Projectile

ขว้างก้อนหินที่มีมวล ด้วยความเร็วต้น u ทำมุม heta องศา กับแนวระดับดังรูป หากก้อนหินตกถึงพื้นครั้งแรก ณ เวลา t วินาที จงเขียนโปรแกรมคำนวณหาค่า h และ r เมื่อ h คือ ระยะในแนวดิ่งขณะที่ก้อนหินอยู่สูงจากพื้นมากที่สุด และ r คือ ระยะในแนวระดับขณะก้อนหินตกถึงพื้นครั้งแรก จากสูตร

$$\frac{u}{\theta} \circ \frac{t}{s}$$

$$g = 10 \text{ m/s}^2$$

$$r = u(\cos \theta)t$$

$$h = (t - \frac{u \sin \theta}{g}) \left(u \sin \theta + \frac{1}{2} g (t - 3 \frac{u \sin \theta}{g}) \right)$$

กำหนดให้ไม่ต้องสนใจแรงลม, 0° $\leq heta \leq$ 90° และ $g=10 \ m/s^2$

ข้อมูลนำเข้า

 $u \; heta$ และ t คือ อัตราเร็วต้นของก้อนหิน, ทิศการขว้างก้อนหิน และเวลาที่ก้อนหินตกถึงพื้นครั้งแรก

ข้อมูลส่งออก

h และ r คือ ระยะในแนวดิ่งขณะที่ก้อนหินอยู่สูงจากพื้นมากที่สุด และ ระยะในแนวระดับขณะก้อนหินตกถึงพื้นครั้งแรก คำนวณจากสูตรข้างต้น ให้แสดงค่าทั้งสองมีเลขหลังจุดทศนิยม 1 ตำแหน่ง ด้วยการ ${f round(x*10)/10}$

ตัวอย่าง	
input (จากแป้นพิมพ์)	output (ทางจอภาพ)
10 0 10	500 100
10.0 45.0 10.0	431.8 70.7

ชุดทดสอบ

ข้อมูลทดสอบถูกแบ่งเป็นกลุ่ม ๆ โดยแต่ละกลุ่มมีปริมาณและลักษณะตามที่เขียนกำกับในตารางข้างล่างนี้ เพื่อจำแนกข้อมูล ทดสอบตามความยากง่ายในการประมวลผล

ปริมาณชุดทดสอบ	ลักษณะของชุดทดสอบ
20%	$\theta = 0^{\circ}$
20%	$\theta = 90^{\circ}$
60%	0° ≤ θ ≤ 90°