Задачи по Теории вероятностей и математической статистике

Артамонов Н.В.

12 января 2025 г.

Содержание

1	1.1	скретные случайные величины Одномерные распределения Двумерные распределения	
2	Непрерывные распределения		
		Плотность, функция распределения, математическое ожи-	
		дание, дисперсия	3
	2.2	Стандартные распределения	5
		Критические значения	
А Основные формулы		овные формулы	7
	A.1	Основы теории вероятностей	7
		Дискретные случайные величины	7
		Непрерывные случайные величины	

1 Дискретные случайные величины

1.1 Одномерные распределения

№1. В урне содержится 3 белых и 3 черных шара. Случайным образом извлекаются 2 шара. Пусть случайная величина X – число белых шаров среди выбранных.

- 1. Найдите таблицу распределения X
- 2. Вычислите E(X), Var(X), $\sigma(X)$ и моду распределения
- 3. Вычислите вероятности

$$P(X < 2)$$
 $P(X \ge 1)$ $P(0 < X < 3)$

4. Нарисуйте график функции распределения *F*.

Замечание: $X \sim Hypergeom(6,3,2)$

- №2. В урне содержится 4 белых и 2 черных шара. Случайным образом извлекаются 3 шара. Пусть случайная величина X число белых шаров среди выбранных.
 - 1. Найдите таблицу распределения X
 - 2. Вычислите E(X), Var(X), $\sigma(X)$ и моду распределения
 - 3. Вычислите вероятности

$$P(X < 3)$$
 $P(X > 1)$ $P(1 < X < 3)$

4. Нарисуйте график функции распределения F.

3амечание: $X \sim Hypergeom(6,4,2)$

- **№**3. В урне содержится 3 белых и 4 черных шара. Случайным образом извлекаются 4 шара. Пусть случайная величина X число белых шаров среди выбранных.
 - 1. Найдите таблицу распределения X
 - 2. Вычислите $\mathsf{E}(X),\,\mathrm{Var}(X),\,\sigma(X)$ и моду распределения
 - 3. Вычислите вероятности

$$P(X < 3)$$
 $P(X > 0)$ $P(0 < X < 3)$

4. Нарисуйте график функции распределения F.

Замечание: $X \sim Hypergeom(7,2,4)$

1.2 Двумерные распределения

2 Непрерывные распределения

2.1 Плотность, функция распределения, математическое ожидание, дисперсия

№1. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx, & x \in [0, 1] \\ 0, & \text{иначе} \end{cases}$$

- 1. Найдите нормировочный множитель c и нарисуйте график плотности
- 2. Вычислите вероятности

$$P(X > 0.5)$$
 $P(0.25 < X < 0.75)$ $P(-1 < X < 0.5)$

- 3. Вычислите $\mathsf{E}(X)$ и $\mathrm{Var}(X)$
- 4. Найдите функцию распределения F(x) и нарисуйте её график

№2. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx^{\lambda - 1}, & x \in [0, 1] \\ 0, & \text{иначе} \end{cases}$$

 $(\lambda > 0 -$ параметр распределения)

- 1. Найдите нормировочный множитель c и нарисуйте график плотности f
- 2. Вычислите вероятности

$$\mathsf{P}(X > 0.5) \qquad \ \ \mathsf{P}(0.25 < X < 0.75) \qquad \ \ \mathsf{P}(-1 < X < 0.5)$$

- 3. Вычислите E(X) и Var(X)
- 4. Найдите функцию распределения F и нарисуйте её график

3амечание: графики f и F нарисуйте при $0<\lambda<1$ и при $\lambda\geq 1$

ightharpoonup 3. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx(1-x), & x \in [0,1] \\ 0, & \text{иначе} \end{cases}$$

- 1. Найдите нормировочный множитель c и нарисуйте график плотности
- 2. Вычислите вероятности

$$P(X < 0.5)$$
 $P(0.25 < X < 0.75)$ $P(-5 < X < 0.25)$

- 3. Вычислите $\mathsf{E}(X)$ и $\mathrm{Var}(X)$
- 4. Найдите функцию распределения F(x) и нарисуйте её график

№4. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx^2(2-x), & x \in [0,2] \\ 0, & \text{иначе} \end{cases}$$

- 1. Найдите нормировочный множитель c и нарисуйте график плотности
- 2. Вычислите вероятности

$$P(X < 1.5)$$
 $P(X > 1)$ $P(0.5 < X < 1.5)$ $P(-1 < X < 1)$

- 3. Вычислите E(X) и Var(X)
- 4. Найдите функцию распределения F(x) и нарисуйте её график

№5. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} c(x+1)(2-x)^2, & x \in [-1,2] \\ 0, & \text{иначе} \end{cases}$$

1. Найдите нормировочный множитель c и нарисуйте график плотности

2. Вычислите вероятности

$$P(X < 1)$$
 $P(X > 1)$ $P(-0.5 < X < 1)$ $P(0 < X < 3)$

- 3. Вычислите E(X) и Var(X)
- 4. Найдите функцию распределения F(x) и нарисуйте её график

2.2 Стандартные распределения

№1. Для распределения $\mathcal{N}(0,1)$ вычислите

$$\phi(1)$$
 $\phi(2)$ $\phi(-0.5)$ $\phi(-1.5)$ $\Phi(1)$ $\Phi(2)$ $\Phi(-1)$ $\Phi(-2)$

№2. Для распределения $\mathcal{N}(1,0.5^2)$ вычислите значение функции распределения и плотности в точках

$$x \in \{-1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5\}$$

№3. Пусть $X \sim \mathcal{N}(0,1)$. Вычислите следующие вероятности

$$P(X \le 1)$$
 $P(X > -0.5)$ $P(-1 \le X \le 0.5)$ $P(0 < X < 2)$

№4. Пусть $X \sim \mathcal{N}(1, 1.5^2)$. Вычислите следующие вероятности

$$P(X \le 2)$$
 $P(X > 0.5)$ $P(-0.5 \le X \le 1.5)$ $P(0 < X < 3)$

№5. Пусть $X \sim \mathcal{N}(0,1)$. Найдите a,b,c т.ч.

$$P(X \le a) = 0.6$$
 $P(X \le b) = 0.8$ $P(X \le c) = 0.9$

№6. Пусть $X \sim \mathcal{N}(1, 0.5^2)$. Найдите a, b, c т.ч.

$$P(X \le a) = 0.7$$
 $P(X \le b) = 0.85$ $P(X \le c) = 0.95$

№7. Для распределения U[1,4] вычислите значение функции распределения и плотности в точках

$$x \in \{0, 1.5, 2, 2.5, 3, 3.5, 4, 5\}$$

№8. Пусть $X \sim U[-1, 5]$. Вычислите следующие вероятности

$$\mathsf{P}(X \le 0) \qquad \mathsf{P}(X > 2) \qquad \mathsf{P}(-0.5 \le X \le 3.5) \qquad \mathsf{P}(0 < X < 4)$$

№9. Для распределения Exp(2) вычислите значение функции распределения и плотности в точках

$$x \in \{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4\}$$

№10. Пусть $X \sim Exp(0.5)$. Вычислите следующие вероятности

$$P(X \le 3)$$
 $P(X > 1)$ $P(0.5 \le X \le 2.5)$ $P(1 < X < 3)$

№11. Пусть $X \sim Exp(0.5)$. Найдите a, b, c т.ч.

$$P(X \le a) = 0.5$$
 $P(X \le b) = 0.75$ $P(X \le c) = 0.95$

2.3 Критические значения

Замечание: все вычисления необходимо сделать в MS Excel/Python

№1. Для уровней значимости: 1%, 5%, 10% вычислите (двусторонние) критические значения распределения $\mathcal{N}(0,1)$

№2. Для уровней значимости: 1%, 5%, 10% вычислите (двусторонние) критические значения следующих распределений

$$t_{10}$$
 t_{100} t_{250} t_{500}

№3. Для уровней значимости: 1%, 5%, 10% вычислите критические значения следующих распределений

$$\chi_2^2$$
 χ_5^2 χ_{10}^2 χ_{20}^2

№4. Для уровней значимости: 1%, 5%, 10% вычислите критические значения следующих распределений

 $F_{2,100}$ $F_{5,300}$ $F_{10,1000}$ $F_{20,1500}$

А Основные формулы

А.1 Основы теории вероятностей

А.2 Дискретные случайные величины

А.3 Непрерывные случайные величины

Пусть X — непрерывной распределённая случайная величина. Функция распределения F и плотность f определяются как

$$F(x) = P(X \le x)$$
 $f(x) = F'(x)$ $x \in \mathbb{R}$

Свойства функции распределения:

$$0 \le F(x) \le 1$$
 $F \uparrow \lim_{x \to -\infty} F(x) = 0$ $\lim_{x \to +\infty} F(x) = 1$

Свойства плотности

$$f(x) \ge 0$$

$$\int_{\mathbb{R}} f(t)dt = 1$$
 $F(x) = \int_{-\infty}^{x} f(t)dt$

Вычисление вероятностей

$$\begin{aligned} & \mathsf{P}(a < X < b) \\ & \mathsf{P}(a \le X \le b) \\ & \mathsf{P}(a < X \le b) \\ & \mathsf{P}(a \le X < b) \end{aligned} \} = F(b) - F(a) = \int_a^b f(t) dt \\ & \mathsf{P}(X \le b) \\ & \mathsf{P}(X \le b) \end{aligned} \} = F(b) = \int_{-\infty}^b f(t) dt \\ & \mathsf{P}(a \le X) \\ & \mathsf{P}(a \le X) \end{aligned} \} = 1 - F(a) = \int_a^{+\infty} f(t) dt$$