Measurement systems & Data acquisition

KON-C2004 Mechatronics Basics 12.11.2024 Raine Viitala & Panu Kiviluoma

Mechatronic machine - subsystems

Other systems and machines

Philosophy of measurements

- Measurement is always an estimate of the true value
 - Nobody can find out the true value
- The real value exists only on the computer screen (CAD, signal analysing etc.)
 - In the real world all the objects, measured signals and physical

magnitudes are erroneous

Architecture of a measurement system

Conversion to another, typically electric physical quantity

Measurement Device

Signal Conditioning
Analog-to-Digital Converter

Texas instruments Bosch PLC Arduino etc.

National Instruments
Measurement Computing
Data Translation etc.

Software

Driver Application

Visual C++/Basic Arduino Labview Matlab

. . .

Signals Come in Two Forms: Digital and Analog

Signals

Analog

Voltage

- Standard ranges
 - 0...10V
 - 0...5V
 - 1...5V
 - -5...+5V
 - -10...+10V
- Easy and cheap, susceptible to disturbance

Current

- Standard ranges
 - 0...20mA
 - 4...20mA
- Better immunity to disturbance

Digital

- o 0 or 1
- o 0 or 5 V
- 0 or 3.3 V
- Easy to process further
- The best immunity to disturbance
- "Computer proof"

Analog Terminology

Level

• The instantaneous value of the signal at a given point in time

Shape

• The form that the analog signal takes, which often dictates further analysis that can be performed on the signal

Frequency

• The number of occurrences of a repeating event over time

Linearity

Analog to Digital

Selection criteria

- Number of bits
 - · Resolution, quantization noise
- Sampling frequency
 - Dictates the highest measurable frequency
- Input range
 - 0...1V, ±5V, ...
- Number of channels
 - Multichannel
 - Sample and Hold / Multiplexer

8bit
$$\rightarrow$$
 2^8 = 256

16bit
$$\rightarrow$$
 2^16 = 65536

22bit
$$\rightarrow$$
 2^2 = 4194304

Digitized signal

AD conversion

Outputted "signal"

Outputted Signa	
<u>Time</u>	<u>Value</u>
0	4 (100)
0,1	6 (110)
0,2	7 (111)
0,3	7 (111)
0,4	6 (110)
0,5	4 (100)
0,6	2 (010)
0,7	0 (000)
0,8	0 (000)
0,9	1 (001)
1,0	3 (011)

. . .

Resolution?

Range?

Sampling frequency

Effects of sampling rate vs. signal frequency

$$f_{\rm s} = 1000 \; {\rm Hz}$$

$$f_{\rm s}$$
=10 Hz

How to Prevent Aliasing Nyquist Theorem

Frequency

- To accurately represent the frequency of your original signal...
 - You must sample at <u>greater than 2 times the maximum frequency</u> component of your signal

Shape

- To accurately represent the shape of your original signal...
 - You must sample between <u>5–10 times greater than the maximum frequency</u> component of your signal .

Common Signal Conditioning for Voltage Measurements

Conditioning Signals

Signal conditioning improves a signal that is difficult for your DAQ device to measure

Signal conditioning is not always required

Noisy, Low-Level Signal

Filtered, Amplified Signal

Amplification

Used on low-level signals

Maximizes use of analog-to-digital converter (ADC) range and increases accuracy

Increases signal-to-noise ratio (SNR)

Attenuation

Decreases the input signal amplitude to fit within the range of the DAQ device

Necessary when input signal voltages are beyond the range of the DAQ device

Filtering

Filters remove unwanted noise from a measured signal and block unwanted frequencies

Low pass filter

Passband = low frequencies Stopband = high frequencies Cutoff frequency

- Amplitude -3 dB i.e. gain ~0.7

Example: RC filter

- 1st order low pass filter
- Simple to implement, not very effective
- 1 resistor, 1 capacitor
- Cut off frequency:

$$f_{
m c}=rac{1}{2\pi au}=rac{1}{2\pi RC}$$

Fourier transform

Decomposing a signal into its sinusoidal frequency components

Signal in time domain

Signal in frequency domain

Frequency domain analysis

- Can be done easily using for example Matlab built-in function fft()
- FFT = Fast Fourier Transform

Fourier transform

Discrete Fourier transform

Returns the amplitude of bands (or bins) of frequencies as complex numbers

- oHz = DC offset
- Magnitude = absolute value of complex number -> abs()
- Phase = angle of the complex number -> angle() or atan2()

FFT – Fast Fourier transform algorithm

Matlab function fft(data)

Electromagnetic interference

can ruin your measurements

Eliminate ground loops Wire condition and quality

- Coaxial
- Twisted pair
- Shielding (Eg. CAT 6)

Isolation

- Galvanic
- Inductive
- optical

Case: paper machine roll run-out

Dynamic run-out

run-out as a function of the roll rotating frequency

Measurement objectives

- Measure run-out of the roll
- Measure angular velocity and angular position of the roll

Run-out

Architecture of a measurement system

Conversion to another, typically electric physical quantity

Measurement Device
Signal Conditioning
Analog-to-Digital Converter

National Instruments
Measurement Computing
Data Translation

..

SoftwareDriver
Application

Labview DASYLab Matlab Visual C++/Basic

. .

Measurement setup

Sensors

Displacement (run-out)

- Laser
- Triangulation
- Resolution 0.2µm
- Sample rate 50kHz
- Amplifier converts the distance to

voltage: 1V ≡ 1mm

Sensors

Angle (position and velocity)

- encoder
- Roll angle at each disp. value
- 1024 pulses/rev
 - Resolution 0,35°
- Digital: 0V=0, 5V=1
- 2 channels + zero channel

Measurement setup

Differential digital signal trasmission

- Electromagnetic coupling based disturbance
 - Variable frequency drive, electric motors, power supply units...

- Differential signal transmission
- TTL receiver (digital signals)

Measurement setup

Data Acquisition

Measurement card – analog voltages and digital pulses are measured and converted to a computer-friendly format

- NI USB-6215 USB
- 16 analog inputs (voltage, ±10V), resolution 16 bit
- 2 analog outputs (voltage, ±10V), resolution 16 bit
- 4 digital inputs/outputs (0...5V)
- Max. Sample rate 250 kHz
- Multiplexer -> only one A/D-conversion unit ->converts voltages in turns from channel to channel

Measurement setup Sensors **Filtering** Data acquisition Data processing and analysis Laser (displacement) •LPF DAQ-card Labview •Encoder (angle & Line receiver Matlab speed) PC **ENC** LabView 4 x LASER DAQ Matlab

Measurement programming

- Measurement task must be programmed to the DAQ-card
- What is measured, which channel, how often...
- Labview, Matlab, C++, arduino...

Measurement setup

Analysis

- From data to information
- LabView, Matlab,...:
 - Data usually in text or binary forms
 - Data manipulation
 - Averaging
 - Frequency domain analysis (Fast Fourier Transform, FFT)
 - Charts and graphs

Measurement uncertainty

True value not reachable

- How to find out the error??? (measured true value)
 - Not possible!
- Measured values and Measurement uncertainty are both statistical variables: the result is within certain limits with certain probability
- Systematic error -> calibration
 - For example constant error in a meter
- Random error -> uncertainty
 - For example noise, vibration, stresses, temperature, measurer...
 - Harder to control!

Case: error sources – laser

- Positioning error of the sensors (syst.)
- Nonlinearity (syst.)
- Noise and other EMC disturbance before DAQ

Case: error sources - encoder

Angular positioning error (syst.):

