Raport z analizy statystyk z urządzenia do pomiaru jakości chemicznej powietrza Cezary Dampc

1. Motywacja

Określenie efektywności czujnika tlenków metali, dane zostały wygenerowane przez urządzenie do pomiaru jakości chemicznej powietrza.

2. Cel

Głównym celem jest zbadanie dokładności pomiarów czujnika tlenków metali.

3. Opis danych

Wygenerowane dane są zawarte w jednym pliku csv. Ilość rekordów wynosi 9358 pomiarów.

Zbiór zawiera następujące dane:

Data – zawiera dzień, miesiąc, rok

Czas – godzina i minuty

CO – rzeczywiste, uśrednione godzinowo stężenie CO w mg/m^3

PT08.S1(CO) – stężenie tlenku cyny

NMHC(GT) – rzeczywiste stężenie węglowodoru w microg/m^3

C6H6(GT) – rzeczywiste stężenie benzenu w microg/m^3

4. Analiza danych

Statystyki dla poszczególnych zmiennych

Zmienna: CO(GT) MIN: -200.0 MAX: 11.9

ŚREDNIA: -34.207523778989

MEDIANA: 1.5 ZAKRES: 211.9

ODCHYLENIE STANDARDOWE: 77.65302055281113

WARIANCJA: 6029.991600975308

PERCENTYL 90%: 3.9

Zmienna: PT08.S1(CO)

MIN: -200.0 MAX: 2040.0

ŚREDNIA: 1048.9900609169606

MEDIANA: 1053.0 ZAKRES: 2240.0

ODCHYLENIE STANDARDOWE: 329.8150844975584

WARIANCJA: 108777.98996213159

PERCENTYL 90%: 1407.0

Zmienna: C6H6 MIN: -200.0 MAX: 63.7

ŚREDNIA: 1.8656834455487863

MEDIANA: 7.9 ZAKRES: 263.7

ODCHYLENIE STANDARDOWE: 41.37799518739072

WARIANCJA: 1712.1384857277294

PERCENTYL 90%: 20.1

Zmienna: NMHC(GT) MIN: -200.0 MAX: 1189.0

ŚREDNIA: -159.09009297851875

MEDIANA: -200.0 ZAKRES: 1389.0

ODCHYLENIE STANDARDOWE: 139.78162293696653

WARIANCJA: 19538.902110892286

PERCENTYL 90%: -200.0

Tablica korelacyjna

Index	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO2)	PT08.S5(O3)	т	RH	AH
CO(GT)	1	0.0414114	0.128351	-0.0313783	0.0299258	0.526451	-0.0899808	0.671127	-0.073724	0.0803096	-0.0689389	-0.0482274	-0.0458922
PT08.51(CO)	0.0414114	1	0.170007	0.852687	0.933102	0.277993	0.0870194	0.15403	0.845149	0.892434	0.754844	0.745375	0.764903
NMHC(GT)	0.128351	0.170007	1	0.0373225	0.110104	-0.00442725	0.0488209	0.103307	0.16268	0.101185	-9.00792e-06	0.00828427	0.0125001
C6H6(GT)	-0.0313783	0.852687	0.0373225	1	0.767433	-0.00117398	0.512193	-0.0109925	0.774673	0.641334	0.971375	0.925062	0.984555
PT08.S2(NMHC)	0.0299258	0.933102	0.110104	0.767433	1	0.331272	-0.0736674	0.176488	0.874782	0.909905	0.669025	0.585803	0.646572
NOx(GT)	0.526451	0.277993	-0.00442725	-0.00117398	0.331272	1	-0.436084	0.817139	0.035546	0.461889	-0.138452	-0.0530088	-0.0958468
PT08.S3(NOx)	-0.0899808	0.0870194	0.0488209	0.512193	-0.0736674	-0.436084	1	-0.256232	0.122734	-0.208865	0.588111	0.573549	0.621618
NO2(GT)	0.671127	0.15403	0.103307	-0.0109925	0.176488	0.817139	-0.256232	1	-0.0221736	0.253439	-0.0841037	-0.0813047	-0.0604396
PT08.54(NO2)	-0.073724	0.845149	0.16268	0.774673	0.874782	0.035546	0.122734	-0.0221736	1	0.72369	0.75506	0.640707	0.691913
PT08.S5(03)	0.0803096	0.892434	0.101185	0.641334	0.909905	0.461889	-0.208865	0.253439	0.72369	1	0.5037	0.524955	0.519467
Т	-0.0689389	0.754844	-9.00792e-06	0.971375	0.669025	-0.138452	0.588111	-0.0841037	0.75506	0.5037	1	0.885911	0.981001
RH	-0.0482274	0.745375	0.00828427	0.925062	0.585803	-0.0530088	0.573549	-0.0813047	0.640707	0.524955	0.885911	1	0.943995
АН	-0.0458922	0.764903	0.0125001	0.984555	0.646572	-0.0958468	0.621618	-0.0604396	0.691913	0.519467	0.981001	0.943995	1