STORIGHTE STORY

Lycée BILLES

Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

TS1/ Produit vectoriel-Produit mixte

Exercice 1

Soit \vec{u} et \vec{v} deux vecteurs non colinéaires tels que $\vec{u} \wedge \vec{v} = \vec{p}$. Exprimer en fonction de \vec{p} , les vecteurs : a. $\vec{u} \wedge (\vec{u} + \vec{v})$; b. $\vec{v} \wedge (\vec{u} - \vec{v})$; c. $(\vec{u} + \vec{v}) \wedge (\vec{u} - \vec{v})$ d. $(2\vec{u} - 3\vec{v}) \wedge (-5\vec{u} + 4\vec{v})$

Exercice 2

Soit ABCDEFGH un cube d'arête a tel que $(\overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ soit une base orthonormale directe. Déterminer les produits vectoriels ci-dessous :

- a. $\overrightarrow{AB} \wedge \overrightarrow{AD}$; b. $\overrightarrow{AB} \wedge \overrightarrow{AC}$; c. $\overrightarrow{AB} \wedge \overrightarrow{BD}$;
- d. $\overrightarrow{AC} \wedge \overrightarrow{AH}$; e. $\overrightarrow{AC} \wedge \overrightarrow{AG}$; f. $\overrightarrow{AG} \wedge \overrightarrow{AH}$.

Exercice 3

Etant donnés quatre points A, B, C, D de l'espace, montrer que :

- 1. $\overrightarrow{BC} \wedge \overrightarrow{BD} = \overrightarrow{AB} \wedge \overrightarrow{AC} + \overrightarrow{AC} \wedge \overrightarrow{AD} + \overrightarrow{AD} \wedge \overrightarrow{AB}$.
- 2. $\overrightarrow{DA} \wedge \overrightarrow{DB} + \overrightarrow{DB} \wedge \overrightarrow{DC} + \overrightarrow{DC} \wedge \overrightarrow{DA} = \overrightarrow{AB} \wedge \overrightarrow{AC}$.

Exercice 4

Dans l'espace muni du repère $(O, \vec{i}, \vec{j}, \vec{k})$ orthonormal direct; soient A(-2;1;3), B(1;-1;0), C(0;0;-2).

- 1. Montrer que les points A, B et C ne sont pas alignés dans chacun des cas ci-dessous.
- 2. Déterminer l'aire du triangle ABC.
- 3. Déterminer un vecteur normal du plan (ABC).
- 4. Déterminer une équation cartésienne du plan (ABC).

Exercice 5

Dans l'espace muni du repère orthonormal direct $(O, \vec{i}, \vec{j}, \vec{k})$, soient $\vec{u}, \vec{v}, \vec{w}$ les vecteurs définis par : $\vec{u} = \frac{1}{2}(\vec{i} - \sqrt{3}\vec{j})$, $\vec{v} = \frac{1}{4}(\sqrt{6}\vec{i} + \sqrt{2}\vec{j} - 2\sqrt{2}\vec{k})$ et $\vec{w} = \frac{1}{4}(\sqrt{6}\vec{i} + \sqrt{2}\vec{j} + 2\sqrt{2}\vec{k})$.

- 1. Démontrer que (\vec{u} , \vec{v} , \vec{w}) est une base orthonormale.
- 2. Cette base est-elle directe ou indirecte?

Exercice 6

Dans l'espace rapporté à un repère orthonormal direct d'unité graphique 1 cm, on considère les points A(3, 0, -1), B(0, 1, 1), C(2, 1, -1), D(5, 0, 1).

- 1. Montrer que le quadrilatère ABCD est un parallélogramme.
- 2. Déterminer l'aire de ABCD.

Exercice 7

Soit $(\vec{i}, \vec{j}, \vec{k})$ une base orthonormale directe de l'ensemble des vecteurs de l'espace et les vecteurs $\vec{u}(1,-2,1)$, $\vec{v}(2,1,-2)$ et $\vec{w}(1,-3,2)$ dans cette base.

- 1. a. Déterminer les vecteurs $\vec{u} \wedge (\vec{v} \wedge \vec{w})$ et $(\vec{u} \wedge \vec{v}) \wedge \vec{w}$.
- b. Préciser la relation existant entre ces doubles produit de vecteurs.
- 2. Montrer que $\vec{u} \wedge (\vec{v} \wedge \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} (\vec{u} \cdot \vec{v})\vec{w}$.
- 3. Montrer que $(\vec{u} \land \vec{v}) \cdot \vec{w} = \vec{u} \cdot (\vec{v} \land \vec{w})$ sont égaux.

Exercice 8

Dans la base orthonormale directe $(\vec{i}, \vec{j}, \vec{k})$, préciser si les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires ou non.

- a. \vec{u} (1;3;-5); \vec{v} (2;7;-2) et \vec{w} (5;1;0).
- b. \vec{u} (12;-24;37); \vec{v} (31;-15;52) et \vec{w} (17;-29;-43).
- c. \vec{u} (5;-2;7); \vec{v} (12;-4;9) et \vec{w} (9;-2;-3).

Exercice 9

Dans l'espace muni du repère orthonormal direct $(O, \vec{i}, \vec{j}, \vec{k})$, on considère les droites $D_1(A, \vec{u})$ et $D_2(B, \vec{v})$. Calculer la distance entre D_1 et D_2 : $d(D_1, D_2)$ dans chacun des cas ci-dessous.

- a. A(1;3;-5), $\vec{u}(-1;2;1)$ et B(1;2;0), $\vec{v}(1;-2;-1)$.
- b. A(2;1;-1), $\vec{u}(2;-3;-1)$ et B(1;0;-1), $\vec{v}(1;2;3)$.
- c. A(4;0;-2), $\vec{u}(0;3;1)$ et B(0;2;0), $\vec{v}(2;3;-1)$.
- d. A(7;1;0), $\vec{u}(2;-3;1)$ et B(1;1;1), $\vec{v}(-4;6;-2)$.

Exercice 10

Dans l'espace muni du repère orthonormal direct $(O, \vec{i}, \vec{j}, \vec{k})$, on considère les droites D_1, D_2 et D_3 de représentations paramétriques respectives :

$$\begin{cases} x = 3 \\ y = 1 + \mu \ (\mu \in IR); \begin{cases} x = 2t \\ y = 2 - 4t \ (t \in IR); \\ z = -2\mu \end{cases} \\ \begin{cases} x = 1 \\ y = 1 - 2\lambda \ (\lambda \in IR). \\ z = -1 + 4\lambda \end{cases}$$

- a. Démontrer que D_1 et D_3 sont strictement parallèles.
- b. Démontrer que D₂ et D₃ sont sécantes en un point A dont on précisera les coordonnées.
- c. Démontrer que D₁ et D₂ sont non coplanaires
- d. Démontrer que D₁ et D₂ sont orthogonales.
- e. Calculer les distances $d(D_1, D_3)$; $d(D_2, D_3)$ et $d(D_1, D_2)$.

Lycée BILLES

Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

Exercice 11

L'espace est rapporté au repère orthonormal direct $(O, \vec{i}, \vec{j}, \vec{k})$.

Déterminer en utilisant le produit mixte une équation du plan (PQR) avec P(2;-1;1), Q(3;2;-1), R(-1;3;2).

Exercice 12

Dans l'espace rapporté au repère orthonormal direct $(0, \vec{i}, \vec{j}, \vec{k})$, on considère les points A(3, 2, 6), B(1, 2, 4), C(4, -2, 5).

- 1. a. Déterminer les coordonnées du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$. b. En déduire que les points A, B, C ne sont pas alignés.
 - c. Calculer le volume du tétraèdre OABC.
 - 2. Soit H le projeté orthogonal du point O sur le plan (ABC).

Montrer que OH = $\frac{4}{3}$.

Exercice 13

L'espace est rapporté au repère orthonormal direct $(0, \vec{i}, \vec{j}, \vec{k})$. Soit les points A(2;0;0), B(0;3;0) et C(0,0,1);

Calculer de de façon la distance OH du point O au tétraèdre (OABC).

Exercice 14

Soit le cube OABCDEFG représenté par la figure ci-contre:

L'espace est rapporté au repère orthonormé direct

On désigne par a un réel strictement positif. L, M et K sont les points définis par $\overrightarrow{OL} = \overrightarrow{aOC}$, $\overrightarrow{OM} = \overrightarrow{aOA}$ et $\overrightarrow{BK} = a\overrightarrow{BF}$.

- 1. a. Calculer les coordonnées du vecteur $\overrightarrow{DM} \wedge \overrightarrow{DL}$. b. En déduire l'aire du triangle DLM.
 - c. Démontrer que la droite (OK) est orthogonale au plan (DLM).
- 2. On note H le projeté orthogonal de O (et de K) sur l'ensemble des points M de l'espace tel que le plan (DLM).
 - a. Démontrer que \overrightarrow{OM} . $\overrightarrow{OK} = \overrightarrow{OH}$. \overrightarrow{OK} .
 - b. Les vecteurs \overrightarrow{OH} et \overrightarrow{OK} étant colinéaires, on note

x le réel tel que $\overrightarrow{OH} = x\overrightarrow{OK}$.

Démontrer que $x = \frac{a}{a^2 + 2}$.

- c. En déduire que H appartient au segment [OK].
- c. Déterminer les coordonnées de H.
- d. Exprimer \overrightarrow{HK} en fonction de \overrightarrow{OK} . En déduire que $HK = \frac{a^2 - a + 2}{\sqrt{a^2 + 2}}.$

Exercice 15

Dans l'espace rapporté au repère orthonormal $(0, \vec{i}, \vec{j}, \vec{k})$, On considère les points A(1;0;0), B(0;1;1), C(0;-1;-1).

- 1. a. Calculer l'aire du triangle ABC.
 - b. Déterminer une équation cartésienne du plan (ABC).
 - c. Vérifier que D n'appartient pas au plan (ABC).
- 2. a. Déterminer un système d'équations paramétriques de la droite (\triangle) passant par D et perpendiculaire au plan (ABC).
 - b. Déterminer les coordonnées du point H intersection de la droite (\triangle) et du plan (ABC).
 - c. En déduire la distance du point D au plan (ABC).
- 3. Calculer le volume du tétraèdre ABCD.
- a. Déterminer une équation cartésienne du plan médiateur (P) du segment [DC].
- b. Déterminer un système d'équations paramétriques de la droite (Δ') intersection des plans (P) et (ABC).

Exercice 16

L'espace est rapporté au repère orthonormal direct $(O, \vec{i}, \vec{j}, \vec{k})$. On considère la droite (D) passant par A (1,-2,0) et dirigée par $\vec{u}(1, 1, -1)$. Soit B(0,1,-2) un point de l'espace.

- 1. Déterminer les coordonnées du point H, projeté orthogonal de B sur (D).
- 2. Calculer de deux manières différentes la distance de B à la droite (D).

Exercice 17

Soit dans l'espace u triangle ABC. Déterminer

- a. $(\overrightarrow{MA} 3\overrightarrow{MB}) \wedge (\overrightarrow{MB} + 3\overrightarrow{MC}) = \overrightarrow{0}$.
- b. $(\overrightarrow{MA} + 2\overrightarrow{MB} 5\overrightarrow{MC}) \wedge (\overrightarrow{MA} + \overrightarrow{MB}) = \overrightarrow{0}$.
- c. $(\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}) \wedge (\overrightarrow{MA} + 2\overrightarrow{MB} 3\overrightarrow{MC}) = \overrightarrow{0}$