# UniTrackFormer: End-to-End TrackML Particle Tracking with Transformer

Ivan Tang

May 2025

## **Project Overview**

- Goal: End-to-end particle track reconstruction for the TrackML Challenge using deep learning.
- Core Idea: Use Transformer architecture to cluster detector hits into physical tracks.
- Key Contributions:
  - End-to-end modeling, no manual feature engineering
  - Multi-task loss: classification, clustering, and parameter regression
  - Rich visualization and evaluation

#### Data Structure

#### TrackML Raw Data:

- hits.csv: Each hit's spatial coordinates (x, y, z), module info, etc.
- truth.csv: True particle ID (particle\_id) for each hit
- detectors.csv: Detector geometry info

#### Feature Example:



# Data Table Example

| hit_id | Х     | У     | Z     | $volume\_id$ | module_id |
|--------|-------|-------|-------|--------------|-----------|
| 1      | 123.4 | -56.7 | 789.0 | 8            | 12        |
| 2      | 234.5 | -67.8 | 800.1 | 8            | 13        |
|        |       |       |       |              |           |

Table: Sample fields from hits.csv

## Model Architecture: UniTrackFormer

- **Input:**  $N_{hits} \times D$  features
- Encoder: Multi-layer
   Transformer Encoder
- Query: Q learnable query vectors
- Decoder: Multi-layer
   Transformer Decoder
- Output:
  - Track classification
  - Hit assignment (clustering)
  - Parameter regression



#### Multi-task Loss

- Track classification loss (Binary Cross Entropy)
- Mask clustering loss (Dice + BCE)
- Physical parameter regression loss (MSE)
- Total loss =  $\alpha$  classification +  $\beta$  mask +  $\gamma$  params

## Training and Evaluation

- Data loading and feature extraction
- Model training (supports K-fold cross-validation)
- Second Second
- Visualization: 3D distribution, rz projection, track clustering



### Visualization Results



Ground Truth Tracks



Predicted Tracks

# Summary and Outlook

- End-to-end TrackML tracking pipeline implemented
- Multi-task loss and rich visualization supported
- Future: optimize model, improve clustering, enhance physics interpretability

Thank you! Questions welcome.