Statistical Foundations of Learning

Debarghya Ghoshdastidar

School of Computation, Information and Technology Technical University of Munich Probably Approximately Correct (PAC) learning

Recap

- ERM over $\mathcal{H} \subset \{\pm 1\}^{\mathcal{X}}$: $\widehat{h} = \underset{h \in \mathcal{H}}{\operatorname{arg min}} L_S(h)$
- Goal: Bound generalisation error $L_{\mathcal{D}}(\widehat{h})$
- $VCdim(\mathcal{H}) = size$ of largest set that \mathcal{H} can shatter
 - If \mathcal{H} has more complex functions, then $VCdim(\mathcal{H})$ is larger
- Generalisation error bound when $VCdim(\mathcal{H}) = d$:

$$L_{\mathcal{D}}(\widehat{h}) < L_{\mathcal{D}}(\mathcal{H}) + 2\sqrt{\frac{8\left(d\ln\left(\frac{2em}{d}\right) + \ln\left(\frac{4}{\delta}\right)\right)}{m}}$$
 with probability $1 - \delta$

Outline

- Probably Approximately Correct (PAC) learning:
 - Another view of results derived so far

... for which \mathcal{H} is ERM good?

- No free lunch theorem
 - Shows that ERM does not have low generalisation error if $\mathcal{H} = \{\pm 1\}^{\mathcal{X}}$
- Fundamental theorem of statistical learning
 - Finite VC dimension necessary and sufficient for (agnostic) PAC learnability
 - Bounds on sample complexity
- Proof of no free lunch theorem

Realisable setting

- \mathcal{D} is a distribution on $\mathcal{X} \times \{\pm 1\}$
- \mathcal{D} is realisable with respect to hypothesis class \mathcal{H} and loss function ℓ if

$$L_{\mathcal{D}}(\mathcal{H}) = 0$$

- What conditions do \mathcal{D} satisfy if it is realisable?
 - Bayes risk $L_{\mathcal{D}}^* = 0$
 - There is $h^* \in \mathcal{H}$ such that $L_{\mathcal{D}}(h^*) = 0$... assuming $L_{\mathcal{D}}(\mathcal{H})$ is a min, not infimum
 - \mathcal{D} can be decomposed as:

$$(x,y) \sim \mathcal{D}$$
 \Longrightarrow $x \sim \mathcal{D}_{\mathcal{X}}$ and $\mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y = h^*(x) \mid x) = 1$

Understanding the meaning of PAC

- Probably Approximately Correct (PAC) Learning
 - Originally formulated in the realisable setting
 - There is $h^* \in \mathcal{H}$ such that $L_{\mathcal{D}}(h^*) = 0$
 - Note: Our notation differs from Ben David's book since we assume \mathcal{D} is distribution over $\mathcal{X} \times \mathcal{Y}$
- Correct learning:
 - Find $h^* \in \mathcal{H}$ given training sample $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \sim \mathcal{D}^m$
 - More generally, design learning algorithm \mathcal{A} such that

$$\widehat{h} = \mathcal{A}(S) \in \mathcal{H}$$
 satisfies $L_{\mathcal{D}}(\widehat{h}) = 0$

Understanding the meaning of PAC

- Approximately correct learning:
 - Given $S \sim \mathcal{D}^m$ and allowable approximation $\epsilon \in (0,1)$
 - Design $\mathcal A$ such that $\widehat h=\mathcal A(S)\in\mathcal H$ satisfies $L_{\mathcal D}(\widehat h)\leq\epsilon$
- Probably approximately correct learning:
 - Find $\hat{h} = \mathcal{A}(S)$ that is approximately correct with specified probability 1δ , $\delta \in (0, 1)$

$$L_{\mathcal{D}}(\widehat{h}) \le \epsilon$$
 with probability $1 - \delta$

• Equivalently, $\mathbb{P}_{S \sim \mathcal{D}^m} (L_{\mathcal{D}}(\mathcal{A}(S)) > \epsilon) \leq \delta$

PAC Learnability

- Let \mathcal{D} be realisable w.r.t. \mathcal{H} and loss function ℓ
- When can we learn \mathcal{D} ?
 - Given $\epsilon, \delta \in (0,1)$
 - There is a sample size m_0 and learner $\mathcal{A}: \bigcup_{m\geq 1} (\mathcal{X}\times\mathcal{Y})^m \to \mathcal{H}$ such that

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(L_{\mathcal{D}}(\mathcal{A}(S)) > \epsilon \right) \le \delta \qquad \text{for all } m \ge m_0$$

• Equivalently, $L_{\mathcal{D}}(\mathcal{A}(S)) \leq \epsilon$ with probability $1 - \delta$

PAC Learnability

- \mathcal{H} is PAC learnable w.r.t. loss ℓ if there exists
 - function $m_{\mathcal{H}}:(0,1)\times(0,1)\to\mathbb{N}$
 - learning algorithm $\mathcal{A}:\bigcup_{m\geq 1}(\mathcal{X}\times\mathcal{Y})^m\to\mathcal{H}$

such that for every

- $\epsilon, \delta \in (0,1)$
- \bullet realisable distribution \mathcal{D}
- sample size $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ and $S \sim \mathcal{D}^m$

$$L_{\mathcal{D}}(\mathcal{A}(S)) \leq \epsilon$$
 with probability $1 - \delta$

Finite VC classes are PAC learnable

- We call \mathcal{H} finite VC class if $VCdim(\mathcal{H}) = d < \infty$
- Show that finite VC classes are PAC learnable
- Let $\mathcal{A} = ERM$

$$L_{\mathcal{D}}(\mathcal{A}(S)) < \underbrace{L_{\mathcal{D}}(\mathcal{H})}_{0 \text{ for realisable } \mathcal{D}} + \underbrace{2\sqrt{\frac{8\left(d\ln\left(\frac{2em}{d}\right) + \ln\left(\frac{4}{\delta}\right)\right)}{m}}}_{\leq \epsilon \text{ for large } m} \text{ with probability } 1 - \delta$$

- Define $m_{\mathcal{H}}(\epsilon, \delta) = C \frac{d \ln(\frac{d}{\epsilon}) + \ln(\frac{1}{\delta})}{\epsilon^2}$
 - For a large constant C, above bound $\leq \epsilon$ for all $m \geq m_{\mathcal{H}}(\epsilon, \delta)$

Agnostic setting

- Limitations of realisable setting:
 - Assumes the true function h^* lies in \mathcal{H}
 - If we use SVM, this is same as assuming data is always linearly separable
 - Assumes there is a true h^*
 - Bayes error $L_{\mathcal{D}}^* = 0$ (not always practical)
- Agnostic setting:
 - Does not make either assumption
 - Main implication: $L_{\mathcal{D}}(\mathcal{H}) > 0$ (already considered in previous chapter)
 - How do we define learning / learnability in agnostic setting?

Agnostic PAC Learning

• Given $\epsilon, \delta \in (0, 1)$, find \mathcal{A} such that

$$L_{\mathcal{D}}(\mathcal{A}(S)) \le L_{\mathcal{D}}(\mathcal{H}) + \epsilon$$
 with probability $1 - \delta$

- We do not require $\mathcal{A}(S)$ to be ϵ -approximately correct
 - This may not be possible if $h^* \notin \mathcal{H}$
- We require $\mathcal{A}(S)$ to be ϵ -close to best predictor in \mathcal{H}

Agnostic PAC Learnability

- \mathcal{H} is agnostic PAC learnable w.r.t. loss ℓ if there exists
 - function $m_{\mathcal{H}}:(0,1)\times(0,1)\to\mathbb{N}$
 - learning algorithm $\mathcal{A}:\bigcup_{m\geq 1}(\mathcal{X}\times\mathcal{Y})^m\to\mathcal{H}$

such that for every

- $\epsilon, \delta \in (0,1)$
- distribution \mathcal{D}
- sample size $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ and $S \sim \mathcal{D}^m$

$$L_{\mathcal{D}}(\mathcal{A}(S)) \leq L_{\mathcal{D}}(\mathcal{H}) + \epsilon$$
 with probability $1 - \delta$

Sample complexity

- Exercise: Show that finite VC classes are agnostic PAC learnable
- Sample complexity:
 - Function $m_{\mathcal{H}}(\cdot,\cdot)$ is called sample complexity for learning \mathcal{H}
 - Fix ϵ (allowable excess error) and δ (probability of not satisfying bound)
 - $m_{\mathcal{H}}(\epsilon, \delta) = \text{minimum number of training samples needed to agnostically PAC learn}$ best predictor in \mathcal{H} for any \mathcal{D}

No Free Lunch Theorem: Significance

- Previous results:
 - If $VCdim(\mathcal{H}) < \infty$, then \mathcal{H} is (agnostic) PAC learnable
 - For $m > m_{\mathcal{H}}(\epsilon, \delta)$, can PAC learn any \mathcal{D}
- No Free Lunch Theorem:
 - $|\mathcal{X}| = \infty$ and $\mathcal{H} = \{\pm 1\}^{\mathcal{X}}$
 - There is no $m_{\mathcal{H}}(\epsilon, \delta) < \infty$ that is sufficient for learning all \mathcal{D}
 - Extension: For any \mathcal{H} with $\operatorname{VCdim}(\mathcal{H}) = \infty$, there is no $m_{\mathcal{H}}(\epsilon, \delta) < \infty$ that is sufficient for learning all \mathcal{D}

No Free Lunch Theorem

Theorem PAC.1 (No Free Lunch Theorem)

Assume

- \mathcal{A} is a learner for binary classification over \mathcal{X} , that is, $\mathcal{A}(\cdot) \in \{\pm 1\}^{\mathcal{X}}$
- training sample size $m < \frac{|\mathcal{X}|}{2}$

One can construct a distribution \mathcal{D} of the form $\mathcal{D} = \mathcal{D}_{\mathcal{X}} \times \mathbb{P}_{\mathcal{Y}|\mathcal{X}}$ such that:

- $\mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y = h^*(x) \mid x) = 1 \text{ for some } h^*$... \mathcal{D} realisable w.r.t. $\{\pm 1\}^{\mathcal{X}}$, or $L_{\mathcal{D}}(h^*) = 0$
- For $S \sim \mathcal{D}^m$,

$$L_{\mathcal{D}}(\mathcal{A}(S)) \ge \frac{1}{8}$$
 with probability $> \frac{1}{7}$

Interpreting No Free Lunch Theorem

- Fix any sample size $m < \frac{1}{2}|\mathcal{X}|$ and any algorithm \mathcal{A}
- One can find \mathcal{D} such that \mathcal{A} cannot PAC-learn \mathcal{D} for $\epsilon < \frac{1}{8}, \delta < \frac{1}{7}$
- If $|\mathcal{X}| = \infty$, above is true for any finite m and any learner \mathcal{A}
- Why does NFL not contradict previous learnability results?
 - NFL: No learner \mathcal{A} can PAC learn $\{\pm 1\}^{\mathcal{X}}$ if $|\mathcal{X}| = \infty$
 - \bullet PAC learnability: ERM over \mathcal{H} can PAC learn \mathcal{H} if it has finite VC-dim
 - Agnostic PAC: ERM over \mathcal{H} satisfies $L_{\mathcal{D}}(\mathcal{A}(S)) \leq L_{\mathcal{D}}(\mathcal{H}) + \epsilon$... $L_{\mathcal{D}}(\mathcal{A}(S)) > \epsilon$ possible

Learnability of infinite VC classes

Theorem PAC.2 (Infinite VC classes are not PAC learnable)

Assume

- \mathcal{X} is infinite domain
- $\mathcal{H} \subset \{\pm 1\}^{\mathcal{X}}$ has infinite VC-dimension
- ullet A is a learner that outputs predictors from ${\cal H}$

For every $m < \infty$, there is a distribution \mathcal{D} , realisable w.r.t. \mathcal{H} , such that:

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(L_{\mathcal{D}}(\mathcal{A}(S)) \ge \frac{1}{8} \right) > \frac{1}{7} .$$

Proof is exercise

Fundamental theorem of statistical learning

Theorem PAC.3 (Fundamental theorem for binary classification)

Let $\mathcal{H} \subseteq \{\pm 1\}^{\mathcal{X}}$ and consider the 0-1 loss. The following are equivalent:

- (1) \mathcal{H} has finite VC dimension
- (2) Any ERM rule is a successful agnostic PAC learner for \mathcal{H}
- (3) Any ERM rule is a successful PAC learner for \mathcal{H}
- (4) \mathcal{H} is agnostic PAC learnable
- (5) \mathcal{H} is PAC learnable

Fundamental theorem for binary classification

- Significance:
 - Finite VC dimension necessary and sufficient for (agnostic) PAC learnability
 - When \mathcal{H} is learnable, ERM finds nearly best predictor in \mathcal{H}
 - Learnability is an algorithm independent concept (not specific to ERM), yet ERM works
- Generalisation to other problems:
 - Equivalent results for other loss functions, and other problems (example: regression)
 - Based on alternatives for VC dimension (pseudo-dimension, fat-shattering dimension)

How to prove equivalence of statements?

- Approach 1: Prove $i \implies j$ and $j \implies i$ for all i, j
 - Too many proofs; Some may not be straightforward
- Approach 2: Prove any cycle (examples: $1 \implies 2 \implies 4 \implies 5 \implies 3 \implies 1$)
 - Proving all implications in a cycle may not be easy
- Approach 3: Prove multiple cycles that overlap
 - For theorem, show $1 \implies 2 \implies 4 \implies 5 \implies 1$ and $1 \implies 3 \implies 5 \implies 1$
 - Exercise: Use generalisation error bound for $1 \implies 2$ or $1 \implies 3$
 - $2 \implies 4 \implies 5 \text{ and } 3 \implies 5 \text{ straightforward}$
 - $5 \implies 1$ proved by contradiction using non PAC learnability of infinite VC classes

Sample complexity for finite VC classes

Theorem PAC.4 (Sample complexity for agnostic learnability)

 $VCdim(\mathcal{H}) = d < \infty$

 \mathcal{H} is agnostic PAC learnable with sample complexity

$$C_1 \frac{d + \log_2(\frac{1}{\delta})}{\epsilon^2} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d + \ln(\frac{1}{\delta})}{\epsilon^2}$$

for some constants $C_1, C_2 > 0$

Proof skipped. Weaker upper bound follows from generalisation error bounds

$$m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log_2(\frac{d}{\epsilon}) + \ln(\frac{1}{\delta})}{\epsilon^2}$$

Significance of sample complexity bounds

ullet Number of sample necessary and sufficient for nearly optimal prediction using ${\mathcal H}$

$$m = \text{linear function of } VCdim(\mathcal{H}), \frac{1}{\epsilon^2}, \ln\left(\frac{1}{\delta}\right)$$

- Quantitative version of fundamental theorem
 - Finite VC classes can be learned with $\implies m < \infty$ sample
 - Learning with $m < \infty$ samples not possible for infinite VC classes
- Better sample complexity for PAC learnability (proof skipped)

$$C_1 \frac{d + \log_2(\frac{1}{\delta})}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \ln(\frac{1}{\epsilon}) + \ln(\frac{1}{\delta})}{\epsilon}$$

No Free Lunch Theorem

Theorem PAC.5 (No Free Lunch Theorem)

Assume

- \mathcal{A} is a learner for binary classification over \mathcal{X} , that is, $\mathcal{A}(\cdot) \in \{\pm 1\}^{\mathcal{X}}$
- training sample size $m < \frac{|\mathcal{X}|}{2}$

One can construct a distribution \mathcal{D} of the form $\mathcal{D} = \mathcal{D}_{\mathcal{X}} \times \mathbb{P}_{\mathcal{Y}|\mathcal{X}}$ such that:

- $\mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y = h^*(x) \mid x) = 1 \text{ for some } h^*$... \mathcal{D} realisable w.r.t. $\{\pm 1\}^{\mathcal{X}}$, or $L_{\mathcal{D}}(h^*) = 0$
- For $S \sim \mathcal{D}^m$,

$$L_{\mathcal{D}}(\mathcal{A}(S)) \ge \frac{1}{8}$$
 with probability $> \frac{1}{7}$

Proof idea

- Simplifying the theorem statement
 - Given learner $\mathcal A$ and sample size $m < \frac{1}{2}|\mathcal X|$
 - Find $\mathcal{D} = \mathcal{D}_{\mathcal{X}} \times h^*$ $(x \sim \mathcal{D}_{\mathcal{X}}, y = h^*(x))$
 - Such that $L_{\mathcal{D}}(\mathcal{A}(S))$ is large
- We do not construct single $\mathcal{D}_{\mathcal{X}}, h^*$, instead:
 - Fix $\mathcal{D}_{\mathcal{X}}$
 - Give a collection $\{h_1, \ldots, h_T\}$ such that $\mathcal{D}_{\mathcal{X}}, h_i$ satisfies above for at least one h_i

... abusing notation

Proof idea (contd)

- Consider $C \subset \mathcal{X}$ of size 2m
 - C is shattered by $\{\pm 1\}^{\mathcal{X}}$
 - $T = 2^{2m}$ functions from C to $\{\pm 1\}$. Call them as h_1, \ldots, h_T —chosen collection of functions
 - For the case of infinite VC classes, take C that is shattered
- Choose $\mathcal{D}_{\mathcal{X}} = \text{uniform over } C$
- Need to show \mathcal{A} cannot learn at least one of above h_i

Proof idea (contd)

- Define $\mathcal{D}_i = \mathcal{D}_{\mathcal{X}} \times h_i$
- Formally, need to show

note:
$$[T] = \{1, 2, \dots, T\}$$

$$\mathbb{P}_{S \sim \mathcal{D}_i^m} \left(L_{\mathcal{D}_i}(\mathcal{A}(S)) \ge \frac{1}{8} \right) > \frac{1}{7} \quad \text{for some } i \in [T]$$

• Suffices to show

$$\max_{i \in [T]} \mathbb{E}_{S \sim \mathcal{D}_i^m} \left[L_{\mathcal{D}_i}(\mathcal{A}(S)) \right] \ge \frac{1}{4}$$

• Exercise: Prove the following using Markov inequality, and verify that it leads to the above correspondence

For r.v.
$$Z \in [0,1]$$
, $\mathbb{P}(Z \ge a) > \frac{\mathbb{E}[Z] - a}{1 - a} \ \forall a \in (0,1)$

Proof idea: Characterising all possible S

• For
$$S = \{(x_j, y_j)\}_{j=1}^m \sim \mathcal{D}_i^m$$
, let

$$X = (x_1, \dots, x_m) \sim \mathcal{D}_{\mathcal{X}}^m \qquad \dots \text{ randomly observed data / features}$$

- $Q = (2m)^m$ ways to sample m examples from C
 - Denote possible sequences by $X_1, X_2, \dots, X_Q \in \mathbb{C}^m$
 - All equally likely, since $\mathcal{D}_{\mathcal{X}}$ is uniform
- $Q \cdot T = (2m)^m 2^{2m}$ possibilities of S

... if \mathcal{D} can be any of $\mathcal{D}_1, \ldots, \mathcal{D}_T$

$$S_{i,j} = (X_j, h_i(X_j))$$
 $i \in [T], j \in [Q]$

• m features in X_i observe, and labelled with h_i

Proof idea: Lower bound on expectation

- Write $\mathbb{E}_{S \sim \mathcal{D}_i^m}[\cdot]$ as average over $S_{i,1}, \ldots, S_{i,Q}$
- Note that maximum \geq average, and average \geq minimum

$$\max_{i \in [T]} \mathbb{E}_{S \sim \mathcal{D}_{i}^{m}} \left[L_{\mathcal{D}_{i}}(\mathcal{A}(S)) \right] \geq \frac{1}{T} \sum_{i=1}^{T} \frac{1}{Q} \sum_{j=1}^{Q} L_{\mathcal{D}_{i}}(\mathcal{A}(S_{i,j})) \geq \min_{j \in [Q]} \frac{1}{T} \sum_{i=1}^{T} L_{\mathcal{D}_{i}}(\mathcal{A}(S_{i,j}))$$

• Suffices to show: For every X_i ,

$$\frac{1}{T} \sum_{i=1}^{T} L_{\mathcal{D}_i}(\mathcal{A}(S_{i,j})) \geq \frac{1}{4}$$

Proof idea: Dealing with single sequence X_j

- For every $X_j \in C^m$, there are $v_1, \ldots, v_p \in C$
 - v_1, \ldots, v_p do not appear in X_j
 - $p \ge m$ (why?)
- For any predictor $h: C \to \{\pm 1\}$, can show

$$L_{\mathcal{D}_i}(h) = \frac{1}{2m} \sum_{x \in C} \mathbf{1} \{h(x) \neq h_i(x)\} \geq \frac{1}{2} \cdot \frac{1}{p} \sum_{k=1}^p \mathbf{1} \{h(v_k) \neq h_i(v_k)\}$$

• We will use this lower bound for the case of $h = \mathcal{A}(S_{i,j})$

Proof idea: Dealing with single sequence X_j (contd)

• Averaging over all $i \in [T]$ gives

$$\frac{1}{T} \sum_{i=1}^{T} L_{\mathcal{D}_i}(\mathcal{A}(S_{i,j})) \geq \frac{1}{2} \cdot \frac{1}{p} \sum_{k=1}^{p} \frac{1}{T} \sum_{i=1}^{T} \mathbf{1} \left\{ \mathcal{A}(S_{i,j})(v_k) \neq h_i(v_k) \right\}$$

$$\geq \frac{1}{2} \cdot \min_{k \in [p]} \frac{1}{T} \underbrace{\sum_{i=1}^{T} \mathbf{1} \left\{ \mathcal{A}(S_{i,j})(v_k) \neq h_i(v_k) \right\}}_{=\frac{T}{2} \text{ (reason below)}} = \frac{1}{4}$$

• For every h_i and $v_k \in C$, can find $h_{i'}$ such that

$$h_i(v_k) \neq h_{i'}(v_k)$$
 and $h_i(x) = h_{i'}(x) \ \forall x \in C \setminus \{v_k\}$ (why?)

• Group h_1, \ldots, h_T into $\frac{T}{2}$ pairs of $(h_i, h_{i'})$ as above. Can show

$$\mathbf{1} \{ \mathcal{A}(S_{i,j})(v_k) \neq h_i(v_k) \} + \mathbf{1} \{ \mathcal{A}(S_{i',j})(v_k) \neq h_{i'}(v_k) \} = 1$$