Lab 3

Levon Demirdjian

Sunday, April 17, 2016

This lab will review the method of finding the pdf of a transformed random variable, and will generate samples from the transformed distribution.

Problem 1

Let the pdf f(x) of a random variable X be given by $f(x) = \exp(-x)$ where x > 0. Furthermore, let $Y = \sqrt{2 * X}$. We are interested in finding the pdf of Y, f_Y , and then sampling from f_Y .

- a) What distribution is this? It's clear that $X \sim \exp(\lambda = 1)$.
- b) Find functions g and h such that y = h(x) and x = g(y). Is h monotone increasing? $y = h(x) = \sqrt{2x}$; h is monotone increasing. $x = g(y) = \frac{1}{2}y^2$.
- c) Find the density of Y using the method of transformations. Recall the formula for finding the density f_Y given f_X and g:

$$f_Y(y) = f_X(g(y))g'(y). \tag{1}$$

Since g'(y) = y and $f_X(g(y)) = \exp(-g(y)) = \exp(-\frac{1}{2}y^2)$ we see that

$$f_Y(y) = y \exp(-\frac{1}{2}y^2), \quad y > 0.$$

- d) Find the cdf of Y $F_Y(t) = \int_0^t y \exp(-\frac{1}{2}y^2) dy = -\exp(-\frac{1}{2}y^2)|_0^t = 1 \exp(-\frac{1}{2}t^2).$
- e) Find the inverse cdf of Y $F_Y^{-1}(t) = \sqrt{-2 * \log(t)}$.
- f) Generate samples from the pdf of Y using the inversion method. All of the hard work has been done for us. We simply need to generate uniform(0,1) random variables and plug them into the inverse cdf of Y:

```
pdf_y <- function(y){y * exp(-.5 * y^2)}
my_inverse_cdf <- function(x){sqrt(-2*log(x))}

## Generate from fY
U <- runif(10000)
Y <- my_inverse_cdf(U)

## Plot our sample and overlay the true density
hist(Y, prob = TRUE)
curve(pdf_y, 0, 4, main = "PDF of Y", add = TRUE)</pre>
```

Histogram of Y

Problem 2

Let the pdf f(x) of a random variable X be given by $f(x) = k * x^4$ where $0 \le x \le 1$. Furthermore, let $Y = \log(x)$. Note that the domain of Y is $(-\infty, 0)$.

- a) What distribution is this? What is k? This is a beta distribution with parameters $\alpha = 5$ and $\beta = 1$. The normalizing constant k = 5.
- b) Find functions g and h such that y = h(x) and x = g(y). Is h monotone increasing? $y = h(x) = \log x$; h is monotone increasing. $x = g(y) = \exp(y)$.
- c) Find the density of Y using the method of transformations. From equation 1, we get

$$f_Y(y) = f_X(\exp(y))g'(y) = 5\exp(4y)\exp(y) = 5\exp(5y).$$

2

- d) Find the cdf of Y. $F_Y(t) = \int_{-\infty}^t 5 \exp(5y) dy = \exp(5y)|_{-\infty}^t = \exp(5t).$
- e) Find the inverse cdf of Y. $F_Y^{-1}(t) = \frac{1}{5} \log(t)$.
- f) Generate samples from the pdf of Y using the inversion method.

```
pdf_y <- function(y){5 * exp(5 * y)}
my_inverse_cdf <- function(y){0.2 * log(y)}

## Generate from fY
U <- runif(10000)
Y <- my_inverse_cdf(U)

## Plot our sample and overlay the true density
hist(Y, prob = TRUE)
curve(pdf_y, -5, 0, main = "PDF of Y", add = TRUE)</pre>
```

Histogram of Y

