Charge Collection and Field Profile Studies in Heavily Irradiated Silicon Strip Sensors for the ATLAS Inner Tracker Upgrade

ATLAS ITk Lol Layout and Fluence at HL-LHC

Fluence evaluations per 3000 fb⁻¹ 1 MeV neutron equivalent fluence

ATLAS12 design

Hamamatsu FZP320 wafers (3-8 k Ω cm)

ATLAS12A --- ρ ~3.5-5 k Ω cm ATLAS12M --- ρ ~6 k Ω cm

ATLAS07 ρ ~5-5.5 k Ω cm

P1-P24: miniature test sensors 1x1cm, strips 8 mm long

used for rad-hard study

Irradiation

Neutron irradiation: Ljubljana reactor

Pion irradiation:

Proton irradiations: Karlsruhe 23 MeV

Sirmingham 27 MeV All damages translated fluence Birmingham 27 MeV to 1-MeV to 1-MeV

Irradiation example: CYRIC (Tohoku Univ) Scan box: 15 sample slots

Sample holder/slot (11x11cm opening)

Al²⁷(p, 3pn)**Na²⁴** Al foils for dosimetry

CYRIC case:

For $10^{12} \sim 10^{16}$ /cm² range irradiation, A few min $^{\sim}6$ hrs at beam current $10nA^{\sim}1\mu A$ **Charge Collection Measurement Consistency**

β-source (electron beam)

Alivaba:

FPGA based DAQ system

LHCb Beetle chip

http://www.alibavasystems.com/

K. Hara, HSTD10, Xi'an China, 25-29 Sep 2015

Long term annealing at 60°

- Annealing is similar for A12A/A12M for bias below 600V (proton 1E15/cm²)
- A07 (neutron) studied previously
 => behavior similar to A12M

 I. Mandic et al., NIMA 629 (2011) 101

All data shown below are after controlled annealing of 80min @ 60°C

ATLAS12A+ATLAS07 Neutron irradiation

ATLAS12A proton irradiations X10¹⁵ 1-MeV n/cm²

12M yields larger signal at low fluence and at low bias: different initial resistivity

Testbeam setup at DESY 4.4 GeV electrons

Source vs testbeam (DESY 4.4-GeV electrons)

K. Hara, HSTD10, Xi'an China, 25-29 Sep 2015

Source vs testbeam (DESY 4.4-GeV electrons)

Source vs beam:

Charge distributions in reasonable agreement Cluster Size slightly wider for source as expected

Fluence dependence (all A12A data points)

Fluence dependence

after 80min@60°C annealing

A12A yield slightly smaller & n-damage is larger at low fluence and low bias => becomes similar at large fluence

S/N at HL-LHC

Barrel short (24mm)strips up to : 1.1×10^{15} /cm² Barrel long (48mm) strips up to : 0.6×10^{15} /cm² Endcap (8-48mm) strips: max 1.6×10^{15} /cm²

ENC noise ~550/720/650 ENC for barrel short/barrel long/EC innermost strips

At Vb=500V, strip detectors remain as precision tracker after HL-LHC fluence

Charge collection of samples irradiated with $p/n/\pi$

Different CCE curves measured for the same NIEL fluence Investigated E-field profile using e-TCT technique

edge TCT (transient current technique)

G. Kramberger et al., PoS (VERTEX2012) 022

IR laser injected from polished side scanning depthwise to investigate the charge collection dependence in depth => E-field distribution in depth

Polished edge

detectors on a Peltier cooled support in dry air atmosphere (down to -20°C)

K. Hara, HSTD10, Xi'an China, 25-29 Sep 2015

e-TCT non-irradiated samples

Charge vs. depth

 A12A detector depleted at 350 V (A07 deplete at 200V)

A12A about 10 µm more than
 A07 → as expected from physical thicknesses
 (320/310 µm for A12A/A07)

Velocity profile

$$I(y, t \sim 0) \approx qE_w(y) \left[\overline{v}_e(y) + \overline{v}_h(y) \right] \propto E; \quad \overline{v}_e(y) + \overline{v}_h(y) \propto E$$

- induced current at $t \sim 0$ proportional to carrier velocity and weighting field at laser spot location ($E_w \sim \text{constant}$, see: G. Kramberger, et al.,IEEE TNS NS-57 (2010) 2294.)
- if E not too large, I proportional to e-filed E
- plots normalized to same integral from 0-300 μm (because ∫ Edx = Bias)
 - at 200 V A07 depleted, A12A not depleted

• at 400 V both depleted

 \rightarrow expected depletion depth for A12A at 200 V 220 μ m!

Edge-TCT with detectors irradiated in Ljubljana (neutron)

- larger field near back plane in A07
- → roughly in agreement with expectation because of different initial resistivities

K. Hara, HSTD10, Xi'an China, 25-29 Sep 2015

Edge-TCT with detectors irradiated by protons/neutrons/pions

consistent with CCE measurements

- → more CC after charged particle irradiation
- → more CC for pions than for 23 MeV protons:
 - → larger E field at back side after pion irrad than after 23 MeV proton irradiation.

At moderate bias, CC is least after neutron irradiation

Summary

- 1. CC of HPK p-bulk sensors irradiated with protons and neutrons are evaluated extensively with β -ray by several institutions in collaboration
 - \square CC of >9 Ke⁻ can be maintained at Vb=500V after 1.6x10¹⁵ 1-MeV n_{eq}/cm²
 - S/N> 19 for short strips (L=2.4cm) after 1.1×10^{15} 1-MeV n_{eq}/cm^2
 - S/N> 18 for long strips (L=4.8cm) after $0.6x10^{15}$ 1-MeV n_{eq}/cm^2
 - S/N> 14 for innermost EC after 1.6x10 15 1-MeV n_{eq}/cm^2
- 2. β -ray measurements are validated by beam
- 3. Difference in p/n/pion damages investigated in terms of electric-field profiles using e-TCT
 - Reduction in the charge collection due to induced traps
 - Change in the field profile across depth due to generated currents Both dependent on the irradiation particles $(n/p/\pi)$
 - ✓ Defect introduction rates are more in the order of : $n>p>\pi$
 - ✓ Differences in E-filed profile shapes due to double peak E-field:
 - ⇒ HPK p-bulk strip sensors are operational at the HL-LHC fluence

Edge-TCT with detectors irradiated by protons/neutrons/pions

Double Peak E-field V. Eremin et al. NIMA535 (2004)622.

$$\rho_{eff} = \rho_{dopants} \sim -eN_A$$
 ... space-charge density

$$\rho_{eff} = e(f_D n_D - f_A n_A) + \rho_{dopants}$$

radiation induced trapping levels with occupancies f

Edge-TCT with detectors irradiated in Karlsruhe (p 23 MeV)

larger active volume after irradiation with 23 MeV protons than after neutrons at 500 V
 → consistent with larger charge measured with Alibava

