Introduction

- Instructor: Andrei Bulatov
 - Email: <u>abulatov@sfu.ca</u>
 - Room: TASC 8013
 - Office hours (tentative):
 Wednesday 2:00 2:00 (from Sept 1th)

Monday 2:00-4:00 (from Sept 22th)

Teaching Assistants:

- Yu Yang, email: yya119@sfu.ca
- Shengdong Zhang, email: sza75@sfu.ca
- Maryam Hayati, email: maryam.hayati@gmail.com

Course webpage

http://www.cs.sfu.ca/CourseCentral/101.MACM/abulatov

Course objective:

To introduce basic concepts and applications of discrete mathematics.

Syllabus:

- Logic and Formal Reasoning
- Set Theory, Functions and Relations
- Mathematical Induction
- Combinatorics
- Number Theory
- Graphs and Trees (if time permits)

Textbook:

- R. P. Grimaldi, *Discrete and Combinatorial Mathematics* (an Applied Introduction), Addison-Wesley, 2004.
- It is impossible to finish studying all the contents of the textbook in one semester. The contents not covered in lectures/slides are not required.
- The content and order of topics, as presented in the class, do not one-to-one correspond to any part of the book. Use of Subject Index is advised.
- In few cases the notation and terminology in the class differs from that in the book

References:

- H. Rosen, Discrete Mathematics and Its Applications,
 7/E, McGraw-Hill, 2012.
- R. L. Graham; D. E. Knuth; and O. Patashnik,
 Concrete Mathematics, Addison-Wesley, Reading, MA, 1994
- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, *Introduction to Algorithms*, 2nd Edition, MIT Press, Cambridge, MA, 2001.
- G. Andrews, Number theory, Saunders or Dover Publications, Inc.
- H. Enderton, A Mathematical Introduction to Logic, Harcourt/Academic Press, 2001

Grading:

- 10 Tutorials attendance (10 × 1%)
- 5 Assignments (5 × 5%)
- 2 Midterms (2 × 15%)
- 1 Final Exam 35%

Previous results:

Prerequisites

- Not much of specific knowledge
- Some general knowledge is needed, as there will be examples
- Modest math erudition (e.g., 5th Euclid's postulate, see next slide)
- Basics

$$2 \times 2 = 4$$

Two Mathematics

- Continuous Mathematics
 - Fifth Euclid's Postulate

Intermediate value theorem

Continuous Mathematics (cntd)

Laws of Physics

$$\vec{F} = m \frac{d^2 X}{dt^2}$$
 Newton's second law of motion

$$\nabla \times \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t}$$
 Maxwell's law of electromagnetism

Disciplines: geometry, calculus, differential equations, topology, ...

Applications: physics, engineering, astronomy, ...

Discrete Mathematics

- Discrete Mathematics comprises all branches of mathematics that do not use the idea of continuity.
- `Formal' definition (Wikipedia):

Discrete mathematics, sometimes called **finite mathematics**, is the study of mathematical structures that are fundamentally discrete, in the sense of not supporting or requiring the notion of continuity. Most, if not all, of the objects studied in finite mathematics are countable sets, such as the integers.

For contrast, see continuum, topology, and mathematical analysis

Discrete Mathematics (cntd)

- Removing continuity
 - Discrete fifth Euclid's Postulate (???)

Graphs

Discrete Mathematics (cntd)

Asymptotics

Properties of a discrete objects are `approximated' using a continuous function

Laws of discrete mathematics:

$$((\forall x F(X) \rightarrow G(X)) \land F(a)) \rightarrow G(a)$$

The rule of universal specification

$$X^n + Y^n = Z^n$$
 does not hold for any $n > 2$ and integer X , Y , Z Great Fermat's Theorem

Topics in DM

- Wikipedia says that Discrete mathematics usually includes:
 - logic a study of reasoning
 - set theory a study of collections of elements
 - number theory
 - combinatorics a study of counting
 - graph theory
 - algorithmics a study of methods of calculation
 - information theory
 - the theory of computability and complexity a study on theoretical limitations on algorithms ...
 - algebra a study of algebraic systems (Bulatov)
 - discrete probability theory (Grimaldi)

This is too much for us!!

CS at SFU:

MATH-232 Elementary linear algebra	CMPT-477 Introduction to formal
CMPT-413 Computational linguistics	verification
CMPT-379 Principles of compiler design	CMPT-705 Design and analysis of
CMPT-384 Symbolic computing	algorithms
CMPT-307 Data structures and algorithms	CMPT-706 Parallel algorithms
CMPT-308 Computability and complexity	CMPT-710 Computational complexity
CMPT-405 Design and analysis of	CMPT-725 Logical methods in
computing algorithms	computational intelligence
CMPT-406 Computational geometry	CMPT-813 Computational geometry
CMPT-407 Computational complexity	CMPT-815 Algorithms of optimization
CMPT-408 Theory of computer networks /	CMPT-816 Theory of communication
communications	networks
MACM-300 Introduction to formal languages	CMPT-721 Knowledge representation
and automata	and reasoning
MACM-401 Symbolic computation	CMPT-814 Algorithmic graph theory

Our goal

is to learn basic concepts and terminology that provide basis and common language for those and many other courses.

Logic

Formal logic, syllogisms

Aristotle 384 - 322 B.C.

Mathematical logic, formal reasoning

George Boole 1815 - 1864

 Computational logic, formal verification

Pentium FDIV bug 1994

 Other applications: artificial intelligence, robotics, software verification, automated theorem proving, ...

Set theory

Naïve set theory

Georg Cantor 1845 - 1918

Axiomatic set theory

Bertrand Russell 1872 - 1970

Graphs

Toy graph theoryKonigsberg 7-bridge problem

Leonard Euler 1707 - 1783

- Other applications: modeling of nearly everything,
 electric circuits, networking, linguistics, data storage, coding
 theory, games, scheduling, combinatorial algorithms, ...
- One more face

Paul Erdös 1913 - 1996

Number Theory

Arithmetic (Arithmetica)

Number theory

Algebraic geometry

?

Diophantus 200 - 284

Pierre de Fermat 1608 - 1672

Andrew Wiles 1953 - ?

Other applications: cryptography