Bridging the Gap between SG-MCMC and Differential Privacy

Bai Li, Changyou Chen, Hao Liu

Duke University

October 6, 2017

Overview

- Differential Privacy
 - Motivation
 - Definition

- Differentially Private SG-MCMC
 - Previous Work
 - Differentially Private SGLD
 - Empirical Results

Motivation

The training data could be recovered by only manipulating the model output, thus is not 'private'.

Figure: An image recovered using an inversion attack (left) and a training set image of the victim (right) from Matt Fredrikson et al.(2015)

Differential Privacy (Dwork [2008])

Differential Privacy

For two data sets D and D' that only differ by one record, a randomized algorithm $\mathcal M$ mapping from data space to range($\mathcal M$) satisfies (ϵ,δ) -Differential privacy if for all measurable $\mathcal S\subset \operatorname{range}(\mathcal M)$

$$Pr(\mathcal{M}(\mathcal{D}) \in \mathcal{S}) \leq e^{\epsilon} Pr(\mathcal{M}(\mathcal{D}') \in \mathcal{S}) + \delta.$$

where ϵ and δ are two positive parameters which indicate the privacy loss.

Good properties:

- quantitatively evaluate the privacy loss
- protect privacy from all kinds of attacks, thus acknowledged as "the strongest privacy guarantee"

SG-MCMC with DP

Problem: the utility of its output is not guaranteed

Goal: Keep a good balance between the privacy and the utility

Previous Work

The idea to privately release stochastic gradient has been well-studied. Song et al. [2013], Bassily et al. [2014] and Abadi et al. [2016] all proposed differentially private stochastic gradient descent (SGD) algorithms:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \frac{\eta_t}{\tau} \left(\sum_{i \in J} \nabla \log \ell(\boldsymbol{\theta}_t | x_i) + N(0, \sigma^2 I) \right)$$

it satisfies (ϵ, δ) -DP if σ is above a **certain threshold**. Here θ are the parameters, x_i are the data, η_t is the stepsize, τ is the batch size. It essentially adds a normal noise after computing a new gradient.

Differentially Private SG-MCMC

However, there is no theoretical guarantee showing optimization methods with noise will work on non-convex problems. On the other hand, in Bayesian inference, posterior sampling naturally introduce randomness, and further satisfies DP "for free" (Wang et al. [2015]). For example, stochastic gradient Langevin dynamics (SGLD):

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta_t \left(\frac{\nabla r(\boldsymbol{\theta}_t)}{N} + \frac{1}{\tau} \left(\sum_{i \in J} \nabla \log \ell(\boldsymbol{\theta}_t | x_i) \right) \right) + N(0, \frac{\eta_t}{N} I)$$

where r is the prior distribution, T is the number of iterations, η_t is the stepsize, N is the size of the training set, and τ is the batch size. It's guaranteed to converge to the true posterior distribution as $t \to \infty$ in theory.

Differentially Private SG-MCMC

Wang et al. [2015] proved the SGLD algorithm satisfies (ϵ, δ) Differential Privacy if:

$$\eta_t < \frac{\epsilon^2 N}{128 T L^2 \log\left(\frac{2.5 T}{\delta}\right) \log(2/\delta)}$$
(1)

where T is the number of iterations, L is the gradient norm bound, η_t is the stepsize, N is the size of the training set.

However, a stepsize that satisfies the above condition is often too small to be practically useful:

- With a small stepsize, the Markov chain will mix slowly.
- ② The bound is a function of the number of iterations T, which means we are limited to run certain number of iterations due to the privacy constraints.

Our results

We improve the bound from Wang et al. [2015]:

$$\underbrace{\eta_t < \frac{\epsilon^2 N}{128 \, T L^2 \log \left(\frac{2.5 \, T}{\delta}\right) \log(2/\delta)}}_{\text{Wang et al.}} \rightarrow \underbrace{\eta_t < \frac{\epsilon^2 N t^{-1/3}}{c^2 \, T^{2/3} L^2 \log(1/\delta)}}_{ours}$$

where c is a real number that depends on $N, L, T, \epsilon, \delta$. Note we let the stepsize decrease in $o(t^{-1/3})$.

This result is surprisingly good as our bound allows us to choose a stepsize that is practically useful and even optimal.

How Good Is It?

For MNIST data set, we have N=50k, and if we let $\epsilon=0.1$, $\delta=10^{-5}$, T=10000, and L=4, the upper bound is $\eta_t<0.106$. Therefore, the standard SGLD with $\eta_t=0.1$ satisfies (ϵ,δ) -DP already. Note $\eta_t=0.1$ is often the optimal stepsize for many problems.

As a comparison, we would get $\eta_t < 1.54 \times 10^{-6}$ using the bound in Wang et al. [2015].

Note the optimal stepsize usually takes value in $(10^{-4}, 10^{-1})$. We argue that for most problems, even when the privacy constraints are strong, this range falls below our upper bound.

Upper Bounds

Figure: Upper bounds for fixed-stepsize and decreasing-stepsize with different privacy loss ϵ , as well as the upper bound from Wang et al. [2015].

Bayesian Logistic Regression on the UCI Adult Dataset

Figure: Test accuracies on a classification task based on Bayesian logistic regression for One-Posterior sample (OPS), Hybrid Posterior sampling based on SGLD, and our proposed DP-SGLD with different choice of privacy loss ϵ . The non-private baseline is obtained by standard SGLD.

Deep Neural Networks

Table: Test accuracies on MNIST and and SVHN for different methods.

Dataset	Methods	ϵ	δ	Accuracy
MNIST	Non-Private			99.23%
	PATE(100)	2.04	10^{-5}	98.00%
	PATE(1000)	8.03	10^{-5}	98.10%
	DP-SGLD	0.10	10^{-5}	99.12%
	DP-SGHMC	0.24	10^{-5}	99.28%
SVHN	Non-Private			92.80%
	PATE(100)	5.04	10^{-6}	82.76%
	PATE(1000)	8.19	10^{-6}	90.66%
	DP-SGLD	0.12	10^{-6}	92.14%
	DP-SGHMC	0.43	10^{-6}	92.84%

Summary

Previous works have to modify existing algorithms or build complicated frameworks and sacrifice a certain amount of performance to achieve (ϵ, δ) -DP, even when ϵ, δ are relatively large.

Our results essentially show the standard SG-MCMC methods with an optimal stepsize guarantees strong (state-of-the-art) DP.

References

- Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security*, pages 308–318. ACM, 2016.
- Raef Bassily, Adam Smith, and Abhradeep Thakurta. Differentially private empirical risk minimization: Efficient algorithms and tight error bounds. arXiv preprint arXiv:1405.7085, 2014.
- Cynthia Dwork. Differential privacy: A survey of results. In *International Conference on Theory and Applications of Models of Computation*, pages 1–19. Springer, 2008.
- Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with differentially private updates. In *Global Conference on Signal and Information Processing (GlobalSIP)*, 2013 IEEE, pages 245–248. IEEE, 2013.
- Yu-Xiang Wang, Stephen Fienberg, and Alex Smola. Privacy for free:

 Posterior sampling and stochastic gradient monte carlo. In *Proceedings*of the 32nd International Conference on Machine Learning (ICML-15).

 Bai Li, Changyou Chen, Hao Liu

 SG-MCMC with DP

 October 6, 2017

 14 / 16

Appendix: Private Aggregation of Teacher Ensembles (PATE)

Figure: Overview of this approach: (1) an ensemble of teachers is trained on disjoint subsets of the sensitive data, (2) a student model is trained on public data labeled using the ensemble plus public unlabeled data with semi-supervised learning.

This approach requires extra public unlabeled data.

Appendix: DP-SGD

DP-SGD (Abadi et al. [2016])

During SGD updates, use the following

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \frac{\eta_t}{\tau} \left(\sum_{i \in J} \nabla \log \ell(\boldsymbol{\theta}_t | x_i) + N(0, \sigma^2 I) \right)$$

then for T iterations, it satisfies (ϵ, δ) -DP if

$$\sigma \geq c \frac{qL\sqrt{T\log(\frac{1}{\delta})}}{\epsilon}$$

where c is a constant, $q = \frac{\text{batch size}}{\text{data size}}$.