Solution Section 2.5 – Numerical Integration

Exercise

Find the Midpoint Rule approximations to: $\int_0^1 \sin \pi x \, dx \quad using \quad n = 6 \quad subintervals$

Solution

$$\begin{split} \Delta x &= \frac{1-0}{6} = \frac{1}{6} \\ x_0 &= 0, \ \, x_1 = 0 + \frac{1}{6} = \frac{1}{6}, \ \, x_2 = \frac{1}{3}, \ \, x_3 = \frac{1}{2}, \ \, x_4 = \frac{2}{3}, \ \, x_5 = \frac{5}{6}, \ \, x_6 = 1 \\ m_1 &= \frac{1}{2} \Big(0 + \frac{1}{6} \Big) = \frac{1}{12}, \ \, m_2 = \frac{1}{4}, \ \, m_3 = \frac{5}{12}, \ \, m_4 = \frac{7}{12}, \ \, m_5 = \frac{9}{12}, \ \, m_6 = \frac{11}{12} \\ M\left(6 \right) &= \Big(\sin \Big(\frac{\pi}{12} \Big) + \sin \Big(\frac{\pi}{4} \Big) + \sin \Big(\frac{5\pi}{12} \Big) + \sin \Big(\frac{7\pi}{12} \Big) + \sin \Big(\frac{9\pi}{12} \Big) + \sin \Big(\frac{11\pi}{12} \Big) \Big) \Big(\frac{1}{6} \Big) \\ &\approx 0.6439505509 \Big] \end{split}$$

Exercise

Find the Midpoint Rule approximations to: $\int_{0}^{1} e^{-x} dx \quad using \quad n = 8 \quad subintervals$

Solution

$$\begin{split} &\Delta x = \frac{1-0}{8} = \frac{1}{8} \\ &x_0 = 0, \ x_1 = \frac{1}{8}, \ x_2 = \frac{1}{4}, \ x_3 = \frac{3}{8}, \ x_4 = \frac{1}{2}, \ x_5 = \frac{5}{8}, \ x_6 = \frac{3}{4}, \ x_7 = \frac{7}{8}, \ x_8 = 1 \\ &m_1 = \frac{1}{2} \Big(0 + \frac{1}{8} \Big) = \frac{1}{16}, \ m_2 = \frac{3}{16}, \ m_3 = \frac{5}{16}, \ m_4 = \frac{7}{16}, \ m_5 = \frac{9}{16}, \ m_6 = \frac{11}{16}, \ m_7 = \frac{13}{16}, \ m_8 = \frac{15}{16} \\ &M\left(8\right) = \frac{1}{8} \Big(e^{-1/16} + e^{-3/16} + e^{-5/16} + e^{-7/16} + e^{-9/16} + e^{-11/16} + e^{-13/16} + e^{-15/16} \Big) \\ &\approx 0.6317092095 \Big| \end{split}$$

Exercise

Estimate the minimum number of subintervals to approximate the integrals with an error of magnitude of

$$10^{-4}$$
 by (a) the Trapezoid Rule and (b) Simpson's Rule.
$$\int_{1}^{3} (2x-1)dx$$

Solution

a) i)
$$\Delta x = \frac{b-a}{n} = \frac{3-1}{4} = \frac{1}{2}$$

$$T = \frac{1}{2} \Delta x \left(m f \left(x_i \right) \right)$$
$$= \frac{1}{2} \frac{1}{2} \left(24 \right) = \underline{6}$$

$$f(x) = 2x - 1 \implies f'(x) = 2$$

 $\Rightarrow f''(x) = 0 = M$
 $\Rightarrow Error = 0$

ii)
$$\int_{1}^{3} (2x-1) dx = \left[x^{2} - x \right]_{1}^{3}$$
$$= \left(3^{2} - 3 \right) - \left(1^{2} - 1 \right)$$
$$= 6$$

iii)
$$Error = \frac{|E_T|}{True\ Value} \times 100 = 0\%$$

b) i)
$$|\Delta x = \frac{b-a}{n} = \frac{3-1}{4} = \frac{1}{2} |$$

$$S = \frac{1}{3} \Delta x \left(\sum m f(x_i) \right)$$

$$= \frac{1}{3} \frac{1}{2} (36) = \underline{6} |$$

$$f(x) = 2x - 1 \implies f^{(4)}(x) = 0 = M$$

$$\Rightarrow |E_s| = 0$$

ii)
$$\int_{1}^{3} (2x-1)dx = 6$$

$$\left| E_{s} \right| = \int_{1}^{3} (2x-1)dx - S = 6 - 6 = 0$$

$$iii)$$
 $Error = \frac{|E_T|}{True \ Value} \times 100 = 0\%$

	x_{i}	$f\left(x_{i}\right) = 2x_{i} - 1$	m	$mf(x_i)$
<i>x</i> ₀	1	1	1	1
x_1	$1 + \frac{1}{2} = \frac{3}{2}$	2	2	4
x_2	2	3	2	6
<i>x</i> ₃	<u>5</u> 2	4	2	8
<i>x</i> ₄	3	5	1	5
				24

	x_{i}	$f\left(x_{i}\right) = 2x_{i} - 1$	m	$mf(x_i)$
x_0	1	1	1	1
<i>x</i> ₁	<u>3</u> 2	2	4	8
x_2	2	3	2	6
<i>x</i> ₃	<u>5</u> 2	4	4	16
<i>x</i> ₄	3	5	1	5
				36

Estimate the minimum number of subintervals to approximate the integrals with an error of magnitude of

$$10^{-4}$$
 by (a) the Trapezoid Rule and (b) Simpson's Rule.
$$\int_{-1}^{1} (x^2 + 1) dx$$

Solution

a) i)
$$\left| \Delta x = \frac{b-a}{n} = \frac{1+1}{4} = \frac{1}{2} \right|$$

$$T = \frac{1}{2} \Delta x \left(m f \left(x_i \right) \right) = \frac{1}{2} \frac{1}{2} (11) = \frac{11}{4}$$

$$f(x) = x^2 + 1 \implies f'(x) = 2x$$

$$\implies f''(x) = 2 = M$$

$$\left| E_T \right| = \frac{1 - (-1)}{12} \left(\frac{1}{2} \right)^2 (2) = 0.0833...$$
ii)
$$\int_{-1}^{1} \left(x^2 + 1 \right) dx = \left[\frac{1}{3} x^3 + x \right]_{-1}^{1} = \left(\frac{1}{3} + 1 \right) - \left(-\frac{1}{3} - 1 \right) = \frac{8}{3}$$

$$E_T = \int_{-1}^{1} \left(x^2 + 1 \right) dx - T = \frac{8}{3} - \frac{11}{4} = -\frac{1}{12}$$

	x_{i}	$f(x_i)$	m	$mf(x_i)$
x_0	-1	2	1	2
<i>x</i> ₁	$-\frac{1}{2}$	<u>5</u>	2	<u>5</u> 2
x_2	0	1	2	2
x_3	$\frac{1}{2}$	<u>5</u>	2	<u>5</u> 2
<i>x</i> ₄	1	2	1	2
				11

iii)	$Error = \frac{ \cdot }{True}$	$\frac{ E_T }{Value} \times 10$	$0 = \frac{\overline{12}}{\underline{8}} \approx 3\%$
			3

b) **i**) $\Delta x = \frac{b-a}{n} = \frac{-1-(-1)}{4} = \frac{1}{2}$

$$S = \frac{1}{3}\Delta x \left(\sum m f\left(x_i\right)\right) = \frac{1}{3}\frac{1}{2}(16) = \frac{8}{3}$$

$$f\left(x\right) = x^2 + 1 \implies f^{(4)}\left(x\right) = 0 = M$$

$$\Rightarrow \left|E_s\right| = 0$$

$$ii) \int_{-1}^{1} \left(x^2 + 1\right) dx = \frac{8}{3}$$

$$E_S = \int_{-1}^{1} \left(x^2 + 1\right) dx - S = \frac{8}{3} - \frac{8}{3} = 0$$

$$iii) Error = \frac{|E_T|}{True \ Value} \times 100 = 0\%$$

	x_{i}	$f(x_i)$	m	$mf(x_i)$
<i>x</i> ₀	-1	2	1	2
x_1	$-\frac{1}{2}$	<u>5</u>	4	5
x_2	0	1	2	2
x_3	$\frac{1}{2}$	<u>5</u>	4	5
<i>x</i> ₄	1	2	1	2
				16

Estimate the minimum number of subintervals to approximate the integrals with an error of magnitude of

$$10^{-4}$$
 by (a) the Trapezoid Rule and (b) Simpson's Rule.
$$\int_{2}^{4} \frac{1}{(s-1)^{2}} ds$$

Solution

a)
$$|\underline{\Delta x} = \frac{b-a}{n} = \frac{4-2}{4} = \frac{1}{2} |$$

$$x_0 = 2 \qquad x_1 = 2 + \frac{1}{2} = \frac{5}{2} \qquad x_2 = 2 + 2\left(\frac{1}{2}\right) = 3 \qquad x_3 = 2 + 3\left(\frac{1}{2}\right) = \frac{7}{2} \qquad x_4 = 4$$

$$T = \frac{1}{2} \Delta x \left(m f\left(x_i\right)\right)$$

$$= \frac{1}{2} \frac{1}{2} \left(\frac{1}{(2-1)^2} + 2\frac{1}{\left(\frac{5}{2}-1\right)^2} + 2\frac{1}{(3-1)^2} + 2\frac{1}{\left(\frac{7}{2}-1\right)^2} + \frac{1}{(4-1)^2}\right)$$

$$= \frac{1}{4} \left(\frac{1}{1} + \frac{8}{9} + \frac{1}{2} + \frac{8}{25} + \frac{1}{9}\right)$$

$$= \frac{1269}{1800}$$

$$\approx 0.705$$

$$f(s) = (s-1)^{-2} \implies f'(s) = -2(s-1)^{-3}$$

 $\Rightarrow f''(s) = 6(s-1)^{-4} = \frac{6}{(s-1)^4} \Rightarrow M = 6$

$$\int_{2}^{4} \frac{1}{(s-1)^{2}} ds = \int_{2}^{4} (s-1)^{-2} d(s-1)$$

$$= -\left[(s-1)^{-1} \right]_{2}^{4}$$

$$= -\left(3^{-1} - 1^{-1} \right)$$

$$= \frac{2}{3}$$

The percentage error: $\frac{|0.705 - .6667|}{.6667} \approx 0.0575$

b)
$$\left| \Delta x = \frac{b-a}{n} = \frac{4-2}{4} = \frac{1}{2} \right|$$
 $x_0 = 2$ $x_1 = 2 + \frac{1}{2} = \frac{5}{2}$ $x_2 = 2 + 2\left(\frac{1}{2}\right) = 3$ $x_3 = 2 + 3\left(\frac{1}{2}\right) = \frac{7}{2}$ $x_4 = 4$ $S = \frac{1}{3} \Delta x \left(m f\left(x_i\right) \right)$

$$= \frac{1}{3} \frac{1}{2} \left(\frac{1}{(2-1)^2} + 4 \frac{1}{\left(\frac{5}{2}-1\right)^2} + 2 \frac{1}{(3-1)^2} + 4 \frac{1}{\left(\frac{7}{2}-1\right)^2} + \frac{1}{(4-1)^2} \right)$$

$$= \frac{1}{6} \left(\frac{1}{1} + \frac{16}{9} + \frac{1}{2} + \frac{16}{25} + \frac{1}{9} \right)$$

$$= \frac{1813}{450}$$

$$\approx 0.67148$$

$$4$$

$$\int_{2}^{4} \frac{1}{\left(s-1\right)^{2}} ds = \frac{2}{3}$$

The percentage error:
$$\frac{|0.67148 - .6667|}{.6667} \approx 0.0072$$
 0.72%

Find the Trapezoid & Simpson's Rule approximations and error: $\int_{0}^{1} \sin \pi x \, dx \quad n = 6 \quad subintervals$

Solution

Trapezoid Rule Method

n	x_n	$f(x_n)$	$m \cdot f(x_n)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.1666666667	0.5000000000	1.0000000000
2	0.333333333	0.8660254000	1.7320508000
3	0.5000000000	1.0000000000	2.0000000000
4	0.6666666667	0.8660254000	1.7320508000
5	0.833333333	0.5000000000	1.0000000000
6	1.0000000000	0.0000000000	0.0000000000

Trapezoid Rule approximation ≈ 0.62200847

Simpson's Rule Method

n	x_n	$f(x_n)$	$m \cdot f(x_n)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.1666666667	0.5000000000	2.0000000000
2	0.333333333	0.8660254000	1.7320508000
3	0.5000000000	1.0000000000	2.0000000000
4	0.6666666667	0.8660254000	1.7320508000
5	0.833333333	0.5000000000	1.0000000000
6	1.0000000000	0.0000000000	0.0000000000

Simpson's Rule approximation ≈ 0.63689453

Exact	Trapezoid	Simpson
Value: 0.63661977	0.62200847	0.63689453
Error:	2.2951 %	0.0432 %

Find the Trapezoid & Simpson's Rule approximations to and error to $\int_0^1 e^{-x} dx \quad n = 8 \quad subintervals$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	0.1250000000	0.8824969000	1.7649938000
2	0.2500000000	0.7788007800	1.5576015600
3	0.3750000000	0.6872892800	1.3745785600
4	0.5000000000	0.6065306600	1.2130613200
5	0.6250000000	0.5352614300	1.0705228600
6	0.7500000000	0.4723665500	0.9447331000
7	0.8750000000	0.4168620200	0.8337240400
8	1.0000000000	0.3678794400	0.3678794400

Trapezoid Rule approximation ≈ 0.63294342

Simpson's Rule Method

	_		
n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	0.1250000000	0.8824969000	3.5299876000
2	0.2500000000	0.7788007800	1.5576015600
3	0.3750000000	0.6872892800	2.7491571200
4	0.5000000000	0.6065306600	1.2130613200
5	0.6250000000	0.5352614300	2.1410457200
6	0.7500000000	0.4723665500	0.9447331000
7	0.8750000000	0.4168620200	1.6674480800
8	1.0000000000	0.3678794400	0.3678794400

Simpson's Rule approximation ≈ 0.63212141

	Exact	Trapezoid	Simpson
Value	: 0.63212056	0.63294342	0.63212141
Error:		0.1302 %	0.0001 %

Find the Trapezoid & Simpson's Rule approximations and error to:

$$\int_{1}^{5} \left(3x^2 - 2x\right) dx \quad n = 8 \quad subintervals$$

Solution

Trapezoid Rule Method

n	$\frac{x}{n}$	$f\left(x_{n}\right)$	$m \cdot f(x_n)$
0	0.0000000000	1.0000000000	1.0000000000
1	1.5000000000	3.7500000000	7.5000000000
2	2.00000000000	8.0000000000	16.0000000000
3	2.50000000000	13.7500000000	27.5000000000
4	3.00000000000	21.0000000000	42.0000000000
5	3.50000000000	29.7500000000	59.5000000000
6	4.0000000000	40.0000000000	80.0000000000
7	4.5000000000	51.7500000000	103.500000000
8	5.0000000000	65.0000000000	65.0000000000

Trapezoid Rule approximation ≈ 100.50000000

Simpson's Rule Method

x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0.0000000000	1.0000000000	1.0000000000
1.5000000000	3.7500000000	15.00000000000
2.0000000000	8.0000000000	16.00000000000
2.50000000000	13.7500000000	55.00000000000
3.0000000000	21.0000000000	42.00000000000
3.50000000000	29.7500000000	119.0000000000
4.0000000000	40.0000000000	80.0000000000
4.5000000000	51.7500000000	207.0000000000
5.0000000000	65.00000000000	65.00000000000
	0.0000000000 1.5000000000 2.0000000000 2.5000000000 3.0000000000 4.0000000000 4.50000000000	0.00000000000 1.0000000000 1.5000000000 3.7500000000 2.0000000000 8.000000000 2.5000000000 13.7500000000 3.0000000000 21.000000000 3.5000000000 29.7500000000 4.0000000000 40.0000000000 4.5000000000 51.75000000000

Simpson's Rule approximation ≈ 100.00000000

Exact	Trapezoid	Simpson
Value: 100.000000	100.500000	100.00000000
Error:	0.5000%	0.0000 %

Find the Trapezoid & Simpson's Rule approximations and error: $\int_0^{\pi/4} 3\sin 2x \, dx \quad n = 8 \quad subintervals$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.0981747704	0.5852709700	1.1705419400
2	0.1963495408	1.1480503000	2.2961006000
3	0.2945243113	1.6667107000	3.3334214000
4	0.3926990817	2.1213203400	4.2426406800
5	0.4908738521	2.4944088400	4.9888176800
6	0.5890486225	2.7716386000	5.5432772000
7	0.6872233930	2.9423558400	5.8847116800
8	0.7853981634	3.0000000000	3.0000000000

Trapezoid Rule approximation ≈ 1.49517776

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	0.0000000000	0.0000000000
1	0.0981747704	0.5852709700	2.3410838800
2	0.1963495408	1.1480503000	2.2961006000
3	0.2945243113	1.6667107000	6.6668428000
4	0.3926990817	2.1213203400	4.2426406800
5	0.4908738521	2.4944088400	9.9776353600
6	0.5890486225	2.7716386000	5.5432772000
7	0.6872233930	2.9423558400	11.7694233600
8	0.7853981634	3.0000000000	3.0000000000

Simpson's Rule approximation ≈ 1.50001244

Exact	Trapezoid	Simpson
Value: 1.500000	1.49517776	1.50001244
Error:	0.3215 %	0.0008 %

Find the Trapezoid & Simpson's Rule approximations and error: $\int_0^8 e^{-2x} dx \quad n = 8 \text{ subintervals}$

Solution

Trapezoid Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	1.0000000000	0.1353352800	0.2706705600
2	2.0000000000	0.0183156400	0.0366312800
3	3.0000000000	0.0024787500	0.0049575000
4	4.0000000000	0.0003354600	0.0006709200
5	5.0000000000	0.0000454000	0.0000908000
6	6.0000000000	0.0000061400	0.0000122800
7	7.0000000000	0.0000008300	0.0000016600
8	8.0000000000	0.0000001100	0.0000001100

Trapezoid Rule approximation ≈ 0.65651755

Simpson's Rule Method

n	x_n	$f\left(x_{n}\right)$	$m \cdot f\left(x_{n}\right)$
0	0.0000000000	1.0000000000	1.0000000000
1	1.0000000000	0.1353352800	0.5413411200
2	2.0000000000	0.0183156400	0.0366312800
3	3.0000000000	0.0024787500	0.0099150000
4	4.0000000000	0.0003354600	0.0006709200
5	5.0000000000	0.0000454000	0.0001816000
6	6.0000000000	0.0000061400	0.0000122800
7	7.0000000000	0.0000008300	0.0000033200
8	8.0000000000	0.0000001100	0.0000001100

Simpson's Rule approximation ≈ 0.52958521

Exact	Trapezoid	Simpson
Value: 0.49999994	0.65651755	0.52958521
Error:	31.3035 %	5.9171 %

A piece of wood paneling must be cut in the shape shown below. The coordinates of several point on its curved surface are also shown (with units of inches).

- a) Estimate the surface area of the paneling using the Trapezoid Rule
- b) Estimate the surface area of the paneling using a left Riemann sum.
- c) Could two identical pieces be cut from a 9-in by 9-in piece of wood?

Solution

a) The trapezoid Rule gives

$$\frac{\left(0+.25\right)\cdot 1}{2} + \frac{\left(2.5+3.2\right)\cdot 1}{2} + \frac{\left(3.2+4\right)\cdot 1}{2} + \frac{\left(4+6\right)\cdot 1}{2} + \frac{\left(6+7\right)\cdot 2}{2} + \frac{\left(7+5.3\right)\cdot 1.5}{2} + \frac{\left(3+0\right)\cdot 0.5}{2} = \underline{35.675}$$

b) The left Riemann sum gives

$$0.1 + 2.5.1 + 3.2.1 + 4.1 + 6.2 + 7.1.5 + 5.3.0.5 = 34.85$$

c) Although the surface area of the piece appears to be less than half of $81 = 9^2$ (area of 9×9 piece of wood), the shape prohibits the creation of two identical pieces.