

Faculty of Engineering, Mathematics and Science

School of Computer Science & Statistics

Integrated Computer Science Programme Year 2

Michaelmas Term 2021

Assignmente Project Exam Help

https://powcoder.com

1. September 2021 at 12.00 - 18.00

6-hour take-home exam

Add WeChat powcoder

Prof. Michael Manzke

Answer Question 1 and 2. Please confirm in you answer that this is your own work and that you have not collaborated with other students.

Students who are registered with Disability Services and who are entitled to extra time in examinations will be granted 10 additional minutes per hour (i.e. a 1 hour period in which to complete the 6-hour take home exam).

Figure 1 depicts the processor we designed. You will need this diagram for all the questions.

Figure 1 Processor block diagram

Figure 2 shows various instruction formats. These 32bit instructions (machine-code) are stored in the **Memory M** (see Figure 1). The **PC** (Program Counter, see Figure 1) should point to the next to be executed instruction in **Memory M**. You require this information to program the **machine-code** in **Memory M** (see Figure 1).

Add WeChat powcoder

Figure 3 provides you with the binary code for all the operations of the Function Unit (see Figure 1). You need this information to program the micro-code in the Control Memory (see Figure 1).

	Tab	le 1: FS co	de definitio	on
FS	MF Select	G Select	H Select	Micro-operation
00000	0	0000	00	F = A
00001	0	0001	00	F = A + 1
00010	0	0010	00	F = A + B
00011	0	0011	00	F = A + B + 1
00100	0	0100	01	$F = A + \bar{B}$
00101	0	0101	01	$F = A + \bar{B} + 1$
00110	0	0110	01	F = A - 1
00111	0	0111	01	F = A
01000	0	1000	00	$F = A \wedge B$
01010	0	1010	10	$F = A \vee B$
01100	0	1100	10	$F = A \oplus B$
01110	0	1110	10	$F = \bar{A}$
10000	agiban	0000 T	Proffee	t Exam Hel
10100	19918111	new i	TOJEC	LENAIII ITEI
11000	1	1000	10	F = slB

https://powcoder.com Figure 3

Figure 4 depicts the layout of all the memory locations in the in the **Control Memory** (see Figure 1). You need this information to program the micro-code in the Control Memory (see Figure 1). Figure 3 provides with all the information for programming bit 9 to 13.

4						3																				8	7	6	5	4	3	2	1	0
			N	Δν	/ +	Ac	ld,	200					VIS	2	M	Ι	P	P	T	T	T	M		FS		M	R	M	M	R	R	R	R	F
			11	<u>_</u>		π υ	ıuı	C	၁၁			'	VIC	,	C	L	Ι	L	D	A	В	В			,	D	W	M	W	V	C	N	Z	L

Figure 4

 Question, please provide an algorithmic state machine chart for the implementation of the following machine-code instructions: ADI, LD, ST, INC, NOT, and ADD. Please provide micro-code at the correct memory location in the Control Memory and machine-code instructions at the correct memory location in the Memory M.

IMPORTANT! The order of your ADI, LD, ST, INC, NOT, and ADD instructions in the Control Memory and the 1st micro-code address (Start Address) of your 1st instruction is determined by the last digit of your student number (ID). Table 1 provides the correct start address and micro-code order for the last digit of your student number (ID). The micro-code for the IF (Instruction Fetch) and the EXO can be placed anywhere in the control memory.

ID	Start Address	1 st	2 nd	3 rd	4 th	5 th	6 th
0	0 0000 0000 0000 0000	INC	ADI	NOT	ADD	ST	LD
1	0 0000 0000 0000 0001	ŞT D	INE	ADD	LD	ADI 1	NOT
2	o cossile dinner	I _{NOT}	भुट्ट	LABCX	વાાા		INC
3	0 0000 0000 0000 0011	LD	NOT	INC	ST	ADD	ADI
4	0 0000 0000 0000 0100	INC	NOT	LD	ADI	ADD	ST
5	0 0000 0000 obddd 10 S./	/ADYO V	VsEOU	er.c	Moti	LD	INC
6	0 0000 0000 0000 0110	ST	INC	LD	NOT	ADD	ADI
7	0 0000 0000 0000 0111	ADD	ADI	INC	ST	LD	NOT
8	0 0000 0000 000	vec)	natr		: ode	ÎNC	ST
9	0 0000 0000 0001 0001	ADD	ST	NOT	ADI	INC	LD

Table 1

Please see below for the correct layout of your answer. Your answer must provide microcode for the Control Memory that implements your algorithmic state machine chart. The micro-code should have the following format for every memory address in the Control Memory that implements your algorithmic state machine.

For example:

	4	4	3 8	3 7	3	3	1	"	۱	3 2	3)	_	_	_	_	_	2 4	_	_	_	_	1	1	1 7	1 6	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0
ADI					N	le	κt	A	١d	dr	e:	SS						N	VIS	3	M C	I L	P I	P L	T D	T A	T B	M B			FS	3		M D	R W	M M	M W	R V	R C	R N	R Z	F L

- a) Control Memory Address
- b) Binary code for bits 0 to 41
- c) Providing written reasons for selecting these binary values for NA, MS, MC, IL, PI, PL, TD, TA, TB, MB, FS, MD, RW, MM, and MW.

- a) Control Memory Address
- b) Binary code for bits 0 to 41
- c) Providing written eat pastor selecting the schools for the Colon, MS, MC, IL, PI, PL, TD, TA, TB, MB, FS, MD, RW, MM, and MW.

... continue for all states of our algorithmic state machine we code!

[40 marks]

Your solution must also provide **machine-code instructions** at the correct memory location in the **Memory M**. The **machine-code instructions** should have the following format. You should execute the **machine-code instructions** in the following order **NOT**, **ADI**, **ADD**, **LD**, **INC**, and **ST**. Your first machine-code instructions (**NOT**) should be at address **0000 0000 0000 1101**

For example:

31	Opcode	15	14	10	9	5	4	0

NOT

- a) Memory M Address
- b) Binary code for bits 0 to 31
- c) Providing written reasons for selecting these binary values for bits 0 to 31

31	Opcode	15	14	10	9	5	4	0

ADI

a) Mem Assignment Project Exam Help

- b) Binary code for bits 0 to 31
- c) Providing written reasons for selecting these binary values for bits 0 to 31

... continue for all six machine-code instructions (NOT, ADI, ADD, LD, INC, and ST)

You should assume the following values for the six machine-code instructions (NOT, ADI, ADD, LD, INC, and ST)

- a) ADI: DR=00001, SA=10010, zfIR[4:0]=11010
- b) *LD*: DR=10111, SA=00011
- c) **ST**: SA=101, SB=110
- d) *INC*: DR=01010, SA=10011
- e) NOT: DR=00011, SA=01010
- f) **ADD**: DR=10101, SA=00010, SB=11010

[20 marks]

2. **Question**, this question builds on Question 1. You must modify your **algorithmic state** machine chart from Question 1 by incorporating the **algorithmic state** machine chart shown in Figure 5 (below) into your ASM chart.

Please provide **micro-code** at the correct memory location in the **Control Memory** and a **machine-code instruction (LRI)** at the correct memory location in the **Memory M** that will invoke these **micro-code instructions**.

You only need to provide **micro-code** at the correct memory location in the **Control**Memory for states: IF, EXO, and those that implement the LRI instruction (Figure 5)

Please follow 1. Question's format for the **micro-code** and **machine-code instructions**. Please see below Figure 5 for the correct layout of you answer.

Figure 5

Your answer must provide **micro-code** for the **Control Memory** that implements the <u>modified</u> algorithmic state machine chart. The micro-code should have the following format for memory addresses in the **Control Memory** that implements your algorithmic state machine: **IF, EXO, and those that implement the LRI instruction.**

For example:

	4	4	3	3	3 7	3 6	د ا	3	Ή	7	~	7	2	-	_	-	_	_	-	2 3	_	-	-	1	1	1 7	1 6	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0
1 st						N	e	κt	Α	d	dr	es	SS						N	VIS	3	M C	I	P I	P L	T D	T A	T B	M B			FS	3		M D	R W	M	M W	R V	R C	R N	R Z	F

- a) Control Memory Address
- b) Binary code for bits 0 to 41
- c) Providing written reasons for selecting these binary values for NA, MS, MC, IL, PI, PL, TD, TA, TB, MB, FS, MD, RW, MM, and MW.

	4	1	-	1	3	3 7	'	~	Ή	2	,	3 2		- I	~	-	_	_	_	-	_	-	-	_	ı ~	1 9	-	-	1 6	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0
nd							N	le	ΧÍ	t /	40	bb	re	es	s						ı	MS	3	M C	I L	P I	P L	T D	T A	T B	В			FS	3		M D	R W	M	M	R V	R C	R N	R Z	F

2ⁿ

- a) Control Memory Address
- b) Binary code for bits 0 to 41
- c) Providing written reasons for selecting these binary values for NA, MS, MC, IL, PI, PL, TD,

TA, TB, ABSSIGNMENT Project Exam Help

... continue for all states of your algorithmic state machine.

https://powcoder.com

[35 marks]

Add WeChat powcoder

Your solution must also provide a **LRI machine-code instruction** at the correct memory location in the **Memory M**. The **machine-code instruction** should have the following format.

You should execute this *machine-code instruction* <u>after</u> the *ST* machine-code instruction (1. Question).

31	Opcode	15	14	10	9	5	4	0

LRI

- a) Memory M Address
- b) Binary code for bits 0 to 31
- c) Providing written reasons for selecting these binary values for bits 0 to 31

You should assume the following values for the *LRI* machine-code instruction:

a) LRI: DR=00110, SA=10010

[5 marks]

https://powcoder.com

Add WeChat powcoder