Flood Probability Regression with a Hybrid Ensemble w/ Uncertainty Quantification

By: Vatsal Sivaratri and Connor Friedman

Problem Statement and Motivation

Goal: Develop a predictive, robust model(s) for determining the likelihood of a flood (percent chance of an area to flood)

Motivation: Flood frequency and severity has been rising due to climate change. Reliable systems that can predict these events in advance can help communities plan and mitigate disasters.

Understanding Uncertainty in Predictions

- Machine Learning models make predictions, but how confident are they?
 - A prediction of **80% flood risk** means something entirely different if the model is highly confident vs. uncertain
- Types of Uncertainty:
 - Aleatoric Uncertainty (Data Uncertainty): Noise in the data; Inherent to the task
 - **Epistemic Uncertainty (Model Uncertainty):** How much the model doesn't know due to a lack of training data.
- Why does it matter?
 - High-confidence predictions -> Trust the model's output
 - **High-uncertainty predictions ->** Need more investigation, can't take results for face value
- Proposed Approach: Compute uncertainty estimates using Monte Carlo
 Dropout & Bootstrap Variance in Ensemble Learning

Dataset Source & Description

- Source: Kaggle Flood Dataset
- Key Details: Dataset consists of 1.12m instances and 21 features, all numerical.
- Key Features:
 - **Environmental Factors:** Monsoon intensity, watershed count.
 - **Geographic & Infrastructure:** Drainage systems, river management.
 - **Human Impact Factors:** Urbanization, deforestation.
- Target Variable: Flood Probability (Continuous values from 0 to 1)
- Data Preprocessing:
 - Feature Scaling: Standardized using z-score normalization.
 - Outliers: Removed using IQR

Ensemble Learning: Deep Neural Network (DNN)

Architecture:

- **Input Layer:** 21 features
- Hidden Layers: 2 Dense Layers (64->32 neurons)
- Activation: ReLU
- Dropout Layers: 30% dropout to improve generalization
- Output Layer: Single neuron (linear activation) -> Flood Probability (0-1)

Uncertainty Estimation: Monte Carlo Dropout:

- Run Model **T** times
- Randomly drop neurons each run, giving slightly different outputs

Mean Prediction:

$$\hat{y} = \frac{1}{T} \sum_{t=1}^{T} \hat{y}_t$$

Uncertainty (Variance) Prediction:

$$\sigma^2 = \frac{1}{T} \sum_{t=1}^{T} (\hat{y}_t - \hat{y})^2$$

If predictions **vary a lot**, uncertainty is **high**. If they are **stable**, uncertainty is **low**.

Ensemble Learning: Gradient Boosting Machine (GBM)

How GBM Works:

- Uses **decision trees** to repeatedly improve weak models.
- Each tree focuses on correcting errors from the last one.
- Outputs a weighted sum of trees.

Mean

Uncertainty Estimation: Bootstrapped Variance:

- Train multiple GBM models on different randomized subsets of the data
- Collect predictions from all the models and compute:

$$\hat{y}_{GBM} = \frac{1}{N} \sum_{i=1}^{N} \hat{y}_{GBM}^{(i)}$$
 $\sigma_{GBM}^2 = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}GBM^{(i)} - \hat{y}GBM)^2$

Variance

Ensemble Learning: Support Vector Regression (SVR)

How SVRs work:

- Find the best hyperplane that fits the flood probability
- Uses kernel trick to capture non-linearity

Uncertainty Estimation: Bootstrap Sampling

- Train multiple SVR models on different resampled datasets
- Use variance across models as uncertainty estimate

Support Vector Regression (SVR)

Model Aggregation

Each model provides a prediction + uncertainty estimate.

Uncertainty-Weighted Averaging:

More confident models (lower variance) contribute more:

$$\mathbf{w}_i = min(\frac{1}{max(\sigma_i, \epsilon)}, \delta), \epsilon = 1e - 15, \delta = 1e15$$

Final prediction:

$$p_{ensemble} = \sum w_i p_i$$

Performance Comparison

	MSE	MAE	R2 Score
DNN	0.00040	0.01595	0.84504
GBM	0.00059	0.01987	0.77274
SVR	0.00085	0.02409	0.67283
BayesRidge	0.00040	0.01580	0.84434
DecisionTree	0.00250	0.03979	0.03739
LinearReg	0.00040	0.01580	0.84434
RandomForest	0.00094	0.02503	0.63808
Ensemble	0.00054	0.01877	0.79343

Thanks!