

Concours d'entrée 2001-2002

Composition de Mathematiques

Durée: 3 heures Juillet 2001

Remarque: L'usage d'une calculatrice non programmable est permis. La répartition des notes est sur 25 points.

I- (2 points)

Résoudre l'inéquation
$$\ln\left(\frac{x+1}{5-x}\right) > \ln(2x-3)$$

II- (5points)

On suppose le plan complexe rapporté au repère orthonormé $(O; \vec{u}, \vec{v})$. En désigne par A le point d'affixe 1, par B le point d'affixe i, par (C) le cercle de center O et de rayon 1 et par (D) la droite d'équation y = 1.

A tout point M d'affixe $z \neq i$, on associe le point M' d'affixe $z' = \frac{z-i}{\overline{z}+i}$

- 1) Déterminer l'ensemble des points M d'affixe z tel que z' = 1.
- 2) Montrer que $z'\bar{z}' = 1$. Interpréter géométriquement le résultat.
- 3) a- Montrer que, pour tout point M n'appartenant pas à (D), $\frac{z'-1}{z-i}$ est un imaginaire pur.
 - b-Démontrer que les deux droites (AM') et (BM) sont perpendiculaires.
 - c- M étant un point donné n'appartenant pas à (D), construire géométriquement le point M'.
 - d-Préciser la position de M lorsque M appartient à la droite (D) privée de B.

III- (5 points)

Dans le plan complexe rapporté au repère orthonormé $(O; \vec{u}, \vec{v})$. On considère la suite des points: A_0 , A_1 ,..., A_n , A_{n+1} ,..., d'affixes respectives z_0 , z_1 ,..., z_n , z_{n+1} ,..., définie par :

$$z_0 = 0$$
 et $z_{n+1} = \frac{1}{1+i}z_n + i$ (n entier naturel)

- 1) Montrer que, quel que soit n, A_{n+1} est l'image de A_n par une similitude directe dont on déterminera le center I, le rapport k et l'angle α .
- 2) a- Montrer que, quel que soit n, le triangle $IA_n A_{n+1}$ est rectangle en A_{n+1} .
 - b- Déduire une construction de A_{n+1} à partir de A_n et placer les points A_0 , A_1 , A_2 , A_3 , A_4 , A_5 (pour faire la figure et uniquement dans ce but, on prend comme unité graphique 4 cm).

- 3) On pose $a_k = aire(IA_k A_{k+1})$ et $S_n = a_0 + a_1 + a_2 + + a_n$
 - a- Montrer que la suite de terme général a_k est une suite géométrique dont on déterminera le premier terme et la raison.
 - b-Calculer S_n en fonction de $\, n \,$ et déterminer sa limite lorsque $\, n \,$ tend vers $\, +\infty \,$.

IV- (4 points)

On dispose de 3 urnes U_1 , U_2 et U_3 , contenant chacune 6 boules :

- U₁ contient 2 boules bleues et 4 boules rouges.
- U₂ contient 3 boules bleues et 3 boules rouges.
- U₃ contient 5 boules bleues et 1 boule rouge.
- 1) Dans cette partie, on considère l'urne U_1 . On en tire, <u>au hasard</u>, une boule. On effectue cette opération 5 fois en remettant chaque fois la boule tirée dans l'urne U_1 .
 - a- Quelle est la probabilité d'obtenir 4 boules bleues et 1 boule rouge dans l'ordre suivant : bleue, bleue, bleue, bleue, rouge ?
 - b- Quelle est la probabilité d'obtenir 4 boules bleues et 1 boule rouge dans n'importe quel ordre?
 - c- Quelle est la probabilité d'obtenir au moins une boule bleue?
- 2) Dans cette partie, on choisit au hasard, une des 3 urnes U₁, U₂, U₃, et on tire au hasard une boule
- a- Quelle est la probabilité d'obtenir une boule bleue?
- b- On sait que la boule tirée est bleue: quelle est la probabilité qu'elle provienne de U₃?

V- (9 points)

- A- On considère la fonction f, définie sur $]0, +\infty[$, par $f(x) = \frac{x-1}{x}(\ln x 2)$ et l'on désigne par (C) sa courbe représentative relativement au repère orthonormé $(O; \vec{i}, \vec{j})$.
 - 1) Montrer que $\lim_{x \to \infty} f(x) = +\infty$ et $\lim_{x \to \infty} f(x) = +\infty$.
 - 2) Montrer que f est dérivable sur] 0, $+\infty$ [et que f'(x) = $\frac{1}{x^2}(\ln x + x 3)$
 - 3) Soit g la fonction définie sur] $0, + \infty$ [par g $(x) = \ln x + x 3$
 - a- Etudier les variations de g.
 - b- Montrer que g (x) =0 possède une solution unique α et que 2.20 < α < 2.21.
 - c- Etudier le signe de g (x) sur] $0, +\infty$ [.

- 4) a- Etudier les variations de f.
 - b-Montrer que $f(\alpha) = -\frac{(\alpha 1)^2}{\alpha}$. En déduire que $-0.67 \le f(\alpha) \le -0.65$
 - 5) a- Etudier le signe de f(x) et montrer que f(x) < 0 si et seulement si $x \in]1$, $e^2[$. b- Calculer f(1) et $f(e^2)$ et tracer (C).
- B- On considère la fonction F définie sur] $0, +\infty$ [par F (x) = $\int_{1}^{x} f(t)dt$. On appelle (Γ) la courbe représentative de F.
 - 1) a- Sans calculer F (x), étudier les variations de F sur] $0, +\infty$ [. b- Que peut-on dire des tangentes à (Γ) en ses points d'abscisses 1 et e^2 ?
 - 2) a- Démontrer que $\int_{1}^{x} \ln(t)dt = x \ln x x + 1$ b- Démontrer que $F(x) = x \ln x 3x \frac{1}{2}(\ln x)^{2} + 2\ln x + 3$ c- Calculer $\lim_{x \to 0} F(x)$.
 - d- En remarquant que F (x) = $x \ln x \left(1 \frac{3}{\ln x} \frac{1}{2} \frac{\ln x}{x} + \frac{2}{x}\right) + 3$, calculer

$$\lim_{x \to +\infty} F(x) \text{ et } \lim_{x \to +\infty} \frac{F(x)}{x}$$

- e- Dresser un tableau de variation de F et tracer (Γ) .
- 3) Calculer l'aire S du domaine limité par (C), l'axe des abscisses et les deux droites d'équations x = 1 et $x = e^2$. Donner une valeur approchée de S à 10^{-3} près par excès.

Concours d'entrée 2001-2002

Solution de Mathematiques

Durée: 3 heures Juillet 2001

I- Cette inéquation est définie pour :
$$\begin{bmatrix} \frac{x+1}{5-x} > 0 \\ 2x-3 > 0 \end{bmatrix}$$

Ce qui donne -1<
$$x < 5$$
 et $x > \frac{3}{2}$, d'où $\frac{3}{2} < x < 5$.

L'inéquation:
$$\ln\left(\frac{x+1}{5-x}\right) > \ln(2x-3)$$
 donne $\frac{x+1}{5-x} > 2x-3$

D'où
$$\frac{2x^2 - 12x + 16}{5 - x} > 0$$
 qui est vérifiée pour $x < 2$ ou $4 < x < 5$

La solution acceptable est alors :
$$4 < x < 5$$
 ou $\frac{3}{2} < x < 2$

II- 1)
$$z'=1$$
 donne $z-i=\overline{z}+i$, d'où $z-\overline{z}=2i$ et si $z=x+iy$ on obtient $y=1$, donc l'ensemble des points M est la droite (D) privée de B.

2)
$$z'\bar{z}' = \frac{z-i}{\bar{z}+i} \times \frac{\bar{z}+i}{z-i} = 1$$

Or z'
$$\overline{z}' = |z'|^2 = 1 = OM'^2$$
 d'ou $OM' = 1$

Et par suite le point M' est un point du cercle (C)

3) a- M n'appartient pas à (D), donc $Im(z) \neq 1$.

$$\frac{z'-1}{z-i} = \frac{\frac{z-i}{z+i}-1}{z-i} = \frac{z-i-\bar{z}-i}{(z-i)(\bar{z}-i)} = \frac{2i(\text{Im}(z)-1)}{|z-i|^2} \text{ et } \text{Im}(z) \neq 1$$

Donc $\frac{z'-1}{z-i}$ est un imaginaire pur.

b- On a
$$\frac{z_{\overline{AM'}}}{z_{\overline{BM}}} = \frac{z_{M'} - z_A}{z_M - z_B} = \frac{z' - 1}{z - i}$$
 qui est un imaginaire pur, donc les deux droites (AM') et (BM) sont perpendiculaires.

c- M n'appartient pas à (D), donc (A M') et (BM) sont perpendiculaires donc M' se trouve sur la perpendiculaire menée de A à (BM) et M' est un point de (C), donc M' est le point d'intersection autre que A de ces deux ensembles.

d- Si M est un point de (D) privée de B alors z = x + i avec $x \ne 0$

$$z' = \frac{x+i-i}{x-i+i} = 1$$
 alors M' est confondu avec A .

III- 1) On a $z_{n+1} = \frac{1}{1+i} z_n + i = \frac{1-i}{2} z_n + i$, c'est la forme complexe d'une similitude.

On a
$$a = \frac{1-i}{2} = \frac{\sqrt{2}}{2}e^{-i\frac{\pi}{4}}$$
 et $z_1 = \frac{b}{1-a} = \frac{i}{1-\frac{1}{1+i}} = 1+i$

Donc A_{n+1} est l'image de A_n par la similitude directe de centre I (1+i),

de rapport $\frac{\sqrt{2}}{2}$ et d'angle $-\frac{\pi}{4}$.

2) a- On a $(\overrightarrow{IA_n}; \overrightarrow{IA_{n+1}}) = \frac{-\pi}{4}(2\pi)$ et $IA_{n+1} = \frac{\sqrt{2}}{2}IA_n$, donc le triangle IA_nA_{n+1} est rectangle en A_{n+1}

b- IA_nA_{n+1} est rectangle isocèle en A_{n+1} et $\overline{(A_{n+1}I; \overline{A_{n+1}A_n})} = \frac{-\pi}{2}(2\pi) \ donc \ A_{n+1}$ est

l'intersection du demi-cercle de diamètre $[IA_n]$ et de la médiatrice de $[IA_n]$. On a $z_0 = 0$, $z_1 = i$,

$$z_2 = \frac{1}{2} + \frac{3}{2}i$$
, $z_3 = 1 + \frac{3}{2}i$, $z_4 = \frac{5}{4} + \frac{5}{4}i$, $z_5 = \frac{5}{4} + i$

3) a- On a
$$a_k = aire(IA_kA_{k+1}) = \frac{1}{2}IA_k \times IA_{k+1} \times \sin\left(\frac{\pi}{4}\right) = \frac{1}{4}IA_k^2$$

$$= \frac{1}{4} \left(\frac{\sqrt{2}}{2} I A_{k-1} \right)^2 = \frac{1}{4} \times \frac{1}{2} \times I A^2_{k-1} = \frac{1}{2} a_{k-1}$$

Donc a_k est le terme général d'une suite géométrique de premier terme $a_0 = \frac{1}{4}IA_0^2 = \frac{1}{2}$

et de raison $q = \frac{1}{2}$

b- On a
$$S_n = a_0 \frac{1 - q^{n+1}}{1 - q} = \frac{1}{2} \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = 1 - \left(\frac{1}{2}\right)^{n+1}$$

$$\lim_{n\to+\infty} S_n = 1$$

IV-1) a- On a p (d'avoir B, B, B, B, R)=
$$\frac{2}{6} \times \frac{2}{6} \times \frac{2}{6} \times \frac{2}{6} \times \frac{4}{6} = \frac{2}{243}$$

b- Avoir une boule rouge parmi cinq boules revient à avoir:

(R, B, B, B) ou (B, R, B, B) ou (B, B, R, B, B) ou (B, B, B, R, B) ou (B, B, B, B, R)

D'où p (d'avoir 1R et 4B)=
$$5 \times \frac{2}{243} = \frac{10}{243}$$

- c- L'évènement : avoir au moins une boule bleue est le contraire de l'évènement les 5 boules sont rouges, d'où : p (au moins une)= $1 \left(\frac{4}{6}\right)^5 = \frac{211}{243}$
- 2) a- Considérons les deux évènements :

B: la boule tirée est bleue

 U_i : la boule tirée provient de U_i

$$p(B) = p(U_1) \times p(B/U_1) + p(U_2) \times p(B/U_2) + p(U_3) \times p(B/U_3)$$

$$p(B) = \frac{1}{3} \times \frac{2}{6} + \frac{1}{3} \times \frac{3}{6} + \frac{1}{3} \times \frac{5}{6} = \frac{5}{5}$$

b-
$$p(U_3/B) = \frac{p(U_3 \cap B)}{p(B)} = \frac{18}{\frac{5}{9}} = \frac{1}{2}$$

V-A. 1)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x-1}{x} \right) \times \lim_{x \to +\infty} \left(\ln x - 2 \right) = 1 \times (+\infty) = +\infty$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(\frac{x - 1}{x} \right) \times \lim_{x \to 0^+} \left(\ln x - 2 \right) = (-\infty) \times (-\infty) = +\infty$$

2) f est dérivable sur]0 ; $+\infty$ [comme étant le produit de deux fonctions dérivables

sur
$$]0$$
; $+\infty$

$$f'(x) = \frac{x - x + 1}{x^2} \left(\ln x - 2 \right) + \frac{x - 1}{x} \times \frac{1}{x} = \frac{1}{x^2} \left(\ln x + x - 3 \right)$$

3) a- On a $g'(x) = \frac{1}{x} + 1 > 0$ pour tous $x \in]0; +\infty[$, donc g est strictement croissante dans $]0; +\infty[$

b- On a
$$\lim_{x\to 0} g(x) = -\infty$$
 et $\lim_{x\to +\infty} g(x) = +\infty$

g est continue et strictement croissante et g(x) varie de $-\infty$ à $+\infty$ alors g(x) = 0 admet une solution unique α .

$$g(2, 20) = \ln(2, 20) + 2,20 - 3 \approx -0,01 < 0$$

$$g(2, 21) = \ln(2, 21) + 2.21 - 3 \approx 0.002 > 0$$

Donc 2,20 <
$$\alpha$$
 < 2,21

c- g(x) < 0 pour 0 < x <
$$\alpha$$
 et g(x) > 0 pour x > α

$$g(x) = 0$$
 pour $x = \alpha$

4) a- f'(x) a même signe que g(x), d'où le tableau de variations de f:

х	0	α	+ ∞
f'(x)	- 11	0	+
f(x)	+ ∞	$\mathbf{Y}_{f(\alpha)}$	+ ∞

b- On
$$a f(\alpha) = \frac{\alpha - 1}{\alpha} (\ln \alpha - 2) \operatorname{et} \ln \alpha + \alpha - 3 = 0$$

d'où
$$f(\alpha) = \frac{\alpha - 1}{\alpha} (-\alpha + 3 - 2) = \frac{-(\alpha - 1)^2}{\alpha}$$
 On a 2,20 < \alpha < 2,21 d'où 1,20 < \alpha -1 < 1,21

et 1,44 <
$$(\alpha - 1)^2$$
 < 1,4641 et puisque $\frac{1}{2.21}$ < $\frac{1}{\alpha}$ < $\frac{1}{2.20}$ alors $\frac{1,44}{2.21}$ < $\frac{(\alpha - 1)^2}{\alpha}$ < $\frac{1,4641}{2.20}$

et par suite
$$-0.67 < f(\alpha) < -0.65$$

5)
$$a-f(x) = 0$$
 donne $\left(\frac{x-1}{x}\right)(\ln x - 2) = 0$ d'où $x = 1$ ou $x = e^2$

donc la courbe (C) coupe l'axe x'x en deux points d'abscisses 1 et e^2 , puisque $f(\alpha) < 0$ alors $0 < 1 < \alpha$ et $e^2 > \alpha$

Donc f(x) > 0 pour 0 < x < 1 ou $x > e^2$

f(x) < 0 pour $1 < x < e^2$ Donc f(x) < 0 si et seulement si $x \in]1; e^2[$

b- On a f(1) = 0 et $f(e^2) = 0$. (On aura $\beta = 1$ et $\gamma = e^2$)

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left[\frac{x-1}{x} \left(\frac{\ln x}{x} - \frac{2}{x} \right) \right] = 0$$

Donc x'x est une direction asymptotique.

B- 1) a- On a F'(x) = f(x) avec F(1) = 0, d'où le tableau de variations de F:

X	0	1		e^2		+ ∞
F'(x)	+	0	_	0	+	
$\overline{F(x)}$		70.		<i>></i>		—— >

b- Les tangentes à (Γ) aux points d'abscisses 1 et e^2 sont parallèles à x'x car F'(1) $F(e^2) = 0$

2) a- Posons
$$u = \ln t$$
 et $v' = 1$, on a $u' = \frac{1}{t}$ et $v = t$, d'où $\int_{1}^{x} \ln t \ dt = t \ln t \Big|_{1}^{x} - \int_{1}^{x} dt = x \ln x - x + 1$

b- On a
$$F(x) = \int_{1}^{x} \left(\frac{t-1}{t}\right) (\ln t - 2) dt = \int_{1}^{x} \left(\ln t - 2 - \frac{\ln t}{t} + \frac{2}{t}\right) dt$$

$$= \left[t \ln t - t - 2t - \frac{1}{2} \ln^{2} t + 2 \ln t\right]_{1}^{x}$$

$$= x \ln x - x - 2x - \frac{1}{2} \ln^{2} x + 2 \ln x - (-3)$$

$$= x \ln x - 3x - \frac{\ln^{2} x}{2} + 2 \ln x + 3$$

c- On a
$$\lim_{x\to 0} F(x) = -\infty$$

d- On a
$$\lim_{x \to \infty} F(x) = \lim_{x \to \infty} x \ln x (1 - \frac{3}{\ln x} - \frac{1}{2} \frac{\ln x}{x} + \frac{2}{x}) + 3 = +\infty$$

$$\lim_{x \to \infty} \frac{F(x)}{x} = +\infty$$

e- x = 0 est une asymptote verticale à (Γ) . y'y est une direction asymptotique à (Γ) en $+\infty$ $F(1) = 0, F(e^2) = 5 - e^2 \approx -2{,}389$

3) Pour $x \in]1; e^2[$, (Γ) est au-dessous de x'x, donc

$$S = -\int_{1}^{e^{2}} f(x)dx = -F(e^{2}) + F(1) = e^{2} - 5 \approx 2,390 \text{ unit\'es d'aire}.$$