Université de Lorraine Analyse complexe

TD 9: Résidus et Rouché

Exercice 1. Montrer que $\int_{\mathbb{R}} \frac{dx}{x^4 + x^3 + x^2 + x + 1} = \frac{4\pi}{5} \sin\left(\frac{2\pi}{5}\right).$

Exercice 2. Soit $N \in \mathbb{N}^*$. Calculer $\int_{\mathscr{C}(0,N)} \tan(\pi z) dz$.

Exercice 3. [Résidu à l'infini] Soit $P \in \mathbb{C}$ un ensemble fini et f une fonction holomorphe sur $U = \mathbb{C} \setminus P$ et ayant des pôles aux points de P. On appelle résidu à l'infini de f et on note $\mathrm{rés}_{\infty}(f) := -\mathrm{rés}_0 \Big(f(1/w)w^{-2} \Big)$. Montrer que le résidu à l'infini est bien défini, qu'il est égal à $-\int_{\mathscr{C}(0,R)} f(z)dz$ pour R assez grand, et que l'on a la formule :

$$\sum_{a \in P} r\acute{\rm es}_a(f) + r\acute{\rm es}_\infty(f) = 0.$$

Exercice 4. Le but de l'exercice est de montrer que $I := \int_{\mathbb{R}} \frac{\sqrt{x}}{(x+1)^2} dx$ est égal à $\frac{\pi}{2}$.

1. Pour tous $0 < \varepsilon < R$ on définit $K_{R,\varepsilon} := \{z \in \mathbb{C} \mid \operatorname{dist}(z,\mathbb{R}_+) \geq \varepsilon \text{ et } |z| \leq R\}$. Montrer que $K_{R,\varepsilon}$ est compact. On admet que son bord est paramétré par les chemins $\gamma_k^{R,\varepsilon}$, $k \in \{1,2,3,4\}$, avec

$$\begin{split} &\gamma_1^{R,\varepsilon}:[0,\sqrt{R^2-\varepsilon^2}]\to\mathbb{C},t\mapsto i\varepsilon+t\\ &\gamma_2^{R,\varepsilon}:[\arcsin(\varepsilon/R),2\pi-\arcsin(\varepsilon/R)]\to\mathbb{C},t\mapsto Re^{it}\\ &\gamma_3^{R,\varepsilon,op}:[0,\sqrt{R^2-\varepsilon^2}]\to\mathbb{C},t\mapsto -i\varepsilon+t\\ &\gamma_4^{R,\varepsilon}:[\pi/2,3\pi/2]\to\mathbb{C},t\mapsto \varepsilon e^{-it}. \end{split}$$

- 2. Dessiner $K_{2,1/2}$.
- 3. Soit $f: z \mapsto \frac{R(z)}{z^2+1}$, où R(z) désigne la détermination de la racine carrée sur $\mathbb{C} \setminus \mathbb{R}_+$, c'est-à-dire $R(z) := \exp\left(\frac{1}{2}\operatorname{Log}_{\pi}(z)\right)$. Que vaut R(-1)? Que vaut la dérivée R'(z)? Donner le domaine d'holomorphie de f, déterminer ses singularités isolées et les résidus en ces singularités.
- 4. Quelle est la limite de R(z) lorsque z tend vers $x \in \mathbb{R}_+^*$ par valeurs imaginaires supérieures? Inférieures?
- 5. On note $I(R,\varepsilon) := \int_{\partial K_{R,\varepsilon}} f(z) dz$. Pour quels paramètres R et ε est-ce bien défini? Calculer $I(R,\varepsilon)$ pour ces valeurs des paramètres.
- 6. On note $I_k(R,\varepsilon) := \int_{\gamma_k} f(z) dz$, pour les valeurs de R et ε pour lesquelles ces intégrales sont bien définies. Calculer les limites lorsque $\varepsilon \to 0$ de $I_1(R,\varepsilon)$ et $I_3(R,\varepsilon)$.
- 7. Montrer que $I_2(R,\varepsilon)$ et $I_4(\varepsilon)$ tendent vers zéro lorsque $R\to +\infty$ et $\varepsilon\to 0$ et conclure.

Exercice 5. Montrer avec la même technique qu'à l'exercice précédent que :

$$\int_{\mathbb{R}_+} \frac{\sqrt[3]{x}}{(x+1)^2} dx = \frac{2\pi}{3\sqrt{3}}; \quad \int_{\mathbb{R}_+} \frac{\sqrt{x}}{x^2+1} dx = \frac{\pi}{\sqrt{2}}; \quad \int_{\mathbb{R}_+} \frac{\sqrt[3]{x}}{x^2+1} dx = \frac{\pi}{\sqrt{3}}.$$

Exercice 6. Le but de l'exercice est de montrer que $I := \int_{\mathbb{R}} \frac{\ln x}{x^2 + 4} dx$ est égal à $\frac{\pi \ln 2}{4}$.

1. Pour tous $0 < \delta < \varepsilon < R$ on définit $K_{R,\varepsilon,\delta} := \{z \in \mathbb{C} \mid \operatorname{dist}(z,\mathbb{R}_+) \geq \delta \text{ et } \varepsilon \leq |z| \leq R\}$. Montrer que $K_{R,\varepsilon,\delta}$ est compact et que son bord est paramétré par les chemins γ_k , $k \in \{1, 2, 3, 4\}$ définis par

$$\gamma_{1}: [\sqrt{\varepsilon^{2} - \delta^{2}}, \sqrt{R^{2} - \delta^{2}}] \to \mathbb{C}, t \mapsto i\delta + t$$

$$\gamma_{2}: [\arcsin(\delta/R), 2\pi - \arcsin(\delta/R)] \to \mathbb{C}, t \mapsto Re^{it}$$

$$\gamma_{3}^{op}: [\sqrt{\varepsilon^{2} - \delta^{2}}, \sqrt{R^{2} - \delta^{2}}] \to \mathbb{C}, t \mapsto -i\delta + t$$

$$\gamma_{4}^{op}: [\arcsin(\delta/\varepsilon), 2\pi - \arcsin(\delta/\varepsilon)] \to \mathbb{C}, t \mapsto \varepsilon e^{it}$$

(Ces chemins dépendent des paramètres mais on n'a pas fait apparaître les paramètres dans la notations pour alléger l'écriture.)

- 2. Dessiner le compact pour $\varepsilon = 1$, $\delta = 1/2$ et R = 2.
- 3. Soit $f: z \mapsto \frac{(\log_{\pi} z i\pi)^2}{z^2 + 4}$, où \log_{π} désigne la détermination du logarithme complexe sur $\mathbb{C} \setminus \mathbb{R}_+$ vérifiant $\text{Log}_{\pi}(-1) = i\pi$. Quelle est la limite de f(z) lorsque z tend vers $x \in \mathbb{R}_{+}^{*}$ par valeurs imaginaires supérieures? Inférieures?
- 4. Calculer la somme des résidus de f en $\pm 2i$.
- 5. On note $I(R, \varepsilon, \delta) := \int_{\partial K_{R,\varepsilon}} f(z) dz$. Pour quels paramètres R et ε est-ce bien défini? Calculer $I(R, \varepsilon, \delta)$
- 6. Calculer la limite lorsque $\delta \to 0$ de $I(R, \varepsilon, \delta)$, puis la limite de cette limite lorsque $R \to +\infty$ et $\varepsilon \to 0$.
- 7. Conclure.

⋆ Théorème de Rouché ⋆ ⋆ ⋆

Exercice 7. Soit $P(z) = z^4 + 6z + 3$. Montrer que P n'a aucune racine dans $\mathbb{D}(0, 1/3)$, qu'il a une seule racine dans $\mathbb{D}(0,1)$ et que toutes ses racines sont de module ≤ 2 .

Exercice 8. Soit $b \in \mathbb{C}$ tel que Ré(b) > 1. Montrer que l'équation $e^{-z} + z = b$ a une solution unique dans le demi-plan Ré(z) > 0. Indication:

Exercice 9. Soient $a, b \in \mathbb{D}$. Montrer que l'équation $z^2 \left(\frac{z-a}{1-\overline{a}z} \right)^3 = b$ possède cinq solutions dans \mathbb{D} . Indication:²

Exercice 10. Soit *U* un ouvert connexe et $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions holomorphes convergeant uniformément sur tout compact vers une fonction $f \in \mathcal{O}(U)$.

- 1. Soit $K \subset U$ un compact. On suppose que f ne s'annule pas sur ∂K . Montrer pour n grand, f_n ne s'annule pas non plus sur ∂K et f et f_n ont même nombre de zéros dans K, comptés avec multiplicités.
- 2. Montrer que si à partir d'un certain rang les fonctions f_n ne s'annulent pas, alors soit f ne s'annule pas, soit f est identiquement nulle.
- 3. Montrer que si à partir d'un certain rang les fonctions f_n sont injectives, alors soit f est injective, soit f est constante.

Exercice 11. Soit $P(z) = z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0$ un polynôme complexe de degré ≥ 1 . Montrer qu'il existe $c \in \mathcal{C}(0,1)$ tel que $P(c) \ge 1$.

Exercice 12. Soit $f \in \mathscr{C}^0(\overline{\mathbb{D}}(0,1),\mathbb{C})$, non constante et envoyant le cercle $\mathscr{C}(0,1)$ dans lui-même. Montrer que si de plus f est holomorphe dans \mathbb{D} , alors f s'annule dans \mathbb{D} puis que $\mathbb{D} \subset f(\mathbb{D})$. (Montrer que ces deux conclusions sont fausses sans l'hypothèse d'holomorphie.)

^{1.} Utiliser les compact $K_R = \{re^{i\theta}, 0 \le r \le R \text{ et } -\pi/2 \le \theta \le \pi/2\}$. 2. Appliquer Rouché à $f(z) = z^2(z-a)^3 - b(1-\overline{a}z)^3$ et $g(z) = z^2(z-a)^3$.

Solutions ou indications

Les solutions ne sont pas toutes détaillées. Elles sont là pour faciliter l'autocorrection.

Correction de l'exercice 1. La quantité $x^4 + x^3 + x^2 + x + 1$ est une somme de suite géométrique. Ensuite, on

Correction de l'exercice 1. La quantité
$$x^4 + x^3 + x^2 + x + 1$$
 est une somme de suit procède comme pour $\int_{\mathbb{R}} \frac{dt}{1+t^4}$. Si $f(z) = \frac{1}{z^4 + z^3 + z^2 + z + 1} = \frac{z-1}{z^5 - 1}$, le résidu en un pôle simple α est $\frac{\alpha - 1}{5\alpha^4}$. La somme des deux résidus est donc

$$\frac{1}{5} \left(e^{2i\pi/5} - 1 \right) e^{-8i\pi/5} + \left(e^{4i\pi/5} - 1 \right) e^{-16i\pi/5} \right) = \frac{1}{5} \left(e^{-6i\pi/5} + e^{-3i\pi/5} + e^{-12i\pi/5} + e^{-11i\pi/5} \right)$$

Avec un dessin on voit que la parenthèse vaut $-2i\sin(2\pi/5)$ et donc la somme des deux résidus, multipliée par $2i\pi$, vaut $\frac{4\pi}{5}\sin(2\pi/5)$.

Correction de l'exercice 2. Pôles simples en $\frac{1}{2} + k$, pour $k \in \mathbb{Z}$. Les résidus valent tous $-1/\pi$.

Correction de l'exercice 3. La fonction $w \mapsto f(1/w)$ est holomorphe sur un voisinage de l'origine, disons sur un disque épointé. On peut considérer $\phi: z \mapsto 1/z$ qui réalise un biholomorphisme de de la couronne $\mathscr{C}(0,0,1/r)$ sur la couronne $\mathscr{C}(0,r,+\infty)$.

Si r est strictement supérieur au plus grand module des pôles de f, en prenant R > r on a

$$\begin{split} \operatorname{r\acute{e}s}_{\infty}(f) &= -\operatorname{r\acute{e}s}_{0}\left(f(1/w)\,w^{-2}\right) \\ &= -\frac{1}{2i\pi}\int_{\mathscr{C}(0,1/R)} f(1/w)\,w^{-2}dw \\ &= \frac{1}{2i\pi}\int_{\mathscr{C}(0,1/R)} f(\phi(w))\phi'(w)dw \\ &= \frac{1}{2i\pi}\int_{0}^{2\pi} f(\phi(\gamma(t)))\phi'(\gamma(t))\gamma'(t)dt \qquad \qquad \text{en posant } \gamma\colon [0,2\pi] \to \mathbb{C}, t\mapsto e^{it}/R \\ &= \frac{1}{2i\pi}\int_{0}^{2\pi} f(\delta(t))\delta'(t)dt \qquad \qquad \text{en posant } \delta \coloneqq \phi\circ\gamma \\ &= \frac{1}{2i\pi}\int_{\delta} f(z)dz \qquad \qquad \text{changement d'orientation, puisque } \delta(t) = Re^{-it} \\ &= -\sum_{x\in \mathbb{R}} \operatorname{r\acute{e}s}_{a}(f) \qquad \qquad \text{Th\'eor\`eme des r\'esidus sur } \mathbb{D}(0,R) \end{split}$$

Pour $\phi'(\gamma(t))\gamma'(t) = \delta'(t)$, si besoin, redémontrer ceci avec les formules de calcul sur les opérateurs de Wirtinger: c'est l'exercice 7 du TD2.

Correction de l'exercice 4.

- Comme pour la racine carrée sur \mathbb{R}_+^* , on obtient $R'(z) = \frac{1}{2R(z)}$ en dérivant la relation $R(z)^2 = z$.
- La limite de R(z) lorsque z tend vers $x \in \mathbb{R}_+^*$ par valeurs imaginaires positives est \sqrt{x} , et $-\sqrt{x}$ par valeurs imaginaires négatives.
- Le résidu de f au pôle double -1 vaut $R'(-1) = \frac{1}{2R(-1)} = \frac{1}{2i}$. Si $\varepsilon < 1$ et R > 1, l'intégrale de contour vaut donc π .
- On a $I_1 \rightarrow I$, $I_3 \rightarrow I$ également et I_2 et I_4 tendent vers zéro. On en déduit finalement que $I = \pi/2$

Correction de l'exercice 5.

- 1. Le résidu vaut $\frac{1}{3}e^{-2i\pi/3}$. Si $\varepsilon < 1$ et R > 1, l'intégrale sur $\partial K_{R,\varepsilon}$ vaut $\frac{2\pi}{3}e^{-i\pi/6}$.
- 2. Pôles simples. Les résidus valent $\frac{e^{-\pi/4}}{2i}$ et $\frac{e^{3i\pi/4}}{-2i} = \frac{e^{-i\pi/4}}{2i}$. Si $\varepsilon < 1$ et R > 1, l'intégrale sur $\partial K_{R,\varepsilon}$ vaut $\pi\sqrt{2}$.

3. Pôles simples. Les résidus valent $\frac{e^{i\pi/6}}{2i}$ et $\frac{i}{-2i}=-\frac{1}{2}$. L'intégrale de contour vaut $\pi e^{-i\pi/6}$.

Correction de l'exercice 6. On trouve $\operatorname{rés}_{2i}(f) = \frac{(\ln 2 - i\pi/2)^2}{4i}$ et $\operatorname{rés}_{-2i}(f) = -\frac{(\ln 2 + i\pi/2)^2}{4i}$. La somme des deux résidus vaut $\frac{(-\pi)\ln 2}{2}$ et 'intégrale de contour vaut $-i\pi^2\ln 2$. Par ailleurs, en calculant les limites

demandées on trouve une limite de $-4i\pi I$.

Correction de l'exercice 7. À chaque fois, on compare *P* à une fonction qui a le nombre voulu de zéros, comptés avec multiplicités. Par exemple, si |z| = 2, alors, en posant $g(z) = z^{4}$, on a

$$|P(z) - g(z)| = |6z + 3| \le 6|z| + 3 = 15 < 16 = |z|^4$$
.

Ceci montre que P a quatre racines dans $\mathbb{D}(0,2)$.

Correction de l'exercice 9. [Correction avec commentaires] Rouché se formule en termes de zéros donc on reformule en termes de zéros. On veut montrer que $f(z) := z^2(z-a)^3 - b(1-\overline{a}z)^3$ a cinq zéros dans le disque, et pour cela on va la comparer sur le bord du disque à une fonction dont on sait qu'elle a cinq zéros dans le disque, par exemple $g(z) := z^2(z-a)^3$. L'objectif est alors de montrer que sur le cercle unité, on a |f - g| < |g|.

Si z est de module un, on a

$$|f(z) - g(z)| = |b(1 - \overline{a}z)^3| \le |b| |1 - \overline{a}z|^3$$

Notre objectif est de majorer strictement cette quantité par $|g(z)| = |z - a|^3$. On commence par majorer $|b||1-\overline{a}z|^3 < |1-\overline{a}z|^3$, puis on fait un dessin et on voit que c'est bon (on voit une rotation, la multiplication par z, et la symétrie $z \mapsto \bar{z}$). Le calcul traduisant ceci est :

$$\left|1 - \overline{a}z\right| = \left|1 - a\overline{z}\right| = \left|z - a\right|,$$

puisque z est de module un.

Finalement, on a bien, pour tout $z \in \mathcal{C}(0,1)$, l'inégalité stricte |f(z) - g(z)| < |g(z)| et d'après le théorème de Rouché, f et g ont même nombre de zéros dans le disque unité.

Correction de l'exercice 10.

1. Soit $\varepsilon = \inf_{z \in \partial K} |f(z)|$. Cet inf est atteint sur le compact ∂K et donc il est strictement positif. Par convergence uniforme sur le compact ∂K , il existe N tel que pour n > N, on a $||f_n - f||_{\infty, \partial K} \le \varepsilon/2$. Soit n > N et $z \in \partial K$. On a :

$$|f(z)| - |f_n(z) - f(z)| \ge \varepsilon - \varepsilon/2 = \varepsilon/2 > 0$$

(Comme vu en cours, ceci montre également que $|f_n(z)| \ge ||f(z)| - |f(z) - f_n(z)|| > 0$ donc f_n ne s'annule pas sur ∂K .)

D'après le théorème de Rouché, appliqué à f_n et f sur le compact K, on en déduit que f_n et f ont même nombre de zéros dans K, comptés avec multiplicités.

- 2. Supposons par l'absurde que f soit non identiquement nulle et s'annule en un point $a \in U$.
 - Par le théorème des zéros isolés, f ne s'annule pas dans un certain voisinage épointé de a et donc il existe un cercle $\mathcal{C}(a, r)$ inclus dans U et sur lequel f ne s'annule pas.
 - Mais alors d'après la question précédente, pour n grand, f_n a le même nombre de zéros que f sur $\mathbb{D}(a, r)$, c'est-à-dire un zéro, contradiction.
- 3. Supposons par l'absurde que f soit non constante et non injective. Il existe donc a et b dans U ayant même image par f. Notons w := f(a) - f(b). La fonction f - w possède donc deux zéros sur U et n'est pas identiquement nulle.

Par le théorème des zéros isolés, il existe r > 0 tel que les disques $\overline{\mathbb{D}}(a, r)$ et $\overline{\mathbb{D}}(b, r)$ soient disjoints et tels que f - w ne s'annule pas sur leur bord. Notons K l'union de ces deux disques.

D'après la question 1, on en déduit que pour n grand, $f_n - w$ a autant de zéros dans K que f, c'est-àdire deux.

Autrement dit, w a deux préimages par f_n dans K et f_n n'est donc pas injective.

Correction de l'exercice 11. Procéder par l'absurde et transformer l'assertion obtenue en une assertion du type |f - g| < |f| avec f et g bien choisies.

Correction de l'exercice 12. La première question peut être faite avec l'application ouverte. Pour la seconde question, on fixe $w \in \mathbb{D}$, on cherche à montrer que w possède une préimage dans \mathbb{D} , c'est-à-dire que g := f - w s'annule dans \mathbb{D} . Pour cela on applique Rouché à g et à la fonction f, dont on a montré qu'elle s'annulait à la question précédente.

Sans holomorphie, on peut considérer par exemple la fonction $x + iy \mapsto |x| + iy$. (« pliage »)