AUTOEVALUACIÓN - Aplicaciones Lineales.

Cada (●) es un punto.

Hay en total 40 puntos, de los cuales 15 son de cuestiones y 25 de ejercicios.

A) Cuestiones (15 puntos)

- C-1) Razonar las respuestas:
- (•) a) ¿Una aplicación lineal f: $\mathbb{R}^2 \longrightarrow \mathbb{R}^4$ puede ser inyectiva?
- **(•) b)** ¿Una aplicación lineal f: $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ puede ser inyectiva?
- (•) c) ¿Una aplicación lineal f: $\mathbb{R}^2 \longrightarrow \mathbb{R}^4$ puede ser suprayectiva?
- **(•) d)** ¿Una aplicación lineal f: $\mathbb{R}^5 \longrightarrow \mathbb{R}^4$ puede ser suprayectiva?
- **e)** ¿Una aplicación lineal $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ puede ser inyectiva sin ser suprayectiva?
- **f)** ¿Una aplicación lineal $f: \mathbb{R}^6 \longrightarrow \mathbb{R}^6$ puede ser inyectiva sin ser suprayectiva?
 - C-2) Verdadero o falso:
- (•) Dada f: $V \longrightarrow W$, si v_1, \ldots, v_n son un sistema generador de V, entonces $f(v_1), \ldots, f(v_n)$ son un sistema generador de W.
 - **C-3)** Construye una matriz que pueda corresponder a:
- (•) a) una aplicación lineal $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ inyectiva
- (•) **b)** una aplicación lineal $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ suprayectiva
- (•) c) una aplicación lineal entre los espacios que quieras, biyectiva
- (●) C-4) Dada una aplicación lineal f, con matriz asociada A, ¿qué relación hay entre Im(f) y el rango de A?
 - **C-5)** Para cada una de estas aplicaciones lineales, ¿cuáles son las posibilidades para la dimensión de **Im(f)** ?
- $(\bullet) \quad \text{a)} \quad f \colon \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}^4$
- (•) b) f: $\mathbb{R}^5 \longrightarrow \mathbb{R}^2$

C-6) Para cada una de estas aplicaciones lineales, ¿cuáles son las posibilidades para la dimensión de Ker(f) ?

(•) a) f:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^4$$

$$(\bullet) \qquad \qquad \mathbf{b)} \quad \mathbf{f} \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

B) Ejercicios (25 puntos)

E-1) Probar si las siguientes aplicaciones son o no lineales:

(•) a)
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

 $(x,y) \mapsto (x+1, y+1, x+y)$

(•) b)
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \mapsto (y, x)$

siguientes subespacios:

(•) a)
$$S = \langle (1,0,1,0), (2,3,0,-1) \rangle$$

(•) **b)**
$$T = \langle (0,0,3,2), (4,6,3,-1), (1,0,0,2) \rangle$$

E-3) Dada la aplicación del ejercicio E-2), hallar:

- (•) a) una base del núcleo,
- (•) b) una base de la imagen.

E-4) Clasificar (inyectiva, suprayectiva, biyectiva) las siguientes aplicaciones:

(•) c) f:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

(x, y, z) \mapsto (-x-y, 2x+2y, z)

(•) d) f:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

(x, y, z) \mapsto (3x+y, 3y+z, 3z)

(•) E-5) Dar la ecuación de la aplicación $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ sabiendo que: f(1,0,0)=(4,4); f(0,1,0)=(-1,1); f(0,0,1)=(2,9).

E-6)

- (•) **E-7)** Dada la aplicación $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que la imagen de (1,0) es (5,2) y la imagen de (0,1) es (7,3), hallar la ecuación de la aplicación inversa f^{-1} .
- (•) E-8) Dadas las siguientes aplicaciones:

hallar la aplicación compuesta $h = g \circ f$.

- (●●) E-10) Dada la aplicación del ejercicio E-9), y la base B'= { (-2,0), (2,1) } en ℝ², hallar la matriz de f tomando como bases la canónica en ℝ³ y la base B' en p.
 - **E-11)** Dadas las bases B={ (1,4), (1,3) } de \mathbb{R}^2 y B'={ (2,0,1), (0,-1,0), (3,0,0) } de \mathbb{R}^3 ,

- (••) a) hallar la matriz en bases B y B' de una aplicación $f\colon \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, si su matriz en bases canónicas es $A=\begin{pmatrix} -2 & -2 \\ 3 & 3 \\ 1 & 0 \end{pmatrix}$
- (••) b) hallar la matriz en bases canónicas de otra aplicación g: $\mathbb{R}^2 \longrightarrow \mathbb{R}^3$, si su matriz en bases B y B' es $M = \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ 0 & -2 \end{pmatrix}$

E-12) Ver si son equivalentes o no las siguientes matrices:

(•) a)
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 0 \end{pmatrix}$$
 y $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

(•) b)
$$\begin{pmatrix} 1 & -1 \\ 5 & 2 \\ 6 & -4 \end{pmatrix}$$
 y $\begin{pmatrix} 8 & 2 \\ 1 & 0 \\ 5 & 7 \end{pmatrix}$