AMENDMENTS TO THE SPECIFICATION

Please amend the paragraph starting on page 79, line 14, as follows:

A cholesteric liquid crystal polymer was prepared by polymerizing a polymerizable nematic liquid crystal monomer A expressed by the following chemical formula 1:

and a polymerizable chiral agent B expressed by the following chemical formula 2:

$$\begin{array}{c} \text{CH}_2\text{-CHCO}_2\text{CH}_2\text{CH}_2\text{O} \\ \hline \\ \text{CH}_2\text{-CHCO}_2\text{CH}_2\text{CH}_2\text{O} \\ \hline \\ \text{CH}_2\text{-CONH-} \\ \hline \\ \text{CH}_3 \\ \hline \\ \text{CH}_2\text{-CONH-} \\ \hline \\ \text{CONH-} \\ \hline \\ \text{CON$$

in a liquid crystal mixture with each of proportions (in weight ratios) shown in the following Table

2. Each of the liquid crystal mixtures was dissolved in a tetrahydrofuran to obtain a 33 wt% solution, thereafter nitrogen purge was conducted in an environment at 60°C and then a reaction initiator (azobisisobutylonitrile at 0.5 wt% relative to the mixture) was added to the mixture to thereby cause polymerization. An obtained polymerized material was reprecipitation-separated with diethyl ether for purification. Selective reflection wavelength bands are shown in Table 2.