VEHICLE TECHNOLOGIES OFFICE

Overview of the DOE Advanced Battery R&D Program

June 16, 2014

David Howell, Program ManagerHybrid Electric Systems
Vehicle Technologies Office

Significant Electric Drive Vehicle Sales Growth

U.S. Electric Drive Vehicle Sales, by Technology (1999-2013)

2013 Sales Set Record

- □ 46 EDV models were available for sale
 - 575,000 Sales
- □ ~97,000 PEVs Sold. The top 6 models represent 95% of the sales :
 - Volt (23,094)
 - Leaf (22,610)
 - Model S (19,400)
 - Prius PHEV (12,088)
 - Cmax Energi (7,154)
 - Fusion Energi (6,089)

Over 3.1 million EDVs on the road Jan.1, 2014

Significant Increase in Lithium-ion Batteries Installed in LDVs

Installed Electric Drive Vehicle Battery Capacity (GWh installed in vehicles)

~2.5 GWhs of Lithium-ion Batteries were installed in Electric Drive vehicles sold in the USA in 2013.

ARRA-Battery Manufacturing Supply Chain

GM Battery Pack Assist

MATERIALS

- □ BASF
- □ Toda
- Novolyte (BASF)
- ☐ Honeywell
- ☐ Chemetall Foote
- □ EnerG2
- Pyrotek
- FutureFuel
- □ Celgard
- □ ENTEK/JCI
- □ H&T Waterbury

CELL/PACK

- **→** A123
- ı JCI
- SAFT
- EnerDel
- □ CPI-LG
- DOW-Kokam
- ☐ GM

Adv. Lead-Acid

- □ Exide
- East Penn

Domestic battery manufacturing plants are supplying batteries to several hybrid and electric vehicles, including the following:

- ☐ Chevy Volt EREV
- Opel Ampera EREV
- ☐ Cadillac ELR,
- ☐ Chevy Spark EV
- ☐ BMW Active Hybrid 7 HEV
- ☐ Mercedes S Class S 400
- Mercedes E Class HEV,
- □ Odyne PHEV heavy duty vehicles.
- → XLHybrids (which provides fleet vehicles to FedEx, Chevy, and GMC)

Battery R&D Budget

Advance the development of batteries and other electrochemical energy storage devices to enable a large market penetration of electric drive vehicles.

Battery/Energ	
FY 2013	\$88
FY 2014	\$85
FY 2015 (request)	\$100
inclusive of SBIR/STTR.	

FY 2014 Major R&D Activities

Reduce the cost of a PHEV40 battery to \$300/kWh by 2014

Reduce the cost of a PEV battery to \$125/kWh by 2022

VTO Battery R&D Activities and Target Metrics

Advanced Battery Materials Research

✓ Capacity Improvement✓ Failure Mitigation

Cell Design & Electrochemistry Optimization

✓ Power & Capacity Increase✓ Life Improvement

Advanced Battery Development

✓ Performance Optimization✓ Cost Reduction

Anodes

(600 mAh/g)

Cathodes

(300+ mAh/g)

Electrolytes

(5 volt)

Cell Targets
350 Wh/kg
750 Wh/l
1,000 "C/3" cycles

\$125/kWh 250 Wh/kg 400 Wh/l 2,000 W/kg

10-100 mAh cells

0.5 - 1.0 Ah cells

5 - 40⁺ Ah cells

Advanced Battery Materials Research

Anodes

- Intermetallics
- Nanophase metal oxides
- Tailored SEI and new binders

Cathodes

- Layered-layered oxides
- High voltage Spinel
- Metal phosphates
- Tailored Surfaces

Electrolytes

- High voltage electrolytes
- Solid Polymer
- Electrolytes for Li metal
- Non-flammable electrolytes

Beyond Lithium Ion

- Inhibit dendrite growth
- Efficient utilization of sulfur
- Bifunctional catalyst for Li-O2

Participants

- ☐ National Labs: ANL BNL, LBNL, NREL, ORNL, PNNL
- Universities/Industry
 - Arizona State University
 - Case Western Reserve University
 - Drexel University
 - Daikin
 - Hydro Quebec
 - MIT
 - North Carolina State University
 - Penn State University
 - Stanford University
 - SUNY—Binghamton
 - SWRI
 - University of California
 - UMASS—Boston
 - University of Michigan
 - University of Pittsburgh
 - · University of Rhode Island
 - University of Texas, Austin
 - University of Utah
 - WildCat Discoveries/3M

POSTER SESSION, Monday/Tuesday, JUNE 16,17 (Tien Duong, with BES)

Cell Design & Electrochemistry Optimization

Power & Capacity Increase and Life Improvement

FOCUSED NATIONAL LABORTORY PROJECT

Voltage Fade Mitigation of High Capacity Manganese Rich Layered-Layered Cathode Material

CORE RESEARCH FACILITIES

Cell Fabrication Labs (ANL and ORNL)

Exploratory Materials Scale-Up Facility (ANL)

Post Mortem Analysis Laboratory (ANL)

Scientific Diagnostic Facilities (various)

2013 VTO FOA Selections High Capacity Cathodes coupled with High Capacity Anodes

\$2-4 million over 2 years

•	, , , , , , , , , , , , , , , , , , ,
Prime	Partner(s)
Argonne	BNL, LBNL
3M	GM, Umicore Leyden, LBNL, ARL
Penn State	UT-Austin, LBNL, ANL,ECPower
Farasis	ANL, LBNL, NanoSys, Dupont
Envia	LBNL, ORNL, GM
TIAX	_

Oral Presentations, Wednesday & Thursday June 18-19 (Peter Faguy)

Advanced Battery Development

Performance Optimization and Cost Reduction

USABC Cooperative Agreement

Support battery manufacturers to develop batteries that meet EDV performance, safety, and cost requirements.

Focus

Cell Design/Fabrication
Module/Pack Design & Fab
Material Specs, Formulation &
Synthesis
Electrode Design & Coating
Battery Control & Safety
Detailed Cost Modeling

2011 VTO FC	OA Selections
Johnson Controls	3M Company
A123Systems	Applied Materials Inc.
Amprius	Penn. State University
XALT Energy (formerly Dow Kokam)	MILTEC
Nanosys/LG Chem	Optodot
SEEO	Denso

Battery Design (CAE), Testing, and Analysis

POSTER SESSION – Monday/Tuesday JUNE 16,17 ORAL PRESENTATIONS - TUESDAY, JUNE 17

David Howell Brian Cunningham

FY2014 Funding Opportunities

☐ Advanced Battery Development (USABC Cooperative Agreement)
□ RFPI on EV Battery Development
□ RFPI on PHEV Battery Development
□ RFPI on 12V Micro-Hybrid Battery Development
☐ RFPI on 48V Micro-Hybrid Battery Development
☐ VTO Program Wide FOA (Exploratory Materials Research)
☐ VTO Program Wide FOA (Exploratory Materials Research) ☐ Beyond Lithium Ion and Solid Electrolytes

Successful Battery R&D Investments

Recent Benefit-Cost Analysis

- □ Significant Link Between DOE-Funded R&D and the Most Prominent EDV Battery
 Technologies NiMH and Li-ion
- □ VTO R&D Strongly Contributed to Electric Drive Vehicle Success and lead to a Domestic Automotive Battery Industry

"The major economic impact of VTO's R&D investments [in battery technology] is primarily realized through the increase in the market adoption of EDVs."

Industry Consensus (BCE Report, p.5-2)

VTO's Investments

- ☐ Total VTO Investment \$971M
- Investment with USABC \$315M
- □ USABC Matching Funds \$358M
- □ R&D Involved 148 Companies Universities, and National Laboratories

Oil Savings

Life-Cycle Benefits From EDV Sales (1999 Through 2012)

\$16.6 Billion

Knowledge Benefits Evaluation

VTO Ranks Eight Among the Top Ten Companies with Energy Storage Patents

VTO Ranks Second Among the Top Ten Companies in Total Citations

Patent Portfolio Importance - Measured by Citations

"The intellectual capital developed with VTO funding was found to have a broad influence with knowledge spillover in multiple application areas." BCE Report p. 7-3

Knowledge Benefits Evaluation

"A comparison of average citation rates of VTO-attributed patent families with the average of leading innovative companies in the field showed VTO to rank highest" (BCE Report, p. 7-2)

Cost Reduction & Energy Density

DOE/USABC reduced the cost of PEV batteries by 70% and doubled their energy density during the past 5 years

- Current cost of <u>advanced</u> PHEV battery technology estimates average \$325/kWh, useable
- Results based on <u>prototype cells</u>
 <u>& modules</u> meeting DOE/USABC performance targets.
- □ Detailed USABC battery cost model used to estimate the cost of PEV battery packs assuming that <u>100,000 batteries</u> are manufactured annually.

- □ Batteries ranged from PHEV 40 packs (~14 kWh) to EV packs (40kWh).
- ☐ These battery development projects focus on advance cathodes, processing improvements, cell design and pack optimization.
- ☐ Standard electrolyte & graphite anode were used.

Recent Accomplishments

- **Amprius**: Silicon nanowire anodes for enhanced energy and reduced cost:
 - Provide 260Wh/kg, ~50% more than SOA cells
 - Good cycle life, less than 5-7% fade after 290 cycles
- GM/Ansys/ESim/NREL: Creation of a battery design software suite to reduce battery development time and cost:
 - First release in 12/2013
 - Permits thermal response, cycle life modeling, abuse response modeling of battery cells and pack
 - Customers currently using tool for battery design

Recent Accomplishments

- Johnson Controls demonstrated novel cathode slurry processing techniques that
 - reduced N-Methylpyrrolidone (NMP) solvent use by 32%
 - increased coated electrode density by 31%.
- Miltec developed stable, first-of-its-kind, UV curable binders for Liion cathodes and demonstrated novel cathode slurry processing techniques.
 - Reduced NMP solvent use by 100%.
 - Achieved cathode containing 87% NMC.
 - Achieved cathode thickness and porosity similar to conventional electrodes (~60 mm and ~25%).
 - Retained 50% capacity after 2,000 1C/1C cycles
- DOE/USABC contracts with Celgard and Entek reduced Li ion separator cost from \$3/m2 to ~\$1.20/m2.
- Nanosys developed a silicon-graphite anode material (SiNANOde™) that demonstrated 850mAh/g of reversible capacity and ~500 cycles

Future Battery R&D

Advanced Battery Chemistries

- Extensive cost modeling has been conducted on advanced battery chemistries using the ANL BatPaC model.
- Significant cost reductions are possible using more advanced lithium ion materials (see figure)
 - Lithium-ion: Silicon anode coupled with a high capacity cathode presents moderate risk pathway to less than 125/kWh_{use}
 - Lithium metal is a higher risk pathway to below \$100/kWh_{use}

Projected Cost for a 100kWh Battery Pack

Courtesy: JCESR Energy Storage Hub

These are the best case projections: all chemistry problems solved, performance is not limiting, favorable system engineering assumptions, high volume manufacturing

Future Battery R&D

Materials Processing and Electrode Manufacturing

Objective: by 2020, reduce critical material and manufacturing costs by 50%.

- ➤ Focus on the energy, water, environmental, and labor costs which can range from ~20% 60% of the materials cost.
- Reduce energy intensity for producing materials.
- Focus on \$/kWh reduction

VTO Battery R&D Roadmap

USDRIVE Energy Storage R&D Roadmap

- ☐ Tabulates performance and cost targets for HEV batteries and EV batteries.
- ☐ Describes ongoing /planned R&D efforts on EDV battery technologies.
- ☐ For a copy of the roadmap, visit:

http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/electrochemicallenergy storage roadmap.pdf.

Energy Storage R&D Annual Progress Report for FY 2013

- ☐ Describes all energy storage R&D projects funded by DOE Vehicle Technologies Office (VTO) at a national laboratory or in partnership with industry.
- For obtaining a copy of the Annual Progress Report, visit:

 http://www1.eere.energy.gov/vehiclesandfuels/resources/vt_es_fy13
 http://ww

Contacts

David Howell

David.Howell@ee.doe.gov

(202) 586-3148

Brian Cunningham

Brian.Cunningham@ee.doe.gov

Tien Duong
Tien.Duong@ee.doe.gov

Peter Faguy

Peter.Faguy

@ee.doe.gov

