Finite State Machines Sequential logic More MocRine Medy Machine @ Block diagram Black diagram & State Transition graph State Transition graph STG Verilog designDesign examples & Venilog design @ Designs examples

time	0	1	2	3	+	5	ک	7	8	٩	10	(1)	12]]3	14	15
X	O	5	(1	0	1	1	0	0	I	0	0	0		Ò	٥
え	0	0	0	0	٥	•	0	0	9	0	> (•	0	•	٥	0
Detecting the sequence 101 . The output $\chi = 1$ councid with the last 1. The machine																

des not reset after receiving the code.

State Transition graph

none of the bits of the required sequence has been received.

The flust bit of the required sequence

The first two bits of the required sequence that been received

State Transition table

Present	Next	State	Present Output			
State	X = 0	X =	X=0	x = 1		
So	So	SI	0	0		
SI	62	Sı	O	0		
Sa	So	SI	0	1		

F	recent State	Nec	t State	Present output			
	State	X = 0	×=	X = 0	X = 1		
	QQ	IDP	<u>J</u> oi	0	0		
+	OF	ΠO	[41	0	٥		
	10	00	[g]	0)		

0

(input clk, x ; Mealy_Sequence_detector module output to); rg [1:0] state; [1:0] next_state; always @ (poodge ctk) / Flip flop description State () next state; sequential logic // combinational for the next_state: anign next state [0] = x; Combinational logic anign next_state [I] = (nx) & state [0]; // combainational again for the output Z: assign Z = X & state CIJ; endmodule