PHYSICAL CHEMISTRY FOR THE BIOLOGICAL SCIENCES

SECOND EDITION

Gordon G. Hammes Sharon Hammes-Schiffer

Part of Wiley Series in Methods of Biochemical Analysis

CONTENTS

Pr	Preface to First Edition		XV
Pr	eface t	to Second Edition	xvii
THERMODYNAMICS			1
1.	Heat	, Work, and Energy	3
	1.1	Introduction	3
	1.2	Temperature	4
	1.3	Heat	5
	1.4	Work	6
	1.5	Definition of Energy	9
	1.6	Enthalpy	11
	1.7	Standard States	12
	1.8	Calorimetry	13
	1.9	Reaction Enthalpies	16
	1.10	Temperature Dependence of the Reaction Enthalpy	18
		References	19
		Problems	20
2.	Entr	opy and Gibbs Energy	23
	2.1	Introduction	23
	2.2	Statement of the Second Law	24
	2.3	Calculation of the Entropy	26
	2.4	Third Law of Thermodynamics	28
	2.5	Molecular Interpretation of Entropy	29

vi CONTEN	STV
-----------	------------

	2.6	Gibbs Energy	30
	2.7	Chemical Equilibria	32
	2.8	Pressure and Temperature Dependence of the Gibbs Energy	35
	2.9	Phase Changes	36
	2.10	Additions to the Gibbs Energy	39
		Problems	40
3.	Appl	ications of Thermodynamics to Biological Systems	43
	3.1	Biochemical Reactions	43
	3.2	Metabolic Cycles	45
	3.3	Direct Synthesis of ATP	49
	3.4	Establishment of Membrane Ion Gradients by Chemical Reactions	51
	3.5	Protein Structure	52
	3.6	Protein Folding	60
	3.7	Nucleic Acid Structures	63
	3.8	DNA Melting	67
	3.9	RNA	71
		References	72
		Problems	73
4.	Ther	modynamics Revisited	77
	4.1	Introduction	77
	4.2	Mathematical Tools	77
	4.3	Maxwell Relations	78
	4.4	Chemical Potential	80
	4.5	Partial Molar Quantities	83
	4.6	Osmotic Pressure	85
	4.7	Chemical Equilibria	87
	4.8	Ionic Solutions	89
		References	93
		Problems	93

			CONTENTS	vii
CH	EMI	CAL KINETICS		95
5.	Princ	ciples of Chemical Kinetics		97
	5.1	Introduction		97
	5.2	Reaction Rates		99
	5.3	Determination of Rate Laws		101
	5.4	Radioactive Decay		104
	5.5	Reaction Mechanisms		105
	5.6	Temperature Dependence of Rate Constants		108
	5.7	Relationship Between Thermodynamics and Kinetics		112
	5.8	Reaction Rates Near Equilibrium		114
	5.9	Single Molecule Kinetics		116
		References		118
		Problems		118
6.	Appl	ications of Kinetics to Biological Systems		121
	6.1	Introduction		121
	6.2	Enzyme Catalysis: The Michaelis-Menten Mechanism		121
	6.3	α -Chymotrypsin		126
	6.4	Protein Tyrosine Phosphatase		133
	6.5	Ribozymes		137
	6.6	DNA Melting and Renaturation		142
		References		148
		Problems		149
QU	JANT	UM MECHANICS		153
7.	Func	damentals of Quantum Mechanics		155
	7.1	Introduction		155
	7.2	Schrödinger Equation		158
	7.3	Particle in a Box		159
	7.4	Vibrational Motions		162

viii CONTEN	ITS
-------------	-----

	7.5	Tunneling	165
	7.6	Rotational Motions	167
	7.7	Basics of Spectroscopy	169
		References	173
		Problems	174
8.	Elec	tronic Structure of Atoms and Molecules	177
	8.1	Introduction	177
	8.2	Hydrogenic Atoms	177
	8.3	Many-Electron Atoms	181
	8.4	Born-Oppenheimer Approximation	184
	8.5	Molecular Orbital Theory	186
	8.6	Hartree-Fock Theory and Beyond	190
	8.7	Density Functional Theory	193
	8.8	Quantum Chemistry of Biological Systems	194
		References	200
		Problems	201
SP	ECTI	ROSCOPY	203
9.	X-ra	y Crystallography	205
	9.1	Introduction	205
	9.2	Scattering of X-Rays by a Crystal	206
	9.3	Structure Determination	208
	9.4	Neutron Diffraction	212
	9.5	Nucleic Acid Structure	213
	9.6	Protein Structure	216
	9.7	Enzyme Catalysis	219
		References	222
		References Problems	222 223

			CONTENTS	IX
10.	Electr	ronic Spectra		225
	10.1	Introduction		225
	10.2	Absorption Spectra		226
	10.3	Ultraviolet Spectra of Proteins		228
	10.4	Nucleic Acid Spectra		230
	10.5	Prosthetic Groups		231
	10.6	Difference Spectroscopy		233
	10.7	X-Ray Absorption Spectroscopy		236
	10.8	Fluorescence and Phosphorescence		236
	10.9	RecBCD: Helicase Activity Monitored by Fluorescence		240
	10.10	Fluorescence Energy Transfer: A Molecular Ruler		241
	10.11	Application of Energy Transfer to Biological Systems		243
	10.12	Dihydrofolate Reductase		245
		References		247
		Problems		248
11.	Circu	lar Dichroism, Optical Rotary Dispersion, and Fluores	scence	
	Polar	ization		253
	11.1	Introduction		253
	11.2	Optical Rotary Dispersion		254
	11.3	Circular Dichroism		256
	11.4	Optical Rotary Dispersion and Circular Dichroism of Pro	oteins	257
	11.5	Optical Rotation and Circular Dichroism of Nucleic Acid	ds	259
	11.6	Small Molecule Binding to DNA		260
	11.7	Protein Folding		263
	11.8	Interaction of DNA with Zinc Finger Proteins		266
	11.9	Fluorescence Polarization		267
	11.10	Integration of HIV Genome Into Host Genome		269
	11.11	α-Ketoglutarate Dehydrogenase		270
		References		272
		Problems		273

X CONTENTS

12. Vib	rations in Macromolecules	277
12.1	Introduction	277
12.2	Infrared Spectroscopy	278
12.3	Raman Spectroscopy	279
12.4	Structure Determination with Vibrational Spectroscopy	281
12.5	Resonance Raman Spectroscopy	283
12.6	Structure of Enzyme-Substrate Complexes	286
12.7	Conclusion	287
	References	287
	Problems	288
	nciples of Nuclear Magnetic Resonance and Electron n Resonance	289
13.1	Introduction	289
13.2	NMR Spectrometers	292
13.3	Chemical Shifts	293
13.4	Spin-Spin Splitting	296
13.5	Relaxation Times	298
13.6	Multidimensional NMR	300
13.7	Magnetic Resonance Imaging	306
13.8	Electron Spin Resonance	306
	References	310
	Problems	310
14. App	olications of Magnetic Resonance to Biology	315
14.1	Introduction	315
14.2	Regulation of DNA Transcription	315
14.3	Protein-DNA Interactions	318
14.4	Dynamics of Protein Folding	320
14.5	RNA Folding	322
14.6	Lactose Permease	325

			CONTENTS	хi
	14.7	Proteasome Structure and Function		328
	14.8	Conclusion		329
		References		329
ST	ATIST	TICAL MECHANICS		331
15.	Fund	amentals of Statistical Mechanics		333
	15.1	Introduction		333
	15.2	Kinetic Model of Gases		333
	15.3	Boltzmann Distribution		338
	15.4	Molecular Partition Function		343
	15.5	Ensembles		346
	15.6	Statistical Entropy		349
	15.7	Helix-Coil Transition		350
		References		353
		Problems		354
16.	Mole	cular Simulations		357
	16.1	Introduction		357
	16.2	Potential Energy Surfaces		358
	16.3	Molecular Mechanics and Docking		364
	16.4	Large-Scale Simulations		365
	16.5	Molecular Dynamics		367
	16.6	Monte Carlo		373
	16.7	Hybrid Quantum/Classical Methods		373
	16.8	Helmholtz and Gibbs Energy Calculations		375
	16.9	Simulations of Enzyme Reactions		376
		References		379
		Problems		379

xii CONTENTS

SP	ECIAI	TOPICS	383
17.	Ligan	d Binding to Macromolecules	385
	17.1	Introduction	385
	17.2	Binding of Small Molecules to Multiple Identical Binding Sites	385
	17.3	Macroscopic and Microscopic Equilibrium Constants	387
	17.4	Statistical Effects in Ligand Binding to Macromolecules	389
	17.5	Experimental Determination of Ligand Binding Isotherms	392
	17.6	Binding of Cro Repressor Protein to DNA	395
	17.7	Cooperativity in Ligand Binding	397
	17.8	Models for Cooperativity	402
	17.9	Kinetic Studies of Cooperative Binding	406
	17.10	Allosterism	408
		References	412
		Problems	412
18.	Hydro	odynamics of Macromolecules	415
	18.1	Introduction	415
	18.2	Frictional Coefficient	415
	18.3	Diffusion	418
	18.4	Centrifugation	421
	18.5	Velocity Sedimentation	422
	18.6	Equilibrium Centrifugation	424
	18.7	Preparative Centrifugation	425
	18.8	Density Centrifugation	427
	18.9	Viscosity	428
	18.10	Electrophoresis	429
	18.11	Peptide-Induced Conformational Change of a Major Histocompatibility Complex Protein	432
	18.12	Ultracentrifuge Analysis of Protein-DNA Interactions	434
		References	435
		Problems	435

		CONTENTS	xiii
19. Mass	Spectrometry		441
19.1	Introduction		441
19.2	Mass Analysis		441
19.3	Tandem Mass Spectrometry (MS/MS)		445
19.4	Ion Detectors		445
19.5	Ionization of the Sample		446
19.6	Sample Preparation/Analysis		449
19.7	Proteins and Peptides		450
19.8	Protein Folding		452
19.9	Other Biomolecules		455
	References		455
	Problems		456
APPEND	ICES		457
Appendix	1. Useful Constants and Conversion Factors		459
Appendix	2. Structures of the Common Amino Acids at Neutr	al pH	461
Appendix	3. Common Nucleic Acid Components		463
Appendix	4. Standard Gibbs Energies and Enthalpies of Form at 298 K, 1 atm, pH 7, and 0.25 M Ionic Strength		465
Appendix	5. Standard Gibbs Energy and Enthalpy Changes for Biochemical Reactions at 298 K, 1 atm, pH 7.0, pMg 3.0, and 0.25 M Ionic Strength		467
Appendix	6. Introduction to Electrochemistry		469
A6-1	Introduction		469
A6-2	Galvanic Cells		469
A6-3	Standard Electrochmical Potentials		471
A6-4	Concentration Dependence of the Electrochemical Pote	ential	472
A6-5	Biochemical Redox Reactions		473
	References		473
Index			475