

NETWORK ASSISTED RATE ADAPTATION FOR CONVERSATIONAL VIDEO OVER LTE

CSWS'14

{Ylva.Timner, Jonas.Pettersson, Hans.Hannu, Min.W.Wang, Ingemar.S.Johansson}@ericsson.com

ENDPOINT BASED RATE ADAPTATION

- > Examples
 - Google Congestion Control (GCC)
 - Self-clocked rate adaptation (SCReAM)
- > Bandwidth is estimated based on delay and/or packet loss
- > Path capacity is probed

ENDPOINT BASED RATE ADAPTATION ISSUES

- > Difficult to precisely determine congestion
 - -Over-reaction to handover
 - -Over-reaction to congestion
- > Negative impact from other cross traffic
- > Frequent (and large) bitrate changes
- Network service optimizations → congestion may become invisible to end users
- > Fairness between users difficult to achieve

NETWORK ASSISTED RATE ADAPTATION

- Rate adaptation algorithm placed close to the air interface bottle neck
- > A session controller is in control of the bitrates

NETWORK ASSISTED RATE ADAPTATION

- > Two algorithm alternatives examined:
 - -Bitrate fair
 - -Resource fair
- Network assisted rate values can be conveyed in RTP header extensions (RFC5285) or in RTCP application layer feedback messages (RFC4585)
 - → framework can complement an endpoint based solution
- > RRC signaling can be used to forward the bitrates to the session controller or directly to the terminals.

BITRATE FAIR

- > All video users in a cell get the same rate
- A utilization target (e.g. 80%) controls the resource split between video and other users

constant bitrate (bitrate fair)

RESOURCE FAIR (PROPORTIONALLY FAIR)

All users (regardless of service) should get their fair share of the radio resources

LTE SCHEDULING BASICS

- The scheduler allocates transmission resources to bearers (users)
- Scheduling interval: 1ms
- A scheduling weight controls the likelihood that a bearer gets transmission resources
- Different scheduling algorithms
 - -Proportional fair
 - Delay (optimized queuing delay)

BEARER CONFIGURATIONS

- > FTP on "best effort" bearer:
 - Proportional fair
- Conversational bearer:
 - Delay scheduling

BITRATE FAIR ALGORITHM

Adaptation based on channel utilization measures:

-CU_P:video traffic +tcp traffic.

CU_{HP}:
 retransmissions +
 video packets above
 delay threshold

BITRATE FAIR EXAMPLE

- >>18 s: low CU, ramp up rate.
- > 18-20s good utilization
- > Delays are rising at 21s
- Detected by High CU_{HP}

Recommended

20

time [s]

21

22

Rate in Cell

17

RESOURCE FAIR ALGORITHM

> Determine target utilization u^* (equal split):

$$u^* = \frac{1}{N_{video} + N_{other}}$$

Use measured channel quality (potential rate) to determine target rate, R, for each user i:

$$u_i = \frac{R_i}{Q_i} \implies R_i^* = u^* Q_i$$

A closed loop part complements with compensation for possible estimation errors RESOURCE FAIR EXAMPLE

- > Rate changes
- Ability to keep fairness target

SIMULATION SCENARIO

- > 21 cells, 3GPP Case 1, 5 MHz
- Conversational video: 150 kbps 1500 kbps
- Other traffic: Small file download 2 Mbit/s/cell

BITRATE

> Resource fair achieves the highest average bitrate among the network assisted rate adaptation algorithms

> ...but is more conservative than endpoint solution at high

load

LATENCY

- > Both network assisted algorithms manages to ensure low latency even at high load levels
- > Self-clocked algorithm works well only at lower load levels

CONCLUSION

- > Flexible way to distribute system resources between conversational video and other best effort traffic
 - Fairness between users can be controlled
- > The use of delay schedulers:
 - Gives very low latency regardless of load
 - Increased grace time upon congestion
- > Precise discrimination between congestion and other noncongestion related impairments

ERICSSON

RESOURCE FAIR CLOSED LOOP PART

- > Add a correction factor γ to the open loop:
- $R_i^* = u^* Q_i (1 + \gamma)$
- Compute expected utilization:
- $U_{video}^* = \frac{N_{video}}{N_{video} + N_{other}}$ if unlimited rates, $\sum \frac{\text{limit}(R_i^*)}{Q_i(1+\gamma)}$ otherwise
- Adapt γ based on the relative error versus the measured utilization Ûvideo :
- $e = U_{video}^* \widehat{U}_{video}$
- $\gamma_k = \gamma_{k-1} + K_p \left[\left(1 + \frac{\Delta}{T_i} \right) e_k e_{k-1} \right]$

ERICSSON