Cálculo Diferencial e Integral I Departamento de Matemática Coordinación

Emanuelle Parra Rodríguez emanuelle.parra@ufide.ac.cr Coordinador de curso

Lic. Hernán Víquez Céspedes Colaborador

Derivadas y aplicaciones de la derivada

Contenidos

1.	La d	derivada de una función	1			
	1.1.	Derivación por reglas básicas	1			
	1.2.	Regla de la cadena	6			
	1.3.	Derivación implícita	Ć			
	1.4.	Interpretación geométrica de la derivada de una función real	11			
	1.5.	Recta tangente y recta normal a una curva	15			
	1.6.	Derivadas de orden superior	21			
2.	Apl	icaciones de la derivada	2 4			
	2.1.	Regla de L'hopital	24			
	2.2.	Puntos extremos de una función	31			
		2.2.1. Extremos relativos a intervalos cerrados	32			
		2.2.2. Criterio de la n-ésima derivada para hallar extremos	33			
3.	Práctica General 3					
	3.1.	Cálculo de derivadas por reglas básicas	37			
	3.2.	Cálculo de derivadas por regla de la cadena	39			
	3.3.		41			
	3.4.		42			
	3.5.	Derivación implícita	45			
	3.6.	Regla de l'Hopital	46			
	3.7.	Extremos relativos	47			
4.	Práctica complemetaria 4					
	4.1.	Ejercicios propuestos	48			
		4.1.1. Ejercicios recomendados del libro Matemática 1 de Zill y Wrigth	52			

Lineamientos página 1 de 52

La derivada de una función 1.

Definición 1.1

Considere una función de ecuación y = f(x) definimos la derivada de f evaluada en cualquier valor x, denotada f'(x), como

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

En caso de que tal límite exista alrededor de x, se dice que f es derivable o equivalentemente diferenciable en x. Una función f es derivable en un intervalo I si es derivable en todo $x \in I$.

1.1. Derivación por reglas básicas

Notaciones de la derivada

Se puede utilizar la siguiente simbología para referirse a la derivada de una función con ecuación y = f(x):

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = Dy = D_x y$$

Teorema 1.1: Reglas básicas de derivación

Sean f(x) y g(x) funciones derivables y sea k una constante real, entonces:

a)
$$[k \cdot f(x)]' = k \cdot f'(x)$$

d)
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

b)
$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

e)
$$(kx)' = k$$
, para k constante.

c)
$$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$
 f) $(k)' = 0$, para k constante.

f)
$$(k)' = 0$$
, para k constante.

Lineamientos página 2 de 52

A continuación se presentan una serie de derivadas elementales que deben ser aplicadas en la determinación de derivadas de funciones que involucren operaciones combinadas.

Derivadas de funciones elementales

$$(x^{n})' = nx^{n-1} \qquad (\cot x)' = -\csc^{2} x$$

$$(\sqrt[n]{x})' = \frac{1}{n\sqrt[n]{x^{n-1}}} \qquad (\sec x)' = \sec x \cdot \tan x$$

$$(a^{x})' = a^{x} \ln a \qquad (\csc x)' = -\csc x \cdot \cot x$$

$$(e^{x})' = e^{x} \qquad (\arccos x)' = \frac{1}{\sqrt{1 - x^{2}}}$$

$$(\ln x)' = \frac{1}{x} \qquad (\arccos x)' = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$(\sec x)' = \cos x \qquad (\arccos x)' = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$(\sec x)' = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$(\arcsin x)' = \frac{1}{1 + x^{2}}$$

$$(\csc x)' = -\sec x \qquad (\arccos x)' = -\frac{1}{1 + x^{2}}$$

$$(\csc x)' = -\sec x \qquad (\arccos x)' = -\frac{1}{x\sqrt{x^{2} - 1}}$$

$$(\tan x)' = \sec^{2} x \qquad (\arccos x)' = -\frac{1}{x\sqrt{x^{2} - 1}}$$

La idea de los siguientes ejemplos es determinar la derivada de funciones que presentan una combinación de funciones elementales. Esto a partir de las derivadas elementales que se mostraron anteriormente.

Ejemplo 1.1

Utilice las reglas de derivación para calcular la derivada de la siguiente función. **No** es necesario simplificar

$$y = \frac{x^4 - 2x}{e^x - \tan x} + \sqrt[4]{x^5} - 10^x + \log_3 x$$

Aplicando las reglas básicas, podemos descomponer la derivada de la siguiente forma.

$$y' = \left(\frac{x^4 - 2x}{e^x - \tan x}\right)' + \left(\sqrt[4]{x^5} - 10^x + \log_3 x\right)'$$

donde

$$\left(\frac{x^4 - 2x}{e^x - \tan x}\right)' \\
= \frac{(x^4 - 2x)'(e^x - \tan x) - (x^4 - 2x)(e^x - \tan x)'}{(e^x - \tan x)^2} \\
= \frac{(4x^3 - 2)(e^x - \tan x) - (x^4 - 2x)(e^x - \sec^2 x)}{(e^x - \tan x)^2}$$

Lineamientos página 3 de 52

además

$$\left(\sqrt[4]{x^5} - 10^x + \log_3 x\right)'$$

$$= \left(x^{\frac{5}{4}} - 10^x + \log_3 x\right)'$$

$$= \frac{5}{4}x^{\frac{5}{4} - 1} - 10^x \ln 10 + \frac{1}{x \ln 3}$$

$$= \frac{5}{4}x^{\frac{1}{4}} - 10^x \ln 10 + \frac{1}{x \ln 3}$$

Ejemplo 1.2

Utilice las reglas de derivación para calcular la derivada de la siguiente función. \mathbf{No} es necesario simplificar

$$f(t) = \operatorname{arcsec} t - \frac{\sqrt{t^7} - \pi^2}{\operatorname{sen} t - \cos t} + te^t$$

Se puede descomponer la derivada como se sigue.

$$\frac{df}{dt} = \left(\operatorname{arcsec} t - \frac{\sqrt{t^7} - \pi^2}{\operatorname{sen} t - \cos t}\right)' + \left(te^t\right)'$$

Donde

$$\left(\operatorname{arcsec} t - \frac{\sqrt{t^7} - \pi^2}{\operatorname{sen} t - \cos t}\right)' \\
= \left(\operatorname{arcsec} t - \frac{t^{\frac{7}{2}} - \pi^2}{\operatorname{sen} t - \cos t}\right)' \longrightarrow \sqrt{t^7} = t^{\frac{7}{2}} \\
= \frac{1}{t\sqrt{t^2 - 1}} - \frac{\left(t^{\frac{7}{2}} - \pi^2\right)'(\operatorname{sen} t - \cos t) - \left(t^{\frac{7}{2}} - \pi^2\right)(\operatorname{sen} t - \cos t)'}{(\operatorname{sen} t - \cos t)^2} \longrightarrow \left(\pi^2\right)' = 0 \\
= \frac{1}{t\sqrt{t^2 - 1}} - \frac{\left(\frac{7}{2}t^{\frac{5}{2}}\right)(\operatorname{sen} t - \cos t) - \left(t^{\frac{7}{2}} - \pi^2\right)(\cos t + \operatorname{sen} t)}{(\operatorname{sen} t - \cos t)^2}$$

y
$$(te^t)' = (t)'e^t + t(e^t)' = e^t + te^t$$

Lineamientos página 4 de 52

Ejemplo 1.3

Considere la función f tal que $f(x) = x^2 \ln x$. Determine el resultado de evaluar

$$4f'(2) - \frac{6 + f(1)}{2f'(1)}$$

Calculamos la derivada de f :

$$f'(x) = (x^{2} \ln x)'$$

$$= 2x \ln x + x^{2} \frac{1}{x}$$

$$= 2x \ln x + x$$

De este modo

$$f'(1) = 2(1) \ln(1) + 1 = 1$$

$$f'(2) = 2(2) \ln(2) + 2 = 4 \ln 2 + 2$$

$$f(1) = (1)^{2} \ln(1) = 0$$

Así:

$$4f'(2) - \frac{6+f(1)}{2f'(1)}$$

$$= 4(4 \ln 2 + 2) - \frac{6+0}{2(1)}$$

$$= 16 \ln 2 + 8 - 3$$

$$= 16 \ln 2 + 5$$

Lineamientos página 5 de 52

Ejemplo opcional

Utilice las reglas de derivación para calcular la derivada de la siguiente función. \mathbf{No} es necesario simplificar

$$g(u) = e^{u} \cdot \operatorname{arccsc} u + 5^{u} + 3\sqrt{u^{9}} - \frac{\tan u}{2 \ln u}$$

Descomponemos la derivada:

$$g'(u) = (e^u \cdot \operatorname{arccsc} u)' + \left(5^u + 3\sqrt{u^9}\right)' - \left(\frac{\tan u}{2\ln u}\right)'$$

Calculamos cada sumando, siendo:

$$(e^{u} \cdot \operatorname{arccsc} u)'$$

$$= e^{u} \operatorname{arccsc} u + e^{u} \frac{-1}{u\sqrt{u^{2} - 1}}$$

$$(5^{u} + 3\sqrt{u^{9}})'$$

$$= (5^{u} + 3u^{\frac{9}{2}})' \longrightarrow \sqrt{u^{9}} = u^{\frac{9}{2}}$$

$$= 5^{u} \ln 5 + \frac{27}{2}u^{\frac{7}{2}}$$

У

$$\left(\frac{\tan u}{2\ln u}\right)'$$

$$= \frac{\left(\sec^2 u\right)(2\ln u) - (\tan u)\left(\frac{2}{u}\right)}{\left(2\ln u\right)^2} \longrightarrow (2\ln u)' = 2\frac{1}{u} = \frac{2}{u}$$

Lineamientos página 6 de 52

1.2. Regla de la cadena

Teorema 1.2: Derivada de una composición de funciones

ea g y f funciones derivables, tales que g(f(x))' está definida para todo x en el dominio de f, entonces:

$$(g \circ f)'(x) = [g(f(x))]' = g'(f(x)) \cdot f'(x)$$

Es decir, la composición de funciones se puede derivar tomando como resultado el producto de la derivada de la función "externa" por la derivada de la "interna".

Ejemplo 1.4

Calcule la derivada de la siguiente función. No es necesario simplificar el resultado.

$$f(x) = \frac{\sec x + x^4 \sqrt{3}}{\pi^6 - 5x} + \left(4\sqrt{2x} - 1\right)^3 \ln^2\left(\cos(3x^2)\right)$$

Se puede considerar

$$\frac{df(x)}{dx} = \left(\frac{\sec x + x^4 \sqrt{3}}{\pi^6 - 5x}\right)' + \left(\left(4\sqrt{2x} - 1\right)^3 \ln^2\left(\cos(3x^2)\right)\right)'$$

donde

$$\left(\frac{\sec x + x^4 \sqrt{3}}{\pi^6 - 5x} \right)'$$

$$= \frac{\left(\sec x \tan x + 4\sqrt{3}x^3 \right) (\pi^6 - 5x) - \left(\sec x + x^4 \sqrt{3} \right) (-5)}{(\pi^6 - 5x)^2}$$

$$\left(\left(4\sqrt{2x} - 1 \right)^3 \ln^2 \left(\cos(3x^2) \right) \right)'$$

$$= \left[\left(4\sqrt{2x} - 1 \right)^3 \right]' \ln^2 \left(\cos(3x^2) \right) + \left(4\sqrt{2x} - 1 \right)^3 \left[\ln^2 \left(\cos(3x^2) \right) \right]'$$

En este caso

$$\left[\left(4\sqrt{2x} - 1 \right)^3 \right]' = 3\left(4\sqrt{2x} - 1 \right)^2 \cdot 4 \cdot \frac{1}{2\sqrt{2x}} \cdot 2$$

$$= 3\left(4\sqrt{2x} - 1 \right)^2 \frac{4}{\sqrt{2x}}$$

У

$$\left[\ln^2\left(\cos(3x^2)\right)\right]' = 2\ln\left(\cos(3x^2)\right)\frac{1}{\cos(3x^2)}\left(-\mathrm{sen}\,\left(3x^2\right)\right)(6x)$$

Lineamientos página 7 de 52

Ejemplo 1.5

Calcule la derivada de la siguiente función. No es necesario simplificar el resultado.

$$g(t) = 4\arctan(5t^3 - 2) + \sqrt[5]{\sin(t^4 - e^t \ln t)}$$

$$g'(t) = (4 \arctan (5t^3 - 2))' + (\sqrt[5]{\sin (t^4 - e^t \ln t)})'$$

donde

$$\left(4\arctan\left(5t^{3}-2\right)\right)'$$

$$= 4\frac{1}{\left(5t^{3}-2\right)^{2}+1}\left(15t^{2}\right)$$

$$= \frac{60t^{2}}{\left(5t^{3}-2\right)^{2}+1}$$

además

$$\left(\sqrt[5]{\operatorname{sen}(t^4 - e^t \ln t)}\right)'$$

$$= \left[\left(\operatorname{sen}(t^4 - e^t \ln t)\right)^{\frac{1}{5}}\right]'$$

$$= \frac{1}{5}\left(\operatorname{sen}(t^4 - e^t \ln t)\right)^{-\frac{4}{5}} \cos(t^4 - e^t \ln t) \left(4t^3 - \underbrace{\left(e^t \frac{1}{t} + e^t \ln t\right)}_{\text{Ley del producto}}\right)$$

Lineamientos página 8 de 52

Ejemplo opcional

Calcule la derivada de la siguiente función. No es necesario simplificar el resultado.

$$h(x) = \sqrt{\ln\left(\sec\left(\frac{5}{x^2}\right)\right)} - \csc\left(\frac{1-x}{x^2+1}\right)\cot^2(x)$$

$$\frac{dh}{dx} = \left(\sqrt{\ln\left(\sec\left(\frac{5}{x^2}\right)\right)}\right)' - \left(\csc\left(\frac{1-x}{x^2+1}\right)\cot^2(x)\right)'$$

Si calculamos cada derivada, obtenemos:

$$\left(\sqrt{\ln\left(\sec\left(\frac{5}{x^2}\right)\right)}\right)'$$

$$= \frac{1}{2\sqrt{\ln\left(\sec\left(\frac{5}{x^2}\right)\right)}} \cdot \frac{1}{\sec\left(\frac{5}{x^2}\right)} \cdot \sec\left(\frac{5}{x^2}\right) \tan\left(\frac{5}{x^2}\right) \left(-10x^{-3}\right) \longrightarrow \frac{5}{x^2} = 5x^{-2}$$

$$\left(\csc\left(\frac{1-x}{x^2+1}\right)\cot^2(x)\right)'$$

$$= \left(\csc\left(\frac{1-x}{x^2+1}\right)\right)'\cot^2(x) + \csc\left(\frac{1-x}{x^2+1}\right)\left(\cot^2(x)\right)'$$

donde

$$\left(\csc\left(\frac{1-x}{x^2+1}\right)\right)' = \csc\left(\frac{1-x}{x^2+1}\right)\cot\left(\frac{1-x}{x^2+1}\right)\left(\frac{-(x^2+1)-(1-x)(2x)}{(x^2+1)^2}\right)$$

У

$$\left(\cot^2(x)\right)' = 2\cot(x)\left(-\csc^2(x)\right)$$

Lineamientos página 9 de 52

1.3. Derivación implícita

Dada una ecuación que contiene a x e y, con y una función implícita de x, de la forma

$$F(x,y) = 0$$

se puede hallar la $\frac{dy}{dx}$ de la siguiente manera:

- 1. Derive a ambos lados de la ecuación respecto a la variable x.
- 2. Agrupe todos los términos que contengan y' en un solo miembro de la ecuación.
- 3. Factorice y'.
- 4. Despeje y' de la ecuación.

Observación

El esquema

$$(g \circ f)'(x) = [g(f(x))]' = g'(f(x)) \cdot f'(x)$$

denota que si y = f(x)

$$(g \circ f)'(x) = [g(y)]' = g'(y) \cdot y'$$

Es decir, si derivamos una función que dependa de y, donde y depende de x, entonces se debe multiplicar la función resultante por y' (por regla de la cadena).

Ejemplo 1.6

Calcule $\frac{dy}{dx}$ si la siguiente ecuación define a y como función implícita de x.

$$y^4 + x^2y^3 + 2 = \pi + y$$

Derivando implícitamente con respecto a x se tiene que

$$y^{4} + x^{2}y^{3} + 2 = \pi + y$$

$$4y^{3}y' + 2xy^{3} + x^{2}3y^{2}y' = y' \text{ (derivamos)}$$

$$4y^{3}y' + x^{2}3y^{2}y' - y' = -2xy^{3} \text{ (agrupamos los términos que poseen } y'\text{)}$$

$$y' \left(4y^{3} + 3x^{2}y^{2} - 1\right) = -2xy^{3}$$

$$y' = \frac{-2xy^{3}}{4y^{3} + 3x^{2}y^{2} - 1} \text{ (despejamos } y'\text{)}$$

Calcule y' si la siguiente ecuación define a y como función implícita de x.

$$5xy^7 - \ln\left(y^3\right) = 9x + 4y$$

Derivando en ambos miembros obtenemos

$$\underbrace{5xy^{7} - \ln(y^{3})}_{5y^{7} + 5x(7y^{6}y')} - \frac{1}{y^{3}}3y^{2}y' = 9 + 4y'$$

$$\underbrace{5y^{7} + 5x(7y^{6}y') - \frac{1}{y^{3}}3y^{2}y' = 9 + 4y'
}_{5y^{7} + 35xy^{6}y' - \frac{3}{y}y' = 9 + 4y'$$

$$\underbrace{35xy^{6}y' - \frac{3}{y}y' - 4y' = 9 - 5y^{7}}_{y'\left(35xy^{6} - \frac{3}{y} - 4\right) = 9 - 5y^{7}
}_{y'} = \frac{9 - 5y^{7}}{35xy^{6} - \frac{3}{y} - 4}$$

Ejemplo 1.8

Calcule $\frac{dx}{dt}$ si la siguiente ecuación define a x como función implícita de t .

$$(x-t)^2 + \frac{2}{t} = \text{sen}(x^2) - xt$$

Si calculamos la derivada de ambos miembros respecto de t, considerando que $x' = \frac{dx}{dt}$, tenemos

$$(x-t)^{2} + \frac{2}{t} = \operatorname{sen}(x^{2}) - xt$$

$$2(x-t)(x'-1) - 2t^{-2} = \cos(x^{2}) 2xx' - (x't+x)$$

$$2(x-t)x' - 2(x-t) - 2t^{-2} = \cos(x^{2}) 2xx' - x't - x$$

$$2(x-t)x' - \cos(x^{2}) 2xx' + x't = -2(x-t) + 2t^{-2} - x$$

$$x' (2(x-t) - \cos(x^{2}) 2x + t) = -2(x-t) + 2t^{-2} - x$$

$$x' = \frac{-2(x-t) + 2t^{-2} - x}{2(x-t) - \cos(x^{2}) 2x + t}$$

Ejemplo opcional

Sean x e y funciones derivables en su dominio. Determine $dr/dt\,$ si se sabe que r define una función implícita derivable en $t\,$ tal que

$$x^2 - t \cdot y = r^3$$

Se tiene que

$$x^{2} - t \cdot y = r^{3}$$

$$2xx' - (y + ty') = 3r^{2} \boxed{r'}$$

$$\frac{2xx' - (y + ty')}{3r^{2}} = \boxed{r'}$$

donde se sabe que $r' = \frac{dr}{dt}$.

1.4. Interpretación geométrica de la derivada de una función real

Veremos la interpretación de la derivada de una función a nivel local. En primera instancia se aborda la introducción al tópico de la recta tangente a una curva en un punto; más adelante se profundiza en este tópico y en aplicaciones más específicas de ingeniería, tales como el estudio de tasas de cambio y optimización.

Interpretación de la derivada como pendiente

Sea f una función derivable en x = a. El valor

$$m_{\text{tan}} = f'(a) = y'(a) = \frac{df(a)}{dx}$$

se interpreta como la pendiente de la recta tangente a f en el punto (a, f(a)) (punto de tangencia).

Nota: La recta tangente aproxima (de manera local) a la curva y=f(x) en el punto de tangencia.

Considere la gráfica de la función con criterio $f(x) = \sqrt{3-x}$ y L una de sus rectas tangentes, tal y como se ilustra a continuación.

Determine la pendiente de la recta L en el punto indicado.

Sabemos que la recta tangente a f en (2,1) corresponde a f'(2). La derivada queda determinada por

$$f'(x) = \frac{-1}{2\sqrt{3-x}}$$

de modo que el valor de la pendiente solicitada es $f'(2) = \frac{-1}{2\sqrt{3-2}} = -\frac{1}{2}$

Determine el punto de la curva de ecuación $y=x^3-3x+1$ donde la pendiente de la tangente a la curva es igual a 9. Además, encuentre los puntos de la curva donde la tangente es horizontal.

En este ejercicio se precisa del cálculo $y' = 3x^2 - 3$, ya que las pendientes de todas las tangentes a la curva están asociadas con su derivada.

Los puntos (x, y) donde la recta tangente tiene pendiente 9 verifican que

$$f'(x) = 9$$

$$\Rightarrow 3x^2 - 3 = 9$$

$$\Rightarrow 3x^2 - 12 = 0$$

$$\Rightarrow x = -2 \lor x = 2$$

Tenemos dos puntos posibles:

$$x = -2 \Rightarrow y = (-2)^3 - 3(-2) + 1 = -1 \longrightarrow (-2, -1)$$
$$x = 2 \Rightarrow y = (2)^3 - 3(2) + 1 = 3 \longrightarrow (2, 3)$$

Luego, las tangentes son horizontales si sus pendientes son $\mathbf{0}$, de modo que debemos determinar los puntos (x,y) tales que f'(x)=0; esto es

$$f'(x) = 0$$

$$\Rightarrow 3x^2 - 3 = 0$$

$$\Rightarrow x = -1 \lor x = 1$$

Nuevamente tenemos dos posibles puntos:

$$x = -1 \Rightarrow y = (-1)^{3} - 3(-1) + 1 = 3 \longrightarrow (-1, 3)$$

$$x = 1 \Rightarrow y = (1)^{3} - 3(1) + 1 = -1 \longrightarrow (1, -1)$$

Considere la gráfica de la curva de ecuación $y = (x - 1)^2$ y la recta L tangente a la curva en el punto (a, b). Determine las coordenadas del punto (a, b).

Note que $y + 3 - 2x = 0 \Rightarrow y = 2x - 3$, de modo que la pendiente de L es igual a 2. Como y' = 2(x - 1) evaluada en (a, b) coincide con la pendiente de esta recta tangente, entonces

$$2(a-1) = 2 \Rightarrow 2a - 2 = 2 \Rightarrow 2a = 4 \Rightarrow a = 2$$

De modo que $b = (2-1)^2 = 1$ (evaluando en la función original)

1.5. Recta tangente y recta normal a una curva

Definición 1.2: Recta tangente a una curva en un punto

Si f(x) es una función derivable en x = a, es decir si f'(a) existe, entonces la ecuación de la recta tangente a la curva y = f(x) en el punto (a, f(a)) está dada por

$$y - f(a) = f'(a)(x - a)$$

Definición 1.3: Recta normal a una curva en un punto

La recta normal a una curva es la recta perpendicular a la recta tangente en el punto de tangencia (a, f(a)), por lo tanto su pediente es $m_N = -1/f'(a)$. Así la ecuación de la recta normal a la curva y = f(x) está definida por

$$y - f(a) = \frac{-1}{f'(a)}(x - a)$$

Ejemplo 1.12

Determine la ecuación de la recta tangente y la ecuación de la recta normal a la curva de ecuación $y = \frac{2x}{2x-1}$ en el punto (1,2).

Iniciamos corroborando que el punto (1,2) sea de tangencia. Para tal fin verificamos que pertenezca a la curva de ecuación $y = \frac{2x}{2x-1}$; como

$$2 = \frac{2(1)}{2(1) - 1}$$

Se satisface la condición.

La pendiente de la recta tangente que da determinada por $\left. y' \right|_{(1,2)}$ (esta notación denota la derivada envaluada en el punto, al igual que y'(1)). En este caso

$$y = \frac{2x}{2x - 1}$$

$$\Rightarrow y' = \frac{2(2x - 1) - 2x(2)}{(2x - 1)^2} = \frac{4x - 2 - 4x}{(2x - 1)^2} = \frac{-2}{(2x - 1)^2}$$

$$\Rightarrow y'|_{(1,2)} = \frac{-2}{(2x - 1)^2} = \frac{-2}{(2(1) - 1)^2} = -2$$

De modo que la ecuación de la recta tangente corresponde a

$$y-2 = -2(x-1)$$

$$\Rightarrow y = -2x + 2 + 2$$

$$\Rightarrow y = -2x + 4$$

La ecuación de la recta normal a la curva tiene por ecuación

$$y-2 = \frac{-1}{-2}(x-1)$$

$$\Rightarrow y = \frac{1}{2}x - \frac{1}{2} + 2$$

$$\Rightarrow y = \frac{x+3}{2}$$

Esta situación se ilustra en la siguiente figura.

Determine la ecuación de la recta tangente y normal a la curva $y = x^2 + x$ que pasa por el punto donde x = -1.

En este ejercicio iniciamos completando las coordenadas del punto de tangencia: $x=-1 \Rightarrow y=(-1)^2+-1=0$, de modo que (-1,0) es el punto de tangencia.

Sabemos que la pendiente de la recta tangente corresponde a $y'|_{(-1,0)}$, por lo que procedemos con este cálculo.

$$y' = 2x + 1 \Rightarrow y'|_{(-1,0)} = 2(-1) + 1 = -1$$

Así, la ecuación de la recta tangente es

$$y - 0 = (-1)(x - -1) \Rightarrow y = -x - 1$$

y la ecuación de la recta normal corresponde a

$$y - 0 = \frac{-1}{-1}(x - -1) \Rightarrow y = x + 1$$

A continuación, se ilustra esta situación.

Determinar la ecuación de la recta tangente y la ecuación de la recta normal a la gráfica de la función $3x^2 - 2xy + 3y^2 = 8$ en el punto (-1, 1).

Dado que $3(-1)^2 - 2(-1)(1) + 3(1)^2 = 8$ el punto (-1,1) es de tangencia. Calculamos la pendiente de la recta tangente por medio de $y'|_{(-1,1)}$, para esto considere que

$$3x^{2} - 2xy + 3y^{2} = 8$$

$$\Rightarrow 6x - 2(y + xy') + 6yy' = 0$$

$$\Rightarrow 6x - 2y - 2xy' + 6yy' = 0$$

$$\Rightarrow -2xy' + 6yy' = -6x + 2y$$

$$\Rightarrow y'(-2x + 6y) = -6x + 2y$$

$$\Rightarrow y' = \frac{-6x + 2y}{-2x + 6y}$$

$$\Rightarrow y'|_{(-1,1)} = \frac{-6(-1) + 2(1)}{-2(-1) + 6(1)} = 1$$

Así, la ecuación de la recta tangente es

$$y - 1 = 1(x - -1) \Rightarrow y = x + 2$$

mientras que la de la recta normal corresponde a

$$y - 1 = \frac{-1}{1}(x - -1) \Rightarrow y = -x$$

Gráficamente:

Lineamientos página 19 de 52

Ejemplo opcional

Determine la ecuación de la recta normal a la curva definida por $x^3 + 3xy + y^2 - 5 = 0$ en el punto (1,1).

Se cumple que $(1)^3 + 3(1)(1) + (1)^2 - 5 = 0$, por lo que (1,1) es el punto de tangencia. Sabemos que la pendiente de la recta normal corresponde a $-1/|y'|_{(1,1)}$, donde

$$x^{3} + 3xy + y^{2} - 5 = 0$$

$$\Rightarrow 3x^{2} + 3y + 3xy' + 2yy' = 0$$

$$\Rightarrow 3xy' + 2yy' = -3x^{2} - 3y$$

$$\Rightarrow y' (3x + 2y) = -3x^{2} - 3y$$

$$\Rightarrow y' = \frac{-3x^{2} - 3y}{3x + 2y}$$

$$\Rightarrow y'|_{(1,1)} = \frac{-3(1)^{2} - 3(1)}{3(1) + 2(1)} = -\frac{6}{5}$$

$$\Rightarrow -1/y'|_{(1,1)} = \frac{5}{6}$$

En conclusión, la ecuación de la recta normal corresponde a

$$y - 1 = \frac{5}{6}(x - 1) \Rightarrow y = \frac{5}{6}x + \frac{1}{6}$$

Gráficamente:

Lineamientos página 20 de 52

Ejemplo opcional

Considere la función de criterio $f(x) = 2x + x^3 - 3x^2$, la recta de ecuación L: y = 2x - 8 y la recta L_T tangente a f en el punto (a, b), la cual es paralela a L. Tal y como se presenta en la siguiente gráfica.

De acuerdo a estos datos, determine las coordenadas del punto (a, b) y la ecuación de la recta L_T .

Dado que $L_T \parallel L$ sus pendientes son iguales. Como la pendiente de L: y = 2x - 8 es igual a 2, entonces la pendiente de L_T debe ser 2 también.

Sabemos que la pendiente de L_T corresponde a $f'(x)|_{(a,b)} = f'(a)$, por lo que f'(a) = 2. Así:

$$f'(x) = 2 + 3x^{2} - 6x$$

$$\Rightarrow f'(a) = 2 + 3a^{2} - 6a = 2$$

$$\Rightarrow 3a^{2} - 6a = 0$$

$$\Rightarrow a = 2 \lor a = 0$$

Según la gráfica a > 0, de modo que a = 2.Lo que implica que $b = f(a) = 2(2) + (2)^3 - 3(2)^2 = 0$.La ecuación de la recta tangente L_T corresponde a

$$L_T: y - 0 = 2(x - 2) \Rightarrow L_T: y = 2x - 4$$

Lineamientos página 21 de 52

1.6. Derivadas de orden superior

En general, el proceso de paso al límite por el cual se obtiene f'(x) a partir de una función dada f(x), abre un camino para obtener una nueva función f' a partir de una función dada f. Este proceso se denomina derivación y f' es la **primera derivada** de f. Si f' a su vez está definida en un intervalo abierto, entonces se puede calcular su primera derivada, indicada por f'' y que es la **segunda derivada** de f. Análogamente, la derivada de f'' se denota por f''' y se llama **tercera derivada** de f. En general, la derivada n – ésima de f, denotada por $f^{(n)}$, se define como la derivada primera de la anterior, es decir de $f^{(n-1)}$.

La segunda, tercera, cuarta, ..., n – ésima derivada de una función es lo que llamamos derivadas de orden superior de la función y = f(x). Con las notaciones de derivadas establecidas, las derivadas de orden superior se expresan tal y como se muestran en la siguiente tabla:

Notaciones de derivadas

Derivada	Función $y = f(x)$
Primera	$f'(x), y', \frac{dy}{dx}$
Segunda	$f''(x), y'', \frac{d^2y}{dx^2}$
Tercera	$f'''(x), y''', \frac{d^3y}{dx^3}$
:	:
n-ésima	$f^{(n)}(x), y^{(n)}, \frac{d^n y}{dx^n}$

Ejemplo 1.15

Calcule
$$y''$$
, si $y = \frac{x-1}{x+1}$

Se tiene que

$$y' = \frac{x+1-(x-1)}{(x+1)^2} = \frac{x+1-x+1}{(x+1)^2} = \frac{2}{(x+1)^2}$$

Para calcular la segunda derivada es posible utilizar la equivalencia $\frac{2}{(x+1)^2} = 2(x+1)^{-2}$ con el fin de simplificar los cálculos:

$$y'' = (2(x+1)^{-2})'$$

= $-4(x+1)^{-3}$

Calcule
$$\frac{d^3y}{dx^3}$$
, si $y = 2x^3 + \frac{1}{x^2} + 16x^{\frac{7}{2}} + 5$

Aplicando la misma técnica del ejemplo anterior, escribimos

$$y = 2x^{3} + \frac{1}{x^{2}} + 16x^{\frac{7}{2}} + 5$$
$$= 2x^{3} + x^{-2} + 16x^{\frac{7}{2}} + 5$$

de modo que

$$\frac{dy}{dx} = 6x^{2} - 2x^{-3} + 16 \cdot \frac{7}{2}x^{\frac{5}{2}}$$

$$= 6x^{2} - 2x^{-3} + 56x^{\frac{5}{2}}$$

$$\frac{d^{2}y}{dx^{2}} = 12x + 6x^{-4} + 56 \cdot \frac{5}{2}x^{\frac{3}{2}}$$

$$= 12x + 6x^{-4} + 140x^{\frac{3}{2}}$$

$$\frac{d^{3}y}{dx^{3}} = 12 - 24x^{-5} + 210x^{\frac{1}{2}}$$

Ejemplo 1.17

Calcule
$$f'''(x)$$
, si $f(x) = x^3 e^{-x}$

Tenemos que

$$f'(x) = 3x^{2}e^{-x} + x^{3}(-e^{-x})$$

$$= e^{-x}(3x^{2} - x^{3})$$

$$f''(x) = -e^{-x}(3x^{2} - x^{3}) + e^{-x}(6x - 3x^{2})$$

$$= e^{-x}[-(3x^{2} - x^{3}) + 6x - 3x^{2}]$$

$$= e^{-x}[-3x^{2} + x^{3} + 6x - 3x^{2}]$$

$$= e^{-x}(-6x^{2} + x^{3} + 6x)$$

$$f'''(x) = -e^{-x}(-6x^{2} + x^{3} + 6x) + e^{-x}(-12x + 3x^{2} + 6)$$

Ejemplo 1.18: Verificación de soluciones de Ecuaciones Diferenciales

Demuestre que la función $y=e^{3x}+e^{-4x}$ es solución de la ecuación y''+y'-12y=0.

Para verificar la igualdad es necesario calcular las derivadas previamente.

$$y = e^{3x} + e^{-4x}$$

 $\Rightarrow y' = 3e^{3x} - 4e^{-4x}$
 $\Rightarrow y'' = 9e^{3x} + 16e^{-4x}$

Comprobamos la igualdad al sustituir las derivadas:

$$y'' + y' - 12y = 0$$

$$\Leftrightarrow (9e^{3x} + 16e^{-4x}) + (3e^{3x} - 4e^{-4x}) - 12(e^{3x} + e^{-4x}) = 0$$

$$\Leftrightarrow 9e^{3x} + 16e^{-4x} + 3e^{3x} - 4e^{-4x} - 12e^{3x} - 12e^{-4x} = 0$$

$$\Leftrightarrow 12e^{3x} + 12e^{-4x} - 12e^{3x} - 12e^{-4x} = 0$$

$$\Leftrightarrow 0 = 0$$

Lo que demuestra que la función y satisface ser una solución.

2. Aplicaciones de la derivada

2.1. Regla de L'hopital

Teorema 2.1: La Regla de L'Hôpital

Sean f y g funciones derivables en un intervalo abierto]a,b[que contiene al valor c, puede que estas funciones no sean derivables en c. Se asume que $g'(x) \neq 0$ para todo x en]a,b[, excepto quizás en c. Si $\lim_{x\to c} \frac{f(x)}{g(x)}$ conduce a una forma indeterminada $\frac{0}{0}$, o bien, $\frac{\infty}{\infty}$, entonces:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

suponiendo que el límite de la derecha existe (o es infinito).

Nota: El teorema anterior también se puede aplicar en el caso de límites laterales.

Formas indeterminadas $\frac{0}{0}$ e $\frac{\infty}{\infty}$

Ejemplo 2.1

Calcule el valor de $\lim_{x\to 0} \frac{\ln(1+5\sqrt{x})}{5\sqrt{x}}$

Observe que si $x \to 0$, entonces $\frac{\ln(1+5\sqrt{x})}{5\sqrt{x}} \to \frac{0}{0}$. Procedemos de la siguiente manera.

$$\lim_{x \to 0} \frac{\ln(1+5\sqrt{x})}{5\sqrt{x}}$$

$$\stackrel{\text{L'H}}{=} \lim_{x \to 0} \frac{1}{\frac{1+5\sqrt{x}}{2\sqrt{x}}} \left(\frac{5}{2\sqrt{x}}\right)$$

$$= \lim_{x \to 0} \frac{1}{1+5\sqrt{x}}$$

$$= 1$$

Ejemplo 2.2

Calcule el valor de $\lim_{x \to +\infty} \frac{x}{\ln^3 x + 2x}$

Observe que si $x \to \infty$, entonces $\frac{x}{\ln^3 x + 2x} \to \frac{\infty}{\infty}$, de modo que

$$\begin{split} & \lim_{x \to +\infty} \frac{x}{\ln^3 x + 2x} \\ & \stackrel{\text{L'H}}{=} \lim_{x \to +\infty} \frac{1}{3\left(\ln^2 x\right) \frac{1}{x} + 2} \\ &= \lim_{x \to +\infty} \frac{1}{3\left(\ln^2 x\right) + 2x} \\ &= \lim_{x \to +\infty} \frac{x}{3\left(\ln^2 x\right) + 2x} \text{ forma } \frac{\infty}{\infty} \\ &\stackrel{\text{L'H}}{=} \lim_{x \to +\infty} \frac{1}{6\left(\ln x\right) \frac{1}{x} + 2} \\ &= \lim_{x \to +\infty} \frac{1}{6\left(\ln x\right) + 2x} \\ &= \lim_{x \to +\infty} \frac{x}{6\left(\ln x\right) + 2x} \text{ forma } \frac{\infty}{\infty} \\ &\stackrel{\text{L'H}}{=} \lim_{x \to +\infty} \frac{1}{6\frac{1}{x} + 2} \\ &= \frac{1}{2} \end{split}$$

Ejemplo 2.3

Calcule el valor de $\lim_{x \to 0^-} \frac{e^x + \ln(1+x) - 1}{\tan x}$

Observe que si $x \to 0$, entonces $\frac{e^x + \ln(1+x) - 1}{\tan x} \to \frac{0}{0}$. Operando por la regla de L'Hôpital tenemos:

$$\lim_{x \to 0^{-}} \frac{e^{x} + \ln(1+x) - 1}{\tan x}$$

$$\stackrel{\text{L'H}}{=} \lim_{x \to 0^{-}} \frac{e^{x} + \frac{1}{1+x}}{\sec^{2} x}$$

$$= 2$$

Ejemplo opcional

Calcule el valor de $\lim_{x \to \frac{\pi}{2}} \frac{\ln\left(x - \frac{\pi}{2}\right)}{\tan x}$

Si
$$x \to \pi/2$$
, entonces $\frac{\ln\left(x - \frac{\pi}{2}\right)}{\tan x} \to \frac{-\infty}{\pm \infty}$. De modo que

$$\lim_{x \to \frac{\pi}{2}} \frac{\ln\left(x - \frac{\pi}{2}\right)}{\tan x}$$

$$\stackrel{L'H}{=} \lim_{x \to \frac{\pi}{2}} \frac{\frac{1}{x - \frac{\pi}{2}}}{\sec^2 x}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{x - \frac{\pi}{2}} \text{ recuerde que } \frac{1}{\sec^2 x} = \cos^2 x$$

$$\stackrel{L'H}{=} \lim_{x \to \frac{\pi}{2}} \frac{2(\cos x)(-\sin x)}{1}$$

$$= 0$$

Además de las formas indeterminadas $\frac{0}{0}$ y $\frac{\infty}{\infty}$, hay otra indeterminaciones como $0 \cdot \infty$, 1^{∞} , 0^{0} y $\infty - \infty$. Los ejemplos siguientes indican los métodos para evaluar estas formas. Básicamente, se intenta convertir cada una de estas indeterminaciones a $\frac{0}{0}$ o $\frac{\infty}{\infty}$ para que la regla de L'hopital pueda aplicarse.

Forma indeterminada $0 \cdot \infty$

Ejemplo 2.4

Calcule el valor de $\lim_{x\to 0} (\sin x) (\ln x)$

Si $x \to 0$, entonces (sen x) (ln x) $\to 0$ ($-\infty$), de modo que es posible simplificar el límite por medio de la regla de L'Hôpital. En este tipo de ejercicios transformamos el producto en un cociente, por medio de la propiedad:

$$ab = \frac{b}{a^{-1}} = \frac{a}{b^{-1}}$$

En el límite se tiene la siguiente descomposición.

$$\begin{split} &\lim_{x\to 0} \left(\operatorname{sen} x \right) \left(\operatorname{ln} x \right) \\ &= \lim_{x\to 0} \frac{\operatorname{ln} x}{\left(\operatorname{sen} x \right)^{-1}} \\ &\stackrel{=}{=} \lim_{x\to 0} \frac{\frac{1}{x}}{-\left(\operatorname{sen} x \right)^{-2} \operatorname{cos} x} \\ &= \lim_{x\to 0} \frac{\left(\operatorname{sen} x \right)^2}{-x \operatorname{cos} x} \text{ forma } \frac{0}{0} \\ &\stackrel{\text{L'H}}{=} \lim_{x\to 0} \frac{2 \operatorname{sen} x \operatorname{cos} x}{-\operatorname{cos} x + x \operatorname{sen} x} \\ &= 0 \end{split}$$

Ejemplo 2.5

Calcule el valor de $\lim_{x\to 0} (\arctan x) (\csc x)$

Dado que $x \to 0 \Rightarrow \arctan x \cdot \frac{1}{\sec x} \to 0 \left(\frac{1}{0}\right) = 0 \ (\pm \infty)$, es posible emplear la siguiente simpl

$$\lim_{x \to 0} (\arctan x) (\csc x)$$

$$= \lim_{x \to 0} \frac{\arctan x}{(\csc x)^{-1}}$$

$$= \lim_{x \to 0} \frac{\arctan x}{\sec x} \text{ ya que } (\csc x)^{-1} = \frac{1}{\csc x} = \sec x$$

$$\lim_{x \to 0} \frac{1}{\frac{x^2 + 1}{\cos x}}$$

$$= 1$$

Formas indeterminadas $\mathbf{1}^{\infty}$, ∞^{0} y $\mathbf{0}^{0}$ Para límites del tipo $\lim_{x\to a} [f(x)]^{g(x)}$ que lleven a las formas $\mathbf{1}^{\infty}$, ∞^{0} y $\mathbf{0}^{0}$, es posible emplear una linealización a partir de logarítmos, como se sigue

$$y = [f(x)]^{g(x)}$$

$$\ln y = \ln [f(x)]^{g(x)}$$

$$\ln y = g(x) \ln f(x)$$

$$y = e^{g(x) \ln f(x)}$$

$$\lim_{x \to a} y = e^{\lim_{x \to a} g(x) \ln f(x)}$$

Siempre que $h(x) = e^{g(x) \ln f(x)}$ sea una función continua.

Método de solución

Aplique la transformación

$$\lim_{x \to a} \left[f(x) \right]^{g(x)} = e^{\lim_{x \to a} g(x) \ln f(x)}$$

De modo que los cálculos se reducen a determinar $J = \lim_{x \to a} g(x) \ln f(x)$ y, en caso de que exista este límite, el resultado del límite original es $\lim_{x\to a} [f(x)]^{g(x)} = e^J$.

Ejemplo 2.6

Calcule el valor de $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$

Note que $\left(1+\frac{1}{x}\right)^x \to 1^\infty$, si $x \to \infty$. Considere

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e^{\lim_{x \to \infty} x \ln\left(1 + \frac{1}{x}\right)}$$

Si llamamos $J = \lim_{x \to \infty} x \ln \left(1 + \frac{1}{x} \right)$, tenemos que:

$$\begin{split} J &= \lim_{x \to \infty} x \ln \left(1 + \frac{1}{x}\right) \text{ forma } \infty \cdot 0 \\ &= \lim_{x \to \infty} \frac{\ln \left(1 + \frac{1}{x}\right)}{x^{-1}} \text{ forma } \frac{0}{0} \\ &= \lim_{x \to \infty} \frac{\ln \left(1 + x^{-1}\right)}{x^{-1}} \\ &= \lim_{x \to \infty} \frac{1}{1 + x^{-1}} \left(-x^{-2}\right) \\ &= \lim_{x \to \infty} \frac{1}{1 + x^{-1}} \\ &= 1 \end{split}$$

así

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e^{\lim_{x \to \infty} x \ln\left(1 + \frac{1}{x}\right)} = e^1 = e$$

Ejemplo 2.7

Calcule el valor de $\lim_{x \to 0^+} \left[\cos \left(\frac{\pi}{2} - x \right) \right]^x$

Este límite conduce a la forma 0^0 , por lo que procedemos con la transformación a exponencial.

$$\lim_{x \to 0^+} \left[\cos \left(\frac{\pi}{2} - x \right) \right]^x = e^{\lim_{x \to 0^+} x \ln \cos \left(\frac{\pi}{2} - x \right)}$$

Siendo

$$J = \lim_{x \to 0^{+}} x \ln \cos \left(\frac{\pi}{2} - x\right) \text{ forma } 0 \cdot (-\infty)$$

$$= \lim_{x \to 0^{+}} \frac{\ln \cos \left(\frac{\pi}{2} - x\right)}{x^{-1}} \text{ forma } \frac{-\infty}{\pm \infty}$$

$$\frac{1}{\cos \left(\frac{\pi}{2} - x\right)} \left(\sin \left(\frac{\pi}{2} - x\right)\right)$$

$$= \lim_{x \to 0^{+}} \frac{x^{2} \sin \left(\frac{\pi}{2} - x\right)}{-\cos \left(\frac{\pi}{2} - x\right)} \text{ forma } \frac{0}{0}$$

$$= \lim_{x \to 0^{+}} \frac{2x \sin \left(\frac{\pi}{2} - x\right)}{-\cos \left(\frac{\pi}{2} - x\right)} - x^{2} \cos \left(\frac{\pi}{2} - x\right)$$

$$= \lim_{x \to 0^{+}} \frac{2x \sin \left(\frac{\pi}{2} - x\right) - x^{2} \cos \left(\frac{\pi}{2} - x\right)}{-\sin \left(\frac{\pi}{2} - x\right)}$$

$$= 0$$

De modo que

$$\lim_{x \to 0^+} \left[\cos \left(\frac{\pi}{2} - x \right) \right]^x = e^{\lim_{x \to 0^+} x \ln \cos \left(\pi/2 - x \right)} = e^0 = 1$$

Ejemplo opcional

Calcule el valor de $\lim_{x\to 0} (\operatorname{sen} x)^{\tan x}$

Se cumple que $(\operatorname{sen} x)^{\operatorname{tan} x} \to 0^0$ cuando $x \to 0$, por lo que procedemos de forma análoga al ejemplo anterior:

$$\lim_{x \to 0} (\operatorname{sen} x)^{\tan x} = e^{\lim_{x \to 0} \tan x \ln \operatorname{sen} x}$$

Considerando

$$J = \lim_{x \to 0} \tan x \ln (\operatorname{sen} x) (\operatorname{forma} 0 \cdot -\infty)$$

$$= \lim_{x \to 0} \frac{\ln \operatorname{sen} x}{(\tan x)^{-1}} \operatorname{forma} \frac{-\infty}{\pm \infty}$$

$$= \lim_{x \to 0} \frac{\ln \operatorname{sen} x}{\cot x} \operatorname{se sabe que} (\tan x)^{-1} = \frac{1}{\tan x} = \cot x$$

$$\stackrel{\text{L'H}}{=} \lim_{x \to 0} \frac{\frac{1}{\operatorname{sen} x} \cos x}{-\csc^2 x}$$

$$= \lim_{x \to 0} \frac{\operatorname{sen}^2 x \cos x}{-\operatorname{sen} x}$$

$$= \lim_{x \to 0} \frac{\operatorname{sen} x \cos x}{-1}$$

$$= 0$$

En conclusión

$$\lim_{x \to 0} (\sin x)^{\tan x} = e^{\lim_{x \to 0} \tan x \ln \sin x} = e^0 = 1$$

Lineamientos página 31 de 52

2.2. Puntos extremos de una función

Definición 2.1: Máximos y mínimos absolutos

Una función f(x) tiene un **máximo absoluto** en $x = c_1$, si $f(c_1) \ge f(x)$ para todo x en el dominio de f, y el número $f(c_1)$ se llama valor máximo de f. Análogamente, decímos que la función f tiene un **mínimo absoluto** en $x = c_2$, si $f(c_2) \le f(x)$ para todo x en el dominio de f, y el número $f(c_2)$ se llama valor mínimo de f.

Definición 2.2: máximos y mínimos relativos

Una función f(x) tiene un **máximo relativo** en $x = c_1$, si existe un intervalo cerrado I tal que $c_1 \in I$ y $f(c_1) \ge f(x)$ para todo x en I. Análogamente, decímos que la función f tiene un **mínimo relativo** en $x = c_2$, si exite un intervalo cerrado I tal que $f(c_2) \le f(x)$ para todo x en I.

Esta situación puede ejemplificarse en la siguiente figura.

Nota: Los valores máximos y mínimos de una función en un intervalo se denominan valores extremos de la función en dicho intervalo.

Teorema 2.2

Si una función f es continua en un intervalo cerrado [a,b], entonces f alcanza un valor máximo y mínimo relativo en [a,b].

Definición 2.3: Punto crítico

Un punto crítico de una función f, es un número x=c en el dominio de la función, tal que f'(c)=0, o bien, f'(c) no existe. Los puntos críticos de una función son candidatos a ser máximos y/o mínimos.

2.2.1. Extremos relativos a intervalos cerrados

Ejemplo 2.8

Determine los puntos extremos de $f(x) = 2x^3 - 5x^2 - 4x + 4$ en [-5, 1]

Determinamos los puntos críticos en [-5,1]; es decir, los puntos (x,y) que verifican que f'(x)=0:

$$f'(x) = 0$$

$$\Rightarrow 6x^2 - 10x - 4 = 0$$

$$\Rightarrow x = 2 \lor x = -\frac{1}{3}$$

De estos valores únicamente se considera $x = -\frac{1}{3}$ ya que $2 \notin [-5, 1]$. Debemos comparar f(-5), f(1) y $f\left(-\frac{1}{3}\right)$ en búsqueda del máximo y el mínimo relativo. Tabularmente

x	$f(x) = 2x^3 - 5x^2 - 4x + 4$	Clasificación
-5	-351	(-5, -351) es punto mínimo relativo
$-\frac{1}{3}$	$\frac{127}{27} \approx 4.7037$	$\left(-\frac{1}{3}, \frac{127}{27}\right)$ es punto máximo relativo
1	-3	

Lineamientos página 33 de 52

Ejemplo 2.9

Determine los puntos extremos de $h(x) = \operatorname{sen} x$ en $[0, \pi]$

Los puntos críticos en $[0,\pi]$ quedan determinados por los pares (x,y) tales que

$$h'(x) = 0$$

$$\Rightarrow \cos x = 0$$

$$\Rightarrow x = \frac{\pi}{2} + k\pi; \ k \in \mathbb{Z}$$

Como se trabaja en $[0,\pi]$ el único punto se da en $x=\frac{\pi}{2}$, por lo que comparamos $h(0),h\left(\frac{\pi}{2}\right)$ y $h(\pi)$:

x	$h(x) = \sin x$	Clasificación
0	0	(0,0) es punto mínimo relativo
$\frac{\pi}{2}$	1	$\left(\frac{\pi}{2},1\right)$ es punto máximo relativo
π	0	$(\pi,0)$ es punto mínimo relativo

En este ejemplo se pone de manifiesto que puede haber más de un mínimo o máximo relativo para una función.

Ejemplo opcional

Determine los puntos extremos de $g(x) = x^4 - 6x^2$ en [-1, 2]

Se tiene que $g'(x) = 4x^3 - 12x = 0 \Leftrightarrow x = \sqrt{3} \lor x = -\sqrt{3} \lor x = 0$, de los que solamente $x = \sqrt{3}$ y x = 0 pertenecen a [-1, 2]. De modo que los puntos críticos se dan en $x = \sqrt{3}$ y x = 0. Comparamos los valores de f para determinar los extremos en el intervalo:

x	$g(x) = x^4 - 6x^2$	Clasificación
-1	-5	
$\sqrt{3}$	-9	$(\sqrt{3}, -9)$ es un punto mínimo relativo
0	0	(0,0) es un punto máximo relativo
2	-8	

2.2.2. Criterio de la n-ésima derivada para hallar extremos

Hasta este punto hemos desarrollado una introducción al análisis de extremos relativos a una función, ya sea con criterio dado o la gráfica de la misma. El criterio de la primera derivada nos dio una forma de averiguar si en un punto crítico se alcanza un máximo o un mínimo, o si no hay un extremo; sin embargo, algunas veces se suele acudir a criterios alternativos que, por su practicidad, permiten hallar los extremos de la función de manera eficiente, sin acudir directamente a la primera derivada.

Lineamientos página 34 de 52

Teorema 2.3: Criterio de la n-ésima derivada para hallar extremos relativos

Sea I un intervalo abierto, $a \in I$, $n \in \mathbb{N}$ y $f: I \longrightarrow \mathbb{R}$ una función n veces derivable, tal que f posee un punto crítico en x = a. Si se satisface que

$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0 \text{ y } f^{(n)}(a) \neq 0$$

entonces:

- \circ f no posee extremo relativo en a, en caso de que n sea impar.
- o f posee un máximo relativo en a, en caso de que n sea par y $f^{(n)}(a) < 0$.
- o f posee un mínimo relativo en a, en caso de que n sea par y $f^{(n)}(a) > 0$.

Observación: En la mayoría de casos el teorema se satisface para n=2; se denomina Criterio de la segunda derivada.

Ejemplo 2.10

Determine los extremos relativos de $f(x) = 2x^3 - 17x^2 + 40x - 3$

Iniciamos determinando los puntos críticos de f. Para esto, se resuelve la ecuación

$$f'(x) = 0$$

$$\Rightarrow 6x^2 - 34x + 40 = 0$$

$$\Rightarrow x = 4 \lor x = \frac{5}{3}$$

Note que ambos valores están en el dominio real de f. Clasificamos por medio de las derivadas de orden superior:

Como f''(x) = 12x - 34 se tiene que

$$f''(4) = 12(4) - 34 = 14 > 0$$

 $f''(\frac{5}{3}) = 12(\frac{5}{3}) - 34 = -14 < 0$

Dado que esto ocurre en la derivada de orden 2 (par), entonces f(4) es un mínimo relativo y $f\left(\frac{5}{3}\right)$ es un máximo relativo. Los puntos extremos corresponden a

$$(4, f(4)) = \left(4, 2(4)^3 - 17(4)^2 + 40(4) - 3\right) = (4, 13)$$

$$\left(\frac{5}{3}, f\left(\frac{5}{3}\right)\right) = \left(\frac{5}{3}, 2\left(\frac{5}{3}\right)^3 - 17\left(\frac{5}{3}\right)^2 + 40\left(\frac{5}{3}\right) - 3\right) = \left(\frac{5}{3}, \frac{694}{27}\right)$$

Ejemplo 2.11

Determine los extremos relativos de $g(t) = 2(t-3)^3$

Se tiene que

$$g'(t) = 0$$

$$\Leftrightarrow \left(2(t-3)^3\right)' = 0$$

$$\Leftrightarrow 6(t-3)^2 = 0$$

$$\Leftrightarrow t-3 = 0$$

$$\Leftrightarrow t = 3$$

Evaluando este valor en las derivadas de orden superior:

$$g''(t) = (6(t-3)^{2})' = 12(t-3) \Rightarrow g''(3) = 0$$

$$g'''(t) = (12(t-3))' = 12 \Rightarrow g'''(3) = 12$$

Sin embargo, la primera derivada no nula en el punto es de orden 3 (impar) de modo que el punto (3, g(3)) no es un extremo relativo.

Ejemplo 2.12

Determine los extremos relativos de $g(x) = \ln(x^2 + 5)$

Determinamos los puntos críticos:

$$g'(x) = 0$$

$$\Leftrightarrow \frac{2x}{x^2 + 5} = 0$$

$$\Leftrightarrow 2x = 0$$

$$\Leftrightarrow x = 0$$

Clasificamos este valor según las derivadas de orden superior:

$$g''(x) = \frac{2(x^2 + 5) - 2x(2x)}{(x^2 + 5)^2} \Rightarrow g''(0) = \frac{2((0)^2 + 5) - 2(0)(2(0))}{((0)^2 + 5)^2} = \frac{2}{5} > 0$$

En este caso la segunda derivada (orden par) evaluada en el punto (0, g(0)) es mayor que cero, por lo que es un punto mínimo relativo. Particularmente

$$(0, g(0)) = (0, \ln((0)^2 + 5)) = (0, \ln 5)$$

3. Práctica General

3.1. Cálculo de derivadas por reglas básicas

Use las reglas de derivación para calcular la derivada de cada una de las siguientes funciones. **No** es necesario simplificar.

1.
$$y = \frac{(x^6 + 7x)(x^4 + 2)}{x^3 + 2} + 2^x \tan x - \frac{e^x(x^2 + 3)}{\csc x}$$

Respuesta:
$$y' = \frac{7x^{12} + 20x^9 + 6x^8 + 14x^7 + 24x^5 + 70x^4 - 28x^3 + 28}{(x^3 + 2)^2} + 2^x \ln 2 \cdot \tan x + 2^x \sec^2 x$$
$$-\frac{(e^x (x^2 + 3) + e^x (2x)) \csc x + e^x (x^2 + 3) \csc x \cot x}{\csc^2 x}$$

2.
$$y = \frac{\arcsin x}{e^x + \sqrt{7}} + \sqrt[3]{x^{11}} - \frac{x^{\frac{2}{4}} - 7x^{\frac{3}{5}} + x^{-2}}{\sqrt{x^{\frac{2}{3}}}}$$

Respuesta:
$$y' = \frac{\frac{1}{\sqrt{1-x^2}} \left(e^x + \sqrt{7} \right) - \arcsin x \cdot (e^x)}{\left(e^x + \sqrt{7} \right)^2} + \frac{11}{3} x^{8/3} - \frac{\left(\frac{1}{2} x^{-\frac{1}{2}} - \frac{21}{5} x^{-\frac{2}{5}} - 2x^{-3} \right)}{\frac{1}{3} x^{-\frac{2}{3}}}$$

3.
$$f(x) = \frac{\log_2 x}{\tan x - \sin x} + \frac{x^{-\frac{1}{4}} \sin x}{\ln x \cdot \cos x} - (x^2 + 1)e^x$$

Respuesta :
$$f'(x) = \frac{\frac{1}{x \ln 2} (\tan x - \sin x) - \log_2 x \cdot (\sec^2 x - \cos x)}{(\tan x - \sin x)^2} + \frac{\left(-\frac{1}{4}x^{-\frac{5}{4}} \sin x + x^{-\frac{1}{4}} \cos x\right) \ln x \cdot \cos x - x^{-\frac{1}{4}} \sin x \cdot \left(\frac{1}{x} \cos x - \ln(x) \sin x\right)}{(\ln x \cdot \cos x)^2} - 2xe^x - (x^2 + 1) e^x$$

4.
$$g(x) = \csc x \cdot \cot x - \frac{\cos x}{e^x + \sec x} + \frac{x^{-\frac{1}{3}} + 2x^{\frac{1}{5}} - x^2}{2^x + \sec x}$$

Respuesta:
$$g'(x) = -\csc x \cot^2 x - \csc x \csc^2 x - \frac{-\sec x \left(e^x + \sec x\right) - \cos x \left(e^x + \cos x\right)}{\left(e^x + \sec x\right)^2} + \frac{\left(-\frac{1}{3}x^{-\frac{4}{3}} + \frac{2}{5}x^{\frac{4}{5}} - 2x\right)\left(2^x + \sec x\right) - \left(x^{-\frac{1}{3}} + 2x^{\frac{1}{5}} - x^2\right)\left(2^x \ln 2 + \sec x \tan x\right)}{\left(2^x + \sec x\right)^2}$$

5.
$$h(x) = (x^2 + 1) \cdot \operatorname{arccsc} x + (x^{-\frac{1}{5}} + x^3)e^x - \frac{\sec x}{\csc x - \sec x}$$

Respuesta:
$$h'(x) = (2x) \arccos x - (x^2 + 1) \frac{1}{x\sqrt{x^2 - 1}} + (-\frac{1}{5}x^{-\frac{6}{5}} + 3x^2) e^x + (x^{-\frac{1}{5}} + x^3) e^x - \frac{(\sec x \tan x) (\csc x - \sin x) - (\sec x) (-\csc x \cot x - \cos x)}{(\csc x - \sin x)^2}$$

6.
$$y = e^x - x^e + 3 \ln x - x^{-5} \left(x^4 - \sqrt[7]{x^5} \right)$$

Respuesta:
$$y' = e^x - ex^{e-1} + \frac{3}{x} - \left(-5x^{-6}\left(x^4 - \sqrt[7]{x^5}\right) + x^{-5}\left(4x^3 - \frac{5}{7}x^{-\frac{2}{7}}\right)\right)$$

7.
$$y = \frac{\cos x - (3 - 10^x - \log 2)}{\sec x + x^{\frac{3}{8}}} + \tan x$$

Respuesta:
$$y' = \frac{\left(-\sin x + 10^x \ln 10\right) \left(\sec x + x^{\frac{3}{8}}\right) - \left(\cos x - \left(3 - 10^x - \log 2\right)\right) \left(\sec x + \frac{3}{8}x^{-\frac{5}{8}}\right)}{\left(\sec x + x^{\frac{3}{8}}\right)^2} + \sec^2 x$$

8.
$$y = \frac{x^3 - x}{e^x + \cot x} + \sqrt[5]{x^4} - 6^x + \log x$$

Respuesta:
$$y' = \frac{(3x-1)(e^x + \cot x) - (x^3 - x)(e^x - \csc^2 x)}{(e^x + \cot x)^2} + \frac{4}{5}x^{-\frac{1}{5}} - 6^x \ln 6 + \frac{1}{x \ln 10}$$

9.
$$m(x) = 5 \arcsin x - 3^x + x^3 - \ln x + \frac{1}{x^{\frac{3}{4}}}$$

Respuesta:
$$m'(x) = \frac{5}{\sqrt{1-x^2}} - 3^x \ln 3 + 3x^2 - \frac{1}{x} - \frac{3}{4}x^{-\frac{7}{4}}$$

10.
$$y = \frac{x^{-4} - e^x}{5x + e}$$

Respuesta:
$$y' = \frac{(-4x^{-5} - e^x)(5x + e) - (x^{-4} - e^x)5}{(5x + e)^2}$$

11.
$$y = -\csc x + \frac{\arctan x - e^x}{\sec x + \pi}$$

Respuesta:
$$y' = \csc x \cot x + \frac{\left(\frac{1}{x^2+1} - e^x\right)\left(\sec x + \pi\right) - \left(\arctan x - e^x\right)\cos x}{\left(\sec x + \pi\right)^2}$$

12.
$$y = \frac{e^x \cdot \cos x}{\tan x + \sin x} - e^x \ln x$$

Respuesta:
$$y' = \frac{\left(e^x \cdot \cos x - e^x \sin x\right) \left(\tan x + \sin x\right) - \left(e^x \cdot \cos x\right) \left(\sec^2 x + \cos x\right)}{\left(\tan x + \sin x\right)^2} - e^x \ln x - \frac{e^x}{x}$$

3.2. Cálculo de derivadas por regla de la cadena

Use las reglas de derivación para calcular la derivada de cada una de las siguientes funciones. **No** es necesario simplificar.

1.
$$f(x) = \frac{2 \operatorname{sen}^3(2x^2 e^{x+1}) - \sqrt{\operatorname{arc} \operatorname{sen} x^5 + 3x} + 2}{7x + 4^x} - \operatorname{sec}\left(\frac{1}{x^3}\right) + \ln 3$$

Respuesta :
$$f'(x) = \frac{A(7x+4^x) - \left(2\sin^3(2x^2e^{x+1}) - \sqrt{\arcsin x^5 + 3x} + 2\right)(7x+4^x)}{(7x+4^x)^2} + \sec\left(\frac{1}{x^3}\right)\tan\left(\frac{1}{x^3}\right)\left(-3x^{-4}\right)$$

donde
$$A = 6 \operatorname{sen}^2 \left(2x^2 e^{x+1} \right) \cos \left(2x^2 e^{x+1} \right) \left(4x e^{x+1} + 2x^2 e^{x+1} \right) - \frac{\frac{5x^4}{\sqrt{1-x^{10}}} + 3}{2\sqrt{\operatorname{arc} \operatorname{sen} x^5 + 3x}}$$

2.
$$g(x) = \csc^4(x^e) \log_3(2x) + \left(\frac{\arcsin x \cdot 7^x}{2x - e^x}\right) \cdot 3^{2x\pi}$$

Respuesta :
$$g'(x) = -4\csc^3(x^e)\csc(x^e)\cot(x^e)\left(ex^{e-1}\right)\log_3(2x) + \csc^4(x^e)\frac{1}{x\ln 3}$$

 $+\frac{\left(\frac{1}{\sqrt{1-x^2}}7^x + (\arcsin x)7^x\ln 7\right)(2x - e^x) - (\arcsin x \cdot 7^x)(2 - e^x)}{(2x - e^x)^2} \cdot 3^{2x\pi}$
 $+\left(\frac{\arcsin x \cdot 7^x}{2x - e^x}\right)\left(3^{2x\pi}\right)(\ln 3)2\pi$

3.
$$h(x) = \frac{\cos x - 3}{\sqrt[4]{x^3 + 4x - 2}} - \cot^3(5x - 3) + 4^{2x - 3}\tan^3(\sqrt{x})$$

Respuesta:
$$h'(x) = \frac{(-\sin x) \left(\sqrt[4]{x^3 + 4x - 2}\right) - (\cos x - 3) \frac{1}{4} (x^3 + 4x - 2)^{-\frac{3}{4}}}{\sqrt[4]{x^3 + 4x - 2}^2}$$
$$-3\cot^2 (5x - 3) \left(-\csc^2 (5x - 3)\right) 5 + 4^{2x - 3} (\ln 4) (2) \tan^3 (\sqrt{x})$$
$$+4^{2x - 3} (3) \tan^2 \left(\sqrt{x}\right) \sec^2 \left(\sqrt{x}\right) \frac{1}{2\sqrt{x}}$$

4.
$$m(x) = \sqrt{\pi + 3} \cdot \text{sen}(e^{3x}) - \ln^{\frac{2}{3}} x - 1$$

Respuesta:
$$m'(x) = 3\sqrt{\pi + 3}\cos(e^{3x})e^{3x} - \frac{2}{3}(\ln^{-\frac{1}{3}}x)\frac{1}{x}$$

Lineamientos página 40 de 52

5.
$$r(x) = \frac{\sqrt{x-3}\arctan(x-4) + 3x^2}{x^{2e+1}\sec^2 x + 2} - \arcsin^2\left(\frac{2x-1}{x^3 - 5x}\right)$$

Respuesta:
$$r'(x) = \frac{\left(\frac{1}{2\sqrt{x-3}}\arctan\left(x-4\right) + \sqrt{x-3}\left(\frac{1}{(x-4)^2+1}\right) + 6x\right)x^{2e+1}\sec^2x + 2 - B}{\left(x^{2e+1}\sec^2x + 2\right)^2}$$
$$-2\arcsin\left(\frac{2x-1}{x^3 - 5x}\right)\frac{1}{\sqrt{1 - \left(\frac{2x-1}{x^3 - 5x}\right)^2}}\left(\frac{2\left(x^3 - 5x\right) - \left(2x-1\right)\left(3x^2 - 5\right)}{\left(x^3 - 5x\right)^2}\right)$$
$$\operatorname{donde} B = \left(\sqrt{x-3}\arctan\left(x-4\right) + 3x^2\right)\left(\left(2e+1\right)x^{2e}\sec^2x + x^{2e-1}2\sec^2x\tan x\right)$$

6.
$$t(x) = \frac{2^x + \cot^3 x}{3\pi x + \log_2^3 (5 - 2x)}$$

Respuesta:
$$t'(x) = \frac{(2^x \ln 2 + 3 \cot^2 x (-\csc^2 x)) (3\pi x + \log_2^3 (5 - 2x)) - (2^x + \cot^3 x) B}{(3\pi x + \log_2^3 (5 - 2x))^2}$$

donde $B = 3\pi + 3 \log_2^2 (5 - 2x) \frac{-2}{(5 - 2x) \ln 2}$

7.
$$v(x) = \ln\left(\frac{10e^{\cos x} \cdot 3^{\sin 2x}}{\sqrt{3\pi^3 + 8x^4}}\right)$$

Respuesta :
$$v'(x) = \frac{1}{\frac{10e^{\cos x} \cdot 3^{\sin 2x}}{\sqrt{3\pi^3 + 8x^4}}} \cdot \frac{A\sqrt{3\pi^3 + 8x^4} - 10e^{\cos x} \cdot 3^{\sin 2x} \frac{32x^3}{2\sqrt{3\pi^3 + 8x^4}}}{3\pi^3 + 8x^4}$$
donde $A = (-10e^{\cos x} \sin x) 3^{\sin x} + 10e^{\cos x} 3^{\sin(2x)} \cos(2x) 2$

8.
$$l(x) = \frac{\sqrt{x-1}}{\sqrt{(2x-1)^5 \cdot (3x-7)^{11}}}$$

Respuesta :
$$l'(x) = \frac{\frac{1}{2\sqrt{x-1}}\sqrt{(2x-1)^5 \cdot (3x-7)^{11}} - \sqrt{x-1}\frac{A}{2\sqrt{(2x-1)^5 \cdot (3x-7)^{11}}}}{(2x-1)^5 \cdot (3x-7)^{11}}$$
 donde $A = 10(2x-1)^4(3x-7)^{11} + 33(2x-1)^5(3x-7)^{10}$

9.
$$t(x) = \left(\frac{3x^2 - 2}{2x + 3}\right)^3 - \frac{\tan x \cdot \sin x}{\cos^2 x}$$

Respuesta :
$$t'(x) = 3\left(\frac{3x^2 - 2}{2x + 3}\right)^2 \left(\frac{(6x)(2x + 3) - (3x^2 - 2)(2)}{(2x + 3)^2}\right)$$
$$-\frac{(\sec^2 x \sec x + \tan x \cos x)\cos^2 x + 2\tan x \sec^2 x \cos x}{\cos^4 x}$$

10.
$$r(x) = \frac{1}{x-2} - \sqrt{\frac{1}{x^2 - 2}}$$

$$r'(x) = -\frac{1}{(x-2)^2} + \frac{1}{\sqrt{\frac{1}{x^2 - 2}}} \frac{2x}{(x^2 - 2)^2}$$

11.
$$m(x) = \log_3 \left(\frac{\sqrt{2} \cdot 2^{\tan x}}{\sqrt{3e^3 + 6x^2}} \right)$$

$$\mathbf{Respuesta:} \ m'(x) = \frac{1}{\left(\frac{\sqrt{2} \cdot 2^{\tan x}}{\sqrt{3e^3 + 6x^2}}\right) \ln 3} \left(\frac{\ln 2\sqrt{2} 2^{\tan x} \sec^2 x \sqrt{3e^3 + 6x^2} - \sqrt{2} \cdot 2^{\tan x} \frac{1}{2\sqrt{3e^3 + 6x^2}} (12x)}{3e^3 + 6x^2}\right)$$

3.3. Cálculo de derivadas de orden superior

- 1. Sean $F(x) = f(x) \cdot g(x)$ y $h(x) = (3x 5)e^{-2x}$ funciones n veces derivables.
 - a) Demuestre que $F''(x) = f''(x) \cdot g(x) + 2f'(x)g'(x) + f(x)g''(x)$.
 - b) Pruebe que la función h(x) satisface la ecuación $h''(x) + 4 \cdot h'(x) + 4h(x) = 0$.
- 2. Demuestre que la función $y=e^{3x}+e^{-4x}$ es solución de la ecuación y''+y'-12y=0.
- 3. Verifique que la función $y = x \cos(\ln x)$ satisface la siguiente ecuación

$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2y = 0$$

4. Determine la derivada de orden superior solicitada para cada función.

a)
$$r'''(x)$$
, si $r(x) = \text{sen } (x^2)$

Respuesta:
$$r'''(x) = -12x \sin x^2 - 8x^3 \cos x^2$$

b)
$$\frac{d^2y}{dx^2}$$
, si $y = \sin^3(2x)$

Respuesta:
$$\frac{d^2y}{dx^2} = 24\cos^2(2x)\sin(2x) - 12\sin^3(2x)$$

c)
$$\frac{d^3f}{dx^3}$$
, si $f(x) = \sec(3x - \pi)$

Respuesta:
$$\frac{d^3 f}{dx^3} = 27 \sec(3x - \pi) \tan^3(3x - \pi) + 18 \sec^3(3x - \pi) \tan(3x - \pi) + 27 \sec^2(3x - \pi) \tan(3x - \pi)$$

d)
$$h''(x)$$
, si $h(x) = \sqrt{x^3 + 3}$

Respuesta:
$$h''(x) = \frac{12x\sqrt{x^3 + 3} - \frac{9x^4}{\sqrt{x^3 + 3}}}{4x^3 + 12}$$

3.4. Ecuación de la recta tangente y normal

- 1. Determine la ecuación de la recta tangente y normal a la curva y = f(x) en el punto dado.
 - a) $f(x) = 2x^3 + 3x^2 + 1$, en el punto (-2, -3)

Respuesta:
$$L_T: y = 12x + 21; L_N: y = -\frac{1}{12}x + \frac{19}{6}$$

b) $f(x) = 4x^2 - 2x + 1$, en el punto (0,1)

Respuesta:
$$L_T : y = -2x + 1; L_N : y = \frac{1}{2}x + 1$$

c) $f(x) = \sqrt{x^4 + 1}$, en el punto (0, 1)

Respuesta:
$$L_T : y = 1; L_N : x = 0$$

2. Determine los puntos en que las tangentes a la gráfica de la función $f(x) = 3x^4 + 4x^3 - 12x^2 + 20$

Respuesta:
$$(0, 20)$$
, $(1, 15)$ y $(-2, -12)$

- 3. Determine el punto de la parábola $y = x^2 7x + 3$ donde la recta tangente es paralela a la recta de ecuación 5x + y 3 = 0. Respuesta:(1, -3)
- 4. Determine las ecuaciones de la recta tangente y la recta normal a la curva $y^4 = 4x^4 + 6xy$ en el punto (1,2).

Respuesta: Tangente:
$$y = \frac{14}{13}x + \frac{12}{13}$$
; Normal: $y = -\frac{13}{14}x + \frac{41}{14}$

5. Determine la ecuación de la recta tangente a la curva $x^5 + y^5 - 2xy = 0$ en el punto (1,1).

Respuesta:
$$y = -x + 2$$

- 6. Encuentre los valores de las constantes b y c que hacen que la recta y=x sea tangente a la parábola $f(x)=x^2+bx+c$, en el punto (1,1). Respuesta: b=-1, c=1
- 7. Encuentre el punto donde la curva $x^2 + (y-1)^2 = 2xy 6$ tiene una tangente vertical.
- 8. Determine la ecuación de la recta normal a la curva $3(x^2+y^2)^2=100(x^2-y^2)$ en el punto de coordenadas (4,2). Respuesta: $y=\frac{11}{2}x-20$
- 9. Determine la ecuación de la recta tangente y la recta normal a la curva $(x^2 + y^2)^3 = 16y^2$ en el punto (0, 2). Respuesta:y = 2
- 10. Determine la ecuación de la recta normal a la curva $3x^2 2xy^2 = 4xy + 3$ en el punto (-1, -2). Respuesta: $L_T: -3x 2y = 7; L_N: 2x 3y = 4$
- 11. Determine los puntos de la gráfica de la función $f(x) = x^3 \frac{1}{2}x^2 2x + 1$ donde la recta tangente es paralela a la recta y 2x + 5 = 0 Respuesta: $\left(\frac{4}{3}, -\frac{5}{27}\right)$ y $\left(-1, \frac{3}{2}\right)$

12. Se ha trazado una recta tangente a la curva $y = x^3$, cuya pendiente es 3 y pasa por el punto (0, -2). Hallar el punto de tangencia. **Respuesta**:(1, 1)

- 13. Determine la ecuación de la recta tangente a la curva $x^2y + 3y 5x = 9$ en el punto (-1,1). Respuesta: -7x + 4y = 11
- 14. Determine la ecuación de la recta normal a la curva $x^{\frac{3}{2}} + 2y^{\frac{3}{2}} = 17$ en el punto (1,4).

Respuesta: -12x + 3y = 0

- 15. Encuentre los puntos donde las rectas tangentes a la curva $y = \frac{x-1}{x+1}$ son paralelas a la recta x-2y=2. Respuesta:(-3,2),(1,0)
- 16. Demuestre que la curva descrita por la ecuación $(x+y)^3=27(x-y)$ tiene una recta tangente horizontal en el punto (2,1).
- 17. Observe la siguiente ilustración que muestra las rectas tangentes a la curva $f(x) = -x^2 1$ en los puntos A y B

De acuerdo con los datos suministrados anteriormente, determine

a) Las coordenadas rectangulares de los puntos A y B.

Respuesta:A = (1, -2), y B = (-1, -2)

b) Las ecuaciones de las rectas l_1 y l_2 .

Respuesta: $l_1 : y = 2x, l_2 : y = -2x$

- 18. Encuentre el punto donde la curva $x^2 + (y-1)^2 = 2xy$ tiene una tangente horizontal, suponiendo que y es una función implícita de x. Respuesta: $\left(\frac{3}{2}, \frac{3}{2}\right)$
- 19. Encuentre la ecuación de la recta normal a la parábola $y=1-x^2$, en el punto (2,-3).

Respuesta: $-\frac{1}{2}x + 2y = -7$

- 20. Demuestre que la ecuación de la recta tangente a la curva $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ en un punto arbitrario (m, n) es $\frac{m}{a^2} \cdot x + \frac{n}{b^2} \cdot y = 1$. **Nota:** Tome a y b como constantes reales.
- 21. Encuentre las ecuaciones de las dos rectas que pasan por el punto (2, -3) y que son tangentes a la parábola $y = x^2 + x$. Respuesta: Tangente: -x y = 1 y Normal: -11x + y = -25
- 22. Encuentre las ecuaciones de las rectas tangentes a la curva $y = \frac{x-1}{x+1}$ que sean paralelas a la recta x-2y=2.

 Respuesta: 2y = x+7 y 2y = x-1
- 23. Considere $f(x) = x^2 + 1$. Determine los puntos de tangencia a partir de las rectas tangentes que contienen a (0, -2). Respuesta: $\left(-\sqrt{3}, 4\right)$ y $\left(\sqrt{3}, 4\right)$
- 24. Considere la siguiente figura que corresponde a la gráfica de la función $f(x) = \frac{27}{x^2 + 9}$

De acuerdo con los datos de la figura anterior, desarrolle lo que se le solicita en cada caso.

- a) Determine las coordenadas rectangulares del punto P(a, b) donde la recta L_1 es tangente a la gráfica de la función y = f(x). Respuesta: P(-3, 3/2)
- b) Construya la ecuación de la recta L_1 , que es tangente a la gráfica de la función y que pasa por el punto (0,3). Respuesta:2y = x + 3
- 25. Considere la siguiente figura que corresponde a la gráfica de la función $3(x^2 + y^2)^2 = 100xy$

y una de sus rectas tangentes \mathcal{L} .

De acuerdo con la gráfica anterior, determine la ecuación de la recta normal a la curva en el punto de tangencia. $\mathbf{Respuesta} : 9x + 13y = 40$

26. Determine los valores de las constantes a y b para que la recta de ecuación 2x + y = b sea tangente a la parábola $y = ax^2$ en el punto x = 2. Una vez encontrados los valores, haga una gráfica que ilustre la situación planteada. **Respuesta**:a = -1/2; b = 2

3.5. Derivación implícita

Determine $\frac{dy}{dx}$ en cada caso. Asuma que y = f(x) es una función derivable.

$$1. \ x^2y + xy^2 = xy$$

$$2. \ \sqrt{x^2 + y^2} = 3x - 2y$$

$$3. \ 5x^3y + 3y^4 = \pi xy^2$$

$$4. \ 5x^3y^2 + 3y^5 = \pi + x\sqrt{3}$$

5.
$$x^3 - x^3y^2 = 3\sqrt{\pi}$$

6.
$$(x^2 + y^2)^2 + xy = 4x$$

7.
$$(x+y)^2 - y = 4 - x$$

Respuesta:
$$y' = -\frac{-y+2xy+y^2}{-x+2xy+x^2}$$

Respuesta:
$$y' = -\frac{\frac{x}{\sqrt{x^2+y^2}} - 3}{\frac{y}{\sqrt{x^2+y^2}} + 2}$$

Respuesta:
$$y' = \frac{\pi y^2 - 15x^2y}{5x^3 + 12y^3 - 2\pi xy}$$

Respuesta:
$$y' = \frac{-15x^2y^2 + \sqrt{3}}{10x^3y + 15y^4}$$

Respuesta:
$$y' = -\frac{3y^2 - 3}{2xy}$$

Respuesta:
$$y' = -\frac{y+4x(x^2+y^2)-4}{x+4y(x^2+y^2)}$$

Respuesta:
$$y' = -\frac{2x+2y+1}{2x+2y-1}$$

8.
$$2y - 3xy + (x^3 - y)^3 = \pi x$$

Respuesta:
$$y' = -\frac{\pi + 3y - 9x^2(y - x^3)^2}{3x + 3(y - x^3)^2 - 2}$$

Calcule la derivada indicada en cada caso.

- a) u'; si la ecuación $u^2 4x^2u = 3 \ln u$ define a u como función implícita y derivable en términos x. Respuesta: $y' = \frac{8ux}{2u + \frac{1}{2} 4x^2}$
- b) Calcule x' y y'; si la ecuación $x^2 + y^2 = 9$ define a x e y como funciones implícitas y derivables en términos de t. Respuesta: $y' = -\frac{xx'}{y}$; $x' = -\frac{yy'}{x}$

3.6. Regla de l'Hopital

Calcular, usando la regla de L'hopital, cada uno de los siguientes límites.

a)
$$\lim_{x \to 0} \frac{e^{2x} - 2x - 1}{x^2} = 2$$

b)
$$\lim_{x \to \frac{\pi}{2}} \frac{\csc 4x}{\csc 2x} = \frac{-1}{2}$$

c)
$$\lim_{x \to 1} \frac{1 - x + \ln x}{x^3 - 3x + 2} = -\frac{1}{6}$$

d)
$$\lim_{x \to -\infty} (xe^{\frac{1}{x}} - x) = 1$$

e)
$$\lim_{x \to +\infty} (e^x + x)^{\frac{1}{x}} = e$$

f)
$$\lim_{x \to 2} \left(\frac{4}{x^2 - 4} - \frac{1}{x - 2} \right) = -\frac{1}{4}$$

g)
$$\lim_{x \to 0} [(1 - e^x) \ln x^2] = 0$$

h)
$$\lim_{x \to 0^{-}} x e^{\frac{1}{x}} = 0$$

i)
$$\lim_{x \to +\infty} (x^2 + 1) \operatorname{sen} \left(\frac{1}{x}\right) = \infty$$

$$\mathrm{j)}\ \, \lim_{x\to 1}\frac{1}{\ln x}-\frac{1}{x-1}=\frac{1}{2}$$

k)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x+3} - 2} = \frac{4}{3}$$

1)
$$\lim_{x \to 0} \frac{(x+2)\ln(x+e^x)}{x} = 4$$

$$m) \lim_{x \to 1^+} \frac{1}{x - 1} - \frac{x}{\ln x} = -\frac{3}{2}$$

n)
$$\lim_{x \to 0^+} \frac{\log(e^x - 1)}{\log(3x)} = 1$$

$$\tilde{\mathbf{n}}) \lim_{x \to \frac{\pi}{2}} \left[\left(x - \frac{\pi}{2} \right) \tan x \right] = -1$$

o)
$$\lim_{x \to +\infty} \left[x \ln \left(1 - \frac{6}{x} \right) \right] = -6$$

p)
$$\lim_{x \to 0^{-}} x^{2} e^{\frac{-1}{x}} = \infty$$

q)
$$\lim_{x \to 0} \left(\frac{1}{1 - \cos x} - 2\csc^2 x \right) = -\frac{1}{2}$$

r)
$$\lim_{x \to 0^+} \left(1 + \frac{1}{x} \right)^{\frac{-1}{x}} = 0$$

s)
$$\lim_{x \to 0} (\operatorname{sen} x)^x = 1$$

t)
$$\lim_{x \to +\infty} \frac{3^x}{5 - 4^x} = 0$$

u)
$$\lim_{x \to 0} (1 - 2x)^{\frac{1}{x}} = e^{-2}$$

v)
$$\lim_{x \to +\infty} \left(\frac{x}{x+1} \right)^x = e^{-1}$$

x)
$$\lim_{x \to +\infty} \frac{2^x \ln 2}{1 + 2^x} = \ln 2$$

y)
$$\lim_{x \to \frac{\pi}{2}} (\tan x)^{\cos x} = 1$$

z)
$$\lim_{x \to 0^+} (1+x)^{\ln x} = 1$$

3.7. Extremos relativos

Para cada una de las siguientes funciones determine los puntos críticos y clasifique en máximo o mínimo relativo.

1.
$$f(x) = \frac{2}{5}x^5 - 4x^4 + 3$$

Respuesta:(0,3) es punto máximo relativo y (8,-3273.8) es punto mínimo relativo

2.
$$g(x) = x + \frac{1}{x}$$

Respuesta: (-1, -2) es punto máximo relativo y (1, 2) es punto mínimo relativo

3.
$$f(x) = \frac{1}{4}x^4 + 1$$

Respuesta: (0,1) es punto mínimo relativo

4.
$$g(x) = x^3 - \frac{21}{4}x^2 + 9x - 4$$

Respuesta:(2,1) es punto mínimo relativo y $\left(\frac{3}{2},\frac{17}{16}\right)$ es punto máximo relativo

5.
$$f(x) = x^2 + \frac{1}{x^2}$$

 $\mathbf{Respuesta}{:}(-1,2)$ y(1,2)son puntos mínimos relativos

6.
$$g(x) = \frac{1}{4}x^4 - \frac{3}{2}x^2$$

Respuesta: $(\sqrt{3}, -9/4)$ y $(-\sqrt{3}, -9/4)$ son puntos mínimos relativos; (0, 0) es punto máximo relativo.

Calcule los extremos relativos a cada función en el intervalo dado.

1.
$$f(x) = \frac{1}{4}x^4 - 2x^3 + \frac{11}{2}x^2 - 6x$$
 en el intervalo $[-1, 4]$.

Respuesta: $\left(-1, \frac{55}{4}\right)$ es punto máximo relativo, $\left(3, -\frac{9}{4}\right)$ es punto mínimo relativo.

2.
$$g(x) = \frac{2}{3}x^3 - \frac{3}{2}x^2 - 2x$$
 en el intervalo $[0, 3]$.

Respuesta:(0,0) es punto máximo relativo y $\left(2,-\frac{14}{3}\right)$ es punto mínimo relativo.

3.
$$h(x) = -\sin x - \frac{1}{4}\cos(2x)$$
 en el intervalo $[0, \pi]$

Respuesta: $(\pi/2, -3/4)$ es un punto mínimo relativo; (0, -1/4) y $(\pi, -1/4)$ son puntos máximos relativos.

4.
$$y = \frac{1}{3}x(x^2 - 3x + 3)$$
 en el intervalo $[0, 2]$.

Respuesta:(2,2/3) es un punto máximo relativo y (0,0) es un punto mínimo relativo.

5.
$$m(x) = \frac{2}{3} (x+2)^{\frac{3}{2}}$$
 en el intervalo [4, 10].

Respuesta: $\left(10,8\sqrt{12}\right)$ es un punto máximo relativo y $\left(4,4\sqrt{6}\right)$ es un punto mínimo relativo.

4. Práctica complemetaria

4.1. Ejercicios propuestos

1. Calcule la derivada de cada una de las siguientes funciones. No es necesario simplificar.

a)
$$y = \frac{x^2 - 2^x}{3 \sec x} - e^x (3x^6 + \arctan x)$$

b)
$$f(u) = \frac{3^u \cot u - u^3}{2 \operatorname{sen} u} - \left(u^2 + \frac{3}{4}u^4\right)(\csc u + 2\ln u)$$

c)
$$y = \frac{x^2 - 2^x}{3\sec x} - e^x (3x^6 + \arctan x)$$

d)
$$g(x) = \log_3(2x - \sin^2 x) - \cos\left(\frac{\ln x}{x^{-2}}\right) - 4$$

e)
$$f(t) = \frac{6t^3 - e^{2t} + 4t - 4}{\sqrt[3]{t^2} - \tan x} + 2\cot^3 t - \frac{\arcsin t}{\sqrt[3]{t^2} - \tan t}$$

$$f) g(x) = \operatorname{sen}\left(\sqrt{\ln(2x)}\right) - \operatorname{arccsc}(3x^3 - 2)$$

2. Considere las funciones con criterio dado.

$$m(x) = 2\cos^4(x)$$
 $f(x) = \frac{5}{x+2}$

Determine el resultado de evaluar:

$$3m'\left(\frac{\pi}{3}\right)+\left[m\left(\pi\right)-f'\left(3\right)\right]^{2}-2f'\left(1\right)$$

3. Determine $\frac{dy}{dx}$ en cada caso, si se sabe que la ecuación dada define a y como función implícita de x.

a)
$$x^{2} + y^{2} = 16$$
 $y' = \frac{-x}{y}$
b) $x^{3} + y^{3} = 8xy$ $y' = \frac{8y - 3x^{2}}{3y^{2} - 8x}$
c) $\frac{1}{x} + \frac{1}{y} = 1$ $y' = \frac{-y^{2}}{x^{2}}$
d) $\sqrt{x} + \sqrt{y} = 4$ $y' = \frac{-\sqrt{y}}{\sqrt{x}}$
e) $y = \cos(x - y)$ $y' = \frac{\sin(x - y)}{\sin(x - y) - 1}$
f) $x \sin y + y \cos x = 1$ $y' = \frac{y \sin x - \sin y}{x \cos y + \cos x}$

4. Calcule $\frac{dm}{dt}$ y $\frac{dn}{dt}$, si la ecuación $m \cdot t - e^t = n^2 + \ln t$ define a m y n como funciones implícitas y derivables en t

5. Encuentre el o los puntos sobre la gráfica de la función dada donde la recta tangente es horizontal.

a)
$$y(x) = (x^2 - 4)(x^2 - 6)y'(x) = 0$$

$$b) \ \ y = \frac{x^2}{x^4 + 1}$$

6. Determine la ecuación de la recta tangente a la curva $x^3+3xy+y^2-5=0$ en el punto (1,1). Respuesta : $y=\frac{-6x}{5}+\frac{11}{5}$

7. Determine la ecuación de la recta tangente horizontal a la curva de ecuación $(x^2+y^2)^2 = 4x^2y$ en el punto (1,1). Respuesta : y=1

8. Determine la ecuación de la recta tangente y normal a la curva de ecuación $(x^2 + 4)y = 8$ en el punto (2,1). Respuesta: Tangente $y = \frac{-x}{2} + 2$; Normal y = 2x - 3

9. Determine la ecuación de la(s) recta(s) tangente(s) a la curva de ecuación $y = x^2 - 3x + 1$ que contienen el punto $\left(\frac{3}{2}, -\frac{7}{2}\right)$. Respuesta : y = -3x + 1 y y = 3x - 8

- 10. Calcule la derivada de orden superior indicada en cada caso.
 - a) y''' si $y = x^4 e^{2x} \cos x \operatorname{Respuesta}/y''' = 24xe^{2x} \sin x + 72x^2 e^{2x} + 48x^3 e^{2x} + 8x^4 e^{2x}$

b)
$$\frac{d^2 f}{dx^2}$$
 si $f(x) = \frac{\tan x}{x^2}$ Respuesta/
$$\frac{d^2 f}{dx^2} = \frac{2(x^2 \tan^3 x + x^2 \tan x - 2x \tan^2 x - 2x + 3 \tan x)}{x^4}$$

c)
$$f^{(5)}(t)$$
 si $f(t) = 6t^5 - 7t^3 + t^4 - 3t^2 + 1$

$$\mathbf{Respuesta}/f^{(5)}(t) = 720$$

$$d) \frac{d^3y}{dx^3} \text{ si } y = \frac{1}{6t^3}$$

Respuesta/
$$\frac{d^3y}{dx^3} = -10x^{-6}$$

11. Sean f y g dos funciones tales que sus primeras y segundas derivadas existen. A partir de $h(x) = f(x) \cdot g(x)$ demuestre que

$$h''(x) = f(x) \cdot g''(x) + 2f'(x)g'(x) + f''(x) \cdot g(x)$$

12. Verifique si cada función satisface la ecuación diferencial dada.

a)
$$y = 4e^{2x}$$
; $y'' - 4y' + 4y = 0$

b)
$$y = \cos\left(\frac{1}{3}\sqrt{3}x\right) - \sin\left(\frac{1}{3}\sqrt{3}x\right)$$
; $3y''' + 4\sin x = 2 - y'$

13. Calcular cada uno de los siguientes límites.

a)
$$\lim_{x \to 0} \frac{4\cos^2 x - 2\cos x - 2}{x^2 + x\sin x} = \frac{-3}{2}$$

$$d) \lim_{x \to 0} (\operatorname{sen} x)^x = 1$$

$$b) \lim_{x \to +\infty} \frac{x^2 e^x}{1 + e^{3x}} = 0$$

$$e) \lim_{x \to +\infty} e^{-x} \sqrt{x} = 0$$

$$c) \lim_{x \to 0} (\cos x)^{\cot x} = 1$$

$$f) \lim_{x \to +\infty} e^{-x}(x-1) = 0$$

14. Considere la función $g:D_g\to\mathbb{R},$ definida en su dominio máximo por el criterio

$$g(x) = x^4 - 2x^2 - 3$$

De acuerdo con la información suministrada, determine:

- a) Dominio e intersección con los ejes coordenados.
- b) Extremos relativos, si existen.
- $c)\,$ La ecuación de todas las asínto
tas horizontales y verticales.
- 15. Considere la función $f: D_f \longrightarrow \mathbb{R}$ con criterio $f(x) = \frac{x^3}{x^2 1}$. Para la cual se tienen las siguientes derivadas $f'(x) = \frac{x^4 3x^2}{(x^2 1)^2}$.

De acuerdo con la información suministrada, determine:

- a) Extremos relativos, si existen.
- b) Las asíntotas horizontales de f'.
- 16. Hallar los valores extremos de cada función en el intervalo dado.

a)
$$f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x$$
 en $[0,3]$

b)
$$g(x) = \frac{x^4}{2} + \frac{7}{3}x^3 + x^2 - 3x$$
 en $[-1, 1]$

c)
$$h(x) = -x - \ln(\cos x)$$
 en $\left[0, \frac{\pi}{3}\right]$

17. Determine y clasifique los extremos relativos de cada función dada por su criterio. Aplique el criterio de la n-ésima derivada.

a)
$$f(x) = 3x^4 - 4x^3 + 1$$

$$b) \ g(t) = 4t^5 - 5t^4 + 2$$

c)
$$f(u) = u - 3\sqrt[3]{u}$$

$$d) \ h(x) = \frac{x^2}{x-1}$$

e)
$$g(y) = \frac{y^2 - 2y + 2}{y - 1}$$

$$f) w = z - \ln z$$

$$g) f(x) = x - \arctan 5x$$

h)
$$w(t) = 2t\sqrt{t+3}$$

4.1.1. Ejercicios recomendados del libro Matemática 1 de Zill y Wrigth

Se sugieren las siguientes secciones de ejercicios.

Sección	Ejercicios	Páginas
2.3	1-40,47-54,63-78	70-73
2.4	1-44	76-77
2.5	1-42	81
2.6	1-56	89
2.7	1-40,49-52,57-60	94-95
2.9	1-46	105

Sección	Ejercicios	Páginas
3.2	1-54	135 - 136
3.7	1-68	167-174