

EVERLASTING Cearning

FUNDAMENTALS OF COMPUTER GRAPHICS (CSIT304)

INTRODUCTION

CHIRANJOY CHATTOPADHYAY

Associate Professor,
FLAME School of Computation and Data Science

COURSE OVERVIEW AND PLAN

COURSE OBJECTIVES AND LEARNING OUTCOMES

OBJECTIVES

- To introduce computer graphics techniques
- To develop algorithms for 2D and 3D modeling
- To render and synthesize images and videos
- Introduce OpenGL Library and its usage
- Introduce 3D Graphics Modelling Software

OUTCOMES

- Write programs using OpenGL Library
- Explain and implement the mathematical properties of graphical objects
- Develop 2D games using Graphics Gaming Library
- Demonstrate 3D computer graphics animation

SEMESTER TEACHING PLAN

	January 2024	February 2024	March 2024	April 2024
Date	Topic	Date Topic	Date Topic	Date Topic
1	Jan 2024	1 Feb 2024L8 - 3D Transformation	1 Mar 2024 DIP	1 Apr 2024
	Jan 2024	2 Feb 2024	2 Mar 2024	2 Apr 2024L22 - Blender (3D Model Creation)
3	Jan 2024	3 Feb 2024	3 Mar 2024	3 Apr 2024
1	Jan 2024	4 Feb 2024	4 Mar 2024	4 Apr 2024L23 - Blender (Lights and Shading)
	Jan 2024	5 Feb 2024	5 Mar 2024 L15 - Curves	5 Apr 2024
		6 Feb 2024L9 - 3D Transformation		
	Jan 2024 Jan 2024	7 Feb 2024	6 Mar 2024 7 Mar 2024L16 - Curves	6 Apr 2024 7 Apr 2024
8	Jan 2024	8 Feb 2024L10 - 3D Projection - 1	8 Mar 2024	8 Apr 2024
9	Jan 2024L1 - Introduction, Installation OpenGL	9 Feb 2024	9 Mar 2024	9 Apr 2024 Gudi Padwa
10	Jan 2024	10 Feb 2024	10 Mar 2024	10 Apr 2024
11	Jan 2024L2 - Scan Converting Lines	11 Feb 2024	11 Mar 2024	11 Apr 2024Ramzam
	Jan 2024	12 Feb 2024	12 Mar 2024 L17 - Curves	12 Apr 2024
13	Jan 2024	13 Feb 2024L11 - 3D Projection-2	13 Mar 2024	13 Apr 2024
14	Jan 2024	14 Feb 2024	14 Mar 2024 L18 - Surface	14 Apr 2024
15	Jan 2024	15 Feb 2024L12 - 3D Clipping	15 Mar 2024	15 Apr 2024
	Jan 2024 <mark>L3 - Scan Conversion (Circle, Ellipse)</mark>	16 Feb 2024	16 Mar 2024	16 Apr 2024L24 - Blender (Animation)
17	Jan 2024	17 Feb 2024	17 Mar 2024	17 Apr 2024
18	Jan 2024L4 - 2D Transformation	18 Feb 2024	18 Mar 2024	18 Apr 2024L25 - Q4 (Blender)
19	Jan 2024	19 Feb 2024	19 Mar 2024 L19 - Surface	19 Apr 2024
20	Jan 2024	20 Feb 2024L13 – Problem Solving	20 Mar 2024	20 Apr 2024
21	Jan 2024	21 Feb 2024	21 Mar 2024	21 Apr 2024 Mahabir Jayanti
22	Jan 2024	22 Feb 2024L14 - Q2 - Blender	22 Mar 2024	22 Apr 2024
	Jan 2024L5 - 2D Viewing and Clipping	23 Feb 2024	23 Mar 2024	23 Apr 2024L26 - Presentation + Demo + Viva
24	Jan 2024	24 Feb 2024	24 Mar 2024	24 Apr 2024
35	Ion 2024 C 2D Viewing and Clienter	25 Feb 2024	25 May 2024 Hali	25 Apr 20241 27 Procentificat & Device Africa
	Jan 2024 L6 - 2D Viewing and Clipping Jan 2024 Republic Day	25 Feb 2024 26 Feb 2024 DIP	25 Mar 2024Holi 26 Mar 2024L20 - VSD	25 Apr 2024L27 - Presentation + Demo + Viva 26 Apr 2024
	Jan 2024	27 Feb 2024 DIP	27 Mar 2024	27 Apr 2024
		2,750 252 531	E7 1101 E9E 1	
28	Jan 2024	28 Feb 2024 DIP	28 Mar 2024L21 - Q3, Blender	28 Apr 2024
	Jan 2024	29 Feb 2024 DIP	29 Mar 2024 Good Friday	29 Apr 2024
30	Jan 2024 <mark>L7 - Q1, Introduction to Blender</mark>		30 Mar 2024	30 Apr 2024 <mark>End Sem</mark>
31	Jan 2024		31 Mar 2024	

SYLLABUS/ COURSE OUTLINE

Course content

- Introduction to computer graphics & graphics system: Overview of computer graphics, representing pictures, preparing, presenting & interacting with pictures for presentations
- Scan conversion: Points & lines, Line drawing algorithms, Circle generation algorithm;
 Ellipse generating algorithm; scan line polygon, fill algorithm, boundary fill algorithm,
 flood fill algorithm. Clipping algorithms: line and polygon, anti-aliasing
- Transformations and viewing: Basic transformations: translation, rotation, scaling; Matrix representations & homogeneous coordinates, transformations between coordinate systems; reflection shear. Viewing pipeline, Window to viewport co-ordinate transformation, clipping operations, viewport clipping, 3D viewing.
- Curves and Surfaces: Conics, parametric and non-parametric forms; Bezier (Bernstein Polynomials) Curves, Cubic-Splines, B-Splines; Quadratic surfaces, Bezier surfaces and NURBS, 3-D modeling
- Hidden surfaces: Depth comparison, Z-buffer algorithm, Back face detection, BSP tree method, the Painter's Algorithm, scan-line algorithm; Hidden line elimination, wire frame methods, fractal - geometry
- Color & shading models: Phong's shading model, Gouraud shading, Shadows and background, Color models, Photo-realistic rendering
- Animation and OpenGL primitives: Functions, pipeline, sample programs for drawing 2-D, 3-D objects; event handling and view manipulation, Introduction to GPU and animation

Refer Moodle

GRADING/ EVALUATION PLAN

SI. No	Component	Assessment Type	Weightage
1	Quiz (Best 3 out of 4)	Continuous	30
2	Assignment/ Project (Individual)		
а	OpenGL	Comprehensive	10
b	Blender	Comprehensive	10
С	Presentation	Comprehensive	5
d	Report	Comprehensive	5
4	Classwork	Continuous	20
5	Homework	Continuous	10
6	Viva	Comprehensive	10
		Total	100

IMPORTANT DATES

Date	Purpose	Date	Purpose
30 January	Quiz 1	31 March	OpenGL Project Submission
22 February	Quiz 2	21 April	Blender Project Submission
26, 28 February	DIP (No Class)	23 April – 25 April	PROJECT DEMO, VIVA
28 March	Quiz 3	4 May	Updated/ Final Submission
18 April	Quiz 4		

INTRODUCTION

WHAT IS COMPUTER GRAPHICS?

 Creation, Manipulation, and Storage of geometric objects (modelling) and their images (rendering)

Display those images on screens or hardcopy devices

Image processing

• Others: GUI, Haptics, Displays (VR)...

PURPOSE OF COMPUTER GRAPHICS?

Communication is the purpose

Human perception is the context

Techniques leverage visual perception abilities

Fidelity is a tool, not (necessarily) the goal

- Virtual reality is great, but
- Don't want to be limited to reality
 - Want to do super reality
 - Non-photorealistic rendering (NPR) is valuable
 - Bill Buxton, Sketching User
- No apology is required for "approximations"
 - Especially for interactive

TENTATIVE FLOW OF THE COURSE

Month	Topics
January	 Intro to OpenGL 2D Graphics 3D Graphics Viewing Scan Conversion
February	ClippingCurves and SurfacesTessellation
March	 Solid Modeling Rendering Visible Surface Detection
April	Illumination and SheddingAnimations

HIDDEN SURFACE REMOVAL

COLORING

TEXTURE MAPPING

BLENDING

RENDERING EXAMPLE

Time-varying Surface Appearance: Acquisition, Modeling, and Rendering, SIGGRAPH 2006

REALISTIC RENDERING

EVALUATION PATTERN

- Different components to be considered for final grading
 - End semester
 - Quiz (3 best out of 4)
 - Assignments
 - Viva
- Weightage for individual components TBA

WHAT IS CG? (1/2)

▶ Term coined in 1960, by William Fetter

▶ To describe new design methods he was pursuing at Boeing for cockpit ergonomics

 Created a series of widely reproduced images on "pen plotter" exploring cockpit design, using 3D model of human body.

WHAT IS CG? (2/2)

- Creation, storage and manipulation of models and images
- Such models come from
 - Diverse and expanding set of fields
 - E.g. physical, biological, mathematical, artistic, and conceptual/abstract structures

Frame from animation by William Latham, shown at SIGGRAPH 1992.

Latham creates his artwork using rules that govern patterns of natural forms.

WHAT IS INTERACTIVE COMPUTER GRAPHICS?

 User controls content, structure, and appearance of objects and their displayed images via rapid visual feedback

First truly interactive graphics system, **Sketchpad**, pioneered by Ivan Sutherland 1963 Ph.D. thesis *Sketchpad*, A Man-Machine Graphical Communication System

WHAT IS BATCH COMPUTER GRAPHICS?

- Today, still use non-interactive batch mode for final production-quality video and film (special effects FX).
- ▶ Rendering a single frame of Monsters University (a 24 fps movie) averaged 29 hours on a 24,000-core render farm!

Render farm

ENVIRONMENTAL EVOLUTION

(1960s – now)

Displays (1963 – 1980s)

(1972 at Xerox PARC - now)

3D graphics workstations (1984 at SGI – now)

You can put multiple GPUs together in your computer using SLI. www.flame.edu.in

CONCEPTUAL FRAMEWORK

- Graphics library/package is intermediary between application and display hardware
- Application program maps objects to views (images) of those objects by calling on graphics library.
- Application model may contain lots of non-graphical data (e.g., object properties)
- User interaction results in modification of image and/or model

GRAPHICS LIBRARY

- Examples: OpenGL™, DirectX™, Windows
 Presentation Foundation™ (WPF),
 RenderMan™, HTML5 + WebGL™
- Primitives (characters, lines, polygons, meshes,...)
- Attributes
 - o Color, line style, material properties for 3D
- Lights

- Transformations
- Immediate mode vs. retained mode
- Immediate mode: no stored representation, package holds only attribute state, and application must completely draw each frame
- Retained mode: library compiles and displays from scenegraph that it maintains, a complex DAG. It is a display-centered extract of the Application Model

PREREQUISITE OF THE COURSE

You need to be interested in programming

Keen on doing mathematical calculation

- Having knowledge of linear algebra
 - o vector and matrix arithmetic, dot and cross products

Self motivated

SOME RELATED FIELD

OPENGL INSTALLATION

INSTALLATION GUIDELINES

• Please refer moodle

EVERLASTING *Ceasning*

THANK YOU