Homework 6

D. Zack Garza

October 23, 2019

Contents

Homework Problems				
1.1	Problem 1			
1.2	Problem 2			
1.3	Problem 3			
1.4	Problem 4			
1.5	Problem 5			
	Problem 6			
	Problems			
2.1	Problem 1			
2.2	Problem 2			
2.3	Problem 3			

1 Homework Problems

1.1 Problem 1

Todo

1.2 Problem 2

We can note that since f has 4 roots, the Galois group G of its splitting field will be a subgroup of S_4 . Moreover, G must be a transitive subgroup of S_4 , i.e. the action of G on the roots of f should be transitive. This reduces the possibilities to $G \cong S^4$, A^4 , D^4 , \mathbb{Z}_4 , \mathbb{Z}_2^2 .

Since f has exactly 2 real roots and thus a pair of roots that are complex conjugates, the automorphism given by complex conjugation is an element of G. But this corresponds to a 2-cycle $\tau = (ab)$, and we can then make the following conclusions:

- Not A_4 : A_4 contains only even cycles, and τ is odd.
- Not Z_4 : This subgroup is generated by a single 4-cycle σ , which up to conjugacy is (1234), and σ^n is not a 2-cycle for any n.
- Not \mathbb{Z}_2^2 : In order to be transitive, this subgroup must be $\{e, (12)(34), (13)(24), (14)(23)\}$, which does not contain τ .

The only remaining possibilities are S^4 and D^4 . \square

- 1.3 Problem 3
- 1.4 Problem 4
- 1.5 Problem 5
- 1.6 Problem 6
- 2 Qual Problems
- 2.1 Problem 1
- 2.2 Problem 2
- 2.3 Problem 3