

### Instituto Politécnico Nacional

### ESCUELA SUPERIOR DE CÓMPUTO

### Trabajo Terminal I

"Desarrollo de una aplicación web para el cálculo y graficación de series de Fourier" 2025-A075

QUE PARA OBTENER EL GRADO DE: Ingeniero en Sistemas Computacionales

# Presenta: Sebastián Morales Palacios

#### DIRECTORES:

Lic. Jesús Alfredo Martínez Nuño M. en C. Gisela González Albarrán



Ciudad de México Noviembre 2024

### Documento Técnico

### "Desarrollo de una aplicación web para el cálculo y graficación de series de Fourier"

Resumen - Dentro del presente trabajo se lleva a cabo el desarrollo de una aplicación web diseñada para calcular y graficar el desarrollo en series de Fourier de funciones periódicas. El desarrollo en serie puede ser tanto en forma trigonométrica como en forma exponencial compleja. Los módulos principales que contiene la aplicación son:

- 1. Módulo para introducir la función de diferentes maneras.
- 2. Módulo para el cálculo de coeficientes mediante integración analítica o por métodos numéricos.
- 3. Módulo de graficación de funciones periódicas y coeficientes de la serie, donde se podrá ver la aproximación de la serie a la función mientras se incrementa el número de términos de la expansión.

Se tienen opciones para calcular extensiones de funciones pares e impares. La aplicación pretende ser de utilidad como herramienta de apoyo para estudiantes y docentes en el tema del análisis de Fourier.

Palabras Clave - aplicación web, análisis de Fourier, cálculo, matemáticas avanzadas para la ingeniería.

Correo de Contacto smoralesp1700@alumno.ipn.mx

# Índice general

| Do | ocum | nento Técnico                                                       | III       |
|----|------|---------------------------------------------------------------------|-----------|
| 1. | Intr | oducción                                                            | 1         |
|    | 1.1. | Antecedentes                                                        | 1         |
|    | 1.2. | Planteamiento del Problema                                          | 1         |
|    | 1.3. | Justificación                                                       | 2         |
|    | 1.4. | Solución Propuesta                                                  | 3         |
|    | 1.5. |                                                                     | 4         |
|    | 1.0. | 1.5.1. Objetivo General                                             | 4         |
|    |      | 1.5.2. Objetivos Específicos                                        | 4         |
|    | 1.6. | Metodología de la Investigación                                     | 4         |
|    | 1.7. | Estructura del documento técnico                                    | 5         |
|    | 1.1. | Estructura dei documento tecinco                                    | 0         |
| 2. | Esta | ado del Arte                                                        | 7         |
|    | 2.1. | Herramientas y Tecnologías Actuales                                 | 7         |
|    |      | 2.1.1. Comparativa del Funcionamiento de las Herramientas           | 8         |
|    |      | 2.1.1.1. Forma Trigonométrica                                       | 9         |
|    |      | 2.1.1.2. Forma Exponencial Compleja                                 | 10        |
|    |      | 2.1.1.3. Cálculo de Serie de Fourier con Wolfram Alpha .            | 10        |
|    |      | 2.1.1.4. Cálculo de Serie de Fourier con MATLAB                     | 10        |
|    |      | 2.1.1.5. Cálculo de Serie de Fourier con GeoGebra                   | 10        |
|    |      | 2.1.1.6. Cálculo de Serie de Fourier con Python                     |           |
|    |      | (Matplotlib/Manim)                                                  | 10        |
|    | 2.2. | Trabajos y Proyectos Relacionados                                   | 10        |
|    |      |                                                                     |           |
| 3. | Mai  | rco Teórico                                                         | 11        |
|    | 3.1. | Origen e Historia                                                   | 11        |
|    |      | 3.1.1. El problema de la cuerda oscilante                           | 11        |
|    |      | 3.1.2. La ecuación de calor                                         | 15        |
|    | 3.2. | Series de Fourier                                                   | 17        |
|    |      | 3.2.1. Series de Funciones                                          | 17        |
|    |      | 3.2.1.1. Definición de Series de Funciones                          | 17        |
|    |      | 3.2.1.2. Convergencia de Series de Funciones                        | 17        |
|    |      | 3.2.2. Definición de las Funciones Trigonométricas de Seno y Coseno | 17        |
|    |      | 3.2.2.1. Definición del Seno                                        | 17        |
|    |      | 3.2.2.2. Definición del Coseno                                      | $17^{-1}$ |
|    |      | 3 2 2 3 Propiedades y Relaciones Fundamentales                      | 17        |

VI ÍNDICE GENERAL

|      | 3.2.3.  | Funcion            | es Periódicas                                       | 17 |
|------|---------|--------------------|-----------------------------------------------------|----|
|      |         | 3.2.3.1.           | Definición de Funciones Periódicas                  | 17 |
|      |         | 3.2.3.2.           | Propiedades de las Funciones Periódicas             | 17 |
|      | 3.2.4.  | Armónic            | OS                                                  | 17 |
|      |         | 3.2.4.1.           | Definición de Armónicos                             | 17 |
|      |         | 3.2.4.2.           | Importancia de los Armónicos en Series de Fourier   | 17 |
|      | 3.2.5.  | Funcione           | es Ortogonales                                      | 17 |
|      |         | 3.2.5.1.           | Concepto de Ortogonalidad                           | 17 |
|      |         | 3.2.5.2.           | Ejemplos de Funciones Ortogonales                   | 17 |
|      | 3.2.6.  | Originali          | idad del Seno y Coseno                              | 17 |
|      |         | 3.2.6.1.           | Propiedades del Seno y el Coseno                    | 17 |
|      |         | 3.2.6.2.           |                                                     | 17 |
|      | 3.2.7.  | Series de          | e Fourier de Período $T$ o de $-p$ a $-p$           | 17 |
|      |         | 3.2.7.1.           |                                                     | 17 |
|      |         | 3.2.7.2.           | Coeficientes de Fourier para Período $T$            | 17 |
|      | 3.2.8.  |                    | es Suaves y Suaves por Partes                       | 17 |
|      | 0.2.0.  | 3.2.8.1.           |                                                     | 17 |
|      |         | 3.2.8.2.           |                                                     | 17 |
|      |         | 3.2.8.3.           |                                                     | 17 |
|      | 3.2.9.  |                    | e Fourier de Senos y Cosenos                        | 17 |
|      | 0.2.0.  |                    | Condiciones para la Cancelación de Coeficientes .   | 17 |
|      |         | 3.2.9.2.           | Desarrollo de Series de Fourier con Senos y Cosenos | 17 |
|      | 3 2 10  |                    | es Pares e Impares                                  | 17 |
|      | 0.2.10. |                    | Definición y Propiedades de Funciones Pares         | 17 |
|      |         |                    | Definición y Propiedades de Funciones Impares       | 17 |
|      | 3 2 11  |                    | ones de Medio Intervalo                             | 17 |
|      | 0.2.11. |                    | Extensión Periódica                                 | 17 |
|      |         |                    | Extensión Par                                       | 17 |
|      |         |                    | Extensión Impar                                     | 17 |
|      | 3 2 12  |                    | mpleja de Fourier de Período $T$ o de $-p$ a $p$    | 17 |
|      | 0.2.12. |                    | Definición de Serie Compleja de Fourier             | 17 |
|      |         |                    | Coeficientes Complejos para Período $T$             | 17 |
|      | 3 2 13  |                    | mpleja de Fourier de 0 a $p$                        | 17 |
|      | 0.2.10. |                    | Definición y Desarrollo                             | 17 |
|      |         |                    | Aplicaciones y Ejemplos                             | 17 |
| 3.3. | Tecnol  | ogías Uti          |                                                     | 17 |
| 5.5. | 3.3.1.  | 0                  | CSS y JavaScript                                    | 17 |
|      | 0.0.1.  | 3.3.1.1.           | HTML                                                | 17 |
|      |         | 3.3.1.2.           | CSS                                                 | 18 |
|      |         | 3.3.1.3.           | JavaScript                                          | 18 |
|      | 3.3.2.  | NodeJS             | Javascript                                          | 18 |
|      | 0.0.2.  | 3.3.2.1.           | Introducción a NodeJS                               | 18 |
|      |         | 3.3.2.2.           | Ventajas del uso de NodeJS para aplicaciones web    | 18 |
|      |         | 3.3.2.3.           | Integración de NodeJS con Maxima                    | 18 |
|      | 3.3.3.  | o.o.z.o.<br>Maxima |                                                     | 18 |
|      | ა.ა.ა.  | 3.3.3.1.           | Qué es Maxima y por qué se usa para cálculos        | 10 |
|      |         | 0.0.0.1.           | simbólicos                                          | 18 |
|      |         | 3.3.3.2.           | Implementación de Maxima en el servidor             | 18 |
|      |         | ნ.ნ.ნ.∠.           | imprementation de maxima en el servidor             | 10 |

ÍNDICE GENERAL VII

| 3.3.4. Angular (Posible implementación futura)  |      |
|-------------------------------------------------|------|
| 3.3.4.1. Introducción a Angular                 |      |
| versiones del proyecto                          |      |
| 3.3.4.3. Consideraciones para su implementación |      |
| 3.3.5. Metodologías de Desarrollo de Software   |      |
| 3.3.5.1. Desarrollo Ágil                        |      |
| 3.3.5.2. Fases del Proyecto                     |      |
| 3.3.6. Usabilidad y Experiencia de Usuario (UX) |      |
| 3.3.6.1. Principios de Usabilidad               |      |
| 3.3.6.2. Diseño de la Interfaz de Usuario (UI)  |      |
| 3.3.7. Seguridad en Aplicaciones Web            |      |
| 3.3.7.1. Protección contra ataques comunes      |      |
| 3.3.7.2. Autenticación y manejo seguro de datos |      |
| 4. Análisis y Diseño del Sistema                | 21   |
| 4.1. Metodología de Desarrollo                  |      |
| 4.1.1. Descripción de la Metodología            |      |
| 4.1.2. Ventajas de la Metodología Elegida       |      |
| 4.2. Análisis de Requerimientos                 |      |
| 4.2.1. Requisitos Funcionales                   |      |
| 4.2.2. Requisitos No Funcionales                |      |
| 4.3. Análisis de Riesgos                        |      |
| 4.3.1. Identificación de Riesgos                |      |
| 4.3.2. Jerarquización de Riesgos                |      |
| 4.4. Estimación de Costos                       |      |
| 4.4.1. Método de Estimación de Costos           |      |
| 4.4.2. Detalle de los Costos Estimados          |      |
| 4.5. Diseño del Sistema                         | . 22 |
| 4.5.1. Arquitectura General del Sistema         | . 22 |
| 4.5.1.1. Arquitectura Cliente-Servidor          | . 22 |
| 4.5.1.2. Flujo de Datos                         |      |
| 4.5.2. Diseño de la Base de Datos               | . 22 |
| 4.5.2.1. Modelo Entidad-Relación                | . 22 |
| 4.5.2.2. Normalización de la Base de Datos      | . 22 |
| 4.5.3. Diseño de la Interfaz de Usuario         | . 22 |
| 4.5.3.1. Estructura de la Interfaz              | . 22 |
| 4.5.3.2. Prototipo de la Interfaz               | . 22 |
| 5. Implementación (Primer Prototipo)            | 23   |
| Bibliografía                                    | 25   |

# Índice de figuras

| 3.1. | Ilustración del problema de la cuerda vibrante                | 12 |
|------|---------------------------------------------------------------|----|
| 3.2. | Ilustración de 3 armónicos y sus nodos de la cuerda al vibrar | 14 |

## Lista de tablas

| 2.1. | Comparación     | de     | software | 9 | para | cálculos | $\mathbf{S}$ | mat | em | ιát | ic | os | У |   |
|------|-----------------|--------|----------|---|------|----------|--------------|-----|----|-----|----|----|---|---|
|      | visualización d | le dat | os       |   |      |          |              |     |    |     |    |    |   | 7 |

## List of Algorithms

### CAPÍTULO 1

### Introducción

En este capítulo, examinaremos el problema que se abordará y los objetivos previstos para este proyecto. Además, investigaremos los productos existentes que desempeñan una función similar al proyecto que se llevará a cabo.

### 1.1. Antecedentes

Aquí voy a buscar los antecedentes

### 1.2. Planteamiento del Problema

Las series de Fourier, desde su concepción por Jean-Baptiste Joseph Fourier a principios del siglo XIX, han desempeñado un rol crucial en el análisis y la comprensión de señales y fenómenos periódicos. Las series de Fourier son parte esencial en campos como la ingeniería eléctrica, la física teórica y el procesamiento de señales, imágenes y audio, permitiendo descomponer funciones periódicas en sumas de senos y cosenos, lo que facilita su análisis y manipulación. Estas herramientas matemáticas no solo han impulsado avances significativos en la ciencia y tecnología, transformando nuestra interacción con el mundo, sino que también son cruciales en la enseñanza de los fundamentos teóricos de la ingeniería. En el ámbito de las ciencias computacionales, el estudio del análisis de Fourier se aplica a áreas vitales como la adquisición y procesamiento de señales, el procesamiento de imágenes y la robótica. Esta capacidad de simplificar señales complejas en componentes básicos no solo mejora el análisis, sino que también facilita la síntesis de nuevas tecnologías que se adaptan a necesidades y entornos cambiantes [1].

Este amplio espectro de aplicaciones destaca la importancia crítica de las series de Fourier no solo en la investigación avanzada, sino también en la formación académica de futuros ingenieros y científicos. Sin embargo, a pesar de su prevalencia en el currículo educativo, la implementación práctica de este análisis en entornos de aprendizaje a menudo revela áreas de oportunidad dentro de las herramientas disponibles, lo que impacta directamente en la eficacia con la que los estudiantes pueden aplicar y profundizar su comprensión de estos conceptos esenciales.

La necesidad de una herramienta más eficiente se hizo evidente durante los

cursos de Matemáticas Avanzadas para la Ingeniería y Procesamiento de Señales Digitales. Al enfrentar el análisis de Fourier, especialmente al resolver ejercicios sobre series de Fourier, se descubrió la falta de medios óptimos para verificar los resultados de manera directa y eficiente. A diferencia de otros cálculos matemáticos, donde las calculadoras especializadas permiten comprobaciones rápidas y fiables, las series de Fourier requerían un proceso mucho más tedioso. Para asegurar la corrección de los cálculos, era necesario utilizar software de resolución matemática para obtener los coeficientes y, posteriormente, otro software de graficación para visualizar si los resultados correspondían efectivamente a la función dada. Este desafío se ampliaba aún más cuando se presentaban variaciones mínimas en los ejercicios, como cambiar el intervalo de la función o alternar entre series trigonométricas y complejas, o incluso al aplicar extensiones pares o impares. Cada una de estas variaciones obligaba a repetir todos los pasos desde el inicio, lo que no solo consumía tiempo valioso, sino que también complicaba la gestión del tiempo disponible, especialmente cuando se tiene una carga académica intensa. Este tiempo podría utilizarse mejor en comprender los conceptos subyacentes y explorar en profundidad el por qué y el cómo de los fenómenos analizados mediante estas series.

### 1.3. Justificación

A pesar de la indiscutible importancia del análisis de Fourier en diversas áreas de la ciencia y la ingeniería, el acceso a herramientas que integren de manera eficiente el cálculo y la visualización de las series de Fourier aún presenta importantes oportunidades de mejora. Las herramientas actuales, aunque avanzadas y robustas, suelen fragmentar el proceso, obligando a los usuarios a utilizar distintos programas o plataformas para realizar los cálculos y la representación gráfica de los resultados. Esta división entre herramientas de cálculo y visualización añade una capa de complejidad y tiempo, especialmente para aquellos usuarios que, además de realizar cálculos precisos, requieren visualizar los resultados de manera rápida y efectiva.

En este contexto, surge la propuesta de desarrollar un prototipo de aplicación web que combine ambas funcionalidades en una sola interfaz, facilitando el proceso de resolver y graficar las series de Fourier de manera práctica, intuitiva y accesible desde cualquier dispositivo con acceso a Internet. La creación de una plataforma que integre estos aspectos tiene el potencial de mejorar significativamente la experiencia del usuario al permitirle resolver ecuaciones y obtener representaciones gráficas de las series de Fourier en un solo entorno, eliminando la necesidad de conocimientos técnicos avanzados o el uso de múltiples herramientas.

El desarrollo de esta aplicación tiene el potencial de ser un aporte valioso para diversas comunidades, como estudiantes, ingenieros y profesionales del área de las ciencias exactas, que requieren manipular y visualizar series de Fourier en sus trabajos. La integración de funcionalidades de cálculo simbólico con visualización gráfica interactiva permitirá un mayor grado de experimentación

y aprendizaje, reduciendo el tiempo y esfuerzo necesarios para comprender y analizar las transformaciones de Fourier.

Además, este proyecto representa una oportunidad para integrar y aplicar los conocimientos y habilidades adquiridos a lo largo de mi formación en ingeniería en sistemas. Al abordar tanto aspectos de programación, como de matemáticas avanzadas y principios de ingeniería de software, este trabajo terminal no solo permite abordar una necesidad práctica, sino que también sirve como un medio para demostrar la capacidad de aplicar teoría y técnicas de ingeniería en un contexto real. De esta manera, no solo se busca desarrollar una herramienta útil para otros, sino también consolidar y exhibir competencias en áreas clave de mi carrera.

### 1.4. Solución Propuesta

La solución que se plantea en este proyecto es el desarrollo de una aplicación web que permita el cálculo y graficación de series de Fourier de manera integrada, eficiente y accesible, cubriendo la brecha existente en las herramientas actuales, que tienden a separar el cálculo matemático de la visualización gráfica en una sola interfaz. La solución propuesta combinará estas dos funcionalidades en una sola plataforma, diseñada para ser simple de usar, práctica y accesible desde cualquier navegador web, para usuarios que deseen analizar y visualizar series de Fourier, eliminando la necesidad de usar múltiples programas para resolver y graficar las series de Fourier.

La aplicación web contará con las siguientes características clave:

- Cálculo automático de series de Fourier para diferentes tipos de funciones:
  - La aplicación calculará series de Fourier para funciones continuas en un intervalo o para funciones definidas a trozos. El usuario podrá ingresar funciones matemáticas, incluso aquellas con discontinuidades o que estén definidas por partes en distintos intervalos, y la aplicación manejará estos casos automáticamente.
  - Se implementará tanto la serie trigonométrica como la serie exponencial compleja. La serie trigonométrica descompondrá la función en términos de senos y cosenos, mientras que la versión compleja lo hará en términos de exponenciales imaginarios, lo cual es útil en el contexto de análisis más avanzado y en aplicaciones de ingeniería.
- Extensiones de medio rango:
  - La herramienta permitirá calcular **extensiones de medio rango** para funciones en un medio intervalo. Esto incluirá la posibilidad de obtener:
    - o Serie de senos para funciones impares.
    - Serie de cosenos para funciones pares.

o **Serie completa** para funciones periódicas en un intervalo definido, permitiendo extender la función para construir series de Fourier en un medio rango específico.

#### Visualización gráfica interactiva:

 Una vez calculados los coeficientes de Fourier, la aplicación generará una gráfica interactiva que mostrará la aproximación de la serie de Fourier a la función original. El usuario podrá ajustar el número de términos de la serie para observar cómo mejora la aproximación conforme se incluyen más términos en la suma.

#### • Interfaz intuitiva y amigable:

• La aplicación ofrecerá una interfaz sencilla y accesible, en la que el usuario podrá ingresar las funciones, definir los intervalos y elegir el tipo de serie de Fourier que desea calcular. La experiencia estará diseñada para minimizar la curva de aprendizaje, permitiendo a usuarios sin experiencia en programación obtener resultados rápidamente.

### 1.5. Objetivos

### 1.5.1. Objetivo General

Desarrollar un prototipo de una aplicación web capaz de calcular las series de Fourier en su forma trigonométrica o exponencial compleja de una función continua en un intervalo o definida a trozos, así como ser capaz de obtener la extensión par o impar de dicha función y, finalmente, graficar tanto la función original como la función expandida como una serie de Fourier y poder añadir o eliminar términos de dicha forma para apreciar como esta se aproxima a la función original.

### 1.5.2. Objetivos Específicos

- Implementar una interfaz de usuario que permita ingresar la función continua o a trozos, seleccionar intervalos y definir el tipo de serie de Fourier (trigonométrica o exponencial) o tipo de expansión (par o impar).
- Implementar los módulos para el cálculo de coeficientes de la serie trigonométricas y serie exponencial compleja, adaptándose a funciones continuas o definidas a trozos.
- Desarrollar un módulo de visualización que permita graficar tanto la función original como la aproximación de la serie de Fourier. Este módulo debería incluir opciones para añadir o eliminar términos y visualizar cómo estas modificaciones afectan la aproximación a la función original

### 1.6. Metodología de la Investigación

Para el desarrollo de este proyecto se utlizará la metodología por prototipos...

### 1.7. Estructura del documento técnico

Al final voy a detallar como es que está estructurado todo el documento del TT

### CAPÍTULO 2

### Estado del Arte

Para la correcta comprensión del trabajo presente, se necesita conocer el estado actual de las herramientas y tecnologías disponibles para el cálculo y la visualización de series de Fourier, así como los estudios y proyectos previos que abordan la implementación de soluciones similares. En este sentido, se revisarán diversas plataformas de uso común que permiten realizar estos procesos de manera separada, además de destacar trabajos académicos relacionados que aportan al desarrollo de herramientas educativas y matemáticas interactivas. Esta revisión permitirá contextualizar la propuesta de una aplicación web que integre ambas funcionalidades en una sola plataforma.

### 2.1. Herramientas y Tecnologías Actuales

En esta sección se presentarán las principales herramientas tecnológicas utilizadas para el cálculo de series de Fourier y su visualización gráfica. Podemos verlos en la siguiente tabla:

Tabla 2.1: Comparación de software para cálculos matemáticos y visualización de datos

| SOFTWARE                        | CARACTERÍSTICAS                                                                                                                                                                          | PRECIO                                                                          |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| Wolfram<br>Alpha                | Se trata de un potente motor comercial de conscimiento computacional para cálculos matemáticos y gráficos. Contiene módulos para el calculo de distintos tipos de series de Fourier. [2] | Desde MXN \$1,200.00<br>anuales para<br>estudiantes, plan<br>gratuito limitado. |  |  |  |  |
| Geogebra                        | Herramienta dinámica para construcciones geométricas y gráficas. Requiere cálculos previos para graficar las series de Fourier. [3]                                                      | Software libre y código<br>abierto                                              |  |  |  |  |
| Continúa en la siguiente página |                                                                                                                                                                                          |                                                                                 |  |  |  |  |

| Tabla 2.1 – continuación  |                                                                                                                                                                                                                                                                                                                        |                                                               |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|
| SOFTWARE                  | CARACTERÍSTICAS                                                                                                                                                                                                                                                                                                        | PRECIO                                                        |  |  |  |  |
| Desmos                    | Similar a Geogebra es una calculadora gráfica en línea para cálculos y gráficos, incluida la representación de series de Fourier. Requiere cálculos previos para series de Fourier. [4]                                                                                                                                | Software libre y código<br>abierto                            |  |  |  |  |
| $\mathrm{Python}_{Manim}$ | Librería de animación en Python<br>para visualizaciones matemáticas,<br>incluida la animación de series de<br>Fourier. Requiere conocimientos de<br>programación y cálculos previos. [5]                                                                                                                               | Software libre y código abierto                               |  |  |  |  |
| $\mathrm{Python}_{SymPy}$ | Es una biblioteca de Python para realizar matemáticas simbólicas, que incluye el cálculo de series de Fourier. A menudo se usa en combinación con librerías de visualización como Matplotlib para representar gráficamente los resultados, pero de nuevo, esta combinación requiere conocimientos de programación. [6] | Software libre y código<br>abierto                            |  |  |  |  |
| Matlab                    | Es un entorno de programación comercial para cálculos numéricos y visualización de datos, con herramientas específicas para series de Fourier. Requiere conocimientos en programación. [7]                                                                                                                             | Desde USD\$99 (aprox. MXN\$1627.82) anuales para estudiantes. |  |  |  |  |

## 2.1.1. Comparativa del Funcionamiento de las Herramientas

A continuación, se procederá a calcular la serie de Fourier para la función f(x) = x en el intervalo de  $-\pi$  a  $\pi$  utilizando cada una de las herramientas previamente descritas. El cálculo se realizará en su **forma trigonométrica** y, en los casos en que la herramienta lo permita, también se obtendrá la **forma exponencial compleja**. Asimismo, se graficará la serie de Fourier en las plataformas que lo permitan, lo que nos permitirá comparar tanto el proceso como los resultados obtenidos en cada herramienta.

Esta comparación servirá para identificar las capacidades, ventajas y limitaciones de cada una de las plataformas en el contexto del cálculo y la visualización de series de Fourier, evaluando también su facilidad de uso y precisión en la representación gráfica.

Primeramente, calcularemos la serie nosotros para hacer una comparativa con los resultados dados por los softwares:

Dada la función f(x) = x, vamos a calcular los coeficientes correspondientes a su serie de Fourier en el intervalo  $[-\pi, \pi]$ .

#### 2.1.1.1. Forma Trigonométrica

La serie trigonométrica de Fourier para una función f(x) está dada por la siguiente expresión:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos(n\omega_0 x) + b_n \sin(n\omega_0 x) \right)$$

Donde los coeficientes  $a_0$ ,  $a_n$  y  $b_n$  se definen como:

$$a_0 = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \, dx$$

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \cos(n\omega_0 x) dx$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \sin(n\omega_0 x) dx$$

Donde  $\omega_0 = \frac{2\pi}{T}$ , y en este caso,  $T = 2\pi$ , por lo que  $\omega_0 = 1$ . Calculamos cada uno de los coeficientes para f(x) = x:

- El coeficiente  $a_0$  es:

$$a_0 = \frac{2}{2\pi} \int_{-\pi}^{\pi} x \, dx = 0$$

- El coeficiente  $a_n$  es:

$$a_n = \frac{2}{2\pi} \int_{-\pi}^{\pi} x \cos(nx) dx = 0$$

- El coeficiente  $b_n$  es:

$$b_n = \frac{2}{2\pi} \int_{-\pi}^{\pi} x \sin(nx) dx = \begin{cases} \frac{2}{n}, & \text{si } n \text{ es impar,} \\ 0, & \text{si } n \text{ es par.} \end{cases}$$

Por lo tanto, la serie trigonométrica de Fourier para f(x) = x es:

$$f(x) = \sum_{n=1, n \text{ impar}}^{\infty} \frac{2}{n} \sin(nx)$$

#### 2.1.1.2. Forma Exponencial Compleja

La serie exponencial compleja de Fourier está dada por la siguiente expresión:

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{in\omega_0 x}$$

Donde los coeficientes  $c_n$  se definen como:

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(x) e^{-in\omega_0 x} dx$$

Calculamos el coeficiente  $c_0$ :

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x \, dx = 0$$

Para  $n \neq 0$ , el coeficiente  $c_n$  es:

$$c_n = \begin{cases} \frac{i}{n}, & \text{si } n \text{ es impar,} \\ 0, & \text{si } n \text{ es par.} \end{cases}$$

Por lo tanto, la serie exponencial compleja de Fourier para f(x) = x es:

$$f(x) = \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} \frac{i}{n} e^{inx}$$

#### 2.1.1.3. Cálculo de Serie de Fourier con Wolfram Alpha

Aquí se describirá cómo se realiza el cálculo y la graficación de la serie de Fourier utilizando Wolfram Alpha...

#### 2.1.1.4. Cálculo de Serie de Fourier con MATLAB

Aquí se describirá cómo se realiza el cálculo y la graficación de la serie de Fourier utilizando MATLAB...

#### 2.1.1.5. Cálculo de Serie de Fourier con GeoGebra

Aquí se describirá cómo se realiza el cálculo y la graficación de la serie de Fourier utilizando GeoGebra...

#### 2.1.1.6. Cálculo de Serie de Fourier con Python (Matplotlib/Manim)

Aquí se describirá cómo se realiza el cálculo y la graficación de la serie de Fourier utilizando Python con las librerías Matplotlib o Manim...

### 2.2. Trabajos y Proyectos Relacionados

En esta sección se analizarán trabajos académicos y proyectos de investigación que han desarrollado herramientas similares o que abordan la enseñanza de series de Fourier y el uso de plataformas interactivas para la educación matemática.

### CAPÍTULO 3

### Marco Teórico

En este capitulo...

### 3.1. Origen e Historia

Uno de los problemas del que se ocuparon los matemáticos del siglo XVIII es el que se conoce con el nombre del "problema de la cuerda vibrante". Este problema fue estudiado por d'Alembert y Euler (usando el método de propagación de las ondas) y un poco más tarde, concretamente en 1753, por Daniel Bernoulli. La solución dada por este difería de la proporcionada por los anteriores y consistió básicamente en expresar la solución del problema como superposición (en general infinita) de ondas sencillas.

Las ideas de Bernoulli fueron aplicadas y perfeccionadas por Fourier, en 1807, en el estudio de problemas relacionados con la conducción del calor. Quedaron plasmadas por escrito en el libro clásico *Théorie analytique de la chaleur*, publicado en 1822. Los razonamientos realizados por Fourier en este libro plantearon de manera inmediata numerosas controversias y cuestiones que han tenido una influencia significativa en la historia de la Matemática.

### 3.1.1. El problema de la cuerda oscilante

Uno de los problemas más interesantes que abordaron los científicos del siglo XVIII, y que aparece con frecuencia en problemas físicos relacionados con procesos oscilatorios, es el conocido como .<sup>El</sup> problema de la cuerda vibrante". Este se puede describir en su forma más elemental de la siguiente manera: Supongamos que tenemos una cuerda flexible y tensa, cuyos extremos están fijos, convenientemente, en los puntos (0,0) y  $(\pi,0)$  sobre el eje horizontal. Si la cuerda se tira de modo que su forma inicial corresponde a la curva definida por y = f(x), y luego se suelta, la pregunta es: ¿Cuál será el movimiento resultante de la cuerda? Los desplazamientos de la cuerda siempre se encuentran en un mismo plano, y el vector desplazamiento es perpendicular en cualquier momento. Para describir este movimiento se utiliza una función u(x,t), donde u(x,t) representa el desplazamiento vertical de la cuerda en la posición x (con  $0 \le x \le \pi$ ) y en el instante t (con  $t \ge 0$ ). El problema es determinar u(x,t) a partir de f(x). El primer matemático que propuso un modelo adecuado para este problema fue Jean Le Rond d'Alembert. Bajo diversas hipótesis (asumiendo, por ejemplo,

que las vibraciones son "pequeñas"), d'Alembert demostró en 1747 ( $Hist.\ de\ l'Acad.\ de\ Berlin,\ 3,\ 1747,\ pp.\ 214-219$ ) que la función u(x,t) debe satisfacer las siguientes condiciones:

$$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{\partial^2 u(x,t)}{\partial x^2}, \quad 0 < x < \pi, \ t > 0$$

$$u(x,0) = f(x), \quad 0 \le x \le \pi$$

$$\frac{\partial u(x,0)}{\partial t} = 0, \quad 0 \le x \le \pi$$

$$u(0,t) = u(\pi,t) = 0, \quad t \ge 0.$$
(3.1)

La primera de estas condiciones es una ecuación en derivadas parciales de segundo orden, conocida como la *Ecuación de Ondas*. La segunda ecuación establece la posición inicial de la cuerda, mientras que la tercera indica que la velocidad inicial de la cuerda es cero (recordando que, una vez desplazada a la posición f(x), la cuerda es liberada). La última condición expresa que, para cualquier tiempo, los extremos de la cuerda permanecen fijos. En la figura 3.1 La variable u = u(x, t) mide el desplazamiento sobre la vertical a tiempo t > 0 en la posición  $x \in [0, \pi]$ .



Figura 3.1: Ilustración del problema de la cuerda vibrante.

D'Alembert demostró también que la solución de 3.1 viene dada por

$$u(x,t) = \frac{1}{2} \left[ \tilde{f}(x+t) + \tilde{f}(x-t) \right]$$
(3.2)

donde  $\tilde{f}$  es "una extensión conveniente de la función f."

De manera más precisa, y con el lenguaje de hoy en día, el teorema de d'Alembert ([[25]], [[27]]) confirmó que la posición futura de la cuerda está completamente determinada por su posición inicial:

**TEOREMA 2.1.** Sea  $f \in C^2[0,\pi]$ , tal que  $f(0) = f(\pi) = f''(0^+) = f''(\pi^-) = 0$ . Entonces (1.1) tiene una única solución  $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$ , donde  $\Omega = (0,\pi) \times (0,+\infty)$ . Además u viene dada por la fórmula (1.2), donde  $\tilde{f}$  es la extensión a  $\mathbb{R}$  (conjunto de los números reales), impar y  $2\pi$ -periódica de la función f.

No se conoce con exactitud la manera en que d'Alembert llegó a la fórmula 3.2, pero un camino muy probable pudo ser el siguiente: el cambio de variables

$$\xi = x + t, \quad \mu = x - t,$$

transforma la ecuación

$$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{\partial^2 u(x,t)}{\partial x^2},$$

en otra más simple:

$$\frac{\partial^2 u}{\partial \xi \partial \mu} = 0.$$

Las soluciones de esta última ecuación son trivialmente de la forma

$$u(\xi, \mu) = F(\xi) + G(\mu).$$

Combinando esta última relación con las otras condiciones en 3.1, se puede llegar a intuir la forma (1.2) que tiene la solución de 3.1.

La interpretación física de la solución dada por d'Alembert es muy interesante: La función

$$\frac{1}{2}f(x+t)$$

representa una onda (una solución de la ecuación de ondas) que se desplaza hacia la izquierda con velocidad 1. Análogamente, la función

$$\frac{1}{2}f(x-t)$$

representa otra onda que se desplaza hacia la derecha con velocidad 1. De este modo, la solución de 3.1 es la superposición de dos ondas, una de las cuales se desplaza hacia la izquierda y otra hacia la derecha, ambas con velocidad 1. Por este motivo se dice que la fórmula 3.2se ha obtenido usando el *Método de propagación de las ondas*.

Otra manera de obtener la solución del problema 3.1, completamente distinta de la vista anteriormente, fue propuesta por *Daniel Bernoulli* en 1753 (*Hist. de l'Acad. de Berlin, 9, 1753, 147-172; 173-195*). La idea clave es obtener la solución de 3.1 como superposición de ondas más sencillas, concretamente aquellas que son de la forma

$$u_n(x,t) = \sin(nx)\cos(nt), \quad \forall n \in \mathbb{N},$$
 (3.3)

donde  $\mathbb{N}$  es el conjunto de los números naturales. Para cada tiempo t fijo, la anterior función es un múltiplo de la función  $\sin(nx)$ , que se anula exactamente en n-1 puntos del intervalo  $(0,\pi)$ . Así, si pudiésemos observar la vibración de la cuerda correspondiente a las ondas  $u_n$ , tendríamos n-1 puntos, llamados nodos, en los que la cuerda se mantendría constantemente fija en el eje de abscisas (como en los extremos del intervalo  $[0,\pi]$ ). Entre dichos nodos, la cuerda oscilaría de acuerdo con 3.3.

¿Cómo concibió Bernoulli la idea anterior? Parece ser que una posibilidad es que usase sus conocimientos musicales. Para ello se basó en que el sonido que emite una cuerda vibrante es, en general, superposición de armónicos, es decir,

superposición de funciones de la forma  $u_n(x,t)$ . Tales funciones representan, para n=1 el tono fundamental y para n>1 sus armónicos, y desde el punto de vista musical se corresponden con los tonos puros. Así, Bernoulli afirmó que cualquier sonido que produjese la vibración de la cuerda debe ser superposición de tonos puros.



Figura 3.2: Ilustración de 3 armónicos y sus nodos de la cuerda al vibrar.

Desde el punto de vista matemático, ello significa que la solución de 3.1 debe poder representarse de la forma:

$$u(x,t) = \sum_{n=1}^{\infty} a_n \sin(nx) \cos(nt)$$
(3.4)

donde los coeficientes  $a_n$  han de elegirse adecuadamente para que se satisfaga 3.1.

Ahora bien, f no es, en general de la forma justo mencionada, pero, y ahora viene la pregunta clave: ¿Será posible obtener la solución de 3.1, para cualquier f dada, como superposición de las anteriores soluciones sencillas  $u_n$ ? Esto es lo que propuso Bernouilli.

Si la solución propuesta por Bernouilli fuese correcta, ello obligaría a que

$$u(x,0) = \sum_{n=1}^{\infty} a_n \operatorname{sen}(nx)$$
(3.5)

y por tanto a que

$$f(x) = \sum_{n=1}^{\infty} a_n \operatorname{sen}(nx), \quad \forall x \in [0, \pi],$$
(3.6)

para "una adecuada elección de los coeficientes  $a_n$ ".

### 3.1.2. La ecuación de calor

Uno de los problemas más interesantes que abordaron los científicos del siglo XVIII, y que apare

### 3.2. Series de Fourier

- 3.2.1. Series de Funciones
- 3.2.1.1. Definición de Series de Funciones
- 3.2.1.2. Convergencia de Series de Funciones
- 3.2.2. Definición de las Funciones Trigonométricas de Seno y Coseno
- 3.2.2.1. Definición del Seno
- 3.2.2.2. Definición del Coseno
- 3.2.2.3. Propiedades y Relaciones Fundamentales
- 3.2.3. Funciones Periódicas
- 3.2.3.1. Definición de Funciones Periódicas
- 3.2.3.2. Propiedades de las Funciones Periódicas
- 3.2.4. Armónicos
- 3.2.4.1. Definición de Armónicos
- 3.2.4.2. Importancia de los Armónicos en Series de Fourier
- 3.2.5. Funciones Ortogonales
- 3.2.5.1. Concepto de Ortogonalidad
- 3.2.5.2. Ejemplos de Funciones Ortogonales
- 3.2.6. Originalidad del Seno y Coseno
- 3.2.6.1. Propiedades del Seno y el Coseno
- 3.2.6.2. Uso del Seno y el Coseno en Series de Fourier
- 3.2.7. Series de Fourier de Período T o de -p a -p
- 3.2.7.1. Generalización de la Serie de Fourier
- 3.2.7.2. Coeficientes de Fourier para Período T
- 3.2.8. Funciones Suaves y Suaves por Partes
- 3.2.8.1. Definición de Funciones Suaves
- 3.2.8.2. Definición de Funciones Suaves por Partes
- 3.2.8.3. Aplicaciones en Series de Fourier
- 3.2.9. Series de Fourier de Senos y Cosenos
- 3.2.9.1. Condiciones para la Cancelación de Coeficientes
- 3.2.9.2. Desarrollo de Series de Fourier con Senos y Cosenos
- 3.2.10. Funciones Pares e Impares

#### 3.3.1.2. CSS

Justificación para su uso en el diseño y estilo visual de la aplicación.

#### 3.3.1.3. JavaScript

Detalle del uso de JavaScript para la interacción dinámica de la interfaz y control de eventos.

#### 3.3.2. NodeJS

#### 3.3.2.1. Introducción a NodeJS

Explicación básica sobre NodeJS.

#### 3.3.2.2. Ventajas del uso de NodeJS para aplicaciones web

Descripción de por qué se eligió NodeJS para la parte del servidor.

#### 3.3.2.3. Integración de NodeJS con Maxima

Detalle de cómo se usa NodeJS para comunicarse con Maxima y realizar cálculos matemáticos.

#### 3.3.3. Maxima

#### 3.3.3.1. Qué es Maxima y por qué se usa para cálculos simbólicos

Explicación sobre el software Maxima y su importancia en los cálculos de Series de Fourier.

#### 3.3.3.2. Implementación de Maxima en el servidor

Cómo se utiliza Maxima en el servidor junto con NodeJS para realizar cálculos matemáticos de forma eficiente.

### 3.3.4. Angular (Posible implementación futura)

### 3.3.4.1. Introducción a Angular

Explicación básica sobre el framework Angular.

## 3.3.4.2. Ventajas del uso de Angular para futuras versiones del proyecto

Justificación sobre la posibilidad de usar Angular en futuras versiones del proyecto.

#### 3.3.4.3. Consideraciones para su implementación

Consideraciones técnicas y cómo Angular podría mejorar la estructura de la aplicación.

### 3.3.5. Metodologías de Desarrollo de Software

-

### 3.3.5.1. Desarrollo Ágil

Breve descripción de la metodología ágil aplicada al desarrollo de la aplicación. -

### 3.3.5.2. Fases del Proyecto

Descripción de las fases de planificación, desarrollo y pruebas que seguiste.

### 3.3.6. Usabilidad y Experiencia de Usuario (UX)

-

### 3.3.6.1. Principios de Usabilidad

Breve descripción de los principios que seguiste para garantizar una buena usabilidad de la aplicación. -

### 3.3.6.2. Diseño de la Interfaz de Usuario (UI)

Descripción de cómo el diseño de la interfaz facilita la interacción de los usuarios con las Series de Fourier.

### 3.3.7. Seguridad en Aplicaciones Web

\_

#### 3.3.7.1. Protección contra ataques comunes

Breve descripción de las medidas tomadas para evitar ataques como la inyección de código y el cross-site scripting (XSS). -

#### 3.3.7.2. Autenticación y manejo seguro de datos

Si tu aplicación maneja datos sensibles o autenticación de usuarios, menciona las técnicas utilizadas para asegurar los datos.

CAPÍTULO 4

Análisis y Diseño del Sistema

| 4.1. | Metodole | ogía de | Desarrollo |
|------|----------|---------|------------|
|      |          |         |            |

- 4.1.1. Descripción de la Metodología
- 4.1.2. Ventajas de la Metodología Elegida
- 4.2. Análisis de Requerimientos
- 4.2.1. Requisitos Funcionales
- 4.2.2. Requisitos No Funcionales
- 4.3. Análisis de Riesgos
- 4.3.1. Identificación de Riesgos
- 4.3.2. Jerarquización de Riesgos
- 4.4. Estimación de Costos
- 4.4.1. Método de Estimación de Costos
- 4.4.2. Detalle de los Costos Estimados
- 4.5. Diseño del Sistema
- 4.5.1. Arquitectura General del Sistema
- 4.5.1.1. Arquitectura Cliente-Servidor
- 4.5.1.2. Flujo de Datos
- 4.5.2. Diseño de la Base de Datos
- 4.5.2.1. Modelo Entidad-Relación
- 4.5.2.2. Normalización de la Base de Datos
- 4.5.3. Diseño de la Interfaz de Usuario
- 4.5.3.1. Estructura de la Interfaz
- 4.5.3.2. Prototipo de la Interfaz

### CAPÍTULO 5

## Implementación Prototipo)

(Primer

En este capítulo vamos a juntar todo lo primero

### Bibliografía

- [1] J.M. Almira. Fourier: un matemático al servicio de la física. Genios de las matemáticas. RBA, 2017. ISBN: 9788447387755.
- [2] Wolfram Alpha: Computational Intelligence. Fourier Analysis—Wolfram Language Documentation. https://reference.wolfram.com/language/guide/FourierAnalysis.html. Accedido: 17 Junio, 2024. 2024.
- [3] GeoGebra. GeoGebra the world's favorite, free math tools used by over 100 million students and teachers. https://www.geogebra.org. Accedido: 14 Junio, 2024. 2024.
- [4] Desmos. Desmos Let's learn together. https://www.desmos.com. Accedido: 14 Junio, 2024. 2024.
- [5] Manim Community. Manim Community. https://www.manim.community. Accedido: 14 Junio, 2024. 2024.
- [6] Ettore Messina. Fourier Series in Python. https://computationalmindset.com/en/mathematics/fourier-series-in-python.html. Accedido: 3 Octubre, 2024. 2024.
- [7] MathWorks. MathWorks Creadores de MATLAB y Simulink MATLAB y Simulink. https://la.mathworks.com/. Accedido: 14 Junio, 2024. 2024.