Projektna naloga

PROBLEM NA NAPAKE ODPORNE METRIČNE DIMENZIJE

Anamarija Potokar, Hana Samsa

Mentorja: doc. dr. Janoš Vidali, prof. dr. Riste Škrekovski

Fakulteta za matematiko in fiziko december 2024

1 Na napake odporna metrična dimenzija

Množica $S \in V$ v grafu G je razrešljiva, če za vsak par vozlišč $x, y \in V(G)$ ostaja vozlišče $s \in S$, da velja $d(x, s) \neq d(y, s)$. Rečemo, da sta x in y razrešeni z vozliščem s. Množica S je odporna na napake, če je $S \setminus \{v\}$ prav tako razrešljiva za vsak $v \in S$.

Metrična dimenzija neusmerjenega in povezanega grafa G=(V,E) je najmanjša podmnožica nabora vozlišč $S\subset V$ z lastnostjo, da so vsa vozlišča v V enolično določena z njihovimi razdaljami do vozlišč podmnožice S.

Na napake odporna metrična dimenzija grafa G, je velikost najmanjše razčlenujoče množice S, odporne na napake in jo označimo z ftdim(G).

Naloga projektne naloge je bila, da s pomočjo celoštevilskega linearnega programa poiščemo grafe z dim(G) = 2 in ftdim(G) = 5, 6, 7 ali več. Pri tem se za manjše grafe, torej grafe z malo vozlišči, uporablja sistematično iskanje (ang. systematic search), za večje grafe pa metahevristični pristop (ang. simulated annealing search).

2 Potek dela

3 Ugotovitve

4 Koda

Komentirana koda je dostopna na povezavi.

5 Sistematično iskanje

V prvi fazi sva se iskanja ustreznih grafov z lastnostima $\dim(G) = 2$ in $\operatorname{ftdim}(G) = 5$, 6, 7 oziroma več lotili tako, da sva za konstantno vrednost dim postopoma povečevali željeno ftdim in število vozlišč, za katerega iščemo ustrezne grafe. Najprej sva kodo preizkusili za vrednosti dim = 2 in ftdim = 4:

- na 4 vozliščih obstajata dva taka grafa, čas izvajanja kode je 0.04 sekunde,
- na 5 vozliščih obstaja 8 takih grafov, čas izvajanja kode je 0.11 sekunde,
- na 6 vozliščih obstaja 46 takih grafov, čas izvajanja kode je 0.69 sekunde,

- na 7 vozliščih obstaja 232 takih grafov, čas izvajanja kode je 7.19 sekund,
- na 8 vozliščih obstaja 1525 takih grafov, čas izvajanja kode je 2 minuti in 1 sekunda.

Nato sva se lotili iskanja odgovora na vprašanje naloge: za ftdim(G) = 5 sva najprej ugotovili, da za manj kot 7 vozlišč tak graf sploh ne obstaja. Na 7 vozliščih obstajata dva ustrezna grafa, katera je algoritem našel in izrisal v 5.96 sekundah:

Na 8 vozliščih obstaja že bistveno več grafov, za katere velja $\dim(G) = 2$ in $\operatorname{ftdim}(G) = 5$, in sicer 65, tudi koda pa v primerjavi z grafi na 7 vozliščih rabi veliko dlje časa, da se izvede; ustrezne grafe je poiskala in izrisala v 1 minuti in 58 sekundah. Primer nekaj takšnih grafov:

Pri iskanju in risanju takih grafov na 9 vozliščih se je koda po pol ure dela prenehala izvajati in ni našla vseh ustreznih grafov. Primer nekaj takšnih grafov:

Očitno se torej že pri ftdim=5 in 9 vozliščih koda ne izvede v sprejemljivem času. Preverili sva še, kako časovno zahtevno je iskanje grafov z dim = 2 in ftdim = 6, za kar je potrebnih najmanj 12 vozlišč; tudi ta koda se ni izvedla v normalnem času, zato sva za primere pri ftdim = 5 in več kot 8 vozlišč ter ftdim = 6, 7, ... grafe iskali s pomočjo metahevrističnih algoritmov.