PH126 Logic I • Fast Lecture 3

Lecturer: s.butterfill@warwick.ac.uk

The Syntax of FOL

We define what counts as a sentence of FOL using rules. E.g.:

- 1. If * and # are sentences, then so is(* \wedge #)
- 2. If * and # are sentences, then so is (* V #)
- 3. P, Q, R, ... are sentences
- 4. If * is a sentence, then \neg * is a sentence So:
- a. P is a sentence // rule 3 b. \neg P is a sentence // rule 4, a c. (\neg P \land Q) is a sentence // rule 1, b, a

Rule of Proof: VElim

Example proof with VElim

⊥,¬

Р	¬P	上	P∧¬P
Т	F	F	F
F	T	F	F

Proof example with $\bot Elim$ and $\bot Intro$

Proof example with ¬Intro

Rules of Proof for →

Proof example for \rightarrow *Elim (to complete)*

Not all proofs have premises

Scope

Which step of this proof is wrong? Why?

In P Λ (QVR), the scope of Λ is P Λ (QVR) In P Λ (QVR), the scope of V is (QVR) In (P Λ Q)VR, the scope of Λ is (P Λ Q) In (P Λ Q)VR, the scope of V is (P Λ Q)VR The scope of a connective is the smallest constituent expression which contains that connective.

Exercises 03

For your third seminar Only for fast groups

7.2, 7.5, 7.6 (tt)

7.9 (truth functions)

8.20-25 (proofs/counterexamples)

9.8-10 (quantifiers)

Exercises 04

For your fourth seminar Only for fast groups

7.25 (logical equivalence)

8.26-30 (proofs/counterexamples)

9.16.10–15 (translation)

9.17.7-15 (translation)

12.4 (counterexamples)

either

12.5–7 (counterexamples)

 $or\ (if\ possible)$

12.8-12 (counterexamples)

NB. DO NOT USE TAUT CON. EVER.