

RV College of Engineering

DEPARTMENT OF MATHEMATICS

Academic year 2023-2024 (Odd Semester 2023)

Date	18th March 2024	Time	9:30 a.m	11:30 a.m.	
Quiz & Test	I	10 + 50			
Course Title	Linear Algebra, Probability	Course Code	MMA2027		
Semester	I	Programs	MCE, MCN		

	tructions: Answer all questions.	14	0.1	D
Sl. No.	Quiz	M	CO	B T
1	Find the value of k such that the vectors $2t^2 + t + 2$, $t^2 - 2t$, $kt^2 - t + 2$ are	02	2	2
	linearly dependent.	00	,	
2	If \mathbb{R}^+ , the set of all positive real numbers is a vector space over the field \mathbb{R} , defined under (i) $\alpha + \beta = \alpha\beta$ and (ii) $c \cdot \alpha = \alpha^c$, then the zero vector is	02	1	1
	and the inverse vector of α is	02	2	2
3	Show that the vector (2,3) belongs to the column space of $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$.			
4	Find the orthogonal projection of y onto u and the vector z orthogonal to u, where $y = (4,2)$ and $u = (1,1)$.	02	4	4
5	Suppose $Ax = b$ is inconsistent and $A^TA = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$ and $A^Tb = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, then the	02	3	3
	least-squares solution is			_
Sl. No.	Test	M	C	B
1a	Show that the set of vectors $V = \{a + b\sqrt{2} \mid a, b \in \mathbb{R}\}$ is a vector space over the	06	2	2
	field R.	04	1	1
1b	Show that the subset \mathbb{P}_2 , the set of all polynomials of degree at most 2, is a subspace of the vector space \mathbb{P}_n , the set of all polynomials of degree at most n .			
2a	Show that the matrices $\begin{bmatrix} 2 & 1 \\ 2 & 4 \end{bmatrix}$, $\begin{bmatrix} 1 & -2 \\ 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 5 & -5 \\ 2 & 10 \end{bmatrix}$, $\begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$ are linearly		2	2
	dependent in $M_{2\times 2}$. Extract a linearly independent subset. Also find the			
	basis and dimension of the subspace spanned by them.	0.4	1_	+
2b	Fit the line of best fit for the data points (1,2), (2,3), (3,4), (4,3), by least-squares method.	04	4	4
3	Find the bases and dimension of the four fundamental subspace of the matrix $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & 1 & 3 \\ 5 & 0 & 2 & 3 \end{bmatrix}$.		3	3
4a	Show that the mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x,y) = (x+3y,2x-2y)$ is a linear transformation.	04	1	1
4b	Find the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(1,1,1) = (2,2,0), T(1,2,1) = (4,3,1), T(2,1,0) = (4,1,3)$. Also determine the bases of the range space and null space.		4	
5	Obtain the <i>QR</i> factorization of the matrix $A = \begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$.	10	3	3

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

	Particulars	CO1	CO2	CO3	CO4	Ll	L2	L3	L4	L5	L6
Marks	Quiz Max Marks	2	4	2	2	2	4	2	2	-	-
Distribution	Test Max Marks	8	12	20	10	-	8	12	20	10	

RV College of Engineering

DEPARTMENT OF MATHEMATICS

Academic year 2023-2024 (Odd Semester 2023)

Date	29th April 2024	9:30 a.m 11:30 a.m.				
Quiz & Test	II	10 + 50				
Course Title	Linear Algebra, Probabilit	Course Code	MMA202			
Semester	I	Programs	MCE, MCN			

	Semester	Dilical Ingebra, 1100000	Programs				_	
	MCE, M	MCE, MCN						
	tructions: An	swer all questions.	24					
Sl. No.	4.	Q	uiz		M		B	
1	If the inner	product of the vectors u	and v is defined as $< u$,	$v >= 2u_1v_1 +$	02	_	2	
	l .	_	(3,2) and $v = (2,1)$ is					
2	The maxim	um value of the quadra		02	2	2		
	constraint x	Tx = 1 is		,	02	1	1	
3	If the sum and product of the eigenvalues of the matrix $A = \begin{bmatrix} a & 2 \\ 0 & b \end{bmatrix}$ are 7 and							
	12 respectiv	ely, then the matrix $A = $	<u> </u>	.,				
4	The singular	r values of the matrix $A =$	= [1 -2 2] are	27	02	4	4	
5	Suppose the	e covariance matrix S has	s the eigenvector $\begin{bmatrix} 1 & 2 \end{bmatrix}_{\bullet}^{T}$	corresponding	02	3	3	
	to the large	st eigenvalue 84.36. The	n a new variable y_1 , suc	h that y_1 has				
	maximum p	ossible variance over a g	iven data is					
Sl. No.		1	est		M	C	B	
la	Let V be I	P ₃ with the inner proc	duct defined by $\langle p,q \rangle$	$= p(t_0)q(t_0) +$	06	2	2	
			here $t_0 = -2, t_1 = -1, t_2 = 1$					
	[전 : 12 11주의 15일 전 15일() - 17	pplying Gram-						
		midt process to the polynomials $1, t, t^2$.						
1b	Find the nt	h order Fourier approxi	mation to the function	f(t) = 2 on the	04	1	1	
	interval [0, 2	π].						
2a	Suppose the	quadratic form is given	by $Q(x) = 5x_1^2 + 4x_2^2 + 4x_3^2$	$+2x_1x_2 -$	06	2	2	
			value of $Q(x)$ subject to t					
	$x^{T}x = 1$, (ii) a unit vector u where this maximum is attained, (iii) the							
	maximum o	of $Q(x)$ subject to the con	strains $x^Tx = 1$ and $x^Tu = 1$	= 0.				
2b	Make a change of variable, $x = Py$, that transforms the quadratic form							
	$6x_1^2 + 4x_1x_2$	$+3x_2^2$, into a quadratic fo	orm with no cross-produc	et term. Give P				
	and the new quadratic form.							
3	Using the p	process of diagonalization	on decompose the matr	$\mathbf{x} A \text{ as } PDP^{-1}$, 10	3	3	
] [2 -1 -1					1	
	where $A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 & -1 & -1 \\ 1 & 4 & 1 \\ -1 & -1 & 2 \end{bmatrix}$						
4	Decompose	the matrix A as $U\Sigma V^T$,	using the singular value	decomposition	n 10	3	1	
	process, wh	$\operatorname{ere} A = \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}.$						
5	Given the n	natrix of observations as	3: \begin{bmatrix} 20 & 16 & 14 & 18 & 15 \\ 9 & 7 & 8 & 6 & 5 \end{bmatrix}	$\begin{bmatrix} 19 \\ 7 \end{bmatrix}$, convert th	ie 10) 4		
	matrix to m	ean deviation form, con	struct the covariance m	atrix and hence	ce			
			so determine what per					
	_	is retrieved from the fire		-				
			CO-Course Outcomes M-M	1				

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

	Particulars	COI	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Marks	Quiz Max Marks	2	4	2	2	2	4	2	2	-	-
Distribution	Test Max Marks	8	12	20	10	8	12	20	10	-	-

Linear Algebra Probability and Quening Thoory (MMA202T)

Quelle 1. 41, V> = 24, V1 + 342 V2, u=(3,2), v=(21)

u-v=(1,1)(1 || u-v|| = J2x1x1 + 3x1x1 = 55 $u-v = (1,1)(1 || u-v|| = \sqrt{2}v_1v_1 + 3x_1v_1 = \sqrt{5})$ $2 || Q(v) = 104 || Q || P = \left(0 - \frac{5}{5}\right) \Rightarrow \lambda^2 - 0\lambda + (-25) = 0 \Rightarrow \lambda^2 = 25 \Rightarrow \lambda = \pm 5$ $2 || Q(v) = 104 || Q || P = \left(0 - \frac{5}{5}\right) \Rightarrow \lambda^2 - 0\lambda + (-25) = 0 \Rightarrow \lambda = \pm 5$ $2 || Q(v) = 104 || Q || P = \left(0 - \frac{5}{5}\right) \Rightarrow \lambda^2 - 0\lambda + (-25) = 0 \Rightarrow \lambda = \pm 5$ 3, A= [a 2] a+b=7.7 => a=3, b=4 () A= [3 2] ()
ab=12] 4. A=[1-22] AAT=[9] (2 singular value is \$9=3() 5. $\lambda = 84.36$ $\chi = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 2 \\ \sqrt{5} \end{bmatrix} = \begin{bmatrix} 0.4472 \\ 0.8944 \end{bmatrix} \quad \forall j = 0.452 + 0.8922 1$ $\frac{7 \cdot A = 67.}{100} = \frac{1}{100} = \frac{1}{1$ Pet)=t- <t,70>x1 - (t,70)x1 - (t,7)>xt = t- 10x1 - 14xt = t- 12x1 - 12x 1/2 (0,24) ao = 1/2 2dt = 1/2 (2t) = 2 (1) an= 1 2.65 ktd1 = 1 [Sinkt] = 1 1 (0-0) = 0 bn= 24 /2 8 nktd+ = # (Coskt) 2 = ETT [- Cos 24 + Coso) = 0 1 2a Q(2)= 54 + 4x2 + 413 +2472-24123-4223. Qmax vel'is 75+ 12=1. $h = \begin{cases} 5 & \frac{1}{4} \cdot -\frac{1}{4} \\ \frac{1}{4} \cdot -\frac{1}{4}$

L		PART - B			
1	l	The joint distribution of two random variables X and Y is given by the following table	1	2	2
		where X is scaled temperature and Y is difference in pressure (scaled) of a reactor.	0		
		Y 1 2			
		X			
		0 0.3 0.1			
		1 0.2 0.1			
		2 0.1 0.2			
		Determine (i) Covariance and Correlation matrix of (X, Y)			
2		Let $X \sim N(\mu, \Sigma)$, $\mu = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 16 & -2 & 1 \\ -2 & 4 & 3 \\ 1 & 3 & 9 \end{bmatrix}$. Compute the following i) $P[X_1 < 7]$ ii) $P[-3X_1 + 3X_3 > 80]$ iii) $P[3X_1 + 4X_2 - 5X_3 < 70]$	1 0	2	2
	3	Measurements in three characteristics are made on two individuals in a random sample from a population. The observation matrix is given as $A = \begin{bmatrix} 3 & -1 \\ 1 & -2 \\ 2 & 1 \end{bmatrix}$. Using Singular Value	4		

			A	d-et		-				1.1	4 1	4 1	
3	Measurements in three characteristics are made on two individuals in a random sample $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$											1	
	Measurements in the from a population. The observation matrix is given as $A = \begin{bmatrix} 3 & -1 \\ 1 & -2 \\ 2 & 1 \end{bmatrix}$. Using Singular Value $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$. Decomposition find the first singular value.												
	Decomp	osition find	the first sing	ular value.					C. Harriag table:	-	3	3	1
4	The joint	distributio	on of two rand	lom variabl	es X ai	nd Y is	given	by the	following table:	10			1
		Y	0	1									
lt i		0	0.1	0.2						- 1		1	1
		l	0.4	0.2	1					\.		/'	1
		2	0.1	0							1	1	-
	(a) Find	P(X + Y)	> 1)		_					- 1	- \	- /	- 1
	(b) Dete	ermine the	individual (marginal) į	probab	ility d	istribu	itions	of X and Y and ve	erify	- 1	1	- 1
	that	X and Y a	re not indepe	ndent.						1			1
	(c) Con	noute P(Y	Y X=2), P	(X Y=1)						1			1
	(0)	.pare . ([-), .	(
5	The follo	owing tabl	e lists the we	eights and h	eights	of fiv	e boys	3			1	4	4
			Boy	1	2	3	4	5			0		
			Weight	(lb) 120	125	125	135	145		((((
			Height	(m) 61	60	64	68	72	1		\	\	\ \
	Compute	e the samp	le covariance	e matrix. A	lso fin	d the	princip	al cor	nponent of the dat	a and	1	1	1
									ncipal component		1	1	