A hospital wants to determine whether there is any difference in the average Turn Around Time (TAT) of reports of the laboratories on their preferred list. They collected a random sample and recorded TAT for reports of 4 laboratories. TAT is defined as sample collected to report dispatch. Analyze the data and determine whether there is any difference in average TAT among the different laboratories at 5% significance level.

```
In [1]: import pandas as pd
   import numpy as np
   from scipy import stats
   from scipy.stats import norm
   import seaborn as sns
   from matplotlib import pyplot as plt
   import warnings
   warnings.filterwarnings('ignore')
```

1.Import the data

```
In [2]: lab_data = pd.read_csv('LabTAT.csv')
lab_data
```

Out[2]:

	Laboratory 1	Laboratory 2	Laboratory 3	Laboratory 4
0	185.35	165.53	176.70	166.13
1	170.49	185.91	198.45	160.79
2	192.77	194.92	201.23	185.18
3	177.33	183.00	199.61	176.42
4	193.41	169.57	204.63	152.60
115	178.49	170.66	193.80	172.68
116	176.08	183.98	215.25	177.64
117	202.48	174.54	203.99	170.27
118	182.40	197.18	194.52	150.87
119	182.09	215.17	221.49	162.21

120 rows × 4 columns

```
In [3]: lab1 = lab data['Laboratory 1'].mean()
        lab2 = lab_data['Laboratory 2'].mean()
        lab3 = lab_data['Laboratory 3'].mean()
        lab4 = lab data['Laboratory 4'].mean()
        print('Laboratory 1 mean = ',lab1)
        print('Laboratory 2 mean = ',lab2)
        print('Laboratory 3 mean = ',lab3)
        print('Laboratory 4 mean = ',lab4)
        Laboratory 1 mean = 178.36158333333339
        Laboratory 2 mean = 178.9029166666668
        Laboratory 3 mean = 199.91325000000003
        In [4]: |plt.figure(figsize = [8,5])
        sns.distplot(lab_data['Laboratory 1'])
        sns.distplot(lab_data['Laboratory 2'])
        sns.distplot(lab data['Laboratory 3'])
        sns.distplot(lab data['Laboratory 4'])
        plt.show()
           0.040
           0.035
           0.030
           0.025
           0.020
           0.015
           0.010
           0.005
           0.000
                      120
               100
                                    160
                                           180
                                                  200
                                                         220
                                                                240
                                                                       260
                                         Laboratory 4
        lab1 = pd.DataFrame(lab data["Laboratory 1"])
In [5]:
        lab2 = pd.DataFrame(lab_data["Laboratory 2"])
        lab3 = pd.DataFrame(lab data["Laboratory 3"])
        lab4 = pd.DataFrame(lab data["Laboratory 4"])
In [8]: import scipy.stats as stats
        stats.f_oneway(lab1,lab2,lab3,lab4)
Out[8]: F_onewayResult(statistic=array([118.70421654]), pvalue=array([2.11567089e-57]))
```

compare p_value at 5% significance level i.e. 0.05