(4)
$$\mathbb{Z} \times [0,2] = \mathbb{Z} \times \{0\} \cup \mathbb{Z} \times \{1\} \cup \mathbb{Z} \times \{2\}.$$

= $\{(q,0), q \in \mathbb{Z}\} \cup \{(q,1), q \in \mathbb{Z}\} \cup \{(q,2), q \in \mathbb{Z}\}.$

(b) Hontrons your fast sugestive.

Soit (9,9) 6 7/x [0]2].

Résolven Dequation: f(m) = (q, 2) sur 2 (d'inconsue m)

On procède pour disjondien de con-

 $-6i(q_1r) \in \mathbb{Z} \times \{0\} \text{ abov} (q_1r) = (q_10).$

On résout f(n) = (9,0) mr Z.

i-a: p(n)=(9,0) tel que m=39+0=39:

Done 39 E f ({(9,0)}).

 $-5i(q_1r) \in \mathbb{Z} \times \{1\}$ whom $|q_1r| = (q_11)$. $f(n) = (q_11)$ mr \mathbb{Z} admet la bolution 3q+1. Done $3q+1 \in f'(\{(q_11)\})$.

- Sr (9/2) @ ZLx {2}

\$(n) = (9,2) sour Z admet la solution 39+2

Dark (39+2) 6 f ((9,2))

Conclusion: $f(q, x) \in \mathbb{Z} \times [0, 2]$, $f'(q(x)) \neq \emptyset$ i.e. f surjective

Groupe: 5

Nom: STROBBE Prénom: Nathan

Note: 16,5.

Cette interrogation comporte deux questions indépendantes.

1. Soient E, F, G des ensembles non vides ; soient $f \in \mathcal{A}(E, F), g \in \mathcal{A}(F, G)$. Raisonner directement pour montrer que si $g \circ f$ est bijective alors g est surjective.

V-	Par hypothèse gofest lajective
	Donc gof est surjective
V.	Soit 3 E G 3 admet au moins un antérédent pur gos
	Soit & E E l'un d'entre eux
V	On a alors $g \circ f(x) = 3$
	i-e: g(s(a)) = 3
V .	5 admet S(x) comme antécédent par g
	Conclusion: $\forall 3 \in G$, $g^{-1}(\{3\}) \neq \emptyset$
V	i-e: g est surjective

2.	Soit l'application	£	$f \mid \mathbb{Z} \to \mathbb{Z} \times [0,2]$			
		J	$n \mapsto (q,r)$	tel que	n = 3q +	r

- (a) Donner une partition de l'ensemble d'arrivée de f adaptée à l'étude de la surjectivité de f:
- (b) Montrer que l'application f est surjective.

a) Z x [0,2] = (Z x {0}) \((Z x {1}) \((Z x {23}) \)

b) Soit n∈Z ∃(q,r)∈Z x [0,2] tel que n=3q+r

Raisonnons par disjontion de cos:

* r=0, $\forall (q,r) \in \mathbb{Z} \times \{0\}$ Ici: la conclusion me va pais-

3q+0=n done $n\in\mathbb{Z}$ $3q\in\mathcal{L}^{-1}(\{q\})$

* r=1, \(\left(q, r \right) \in \mathbb{Z} \times \{ 1}

3q=n-1 donc $n \in \mathbb{Z}$ id.

Effort de formé x = 2, $\forall (q, r) \in \mathbb{Z} \times \{2\}$ mais plicateurs 3q = n-2, donc $n \in \mathbb{Z}$ aranteficateurs A: A

3q+r admet n comme antécédent per s

Conclusion: I est surjective