2BPR

BLIND PASSWORD REGISTRATION FOR TWO-SERVER PASSWORD AUTHENTICATED KEY EXCHANGE AND SECRET SHARING PROTOCOLS

Franziskus Kiefer & Mark Manulis

Gliederung

THBINGEN
University of Applied Sciences

- Hintergrund
- Motivation
- Begriffe
- Protokoll
- Sicherheitsanalyse
- Fazit

Hintergrund - Multiusersystem

Wie sichert man Multi-User-Systeme gegen Missbrauch ab?

Lange Passwörter
Sonderzeichen & Zahlen
Regelmäßiges Ändern

Kontrolle der Richtlinien
Plain Passwort Datenbanken
Passworthashes nicht sicher

Wie sichert man Multi-User-Systeme gegen Missbrauch ab?

Individueller Hash durch Salt Verhindert Lookuptables Regelmäßiges Ändern

Zu kurzer oder schlechter Salt Kontrolle der Richtlinien

Wie sichert man Multi-User-Systeme gegen Missbrauch ab?

PASSWORD AUTHENTICATED KEY EXCHANGE

- Passwort wird in \mathbf{s}_1 und \mathbf{s}_2 geteilt
- \mathbf{s}_1 und \mathbf{s}_2 auf zwei Servern speichern
- Zusammenarbeit der Server bei Login
- Kein Server kennt das ganze Passwort

PASSWORD AUTHENTICATED SECRET SHARING

- Passwort mit hoher Entropie auf mehreren Servern verteilen
- Passwort mit niedriger Entropie autorisiert den Abrufprozess des ganzen Passworts

Hintergrund – 2PAKE & 2PASS

Hintergrund – 2PAKE & 2PASS

Brutforce

Gliederung

- Hintergrund
- Motivation
- Begriffe
- Protokoll
- Sicherheitsanalyse
- Fazit

Kontrolle der Richtlinien

- Commitments & Zero Knowledge Password Policy Checks (ZKPPC)
- Keine offline Wörterbuch Attacken möglich
- Sichere Registrierung von neuen Passwörtern
- → Sicherer Registrierungsprozess in 2PAKE & 2PASS Multiusersystemen

Gliederung

- Hintergrund
- Motivation
- Begriffe
- Protokoll
- Sicherheitsanalyse
- Fazit

Commitment

• Szenario: SSP oder Münzwurf über Internet spielen

Bedingung: Kein TrustCenter vorhanden

Das Festlegen auf Schere / Stein/ Papier muss verbindlich sein

Commitment

Binding

Bob legt sich auf Zahl fest → kein Umentscheiden möglich

Bob wählt Stein, Alice wählt Papier → kein Umentscheiden möglich

Hiding

Gleichzeitiges abgeben der Commitments ist nicht möglich

Der Inhalt muss bis zum "Aufdecken" versteckt bleiben

Basis: Diskreter Logarithmus

TRAPDOOR COMMITMENT q, g und v festSitmont alls $c = \sigma^r v^m$

1. Setup Bob legt Primzahlen p, q, g und v fest

2. Committee Alice berechnet Commitment aus $c = g^r v^m$

3. Aufdecken Alice sendet r und m an Bob

Unconditional hiding

Computational binding

+ Großer Wertebereich für Nachricht

+ Additiv homorph

Zero Knowledge Proof

Beweiser Püberz

Püberz

Pilizierer Vdavon, dass er ein Geheimnis kennt

formationen zu offenbaren."

Kennt kein Geheimnis

Zu 50% falsche Seite

Kennt Geheimnis
Sicher zu $P = 1 - 2^{-n}$

• Vollständigkeit

Ist x ein Element der Sprache L, dann soll V fast immer akzeptieren.

Zuverlässigkeit

Ist X kein Element der Sprache L, also ist P unehrlich, soll V fast immer ablehnen.

Zero-Knowledge-Eigenschaft

Es darf nur Wissen über die Gültigkeit einer zu beweisenden Aussage gewonnen werden. Ein dritter, der das Verfahren beobachtet gewinnt keine Informationen.

Zero Knowledge Proof of Knowledge

Zuverlässigkeit

Es gibt einen Extraktor Ext, der den korrekten Beweis aus einem bösen P extrahieren kann, sodass V den Beweis doch noch ablehnt.

Passwort Richtlinien

Besteht aus regulärem Ausdruck & Angabe für die Mindestlänge des Passworts

Beispiel: f = f(R, n) = (ulldds, 10)

Um die beiden Richtlinien zu kombinieren wird $f = f_1 \cap f_2$ gebildet

Beispiel: $f1 \cap f2 = (max(R_1, R_2), max(n_1, n_2)) \rightarrow$ Mutual Password Policy

Passwörter werden in Integer umgewandelt

$$\pi = PWDtoINT(pw)$$

Passwörter können zerteilt werden (Password Sharing)

$$\pi = s_1 + s_2$$

 s_{τ} kann auf Server 1 hinterlegt werden

 s_2 kann auf Server 2 hinterlegt werden

Passwort Wörterbuch

Liste aller richtlinienkonformen Passwörter

Beispiel: f = (ulldd, 5)

SIGNIFIKANT

Gliederung

- Hintergrund
- Motivation
- Begriffe
- Protokoll
- Sicherheitsanalyse
- Fazit

1. POLICY COMPLIANCE

Die beiden ehrlichen Server akzeptieren ihren Passwortshare, wenn dieser Policy konform ist, ansonsten lehnen sie den Share ab.

→ Wenn beide den Share akzeptieren ist das Passwort konform zur Mutual Password Policy.

2BPR - Sicherheitsmodell

2. PASSWORD BLINDNESS

Ein korrumpierter Server soll nur erfahren, ob das Passwort Policy konform ist. Weitere Infos über das Passwort bleiben geheim.

→ Offline Wörterbuch Attacken sind dadurch zwecklos solange ein Server ehrlich bleibt.

2BPR - Sicherheitsmodell

2BPR — Phasen

1. Client Vorbereitung

Der Client bereitet Primzahlen, Passwort und Commitments vor

2. Passwort Registrierung

Der Client bestätigt die Konformität des Passworts gegenüber den Servern

3. Share Verifikation

Die Server testen ob der Client beiden Servern das selbe Passwort mitgeteilt hat

2BPR – Client Vorbereitung

- Erklärung zur Vorbereitung
- Mit Anschließender graphischer Darstellung

2BPR – Client Vorbereitung

2BPR – Passwort Registrierung

- Erklärung zur Passwort Registrierung
- Mit Anschließender graphischer Darstellung

2BPR – Passwort Registrierung

- Erklärung zu
 - Proof of Membership
 - Proof of Shuffle
 - Proof of Correctness

2BPR – Passwort Registrierung

2BPR – Share Verifikation

- Erklärung zur Share Verfikation
- Mit Anschließender graphischer Darstellung

2BPR — Share Verifikation

Gliederung

- Hintergrund
- Motivation
- Begriffe
- Protokoll
- Sicherheitsanalyse
- Fazit

Sicherheitsanalyse

• Spielebasierte Sicherheitsanalyse aus dem Paper

Gliederung

- Hintergrund
- Motivation
- Begriffe
- Protokoll
- Sicherheitsanalyse
- Fazit

Fazit – Performance

- Performance der Alogrithmen
- Python Beispiel

Fazit – Anwendung 2PAKE/2PASS

- Probleme bei der Anwendung bei 2PAKE/2PASS
- Auf was muss man achten?

Fazit

- Eigenes Fazit zu Paper
- Eigenes Fazit zu 2BPR / 2PAKE / 2PASS
- Fazit zu Commitments und Zero Knowledge Proofs

Bildquellen

•	http://wfarm2.dataknet.com/static/resources/icons/set112/8cbf6bf1.png	23.11.2017 14:38
•	https://www.iconexperience.com	24.11.2017 11:01
•	https://upload.wikimedia.org/wikipedia/commons/thumb/4/45/New Logo Gmail.svg/1200px-New Logo Gmail.svg.png	23.12.2017 13:57
•	https://fthmb.tqn.com/jRaoLvoOhFQWEWmMmyiZRcL NHg=/768x0/filters:no upscale()/Outlook-icon-57f005363df78c690f62c7af.png	23.12.2017 13:57
•	https://lh3.googleusercontent.com/UrY7BAZ-XfXGpfkeWg0zCCeo-7ras4DCoRalC_WXXWTK9q5b0Iw7B0YQMsVxZaNB7DM=w300	23.12.2017 13:57
•	https://lh3.googleusercontent.com/dSDutSmwU9LMJDCs9PaJI1JjXQthi8IDNRHPviI1NzocGTwuWC-PTAF6QiagTcGF0A=w300	23.12.2017 13:57
•	https://upload.wikimedia.org/wikipedia/commons/thumb/1/18/GitLab_Logo.svg/1200px-GitLab_Logo.svg.png	23.12.2017 13:57
•	https://assets-cdn.github.com/images/modules/open_graph/github-mark.png	23.12.2017 13:57
•	https://lh3.googleusercontent.com/z7oKSvTI-2ynS5bHggIctR9GVkS8sGKqpDlfCvgxLo0du7Az00u6XpJ0LLyvzBusW-Jd=w300	23.12.2017 13:57
•	https://lh3.googleusercontent.com/Dq-mZ5mmdE6aFPeD61DNIVTwYSI75UwHBYDq_BxBZOMSzCBnQ5OCC4-LjfP42tDlyw=w300	23.12.2017 13:57

Bildquellen

•	http://www.horizont.net/news/media/2/Web-hat-es-nic-gescha-Unddu-zu-ein-erfolgreic-Por16438.jpeg	23.12.2017 14:15
•	https://logos-download.com/wp-content/uploads/2016/10/GMX_logo_blue.png	23.12.2017 14:16
•	https://tradingeducationblogs.com/wp-content/uploads/2017/03/snapchat-logo.png	23.12.2017 16:15
•	https://d1x0mwiac2rqwt.cloudfront.net/bab0a0c4b1c3135a24bd0518417b66e3/as/logo_todoist_schema.png	23.12.2017 13:57
•	https://upload.wikimedia.org/wikipedia/de/thumb/9/9f/Twitter_bird_logo_2012.svg/1200px-Twitter_bird_logo_2012.svg.png	23.12.2017 13:57
•	https://www.facebook.com/images/fb_icon_325x325.png	23.12.2017 13:57
•	https://pixabay.com/p-1581266/?no_redirect	23.12.2017 14:08
•	https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Sparkasse.svg/2000px-Sparkasse.svg.png	23.12.2017 14:08
•	https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Volksbank_Logo.svg/1000px-Volksbank_Logo.svg.png	23.12.2017 14:08
•	http://millionmedia.com/wp-content/uploads/2014/11/deezer-logo-circle.png	23.12.2017 14:11
•	http://logodatabases.com/wp-content/uploads/2012/03/deutsche-bank.jpg	23.12.2017 14:11

Internetquellen

•	[1]	http://www.itwissen.info/Mehrbenutzersystem-multi-user-system.html	23.12.2017 15:07
•	[2]	https://arstechnica.com/information-technology/2013/11/	24.11.2017 09:38
•	[3]	https://techcrunch.com/2009/12/14/rockyou-hack	24.11.2017 09:44
•	[4]	https://www.reuters.com/article/us-adobe-cyberattack/	24.11.2017 09:50
•	[5]	https://crackstation.net/hashing-security.htm	24.11.2017 08:17
•	[6]	https://de.wikipedia.org/wiki/Zero-Knowledge-Beweis	30.12.2017 19:41
•	https://er	n.wikipedia.org/wiki/Password-authenticated_key_agreement	24.11.2017 10:12
•	• http://ieeexplore.ieee.org/document/7450662/		24.11.2017 10:23
•	https://bu	udickda.gitbooks.io/commitment-schemes/content/chapter3.html	26.12.2017 16:15