LM-115 Suites et intégrales, MIME, deuxième semestre 2010-2011 Université Pierre et Marie Curie

Chapitre 3: Suites.

Exercice 1

Etudier la convergence des suites dont les termes généraux sont égaux, pour tout $n \in \mathbb{N}$ (ou $n \in \mathbb{N}^*$), à

$$a_n = \sqrt{n^2 + n + 1} - \sqrt{n}, \quad b_n = \sqrt{n^2 + n + 1} - n, \quad c_n = \frac{n \sin(n)}{n^2 + 1}$$

$$d_n = (-1)^n + \frac{1}{n}, \quad e_n = \left(1 + \frac{x}{n}\right)^n, \quad (x \in \mathbb{R}), \quad f_n = \left(\frac{1}{2} + \frac{1}{n}\right)^n$$

$$g_n = n^{\frac{1}{n}}, \quad h_n = \frac{2n + 1}{n + 3} - \frac{3n + 1}{4n + 3}, \quad i_n = \exp((-1)^n n)$$

Exercice 2

Les propositions suivantes sont elles vraies ou fausses? Justifier.

- 1. Une suite à termes positifs qui tend vers 0 est décroissante à partir d'un certain rang.
- 2. Une suite est convergente si et seulement si elle est bornée.
- 3. Si une suite n'est pas majorée, elle est minorée.
- 4. Si une suite a une limite strictement positive alors ses termes sont strictement positifs à partir d'un certain rang. Et réciproquement?
- 5. Il existe une suite $(u_n)_{n\in\mathbb{N}}$ divergente telle que $(u_{n+1}-u_n)_{n\in\mathbb{N}}$ converge vers
- 6. Une suite extraite d'une suite convergente est convergente.
- 7. Si les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent alors la suite $(u_n)_{n\in\mathbb{N}}$ converge.

Exercice 3

Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente à valeurs entières. Montrer que $(u_n)_{n\in\mathbb{N}}$ est stationnaire.

Exercice 4

- 1. Soit (u_n) une suite réelle telle que les suites (u_{2n}) et (u_{2n+1}) convergent vers le même réel l. Montrer que (u_n) converge vers l.
- 2. Soit (u_n) une suite réelle. On suppose que les suites (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent. Montrer que (u_n) converge.

Exercice 5

Soit (u_n) une suite à valeurs dans \mathbb{R}_+^* telle que

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = a$$

- 1. On suppose que a < 1. Montrer que $\lim_{n \to +\infty} u_n = 0$.
- 2. On suppose que a > 1. Montrer que $\lim_{n \to +\infty} u_n = +\infty$.
- 3. On suppose que a = 1. Que peut-on conclure?
- 4. Application : étudier la convergence des suites de termes généraux ($\lambda > 0$)

$$u_n = \frac{n^2}{\lambda^n} \quad v_n = \frac{\lambda^n}{n!} \quad w_n = \frac{n!}{1 \times 4 \times 7 \times \dots \times (3n+1)} \quad z_n = \frac{n^n}{n!}$$

Exercice 6

Montrer qu'une suite monotone dont une sous-suite converge est convergente.

Exercice 7

Pour tout $n \in \mathbb{N}$ on pose $a_n = (2 + \sqrt{3})^n + (2 - \sqrt{3})^n$.

- 1. Pour tout entier n, donner une relation entre a_n , a_{n+1} et a_{n+2} . On pourra développer $a_{n+1}((2+\sqrt{3})+(2-\sqrt{3}))$.
- 2. Montrer que pour tout n dans \mathbb{N} , a_n est un entier positif pair.
- 3. Donner une preuve directe de la question précédente.

Exercice 8

Montrer que les suites de termes généraux sin(n) et cos(n) sont divergentes.

Exercice 9 [e est irrationnel]

On considère les suites définies par

$$u_n = \sum_{k=0}^n \frac{1}{k!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$
 et $v_n = u_n + \frac{1}{n \cdot n!}$

- 1. Montrer que les suites (u_n) et (v_n) sont adjacentes, et en déduire qu'elles convergent vers la même limite.
- 2. En utilisant le théorème de Taylor-Lagrange à la fonction exponentielle entre 0 et 1, montrer que $\lim_{n\to+\infty} u_n = e$.
- 3. Montrer que pour tout entier $n \ge 1$ on a

$$n!u_n < n!e < n!u_n + \frac{1}{n}$$

et en déduire que e est irrationnel.

Exercice 10 [Théorème de Cesàro]

On considère une suite réelle $(u_n)_{n\geq 1}$ et on pose pour tout entier $n\geq 1$

$$c_n = \frac{1}{n} \sum_{k=1}^n u_k = \frac{1}{n} (u_1 + \dots + u_n)$$

On veut montrer que si (u_n) converge vers un réel l alors c_n converge vers l (ce résultat est connu sous le nom de **théorème de Cesàro**).

1. Dans un premier temps supposons que l=0. Fixons un réel $\epsilon>0$. En utilisant la définition de limite pour (u_n) , montrer que (c_n) tend vers 0.

- 2. On se place maintenant dans le cas général. En appliquant la question 1. à la suite définie par $v_n = u_n l$, démontrer le théorème de Cesàro.
- 3. La réciproque du théorème est-elle vraie? Justifier.

Exercice 11

On définit la suite $(S_n)_{n\geq 1}$ par

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}$$

En considérant $S_{2n} - S_n$, montrer que (S_n) diverge vers $+\infty$.

Exercice 12

Pour tout entier n > 1, on pose $u_n = \sum_{j=2}^n \frac{1}{(j-1)j}$ et $v_n = \sum_{j=1}^n \frac{1}{j^2}$.

- 1. À l'aide de l'identité $(x(x-1))^{-1} = (x-1)^{-1} x^{-1}$, calculer u_n ; en déduire $\lim u_n$.
- 2. Comparer les nombres u_n et v_n ; en déduire que la suite (v_n) convergente.

Exercice 13

Soit (x_n) la suite définie par $x_0 = 1$ et $x_{n+1} = x_n + \frac{1}{x_n}$ pour tout $n \ge 0$. Montrer que cette suite est bien définie, croissante, et diverge vers $+\infty$.

Exercice 14

Soit (u_n) la suite définie par $u_0 = 1$ et $u_{n+1} = \sqrt{1 + u_n}$ pour tout $n \ge 0$. Montrer que cette suite est bien définie, croissante, et majorée. Calculer sa limite.

Exercice 15

Soit (u_n) la suite définie par $u_0 = a \in \mathbb{R}$ et $u_{n+1} = e^{u_n} - 2$ pour tout $n \geq 0$. Etudier la fonction $x \mapsto f(x) = e^x - 2$ et déterminer le signe de f(x) - x. Montrer que (u_n) est monotone et déterminer sa nature. On discutera suivant les valeurs de a.

Exercice 16

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = x^2 + 4x + 2$.

- 1. Dresser le tableau de variation de f et tracer son graphe.
- 2. Calculer $f(]-3,-2[), f(]-\infty,-3[), f([-2,-1])$ et $f(]-1,+\infty[)$. Que peut-on dire des intervalles [-2,-1] et $]-1,+\infty[$?
- 3. Déterminer le signe de la quantité $g(x) = x^2 + 3x + 2$.
- 4. On définit une suite (u_n) par la donnée de $u_0 \in \mathbb{R}$ et la relation de récurrence $u_{n+1} = u_n^2 + 4u_n + 2$.
 - a) On suppose que u_0 est dans l'intervalle [-2, -1]
 - (i) Montrer que pour tout entier $n, u_n \in [-2, -1]$.
 - (ii) Montrer que pour tout entier n on a $u_n \geq u_{n+1}$.
 - (iii) Montrer que (u_n) converge et calculer sa limite.
 - b) On suppose que $u_0 < -1$. En adaptant les techniques de la question précédente, étudier la nature de la suite (u_n) .

c) Que se passe-t-il si $u_0 = -3$? $u_0 \in]-3, -2[? u_0 < -3?$

Exercice 17

Soient f et g les applications définies sur \mathbb{R}_+^* par $f(x)=4-\ln(x)$ et $g(x)=4-\ln(x)-x$.

- 1. Etudier les variations de f et g.
- 2. Montrer que l'intervalle $[2, e^2]$ est stable par f.
- 3. Montrer que l'équation g(x)=0 a une unique solution que l'on notera l. Montrer que $2 < l < e^2.$
- 4. a) Montrer qu'il existe une constante $c \in]0,1[$ que l'on déterminera telle que

$$\forall x \in [2, e^2], |f'(x)| \le c$$

b) En déduire

$$\forall x \in [2, e^2], \forall y \in [2, e^2], |f(x) - f(y)| \le c|x - y|$$

- 5. On définit une suite (u_n) par la donnée de $u_0 \in [2, e^2]$ et la relation $u_{n+1} = 4 \ln(u_n)$ pour tout entier naturel n.
 - a) Montrer que la suite est bien définie et que $u_n \in [2, e^2]$ pour tout entier naturel n.
 - b) Montrer:

$$\forall n \in \mathbb{N}, |u_n - l| \le 7.c^n$$

- c) En déduire la nature de la suite (u_n) .
- d) Expliquer comment avoir une approximation de l à 10^{-2} près.

Exercice 18

Soient a et b deux réels tels que 0 < a < b. On définit deux suites (u_n) et (v_n) par $u_0 = a$, $v_0 = b$ et pour tout entier naturel n,

$$u_{n+1} = \sqrt{u_n v_n}$$
 $v_{n+1} = \frac{u_n + v_n}{2}$

Montrer que (u_n) et (v_n) sont deux suites adjacentes.

Exercice 19

Soit la suite (v_n) définie par $v_0 = \frac{1}{2}$ et $v_{n+1} = (1 - v_n)^2$ pour $n \ge 0$.

- 1. Montrer que (u_n) prend ses valeurs dans l'intervalle [0,1].
- 2. Montrer que la fonction $f:[0,1]\to [0,1]$ définie par $f(x)=(1-x)^2$ est décroissante.
- 3. Soient les suites $(a_n) = (v_{2n})$ et $(b_n) = (v_{2n+1})$. Montrer qu'elles sont monotones, de monotonies opposées.
- 4. Montrer que (v_n) diverge.