Árvores AVL (Adelson-Velskii and Landis)

Universidade Federal do Amazonas Departamento de Eletrônica e Computação

Introdução (2)

- Seja um nó n qualquer da árvore:
 - FB(n) = altura(sad) altura(sae)
 - se FB(n) = 0, as duas sub-árvores têm a mesma altura
 - se FB (n) = -1, a sub-árvore esquerda é mais alta que a direita em 1
 - se FB (n) = +1, a sub-árvore direita é mais alta que a esquerda em 1

- Árvore Balanceada
 - Uma árvore binária balanceada é aquela em que, para qualquer nó, suas sub-árvores esquerda e direita têm a mesma altura
- Árvore AVL
 - Uma árvore binária de busca é balanceada quando, para cada nó, as alturas de suas subárvores (sa) esquerda e direita diferem de, no máximo, 1
 - Essa diferença é chamada fator de balanceamento, ou FB (n)

Exemplos de Árvores AVL

Introdução (4)

Exemplos de Árvores Não-AVL

Introdução (5)

- A vantagem da árvore AVL sobre uma degenerada está na eficiência das suas operações de busca
 - Sendo a altura da AVL bem menor, o número necessário de comparações diminui sensivelmente
 - Numa árvore degenerada de 10.000 nós, são necessárias, em média, 5.000 comparações, numa busca; numa árvore AVL, com o mesmo número de nós, essa média baixa para 14
- O algoritmo deve, a cada inserção, fazer as correções necessárias para garantir que qualquer nó n tenha | FB (n) | <= 1

Balanceamento (1)

- Como fazemos então para manter uma árvore AVL balanceada?
 - Inicialmente inserimos um novo nodo na árvore normalmente
 - A inserção deste novo nodo pode ou não violar a propriedade de balanceamento
 - Caso a inserção do novo nodo não viole a propriedade de balanceamento podemos então continuar inserindo novos nodos
 - Caso contrário precisamos nos preocupar em restaurar o balanço da árvore
 - A restauração deste balanço é efetuada através do que denominamos de rotações na árvore

Balanceamento (2)

- Serão usados dois ponteiros A e B, para auxiliar:
 - **A** é nó ancestral **mais próximo** do nó inserido com FB (nó) ≠ 0 antes da inserção
 - ou a própria raiz se não há nenhum nó com FB (nó) ≠ 0 (antes da inserção) no caminho da busca
 - A é também chamado de Pivô
 - **B** é filho de **A** na sub-árvore onde ocorreu a inserção
 - Considerar ligações unidirecionais entre pai e filho

Exemplo de Desbalanceamento

Antes da Inserção do valor 2

Após a Inserção do valor 2

Quem é A e quem é B?

proc rotação simples

se FB(A) = +1 // antes da inserção **então** rotação simples à esquerda

senão rotação simples à direita fim se

zera fatores de A e de B

fim proc

Rotação Simples à Esquerda

$$B->esq = A;$$

Rotação Simples à Direita

$$A->esq = B->dir;$$

 Mostrar as rotações necessárias para a construção da seguinte árvore AVL: 3, 2, 1, 4, 5, 6 e 7

Exercício: Inserção (2)

 Mostrar as rotações necessárias para a construção da seguinte árvore AVL: 3, 2, 1, 4, 5, 6 e 7

Quem é A? Quem é B? Quais os FB's? O que é necessário fazer para equilibrar essa árvore?

Exercício: Inserção (3)

O resultado da rotação à direita fica...

Exercício: Inserção (4)

O resultado da rotação à esquerda fica...

O resultado da rotação à esquerda fica...

Rotação Dupla

Rotação Dupla à Direita (1)

- É composta por uma rotação simples à direita (B e Aux) seguida de uma rotação simples à esquerda (A e Aux)
- Aux é o filho esquerdo de B

Rotação Dupla à Direita (2)

Aux = B-resq;
// rotação simples à direita (B - Aux)
B-resq = Aux-rdir;
Aux-rdir = B;
// rotação simples à esquerda (A - Aux)
A-rdir = Aux-resq;
Aux-resq = A;

Rotação Dupla à Esquerda (1)

- É composta por uma rotação simples à esquerda (B e Aux) seguida de uma rotação simples à direita (A e Aux)
- Aux é o filho direito de B

Rotação Dupla à Esquerda (2)

Aux = B->dir; // rotação simples à esquerda (B - Aux) B->dir = Aux->esq; Aux->esq = B;

// rotação simples à direita (A - Aux) A->esq = Aux->dir; Aux->dir = A;

Como ficaria se fosse inserido o valor 16?

Exemplo: Rotação Dupla (2)

A Árvore ainda fica OK!

Como ficaria se fosse inserido o valor 15?