A MAJOR PROJECT

on

IMPLEMENTATION OF FACE MASK DETECTION USING OPENCY

Submitted to

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD

In partial fulfilment of the requirement for the award of the degree of

BACHELOR OF TECHNOLOGY

in

ELECTRONICS AND COMMUNICATION ENGINEERING

By

MADDI NIKITHA 187Y1A0422 PERABATHULA VAMSHI KRISHNA 187Y1A0451

Under the Guidance ofE. SREENIVASULU, Assistant Professor

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

June, 2022

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

NAAC Accredited Institution with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

Date:

CERTIFICATE

This is to certify that the project work entitled "IMPLENTATION OF FACE MASK DETECTION USING OPENCV" work done by MADDI NIKITHA (187Y1A0422) AND PERABATHULA VAMSHI KRISHNA (187Y1A0451) students of Department of Electronics and Communication Engineering, is a record of bonafide work carried out by the members during a period from January, 2022 to June, 2022 under the supervision of E. SREENIVASULU, Assistant Professor. This project is done as a fulfilment of obtaining Bachelor of Technology Degree to be awarded by Jawaharlal Nehru Technological University Hyderabad, Hyderabad.

The matter embodied in this project report has not been submitted by us to any other university for the award of any other degree.

MADDI NIKITHA

PERABATHULA VAMSHI KRISHNA

This is to certify that the above statement made by the candidates is correct to the best of my knowledge.

Date:	(E. SREENIVASULU)
The Viva-Voce Examination of above students, has been held on	

Head of the Department

External Examiner

Principal

ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to our guide **E. Sreenivasulu**, **Assistant Professor**, Department of Electronics and Communication Engineering, for his excellent guidance and invaluable support, which helped us accomplish the B.Tech (ECE) degree and prepared us to achieve more life goals in the future. His total support of our dissertation and countless contributions to our technical and professional development made for a truly enjoyable and fruitful experience. Special thanks are dedicated for the discussions we had on almost every working day during our project period and for reviewing our dissertation.

We are very much grateful to our Project Coordinator, **Dr. G. Amarnath**, **Associate Professor**, Department of ECE, MLRITM, Dundigal, Hyderabad, who has not only shown utmost patience, but was fertile in suggestions, vigilant in directions of error and has been infinitely helpful.

We are extremely grateful to **Dr. Srinivas Bachu**, **Associate Professor & HOD-ECE**, MLRITM, Dundigal, Hyderabad, for the moral support and encouragement given in completing my project work.

We wish to express deepest gratitude and thanks to **Dr. K. Venkateswara Reddy**, **Principal**, MLRITM, for his constant support and encouragement in providing all the facilities in the college to do the project work.

We would also like to thank all our faculties, administrative staff and management of MLRITM, who helped us to completing the mini project.

On a more personal note, I thank my **beloved parents and friends** for their moral support during the course of our project.

TABLE OF CONTENTS

				Page
				No.
Certificate				ii
Acknowledge	ements			iii
Table of Con	tents			iv-v
List of Figur	es			vi
List of Abbre	viations	5		vii
Abstract				viii
Chapter 1: 1	Introdu	ction		1-3
	1.1		Introduction	1
	1.2		Motivation	1
	1.3		Machine Learning	2
		1.3.1	Issues in ML	2
	1.4		The Image Net	3
	1.5		Classification	3
Chapter 2: 1	Literatu	re Sur	vey	4-7
Chapter 3: I	Method	ology		8-11
	3.1		Dataset	8
	3.2		Computer Vision	9
	3.3		Requirement Engineering	10
		3.3.1	Functional Requirement	10
		3.3.2	Data Requirement	10
		3.3.3	Non-Functional Requirement	10
	3.4		Training	11
	3.5	Hyper Parameters		11
Chapter 4: 1	Design (of Softv	vare	12-22
	4.1		Use case Diagram	12
		4.1.1	Sequence Diagram	13

		4.1.2	Activity Diagram	14
		4.1.3	System Architecture	15
	4.2		Webcam	16
		4.2.1	Technology	18
		4.2.2	Image sensor	19
		4.2.3	Optics	20
		4.2.4	Uses	20
	4.3		Video Monitoring	20
	4.4		Computer Vision	21
		4.4.1	Sub-Fields	22
		4.4.2	Applications	22
Chapter 5: Construction		23-31		
	5.1		Implementation	23
		5.1.1	Implementation Details	24
		5.1.2	Image Processing	24
		5.1.3	CNN (Convolutional Neural Network)	25
	5.2		Software Details	26
	5.3		Hardware Details	26
	5.4		Testing	27
	5.5		OpenCV	28
		5.5.1	Python	29
Chapter 6: S	Source	Code		32-34
Chapter 7: I	Result a	nd Ana	alysis	35-36
Chapter 8: A	Advanta	ages an	d Applications	37-38
	8.1		Advantages	37
	8.2		Applications	38
Chapter 9: 0	Conclus	sion and	l Future Scope	39
	9.1		Conclusion	39
	9.2		Future Scope	39
References				40

LIST OF FIGURES

Figure No.	Name of the Figure	Page No.	
Figure 2.1	Bounding boxes in an image	4	
Figure 3.1	Open CV	9	
Figure 4.1	Use case Diagram	12	
Figure 4.2	Sequence Diagram	13	
Figure 4.3	Activity Diagram	14	
Figure 4.4	System Architecture	15	
Figure 4.5	Typical low-cost webcam used with many personal computers (2007)	17	
Figure 4.5	Typical high-cost webcam (2017) with resolution and built-in	17	
C	stereo microphones		
Figure 4.7	Image sensor, lens and supporting circuitry	18	
Figure 4.8	Animated set of X-ray images of a webcam, acquired using	19	
	industrial CT scanning		
Figure 4.9	Computer Vision Identifying	21	
Figure 5.1	Train and applying Face Mask	24	
Figure 5.2	Convolutional Neural Network	25	
Figure 5.3	Train_set_split () method	26	
Figure 7.1	With Mask	35	
Figure 7.2	No mask	35	
Figure 7.3	One person with mask and another with no mask	36	
Figure 7.4	Both persons with masks	36	
Figure 7.5	Both persons without masks	36	

LIST OF ABBREVIATIONS

ML	Machine Learning
AI	Artificial Intelligence
NLP	Natural language processing
CNN	Convolutional neutral networks
SSD	Single shot detection
SVM	Support vector machine
YOLO	You Only Look Once
FPN	Feature Pyramid Network
RMFD	Real World Masked Face Dataset
API	Application programming Interface
IOU	Intersection over Union
GPU	Graphics Processing Unit
TFPU	TensorFlow Processing Unit
CPU	Central Preprocessing Unit
IBM	International Business Machine
MRI	Magnetic resonance imaging

ABSTRACT

COVID-19 pandemic has rapidly increased health crises globally and is affecting our day to-day lifestyle. Many measures are recommended by WHO to control the infection rate and avoid exhausting the limited medical resources. A motive for survival recommendations is to wear a safe facemask, stay protected against the transmission of coronavirus. By wearing a facemask, the most effective preventive care must be taken against COVID-19. Monitoring manually if the individuals are wearing face mask correctly and to notify the victim in public and crowded areas is a difficult task.

This project approaches a simplified way to achieve facemask detection and notifying the individual if not wearing facemask. Our project uses image processing and machine learning techniques. We collect data of images of face with and without masks and then image processing applied to it. We are giving data set of samples containing images with and without mask. So that we train the data using machine learning techniques like convolution neural networks. We use image processing technique viola jones algorithm to take images as input.

The output will be of color bounded box shown as without mask if the detected face is without mask and it sends the information to person and higher authorities too. If the person is wearing mask the bounded box will be of shown as mask. It indicates that it is safe now. The system runs in real- time and detects if an individual face has a facemask, if not then notifies the person-in-charge that the individual has not been equipped with a mask.