

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:SSPTACMC1647

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * Welcome to STN International * * * * * * * * *

NEWS 1 Web Page for STN Seminar Schedule - N. America
NEWS 2 NOV 21 CAS patent coverage to include exemplified prophetic substances identified in English-, French-, German-, and Japanese-language basic patents from 2004-present
NEWS 3 NOV 26 MARPAT enhanced with FSORT command
NEWS 4 NOV 26 CHEMSAFE now available on STN Easy
NEWS 5 NOV 26 Two new SET commands increase convenience of STN searching
NEWS 6 DEC 01 ChemPort single article sales feature unavailable
NEWS 7 DEC 12 GBFULL now offers single source for full-text coverage of complete UK patent families
NEWS 8 DEC 17 Fifty-one pharmaceutical ingredients added to PS
NEWS 9 JAN 06 The retention policy for unread STNmail messages will change in 2009 for STN-Columbus and STN-Tokyo
NEWS 10 JAN 07 WPIDS, WPINDEX, and WPIX enhanced Japanese Patent Classification Data

NEWS EXPRESS JUNE 27 08 CURRENT WINDOWS VERSION IS V8.3,
AND CURRENT DISCOVER FILE IS DATED 23 JUNE 2008.

NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS LOGIN Welcome Banner and News Items
NEWS IPC8 For general information regarding STN implementation of IPC 8

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

* * * * * * * * * STN Columbus * * * * * * * * * * *

FILE 'HOME' ENTERED AT 16:45:35 ON 29 JAN 2009

=> file .cherie
COST IN U.S. DOLLARS SINCE FILE TOTAL
 ENTRY SESSION
FULL ESTIMATED COST 0.88 0.88

FILE 'EMBASE' ENTERED AT 16:48:12 ON 29 JAN 2009
Copyright (c) 2009 Elsevier B.V. All rights reserved.

FILE 'MEDLINE' ENTERED AT 16:48:12 ON 29 JAN 2009

FILE 'CAPLUS' ENTERED AT 16:48:12 ON 29 JAN 2009
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2009 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'BIOSIS' ENTERED AT 16:48:12 ON 29 JAN 2009
Copyright (c) 2009 The Thomson Corporation

FILE 'SCISEARCH' ENTERED AT 16:48:12 ON 29 JAN 2009
Copyright (c) 2009 The Thomson Corporation

FILE 'DISSABS' ENTERED AT 16:48:12 ON 29 JAN 2009
COPYRIGHT (C) 2009 ProQuest Information and Learning Company; All Rights Reserved.

FILE 'BIOTECHABS' ACCESS NOT AUTHORIZED

FILE 'REGISTRY' ENTERED AT 16:48:12 ON 29 JAN 2009
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2009 American Chemical Society (ACS)

=> s DOCK2
L1 207 DOCK2

=> s ELMO
L2 883 ELMO

=> s L1 and L2
L3 9 L1 AND L2

=> d L3 full 1-9
'FULL' IS NOT A VALID FORMAT
In a multifile environment, a format can only be used if it is valid
in at least one of the files. Refer to file specific help messages
or the STNGUIDE file for information on formats available in
individual files.

REENTER DISPLAY FORMAT FOR ALL FILES (FILEDEFAULT):all

L3 ANSWER 1 OF 9 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights
reserved on STN
AN 2008599701 EMBASE
TI Parallel phosphatidylinositol 3-kinase (PI3K)-dependent and Src-dependent
pathways lead to CXCL8-mediated Rac2 activation and chemotaxis.
AU Richmond, Ann (correspondence)
CS Department of Veterans Affairs, School of Medicine, Vanderbilt University,
Nashville, TN 37232, United States. ann.richmond@vanderbilt.edu
AU Sai, Jiqing; Raman, Dayanidhi; Richmond, Ann (correspondence)
CS Dept. of Cancer Biology, School of Medicine, Vanderbilt University,
Nashville, TN 37232, United States. ann.richmond@vanderbilt.edu
AU Liu, Yuxin; Wikswo, John
CS VIIIBRE and Biomedical Engineering, School of Engineering, Vanderbilt
University, Nashville, TN 37212, United States.
SO Journal of Biological Chemistry, (26 Sep 2008) Vol. 283, No. 39, pp.
26538-26547.
Refs: 47
ISSN: 0021-9258 E-ISSN: 1083-351X CODEN: JBCHA3
PB American Society for Biochemistry and Molecular Biology Inc., 9650
Rockville Pike, Bethesda, MD 20814, United States.
CY United States
DT Journal; Article
FS 029 Clinical and Experimental Biochemistry

LA English
SL English
ED Entered STN: 16 Jan 2009
Last Updated on STN: 16 Jan 2009
AB The requirement for phosphatidylinositol 3-kinase (PI3K) in the establishment of cell polarity and motility in a number of cell types has recently come into question. In this study, we demonstrate that inhibition of PI3K by wortmannin in neutrophil-like differentiated HL60 cells expressing CXCR2 resulted in reduced cell motility but normal chemotaxis in response to a gradient of CXCL8. However, wortmannin inhibition of PI3K did impair the ability of cells to re-orient their polarity and respond quickly to a change in the direction of the CXCL8 gradient. We hypothesized that Src-regulated ELMO-Dock2 -Rac2 activation mediates chemotaxis in the absence of PI3K activity. Inhibition of Src with the small molecule inhibitor, PP2, or inhibition of Dock2 by shRNA knockdown confirmed the functional role of Src and Dock2 in regulating chemotaxis when PI3K was inhibited. Moreover, neutrophils isolated from bone marrow of hck(−/−)fgr(−/−)lyn(−/−) mice exhibited much more severe inhibition of chemotaxis when PI3K was blocked with wortmannin as compared with neutrophils isolated from bone marrow of wild-type mice. Thus, PI3K and Src-ELMO-Dock2 pathways work in parallel to activate Rac2 and modulate chemotaxis in response to a CXCL8 gradient in neutrophils.
CT Medical Descriptors:
animal cell
article
bone marrow
cell motility
cell polarity
cell strain HL 60
controlled study
enzyme activity
mouse
neutrophil
nonhuman
priority journal
CT Drug Descriptors:
4 amino 7 tert butyl 5 (4 chlorophenyl)pyrazolo[3,4 d]pyrimidine
guanine nucleotide binding protein
*interleukin 8
*phosphatidylinositol 3 kinase inhibitor
 protein dock2
protein tyrosine kinase
*Rac2 protein
short hairpin RNA
unclassified drug
wortmannin
RN (interleukin 8) 114308-91-7; (protein tyrosine kinase) 80449-02-1;
(wortmannin) 19545-26-7
L3 ANSWER 2 OF 9 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN
AN 2002328924 EMBASE
TI The CDM protein DOCK2 in lymphocyte migration.
AU Reif, Karin (correspondence); Cyster, Jason G
CS Howard Hughes Medical Institute, Dept of Microbiology and Immunology,
University of California San Francisco, San Francisco, CA 94143-0414,
United States. kreif@itsa.ucsf.edu; cyster@itsa.ucsf.edu
AU Reif, Karin (correspondence)
CS Howard Hughes Medical Institute, Dept. of Microbiology, Univ. of
California San Francisco, San Francisco, CA 94143-0414, United States.
kreif@itsa.ucsf.edu

SO Trends in Cell Biology, (1 Aug 2002) Vol. 12, No. 8, pp. 368-373.
Refs: 58
ISSN: 0962-8924 CODEN: TCBIEK

PUI S 0962-8924(02)02330-9

CY United Kingdom

DT Journal; General Review; (Review)

FS 026 Immunology, Serology and Transplantation
029 Clinical and Experimental Biochemistry

LA English

SL English

ED Entered STN: 26 Sep 2002
Last Updated on STN: 26 Sep 2002

AB T and B lymphocytes migrate hundreds of micrometers each day to survey the body's lymphoid tissues for antigens. No other mammalian cell type undergoes such extensive and continual movement, raising the question of whether lymphocytes have specializations to support their migratory behavior. This possibility has recently gained support from studies of mice deficient in DOCK2, a member of the *Caenorhabditis elegans* Ced-5, mammalian DOCK180 and *Drosophila melanogaster* myoblast city (CDM) family of scaffolding proteins. Migration of lymphocytes, but not other cell types, is severely disrupted in DOCK2-deficient mice. Despite the conserved role of CDM molecules in regulating Rac activation and actin assembly, relatively little is known about how these molecules function. Here, we review the role of DOCK2 in lymphocyte homing to lymphoid tissues and discuss recent findings for other CDM family molecules that provide a basis for understanding how DOCK2 might function in lymphocytes.

CT Medical Descriptors:
B lymphocyte
Caenorhabditis elegans
cell type
chemotaxis
Drosophila melanogaster
*lymphocyte migration
lymphoid tissue
molecule
myoblast
nonhuman
nucleotide sequence
priority journal
protein assembly
protein expression
protein function
protein protein interaction
review
sequence homology
T lymphocyte

CT Drug Descriptors:
actin
chemokine
chemokine cxcl13
chemokine receptor CCR2
macrophage inflammatory protein 3beta
monocyte chemotactic protein 1
pertussis toxin
*protein
protein ced 10
protein Ced 12
protein Ced 5
protein DOCK180
protein DOCK2
protein ELMO 1

protein ELMO 2
protein ELMO 3
protein myoblast city
Rac protein
secondary lymphoid tissue chemokine
stromal cell derived factor 1
unclassified drug

RN (macrophage inflammatory protein 3beta) 181030-14-8; (pertussis toxin)
70323-44-3; (protein) 67254-75-5

GEN GENBANK AB002297 referred number; GENBANK AC003077 referred number;
GENBANK AC003080 referred number; GENBANK AF010409 referred number;
GENBANK D50857 referred number; GENBANK D86964 referred number; GENBANK
NM_014705 referred number; GENBANK U20939 referred number

L3 ANSWER 3 OF 9 MEDLINE on STN
AN 2008614691 MEDLINE
DN PubMed ID: 18662984
TI Parallel phosphatidylinositol 3-kinase (PI3K)-dependent and Src-dependent pathways lead to CXCL8-mediated Rac2 activation and chemotaxis.
AU Sai Jiqing; Raman Dayanidhi; Liu Yuxin; Wikswo John; Richmond Ann
CS Department of Cancer Biology, School of Medicine, Vanderbilt University,
Nashville, Tennessee 37232, USA.
NC CA34590 (United States NCI)
CA68485 (United States NCI)
U54CA113007 (United States NCI)
SO The Journal of biological chemistry, (2008 Sep 26) Vol. 283, No. 39, pp.
26538-47. Electronic Publication: 2008-07-28.
Journal code: 2985121R. ISSN: 0021-9258.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
(RESEARCH SUPPORT, N.I.H., EXTRAMURAL)
(RESEARCH SUPPORT, NON-U.S. GOV'T)
(RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.)
LA English
FS Priority Journals
EM 200811
ED Entered STN: 23 Sep 2008
Last Updated on STN: 11 Nov 2008
Entered Medline: 10 Nov 2008
AB The requirement for phosphatidylinositol 3-kinase (PI3K) in the establishment of cell polarity and motility in a number of cell types has recently come into question. In this study, we demonstrate that inhibition of PI3K by wortmannin in neutrophil-like differentiated HL60 cells expressing CXCR2 resulted in reduced cell motility but normal chemotaxis in response to a gradient of CXCL8. However, wortmannin inhibition of PI3K did impair the ability of cells to re-orient their polarity and respond quickly to a change in the direction of the CXCL8 gradient. We hypothesized that Src-regulated ELMO-Dock2-Rac2 activation mediates chemotaxis in the absence of PI3K activity. Inhibition of Src with the small molecule inhibitor, PP2, or inhibition of Dock2 by shRNA knockdown confirmed the functional role of Src and Dock2 in regulating chemotaxis when PI3K was inhibited. Moreover, neutrophils isolated from bone marrow of hck(--)fgr(--)lyn(--) mice exhibited much more severe inhibition of chemotaxis when PI3K was blocked with wortmannin as compared with neutrophils isolated from bone marrow of wild-type mice. Thus, PI3K and Src-ELMO-Dock2 pathways work in parallel to activate Rac2 and modulate chemotaxis in response to a CXCL8 gradient in neutrophils.
CT 1-Phosphatidylinositol 3-Kinase
Androstadienes: PD, pharmacology
Animals
Cell Polarity: PH, physiology

Chemotaxis: DE, drug effects
*Chemotaxis: PH, physiology
Guanine Nucleotide Exchange Factors: GE, genetics
Guanine Nucleotide Exchange Factors: ME, metabolism
HL-60 Cells
Humans
Interleukin-8: GE, genetics
*Interleukin-8: ME, metabolism
Mice
Mice, Knockout
Nerve Tissue Proteins: GE, genetics
Nerve Tissue Proteins: ME, metabolism
Neutrophils: CY, cytology
*Neutrophils: ME, metabolism
Protein Kinase Inhibitors: PD, pharmacology
Proto-Oncogene Proteins c-hck: GE, genetics
Proto-Oncogene Proteins c-hck: ME, metabolism
Pyrimidines: PD, pharmacology
Receptors, Interleukin-8B: GE, genetics
*Receptors, Interleukin-8B: ME, metabolism
Signal Transduction: DE, drug effects
Signal Transduction: PH, physiology
rac GTP-Binding Proteins: GE, genetics
*rac GTP-Binding Proteins: ME, metabolism
src-Family Kinases: GE, genetics
*src-Family Kinases: ME, metabolism

RN 19545-26-7 (wortmannin)
CN 0 (AG 1879); 0 (Androstadienes); 0 (DOCK2 protein, human); 0 (DOCK3 protein, human); 0 (FGD1-related Cdc42-GEF protein, human); 0 (Guanine Nucleotide Exchange Factors); 0 (IL8 protein, human); 0 (Interleukin-8); 0 (Nerve Tissue Proteins); 0 (Protein Kinase Inhibitors); 0 (Pyrimidines); 0 (Receptors, Interleukin-8B); EC 2.7.1.112 (HCK protein, human); EC 2.7.1.112 (Hck protein, mouse); EC 2.7.1.112 (Proto-Oncogene Proteins c-hck); EC 2.7.1.112 (lyn protein-tyrosine kinase); EC 2.7.1.112 (src-Family Kinases); EC 2.7.1.137 (1-Phosphatidylinositol 3-Kinase); EC 3.6.1.- (rac2 GTP-binding protein); EC 3.6.5.2 (rac GTP-Binding Proteins)

L3 ANSWER 4 OF 9 CAPLUS COPYRIGHT 2009 ACS on STN
AN 2008:1130400 CAPLUS
DN 149:353567
ED Entered STN: 19 Sep 2008
TI Parallel Phosphatidylinositol 3-Kinase (PI3K)-dependent and Src-dependent Pathways Lead to CXCL8-mediated Rac2 Activation and Chemotaxis
AU Sai, Jiqing; Raman, Dayanidhi; Liu, Yuxin; Wikswo, John; Richmond, Ann
CS Department of Cancer Biology, School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
SO Journal of Biological Chemistry (2008), 283(39), 26538-26547
CODEN: JBCHA3; ISSN: 0021-9258
PB American Society for Biochemistry and Molecular Biology
DT Journal
LA English
CC 15-5 (Immunochemistry)
AB The requirement for phosphatidylinositol 3-kinase (PI3K) in the establishment of cell polarity and motility in a number of cell types has recently come into question. In this study, the authors demonstrate that inhibition of PI3K by wortmannin in neutrophil-like differentiated HL60 cells expressing CXCR2 resulted in reduced cell motility but normal chemotaxis in response to a gradient of CXCL8. However, wortmannin inhibition of PI3K did impair the ability of cells to re-orient their polarity and respond quickly to a change in the direction of the CXCL8 gradient. The authors hypothesized that Src-regulated ELMO-Dock2-Rac2 activation mediates chemotaxis in the absence of PI3K

activity. Inhibition of Src with the small mol. inhibitor, PP2, or inhibition of Dock2 by shRNA knockdown confirmed the functional role of Src and Dock2 in regulating chemotaxis when PI3K was inhibited. Moreover, neutrophils isolated from bone marrow of hck-/-fgr-/-lyn-/- mice exhibited much more severe inhibition of chemotaxis when PI3K was blocked with wortmannin as compared with neutrophils isolated from bone marrow of wild-type mice. Thus, PI3K and Src-ELMO-Dock2 pathways work in parallel to activate Rac2 and modulate chemotaxis in response to a CXCL8 gradient in neutrophils.

ST phosphatidylinositol kinase CXCL8 chemokine signaling neutrophil chemotaxis

IT CD antigens
RL: BSU (Biological study, unclassified); BIOL (Biological study) (CD182; phosphatidylinositol kinase- and Src-dependent signaling pathways for interleukin 8-induced Rac2 activation in neutrophil chemotaxis)

IT CXC chemokine receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study) (CXCR2; phosphatidylinositol kinase- and Src-dependent signaling pathways for interleukin 8-induced Rac2 activation in neutrophil chemotaxis)

IT Proteins
RL: BSU (Biological study, unclassified); BIOL (Biological study) (Dock2; phosphatidylinositol kinase- and Src-dependent signaling pathways for interleukin 8-induced Rac2 activation in neutrophil chemotaxis)

IT Proteins
RL: BSU (Biological study, unclassified); BIOL (Biological study) (ELMO1; phosphatidylinositol kinase- and Src-dependent signaling pathways for interleukin 8-induced Rac2 activation in neutrophil chemotaxis)

IT G proteins (guanine nucleotide-binding proteins)
RL: BSU (Biological study, unclassified); BIOL (Biological study) (Rac2; phosphatidylinositol kinase- and Src-dependent signaling pathways for interleukin 8-induced Rac2 activation in neutrophil chemotaxis)

IT Neutrophil
(chemotaxis; phosphatidylinositol kinase- and Src-dependent signaling pathways for interleukin 8-induced Rac2 activation in neutrophil chemotaxis)

IT Chemotaxis
(neutrophil; phosphatidylinositol kinase- and Src-dependent signaling pathways for interleukin 8-induced Rac2 activation in neutrophil chemotaxis)

IT Cell polarity
Human
Signal transduction
(phosphatidylinositol kinase- and Src-dependent signaling pathways for interleukin 8-induced Rac2 activation in neutrophil chemotaxis)

IT Interleukin 8
RL: BSU (Biological study, unclassified); BIOL (Biological study) (phosphatidylinositol kinase- and Src-dependent signaling pathways for interleukin 8-induced Rac2 activation in neutrophil chemotaxis)

IT Interleukin 8 receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study) (β ; phosphatidylinositol kinase- and Src-dependent signaling pathways for interleukin 8-induced Rac2 activation in neutrophil chemotaxis)

IT 115926-52-8, Phosphatidylinositol 3-kinase 141349-89-5, Src kinase
RL: BSU (Biological study, unclassified); BIOL (Biological study) (phosphatidylinositol kinase- and Src-dependent signaling pathways for

interleukin 8-induced Rac2 activation in neutrophil chemotaxis)
RE.CNT 47 THERE ARE 47 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Andrew, N; Nat Cell Biol 2007, V9, P193 CAPLUS
- (2) Benard, V; J Biol Chem 1999, V274, P13198 CAPLUS
- (3) Boxio, R; J Leukoc Biol 2004, V75, P604 CAPLUS
- (4) Camps, M; Nat Med 2005, V11, P936 CAPLUS
- (5) Chen, L; Dev Cell 2007, V12, P603 CAPLUS
- (6) Cote, J; J Cell Sci 2002, V115, P4901 CAPLUS
- (7) Cote, J; Methods Enzymol 2006, V406, P41 CAPLUS
- (8) Cote, J; Nat Cell Biol 2005, V7, P797 CAPLUS
- (9) deBakker, C; Curr Biol 2004, V14, P2208 CAPLUS
- (10) Ferguson, G; Nat Cell Biol 2007, V9, P86 CAPLUS
- (11) Filippi, M; Nat Immunol 2004, V5, P744 CAPLUS
- (12) Grimsley, C; J Biol Chem 2004, V279, P6087 CAPLUS
- (13) Gu, Y; J Biol Chem 2001, V276, P15929 CAPLUS
- (14) Gumienny, T; Cell 2001, V107, P27 CAPLUS
- (15) Hasegawa, H; Mol Cell Biol 1996, V16, P1770 CAPLUS
- (16) Heit, B; J Cell Sci 2008, V121, P205 CAPLUS
- (17) Heit, B; Nat Immunol 2008, V9, P743 CAPLUS
- (18) Hirsch, E; Science 2000, V287, P1049 CAPLUS
- (19) Hoeller, O; Curr Biol 2007, V17, P813 CAPLUS
- (20) Katoh, H; Nature 2003, V424, P461 CAPLUS
- (21) Kunisaki, Y; J Cell Biol 2006, V174, P647 CAPLUS
- (22) Li, S; J Immunol 2002, V169, P5043
- (23) Li, Z; Science 2000, V287, P1046 CAPLUS
- (24) Liu, Y; Biomed Microdevices 2008, V10, P499
- (25) Loovers, H; Mol Biol Cell 2006, V17, P1503 CAPLUS
- (26) Lowell, C; Genes Dev 1994, V8, P387 CAPLUS
- (27) Lu, M; Curr Biol 2005, V15, P371 CAPLUS
- (28) Lu, M; Methods Enzymol 2006, V406, P388 CAPLUS
- (29) Ma, Y; Cell 2000, V102, P635 CAPLUS
- (30) Meller, N; J Cell Sci 2005, V118, P4937 CAPLUS
- (31) Neel, N; J Cell Sci 2007, V120, P1559 CAPLUS
- (32) Nishihara, H; Blood 2002, V100, P3968 CAPLUS
- (33) Nombela-Arrieta, C; Immunity 2004, V21, P429 CAPLUS
- (34) Parent, C; Cell 1998, V95, P81 CAPLUS
- (35) Roberts, A; Immunity 1999, V10, P183 CAPLUS
- (36) Sai, J; J Biol Chem 2006, V281, P35931 CAPLUS
- (37) Sanui, T; Blood 2003, V102, P2948 CAPLUS
- (38) Sasaki, T; Science 2000, V287, P1040 CAPLUS
- (39) Servant, G; Science 2000, V287, P1037 CAPLUS
- (40) Shinohara, M; Nature 2002, V416, P759 CAPLUS
- (41) Smith, L; Cell Signal 2007, V19, P2528 CAPLUS
- (42) Takeda, K; J Biol Chem 2007, V282, P11874 CAPLUS
- (43) van Haastert, P; J Cell Biol 2007, V177, P809 CAPLUS
- (44) Wang, F; Nat Cell Biol 2002, V4, P513 CAPLUS
- (45) Weiner, O; Nat Cell Biol 2002, V4, P509 CAPLUS
- (46) Welch, H; Cell 2002, V108, P809 CAPLUS
- (47) Yokoyama, N; Biochemistry 2005, V44, P8841 CAPLUS

L3 ANSWER 5 OF 9 CAPLUS COPYRIGHT 2009 ACS on STN

AN 2004:471072 CAPLUS

DN 141:17607

ED Entered STN: 10 Jun 2004

TI Functional domain and associated molecule of DOCK2 essentially required in lymphocyte migration

IN Fukui, Yoshinori; Sasazuki, Takehiko

PA Japan Science and Technology Agency, Japan

SO PCT Int. Appl., 109 pp.

CODEN: PIXXD2

DT Patent

LA Japanese
 IC ICM G01N033-566
 ICS G01N033-50; G01N033-15; C12N015-12
 CC 1-7 (Pharmacology)

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2004048974	A1	20040610	WO 2003-JP14538	20031114
	W: CA, US				
	RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR				
JP	2004177226	A	20040624	JP 2002-342683	20021126
JP	3568522	B2	20040922		
CA	2506803	A1	20040610	CA 2003-2506803	20031114
EP	1580556	A1	20050928	EP 2003-772787	20031114
EP	1580556	B1	20090107		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, SK				
JP	2004226418	A	20040812	JP 2004-128900	20040423
JP	3886983	B2	20070228		
US	20060234294	A1	20061019	US 2005-535223	20050517
PRAI	JP 2002-342683	A	20021126		
	WO 2003-JP14538	W	20031114		

CLASS

	PATENT NO.	CLASS	PATENT FAMILY CLASSIFICATION CODES
	WO 2004048974	ICM	G01N033-566
		ICS	G01N033-50; G01N033-15; C12N015-12
		IPCI	G01N0033-566 [ICM, 7]; G01N0033-50 [ICS, 7]; G01N0033-15 [ICS, 7]; C12N0015-12 [ICS, 7]
		IPCR	A61K0045-00 [I,C*]; A61K0045-00 [I,A]; A61P0037-00 [I,C*]; A61P0037-02 [I,A]; A61P0037-06 [I,A]; A61P0037-08 [I,A]; A61P0043-00 [I,C*]; A61P0043-00 [I,A]; C12N0015-09 [I,C*]; C12N0015-09 [I,A]; C12N0015-12 [I,C*]; C12N0015-12 [I,A]; G01N0033-15 [I,C*]; G01N0033-15 [I,A]; G01N0033-50 [I,C*]; G01N0033-50 [I,A]; G01N0033-564 [I,C*]; G01N0033-564 [I,A]; G01N0033-566 [I,C*]; G01N0033-566 [I,A]; G01N033/564; S01N
	JP 2004177226	ECLA	
		IPCI	G01N0033-50 [ICM, 7]; A61K0045-00 [ICS, 7]; A61P0037-02 [ICS, 7]; A61P0037-06 [ICS, 7]; A61P0037-08 [ICS, 7]; A61P0037-00 [ICS, 7,C*]; A61P0043-00 [ICS, 7]; G01N0033-15 [ICS, 7]; G01N0033-566 [ICS, 7]; C12N0015-09 [ICS, 7]
		IPCR	G01N0033-50 [I,A]; G01N0033-50 [I,C*]; A61K0045-00 [I,C*]; A61K0045-00 [I,A]; A61P0037-00 [I,C*]; A61P0037-02 [I,A]; A61P0037-06 [I,A]; A61P0037-08 [I,A]; A61P0043-00 [I,C*]; A61P0043-00 [I,A]; C12N0015-09 [I,C*]; C12N0015-09 [I,A]; C12N0015-12 [I,C*]; C12N0015-12 [I,A]; G01N0033-15 [I,C*]; G01N0033-15 [I,A]; G01N0033-564 [I,C*]; G01N0033-564 [I,A]; G01N0033-566 [I,C*]; G01N0033-566 [I,A]
		FTERM	2G045/AA40; 2G045/BB03; 2G045/BB20; 2G045/CA17; 2G045/CB01; 2G045/CB21; 2G045/DA12; 2G045/DA13; 2G045/DA14; 2G045/DA36; 2G045/DA37; 4B024/AA01; 4B024/AA11; 4B024/BA21; 4B024/BA63; 4B024/CA04; 4B024/CA07; 4B024/DA02; 4B024/EA04; 4B024/GA11; 4B024/HA01; 4C084/AA17; 4C084/NA14; 4C084/ZB072; 4C084/ZB082; 4C084/ZB132; 4C084/ZC022
CA	2506803	IPCI	G01N0033-566 [ICM, 7]; C12N0015-12 [ICS, 7]; G01N0033-15 [ICS, 7]; G01N0033-50 [ICS, 7]
		IPCR	A61K0045-00 [I,C*]; A61K0045-00 [I,A]; A61P0037-00

		[I,C*]; A61P0037-02 [I,A]; A61P0037-06 [I,A]; A61P0037-08 [I,A]; A61P0043-00 [I,C*]; A61P0043-00 [I,A]; C12N0015-09 [I,C*]; C12N0015-09 [I,A]; C12N0015-12 [I,C*]; C12N0015-12 [I,A]; G01N0033-15 [I,C*]; G01N0033-15 [I,A]; G01N0033-50 [I,C*]; G01N0033-50 [I,A]; G01N0033-564 [I,C*]; G01N0033-564 [I,A]; G01N0033-566 [I,C*]; G01N0033-566 [I,A] G01N033/564
EP 1580556	ECLA	
	IPCI	G01N0033-566 [I,C]; G01N0033-566 [I,A]
	IPCR	A61K0045-00 [I,C*]; A61K0045-00 [I,A]; A61P0037-00 [I,C*]; A61P0037-02 [I,A]; A61P0037-06 [I,A]; A61P0037-08 [I,A]; A61P0043-00 [I,C*]; A61P0043-00 [I,A]; C12N0015-09 [I,C*]; C12N0015-09 [I,A]; C12N0015-12 [I,C*]; C12N0015-12 [I,A]; G01N0033-15 [I,C*]; G01N0033-15 [I,A]; G01N0033-50 [I,C*]; G01N0033-50 [I,A]; G01N0033-564 [I,C*]; G01N0033-564 [I,A]
JP 2004226418	ECLA	G01N033/564; S01N
	IPCI	G01N0033-50 [I,A]; G01N0033-15 [I,A]; G01N0033-53 [I,A]; G01N0033-566 [I,A]; C07K0014-47 [N,A]; C07K0014-435 [N,C*]
	IPCR	C07K0014-435 [N,C*]; C07K0014-47 [N,A]; G01N0033-15 [I,A]; G01N0033-15 [I,C*]; G01N0033-50 [I,A]; G01N0033-50 [I,C*]; G01N0033-53 [I,A]; G01N0033-53 [I,C*]; G01N0033-566 [I,A]; G01N0033-566 [I,C*]
	FTERM	2G045/AA34; 2G045/AA35; 2G045/AA40; 2G045/BA11; 2G045/BB50; 2G045/DA13; 2G045/DA36; 2G045/FB02; 4H045/AA30; 4H045/BA10; 4H045/CA40; 4H045/EA50; 4H045/FA74
US 20060234294	IPCI	G01N0033-53 [I,A]
	NCL	435/007.100
	ECLA	G01N033/564

AB It is intended to provide a method of screening a substance interfering the association of DOCK2 with ELM01, a method of screening a substance interfering the association of ELM01 with Tiam1, a method of searching for remedies for immune-related diseases such as allergy, autoimmune diseases, GvH and graft rejection by using these screening methods, etc. It is found out that a DOCK2 mutant lacking 504 amino acid residues at the N-end of DOCK2 shows a remarkably lowered ability to activate Rac and cannot induce actin polymerization ELM01

is identified as a mol. binding to this region. It is also found out that DOCK2 is associated with ELM01 via the SH3 domain. It is furthermore found out that ELM01 binds to Tiam1 which acts as a Rac-specific GDP/GTP exchange factor (GEF). Thus, it is found out that DOCK 2 recruits Tiam1 via ELM01 and thus activates Rac.

ST DOCK2 ELM01 lymphocyte migration immunosuppressant screening
IT Proteins

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
(DOCK 2; functional domain and associated mol. of DOCK2
essentially required in lymphocyte migration)

IT G proteins (guanine nucleotide-binding proteins)
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(Rac; functional domain and associated mol. of DOCK2 essentially
required in lymphocyte migration)

IT Allergy inhibitors
Autoimmune disease
Drug screening
Human
Immunosuppressants
Molecular cloning

Mus
(functional domain and associated mol. of DOCK2 essentially required in lymphocyte migration)

IT Transplant and Transplantation
(graft-vs.-host reaction; functional domain and associated mol. of DOCK2 essentially required in lymphocyte migration)

IT Cell migration
(lymphocyte; functional domain and associated mol. of DOCK2 essentially required in lymphocyte migration)

IT Lymphocyte
(migration; functional domain and associated mol. of DOCK2 essentially required in lymphocyte migration)

IT 700389-44-2, Protein DOCK 2 (mouse) 700389-45-3, Protein DOCK 2 (human)
700389-46-4, Protein ELMO 1 (mouse) 700389-47-5, Protein ELMO 1 (human)
RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
(amino acid sequence; functional domain and associated mol. of DOCK2 essentially required in lymphocyte migration)

IT 700390-52-9 700390-53-0
RL: PRP (Properties)
(unclaimed protein sequence; functional domain and associated mol. of DOCK2 essentially required in lymphocyte migration)

IT 92000-76-5
RL: PRP (Properties)
(unclaimed sequence; functional domain and associated mol. of DOCK2 essentially required in lymphocyte migration)

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

(1) Anon; BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 2002, V296, P716
(2) Anon; BIOCHIMICA ET BIOPHYSICA ACTA 1999, V1452, P179
(3) Anon; CELL 2001, V107, P27
(4) Anon; NATURE 1995, V375, P338
(5) Anon; NATURE 2001, V412, P826

L3 ANSWER 6 OF 9 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on STN
AN 2008:598610 BIOSIS
DN PREV200800598609

TI Parallel phosphatidylinositol 3-kinase (PI3K)-dependent and Src-dependent pathways lead to CXCL8-mediated Rac2 activation and chemotaxis.

AU Sai, Jiqing; Raman, Dayanidhi; Liu, Yuxin; Wikswo, John; Richmond, Ann [Reprint Author]

CS Vanderbilt Univ, Sch Med, Dept Canc Biol, 221 Kirkland Hall, Nashville, TN 37232 USA
ann.richmond@vanderbilt.edu

SO Journal of Biological Chemistry, (SEP 26 2008) Vol. 283, No. 39, pp. 26538-26547.
CODEN: JBCHA3. ISSN: 0021-9258.

DT Article

LA English

ED Entered STN: 29 Oct 2008
Last Updated on STN: 29 Oct 2008

AB The requirement for phosphatidylinositol 3-kinase (PI3K) in the establishment of cell polarity and motility in a number of cell types has recently come into question. In this study, we demonstrate that inhibition of PI3K by wortmannin in neutrophil-like differentiated HL60 cells expressing CXCR2 resulted in reduced cell motility but normal chemotaxis in response to a gradient of CXCL8. However, wortmannin inhibition of PI3K did impair the ability of cells to re-orient their polarity and respond quickly to a change in the direction of the CXCL8 gradient. We hypothesized that Src-regulated ELMO-Dock2 -Rac2 activation mediates chemotaxis in the absence of PI3K activity.

Inhibition of Src with the small molecule inhibitor, PP2, or inhibition of Dock2 by shRNA knockdown confirmed the functional role of Src and Dock2 in regulating chemotaxis when PI3K was inhibited. Moreover, neutrophils isolated from bone marrow of hck(−/−) fgr(−/−) lyn(−/−) mice exhibited much more severe inhibition of chemotaxis when PI3K was blocked with wortmannin as compared with neutrophils isolated from bone marrow of wild-type mice. Thus, PI3K and Src-ELMO-Dock2 pathways work in parallel to activate Rac2 and modulate chemotaxis in response to a CXCL8 gradient in neutrophils.

CC Cytology - Animal 02506
Cytology - Human 02508
Genetics - General 03502
Genetics - Animal 03506
Genetics - Human 03508
Biochemistry studies - Carbohydrates 10068
Enzymes - General and comparative studies: coenzymes 10802
Blood - Blood and lymph studies 15002
Blood - Blood cell studies 15004
Immunology - General and methods 34502

IT Major Concepts
Molecular Genetics (Biochemistry and Molecular Biophysics)
IT Parts, Structures, & Systems of Organisms
neutrophil: immune system, blood and lymphatics; bone marrow: immune system, blood and lymphatics
IT Chemicals & Biochemicals
CXCL8; wortmannin; phosphatidylinositol 3-kinase [PI3K] [EC 2.7.1.137]; Rac2
IT Miscellaneous Descriptors
cell motility; chemotaxis; cell polarity; Src-dependent pathway

ORGN Classifier
Hominidae 86215
Super Taxa
Primates; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
HL60 cell line (cell_line): human leukemia cells
Taxa Notes
Animals, Chordates, Humans, Mammals, Primates, Vertebrates

ORGN Classifier
Muridae 86375
Super Taxa
Rodentia; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
mouse (common)
Taxa Notes
Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals, Rodents, Vertebrates

RN 19545-26-7 (wortmannin)
115926-52-8 (phosphatidylinositol 3-kinase)
115926-52-8 (PI3K)
115926-52-8 (EC 2.7.1.137)

GEN mouse shRNA gene (Muridae): expression

L3 ANSWER 7 OF 9 SCISEARCH COPYRIGHT (c) 2009 The Thomson Corporation on STN

AN 2008:1148195 SCISEARCH

GA The Genuine Article (R) Number: 350GV

TI Parallel phosphatidylinositol 3-kinase (PI3K)-dependent and Src-dependent pathways lead to CXCL8-mediated Rac2 activation and chemotaxis

AU Richmond, Ann (Reprint)

CS Vanderbilt Univ, Sch Med, Dept Canc Biol, 221 Kirkland Hall, Nashville, TN 37232 USA (Reprint)
E-mail: ann.richmond@vanderbilt.edu

AU Sai, Jiqing; Raman, Dayanidhi; Richmond, Ann (Reprint)
 CS Vanderbilt Univ, Sch Med, Dept Canc Biol, Nashville, TN 37232 USA
 E-mail: ann.richmond@vanderbilt.edu
 AU Richmond, Ann (Reprint)
 CS Vanderbilt Univ, Sch Med, Dept Vet Affairs, Nashville, TN 37232 USA
 E-mail: ann.richmond@vanderbilt.edu
 AU Liu, Yuxin; Wikswo, John
 CS Vanderbilt Univ, Sch Engn, VIIBRE & Biomed Engn, Nashville, TN 37212 USA
 CYA USA
 SO JOURNAL OF BIOLOGICAL CHEMISTRY, (26 SEP 2008) Vol. 283, No. 39, pp.
 26538-26547.
 ISSN: 0021-9258.
 PB AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 9650 ROCKVILLE PIKE,
 BETHESDA, MD 20814-3996 USA.
 DT Article; Journal
 LA English
 REC Reference Count: 47
 ED Entered STN: 2 Oct 2008
 Last Updated on STN: 23 Oct 2008
 AB The requirement for phosphatidylinositol 3-kinase (PI3K) in the establishment of cell polarity and motility in a number of cell types has recently come into question. In this study, we demonstrate that inhibition of PI3K by wortmannin in neutrophil-like differentiated HL60 cells expressing CXCR2 resulted in reduced cell motility but normal chemotaxis in response to a gradient of CXCL8. However, wortmannin inhibition of PI3K did impair the ability of cells to re-orient their polarity and respond quickly to a change in the direction of the CXCL8 gradient. We hypothesized that Src-regulated ELMO-Dock2-Rac2 activation mediates chemotaxis in the absence of PI3K activity. Inhibition of Src with the small molecule inhibitor, PP2, or inhibition of Dock2 by shRNA knockdown confirmed the functional role of Src and Dock2 in regulating chemotaxis when PI3K was inhibited. Moreover, neutrophils isolated from bone marrow of hck(--) fgr(--) lyn(--) mice exhibited much more severe inhibition of chemotaxis when PI3K was blocked with wortmannin as compared with neutrophils isolated from bone marrow of wild-type mice. Thus, PI3K and Src-ELMO-Dock2 pathways work in parallel to activate Rac2 and modulate chemotaxis in response to a CXCL8 gradient in neutrophils.
 CC BIOCHEMISTRY & MOLECULAR BIOLOGY
 STP KeyWords Plus (R): NUCLEOTIDE EXCHANGE ACTIVITY; NEUTROPHIL CHEMOTAXIS; FAMILY; PI3K-GAMMA; PROTEINS; POLARITY; DOCK180; CELLS; DICTYOSTELIUM; ELMO1
 RE

Referenced Author (RAU)	Year (RPY)	VOL (RVL)	ARN PG (RPG)	Referenced Work (RWK)
ANDREW N	2007	9	193	NAT CELL BIOL
BENARD V	1999	274	13198	J BIOL CHEM
BOXIO R	2004	75	604	J LEUKOCYTE BIOL
CAMPS M	2005	11	936	NAT MED
CHEN L F	2007	12	603	DEV CELL
COTE J F	2005	7	797	NAT CELL BIOL
COTE J F	2006	406	41	METHOD ENZYMOL
COTE J F	2002	115	4901	J CELL SCI
DEBAKKER C D	2004	14	2208	CURR BIOL
FERGUS G J	2007	9	186	NAT CELL BIOL
FILIPPI M D	2004	5	744	NAT IMMUNOL
GRIMSLEY C M	2004	279	16087	J BIOL CHEM
GU Y	2001	276	15929	J BIOL CHEM
GUMIENNY T L	2001	107	127	CELL
HASEGAWA H	1996	16	1770	MOL CELL BIOL
HEIT B	2008	9	1743	NAT IMMUNOL

HEIT B	2008 121	205	J CELL SCI
HIRSCH E	2000 287	1049	SCIENCE
HOELLER O	2007 17	813	CURR BIOL
KATOH H	2003 424	461	NATURE
KUNISAKI Y	2006 174	647	J CELL BIOL
LI S J	2002 169	5043	J IMMUNOL
LI Z	2000 287	1046	SCIENCE
LIU Y X	2008 10	499	BIOMED MICRODEVICES
LOOVERS H M	2006 17	1503	MOL BIOL CELL
LOWELL C A	1994 8	387	GENE DEV
LU M J	2006 406	388	METHOD ENZYML
LU M J	2005 15	371	CURR BIOL
MA Y C	2000 102	635	CELL
MELLER N	2005 118	4937	J CELL SCI
NEEL N F	2007 120	1559	J CELL SCI
NISHIHARA H	2002 100	3968	BLOOD
NOMBELAARRIETA C	2004 21	429	IMMUNITY
PARENTE C A	1998 95	81	CELL
ROBERTS A W	1999 10	183	IMMUNITY
SAI J Q	2006 281	35931	J BIOL CHEM
SANUI T	2003 102	2948	BLOOD
SASAKI T	2000 287	1040	SCIENCE
SERVANT G	2000 287	1037	SCIENCE
SHINOHARA M	2002 416	759	NATURE
SMITH L D	2007 19	2528	CELL SIGNAL
TAKEDA K	2007 282	11874	J BIOL CHEM
VANHAASTERT P J M	2007 177	809	J CELL BIOL
WANG F	2002 4	513	NAT CELL BIOL
WEINER O D	2002 4	509	NAT CELL BIOL
WELCH H C E	2002 108	1809	CELL
YOKOYAMA N	2005 44	18841	BIOCHEMISTRY-US

L3 ANSWER 8 OF 9 SCISEARCH COPYRIGHT (c) 2009 The Thomson Corporation on STN

AN 2006:285078 SCISEARCH

GA The Genuine Article (R) Number: BDV97

TI Dock180-ELMO cooperation in Rac activation

AU Lu M J (Reprint)

CS Univ Virginia, Carter Immunol Ctr, Charlottesville, VA 22903 USA (Reprint)

AU Ravichandran K S

CYA USA

SO METHODS IN ENZYMOLOGY, VOL 406, REGULATORS AND EFFECTORS OF SMALL GTPASES: RHO FAMILY, (2006) Vol. 406, pp. 388-402.
ISSN: 0076-6879.

PB ELSEVIER ACADEMIC PRESS INC, 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA.

DT General Review; Journal

LA English

REC Reference Count: 29

ED Entered STN: 24 Mar 2006
Last Updated on STN: 10 Aug 2006

AB Dock180 superfamily of proteins has been recently identified as novel, unconventional guanine nucleotide exchange factors (GEF) for Rho-family GTPases. Unlike most other GEFs for Rho-family GTPases, Dock180 family members do not contain the characteristic Dbl homology (DH) domain. Instead, they use a conserved "Docker" or "CZH2" domain to mediate the nucleotide exchange on Rho-family GTPases. The Dock180 family members are evolutionarily conserved from worms to mammals. They play critical roles in a number of biological processes essential for the normal development of entire organisms, as well as for the physiological responses of these organisms, including removal of apoptotic cells and directed cell migration in *C. elegans*; myoblast fusion, and dorsal closure in

Drosophila; lymphocyte migration, T-cell activation, tumor metastasis, HIV infection, and development of neuronal degenerative diseases in mammals. All these biological activities of the Dock180 family members have been linked to their ability to activate their specific GTPase substrate. At least four members of the Dock180 family bind to another evolutionarily conserved protein ELMO to optimally activate the Rac GTPase.

The best characterized is the Rac activation by the Dock180-ELMO complex. ELMO modulates the Rac activation by Dock180 by means of at least three distinct mechanisms: helping Dock180 stabilize Rac in its nucleotide-free transition state; relieving a self-inhibition of Dock180; and targeting Dock180 to the plasma membrane to gain access to Rac. Thus, Dock180 and ELMO function together as a bipartite GEF to optimally activate Rac on upstream stimulation to mediate the engulfment of apoptotic cells and cell migration.

CC BIOCHEMICAL RESEARCH METHODS; BIOCHEMISTRY & MOLECULAR BIOLOGY
STP KeyWords Plus (R): NUCLEOTIDE-EXCHANGE FACTORS; CELL-MIGRATION;
RHO-GTPASES; CRKII/DOCK180/RAC PATHWAY; APOPTOTIC CELLS; PH DOMAIN;
PROTEIN; PHAGOCYTOSIS; ELEGANS; DOCK2

RE

Referenced Author (RAU)	Year	VOL	ARN PG Referenced Work (RPY) (RVL) (RPG) (RWK)
=====+=====+=====+=====			
ALBERT M L	2000	2	899 NAT CELL BIOL
BISHOP A L	2000	348	241 BIOCHEM J 2
BRUGNERA E	2002	4	574 NAT CELL BIOL
COTE J F	2002	115	4901 J CELL SCI
DEBAKKER C D	2004	14	2208 CURR BIOL
ERICKSSON M R S	1997	138	589 J CELL BIOL
FUKUI Y	2001	412	826 NATURE
GRIMSLY C M	2004	279	6087 J BIOL CHEM
GUMIENNY T L	2001	107	27 CELL
HASEGAWA H	1996	16	1770 MOL CELL BIOL
HOFFMAN G R	2002	513	85 FEBS LETT
ISHIMARU S	2004	23	3984 EMBO J
KATOH H	2003	424	461 NATURE
KIYOKAWA E	1998	12	3331 GENE DEV
LU M J	2004	11	756 NAT STRUCT MOL BIOL
LU M J	2005	15	371 CURR BIOL
MELLER N	2002	4	639 NAT CELL BIOL
NAMEKATA K	2004	279	14331 J BIOL CHEM
NISHIKIMI A	2005	579	1039 FEBS LETT
REDDIEN P W	2000	2	131 NAT CELL BIOL
ROSSMAN K L	2005	6	167 NAT REV MOL CELL BIO
ROSSMAN K L	2003	278	18393 J BIOL CHEM
SANUI T	2003	19	119 IMMUNITY
SANUI T	2003	102	2948 BLOOD
SCHMIDT A	2002	16	1587 GENE DEV
WU Y C	1998	392	501 NATURE
WU Y C	2001	1	491 DEV CELL
YAJNIK V	2003	112	673 CELL
ZHOU W S	2001	12	1 J VIS COMMUN IMAGE R

L3 ANSWER 9 OF 9 DISSABS COPYRIGHT (C) 2009 ProQuest Information and Learning Company; All Rights Reserved on STN

AN 2008:59054 DISSABS Order Number: AAI3304335

TI The dock family of atypical guanine nucleotide exchange factors: Regulation by ELMO1 and RhoG

AU Holley, Cynthia P. [Ph.D.]; Sondek, John [advisor]

CS The University of North Carolina at Chapel Hill (0153)

SO Dissertation Abstracts International, (2008) Vol. 69, No. 4B, p. 2167. Order No.: AAI3304335. 121 pages.

ISBN: 978-0-549-53518-8.

DT Dissertation

FS DAI

LA English

ED Entered STN: 20081024

Last Updated on STN: 20081024

AB The Dock family of proteins regulates diverse biological processes including cell migration, phagocytosis and neuronal polarization. These proteins contain a unique type of guanine nucleotide exchange factor (GEF) domain, and function as GEFs for Rho-family GTPases. Several Dock-family proteins form complexes with ELMO proteins and the Dock/ELMO complex acts as a bi-partite GEF for Rac. Molecular details of how the Dock/ELMO complexes bind and exchange nucleotide on Rac are critical for our understanding of their biological effects, yet remain poorly defined.

As described here, purified Dock2/ELMO1 complex is a stable heterotetramer composed of two molecules each of Dock2 and ELMO1. This heterotetramer coordinates a single molecule of nucleotide-free Rac. We identify an inhibitory conformation within ELMO1 mediated through contacts between the N- and C-terminal regions of ELMO1 and describe a mechanism for relief of this inhibition through the binding of RhoG, another Rho-family GTPase. The interaction between RhoG and ELMO1 is both nucleotide-dependent, and dependent upon the C-terminal polybasic region of RhoG. These data provide fundamentally important molecular insights into the composition of the Dock/ELMO complex and regulation of nucleotide exchange via the Dock/ELMO proteins.

CC 0786 BIOPHYSICS, GENERAL

=> FIL STNGUIDE

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	61.09	61.97

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	-1.64	-1.64

FILE 'STNGUIDE' ENTERED AT 16:49:59 ON 29 JAN 2009

USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT

COPYRIGHT (C) 2009 AMERICAN CHEMICAL SOCIETY (ACS)

FILE CONTAINS CURRENT INFORMATION.

LAST RELOADED: Jan 23, 2009 (20090123/UP).

=>

=> S L3 and screening

0 DOCK2

6 SCREENING

L4 0 L3 AND SCREENING

=> S DOCK2 and ELMO and screening

0 DOCK2

6 SCREENING

L5 0 DOCK2 AND ELMO AND SCREENING

=> s Ced-12 and DOCK2

29 12

0 CED-12

(CED(W)12)

0 DOCK2

L6 0 CED-12 AND DOCK2

=> d his full

(FILE 'HOME' ENTERED AT 16:45:35 ON 29 JAN 2009)

FILE 'EMBASE, MEDLINE, CAPLUS, BIOSIS, SCISEARCH, DISSABS, REGISTRY'
ENTERED AT 16:48:12 ON 29 JAN 2009

L1 207 SEA ABB=ON PLU=ON DOCK2
L2 883 SEA ABB=ON PLU=ON ELMO
L3 9 SEA ABB=ON PLU=ON L1 AND L2
 D L3 FULL 1-9

FILE 'STNGUIDE' ENTERED AT 16:49:59 ON 29 JAN 2009

L4 0 SEA ABB=ON PLU=ON L3 AND SCREENING
L5 0 SEA ABB=ON PLU=ON DOCK2 AND ELMO AND SCREENING
L6 0 SEA ABB=ON PLU=ON CED-12 AND DOCK2

FILE HOME

FILE EMBASE

FILE COVERS 1974 TO 29 Jan 2009 (20090129/ED)

EMBASE was reloaded on March 30, 2008.

EMBASE is now updated daily. SDI frequency remains weekly (default) and biweekly.

This file contains CAS Registry Numbers for easy and accurate substance identification.

Beginning January 2008, Elsevier will no longer provide EMTREE codes as part of the EMTREE thesaurus in EMBASE. Please update your current-awareness alerts (SDIs) if they contain EMTREE codes.

For further assistance, please contact your local helpdesk.

FILE MEDLINE

FILE LAST UPDATED: 28 Jan 2009 (20090128/UP). FILE COVERS 1949 TO DATE.

MEDLINE and LMEDLINE have been updated with the 2009 Medical Subject Headings (MeSH) vocabulary and tree numbers from the U.S. National Library of Medicine (NLM). Additional information is available at

http://www.nlm.nih.gov/pubs/techbull/nd08/nd08_medline_data_changes_2009.

This file contains CAS Registry Numbers for easy and accurate substance identification.

See HELP RANGE before carrying out any RANGE search.

MEDLINE Accession Numbers (ANs) for records from 1950-1977 have been converted from 8 to 10 digits. Searches using an 8 or 10 digit AN will retrieve the same record. The 10-digit ANs can be expanded, searched, and displayed in all records from 1949 to the present.

FILE CAPLUS

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December

26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 29 Jan 2009 VOL 150 ISS 5
FILE LAST UPDATED: 28 Jan 2009 (20090128/ED)

Caplus now includes complete International Patent Classification (IPC) reclassification data for the third quarter of 2008.

CAS Information Use Policies apply and are available at:

<http://www.cas.org/legal/infopolicy.html>

This file contains CAS Registry Numbers for easy and accurate substance identification.

FILE BIOSIS
FILE COVERS 1926 TO DATE.
CAS REGISTRY NUMBERS AND CHEMICAL NAMES (CNS) PRESENT
FROM JANUARY 1926 TO DATE.

RECORDS LAST ADDED: 28 January 2009 (20090128/ED)

BIOSIS has been augmented with 1.8 million archival records from 1926 through 1968. These records have been re-indexed to match current BIOSIS indexing.

FILE SCISEARCH

FILE COVERS 1974 TO 22 Jan 2009 (20090122/ED)

SCISEARCH has been reloaded, see HELP RLOAD for details.

FILE DISSABS
FILE COVERS 1861 TO 5 DEC 2008 (20081205/ED)

Only fair use as provided by the United States copyright law is permitted. PROQUEST INFORMATION AND LEARNING COMPANY MAKES NO WARRANTY REGARDING THE ACCURACY, COMPLETENESS OR TIMELINESS OF THE LICENSED MATERIALS OR ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND SHALL NOT BE LIABLE FOR DAMAGES OF ANY KIND OR LOST PROFITS OR OTHER CLAIMS RELATED TO THE LICENSED MATERIALS OR THEIR USE.

FILE REGISTRY
Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 28 JAN 2009 HIGHEST RN 1097265-75-2
DICTIONARY FILE UPDATES: 28 JAN 2009 HIGHEST RN 1097265-75-2

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH July 5, 2008.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stngen/stndoc/properties.html>

FILE STNGUIDE
FILE CONTAINS CURRENT INFORMATION.
LAST RELOADED: Jan 23, 2009 (20090123/UP).

```

=> logoff
ALL L# QUERIES AND ANSWER SETS ARE DELETED AT LOGOFF
LOGOFF? (Y)/N/HOLD:y
COST IN U.S. DOLLARS          SINCE FILE      TOTAL
                                ENTRY        SESSION
FULL ESTIMATED COST          2.66           64.63

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE      TOTAL
                                                ENTRY        SESSION
CA SUBSCRIBER PRICE           0.00           -1.64

```

STN INTERNATIONAL LOGOFF AT 17:13:03 ON 29 JAN 2009