Лабораторная работа 1: Булевы функции Вариант 5

1. Построить д.н.ф. и к.н.ф функции:

$$f(\tilde{x}^3) = (x_1 \vee \bar{x}_2 \vee x_3) \cdot (\bar{x}_1 \vee x_2 \vee \bar{x}_3) \cdot (x_1 \vee x_2 \vee x_3)$$

Первоначальная форма ялвяется КНФ. ДНФ получим путём преобразований.

$$f(\tilde{x}^3) = (x_1 x_2 \lor x_1 \bar{x}_3 \lor \bar{x}_1 \bar{x}_2 \lor \bar{x}_2 \bar{x}_3 \lor \bar{x}_1 x_3 \lor x_2 x_3)(x_1 \lor x_2 \lor x_3) =$$

$$x_1 x_2 \lor x_1 \bar{x}_3 \lor x_1 \bar{x}_2 \bar{x}_3 \lor x_1 x_2 x_3 \lor x_1 x_2 \bar{x}_3 \lor \bar{x}_1 x_2 x_3 \lor x_2 x_3 \lor \bar{x}_1 \bar{x}_2 x_3 \lor \bar{x}_1 x_3 =$$

$$x_1 x_2 \lor x_1 \bar{x}_3 \lor x_2 x_3 \lor \bar{x}_1 x_3 \lor \bar{x}_1 x_2 x_3 \lor x_1 x_2 \bar{x}_3 \lor x_1 \bar{x}_2 \bar{x}_3 \lor x_1 x_2 x_3$$

Ответ: КНФ нам дана, ДНФ: $x_1x_2 \lor x_1\bar{x}_3 \lor x_2x_3 \lor \bar{x}_1x_3 \lor \bar{x}_1x_2x_3 \lor x_1x_2\bar{x}_3 \lor x_1\bar{x}_2\bar{x}_3 \lor x_1x_2x_3$

- 2. Представить в совершенной д.н.ф. функцию
 - (a) $f(\tilde{x}^4) = (1000011100110001)$

x_1	x_2	x_3	x_3	f
0	0	0	0	1
0	0	0	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0 0 1 1 0 0	1	1
0	1	1	0	1
0	0 0 1 1 1 1 0	1	1	0 0 0 1 1 1 0
1	0	0	0	0
1		0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
0 0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 1 1	1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 1 1 0 0 0 1
1 1	1 1	1	0	0
1	1	1	1	1

Совершенная ДНФ:

 $\bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 \vee \bar{x}_1 x_2 \bar{x}_3 x_4 \vee \bar{x}_1 x_2 x_3 \bar{x}_4 \vee \bar{x}_1 x_2 x_3 x_4 \vee x_1 \bar{x}_2 x_3 \bar{x}_4 \vee x_1 \bar{x}_2 x_3 x_4 \vee x_1 \bar{x}_2$

Ответ: $\bar{x}_1\bar{x}_2\bar{x}_3\bar{x}_4 \vee \bar{x}_1x_2\bar{x}_3x_4 \vee \bar{x}_1x_2x_3\bar{x}_4 \vee \bar{x}_1x_2x_3x_4 \vee x_1\bar{x}_2x_3\bar{x}_4 \vee x_1\bar{x}_2x_3x_4 \vee x_1x_2x_3x_4 \vee x_1x_$

(b)
$$f(\tilde{x}^3) = x_1 \vee x_2 x_3 \vee \bar{x}_2 \bar{x}_3$$

 $f(\tilde{x}^3) = x_1 (x_2 \vee \bar{x}_2) (x_3 \vee \bar{x}_3) \vee (x_1 \vee \bar{x}_1) x_2 x_3 \vee (x_1 \bar{x}_1) \bar{x}_2 \bar{x}_3 = (x_1 x_2 \vee \bar{x}_2 x_1) (x_3 \vee \bar{x}_3) \vee x_1 x_2 x_3 \vee \bar{x}_1 x_2 x_3 \vee x_1 \bar{x}_2 \bar{x}_3 \vee \bar{x}_1 \bar{x}_2 \bar{x}_3 = x_1 x_2 x_3 \vee x_1 x_2 \bar{x}_3 \vee x_1 \bar{x}_2 x_3 \vee x_1 \bar{x}_2 \bar{x}_3 \vee \bar{x}_1 \bar{x}_2 \bar{x}_3$
Otbet: $x_1 x_2 x_3 \vee x_1 x_2 \bar{x}_3 \vee x_1 \bar{x}_2 x_3 \vee x_1 \bar{x}_2 \bar{x}_3 \vee \bar{x}_1 x_2 x_3 \vee \bar{x}_1 \bar{x}_2 \bar{x}_3$

3. Представить в виде совершенной к.н.ф. функцию

$$f(\tilde{x}^3) = (\bar{x}_1 \vee \bar{x}_2) \cdot x_2 \cdot (x_1 \vee \bar{x}_3) \cdot (\bar{x}_2 \vee x_3)$$

$$\bar{x}_1 x_2 (x_1 \vee \bar{x}_3) (x_2 \vee x_3) = \bar{x}_1 x_3 \bar{x}_3 (\bar{x}_2 \vee x_3) = 0$$

x_1	x_2	x_3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Otbet:
$$(x_1 \lor x_2 \lor x_3)(x_1 \lor x_2 \lor \bar{x}_3)(x_1 \lor \bar{x}_2 \lor x_3)(x_1 \lor \bar{x}_2 \bar{\lor} x_3)$$

 $(\bar{x}_1 \lor x_2 \lor x_3)(\bar{x}_1 \lor x_2 \lor \bar{x}_3)(\bar{x}_1 \lor \bar{x}_2 \lor x_3)(\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$

4. Найти полином Жегалкина для функции

(a)
$$f(\tilde{x}^4) = (x_1 \lor x_2 \lor x_3)x_4 \lor x_1x_2x_3$$

Метод деления вектора пополам

x_1	x_2	x_3	x_4	$x_1 \lor x_2 \lor x_3$	$\cdot x_4$	$x_1x_2x_3$	f
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	1	0	0	0
0	0	1	1	1	1	0	1
0	1	0	0	1	0	0	0
0	1	0	1	1	1	0	1
0	1	1	0	1	0	0	0
0	1	1	1	1	1	0	1
1	0	0	0	1	0	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	0	0	0
1	0	1	1	1	1	0	1
1	1	0	0	1	0	0	0
1	1	0	1	1	1	0	1
1	1	1	0	1	0	1	1
1	1	1	1	1	1	1	1

Ответ: $x_3x_4 \oplus x_2x_4 \oplus x_2x_3x_4 \oplus x_1x_4 \oplus x_1x_3x_4 \oplus x_1x_2x_4 \oplus x_1x_2x_3$

(b) $f(\tilde{x}^4) = (0000100010010000)$

Решение методом треугольника

0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	
0	0	1	1	0	0	0	0	0	1	1	0	0	1		
0	1	0	1	0	0	0	0	1	0	1	0	1			
1	1	1	1	0	0	0	1	1	1	1	1				
0	0	0	1	0	0	1	0	0	0	0					
0	0	1	1	0	1	1	0	0	0						
0	1	0	1	1	0	1	0	0							
1	1	1	0	1	1	1	0								
0	0	1	1	0	0	1									
0	1	0	1	0	1										
1	1	1	1	1											
0	0	0	0												
0	0	0													
0	0														
0															

Otbet: $x_2 \oplus x_2x_4 \oplus x_2x_3 \oplus x_2x_3x_4 \oplus x_1 \oplus x_1x_4 \oplus x_1x_3$

5. Найдите длину совершенной д.н.ф. функции

$$f(\tilde{x}^n) = x_1 x_2 \dots x_n \oplus x_3 \oplus \dots \oplus x_n, \ n \geq 3$$

а) Рассмотрим для нечётных n. При n=5:

 $x_1x_2x_3x_4x_5 \oplus x_3 \oplus x_4 \oplus x_5$ найти длину

Как и в первом случае, $x_1x_2x_3x_4x_5$ всегда равно нулю, кроме случая, когда $x_1=x_2=x_3=x_4=x_5=1$. Рассмотрим этот случай отдельно:

 $x_1 = x_2 = x_3 = x_4 = x_5 = 1 \Rightarrow 1 \oplus 1 \oplus 1 \oplus 1 = 0 \Rightarrow$ на длину не влияет. Значит во всех остальных случаях мы можем это слагаемое опустить. Тогда остается $x_3 \oplus x_4 \oplus x_5$. Нам нужно, чтобы сумма по модулю два этих слагаемых давала 1. Это возможно в случаях, когда один или все три элемента равны 1, т.е. $C_3^1 + C_3^3$ (если одна переменная 1, а другие 0 или 3 переменные 1)

$$C_{n-2}^1 + C_{n-2}^3 + C_{n-2}^{n-4} + C_{n-2}^{n-2} \ (1)$$

Тогда вся длина будет:
$$2^2(C_{n-2}^1+C_{n-2}^3+\ldots+C_{n-2}^{n-4}+C_{n-2}^{n-2})-1$$

Выражение (1) умножаем на 2^2 , т.к. у нас не использованы переменные x_1 и x_2 , поэтому они могут быть любыми. От $2^2 \cdot (1)$ отнимаем единицу, т.к. используем случай, когда все переменные по 1, тогда он даёт в итоге 0.

$$2^2(C_{n-2}^1+C_{n-2}^3+\ldots+C_{n-2}^{n-4}+C_{n-2}^{n-2})-1=2^2+n-1-1=2^{n-1}-1$$

б) Рассмотрим для чётных n. При n=6

$$x_1x_2x_3x_4x_5x_6 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6$$

Также рассматриваем ситуацию, когда все перменные по 1. $1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 1$. Значит, в этом случае, значение f = 1, и к длине в конце нужно будет добавить 1. Далее опять опускаем $x_1x_2x_3x_4x_5x_6$, получаем $x_3 \oplus x_4 \oplus x_5 \oplus x_6$. Это выражение даст 1 только в случаях: $C_4^1 + C_4^3$ (когда 1 переменная и 1, и когда 3 переменных 1). Тогда, в общем случае, при n имеем

$$C_{n-2}^1 + C_{n-2}^3 + \dots + C_{n-2}^{n-5} + C_{n-2}^{n-3}$$
 (2)

И тогда длина СДНФ будет

$$2^2(C_{n-2}^1+C_{n-2}^3+\ldots+C_{n-2}^{n-5}+C_{n-2}^{n-3})+1=$$

[Прибавляем 1, т.к. в случае, когда все 1, f=1, а в выражении (2) этот случай не учитывается.]

$$2^{2+(n-3)} + 1 = 2^{n-1} + 1$$

Ответ: $2^{n-1} - 1$ при нечётных $n, 2^{n-1} + 1$ при чётных n.

6. Выяснить, является ли самодвойственной функция f, заданная векторно

$$\tilde{\alpha}_f = (1100110000001111)$$

На противоположных наборах (0000) и (1111) функция принимает одинаковые значения, равные 1. Следовательно функция не является самодвойственной.

Ответ: Не является самодвойственной.

7. Определить, какие из переменных функций $f(\tilde{x}^n)$ следует заменить на x, а какие на \bar{x} с тем, чтобы получить константу:

$$\tilde{\alpha}_f = (0110100011101011)$$

Два одинаковых значения, равных 1, функция имеет на противоположных наборах (0001) и (1110). Заменим x_1, x_2, x_3 на x, x_4 на \bar{x} и тем самым получим константу 1.

\boldsymbol{x}	x	x	\bar{x}	f
0	0	0	1	1
1	1	1	0	1

Ответ: При замене x_1, x_2, x_3 на x, x_4 на \bar{x} получается константа 1.

8. Выяснить, является ли линейной функция f:

$$f = (xyz \lor x\overline{yz}) \oplus x(y \oplus z)$$
$$f = x(yz \lor \overline{yz}) \oplus xy \oplus xz = x \oplus xy \oplus xz$$

По полиному Жегалкина она не является линейной

Ответ: Не является линейной.

9. Подставляя на места переменных нелинейной функции f функции из множества $\{0,1,x,y\}$, получить хотя бы одну из функций $xy,x\bar{y}, \overline{xy}$:

$$f = (x_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4)(\bar{x}_1 \vee \bar{x}_2 \vee x_3 \vee x_4)(\bar{x}_2 \vee x_3)$$

Строим полином Жегалкина для функции:

x_1	x_2	x_3	x_4	f
	0	0	0	1
0	$\begin{array}{c} 0 \\ 0 \end{array}$	0	1	1
0	0	1	0	
0	0	1		1
0	1	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	1 1 0
0	1 1	0	1	
0	1	1	1 0	1
0		1	1	0
1	1 0	1 1 0 0 1 1 0	1 0	0 1 0 1 1
1		0		1
1	0	1	0	1
1		0 1 1 0	$\begin{array}{ c c }\hline 1\\0\\1\\0\\\end{array}$	1
1	0 1	0	0	1 0
0 0 0 0 0 0 0 0 1 1 1 1 1	1	0		0
1	1	1	1 0	1
1	1	1	1	1

$$f(x_1, x_2, x_3, x_4) = 1 \oplus x_2 \oplus x_2 x_3 \oplus x_2 x_3 x_4 \oplus x_1 x_2 x_3 x_4 =$$

$$= 1 \oplus x_2 (1 \oplus x_3 \oplus x_3 x_4 \oplus x_1 x_3 x_4) = 1 \oplus x_2 (1 \oplus x_3 (1 \oplus x_4 \oplus x_1 x_4)$$

Применяем следующую замену:

$$x_1 = 0, x_2 = 1, x_3 = x, x_4 = y;$$

Получаем следующее:

$$f(0,1,x,y) = 1 \oplus 1(1 \oplus x(1 \oplus y)) = 1 \oplus 1(1 \oplus x \oplus xy) = 1 \oplus 1 \oplus x \oplus xy = x \oplus xy = x(1 \oplus y) = x\bar{y}$$

Otbet: $f(0, 1, x, y) = x\bar{y}$.

- 10. Подсчитать число функций, зависящих от переменных $x_1, x_2, ..., x_n$ и принадлежащих множеству A:
 - (a) $A = (S \cap T_0) \cup T_1$
 - (b) $A = L \setminus (T_0 \cup T_1)$
 - (c) $A = S \setminus (T_0 \cup L)$
 - (a) $A = (S \cap T_0) \cup T_1$

Из определений функций следует $|S| = 2^{2^{n-1}}$, $|T_0| = |T_1| = 2^{2^{n-1}}$. Она сохраняет константу 0 в пересечении с T_0 , значит среди 2^{n-1} мест одно занято. $\Rightarrow |S \cap T_0| = 2^{2^{n-1}-1}$. Затем расписываем объединение этого множества с T_1 :

 $|(S\cap T_0)\cup T_1|=|S\cap T_0|+|T_1|-|S\cap T_0\cap T_1|$ Учитываем, что $|S\cap T_0\cap T_1|=|S\cap T_0|=2^{2^{n-1}-1}$, так как пересекаясь с T_0 , S пересекается и с T_1 . На выходе получаем:

$$A = |S \cap T_0| + |T_1| - |S \cap T_0 \cap T_1| = 2^{2^{n-1}-1} + 2^{2^n-1} - 2^{2^{n-1}-2} = 2^{2^{n-1}-2} + 2^{2^n-1}$$

Other: $2^{2^{n-1}-2} + 2^{2^n-1}$.

(b) $A = (L \setminus S) \cup (T_0 \setminus T_1)$

Распишем объединение:

$$(L \setminus S) \cup (T_0 \setminus T_1) = |L \setminus S| + |T_0 \setminus T_1| - |(L \setminus S) \cap (T_0 \setminus T_1)|$$
 Где $|(L \setminus S) \cap (T_0 \setminus T_1)| = (|L| - |L \cap S| \cap |T_0| - |T_0 \cap T_1|) = |L \cap T_0| - |L \cap T_0 \cap T_1| - |L \cap S \cap T_0| + |L \cap S \cap T_0 \cap T_1| = [|L| = 2^{n+1}, |L \cap S| = 2^n, |L \cap S \cap T_0 \cap T_1| = 2^{n-1}, ... |L \cap S||T_0||T_1|] = 2^n - 2^n - 2^{n-1} + 2^{n-1} = 0$

Следовательно

$$A = |L \setminus S| + |T_0 \setminus T_1| - |(L \setminus S) \cap (T_0 \setminus T_1)| = |L| - |L \cap S| + |T_0| - |T_0 \cap T_1| = 2^{n+1} - 2^n + 2^{2^n - 1} - 2^{2^n - 2} = 2^n + 2^{2^n - 2}$$
Other: $2^n + 2^{2^n - 2}$.

(c) $A = S \setminus (T_0 \cup L)$ $A = S \setminus (T_0 \cup L) = |S| - |S \cap (T_0 \cup L)| = |S| - |S \cap T_0 \cup S \cap L| = |S| - (|S \cap T_0| + |S \cap L| - |S \cap T_0 \cap L|) = = 2^{2^{n-1}} - (2^{2^{n-1}-1} + 2^n - 2^{n-1}) = 2^{2^{n-1}} - 2^{2^{n-1}-1} - 2^n + 2^{n-1} = 2^{2^{n-1}-1} + 2^{n-1}(1-2) = 2^{2^{n-1}-1} - 2^{n-1}$ Other: $2^{2^{n-1}-1} - 2^{n-1}$ 11. По вектору значений $\tilde{\alpha}_f$ выяснить, является ли функция f монотонной.

$$\tilde{\alpha}_f = (011001010)$$

$$0110 \le 1010$$

 $01 \le 10 \mid\mid 10 \le 10$
 $0 \le 1 \mid\mid 1 \le 0$

Ответ: Не является монотонной.

12. Построить сокращенную д.н.ф. для функции f, заданной вектором своих значений:

$$\tilde{\alpha}_f = (00011011)$$

x_1	x_2	x_3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Множество наборов, на которых данная функция обращается в 1: $N_f = \{011, 100, 110, 111\}.$

СДНФ: $\bar{x}_1 x_2 x_3 \vee x_1 \bar{x}_2 \bar{x}_3 \vee x_1 x_2 \bar{x}_3 \vee x_1 x_2 x_3$

Построим карту Карно для СДНФ:

x_1/x_2x_3	00	01	11	10
0			+	
1	+		+	+

Отсюда минимизированная ДНФ: $x_2x_3 \vee x_1\bar{x}_3$

Otbet: $x_2x_3 \vee x_1\bar{x}_3$