Министерство науки и высшего образования Российской Федерации Муромский институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Владимирский государственный университет

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

Факультет_	ИТР
Кафедра_	ПИн

ЛАБОРАТОРНАЯ РАБОТА №3

По	Цифровая обработка информации						
Тема	СКЕЛЕТИЗАЦИЯ И УТОНЬШЕНИЕ БИНАРНЫХ						
ИЗОБРАЖЕНИЙ							
		Руководитель					
		Белякова А.С.					
		(фамилия, инициалы)					
		(подпись) (дата)					
		Студент <u>ПИН - 121</u> (группа)					
		Ермилов М.В. (фамилия, инициалы)					
		(подпись) (дата)					

Лабораторная работа №3

Тема: СКЕЛЕТИЗАЦИЯ И УТОНЬШЕНИЕ БИНАРНЫХ ИЗОБРАЖЕНИЙ

Цель работы: изучение и освоение алгоритма получения одноточечных линейчатых структур бинарных изображений различной формы.

Ход работы:

1. Исходный код Python: import cv2 import numpy as np import matplotlib.pyplot as plt print("Начало программы") def skeletonize(image): Выполняет скелетизацию бинарного изображения. :param image: входное бинарное изображение (numpy array). :return: скелетизированное изображение. # Убедимся, что изображение бинарное image = (image > o).astype(np.uint8) # Создаем пустой результат для скелета skeleton = np.zeros_like(image, dtype=np.uint8) # Элемент структурирования kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3)) temp = np.zeros_like(image, dtype=np.uint8) while True: # Морфологическое сужение eroded = cv2.erode(image, kernel) # Морфологическое раскрытие temp = cv2.dilate(eroded, kernel) # Промежуточный шаг - выделение контура temp = cv2.subtract(image, temp) # Обновляем результат skeleton = cv2.bitwise_or(skeleton, temp) # Обновляем исходное изображение для следующего шага image = eroded.copy() # Условие завершения - когда изображение полностью исчезнет if cv2.countNonZero(image) == o: break

return skeleton

					МИВУ 09.03.04 - 10.003			
Изм.	Лист	№ докум.	Подпись	Дата				
Разраб. Провер.		Ермилов М.В.				Лит.	Лист	Листов
		Белякова А.С.			СКЕЛЕТИЗАЦИЯ И		2	5
Реценз.					УТОНЬШЕНИЕ БИНАРНЫХ			
Н. Контр.					ИЗОБРАЖЕНИЙ	МИ ВлГУ ПИН-121		
Утверд.								

```
# Пример использования
if __name__ == "__main__":
  # Загружаем изображение
 input_image = cv2.imread("IDRiD_o1.jpg", cv2.IMREAD_GRAYSCALE)
  # Преобразуем изображение в бинарное
 print("Бинаризация...")
  _, binary_image = cv2.threshold(input_image, 127, 255, cv2.THRESH_BINARY)
  # Выполняем скелетизацию
 print("Скелетизация...")
 skeleton = skeletonize(binary_image)
  # Отображаем результаты
 print("Вывод результата...")
  plt.figure(figsize=(10, 5))
 plt.subplot(1, 2, 1)
 plt.title("Бинарное изображение")
  plt.imshow(binary_image, cmap="gray")
  plt.subplot(1, 2, 2)
 plt.title("Скелетизация")
  plt.imshow(skeleton, cmap="gray")
  plt.show()
  print("Вывод завершен")
```

Изл	и.	Лист	№ докум.	Подпись	Дата

Рисунок 1 – исходное изображение

Рисунок 2 – бинарное изображение

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 3 – скелетизация бинарного изображения

Рисунок 4 – утоньшенние бинарного изображения

Вывод: в ходе лабораторной работы было изучено и освоено алгоритм получения одноточечных линейчатых структур бинарных изображений различной формы.

						Лист
					МИВУ 09.03.04 — 10.003	_
Изм.	Лист	№ докум.	Подпись	Дата		Э