Information Technology

FIT3143 - LECTURE WEEK 9b

PARALLEL ALGORITHM DESIGN – MATRIX MULTIPLICATION USING FOX & CANNON WITH VIRTUAL TOPOLOGIES & COLLECTIVE COMMUNICATIONS

algorithm distributed systems database systems computation knowledge madesign e-business model data mining interpretation distributed systems database software computation knowledge management and

Topic Overview

- Quick recap of the matrix multiplication algorithm
- Fox algorithm for parallel matrix multiplication
- Cannon algorithm for parallel matrix multiplication

Learning outcome(s) related to this topic

• Design and develop parallel algorithms for various parallel computing architectures (LO3)

These slides and enclosed sample code files were prepared by Shageenderan Sapai, PhD postgraduate student, Monash University.

Quick recap of the matrix multiplication algorithm

Assume we have 2 n x n matrices, A and B, and we want to find C such that $C = A \times B$

1	4	8
2	5	6
1	5	6

X

7	3	4
2	9	6
7	1	9

71	47	100
66	57	92
59	54	88

Α

В

C

$$c_{ij} = (a_i, b_j^T) = \sum_{k=0}^{n-1} a_{ik} \cdot b_{kj}, \ 0 \le i < m, \ 0 \le j < l$$

Serial Algorithm

Time Complexity O(n^3) – very slow

Parallel matrix multiplication algorithm - Fox

Parallel Matrix Multiplication Algorithm - General

A and B nxn matrices => C=AxB

- First, Matrix A & B are partitioned so that each process works on a specific submatrix of A & B.
- Each process does a serial matrix multiplication on their local submatrices of A & B and the results are stored in an accumulating sum
- Local submatrices are then communicated around to calculate the final result
- There are different algorithms for how submatrices are communicated, mainly, Fox algorithm and Cannon algorithm

Parallel Algorithm – Data Partitioning

- Parallel matrix multiplication requires data partitioning common methods are Block-Row Partitioning or Block-Column Partitioning.
- Another method is grid or checkerboard partitioning which is used in Fox and Cannon algorithm
- Say we have p number of processes and a square Matrix, M, of size $n \times n$ and let q = sqrt(p)
- M is partitioned into p square blocks (sub matrices) M_{i,j} where 0 <= i, j < q of size n/qxn/q</p>

Fox Algorithm

- Matrix A & B are grid partitioned into submatrices Ai,j and Bi,j
- In each step, a one-to-all broadcast of the rows of matrix A and a single-step circular upwards shift of columns in matrix B is done
- Loop q times
 - 1. Broadcast diagonal block Ai,i to all processors in the same row group
 - 2. Multiply block of received Ai,i with local block Bi,j and add to Ci,j
 - 3. Send (shift) entire local block B up within the same column group
 - 4. Select block Ai,(j+1) mod q (where Ai,j is the block broadcast in the previous step) and broadcast to all processors in the same row group.
 - 5. Go to 2.
- Gather all

Data Partitioning – Fox Algorithm

0

2

3

2	4
O	5

3 65 7

1 2 6 9 8413

3
9

4 5 6 4

7	1
7	6

9	2
4	1

Groups		roces	sors	
Row Group		[0,1]	[2, 3]	
Column Group		[0,2]	1,3]	

 Broadcast diagonal block Ai,i to all processors in the same row group

Λ	2	4	3	6
A 0,0	9	5	5	7
	1	2	8	4
	6	9	1	3

7	3	4	5
2		6	4
7	1	9	2
7	6	4	1

0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0
	0	0	0	0
0 0 0 0	0	0	0	0
	0	0	0	0

Α

В

C

A_{0,1} 3 6 5 7

A_{1,0} 1 2 6 9

A_{1,1} 8 4 1 3

3

0 0

 $A_{i,i}$

4 5 6 4

B0,1

O O

7 1 7 6

B1,0

 $A_{i,i}$

B_{1,1}

 Broadcast diagonal block Ai,i to all processors in the same row group

 $A_{0,0}$

 Broadcast diagonal block Ai,i to all processors in the same row group

 Broadcast diagonal block Ai,i to all processors in the same row group

A_{0,0}

 Broadcast diagonal block Ai,i to all processors in the same row group

A_{0,0}

Multiply block of received A with resident block B and add to C

2	4	3	6
9	5	5	7
1	2	8	4
6	9	1	3

22	42	32	26
73	72	66	65
84	32	88	20
28	19	21	5

Α

В

 $A_{0,0}$ X 9

 $A_{0,0}$

A0,1 5

9

 $A_{0,0}$

5 **B**0,1

A1,0 6

> 8 4 $A_{1,1}$ **B**1,0

A_{1,1}

3

B_{1,1}

B0,0

Multiply block of received A with resident block B and add to C

2	4	3	6
6	5	5	7
1	2	8	4
6	9	1	3

Α

1. Send (shift) entire local block B up within the same column group

• Send (shift) entire resident block B up one step

2	4	3	6
9	5	5	7
1	2	8	4
6	9	1	3

 7
 1
 9
 2

 7
 6
 4
 1

 7
 3
 4
 5

 2
 9
 6
 4

2242322673726665843288202819215

Α

В

 C

0

)

A1,0	1
	6

A _{1,1}	8	4
	1	3

 2
 4

 9
 5

2	4
9	5

9	2
4	1

8	4	
1	3	

 $A_{0,0}$

B_{0,0}

 $A_{0,0}$

B_{0,1}

A1,1

B1,0

A1,1

B_{1,1}

Broadcast Ai,(j+1) mod q to all processors in the same row group

Multiply block of received A with resident block B and add to C

2	4	3	6
9	5	5	7
1	2	8	4
6	9	1	3

85	81	83	38
157	119	139	82
95	53	104	33
88	118	99	71

Α

В

C

A1,0	1	2
,	6	9

A _{1,1}	8	4
	1	3

3

3	6			1
5	7	X	7	6
A _{0,1}			B _{0,0}	

1	2	Y	7	3
6	O	^	2	9
A1,0			B 1,0	

Multiply block of received A with resident block B and add to C

2	4	3	6
9	5	5	7
1	2	8	4
6	9	1	3

7	1	9	2
7	6	4	1
7	3	4	5
2	9	6	4

 85
 81
 83
 38

 157
 119
 139
 82

 95
 53
 104
 33

 88
 118
 99
 71

Α

В

C

- Already looped q(2) times, so now we must:
- Gather All

Fox Algorithm

- Tends to be faster than simple parallel matrix multiplication for large values of n
- Implemented in MPI by creating row and column communicators which enable easy communication of A & B blocks
- Although dealing with 2D matrices, in coding implementation these are represented using 1D arrays
- Difficult to adapt for non-square matrices i.e. A (mxn) x B (nxm)
- Has high communication overhead because at each step we are sending (relatively) large blocks of local A & B.

Parallel matrix multiplication algorithm - Cannon

Cannon Algorithm

- Matrix A & B are grid partitioned into submatrices Ai,j and Bi,j
- Data is moved incrementally in q-1 phases (ring broadcast algorithm)
- Each process skews matrix A_{i,j} and B_{i,j} to align elements by shifting A_{i,j} by i rows to the left and shifting B_{i,j} by j columns up.
- Multiply local block A with local block B and add to local C
- Loop q-1 times
 - 1. Shift elements (each Ai row by 1 unit and each Bj column by 1 unit)
 - 2. Multiply local block A with local block B and add to local C
- Gather all

Data Partitioning – Cannon Algorithm

Α

В

C

0

1

2

3

3	6
5	7

7 3 2 9

4	5
6	4

Skew matrix A and B to align elements by shifting Ai,j by i rows to the left and shift Bi,j by j columns up.

Skew matrix A and B to align elements by shifting Ai by i rows to the left and shift Bi by i columns up.

Skew matrix A and B to align elements by shifting Ai by i rows to the left and shift Bi by i columns up.

Multiply elements and add to accumulating sum

2	4	3	6	
9	5	5	7	
8	4	1	2	
1	3	6	9	
A				

2 9 4 1	
2 9 4 1	
7 1 4 5	
7 6 6 4	

В

X Local B Local A

X Local B

Local A

Local A Local B

Local A Local B

1. Shift elements (each Ai row by 1 unit and each Bi column by 1 unit)

1. Shift elements (each Airow by 1 unit and each Bi column by 1 unit)

 7
 3
 9
 2

 2
 49
 4
 1

 7
 1
 4
 5

 7
 6
 6
 4

Α

В

0

1

2

3

Local A

3	6
5	7

2495

1 2 6 9 8 4 1 3

Local B

7	1
7	6

1. Shift elements (each Airow by 1 unit and each Bi column by 1 unit)

 7
 1
 4
 5

 7
 6
 6
 4

 7
 3
 9
 2

 2
 9
 4
 1

Α

В

0

1

2

3

Local A

2 4

1 2 6 9 8 41 3

Local B

4 5 6 4

7 3 2 9

9 2

 Multiply local block A with local block B and add to local C

3	6	2	4			
5	7	ග	5			
1	2	80	4			
9	9	1	3			
A						

7 6 6 4	
7 3 9 2	
2 9 4 1	

 22
 42
 51
 12

 73
 72
 73
 17

 84
 32
 16
 13

 28
 19
 78
 66

В

С

Local A

3

Local A Local B

Local B

 Multiply local block A with local block B and add to local C

3	6	2	4			
5	7	9	5			
1	2	8	4			
9	9	1	3			
Λ						

Α

В

C

		0		
3	6		7	1
5	7	X	7	6
Loc	cal A	Loc	al B	

2 4 9 5 x 6 4

Local A Local B

 1
 2

 6
 9

 7
 3

 2
 9

Local A Local B

3

Local A Local B

- Already looped q-1(1) times, so now we must:
- Gather All

Cannon Algorithm

- Tends to be faster than simple parallel matrix multiplication for large values of n
- Implemented in MPI by creating row and column communicators which enable easy shifting of data
- Although dealing with 2D matrices, in coding implementation these are represented using 1D arrays
- Difficult to adapt for non-square matrices i.e. A (mxn) x B (nxm)
- Has lower communication overhead than Fox algorithm because at each step we are sending less data than in Fox

Cannon Algorithm – Bigger Example

2	4	3	6	4	4
9	5	5	7	3	3
1	2	8	4	2	2
6	9	1	3	1	1
1	2	8	4	2	2
6	9	1	3	1	1

7	3	4	5	4	4
2	9	6	4	5	5
7	1	9	2	6	6
7	6	4	1	7	7
7	1	9	2	6	6
7	6	4	1	7	7

Α

В

C

Skew

7	3	9	2	6	6
2	9	4	~	7	7
7	1	9	2	4	4
7	6	4	1	5	5
7	1	4	5	6	6
7	6	6	4	7	7

Α

В

 \Box

Multiply

2	4	3	6	4	4
O	5	5	7	ന	3
8	4	2	2	1	2
1	3	1	1	6	9
2	2	1	2	8	4
1	1	6	9	1	3

Α

В

22	42	51	12	52	52
73	72	73	17	39	39
84	32	26	6	14	14
28	19	13	3	69	69
28	14	16	13	76	76
14	7	78	66	27	27

C

Skew

Α

7	1	9	2	4	4
7	6	4	~	5	5
7	1	4	5	6	6
7	6	6	4	7	7
		9	2	6	6
2	9	4	1	7	7

В

22	42	51	12	52	52
73	72	73	17	39	39
84	32	26	6	14	14
28	19	13	3	69	69
28	14	16	13	76	76
14	7	78	66	27	27

 \Box

Multiply

7	1	9	2	4	4
7	6	4	~	5	5
7	~	4	5	6	6
7	6	6	4	7	7
7		9	2	6	6
2	9	4	1	7	7

В

85	81	103	103 24		80	
157	119	112	26	100	100	
112	46	42	19	90	90	
42	26	91	69	96	96	
39	35	104	33	102	102	
74	106	99	71	40	40	

 \Box

Skew

Α

7	1	4	5	6	6
7	6	6	4	7	7
7	3	9	2	6	
2	တ	4	~	7	7
7		9	2	4	4
7	6	4	1	5	5

B

85	81	103	24	80	80
157	119	112	26	100	100
112	46	42	19	90	90
42	26	91	69	96	96
39	35	104	33	102	102
74	106	99	71	40	40

 C

Multiply

4	4	2	4	3	6
3	3	တ	5	5	7
1	2	80	4	2	2
6	9	1	3	1	1
8	4	2	2	1	2
1	3	1	1	6	9

Α

7	1	4	5	6	6
7	6	6	4	7	7
7	3	9	2	6	9
2	9	4	1	7	7
7		9	2	4	4
7	6	4	1	5	5

В

141	109	135	50	140	140
199	140	178	91	179	179
123	67	130	39	116	116
102	125	112	74	109	109
123	67	130	39	116	116
102	125	112	74	109	109

C

- Already looped q-1(2) times, so now we must:
- Gather All

141	109	135	50	140	140		141	109	135	50	140	140
199	140	178	91	179	179	<mark>79</mark>	199	140	178	91	179	179
123	67	130	39	116	116		123	67	130	39	116	116
102	125	112	74	109	109		102	125	112	74	109	109
123	67	130	39	116	116		123	67	130	39	116	116
102	125	112	74	109	109		102	125	112	74	109	109
	C Cathered results on Process 0											

C code files implementing fox and cannon parallel matrix multiplication with MPI

- Fox Click here
- Cannon Click <u>here</u>

