2010-07-05 #1

Übersicht Lastfälle

From: Matthias Wieschollek < m.wieschollek@stb.rwth-aachen.de>
To: Alexander Scholzen < ascholzen@imb.rwth-aachen.de>

Date: 2010-07-05 14:57

Übersicht Lastfälle

	Bezeichnung			Lastangriff		
LF		Last	Art	Einzelschirm 4er - Schirr		
	Eigengewicht	γ = 22,43 kN/m ³	Flächenlast, generiert	gesamter Schirm		
1	+ Aufbau	g = 0,20 kN/m²	Flächenlast, global in ZL ¹⁾	gesamte Schirmfläche		
	+ Randlast	G = 0,35 kN/m	Linienlast, global in ZL ¹⁾	gesamter Schirmrand		
2	Schnee	s = 0,79 KN/m²	Flächenlast, global in ZP ²⁾	gesamte Schirmfläche		
3	Windsog	$w_{s1} = -0.56 \text{ kN/m}^2$				
		$w_{s2} = -0.52 \text{ kN/m}^2$	Flächenlast, lokal in z			
		$w_{s3} = -0.39 \text{ kN/m}^2$				
		$W_{s1} = 0.91 \text{ kN/m}$ $W_{s2} = -0.39 \text{ kN/m}$	Linienlast, global in XL	siehe Bild 1-3		
		$W_{s3} = -1,56 \text{ kN/m}$				
		$W_{s4} = -1,04 \text{ kN/m}$	Linienlast, global in YL			
	Winddruck	Flächenlasten wie L	F 3, bis auf	siehe Bild 1-3		
4		$w_{s3} = 0.13 \text{ kN/m}^2$				
		Linienlasten wie LF	3			
	Unterwind (einseitig offen)	$w_{s1} = -1,08 \text{ kN/m}^2$				
		$w_{s2} = -1,04 \text{ kN/m}^2$	Flächenlast, lokal in z	siehe Bild 1-3		
		$w_{s3} = -0.91 \text{ kN/m}^2$				
5		$W_{s1} = 0$	Linianiaat alabalin V			
		$W_{s2} = -1,43 \text{ kN/m}$	Linienlast, global in XL			
		$W_{s3} = -2,60 \text{ kN/m}$	Linianlant alabatia VI			
		$W_{s4} = -2,08 \text{ kN/m}$	Linienlast, global in YL			
	Unterwind (zweiseitig offen)	Flächenlasten wie L	F 5			
6		Linienlasten wie LF 5, jedoch W _{s3} und W _{s4}		siehe Bild 1-3		
		nur einseitig				
	Innensog (zweiseitig offen)	$w_{s1-3} = 0.65$	Flächenlast, lokal in z			
		kN/m²	,	siehe Bild 1-3		
7		$W_{S1} = 0$	Linienlast, global in XL			
		$W_{s2} = -1.82 \text{ kN/m}$				
		$W_{s3} = -2,47 \text{ kN/m}$ $W_{s4} = -2,95 \text{ kN/m}$	Linienlast, global in YL, einseitig			
8	Mannlast	Q = 1 kN	Einzellast, global in Z	äuß arata Calaimaa alia		
0		T _S = 14 K	konstante T-Änderung	äußerste Schirmecke gesamte Schirmfläche		
9	Temperatur (Sommer)		T-Differenz			
	, ,	$\Delta T = 0.5 \text{ K}$ $T_S = 13 \text{ K}$	konstante T-Änderung			
10	Temperatur (Winter)		T-Differenz	gesamte Schirmfläche		
11	Schwinden	$\Delta T = -0.5 \text{ K}$ $T_S = -100 \text{ K}$	konstante T-Änderung			
'	Scriwingen	18 100 10	Nonstante i-Anderding	ges. Schirmfl.		

10 A 4	0-07-05			#2
A(1) 1	1-11/-113			#/

Gruß Matthias

--

Dipl.-Ing.(FH) Matthias Wieschollek

Wissenschaftlicher Mitarbeiter | Scientific Assistant

RWTH Aachen University Lehrstuhl für Stahlbau und Leichtmetallbau | Institute for Steel Structures Prof. Dr.-Ing. M. Feldmann Mies-van-der-Rohe-Str. 1 52074 Aachen - Germany

phone: ++49 (0)241 80 25181 | 25177

fax: ++49 (0)241 80 22140

mail: wieschollek@stb.rwth-aachen.de

web: www.stb.rwth-aachen.de