

NCKU Programming Contest Training Course Course 8 2013/03/06

Sheng-Chi You(rabbit125)

Jay_s6215@hotmail.com

http://myweb.ncku.edu.tw/~f74986133/Course_8.rar

Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan

Outline

Dynamic Programming (DP)

 Dynamic programming is a general algorithm design technique for solving problems defined by or formulated by recursion structure with overlapping substructure.

Purpose

- Optimization
- Avoid duplicate search and calculation
- Two categories
 - Minimization (maximization) problem
 - Combinatorial problem

Recall for Fib-Seq

• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21,

$$F_{i} = i \quad \text{if} \quad i \leq 1$$

$$F_{i} = F_{i-1} + F_{i-2} \quad \text{if} \quad i \geq 2$$

Solved by a recursive program:

- Much replicated computation is done.
- It should be solved by a simple loop.

- Solving the Fib-Sequence
 - Bottom up design
 - Using the for loop or while loop without recursive stack
 - Top-down design
 - Using the recursive design with memorization for computation
- Top-Down design
 - (I) basic condition
 - (2) if memorized
 - (3) recurrence
 - (4) return the value
- Take a problem for example
 - PKU: 1579 Function Run Fun

Function Run Fun

- How to figure out this is a DP problem?
 - I. We want to find out what value w(a, b, c) is
 - 2. w(a, b, c) can be generated by the functions at last slide
 - ex, if we want to know w(50, 50, 50), we have to know w(20, 20, 20) at first
 - 3. The final answer is consist of lots of subproblems
 - ex, w(a, b, c) = w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) w(a-1, b-1, c-1)

subproblems

Function Run Fun

- if (a <= 0 or b <= 0 or c <= 0)
 w(a, b, c) = I
- if (a > 20 or b > 20 or c > 20)
 w(a, b, c) = w(20, 20, 20)
- if (a < b and b < c)
 w(a, b, c) = w(a, b, c-1) + w(a, b-1, c-1) w(a, b-1, c)
- otherwise
 - w(a, b, c) = w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) w(a-1, b-1, c-1)

Just Practice

- Practice
 - PKU: 1579 Function Run Fun

Programming Steps

- Programming Strategy
 - (I) Check the category, min-max problem or combination problem?
 - (2) Check if there is a order(the optimal order)
 - This is a very important step!!!
 - Ordered -> optimization with dp
 - In-ordered -> bitmask dp, memorized dp or non-dp problems
 - (3) Think the recurrence formulation
 - (4) Write a program to solve it
 - Top-down
 - Bottom-up
 - (5) Backtrack the optimal path
- Memory Strategy
 - Set up the recorded table

Outline

LIS Problem

- Longest Increasing Subsequence
 - The longest increasing subsequence problem is to find a subsequence of a given sequence in which the elements in this subsequence are in sorted order (lowest to highest), and in which the length of the subsequence is as long as possible.
 - The elements in the subsequence are not necessarily to be continuous.
 - Two well-known method to solve this problem are followings:
 - (I) DP by O(N²)
 - (2) Greedy with binary search by O(NlogN)

LIS Example

Example

- 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15
- A increasing subsequence is 0, 4, 14, 15
- The longest increasing subsequence is 0, 2, 6, 9, 13, 15 wit he length six

Question

- Is the longest increasing subsequence unique?
- How should we deal with this problem in different situation by which method?

- Dynamic programming approach
 - Recall the design strategy
 - (I) Check the category
 - (2) Check the order property
 - (3) Think the recurrence
 - (4) Write and problem with two methods
 - (5) Backtrack the optimal path

- Rule I
 - Order?
- Rule 2
 - Category
- Rule 3
 - Given a sequence with n elements stored in an array seq[i] where $l \le i \le n$.
 - Define dp[i] for representing that the longest length of the increasing subsequence that ended by seq[i] from seq[l] to seq[i].
 - So that the recurrence can be formulated as the following:
 - Initialized the dp[i] by I
 - dp[i] = max(dp[j]+1), where I <= j < i and seq[i] > seq[i]
 - Also define a pi array pi[i] that represent the previous element of the element i in the increasing subsequence.

acm International Collegiate Programming Contest

DP method

Rule 3

- Example
- $seq[9] = \{9, 5, 2, 8, 7, 3, 1, 6, 4\}$
- Find the dp[i] and pi[i].

initial

seq	9 (1)	5 (2)	2 (3)	8 (4)	7 (5)	3 (6)	I (7)	6 (8)	4 (9)
dр	I	I	I	I	I	I	I	I	1
þі	- I	-1	-1	-1	-1	-1	-	-	-

result

seq	9 (1)	5 (2)	2 (3)	8 (4)	7 (5)	3 (6)	I (7)	6 (8)	4 (9)
dр	I	I	I	2	2	2	I	3	3
þі	-1	-1	-1	2	2	3	-1	6	6

- Rule 4
 - Write the program
- Rule 5
 - Trace the result
- Exercise
 - Write a program that find the length of the LIS for a given sequence.
 - Note:
 - Please use the dynamic programming as the practice.
 - The number of the element in the given sequence will not exceed 1000.
- Review
 - Time complexity O(?)
 - Space complexity O(?)
 - Compare with the brute force method.

Greedy Method

Greedy Method

- An efficient algorithm based on binary search.
- Given the sequence $seq[9] = \{9, 5, 2, 8, 7, 3, 1, 6, 4\}$
- http://www.csie.ntnu.edu.tw/~u91029/LongestIncreasingSubsequence.html

							6	4
			8	7	3	3	3	3
9	5	2	2	2	2	I		I

Greedy Method

Exercise

- Write a program that find the length of the LIS for a given sequence.
- Note:
 - Please use the dynamic programming as the practice.
 - The number of the element in the given sequence will exceed 1000.

Review

- Time complexity O(?)
- Space complexity O(?)

Just Practice

- Practice
 - NOJ 30 LIS Problem

Outline

LCS Problem

- Longest Common Subsequence
 - The longest increasing subsequence problem is to find a common subsequence of two given sequences in which the elements in this common subsequence are appear in both original sequences, and in which the length of the subsequence is as long as possible.
 - The elements in the subsequence are not necessarily to be continuous.
 - Two well-known method to solve this problem are followings:
 - (I) DP by O(N²)
 - (2) Greedy with binary search by O(NlogN)

Common Subsequence Example

Longest Common Subsequence

- Dynamic programming approach
 - Recall the design strategy
 - (I) Check the category
 - (2) Check the order property
 - (3) Think the recurrence
 - (4) Write and problem with two methods
 - (5) Backtrack the optimal path

- Rule I
 - Order?
- Rule 2
 - Category
- Rule 3
 - Let $A=a_1a_2...a_m$ and $B=b_1b_2...b_n$.
 - len(i, j): the length of an LCS between $a_1 a_2 ... a_i$ and $b_1 b_2 ... b_i$
 - With proper initializations, len(i, j) can be computed as follows.

$$len(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ len(i-1,j-1) + 1 & \text{if } i,j > 0 \text{ and } a_i = b_j, \\ \max(len(i,j-1),len(i-1,j)) & \text{if } i,j > 0 \text{ and } a_i \neq b_j. \end{cases}$$

Rule 4

procedure LCS-Length(A, B)

- 1. for $i \leftarrow 0$ to m do len(i, 0) = 0
- 2. for $j \leftarrow 1$ to n do len(0,j) = 0
- 3. for $i \leftarrow 1$ to m do
- 4. for $j \leftarrow 1$ to n do

6. else if $len(i-1,j) \ge len(i,j-1)$

7.
$$then \begin{bmatrix} len(i,j) = len(i-1,j) \\ prev(i,j) = " & " \end{bmatrix}$$

8. else
$$\begin{bmatrix} len(i,j) = len(i,j-1) \\ prev(i,j) = " \leftarrow " \end{bmatrix}$$

9. **return** len and prev

• Rule 4

The dp result of the two string, "providence" and "president"

i		j	o	1	2	3	4	5	6	7	8	9	10
				p	r	0	v	i	d	e	n	c	e
0			0	0	0	0	0	0	0	0	0	0	0
1	p		0	\ 1	← 1	← 1	← 1	← 1	← 1	← 1	← 1	← 1	← 1
2	r		0	1	2	4 2	← 2	← 2	← 2	← 2	← 2	← 2	← 2
3	e		0	1	2	2	2	2	2	3	← 3	← 3	3
4	S		0	1	1 2	2	2	2	1 2	3	1 3	3	3
5	i		0	1	2	2	\uparrow 2	3	← 3	3	3	3	1 3
6	d		0	1	1 2	1 2	2	3	4	← 4	← 4	← 4	← 4
7	e		0	1	2	2	2	3	4	5	← 5	← 5	× 5
8	n		0	1	2	1 2	2	3	4	5	6	← 6	← 6
9	t		0	1	2	2	2	3	4	1 5	f 6	1 6	f 6

NCKU CSIE Programming Contest Training Course

-made by electron, free999, rabbit125

- Rule 5
 - Trace the path

```
procedure Output-LCS(A, prev, i, j)
```

- *I* if i = 0 or j = 0 then return
- 2 **if** prev(i, j) =" ***** " **then** $\begin{bmatrix} Output LCS(A, prev, i-1, j-1) \\ print & a_i \end{bmatrix}$
- 3 else if $prev(i, j) = " \stackrel{\blacktriangle}{+} "$ then Output-LCS(A, prev, i-1, j)
- 4 else Output-LCS(A, prev, i, j-1)

• Rule 5

The result "priden" of the two string, "providence" and "president"

						0'					
	j 0	1	2	3	4	5	6	7	8	9	10
		p	r	0	v	i	d	e	n	С	e
	0	0	0	0	0	0	0	0	0	0	0
p	0	1	← 1	← 1	← 1	← 1	← 1	← 1	← 1	← 1	← 1
r	0	1	2	← 2	← 2	← 2	← 2	← 2	← 2	← 2	← 2
e	0	1	2	1 2	1 2	2	1 2	3	← 3	← 3	3
S	0	1	1 2	1 2	1 2	1 2	1 2	3	3	3	3
i	0	1	2	2	2	3	← 3	3	3	3	3
d	0	1	2	1 2	2	3	4	← 4	← 4	← 4	← 4
e	0	1	2	1 2	2	3	4	5	← 5	← 5	5
n	0	1	1 2	2	1 2	3	4	5	\ 6	← 6	← 6
t	0	1	1 2	2	1 2	3	4	5	† 6	6	† 6
	r e s i d e n	p 0 r 0 e 0 s 0 i 0 d 0 e 0 n 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	j 0 1 2 3 4 5 6 7 8 p r 0	j 0 1 2 3 4 5 6 7 8 9 p r o v i d e n c 0 0 0 0 0 0 0 0 0 0 p 0 1						

NCKU CSIE Programming Contest Training Course

made by electron, free999, rabbit125

More Example

- Given string A = bacad, string B = accbadcb
- The dp table can be optimized as the following figure and the longest common string can be backtraced by the table.

						В				
			a	c	c	b	a	d	c	b
		0	0 0 1 1 1	0	0	0	0	0	0	0
	b	0	0	0	0	1	1	1	1	1
	a	0	1	←1 _K	1	1	2	2	2	2
A	c	0	1	2	2	←2 _K	2	2	3	3
	a	0	1	2	2	2	3	3	3	3
	d	0	1	2	2	2	3	4	-4 <	-4

Exercise

- Write a program that find the length of the LCS for two given sequences.
- Note:
 - Please use the dynamic programming as the practice.
 - The number of the element in the given sequence will not exceed 1000.

Review

- Time complexity O(?)
- Space complexity O(?)
- Compare with the brute force method.

Just Practice

- Practice
 - NOJ 31 LCS Problem

- UVA (total 23 problems)
 - 103, 108, 111, 231, 437, 481, 497, 507, 531, 836, 10066, 10131, 10192, 10252, 10405, 10534, 10635, 10684, 10723, 10755, 10827, 10949, 11582

Thank You For Attention!