

Faculty of Engineering – Cairo University Credit Hours System – Senior Level Spring 2024

CMPS450 – Pattern Recognition and Artificial Neural Networks

Project Report

Submitted by:

Name	ID
Ahmed Emad Reda	1190180
Hla Hany Mohamed	1190344
Nada Tarek	1180504
Ziad Ahmed Hamed	4200002

Due Date:

15 May 2024

Table of Contents

Problem Description	3
Project Pipeline	4
Data Loading & Splitting	4
Preprocessing Module	5
Feature Extraction and Selection Modules	6
Performance Analysis	7
Model Architecture	7
Unsuccessful Trials	8
Workload Distribution	9

Problem Description

Objective:

Develop a system to classify Arabic paragraphs into four font categories based on input images.

Challenges:

Characterizing unique font features; handling variations in writing styles, spacing, and noise.

Font Code	Font Name
0	Scheherazade New
1	Marhey
2	Lemonada
3	IBM Plex Sans Arabic

Project Pipeline

Data Loading & Preprocessing Feature Selection Model Development Tuning Prediction

Data Loading & Splitting

- Load the dataset into memory.
- Split the dataset into training and validation sets to evaluate model performance.
- The validation set is used to tune model hyperparameters to find the best model state.

Preprocessing Module

Steps:

- 1. Median blur filter: to remove salt and pepper noise.
- 2. Filter2D: to sharpen the image.
- 3. cv2 Threshold: to convert the image to binary.
- 4. Image deskewing:
 - We want to detect any skew present in the image, which means if the image is slanted or tilted.
 - We try different angles $(0^{\circ}, 45^{\circ}, 90^{\circ}, \text{ etc.})$ to check for skew.
 - For each angle tested, we compute a score based on how much the histogram of the image changes.
 - A higher score means more skew corrections are needed.
 - We choose the best angle that gives us the highest score, indicating the most significant skew.
 - With the best angle identified, we rotate the image in the opposite direction to counteract the skew.
 - The rotation fills any remaining empty spaces with a white color to maintain the image's rectangular shape.
- 5. Image resizing.

Feature Extraction and Selection Modules

Steps:

• Histogram of Oriented Gradients (HOG):

Extract features from images to describe their shapes and textures.

- Scale-Invariant Feature Transform (SIFT):
- ✓ Detect and describe key points in images to help recognize objects or scenes.
- ✓ Pad SIFT descriptors to make sure all SIFT feature sets are of the same length for consistency in analysis.
 - Standardization:

Adjusts the scale of features to ensure fair comparison.

• Principal Component Analysis (PCA):

Transform the data into a lower-dimensional space while preserving the most important information.

Performance Analysis

Model	Accuracy
PyTorch Neural Network	96.5%
Stacking Classifier	96%
Logistic Regression	95.5%
MLP Classifier	92.75%
SVM	91.25%

Model Architecture

- Input layer processes feature vectors.
- 2 hidden layers learn complex patterns with ReLU activation.
- Output layer generates class probabilities with softmax activation.

Accuracy obtained: 96.5%

Unsuccessful Trials

A. Edge Direction Matrix (EDM):

Features from EDM1 & EDM2:

- Edges Direction
- Homogeneity
- Pixel Regularity
- Edges Regularity

Accuracy obtained: 85%

	135°	90°	45°	_
	4	2	2]
180°	4	12	4	0°
	2	2	4]
	225°	270°	315°	EDM_1

	135°	90°	45°	
	2	0	1]
180°	3	12	4	0°
	1	0	1]
,	225°	270°	315°	EDM_2

B. Segmentation technique (inspired by Variance Threshold by scikit-learn)

Workload Distribution

Team member	Tasks
Ahmed Emad	Preprocessing, Model Development, API
Hla Hany	EDM, Model Development, Deployment
Nada Tarek	HOG, SIFT, PCA
Ziad Ahmed	Preprocessing, Model Development, API