FE540 금융공학 인공지능 및 기계학습

Course Introduction

Kee-Eung Kim
Department of Computer Science
KAIST

Course Overview

- ☐ Primary textbook
 - Murphy, "Machine Learning: A Probabilistic Perspective"
- ☐ Grading (tentative)
 - 4 Programming projects: 40%
 - Homework: 20%
 - Midterm exam: 20%
 - Final exam: 20%
- ☐ Supplementary textbook
 - Bishop, "Pattern Recognition and Machine Learning"
 - Duda, Hart & Stork, "Pattern Classification"
 - Mitchell, "Machine Learning"
- ☐ Related Courses
 - CS470: Introduction to AI and ML

Policies

- ☐ Check KLMS regularly for Q&A and Announcements
- □ No plagiarism
- □ No late submission
 - Submit through KLMS by deadline (email submissions automatically discarded)
 - Python for programming projects

Prerequisites

☐ Background mathematical skills such as

• Basic multivariate calculus, e.g.

$$abla_{\mathbf{x}} \mathbf{x}^{ op} \mathbf{a} = \mathbf{a}$$

• Basic linear algebra, e.g.

$$A\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

• Basic probability and statistics, e.g.

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$$

You should expect a lot of these...

Machine Learning?

- ☐ A set of methods that can
 - automatically detect patterns in data, and then
 - use the uncovered patterns to predict future data, or
 - to perform other kinds of decision making under uncertainty (such as planning to collect more data)

☐ Learning is useful when

- Human expertise doesn't exist (navigating on Mars)
- Humans are unable to explain their expertise (speech recognition, autonomous driving)
- Solution changes in time (routing on a computer network)
- Solution needs to be adapted to particular cases (web search engines that learns user interests)

Supervised Learning: Classification

☐ Credit scoring

 Differentiate between low-risk and high-risk customers from their incomes and savings

- Learned classification rule:
 - IF income > θ_1 AND savings > θ_2 THEN low-risk ELSE high-risk

□ Other application examples

- Face recognition
- Optical character recognition
- Speech recognition
 - Input is temporal
 - Sensor fusion: integration of inputs from different modalities (e.g. acoustic and visual)
- Outlier detection (fraud detection)

Supervised Learning: Regression

☐ Estimate the price of a used car

- x = car *attributes*, y = price
- $y = g(x | \theta)$
 - $g(\cdot)$ is the model
 - θ is the parameter
- Examples of g and θ
 - $g(x|w_0, w_1) = w_1 x + w_0$ (linear model)
- Output values continuous vs. classification (discrete)

☐ Example applications

- Autonomous car navigation: Learn to steer given input (video image, GPS, ...)
- Typically same application areas as classification

Unsupervised learning

- □ Learning without correct output values (i.e., without supervisor)
 - Classification & regression tasks had target labels...
 - Find regularities in the input
 - "knowledge discovery", "density estimation"
 - e.g. clustering (group similar instances)
- □ Example application
 - Customer segmentation in CRM
 - Image compression: Color quantization
 - Bioinformatics: Learning motifs

Reinforcement Learning

- □ Learning a policy (a sequence of correct actions to reach the goal)
 - No supervisor telling the correct action: Learn from delayed reward (critic)
- ☐ Game playing

☐ Multiple agents, partial observability, ...

