Теория конечных автоматов

Семинар 14

Задача 1. Для универсального множества $E = \{A, B, C, D, E, F, G\}$ и нечётких подмножеств

$$A = \{ (A | 0), (B | 0,3), (C | 0,7), (D | 1), (E | 0), (F | 0,2), (G | 0,6) \},$$

$$\underline{B} = \{ (A \mid 0,3), (B \mid 1), (C \mid 0,5), (D \mid 0,8), (E \mid 1), (F \mid 0,5), (G \mid 0,6) \},$$

$$C = \{ (A|1), (B|0,5), (C|0,5), (D|0,2), (E|0), (F|0,2), (G|0,9) \}$$

Определите

a)
$$\delta(A, B)$$
, $\delta(B, C)$, $\delta(A, C)$,

б)
$$\varepsilon(A, B)$$
, $\varepsilon(B, C)$, $\varepsilon(A, C)$,

B)
$$v(\underline{A})$$
, $v(\underline{B})$, $v(\underline{A} \cap \underline{B})$, $v(\underline{A} \cup \underline{B})$, $v(\overline{\underline{A}})$,

$$\Gamma) \ \eta(\underline{A}), \ \eta(\underline{B}), \ \eta(\underline{A} \cap \underline{B}), \ \eta(\underline{A} \cup \underline{B}), \ \eta(\bar{\underline{A}}).$$

Задача 2. Определите обычное подмножество α -уровня для нечёткого подмножества

$$A = \{ (A \mid 0,7), (B \mid 0,5), (C \mid 1), (D \mid 0,2), (E \mid 0,6) \}$$

a)
$$\alpha = 0.1$$
, 6) $\alpha = 0.6$, B) $\alpha = 0.8$, $\alpha = 0.9$.

Задача 3. Выпишите множества всех нечётких подмножеств для случаев

a)
$$E = \{x_1, x_2\}, M = \{0; \frac{1}{3}; \frac{2}{3}; 1\},$$

6)
$$E = \{x_1, x_2, x_3\}, M = \{a, b, c\}, a < b < c.$$

Задача 4. Для нечётких подмножеств

$$\underline{A} = \{ (A | 0), (B | 0,3), (C | 0,7), (D | 1), (E | 0), (F | 0,2), (G | 0,6) \},$$

$$\underline{B} = \{ (A \mid 0,3), (B \mid 1), (C \mid 0,5), (D \mid 0,8), (E \mid 1), (F \mid 0,5), (G \mid 0,6) \},$$

$$C = \{ (A|1), (B|0,5), (C|0,5), (D|0,2), (E|0), (F|0,2), (G|0,9) \}$$

Вычислите

a)
$$\underline{A} + \underline{B} + \underline{C}$$
, 6) $\underline{A} \cdot (\underline{B} + \underline{C})$

Задача 5. Пусть задано универсальное множество $E = [0, a] \subset R$.

Для нечёткого подмножества $ilde{\mathcal{A}}$, заданного функцией принадлежности $\mu_{ ilde{\mathcal{A}}}(x)$, определите индекс v нечеткости подмножества $ilde{\mathcal{A}}$.

a)
$$\mu_{A}(x) = \frac{x^{2}}{a^{2}}, x \in [0, a],$$

6)
$$\mu_{A}(x) = \frac{(x-a)^{2}}{a^{2}}, x \in [0, a],$$

B)
$$\mu_{A}(x) = \frac{4x^{2}}{a^{2}}, \ 0 \le x \le \frac{a}{2},$$

r)
$$\mu_{A}(x) = \frac{4(x-a)^{2}}{a^{2}}, \ \frac{a}{2} \le x \le a.$$