isso sugere que o algoritmo pode ter dificuldades em encontrar soluções consistentes neste cenário, o que é comum em ambientes mais complexos e com obstáculos que impõem um desafio significativo para o algoritmo.

Os demais cenários possuem caminhos parecidos, com custos e média de iterações próximos. Os cenários A e B têm uma configuração de obstáculos que é relativamente fácil para o algoritmo RRT navegar. Os resultados são consistentes e os caminhos encontrados são curtos, com poucas variações no desempenho. O cenário C é o mais complexo dos 3 primeiros, isso reflete no maior custo e no maior número de iterações até parar. No entanto, ainda é muito menos complexo do que o cenário D.