Unix Final

Team19 108072244 邱煒甯 108032053 陳凱揚 112065525 簡佩如

Usage

```
make

./q1 &
kill -USR1 %1

# Output: T3 handling SIGUSR1
kill -INT %1

# Output: T1 handling SIGINT
kill -TERM %1

# Output: T2 handling SIGTERM

./q2 1000000

# Output: Sleep time: 1000438 us

./q3

# Output: Alarm!
```

Q1

We first set up a signal set sigset_t set, then use signadset to add SIGINT, SIGTERM and SIGUSR1 to this set, and then use pthread_sigmask to block these signals. In pthread_create, we use handle_sigint to process the SIGINT signal. First create a signal collection and add the SIGINT signal to this collection. Then use the pthread_sigmask function to block these signals. Finally, use the sigwait function to wait for the SIGINT signal. Once received, it will print "T3 handling SIGUSR1\n". We use the same method to let handle_sigterm and handle_sigusr1 handle the SIGTERM and SIGUSR1 signals respectively. Finally, pthread_join waits for these threads to complete. This means that the main thread will wait for all child threads to finish.

Unix Final 1

Q2

Define two timeval structures start and end for calculating sleep time. To obtain the current time before sleeping, use the sleep_us function to make the program sleep for the specified number of microseconds, and obtain the current time again after sleeping. Calculate the duration of sleep and output it in microseconds.

Q3

We set up a sigaction structure to specify how to handle the SIGALRM signal when it occurs. We set sa_handler to the alarm_handler function and sa_flags to SA_RESTART. Then we call the sigaction function to set the handler for the SIGALRM signal. The handler will print "Alarm!\n".

Unix Final 2