波动光学(一)

一、选择题

1. 某透明介质折射率	为 n ,一单色光在该	介质中沿某路径从人	A 点传播到 B 点,若 A , B 两	
点位相差为 6π,该单	色光在真空中波长为	λ,则此路径光程为	y: ()	
(A) $3n\lambda$	(B) 3λ	(C) 6λ (D) 3λ/n	
2. 对于利用白光光源	原进行的双缝实验,着	告用纯红色和纯蓝色	的滤光片分别遮盖两条缝,则	
()				
(A) 干涉条纹的宽度料	身变大 (B) 产	产生红蓝叠加的彩色	干涉条纹	
(C) 干涉条纹的亮度将	好变暗 (D) ⁷	不会出现干涉条纹		
3. 牛顿环的平凸透镜	竟曲率半径为 0.2 <i>m,</i>	折射率与平板玻璃相	目同,现在用波长为 600nm 入	
射光垂直入射,测得从中心向外数第 n 环和第 $n+k$ 环的半径分别为 $1mm$ 和 $2mm$,则 k 为				
()		ZHI Y		
(A) 10	(B) 15	(C) 20	(D) 25	
(A) 10	(B) 13	(C) 20	(D) 23	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
4. 如下图所示,透明	引介质薄膜的折射率为	n_2 、厚度为 e ,其	上下方的透明介质的折射率分	
别为 n_1 和 n_3 ,且 n_1 <	n ₂ <n<sub>3, 若波长为λ的</n<sub>	的单色光垂直入射到	该薄膜上,则该薄膜上、下两	
表面反射的两个光束的	的光程差是 ()		
n_1 λ_1				
n_2	e V			
n_3				
(A) 2n ₂ e	(B) $2n_2e - \lambda$	(C) $2n_2e - \lambda/2$	(D) $2n_2e + \lambda/2$	
5. 两块长度 10cm 的	J平玻璃片,一端用厚	「度为 0.004 <i>mm</i> 的纸」	片隔开,另一端互相接触,以	

形成空气劈形膜。若用波长为 500nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在

(C) 16

(D) 17

全部 10cm 的长度内呈现的明纹条数为()

(B) 15

(A) 14

二、填空题

1. 单色自然光进行双缝干涉实验时,会在屏上产生干涉条纹,现在若将一偏振片置于	 頻缝
后,则此时干涉条纹的间距(填变大、变小或不变),明纹的身	き度
(填变强、变弱或为零)。	
2. 为了增加某晶体(n ₃ =1.4)的反射效果,需在其表面上镀一层介质(n ₂ =2)。要使波长为 50	0 <i>nm</i>
的光强烈反射,这镀层厚度至少为。	
3. 双缝干涉实验中,双缝间距为 2mm,双缝与屏的间距为 3m,光的波长为 400nm,则	則在
屏上形成的干涉图样的明纹间距为; 当另一波长为 600nm 的光与前一分	光 混
合入射时,在距中央亮纹 O 点为处,两组干涉条纹的亮纹发生第一次重叠	Ž o
4. 在牛顿环实验中,若将玻璃夹层中的空气(此题取折射率大于1)逐渐抽去而成为真空	时,
干涉圆环的半径将(填变大、变小或不变)。	
5. 在牛顿环实验中,牛顿环平凸透镜与平板玻璃折射率相同,当用波长为 600nm 的鸟	单色
${\mathcal R}$ ${\mathcal R}$ 垂直照射时,测得第一和第四明环的距离为 ${\mathcal L}$ ${\mathcal R}$ 垂直照射时,测得第一和第四明环的距离为 ${\mathcal L}$ ${\mathcal R}$ 垂直	 重照
射时,测得第一和第四明环的距离为 $3.6mm$,该单色光 B 的波长为。	

三、计算题

- 1. 在观察牛顿环实验中,牛顿环平凸透镜的曲率半径为10 m,并放在一块平板玻璃表面上。
- (1) 当用波长 484nm 单色光垂直入射时,求各级暗环的半径。
- (2) 如果透镜直径为 $4\times10^{-2}m$,能看到多少个暗环?
- 2. 某单色光垂直入射到一光栅上,该单色光波长 $\lambda=500nm$,测得第二级主极大的衍射角为 30°,且第四级是缺级,求:
- (1) 光栅常数 d;
- (2) 透光缝可能的最小缝宽 a;
- (3) 在选定了上述 d和 a以后,在屏上可能呈现的主极大级数。