Cours 4

Induction

Calcul propositionnel: syntaxe et sémantique

Bibliographie

Induction

► A. Arnold et I. Guessarian, *Mathématiques pour l'informatique* Logique

- ▶ R. Lassaigne et M. de Rougemont, *Logique et fondements de l'informatique*
- R. Cori et D. Lascar, Logique mathématique
- ▶ J. Stern, Fondements mathématiques de l'informatique
- ▶ M. Huth et M. Ryan, Logic in Computer Science : modelling and reasoning about systems

Induction

L'induction

Un outil formel élégant très utile en informatique

- elle permet de faire des définitions "récursives"
 - d'ensembles
 - de fonctions
- elle propose une technique de preuve souvent plus élégante que la récursion sur les entiers
 - mais la récursion sur les entiers est toujours possible
- nous l'avons déjà (implicitement) utilisée pour présenter le λ-calcul

Définition inductives

La définition inductive d'une partie X d'un ensemble consiste

- en la donnée explicite de certains éléments de *X* (*bases*),
- ▶ en la donnée de moyens de construire de nouveaux éléments de *X* à partir d'éléments déjà connus (*étapes inductives*).

Définition inductives

Définition

Soit *E* un ensemble. Une *définition inductive* d'une partie *X* de *E* consiste en la donnée

- ▶ d'un sous ensemble *B* de *E*,
- ▶ d'un ensemble K de fonctions (partielles) $\Phi : E^{a(\Phi)} \to E$, où $a(\Phi) \in \mathbb{N}$ est $l'arit\acute{e}$ de Φ .

X est défini comme étant **le plus petit** ensemble vérifiant les assertions (B) et (I) suivantes

- (B) $B \subseteq X$
- (*I*) $\forall \Phi \in K$, $\forall x_1, \ldots, x_{a(\Phi)} \in X$, $\Phi(x_1, \ldots, x_{a(\Phi)}) \in X$.

Définition inductives

L'ensemble ainsi défini est donc

$$X = \bigcap_{Y \in \mathcal{F}} Y$$

où $\mathcal{F} = \{ Y \subseteq E \mid B \subseteq Y \text{ et } Y \text{ vérifie } (I) \}.$

► Cela justifie le terme "le plus petit ensemble".

Notation : nous pourrons noter une définition inductive sous la forme

- (B) $x \in X \quad (\forall x \in B)$
- (I) $x_1, \ldots, x_{a(\Phi)} \in X \Longrightarrow \Phi(x_1, \ldots, x_{a(\Phi)}) \in X \quad (\forall \Phi \in K).$

Exemples

L'ensemble $P \subseteq \mathbb{N}$ des entiers pairs

- $(B) \ 0 \in P$
- (*I*) $n \in P \Longrightarrow n + 2 \in P$

L'ensemble AB \subseteq $(A \cup \{\emptyset, (,),;\})^*$ des arbres binaires sur un alphabet A

- (B) ∅ ∈ AB
- (I) $\forall a \in A, g, d \in AB \Longrightarrow (a; g; d) \in AB$

Définition explicite

Théorème

Si X est défini inductivement par les conditions (B) et (I), tout élément de X peut s'obtenir à partir de la base en appliquant un nombre fini d'étapes inductives.

$$X = \bigcup_{n \in \mathbb{N}} X_n$$

оù

$$X_0 = B$$

 $X_{n+1} = X_n \cup \{\Phi(x_1, \dots, x_{a(\Phi)}) \mid x_1, \dots, x_{a(\Phi)} \in X_n \text{ et } \Phi \in K\}$

Remarque : tout élément de *X* peut être représenté graphiquement par une structure arborescente.

Preuve par induction

Théorème

Soit X un ensemble défini inductivement par les conditions (B) et (I), et soit $\mathfrak{P}(x)$ un prédicat exprimant une propriété de l'élément x de X. Si les conditions suivantes sont vérifiées :

- ▶ $\mathfrak{P}(x)$ est vraie pour chaque $x \in B$,
- ▶ pour tout $x_1, ..., x_{a(\Phi)} \in X$, si $\mathcal{P}(x_1), ..., \mathcal{P}(x_{a(\Phi)})$ sont vraies alors $\mathcal{P}(\Phi(x_1, ..., x_{a(\Phi)}))$ est vraie, pour tout $\Phi \in K$,

alors $\mathfrak{P}(x)$ *est vraie pour tout* $x \in X$.

Exercice

On définit sur les arbres binaires AB

- ▶ le *nombre de feuille* f(x) d'un arbre x comme le nombre d'occurrence du symbole \emptyset ,
- ▶ le *nombre de nœud* n(x) d'un arbre x comme le nombre d'occurrence des symboles de A.

Montrer que pour tout $x \in AB$

$$n(x) \leqslant 2f(x) - 1$$

Définition non-ambiguë

Définition

La définition inductive d'un ensemble X par les conditions (B) et (I) est dite *non-ambiguë* si

- ▶ pour tout $x_1, ..., x_{a(\Phi)} \in X$ et $\Phi \in K$, $\Phi(x_1, ..., x_{a(\Phi)}) \notin B$,
- et pour tout $x_1, ..., x_{a(\Phi)}, x'_1, ..., x'_{a(\Phi')} \in X$ et $\Phi, \Phi' \in K$, $\Phi(x_1, ..., x_{a(\Phi)}) = \Phi'(x'_1, ..., x'_{a(\Phi')})$ implique $\Phi = \Phi'$ et $x_1 = x'_1, ..., x_{a(\Phi)} = x'_{a(\Phi)}$.

Exercice: donner des exemples de

- définition non-ambiguë
- définition ambiguë

Fonctions définies inductivement

Théorème

Soit $X \subseteq E$ un ensemble défini inductivement par les conditions (B) et (I) tel que X est non-ambiguë, soit F un ensemble quelconque, soit f_B une fonction de $B \to F$ et une famille de fonctions $f_{\Phi} \in E^{2a(\Phi)} \to F$, pour tout $\Phi \in K$.

Il existe une unique fonction $f \in X \rightarrow F$ *telle que*

▶ pour tout $x \in B$,

$$f(x) = f_B(x)$$

▶ pour tout $x_1, ..., x_{a(\Phi)} \in X$ et $\Phi \in K$,

$$f(\Phi(x_1,...,x_{a(\Phi)})) = f_{\Phi}(x_1,...,x_{a(\Phi)},f(x_1),...,f(x_{a(\Phi)}))$$

Calcul propositionnel

Logique: motivations

Mathématiques

- comprendre la nature du raisonnement
- formaliser le raisonnement : en faire une théorie mathématique, s'assurer la cohérence.
- ► mécaniser le raisonnement¹

Informatique : faire raisonner les machines

- intelligence artificielle
- vérification des programmes

¹Voir fin du cours pour les (més)aventures de Hilbert et Gödel.

Le calcul propositionnel

Objectifs

- ► Formaliser "et", "ou", "implique", "non",...
- Noyau minimal commun à tous les systèmes logiques

Les ingrédients d'un système logique (ou système formel)

- Qu'est-ce qu'une formule ? (syntaxe)
- Quel sens donner à une formule ? (sémantique)
- ► Comment démontrer qu'une formule est *vraie* ? (systèmes de déduction)

Attention à ne pas confondre les formules (syntaxe) et leurs interprétations (sémantique)!

Syntaxe

W un ensemble dénombrable de symboles, appelés *variables* propositionnelles.

C ensemble fini de connecteurs : $C = \{\land, \lor, \neg, \Rightarrow, \Leftrightarrow\}$

Définition (Formules propositionnelles)

L'ensemble $\mathcal F$ des formules propositionnelles est un langage sur $\mathbb V \cup C \cup \{(,)\}$ défini inductivement par :

- $ightharpoonup \mathbb{V} \subset \mathfrak{F}$
- si $F \in \mathcal{F}$, alors $\neg F \in \mathcal{F}$
- ▶ si $F, G \in \mathcal{F}$, alors $(F \land G)$, $(F \lor G)$, $(F \Rightarrow G)$, $(F \Leftrightarrow G) \in \mathcal{F}$

Définition explicite

On pose

- $\mathbf{F}_0 = \mathbf{V}$

Lemme

$$\mathfrak{F} = \bigcup_{n \in \mathbb{N}} \mathfrak{F}_n$$

Principe d'induction sur les formules

Comment prouver une propriété sur les formules?

- par récurrence sur la hauteur
- par induction sur les formules

Théorème

Si une propriété $\mathfrak{P}(F)$ vérifie

- ▶ $\mathcal{P}(F)$ est vraie pour tout formule $F \in \mathbb{V}$,
- ▶ $si \ \mathcal{P}(F)$ est vraie pour $F \in \mathcal{F}$ alors $\mathcal{P}(\neg F)$ est vraie,
- et si $\mathcal{P}(F)$ et $\mathcal{P}(G)$ sont vraies pour $F,G \in \mathcal{F}$ alors $\mathcal{P}((F \land G))$, $\mathcal{P}((F \lor G))$, $\mathcal{P}((F \Rightarrow G))$ et $P((F \Leftrightarrow G))$ sont vraies,

alors $\mathfrak{P}(F)$ vraie pour toute formule F.

Hauteur d'une formule

Définition (hauteur)

La *hauteur* d'une formule $F \in \mathcal{F}$ est le plus petit entier n tel que $F \in \mathcal{F}_n$.

Exercice : Démontrer que pour tout formule F,

hauteur(F) < longueur(F)

Décomposition unique

Théorème (Décomposition unique)

Soit F une formule, un et un seul des 3 cas suivants se présente :

- $F \in \mathbb{V}$
- il existe une unique formule G telle que $F = \neg G$
- ▶ il existe un unique $\alpha \in C \setminus \{\neg\}$, et deux uniques formules G et H telles que $F = (G \alpha H)$

(cf TD ou Cori&Lascar)

Remarque : En d'autres termes, la définition inductive de $\mathcal F$ est non-ambiguë.

Substitution

Définition (Substitution)

La formule F[G/p] (*substitution de G à p dans F*) est définie par induction sur la formule F:

- si F = p, F[G/p] = G
- si $F = q \in \mathbb{V} \setminus \{p\}, F[G/p] = F$
- si $F = \neg H$, $F[G/p] = \neg H[G/p]$
- ▶ si $F = (F_1 \alpha F_2)$ avec $\alpha \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$, $F[G/p] = (F_1[G/p] \alpha F_2[G/p])$

Valuation

Nous interprétons maintenant les formules en termes de valeur de vérité.

Définition

Une distribution de valeurs de vérité (*valuation*) est une application $\varphi : \mathbb{V} \to \{\text{vrai,faux}\}\ (\text{où }\{0,1\},\{T,F\}).$

Opérations booléennes

$$[\![\neg]\!] : \{0,1\} \to \{0,1\}$$

X	$\llbracket \neg \rrbracket(x)$
0	1
1	0

$$\llbracket \alpha \rrbracket : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}, \forall \alpha \in C \setminus \{\neg\}$$

x	y	$\llbracket \land \rrbracket (x,y)$	$\llbracket \vee \rrbracket (x,y)$	$[\![\Rightarrow]\!](x,y)$	$[\![\Leftrightarrow]\!](x,y)$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Valeur de vérité

Définition

La valeur de vérité $\overline{\phi}(F)$ d'une formule F, par rapport à une valuation ϕ est définie inductivement par :

- $ightharpoonup \overline{\varphi}(p) = \varphi(p), \ p \in \mathbb{V}$
- $\blacktriangleright \overline{\varphi}(F) = \llbracket \neg \rrbracket (\overline{\varphi}(F))$
- $\overline{\varphi}((F\alpha G)) = \llbracket \alpha \rrbracket(\overline{\varphi}(F), \overline{\varphi}(G)), \forall \alpha \in C \setminus \{\neg\}$

Remarque : $\overline{\phi}$ sera éventuellement noté ϕ .

Tautologies, formules équivalentes

Définition

- Une formule *F* est *satisfaite* pour une valuation φ si $\varphi(F) = 1$.
- ▶ Une *tautologie* est une formule satisfaite pour toute valuation.
- ▶ Deux formules F et G sont dites équivalentes si pour toute valuation φ, φ(F) = φ(G) (c'est une relation d'équivalence notée ≡).

Exemple : $((p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r)))$ est une tautologie.

Conséquence, satisfiabilité

Définition

Soit Σ un ensemble de formules, F une formule.

- ► F est conséquence de Σ (noté $\Sigma \models F$) si toute valuation qui satisfait toutes les formules de Σ satisfait aussi F.
- $ightharpoonup \Sigma$ est *satisfiable* s'il existe une valuation qui satisfait toutes les formules de Σ .

Proposition

 $\Sigma \models F$ si et seulement si $\Sigma \cup \{\neg F\}$ est non satisfiable.

Plan

Induction

- 2 Calcul propositionnel
 - Syntaxe
 - Sémantique