— HPDDM —

https://github.com/hpddm/hpddm

All keywords must be prefixed by -hpddm. If a value is specified in the column *Default*, this value is used when the corresponding option is not set by the user. When no default value is specified but the corresponding option is set by the user, the option is true (represented internally by 1). If the option is not set, its value is false (represented internally by 0). Options highlighted in red should be reserved to expert users.

Keyword	Description	Possible values	Default
help	Display available options	Anything	
version	Display information about HPDDM	Anything	
config_file	Load options from a file saved on disk	String	
tol	Relative decrease in residual norm to reach in order to stop iterative methods	Numeric	10^{-6}
max_it	Maximum number of iterations of iterative methods	Integer	100
verbosity	Level of output (higher means more displayed information)	Integer	
compute_residual	Print the residual after convergence	12, 11, linfty	
push_prefix	Prepend a prefix for all following options (use -hpddm_pop_prefix when done)		
reuse_preconditioner	Do not factorize again the local matrices when solving subsequent systems	Boolean	
operator_spd	Assume the operator is symmetric positive definite	Boolean	
orthogonalization	Method used to orthogonalize a vector against an orthogonal basis	cgs, mgs	cgs
<pre>dump_matri(ces x_[[:digit:]]+)</pre>	Save either one or all local matrices to disk	String	
<pre>dump_eigenvectors(_[[:digit:]]+)?</pre>	Save either one or all local eigenvectors to disk	String	
		gmres, bgmres, cg, bcg,	
krylov_method	Type of iterative method used to solve linear systems	gcrodr, bgcrodr, bfbcg,	gmres
		richardson, none	-
enlarge_krylov_subspace	Split the initial right-hand side into multiple vectors	Integer	1
gmres_restart	Maximum number of Arnoldi vectors generated per cycle	Integer	40
variant	Left, right, or variable preconditioning	left, right, flexible	right
qr	Method used to perform distributed QR factorizations	cholqr, cgs, mgs	cholqr
deflation_tol	Tolerance when deflating right-hand sides inside block methods	Numeric	
recycle	Number of harmonic Ritz vectors to compute	Integer	
recycle_same_system	Assume the system is the same as the one for which Ritz vectors have been computed	Boolean	
recycle_strategy	Generalized eigenvalue problem to solve for recycling	A, B	A
recycle_target	Criterion to select harmonic Ritz vectors	SM, LM, SR, LR, SI, LI	SM
richardson_damping_factor	Damping factor using in Richardson iterations	Numeric	1.0
eigensolver_tol	Tolerance for computing eigenvectors by ARPACK or LAPACK	Numeric	10^{-6}
geneo_nu	Number of local eigenvectors to compute for adaptive methods	Integer	20
geneo_threshold	Threshold for selecting local eigenvectors for adaptive methods	Numeric	
geneo_estimate_nu	Estimate the number of eigenvalues below a threshold using the inertia of the stencil	Numeric	
geneo_force_uniformity	Ensure that the number of local eigenvectors is the same for all subdomains	min, max	

When using multilevel methods, there are additional options, that are all prefixed by $-hpddm_level_N_i$, with N > 1.

Keyword	Description	Possible values	Default
level_([2-9] [1-9]\d+)_p	Number of main processes	Integer	1
$level_{([2-9] [1-9]\d+)_{distribution}}$	Distribution of coarse right-hand sides and solution vectors	centralized, sol	centralized

level_([2-9] [1-9]\d+)_topology	Distribution of the main processes	0, 1, 2	0
$level_([2-9] [1-9]d+)_assembly_hierarchy$	Hierarchy used for the assembly of the coarse operator	Integer	
level_([2-9] [1-9]\d+)_aggregate_size	Number of main processes per MPI sub-communicators	Integer	р
level_([2-9] [1-9]\d+)_dump_matrix	Save the coarse operator to disk	String	
level_([2-9] [1-9]\d+)_exclude	Exclude the main processes from the domain decomposition	Boolean	

When using Schwarz methods, there are additional options.

Keyword	Description	Possible values	Default
schwarz_method	Type of Schwarz preconditioner used to solve linear systems	ras, oras, soras, asm, osm, none	ras
schwarz_coarse_correction	Type of coarse correction used in two-level methods	deflated, additive, balanced	

When using substructuring methods, there is an additional option.

Keyword	Description	Possible values	Default
substructuring_scaling	Scaling used in the definition of the Schur complement preconditioner	multiplicity, stiffness, coefficient	multiplicity

When using MKL PARDISO as a subdomain or coarse operator solver, there are additional options, cf. https://software.intel.com/en-us/node/470298 (resp. https://software.intel.com/en-us/node/590089).

Keyword	Description	Possible values
mkl_pardiso_iparm_(2 1[013] 2[1457])	Integer control parameters of MKL PARDISO for the subdomain solvers	Integer

When using MUMPS as a subdomain or coarse operator solver, there are additional options, cf. http://mumps-solver.org/index.php?page=doc.

Keyword	Description	Possible values
mumps_icntl_([678] 1[234] 2[34789] 3[567])	Integer control parameters	Integer
mumps_cntl_([123457])	Real control parameters	Numeric

When using hypre as a coarse operator solver, there are additional options, cf. http://acts.nersc.gov/hypre/#Documentation.

Keyword	Description	Possible values	Default
hypre_solver	Solver used by hypre to solve coarse linear systems	fgmres, pcg, amg	fgmres
hypre_tol	Relative convergence tolerance	Numeric	10^{-12}
hypre_max_it	Maximum number of iterations	Integer	500
hypre_gmres_restart	Maximum number of Arnoldi vectors generated per cycle when using FGMRES	Integer	100
boomeramg_num_sweeps	Number of sweeps	Integer	1
boomeramg_max_levels	Maximum number of multigrid levels	Integer	10
boomeramg_coarsen_type	Parallel coarsening algorithm	Integer	6
boomeramg_relax_type	Smoother	Integer	3
boomeramg_interp_type	Parallel interpolation operator	Integer	0

When using ARPACK as an eigensolver, there is an additional option.

Keyword	Description	Possible values
arpack_ncv	Number of Lanczos basis vectors generated in one iteration	Integer

References

For the keyword krylov_method:

- value gmres, see Y. Saad and M. H. Schultz. "GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems". In: *SIAM Journal on Scientific and Statistical Computing* 7.3 (1986), pp. 856–869,
- value bgmres, see M. H. Gutknecht. "Block Krylov space methods for linear systems with multiple right-hand sides: an introduction". In: *Modern Mathematical Models, Methods and Algorithms for Real World Systems*. Ed. by A. Siddiqui, I. Duff, and O. Christensen. 2006, pp. 420–447,
- value cg, see M. R. Hestenes and E. Stiefel. "Methods of conjugate gradients for solving linear systems". In: *Journal of Research of the National Bureau of Standards* 49.6 (1952), pp. 409–436,
- value bcg, see D. P. O'Leary. "The block conjugate gradient algorithm and related methods". In: *Linear Algebra and its Applications* 29 (1980), pp. 293–322,
- value gcrodr, see M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti. "Recycling Krylov subspaces for sequences of linear systems". In: SIAM Journal on Scientific Computing 28.5 (2006), pp. 1651–1674,
- value bgcrodr, see P. Jolivet and P.-H. Tournier. "Block iterative methods and recycling for improved scalability of linear solvers". In: *Proceedings of the 2016 International Conference for High Performance Computing, Networking, Storage and Analysis.* SC16. IEEE. 2016,
- value bfbcg, see H. Ji and Y. Li. "A breakdown-free block conjugate gradient method". In: *BIT Numerical Mathematics* 57.2 (2017), pp. 379–403,
- value richardson, see https://en.wikipedia.org/wiki/Modified_Richardson_iteration.

For the keyword variant, value flexible, see Y. Saad. "A flexible inner-outer preconditioned GMRES algorithm". In: *SIAM Journal on Scientific Computing* 14.2 (1993), pp. 461–469.

For the keyword $\operatorname{\mathtt{qr}}$:

- value cholqr, see A. Stathopoulos and K. Wu. "A block orthogonalization procedure with constant synchronization requirements". In: *SIAM Journal on Scientific Computing* 23.6 (2002), pp. 2165–2182,
- value cgs, see Algorithm 3 on page 3 of V. Hernández, J. E. Román, A. Tomás, and V. Vidal. *Orthogonalization routines in SLEPc*. Tech. rep. URL: http://slepc.upv.es/documentation/reports/str1.pdf,
- value mgs, see Algorithm 4 on page 4.

For the keyword deflation_tol, see section 12 of M. H. Gutknecht. "Block Krylov

space methods for linear systems with multiple right-hand sides: an introduction". In: *Modern Mathematical Models, Methods and Algorithms for Real World Systems*. Ed. by A. Siddiqui, I. Duff, and O. Christensen. 2006, pp. 420–447.

For the keywords geneo_nu, geneo_threshold, p, and topology see respectively eq. (8), eq. (9), section 3.1.1, and figure 5 of P. Jolivet, F. Hecht, F. Nataf, and C. Prud'homme. "Scalable domain decomposition preconditioners for heterogeneous elliptic problems". In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. SC13. ACM. 2013.

For the keyword schwarz_method:

- value ras, see X.-C. Cai and M. Sarkis. "Restricted additive Schwarz preconditioner for general sparse linear systems". In: SIAM Journal on Scientific Computing 21.2 (1999), pp. 792–797,
- values oras and soras, see R. Haferssas, P. Jolivet, and F. Nataf. "An additive Schwarz method type theory for Lions's algorithm and a symmetrized optimized restricted additive Schwarz method". In: SIAM Journal on Scientific Computing 39.4 (2017), A1345–A1365,
- value asm, see eq. (1.30) section 1.4 of V. Dolean, P. Jolivet, and F. Nataf. An introduction to domain decomposition methods: algorithms, theory, and parallel implementation. Vol. 144. SIAM, 2015,
- value osm, see M. J. Gander. "Optimized Schwarz methods". In: SIAM Journal on Numerical Analysis 44.2 (2006), pp. 699–731.

For the keyword schwarz_coarse_correction:

- value deflated, see eq. (13) section 2.3.3 of J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga. "Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods". In: *Journal of Scientific Computing* 39.3 (2009), pp. 340–370,
- value additive, see eq. (7) section 2.3.1,
- value balanced, see the first unnumbered equation of section 2.3.4.

For the keyword substructuring_scaling:

- value multiplicity, see the first bullet point section 3.2.1 of P. Gosselet and C. Rey. "Non-overlapping domain decomposition methods in structural mechanics". In: Archives of Computational Methods in Engineering 13.4 (2006), pp. 515–572,
- value stiffness, see the second bullet point,
- value coefficient, see the third bullet point.