Human Activity Recognition using Skeleton Data from RGBD Sensors

Authors:

Enea Cippitelli
Samuele Gasparrini
Ennio Gambi
Susanna Spinsante

-Presented By: Dhanesh Pradhan

Overview: Problem Statement

Overview

Develop Human Activity Recognition Algorithm exploiting skeleton data extracted by RGBD sensors

System Architecture

Result 1

Result 2

Result 3

Result 4

Conclusion

Overview: CAD-60 Dataset

Overview

System Architecture

Result 1

Result 2

Result 3

Result 4

Conclusion

Description:

- •60 RGB-D videos
- 4 subjects
- 5 different environments
- •12 activities

Issues:

3 Right handed person

1 Left handed person

Rocult. Training on Right and Loft

Result: Confusion Matrix

Regult: Variation of precision and

Result: Variation of precision and

		"New Person"	
	Algorithm	Precision (%)	Recall (%)
	Sung et al., AAAI PAIR 2011, ICRA 2012. [1,2]	67.9	55.5
Ov	Koppula, Gupta, Saxena, IJRR 2012. [3]	80.8	71.4
	Zhang, Tian, NWPJ 2012 [4]	86	84
	Ni, Moulin, Yan, ECCV 2012 [5]	Accur: 65.32	-
Sy Arch	Yang, Tian, JVCIR 2013 [6]	71.9	66.6
	Piyathilaka, Kodagoda, ICIEA 2013 [7]	70*	78*
	Ni et al., Cybernetics 2013 [8]	75.9	69.5
R€	Gupta, Chia, Rajan, MM 2013 [9]	78.1	75.4
	Wang et al., PAMI 2013 [10]	Accur: 74.70	-
	Zhu, Chen, Guo, IVC 2014 [16]	93.2	84.6
	Faria, Premebida, Nunes, RO-MAN 2014 [17]	91.1	91.9
	Shan, Akella, ARSO 2014 [18]	93.8	94.5
	Gaglio, Lo Re, Morana, HMS 2014 [19]	77.3	76.7
R€	Parisi, Weber, Wermter, Front. Neurobot. 2015 [20]	91.9	90.2
	Cippitelli, CIN 2016 [21]	93.9	93.5

Result 4

Pradhan, HDC 2017: Precision (81.18 %) and Recall (81.88 %)
Or

Pradhan, HDC 2017: Precision (93.04 %) and Recall (94.27 %) (Only right handed person)

Conclusion

Conclusion

Overview

System Architecture

Result 1

Result 2

Result 3

Result 4

Conclusion

- Precision and Recall can be improved by getting more training data for left handed person
 - Record video from Kinect
 - Mirror data from right handed person
- Spatial and Temporal Hyperdimensional Computing needs to be applied together to improve results
- Use combination of features:
 skeleton + joint orientation + HOG RGB + HOG depth