# Teoretične osnove računalništva <sub>Zapiski predavanj 2010/2011</sub>

27. februar 2011



This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

## Kazalo

| 1 | Uvod |                                                    |     |
|---|------|----------------------------------------------------|-----|
|   | 1.1  | Chomskyeva hiearhija                               | 2   |
|   | 1.2  | Matematične osnove                                 | 2   |
|   |      | 1.2.1 Dokazovanje                                  | 2   |
| 2 | Reg  | gularni jeziki                                     | 5   |
|   | 2.1  | Uvod                                               | 5   |
|   | 2.2  | Regularni Izrazi                                   | 6   |
|   |      | 2.2.1 Jezik regularnih izrazov                     | 6   |
|   | 2.3  |                                                    | 7   |
|   |      |                                                    | 7   |
|   |      |                                                    | 7   |
|   |      |                                                    | 7   |
|   |      | 2.3.4 Jeziki končnih avtomatov                     | 7   |
|   |      | 2.3.5 Regularne gramatike                          | 7   |
|   | 2.4  | Prevedba med izvedbami regularnih jezikov          | 8   |
|   |      | 2.4.1 Končni avtomat $\rightarrow$ Regularni izraz | 8   |
|   | 2.5  | Ohranjanje regularnosti jezikov                    | 8   |
| 3 | Kor  | ntekstno-neodvisni jeziki                          | 10  |
|   | 3.1  | Kontekstno-neodvisne gramatike                     | 10  |
|   | 3.2  | Skladovni avtomati                                 | 10  |
|   |      | 3.2.1 Trenutni opis                                | 10  |
|   |      | 3.2.2 Relacija +                                   | 10  |
|   |      |                                                    | 10  |
| 1 | Slov | war -                                              | 1 1 |

### Uvod

### 1.1 Chomskyeva hiearhija



#### 1.2 Matematične osnove

#### 1.2.1 Dokazovanje

 $\mathbf{Dokaz}$  s konstrukcijo

Dokaz obstoja nekega matematičnega objekta je to, da nam objekt uspe skonstruirati.

#### Primeri:

**Primer 1:** Za vsak n > 4, obstaja dvojiško drevo, ki ima natanko 3 liste.

**Primer 2:**  $|\mathbb{R}| = |[0,1)|$ .

• Množici imata enako moč, kadar med njima obstaja bijektivna preslikava.

POGLAVJE 1. UVOD

3

 $\bullet$  Vsako realno število r lahko zapišemo kot:

$$r = \pm d_1 d_2 \dots d_n . \bar{d_1} \bar{d_2} \dots \bar{d_m} \dots ; \ d_1 \neq 0$$

• Definiramo preslikavo:

$$\mathbb{R} \to [0,1): r \to 0.s\bar{d}_1d_n\bar{d}_2d_{n-1}...\bar{d}_nd_1\bar{d}_{n+1}0\bar{d}_{n+2}0...$$

kjer z s določimo predznak (s = 0, če  $r \ge 0$  in s = 1, sicer).

- Vidimo:
  - $|\mathbb{R}| \le |[0,1)|,$
  - $|\mathbb{R}| \ge |[0,1)|$ , ker velja  $[0,1) \subset \mathbb{R}$
- Iz tega lahko sklepamo, da velja  $|\mathbb{R}| = |[0,1)|$

#### Dokaz z indukcijo

Če je množica induktivni razred<sup>1</sup>, lahko z matematično indukcijo dokazujemo neko lastnost članov množice.

Induktivni razred I sestavlja:

- Baza indukcije najbolj osnovna množica elementov (osnovni razred)
- Pravila generiranja kako iz elementov baze gradimo nove elemente (množico)

#### Primeri:

**Primer 1:** Induktivni razred naravnih števil  $(\mathbb{N})$ 

- Baza:  $1 \in \mathbb{N}$
- Pravila generiranja:  $n \in \mathbb{N} \Longrightarrow n+1 \in \mathbb{N}$

Primer 2: Hilbertove krivulje<sup>2</sup>

#### Dokaz s protislovjem

Vzamemo nasprotno trditev, od tiste, ki jo želimo preveriti in pokažemo, da to vodi v protislovje.

#### Primeri:

Primer 1: Praštevil je končno mnogo.

- Predpostavimo, da poznamo vsa praštevila:  $P = \{2, 3, 5, ..., p\}$ , kjer je p zadnje praštevilo
- Po definiciji obstajajo le praštevila in sestavljena števila (to so taka, ki jih lahko razstavimo na prafaktorje).
- $\bullet$  Če pomnožimo vsa znana praštevila iz P in prištejemo 1 dobimo število, ki se ga ne da razstaviti na prafaktorje iz množice  $P\colon$

$$q = 2 * 3 * 5 * \dots * p + 1$$

- $\bullet$  Torej je qali praštevilo (ker ni sestavljeno), ali pa število, sestavljeno iz prafaktorjev, ki jih ni v množici P.
- $\bullet$  Oboje kaže na to, da v množici Pnimamo vseh praštevil, ter, da to velja za vsako končno množico praštevil.

**Primer 2:**  $\sqrt[3]{2}$  je racionalno število.

• Če je  $\sqrt[3]{2}$  racionalno število, ga je moč zapisati kot ulomek  $\frac{a}{h}$ .

<sup>&</sup>lt;sup>1</sup>Glej slovarček na koncu.

<sup>2</sup>http://en.wikipedia.org/wiki/Hilbert\_curve

• Predpostavimo, da je ulomek  $\frac{a}{b}$ okrajšan (torej, da velja: GCD(a,b)=1):

$$\sqrt[3]{2} = \frac{a}{b}$$
$$2 = \left(\frac{a}{b}\right)^3$$
$$2b^3 = a^3$$

• Opazimo, da je a sodo število, torej lahko pišemo  $a=2k\colon$ 

$$2b = (2k)^3$$
$$2b = 8k$$
$$b = 4k$$

• Ker se je pokazalo, da je tudi b sodo število, GCD(a,b)=1 ne more držati, torej smo prišli v protislovje in s tem dokazali, da  $\sqrt[3]{2}$  ni racionalno število.

# Regularni jeziki

#### 2.1 Uvod

#### Oznake

- a simbol (niz dolžine 1)
- $\bullet~\Sigma$  abeceda (končna neprazna množica simbolov)
- w niz ali beseda (poljubno končno zaporedje simbolov  $w_1w_2\dots w_n$ )
- |w| dolžina niza
- $\varepsilon$  prazen niz, |w| = 0
- $\bullet~\Sigma^*$  vsi možni nizi abecede

#### Operacije

- Stik
  - Stik nizov:

$$w = w_1 w_2 \dots w_n$$
  

$$x = x_1 x_2 \dots x_m$$
  

$$wx = w_1 w_2 \dots w_n x_1 x_2 \dots x_m$$

- Stik množic:

$$A = \{w_1, w_2, \dots, w_n\}$$

$$B = \{x_1, x_2, \dots, x_m\}$$

$$A \cdot B = \{w_i x_j \mid w_i \in A \land x_i \in B\}$$

• Potenciranje

$$A^{0} = \{\varepsilon\}$$

$$A^{k} = A \cdot A \cdot \dots \cdot A = \bigcirc_{i=1}^{k} A$$

• Iteracija

$$A^* = A^0 \cup A^1 \cup A^2 \cdots = \bigcup_{i=0}^{\infty} A^i$$

#### Regularni jezik

**Def.:** Regularni jezik L nad abecedo  $\Sigma$  je poljubna podmnožica  $\Sigma^*$ 

$$L\subset \Sigma^*$$

#### Primeri:

**Primer 1:** Prazen jezik:  $L_1 = \{\}$ 

**Primer 2:** Jezik, ki vsebuje  $\varepsilon$  (ni prazen):  $L_2 = \{\varepsilon\}$ 

**Primer 3:** Jezik, ki vsebuje nize "a, aa, ab":  $L_3 = \{a, aa, ab\}$ 

#### 2.2 Regularni Izrazi

**Def.:** Osnovni izrazi:

- $-\underline{\emptyset}$  je opisuje prazen jezik  $L(\underline{\emptyset}) = \{\}$
- $-\underline{\varepsilon}$  opisuje jezik  $L(\underline{\varepsilon}) = \{\varepsilon\}$
- $-\underline{a}$ opisuje jezik $L(\underline{a})=\{a\},\ a\in\Sigma$

Def.: Pravila za generiranje sestavljenih izrazov:

- $(r_1 + r_2)$  opisuje unijo jezikov  $L(r_1 + r_2) = L(r_1) \bigcup L(r_2)$
- $(r_1 \ r_2)$  opisuje stik jezikov  $L(r_1 \ r_2) = L(r_1) \cdot L(r_2)$
- $-(r^*)$  opisuje iteracijo jezika  $(L(r))^*$

#### Primeri:

**Primer 1:** Opiši vse nize, ki se končajo z nizom 00 v abecedi  $\Sigma = \{0, 1\}$ .

$$r = (0+1)*00$$

**Primer 2:** Opiši vse nize, pri katerih so vsi a-ji pred b-ji in vsi b-ji pred c-ji v abecedi  $\Sigma = \{a, b, c\}$ .

$$a^*b^*c^*$$

**Primer 3:** Opiši vse nize, ki vsebujejo vsaj dva niza 'aa', ki se ne prekrivata v abecedi  $\Sigma = \{a, b, c\}$ .

$$(a+b+c)^*aa(a+b+c)^*aa(a+b+c)^*$$

**Primer 4:** Opiši vse nize, ki vsebuje vsaj dva niza 'aa' ki se lahko prekrivata v abecedi  $\Sigma = \{a, b, c\}$ 

$$(a+b+c)^*aa(a+b+c)^*aa(a+b+c)^* + (a+b+c)^*aaa(a+b+c)^*$$

**Primer 5:** Opiši vse nize, ki ne vsebujejo niza 11 v abecedi  $\Sigma = \{0, 1\}$ 

$$(\varepsilon + 1)(0^*01)^*0^*$$
  
 $(\varepsilon + 1)(0^* + 01)^*$ 

**Primer 6:** S slovensko abecedo opiši besedo "Ljubljana" v vseh sklonih in vseh mešanicah velikih in malih črk.

$$(L+l)(J+j)(U+u)(B+b)(L+l)(J+j)(A+a)(N+n)((A+a)(O+o)(E+e)(I+i))$$

Koliko različnih nizov opišemo s tem regularnim izrazom?

$$2^8 \cdot 2^3 = 2^{11}$$
 nizov

#### 2.2.1 Jezik regularnih izrazov

Def.: Jezik ki ga opisuje poljubni regularni izraz, je regularni jezik.

#### Primeri:

Primer 1: {} je regularni jezik

**Primer 2:**  $\{0^n1^n \mid n \geqslant 0 \text{ ni regularni jezik}$ 

#### 2.3 Končni avtomati

#### 2.3.1 Nedeterministični končni avtomati z $\varepsilon$ -prehodi

**Def.:**  $\varepsilon$ NKA je definiran kot peterka  $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ , kjer je:

- -Q končna množica stanj
- $\Sigma$  vhodna abeceda
- $-\delta$  funkcija prehodov,  $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$
- $-q_0$  začetno stanje
- F množica končnih stanj

#### 2.3.2 Nedeterministični končni avtomati

**Def.:** NKA je definiran kot peterka  $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ , kjer je:

- -Q končna množica stanj
- $\Sigma$  vhodna abeceda
- $\delta$  funkcija prehodov $\delta: Q \times \Sigma \to 2^Q$
- $-q_0$  začetno stanje
- -F množica končnih stanj

#### 2.3.3 Deterministični končni avtomat

**Def.:** DKA je definiran kot petorka  $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ , kjer je:

- $-\ Q$  končna množica stanj
- $\Sigma$  vhodna abeceda
- $\delta$  funkcija prehodov,  $\delta: Q \times \Sigma \to Q$
- $-q_0$  začetno stanje
- F množica končnih stanj

#### 2.3.4 Jeziki končnih avtomatov

**Def.:** Jezik  $\varepsilon$ NKA ter NKA je definiran kot:

$$L = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

kjer je  $\hat{\delta}(q, w)$  posplošena funkcija prehodov v večih korakih.

**Def.:** Jezik DKA je definiran kot:

$$L = \{ w \mid \delta(q_0, w) \in F \}$$

Definicije želijo povedati, da so v jeziku točno tisti nizi, po katerih je iz začetnega stanja mogoče priti do nekega končnega stanja.

#### 2.3.5 Regularne gramatike

**Def.:** Regularna gramatika je definirana kot četvorček  $G = \langle V, T, P, S \rangle$ , kjer je:

- V množica spremenljivk oz. vmesnih simbolov,  $V \subseteq \Sigma$
- T množica znakov oz. končnih simbolov,  $T\subset \Sigma$
- -P množica produkcij,  $[\alpha_1 \rightarrow \alpha_2]$
- S začetni simbol,  $S \in V$

Pri tem pa regularne gramatike ločimo na levo in desno-regularne.

- Pri levih so produkcije  $P \subset V \times ((V \cup \{\varepsilon\}) \cdot T^*)$
- Pri desnih so produkcije  $P \subset V \times (T^* \cdot (V \cup \{\varepsilon\}))$

To pomeni, da imamo pri levo-regularnih gramatikah vmesne simbole lahko le na skrajni levi, pri desno-regularnih pa le na desni.

#### 2.4 Prevedba med izvedbami regularnih jezikov

Regularni izrazi, regularne gramatike in končni avtomati so vsi enako močni in je mogoče pretvarjati med njimi. V tem odseku bomo predstavili naslednje prevedbe:



#### 2.4.1 Končni avtomat $\rightarrow$ Regularni izraz

Končni avtomat v regularni izraz prevedemo po metodi z eliminacijo. Pri tej metodi izberemo neko vozlišče za eliminacijo, nato pa njegove sosede povežemo med seboj, tako, da na nove povezave zapišemo regularne izraze, ki opisujejo dogajanje v tistem vozlišču. Eliminacijo ponavljamo, dokler nam v avtomatu ne ostanta le dve stanji, nato pa za končni zapis uporabimo naslednji recept:

Na povezavah avtomata imamo zapisane regularne izraze R, S, Q in T,



ki jih prepišemo v en sam regularni izraz oblike:

$$(R + SQ^*T)^*SQ^*$$

#### Primeri:

Primer 1: Zapiši DKA za preverjanje deljivosti s 3 v binarnem sistemu? Zapiši še regularni izraz.



Regularni izraz dobimo po postopku iz 2.4.1:

$$(0+1(01*0)*1)*$$

#### 2.5 Ohranjanje regularnosti jezikov

Regularnost jezika po definiciji ohranjajo operacije:

- $L_1 \cup L_2$  unija
- $L_1 \cdot L_2$  stik
- $L_1^*$  iteracija

Obstajajo konstruktivni postopki, ki kažejo, da regularnost ohranjajo tudi:

•  $L_1 \cap L_2$  - presek Iz avtomatov za  $L_1$  in  $L_2$  zgradimo t.i. produktni avtomat:

$$\begin{split} M_{L_1} &= \{Q_1, \Sigma, \delta_1, q_{1_0}, F_1\} \\ M_{L_2} &= \{Q_2, \Sigma, \delta_2, q_{2_0}, F_2\} \\ M_{L_1} * M_{L_2} &= \{Q_1 \times Q_2, \Sigma, \delta_*, \langle q_{1_0}, q_{2_0} \rangle, F_1 \times F_2\} \end{split}$$

Namesto stanj dobimo pare stanj in moramo preveriti v kateri par pridemo, če gledamo oba stara avtomata, končna pa so tista stanja, ki so končna v obeh starih avtomatih.

$$\delta_*(\langle q_1, q_2 \rangle, a) = \langle \delta_1(q_1, a), \delta_2(q_2, a) \rangle$$

•  $L^R$  - obrat oz. reverz Obrnemo vse povezave, ustvarimo novo začetno stanje, ki gre po  $\varepsilon$  v stara končna, staro začetno stanje pa postane edino končno stanje.

Regularnost ohranjajo tudi vse operacije, ki so sestavljene iz zgoraj naštetih:

- $L_1 \setminus L_2 = L_1 \cap \overline{L}_2$  razlika
- $\overline{L} = \Sigma^* \setminus L$  komplement
- $L_1 \underline{\vee} L_2 = (L_1 \cup L_2) \setminus (L_1 \cap L_2)$  ekskluzivni ali

### Kontekstno-neodvisni jeziki

#### 3.1 Kontekstno-neodvisne gramatike

#### 3.2 Skladovni avtomati

**Def.:** Skladovni avtomat je definiran kot sedmerka  $M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ , kjer je:

- -Q končna množica stanj
- $\Sigma$  vhodna abeceda
- $\Gamma$  skladovna abeceda
- $-\delta$  funkcija prehodov,  $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$
- $-\ q_0$  začetno stanje,  $q_0\in Q$
- $Z_0$  začetni skladovni simbol,  $Z_0 \in \Gamma$
- -F množica končnih stanj

#### 3.2.1 Trenutni opis

**Def.:** Trenutni opis je trojka  $\langle q, w, \gamma \rangle \in Q \times \Sigma^* \times \Gamma^*$ , pri čemer je q trenutno stanje, w preostanek vhodnega niza, ter  $\gamma$  trenutna vsebina sklada

#### 3.2.2 Relacija ⊢

**Def.:** Relacija  $\vdash$  nas pelje iz enega trenutnega opisa v drugega, če je ta prehod predviden v funkciji prehodov  $\delta$ :

$$\langle q, aw, Z\gamma \rangle \vdash \langle p, w, \gamma'\gamma \rangle \iff \langle p, \gamma' \rangle \in \delta(q, a, Z)$$

#### 3.2.3 Jezik skladovnega avtomata

# Slovar

• Razred - razred je množica elementov, ki ga lahko podamo z naštevanjem elementov ali z opisom lastnosti (opisni ali konceptualni razredi)