## TRƯỜNG ĐẠI HỌC BÁCH KHOA TP.HCM Khoa Khoa Học và Kỹ Thuật Máy Tính

----oOo-----

| Họ và tên: | <br> |
|------------|------|
| MSSV:      |      |

#### ĐỀ THI CUỐI KỲ 2. 2012-2013 Môn: Thiết kế luận lý 1

Thời gian: 90 phút - Ngày: 10/06/2013 (30 câu trắc nghiệm) **Được phép sử dung tài liêu giấy** 

Mã đề 0003

#### Sinh viên làm phần TỰ LUẬN trực tiếp vào đề thi

### PHẦN TRẮC NGHIỆM

Câu 1: Chọn phát biểu đúng:

A. J-K Flip Flop có thể được dùng như 1 S-C Flip Flop. (Ngõ nhập J tương đương với S. Ngõ nhập K tương đương với C)

**B.** S-C Flip Flop có thể được dùng như 1 J-K Flip Flop. (Ngõ nhập J tương đương với S. Ngõ nhập K tương đương với C)

C. Để hiện thực truyền dữ liệu song song, chỉ có thể sử dụng D Flip-Flop, không thể dùng J-K Flip Flop.

D. Tất cả đều đúng.

**Câu 2:** Chọn bảng sự thật đúng cho sơ đồ mạch điện sau đây (NC = no change):



| SET | CLR | CLK      | Q       |
|-----|-----|----------|---------|
| 0   | 0   | <b>↑</b> | NC      |
| 0   | 1   | <b>↑</b> | 0       |
| 1   | 0   | <b>↑</b> | 1       |
| 1   | 1   | <b>↑</b> | Invalid |

| SET | CLR | CLK          | Q       |
|-----|-----|--------------|---------|
| 0   | 0   | $\downarrow$ | Invalid |
| 0   | 1   | <b>↓</b>     | 1       |
| 1   | 0   | <b>↓</b>     | 0       |
| 1   | 1   | <b>↓</b>     | NC      |

| SE | Г | CLR | CLK          | Q       |
|----|---|-----|--------------|---------|
| 0  |   | 0   | $\downarrow$ | NC      |
| 0  |   | 1   | $\downarrow$ | 0       |
| 1  |   | 0   | $\downarrow$ | 1       |
| 1  |   | 1   | $\downarrow$ | Invalid |

| SET | CLR | CLK      | Q       |
|-----|-----|----------|---------|
| 0   | 0   | <b>↑</b> | Invalid |
| 0   | 1   | <b>↑</b> | 1       |
| 1   | 0   | <b>↑</b> | 0       |
| 1   | 1   | <b>↑</b> | NC      |

**Câu 3:** Xác định biểu thức tối giản nhất của hàm F với  $F = \overline{C}.\overline{B}.A + C.B + B.\overline{A} + \overline{B}.A$ 

 $A. \overline{B}.A + B.\overline{A} + C.A$ 

**B.**  $\overline{B}.A + B.\overline{A} + C.\overline{B}$ 

C.  $\overline{B}.A + C.B + \overline{B}.\overline{A}$ 

**D.** Tất cả đều sai

**Câu 4:** Sơ đồ thiết kế mạch nào sau đây thỏa mãn điều kiện  $\mathbf{f}_{\text{OUTPUT}} = \mathbf{f}_{\text{CLK}}/24$  và Duty cycle của ngõ xuất OUTPUT bằng  $\mathbf{50}\%$ 







Sơ đồ mạch dưới đây sử dụng cho các câu từ 5 đến 9. Cho tần số tín hiệu CLK = 10 KHz



Câu 5: . Xác định số MOD của bộ đếm:

**A.** 44

C. 55

**D.** 36

Câu 6: . Tần số của ngõ xuất Q3 của U2 là:

**A.** 333 Hz

**B.** 227 Hz

**C.** 250 Hz

**D.** 200 Hz

Câu 7: . Tần số của ngõ xuất Q1 của U1 là:

**A.** 10 KHz

**B.** 1 KHz

<u>C.</u> 2.5 KHz

**D.** 1.25 Hz

Câu 8: . Xác định tín hiệu bị xung gai của bộ đếm:

**A.** O0 của U1

**B.** Q1 của U2

**C.** Q2 của U1

**D.** Q3 của U2

Câu 9: . Xác định *Duty cycle* (*mức 1*) cho ngõ xuất Q2 của U2:

**A.** 36.36%

**B.** 40%

C. 30%

**D.** 33.33%

**Câu 10:** Giả sử ban đầu ABCD = 0000. Xác định giá trị của bô đếm sau 10 chu kỳ clock tiếp theo:



Các chân S, R của 4 Flip-Flop đều được nổi lên nguồn (**mức 1**)

**A.** 0000

**B.** 1111

**D.** 0111

Câu 11: Xét các mạch Enable/Disable. Chon phát biểu đúng:

- **A.** Khi sử dụng cổng OR, ngõ xuất ở mức 0 khi disable.
- **B.** Để ngõ xuất ở mức 0 khi disable, có thể sử dung cổng OR hoặc cổng AND.
- C. Khi sử dụng cổng NAND, ngõ xuất ở mức 1 khi disable.
- **D.** Tất cả đều đúng.

Câu 12: Cho hàm  $F(D,C,B,A) = \Sigma(0, 5, 8, 10, 11, 12, 14) + d(1, 2, 11, 15)$  với D là MSB và A là LSB. Biểu thức rút gọn (dạng SOP) của hàm F là:

**A.** C.A + D.C + D.B.A **B.** C.A + D.C + C.B.A **C.** C.A + D.B + C.B.A **D.** Cå 3 câu đều đúng

**Câu 13:** Cho một số trong hệ thống bù 2 như sau: 101101. Số thập phân tương đương là:

**A.** 13

**C.** -18

**D.** -19

**Câu 14:** Chon phát biểu đúng nhất:

- A. Sử dụng phương pháp bìa Karnaugh có thể cho nhiều hơn 1 kết quả tối giản
- **B.** Sử dụng phương pháp bìa Karnaugh luôn cho kết quả tối giản
- C. Sử dụng phương pháp bìa Karnaugh cho phép rút gon biểu thức có tối đa 6 biến
- D. Tất cả đều đúng

Câu 15: Biểu diễn số (-10) trong hệ thống bù 2 là:

**A.** 01010

**B.** 10110

**C.** 11010

**D.** 10101

Câu 16: Cho mạch tổ hợp như hình bên dưới. Xác định điều kiện đầy đủ để LED sáng.



**A.** A=0 hoặc B=0 hoặc (B=0 và C=1)

**B.** (A=1 và B=1) hoặc C=1

 $\mathbf{C}$ . (A=0 hoặc B=0) và C=0

D. Tất cả đều đúng.

Sơ đồ mạch dưới đây sử dụng cho các câu từ 17 đến 20



Các chân J, K của 4 Flip-Flop đều được nối lên 5V (**mức 1**)

Câu 17: . Chọn phát biểu đúng về sơ đồ mạch đếm với ngõ xuất DCBA:

A. Mạch đếm xuống bất đồng bộ MOD-7

**B.** Mạch đếm xuống bất đồng bộ MOD-12

C. Mạch đếm lên bất đồng bộ MOD-11

**D.** Mạch đếm lên bất đồng bộ MOD-10

Câu 18: . Xác định *Duty cycle* (*mức 1*) cho ngõ xuất C của mạch đếm:

**A.** 43 %

**B.** 33 %

C. 50 %

**D.** 27 %

**Câu 19:** . Giả sử các Flip-Flop có thời gian trễ  $t_{pd} = 25$  us. Xác định tần số tối đa của xung CLK để mạch vẫn hoạt động đúng:

**A.** 40 KHz

**B.** 5 KHz

**C.** 10 KHz

**D.** 25 KHz

Câu 20: . Xác định tín hiệu bị xung gai của mạch đếm:

A. Tín hiệu B

B. Tín hiệu A

C. Tín hiệu C

**D.** Tín hiệu D

Sơ đồ mạch dưới đây sử dụng cho các câu từ 21 đến 22



Các chân J, K của 4 Flip-Flop đều được nối lên nguồn (**mức 1**)

Câu 21: . Giả sử ban đầu DCBA = 1111. Xác định chuỗi 5 trạng thái kế tiếp của bộ đếm:

**A.** 0000, 0001, 0010, 0011, 0100

**B.** 1110, 1101, 1100, 1011, 1010

C. 0010, 0011, 0010, 0011, 0010

**D.** 0010, 0011, 0100, 0101, 0110

**Câu 22:** . Giả sử ban đầu DCBA = 0111. Xác định chuỗi 5 trạng thái kế tiếp của bộ đếm:

**A.** 1000, 1001, 1010, 1011, 1100

**B.** 0110, 0101, 0100, 0010, 0010

<u>C.</u> 0010, 0011, 0010, 0011, 0010

**D.** 0010, 0011, 0100, 0101, 0110

Câu 23: Cho mạch phát hiện canh clock như hình dưới đây:



Chọn phát biểu đúng.

- A. Mạch tạo ra xung thấp (LOW) khi có cạnh xuống.
- **B.** Mạch tạo ra xung cao (HIGH) khi có cạnh xuống.
- C. Mạch tạo ra xung cao (HIGH) khi có cạnh lên.
- **D.** Mạch tạo ra xung thấp (LOW) khi có cạnh lên.

Câu 24: Cho sơ đồ mạch đếm sau



Giả sử trạng thái ban đầu của **DCBA** = **0000**. Xác định chuỗi 5 trạng thái kế tiếp của bộ đếm

**A.** 0001, 0010, 0011, 0100, 0101

**B.** 1110, 1101, 1011, 0111, 1110

**C.** 1111, 1110, 1101, 1100, 1011

<u>D.</u> 1110, 0011, 1000, 1111, 0001

Câu 25: Chọn sơ đồ mạch có nguyên lý hoạt động tương ứng với bảng sự thật dưới đây:

| SET | CLR | CLK      | Q       |
|-----|-----|----------|---------|
| 0   | 0   | <b>↑</b> | NC      |
| 0   | 1   | <b>↑</b> | 1       |
| 1   | 0   | <b>↑</b> | 0       |
| 1   | 1   | 1        | Invalid |







D. Cả A và C đều đúng

**Câu 26:** Một mạch tổ hợp có 4 ngõ nhập (D, C, B, A) và 1 ngõ xuất (X). Ngõ xuất X=1 khi số DCBA (D là MSB và A là LSB) là một số BCD. Ngược lại, X=0. Biểu thức đại số Bool của mạch là:

**A.** 
$$D + \overline{C}.\overline{B}$$

$$\underline{\mathbf{B}}. \overline{D} + \overline{C}.\overline{B}$$

C. 
$$\overline{D} + C.\overline{B}$$

D. Tất cả đều đúng

Sơ đồ mạch dưới đây sử dung cho các câu từ 27 đến 28



Câu 27: . Xác đinh số MOD của bô đếm:

**A.** 100

**R** 90

**C.** 160

**D.** 144

**Câu 28:** . Xác định Duty cycle ( $m\acute{w}c$  1) của ngõ xuất TCU của U1:

**A.** 95%

**B.** 3.125 %

**C.** 93.75 %

D. Tất cả đều sai

**Câu 29:** Giả sử ban đầu AB = 00. Xác định chuỗi trạng thái của bộ đếm:



Các chân S, R của 3 Flip-Flop đều được nối xuống đất (**mức 0**)

**A.** 00, 10, 01, 11 và quay lại 00 **C.** 00, 01, 10, 11 và quay lại 00

**B.** 00, 11, 01, 10 và quay lại 00

**D.** 00, 11, 10, 01 và quay lại 00

Câu 30: Cho bìa Karnaugh 4 biến như hình bên. Xác định biểu thức đại số Bool tối giản nhất:

|                  | $\bar{B}\bar{A}$ | $\bar{B}A$ | BA | $Bar{A}$ |
|------------------|------------------|------------|----|----------|
| $\bar{D}\bar{C}$ | 0                | 0          | X  | X        |
| $\overline{D}C$  | 1                | 0          | 1  | 1        |
| DC               | X                | X          | 1  | 0        |
| $D\bar{C}$       | 0                | 0          | 0  | 0        |

**A.**  $\overline{D}.B + C.B.A + \overline{C}.\overline{B}.\overline{A}$ 

C. 2 câu A và B đều đúng

**B.**  $\overline{D}.B + C.B.A + \overline{D}.C.\overline{A}$ 

D. Tất cả đều sai

# PHẦN TỰ LUẬN (1đ)

Sử dụng D Flip-Flop để thiết kế mạch đếm đồng bộ theo sơ đồ chuyển trạng thái sau (chú ý trình bày đầy đủ các bước thiết kế - bao gồm cả sơ đồ mạch):



| Trạn | g thái hiệ | n tại | Trạng thái kế tiếp |   |   |                           |                           |                           |
|------|------------|-------|--------------------|---|---|---------------------------|---------------------------|---------------------------|
| A    | В          | C     | A                  | В | C | $\mathbf{D}_{\mathbf{A}}$ | $\mathbf{D}_{\mathbf{B}}$ | $\mathbf{D}_{\mathbf{C}}$ |
| 0    | 0          | 0     | 0                  | 0 | 1 | 0                         | 0                         | 1                         |
| 0    | 0          | 1     | 0                  | 1 | 0 | 0                         | 1                         | 0                         |
| 0    | 1          | 0     | 1                  | 1 | 0 | 1                         | 1                         | 0                         |
| 0    | 1          | 1     | 0                  | 0 | 1 | 0                         | 0                         | 1                         |
| 1    | 0          | 0     | 1                  | 1 | 1 | 1                         | 1                         | 1                         |
| 1    | 0          | 1     | 1                  | 1 | 1 | 1                         | 1                         | 1                         |
| 1    | 1          | 0     | 1                  | 1 | 1 | 1                         | 1                         | 1                         |
| 1    | 1          | 1     | 0                  | 0 | 0 | 0                         | 0                         | 0                         |

|                               | B'C' | B'C | BC | BC' |  |  |
|-------------------------------|------|-----|----|-----|--|--|
| A'                            | 0    | 0   | 0  | 1   |  |  |
| A                             | 1    | 1   | 0  | 1   |  |  |
| $\rightarrow D_A = AB' + BC'$ |      |     |    |     |  |  |

|    | B'C' | B'C | BC | BC' |
|----|------|-----|----|-----|
| A' | 0    | 1   | 0  | 1   |
| Δ  | 1    | 1   | 0  | 1   |

$$\rightarrow \overline{D_B} = AB' + BC' + B'C \text{ (hoặc AC' + B'C + BC')}$$

|                 | B'C'      | B'C    | BC    | BC'  |      |
|-----------------|-----------|--------|-------|------|------|
| A'              | 1         | 0      | 1     | 0    |      |
| A               | 1         | 1      | 0     | 1    |      |
| $\rightarrow$ I | $O_C = A$ | B' + B | 'C' + | AC'+ | A'BC |