

AEC-NASA TECH BRIEF

AEC-NASA Tech Briefs describe innovations resulting from the research and development program of the U.S. AEC or from AEC-NASA interagency efforts. They are issued to encourage commercial application. Tech Briefs are published by NASA and may be purchased, at 15 cents each, from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

Digital Filter Suppresses Effects of Nonstatistical Noise Bursts on Multichannel Scaler Digital Averaging Systems

The problem:

To suppress the effects of large, nonstatistical noise bursts on data that have been averaged over many sweeps of a multichannel scaler. Digital data entering a multichannel scaler digital averaging system with a small signal-to-noise ratio will obscure or confuse data previously averaged by the system if the entering data pulse contains large, nonstatistical noise bursts. A means of filtering out such distorted pulse data is required.

The solution:

A digital noise filter, interposed between the sampled channels and the multichannel scaler digital averaging system, makes use of binary logic circuitry to compare the number of counts per channel (C_j) with the average number of counts per channel (A_m) .

(continued overleaf)

This document was prepared under the sponsorship of the Atomic Energy Commission and/or the National Aeronautics and Space Administration. Neither the United States Government nor any person acting on behalf of the United States Government assumes any liability resulting from the use of the information contained in this document, or warrants that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights.

If the channel count falls within $A_m \pm K$ ($\pm K$ = preset allowable count fluctuation), the channel count is accepted and passed to the multichannel scaler digital averaging system.

How it's done:

Before operating the digital filter (DF), a value K is chosen as the acceptable fluctuation limits about the average number of counts per channel A_m . The filter consists of four parallel paths: (1) a division scaler set to give one output count for every n input counts (n = number of channels being swept); (2) a channel scaler in which incoming counts for each channel j are accumulated; (3) the "OVER (A-K)" scaler which is used to output data to the multichannel scaler; and (4) a gate G_0 to pass the output of the DF to the input of the multichannel scaler (MCS).

Before each sweep of the data channels, the (A-K) scaler is preset to \overline{K} , the binary complement of K. At the end of the sweep, the content of this scaler is transferred by a parallel output gate to the (A-K) register, and the (A-K) scaler is cleared and reset to \overline{K} .

The DF reads each channel for a channel period of Ti during each sweep. At the start of each channel period T_i , the complement of (A-K), (A-K), is nondestructively shifted by the complement gate (1) to the channel scaler. The channel scaler is thus preset to a value -(A-K). The total counts in the channel scaler at the end of each period T_j will be $C_s = C_j - (A - K)$. The incoming counts for a data channel Ci fed to the channel scaler thus advance the scaler contents toward zero. If Cs reaches zero, then Cj exceeds the lower limit (A-K). To determine whether or not C_j has exceeded the upper limit (A+K), a 2K coincidence circuit monitors the channel scaler. If the channel scaler count C_s passes zero but does not pass 2K, then C_i lies between the limits (A+K) and (A-K) and the channel information is acceptable. If the count Cs is less than zero or greater than 2K, the allowable limits have been passed and the data are not acceptable. For $(A-K) < C_j < (A+K)$, the binary complement of the contents of the channel scaler [effectively Ci -(A-K)] are passed by complement gate (2) into the "OVER (A-K)" scaler. For $(A+K) < C_j < (A-K)$, the complement \overline{K} is shifted into the "OVER (A-K)" scaler.

At the start of the next channel period T_{j+1} , gate G_0 is opened and remains so until the "OVER (A-K)" scaler is driven to zero. While G_0 is open, either C_j

- (A-K) or K (depending on the contents of the scaler) is transferred into channel j+1 of the MCS Thus channel data accumulated in T_j are stored in channel j+1.

During T_1 , no previous channel information is available, so channel 1 is used to accumulate the sum of all $(A-K)_m$ for the whole run. Thus for T_1 only, circuitry not shown closes G_0 , permitting the value A-K to enter channel 1 of the MCS if $C_1 > (A-K)$. A small error occurs in the accumulated sum of the $(A-K)_m$ whenever $C_1 < (A-K)$.

Notes:

- 1. A signal strength of S>K is recorded as K rather than S+K. In this case, either the DF is bypassed or K must be large relative to S.
- For the DF described, C_j (counts accumulated for a given channel in each pass) is not signal plus background s+b, but the much smaller number s+K.
- 3. This DF has been constructed with 155 integrated circuit devices and has fluctuation limits from 8 to 768 about the average count (2 figure binary precision).
- 4. Additional details are contained in Review of Scientific Instruments, vol. 37, no. 6, June 1966, p. 769-771.
- 5. Inquiries concerning this innovation may be directed to:

Office of Industrial Cooperation Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439 Reference: B68-10193

Source: L. S. Goodman
Physics Division
and F. O. Salter
Applied Mathematics Division
(ARG-90143)

Patent status:

Inquiries about obtaining rights for commercial use of this innovation may be made to:

Mr. George H. Lee, Chief Chicago Patent Group U.S. Atomic Energy Commission Chicago Operations Office 9800 South Cass Avenue Argonne, Illinois 60439

4