Problem Statement: We have an object that is moving in two directions (x and y) with constant velocity (vx, vy) and with a constant turn rate (rate is constant).

We have two sources of measurement:

- 1. A LIDAR sensor that measures the position of the object in (x, y) co-ordinates with some noise
- 2. A RADAR that measures the position, relative velocity and heading angle (r, rdot, heading) with some noise

Objective: Develop an extended Kalman filter to predict the position (x, y) velocity (vx, vy), yaw and yaw rate of the object and to output the following time, x_state, y_state, vx_state, y_state, yaw_angle_state, yaw_rate_state, sensor_type x_measured, y_measured, x_ground_truth, y_ground_truth, x_ground_truth as well as plot the estimated position (x, y) vs ground truth position (x, y).

Approach for the problem solution:

It involves following steps:

The Extended Kalman filter will be used as few of the models are non-linear in nature.

Motion Model:

- 1. Defining the prediction model using the physics for basic 2-D motion of a robot with constant turn rate and constant velocity.
- 2. As the motion model is non-linear, the extended kalam filter will be used. Taylor expansion will be used to linearize the motion model function to obtain the Jacobian matrix which maps the state transition from time step 't-1' to 't'.
- 3. The Process noise covariance matrix Q will be calculated using the assumption 1.

Measurement Model:

- 1. The value of R_{lidar} , R_{radar} , σ_a^2 , and σ_α^2 will be computed using the provided data of the readings from the lidar and radar and the ground truth values provided.
- 2. As the lidar readings obtained are linear in nature thus basic Kalman filter can be used for this model and thus linearization is not required.
- 3. For the measurement model from the radar, the readings obtained are non-linear in nature thus extended Kalman filter will be used. The Jacobian matrix H_t after linearization will also be calculated.

Assumption:

1. As the motion of the robot is constant velocity and constant turn rate model, the acceleration of the robot between consecutive time step is considered as noise and is incorporated in the process noise.

2. As the value of the V_t and $\dot{\theta}_t$ is very uncertain during the initial time steps, thus the initial covariance matrix is initialized as

$$P_0 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \infty & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \infty \end{bmatrix}$$

3. The initial value of the Lidar data is used to initialize the robot's initial pose.

Given Information:

The data for the lidar and radar reading is given.

The data can be used to calculate the R_{lidar} , R_{lidar} , σ_a^2 , and σ_α^2

1.

 R_{lidar}

$$\frac{1}{N} \sum_{i}^{n} (X_{position} - grount \ truth_{X_{position}})^{2}$$

Similarly for $Y_{position}$ can be done

lidar_sensor_x_position_y_position time			gt_x_position	gt_y_position	gt_vx	gt_vy	gt_yaw	gt_yaw_rate	Diff X	Diff Y	diff2 X	diff2 Y	
L	3.12E-01	5.80E-01	1.48E+15	6.00E-01	6.00E-01	5.20E+00	0	0	6.91E-03	=B2-E2	-1.97E-02	8.28E-02	3.87E-04
L	1.17E+00	4.81E-01	1.48E+15	1.12E+00	6.00E-01	5.20E+00	5.39E-03	1.04E-03	2.07E-02	5.39E-02	-1.19E-01	2.90E-03	1.42E-02
L	1.65E+00	6.25E-01	1.48E+15	1.64E+00	6.01E-01	5.20E+00	1.80E-02	3.45E-03	3.45E-02	1.07E-02	2.33E-02	1.15E-04	5.45E-04
L	2.19E+00	6.49E-01	1.48E+15	2.16E+00	6.04E-01	5.20E+00	3.77E-02	7.25E-03	4.83E-02	2.91E-02	4.47E-02	8.48E-04	1.99E-03
L	2.66E+00	6.66E-01	1.48E+15	2.68E+00	6.09E-01	5.19E+00	6.46E-02	1.24E-02	6.21E-02	-2.41E-02	5.68E-02	5.79E-04	3.23E-03
L	3.01E+00	6.37E-01	1.48E+15	3.20E+00	6.17E-01	5.19E+00	9.85E-02	1.90E-02	7.58E-02	-1.86E-01	1.98E-02	3.48E-02	3.91E-04
L	3.89E+00	3.12E-01	1.48E+15	3.72E+00	6.29E-01	5.19E+00	1.40E-01	2.69E-02	8.95E-02	1.76E-01	-3.17E-01	3.10E-02	1.01E-01
L	4.31E+00	5.79E-01	1.48E+15	4.24E+00	6.45E-01	5.18E+00	1.88E-01	3.62E-02	1.03E-01	7.30E-02	-6.69E-02	5.33E-03	4.47E-03

$$R_{lidar} = \begin{bmatrix} 0.0228 & 0 \\ 0 & 0.0212 \end{bmatrix}$$

2.

 R_{radar}

$$\frac{1}{N} \sum_{i}^{n} Distance - ground \ truth_{\ distance})^{2})$$

radar_sensor	distance	h	relative_vel	time	gt_x_position	gt_y_position	gt_vx	gt_vy	gt_yaw	gt_yaw_rate	gt_distanc	gt_headinį	gt_rel_vel	(diff2 Dist	diff2 headi	diff2 rel ve	1
R	1.01E+00	5.54E-01	4.89E+00	1.47701E+15	8.60E-01	6.00E-01	5.20E+00	1.80E-03	3.46E-04	1.38E-02	1.05E+00	0.6092	4.27E+00		=(B2-M2)^:	2	3.94E-01	1.00E-01
R	1.05E+00	3.89E-01	4.51E+00	1.47701E+15	1.38E+00	6.01E-01	5.20E+00	1.08E-02	2.07E-03	2.76E-02	1.51E+00	0.410522	4.77E+00		2.09E-01	4.53E-04	6.76E-02	1.00E-01
R	1.70E+00	2.98E-01	5.21E+00	1.47701E+15	1.90E+00	6.02E-01	5.20E+00	2.69E-02	5.18E-03	4.14E-02	1.99E+00	0.307087	4.96E+00		8.69E-02	7.76E-05	6.12E-02	1.00E-01
R	2.04E+00	2.76E-01	5.04E+00	1.47701E+15	2.42E+00	6.06E-01	5.20E+00	5.02E-02	9.67E-03	5.52E-02	2.49E+00	0.245523	5.05E+00		2.02E-01	9.29E-04	6.81E-05	1.00E-01
R	2.99E+00	2.18E-01	5.19E+00	1.47701E+15	2.94E+00	6.13E-01	5.19E+00	8.07E-02	1.55E-02	6.89E-02	3.00E+00	0.205554	5.10E+00		1.28E-04	1.47E-04	8.39E-03	1.00E-01
R	3.59E+00	1.35E-01	5.16E+00	1.47701E+15	3.46E+00	6.23E-01	5.19E+00	1.18E-01	2.28E-02	8.26E-02	3.51E+00	0.178149	5.13E+00		6.40E-03	1.82E-03	1.11E-03	1.00E-01
R	4.26E+00	1.65E-01	5.43E+00	1.47701E+15	3.98E+00	6.37E-01	5.19E+00	1.63E-01	3.14E-02	9.63E-02	4.03E+00	0.158743	5.15E+00		5.19E-02	3.72E-05	8.27E-02	1.00E-01

Similarly, variance can be found for the heading and r dot

$$R_{radar} = \begin{bmatrix} 0.0928 & 0 & 0 \\ 0 & 5.58 & 0 \\ 0 & 0 & 0.0831 \end{bmatrix}$$

3. σ_a^2

$$\sigma_a^2 = \frac{1}{N} \sum_{i=1}^{n} (\frac{(V_t - V_{t-1})}{\Delta t})^2$$

gt_vy	gt_yaw	gt_yaw_rate	gt_distanc	gt_heading	gt_rel_vel	diff2 Dist	diff2 headi	diff2 rel vel	l				v	acc	acc^2
1.80E-03	3.46E-04	1.38E-02	1.05E+00	0.6092	4.27E+00	1.14E-03	3.01E-03	3.94E-01	1.00E-01	5.90E-0	5 8.07E-03]	5.20E+00		
1.08E-02	2.07E-03	2.76E-02	1.51E+00	0.410522	4.77E+00	2.09E-01	4.53E-04	6.76E-02	1.00E-01	1.74E-0	4 2.61E-02		5.20E+00	=(Y3-Y2)/T	3
2.69E-02	5.18E-03	4.14E-02	1.99E+00	0.307087	4.96E+00	8.69E-02	7.76E-05	6.12E-02	1.00E-01	3.74E-0	4 5.43E-02		5.20E+00	-1.26E-02	1.59E-04
5.02E-02	9.67E-03	5.52E-02	2.49E+00	0.245523	5.05E+00	2.02E-01	9.29E-04	6.81E-05	1.00E-01	6.96E-0	4 9.26E-02		5.20E+00	-1.76E-02	3.10E-04
8.07E-02	1.55E-02	6.89E-02	3.00E+00	0.205554	5.10E+00	1.28E-04	1.47E-04	8.39E-03	1.00E-01	1.20E-0	3 1.41E-01		5.19E+00	-2.25E-02	5.08E-04

$$\sigma_a^2 = 0.005072$$

4. σ_{α}^2

$$\sigma_{\alpha}^{2} = \frac{1}{N} \sum_{i}^{n} \left(\frac{Yaw \, rate_{t} - Yaw \, rate_{t-1}}{\Delta t} \right)^{2}$$

gt_vy	gt_yaw	gt_yaw_rate	gt_distance	gt_heading	gt_rel_vel	diff2 Dist	diff2 head	diff2 rel ve	I				v	acc	acc^2
1.80E-03	3.46E-04	1.38E-02	1.05E+00	0.6092	4.27E+00	1.14E-03	3.01E-03	3.94E-01	1.00E-01	5.	.90E-05	8.07E-03	5.20E+00		
1.08E-02	2.07E-03	2.76E-02	1.51E+00	0.410522	4.77E+00	2.09E-01	4.53E-04	6.76E-02	1.00E-01	1.	.74E-04	2.61E-02	5.20E+00	=(Y3-Y2)/T	3
2.69E-02	5.18E-03	4.14E-02	1.99E+00	0.307087	4.96E+00	8.69E-02	7.76E-05	6.12E-02	1.00E-01	3.	.74E-04	5.43E-02	5.20E+00	-1.26E-02	1.59E-04
5.02E-02	9.67E-03	5.52E-02	2.49E+00	0.245523	5.05E+00	2.02E-01	9.29E-04	6.81E-05	1.00E-01	6.	.96E-04	9.26E-02	5.20E+00	-1.76E-02	3.10E-04
8.07E-02	1.55E-02	6.89E-02	3.00E+00	0.205554	5.10E+00	1.28E-04	1.47E-04	8.39E-03	1.00E-01	1.	.20E-03	1.41E-01	5.19E+00	-2.25E-02	5.08E-04

$$\sigma_{\alpha}^2 = 0.009514$$

Defining Parameters:

 X_t – the position X – coordinate of the robot at time step t'

 Y_t – the position Y – coordinate of the robot at time step 't'

 V_t – the velocity of the robot at time step 't'

 θ_t – the yaw angle of the robot at time step 't'

 $\dot{\theta}_t$ – the yaw rate of the robot at time step 't'

 a_t – the linear acceleration of the robot at time step ${}^{\prime}t^{\prime}$

 $lpha_t$ — the angular acceleration of the robot at time step 't'

V+ (05 (0+ wat) Let the position or - coordinate at time step t - Xt Let the position y-coordinate at time step t -Similarly Vx - velocity x - wordinate at time step t Ny - velocity y-coodinate at time stept V - overall velocity of the robot 0 → your angle of the robot 0 - you rate of the xobot Motion Model / Prediction Model As the velocity is changing every instance θ = θ ο + Δ t θ . Vios (0, +ato

we know $X_{t} = X_{t-1} + V_{x}dt + \frac{1}{2} a_{x}dt^{2}$ $X_t = X_{t-1} + V \int_0^{t} \cos(\theta + \Delta t \dot{\theta}) dt + \frac{1}{2} \alpha_x \cos\theta dt^2$ Similarly $Y_{t} = Y_{t_1} + V \int_{0}^{t_1} \sin(\theta + (t - t_{t_1}) \dot{\theta}) dt + 1 a \sin\theta dt^{2}$ $V_{\perp} = V_{t-1} + \alpha \Delta t$ 0+ = 0 + + + + + + + + + + + x Ot = atx where v - velocity of the robot a - anyular acceleration olt - is the time step a, a is the lineau and anyulau acceleration the robot which is considered in the of the robot proces noise

From Lidau data: 0.0228 0 0.0212 Similarly x&a noise $\sigma_{\rm a}^2$ - 0.005072 Vx = 0.009514 Measurement Model - Radau we know That Zp Z roday = Zý Zj To calculate the Talobian H+ $\frac{\sqrt{\cos\theta} x_{t} + \sqrt{\sin\theta} y_{t}}{\sqrt{x_{t}^{2} + y_{t}^{2}}}$

9x+ 9x+ 9x+ 90+ 90+
96 96 96 H+ = 3x+ 3x+ 9x+ 9x+ 90+ 90+ 9\$\phi\$ 9\$\phi\$ 9\$\phi\$ 10t 3p 3p 3p 3p 3p $\frac{9x^4}{9b} = \frac{9x^4}{9} \left(\sqrt{x^4x^4 h^3} \right)$ $\frac{\partial \rho}{\partial x_{t}} = \frac{2x_{t}}{2\sqrt{x_{t}^{2}+y_{t}^{2}}}$ 9 At 96 tan Yx/Xt 96 JXt- $\left(1+\left(\frac{\gamma_{+}}{\chi_{+}}\right)^{2}\right)$

06 VIOSOX+ + VSin OY+) 4 (Vast Yt - Vsint Xt) (X+2+Y2)3/2 X+ (X+ V0 - Y+ Vx) Vx+2+4+2 X+(050 + 4,5in0 Vy maco - VX+sin0 VX+ Y+2 Ó to our state to convert variables

USING EXTENDED KALMAN FILTER ALGORITHM, WE HAVE

```
1: Algorithm Extended_Kalman_filter(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t):

2: \bar{\mu}_t = g(u_t, \mu_{t-1})
3: \bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t
4: K_t = \bar{\Sigma}_t \; H_t^T (H_t \; \bar{\Sigma}_t \; H_t^T + Q_t)^{-1}
5: \mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))
6: \Sigma_t = (I - K_t \; H_t) \; \bar{\Sigma}_t
7: return \mu_t, \Sigma_t
```

Application of extended Kalman filter is in the python file Result:

Following are the graphs of the extended Kalman filter obtained:

Comparison of EKF Estimate vs Ground truth

comparison of EKF Estimate vs measurements from Lidar and Radar

Output Obtained:

The output obtained after applying the extended Kalman filter is of the form.

						1					1	1		1
	time	x_state	y_state	vx_state	vx_state	yaw_angle_state	yaw_rate_state	sensor_type	x_measured	y_measured	x_ground_truth	y_ground_truth	vx_ground_truth	vy_ground_truth
0	1.47701E+15	0.783673589	0.727186479	15.63249473	0.005408591	0.000345984	0.006928031	R	0.858931228	0.531354068	0.86	0.6	5.2	0.0018
1	1.47701E+15	1.172499163	0.483524244	9.624571863	-2.179512154	-0.222696897	-2.579629952	L	1.17	0.481	1.12	0.6	5.2	0.00539
2	1.47701E+15	1.02329886	0.548566179	6.730807733	-0.094883373	-0.014095944	2.140674157	R	0.971553225	0.398226482	1.38	0.601	5.2	0.0108
3	1.47701E+15	1.648069476	0.625256225	11.00240034	0.806813003	0.073199615	1.906690288	L	1.65	0.625	1.64	0.601	5.2	0.018
4	1.47701E+15	1.678719701	0.484069503	8.537679948	0.311978495	0.036525116	0.628535783	R	1.625073551	0.499135205	1.9	0.602	5.2	0.0269
5	1.47701E+15	2.189542569	0.647394021	9.843280889	1.424375774	0.143707864	1.505049445	L	2.19	0.649	2.16	0.604	5.2	0.0377
6	1.47701E+15	2.025424086	0.550370629	8.059488759	1.069107727	0.131882092	0.654476044	R	1.962792466	0.555918821	2.42	0.606	5.2	0.0502
7	1.47701E+15	2.65831536	0.666723713	11.52386545	1.382068308	0.119360871	0.128963698	L	2.66	0.666	2.68	0.609	5.19	0.0646
8	1.47701E+15	2.94134546	0.646982804	9.675708641	0.22846114	0.023607439	-1.010107191	R	2.91923255	0.646669405	2.94	0.613	5.19	0.0807
9	1.47701E+15	3.012623128	0.637215037	3.62025615	-0.12921991	-0.035678435	-1.111740772	L	3.01	0.637	3.2	0.617	5.19	0.0985
10	1.47701E+15	3.530521978	0.509420126	4.109960888	-0.61507264	-0.148551676	-1.83147582	R	3.557335779	0.483179217	3.46	0.623	5.19	0.118
11	1.47701E+15	3.889221189	0.314073432	6.461250542	-1.900199351	-0.286027446	-2.362978915	L	3.89	0.312	3.72	0.629	5.19	0.14
12	1.47701E+15	4.238984282	0.637522574	6.376666714	-0.278094299	-0.043583616	1.841314318	R	4.202142194	0.69971493	3.98	0.637	5.19	0.163
13	1.47701E+15	4.311473968	0.580284799	2.684677736	0.019097897	0.007113545	1.366122858	L	4.31	0.579	4.24	0.645	5.18	0.188
14	1.47701E+15	4.607182402	0.676960586	3.220166007	0.297978396	0.092272334	1.555991262	R	4.61894745	0.688639567	4.5	0.655	5.18	0.214
15	1.47701E+15	4.353430001	0.894624381	-2.0429621	-0.54391679	0.260203351	2.601979463	L	4.35	0.899	4.75	0.667	5.18	0.243
16	1.47701E+15	5.131686336	0.740933779	-0.366174738	-0.195373655	0.490128385	3.737395973	R	5.207718251	0.66495911	5.01	0.68	5.17	0.273
17	1.47701E+15	5.513654343	0.651869783	2.308899826	1.916065553	0.692685434	3.919502802	L	5.52	0.648	5.27	0.694	5.17	0.304
18	1.47701E+15	5.256492883	0.672859482	2.449536633	3.045803483	0.89347942	3.884291051	R	5.230829281	0.641346267	5.53	0.71	5.16	0.338

Result_EKF.csv is also attached which reflects the required values for all the estimation states.