Improvement of MRI Phase Contrast Flow Analysis and Imputation Through Temporal Dynamic Image Information

Project Number: 3

BME 528: Medical Diagnosis, Therapeutics, and Informatics Applications

Team Members: Rutvi Zalawadia

ML

ΧZ

Project Lead: JL

Abstract:

Our research enhances cerebral blood flow (CBF) calculation in diabetic patients using phase contrast magnetic resonance imaging (PC-MRI). Using two datasets—one with 3 images taken at intervals of 25-30 minutes and another with 25 images captured milliseconds apart—we developed and evaluated two imputation models. Our study, focusing on vessel identification and flow data extraction, highlights the accuracy of using interpolation over averaging method. These findings emphasize the significance of precise CBF measurement in understanding cerebral vascular dynamics.

Introduction

Our project aims to improve CBF calculation using the imputation model. Total cerebral blood flow (CBF) is crucial for assessing brain hemodynamics and perfusion, reflecting the volume of blood delivered to the brain per unit time. CBF is facilitated by four main vessels: the Right and Left Internal Carotid Arteries (ICA) and Right and Left Vertebral Arteries (VA) [1]. This paper will go over the imputation model we built with two data sets one with 3 images and another with 25 images. Dr. Borzage's lab focuses on calculating CBF and identifying vessels for Diabetic patient groups, children under anesthesia, and vessel stiffness effect on CBF. Our project focused on the dataset obtained from the diabetic patient group. The first data set contains 3 images and temporal information as they are taken 25-30 min apart. The second data set contains 25 images and temporal data as it is taken a few milliseconds apart. Calculating this CBF gives us insight into various disease states as low CBF is associated with various medical conditions and also indicates inadequate perfusion to the brain. Phase Contrast Magnetic Resonance Imaging (PC-MRI) visualizes blood flow, measuring velocity and direction by detecting the phase shift of moving blood protons, without invasive procedures or contrast agents. PC-MRI yields quantitative data on blood flow velocity and volume, enabling precise vascular evaluation. It can assess multiple vessels simultaneously but faces challenges like maintaining high resolution, susceptibility to motion artifacts from patient movement, potentially compromising data quality.

Our project involves mastering a phase contrast algorithm that processes MRI images in three forms; phase, magnitude, and complex difference vital for detailed vascular analysis. The algorithm initially identifies vessels and creates masks, which are then refined throughout unaliasing and a watershedding step that uses PC MRI's directional flow data to differentiate closely positioned internal carotid arteries and jugular veins. Subsequently, it identifies vertebral arteries relative to the ICAs. After processing, we manually check and refine the algorithm's outputs to ensure accuracy. Given that each output requires manual refinement, comprehensive training led by our project leader, J. Liu, is critical. This training is fundamental to properly handle the dataset and develop an imputation model based on these refined outputs.

An imputation model for blood vessels is a computational technique employed in medical imaging to address missing or incomplete data within the images. Dr. Borzage's lab previously utilized a standard least-squares model, which was derived from a study published in Frontier involving PC images from 129 patients [2]. This model primarily focuses on the interrelationships among the four vessels and employs various combinations of ICAs and VAs to estimate missing blood flow values. However, a notable limitation of this approach is its reliance on generalized estimates of cerebral blood flow (CBF) that do not incorporate temporal information from individual subjects. To enhance the model's accuracy, we developed a temporal imputation model that integrates this critical temporal data.

Developed Imputation Models

Initially, a dataset consisting of 3 images of a patient, taken 20-30 minutes apart were obtained after running the provided code of vessel identification and manual vessel ID corrections. In this case, all vessels including RICA, LICA, RVA, and LVA on the patients PC MRI were visible, thus none needed to be imputed. However, to be able to develop an imputation model using the provided dataset, one of the vessels was assumed to be missing while the other two image data were used to approximate its value. By applying the same logic to all the vessels, the first method of imputation is developed, which is imputation via averaging. Additionally, the accuracy of the proposed imputation models is analyzed against available actual values.

Applying the averaging method to all the vessels, estimated/imputed vessel IDs are obtained as shown in Table 1. Figure 1 shows a visual representation of the actual vs imputed values for 3 image dataset where averaged values for each vessel, RICA, LICA, LVA, and RVA look to be within the same range. However, the statistical method of regression and residual plots are used to analyze how well the averaging model fits the actual data. On the residual plots, as shown in Figure 2, the vertical axis, the residuals represent the differences between the actual and predicted values from a regression model. Closer the residuals are to 0, less of an error there is and thus the predicted value is more similar, closer to the actual value. Out of all four plots, RVA has the least amount of error in its estimated values as 2 initial residuals are nearly 0, however to mathematically test the observation and see how the residuals fit within the linear model, a linear trendline is added to each plot. The findings are that the ICAs, right and left, have more of a horizontal trendline indicating that the error values are more scattered and there is no relationship between the independent and dependent variables, thus the model for ICAs does not entirely capture variations in the dependent variable. Respectively, R^2 values are very low for both RICA and LICA trendlines. On another hand, in terms of VAs, right and left, the linear trendline is more slopped indicating that there is a relationship between the variables and as expected, R² values are much higher as well. So, the statistical analysis also shows that the averaging method of imputation provides good estimation for VAs, specifically RVA, while there is some error for ICA imputation.

At later stages of the project, the team was provided with other research data, consisting of 25 images of the same patient, taken milliseconds apart. After running the code and manual vessel ID corrections, all images and respective vessel information was obtained. These temporal images provided more data points where two imputation models were considered. Firstly, the averaging method as used for 3 image dataset was applied, where in this case to approximate a missing value 24 other data points were available and used. Table 2 shows imputed values, via the averaging method, for all vessels using the 25 images. In this case since more points were available, regression and residual plot analysis did not provide good

information to determine the validity of the averaging method, thus another method of analysis was used which will be discussed later in the report.

Second method of imputation used was imputation via interpolation. Interpolation is a curve-fitting method which utilizes known data points to estimate unknown values. A linear interpolation was used to impute unknown vessel data. Linear interpolation involves calculating the intermediate values along the line based on the proportional distance between the known points and uses the following formula:

$$y = y_1 + \frac{x - x_1}{x_2 - x_1} \times (y_2 - y_1)$$

To apply the linear interpolation model to the 25 image dataset, a MatLab code was developed as shown in Appendix B. The code was run for each vessel where it assigned NaN, vessel missing, value to every image, one at a time, and after imputing it continued onto another until all 25 data points were imputed. Figures 3-6 show results of all imputation models compared to actual values as well as the old imputation model as presented in a published research of 2023. It is apparent from the plots that the interpolation method is better approximation compared to actual than the averaging or old model. In this case, similar to 3 dataset analysis, estimated VA values are more accurate and closer to actual than ICAs. One reason for such observation can be that ICAs are larger vessels with more turbulent blood flow, thus at any given moment blood flow rates vary more drastically than that of VAs.

The old imputation model reveals that while the RICA curve is somewhat shifted, it generally follows the trend as the actual curve. This is attributed to the model's inherent ability to capture the interrelationships among the four vessels [2]. Consequently, fluctuations in the flows of the other three vessels are reflected in the imputation values for RICA, despite the model's lack of temporal data integration. It is important to note, however, that the curves for the other three vessels do not align as closely with the actual data compared to those produced by the interpolation model. This discrepancy arises because the old model does not differentiate between the left and right sides for either the ICAs or the VAs, treating them identically. Our new model addresses this limitation by distinguishing between the sides, which enhances its accuracy and performance over the old model.

The overall curve of cerebral blood flow was considered as well, as seen in Figure 7. In this case, when one point is assumed to be missing that indicates that all 4 vessel IDs on one image are missing. From the plot it can be seen that imputation via averaging provides values that are mostly within the same range and does not behave closely to the actual curve. Imputation via interpolation, however, provides better approximation for individual data points and mimics the actual curve more accurately. Thus, from curve analysis it is concluded that imputation via the interpolation model is a more accurate representation.

Error Analysis and Improvement

Table 3 presents the results of our investigation into imputation models for blood vessel imaging, featuring a comparative analysis of Mean Absolute Errors (MAE) for four different vascular identities: RICA, LICA, RVA, and LVA. This analysis encompasses three imputation methodologies: the traditional model previously employed, a newly developed averaging model, and an advanced interpolation model. The results indicate a substantial enhancement in imputation accuracy with the introduction of the new models. Specifically, the interpolation model demonstrates superior performance, achieving the lowest MAE values across all categories—for example, reducing the MAE for RICA from 58.1585 in the traditional model to 5.9092. These findings validate the effectiveness of the interpolation approach in refining the precision of blood flow imputation within vascular imaging, marking a significant advancement over prior techniques.

Conclusion

In conclusion, our imputation model that uses interpolation technique showed better accuracy compared to the averaging method. We validated our model with both the data set we received. One of the limitations of our model is it limits point approximation to two data points when using interpolation technique. We would like to explore polynomial interpolation to solve this problem. We would also like to validate our model with a larger data set and look at individual vessels and the total CBF.

Appendix A (Figures & Tables)

Table 1: Imputed through averaging model data for 3 image dataset

VESSELS	IMPUTED VIA AVERAGING	ACTUAL
RICA -1	315.1865	321.4234
RICA -2	319.6529	312.4906
RICA - 3	316.957	317.8824
LICA -1	251.4072	254.622
LICA -2	252.2206	252.9952
LICA -3	253.8086	249.8192
RVA -1	74.57645	69.9884
RVA -2	73.67825	71.7848
RVA -3	70.8866	77.3681
LVA -1	59.7212	57.259
LVA -2	59.77205	57.1573
LVA -3	57.20815	62.2851

 Table 2: Imputed values for all 4 vessels via averaging method

	Avg1		Avg2		Avg3		Avg4
RICA -1	244.475	LICA -1	184.016	RVA -1	132.633	LVA-1	46.192
RICA -2	245.143	LICA -2	184.615	RVA -2	133.037	LVA-2	46.332

RICA -3	244.971	LICA -3	184.341	RVA -3	133.104	LVA-3	46.225
RICA -4	245.387	LICA -4	184.385	RVA -4	133.427	LVA-4	46.185
RICA -5	244.889	LICA -5	184.082	RVA -5	133.039	LVA-5	46.340
RICA -6	244.207	LICA -6	185.150	RVA -6	133.024	LVA-6	46.244
RICA -7	243.859	LICA -7	183.853	RVA -7	132.698	LVA-7	46.306
RICA -8	243.517	LICA -8	185.751	RVA -8	132.623	LVA-8	46.281
RICA -9	244.506	LICA -9	184.172	RVA -9	133.085	LVA-9	46.209
RICA -10	244.722	LICA -10	184.442	RVA -10	133.311	LVA-10	46.425
RICA -11	244.675	LICA -11	184.191	RVA -11	133.107	LVA-11	46.179
RICA -12	244.819	LICA -12	184.372	RVA -12	133.269	LVA-12	46.231
RICA -13	243.947	LICA -13	183.896	RVA -13	132.875	LVA-13	46.161
RICA -14	243.889	LICA -14	184.040	RVA -14	132.619	LVA-14	46.147
RICA -15	244.068	LICA -15	184.244	RVA -15	132.440	LVA-15	46.121
RICA -16	244.452	LICA -16	183.898	RVA -16	132.355	LVA-16	45.924
RICA -17	244.233	LICA -17	183.649	RVA -17	132.074	LVA-17	45.898
RICA -18	243.979	LICA -18	183.379	RVA -18	131.960	LVA-18	45.821
RICA -19	244.005	LICA -19	183.593	RVA -19	132.042	LVA-19	46.104
RICA -20	244.075	LICA -20	184.095	RVA -20	132.424	LVA-20	46.059
RICA -21	243.841	LICA -21	183.775	RVA -21	132.389	LVA-21	46.010
RICA -22	243.723	LICA -22	183.863	RVA -22	132.538	LVA-22	46.001

RICA -23	243.827	LICA -23	183.916	RVA -23	132.502	LVA-23	45.962
RICA -24	244.359	LICA -24	183.891	RVA -24	132.669	LVA-24	45.967
RICA -25	243.985	LICA -25	183.242	RVA -25	132.693	LVA-25	46.096

 Table 3: Comparative Analysis of Mean Absolute Errors (MAE) for Vessel Imputation Models

Vessel ID \ Model	Old Imputation Averaging Model		Interpolation Model
RICA	58.1585	10.387	5.9092
LICA	54.1024	5.5182	4.6886
RVA	38.8774	8.2937	3.5185
LVA	41.6466	3.2052	1.9748

Figure 1: Visual representation of actual vs imputed values of 3 image dataset

Figure 2: Residual Plots for all imputed vessels with 3 image dataset

Figure 3: Imputed flow rates for RICA using averaging, interpolation, old (2023) imputation models against actual

Figure 4: Imputed flow rates for LICA using averaging, interpolation, old (2023) imputation models against actual

Figure 5: Imputed flow rates for LVA using averaging, interpolation, old (2023) imputation models against actual

Figure 6: Imputed flow rates for RVA using averaging, interpolation, old (2023) imputation models against actual

Figure 7: Imputed flow rates for CBF using averaging & interpolation imputation models against actual

Appendix B (MatLab Code)

clcclear all %Remove below 2 lines out of comment if want to have 2 unknown values *%random* = *randi* ([1,25]); %Y(random) = NaN;for j = 1:25%X Data for images X = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25];%Take Y out of comment for whichever vessel want to compute %RICA % *Y* = [240.1432,224.1086,228.242,218.2689,230.213,246.5856, 254.94, 263.155, 239.4188, 234.2248, 235.3426, 231.8853,252.826,254.221, 249.9195,240.7137,245.9703, 252.0551,251.4273,249.7621,255.3782,258.206,255.6948,242.9387,251.912]; %RVA %Y =[134.737,125.0554,123.4529,115.6851,124.9964,125.3667,133.1774,134.9946,123.9036,118.4699,123.36]17,119.4751,128.9367,135.0858,139.3676,141.4138,148.1513,150.8896,148.9347,139.7683,140.5982,13 7.0389,137.8885,133.8928,133.2972]; % LVA %Y =[44.8146, 41.4467, 44.0169, 43, 41.2535, 43.5608, 42.0727, 42.6772, 44.3978, 39.2145, 45.1168, 43.8738, 45.55]5,45,9002,46.5262,51.2552,51.8633,53.7252,46.9197,47.9946,49.1841,49.3879,50.3252,50.2232,47.1272]; %LICA

```
% Y=
[183.5186,169.1456,175.7204,174.6688,181.9268,183.3577,187.4213,185.647,179.7823,173.288,179.30]
83,174,9746,186.4,182.9463,178.0527,186.3553,192.3274,198.7966,193.6563,181.6192,189.2886,187.18
88,185.9046,186.5127,202.0912]
%CBF Values
Y =
[603.2134,559.7563,571.4321,553.6144,578.3897,598.8707,617.6114,626.4738,587.5025,565.1972,583.1]
294,570.205,613.7177,618.1533,613.8661,619.738,638.3124,655.4666,640.938,619.1442,634.449,631.82
16,629.8131,613.5674,634.4276];
%one vessel at a time is assumed to be missing in each iteration
Y(j) = NaN;
% Find missing Y-values
missingValue = isnan(Y);
validIndices = find(~isnan(Y));
% Interpolate missing values
for i = find(missingValue)
if i < 2 % if x(1)=NaN
firstValue = interp1(X(validIndices(1:2)), Y(validIndices(1:2)), X(1), 'linear', 'extrap');
Y(1:validIndices(1)-1) = firstValue;
elseif i > 24 \% if x(last)=NaN
lastValue = interp1(X(validIndices(end-1:end)), Y(validIndices(end-1:end)), X(end), 'linear', 'extrap');
Y(validIndices(end)+1:end) = lastValue;
else
% Find nearest X-values
leftIndex = find(X < X(i), 1, 'last');
rightIndex = find(X > X(i), 1, 'first');
```

% Perform linear interpolation

interpolatedY = interp1([X(leftIndex), X(rightIndex)], [Y(leftIndex), Y(rightIndex)], X(i), 'linear');

% Replace missing Y-value with interpolated value

Y(i) = interpolatedY;

end

 $Y_{interp(j,1)} = Y(i);$

end

end

disp(Y_interp);

Appendix C (Schedule & Resources)

A screenshot of MS Project used throughout the project for scheduling and assignment of tasks

	Task Mode ▼	WBS -	Task Name	Durat ▼	Start -	Finish 💌	Resource Names 🔻
1	Iviode *	1	4 Initiation	4 days	Mon 2/12/24	Thu 2/15/24	Resource (values)
2	=3	1.1	Project Introduction & Team Formation	•	Mon 2/12/24	Thu 2/15/24	Haochen.Meri.Rutvi
3	-3	2	△ Planning	9 days	Mon 2/12/24	Wed 2/21/24	
4	-5	2.1	Meeting with project manager	1 day	Mon 2/12/24	Mon 2/12/24	Haochen, Meri, Rutvi
5	=3	2.2	Intro to the project & research	2 days	Mon 2/12/24	Tue 2/13/24	Haochen, Meri, Rutvi
6	=5	2.3	Team Meeting	1 day	Sun 2/18/24	Sun 2/18/24	Haochen,Meri,Rutvi
7	-3	2.4	Meeting with PM	1 day	Wed 2/21/24	Wed 2/21/24	Haochen, Rutvi
- 8	=3	3	4 Execution		Fri 2/16/24	Tue 4/23/24	
9	-5	3.1	4 TASK 1	9 days	Fri 2/16/24	Mon 2/26/24	
10	-3	3.1.1	Research MRI & its uses	3 days	Fri 2/16/24	Mon 2/19/24	Rutvi
11	-3	3.1.2	Research PC MRI and its uses	3 days	Fri 2/16/24	Mon 2/19/24	Meri
12	=5	3.1.3	Study Coronal Angiogram.	4 days	Fri 2/16/24	Tue 2/20/24	Haochen
12		5.1.5	Magnitude & Phase Images	4 days	1112/10/24	140 2/20/24	Haberien
13	- 5	3.1.4	Meeting with PM	1 day	Mon 2/26/24	Mon 2/26/24	Haochen, Meri, Rutvi
14	- 5	3.1.5	Create Project Timeline	2 days	Fri 2/16/24	Sun 2/18/24	Meri
15	5	3.1.6	Team Meeting	1 day	Sun 2/25/24	Sun 2/25/24	Haochen,Meri,Rutvi
16	-5	3.1.7	Create First Update Presentation	3 days	Fri 2/16/24	Mon 2/19/24	Haochen,Meri,Rutvi
17	-5	3.1.8	Present to class: First Update	1 day	Tue 2/20/24	Tue 2/20/24	Haochen,Meri,Rutvi
18	-5	3.2	△ TASK 2	21 days	Tue 2/27/24	Tue 3/26/24	
19	-5	3.2.1	Meeting with PM	1 day	Tue 2/27/24	Tue 2/27/24	Haochen, Meri, Rutvi
20	-5	3.2.2	Acquire data for cerebral blood flow	5 days	Tue 2/27/24	Mon 3/4/24	Haochen,Meri,Rutvi
21	-5	3.2.3	Review & study the data: 3 images	11 days	Tue 3/5/24	Tue 3/19/24	Haochen,Meri,Rutvi
22	-5	3.2.4	Research/Review PC MRI processing algorithm	11 days	Tue 3/12/24	Tue 3/26/24	Haochen,Meri,Rutvi
23	<u>-</u>	3.2.5	Team Meeting	1 day	Mon 3/4/24	Mon 3/4/24	Haochen,Meri,Rutvi
24	-5	3.2.6	Meeting with PM	1 day	Mon 3/25/24	Mon 3/25/24	Haochen, Meri, Rutvi
25	-5	3.2.7	Create 2nd update presentation	4 days	Tue 3/5/24	Fri 3/8/24	Haochen,Meri,Rutvi
26	-5	3.2.8	Present to class: Second Update	1 day	Tue 3/26/24	Tue 3/26/24	Haochen,Meri,Rutvi

5	-5	3.2.7	Create 2nd update presentation	4 days	Tue 3/5/24	Fri 3/8/24	Haochen,Meri,Rutvi
6	-5	3.2.8	Present to class: Second Update	1 day	Tue 3/26/24	Tue 3/26/24	Haochen,Meri,Rutvi
7	-	3.3	△ TASK 3	21 days	Wed 3/27/24	Tue 4/23/24	
8	-	3.3.1	Study cases of imputed vessels	5 days	Wed 3/27/24	Tue 4/2/24	Haochen, Meri, Rutvi
9	-5	3.3.1.1	Spatial & temporal information of MRI images	5 days	Wed 3/27/24	Tue 4/2/24	Haochen
0	-5	3.3.2	Team Meeting	1 day	Mon 4/1/24	Mon 4/1/24	Haochen,Meri,Rutvi
1	-5	3.3.3	Brainstorm methods to segment, identify & impute vessels	6 days	Wed 3/27/24	Wed 4/3/24	Haochen,Meri,Rutvi
2	-5	3.3.4	Develop averaging method: 3 dataset	3 days	Thu 4/4/24	Mon 4/8/24	Meri
3	-5	3.3.5	Implement averaging method (1) on all vessels: 3 dataset	3 days	Tue 4/9/24	Thu 4/11/24	Rutvi
4		3.3.6	Meeting with PM	1 day	Wed 4/10/24	Wed 4/10/24	Haochen, Meri, Rutvi
5	-3	3.3.7	Evaluate the performance of the method 1	4 days	Tue 4/9/24	Fri 4/12/24	Haochen
36	-5	3.3.8	Study received algorithm of 25 images	2 days	Mon 4/15/24	Tue 4/16/24	Haochen,Meri,Rutvi
37	-5	3.3.9	Run code, manually correct, and obtain 25 images	1 day	Wed 4/17/24	Wed 4/17/24	Haochen
8	-5	3.3.10	Apply Method 1 (averaging) to 25 image dataset	3 days	Thu 4/18/24	Sun 4/21/24	Rutvi
9	-5	3.3.11	Meeting with PM	1 day	Fri 4/12/24	Fri 4/12/24	Haochen, Meri, Rutvi
10	-5	3.3.12	Develop Method 2 - Imputation via interpolation for 25 image dataset	3 days	Thu 4/18/24	Sun 4/21/24	Meri
1	-5	3.3.13	Statistical analysis of methods	3 days	Sun 4/21/24	Tue 4/23/24	Haochen
2	-5	3.3.14	Meeting with PM	1 day	Wed 4/17/24	Wed 4/17/24	Haochen, Meri, Rutvi
3	-5	3.4	△ Close-Out	3 days	Sat 4/20/24	Tue 4/23/24	
4	*	3.4.1	Prepare Final Project Presentation	4 days	Sat 4/20/24	Tue 4/23/24	Haochen,Meri,Rutvi
5	-5	3.4.2	Team Meeting	1 day	Mon 4/22/24	Mon 4/22/24	Haochen,Meri,Rutvi
6	-5	3.4.3	Meeting with PM	1 day	Mon 4/22/24	Mon 4/22/24	Haochen, Meri, Rutvi
17	-5	3.4.4	Present to class: Final Presentation	1 day	Tue 4/23/24	Tue 4/23/24	Haochen,Meri,Rutvi

 Table 4: Number of man hours spent for project 3 from start to finish

	Meri Ghazaryan	Rutvi Zalawadia	Haochen Xie
Average total resource hrs spent (hrs)	180	180	180

Appendix D (Lessons Learned)

• Developed deeper understanding on the subject matter - i.e. how PC-MRI works, how images are obtained and processed, understanding the calculation of CBF and what it entails, functionality and flow of each vessel RICA, LICA, RVA, LVA.

- Learned the existing standard least-squares imputation model adopted by Dr. Borzage's lab.
- Learned and analyzed how the PC-MRI algorithm developed by Dr. Borzage's lab extracted vessel ID and flow information from the images. Additionally, developed understanding of manual vessel ID correction using phase contrast algorithm.
- Developed understanding of challenges to obtain healthcare and research data as well as the steps involved in acquiring clearance to access collaborator data.
- Explored and learned various statistical methods, models, and metrics, including single
 imputation, least-squares regression, linear interpolation, polynomial interpolation, and residual
 analysis and mean absolute errors.
- Developed better understanding of how each statistical method can be applied to our project-specific case through trial and error analysis
- Learned to better work in a team and leverage each individual's skill to complete project tasks on time.

References

- Zarrinkoob, L., Ambarki, K., Wåhlin, A., Birgander, R., Eklund, A., & Malm, J. (2015, March 31). Blood flow distribution in cerebral arteries. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420884/
- Shah P, Doyle E, Wood JC and Borzage MT (2023) Imputation models and error analysis for phase contrast MR cerebral blood flow measurements. *Front. Physiol.* 14:1096297. doi: 10.3389/fphys.2023.1096297