ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7

Neurotransmitters, Drugs and Brain Function

Neurotransmitters, Drugs and Brain Function

Edited by

R. A. Webster

Department of Pharmacology, University College London, UK

JOHN WILEY & SONS, LTD

Chichester · New York · Weinheim · Brisbane · Singapore · Toronto

ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7

Copyright © 2001 by John Wiley & Sons Ltd.

Baffins Lane, Chichester,

West Sussex PO19 1UD, UK

National 01243 779777 International (+44) 1243 779777 e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on: http://www.wiley.co.uk or http://www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1P 0LP, UK, without the permission in writing of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA

WILEY-VCH Verlag GmbH, Pappelallee 3, D-69469 Weinheim, Germany

John Wiley & Sons Australia, Ltd. 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte, Ltd. 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons (Canada), Ltd. 22 Worcester Road, Rexdale, Ontario M9W 1L1, Canada

Library of Congress Cataloging-in-Publication Data

Neurotransmitters, drugs and brain function / edited by R. A. Webster

p. , cm.

Includes bibliographical references and index.

ISBN 0-471-97819-1

1. Neurotransmitters. 2. Neurotransmitter receptors. 3. Brain–Pathophysiology.

4. Psychopharmacology. I. Webster, R. A., Ph.D.

[DNLM: 1. Neurotransmitters-physiology. 2. Brain-drug effects. 3. Brain

Chemistry-drug effects. 4. Synaptic Transmission-drug effects. QV 126 N4955 2001]

QP364.7 .N479 2001

612.8'042-dc21

2001024354

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 471 97819 1

Typeset in 10/12pt Times from authors' disks by Dobbie Typesetting Limited, Tavistock, Devon Printed and bound in Great Britain by Biddles Ltd, Guildford and King's Lynn This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in which at least two trees are planted for each one used for paper production.

Contents

List of o	contributors	vii
Preface		ix
Section	A BASIC ASPECTS OF NEUROTRANSMITTER FUNCTION	
1	Neurotransmitter systems and function: overview R. A. Webster	3
2	Control of neuronal activity Fast and slow events. Ion channels and 2nd messengers. Channel events. Appropriate methodology D. A. Brown	33
3	Neurotransmitter receptors Classification, labelling, structural analysis, expression and cloning A. J. Gibb	57
4	Neurotransmitter release Mechanism, measurement and control S. C. Stanford	81
Section	B NEUROTRANSMITTERS AND SYNAPTIC TRANSMISSION Neurotransmitters; their location, pathways, chemistry, receptors, effects (synaptic and functional) and drug modification	
5	Basic pharmacology and drug effects on neurotransmitter function R. A. Webster	105
6	Acetylcholine R. A. Webster	117
7	Dopamine R. A. Webster	137
8	Noradrenaline S. C. Stanford	163
9	5-Hydroxytryptamine S. C. Stanford	187
10	Amino acids: excitatory A. H. Dickenson	211

vi	C	ONTENTS
11	Amino acids: inhibitory M. Farrant	225
12	Peptides A. H. Dickenson	251
13	Other transmitters and mediators i. Histamine, ATP, steroids, prostaglandins, trace amines ii. Nitric ox R. A. Webster (with a section on nitric oxide by A. H. Dickenson)	ide 265
Section	AND DISEASE STATES The possible roles of different neurotransmitters in the aetiology of disease states and the mechanism of action of clinically effective drugs. Symptom therapy and animal models are covered	
14	Study and manipulation of neurotransmitter function in humans R. A. Webster	289
15	Diseases of the basal ganglia R. A. Webster	299
16	The epilepsies R. A. Webster	325
17	Schizophrenia R. A. Webster	351
18	Alzheimer's disease R. A. Webster	375
19	Anxiety S. C. Stanford	395
20	Depression S. C. Stanford	425
21	Pain and analgesia A. H. Dickenson	453
Section	D NEUROTRANSMITTERS AND BEHAVIOUR	
22	Sleep and waking R. A. Webster and S. C. Stanford	477
23	Drug dependence and abuse A. H. Dickenson	499
Index		521

List of Contributors

David A. Brown, Alasdair J. Gibb, S. Clare Stanford, Anthony H. Dickenson, Mark Farrant, and Roy Webster, all contributors are from the Department of Pharmacology, University College London, Gower Street, London WC1E 6BT

ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7

Preface

This book is about neurotransmitters, the substances released from neurons to act on neurons. It covers what they do, how they do it and how their activity is involved in brain function and affected by drugs and disease.

After an overview of neurotransmitter systems and function and a consideration of which substances can be classified as neurotransmitters, section A deals with their release, effects on neuronal excitability and receptor interaction. The synaptic physiology and pharmacology and possible brain function of each neurotransmitter is then covered in some detail (section B). Special attention is given to acetylcholine, glutamate, GABA, noradrenaline, dopamine, 5-hydroxytryptamine and the peptides but the purines, histamine, steroids and nitric oxide are not forgotten and there is a brief overview of appropriate basic pharmacology.

How the different neurotransmitters may be involved in the initiation and maintenance of some brain disorders, such as Parkinson's disease, epilepsy, schizophrenia, depression, anxiety and dementia, as well as in the sensation of pain, is then evaluated and an attempt made to see how the drugs which are used in these conditions produce their effect by modifying appropriate neurotransmitter function (section C). The final section (D) deals with how neurotransmitters are involved in sleep and consciousness and in the social problems of drug use and abuse.

The contents are based on lectures given by the contributors, all of whom are experienced in research and teaching, in a neuropharmacology course for final-year BSc students of pharmacology, physiology, psychology and neuroscience at University College London. The text should be of value to all BSc students and postgraduates in those and related disciplines. Those studying medicine may also find it useful especially if working in neurology or psychiatry.

We have tried to make the book readable rather than just factual and so references have been kept to a minimum, especially in the early chapters on basic neuropharmacology and although more are given in the applied sections, they are selective rather than comprehensive.

A9 neurons 359–62	Adenylate (adenylyl) cyclase (CAMP)
A10 neurons 359–62	system 13–15, 71–72
A10 nucleus 156–8	DA receptors 144–5
Abecarnil 408	Adrenaline 276–7
Abnormal involuntary movements	Adrenoceptors
(AIMs) 310	agonists 489
Absence seizures (AS) 326	classification 178–80
origin of 335	mechanisms 190
Acetylcholine (ACh) 4, 117–35, 170	α(alpha) Adrenoceptors 462
and β -amyloid 380	agonists 489
brain concentrations 121	α ₁ Adrenoceptors 178–9
in AzD 380	α ₂ Adrenoceptors 98, 99, 173, 411, 471
in memory 383–4	antagonists 483
in PD 315–17	calcium currents and 40
in sleep 486–7	ligands 177
measurement of 117	subtypes 170
metabolism 121–3	β (beta) Adrenoceptors 173, 182, 480, 489
neurochemistry 118–23	densensitised by antidepressants 444
receptors see cholinergic	electrophysiology 188
storage 120	mechanisms 179–80
synthesis 120	subtypes 180
Acetylcholinesterase 121	Affective disorders 425–50
Acid-sensing ion channels (ASICS) 457	Afferent nerve fibres, types of 454–6
Action potential discharges, ion channels	Agranulocytosis 363
affecting 41	Akinesia 363
Acute pain 453–4	β -Alanine 247
Adenosine 268–9, 317, 458	Alcohol 504
anticonvulsant action 269	Allodynia 464
deaminase 269	Allylglycine 230
in sleep 494	Alphaxalone 238, 275
kinase 269	Alzheimer's disease (AzD) 45, 128, 222,
receptors 420	375–92
A ₁ 174	acetylcholine in 380–1
A ₃ 196	aetiology 378–80
synthesis and breakdown 269	aluminium in 379
Adenosine triphosphate (ATP) 265–8	assessment scales 386–7
α, β -me-ATP 266	attenuation of degeneration 389–91 augmenting cholinergic function in 385–8
agonists and antagonists 266–8 neuronal actions 266, 268	β -amyloid formation in 377–8
neurotransmitter role 268	chromosomes 14, 21 378–9
purinergic receptors for 266	genetic mutations in 378–9
synapse 267	glutamate function in 388
synthesis 265	head injuries in 379
synaptic currents 268	inflammation in 379
ojimput varionto 200	manufaction in 517

Alzheimer's disease (cont.)	Anticonvulsant activity 326–8
neurotransmitter changes in 380–2 glutamate 381	Antidepressants (antidepressant drugs) 427, 430, 431–43, 491, 493
monoamines 381	adaptive changes in 5-HT _{1A} receptors
somatostatin 381	to 444–6
neurotrophic factors in 391–2	chronic administration, neurochemical
pathology 375–8	changes in 446–7
symptoms of 375	extraneuronal monoamine levels 432
therapy 385–9	latency of effect 443–6
NT manipulation in 385–9	Antihistamines 487
Amantidine 314	Antimuscarinic drugs 383
Amenorrhoea 359	in PD 315–17
4-Aminopyridine 37	Anxiety 395–420
Amino acid neurotransmitters 212–50	5-HT in 413–19
excitatory 212–27	animal models 396–9
inhibitory 225–50	drug effects in 397–9
in epilepsy 336–40	diagnostic criteria 395–6
in sleep 494	drug treatments 397, 401
see also glutamate, GABA, glycine	ethological models 397
and aspartate	induction in humans 399
Aminooxyacetic acid 233	integrated theories of 416–19
Aminopeptidase 254	monoamines in 410–19
Amitryptyline 436	peptides in 419–20 states 396
Amnesia 383, 384	symptoms 396
AMPA antagonists 214 AMPA receptors, function 214–6	Anxiogenic drugs 411
Amphetamine 100, 152, 171, 177, 194, 354–6,	stimuli 397
427, 488	AP5 217, 340
effects on DA neurons 153	AP7 340
Amphetamines 510	Apolipoprotein E (ApoE) 378
dependence 512–14	Apomorphine 151–2, 311, 490
Amygdala 416	Arachidonic acid 281, 456, 510
β -Amyloid 388–91	Arachidonylethanolamide 510
Amyloid precursor protein (APP) 377–8,	Arachidonyl-glycerol (2AG) 510
389–91	Arcuate nucleus (A12) 138
Anaesthetics 238, 495	Arecoline 486
on GABA _A receptors 238 volatile 238	Arginine vasopressin (AVP) 478 Arousal 484–5
Anandamide 456, 495, 510	Artificial cerebrospinal fluid (aCSF) 83
Angiotensin 254, 478	Ascending reticular activating system
receptor antagonists 419	(ARAS) 484–5
Angiotensin-converting enzyme (ACE)	Aspartate (L-Aspartic acid) 211
inhibitors 419	Aspirin 281
Animal models (of)	ATP 33
anxiety 396–9	Atropine 5, 125, 315, 486
epilepsy 326–9	Autoinhibition 16, 38
schizophrenia 356–8	Autoreceptors 98, 173
human disorders 292–3	Axoplasmic transport 171
Parkinson's Disease 300	Azapirones 414
spontaneously epileptic 328	P1-5 242 240 466
Animal studies	Baclofen 242, 340, 466
in pain 454 of depression 429–31	Barbiturates 343–5, 401, 504
of depression 429–31 Animal tests, memory function 382	in epilepsy 340 on GABA _A receptors 237
Annectic drugs 207	on GABA _A receptors 237 Befloxaton 436
Anti-anxiety effects 412	Behavioural despair 431
Anticholinesterases 121–3, 383	Benserazide 141, 306–7
111110110111110001111000 121 3, 303	Deliberazio III, 500 /

Benzamides 353	Cannabis, drug dependence 507–10
Benzhexol 315	Captopril 419
Benzisoxazoles 353	Carbamazepine 37, 342–6, 460
Benzodiazepine receptors 402–10	Carbidopa 141, 307
agonist/inverse agonist spectrum 407	β-Carboline 237, 239, 389
antagonists 407	inverse agonist DMCM 389
binding sites 403	Carbolines β -CCE (ethyl- β -carboline-3-
endogenous ligands 406, 408–410	carboxylate) 404, 406
cause of anxiety 410	Carbon monoxide 281
GABA _A receptor and 403	Catalepsy 352
ligands for 406–8	Catatonia 351
peripheral 406	Catechol- <i>O</i> -methyl transferase (COMT) 141
plant ligands 409	175–8
sub-types 404–6	inhibitors in PD 308–10
Benzodiazepines 237, 269, 276, 343–5, 389,	CCK 254, 256, 314
402–10, 419, 496	and morphine 261
in epilepsy 340	and schizophrenia 264
mode of action 402–3	in feeding 261
on GABA _A receptors 235	Cerebrospinal fluid (CSF) 10, 202
sub-units 239	C-fos 255
Benztropine 315	Cheese reaction 433
Bethanecol 388	Chemoreceptor trigger zone 471
Bicuculline 234, 466	<i>p</i> -Chloramphetamine (<i>p</i> CPA) 195, 413
Biosensors 91–2	Chlordiazepoxide (Librium) 401
Bipolar disorder 425	Chloride equilibrium potential (E _{Cl}) 233
Blood brain barrier (BBB) 112	<i>m</i> -Chlorophenylpiperazine (<i>m</i> CPP) 443
Botulinum toxin 121	Chlorpromazine 152, 353, 436–7
Bradykinin 456–7	Cholecystokinin (CCK) 260–1, 473, 495
Brain imaging 290–1	agonists 419–20
Brain ischemia 222	co-existence with dopamine 260–1
Brain slices	receptors 260–1, 419
in receptor classification 58–9	Cholesterol 406
in measurement of neurotransmitter	in neurosteroid synthesis 273
release in 85–6	Choline 120, 385–6
Brain-derived neurotrophic factor	Choline acetyltransferase (ChAT) 120,
(BDNF) 193	380, 383
Brofaromine 436	cholinergic neuron marker 117
Bromide salts 401	Cholinergic agonists
Bromocriptine 152, 311	muscarinic 128, 130
Buspirone 199, 204, 412–14	in AzD 388
Butyrophenones 353	Cholinergic antagonists
	muscarinic 130, 486
	in PD 315
Cabergoline 311	nicotinic 129
Cage convulsants 403	Cholinergic neurons
Calcitonin gene-related peptide (CGRP) 254,	in cortex 132–5
260, 263, 458	in spinal cord 131–2
Calcium channels 38	in striatum 132
in plasticity 46	vesicles in 120
L-type 45	Cholinergic pathways (and function) in
pacemaking function 45	Alzheimer's disease 133
regulation by neurotransmitters 38	cognition and reward 134–5
role in neuronal activity 45	sleep and arousal 134
T-type 45	Cholinergic receptors 123–130
Calmodulin 196	classification and structure 123
Cannabinoid receptors 495, 509–10	distribution 125
Cannabinoids 456, 509–10	function 126–8

Cholinergic receptors (cont.)	HPA axis in 446–9
muscarinic 124–5	MAOIs in 433–6
on K ⁺ currents 126–8	monoamines in 425–7
types of M_{1-5} 125	neurochemical markers for 428
nicotinic 64, 123	neurochemistry overview 449–50
in AzD 388	selective noradrenaline reuptake inhibitors
Cholinergic synapse 119	(NARIs) in 439
Chromaffin cells 163	selective serotonin reuptake inhibitors
Chromaffin granules 93	(SSRIs) in 439–42
Chronic pain 453–4	serotonin and noradrenaline reuptake
Circadian rhythm 200, 485, 488, 491–2	inhibitors (SNRIs) in 441–3
Circadian rhythms 234	serotonin reuptake and receptor inhibitors
neural basis of 477–8	in 443
Citalopram 434, 439–42, 444	symptoms of 426
Cl ⁻ flux, and GABA _A receptors 233–5	TCAs in 436–8
Clobazam 345–6	Desipramine 434, 436–7
Clock genes 478	Desmethyldiazepam 409
Clomipramine 431, 436–7, 439	Desmethylimipramine 144
Clonazepam 345–6, 406	Dexamethasone
Clonidine 177, 411, 427	in depressed patients 447
Clorgyline 436	suppression test 448
Clozapine 152, 267, 353, 363, 368–9, 371, 490	Dexamphetamine 512
Cocaine dependence 514–16	Dexedrine see dexamphetamine
Codeine 472, 502–3	Dextromethorphan 463, 471
Co-existence 211	Diazepam (Valium) 345, 401
of NTs 255–6	Diazepam binding inhibitor 409
Cognition and reward 134	Dibenzamines 353
Computerised tomography (CT) 290	5,7-Dihydroxytryptamine 414
Conditioned avoidance response 385	Diphenylhydantoin, see phenytoin
Conditioning experiments 399–400	Dissociation equilibrium constant 78
Conflict tests 399	Dizocilpine 420
Coping 183	Domperidone 153, 311
Cortical cup 87 Corticocortical disconnection 381	Donepezil 386–7
	Dopa decarboxylase 141
Corticosteroid 481 Cortico-thalamic synchrony 485	DOPAC 141
Cortico-mainine sylicinolly 463 Corticotropin-releasing factor (CRF)	Dopamine (DA) 137–61
in depression 447–9	β -hydroxylase 167–8, 306
interaction with monoamines 449	agonists 152
receptors 420	in PD 310–13 antagonists 153
Crack, see cocaine	in schizophrenia 354
Curare 4	augmentation in PD 302–13
Cyclo-oxygenase (COX) 456	brain concentrations 138
Cytokines 458	central functions 153–8
Cytokines 150	motor activity 155–6
Dehydroepiandrosterone (DHEA) 273	psychoses 156
Dementia 375	reward and reinforcement 156–8
Depolarisation block 360–2	electrophysiological effects 150–1
Deprenyl see Selegiline	fluorescence 137
Depression 425–50	in drug dependence 518
α_2 adrenoceptor antagonists in 438	in sleep 490
β -adrenoceptors in 444	malfunction in PD 299–300
animals studies of 429–31	metabolism 141–2
causes of 427–9	neurons
human studies 427–9	neurochemistry of 138–44
corticotropin-releasing factor	neurotoxins for 143–4
(CRF) in 447–9	O-methylation 305

pathways 137–8	Drug induced sleep 495–7
release and turnover 143	Drug metabolism 112
long term control 143	Drug plasma binding 112
short term control 143	Drug plasma half-life 113
storage 142–3	Drug potency 106
synapse, pharmacology of 151–3	Drug receptor interaction 105–8
synaptic effects 148–51	equilibrium constant for 105–6
synthesis 139–41	Drug tolerance 502
control of 141	Drug withdrawal syndrome 401
uptake 142	Drugs of dependence, classification 500–2
Dopamine receptors 144–51	DYFLOS 122
classification 144–6	Dynorphins 314, 468
D_1 family 147–8	Dyskinesias 156, 355, 362–3
D_2 family 148	Dyskinesias 150, 555, 502-5
D ₄ antagonist in schizophrenia 365	Ecstasy (MDMA) Methylanediovymeth
distribution and mechanisms 146–8	Ecstasy (MDMA) Methylenedioxymeth-
functional synergism 158–160	amphetamine 193, 195, 435, 510–12
in neuroleptic drug action 364–5	EEG 327, 494
in schizophrenia 355	in epilepsy 330
structure of 146	in sleep 481–4
sub-types D_{1-5} 145–6	Eicosanoids 456
Dorsal raphe nucleus (DRN) $189-190$,	Electroconvulsive shock 444
416, 491	Electroencephalogram (EEG) 56
	Electromyogram (EMG) 482
Dose (concentration) response curve	Electroocculogram (EOG) 482
(DRC) 106	Eletriptan 458
Dothiepin 434	Elevated plus-maze 398
Down Syndrome 376, 378	Emesis, drugs in 202
Doxepin 436	Encephalitis lethargica 320
Drosophila melanogaster 320	Endogenous opioid transmitters 468
Drug absorption 112	Endomorphins 258, 468
Drug abuse, see drug dependence	Endopeptidase 254
statistics 499–500	β -Endorphin 468
Drug affinity 105	Endothelin 254
Drug antagonism 108–11	Endothelium-derived relaxing factor
dose ratio (r) 110	(EDRF) 281
functional (physiological) 108	Enkephalins 254–8, 461, 468, 472
receptor 108	agonists in PD 315
surmountable competitive 110	Entacapone 142, 308
unsurmountable (irreversible)	Epilepsies 325–6
competitive 110	Epilepsy (epilepsies) 325–40
Drug binding studies 107	amino acids in 336–40
Drug dependence 499–520	animal models of 326–9
amphetamines 512–14	predictive value 328–9
cannabis 507–10	cause 329–30
cocaine 514–16	drugs in 342–9
definitions of 500–2	EEG patterns in 327
development of 501	GABA in 332
dopamine in 518	GABA receptors in 335
ecstasy 510–12	gliosis for 349
major problems with 519–20	neurotransmitters in 335–41
mechanisms for 516–19	ACh 341
neural basis of 516–19	adenosine 341
opioids in 502–4	monoamines 341
stimulants 512–15	pathology 329–30
withdrawal symptoms 518	surgery in 349
Drug efficacy 105	Epileptic activity, approaches to the
Drug excretion 113	control of 341–2
2.05 energion 110	Control of 5 11 2

Epileptic focus 325	shift hypothesis 410–11
Epileptic seizure	structure 238–41, 404
development of 330–5	sub-units 238–41, 405
focal neurons in 332_1	GABA _B 241–4
ictal spikes in 334	distribution 242
Epileptogenesis 334–5	isoforms 244
Ethosuximide 343–5	mechanisms of action 242
and calcium channels 46	pharmacology 242
Evoked potentials 55	structure 242–3
Exocytosis 93, 97, 172–4	GABA _C 244–8
receptor coupling to 99–100	expression in Xenopus oocytes 244
vesicles in 96–8	pharmacology 244
Extracerebral dopa decarboxylase inhibitors	presynaptic 245
(ExCDDIs) 307–8	structure 244–5
Extrapyramidal side-effects (EPSs) 352, 359,	Gabaculine 233
362–3, 368	Gabapentin 348, 464
,	GABA-shunt 226
Falk-Hillarp technique 137, 187	GABA transaminase (GABA-T) 226, 347
Felbamate 340, 348	inhibitors in epilepsy 337–8
Fenfluramine 194, 196, 207, 415	Galactorrhoea 359
Fentanyl 472	Galanin 263
Flight/fight response 416	Gastrin-releasing peptide (GRP) 478
Flumazenil 237–8, 407, 410	Geller-Seifter test 399
Fluoxetine 434, 439–42	Generalised anxiety disorder 395
Flupenthixol 353–4	Generalised seizures (GM) 326
Flurazepam 496	Geniculohypothalamic tract (GHT) 478
Fluvoxamine 434, 439	Globus pallidus 301–3
Foetal mesencephalic tissue 318	Glucocorticoid receptors 448
Food intake 206–8	Glutamate (L-Glutamic acid) 211–27
5-HT receptors in 199, 206–7	exitotoxicity 221–2
adrenoceptor antagonists in 207	function 218–23
Food suppression 414	in development 222–3
Freeze-fracture 93	in Alzheimer's disease 388
	in epilepsy 218, 336
GABA (γ-aminobutyric acid) 225–48,	in LTP 219–20
461, 478	in memory 219–21, 384
agonists in epilepsy 337–8	in pain 218
in Alzheimer's disease 389	neurochemistry 211–12
metabolism 231–3	Glutamate receptors 212–18
neurochemistry 225–33	antagonists 221
neurons 487	metabotropic 74, 214, 218
storage 230	nomenclature 214
synthesis 226–30	non-NMDA (see also AMPA and
transporters 231	kainate) 214–16
inhibitors of 232–3	structure 66–8
uptake 230–1	synapse 213
inhibitors of 339–40	Glutamic acid decarboxylase (GAD)
vesicular transporter 230	226–30
GABA receptors 233–46	inhibitors of 230
structure 65	isoforms of 229
GABA _A 233–41	regulation of 227–9
antagonists 233–4	Glutamine 211–12
benzodiazepines 235	synthetase 212
binding sites 235–8	Glutathione 320
complex 236	Glycine 246–8, 461
pharmacology 234–8	neurochemistry 246–7
native heterogeneity 241	NMDA receptors and 217

receptors 247–8	6-Hydroxydopamine (6-OHDA) 138, 143,
general anaesthetics on 248 structure 65	300, 356, 358
structure 63 storage 246	5-Hydroxyindoleacetic acid (5-HIAA) 196–7, 428
synthesis from serine 246	5-Hydroxytryptamine (5-HT) 187–208, 425,
Glycine transporters 217, 247	479–80
G-protein coupled receptors 69–75	N-acetyltransferase 479
see also neurotransmitter receptors	brain function 204–8
7-TM domain types 72–3	distribution 187–9
activation 70–2	in
allosteric ternary complex 74	anxiety 413–19
desensitisation 74	ecstasy action 511
dimerisation 72	food intake 206–8
glucagon type 73	hallucinogenic drugs 507
in genetic diseases 75	migraine 457–8
kinetics 78–79	sleep 490–4
ligand binding domain 70–1	sleep-wake cycle 204–6
protein types 71–2	metabolism 196–7
rhodopsin like 73	moduline 200
tertiary structure 69	release 194
transmembrane topology 69	storage 193–4
G-proteins 13, 38	synaptic pharmacology 188
Hallucinations 351	synthesis 191–3
Hallucinogenic drugs 504–6	transporter 194–5 uptake 194–6
Hallucinogens 201	in depressed patients 196
Haloperidol 152, 353, 490	inhibitors 195
Headache 457–8	5-Hydroxytryptamine (5-HT) receptors
Hemicholinium 120	classification and subtypes 198–203
Henderson-Hasselbalch equation 112	in anxiety 414–19
Heroin (diacetylmorphine) 472, 502, 512	in migraine 457–8
Heterocarriers 100–1	in sleep 492–3
Heteroceptors 16, 174	5-HT _{1A} 193, 197–200, 414, 492
Hill co-efficient 75–7	downregulation after
Hippocampus 330	antidepressants 446
Histamine 269–72	in antidepressant drug treatment 444–6
central functions 270–2	in schizophrenia 199
concentration in brain 269	5-HT _{1B} 200
in pschychomotor performance 272	5-HT _{1D} 200–1
in sleep 271, 487–8	$5-ht_{1E}$ and $5-ht_{1F}$ 201
synthesis and metabolism 270	5-HT ₂ 418, 438
Histamine receptors 270	agonists 493
antagonists	5-HT _{2A} 201, 441, 495
H_1 487	5-HT _{2B} 201–2
H_1-H_3 270	5-HT _{2C} 441, 443 5-HT ₃ agonists 202, 493
H ₃ 488	5-HT ₄ -5-HT ₇ 202–3
classification 270 distributions 270	5-Hydroxytryptophan (5-HTP) 193, 491
in sleep-waking cycle 271	Hyoscine 383
neuronal effects 270	Hyperalgesia 456, 459, 463
HIV/AIDS 500	Hypnotics 495–7
Homovanillic acid (HVA) 141–2	and GABA 497
Huntington's Chorea 222, 322, 153	Hypothalamic-pituitary adrenocortical (HPA)
Hydergine 392	axis in depression 446–9
Hydrogen peroxide (H ₂ O ₂) 320	•
8-Hydroxydiproplyaminotetralin	Ibotenic acid 383
(8-OH-DPAT) 206, 493	Ictal spikes 334

Idazoxan 177	kainate receptors 215
Imidazole 177	MAO_B 196
Imidazoline 489	Krebs cycle 211
receptors 178, 489	
I ₂ receptors 178	L-745,870 365
Imidazolines 177	Lateral geniculate nucleus (LGN) 478
Imipramine 426–7, 433–4, 436–7	Laterodorsal tegmental (LDT) nuclei 486
Inhibitory postsynaptic potential (IPSP) 13,	Lamotrigine 340, 347, 344–5, 367
234	Large neutral amino acid (LNAA)
Inositol triphosphate (IP ₃) 13, 71	carrier 192
Interictal spikes 334	Learned helplessness 430–1
Interleukins 495	5-HT in 205
Intracranial self-stimulation (ICSS) 157	Leukotrienes 4456
Intrinsic activity 105	Levodopa
Intrinsic neurons 23, 225	auto-oxidation 320
Inverse agonist 406	in PD 305–10
2-Iodomelatonin 480	long term effects 310
Ion channel receptors 62–8	mode of action 307
kinetics of agonist action 77–9	Lewy bodies 138, 299
sub-unit stoichiometry 64–8	Lipoxygenase 456
sub-unit topology 62	Lisuride 311
Ion channels	Locus coeruleus 163–4, 179, 490
currents, recording of 47–53	Long term potentiation (LTP) 18, 135, 281
delayed rectifier K ⁺ 37	284, 384, 388
G-protein—gated inward rectifiers	glutamate in 219–20
(GIRK) 35	Lorazepam 497 Lormetazepam 497
H-channels pacemaker function 47 K ⁺ 35, 42	Losartin 419
M 41, 44, 52, 53	L-type voltage sensitive calcium channels
acetylcholine on 45	(VSCCs) 392
single current recording 49	Lutenising hormone releasing factor
slow K ⁺ 41	(LHRH) 254
sodium 35	Lysergic acid diethylamide (LSD) 199, 201,
twin-pore (TASK) 35	504–6, 510
types of 35	5HT receptors and 199
Ion pumps 33	citi iccopioni and
Ionic gradients 33	Manganese 320
Iprindole 434, 437–8	poisoning 306
Iproniazid 425–6, 435, 436	Mania 425
Isocarboxazid 434, 436	Maprotiline 434, 439, 444
Isoniazid 230	Marijuana, see cannabis
	Mast cells 458
T 1 ' ' ' ' 205	Maximal electric shock (MES) 326
Jacksonian epilepsy 325	Mazes 382
	Medial forebrain bundle (MFB) 157
Kainate (Kainic acid, KA) 212	Median raphe nucleus 189–190
Kainate receptors	Melanin granules 299
function 214–16	Melatonin 427, 479–81
knock-out mice for 215	Memantine 463
Kelatorphan 472	Memory
Ketamine 219, 238, 463	animal tests of 382
Ketobemidone 473	NTs in 382–4
Kindling 328, 332, 336	processing 384
Knock-out mice for	Meprobamate 401
5-HT _{1B} receptors 200, 493	Mesocortical pathways 156, 367,
5-HT _{2C} receptors 207	Mesolimbic pathway 137, 156
GAD ₆₇ 229	Metabotropic receptors 74, 218

Metenkephalin 303 Methacholine 128	Neuroglia (glia) 10 Neurokinin receptors 259, 420
Methadone 472–3, 502–3	Neurokinins 254
Methylenedioxymethamphetamine (MDMA)	Neuroleptics (neuroleptic drugs) 352, 358–72
see ecstasy	atypical 359, 363–9, 371
Methylphenidate 512	on DA receptor subtypes 364
Metoclopramide 153	5-HT effects 365–7
Metoprine 272	5-HT receptors and 365–7
Mianserin 434, 438, 449	5-HT _{2A} receptors and 201
Microdialysis 87–9	acetylcholine effects 365
5-HT release 205–6, 441, 491	DA neuron function and 359
DA release 369	definition of 352
NA release 181–2, 411, 413	EPSs with 362–3
Midazolam 408, 466	glutamate and 367
Migraine 200, 457–8	latency of effect 359–362
Milnacipran 441, 434	neuron depolarisation after 360–2
Mirtazepine 434, 438	noradrenaline effects 367
Misuse of Drugs Act 503–15	profile of NT antagonism 367–9
MK-801 217	required action 369–71
Moclobemide 177, 434–6	typical 359–71
Monoamine oxidase (MAO) 141, 169,	Neuromodulator 30
175–8, 355	Neuron structure 6–10
isoenzymes 435	Neuronal activity, recording 47–55
inhibitors 431–6	Neuronal potentials 13–17
in depression 433–6	excitatory postsynaptic (EPSP) 13
MAO_{A} 176–8	inhibitory postsynaptic (IPSP) 13, 234
irreversible inhibitors 436	resting 13, 33
reversible inhibitors (RIMA) 435–6	Neurons, Cl ⁻ accumulation in 234
MAO _B 176–8, 320	Neuropathic pain 458–60
Monoamine uptake inhibitors 434	Neuropathy 219, 459, 466
Monoamines 6, 24	Neuropeptide Y 261
reverse transporter 514	receptors 420
Morphine 257, 258–9, 471, 502–3	Neuroprotective agents 68
histamine release 472	Neurosteroids 272-6, 406
physical dependence 471	behavioural effects 273–5
see also opiates	chemical structures 274
Morris water maze 134, 275, 382	classification 272–3
MPTP (I-methyl-4-phenyl-1,2,3,6,-	in myelin synthesis 276
tetrahydropyridine) 144, 222, 300, 307,	Neurotensin 262
311, 320–1	Neurotoxicity 18, 281
Multiple infarcts 375	Neurotransmitter (NT)
Multiple sclerosis, demylination in 37	classification 5
Muramyl peptides 495	coexistence 24
Muscarinic receptors, see cholinergic receptors	definition 4, 30
Muscimol 234, 240, 337	function 11
	basic circuitry for 11
Naloxone 258, 314, 468, 472	brain lesions on 116
Naratriptan 458	drug effects on 113–16
NBQX 214	in genetically bred animals 116
Nefazodone 434, 443	in humans, manipulation of 293–6
Nefiracetam 392	measurements of in man 289–91
Neostigmine 121, 487	toxins on 116
Nernst equation 33	identification criteria 25–30
Nerve action potential 35–7	identity of action 28
Nerve growth factor (NGF) 170, 391, 458	malfunction in animal models of human
Nerve membrane potential 33–4	disorders 292–3
Neurofibrillary tangles 375–6	implications from drug use 291

Neurotransmitter (NT) (cont.)	classification 220
organisation, pathways 22–4	in pain transmission 219
overflow 89	recognition sites 217
	Nociceptin 468
receptors 57–75	
amino acid sequencing 59	Nociception 284, 254
classification 57–62	Nociceptors 462
expression systems for 61	Nomifensine 142, 305
G-protein coupled 69–74	Non-specific reticular thalamic nucleus
identification 57–9	(NspRTN) 484
mechanisms 59–60	Non-steroidal anti-inflammatory drugs
release 27–8, 81–101	(NSAIDs) 379, 453, 456, 465
Ca ²⁺ independent 100	Noradrenaline (NA) 163–85, 425
calcium channels in 37	extraneuronal tranporters 175
heterocarrier mediated 100	in anxiety 410–13
measurement of 81–92	in brain function 180–4
in brain slices 85–6	attentiveness 182–3
in synaptosomes 83–5	in sleep 488–90
in vitro 82–6	membrane-bound transporters 175
in vivo 87–92	
with radio labelled transmitter 84	metabolism 175–8
	neurochemistry 165–72
origin of 92–4	pathways 163–5
receptor modulation of 98–9	receptors 178–80
reverse transport 100	see also adrenoceptors
vesicular 96–8	release 172–4
storage pools 94–5	inhibition of 40
synaptic concentration, control of 18	microdialysis of 181–2
turnover, estimation of 81–2	modulation of 173–4
vesicles 19	re-uptake 175
Neurotransmitters (NTs) in	transporters 175
Alzheimer's disease 380–1	storage 171–2
basal ganglia circuitry 300–3	synaptic pharmacology 166
epileptic activity 335–41	synthesis 167–8
PD 315–17	vesicle uptake transporter 171
pain initiation 462–6	Noradrenergic receptors, see adrenoceptors
schizophrenia 365–7	Nortriptyline 436
sleep 486–95	Noxious stimulus 211
memory function 382–5	N-type calcium channels 464–5
Neurotrophic factors 321, 391–2	Nuclear magnetic resonance (NMR) 290
Nicotine, addictive nature 135	Nucleus accumbens 151, 137, 158, 200
Nicotinic receptors, see cholinergic receptors	Nucleus basalis (magnocellularis) or nucleus
Nigrostriatal pathway 137, 299, 355	of Maynert 132–3, 380, 388, 391, 486
Nitrazepam 496	
Nitric oxide 281–5, 495	Obesity, anti agent for 171
cellular actions 283	Octodecaneuropeptide (ODN) 409
excitotoxicity 283	Octopamine 279
in LTP 284	Oleamide 495
in nociception 284	Olfactory bulbectomy 430
in PD 321	OMD (<i>O</i> -methyldopa, 3-methoxy
synthase (NOS) 282	tyrosine) 307–10
inhibitors 283, 465	Ondansetron 202, 204, 385, 415
isoforms of 282	ON-OFF effect with levodopa 310
synthesis 282	Opiate agonists 472
NMDA (N-methyl-D-aspartate) 212	Opiate analgesia 469–71
antagonists 384, 388	Opiate antagonists 472–3
NMDA receptors 67–9, 216–18, 222, 317,	Opiates 466–73
332–4, 381, 420	neurotransmitters interacting with 473
antagonists in enilensy 340	side effect of 471–2

Opioid peptides 257–9	imidazoline receptors in 178
endogenous 257–9	lesions for 319
Opioid receptors 257–8, 466–9, 504	levodopa in 305–10
mechanisms 258–9	adjuncts to 307–10
Opioids 254	metenkephalin in 303
analgesic effect 259	modifying striatal output in 314
delta receptor 468	neurotransmitters in 300
agonists 471	pathology 299–322
endogenous, see opioid peptides	peroxides in 320
in drug dependence 502–4	PET studies in 299–300
kappa receptor 468–9	substance P in 303
agonists 471	substantia nigra neurons in 300–3
mu receptor 468	sub-thalamic nucleus in 301–3
Opium 257	therapy 303–18
Oxcarbazepine 348	transplants in 318, 322
Oxotremorine 128	Paroxetine 434, 439–42, 446
Oxotremornic 120	Paroxysmal depolarising shift (PDS) 330–2
Pain 260, 453–74	Partial agonist 106
afferent fibres mediating 454–6	Partial seizures 325
behavioural effects of 473–4	Passive avoidance test 382
central events in 460–9	Patch clamp recording 47–53, 150
CGRP 463	single channel currents 49
GABA 466	whole cell currents 49
	Pedunculopontine tract (PPT) 486
glutamate 463	Pentazocine 472
opiate receptors 466–9 nitric oxide 465	Pentylenetetrazol (PTZ), leptazol 327–8, 338
	403
substance P 463	
chemical mediators of 456–7	Peptidases 253–4
drugs and neurotransmitters in 467	inhibitors of 254
mechanisms 453	Peptides 251–64
nerve damage in 458–60	and inflammation 255
opiate analgesia in 469–71	breakdown 253–4 co-existence with other NTs 255–7
peripheral events in 454–60	
tissue damage in 456–7	in anxiety 419–20
transmission 217	manipulation of 254
vascular damage in 457–8	neurochemistry 251–4
Panic attacks 417	neurotransmitters classical NTs compared
induction 401	with 252–3
Panic disorder 395, 415	plasticity 254–5
Parachlorophenylalanine (PCPA) 207	potential roles of 262–3
Paranoia 505	production 251–3
Pargyline 434	receptors 253
Parkin 319	release of 253
Parkinson's Disease (PD) 168, 222, 299–322,	Pergolide 311
490, 352, 355, 363	PET, see Positron emission tomography
3-methoxy tyrosine, see OMD	Petit mal (PM) 326
adenosine in 317	Phaclofen 242
aetiology and prevention 319–21	Pharmacokinetics 111–13
animal models 300	Phencyclidine 357–8, 384, 420
basal ganglia circuitry in 300–3	Phenelzine 434–6
cholinergic function in 315–17	Phenobarbitone 343–5, 349
DA agonists in 310–13	Phenothiazines 353
dopamine augmentation in 303–13	Phenoxybenzamine 173
dopamine in 299–300	Phenylethylamine 279
enkephalin agonists in 314	Phenytoin 37, 342–6
excitatory amino acids in 317	Phobic disorders 396
genetics 319–20	Phosphatidyl choline (lecithin) 385–6

Phospholipase C 202	Reserpine (Rauwolfia serpentina) 142, 171
Photoaffinity labelling 405	199, 352, 425–6, 430, 491
Physiostigmine 121, 386, 486	Retinohypothalamic tract (RHT) 478
Picrotoxin 234, 403	Retro-dialysis 89
Pineal gland 427, 478–9	Risperidone 353, 365
Pinfolol 446	Ritanserin 415, 493
Piracetam 392	Rizatriptan 458
Pirenzepine 125	Ropinirole 311, 313
Pirlindole 434, 436	Rotational movement in rats 155
Plasticity 384	
Plus-maze 397–8	Sarcosine (N-methyl glycine) 247
Pontine-geniculate-occipital (PGO)	Scatchard plot 108
waves 485, 487	SCH23390 145, 150, 152
Positron emission tomography (PET) 196,	Schild analysis 58
290–1, 299–300, 318–9, 352, 355, 364–6,	Schild plot 110
370	Schildkraut theory of depression 427,
D ₂ receptors 366	430, 444
in schizophrenia 368	Schizophrenia 201, 264, 351–72
labelling NT receptors in humans 291	5-HT in 358
Pramipexole 311	aetiology 351–2
Prazosin 179	animal models of 356–8
Prefrontal cortex (PFC) 151, 356	block of DA pathways in 355
dorsal lateral (DLPFC) 356	DA D ₂ receptor antagonists in 354
Pregnenolone (PREG) 273	DA function in 352–5
Prepulse inhibition (PPI) 357–8, 367	drug therapy, see neuroleptic drugs
Presynaptic inhibition 16, 38	genetic influence on 351–2
Primidone 345	glutamate in 358
Progesterone (PROG) 272–5	negative symptoms 351, 356, 368–9
Prolactin 303, 355, 495	PET studies in 352
Prolactinaemia 153	positive symptoms 351, 356
Promethazine 269	symptoms of 351
Propeptides 253	therapy 352–5
Propranolol 180, 412	type I, II 351
Prostaglandins 280-1, 456, 495	Secretases (α, β, γ) 389–91
Prostanoids 465	Selective noradrenaline reuptake inhibitors
Protein kinase 15	(NARIs), in depression 439
Protein kinase A 195	Selective serotonin reuptake inhibitors
Protein kinase C 195	(SSRIs) 395, 431
Protein kinase II 192	in depression 439–42
Psilocybin 506	Selegiline (deprenyl) 305, 435
P-type channels 464	Senile plaques 375–6
Purines 265–9	Septohippocampal system 416
Purkinje cells 225	Serotonin and noradrenaline reuptake
Push–pull cannula 87	inhibitors (SNRIs)
Pyridoxal-5-phosphate (PLP) (see also	in depression 441–3
vitamin B_6) 227–8	Serotonin reuptake and receptor inhibitors,
Quisqualate (Quisqualic acid, Q) 212	in depression 443
Quisqualate (Quisqualle acid, Q) 212	Serotonin reuptake inhibitors 415
Raclopride 318	Serotonin-binding proteins (SBPs) 193
Raphe nuclei 187–9, 491	Sertraline 434, 439, 449
Rapid eye movement (REM) sleep 205, 483,	Sibutramine 207
487, 490–7	Signal-to-noise ratio 180
Reactive (endogenous) depression 425	SKF38393 145, 150, 152
Reboxetine 434	Sleep 134, 477–98
Receptors	5-HT in 490–4
ionotropic 14	5-HT receptors in 492–3
metabotropic 14	acetylcholine in 486–7

adenosine in 494	TCAs, see tricyclic antidepressant drugs
amino acids in 494	Tachykinins 217, 259–60
dopamine in 490	see also substance P and neurokinins
drug induced 495–7	Tacrine (tetrahydroaminoacrydine) 386–7
EEG in 481–4	Tactile allodynia 459
factors 494–5	Tamsulosim 179
histamine in 487–8	Tardive dyskinesias 363
neurotransmitter systems in 486–95	Taurine 247
noradrenaline in 488–90	Temazepam 497
rapid eye movement (REM) 134	Temporal lobe epilepsy 325
slow wave 134	Tetrabenazine 142, 172
calcium channels in 46	
waking centres 484–5	Tetraethylamonium 37
Sleep-waking cycle 477–8, 480, 485	Tetrahydrocannabinols (THC) 507–8
Slow-wave sleep (SWS) 482–3, 487, 490–7	Theophylline 269, 317
Social interaction test 398	Thioperamine 488
Sodium valproate see Valproate	Thioridizine 353, 363
Somatostatin 262, 389, 494	Thiosemicarbazide 230
Speed, see amphetamines	Thioxanthenes 353
Spinal cord, sensory transmission in 460–2	THIP 234
Spinocervical tract (SCT) 461	Thromboxanes 456
Spinothalamic tract (STT) 461	Tiagabine 340, 348, 406
Spiperone 152, 353	Tissue damage, chemical mediators of 456–7
Spreading depression 457	Tocopherol 320
Startle response 357–8	Tolcapone 142, 310
Stereotypy 156, 160, 279, 354, 356, 367	Toloxatone 436
Steroids, on GABA _A receptor 237–8	Tonic-clonic seizures 326
see also neurosteroids	
Stress 395	Topiramate 348
Strychnine 247	Trace amines 277–80
Substance P 211, 254, 303, 458	Tramadol 472
Substantia gelantinosa 462	Transgenic mice, receptor expression in 68
Substantia nigra (SN) 137	Transplants in PD 318, 322
Subthalamic nucleus 319	Tranyleypromine 430, 434–6, 444
Succinic semialdehyde dehydrogenase 226	Trazodone 415, 434, 443
Sucrose density-gradient centrifugation 94,	Triazolopyridazines 237, 239
171	Triazolopyridine 443
Suicide 428	Tricarboxylic acid (TCA) cycle 226
	Tricyclic antidepressant drugs (TCAs) 433,
Sulpiride 353	436–8
Sumatriptan 200–1, 458	side effects 438
Suprachiasmatic nucleus (SCN) 200, 478, 494	Triethylcholine 120
	Triptans 458
Suramin 266–8	Tryptamine 277–9
Suxamethonium 129	body temperature and 277
Swim test 431	Tryptophan 191–2, 429
5-HT in 205	Tryptophan hydroxylase (TH) 190–3
Synapses	Tuberomammillary nucleus 269, 487
asymmetric (type I) 19	Tyramine 177, 433, 279–80
morphology 19	
neurochemistry 25	Tyrosine 139
symmetric (type II) 19	α-methyl- <i>p</i> -tyrosine 429
types of 7, 19–21	Tyrosine hydroxylase (TH) 141, 143, 167–8
Synapsins 95	phosphorylation of 169
Synaptobrevin 97	regulation of 168–71
Synaptosomal associated protein (SNAP) 97	Tyrosine kinase 458
Synaptosomes 83–5	**
α-Syneclein 315	Unipolar depression 425

Valproate (Sodium valproate, valproic acid) 233, 329, 345, 347 Vanilloid receptor 1 (VR1) 456 Vasoactive intestinal peptide (VIP) 478 Vasopressin 261, 385 Velnacrine 386–7 Venlafaxine 434, 441 Ventral tegmentum 157, 163-4 Ventrolateral preoptic area (VLPO) 487 Vesicle membrane associated transporters (VMATs) 193, 195 Vesicle proteins 97 Vesicles large dense core 94 small synaptic 94 types of 94 Vesicular inhibitory amino acid transporter (VIAAT) 230 Vesicular monoamine transporters (VMATs) 171-2 Vigabatrin (γ-vinyl GABA) 233, 339, 344–5, 347, 406 Viloxazine 434, 439

VIP (vasoactive intestinal peptide) 255, 495 Vitamin B₆ 230 Vogel licking test 399 Voltage clamp technique 52 Voltage-dependent sodium channels 342 Voltammetry 86, 90–1, 150 VTA Ventral tegmental area. See A10

Waking 477–98 Wind-up 467 in nociception 463–4 neuronal 284

Xenopus oocytes 239

Yohimbine 179, 411–12

Zacopride 385, 415
Zolantidine 270
Zolmitriptan 458
Zolpidem 405, 496
Zonisamide 348
Zopiclone 405, 496