Instituto Superior de Engenharia de Coimbra

Álgebra Linear – Exercícios de revisão para o 1° teste (complexos e capítulos I e II)

Engenharia Informática e Curso Europeu de Informática

1. Escreva os seguintes números complexos na forma algébrica a+bi. Na alínea (b) use as fórmulas de De Moivre.

(a)
$$\frac{1+i}{2-3i} + \frac{1-i}{-2+3i}$$
.

(b)
$$(1-i)^6(\sqrt{3}+i)^3$$
.

2. Determine em $\mathbb C$ todas as soluções das seguintes equações:

(a)
$$x^2 - 2x + 3 = 0$$

(b)
$$z^4 = 2(\sqrt{3}i - 1)$$
.

3. Considere as matrizes $A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$, e $B = \begin{bmatrix} 0 & 4 \\ 3 & 2 \end{bmatrix}$.

- (a) Determine a matrix X tal que $AXA^{-1} = (A+B)^{\top}$.
- (b) Obtenha uma expressão para A^k , com $k \in \mathbb{N}$.

4. Indique, justificando, se as seguintes afirmações são verdadeiras ou falsas:

- (a) Todo o sistema linear com mais incógnitas que equações é possível e indeterminado;
- (b) Se A e B são matrizes invertíveis $n \times n$, então $\det(AB^{\top}A^{-1}B^{-1}) = 1$;
- (c) Toda a matriz 3×3 , triangular superior, tem característica 3.

5. Sejam A e B matrizes quadradas invertíveis e C uma matriz não necessariamente quadrada. Considere a matriz por blocos $X = \begin{bmatrix} A & C \\ O & B \end{bmatrix}$.

(a) Mostre que

$$X^{-1} = \left[\begin{array}{cc} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{array} \right].$$

(b) Usando a fórmula da alínea anterior, calcule a inversa da matriz

$$X = \begin{bmatrix} 1 & 2 & -2 & 1 \\ 0 & -1 & 4 & 3 \\ \hline 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 \end{bmatrix}.$$

- 6. (a) Dada uma matriz quadrada A tal que $A^3=O$, considere as matrizes B=I-A e $C=I+A+A^2$. Calcule o produto BC e indique qual é a inversa de B.
 - (b) Usando o método de eliminação de Gauss, resolva e classifique o sistema linear

$$\begin{cases} x + y + z + t = 0 \\ y - z + 2t = 0 \\ x - 2z - 2t = 0 \\ -x - 2z + t = 0 \end{cases}$$

Indique duas soluções do sistema.

- (c) Suponha que A é uma matriz 4×4 tal que det(A) = -2. Determine, enunciando as propriedades em que se baseia, o seguinte:
 - (i) $A \operatorname{adj}(A)$
- (ii) det(2A)
- (iii) car(A)
- 7. Seja α um parâmetro real e considere

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & 2 \\ \alpha + 1 & 2 & \alpha + 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ \alpha + 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

- (a) Discuta o sistema linear $A\mathbf{x} = \mathbf{b}$ em função de α .
- (b) Considerando $\alpha=1$, classifique o sistema homogéneo $A\mathbf{x}=\mathbf{0}$ e resolva-o.
- (c) Considere $\alpha = -1$.
 - (i) Determine o valor de z usando a regra de Cramer.
 - (ii) Calcule a inversa de A, usando a adjunta.
- 8. Para cada alínea, dê um exemplo de uma matriz 3×3 :
 - (a) anti-simétrica $(A^{\top} = -A)$;
 - (b) triangular inferior (entradas acima da diagonal nulas);
 - (c) matriz de código com todas as entradas não nulas $(\det(A) = \pm 1)$.
- 9. Seja A uma matriz $n \times n$ tal que $A^2 = I$.
 - (a) Indique quais os valores que det(A) pode tomar.
 - (b) A que matriz corresponde A^{23} ? Justifique.
- 10. Considere a matriz $A=\begin{bmatrix}1&-1&0\\2&0&1\\k&1&-1\end{bmatrix}$, onde k é um valor real.
 - (a) Determine o(s) valor(es) de k por forma a que A seja invertível.
 - (b) Indique o valor da característica de A em função dos valores de k.
- 11. Sejam $C = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 1 & 4 \end{bmatrix}$
 - (a) Calcule C^{-1} , usando o método de Gauss-Jordan.
 - (b) Na codificação de certa uma mensagem, um espaço em branco foi representado por 0, a letra A por 1, B por 2, C por 3, etc. Usou-se o alfabeto português (23 letras). Sabendo que C foi a matriz de código usada e que a sequência de números recebida pelo receptor foi

qual é a frase contida na mensagem? Justifique.