Минобрнауки России

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный технологический институт (технический университет)»

Кафедра инженерного проектирования

Д.Л. Кириллов, В.А. Люторович, Г.Г. Хайдаров, И.Н. Низовцева

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ЧАСТЬ ПЕРВАЯ

Учебное пособие

Санкт-Петербург 2013 Кириллов, Д.Л. Начертательная геометрия. Часть первая : учебное пособие / Д.Л. Кириллов, В.А. Люторович, Г.Г. Хайдаров, И.Н. Низовцева — СПб.: СПбГТИ(ТУ), 2013. — 37c.

В первой части изложены основные теоретические вопросы начертательной геометрии по темам: «Точка» и «Прямая линия».

Авторы учитывали, что читатель может интересоваться не обязательно всеми вопросами. В соответствии с этим пособие построено так, что отдельные разделы могут изучаться сравнительно независимо друг от друга.

Учебное пособие формирует у студентов следующие профессиональные компетенции:

- а) общекультурные (ОК):
- способность к приобретению с большой степенью самостоятельности новых знаний с использованием современных образовательных и инновационных технологий (ОК-7);
- б) профессиональные (ПК):
- участие в подготовке технической документации на машины, приводы, различные комплексы и технологические процессы на производственных участках;
- участие в подготовке технической документации на ремонт оборудования
- владение основными законами построения изображений и нанесение размеров на рабочих чертежах деталей (ПК-3);

Учебное пособие предназначено для студентов Центра среднего профессионального образования при СПб ГТИ(ТУ), обучающихся по специальности 240134 «Переработка нефти и газа».

Рис. 20, табл. 1, библиогр. назв. 9

Рецензенты: 1 СПбГЭУ «ЛЭТИ» им. В.И. Ульянова (Ленина), доцент кафедры прикладной механики и инженерной графики В.П.Большаков

2 А.Ю. Иваненко, канд. техн. наук, доцент кафедры оптимизации химической и биотехнологической аппаратуры СПбТИ(ТУ)

Утверждено на заседании учебно-методической комиссии механического факультета 14 мая 2013 г.

Рекомендовано к изданию РИСо СПбГТИ (ТУ)

ПРИНЯТЫЕ ОБОЗНАЧЕНИЯ

Обозначения геометрических фигур

- 1 Точки, расположенные в пространстве, обозначаются прописными буквами латинского алфавита А, В, С, В...или арабскими цифрами 1, 2, 3,
- **2 Последовательность точек** (и других элементов) надстрочными ин-лексами: A^I , B^I , C^I
- 3 Линии в пространстве по точкам, определяющим линию или строч-ными буквами латинского алфавита: а, b, с...
 - 4 Углы строчными буквами греческого алфавита μ , ρ , σ , ϕ , ω .
 - **5** Плоскости строчными буквами греческого алфавита α , β , γ , σ , ϵ .
- **I**, **II**, **III**, **IV** а также **6** Поверхности – римскими цифрами прописными буквами русского алфавита: цилиндр – \mathbf{H} , конус – \mathbf{K} , сфера – Сф...
- 7 Плоскости проекций строчной буквой греческого алфавита π . Произвольная плоскость – π_0 , горизонтальная – π_1 , фронтальная – π_2 , профильная — π_3 , любая дополнительная — π_4 , π_5 ...
- 8 Оси проекций строчными буквами х, у, z или (при введении дополплоскостей) π_2/π_1 , π_2/π_3 , π_2/π_5 ...Начало координат нительных прописной буквой О.

9 Проекции точек:

- на горизонтальную плоскость $oldsymbol{\pi}_1 \mathbf{A}^I, \, \mathbf{B}^I, \, \mathbf{C}^I$
- на фронтальную плоскость π_2 A^{II} , B^{II} , C^{II} . на профильную плоскость π_3 A^{III} , B^{III} , C^{III} .
- на дополнительную плоскость π_4 \mathbf{A}^{IV} , \mathbf{B}^{IV} , \mathbf{C}^{IV} .
- 10 Проекции линий по проекциям точек, определяющих линию; кроме того:
- горизонтальная линия (первая параллель) буквой \mathbf{h} ;
- фронтальная линия (вторая параллель) буквой \mathbf{f} ;
- профильная линия (третья параллель) буквой р.

11 Обозначение плоскостей, заданных следами:

горизонтальный след плоскости $\alpha - \mathbf{h}_{\mathbf{q}\alpha}^{\mathbf{r}}$ фронтальный след плоскости α - $\mathbf{f}^{\mathbf{H}}_{\mathbf{o}\alpha}$ профильный след плоскости $\alpha - p_{\alpha}^{III}$

В тех случаях, когда плоскость не требует наименования, обозначение сле-дов упрощённо – $\mathbf{h_o^I}$, $\mathbf{f_o^{II}}$, $\mathbf{p_o^{III}}$ для проецирующих плоскостей задаётся проекция плоскости:

- α^{I} горизонтально проецирующая плоскость
- α^{II} фронтально проецирующая плоскость
- α^{III} профильно проецирующая плоскость
- 12 Точки схода следов плоскости прописными буквами Х, Ү, Z с индексом соответствующей плоскости: X_{α} , Y_{α} , Z_{α} .

Обозначения отношений между геометрическими элементами

- 1 Совпадение (≡):
- $A \equiv B$ точки A и B совпадают.
 - 2 Параллельность (∥):
- $a \| b прямые a и b параллельны.$
 - 3 Перпендикулярность (\bot):
- $\mathbf{a} \perp \boldsymbol{\alpha}$ Прямая \mathbf{a} перпендикулярна плоскости $\boldsymbol{\alpha}$.

Обозначения теоретико – множественные

- 1 Принадлежность (\in):
- $A \in a$ точка A принадлежит прямой a.
 - 2 Включение (С):
- $\mathbf{A} \subseteq \mathbf{\alpha}$ прямая $\mathbf{\alpha}$ принадлежит плоскости $\mathbf{\alpha}$.
 - 3 Пересечение (∩):
- $\mathbf{A} = \mathbf{a} \cap \mathbf{\alpha}$ точка \mathbf{A} есть пересечение прямой \mathbf{a} с плоскостью $\mathbf{\alpha}$.
 - 4 Импликация логическое следствие (⇒):
- $\mathbf{a} \| \mathbf{c}, \ \mathbf{b} \| \mathbf{c} \implies \mathbf{a} \| \mathbf{b} \mathbf{e}$ сли \mathbf{a} и \mathbf{b} параллельны прямой \mathbf{c} , то они параллельны между собой.

ВВЕДЕНИЕ

Инженерная графика одна из основных дисциплин, обеспечивающих общеинженерную подготовку специалистов химико-технологического про филя. Знания, умения и навыки, приобретённые при изучении этого курса, необходимы подготовки студентов ПО общеинженерным ДЛЯ последующей инженерной специальным дисциплинам, также В деятельности.

Курс инженерной графики состоит из двух разделов: начертательной геометрии и технического черчения. По первому разделу начертательной геометрии и подготовлены настоящие методические указания.

Изучение начертательной геометрии способствует развитию у студентов пространственного мышления, т.е. представлению в уме различных форм существующих или проектируемых объектов. Для отражения тесной связи между начертательной геометрией и техническим черчением достаточно упомянуть высказывание двух выдающихся учёных: «Чертёж — язык техники.» (Г. Монж); «Начертательная геометрия — грамматика этого языка.» (В.И. Курдюмов).

Начертательную геометрию, как и другие науки, вызвала к жизни трудовая деятельность человека. Задачи строительства вначале архитектурных сооружений, а позже станков и машин, потребовали изображений, основанных на геометрических законах. Сохранившиеся до наших дней остатки архитектурных и технических сооружений свидетельствуют о том, что их творцы пользовались чертежами.

Ещё в 1-м в. до н.э. римский архитектор Витрувий в работе «Десять книг по архитектуре.» приводит, как известные, горизонтальные и фронтальные проекции предметов. Там же сказано, что геометрическую разработку начал перспективы дали древнегреческие мыслители Анаксагор и Демокрит (V в. до н.э.). Однако вплоть до XV в. общей теории построения изображений не существовало.

Лишь с развитием строительства и искусств появляются исследования в области теории изображений, учитывающие опыт учёных древних веков. Это работы А. Дюрера, Г. Убальди, Ш. Дезарге. Значительно дополнил Теорию перспективы Леонардо да Винчи, который для увеличения наглядности изображения предложил окраску и наложение светотеней.

Таким образом, зарождение и последующее развитие начертательной геометрии органично связаны с потребностями графического изображения создаваемых сооружений и устройств, т.е. с инженерной графикой.

Развивающаяся промышленность требовала метода изображений, позволяющего определить истинные размеры объекта наиболее простым путём.

Таким приёмом явился метод ортогонального (прямоугольного) проецирования на взаимно перпендикулярные вертикальную и горизонтальную плоскости. Накопленные теоретические материалы и соответствующие исследования позволили французскому учёному Гаспару Монжу опубликовать в 1799 г. учебный курс новой науки «Начертательная геометрия».

В России приёмы изображений вначале были самобытными, но, постепенно совершенствуясь, приближались к научно обоснованной теории. Фрески Новгородской школы XIV и XV столетий, а также картины Рублёва Дионисия являются изображениями, приближённо соответствующими изображениям косоугольном проецировании. В Основными видами чертежей того времени были планы земельных угодий или архитектурных объектов. При Петре I были созданы школы, где составление чертежей являлось частью учебного процесса.

Великий русский учёный М.В. Ломоносов и российский академик Л. Эйлер совместно разработали новый метод проекций, послуживший ос новой для составления географического атласа России. Архитекторы Д.В. Ухтомский, В.И. Баженов, М.Ф. Казаков, В.П. Стасов, а также изобретатели И.П. Кулибин, И.И. Ползунов, отец и сын Черепановы пользовались чертежами, выполненными в прямоугольных проекциях. Преподавание начертательной геометрии в России было начато в 1810 г. в Институте корпуса инженеров путей сообщения. Первый учебный курс «Основания начертательной геометрии» с разработкой терминологии на русском языке был выпущен в 1821 г. Я.А. Севастьяновым. Позднее в России появилась книга А.Х. Редера, посвящённая методу прямоугольного изометрического проецирования. В 1870 г. профессор Н.И. Макаров выпустил «Полный курс начертательной геометрии», считающийся капитальным трудом в данной науке.

Классические труды по начертательной геометрии оставил В.И. Курдюмов. В его работах подробно исследованы методы вращения и пере мены плоскостей проекций, а также методы, посвящённые изображениям кривых линий и кривых поверхностей.

Таким образом, XIX в. и начало XX в. явились периодом становления начертательной геометрии как учебной дисциплины. Применение её в практических целях ограничивалось незначительным количеством работ.

В современный период появился ряд новых разделов в теории изображений благодаря работам Д.И. Каргина, А.И. Добрякова, Н.Ф. Четверухина и др., причём связь науки и практики стала основой развития начертательной геометрии. \mathbf{C} появлением компьютеров методы начертательной геометрии нашли применение ДЛЯ трёхмерных моделей. Современные графические редакторы, используя методы компьютерной графики, позволяют визуализировать не только отдельные трёх мерные модели, но и целые трёхмерные сцены.

УКАЗАНИЯ К ИЗУЧЕНИЮ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

При изучении курса начертательной геометрии рекомендуется внимательно ознакомиться с программой и приобрести необходимую учебную литературу. Правильно построенные самостоятельные занятия позволяют сэкономить время и получить хорошие результаты. При самостоятельной организации учебного процесса необходимо руководствоваться следующим:

- 1) изучать начертательную геометрию строго последовательно и систематически;
- 2) проработанные теоретические положения обязательно подкреплять практическим решением задач;
- 3) проявлять максимальную самостоятельность в занятиях, т.к. начертательную геометрию нельзя заучить, её надо понимать;
- 4) научиться по тексту и чертежам книги представлять пространственные модели.

1 МЕТОДЫ ПРОЕЦИРОВАНИЯ

Правила начертательной геометрии предусматривают построение изображений плоских или объёмных предметов с помощью приёма, называемого *проецированием*.

1.1 Центральное проецирование

Предположим, что в пространстве заданы (Рисунок 1.1) кривая ABC, плоскость π_0 и точка S. Проведём из точки S через точки A, B и C кривой ABC прямые линии и отметим точки пересечения последних с плоскостью π_0

Рисунок 1.1 – Центральное проецирование

Обозначим полученные точки соответственно буквами A_0 , B_0 , C_0 . Исходные и построенные элементы получили в начертательной геометрии названия:

(.) S – полюс (центр) проецирования;

плоскость π_0 – плоскость проекций;

прямые SA_0 , SB_0 , SC_0 – проецирующие лучи;

кривая АВС – оригинал;

точки A_0 , B_0 , C_0 – центральные проекции точек A, B, C на плоскости π_0 (изображение);

кривая $A_0B_0C_0$ – центральная проекция кривой ABC.

Центральное проецирование — это проецирование на заданную плоскость из заданного полюса (центра) проецирования.

Основные свойства центрального проецирования:

- любой геометрический элемент имеет на плоскости проекций единственную проекцию;
- любая точка на плоскости проекций является проекцией бесчисленного множества точек (любой точки, расположенной на проецирующем луче);
- проекцией прямой линии является прямая линия.

Достоинством центрального проецирования является наглядность изображения.

Недостаток – сложность определения истинных размеров оригинала по его изображению. Это ограничивает применение центрального проецирования, так как в технике определение истинных размеров проецируемого предмета по его изображению является одним из основных требований.

Данный метод, называемый перспективой, применяется в живописи, архитектуре. Кроме того, фотографии и киноизображения также являются центральными проекциями.

1.2 Параллельное проецирование

Параллельное проецирование – проецирование с помощью параллельных проецирующих лучей, что наблюдается при бесконечном удалении полюса от плоскости проекций.

Пусть (Рисунок 1.2, а) требуется построить изображение кривой ABC на плоскости π_0 . Проведём через точки кривой A, B, C проецирующие лу чи, параллельные произвольному направлению a и продолжим эти лучи до пересечения с плоскостью π_0 . Полученная проекция $A_0B_0C_0$ — параллель ная проекция кривой ABC на плоскость π_0 .

Параллельное проецирование обладает теми же свойствами, что и цент ральное. Кроме того, параллельные прямые проецируются в виде пара ллельных прямых (см. Рисунок 1.2, б); отношение отрезков двух парал лельных прямых AB и CD (см. Рисунок 1.2, б) равно отношению проек ций этих отрезков.

а – параллельное косоугольное проецирование; б – параллельное ортогональное (прямоугольное) проецирование

Рисунок 1.2 – Параллельное проецирование

Параллельное проецирование разделяется на косоугольное и прямоу гольное.

Косоугольное проецирование — это проецирование с помощью лучей, наклонённых к плоскости проекций под некоторым отличным от прямого углом.

Прямоугольное (ортогональное) проецирование — это проецирование с помощью лучей, перпендикулярных к плоскости проекций.

Плоскость проекций обычно относят к декартовой системе координат. Так, прямоугольное проецирование на горизонтальную и вертикальную плоскости проекций получило наименование «Метод прямоугольного проецирования на плоскости координат» (метод Г. Монжа).

Метод прямоугольного проецирования положен в основу выполнения технических чертежей.

1.3 Проецирование на плоскости координат

Плоскости координат могут в пространстве располагаться произ вольно. Принято одну из плоскостей располагать горизонтально, а две дру гие — вертикально. Одну из вертикальных плоскостей координат распола гают перед наблюдателем (фронтально).

Зададим (Рисунок 1.3) прямоугольную систему координат 0хуz.

Обозначим плоскости **хоу**, **хоz**, **yoz** соответственно буквами π_1 , π_2 , π_3 . Эти плоскости называют горизонтальной (π_1), фронтальной (π_2) и про фильной (π_3) плоскостями проекций.

а – в тестах Минобрнауки России; б – в силу традиции

Рисунок 1.3 – Проецирование точки **A** на плоскости координат π_1 , π_2 , π_3

Государственные стандарты не предусматривают правила обозначения проекций точек на плоскостях проекций. Однако, в настоящее время во многих крупных университетов России и в тестовых заданиях Минобрнауки России принято использовать подстрочные числовые индексы $_1$, $_2$, $_3$ (Рисунок $_1$, $_3$). В ряде университетов России по традиции можно встретить в обозначениях точек надстрочные индексы со штрихами $_1$, $_1$

Возьмём произвольную точку A, расположенную над плоскостью π_1 , перед плоскостью π_2 и слева от плоскости π_3 . Спроецируем эту точку прямоугольно на плоскости π_1 , π_2 , π_3 , для чего опустим из точки A перпендикуляры на данные плоскости. В точках пересечения перпендикуляров с упомянутыми плоскостями получим точки A^I , A^{II} , A^{III} , которые соответственно называются горизонтальной, фронтальной и профиль ной проекциями точки A.

Каждая проецирующих лучей определяет пара плоскость, параллельную плоскости координат и, следовательно, перпендикулярную к $AA^{II}A_{v}A^{I}$ соответствующей Так плоскость оси координат. перпендикулярна к оси $\mathbf{O}\mathbf{x}$ и пересекается с ней в точке $\mathbf{A}_{\mathbf{x}}$, аналогичные рассуждения справедливы для плоскостей $\mathbf{A}\mathbf{A}^{\mathbf{II}}\mathbf{A}_{\mathbf{v}}\mathbf{A}^{\mathbf{I}}$ и $\mathbf{A}\mathbf{A}^{\mathbf{II}}\mathbf{A}_{\mathbf{z}}\mathbf{A}^{\mathbf{III}}$. В проделанных построений получим параллелепипед, результате

называемый *параллелепипедом координат* точки **A**. Отрезки AA^{III} , AA^{II} , AA^{II} определяют расстояния от точки **A** до плоскостей координат и называются *координатами точки* **A**. Обозначают: $AA^{III} = x$, $AA^{II} = y$, $AA^{I} = z$. Нетрудно заметить, что отрезки OA_x , OA_y и OA_z численно равны координатам точки **A**, т.е. $OA_x = AA^{III} = x$, $OA_y = AA^{II} = y$ и $OA_z = AA^{I} = z$.

Таким образом, положение точки ${f A}$ определяется тремя её координатами, а положение каждой из её проекций ${f A}^{I},\,{f A}^{II},\,{f A}^{III}$ - двумя координатами.

В общем случае плоскости $\pi_{1,}$ $\pi_{2,}$ π_{3} (Рисунок 1.4, а) делят пространство на восемь частей (трёхгранных углов) называемых *октантами* или *координатными углами*.

Причём для правой системы координат, изображённой на Рисунке 1.4, а принята следующая нумерация углов:

- **I** угол (октант) левый, передний, верхний (**x**, **y**, **z**);
- **II** угол (октант) левый, задний, верхний (**x**, **-y**, **z**);
- **III** угол (октант) левый, задний, нижний (**x**, -**y**, -**z**);
- **IV** угол (октант) левый, передний, нижний **(x**, **y**,-**z**);
- V угол (октант) правый, передний, верхний (-х, у, z);
- VI угол (октант) правый, задний, верхний (-x,-y, z);
- **VII** угол (октант) правый, задний, нижний (-**x**, -**y**, -**z**);
- **VIII** угол (октант) правый, передний, нижний (-**x**, **y**, -**z**);

a — деление пространства на октанты; б — совмещение октантов с плоскостью комплексного чертежа (эпюра)

Рисунок 1.4 – Октанты

Практически изображение выполняется на одной плоскости (листе бумаги, доске и т. п.), называемой плоскостью чертежа. С этой целью плоскость π_2 мысленно совмещают с плоскостью чертежа, а плоскости π_1 и π_3 совмещают с плоскостью π_2 вращением вокруг осей $\mathbf{O}\mathbf{x}$ и $\mathbf{O}\mathbf{z}$ в направлениях, указанных на Рисунок 1.4, а стрелками. Изображение плоскостей и осей координат, совмещённых с плоскостью чертежа, показано на Рисунок 1.4, б. Следует обратить внимание, что ось $\mathbf{O}\mathbf{y}$ изображается дважды, совмещаясь соответственно с осями $\mathbf{O}\mathbf{z}$ и $\mathbf{O}\mathbf{x}$.

Проецируемая точка может располагаться в любом из координатных углов (октантов). Поэтому для построения её проекций кроме численных значений координат необходимо учитывать их знаки.

Рассмотрим случай общего положения точки, т.е. случай, когда требуется построить проекции точки \mathbf{A} (-x, y, z), причём $\mathbf{x}\neq 0$, $\mathbf{y}\neq 0$, $\mathbf{z}\neq 0$. Сна чала построим косоугольные проекции заданной точки. Для этого нанесём на чертеже оси координат и отложим на них заданные значения координат с учётом их знаков (Рисунок 1.5, а). Получим точки $\mathbf{A}_{\mathbf{x}}$, $\mathbf{A}_{\mathbf{y}}$, $\mathbf{A}_{\mathbf{z}}$. Далее строим горизонтальную $\mathbf{A}^{\mathbf{II}}$, фронтальную $\mathbf{A}^{\mathbf{II}}$ и профильную $\mathbf{A}^{\mathbf{III}}$ проекции в точках пересечения прямых, проведённых из $\mathbf{A}_{\mathbf{x}}$, $\mathbf{A}_{\mathbf{y}}$, $\mathbf{A}_{\mathbf{z}}$ параллельно соответствующим осям координат. Изображение точки \mathbf{A} получим в точке пересечения перпендикуляров, восстановленных к плоскостям проекций из точек $\mathbf{A}^{\mathbf{I}}$ $\mathbf{A}^{\mathbf{II}}$ и $\mathbf{A}^{\mathbf{III}}$.

a – аксонометрическое изображение; б – эпюр точки

Рисунок 1.5 – Пример расположения точки А в пятом октанте

По полученному чертежу легко установить, что данная точка ${\bf A}$ рас положена в пятом октанте.

Построим прямоугольные проекции точки \mathbf{A} . Для этого на чертеже (см. Рисунок 1.5, б) проводим оси координат $\mathbf{x}(-\mathbf{x})$, $\mathbf{y}(-\mathbf{y})$, $\mathbf{z}(-\mathbf{z})$. Затем откладываем на осях заданные значения координат с учётом знака и полу чаем точки $\mathbf{A}_{\mathbf{x}}$, $\mathbf{A}_{\mathbf{y}}$, $\mathbf{A}_{\mathbf{z}}$.

При этом координата y всегда откладывается дважды: на оси Oy, совмещённой с осью Oz (вертикальная ось Oy), и на оси Oy, совмещённой с осью Ox (горизонтальная ось Oy). Находим прямоугольные проекции точки A в пересечении перпендикуляров, восстановленных из A_x , A_y , A_z к соответствующим осям координат. Эти перпендикуляры показывают на чертеже тонкими сплошными линиями проекционной связи.

Отметим, что в прямоугольных проекциях горизонтальная A^I и фронтальная A^{II} проекции точки A всегда расположены на одной вертикальной прямой, а фронтальная A^{II} и профильная A^{III} проекции — на одной горизонтальной прямой.

Изображения, полученные при совмещении плоскостей проекций с плоскостью чертежа, называются эпюрами. Эпюр (эпюра) — чертёж, на котором пространственная фигура изображена методом ортогональных проекций на три плоскости; эпюр позволяет определить форму и раз меры проецируемого предмета, так как координаты **X**, **y** и **Z** любой его точки могут быть установлены непосредственно по чертежу.

В частных случаях точка может быть расположена в одной из плоскостей координат или лежать на одной из осей (Рисунок 1.6, а, б). При этом, если точка лежит в плоскости координат, то её проекция на данную плоскость совпадает с самой точкой, а две другие её проекции расположены на осях координат (см. Рисунок 1.6, а). Если же точка лежит на оси координат, то две её проекции совпадают с самой точкой, а третья сов падает с началом координат (см. Рисунок 1.6, б).

а – точки в плоскости; б – точки на оси

Рисунок 1.6 – Частные случаи эпюров точек

1.4 Аксонометрические проекции

Если оси прямоугольной системы координат и отнесённый к ним предмет спроецировать центрально или параллельно на некоторую плоскость, то полученное изображение называется *аксонометрией*. Рассмотрим наиболее часто употребляемые на практике виды аксонометрических проекций.

Косоугольным аксонометрическим проецированием на фронтальную плоскость называют косоугольное проецирование на плоскость, совмещённую с плоскостью π_2 прямоугольной координатной системы, к которой отнесён проецируемый предмет.

Возьмём прямоугольную координатную систему (Рисунок 1.7, а) и спроецируем её косоугольно на плоскость π_0 , совмещённую с плоскостью π_2 данной системы. Проекции осей \mathbf{Ox} и \mathbf{Oz} на плоскость π_0 совпадают с этими осями. Начало координат тоже будет собственной проекцией. Остаётся спроецировать на плоскость ось \mathbf{Oy} .

а — исходные положения осей координат ${\bf x}, {\bf y}, {\bf z}$ в пространстве; б — конечные положения осей координат ${\bf x}_1, {\bf y}_1, {\bf z}_1$ на плоскости ${m \pi}_0$

Рисунок 1.7 – Построение аксонометрического изображения косоугольной диметрии

Для этого выберем на оси Oy произвольную точку A_y и спроецируем её на плоскость π_0 с помощью произвольного проецирующего луча, пересекающего плоскость π_0 например в точке A_{y1} . Прямая OA_{y1} будет косоугольной проекцией оси Oy на плоскость π_0 (ось Oy_1).

Если изменять направление проецирования, то на плоскости π_0 можно получить бесконечное множество изображений точки A_y и соответственно осей Oy_1 , Oy_2 , Oy_3 ...Решение будет однозначным, если задать направление проецирования. Оно задаётся углами между проекциями осей координат и так называемыми коэффициентами искажения. Коэффициентом искажения для данной оси координат называется отношение длины проекции отрезка упомянутой оси к истинной длине самого отрезка.

Обозначим: k – коэффициент искажения для оси $\mathbf{O}\mathbf{x}$; m – для оси $\mathbf{O}\mathbf{y}$; n – для оси $\mathbf{O}\mathbf{z}$.

При косоугольном проецировании на фронтальную плоскость (см. Рисунок 1.7, а, б) имеем k=n=1. Для оси $\mathbf{O}\mathbf{y}$ значение \mathbf{m} может изменяться в пределах $0<\mathbf{m}<\infty$. Из соображений большей наглядности принимают $\mathbf{m}=0.5$, а угол между проекциями осей $\mathbf{O}\mathbf{x_1}$ и $\mathbf{O}\mathbf{y_1}$ составляет 135° при $<\mathbf{x_1Oz_1}=90^\circ$. Косоугольные проекции осей координат на фронтальную

плоскость в совмещении с плоскостью чертежа показаны на Рисунок 1.7, б.

Иногда данную проекцию называют *косоугольной диметрией* в связи с тем, что два измерения по оси \mathbf{Ox}_1 и оси \mathbf{Oz}_1 равны между собой (k=n=1).

Прямоугольной изометрией называют случай прямоугольного прецирования на плоскость, одинаково наклонённую к трём плоскостям проекций. Такая плоскость проекций пересекает оси координат на равных рас стояниях от начала координат.

Изобразим (Рисунок 1.8, а) прямоугольную координатную систему \mathbf{Oxyz} и отложим на осях координат равные в натуре отрезки $\mathbf{OK_x} = \mathbf{OK_v} = \mathbf{OK_z}$.

а — исходные положения осей координат \mathbf{x} , \mathbf{y} , \mathbf{z} в пространстве; б — конечные положения осей координат \mathbf{x}_1 , \mathbf{y}_1 , \mathbf{z}_1 на плоскости

Рисунок 1.8 – Построение аксонометрического изображения прямоугольной изометрии

Соединим попарно прямыми линиями точки K_x , K_y и K_z . Треугольник $K_xK_yK_z$ будет изображением части плоскости, равно наклонённой к плоскостям координат. Примем эту плоскость за плоскость проекций и спроецируем на неё прямоугольно оси координат. Точки K_x , K_y , K_z являются собственными проекциями. Проекцию начала координат получим в точке O_1 пересечения перпендикуляра, опущенного из точки O_1 на плоскость $K_xK_yK_z$. Тогда искомые проекции осей координат изображаются в виде прямых O_1x_1 , O_1y_1 и O_1z_1 , проведённых из точки

 ${f O_1}$ через точки ${f K_x, K_y, K_z}$. Можно показать, что оси координат ${f Ox}$, ${f Oy}$ и ${f Oz}$ проецируются с одинаковыми искажениями, причём *натуральные* коэффициенты искажения k=m=n=0,82. Углы между проекциями осей координат: $<{f x_1}{f O_1}{f z_1}=<{f y_1}{f O_1}{f z_1}=<{f x_1}{f O_1}{f y_1}=120^\circ$. Изометрические проекции осей координат в совмещении с плоскостью чертежа показаны на Рисунке $1.8, \, 6$.

Если изометрическая проекция имеет целью выявление формы предмета (без наглядного отражения его размеров), то при построении точек допускается откладывать на осях значения координат точек с *приведёнными* коэффициентами искажения, равными единице (k=m=n=1). При этом изображение предмета получается увеличенным в отношении 1,0/0,82=1,22.

Прямоугольной диметрией называют случай прямоугольного проецирования на плоскость, равно наклонённую к двум осям координат. Обычно проецируют на плоскость, равно наклонённую к плоскостям π_1 , π_3 . Изобразим (Рисунок 1.9, а) прямоугольную координатную систему $\mathbf{O}\mathbf{x}\mathbf{y}\mathbf{z}$ и отложим на осях $\mathbf{O}\mathbf{x}$ и $\mathbf{O}\mathbf{z}$ равные в натуре отрезки $\mathbf{O}\mathbf{K}_\mathbf{x} = \mathbf{O}\mathbf{K}_\mathbf{z}$. По оси $\mathbf{O}\mathbf{y}$ отложим произвольный отрезок $\mathbf{O}\mathbf{K}_\mathbf{y}$ не равный $\mathbf{O}\mathbf{K}_\mathbf{x}$ и $\mathbf{O}\mathbf{K}_\mathbf{z}$. Плоскость, определяемая треугольником $\mathbf{K}_\mathbf{x}\mathbf{K}_\mathbf{y}\mathbf{K}_\mathbf{z}$ одинаково наклонена к плоскостям π_1 и π_3 . Спроецируем на неё прямоугольно начало координат ($\mathbf{O}\mathbf{0}\mathbf{1}\mathbf{\perp}$ плоскости $\mathbf{\Delta}\mathbf{K}_\mathbf{x}\mathbf{K}_\mathbf{y}\mathbf{K}_\mathbf{z}$) и оси координат ($\mathbf{O}\mathbf{1}\mathbf{x}\mathbf{1}$, $\mathbf{O}\mathbf{1}\mathbf{y}\mathbf{1}$, $\mathbf{O}\mathbf{1}\mathbf{z}\mathbf{1}$ —

 $(OO_1\bot$ плоскости $\Delta K_x K_y K_z)$ и оси координат $(O_1x_1, \ O_1y_1, \ O_1z_1$ – прямые, проведённые из точки O_1 через точки K_x , K_y , K_z). Поскольку ΔOO_1K_x = ΔOO_1K_z , то O_1K_x = O_1K_z . Следовательно,

$$k = \frac{O_1 K_x}{O K_x} = n = \frac{O_1 K_z}{O K_z}$$

Значение коэффициента искажения m, исходя из условий получения наиболее наглядного изображения, принимают равным k/2=n/2. При этом k=n=0,94; m=0,47; $<\mathbf{x_1O_1y_1}=<\mathbf{y_1O_1z_1}=131^025$; $<\mathbf{x_1O_1}$ $\mathbf{z_1}=97^010$ На практике обычно принимают k=n=1, m=0,5. В этом случае линейные размеры изображения увеличиваются в отношении 1,0/0,94=1,06.

Диметрические проекции осей координат в совмещении с плоскостью чертежа показаны на Рисунок 1.9.

а — исходные положения осей координат \mathbf{x} , \mathbf{y} , \mathbf{z} в пространстве; б — конечные положения осей координат \mathbf{x}_1 , \mathbf{y}_1 , \mathbf{z}_1 на плоскости Рисунок 1.9 — Построение аксонометрического изображения прямоуголной диметрии

2 ПРЯМАЯ ЛИНИЯ

Прямая линия проецируется в виде прямой линии. В общем случае прямая линия — безгранична. Положение прямой в пространстве обычно определяется заданием двух точек. Если спроецировать эти точки на плоскость и соединить найденные проекции точек, то полученная проекция отрезка определяет проекцию всей линии, так как отрезок может быть продолжен в любую сторону на требуемое расстояние.

2.1 Общее положение прямой

Прямой общего положения называется прямая, пересекающая все плоскости координат.

Пусть заданы две точки A (x, y, z) и B (x_1 , y_1 , z_1) прямой общего положения. Требуется построить прямоугольные проекции прямой. Нанесём на чертеже (Рисунок 2.1) оси координат и построим проекции заданных точек прямой.

Рисунок 2.1 – Прямая общего положения

Соединяя соответствующие проекции точек прямыми линиями, получим проекции прямой, заданной отрезком \mathbf{AB} .

Известно, что две проекции прямой определяют её положение в пространстве.

Оценив наглядность и измеримость полученного изображения, заметим:

- что форма проецируемого элемента прямая линия, так как все проекции его прямые;
- размеры проекций отрезка не равны истинной длине отрезка, так как он наклонён ко всем плоскостям проекций;
- положение прямой относительно плоскостей координат может быть установлено по чертежу.

Отметим следующее важное обстоятельство: если точка лежит на прямой, то её проекции расположены на соответствующих проекциях прямой (точка C на Рисунке 2.1).

Известно, что две прямые, пересекаемые рядом параллельных прямых, рассекаются ими на пропорциональные части. Следовательно, отношение отрезков прямой равно отношению проекций этих отрезков, т.е.

$$\frac{AC}{CB} = \frac{A^IC^I}{C^IB^I} = \frac{A^{II}C^{II}}{C^{II}B^{II}} = \frac{A^{III}C^{III}}{C^{III}B^{III}}$$

,

2.2 Частные случаи положения прямой

К частным случаям положения прямой относят прямые: параллельные одной из плоскостей координат, перпендикулярные к одной из плоскостей координат, лежащие в плоскости координат, совпадающие с осью координат.

Прямая, параллельная какой - либо плоскости координат, проецируется на эту плоскость в истинную величину. Это очевидно, так как $\mathbf{A}\mathbf{A}^{\mathbf{I}} = \mathbf{B}\mathbf{B}^{\mathbf{I}} = \mathbf{z} = \mathrm{const}$ (Рисунок 2.2, а) и, следовательно, $\mathbf{A}\mathbf{B} \parallel \mathbf{A}^{\mathbf{I}}\mathbf{B}^{\mathbf{I}}$. $\mathbf{A}\mathbf{B} = \mathbf{A}^{\mathbf{I}}\mathbf{B}^{\mathbf{I}}$ – как противоположные стороны прямоугольника.

а – аксонометрическое изображение; б – прямоугольное изображение на плоскости эпюра

Рисунок 2.2 – Прямая, параллельная плоскости координат π_1

Для прямоугольных проекций прямой, параллельной плоскости π_1 (го ризонтали) (см. Рисунок 2.2, б), характерно, что $\mathbf{A}^{\mathbf{II}}\mathbf{B}^{\mathbf{II}}\|\mathbf{O}\mathbf{x}$ и $\mathbf{A}^{\mathbf{III}}\mathbf{B}^{\mathbf{III}}\|\mathbf{O}\mathbf{y}$. Отсюда следует: любая прямая, фронтальная проекция которой параллельна оси $\mathbf{O}\mathbf{x}$, параллельна плоскости π_1 . Горизонтальная проекция горизонтали (ГПГ) – истинная длина отрезка.

Аналогично, любая прямая CD, горизонтальная проекция C^ID^I которой параллельна оси Ox, параллельна плоскости π_2 (фронталь)

(Рисунок 2.3, а, б). Фронтальная проекция фронтали (ФПФ) – истинная длина отрезка.

Прямым, параллельным плоскостям координат, принято давать общее название *линий уровня*.

Прямая, перпендикулярная к какой - либо плоскости координат (проецирующая прямая), параллельна оси координат, перпендикулярной к этой плоскости. Например, прямая \mathbf{EF} , перпендикулярная к плоскости $\boldsymbol{\pi}_1$, параллельна оси \mathbf{Oz} . Горизонтальная проекция такой прямой (Рисунок 2.4, а, б) — точка. Фронтальная и профильная проекции прямой, перпендикулярной к плоскости $\boldsymbol{\pi}_1$, параллельны оси \mathbf{Oz} .

a – аксонометрическое изображение; б – прямоугольное изображение на плоскости эпюра

Рисунок 2.3 – Прямая, параллельная плоскости координат π_2

В общем случае, если прямая перпендикулярна к плоскости координат, то на эту плоскость она проецируется в виде точки, а на две другие плоскости — в истинную длину и параллельно той оси координат, которой параллельна сама прямая.

a – аксонометрическое изображение; б – прямоугольное изображение на плоскости эпюра

Рисунок 2.4 – Прямая, параллельная двум плоскостям координат π_2 , π_3

Если прямая расположена в плоскости координат, то её проекция на эту плоскость совпадает с самой прямой, а две другие проекции совпадают с осями координат.

Если прямая совпадает с осью координат, то две её проекции совпадают с самой прямой, а на плоскость, перпендикулярную этой оси, прямая спроецируется точкой в начало координат.

2.3 Определение истинной длины отрезка прямой

Пусть отрезок прямой AB задан горизонтальной проекцией A^IB^I (Рисунок 2.5, а). Фигура AA^I B^IB в натуре – прямоугольная трапеция, у которой углы $<AA^IB^I$ и $<BB^IA^I$ – прямые, а отрезки AA^I и BB^I соответственно расстояния от точек A и B до плоскости π_1 . Эти отрезки численно равны координатам \mathbf{Z}_A и \mathbf{Z}_B точек. Отсюда следует, что для определения истинной длины отрезка по его проекции нужно построить на этой проекции прямоугольную трапецию с параллельными сторонами, соответственно равными расстояниям от точек отрезка до плоскости. Такой способ определения длины отрезка называют *способом трапеции*.

a – аксонометрическое изображение; б – в прямоугольных проекциях на плоскости эпюра

Рисунок 2.5 – Определение истинной длины отрезка прямой методом трапеции

Рассмотрим пример определения истинной длины отрезка, расположенного в первом октанте. Пусть имеются проекции A^IB^I и $A^{II}B^{II}$ (см. Рисунок 2.5,б). Определим его истинную длину по фронтальной проекции. Для этого в точках A^{II} и B^{II} восстановим перпендикуляры к проекции $A^{II}B^{II}$ и отложим на них отрезки $A^{II}A^0$ и $B^{II}B^0$, соответственно равные расстояниям от точек A и B до плоскости π_2 , т.е. координаты y_A и y_B (*недостановицие координаты точек*). Итак $A^{II}A^0$ $\bot A^{II}B^{II}$; $B^{II}B^0\bot A^{II}B^{II}$; $A^{II}A^0=A_XA^I=y_A$; $B^{II}B^0=B_XB^I=y_B$. Соединяя точки A^0 и B^0 прямой, находим A^0B^0 – истинную длину отрезка AB.

Аналогичное построение можно выполнить на горизонтальной проекции отрезка. В этом случае $A^0A_1 \!\!\!\!\perp\!\!\!\!\perp A^IB^I;$ $B^0B_1 \!\!\!\!\perp\!\!\!\!\perp A^IB^I;$ $A^0A_1 \!\!\!=\!\! A_XA^{II} \!\!\!=\!\! z_A;$ $B^0B_1 \!\!\!=\!\! B_XB^{II} \!\!\!=\!\! z_B.$ Соответственно, $A_1{}^*B_1{}^*-$ истинная длина отрезка AB.

Построение можно упростить. Если отложить на перпендикуляре, восстановленном из точки \mathbf{A}^{II} , отрезок $\mathbf{A}^{II}\mathbf{A}_2 = \mathbf{y}_A - \mathbf{y}_B$ и соединить точки \mathbf{A}_2^{II} и \mathbf{B}_2^{II} (\mathbf{B}_2) прямой. Аналогично найдём $\mathbf{A}_1^{I}\mathbf{B}_1^{II} = \mathbf{A}^0\mathbf{B}^0$. Такой приём определения истинной длины отрезка называется способом треугольника. Отметим, что в способе треугольника одновременно с истинной длиной

отрезка определяется угол наклона прямой к соответствующей плоскости координат:

<**В**₃**А**^I**В**^I – угол наклона прямой к плоскости π_1 ;

Рассмотрим пример определения истинной длины отрезка для случая, когда координаты концевых точек имеют разные знаки. Пусть, например, точка ${\bf B}$ (Рисунок 2.6, а) расположена над плоскостью ${\pmb \pi}_1$, а точка ${\bf A}$ – под плоскостью ${\pmb \pi}_1$.

a – аксонометрическое изображение; б – в прямоугольных проекциях на плоскости эпюра

Рисунок 2.6 – Определение истинной длины отрезка

Особенностью построения в данном случае является необходимость учёта знаков недостающих координат точек, т.е. значения этих координат откладываются на перпендикулярах, восстановленных к концам проекции отрезка, в произвольные, но разные стороны (см. Рисунок 2.6, б).

В нашем примере $\mathbf{B}^{I}\mathbf{B}_{0}^{*}=\mathbf{B}_{x}\mathbf{B}^{II}=+\mathbf{z}_{B}$, а $\mathbf{A}^{I}\mathbf{A}_{0}^{*}=\mathbf{A}_{x}\mathbf{A}^{II}=-\mathbf{z}_{A}$.

При построении способом треугольника на перпендикуляре, восстановленном из точки \mathbf{B}^I , откладывается отрезок $\mathbf{B}^I\mathbf{B}_1^*$, равный алгебраической разности недостающих координат: $+\mathbf{z}_{\mathbf{B}}$ - $(-\mathbf{z}_{\mathbf{A}})$ = $\mathbf{z}_{\mathbf{B}}$ + $\mathbf{z}_{\mathbf{A}}$. Определение истин ной длины отрезка по его вертикальной проекции аналогично рассмотренному ранее примеру.

2.4 Следы прямой линии

Следом прямой линии на данной плоскости координат называется точка пересечения (встречи) прямой с упомянутой плоскостью.

Точка пересечения прямой с плоскостью π_1 называется горизонтальным следом, с плоскостью π_2 - фронтальным (вертикальным) следом и с плоскостью π_3 - профильным следом прямой. Следы прямой обозначаются буквами, соответственно M, N и P.

Изобразим в косоугольных проекциях (Рисунок 2.7) произвольный от резок AB прямой общего положения и вторичные проекции этого отрезка. Построение проекций следов начнём с горизонтального следа. Согласно определению, искомая точка принадлежит прямой и, кроме того, расположена в плоскости π_1 . Если точка принадлежит прямой, то её проекции лежат на соответствующих проекциях прямой. Но, с другой стороны, точка лежит в плоскости координат и, следовательно, её проекция на эту плоскость совпадает с самой точкой. Таким образом, искомое изображение горизонтального следа прямой должно быть расположено в точке пересечения изображения прямой и её горизонтальной проекции. Продолжая отрезки AB и A^IB^I , отметим точку их пересечения M.

Рисунок 2.7 – Следы прямой в пространстве (аксонометрическое изображение)

Изображение горизонтальной проекции $\mathbf{M}^{\mathbf{I}}$ следа совпадает с изображением точки \mathbf{M} . Изображение фронтальной проекции $\mathbf{M}^{\mathbf{II}}$ горизонтально го следа найдём на оси $\mathbf{O}\mathbf{x}$, проведя через точку $\mathbf{M}^{\mathbf{I}}$ прямую, параллельную оси $\mathbf{O}\mathbf{y}$. Изображение профильной проекции $\mathbf{M}^{\mathbf{III}}$ горизонтального следа получим в точке пересечения с осью $\mathbf{O}\mathbf{y}$ прямой, проведённой через точку $\mathbf{M}^{\mathbf{I}}$ параллельно оси $\mathbf{O}\mathbf{x}$.

Точка **М** принадлежит также прямой **AB** и её проекции должны находиться на соответствующих проекциях прямой. Следовательно, изображения фронтальной и профильной проекций горизонтального следа должны лежать на продолжении отрезков $\mathbf{A^{II}B^{II}}$ и $\mathbf{A^{III}B^{III}}$ (в точках пере сечения $\mathbf{A^{II}B^{II}}$ с осью \mathbf{Ox} и $\mathbf{A^{III}B^{III}}$ с осью \mathbf{Oy}).

Построение проекций фронтального ${\bf N}$ и профильного ${\bf P}$ следов прямой осуществляется в той же последовательности.

Местоположение следов прямой ${\bf AB}$ и их проекций на плоскостях координат представлено в таблице:

таолица т — местоположение следов				
След	Местоположение следов и их проекций			
M	$\mathbf{M}^{\mathbf{I}}(\mathbf{M})$	$\mathbf{M}^{\mathbf{H}}$	$\mathbf{M}^{\mathbf{III}}$	
	на $\mathbf{A}\mathbf{B}$ и $\mathbf{A}^{\mathbf{I}}\mathbf{B}^{\mathbf{I}}$	на $\mathbf{A}\mathbf{B}$ и $\mathbf{A}^{\mathbf{I}}\mathbf{B}^{\mathbf{I}}$	на A^{II}B^{III} и Oy	
N	NI	$N^{II}(N)$	NIII	
	на $A^I B^I$ и Ox	на $\mathbf{A}\mathbf{B}$ и $\mathbf{A}^{\mathbf{I}\mathbf{I}}\mathbf{B}^{\mathbf{I}\mathbf{I}}$	на A^{III}B^{III} и Oz	
P	P^{I}	\mathbf{P}^{II}	$\mathbf{P}^{\mathbf{III}}(\mathbf{P})$	
	на A^IB^I и Oy	на A^{II}B^{II} и Oz	на AB и A^{III}B^{III}	

Таблица 1 – Местоположение следов

Рассмотрим построение прямоугольных проекций следов прямой общего положения, заданной проекциями отрезка ${\bf AB}$ (Рисунок 2.8). Построение начнём с нахождения проекций горизонтального следа прямой.

Для этого следует найти сначала фронтальную или профильную проекции этого следа. Фронтальную проекцию \mathbf{M}^{II} получим в точке пере сечения фронтальной проекции прямой с осью $\mathbf{O}\mathbf{x}$. Горизонтальную проекцию \mathbf{M}^{I} найдём в точке пересечения горизонтальной проекции прямой (продолжение отрезка $\mathbf{A}^{I}\mathbf{B}^{I}$) с перпендикуляром, восстановленным из точки \mathbf{M}^{II} к оси $\mathbf{O}\mathbf{x}$. Профильная проекция \mathbf{M}^{III} горизонтального следа может быть получена в точке пересечения профильной проекции $\mathbf{A}^{III}\mathbf{B}^{III}$ прямой с осью $\mathbf{O}\mathbf{y}$ или как третья проекция точки \mathbf{M} по двум проекциям \mathbf{M}^{I} и \mathbf{M}^{II} . Отметим, что профильная проекция горизонтального следа должна находиться на горизонтальной оси $\mathbf{O}\mathbf{y}$.

Рисунок 2.8 – Следы прямой на плоскости эпюра

Горизонтальную проекцию N^I фронтального следа прямой найдём, продолжив горизонтальную проекцию прямой до пересечения с осью Ox. Фронтальную проекцию N^{II} этого следа получим в точке пересечения перпендикуляра к оси Ox, восстановленного из точки N^I , с продолжением фронтальной проекции прямой. Профильную проекцию N^{II} фронтального следа найдём, опустив перпендикуляр из точки N^{II} на ось Oz. Точка N^{III} будет также в точке пересечения профильной проекции прямой с осью Oz.

Аналогичным построением найдём проекции профильного следа.

В заключение данного раздела отметим следующее:

- прямая, параллельная одной из плоскостей координат, имеет лишь два следа;
- прямая, перпендикулярная к плоскости координат, имеет лишь один след;
- два следа прямой совпадают в одной точке, если прямая пере секает ось координат;
- три следа прямой совпадают, если прямая проходит через начало координат.

2.5 Взаимное положение прямых линий

Возможны три случая относительного положения прямых линий. Прямые могут быть взаимно параллельны, могут пересекаться друг с другом или скрещиваться.

Если прямые параллельны, то их соответствующие проекции тоже параллельны.

Пусть даны косоугольные проекции двух взаимно параллельных прямых **AB** и **CD** (см. Рисунок 2.9, а).

a – аксонометрическое изображение; б – в прямоугольных проекциях на плоскости эпюра

Рисунок 2.9 – Параллельные прямые

Чтобы через данную точку провести прямую, параллельную заданной, нужно через проекции этой точки провести прямые, параллельные соответствующим проекциям заданной прямой.

У пересекающихся прямых соответствующие проекции пересекаются и проекции точки пересечения связаны перпендикуляром к соответствующей оси координат. Пусть даны две пересекающиеся в точке **К** прямые **АВ** и **CD** (см. Рисунок 2.10).

Точка \mathbf{K} принадлежит обеим прямым. Следовательно, проекции этой точки должны лежать на проекциях обеих прямых, т.е. в точках $\mathbf{K}^{\mathbf{I}}$ и $\mathbf{K}^{\mathbf{II}}$ пересечения соответствующих проекций.

Скрещивающиеся прямые не имеют общей точки. Их проекции

могут пересекаться, но точки пересечения не находятся в проекционной связи друг с другом, т. е. не лежат на перпендикуляре к соответствующей оси координат.

Изобразим прямоугольные проекции (Рисунок 2.11) ДВУХ и **CD**. В AB скрещивающихся прямых точку пересечения проекций проецируются 1. горизонтальных лве точки: точка принадлежащая прямой АВ, и точка 2, принадлежащая прямой СВ. Эти *точки называются кон курирующими*. С их помощью определяется взаимное положение прямых относительно плоскостей (видимость проекций геометрических элементов). Так, в нашем случае, приведённом на Рисунок 2.11, луч, проецирующий прямые на плоскость π_1 встретит раньше точку 1. Следовательно, эта часть прямой АВ расположена выше прямой СD. Аналогично определим, что левая часть прямой AB расположена дальше от плоскости π_2 вместе с принадлежащей ей точкой 3, чем прямая СD. В общем случае при определении видимости прямоугольных проекций на плоскости π_1 направление проецирующего луча принимают заданным сверху вниз, на плоскости π_2 - снизу вверх и на плоскости π_3 – слева направо.

Рисунок 2.10 – Пересекающиеся прямые на плоскости эпюра

Рисунок 2.11 – Скрещивающиеся прямые на плоскости эпюра

2.6 Вопросы для самопроверки

- 1. Какие существуют основные методы проецирования геометрических форм на плоскости?
- 2. Сформулируйте основные свойства параллельного проецирования.
- 3. Что понимается под термином «метод Монжа»?
- 4. Как называют и обозначают основные плоскости проекций?
- 5. Как построить горизонтальную проекцию точки по заданным фронтальной и профильной проекциям?
- 6. Как построить фронтальную проекцию точки по заданным горизонтальной и профильной проекциям точки?
- 7. Какие координаты точки можно определить по её горизонтальной проекции? Профильной проекции?
- 8. Какое изображение называют аксонометрией?
- 9. Какие имеются виды аксонометрии?
- 10. Как располагают оси прямоугольной изометрии? Чему равны натуральные и приведённые коэффициенты искажения в прямоугольной изометрии?
- 11. Как располагают оси прямоугольной диметрии? Чему равны натуральные и приведённые коэффициенты искажения в прямоугольной диметрии?
- 12. Чем определяется проекция прямой линии?
- 13. Какое положение может занимать прямая относительно плоскостей проекций?
- 14. Какие прямые называют линиями уровня? Проецирующими прямыми?
- 15. Что называют следом прямой линии?
- 16. Укажите правило построения следов прямой линии.
- 17. Как определить истинную длину отрезка прямой по его комплексному чертежу?
- 18. Как могут быть расположены в пространстве две различные прямые?
- 19. Как на чертеже изображают параллельные, пересекающиеся и скрещивающиеся прямые?
- 20. Как на чертеже располагаются проекции точки пересечения пересекающихся прямых?

3 КОМПЬЮТЕРНЫЕ МЕТОДЫ ИЗУЧЕНИЯ НАЧЕРТАТЕЛНОЙ ГЕОМЕТРИИ

В дополнение к традиционным лекциям и практическим занятиям в аудиториях в настоящее время все больший объем самостоятельной работы учащихся начинает отводиться компьютерным методам обучения. В дисциплине «Начертательная геометрия» данные методы обучения можно условно разделить на ряд технологий компьютерного обучения.

Первой из перспективных технологий компьютерного обучения является интернет-технология. Использование интернетовских сайтов для размещения учебных материалов сегодня обычное дело в обучении студентов. На таких сайтах, как правило, размещают перечень и варианты заданий, образцы их выполнения, требования к объему и качеству работ, списки на литературу, электронные учебные пособия. На сайтах крупных университетов имеются интернет учебники по начертательной геометрии [3-5]. Например, на сайте НИУ Институт информационных технологий, механики и оптики для открытого доступа выставлен интернет-учебник по начертательной геометрии с анимированными рисунками [3]. В данном учебнике в виде анимации приведены примеры объяснений и пошаговая последовательность решения задач по дисциплине «Начертательная геометрия».

Второй технологией компьютерного обучения в настоящее время является выкладывание в интернете лекций, записанных на видеокамеру. Это традиционная видеосъемка лекций. Хотя запись видео известна сравнительно давно, но компьютерные технологии позволяют соединить видео лекции с анимацией с дисплея компьютера. Например, на сайте НТУУ Киевский политехнический институт для открытого доступа выставлены видео лекций по начертательной геометрии [8].

Третьей технологией компьютерного обучения является создание компьютерных демонстрационных программ ПО дисциплине «Начертательная геометрия», в которых обучающийся сам может рас сматривать трехмерную модель объектов начертательной геометрии. В модели можно менять параметры и рассматривать модель с любого направления. Данные программы можно применять для демонстрации примеров при объяснении на лекциях и для самостоятельной работы учащегося дома. Такие программы кроме трехмерного представления начертательной геометрии ИΧ анимации И непосредственно в процессе работы изменять параметры. Например, показать точку общего положения и точки частного положения (рисунки 3.1-3.3). Данная программа выставлена в интернете [9] со ссылками для скачивания в открытом доступе.

Рисунок 3.1 – Компьютерная модель по теме: «Точка». Точка общего положения.

Рисунок 3.2 — Компьютерная модель по теме: «Точка». Точка частного положения (в плоскости координат π_1).

Рисунок 3.3 — Компьютерная модель по теме: «Точка». Точка частного положения (на оси координат X).

Преимущество данной программы для самостоятельной работы студента в том, что обучающийся сам может на экране своего компьютера рассматривать интересующие его варианты положения точки в первом октанте. Причем время самоподготовки не ограничено учебными занятиями в университете.

ЛИТЕРАТУРА

Основная литература

- 1 Гнилуша, И.И. Начертательная геометрия: Учебное пособие для заочной формы обучения инженерных специальностей / И.И. Гнилуша, В. А. Люторович, В. Т. Кривой, Р. Б. Соколов/– СПб.:СПбГТИ(ТУ), 2008.—93 с.
- 2 Талалай, П. Г. Начертательная геометрия. Инженерная графика. Интернет-тестирование базовых знаний: Учебное пособие /П. Г. Талалай. СПб.; М.; Краснодар:Лань, 2010. 254 с.
- 3 Тозик, В.Т. Электронный учебник по начертательной геометрии: Учебное пособие/ В.Т. Тозик. СПб: НИУ ИТМО, 2005. Режим доступа: http://kikg.ifmo.ru/geom3/, свободный. [Электронный ресурс]
- 4 Вольхин, К.А. Начертательная геометрия. Инженерная и компьютерная графика / К.А Вольхин Новосибирск: Новосиб. гос. архитектурно-строительный университет (Сибстрин), 2004. Режим доступа: http://www.ng.sibstrin.ru/wolchin / свободный. [Электронный ресурс]
- 5 Учебные ресурсы. Электронный учебник по начертательной геометрии. СПб.: Санкт-Петербургский государственный политехнический университет., 2012. Режим доступа: http://agd.mmf.spbstu.ru/Tasks/ свободный. [Электронный ресурс].

Дополнительная литература

- 6 Кириллов, Д.Л. Инженерная графика в химии и химической технологии. Методы проецирования. Аксонометрические проекции. Прямая линия: методические указания/Д.Л. Кириллов. ЛТИ им. Ленсовета. кафедра инженерного проектирования. Л. 1988. 25 с.
- 7 Кириллов, Д.Л. Инженерная графика в химии и химической технологии. Плоскость: методические указания/ Д.Л. Кириллов. ЛТИ им. Ленсовета. Кафедра инженерного проектирования. Л., 1988. 25 с.
- 8 Павлов, А.В. Начертательная геометрия. Кинофильмотека. Лекции 1-18 / А.В. Павлов Киев: НТУУ Киевский политехнический институт, 2013. Режим доступа: http://www.youtube.com/watch?v=DW0g4bfO6Fk свободный. [Электронный ресурс]
- 9 Хайдаров, Г.Г. Начертательная геометрия. Примеры / Г.Г. Хайдаров СПб.: СПбГТИ (ТУ), 2009. Режим доступа: http://www.youtube.com/watch?v=wGYomwjrWUA свободный. [Электронный ресурс]

СОДЕРЖАНИЕ

УКАЗАНИЯ К ИЗУЧЕНИЮ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ	3
ПРИНЯТЫЕ ОБОЗНАЧЕНИЯ	3
ВВЕДЕНИЕ	5
УКАЗАНИЯ К ИЗУЧЕНИЮ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ	7
1 МЕТОДЫ ПРОЕЦИРОВАНИЯ	8
1.1 Центральное проецирование	8
1.2 Параллельное проецирование	9
1.3 Проецирование на плоскости координат	10
2 ПРЯМАЯ ЛИНИЯ	19
2.1 Общее положение прямой	19
2.3 Определение истинной длины отрезка прямой	23
2.4 Следы прямой линии	26
2.5 Взаимное положение прямых линий	29
2.6 Вопросы для самопроверки	31
ЛИТЕРАТУРА	35
Основная литература	35
Дополнительная литература	35

Кафедра инженерного проектирования

Учебное пособие

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ЧАСТЬ ПЕРВАЯ

Дмитрий Леонидович Кириллов,

Владимир Александрович Люторович, Геннадий Гасимович Хайдаров, Ирина Николаевна Низовцева

Компьютерное макетирование, компьютерная вёрстка И.Н. Низовцевой

Отпечатано с оригинал-макета. Формат $60\times90^{-1}/_{16}$ Печ. л. 2,25 Тираж 40 экз. Заказ №

Санкт-Петербургский государственный технологический институт (технический университет)

190013, Санкт- Петербург, Московский пр., 26 Типография издательства СПбГТИ(ТУ) т.49-49-365