Departamento de Física da Faculdade de Ciências da Universidade de Lisboa

Física Experimental para Engenharia Informática

2019/2020 (1°. Semestre)

Nome:	n°	 Turma PL_	
Nome:	n°	 Grupo :	
Nome:	n°	 Data:/	/2019

Lab #8 – Portas Lógicas e Funções Binárias

Notas Muitíssimo Importantes LEIA-AS Notas Muitíssimo Importantes

- 1. Registe os valores medidos *respeitando sempre os algarismos significativos* (a.s.) dados pelos aparelhos.
- 2. Em todos os aparelhos escolha sempre a escala que dá mais a.s..
- 3. Inclua sempre as unidades de cada valor medido ou calculado.
- 4. Ao fazer os cálculos apresente os resultados finais respeitando os a.s. das parcelas.
- 5. Quando se pede <u>"justifique..." => fazer a dedução matemática</u> baseada nas leis dos circuitos.
- 6. A descrição teórica destes circuitos está no doc "notasCircuitosLogicosDigitais.pdf".

Equipamento necessário:

- 1. Resistências de 100 Ω , 470 Ω e duas de 1k Ω e 4k7 Ω .
- 2. 2 Díodos de sinal 1N4148 e um LED.
- 3. 1 Transistor BN549C
- 4. 2 Circuitos integrados LS7400 de 4 portas NAND
- 5. Painel de ligações tipo "breadboard".

Objetivos

- Implementar as funções lógicas E e OU com díodos.
- Implementar as funções lógicas NÃO e NÃO-E com um transístor.
- Implementar a operação lógica de soma de dois bits com bit de "e vai".
- Implementar um circuito com memória de 1 bit e sinal de controlo.

Experiência 1 – Porta Lógica "E" com díodos.

Objetivo: implementar uma porta com a função lógica E utilizando díodos.

Figura 1. Circuito com 2 díodos de sinal que implementa a função lógica "E".

- Utilizando dois díodos de sinal e a resistência R= 1k Ω monte o circuito da figura 1, onde se tem Vcc= +5V, duas entradas VA e VB que tanto podem ter 0V como +5V, cada uma. Meça e registe o seu valor e incerteza ΔR.
- 2. Construa a tabela de verdade deste circuito registando os valores de tensão (em volt) medidos com o voltímetro em VA, VB e Vs (tensão de saída), assim como o valor lógico correspondente para lógica TTL e CMOS.

Nota: Poderá observar o estado lógico de Vs colocando aí um LED em série com uma resistência de 470 Ω.

Гurma PL	nº	n°	n°	Grupo :	Data:/	_/2019
- Baseado no	s resultados	s, a que função	lógica, das ent	radas A e B, corres		?
VB• Vs	-		_	"OU" com dío a função lógica OU		
cada uma. 2. <i>Construa a ta</i> <u>com o voltíme</u>	uito da figu abela de ve etro em <u>VA</u> ,	ra 2, onde se to <i>rdade</i> deste cir <u>VB</u> e <u>Vs,</u> assim	êm duas entrad cuito <u>registand</u> como o valor l	e implementa a funçã das VA e VB que p o os valores de te ógico corresponde adas A e B, corresp	oodem ter 0∨ o nsão (em volt) m nte.	<u>nedidos</u>

Experiência 3 – Porta Lógica "NÃO" com Transístor

Objetivo: implementar um circuito com a função lógica de negação ("não" ou "not").

- 1. Monte o circuito esquematizado na figura ao lado.
- 2. Construa aqui as tabelas com os *valores medidos de tensão* (entrada e saída) e a tabela lógica respetiva, na configuração CMOS.

Figura 3. O circuito de negação lógica.

Turma	PL	n^{o}	n°	n^{o}	Grupo:	Data:	/ /2019

Experiência 4 - Adição e Subtração Binárias.

Objetivo: implementar um circuito de adição de 2 bits com a função "e vai". Estudar a subtração.

1. O circuito integrado LS7400 com 4 NANDs é do tipo TTL e por isso deve ser alimentado com +5v no pino nº 14 e deve ter 0v (GND) no pino 7. Instala-se a meio da *breadboard* para que uma linha de *pinos* (1 a 7) figue isolada da outra (8 a 14), mas também entre si.

Figura 3. Disposição dos 4 NANDs no circuito integrado LS7400 (direita) e sua implementação na breadboard (à esquerda).

2. Com o circuito integrado LS7400 e a porta "E" (do problema 1) monte o circuito lógico da figura 4. Note que devem haver apenas duas entradas A e B e duas saídas Q₀ e Q₁. Medindo os valores de tensão construa a tabela de verdade deste circuito. Baseado nos resultados, justifique que função lógica é assim implementada?

Figura 4. Circuito da função lógica...

3. No circuito anterior <u>tome apenas a parte</u> com os quatro NANDs (A, B → Q₀). Faça a tabela lógica desta parte (analítica) e identifique a função lógica que implementa. Para ajudar, use as letras das entradas e saídas intermédias deste circuito e inclua-as explicitamente na tabela lógica.

4. Outra das funções básicas na eletrónica digital é a subtração de dois bits, realizada com a adição do "complemento para 2". Calcule a diferença A-B e que A= 1001 0010 e B= 0010 1010. Converta todos os valores (A, B e A-B) para base 10.

Turma	PL	n^{o}	n°	n^{o}	Grupo:	Data:	/ /2019

5. Construa a tabela de verdade (analítica) do circuito esquematizado na figura 5. Identifique assim a função lógica que implementa.

Figura 5. Circuito da função lógica...

Experiência 5- Circuito de memória D- RS.

Objetivo: implementar um circuito de memória de 1 bit usando 4 portas NAND.

Uma unidade básica de memória permite guardar dois estados distintos (0 ou 1) e deve permanecer nesse estado até ordem em contrário. Estes elementos podem ser construídos com portas lógicas funcionando com retroação (*feedback*) da saída para a entrada. O caso da Fig. 6 é do D-flip-flop (D de *Delay*) ou do tipo J-K, que é controlado por um sinal C de relógio.

Figura 6. Circuito RS com clock, que implementa a função de memória de 1 bit

- 1. <u>Proceda à montagem na breadboard de um flip-flop-D</u>, usando o circuito integrado LS7400 (na figura 3). Note que esta família de circuitos integrados TTL deve ser (*obrigatoriamente*!) alimentada com +5V ligados no pino 14 assinalado como V_{cc} e ligado à massa no pino 7, GND.
- 2. <u>Crie e registe aqui uma tabela</u> com a sequência de <u>valores de tensão</u> (volt) em D (data) e em C (controlo ou clock) assim como da saída Q. <u>Deve seguir uma sequência temporal como apresentada no diagrama da página seguinte</u>. Nesse diagrama referido o eixo horizontal é o tempo e Cn e Dn são os instantes de transição dos sinais de *Clock* e *Data*.

Turma PL	n°	n°	nº	Grupo :	Data://2019
		FI	ip Flop D	-RS	
Clock					
Data					
G D0	D1 C1 D2	: D3 D	4C2 D5	D6 C3D7 D8	D9 C4 D10 D11
		<u>são que obteve</u> o sinal da saída			a temporal apresentado
5. Entre os inst	tantes D4 e D	07 Qual é o valo	r de Q enquant	o C for igual a "0" (≈ o C for igual a "1" (≈ esignado por "memo	≈5V)?
obter a sincr mente, assir	ronização de m como na se	operações lógio equenciação de	cas em 8 bits p várias operaçõ		(apenas 1 bit), para se rocessados simultanea or exemplo: