어셈블리프로그래밍설계 및 실습 Term project 결과보고서

설계제목: matrix convolution

설계일자: 2021년 11월 22~11월 29일

제출일자: 2021년 11월 30일 (화요일)

학 과: 컴퓨터정보공학부

담당교수: 이준환 교수님

실습분반: 화0,1 목2

학 번: 2018202060

성 명: 이 준 형

1. 제목 및 일정

A. 제목

matrix convolution

B. 일정

기간	1주차							2주차
항목								
11월	23	24	25	26	27	28	29	30
제안서 제출								
문제정의 및 정보수집								
coding								
coding 검증								
Report 작성								
최종 제출								

2. Project specification

이번에 설계한 프로젝트의 전체적인 흐름은 매트릭스의 값을 불러와서 패딩을 시켜서 저장한 후, 그 매트릭스의 행렬곱을 시키면서 전에 했던 SUM과 점점 합쳐가면서 9번 연산이 완료되면 그 곱이 짝수행 짝수열인지 확인을 하고 짝수행 짝수열이면 저장을 시켰습니다. 곱하면서 sub_sampling을 진행했습니다.

PADDING과정

START

주어진 매트릭스와 패딩이 되는 매트릭스를 활용하기 위해 이 함수에서 로드를 시키고 카운팅을 할 레지스터를 미리 초기화했습니다.

PADDING

먼저 맨 첫째줄의 패딩하는 과정인데 맨 첫째줄에 로드를 하고 SAVE를 2번씩 시키는 과정입니다.

PADDING_LOOP

OFFSET을 4씩 증가시키며 행렬의 값을 61번 STR시켰습니다.

CHECK_PADDING_LOOP

한줄의 행렬의 패딩이 끝났는지 확인을 하는 함수입니다.

INNER2 PADDING LOOP

두번째줄부터 맨 마지막줄 바로 위에줄의 패딩하는 반복문 함수입니다.

STOP

맨 아랫줄이 되기전까지 패딩이 되었으면 OFFSET을 -256시켜 맨 아랫줄 패딩을 시작합니다.

PADDING_LOOP3

맨 아랫줄 패딩하는 과정인데, 맨 첫째줄 패딩하는 과정이랑 흡사합니다.

PADDING END

패딩이 끝난경우 convolution에 대비해서 미리 작은 음수의 offset을 이용해서 패딩 매트 릭스의 첫번째 원소를 가르키게 했습니다.

MATRIX CONVOLUTION 과정

DOMUL

먼저 booth multiplication을 위해서 sign과 exponent, mantissa를 분리 시키는 과정입니다. 그 후 R2에 32의 절반인 16이 아닌 28의 절반인 14를 주어서 RADIX_4연산을 시켰습니다.

RADIX 4

R2가 0이 될때까지 아래의 연산 과정을 진행시켰습니다.

SHIFT, ADD_1A, ADD_2A, SUB_1A, SUB_2A

MUL NOMALIZATION

RADIX_4연산이 끝난 후, 2^28인134217728과 비교를 해서 exponent를 더해주었습니다.

MUL ADDING

sign과 exponent mantissa가 전부 합치는 과정입니다.

MUL FINISH

곱한것과 전에 곱해서 합쳐진것을 더하는 과정으로 넘어가는 함수입니다.

DOADD

먼저 입력받은 값들이 0인지 아닌지 확인을 합니다. 그 후에 mul을 하기위해서 sign, exponent, mantissa를 추출했습니다.

ADDING_LOOP, ADDING_MANTISSA, ADDING_ADDING

2^24인 16777216을 비교한 후, mantissa를 더할지 안더할지 결정 후, 더해줍니다,

SUB_SAMPLING 과정

CHECK STATE

앞에서 곱하고 더한과정이 3번째인지 6번째인지 9번째 인지 확인을 하고, 그 번째에 맞는 함수를 call합니다.

THIRD_SIXTH_CAL

3번째나 6번째인경우 offset을 252만큼 증가시켜서 다시 연산을 진행하게 했습니다. LAST_CAL

9번째 연산인 경우 sub_sampling을 바로 진행하기위에서 자기 위에위에인 원소를 가르키기 위해서 offset을 -532를 시켜주었습니다.

아래는 각 함수의 flowchart입니다.

패딩하는 과정입니다.

matrix convolution과정입니다.

sub_sampling하는 과정입니다.

함수들의 전체 flowchart입니다.

3. Algorithm

padding

패딩이 완료될 66*66의 매트릭스를 생각할때는 그 줄의 맨 끝들이 한번씩 더 호출이 되는것을 확인할 수 있습니다. 그래서 한번씩 더 호출했고, offset을 -256, -252이런식으로 해주면서 값에 LDR하게 했습니다.

booth multiplication of booth algorithm 이번 프로젝트에서 사용한 booth multiplication은

S	Exponent	Mantissa					
1bit	e bit	m bit					

이러한 부동소수점을 곱해주는 알고리즘입니다.

보통의 MUL이라는 명령어를 사용했을때는

value=(-1)^s * (1.mantissa)* 2^(exponent-127)을 이용해서 구하지만, MUL이라는 명령어를 없이 구현할 때 쓰는 알고리즘입니다.

수업시간에 배웠던 radix-2 방식으로 이용했을경우에는 32bits면 32번의 연산이 나야하지만 radix-4인 경우는 16번만 연산을하면 가능합니다. 하지만 경우의수가 2배가 더 많아집니다. radix-4의 경우는 총 경우의수가 8가지인데, 제가 코딩한 경우의수는 총 5가지입니다. 기존이랑 중복되는게 있어서 이와 같은 5가지를 이용했 습니다. shift, add_2a, add_1a, sub_1a, sub_2a입니다.

이 알고리즘은 승수에 0을 더 추가하여 그 0부터 MSB가 될때까지 피승수와 의 상호작용을 통해서 곱해지는 알고리즘입니다. 저는 LSL, LSR을 통해서 왔다갔다하면서 Y와 X+1, X, X-1을 바꿔주고 shift나 결과에 2a나 a값을 빼주고 shift 해주는 과정을 14번을 진행한 후, 14번의 2배인 28을 2의 지수로 올려서 비교를 한 후, sign, exponent, fraction을 전부 더하는 식으로 했습니다. 곱해진 수와 기존에 더해졌던 수는 똑같이 sign, exponent, mantissa를 추출해서 exponent를 비교해서 더하는 식으로 했습니다.

위 과정을 진행하면서 1에 가까운 수를 더하는 경우가 있는데 그러때 저는 cr을 0에 가까운 0x800000을 equ해서 define시켜주었습니다.

sub_sampling

제가 구현한 sub_sampling은 레지스터 두개를 카운팅 하게 해서 짝수행이 진행될때 한 레지스터를 진행시켜주고, 짝수열이 진행될때 한 레지스터를 진행시켜주었습니다. 그렇게 하면서 두개의 카운트가 모두 짝수일때 save를 시켜주었습니다.

4. Performance & result

A. Performance

Code size

Restricted Version with 32768 Byte Currently used: 17240 Bytes (52%)

Code states

Internal
PC \$ 0x00000320
Mode Supervisor
States 3129040
Sec 0,00000000

조교님께서 말씀해주신 score(states*states*code size)는 1.68794966384384e+17가 나옵니다. 이것은 168794963511869440입니다.

B. Result

Padding

처음에 float로 봄으로써 제대로 값을 받았는지 확인을 했습니다.

처음에 입력받은 값이 제대로 save되었고 padding또한 제대로 된것을 확인했습니다.

그리고 22개씩 unsigned int로 볼때

66*66이 4356이니까 198줄이 나오는것을 확인할 수 있었습니다.

matrix convolution && sub_sampling

Memory 1											
Address: 0x60000000											
											7 - 1
0x60000000: 121.319 0x60000030: 106.713	120.129	121.251	122.011	73.8871	56.8061	59.6264	105.652	103.761 75.4206	105.239	106.292	106.85
0x60000060: 118.444	128.363	118.303	94.2869	114.281	99.8186	101.01	103.24	120.477	120.279	122.313	120.478
0x60000090: 72.7109	56.4468	59.1192	105.231	103.34	105.312	106.069	106.652	106.354	105.66	105.014	105.658
0x600000C0: 105.721 0x600000F0: 113.967	104.47	103.824	105.081	81.0995 121.246	106.849	120.548	120.277	118.717 72.065	121.605 55.9622	119.992 58.7097	114.581
0x600000120: 102.423	104.172	105.226	105.871	105.821	104.324	103.815	104.113	104.754	104.111	103.813	101.925
0x60000150: 72.8231	99.1851	119.568	120.266	119.224	117.415	127.564	117.339	100.145	99.6426	67.6796	40.7083
0x60000180: 122.934 0x600001B0: 106.279	121.142	119.834	119.202	75.4327 113.196	58.9203 105.696	58.7097 103.128	105.229	102.075	103.899	105.089	105.25
0x600001E0: 106.279	115.059	116.077	119.844	111.319	62.8243	40.274	39.1968	72.4001 124.04	105.775	109.107	120.105
0x60000210: 77.8076	60.5151	57.52	79.8946	100.737	103.403	110.957	101.916	104.67	110.871	121.678	130.952
0x60000240: 117.433	123.873	114.816	101.226	65.8122	97.0263	114.213	113.287	114.115	113.237	112.693	121.987
0x60000270: 100.146 0x600002A0: 107.534	38.6599 97.0444	31.3612 93.7568	37.289 114.581	107.855	65.9273 108.132	102.088	120.055 131.187	76.8024 122.086	59.942 125.883	56.6626 118.805	78.3351 80.6971
0x600002D0: 57.3511	97.0128	114.306	80.5129	104.249	113.806	113.704	100.125	46.6389	31.3154	38.7928	63.5274
0x60000300: 68.6368	58.1251	101.494	119.497	76.7522	60.1034	56.7376	78.483	107.58	73.3752	80.1977	115.587
0x60000330: 105.435 0x60000360: 71.1358	108.499 112.708	116.976 107.276	132.156 65.9372	124.83 48.3187	128.717 33.7114	131.307 61.1538	112.272 98.1953	69.3213 65.3585	95.2155 60.6542	114.712 100.616	65.7899 119.275
0x60000390: 76.1948	59.0868	56.3032	78.3756	117.498	79.4742	97.359	102.928	105.944	109.971	124.019	118.843
0x600003C0: 123.336	126.57	128.817	130.645	114.041	110.658	114.487	66.1372	84.6208	125.776	100.521	47.1734
0x600003F0: 52.2017	45.23 65.8645	70.3939	114.555	60.086	59.2042	101.299	120.401	76.6314	59.6075	57.0085	72.6137
0x60000420: 101.305 0x60000450: 124.783	123.844	105.949	102.166 89.7706	107.16 116.382	118.81	128.41 108.309	132.019 39.0884	118.922	122.715 61.3701	124.585	126.477 118.23
0x60000480: 54.9727	57.4973	103.048	122.58	78.5765	60.6494	56.7991	74.9199	114.679	75.0053	105.183	104.059
0x600004B0: 111.076	118.334	125.2	127.422	129.058	132.381	118.303	119.465	119.829	118.101	117.093	122.806
0x600004E0: 126.699 0x60000510: 79.1473	126.988	98.4101 55.5457	33.8485 75.7222	55.0938 119.46	102.575 98.2901	118.453	118.173 106.217	53.9216	57.0058 114.017	103.844	123.488
0x60000540: 79.1473	123.474	125.718	127.697	131.603	121.251	125.122	127.241	118.878	117.232	67.1905	40.1121
0x60000570: 69.715	115.458	118.988	118.369	54.7768	70.8496	117.513	124.12	79.2839	59.819	55.4092	75.4994
0x600005A0: 108.963 0x600005D0: 121.234	108.549	101.147	105.029	106.752	102.611 91.6404	77.7367 41.8329	91.8687 61.0072	76.5109 106.301	75.8802 118.801	88.3358 118.023	129.166
0x600005D0: 121.234	68.3987	113.724	124.122	79.3454	59.3847	55.4092	70.6935	106.301	111.917	101.21	102.275
0x60000630: 99.4418	66.9235	60.0995	60.0282	61.6443	67.5432	115.96	116.957	120.185	122.73	108.444	109.715
0x60000660: 97.4155	62.603 58.6795	37.4311 55.4842	66.8973	117.018	120.341	118.321	116.683	58.7669	63.0005	107.484	124.406
0x60000690: 79.4932 0x600006C0: 65.1495	114.248	129.484	63.5919 130.875	111.118	115.82	100.217	95.9717 92.6662	63.8034 64.6528	59.1901 56.8595	54.5951 47.8463	59.1466
0x600006F0: 120.409	121.135	119.497	117.463	57.7887	57.2513	101.799	124.766	80.1256	59.819	56.9469	73.9348
0x60000720: 103.905	117.441	102.151	68.186	57.8916	57.5441	57.8406	82.9305	109.296	124.7	125.816	117.857
0x60000750: 127.175 0x60000780: 56.7354	105.276 56.3211	67.0672 101.303	56.7895 125.1	50.5224	51.3958 60.7244	62.4003 57.7908	106.226	118.223	118.394	118.166	117.04 54.4829
0x600007B0: 52.5985	53.8698	67.7771	118.524	122.566	114.601	119.724	118.16	125.596	107.244	68.6027	57.8225
0x600007E0: 52.5658	48.4193	75.4443	116.959	118.391	116.064	113.589	112.409	55.4685	54.4946	100.173	125.744
0x60000810: 81.3903 0x60000840: 75.148	60.7859 69.6782	57.4606 81.095	102.389 125.761	97.0821 121.629	60.8426 71.7833	62.7544 56.8023	53.8575 58.6966	52.1933 52.2481	49.8205 57.5121	97.9459	114.97
0x60000870: 117.316	116.26	113.801	109.465	54.4881	54.911	102.077	126.934	79.5749	59.6277	58.2851	96.5851
0x600008A0: 80.903	59.6023	57.1221	47.8578	46.5489	77.14	113.771	105.639	72.6346	99.2261	102.26	121.757
0x600008D0: 112.506 0x60000900: 57.7073	68.808 57.41	57.0238 103.247	61.0032 127.416	58.2274 76.8396	68.1113 63.2035	107.536 83.3513	115.903 63.7113	115.28 55.6945	113.023 56.4232	111.66	116.36
0x60000930: 44.1876	104.223	100.712	111.447	120.082	122.091	114.515	122.074	126.556	95.8733	58.9524	61.8898
0x60000960: 59.1222	73.7954	114.643	114.229	112.182	111.03	123.598	120.08	65.8958	62.7539	100.033	126.006
0x60000990: 76.3573 0x600009C0: 122.866	62.1237 124.201	63.5591 113.043	66.7483 119.034	56.3762 128.385	42.4299 98.1493	57.6203 57.542	51.5789 57.7706	64.3859 59.6208	71.439 97.6573	67.9884 115.837	110.99
0x600009C0: 122.866	118.872	122.249	128.196	57.6912	63.1904	100.852	125.956	80.7625	62.3003	57.474	66.4477
0x60000A20: 60.8673	55.2372	57.8609	66.5489	89.3791	66.4465	70.8892	108.672	117.391	119.16	109.963	114.216
0x60000A50: 122.695	74.3431 65.8191	54.8083	52.8379	68.7725 89.1208	105.946	114.577	111.97 61.1897	110.989	114.286	128.953	131.83
0x60000A80: 62.8024 0x60000AB0: 64.189	59.8772	72.6703	107.541	113.704	115.3	114.393	122.002	110.053	62.3235	53.8348	58.7509
0x60000AE0: 92.1583	113.922	113.323	110.705	113.962	121.893	131.98	133.319	54.4403	63.0457	106.838	127.432
0x60000B10: 103.096 0x60000B40: 110.257	60.2339	59.7313 110.324	59.2735 115.841	58.8495 89.9312	68.9041 41.4542	97.2313 55.9014	57.4985 58.4866	53.123 97.5977	54.886 115.205	69.5471	106.714
0x60000B40: 110.257 0x60000B70: 116.436	108.128	110.324	115.841	89.9312 52.8347	41.4542 59.4966	103.242	58.4866 127.172	97.5977 81.0691	115.205 58.1181	113.1 56.4939	109.936 55.0445
x60000BA0: 61.2818	69.617	83.2399	56.5035	58.9696	51.8698	56.8163	63.988	101.142	111.228	114.988	113.848
x60000BD0: 67.8779	47.7071	59.1361	61.2119	99.5476	115.28	113.458	108.61	117.744	115.835	119.153	131.875
0x60000C00: 37.0291 0x60000C30: 51.4536	52.6617 47.1708	100.908 53.2732	126.033 58.9302	97.1738 72.9454	59.9311 111.144	53.5867 119.829	59.7251 107.825	56.4097 70.6567	75.3663 51.038	64.6652 61.5997	59.7166
0x60000C30: 51.4536 0x60000C60: 94.9662	114.352	114.866	103.756	119.844	124.949	119.829	107.825	66.8878	66.8166	81.4627	125.266
x60000C90: 99.0247	54.4444	55.4465	57.9769	54.1705	57.947	62.5988	59.5818	48.0223	50.8363	57.2349	67.6736
x60000CCO: 105.909	110.173	116.801	127.797	115.678	81.029	66.2854	68.044	98.6339	109.662	84.3193	74.1566
0x60000CF0: 120.204	126.718 55.7072	108.452	69.4294 58.834	66.3169 55.2239	84.5169 53.7364	78.505 60.0415	126.242 68.1137	100.72	46.5428	59.4394 117.131	55.6133 127.358
0x60000D50: 121.626	124.22	102.647	72.3463	106.973	107.889	97.9342	99.6882	116.075	107.9	63.2958	59.2341
x60000D80: 43.5294	81.0068	76.3724	126.872	104.421	37.2967	52.4061	58.9144	53.8762	50.5712	85.4515	59.8321
0x60000DB0: 54.6361	52.3651	58.1574	70.2794	107.7	111.551	115.493	122.945	133.275	129.015	116.177 77.901	86.0054
0x60000DE0: 108.377 0x60000E10: 104.3	39.6814	48.2877	123.225 53.8922	41.4619	112.169 58.49	59.838	61.5887	58.2422	82.6597 55.3637	84.2553	126.365
x60000E40: 110.219	111.415	113.387	119.722	129.258	125.633	128.492	114.101	113.687	106.127	105.482	112.659
x60000E70: 120.493	86.8779	60.9142	62.5678	40.8595	87.7999	84.7182	125.583	105.565	40.6618	38.1442	48.9782
0x60000EA0: 41.1619	50.8779	63.2771	53.4076 119.457	42.5473 77.2544	52.35 71.4531	65.1042 99.2976	100.315	112.043	112.12 67.8426	112.197 65.0447	116.833
0x60000ED0: 124.77	100.027	109.287	125.38	86.5652	37.5428	43.895	53.0124	40.4429	56.3712	54.0219	35.6937
x60000F30: 48.7195	56.9072	63.6064	103.173	112.257	113.173	112.197	114.156	120.541	131.712	128.107	112.109
x60000F60: 66.3257	55.8509	75.0108 53.0896	117.645 56.3584	72.0384	59.6903 58.8555	59.0814 52.8033	55.7967	55.8282	100.079	115.532	125.092
	40.768						41.1745		71.7832		
0x60000F90: 74.937	113.731	114.017	114.156	59.4269 118.309	127.163	123.243	124.022	64.2479 79.3084	62,2129	98.6874 79.0452	108.883

총 32*32인 1024개가 나오는것을 확인 할 수 있지만, 값을 정확히 나오지 않은것을 확인할 수 있습니다.

값이 제대로 나오지 않아서 직접 손으로 계산하면서 해봤는데, 행렬곱을 하는 과정중 radix과정중에서 제대로 값이 추출된것이 있지만 값이 제대로 추출되지 않은 그들이 있었습니다. 하지만 행렬곱을 더한 과정은 값이 제대로 나온것을 확인할 수 있었습니다.

5. Conclusion

이번 프로젝트는 뿌듯함이 있었지만 아쉬움이 좀 더 많았던 프로젝트였던것 같습니다. 먼저 padding을 하는 과정에서 3가지의 생각을 했습니다. 전체 패딩이 된 매트릭스를 저장할지, sub_sampling을 할 때 필요한 원소만 저장할 것인가, 아니면 처음부터 sub_sampling 할 때 필요한 padding만 저장할 것인가를 생각했습니다. 세번째 방법으로 진행하면서 size를 줄이려고 했는데 size를 줄이는 대신에 너무나 생각할께 많아서 시간이 부족한 저는 첫번째 과정인 가장 심플한 부분으로 진행하게 되어서 조금 아쉽습니다. 만약에 두번째 경우나 세번째 경우로 진행했을 경우, states수가 반이상이 줄어들 것 같습니다.

그 후 matrix_convolution과 sub_sampling을 같이 진행하기 위해서 짝수행과 짝수열을 카운팅 할 레지스터를 써야하는데, 레지스터가 모자랄때 sp를 이용해서 불렀다가 저장하라는 동기의 조언이 있었지만, 실습시간과 수업시간에 과제외에는 제대로 사용해본적이 없어서 r13(lr)과 r14(sp)를 그냥 카운팅하는 레지스터로 썼다는점도 매우 아쉽습니다. sub_sampling을 위해서 조교님께 여쭤본 stride라는 파라미터라는 제대로 사용해보고 싶었지만 조금 더 공부해야할 것 같습니다. multiplication이 100% 되지않아서 상당히 아쉬웠습니다. offset을 많이 건드려서 정확히 진행했다고 생각했는데 14번의 연산을 통해 진행을 하면서 덜 계산이 되었던 것 같습니다.

하지만 high level에서 느껴보지 못했던 감성을 느낄 수 있었던 좋은 과목과 프로젝트 였던것 같습니다. 어떻게 high level과 다른지, 어떻게 assembly가 되는지도 배움으로써 highlevel언어로 구현하면서 assembly관점에서는 어떻게 진행될것인지 생각해보며 컴퓨터 전공에 한걸음 더 다가가는것 같았습니다. 좋은 강의 해주셨던 조교님과 교수님들께 감사하다는 말씀 전하며 레포트 마치겠습니다.