Continuous-Time Markov Chains

What is a continuous-time Markov chain?

Continuous-time Markov chain

Definition (CTMC)

Continuous-time MC = Discrete-time MC + random sojourn time in each state

Ingredients of a continuous-time Markov chain: initial situation, and

- states
- transition probabilities : $p_{i,j}$
- sojourn time in each state : $Exp(\lambda_i)$

This week is devoted to continuous time Markov chains. These stochastic processes are the combination of a discrete time Markov chain and a random sojourn time. Namely, we have as before a state space, the transition probabilities $p_{i,j}$, to which we add random sojourn times, which are supposed to be exponentially distributed.

Construction of a sample-path

Let's look at how the trajectory of a Continuous Time Markov Chain is built. We start with an initial state i. The process stays there for a random amount of time, which is an exponential random variable of parameter λ_i . Then, with probability $p_{i,j}$, it jumps to state j. And it stays there for an exponential random time of parameter λ_j . Then jumps with probability $p_{j,k}$ to state k where it stays for an exponential random time of parameter λ_k . And the process continues forever, following these rules.

M/M/1

Number of customers N(t)Client arrivals Service

- 1 server,
- infinite buffer capacity,
- Poisson arrivals (λ) ,
- Exponential services (μ) ,
- FIFO (First In First Out) service discipline

Let's see now how it works for the M/M/1 queue. Recall that we have one server, an infinite buffer, Poisson arrivals of intensity λ , exponentially distributed service times, and the discipline is First In First Out. The process we are interested in is the number of customers in the system.

- $p_{i,j} = 0$ if j > i + 1 or j < i 1
- Until next event,

$$\min\Big(\mathsf{Exp}(\mu),\;\mathsf{Exp}(\lambda)\Big) = \mathsf{Exp}(\lambda + \mu) \Longrightarrow \lambda_i = \lambda + \mu$$

• For j = i + 1,

$$p_{i,i+1} = \mathbf{P}\Big(\mathsf{Exp}(\lambda) \leq \mathsf{Exp}(\mu)\Big) = rac{\lambda}{\lambda + \mu}$$

• For j = i - 1,

$$p_{i,i-1} = \mathbf{P}\Big(\mathsf{Exp}(\lambda) \ge \mathsf{Exp}(\mu)\Big) = rac{\mu}{\lambda + \mu}$$

• $\lambda_0 = \lambda$, $p_{0,1} = 1$

This number changes only when a new customer arrives or when a service ends. Since there are no two simultaneous arrivals or simultaneous departures, the process can only increase or decrease by one unit at each change. This means $p_{i,j}$ is zero if the gap between i and j is more than 2. If we have i clients present in the system, the next event happens either when there is an arrival or when there is a departure. The next arrival happens in an exponential time of parameter λ since the arrivals form a Poisson process of intensity λ . The next departure happens in an exponential time of intensity μ . So, the next event happens at the minimum of these two time lapses, which, as we know, is distributed as an exponential random variable of parameter $\lambda + \mu$. This means that λ_i is equal to $\lambda + \mu$. The process jumps from i to i+1 if the arrival happens before the departure, in other words... if an exponential random variable of parameter λ is smaller than an exponential random variable of parameter μ . Again, we know that the probability of this event is $\frac{\lambda}{\lambda + \mu}$. The process jumps from i to i-1 with the complementary probability which is $\frac{\mu}{\lambda + \mu}$. If i is zero, no departure can occur, so the next event happens in an exponential time of parameter λ . This means $\lambda_0 = \lambda$ and $p_{0,1} = 1$.