20

25

What is claimed is:

- 1. A reversible image display medium
 comprising: two substrates opposed to each other
 with a gap therebetween; one or more developer
 accommodating cells formed between the two
 substrates, each having a periphery surrounded by a
 partition wall; and a dry developer contained in
 each of the cell(s), the dry developer containing at
 least two kinds of frictionally chargeable dry
 developing particles having different chargeable
 polarities and different optical reflection
 densities; wherein
 - an image is displayed by forming an electrostatic latent image corresponding to the image to be formed on one of the two substrates to drive the developing particles in an electrostatic field based on the electrostatic latent image; and wherein a surface, which faces the developing particles, of the substrate for carrying the electrostatic latent image has a surface resistivity of at least 1 x 10¹² ohm/square.
 - 2. A reversible image display medium comprising: two substrates opposed to each other with a gap therebetween; one or more developer accommodating cells formed between the two

10

15

20

substrates, each having a periphery surrounded by a partition wall; and a dry developer contained in each of the cell(s), the dry developer containing at least two kinds of frictionally chargeable dry developing particles having different chargeable polarities and different optical reflection densities; wherein

an image is displayed by forming an electrostatic latent image corresponding to the image to be formed on one of the two substrates to drive the developing particles in an electrostatic field based on the electrostatic latent image; and wherein a surface, which faces the developing particles, of the substrate opposed to the substrate for carrying the electrostatic latent image has a surface resistivity in a range of from 1 X 10⁶ ohm/square to 1 X 10¹² ohm/square.

- 3. The reversible image display medium according to claim 1 wherein a surface, which faces the developing particles, of the substrate opposed to the substrate for carrying the electrostatic latent image has a surface resistivity in a range of from 1 X 10⁶ ohm/square to 1 X 10¹² ohm/square.
- 4. A reversible image display medium25 comprising: two substrates opposed to each other

20

25

with a gap therebetween; one or more developer accommodating cells formed between the two substrates, each having a periphery surrounded by a partition wall; and a dry developer contained in each of the cell(s), the dry developer containing at least two kinds of frictionally chargeable dry developing particles having different chargeable polarities and different optical reflection densities; wherein a surface, which faces the developing particles, of at least one of the two substrates has a surface average median roughness Ra of 0.2 µm to 0.5 µm

- 5. The reversible image display medium according to claim 1 wherein a surface, which faces the developing particles, of at least one of the two substrates has a surface average median roughness Ra of 0.2 µm to 0.5 µm.
- 6. The reversible image display medium according to claim 2 wherein a surface, which faces the developing particles, of at least one of the two substrates has a surface average median roughness Ra of 0.2 µm to 0.5 µm.
 - 7. The reversible image display medium according to claim 3 wherein the surface, which faces the developing particles, of at least one of

10

15

20

25

the two substrates has a surface average median roughness Ra of 0.2 μm to 0.5 μm .

- 8. A reversible image display medium comprising: two substrates opposed to each other with a gap therebetween; one or more developer accommodating cells formed between the two substrates, each having a periphery surrounded by a partition wall; and a dry developer contained in each of the cell(s), the dry developer containing at least two kinds of frictionally chargeable dry developing particles having different chargeable polarities and different optical reflection densities; wherein an external surface of at least the substrate on image observation side among the foregoing substrates has a surface average median roughness Ra of 0.2 µm to 0.7 µm.
- 9. The reversible image display medium according to claim 1 wherein an external surface of at least the substrate on image observation side among the foregoing substrates has a surface average median roughness Ra of 0.2 μ m to 0.7 μ m.
- 10. The reversible image display medium according to claim 2 wherein an external surface of at least the substrate on image observation side among the foregoing substrates has a surface average

10

15

20

25

median roughness Ra of 0.2 µm to 0.7 µm.

- 11. The reversible image display medium according to claim 3 wherein an external surface of at least the substrate on image observation side among the foregoing substrates has a surface average median roughness Ra of 0.2 μ m to 0.7 μ m.
- 12. The reversible image display medium according to claim 4 wherein an external surface of at least the substrate on image observation side among the foregoing substrates has a surface average median roughness Ra of 0.2 μ m to 0.7 μ m.
- 13. The reversible image display medium according to claim 5 wherein an external surface of at least the substrate on image observation side among the foregoing substrates has a surface average median roughness Ra of 0.2 µm to 0.7 µm.
- 14. The reversible image display medium according to claim 6 wherein an external surface of at least the substrate on image observation side among the foregoing substrates has a surface average median roughness Ra of 0.2 μ m to 0.7 μ m.
- 15. The reversible image display medium according to claim 7 wherein an external surface of at least the substrate on image observation side among the foregoing substrates has a surface average

median roughness Ra of 0.2 μm to 0.7 μm .