# Data Preparation (Penguins)

## Delete all variables

```
rm( list = ls() )
```

## Meet the Palmer penguins



## Data Preparation and first Insights

## **Import Data**

- Download the data from Moodle
- Import the data using the function read.csv()
- Create a dataframe for it using the function data.frame()
- Have a look at the first rows using the function head()
- Have a look at the last rows using the function tail()

data = read.csv("C:/Users/Dari-Laptop/Desktop/FH Karnten - Master - AppDs/StatisticsAppDSLaptop/penguin

#### What are the column names of the data?

Use the function names()

```
names(data)
   [1] "studyName"
##
                               "Sample.Number"
                                                      "Species"
  [4] "Region"
                                                      "Stage"
                               "Island"
##
## [7] "Individual.ID"
                               "Clutch.Completion"
                                                      "Date.Egg"
## [10] "Culmen.Length..mm."
                               "Culmen.Depth..mm."
                                                      "Flipper.Length..mm."
## [13] "Body.Mass..g."
                                                      "Delta.15.N..o.oo."
                               "Gender"
## [16] "Delta.13.C..o.oo."
                               "Comments"
```

## What are the data types of each column?

```
str(data)
```

```
## 'data.frame':
                  344 obs. of 17 variables:
                              "PAL0708" "PAL0708" "PAL0708" "PAL0708" ...
   $ studyName
                       : chr
## $ Sample.Number
                      : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Species
                      : chr
                              "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeli
## $ Region
                              "Anvers" "Anvers" "Anvers"
                       : chr
                              "Torgersen" "Torgersen" "Torgersen" ...
## $ Island
                       : chr
                       : chr "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" "Adult,
## $ Stage
## $ Individual.ID : chr
                              "N1A1" "N1A2" "N2A1" "N2A2" ...
## $ Clutch.Completion : chr
                              "Yes" "Yes" "Yes" "Yes" ...
## $ Date.Egg
                       : chr "11/11/07" "11/11/07" "11/16/07" "11/16/07" ...
## $ Culmen.Length..mm. : num 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
## $ Culmen.Depth..mm. : num 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
## $ Flipper.Length..mm.: int 181 186 195 NA 193 190 181 195 193 190 ...
##
   $ Body.Mass..g. : int
                              3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
                       : chr "MALE" "FEMALE" "FEMALE" "" ...
## $ Gender
## $ Delta.15.N..o.oo. : num NA 8.95 8.37 NA 8.77 ...
## $ Delta.13.C..o.oo. : num NA -24.7 -25.3 NA -25.3 ...
## $ Comments
                       : chr "Not enough blood for isotopes." "" "Adult not sampled." ...
```

#### Data types:

- Nominal:
  - studyName
  - Species
  - Region
  - Island
  - Gender
  - Comments
  - Clutch.Completion
- Ordinal:
  - Individual.ID
  - Date

- Discrete:
  - Body Mass
  - Sample.Number
  - Flipper.length
- Continuous:
  - Culmen.Length
  - Culmen.Depth
  - Delta.15
  - Delta13

#### Delete some columns

Delete the following columns since we won't need them in this class:

- studyName,
- Region,
- Stage,
- Clutch.Completion,
- Date.Egg,
- Delta.15.N..o.oo.,
- Delta.13.C..o.oo.,
- Comments

Use therefore the function %in%

```
Sample.Number
                                                 Species
                                                            Island Individual.ID
##
## 1
                 1 Adelie Penguin (Pygoscelis adeliae) Torgersen
                                                                             N1A1
                 2 Adelie Penguin (Pygoscelis adeliae) Torgersen
## 2
                                                                             N1A2
                 3 Adelie Penguin (Pygoscelis adeliae) Torgersen
## 3
                                                                             N2A1
                 4 Adelie Penguin (Pygoscelis adeliae) Torgersen
## 4
                                                                             N2A2
                 5 Adelie Penguin (Pygoscelis adeliae) Torgersen
## 5
                                                                             N3A1
                 6 Adelie Penguin (Pygoscelis adeliae) Torgersen
## 6
                                                                             N3A2
##
     Culmen.Length..mm. Culmen.Depth..mm. Flipper.Length..mm. Body.Mass..g. Gender
## 1
                   39.1
                                      18.7
                                                            181
                                                                          3750
                                                                                 MALE
                   39.5
## 2
                                      17.4
                                                            186
                                                                          3800 FEMALE
## 3
                   40.3
                                      18.0
                                                            195
                                                                          3250 FEMALE
## 4
                     NA
                                        NA
                                                             NA
                                                                            NA
## 5
                   36.7
                                      19.3
                                                            193
                                                                          3450 FEMALE
## 6
                   39.3
                                      20.6
                                                            190
                                                                          3650
                                                                                 MALE
```

### Rearrange the data

Put the column "Individual.ID" to first column

| ## |   | Individual.ID | Sample.Number |        |           |             | Species    | Isla    | and    |
|----|---|---------------|---------------|--------|-----------|-------------|------------|---------|--------|
| ## | 1 | N1A1          | 1             | Adelie | Penguin   | (Pygoscelis | adeliae)   | Torgers | sen    |
| ## | 2 | N1A2          | 2             | Adelie | Penguin   | (Pygoscelis | adeliae)   | Torgers | sen    |
| ## | 3 | N2A1          | 3             | Adelie | Penguin   | (Pygoscelis | adeliae)   | Torgers | sen    |
| ## | 4 | N2A2          | 4             | Adelie | Penguin   | (Pygoscelis | adeliae)   | Torgers | sen    |
| ## | 5 | N3A1          | 5             | Adelie | Penguin   | (Pygoscelis | adeliae)   | Torgers | sen    |
| ## | 6 | N3A2          | 6             | Adelie | Penguin   | (Pygoscelis | adeliae)   | Torgers | sen    |
| ## |   | Culmen.Length | mm. Culmen.D  | epthmr | n. Flippe | er.Lengthm  | n. Body.Ma | assg.   | Gender |
| ## | 1 |               | 39.1          | 18     | .7        | 18          | 31         | 3750    | MALE   |
| ## | 2 |               | 39.5          | 17     | . 4       | 18          | 36         | 3800    | FEMALE |
| ## | 3 |               | 40.3          | 18     | . 0       | 19          | 95         | 3250    | FEMALE |
| ## | 4 |               | NA            | 1      | NA        | 1           | NA         | NA      |        |
| ## | 5 |               | 36.7          | 19     | .3        | 19          | 93         | 3450    | FEMALE |
| ## | 6 |               | 39.3          | 20.6   |           | 190         |            | 3650    | MALE   |

### Rename columns

Rename the columns to

- IndividualID
- Species
- Island
- CulmenLength(mm)
- CulmenDepth(mm)
- FlipperLength(mm)
- BodyMass(g)
- Gender

```
## Rename
names(df)[1] = "IndividualID"
names(df)[2] = "Species"
names(df)[3] = "Island"
names(df)[4] = "CulmenLength(mm)"
names(df)[5] = "CulmenDepth(mm)"
names(df)[6] = "FlipperLength(mm)"
names(df)[7] = "BodyMass(g)"
names(df)[8] = "Gender"
```

## IndividualID Species

Island CulmenLength(mm)

| ## | 1 | N1A1            | 1 Adeli    | e Penguin | (Pygosceli | s adel: | iae)   | Torgersen |
|----|---|-----------------|------------|-----------|------------|---------|--------|-----------|
| ## | 2 | N1A2            | 2 Adeli    | e Penguin | (Pygosceli | s adel: | iae)   | Torgersen |
| ## | 3 | N2A1            | 3 Adeli    | e Penguin | (Pygosceli | s adeli | iae)   | Torgersen |
| ## | 4 | N2A2            | 4 Adeli    | e Penguin | (Pygosceli | s adeli | iae)   | Torgersen |
| ## | 5 | N3A1            | 5 Adeli    | e Penguin | (Pygosceli | s adeli | iae)   | Torgersen |
| ## | 6 | N3A2            | 6 Adeli    | e Penguin | (Pygosceli | s adeli | iae)   | Torgersen |
| ## |   | CulmenDepth(mm) | FlipperLen | gth(mm) B | odyMass(g) | Gender  | Gender |           |
| ## | 1 | 39.1            |            | 18.7      | 181        | 3750    | MALE   |           |
| ## | 2 | 39.5            |            | 17.4      | 186        | 3800    | FEMALE |           |
| ## | 3 | 40.3            |            | 18.0      | 195        | 3250    | FEMALE |           |
| ## | 4 | NA              |            | NA        | NA         | NA      |        |           |
| ## | 5 | 36.7            |            | 19.3      | 193        | 3450    | FEMALE |           |
| ## | 6 | 39.3            |            | 20.6      | 190        | 3650    | MALE   |           |

## What are the three types of Species?

Use therefore the function unique()

```
# unique
unique(df$Species)
```

```
##
     [1]
           1
               2
                   3
                        4
                            5
                                6
                                    7
                                        8
                                            9
                                                10
                                                    11
                                                        12
                                                            13
                                                                14
                                                                    15
                                                                         16
                                                                             17
                                                                                 18
##
    [19]
         19
              20
                  21
                      22
                           23
                               24
                                       26
                                                28
                                                    29
                                                        30
                                                            31
                                                                32
                                                                     33
                                                                             35
                                                                                 36
                                   25
                                           27
                                                                         34
                      40
          37
                  39
                               42
                                       44
                                                    47
                                                        48
                                                            49
                                                                                 54
    [37]
              38
                           41
                                   43
                                           45
                                                46
                                                                50
                                                                     51
                                                                         52
                                                                             53
                                       62
                                                                                 72
##
    [55]
          55
              56
                  57
                      58
                           59
                               60
                                   61
                                           63
                                                64
                                                    65
                                                        66
                                                            67
                                                                68
                                                                     69
                                                                         70
                                                                             71
              74
                  75
                          77
                                       80
                                                82
##
    [73]
         73
                      76
                               78
                                  79
                                           81
                                                    83
                                                        84
                                                            85
                                                                86
                                                                   87
                                                                         88
   [91]
         91
             92
                  93
                     94
                          95
                               96
                                  97
                                       98
                                           99 100 101 102 103 104 105 106 107 108
## [109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## [127] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
## [145] 145 146 147 148 149 150 151 152
```

### Rename the Species types

Rename the types to

- Adele
- Chinstrap
- Gentoo

```
# rename species

df$Species[df$Species=="Adelie Penguin (Pygoscelis adeliae)"] = "Adele"

df$Species[df$Species=="Chinstrap penguin (Pygoscelis antarctica)"] = "Chinstrap"

df$Species[df$Species=="Gentoo penguin (Pygoscelis papua)"] = "Gentoo"

unique(df$Species)
```

```
##
     [1] "1"
                 "2"
                       "3"
                              "4"
                                     "5"
                                            "6"
                                                  "7"
                                                         "8"
                                                                "9"
                                                                       "10"
                                                                             "11"
                                                                                    "12"
   [13] "13"
                 "14"
                       "15"
                              "16"
                                     "17"
                                            "18"
                                                  "19"
                                                         "20"
                                                                "21"
                                                                       "22"
                                                                             "23"
                                                                                    "24"
```

```
[25] "25"
               "26"
                     "27"
                          "28"
                                "29"
                                       "30"
                                             "31"
                                                   "32"
                                                         "33" "34"
                                                                     "35"
                                                                            "36"
##
##
    [37] "37"
               "38"
                     "39"
                           "40"
                                 "41"
                                       "42"
                                             "43"
                                                   "44"
                                                         "45"
                                                               "46"
                                                                     "47"
                                                                           "48"
                                       "54"
               "50"
                           "52"
                                 "53"
                                             "55"
                                                   "56"
                                                               "58"
                                                                     "59"
##
    [49] "49"
                     "51"
                                                         "57"
                                                                           "60"
    [61] "61"
               "62"
                     "63"
                           "64"
                                 "65"
                                       "66"
                                             "67"
                                                   "68"
                                                         "69"
                                                               "70"
                                                                     "71"
                                                                            "72"
##
                           "76"
                                       "78"
                                             "79"
##
    [73] "73"
               "74"
                     "75"
                                 "77"
                                                   "80"
                                                         "81"
                                                               "82"
                                                                     "83"
##
    [85] "85"
              "86"
                     "87"
                           "88"
                                "89"
                                       "90" "91" "92" "93" "94" "95" "96"
   [97] "97"
               "98"
                     "99"
                          "100" "101" "102" "103" "104" "105" "106" "107" "108"
## [109] "109" "110" "111" "112" "113" "114" "115" "116" "117" "118" "119" "120"
   [121] "121" "122" "123" "124" "125" "126" "127" "128" "129" "130" "131" "132"
  [133] "133" "134" "135" "136" "137" "138" "139" "140" "141" "142" "143" "144"
  [145] "145" "146" "147" "148" "149" "150" "151" "152"
```

#### head(df)

| ## |   | IndividualID Sp | ecies |                |           |              | Isl     | and Cu         | lmenLength(mm) |
|----|---|-----------------|-------|----------------|-----------|--------------|---------|----------------|----------------|
| ## | 1 | N1A1            | 1     | Adelie         | Penguin   | (Pygoscelia  | s adeli | lae)           | Torgersen      |
| ## | 2 | N1A2            | 2     | ${\tt Adelie}$ | Penguin   | (Pygoscelia  | s adeli | lae)           | Torgersen      |
| ## | 3 | N2A1            | 3     | ${\tt Adelie}$ | Penguin   | (Pygoscelia  | s adeli | lae)           | Torgersen      |
| ## | 4 | N2A2            | 4     | ${\tt Adelie}$ | Penguin   | (Pygoscelia  | s adeli | lae)           | Torgersen      |
| ## | 5 | N3A1            | 5     | ${\tt Adelie}$ | Penguin   | (Pygoscelia  | s adeli | lae)           | Torgersen      |
| ## | 6 | N3A2            | 6     | ${\tt Adelie}$ | Penguin   | (Pygoscelia  | s adeli | lae)           | Torgersen      |
| ## |   | CulmenDepth(mm) | Flipp | perLengt       | th(mm) Bo | odyMass(g) ( | Gender  | ${\tt Gender}$ |                |
| ## | 1 | 39.1            |       |                | 18.7      | 181          | 3750    | MALE           |                |
| ## | 2 | 39.5            | ;     |                | 17.4      | 186          | 3800    | ${\tt FEMALE}$ |                |
| ## | 3 | 40.3            | 3     |                | 18.0      | 195          | 3250    | ${\tt FEMALE}$ |                |
| ## | 4 | NA              | L     |                | NA        | NA           | NA      |                |                |
| ## | 5 | 36.7            | •     |                | 19.3      | 193          | 3450    | FEMALE         |                |
| ## | 6 | 39.3            | 3     |                | 20.6      | 190          | 3650    | MALE           |                |

## Missing Values

How many rows contain missing values?

#### summary(df)

```
{\tt IndividualID}
                        Species
                                            Island
                                                           CulmenLength(mm)
##
  Length:344
                      Length:344
                                         Length:344
                                                           Length:344
##
  Class :character
                      Class :character
                                         Class : character
                                                           Class : character
  Mode :character Mode :character
                                         Mode :character
                                                           Mode :character
##
##
##
##
##
   CulmenDepth(mm) FlipperLength(mm) BodyMass(g)
                                                         Gender
##
   Min.
          :32.10
                          :13.10
                                           :172.0
                                                            :2700
                 Min.
                                     Min.
                                                    Min.
   1st Qu.:39.23
                   1st Qu.:15.60
                                     1st Qu.:190.0
                                                     1st Qu.:3550
                   Median :17.30
   Median :44.45
                                     Median :197.0
##
                                                    Median:4050
   Mean
           :43.92
                   Mean
                          :17.15
                                     Mean
                                           :200.9
                                                    Mean
                                                            :4202
##
##
   3rd Qu.:48.50
                   3rd Qu.:18.70
                                     3rd Qu.:213.0
                                                    3rd Qu.:4750
          :59.60
                         :21.50
                                           :231.0
                                                            :6300
##
   Max.
                   Max.
                                     Max.
                                                    Max.
   NA's
                   NA's
                                     NA's
                                           :2
                                                    NA's
##
          :2
                          :2
                                                            :2
```

```
## Gender
## Length:344
## Class :character
## Mode :character
##
##
##
##
```

How many rows have empty entries in the qualitative columns?

## **Data Imputation**

What about data imputation? Check the rows with NA values. Can you apply data imputation on it?

#### Create Dataframe DataWithoutGender

- Select the rows where the gender is unknown and create a new data set for it. Name it "PenguinsWithoutGender"
- Delete the rows with NA values in the quantitative columns by using the function na.omit()
- replace "." by " " in the column Gender
- save it to a csv file called "DataWithoutGender.csv" (we will classify the missing gender data later).

#### For the **csv** saving:

- Use either write.csv() or write.csv2() depending on your system's language: if english use write.csv() if german use write.csv2()
- use row.names = FALSE to exclude the row indices -> for a smoother workflow

### Create Dataframe PenguinsWithoutMissingValues

- Delete the rows with NA values in the quantitative columns by using the function na.omit()
- Delete the rows with missing values in the gender column
- save it to a csv file called "PenguinsWithoutMissingValues.csv"

#### For the csv saving:

- Use either write.csv() or write.csv2() depending ob your system's language: if english use write.csv() if german use write.csv2()
- use row.names = FALSE to exclude the row indices -> for a smoother workflow