Traffic Collisions

• • •

Diego Fondevilla, Julianna Larios, Karina Bik

Project objective:

Help insurance companies set better premiums and improve emergency response by predicting crash severity, injury, and fault.

The Raw Data

- Originated from data.gov
- Contains data on Motor Vehicles involved in traffic collisions within Montgomery County
- Collected via the automated
 Crash Reporting System (ACRS)
- Total number of variables:
 - o **39**
- 100,000+ rows (after cleaning)

Data Cleaning Process

- Created a new dataset using only variables we need
- Removed rows with empty cells, duplicates and have a value of "N/A"
- Factored categorical variables
- Merged factor levels that have similar words

Summary Plots

Summary Plot 1

Summary Plot 2

Models

Logistic Regression

Outcome Variable: **Suspected Injury**

Predictor Variables: Weather, Light, Speed Limit, Collision Type, Driver Distracted by, Driver Substance Abuse

Decision Tree

Outcome Variable: **Crash Severity**

Predictor Variables: Weather, Surface Condition, Vehicle Body Type, Speed Limit, Driver Substance Abuse

Random Forest

Outcome Variable: **Driver At Fault**

Predictor Variables: Collision Type, Weather, Light, Traffic Control, Driver Substance Abuse, Driver Distracted By, Vehicle Damage Extent, Vehicle Body Type, Vehicle Movement, Speed Limit

Model 1: Logistic Model

Variables Explained

- Outcome: Injury
- Predictor Variables
 - Weather
 - o Light
 - Speed Limit
 - Collision Type
 - Driver Distracted by
 - Driver Substance abuse

Additional Data Manipulation (Stratified Data Sampling)

Suspected Injury No apparent injury 35257 90259

```
sampled_crash <- crash_clean %>%
  group_by(Injury) %>%
  sample_n(35000)
```

- Originally, the proportion between suspected injury vs no apparent injury was too big
- Use stratified sampling to make the proportion even
- Made sure testing and training set didn't have the same issue

Model Coefficients

	Pr(> z)	
(Intercept)	0.000000946791679	***
WeatherCloudy	0.62107	
WeatherFog, Smog, Smoke	0.35179	
WeatherRain	0.64365	
WeatherSnow	0.01517	re
WeatherOther	0.000001049168015	***
LightTwilight	0.63405	
LightDAYLIGHT	< 2e-16	***
LightUNKNOWN	0.000001418888331	***
`Speed Limit`	< 2e-16	र्थ भेर भेर
`Collision Type`HEAD ON	0.000000000219058	र्श र्श र्श
`Collision Type`Front to Rear	< 2e-16	र्थ रथ रथ
`Collision Type`Sideswipe	< 2e-16	***
`Collision Type`SINGLE VEHICLE	0.09900	17.0
`Collision Type`Other	< 2e-16	***
`Driver Substance Abuse`Combined Substances	0.000000000000258	र्थ भेर भेर
`Driver Substance Abuse`Drug-Related	0.06431	950
`Driver Substance Abuse`Clean	< 2e-16	
`Driver Substance Abuse`Other	< 2e-16	***
`Driver Distracted By`External Distractions	0.27984	
`Driver Distracted By`Inattention to surroundings	0.00619	* *
`Driver Distracted By`Not Distracted	0.000040301787559	n' n' n'
`Driver Distracted By`Unknown	0.20895	
`Driver Distracted By`Other	0.38188	

exp(log_model\$coefficients) (Intercept) 0.4828998 WeatherFog, Smog, Smoke 0.8726557 WeatherSnow 0.7819564 LightTwilight 0.9756543 LightUNKNOWN 0.4709954 `Collision Type`HEAD ON 1.2529471 `Collision Type`Sideswipe 0.3381375 `Collision Type`Other 0.3433432 'Driver Substance Abuse Drug-Related 1.3090916 `Driver Substance Abuse`Other 4.5340789 Driver Distracted By Inattention to surroundings 0.6829263 `Driver Distracted By`Unknown 0.8405348

WeatherCloudy 1.0154985 WeatherRain 0.9866284 WeatherOther 0.6119165 LightDAYLIGHT 1.2157336 Speed Limit 1.0233292 'Collision Type Front to Rear 0.6519697 `Collision Type`SINGLE VEHICLE 0.9426153 Driver Substance Abuse Combined Substances 9.5925514 `Driver Substance Abuse`Clean 0.6097200 Driver Distracted By External Distractions 0.8124966 Driver Distracted By Not Distracted 1.7548128 Driver Distracted By Other 1.1359474

Confusion Matrix + ROC Plot

Training Data:

Testing Data:

Cutoff: 0.4

- Ensures more true positives in exchange for more false positives

Model 2: Decision Tree

Variables Explained

- Outcome: Crash Severity
- Predictor Variables
 - Weather
 - Surface Condition
 - Vehicle Body Type
 - Speed Limit
 - Driver Substance Abuse

	CP	nsplit	rel error	xerror	xstd
1	0.0203146199	0	1.0000000	1.0000000	0.003144901
2	0.0077554912	3	0.9390561	0.9390561	0.003125843
3	0.0003116864	5	0.9235452	0.9238018	0.003119482
4	0.0002658502	6	0.9232335	0.9277804	0.003121203
5	0.0000100000	8	0.9227018	0.9268270	0.003120795

• minsplit/minbucket:

 since the dataset is so large, I choose a minsplit of 100 and a minbucket of 1000

cp:

xerror starts to stabilize aroundnsplit = 5, so I used a cp of 0.00001

• maxdepth:

to avoid a very complex, deep tree I used a maxdepth of 5

Decision Tree for Crash Report Dataset

Confusion Matrix for the Test Set:

	Reference			
Prediction	destroyed	minor	damage/no	damage
destroyed	4655			3602
minor damage/no damage	8743			11755

Model 3: Random Forest

Variables Explained

- Outcome: Driver At Fault
- Predictor Variables
 - Collision Type
 - Weather
 - Light
 - o Traffic Control
 - Driver Substance Abuse
 - o Driver Distracted By
 - Vehicle Damage Extent
 - Vehicle Body Type
 - Vehicle Movement
 - Speed Limit

Predicted vs Actual Plot + Feature Importance

Trees used: 300, mtry: 3

Accuracy, F1-Score, Precision, and Recall of Train and Test set:

ROC Curve + AUC:

Model Performances

Comparison of Each Model's Performance

Logistic Regression

- Both the training set and testing set have an AUC of around 72%
- Both the training set and testing set has an accuracy of around 63%
- Overall, decent performance of the model but could be better

Decision Tree

- Accuracy of about 57% for both the train and test set.
- So out of all the predictions the model made on crash severity, only 57% were correct.
- Suggests that the model is underfitting.
- Overall, this means it is not a great model.

Random Forest

- Accuracy of about 83.5% for both the train and test set.
- The model's predictions of whether the Driver is at Fault is accurate 83% of the time.
- Metrics suggest the model performs better on the train set, worthwhile to look into potential overfitting.
- Good model, but may contain bias.

Thank you!