# Experimental Analysis of Mastery Learning Criteria

#### Radek Pelánek and Jiří Řihák



**UMAP 2017** 

## **Mastery Learning**

- common personalization approach in educational systems
- "practice until mastery, then move to a subsequent topic"

# Example

| item                         | answer          | time | correct?  |
|------------------------------|-----------------|------|-----------|
| $\frac{2}{3} + \frac{4}{5}$  | 13<br>15        | 12s  | correct   |
| $\frac{3}{4} + \frac{1}{6}$  | $\frac{10}{12}$ | 7s   | incorrect |
| $\frac{2}{7} + \frac{3}{14}$ | $\frac{1}{2}$   | 9s   | correct   |
| $\frac{1}{4} + \frac{2}{3}$  | $\frac{11}{12}$ | 7s   | correct   |
| $\frac{2}{5} + \frac{3}{7}$  | <u>29</u><br>35 | 13s  | correct   |
|                              |                 |      |           |

Should the learner continue or move to another topic?

## Mastery Criteria

important, interesting, understudied research direction

- hard to decide what to use
- easy to change in real systems
- significant impact on users

## Mastery Criteria

- N consecutive correct (NCC)
- moving average
  - moving window
  - exponential moving average (EMA)
- based on learner model threshold rule
  - Bayesian knowledge tracing (BKT)
  - logistic models

## Evaluation, Thresholds

evaluation difficult, no clear "correct decisions"



### Questions

- Which criterion to use?
- Does the use of learner modeling bring advantage?
- How to evaluate mastery criteria?
- How to choose thresholds?

#### **Evaluation: Data**

- simulated data
  - simplified
  - ground truth available
- real data
  - realistic
  - difficult evaluation

#### Results

- learner models are not fundamental
- the choice of thresholds and input data is more important
- exponential moving average is a convenient approach

## Importance of Learner Models: BKT vs NCC

Bayesian knowledge tracing (BKT) vs N consecutive correct (NCC)



Even under optimistic setting, the learner model does not provide fundamental advantage over a very simple mastery criterion.

## Importance of Learner Models: Input Data

real data (adaptive practice of mathematics)

|                                   | logistic<br>learner<br>model | exponential<br>moving<br>average | less       |
|-----------------------------------|------------------------------|----------------------------------|------------|
| correctness                       | M1                           | M2                               |            |
| correctness<br>+ response<br>time | M3                           | M4                               | correlated |
|                                   | high<br>cori                 | hly<br>related                   |            |

## **Exponential Moving Average**

flexible, sufficiently powerful:

- two parameters: decay, threshold
- by tuning these parameters it can fit many circumstances

## Effort-score graphs

Visualizing the trade-off





# Summary and Future Work

Use simple criteria, focus on input data and thresholds, not on models.

limitations and future work:

- multiple knowledge components
- wheel-spinning students
- forgetting
- partial credit