Design de Computadores

Aula 6 – Extras 1

Insper

Máquinas de Estados Finitos

Tópicos:

- Máquinas de estados finitos (MEFs);
- Conceito de "estado";
- Máquina de Moore;
- Máquina de Mealy;
- Comparativo Mealy versus Moore.

• Objetivos de aprendizado:

- Entender o funcionamento das MEFs;
- Análise e aplicação de MEFs na criação de circuitos sequenciais.

- Os circuitos digitais podem ser divididos em:
 - Circuitos combinacionais;
 - Circuitos sequenciais.

- Porém, é rara a aplicação que seja:
 - Puramente sequencial;
 - Ou puramente combinacional.

- Podemos caracterizar a grande maioria dos circuitos digitais como:
 - Possuindo uma parte sequencial;
 - E outra combinacional.

Na lógica combinacional:

- A saída depende somente do valor atual das suas entradas;
- Então, possuindo-se somente os valores de entrada, é possível determinar o valor de saída.

O seu funcionamento:

- É completamente descrito pela sua tabela da verdade.

O circuito sequencial:

- Possui memória interna:
 - Na forma de um ou mais flip-flops (ou registradores).
- É sincronizado por um sinal de clock.
- E pode possuir alguma lógica combinacional.

O conteúdo da memória interna:

- Define o estado interno do sistema;
- Para um determinado momento.

O funcionamento do circuito:

- É a evolução, no tempo, desses estados internos:
 - Que influenciam o valor de saída.

- Essa evolução, ou sequencia, de estados internos:
 - É definida pela função de próximo estado (transição):
 - Que consideram os valores de entrada;
 - E o estado interno.
- A saída é definida pela função de saída.
- Ela define o tipo de máquina de estados:
 - Máquina de estados finitos de Moore:
 - A saída é uma função combinacional do estado.
 - Possui um subtipo em que a saída é o próprio estado:
 - Máquina de estados finitos de Medvedev.
 - Máquina de estados finitos de Mealy:
 - A saída é uma função combinacional do estado e de um ou mais sinais de entrada.

O funcionamento desses circuitos:

- Não podem ser descritos:
 - Somente com <u>uma</u> tabela da verdade;
 - Dado que a saída é função do estado atual e do valor de entrada.

Devemos usar um conjunto de tabelas que especificam:

- O estado atual;
- Os valores da entrada;
- O próximo estado resultante;
- Para cada combinação de entrada e estado atual.

Ou um diagrama de estados:

- Que é um grafo cíclico.

Alguns conceitos:

- Estado: é a situação interna do sistema que aguarda para executar uma transição;
- Transição: são as ações a serem executadas quando uma condição é preenchida ou um evento é recebido;
- Ação de Entrada: é a ação executada quando se entra no estado;
- Ação de Saída: é a ação executada quando se sai do estado;
- Estado inicial: é o estado em que a máquina inicia, normalmente representado com uma seta.

Máquina de Moore

- Nesta máquina, a saída (y):
 - Depende do estado atual interno: s(t);
 - E de uma transformação H (lógica de saída).
- Podemos dizer que:

$$y(t) = H(s(t))$$

Máquina de estados do tipo: Moore

- A máquina de Moore utiliza somente ações de entrada, ou seja, quando se entra no estado:
 - Dessa forma, a sua saída depende somente do estado atual;
 - Simplificando o comportamento da máquina;
 - Simplificando o seu projeto;
 - E evitando glitchs na saída, pois todos os sinais estão sincronizados pelo Clock.
- Porém, em geral, uma máquina de Moore:
 - Possui mais estados, para um mesmo problema:
 - Que a máquina de Mealy.

• O diagrama de estados da máquina de Moore:

- Representa os estados (círculos com nome e valor de saída);
- A transição entre os estados, através dos arcos com flechas;
- A entrada que gera a transição, marcada no arco;
- O destino da transição, de acordo com a entrada, indicado pelo círculo (estado e seu valor de saída).
- O estado inicial (S0) possui a saída 0 após o Reset (seta indicadora).

Moore, subtipo Medvedev (curiosidade)

- Na máquina de Medvedev, a saída (y):
 - Depende somente do estado interno atual: s(t);
 - Não existe a transformação para a saída.
- Podemos dizer que:

$$y(t) = s(t)$$

Máquina de estados do tipo: Medvedev

Roteiro para a criação de máquinas de Moore:

- Identifique as entradas e saídas;
- Esboce o diagrama de estados;
- Monte a tabela de transição de estados;
- Monte a tabela de saída;
- Escolha a codificação dos estados (binária, código de Gray, onehot, etc...);
- Monte as novas tabelas de transição e saída de acordo com a codificação e o Flip Flop escolhido (D, JK, etc...);
- Monte os mapas de Karnaugh para as novas tabelas e obtenha as equações do circuito:
 - Para o próximo estado;
 - Para a saída.
- Desenhe o resultado final.

- No exemplo abaixo, temos um detector da sequência binária 1101:
 - Quando recebe a sequência 1101, ativa a saída (com nível 1);
 - Qualquer outra sequência mantém a saída em nível 0.
- São necessários cinco estados (S0 a S4):
 - Um "erro" na sequência pode reiniciar para estados diferentes, dependendo em qual estágio o erro ocorreu:
 - Transição de S1 para S0, S4 para S2, S2 para S2 e S3 para S0.

• Utilizando o diagrama de estados:

- Preenche-se a tabela de transição.

Estado Atual	Entrada	Próximo Estado
S0	0	S0
S0	1	S1
S1	0	S0
S1	1	S2
S2	0	S3
S2	1	S2
S3	0	S0
S3	1	S4
S4	0	S0
S4	1	S2

• Para a função de saída:

- A saída terá valor 1 somente em S4:

Estado Atual	Saída: Y
S0	0
S1	0
S2	0
S3	0
S4	1

• As tabelas de transição e saída utilizando:

- Codificação binária para o número dos estados;
- E flip-flops tipo D.

Esta	ado A	tual	Entrada	Próximo Esta		
bit	bit	bit		bit	bit	bit
2 _{EA}	1 _{EA}	0 _{EA}		2 _{pe}	1_{pe}	O _{pe}
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	0
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	0	1	0
0	1	1	0	0	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	0
1	0	0	1	0	1	0

Esta	ado A	Saída	
bit 2 _{EA}	bit 1 _{EA}	bit 0 _{EA}	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1

 A equação de próximo estado, para cada bit, pode ser feita por Karnaugh ou inspeção direta:

Para bit2_{pe}=1, temos:

$$bit2_{pe} = bit2'_{EA}*bit1_{EA}*bit0_{EA}*A$$

Não existe a condição:

Minimizamos para:

$$bit2_{pe} = bit1_{EA}*bit0_{EA}*A$$

Esta	ado A	tual	Entrada	Próximo Es		o Estado	
bit 2 _{EA}	bit 1 _{EA}	bit 0 _{EA}	Α	bit 2 _{pe}	bit 1 _{pe}	bit 0 _{pe}	
0	0	0	0	0	0	0	
0	0	0	1	0	0	1	
0	0	1	0	0	0	0	
0	0	1	1	0	1	0	
0	1	0	0	0	1	1	
0	1	0	1	0	1	0	
0	1	1	0	0	0	0	
0	1	1	1	1	0	0	
1	0	0	0	0	0	0	
1	0	0	1	0	1	0	

Insper

- Para bit1_{pe}=1, temos três condições:
 - bit1_{pe} = bit2'_{EA}*bit1'_{EA}*bit0_{EA}*A
 - $bit1_{pe} = bit2'_{EA}*bit1_{EA}*bit0'_{EA}$
 - $bit1_{pe} = bit2_{EA}*bit1'_{EA}*bit'0_{EA}*A$

Minimizamos para:

$$bit1_{pe} =$$

 $bit1'_{EA}*bit0_{EA}*A$

+ bit1_{EA}*bit0′_{EA}

+ bit2_{EA}*A

	Estado Atual			Entrada	Próx	Próximo Estado		
	bit 2 _{EA}	bit 1 _{EA}	bit 0 _{EA}	Α	bit 2 _{pe}	bit 1 _{pe}	bit 0 _{pe}	
	0	0	0	0	0	0	0	
	0	0	0	1	0	0	1	
	0	0	1	0	0	0	0	
	0	0	1	1	0	1	0	
П	0	1	0	0	0	1	1	
Ц	0	1	0	1	0	1	0	
	0	1	1	0	0	0	0	
	0	1	1	1	1	0	0	
	1	0	0	0	0	0	0	
	1	0	0	1	0	1	0	

- Para bit0_{pe}=1, temos duas condições:
 - $bit0_{pe} = bit2'_{EA}*bit1'_{EA}*bit0'_{EA}*A$
 - $bit0_{pe} = bit2'_{EA}*bit1_{EA}*bit0'_{EA}*A'$

Minimizamos para:

$$bit0_{pe} =$$

Est	Estado Atual		Entrada	Entrada Próximo		Estado	
bit 2 _{EA}	bit 1 _{EA}	bit 0 _{EA}	Α	bit 2 _{pe}	bit 1 _{pe}	bit 0 _{pe}	
0	0	0	0	0	0	0	
0	0	0	1	0	0	1	
0	0	1	0	0	0	0	
0	0	1	1	0	1	0	
0	1	0	0	0	1	1	
0	1	0	1	0	1	0	
0	1	1	0	0	0	0	
0	1	1	1	1	0	0	
1	0	0	0	0	0	0	
1	0	0	1	0	1	0	

A lógica de saída é retirada da tabela de saída:

$$Y = bit2_{EA}*bit1'_{EA}*bit0'_{EA}$$

- Como não existe outra ocorrência de bit2_{EA}:
 - Minimizamos para: $Y = bit2_{EA}$

Esta	ado A	Saída	
bit	bit	bit	Υ
2 _{EA}	1 _{EA}	0 _{EA}	
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1

Resumindo:

 $bit2_{pe} = bit1_{EA}^*bit0_{EA}^*A$ $bit1_{pe} = bit1'_{EA}^*bit0_{EA}^*A + bit1_{EA}^*bit0'_{EA} + bit2_{EA}^*A$ $bit0_{pe} = bit2'_{EA}^*bit1'_{EA}^*bit0'_{EA}^*A + bit1_{EA}^*bit0'_{EA}^*A'$ $Y = bit2_{EA}^*$

Codificação do Estado Atual = bit2_{EA} bit1_{EA} bit0_{EA} Codificação do Próximo Estado = bit2_{pe} bit1_{pe} bit0_{pe}

Máquina de Mealy

- Nesta máquina, a saída (y):
 - Depende do estado atual interno (s(t));
 - Da entrada atual (x(t));
 - E de uma transformação H (lógica de saída).
- Podemos dizer que:

$$y(t) = H(s(t), x(t))$$

Máquina de estados do tipo: Mealy

Na maquina de Mealy:

- A transição de saída pode ocorrer de forma assíncrona (independente do Clock):
 - Sinais de entrada conectados com a lógica de saída.

· Além disso, o diagrama de estados:

- É diferente do diagrama da máquina de Moore.

E: Entrada que gera a transição.

S: Saída após a transição.

- Vamos usar o mesmo exemplo do detector de sequência 1101, utilizado no estudo da máquina de Moore.
- O diagrama de estados possui uma quantidade menor de estados:
 - Somente 4 contra 5 da máquina de Moore;
 - Com isso, se economiza um Flip Flop;
 - No arco temos a indicação de A/Y (entrada/saída).

· Roteiro para a criação de máquinas de Mealy:

- Identifique as entradas e saídas;
- Esboce o diagrama de estados;
- Monte a tabela que combina a transição de estados e a saída;
- Escolha a codificação dos estados (binária, código de Gray, onehot, etc...);
- Monte a nova tabela de transição e saída de acordo com a codificação e o Flip Flop escolhidos;
- Monte os mapas de Karnaugh para a nova tabela e obtenha as equações do circuito:
 - Para o próximo estado;
 - Para a saída.
- Desenhe o resultado final.

• Utilizando o diagrama de estados:

- Preenche-se a tabela de transição e os valores de saída.

Estado Atual	Entrada (A)	Próximo Estado	Saída (Y)
S0	0	S0	0
S0	1	S1	0
S1	0	S0	0
S1	1	S2	0
S2	0	S3	0
S2	1	S2	0
S3	0	S0	0
S3	1	S1	1

- Codificamos os estados em binário:
 - E preenchemos a tabela de transição e saída:

Estado Atual		Entrada	Próximo Estado		Saída
bit 1 _{EA}	bit O _{EA}	Α	bit 1 _{pe}	bit O _{pe}	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

• A saída e dada por:

$$Y = bit1_{EA}*bit0_{EA}*A$$

Estado Atual		Entrada	Próximo Estado		Saída
bit	bit	Α	bit	bit	Y
1 _{EA}	O _{EA}		1_{pe}	0_{pe}	
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

- Para bit1_{pe}=1, temos duas condições:
 - $bit1_{pe} = bit1'_{EA}*bit0_{EA}*A$ e $bit1_{pe} = bit1_{EA}*bit0'_{EA}$

$bit1_{pe} = bit1'_{EA}*bit0_{EA}*A + bit1_{EA}*bit0'_{EA}$

	Estado Atual		Entrada		Próximo Estado		
	bit	bit	Α	bit	bit	Υ	
	1 _{EA}	O _{EA}		1_{pe}	O _{pe}		
	0	0	0	0	0	0	
	0	0	1	0	1	0	
	0	1	0	0	0	0	
	0	1	1	1	0	0	
П	1	0	0	1	1	0	
	1	0	1	1	0	0	
	1	1	0	0	0	0	
	1	1	1	0	1	1	

Para bit0_{pe}=1, temos três condições:

$$bit0_{pe} = bit1'_{EA}*bit0'_{EA}*A$$

$$bit0_{pe} = bit1_{EA} *S'0*A'$$

$$bit0_{pe} = bit1_{EA}*bit0_{EA}*A$$

$$bit0_{pe} =$$

Estado Atual		Entrada	Próximo Estado		Saída
bit	bit	Α	bit	bit	Y
1 _{EA}	O _{EA}		1_{pe}	0_{pe}	
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

Resumindo:

$$bit1_{pe} = bit1'_{EA}*bit0_{EA}*A + bit1_{EA}*bit0'_{EA}$$

$$bit0_{pe} = bit1'_{EA}*bit0'_{EA}*A + bit1_{EA}*bit0'_{EA}*A + bit1_{EA}*bit0'_{EA}*A$$

$$Y = bit1_{EA}*bit0_{EA}*A$$

Codificação do Estado Atual = bit1 _{EA} bit0_{EA}
Codificação do Próximo Estado = bit1 _{pe} bit0_{pe}

Insper

Comparativo Mealy x Moore

Velocidade de resposta:

- Mealy: a saída pode responder a variações nas entradas sem esperar pelo sincronismo do Clock (mais rápido);
- Moore: a saída depende do sincronismo do Clock para mudar seu estado (mais lento).

Glitchs na entrada:

- Mealy: transfere os glitchs das entradas para as saídas;
- Moore: filtra os glitchs de entrada (sincronismo).

Duração dos sinais de saída:

- Mealy: pode ser curta, dependendo do sinal de entrada;
- Moore: possui pelo menos um ciclo de Clock.

Complexidade do circuito:

- Mealy: pode eliminar um Flip Flop e toda a lógica relativa a ele, o que pode ser significativo;
- Moore: em geral utiliza um estado a mais.

Resumo geral:

 As máquinas de Mealy, pelo seu circuito menor e resposta imediata à entrada, podem ser mais rápidas.

 As máquinas de Moore tratam melhor os atrasos de propagação, sincronizando com o Clock, o que é bem adequado a circuitos com pipeline implementados em FPGAs.

 Os glitchs podem n\u00e3o ser um problema, por si s\u00f3, ou se o resto do circuito possuir etapas sincronizadas.

- Para auxiliar na escolha entre Moore e Mealy.
- Moore se o seu problema define que:
 - A saída seja ativada no <u>estado subsequente</u> à entrada que finaliza a sequência;
 - Não apareçam glitchs nas saídas, mesmo que existam nas entradas.
- Mealy se o seu problema define que:
 - A saída seja ativada <u>assim que</u> a última entrada, que finaliza a sequência, inicie;
 - A saída não precise esperar pelo sincronismo do Clock;
 - Se minimize o circuito (geralmente);
 - Possam existir glitchs na saída.

Insper

www.insper.edu.br

