# Национальный исследовательский университет «МЭИ»

### КУРСОВОЙ ПРОЕКТ

«Разработка модуля расчёта координат спутника Beidou»

Группа: ЭР-15-16

Студент: Серов К.М.

Преподаватель: Корогодин И.В.

Москва

**ВВЕДЕНИЕ** 

Цель проекта - добавление в программное обеспечение приемника функции

расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

• требования назначения;

• отсутствие утечек памяти;

• малое время выполнения;

низкий расход памяти;

корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта

и контрольным мероприятиям:

• обработка данных от приемника, работа со сторонними сервисами для

подготовки входных и проверочных данных для разрабатываемого

модуля;

моделирование модуля в Matlab/Python;

реализация программного модуля на С/С++, включая юнит-тестирование

в Check.

Конечная цель всего курсового проекта - получить библиотеку функций на

Си++, позволяющую рассчитывать положение спутника Beidou по его эфемеридам.

Исходные данные: PRN спутника Beidou - C21

2

#### Этап 1. Использование сторонних средств

#### Описание этапа

На первом этапе подготовим вспомогательные данные для разработки: эфемериды и оценки положения спутника от сторонних сервисов (чтобы было с чем сравниваться на след. этапах).

На крыше корпуса Е МЭИ установлена трехдиапазонная антенна Harxon HX-CSX601A. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года

Определим какому спутнику соответствует выданный PRN спутника.

| Nº ≑ | Спутник 🔺   | PRN ÷ | Дата (UTC) <b>+</b> | Ракета 💠   | NSSDC ID + | SCN ÷  | Орбита 💠        | Статус +    | Система 🕈 |
|------|-------------|-------|---------------------|------------|------------|--------|-----------------|-------------|-----------|
| 29   | Бэйдоу-3 М6 | C21   | 12.02.2018 05:10    | CZ-3B/YZ-1 | 2018-018B₽ | 43208₺ | СОО, ~21 500 км | действующий | Бэйдоу-3  |

Рисунок 1 — Состав орбитальной группировки космической навигационной системы Beidou на 10 марта 2020 года [1]

Номер спутника C21 соответствует спутнику Beidou – 3 M6, номер по спутниковому каталогу НОРАД (или SCN) равен 43208.

Проверим эту информацию, для этого воспользуемся данными о состоянии космических аппаратов Beidou на 02.03.21 из «Информационно-аналитического центра координатно-временного и навигационного обеспечения» [2].

| PRN | НОРАД | Тип КА | Тип системы | Дата запуска | Факт. сущ. (дней) | Примечание         |
|-----|-------|--------|-------------|--------------|-------------------|--------------------|
| C21 | 43208 | MEO-3  | BDS-3       | 12.02.18     | 1114              | Используется по ЦН |

Рисунок 2 — Данные о состоянии космических аппаратов Beidou на 02.03.21 (источник «Информационно-аналитического центра координатно-временного и навигационного обеспечения»)

Информация с рисунков 1 и 2 совпадает.

#### 1.1. Определение формы орбиты и положения спутника

Определим формы орбиты и положения спутника на ней на начало рассматриваемого интервала времени по данным сервиса CelesTrak: общий вид + положение спутника на 18:00 МСК 16 февраля 2021, так, чтобы было видно подспутниковую точку и время.

18:00 по МСК соответствует 15:00 по UTC (UTC +3). Так как сервис CelesTrak работает в формате времени UTC, установим время 15:00 UTC 16 февраля 2021.



Рисунок 3 — Модель сервиса CelesTrak, видно подспутниковую точку и время



Рисунок 4 — Модель сервиса CelesTrak, общий вид орбиты спутника

#### 1.2. Расчет графика угла места собственного спутника от времени

Рассчитаем график угла места собственного спутника от времени по данным Trimble GNSS Planning Online на интервал времени с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года.

Установили приблизительные координаты местоположения антенны и границы времени, также выбрали конкретный, интересующий нас, спутник C21.



Рисунок 5 — Экран настроек Trimble GNSS Planning Online



Рисунок 6 — Выбор собственного спутника



Рисунок 7 — График угла места спутника С21 от времени

По рисунку 6 видно, что спутник находился в зоне видимости в промежутке времени с 22:10 до 3:50.

#### 1.3. Расчет диаграммы угла места и азимута спутника

Рассчитаем диаграммы угла места и азимута спутника (SkyView, он же SkyPlot) по данным Trimble GNSS Planning Online на интервал времени с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года.

Зафиксируем моменты появления спутника в зоне видимости и его исчезновения, пронаблюдаем траекторию движения спутника.



Рисунок 8 — Момент появления спутника в зоне видимости (Время: 2021-02-16 22:10 UTC +03:00)



Рисунок 8 — Момент перед исчезновением спутника из зоны видимости (Время:  $2021\text{-}02\text{-}17\ 03\text{:}40\ UTC\ \text{+}03\text{:}00)$ 

## 1.4. Формирование списка и описание параметров

Сформируем список и описание параметров, входящих в состав эфемерид в сигнале B1I Beidou. Сформируем список эфемерид [3]:

Таблица 1 — Описание параметров эфемерид

| Параметры     | Определение                                                                      |  |  |  |  |  |
|---------------|----------------------------------------------------------------------------------|--|--|--|--|--|
| $t_{oe}$      | Исходное время эфемерид                                                          |  |  |  |  |  |
| $\sqrt{A}$    | Квадратный корень из большой полуоси                                             |  |  |  |  |  |
| e             | Эксцентриситет                                                                   |  |  |  |  |  |
| ω             | Аргумент перигея                                                                 |  |  |  |  |  |
| $\triangle n$ | Среднее отклонение движения от расчетного значения                               |  |  |  |  |  |
| $M_0$         | Средняя аномалия в исходное время                                                |  |  |  |  |  |
| $\Omega_0$    | Долгота восходящего узла орбитальной плоскости, вычисленная по исходному времени |  |  |  |  |  |
| Ω             | Скорость прямого восхождения                                                     |  |  |  |  |  |
| $i_0$         | Угол наклона в исходное время                                                    |  |  |  |  |  |
| IDOT          | Скорость угла наклона                                                            |  |  |  |  |  |
| $C_{uc}$      | Амплитуда косинусного гармонического корректирующего члена к аргументу широты    |  |  |  |  |  |
| $C_{us}$      | Амплитуда синусного гармонического корректирующего члена к аргументу широты      |  |  |  |  |  |
| $C_{rc}$      | Амплитуда косинусного гармонического корректирующего члена к радиусу орбиты      |  |  |  |  |  |
| $C_{rs}$      | Амплитуда синусного гармонического корректирующего члена к радиусу орбиты        |  |  |  |  |  |
| $C_{ic}$      | Амплитуда косинусного гармонического корректирующего члена к углу наклона        |  |  |  |  |  |
| $C_{is}$      | Амплитуда синусного гармонического корректирующего члена к углу наклона          |  |  |  |  |  |

Таблица 2 — Значения параметров эфемерид спутника С21

| Параметр | Обозначение   | Значение                 | Размерность        |  |
|----------|---------------|--------------------------|--------------------|--|
| SatNum   | PRN           | 21                       | -                  |  |
| toe      | $t_{oe}$      | 241200000.000            | мс                 |  |
| Crs      | $C_{rc}$      | -6.68437500000000000e+01 | рад                |  |
| Dn       | $\triangle n$ | 3.86908994426393704e-12  | рад/мс             |  |
| M0       | $M_{0}$       | 3.86908994426393704e-12  | рад                |  |
| Cuc      | $C_{uc}$      | -3.16184014081954956e-06 | рад                |  |
| e        | e             | 6.40757265500724316e-04  | -                  |  |
| Cus      | $C_{us}$      | 6.28596171736717224e-06  | рад                |  |
| sqrtA    | $\sqrt{A}$    | 5.28262227249145508e+03  | $M^{1/2}$          |  |
| Cic      | $C_{ic}$      | 1.76951289176940918e-08  | рад                |  |
| Omega0   | $\Omega_0$    | -2.80692060956725220e-01 | рад                |  |
| Cis      | $C_{is}$      | -6.79865479469299316e-08 | рад                |  |
| i0       | $i_0$         | 9.64946480705556331e-01  | рад                |  |
| Crc      | $C_{rc}$      | 2.33203125000000000e+02  | рад                |  |
| omega    | ω             | -9.96705605657731697e-01 | рад                |  |
| OmegaDot | Ω             | -6.91350226083361201e-12 | рад/мс             |  |
| iDot     | IDOT          | -1.40362989539061277e-13 | рад/с              |  |
| Tgd      | $T_{GD}$      | 1.4100000000000000e+05   | мс                 |  |
| toc      | $t_{oc}$      | 2.4120000000000000e+08   | мс                 |  |
| af2      | $a_{f2}$      | 0.0000000000000000e+00   | mc/mc <sup>2</sup> |  |
| af1      | $a_{f1}$      | -1.83684178978182899e-11 | мс/мс              |  |
| af0      | $a_{f0}$      | -8.41504871845245361e-01 | МС                 |  |
| URA      | -             | 0                        | -                  |  |
| IODE     | -             | 257                      | -                  |  |
| IODC     | -             | 0                        | -                  |  |

| codeL2 | - | 0   | - |
|--------|---|-----|---|
| L2P    | - | 0   | - |
| WN     | - | 789 | - |

#### Список литературы и источников

- 1. Википедия. Бэйдоу https://ru.wikipedia.org/wiki/Бэйдоу#Список спутников
- 2. «Информационно-аналитический центр координатно-временного и навигационного обеспечения» <a href="https://www.glonass-iac.ru/BEIDOU/">https://www.glonass-iac.ru/BEIDOU/</a>
- BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal B1I (Version 3.0) - China Satellite Navigation Office February 2019