

Claudio Arbib Università di L'Aquila

Ricerca Operativa

Reti di flusso

Sommario

- Definizioni di base
 - Flusso di un campo vettoriale
 - Divergenza
 - Integrale di Gauss-Greene
- Flusso in una rete
- Sorgenti, pozzi e nodi di transito
- Circolazioni e potenziali
- Il problema del flusso ottimo
 - Problemi con funzione costo separabile
 - Problemi concavi e lineari
- Gerarchia dei problemi di flusso ottimo

Definizioni di base

Sia $\mathbf{x}(\mathbf{u}) = (x_1, ..., x_p)$ un campo vettoriale in $\mathbf{u} = (u_1, ..., u_p) \in \mathbb{R}^p$ Siano S una superficie in \mathbb{R}^p e $\mathbf{n}(\mathbf{u})$ il versore normale a S in \mathbf{u} .

$$\operatorname{div}(\mathbf{x}) = \frac{\partial x_1}{\partial u_1} + \dots + \frac{\partial x_p}{\partial u_p}$$
$$\varphi(\mathbf{x}, S) = \int_{S} \mathbf{x}(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) dS$$

divergenza di **x**

flusso di x attraverso S

Integrale di Gauss-Greene:

S chiusa
W volume racchiuso da S

$$\varphi(\mathbf{x}, S) = \int_{W} \operatorname{div}(\mathbf{x}) dW$$

Flusso in una rete

In questo caso si assume che il campo vettoriale \mathbf{x} sia diverso da 0 solo sugli archi di una rete, rappresentata come un grafo G = (V, E) con n nodi e m archi.

Se la rete è conservativa, dato un qualsiasi arco uv, il flusso in uv si mantiene costante. Il campo \mathbf{x} diviene un vettore con componenti associate agli archi di G:

 $\mathbf{x} \in \mathbb{R}^m$ distribuzione di flusso

L'integrale di Gauss-Greene diventa una sommatoria e in ogni punto $\varphi(\mathbf{x}, S)$ eguaglia la *differenza* tra il flusso uscente da S e quello entrante in S.

Flusso in una rete

Se si riferisce l'integrale volumetrico della divergenza a un volume unitario contenente il punto *u*, si può scrivere

$$\operatorname{div}_{u}(\mathbf{x}) = \varphi(\mathbf{x}, S)$$
 divergenza

divergenza di **x** nel punto *u*

Esempio:

Poiché nei punti interni di ogni arco la divergenza del campo \mathbf{x} è nulla, i suoi valori significativi sono solo quelli associati ai nodi di G. Questi vengono raccolti in un vettore che rappresenta il bilancio del flusso ai nodi:

 $\operatorname{div}(\mathbf{x}) \in \mathbb{R}^n$ divergenza della distribuzione \mathbf{x}

Sorgenti, pozzi e nodi di transito

Si può esprimere la divergenza di \mathbf{x} in forma compatta utilizzando la matrice di incidenza nodi-archi \mathbf{G} del grafo G.

$$\operatorname{div}(\mathbf{x}) = -\mathbf{G}\mathbf{x}$$

$$\mathbf{G} = \begin{bmatrix} 1 & 12 & 36 & 42 & 43 & 51 & 54 & 64 & 65 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & -1 & -1 & 0 & 1 & 1 & 0 \\ 5 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 1 \\ 6 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 \end{bmatrix}$$

Nell'esempio, $\mathbf{x} = (2, 2, 4, 3, 2, 0, 6, 2)$

$$\begin{array}{ll} \operatorname{div}_1(\mathbf{x}) = -(-1,0,0,0,1,0,0,0) \cdot \mathbf{x} = -(-2+2) & = 0 & \operatorname{transito} \\ \operatorname{div}_3(\mathbf{x}) = -(0,-1,0,1,0,0,0,0) \cdot \mathbf{x} = -(-2+3) & = -1 & \operatorname{pozzo} \\ \operatorname{div}_4(\mathbf{x}) = -(0,0,-1,-1,0,1,1,0) \cdot \mathbf{x} = -(-4-3+0+6) = 1 & \operatorname{sorgente} \end{array}$$

Circolazioni

La somma delle componenti della divergenza è sempre nulla (rete conservativa ⇒ flusso entrante = flusso uscente). Si definisce circolazione una distribuzione di flusso **x** a divergenza identicamente nulla (solo nodi di transito).

La distribuzione banale $\mathbf{x} = \mathbf{0}$ è una circolazione, ma una circolazione non è necessariamente banale.

Potenziali

Si dice potenziale un qualsiasi vettore $y \in \mathbb{R}^n$ (Ad esempio, $\operatorname{div}(\mathbf{x})$ è un potenziale).

La differenza di potenziale è un vettore $\Delta y \in \mathbb{R}^m$.

La componente di Δy associata al generico arco $uv \in E$ è

$$\Delta \mathbf{y}_{uv} = y_v - y_u$$

Si ha evidentemente $\Delta y = y \mathbf{E}_G$

Proprietà: per ogni distribuzione di flusso **x** e ogni potenziale **y** si ha

$$\mathbf{x} \cdot \Delta \mathbf{y} = \mathbf{y} \mathbf{G} \mathbf{x} = -\mathbf{y} \cdot \operatorname{div}(\mathbf{x})$$

Inoltre \mathbf{x} e $\Delta \mathbf{y}$ sono ortogonali per ogni \mathbf{y} se e solo se \mathbf{x} è una circolazione.

Il problema del flusso ottimo

Consiste nel determinare una coppia di vettori \mathbf{x}^* e \mathbf{y}^* , appartenenti a determinate regioni ammissibili Φ e Ω , che rappresentino una distribuzione e un potenziale in una rete e minimizzino una data funzione $f(\mathbf{x}, \mathbf{y})$:

min
$$f(\mathbf{x}, \mathbf{y})$$

 $\operatorname{div}(\mathbf{x}) = \mathbf{y}$
 $\mathbf{x} \in \Phi \subseteq \mathbb{R}^m$
 $\mathbf{y} \in \Omega \subseteq \mathbb{R}^n$

Funzione di costo separabile

La funzione $f(\mathbf{x}, \mathbf{y})$ si dice separabile se può essere espressa come somma di funzioni dipendenti individualmente dal valore del flusso in ciascun arco o del potenziale in ciascun nodo:

$$f(\mathbf{x}, \mathbf{y}) = \sum_{uv \in E} f_{uv}(x_{uv}) + \sum_{u \in V} f_u(y_u)$$

Esempio: la forma lineare $f(\mathbf{x}, \mathbf{y}) = \mathbf{c}\mathbf{x} + \mathbf{c}'\mathbf{y}$ è evidentemente separabile.

Esempio: la forma quadratica $\mathbf{x}^T \mathbf{A} \mathbf{x}$, con $\mathbf{A} \in \mathbb{R}^{m \times m}$, non è in genere separabile in quanto

$$\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \sum_{h \in E} \sum_{k \in E} a_{hk} x_h x_k$$

contiene termini misti, cioè dipendenti da flussi in archi distinti.

Gerarchia dei problemi di flusso ottimo

