Real Analysis

September 13, 2024

1 Lebesgue Spaces

or $L^p(X,\mathcal{S},\mu)$

- [1] Given a measure space (X, \mathcal{S}, μ) , and $0 , the Lebesgue Space <math>L^p$ is the set of \mathcal{S} -measurable functions $f: X \to \mathbb{F}$ such that $\|f\|_p < \infty$ is defined as follows:
 - If $0 , <math>||f||_p = \left(\int |f|^p d\mu\right)^{\frac{1}{p}}$
 - $||f||_{\infty} = \inf\{t > 0 : \mu(\{x \in X : |f(x)| > t\}) = 0\}$

With:

- The $||f||_p$ for 0 measures the "average" size of the function <math>f, raising values to the power p, integrating, and taking the p-th root.
- The $||f||_{\infty}$ finds the *essential supremum* of f, which is the smallest value t such that the function is less than or equal to t almost everywhere (except on sets with measure zero).

References

[1] Tyler Perlman, The Development of the Hardy Inequality https: //www.sas.rochester.edu/mth/undergraduate/honorspaperspdfs/ tylerperlman2021.pdf