Diszkrét matematika I.

7. előadás

Nagy Gábor nagygabr@gmail.com nagygabor@inf.elte.hu Mérai László diái alapján

Komputeralgebra Tanszék

2021. tavasz

Kombináció

Tétel

Egy n elemű \mathcal{A} halmaznak a k elemű részhalmazainak száma

$$C_n^k = {n \choose k} = \frac{n!}{k! \cdot (n-k)!}.$$

Bizonyítás

Először válasszunk $\mathcal A$ elemei közül k darabot a sorrendet figyelembe véve.

Ezt $n(n-1)\cdot\ldots\cdot(n-k+1)=\frac{n!}{(n-k)!}$ -féleképpen tehetjük meg.

Ha a sorrendtől eltekintünk, akkor az előző leszámlálásnál minden k elemű részhalmaz pontosan k!-szor szerepel. Ezzel leosztva kapjuk a k elemű részhalmazok számát.

Példa

Egy lottószelvény (90 számból 5) lehetséges kitöltéseinek száma:

$$\binom{90}{5} = \frac{90!}{5! \cdot 85!} = \frac{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 43\,949\,268.$$

Kombinatorika Diszkrét matematika I.

Ismétléses kombináció

Tétel

Egy n elemű \mathcal{A} halmaz elemeiből ha k-szor választunk úgy, hogy egy elemet többször is választhatunk és a sorrend nem számít, akkor a lehetséges választások száma

$${}^{i}C_{n}^{k}=\binom{n+k-1}{k}.$$

2021. tavasz

Bizonyítás

Legyen $\mathcal{A}=\{a_1,a_2,\ldots,a_n\}$. Minden egyes lehetőségnek megfeleltetünk egy 0-1 sorozatot:

$$\underbrace{1,1,\ldots,1}_{a_1\text{-ek száma}},0,\underbrace{1,1,\ldots,1}_{a_2\text{-ek száma}},0,\ldots,0,\underbrace{1,1,\ldots,1}_{a_2\text{-ek száma}}.$$

Ekkor a sorozatban k darab 1-es van (választott elemek száma), n-1 darab 0 van (szeparátorok száma). Összesen n-1+k pozíció, ezekből k-t választunk. Ilyen sorozat $\binom{n+k-1}{k}$ darab van.

2021. tavasz

Ismétléses kombináció

Példa

5-féle sütemény van a cukrászdában, 8 darabot szeretnénk vásárolni.

Hányféleképpen tehetjük ezt meg?

Itt n = 5, k = 8:

$$\binom{5+8-1}{8} = \binom{12}{8} = \frac{12!}{8! \cdot 4!} = 495.$$

Hányféleképpen dobhatunk 5 dobókockával?

Az $\{1,2,3,4,5,6\}$ halmazból 5-ször választunk (sorrend nem számít, egy elemet többször is választhatunk).

Ismétléses kombináció n=6, k=5 választással:

$$\binom{6+5-1}{5} = \binom{10}{5} = \frac{10!}{5! \cdot 5!} = 252.$$

Összefoglaló (kombinatorikai alapesetek)

Ismétlés nélküli permutáció $P_n = n!$, n elem lehetséges sorrendje (sorrend számít, egy elem (pontosan) egyszer).

Ismétléses permutáció $P_n^{k_1,k_2,...,k_m} = \frac{(k_1 + k_2 + ... + k_m)!}{k_1! \cdot k_2! \cdot ... \cdot k_m!}$, $n = k_1 + k_2 + ... + k_m$ elem lehetséges sorrendje, ahol az i típusú elemet

 k_i -szer választjuk (sorrend számít, egy elem többször). **Ismétlés nélküli variáció** $V_n^k = n!/(n-k)!$, n elemből k-t választunk

(sorrend számít, egy elem legfeljebb egyszer).

Ismétléses variáció ${}^{i}V_{n}^{k}=n^{k}$, n elemből k-szor választunk (sorrend számít, egy elem akár többször is).

Ismétlés nélküli kombináció $C_n^k = \binom{n}{k}$, n elemből k-t választunk (sorrend nem számít, egy elem legfeljebb egyszer).

Ismétléses kombináció ${}^{i}C_{n}^{k}=\binom{n+k-1}{k}$, n elemből k-szor választunk (sorrend nem számít, egy elem akár többször is).

Binomiális tétel

Tétel

Adott $x, y \in \mathbb{R}$ és $n \in \mathbb{N}$ esetén

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Bizonyítás

$$(x+y)^n = (x+y) \cdot (x+y) \cdot \ldots \cdot (x+y)$$

Ha elvégezzük a beszorzást, akkor $x^k y^{n-k}$ alakú tagokat kapunk, és ezen tagot annyiszor kapjuk meg, ahányszor az n tényezőből k darab x-et választunk.

Definíció

Az $\binom{n}{k}$ alakú számokat $(n, k \in \mathbb{N})$ binomiális együtthatónak nevezzük.

Binomiális együtthatók

Tétel

- 1. $\binom{n}{k} = \binom{n}{n-k}$.
- $2. \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$

Bizonyítás

- $\binom{n}{k}$ azon *n* hosszú 0-1 sorozatok száma, melyben *k* darab 1-es van.
 - 1. Az n hosszú 0-1 sorozatok közül azok száma, melyek k darab 1-est tartalmaznak megegyezik azok számával, melyek n-k darab 1-est tartalmaznak.
 - 2. Azon n hosszú, k darab 1-est tartalmazó 0-1 sorozatok száma, melynek első tagja $1: \binom{n-1}{k-1}.$ Azon n hosszú, k darab 1-est tartalmazó 0-1 sorozatok száma,

Azon *n* hosszú, *k* darab 1-est tartalmazó 0-1 sorozatok száma melynek első tagja $0: \binom{n-1}{k}$.

Binomiális együtthatók - Pascal-háromszög

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} : \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

n	$\binom{n}{k}$	$(x+y)^n$
0	1	1
1	1 1	x + y
2	1 2 1	$x^2 + 2xy + y^2$
3	1 3 3 1	$x^3 + 3x^2y + 3xy^2 + y^3$
4	1 4 6 4 1	$x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$
5	1 5 10 10 5 1	$x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$

Skatulyaelv

Skatulyaelv

Ha n darab gyufásdobozunk és n+1 gyufaszálunk van, akkor akárhogyan rakjuk bele az összes gyufát a skatulyákba, valamelyikben legalább kettő gyufa lesz.

Példa

Nyolc ember közül van legalább kettő, aki a hét ugyanazon napján született.

Az $\mathcal{A}=\{1,2,3,4,5,6,7,8\}$ halmazból bárhogyan választunk ki ötöt, akkor lesz közülük kettő, melyek összege 9.

Tekintsük az $\{1,8\}$, $\{2,7\}$, $\{3,6\}$, $\{4,5\}$ halmazokat. Ekkor a kiválasztott öt elem közül lesz kettő, melyek azonos halmazban lesznek, így összegük 9.

Skatulyaelv általánosítása

Általános skatulyaelv

Ha n darab gyufásdobozunk és m gyufaszálunk van, akkor akárhogyan rakjuk bele az összes gyufát a skatulyákba, lesz olyan, amelyikben legalább $\lfloor \frac{m-1}{n} \rfloor + 1 = \lceil \frac{m}{n} \rceil$ gyufa lesz.

Példa

Huszonhárom ember közül van legalább négy, aki a hét ugyanazon napján született.

Szita módszer

Legyen adott S_0 darab objektum, továbbá $\alpha_1,\alpha_2,\ldots,\alpha_r$ tulajdonságok úgy, hogy minden objektumról el tudjuk dönteni, hogy az egyes tulajdonságokkal rendelkezik-e.

Vezessük be a következő jelöléseket:

```
N(\alpha_i)= azon objektumok száma, amire teljesül \alpha_i; S_1=\sum_{k=1}^r N(\alpha_k); N(\alpha_i,\alpha_j)= azon objektumok száma, amire teljesül \alpha_i és \alpha_j; S_2=\sum_{1\leq k< m\leq r} N(\alpha_k,\alpha_m); :
```

 $N(\alpha_1,\alpha_2,\ldots,\alpha_r)=$ azon objektumok száma, amire teljesül α_1 és α_2 és \ldots és α_r ;

$$S_r = N(\alpha_1, \alpha_2, \ldots, \alpha_r);$$

 $N(\overline{\alpha_1}, \overline{\alpha_2}, \dots, \overline{\alpha_r}) =$ azon objektumok száma, amire nem teljesül sem α_1 , sem α_2 ,..., sem α_r . Ekkor:

$$N(\overline{\alpha_1}, \overline{\alpha_2}, \dots, \overline{\alpha_r}) = S_0 - S_1 + S_2 - S_3 + \dots + (-1)^r S_r$$

12.

Szita módszer

Feladat: Hány olyan 1000-nél kisebb pozitív egész szám van, amely nem osztható sem 2-vel, sem 3-mal, sem 5-tel?

Megoldás: Legyen az α_1 tulajdonság az, hogy egy szám osztható 2-vel, az α_2 tulajdonság az, hogy egy szám osztható 3-mal és az α_3 tulajdonság az, hogy egy szám osztható 5-tel.

Az 1000-nél kisebb számok közül:

összes	999	S_0	999
2-vel osztható	$\left\lfloor \frac{999}{2} \right\rfloor = 499$	$N(lpha_1)$	- 499
3-mal osztható	$\left\lfloor \frac{999}{3} \right\rfloor = 333$	$N(lpha_2)$	-333
5-tel osztható	$\left\lfloor \frac{999}{5} \right\rfloor = 199$	$N(lpha_3)$	-199
$2 \cdot 3$ -mal osztható	$\left\lfloor \frac{999}{2\cdot 3} \right\rfloor = 166$	$N(lpha_1,lpha_2)$	+ 166
$2 \cdot 5$ -tel osztható	$\left\lfloor \frac{999}{2\cdot 5} \right\rfloor = 99$	$\mathcal{N}(lpha_1,lpha_3)$	+ 99
$3 \cdot 5$ -tel osztható	$\left\lfloor \frac{999}{3\cdot 5} \right\rfloor = 66$	$N(lpha_2,lpha_3)$	+ 66
$2 \cdot 3 \cdot 5$ -tel osztható	$\left\lfloor \frac{999}{2\cdot 3\cdot 5} \right\rfloor = 33$	$\mathcal{N}(lpha_1,lpha_2,lpha_3)$	_ 33
			= 266

13.

Szita módszer

Tétel

Legyenek A_1, A_2, \ldots, A_n véges halmazok. Ekkor

$$\left|\bigcup_{i=1}^n A_i\right| = \sum_{i=1}^n |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \dots$$

Példa

Hány olyan 1000-nél kisebb szám van, amely nem osztható sem 2-vel, sem 3-mal, sem 5-tel?

Először: Hány olyan 1000-nél kisebb szám van, amely osztható 2-vel vagy 3-mal vagy 5-tel?

$$A_1 = \{1 \le n \le 999 : 2|n\} \rightarrow |A_1| = \lfloor \frac{999}{2} \rfloor;$$

$$A_2 = \{1 \le n \le 999 : 3|n\} \rightarrow |A_2| = \lfloor \frac{999}{39} \rfloor;$$

$$A_3 = \{1 \le n \le 999 : 5|n\} \rightarrow |A_3| = \left\lfloor \frac{999}{5} \right\rfloor.$$

Hasonlóan
$$|A_1 \cap A_2| = \lfloor \frac{999}{2 \cdot 3} \rfloor$$
, $|A_1 \cap A_3| = \lfloor \frac{999}{2 \cdot 5} \rfloor$, $|A_2 \cap A_3| = \lfloor \frac{999}{3 \cdot 5} \rfloor$, $|A_1 \cap A_2 \cap A_3| = \lfloor \frac{999}{3 \cdot 5} \rfloor$.

$$\left|\frac{999}{2}\right| + \left|\frac{999}{3}\right| + \left|\frac{999}{5}\right| - \left|\frac{999}{2\cdot3}\right| - \left|\frac{999}{2\cdot5}\right| - \left|\frac{999}{3\cdot5}\right| + \left|\frac{999}{2\cdot3\cdot5}\right| = 733.$$

14.

Szita módszer

Tétel

Legyenek A_1 , A_2 , ..., A_n véges halmazok. Ekkor

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{i < j} |A_{i} \cap A_{j}| + \sum_{i < j < k} |A_{i} \cap A_{j} \cap A_{k}| - \dots$$

Bizonyítás

Legyen $x \in \bigcup_{i=1}^n A_i$ olyan, hogy az n halmaz közül pontosan t darabnak eleme. Számoljuk meg, hányszor vettük figyelembe x-et a formula jobb oldalán:

$$\begin{array}{l} \sum_{i=1}^{n}|A_{i}|\text{-ben }t\text{-szer, }\sum_{i< j}|A_{i}\cap A_{j}|\text{-ben }\binom{t}{2}\text{-sz\"{o}r,}\\ \sum_{i< j< k}|A_{i}\cap A_{j}\cap A_{k}|\text{-ben }\binom{t}{3}\text{-szor, ... Ez \"{o}sszesen:}\\ t-\binom{t}{2}+\binom{t}{3}-\ldots+(-1)^{t+1}\binom{t}{t}=\\ =-\binom{t}{1}(-1)^{1}1^{t-1}+\binom{t}{2}(-1)^{2}1^{t-2}+\binom{t}{3}(-1)^{3}1^{t-3}+\ldots+\binom{t}{t}(-1)^{t}1^{0})=\\ =-\binom{t}{1}(-1+1)^{t}-\binom{t}{0}(-1)^{0}1^{t})=-\binom{0^{t}-1\cdot1\cdot1}=-\binom{0}{0}-1)=1\\ \text{Vagyis }x\text{-et egyszer számoltuk a formula jobb oldalán is \'{e}s a bal oldalán is.} \end{array}$$