UNCLASSIFIED

AD 273 675

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

REPORT NO. TDR-930(2210-07)TN-1

Propellant Performance

and

Gas Composition Handbook

3 JANUARY 1962

Prepared by
S. A. JOHNSTON, E. A. MATHIAS,
P. C. HANZEL and L. SCHIELER
Chemical Propulsion Laboratory

Prepared for DEPUTY COMMANDER AEROSPACE SYSTE.

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

Inglewood, Culifornia

1 ABORATORIES DIVISION • ATROSPACT CORPORATION CONTRACT NO. AF 04(647)-930

S C

274

PROPELLANT PERFORMANCE AND GAS COMPOSITION

HANDBOOK

Prepared by

S. A. Johnston

E. A. Mathias

P. C. Hanzel
L. Schieler

AEROSPACE CORPORATION El Segundo, California

Contract No. AF 04(647)-930

3 January 1962

Prepared for

DEPUTY COMMANDER AEROSPACE SYSTEMS AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE Inglewood, California

DCAS-TDR-62-2

PROPELLANT PERFORMANCE AND GAS COMPOSITION **HANDBOOK**

Approved by Leroy Schieler, Head
Chemical Propulsion Department

AEROSPACE CORPORATION El Segundo, California

ABSTRACT

Performance tables are presented which were obtained by plotting data from machine calculations and interpolating to obtain vacuum specific impulses for integral values of the area ratio. The values are convenient reference points for the calculation of interpolated values of the specific impulse for any given area ratio. Tables of gas compositions and performances are also included in this handbook.

1

. .

CONTENTS

A.	$(P_c = 150, 300, 500, 700, 1000)$	
	Discussion	
	RP-1 - Oxygen	A-1
	Hydrazine-Oxygen	A-6
	UDMH-Oxygen	A-11
	Hydrazine-UDMH (50/50)-Oxygen	A-16
	Ammonia-Oxygen	
	Hydrazine-N ₂ O ₄	A-26
	UDMH-N ₂ O ₄	A-31
	Hydrazine-UDMH (50/50)- N_2O_4	A-36
B.	Gas Composition - Oxygen and N_2O_4 Systems ($P_c = 150, 300, 500, 700$)	
	Discussion	
	RP-1 - Oxygen	B-1
	Hydrazine-Oxygen	B-21
	UDMH-Oxygen	B-41
	Hydrazine-UDMH (50/50)-Oxygen	B-61
٠.	Ammonia-Oxygen	B-81
	$Hydrazine-N_2O_4$	B-101
	UDMH-N ₂ O ₄	B-121
	Hydrazine-UDMH (50/50)- N_2O_4	B-141
C.	Performance - Miscellaneous Systems	
	Hydrazine-Fluorine ($P_c = 100, 150, 200, 500$)	C-1
	Hydrazine-Chlorine Trifluoride ($P_c = 150, 300, 500$)	C-5
	Hydrazine-SFNA (P _c = 150, 300, 500)	C-8
	Hydrogen-Oxygen ($P_c = 60, 100, 200, 300$)	C-11
	Hydrogen-Fluorine ($P_c = 100, 200$)	C-15
	Methyl Hydrazine-SFNA ($P_c = 150, 300, 500$)	C-17
	Methyl Hydrazine- N_2O_4 ($P_c = 150, 300, 500$)	C-21

CONTENTS (continued)

D.	Gas Composition - Miscellaneous Systems $(P_c = 1000)$	
	Aluminum-Ammonium Perchlorate-PBAA	D-1
	Hydrazine-Hydrogen Peroxide	D-6
	Hydrazine-Fluorine	D-7
	Hydrazine-Oxygen Difluoride	D-8
	Hydrazine-Perchloryl Fluoride	D-9
	Hydrazine-Chlorine Trifluoride	D-10
	Hydrazine-Nitrogen Trifluoride	:D-1
	UDMH-Hydrogen Peroxide	D-17
	UDMH-Fluorine	1)-13
	UDMH-Oxygen Difluoride	D-14
	UDMH-Perchloryl Fluoride	D-19
	UDMH-Chlorine Trifluoride	D-10
	UDMH-Nitrogen Trifluoride	D-1
	Hydrogen-Oxygen	D-18
	Hydrogen-Hydrogen Peroxide	D-19
	Hydrogen-Fluorine	D-20
	Hydrogen-Oxygen Difluoride	D- 2
	Hydrogen-Perchloryl Fluoride	D-2
	Hydrogen-Chlorine Trifluoride	D-2
	Hydrogen-Nitrogen Trifluoride	D-2
	Hydrogen-Nitrogen Tetroxide	D-2
	Pentaborane-Oxygen	D-20
	Pentaborane-Hydrogen Peroxide	D-2
	Pentaborane-Fluorine	D-2
	Pentaborane-Oxygen Difluoride	D-29
	Pentaborane-Perchloryl Fluoride	D-30
	Pentaborane-Chlorine Trifluoride	D~3
	Pentaborane-Nitrogen Trifluoride	D-3
	Pentaborane-Nitrogen Tetroxide	D-3

INTRODUCTION

The performance tables in this manual were developed to meet the needs of engineers and systems analysts who frequently need to know the potential performance of a rocket engine with a specific area ratio and operating in a given ambient pressure.

The usual machine-calculated values for performance are obtained by fixing the pressure ratio and calculating the corresponding area ratio and specific impulse for expansion into a vacuum. The accompanying tables were obtained by carefully plotting data from machine calculations and interpolating to obtain vacuum specific impulses for integral values of the area ratio. These area ratio values thus become convenient reference points for the calculation of interpolated values of the specific impulse for any given area ratio.

As indicated in the theoretical discussion, the calculations involve simple arithmetic and can be made in a very short time.

It should be emphasized that I_V (vacuum specific impulse), as defined herein, is the theoretical impulse obtained for a motor with a given area ratio operating in a vacuum. The vacuum specific impulse is not the theoretical maximum specific impulse (corresponding to an infinite area ratio) for expansion into a vacuum.

All propellants are considered to be liquids at either ambient temperature or their boiling point, whichever is lower.

When interpolating for chamber pressures, it is useful to note that $I_{\rm g}$ is approximately proportional to log $P_{\rm g}$.

Linear interpolation for I_{v} is unsatisfactory for small values of ϵ since the curve is definitely nonlinear in this region, and calculated values will be from one to two seconds too low. If greater accuracy is required, a few points should be plotted and the appropriate value of I_{v} obtained from the curve.

NOMENCLATURE

```
= area at exit (sq in.)
      = area at throat (sq in.)
      = effective exhaust velocity (ft/sec)
      = characteristic velocity (ft/sec)
c*
      = nozzle coefficient
C_{\mathbf{f}}
C,
      = vacuum nozzle coefficient
      = area ratio = A_e/A_t
      = thrust (lb)
      = acceleration of gravity (32. 2 ft/sec<sup>2</sup>)
\Delta I
      = I<sub>v</sub> - I<sub>s</sub>
I
      = specific impulse (sec)
      = vacuum specific impulse (specific impulse for operation in a vacuum);
         i. e., when P_a = 0
      = ambient pressure (lb/sq in.)
P_{c}
      = chamber pressure (lb/sq in.)
      = pressure at exit (lb/sq in.)
      = mixture ratio = weight oxidizer/weight fuel
r
      = true velocity of efflux (ft/sec)
      = weight flow rate (lb/sec)
```

DIRECTIONS FOR THE USE OF PERFORMANCE TABLES

If & and Pa are given, and Is is desired;

- 1. Determine I_v and $\frac{AI}{\epsilon P_a}$ from the table or by interpolation
- 2. Calculate $\Delta I = \epsilon P_a \times \frac{\Delta I}{\epsilon P_a}$
- 3. Then, $I_s = I_v \Delta I$
- 4. For the optimum value of I_s at a given P_a , locate the value of P_e corresponding to the given P_a and also determine from the table the corresponding value of ϵ . Using the value of $P_e = P_a$ and the corresponding value of ϵ , determine the value of I_s as above. The value so obtained is a maximum for the given value of P_a .

Values of P_e may be readily interpolated since $\log P_c/P_e$ is proportional to $\log \epsilon$.

5. The method of calculation of c*, c, C_f , C_v , and v_e is shown in the sample calculation which follows the discussion of the theory.

The basic equation for rocket thrust is

$$F = \frac{\mathbf{\hat{w}}_{\mathbf{e}}}{\mathbf{g}} + (\mathbf{P}_{\mathbf{e}} - \mathbf{P}_{\mathbf{a}}) \mathbf{A}_{\mathbf{e}}$$
 (1)

Newton's second law requires that

$$\mathbf{F} = \frac{\mathbf{\psi} \mathbf{c}}{\mathbf{g}} \tag{2}$$

Specific impulse is defined as pounds of thrust per pound per second of propellant consumption. Therefore,

$$I_{g} = \frac{F}{\dot{w}} \tag{3}$$

Combining (1), (2), and (3) we obtain

$$I_s = \frac{c}{g} = \frac{F}{\dot{w}} = \frac{v_e}{g} + \frac{(P_e - P_a) A_e}{\dot{w}}$$
 (4)

Letting $P_a = 0$, we obtain

$$I_{v} = \frac{v_{e}}{g} + \frac{P_{e}A_{e}}{\psi}$$
 (5)

NOTE: Maximum I_s for a given value of P_a is obtained when $P_e = P_a$

Subtracting (5) from (4)

$$I_{g} = I_{v} - \frac{P_{a} A_{e}}{\psi}$$
 (6)

By definition,

$$c* = \frac{P_c A_t g}{\Psi} \tag{7}$$

Solving (7) for $\dot{\mathbf{w}}$ and substituting in (6), we obtain

$$I_{s} = I_{v} - \frac{A_{e}}{A_{t}} \cdot \frac{P_{a}}{P_{c}} \cdot \frac{c*}{g}$$
 (8)

But

$$\epsilon = \frac{A_e}{A_t}$$
 (definition) (9)

Substituting (9) in (8)

$$I_{s} = I_{v} - \frac{\epsilon P_{a} c^{*}}{P_{c}g}$$
 (10)

Let

$$\Delta I = I_v - I_s = \frac{\epsilon P_a c^*}{P_c g}$$
 (11)

or

$$\frac{\Delta I}{\epsilon P_{a}} = \frac{c^{*}}{P_{c}g} \tag{12}$$

Equation (12) is used to calculate the values of $\frac{\Delta I}{\epsilon P_a}$ shown in the tables.

Then

$$I_s = I_v - \Delta I$$

$$I_{g} = I_{v} - \epsilon P_{a} \left(\frac{\Delta I}{\epsilon P_{a}} \right)$$
 (13)

Since ϵ and P_a are known and $\frac{\Delta I}{\epsilon P_a}$ is given in the table, the calculation of I_a is simple.

To Find c*, c, C_f , and C_v

Solving (11) for c* we obtain

$$c^* = \left(\frac{\Delta I}{\epsilon P_a}\right) P_c g \tag{14}$$

Since the value of $\frac{\Delta I}{\epsilon P_a}$ is given in the table, c* is readily obtained by the use of Equation (14).

From Equation (4),

$$c = I_g \cdot g \tag{15}$$

By definition,

$$C_{f} = \frac{F}{P_{c}A_{t}}$$
 (16)

Combining Equations (3), (7), and (16) we obtain

$$C_{f} = \frac{c}{c^{*}} = \frac{I_{g}g}{c^{*}}$$
 (17)

Therefore,

₹,

$$C_{v} = \frac{I_{v} g}{c^{*}}$$
 (18)

Combining (17) and (18)

$$C_{v} = C_{f} \cdot \frac{I_{v}}{I_{g}} \tag{19}$$

From Equation (6)

$$I_{V} - I_{g} = \frac{P_{a} A_{e}}{\dot{w}} = \Delta I \tag{20}$$

From Equations (5) and (6)

$$\frac{\mathbf{v_e}}{\mathbf{g}} = \mathbf{I_s} - \frac{\mathbf{A_e}}{\mathbf{w}} (\mathbf{P_e} - \mathbf{P_a}) \tag{21}$$

From Equation (20)

$$\frac{A_e}{\psi} = \frac{\Delta I}{P_a} \tag{22}$$

Substituting (22) in (21)

$$v_e = g \left[I_s - \frac{\Delta I}{P_a} \cdot (P_e - P_a) \right]$$
 (23)

Since $\frac{\Delta I}{\epsilon P_a}$ is given in the tables, it is more convenient to rearrange Equation (23) as follows:

$$v_e = g \left[I_s - \epsilon \left(\frac{\Delta I}{\epsilon P_a} \right) \left(P_e - P_a \right) \right]$$
 (24)

Using Equation (24) and the data obtained in the example, we obtain

$$v_e = 32.2 \left[395.7 - 20 \times 2.189 (0.52 - 0.20) \right]$$

$$v_e = 12,291 \text{ ft/sec}$$

Note that the value of c, the effective exhaust velocity, was 12,742 ft/sec.

EXAMPLE

Given $\epsilon = 20$ and r = 2.00

$$P_a = 0.20 \text{ and } P_c = 100$$

From table,

$$I_{v} = 404.5 \text{ sec}$$

From table,

$$\frac{\Delta I}{\epsilon P_a} = 2.189$$

By Equation (13),

$$I_s = 404.5 - 20 \times 0.20 \times 2.189$$

= 395.7 sec

Also

By Equation (14),

$$c* = 2.189 \times 100 \times 32.2 = 7049 \text{ ft/sec}$$

By Equation (15),

$$c = 395.7 \times 32.2 = 12,742 \text{ ft/sec}$$

By Equation (17),

$$C_f = \frac{12,742}{7049} = 1.808$$

By Equation (19),

$$C_{v} = 1.808 \times \frac{404.5}{395.7}$$

$$= 1.848$$

To Obtain Maximum I_g for $P_a = 0.20$

Set
$$P_e = P_a = 0.20$$

From table, corresponding value of ϵ is 40

Calculate Is as above; i.e.,

$$I_v = 418.0 \text{ sec}$$

$$I_s = 418 - 40 \times 0.20 \times 2.189$$

$$= 400.5 \text{ sec}$$

This value might also have been obtained by plotting calculated values of I_8 (for $P_a = 0.20$) as a function of ϵ . At the maximum value of I_8 , the corresponding ϵ is optimum and P_e must equal P_a .

For example, for $P_a = 0.20$ psia and r = 2.00

<u>•</u>	ΔI	$\underline{\mathbf{I_v}}$	<u>Is</u>
10	4.4	386.7	382.3
15	6.6	397.4	390.8
20	8.8	404.5	395.7
25	10.9	409.2	398.3
30	13.1	412.8	399.7
40	17.5	418.0	400.5 (max)
50	21.9	421.5	399.6

As determined previously, the value of I_8 is optimum at ϵ = 40 and is 400.5 sec.

It is of theoretical interest to calculate the value of $\mathbf{v_e}$ in order to compare $\mathbf{v_e}$ with c, which is the <u>effective</u> exhaust velocity.

 $PERFORMANCE-OXYGEN\ AND\ N_2O_4\ SYSTEMS$

Shifting Equilibrium $P_c = 150$

				•	C - 2	;				
	H	2.10	r = 2.	20	$\mathbf{r} = 2.3$	30	r = 2.	40	r = 2.	50
U	I _s (max)	w	I _s (max)	¥	I _s (max)	¥	I _s (max)	ę	I _s (max)	۴
14.7	232.2	2.36	232.7	2.40	232.6	2. 43	232.2	2.45	231.4	2.47
			-							
w	ı,	D, e	I ^	ф ф	'n	Ъ	I	ъ	ľ	Pe
2	266.8	18.20	268.5	18.85	266.0	18.90	266.0	18.75	265.0	19.15
9	306.5	3.83	. 307.3	3.99	308.3	4.03	308.0	4. 31	307.3	4.40
10	319.7	1.88	321.5	2.00	322. 4	2.08	323.3	2.20	323.0	2. 28
12	323. 4	1.44	325.6	1.59	326.8	1.63	327.7	1.73	327.7	1.85
14	326.3	1.19	328.8	1.29	330.3	1.32	331.4	1.43	331.6	1.51
16	329.0	1.00	331.6	1.09	333. 2	1.10	334. 4	1.18	334.8	1. 29
20	333.4	0.78	336. 2	0. 78	337.8	0.87	339.4	0.88	339.9	0.93
25	337.4	0.52	340.3	0.52	342. 2	0.62	344. 5	0.62	345.0	69.0
30	340.0	0.40	343.4	0.40	345.4	0.50	348.0	0.50	349. 1	0.53
40	344.1	0.30	348.0	0.30	350.5	0.34	352.6	0.38	354.0	0.40
50	347.4	0.21	351.3	0.21	353.9	0.28	356.3	0.29	357.5	0.30
ΔI/ _{εPa}	1.213	13	1,213	3	1.211	11	1. 207	07	1. 202	02

Shifting Equilibrium $P_{c} = 300$

				ر						
	# #	2.10	$\mathbf{r} = 2.20$		r ₁ = 2.	30	r = 2.	40	r=2.	50
u	I _s (max)	٠	I _s (max)	٤	I _s (max)	w	I _s (max)	•	I _s (max)	3
14.7	259.3	3.73	260.5	3.82	261.2	3.91	261.2	3.99	4.05	260.7
•	ı,	U.	I v	ъ	, I	D, e	I ^	D e	I	P
2	269.0	32.05	270.0	33.85	270.0	33.95	270.0	36.05	267.5	36.0
9	307.0	7.27	308.9	7.60	309.5	8.10	310.3	8.30	309.3	8.55
01	322.0	3.65	322. 7	3.85	324. 2	4.05	324. 7	4.18	325. 2	4.38
. 21	323.8	5.89	326.7	3, 05	328.5	3, 18	329.4	3.32	329.7	3. 48
14	327.0	2.38	329.9	2. 50	331.8	2.59	333.2	2. 70	333. 3	2.81
16	329.5	2.00	332. 4	2.09	334. 7	2.19	336.2	2.25	336.3	2.35
20	333.6	1.50	336.6	1.55	339.3	1.61	340.8	1.69	341.2	1. 78
25	337.4	1.10	340.6	1.14	343.8	1.20	345. 2	1.28	346.3	1.35
30	340.4	0.88	343. 7	0.89	347.0	0.98	348.6	0.99	350.0	1.09
40	344.9	09.0	348.2	0.61	351.1	0.62	353.3	0.65	355.0	0.75
95	347.9	0.48	351.5	0.50	354.6	0.50	356.9	0.50	358.6	0.50
$\Delta I_{\epsilon P_a}$	0.610	01	0.611	1	0.610	10	0.608	808	0.0	0.606

C

RP.1 - Liquid Oxygen Shifting Equilibrium

 $P_c = 500$

7.

	₹ = 2	2 20	r = 2.30	C	r = 2.4	40	r = 2.50	20	r = 2.60	00
J,	%	•	l ä	w	I _s (max)	¥	I _s (max)	¥	I _s (max)	w
14.7		5.44	00	5.59	279.2	5. 73	2.622	5.87	278.7	5.97
•	ì	D,	I	Ъ	^A I	Pe	ı	P	^I	Ъ
5	304.0	16.20	305.0	17.30	305.9	17.80	305.0	18.10	304.6	18.50
2	313.8	10.20	315.0	10.80	315.8	11.15	315.6	11.50	315.6	12.05
10	323.0	6.25	324.6	6.58	325.8	. 6.95	326.0	7.15	326.2	7.40
12	327.0	4.95	329.0	5.15	330.2	5.40	330. 7	5. 75	331.4	5.80
14	330.2	4.05	332.3	4.29	334.1	4.45	334. 4	4.75	334.8	4.80
16	332.7	3.40	335.0	3.65	337.0	3.75	337.7	3.95	337.9	4.05
70	337.6	2.53	339.6	2.68	341.4	2.78	342.6	2.95	342.8	3.05
25	341.8	1.90	344.2	2.00	345.6	2.08	347.0	2.19	347.5	2.30
30	344. 7	1.50	347.5	1.60	349.0	1.65	350.6	1.70	351.0	1.85
40	348.4	1.01	351.9	1.10	356.2	1.15	358.4	1.19	369.9	1.25
50	353.8	0.77	357.4	0.80	357.8	0.83	360.0	06 .0	361.5	96 0 7
1 0	0.368	898	0.3	368	0.	0.367	o	0.365	0.	0.364
75										

RP-1 - Liquid Oxygen Shifting Equilibrium P_c = 1000

۵	r=2.	2,20	$\mathbf{r}=2.3$	30	r=2.4	40	$\mathbf{r} = 2$.	50	r=2.	09
U	Is (max)	٠	I _s (max)	¥	I _s (max)	¥	I (max)	ų	I _s (max)	w
14.7	296.7	88.88	298.7	9.14	300.0	9.41	300.7	9. 70	300.8	9.98
•	1 →	ď	ΔI	P e	'n	Pe	I	P	ı,	Pe
œ	318.2	16.95	319.8	17.50	321.0	18.20	321.6	18.90	321.5	19.50
10	323.8	12.55	325.8	12.90	327.4	13,55	327.8	14.10	327.5	14.55
12	327.5	9.67	330.0	10.18	331.5	10.55	332.6	11.05	332.4	11.43
14	330.6	7.85	333.0	8. 29	334.7	8, 55	335.9	8.95	336.2	9.35
16	333.3	6.65	335.8	6.95	337.6	7.25	338.8	7.50	339.6	7.86
18	335. 7	5.75	338.5	6.00	340.0	6.30	341.4	6.48	342.1	6.80
20	338.0	4.95	340.4	5.24	342.2	5, 52	343.6	5.67	344.4	6.00
25	342.0	3.60	344. 7	3.80	346.8	3.98	348.2	4. 20	349.0	4.49
30	345.0	2.88	347.8	3.02	350.2	3.16	351.6	.3, 38	352. 4	3, 60
40	349.2	2.00	352.4	2.10	354.8	2.20	356.7	2.35	358.1	2. 44
50	352.2	1.53	355.8	1.59	358.5	1.65	360.5	1.75	361.8	1.86
$\Delta I/_{\epsilon P_{\mathbf{a}}}$	0.185	35	0.185	5	0.185	85	0.184	84	0.184	84

RP-1 - Liquid Oxygen Shifting Equilibrium

				1	Pc = 700					
	$\mathbf{r} = 2.$	20	$\mathbf{r}=2.$	90	r = 2.	40	r = 2.	50	$\mathbf{r} = 2.6$	09
v	I _s (max)	¥	I _s (max)	¥	I _s (max)	¥	I _s (max)	9	I _s (max)	٠
14.7	287.3	68 "9	288.9	7.08	289.8	7.29	290.1	7.49	289.9	7.67
_										
•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	O,	, I	ъ	^I	Pe	I	P	ľ	P
5	304.6	22.30	306.2	23.65	306.6	24.50	305.8	25.50	305.6	25.60
7	314.3	14.20	316.2	14.65	317.0	15.40	317.2	15.80	316.2	16.00
10	323.4	8.75	325.4	60.6	326.7	9.49	327.0	9.90	327.1	10.20
12	327.2	6.95	329.6	7.18	330.7	7.52	331.4	7.85	331.8	8.12
14	330.2	5.61	332. 4	5.85	334.1	6.28	335.4	6.55	335.9	6. 75
16	332.8	4.68	335.6	4.85	337.0	5.27	338.4	5.45	339.1	5. 74
20	339.4	3.51	340.2	3.67	341.8	3.87	343. 2	4.01	343.8	4. 22
25	341.6	2.61	344. 4	2. 70	346.5	2.89	347.6	2.97	348.4	3.11
30	346.6	2.10	347.6	2.18	349.9	2.30	351.0	2.39	351.9	3.00
40	351.0	1.49	351.,9	1.50	354.4	1.60	356.2	1.66	357.5	1.72
50	352.3	1.08	355.5	1.12	358.1	1.16	360.0	1.24	361.2	1.33
$\Delta I_{\epsilon P_{\mathbf{a}}}$	0.264	64	. 0. 264	4	0.263	63	0. 262	62	0. 261	51

Hydrazine-Oxygen Shifting Equilibrium Pc = 150

	١				7 C = 27					
Д.	r = 0.	. 500	r = 0.600		r = 0.	700	H	0.800	$\mathbf{r} = 0$	006
,	I _s (max)	w	I _s (max)	•	I _s (max)	w	I _s (max)	•	I _s (max)	€
14.7	238.1	2.19	242.7	2.24	245.0	2.31	245.4	2.39	243.7	2.44
u	ı,	ъ	, I	Pe	I v	Ъ	I	P	I	Pe
2	275.0	16.00	280.0	17.40	283.0	18.20	282.5	19.20	279.5	18.65
4	299.3	5.70	305.8	5, 99	309.5	6.53	310.7	6.68	309.0	7. 23
7	313.4	2.58	320.8	2.73	326.3	2.83	328.3	3, 12	328.3	3.43
10	320.9	1.52	329.2	1.63	334.9	1.78	337.5	1.88	338.5	2.11
12	324.3	1.19	332.7	1.30	338.5	1.38	342.3	1.43	343. 2	1.63
91	329.1	0.79	338.3	0.88	344.2	06.0	348.6	1.01	349.9	1.08
20	332.6	0.59	342.1	0.59	349.4	0.62	353.0	0.71	354.8	0.80
52	3,5.6	0.40	345. 5	0.40	352.0	0.43	357.1	0.51	359.5	0.51
30	337.8	0, 31	347.9	0.32	355.0	0.34	360.1	0.40	362.7	0.40
40	341.1	0.20	351.4	0.20	359.4	0.30	364.9	0.30	367.4	0.30
20	343.0	0.12	353.6	0.12	362.1	0.20	367.7	0.20	371.1	0.20
$\Delta I/_{\epsilon P_a}$	1.2	254	1.276	,	1.283	8.3	1.280	80	1.268	89

Hydrazine - Liquid Oxygen

١, ١

₽,

Shifting Equilibrium $P_c = 300$

									'	
	н = 0.	. 50	r = 0.60		H	0.70	 -	0.80	- 0 - 1	. 90
e e	I _s (max)	w	I (max)	¥	I _s (max)	¥	I _s (max)	ų	I _s (max)	ש
14.7	263.0	3, 41	6.897	3.51	272.7	3.63	274.3	3.79	273.8	3,95
ę	I	գ	I	പ്	ı	P	'n	Pe	I	Pe
3	290.4	16.40	297. 1	17.15	300.8	17.85	301.4	19.60	299.6	21. 25
9	309.6	6. 20	317.4	6.75	321.8	7.15	325.0	7.75	324.6	8.45
10	321.0	3.10	329.4	3, 25	335.4	3, 48	338.7	3.75	340.0	4.05
12	324, 4	2, 44	333, 1	2.52	339.5	2.75	343.0	2.98	344, 4	3.18
14	327.1	1,95	335.9	2.02	342. 4	2. 23	346.2	2. 41	347.9	2, 58
16	329.2	1.58	338.2	1.68	344.8	1,88	348.8	2.00	350.9	2.18
20	332.4	1.10	341.9	1.21	348.8	1.36	353.6	1.48	355.8	1.60
25	335.6	08.0	345.2	0.89	352.6	1.00	357.6	1.09	360.4	1. 20
30	338.0	0.62	347.7	0.69	355.3	0.80	350.7	0.80	363.7	0.92
40	341, 2	0.41	351.6	0.48	359.2	0.50	364.9	0.54	368. 2	0,65
50	343,5	0,32	354, 2	0.35	362.3	0.38	368.1	0.43	371.9	0.47
$\Delta I/_{\epsilon P_a}$	0,627	.27	0.639	39	0.644	14	0,644	44	0, 638	38

Hydrazine - Liquid Oxygen

Shifting Equilibrium $P_c = 500$

	(max)			. 8	, 8 5. I	1.8 5.8. 1. P	8 . 8	8. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8. 8 . 0 . 7 . 7 . 5	8. 1 L 1. 2 . 0	1. 1. 2. 2. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	8. 1 I V . 2 2 2 2 2 3 3 3 3 3 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8	8. 1 I I I I I I I I I I I I I I I I I I	8 7 7 2 8 6 7 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6	8 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	e I _s (max		5.64 289.8	64	64 28 P	31	31 31	31 33 33 33 33	33 33 34 34	33 33 34 34 34 34 34	33 32 33 33 35 35 35 35 35 35 35 35 35 35 35	34 34 35 31 35 35 35 35 35 35 35 35 35 35 35 35 35	35 34 34 34 35 35 35 35 35 35 35 35 35 35 35 35 35	33 32 31 38 39 39 39 39 39 39 39 39 39 39 39 39 39		
(max)	(man)	92.3 5.			<u>α</u>	I _V P _e 320.4 17.05	P 17.09	P 17.0° 4 10.9° 8 6.7°	P 17.09 4 10.9 8 6.7 4 5.23	P 17.09 4 10.99 8 6.7 8 6.7 8 4.39	P 17.09 4 10.9 8 6.7 4 5.23 8 4.33 6 3.66	P P P P P P P P P P P P P P P P P P P	P	P P P P P P P P P P P P P P P P P P P	P P P P P P P P P P P P P P P P P P P	P P P P P P P P P P P P P P P P P P P
€ Is (r		36			P I	e 20	20 15	20 20 15	20 20 15 12 88	20 20 15 12 88 89	20 20 15 12 88 89 99	20 20 115 88 88 30	20 20 15 12 88 88 88 41 41	20 20 115 115 99 99 88 88 88 88 88 88 41	20 20 115 115 88 88 81 41 42	20 20 15 112 30 30 41 42 42 70
s (max)		1.9 5.				I _V E	8 16. 3 10.	8 K	3 8 6	6 4 1 1 7 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 8 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 8 E 9 5 7 4 6	8 8 9 2 2 4 6 6	2 1 9 4 7 5 6 1 2	2 2 2 4 4 5 6 1 2 2	2 2 3 4 4 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
e I		5, 14 291	: :		P _e	Pe 31	Pe 31 20 31 45 33	Pe 31. 45 33 45 33.	Pe 31 20 31 45 33 45 34 45 34	Pe 31 45 33 45 34 45 34 45 34 45 34	Pe 31 20 31 45 33 75 33 45 34 98 34	Pe 31 45 33 45 34 45 34 35 35 35 35 35 35 35 35 35 35 35 35 35	20 31 45 33 45 34 45 34 56 34 20 35 60 35	Pe 20 31 20 31 45 33 75 33 56 34 98 34 98 34 60 35 25 36	Pe 20 20 31 45 33 45 34 56 34 98 34 60 35 25 36 90 36	Pe 20 31 20 31 45 33 75 33 56 34 98 34 60 35 25 36 90 36 63 36
(max)	6			I		317.4 15.	1	4 1 8	4 l 8 4	. 4 15. . 8 5. . 4 4. . 2 3.	8 4 2 8	4 1 8 4 2 8 2 8	4 1 8 4 2 8 2 8 1 8 2 8 2 8	4 1 8 4 2 8 2 8 9	4 1 8 4 2 8 2 8 9 6	4 1 8 4 2 8 2 8 9 6 7
4.96 28				ρ		14.30 3										
Is (max)		784. /		ľ	312.0		321.4	321.4	321. 4 329. 6 333. 1	321. 4 329. 6 333. 1 335. 8	321. 4 329. 6 333. 1 335. 8	321. 4 329. 6 333. 1 335. 8 338. 2 341. 9	321. 4 329. 6 333. 1 335. 8 338. 2 341. 9	321.4 329.6 333.1 335.8 338.2 341.9 345.4	321.4 329.6 333.1 335.8 341.9 345.4 348.0	321.4 329.6 333.1 335.8 341.9 345.4 348.0 351.6
		14.7		¥	70		7									

Hydrazıne-Oxygen Shifting Equilibrium P_c = 700

₹ 1 -

0.600	0.600		r = 0.	700	# #	0.800	$\mathbf{r} = 0.$	0.900	r = 1.000	000
I _s (max) ^c I _s (max)	f Is			w	1 (max)	Ψ	cni	- 1	Ø	w
293.7 6.25 298.9 6.	6.25 298.9	6	6.	49	302.1	6.77	303.1	7.15	301.1	7.48
I Pe I		I ^		ъ e	^I	ъ	ı	Ъ	ı N	P
305.7 28.25 310.8	310.8	8		29. 25	313.2	30.52	313.2	32.25	309.8	33.48
321.2 12.53 327.3	53 327.			13.18	330.7	13.98	331.4	15.20	328.9	16.25
329.7 7.49 335.7	335.			8.05	339.7	8.53	341.4	9.18	339. 5	96.6
333.6 5.78 339.5	339.			6.38	343.9	6.67	345.6	7.75	344. 3	7.82
336.4 4.71 342.5	71 342.	_		5.15	347.4	5.51	349.3	5.89	347.7	6.45
338.6 3.93 345.3	345.			4. 22	350.2	4.75	352. 2	4.95	350.9	5. 48
341.9 2.88 349.4	88 349.			3.08	354. 4	3.32	357.0	3.65	356.2	4.15
345.3 2.10 353.0	353.	53.		2.29	358.3	2.38	361.5	2.75	361.2	2.95
347.9 1.61 355.6	355.			1.77	361.0	1.89	364.6	2.15	364. 7	2. 29
351.6 1.01 359.8	359.			1.20	365.6	1.28	369.4	1.49	369. 7	1.61
354.4 0.80 362.6	80 362.			0.90	368.5	06.0	372.6	1.20	373.6	1.21
0.274 0.277	0.		11		0.0	278	0.	0.276	0.	273

Hydrazine - Liquid Oxygen Shifting Equilibrium $\mathbf{P_c} = 1000$

ď	r = 0	0.600	r = 0.	0.700	$\mathbf{r} = 0$.	0.800	r = 0.	0.900	r = 1.	1.00
e	I _s (max)	٤	I _s (max)	Ψ	I _s (max)	و	I _s (max)	ę	I _s (max)	و
14.7	302.3	8.01	308.0	8, 33	311.8	8.71	313.5	9. 20	312.0	9.73
•	I	ъ Б	I	щ°	I ^	ъ	I ^	Pe	, A	Pe
2	321.8	17.75	327.5	18.80	331.4	19.45	331.9	21.30	329.8	22, 40
10	329.9	10.74	336.0	11. 25	340.2	12, 20	341.8	13.08	340.2	14. 15
12	333, 4	8. 25	340.0	8.75	344.3	9.38	346.4	10.38	345.2	11.15
14	336.0	69.9	343.0	7.09	347.5	7.50	349.6	8.39	348.4	9.05
16	338.5	5, 65	345.4	5.95	350.1	6.38	352, 4	7.05	351.1	7.59
18	340.6	4.79	347.3	5.05	352.4	5.46	355.0	6.02	353.4	6,55
70	342.3	4.19	349.2	4.42	354.5	4.70	357.2	5.19	355.2	5, 75
52	345.6	3.10	352.9	3.34	358.6	3,45	363.7	3, 75	359.6	4.39
30	348.1	2, 35	355.8	2.52	361.6	2.72	365.0	2.98	363.6	3.50
40	351.6	1.59	360.0	1.70	365.9	1,89	369.6	2, 05	370.3	2, 33
5.0	354.4	1.15	362.7	1. 25	368.8	1, 39	373.0	1,53	374.2	1.71
$\Delta I/_{\epsilon P_a}$	0.1	0.192	0.194	94	0.195	95	0.194	94	0, 191	91

UDMH Oxygen Shifting Equilibrium

		T		T		1				1	+						
	50	¥	2.43		D, e	20.0	4.15	2.10	1.60	1.32	1.10	0.80	09.0	0.55	0.35	0.25	25
	r = 1.	I _s (max)	240.7		I	278.5	319.2	333.5	338.3	341.6	344.6	349. 5	354. 4	357.4	362.0	365.6	0.125
	40	٤	2.39		Pe	19.00	4.00	1.90	1.53	1.30	1.10	0.80	0.59	0.42	0.30	0.22	26
	r = 1.	I _s (max)	241.1		I	278.2	318.9	331. 7	335.9	339.6	342.5	347.0	351.5	354. 5	358.5	362.5	0.126
	30	Ę	2.34		Ъ	18.5	3.80	1.84	1.50	1. 21	0.99	0.70	0.55	0.42	0.30	0.20	26
c = 150	r = 1	I _s (max)	240.7		I	277.0	316.4	330.0	334.0	336.9	339. 7	343.7	347.7	350.5	355.0	358.4	0.126
P _C	20	•	2. 28		P	18.0	3.62	1.75	1.40	1.20	0.98	0.70	0.55	0.40	0.28	0.20	5
	r = 1.	I _s (max)	239.2		ΔI	274.0	313.0	325. 5	329. 5	332. 7	335.4	339.5	343.0	345. 5	349.9	352.9	0.12
	1.10	w	2.23		ъ	17.5	3.48	1.68	1.30	1.09	0.89	0.68	0.49	0.39	0.20	0.19	24
	= 1	I _s (max)	236.4		,	272.5	308.9	320.4	323.8	326.5	329.0	332.8	336.5	339.0	342.5	345.7	0.124
	D,	v	14.7		w	2	9	10	12	14	16	70	25	; 30	40	50	$\Delta I/_{\mathbf{\epsilon} \mathbf{P_a}}$

UDMH-Oxygen
Sh.fting Equilibrium $P_{C} \approx 300$

ρ	r = 1	1.20	r = 1.30	30	r = 1.40	£0	r = 1.	1.50	r = 1.60	05
•	Is (max)	•	I _s (max)	¥	I (max)	¥	I _s (max)	w	I _s (max)	w
14.7	265.7	3, 58	268.3	3.68	8.692	3. 79	270.2	3.91	269.6	4.00
v	I ^	Ф	I ^	ф	ı	Pe	I V	Pe	ľ	ď
2	277.5	32.5	279.0	34.0	279.0	37.5.	279.0	37.5	279.0	38.3
9	313.9	7.0	317.8	7. 30	320.4	7.35	320.4	8.19	320.5	8.3
10	325.6	3.45	330.2	3, 59	334.4	3.88	335.5	4.0	335.8	4.10
12	330.2	2. 70	334.4	2.83	337.5	2.87	339.6	3.17	340.4	3.40
14	333.4	2.19	337.5	, 2.39	341.0	2.40	343.0	2.60	343.7	2.78
16	3.15.6	1.84	340.2	2.00	343.6	2.10	345.8	2.20	346.6	2.30
20	359.5	1.38	344.4	1.49	347.9	1.50	350.0	1.60	351.8	1.70
۲۶	345.0	1.00	348.4	1.10	352.4	1.12	354.4	1.20	356.9	1.30
90	345.6	97.0	351.0	03.0	355.4	0.84	358.5	0.90	360.5	1.10
40	350.0	0.45	35 . 4	0.52	359.8	09.0	363.0	09.0	365.5	0. 70
5.0	352.6	0.40	358.5	0, 40	363. 3	0.45	3,66.6	0.45	369.0	0.50
$\Delta I/_{\epsilon P_{\mathbf{a}}}$	0.629	5.9	0.632	32	0, 63.5	3,4	0,631	531	0.6	0.628

UDMH-Oxygen

()

Shifting Equilibrium $P_c \approx 500$

Д.	r = 1.	1. 30	r = 1.4	40	r = 1.6	50	r = 1.	09	r = 1.	70
au	I _s (max)	€	I _s (max)	¥	I _s (max)	¥	I _s (max)	¥	I _s (max)	Ψ
14.7	285.0	5. 22	287.2	5.39	288.3	5.58	288.4	5.77	287.6	5. 93
										i
v	I v	Pe	I	ф	ľ	P.	I A	P e	^I	P
4	305.0	20.60	307.5	21.20	308.0	21.80	307.0	23. 20	305.5	23.60
7	321.6	62.6	324.0	10.60	326.0	10.80	325.9	11.58	325.0	12.00
10	330.6	5.94	333.5	6.25	335.9	6.59	336.3	6.95	336.0	7. 40
12	334.8	4.78	338.0	4.82	340.5	5.25	341.0	5.50	341.0	5.80
14	338.0	3.98	341.4	3.98	343.6	4.30	344.8	4.50	344.6	4. 75
16	340.8	3.40	343.9	3.40	345. 5	3.59	347.7	3.70	346.2	3.97
70	345.0	2.50	348.3	2.50	351.0	2.60	352.8	2. 78	353.0	3.00
25	349.0	1.82	352.5	1.82	355.6	1.82	357.5	2. 00	358.5	2.30
30	351.8	1.40	355.8	1.40	358.9	1.40	360.9	1.60	362.0	1.82
40	355.8	06.0	360.3	0.98	363.6	0.98	365.9	1.00	368.0	1.20
50	359.7	09.0	363.5	08.0	366.9	0.80	369.5	0.98	371.0	1.00
ΔI/ _{εPa}	0.381	8.1	0.381	31	0.381	81	0.379	928	0.	0.376

UDMH-Oxygen Shifting Equilibrium Pc = 700

		40	1 1	C 4	100	70		20	1 11	80
7 ⁴	la.K		max)		max)	w w	18	.	max)	
14.7	297.2	6.82	298.8	7.07	299.4	7.33	299.0	7. 59	297.7	7. 79
								1		
v	, I	Pe	ı	Pe	, v	D _e	I ^	Ф	'n	Ъ
9	321.0	17.40	322.0	19.50	322.7	20.20	321.3	20.40	320.0	20.70
8	329.0	11.44	330.4	12.10	331.4	12.70	330.4	13.50	329. 4	14.10
01	334. 5	8.45	336.2	8.90	337.5	9.48	336.9	96.6	336.2	10.48
12	338.5	89.9	340.4	7, 10	342.0	7. 48	341.8	7.82	341.0	8.28
4.	341.7	5.45	343.9	5.72	345.6	6.10	345.7	6.49	344.8	6. 79
16	344. 5	4.59	346.9	4. 78	348.7	5.05	349.0	5.50	348.3	5. 72
07	349.0	3. 42	351.6	3, 58	353. 5	3. 73	354.2	4.18	353.5	4.38
57	153.2	2.58	356.0	2.63	358.0	2.84	358.9	3.10	358.6	3.30
90	356.0	1.89	359.0	2,05	361.2	2.25	362.4	2.52	362.6	2.67
40	360.5	1.25	363.7	1.30	366.0	1.49	367.6	1.60	368.0	1. 79
05	363.6	1.00	367,4	1.00	369.9	1.02	371.6	1.21	372.4	1.25
$\Delta I/_{\epsilon P_a}$	0.273	73	0.273	13	0.272	27.	0.270	02	0. 268	893

UDMH-Oxygen Shifting Equilibrium Pc = 1000

1	1 4	1 40	111	0.3		70	1 4	1 %0		00
۲,	•	0.4.		2		3	•		;	20
İ	I _s (max)	¥	I _s (inax)	¥	I (max)	¥	I _s (max)	E	I _s (max)	w
14.7	306.8	8. 78	308.9	9.10	310.0	9.47	310.0	9.84	309.1	10.19
					;					
¥	I v	ъ	I	Pe	I	Pe	I	ъ e	, N	더
9	322.0	26.0	323.7	26.30	324.3	26.60	322.3	28.50	321.8	29.00
8	329.0	16.45	331.4	17.20	332.3	18.20	331.4	19.20	330.3	19.90
10	3 34. 3	12.10	336.9	12.44	337.9	13.50	337.8	14.19	336.8	15.05
12	338. 3	9.45	341.0	10.0	342. 4	10.63	342.6	11.20	341.7	11.85
14	341.6	7.69	344. 5	8.19	346. 2	8.64	346. 5	9.09	345.7	9.63
16	344. 4	6.53	347.5	6.85	349.3	7.23	349. 7	7.59	349.0	8.19
20	349.0	4.90	352. 4	5.10	354.0	5.37	354.6	5.68	354.5	6.24
25	353.4	3. 70	356.5	3.84	358.5	4.10	359.5	4.30	359. 5	4.52
30	356.5	2.90	359.6	3.10	362.0	3.18	363.0	3.39	363.4	3.52
40	361.0	1.99	364. 4	2.20	367.0	2.19	368.4	2.30	368.9	2.43
50	364.0	1.42	367.5	1.50	370.4	1.62	372.0	1.66	373.0	1.89
ΔI/ _{εPa}	0.192	92	0.191	1	0.191	161	0.190	06	0.	0.188

Hydrazine-UDMH (50/50) - Liquid Oxygen

Shifting Equilibrium

 $P_c: 150$

	#	0.800	r = 0.900	00	r = 1.00	00	r = 1.10	01	r = 1.20	20
ข	I _s (max)	¥	I _s (max)	Ę	I _s (max)	¥	I _s (max)	Ę	I _s (max)	¥
14.7	237.2	2.21	240.7	2.27	242.6	2.35	243.1	2.39	242.3	2.44
ę	I,	P	I v	P e	ı V	P	I	P	I ^	Pe
2	274.8	16.25	278.0	17.20	278.2	18.00	279.6	18.20	279.2	18.65
6	309. 4	3.45	315.2	3.60	318.9	3.68	321.4	3.90	321.0	4.15
10	320.8	1.65	327.4	1.69	332.2	1.80	335.4	1.95	336.2	2.08
12	324.5	1.29	331.0	1. 30	3.6.2	1.41	339.2	1.52	341.0	1.65
14	327.0	1.01	3 . 8	1.02	339.6	1.19	342.6	1.28	344.6	1.34
IA	329.4	0.81	3 46. 4	0.85	342.2	0.99	345.6	1.10	347.6	1.11
20	3 53. 0	0.60	340.6	0.69	346.2	0. 70	350.2	0.80	352.2	0.81
25	336.5	0.41	344.2	0.55	350.0	0.58	354.4	0.60	356.7	0.65
30	1,9.4	0, 40	346. 7	0.40	352. €	0.41	357.6	0.4 €	360.0	0.50
40	34°. h	0.21	350 . 6	0.25	357.0	0.30	362.0	0. 50	362.6	0.34
0,	\$ 4 .5	61.6	354.8	0.70	3.098	0.21	365.1	0.23	368.3	0.24
$\Delta I/_{\epsilon P_a}$	1. ?48	4.R	1.265	~	1.270	20	1.268	897	1.261	961

Hydrazıne-UDMH (50/50) - Liquid Oxygen

Shifting Equilibrium
•P_c :: 300

D.	r =	0.90	r = 1.00	00	r = 1.10	10	r = 1.20	20	$\mathbf{r} = 1.30$	30
	I _s (max)	¥	I _s (max)	¥	I _s (max)	ę	I _s (max)	ė	I _s (max)	¥
14.7	267.1	3.55	270.3	3.66	271.9	3.79	272.0	3.92	270.9	4.03
•	ı,	Pe	[^] I	ъ	ľ	Pe	I	Pe	I	D.
8	295.0	17.20	297.6	18.85	298.6	18.90	297.0	19.30	296.0	19.90
9	315.6	7.00	319.6	7.45	321.8	7. 70	322.8	8.10	322.0	8. 70
10	327.6	3.32	332.6	3.52	335.8	3. 79	337.0	4.00	337.2	4.30
12	331.4	2.65	336.2	2. 79	339.9	3.01	342.0	3.18	342. 2	3.35
14	334. 2	2.28	339.4	2.25	343.0	2.48	345.5	2.58	346.3	2.75
16	336.8	1.80	342.0	1.89	346.0	2.05	348.4	2.18	349.6	2.30
20	340.8	1.35	346.5	1.40	350.3	1.50	353.2	1.60	354.6	1.75
25	344. 4	1.00	350.5	1.08	354.8	1.12	355.5	1.20	359.0	1.30
30	347.2	0.80	353. 2	0.81	357.8	06.0	360.7	0.92	362. 4	1.00
40	350.2	0.50	357.6	0.58	362.3	09.0	365.6	0.61	367.8	0. 70
50	354.0	0.39	360.6	0.42	365.6	0.45	369.3	0. 48	372.0	0.51
ΔI/ _{εPa}	0.634	34	0.638	8	0.638	38	0.635	35	0.630	330

Hydrazine - UDMH (50/50) - Liquid Oxygen

Shifting Equilibrium P_c = 500

Ъ	$\mathbf{r} = 0.90$. 90	$\mathbf{r} = 1.00$	00	r = 1.10	01	$\mathbf{r} = 1.20$	20	r = 1.	1.30
U	I _s (max)	¥	I _s (max)	•	I _s (max)	٤	I _s (max)	•	I (max)	•
14.7	283.0	5.03	286.9	5.19	289.3	5, 38	290.3	5.60	589.9	5.83
•										
J	1	ር ዓ	I	ъ	I	Pe	ı	Pe	I	D,
5	311.0	14.50	314.6	15.10	317.0	19.30	318.2	17.60	317.2	17.60
7	319.8	9.00	324. 3	9.50	327.1	10.20	328.6	10.80	328.3	11.20
10	327.8	5.60	333.1	5.85	336.3	6.25	338.2	6.62	338.6	7.10
12	331.4	4.35	336.8	4.58	340. 3	4.85	343.0	5.15	343. 5	5.60
14	334.3	3.59	3.39.8	3. 78	343.6	4.00	346.1	4.21	347.0	4.55
16	337.0	3.00	342, 4	3.15	346. 4	3. 35	349.0	3.51	350.0	3.80
20	341.1	2, 19	346. 1	2, 32	351.2	2.45	353.9	2. 58	355.0	2,81
2,5	344. 7	1.62	350.7	1.78	355.2	1.82	358.4	1.92	359.6	2, 12
30	147.2	1.25	353.7	1. 39	358.3	1.41	361.7	1.51	363.2	1. 70
40	351.1	0. FK	357.8	0.90	362.7	0.99	366.2	1.01	368.4	1.11
50	354.1	0.65	360.8	0.69	366.0	0.73	371.8	0.79	372.3	0.84
$\Delta I_{\epsilon P_a}$	0. 381	8.1	0. 384	4	0.384	84	0.383	83	0.3	380

a

Hydrazine-UDMH (50/50) - Liquid Oxygen

	- 1								ſ	
ρ,	r = 1.	.00	r = 1.10		r = 1.	20	r = 1.	30	r = 1.	40
υ	I _s (max)	¥	I _s (max)	•	I _s (max)	•	I _s (max)	¥	I _s (max)	3
14.7	296. 5	6.56	299.5	6.81	301.1	7.10	301.1	7.42	299.8	7. 70
!										
 	H,	Pe	>	ъ	ı	P e	^I	P	, I	д
5	314.8	21.00	317.1	22.10	318.8	23.20	317.8	25.10	316.6	25. 70
7	324.5	13.49	327.5	14.10	329.0	14.80	328.6	16.00	327.6	16.55
10	333. 2	8.15	337.0	8.65	339.0	9.20	339. 4	9.85	338.0	10.40
12	337.0	6.45	341.4	6. 79	343.3	7.15	344. 2	7. 71	343.4	8.15
4	339.7	5.25	344. 1	5. 55	346.4	5.95	347.8	6.39	347.4	6. 78
16	342.6	4.38	347.0	4.65	349.8	4.95	350.7	5.45	350.3	5. 71
20	347.2	3.18	351.6	3.41	354.1	3.61	355.8	3.95	355. 5	4.19
25	351.5	2.35	355.6	2.52	358.8	2.68	360.4	2.83	360.4	3.11
30	354. 4	1.88	358.7	2.01	362.0	2.11	363.6	2.27	364.0	2.50
40	358. 2	1.30	363.1	1.41	366.4	1.48	368.8	1.61	369.8	1.72
50	360.9	96.0	366.2	1.03	370.1	1.10	372.7	1.17	373.7	1.31
r Pa	0.275	75	0.275	5	0.2	274	0. 272	272	0.	0. 270

Hydrazine-UDMH (50/50) - Liquid Oxygen

				14	$P_{\rm C} = 1000$	<u> </u>				; ;
	# =	1.00	r = 1.10		r = 1.	20	r = 1.	30	r = 1.	40
ه	I _s (max)	¥	I _s (max)	¥	I _s (max)	•	I _s (max)	¥	I _s (max)	w
14.7	305.7	8.45	309.1	8.76	311.2	9.14	311.9	9.58	311.1	10.04
•	I >	Pe	١,	r P	I V	Ъ	I A	ъ	^I	Ъ
7	325.4	18.80	328.2	20.20	329.8	21.30	329.8	22.25	328.6	23. 75
10	333.5	11.50	337.2	12.30	339.8	12.90	339.8	13.80	339.0	14. 70
12	337.5	9.10	341.3	9.48	343.9	10.05	344.6	10.70	344.0	11.58
14	340.9	7.35	344.9	7.68	347.1	8.15	348.6	8.71	348. 2	9.48
16	343.4	6.18	347.6	6.51	349.8	6.91	351.6	7. 32	351.5	7.90
18	345. 5	5.25	349.8	5.54	352.4	5.99	354. 4	6.35	354.3	6.80
20	347.4	4.48	351.8	4.80	354.8	5.18	356.6	5.58	356.5	5.98
25	351.0	3.25	355.9	3, 51	359.4	3.70	361.1	4.04	361.2	4.40
30	353.9	2.61	359.0	2.80	362.6	2.97	364.5	3.20	364.8	3 50
40	359.8	1.80	363.2	1.95	366.8	2.05	369.2	2. 21	371.9	2. 48
50	361.0	1.37	366.4	1.46	370.4	1.56	373.2	1.66	374.6	1.76
$\Delta I_{\epsilon P_a}$	0, 192	26	0.193	3	0.193	93	0.191	91	0.190	06

F

Liquid Ammonia - Liquid Oxygen Shifting Equilibrium

	1	1	1	1			T	T		T							
	1.50	w	2.41		ď	20.70	4.11	2.01	1.58	1, 30	1.10	0.87	0.68	0.51	0.40	0.24	`
	r = 1	I (max)	228.0		ı	262.0	301.4	315.5	319.6	322.9	325.6	330.2	334. 4	337.6	341.6	345.0	1.188
	40	٠	2, 42		Ъ	18.80	4.15	2.08	1.59	1.27	1.03	0.80	0, 60	0.48	0.30	0.24	2
	r = 1	I _s (max)	230.7		I	263.6	305.6	319.6	323.9	327.2	330.0	334.8	339.2	342.3	346.6	350.1	1. 202
	.30	¥	2.37	,	P	17.90	3.90	1.95	1.49	1.21	1.00	0.71	0.50	0.43	0.30	0.22	0
$P_{\rm c} = 150$	r = 1.	I _s (max)	231.8		I	265.6	305.6	318.8	322.6	325.6	328.2	332.5	336.4	339. 2	343.4	346.4	1. 210
, Li	20	w	2.30		Ъ	17.80	3.65	1.82	1.42	1.17	0.97	0.70	0.50	0.39	0.30	0.20	80
	r = 1,	I _s (max)	230.5		I A	264.8	302.9	314.7	318.2	321.2	323.6	327.7	331.2	333.9	337.6	340.6	1, 208
	1. 10	w	2, 25		Ъ	17. 20	3,55	1.68	1. 29	1.02	0.88	09.0	0.40	0.38	0.20	0.19	195
	= =	's (max)	227.4		, >	260.0	297.4	309.0	312.2	314.9	317.2	320.9	324, 2	327.0	330.4	333, 1	1, 19
	൧		14.7			~	9	. 10	12	14	16	20	52	30	40	50	ΔΙ/ _ε Ρ _a

Liquid Ammonia - Liquid Oxygen Shifting Equilibrium

	1.50	•	3.87	P	19.30	8, 15	3.95	3.08	2.52	2, 11	1.55	1.18	0.91	0.61	0.46	26
	r = 1.	I _s (max)	255. 2	'n	280.0	302.6	316.2	320.4	323.7	326.3	330.7	334.9	337.9	342, 2	345.4	0,597
	1.40	•	3.90	L _o	19.50	8, 30	4.04	3, 20	2,58	2, 15	1.59	1. 20	0.92	0.61	0.47	04
	r = 1.	I _s (max)	258.5	1	283, 6	307.0	320, 7	324.9	328.1	330.8	335.2	339.8	343.0	347.2	350, 6	0,604
	1, 30	٤	3.75	Q,°	18, 25	7. 60	3, 70	2.90	2.39	2, 00	1.50	1.12	06.0	09.0	0.43	80
c = 300	r = 1.	I _s (max)	258.6	ľ	284.0	306.4	319.1	323.1	326.0	328.7	333. 1	336.7	339.6	343.6	346.7	0, 608
Pc	20	•	3.62	D, e	17.85	7.03	3.50	2. 79	2. 29	1.85	1.40	1.05	0.80	0.52	0.39	90
	r = 1.20	I _s (max)	256. 1	ľ	282.0	302.0	315.2	318.7	321.6	323.9	327.9	331.6	334.3	338,0	340.8	0, 606
	1. 10	•	3,54	P	17.50	96.92	3, 35	29.2	2.12	1.78	1. 29	0.95	0,75	0.50	0.36	. 86
	r = 1	I _s (max)	251.9	ľ	277.8	297.7	309.6	312.6	315.4	317.6	321.2	324.4	327.1	330.9	333.2	865.0
	д	•	14.7	•	3	9	10	12	14	16	20	25	30	40	50	ΔΙ/ _ε Ρ _a

a

C

Liquid Ammonia - Liquid Oxygen Shifting Equilibrium $P_c = 500$

	_		 _												
50	•	5.54	Pe	16.60	10.48	6, 65	5.12	4. 25	3.52	2.59	1.98	1.52	1.02	0.76	59
r = 1.	I _s (max)	271.9	'n	298.4	308.0	317.0	321.0	324.0	326.7	331.3	335.3	338.3	342.4	345.7	0.359
40	¥	5.60	Ъ	17.10	10.75	6, 65	5.20	4.31	3.60	2, 65	1.95	1.51	1.01	0.78	64
r = 1.	I _s (max)	275.6	ı	301.8	311.8	321.0	325.4	328.6	331.4	336.0	340.4	343.5	347.7	350.9	0.364
30	¥	5.33	Ъ	16.00	10.05	80 .9	4.78	3,95	3.29	2, 42	1.89	1.45	0.91	0.71	99
r = 1.	I _s (max)	274.8	ı	301.4	310.8	319.6	323, 4	326.4	329.0	333.2	337.1	339.9	344.0	346.9	0.366
20	•	5.15	Ъ	15.20	9.59	5.84	4.62	3.78	3, 13	2, 25	1.70	1.31	06.0	0.65	64
r = 1.	I _s (max)	271.5	I	298.2	307.0	315.4	319.2	322.0	324.3	328.2	331.7	334, 4	338.2	340.9	0.364
. 10	ę	5.03	Ъ	14.60	9.10	5.49	4.19	3.39	2.84	2, 11	1.59	1.20	08.0	09.0	59
r = 1.	I _s (max)	7 997	I	292.8	301.6	309.3	313.7	315.5	317.8	321.3	324.7	327, 2	330.3	333. 2	0,359
Δ	e l	14.7	٤	5	2	10	1.2	14	16	20	57	30	40	20	$\Delta I_{\epsilon P_a}$

Liquid Ammonia - Liquid Oxygen Shifting Equilibrium P_C = 700

Q.	r = 1	. 10	r = 1.	20	r = 1.	30	r = 1.	40	r = 1.	. 50
e	I _s (max)	E	I _s (max)	ę	I _s (max)	ę	I _s (max)	¥	I _s (max)	¥
14.7	275.3	6.37	280.5	6.53	284.2	6.75	285.6	7.12	281.6	7.04
٠	I v	Pe	I	Ъ	$^{\Lambda}$	P	I	Pe	I	Pe
5	293.0	20.05	8.762	20.75	301.6	22.10	302.2	23.95	298.4	23, 40
7	301.8	12, 65	307.0	13, 30	311, 2	13.90	312.5	14. 9.0	308, 3	14.75
10	309,4	7.75	315.5	8, 15	319.6	8.50	321.8	9.18	317.2	8.98
12	312,8	6,05	318.8	6.32	323.5	6,66	325.8	7.25	321.2	7.09
14	315.6	4.85	321.6	5.12	326.3	5.38	329.0	5.82	324. 4	5.74
16	317.8	4.05	324.2	4.28	329.0	4.49	331.8	4,85	327.0	4.78
70	321.2	3.04	328. 2	3.13	333.4	3.36	336.3	3, 65	331.6	3, 61
52	324.6	2, 23	331.7	2,30	337.2	2.39	340.4	2.69	335.6	2, 62
3.0	327.1	1.70	334.4	1.75	340.1	2.00	343.4	2.11	338.6	2.09
40	330,8	1.17	338.2	1.25	344. 2	1.34	347.8	1.48	342.8	1.42
50	333, 2	0.85	340.9	0.91	347.0	0.99	351.2	1.09	345.9	1.07
$\Delta I/_{\epsilon P_a}$	0.257	:57	0.2	260	0.262	62	0,260	09	0, 257	57

Liquid Ammonia - Liquid Oxygen Shifting Equilibrium

 \Box

12.85 10, 15 21.00 5.89 5.08 3.72 2.95 1.52 9.09 8.15 6.84 2,05 Ъ w 0.180 = 1.50(max) 290.1 317.5 327.1 338.7 308,6 321.6 324.6 329.4 331.6 335, 6 342.9 346.1 9.19 21, 20 13, 15 10, 25 6.00 2.98 59 6.95 20 3,75 2, 10 1.54 Д v φ. 5. 1,40 0.183 (max) 295.2 312.6 321.8 326.0 329.3 332.0 334.4 336.6 340.8 343.8 348.1 351.4 11 12, 10 20.02 9.48 7,68 5.52 8.71 6.43 4,61 3,43 2, 75 1.90 1,41 Ъ 0.183 = 1.30(max) = 1000320.2 329.6 327.0 333,4 337.2 340.1 293.2 324.0 311.6 331.6 344.1 347.1 **д** 42 19, 20 11,48 5.18 95 7, 25 6.05 4.47 3.30 1.74 1.37 9 Ъ φ. 2 œ. 0.182 20 ٦: (max) 289.0 307.4 315.5 319.0 321.7 324.2 326.5 331.8 334,4 338.3 341.0 11 7 أخسا 328. H 8, 19 11.05 18,35 55 5.82 4.95 4, 20 3,08 2, 45 1,66 6.91 1, 21 Ъ œ. = 1, 100.180 (max) 283.4 302,6 321.6 309.5 313.0 324.8 327.2 315.8 318.0 319.9 330,6 333.2 , _—>, н $(\overline{\Delta I}/_{\epsilon P_a})$ Б 14.7 / 10 12 16 18 40 20 20 52 4 30

Hydrazıne - Nitrogen Tetroxide Shifting Equilibrium

				Д,	$P_{\rm c} \approx 150$:
ď	r = 0	0.80	r = 0.90		r = 1	. 00	r = 1.	.10	$\mathbf{r} = \mathbf{I}$.	20
ə	I _s (max)	•	I _s (max)	ę	I _s (max)	۴	I _s (max)	¥	I _s (max)	. e
14.7	226.6	2.19	228.6	2. 22	229.9	2.25	230.5	2.29	230.4	2.34
						-				
.	, ,	Ъ	I	Pe	I	Pe	I	Pe	- ^I	P
2	261.0	16.80	262.8	17.20	264.8	17.50	265.6	17.60	264.8	18.20
9	295.2	3.28	298.4	3, 30	300.6	3, 55	301.8	3.60	303.1	3. 75
10	305.6	1.56	309.2	1.60	312.2	1.65	314.2	1.76	315.8	1.76
12	308.6	1.22	312.3	1.29	315.5	1.31	317.9	1.40	319.3	1.41
14	311.0	0.99	315.0	1.02	318.1	1.08	320.8	1.15	322.2	1, 18
91	313.2	0.80	317.3	0.85	320.3	06.0	323.0	0.95	324.6	0.98
20	316.5	. 0.5k	321.0	09.0	324.1	0.64	326.8	0.69	328.4	0.71
25	319.6	0.40	324.0	0.42	327.4	0.47	330.4	. 0.49	332.2	0.50
30	321.6	0.30	326. 4	0.31	330.0	0.32	333.0	0.36	334.9	0.40
40	324.8	0.20	329, 6	0.21	3 < 3.6	0.21	336.7	0.30	338.8	0.30
50	327.0	0,16	332.0	0.17	3 :6.0	0.18	339.3	0.19	341.8	0.20
$\Delta I/_{\epsilon P_a}$	1,193	93	1, 203	13	1.208	80:	1.209	603	1.2	1.205

ì A

Hydrazine - Nitrogen Tetroxide

"

				Ĭ	$P_{c} = 300$	1				
<u>Д</u>	$\mathbf{r} = 0$.	0.90	r = 1.00	0(r = 1	.10	r = 1.2	20	r = 1.	30
به	I _s (max)	w	I _s (max)	¥	I _s (max)	¥	I _s (max)	ě	I _s (max)	¥
14.7	252.9	3.46	254.8	3.52	256.1	3.59	256.7	3.68	256.5	3. 78
ę	ı,	ъ	ı	ъ e	Å.	P	ı N	Ъ	ı	D, e
3	278.4	16.50	281.2	17.15	282.6	18.20	282.2	18.30	282.0	18.50
9	298.3	6.65	301.0	6.88	302.0	7.05	303.8	7.45	304. 2	7.65
10	309.5	3.15	312.6	3.25	314.8	3.38	316.2	3.55	316.7	3.69
12	312.8	2.50	315.8	2.58	318.2	2.65	319.8	2.80	320.4	2.95
14	315.4	2.00	318.4	2.08	320.8	2.15	322.6	2.30	323.4	2. 40
16	317.4	1.68	320.9	1.75	323, 0	1.80	325.2	1.92	325, 9	2.00
20	320.8	1.22	324.5	1. 29	326.8	1.30	329.3	1.40	330.3	1.49
25	323.8	06.0	327.8	0.95	330.2	0.98	332.8	1.01	334. 2	1.09
30	326.4	0.69	330. 2	0.70	332.6	0.80	335.4	0.80	337.0	0.80
40	329.6	0.41	333.6	0.50	336.6	0.50	339.2	0.53	341.0	09.0
50	332.0	0.33	336.2	0.35	339.5	0.37	342.1	0.39	344.0	0. 42
$\Delta I/_{\epsilon P_a}$	0.603	03	0, 606	9(0.6	0.607	0.605	909	0.6	0.602

Hydrazine - Nitrogen Tetroxide

Pc = 500

മ,	# H	1.00	r = 1.10		= 4	1.20	r = 1.30	30	r=1.40	40
	I _s (max)	w	I _s (max)	¥	I _s (max)	¥	I (max)	į	I _s (max)	u
14.7	269.8	4.98	271.5	5.08	272.6	5, 20	272.9	5, 35	272.1	5.55
•	I ^I	Pe	I _v	ц	ı ^I	Pe	I	ъ	ı	D, d
	296.2	14.00	298.2	14.60	298.7	15.20	299.5	15.60	296.0	16.10
7	304.8	8.94	306.8	9.30	308.1	9.55	308.6	9.80	307.8	10.05
10	312.2	5.48	315.1	5.67	316.7	5.85	317.2	6.14	317.0	6. 48
12	316.0	4, 32	318.7	4.48	320.4	4.57	321.0	4. 79	321.0	5.05
14	318.8	3.50	321.6	3.65	323.4	3.75	323.9	3.95	324.2	4.15
16	321.1	2.90	323.8	3.00	325.6	3,10	326.5	3.30	326.6	3.45
20	324.4	2.10	327.3	2.17	329.4	2. 22	330.7	2.40	3,20.7	3.03
25	327.6	1.55	330.6	1.59	333.0	1.80	334.6	1.80	334.8	1.93
30	3.0.2	1.18	333.2	1.22	335.6	1.25	337.3	1.40	337.8	1.50
40	353.6	0.73	3.<7.0	0.81	3 19.5	0.84	341.3	0.91	342.1	1.00
50	336.2	0.59	\$39.6	0.61	342.3	0.65	344. 2	0.69	345.3	0.75
ΔΙ/ _ε Ρ _a	0.364	4	0.365		0.364	54	0.362	52	0.359	65

Hydrazıne-Nitrogen Tetroxide

					$P_{\rm c} = 700$					
<u>م</u> '	r = 1	. 00	r = 1.	10	r = 1.	20	r = 1.	30	r = 1.	40
.	I _s (max)	w	I _s (max)	¥	I _s (max)	Ę	I _s (max)	¥	I _s (max)	ę
14.7	278.4	6.28	280.0	6.41	281.7	6.57	282. 4	92 .9	281.9	7.02
w	ľ	P e	I ^	P	I	P	'n	D,	^1	P
4	299.3	27.53	292.3	27.80	292. 7	29.30	293.0	30.50	291.9	31.30
7	305.3	12.53	306.9	12.80	308.7	13.30	309.0	14. 20	308.3	14.75
10	312.5	7.53	315.0	7.88	317.2	8.10	318.0	8.43	317.5	8.97
2	316, 4	5.84	318.7	6.03	320.5	6.32	321.7	6. 72	321.4	6.92
14	319.0	4.77	321.4	4.93	323. 5	5.09	324.6	5.49	324.6	5.60
16	321.3	3.98	323.8	4.12	326.1	4.28	327.0	4.63	327.4	4.68
20	324.8	2.98	327.6	3.00	330.0	3.19	331.0	3. 33	331.6	3.52
25	328.0	2.19	331.2	2.19	333. 4	2.40	334. 7	2.49	335. 4	2.65
30	330.4	1.60	333.6	1.69	335.9	1.83	337.5	1.98	338.6	2.10
40	333.7	1.03	337.0	1.10	339.6	1.11	341.9	1.22	342.6	1.30
20	356.4	0.81	339.9	0.82	342.7	06.0	344. 5	0.92	345. 7	0.91
T _a	0. 260	0.0	0.260	C	0. 261	61	0.260	90	0,2	257

Hydrazine - Nitrogen Tetroxide

Shifting Equilibrium $P_c = 1000$

C	7 = 1	1.10	r = 1.	20	# = 1-	30	r = 1.40	40	r = 1.	50
r' e) ax	1 1	max)	•	la a	E	18	€	max)	W
14.7	288.9	8.24	290.4	8.44	291.4	89.8	291.3	9.03	288.0	90.6
v	'n	U _a	ľ	ъ	I	ъ	ľ	Г e	I	P
8	310.2	15.30	311.6	15,85	313.0	16.39	312.6	17.15	308.7	17.20
10	315.4	11.20	316.8	11.58	317.8	12.10	317.8	12.65	314.2	12.70
12	318.9	8.65	320.4	9.05	321.4	9.42	321.4	9.95	318.2	10.00
14	321.7	6.92	323.4	7.25	324.4	7.59	324.5	8.05	321.2	8.05
16	323.9	5.75	325.8	6.05	327.0	6.35	327.2	6.75	323.8	6.75
18	325.8	4.92	328.0	5.18	329.4	5.45	329.6	5.80	326.2	5.85
20	327.5	4.30	330.0	4.42	331.4	4.69	331.6	4.98	328.2	5.02
25	330.8	2.91	333.3	3, 28	335.0	3.52	335.6	3.59	331.9	3, 62
30	333, 3	2.45	3:45.9	2.59	3.57.7	2. 75	338.6	2.89	335.0	2.89
40	3 16.9	1.69	339.8	1. 75	341.6	1.90	342.8	2.00	339.1	2.00
50	3.9.8	1.23	342. 5	1. 29	344.6	1, 38	345.8	1.48	342.2	1.49
$\Delta I/_{\epsilon P_a}$	0.183	83	0.183	2	0.182	82	0.181	81	0.179	79

UDMH-Nitrogen Tetroxide

i				1	$P_c = 150$					
ը,	$\mathbf{r} = 1$. 90	r = 2.	00	r = 2.	10	r = 2.	20	$\mathbf{r}=2.$	30
	I _s (max)	w	I _s (max)	¥	I _s (max)	¥	I _s (max)	3	I _s (max)	و
14.7	222. 1	2. 26	222. 9	2.29	223. 4	2.32	223. 5	2.36	223.3	2.39
•	→	Φ	^I	Pe	^I	Pe	I	Ъ	I v	Pe
2	256.5	17.80	257.5	17.90	257.5	17.90	258.5	17.90	258.5	18.60
4	279.5	6.23	281.0	6.23	281.8	6.32	282. 7	6.39	283.0	6. 70
7	294.3	2.80	296.0	2. 93	297.3	2.98	298.0	3.00	299.0	3.18
10	301.5	1.65	303. 7	1. 79	305.4	1.83	306. 7	1.91	307.8	1.98
12	305.2	1.39	307.5	1.39	309.3	1.42	310.7	1.44	311.9	1.44
16	310.5	0.86	312.9	0.86	314.7	0.98	316.3	0.98	317.5	1.03
70	314.4	.0.60	316.8	0.64	318.4	0.72	319.9	0.72	321.2	0. 73
25	317.9	0.40	320.3	0.45	322.0	0.59	323.6	0.50	324.9	0.50
30	320. 3	0.39	322.6	0.40	324.8	0.40	326. 4	0.40	327.6	0.40
40	324.0	0.20	326.5	0.25	329.0	0.25	330.6	0.25	332.0	0.25
50	326.4	0.12	329.4	0. 20	331.6	0.20	333.6	0. 20	335.2	0. 22
$\Delta I/_{\epsilon P_a}$	1.166	99	1.169	6	1.1	169	1.168	89	1.165	65

UDMH-Nitrogen Tetroxide

22,30 3.86 9.98 6.33 3.89 1.15 0.60 0.49 3.05 2.11 1.54 0.90 (P) 0.584 r = 2.40334.0 (max) 249.6 300.2 312.8 318.6 327.0 330.0 290.4 357.0 6 323.0 308. 272. 4 22.30 58 6.17 2.98 1.49 1.05 0.80 09.0 0.44 78 2.01 Д 3 6 3, 586 2, 30 0 (max) 249.6 273.0 291.3 300.2 312.2 317.8 321.6 328.6 332.6 308.3 6 H 325. 3.35 21.50 9.48 6.05 58 2.83 1.93 1.42 0.80 50 0.40 1.01 D D ٠ ش ~ · 0.587 r = 2.20(max) 249.3 273.0 290.3 298.9 307.4 311.3 316.6 320.5 326.9 3.si. 0 ~ \sim $P_{\rm C} \approx 300$ 324. 3:4. 21.10 3.66 9.10 5.83 3,53 1.40 2.79 1.83 0.79 57 40 1.01 [D, 0] <u>.</u> ö 2.10 587 (max) · 288.9 298.3 306.2 309.8 319.2 325.2 329.0 331.3 11 'n 7 248. 272. 315. 322. 3.60 1.83 5.43 3.44 2, 75 0.85 19.40 1.32 7.79 0.40 33 0.44 ٦ و ထံ 2.00 0.587 g (max) Ħ 296.9 313.2 320.5 288.3 304.4 308.0 316.9 322.9 329.9 247.7 272.2 327.1 H (AIT, Pa O, e 14.7 ~ 10 12 \sim Ŋ 16 20 25 30 40 50

UDMH-Nitrogen Tetroxide Shifting Equilibrium

)

	r = 2.	. 20	T = 2.3	30	$P_{c} = 500$ $r = 2$	40	T = 2	5.0	C 11 H	40
754	lax)		max)	w	max		nax)	w	max)	9
	265.0	5.27	265.7	5.37	266.0	5.48	266.1	5.60	265.7	5. 72
	-									
ı i	I V	ъ	ı	P e	,	Pe	I	P	^I	Ъ
	283. 7	21.90	284.4	21.70	284. 4	21.50	284.0	21.50	283.5	21.60
	299.8	9.75	300.2	10.03	300.4	10.29	301.3	10.73	301.0	11.05
' I	307.9	5.98	308.7	6.02	309.7	6.42	309.8	6.63	309. 7	6.83
i	311.7	4.62	312.4	4.84	314.0	5.08	314.2	5.22	314.1	5.38
1	314.6	3. 73	315.4	3.99	317.2	4.19	317.3	4. 28	317.5	4.45
	316.9	3.18	318.0	3.33	319.7	3.48	319.9	3. 53	320.3	3.64
	320.8	2.38	322. 4	2.44	323.8	2.52	324.0	2.60	324. 6	2. 69
	324.7	1.79	326.3	1.82	327.5	1.89	328.0	1.93	328.6	2.00
i	327.5	1.40	329.1	1.42	330.5	1.50	331.0	1.59	331.6	1.59
	331.6	0.90	333.1	0.99	334.6	1.00	335.5	1.00	336.1	1.10
	334.4	0.70	336. 2	0.70	337.5	0.75	338.8	0.75	339. 5	0.80
	0.353	53	0.353	53	0.352	52	0,351	51	0.349	61

UDMH-Nitrogen Tetroxide

					Pc = 700					
ď	r=2.	2.20	r=2.3	30	r = 2.	40	r = 2.	. 50	r = 2.60	90
e e	I _s (max)	¥	I _s (max)	Ę	I _s (max)	·	I _s (max)	3	I _s (max)	E
14.7	274.0	6.67	274.9	6.80	275.5	6.94	275.8	7.09	275.7	7. 26
•	ı,	ц°	'n	d,	, I	Pe	ı	ъ	I v	D e
4	284.3	29.50	284.5	30.80	284.7	31.0	284.7	31.75	284.3	32.75
7	300.3	13.70	300.9	14.0	301.5	14.30	301.8	14.79	301.7	15.30
10	308.3	8.33	309.2	8.53	310.0	8.93	310.7	9.13	310.4	9.38
. 12	311.8	6.53	313.0	6.73	314.2	6.90	314.6	7.08	314.9	7. 33
14	314.7	5. 40	315.8	5, 54	317.2	5.68	317.9	5.87	318.7	6.13
16	317, 3	4.52	318.4	4.64	319.6	4, 73	320.6	4.97	320.8	5.20
20	321.2	3, 24	322. 3	3, 33	323.6	3, 51	324.9	3.63	325.2	3.82
25	325.0	2, 40	326.0	2.44	327.5	2.59	328.8	2.64	329.3	2.73
30	327.8	1.91	329.0	1.93	330, 3	2.09	331.5	2.23	332. 4	2, 39
40	3.51.5	1.32	3 5 3. 0	1. 3.5	. 334. 5	1.40	3.55.9	1.43	336.6	1.49
50	334.6	66.0	336.1	1.00	357.7	1.02	339.1	1.09	340.0	1.10
$\Delta I/_{\epsilon P_a}$	0.253	53	0.253	3	0.2	252	0.2	251	0.2	0.250

UDMH-Nitrogen Tetroxide

$P_{\rm C}=1000$	2.40 $r = 2.50$ $r = 2.60$ $r = 2.70$	(x) ϵ I_s (max) ϵ I_s (max) ϵ I_s (max) ϵ	8.94 285.1 9.14 285.3 9.35 285.1 9.59	P _e I _v P _e I _v P _e	7 27.50	16.90 305.5 17.50 305.3 17.90 304.8 18.80	12.43 311.0 13.00 310.9 13.30 310.7 13.85	9.78 315.5 10.25 315.0 10.43 315.4 10.83	7.93 318.6 8.40 318.3 8.58 318.5 8.75	6.61 321.4 7.00 320.9 7.13 321.3 7.32	4.93 325.4 5.13 325.5 5.28 325.7 5.49	3.72 329.3 3.72 330.0 4.02 330.0 4.10	2.91 332.0 2.98 333.1 3.19 333.1 3.21	2.00 336.5 2.02 337.2 2.09 337.7 2.19	1.49 339.5 1.50 340.0 1.58 341.2 1.60	
	H		85.	I				5.		320.9		330.0	333.1		340.0	
1		¥	9.14	Ъ	27. 50	7.	3.	10.25	8.40	7.00	5.13				1.50	, 1
4 11	и	y y	285.1	ı	297.7			5.	318.6	321.4	325.4	329.3	332.0	36.	339.5	
	.0	٤		Pe		16.90	2.		7. 93	6.61					1.49	t
	$\mathbf{r} = 2$.	I _s (max)	284.6	I	297.7	304.7	310.3	314.4	317.4	318.9	324.0	328.0	331.0	335.0	338.0	
	30	ę	8.76	Pe	24.9	16.30	12.10	9.43	7. 73	6.43	4.78	3.61	2.83	1.90	1.44	
	r = 2.	I _s (max)	283.8	I	297.0	304.0	309.6	313.4	316.4	318.7	322.6	326.3	329.1	334.0	336.6	
	1	e l	14.7	¥	9	8	10	12	14	16	20	25	30	40	50	Δ1/ _P

UDMH-Hydrazine (50/50)- N_2O_4

			•	Shifti	Shifting Equilibrium	ium				
					$P_c = 150$					
a	r = 1	4.	r = 1.5		r = 1.	9	r = 1	. 7	r = 1.	8
s.	I _s (max)	9	I _s (max)	ę	I _s (max)	ę	I _s (max)	Ę	I _s (max)	¥
14.7	224.8	2, 25	225.8	2, 28	226.3	2,31	226.4	2, 35	226.0	2.39
•	H>	ď	I	Pe	ı ı	Pe	I v	P	I	P
3	275.4	8.90	276.4	9.00	276.7	9. 20	277.3	9.40	276.3	10.00
4	283.7	6.26	285.2	6.36	285.9	6.39	286.5	6.67	286.0	6,85
9	294.0	3.57	295.7	3.60	297.5	3.77	6.762	3,83	298.0	3.89
တ	300.5	2. 25	302.7	2.32	304.5	2, 42	305.4	2,52	305.6	2.59
10	305.3	1.66	307.4	. 1.72	309.3	1.76	310.8	1.81	311.1	1.86
15	310.5	0.97	315,3	1.03	317.2	1,05	318.8	1.10	319.8	. 1. 12
70	317.1	0.65	320.2	0.70	322.2	0.71	323.9	0.72	325.1	0.74
25	320.5	0.49	323, 5	0.51	325.7	0.51	327.7	0.55	329.0	0.55
30	323.0	0. 57	326.1	0, 39	328.4	0, 40	330.5	0.42	331.9	0.42
40	326.7	0, 26	329.7	0.27	332;2	0.28	334,3	0.29	335.9	0.31
50	329.3	0.20	332,5	0.20	335, 1	0.21	337.3	0.22	338.7	0.23
$\Delta I/_{\epsilon P_a}$	1, 182	32	1,186	9	1,186	9	1, 184	34	1. 180	0

UDMH-Hydrazine (50/50)-N2O4
Shifting Equilibrium
D = 300

	6	¥	3.87		Pe	14.50	10.10	7.86	5.39	3.95	2.30	1.54	1.11	0.87	0.63	0.46	0.
	$\mathbf{r} = 1.9$	I _s (max)	252.4		I	287.2	294.3	299.5	307.0	312.5	321.1	326.6	330.7	333.6	337.7	340.9	0.590
:	8	•	3.79		Pe	14.00	9.75	7.50	5.10	3.72	2. 20	1.46	1.10	0.86	0.61	0.46	3
	r = 1.	I _s (max)	252.7	•	I	288.0	294.4	299.5	307.0	312.2	320.4	325.8	329.6	332.5	336.4	339.5	0.593
	٠	ę	3.71		Ре	13.40	9.25	7.17	4.99	3.58	2.04	1.41	1.05	0.81	0.58	0.42	5
$P_{c} = 300$	r = 1.7	I _s (max)	252.5		ı V	288.3	294.5	1.662	306.3	311.3	319.2	324.5	328.0	330.8	334.7	337.6	0.595
ш,	9	Ę	3.63		ъ	13.10	9. 20	7.10	4.79	3,46	2.00	1.39	1.02	0.80	0.56	0.41	91
	r = 1.6	I _s (max)	251.8		I	286.9	293.3	298.5	305.4	309.8	317.6	322.7	326.3	328.9	332.5	335.4	0.596
	. 5		3.57		ъ	12.80	9.15	7.02	4.66	3, 35	1.96	1.31	0.98	0.78	0.54	0.39	5
	r = 1	I _s (max)	250.7		I A	. 285. 0	291.1	296.0	302.7	307.8	315.4	320.1	323.6	326.2.	329.9	332.7	0.595
		စ	14.7		¥	4	5	9	8	10	15	20	25	30	40	50	$\Delta I/_{\epsilon P_a}$

UDMH-Hydrazine (50/50)-Nitrogen retroxide	Shifting Equilibrium	1 4

				. ,	$P_c = 500$					
Q,	r = 1	.40	$\mathbf{r} = 1.60$	09	r = 1.	80	r = 1.	. 90	r = 2.	2, 00
U	I (max)	w	I _s (max)	•	I _s (max)	ę	I _s (max)	9	I _s (max)	•
14.7	263.7	4.98	267.1	5.15	268.8	5.37	269.0	2.50	268.6	5, 65
										!
•	I A	Pe	ı	P	I	P	I	ъ	ı	Ъ
4	283.6	20.20	287.6	20.45	288.0	21.80	288.3	22. 60	286.7	23.20
9	294.4	11.17	298.3	11.59	8.662	12.49	300.3	12.95	299.0	13.80
10	305.5	5.43	310.0	82.3	312.6	6, 15	313.3	68.39	312.7	6.70
12	308.9	4,33	313.6	4.53	316.5	4,82	317.3	4.99	317.4	5.20
14	311.6	3,55	316.4	3,72	319.6	3.99	320.1	4, 05	320.6	4. 25
16	313.8	2.95	318.8	3.09	322.0	3.31	322.7	3,42	323.3	3,55
70	317.6	2.19	322.8	2. 29	326.2	2, 45	327.1	25.5	327.6	2.68
52	320.7	1.59	326.5	1.69	330.0	1.89	331.0	1,92	331.9	2.10
30	323, 1	1,30	329.0	1.30	332.9	1.44	334.0	1.50	335.0	1.60
40	326.9	0.81	333.0	0.82	336.6	0.93	338, 1	1.00	339.1	1.10*
20	329.6	0.63	335.6	0.68	339.8	0, 73	341.3	0.76	342.4	0.79
$\Delta I/_{\epsilon P_a}$	0.	0.356	0,358	58	0.357	57	0,356	56	0	0.354

UDMH-Hydrazine (50/50)-Nitrogen Tetroxide

Shifting Equilibrium $P_{c} = 700$

a	r = 1	1.50	H :	1.60	r = 1.	1.80	r = 1.	1.90	r = 2	2.00
ຍ	I _s (max)	Ę	I _s (max)	¥	I _s (max)	ę	I _s (max)	¥	I _s (max)	3
14.7	274.3	6.40	0.927	6.51	278.2	6.79	278.6	96.99	278.6	7.16
•	'n	P e	I	ъ e	I	Pe	$I_{\mathbf{v}}$	പ്	ΔI	ъ Р
5	291.6	20,30	293.6	20.70	296.0	22, 45	295.2	23. 25	294.6	23.85
7	299.0	12.95	302.4	13, 10	304.4	14.00	305.0	14, 25	304.6	15.00
10	308.0	7.78	310.2	8.50	313.0	8.60	313.8	8.85	313.6	9. 20
12	311.6	60.9	313.8	6.24	317.0	6.72	317.6	6.85	317.8	7.24
14	314.4	4, 95	316.4	5.08	319.8	5.51	320.7	5, 65	320.8	6.00
16	316.8	4.10	319.0	4, 25	322.2	4.63	323.2	4.82	323.4	5.00
20	320.4	3.40	322.8	3, 15	326.4	3.39	327.8	3,55	328.0	3.70
25	323.9	2.30	326.4	2,33	330.2	2.52	331.4	29.2	332, 2	2, 69
30	326.4	1.80	328.1	1,85	333.0	2.01	334, 4	2.09	335.0	2, 10
40	330.0	1, 25	332.8	1.30	337.0	1.39	338.4	1.49	339.4	1.40
50	332.9	0.91	335.6	0.94	340.0	1.02	341.7	1.04	342.7	1. 10
ΔΙ/ _{ε Pa}	0.255	55	0.2	256	0.256	56	0.2	255	0, 253	53

UDMH-Hydrazine (50/50)-Nitrogen Tetroxide

9.51 13.59 22, 20 10,65 рц e 8,68 7.25 5, 25 5, 45 3,95 3, 15 2, 19 1,63 2.10 0.17 (max) 287.7 318.0 ∞ 313,8 321,1 323.8 332.8 336.0 340.4 343.7 328.4 303. 326. 21, 10 9.21 10.19 8.25 6,95 5, 15 3, 78 13, 15 5.99 3.00 Ъ 2,09 1.56 2.00 0, 178 (max) 288.0 7 7 321.2 323.8 328.4 332,4 ~ 339,8 343.0 9 Ħ 305. 314. 318. 326. 335. 8.74 19.70 12, FO 9.45 6, 45 7,65 5.55 3.49 4.75 1.92 1.45 8 w 다 a ₽. Shifting Equilibrium $P_c = 1000$ $\mathbf{r} = 1.80$ 0, 179 I_s (max) 287.1 317.0 319.9 322.4 324.6 326.6 ∞ 333, 2 337.2 313, 4 . **—** >) 330.2 340, 1 304. 8.39 18.90 11,40 8.95 7.25 6, 10 5,20 4.48 3, 35 2,68 1.80 പ് 1.35 9 0. i 79 (max) 301.2 284.5 310.2 313.8 316.6 321.4 323.0 326.6 329.4 332.9 п 319.0 335.7 ы 18, 10 10.90 8.40 6.79 5.70 4.90 <u>ד</u> 4, 29 3, 22 1.70 49 1.27 D, a œ. 2 1.40 0, 178 (max) 11 280.2 309.4 311.8 314.0 317.6 7 305.6 320.9 323. 2 3.27.0 316.0 3.29.7 298. (AI) Pa Q. 14.7 ~ 10 12 14 16 w 18 07 ۲۶ 30 9 20

GAS COMPOSITION-OXYGEN AND $\mbox{N}_2\mbox{O}_4$ Systems

CALCULATION OF SPECTRAL EMISSIVITIES OF GASES

ŧ,

For the purpose of designing detection systems capable of identifying and tracking missiles during the launch phase by means of infrared radiation, it is essential to be able to make reasonable estimates of the energy radiated by the missile exhaust in the sensitive wavelength region of the detector. One of the most important factors in a theoretical calculation of this quantity is the spectral emissivity of the chemical components present in the exhaust. Experimental determination of the spectral emissivity is quite difficult because of the elevated temperatures of the gases comprising the exhaust, slit width corrections, and the problem of making absolute intensity measurements. Theoretical calculations of the type performed by Stull and Plass (Ref. 1) for diatomic molecules are extremely complex and require extensive machine calculations for a complete treatment. In addition, these quantum mechanical calculations require a knowledge of the shapes of individual rotational lines, parameters which can be determined only by experiments of the same type used to measure spectral emissivities (Ref. 2).

A method of calculation proposed by Golden is based on a calculation by Penner, Sulzmann, and Ludwig and gives good estimates of radiation more simply than by the Plass method.

Golden has treated only the HF and HCl molecules in his paper, which leaves the task of applying a suitable and simple approximate calculation to other molecules that are present in the combustion equilibrium of typical propellants. This is particularly important for H2O and CO2 which are formed from many propellant combinations.

The detailed compositions which follow in this report can be used in final radiation calculations for a given system and also provide a survey of important combustion species to be considered in future calculations.

REFERENCES

- 1. V. R. Stull and G. N. Plass, "Spectral Emissivity of Hydrogen Chloride from 1000-3900 cm⁻¹", Report No. U-461. Aeronutronic, Newport Beach, California, 1959.
- 2. S. A. Golden, Rocketdyne (Private Communication).

	 - <u>-</u>	$\frac{28.571}{71.429}$ %	RP-1 LOX		
					
	P	150	(psia)		
	^Т с	3395	(°K)		
	P _e 2.00		Pe	0.37	(psia)
	T _e 2243		^Т е	1715	oĸ
	€10.97		€	39.67	
	I _{sp} _299.0		I _{sp}	335, 6	sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt	%
$\frac{\text{H}_2\text{O}}{\text{H}_2}$	1.5784	28.44	1.5031	27.	
H	0.4133 0.0252	0,83	0.5066 0.0016		02
<u>ОН</u> О2	0.0122	0.21	0.0000	0.	00
O	0.0008 0.0008	0.03	0.0000		00
CO CO ₂	1. 2119	33.95	1.1218	31.	42
	0.8295	36, 51	0.9195	40.	47
					
					
					
					
				-	
	4.0723	100.01	4.0526	99.	99 Total

•	P _c	0.412 %	RP-1 LOX (psia) (oK) Pe Te (e	0,37 (ps 1595 °K 37.98	ia)
•	I _{sp_299.0}		I _{sp}	334.3 sec	optimum
Combustion Gases H ₂ O H ₂ H OH CO CO ₂	mo1/100g 1.5411 0.5193 0.0146 0.0046 1.3370 0.7643	wt % 27, 76 1, 05 0, 01 0, 08 37, 45 33, 64	mol/100g 1.4307 0.6386 0.0004 0.0000 1.2217 0.8793	wt % 25, 78 1, 29 0, 00 0, 00 34, 22 38, 70	
			•		· · · · · · · · · · · · · · · · · · ·
	4, 1809	99.99	4.1708	99.99	Total

RP-1 - Oxygen

	3	30.303 % _	RP-1			
		9.697 %	LOX			
	P _c	150	(psia)			
	Tc	3352	(°K)			
	_	. 00	`P _e	0.37	(psia)	
•	_		т	1481	o _K	
		997	*e	·	K	
		. 27	_ •	36.40		
	I _{sp_298}	. 3	I _{sp}	332.4	sec optim	um
Combustion						
Gases	mo1/100g	wt %	mol/10		wt %	
H ₂ O	1.4824	26.71	1.340		24, 15	
<u>H2</u>	0.6457	1.30	0.79		1.60 0.00	
OH	$\frac{0.0073}{0.0013}$	0.01	0.000	50 –	0.00	
	1,4579	40.84	1.314		36.82	
CO2	0.7068	31.11	0.850	<u> </u>	37.43	
		·	· · · · · · · · · · · · · · · · · · ·		•	
			4			
						
						
		-				
			<u> </u>			
	4. 3014	99.99	4. 29	71	100.00 Tota	1
<u></u>						

	P _c 2.00	31. 25 %	(psia) (oK) P		
	773		Te	0.37	(psia)
	re1866		¹ e	1371	oĸ
	9.92		_ €	34.99	
	I _{sp_296.9}		I _{sp}	329.8	sec optimum
Combustion					see optimum
Gases	mol/100g	wt %	mol/100)g ,	vt %
H ₂ O	·1. 4050	25.31	1, 2321	-	22. 20
<u>H2</u>	0.7923 0.0031	1.60	0.9670		1.95
OH	0,0004	0.00	0.0000 0.0000	 ·	0.00
<u>co</u>	1.5739	44,08	1.4005		39. 23
CO ₂	0,6588	28.99	0.8323		36. 63
			·		
					
		***************************************	-		
					
					
					
					
	4.4334	99.99	4, 4319		0.01 Total

	Pc	32. 258	Pe Te I	0.25 1175 46.06	(psia) ^o K
	I _{sp 294,8}		I _{sp}	332.4	_sec optimum
Combustion Gases H2O H2 H CO CO2	mo1/100g 1, 3094 0, 9603 0, 0014 1, 6850 0, 6199	wt % 23, 59 1, 94 0, 00 47, 20 27, 28	mol/100 1.0385 1.2316 0.0000 1.4141 0.8907	g wt 9 18. 2. 0. 39.	71 48 00 61
			-		
	4,5761	100.01	4.5748		00 Total

		8.571 % 1.429 %	RP-1 LOX	•	
	P _c	300 3492	(psia)		•
	Pe4.00		Р _е	0.75	(psia)
	T _e 2236		^Т е	1696	oĸ
	<u> </u>		€	38.78	
	I _{sp_300.6}		I _{sp}	336.8	sec optimum
Combustion Gases	mol/100g	• wt %	mol/100	0 g	wt %
H ₂ O H ₂ H	1.5827 0.4151 0.0171	28.51 0.84 0.02	$ \begin{array}{r} 1.4985 \\ 0.5114 \\ \hline 0.0008 \\ 1.1172 \end{array} $		27.00 1.03 0.00 31.29
CO CO ₂ OH	1,2107 0,8306 0,0085	33.91 36,57 0.14	0.9239		40.66
					
			-		
	4.0562	99.99	4,0518	<u> </u>	99.98 Total

ı			Те1	. 75 (psia) 580 OK . 21sec optimum
Combustion Gases	mol/100g 1.5415	wt % 27. 77	mol/100g 1.4257	wt % 25.68
H ₂ O H ₂ H CO CO ₂	0.5222 0.0096 1.3355 0.7657	1, 05 0, 01 37, 41 33, 70	0.6436 0.0004 1.2167 0.8843	1,30 0,00 34,08 38,92

			•	
	4.1745	99.94	4,1707	99.98 Total

		0.303 % 9.697 % %	RP-1 LOX		
	P c T c	300 3440	(psia) (^O K)		
	P _e 4,00 T _e 1985		Pe	0.75 1468	(psia) ^O K
	e 10.09		e	35.77	K
	I _{sp} 299.4		Isp	333,1	sec optimum
Combustion Gases	mol/100g	wt %	mol/100g	g w	t %
H ₂ O H ₂	1,4810 0,6485	26.68 1.31	1.3352 0.7972		1, 05
H CO CO ₂	0.0047 1.4561	0.00 40.78	0.0000 1.3094		0. 00 5. 68
CO ₂	0.7091	31, 21	0.8556		. 65
				<u> </u>	
			-		

	4, 2994	99.98	4. 2974	99	 9.99 Total

RP-1 - Oxygen

₹,

	6;	1. 250 % —— 8. 750 % —— % ——	RP-1 LOX		
	C	300	(psia)		
	T _c	3397	(°K)		
	P _e 4.00		Pe	0.75	(psia)
	T _e 1855		T _e	1362	°K
	€ <u>9.76</u>		€	34, 45	
	I _{sp_297.8}		I _{sp}	330, 4	sec optimum
Combustion	•	•			-
Gases	mo1/100g	wt %	mol/100)g wt	%
H ₂ O	1, 4025	25.27	1.2272	22,	. 11
Н2	0.7952	1.60	0.9719		. 96
H CO	0.0022 1.5714	0.00 44.02	0.0000 1.3956		. 00 . 09
CO2	0.6609	29.09	0.8372		. 84
,					
					
					,
					
		 			
				 	
	4,4324	99.98	4.4319	100	.00 Total

		, 258 % , 742 %	RP-1 LOX		
	Pc T _c		(psia) (^O K)		
	Pe 4.00		Pe	0.50	(psia)
	T _e 1726		^Т е	1169	°ĸ
	9,46		€	45.51	
	I _{sp295.4}		I sp	332.8	sec optimum
Combustion					
Gases	mo1/100g	wt %	mol/100g		
H ₂ O	1.3067	23.54	1.0335	18.	
H2 H	0.9626 0.0009	1.94	1, 2366		49
CO	1, 6823	47.12	$\frac{0.0000}{1.4090}$		<u>00</u> <u>47</u>
CO2	0,6222	27.38	0.8958	$\frac{371}{39}$.	
	*			_	
				-	
	-		·		
					
					
					· ·
					
					····
	4,5747	99.98	4.5748	$=$ $\frac{100.}{}$	00 Total

		8.571 %	RP-1 LOX		
	Pc	500 3564	(psia) (oK) Pe T	1. 25	(psia)
	T _e 2220 • 10.63 I _{sp} 301.8	5 .	· I sp	1683 38.17. 237.5.	oK sec optimum
Combustion Gases H2O H2 H CO CO2 OH	mo1/100g 1.5845 0.4167 0.0126 1.2096 0.8314 0.0061	wt % 28.55 0.84 0.01 33.88 36.59 0.10	mol/10 1.49 0.51 0.00 1.11 0.92	53 26 50 1 08 00 40 31 76 40	2 % . 94 . 04 . 00 . 20 . 82
	4.0609	99.97	4.05	27 100	.00 Total

		29.412 %	RP-1 LOX	
	P c _	% 500	(psia)	
	T _c _	3539	(°K)	
	Pe6.6	7	P _e 1.2	5(psia)
	^T e210	4	T _e 157	<u>о</u> к
	• • 10.3	0	e 36.6	9
	I _{sp_301.2}		I _{sp} 335.9	sec optimum
Combustion				
Gases	mơ1/100g	wt %	mol/100g	wt %
H ₂ O	1.5412	27.77	1.4224	25,62
H ₂	0.5240 0.0071	1.06 0.01	0.6474	1.30
CO ₂	1.3345	37.38	0.0004 1.2134	00.00 33.99
<u> </u>	0.7670	33.75	0.8880	39.08
		•		
				
SP spansace.				

	4. 1738	99.97	4.1716	99.99 Total

	69	0.303 %	RP-1 LOX	
	្នំc		(psia)	
	T _c	3504	(°K)	
	P _e 6.67		P _e 1.	25 (psia)
	T _e 1976		T _e 14	<u>60</u> ок
	e <u>9.97</u>		€ 35.	35
	I _{sp_300.1}		I _{sp333.}	6 sec optimum
Combustion				•
Gases	mo1/100g	wt %	mol/100g	wt %
H ₂ O	1.4798	26.66	1.3318	23.99
H ₂	0.6505 0.0034	1.31	0.8006	1.61
CO	$\frac{0.0034}{1.4544}$	40.74	1.3060	36.58
CO ₂	0.7102	31.26	0.8591	37.81
				
				All the state of t
	4.2983	99.97	4.2975	99.99 Total

			(psia) (oK) 	0.83 1259	(psia) ⁰ K
	•9.66)	٠	46.65	
	I _{sp_298,3}		I _{sp}	336.8	sec optimum
Combustion Gases H2O H2 H CO CO2	mo1/100g 1.4011 0.7970 0.0013 1.5700 0.6626	wt % 25.24 1.61 00.00 43.98 29.16	mol/100 1.165 1.0339 0.0000 1.3340 0.8988	1 20.0 2.0 0 00.0 37	99 08 00 36
	4.4320	99.99	4.431	8 99.	99 Total

RP-1 - Oxygen

)			.258 % — .742 % —	RP-1 LOX		r
		P c T c	500 3390	(psia) (^O K)		
		P _e 6.67 T _e 1721	····	Ре Т	0.83 1165	(psia) ^O K
		e		e	45.17	K
		I _{sp_264.8.}		I _{sp3}	333.1	sec optimum
	Combustion Gases H ₂ O	mo1/100g 1.3052	wt %	mol/100	18.	t %
	H ₂ H CO CO ₂	0.9643 0.0004 1.6808 0.6235	1.94 00.00 47.08 27.44	1.2398 0.0000 1.4058 0.8989		
·						
. y						
						1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
		4. 5742	99.97	4.5747	100.	00 Total

		.88.571 % <u></u>	RP-1 LOX	
	P _c _	700 % <u> </u>	(psia)	
	T _c _	3611	(°K)	
	P _e 9.3			75 (psia)
	T _e 222			75 °K
	10.54		€ 37.	
	I _{sp_302.4}		^I sp338.	0sec optimum
Combustion Gases	mo1/100g	t 01		
H ₂ O	1.5854	wt % 28.56	mol/100g	wt %
H ₂	0.4178	0.84	$\frac{1.4932}{0.5170}$	26.90 1.04
H	0.0105 1.2091	<u>0.01</u> 33.87	0.0004 1.1119	00.00
CO2	0.8323	36.62	0.9295	40.91
<u>OH</u>	0.0048	0.08	0.0000	00.00

				*/
				
	4.0599	99.98	4.0520	99.99 Total

RP-1 - Oxygen

	29 70	0.412 % 0.588 % %	RP-1 LOX		
	Pc Tc	700	(psia) (^O K)		
	• T _e 2098		P _e	1.75	(psia)
·	£ 10.21		€	1563 36.38	oĸ
	I _{sp_301.8} .		I _{sp}	336.3.	sec optimum
Combustion Gases H2O H2 H CO CO2	mo1/100g 1.5409 0.5252 0.0058 1.3334 0.7677	wt % 27.76 1.06 0.01 37.35 33.79	mol/10 1.420 0.649 0.000 1.211 0.890	03	wt % 25.59 1.31 00.00 33.93 39.17
	4.1730	99.97	4.171	1	100.00 Total

	Pe 9.3 Te 197	0	RP-1 LOX — (psia) — (°K) Pe 1. Te 13	00 CP 121
	I _{sp_300.6}).	^I sp340.	sec optimum
Combustion Gases H2O H2 H CO CO2	mol/100g 1.4788 0.6517 0.0025 1.4535 0.7115	wt % 26.64 1.31 00.00 40.71 31.31	mol/100g 1.3296 0.8028 0.0000 1.3039 0.8612	wt % 23.95 1.62 00.00 36.52 37.90
	4.2980	99.97	4. 2975	99.90 Total

RP-1 - Oxygen

		1. 250 % 8. 750 %	RP-1 LOX		
	P _c	700	(psia) (^O K)		
	P _e 9.33		P	1.17	(psia)
	T _e 1843	····	T _e	1256	oĸ
	• <u>9.61</u>		I	46.40	
	Isp298.6	······································	I sp	337.0	sec optimum
Combustion Gases	mo1/100g	wt %	mol/l	00g v	×t %
H ₂ O H ₂	1.4002 0.7983	25.23 1.61	$\frac{1.16}{1.03}$	<u> 29</u>	20, 95 2, 09
<u>H</u>	0.0013	00.00	0.00	00	00.00
$\frac{c_2}{c_2}$	1.5687 0.6640	43.94 29.22	$\begin{array}{r} -1.33 \\ -0.90 \end{array}$		37.30 39.65
	<u> </u>		·		
					······································
	4. 4325	100.00	4.43	19	99.99 Total

		34		1. 17 (psia) 1163 OK 44. 97 33. 2 sec optimum
Combustion Gases		4 Ø		
H ₂ O	mol/100g	wt %	mol/100g	wt %
H ₂	$\frac{1.3042}{0.9653}$	23.50 1.94	1.0284 1.2416	<u>18.53</u> 2.50
H	0.0004	00.00	0.0000	00.00
CO ₂	1.6799	47.05	1.4040	39.33
	0.6249	27.50	0.9008	39.64

	-			
* · · · · · · · · · · · · · · · · · · ·				
				
			, <u>, , , , , , , , , , , , , , , , , , </u>	-
				
				
	4.5747	99.99	4.5748	100.00 Total

	<u>5</u>		N ₂ H ₄ LOX		
	P _c	% <u></u>	(psia)		
	т _с	3215	(°K)		
	P _e 2.00	<u> </u>	Pe	0.37	(psia)
	T _e 2077		T _e	1592	oĸ
	e10.88	<u> </u>	€	39, 36	
	I _{sp310.7}	,	I _{sp}	348.6	sec optimum
C	•		•		•
Combustion Gases	mol/100g	wt %	mol/100) g v	vt %
H2O	3.0505	54.96	3.1155	_	56. 13
H ₂	0.0581	0.12	0.0042		0.01
H OH	0.0038	00.00	0.0000		00.00
$\frac{O_2}{O_2}$	0.0245	0.79	0.0038	3	0.12
O NO	0.0014	0.02	0.0000		00.00
N ₂	1.5576	43.64	1.560		43.71
*					
		. 4			
		-			*****
		*			
	· · · · · · · · · · · · · · · · · · ·				
					
	-				······
	4.7205	100.01	4.6850) 1	00.00 Total

		52.632 % 17.368 %	N2H4 LOX		,
	P	% 3206	(psia) (^O K)		
			D	0.07	
	~ e	2.00	T e	0.37	(psia)
	Те	1928	¹ e	1396	o ^K
		. 34	€	35.84	•
	I _{sp31}	3.0.	I _{sp} 3	48.7.	sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt %	*
H ₂ O	2.9577	53.29	2.9600	53.3	33
H ₂	0.3239	0.65	0.3242	0.6	5
H	0.0034	00.00	0.0000	00.0	
OH N2	0.0025 1.6420	0.04	0.0000 1.6421		
<u>````</u>					
	-				
					
					
			•		
					
					
					
					
		,			
	4.9295	<u>99.99</u>	4.9263	99.9	9 Total

		55.556 % 14.444 % % %	N ₂ H ₄		
	P _c	150 3168	(psia) (^o K) 	0.25	(psia)
	T _e 172 • 9.6 I _{sp 312.2}	8	T _e	1119 44.68 351.8	oK sec optimum
Combustion Gases H ₂ O H ₂ H OH N ₂	mol/100g 2,7774 0.6892 0.0010 0.0005 1.7335	wt % 50.04 1.39 00.00 0.01 48.57	mo1/100 2.7776 0.6891 0.0000 1.7334		et % 50. 04 1. 39 00. 00 00. 00 48. 56
	5.2016	100.01	<u>5,2001</u>		00.00 Total

		58.824 %	N ₂ H ₄		
		41.176 %	LOX		
		%			
	P	150	(psia)		
	¹c	3089	(°K)		
	Pe2.0	0	^Р е	0.25 (ps	i a)
	T _e 152	5	^Т е	<u>967</u> °K	
	e <u>9.1</u>	4	€	41.38	
	Isp309.1	·	Isp3	46.3 sec	optimum
Combustion					
Gases	mo1/100g	wt %	mol/100g	wt %	
H ₂ O	2.5732	46.36	2.5737	46.37	
H2 N2	<u> </u>	$\begin{array}{r} 2.21 \\ \hline 51.42 \end{array}$	$\begin{array}{r} -1.0974 \\ \hline -1.8353 \end{array}$	2.21 51.42	
		<u> </u>	1.6353	51.42	
				_	
			-		
· · · · · · · · · · · · · · · · · · ·				-	
			1 		
				-	
			-		
				-	
	5 5059	99 99	5 5064	100.00	Total

		% 5 % — % — % — % — % — % — % — % — % —	N ₂ H ₄ LOX			
	P _c	% 150 2954	(psia) (^O K) P _e	0.35		
	T _e 1252		T _e	0. 25 824	(p	sia) <
	€ 10.66 I _{sp 310.0}		I _{sp}	38.55 338.7.	8	ec optimum
Combustion				•	. 11	
Gases H ₂ O H ₂	mol/100g 2.3438 1.5568	wt % 42.23 3.14	mol/10 2.343 1.556	8 -	wt % 42.23 3.14	
N ₂	1.9500	54.63	1.950		54.63	_ _
						
					44,204	
				<u></u> -		
						
						-
	5.8506	100.00	5. 850	6	100.00	Total

B-25

i do

	Pc Tc Pe 4.00	0 %	N ₂ H ₄ LOX (psia) (oK) Pe T	0.75 1576	(psia) ^O K
	10.73		<u> </u>	38.56	
	I _{sp} 312.2.		I _{sp}	349.7.	sec optimum
Combustion					
Gases	mo1/100g	wt %	mol/10	0 g	wt %
H ₂ O	3.0653	55.22	3.117		<u>56. 16</u>
<u>Н2</u> Н	0.0462	0.09	0.002		0.01
OH	0.0156	0.26	0.000		0.02
O_2	0.0198	0.63	0.003		0.10
<u>NO</u>	0.0042	0.13	0.000		0.01 43.70
N ₂	1.5581 0.0009	43.65	$\frac{1.559}{0.000}$		00.00
	· ·				_
					
					
					
			 		
	4.7124	100.00	4.684	15	100.00 Total

		5 6	N ₂ H ₄ LOX (psia) (°K) Pe 13 • 35. I _{sp} 349.	83 °K 20
Combustion Gases H2O H2 H OH N2	mo1/100g 2.9590 0.3238 0.0020 0.0015 1.6422	wt % 53.31 0.65 00.00 0.03 46.01	mol/100g 2.9600 0.3242 0.0000 0.0000 1.6421	wt % 53.33 0.65 00.00 00.00 46.01
	4. 9285	100.00	4.9263	

		55.556 % <u>-</u> 44.444 % <u>-</u>	N ₂ H ₄ LOX		an
	P C T	300	(psia)		
	P _e 4.0	00	(^O K) Pe Te	0.50	(psia)
	9.5 I _{sp_313.0}	4	· · · · · · ·	1112 4. 05 2. 2	°к
Combustion Gases H2O H2 H OH N2	mo1/100g 2.7774 0.6892 0.0005 1.7335	wt % 50.04 1.39 00.00 0.01 48.57	mol/100g 2.7776 0.6891 0.0000 1.7334	wt 1 00 00	% 0.04 .39 0.00 .56
	5. 20111	100.01	5.2000	100.	00 Total

	Pc Tc 151 Pe 151 Pe 309	1. 176 %	T _e	0.50 962 40.99 346.6	_(psia) _ ^O K _ _ _sec optimum
Combustion					-
Gases	mol/100g	wt %	mo1/100g	wt %	, o
н ₂ о	2.5732	46.36	2.5737	46.3	
H ₂ N ₂	1.0974	2.21	1.0974	2.2	2.1
	1.8353	51.42	1.8353	51.4	12
•					
		-			
				-	
					-
	•				
	-				•
	•				
			-		
	5.5059	99.99	5.5064	100.0	00 Total

	62.		N ₂ H ₄			
	37.	5 % _	LOX			
		% _				
		% _				
	P c	300	(psia)			
	T _c	2993	(^O K)			
			P.	Α 50		_ = : = \
	Pe3.0		T	0.50		psia)
	T _e 124	9	¹e	822	 `	K
	e <u>10.</u>	61	€	38.36		
	I _{sp310}		I _{sp}	338.8		ec optimum
	sp		ър. <u></u>			oc openian.
Combustion	•					
Gases	mol/100g.	wt %	mol/10)0g	wt %	
H ₂ O	2.3438	42.23	2.34	35	42.22	
H ₂	1.5568	3.14	1.55		3.14	
N ₂	1.9500	54.63	1.94	98	54,63	
						
			· · ·			
						
					 	
						
						
			_			
						· -
						
			_			
						
						
	5.8506	100.00	5.85	00	99.99	Total

	Pe 6.6 Te 201	2.381 %	N ₂ H ₄ LOX(psia)(^O K) _PeT	1.25 1492	(psia) ⁰ K
	e10.	45	·	36.87	
	Isp308		I _{sp}	343.9	
Combustion Gases					sec optimum
H ₂ O	mo1/100g	wt %	mol/10		wt %
H ₂	2.9548 0083	<u>53.23</u> 02		$\frac{12}{00}$	53.53 00.00
— H	.0005	00.00	0.000	00 (00.00
OH O2	. 1459	28 4.67	.000		.02 4.81
<u>O</u>	.0009	.01	.000	0	0.00
NO N2	1.4809	$\phantom{00000000000000000000000000000000000$	001 1.484		.04
	-				
·					
					
					
	4.6176	99.99	4.608	610	0.00 Total

	-		N ₂ H ₄ LOX(psia)(°K)ere	1.25 1564 37.99 350.4	(psia) o K sec optimum
Combustion Gases H ₂ O H ₂ H OH O2 O NO N ₂	mol/100g 3.0743 .0386 .0019 .0132 .0165 .0005 .0038 1.5583	wt % 55, 39 .08 .00.00 .22 .53 .01 .11 43, 66	mol/100 3.118 .001 .000 .000 .000 .000 .000 .000	9 8 1	wt % 56, 18 00.00 00.00 .02 .09 00.00 .01 43.70
	4.7070	100.00	4.684	0 10	00.00 Total

	Pe 6.67 Te 1905 • 10.03 Isp 315.0	52.632 % % 500 % 500 3339	N2H4 LOX (psia) (°K) Pe Te Isp 3	1.25 1375 34.74	(psia) o K sec optimum
Combustion Gases H2O H2 H OH N2	mol/100g 2.9592 0.3238 0.0015 0.0010 1.6420	wt % 53.31 0.65 00.00 0.02 46.01	mol/100 2.960 0.324 0.000 0.000 1.642	0 2 0 0	wt % 53.33 0.65 00.00 00.00 46.01
	4.9275	99.99	4.926	39	9.99 Total

	P c _	55.556 44.444 % 500 3289	N ₂ H ₄ LOX(psia)(^o K)	
	Pe 6.67		P _{e0.83_}	(psia)
	T _e 1705		^T e <u>1107</u>	oK
	e <u>9.45</u>		€ 43.64	
	I _{sp_313.5.}		I _{sp_352.5}	sec optimum
Combustion Gases	mo1/100g	wt %	mol/100g	wt %
H ₂ O H ₂	2.7771	50.03	2.776	50,04
H	0.6891	1.39	0.6891	1,39
<u>ОН</u>	0.0005 1.7334	0.01 48.56	0.0000 1.7334	00,00
				The state of the s
	5.2006	99.99	5 2001	9999 Total

			58.824 %	N ₂ H ₄		
			41.176 %	LOX		
			% %			
		P _c _	500	(psia)		
		T _c _	3185	(°K)		
		P _e 6.	67	· Pe	0.83	_(psia)
			15	Те	960	_°K
		e9.	00	€ 4	10.75	
		I _{sp_309} .	9	I _{sp. 34}	6.7	_sec optimum
	Combustion			•		
	Gases	mo1/100g	wt %	mol/100g	wt %	•
	H ₂ O	2.5732	46.36	2.5737	46.3	
	H ₂ N ₂	1.0974 1.8353	2.21 51.42	1.0974	2,2	1
			31,42	1.8353	51.4	<u> </u>
					_	
						
						
•						
	·					
					_	
						
		5.5059	99.99	5.5064	100.00	Total

		. 619 % _ . 381 % _ 	N ₂ H ₄ LOX		
	Pc	700 3379	(psia)		
	P _e 9.33	3317	(^o K) P _e	1.75	(psia)
	T _e 2013		Те	1485	oK
	10.38		€	36.56	
	I _{sp_308.7}		I _{sp}	344.3	sec optimum
Combustion					
Gases	mol/100g	wt %	mol/10		wt % 53,53
H ₂ O	2.9571 0.0065	53.28	2.971 0.000		00.00
H	0.0005	00.00	0.000	0	00.00
OH O2	0.0152 0.1454	0,26 4,65	0.000 0.150		0.02 4.81
0	0.0009	0.01	0.000		0,00
NO	0.0092	0.28	0.001		0,04
N2	1.4809	41.49] , 484	<u>.9 </u>	41 . 60
			-	 -	
					
	· <u>·</u>	 			
			_		
	4.6157	99., 98	4,608	6	100,, 00 Total

	Pe 9. Te 20. I sp 313.	73	N ₂ H ₄ LOX (psia)(^O K) Pe_ Te_ I	1.75 1557 37.65	(psia) ^O K	
Combustion Gases H ₂ O H ₂ H OH O ₂ O NO N ₂	mol/100g 3.0798 0.0339 0.0014 0.0118 0.0146 0.0005 0.0038 1.5583	wt % 55.49 0.07 00.00 0.20 0.47 0.01 0.11 43.66	mol/1 3.11 0.00 0.00 0.00 0.00 0.00 1.56	183 014 000 005 028 000	wt % 56.18 00.00 00.00 0.01 0.09 00.00 0.01 43.71	imum
	4.7040	100.01	4. 68	35	100.00 To	, tal

	52 47	. 632 . 368 . % 	N ₂ H ₄ LOX		
	P _c	700 3376	(psia) (^O K) P	\ 75	
	T _e 1899		T _e	1.75	(psia) ^O K
	I _{sp_315.4}		I.sp	34. 49 350. 2	sec optimum
Combustion Gases H2O H2 * H OH N2	mol/100g 2.9597 0.3238 0.0015 0.0010 1.6420	wt % 53.32 0.65 00.00 0.02 46.01	mol/100 2.9600 0.3242 0.0000 1.6421	5	wt % 53.33 0.65 00.00 00.00 46.01
	4.9279	100.00	4.9263		99.99 Total

	55. 44.	556 % — 444 % —	N ₂ H ₄ LOX	
	Pc T _c	700 3321	(psia) (^O K)	
	P _e 9.33		e	(psia)
	T _e 1701		·	104 °K
	9.39			3.38
	I _{sp_313.8} .		I _{sp357}	sec optimum
Combustion				
Gases	mo1/100g	wt %	mol/100g	wt %
H ₂ O	2.7771	50.03	* 2.7776	50.04 1.39
H ₂	0.6891 0.0005	1.39	0.6891	00.00
OH	0.0005	0.01	0.0000	00.00
N ₂	1.7334	48.56	1.7334	48.56
			·	
	····		***	
	5.2006	99.99	5. 2001	99.99 Total

	- 5	8.824 % 1.176 % 	N ₂ H ₄ LOX			
	P	700 3209	(psia) (^O K)			
	P _e 9.33		Pe	1. 17		sia)
	T _e 1513)	^Т е	958	°	K
	8.97	, 	€	40.61		
	I _{sp} 310.0.		I _{sp}	346.8		ec optimum
Combustion						
Gases	mol/100g	wt %	mol/10	0 g	wt %	
H2O	2.5732	46.36	2.573	4	46.36	
H ₂	1.0974	2.21	1.097		2.21	
N ₂	1.8353	51.42	1.835	<u>1</u>	51.42	
						
					· · · · · · · · · · · · · · · · · · ·	
					,	
						
	*					
				 -		
						_
						
						
						
						_
	5.5059	99, 99	5.505	8	99.99	Total

	61 P	.538 % I 	DMH OX (psia)	
	T _c	3341	(°K)	
	P _e 2.0	00	P _e 0.37	(psia)
	T _e 212	L	T _{e1585_}	oK
	e10.5	<u>'0 </u>	e <u>38.03</u>	
	I _{sp_308.8}	3	I _{sp345.5}	sec optimum
Combustion				
Gases	mo1/100g	wt %	mol/100g	wt %
· H ₂ O	2.0175	36.35	1.9280	34.74
H2	0. 5317	1.07	0.6312	1.27
H OH	0.0148 0.0058	0.01 0.10	0.0004 0.0000	00.00
$\frac{O_2}{O_2}$	0.0004	0.01	0.0000	00.00
NO	0.0004	0.01	0.0000	00.00
N ₂	0.6399	17.93	0.6397	17.92
$\frac{CO_2}{CO_2}$	<u>0.7382</u> 0.5415	20.68 23.83	0.6419 0.6379	17.98 28.07
	•			
				
	, -			
				
	4.4904	99.99	4.4792	99.98 Total

		0 % — 0 % — % —	UDMH LOX			
	Pc Tc	% 150 3314	(psia)			
		<u>.00</u>	Pe	0.37 1444	(psia	r)
	. 10	.23	e	35.99	K	
	I _{sp} 282	. 1	Isp	343.6	sec	optimum
Combustion Gases H ₂ O H ₂ OH	mol/100g 1.9312 0.7273 0.0014	wt % 34.79 1.47 0.02	mol/100g 1.8048 0.8572 0.0000		wt % 32.52 1.73 00.00	
H N ₂ CO CO ₂	0.0065 0.6653 0.8448 0.4863	0. 01 18. 64 23. 66 21. 40	0.0000 0.6657 0.7170 0.6140		00.00 18.65 20.08 27.02	
	4,6629	99.99	4.6588		100.00	Total

		58.333 %	UDMH LOX			
	· · ·					
	P T	150	(psia)			
	T _o		(^o K)	• • •		
	e	2.00	те	0.37	(psia)	
	^Т е	1803	¹ e	1311	oK	
	€	9. 78	_ €	34.18		
	I _{sp}	308.4	I _{sp}	340.6	sec of	otimum
Combustion		_		_		
Gases	mol/100g	wt %	mol/10	_	wt %	
<u>H2O</u> H2	1.8129	32.66 1.93	$\frac{1.65}{1.12}$		29. 75 2. 26	
H	0. 9586 0. 0019	00.00	0.00	000	00.00	
N ₂	0.6931	19.42	0.69	35	19.43	
$\frac{CO}{CO_2}$	0.9407 0.4461	26.35 19.63	0.77		21.82 26.74	
	<u> </u>					
						
						
				 -		
	4.8533	99.99	4.8	529	100.00	[otal

	P _e 2	3203 . 00 644 . 38	UDMH LOX (psia) (oK) Pe 0. Te 10 44. Isp 342.	96 °K 47	
Combustion			- F	sec optimu	m
Gases H ₂ O H ₂ H N ₂ CO CO ₂	mol/100g 1.6660 1.2270 0.0005 0.7231 1.0270 0.4198	wt % 30.02 2.47 0.00 20.26 28.77 18.48	mol/100g 1.4012 1.4923 0.0000 0.7236 0.7621 0.6846	wt % 25.24 3.01 00.00 20.27 21.35 30.13	Ç

	<u>45.4</u> 54.5	45 %	UDMH LOX			
	-	% <u></u>				
	Pc T_	150 3108	(psia)			
	P _e 2.00		(°K)	0.25	(ps	ial
	T _e 1489		T _e	987	^(Ps	ia,
	9.03		€	42.69		
	I _{sp} 300.8		I _{sp}	337.2	sec	optimum
Combustion						
Gases	mo1/100g	wt %	mol/10		wt %	
H ₂ O	1.4908	26.86	1.17		21.11	
H ₂	1.5342	3.09	1,85		3,74	•
CO	0.7565 1.1070	21.19 31.01	0.75 0.78		21.19 22.07	
CO2	0.4055	17.85	0.72		31.90	•
			-			
			-			
	-					
						•
						•
 	-					•
						•
						•
						
	-		*			•
	5.2941	100.00	5.29	41	100.01	Total

•		57 93	UDMH LOX (psia) (°K) Pe 0.75 Te 1715 39.33 Isp 347.6	o _K
Combustion Gases	mo1/100g	wt %	mol/100g	wt %
H ₂ O H ₂ H OH O ₂ O NO N ₂ CO CO ₂	2.0734 0.3752 0.0186 0.0139 0.0013 0.0004 0.0009 0.6156 0.6212 0.6113	37. 35 0. 76 0. 02 0. 24 0. 04 0. 01 0. 03 17. 25 17. 40 26. 90	2.0181 0.4461 0.0009 0.0000 0.0000 0.0000 0.0000 0.6161 0.5483 0.6842	36. 36 0. 90 00. 00 00. 00 00. 00 00. 00 17. 26 13. 36 30. 11
	4.3318	100.00	4.3135	99.99 Total

	Pe 4.0 Te 10.4 Isp 310.3	300 3431 00 10	UDMH LOX (psia) (°K) Pe 0.75 Te 1566 37.22 Isp 346.5	K	otimum
Combustion Gases H2O H2 H OH N2 CO CO2	mol/100g 2.0189 0.5339 0.0099 0.0040 0.6398 0.7371 0.5429	wt % 36.37 1.08 0.01 0.07 17.92 20.65 23.89	mol/100g 1.9236 0.6357 0.0004 0.0000 0.6401 0.6374 0.6424	wt % 34.65 1.28 00.00 00.00 17.93 17.85 28.27	
					•
	4.4865	99.99	4.4796		otal

B-47

	40 60	% - % - % -	UDMH LOX			
	Pc	300 3398	(psia)			
		00 52 05	Pe	0.75 1432	(psi oK	a)
	I _{sp} 309.	···	I _{sp}	35.36 344.3	sec	optimum
Combustion Gases H2O H2	mol/100g 1.9297 0.7299	wt % 34.77 1.47	mol/10 1.800 0.861	2	wt % 32.43	
H OH N ₂	0.0042 0.0009 0.6656	0.00 0.02 18.65	0,000 0.000 0.665	0 0 7	00.00 00.00 18.65	
	0.8427 0.4880	23.61 21.48	0.712 0.618		19.95 27.23	
	4.6612	100,00	4, 658	8	100.00	Total

		.667 % .333 %	UDMH LOX		
	PcTcPe4.0 Te179	300 3346 00 93	(psia) (^O K) Pe T _e	0.50 1205	(psia) ^O K
	^e 9.6 I _{sp 308.6}			45.94	
Combustion			I _{sp}	347.4	sec optimum
Gases H2O H2 H N2 CO CO2	mol/100g 1.8108 0.9614 0.0015 0.6931 0.9382 0.4484	wt % 32.62 1.94 00.00 19.42 26.28 19.74	mol/10 1.592 1.180 0.000 0.693 0.719 0.666	2 28. 7 2. 0 00. 5 19. 7 20.	38 00 43 16
	4.8534	100.00	4, 852	9 100.	01 Total

		43. 478 % _ 56. 522 % _	UDMH LOX			
	P _c		(psia) (^O K)			
	Pe	4.00	$\mathbf{P}_{m{e}}$	0, 50	(psi	a)
	T _e	1636	T	1091	°ĸ	•
			·	44.01		
	· ····	9. 27	ı •			
	Isp	305. 2	*sp	342.9	sec	optimum
Combustion Gases		**** Of.	ma1/10	10 ~	wt %	
	mol/100g	wt %	mol/10			
H ₂ O	1.6640 1.2295	29.98 2.48	1.39 1.49	60	25.16 3.02	
H	0.0005	00.00	0.00	000 .	00.00	
N ₂	0. 7231	20.26	0.72	36	20.27	
<u> </u>	1.0249	28. 71	0.75		21.23	
€02	0.4218	18, 56	0,68	87	30.31	
			. 			
						
			· · · · · · · · · · · · · · · · · · ·			
						
				·		
						
						
·						
						
	5.0639	99.99	5.06	39	99.99	Total

	Pe	. 286 % % 500 3532	(psia)(°K)	1, 25 1852 40, 88	_(psia) _ ^o K -
	I _{sp31}	0.0	Isp	348.8	_sec optimum
Combustion Gases	mo1/100g	wt %	mol/100g	wt %	
H ₂ O H ₂ H OH O ₂ O NO N ₂ CO	2.0966 0.2554 0.0218 0.0277 0.0063 0.0021 0.0029 0.5926 0.5008 0.6874	37,77 0.51 0.02 0.47 0.20 0.03 0.09 16.60 14.03 30.25	2. 0814 0. 2942 0. 0021 0. 0008 0. 0000 0. 0000 0. 5942 0. 4415 0. 7469	37.50 0.59 00.00 0.01 00.00 00.00 16.65 12.37 32.87	
	4. 1935	99.97	4, 1611	99.99	Total

	37. 62.	.963 % 1	JDMH LOX			
	P	% 500	(psia)			
	T _c	2155	(°K)			
		. 67	Pe	1. 25	_(psia)	
	<u> </u>		T _e		_(paia) _oK	
	T _e 22		- e	1701	_ K	
		0. 79		38. 69		
	I _{sp31}	1.1	I _{sp}	348.4	_sec optimum	
Combustion						
Gases	mo1/100g	wt %	mol/100g	wt %	•	
H ₂ O	2.0774	37.43	2.0155	36.3	<u></u>	
H2	0.3752	0.76	0.4491	0.9		
H	0.0143	0.01	0.0009	00.00		
OH O2	0.0104 0.0009	0, 18 0, 0 3	0.0000	00.00		
0	0.0004	0.01	0.0000	00.00		
NO	0.0009	0,03	0.0000	00.00		
N ₂	0.6157	17, 25	0.6160	17.26		
CO	0.6200	17,37	0.5457	15.20		•
CO2	0.6123	26.95	0.6868	30.23	<u></u>	4
						
					 	
						
						
						
•						
	4.3275	100.02	4.3141	_100.00	Total	

		8. 462 % 1. 538 %	UDMH LOX		
	P	500 3498	(psia) (^O K)		
	P _e	6.67	P _e	, 1, 25	(psia)
	T _e 2	101	^Т е	1558	°K
	¢	10. 36	٠	36. 71	
	I _{sp3}	11.2	I _{sp}	347.1	_sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt 9	%
H ₂ O H ₂	2.0194 0.5355	<u>36.38</u> 1.08	1,9209 0.6388	34.	<u>61</u> 29
H	0.0072	0.01	0.0000	00.	
OH No	0.0027	0.05	0.0000	00.	00
N ₂	0.6400 0.7359	17.93 20.61	0.6401	<u>17.</u> 17.	
CO2	0.5440	23,94	0.6455	28.	
	***************************************			-	
					
					
				<u> </u>	
				<u> </u>	
					
					
				•	
	4.4846	100.00	4.4796	100.	01 Total

	Pe Te Isp	60 % L % — % — 500	DMH OX (psia) (^OK) Pe Te I_sp	1424 °F 34. 93	sia) C
Combustion Gases H ₂ O H ₂ H OH N ₂ CO CO ₂	mo1/100g 1. 9285 0. 7317 0. 0028 0. 0005 0. 6655 0. 8417 0. 4893	wt % 34. 74 1. 48 00. 00 0. 01 18. 64 23. 58 21. 54	mol/100g 1. 7969 0. 8651 0. 0000 0. 0000 0. 6657 0. 7095 0. 6215	wt % 32.37 1.74 00.00 00.00 18.65 19.87 27.35	
	4.6599	99.99	4. 6588	99.98	

			DMH OX		
	P c_	500	(psia)		
	T _c _	3401	(°K)		
at·	***		(K)		
		6. 67	T .	0. 83	_(psia)
	Те	1 786	¹e	1200	_°K
	€	9. 54	£	45.53	_
	I _{sp}	308.5	I _{sp}	347.7	_sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt %	%
H ₂ O	1.8093	32, 60	1.5893	28.6	3 '
H ₂	0.9629	1.94	1.1836	2.3	9
<u>н</u> N2	0.0010	0.00	0.0000	00.0	
	0. 6931 0. 9367	19.42 26.24	0.6935 _0.7168	19.4 20.0	
CO ₂	0.4499	19.80	0.6702	29.5	
					
					
					
					
	-				
					
				· 	
					
					
	4.8528	100,00	4.8 534	100.0	3 Total

	6		OX DMH		
	P	700 3579	(psia) (^O K) P		
	Pe	3.3	e	1.75	(psia)
	T _e	2378	^Т е	1842	°ĸ
	دا	1.08	·	40.44	
	Isp	310.8	I _{sp}	349.4	sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt	%
H ₂ O	2.1021	37.87	2.0799	37.	17
H ₂			0. 2954		
H	0.0184	0.02	0.0017	00.	
OH	0.0239	0.41	0.0008	0	
02	0.0046	0.15	0.0000	00	
0	0.0013	0.02	0.0000	00	
NO	0.0025	0.08	0.0000	00_	
N ₂	0. 5930	16.61	0. 5942	16_	
CO	0. 4984	13.96	0.4402		
CO2	0.6902	30.38	0.7485	32.	
					
					
					·
	4.1882	100.01	4.1607	100.	00 Total

	P C		UDMH LOX (psia)		
	T _c _	3566	(^o K)		
		9. 33	P _e	1.75	(psia)
		2247	Те	1693	_oK
	€	10.69	€	38. 29	_
	I _{sp}	311.8	I _{sp}	348.9	sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt 9	%
H ₂ O	2.0792	37.46	2.0136	36.2	
<u> Н2</u> Н	0, 3758 0, 0117	0. 76 0. 01	0. 4508 0. 0004	0.9	
OH	0.0082	0.14	0.0004	00.0	
02	0.0004	0, 01	0.0000	00.0	0
O NO	0,0004 0,0004	$ \begin{array}{ccc} & 0.01 \\ & 0.01 \end{array} $	0.0000 0.0000	00.0 00.0	
N ₂	0.6158	17.25	0.6160	17.2	
	0,6193	17.35	0.5440	15.2	
	0.6132	26.99	0.6885	30, 3	0
					
					
				<u> </u>	
			M		
	4. 3244	99.99	4. 31 33	<u>99. 9</u>	9 Total

	Pe	38.462 % - 61.538 % - 700 3542 9.33 2094 10.26 311.8		1.75 1552 36.37 347.5	_(psia) _ ^O K _ _ _sec optimum
Combustion Gases H2O H2 H OH N2 CO CO2	mol/100g 2.0189 0.5362 0.0058 0.0022 0.6398 0.7353 0.5443	wt % 36. 37 1. 08 0. 01 0. 04 17. 92 20. 60 23. 95	mol/100g 1.9191 0.6406 0.0000 0.0000 0.6401 0.6325 0.6473	wt % 34.57 1.29 00.00 17.93 17.72 28.49	·
	4. 4826	99.97	4. 4796	100.00	Total

¢

		40 % _	UDMH		
		60 %	LOX		
	P	700	(psia)		
	'1'		,O		
			(°K)		
	Pe	9. 33	P _e	1.75	(psia)
	^Т е	1937	^Т е	1419	°K
	¢	9.86	€	34.69	
	I _{sp}	310.9	I _{sp}	345.1	sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	, wt	%
H ₂ O	1.9278	34.73	1.7955	32. 3	35
<u> </u>	0. 7326	1.48	0.8670	1.	
н	0.0023	00.00	0.0000	00.0	
$\frac{-\frac{QH}{N_2}}{}$	0.0005	00.01	0.0000	00.0	
CO	0.6654 0.8407	<u>18.64</u> 23.55	0.6657 0.7077	18.6 19.8	
CO2	0.4902	21.58	0.6234	27.4	
				<u> </u>	
					
			<u></u>		·
					
					
					
	4.6595	99.99	4.6593	100.0	00 Total

B-59

	Pc Tc Pe	41.667 % 58.333 % 700 3437 9.33 1781 9.49 308.8	UDMH LOX (psia) (°K) Pe Te [1.17 1197 45.27 347.9	(psi oK sec	a) optimum
Combustion						
Gases	mo1/100g	wt %	mol/10	-	wt %	
<u> H2O</u> H2	$\frac{1.8084}{0.9639}$	32. 58 1. 94	$\frac{1.58}{1.18}$	37 <u>4</u>	28, 60	
$\frac{H}{N_2}$	0.0010	00.00	0.00	000	00.00	
	0.6931	19.42 26.22	0.69		19. 43 20. 02	
CO CO ₂	0.9362 0.4504	19.82	0.6		29. 58	
				 -		
	-					
				 .		
						
			 	 -		
					-	
						
			·			
	4.8528	99.98	4.85	534	100.02	Total

			2H4- UDMH (50	-50)	
			OX		
	_				
	P				
	Tr.		(psia)		
•	T,	3295	(°K)		
	Pe	2.00	P _e	.037	_(psia)
	Те	2127	Те	1590	_°ĸ
	€	10.83	£	38.45	_
	Isp	310.6	I _{sp}	347.9	_sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt %	Ď
H ₂ O	2.4045	43. 32	2. 3538	42.4	1
H ₂	0.3878	0. 78	0.4494	0.9	
H	0.0133	0.01	0.0005	00.0	
<u>OH</u>	0.0087	0.15	0.0000	00.0	
σ_2	0.0005	0.01	0.0000	00.0	
	0.0005	0.01	0.0000	00.0	
<u>NO</u> N2	0.0009	0.03	0.0000	<u>00. 0</u> 29. 1	
	1.0395 0.3297	<u>29.12</u> 9.23	1.0399 0.2685	7.5	
CO CO ₂	0. 3297	17. 33	. 4549	20.0	
	<u> </u>	11. 55	. 1517		
		——————————————————————————————————————			
					
			-		·
				<u> </u>	
					
				-	
				-	
					
	4. 5791	99.99	4. 5670	99.9	9 Total

		54. 545 % LC	рн ₄ - UDMH (50	0-50)	
	Pc	150	(psia)		
	Tc	3271	(°K)		
	P _e	2.00	$\mathbf{P}_{\boldsymbol{e}}$	0.37	_(psia)
	Те	1952	Te	1429	°K
		1028	€	36.01	
	1	310.8	I _{sp}	346.1	 _sec optimum
	-sp		"P		
Combustion Gases	mo1/100g	wt %	mol/100g	wt %	6
H ₂ O	2.3100	41.62	2. 2230	40.0	5
H ₂	0.6173	1.24	0. 7076	1.4	
H OH	0.0053 0.0014	0.01	0.0000	0.00	
NZ	1.0869	30, 45	1.0872	30, 40	6
CO ₂	0.4157	11.64	0.3271	9.10	
	0.3406	14.99	0.4292	18.8	7
					
					
		· · · · · · · · · · · · · · · · · · ·		<u> </u>	
· · · · · · · · · · · · · · · · · · ·		, , , , , , , , , , , , , , , , , , , 			
					
					
					
					
				-	
					
	4.7772	99.97	4. 7741	= 99.9	9 Total

			H ₄ - UDMH (5)	0-50)	
		52.381 % Lo	OX.		
		0/2			
	P	c150	(psia)		
	P __		(°K)		
	е	2. 00	Pe	0. 25	(psia)
	^Т е	1772	^Т е	1181	°K
	_	9. 76		46.09	
	I sp	309.5	I _{sp}	349.3	_sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt '	%
H2O	2.1747	39.18	2.0178	36.3	
H ₂	0.8945 0.0015	1.80	1.0524 0.0000	2.1	
$\frac{H}{N_2}$	1.1392	31.91	1.1389	31.9	01
CO CO ₂	0. 4863 0. 3062	13. 62 13. 47	0.3291 0.4637	9. 2 20. 4	
			0. 4037		<u> </u>

				·	
				•	
				·	
					
-					
	5. 0024	99. 98	5.0019	100.0	1 Total

	<u>-</u>	50 % L	2H4 - UDMH (5	50-50)	
	P c T c	150 3153	(psia) (^O K)		
•	Pe	2.00	^Р е	0.25	(psia)
	T _e	1596	Т _е	1051	°K
		9. 29	•	43. 58	
	I _{sp}	306. 7	Isp	344.5	sec optimum
Combustion	- F				-
Gases	mol/100g	wt %	mol/100g	wt	
<u>н</u> 20	2.0052	36.13	1.8035	32.	
<u>H2</u>	1.2185	2.46	0.0000	00.	86
$\frac{H}{N_2}$	0.0005	00.00 33.50	1.1959	33,	
CO CO ₂	0.5446	15.26	0.3424	9.	59
CO ₂	0.2873	12.64	0.4895	21.	54
			•••••	-	
				- '	
					
				<u> </u>	
				_	
	*			_	
				-	
	5. 2520	99.99	5. 2520	99.	. 98 Total

			1 ₂ H ₄ - UDMH (50-50)	
•	P c. T	150	(psia)		
	P _e	2672	(°K)	0.25	(psia)
	T _e	1343	Те	930	°ĸ
		10.97	, •	41.57	
	· ^I sp	308.5	I _{sp}	338.3	sec optimum
Combustion Gases H ₂ O	mol/100g 1.7763	wt % 32.00	mol/100g 1.5474	wt 27.	
H ₂ N ₂	1.6171 1.2588	3. 26 35. 27	1.8459	3.	72
$\frac{CO}{CO_2}$	0.5678	15.90	1. 2588 0. 3383	<u>35.</u> <u>9.</u>	48
	0.3079	13.55	0,5374		<u> </u>
	-				
	•				
					
					
	5, 5279	99.98	5, 5279	100.	00 Total

	P _c . T _c .	58.333 %	N ₂ H ₄ - UDMH (5 LOX	0.75 1743	(psia) ⁰ K
		11.11	€ I	40.29	
	I _{sp}	310.8	¹sp	349.4	sec optimum
Combustion	1/100	; , m	1/100		ort.
Gases H ₂ O	mo1/100g	wt %	mol/100g	wt	•
H ₂ O	2. 4507 0. 2167	44.15 0.44	2.4450 0.2407	44.	<u>05</u> 49
H	0.0150	0.02	0.0009	00.	
Он	0.0229	0.39	0.0004	00.	
$\frac{o_2}{o_2}$	0.0062	0.20	0.0000	00.	
O	0.0013	0.02	0.0000 0.0000	00. 00.	
N ₂	0.9950	27.88	0.9967		
$\frac{CO}{CO_2}$	0.2312	6.48	0.1865		22
CO ₂	0.4620	20.33	0.5069	22.	31
					
					
			 	· · · · · · · · · · · · · · · · · · ·	
					
			-		
	4.4041	100.00	4. 3771	99.	99 Total

	P _c		T _e	-50) 0.75 1573 37.64 348.9	(psia) ^O K sec optimum
Combustion Gases H ₂ O H ₂	mo1/100g 2. 4077 0. 3889	wt % 43. 38 0. 78	mol/100g	wt ⁴ 2. 3	% 6
H OH O ₂ NO N ₂	0.0087 0.0055 0.0005 0.0005 1.0398	0. 01 0. 09 0. 01 0. 01 29, 13	0.0005 0.0000 0.0000 0.0000 1.0399	00. 0 00. 0 00. 0 00. 0 29. 1	0 0 0 0 3
CO CO ₂	0. 3289	9, 21	0, 2658 0, 4576	7. 4 20. 1	
	4. 5752	100.00	4. 5670	99.9	9 Total

	Pe	54. 545 %	N ₂ H ₄ - UDMH (50 LOX	0.75 1417 35,36	(psia) ^O K
	I _{sp}	312.0	I _{sp}	346.9	— sec optimum
Combustion Gases H2O H2 H OH N2 CO CO2	mol/100g 2. 3096 0. 6191 0. 0033 0. 0010 1. 0872 0. 4142 0. 3420	wt % 41.61 1.25 0.00 0.02 30.46 11.60 15.50	mol/100g 2. 2208 0. 7104 0. 0000 0. 0000 1. 0872 0. 3237 0. 4326	wt 6 40.00 1.4 0.00 30.4 9.00 19.00	% 10 10 10 10 10 10 10 10 10 10 10 10 10
	4. 7763	99.99	4. 7741	100.0	00 Total

		47.619 %	N_2H_4 - UDMH (5	0-50)	
		52. 381 %	LOX		
					
	P	%			
	T	300	(psia)		
		~ 	(°K)		
	P _e	4.00	P _e	0. 50	_(psia)
	^Т е	1 761	Т _е	1173	_oĸ
	€	9.61	€	45.44	
	Isp	310.3	I _{sp}	349.8	_sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt 9	%
H2O	2.1735	39.16	2.0148	36.3	0
H ₂	0.8964	1.81	1.0559	2.1	
<u> </u>	0.0010 1.1390	0.00 31.91	0.0000 1.1389	31.9	
CO	0.4847	13.58	0. 3256	9.1	
CO2	0.3076	13.54	0.4667	20. 5	4
					
				-	
				-	
				-	
Nico					
				_	
					
				- 	
	5. 0024	100.00	5. 0019	100.0	0 Total

		0 % LC	Н ₄ - UDMH (50)Х	-50)	
	P C	300 3215	(psia) (^O K) P		
	_e	. 00 589	"e	0.50 1046	_(psia) _^K
	e9	. 20	€	43.14	_
	I _{sp3}	07.2	Isp	344.8	_sec optimum
Combustion Gases	mo1/100g	wt %	mol/100g	wt %	, n
H ₂ O H ₂ N ₂	2. 0042 1. 2200 1. 1959	36. 11 2. 46 33. 50	1.8004 1.4233 1.1959	32. 44 2. 87 33. 50	<u>t </u>
CO ₂	0. 5431 0. 2889	15. 21	0. 3398 0. 4921	9.52	?
					
	<u>5.2520</u>	<u>99.99</u>	<u>5, 2515</u>	99.99	Total

		P	58. 333 %	N ₂ H ₄ - UDMH (5 LOX (psia)	50-50)	
		P _e	3460	(^o K)	1. 25	(psia)
			2267	T _e	1728	(psia) oK
		•	0.98	£	39. 61	**
			312.1	I _{sp}	350.3	sec optimum
	Combustion					
	Gases	mol/100g	wt %	mol/100g	wt	
	H ₂ O	2. 4584	44. 29	2. 4437	44.	
	H ₂	0. 21 33	0.43	0. 2420 0. 0009	00.	
	H OH	0.0119	0. 31	0.0004	0.	
	O ₂	0.0040	0.13	0.0000	00.	
		0.0009	0.01	0.0000	00.	00
	NO	0.0022	0.07	0.0000	00.	
	N ₂	0.9955	27.89 6.39	0.9967 0.1852	<u>27.</u> 5.	
)	CO CO ₂	0. 2282 0. 4652	20.47	0. 1832	22.	37
				0.500		
						
						
		·-·				
	· · · · · · · · · · · · · · · · · · ·					
					-	
		4 2075	100.00	4 2771	100	01 77-4-1
		4. 3975	100.00	4. 3771	100.	0l Total

	=		N ₂ H ₄ - UDMH (50 LOX)-50)	
	Pc	500	(psia)		
	Tc	3445	(°K)		
	P _e	6,67	$\mathbf{P}_{\mathbf{e}}$	1, 25	_(psia)
	Те	2107	T _e	1562	°K
	•	10.49	<i>5</i>	37.09	-
	I _{sp}	313.1	I _{sp}	349.6	sec optimum
	*P		•P	J = 7 • U	bcc opa
Combustion Gases	mo1/100g	wt %	mol/100g	wt %	<i>1</i> 6
H ₂ O	2. 4088	43.40	2. 3492	42. 3	
H ₂	0. 3896	0.79	0.4540	0.9	
H OH	0.0064	0.01	0.0000	00.0	
NO	0.0005	0.01	0.0000	00.0	0
N ₂	1.0398	29.13 9.18	1.0399 0.2640	<u>29. 1</u> 7. 3	
 	0. 3955	17.41	0.4599	20. 2	
					-
				· · · · · · · · · · · · · · · · · · ·	
					
					
			<u> </u>		
					
					
	4.5726	100.00	4.5670	100.0	00 Total

		45, 455 %	N ₂ H ₄ - UDMH (50-50)	
		54. 545 %	LOX		
	P				
	T	c 3413	(psia) (^O K)		
	P	6.67		1.25	(psia)
	T _e	1929	T _e	1409	°ĸ
	£	9.97	€	34. 93	
	I _{sp}	312.7	I _{sp}	347. 4	sec optimum
Combustion Gases H2O H2 OH N2	mol/100g 2. 3087 0. 6204 0. 0024 0. 0005 1. 0870	wt % 41.59 1.25 0.00 0.01 30.45	mol/100g 2. 2183 0. 7128 0. 0000 0. 0000 1. 0872	wt 39.6 1.4 0.0 0.0 30.4	96 44 00 00
	0. 4131 0. 3429	11.57 15.09	0. 3218 0. 4345	9.0	01
	4. 7750	99. 96	4. 7746	99. 9	99 Total

	-	47.619 % - 52.381 % -	N ₂ H ₄ - UDMH (4	10-50)	
	T	500 c 3354	(psia)		
	Pe T _e	6.67	. Pe T _e	0.83	(psia) ^O K
	I _{sp}	9. 52 310. 8	I _{sp}	45, 01 350, 1	sec optimum
Combustion Gases	mol/100g	wt %	mol/100g	wt ⁶	
$ \begin{array}{c} H_2O \\ \hline H_2 \\ \hline N_2 \end{array} $	2.1725 0.8979 0.0010	39.14 1.81 0.00	2.0123 1.0579 0.0000	36.2 2.1 0.0	5 3 0
GO GO ₂	1.1390 0.4832 0.3092	31, 91 13, 54 13, 61	1.1389 0.3236 0.4692	31.9 9.0 20.6	6
	5. 0029	100.01	5. 0019	100.00	Total

		50 % <u>I</u>	N ₂ H ₄ - UDMH (!	50-50)	
	P	500	(psia)		
	T	3259	(^o K)		
	Pe	6.67	Р _е	0.83	(psia)
	^Т е	1584	$^{\mathrm{T}}\mathbf{e}$	1043	oĸ
	€	9.14	•	42.88	
	I _{sp}	307. 5	I _{sp}	345.0	sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt	%
H ₂ O	2.0031	36.09	1.7988	32.	
H2 N ₂	1.2206 1.1959	2.46 33.50	1,4254		<u>87</u>
CO	0.5420	<u></u>	$\frac{1.1959}{0.3377}$	<u>33.</u>	
CO ₂	0. 2899	12.76	0.4942	21.	
				 	
			-		
				<u> </u>	
					
				<u> </u>	
*					
1					
		· · · · · · · · · · · · · · · · · · ·		-	
				•	
***	5. 2515	99.99	5. 2520	99.	99 Total

		58.333 %	N ₂ H ₄ - UDMH (5 LOX	0-50)	
	 p				
	- c	700	(psia)		
	Т	3503	(°K)		
	P _e	9. 33	P _e	1.75	(psia)
	Те	2266	^Т е	17.19	_oĸ
	¢	10.90		39.19	<u> </u>
	Isp	312.9	I _{sp}	350.9	sec optimum
Combustion					
Gases	mo1/100g	wt %	mol/100g	wt	%
H ₂ O	2. 4625	44.36	2.4433	44.0	
H ₂	0. 2118	0.43	0.2429 0.0004	00.4	
H OH	0.0097 0.0154	0.26	0.0004	0.	
- 011	0.0026	0.08	0.0000	00. (
0	0.0004	0.01	0.0000	00.	
NO	0.0018	0.05	0.0000	00.0	
N ₂	0.9955	27.89	0.9967	27.9	
CO ₂	0. 2267 0. 4666	6.35 20.53	$\begin{array}{r} 0.1843 \\ \hline 0.5090 \end{array}$	5. 22. 4	
					· ;
					· · · · · · · · · · · · · · · · · · ·
					
				· 	
		-			
	4. 3929	99.97	4.3771	100.	00 Total

			N ₂ H ₄ - UDMH (S	50-50)	
	P _e	700 3487 9. 33	(psia) (^O K) P	1.75	(psia)
	T _e	2101 10.39 313.8	T _e	1555 36.75 350.0	oK sec optimum
Combustion Gases H2O H2 H OH NO N2 CO CO2	mol/100g 2. 4091 0. 3899 0. 0050 0. 0032 0. 0005 1. 0400 0. 3273 0. 3963	wt % 43, 40 0, 79 0, 01 0, 05 0, 01 29, 14 9, 17 17, 44	mol/100g 2, 3483 0, 4553 0, 0000 0, 0000 1, 0399 0, 2626 0, 4608	wt	% 31 92 00 00 00 13 36
	4. 5713	100.01	4. 5670	100.	00 Total

	P _c		2H ₄ - UDMH (5 OX	1.75 1404 34.68 347.7	_(psia) _ ^o K _ _sec optimum
Combustion Gases H ₂ O H ₂ H OH N ₂ CO CO ₂	mol/100g 2.3082 0.6214 0.0019 0.0005 1.0875 0.4126 0.3439	wt % 41.58 1.25 00.00 0.01 30.47 11.56 15.13	mol/100g 2.2168 0.7138 0.0000 0.0000 1.0872 0.3204 0.4359	wt % 39, 94 1.44 00, 00 00, 00 30, 46 8, 97 19, 18	1 1 1 1 1 1 1 1 1 1
· · · · · · · · · · · · · · · · · · ·	4. 7759	100.00	4. 7741	99.99	Total

	_	47.619 % 52.381 %	N ₂ H ₄ - UDMH (5	60-50)	
	P T	700 c 3388	(psia)	•	
	^Р е Т_	9. 33	Pe	1.17	_(psia)
	¹e	1750	Te	1165	_°ĸ
	, ¢	9.46		44.77	
	I _{sp}	311.1	I _{sp}	350. 3	_sec optimum
Combustion Gases H2O H2 H N2 CO CO2	mol/100g 2.1718 0.8983 0.0005 1.1389 0.4827 0.3096	wt % 39. 13 1. 81 00. 00 31. 91 13. 52 13. 63	mol/100g 2. 0113 1. 0594 0. 0000 1. 1389 0. 3221 0. 4702	wt 9 36. 23 2. 14 00. 00 31. 91 9. 02 20. 69	<u> </u>
	5.0019	100.00	_5.0019	99. 99	Total

	<u>5</u>	0 % <u>L</u> % % 700	2H ₄ - UDMH (50 - OX (psia)	50)	
	T _c _	3285	(^o K)		
	-	. 33			psia)
	T _e 1	582	^T e1	041 0	ĸ
		. 10		2. 73	
	^I sp3	07. 7	Isp3	45. 2 s	ec optimum
Combustion					
Gases	mo1/100g	wt %	mol/100g	wt %	
H ₂ O	2. 0026	36.08	1.7978	32.39	
H ₂ N ₂	$\frac{1.2216}{1.1959}$	2. 46 33, 50	1.4264	2.88	· ·
CO CO ₂	0.5415	15.17	0.3366	9, 43	
CO2	0. 2904	12. 78	0.4953	21.80	
				•	
				,	
					
					
					
					
			•		
	5. 2520	99.99	5. 2520	100.00	Total

Ammonia - Oxygen

		37.037 % 62.963 % %	NH ₃	,	
	P_c.	150	(psia)		
	T _c .	2920	(°K)		
	Pe	2.00	P _e	0.25	(psia)
	T _e	1586	. T _e	1048	_oĸ
	e	9. 81	€	45, 9 2	
	Isp	282.6	I _{sp}	319.14	_sec optimum
Combustion Gases	mol/100g	wt %	mol/100g	wt ⁶	at_
H ₂ O	3. 2607	58.74	3, 2616		
OH	0.0019	0.03	0.0000	0.0	0
O ₂	0. 3346 0. 0028	10.71 0.08	0.3364 0.0000	10.7	
NO N ₂	1.0858	30.42	1.0870	30.4	
			_	-	
	***************************************			-	
					
			_		
					
-					
				• • • • • • • • • • • • • • • • • • • •	
			-	- 	
		<u> </u>		-	
				<u> </u>	
	4. 6858	99.98	4.6850	99.9	8 Total

	P C T _c	40.00 % 60.00 % 150 2957	NH ₃ LOX (psia) (OK) P		
	T _e	1678	те	0.37 1217	(psia) ⁰ K
		10.07	e	35. 02	K
	I _{sp}	291.6	I _{sp}	324.1	sec optimum
Combustion Gases H ₂ O H ₂ OH O ₂ NO N ₂	mo1/100g 3.5204 0.0010 0.0034 0.1121 0.0024 1.1732	wt % 63. 42 0. 00 0. 06 3. 59 0. 07 32. 87	mol/100g 3.5222 0.0000 0.0005 0.1135 0.0000 1.1742	wt 63.4 0.0 0.0 3.6 0.0 32.9	46 00 01 03 00
	4.8125	100.01	4.8104	100.0	O Total

	4	8. 333 %	LOX		
	Pc	150 2958	(psia) (^O K)		
	_	715	Pe T _e	0.37	(psia) ^O K
	-	95.5	е І _{вр}	35. 49 328. 9	sec optimum
Combustion Gases H ₂ O H ₂ N ₂ OH O ₂	mol/100g 3.6439 0.0250 1.2230 0.0010 0.0005	wt % 65.65 0.05 34.27 0.02 0.01	mol/100g 3.6457 0.0240 1.2232 0.0000 0.0000	wt 65.6 0.0 34.2 0.0	68 05 27 00
	4. 8934	100.00	4. 8929	100.0	00 Total

	P _c	150 2934 2.00	H ₃ OX(psia)(°K)eT	0.19	(psia)
	e	546	*e	951	_°K
	· · · · · · · · · · · · · · · · · · ·	9. 57	τ •	44, 55	
	I _{sp}	294. 3	I _{sp}	331.4	_sec optimum
Combustion Gases	mo1/100g	wt %	mol/100g	wt ⁽	%
$\frac{\begin{array}{c} H_2O \\ \hline H_2 \\ \hline N_2 \end{array}$	3. 5320 0. 2966 1. 2764	63.63 0.60 35.76	3.5323 0.2966 1.2763	63.6 0.6	0
			F 1052		
	5.1050	99. 99	5.1052	100.0	00 Total

		P	45. 454 % 54. 545 % %	NH ₃ LOX (psia)		
		Tc	2864	(^o K)		
		Pe	2. 00	Pe	0. 25	(psia)
		^Т е	1394	^Т е	895	_o _K
			9.15	€	41.93	
		I _{sp}	290.6	Isp	325.8	sec optimum
	Combustion					
	Gases	mol/100g	wt %	mol/100g	wt 9	76
	H ₂ O	3.4092 0.5941	61.42	3.4092	61.4	2
	N ₂	1. 3344	<u>1.20</u> 37.39	$\begin{array}{r} -0.5940 \\ \hline -1.3343 \end{array}$	$\frac{1.2}{37.3}$	
					<u> </u>	7
				<u> </u>	· ———	
)						· · · · · · · · · · · · · · · · · · ·
					,	-
		. ———				
			 			
						
						
						
				 		
						
		5. 3377	100.01	5. 3377	100.01	Total

			NH ₃		
	P _c .	300	(psia)		
	T _c	2968	(°K)		
	Pe	4.00	P	0. 50	(psia) .
	Те	1580	T	1043	(psia) . ⁰ K
		9. 71	<u> </u>	45.47	_ K
	I _{sp}	283.1	I.	319.4	
Constant	- P		*sp	319.4	_sec optimum
Combustion Gases	mol/100g	wt %	1/100		
Ħ ₂ O	3. 2607		mol/100g	wt %	
OH O2	0.0019	0, 03	3. 2618 0. 0000	<u>58.7</u> 0.0	
<u>02</u>	0.3346 0.0028	10.71	0.3364	10.7	6
N ₂	1.0858	0. 08 30. 42	0.0000 1.0870	0.0 30.4	
					<u>. </u>
					
					
					
					
					<u> </u>
					
					
	4.6858	99.98	4.6850	99. 98	Total

*			40.00 % 60.00 %	NH ₃	Đ	
		P _c	300 3011	(psia) (^O K) P		· · · · · · · · · · · · · · · · · · ·
		P _e	1670	Fe Te	0. 75 1210	(psia) ^O K
		 I _{sp}	9. 94	·	34. 59 324. 5	sec optimum
•	Combustion Gases H ₂ O H ₂ OH O ₂ NO N ₂	mol/100g 3.5206 0.0005 0.0024 0.1121 0.0024 1.1731	wt % 63.43 0.00 0.04 3.59 0.07 32.87	mol/100g 3.5222 0.0000 0.0005 0.1135 0.0000 1.1742	wt 63, 0, 3, 0, 32,	46 00 01 63 00
		4.8111	100.00	4.8104	100.	00 Total

		41.667 % 58.333 %	NH ₃		
	P		(psia)		
	Т	3014	(°K)		
	Pe	4.00	P _e	0.75	_(psia)
	T _e	1706	Те	1237	o _K
	·	10.07	€	35.03	_ _
	I _{sp}	296.3	I _{sp}	329.4	_sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt %	•
H ₂ O	3.6445	65.66	3.6454	65.68	3
H ₂	0.0245	0.05	0.0240	0.05	
OH N2	<u>0.0005</u> 1.2233	0.01 34.28	0.0000 1.2231	34, 27	
					
					
			-		
				•	
				-	
					
					
	***************************************		-		
			-		
					
	4.9128	100.00	4.8925	100.00	Total

NH₃ % % 43.478 56. 522 % % 300 (psia) (°K) 2985 Pe_ 4.00 0.50 (psia) 1540 °K 1008 9. 48 44.12 294.7 331.7 sec optimum Combustion mol/100g Gases wt % mol/100g wt % H_2O 3.5323 3.5320 63.63 63.64 H_2 0. 2966 0.60 0.2966 0.60 N₂ 1.2764 35. 76 1.2764 35. 76 <u>5, 1050</u> 99.99 **5.** 1053 100.00 Total

1

Į.

		45. 454 % 54. 545 %	NH ₃		
	P C T _c	300 2905	(psia) (⁰ K)		
	Ре	4.00	Pe	0.50	_(psia)
	Te	1391	T _e	893	_oK
	•	9.10	•	41,68	-
	I _{sp}	290.8	I _{sp}	331.9	 _sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt %	6
<u>н</u> 20	3.4089	61.41	3.4089	61.4	
H ₂ N ₂	0.5940	1.20	0. 5940	1.2	
11/2	1.3343	37. 39	1. 3343	37. 3	9
			_		
					
				•	
					_
			_		
			 		
					
					
		•			
					
				•	
	<u>5,3372</u>	100.00	5.337?	100.0	0 Total

NH₃ 37.037 **%%%** LOX 62.963 500 (psia) 3001 (°K) P_e_ 6.67 0.83 (psia) °K 1040 1576 9.65 45.19 I_{sp_} I_{sp___} 283.4 319.6 sec optimum Combustion mol/100g mol/100g wt % wt % Gases H_2O 3. 2618 0. 0000 58.74 58.76 3.2607 0.00 OH 0.0019 0.03 02 0.3346 10.71 0.3364 10.76 0.00 NO N₂ 0.0024 0.08 0.0000 1.0858 30.42 1.0870 30.46 99. 98 99. 98

4.6850

4.6858

Total

		40.00 %	NH ₃		
		60.00 %	LOX		
		%			
	P	%			
	T c		(psia)		
	C	3050	(°K)		
	Pe	6.67	P _e	1.25	(psia)
	^Т е	1665	T _e	1206	°K
	€	9.86	-	34. 32	11
	Isp	292, 7	Isp	324.8	
Carrello 41			2 h	J64. C	_sec optimum
Combustion Gases	ma1/100-	. ~			4
H ₂ O	mol/100g	wt %	mol/100g	wt %	%
H ₂	3. 5213 0. 0005	63.44	3.5232	63.4	
OH	0.0019	0.00	0.0000	- 0.0	
O2	0.1121	3.59		<u>0.0</u> 3.6	
NO N ₂	0.0024	0.07	0.0000	0.0	
	1,1730	32.87	1.1742	32.9	
		-		 	
					
			-	·	
					
	-				
			· · · · · · · · · · · · · · · · · · ·		
				-	

	4.8112	100.00	4.8104	100.00	Total

	_	41. 667 %	NH ₃		
∳	- P		(psia)		
	T	3053	(°K)		
	P _e	6. 67	(K) Pe	1. 25	
	е Те		те		(psia)
	- е	1699	*e	1232	°K
•	. , •	9. 98	, ·	34. 73	
	* I _{sp}	296. 8	I _{sp}	329. 7	sec optimum
Combustion			• •		
Gases	mo1/100g	wt %	mol/10	00g wt	%
H ₂ O	3. 6447	65. 66	3. 645		
H ₂	0,0240	0.05	0.024	0 0. (05
OH N2	0.0005 1.2232	0.01	0.000	0. (00
	1. 2232	34. 27	1. 223	34.	27
•					
					
					 ,
	4. 8924	99. 99	4. 892	5 100.0	00 Total

	43	3.478 %	NH ₃		
		5. 522 %	LOX		
		<u></u> %			
	P				
	P	500	(psia)		
	T _c _	3021	(°K)		
	P _e 6.	67	P _e	0. 83	(psia)
	$\mathbf{T}_{\mathbf{e}}$	536	$^{\mathrm{T}}_{e}$	1005	o _K
		42	• 6	43.85	
			I _{sp}	331. 8	sec optimum
	^I sp 295.		8P		sec optimum
Combustion					
Gases	mol/100g	wt %	mol/l	00g	wt %
н20	3. 5323	63.64	3.532	3	63.64
H ₂	0. 2966	0.60	0. 296		0.60
N ₂	1.2764	35. 76	1. 276	<u>4 · </u>	<i>35.</i> 76
			-		
				 -	
					
			-		
			<u></u>		
			-		
					·
					
	5. 1053	100.00	5. 105		100. 00 Total
	5, 1055	100.00			rotal

•		45. 454 % _ 54. 545 % _ % _	NH ₃		
		500 2931 5.67	(psia) (OK) Pe	0. 83 891	(psia) ^O K
		07	·	41. 55 326. 0	sec optimum
Combustion Gases	mol/100g	wt %	mol/10	0g wt	%
H ₂ O H ₂ N ₂	3. 4089 0. 5940 1. 3343	61, 41 1, 20 37, 39	3. 408 0. 594 1. 334	1. 2	20
	5. 3372	100.00	5.337	2 100. 0	00 Total

B-95

-	P _e 9.3	963 % % 700 3021	NH ₃ LOX (psia) (°K) Pe	1. 17	(1	osia)
	T _e 157	3	^Т е	1038	o	K
	9.6	1	·	45.02		
	^I sp 283.6		Isp	319.7	s	ec optimum
Combustion						
Gases	mo1/100g	wt %	mol/l	00g	wt %	
H ₂ O OH	3. 2607 0. 0019	58.74 0.03	3. 261 0. 000	<u>8</u> _	58. 76 0. 00	
O2	0, 3346 0, 0028	10.71	0.336	4	10. 76 0. 00	
NO N ₂	0.0028 1.0858	0.08 30.42	0. 000 1. 087		30, 46	_
				 -		_
						
						
				 •		
						
						
						
			· ———	 .		
				· · ·		
	4.6858	99. 98	4. 68	50	99. 98	Total

	Pe	40. 0 % — 60. 0 % — 700 3074 9. 33 1662 9. 82	NH ₃ LOX (psia) (°K) Pe 1.7 Te 120 4 34.1 I _{sp 325.0}	0 K	m
Combustion					
Gases	mol/100g	wt %	mol/100g	wt %	
H ₂ O	3. 5213	63.44	3. 5222	63.46	
OH	0.0005 0.0019	0.00	0.0000 0.0005	0.00	
O2	0.1121	3.59	0. 1135	3. 63	
NO N2	0.0024	0.07	0.0000 1.0742	<u>0.00</u> 32.90	
	1. 1730	32. 87	1.0142	32. 90	
					
					
					
				• ————————————————————————————————————	

	4. 8112	100.00	4.8104	100.00 Total	

		11.667 % <u>-</u> 58.333 % <u>-</u>	NH ₃	-		
				•		
	Pc_	700	(psia)			
	_ T _{c_}	3078	(°K)			
	17	. 33	Pe	1.75	1.	ania)
		695	Te	1229	()	osia)
	• 9	. 92	·	34. 54		· ·
	I _{sp297}		ı • —			
	sp	• • • • • • • • • • • • • • • • • • • •	I _{sp}	330.0	8	ec optimum
Combustion						•
Gases	mol/100g	wt %	mol/1	00g	wt %	
H ₂ O	3.6447	65.66	<u>3.645</u>	-	65. 68	
H ₂ OH	0.0240	0.05	0 . 024	.0	0.05	
N ₂	0.0005 1.2232	0.01 34.27	0.000	0	0.00	
			1. 223	- -	34. 27	,
						-
						
		****		·		-
						_
						-
						_
						
						-
						_
						-
		· 				-
						
			-			-
	4. 8924	99. 99	4. 892	5	.00.00	- _ Total

	Pc 700 Tc 3043 Pe 9.33 Te 1534 9.38 Isp 295.2	NH ₃ LOX (psia) (°K) Pe 1.17 Te 1004 43.68 Isp 331.9	(psia) ^O K
Combustion			sec optimum
Gases H ₂ O	mol/100g wt %	mol/100g wt	%
H ₂ N ₂	3. 5320 63. 63 0. 2966 0. 60 1. 2764 35. 76	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
			
	,		
		-	
			
			
	5. 1050 99. 99	5. 1053 100. 00	Total

	4	5. 454 %	NH ₃		
	Pc_ Tc_	700 2946	(psia) (^O K)		
	Pe	388	Pe		psia) K
		.05	€4	1. 49	ec optimum
Combustion Gases	mo1/100g	wt %	mol/100g	wt %	-
H ₂ O	3. 4089 0. 5940	61.41	3. 4089 0. 5940	61.41	
N ₂		37. 39	1. 3343	37.39	 ,
					
	5, 3372	100. 00	5, 3372	100-00	Total

	Pe	43. 478 % — 56. 522 % — % — 150 3087 2. 00 1665 9. 64 291. 9	N ₂ H ₄ N ₂ O ₄ (psia)(°K)ee	0. 25 1079 44. 39 328. 7	(psia) ^O K _sec optimum
Combustion Gases H2O H2 N2 H OH	mol/100g 2. 4564 0. 2562 1. 9707 0. 0005 0. 0005	wt % 44, 25 0, 52 55, 22 0, 00 0, 01	mol/100, 2. 4569 0. 2562 1. 9707 0. 0000 0. 0000	g wt % 44. 2 0. 5 55. 2 0. 0	6 2 2 0
	4. 6843	100.00	4, 6838	100. 0	OO Total

		5. 455 % _ 4. 545 % _	N ₂ H ₄ N ₂ O ₄	-		•
	P c T _{c_} _	150 3066	(psia)	-		
	P _e 2	. 00	Pe	0. 25		(psia)
		558	Те	996		°K
	, •9	. 29	, ·	42.36		•
	I _{sp} 291	. 4	I _{sp}	326.9		sec optimum
Combustion		•				
Gases	mol/100g	wt %	mol/l		wt %	
H ₂ O H ₂	<u>2. 3710</u> <u>0. 4654</u>	42. 72	2. 37 0. 46		42. 72 0. 94	
N ₂	2. 0108	56. 34	2. 01	08	56.34	
						
						
						
						
						· · · · · · · · · · · · · · · · · · ·
						
						
						
						**
						
						
						
						
						
	4.8472	99. 98	4. 84	72	99. 98	Total

	-	47. 62 %	N ₂ H ₄ N ₂ O ₄		
	Pc.	150	(psia) (^O K)		
	Pe	2. 00	Pe	0. 25	(main)
	T _e	1454	T _e	917	(psia) ^O K
	•	9. 01	****	1 0. 62	
	I _{sp} 29	00. 1	7	24. 5	sec optimum
Combustion			- P		.occ optimum
Gases	mol/100g	wt %	mol/100g	wt %	r
H ₂ O	2. 2766	41.02	2. 2766	41.02	
$\frac{H_2}{N_2}$	0, 6945 2, 0549	1. 40 57. 58	0. 6945 2. 0549	1. 40 57. 58	
		<u> </u>	2,0347		
				_	
					
				_	
					
			-		
					
	5.0260	100. 00	5, 0260	100.00	Total

	5	0%	N_2H_4			
	5	0%	N2O4	•		
				•		
	P			-		
	c	150	(psia)			
	T _c _	2956	(°K)			
	$P_{\mathbf{e}}$ 1	. 50	Pe	0.25	(psi	a)
		269	$T_{\mathbf{e}}$	840	o _K	•
			е			
		075	, '	39.05		
	I _{sp294}	. 0	I _{sp}	321.4	sec	optimum
Combustion						
Gases	mol/100g	wt %	mol/l	00g	wt %	
H ₂ O	2. 1735	39. 16	2. 17	35	39. 16	
H ₂	0.9470	1, 91	0.94	70	1. 91	
N ₂	2, 1035	58. 94	2. 10	35	58.94	
						
						
						
		·				
						
						
			 			
						
	5. 2240	100.01	5, 22	40	100.01	Total

		52. 632 % <u></u>	N ₂ H ₄ N ₂ O ₄		4	
				•		
	P _c _	150	(psia)			
	T _c _	2862	(°K)			
	Pe	1. 50	P _e	0. 25		(psia)
		1169	Te	764		°K
			е			_ K
	_	0. 46	· ·	37.60		-
	I _{sp} 29	1. 1	I _{sp}	317.6		sec optimum
Combustion						
Gases	mol/100g	wt %	mol/1	00g	wt %	
H ₂ O	2.0590	37.09	2. 05		37.09	
H ₂	1. 2254	2. 47	1. 22	53	2. 47	
N ₂	2. 1570	60. 44	2. 15	68 .	60.43	
			·			
						
						
					··	
				 ·		
						
				 .		_
				 .		
				 .		
	5. 4414	100.00	5. 44	10	100.00	Total

1

		11. 67 % — 58. 33 % — % —	N ₂ H ₄ N ₂ O ₄		
	Pc T _c	300 3157	(psia)		
		1.00	P _e	0.75	(psia)
	^Т е	1767	Те	1263	°ĸ
	e	9. 93	€	34.09	•
	1 _{sp292}	2. 2	Isp	324. 3	sec optimum
Combustion	- -				
Gases	mo1/100g	wt %	mol/10	0g wt	%
<u>н</u> 20	2. 5348	45. 67	2. 535	5 45.	
H ₂	0.0648	0. 13	0.063		
• OH	0.0004 0.0004	0.00 0.01	0.000 0.000		
OH N ₂	1. 9340	54. 19	1. 933		
					
					
			<u> </u>		
					
					
					-
					
	4. 5344	100.00	4. 533	1 100.	00 Total

D			45, 455 % 54, 545 % %	N ₂ H ₄ N ₂ O ₄			
		P	300 3125	(psia) (^O K) P			
		¯е ^Т е	<u>4. 00</u> 1551	те	0.50 991		sia)
			9. 19	e	41. 91	oĸ	
	•		1. 9	I _{sp}	327. 2		c optimum
	Combustion			-			c optimum
	Gases H ₂ O	mo1/100g	wt %	mol/10		wt %	
	H ₂	2. 3710 0. 4654	<u>42. 72</u> 0. 94	2. 37 0. 46	10 4	42. 72 0. 94	_
	N ₂	2.0108	56. 34	2. 010		56. 34	_
		¥					-
		<u> </u>					-
							_
				-			- -
							-
							- -
				-			-
		•					-
							- -
							-
			7				-
							· -
							<u>-</u>
		4. 8472	99. 98	4. 847	'2 9	99. 98	Total

	•1	47. 619 % — 52. 381 % — 300 3074 3. 00 1364 0. 98 6. 4	T _e 9	30	psia) K • ec optimum
Combustion					ee optimum
Gases	mol/100g	wt %			
H ₂ O	2. 2766		mol/100g	wt %	
H ₂	0.6947	41.02	2. 2771	41.02	
N_2	2. 0549	1.40	0.6947	1. 40	
		57. 58	2.0549	57. 58	
					
					
					_
					_
					_
					-
					-
					
					
					_
					-
					-
					_
					-
					-
	5.0262	100.00	5. 0261	100.00	- Total

		50 % <u></u>	N ₂ H ₄ N ₂ O ₄		
		%			
	P		 		
	C	300	(psia)		
	T _c _	2997	(°K)		
	$P_{\mathbf{e}}$	3. 00	Pe	050	(psia)
	T _e	1266	Те	838	°ĸ
		10. 69	•	38. 82	
	_	94. 2	I _{sp}	321. 5	sec optimum
Combustion	•	·	•		*
Gases	mo1/100g	wt %	mol/10	00g wt	90
H ₂ O	2. 1735	39. 16			
H ₂	0.9470	1, 91	2. 17 0. 94		. <u>16</u> . 91
N ₂	2. 1035	58. 94	2. 10	35 58	95
					
					
					
					
					
					
					<u>.</u>
					
					
					
	5. 2240	100.01	5. 22	35 100,	01 Total

		56. 52 %	N ₂ O ₄ N ₂ H ₄		
	P C_ T _{C_}	300 3151	(psia)		
	P _e	4. 00 1655	Pe Te	0. 50 1072	(psia) ^o K
	I _{sp20}	9. 51	· I _{sp}	43. 79 329. 1	sec optimum
Combustion Gases H2O H2 N2 OH	mol/100g 2, 4564 0, 2562 1, 9707 0, 0005	wt % 44. 25 0. 52 55. 22 0. 01	mol/10/ 2. 456 0. 256 1. 970 0. 000	9 44. 2 0. 7 55.	
	4. 6838	100.00	4. 683	8 100.	00 Total

 N_2H_4 40 %%%% N2O4 60 500 (psia) 3194 (OK) 6.67 0.83 (psia) 1156 oĸ 1758 9.86 45.93 I_{sp.} 289.6 327.0 sec optimum Combustion mol/100g Gases wt % mol/100g wt % H_2O 44. 93 2. 4936 2. 4960 44.98 H₂ 0.0013 0.00 0.0000 0.00 OH 0.0027 0.05 0.0000 0.00 02 0.0543 1.74 0.0561 1. 80 NO N₂ 0.0031 0. 09 0.0000 0.00 1.8986 53. 20 1.8998 53. 23 4. 4536 100.01 4. 4520 100.01

ŧ,

Total

		41, 667 % _ 58. 333 % _ % _	N ₂ H ₄ N ₂ O ₄		
	P c. T	500 3204	(psia) (^O K)		
	P _e	6. 67	Pe	0. 83	(psia)
	Те	1759	T _e	1153	_oĸ
	€	9. 82	€	45. 63	
	I _{sp}	292. 8	I _{sp}	330.5	_sec optimum
Combustion	-				
Gases	mol/100g	wt %	mol/100g	wt ^c	76
Н ₂ О	2. 5353	45.69	2, 5355	45, (
H ₂ OH	0.0648 0.0004	0. 13	<u>0.0644</u> 0.0000	0.	
N ₂	1.9340	54. 19	1. 9338	54.	

			4		
		==			
			Market and		

				_	
					
-					
	4. 5346	100. 02	4. 5337		Ol Total

0

 N_2H_4 43.478 % % % 56. 522 N204 <u>5</u>00 (psia) 3196 (°K) P_e_ 6.67 0.83 (psia) 1649 1067 °ĸ 9.42 43.41 Isp. 293.0 329.3 sec optimum Combustion Gases mol/100g wt % mol/100g wt % H_2O 2. 4565 44. 27 2. 4567 44. 27 H₂ 0. 2562 0.52 0. 2562 0.52 OH N2 0.0005 0.01 0.0000 0.00 55. 22 1.9707 1. 9705 55. 21 4.6839 100.02 4. 6834 100.00 Total

	•	•			
		45. 455 %	N_2H_4		Y
		54. 545 %	N2O4		
		%			
		%			
	P _c _	500	(psia)		
	T _c _	3166	(°K)	1	
	P _e		(K)	0.83	, , ,
		6. 67	e		(psia)
	^Т е	1547	T _e	988	oK
	ŧ	9. 13	€	41.62	
		292. 2	I _{sp}	327. 4	sec optimum
	I _{sp}	272.2	8 P		sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	w	t %
H ₂ O	2. 3710	42.73	2. 3710	42	2. 73
H ₂	0.4654	0.94	0.4654		0. 94
N ₂	2,0108	56.34	2, 0108	5(6. 34
					
					
					
					
					
					
				-	

				-	
					
	4.8472	100.01	4. 8472		0.01 Total
					

		47. 619 % _ 52. 381 % _	N ₂ H ₄ N ₂ O ₄		
	P c T c	% _ 500	(psia)		
	Pe	5. 00	(K)	0. 83	(psia)
	те	1361	T _e	912	(ps.ia) oK
				40. 11	K
	· · · · · · · · · · · · · · · · · · ·	10. 93	τ		
	I _{sp}	296. 6	Isp	324. 8	sec optimum
Combustion Gases	mol/100g	wt %	mol/100g	wt	%
H ₂ O	2. 2766	41. 02	2. 2771		. 03
H ₂	0.6947	1. 40	0.6947		. 40
N ₂	2.0549	57. 58	2. 0549		. 58
				_	
-				_	
				-	
•			•		
			. <u></u>		
					
			-		····
			<u> </u>		
	5. 0262	100.00	5. 0267	. 100	.01 Total

	=	40 % _ 60 % _ % _ % _	N ₂ H ₄ N ₂ O ₄		
	P c T c	700 3224	(psia)		
	T _e	9. 33 1753	Pe	1. 17 1153	(psia)
	I _{sp}	9. 79 289. 9	I _{sp}	45. 62 327. 2	
Combustion Gases	mo1/100g	wt %			_sec optimum
H ₂ O H ₂ OH	2. 4940 0. 0009 0. 0022	44. 94 0. 00 0. 04	mol/100g 2. 4960 0. 0000	wt % 44.9 0.0	00
NO N2	0. 0543 0. 0031 1. 8986	1. 74 0. 09 53. 20	0.0000 0.0561 0.0000 1.8998	0.0 1.8 0.0 53.2	0
	4. 4531	100.01	4. 4519	100. 01	Total

	P _c		T _e 11	50 °F	sia) (ec optimum
Combustion	1/100-	•••• of	mol/100g	wt %	
Gases H ₂ O	mol/100g	wt %			
H ₂	2. 5353 0. 0648	45.69	2. 5355 0. 0644	45.69 0.13	
OH N ₂	0.0004	0.01	0.0000	. 00.00	
<u>N2</u>	1.9340	54.19	1. 9338	54.19	-
					
					_ _
					
					
					-
					
					-
					_
				 -	-
					
					
<u>-</u>	4. 5345	100.02	4, 5337	100.01	Total

		5. 522 % N	2 ^H 4 2O4		
		700 3225 33	(psia) (^O K) e 	1.17	(psia) OK
		645	`e	1065	°K
		93. 3	I	43. 18 329. 5	
	I _{sp2}	93.3	-sp	369.5	sec optimum
Combustion Gases H ₂ O	mol/100g 	wt %	mol/100g 2.4567	wt 44	27
H ₂	0. 2562 0. 0005	0. 52	0. 2562 0. 0000	<u>0.</u> 00.	
N ₂	1.9707	55. 22	1.9705		
					
				_	
	·			-	
					
					
		······································			······································
					
	4.6843	100.02	4. 6834	100.	00 Total

			2 ^H 4 2O4		•
	P _c _	700	(psia)		1
	T _c	3192	(°K)		
	P _e	9. 33	Pe	1.17	/i-\
	m		T		(psia)
		1544	¹e	986	°ĸ
	_ (9. 09	_ <u></u>	41.46	وبي
	I _{sp}	292. 4	Isp	327.5	sec optimum
Combustion					- -
Gases	mo1/100g	wt %	mol/100g	wt	0/ _~
H ₂ O					
H ₂	2.3710 0.4654	<u>42. 73</u> 0. 94	2. 3710 0. 4654	<u>42.</u>	
N ₂	2.0108	56. 34	2. 0108	56.	
					
					
					
				,	
				· · · · · · · · · · · · · · · · · · ·	

					A Land
					
					
	•				
	4.8472	100.01	4.8472	100.0	<u>)l</u> Total

			2 ^H ₄		·
	Pc		(psia)		
	т _с	3130	(°K) P _e	1 12	1
	T _e	7. 00 1359	e T _e	911	_(psia) _ ^O K
	·	10.89	€	40.00	_ A
	I _{sp}	296. 7	I _{sp}	324. 9	- _sec optimum
Combustion	•		•		-
Gases	mol/100g	wt %	mol/100g	wt %	
$\frac{\text{H}_2\text{O}}{\text{H}_2}$	2. 2766 0. 6947	41.02 1.40	2, 2771 0, 6947	41.03 1.40)
	2, 0549	57. 58	2. 0549	57.58	
					
					
				• • • • • • • • • • • • • • • • • • • •	
					
					
					
					
	5,0262	100.00	5.0267	100.01	Total

	Pe	72. 222 % N % — % — % — 150	(psia) (p	0. 37 1464 37. 09 317: 8	_(psia) _ ^O K - _sec optimum
Combustion					
Gases	mo1/100g	wt %	mol/100g	wt %	
H ₂ O	1.6355	29, 46	1,5742	28. 36	
<u> </u>	0. 2100	0.42	0.2742	0.55	
<u>н</u>	0. 0036 0. 0024	00.00 0.04	<u> </u>	00.00 00.00	
NO	0.0004	0.01	0.0000	00.00	
N ₂	$\frac{1.2468}{0.3476}$	<u>34. 94</u> 9. 74	1. 2470 0. 2838	34.94	<u> </u>
CO ₂	0.5765	25.37	0.6408	7. 95 28. 20	

	4.0228	99.98	4.0200	100.00	Total

	Pe	0.588 % N ₂ %	T _e 1	, 37 (psia) 328 °K , 94
Combustion Gases H ₂ O H2 H OH N2 CO CO2	mol/100g 1. 5864 0. 3699 0. 0012 0. 0004 1. 2564 0. 4760 0. 5028	wt % 28.58 0.74 00.00 0.01 35.20 13.33 22.13	mol/100g 1, 4858 0, 4712 0, 0000 0, 0000 1, 2565 0, 3752 0, 6037	wt % 26. 75 0. 95 00. 00 00. 00 35. 21 10. 51 26. 57
	4, 1931	99.99	4, 1924	99.99 Total

(psia) 150 (°K) 3160 2.00 0.25 (psia) °K 1109 1660 45.13 9. 50 319.2 283.4 sec optimum Combustion mol/100g mol/100g Gases wt % wt % H,O 1.3133 23.66 1.4990 27,00 H₂ 0.7663 1.54 0.5804 $\overline{N_2}$ 1.2669 35.50 1.2668 35.50 CO₂ 0.5905 16.54 0.4049 11.34 0.4496 19.79 0.6352 27, 96

100.00

4.3865

100.00

4. 3864

I

Total

		3. 333 % <u>U</u> 6. 667 % N	DMH 204		
	P _c	% 150 3088	(psia) (^O K) P		,
	_	501		997	(psia) ^O K
	•	2.10			_ K
	•	80.8	I sp	43. 11 .:15. 0	- _sec optimum
Combustion Gases H ₂ O H ₂ N ₂ CO CO ₂	mol/100g 1. 3728 0. 8453 1. 2793 0. 6933 0. 4160	wt % 24. 73 1. 70 35. 84 19. 42 18. 31	mol/100g 1.1319 1.0867 1.2793 0.4524 0.6569	wt % 20. 39 2. 19 35. 84 12. 67 28. 91	
	4.6067	100.00	4,6072	_100.00	Total

	Pe	150 2966 50 82	Te4	890 °	psia) K ec optimum
Combustion			•		oo opumum
Gases	mol/100g	wt %	1/100	. ~	
H,O	_		mol/100g	wt %	
H ₂	<u> </u>	21.15 2.42	0.9056	16.32	
N ₂	1.2928	36. 22	$\frac{1.4715}{1.2928}$	<u>2. 97</u> <u>36. 22</u>	
$\frac{\text{CO}}{\text{CO}_2}$	0.7564	21.19	0.4878	13.66	
	0.4319	19.01	0. 7005	30.83	
					_
					
				-	•

			· · · · · · · · · · · · · · · · · · ·		
					-
					_
					
					
	4.8582	99.99	4.8582	_100.00	Total

	Pe	72. 222 % N % — 300 3288 4. 00 .971	Те	0. 75 (psia) 0. 450 OK 0. 41 Sec optimum	•
Combustion Gases H ₂ O H ₂ H OH N ₂ CO CO ₂	mol/100g 1.6353 0.2111 0.0024 0.0016 1.2468 0.3463 0.5779	wt % 29.46 0.42 00.00 0.04 34.94 9.70 25.43	mol/100g 1.5718 0.2766 0.0000 0.0000 1.2470 0.2814 0.6432	wt % 28. 32 0. 56 00. 00 00. 00 34. 94 7. 88 28. 31	
	4. 0214	99.99	4. 0200		

	Pe4	300 3271 300 810 83	DMH 204 (psia) (oK) Pe Te	0. 75 1319 34. 41 316. 8	(psia) ^O K sec optimum
Combustion Gases H ₂ O H ₂ H O ₂ N ₂	mol/100g 1. 5850 0. 3715 0. 0008 0. 0004 1. 2563	wt % 28. 55 0. 75 00. 00 0. 01 35. 20	mol/100 1,4833 0,4742 0,0000 0,0000 1,2565	26. 7 0. 9 00. 0 00. 0 35. 2	22 26 00 00 00
CO CO ₂	0. 4742 0. 5044	13.28	0. 3723		
			•		
	4. 1926	99. 98	4, 1930	100.0	

			0MH 04		
	P c T _{c_}	300 3226	(psia) (^O K)		
		. 00	Pe0		sia)
	Te1	652	^Т е1	104 °K	•
	¢9	. 39	¢44	. 61	
	Isp284	. 0	I _{sp319}	<u>.5</u> se	c optimum
Combustion					
Gases	mo1/100g	wt %	mol/100g	wt %	
H ₂ O	1.4972	26.97	1.3102	23.60	_
$\frac{H_2}{N_2}$	0.5821 1.2669	1.17 35.50	<u>0, 7694</u> 1, 2668	1.62 35.50	-
	0.5887	16.49	0.4018	11.25	- -
	0.4510	19.85	0.6382	28.09	_
					_
					- -
					_
					-
					-
					
					_
					_
					_
					-
					man. is
`	4.3859	99. 98	4.3864	100.06	_ Total

	Pe Te	66.667 % N	T	0.50 994 42.79 315.2	_(psia) _o¨K - _sec optimum
Combustion Gases H2O H2 N2 CO CO2	mol/100g 1, 3714 0, 8467 1, 2793 0, 6919 0, 4174	wt % 24. 71 1. 71 35. 84 19. 38 18. 37	mol/100g 1,1296 1,0890 1,2793 0,4501 0,6592	wt % 20. 35 2. 20 35. 84 12. 61 29. 01	
	4. 6067	100.01	4. 6072	100, 01	Total

B 129

		5. 714 % UI 4. 286 % N ₂	OMH O4			
	P	300 3004	(psia) (^O K)			
	Pe3	.00	P _e	0.50	_(psia)	
		266	Те	888	_°ĸ	
	€10	. 78	€ 4	1.41		
	I _{sp282}		I _{sp30}	9.5	_sec optimum	
Combustion						
Gases	mo1/100g	wt %	mo1/100g	wt %	b	
H ₂ O	1.1728	21.13	0.9040	16.29)	
H ₂	1. 2039	2. 43	1.4729	2.97		
N ₂	1. 2928	36. 22	1.2927	. 36, 22		
CO ₂	0.7554	21.16	0.4863	13.62		
CO ₂	0.4329*	19.05	0.7020	30.90	<u></u>	
						
						
						4
						•
						
						
						
						
						
						
						
_	4.8578	99.99	4.8581	100.00	Total	

	Pc	22. 222	DMH 204 —_(psia) —_(°K) Pe Te Isp	1. 25 1442 35. 95 319. 1	(psia) ^o K sec optimum
Combustion Gases H ₂ O H ₂ H OH N ₂ CO CO ₂	mol/100g 1.6351 0.2119 0.0016 0.0012 1.2470 0.3458 0.5787	wt % 29. 46 0. 42 00. 00 0. 03 34. 94 9. 68 25. 47	mol/100g 1.5702 0.2782 0.0000 0.0000 1.2470 0.2798 0.6448	wt 6 28. 2 0. 5 00. 0 00. 0 34. 9 7. 8 28. 3	9 6 0 0 4 4
	4. 0213	100.00	4.0200	100.0	Total

B-131

∢,

	Pe	70. 588 % N % — 500 3324 9. 67 802	^Т е	313 0	psia) K ec optimum
Combustion Gases H ₂ O H ₂ H N ₂ CO CO ₂	mol/100g 1.5841 0.3727 0.0008 1.2562 0.4734 0.5052	wt % 28.54 0.75 00.00 35.20 13.26 22.23	mol/100g 1, 4812 0, 4759 0, 0000 1, 2565 0, 3706 0, 6083	wt % 26, 68 0, 96 00, 00 35, 21 10, 38 26, 77	
	4.1924	99.98	4.1925	_100,00	Total

		1. 250 % U 8. 750 % N	DMH 204		
	P	500 3273	(psia) (^O K)		
	P _e 6	.67	$\mathbf{P_e}$	0.83	_(psia)
	T _e	647	Те	1101	_°ĸ
	e <u> </u>	. 32	€	44. 31	_
	Isp284	. 3	I _{sp}	319.7	_sec optimum
Combustion					
Gases H ₂ O	mol/100g	wt % 26, 96	mol/100 ₀	23. 5	7
H ₂ N ₂	0. 5830 1, 2669	1, 17 35, 50	0. 7711 1. 2668	1. 55 35, 50)
CO ₂	0. 5878 0. 4523	16.46 19.90	0.4000 0.6400	• 11. 20 28. 16	
	*				
					
					
					
	•				
					
					
	4. 3864	99.99	4. 3864	99. 98	Total

	P _c _T _c _	33, 333 % N 66, 667 % N 500 3177 6, 67 1494 8, 99	T _e 4	0. 83 992 2. 60 5. 3	_(psia) _ ^O K _ _sec optimum
Combustion					- •
Gases	mo1/100g	wt %	mol/100g	wt %	
$\frac{\text{H}_2\text{O}}{\text{H}_2}$	1. 3705	24.69	1.1277	20.32	
$\frac{112}{N_2}$	<u>0.8476</u>	1.71	1.0904	2.20	
	1. 2793 0. 6910	<u>35.84</u>	1.2793	35.84	
CO ₂	0. 41 78	18.39	<u>0.4482</u> <u>0.6606</u>	$\frac{12.55}{29.07}$	
					 _
					
					
					
					
					
					
					
	4.6062	99. 98	4.6062	99, 98	Total

		35. 714 % T 54. 286 % N	IDMH 1204		
	P c _ T c _	500	(psia) (^O K)		
	Pe 5	5. 00	P _e	0.83	(psia)
		264	T _e	887	o _K
	e10). 75	€	41.32	
	•	2. 6	I _{sp}	309.6	sec optimum
G 1 41			- P	× × / · ×	
Combustion Gases	mol/100g	wt %	mol/100g	wt	%
H ₂ O	1.1723 1.2043	21. 12 2. 43	0.9030 1.4728		27
N ₂ CO CO ₂	1. 2928 0. 7550 0. 4338	36. 22 21. 15 19. 09	1, 2926 0, 4853 0, 7029	36, 2 13, 5 30, 9	<u> </u>
					
					
				-	
					
	****		*		
					
-	•				
	4.8582	100.01	4.8566	99.9	78 Total

Į)

	Pe	72. 222 % N ₂ % 700 3382 0. 33 956	^Т е1	. 75 (psia) 437 °K . 68sec optimum
Combustion Gases H ₂ O H ₂ H OH N ₂ CO CO ₂	mol/100g 1.6350 0.2127 0.0012 0.0008 1.2469 0.3450 0.5790	wt % 29.46 0.43 00.00 0.01 34.94 9.66 25.48	mol/100g 1.5698 0.2795 0.0000 0.0000 1.2473 0.2787 0.6458	wt % 28. 28 0. 56 00. 00 00. 00 34. 95 7. 81 28. 42
	4. 0206	99. 98	4. 0211	

	Pe	700. 588 % N % —————————————————————————————————	T _e 1	211°I 15	esia) K ec optimum
Combustion Gases H ₂ O H ₂ H ₂ CO CO ₂	mol/100g	wt % 28. 53 0. 75 00. 00 35. 21 13. 25 22. 27	mol/100g 1, 4464 0, 5106 0, 0000 1, 2565 0, 3358 0, 6431	wt % 26. 06 1. 03 00. 00 35. 21 9. 40 28. 30	
	4.1933	100.01	4. 1924	100.00	Total

		81. 250 % UI 68. 750 % N ₂	OMH 204		
	P	700	(psia)		
	T	3302	(°K)		
		9. 33	e		sia)
	^Т е	644	^T e1	<u>099</u> ск	•
		28	¢44	. 10	
	I _{sp284}	1.5	Isp319	. 8 se	c optimum
Combustion					
Gases	mo1/100g	wt %	mol/100g	wt %	
H ₂ O	_1.4960	26. 95	1.3072	23.55	-
H ₂	0.5838	1.18	0.7720	1.56	<u>-</u> -
N ₂	1. 2669 0. 5869	<u>16.44</u> 35.50	<u> </u>	35.50 11.17	
CO ₂	0.4527	19.92	0.6413	28. 22	-
					
					-
	*************************************				-
					-
	·				
					-
					-
					-
					
			***************************************		-
					
					_
					
	4.3863	99.99	4. 3860	100.00	Total

	£	66.667 % N %	T _e	991 o	osia) K
	^I sp28	1.4	I _{sp315}	<u>. 4</u> s	ec optimum
Combustion Gases H ₂ O H ₂ N ₂ CO CO ₂	mol/100g	wt % 24, 68 1, 71 35, 84 19, 34 18, 41	mol/100g 1.1268 1.0913 1.2793 0.4473 0.6615	wt % 20. 30 2. 20 35. 84 12. 53 29. 11	•
					
	4.6062	99. 98	_4.6062	99, 98	Total

	6 P T	5. 714 % UI 4. 286 % N2 	(psia)	
	P _e 7	. 00	Pe1	.17 (psia)
		263	^Т е	887oĸ
		. 73	€41	. 27
	I _{sp282}	. 7	I _{sp309}	.7 sec optimum
Combustion				
Gases	mo1/100g	wt %	mol/100g	wt %
H ₂ O	1.1718	21.11	0.9029	16.27
H ₂ N ₂	1,2048	2.43	1.4727	2,97
	1. 2928 0. 7545	36. 22 21. 13	1.2930 0.4847	36. 23 13. 58
<u> </u>	0.4343	19.11	0. 7033	30. 95
				-
				
				
	7.9			
				
· · · ·				
	4.8582	100.00	4.8566	100.00 Total

	Pe2 Te2	9. 697 % N ₂ % ————————————————————————————————————	T _e 1	<u>, 37</u> (psia) <u>580</u> ^O K
Combustion Gases H ₂ O H ₂ H ₂ H OH O ₂ O ₂ NO N ₂ CO CO ₂	mol/100g 1, 9249 0, 0204 0, 0016 0, 0160 0, 0492 0, 0012 0, 0060 1, 4794 0, 0248 0, 4791	wt % 34, 68 0, 04 00, 00 0, 27 1, 57 0, 02 0, 18 41, 45 0, 69 21, 08	mol/100g 1.9524 0.0008 0.0000 0.0012 0.0334 0.0000 0.0012 1.4818 0.0004 0.5036	wt % 35, 17 00, 00 00, 00 0, 02 1, 07 00, 00 0, 03 41, 52 0, 01 22, 16
	4,0026	99, 98	3.9748	99.98 Total

	Pc	3. 750 % N ₂ % ———————————————————————————————————	(psia)(^OK)e T_e	0.37 1562 39.40	(psia) ^O K sec optimum
Combustion Gases H ₂ O H ₂ H OH O ₂ O N ₂ CO CO ₂ NO	mol/100g 1.9632 0.0446 0.0028 0.0113 0.0113 0.0008 1.4929 0.0526 0.4674 0.0028	wt % 35, 37 0.09 00.00 0.19 0.36 0.01 41.83 1.47 20.57 0.08	mol/100g 1.9766 0.0383 0.0000 0.0000 0.0000 1.4946 0.0282 0.4916	wt % 35.61 0.08 00.00 00.00 00.00 41.88 0.79 21.64	
	4, 0497	99.97	4. 0293	100,00	Total

	6	3. 333 % · N 6. 667 % · N 	DMH-N ₂ H ₄ (50/5	50)
	P _c	150	(psia)	
	T _c _	3164	(^O K)	
		. 00	$\mathbf{P}_{\mathbf{e}}$	0.37 (psia)
	_	900	Те	1386 °K
		035		36. 11
	I _{sp287}		•	20.6 sec optimum
	ор <u></u>		- F	
Combustion Gases	mo1/100g	wt %	mol/100g	wt %
H ₂ O	1.9545	35. 21	1.9092	34.40
H ₂	0.1932 0.0021	0.39	0.2400 0.0000	0.48
OH	0.0013	<u> </u>	0.0000	
$\frac{N_2}{CO}$		42.65 4.69	1. 5217 0. 1204	<u>42.64</u> 3.37
	0. 3872	17.04	0. 4340	
	4			
			-	****
				•••••
				
				
	4.2277	100.00	4. 2253	99.99 Total

		64. 286 % _ % _ % _	UDMH-N ₂ H ₄ (5 N ₂ O ₄	0/50)	
	C _	150	(psia)		
	T _c _	3145	(°K)		
	P _e	2, 00	P _e	0.25	_(psia)
	^Т е	1712	^Т е	1136	_oĸ
		9. 70	€	45. 70	
	Ŧ	7. 6	I _{sp}	324.4	sec optimum
	8p	7,0	۰۲	<u> </u>	sec openium
Combustion Gases H ₂ O H ₂ N ₂ CO CO ₂	mol/100g 1.8745 0.4281 1.5527 0.2684 0.3258	wt % 33.77 0.86 43.51 7.52 14.34	mol/100 1.7646 0.5385 1.5532 0.1584 0.4357	g wt 6 31,7 1.0 43.5 4.4 19.1	9 8 2 4
	4. 4495	100.00	4, 4504	100.0	O Total

 $UDMH-N_2H_4(50/50)$ 40.00 %%%% %%%% N₂O₄ 60.00 150 (psia) T_c 3033 (oK) P_e. 2, 00 0. 25 (psia) oK 1441 941 8.99 41.90 283, 9 317.9 sec optimum Combustion Gases mol/100g wt % mol/100g wt % H,0 1,6599 29.90 1.4731 26.54 H_2 0.9193 1.85 1.1056 2.23 N₂ 1.6090 45.08 1.6090 45.08 CO₂ 0.3829 10.72 0.1961 5.49 0.2825 12.44 0.4693 20,66 4.8536 99.99 4.8531 100.00 Total

•	Pc	9.697 % N % 300 3222 .00 055	m	
Combustion Gases	mo1/100g	wt %	mol/100g	wt %
H ₂ O	1.9316	34.80	1.9524	35.17
H ₂	0.0152	0.03	0.0008	00.00
H	0.0012	00.00	0.0000	00.00
	0.0132	0. 22	0.0012 0.0334	0.02 1.07
	0.0444 0.0008	0.01	0.0000	00.00
<u>Q</u>	0.0060	0. 18	0.0000	0. 03
NO	1. 4792	41. 45	1.4818	41.52
	0.0188	0.53	0.0004	0.01
<u>CO</u>	0.4855	21. 37	0.5036	22.16

	3. 9959	100.01	3. 9748	99. 98 Total

*		3 6 P _c	81.250 % U 88.750 % N % — % —	DMH-N ₂ H ₄ (50/50 2O ₄)	
		Tc	3232	(°K)		
		P _e 4	. 00	Pe0	. 75 (psia)	
			059		546 °K	
). 84	€ 38	. 59	
		I _{sp286}		I _{sp321}	·	
	Combustion Gases	mol/100g	wt %	mol/100g	wt %	
	H ₂ O	1.9699	35. 49	1.9766	35, 61	
	H ₂	0, 0396	0.08	0. 0383	0. 08	
	H	0.0020	00.00	0.0000	00, 00	
	OH	0.0085	0.14	0.0000	00.00	
	02	0,0073	0.23	0.0000	00. 00	
	<u> </u>	0.0004	00.00	0.0000	00,00	
	N ₂	1.4932	41.84	1,4946	41,88	
	CO ₂	0.0473 0.4727	1.32 20.80	0.0282 0.4916	<u>0.79</u> 21.64	
	NO	0.0024	0.07	0.0000	00.00	
					-	
						
						
						
		4.0409	99.97	4.0293	100.00 Total	

	Pe 4	300 3237 00 887	(psia) (°K) e	75 (psia) 375 ^O K 50
Combustion Gases H ₂ O H ₂ H OH N ₂ CO CO ₂	mol/100g 1.9541 0.1940 0.0013 0.0008 1.5217 0.1665 0.3880	wt % 35, 20 0, 39 00, 00 0, 01 42, 64 4, 66 17, 08	mol/100g 1.9075 0.2417 0.0000 0.0000 1.5217 0.1192 0.4357	wt % 34. 36 0. 49 00. 00 00. 00 42. 64 3. 34 19. 17
	4. 2264	99.98	4. 2258	100.00 Total

	P _e	64. 286 % N	T e1	. 50 (1 130 °	osia) K ec optimum
Combustion					
Gases	mo1/100g	wt %	mol/100g	wt %	
H ₂ O H ₂	1.8732	33.75	1. 7624	31.75	
N ₂	0.4295 1.5527	0.86 43.51	0. 5403 1. 5532	1.09 43.52	
CO CO ₂	0. 2675	7, 52	0.1566	4. 39	
CO ₂	0.3271	14.40	0.4379	19.27	
					
					
					
 .					
					
					
					
					_
					
	4.4500	100.04	4, 4504	100.02	Total

		0.00 % U	$\frac{DMH-N_2H_4}{2}$ (50/50)	
	6	0.00 % N	204		
		%			
	Pc	300	(psia)		
	T _c	3081	(^o K)		
		. 00	Pe0		sia)
	^T el	355	^Т е	938 ⁰ F	ζ
		. 99	e41	. 61	
	I _{sp290}	. 0	I _{sp318}	.1s	c optimum
Combustion					
Gases	mol/100g	wt %	mol/100g	wt %	
H ₂ O	_1.6391	29. 53	1.4716	<u> 26. 51</u>	
H ₂	0.9401 1.6090	1.90 45.08	1,1071 1,6090	2.23 45.08	
	0.3621	10.14	0.1946	5.45	_
	<u>0.3038</u>	13.37	0.4708	20. 72	_
					-
					
					
	*****				_
					
	****				_
					-
					_
					-
					-
	4. 8541	100.02	4, 8531	99, 99	— Total

	Pc	69.697 % Nz % — 500 3275 64 75	T _e 15	25 (psia) 52 °K . 52 9.9 sec optimum
Combustion Gases	mo1/100g 1.9359 0.0120 0.0008 0.0112 0.0415 0.0008 0.0056 1.4796 0.0152	wt % 34.88 0.02 00.00 0.19 1.33 0.01 0.17 41.46 0.42	mol/100g 1.9524 0.0008 0.0000 0.0012 0.0334 0.0000 0.0012 1.4818 0.0004	wt % 35.17 00.00 00.00 0.02 1.07 00.00 0.03 41.52 0.01
CO ₂	3. 9916	100.00	3.9748	22.16

	31	.250 % UDI .750 % N2C	$MH - N_2H_4(50/50)$	
	P _c	%	/nain\	
	T _c	3285	(psia) (^O K)	
	P _e 6.67	3203	_(· /main\
	T _e 2056		T _e 1534	
•				
	i 1072	•	€ <u>3804</u>	
	I _{sp287.7}	<u> </u>	I _{sp322.}	1 sec optimum
Combustion				
Gases	mo1/100g	wt %	mol/100g	wt %
H ₂ O	1.9738	35.56	1.9766	35.61
H ₂	0.0368	0.07	0.0383	0.08
OH	0.0069	0.12	0.0000	00.00
O_2	0.0048	0.15	0.0000	00.00
0	0.0004	00.00	0.0000	00.00
N ₂	1.4935	1.23	1.4946	41.88
CO2	0.0440	20.94	0.0282	0.79 21.64
NO	0.0020	0.06	0.0000	00.00

	4.0393	99.98	4.0293	

			MH-N ₂ H4(50/ O ₄	50)	
	P	500	(psia)		
	T _c _	3290	(^o K)		
		<u>. 67</u> 878	те	1. <u>25</u> 1367	(psia)
	e		*e		°K
	`	. 05	, €	35.09	
	I _{sp} 289	. 4	I _{sp}	321.7	sec optimum
Combustion		A M		فيني	at
Gases	mol/100g	wt %	mol/100g		
H2O H2	$\frac{1.9540}{0.1948}$	35.20 0.39	1,9075 0,2417		. <u>36</u> . <u>49</u>
H	0.0008	00.00	0.0000		. 00
OH	0.0004	00.00	0.0000	00.	. 00
N ₂	1.5220 0.1657	42.67	$\frac{1.5217}{0.1192}$. 64 . 34
CO 2	0.3888	17.11	0.4357		. 17
					
			·	-	
					
					····
					
	4. 2275	100.01	4.2258		.00 Total

		35.714 % UI 64.286 % N ₂	OMH-N ₂ H ₄ (50/50) O ₄		
	P _c	500	(psia)		
	T _c _	3261	(^o K)		
	T	. 67	D	83 (psia)	
		696		125 °K	
	·	. 48	4.4		
			€ <u>44.</u> I 225		
	I _{sp288}	. (I _{sp325} .	1 sec optimur	n
Combustion					
Gases	mol/100g	wt %	mol/100g	wt %	
<u> </u>	1.8727	33.74	1.7615	31.74	
<u>H2</u>	0.4299	0.87	0.5416	1.09	
N ₂	1.5532 0.2666	43.52 7.47	1.5532 0.1553	43.52	
CO CO ₂	0.3275	14.41	0.4392	19.33	
			····		
					
				· · · · · · · · · · · · · · · · · · ·	
					
	4.4499	100.01	4.4508	100.03 Total	

		60.00 % N	DMH-N ₂ H4(50/50 2 <mark>O4</mark>)	
	P c _ T c _	500 3113	(psia) (^O K)		
	Pe5	. 00 353	13	0.83 (p	osia) K
	⁴ 10 I _{sp 290}	. 95	7	1.46 3.2 s	ec optimum
Combustion Gases H2O H2 N2 CO CO2	mol/100g 1.6381 0.9411 1.6090 0.3611 0.3043	wt % 29.51 1.90 45.08 10.11 13.40	mol/100g 1.4706 1.1081 1.6090 0.1936 0.4718	wt % 26. 49 2. 23 45. 08 5. 42 20. 77	
	4.8536	100.00	4. 8531	99.99	— — Total

•		30.30 69.60	97 % %		(50/50) - - - -		
		_ C	700	(psia)			
		T _c	3310	(°K)			
	Pe	9.33		${\mathtt P}_{m e}$	1.75	a)	sia)
	T	2052		T	1545	o _l	
	e			e			`
		10.67		, ·	38.16		
	I _{sp}	286.2		I _{sp}	320.3	s	ec optimum
Combustion							
Gases	mol/100g		wt %	mol/l	.00g	wt %	
H ₂ O	1,9383		34.92			35.17	
<u>H2</u>	0.0104		0.02	0.00		00.00	
H	0.0004		00.00	0.00		00.00	
OH O ₂	0.0104		1.28	0.03		1.07	
0	0.0004		00.00	0.00		00.00	_
NO	0.0056		0.17	0.00		0.03	
N ₂	1.4796		41.46	1.48	318	41.52	
CO	0.0128	_	0.36	0.00		0.01	
CO2	0.4914		21.63	0.50	036	22.16	_
							_
			 				
	-2		·			• • • • • • • • • • • • • • • • • • • •	
· · · · · · · · · · · · · · · · · · ·	-						
							<u>-</u>
							
							
							
	3.9893		100.02	3.97	748	99.98	— Total
		= =					= 1000

	——————————————————————————————————————	1.250 % UDI 8.750 % N ₂ C % — — — — — — — — — — — — — — — — — —	MH-N ₂ H ₄ (50/ D ₄	50)	
	T _c	3320	(oK)	•	
	P _e 9.	33	Pe	1.75	(psia)
	T _e 2	053	^Т е	1527	oĸ
	•10.	65	E	37.69	···
	I _{sp288} .	4	I _{sp}	322.5	sec optimum
Combustion	•				
Gases	mo1/100g	wt %	mol/100g	wt	%
H ₂ O	1.9760 0.0355	35.60 0.07	$\begin{array}{r} -1.9766 \\ \hline 0.0383 \end{array}$	$\frac{35}{0}$	61 08
<u> </u>	0.0012	00.00	0.0000	00.	00
<u>ОН</u> О ₂	0.0056 0.0036	0.09	0.0000	00. 00.	
NO	0.0038	0.05	0.0000	00.	
N ₂	1.4938	41.86	1.4946	$\frac{41.}{0}$	88 79
<u>CO</u>	0.0424	21.02	0.0282 0.4916	$\frac{-}{21}$.	
					
				_	
					-
					
			-		
	4.0373	100.00	4.0293	100.	00 Total

•		700	MH-N2H4(5)	0/50)	
	- C	3324	(^o K)		
		. 33	e	1.75	(psia)
	^T e1	872	^Т е	1362	°K
	¢9	. 97	E	34.83	
	I _{sp289}		I _{sp}	322.0	 sec optimum
	9h		۰۶	<u> </u>	
Combustion Gases	mol/100g	wt %	mol/100	g wt	of.
	_			_	
H2O H2	$\frac{1.9540}{0.1948}$	35.20 0.39	1.9075 0.241		
H	0.0008	00.00	0.000		
OH	0.0004	00.00	0.000		
N ₂	1.5229	42.67	1.521		
CO ₂	0.1657 0.3888	<u>4.64</u> 17.11	0.1197		
			<u> </u>		<u>*</u>
					
					
					
					
					
					
					
					
		•			
	4.2275	100.01	4.2258	100.	00 Total

	·		OMH-N ₂ H ₄ (50/50)		
	P _c _	700	(psia)		
	T _c _	3292	(°K)		
		9. 33	Pe	. 17	(psia)
	^Т е	1692	T _{e1}	123	_°ĸ
		9.43		. 48	
	I _{sp289}). 0	I _{sp325}	. 2	_sec optimum
Combustion					_
Gases	mo1/100g	wt %	mol/100g	wt 9	
H ₂ O H ₂	1.8723 0.4308	$\frac{33.73}{0.87}$	1.7606 0.5425	$\frac{31.7}{1.0}$	72
N ₂	1.5532	43.52	1.5532	43.5	52
<u>CO</u>	0.2661	7.45	$\frac{0.1544}{0.4397}$	4.3 19.3	
					
			-		
					
			 ,	,	
					
	•				
					
					
	4.4504	100.01	4. 4504	100.0	00 Total

	P	50.00 % N2 	MH-N ₂ H ₄ (50/ O ₄ (psia)	50)	**
	T _c _	3132	(°K)		
	_	. 00	Pe	1. 17	(psia)
		352	^Т е	936	°K
	· -	. 92	€	41.37	majapania.
	I _{sp290}	. 3	I _{sp}	318.2	sec optimum
Combustion				•	
Gases	mo1/100g	wt %	mol/100g	wt '	%
H ₂ O	1.6381	29.51	1.4701	26.4	
H2 N2	0.9411	1.90	1. 1086	2.7	
	$\frac{1.6090}{0.3611}$	45.08 10.11	1.6090 0.1932	45.0 5.4	
CO ₂	0.3048	13.42	0.4722	20.	
				_	
			 	_	
					·····
				-	
				_	
					
			-		
		A			
	4.8541	100.02	4.8531	99.9	79 Total

PERFORMANCE - MISCELLANEOUS SYSTEMS

Hydrazine-Fluorine Shifting Equilibrium Pc = 100

₹,

ը	1 =]	1.60	r = 1.80	80	r = 2.	2.00	r = 2.	2. 20	r=2.	2.40
.	I _s (max)	¥	I _s (max)	w	I _s (max)	¥	I _s (max)	w	I _s (max)	•
14.7	255.8	1.80	257.1	1.81	257.6	1.83	257.0	1.85	255.7	1.85
ب	,, >	Ъ	I v	μ	ı	P e	ı	D,	ı ^	Ъ
2	319.1	12.50	321.3	12.68	322.3	13.04	320.7	13.38	319.9	13.54
4	350.6	4.52	352.9	4.54	354.7	4.67	354.2	4.80	352.4	4.89
9	365.3	2, 56	368.5	2, 59	369.7	2, 63	370.3	2.80	368.7	2.84
80	374.9	1.73	378.2	1.75	379.9	1.82	381.0	1.90	379.6	1.97
10	381.0	1. 24	384. 4	1. 28	386.7	1.34	387.9	1.39	386.6	1.46
. 15	391.1	0.72	394.8	0.74	397.4	0.77	399.0	0.80	398.3	0.84
20	397. 2	0.47	401.3	0.49	404.5	0.52	406.2	0.54	405.9	0.58
52	401.7	0.34	406.0	0.37	409.2	0, 39	411.2	0.41	411.2	0.43
30	405.0	0.28	409.7	0.29	412.8	0.30	415.1	0.32	415.3	0.33
40	409.0	0.18	414.6	0.19	418.0	0.20	420.7	0.21	421.0	0. 22
05	412.8	0.13	417.7	0.14	421.5	0, 15	424.3	0.16	424.6	0.16
$\Delta I/_{\epsilon P_{a}}$	2.]	2. 176	2. 1	187	2. 189	89	2, 183	83	2.171	71

Hydrazine-Fluorine Shifting Equilibrium p = 150

ſ								_									
	2.40	¥	2. 42		Pe	11. 29	5.54	3, 42	2, 13	1.67	1, 23	0.83	0.63	0.48	0.32	0.24	56
	"	I _s (max)	279.7		^A I	342.0	364.0	376.2	388. 2	393.8	399.9	407.3	412.7	416.7	422. 1	425.6	1.456
	2. 20	E	2.41		Pe	11. 19	5.48	3.36	2.07	1. 60	1.19	0.80	09 .0	0.47	0.30	0.23	64
	# H	I _s (max)	281.0		ı	343.5	365.0	377.7	389. 2	394.7	400.6	407.7	412.8	416.3	421.8	425.3	1.464
	2.00	w	2.38		Pe	11.01	5. 24	3.17	1.97	1.52	1.15	0.76	0.57	0.45	0.29	0.21	88
= 150	II H	I _s (max)	281.3		I	344.2	364.8	377.5	388.0	392.8	398.6	405.7	410.2	413.8	419.3	422.3	1.468
Pc		ę	2, 35	,	P	10.79	5.17	3, 13	1.90	1.47	1.07	0.73	0.53	0,43	0.28	0.20	99
ı	r = 1.80	I _s (max)	280.5		ı ^ı	342.5	363.4	374.7	385.5	390.4	396.0	402.4	407.0	410.3	415.0	418.4	1.466
	1.60	•	2.33		Ъ	10,67	5.00	3.02	1.86	1.44	1.04	0.70	0.50	0.40	0.26	0.19	58
	$\mathbf{r} = 1$	I _s (max)	278.8		I	340.3	360.9	371.3	382. 1	386.8	392. 1	398.2	402.5	405.8	410.2	413.4	1.458
	ሲ	v	14.7		•	3	20	7	10	12	15	20	. 25	30	40	50	ΔI/ _{ε Pa}

Hydrazine-Fluorine Shifting Equilibrium pc = 200

Q.	r = 1	1.60	r = 1.8	80	r = 2.	2.00	r = 2.	20	r = 2.	2. 40
e e	I _s (max)	ę	I _s (max)	Ψ	I _s (max)	¥	I _s (max)	ę	I _s (max)	¥
14.7	293.4	2.81	295.3	2.84	296.4	2.89	296. 4	2. 93	295. 1	2.95
¥	I	Pe	I	ц	ı	പ്	ľ	ъ P	I v	P
٤	341.0	13.70	343.9	13.90	344.5	14.10	344.5	14.70	343.0	14. 60
ĸ	361.3	6.40	364.5	6.55	366.0	6.70	356.0	7.10	365.0	7. 28
٠ .	373.2	4.00	376.7	4.12	377.8	4.30	3.648	4.45	377.3	4.55
10	383, 3	2.40	386.5	2.50	389.0	2, 62	390.6	2. 73	389.3	2.80
12	387.7	1.86	391.3	1.92	394.0	2,00	395.7	2.08	394.9	2. 15
15	392.9	1.39	396. 7	1.42	399.7	1.44	401.5	1.56	401.1	1.60
70	399. 1	0.86	403. 2	0.94	406.2	96.0	408.6	1.02	408.3	1.07
52	403.1	0.62	407.8	0.67	411.1	0.72	413.8	0.74	413.4	0.76
30	406.1	. 0.53	411.1	0.56	414.7	0.59	417.4	0.61	417.2	. 0.62
40	410.4	0.35	415.5	0.36	419.5	0.38	422. 6	0.40	422.9	0.41
95	413.8	0.24	418.9	0.26	422.9	0. 28	425.9	0.30	426.3	0.31
$\Delta I_{\epsilon P_a}$	1. (1.097	1. 103	03	1.105	05	1. 103	03	1.097	97

Hydrazine-Fluorine Shifting Equilibrium pc = 500

								30	,	,
ሲ	r = 1	1.60	r = L	80	r = c.	00	# H	6, 20	T = 6.	40
U	I _s (max)	ę	I _s (max)	•	I _s (max)	w	I _s (max)	¥	I _s (max)	w
14.7	332,0	5, 20	334.9	5,30	337.0	5.41	337.9	5.55	337.0	5, 65
						,				
٠	Iv	Pe	I	P	I	ъ	I ^	P	I ^	D.
9	370.5	12, 10	373.8	12.36	376.1	12. 70	377.0	13. 10	376.0	13.37
∞	379.2	7.95	382.9	8.20	385.2	89.88	386.7	8,95	385.9	9,30
10	385.2	5.75	389.2	5.95	391.8	6. 20	393.7	6.43	393.0	6.72
12	389,8	4.44	393.8	4.63	396.7	4.79	398.6	4.92	398. 2	5. 25
15	394.9	3, 23	399.0	3, 40	402.1	3, 52	404.4	3, 68	404.2	3,90
70	400.5	2, 10	405. 3	2, 20	408.7	2.35	411.2	2, 45	411,3	2,55
57	404.6	1.53	409.5	1.57	413.1	1.69	415.8	1.75	416.0	1, 80
30	407.6	1.18	412.7	1.20	416.6	1.27	419.4	1, 35	419.7	1.39
35	409,9	96°0	415.1	1,00	419. 5	1.05	4.22.2	1,10	422.7	1.12
40	411.7	0,83	416.9	0,87	421.1	0.91	424°3	0.95	424.8	0.97
5.0	414.9	65.0	420.3	0.61	424.6	0.65	457.8	02°0	428.3	0.73
$\Delta I/_{\epsilon P_a}$	0, 444	144	0,446	46	0,447	47	0,447	147	0, 445	45

Hydrazine-Chlorine Trifluoride

4

Shifting Equilibrium
pc = 150

ρ	r = 2	2.00	r = 2	20	r = 2.	40	r = 2.	09	r = 2.	2.80
9	I _s (max)	•	I _s (max)	٤	I _s (max)	ě	I _s (max)	¥	I (max)	w
14.7	232.0	2, 25	232.3	2.27	232.5	2. 29	232.3	2.30	231.8	2.31
				i						
¥	ı	ρ	I	ц	I	Ъ	I	Pe	I	P
3	282. 4	8.80	283.0	9.30	284.0	9.60	284.5	9.60	282.0	9.60
5	297.8	4.40	298.8	4.40	299.6	4.70	300.8	4.80	299.5	4.85
7	306.0	2.70	307.4	2, 65	308.6	2.80	308.8	2, 80	309.0	2.90
6	311.4	1.82	313.0	1.90	314.3	1.93	314.5	2.02	314.6	2.10
12	316.4	1. 22	318.2	1.24	319.5	1.30	320.4	1, 35	320.6	1.40
15	320.0	0.88	322.0	0.88	323.0	0.92	324.8	96.0	325.0	1.00
20	324.8	0.58	326.8	09.0	328.0	0.61	329.0	09.0	330.0	09.0
25	327.5	0.41	329.5	0.45	331.2	0.48	332.3	0.48	333.2	0.48
30	329.5	0.33	332.0	0.33	333.5	0.38	335.0	0.39	335.5	0.32
40	332.7	0.20	335.0	0.25	336.9	0.20	338.4	0.20	339.0	0.22
50	334, 7	0.10	337.2	0.12	339.2	0.13	340.8	0.15	341.9	0.18
$\Delta I/_{\epsilon P_a}$	1, 218	218	1.219	19	1, 218	18	1.21	216	1. 213	13

Hydrazine-Chlorine Trifluoride

Shifting Equilibrium

12,35 7.15 0,36 3,65 4, 75 3,45 2, 70 2.00 1,30 0.90 0.70 0.50 D a 2,80 (max) 258.9 294.4 306.0 3:13.0 318.0 326.0 330.8 334.0 336.4 340.0 321.8 ii H 3,62 11.90 3, 26 2.56 1.22 6.90 4.55 1.88 0,89 0.67 0.50 P e 2, 60 (max) 295.0 306.0 313.3 318.0 321.5 325.8 330.0 333,0 335, 4 339.0 259. 1 11 H 11.85 6.80 2, 45 0.88 0.58 4,40 3, 20 1.20 0,66 3.57 1.80 Pe 2, 40 (max) 300 306.0 320.0 324.0 328.8 337,0 340.0 294.8 312.3 317.0 331.9 334.0 258.8 11.60 6.60 4, 28 3, 10 2,38 1.75 0.56 1.15 0.80 0,65 3.51 டி 2, 20 (max) 258.4 294.0 311.8 316.0 319.0 323.0 327.0 329, 5 132.0 335.5 305, 2 II 2,36 11,50 6.50 4, 18 3,05 1.66 1.08 0,43 3,45 0,75 0,60 $[\sigma_{o}]$ 2,00 (max) 257.5 292.0 302,5 310.0 314.0 317.4 321.0 324,8 327.6 330.0 333.0 H 14.7 D, e 10 77 15 40 9 œ 70 ξ2 20

0.611

0,612

0,613

613

õ

0,612

 $(\Delta I)_{\epsilon P_a}$

342.5

0.34

341.4

0,32

20

ဝ

347.6

0.30

335.0

50

Hydrazine-Chlorine Trifluoride

Shifting Equilibrium Pc = 500

ρ	r = 2	2.00	r = 2.	20	r = 2.	40	r = 2.	09	r=2.	80
	I _s (max)	w	I _s (max)	¥	I _s (max)	(E	I _s (max)	•	I (max)	w
14.7	272.5	4.78	273.8	4.87	274.8	4.96	275.3	5. 05	275.3	5.14
		*		,						¥
w	ľ	P	ľ	D e	I	Ъ	I	P	I	P
9	304.0	10. 25	305.0	10.85	306.0	10.95	307.0	11.10	307.0	11.60
80	310.0	6.84	312.0	6.95	312.5	7.35	313.5	7.50	314.0	7.76
10	314.4	5.00	316.0	5.10	317.5	5.30	318.3	5.48	319.0	5.70
12	317.4	3.80	319.5	3.90	321.0	4.00	322.0	4. 20	322.3	4.30
14	320.0	3.06	322.0	3, 08	324.0	3, 1.8	324.5	3.30	325.0	3, 45
. 16	322.0	2.50	324.2	2.56	326.0	2, 65	326.0	2. 70	327.6	2.89
20	325.0	1.80	327.0	1.88	329.0	1.93	330.5	2, 00	331.0	2. 10
25	328.0	1.28	330.0	1.36	331.8	1, 40	333.5	1.46	334.0	1.50
30	330.0	1.00	332.5	1.08	334.0	1.10	336.0	1.10	337.0	1.18
40	333.0	0.65	335.2	0.70	337.5	0.72	339.0	0.75	341.0	0.82
50	335.2	0.48	337.8	0.50	340.0	0.51	341.7	0.53	344.9	0.56
$\Delta I/_{\epsilon P_{\mathbf{a}}}$	0.369	698	0, 369	69	0.369	69	0, 369	69	0.368	68

Hydrazine-SFNA

Shifting Equilibrium $p_{c} = 150$

ρ	T = 1	1.1	r = 1.	3	r = 1.	5	1 = 1	7	"	
U	I _s (max)	٠	I _s (max)	•	I _s (max)	•	I (max)	w	max	•
14.7	224.8	2, 24	225, 8	2, 30	223.8	2, 38	218.2	2, 35	212.2	2, 32
¥	Å	P	I	ф	ı	Ъ	I	Pe	I	D,
3	274.5	9. 10	276.0	9,35	274.2	9.90	266.3	9,65	259.7	10.00
ĸ	280.9	4, 45	291.5	4.70	290.5	5.00	282.3	4.95	274. 1	4.85
7	297.0	2. 70	299.7	2.87	300.0	3.10	291.5	2, 95	282,5	2.92
6	302.5	1.93	305.8	2.05	306.0	2. 20	297.0	2, 15	288.0	2. 10
11	306.5	1.47	310.0	1,53	310.5	1. 70	301.3	1.63	292.0	1.60
15	312.3	0.95	315.9	1.00	316.9	1. 10	307.5	1.07	297.5	1. 03
20	316.5	0.62	320.5	0.68	322.0	0.73	312.3	0.73	302. 2	0.70
25	319.8	0.45	324. 1	0.50	325.8	0.54	315.8	0.53	305.6	0.50
30	322.2	0.38	326.8	0,38	328.6	0.42	318.5	0.40	308.1	0.38
40	325.6	0.24	330, 4	0.27	332, 7	0.32	322.4	0.28	311.7	0.27
50	328.1	0.18	333.1	0. 20	335, 7	0.22	325.1	0, 21	314.3	0.20
ΔΙ/ _{ε Pa}	1.1	. 182	1.184	84	1.168	88	1.141	41	1.111	11

Hydrazine-SFNA Shifting Equilibrium Pc = 300

ሲ	$\mathbf{r} = 1$. 1	r = 1.	3	r = 1.	5	r = 1.7	7	r = 1.9	6
U	I _s (max)	. w	I _s (max)	Ψ	I _s (max)	¥	I _s (max)	E	I _s (max)	£
14.7	248.9	3.51	250.9	3.61	250.1	3.80	243.2	3, 73	235.9	3.67
v	, I	ъ Б	I	ф	, I	Ъ	ı	Pe	I	Pe
4	283.5	12.00	285.5	12.40	284.8	13.50	278.0	13. 25	268.5	12.75
9	294.0	6.85	296.7	7. 15	296.7	7.70	288.7	7.50	279.0	7.35
80	300, 2	4.50	303.7	4, 75	304.3	5.15	294.9	5.00	285.8	4.80
10	304.8	3. 25	308.5	3, 43	309.5	3, 75	8 662	3.60	290.5	3.53
12	308.2	2,55	312.0	2.70	313.1	2, 95	303.5	2,88	293.8	2, 75
15	312.2	1.85	316.0	1.98	317.5	2. 20	307.7	2, 12	297.8	2.02
20	316.8	1. 25	321.0	1.35	322.9	1.47	312.7	1.42	302.5	1.37
25	320.0	06.0	324.4	0.98	326.6	1.08	316.2	1.06	305.8	1.00
30	324.3	0.72	327.0	0.75	329.5	0.85	318.9	0.82	308.2	0.79
40	325.8	0.49	330.6	0.53	333.4	0.58	322.7	0.56	311.8	0.54
50	328. 2	0.43	333.2	0.38	336.3	0.43	325.4	0.41	314.5	0.40
ΔI/ _ε P _a	0.592	92	0.594	94	0.587	7	0.572	27	0.557	57

Hydrazine-SFNA

Shifting Equilibrium $p_{c} = 500$

l A	= 4	1,1	r = 1.3	3	r = 1	1.5	r'= 1	7.	-	6
u	Is (max)	¥	I _s (max)	¥	I _s (max)	,	I _a (max)	w	max)	w
14.7			266.0	5.12	266.0	5.41	258, 3	5.30	250.3	5.21
		•					. c.			
•	1,	D, e	I ^	P	I	Pe	'n	υ	H	ď
9			297.0	11.65	296.5	12, 75	288.2	12, 35	279.5	12.00
7			300.8	9.30	300.5	10.15	292.5	9,85	283.0	9.70
xo			303.7	7.80	304.0	8.45	295.5	8. 20	285.8	8, 10
10			308.5	5.75	309.0	6. 20	300.1	6.05	290.6	5.85
12			312.2	4. 45	313.0	4.85	303.8	4.73	294.0	4.60
15			316.3	3.27	317.4	3.54	308.0	3, 45	298. 1	3.37
20			321.0	2.23	322.5	2, 43	313.0	2,34	302.8	2.27
25			324,5	1. 63	326.3	1.80	316.3	1.77	306.0	1.70
30			327.1	1. 26	329.2	1.40	319.0	1.35	308.4	1. 28
40			330.7	0.86	332, 2	96.0	322.8	0.93	312.0	06.0
50			333.5	0.64	336.1	0.71	325.5	0.69	314.6	0.64
ΔI/ _ε P _a			0.357	57	0.353	53	0.344	14	0.335	35

Hydrogen-Oxygen
Shifting Equilibrium
pc = 60

€, 4×

	r =	(max) e		I Pe												
	00	e I	1.37	Pe	8.42	3.07	1.75	1.20	0.89	0.55	0.36	0.27	0.21	0.14	0.10	3
	$\mathbf{r} = 6.00$	I _s (max)	235.0	I ^	338.5	374.3	391.7	403.1	411.3	424.0	432, 2	438.1	442.7	449.0	453.7	3.833
	5.00	¥	1.36	P	7.93	2.79	1.58	1.07	0.78	0.45	0.30	0.23	0.18	0.1.2	0.09	80
Pc	# H	I _s (max)	244. 2	^I	351.5	386.6	403.7	413.6	420.9	432.7	439.9	445.1	449.2	454.5	458.5	3.980
	4.00	¥	1, 33	P	7.36	2,50	1.40	6.94	99.0	0.39	0.26	0.19	0.15	0.10	0.08	04
	r = 4.	I _s (max)	252. 1	I	359.7	394.5	409.7	418.7	425.5	436.0	442.4	446.9	450.2	455.1	458.3	4.104
	. 00	¥	1. 29	P	6. 25	2.24	1. 23	18.0	0.58	0.34	0.21	0.15	0.11	0.08	90.0	4.150
	r = 3.	I _s (max)	255.8	I v	362.0	395.2	408.6	416.8	422.6	431.6	437.3	441.1	444. 1	447.8	451.0	4
		ຍ	14.7	•	2	4	9	8	10	15	20	25	30	40	50	$\Delta I/_{\epsilon P}$

Hydrogen-Oxygen
Shifting Equilibrium
P. = 100

Hydrogen-Oxygen Shifting Equilibrium $p_c = 200$

ţ

Hydrogen-Oxygen
Shifting Equilibrium

,					Pe												
		(
,	: L	I (max)			I												
	6.00	¥	3.97		Pe	14, 45	8, 30	5, 73	4, 23	3,30	2.46	1.66	1. 22	0.98	0.69	0.50	80
	r = 6.	I _s (max)	334, 5		I	380.0	397.3	407.8	415.7	421.5	428.0	436.0	441.6	445.8	451.9	456.7	0.780
4	5.00	Ę	3.76		Pe	13, 45	7.55	5, 13	3, 70	2.93	2.17	1.45	1.08	0,85	0.59	0.44	7.0
$p_c = 300$	r = 5.	I _s (max)	343.0		ı ^ı	389,6	406,3	416.5	423,3	428.4	434.7	442.2	447.0	450.8	456.0	459.9	0.807
51.	0(ę	3.54		P	12, 35	6.80	4,53	3, 33	2.57	1.88	1.24	0.91	0.70	0.49	0.37	76
	r = 4.00	I _s (max)	347.8	,	I	395.7	410.5	419.9	426.3	431.1	436.7	443.1	447.7	450.8	455.6	458.8	0,826
	3.00	w	3,36		Pe	11,35	6, 15	4, 10	2,93	2, 27	1.65	1, 10	0.79	09.0	0.43	0.30	30
	r = 3.	I _s (max)	347.2		I	395, 1	408.7	416.8	422.9	427.1	431.8	437.3	441.2	444. 1	447.9	451.1	0.830
	ል	u	14.7		•	4	9	œ	10	12	15	20	25	30	40	50	$\Delta I/_{\epsilon P_{\mathbf{a}}}$

Hydrogen-Fluorine Shifting Equilibrium $P_c = 100$

į								1	<u> </u>	T						1
		3	1.86	P	13.30	5.00	2.90	2.00	1.55	0.92	0.62	0.43.	0.33	0.24	0.17	3
	r = 20	I _s (max)	274. 1	I	343.0	379.0	396.7	407.3	415.4	428.8	487.7	444.0	448.8	454.6	459.4	2.33
	,	•	1.86	Pe	13.44	4.90	2.80	1.94	1.52	0.86	09.0	0.42	0.28	0.24	0.18	38
	r = 17	I _s (max)	280.8	I	353.5	388.0	406.4	417.3	425.1	438.9	447.6	454.1	458.9	464.9	470.2	2, 3
		ę	1.82	Pe	13.30	4.72	2.75	1.85	1.40	08.0	0.56	0.38	0.27	0. 22	0.16	5
၁	$\mathbf{r} = 13$	I _s (max)	288. 1	I	361.0	397.1	414.4	425.5	433.0	445.5	454.0	459.4	463.8	469.9	474.6	2, 45
		Ę	1.81	Pe	12. 60	4.60	2.58	1.80	1.32	0.72	0.46	0.33	0.25	0.18	0.12	49
	r = 10	I _s (max)	293.0	I	367.5	403.0	420.4	431.1	438.2	450.3	458.0	463.2	467.9	472.5	476.4	2.4
		ξ.	1.72	Ъ	11.68	3.66	1.98	1.26	0.84	0.56	0.32	0. 20	0.15	0.10	0.10	0
	r = 5	I _s (max)	304.7	I	381.4	413.3	426.7	435.1	440.9	449.8	454.7	458.1	461.1	465.1	467.6	2.60
		e)	14.7	•	2	4	9	8	10	15	20	25	30	40	50	$\Delta I/_{cP_a}$

Hydrogen-Fluorine Shifting Equilibrium

	$\mathbf{r} = 17 \qquad \qquad \mathbf{r} = 20$	$\begin{bmatrix} I_g \pmod t \end{bmatrix}$ ϵ $\begin{bmatrix} I_g \pmod t \end{bmatrix}$ ϵ	324.4 2.97	I _v P _e I _v P _e	355.0 26.00	391.5 9.70 382.7 9.80	410.3 5.54 400.1 5.72	421.0 3.79 411.4 3.83	428.9 2.84 419.0 3.00	442.1 1.72 432.6 1.77	450.9 1.18 441.1 1.23	457.0 0.86 447.2 0.91	461.7 0.72 451.5 0.64	467.9 0.51 457.4 0.47) 473.0 0.35 461.8 0.32	1.21
c = 200	r = 13	I _s (max) e	331.7 2.88	I Pe	369.0 25.30	400.5 9.20	417.4 5.38	428.1 3.5.6	435, 6 2, 66	448.2 1.59	456.5 1.08	462.2 0.78	466.3 0.58	472.2 0.42	476.7 0.30	1.24
Pc	10	•	2, 85	Pe	25.00	9.12	4.82	3.42	2.56	1.40	96.0	0.66	0.52	0.35	0.21	1. 26
	11	I _s (max)				18 406.4	423.0	50 433.5	30 440.7	30 452.7	56 460.1	50 465.0	36 468.9	20 474.0	17 474.7	
	T = 5	(max)	345.1 2.57	I P	3 23.	413.6 7.08	427.4 3.95	435.7 2.60	441.5 1.80	450.0 1.00	455.3 0.66	458.9 0.50	461.3 0.36	465.4 0.20	467.9 0.17	1.31
	ď	a	14.7	¥	2 3	4	9	8	10 4	15 4	20 4	25 4	30 4	40 4	50 4	ΔI/ _ε P _a

Œ

Methyl Hydrazine-SFNA Shifting Equilibrium Pc = 150

٩	7 = 7		£ = 2	2	r = 2.	4	r = 2	2.6	r = 2.8	8
Ð	lax)	• !	(max)	E	I _s (max)	É	I _s (max)	•	I _s (max)	۴
14.7	221.1	2, 31	221.2	2.37	219.9	2, 43	217.6	2.45	214.7	2. 44
-	1 ×	P	I v	P	ı	Pe	I	Ъ	I	Pe
7	255.0	18. 13	254.6	19.38	254.1	19.63	249.8	20.00	246.1	19.85
4	278.7	6.45	280.1	6.50	279.1	7.08	276.5	7. 48	272. 4	7. 43
9	7.682	3.58	291.6	3.75	291.2	4.05	289.3	4.30	285.9	4. 28
∞	297.0	2, 43	298.6	2,58	299.0	2.69	2,792	2, 83	292.6	2, 75
10	302.1	1.85	303.6	1.93	304.1	2, 05	302.9	2, 25	298.0	2, 20
15	309.9	1.08	311.9	1.13	313.0	1, 16	312.2	1. 25	307.2	1.24
70	315.0	0.68	317.3	0.74	318.3	0.78	318.0	0.88	313.0	0.83
52	318.6	0.53	321.1	0.55	322.5	0.58	322.2	0.65	317.0	0.61
30	321.2	0.45	323.9	0.46	325.5	0.49	325.4	0.51	320.1	0.50
40	325.0	0.28	328.0	0.30	329.8	0.33	330.1	0.36	324. 4	0.35
50	327.9	0, 20	330.9	0.20	332.9	0.21	332.3	0.24	327.7	0.23
$\Delta I_{\epsilon P_a}$	1.	1.159	1, 156	.56	1, 146	46	1.	1.132	1.1	1.118

Methyl Hydrazine-SFNA Shifting Equilibrium Pc = 300

3.96 14.38 41.59 5.54 4.05 D, e 25 1. 68 0.52 2,43 1.25 0.95 0.64 φ. 0.562 2.8 (max) 240.8 247.6 273.7 286.2 299.0 328.2 308.1 320.5 325.0 3.99 14.60 8.44 4.28 2,49 Pe 5.83 1.28 0.98 1,69 0,65 0.54 0.570 2,6 (max) 244.3 250, 7 278.6 298.4 291.5 313.2 303.9 319.0 326.3 323.2 330.8 334.1 It 3.88 41.34 14.20 8.05 5.33 3.98 2.28 1.24 1.57 0.91 0.62 50 D P 0 0.576 2.4 (max) 246.4 280.0 292.2 299.8 255.0 305.0 313.9 325.8 323.1 330,3 319.0 333.4 3.74 40.00 12.80 7.50 5.00 3,66 2.18 1.50 1.08 ъ 0.59 0.48 81 Ψ 0 0.580 2. (max) 246.7 280.6 292.2 255, 1 299.3 312.8 317.9 П 304.3 321.5 324.1 331,3 328. 3,64 38.52 12, 15 [\(\mathbf{T}_{\mathbf{o}} \) 6.93 4.88 3.57 2,03 1,40 0.76 1.03 0.45 0.57 2.0 0.581 (max) 11 255.6 245.8 280.0 290.8 297.4 302.7 310.2 318.8 315.1 321.3 325.3 328.1 14.7 ር ያ (AI/_{EP} w ~ 4 9 œ 0.7 15 20 20 25 30 40

I

Methyl Hydrazine-SFNA Shifting Equilibrium

	$\mathbf{r} = 2.8$	I _s (max)	257.1 5.70		I _v P _e	247.6 69.10	273.9 23.83	286.4 13.83	293.8 9.38	299.1 6.95	308.4 4.03	313.7 2.74	317.8 2.01	320.5 1.53	325.4 1.08	328.6 0.84	0.338
	9	w	5.77		Ъ	69.30	24,00	14, 15	9.50	7.00	4, 10	2.77	2, 03	1.54	1.10	0,86	0.343
	r = 2.	I _s (max)	261.0		I	250, 6	2.612	291.3	299.2	304.9	314.0	319.6	323.8	326.8	331.3	334. 6	0.
	4	¥	5,53		ъ	68.16	23.10	13.00	8.61	6.50	3.90	2, 50	1.98	1.50	1.03	08.0	47
$P_c = 500$	$\mathbf{r}=2.$	I _s (max)	262.5		'n	254.4	281.1	294.3	300.6	305.8	314.5	319.6	323.5	326.2	330.6	333.7	0.347
	2	¥	5.33	 - 	ф	65.86	22, 25	12.50	8.40	6. 15	3.55	2.48	1.90	1.40	0.98	0.74	0.349
	r = 2.	I _s (max)	262.2		ľ	256.2	281.6	292.6	299.7	304.8	313.0	318.3	321.9	324.6	328.5	331.5	0.
	0	¥	5, 18		ъ	63. 65	20, 70	12. 03	8.10	6, 05	3, 43	2, 33	1.80	1.33	0.94	0.70	0.349
	r = 2.	I _s (max)	2,092		I	256.1	280.4	291.3	298.0	302.9	310.5	315.6	3,9.2	321.7	325.4	328.2	0.3
-		บ	14.7		U	2	4	9	Φ.	10	15	20	25	30	40	50	$\Delta I/_{\epsilon P_a}$

Methyl Hydrazine-N₂O₄
Shifting Equilibrium
P_c = 150

Ž

ц	I =	1.5	$\mathbf{r} = 1.7$	7	r = 1.	1.9	r = 2.	1.	7 = 7	~
,	I _s (max)	ŭ	I _s (max)	w	I _s (max)	w	I _s (max)	U	n g	, w
14.7	224.0	2.24	225.7	2.30	225.8	2, 38	224.3	2.44		2.47
				ļ						
•	, A	Ъ	I,	Ъ	I	P e	I	FP P	1,3	ď
2	258.8	18. 60	259.4	12.00	259.8	19.75	256.8	20.00	254.2	21.10
4	281.9	6.05	284.7	6. 25	286. 1	6.75	284.5	7. 25	282.0	7.50
9	292.5	3.35	296.1	3,58	297.6	3.79	2.792	4.03	295.1	4.15
8	299.5	2, 25	303.1	2, 45	305.0	2.57	305.0	2.74	303.3	3.02
10	304.0	1.70	308. 1	1.79	310.3	1.97	311.0	2.01	309.3	2.26
15	311.0	1.00	316.0	1.03	319.0	1.08	320.0	1.18	319.2	1. 28
20	316.0	0.65	320.9	0.68	324.1	0.72	325.6	0.74	325.3	0.89
25	319.1	6.49	324.6	0.52	328.0	0.53	329.7	0.54	329.8	0.63
30	321.1	0.41	327.2	0.43	330.5	0.44	332.7	0.48	333.0	0.52
40	325.4	0. 25	331.0	0.27	335.0	0.29	337.3	0.33	337.9	0.37
50	328.1	0.20	333.8	0.20	338.0	0. 20	340.5	0.22	341.4	0.25
ΔΙ/ _ε Ρ _a	1.	1.178	1, 183	83	1.179	62	1.168	89	1.154	54

Methyl Hydrazine-N2O4

Shifting Equilibrium

14.92 5.76 99.0 4.04 40.75 8.56 0.54 4.33 2.50 1.75 1, 25 1.01 D e 0.581 ار. (max) 249.6 255.6 283.6 296.7 305,0 310.8 326.5 330.9 334.0 338.9 342,3 320.5 3.92 39,75 14.60 8.14 2, 28 1.54 1.18 0.92 0.62 0.51 5.39 3.99 Ъ 0.588 (max) 341.2 251.7 258.6 286. 1 298.7 306.5 311.9 320.8 326.5 330.6 338.0 333,3 13,35 3,76 37,75 7.56 5.05 3,65 2, 18 1.49 1.07 0.81 0.59 0.47 Д° 593 1.9 0 (max) = 300 338.4 319.6 324.8 328.6 287.1 298.5 306.3 331.1 7 335.4 261.0 311.2 252. P_C 3,62 36,60 12.68 1.38 0.76 0.56 0.44 4,73 3.50 2,00 1.02 7.05 ሲ Ψ 0.594 (max) 251.0 260, 7 283.8 296.8 303.9 308.6 324.8 327.3 331.3 334.1 316.3 321, 1 H>, 36.00 12, 15 4.58 6.88 1,30 0.95 0.70 3,31 1.93 0.54 0.41 3,51 D a 590 1.5 · (max) 257.8 322.0 328.4 282.9 293.0 299.7 304.1 311.5 316.1 319.5 325.6 248.1 (AI), Pa പ് 14.7 30 20 .52 2 4 9 ထ 10 15 20 40

Methyl Hydrazine-N2O₄ Shifting Equilibrium

ę,

 $P_{c} = 500$

	r =	1.5	$\mathbf{r} = 1.7$		$\mathbf{r} = 1.9$	6	r = 2.	1	r = 2.3	3
ə	I _s (max)	ę	I _s (max)	•	I _s (max)	€	I _s (max)	Ę	I _s (max)	(
14.7 •	262. 6	4.97	266.2	5.13	268: 2	5.32	268.6	5.57	267.1	5.85
uga.						\$!		
٧	ı,	Ф e	I,	ъ	'n	o o	I	D e	ı ^	P
2	258.7	57.50	261.9	62.0	261.6	63.0	260.2	63.50	257.1	65.00
4	282.6	20,30	285.9	20.75	287.5	21.85	287.3	23. 25	285.1	24.80
9	292.9	11.00	297.0	11.70	299.2	12.50	9.662	13.10	297.0	13.78
8	8.662	7.35	304.0	7.86	306.6	8.30	307.3	8.91	306.0	9.70
10	304. 4	5.45	308.8	5.63	311.6	6.00	312.9	6.50	311.9	7.01
15	311.7	3. 25	317.0	3. 29	320.1	3.53	321.7	3.85	321.3	4.02
20	316.0	2. 13	321.5	2.27	325.0	2, 49	327.0	2, 53	327.3	2.96
25	319.5	1.57	325.0	1.72	329.8	1.85	331.0	1.98	331.5	2.13
30	322.0	1. 20	327.6	1.30	331.5	1.41	334.0	1.54	334.8	1.68
40	325.8	68.0	331.5	0.92	335.7	0.97	338.4	1.03	339.5	11.11
50	328.6	0.62	334.3	0.67	338.7	0.73	341.6	08.0	342.9	0.87
ΔI/ _{c Pa}	0.	0.354	0,357	357	0.	0.357	9.	0, 354	0.	0.350

GAS COMPOSTION-MISCELLANEOUS SYSTEMS

	•	18 %	NH4ClO4 Al PBAA Binder		
	P	700	(psia)		
	T	3168	(°K)		
	P _e	8.75	P _e	1.75	(psia)
	T _e	1735	T _e	1293	°K
	•	10.69	€	35.94	
	I _{sp}	263.8	I _{sp}	292.3	sec optimum
	sp		*P		see optimum
Combustion Gases	mol/100g	wt %	mol/10	0g wt	%
H2O H2	0.1740 1.5353	3.13	$ \begin{array}{r} 0.149 \\ \hline 1.560 \end{array} $	$\frac{1}{5}$ - $\frac{2}{3}$.	69 14
H	0.0000	00.00	0.000	0 00.	00
HC1 N ₂	0.5616 0.2953	20.48 8.27	0.561 0.295		<u>48</u> 27
CO	1.1844	33.18	1. 159		
$\frac{\text{CO}_2}{\text{Al}_2\text{O}_3(1, s)}$	0.0364 0.2965	1.60 30.22	0.060 0.296	$\frac{8}{5}$ $\frac{2}{30}$.	67
111203(1, 1)	0.2705				
				·	· · · · · · · · · · · · · · · · · · ·
					
					
					·
					
		·			
	4.0843	99.98	4.083	<u> </u>	95 Total

	T _e 1	14 % 1 12 % 1 	NH4ClO4 Al PBAA Binder (psia) (oK) Pe Te Isp	2.33 15.33 30.07 289.5	(psia) ⁰ K sec optimum
Combustion					
Gases	mol/100g	wt %	mol/100	g wt	: %
H ₂ O H ₂ H HC1 N ₂ CO CO ₂ Al ₂ O ₃ (s, 1)	0.7914 0.8274 0.0019 0.6287 0.3261 0.7812 0.1683 0.2223	14. 26 1. 67 00. 00 22. 93 9. 15 21. 88 7. 41 22. 66	0.7423 0.8772 0.0000 0.6295 0.3264 0.7318 0.2177 0.2222	1 0 00 22 2 9 20 9	. 37 . 77 . 00 . 96 . 14 . 50 . 58 . 65
	3.7473	99.96	3.747]	99	.97 Total

		74 % NH	4C1O4		
		18 % <u>A1</u>			
		08 % PB	AA Binder		
	P	700	(-oio)		
	T _c		(psia)		
		2955	(^o K) P		•
	e	. 75	е	1.75	(psia)
	$^{\mathrm{T}}$ e1	423	^Т е	1052	oK
	. •9	. 84	€	33.05	
	^I sp254	. 5	I _{sp}	280.0	sec optimum
	*P		F		•
Combustion	1/100	- A 61	1/100		
Gases	mol/100g	wt %	mol/100	_	t %
H ₂ O H ₂	0. 6803 1. 1321	12. 26 2. 28	$\frac{0.5366}{1.2757}$		9. <u>67</u> 2. 57
HC1	0. 6298	22.97	0.6298		2.97
N ₂	0.3296	9.24	0.329	5	0.24
<u> </u>	0.9735	27. 27 10. 88	0.8298		3. 24 7. 20
CO ₂ Al ₂ O ₃ (s, l)	0. 2472 0. 1482	15.11	0.148		5. 11
111203(3)17					
					
					
					· · · · · · · · · · · · · · · · · · ·
					
					
					
				_	
					
	4. 1407	100.01	4. 140	6 100	0.00 Total

•		70 22 08 Pc Tc 8.75	700 2595	NH4ClO 4 Al PBAA Binder (psia) (oK) Pe Te	1.75 875	(psi ⁰ K	a)
	(9.32		·	31.91		
	I _{sp}	244.9		I _{sp}	268.3	sec	optimum
Combustion							
Gases	mol/100g		wt %	mol/10	_	wt %	
H ₂ O H ₂ HC1 N ₂ CO CO ₂	0.3276 1.6257 0.5957 0.3158 1.2828 0.2091 0.0004		5.90 3.28 21.72 8.85 35.93 9.20 0.01	0.213 1.674 0.595 0.315 1.100 0.356 0.033	41 58 56 28	3.85 3.37 21.73 8.84 30.89 15.67 0.53	
CH ₄ Al ₂ O ₃ (s, 1)	0.1482		15.11	0.140		15.12	
				-			
							
							-···
							
				-			
							
	4.5053	= =	100.00	4.439	<u>94 </u>	100.00	Total

	$\phantom{00000000000000000000000000000000000$	8 % A1 2 % PB.	4C1O 4	
	P	700	(psia)	
	T _c	3080	(^o K)	
	-			
		75	_	.33 (psia)
	T _e 15	71	¹ e1	² 28 °K
	e <u>10.</u>	23	£27	. 56
	I _{sp259.}	7	I _{sp282}	.5 sec optimum
Combustion				*
Gases	mo1/100g	wt %	mol/100g	wt %
H ₂ O	0.4454	8.02	0.3829	• 6.89
H2 HC1	1.3157 0.5959	$\frac{2.65}{21.73}$	1.3782 0.5959	$\frac{2.78}{21.73}$
N ₂	0.3126	8.76	0.3126	8.76
CO ₂	1.0973	30.74	1.0348	28.98
$\frac{\text{CO}_2}{\text{Al2O3}(s, 1)}$	0. 1234 0. 2225	5.43 22.68	0.1859 0.2225	8.18 22.68
				
		*		
				
				•————
				
	•			
				
	4.1128	100.01	4.1128	_100.00 Total

	(psia) ^O K sec optimum	wt % 0.00 0.00 0.18 70.97 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
	2.0 (psia) 1031 oK 39.7 323 sec ol	#	
	1 1 1 1		
Hydrazine - Hydrogen Peroxide N2H4	e 14.7 e 1517 e 9.0 t 286		
	er H		
	1000 psia 2923 °K		0.0193 0.58 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000
	т. С. Н.	Combustion Gases H O O O O O O O O O O O O O O O O O O	
D 6			

$\frac{\text{Hydrazine}}{\text{N}_2 H_4} \frac{\text{Fluorine}}{\text{F}_2}$	— (psia) — ^o K — — sec optimum	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
	2. 0 1058 31. 8 381	mol/100g 0.0000 0.0000 0.0000 1.3609 2.8947 1.4041 0.0000 0.0000
	14.7 1769 8.0 344	wt % 0.00 0.00 0.00 2.74 2.74 57.92 39.34 0.00 0.00
	P. T. a. B.	mol/100g 0.0008 0.0000 0.0000 1.3605 2.8947 1.4041 0.0000 0.0000 5.6601
	o psia	wt % 0.47 0.01 0.01 2.30 57.38 39.32 0.01 0.01
	Pc 1000	mol/100g 0, 4648 0, 0005 0, 0268 1, 1411 2, 8679 1, 4033 0, 0008 0, 0004
	·	Combustion Gases H H N F HE N2 NH NH OH

- sec optimum - (psia) 2.0 1606 41.9 391 mol/100g 0.0002 0.0000 0.0000 0.2740 1.1111 2.2222 0.0000 0.0000 1.2481 0.0000 wt % 0.02 0.00 0.04 0.26 34.95 0.56 19.66 0.06 0,01 40.0 60.0 2415 9.7 14.7 345 Hydrazine - OF2 mol/100g 0.0198 0.0000 I sp – 0,0007 0,2768 1,0911 2,2220 0,0012 0,0150 1,2472 0,0019 | | H 8888 N2H4 OF2 wt % 0.34 0.01 1, 50 0, 69 1, 02 14, 49 43, 74 1, 42 1, 42 33, 97 – psia – ^oK 1000 4037 mol/100g 0. 3364 0. 0006 0. 0937 0. 5042 0. 8044 2. 1860 0. 0445 0. 2530 1. 2123 0. 0710 д н С Combustion Gases H

Total

100.00

4.8556

100.03

4.8760

105.41

5,5424

Hydrazine - Perchloryl Fluoride N2H4 % 40.5 C1O3F % 59.5	— (psia) — ^o K —— sec optimum	wt % 0.00 0.00 0.00 0.00 0.41 31.39 21.18 11.62 0.00 0.00 0.00 35.41 0.00	100.01 Total
	2.0 1236 39.4 332	mol/100g 0,0000 0,0000 0,0000 0,0000 0,2045 1,7422 0,5807 0,0000 0,0000 1,2637 0,0000	4.3719
	14.7 1876 9.2 295	wt % 0.00 0.00 0.00 0.04 31.38 31.38 21.14 11.62 0.00 0.00 0.01 35.41 0.00	100.01
	T e L sp	mol/100g 0,0006 0,0000 0,0000 0,0010 0,2050 1,7417 0,5807 0,0004 1,2637 0,0000	4.3730
	psia OK	wt % 0, 09 0, 09 0, 32 0, 04 2, 34 2, 34 2, 43 11, 59 11, 59 1, 08 1, 08	99.92
	Pc 1000 Tc 3466	mol/100g 0, 0884 0, 0884 0, 0203 0, 0217 0, 0017 0, 0177 0, 05141 0, 5791 0, 5791 0, 1557 1, 2444 0, 0384	4.5977
		Combustion Gases H O E C1 H2 H2 H2 HC1 HF O2 OH N2 NO	

Hydrazine - Chlorine Trifluoride

$\frac{N_2H_4}{C1F_3} \frac{\%}{\%} \frac{27.0}{73.0}$	— (psia) — ^O K —— —— sec optimum	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	10141
	2.0 1083 32.8 325	mol/100g 0.0000 0.0000 0.0000 0.0000 0.1058 0.1896 2.3687 0.8425 0.0000 0.0000 0.0000	
	Pe 14.7 Te 1798 **E 8.2 Isp 293	wt % 0.00 0.00 0.00 0.04 0.00 0.04 0.00 0	
		mol/100g 0, 0002 0, 0000 0, 0000 0, 0010 0, 1062 0, 7886 2, 3687 0, 8425 0, 0000 0, 0000 0, 0000	
	— psia — ^o K	wt % 0.14 0.14 0.00 0.72 8.48 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
	P _c 1000 T _c 3882	mol/100g 0. 1362 0. 0003 0. 0378 0. 2392 0. 1776 0. 5476 2. 3306 0. 8422 0. 0002 0. 0012 0. 0002 4. \$131	
		mbustion riases H N H2 CI HF NA NA NA CI2 CIF	

Hydrazine - Nitrogen Trifluoride N2H4 % 23.0 NF3 % 77.0 % 77.0	(psia) OKsec optimum	wt % 0.00 0.00 0.00 4.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
	2, 0 1040 30, 6 337	mol/100g 0.0000 0.0000 0.2309 0.0000 2.8707 1.2599 0.0000 0.0758
	14. 7 1644 7. 4 305	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
	P H B B D	mol/100g 0.0000 0.0000 0.3778 0.0000 2.8707 1,2599 0.0023 0.0023
	psia OK	wt % 0.06 0.01 8.77 8.77 0.02 2.86 35.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
	P _c 1000 T _c 4202	mol/100g 0, 0584 0, 0010 0, 4615 0, 0103 2, 7915 1, 2593 0, 0001 0, 0001 4, 5823
	·	Combustion Gases H N F HF N2 NH F2

	— (ps ia) — ^o K — — sec optimum	0.00 0.00 0.00 0.00 0.23 0.23 0.00 0.00	
	2.0 1270 45.1	mol/100g 0.0000 0.0000 3.6086 0.0000 0.5990 0.2995 0.0000	
18.0 82.0	14. 7 1789 9. 8 283	0.00 0.00 0.00 0.01 64.92 0.01 26.26 0.04 8.38 0.02	
UDMH - Hydrogen Peroxide UDMH	T e L m	mol/100g 0.0000 0.0000 0.0038 3,6035 0,0026 0,0026 0,0026	
J J	Psia / K	wt % 0.02 0.02 0.15 0.27 61.26 3.68 20.57 3.06 2.28 8.11 0.61	
	P _c 1000	mol/100g 0.0152 0.0092 0.1340 3.4001 0.1314 0.4675 0.0956 0.1339 0.2894 0.0203	
D1.2		Combustion Gases H O H O H O O O O O O O O	

Total

99.99

4.5144

99.94

4, 5180

100.01

4,6966

Œ

	— (psia) — OK —— sec optimum	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	100.02 Tota
	2. 0 2146 49. 5 389	mol/100g 0.0000 0.0000 0.0000 0.0252 0.0000 0.4491 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.9667
27. 0 73. 0	14. 7 2800 10. 4 340	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	99.98
UDMH - Fluorine UDMH	To Ho To Gr	mol/100g 0, 00022 0, 00000 0, 00000 0, 1929 0, 4434 0, 00000 0, 00000 0, 00000 0, 00035 0, 00002 0, 00002 0, 00000	5.1269
	psia o'K	wt % 0.11 0.11 0.24 0.24 0.24 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	100.02
	Pc 1000 Tc 4314	mol/100g 0, 1096 0, 1096 0, 0203 0, 04601 0, 4601 0, 2468 0, 0001 0, 0281 0, 0195 0, 0012 0, 0088 0, 0176 0, 0001 0, 2890 0, 0001 0, 2890 0, 0001 0, 2890 0, 0001 0, 2890 0, 0088	5,0129
		Combustion Gases H H C C C C C C C C C C C	

	(psia) ^O K sec optimum	13.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	99.99 Total	
	2.0 1715 40,8	mol/100g 0, 0005 0, 0000 0, 0000 0, 2993 0, 2306 2, 6667 0, 1709 0, 1709 0, 0000 0, 0000 0, 0000 0, 0000 0, 0000	4, 5948	
	$\frac{\text{UDMH} - \text{OF}_2}{\text{OF}_2} \% \frac{28.0}{72.0}$	14.7 2597 9.6 351	wt % 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.	100,00
UDMH - OF2		T e d d d d d d d d d d d d d d d d d d	mol/100g 0.0404 0.0404 0.0000 0.0001 0.2573 2.6655 0.8004 0.0099 0.0099 0.0090 0.0000	4, 6221
•		psia W	wt % 0.45 0.02 1.74 3.10 0.50 10.50	100,01
	P _c 1000 T _c 4458	mol/100g 0, 4442 0, 0014 0, 1090 0, 1629 0, 2500 0, 0829 2, 5037 0, 8961 0, 0356 0, 0488 0, 0488 0, 0006	5.0947	
			Combustion Gases H N O F H2 H2 H2 HE CO CO CO OH N2 NA NH NH NH NH NH NH NH NH NH	

	(psia) ^O K sec optimum	wt % 0.00 0.00 0.00 0.02 0.26 14.46 26.68 24.71 0.00 0.0
	2.0 1638 45.7 329	mol/100g 0.0001 0.0000 0.0000 0.0005 0.1294 0.8026 0.7315 0.7315 0.7315 0.7315 0.7316 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0
Fluoride 25. 0 75. 0	14. 7 23.28 10. 2 289	wt % 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.
UDMH - Perchloryl Fluoride UDMH	T e I sp	Mar.
NGD	Psia OK	wt % 0.09 0.09 0.00 0.88 0.11 5.64 20.82 12.44 20.82 14.53 16.09 11.34 2.33 3.06 11.09 11.21 0.06
	P _c 1000 T _c 3686	mol/100g 0. 0924 0. 00001 0. 0500 0. 1592 0. 1886 0. 5743 0. 5743 0. 5743 0. 5743 0. 5743 0. 1797 0. 3958 0. 1797 0. 3958 0. 0403 0. 0403 0. 0403 0. 0403
·		Combustion Gases H N O CI H2 HCI HF CO CO OH N2 NO CI CI CI CI CI CI CI CI CI C

	— (psia) —— ^o K —— sec optimum	#t % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	100.01 Total
	2. 0 1381 40. 9 310	mol/100g 0, 00000 0, 00000 0, 00000 0, 0188 0, 0188 0, 0492 0, 0492 0, 0000 0, 0000 0, 0000 0, 0000 0, 0000 0, 0000 0, 0000 0, 0000 0, 0000 0, 0000 0, 0381	3,5504
fluoride 23. 0 77. 0	14. 7 1903 8. 9 275	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	100.00
UDMH - Chlorine Trifluoride UDMH \(\text{off} \)	a L a a a a a	mol/100g 0.0000 0.0000 0.0000 0.0000 0.1546 0.1546 0.15850 0.3827 0.3827 0.0465 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	3, 6513
	psia (K	44 % 0.03 0.03 0.001 1.03 1.03 48.78 9.11 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06	99.95
	P _c 1000 T _c 3685	mol/100g 0. 0325 0. 0006 0. 0001 0. 0545 0. 0544 0. 0685 0. 0048 0. 0009 0. 0009 0. 0001 0. 0013 0. 0005 0. 0065 0. 0603 0. 0603 0. 0603 0. 0603 0. 0603 0. 0603 0. 0603	3,8251
D-16		Combustion Gases H C N C HF N2 CI2 CI2 CI2 CF2 CF3 CN C2N2 C2N4 CC2N2	

UDMH - Nitrogen Trifluoride NF3 % 28.0 % 72.0 % 72.0	(psia) oK sec optimum	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	100.01 Total
	2,0 1295 39,0 341	mol/100g 0,0000 0,0000 0,3424 3,0419 0,9728 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	5. 2887
	14.7 1977 9.1 303	wt % 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	100.00
	Pe Te	mol/100g 0, 0017 0, 00100 0, 00000 0, 3362 3, 0419 0, 9675 0, 0000 0,	5, 2788
	psia	wt % 0.10 0.00 0.70 0.70 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.0	100.00
	P _c 1000 T _c 3749	mol/100g 0. 0973 0. 0973 0. 0366 0. 1450 3. 0033 3. 0033 0. 0001 0. 0001 0. 0001 0. 0080 0. 0430 0. 0430 0. 0445 0. 0445 0. 0445 0. 0601 0. 0745 0. 07	4. 9527
·		Combustion Gases H H N N L H H H C C C C C C C C C C C C C C C C	

$\frac{\text{Hydrogen - Oxygen}}{\text{H}_2} \frac{\text{H}_2}{\gamma_0} \frac{\gamma_0}{24.0}$ $\frac{\text{O}_2}{\text{O}_2} \frac{\gamma_0}{\gamma_0} \frac{24.0}{76.0}$	— (psia) — ^o K —— sec optimum	wt % 0.00 0.00 14.42 85.58 85.58 85.68
	2, 0 646 31, 1 431	mol/100g 0,00000 7,1548 4,7500 0,0000
	14.7 1059 7.7 389	wt % 0, 00 0 0.00 0.00 14.42 85.58 85.58
	T e sp	mol/100g 0,0000 7,1548 4,7500 0,0000
	psia OK	wt % 0.04 14,39 85,47 0.10 0.10
	Pc 1000	mol/100g 0,0379 7,1387 4,7442 0,0058
D-18		Combustion Gases H H2 H20 OH

	— (psia) — ^o K — — sec optimum	wt % 0,00		
$\frac{\text{H}_2}{\text{H}_2\text{O}_2} \frac{\%}{\%} \frac{10.5}{89.5} = \frac{\%}{\%}$	2.0 744 34.6 359	mol/100g 0,0000 2,5772 5,2622 0,0000	7. 8394	
	14. 7 1164 8. 2 322	wt % 0.00 5.20 94.80 0.00	100.00	
	T e I e e	mol/100g 0.0000 2.5772 5.2622 0.0000	7.8394	
	psia	wt % 0.02 0.02 5.19 94.65 0.14	100.00	
	P _c 1000 T _c 2567	mol/100g 0, 0182 2, 5725 5, 2536 0, 0085	7.8528	
		Combustion Gases H H2 H2 H2OH		

Hydrogen - Hydrogen Peroxide

Hydrogen - Fluorine	8.0	
g	8. 8. 8. 8.	
Hydroge	H ₂ F ₂	

14.7	2396	9.0	407	
Д,	T.		I OR	

psia OK

1000

- > +			
,	ָ בּ		

- sec optimum

(psia)

36.9 1500

457

2.0

wt %	0.00	3, 12	
mol/100g 0.0002	0.0000	1.5471	
wt % 0.05	0.00	3.07	200
00g 486	200	230	

wt % 1.10 3.28 2.19 93.45

mol/100g 1, 0934 0, 1726 1, 0868 4, 6695

Combustion
Gases
H
F
H
A
H2

96.88	
-------	--

•	,	I	•	•	ı	1	1 -

	1	1	-	-

			100,00
			6.4137

7,0223

	—— (psia) —— ^O K ——— sec optimum	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
$\frac{\text{Hydrogen - OF2}}{\text{OF2}} \frac{\%}{\%} \frac{14.5}{85.5}$	2.0 1022 33.4 457	mol/100g 0.0000 0.0000 4.0258 1.5833 3.1667 0.0000 0.0000
	14. 7 1663 8. 2 411	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
	T e L sp. L	mol/100g 0.0006 0.0000 0.0000 4.0255 1,5833 3,1667 0.0000 0.0000
	Psia OK	wt % 0.52 0.12 1.12 7.72 26.55 63.23 0.04 1.70
	Pc 1000 Tc 3591	mol/100g 0.5141 0.0077 0.0064 3.8318 1.4735 3.1603 0.0012 0.0998
		Combustion Gases H O F H2 H2 HE OH OH

		— (psia) —— ^o K —— —— sec optimum	wt % 0.00 0.00 0.00 46.95 31.67 31.67 31.67 0.00 0.00	
Hydrogen Perchloryl Fluoride $ \frac{H_2}{\text{ClO3F}} $	2. 0 1071 36. 3 382	mol/100g 0,0000 0,0000 0,0000 1,9817 2,6060 0,8686 0,0000 0,0000		
	14.7 1656 8.6 341	wt % 0.00 0.00 0.00 3.99 46.95 31.67 31.67 0.00 0.00 0.00 0.00		
	T e lab	mol/100g 0,0003 0,00000 0,00000 0,00001 1,9816 2,6059 0,8686 0,8686 0,0000 0,0000		
		psia oK	wt % 0.20 0.10 0.10 0.02 1.65 3.98 44.71 29.97 17.36 0.01	
	P _c 1000	mol/100g 0, 1971 0, 0064 0, 0064 0, 0466 1, 9756 2, 4818 0, 8677 0, 0032 0, 1112 0, 1112 0, 1112 0, 1112		
n			Combustion Gases H O F CI H2 H2 O O OH CI CI OH CI OH	

		(psia) ^o K sec optimum	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
fluoride 6.5 93.5	, 1	2.0 947 30.9 352	mol/100g 0.0000 0.0000 0.0000 1.2016 1.0113 3.0338 0.0000
	93,5	Pe 14.7 Te 1601 Fe 7.9 Fe 7.9 Isp 318	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
Hydrogen - Chlorine Trifluoride	C1F3 % %		mol/100g 0.0001 0.0000 0.0001 1.2016 1.0112 3.0338 0.0000
Hydroge H			wt % 0.27 0.23 4.22 2.29 32.50 60.46 0.03
		P _c 1000 T _c 3690	mol/100g 0, 2664 0, 0120 0, 1191 1, 1344 0, 8914 3, 0218 0, 0004
			Combustion Gases H H F CI HCI HF CI2

	(psia) ^o K sec optimum	wt % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	2, 0 1185 32, 8 390	mol/100g 0.0000 0.0000 0.0000 0.7319 3.9925 0.6654 0.0000 0.0000
rifluoride 5.5 94.5	14.7 1969 8.3 351	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
Hydrogen - Nitrogen Trifluoride H2 % 5.5 NF3 % 94.5 %	Pe Te Is be a second of the se	mol/100g 0, 0026 0, 0000 0, 0000 0, 7 506 3, 99.25 0, 6654 0, 0000 0, 0000
Hydro	psia o K	Wt % 0.48 0.01 1.93 1.93 1.09 77.85 18.62 0.01 0.01 90.09
	P _c 1000 T _c 4212	mol/100g 0, 479k 0, 0009 0, 1015 0, 5424 3, 8910 0, 0607 0, 0007 0, 0007
D-24	··.	Combustion Gases H N H HF N N N N NH N

	—— (psia) —— ^o K ——— sec optimum	wt % 0 00 0.00 0.00 0.00 0.00 0.00 0.00 0
	2, 0 889 34, 9	mol/100g 0, 00000 0, 00000 2, 6663 3, 7820 0, 00000 0, 9454 0, 00000 0, 00000 0, 00001
Tetroxide 13.0 87.0	14, 7 1392 8, 3 341	wt % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
Hydrogen - Nitrogen Tetroxide H2 % 13.0 N2O4 % 87.0 % 67.0 67.0	T e I e b b b b b b b b b b b b b b b b b	mol/100g 0.0000 0.0000 2.6664 3.7820 0.0000 0.9455 0.0000 0.0000 0.3939
Hydr	psia	wt % 0.09 0.02 5.34 67.21 0.02 0.79 26.44 0.09 0.00
	P _c 1000 T _c 3029	mol/100g 0. 0926 0. 0010 2. 6478 3. 7307 0. 0066 0. 0462 0. 9438 0. 0002 0. 0002 0. 0002 7. 4659
		Combustion Gases H O H2 O2 OH N2 NO NH2 NH2 NH

	—— (psia) —— ^o K ——— sec optimum	wt % 0,002 0,002 0,002 0,000 0	100.00 Tota
	2, 0 2030 53, 0 364	mol/100g 0.0169 0.0000 2.3688 0.0000 0.0000 0.8067 0.8067 0.6578 0.6578 0.0000 0.1049	4, 2735
38.0 62.0	14, 7 2498 10, 5 316	wt % 0.08 0.08 0.08 0.00 0.00 0.00 0.00 0.	99.99
Pentaborane - Oxygen B5H9 % 38.0 O2 % 62.0	Pe Te Ti de I	mol/100g 0.0784 0.0003 0.0003 0.0000 2.3270 0.0024 0.0000 0.0334 0.6765 0.0000 0.0000	4, 2667
	psia o'K	wt % 0.39 0.18 0.00 0.00 46.00 24.06 0.02 34.06 0.02	66.66
	$\frac{P_c}{T_c} = \frac{1000}{3772}$	mol/100g 0.3917 0.0170 0.0170 0.0002 2.1007 0.0198 0.0021 0.3237 0.8575 0.016 0.0016	4, 1780
		Combustion Gases H H B O H 20 H 20 H 20 B 20 B 20 B 20 B 20 B 20	

	(psia) ⁰ K sec optimum	wt % 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.
	2.0 1825 61.1 354	mol/100g 0, 0056 4, 4834 0, 00055 0, 00052 0, 0430 0, 0430 0, 0430 0, 0430 0, 0430 0, 08389 0, 8389
40.0 60.0	14.7 2051 11.4 303	wt % 0.01 8.83 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.0
Pentaborane - Hydrogen Peroxide B5H9 % 40.0 H2O2 % 60.0 %	a L e da	mol/100g 0, 0108 4, 3814 0, 01014 0, 0014 0, 0123 0, 4500 0, 6822 0, 6822 0, 8442 0, 8442 0, 8442 0, 8442
Pentabo	psia OK	wt % 0.03 8.18 8.18 0.22 0.19 7.15 7.15 10.04 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	P _c 1000 T _c 2685	mol/100g 0.0310 4.0552 0.0121 0.0072 0.3675 0.1146 1.0606 0.1027 0.9284 0.0000
		Combustion Gases H2 H2 H20 B202 B203 HB02 B203 (liquid) B (liquid) B (solid)

	(psia) oK sec optimum	wt % 11 00.00 0.00 0.00 0.00 100.00 Tota
	2, 0 2532 49, 1 409	mol/100g 0.1120 0.0000 0.0008 0.5245 1.6883 1.0144 0.1987 0.3698 3.9085
orine 20,0 80,0	14. 7 3105 9. 9 358	wt % 0. 24 0. 00 0. 00 0. 22 0. 62 39. 71 35. 03 35. 03 9. 01 15, 16
Pentaborane - Fluorine B5H9 % 20, 0 F2 % 80, 0 % %	T e e e e e	mol/100g 0. 2436 0. 0000 0. 0114 0. 3107 1. 9844 1. 1748 0. 1846 0. 2236 0. 2236 4. 1331
<u>α</u> ,	psia	wt % 0.67 0.02 8.00 8.00 39.58 7.70 6,48 6,48 6,99 99.99
	$\frac{P_c}{T_c} = \frac{1000}{4991}$	mol/100g 0, 6675 0, 0022 0, 4208 0, 1610 1, 8599 1, 3274 0, 1577 0, 0956 4, 6921
		Combustion Gases H B F HE BF BF BF BF BF BF BF BF BF B

ı		— (psia) — ^o K — — sec optimum	wt % 0.41 0.00 0.00 0.19 0.24 0.24 0.24 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.0	99.99 Total
		2.0 2970 53.6 422	mol/100g 0. 4094 0. 0.0000 0. 0120 0. 0126 0. 0311 1. 5521 0. 0005 0. 0142 0. 0142 0. 0142 0. 0142 0. 0142 0. 0009 1. 4243 0. 0009 0. 0009	3, 7885
	18.5 81.5	14.7 3567 10.6 366	wt % 0.63 0.63 0.00 0.00 0.43 0.41 0.43 0.41 0.43 0.22 0.41 0.22 0.22 0.12 0.12 0.12 0.12 0.12 0.1	96.66
-	Pentaborane - OF 2 B5H9 % 18 OF 2 % 81	a T e e e e	mol/100g 0. 6263 0. 0000 0. 0564 0. 0564 0. 0116 0. 0229 0. 0024 0. 0024 0. 0045 0. 0046 0. 0046 0. 0046 0. 0046	3.9781
		psia X	wt % 0.90 0.01 4.07 4.07 4.07 6.92 0.40 0.40 0.42 15 0.42 48.07 0.99 0.00 0.49	99, 79
		Pc 1000 Tc 5215	mol/100g 0, 8985 0, 0015 0, 0015 0, 1875 0, 1875 0, 0121 0, 0207 0, 0207 0, 0207 0, 0001 0, 0001 0, 0011	4, 4984
			Combustion Gases H B O F H2 H2 H2 H2 HE OH BF BF BF BOF BOO BCO BCO BCO B	

		g		Total
		(psia) (OK	4t % 0, 05 0, 05 0, 00 0, 00 1, 00 0, 00 0, 00 1, 00 0, 00 1, 00 0, 00 0, 00 1, 00 0, 00 1, 00 0, 00 0, 00 1, 00 0, 00 1, 00 0, 00 1, 00 0, 00 0, 00 1, 00 0, 00 1, 00 0, 00 1, 00 0, 00 1, 00 0, 00 1, 00 0, 00 1, 00 0, 00 0, 00 1, 00 0,	99.95
		2. 0 2301 52. 6 349	mol/100g 0, 0492 0, 0492 0, 0000 0, 0000 0, 0190 1, 0436 0, 0014 0, 0014 0, 0000 0, 0000 0, 0000 0, 0000 0, 0001 0, 0001 0, 0001 0, 0001 0, 0001 0, 0001 0, 0001 0, 0001 0, 0001 0, 0001 0, 0017 0, 0001 0, 0017 0, 0017 0, 0017 0, 0017 0, 0017 0, 0017 0, 017 0, 0132 0, 1987 0, 1932	3,3380
Fluoride	23.0	14, 7 2821 10, 4 303	wt % 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00	99.98
entaborane - Perchloryl Fluoride	B5H9 % C1O3F %	a H a g	mol/100g 0, 1604 0, 0003 0, 00003 0, 00000 0, 0011 0, 0000 0, 00000 0, 00000 0, 00000 0, 00001	3,4383
Pentabor		psia oK	*t % 0.01 0.07 0.07 0.01 0.01 0.45 0.08 0.08 0.08 0.01 0.01 0.01 0.01 1.82 25.52 6,77 4,94 1.82	99.97
		Pc 1000 Tc 4254	mol/100g 0, 5079 0, 0063 0, 0004 0, 1838 0, 0001 0, 0179 0, 0010 0, 0010 0, 0001 0,	3, 7891
			Combustion Gases H H B CCI HCI HF O2 O2 O2 O3 O2 O3 O3 BCI BCI BCI BCI BCI BCI BCI BC	

	(psia) OK sec optimum	wt % 0.02 0.02 0.03 10.69 10.69 0.04 0.00 0.00 0.00 0.00 0.13 2.93 0.21	99.99 Total
	2.0 2555 25.5 332	mol/100g 0. 0235 0. 0235 0. 0000 0. 0018 0. 0014 0. 0000 0. 0000 0. 0000 0. 0020 0. 0020 0. 0020 0. 0020 0. 0020 0. 0020 0. 0020	2, 7122
11. 0 89. 0	14.7 3007 10.3 290	0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00	96.66
B5H9 % %	a L Ge	mcl/100g 0.0430 0.0430 0.0000 0.4578 0.4578 0.4638 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	2,8816
	0 psia	wt % 0. 13 0. 01 0. 00 0. 00 0. 06 0. 08 0. 03 0. 03 0. 37 2. 00 0. 37 2. 00 0. 37 2. 00 0. 14	 96.66
	P _c 1000 T _c 4542	mol/100g 0, 1325 0, 0001 0, 2176 0, 0272 0, 0436 0, 0015 0, 0001 0, 04488 0, 1422 0, 2478 0, 0057 0, 0057 0, 0057 0, 0057 0, 0057 0, 0057	3,3104
		Combustion Gases H H B F C1 HC1 HC1 HC1 HC1 BC1 BF2 BF2 BFC1 BFC1 BFC1 BFC1 BFC1 BFC1 BFC1	

Pentaborane - Chlorine Trifluoride

	(psia) OK eccoptimum	wt % 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.	100.00 Total
	2.0 2501 50.0 373	mol/100g 0,0499 0,0000 0,0000 0,1608 1,4806 0,6126 0,0000 0,3757 0,1413 0,5119	3, 3337
Trifluoride 13.0 87.0	14. 7 3155 10. 2 326	wt % 0.10 0.00 0.00 0.54 0.54 17.16 0.00 14.07 7.69 27.09	99.98
Pentaborane - Nitrogen Trifluoride B5H9 % 13.0 NF3 % 87.0 """""""""""""""""""""""""""""""""""	T e T a a a a	mol/100g 0,0988 0,0000 0,0000 0,0285 0,0460 1,6614 0,6126 0,0000	3.4762
Pentabo	Psia Psia	wt % 0.24 0.24 0.05 0.05 0.05 0.07 0.07 0.07 0.00 0.00	49.97
	P _c 1000 T _c 4809	mol/100g 0.2360 0.0004 0.0039 0.4776 0.0366 1.5422 0.6104 0.0105 0.6104 0.0005	3,9362
D. 42		Combustion Gases H B N HF N2 NA BF	

we	d		Total
	(psia) OK sec optimum	wt,% 0.00 0.00 0.00 0.00 0.00 0.14 8.95 18.13 47.32 0.00 0.00 0.00 0.00	100.46
à	2.0 2184 52.5 52.5 350	mol/100g 0.0000 0.0000 0.0000 1.1883 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	3,5521
Tetroxide 24.5 75.5	14. 7 2722 10. 4 304	wt % 0. 12	101. 63
B5H9 % 24.5 N2O4 % 75.5	T e B b b b b b b b b b b b b b b b b b b	mol/100g 0, 1224g 0, 0001 0, 0000 0, 0000 1, 0930 0, 0000 0, 0000 0, 0000 0, 0000 0, 0000 0, 0000 0, 0000 0, 0000 0, 0000	3,6172
Pentaborane B5H9 N2O4	psia	wt % 0.43 0.04 0.04 0.04 0.00 0.00 0.00 0.00	100.00
	P _c 1000	mol/100g 0, 4302 0, 0037 0, 0006 0, 0054 0, 0603 0, 0199 0, 0199 0, 0199 0, 0199 0, 0008 0, 0008 0, 0002 0, 0002	3,9032
		Combustion Gases H B N O H2 O2 O2 O2 OH N2 NO B2 B2 B2 B2 B2 B2 B2 B2 B4 NH NH NH NH NH NH NH NH NH N	

amente de la	do, California. D GAS COM- S.A. Johnston, Schieler.	l; DCAS-TDR-62-2) Unclassified report	were lculations ic im- io. The	ecific of gas actuded	
	Aerospace Corporation, El Segundo, California. PROPELLANT PERFORMANCE AND GAS COMPOSITION HANDBOOK, prepared by S.A. Johnston, E.A. Mathias, P.C. Hanzel, and L. Schieler.	(Report TDR-930(2210-07)TN-1; DCAS-TDR-62-2) (Contract AF 04(647)-930) Unclassified report	Performance tables are presented which were obtained by plotting data from machine calculations and interpolating to obtain vacuum specific impulses for integral values of the area ratio. The values are convenient reference points for the	calculation of interpolated values of the specific impulse for any given area ratio. Tables of gas compositions and performances are also included in this handbook.	

Aerospace Corporation, El Segundo, California, PROPELLANT PERFORMANCE AND GAS COM-	POSITION HANDBOOK, prepared by S.A. Johnston, E.A. Mathias, P.C. Hanzel, and L. Schieler.	S. January 1792. (2001 p.) (Report TDR-930(2210-07)TN-1; DCAS-TDR-62-2) (Contract AF 04 (647)-930) Unclassified report	Performance tables are presented which were obtained by plotting data from machine calculations and interpolating to obtain vacuum specific impulses for integral values of the area ratio. The values are convenient reference points for the calculation of interpolated values of the specific impulse for any given area ratio. Tables of gas compositions and performances are also included
ospace Corporation, ELLANT PERFORM	POSITION HANDBOOK, prepared by S.A. Johns E.A. Mathias, P.C. Hanzel, and L. Schieler.	5 January 1702. [2001 P.] (Report TDR-930(2210-07) T. (Contract AF 04 (647)-930)	Performance tables are presented which were obtained by plotting data from machine calculation and interpolating to obtain vacuum specific impulses for integral values of the area ratio. The values are convenient reference points for the calculation of interpolated values of the specific impulse for any given area ratio. Tables of gacompositions and performances are also included

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

Performance tables are presented which were obtained by plotting data from machine calculations and unterpolating to obtain vacuum specific inpulses for integral values of the area ratio. The values are convenient reference points for the calculation of interpolated values of the specific impulse for any given area ratio. Tables of gas compositions and performances are also included in this handbook.

Aerospace Corporation, El Segundo, California. PROPELLANT PERFORMANCE AND GAS COM-POSITION HANDBOOK, prepared by S. A. Johnston, E. A. Mathias, P. C. Hanzel, and L. Schieler. January 1962. [280] p. (Report TDR-930(2210-07)TN-1; DCAS-TDR-62-2) (Contract AF 04 (647)-930) Unclassified report

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

C

	UNCLASSIFIED
PROPELLANT PERFORMANCE AND GAS COM- PROPELLANT PERFORMANCE AND GAS COM- POSITION HANDBOOK, prepared by S.A. Johnston, E.A. Mathias, P.C. Hanzel, and L. Schieler. 3 January 1962. [280] p. (Report TDR-930(2210-07)TN-1; DCAS-TDR-62-2) (Contract AF 04(647)-930) Unclassified report	-
Performance tables are presented which were obtained by plotting data from machine calculations and interpolating to obtain vacuum specific inspulses for integral values of the area ratio. The values are convenient reference points for the calculation of interpolated values of the specific impulse for any given area ratio. Tables of gas compositions and performances are also included in this handbook.	

UNCLASSIFIED

brained by plotting data from machine calculations not interpolating to obtain vacuum specific impages for integral vacuum specific impages for sintegral values of the area ratio. The alues are convenient reference points for the acutation of interpolated values of the specific mpulse for any given area ratio. Tables of gas ompositions and performances are also included in this handbook.	

Performance tables are presented which were obtained by plotting data from machine calculations and interpolating to obtain vacuum specific impulses for integral values of the area ratio. The values are convenient reference points for the calculation of interpolated values of the specific impulse for any given area ratio. Tables of gas compositions and performances are also included in this handbook.

Aerospace Corporation, El Segundo, California. PROPELLANT PERFORMANCE AND GAS COM-POSITION HANDBOOK, prepared by S. A. Johnston, E. A. Mathias, P. C. Hanzel, and L. Schieler. January 1962. [280] p. (Report TDR-930(2210-07)TN-1; DCAS-TDR-62-2) (Contract AF 04(647)-930) Unclassified report

UNCLASSIFIED

UNCLASSIFIED			UNCLASSIFIED
	Aerospace Corporation, El Segundo, California. PROPELLANT PERFORMANCE AND GAS COM- POSITION HANDBOOK, prepared by S.A. Johnston, E.A. Mathias, P.C. Hanzel, and L. Schieler. 3 January 1962. [280] p. (Report TDR-930(2210-07)TN-1; DCAS-TDR-62-2) (Contract AF 04 (647)-930) Unclassified report	Performance tables are presented which were obtained by plotting data from machine calculations and interpolating to obtain vacuum specific impulses for integral values of the area ratio. The values are convenient reference points for the calculation of interpolated values of the specific impulse for any given area ratio. Tables of compositions and performances are also included in this handbook.	
UNCLASSIFIED			UNCLASSIFIED

Performance tables are presented which were obtained by plotting data from machine calculations and interpolating to obtain vacuum specific impulses for integral values of the area ratio. The values are convenient reference points for the calculation of interpolated values of the specific impulse for any given area ratio. Tables of gas compositions and performances are also included in this handbook.

Aerospace Corporation, EISegundo, California. PROPELLANT PERFORMANCE AND GAS COMPOSITION HANDBOOK. prepared by S.A. Johnston, E.A. Mathias, P.C. Hanzel, and L. Schieler. January 1962. [280] p. (Report TDR-930(2210-67)TN-1; DCAS-TDR-62-2) (Contract AF 04 (647)-930) Unclassified report

UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIFD
·			
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED
			v.