5 Homework 5

- 13. Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ be two normed vector spaces and let $T: X \to Y$ be a linear mapping.
 - (a) Prove that T is continuous if and only if T is a bounded linear mapping.

Proof. Suppose that T is continuous. Then at $x_0 = 0$, there exists a $\delta > 0$ such that

$$||x||_X < \delta \implies ||T(x)||_2 \le 1$$

We claim that our $M = \frac{2}{\delta}$. Let $x \in X$. Notice that $\left\| \frac{\delta \cdot x}{2\|x\|_X} \right\|_X <= \delta$. By the continuity of T we have that

$$\left\| T\left(\frac{\delta \cdot x}{2\|x\|_X}\right) \right\|_Y \leq 1 \implies \frac{\delta}{2 \cdot \|x\|_X} \left\| T\left(x\right) \right\|_Y \leq 1 \implies \left\| T\left(x\right) \right\|_Y \leq \frac{2}{\delta} \|x\|_X$$

Thus T is a bounded linear mapping.

Next, suppose that T is a bounded linear mapping. Then there is an M>0 such that for all $x\in X$,

$$||T(x)||_Y \le M||x||_X$$

We will show that T is continuous everywhere. Fix $a \in X$. Let $\varepsilon > 0$. Let $\delta = \frac{\varepsilon}{M}$. Let $x \in X$ and suppose that $||x - a||_X < \delta$. Then

$$||T(x) - T(a)||_Y = ||T(x - a)||_Y \le M||x - a||_X < \varepsilon$$

and we are done. \Box

(b) Suppose that $(Y, \|\cdot\|_Y) = (\mathbf{R}^n, \|\cdot\|_2)$. Prove that T is continuous if and only if $\ker(T)$ is closed.

Proof. Suppose that T is continuous. Let a be a limit point for $\ker(T)$. We want to show that T(a) = 0. By definition, T being continuous implies that

$$\lim_{x \to a} T(x) = T(a)$$

or more formally, letting ε be arbitrary, there exists a δ such that

$$||x - a||_X < \delta \implies ||T(x) - T(a)||_2$$

Since a is a limit point of $\ker(T)$, there exists $x \in \ker(T)$ such that

$$x \in B(a, \delta) \implies \|x - a\|_X \implies \|T(x) - T(a)\|_2 < \varepsilon \implies \|T(a)\|_2 < \varepsilon$$

By properties of norms $||T(a)||_2 \ge 0$, so we must have that $T(a) = 0 \implies a \in \ker(T)$. Thus $\ker(T)$ is closed.

I have no clue how to prove the converse so yeah.

14. Let $T: X \to Y$ be a bounded linear mapping between complete normed vector spaces X and Y. Is it necessarily true that T^{-1} is also bounded?

Proof. T^{-1} is indeed bounded. Let T be a bounded linear mapping. For some M > 0,

$$||T(x)||_Y \le M||x||_X$$
 for all $x \in X$

16. Let $(X, \|\cdot\|)$ be a normed vector space, let B(X) = B(X, X) be the space of bounded linear operators on X, and equip B(X) with the operator norm $\|\cdot\|_{\text{op}}$. Let GL(X) be the set of invertible bounded linear operators:

$$GL(X) = \{ T \in B(X) : T \text{ is invertible} \}.$$

(The notation GL means "general linear group.")

Prove that if $(X, \|\cdot\|)$ is complete, then GL(X) is an open subset of $(B(X), \|\cdot\|_{op})$.

Proof. First, we prove a couple lemmas.

Lemma 1. For all $S, T \in B(X, X)$,

$$||ST||_{\text{op}} \le ||S||_{\text{op}} ||T||_{\text{op}}$$

To prove this, let $x \in X$ so that $||x||_X \le 1$. Then

$$||S(T(x))||_X = \left| \left| S\left(\frac{||T(x)||_X}{||T(x)||_X} T(x) \right) \right| \right|_X = ||T(x)||_X \left| \left| S\left(\frac{T(x)}{||T(x)||_X} \right) \right| \right|_X$$

Notice that $\left\| \frac{T(x)}{\|T(x)\|_X} \right\|_X = 1$. We obtain that

$$||S(T(x))||_X = ||T(x)||_X \left||S\left(\frac{T(x)}{||T(x)||_X}\right)||_X \le ||T||_{\text{op}} ||S||_{\text{op}}$$

Since $||T||_{\text{op}}||S||_{\text{op}}$ is an upper bound for $||S(T(x))||_X$ when $||x||_X \leq 1$, by definition of supremum we can conclude that $||ST||_{\text{op}} \leq ||S||_{\text{op}}||T||_{\text{op}}$, proving the first lemma.

Next, the following lemma will help in proving Lemma 3.

Lemma 2. If $T, U \in B(X)$, then for $x \in X$,

$$||T(x) - U(x)||_X \le ||X||_X ||T - U||_{\text{op}}$$

Let $T, U \in B(X)$. Then

$$||(T - U)(x)||_X = \left|||x||_X (T - U) \left(\frac{x}{||x||_X}\right)\right|| = ||x||_X \left||(T - U) \left(\frac{x}{||x||_X}\right)\right||$$

Since $\frac{x}{\|x\|_X} = 1$,

$$||x||_X ||(T-U)\left(\frac{x}{||x||_X}\right)|| \le ||x||_X ||T-U||_{\text{op}}$$

which is what we wanted.

We will use the proceeding lemma to help us prove Lemma 4.

Lemma 3. If X is complete then B(X,X) is complete.

For every Cauchy sequence (T_n) in B(X,X), the sequence $(T_n(x_i))$, where x_i is an arbitrary element in X, is a Cauchy sequence in X. By the completeness of X, $(T_n(x_i))$ converges to some L_i . Let T be a linear operator on X defined by $T(x_i) = L_i$. We can see that this is indeed a linear operator because

$$cT(x_i) + T(x_j) = cL_i + L_j = c\lim_{n \to \infty} T_n(x_i) + \lim_{n \to \infty} T_n(x_j) = \lim_{n \to \infty} cT_n(x_i) + T_n(x_j) = \lim_{n \to \infty} T_n(cx_i + x_j)$$

X is closed, so $cx_i + x_j$ is equal to some $x_k \in X$. Thus

$$cT(x_i) + T(x_j) = \lim_{n \to \infty} T_n(cx_i + x_j) = \lim_{n \to \infty} T_n(x_k) = L_k = T(x_k)$$

which implies that T is a linear operator.

To show that T is bounded, we know that T_n is bounded, so $||T_n(x)||_X < M_n ||x||_X$, for some $M_n > 0$. As well, we have that T_n is uniformly continuous. Thus for a sufficiently large $n \in \mathbb{N}$, for all $x \in X$, using Lemma 2,

$$||T(x)||_X = \lim_{m \to \infty} ||T_m(x)||_X \le \lim_{m \to \infty} ||T_m(x) - T_n(x)||_X + ||T_n(x)||_X < \lim_{m \to \infty} ||T_n - T_m||_{\text{op}} ||x||_X + ||T_n(x)||_X$$

$$\leq ||x||_X + M_n ||x||_X$$

We get the last inequality because T_n is Cauchy and bounded as well. Thus $T \in B(X)$. To show that T_n converges to T, fix $\varepsilon > 0$. For all $x \in X$ such that $||x||_X \le 1$, there exists a sufficiently large N such that for all $x \in X$, if n > N then

$$||T(x) - T_n(x)||_X < \varepsilon \implies ||T - T_n||_{\text{op}} < \varepsilon$$

Thus we can conclude that B(X,X) is complete.

Lemma 4. If $T \in B(X,X)$ such that $||I-T||_{op} < 1$, then T is invertible and

$$T^{-1} = \sum_{i=0}^{\infty} (I - T)^{i}$$

Suppose that $T \in B(X,X)$ and $||I-T||_{op} < 1$. Let $(a_n)_{n\geq 1}$ be a Cauchy sequence in B(X,X) defined by

$$a_n = \sum_{i=0}^n (I - T)^i$$

We verify that this sequence is Cauchy. Let $\varepsilon > 0$. Since $||I - T||_{\text{op}} < 1$, there exists natural N such that

$$\frac{\|I - T\|_{\text{op}}^N}{1 - \|I - T\|_{\text{op}}} < \varepsilon$$

Let m, n > N and suppose that m < n. Then

$$\|a_n - a_m\|_{\text{op}} = \left\| \sum_{i=0}^n (I - T)^i - \sum_{i=0}^m (I - T)^i \right\|_{\text{op}} = \left\| \sum_{i=m+1}^n (I - T)^i \right\|_{\text{op}}$$

By the triangle inequality and Lemma 1,

$$\left\| \sum_{i=m+1}^n (I-T)^i \right\| \leq \sum_{i=m+1}^n \left\| (I-T)^i \right\| \leq \sum_{i=m+1}^n \left\| I-T \right\|^i = \left\| I-T \right\|^{m+1} \sum_{i=0}^{n-m-1} \left\| I-T \right\|^i$$

$$= \|I - T\|^{m+1} \frac{1 - \|I - T\|^{n-m}}{1 - \|I - T\|}$$

 $1 - ||I - T||^{n-m} < 1$, so

$$\|I - T\|^{m+1} \frac{1 - \|I - T\|^{n-m}}{1 - \|I - T\|} < \frac{\|I - T\|^{m+1}}{1 - \|I - T\|} < \frac{\|I - T\|^N}{1 - \|I - T\|} < \varepsilon$$

We see that (a_n) is indeed a Cauchy sequence.

By Lemma 4, B(X,X) is complete, so (a_n) converges, meaning that $\sum_{i=0}^{\infty} (I-T)^i$ exists. Now, notice that

$$T\left(\sum_{i=0}^{\infty}(I-T)^{i}\right) = (I-(I-T))\left(\sum_{i=0}^{\infty}(I-T)^{i}\right) = \sum_{i=0}^{\infty}(I-T)^{i} - \sum_{i=0}^{\infty}(I-T)^{i+1} = \sum_{i=0}^{\infty}\left((I-T)^{i} - (I-T)^{i+1}\right)$$

This is a telescoping series. As $i \to \infty$, $(I-T)^i \to 0$. Thus

$$T\left(\sum_{i=0}^{\infty} (I-T)^{i}\right) = \sum_{i=0}^{\infty} \left((I-T)^{i} - (I-T)^{i+1} \right) = I$$

Thus $\sum_{i=0}^{\infty} (I-T)^i$ is the inverse of T, which implies that T^{-1} exists.

Now we can show that B(X) is open.

Let $T \in B(X)$. Consider the open ball $B(T, \frac{1}{\|T^{-1}\|_{\text{op}}})$. For all $S \in B(T, \frac{1}{\|T^{-1}\|_{\text{op}}})$,

$$||T - S||_{\text{op}} < \frac{1}{||T^{-1}||_{\text{op}}} \implies ||T - S||_{\text{op}}||T^{-1}||_{\text{op}} < 1$$

By Lemma 1, we have that

$$1 > ||T - S||_{\text{op}} ||T^{-1}||_{\text{op}} \ge ||(T - S)T^{-1}||_{\text{op}} = ||I - ST^{-1}||_{\text{op}}$$

By Lemma 4, ST^{-1} is invertible. If we let $S^{-1} = T^{-1}(ST^{-1})^{-1}$, we see that

$$SS^{-1} = S(T^{-1}(ST^{-1})^{-1}) = (ST^{-1})(ST^{-1})^{-1} = I$$

Thus S is invertible, which means that $S \in B(X)$. Therefore B(X) is open.

17. The magic number lemma.

Let (X,d) be a metric space and let $\{U_i\}_{i\in I}$ be an open cover of X; this means that each U_i is an open subset of X, and that $X = \bigcup_{i \in I} U_i$. A magic number for $\{U_i\}_{i \in I}$ is a number $\delta > 0$ with the following property: if $A \subseteq X$ is a set with diam $(A) < \delta$, then $A \subseteq U_i$ for at least one index $i \in I$.

Suppose that (X,d) is a clustering metric space. Prove that every open cover has a magic number.

Proof. Suppose that (X,d) is a clustering metric space. Suppose for the sake of contradiction that there exists an open cover $\{U_i\}_{i\in I}$ that doesn't have a magic number.

For $n \in \mathbb{N}$, there is $A_n \subseteq X$ with $\operatorname{diam} A_n < \frac{2}{n}$ so that $A_n \nsubseteq U_i$ for all indices $i \in I$. Since $\operatorname{diam} A_n < \frac{2}{n}$, we can cover A_n with an open ball $B(a_n, \frac{1}{n})$, where a_n is some element in X.

Define a sequence $(a_n)_{n\in\mathbb{N}}$ in X such that a_n is equal to the one above.

By the clustering property of X, (a_n) has a convergent subsequence, which will be redefined as (a_n) . Denote the limit of (a_n) as p.

p is an element of X, so it is contained in some U_i in the open cover. Since U_i is open, we can find $\varepsilon > 0$ such that $B(p,\varepsilon)\subseteq U_i$. As well, since (a_n) converges to p we can find infinitely many entries of the sequence within the open ball $B(p,\frac{\varepsilon}{2})$. Thus we can find a large enough n such that $n>\frac{2}{\varepsilon}$, which gives $\frac{1}{n}<\frac{\varepsilon}{2}$, and still have that a_n is $\frac{\varepsilon}{2}$ -close to p.

Now, consider the open ball $B(a_n, \frac{1}{n})$. We will show that $B(a_n, \frac{1}{n}) \subseteq B(p, \varepsilon)$. Let $x \in B(a_n, \frac{1}{n})$. Then $d(x, a_n) < \frac{1}{n} < \frac{\varepsilon}{2}$, so we have

$$d(x,p) \le d(x,a_n) + d(a_n,p) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \implies x \in B(p,\varepsilon)$$

which is what we wanted.

Recall that the set A_n is covered by $B(a_n, \frac{1}{n})$. Then we have

$$A_n \subseteq B(a_n, \frac{1}{n}) \subseteq B(p, \varepsilon) \subseteq U_i$$

contradicting the fact that $A_n \nsubseteq U_i$. Thus every open cover has a magic number.