WHO MMR Package PDF Write-Up

Li Shandross

5/4/2020

Description

This document serves as documentation for the package WHOmmr that aims to help analyze the data collected by the World Health Organization (WHO) on Maternal Mortality Ratio (MMR) around the world. WHO defines MMR as "the number of maternal deaths per 100,000 live births." WHOmmr is a collection of functions that work on estimates of maternal mortality between 2000 and 2017 (though we are focusing on 2010 to 2017) to gain insight about the projected MMR for every country between 2016 and 2030. In particular, this package is meant to assist WHO in the achieving the standard development goal (SDG) of a global MMR of 70 by 2030, with no single country having an MMR above 140, to reduce inequality in this sector.

We compare MMR projections following the observed, Business As Usual (BAU) trends with these SDG projections that WHO hopes to achieve. The Average Rate of Reduction (ARR) is the average annual reduction in MMR a particular country or region experiences, and this ARR is used to calculate the desired projections.

Each function below has more information about its purpose.

Calc BAU ARR

Calculates the observed (BAU) ARR of each country based on the observed ARR from time1 to time2.

```
Base Equation: ARR (for period t1 to t2) = -1/(t2 - t1) * log(MMR(t2) / MMR(t1))
```

Tests

- Check inputs (stop if inputs for arguments are not as expected), both in terms of data type and in terms of if the numerical arguments are within an acceptable range.
- Test to see if correct values are returned (using toy data) based on base equation in function.

```
calc_bau_arr_tibble <-
  calc_bau_arr(mmr_est_unrounded_pwider, 3, 10)
kable(calc_bau_arr_tibble[1:5, ])</pre>
```

iso	arr
AFG	0.0575322
ALB	0.0454474
DZA	0.0038326
AGO	0.0429199
ATG	0.0062833

MMR Projections (for one country)

Calculates the MMR projections for one country for a specified period using data from baseyear 2015 and the country's respective BAU ARR. The single country is specified by using its assigned ISO code.

Base Equation: MMR(t) = MMR(2015) * exp(-ARR * (t - 2015))

Tests:

- Check inputs (stop if inputs for arguments are not as expected), both in terms of data type and in terms of if the numerical arguments are within an acceptable range.
- Test to see if correct values are returned (using toy data) based on base equation in function.
- Check that this function's call to calc bau arr produces the correct results.

```
bau_mmr_single_country_proj(mmr_est_unrounded_pwider, "AFG", 3, 10, 2016, 2030)
```

```
## [1] 661.9616 624.9523 590.0122 557.0255 525.8830 496.4817 468.7241
## [8] 442.5185 417.7779 394.4206 372.3691 351.5505 331.8959 313.3401
## [15] 295.8217
```

MMR Projections (all countries)

Calculates the MMR projections for all countries for a specified period using data from baseyear 2015 and each country's respective BAU ARR.

Base Equation: MMR(t) = MMR(2015) * exp(-ARR * (t - 2015))

Tests:

- Check inputs (stop if inputs for arguments are not as expected), both in terms of data type and in terms of if the numerical arguments are within an acceptable range.
- Test to see if correct values are returned (using toy data) based on base equation in function.
- Check that this function's call to bau_mmr_single_country_proj (and thus calc_bau_arr, as well) produces the correct results.

```
bau_mmr_proj_tibble <-
  bau_mmr_all_countries_proj(mmr_est_unrounded_pwider, 3, 10, 2016, 2030)
bau_mmr_proj_tibble <- format(bau_mmr_proj_tibble, digits = 2)
kable(bau_mmr_proj_tibble[1:6, 1:5])</pre>
```

	iso	name	2016	2017	2018
col	AFG	Afghanistan	662.0	625.0	590.0
col.1	ALB	Albania	14.3	13.7	13.1
col.2	DZA	Algeria	113.1	112.7	112.3
col.3	AGO	Angola	240.3	230.2	220.6
col.4	ATG	Antigua and Barbuda	43.0	42.8	42.5
col.5	ARG	Argentina	39.9	38.4	37.0

```
kable(bau_mmr_proj_tibble[1:6, 6:11])
```

	2019	2020	2021	2022	2023	2024
col	557.0	525.9	496.5	468.7	442.5	417.78
col.1	12.5	11.9	11.4	10.9	10.4	9.94
col.2	111.8	111.4	111.0	110.6	110.1	109.71
col.3	211.3	202.4	193.9	185.8	178.0	170.49
col.4	42.2	42.0	41.7	41.4	41.2	40.93

	2019	2020	2021	2022	2023	2024
col.5	35.7	34.3	33.1	31.9	30.7	29.58

kable(bau_mmr_proj_tibble[1:6, 12:17])

	2025	2026	2027	2028	2029	2030
col	394.42	372.4	351.55	331.90	313.34	295.82
col.1	9.50	9.1	8.68	8.29	7.92	7.57
col.2	109.29	108.9	108.46	108.04	107.63	107.22
col.3	163.33	156.5	149.89	143.59	137.56	131.78
col.4	40.67	40.4	40.16	39.91	39.66	39.41
col.5	28.50	27.5	26.44	25.47	24.54	23.64

SDG MMR Calculation, Categorization, and Adjustment

Calculates the MMR projections for all using a fixed value of the ARR for a single year t > 2015 using baseyear 2015, then adjusts the projections to be less than or equal to 140, as specified by the WHO's SDG.

Base Equation: MMR(t) = MMR(2015) * exp(-ARR * (t - 2015))For countries with mmr_target2030 > 140, replace mmr_target by 140

Tests:

- Check inputs (stop if inputs for arguments are not as expected), both in terms of data type and in terms of if the numerical arguments are within an acceptable range.
- Test to see if correct values are returned (using toy data) based on base equation in function.

```
mmr_sdg_proj <- get_mmr_sdg_proj(mmr2015, global_arr, 15)
kable(mmr_sdg_proj[1:5, ])</pre>
```

x 140.000000 9.937566 75.404901 140.000000 28.755982

Squared Diff

Calculates the squared difference of the global mmr of a specified year and the SDG goal of a global MMR of 70.

Base Equation: (global_mmr - 70)^2

Tests:

- Check inputs (stop if inputs for arguments are not as expected), both in terms of data type and in terms of if the numerical arguments are within an acceptable range.
- Test to see if correct values are returned (using toy data) based on base equation in function.
- Check that this function's call to get_mmr_sdg_proj produces the correct results.

```
squared_diff(global_arr, mmr2015, live_birth_projections2030, 15)
```

[1] 257.1634

Get ARR SDG Target

Calculates the target ARR needed to achieve WHO's SDG goal of a global MMR of 70, with no country with an MMR above 140, by 2030.

Base Equation: N/A, R minimizes the results of the squared_diff function which calls get_mmr_sdg_proj

Tests:

- Check inputs (stop if inputs for arguments are not as expected), both in terms of data type and in terms of if the numerical arguments are within an acceptable range.
- Test to see if correct values are returned (using toy data) based on base equation in the function.
- Check that this function's call to squared_diff (and thus get_mmr_sdg_proj, as well) produces the correct results.

```
get_arr_sdg_target(mmr2015, live_birth_projections2030, 15)
```

```
## $minimum
## [1] 0.05603232
##
## $objective
## [1] 6.010324e-05
```

Calculate SDG ARR for each country Based on SDG MMR

Calculates the specific ARR for each country needed to achieve WHO's SDG goal of a global MMR of 70, with no country with an MMR above 140, by 2030. Each country-specific ARR is based on the single target SDG ARR calculated.

Base Equation: -1/nproject * log(mmr_sdg_projections_using_sdg_arr/2015_mmr_all_countries)

Tests:

- Check inputs (stop if inputs for arguments are not as expected), both in terms of data type and in terms of if the numerical arguments are within an acceptable range.
- Test to see if correct values are returned (using toy data) based on base equation in the function.
- Check that this function's call to get_mmr_sdg_proj and get_arr_sdg_proj (and thus squared_diff, as well) produces the correct results.

iso	sdg_arr
AFG	0.1074065
ALB	0.0560323
DZA	0.0560323
AGO	0.0560323
ATG	0.0560323

(BAU) MMR Regional Summaries

- 1. Produces a table of all the projected BAU MMRs by SDG region for a specified period.
- 2. Produces a line graph of all the projected BAU MMRs by SDG region.

 $\label{eq:base_equation:mmr_proj*region_total_births)} \\ A sum(region_mmr_proj*region_total_births) \\ A sum(region_total_births) \\ A sum(region_total_births)$

- Check inputs (stop if inputs for arguments are not as expected), both in terms of data type and in terms of if the numerical arguments are within an acceptable range.
- Test to see if correct values are returned (using toy data) based on base equation in the function.
- Check that this function's call to the two helper functions and bau_mmr_all_countries_proj (and thus bau_mmr_single_countriy_proj, as well) produces the correct results.

SDG Region	2016	2017	2018
Global	243.814883	237.103765	230.656921
Australia and New Zealand	7.025024	7.114045	7.207496
Central Asia and Southern Asia	159.756448	151.538318	143.747630
Eastern Asia and South-eastern Asia	75.232046	72.977137	70.799787
Latin America and the Caribbean	75.871411	74.449118	73.077279
Northern America and Europe	12.527506	12.532424	12.556428
Oceania / Oceania excluding Australia and New Zealand	133.088692	130.086088	127.155523
Sub-Saharan Africa	557.115234	544.861528	533.001751
Western Asia and Northern Africa	93.611651	91.049495	88.605206

knitr::kable(regional_proj_summaries[, 5:11])

2025	2024	2023	2022	2021	2020	2019
192.001788	196.900320	201.991310	207.283548	212.786268	218.509179	224.462487
7.989413	7.863672	7.742701	7.626444	7.514844	7.407852	7.305417
99.438400	104.802953	110.460742	116.427960	122.721698	129.360007	136.361943
57.498782	59.208745	60.978140	62.809245	64.704435	66.666183	68.697071
64.729088	65.799304	66.907632	68.055611	69.244848	70.477021	71.753886
13.239813	13.088052	12.954165	12.838221	12.740322	12.660604	12.599236
108.506457	110.982752	113.518944	116.116619	118.777409	121.502993	124.295103
459.781944	469.285708	479.087407	489.198953	499.632809	510.402020	521.520237
74.430401	76.168544	77.996175	79.916789	81.934056	84.051823	86.274129

knitr::kable(regional_proj_summaries[, 12:16])

2030	2029	2028	2027	2026
170.117132	174.170986	178.379344	182.749065	187.287356
8.691883	8.541327	8.395873	8.255448	8.119984
76.504891	80.617735	84.954813	89.528472	94.351748
49.766897	51.210806	52.704051	54.248493	55.846064
59.900394	60.800879	61.732729	62.697178	63.695516
14.266560	14.025347	13.802138	13.596845	13.409412
96.971095	99.170126	101.421787	103.727448	106.088521
416.350636	424.525867	432.946872	441.623174	450.564728
66.970840	68.308433	69.720379	71.209415	72.778415

3, 10, 2016, 2030)

SDG MMR Projections

Calculates the SDG MMR projections for all countries for a specified period using data from baseyear 2015 and each country's respective BAU ARR.

Base Equation: MMR(t) = MMR(2015) * exp(-ARR * (t - 2015))

Tests:

- Check inputs (stop if inputs for arguments are not as expected), both in terms of data type and in terms of if the numerical arguments are within an acceptable range.
- Test to see if correct values are returned (using toy data) based on base equation in the function.

sdg_mmr_single_country_proj(mmr_est_unrounded_pwider, arr_tibble, "AFG", 2016, 2030)

- Check that this function's call to sdg_mmr_single_country_proj produces the correct results.

```
## [1] 629.7565 565.6225 508.0198 456.2833 409.8156 368.0802 330.5951
## [8] 296.9275 266.6885 239.5291 215.1356 193.2263 173.5482 155.8741
## [15] 140.0000
```

```
sdg_mmr_proj <-
sdg_mmr_allcountries_proj(mmr_est_unrounded_pwider, arr_tibble, 2016, 2030) %>%
select(-c("bau arr"))
kable(sdg_mmr_proj[1:6, 1:6])
```

	name	iso	sdg arr	2016	2017	2018
col	Afghanistan	AFG	0.1074065	629.75655	565.62246	508.01975
col.1	Albania	ALB	0.0560323	14.15102	13.37991	12.65082
col.2	Algeria	DZA	0.0560323	107.37599	101.52492	95.99268
col.3	Angola	AGO	0.0560323	237.20391	224.27833	212.05709
col.4	Antigua and Barbuda	ATG	0.0560323	40.94830	38.71696	36.60722
col.5	Argentina	ARG	0.0560323	39.14660	37.01344	34.99653

kable(sdg_mmr_proj[1:6, 7:12])

	2019	2020	2021	2022	2023	2024
col	456.28327	409.81562	368.08020	330.59510	296.927460	266.688517
col.1	11.96146	11.30966	10.69338	10.11068	9.559737	9.038814
col.2	90.76191	85.81616	81.13992	76.71849	72.537988	68.585290
col.3	200.50180	189.57617	179.24589	169.47853	160.243403	151.511513
col.4	34.61244	32.72636	30.94306	29.25692	27.662673	26.155294
$\frac{\text{col.5}}{}$	33.08952	31.28642	29.58158	27.96964	26.445532	25.004478

kable(sdg_mmr_proj[1:6, 13:18])

	2025	2026	2027	2028	2029	2030
col	239.529093	215.135571	193.226272	173.548206	155.874144	140.000000
col.1	8.546276	8.080577	7.640255	7.223927	6.830285	6.458093
col.2	64.847980	61.314321	57.973216	54.814173	51.827271	49.003130
col.3	143.255435	135.449242	128.068421	121.089790	114.491435	108.252634
col.4	24.730055	23.382479	22.108335	20.903620	19.764552	18.687554

	2025	2026	2027	2028	2029	2030
col.5	23.641948	22.353665	21.135582	19.983874	18.894924	17.865313

SDG MMR Regional Summaries

- 1. Produces a table of all the projected SDG MMRs by SDG region for a specified period.
- 2. Produces a line graph of all the projected SDG MMRs by SDG region.

 $\textbf{Base Equation:} \ \, \text{MMR}(\text{region}) = \text{sum}(\text{region_mmr_proj} * \text{region_total_births}) \, / \, \text{sum}(\text{region_total_births}) \, / \, \text{sum}(\text{region_to$

Tests:

- Check inputs (stop if inputs for arguments are not as expected), both in terms of data type and in terms of if the numerical arguments are within an acceptable range.
- Test to see if correct values are returned (using toy data) based on base equation in the function.
- Check that this function's call to the two helper functions and get_arr_sdg_proj (and thus squared_diff and get_mmr_sdg_proj,, as well) produces the correct results.

SDG Region	2016	2017	2018
Global	229.452590	210.10812	192.565454
Australia and New Zealand	6.562204	6.20462	5.866522
Central Asia and Southern Asia	158.126174	148.50211	139.505084
Eastern Asia and South-eastern Asia	73.340798	69.34435	65.565681
Latin America and the Caribbean	72.799933	68.52786	64.512960
Northern America and Europe	11.858567	11.21238	10.601398
Oceania / Oceania excluding Australia and New Zealand	128.745444	121.72992	115.096685
Sub-Saharan Africa	515.071694	465.94836	421.811415
Western Asia and Northern Africa	91.049218	86.08782	81.396769

knitr::kable(sdg_regional_proj_summaries[, 5:11])

2025	2024	2023	2022	2021	2020	2019
107.134505	116.206947	126.148824	137.053193	149.023954	162.177178	176.642628
3.963136	4.191539	4.433105	4.688593	4.958806	5.244591	5.546847
90.740015	96.420795	102.480135	108.945656	115.847225	123.217165	131.090476
44.292979	46.845666	49.545469	52.400867	55.420826	58.614832	61.992914
42.389805	44.998510	47.771955	50.720887	53.856777	57.191880	60.739280
7.161788	7.574535	8.011070	8.472763	8.961064	9.477507	10.023713
77.753711	82.234803	86.974148	91.986630	97.287991	102.894879	108.824903

2019	2020	2021	2022	2023	2024	2025
382.129313	346.429297	314.290712	285.339099	259.240977	235.699222	214.448984
76.961343	72.767610	68.802400	65.053259	61.508415	58.156734	54.987690

knitr::kable(sdg_regional_proj_summaries[, 12:16])

2026	2027	2028	2029	2030
98.848092	91.272900	84.341790	77.994459	72.176707
3.747179	3.542990	3.349928	3.167385	2.994790
85.412242	80.413813	75.722809	71.318906	67.183256
41.879392	39.597324	37.439610	35.399472	33.470504
39.935777	37.626994	35.454622	33.410380	31.486506
6.771532	6.402542	6.053658	5.723786	5.411888
73.516801	69.510766	65.723026	62.141684	58.755496
195.254066	177.903725	162.209832	148.004368	135.137189
51.991333	49.158251	46.479548	43.946812	41.552087

