

DUTT #-

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

AN ITERATION ALGORITHM FOR OPTIMAL NETWORK FLOWS

by

Chang Joon Woong
September 1983

Thesis Advisor:

J. M. Wozencraft

Approved for public release, distribution unlimited.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Sublitle) An Iteration Algorithm for (Network Flows	Optimal	5. TYPE OF REPORT & PERIOD COVERED Masters Thesis; September 1983 6. PERFORMING ORG. REPORT NUMBER	
Chang Joon Woong .		S. CONTRACT OR GRANT NUMBER(*)	
PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93943	S	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Naval Postgraduate School Monterey, California 93943		12. REPORT DATE September 1983 13. NUMBER OF PAGES 84	
14. MONITORING AGENCY NAME & ADDRESS(Il differe	nt from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Packet Switching, Static Routing, Optimal Flow, Conservation Constraints, Capacity Constraints, Successive Saturation, Max-slack, Delay Analysis.

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

A packet switching network has the desirable feature of rapidly handling short (bursty) messages of the type often found in computer communication systems. In evaluating packet switching networks, the average time delay per packet is one of the most important measures of performance.

The problem of message routing to minimize time delay is analyzed here using two approaches, called "successive

saturation" and "max-slack", for various traffic requirement matricies and networks with fixed topology and link capacities. S/N 0102- LF- 014- 6601

Approved for public release, distribution unlimited.

AN ITERATION ALGORITHM FOR OPTIMAL NETWORK FLOWS

by

Chang Joon Woong
Lieutenant Colonel, Korea Marine Corps
B.S., Korea Naval Academy, 1965

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL September 1983

ABSTRACT

A packet switching network has the desirable feature of rapidly handling short (bursty) messages of the type often found in computer communication systems. In evaluating packet switching networks, the average time delay per packet is one of the most important measures of performance.

The problem of message routing to minimize time delay is analyzed here using two approaches, called "successive saturation" and "max-slack", for various traffic requirement matricies and networks with fixed topology and link capacities.

TABLE OF CONTENTS

I.	INTRODUCTION		
	Α.	THE PACKET SWITCHED NETWORK CONCEPT	10
	В.	THE ROUTING PROBLEM	13
		1. Static Routing	15
		a. Routing Table Representation	15
		b. Problem Formulation	16
		2. Adaptive Routing	17
II.	OPT	IMAL FLOW AND MINIMUM CAPACITY ASSIGNMENT	19
	Α.	NETWORK MODELING	19
		1. Conservation Constraints	20
		2. Capacity Constraints	21
		3. Positive Constraints	21
	в.	MODEL PROGRAMMING	22
		1. Node to Link Incidence Matrix	22
		2. Matrix Representation	24
		3. Programs	25
	c.	SOLUTION TECHNIQUES	26
		1. Successive Saturation Approach	27
		2. Max-Slack Approach	29
	D.	DELAY ANALYSIS	29
III.	EXP	ERIMENTATION RESULTS AND CONCLUSIONS	34
	А.	EXPERIMENTS AND COMPARISON OF THE RESULTS	34
	В.	CONCLUSIONS	37

APPENDIX A.	MATRIX REPRESENTATION FOR ILLUSTRATION NETWORK	39
APPENDIX B.	EXPERIMENTAL NETWORKS	40
APPENDIX C.	MODEL GENERATION PROGRAM FOR EXAMPLE PROBLEM	41
APPENDIX D.	OPTIMIZATION PROGRAM, INPUT DATA, MATRIX PICTURE AND OUTPUT FOR EXAMPLE PROBLEM	44
APPENDIX E.	OPTIMIZATION PROGRAM, INPUT DATA, MATRIX PICTURE AND OUTPUT FOR MAX-SLACK APPROACH	65
APPENDIX F.	LINK FLOW FOR 9/36 NETWORK	71
APPENDIX G.	LINK FLOW FOR 13/60 NETWORK	73
APPENDIX H.	LINK FLOW FOR SYMMETRIC REQ-MAT of 13/60 NETWORK	78
LIST OF REFE	RENCES	83
INITIAL DIST	RIBUTION LIST	84

LIST OF TABLES

I.	LINK FLOW FOR THE EXAMPLE NETWORK	 33
II.	RESULTS FOR THE 9/36 NETWORK	 35
III.	RESULTS FOR THE 13/60 NETWORK	 36
IV.	TIME DELAY FOR THE CAPACITIES	 38
F.1	LINK FLOW FOR 9/36 NETWORK	71
G.l	LINK FLOW FOR 13/60 NETWORK	 73
н.1	LINK FLOW FOR SYMMETRIC REQ-MAT OF 13-60 NETWORK	 78

LIST OF FIGURES

1.1	Routing Table	16
2.1	The Illustration Network	24
3.1	The Example Network	28
A.1	Matrix Representation for Illustration Network	39
в.1	The 9 Node/36 Link Network	40
B.2	The 13 Node/60 Link Network	40

LAMIDTE TO PERI

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to Professor J.W. Wozencraft for his assistance and guidance, in completing this work. Also, I want to give special thanks to my wife and family, (Chong and Hee-Won) for their combined support and understanding.

I. INTRODUCTION

A. THE PACKET SWITCHED NETWORK CONCEPT

A new technique for data communications that has evolved over 10 years is called PACKET SWITCHING. In general, communication networks may be conveniently divided into three types: CIRCUIT SWITCHING, MESSAGE SWITCHING and PACKET SWITCHING. Both message and packet switching uses a technique known as store and forward transmission.

A circuit switching network provides service by setting up a total path of connected lines from the source to the destination of the call. This complete circuit is set up by a special signaling message that threads its way through the network, seizing channels in the path as it proceeds. After the path is established, a return signal informs the source that data transmission may proceed, and all channels in the path are then used simultaneously.

The entire path remains allocated to the transmission, and only when the source release the circuit will all these channels be returned to the available pool for use in other paths. Circuit switching is the common method for telephone systems.

In message switching, only one channel is used at a time for a given transmission. The message first travels from its source node to the next node in its path, and when the

entire message is received at this node, then the next step in its journey is selected. If this selected channel (link) is busy, the message waits in a queue, and finally when the channel becomes free, transmission begins. Thus, the message "hops" from node to node through the network using only one channel at a time, possibly queueing at busy channels, as it is successively stored and forwarded through the network.

Packet switching is basically the same as message switching except that the messages are decomposed into small equal pieces called packets, each of which has a minimum length. These packets are numbered and addressed and make their way through the net independently of each other. Thus, many packets of the same message may be in tranmission simultaneously, giving one of the main advantages of packet switching.

With packet switching systems, information is exchanged in the form of short packets. A packet-switched network can handle several different types of traffic concurrently. These include HIGH-THROUGHPUT traffic, for example, the transmission of large data files between computers, for which accuracy and high average data speed are the most important performance requirements; LOW-DELAY traffic, for example, interactive communication between a person at a terminal and a remote computer, for which accuracy and low average message delay are important; and REAL-TIME traffic, for example, packetized speech for which the performance of circuit-switched connection must be approached by maintaining a relatively constant

data speed, but for which extreme accuracy is not important owing to the redundancy of the information.

The packet switched network is designed primarily for computer to computer communication. It has a much more rapid response which matches the internal behavior of computers and handles information in much the same way as does a computer. At the same time it can readily match the speed of attached computers to that of the terminal users, by virtue of its internal storage.

The prime purpose of store and forward packet switching is to enable communications resources to be used effectively and in such a way that they may be shared by many users operating in an intermittent fashion, giving each user a rapid response from the communication network just at the instant when this is required.

If there is need for transmitting a long continuous stream of data, then a circuit switched connection makes good sense.

On the other hand, if the data flow is bursty, then some form of resource sharing can be used to great advantage; packet switching is an effective choice here.

Since packets are stored as they pass through switching nodes, it is possible to conduct speed, format and code conversion during the switching process. Another feature of packet switching is its ability to adaptively select good paths for packet journeys as a function of the network congestion.

Besides providing small network delays, packet switching has the desirable feature of rapidly handling small messages in spite of the presence of long messages that may be in transport at the same time, this is because of the decomposition of long messages into packets. Another useful property of this decomposition is that the nodal storage requirement is reduced.

In evaluating packet switching networks, the delay, throughput, cost and reliability are important measures.

Theoretical studies have been directed to the queueing and network flow problems in general and more specifically to such problems as delay analysis, route assignment, topological design and flow control, etc.

The topic chosen in this study is centered around optimal flow and minimum capacity assignment and delay analysis for packet-switched networks. The networks under consideration have a relatively complicated structure with a large number of source-destination node pairs.

B. THE ROUTING PROBLEM

A message routing procedure is merely a decision rule that determines the node a message will next visit in its path through the network. The objective of the routing procedures is to transport packets on a minimum delay path from source to destination.

In discussing routing policies for networks, an important distinction must be made between static and adaptive policies.

This distinction depends on the environment in which a policy is designed to operate. If network topology is not subject to changes (due to failure, modifications, growth) and traffic inputs are stationary, then the optimal routing solution is a static solution consisting of a set of fixed paths between all node pairs. The traffic between each source and destination pair may be distributed on several paths simultaneously in well defined proportions, where the proportions are fixed in time.

In a real network environment, however, the topology changes with time and user traffic requirements tend to fluctuate more or less rapidly. To minimize delay it is then necessary to implement an adaptive routing policy that can react and adjust to various changes. The adaptivity of a policy can be measured in terms of its response time. A reasonable procedure is to use a periodically refreshed static routing solution. Indeed, there is a continuum of solutions between the two extremes, static and adaptive, characterized by different response times and used for different applications.

Beside their use in operational networks, static routing policies find an important application in the network design process. During this process, for a given traffic pattern a prediction of the throughput and delay performance of a given topolocy is needed. The routing policy clearly has a major impact on such performance. Most routing implementations are adaptive, and unfortunately the analysis of adaptive

routing policies is an extremely difficult task. To simplify the problem, the traffic pattern is usually approximated with a stationary pattern, and the routing policy with a static routing policy.

1. Static Routing

a. Routing Table Representation

A static routing policy is represented by a set of routing tables, one for each node, indicating how the traffic arriving at that node must be routed on the outgoing links, depending on its final destination. The routing table for node i is an Nx L matrix Pi(n,k), where N is the number of nodes in the network and Pi(n,k) is the fraction of traffic directed to node k which, upon arrival at node i, is routed through neighbor node n (Fig. 1.1). By the definition,

$$Pi (j,k) = 1$$

Where n is the number of neighbors of node i.

The actual distribution of the incoming traffic to outgoing links may be done randomly using as probability weights the values Pi(j,k). If for any node i there is only one permissible outgoing link from i to any destination k, then

Pi(j,k) = 1 for neighbor node j.

0 otherwise

Such a routing policy is referred to as a single path routing policy, since only one path is used from any node i to any destination node k. In general, the optimal static routing solution is a multipath solution, allowing for the

simultaneous use of several routes in order to minimize delays. The routing table representation may also be used for adaptive policies.

Figure 1.1. Routing Table.

b. Problem Formulation

In packet switched network, messages are segmented into small packets, and each packet travels from its source to its destination via a set of intermediate nodes. While awaiting transmission to the next node in the route, the packet must be stored until the link to that node is free. Thus, at each node there are several queues, one for each output channel.

Packet flow requirements between nodes arise at random times; therefore, link flows, queue length, and packet delay are random variables. A static routing problem can be defined as the problem of finding the static routing policy which optimizes the flow and minimizes the average time delay.

Considering the relationship between routing policy and link flows, the problem can be formulated for solution of optimal flow and minimum capacity with respect to the given requirement as follows.

given: (a) topology

(b) requirement matrix R

minimize: alpha

subject to: (a) conservation of flow

(b) flow < capacity x alpha

Where alpha is a nonnegative scale factor.

The mathematical model and solution techniques are discussed in detail later.

2. Adaptive Routing

The adaptive routing problem consists of defining a procedure that dynamically updates routing tables according to changes in the network. This procedure will include the acquisition of the status of all neighboring nodes, which a packet associated with the source and destination node pair could visit next after being processed at the current node. The neighboring nodes are those with direct channels linking to a given node.

The structure of the routing table and the ways the information contained therein are to be used vary according to the individual routing procedure. For example, if single path routing is used, only one path links each source and destination node pair; therefore, only a single neighboring node associated with each node pair is listed in the routing table.

The design of routing is a process of determining the structure of routing tables and specifying the procedures of using them. The choice of routing depends on many factors such as network topology, available facilities, throughput and delay requirements, and so on. Adaptive routing techniques are ruled out in this study.

II. OPTIMAL FLOW AND MINIMUM CAPACITY ASSIGNMENT

The optimal flow is the best selection of paths between source and destination, given the traffic requirements and the network configuration. The definition of best paths may vary depending on the nature of the traffic. In this study, the best paths will be regarded as the paths of minimum "distance", where distance can be interpreted in various ways, for instance as time delay along the links.

To investigate average time delay of the networks, two different approaches are discussed using classical optimization procedures.

A. NETWORK MODELING

In a distributed packet-switched network, packets are transmitted over a collection of switching nodes in tandem. In modeling a packet switched network, the objective is usually to optimize the total flow of the networks, to minimize the capacity of each link, or to maximize the utilization of the network. The problem may be formulated as follows.

given topology

requirement matrix R

capacity of each link (arbitrary)

minimize: alpha

subject to: (1) conservation constraints.

$$\sum_{i=1}^{n} F\ell(k) = Ri(k)$$
 outgoing incoming input links links at node i for node k

(2) capacity constraints

$$F\ell(k) < alpha x C\ell$$

(3) positive constraints

$$\sum F\ell(k) > 0$$

Where $F\ell(k)$ is the flow on link destined for node k. We next look at each constraint further in detail.

1. Conservation Constraints

At each node i, the total outgoing packet flows destined for node k equal the incoming flows plus the input to be transmitted to node k.

where

k = destination node (k = 1,2,3...N).

N = number of nodes.

L = number of links.

i = source node (i = k, i = 1, 2, 3...N).

 ℓ = link between two nodes (ℓ = 1,2,3...L).

 $F\ell(k)$ = flow on link destined for node k.

Ri(k) = input destined for node k at node i.

2. Capacity Constraints

The total flow destined for node k on a certain link should be less than or equal to the capacity of the link ℓ . Since linear programming algorithms have difficulties dealing with inequalities, slack variables are added to the constrains to absorb unused resources and thus to force equalities to appear.

When slack variables are introduced, the problem in standard form becomes.

$$\sum_{k=1}^{N} F\ell(k) - alpha X C\ell + S\ell = 0$$

where

 $C\ell$ = capacity of the link.

Sl = slack variables.

3. Positive Constraints

If we consider the network to have unidirectional links, the bidirectional flows between two nodes are divided into two one-way links in opposite direction, and the flow on each link is positive.

$$F\ell(k) \geq 0$$

Using matrix notation, the model simply may be expressed as a linear programming problem.

minimize: alpha

subject to: AX = R

 $x \ge 0$

B. MODEL PROGRAMMING

In order to use a readily available Mathematical Programming System such as MPSIII, which can solve linear programming problems with up to 4000 rows and theoretically with an unlimited number of variables, the major programming problem with large scale networks is how to generate the input data for the MPSIII program. In other words, how do we generate the matrix form of the model.

1. Node to Link Incidence Matrix

For any network processing to take place in the computer, the network structure must be represented in some machine understandable form. A wide spectrum of different representation methods are available. Most of these are based on an incidence matrix scheme. A matrix form is convenient for the analysis of networks since the resulting matrices are in a format suitable for mathematical analysis.

The network of Fig. 2.1 will be used to illustrate the method. The node to link incidence matrix $E(i,\ell)$ describes the links connected to the node such that

$$E(i,\ell) = \begin{cases} 1 & \text{if link } \ell \text{ is outgoing from node i.} \\ -1 & \text{if link } \ell \text{ is incoming to node i.} \\ 0 & \text{if link } \ell \text{ is not connected to node i.} \end{cases}$$

The incidence matrix for input at node i destined for node k is a modification of the node to link incidence matrix $E(i,\ell)$ according to the following rules:

For the illustration network (Fig. 2.1).

for k = 1

 $E2(i,\ell)$ and $E3(i,\ell)$ may be represented in the same manner. for k=2

for k = 3

 $E(i,\ell)$ is a 3x5 matrix and $Ek(i,\ell)$ is a 2x5 matrix in size.

Figure 2.1. Illustration Network.

2. Matrix Representation

Matrix representation is a convenient tool for programming. The complete matrix representation for the illustration network is shown in Appendix A.

The general model matrix AX = R may be represented as follows:

A	* * 4 ±	=	R
El	Fl(1)		Ri(1)
E2	FL (2)	=	Ri(2)
E3	Fl (3)		Ri(3)
·			•
Ek	Fl(k)		Ri(k)
I1 I2 I3 Ik - Cl	Fl(k)		0 L
	S.L		
	Alpha		0

where

 $Ek = (N-1) \times L$ incident matrix.

Ik = L x L identity matrix with zero elements
 corresponding to zero columns of the Ek matrix.

 $I = L \times L \text{ identity matrix.}$

Ri(k) = requirement matrix which is the inputs to be sent from source node i to destination node k.

The size of the model in matrix representation is;

$$A = ((N-1) \times N + L) \times ((N+1) \times L + 1)$$

 $X = ((N+1) \times L + 1) \times 1$

 $R = ((N-1) \times N + L) \times 1$

For example, the network consisting of 20 nodes and 40 links has the matrix which is $A = 420 \times 841$, $X = 841 \times 1$ and $R = 420 \times 1$ in size.

3. Programs

To generate the MPSIII input data and to solve the model, requires two programs which are listed at the end of this study (Appendix C and D).

The first one is the data (model) generation program (Appendix C) written in the Fortran language. The output of this program uses special notation to designate the flow of the link connecting node pairs, destination node of the flow, flow variables, slack variables and input at the node. These notations are composed of a letter which is one of C, L, X or S and 7 numerical digits.

The notation Cl, Ll, Xl, and Sl imply conservation constraints, capacity constraints, flow variables, and slack variables respectively. The rest of the six numbers following Cl, Ll, Xl and Sl indicates link connecting node pair with first 4 digits and destination node or slack variable number with last 2 digits. For example, the notation Cl000201 indicates the conservation constraint row which is the input at node 2 destined for node 1, Ll020100 the link capacity row for the link connecting between node 2 and node 1, Xl020101 the flow variable on the link connecting between node 2 and node 1 destined for node 1 and Sl000001 the first slack variable.

The second program is the MPSIII program developed by Management Science Systems, Inc. It provides elaborate control language for the formulation of solution strategies for mathematical programming problems.

Individual instructions in this language bring in quite elaborate sections of code designed to execute the step as efficiently as possible.

Using the special notation discussed above, there is a limitation on the size of the problem which can be solved, because data names must consist of 8 characters maximum.

This means that the maximum network size must be less than 100 nodes, if the computer capacity allows.

C. SOLUTION TECHNIQUES

As mentioned before, the classicial optimization procedures to solve the investigation model provide solutions

which are the optimal paths and minimum link capacities for the network. Different optimal solutions may be expected depending on different methods of optimization. The two different approaches, each involving iteration of the linear programming solution procedure are discussed below, and illustrated in terms of one example network problem. These approaches are based on the characteristics of linear programming problems.

1. Successive Saturation Approach

The standard procedure of the MPSIII program listed at the end of this study (Appendix D and E) produces an "optimal" solution for alpha from the output data of the data generation program in the first run. But the corresponding flow solution is not a good solution in terms of the average time delay in the packet-switched network, when it is analyzed by the Kleinrock's delay analysis model (Ref. 4). The problem is that only the flow thru the saturated links is optimum.

In order to reduce the time delay, Iteration runs are attempted until all links are saturated. The detailed iteration method for the example network (Fig. 3.1) which has 5 nodes and 6 links, each with original link capacities 10 (to simplify the problem) is discussed below.

Figure 3.1. Example Network.

The ouput of MPSIII program is divided into row section and column section (Ref. 9 and Appendix D and E). The objective function value (which is the same as the alpha value) and the links saturated with the alpha value in the capacity constraint rows indicated with the first letter notation L can be read, and the flows on each link and the alpha value in column section. In the example network, for the first iteration the saturation level (alpha value) is 0.25, and the saturated links are L1010300 (link 3) and L1040300 (link 7). Their activity and slack activity levels are all zero, but their dual activity level is not (pp 48).

For the next iteration, the changed input datas are that the original capacity multiplied by the saturation level of first run are moved from the alpha column to the right hand side (RHS) column. In the example, the new link capacities 2.5 (0.25 x 10) are moved to RHS (pp. 50), and the problem is solved again. Repeating this iteration procedures until all links are saturated and moved to RHS, the objective

function value becomes zero. When the objective function value is zero, the final flow solution is the desired solution of this successive saturation approach. In the example case, the six iterations are required to solve the problem. These whole procedures except programs and input datas from 2nd run for the example network are listed at the end of this study (Appendix D).

2. Max-Slack Approach

To simplify the solution of the above successive saturation approach, another approach called the max-slack approach is considered. It requires only two iteration of the program, but is otherwise quite similar. Like in the successive saturation approach, after the first run, all saturated link capacities are multiplied by the alpha value of the first run are moved to the RHS, and in addition, all slack variable columns are summed as the objective function in the data card for the second run.

In the example network, eight slack column variables are added on the objective rows, and all new capacities 2.5 (0.25 x 10) are moved to RHS. This is clearly shown on the output of control language "picture", and the program, input data and the output are also listed at the end (Appendix E).

D. DELAY ANALYSIS

The average time delay of a network is the average time a packet spends in the network traveling from its source to its destination nodes. To obtain a tractable expression for

average time delay T in terms of the capacity of link ℓ , it is necessary to make simplifying assumptions. Packet lengths are assumed to be exponentially distributed, and are re-chosen with statistical independence at each node to form a Poisson process.

These assumptions known as the 'Independence assumption', introduced by D. Kleinrock (Ref. 4), make each queuing problem independent. In the analysis, each queue in a packet network is assumed to be an M/M/l system with arrival rate of Gl and to be independent of each other.

The average delay for link ℓ is given by the waiting time in the queue as

$$T_{\ell} = \frac{1}{uC_{\ell} - G_{\ell}}$$

Where $G\ell$ is the packet traffic in the link and 1/u the average packet length in bits. To form a suitable average over all the queuing processes, the T are weighed by $G\ell/r$ where r is the total input packet rate to the network. In this way, the total delay suffered by all packets per second of network operation $\int_{\ell}^{\infty} G\ell \cdot T$ is divided by the total number of packets carried by the network per second.

The total average time delay per packet through the network is then given by

$$T = \frac{1}{r} \sum_{\ell=1}^{L} \frac{G_{\ell}}{uC_{\ell} - G_{\ell}} = \frac{1}{r} \sum_{\ell=1}^{L} \frac{F_{\ell}}{C_{\ell} - F_{\ell}}$$

Where $G\ell/u = F\ell$, and L is the total number of links in the system and 1/u is equal to the average flow on link ℓ . It should be noted that the value of $C\ell$ (the minimum required capacity) must be greater than the total of all the flows on link ℓ . In other words, the value of $C\ell$ must be greater than the value which is the first run saturation level multiplied by the arbitrary capacity C for the first run.

The value of T includes both of the waiting time and the service time. The waiting time is subject to the interference of all other traffic within the network that consists of the data traffic as well as the control traffic. This average time delay can be used to analyze the relative goodness of the routing strategies considered in this study.

In deriving this basic formula, a number of factors (such as processing time and propagation delay) are neglected. In any realistic network, these variables as well as others must be considered in the analysis of the networks. According to the above formula, the average time delay depends only on the aggregate flow of the links. The reduction of the flow Fl of each link results in the reduction of the average time delay for the network which has constant input packet rate and link capacities.

For the example network (Fig. 3.1), the arbitrary capacity is 10 and the value of $C\ell$ must be greater than 2.5 (0.25 x 10). The average time delay for the capacity $F\ell=10$, and the input (requirement matrix) of 2 units from node 1 to

node 4 and 5 units from node 2 to node 3 are Tss = 2.12/r for the successive saturation case and Tms = 2.083/r for the max-slack case. To make these calculations easy, the data summarizing the final output run are listed in Table I. We see that there is not much advantage of one procedure over the other in terms of performance, whereas the max-slack solution requires only two iterations, rather than 6 for the successive saturation algorithm.

TABLE I
LINK FLOW FOR THE EXAMPLE NETWORK

(); Max-Slack

		DESTI	NATION	NODE		
LINK (Nodes)	-1	2	3	4	5	TOTAL FLOW
(Nodes)	<u>.</u>	2	3	4	5	t POM
1-2				(2)		(2)
				2		2
2-1		(2.5)				(2.5)
<u> </u>		2.5				2.5
1-3		(2.5)				(2.5)
		2.5				2.5
3-4						
						
2-4		(2.5)				(2.5)
		2.25				2.25
2-5		0.25		(2)		(2)
				22		2.25
4-3		(2.5)				(2.5)
		2.5				2.5
5-4		0.25		(2)		(2)
				2		2.25
Req Mat		C=10	, R ₁ (4	$(1) = 2, R_2$	3)=5	
•			Τ,	. 2		

III. EXPERIMENTAL RESULTS AND CONCLUSIONS

A. EXPERIMENTS AND COMPARISON OF THE RESULTS

The experiment was conducted for two experimental networks to analyze both approaches, in addition to the example network. These networks are specified in Appendix B. The networks were used in the experiment with requirement matrices of 15 units from node 1 destined for node 5, 9 units from node 7 destined for node 2 for the 9 nodes/36 links network (Fig. B.1): and 15 units from node 2 destined for node 12, 4 units from node 5 destined for node 6, and 10 units from node 10 destined for node 1 for the 13 nodes/60 links network (Fig. B.2). Both the successive saturation and max-slack approaches were used for the successive saturation approach, the 21 iterations are required in this experiment.

The results and their comparison is listed in Tables II, III, and IV. These are obtained by writing each flow variable value from the final output run on each link of the networks, and summing these flow variable values to obtain the total flow on the link (Appendix F and G).

As shown in Tables II and III, the number of iterations required and the total link usage (utilization) are much greater for the successive saturation approach, but fewer large link capacities are required than in the max-slack approach. The average time delay depends on the capacity

TABLE II RESULTS FOR THE 9/36 NETWORK

Fℓ											TOTAL	ያ የ
MIN-CAP		4	4 3.75	m	2.25	1.88	1.75	2.25 1.88 1.75 1.63 1	Н	0.5	USED	REQ
	SUCC											
NUM	T Z	œ	4		4	4	7	2		2	26	10
OF	MAX											
LINKS	- SLACK 14	14		2					7		18	2

TABLE III.
RESULTS FOR THE 13/60 NETWORK

F l MIN-CAP		3.75	3.33	2.92	2.75	2.6	2.5	2.36 2.08	2.08	7	2 1.97	1.88
	SUCC _ SAT	æ	m	9		4		ĸ	7	7	5	m
OF M	MAX - SLACK	23			1		m					
F ℓ MIN-CAP		1.56	1.39	1.3	1.17	1.17 0.63 0.47 0.7	0.47	0.7	0.25	TOT LINK USED	ITER REQ	~
S NUM	SUCC - SAT	2	7	2	т	2	1	2		48	21	
OF M	MAX - SLACK								Ŋ	32	2	
												Andread Control of the Control of th

value $C\ell$ (Table IV). When the capacity value $C\ell$ is close to the minimum required capacity, the time delay is less for the successive saturation approach than for the max-slack approach in both networks, and vice versa. It is significant for the large scale network, and for large enough link capacities $C\ell$, that the time delay difference becomes negligible.

Also, in the process of this study, it was noted that both approaches yield the same aggregate flows in the case of very simple networks (nodes less than or equal to 4), and for completely symmetric networks and requirement matrices (input and capacity matrices). For example, the time delays are the same for both approaches with 2 units input from the outmost nodes to the directly opposite nodes respectively (1 to 13, 2 to 12, 5 to 9, 12 to 2 and 13 to 1) for the 13 node network, because all links total flow are 3/4. The detail experimental results are listed in Appendix H.

B. CONCLUSIONS

This is an elementary study of the routing design problem for a packet network: given a traffic requirement matrix, minimize the average time delay per packet, subject to finding a feasible flow for a network with fixed topology and link capacities.

The general performance characteristics and advantages of the two approaches are investigated for small and simple networks. This illustrates one way to solve the design problem under limited conditions.

TABLE IV
TIME DELAY FOR THE CAPACITIES

CAPAC	ITY	4	4.2	4.5	5	10	15
9/36	SUCC - SAT		244.1/r	109.5/r	59.9/r	10.74/r	5.82/r
Net	MAX - SLACK		28.56/r	116.6/r	59.5/r	10.41/r	5.73/r
13/60	-	169.9/r	115.6/r	75.7/r	60.1/r	15.34/r	8.93/r
Net	MAX - SLACK	335.7/r	188.3/r	114.2/r	69.3/r	14.29/r	7.99/r

APPENDIX A

MATRIX REPRESENTATION FOR ILLUSTRATION NETWORK

A	Χ	=	R
0 0 0 1 1 1	F ₁ (1) F ₂ (1) F ₃ (1) F ₄ (1) F ₅ (1) F ₁ (2) F ₃ (2) F ₄ (2) F ₅ (3) F ₂ (3) F ₃ (3) F ₄ (3) F ₅ (3) S ₁ S ₂ S ₃ S ₄ S ₅ ALPHA	=	R ₂ (1) R ₃ (1) R ₁ (2) R ₃ (2) R ₁ (3) R ₂ (3) 0 0 0

Figure A.l. Matrix Representation for Illustration Network.

APPENDIX B

EXPERIMENTAL NETWORKS

Figure B.1. The 9 Node/36 Link Network.

Figure B.2. The 13 Node/60 Link Network.

APPENDIX C

MODEL GENERATION PROGRAM FOR EXAMPLE PROBLEM

```
$JDB

C$OPTIONS FREE

THIS IS THE DATA GENERATION PROGRAM FOR MPSIII.

C THE FORMAT SHOULD BE CHANGED ACCORDINGLY.

C N IS NUMBER OF NOCES, L IS NUMBER OF LINKS.

C IE(I,L) IS DEFINED AS FOLLOWS:

1.LINK INCOMING TO NODEI IS -1.

2.LINK OUTGOING FROM NODEI IS 1.

3.LINK UNCONNECTED WITH NODEI IS 0.

C IZCOL(K,L) IS DEFINED AS FOLLOWS:

1.LINK OUTGOING FROM NODE K IS 0.

C 2.OTHERWISE, 1.

C IR(I,K) IS THE LINK CAPACITY MATRIX.

C CAP(L,I) IS THE LINK CAPACITY MATRIX.

C COLNI(I,JI) IS THE LINK MATRICX CONNECTING NODES.

C DIMENSION INC(13,60), IE(13,60), IZCOL(13.60).
                                                                                     DIMENSION INC(13,60), IE(13,60), IZCOL(13,60), IRN(13,60), IR(13,13), CAP(60,1), ICOLN1(1,60), ICOLN(13,60), ICOLN
                                                                          *
                                                                                   DATA INITIALIZATION *****
READ(5,20C) N,L
READ(5,225)(ICOLN1(1,J1),J1=1,L)
READ(5,220)((IE(I,J),I=1,N),J=1,L)
READ(5,230)((IR(I,K),I=1,N),K=1,N)
READ(5,240)(CAP(IQ,1),IQ=1,L)
FORMAT(215)
FORMAT(513)
FORMAT(513)
FORMAT(513)
FORMAT(4E12.5)
                              ***
                              200
220
225
230
240
                                                                                    ZERO COLUMN GENERATION ****

DO 19 J = 1,L

DO 20 I = 1,N

INCE = IE(I,J)

IF(INCE .EQ. 1) GO TO 21

INCE = 1

GO TO 23

INCE = 0

IZCOL(I,J)=INCE

CONTINUE

CONTINUE

COLUMN NUMBER GENERATION ****

IAD = 1000000

DO 1 K = 1,N

IROWND = 0
                               * * *
                                             21
23
20
19
                          ***
                                                                                       DO 1 K = 1,N

IROWNO = 0

DO 12 J1 = 1,L

ICOLN(K,J1) = ICOLN1(1,J1) + K

ICOLN2(K,J1) = ICOLN(K,J1) - K

CONTINUE

INCIDENT MATRICX GENERATION ****

DO 2 I = 1,N

IF(I .EQ. K) GO TO 2

DO 3 J = 1,L

NULL = IZCOL(K,J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IAD
                              12
                                                                                                                                                                                                               MATRICX GENERATION ***
                                                                                        INCIDENT MATRICX GENE

DO 2 I = 1,N

IF(I .EQ. K) GO TO 2

DO 3 J = 1,L

NULL = IZCJL(K,J)

IF(I .EQ. K) NULL = 0

IDEN = IE(I,J)

INC(I,J) = NULL*IDEN

CONTINUE
```



```
IRUWNU = I*100
IRN(I,K) = IRCWNO + K + IAI
CONTINUE
ROW SECTION GENERATION ***
ID = 1
DO 61 I = 1,N
IF(I • EQ • K) GO TO 61
                                                                       = IRCWNO + K + IAD
***
                      ID = 1
DO 61 I = 1,N
IF (I .EQ. K) GD TO 51
WRITE (6,140) IRN(I,K)
CONTINUE
CONTINUE
CAPACITY ROW GENERATION ***
DO 7 J = 1,L
WRITE (6,145) ICOLN2(1,J)
CONTINUE
COLUMN SECTION GENERATION ***
WRITE (6,500)
DO 65 K = 1,N
DO 62 J = 1,L
NA = 0
      61
 * * *
 ***
                                                  0
                       NA =
                      NA = 0

DO 63 I = 1, N

IF(I • EQ • K) GO TO 5

NULL = IZCJL(K,J)

IDEN = IE(I,J)

INC(I,J) = NULL*IDEN

INC2 = INC(I,J)

IF(INC2 • EQ • O) GO T

NA = NA + I
                                                                            1, N GO TO 53
                                                                                              0) GO TO 63
                      TF(INC2 .Eq. 0) GB 10 63

NA = NA + 1

WRITE(6,510)ICOLN(K,J), IRN(I,K), INC2

CONTINUE

IF(NA .EQ. 0) GO TO 62

WRITE(6,520)ICOLN(K,J), ICOLN2(K,J), ID

CONTINUE

CONTINUE

CAPACITY GENERATION ***
      63
      62
       65
* * *
                      DO 66 J = 1,L

IA = J + 1000000

WRITE(6,540) IA, ICOLN2(1,J), ID

CONTINUE

ALPHA COLUMN GENERATION ***
       66
                         WRITE(6,565)
DO 67 J =1,L
                        DO
                      DO 67 J = 1, L

WRITE(6,573) ICOLN

CONTINUE

RHS GENERATION ***

WRITE(6,550)

DO 69 K = 1, N

DO 68 I = 1, N

TE(1,50, K) GO TO
                                                                                              ICOLN2(1,J), CAP(J,1)
       67
 ***
                     DD 68 I = 1,N

IF(I • EQ • K) GO TO 68

WRITE(6,560) IRN(I,K),IR(I,K)

CONTINUE

DO 5 IQ=1,L

CONTINUE

WRITE(6,580)

FORMAT(1X, E C', 17)

FORMAT(1X, E L', 17)

FORMAT(4X, X', 17,2X, C', 17,2X,15)

FORMAT(4X, X', 17,2X, L', 17,2X,15)

FORMAT(4X, X', 17,2X, L', 17,2X,15)

FORMAT(4X, X', 17,2X, L', 17,2X,15)

FORMAT(4X, INPUT', 5X, C', 17,2X,15)

FORMAT(4X, ALPHA', 5X, DBJ', 7X,15)

FORMAT(4X, ALPHA', 5X, DBJ', 7X,15)

FORMAT(4X, ALPHA', 5X, L', 17,2X, E12.5)

FORMAT(4X, ALPHA', 5X, L', 17,2X, E12.5)

FORMAT(4X, ALPHA', 5X, L', 17,2X, E12.5)

FORMAT(4X, ALPHA', 5X, L', 17,2X, E12.5)
       68
       69
             5
 14400000000500
144012456678
                         STOP
                         END
```


APPENDIX D

OPTIMIZATION PROGRAM, INPUT DATA MATRIX PICTURE AND OUTPUT FOR EXAMPLE PROBLEM

```
MATRIA

//CHANG JDB (1538, 1808, PRÖBLE:

//*

//*

//*

//EXEC MSSMPS

//CPC.SYSIN DD *

PROGRAM (*NO*)

INITIALZ

TITLE ('EXAMPLE PROBLEM, 1ST RUN FOR SUCC-SAT')

MOVE (XOBJ, 'OBJ')

MOVE (XOBJ, 'OBJ')

MOVE (XRHS, 'INPUT')

MOVE (XPBAAME, PROJECT')

CONVERT ('SUMMARY')

SETUP ('MIN')

BCDOUT

PICTURE
WHIZARD
PRIMAL
SOLUTION
EXII
PEND

/*

CYSIN DD *

INEQS
                 C1300201
L1020100
C1300201
C1000301
L1030200
C1300201
C1300401
L1320400
                                                                                                                                                                    -1
-1
-1
-1
```



```
C1000 305

C1000 305

C1000 205

C1000 205

C1000 405

C1000 405

C1000 405

C1000 305

C1000 405

C1000 305

C1000 305

C1000 405

C1000 305

C1000 405

C1000 305

C1000 405

C1000 305

C1000 405

C1000 400

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     . . . . . .
RHS
                                                                                                                                                                                                                                                                                                                                         C1300
C1300
C1300
CC1300
CC130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   234513451245123512351234
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ENDA
/*
//
```



```
-4410
   F PIDLY
のよういいいりょう
ACOCOCHN
らようしつししゅ
NOCOOPIN
N-000004
うしつりつしゅう
としいいいいり
うようりつうりゅう
COMCACHY
メインインらのう
VO1010V
NONCHORK
スーレーしいしょ
XHUNUHON
メーシュンシンショ
メーロいつすのか
メーシュンションマ
メークランこの4
XHOHOMOV
X4000004
XHOHONO4
XHONUTOM
MOMOTOM
MONONOM
XHON340M
スーしてしてして
MONCHONX
~~~~~~~
XHONO4GM
スーしゃしこしょく
KHOMONON
メーシーしょういい
NONCHCHX
メーンらしょりょ
X1040m01
HONDKOH
XHONO40H
XHOMONOH
XHUNUHUH
```


EXAMPLE FROBLEM, 1ST FUN FOR SUCCESSIVE SAT

SECTION 1 - PCMS

. EUAL ACTIVITY	1.00000	- 0.5030.		• •		100000		••	• •		-000050	•	. (5000	• •	76693	
				٠												
UPPER LIMIT.	NONE.		••	• •	00000.	• 1	2.00300	• •	•			• •	•	••	•	• •
UPPER					n		2									
LIMII.	NON E				5.0000		2.0000									
LONER LIMIT.	•				, v		. 2	•••	•••		••		•	•		
SLACK ACTIVITY	.25000-	• •	• •	• • •	• • •	• •	• •	• •	• •	•	• •	• •	•	• •	• •	• •
ACIIVIIY	. 25000	• • •	• •	• • •	00000:5	• •	2.0000	• •	• •	•	• •	• •	•	• •	• •) •
AI	3 2 3 3 3															
FLM	7233	10000		10000		16656	1(((1)	10030	1(((1)	16626	10000	162616	1(1636	75070	1(4(3(165646
YBER	-24	ገ ላ ጥ	101	- @ <i>o</i>	0.00											
NOF	4	٠.					44	93 0	ય વ્ય	٧		વ ન્હ	•	t ==t =	a.	•

EXAMPLE FROBLEN, 1ST FUN FCR SUCCESSIVE SAT

SECTION 2 - CLLLIPNS

RELUCED LUST	•	603	00000	•	• •	. (5000	. (5000	•	••	•	• •	• •	••		00000	•	• ((6.000	• •	16031.	• •	•	. (5000	• •		3000.	•
	iñ:	ىل ب مر ئ	, u	נים בים	u.u.	د د	ينان مراد	Hill C	الله الله	(합 1) 2번 2	îл.	الم المان المرابع	1:14	1111 2	لل الــا	u:	ال: الما مر م	1 111	اراند د مر	1.11	11" 27	لا ك مرم		ייים קיי	U 111	ЬШ!!	⊔.u. u.u. ₹ ∠! ∠	
UPPER LIMIT.	TO Z		2	בֿרַ בּיל	200	בר אל היינות היינות היינות היינות		77	200	52	N.		7			104		2					2	22	צמב		222	2
LONER LIMIT.	•	• •	•	•	• •	•	• •	•	• •		• •	• •	•	•	• •	•	• •	•	•	• •	•	• •	•	• •	• •	•	• •	•
INPLT CCST	•	• •	•	•	• •	•	• •	•	• •	• •	• •	• •	• •	•	• •	•	• •	•	• 1	• •	•	• •	•	• •	• •	•	00000	>>>>>
ACTIVITY	•	• •	•	• •	• •	•	• •	• 1)) U		2.11.6	Č	• 1	• •	000	2	•	• (• •	•	• •	00005.		2.5666	•		11111
AT																											TER TON	
. CCLLMA.	10301	16261	1(205)	777371	1(1(2(1(4(3(165640		16161	10,000	767771	101020	10010	10:020	1 (2 (4 (10,626		1(303)	1(2/4(1(4(3)	10000			10000	پ د	_
NUPBER													*		ינטו							•		0.0			36.0	


```
440.JA
   PIDLA
S → O ∪ O ∪ O D D
100000n
くしいいいい
MODE OF P
4000000*
うしいりついろう
MODDOD ON
クーつつつつつー
スージャンろうら
X-10/20/20
MOS C NOFX
とうりくりらい
スペーシーションション
NONCHON
メーしてしている
XHONO404
スーレスソンシンチ
X40V0404
X HUMUNDA
イージーンMOサ
X-070-04
XHOHONO4
メークらしよりま
メーロイレタロタ
X-ONUMUM
XHONO40M
スーしょしのひこ
XHONOHOM
~~~~~~~
XHUNU4UN
スーンインランン
KHOMONON
XHUHUNUNIN
NONCHONX
X-000040-
MUMOTOMUM
PCUCUOPX
X4070404
XHOMONOH
MONOHOM
```


EXAMPLE FROBLEM, 2ND FUN FOR SUCCESSIVE SAT

SECTION 1 - FCMS

L ACTIVITY	0.0000 0.	1000c-	. 16006-	3000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	20021.
I EUA		2	0			
UPPER LIMIT	NONE	00000°s	2.00000	· • • • •	2.50000	2,50300
LOWER LIMIT UPPER LIMIT EUAL ACTIVITY	NON.	2.000	2,0000	••••	2. \$ 6000	2.5000
SLACK ACTIVITY	25000-	•••	• • • •	•••	••••	• • • •
ACTIVITY	25,60	,00000;5	2.0000		2:5000	2.50000
AI	MINTERPRESE NGGGGNNNNN	ירורים : ביביני			10000000000000000000000000000000000000	INCE INCO
F. C. W		10000				10000
NUFBER					100000 101000	

EXAMPLE FROBLEM, INC FUN FOR SUCCESSIVE SAT

SECTION 2 - CCLLPNS

1500	10000	20021	າເຈດເ		3000	10000	1000c	10005
*RECLCEC LOSI	••••	• • • •	• • • •	• • • •	• • • •	• • • •	• • • • •	• • • • •
LIMI1.	10000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2000 2000 2000 2000 2000 2000 2000 200	14474 14474 160000 1600000	######################################	142223 100000 142223 100000	222277 2000 2000 2000 2000 2000 2000 2	MANANA MANANA MANANA MUMUM MUMUM MANANA MANANA MANANA MUMUM MANANA MUMUM MUMANA MANANA MUMANANA MUMANA MUMANA MUMANA MUMANA MUMANA MUMANANA MUMANANA MUMANA MUMANANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANA MUMANANANA MUMANANA MUMANANANA MUMANANANANANANA MUMANANANANA MUMANANANANA MUMANANANANA MUMANANANANANANANANANA MUMANANANANANANANA MUMANANANANANANANANANANANANANANANANANANA
UPPER								
LIMIT.								
LOBER LIMIT.	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • • •	
INPUT CCST	• • • • •	••••	•••		• • • • •	• • • •		00000
INPLI								
IVITY					0000		00005	0 00 0 00 0 00 0 00 0 00 0 00
ACIIV	• • • • •	• • • • •	NNC		No	v	• • • • •	V
AT	881183 001180	0	ב המעירו	ເຄສສສສ ເພລາດເຄ	מרפרר מארארר	1019 1019 1019	פרמפרו מאראארו	RELESON
• CCLLMA.								######################################
NUMBER							100 200 100 200 100 100 100 100 100 100 100 100 100 1	
-		444	4		4 4		⋖	4 ×

-441-	•	ৰ ব		বৰ	۹.
PIDLP	-			4 4	वन व
そよりのうりのは				1	1 1
~000000n					-
ないいい しょうしょ	•				-
veccoopen				-	→
N4000004				-	
MOCOCOHN				-4	
NHOOFOOM				→	
シェンンひじつつす				i-4	
スユロチロヨロシ			ببس		-
W.ONGNG-HX			`~ '		~
メージといるのと				-	→
LONOMON			਼	-	
スーシーションと			~'~	-	
メーロごじょじら			' ج	~	
スーしつしいいしょう	•		<u> </u>	~	
X4000404			→ '	•	-
スーロマロロロマ			~ ~		-
X-0000404			→ '	_	4
メーロ プロマロイ			_	-4	
メーリー りきじょ		-4	' .	-	
メージンローロチ		-	→ '	-	
X-0-000		-4	→ .	~	
メージろうよりを			•		-
メークトンをひき		-			~
MONONOM					-
X400040m		~ ~ ,		_	4
イーリー しきしき		~ '		-	
X40N040m		44		-	
~~~~			•	-	
水1040404	7	<b>~</b> '			-
<b>メーシャ</b> ションマ	<u></u>				
XHOMONON	÷			~	
メイジージョンス				-	
メーシーションス	→ '			→	
X4000404					-
メーク40m01	7				~
XHONONOH	~ ~				-
X-00000-0-	~ ~'			-	•
XHOMUNOH	'			~	
HOMONOH	4			-	

## $\leq$ and an elementary and the second distribution of the second distributi



EXAMPLE PROBLEM, 3FD FUN FCR SUCCESSIVE SAT

SECTION 1 - FCMS

DUAL ACTIVITY	1. CCOUC		• •	-15000		•	•	-7000-7	. (5000-			· (EXC)	-20073 •	-20000-	•	• •	•	•	7005)		. (5000	• •	. (5000
				•				٠															
UPPER LIMIT.	NONE	•	• •	• •	•	•	•	• •	5.00000	•	2,00000		•	•		• •	•	2,50,000	2.5000	•	•	2.50000	•
LONER LIMIT	ACNE	•	• (	, •	•		•	• (	5.00000	•	2,0000	•	•	•	• (	•	•	2,5,000	2: Fico c C	•	•	2.50000	•
SLACK ACTIVITY	-22500-	•	• •	•	•	•	• .	• •		•	• •	•	•	• (	• •	•	•	• •	, •		•	• •	•
ACIIVIII	.22500	• (	• •	•	•	•	• (	• •	5.0000	•	2.0000	•	•	• (	• •	•	•	2.5666	2.5000	•	• ,	2. 5000	•
A	B S	ЭС ЭС	ווינ ביל	T.	Sic	רם טע	) L		Э:	n 1 3€	т С.	mi G	Э:( Ш:(	11 10	1 12 20 1 10	Э( Ш;	) (1)	JU O	(III)	٦. س.	П«		ש
F.C.	e.	16626	1(((4(	1((()	וניכוכ			166616	10005		1000	16626			16626	1(((3)	10000	1(2010	101030	1020201	1 6 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 7 6	000000000000000000000000000000000000000	162646
NUPBER		<b>Q Q</b>		٠n	9	<b>~</b> a	907								•	2		171	2			228	



EXAMPLE FROBLEM, 2FC FUN FOR SUCCESSIVE SAT

SECTION 2 - CCLUMNS

ח כהאו	•	. (500c		65000		. (5000	• • •	• •	• •	1 •	בטטפס.		• •		Cenaic		, ,,,,,,,	• •	(50.00			. (5000	•
*RECLCED CLSI		•																					
LIMIT.	NUN ACA ACA	1:00 22 20 20 20 20 20 20 20	2012 2012 2012 2012	NOV NOV NOV	NO.	11 12 12 12 12 12 12 12 12 12 12 12 12 1	NO.7	10 C	12. 22. 24.	14 14 14 14 14 14 14 14 14 14 14 14 14 1	100 100 100 100 100 100 100 100 100 100	1204 204	1 U	アロアロアロアロアロアロアロアロアロアロアロアロアロアロアロアロアロアロアロアロ	70.27 7.07 7.07 7.07	2 2 3 1	200	NUN 1	101 22 30 22	20	1 U.	202 202 103 103 103 103 103 103 103 103 103 103	1
UPPER													•										
LIMIT.																							
LONER LIMIT.	• •		. • •	•	•	• •	• • •		• •	• •	• •	•	• •	• •	• (	•	• •	• (		• •	• •	• • •	•
INPLI CGST	• •		• •	• •	• •	• •	• • •	• •	• •	• •	• •	•	• •	• •	• •	•	• •	• (	• •	• •	••	1.00000	
- IN P																							
AC1IV11Y	• •	• • •	• •	• •	• •	• •		2.25000		20	• •	•	2 . ( ( ( 0 0		• •	•	• •	.2 £ C C O	) ) ) ) • • •	2,25000	• •	00977	
AT .	BS		35 SiS			8 S	i S S S S S S	S S S S S S S S S S S S S S S S S S S	i Si Si	0 20 .		S _	ie.	12 N	65 L	85		S S		SP.	ەندى	2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	2
.CELLMA.	10201		166636	101030	163631	105040	102010	102040		10,020	10101	1 ( 3 ( 2 (	50201	101020		1 (305)	16663	16666		10000		ب	
NUPBER																						0 <b>%</b> C	
				4	~ ~						•	•	•	4			4		4		-		



<b>コ</b> として		∢	4	वव व वव
PILLA	-			4 4 4
W-COCOCM				1 1 1
70CC00HN				-
ショウシウシウ				-
NOCCOON	•			-
N-000004	•			-4
NHOODOOM.				<b>→</b> .
NHOOUGUN				-
シょうひひひひつ				-
X1040m0v			7	
スエリクリクログ				-
X4043400			-	<u>ب</u> ۾
X4045300			<b>ન</b> ન	· -
スーしょしょうしょう			~'-	-
入1020165			أجبا	-
スーシーション			4-	-
X4070404	•		~ '	-
<b>トラミハミシア</b>				-
<b>メーシッククク</b>			<b>⊸</b> '	-4
かりとりとうでき				-
X4040m04			- · -	-
X-000-04			~~ [']	-
**************************************	•		بغب	-
XHON040M		<b></b> -	• '	-
<b>よより40m0m</b>		-		
<b>メよりこうごこう</b>		~ -	•	-
X400040W		ૢઌઌૣ૽૽		→
<b>イーしー</b> しきしき		<b>~</b> '		~
XHONOHOM		7-		-
~~~~~		÷7		7
メークロン4014				-
スプロイクロロバイ	70			7
X40M0N0N	, in			-
とうこうできる				-
N0000+00N	→ '			-
X4040404	·			-
X1040m01	7-			-
X4000004	~ ~			-
X40/0404	77			-
X40WO!AOH	77			-
XHONOHOH	-			-

EXAMPLE FROBLEM, 41F FUM FCR SUCCESSIVE SAT

SECTION 1 - FURS

1. (6006	• • '•			-10001.	10000	• • •	•••	• 1600C	10000	
NONE	•••	• • •	00000:5	2.06000	• • •	• • •	2.50000	7.5000 •	2.25000	2.55000
. NONE	• • •	• • •	00000	00000		• • •	50004.	3001.	. 25000	2. 5.00.0 2. 2.5000
			'n	2			~	7	2	22
.22500-	• • •	• • • •	• • •	• • •	. • •	• • •	• • •	• •	• •	• •
. 22500	• • •	• • • •	00000:5	2,0000	. • •	a • •	25.50		2.2566	2.51000
S D D	TOWER SOUTH		ia at	היה היה בכב	יית m סכר	12'00 3000		E C. C		mm OO
B. (C2(10010	2007	100020		10000			1(3626	1(2(4(164636
						• ∾c	1/1/10			
	1 0B. uS .22500 .22500- 2 01000201 EQ .	COLCCO CO	1 0B. 22500- 22500- 22500- 3 CICCECT EU 4 CICCECT EU 5 CICCECT EU 6 CICCECT EU 7 CICCECT EU 8 S CICCECT EU 8 CICCETT EU 8	20000000000000000000000000000000000000	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NONE 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NONE 1	1	A C C C C C C C C C C C C C C C C C C C

EXAMPLE FROBLEM, 41h FUN FOR SUCCESSIVE SAT

SECTION 2 - CCLLMNS

.Ketuceb cost	• •	30031.	• •	3696	• •	• •	• •	• •	• •	• •		10001	•	•	•	10030	16006	30031	•	• •	20021.	jenne.	. 1.000£	• •
UPPER LIMIT.	тити 200 200 200 200	10 iu	и и. С.	7.0V 7.0V 7.0V	עיט 23 27 42	и и 42 ЭТ 44	140 122 123 124	1 U A	u.u 22. 21.	NOV.	TION A		NOV.	0.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	10 A	200	3 L	202	J 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 11 1	1 U	14. (4.	122 222 222 222	NOA NO
LCher LIMIT.	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	•	• •	•	• •	. •	• •	• •	•	• (• •	• •	•	• •	• •
INPLT CCST	• •	• • •	• •	• •	• •	• •	• •	• •	• •	• •	•	• •	•	• •	•	• •	• •	•	•	• •	• •	•	• •	1.0000
AC11 V I 1 V	• •	• • (• •	• •	• •				101))))	•	••	2.0000	• •	•	• •	• •	•	. 2 5 C C O		2.25000	•	• •	.22500
ΑT	882 882																							
. CC1 LMA.	X1 (50101) X1 (50201)		050501	10103	767571	10,000	10,000	16.640	164636	101020	163616	16:626	1 (5 (4 (16666	101020		1 (2 (4 (16363	10000	10000	10001	10001		16600
NUPBER	13 M 4			7~1		77				7.7				ىتر										

ームエント ddad a a AJUEA H MHOUUUUW くしいいいいりつ くししししししゅ NOCOCCEN 4 PODOCE PN ろよりひつつひき クレンシンシンス くよりつうじつきょ X1-340MON **メーンマン クロタ** X1007000 **とよりこうりらり** スーシーションと X-ONO-ON A-3-01VUVI メーンろりょりょ **プロログラントン** XHUND404 **メーショウことりょ** メーローフラフキ *OPCIONX YOU OHONY X124040m XHU40MOM **MOINCINDEX XHONDYOM** スーシーしいいの MOHONCHX ~~~~~ スーしろしょりこ **ネーレイ**しきしょ NOVIONON XHUHUMUN NCHONONX メーロろしゅじょ XHU40MUH XHONONOH XHONO49H HONDMCHX 1 **メイロミリー**

EXAMPLE FRCALEM, 51F FUN FOR SUCCESSIVE SAT

SECTION 1 - FChS

LOWER LIMIT UPPER LIMIT CUAL ACTIVITY	יפראס•ד		•••	111		• • •	• •		3 7 7 7 °	• • •	7000
UPPER LIMIT.	NONE	• • •	• • •	ວວດວວ ້ີ ເ	00000°2	• • •	• •	• • •	2.5cucc 2.5cucc	00044.7	
		• • •	• • •	00000:5	2.00000	• • •	• •	• • •	2.56000	24. 200 200 200 200	200000
SLACK ACTIVITY		• • •	• • •	• • • •	• •	• • •	• •	• • •	••	• • •	•
ACTIVITY	.2000	• • •	• • • •	00000:5	2,0000	• • •	• •	• • •	2.5000	2.25000	2,5000
AT				THE COLOR							
• • • F C W • •	E 2 C 2 C				10000			100040		1020201	1(4(3(
NUPBER	700		o~∞,	10,			→	100	77°		7

EXAMPLE FROBLEM, 51h FUN FGR SUCCESSIVE SAT SECTION 2 - CCLLMNS

CUS1.	10000	ונה הה הרים ה ונה הה	10000	10090	10000	1000	16006
.REGLCED	-	-		• • • • •	• • • •	• • • • •	• • • • • •
LIMII.	144747 000000 000000	2222 2222 2222 2222 2222 2222	11 11 11 11 11 11 11 11 11 11 11 11 11	U WWW WW I ZAZZZZ ZECCCC ZAZZZZZZ ZAZZZZZZ	77777 77777 77777 77777	11 JA 00 127777 127777 127424	שטיט פיט ביט פ לככר סר ר כ אאאאאאאאאאאא אאאאאאאא
UP PER					•		
LUNER LIMIT.	• • • • • •	• • • • •	• • • • •	• • • • •			
••LUh ER							
CCST		• • • • •	• • • • •	• • • • •	• • • • •		0000
• INFUT							~
CTIVITY	••••	• • • • •	00000 00000 00000 00000 00000 00000 0000		2.0000	••••	2:(((00
I A	NOLLNN	. ب. ي. ي. ا	าางงงง	ທທທ⊒ທກ.	רע העאר	יר אר הראו	**************************************
ব	ವಶಾಗದಿಹ		מממטרר	משרמננים.	-מרמשר	. רמירמי	വ-വയ പ്പയ ൽ
• ((ILM)•				75000000000000000000000000000000000000			ANN STATE OF THE PROPERTY OF T
NUMBER		اساساسا	*44444	4444 <i>ni</i> vin	ሁ ስሆለን የሆስ	1000 C 001	100000C
		•	4		•	4	•

ーとコント **aaa aaaa** AJREA -4 ഗ~ര**ാ**വവവമ うしつりいじゃ **ゆりにひて いする** ろうりつつりょう 400000A MOCOCOM **ジー コロウコロへ** PCOCCCEN **ドーロインタンシ** WOUCNC PX AUT COOP X NONCMCFX **ムーしーしごしい** XHONUHUM スーしつしいくしい メーンろうインケ **401909104** X-10/10/10/4 メーンさりさりゃ **YUDUOPCPX** X-UND-OF **TONONCHX** スーしらりょりき MOMOVCHX MUNICIPIEM **KHONOYOM** スーシーションろ MOPCHOMX A-----メーンろしょうこ スーンないのいい KHOMONON メーシーしいいいい NONCHCHX XAOSOS 4OA XHO40MUH **XHONONOH** MOVUVO-X **XHOMONOM** XHUNUHOH

EXAMPLE FROBLEM. (Th. FUN. FCR. SUCCESSIVE SAT

SECTION 1 - FCMS

AL ALTIVITY	1. (6006	-35051.	13000	• •	• •	• •	•	••	10000	•	•	- 10006 -	-10001	• •	10000		•	••
LUMER LIMIT UPPER LIMIT GUAL ACTIVITY	NONE	• •	• •	• • •	• •	5.00000	• •	2.00300	• •		• •	•	2.0000	(C)	Z. 31.001.	2.25000	としている。	2.25000
ER LIMITU	NONE		• • •	• • •	• •	5.00000	• •	2.0000	• •	•	•		2,00000	14. CO	2.5.000	4. 25000	2. 2.5000	2.25000
SLACK ACTIVITYLUM	• (• • •	• • •	• • •	•	• •	• •	•	• •	•	• •	•	• •	•	• •	•	•	• •
ACTIVITY SLAC	• (• • (• •	• • •	•	5.0000	• •	2.0000	• •	•	• •	•	2. ((()	0000) , , , ,	000000000000000000000000000000000000000	No ************************************	7 - Z - C C C C
AI	S D		10v	S S S	S S	и п. Эсе	m S	n 7 O 2	1444 1444 1444	О (4 Ш 1	ת ס	7) []	Пт Э.С	m C. C	J.	nin Dig	im O
F.C. h	E. 166626	10030	10000	C1((C3(2) C1((C4(2)	140001	10020	16111	10001	10001		1(((2(166371	10102		1(3(2)	76777	16771	16646
AUPBER	70		w.o	r-0				, (44.			20	17	170	5	~6	70	

EXAMPLE FROBLEM, 61F FUN FOR SUCCESSIVE SAT

SECTION 2 - CCLLMNS

.RECLCEC CUST	••	37000 700000 700000 70000 70000 70000 70000 70000 70000 70000 70000 70000 70000 700000 70000 70000 70000 70000 70000 70000 70000 70000 70000 700000 700000 700000 700000 70000 70000 70000 70000 70000 70000 70000 70000 70000 70000 700000 700000 70000 70000 70000 70000 70000 70000 70000 70000 700	•	• •	1000	•	• •	• •	• •	• •		1001.	• 1	• •	• •	10000	16006	• • •	• •	1,000	• •	• • •
UPPER LIMIT.	NUNE	NON NON NON NON NON NON NON NON NON NON	NUN NUN NUN	20V		1 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Mm (2002)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	11 NO.	NCN NONE	13 L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	200	NUN NUN NUN	9 19 19 19 19 19 19 19 19 19 19 19 19 19		10. 2. 2. 2. 2. 2.	14. 24. 24.	10 L	1.uu 1.24 1.02 1.02 1.02	10 N
INPLT CGSTLORER LIMIT.		• •	• •	• •	• •	. •	• •	• •	• •	• •	•	• •	• •	• •	• •	• •	• •	• • •	• • •	• • •	• • •	1,00000
AC II V I 11	• •	• •	• •	• •	• •	•	5000			0,0	•	• •		2.0000	• •	• •	• •		• • •	• •	• •	
AI	SS.	اب اب اب	מימ במ		 	12 20 20 20 20 20 20 20 20 20 20 20 20 20	i S	333 1.Vo	ינטי בינד ב	22		ב ה נ	13 N	SU	. نــ د . نــ د	H N N		S	- L - L - L - L - L - L - L - L - L - L	1 N N N N N N N N N N N N N N N N N N N	1 K	S S
. CELLMA.	X1(2(1(1) X1(2(2(1)	1666	777	10000	1(3(3(165646		75077		101020	1(2110	1(302)	16264	7677	162010	163631	16,05,01	10001			1,000	LICCOC
NUPEER	0.40									1.7								04				

APPENDIX E

OPTIMIZATION PROGRAM, INPUT DATA
MATRIX PICTURE AND OUTPUT FOR MAX-SLACK APPROACH

```
//CHANG JOB
//#
//* MP
//* EXEC_M
                                                                                                                                                                                                (1538, 1808), 'CHANG JOON WOONG', CLASS = A
                         EXEC
CPC.SYSIN
                                                                                                                                    MPSIII
                                                                                                                                                                                                                                           EXAMPLE PROBLEM
                                                                                                                                                   MSSMPS
N DD *
ROGRAM (*ND*)
NITIALZ
ITLE (*EXAMPLE
OVE (XOBJ,*O)
OVE (XRHS,*III
OVE (XPBNAME
OVE (XPBNAME
OVE (XPBNAME
OVERT (*SUMM
ETJP (*MAX*)
CDOUT
                                                                                                                               MSS MPS
SIND MAL

PROTIE

PROTIE

MODVE

MOD
                                                                                                                                                                                                                                                                                                                                          E PROBLEM,

OBJ';

NPUT';

LINEQS';

PROJECT'

ARY';
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2ND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                RUN FOR MAX-SLACK"
DD #
                                           C1300 201
L1320 100
C1000 201
C1000 301
L1330 200
C1300 201
C1300 401
```


100 100 100 100 100 100 100 100	200 400 1
--	-----------


```
XXXXXXXXXXXXXXXSSSSSSSSSSAAAAAAAAA
                                                                                                                                               020
010
030
040
050
040
                                                                                                                                                                                                                 01
02
03
03
02
04
05
                                                                                                                                                                                                                                                                               11111111
                                                                                                                                                                                                                                           00000000
                                                                                                                                                                                                            11111111
                                                                                                                                                                                                       00000000
                                                                                                                               00000000
                                                                                                                                          111111111
                                                                                                                           - - - - - - - -
                                                                                                                                                                              02
02
02
02
02
02
02
02
                                                                                                                                     .......
***
***
**
**
**
                    2345134512451235123421324534
                                                                        りららいしていることのことのことのことのことには、
                                                                                                                                               0000000005002000000002222222
                                                                                                                                                          55555555
EN//
     ND
```


PILLA とようしつししは ろしのいいりして マーシンシンショ ろうしいいじゅう POCCOCHN **MCCCCOPN プロフロロファード** MADODOD-メージょうそうら X-10/10/00/0 X L U N U Y O N スト・レミリンとりら スーシーションシェ XLONOHON スーリーリッとしょう スコンシンサウチ スーションションマ **プログログライ そのごいごうりず** *HOMONOY *HONOHO* XHOHUNO# X40VJ40W **MOMOVOOM** メークスシウロロコ WC 40NO + 2M スーシーション・コ MOHONOHX **スーしつしいなしい** 大王〇ららいけいこと **イーシャンこしこ** NONCMORX スーしつついいいい NONOHOLX XHOUNUTUH **メーロイロタロー HONONOH** POTCHOPY XHOMONOH

4444444

ームエント

MOPUNUMX

EXAMPLE FROBLEM, 2ND FUN FOR SLACK-MAX

SECTION 1 - FCMS -

EUAL	3.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	ייייייייייייייייייייייייייייייייייייי	3. C.	1			
NUNE NUNE	00000	2.00000	• • •	• •	2 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×	7000 7000 7000 7000 7000 7000 7000 700	2.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0
NUNE NUNE	5 <u>. coao</u>	2.0000	• • 1	• •	2. F. C.O.C.	NININ 1000 1000 1000 1000 1000	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SLACK ACTIVITY 4.00030-	•••	•••	• • •	• •	• • •	• • •	•••
4.CCC0		2.0000	• • •	• •	• • •	1000 1000 1000 1000 1000 1000 1000 100	5 - 5 - C C C C C C C C C C C C C C C C
4 355550000 - 00000000000	ה הסבר	ה המני	а И.С. С.	m.nn	E COLOR		
	166616	10000		10030	101020		10,000
7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							

EXAMPLE FACELEN, ENC FUN FUR SLACK-MAX

SECTION 2 - CCLLPNS

.RELLCED COST.	-30033.5	11111 2000 2000 2000 2000 2000 2000 200	2. ttuot-	2.0000	-30031; 4:00000- -30031; 4:00000-	1: (000C- 1: (COUC- 1: (COUC-
UPPER LIMII.	######################################	U U U'U'U'U ZZZZZO C C C C C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	リ 444444 	HE DEBERT OF THE PROPERTY OF T	。 はいいいいにいい グイズグ フィンコンコン フィンコン	61622224 222224 222224 222222 222222
LCHER LIMIT.	••••	• • • • •	•••••	•••••	•••••	•••••
INPLT CEST	• • • •	• • • • •	•••••	• • • • • •	3,0000	0000000 01000000 01000000 01000000 01000000
AC11VI11	• • • •	••••	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.000	22275	2.5666
IV	BELLBS.	, , , , , , , , , , , , , , , , , , ,	しなない ころろうしょう	NUUNNNN. ORBBLLE	שמררמר האררהראר	LOSGELELE LOSOLOLO
.CCLUMA.						
NUMBER						

APPENDIX F

LINK FLOW FOR 9/36 NETWORK

Table F.1. Link Flow for 9/36 Network (); MAX-SLACK

LINK				DEST	INATIO	N NODE				— TOTAL
(NODES)	1	2	3	4	5	6	7	8	9	FLOW
1-2		0.5			(4) 3.5					(4)
2-1										
1-3					(4)	***************************************				(4)
3-1										
1-8					(4) 3.75					(4) 3.75
8-1		0.5								0.5
1-9					(3) 3.75					(3) 3.75
9-1										
2-3					1.63					1.63
3-2		(1) 2.25	<u> </u>							(1) 2.25
2-4					(4) 1.88					(4) 1.88
4-2		(4) 2.25								(4) 2.25
2-9										
9-2		(4)								(4) 4
3-4					1.88					1.88
4-3		1.75			,					1.75
3-5					(4) 3.75					(4) 3.75
5 - 3		(1) 0.5								(1) 0.5
4-5					(4) 3.75					(4) 3.75
5-4										
4-6										

LINK			D	ESTINA	TION N	ODE				- TOTAL
(NODES)	1	2	3	4	5	6	7	8	9	FLOW
6-4		(4) 4								(4)
5-6									·	
6-5					(4)					(4)
5-7										
7-5		(1) 0.5			(3) 3.5					(4) 4
6-7										
7-6		(4)				· · · · · · · · · · · · · · · · · · ·	 	18	······································	(4)
6-8										
8-6					(4) 4					(4) 4
7-8		2.25								2.25
8-7					1.63					1.63
7-9		(4) 2.25								(4) 2.25
9-7	_				(3) 1.88					(3) 1.88
8-9		1.75								1.75
9-8					1.88					1.88
REQ-MA	Т		[ج (5)=	15, R ₅	(2)=9				

APPENDIX G

LINK FLOW FOR 13/60 NETWORK

Link Flow for 13/60 Network

Table G.1.

(); MAX-SLACK

(NODES) 1 2 3 4 5 6 1-2 2-1 1-3 (0.29) 3-1 (3.75) 4-1 (3.75) 1-4 1-5	2 9	8 9	10	11	12	13	
(3.75) 3.33 (3.75) 3.33			2	-	7	2	FLOW
(3.75) 3.33 (3.75) 3.33							
(3.75) 3.33 (3.75) 3.33	•				(3.75)		(3.75)
	(0.25)						(0.25)
							(3.75)
					1.39		1.39
1-5							(3.75)
					(3.75) 2.36		(3.75)
5-1 (2.5) (0.29	(0.25)						(2.75)
2-3					(3.75)		(3.75)
3-2							
2-6					(3.75)		(3.75)
6-2							
2-9					(3.75)		(3.75)
9-2							

LINK			ā	ESTINA	DESTINATION NODE	ODE							TOTAL
(NODES)	1 2	cc	 4	2	9	7	8	6	10	Ξ	12	13	FLOW
3-4	0.73										1.88		2.61
4-3					1.56								1.56
3-6					(0.25)								(0.25)
6-3	(3.75) 2.92												(3.75)
3-7											(3.75)		(3.75) 1.88
7-3	1.15				0.41								1.56
4-5	0.97										1.39		2.36
5-4					2								2
4-7					0.64								0.64
7-4	2.6												2.6
4-8											1.89		1.89
8-4	0.97				0.2								1.17
5-8					(3.75)								(3.75)
8-5	(2.5) 2.36												(2.5) 2.36

LINK	DESTINATION NODE	TOTAL
(NODES) 1 2 3	4 5 6 7 8 9 10 11 12 13	FLOW
5-12	(3.75)	(3.75)
6-7 0.95	(3.75)	(3.75)
7-6	(3.75) 1.97	(3.75)
6-9	0.47	0.47
9-6 1.9	0.07	1.97
0-10	1.3	1.3
10-6 (3.75)		(3.75)
7-8 0.73	(3.75)	(3.75)
8-7	(3.75)	(3.75)
7-10		
$10-7 {3.75 \choose 2.92}$		(3.75)
7-11	(3.75)	(3.75 1.97
11-7 0.61	0.56	1.17

LINK					ESTIN	DESTINATION NODE	NODE							TOTAL
(NODES)	_	2	m	4	5	9	7	ω	6	10	=	12	13	FLOW
8-11						0.63								0.63
11-8	(2.5) 2.6													(2.5)
8-12												(3.75)		(3.75)
12-8												-		
9-10												1.3		1.3
10-9	1.9													1.9
9-13												(3.75) 2.92		(3.75 2.92
13-9						0.07								0.07
10-11	(2.5) 2.91													2.91
11-10														
10-13	0.3											2.62		2.92
13-10														
11-12												(3.75)		(3.75) 3.75
12-11														

INK			TAIAIT	ON NOT								TOTAI
4		UE	DESTINATION NODE	TON NOT	UE							1
(NODES) 1 2	2 3	4	5	5 6 7	7	8	6	10	Ξ	8 9 10 11 12 13	13	FLOW
11-13				0.07								0.07
13-11 0.3										1.78		2.08
12-13												
13-12										(3.75)		(3.75)
REQ-MAT	R2	$R_2(12)=15$, $R_5(6)=4$, $R_{10}(1)=10$, R ₅ (6)=4, R	=(1)01	10						

APPENDIX H

Table H.1. Link Flow for Symmetric Req-Mat of 13/60 Network (); MAX-SLACK LINK FLOW FOR SYMMETRIC REQ-MAT OF 13/60 NETWORK

TOTAL	FLOW	(3/4)	(3/4)	(3/4)	(3/4)	(3/4)	(3/4)	(3/4) 3/4	(3/4)	(3/4)	(3/4) 3/4	(3/4)	(3/4)
	13	(1/4)		(3/4) 3/4		(3/4)		(1/4) 1/4					
	12		(1/2)		The party of the p			(1/2)		(3/4)		(3/4) 3/4	
	=												
	10												
	6	(1/2)							(1/2)				
	∞												
0 DE	7												
NOIT	9												
DESTINATION NODE	5		1/2					1/2					
Q	4												
	т												
	2	1/2							1/2		(3/4)		(3/4)
	_	(1/4)	1/4		(3/4)		(3/4) 3/4		(1/4)				
LINK	(NODES)	1-2	2-1	1-3	3-1	1-4	4-1	1-5	5-1	2-3	3-2	2-6	6-2

Honde Feet Feet	LINK					DESTIN	DESTINATION NODE	NODE							TOTAL
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_	2	33	4	5	9	7	8	6	10	=	12	13	FLOW
$ \begin{array}{c} 1/2 \\ (3/4) \\ 3/4 \\ 3/4 \\ 3/4 \\ 3/4 \\ 3/4 \\ 3/4 \\ (3/4) \\ 3/4 \\ (3/4) \\ 3/4 \\ (3/4) \\ 3/4 \\ (3/4) \\ 3/4 \\ (3/4) \\ 3/4 $										(1/2)			(1/4)		(3/4)
$ \begin{array}{c} (3/4) \\ 3/4 \\ 3/4 \end{array} $ $ \begin{array}{c} (3/4) \\ 3/4 \\ 3/4 \end{array} $ $ \begin{array}{c} (3/4) \\ 3/4 \\ 3/4 \end{array} $ $ \begin{array}{c} (3/4) \\ 3/4 \\ 3/4 \end{array} $ $ \begin{array}{c} (3/4) \\ 3/4 \\ 3/4 \end{array} $ $ \begin{array}{c} (3/4) \\ 3/4 \\ 3/4 \end{array} $	1	(1/4)	(1/2)			1/2									(3/4)
						(3/4)									(3/4)
$ \begin{array}{c} (3/4) \\ 3/4 \\ 3/4 \end{array} $ $ \begin{array}{c} (3/4) \\ 3/4 \end{array} $			(3/4) 3/4												(3/4)
$ \begin{array}{c} (3/4) \\ 3/4 \\ 3/4 \\ (3/4) \\ 3/4 \\ (3/4) \\ 3/4 \\ (3/4) \\ 3/4 \\ (3/4) \\ 3/4 \\ (3/4) \\ 3/4 \\ (3/4) \\ 3/4 $														(3/4) 3/4	(3/4)
					, A	(3/4)									(3/4)
(3/4) 3/4 (3/4) 3/4 (3/4) 3/4														(3/4) 3/4	(3/4) 3/4
(3/4) 3/4 (3/4) 3/4 (3/4) 3/4		(3/4)													(3/4)
(3/4) 3/4 (3/4) 3/4						(3/4)									(3/4)
(3/4) 3/4										(3/4)					(3/4)
										(3/4)					(3/4)
		(3/4)													(3/4)

LINK			DESTI	STINATION NODE	NODE								TOTAL
(NODES) 1	2	8	4	2	9	7	æ	6	10	Ξ	12	13	FLOW
4-8												(3/4)	(3/4)
8-4	(3/4)												(3/4)
5-8								(3/4) 3/4					(3/4)
8-5				(3/4) 3/4									(3/4)
5-12								1/2			(1/2)	(1/4)	(3/4)
12-5 (1/4)	1/2			(1/2)									(3/4)
2-9											(3/4)		(3/4)
9-2								(3/4) 3/4					(3/4)
6-9								(3/4) 3/4					(3/4)
9-6				(3/4) 3/4									(3/4)
01-9												(3/4)	(3/4) 3/4
10-6	(3/4)												(3/4)

LINK			DES.	DESTINATION NODE	IN NODE								TOTAL
(NODES)	2	က	4	5	9	7	8	6	10	Ξ	12	13	FLOW
7-8											(3/4)		(3/4)
8-7								(3/4)					(3/4)
7-10								(3/4) 3/4					(3/4)
10-7 (3/4)													(3/4)
7-11											(3/4) 3/4		(3/4)
11-7 (3/4)													(3/4)
8-11												(3/4) 3/4	(3/4)
11-8				(3/4)									(3/4)
8-12											(3/4)		(3/4) 3/4
12-8 (3/4) 3/4													(3/4)
9-10				(3/4)									(3/4)
10-9								(3/4) 3/4					(3/4) 3/4

LINK			DES	TINATI	DESTINATION NODE	ш							TOTAL
(NODES)	2	3	4	5	9	7	8	6	10	Ξ	12	13	FLOW
9-13				(1/2)							(1/4)	1/4	(3/4)
13-9 (1/4) (1/2)							(1/2)					(3/4)
11-01				(3/4)									(3/4) 3/4
) 01-11	(3/4) 3/4												(3/4)
10-13											•	(3/4) 3/4	(3/4) 3/4
13-10 (3/4)													(3/4)
11-12											(3/4) 3/4		(3/4)
) 12-11	(3/4) 3/4												(3/4) 3/4
11-13												(3/4) 3/4	(3/4) 3/4
13-11 (3/4)													(3/4)
12-13	1/2)							1/2				(1/4)	(3/4)
13-12 (1/4)				(1/2)							1/4		(3/4) 3/4
REQ-MAT		R ₁ (2, R ₂ (12)=2,	R ₅ (9)	=2, R ₉	(5)=2,	13)=2, $R_2(12)=2$, $R_5(9)=2$, $R_9(5)=2$, $R_{12}(2)=2$, $R_{13}(1)=2$	=2, R ₁	3(1)=2		
		-											

LIST OF REFERENCES

- 1. Arne, T., Computer Methods in Operations Research, p. 79, Academic Press, 1978.
- 2. Pooch, U. W., Green, W. H., and Moss, G. G., <u>Telecommuni-cations and Networking</u>, Little, Brown Computer Systems Series, 1982.
- 3. Gass, S. I., Linear Programming Method and Application, 4th Ed., McGraw-Hill, 1975.
- 4. Kleinrock, L., Queueing Systems, V. 2, pp. 292-297, Wiley, 1976.
- 5. Davices, D. W., and Barber, D. A., Communication Networks for Computer, pp. 291-294, Wiley, 1973.
- 6. Carvis, H., Communications Network Analysis, pp. 103-104, Lexington, 1981.
- 7. Hiroshi, I. and Tadao, S., <u>Theoretical Aspects in the Analysis and Synthesis of Packet Communication Networks</u>, <u>Proceedings of the IEEE, V. 66, No. 11, Nov 1978</u>.
- 8. Kuo, F. F., Protocols and Techniques for Data Communications Networks, pp. 124-127, Prentice-Hall, 1981.
- 9. Ketron Inc., MPS III User Manual, 1980.
- 10. Phillips, D.T., and Alberto, G.D., <u>Fundamentals of Network Analysis</u>, Prentice Hall, 1981.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, VA 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, CA 93943		2
3.	Professor John W. Wozencraft, Code 62Wz Department of Electrical Engineering Naval Postgraduate School Monterey, CA 93943		3
4.	Professor Paul H. Moose, Code 62Me Department of Electrical Engineering Naval Postgraduate School Monterey, CA 93943		2
5.	Lieutenant Colonel Chang Joon Wong Korea MC Navy Headquarters (N-1) Seoul Korea		3

207817

Thesis

w86

Woong

c.1

An iteration algorithm for optimal network flows.

207817

Thesis

w86 Woong

c.l

An iteration algorithm for optimal network

flows.

3 2768 000 98867 9 DUDLEY KNOX LIBRARY