(19)日本国特許庁(JP)

報(B2) (12)特許公

(11)特許番号

第2577416号

(45)発行日 平成9年(1997) 1月29日

(24)登録日 平成8年(1996)11月7日

(51) Int Cl.4

識別記号

庁内整理番号

技術表示箇所

F16N 15/00 C10M 111/04

// (C 1 0 M III/04

107:38)

C10N 30:00

F16N 15/00 C 1 0 M 111/04

FΙ

発明の数1(全 3 頁) 最終頁に続く

(21)出顧番号

(65)公開番号

(43)公開日

特額昭62-333241

(73)特許福者 999999999

エヌティエヌ株式会社

昭和62年(1987)12月24日 (22)出頭日

大阪府大阪市西区京町堀1丁目3番17号

特開平1-169200

平成1年(1989)7月4日

沖 芳郎

三重県四日市市別名2丁目6番12号

弁理士 貸田 文二 -(74)代理人

> 山下 喜代治 被查官

(56)参考文献

(72)発明者

特開 昭62-236135 (JP, A)

特開 昭60-38440 (JP, A)

(54) 【発明の名称】 非粘着性潤滑被膜

(57)【特許請求の範囲】

【請求項1】含フッ素樹脂被膜の上にフッ素短鎖重合体 からなる薄膜を形成させたことを特徴とする非粘着性潤 滑被胶。

【発明の詳細な説明】

(商業上の利用分野)

この発明は、非粘着性潤滑被膜に関するものである。 [従来の技術]

従来、非粘着性潤滑被膜としてフッ素樹脂を用いるこ とが広く知られている。そして、その被膜の形式方法と 10 して、フッ素樹脂を流動浸漬法等により溶融コーティン グすることが行なわれているが、多くの場合、基材への 密着強度が充分でないため、あらかじめ基材表面にプラ イマー网 (中途り層) を設けておく必要があった。ま た、被膜の厚みを精度よく調整するのが難しく、基材の

温度をフッ素樹脂の溶配温度(約300℃)以上に上げね ばならず、基材に硬度変化や寸法変化等が生じる等除咨 が多かった。

一方、プライマーを必要としないで、比較的低温で焼 成される含フッ素樹脂強料もあり、これは羹装後のパイ ンダー樹脂の硬化にともなって被膜を形成するものであ る。このような途料は、一般に、ポリイミド樹脂、ポリ アミドイミド樹脂、エボキシ樹脂など基材に対する密着 性に優れたパインダー用の樹脂をNーメチルピロリドン 学の有機溶剤に分散させた溶液と四フッ化エチレン樹 脂、四フッ化エチレン六フッ化プロピレン樹脂、パーフ ルオロアルコキシ樹脂等の润滑性および非粘着性に富む 含フッ素樹脂を混合させたものである。この資料の特徴 はパインダー樹脂とフッ素樹脂の凝集エネルギーの差を 利用して、被談の基材側(接着側)にはバインダー樹脂 に富んだ層を形成し、基材との充分な密着強度を得、表 面にはフッ素樹脂に富んだ層を形成し、非粘着性および 潤滑性を得ようとするものである。また、この塗料の焼 成温度はパインダー樹脂の溶融、硬化温度によって決ま り、室温で硬化できるものもある。しかし、これら途料 の非粘着性を考慮すると、フッ紫樹脂はほとんど溶融し ておらず表面での分子のつながりはなく、表面層には若 干のパインダー層もあり、このパインダー層が有する親 和性が被膜表面の非粘着性を低下させるという問題点が あった。また、潤滑に関しては、一般にフッ素樹脂が低 10 **序族特性を有する材料とされるが、その撰動機構は、あ** る程度の摺動 (エージング) により表面のフッ素樹脂が 相手材表面に転移して、その結果フッ素樹脂とフッ素樹 脂との摺動となり、それ以後安定した低摩擦特性を示す と考えられているが、転移膜が形成されるまで、摩擦係 数が安定しない (特に摺勁阻始時の特性を左右する静摩 擦係数に大きい影響を与える) という欠点があった。こ のことは従来の含フッ素樹脂被膜についても同様であ る。

形成後に被膜の切削等の仕上げ加工が必要となってきた が、切削加工される層は凝集エネルギーにより表面に形 成された層であるため、当然のことながら加工後の表面 の非粘着性および指動特性は本来のものよりは遥かに劣 るのである。

[発明が解決しようとする問題点]

以上述べたように、従來の技術においては、含フッ素 樹脂被膜で優れた非粘着性および安定性のある摺動特性 を有するものが得られていないこと、および高精度の要 非粘着性、潤滑性を失うという問題点があった。

[問題点を解決しようとする手段]

上記の問題点を解決するために、この発明は含フッ素 樹脂被膜の上にフッ素短鎖重合体からなる薄膜を形成す るという手段を採用したものである。以下にその詳細を 述べる。

一般に、ポリ四フッ化エチレン樹脂(以下PTFEと略記 する) は分子量が10万~100万であり、分子の性質上、 分散可能な溶剤はなく、途液として前述のパインダー樹 脂の分散液等に混合されている。また融点が約330℃と 高く、溶融粘度も大きい。

これに対してこの発明のフッ素短類派合体とは四フッ 化エチレン鎖

$+CF_2-CF_2+$

を主背格とし分子量が1万以下のものであり、ハロゲン 化炭化水素類の溶剤に分放可能であるため、フッ素短鎖 抵合体だけの途波を得ることができる。そして、重合度 が低いので、融点が約250℃程度であり、被談は溶着さ れたものとなる。この時の鮫厚は分子の径および溶融状 態によって決定されるが、フッ素短鎖重合体ならば3μ 50

m以下の厚さにすることは充分可能であり、通常の場合 1μm以下にするのが好ましい。特に寸法精度が要求さ れる場合には、含フッ素樹脂被膜を基材面に形成した 後、切削等の仕上げ加工をし、それをフレオンで希釈し たフッ素短鎖重合体の塗液へ浸漬し、引き上げた後焼成 するなどの操作を行なえば、所望する寸法を保持したま まその表面に薄膜を形成することができる。

(実施例)

実施例1:

ステンレス鋼 (SUS 420J) からなる円盤 (外径30㎜、 内径6㎜、原5㎜、表面粗さRmaxlμm)をトリクレンの 蒸気で洗浄し、その片面に、含フッ紫樹脂塗料(ダイキ ン工業社製:TC-7109BK) をスプレーコーティングし、1 00℃で30分間乾燥した後、230℃で30分間焼成し、含フ ッ崇樹脂被膜を形成させた。さらに、その円盤をフッ素 短鎖重合体(デュポン社製:パイダックスAR)がフレオ ンR113 (三井フロロケミカル社製:フレオンTF) 中に5 **重量%になるように分散している塗液の中へ浸漬した** _後、80㎜/分の速度で引き上げた。これを100℃で1時間 さらに、最近は寸法精度に対する要求が厳しく、被談 20 乾燥し、さらに280℃で1時間焼成して、含フッ素樹脂 被膜の上にフッ紫短鎖低合体薄膜が形成された試験片を 得た。得られた試験片についてつぎの2種類の試験(摩 擦試験および非粘着性試験)を行ない、その結果を表に まとめた。

: 銀焙滋竜 ①

洋ベア・ルーロン工場社製スラスト摩擦試験機にて面 圧1kgf/cm²、速度10m/分、相手材アルミニウム(AL505 6) として100時間の摩擦試験を行なった。そして、運転 開始時および100時間運転後の静摩擦係数ならびに20時 **求に対して、仕上げ加工を行なったときに、被膜本来の 30 間ごとの動摩擦係数および選転終了後の静摩擦係数を求** めた。

② 非粘冶性試験:

水を試験液とし、ゴニオメーターを用いて試験片被膜 の適下1分後の接触角を求めた。

実施例2:

実施例1において含フッ素樹脂被膜を形成後切削加工 を行ない、その上にフッ素短額重合体からなる薄膜を形 成したものを試験片とした。実施例1と全く同様の試験 を行ない、得られた結果を表に併記した。

40 比較例1および2:

比較例3:

実施例1と同様の方法にて、ステンレス網円盤 (SUS 420 J2) に含フッ素樹脂被瓝を形成させたものを試験片 とし、これを比較例1とした。さらに、比較例1の被膜 を切削加工したものを試験片とし、これを比較例2とし た。これら二つの試験片に対し実施例1と全く同様の試 験を行ない、得られた結果を表に併記した。

ステンレス網円盤に含フッ素樹脂塗料を予め用いるこ となく、実施例1と念く同様の方法にてフッ素短頭取合 体からなる辞睒を形成させ、これを試験片とした。この

試験片に対し実施例1と全く同様の試験を行ない、得ら れた結果を表に併記した。

変から明らかなように、実施例1および2は、安定し て低い動摩擦係数を示し、静摩擦係数も運転開始時から 低かった。また、水に対する接触角は105~110 または 107~110°であった。これに対して、含フッ素樹脂被膜* 転開始から数分間は動摩擦係数が高く、それ以降は低い 値で安定した。静摩擦係数も運転開始時は高かったが、 試験終了後は低い値になっていた。また水に対する接触 角は実施例に比較して小さい値であった。

6

	番号			实施例		比较例		
項目				1	2	1	2	3
摩擦特性	動壓擦 係数	運転時間	運転直後	0.15	0, 15	0, 18	0.19	0,15
		11	20h	0.15	0.15	0, 16	0.16	0,17
		<i>"</i>	40h	0, 15	0, 15	0, 16	0, 16	0,20
		"	60h	0.15	0, 15	0, 16	0, 16	0,25
		n	80h	0, 15	0, 15	0. 16	0.16	0.32
		"	100h	0, 15	0, 15	0, 16	0.16	0.40
	部摩擦 係数	運転直後		0, 15	0.15	0, 20	0.21	0, 15
		運転終了後	(100h)	0, 15	0, 15	0, 16	0, 16	0.45
非粘着性(対水接触角)				105~110	107~110	90~100	85~95	105~11

フッ紫短鎖重合体からなる薄膜だけを形成した比較例 3は、運転開始時の静・動いずれの摩擦係数も低かった が、次第に大きくなる傾向を示した。

以上のことから、フッ素短鎖重合体を単独で使用した 場合充分な密着強度が得られず、耐久性に欠ける。しか し、含フッ素樹脂被膜の上に薄膜として形成すると、耐 久性が向上し、運転開始前に相手材摺動面に転移膜が予 も低い値で安定させることができた。また含フッ素樹脂 被膜だけの場合より非粘着性も向上させることができ た。このように、優れた非粘着性および招動特性を要求 される被膜には含フッ素樹被膜の上にフッ素短鎖重合体 からなる荷膜を形成させたものが最も好ましい。また、※ ※寸法楮度の厳しいものに対しても、同様に仕上げ加工さ れた合フッ素樹脂被膜に対して、その寸法精度を保持し たまま、フッ素短鎖重合体薄膜にて優れた非粘着性およ び摺動特性を付与することができた。

〔効果〕

以上述べたように、この発明の非粘着性潤滑被膜は寸 法精度の厳しい場合においても安定性のある優れた非粘 めある場合と同様の低い静摩掠係数を示し、動摩擦係数 30 脊性および指動特性を発揮し得るものであるから、この **発明の非粘着性潤滑被膜は複写機またはレーザービーム** プリンター等の分離爪、光学太ピックアップの支持軸、 自動車用ステアリング用サポート軸受、撹拌槽中の撹拌 翼またはじゃま板等々にきわめて有効に利用することが できる。

フロントページの続き

(51) Int. Cl. 6

織別記号 广内整理番号 FI

技術表示箇所

C10N 40:00

40:02