	class 2 Arrays
	<u>Q1</u> Missing number
	[3,0,1] [3,0,1]
	1^{st} approach: $\begin{bmatrix} 0,1,3 \end{bmatrix}$
	\downarrow
	0H = 1
	1+1=2
	Tc: $O(mlogn) + O(n) = O(nlogn)$
	2nd an anna ah : Haus Cat
	2nd approach: Hashset
	$\begin{bmatrix} 3 & 0 & 1 \end{bmatrix}$
	Y0,1,2,3
	Size = Ω . Note the elements = $\Omega + 1$.
	No of elements = $n+1$
	0 n+1
	5
	[9,6,4,2,3,5,7,0,1]
	$v_{\infty} = 10$
	8
	Algorithm'
	1) Maintain a hashset of elements 2) No of elements = n+1
	Check its no. from 0n+1 are present in hashset/not of not, return the no.
	TC: O(m)
	SC:O(m)
	Q2 Merge the intervals
	[[1,3], [2,6], [8,10], [15,18]]
	$\frac{Ans:}{[1/3],[2/6]} = [1/6],[8/10],[15/18]$
	$\Gamma \cup \Gamma \cup$
	[1,4], [4,5], [8, 4], [10,13]
\	~ [4,5] = [1,5] = [8,13]
	= [1,5], [8,13]

Algorithm:
1) Soot the intervals based on starting element (start time)
2) Ensert 1st element into the answer
3) continue inserting each interval
we'll check it starting of new interval < end of last inserted interval
If it is true, update and time of last inserted interval to be max of and time of both intervals. If it is false, sumply insert the interval
Of it is false, simply insert the interval
of Return the ans.
TC: $O(n\log n) + O(n) = O(n\log n)$
193 Merge sorted array
[1,2,3,0,0] $[2,5,6]$
m=3 $m=3$
[1,2,2,3,5,6]
$\frac{1,22,3556}{2,5,6} = \left[1,2,2,3,5,6\right]$
au-avay 123
$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
Along ithm: 1) Shitialine a man containing the
Algorithm: 1) Initialise a new array containing the first m elements of num 1.
2) Initialise p1 to beginning of numst/copy
3) Quitialise p2 to beginning g nums 2
4) of numsloopy [p] exists d is less than =
rums 2 [p2]
write nums (copy [p] in num1 & increment
else P1
Write nums 2 [p2] in num 1 l'increment p2
<u>tc</u> : o (m tm)
sc: 0 (m)

110111101010 52,4,5,6,8,103

num 1/2 ==0 num o/ 5 = = 0

Algo:
1) creating an array of size b-a+1

- 2) For each element we are checking if it is

 dwisible by 2 or 5

 of " = mark it as 1

 other mark it as 0
- 3) Return all numbers marked as 1

g7 Make array a palindron

abba = abcba

121

NAMAN = NAMAN

Revere of array

Algorithm:

1) Let f(i,j) be the minimum no of operations to make subarray [i---j] a parindrome we start from i=0 & j=n-1

[33], [53]

a) If aution == aution, we don't need to do any else are[i] > are[j], we'll muge j-12 j are[j-1] = are[j-1] + are[j] ans-1+6(2,j-1) are [i] < are [j] are [i+1] = autil+ are [i+1] ans= 1+ & (i+, j) 3) Return { (0, n-1) $\{15, 4, 15\} = 0(m) = tc$ (0) = sc