Fundamentals/ICY: Databases 2013/14

WEEK 7 – Friday

John Barnden
Professor of Artificial Intelligence

School of Computer Science University of Birmingham, UK

Reminder of Monday

(necessarily <u>non</u>-symmetric) 1:M recursive: "EMPLOYEE Manages EMPLOYEE"

FIGURE 4.23 IMPLEMENTATION OF THE 1:M "EMPLOYEE MANAGES EMPLOYEE" RECURSIVE RELATIONSHIP

Tab	le name: EA	MPLOYEE_V2		Database name: Ch04_PartCo
	EMP_CODE	EMP_LNAME	EMP_MANAGER	
•	101	Waddell	102	
	102	Orincona		
	103	Jones	102	
	104	Reballoh	102	
	105	Robertson	102	
	106	Deltona	102	

Just a standard 1:M implementation except linking a table to itself.

No redundancy problem.

FIGURE 4.21 IMPLEMENTATION OF THE M:N RECURSIVE "PART CONTAINS PART" RELATIONSHIP

Tab	le	name:	CON	APO	NENT
	-				

Database name: Ch04_PartCo

	COMP_CODE	PART_CODE	COMP_PARTS_NEEDED
•	C-130	AA21-6	4
	C-130	AB-121	2
	C-130	E129	1
	C-131A2	E129	1
	C-130	X10	4
	C-131A2	X10	1
	C-130	X34AW	2
	C-131A2	X34AW	2

Table name: PART

	PART_CODE	PART_DESCRIPTION	PART_IN_STOCK
•	AA21-6	2.5 cm. washer, 1.0 mm. rim	432
	AB-121	Cotter pin, copper	1,034
	C-130	Rotor assembly	36
	E129	2.5 cm. steel shank	128
	X10	10.25 cm. rotor blade	345
	X34AVV	2.5 cm. hex nut	879

The COMPONENT entity type is just a bridging type, linking PART to itself. NB: its first two columns both refer to PART's PK but must be differently named. No redundancy problem.

symmetric (1:1) recursive relationship: "EMPLOYEE Married to EMPLOYEE"

Suppose you tried the following:

FIGURE 4.19 THE 1:1 RECURSIVE RELATIONSHIP "EMPLOYEE IS MARRIED TO EMPLOYEE"

Table name: EMPLOYEE_V1

Database name: Ch04_PartCo

	EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_SPOUSE
M	345	Ramirez	James	347
	346	Jones	Anne	349
	347	Ramirez	Louise	345
	348	Delaney	Robert	
	349	Shapiro	Anton	346

Redundancy problem!!

Symmetry is the Problem

- ◆ A <u>non</u>-symmetric 1-1 relationship would <u>not</u> have the problem shown on previous slide.
- ◆ A <u>symmetric</u> M:N relationship <u>would</u> have a redundancy problem, whether implemented as in the 1-1 case or by a bridging table.
 - E.g.: being-sibling-of.

symmetric (1:1) recursive relationship: redundant & non-redundant implemntns

FIGURE 4.48 VARIOUS IMPLEMENTATIONS OF A 1:1 RECURSIVE RELATIONSHIP

Table name: EMPLOYEE_V1

	EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_SPOUSE
•	345	Ramirez	James	347
	346	Jones	Anne	349
	347	Ramirez	Louise	345
	348	Delaney	Robert	
	349	Shapiro	Anton	346

Database name: Ch04_PartCo

First implementation

Table name: EMPLOYEE

	EMP_NUM	EMP_LNAME	EMP_FNAME
•	345	Ramirez James	
	346	Jones	Anne
	347	Ramirez	Louise
	348	Delaney	Robert
	349	Shapiro	Anton

Table name: MARRIED V1

EMP_NUM	EMP_SPOUSE
345	347
346	349
347	345
349	346

Second implementation

Table name: MARRIAGE

		MAR_NUM	MAR_DATE
•	+	1	04-Mar-03
	+	2	02-Feb-99

Table name: MARPART

	MAR_NUM	EMP_NUM
•	1	345
	1	347
	2	346
	2	349

Table name: EMPLOYEE

	EMP_NUM	EMP_LNAME	EMP_FNAME
•	345	Ramirez	James
	346	Jones	Anne
	347	Ramirez	Louise
	348	Delaney	Robert
	349	Shapiro	Anton

- 1) As previously—<u>redundant</u>.
- 2) MARRIED_V1 is just a bridging entity type: still redundant.
- 3) MARRIAGE together with MARPART act as a sort of bridge. Non-redundant.

Symmetric M:N, etc.

- ◆ Method 3 on previous slide can straightforwardly be generalized to:
- ¶ symmetric recursive M:N relationships
- ¶ (((partially-)symmetric&recursive, etc. relationships that link more entities together, whatever the connectivity --- M:N:P, 1:1:1, M:1:P, ...))

Summary: Creating ERMs/ERDs

- Designing an ER model for a database is an *iterative process*, because, e.g.:
 - As you proceed, you think of new ways of conceiving what's going on (much as in ordinary programming)
 - Multivalued attributes need to be re-represented eventually
 - Supertype/subtype notation needs eventually to be converted into more standard diagram notation
 - M:N relationships can be included as such at an early stage, but usually need to be replaced by means of bridging entity types later
 - 1:1 relationships raise a red flag: may indicate poor design, especially when mandatory both ways.
 - But standard in supertype/subtype representation, and natural in recursive relationships like "married-to".
 - Symmetric recursive relationships usually need special handling.
 - Conversion of ERM portions to a "Normal Form" LATER.

Next major databases topic is Normalization

but for now ...

MATHEMATICAL BACKGROUND TO TABLES

Mathematical "sets": Basics

◆ A "set" is an unordered collection of items of any sorts (people, numbers, numerals, shoes, atoms, strings of characters, databases, sets, blades of grass, …) without any duplication of items.

The items are called "elements" or "members".

◆ S = {34, JAB, 59, UoB}, where "JAB" is a name for me and "UoB" is a name for this university,

means that

S is the set consisting of (exactly) the following four items:

the abstract number 34, me, the abstract number 59, this university.

Basics, contd

- \bullet {34, JAB, 59, UoB} = {UoB, 59, 34, JAB, JAB, 34}
 - Order of writing the members doesn't matter; duplication in the writing doesn't duplicate the member.
- ◆ A set can be **infinite** (e.g., the set of all whole numbers).
- ◆ A set can contain just one member (e.g. the set whose only element is your favourite pencil). Singleton set.
 - It's different from the member itself..
- ◆ There's a set with no members at all: the "empty set", usually notated as Ø, but can also be written {}.
 - Somewhat analogous to zero, or a new committee which has no members yet.
 - There is only one empty set (rather than an empty set of numbers, an empty set of pencils, etc.)

Another Notation

♦ {n | n is an integer, n > 301} = "The set of n such that n is an integer and n > 301."
(Actually, this notation is a slight simplification.)

The set is the *same* as that denoted by, for instance, $\{n \mid n \text{ is an integer}, n \geq 302\}.$

Some More Examples

- ◆ {JAB, "JAB"} has 2 members: me, and a 3-char string.
- ◆ {3, {4,5}, 4, 6} has 4 members, one of which is a set.
- \bullet {3, {5,4}, 4, 6} is that same set.
- ◆ { {4,5} } has 1 member, which is a set.
 - {4,5} has 2 members, both numbers.
- ◆ {∅} is a singleton set. Its only member is the empty set.
- ♦ {{∅}} is a different singleton set.