## Elettronica Digitale A.A. 2020-2021

Lezione 20/05/2021

### Multivibratore astabile a porte logiche CMOS



$$T = \tau \ln \left( \frac{V_i - V_f}{V_{com} - V_f} \right)$$



### Multivibratore astabile a porte logiche CMOS



### CALCOLO DI T2

$$T = \tau \ln \left( \frac{V_i - V_f}{V_{com} - V_f} \right)$$

### Multivibratore astabile a porte logiche CMOS



$$T_1 = RC \ln \left( \frac{V_{DD}}{V_{DD} - V_{th}} \right)$$

$$T_2 = RC \ln \left( \frac{V_{DD}}{V_{th}} \right)$$



$$T_1 = RC \left| \ln \left( \frac{V_{DD}}{V_{DD} - V_{th}} \frac{V_{DD}}{V_{th}} \right) \right| = \left( \text{se } V_{th} = \frac{V_{DD}}{2} \right) = RC \ln(4)$$

### Oscillatore ad anello





### Architettura delle memorie



## RAM statiche (SRAM)



### **SCRITTURA**

## RAM statiche (SRAM)



### **LETTURA**

## RAM dinamiche (DRAM)

# W word line bit line В

### **SCRITTURA**



### RAM dinamiche (DRAM)



#### **LETTURA**

$$\Delta V \approx \frac{C_S}{C_B} \left( V_{CS} - \frac{V_{DD}}{2} \right)$$

## Sense amplifier



## Circuito di precarica



## Sense amplifier per DRAM



### Decoder degli indirizza di riga

Ciascuna word line deve essere attivata soltanto se sul corrispondente blocco di indirizzi compare l'indirizzo associato. Questo risultato potrebbe essere ottenuto utilizzando una appropriata logica combinatoria a porte, ma risulterebbe piuttosto complicato. Sono pertanto stati progettati dei circuiti specifici per questo scopo, come quello che descriviamo nel seguito.

$$(000) \rightarrow W_0 = \overline{A_2} \, \overline{A_1} \, \overline{A_0} = \overline{A_2 + A_1 + A_0}$$

$$(001) \rightarrow W_1 = \overline{A_2} \, \overline{A_1} \, A_0 = \overline{A_2 + A_1 + \overline{A_0}}$$

$$(010) \rightarrow W_2 = \overline{A_2} \, A_1 \, \overline{A_0} = \overline{A_2 + \overline{A_1} + A_0}$$

$$(011) \rightarrow W_3 = \overline{A_2} \, A_1 \, \overline{A_0} = \overline{A_2 + \overline{A_1} + \overline{A_0}}$$

WIRED-NOR

### Decoder degli indirizza di riga



## Multiplexer-Demultiplexer delle bit line

