Submission due date: 10th January 2024

1 Gradient boosted decision trees

- 1. Derive the Jacobian and Hessian of the logistic loss (show all steps!)
- 2. Given the following data of table tennis matches of the ML team against a team of Reinforcement Learning Engineers (RLE). x_1 denotes the length of the racket used by the ML team, x_2 its weight. y encodes the outcome of the match: y=1 means the game was lost, y=0 means the game was won.

x_1	x_2	y
1	2	1
1	3	1
4	1	1
2	1	0
3	2	0
4	3	0

- (a) Plot the data.
- (b) Learn a gradient boosted decision tree to help the ML team pick the right racket the next time. Use $\gamma=1$ and $\lambda=1$ and learn only one split for each tree (i.e. a decision stump). Learn 2 trees in total. Explain the result.
- (c) Use sklearn.ensemble.GradientBoostingClassifier to check how many boosting stages (n_estimators) are required for the right prediction.
- (d) Why do we need γ , λ ? Explain their usage and what they stand for to a Machine Learning outsider in the context to this task, i.e. what do they mean in terms of size / weight of the racket, number of recorded games in the past, etc.