Sistemas de Unidades y Factores de conversión I

Clasificación de la física

Ciencias Formales y Factuales

Ciencia

Es un conjunto de conocimientos exacto y razonado de las cosas y que tiene las siguientes características.

- a) La ciencia es **sistematizable**, es decir, emplea un método que es el método científico para sus investigaciones.
- b) Es comprobable, esto es, puede verificarse si es falso o verdadero lo que se propone como conocimiento.
- c) Es fallble, a sea, sus enunciados de ninguna manera pueden ser considerados como verdades absolutas, es decir, constantemente sufre modificaciones e incluso correcciones, a medida que el hombre incrementa el conocimiento.

Ciencias formales y factuales

- C. Formal, la característica principal de estas ciencias comprueban o se demuestran con base a principios lógico matemáticos.
- C. Factuales, estudian hechos ya sean naturales humanos o sociales y se comprueban mediante la experimentación, sus hipótesis, teorías o leyes

Método científico

Es un proceso destinado a explicar fenómenos, establecer relaciones entre los hechos y enunciar leyes que expliquen los fenómenos físicos del mundo y permitan obtener, con estos conocimientos, aplicaciones útiles al hombre.

Pasos del Método Científico

Magnitudes Fundamentales y Derivadas

Existen 6 magnitudes que por servir de base para obtener las demás magnitudes que la física utiliza, reciben el nombre de magnitudes fundamentales. Estas son; Longitud, Masa, Tiempo, Temperatura, intensidad de corriente eléctrica e intensidad luminosa.

Unidades Básicas o Fundamentales				
	Unidad	Simbolo	Magnitud	Dimension
1	metro	m	longitud	Ł.
2	kilogramo	kg	masa	M
3	segundo	5	tiempo	T
4	kelvin	K	temperatura	0
5	amperio	A	intensidad de corriente eléctrica	- 1
6	candela	cd	intensidad luminosa	J
7	mol	mol	cantidad de sustancia	N

En nuestro curso nos ocuparemos de las tres primeras: Longitud, Masa y Tiempo, las que al multiplicarse o dividirse entre sí, nos darán como resultado, algunas magnitudes que llamaremos Derivadas, precisamente porque se derivan de las fundamentales.

En la siguiente tabla, tenemos algunas magnitudes y sus unidades en el **Sistema Internacional (SI), Sistema C.G.S.** y **Sistema Ingles.**

Magnitud	SI	CGS	Inglés
Longitud	metro (m)	centímetro (cm)	Pie
Masa	kilogramo (kg)	gramo (g)	libra (lb)
Tiempo	segundo (s)	segundo (s)	segundo (s)
Área o Superficie	m ²	cm ²	pie ²
Volumen	m³	cm ³	pie³
Velocidad	m/s	cm/s	pie/s
Aceleración	m/s²	cm/s ²	pie/s²
Fuerza	kg m/s²= Newton	g cm/s ² = dina	libra pie/s² = Poundal
Trabajo y Energía	(N)(m) = Joule	(dina)(cm) = ergio	(poundal)(pie)
Presión	N/m ² = Pascal	dina/cm² = baria	poundal/pie ²
Potencia	joules/s = watt	ergio/s	(poundal)(pie)/s

Podemos obtener múltiplos y submúltiplos para cada unidad de medida de la tabla anterior, de acuerdo a la siguiente tabla.

Pre	fijo	Símbolo	Factor	Equivalente
Múltiplos	Exa	E	1018	1000000000000000000
	Peta	P	1015	1000000000000000
	Tera	T	1012	100000000000
	Giga	G	109	1000000000
害	Mega	M	106	1000000
200	Kllo	k	103	1000
	Hecto	h	10 ²	100
	Deca	da	101	10
	Deci	d	10-1	0.1
1172	Centi	c	10-2	0.01
8	Mili	m	10-3	0.001
Submúltiplos	Micro	ш	10-0	0.000001
· · · · · · · · · · ·	Nano	n	10-9	0.000000001
号	Pico	р	10-12	0.000000000001
	Femto	f	10-15	0.000000000000001
	Atto	a	10-18	0.000000000000000000

Así, si decimos kilogramo, kilómetro, kilo segundo, kilo pie, nos referimos a mil gramos, mil metros, mil segundos, y mil pies, respectivamente. Si decimos nanómetro, nano gramo, nanosegundo, nanopié, nos estaremos refiriendo a mil millonésima de gramo, mil millonésima de pie y mil millonésima de segundo

Conversión de Unidades

Es necesario con mucha frecuencia, convertir unidades de un sistema a otro, para ello, es indispensable tener presente entre otras las siguientes equivalencias fundamentales. Conociendo estas equivalencias, podemos convertir empleando el método llamado multiplicar por uno, mismo que explicaremos en el siguiente ejemplo.

Factores de conversión de unidades

longitud	1m	100cm
	1km	1000m
	1m	3.281ft
	1m	39.37in
Masa	1kg	1000g=10 ³ g
	1kg	0.0685slug
Tiempo	1h	3600s
	1día	24h
Área	1m ²	10000cm ² =10 ⁴ cm ²
	1m ²	10.76ft ²
Volúmen	1m³	1000L
	1Gal	3.788L
	1L	1000ml=1000cm ³

Ejercicio 1 Convertir 5 m a cm

Ejercicio 2

Ejercicio 3

Ejercicio 4

Segunda forma de conversión

Ejercicio 5

$$5.0 \frac{m}{s} * \left(\frac{100 \text{ cm}}{1.0 \text{ hg}}\right) * \left(\frac{3600 \text{ s}}{1.0 \text{ h}}\right) = 1,800,000 \frac{\text{cm}}{\text{h}}$$

Ejercicio 6 Convertir de:

$$19300 \frac{kg}{m^{3}} a \frac{g}{cm^{3}}$$

$$19300 \frac{kg}{m^{3}} \left(\frac{1000g}{1kg}\right) \left(\frac{1m^{3}}{1000000cm^{3}}\right)$$

$$19.3 \frac{g}{cm^{3}}$$

$$\rho_{Au} = 19.3 \frac{g}{cm^{3}}$$

$$\rho_{Au} = 19.3 \frac{g}{cm^{3}}$$

Ejercicio 7 Convertir 62mi/h a m/s

1mi=1.609km 1h=3600s

mi/h a m/s

$$62\frac{mi}{h}*\frac{1.609 \text{ km}}{1 \text{ mi}}*\frac{1000 \text{ m}}{1 \text{ km}}*\frac{1 \text{ h}}{3600 \text{ s}} = 27.71\frac{m}{s}$$

Ejercicio 8 para entregar

Actividad 1 1er Parcial

Realizar las siguientes conversiones y comprobar que las respuestas sean correctas

	Conversión	Resultado
1	$1.60\frac{m}{s^2}a\frac{cm}{s^2}$	$160\frac{cm}{s^2}$
2	$800 \frac{l}{\min} a \frac{cm^3}{s}$	$13333333\frac{cm^3}{s} \acute{o} \frac{ml}{s}$
3	$200\frac{cm}{s}a\frac{m}{h}$	$7200\frac{m}{h}$
4	$80000 \frac{g}{s} a \frac{slug}{\min}$	$328.8 \frac{slug}{\min}$
5	$700\frac{cm^2}{s}a\frac{ft^2}{\min}$	$45.21 \frac{ft^2}{\min}$
6	$800 \frac{m \bullet slug}{s} a \frac{cm \bullet kg}{\min}$	$70.072x10^6 \frac{cm \bullet kg}{\min}$
7	$600\frac{kg \bullet m^2}{s^2} a \frac{slug \bullet cm^2}{s^2}$	$411000 \frac{slug \bullet cm^2}{s^2}$
8	$1200 \frac{kg \bullet m}{s} a \frac{slug \bullet ft}{s}$	$269.70 \frac{slug \bullet ft}{s}$
9	$1200\frac{g}{l}a\frac{kg}{m^3}$	$1200\frac{kg}{m^3}$