QUESTIONS

Task 1

Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickenss to be 13 mm)

Task 2

Consider the house that we analyzed in the last two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m2 on the west, fixed 3.6 m2 on the south and an operable 3.6 m2 on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminum?

ANSWERS

1. The benchmark is double-pane windows with 13mm air gap but no coating.

When $\epsilon = 0.84$ without coating, the *U* value are:

	Air	Argon	Krypton	Air	Argon	Krypton
Number of parallels	2	2	2	3	3	3
U-factor, (W/m ² K)	2.8	2.65	2.6	1.8	1.65	1.6
Changing percentage(%)	/	5.36	7.14	35.71	41.07	42.86

With coating ($\epsilon = 0.10$), the *U* value are:

	Air	Argon	Krypton	Air	Argon	Krypton
Number of parallels	2	2	2	3	3	3
U-factor, (W/m ² K)	1.8	1.5	1.4	1.0	0.8	0.7
Changing percentage(%)	35.71	46.43	50.00	64.29	71.43	39.29

2. Indoor Conditions.

Based on ASHRAE Standard 55 typical practices are the following:

✓ For cooling: 24°C db and a maximum of 50 to 65% rh. ✓ For heating: 20°C db and 30% rh

					Р	IACEN	ZA, Ital	y					WM	O#: 16	0840
Lat: 44.92N	Long:	9.73E	Ele	ev: 138	StdP:	99.68		Time Zone	: 1.00 (E	UW)	Peri	od: 89-1	0 WB.	AN: 9	9999
nnual Heating and Humi	dificatio	n Design C	ondition	S											
Coldest Heating DI	R L			umidification DP	/MCDB and I					onth WS/M			CWS/PCWD		
Month	9%	DP	99.6% HR	MCDB	DP	99% HR	MCDB		.4% MCDE	3 WS	1% MCDE		o 99.6% DB WS PCW	(D	
	c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n			
1 -6.2 -	4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.	1 250)	(
nnual Cooling, Dehumid	lification	, and Entha	lpy Des	ign Conditions											
Hottest Hottest			Coolin	g DB/MCWB					Evapora	tion WB/MC	DB			WS/PC	
Month	0.4 DB	% MCWB	DB	1% MCWB	2% DB	MCWB	WB	0.4% MCDB	WB	1% MCDE	3 WB	2% MC		0.4% D	CWD
	c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n			(p)
	3.1	22.7	31.9		30.3	21.8	24.6	30.2	23.7	29.2	22.9	28	.3 2.4		90 (
										Fra	me				
							-	Operable			VII V		Fixed		
							육봉	Ē		- F		육속	E		ķ
						E	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl	E	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl
						Aluminum	E =	Reinforced 13/Alumin Clad Wood	<u> </u>	Insulated erglass/Vi	Aluminum	1 =	Reinforced tyl/Alumin Clad Wood	2	Insulated erglass/Vi
					Center		ΞĨ	a A in	DQ.	2 2	1	를 ji	M A M	Poc	25
	9	Glazing			of	7	E E	조물전	š	- F	~	E E	2 P.D	3	- F
Glazing Type		Layers	ID^b	Property ^{c,d}	Glazing		ΑF	5	13000	臣		ĀΕ	5		Œ
Clear		1	la	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
				SHGC	0.86	0.75	0.75	0.64	0.64	0.64	0.78	0.78	0.75	0.75	0.75
		2	5a	U	2.73	4.62	3.42	3.00	2.87	5.83	3.61	3.22	2.86	2.84	2.72
				SHGC	0.76	0.67	0.67	0.57	0.57	0.57	0.69	0.69	0.67	0.67	0.67
		3	29a	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93
				SHGC	0.68	0.60	0.60	0.51	0.51	0.51	0.62	0.62	0.60	0.60	0.60
Low-e, low-solar		2	25a	U	1.70	3.83	2.68	2.33	2.21	1.89	2.75	2.36	2.03	2.01	1.90
				SHGC	0.41	0.37	0.37	0.31	0.31	0.31	0.38	0.38	0.36	0.36	0.36
		3	40c	U	1.02	3.22	2.07	1.76	1.71	1.45	2.13	1.76	1.44	1.40	1.33
				SHGC	0.27	0.25	0.25	0.21	0.21	0.21	0.25	0.25	0.24	0.24	0.24
Low-e, high-solar		2	17c	U	1.99	4.05	2.89	2.52	2.39	2.07	2.99	2.60	2.26	2.24	2.13
, ,				SHGC	0.70	0.62	0.62	0.52	0.52	0.52	0.64	0.64	0.61	0.61	0.61
		3	32c	U	1.42	3.54	2.36	2.02	1.97	1.70	2.47	2.10	1.77	1.73	1.66
				SHGC	0.62	0.55	0.55	0.46	0.46	0.46	0.56	0.56	0.54	0.54	0.54
Heat-absorbing		1	1c	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5,55	5.55	5.35
ricat-absorbing			10	SHGC	0.73	0.64	0.64	0.54	0.54	0.54	0.66	0.66	0.64	0.64	0.64
		2	5c	U	2.73	4.62	3.42	3.00	2.87	2.53	3.61	3.22	2.86	2.84	2.72
		~	50	SHGC	0.62	0.55	0.55	0.46	0.46	0.46	0.56	0.56	0.54	0.54	0.54
		3	29c	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93
		*	270	SHGC	0.34	0.31	0.31	0.26	0.26	0.26	0.31	0.31	0.30	0.30	0.30
5.0															
Reflective		1	11	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
			200	SHGC	0.31	0.28	0.28	0.24	0.24	0.24	0.29	0.29	0.27	0.27	0.27
		2	5p	U	2.73	4.62	3.42	3.00	2.87	2.53	3.61	3.22	2.86	2.84	2.72
			20	SHGC	0.29	0.27	0.27	0.22	0.22	0.22	0.27	0.27	0.26	0.26	0.26
		3	29c	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93
				SHGC	0.34	0.31	0.31	0.26	0.26	0.26	0.31	0.31	0.30	0.30	0.30

Table 11 Exterior Attachment Transmission

Attachment	T_x
None	1.0
Exterior insect screen	0.64 (see Chapter 15, Table 13G)
Shade screen	Manufacturer shading coefficient (SC) value, typically 0.4 to 0.6

Table 13 Fenestration Solar Load Factors FF_s

Exposure	Single Family Detached	Multifamily
North	0.44	0.27
Northeast	0.21	0.43
East	0.31	0.56
Southeast	0.37	0.54
South	0.47	0.53
Southwest	0.58	0.61
West	0.56	0.65
Northwest	0.46	0.57
Horizontal	0.58	0.73

:
$$\Delta T_{heating} = 20 - (-4.8) = 24.8^{\circ}C$$

 $\Delta T_{cooling} = 31.9 - 24 = 7.9^{\circ}C$
 $DR=11.9^{\circ}C$

Table 10	Peak	Irradiance	W/m^2

		Latitude											
Exposure	20°	25°	30°	35°	40°	45°	50°	55°	60°				
North E	E _D 125	106	92	84	81	85	96	112	136				
E	$E_d = 128$	115	103	93	84	76	69	62	55				
E	253	221	195	177	166	162	164	174	191				
Northeast/Northwest E	E _D 460	449	437	425	412	399	386	374	361				
E	$E_d = 177$	169	162	156	151	147	143	140	137				
E	637	618	599	581	563	546	529	513	498				
East/West E		543	552	558	560	559	555	547	537				
E	Z _d 200	196	193	190	189	188	187	187	187				
E	730	739	745	748	749	747	742	734	724				
Southeast/Southwest E	D 282	328	369	405	436	463	485	503	517				
E	$E_d = 204$	203	203	204	205	207	210	212	215				
E	485	531	572	609	641	670	695	715	732				
South E	$E_D = 0$	60	139	214	283	348	408	464	515				
E	E _d 166	193	196	200	204	209	214	219	225				
	166	253	335	414	487	557	622	683	740				
Horizontal E	E _D 845	840	827	806	776	738	691	637	574				
E	$E_d = 170$	170	170	170	170	170	170	170	170				
E	, 1015	1010	997	976	946	908	861	807	744				

1) 14.4m² fixed window on the west:

HEATING LOAD:

From the table of U and SHGC, we can see $U_{west\ fixed} = 2.84\ W/m^2 K$, $\therefore HF_{west\ fixed} = U_{west\ fixed} * \Delta T_{heating} = 2.84 * 24.8 = 70.44\ W/m^2$ $\dot{Q}_{west\ fixed} = HF_{west\ fixed} * A_{west\ fixed} = 70.44 * 14.4 \cong 1014.34\ W$

COOLING LOAD:

$$\begin{aligned} CF_{west\ fixed} &= U_{west\ fixed} * \left(\Delta T_{cooling} - 0.46 * DR\right) + PXI * SHGC * IAC * FF_S \\ &\therefore CF_{west\ fixed,heat\ transfer} = U_{west\ fixed} * \left(\Delta T_{cooling} - 0.46 * DR\right) \\ &= 2.84 * (7.9 - 0.46 * 11.9) = 6.9\ \textit{W/m}^2 \end{aligned}$$

If we assuming that there is no internal or external shading, so IAC=1,

From the table of U and SHGC, we can see $SHGC_{west\ fixed} = 0.54$,

From the table 13, we can see $FF_s = 0.56$,

From the table 10, we can see
$$E_{D,west\ fixed} = 559$$
, $E_{d,west\ fixed} = 188$, $PXI_{west\ fixed} = E_{D,west\ fixed} + E_{d,west\ fixed} = 559 + 188 = 747$

∴
$$CF_{west\ fixed,irradiation} = PXI * SHGC * IAC * FF_s$$

= 747 * 0.54 * 1 * 0.56 \(\sime\) 225.89 W/m^2
∴ $CF_{west\ fixed} = 6.9 + 225.89 \(\sime\) 232.79 W/m^2
 $\dot{Q}_{west\ fixed} = CF_{west\ fixed} * A_{west\ fixed} = 232.79 * 14.4 \(\sime\) 3352.18 $W$$$

If we change the frame into Aluminum

HEATING LOAD:

From the table of U and SHGC, we can see $U'_{west\ fixed} = 3.61\ W/m^2 K$, $\therefore HF'_{west\ fixed} = U'_{west\ fixed} * \Delta T_{heating} = 3.61 * 24.8 = 89.53\ W/m^2$ $\dot{Q}'_{west\ fixed} = HF'_{west\ fixed} * A_{west\ fixed} = 89.53 * 14.4 \cong 1289.23\ W$

COOLING LOAD:

$$CF'_{west\ fixed} = U'_{west\ fixed} * (\Delta T_{cooling} - 0.46 * DR) + PXI * SHGC' * IAC * FF_s$$

$$\therefore CF'_{west\ fixed,heat\ transfer} = U'_{west\ fixed} * (\Delta T_{cooling} - 0.46 * DR)$$

$$= 3.61 * (7.9 - 0.46 * 11.9) = 8.76\ W/m^2$$

If we assuming that there is no internal or external shading, so IAC=1,

From the table of U and SHGC, we can see $SHGC'_{west\ fixed} = 0.56$,

From the table 13, we can see $FF_s = 0.56$,

From the table 10, we can see $E_{D,west\ fixed} = 559$, $E_{d,west\ fixed} = 188$, $PXI_{west\ fixed} = E_{D,west\ fixed} + E_{d,west\ fixed} = 559 + 188 = 747$

$$\begin{array}{l} \div \ CF'_{west \ fixed, irradiation} = PXI * SHGC * IAC * FF_s \\ &= 747 * 0.56 * 1 * 0.56 \cong 234.26 \ W/m^2 \\ \div \ CF'_{west \ fixed} = 8.76 + 234.26 \cong 243.02 \ W/m^2 \\ \dot{Q}'_{west \ fixed} = CF'_{west \ fixed} * A_{west \ fixed} = 243.02 * 14.4 \cong 3499.49 \ W \\ \end{array}$$

2) 3.6m² fixed window on the south:

HEATING LOAD:

From the table of U and SHGC, we can see $U_{south\ fixed} = 2.84\ W/m^2 K$, $\therefore HF_{south\ fixed} = U_{south\ fixed} * \Delta T_{heating} = 2.84 * 24.8 = 70.44\ W/m^2$ $\dot{Q}_{south\ fixed} = HF_{south\ fixed} * A_{south\ fixed} = 70.44 * 3.6 = 253.58\ W$

COOLING LOAD:

$$\begin{aligned} CF_{south \ fixed} &= U_{south \ fixed} * \left(\Delta T_{cooling} - 0.46 * DR \right) + PXI * SHGC * IAC * FF_s \\ &\therefore CF_{south \ fixed, heat \ transfer} = U_{south \ fixed} * \left(\Delta T_{cooling} - 0.46 * DR \right) \\ &= 2.84 * (7.9 - 0.46 * 11.9) = 6.9 \ \textit{W/m}^2 \end{aligned}$$

If we assuming that there is no internal or external shading, so IAC=1,

From the table of U and SHGC, we can see $SHGC_{south\ fixed} = 0.54$,

From the table 13, we can see $FF_s = 0.47$,

From the table 10, we can see $E_{D,south\ fixed} = 348$, $E_{d,south\ fixed} = 209$, $PXI_{south\ fixed} = E_{D,south\ fixed} + E_{d,south\ fixed} = 348 + 209 = 557$

∴
$$CF_{south\ fixed,irradiation} = PXI * SHGC * IAC * FF_{s}$$

= 557 * 0.54 * 1 * 0.47 \cong 141.37 W/m^{2}
∴ $CF_{south\ fixed} = 6.9 + 141.37 \cong 148.27 \ W/m^{2}$
 $\dot{Q}_{south\ fixed} = CF_{south\ fixed} * A_{south\ fixed} = 148.27 * 3.6 \cong 533.77 $W$$

If we change the frame into Aluminum

HEATING LOAD:

COOLING LOAD:

$$CF'_{south\ fixed} = U'_{south\ fixed} * (\Delta T_{cooling} - 0.46 * DR) + PXI * SHGC' * IAC * FF_s$$

$$\therefore CF'_{south\ fixed,heat\ transfer} = U'_{south\ fixed} * (\Delta T_{cooling} - 0.46 * DR)$$

$$= 3.61 * (7.9 - 0.46 * 11.9) = 8.76\ W/m^2$$

If we assuming that there is no internal or external shading, so IAC=1,

From the table of U and SHGC, we can see $SHGC'_{south\ fixed} = 0.56$,

From the table 13, we can see $FF_s = 0.47$,

From the table 10, we can see $E_{D,south\ fixed} = 348$, $E_{d,south\ fixed} = 209$, $PXI_{south\ fixed} = E_{D,south\ fixed} + E_{d,south\ fixed} = 348 + 209 = 557$

$$\begin{array}{l} :: \textit{CF'}_{south\ fixed,irradiation} = \textit{PXI} * \textit{SHGC'} * \textit{IAC} * \textit{FF}_{\textit{S}} \\ &= 557 * 0.56 * 1 * 0.47 \cong 146.60 \ \textit{W/m}^{2} \\ :: \textit{CF'}_{south\ fixed} = 8.76 + 146.60 = 155.36 \ \textit{W/m}^{2} \\ \vec{\textit{Q'}}_{south\ fixed} = \textit{CF'}_{south\ fixed} * \textit{A}_{south\ fixed} = 155.36 * 3.6 \cong 559.30 \ \textit{W} \end{array}$$

3) 3.6m² operable window on the south:

HEATING LOAD:

From the table of U and SHGC, we can see $U_{south,operable} = 2.87 \ W/m^2 K$, $\therefore HF_{south,operable} = U_{south,operable} * \Delta T_{heating} = 2.87 * 24.8 \cong 71.18 \ W/m^2$ $\dot{Q}_{south,operable} = HF_{south,operable} * A_{south,operable} = 71.18 * 3.6 \cong 256.25 \ W$

COOLING LOAD:

$$CF_{south,operable} = U_{south,operable} * (\Delta T_{cooling} - 0.46 * DR) + PXI * SHGC * IAC * FF_{south,operable,heat\ transfer} = U_{south,operable} * (\Delta T_{cooling} - 0.46 * DR)$$

$$= 2.87 * (7.9 - 0.46 * 11.9) = 7.0\ W/m^{2}$$

If we assuming that there is no internal or external shading, so IAC=1,

From the table of U and SHGC, we can see $SHGC_{south.operable} = 0.46$,

From the table 13, we can see $FF_s = 0.47$,

From the table 10, we can see $E_{D,south,operable} = 348$, $E_{d,south,operable} = 209$, $PXI_{south,operable} = E_{D,south,operable} + E_{d,south,operable} = 348 + 209 = 557$

$$\begin{array}{l} \div \mathit{CF}_{south,operable,irradiation} = \mathit{PXI} * \mathit{SHGC} * \mathit{IAC} * \mathit{FF}_{\mathit{S}} \\ &= 557 * 0.46 * 1 * 0.47 \cong 120.42 \ \mathit{W/m}^{2} \\ \div \mathit{CF}_{south,operable} = 7.0 + 120.42 = 127.42 \ \mathit{W/m}^{2} \\ \dot{\mathcal{Q}}_{south,operable} = \mathit{CF}_{south,operable} * \mathit{A}_{south,operable} = 127.42 * 3.6 \cong 458.71 \ \mathit{W} \\ \end{array}$$

If we change the frame into Aluminum

HEATING LOAD:

From the table of U and SHGC, we can see $U'_{south,operable} = 4.62 \ W/m^2 K$, $\therefore HF'_{south,operable} = U'_{south,operable} * \Delta T_{heating} = 4.62 * 24.8 \cong 114.58 \ W/m^2$ $\dot{Q}'_{south,operable} = HF'_{south,operable} * A_{south,operable} = 114.58 * 3.6 \cong 412.49 \ W$

COOLING LOAD:

$$\begin{split} \mathit{CF'}_{south,operable} &= \mathit{U'}_{south,operable} * \left(\Delta T_{cooling} - 0.46 * \mathit{DR} \right) + \mathit{PXI} * \mathit{SHGC'} * \mathit{IAC} * \mathit{FF}_{s} \\ & :: \mathit{CF'}_{south,operable,heat\ transfer} = \mathit{U'}_{south,operable} * \left(\Delta T_{cooling} - 0.46 * \mathit{DR} \right) \\ & = 4.62 * (7.9 - 0.46 * 11.9) = 11.21\ \mathit{W/m}^2 \end{split}$$

If we assuming that there is no internal or external shading, so IAC=1,

From the table of U and SHGC, we can see $SHGC'_{south,operable} = 0.55$,

From the table 13, we can see $FF_S = 0.47$,

From the table 10, we can see $E_{D,south,operable} = 348$, $E_{d,south,operable} = 209$, $PXI_{south,operable} = E_{D,south,operable} + E_{d,south,operable} = 348 + 209 = 557$

$$\begin{split} \because \mathit{CF'}_{south,operable,irradiation} &= \mathit{PXI} * \mathit{SHGC'} * \mathit{IAC} * \mathit{FF}_{s} \\ &= 557 * 0.55 * 1 * 0.47 \cong 143.98 \ \mathit{W/m}^{2} \end{split}$$

$$\therefore \textit{CF'}_{south,operable} = 11.21 + 143.98 = 155.19 \; \textit{W/m}^2$$

$$\dot{Q}'_{south,operable} = CF'_{south,operable} * A_{south,operable} = 155.19 * 3.6 \cong 558.68 W$$