

Reliable Microservices

Oleg Anastasyev

oa@ok.ru

@m0nstermind

Top 10 countries by OK audience

43 mln Russia

2,8 mln
Belarus

2,6 mln Kazakhstan 2,1 mln Uzbekistan 1,7 mln Germany

1,5 mln Moldova

1,1 mln Armenia

760 000

Tajikistan

760 000

Georgia

Messenger as an example

5% 95%

chats make requests

80% freshest 13 messages

Chat Messages: storage

600 bi

5 bi

messages

chats

100 TB

data

100+ Kops

reads

writes

10+ Kops

Chat Messages: full text search

600 bi

5 bi

messages

chats

100 TB

data

100+ Kops

reads

10+ Kops

writes

Chat Messages Storage Service

operations:

getMessages(viewer, chat, from, to)

- getLastMessages(viewer, chats)
- add(chat, message)
- search(viewer, text)
- indexMessages()

	ID	From	Type	Text	Attach[]
1	14:30	Vader	TXT	Hello Luke, calling	
1	14:31	Vader	VIDC	callto: Luke, miss	
1	14:32	Procter	SPAM	someth	some.gif
1	14:35	Luke		Who is this?	

```
CREATE TABLE Messages (
    chatId, msgId

user, type, text, attachments[], terminal, deletedBy[], replyTo,...

PRIMARY KEY ( chatId, msgId )
)
```


Application Logic

Application State (data)

getMessages(viewer, chat, from, to)

SELECT FROM Messages
 WHERE chatId = ? AND
 msgId BETWEEN :from AND :to

DE

getMessages(viewer, chat, from, to)

- getLastMessages(viewer, chats)
- indexMessages()

100% < 1%

chats

requests

CPU: (Un) Marshalling

+85%

CPU load(1)

+27%

median latency⁽¹⁾

⁽¹⁾ Fast key-value stores: An idea whose time has come and gone Adya et al. HotOS '19, May 13–15, 2019, Bertinoro, Italy

- CPU: (Un) Marshalling
- Overreads, overwrites

(1) Fast key-value stores: An idea whose time has come and gone Adya et al. HotOS '19, May 13-15, 2019, Bertinoro, Italy

- CPU: (Un) Marshalling
- Overreads, overwrites

- CPU: (Un) Marshalling
- Overreads, overwrites

if we use only

10%

of data read, then up to

+46% +86%

CPU

Net

are wasted 1)

- CPU: (Un) Marshalling
- Overreads, overwrites
- Network latency and traffic

(1) Fast key-value stores: An idea whose time has come and gone Adya et al. HotOS '19, May 13–15, 2019, Bertinoro, Italy

Microservices: lowering costs

- CPU: (Un) Marshalling (5) KV-Direct
- Overreads, overwrites
 (2) redis, (3) tarantool
- Network latency and traffic
 (4) NetCache

- (2) http://redis.io
- (3) https://tarantool.io
- (4) Netcache: Balancing key-value stores with fast in-network caching. In X. Jin et al, Stoica. SOSP, 2017.
- (5) Kv-direct: high-performance in-memory key-value store with programmable nic.B. Li et al, In SOSP, 2017.

DBMS

Stateful Microservices

Stateful Microservices

CPU: (Un)Marshalling

Overreads, overwrites

Network latency and traffic

Application Logic

Custom in-memory store application specific

Embedded Distributed store code only the code is embedded, operates just like a dedicated node

Stateful Microservices

More efficient. Ever.

Custom in-memory store application specific

Embedded Distributed store code only the code is embedded, operates just like a dedicated node

What can will go wrong?

- 1. Client crash
- 2. Server crash
- 3. Request omission
- 4. Response omission
- 5. Server Timeout
- 6. Invalid value response
- 7. Arbitrary failure

Failures

Downtime probabilities

Downtime probabilities

Embedding the Database

requirements are:

Always available

Replication, Consistency

Scalable

Re-sharding

Application language

Minimal (un) marshalling, Integration with the application

Open Source

so we can code something crazy

Embedding the Database

-cp cassandra/lib/*.jar

```
package org.apache.cassandra.service;
public class CassandraDaemon
{
```

2. System.setProperty("cassandra.config", "file://whatever/cassandra.yaml");
CassandraDaemon.instance.activate();

Request routing

chat in (B)

Request routing

Partition-aware client routing library
 Routes request to the replica owning the data,
 based on the key specified in a request and the cluster topology information

Request routing

• Partition-aware client routing library
Routes request to the replica owning the data,
based on the key specified in a request and the
cluster topology information

Data partitioning

- Partition Key (chatld)
 Defines which node owns a row
- Clustering Key (msgld)
 Defines an order of rows within a partition

```
CREATE TABLE Messages (
    chatId, msgId

user, type, text, attachments[], terminal, deletedBy[], replyTelegraphic

PRIMARY KEY ( chatId, msgId )
)
```

Data partitioning

- Partitioner
 Calculates token and position on ring
- TokenMetadata
 Maps range of tokens to primary nodes
- Replication Strategy
 Defines replica placement

Data partitioning

Partitioner

Calculates token and position on ring

TokenMetadata

Maps range of tokens to primary nodes

Replication Strategy

Defines replica placement

```
SortedMap<Token, List<InetAddress>> endpointMap = ...

AbstractReplicationStrategy replication = ...

for ( Token token : tokenMetadata.sortedTokens() ) {
    endpointMap.put( token, replication.getNaturalEndpoints( token ) );
}
```

+ Topology changes over the time

Refreshes and dealing with stale topology

Messenger: calling the DB

getMessages(viewer, chat, from, to)

```
CREATE TABLE Messages (
    chatId, msgId

    user, type, text, attachments[], terminal, delete

PRIMARY KEY ( chatId, msgId )
)
```

Quick start

Here's a short program that connects to Cassandra and executes a query:

```
import com.datastax.oss.driver.api.core.CqlSession;
import com.datastax.oss.driver.api.core.cql.*;

try (CqlSession session = CqlSession.builder().build()) {
   ResultSet rs = session.execute("select release_version from system.local");
   Row row = rs.one();
   System.out.println(row.getString("release_version"));
   // (3)
```

Messenger: calling the DB

- getMessages(viewer, chat, from, to)
- add(chat, message)

```
CREATE TABLE Messages (
    chatId, msgId

    user, type, text, attachments[], terminal, delete

PRIMARY KEY ( chatId, msgId )
)
```

Messages In-Memory Store

600 bi

messages

5 bi

100 TB

5%

chats are active

80%

freshest 13 messages

in-memory stored data

3+ bi

250 mi

messages

chats

500 GB

Messages In-Memory Store

getMessages(viewer, chat, from, to)

getLastMessages(viewer, chats)

add(chat, message)

500 GB

Messages In-Memory Store: getMessages

Messages In-Memory Store

Mutation — individual rows:

Streaming — ss tables:

```
package org.apache.cassandra.streaming;

public class StreamReceiveTask extends StreamTask
{
    // holds references to SSTables received
    protected Collection<SSTableReader> sstables;

    private static class OnCompletionRunnable implements Runnable {
```

Messages In-Memory Store: state loss

Messages In-Memory Store: state loss


```
CREATE KEYSPACE Caches
  WITH REPLICATION = {
   'class': 'LocalStrategy'
  }
```

```
CREATE TABLE Caches.MessagesSnapshot (
    rowkey blob,
    value blob,
    PRIMARY KEY ( rowkey )
)
```

SELECT * FROM MessagesSnapshot

In-memory store: optimizing normal restarts

Shared Memory

https://github.com/odnoklassniki/one-nio

- /dev/shm/msgs-cache.mem
 sometimes, not always
- tmpfs
- hugetlbfs4K pages -> 2M,1G

one.nio.mem

SharedMemoryMap

In-memory store: waiting for consistency

In-memory store: waiting for consistency

In-memory store: summary

- Shares process with the app and the database avoid marshalling and network costs, overreads
- Data freshness problem
 Extended Cassandra with Listeners
- State loss problem
 Use local tables and shared memory
- Consistent
 as much as the database

getLastMessages(chats[])

- Multiple chats in request
 No single node owns all data
- Fraction of them are in cache

 Meaningless to load inactive chats to cache

getLastMessages(chats[])

Multiple chats in request
 No single node owns all data

• Fraction of them are in cache

Meaningless to load inactive chats to cache

split & merge

Multiple chats in request

No single node owns all data

Fraction of them are in cache

Meaningless to load inactive chats to cache

Full Text Search: search and indexMessages

- Inverted index lucene.apache.org
- One per conversation
 single 100TB index does not work;
 per-user duplicates data
- Large conversations only
 Short chats index builds right before search

Text message

indexMessages

Compaction

- Merges data generations
 Across sstable files
- In defined order
 token(PartitioningKey), Clustering Key

```
package org.apache.cassandra.db.compaction;
public class CompactionManager implements CompactionManager!
{
```

App to DB tight integration = even less costs

Operations

Longer deployments

what takes time:

- DB initialization
 Depends on the disk speed and the volume of WAL to play
- In-memory lost state load
 Cache size, contention, CPU
- Consistency wait time
 Number of lost mutations

how to mitigate:

Parallel deployment of all availability zone instances

More DB nodes restarts

why:

DB is embedded into app
 app restart == DB node restart

not a problem

Nothing, this is good

Makes it easy to debug failures in controlled environment;

Chaos monkey on a regular basis at no cost

Longer scaleout time

why:

state is colocated with application

Scaleout includes data resharding

how to mitigate:

- Capacity planning
 Scaleout upfront
- Feature flags in right places

Imbalanced resource utilization

why:

• state is colocated with an application

Number of app, cache and db are equal

how to mitigate:

Container orchestration

one-cloud, k8s, aurora, mesos

Diagnostics and support

one/list/storage/server/ListStorageServiceImpl.getItemsNoLogging

one/list/storage/server/ListStorageServiceImpl.getItems

(9) https://github.com/jvm-profiling-tools/async-profiler

Stateful Services Summary

- More effective and reliable avoid marshalling, overreads and network costs
- Caches are now consistent with data

 Cache and C* are embedded in the single process
- Not so hard to implement

 Really hard parts are already implemented in C* and one-nio
- Stateless is starting to obsolete
 there are new solutions to the problems it was aimed for

Effective and Reliable Microservices

Oleg Anastasyev

oa@ok.ru @m0nstermind

