Fiber Generator Controlled Parameters

Matthew Dutson

October 7, 2018

Definitions

Fiber Count

The is is the integer number m of fibers in the image.

Mean Fiber Length

The path of a fiber is defined by a tuple $P = (\vec{p_1}, \vec{p_2}, \dots, \vec{p_n})$. The fiber length l_f is given by

$$l_s = \sum_{i=1}^{n-1} |\vec{p}_{i+1} - \vec{p}_i|.$$

If we assume that all segments have equal length l_s , then the fiber length is simply

$$l_f = (n-1) \cdot l_s.$$

Mean Fiber Width

The varying width is given by a tuple W with n-1 elements. w_j gives the width of the fiber between points \vec{p}_j and \vec{p}_{j+1} . Because all segments have the same length, the average for a fiber is

$$\bar{w} = \frac{1}{n-1} \sum_{j=1}^{n-1} w_j$$

The image-wide average is the average over fibers weighted by the length of each fiber. Let there be m fibers, each with width tuple W_i and number of segments n_i .

$$\bar{w}_{\text{tot}} = \frac{1}{\sum_{i=1}^{m} n_i} \sum_{i=1}^{m} \sum_{j=1}^{n_i - 1} w_{i,j}$$

This is equivalent to taking the fiber-independent mean of segment widths.

Mean Fiber Angle

The angle of the i^{th} fiber is simply the angle between its endpoints, $\vec{p}_{i,1}$ and $\vec{p}_{i,n}$.

$$\theta_i = \cos^{-1}\left(\frac{(\vec{p}_{i,n} - \vec{p}_{i,1})_x}{|\vec{p}_{i,n} - \vec{p}_{i,1}|}\right)$$

A normalized "mean vector" is found by multiplying all fiber angles by 2 and taking the normalized, length-weighted mean of the resultant direction vectors.

$$\bar{\theta} = \frac{1}{2} \cdot \arg \left(\frac{1}{\sum_{i=1}^{m} n_i} \sum_{i=1}^{m} n_i \cdot e^{2i \cdot \theta_i} \right)$$

Overall Fiber Alignment

The alignment A is the magnitude of the "mean vector" from the previous part.

$$A = \max\left(\frac{1}{\sum_{i=1}^{m} n_i} \sum_{i=1}^{m} n_i \cdot e^{2i \cdot \theta_i}\right)$$

Mean Fiber Straightness

Output

For each generated fiber, the following details will be recorded as output:

- The tuple $P = (\vec{p_1}, \vec{p_2}, \dots, \vec{p_n})$ of points which define the path of the fiber.
- The tuple $W = (\vec{w_i}, \vec{w_2}, \dots, \vec{w_{n-1}})$ of widths.

Other details (local density, individual fiber angle, etc.) from these tuples.