

Classification and Regression

Decision Trees can be used for both

	X2	X1
Bac	0.266	0.268
Bac	0.372	0.219
Bac	0.573	0.517
Good	0.908	0.269
Bac	0.202	0.181
Good	0.898	0.519
Bac	0.945	0.563
Rac	0.661	0 129

0.268

0.219

0.517

0.269

0.181

0.519

0.266

0.372

0.573

0.908

0.202

0.898

0.945

64.41

28.08

95.76

15.84

41.83

25.20

Classification

- Spam / not Spam
- Admit to ICU /not
- Lend money / deny
- Intrusion detections

Regression

- Predict stock returns
- Pricing a house or a car
- Weather predictions (temp, rain fall etc)
- Economic growth predictions
- Predicting sports scores

Visualizing Classification as a Tree

Metrics

- Algorithms for constructing decision trees usually work topdown, by choosing a variable at each step that best splits the set of items.
- Different algorithms use different metrics for measuring "best"
- These metrics measure how similar a region or a node is.
 They are said to measure the impurity of a region.
- Larger these impurity metrics the larger the "dissimilarity" of a nodes/regions data.
- Examples: Gini impurity Entropy, Variance

Gini impurity

- Used by the CART
- Is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it was randomly labeled according to the distribution of labels in the subset.
- Can be computed by summing the probability of an item with label i being chosen (p_i) , times the probability of a mistake $(1 p_i)$ in categorizing that item.
- Simplifying gives, the Gini impurity of a set:

Proprietalyadhent. Ruldisaincethning! Atom dinateser veld! Ulable for zeuse seffonstribution

P1	P2	P3

$$\Sigma P_{i}(1-P_{i}) = \Sigma P_{i} - \Sigma P_{i}^{2} = 1 - \Sigma P_{i}^{2}$$

CART: An Example

Root node : P1 = 0.4 , P2 = 0.6
GI = 1 -
$$(0.4)^2$$
 - $(0.6)^2$
= 0.48

1.
$$P1 = 0.5$$

 $P2 = 0.5$
 $1 - 0.5^2 - 0.5^2$
 $= 0.5$

$$GI = (6/10) * (0.5) + (4/10) * (0.375) = 0.45$$

L R	Left	Right	Gini Split
<=22,>22	0.5	0.47	0.48
<=23,>23	0.5	0.44	0.47
<=24,>24	0.5	0.38	0.45
<=25,>25	0.5	0	0.40

Gini Gain = 0.48-0.40 = 0.08