

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/579,158	05/12/2006	Walter Dees	US030450	7058
24737	7590	06/15/2009	EXAMINER	
PHILIPS INTELLECTUAL PROPERTY & STANDARDS			ZAHR, ASHRAF A	
P.O. BOX 3001			ART UNIT	PAPER NUMBER
BRIARCLIFF MANOR, NY 10510			2175	
MAIL DATE	DELIVERY MODE			
06/15/2009	PAPER			

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)	
	10/579,158	DEES, WALTER	
	Examiner	Art Unit	
	ASHRAF ZAHR	2175	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 3/24/2009.
- 2a) This action is **FINAL**. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-31 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-31 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ . |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| Paper No(s)/Mail Date _____ . | 6) <input type="checkbox"/> Other: _____ . |

DETAILED ACTION

1. This is the final action for application 10/579,158. Claims 1-31 are pending in this application.

Response to Arguments

2. **Applicant Argues.** “These features are nowhere disclosed or suggested in Yumato, Friedman, and combination thereof. Even, assuming arguendo, that the canonical UI representation is Friedman are analogous to the synonym, as recited in independent claim 1 and 22, such a ‘synonym’ in Friedman is provided to the UC 200 by the device to be controlled. Thus, at best, the UC 200 creates a user interface from information provided by the device to be controlled” and “There is simply no disclosure or suggestion in Yumato, Friedman, and combination thereof, of mapping the RUI to the CUI by the control device by replacing the RUI with a synonym that matches the RUI,” as recited in independent claim 1, and similarly recited in independent claim 22. (Illustrative emphasis provided) The Friedman UC 200 does not replace anything, but simply uses the canonical UI representation provided by the device to be controlled, where such canonical UI representation is basically the UI of the device to be controlled. Thus, the Friedman UC 200 merely uses the ‘RUI’ provided by the device to be controlled, without any replacement of anything”.

Friedman uses the canonical representation that could be provided by the device being controlled or another source (Friedman, ¶0029). These canonical representations are synonyms for the actual remote UI since they are different words that have the same meaning or control and perform the same function.

The software that drives the UC 200 may be wholly located on a single computing device, or variously distributed in a server/thin client environment. Thus, the processing that occurs on the device that ultimately displays or renders the concrete UI to the user may range anywhere from all of the processing to just enough processing to render the concrete UI to the user and to receive and transmit data (Friedman, ¶0031). Finally, Friedman UC does replace the remote UI as new controls are used to interact with the remote device (Friedman, ¶0035). Therefore, the examiner respectfully disagrees with the applicant.

Claim Rejections - 35 USC § 103

3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

4. Claims 2-17, 20, 22-29 are rejected under 35 U.S.C. 103(a) as being unpatentable over Yumoto et al., US 7,027,881 (Hereinafter, Yumoto) in view of Friedman et al., US 2002/0154161 (Hereinafter, Friedman).

Regarding Claim 1, Yumoto discloses, “a method for a consistent user interface (CUI) on a control device providing access to at least one network device having a remote user interface (RUI)”. Specifically, Yumoto discloses a network-dedicated terminal device also provided with a display section for allowing GUI operations, and it is sufficiently possible for the terminal device to function as a control device if a function capable of connection with the communication path is provided (Yumoto, col 7, ln 1-11).

Yumoto also discloses, “providing the CUI to the control device”. Specifically, required operation can be performed on the GUI displayed on the display section by using operation keys provided in the main unit (Yumoto, col 6, ln 60-65).

Yumoto also discloses, “mapping the RUI to the CUI by the control device by replacing the RUI with a synonym that matches the RUI, the synonym being included in a synonym database”. Specifically, the conversion-into-remote-controller process is a processing sequence performed by the control device and the device to be controlled in cooperation in order that an electronic device serving as a control device is made to function as a remote controller capable of controlling a specific device to be controlled (Yumoto, col 11, ln 15-20).

Yumoto also discloses, “displaying by the control device at least a part of the CUI that includes the synonym instead of the RUI as a user interface to the network device”. Specifically, Then, in the cellular phone 1, in the process of step S117, by using the received conversion-into-remote-controller data, a GUI

used for an operation for remotely controlling the audio component device 2 is created (Yumoto, col 14,ln 50-55).

Yumoto also discloses, "wherein the CUI is more consistent with user interfaces of further network device so that the control device presents a user the user interface that includes the CUI for controlling the network device and the further devices" Figure 8 of Yumoto shows a consistent user interface for a remote user interface created by a remote control device that can be used to control various devices. Figure 9 is an example of GUT on the remote control device.

Yumoto does not disclose "a synonym that matches the RUI, the synonym being included in a synonym database". However, Friedman remedies this with the disclosure of a database for storing canonical user interface descriptions. This database is used to construct user interfaces for a Universal Console (Friedman, ¶0027). It would be obvious to one of ordinary skill in the art to add this database to the universal control device of Yumoto. The motivation to do so would be so the UC device 200 is capable of recognizing both the action-commands to which the device responds including parameters and as well as the decisions, selections, and input the user needs to provide for the UC 200 to determine which action-commands to send and the values of the action-command parameters (Friedman, ¶0030).

Regarding Claim 2, Yumoto also discloses, "the method of claim 1, wherein: the providing act further comprises the acts of: receiving by the control

device an RUI definition comprising at least one RUI component". Specifically, Yumoto discloses in step S208, the cellular phone 1 receives the conversion-into-remote-controller data (Yumoto, col 17, ln 10-15).

Yumoto also discloses, "the mapping act further comprises the act of replacing the received at least one RUI component with said pre-set synonym CUI component by the control device whenever the control device displays a user interface to the network device". Specifically, after the function is switched to the tuner in the process of step S205 in the above-described manner, in the process of step S206, conversion-into-remote-controller data for the GUT corresponding to the function of the tuner is created (Yumoto, col 16, ln 60-65).

Yumoto does not specifically disclose, "providing the CUI comprising at least one CUI component pre-set as a synonym for said at least one RUI component". However, Friedman remedies this with the disclosure of a database for storing canonical user interface descriptions. This database is used to construct user interfaces for a Universal Console (Friedman, ¶0027). It would be obvious to one of ordinary skill in the art to add this database to the universal control device of Yumoto. The motivation to do so would be so the UC device 200 is capable of recognizing both the action-commands to which the device responds including parameters and as well as the decisions, selections, and input the user needs to provide for the UC 200 to determine which action-commands to send and the values of the action-command parameters (Friedman, ¶0030).

Regarding Claim 3, Yumoto also discloses, “the method of claim 2, further comprising the act of transmitting the RUI definition by the at least one network device” (Yumoto, col 7, ln 33-40).

Regarding Claim 4, Yumoto also discloses, “the method of claim 3, wherein said transmitting act further comprises the act of on power-up, transmitting the RUI definition by the at least one network device”. Specifically, Yumoto discloses the device analysis (Yumoto, col 13, ln 35-40). This phase is not the first, but it would obvious to one of ordinary skill in the art at the time of the invention this phase first. The motivation to do so is that Yumoto states that authentication may be omitted (Yumoto, col 19, ln 15-16) and that list creation may be omitted (Yumoto, col 19, ln 4-6) making the device analysis phase first.

Regarding Claim 5, Yumoto also discloses, “the method of claim 3, wherein said transmitting act further comprises the act of transmitting the RUI definition using a network based on at least one of IP (RFC 791), 30 NETBEUI, Bluetooth, Zigbee, SCP, IEC61883, DVB and ATSC DTV”. Specifically, Yumoto discloses in addition to the Internet, examples of the communication path 3 of this embodiment include networks such as a LAN (Local Area Network) and a PAN (Personal Area Network) in compliance with a predetermined communication protocol. Examples of such networks include Bluetooth, and wireless Ethernet defined by IEEE 802.11 (Yumoto, col 7, ln 33-40).

Regarding Claim 6, Yumoto also discloses, “the method of claim 5, wherein said transmitting act further comprises the act of transmitting the RUI definition using a protocol based on at least one of RDP, X- Windows, VNC, HTTP, HAVi DDI, and UI Fragments”. Specifically, Yumoto discloses in addition to the Internet, examples of the communication path 3 of this embodiment include networks such as a LAN (Local Area Network) and a PAN (Personal Area Network) in compliance with a predetermined communication protocol. Examples of such networks include Bluetooth, and wireless Ethernet defined by IEEE 802.11 (Yumoto, col 7, ln 33-40).

Regarding Claim 7, Yumoto also discloses, “the method of claim 5, wherein said receiving act further comprises the act of using by the at least one network device for the RUI definition a UI description format based on at least one of HTML, XML, Macromedia, Flash and Java”. Specifically, Yumoto discloses, Java, HTML, XML (Yumoto, col 14, ln 55-65).

Regarding Claim 8, Yumoto also discloses, “the method of claim 3, further comprising the act of sending the provided CUI to at least one of the at least one network device and a second control device”. Specifically, various types of electronic devices can be made to serve as control devices and devices to be controlled. Furthermore, the contents of the conversion-into-remote-controller data created by the device are changed adaptively according to the

input operation function of the control device (Yumoto, col 17, ln 60-65). The examiner reads this as sharing the data and then changing it if necessary.

Regarding Claim 9, Yumoto also discloses, “the method of claim 7, further comprising the act of transmitting a RUI definition by at least a second network device to the control device using at least one of a different protocol selected from the set consisting of RDP, X-Windows, VNC, HTTP, HAVi DDI, and UI Fragments and a different UI description format selected from the group consisting of HTML, XML, Macromedia, Flash and Java than the corresponding protocol and description format used by the at least one network device”. Specifically, Yumoto discloses in addition to the Internet, examples of the communication path 3 of this embodiment include networks such as a LAN (Local Area Network) and a PAN (Personal Area Network) in compliance with a predetermined communication protocol. Examples of such networks include Bluetooth, and wireless Ethernet defined by IEEE 802.11 (Yumoto, col 7, ln 33-40). Yumoto also discloses, Java, HTML, XML (Yumoto, col 14, ln 55-65). Various types of electronic devices can be made to serve as control devices and devices to be controlled (Yumoto, col 17, ln 60-65). Finally, multiple devices can be used as control devices as well as network devices (Yumoto, Fig 1).

Regarding Claim 10, Yumoto also discloses, “the method of claim 1, wherein: the RUI and CUI comprise at least one RUI component and at least one CUI component, respectively; and further comprising the acts of extracting

said at least one RUI component by the control device". Specifically, Yumoto discloses in step S208, the cellular phone receives the conversion-into-remote-controller data (Yumoto, col 17, ln 10-15).

Yumoto does not specifically disclose, "determining by the control device if said at least one CUI component is the synonym for the extracted at least one R.UI component; and wherein, said mapping act further comprises the act of if said at least one CUI component is determined to be the synonym for the extracted at least one RUI component, mapping the at least one extracted RUI component to the determined said at least one CUI component". However, Friedman remedies this with the disclosure of a database for storing canonical user interface descriptions. This database is used to construct user interfaces for a Universal Console (Friedman, ¶0027). It would be obvious to one of ordinary skill in the art to add this database to the universal control device of Yumoto. The motivation to do so would be so the UC device 200 is capable of recognizing both the action-commands to which the device responds including parameters and as well as the decisions, selections, and input the user needs to provide for the UC 200 to determine which action-commands to send and the values of the action-command parameters (Friedman, ¶0030).

Regarding Claim 11, Yumoto does not specifically disclose, "the method of claim 10, further comprising the act of finding at least one CUI component that satisfies a predetermined similarity measure to said at least one RUI 15 component for a plurality of network devices". The canonical database However,

Friedman remedies this with the disclosure of a database for storing canonical user interface descriptions. This database is used to construct user interfaces for a Universal Console (Friedman, ¶0027). It would be obvious to one of ordinary skill in the art to add this database to the universal control device of Yumoto.

The motivation to do so would be so the UC device 200 is capable of recognizing both the action-commands to which the device responds including parameters and as well as the decisions, selections, and input the user needs to provide for the UC 200 to determine which action-commands to send and the values of the action-command parameters (Friedman, ¶0030).

Regarding Claim 12, Yumoto does not specifically disclose, “the method of claim 10, further comprising the act of finding at least one CUI component that satisfies a predetermined consistency measure of the mapped at least one RUI component”. However, Friedman remedies this with the disclosure of a database for storing canonical user interface descriptions. This database is used to construct user interfaces for a Universal Console (Friedman, ¶0027). It would be obvious to one of ordinary skill in the art to add this database to the universal control device of Yumoto. The motivation to do so would be so the UC device 200 is capable of recognizing both the action-commands to which the device responds including parameters and as well as the decisions, selections, and input the user needs to provide for the UC 200 to determine which action-commands to send and the values of the action-command parameters (Friedman, ¶0030).

Regarding Claim 13, Yumoto does not specifically disclose, “the method of claim 10, wherein said determining act further comprises the act of searching at least one of a thesaurus and a synonym database for a synonym of the extracted at least one RUI component that matches said at least one CUI component”. However, Friedman remedies this with the disclosure of a database for storing canonical user interface descriptions. This database is used to construct user interfaces for a Universal Console (Friedman, ¶0027). It would be obvious to one of ordinary skill in the art to add this database to the universal control device of Yumoto. The motivation to do so would be so the UC device 200 is capable of recognizing both the action-commands to which the device responds including parameters and as well as the decisions, selections, and input the user needs to provide for the UC 200 to determine which action-commands to send and the values of the action-command parameters (Friedman, ¶0030).

Regarding Claim 14, Yumoto does not specifically also disclose, “the method claim 13, further comprising the act of storing said matching synonym determined from the thesaurus in the synonym database for the extracted at least one RUI component”. However, Friedman remedies this with the disclosure of a database for storing canonical user interface descriptions. This database is used to construct user interfaces for a Universal Console (Friedman, ¶0027). If it is found to be matching using the synonym database then it must already e in the

synonym database. It would be obvious to one of ordinary skill in the art to add this database to the universal control device of Yumoto. The motivation to do so would be so the UC device 200 is capable of recognizing both the action-commands to which the device responds including parameters and as well as the decisions, selections, and input the user needs to provide for the UC 200 to determine which action-commands to send and the values of the action-command parameters (Friedman, ¶0030).

Regarding Claim 15, Yumoto also discloses, “the method of claim 14 wherein said at least one thesaurus is located on a second network and said at least one network device is located on a first network”. Specifically, Yumoto discloses in addition to the Internet, examples of the communication path 3 of this embodiment include networks such as a LAN (Local Area Network) and a PAN (Personal Area Network) in compliance with a predetermined communication protocol. Examples of such networks include Bluetooth, and wireless Ethernet defined by IEEE 802.11 (Yumoto, col 7, ln 33-40).

Regarding Claim 16, Yumoto also discloses, “the method of claim 15, wherein said second network is the Internet”. Specifically, Yumoto discloses in addition to the Internet, examples of the communication path 3 of this embodiment include networks such as a LAN (Local Area Network) and a PAN (Personal Area Network) in compliance with a predetermined communication

protocol. Examples of such networks include Bluetooth, and wireless Ethernet defined by IEEE 802.11 (Yumoto, col 7, ln 33-40).

Regarding Claim 17, Yumoto also discloses, “the method of claim 15, wherein said first network is a home network and said network device is a consumer electronic device”. Specifically, Yumoto discloses consumer electronic devices (Yumoto, Fig 1).

Regarding Claim 18, Yumoto also discloses, “the method of claim 1, wherein said at least a part of the CUI is determined according to a set of user preferences”. Specifically, the cell phone contains a ROM in which various types of data are set by the user (Yumoto, col 9, ln 5-8).

Regarding Claim 19, Yumoto also discloses, “the method of claim 1, wherein: said at least one network device further comprises at least one application local to the control device and said RUI further comprises at least one local user interface (LUI) to said at least one local application”. Specifically, the cell phone has a local user interface (Yumoto, col 8, ln 22-31).

Regarding Claim 20, Yumoto also discloses, “the method of claim 10, wherein: said at least one network device further comprises at least one application local to the control device and said RUI further comprises at least one

local user interface (LUI) to said at least one local application". Specifically, the cell phone has a local user interface (Yumoto, col 8, ln 22-31).

Regarding Claim 21, Yumoto also discloses, "a method for a slave network device to replace a remote user interface (RUI) with a consistent user interface (CUI), comprising the acts of: transmitting by the slave network device the RUI to a control network device". Specifically, Yumoto discloses in step S208, the cellular phone 1 receives the conversion-into-remote-controller data (Yumoto, col 17, ln 10-15).

Yumoto also discloses, "replacing by the control network device at least a part of the transmitted RUI with at least a part of the consistent CUI by the method of claim 1". Specifically, after the function is switched to the tuner in the process of step S205 in the above-described manner, in the process of step S206, conversion-into-remote-controller data for the GUT corresponding to the function of the tuner is created (Yumoto, col 16, ln 60-65).

Regarding Claim 22, Yumoto also discloses, "a control device that provides a consistent user interface (CUI) in a network of at least one slave device having a remote user interface (RUI), comprising: a transceiver for receiving the RUI". Specifically, the control device is connected to the network through an interface such a Bluetooth (Yumoto, Fig3, Fig 4: 20).

Yumoto also discloses, "an extraction logic module configured to extract at least one component of the RUI". Specifically, in this case, since the device to

be controlled is an audio component device, a button image for operating this audio component device, control information for layout for displaying this button image on the display section, and information for defining how to operate the button image are incorporated to form application data (Yumoto, col 14 , ln 11-20).

Yumoto also discloses, "an analysis and transformation module configured to map the extracted at least one component of the RUI to a component of the CUI according at least one of the synonyms stored in said database and a thesauri by replacing the RUI with at the at least one of the synonyms that matches the RUI". Specifically, the conversion-into-remote-controller process is a processing sequence performed by the control device and the device to be controlled in cooperation in order that an electronic device serving as a control device is made to function as a remote controller capable of controlling a specific device to be controlled (Yumoto, col 11, ln 15-20).

Yumoto also discloses, "store the mapping in a memory". Specifically, the remote control application is stored in the memory (Yumoto, Fig 4: 24-24a).

Yumoto also discloses, "provide a user interface to the at least one slave device according to at least a part of the mapping of the extracted at least one component of the RUI". Specifically, Then, in the cellular phone 1, in the process of step S117, by using the received conversion-into-remote-controller data, a GUI used for an operation for remotely controlling the audio component device 2 is created (Yumoto, col 14,ln 50-55).

Yumoto also discloses, "wherein at least a part of the CUI that includes the at least one of the synonyms is displayed by the control device instead of the RUI as the user interface to the at least one slave device". Specifically, required operation can be performed on the GUI displayed on the display section by using operation keys provided in the main unit (Yumoto, col 6, ln 60-65).

Yumoto also discloses, "wherein the CUI is more consistent with the user interfaces of further slave devices so that the control device presents a user the user that includes the CUI for controlling at least one slave device and further slave devices". Figure 8 of Yumoto shows a consistent user interface for a remote user interface created by a remote control device that can be used to control various devices. Figure 9 is an example of GUT on the remote control device.

Yumoto does not specifically disclose, "a database that is configured to store synonyms of components of an RUI" or, "optionally update the synonym database with the mapping". However, Friedman remedies this with the disclosure of a database for storing canonical user interface descriptions. This database is used to construct user interfaces for a Universal Console (Friedman, ¶0027). If it is found to be matching using the synonym database then it must already be in the synonym database. It would be obvious to one of ordinary skill in the art to add this database to the universal control device of Yumoto. The motivation to do so would be so the UC device 200 is capable of recognizing both the action-commands to which the device responds including parameters and as well as the decisions, selections, and input the user needs to provide for

the UC 200 to determine which action-commands to send and the values of the action-command parameters (Friedman, ¶0030).

Regarding Claim 23, Yumoto also discloses, “the control device of claim 22, further comprising: at least one local user interface (LUI) to at least one local application”. Specifically, the cell phone has a local user interface (Yumoto, col 8, ln 22-31).

Yumoto also discloses, “wherein, said extraction logic module is further configured to extract at least one component of the LUI”. Specifically, the ability information is taken from the LUI. This ability information is information indicating the ability regarding the input operation, possessed by the cellular phone 1. In this case, examples of information on operation elements include the type of operation element, information indicating a number, and the size information of the number of pixels of the LCD of the display section 23 used for GUI operation. If such information contents are considered together, it is possible to understand the ability of the input operation function as the cellular phone 1 (Yumoto, col 13, ln 46-55).

Yumoto also discloses, “said analysis and transformation module is further configured to map the extracted at least one component of the LUI to a component of the CUI according to at least one of the synonyms of components of an LUI stored in said database and a thesauri”. Specifically, as a result of the analysis process in step S113, the ability of the input operation function of the cellular phone 1 is recognized (Yumoto, col 14, ln 4-10).

Yumoto also discloses, "provide a user interface to the at least one local application according to at least a part of the mapping of the extracted at least one component of the LUI". Specifically, then, in step S114, application data for forming a GUI which can be realized by the cellular phone 1 within the range of this recognized ability is created (Yumoto, col 14, ln 4-10).

Yumoto does not specifically disclose, "said database is further configured to store synonyms of components of an LUI". However, Friedman remedies this with the disclosure of a database for storing canonical user interface descriptions. This database is used to construct user interfaces for a Universal Console (Friedman, ¶0027). If it is found to be matching using the synonym database then it must already be in the synonym database. It would be obvious to one of ordinary skill in the art to add this database to the universal control device of Yumoto. The motivation to do so would be so the UC device 200 is capable of recognizing both the action-commands to which the device responds including parameters and as well as the decisions, selections, and input the user needs to provide for the UC 200 to determine which action-commands to send and the values of the action-command parameters (Friedman, ¶0030).

Regarding Claim 24, Yumoto also discloses, "the control device of claim 22, wherein said analysis and transformation module is further configured to: accept a set of user preferences and provide said at least a part of the mapping in accordance with the set of user preferences". Specifically, the cell phone contains a ROM in which various types of data are set by the user (Yumoto, col

9, ln 5-8). An example is display data which is used when mapping the user interface (Yumoto, col 9, ln 5-8).

Regarding Claim 25, Yumoto also discloses, “the control device of claim 22, wherein the thesauri is accessed via another network”. Specifically, Yumoto discloses in addition to the Internet, examples of the communication path 3 of this embodiment include networks such as a LAN (Local Area Network) and a PAN (Personal Area Network) in compliance with a predetermined communication protocol. Examples of such networks include Bluetooth, and wireless Ethernet defined by IEEE 802.11 (Yumoto, col 7, ln 33-40).

Regarding Claim 26, Yumoto also discloses, “the control device of claim 25, wherein the another network is the Internet”. Specifically, Yumoto discloses in addition to the Internet, examples of the communication path 3 of this embodiment include networks such as a LAN (Local Area Network) and a PAN (Personal Area Network) in compliance with a predetermined communication protocol. Examples of such networks include Bluetooth, and wireless Ethernet defined by IEEE 802.11 (Yumoto, col 7, ln 33-40).

Regarding Claim 27, Yumoto also discloses, “the control device of claim 22, wherein the slave device is a consumer electronic device”. Specifically, Yumoto discloses consumer electronic devices (Yumoto, Fig 1).

Regarding Claim 28, Yumoto also discloses, “the control device claim 27, wherein the network is a home network”. Specifically, Yumoto discloses in addition to the Internet, examples of the communication path 3 of this embodiment include networks such as a LAN (Local Area Network) and a PAN (Personal Area Network) in compliance with a predetermined communication protocol. Examples of such networks include Bluetooth, and wireless Ethernet defined by IEEE 802.11 (Yumoto, col 7, ln 33-40).

Regarding Claim 29, Yumoto also discloses, “the control device of claim 22, wherein the network is a home network”. Specifically, Yumoto discloses in addition to the Internet, examples of the communication path 3 of this embodiment include networks such as a LAN (Local Area Network) and a PAN (Personal Area Network) in compliance with a predetermined communication protocol. Examples of such networks include Bluetooth, and wireless Ethernet defined by IEEE 802.11 (Yumoto, col 7, ln 33-40).

Regarding Claim 30, Friedman discloses, “the control device of claim 22, wherein the mapping includes determining a pre-set synonym CUI component for the extracted at least one component of the RUI, and replacing the extracted at least one component of the RUI with the pre-set synonym CUI component by the control device whenever the control device displays a user interface for controlling the at least one slave device”. Specifically, Friedman discloses a database for storing canonical user interface descriptions. This database is used

to construct user interfaces for a Universal Console (Friedman, ¶0027). The canonical UI descriptions aheres to an abstract format to describe in high-level terms the functionality of the device's UI (Friedman, ¶0029). It would be obvious to one of ordinary skill in the art to add this database to the universal control device of Yumoto. The motivation to do so would be so the UC device 200 is capable of recognizing both the action-commands to which the device responds including parameters and as well as the decisions, selections, and input the user needs to provide for the UC 200 to determine which action-commands to send and the values of the action-command parameters (Friedman, ¶0030).

Regarding Claim 31, Friedman also discloses, "the control device of claim 23, wherein a synonym is used for the mapping is a synonym used in the LUI". Specifically, Friedman discloses a database for storing canonical user interface descriptions. This database is used to construct user interfaces for a Universal Console (Friedman, ¶0027). The canonical UI descriptions aheres to an abstract format to describe in high-level terms the functionality of the device's UI (Friedman, ¶0029). It would be obvious to one of ordinary skill in the art to add this database to the universal control device of Yumoto. The motivation to do so would be so the UC device 200 is capable of recognizing both the action-commands to which the device responds including parameters and as well as the decisions, selections, and input the user needs to provide for the UC 200 to determine which action-commands to send and the values of the action-command parameters (Friedman, ¶0030).

Conclusion

Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to ASHRAF ZAHR whose telephone number is (571)270-1973. The examiner can normally be reached on M-F 9:30 am - 6 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, William Bashore can be reached on (571)272-4088. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

AAZ 6/10/2009
/Ting Zhou/
Primary Examiner, Art Unit 2173