TD 3 – CORRECTION Exerice 1

EXERCICE 1: ROBOT SCARA

Questions 1-2-3

4)
$$i^{-1}\mathbf{T}_{i} = \begin{bmatrix} \cos\theta_{i} & -\sin\theta_{i}\cos\alpha_{i} & \sin\theta_{i}\sin\alpha_{i} & a_{i}\cos\theta_{i} \\ \sin\theta_{i} & \cos\theta_{i}\cos\alpha_{i} & -\cos\theta_{i}\sin\alpha_{i} & a_{i}\sin\theta_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & d_{i} \\ 0 & 0 & 1 \end{bmatrix}$$

$$T_{i} = \begin{bmatrix} c_{1} & s_{1} & 0 & f_{1}c_{1} \\ s_{1} & c_{1} & s_{1} \\ 0 & 0 & 1 \end{bmatrix}, \quad T_{i} = \begin{bmatrix} c_{2} & -s_{1} & 0 & f_{1}c_{1} \\ s_{2} & c_{2} & 0 & f_{1}s_{1} \\ 0 & 0 & 1 \end{bmatrix}$$

$$T_{i} = \begin{bmatrix} c_{1} & s_{1} & 0 & f_{1}c_{1} \\ s_{1} & c_{1} & s_{1} & c_{2} \\ 0 & 0 & 1 \end{bmatrix}, \quad T_{i} = \begin{bmatrix} c_{2} & -s_{1} & 0 & f_{2}c_{1} \\ s_{2} & c_{3} & c_{4} & c_{3} \\ 0 & 0 & 1 \end{bmatrix}$$

$$T_{i} = \begin{bmatrix} c_{1} & s_{1} & s_{1} & c_{2} \\ s_{1} & s_{2} & c_{3} & c_{4} & c_{5} \\ s_{2} & c_{3} & c_{4} & c_{5} \\ s_{3} & c_{4} & c_{5} \\ s_{4} & c_{1} & c_{4} & c_{4} & c_{5} \\ s_{5} & c_{4} & c_{5} & c_{5} \\ s_{5} & c_{4} & c_{5} & c_{5} \\ s_{5} & c_{4} & c_{5} & c_{5} \\ s_{5} & c_{5} & c_{5} \\ s_{5} & c_{5} & c_{5} & c_{5} \\ s_{$$

$$\begin{cases} p_{y} = 1, s_{1} + l_{2} s_{12} \\ p_{3} = d_{3} \\ \phi = \theta_{1} + \theta_{2} + \theta_{4} \end{cases} \qquad \Rightarrow \qquad q = \frac{1}{X}$$

$$(X)$$

$$mgD \quad X = P(q)$$

$$mGD \quad X = P(q)$$

$$X = \begin{bmatrix} P_{x} & P_{y} & P_{z} & \Phi \end{bmatrix}$$

$$Q = \begin{bmatrix} \Theta_{1} & \Theta_{2} & G_{3} & \Theta_{1} \end{bmatrix}$$

$$P_{x}^{2} + P_{y}^{2} = P_{1}^{2} + P_{2}^{2} + 2P_{1}P_{2} + 2P_{1}P_{2} + 2P_{2}P_{2}$$

$$P_{x}^{2} + P_{y}^{2} = P_{1}^{2} + P_{2}^{2} + 2P_{1}P_{2} + 2P_{2}P_{2}^{2} + 2P_{2}^{2} + 2P$$

Ez existe ssi
$$-1 \leq \frac{p_x + p_y^2 - l_1^2 - l_2^2}{2l_1 l_2} \leq l_1 + l_2 l_2$$

$$-1 \leq \frac{p_x + p_y^2 - l_1^2 - l_2^2}{2l_1 l_2} \leq l_1 + l_2 l_2 l_2$$
Domaine atteignable

2 solutions pour $\theta_2 = \pm \text{arccos}$.

Kesoudre On Sachant A, Connu $P_{y} = (l_{1} + l_{2} c_{2}) c_{1} - l_{2} c_{2} c_{1}$ $P_{y} = (l_{1} + l_{2} c_{2}) c_{1} + l_{2} c_{2} c_{1}$ $\begin{cases} P_{x} = l_{1}C_{1} + l_{2}C_{12} \\ P_{y} = l_{1}S_{1} + l_{2}S_{12} \end{cases}$ Soit $\Delta = k_1^2 + k_2^2$ $\begin{cases} \frac{k_1}{\Delta} C_1 - \frac{k_2}{\Delta} S_1 = \frac{Px}{\Delta} \\ \frac{k_1}{\Delta} S_1 + \frac{k_2}{\Delta} C_1 = \frac{Py}{\Delta} \end{cases} = Sin \theta_1 + \alpha$ Oppose $x = atan2(k_2, k_1)$ ca $x = atan2(k_2, k_1)$ ca $x = atan2(k_2, k_1)$ La fonction atom2 normalise 9d la organist [-1,1]

Attention unequer alur de D, pour chaque valur de Θ_2 Enfin In 2 derniers eq. du MGD pensent être inverses $\begin{cases} d_{3} = P_{2} \\ \theta_{4} = \Phi_{1} - \Phi_{2} \end{cases}$ ce qui finit l'inversion du modèle gésnitrique

denx solutions entout du MGI

L'espace de travail du robot est l'espace atteignable (volumes entre deux cercles extrudées) qui sera restreint par la suite quand on considère en plus les butées articulaires dans les liaisons

TD 3 – CORRECTION Exerice 2

Liaison	α_i	a_i	b_i	θ_i
1	TYZ	0	ls	gs
2	11/2	0	92	11/2
3	11/2	0	93+ l3	T/2
4	0	l4	0	94

EXZ (94) 0 90 es 2 92 0 0 1. 0 0 0 1 0 93tl

OD = OA + AB2 + B2D3 = 430 + 92 32 + (l3+93) 3/2 70 = la 30 + 92 (Sixo-Gyo)+(ls+93)(Gxo+Sy $\frac{1}{12}$ = $\left(\frac{S_1}{S_1}, \frac{q_2}{q_2} + \frac{C_1}{S_1}, \frac{l_3 + q_3}{S_2}\right)$ -> 2 positions n, y somb commandables a part de 9,, 92, 93. Riz = C Si 0 : L'orientedon re 0 0 1) Lépend que de 91 En feut Commanderque Morientation de Rz Sonvant Zo