# King County House Price Predictions

Springboard Data Science
Capstone project 1
Hye Joo Han

## Project Goal

Below (imaginary firm),

 a local real estate
 company serving King
 County, WA

 Goal: finding the best model(s) for house price predictions



#### Procedures

- Data collecting and wrangling
- Exploratory data analysis (EDA)
- Machine learning
- Final recommendation

#### **Datasets**

 Dataset 1: House Sales in King County, USA, Kaggle <a href="https://www.kaggle.com/harlfoxem/housesalesprediction">https://www.kaggle.com/harlfoxem/housesalesprediction</a>



- 21,613 house sales in King County
- Sales between May 2014 and May 2015
- 19 house features (bedroom, bathroom, square footage, year built, zip code, latitude and longitude, etc.), house id and sale price
- Dataset 2: Niche.com (<a href="https://www.niche.com">https://www.niche.com</a>)
  - Grades for public school, safety, cost of living, jobs, commute, etc. for each zip code
  - Collected by web scraping with a Python package, Beautiful Soup



## Data Wrangling House Sales in King County

- Removed 16 observations with zero bathroom or zero bedroom (0.07% of all rows)
- Made a new column renovated (1 for renovated houses and 0 for not) from the column for renovated years with 96% missing values
- Fixed a 33 bedrooms to 3 bedrooms which is more plausible
- Checked suspicious values using google map

## Data Wrangling Niche.com



- Collected grades (from A+ to D-) for 12 categories for each zip code
   (70 zip codes in total)
- 12 categories: public school, crime, cost of living, jobs, commute, nightlife, housing, good for families, diversity, weather, outdoor activities, and commute
- Removed crime which has the same grade for all zip codes
- Transformed the alphabet grades to score grades (from 4.3 to 0.7)
- Replaced missing diversity scores (for 4 zip codes) with median

## Data Wrangling Merge the two datasets

- Merged the second dataset (from niche.com) into the first dataset by left join on zip codes
- Now the new columns derived from zip codes are added to the main house sales dataset

#### Procedures

- Data collecting and wrangling
- Exploratory data analysis (EDA)
- Machine learning
- Final recommendation

## Features correlated with house prices

| House size related |               | ated | Zip code related        |     | Othe  | Others |  |
|--------------------|---------------|------|-------------------------|-----|-------|--------|--|
|                    | sqft_living   | .70  | good_for_families_score | .45 | grade | .67    |  |
|                    | sqft_above    | .61  | public_schools_score    | .41 | view  | .40    |  |
|                    | sqft_living15 | .59  | jobs_score              | .33 | Lat   | .31    |  |
|                    | bathrooms     | .53  | cost_of_living_score    | 38  |       |        |  |
|                    | sqft_basement | .32  |                         |     |       |        |  |
|                    | bedrooms      | .32  |                         |     |       |        |  |
|                    |               |      |                         |     |       |        |  |

## Strongly correlated independent variables

| Good_for_families vs public_schools | .91 |  |
|-------------------------------------|-----|--|
| sqft_living vs sqft_above           | .88 |  |
| housing_score vs jobs_score         | .77 |  |
| sqft_living vs grade                | .76 |  |
| sqft_living vs sqft_living15        | .76 |  |
| grade vs sqft_above                 | .76 |  |
| bathrooms vs sqft_living            | .76 |  |
| sqft_above vs sqft_living15         | .73 |  |
| sqft_lot vs sqft_lot15              | .72 |  |
| grade vs sqft_living15              | .71 |  |
| long vs weather_score               |     |  |

## Waterfront and Zip code 98039



## House prices on the King county map





#### Seasonal Fluctuations





- Highest between April and July and lowest around January or February
- New categorical variable sold\_month to be made for machine learning

#### Procedures

- Data collecting and wrangling
- Exploratory data analysis (EDA)
- Machine learning
- Final recommendation

### Data Preparation

- New features:
  - sold\_month (extracted from sold dates)
  - renovated (1 for renovated houses 0 for not)
  - Zip98039 (1 for houses in 98039 0 for not)
- Removed features:
  - date
  - yr\_renovated (96% missing possibly due to no renovation)
  - zipcode
- One-hot encoding for sold\_month
- Test-training split

## Algorithms

- Ridge regression (Linear regression)
- Random Forest (RF)
- XGBoost
- LightGBM
- Neural Network

### Model Building

- Feature scaling
- 5-fold cross validation
- Hyperparameter tuning (coarse to finer)
- Early stopping for Neural network
- Metric: Root mean squared error (RMSE)
- R-squared as a reference

#### Performance



fast, and convenient (feature\_importances\_)

## Feature Importances (All)



- XGBoost and LightGBM approximately agree the order of feature importances (cf. RF)
- Moderately important features: those related to environment scores
- Least important features: those related to sold months
- All features contributed to some extent (cf. RF)

## Feature Importances (Top 10)



- Exactly same top 10 features:
  - latitude and longitude
  - square footage related features
  - built years and number of bathrooms

### Some Error Analysis



- XGBoost makes more outliers with residuals over 1 million or less than -1 million than LightGBM (6 vs. 2)
- LightGBM model has one extremely big residual over 3 millions (waterfront)

#### Final Recommendation

Important features suggested by both EDA and ML

square footages of living area

- number of bathrooms
- latitudes
   (positively correlated with house prices)
- Important, but not linearly related to house prices
  - longitude
  - year built
- Better to buy a house in winter and sell a house around late spring or early summer price-wise
- Suggest the XGBoost or LightGBM models (high speed and low RMSE)
- Carefully determine price for a house with extremely high predicted price (say, over 2 millions)



#### Links

Final report

https://docs.google.com/document/d/15UNqqwrmXJjWTMq\_q4ewAS S5IWYUKGvQ8-Gdojg4t\_0/edit?usp=sharing

Jupyter notebooks on Github

https://github.com/math470/Springboard Capstone Project 1