1 事件与概率

- 2 随机变量及其分布
- 3 随机变量的数字特征

$$E(X) = a_1 p_1 + a_2 p_2 + ... + a_m p_m$$

$$E(X) = \sum_{i=1}^{\infty} a_i p_i$$

$$E(X) = \int_{-\infty}^{+\infty} x f(x) \, dx$$

定理 3.1.

$$E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n)$$

定理 3.2. 若干个独立随机变量之积等于各变量的期望之积,即

$$E(X_1X_2...X_n) = E(X_1)E(X_2)...E(X_n)$$

定理 3.3. (随机变量函数的期望)

$$E(g(X)) = \sum_{i} g(a_i) p_i$$

或

$$E(g(X)) = \int_{-\infty}^{+\infty} g(x)f(x) \, dx$$

$$E(cX) = cE(X)$$

$$Var(X) = E(X - EX)^2 = E(X^2) - (EX)^2$$

定理 3.4. (1) 常数的方差为 0

- (2) Var(X + c) = Var(X)
- (3) $Var(cX) = c^2 Var(X)$

定理 3.5. 独立随机变量之和的方差等于各变量的方差之和,即

$$Var(X_1 + ... + X_n) = Var(X_1) + ... + Var(X_n)$$

定理 3.6. 独立随机变量

$$Var(XY) = [E(X)]^{2}Var(Y) + [E(Y)]^{2}Var(X) + Var(X)Var(Y) = E(X^{2})E(Y^{2}) - [E(X)]^{2}[E(Y)]^{2}$$

分布名	概率密度函数	E(X)	Var(X)
二项分布	$P(X = k) = C_n^k p^k (1 - p)^{n-k}$	np	np(1-p)
几何分布	$P(X = k) = (1 - p)^{k-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
正态分布	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
均匀分布	$f(x) = \frac{1}{b - a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数分布	$f(x) = \lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
泊松分布	$P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}$	λ	λ

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

4 数理统计的基本概念及抽样分布

(1) 样本均值

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

(2) 样本方差

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

(3) 样本矩

$$a_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

$$m_k = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k$$

(4) 次序统计量及其有关统计量

定义 4.1. 设独立同分布 $X_1,X_2,...,X_n\sim N(0,1)$ 令 $X=\sum\limits_{i=1}^nX_i^2$,则称 X 是自由度为 n 的 χ^2 变量,其分布称为自由度为 n 的 χ^2 分布,记为 $X\sim\chi_n^2$

定义 4.2. 设随机变量 $X \sim N(0,1), Y \sim \chi_n^2$, 且 X 和 Y 独立,则称

$$T = \frac{X}{\sqrt{Y/n}}$$

为自由度为 n 的 t 变量,其分布称为自由度为 n 的 t 分布,记为 $T \sim t_n$

6 假设检验 3

定义 4.3. 设随机变量 $X \sim \chi_m^2$, $Y \sim \chi_n^2$, 且 X 和 Y 独立,则称

$$F = \frac{X/m}{Y/n}$$

为自由度分别是 m 和 n 的 F 变量,其分布称为自由度分别是 m 和 n 的 F 分布,记为 $F \sim F_{m,n}$

- 5 参数估计
- 6 假设检验