

Giulio Rossetti, Letizia Milli, Salvatore Citraro KDD Lab., UniPi & ISTI-CNR

Incontra Informatica London, 27th July 2019

Perché è importante studiare fenomeni diffusivi?

Elevata Mobilità

Elevata Densità

La "Grande" Peste (14° secolo)

4 anni dalla Francia alla Svezia

SARS & Covid19

6 mesi..

Incontra Informatica

Come descrivere un fenomeno diffusivo?

$$\begin{aligned} & \mathbf{r}_{s} = \frac{C_{2} - C_{1} I_{c} \cos \theta}{(I_{s} + m_{s} L^{2}) \sin^{2} \theta} & \frac{\mathcal{E}^{(0)} A(\mathbf{x}, h) \cos \theta I_{s-1} \partial f_{s} A(\mathbf{x}, h')}{\partial t^{\alpha}} - I_{a} A(\mathbf{x}, h') - I$$

ITALIA - Casi Positivi per data segnalazione

Obiettivo

Modelli

$$\begin{cases} \frac{dS}{dt} = -aSI, & S(0) = S_0 > 0, \\ \frac{dI}{dt} = aSI - bI, & I(0) = I_0 > 0, \\ \frac{dR}{dt} = bI, & R(0) = R_0 \ge 0. \end{cases}$$

Una prima approssimazione: Mean Field

Data una popolazione si assume:

Perfect mixing: tutti gli individui che ne fanno parte hanno la stessa probabilità di entrare in contatto

Modelli a "Compartimenti"

Ipotesi:

Compartimentalizzazione:

Ad ogni individuo è associato uno stato (e.g., Suscettibile, Infetto, Rimosso)

Esempi:

Modelli SI/SIS/SIR

$$\begin{cases} \frac{dS}{dt} = -aSI, & S(0) = S_0 > 0, \\ \frac{dI}{dt} = aSI - bI, & I(0) = I_0 > 0, \\ \frac{dR}{dt} = bI, & R(0) = R_0 \ge 0. \end{cases}$$

2 (3) compartimenti:

Suscettibile/Infetto/(Rimosso)

Definizione di regole (probabilistiche) per passare dall'uno all'altro

Assumere un contesto "mean field" è realistico?

"Behind each complex system there is a network, that defines the interactions between the components."

Social Networks sono composte di...

- ☐ Individui (nodi)
- relazioni (sociali) tra di essi (archi)

Il modo in cui gli individui sono connessi tra di loro è importante!

Social Networks e le loro caratteristiche...

Eterogeneità nel numero delle connessioni

"6 gradi di separazione"

Esistenza di Comunità

Social Networks ... ed il loro impatto sulla diffusione

La velocità e le modalità di diffusione dipendono da:

- modello usato per simularla
- Insieme iniziale degli individui infetti
- Struttura della rete sociale dei soggetti infetti (e.g., esistenza di comunità)

Processi diffusivi e reti sociali

Un "processo diffusivo" ha luogo quando i portatori della malattia/virus/idea sono connessi a nodi "suscettibili".

Cosa serve per descrivere un processo diffusivo?

- compartimenti
- regole di transizione tra compartimenti

A Network Diffusion Framework!

Simulate
Epidemics and
Opinion Dynamics
processes

Unfolding on top of **complex network** structures

Available Models

Epidemics

(16 Models)

- □ SI/SIS/SIR
- SEIS / SEIR /SWIR
- ☐ Threshold / Generalized Threshold / Profile / Profile-Threshold / Threshold-Blocked
- Independent Cascades /Independent Cascades with community
- Ising

Opinion Dynamics

(9 Models)

- Majority Rule
- Voter / Q-Voter
- Sznajd
- ☐ Cognitive Opinion Dynamics
- Algorithmic Bias
- ☐ Hegselmann-Krause / Weighted Hegselmann-Krause/ Attraction-Repulsione Weighted Hegselmann-Krause

SIR Code Example

Poche azioni semplici:

- ☐ Carichiamo la rete sociale (grafo)
- ☐ Selezioniamo il modello diffusivo
- ☐ Eseguiamo la simulazione

```
import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SIRModel as sir

# Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

# Model selection
model = sir.SIRModel(g)

# Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.01)
cfg.add_model_parameter('gamma', 0.005)
cfg.add_model_parameter("percentage_infected", 0.05)
model.set_initial_status(cfg)

# Simulation execution
iterations = model.iteration_bunch(200)
```

Visual Analysis

Come interpretare i risultati della simulazione?

Base Viz

- Diffusion Trends
- ☐ Incidence/Prevalence
- Opinion Dynamics

Advanced Viz

- Compare Models
- Multiple Run

Advanced Features

Definizione di modelli ad-hoc (composite)

 Definire modelli di diffusione componendo in modo incrementale compartimenti e regole di transizione

Support for Dynamic Network models

☐ Integration with DyNetX (ad-hoc library by CNR-UNIPI)

NDQL: Network Diffusion Query Language

☐ High-level query language for defining diffusion processes

CREATE_NETWORK g1 TYPE erdos_renyi_graph PARAM n 300 PARAM p 0.1

MODEL SI

STATUS Susceptible STATUS Infected

Compartment definitions

COMPARTMENT c1 TYPE NodeStochastic PARAM rate 0.1 TRIGGER Infected

Rule definitions

RULE FROM Susceptible TO Infected USING c1

Model configuration

INITIALIZE SET Infected 0.1

EXECUTE SI ON g1 FOR 100

When

Right now, NDlib v5.1

(codename: Enterovirus) is out!

Where

Pypi:

https://pypi.python.org/pypi/ndlib

- ☐ GitHub NDlib: https://github.com/GiulioRossetti/ndlib
- Documentation: http://ndlib.readthedocs.io/
- □ SoBigData: http://www.sobigdata.eu
- □ Tutorial: https://github.com/KDDComplexNetworkAnalysis/CNA Tutorials

User Base

~50k

Installations (2021-Q1 only)

Research impact

35

Publications citing NDlib since 2018 (First release 12/2017)

Perché NDlib?

Definire analisi "What if"

- Quali sono gli individui da vaccinare per ridurre sensibilmente la velocità di un processo diffusivo?
- Chi devo far "parlare" per ridurre la polarizzazione su temi dibattuti?
- Quale è la risposta più probabile di una popolazione ad una nuova policy?

Definire e testare modelli ad-hoc per specifici fenomeni

- Misinformation
- ☐ Fake-news diffusion
- ☐ Flu-like illnesses
- Reactions to new laws

E ora, sporchiamoci le mani!