Лабораторная работа №1 Решение линейных задач на языке C#

Цель работы: научится разрабатывать простейшие приложения на языке высокого уровня С# для решения линейных задач.

Ввод данных

Для ввода данных обычно используется метод **ReadLine**, реализованный в классе **Console**. Особенностью данного метода является то, что в качестве результата он возвращает строку (string).

Пример:

```
string s = Console.ReadLine();
Console.WriteLine(s);
```

Для того чтобы получить числовое значение необходимо воспользоваться преобразованием данных.

Пример:

```
string s = Console.ReadLine();
int x = int.Parse(s); // преобразование строки в число
Console.WriteLine(x);
```

Или сокращенный вариант:

```
int x = int.Parse(Console.ReadLine());
Console.WriteLine(x);
```

Для преобразования строкового представления целого числа в тип *int* мы используем метод **int.Parse**(), который реализован для всех числовых типов данных. Таким образом, если нам потребуется преобразовать строковое представление в вещественное, мы можем воспользоваться методом **float.Parse**() или **double.Parse**(). В случае, если соответствующее преобразование выполнить невозможно, то выполнение программы

прерывается и генерируется исключение *System.FormatExeption* (входная строка имела неверный формат).

Вывод данных

В приведенных выше примерах мы уже рассматривали метод WriteLine, реализованный в классе Console, который позволяет организовывать вывод данных на экран. Однако существует несколько способов применения данного метода (таблица 1.4):

Таблица 1. Способы вывода

Console.WriteLine(x);	На экран выводится значение идентификатора х
Console.WriteLine("x=" + x +"y=" + y);	на экран выводится строка, образованная последовательным слиянием строки "x=", значения x, строки "y=" и значения у
Console.WriteLine("x={0} y={1}", x, y);	на экран выводится строка, формат которой задан первым аргументом метода, при этом вместо параметра {0} выводится значение x, а вместо {1} - значение

Если использовать при выводе вместо метода WriteLine метод Write, вывод будет выполняться без перевода строки.

Математическая библиотека Math

Для выполнения лабораторной работы необходимо использовать математические функции библиотеки **Math**.

Таблица 2 – Функции библиотеки Math

No	Название	Описание
1.	Math.Abs(выражение)	Модуль
2.	Math.Ceiling(выражение)	Округление до большего целого
3.	Math.Cos(выражение)	Косинус
4.	Math.E	Число е
5.	Math.Exp(выражение)	Экспонента
6.	Math.Floor(выражение)	Округление до меньшего целого

No	Название	Описание
7.	Math.Log(выражение)	Натуральный логарифм
8.	Math.Log10(выражение)	Десятичный логарифм
9.	Math.Max (выражение1, выражение2)	Максимум ив двух значений
10.	Math.Min (выражение1, выражение2)	Минимум из двух значений
11.	Math.PI	Число
12.	Math.Pow (выражение1, выражение2)	Возведение в степень
13.	Math.Roundl(выражение)	Простое округление
	Math.Round(выражение, число)	Округление до заданного числа цифр
14.	Math.Sign(выражение)	Знак числа
15.	Math.Sin(выражение)	Синус
16.	Math.Sqrt(выражение)	Квадратный корень
17.	Math.Tan (выражение)	Тангенс

Пример программы для решения линейной задачи Задание.

		a = 0.3
24	$R = \sqrt{x^2 + b} - b^2 \cdot \sin^3(x + a)$	b = 0.9
		x = 0.61

Исходный код программы

```
using System;
namespace ConsoleApplication1
{
    class Program
    {
        static void Main(string[] args)
        {
            //объявляем переменные
            double a = 0.3;
            double b = 0.9;
            double x = 0.61;

            //ocyществляем расчет функции
            double R = Math.Sqrt(Math.Pow(x, 2) + b) - Math.Pow(b, 2) *
Math.Pow(Math.Sin(x + a), 3);

            //вывод результатов
            Console.WriteLine("R = {0}", R);

            Console.ReadKey();
        }
```


Рисунок 1 – Результат работы программы

Задания на лабораторную работу

Задание 1. Разработать консольное приложение, реализующее решение линейной задачи с заданными исходными данными.

№ вар.	Расчетная формула	Значения исходных
		данных
1	$2\cos\left(x-\frac{\pi}{\epsilon}\right)$	x = 1.426
	$a = \frac{2\cos\left(x - \frac{\pi}{6}\right)}{\frac{1}{2} + \sin^2 y}$	y = -1.22
	=	
2	z^2	z = 3.5
	$a = 1 + \frac{z^2}{3 + \frac{z^2}{5}}$	
3	<u>y</u> 3 <u>y</u>	x = 1.825
	$\gamma = \left x^{\frac{y}{x}} - \sqrt[3]{\frac{y}{x}} \right $	y = 18.225
4	$(y-x)\left(\frac{y-z}{z}\right)$	x = 1.825
	$\psi = \frac{(y-x)\left(\frac{y-z}{y-x}\right)}{1+(y-x)^2}$	y = 18.225
	$1+(y-x)^2$	z = -3.298
5	$s = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$	x = 0.335
6	$\psi = x(\sin x^3 + \cos^2 y)$	x = 0.335
		y = 0.025
7	$y = e^{-bt} \sin(at + b) - \sqrt{ bt + a }$	a = -0.5
	•	b = 1.7
		t = 0.44
8	$s = b \cdot \sin(at^2 \cdot \cos 2t) - 1$	a = -0.5
		b = 1.7

№ вар.	Расчетная формула	Значения исходных
		данных
		t = 0.44
9	$\omega = \sqrt{x^2 + b} - b^2 \cdot \sin^3 \frac{x + a}{x}$	a = 1.5
	$\omega = \sqrt{x} + b - b$ sin χ	b = 15.5
		x = -2.9
10	$y = \cos^2 x^3 - \frac{x}{1 - \cos^2 x}$	a = 1.5
	$y = \cos^2 x^3 - \frac{x}{\sqrt{a^2 + b^2}}$	b = 15.5
		x = -2.9
11	$s = x^3 \cdot tg^2(x+b)^2 + \frac{a}{\sqrt{x+b}}$	a = 16.5
	$\sqrt{x+b}$	b = 3.4
		x = 0.61
12	$Q = \frac{bx^2 - a}{a^{ax} - 1}$	a = 16.5
	$Q - \frac{1}{e^{ax} - 1}$	b = 3.4
		x = 0.61
13	$R = \frac{x^2(x+1)}{b} - \sin^2(x+a)$	a = 0.7
	$K = \frac{b}{b} = \sin(x + a)$	b = 0.05
		x = 0.5
14	$\sqrt{\chi h}$	a = 0.7
	$s = \sqrt{\frac{xb}{a} + \cos^2(x+b)^2}$	b = 0.05
	V u	x = 0.5
15	$y = \sin^3(x^2 + a)^2 - \sqrt{\frac{x}{b}}$	a = 1.1
	$y = \sin(x + a) - \sqrt{b}$	b = 0.004
		x = 0.2
16	$z = \frac{x^2}{a} + \cos(x+b)^3$	a = 1.1
	$z = \frac{1}{a} + \cos(x + b)$	b = 0.004
		x = 0.2
17	$f = \sqrt[3]{mcbt + c \cdot \sin t }$	m=2
		c = -1
		t = 1.2
		b = 0.7
18	$z = m \cdot \cos\left(bt \cdot \sin t\right) + c$	m=2
		c = -1
		t = 1.2
		b = 0.7
19	$y = abx^2 - \frac{a}{\sin^2\left(\frac{x}{a}\right)}$	a = 3.2
	$\sin^2\left(\frac{\lambda}{a}\right)$	b = 17.5
		x = -4.8

№ вар.	Расчетная формула	Значения исходных
		данных
20	$d = ae^{-\sqrt{a}} \cdot \cos\left(\frac{bx}{a}\right)$	a = 3.2
	$u = ue^{-1} \cos\left(\frac{a}{a}\right)$	b = 17.5
		x = -4.8
21	$f = \ln(a + x^2) + \sin^2\left(\frac{x}{h}\right)$	a = 10.2
	(b)	b = 9.2
		x = 2.2
22	$-cx$ $x + \sqrt{x+a}$	a = 10.2
	$z = e^{-cx} \cdot \frac{x + \sqrt{x + a}}{x - \sqrt{ x - b }}$	b = 9.2
	70 V 100 ~ 1	c = 0.5
		x = 2.2
23	$y = \frac{a^{2x} + b^{-x} \cdot \cos(a+b)x}{x+1}$	a = 0.3
	$y \equiv {x+1}$	b = 0.9
		x = 0.61

Задание 2. Написать консольное приложения для решения задачи согласно варианту.

- 1. Дана длина ребра куба. Найти объем куба и площадь его боковой поверхности.
 - 2. Дан радиус окружности. Найти длину окружности и площадь круга.
- 3. Известны объем и масса тела. Определить плотность материала этого тела.
- 4. Известны количество жителей в государстве и площадь его территории. Определить плотность населения в этом государстве.
 - 5. Даны катеты прямоугольного треугольника. Найти его гипотенузу.
 - 6. Дан радиус окружности. Найти ее диаметр.
- 7. Найти площадь кольца по заданным внешнему и внутреннему радиусам.
 - 8. Даны катеты прямоугольного треугольника. Найти его периметр.
- 9. Даны основания и высота равнобедренной трапеции. Найти ее периметр.
- 10. Даны стороны прямоугольника. Найти его периметр и длину диагонали.
- 11. Даны два числа. Найти их сумму, разность, произведение, а также частное от деления первого числа на второе.

- 12. Считая, что Земля идеальная сфера с радиусом R≈6350 км, определить расстояние до линии горизонта от точки с заданной высотой над Землей.
 - 13. Дана сторона квадрата. Найти его периметр.
- 14. Даны длины сторон прямоугольного параллелепипеда. Найти его объем и площадь боковой поверхности.
- 15. Известны координаты на плоскости двух точек. Составить программу вычисления расстояния между ними.
- 16. Даны основания и высота равнобедренной трапеции. Найти периметр трапеции.
- 17. Даны основания равнобедренной трапеции и угол при большем основании. Найти площадь трапеции.
- 18. Треугольник задан координатами своих вершин. Найти периметр и площадь треугольника.
- 19. Выпуклый четырехугольник задан координатами своих вершин. Найти площадь этого четырехугольника как сумму площадей треугольников.
- 20. Известна стоимость 1 кг конфет, печенья и яблок. Найти стоимость всей покупки, если купили x кг конфет, y кг печенья и z кг яблок.
- 21. Известна стоимость монитора, системного блока, клавиатуры и мыши. Сколько будут стоить 3 компьютера из этих элементов? N компьютеров?
- 22. Возраст Тани X лет, а возраст Мити Y лет. Найти их средний возраст, а также определить, на сколько отличается возраст каждого ребенка от среднего значения.
- 23. Два автомобиля едут навстречу друг другу с постоянными скоростями V_1 и V_2 км/час. Определить, через какое время автомобили встретятся, если расстояние между ними было S км.
- 24. Два автомобиля едут друг за другом с постоянными скоростями V_I и V_2 км/час ($V_I < V_2$). Определить, какое расстояние будет между ними через 30 минут после того, как первый автомобиль опередил второй на S км.

Задание 3. Написать программу на языке C# для решения уравнения. Значение переменных указать любой вещественной константой.

№ вар.	Задание	№ вар.	Задание
1	$R = 3t^2 + 3l^5 + 4.9$	16	$S = \sqrt{\cos 4y^2 + 7.151}$

№ вар.	Задание	№ вар.	Задание
2	$K = \ln(p^2 + y^3) + e^p$	17	$N = 3y^2 + \sqrt{y+1}$
3	$G = n(y+3.5) + \sqrt{y}$	18	$Z = 3y^2 + \sqrt{y^3 + 1}$
4	$D = 9.8a^2 + 5.52\cos t^5$	19	$P = n\sqrt{y^3 + 1.09g}$
5	$L = 1.51\cos x^2 + 2x^3$	20	$U = e^{k+y} + \tan x \sqrt{y}$
6	$M = \cos 2y + 3.6e^x$	21	$P = e^{y+5.5} + 9.1h^3$
7	$N = m^2 + 2.8 m + 0.55$	22	$T = \sin(2u)\ln(2y^2 + \sqrt{x})$
8	$T = \sqrt{ 6y^2 - 0.1y + 4 }$	23	$G = e^{2y} + \sin f$
9	$V = \ln(y + 0.95) + \sin x^4$	24	$F = 2\sin(0.214y^5 + 1)$
10	$U = e^y + 7.355k^2 + \sin^2 x$	25	$G = e^{2y} + \sin f^2$
11	$S = 9.756y^7 + 2\tan x$	26	$Z = \sin(p^2 + 0.4)^3$
12	$K = 7t^2 + 3\sin x^3 + 9.2$	27	$W = 1.03v + e^{2y} + \tan x $
13	$E = \sqrt{ 3y^2 + 0.5y + 4 }$	28	$T = e^{y+h} + \sqrt{ 6.4y }$
14	$R = \left \sqrt{\sin^2 y + 6.835 + e^x} \right $	29	$N = 3y^2 + \sqrt{ y+1 }$
15	$H = \sin y^2 - 2.8y + \sqrt{ y }$	30	$W = e^{y+r} + 7.2\sin r$

Задание 4. Написать программу на языке С# для решения уравнения. Значение переменных указать любой вещественной константой.

№ вар.	Задание	№ вар.	Задание
1	$G = \frac{e^{2y} + \sin f}{\ln(3.8y + f)}$	16	$W = \frac{4t^3 + \ln r}{e^{y+r} + 7.2\sin r}$
2	$F = \ln d + \frac{3.5d^2 + 1}{\cos 2y}$	17	$H = \frac{y^2 - 0.8y + \sqrt{y}}{23.1n^2 + \cos n}$
3	$U = \frac{\ln(k - y) + y^4}{e^y + 2.355k^2}$	18	$R = \frac{\sqrt{\sin^2 y + 6.835}}{\ln(y+k) + 3y^2}$
4	$G = \frac{9.33w^3 + \sqrt{w}}{\ln(y + 3.5) + \sqrt{y}}$	19	$E = \frac{\ln(0.7y + 2q)}{\sqrt{3y^2} + 0.5y + 4}$

№ вар.	Задание	№ вар.	Задание
5	$D = \frac{7.8a^2 + 3.52t}{\ln(a+2y) + e^y}$	20	$K = \frac{2t^2 + 3l + 7.2}{\ln y + e^{2i}}$
6	$L = \frac{0.81\cos i}{\ln y + 2i^3}$	21	$Q = \frac{\sqrt{k + 2.6p \sin k}}{x - d^3}$
7	$N = \frac{m^2 + 2.8m + 0.355}{\cos 2y + 3.6}$	22	$S = \frac{4.351y^3 + 2t \ln t}{\sqrt{\cos 2y + 4.351}}$
8	$T = \frac{2.37\sin(t+1)}{\sqrt{4y^2 - 0.1y + 5}}$	23	$R = \frac{\sin^2 y + 0.3d}{e^y + \ln d}$
9	$V = \frac{(y+2w)^3}{\ln(y+0.75)}$	24	$U = \frac{\ln(2k+4.3)}{e^{k+y} + \sqrt{y}}$
10	$Z = \frac{2t + y\cos t}{\sqrt{y + 4.831}}$	25	$L = \cos^2 c + \frac{3t^2 + 4}{\sqrt{c+t}}$
11	$D = y^2 + \frac{0.5n + 4.8}{\sin y}$	26	$T = \frac{\sin 2u}{\ln(2y + u)}$
12	$R = \frac{\sin(2t+1)^2 + 0.3}{\ln(t+y)}$	27	$Z = \frac{\sin(p+0.4)^2}{y^2 + 7.325p}$
13	$A = \frac{\sin(2y+h) + h^2}{e^h + y}$	28	$W = \frac{0.004v + e^{2y}}{e^{\frac{y}{2}}}$
14	$P = \frac{e^{y+2.5} + 7.1h^3}{\ln\sqrt{y+0.04h}}$	29	$T = \frac{0.355h^2 - 4.355}{e^{y+h} + \sqrt{2.7y}}$
15	$F = \frac{2\sin(0.354y + 1)}{\ln(y + 2j)}$	30	$N = \frac{3y^2 + \sqrt{y+1}}{\ln(p+y) + e^p}$

Задание 5. Написать программу на языке С# для решения уравнения.

Значение переменных указать любой вещественной константой.

№ вар.	Задание	№ вар.	Задание
1	$L = \frac{\sqrt{e^x - \cos^4(x^2 a^5)} + \operatorname{atan}^4(a - x^5)}{e\sqrt{ a + xc^4 }}$	16	$P = \frac{\sin^3 x + \ln(2y + 3x)}{t^e + \sqrt{x}}$

No॒		№	
вар.	Задание	вар.	Задание
2	$L = \tan^2 c + \frac{2x^2 + 5}{\sqrt{c + t}}$	17	$T = \frac{\sqrt{x+b-a} + \ln y}{\operatorname{atan}(b+a)}$
3	$A = \frac{\tan(y^3 - h^4) + h^2}{\sin^3 h + y}$	18	$S = \frac{4.351y^3 + 2t \ln t}{\sqrt{\cos 2y + 4.351}}$
4	$F = \frac{\sqrt{(2+y)^2 + \sqrt[7]{\sin(y+5)}}}{\ln(x+1) - y^3}$	19	$D = \frac{-a\sqrt{6} - \cos 3ab}{\sin^2(a \cdot a\sin x + \ln y)}$
5	$G = \frac{\tan(x^4 - 6) - \cos^3(z + xy)}{\cos^4 x^3 c^2}$	20	$U = \frac{\tan^3 y + \sin^5 x \sqrt{b - c}}{\sqrt{a - b + c}}$
6	$K = \frac{\sqrt{x+b-a} + \ln y}{\operatorname{atan}(b+a)}$	21	$N = \frac{\sqrt[5]{z + \sqrt{zx}}}{e^x + a^5 \operatorname{atan} x}$
7	$D = \frac{\cos(x^3 + 6) - \sin(y - a)}{\ln x^4 - 2\sin^5 x}$	22	$F = \cos(x^2 + 2) + \frac{3.5x^2 + 1}{\cos^2 y}$
8	$P = \frac{a^5 + \sin^4(y - c)}{\sin^3(x + y) + x - y }$	23	$F = \frac{\sqrt{ x + \cos^3 x + z^4}}{\ln x - \operatorname{asin}(bx - a)}$
9	$R = \frac{\cos^3 y + 2^x d}{e^y + \ln(\sin^2 x + 7.4)}$	24	$f = \frac{\cos^7 bx^5 - (\sin a^2 + \cos(x^3 + z^5))}{\sin a^2 + \cos(x^7 - a^2)}$
10	$U = \frac{e^{x^3} + \cos^2(x - 4)}{\tan x + 5.2y}$	25	$J = \frac{\operatorname{atan}^3 a^3 + \operatorname{atan}^2 a}{\sqrt{y^{\tan x}}}$
11	$I = \frac{2.33 \ln \sqrt{1 + \cos^2 y}}{e^y + \sin^2 x}$	26	$U = \frac{\ln(x^3 + y) - y^4}{e^y + 5k^3}$
12	$G = \frac{\cos^3 y + x - (x + y)}{\arctan^4(x + a)x^5}$	27	$P = \frac{a^5 + a\cos(a + x^3) - \sin^4(y - c)}{\sin^3(x + y) + x - y }$
13	$R = \frac{a}{x - a} + \frac{b^x + \cos^3 x}{\log^3 a + 4.5}$	28	$G = \frac{\tan(x^4 - 6) - \cos^{3x}(z + x^3y)}{\cos^2 x^3 c^2}$
14	$R = \frac{\sin(x^2 + 4)^3 + 4.3}{\sin^3 x^4}$	29	$R = \frac{\cos^2 y + 2.4d}{e^y + \ln(\sin^2 x + 6)}$
15	$N = \frac{m^2 + 2.8m + 0.355}{\cos 2y + 3.6}$	30	$K = \frac{\sqrt{(3+x)^6 - \ln x}}{e^x + a\sin 6x^2}$