

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.gitee.io

课程安排

本课程共 10 周 40 课时, 自 2022 年 9 月 30 日至 2022 年 11 月 3 日. 课程 QQ 群: (入群答案 **1400261B**)

- 009 班 (电信工) 476993411
- 010 班 (光信息和智感工) 672903188

教材:

- 西交高数教研室《复变函数》
- 张元林《积分变换》

成绩构成:

- 作业 15%, 每章交一次
- 课堂测验 25%, 一共 3次, 取最高的两次
- 期末报告 10%
- 期末考试 50%, 至少 45 分才计算总评

复变函数的应用

复变函数的应用非常广泛, 它包括:

- 数学中的代数、数论、几何、分析、动力系统.....
- 物理学中流体力学、材料力学、电磁学、光学、量子力学......
- 信息学、电子学、电气工程......

可以说复变函数应用之广,在大学数学课程中仅次于高等数学和线性代数.

课程内容和学习方法

本课程主要研究下述问题:

- 复数的由来, 以及复数的基本要素. (§ 1.1)
- 复数的运算法则和性质. (§§ 1.1-1.3)
- 复变量函数的定义, 以及与实变量函数的异同点. (§§ 1.4-1.6)
- 复变函数的解析性的刻画, 即复变函数的微分理论. (§§ 2.1-3.3)
- 复变函数的积分、级数和留数理论. (§§ 3.4-5.3)
- 积分变换及其应用. (§§ 6.1-6.3)

第一章 复数与复变函数

- 1 复数及其代数运算
- 2 复数的三角与指数形式
- 3 复数的乘除、方幂与方根
- 4 曲线和区域
- 5 复变函数
- 6 极限和连续性

第一节 复数及其代数运算

- 复数的引入
- 复数的概念
- 复数的代数运算
- ■共轭复数

复数起源于多项式方程的求根问题. 我们考虑一元二次方程 $x^2 + bx + c = 0$, 配方可得

$$\left(x + \frac{b}{2}\right)^2 = \frac{b^2 - 4c}{4}.$$

于是得到求根公式

$$x = \frac{-b \pm \sqrt{\Delta}}{2}, \quad \Delta = b^2 - 4c.$$

- (1) 当 $\Delta > 0$ 时, 有两个不同的实根;
- (2) 当 $\Delta = 0$ 时, 有一个二重的实根;
- (3) 当 $\Delta < 0$ 时, 无实根. 然而, 如果我们接受负数开方的话, 此时仍然有两个根. 形式地计算可以发现它们满足原来的方程.

现在我们来考虑一元三次方程.

例

解方程 $x^3 + 6x - 20 = 0$.

解

设 x = u + v,则

$$u^{3} + v^{3} + 3uv(u+v) + 6(u+v) - 20 = 0.$$

我们希望

$$u^3 + v^3 = 20, \quad uv = -2,$$

则 u^3, v^3 满足一元二次方程 $X^2 - 20X - 8 = 0$. 解得

$$u^3 = 10 \pm \sqrt{108} = (1 \pm \sqrt{3})^3$$
.

续解

所以

$$u = 1 \pm \sqrt{3}$$
, $v = 1 \mp \sqrt{3}$, $x = u + v = 2$.

那么这个方程是不是真的只有 x=2 这一个解呢? 设

$$f(x) = x^3 + 6x - 20, \quad f'(x) = 3x^2 + 6 > 0.$$

因此 f(x) 单调递增, f(x) 最多只有一个零点. 由于

$$f(0) = -20 < 0, \quad f(3) = 25 > 0,$$

因此由零点定理可知 f(x) 确实只有一个零点.

例

解方程 $x^3 - 7x + 6 = 0$.

解

同样地我们有 x = u + v, 其中

$$u^3 + v^3 = -6, \quad uv = \frac{7}{3}.$$

于是 u^3 , v^3 满足一元二次方程 $X^2 + 6X + \frac{343}{27} = 0$. 然而这个方程 没有实数解.

我们可以强行解得

$$u^3 = -3 + \frac{10}{9}\sqrt{-3}$$
.

续解

$$u = \sqrt[3]{-3 + \frac{10}{9}\sqrt{-3}} = \frac{3 + 2\sqrt{-3}}{3}, \frac{-9 + \sqrt{-3}}{6}, \frac{3 - 5\sqrt{-3}}{6},$$

相应地

$$v = \frac{3 - 2\sqrt{-3}}{3}, \frac{-9 - \sqrt{-3}}{6}, \frac{3 + 5\sqrt{-3}}{6},$$

$$x = u + v = 2, -3, 1.$$

所以我们从一条"错误的路径"走到了正确的目的地?

对于一般的三次方程 $x^3 + px + q = 0$ 而言, 使用上述方法可以得到求根公式:

$$x = u - \frac{p}{3u}$$
, $u^3 = -\frac{q}{2} + \sqrt{\Delta}$, $\Delta = \frac{q^2}{4} + \frac{p^3}{27}$.

由于 p = 0 情形较为简单, 所以我们不考虑这种情形. 通过分析函数的极值可以知道:

- (1) 当 $\Delta > 0$ 时, 有 1 个实根.
- (2) 当 $\Delta = 0$ 时, 有 2 个实根 $x = -\sqrt[3]{4q}, \frac{1}{2}\sqrt[3]{4q}$ (2 重).
- (3) 当 $\Delta < 0$ 时, 有 3 个实根. 这可以通过分析函数单调性得到.

所以我们想要使用求根公式的话, 就必须接受负数开方. 那么为什么当 $\Delta < 0$ 时, 从求根公式一定能得到 3 个实根呢? 在学习了第一章的内容之后我们就可以回答这个问题了.

尽管在十六世纪, 人们已经得到了三次方程的求根公式, 然而对其中出现的虚数, 却是难以接受.

圣灵在分析的奇观中找到了超凡的显示, 这就是那个理想世界的端兆, 那个介于存在与不存在之间的两栖物, 那个我们称之为虚的-1的平方根。

莱布尼兹 (Leibniz)

复数的定义

现在我们来正式介绍复数的概念。由于我们无法区分方程 $x^2 = -1$ 的两个根 $\pm \sqrt{-1}$,因此我们固定其中一个,并引入一个记号 i 来表示它.

定义

固定一个记号 i, 复数就是形如 z = x + yi 的元素, 其中 x, y 均是 实数, 且不同的 (x, y) 对应不同的复数.

换言之, 每一个复数可以唯一地表达成 x+yi 这样的形式. 也就是说, 复数全体构成一个二维实线性空间, 且 $\{1,i\}$ 是一组基. 我们将全体复数记作 \mathbb{C} , 全体实数记作 \mathbb{R} , 则 $\mathbb{C} = \mathbb{R} + \mathbb{R}i$.

由于 $\mathbb C$ 是一个二维实向量空间, 1 和 i 构成一组基, 因此它和平面上的点可以建立——对应.

实部和虚部, 虚数和纯虚数

当 y=0 时, z=x 就是一个实数. 它对应复平面上的点就是直角坐标系的 x 轴上的点. 因此我们将直线 y=0 称为实轴. 相应地,直线 x=0 被称为虚轴. 我们称 z=x+yi 在实轴和虚轴的投影为它的实部 $\operatorname{Re} z=x$ 和虚部 $\operatorname{Im} z=y$.

当 Im z = 0 时, z 是实数. 不是实数的复数是虚数. 当 Re z = 0 且 $z \neq 0$ 时, 称 z 是纯虚数.

典型例题: 判断实数和纯虚数

例

实数 x 取何值时, $(x^2 - 3x - 4) + (x^2 - 5x - 6)i$ 是: (1) 实数; (2) 纯虚数.

解

- $(1) x^2 5x 6 = 0$, $x = -1 \neq 6$.
- (2) $x^2 3x 4 = 0$, 即 x = -1 或 4. 但同时要求 $x^2 5x 6 \neq 0$,

因此 $x \neq -1$, x = 4.

东习

若 $x^2(1+i) + x(5+4i) + 4 + 3i$ 是纯虚数, 则实数 x = -4.

复数的加法与减法

设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i$. 由 \mathbb{C} 是二维实线性空间可得复数的加法和减法:

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i,$$

 $z_1 - z_2 = (x_1 - x_2) + (y_1 - y_2)i.$

复数的加减法与其对应的向量 \overrightarrow{OZ} 的加减法是一致的.

规定 $i \cdot i = -1$. 由线性空间的数乘和乘法分配律可得复数的乘除法:

$$\begin{aligned} z_1 \cdot z_2 &= x_1 \cdot x_2 + x_1 \cdot y_2 i + y_1 i \cdot x_2 + y_1 i \cdot y_2 i \\ &= (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i, \\ &\frac{1}{z} = \frac{x - y i}{x^2 + y^2}, \\ &\frac{z_1}{z_2} &= \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} i. \end{aligned}$$

对于正整数 n, 定义 z 的 n 次幂为 n 个 z 相乘. 当 $z \neq 0$ 时, 还可以定义 $z^0 = 1, z^{-n} = \frac{1}{z^n}$.

例

$$\overline{(1)} i^2 = -1, i^3 = -i, i^4 = 1.$$
 一般地, 对于整数 n ,

$$i^{4n} = 1$$
, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

(2)
$$\Leftrightarrow \omega = \frac{-1 + \sqrt{3}i}{2}$$
, $\mathbb{M} \omega^2 = \frac{-1 - \sqrt{3}i}{2}$, $\omega^3 = 1$.

$$z^2 = 2i$$
, $z^3 = -2 + 2i$, $z^4 = -4$, $z^8 = 16 = 2^4$.

我们把满足 $z^n=1$ 的复数 z 称为 n 次单位根. 那么 1,i,-1,-i 是 4 次单位根, $1,\omega,\omega^2$ 是 3 次单位根.

典型例题: 常见复数的幂次

例 (2022 年期末 A 卷)

解

根据等比数列求和公式,

$$1+i+i^2+\cdots+i^4=\frac{i^5-1}{i-1}=\frac{i-1}{i-1}=1.$$

练习 (2020 年期末 A 卷)

化简
$$\left(\frac{1-i}{1+i}\right)^{2020} = \underline{1}$$
.

复数集合全体构成一个域. 所谓的域, 是指一个集合

- 包含 0,1,且在它之内有四则运算;
- 满足加法结合/交换律, 乘法结合/交换/分配律;
- 对任意 $a, a + 0 = a \times 1 = a$.

有理数全体 ℚ, 实数全体 ℝ 也构成域, 它们是 ℂ 的子域. 与有理数域和实数域有着本质不同的是, 复数域是代数闭域. 也就是说, 对于任何一个非常数的复系数多项式,

$$p(z) = z^n + c_{n-1}z^{n-1} + \dots + c_1z + c_0, \quad n \geqslant 1,$$

都存在复数 z_0 使得 $p(z_0) = 0$. 我们会在第五章证明该结论.

在 \mathbb{Q} , \mathbb{R} 上可以定义出一个好的大小关系, 换言之它们是有序域, 即存在一个满足下述性质的 >:

- 若 $a \neq b$, 则 a > b 或 b > a;
- 若 a > b, 则对于任意 c, a + c > b + c;

而 \mathbb{C} 却不是有序域. 如果 i > 0, 则

$$-1 = i \cdot i > 0, \quad -i = -1 \cdot i > 0.$$

于是 0 > i, 矛盾! 同理 i < 0 也不可能.

定义

称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{z}=x-yi$.

从定义出发,不难验证共轭复数满足如下性质:

共轭复数性质汇总

- $z \in \overline{z}$ 的共轭复数.
- $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}.$
- $z\overline{z} = (\operatorname{Re} z)^2 + (\operatorname{Im} z)^2$.
- $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2i \operatorname{Im} z$.

例题: 共轭复数判断实数

例

设 z=x+yi 且 $y\neq 0,\pm 1.$ 证明: $x^2+y^2=1$ 当且仅当 $\frac{z}{1+z^2}$ 是实数.

证明

 $\frac{z}{1+z^2}$ 是实数当且仅当

$$\frac{z}{1+z^2} = \overline{\left(\frac{z}{1+z^2}\right)} = \frac{\overline{z}}{1+\overline{z}^2},$$

即

$$z(1+\overline{z}^2)=\overline{z}(1+z^2), \quad (z-\overline{z})(z\overline{z}-1)=0.$$

由 $y \neq 0$ 可知 $z \neq \overline{z}$. 故上述等式等价于 $z\overline{z} = 1$, 即 $x^2 + y^2 = 1$.

例题: 共轭复数证明等式

例

证明 $z_1 \cdot \overline{z_2} + \overline{z_1} \cdot z_2 = 2 \operatorname{Re}(z_1 \cdot \overline{z_2}).$

证明

我们可以设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i$, 然后代入等式两边化简并比较实部和虚部得到. 但我们利用共轭复数可以更简单地证明它.

由于
$$\overline{z_1 \cdot \overline{z_2}} = \overline{z_1} \cdot \overline{\overline{z_2}} = \overline{z_1} \cdot z_2$$
, 因此

$$z_1 \cdot \overline{z_2} + \overline{z_1} \cdot z_2 = z_1 \cdot \overline{z_2} + \overline{z_1 \cdot \overline{z_2}} = 2 \operatorname{Re}(z_1 \cdot \overline{z_2}).$$

例题: 复数的代数计算

由于 $z\overline{z}$ 是一个实数,因此在做复数的除法运算时,可以利用下式将其转化为乘法:

$$\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{z_2\overline{z_2}} = \frac{z_1\overline{z_2}}{x_2^2 + y_2^2}.$$

$$z = -\frac{1}{i} - \frac{3i}{1-i}$$
,求 Re z , Im z 以及 $z\overline{z}$.

解

$$z = -\frac{1}{i} - \frac{3i}{1-i} = i - \frac{3i-3}{2} = \frac{3}{2} - \frac{1}{2}i,$$

因此 Re $z = \frac{3}{2}$, Im $z = -\frac{1}{2}$, $z\overline{z} = \left(\frac{3}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 = \frac{5}{2}$.

例题: 复数的代数计算

例

设
$$z_1 = 5 - 5i, z_2 = -3 + 4i,$$
 求 $\overline{\left(\frac{z_1}{z_2}\right)}$.

解

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$
$$= \frac{(-15 - 20) + (-20 + 15)i}{25} = -\frac{7}{5} - \frac{1}{5}i,$$

因此
$$\left(\frac{z_1}{z_2}\right) = -\frac{7}{5} + \frac{1}{5}i$$
.

复数也有其它的构造方式, 例如

$$\left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} : x, y \in \mathbb{R} \right\} = \left\{ xE + yJ : x, y \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R}),$$

其中
$$E = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $J = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

此时自然地有加法、乘法 (满足交换律)、取逆等运算, 从而这个集合构成一个域. 由于 $J^2 = -E$, 所以 J 实际上就相当于虚数单位. 这个域就是我们前面定义的复数域 $\mathbb C$.

作业

- (1) 判断题: z 是实数当且仅当 $z = \overline{z}$.
- (2) 判断题: z 是纯虚数当且仅当 $z = -\overline{z}$.
- (3) $z_1 = -z, z_2 = \overline{z}, z_3 = -\overline{(-z)}$ 在复平面上对应的点分别与 z 在复平面上对应的点是什么关系?
- (4) 已知点 z_1, z_2, z_3 . 点 $\frac{1}{2}(z_1 + z_2)$ 和 $\frac{1}{3}(z_1 + z_2 + z_3)$ 表示什么点?
- (5) 如果 $\frac{x+1+i(y-3)}{5+3i} = 1+i$, 那么实数 x, y 分别是多少?
- (6) 证明共轭复数性质汇总中列出的结论.
- (7) 证明 $z_1 \cdot \overline{z_2} \overline{z_1} \cdot z_2 = 2i \operatorname{Im}(z_1 \cdot \overline{z_2}).$
- (8) (2020 年期末 B 卷) 设复数 $z = \frac{2+i}{i} \frac{2i}{1-i}$, 求 $\text{Re } z, \text{Im } z, z\overline{z}$.
- (9) (2021 年期末 A 卷) 化简 $\frac{(1+i)^{101}}{(1-i)^{99}} =$ ____

第二节 复数的三角与指数形式

- 复数的模和辐角
- 复数的三角形式和指数形式

复数的极坐标形式

由平面的极坐标表示,我们可以得到复数的另一种表示方式.以 0 为极点,正实轴为极轴,逆时针为极角方向可以自然定义出复平面上的极坐标系.

定义

- $\Re r$ 为 z 的模, 记为 |z|=r.
- θ 为 z 的辐角, 记为 $Arg z = \theta$. 0 的辐角没有意义.

极坐标和直角坐标的对应

由极坐标和直角坐标的对应可知

$$x = r\cos\theta$$
, $y = r\sin\theta$, $|z| = \sqrt{x^2 + y^2}$

$$\operatorname{Arg} z = \begin{cases} \arctan \frac{y}{x} + 2k\pi, & x > 0; \\ \arctan \frac{y}{x} + (2k+1)\pi, & x < 0; \\ \frac{\pi}{2} + 2k\pi, & x = 0, y > 0; \\ -\frac{\pi}{2} + 2k\pi, & x = 0, y < 0; \\ \text{任意/无意义}, & z = 0, \end{cases}$$

其中 $k \in \mathbb{Z}$.

主辐角

任意 $z \neq 0$ 的辐角有无穷多个. 我们固定选择其中位于 $(-\pi, \pi]$ 的那个, 并称之为主辐角, 记作 $\arg z$.

$$\arg z = \begin{cases} \arctan \frac{y}{x}, & x > 0; \\ \arctan \frac{y}{x} + \pi, & x < 0, y \ge 0; \\ \arctan \frac{y}{x} - \pi, & x < 0, y < 0; \\ \frac{\pi}{2}, & x = 0, y > 0; \\ -\frac{\pi}{2}, & x = 0, y < 0. \end{cases}$$

$$\arctan \frac{y}{x} + \pi \operatorname{arctan} \frac{y}{x}$$

$$\arctan \frac{y}{x} - \pi \operatorname{arctan} \frac{y}{x}$$

$$\arctan \frac{y}{x} - \pi \operatorname{arctan} \frac{y}{x}$$

显然 $\operatorname{Arg} z = \operatorname{arg} z + 2k\pi, k \in \mathbb{Z}.$

复数模的性质

复数的模满足如下性质:

模的性质汇总

- $z\overline{z}=|z|^2=|\overline{z}|^2$;
- $|\operatorname{Re} z|$, $|\operatorname{Im} z| \leq |z| \leq |\operatorname{Re} z| + |\operatorname{Im} z|$;
- $||z_1| |z_2|| \le |z_1 \pm z_2| \le |z_1| + |z_2|$;
- $|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|$.

这些不等式均可以用三角不等式证明, 也可以用代数方法证明.

例题: 共轭复数解决模的等式

例

证明 (1) $|z_1z_2| = |z_1\overline{z_2}| = |z_1| \cdot |z_2|$; (2) $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1\overline{z_2})$.

证明

(1) 因为

$$|z_1 z_2|^2 = z_1 z_2 \cdot \overline{z_1 z_2} = z_1 z_2 \overline{z_1 z_2} = |z_1|^2 \cdot |z_2|^2,$$

所以
$$|z_1z_2|=|z_1|\cdot|z_2|$$
. 因此 $|z_1\overline{z_2}|=|z_1|\cdot|\overline{z_2}|=|z_1|\cdot|z_2|$. (2)

$$|z_1 + z_2|^2 = (z_1 + z_2)(\overline{z_1} + \overline{z_2})$$

$$= z_1\overline{z_1} + z_2\overline{z_2} + z_1\overline{z_2} + \overline{z_1}\overline{z_2}$$

$$= |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1\overline{z_2}).$$

复数的三角形式和指数形式

由 $x = r \cos \theta, y = r \sin \theta$ 可得复数的三角形式

$$z = r(\cos\theta + i\sin\theta).$$

定义 $e^{i\theta} = \exp(i\theta) := \cos\theta + i\sin\theta$ (欧拉恒等式), 则我们得到复数的指数形式

$$z = re^{i\theta} = r \exp(i\theta).$$

这两种形式的等价的, 指数形式可以认为是三角形式的一种缩写方式.

例

将 $z = -\sqrt{12} - 2i$ 化成三角形式和指数形式.

解

$$\overline{r=|z|}=\sqrt{12+4}=4$$
. 由于 z 在第三象限, 因此

$$\arg z = \arctan \frac{-2}{-\sqrt{12}} - \pi = \frac{\pi}{6} - \pi = -\frac{5\pi}{6}.$$

故

$$z = 4\left[\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right] = 4\exp\left(-\frac{5\pi i}{6}\right).$$

例

将
$$z = \sin \frac{\pi}{5} + i \cos \frac{\pi}{5}$$
 化成三角形式和指数形式.

解

$$z = \sin\frac{\pi}{5} + i\cos\frac{\pi}{5}$$

$$= \cos\left(\frac{\pi}{2} - \frac{\pi}{5}\right) + i\sin\left(\frac{\pi}{2} - \frac{\pi}{5}\right)$$

$$= \cos\frac{3\pi}{10} + i\sin\frac{3\pi}{10} = \exp\left(\frac{3\pi i}{10}\right).$$

典型例题: 求复数的三角/指数形式

求复数的三角或指数形式时,我们只需要任取一个辐角就可以了,不要求必须是主辐角.

练习

将 $z = \sqrt{3} - 3i$ 化成三角形式和指数形式.

答案

$$z = 2\sqrt{3} \left[\cos \left(\frac{5\pi}{3} \right) + i \sin \left(\frac{5\pi}{3} \right) \right] = 2\sqrt{3} \exp \left(\frac{5\pi i}{3} \right).$$

模为 1 的复数

两个模相等的复数之和的三角/指数形式形式较为简单.

$$e^{i\theta} + e^{i\varphi} = 2\cos\frac{\theta - \varphi}{2}e^{\frac{\theta + \varphi}{2}i}.$$

例

$$z = 1 - \cos \alpha + i \sin \alpha = e^0 + e^{(\pi - \alpha)i}$$
$$= 2 \cos \frac{\pi - \alpha}{2} e^{\frac{\pi - \alpha}{2}i} = 2 \sin \frac{\alpha}{2} e^{\frac{\pi - \alpha}{2}i}.$$

作业

- (1) 判断题: z 是实数当且仅当 $\arg z = 0, \pi$.
- (2) 判断题: z 是纯虚数当且仅当 $\arg z = \pm \frac{\pi}{2}$.
- (3) 求 $\frac{1+2i}{3-4i} \frac{2-i}{5i}$ 的模和主辐角.
- (4) 将 $1 \sqrt{3}i$, $\frac{2i}{1-i}$ 写成三角形式和指数形式.
- (5) 证明当 |z| = 1 > |w| 时, $\left| \frac{z w}{1 z\overline{w}} \right| = 1$.
- (6) (2020 年期末 A 卷) 如果 $(1+2i)\overline{z} = 4+3i$, 求 z 及其主辐角.
- (7) (2022 年期末 A 卷) 求 $z = \frac{3+i}{i} \frac{10i}{3-i}$ 的模和辐角.

第三节 复数的乘除、方幂与方根

- 复数的乘除与三角/指数表示
- 复数的乘幂
- 复数的方根

三角形式和指数形式在进行复数的乘法、除法和幂次计算中非常方便.

定理

设

$$z_1 = r_1(\cos \theta_1 + i \sin \theta_1) = r_1 e^{i\theta_1},$$

 $z_2 = r_2(\cos \theta_2 + i \sin \theta_2) = r_2 e^{i\theta_1} \neq 0,$

则

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)] = r_1 r_2 e^{i(\theta_1 + \theta_2)},$$
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)] = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}.$$

复数的乘除与三角/指数表示

换言之,

$$|z_1 z_2| = |z_1| \cdot |z_2|, \quad \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|},$$

$$\operatorname{Arg}(z_1 z_2) = \operatorname{Arg} z_1 + \operatorname{Arg} z_2, \quad \operatorname{Arg} \left(\frac{z_1}{z_2}\right) = \operatorname{Arg} z_1 - \operatorname{Arg} z_2.$$

关于多值函数的等式的含义是指:两边所能取到的值构成的集合相等.例如此处关于辐角的等式的含义是:

$$\operatorname{Arg}(z_1 z_2) = \{\theta_1 + \theta_2 : \theta_1 \in \operatorname{Arg} z_1, \theta_2 \in \operatorname{Arg} z_2\}.$$

$$\operatorname{Arg}\left(\frac{z_1}{z_2}\right) = \{\theta_1 - \theta_2 : \theta_1 \in \operatorname{Arg} z_1, \theta_2 \in \operatorname{Arg} z_2\}.$$

复数的乘除与三角/指数表示

注意上述等式中 Arg 不能换成 arg, 也就是说

$$\arg(z_1 z_2) = \arg z_1 + \arg z_2, \quad \arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$$

不一定成立. 这是因为 $\arg z_1 \pm \arg z_2$ 有可能不落在区间 $(-\pi, \pi]$ 上. 例如

$$(-1+i)(-1+i) = 2i,$$

$$\arg(-1+i) + \arg(-1+i) = \frac{3\pi}{4} + \frac{3\pi}{4} = \frac{3\pi}{2},$$

$$\arg(-2i) = -\frac{\pi}{2}.$$

复数的乘除与三角/指数表示

证明

$$z_1 z_2 = r_1(\cos \theta_1 + i \sin \theta_1) \cdot r_2(\cos \theta_2 + i \sin \theta_2)$$

$$= r_1 r_2 \Big[(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2)$$

$$+ i (\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2) \Big]$$

$$= r_1 r_2 \Big[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \Big]$$

因此乘法情形得证.

设
$$\dfrac{z_1}{z_2}=re^{i heta}$$
,则由乘法情形可知

$$rr_2 = r_1, \quad \theta + \operatorname{Arg} z_2 = \operatorname{Arg} z_1.$$

因此
$$r = \frac{r_1}{r_2}, \theta = \theta_1 - \theta_2 + 2k\pi$$
, 其中 $k \in \mathbb{Z}$.

从该定理可以看出,乘以复数 $z=re^{i\theta}$ 可以理解为模放大为 r 倍,并按逆时针旋转角度 θ .

例题: 复数解决平面几何问题

例

已知正三角形的两个顶点为 $z_1 = 1$ 和 $z_2 = 2 + i$, 求它的另一个顶点.

由于 $\overrightarrow{Z_1Z_3}$ 为 $\overrightarrow{Z_1Z_2}$ 顺时针或逆时针旋转 $\frac{\pi}{3}$,

续解

因此

$$z_3 - z_1 = (z_2 - z_1) \exp\left(\pm \frac{\pi i}{3}\right) = (1+i) \left(\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right)$$
$$= \frac{1 - \sqrt{3}}{2} + \frac{1 + \sqrt{3}}{2}i \text{ id } \frac{1 + \sqrt{3}}{2} + \frac{1 - \sqrt{3}}{2}i,$$
$$z_3 = \frac{3 - \sqrt{3}}{2} + \frac{1 + \sqrt{3}}{2}i \text{ id } \frac{3 + \sqrt{3}}{2} + \frac{1 - \sqrt{3}}{2}i.$$

复数的乘幂

设 $z = r(\cos \theta + i \sin \theta) = re^{i\theta} \neq 0$. 根据复数三角形式的乘法和除法运算法则, 我们有

$$z^n = r^n(\cos n\theta + i\sin n\theta) = r^n e^{in\theta}, \quad \forall n \in \mathbb{Z}.$$

特别地, 当 r=1 时, 我们得到棣莫弗 (De Moivre) 公式

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta.$$

对棣莫弗公式左侧进行二项式展开可以得到

$$\cos(2\theta) = 2\cos^2\theta - 1,$$

$$\cos(3\theta) = 4\cos^2\theta - 3\cos\theta,$$

$$\cos(4\theta) = 8\cos^2\theta - 8\cos^2\theta + 1,$$

$$\cos(5\theta) = 16\cos^2\theta - 20\cos^3\theta + 5\cos\theta.$$

一般地, 可以证明 $\cos n\theta$ 是 $\cos \theta$ 的 n 次多项式, 这个多项式

$$g_n(T) = \sum_{0 \le k \le \frac{n}{2}} C_n^{2k} T^{n-2k} (T^2 - 1)^k.$$

叫做切比雪夫多项式. 它在计算数学的逼近理论中有着重要作用.

典型例题:复数乘幂的计算

求 $(1+i)^n + (1-i)^n$.

由于

$$1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right), \quad 1 - i = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right),$$

因此

$$(1+i)^{n} + (1-i)^{n}$$

$$= 2^{\frac{n}{2}} \left(\cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} + \cos \frac{n\pi}{4} - i \sin \frac{n\pi}{4} \right)$$

$$= 2^{\frac{n}{2}+1} \cos \frac{n\pi}{4}.$$

典型例题: 复数乘幂的计算

我们利用复数方幂公式来计算复数 z 的 n 次方根 $\sqrt[n]{z}$. 设

$$w^n = z = r \exp(i\theta) \neq 0, \quad w = \rho \exp(i\varphi),$$

则

$$w^n = \rho^n(\cos n\varphi + i\sin n\varphi) = r(\cos \theta + i\sin \theta).$$

比较两边的模可知 $\rho^n = r, \rho = \sqrt[n]{r}$.

为了避免记号冲突,当 r 是正实数时, $\sqrt[r]{r}$ 默认表示 r 的唯一的 n 次正实根,称之为算术根. 由于 $n\varphi$ 和 θ 的正弦和余弦均相等,因此存在整数 k 使得

$$n\varphi = \theta + 2k\pi, \quad \varphi = \frac{\theta + 2k\pi}{n}.$$

故

$$w = w_k = \sqrt[n]{r} \exp \frac{(\theta + 2k\pi)i}{n}$$
$$= \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n}\right).$$

不难看出, $w_k = w_{k+n}$, 而 $w_0, w_1, \ldots, w_{n-1}$ 两两不同. 因此只需 取 $k=0,1,\ldots,n-1$. 故任意一个非零复数的 n 次方根有 n 个值.

这些根的模都相等,且 w_k 和 w_{k+1} 辐角相差 $\frac{2\pi}{}$. 因此它们是以

原点为中心, $\sqrt[r]{r}$ 为半径的圆的正接 n 边形的顶点.

典型例题:复数方根的计算

解

由于
$$1+i=\sqrt{2}\exp\left(\frac{\pi i}{4}\right)$$
, 因此

$$\sqrt[4]{1+i} = \sqrt[8]{2} \exp\left[\frac{(\frac{\pi}{4} + 2k\pi)i}{4}\right], \quad k = 0, 1, 2, 3.$$

所以该方根所有值为

$$w_0 = \sqrt[8]{2} \exp \frac{\pi i}{16}, \qquad w_1 = \sqrt[8]{2} \exp \frac{9\pi i}{16},$$

$$w_2 = \sqrt[8]{2} \exp \frac{17\pi i}{16}, \qquad w_3 = \sqrt[8]{2} \exp \frac{25\pi i}{16}.$$

典型例题:复数方根的计算

 $w_0, w_1 = iw_0, w_2 = -w_0, w_3 = -iw_0$ 形成了一个正方形.

典型例题:复数方根的计算

练习

求
$$\sqrt[6]{-1} = \pm \frac{\sqrt{3} + i}{2}, \pm i, \pm \frac{\sqrt{3} - i}{2}$$

- 思考

$$i=\sqrt{-1}$$
 吗?

答案

$$\sqrt{-1}$$
 是多值的, 此时 $\sqrt{-1}=\pm i$. 除非给定单值分支

$$\sqrt{z} = \sqrt{|z|} \exp\left(\frac{i\arg z}{2}\right),\,$$

否则不能说 $\sqrt{-1} = i$.

方幂和方根的辐角等式

注意当 $|n| \ge 2$ 时, $\operatorname{Arg}(z^n) = n \operatorname{Arg} z$ 不成立. 这是因为

$$\operatorname{Arg}(z^n) = n \operatorname{arg} z + 2k\pi i, \quad k \in \mathbb{Z},$$

$$n \operatorname{Arg} z = n \operatorname{arg} z + 2nk\pi i, \quad k \in \mathbb{Z}.$$

不过我们总有

$$\operatorname{Arg}\sqrt[n]{z}=\frac{1}{n}\operatorname{Arg}z=\frac{\arg z+2k\pi}{n},\quad k\in\mathbb{Z}.$$

三次方程的求根问题*

现在我们来看三次方程 $x^3 + px + q = 0$ 的根, $p \neq 0$.

$$x = u + v$$
, $u^3 = -\frac{q}{2} + \sqrt{\Delta}$, $uv = -\frac{p}{3}$.

(1) 如果 $\Delta > 0$, 设 $\alpha = \sqrt[3]{q} + \sqrt{\Delta}$ 是算术根, $\omega = \frac{-1+\sqrt{3}i}{2}$. 则

$$u = \alpha, \alpha\omega, \alpha\omega^2, \qquad x = \alpha + \frac{p}{\alpha}, \alpha\omega + \frac{p}{\alpha}\omega^2, \alpha\omega^2 + \frac{p}{\alpha}\omega.$$

容易证明后两个根都是虚数。

(2) 如果 $\Delta < 0$, 则 p > 0, u 是虚数且 $v = \overline{u}$. 设 u_1, u_2, u_3 是 $\sqrt[3]{q + \sqrt{\Delta}}$ 的所有值, 则我们得到 3 个实根

$$x = u_1 + \overline{u_1}, u_2 + \overline{u_2}, u_3 + \overline{u_3}.$$

作业

- (1) 如果 $\left| \frac{z_2 z_1}{z_3 z_1} \right| = \left| \frac{z_1 z_3}{z_2 z_3} \right|$. 证明 $|z_1 z_2| = |z_2 z_3| = |z_3 z_1|$ 并说明这些等式的几何意义.
- (2) 将 $\frac{(\cos \varphi + i \sin \varphi)^5}{(\cos \varphi i \sin \varphi)^3}$ 写成三角形式和指数形式.
- (3) 计算 **1** $(\sqrt{3}-i)^5$; **2** $(1+i)^6$; **3** $\sqrt[6]{-1}$; **4** $\sqrt[4]{-2+2i}$.
- (4) (2020 年期末 B 卷) 复数 $\left[\frac{(1+i)^2}{2}\right]^{2021}$ 的模是____.
- (5) (2020 年期末 B 卷) 求 ∜-2.
- (6) (2021 年期末 A 卷) 解方程 $z^3 + 8 = 0$.

第四节 曲线和区域

- 复数表平面曲线
- ■区域的定义
- ■区域的特性

典型例题:复数方程表平面图形

很多的平面图形能用复数形式的方程来表示, 这种表示方程有些时候会显得更加直观和易于理解. 由于 $x = \frac{z + \overline{z}}{2i}, y = \frac{z + \overline{z}}{2}$, 因此很容易将 x, y 的方程和 z 的方程相互转化.

例

(1) |z+i|=2. 该方程表示与 -i 的距离为 2 的点全体, 即圆心为 -i 半径为 2 的圆. 设 z=x+yi, 则方程可以化为 $x^2+(y+1)^2=4$. 一般的圆方程为 $|z-z_0|=R$, 其中 z_0 是圆心, R 是半径.

典型例题:复数方程表平面图形

例 (续)

(2) |z-2i|=|z+2|. 该方程表示与 2i 和 -2 的距离相等的点,即二者连线的垂直平分线. 两边同时平方化简可得 $z+i\overline{z}=0$ 或 x+y=0.

典型例题: 复数方程表平面图形

例 (续)

- (3) $\text{Im}(i+\overline{z}) = 4$. 设 z = x + yi, 则 $\text{Im}(i+\overline{z}) = 1 y = 4$, 因此 y = -3.
- (4) $|z-z_1|+|z-z_2|=2a$. 该方程表示以 z_1,z_2 为焦点, a 为长半轴的椭圆.
- (5) $|z-z_1|-|z-z_2|=2a$. 该方程表示以 z_1,z_2 为焦点, a 为实半轴的双曲线的一支.

练习

 $z^2 + \overline{z}^2 = 1$ 和 $z^2 - \overline{z}^2 = i$ 分别表示什么图形?

答案

双曲线 $x^2 - y^2 = \frac{1}{2}$ 和双曲线 $xy = \frac{1}{4}$.

在高等数学中,为了引入极限的概念,需要考虑点的邻域.类似地,在复变函数中,称开圆盘

$$U(z_0, \delta) = \{z : |z - z_0| < \delta\}$$

为 z_0 的一个 δ -邻域, 称去心开圆盘

$$\overset{\circ}{U}(z_0, \delta) = z : 0 < |z - z_0| < \delta$$

为 z_0 的一个去心 δ -邻域.

内部、外部、边界

设 G 是复平面的一个子集, $z_0 \in \mathbb{C}$. 它们的位置关系有三种可能:

- (1) 如果存在 z_0 的一个邻域 U 完全包含在 G 中, 则称 z_0 是 G 的 一个内点.
- (2) 如果存在 z_0 的一个邻域 U 完全不包含在 G 中, 则称 z_0 是 G 的一个外点.
- (3) 如果 z_0 的任何一个邻域 U, 都有属于和不属于 G 的点, 则称 z_0 是 G 的一个边界点.

显然内点都属于 G, 外点都不属于 G, 而边界点则都有可能. 这类比于区间的端点和区间的关系.

开集和闭集

如果 G 的所有点都是内点, 也就是说, G 的边界点都不属于它, 称 G 是一个开集. 例如

$$|z - z_0| < R$$
, $1 < \text{Re } z < 3$, $\frac{\pi}{4} < \text{arg } z < \frac{3\pi}{4}$

都是开集. 如果 G 的所有边界点都属于 G, 称 G 是一个闭集. 这等价于它的补集是开集.

直观上看: 开集往往由 >, < 的不等式给出, 闭集往往由 >, < 的不等式给出. 不过注意这并不是绝对的.

如果 D 可以被包含在某个开圆盘 U(0,R) 中,则称它是有界的. 否则称它是无界的.

区域和闭区域

定义

如果开集 D 的任意两个点之间都可以用一条完全包含在 D 中的折线连接起来, 则称 D 是一个区域. 也就是说, 区域是连通的开集.

观察下侧的图案, 淡蓝色部分是一个区域. 红色的线条和点是它的边界. 区域和它的边界一起构成了闭区域, 记作 \overline{D} . 它是一个闭集.

常见区域

复平面上的区域大多由复数的实部、虚部、模和辐角的不等式 所确定. 这些区域对应的闭区域是什么?

连续区间、简单曲线和闭路

设 $x(t), y(t), t \in [a, b]$ 是两个连续函数, 则参变量方程

$$\begin{cases} x = x(t), \\ y = y(t), \end{cases}$$
 $t \in [a, b]$ 定义了一条连续曲线. 这也等价于

 $\hat{C}: z = z(t) = x(t) + iy(t), t \in [a, b].$

如果除了两个端点有可能重叠外,其它情形不会出现重叠的点,则称 C 是简单曲线. 如果还满足两个端点重叠,即 z(a) = z(b),则称 C 是简单闭曲线. 也简称为闭路.

闭路 C 把复平面划分成了两个区域,一个有界一个无界. 分别称这两个区域是 C 的内部和外部. C 是它们的公共边界. 这件事情的严格证明是十分困难的.

单连通域和多连通域

在前面所说的几个区域的例子中,我们在区域中画一条闭路.除了圆环域之外,闭路的内部仍然包含在这个区域内.

定义

如果区域 D 中的任一闭路的内部都包含在 D 中, 则称 D 是单连通域. 否则称之为多连通域.

单连通域内的任一闭路可以连续地变形成一个点.

例

(1) $\operatorname{Re}(z^2) < 1$. 设 z = x + yi, 则 $\operatorname{Re}(z^2) = x^2 - y^2 < 1$. 这是无界的单连通域.

例 (续)

(2) $|\arg z| < \frac{\pi}{3}$. 即角状区域 $-\frac{\pi}{3} < \arg z < \frac{\pi}{3}$. 这是无界的单连通域.

例 (续)

(3) $|\frac{1}{z}| \le 3$. 即 $|z| \ge \frac{1}{3}$. 这是无界的多连通闭区域.

例 (续)

(4) |z+1| + |z-1| < 4.

表示一个椭圆的内部. 这是有界的单连通域.

思考

 $|z+1| + |z-1| \ge 1$ 表示什么集合?

答案

整个复平面.

作业一

(1) 指出满足下列各式的点 z 的轨迹是什么曲线?

- 1 $\arg(z-i) = \frac{\pi}{4}$;
- ② |z a| = Re(z b), 其中 a, b 为实常数;
- ③ $z\overline{z} + az + \overline{az} + b = 0$, 其中 a 为复数, b 为实常数.
- (2) 用复参数方程表示连接 1+i 与 -1-4i 的直线段.
- (3) 用复参数方程表示圆周 $|z z_0| = r$.
- (4) 画出下列不等式所确定的图形,指出它们的特征 (是否为区域、闭区域,是否有界,是否单连通).
 - **1** $|z| < 1, \text{Re } z \leqslant \frac{1}{2};$
 - **2** 0 < Re z < 1;
 - $\left| \frac{z+1}{z-1} \right| \leqslant 2.$

作业二

- (5) (2020 年期末 A 卷) 方程 |z| = Re z + 1 中 z 的轨迹为 ().
 - (A) 椭圆 (B) 抛物线 (C) 双曲线 (D) 直线
- (6) (2020 年期末 A 卷) 不等式 $z\overline{z} (2+i)z (2-i)\overline{z} \leqslant 4$ 确定的是().
 - (A) 有界单连通闭域 (B) 无界多连通开区域
 - (C) 无界单连通闭域 (D) 有界多连通开区域
- (7) (2022 年期末 A 卷) 方程 ||z+i|-|z-i||=1 表示的是 ().
 - (A) 直线 (B) 不是圆的椭圆
 - (C) 双曲线 (D) 圆周
- (8) (2022 年期末 A 卷) 不等式 $-1 \leqslant \arg z \leqslant \pi 1$ 确定是的 ().
 - (A) 有界多连通闭区域 (B) 有界单连通区域
 - (C) 无界多连通区域 (D) 无界单连通闭区域

第五节 复变函数

- ■复变函数的定义
- ■映照

复变函数的定义

复变函数就是复数集合 $G\subseteq C$ 上的一个映射 $f:G\to\mathbb{C}$. 换言之, 对于每一个 $z\in G$, 有一个唯一确定的复数 w=f(z) 与之对应. 例如 $\operatorname{Re} z, \operatorname{Im} z, \operatorname{arg} z, |z|, z^n$ 都是复变函数.

f 的定义域是指 G, 值域是指 $\{w = f(z) : z \in G\}$. 如果 $z_1 \neq z_2 \implies f(z_1) \neq f(z_2)$, 则称 f 是单射.

多值复变函数

不过在复变函数中,我们常常会遇到多值的复变函数,也就是说一个 $z \in G$ 可能有多个 w 与之对应. 例如 $\operatorname{Arg} z$, $\sqrt[n]{z}$ 等. 如果对每一个定义域范围内的 z, 选取固定的一个 f(z) 的值, 则我们得到了这个多值函数的一个单值分支.

在考虑多值的情况下,复变函数总有反函数: 对于任意点 $w \in \mathbb{R}$ 存在一个或多个 $z \in G$ 使得 w = f(z). 这样 w 到 z 的就定义了 f 的反函数 f^{-1} . 如果 f 和 f^{-1} 都是单值的,则称 f 是一一对应. 若无特别声明,复变函数总是指单值的复变函数。

与实变函数的关系

w = f(z) = u + iv 等价于给了两个二元实变

函数

$$u = u(x, y),$$
 $v = v(x, y).$

例如

$$w = z^{2} = (x^{2} - y^{2}) + i \cdot 2xy,$$

$$u(x, y) = x^{2} - y^{2}, \quad v(x, y) = 2xy.$$

其实我们也可以把 f(z) 看成一个二元实变量复值函数.

在实变函数中,我们常常用函数图像直观来理解和研究函数. 在复变函数中,我们可以用两个复平面 (z 复平面和 w 复平面) 之间的映射 (称之为映照) 来表示这种对应关系.

例题: 映照

例

 $\underline{\mathbf{G}}$ 函数 $w=\overline{z}$. 如果把 z 复平面和 w 复平面重叠放置, 则这个映照对应的是关于 z 轴的翻转变换. 它把任一区域映成和它全等的区域.

例

函数 w=az. 设 $a=re^{i\theta}$, 则这个映照对应的是一个旋转映照 (逆时针旋转 θ) 和一个相似映照 (放大为 r 倍) 的复合. 它把任一区域映成和它相似的区域.

例题: 映照

函数 $w = z^2$. 这个映照把 z 的辐角增大一倍, 因此它会把角形区域变换为角形区域, 并将夹角放大一倍.

这个映射对应两个实变函数 $u = x^2 - y^2$, v = 2xy.

例题: 映照

例 (续)

因此它把 \overline{z} 平面上两族分别以直线 $y = \pm x$ 和坐标轴为渐近线的 等轴双曲线

$$x^2 - y^2 = c_1, \quad 2xy = c_2$$

分别映射为 w 平面上的两族平行直线

$$u = c_1, \quad v = c_2.$$

例

求下列集合在映照 $w=z^2$ 下的像.

(1) 线段 $0 < |z| < 2, \arg z = \frac{\pi}{2}$.

解

设 $z=re^{\frac{\pi i}{2}}=ir$,则 $w=z^2=-r^2$. 因此它的像还是一条线段 0<|w|<4 , $\arg w=-\pi$.

例

求下列集合在映照 $w=z^2$ 下的像.

(2) 双曲线 $x^2 - y^2 = 4$.

解

由于

$$w = u + iv = z^2 = (x^2 - y^2) + 2xyi.$$

因此 $u = x^2 - y^2 = 4, v = 2xy$.

对于任意 $v \in \mathbb{R}$, 存在 $z = x + yi \in \mathbb{C}$ 使得 $z^2 = 4 + vi$, 且 $x^2 - y^2 = 4$. 因此这条双曲线的像是一条直线 $\operatorname{Re} w = 4$.

复变函数与积分变换 ▶第一章 复数与复变函数 ▶5 复变函数 ▶B 映照

求下列集合在映照 $w=z^2$ 下的像. (3) 扇形区域 $0<\arg z<\frac{\pi}{4}, 0<|z|<2$.

设 $z=re^{i\theta}$,则 $w=r^2e^{2i\theta}$. 因此它的像是扇形区域 $0<\arg w<\frac{\pi}{2}$ $\frac{\pi}{2}$, 0 < |w| < 4.

例

求圆周 |z|=2 在映照 $w=z+\frac{1}{z}$ 下的像.

解

设
$$z = x + yi$$
,则

$$w = z + \frac{1}{z} = z + \frac{\overline{z}}{4} = \frac{5}{4}x + \frac{3}{4}yi = u + vi,$$

$$x = \frac{4}{5}u, \quad y = \frac{4}{3}v, \quad \left(\frac{4}{5}u\right)^2 + \left(\frac{4}{3}v\right)^2 = 4,$$

$$\left(\frac{2u}{5}\right)^2 + \left(\frac{2v}{3}\right)^2 = 1.$$

作业

(1) 指出满足下列各式的点 z 的轨迹是什么曲线?

- ② |z a| = Re(z b), 其中 a, b 为实常数;
- 3 $z\overline{z} + az + \overline{az} + b = 0$, 其中 a 为复数, b 为实常数.
- (2) 用复参数方程表示连接 1+i 与 -1-4i 的直线段.
- (3) 用复参数方程表示圆周 $|z z_0| = r$.
- (4) 画出下列不等式所确定的图形,指出它们的特征 (是否为区域、 闭区域,是否有界,是否单连通).
 - 1 $|z| < 1, \text{Re } z \leq \frac{1}{2};$
 - **2** 0 < Re z < 1;
 - $\left| \frac{z+1}{z-1} \right| \leqslant 2.$

第六节 极限和连续性

复变函数的极限和连续性的定义和实函数情形是类似的. 我们先来看数列极限的定义.

定义

- 设 $\{z_n\}_{n\geqslant 1}$ 是一个复数列. 如果 $\forall \varepsilon > 0, \exists N$ 使得当 $n \geqslant N$ 时 $|z_n z| < \varepsilon$, 则称 z 是数列 $\{z_n\}$ 的极限, 记作 $\lim_{n\to\infty} z_n = z$.
- 如果 $\forall X > 0, \exists N$ 使得当 $n \ge N$ 时 $|z_n| > X$, 则称 ∞ 是数 列 $\{z_n\}$ 的极限, 记作 $\lim_{n \to \infty} z_n = \infty$.

如果我们称

$$\overset{\circ}{U}(\infty, X) = \{ z \in \mathbb{C} : |z| > X \}$$

为 ∞ 的 (去心) 邻域. 那么 $\lim_{n\to\infty} z_n = z \in \mathbb{C} \cup \{\infty\}$ 可统一表述为: 对 z 的任意邻域 U, $\exists N$ 使得当 $n \geqslant N$ 时 $z_n \in U$.

那么有没有一种看法使得 ∞ 的邻域和普通复数的邻域没有差异呢? 我们将介绍复球面的概念, 它是复数的一种几何表示且自然包含无穷远点 ∞ . 这种思想是在黎曼研究多值复变函数时引入的.

取一个与复平面相切于原点 z=0 的球面. 过 O 做垂直于复平面的直线, 并与球面相交于另一点 N, 称之为北极.

复球面

对于平面上的任意一点 z, 连接北极 N 和 z 的直线一定与球面相交于除 N 以外的唯一一个点 Z. 反之, 球面上除了北极外的任意一点 Z, 直线 NZ 一定与复平面相交于唯一一点. 这样, 球面上除北极外的所有点和全体复数建立了一一对应.

复球面: 无穷远点

当 |z| 越来越大时,其对应球面上点也越来越接近 N. 如果我们在复平面上添加一个额外的"点"——无穷远点,记作 ∞ . 那么扩充复数集合 $\mathbb{C}^* = \mathbb{C} \cup \{\infty\}$ 就正好和球面上的点——对应. 称这样的球面为复球面,称包含无穷远点的复平面为扩充复平面(闭复平面).

复球面: 与实数无穷的联系

它和实数中 $\pm \infty$ 有什么联系呢? 选取上述图形的一个截面来看, 实轴可以和圆周去掉一点建立一一对应. 同样的, 当 |x| 越来越大时, 其对应圆周上点也越来越接近 N. 所以实数中的 $\pm \infty$ 在复球面上或闭复平面上就是 ∞ , 只是在实数时我们往往还关心它的符号, 所以区分正负.

 ∞ 的实部、虚部和辐角无意义, 规定 $|\infty| = +\infty$. 约定

$$z \pm \infty = \infty \pm z = \infty \quad (z \neq \infty),$$

$$z \cdot \infty = \infty \cdot z = \infty \quad (z \neq 0),$$

$$\frac{z}{\infty} = 0 \ (z \neq \infty), \quad \frac{\infty}{z} = \infty \ (z \neq 0), \quad \frac{z}{0} = \infty \ (z \neq 0).$$

根据开集的定义可知, 包含 z 的任何一个开集均包含 z 的一个邻域. 由此可知, 将极限定义中的 ε -邻域换成开邻域 (包含 z 的开集) 并不影响极限的定义. 在复球面上的任意一点, 可以自然地定义 $z \in \mathbb{C}^*$ 的开邻域. 它在上述对应下的像便是 z 的一个开邻域.

数列收敛的等价刻画

定理

设 $\overline{z_n} = x_n + y_n i, z = x + y i$,则

$$\lim_{n \to \infty} z_n = z \iff \lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y.$$

证明

由三角不等式

$$|x_n - x|, |y_n - y| \le |z_n - z| \le |x_n - x| + |y_n - y|$$

易证.

例

设 $z_n = \left(1 + \frac{1}{n}\right) \exp\left(\frac{\pi i}{n}\right)$. 数列 $\{z_n\}$ 是否收敛?

解

由于

$$x_n = \left(1 + \frac{1}{n}\right)\cos\frac{\pi}{n} \to 1, \quad y_n = \left(1 + \frac{1}{n}\right)\sin\frac{\pi}{n} \to 0.$$

因此 $\{z_n\}$ 收敛且 $\lim_{n\to\infty} z_n = 1$.

定义

设函数 f(z) 在点 z_0 的某个去心邻域内有定义. 如果存在复数 A 使得对 A 的任意邻域 $U, \exists \delta > 0$ 使得当 $z \in \mathring{U}$ (z_0, δ) 时,有 $f(z) \in U$,则称 A 为 f(z) 当 $z \to z_0$ 时的极限,记为 $\lim_{z \to z_0} f(z) = A$ 或 $f(z) \to A(z \to z_0)$.

对于 $z_0 = \infty$ 或 $A = \infty$ 的情形, 也可以用上述定义统一描述. 通常我们说极限存在是不包括 $\lim_{x \to \infty} f(z) = \infty$ 的情形的.

与实函数极限之联系

通过与二元实函数的极限对比可知, 复变函数的极限和二元实函数的极限定义是类似的. $z \to z_0$ 可以是沿着任意一条曲线趋向于 z_0 , 或者看成 z 是在一个开圆盘内任意的点逐渐地靠拢 z_0 .

定理

设 $f(z) = u(x,y) + iv(x,y), z_0 = x_0 + y_0 i, A = u_0 + v_0 i$,则

$$\lim_{z \to z_0} f(z) = A \iff \lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = u_0, \quad \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = v_0.$$

证明

由三角不等式

$$|u - u_0|, |v - v_0| \le |z - z_0| \le |u - u_0| + |v - v_0|$$

易证.

由此可知极限的四则运算法则对于复变函数也是成立的。

定理

设
$$\lim_{z \to z_0} f(z) = A, \lim_{z \to z_0} g(z) = B$$
,则

- (1) $\lim_{z \to z_0} (f \pm g)(z) = A \pm B$;
- (2) $\lim_{z \to z_0} (fg)(z) = AB$;
- (3) 当 $B \neq 0$ 时, $\lim_{z \to z_0} \left(\frac{f}{q} \right) (z) = \frac{A}{B}$.

例题: 判断函数极限是否存在

例

证明当 $z \to 0$ 时, 函数 $f(z) = \frac{\operatorname{Re} z}{|z|}$ 的极限不存在.

证明

令
$$z = x + yi$$
, 则 $f(z) = \frac{x}{\sqrt{x^2 + y^2}}$. 因此

$$u(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \quad v(x,y) = 0.$$

当 z 沿着直线 y=0 左右两侧趋向于 0 时,则 $u(x,y)\to\pm 1$. 因此 $\lim_{x\to 0}u(x,y)$ 不存在,从而 $\lim_{z\to z_0}f(z)$ 不存在.

函数的连续性

定义

- 如果 $\lim_{z \to \infty} f(z) = f(z_0)$, 则称 f(z) 在 z_0 处连续.
- 如果 f(z) 在区域 D 内处处连续, 则称 f(z) 在 D 内连续.

定理

函数 f(z) = u(x,y) + iv(x,y) 在 $z_0 = x_0 + iy_0$ 处连续当且仅当 u(x,y) 和 v(x,y) 在 (x_0,y_0) 处连续.

例如 $f(z) = \ln(x^2 + y^2) + i(x^2 - y^2)$. $u(x,y) = \ln(x^2 + y^2)$ 除原点外处处连续, $v(x,y) = x^2 - y^2$ 处处连续. 因此 f(z) 在 $z \neq 0$ 处连续.

连续函数的性质

定理

- 在 z_0 处连续的两个函数 f(z), g(z) 之和、差、积、商 $(g(z_0) \neq 0)$ 在 z_0 处仍然连续.
- 如果函数 g(z) 在 z_0 处连续, 函数 f(w) 在 $g(z_0)$ 处连续, 则 f(g(z)) 在 z_0 处连续.

显然 f(z) = z 是处处连续的, 故多项式函数

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

也处处连续, 有理函数 $\frac{P(z)}{Q(z)}$ 在 Q(z) 的零点以外处处连续.

有时候我们会遇到在曲线上连续的函数,它指的是当 z 沿着该曲线趋向于 z_0 时, $f(z) \to f(z_0)$. 对于闭合曲线或包含端点的曲线段,其之上的连续函数 f(z) 是有界的.

例题: 函数连续性的判定

例

证明: 如果 f(z) 在 z_0 连续, 则 $\overline{f(z)}$ 在 z_0 也连续.

证明

设 $f(z) = u(x,y) + iv(x,y), z_0 = x_0 + iy_0$. 那么 $u(x,y), \underline{v(x,y)}$ 在 (x_0,y_0) 连续. 从而 -v(x,y) 也在 (x_0,y_0) 连续. 所以 $\overline{f(z)} = v(x,y)$ 亦物.

u(x,y) - iv(x,y) 在 (x_0,y_0) 连续.

另一种看法是,函数 $g(z)=\overline{z}=x-iy$ 处处连续,从而 $g(f(z))=\overline{f(z)}$ 在 z_0 处连续.

可以看出,在极限和连续性上,复变函数和两个二元实函数没有什么差别.那么复变函数和多变量微积分的差异究竟是什么导致的呢?归根到底就在于 C 是一个域,上面可以做除法.

这就导致了复变函数有<mark>导数</mark>,而不是像多变量实函数只有偏导数. 这种特性使得可导的复变函数具有整洁优美的性质, 我们将在下一章来逐步揭开它的神秘面纱.

作业

(1) 指出满足下列各式的点 z 的轨迹是什么曲线?

- 1 $\arg(z-i) = \frac{\pi}{4}$;
- ② |z a| = Re(z b), 其中 a, b 为实常数;
- 3 $z\overline{z} + az + \overline{a}\overline{z} + b = 0$, 其中 a 为复数, b 为实常数.
- (2) 用复参数方程表示连接 1+i 与 -1-4i 的直线段.
- (3) 用复参数方程表示圆周 $|z z_0| = r$.
- (4) 画出下列不等式所确定的图形,指出它们的特征 (是否为区域、 闭区域,是否有界,是否单连通).
 - 1 $|z| < 1, \operatorname{Re} z \leq \frac{1}{2};$
 - **2** 0 < Re z < 1;
 - $\left| \frac{z+1}{z-1} \right| \leqslant 2.$