Convergencia y Derivación de Series

Juan Espejo*

20 de julio de 2017

Definición 1 (Convergencia puntual y convergencia uniforme). Sea $X \subset \mathbb{R}$ y sea $f: X \to \mathbb{R}$. Se dice que una sucesión de funciones $f_n: X \to \mathbb{R}$

- (i) converge puntualmente a $f, f_n \to f$, si para cada $x \in X$: $f_n(x) \to f(x)$.
- (ii) converge uniformemente a $f, f_n \xrightarrow{\text{uni}} f$, si para cada $\epsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0, x \in X \quad \Rightarrow \quad |f_n(x) - f(x)| < \epsilon.$$

Observación 2. Siguiendo la notación de arriba, dado $\epsilon > 0$, la faja de radio ϵ en torno del gráfico de f es el conjunto

$$F(f; \epsilon) := \{ (x, y) \in \mathbb{R}^2 ; x \in X, f(x) - \epsilon < y < f(x) + \epsilon \}.$$

Desde una perspectiva geométrica, decir que $f_n \xrightarrow{\text{uni}} f$ significa que para todo $\epsilon > 0$, el gráfico de f_n está contenido en la faja de radio ϵ en torno del gráfico de f para todo n suficientemente grande, ver figura 1.

Figura 1: El gráfico de f_n contenido en la faja $F(f;\epsilon)$, tomado de la figura 10 de [1].

^{*}jespejod@uni.edu.pe

Observación 3. Siguiendo la notación de arriba:

$$f_n \xrightarrow{\mathrm{uni}} f \quad \Rightarrow \quad f_n \to f.$$

Propiedad 4. Siguiendo la notación de arriba, si

- (i) $f_n \xrightarrow{\text{uni}} f$ y
- (ii) cada f_n es continua,

entonces, f es continua.

Demostración. Ver teorema 1 del capítulo 12 de [1].

Lema 5. Siguiendo la notación de arriba, $f_n \xrightarrow{\mathrm{uni}} f$ si y solo si . . .

Demostración. Ver teorema 7.8 de Rudin.

Theorem 6. Siguiendo la notación de arriba, sea $(M_n) \subset \mathbb{R}$. Si

- (i) para cada $x \in X$ y $n: |f_n(x)| \le M_n$ y
- (ii) $\sum M_n$ converge,

entonces $\sum f_n$ converge uniformemente (sobre X).

Demostración. . . .

Ejemplo 7. Sea $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = x/n$.

- (i) $f_n \to 0$
- (ii) $f_n \to 0$ sobre compactos.

Ejemplo 8. Sea $f_n : [0,1] \to \mathbb{R}$, $f_n(x) = x^n$, y sea $f : [0,1] \to \mathbb{R}$, f(x) = 0 si $0 \le x < 1$, f(1) = 1.

- (i) $f_n \to f$
- (ii) f_n NO converge uniformemente a f.

Ejemplo 9. Sea $f_n : [0,1] \to \mathbb{R}, f_n(x) = x^n(1-x^n).$

- (i) $f_n \to 0$
- (ii) f_n NO converge uniformemente a f.

Propiedad 10. Sea $f_n:[a,b]\to\mathbb{R}$ una sucesión de funciones continuas. Si $f_n\xrightarrow{\mathrm{uni}} f$, entonces

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x)dx,$$

i.e.,

$$\int_{a}^{b} \lim f_{n} = \lim \int_{a}^{b} f_{n}.$$

Demostración. . . .

Ejemplo 11. Sea $f_n : [0,1] \to \mathbb{R}, f_n(x) = nx^n(1-x^n)$.

- (i) $f_n \to 0$
- (ii) $\int f_n$ NO converge a 0.

Lema 12 (Teorema Fundamental del Cálculo). Sea $f:[a,b]\to\mathbb{R}$ continua y sea $F:[a,b]\to\mathbb{R}$. Son equivalentes:

- (i) existe $c \in [a, b]$ tal que $F(x) = F(c) + \int_{c}^{x} f(t)dt$ para todo $x \in [a, b]$.
- (ii) F es una primitiva de f.

Demostración. Ver teorema 1 del capítulo 11 de [1].

Theorem 13 (Dereivación término a término). Sea $(f_n) \subset C^1[a,b]$. Si

- (i) $f'_n \xrightarrow{\text{uni}} g$ y
- (ii) $(f_n(c))$ converge para algún $c \in [a, b]$,

entonces $f_n \xrightarrow{\text{uni}} f$ con $f \in C^1[a, b]$ y f' = g, i.e.,

$$\left(\lim f_n\right)' = \lim f_n'.$$

Demostración. . . .

Corolario 14 (Derivación de series). Sea $(f_n) \subset C^1[a,b]$. Si

- (i) $\sum f'_n \xrightarrow{\text{uni}} g$ y
- (ii) $\sum f_n(c)$ converge para algún $c \in [a, b]$,

entonces $\sum f_n \xrightarrow{\text{uni}} f$ con $f \in C^1[a, b]$ y f' = g, i.e.,

$$\left(\sum f_{n}\right)' = \sum f'_{n}.$$

Demostración. . . .

Ejemplo 15.

$$\sum_{n=0}^{\infty} \frac{x^2}{1+x^{2^n}} = 1+x^2,$$

si $x \neq 0$.

Referencias

 $[1]\,$ E. L. Lima. Análise~Real, volume 1. IMPA, 2011. 11 edição.