Fenómenos de Transferência II

Transferência de massa entre fases

1. Ar é por vezes seco por um processo de absorção com ácido sulfúrico. O ar húmido circula em contracorrente em relação ao H₂SO₄ através de uma coluna de enchimento. Numa dada situação a pressão parcial de água na corrente de ar húmido que entra na base da coluna é de 11,9 mm Hg, sendo a respectiva pressão parcial à saída, no topo da coluna de 2,4 mm Hg. A solução diluída de ácido sulfúrico entra no topo da coluna com uma concentração de H₂O de 1,8 mol/m³, saindo na base da coluna, mais rica em soluto 2,12 mol H₂O/m³. Resultados experimentais indicam:

 $k_G = 2.09 \text{ mol/h m}^2 \text{ atm}$

 $k_L = 0.068 \text{ m/h}$

Para uma área de transferência de massa unitária e assumindo k_G e k_L essencialmente constantes, determine para ambos os pontos terminais da coluna:

- a) A velocidade de transferência de massa.
- b) A % da resistência total respeitante a cada uma das fases.
- c) As composições interfaciais.
- d) Os coeficientes globais de transferência de massa K_O e K_L.
- 2. Água com cloro usada no branqueamento da pasta de papel é obtida por absorção de cloro gasoso em água numa coluna de enchimento a 293K e 1atm. Num dado ponto da coluna a pressão de cloro no gás é 100 mm Hg e a concentração de cloro no líquido é de 1Kg/m3.

Se 80% da resistência à transferência de massa estiver na fase líquida, calcule:

- a) As composições interfaciais.
- b) As composições de equilíbrio.

Dados de equilíbrio:

p _{cloro} (mmHg)	5	10	30	50	100	150
C _{cloro} (g/L)	0.438	0.575	0.937	1.21	1.773	2.27

p_A(atm)

$$N_A = K_G \left(p_{AG} - p_{Ai} \right) = 2.05 \left(0.01566 - 0.0096 \right)$$
 $N_A = 0.0126 \frac{mol}{h m^2}$

7. Nesiste f. gasosa =
$$\frac{p_{AG} - p_{Ai}}{p_{AG} - p_{A}} \times 100 = \frac{0.01566 - 0.009}{0.01566 - 0.005}$$

= 62%

ou NA = Kg (pag - pa")

OU NA = KL (CA* - CAL)

Pode-se the afuntar um polición o quercel

a) corp. equil. Pclas =
$$35 \text{ mmHz}$$

$$Cclas = 1.773 \text{ g/L}$$

80% resist of liquida 2000 resist of gasosal

$$\frac{PAG - PAi'}{PAG - PA''} = 0.2 = \frac{100 - PAi'}{100 - 35}$$

px = 87 mm Hg

$$0.8 = \frac{C_{Ai} - C_{AL}}{C_{A'} - C_{AL}} \qquad C_{A'} - C_{AL} = 0.8 (1.773 - 1)$$

$$C_{A'} = 1.62 \text{ g/L}$$