Planificación de las prácticas

Curso 2017

Descripción

Este documento detalla de forma genérica la línea de aprendizaje que seguiremos según habilidades y en las tres líneas de aprendizaje (programación, electrónica y mecánica)

Áreas de Aprendizaje

1. Programación/Software

Según las edades tendremos dos estrategias distintas, nos basamos en solo Scratch/S4A para los pequeños o para los mayores usamos Scratch/Arduino en C.

El objetivo a lo largo del año conseguir asimilar los conceptos básicos de la programación:

Instrucciones de control, condicionales, operadores matemáticos, operadores lógicos y variables. Flujogramas.

Primeros videojuegos: dibujo y movimiento de objetos, disfraces, fondos, música, juegos de plataformas, marcianitos, coches y simuladores.

Trabajo con S4A, sensores y actuadores externos de la placa Arduino.

2. Electrónica

Introducir los conceptos de electricidad sobre una base práctica. Montajes con luces y motores para comprender la continuidad, montajes serie y paralelo... usaremos motores, luces, cables, interruptores y pilas.

En principio trabajaremos estos conceptos de forma aislada sobre montajes en placas de ensayo... una vez dominados los conceptos introduciremos el control de estos circuitos con el ordenador.

Nos familiarizaremos con los componentes usando una técnica divertida, la ingeniería inversa de abrir y destripar cacharos.

Aprenderemos a soldar con estaño, para llegar a montar nuestra propia shield de Scracth que usaremos en la programación y nuestros robots.

3. Mecánica

Objetivo es tener a lo largo del año una idea la importancia de la mecánica y saber identificar las distintas estructuras que usamos a lo largo del día.

Mecánica elemental: palancas, poleas, fuerzas,

Sistemas de tracción: gomas, gravedad, motores, viento

Estructuras: brazos, plataformas elevadores, hélices...

Clasificación de elementos por medidas y formas.

Estudio de los distintos tipos de plataformas mecánicas usadas en robótica: móviles con dos ruedas, tres ruedas, giros con servos o por diferencia de velocidad de motores, insectos.

Trabajaremos todos estos conceptos haciendo nuestros propios inventos con materiales reciclados y mucha imaginación.

4. Robótica

Como convergencia de la base de las tres disciplinas que hemos ido trabajando, realizaremos nuestro primer robot. Estudiaremos la mecánica, electrónica y programación que lo forman para llegar a programarlo en Scratch//S4A.

Construiremos nuestro bot, creando la estructura, instalando motores y sensores y finalmente programaremos su comportamiento.

En diseño 😊

Electrónica, conceptos de electricidad

Descripción

Como base para empezar a descubrir la electrónica tenemos que aprender unos conceptos básicos de electricidad.

Circuitos electricidad Básicos: símil h2o

Electricidad Bombilla

Interruptor Motor serie/paralelo

Baterías

Cables conmutadores

Prácticas:

Ctos básicos con cable y regletas	Interruptor. Conmutadas. Pulsadores. Serie y Paralelo
Puerta corredera garaje	Haciendo circuitos con pila cables y
Barrera paso tren.	conmutadores/interruptores
Ascensor.	

Lógica Binaria:

Explicamos las puertas lógicas básicas y hacemos circuitos sencillos de puertas lógicas.

AND OR XOR NAND	Trabajamos con protoboards chip y leds.

Juegos

Buscaminas con concepto AND.

Simulación:

Todos estos conceptos y prácticas se pueden simular con scratch / S4A

Scratch, aprendiendo a programar

Descripción

Línea de formación para aprender los fundamentos de la programación de forma lúdica y divertida. Trabajaremos por secciones los distintos conceptos, intentando captar las ideas de forma intuitiva.

Manual getting started Scratch

Instrucciones de control:

Comienzo de programa. Por siempre (while) Repetir 'n' (for) Esperar hasta Si (if) Si no (else) Detener

Para trabajar estos conceptos haremos pequeñas escenas. Animando imágenes con los disfraces de los sprites y haciendo diálogos con historias en distintos escenarios. Preparar algo con tonos y música (TBD, pero creo que puede ser interesante) (también buscar algo específico para niñas, ni idea todavía). También es interesante aprender a crear nuestros propios sprites. Usar las guías "getting started"

Operadores lógicos y matemáticos:

And Multiplicar
Or Dividir
Not Redondear
Suma Modulo
Resta Azar

Variables y listas. Local vs Global, constantes y contadores.

Flujogramas.

Primeros videojuegos: dibujo y movimiento de objetos, disfraces, fondos, música, juegos de plataformas, marcianitos, coches y simuladores.

Funciones, mensajes.

Guías de trabajo

A continuación, adjuntamos las guías de alumno y profesor/tutor. Son completísimas.

Guía Profesor: manual Profesor Scratch

Guía del Alumno: Cuaderno del alumno Scratch

Trabajo con S4A

Poco a poco iremos introduciendo algunos conceptos de electrónica y control con S4A. a medida que avancemos en los conceptos de electrónica en la otra materia iremos trabajando estas sencillas prácticas.

Manual S4A

Concepto de simulador y realidad. Por ejemplo realizar una práctica con un pulsador simulado en pantalla que encienda una luz para luego hacer un pulsador real usando Arduino. Simulador del tanque...

Algunas ideas sobre temáticas de programación.

Trabajo con Música, (to be investigated)

Programación de "amigos ciegos", Juego de la programación: un niño en el centro de la clase guiado por las ordenes que le da un compañero para realizar una tarea (anda tres pasos, gira derecha, coge...)

Algo dirigido al sector femenino ¿?

Con el Lápiz de scratch dibujar figuras geométricas, ecuaciones...

Videojuegos

Gravedad

Fondos

Mandos

Lanzar proyectiles

Volantes

Marcianitos

Laberintos

Máquinas: ascensor, parquímetro.

También podemos apoyarnos para la animación en programas como Pivot, que nos dan la base de como programar movimientos (juego de las Olimpiadas).

Con Applnventor podemos ir introduciendo la programación para móviles.

Primeros pasos con Arduino//S4A

Para empezar a programar con Scratch y Arduino, tenemos que sincronizarnos con el taller de electrónica en el que montaremos y probaremos la shield de Arduino scratch_io. Luego tendremos que preparar la placa de Arduino cargando el firmware de s4a, que permite comunicar la placa con el ordenador.

Práctica #Cero: Juego del Frontón

Objetivo

Mediante el desarrollo de este videojuego, vamos a aprender programación con scratch y el manejo de un sensor analógico.

Duración de la práctica

Depende edad y conocimientos previos, pero normalmente 2 horas.

Conocimientos previos

Entendemos que esta práctica se desarrolla con alumnos que están dentro de un programa educativo de programación y robótica... llegado este punto tiene una buena base de metodología de programación es Scrath. Aunque también se puede utilizar esta práctica dentro de las unidades de enseñanza de Scratch.

Algo de teoría sobre el entorno de trabajo

En este proyecto vamos a utilizar cuatro objetos:

El escenario: esta dibujado como un fondo blanco con una línea roja en la parte baja. Esta línea roja no sirve para saber cunado la raqueta no golpea la bola, y por lo tanto el jugado ha fallado un tanto.

Bola: pintamos una bola redonda. Nada especial, nosotros hemos cogido un color azul.

La raqueta: al igual que la bola, esta dibujada como una raya ancha de color negro. Es este caso el color es importante, porque nos servirá en la programación para detectar cuando la raqueta golpea la bola.

La placa Arduino y la shield scratch_io: este objeto nos informara de cuando el jugador pulsa el botón derecho o el izquierdo de nuestra placa. Usaremos esta información de la pulsación para mover la raqueta con Scratch en la dirección apropiada.

Desarrollo guiado

Estudiaremos ahora como implementamos el código en Scratch para cada uno de los objetos que compone el programa.

En Scratch tenemos varios hilos de programa corriendo en paralelo, en nuestro caso, cuando pulsamos la banderita de comienzo, todos los programas de todos los objetos que tienen la

se empiezan a ejecutar.

a) Paso: Objeto Bola

El objeto bola tiene tres hilos de programa ejecutándose a la vez, uno controla cuando la raqueta falla, otro cuando la bola es golpeada por la raqueta y otro que hace que la bola rebote al tocar un borde del escenario. Vamos a estudiarlos:

Primer hilo de programa del objeto Bola:

```
al presionar mostrar
ira x: 13 y: 157
esperar hasta que ctocando el color 2
esconder
tocar sonido grabación1 v y esperar
detener todo
```


Comienzo de esta parte del programa al pulsar "comenzar",

Vemos la bandera verde de comienzo de programa en la esquina superior izquierda de la pantalla.

Estas dos instruciones siguentes, hacen visible el obejto bola y lo colocan en la posicin de la pantalla (z=13, y=157)

Esta instrucción espera a que la bola toque el color rojo. Si recordáis el color rojo es la línea de base que hemos colocado en el escenario. Si la bola toca la línea roja significa que la raqueta ha fallado y la partida se acaba.

Las siguientes tres instrucciones, hacen desparecer la bola, ejecuta el sonido "game over" (que hemos grabado) previamente y detenemos el programa.

Segundo hilo de programa del objeto Bola:

```
al presionar

por siempre si ¿tocando raqueta ?

tocar sonido water_drop v

apuntar en dirección 180 - dirección

mover 5 pasos

girar v número al azar entre -20 y 20 grados
```

Observamos que una vez pulsada la bandera de comienzo de programa, entramos en un bucle que ser repite "por siempre si" se cumple una condición.

En este caso la condición es ¿tocando la raqueta?... ¿está tocando el objeto bola la raqueta?, si la respuesta es afirmativa entramos a ejecutar el código en el interior del bucle, si la respuesta es negativa no se ejecuta el código del interior y sigue esperando por siempre y analizando a la condición a la espera que la bola golpee la raqueta.

```
tocar sonido water_drop v
apuntar en dirección (180 - dirección
mover 5 pasos
girar v número al azar entre -20 y 20 grados
```

El código del interior del bucle, emite el sonido del golpeo de la pelota en la raqueta "tocar sonido". Cambia la dirección de movimiento de la bola en sentido opuesto (restando 180º a la dirección de llegada). Movemos un poco la bola para que deje de

tocar el rojo y se libere el bucle. Finalmente añadimos un pequeño giro a la dirección de la bola para que no siempre sigua el mismo recorrido y añadir un poco de diversión al juego.

Tercer hilo de programa del objeto Bola:

Este último hilo del programa que trabaja sobre el objeto bola y que se ejecuta en paralelo al pulsa la bandera.

Como vemos estamos dentro de un bucle infinito "por siempre": el código que está dentro del bucle se ejecuta eternamente y sin esperar a ninguna condición. Parará

su ejecución cuando el programa se detenga de forma general. Esta parte del código hace que la bola rebote cuando toca un borde del escenario.

b) Paso: Objeto Arduino // scratch_io Shield

El objeto Arduino nos permite interactuar con el exterior y condicionar el funcionamiento de nuestro programa a las acciones que ocurran a nuestra placa. En este caso vamos a utilizar los pulsadores de la placa, con este objeto sabremos que botón esta pulsado en la placa y usaremos esta información para mover la raqueta de derecha a izquierda.

Primero escondemos el dibujo de la placa en la pantalla, solo tenemos que ver la raqueta y la bola en la pantalla.

Luego en un bucle infinito miramos el estado de los pulsadores, para saber cuál esta pulsado.

Sabemos que los pulsadores están conectados en las entradas etiquetadas como 'Digital2' y 'Digital3'. Esta condición es

'VERDADERA' cuando el pulsador está accionado y 'FALSA' cuando no está pulsado.

```
boton_derecho
boton_izquierdo
```

hemos creado dos variables "boton_derecho" y "botón_izquiero" para almacenar el valor del pulsador 'VERDADERO' o 'FALSO', según esté pulsado o liberado el pulsador de la placa.

Usaremos estas variables para mover el objeto 'raqueta', por ahora solo actualizamos su valor.

c) Paso: Objeto Raqueta

```
al presionar

por siempre

si boton_izquierdo = true

fijar x a posición en x + 8

si boton_derecho = true

fijar x a posición en x - 8
```

El código que regula el comportamiento de la raqueta tiene el objetivo de mover la raqueta de izquierda a derecha según el pulsado de la placa que acciones el jugador.

Primero vemos que tenemos un bucle infinito "por siempre".

Dentro del bucle infinito tenemos dos instrucciones de control 'si condición', el código que tenemos dentro del 'si' solo se ejecuta si la condición es cierta (valor =1)

Este operador compara dos valores y da como resultado VERDADERO o TRUE o '1' si los dos valores son iguales. Da FALSO o FALSE o '0' si los dos valores son distintos.

En nuestro código miramos si la variable 'botón_izquierdo' es VERDADERA o TRUE, lo que indica que el pulsador izquierdo está pulsado. Recordar que esta variable la actualiza el objeto 'Arduino' a valor VERDADERO cuando el pulsador está accionado.

La siguiente acción es mover un poco la raqueta siguiendo la instrucción que ha dado el jugador en el sentido que desea. En nuestro caso movemos 8 unidades, si queremos que la raqueta se nueva más rápido podemos aumentar este valor.

Resultado final:

https://www.youtube.com/watch?v=wl1je0dc468

Práctica #1. Encendido Apagado de LED bicolor

Esta sencilla práctica enciende y apaga el diodo bicolor de la shield_IO. El código necesario es el que aparece en la pantalla.

En este link QR podéis ver un video de la práctica funcionado:

https://www.youtube.com/watch?v=YVgjnm5oSs4

Práctica #2. El Dragón enciende velas

Esta curiosa práctica utiliza el sensor de temperatura soldado en la placa (LM35), para detectar la subida de temperatura generada por el aliento del chaval sobre la placa... este aumento de temperatura anima la imagen en pantalla para encender la vela.

Código del Objeto ARDUINO. Lee el valor del sensor de temperatura, conectado en la patilla "analog3" y lo compara con un valor fijo '90' (salida del sensor para la temperatura ambiente). Cambiamos el valor de la variable 'encendido' de cero a uno cuando la temperatura sube (porque el chaval lanzar el aliento sobre el sensor, subiendo la temperatura de éste):

El código del Objeto1 'la vela', toma el valor de la variable 'encendido' para cambiar el disfraz de la vela encendida a la vela apagada y viceversa:

Aquí podeis ver el video de la práctica funcionando:

https://www.youtube.com/watch?v=OONQVJ bflc

Práctica #3. Video Juego volante de mi coche.

En esta práctica usamos la entrada analógica y la resistencia variable para implementar un Joystick sencillo que nos permite controlar un simulador de coches. Practica sencilla pero muy interesante para comenzar con los videojuegos.

Código del arduino scratch IO

La placa del Arduino, hace dos tareas.

Primero espera a que se pulse el pulsador 'Digital2' para empezar a mover hacia delante el cochecito. También analiza el giro del potenciómetro por la vía analógica y actualiza las variables 'left' y 'right' según giremos el volante a la izquierda o derecha. Si está en la posición central ni derecha, ni izquierda pero recto.

```
Archivo Editar Ayuda

Arduino1

x: 0 y: 0 dirección: 90

Programas Disfraces Sonidos

al presionar

esconder

por siempre

fijar left a 0

fijar right a 0

fijar right a 1

fijar right a 1

fijar left a 2

fijar right a 2
```

Código del objeto coche:

El programa que controla el movimiento del cochecito, primero lo coloca en la posición inicial y una vez pulsado el arranque 'go'... comienza a moverlo y girarlo según nos indique las variables 'left' y 'right'. Puede seguir recto o girar dos grados en uno u otro sentido de giro.

Puedes ver un video de la práctica:

https://youtu.be/BLcEbI1tfjM

Práctica #4. Controlando la luminosidad de una bombilla con la claridad del día.

En esta práctica ...

El video.

https://www.youtube.com/watch?v=MjXg0g8XwQs

