Расчётка по SVM для датасета Wine (2 признака)

1. Исходные данные

Точки $x_i = (\text{param}_1, \text{param}_2), \text{ метки } y_i \in \{-1, +1\}:$

param_1	param_2	y
0.27	0.36	1
0.30	0.34	1
0.70	0.00	-1
0.88	0.00	-1

Расчёт средних μ и стандартных отклонений σ

Дано: четыре точки $x_i = (x_{i1}, x_{i2})$:

$$x_1 = (0.27, 0.36), \quad x_2 = (0.30, 0.34), \quad x_3 = (0.70, 0.00), \quad x_4 = (0.88, 0.00).$$

Средние (по формуле $\mu_j = \frac{1}{n} \sum_i x_{ij}, n = 4$):

$$\mu_1 = \frac{0.27 + 0.30 + 0.70 + 0.88}{4} = \frac{2.15}{4} = 0.53750000,$$
$$\mu_2 = \frac{0.36 + 0.34 + 0.00 + 0.00}{4} = \frac{0.70}{4} = 0.17500000.$$

Дисперсии (population): $\sigma_j^2 = \frac{1}{n} \sum_i (x_{ij} - \mu_j)^2$.

$$\sigma_1^2 = \frac{(0.27 - 0.5375)^2 + (0.30 - 0.5375)^2 + (0.70 - 0.5375)^2 + (0.88 - 0.5375)^2}{4}$$

$$= \frac{(-0.2675)^2 + (-0.2375)^2 + (0.1625)^2 + (0.3425)^2}{4}$$

$$= \frac{0.07155625 + 0.05640625 + 0.02640625 + 0.11730625}{4}$$

$$= \frac{0.27167500}{4} = 0.06791875,$$

$$\sigma_2^2 = \frac{(0.36 - 0.175)^2 + (0.34 - 0.175)^2 + (0.00 - 0.175)^2 + (0.00 - 0.175)^2}{4}$$

$$= \frac{(0.185)^2 + (0.165)^2 + (-0.175)^2 + (-0.175)^2}{4}$$

$$= \frac{0.03422500 + 0.02722500 + 0.03062500 + 0.03062500}{4}$$

$$= \frac{0.12270000}{4} = 0.03067500.$$

Стандартные отклонения (квадратные корни из дисперсий):

$$\sigma_1 = \sqrt{0.06791875} = 0.26061226, \qquad \sigma_2 = \sqrt{0.03067500} = 0.17514280.$$

Итого:

$$\mu = (0.53750000, 0.17500000), \qquad \sigma = (0.26061226, 0.17514280)$$

Нормализация признаков (до/после и поэлементные расчёты)

Стандартизируем каждый признак по формуле (population std, как в C++):

$$\mu_j = \frac{1}{n} \sum_{i=1}^n x_{ij}, \qquad \sigma_j = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_{ij} - \mu_j)^2}, \qquad z_{ij} = \frac{x_{ij} - \mu_j}{\max(\sigma_j, 10^{-12})}.$$

Для текущего набора (n = 4):

$$\mu = (0.53750000, 0.17500000), \qquad \sigma = (0.26061226, 0.17514280).$$

Таблица "до/после": исходные x_{ij} и стандартизованные z_{ij}

i	x_{i1}	x_{i2}	z_{i1}	z_{i2}
1	0.27	0.36	-1.02642907	1.05628094
2	0.30	0.34	-0.91131553	0.94208840
3	0.70	0.00	0.62353168	-0.99918467
4	0.88	0.00	1.31421292	-0.99918467

Поэлементные расчёты z_{ij} (с подстановкой)

$$\begin{array}{lll} z_{11} = \frac{x_{11} - \mu_1}{\sigma_1} & z_{31} = \frac{x_{31} - \mu_1}{\sigma_1} \\ = \frac{0.27 - 0.5375}{0.26061226} & = \frac{0.70 - 0.5375}{0.26061226} \\ = \frac{-0.2675}{0.26061226} = -1.02642907, & = \frac{0.1625}{0.26061226} = 0.62353168, \\ z_{12} = \frac{x_{12} - \mu_2}{\sigma_2} & z_{32} = \frac{x_{32} - \mu_2}{\sigma_2} \\ = \frac{0.36 - 0.175}{0.17514280} & = \frac{0.00 - 0.175}{0.17514280} \\ = \frac{0.185}{0.17514280} = 1.05628094, & = \frac{-0.175}{0.17514280} = -0.99918467, \\ z_{21} = \frac{x_{21} - \mu_1}{\sigma_1} & z_{41} = \frac{x_{41} - \mu_1}{\sigma_1} \\ = \frac{0.30 - 0.5375}{0.26061226} & = \frac{0.88 - 0.5375}{0.26061226} \\ = \frac{-0.2375}{0.26061226} = -0.91131553, & z_{42} = \frac{x_{42} - \mu_2}{\sigma_2} \\ z_{22} = \frac{x_{22} - \mu_2}{\sigma_2} & z_{42} = \frac{x_{42} - \mu_2}{\sigma_2} \\ = \frac{0.34 - 0.175}{0.17514280} & = \frac{0.00 - 0.175}{0.17514280} \\ = \frac{0.165}{0.17514280} = 0.94208840. & = \frac{-0.175}{0.17514280} = -0.99918467. \end{array}$$

2. Нормализация (standardize как в C++)

Для каждого признака j берём среднее и стандартное отклонение (population std):

$$\mu_j = \frac{1}{n} \sum_{i=1}^n x_{ij}, \qquad \sigma_j = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_{ij} - \mu_j)^2}.$$

Стандартизованные признаки: $z_{ij}=\frac{x_{ij}-\mu_j}{\max(\sigma_j,10^{-12})}$. Численно для нашего набора (n=4): $\mu=(0.537500,\ 0.175000), \qquad \sigma=(0.260612,\ 0.175143).$

3. Стандартизованные векторы Z_i

$$Z_1 = (-1.02642907, 1.05628094),$$

 $Z_2 = (-0.91131553, 0.94208840),$
 $Z_3 = (0.62353168, -0.99918467),$
 $Z_4 = (1.31421292, -0.99918467).$

4. Матрица Грама $K = ZZ^{\top}$

Определение: $K_{ij} = \langle Z_i, Z_j \rangle = \sum_{k=1}^2 Z_{ik} Z_{jk}$.

$$K = \begin{bmatrix} 2.16928606 & 1.93051078 & -1.69543077 & -2.40436607 \\ 1.93051078 & 1.71802656 & -1.50955440 & -2.13898294 \\ -1.69543077 & -1.50955440 & 1.38716176 & 1.81782340 \\ -2.40436607 & -2.13898294 & 1.81782340 & 2.72552562 \end{bmatrix}$$

Матрица Грама K для стандартизованных векторов

По определению:

$$K_{ij} = \langle Z_i, Z_j \rangle = \sum_{k=1}^{2} Z_{ik} Z_{jk}.$$

Векторы Z_i (из нормализации):

$$Z_1 = (-1.02642907, 1.05628094),$$

 $Z_2 = (-0.91131553, 0.94208840),$
 $Z_3 = (0.62353168, -0.99918467),$
 $Z_4 = (1.31421292, -0.99918467).$

Пошаговые вычисления всех элементов K_{ij}

По формуле
$$K_{ij}=\langle Z_i,Z_j\rangle=\sum_{k=1}^2 Z_{ik}Z_{jk}$$
 при
$$Z_1=(-1.02642907, \quad 1.05628094),$$
 $Z_2=(-0.91131553, \quad 0.94208840),$ $Z_3=(\quad 0.62353168, \quad -0.99918467),$ $Z_4=(\quad 1.31421292, \quad -0.99918467),$

получаем:

$$K_{12} = (-1.02642907)(-0.91131553) + (1.05628094)(0.94208840) = 1.93051078,$$
 $K_{13} = (-1.02642907)(0.62353168) + (1.05628094)(-0.99918467) = -1.69543077,$
 $K_{14} = (-1.02642907)(1.31421292) + (1.05628094)(-0.99918467) = -2.40436607;$
Строка 2: $K_{21} = (-0.91131553)(-1.02642907) + (0.94208840)(1.05628094) = 1.93051078,$
 $K_{22} = (-0.91131553)(-0.91131553) + (0.94208840)(0.94208840) = 1.71802656,$
 $K_{23} = (-0.91131553)(0.62353168) + (0.94208840)(-0.99918467) = -1.50955440,$
 $K_{24} = (-0.91131553)(1.31421292) + (0.94208840)(-0.99918467) = -2.13898294;$
Строка 3: $K_{31} = (0.62353168)(-1.02642907) + (-0.99918467)(1.05628094) = -1.69543077,$
 $K_{32} = (0.62353168)(0.62353168) + (-0.99918467)(0.94208840) = -1.50955440,$
 $K_{33} = (0.62353168)(0.62353168) + (-0.99918467)(0.94208840) = -1.81782340;$
Строка 4: $K_{44} = (1.31421292)(-1.02642907) + (-0.99918467)(1.05628094) = -2.40436607$

Строка 1: $K_{11} = (-1.02642907)(-1.02642907) + (1.05628094)(1.05628094) = 2.16928606,$

Строка 4: $K_{41} = (1.31421292)(-1.02642907) + (-0.99918467)(1.05628094) = -2.40436607,$ $K_{42} = (1.31421292)(-0.91131553) + (-0.99918467)(0.94208840) = -2.13898294,$ $K_{43} = (1.31421292)(0.62353168) + (-0.99918467)(-0.99918467) = 1.81782340,$ $K_{44} = (1.31421292)(1.31421292) + (-0.99918467)(-0.99918467) = 2.72552562.$

$$K = \begin{bmatrix} 2.16928606 & 1.93051078 & -1.69543077 & -2.40436607 \\ 1.93051078 & 1.71802656 & -1.50955440 & -2.13898294 \\ -1.69543077 & -1.50955440 & 1.38716176 & 1.81782340 \\ -2.40436607 & -2.13898294 & 1.81782340 & 2.72552562 \end{bmatrix}.$$

Мини-проверка: $\|Z_2 - Z_3\|^2$ через элементы K и вычисление a По определению,

$$||Z_2 - Z_3||^2 = \langle Z_2 - Z_3, Z_2 - Z_3 \rangle = K_{22} - 2K_{23} + K_{33}.$$

Подставим числовые значения:

$$||Z_2 - Z_3||^2 = 1.71802656 - 2(-1.50955440) + 1.38716176$$

= 1.71802656 + 3.01910880 + 1.38716176
= 6.12429712.

По ККТ для двух опорных векторов Z_2, Z_3 :

$$a \|Z_2 - Z_3\|^2 = 2 \implies a = \frac{2}{\|Z_2 - Z_3\|^2} = \frac{2}{6.12429712} = \boxed{0.326606} (\approx 0.3266).$$

Прямая задача (жёсткий зазор): смысл и цель

Пусть разделяющая гиперплоскость задаётся $w^{\top}x + b = 0$. Знак $f(x) = \text{sign}(w^{\top}x + b)$ — предсказанный класс.

Функциональный маржин точки (x_i, y_i) :

$$m_i^{\text{func}} = y_i (w^{\top} x_i + b).$$

Геометрический маржин — это расстояние до гиперплоскости с правильным знаком:

 $m_i^{\text{geom}} = \frac{y_i \left(w^\top x_i + b \right)}{\|w\|}.$

Максимизировать минимальный геометрический маржин эквивалентно задаче: зафиксировать масштаб так, чтобы $\min_i m_i^{\text{func}} = 1$ (то есть точки «на границе» имеют $y_i(w^{\top}x_i + b) = 1$), и затем минимизировать норму w:

$$\min_{w,b} \frac{1}{2} ||w||^2$$
 при $y_i (w^\top x_i + b) \ge 1, \ \forall i.$

Почему это про «максимизацию зазора»? Ширина зазора (двойная полоса между опорными гиперпрямыми) равна

width
$$=\frac{2}{\|w\|}$$
.

Значит, минимизация ||w|| *при сохранении правильной классификации с запасом 1* даёт максимальную ширину зазора.

Опорные векторы — это точки, для которых ограничение активно (равенство $y_i(w^{\top}x_i+b)=1$). Они «держат» оптимальную гиперплоскость; точки дальше зазора (>1) на решение не влияют.

ККТ-условия для оптимума:

$$y_i(w^{\top}x_i + b) \ge 1, \quad \alpha_i \ge 0,$$

$$\alpha_i (1 - y_i(w^{\top}x_i + b)) = 0,$$

$$w = \sum_i \alpha_i y_i x_i, \quad \sum_i \alpha_i y_i = 0.$$

Они формализуют: у неопорных $\alpha_i=0$ и $m_i^{\mathrm{func}}>1$; у опорных $\alpha_i>0$ и $m_i^{\mathrm{func}}=1$.

SVM с мягким зазором (soft-margin): зачем и как работает

Зачем. Если классы не линейно разделимы или данные зашумлены, требование $y_i(w^\top x_i + b) \ge 1$ для всех i невыполнимо. Разрешим нарушения, но будем их штрафовать. Это делает модель устойчивой и позволяющей компромисс «ширина зазора ошибки».

Прямая (primal) постановка с допусками

Вводим неотрицательные допуски (слэки) $\xi_i \ge 0$ и параметр C > 0:

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \quad \text{при} \quad y_i(w^\top x_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0 \ \forall i.$$

Эквивалентно (через hinge-loss):

$$\min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \max(0, 1 - y_i(w^\top x_i + b)).$$

Интерпретация C: чем больше C, тем сильнее штраф за нарушения (меньше допусков, уже зазор); чем меньше C, тем шире зазор и больше допустимых нарушений.

Двойственная (dual) постановка

Строим лагранжиан с множителями $\alpha_i \geq 0$ для ограничений марджина и $\rho_i \geq 0$ для $\xi_i \geq 0$:

$$\mathcal{L} = \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i - \sum_{i} \alpha_i (y_i (w^{\top} x_i + b) - 1 + \xi_i) - \sum_{i} \rho_i \xi_i.$$

Условия стационарности:

$$\frac{\partial \mathcal{L}}{\partial w} = 0 \Rightarrow w = \sum_{i} \alpha_{i} y_{i} x_{i}, \qquad \frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \sum_{i} \alpha_{i} y_{i} = 0,$$
$$\frac{\partial \mathcal{L}}{\partial \epsilon_{i}} = 0 \Rightarrow C - \alpha_{i} - \rho_{i} = 0 \Rightarrow 0 \leq \alpha_{i} \leq C.$$

Подставляя обратно, получаем dual-задачу (как у hard-margin, но с *боковыми* ограничениями):

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j K(x_i, x_j) \quad \text{при} \quad \sum_{i} \alpha_i y_i = 0, \quad 0 \le \alpha_i \le C.$$

(Для линейного SVM $K(x_i, x_j) = \langle x_i, x_j \rangle$; с ядром — любой допустимый K.)

ККТ-условия и геометрическая интерпретация

Помимо стационарности действуют дополняющие нежёсткости:

$$\alpha_i (1 - y_i(w^\top x_i + b) - \xi_i) = 0, \qquad \rho_i \xi_i = 0, \qquad \xi_i \ge 0, \ \alpha_i \ge 0, \ \rho_i \ge 0.$$

Введём сокращение $f_i := y_i(w^\top x_i + b)$. Тогда практические правила удобно записать так:

Дополнительно: $\xi_i = \max(0, 1 - f_i)$, поэтому

$$f_i < 1 \ \Rightarrow \ \xi_i > 0, \qquad f_i < 0 \ \Rightarrow \ \xi_i > 1$$
 (ошибка классификации).

Восстановление w и b на практике

 $w = \sum_{i} \alpha_i y_i x_i$, а b удобно усреднить по индексам $\mathcal{M} = \{i: 0 < \alpha_i < C\}$:

$$b = \frac{1}{|\mathcal{M}|} \sum_{i \in \mathcal{M}} \left(y_i - \sum_j \alpha_j y_j K(x_j, x_i) \right).$$

Если множество \mathcal{M} пусто (бывает при сильном перекрытии и всех α_i на границе C), используют точки с $\alpha_i = C$ (внутри зазора) и соответствующие формулы/эвристики библиотек.

Замечания про масштабирование

Так как C измеряет «цену» допусков в тех же единицах, что и $\|w\|^2$, масштаб признаков влияет на эффективный диапазон C. Поэтому перед обучением мы стандартизируем признаки $z=(x-\mu)/\sigma$; dual остаётся тем же, но K строится по Z, а итоговые w,b при необходимости переводятся обратно в пространство x:

$$w_x = \frac{w_z}{\sigma}, \qquad b_x = b_z - w_z^{\top} \frac{\mu}{\sigma}.$$

Почему решение можно искать по двум опорным векторам

Интуиция. В hard-margin SVM оптимальная полоса максимальной ширины касается классов *ровно на границе* зазора. Эти точки и есть *опорные векторы* (SV). Если на каждой стороне зазора по одной точке (в общем положении), то они полностью задают ориентацию и положение гиперплоскости. Остальные точки лежат дальше зазора и на решение не влияют.

ККТ-скрининг. В оптимуме:

$$\alpha_i > 0 \iff y_i(w^\top x_i + b) = 1$$
 (точно на границе), $\alpha_i = 0 \iff y_i(w^\top x_i + b) > 1$.

На наших данных в Z-пространстве *ровно* две точки имеют маржин $m_i = 1$ (обозначим их Z_2 и Z_3), а у остальных $m_i > 1$. Следовательно,

$$\alpha_1 = \alpha_4 = 0, \quad \alpha_2 > 0, \ \alpha_3 > 0.$$

Сведение dual к одной переменной. В dual-задаче

$$\max_{\alpha \geq 0} \ \sum_i \alpha_i - \tfrac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K_{ij}, \quad \text{при} \ \sum_i \alpha_i y_i = 0,$$

положим (по ККТ) $\alpha_1 = \alpha_4 = 0$ и обозначим $\alpha_2 = \alpha_3 = a$. Линейное ограничение выполняется автоматически: $a \cdot (+1) + a \cdot (-1) = 0$. Тогда целевая упрощается до

$$W(a) = 2a - \frac{1}{2}a^{2}(K_{22} - 2K_{23} + K_{33}).$$

Условие максимума: $W'(a) = 0 \implies a = \frac{2}{K_{22} - 2K_{23} + K_{33}}$.

Восстановление параметров.

$$w = \sum_{i} \alpha_i y_i Z_i = a(Z_2 - Z_3), \qquad b = 1 - w^{\top} Z_2 = 1 - a(K_{22} - K_{23}).$$

Численно для нашего K: $a \approx 0.326606$, $w_z \approx (-0.501232, 0.633958)$, $b_z \approx -0.054025$.

Когда двух SV недостаточно? Если на границе зазора лежит не одна, а несколько точек (коллинеарные/копланарные случаи, случаи вырожденности), то ненулевых α_i будет больше двух. Тогда либо решают полный dual (QP), либо берут активный набор SV и решают систему условий $y_i(w^T Z_i + b) = 1$ для всех активных индексов. В общем случае минимальный набор SV, необходимый, чтобы однозначно задать гиперплоскость в \mathbb{R}^d , может быть больше двух (до d+1), но на нашем 2D-наборе в общем положении достаточно двух — по одному на каждую сторону зазора.

Решение по двум опорным векторам

Работаем в стандартизованных координатах $Z=(x-\mu)/\sigma$. Метки y=(+1,+1,-1,-1), опорные векторы по проверке ККТ: Z_2 и Z_3 (у них $m_i=1$).

1) Сведение dual-задачи к одной переменной

Двойственная задача (для линейного ядра $K_{ij} = \langle Z_i, Z_j \rangle$):

$$\max_{\alpha} \ \mathcal{W}(\alpha) = \sum_{i=1}^{4} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{4} \alpha_i \alpha_j y_i y_j K_{ij}, \quad \text{при } \sum_{i=1}^{4} \alpha_i y_i = 0, \ \alpha_i \ge 0.$$

По ККТ у неопорных $\alpha_1 = \alpha_4 = 0$, у опорных положим $\alpha_2 = \alpha_3 = a$. Линейное ограничение выполнено: $a \cdot (+1) + a \cdot (-1) = 0$.

Тогда цель упрощается:

$$W(a) = 2a - \frac{1}{2}a^2(K_{22} - 2K_{23} + K_{33}).$$

Условие максимума: $\mathcal{W}'(a) = 0 \Rightarrow \boxed{a = \frac{2}{K_{22} - 2K_{23} + K_{33}}}$.

2) Подстановка чисел и значение a

Из матрицы Грама (на Z):

$$K_{22} = 1.71802656, \quad K_{23} = -1.50955440, \quad K_{33} = 1.38716176.$$

Тогда

$$K_{22} - 2K_{23} + K_{33} = 1.71802656 - 2(-1.50955440) + 1.38716176 = 6.12429712,$$

$$a = \frac{2}{6.12429712} = 0.326606.$$

3) Восстановление w

По стационарности $w = \sum_{i} \alpha_{i} y_{i} Z_{i} = a(Z_{2} - Z_{3})$. Сами векторы:

$$Z_2 = (-0.91131553, 0.94208840), \quad Z_3 = (0.62353168, -0.99918467),$$

$$Z_2 - Z_3 = (-1.53484721, 1.94127307).$$

Значит

$$w_z = a(Z_2 - Z_3) = 0.326606 \cdot (-1.53484721, 1.94127307) = (-0.501232, 0.633958)$$

4) Восстановление *b* (через равенство на границе)

Для опорного Z_2 верно $w^\top Z_2 + b = 1$, откуда

$$b_z = 1 - w^{\top} Z_2 = 1 - a (K_{22} - K_{23}).$$

Численно: $K_{22} - K_{23} = 1.71802656 - (-1.50955440) = 3.22758096$,

$$b_z = 1 - 0.326606 \cdot 3.22758096 = -0.054025$$

(Проверка вторым СВ: $w^{\top}Z_3 + b = -1$ выполняется.)

5) Проверка условий ККТ и маржинов

Решающая функция в Z выражается через K:

$$f(Z_i) = w^{\top} Z_i + b = a (K_{i2} - K_{i3}) + b.$$

Считаем значения:

$$f(Z_1) = a(K_{12} - K_{13}) + b = 0.326606 \cdot (1.93051078 - (-1.69543077)) - 0.054025$$

= 0.326606 \cdot 3.62594155 - 0.054025 \approx 1.130976,

$$f(Z_2) = a(K_{22} - K_{23}) + b = 0.326606 \cdot 3.22758096 - 0.054025 \approx 1.000000,$$

$$f(Z_3) = a(K_{32} - K_{33}) + b = 0.326606 \cdot (-1.50955440 - 1.38716176) - 0.054025 \approx -1.000000,$$

$$f(Z_4) = a(K_{42} - K_{43}) + b = 0.326606 \cdot (-2.13898294 - 1.81782340) - 0.054025 \approx -1.346298.$$

Функциональные маржины $m_i = y_i f(Z_i)$:

$$m_1 \approx 1.131 > 1$$
, $m_2 = 1$, $m_3 = 1$, $m_4 \approx 1.346 > 1$.

Итого: $\alpha_{2,3}>0$ и $m_{2,3}=1$ (опорные), $\alpha_{1,4}=0$ и $m_{1,4}>1$ — ККТ выполнены.

6) Норма и ширина зазора

$$||w_z|| = \sqrt{(-0.501232)^2 + (0.633958)^2} \approx 0.808,$$
 width $= \frac{2}{||w||} \approx \frac{2}{0.808} \approx 2.475$.

Эквивалентно, width = $||Z_2 - Z_3|| = \sqrt{K_{22} - 2K_{23} + K_{33}} = \sqrt{6.12429712} \approx 2.475$.

7) (Опционально) Возврат в исходное пространство x

Если нужна гиперплоскость в исходных единицах:

$$w_x = \frac{w_z}{\sigma} = (-1.923287, 3.619663), \qquad b_x = b_z - w_z^{\top} \frac{\mu}{\sigma} = 0.346301,$$

и разделяющая прямая задаётся $w_x^{\top}x + b_x = 0$.

Решающая функция и маржины (в стандартизованном пространстве Z)

Решающая функция: $f(Z_i) = w_z^\top Z_i + b_z = a(K_{i2} - K_{i3}) + b_z$. Функциональные маржины: $m_i = y_i f(Z_i)$.

\overline{i}	$Z_i = (z_{i1}, z_{i2})$	$f(Z_i)$	y_i	$m_i = y_i f(Z_i)$	SV?
1	(-1.026429, 1.056281)	1.130976	1	1.130976	нет
2	(-0.911316, 0.942088)	1.000000	1	1.000000	да
3	(0.623532, -0.999185)	-1.000000	-1	1.000000	да
4	(1.314213, -0.999185)	-1.346298	-1	1.346298	нет

Параметры (в Z): $w_z = (-0.501232, 0.633958), b_z = -0.054025, a = 0.326606.$

Ширина зазора

Норма весов и ширина:

$$||w_z|| = \sqrt{(-0.501232)^2 + (0.633958)^2} \approx 0.808, \quad \text{width} = \frac{2}{||w_z||} \approx 2.475$$

Эквивалентная форма через матрицу Грама:

width =
$$||Z_2 - Z_3|| = \sqrt{K_{22} - 2K_{23} + K_{33}} = \sqrt{6.12429712} \approx 2.475.$$

Возврат к исходному пространству x (подробно)

Связь $Z=(x-\mu)/\sigma$ даёт преобразование параметров:

$$\boxed{w_x = \frac{w_z}{\sigma}, \qquad b_x = b_z - w_z^{\top} \frac{\mu}{\sigma}}$$

Числа для нашего набора.

$$\mu = (0.537500, 0.175000),$$

$$\sigma = (0.26061226, 0.17514280),$$

$$\frac{\mu}{\sigma} = \left(\frac{0.5375}{0.26061226}, \frac{0.175}{0.17514280}\right) \approx (2.062010, 0.999185).$$

$$w_{x,1} = \frac{-0.501232}{0.26061226} = -1.923287,$$

$$w_{x,2} = \frac{0.633958}{0.17514280} = 3.619663.$$

$$w_z^{\top} \frac{\mu}{\sigma} = (-0.501232) \cdot 2.062010 + (0.633958) \cdot 0.999185$$

$$= -0.400326,$$

$$b_x = b_z - w_z^{\top} \frac{\mu}{\sigma} = -0.054025 - (-0.400326) = 0.346301.$$

Компоненты w_x :

$$w_{x,1} = \frac{-0.501232}{0.26061226} = -1.923287, \qquad w_{x,2} = \frac{0.633958}{0.17514280} = 3.619663,$$

скалярное произведение в поправке к b:

$$w_z^{\top} \frac{\mu}{\sigma} = (-0.501232) \cdot 2.062010 + (0.633958) \cdot 0.999185 \approx -0.400326,$$

поэтому

$$b_x = b_z - w_z^{\top} \frac{\mu}{\sigma} = -0.054025 - (-0.400326) = 0.346301$$

Итоговая гиперплоскость в исходном пространстве x:

$$w_x^{\top} x + b_x = 0 \iff (-1.923287) x_1 + (3.619663) x_2 + 0.346301 = 0$$

Классификация: $sign(w_x^{\top}x + b_x)$.

Проверка на исходных координатах: $w_x^{\top} x_i + b_x$ и знак

Напомним связь решений в Z и x:

$$z = \frac{x - \mu}{\sigma}, \qquad w_x = \frac{w_z}{\sigma}, \qquad b_x = b_z - w_z^{\mathsf{T}} \frac{\mu}{\sigma} \implies w_z^{\mathsf{T}} z + b_z \equiv w_x^{\mathsf{T}} x + b_x.$$

Численные параметры:

$$w_x = (-1.923287, 3.619663), \quad b_x = 0.346301.$$

Таблица для всех точек:

\overline{i}	$x_i = (x_{i1}, x_{i2})$	$Z_i = (z_{i1}, z_{i2})$	y_i	$w_x^\top x_i + b_x$	$\operatorname{sign}(w_x^{\top} x_i + b_x)$
1	(0.27, 0.36)	(-1.026429, 1.056281)	1	1.130092	1
2	(0.30, 0.34)	(-0.911316, 0.942088)	1	1.000000	1
3	(0.70, 0.00)	(0.623532, -0.999185)	-1	-1.000000	-1
4	(0.88, 0.00)	(1.314213, -0.999185)	-1	-1.346192	-1

Видно, что $\operatorname{sign}(w_x^\top x_i + b_x) = y_i$ для всех i.

Графики SVM

Рис. 1: Разделяющая прямая и полосы зазора в исходном пространстве x.

Рис. 2: Разделяющая прямая и полосы зазора в стандартизованном пространстве Z.