MA2501 NUMERICAL METHODS EXAM CONT. SPRING 2022 NTNU

ENGLISH

i rosioni o.	Total:	100 points
Problem 6:		20 points
Problem 5:		15 points
Problem 4:		15 points
Problem 3:		20 points
Problem 2:		15 points
Problem 1:		15 points

Problem 1 (15 points)

- (i) (3 point) Consider the following interpolation problem: let $f(x) = e^{-x}$. We want to construct a polynomial p(x) of degree at most two satisfying p(0) = f(0), p'(0) = f'(0), and p(1) = f(1).
- (ii) (12 point) Let $f(x) = e^{-x}$, and $x_1, ..., x_n$ be distinct n nodes on [0, 1]. Prove the following: if there exists a solution p(x) of degree n for the interpolation problem with conditions $p(x_i) = f(x_i)$ for i = 1, ..., n, and $p'(x_1) = f'(x_1)$, then the solution is unique.

[Solution] (i) Let $p(x) = a_2x^2 + a_1x + a_0$. We have $p(0) = a_0 = 1$, $p'(0) = a_1 = -1$, and p(1) = 1/e. Thus

$$p(x) = \frac{x^2}{e} - x + 1.$$

(ii) Assume that there exist two different polynomials p_n and q_n , which satisfy the given interpolation problem and are of degree at most n. Let $r = p_n - q_n$, then r has n distinct zeros and r is of degree at most n. Due to Rolle's theorem, r' has n-1 distinct zeros, which are different from x_1 . Thus r' has n distinct zeros but r' is a polynomial of degree at most n-1. This means r is a constant function. Since r has zeros, r is always zero. This contradicts the assumption that p_n and q_n are different. Therefore the solution is unique.

Problem 2 (15 points)

Let \mathcal{P}_n be the set of all polynomials of degree at most n.

(i) (5 point) Find the polynomial $p_1 \in \mathcal{P}_1$ that minimizes $||p_1 - x^2 - x - 2||_{\infty}$ on $x \in [-1, 1]$.

Date: today.

- (ii) (5 point) Find the polynomial $p_n \in \mathcal{P}_n$ that minimizes $||p_n x^{n+1} x^{n-1} + 1||_{\infty}$ on $x \in [-1, 1]$.
- (iii) (5 point) Let p_n be the solution of (ii). Find all $x \in [-1,1]$ where extrema of $(p_n x^{n+1} x^{n-1} + 1)$ are attained.

[Solution]

(i) By Theorem 8.6 from Süli & Mayers, p_1 is such a polynomial that

$$p_1 - x^2 - x - 2 = -2^{-1}T_2(x),$$

where $T_2(x)$ is the Chebyshev polynomial of degree 2. Thus

$$p_1 = -2^{-1}T_2(x) + x^2 + x + 2\left(=x + \frac{5}{2}\right).$$

(The sign in front of T_2 can also be opposite.)

(ii) As before, using Theorem 8.6 from Süli & Mayers, p_n is such a polynomial that

$$p_n - x^{n+1} - x^{n-1} + 1 = -2^{-n} T_{n+1}(x),$$

where $T_n(x)$ is the Chebyshev polynomial of degree n. Thus

$$p_n = -2^{-n}T_{n+1}(x) + x^{n+1} + x^{n-1} - 1\left(= -2^{-n}\cos((n+1)\cos^{-1}(x)) + x^{n+1} + x^{n-1} - 1\right).$$

(The sign in front of T_{n+1} can also be opposite.)

(iii) Since $p_n - x^{n+1} - x^{n-1} + 1 = -2^{-n}T_{n+1}(x)$, we only need to find extrema of $T_{n+1}(x)$. We have

$$T_{n+1}(x) = \cos\left((n+1)\cos^{-1}x\right),$$

and $\cos(y)$ gives extrema on $y = k\pi$ for any integer k. This means we want to find x such that $(n+1)\cos^{-1}(x) = k\pi$. Thus the solutions are

$$x = \cos\left(\frac{k\pi}{n+1}\right), \ k = 0, ..., n+1.$$

Problem 2 (20 points)

(i) (5 points) Consider the following composite rectangle rule on [0,1]:

$$Q_n(f) := \frac{1}{n} \sum_{i=1}^n f\left(\frac{i}{n}\right).$$

Let $f(x) = x^2 - x + \frac{1}{6}$. Compute the exact quadrature error

$$\int_0^1 f(x) \, \mathrm{d}x - Q_n(f),$$

and conclude the order of convergence for this function.

You may use $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

(ii) (15 points) Consider the composite trapezoidal rule of n + 1 nodes on [0,1]. By using the Euler–Maclaurin expansion formula, calculate the exact quadrature error of the composite trapezoidal rule for the integrand function

$$g(x) = x^4 - 2x^3 + x^2 - \frac{1}{30}.$$

Note that first several Bernoulli numbers are $B_1 = -1/2$, $B_2 = 1/6$, $B_3 = 0$, $B_4 = -1/30$, $B_5 = 0$, $B_6 = 1/42$.

[Solution] (i) $\int_0^1 f(x) dx = 0$. We also have

$$Q_n(f) = \frac{1}{n} \left(\sum_{i=1}^n \left(\frac{i}{n} \right)^2 - \left(\frac{i}{n} \right) + \frac{1}{6} \right)$$

$$= \frac{1}{n} \left(\left(\frac{n(n+1)(2n+1)}{6n^2} \right) - \left(\frac{n(n+1)}{2n} \right) + \frac{n}{6} \right)$$

$$= \frac{1}{6n^2}.$$

Thus the exact error is given by $-\frac{1}{6n^2}$. This gives the second order convergence.

(ii) The Euler–Maclaurin expansion formula states that there exists such $\xi \in [0,1]$

$$I(f) - T_n(f) = -\sum_{r=1}^k \frac{B_{2r}}{(2r)!} \left(\frac{1}{n}\right)^{2r} \left(f^{(2r-1)}(1) - f^{(2r-1)}(0)\right)$$
$$-\frac{B_{2k+2}}{(2k+2)!} \left(\frac{1}{n}\right)^{2k+2} f^{(2k+2)}(\xi),$$

where T_n is the composite trapezoidal rule and $f \in C^{2k+2}$. Since our integrand g is infinitely smooth, we can apply the formula for any positive integer k. Notice that $g^{(r)} = 0$ for $r \geq 5$. Thus we have

$$I(g) - T_n(g) = -\sum_{r=1}^{2} \frac{B_{2r}}{(2r)!} \left(\frac{1}{n}\right)^{2r} \left(g^{(2r-1)}(1) - g^{(2r-1)}(0)\right)$$
$$= \frac{B_4}{(4)!} \left(\frac{1}{n}\right)^4 24 = \frac{1}{30n^4}.$$

PROBLEM 4 (15 points)

Exercise: Provide a detailed answer for each of the following problems.

- (1) (1 point) We consider a $n \times n$ matrix M with eigenvalues $\alpha_1, \ldots, \alpha_n$. Show that the determinant of M equals the product of its eigenvalues (provide details).
- (2) (1 point) We consider a $n \times n$ matrix M. Prove that M is singular if and only if zero is an eigenvalue of M.
- (3) (2 points) Show that the spectral radius ρ cannot be a matrix norm. (Hint: find a counterexample to the triangle inequality.)
- (4) (4 point) We consider a symmetric $n \times n$ matrix M. Show that the 2-norm of M equals its spectral radius.
- (5) (5 points) Consider a nonsingular $n \times n$ matrix M and its condition number $\kappa_2(M)$ (defined with respect to the 2-norm). Let α_1 and α_n be the smallest respectively largest eigenvalues of the matrix M^TM . Show that $(\kappa_2(M))^2 = \alpha_n/\alpha_1$. (2 points) In case of an orthogonal matrix M, what can you deduce for $\kappa_2(M)$?

Solution:

(1) Recall that $det(M-xid) = \prod_{i=1}^{n} (\alpha_i - x) = P(M,x)$. Then $P(M,0) = \prod_{i=1}^{n} \alpha_i = det(M)$.

- (2) Recall that a matrix M is singular if and only if its determinant is zero. Therefore, using (1), at least one of its eigenvalues must be zero.
- (3) For instance:

$$M_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad M_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

For these matrices, we have $\rho(M_1) = 1 = \rho(M_2)$, but $\rho(M_1 + M_2) = 3$, which shows that $\rho(M_1 + M_2) > \rho(M_1) + \rho(M_2)$.

- (4) Assuming M to be symmetric, we have $M^{\mathrm{T}}M = M^2$. From the eigenvalue equation $Mv = \alpha v$ follows $MMv = \alpha^2 v$. This implies $\rho(M^{\mathrm{T}}M) = \rho(MM) = \rho(M)\rho(M)$. Therefore, $||M||_2 = \rho(M^{\mathrm{T}}M)^{1/2} = \rho(M)$.
- (5) Recall that $||M||_2^2 = \rho(M^T M)$, which is the largest eigenvalue of $M^T M$. Let's denote it by α_n . $||M^{-1}||_2^2 = \rho(M^{-1}^T M^{-1}) = \rho((MM^T)^{-1})$. The eigenvalues of MM^T equal those of $M^T M$ and the eigenvalue of $(MM^T)^{-1}$ is the reciprocal of that of MM^T . Hence, $\rho((MM^T)^{-1}) = 1/\alpha_1$, where α_1 is the smallest eigenvalue of $M^T M$. Therefore, $\kappa_2^2(M) = ||M||_2^2 ||M^{-1}||_2^2 = \alpha_n/\alpha_1$.

For an orthogonal matrix M, we know that $M^{T}M$ equals the identity matrix. All the eigenvalues of the latter are equal to one. Hence, condition number $\kappa_2(M)$ equals one.

Exercise: Provide a detailed answer for the following problem.

Consider a function $f: \mathbb{R}^m \to \mathbb{R}^m$, $f(y) = (f^1(y_1, \dots, y_m), \dots, f^m(y_1, \dots, y_m))^T$. Recall that for a vector $v \in \mathbb{R}^m$, the transposed vector is denoted v^T . Show that the identity holds

$$(f_y f)_y f = f^{\mathrm{T}} f_{yy} f - f_y^2 f.$$

Use the upper/lower notation for components respectively partial derivations

$$\frac{\partial f^i}{\partial y_k} =: f_k^i \qquad \frac{\partial^2 f^i}{\partial y^k \partial y^l} =: f_{kl}^i.$$

 f_y denotes the Jacobian matrix of f = f(y), i.e., the matrix with entries $(f_y)_{ij} = f_j^i$. f_y^2 is the matrix product and f_{yy} has entries (f_{kl}^i) .

Solution: This is an identity among vectors. We show the identity component-wise (1 point). Using the Leibniz (product) rule, the i-th component on the lefthand side is

$$(f_k^i f^k)_j f^j = f_{kj}^i f^k f^j + f_k^i f_j^k f^j.$$
 (7 points)

The i-th component on the righthand side is

$$f^k f_{kn}^i f^n + f_k^i f_j^k f^j$$
. (7 points)

Here $f_k^i f_j^k$ is the ij-th component of f_y^2 . The two sides coincide.

Exercise: Provide a detailed answer for each of the following problems.

Consider the system of differential equations

(1)
$$F^{(3)}(t) - t^2 F(t) F^{(2)}(t) + F(t) G^{(1)}(t) = 0$$
$$G^{(2)}(t) - tG(t) G^{(1)}(t) - 4F^{(1)}(t) = 0.$$

- (1) (5 points) Rewrite the system (1) as a system of first-order differential equations of the form $y^{(1)}(t) = y'(t) = f(t, y)$.
- (2) (5 points) Compute the Jacobian matrix (with respect to y-entries) $f_y(t, y)$ for the system displayed in (1).
- (3) (10 points) Determine a Lipschitz constant L for f on $[0,1] \times \{y \in \mathbb{R}^5 | ||y||_1 \le 1\}$ using the 1-norm $||\cdot||_1$.

Solution:

(1) Consider the vector $y^{\mathrm{T}} = (y_1, \dots, y_5)$ defined by

$$y_1 = F$$
 $y_2 = F^{(1)}$ $y_3 = F^{(2)}$ $y_4 = G$ $y_5 = G^{(1)}$.

Then we have the 1st order system:

$$\frac{dy_1}{dt} = y_2 \quad \frac{dy_2}{dt} = y_3 \quad \frac{dy_3}{dt} = t^2 y_1 y_3 - y_1 y_5 \quad \frac{dy_4}{dt} = y_5 \quad \frac{dy_5}{dt} = t y_4 y_5 + 4 y_2.$$

(2) The Jacobian is given by

$$\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
t^2y_3 - y_5 & 0 & t^2y_1 & 0 & -y_1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 4 & 0 & ty_5 & ty_4
\end{pmatrix}$$

(3) Recall the result/method of Ex. 5 in the first exam:

Consider the C^1 -function $f(t,y) = (f_1(t,y), \dots, f_n(t,y))^T : [u,v] \times \mathbb{R}^n \to \mathbb{R}^n$. Let $A_{ij} \in \mathbb{R}_+$ be the constant entries of the $n \times n$ -matrix A. Suppose that on $[u,v] \times \mathbb{R}^n$ we have

$$\left| \frac{\partial f_i(t,y)}{\partial y_j} \right| \le A_{ij}, \quad i,j=1,\ldots,n.$$

Determine a Lipschitz constant L of f(t,y) in the 1-norm $||\cdot||_1$. Give L in terms of the corresponding matrix norm of A. (Hint: use the mean value theorem for functions of several variables.)

Now, consider

$$\left|\frac{\partial f^i}{\partial y_j}\right| \leq \begin{pmatrix} 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ |y_3| + |y_5| & 0 & |y_1| & 0 & |y_1|\\ 0 & 0 & 0 & 0 & 1\\ 0 & 4 & 0 & |y_5| & |y_4| \end{pmatrix} \leq \begin{pmatrix} 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 1 & 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 & 1\\ 0 & 4 & 0 & 1 & 1 \end{pmatrix} =: A$$

The last inequality holds on $[0,1] \times \{y \in \mathbb{R}^5 | ||y||_1 \le 1\}$. A valid Lipschitz constant is $L = ||A||_1 = 5$.