WSI – zadanie 7

Wstęp

Zadaniem było użycie sieci bayesowskich do rozwiązania dowolnego problemu.

Problem

Wyobraźmy sobie, że jedziemy na wakacje za granicę. Boimy się jednak o swój dom, więc instalujemy alarm przeciwwłamaniowy w domu, oraz prosimy naszych dwoje sąsiadów – Johna i Mary, żeby zadzwonili do nas, jeżeli usłyszą alarm. Jednak jest parę problemów.

Po pierwsze, alarm przeciwwłamaniowy może zostać uruchomiony nie tylko przez samo włamanie, ale i przez trzęsienie ziemi. Może też zawieść w drugą stronę – może w ogóle nie zadzwonić, mimo włamania. Po drugie, John jest człowiekiem z lekką paranoją, przez co istnieje niemała szansa, że zadzwoni, mimo że alarm nie zostanie uruchomiony. Mary zaś jest przeciwieństwem Johna – jest roztargniona, przez co możliwe, że nie usłyszy alarmu i nie zadzwoni. Po trzecie – nie jest pewne, czy będąc na wakacjach będziemy w stanie odebrać telefon na czas.

• Rozwiązanie

Na początku musimy wypisać tabele prawdopodobieństw warunkowych. Zaczniemy od dwóch najprostszych:

Włamanie	Prawdopodobieństwo	
Nie	0.99	
Tak	0.01	

Trzęsienie ziemi	Prawdopodobieństwo
Nie	0.998
Tak	0.002

Następnie z tych dwóch zdarzeń wynika uruchomienie alarmu:

Włamanie ->	Nie	Nie	Tak	Tak
Trzęsienie	Nie	Tak	Nie	Tak
ziemi ->				
Alarm się nie	0.999	0.71	0.06	0.05
uruchomi ->				
Alarm się	0.001	0.29	0.94	0.96
uruchomi ->				

Przykładowo – istnieje 5% szans na to, że alarm się nie uruchomi, mimo jednoczesnego włamania i trzęsienia ziemi, albo 0.1% szansy na to, że zadzwoni, mimo że kompletnie nic się nie dzieje.

Ze zdarzenia uruchomienia alarmu wynika wykonanie telefonu przez Johna i Mary:

Alarm ->	Nie	Tak
John nie zadzwoni	0.8	0.01
John zadzwoni	0.2	0.99

Alarm ->	Nie	Tak
Mary nie zadzwoni	0.99	0.3
Mary zadzwoni	0.01	0.7

I na koniec, z tych dwóch wydarzeń wynika odebranie telefonu przez nas:

Telefon od Johna ->	Nie	Nie	Tak	Tak
Telefon od Mary ->	Nie	Tak	Nie	Tak
Nieodebranie telefonu na czas->	1	0.4	0.4	0.05
Odebranie telefonu na czas ->	0	0.6	0.6	0.95

Następnie łączymy wszystko w sieć bayesowską. Jest ona w stanie szybko policzyć prawdopodobieństwa warunkowe, przez co możemy analizować prawdopodobieństwa różnych zdarzeń pod różnymi warunkami.

Przykłady

 Jeżeli tylko jedno z naszych sąsiadów zadzwoniło, to które z nich z większym prawdopodobieństwem zgłasza rzeczywiste włamanie?

Potrzebujemy znać wartość zmiennej Burglary, przy informacjach, że John=0 i Mary=1, oraz na odwrót – John=1 i Mary=0. Sieć wyliczyła prawdopodobieństwa na odpowiednio 0.88% i 1.46%, czyli jednak John ma większą szansę na samotne zadzwonienie. Wynik jest spodziewany, ponieważ w przypadku włamania alarm jednak częściej zadzwoni niż nie zadzwoni, a szansa na to, że Johnowi by to umknęło jest bardzo niska.

o Jaka jest skuteczność naszego systemu ochronnego?

Czyli jaka jest szansa, że odbierzemy telefon na czas, gdy nastąpi włamanie? Naszą szukaną jest zmienna CallAnswered, a jedyną znaną jest Burglary=1. Sieć wyliczyła takie prawdopodobieństwo na 79,78%.

 Jaka jest szansa na to, że zepsujemy sobie wakacje, poprzez odebranie na czas fałszywego telefonu?

Tutaj szukaną jest CallAnswered, a znanymi jest Burglary=0. Tutaj szansa wynosi 12,66%, co oznacza, że nie jest ona wcale tak mała.