

SUPPORT VECTOR MACHINES

CSCI-B555

Martha White
DEPARTMENT OF COMPUTER SCIENCE AND INFORMATICS
INDIANA UNIVERSITY, BLOOMINGTON

Fall, 2015

EQUATION OF THE PLANE

Let \mathbf{x} be on the plane defined by \mathbf{w} and \mathbf{x}_0 :

$$\mathbf{w}^{T}(\mathbf{x} - \mathbf{x}_{0}) = 0$$

$$\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\mathbf{x}_{0} = 0$$

$$\mathbf{w}^{T}\mathbf{x} + w_{0} = 0$$

DISTANCE FROM POINT TO THE PLANE

 $\mathbf{x} = \text{outside the plane}$

$$\mathbf{x} = \mathbf{x}_{\perp} + r \frac{\mathbf{w}}{||\mathbf{w}||}$$

$$\mathbf{w}^T \mathbf{x} + w_0 = \underbrace{\mathbf{w}^T \mathbf{x}_{\perp} + w_0}_{0} + r||\mathbf{w}||$$

$$\frac{\mathbf{x} + w_0}{|\mathbf{w}||}$$

EXAMPLE

 $r = \frac{\mathbf{w}^T \mathbf{x} + w_0}{||\mathbf{w}||}$

$$\mathbf{x} = (0,0) \implies r = \frac{1}{\sqrt{5}}$$

 $\mathbf{x} = (-1,1) \implies r = -\frac{2}{\sqrt{5}}$

where $\mathbf{w} = (2, -1)$ and $w_0 = 1$.

 $\mathbf{w}^T \mathbf{x} + w_0 = 0$

The vector \mathbf{w} defines what side of the plane is positive.

EXAMPLE

$$\mathbf{w}$$
 x_1

What if
$$\mathbf{w} = (-2, 1)$$
?
 $\mathbf{x}, \mathbf{w} \in \mathbb{R}^2$
 $\mathbf{w}^T \mathbf{x} + w_0 = 0$
where $\mathbf{w} = (-2, 1)$ and $w_0 = -1$.

$$\mathbf{w}^T \mathbf{v} + a \mathbf{v}$$

$$\mathbf{x} = (0,0) \implies r = -\frac{1}{\sqrt{5}}$$
 $\mathbf{x} = (-1,1) \implies r = \frac{2}{\sqrt{5}}$

$$0) \implies r$$

EXAMPLE

What if $\mathbf{w} = (4, -2)$

 $4x_1 - 2x_2 + 2 = 0$

and $w_0 = 2$?

Distances are unchanged when \mathbf{w} and w_0 are multiplied by a constant!

PROBLEM FORMULATION

Given: $\mathcal{D} = \{(\mathbf{x}_i, y_i)_{i=1}^n, \text{ where } \mathbf{x}_i \in \mathbb{R}^k \text{ and } y_i \in \{-1, +1\} \text{ .}$ Data is linearly separable.

Objective: Find hyperplane such that the minimum distance from any data point to the hyperplane is maximized.

MAXIMIZING MARGIN

$$\mathbf{w}^T \mathbf{x}_i + w_0 > 0 \implies y_i = +1$$

$$\mathbf{w}^T \mathbf{x}_i + w_0 < 0 \implies y_i = -1$$

 $y_i(\mathbf{w}^T\mathbf{x}_i + w_0) > 0$

 $i \in \{1, 2, \dots, n\}$

Idea: find **w** to maximize unsigned distance
$$d_i = \frac{y_i(\mathbf{w}^T\mathbf{x} + w_0)}{||\mathbf{w}||}$$

$$(\mathbf{w}^*, w_0^*) = \underset{\mathbf{w}, w_0}{\operatorname{arg max}} \left\{ \frac{1}{||\mathbf{w}||} \min_{i} \left(y_i (\mathbf{w}^T \mathbf{x}_i + w_0) \right) \right\}$$

REFORMULATING THE PROBLEM

$$(\mathbf{w}^*, w_0^*) = \underset{\mathbf{w}, w_0}{\operatorname{arg\,max}} \left\{ \frac{1}{||\mathbf{w}||} \min_{i} \left(y_i (\mathbf{w}^T \mathbf{x}_i + w_0) \right) \right\}$$

Scale **w** and
$$w_0$$
 such that $\min_i \{ \mathbf{w}^T \mathbf{x}_i + w_0 \} = 1$

$$\mathbf{w} \leftarrow k \cdot \mathbf{w}$$
$$w_0 \leftarrow k \cdot w_0$$

$$(\mathbf{w}^*, w_0^*) = \operatorname*{arg\,min}_{\mathbf{w}} \{||\mathbf{w}||\}$$

Subject to:

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 1 \quad \forall i \in \{1, 2, \dots, n\}$$

FINAL PROBLEM FORMULATION

$$(\mathbf{w}^*, w_0^*) = \underset{\mathbf{w}}{\operatorname{arg\,min}} \left\{ \frac{1}{2} \mathbf{w}^T \mathbf{w} \right\}$$
 Convex function!

Subject to:

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 1 \quad \forall i \in \{1, 2, \dots, n\} \leftarrow \text{Linear constraints!}$$

HOW CAN WE SOLVE IT?

$$(\mathbf{w}^*, w_0^*) = \operatorname*{arg\,min}_{\mathbf{w}} \left\{ \frac{1}{2} \mathbf{w}^T \mathbf{w} \right\}$$

Subject to:

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 1 \quad \forall i \in \{1, 2, \dots, n\}$$

Need to know more about constrained optimization

CONSTRAINED OPTIMIZATION

Objective: solve the following optimization problem

$$\mathbf{x}^* = \operatorname*{arg\,max}_{\mathbf{x}} \left\{ f(\mathbf{x}) \right\}$$

Subject to:

$$g_i(\mathbf{x}) = 0 \quad \forall i \in \{1, 2, \dots, m\}$$

 $h_j(\mathbf{x}) \ge 0 \quad \forall j \in \{1, 2, \dots, n\}$

Or, in a shorter notation, to:

$$\mathbf{g}(\mathbf{x}) = \mathbf{0}$$

$$\mathbf{h}(\mathbf{x}) \geq \mathbf{0}$$

LAGRANGE MULTIPLIERS

Taylor's expansion for $g(\mathbf{x})$, where $\mathbf{x} + \boldsymbol{\epsilon}$ is on the surface of $g(\mathbf{x})$

$$g(\mathbf{x} + \boldsymbol{\epsilon}) \approx g(\mathbf{x}) + \boldsymbol{\epsilon}^T \nabla g(\mathbf{x})$$

We know that $g(\mathbf{x}) = g(\mathbf{x} + \boldsymbol{\epsilon})$

$$\boldsymbol{\epsilon}^T \nabla g(\mathbf{x}) \approx 0$$

when
$$\epsilon \to \mathbf{0}$$

$$g(\mathbf{x}) = 0$$

$$\mathbf{\epsilon}^T \nabla g(\mathbf{x}) = 0$$
 $\Longrightarrow \nabla g(\mathbf{x})$ is orthogonal to the surface

 $\nabla g(\mathbf{x})$ and $\nabla f(\mathbf{x})$ are parallel! $\nabla f(\mathbf{x}) + \alpha \nabla g(\mathbf{x}) = 0$ $\alpha \neq 0$

LAGRANGE MULTIPLIERS

Inactive constraint $h(\mathbf{x}) > 0$

Active constraint

$$\nabla f(\mathbf{x}) = 0$$

$$\nabla f(\mathbf{x}) = -\mu \nabla h(\mathbf{x}) \qquad \mu > 0$$

It holds that: $\nabla h(\mathbf{x}) \ge 0$ $\mu \geq 0$ $\mu \cdot h(\mathbf{x}) = 0$

Karush-Kuhn-Tucker (KKT) conditions

 $L(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\mu}) = f(\mathbf{x}) + \boldsymbol{\alpha}^T \mathbf{g}(\mathbf{x}) + \boldsymbol{\mu}^T \mathbf{h}(\mathbf{x})$

HOW CAN WE SOLVE IT?

$$(\mathbf{w}^*, w_0^*) = \operatorname*{arg\,min}_{\mathbf{w}} \left\{ \frac{1}{2} \mathbf{w}^T \mathbf{w} \right\}$$

Subject to:

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 1 \quad \forall i \in \{1, 2, \dots, n\}$$

Solution: use Lagrangian multipliers!

$$L(\mathbf{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{n} \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + w_0 \right) - 1 \right)$$

SOLVING IT

$$\frac{\partial}{\partial w_j} L(\mathbf{w}, w_0, \boldsymbol{\alpha}) = 0 \qquad \Longrightarrow \qquad w_j = \sum_{i=1}^n \alpha_i y_i x_{ij}$$

$$\Longrightarrow$$
 $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$

$$\frac{\partial}{\partial w_0} L(\mathbf{w}, w_0, \boldsymbol{\alpha}) = 0 \qquad \Longrightarrow \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

 $= \frac{1}{2} \sum_{i=1}^{n} \sum_{\alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j} - \sum_{i=1}^{n} \alpha_i y_i (\sum_{i=1}^{n} \alpha_j y_j \mathbf{x}_j)^T \mathbf{x}_i + \sum_{i=1}^{n} \alpha_i$

 $L(\mathbf{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{N} \alpha_i y_i \mathbf{w}^T \mathbf{x}_i - \sum_{i=1}^{N} \alpha_i y_i w_0 + \sum_{i=1}^{N} \alpha_i y_i w_0$

 $= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$

 $= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$

 $\alpha_i \geq 0 \quad \forall i \in \{1, 2, \dots, n\}$

 $\sum \alpha_i y_i = 0$

Subject to:

 $\mathbf{w} = \sum_{i=1} \alpha_i y_i \mathbf{x}_i$

Recall kernel property

SOLVING THE DUAL PROBLEM

Use quadratic programming to solve for α

$$\Longrightarrow$$
 $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$

$$\Rightarrow f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

$$= \frac{1}{2} \sum_{i=1}^n \alpha_i y_i k(\mathbf{x}, \mathbf{x}_i) + w_0$$

ANALYSIS OF THE SOLUTION

 $\forall i \in \{1, 2, \dots, n\}$

Karush-Kuhn-Tucker (KKT) conditions:

$$\alpha_i \ge 0$$

 $y_i(\mathbf{w}^T\mathbf{x}_i + w_0) - 1 \ge 0$

$$\alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + w_0 \right) - 1 \right) = 0$$

This means that for $\forall i$, either $\alpha_i = 0$ or $y_i (\mathbf{w}^T \mathbf{x}_i + w_0) = 1$

$$\rightarrow$$
 $\alpha_i =$

$$\Rightarrow$$
 $\alpha_i = 0$ for all vectors that are not support vectors
$$f(\mathbf{x}) = \sum_i \alpha_i y_i k(\mathbf{x}, \mathbf{x}_i) + w_0$$

$$w_0 = 1 - \mathbf{w}^T \mathbf{x}_s$$
, where $\mathbf{x}_s \in \mathcal{S}$

A SUPPORT VECTOR MACHINE

