```
In [1]: %matplotlib inline
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.metrics import r2_score
    import time
    import statsmodels.api as sm
    from sklearn.linear_model import LinearRegression
```

Univariate Linear Regression

```
data=pd.read_csv("Linear Regression/ex1data1.txt", header=None)
In [2]:
         data.head()
Out[2]:
                 0
                         1
            6.1101 17.5920
          1 5.5277
                    9.1302
          2 8.5186 13.6620
          3 7.0032 11.8540
            5.8598
                     6.8233
         data.describe()
In [3]:
Out[3]:
                        0
                                  1
          count 97.000000 97.000000
          mean
                 8.159800
                           5.839135
            std
                 3.869884
                           5.510262
                 5.026900
                           -2.680700
            min
           25%
                 5.707700
                           1.986900
           50%
                 6.589400
                           4.562300
           75%
                 8.578100
                           7.046700
           max 22,203000 24,147000
         data.columns = ['Population', 'Profit'] #assigning column names
In [4]:
```

Profit Vs Population Graph

```
In [5]: plt.scatter(data['Population'], data['Profit'])
    plt.xticks(np.arange(5,30,step=5))
    plt.yticks(np.arange(-5,30,step=5))
    plt.xlabel('Population (in 10,000s)')
    plt.ylabel('Profit (in 10,000$)')
    plt.title('Profit vs Population')
```

Out[5]: Text(0.5, 1.0, 'Profit vs Population')

Cost Function J(θ)

```
In [6]: def computeCost(X,y,theta):
    """
    Take in a numpy arary X,y,theta and get cost function using theta as param
    eter in a linear regression model
    """
    m = len(y)
    predictions = X.dot(theta)
    square_err = (predictions - y)**2
    return 1/(2*m)*np.sum(square_err)
```

Assigning X, y, θ and Reshaping the data

```
In [7]: data['x0'] = 1
    data_val = data.values
    m = len(data_val[:-1])
    X = data[['x0','Population']].iloc[:-1].values
    y = data['Profit'][:-1].values.reshape(m,1)
    theta = np.zeros((2,1))
    m, X.shape, y.shape, theta.shape
Out[7]: (96, (96, 2), (96, 1), (2, 1))
```

```
h(	heta) = x_0	heta_0 + x_1	heta_1\dots (x_0=1)
```

```
In [8]: computeCost(X,y,theta)
```

Out[8]: 32.40484177877031

Gradient Descent

```
In [12]:
         from mpl toolkits.mplot3d import Axes3D
         #Generating values for theta0, theta1 and the resulting cost value
         theta0_vals=np.linspace(-10,10,100)
         theta1 vals=np.linspace(-1,4,100)
         J_vals=np.zeros((len(theta0_vals),len(theta1_vals)))
         for i in range(len(theta0_vals)):
             for j in range(len(theta1_vals)):
                 t=np.array([theta0_vals[i],theta1_vals[j]])
                 J_vals[i,j]=computeCost(X,y,t)
         #Generating the surface plot
         fig = plt.figure()
         ax = fig.add_subplot(111, projection='3d')
         surf=ax.plot_surface(theta0_vals,theta1_vals,J_vals,cmap="coolwarm")
         fig.colorbar(surf, shrink=0.5, aspect=5)
         ax.set xlabel("$\Theta 0$")
         ax.set_ylabel("$\Theta_1$")
         ax.set_zlabel("$J(\Theta)$")
         #rotate for better angle
         ax.view_init(30,120)
```


Cost Graph

```
In [13]: plt.plot(J_history)
    plt.xlabel("Iteration")
    plt.ylabel("$J(\Theta)$")
    plt.title("Cost function using Gradient Descent")
```

Out[13]: Text(0.5, 1.0, 'Cost function using Gradient Descent')


```
In [14]: plt.scatter(data['Population'], data['Profit'])
    x_value = [x for x in range(25)]
    y_value = [x*theta[1] + theta[0] for x in x_value]
    plt.plot(x_value, y_value, color = 'r')
    plt.xticks(np.arange(5,30,step=5))
    plt.yticks(np.arange(-5,30,step=5))
    plt.xlabel('Population (in 10,000s)')
    plt.ylabel('Profit (in 10,000$)')
    plt.title('Profit vs Population')
```

Out[14]: Text(0.5, 1.0, 'Profit vs Population')

Function to predict

```
In [15]:
         def predict(x,theta):
              Takes in numpy array x and theta and returns predicted value of y
              predictions = np.dot(theta.transpose(),x)
              return predictions[0]
In [16]:
         data.tail(1)
Out[16]:
              Population
                         Profit x0
          96
                 5.4369
                       0.61705
In [17]:
         predict1 = predict(data[['x0', 'Population']].iloc[-1].values, theta)*10000
          print(f'For a population of 6170 the predicted profit is ${predict1}')
```

For a population of 6170 the predicted profit is \$38686.246103378166

TO DO: Configure code for

Multivariate Linear Regression

```
In [19]: data2.columns=['Size of house','No. of bedrooms','Price']
    data2.head()
```

Out[19]:

	Size of house	No. of bedrooms	Price
0	2104	3	399900
1	1600	3	329900
2	2400	3	369000
3	1416	2	232000
4	3000	4	539900

In [20]: data2.describe()

Out[20]:

	Size of house	No. of bedrooms	Price
count	47.000000	47.000000	47.000000
mean	2000.680851	3.170213	340412.659574
std	794.702354	0.760982	125039.899586
min	852.000000	1.000000	169900.000000
25%	1432.000000	3.000000	249900.000000
50%	1888.000000	3.000000	299900.000000
75%	2269.000000	4.000000	384450.000000
max	4478.000000	5.000000	699900.000000

Price Vs Size of house & Price Vs No. of bedrooms

```
In [21]: plt.scatter(data2['Size of house'], data2['Price'])
    plt.xticks(np.arange (500,5000, step=500))
    plt.yticks (np.arange (100000, 800000, step=50000))
    plt.xlabel('Size of house')
    plt.ylabel('Price')
    plt.title('Price vs Size of house')
```

Out[21]: Text(0.5, 1.0, 'Price vs Size of house')


```
In [22]: plt.scatter(data2['No. of bedrooms'], data2['Price'])
    plt.xticks(np.arange(0,6, step=1))
    plt.yticks (np.arange(100000, 800000, step=50000))
    plt.xlabel('No. of bedrooms')
    plt.ylabel('Price')
    plt.title('Price vs No. of bedrooms')
```

Out[22]: Text(0.5, 1.0, 'Price vs No. of bedrooms')

Since column "size of house" has very high values we need to normalize it

Scaling column "size of house"

```
In [23]: | col = ['Size of house', 'Price']
         scaler=MinMaxScaler()
         data2[col]=pd.DataFrame(scaler.fit_transform(data2[col]), columns=data2 [col].
         columns)
```

Splitting X and y from original dataset $(also\ into\ train\ and\ test)$

```
In [24]: | y = np.array(data2['Price'][:-1])
         X = np.array(data2.drop('Price', axis =1)[:-1])
         X.shape, y.shape
Out[24]: ((46, 2), (46,))
```

We need y shape as (46,1) and add a column of 1's in X

Reshaping X,y

```
In [25]: | y=y.reshape(y.shape[0],1)
          X=np.c [np.ones(X.shape[0]),X]
         X.shape, y.shape
Out[25]: ((46, 3), (46, 1))
```

Configuring the functions

(costCompute, gradientDescent, predict) for Multivariate

I am writing code for costCompute and gradientDescent as taught by Siba Sir.

```
In [26]: | def computeCost(X,Y,theta):
             Take in a numpy arary X,y,theta and get cost function using theta as param
         eter in a linear regression model
             m=Y.size
             h_theta=np.dot(X,theta) #Predictions
             error=h_theta-Y
             cost=(1/(2*m))*np.dot(error.T,error)
             return cost
```

```
In [27]: def gradientDescent(X,Y,theta,alpha,num iters):
              Take numpy array for X,y,theta and update theta for every iteration of gra
         dient steps
             Return theta and the list of cost of theta during each iteration
             m = Y.size
             past cost = []
             past_theta=[theta]
             for i in range(num_iters):
                 h theta = np.dot(X,theta)
                  error=h_theta-Y
                  past_cost.append(computeCost(X,Y,theta))
                  theta=theta-alpha*(1/m)*np.dot(X.T,error)
                  past theta.append(theta)
                  if(past_theta[i]==past_theta[i+1]).all() : break
             return past_theta, past_cost,i
In [28]: | def predict(X,theta):
              Takes in numpy array x and theta and returns predicted value of y
             predictions = np.dot(X,theta)
             return predictions
```

Assigning random values for θ and values for α & number of iterations we want

```
In [29]: np.random.seed(123)
    theta=np.random.rand(X.shape[1],1)
    alpha=0.05
    num_iters=50000
```

Performing Linear Regression and displaying results

```
In [30]: start=time.time()
    past_theta,past_cost,stop=gradientDescent(X,y,theta,alpha,num_iters)
    timetaken=time.time()-start

In [31]: best_theta=past_theta[-1]
    best_cost=past_cost[-1]

In [32]: print(f'Our model performed {stop} iterations out of {num_iters} iterations be
    fore converging (the previous θ was equal to current θ)')

Our model performed 21483 iterations out of 50000 iterations before convergin
```

g (the previous θ was equal to current θ)

```
In [33]: | print(f'Best Theta: \n {best_theta}')
          print(f'Best Cost: \n {best_cost}')
         Best Theta:
          [[ 0.07198606]
          [ 0.95458358]
          [-0.01672784]]
         Best Cost:
          [[0.00742914]]
         print(f'h(\theta) = \{str(round(best\_theta[0,0],5))\} + \{str(round(best\_theta[1,0],
In [34]:
          5))}x1 + {str(round(best_theta[2,0],5))}x2')
          print(f'\nTime taken :{timetaken}')
          print(f'\nAccuracy: {round(r2_score(y,predict(X,best_theta)),4)*100}%')
         h(\theta) = 0.07199 + 0.95458x1 + -0.01673x2
         Time taken :0.501678466796875
         Accuracy: 72.91%
```

Plotting Cost

```
In [35]: | cost = np.asarray(past_cost)
          cost = cost.reshape((cost.shape[0],1))
          cost.shape
Out[35]: (21484, 1)
In [36]: plt.plot(cost)
          plt.show()
           0.7
           0.6
           0.5
           0.4
           0.3
           0.2
           0.1
           0.0 -
                          5000
                                   10000
                                              15000
                                                         20000
```

Predicting for test data

Comparing parameters

Here we can see that the results match

Code for Linear Regression

if we want to put the splitting data into X,y and its reshaping into a function too

```
In [40]: def LinearReg_GD (data, pred_col, alpha, num_iters, dec = 5):
    #Declaring X,y and theta
    y1 = np.array(data[pred_col]).reshape((-1,1))
    X1 = np.array(data.drop(pred_col, axis = 1))
    X1 = np.c_[np.ones (X1.shape[0]), X1]
    theta = np.zeros((X1.shape[1],1))
    return gradientDescent(X1,y1,theta,alpha,num_iters)
In [41]: np.random.seed(123)
theta1=np.random.rand(X.shape[1],1)
alpha=0.05
num_iters=50000
past theta1,past cost1,stop1=LinearReg GD(data2,'Price',alpha,num iters)
```

```
In [42]: best_theta1=past_theta1[-1]
    best_cost1=past_cost1[-1]

print(f'Our model performed {stop1} iterations out of {num_iters} iterations b
    efore converging (the previous θ was equal to current θ)\n\n')

print(f'Best Theta: \n {best_theta1}')
    print(f'Best Cost: \n {best_cost1}')

print(f'\n\nh(θ) = {str(round(best_theta1[0,0],5))} + {str(round(best_theta1[1,0],5))}x1 + {str(round(best_theta1[2,0],5))}x2')
```

Our model performed 22195 iterations out of 50000 iterations before converging (the previous θ was equal to current θ)

```
Best Theta:

[[ 0.07227435]

[ 0.95241114]

[-0.01648683]]

Best Cost:

[[0.00727405]]

h(θ) = 0.07227 + 0.95241x1 + -0.01649x2
```