John Salako

johnsalako3@gmail.com

Predictive Model for determining Experimental Site Response to N Fertilizer Addition

■ ■ Consistency Across ML Methods Provides Confidence

Contents

- Data preparation and Visualizations
- Preprocessing Steps
- Machine Learning Process
- Accuracy and Validation of Model
- Insights from Model
- Conclusion

Data preparation and Visualizations

Reformating the target data

Assessing targets distribution via Seaborn *jointplots*

Data Missingness Analysis (MAR)

Understanding Predictors Correlation through EDA

Data **Preparation:**Missingness and EDA

Missingness: **Data missing at random**

EDA: Visualization revealed predictors' correlation

EDA aided the removal of redundant features

Data Imputation using KNN

EDA: Removed 16 features

Lasso and forward Regression step method selected optimal features

Feature Encoding

Dimensionality Reduction

Lasso and Forward Regression in R, was used to select optimal features out of the fifty-five features for both responses

yield_bu_acre Dominant Features

plantN_lb_acre Dominant Feature

Machine Learning Process

Model Accuracy and Validation

	Classification Algorithm	yield_bu_acre	plantN_lb_acre
0	Decision Tree Classifier	0.9375	0.9375
1	KNeighbors Classifier	0.9375	0.9500
2	SVC(kernel="linear")	0.8875	0.9250
3	SVC(gamma=2)	0.9000	0.9375
4	Gaussian Process Classifier (with RBF)	0.9500	0.9500
5	Decision Tree Classifier (max depth=5)	0.9375	0.9500
6	Random Forest Classifier	0.9250	0.9375
7	MLPClassifier (Neural Network)	0.9250	0.9625
8	AdaBoostClassifier	0.9375	0.9375
9	Gaussian Naive Bayes	0.8625	0.8750
10	Quadratic Discriminant Analysis	0.9375	0.9375

Model Summary Table for the Classification algorithms

yield_bu_acre Confusion Matrix

plantN_lb_acre Confusion Matrix

8/11

Insights from the Model - plantN_lb_acre

- The High dimensional Interactive Plotting (HiPlot) shows a distinguishable trend between features.
- From the figures, we see a repeatable trend between certain features.
- The Positive response was the only target that had sites with the lowest sw_dep_v5, n_60cm_v5, and who features

Negative Response

Insights from the Model - yield_bu_acre

- The features used show discernable characteristics for sites that will give respond to N addition.
- Although these are individual instances of the two traits, variances in both scenarios are what the machine learning algorithms learn from.

Negative Response

Conclusion

- The features used for the prediction are key site characteristics as their variations aided accurate predictions.
- The model showed that given relevant features, the response status (1, 0) for both traits could be predicted accurately.
- The ML model developed produced at least 92 % accuracy in identifying experimental sites that are more likely to respond to N fertilizer additions
- Cross-validation using the eleven classification algorithms produced 92% accuracy for the plantN_bu_acre trait and 94% accuracy for plantN_lb_acre
- Therefore, the model can be used to determine future sites that could be used to test new strains of diazotrophic microbes that supply corn with fixed atmospheric Nitrogen (N).