University of Texas at Arlington EE 2403 Fall 2015 Quiz 3B ID:

LAST NAME

FIRST NAME

Problem 1

- A) Given $R=200 \Omega \& V_{ss}=4.0 \text{ V}$ Draw the DC load line.
- B) Use graphical method to obtain the Q point and write down the approximate values for I_Q and V_Q .
- C) Use graphical method to obtain the value of r_d at the Q point.
- D) Repeat A), B), and C) for $V_{ss}=1$ V.

ANSWERS (draw tangents as accurately as possible)

\mathbf{V}_{ss} (V)	$V_{DQ}(V)$	$I_{DQ}(mA)$	$r_{dQ}(\Omega)$
4.0	1.18	14.0	12.1
1.0	0.7	1.5	68

University of Texas at Arlington EE 2403 Fall 2015 Quiz 3B ID:

LAST NAME

FIRST NAME

Problem 1 continued

Unit convention: $[R] = k\Omega$ [i] = mA [v] = V

Load Lines:

 $KVL \implies v_D = V_{SS} - Ri_D$ This represents a straight line in the $v_D - i_D$ space (load line)

Drawing Load Lines:

Find two points on the line by choosing two values of i_D and the corresponding v_D values.

Case 1: $V_{SS} = 4V$: $V_D = 4 - 0.2i_D$.

For example A₁: choose $i_D = 20 \implies v_D = 0$ B₁: choose $i_D = 10 \implies v_D = 2$

Case 2: $V_{SS} = 1.0V$: $v_D = 1.0 - 0.2i_D$.

For example A₂: choose $i_D = 0 \Rightarrow v_D = 1.0$ B₂: choose $v_D = 0 \Rightarrow i_D = 5$

Q-point: Interception of load line with Diode IV curve

Dynamic Resistance: $r_{dQ} = \frac{1}{slope \ of \ tangent} = \frac{triangle \ base}{triangle \ height}$

Case 1: $r_{dQ} = \frac{0.17 \ V}{14 \ mA} = 12.1 \Omega$ Case 2: $r_{dQ} = \frac{0.17 \ V}{25 \ mA} = 68 \ \Omega$

University of Texas at Arlington EE 2403 Fall 2015 Quiz 3B ID:

LAST NAME

FIRST NAME

Problem 2

Op Amp input resistance is ∞ , output resistance is 0, and open loop gain is ∞ and the power supplies are at +10 and -10 V. R_I =2 k Ω , , R_2 =1 k Ω , and R_L =4 k Ω . V_{in} =2 V. Find V_o and current supplied by the Op Amp.

Solution:

Assume Op Amp is operating in Linear Region *then* $v_N = v_P$

$$\therefore v_N = 2V$$

NodeVoltage Equations

$$\begin{cases} \frac{v_N}{R_1} + \frac{v_N - v_A}{R_2} = 0 & \Rightarrow \frac{2}{2} + \frac{2 - v_A}{1} = 0 \Rightarrow 2 + 4 - 2v_A = 0 \Rightarrow v_A = 3V \\ \frac{v_A}{R_1} + \frac{v_A - v_N}{R_2} + \frac{v_A - v_0}{R_2} = 0 & \Rightarrow \frac{3}{2} + \frac{3 - 2}{1} + \frac{3 - v_0}{1} = 0 \Rightarrow 3 + 2 + 6 - 2v_0 = 0 \Rightarrow v_0 = 5.5 V \end{cases}$$

Note that $-10<5.5<+10 \Rightarrow -10<\nu_0<+10 \Rightarrow$ **Original Assumption IS valid.**

$$I_{Op\,Amp} = \frac{v_0 - v_A}{R_2} + \frac{v_0}{R_L} \implies I_{Op\,Amp} = \frac{5.5 - 3}{2} + \frac{5.5}{4} = 2.625\,A$$