

Using Sensor and Process Noise Fingerprint to Detect Cyber Attacks in CPS

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Corso di Laurea in Informatica

Candidato

Andrei Laurentiu Lepadat

Matricola 1677093

Relatore

Prof. Enrico Tronci

Tesi non ancora discussa
Using Sensor and Process Noise Fingerprint to Detect Cyber Attacks in CPS Tesi di Laurea. Sapienza – Università di Roma
© 2021 Andrei Laurentiu Lepadat. Tutti i diritti riservati
Questa tesi è stata composta con L ^A T _E X e la classe Sapthesis.

Versione: 21 novembre 2021

 $Email\ dell'autore:\ lepadat.1677093@studenti.uniroma1.it$

Indice

Sc	mm	ario	vii
1	Intr 1.1 1.2 1.3 1.4 1.5	Contesto	1 1 1
2	Bac	kground	3
3	Me	todi	5
4	Imp	olementazione	7
5	Ris : 5.1 5.2 5.3 5.4 5.5 5.6	ultati sperimentali Obiettivi Configurazione (Setting) (?) Casi di studio Correttezza Valutazione computazionale Valutazione tecnica	9 9 9
6	Cor	nclusioni	11

Sommario

Introduzione

- 1.1 Contesto
- 1.2 Motivazioni
- 1.3 Contributi
- 1.4 Lavori correlati
- 1.5 Struttura

Background

Ogni sistema cyber-fisico che si rispetti è dotato di almeno un sensore che ha il compito di misurare una determinata "qualità" fisica di interesse per il sistema stesso. I dati che vengono rilevati dai sensori spesso vengono memorizzati localmente e/o in modo remoto e possono essere impiegati, come nel lavoro qui presentato, per fini paralleli o trasversali a quelli per cui sono stati installati. Una sequenza di dati estratti da sensori ordinata temporalemente viene chiamata serie temporale (time-series in inglese).

Comunemente i sensori sono imperfetti per costruzione e trasportano intrinsecamente un'incertezza (rumore) che influenza le misurazioni da essi compiute. Sia

$$\bar{y}_k = y_k + \delta_k$$

il valore misurato da un determinato sensore nell'istante di tempo k, composto da y_k , il valore effettivo in quell'istante della grandezza misurata, più δ_k , il rumore aggiunto.

In un determinato istante di tempo, il valore di ogni sensore del sistema costituisce lo *stato* del sistema. La sfida di estrarre il fingerprint dai sensori è data dal fatto che questi stati sono dinamici. Prendendo in considerazione, per esempio, un termometro, se la temperatura dell'ambiente che misura rimane costante nel tempo è facile estrarre

Metodi

Implementazione

Risultati sperimentali

- 5.1 Obiettivi
- 5.2 Configurazione (Setting) (?)
- 5.3 Casi di studio
- 5.4 Correttezza
- 5.5 Valutazione computazionale
- 5.6 Valutazione tecnica

Conclusioni