

ПЕРІЕХОМЕNA:

- 1. Τριγωνομετρικές Συναρτήσεις
- 2. Υψώσεις σε Δύναμη και Λογάριθμοι
- 3. Διασπάσεις Αριθμών και Απόλυτη Τιμή
- 4. Συνδυαστικοί και άλλοι Υπολογισμοί
- 5. Υπολογισμοί μεγαλύτερης ακρίβειας

Γιώργος Μ.

Σμαραγδένιος Χορηγός Μαθήματος

Νίκος Θ.

Ασημένιος Χορηγός Μαθήματος

1. Τριγωνομετρικές Συναρτήσεις

- modules 🦺 psounis 🛗

- To module math περιέχει συνήθεις μαθηματικές συναρτήσεις.
- Είναι ένα «περίβλημα» της βιβλιοθήκης math.h της C επαυξημένο με μερικές ακόμη συναρτήσεις.

Σταθερές:

σταθερά	τιμή
pi	$\pi = 3.141592 \dots$
е	$e = 2.718281 \dots$
tau	$\tau = 6.283185 \dots$
inf	+∞
nan	not a number (NaN)

1. Τρινωνομετρικές Συναρτήσεις

συνάρτηση	επεξήγηση
sin(x)	ημίτονο του χ
cos(x)	συνημίτονο του χ
tan(x)	εφαπτομένη του χ
asin(x)	τόξο ημιτόνου του χ
acos(x)	τόξο συνημιτόνου του χ
atan(x)	τόξο εφαπτομένης του χ
atan2(x, y)	τόξο εφαπτομένης του x/y

Το $x = \epsilon i v \alpha i$ σε ακτίνια. Και υπάρχουν και οι εκδοχές sinh, cosh κ. $\lambda \pi$. που υπολογίζουν το υπερβολικό ημίτονο, συνημίτονο κ.λπ.

Παράδειγμα 1:

from math import pi, sin, cos, tan for i in range(4): v = i*pi/2 $print(f''sin({i}*PI/2)={sin(v)}'')$ $print(f''cos({i}*PI/2)={cos(v)}'')$ $print(f''tan({i}*PI/2)={tan(v)}")$

Μετατροπές από ακτίνια σε μοίρες και αντίστροφα:

degrees(x)	Μετατρέπει από ακτίνια σε μοίρες
radians(x)	Μετατρέπει από μοίρες σε ακτίνια

Ορίζονται επίσης για τον υπολογισμό αποστάσεων:

συνάρτηση	επεξήγηση
dist(p,q)	Ευκλείδια απόσταση των σημείων p, q Τa p,q είναι ακολουθίες που απεικονίζουν σημεία.
hypot(*coord)	Ευκλείδια νόρμα του σημείου: $\sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$

Άσκηση 1:

Υπολογίστε την απόσταση των σημείων (0,0,0) και (1,2,1) και τη νόρμα του (1,2,1)

Υψώσεις σε Δύναμη

συνάρτηση	επεξήγηση
pow(x,y)	x^y
exp(x)	e^x
sqrt(x)	\sqrt{x}
isqrt(x)	$\lfloor \sqrt{x} \rfloor$
frexp(x)	επιστρέφει $0.5 \le m \le 1$ και $e \in \mathbb{Z}$: $x = m \cdot 2^e$
ldexp(x,y)	$x \cdot 2^y$
expm1(x)	$e^x - 1$

Προσοχή:

Υπάρχει και built-in συνάρτηση pow και ο τελεστής **. Η διαφορά είναι ότι η pow της math κάνει πρώτα μετατροπή των ορισμάτων της σε float.

Παρατήρηση:

- pow(1.0,x)=1.0 και pow(x, 0.0)=1.0
- pow(-float, float): προκαλεί εξαίρεση ValueError
- Η expm1(x) έχει μικρότερο σφάλμα από την exp(x)-1
- sgrt(<0): προκαλεί εξαίρεση ValueError

Άσκηση 2:

Μελετήστε τις επιστρεφόμενες τιμές της frexp για τις διαδοχικές τιμές του x από το 0 έως το 100.

Λογάριθμοι:

συνάρτηση	επεξήγηση
log(x)	$\log_e x = lnx$
log(x, base)	log _{base} x
log10(x)	$\log_{10} x$
log2(x)	$\log_2 x$
log1p(x)	$\log_e(1+x)$

Παράδειγμα 2:

from math import e, log, log10 print(log(e))

for x in [1,10,100,1000]: $print(f''log(\{x\}) = \{log10(x)\}'')$

Άσκηση 3:

Ορίστε μία συνάρτηση που να υπολογίζει τη λογιστική συνάρτηση

$$f(x) = \frac{1}{1 + e^{-x}}$$

3. Διασπάσεις Αριθμών και Απόλυτη Τιμή

modules 🤚 psounis 👊

Άνω και Κάτω Ακέραιος:

συνάρτηση	επεξήγηση
floor(x)	κάτω ακέραιος: [x]
ceil(x)	άνω ακέραιος: [x]
modf(x)	Επιστρέφει το ακέραιο και το πραγματικό μέρος του x
fmod(x,y)	Επιστρέφει το πραγματικό μέρος της διαίρεσης των πραγματικών x,y

Παράδειγμα 3:

from math import floor, ceil

print(floor(5.1), floor(5))
print(ceil(-3.4), ceil(-3))

Άσκηση 4:

Πειραματιστείτε με την modf (π.χ. εκτυπώστε το ακέραιο και το πραγματικό μέρος του pi)

Απόλυτη τιμή:

συνάρτηση	επεξήγηση
fabs(x)	απόλυτη τιμή του x: x
copysign(x,y)	Επιστρέφει την απόλυτη τιμή του x, με το πρόσημο του y

Παρατήρηση:

Ισοδύναμη λειτουργία έχει και η built-in συνάρτηση abs(x)

Άσκηση 5:

Υπολογίστε την απόλυτη τιμή ενός αρνητικού αριθμού, του μηδέν και ενός θετικού αριθμου, τόσο με την abs όσο και με την fabs

4. Συνδυαστικοί και άλλοι υπολογισμοί

modules 🤚 psounis 👊

Συνδυαστικοί Υπολογισμοί:

συνάρτηση	επεξήγηση
factorial(n)	n!
comb(n,k)	$C(n,k) = \frac{n!}{k! (n-k)!}$
perm(n,k)	$P(n,k) = \frac{n!}{(n-k)!}$

Παρατήρηση:

• n,k πρέπει να είναι ακέραιοι. Αλλιώς προκαλούνται εξαιρέσεις TypeError ή ValueError.

Άσκηση 6:

Μελετήστε τις εξαιρέσεις που προκαλούνται στην comb(n,k) αν εισάγουμε ορίσματα που είναι αρνητικοί ή πραγματικοί και κάνετε κατάλληλο χειρίσμό αυτών (εκτυπώσεις αντιστοίχων μηνυμάτων)

Σημαντικές Συναρτήσεις:

συνάρτηση	επεξήγηση
gcd(n,m)	Μέγιστος Κοινός Διαιρέτης των n,m
erf(z)	Error Function του x: $\frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$
erfc(z)	Complementary Error Function $tov x$: $1 - erf(x)$
gamma(z)	$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$
lgamma(z)	$\ln\Gamma(z)$

Άσκηση 7:

Υπολογίστε το $\Gamma(z)$ για z=2, 3,..., 10 και το n! για n=1,2,...,9

5. Υπολογισμοί Μεγαλύτερης Ακρίβειας και Έλεγχοι

modules 🤚 psounis 🛗

Άθροισμα – Γινόμενο Στοιχείων

συνάρτηση	επεξήγηση
fsum(iter)	Επιστρέφει το άθροισμα των floats του iterable (π.χ. λίστα)
prod(iter)	Επιστρέφει to γινόμενο των στοιχείων του iterable

Παρατήρηση:

• Ισοδύναμη λειτουργία έχει και η built-in συνάρτηση sum(x)

Άσκηση 8:

Εξετάστε τη διαφορά στο αποτέλεσμα μεταξύ της built-in συνάρτησης sum και της fsum αθροίζοντας τα στοιχεία ενός πίνακα ακεραίων.

Άσκηση 9:

Υπολογίστε με την prod το γινόμενο των αριθμών από το 1 έως το 100 σε μία γραμμή κώδικα.

Έλεγχοι:

συνάρτηση	επεξήγηση
isclose(a,b, rel_tol=1e-09, abs_tol=0.0)	Επιστρέφει T/F ανάλογα με το αν τα a,b είναι "κοντά" είτε αν $ a-b \leq abs_tol$ είτε π.χ rel_tol=0.05 (απέχουν 5%)
isinf(x)	True: αν x=inf
isfinite(x)	True: αν x≠inf και x≠ nan
isnan(x)	True: αν x=nan

Παράδειγμα 4: isclose.py

from math import isclose

print(isclose(0.001,0.005,abs_tol=1e-3))
print(isclose(0.0001,0.0005,abs_tol=1e-3))

Άσκηση 10:

Ελέγξτε αν το nan είναι ίσο με το nan με την ισότητα.