

Introduction

- How to simplify very complex systems?
 - Allow some degree of uncertainty in their description!
- How to deal mathematically with uncertainty?
 - Using probabilistic theory (stochastic).
 - Using the theory of fuzzy sets (non-stochastic).
- Proposed in 1965 by Lotfi Zadeh (Fuzzy Sets, Information Control, 8, pp. 338-353).
- Imprecision or vagueness in natural language does not imply a loss of accuracy or meaningfulness!

Examples

- Give travel directions in terms of city blocks OR in meters?
- The day is sunny OR the sky is covered by 5% of clouds?
 - If the sky is covered by 10% of clouds is still sunny?
 - And 25%?
 - And 50%?
 - Where to draw the line from sunny to not sunny?
 - Member and not member or membership degree?

Classical set theory

- Set: collection of objects with a common property.
- **Examples**:
 - Set of basic colors:

$$A = \{\text{red, green, blue}\}\$$

Set of positive integers:

$$A = \{ x \in \mathbb{Z} | \ x \ge 0 \}$$

• A line in \mathbb{R}^3 :

$$A = \{(x,y,z) \mid ax + by + cz + d = 0\}$$

(idmec 🔷 Laeta 38

Representation of sets

- Enumeration of elements: $A = \{x_1, x_2, ..., x_n\}$
- Definition by property $P: A = \{x \in X \mid P(x)\}$
- Characteristic function $\mu_{A(x)}: X \to \{0,1\}$

$$\mu_A(x) = \begin{cases} 1, & \text{if } x \text{ is member of } A \\ 0, & \text{if } x \text{ is not member of } A \end{cases}$$

- Example:
 - Set of odd numbers: $\mu_A(x) = x \mod 2$

Set operations

- Intersection: $C = A \cap B$
 - C contains elements that belong to A and B
 - Characteristic function: $\mu_C = \min(\mu_A, \mu_B) = \mu_A \cdot \mu_B$
- Union: $C = A \cup B$
 - C contains elements that belong to A or to B
 - Characteristic function: $\mu_C = \max(\mu_A, \mu_B)$
- Complement: $C = \bar{A}$
 - C contains elements that do not belong to A
 - Characteristic function: $\mu_C = 1 \mu_A$

Fuzzy sets

- Represent uncertain (vague, ambiguous, etc.)
 knowledge in the form of propositions, rules, etc.
- Propositions:
 - expensive cars,
 - cloudy sky,...
- Rules (decisions):
 - Want to buy a big and new house for a low price.
 - If the temperature is *low*, then *increase* the heating.
 - ...

■ Crisp set: $A_{\alpha} = \{ x \in X \mid \mu_{A}(x) \ge \alpha \}$ ■ Strong α -cut: $A_{\alpha} = \{ x \in X \mid \mu_{A}(x) > \alpha \}$

■ Fuzzy singleton: single point $x \in X$ where $\mu_A(x) = 1$. ■ Fuzzy number: fuzzy set in \mathbb{R} that is *normal* and *convex*. ■ Two fuzzy sets are *equal* (A = B) iff: $\forall x \in X, \ \mu_A(x) = \mu_B(x)$ ■ A is a *subset* of B iff: $\forall x \in X, \ \mu_A(x) \le \mu_B(x)$

Representation of fuzzy sets

Discrete Universe of Discourse:

- Point-wise as a list of membership/element pairs:
 - $A = \mu_A(x_1)/x_1 + ... + \mu_A(x_n)/x_n = \sum_i \mu_A(x_i)/x_i$
 - $A = \{ \mu_A(x_1)/x_1, \dots, \mu_A(x_n)/x_n \} = \{ \mu_A(x_i)/x_i \mid x_i \in X \}$
- As a list of α -level/ α -cut pairs:
 - $A = \{ \alpha_1 / A_{\alpha_1}, ..., \alpha_n / A_{\alpha_n} \} = \{ \alpha_i / A_{\alpha_i} \mid \alpha_i \in [0,1] \}$

Gamer 🛆 Laeta 5

Representation of fuzzy sets

Continuous Universe of Discourse:

- $\blacksquare A = \int_X \mu_A(x)/x$
- Analytical formula: $\mu_A(x) = \frac{1}{1+x^2}, x \in \mathbb{R}$
- Various possible notations:
 - $\mu_{A}(x)$, A(x), A, a, etc.

Examples

Discrete universe

- Fuzzy set A = "sensible number of children".
 - number of children: $X = \{0, 1, 2, 3, 4, 5, 6\}$
 - A = 0.1/0 + 0.3/1 + 0.7/2 + 1/3 + 0.6/4 + 0.2/5 + 0.1/6
- Fuzzy set C = "desirable city to live in"
 - $X = \{SF, Boston, LA\}$ (discrete and non-ordered)
 - $C = \{(SF, 0.9), (Boston, 0.8), (LA, 0.6)\}$

Examples

Continuous universe

- Fuzzy set B = "about 50 years old"
 - $X = \mathbb{R}^+$ (set of positive real numbers)
 - $B = \{(x, \mu_B(x)) \mid x \in X\}$

$$\mu_B(x) = \frac{1}{1 + \left(\frac{x - 50}{10}\right)^4}$$

Complement of a fuzzy set

$$c: [0,1] \to [0,1]; \quad \mu_A(x) \to c(\mu_A(x))$$

- Fundamental axioms
- 1. Boundary conditions c behaves as the ordinary complement

$$c(0) = 1;$$
 $c(1) = 0$

2. Monotonic non-increasing

$$\forall a,b \in [0,1]$$
, if $a < b$, then $c(a) \ge c(b)$

(idmec 🔷 Laeta 60

Complement of a fuzzy set

Other axioms:

- c is a continuous function.
- c is *involutive*, which means that

$$c(c(a)) = a, \ \forall a \in [0,1]$$

Complement of a fuzzy set

Equilibrium point

$$c(a) = a = e_c, \ \forall a \in [0,1]$$

- Each complement has at most one equilibrium.
- If c is a continuous fuzzy complement, it has one equilibrium point.

Satisfying only fundamental axioms:

Intersection of fuzzy sets 3. Monotonicity If $a \le a'$ and $b \le b'$, then $i(a,b) \le i(a',b')$ 4. Associativity i(i(a,b),c) = i(a,i(b,c))• Other axioms: • i is a continuous function. • i(a,a) = a (idempotent).

■ Example of week and strong intersections: $i_{w}(a,b) = 1 - \min \left[1, \left((1-a)^{w} + (1-b)^{w} \right)^{1/w} \right], \ w \in]0,\infty]$ Yager fuzzy intersection, w = 1.5, 2.5

**Example of week and strong disjunctions: $u_w(a,b) = \min \left[1, \left(a^w + b^w\right)^{1/w}\right], \ w \in]0, \infty]$ Yager fuzzy union, w = 2.5, 5, 10

General aggregation operations

- Other axioms:
 - h is a continuous function.
 - h is a symmetric function in all its arguments:

$$h(a_i) = h(a_{p(i)})$$

for any permutation p on $\mathbb N$

(idmec 🔷 Laeta 82

Averaging operations

When all the four axioms hold:

$$\min(a_1,...,a_n) \le h(a_1,...,a_n) \le \max(a_1,...,a_n)$$

Operator covering this range: Generalized mean

$$h_{\alpha}(a_1,\ldots,a_n) = \left(\frac{\left(a_1^{\alpha} + \ldots + a_n^{\alpha}\right)}{n}\right)^{1/\alpha}$$

■ Typical cases: ■ Lower bound: $h_{-\infty} = \min(a_1, ..., a_n)$ ■ Geometric mean: $h_0 = (a_1 \cdot a_2 \cdot ... \cdot a_n)^n$ ■ Harmonic mean: $h_{-1} = \frac{n}{\frac{1}{a_1} + ... + \frac{1}{a_n}}$ ■ Arithmetic mean: $h_1 = \frac{a_1 + ... + a_n}{n}$ ■ Upper bound: $h_{\infty} = \max(a_1, ..., a_n)$

■ Triangular MF: $Tr(x;a,b,c) = \max\left(\min\left(\frac{x-a}{b-a},\frac{c-x}{c-b}\right),0\right)$ ■ Trapezoidal MF: $Tp(x;a,b,c,d) = \max\left(\min\left(\frac{x-a}{b-a},1,\frac{d-x}{d-c}\right),0\right)$ ■ Gaussian MF: $Gs(x;a,b,c) = e^{-\frac{1}{2}\left(\frac{x-c}{\sigma}\right)^2}$ ■ Generalized bell MF: $Bell(x;a,b,c) = \frac{1}{1+\left|\frac{x-c}{b}\right|^{2a}}$

■ Cylindrical extension of fuzzy set A in X into Y results in a two-dimensional fuzzy set in $X \times Y$, given by $\operatorname{cext}_y(A) = \int_{X \times Y} \mu_A(x) / (x,y) = \left\{ \mu_A(x) / (x,y) \middle| (x,y) \in X \times Y \right\}$ (a) Base Fuzzy Set A(b) Cylindrical Extension of A 1 = 0.5 0 Y X Y Y X Y Y Y Y Y Y Y

Cartesian product

■ Cartesian product of fuzzy sets A and B is a fuzzy set in the product space $X \times Y$ with membership

$$\mu_{A\times B}(x,y) = \min(\mu_A(x), \mu_B(y))$$

■ Cartesian co-product of fuzzy sets A and B is a fuzzy set in the product space $X \times Y$ with membership

$$\mu_{A+B}(x, y) = \max(\mu_A(x), \mu_B(y))$$

Classical relations

• Classical relation $R(X_1, X_2,..., X_n)$ is a subset of the Cartesian product:

$$R(X_1, X_2, ..., X_n) \subset X_1 \times X_2 \times ... \times X_n$$

■ Characteristic function:

$$\mu_{\mathsf{R}}(x_1, x_2, \dots, x_n) = \begin{cases} 1, & \text{iff } (x_1, x_2, \dots, x_n) \in \mathsf{R} \\ 0, & \text{otherwise} \end{cases}$$

(idmec 🔷 Laeta 96

Example

- X = {English, French}
- *Y* = {dollar, pound, euro}
- Z = {USA, France, Canada, Britain, Germany}
- R(X, Y, Z) = {(English, dollar, USA), (French, euro, France), (English, dollar, Canada), (French, dollar, Canada), (English, pound, Britain)}

Composition of relations

 $R(X,Z) = P(X,Y) \circ Q(Y,Z)$

Conditions:

- $(x,z) \in R$ iff exists $y \in Y$ such that
- $(x,y) \in P \text{ and } (y,z) \in Q.$
- Max-min composition

$$\mu_{\mathsf{P} \circ \mathsf{Q}}(x, z) = \max_{y \in Y} \min \left[\mu_{\mathsf{P}}(x, y), \mu_{\mathsf{Q}}(y, z) \right]$$

Properties

Associativity:

$$R \circ (S \circ T) = (R \circ S) \circ T$$

Distributivity over union:

$$R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$$

Weak distributivity over intersection:

$$R \circ (S \cap T) \subseteq (R \circ S) \cap (R \circ T)$$

Monotonicity:

$$S \subseteq T \Rightarrow (R \circ S) \subseteq (R \circ T)$$

Relations on the same universe

- Let R be a relation defined on $U \times U$, then it is called:
- Reflexive, if $\forall u \in U$, the pair $(u,u) \in \mathbb{R}$
- Anti-reflexive, if $\forall u \in U$, $(u,u) \notin R$
- Symmetric, if $\forall u,v \in U$, if $(u,v) \in \mathbb{R}$, then $(v,u) \in \mathbb{R}$ too
- Anti-symmetric, if $\forall u,v \in U$, if (u,v) and $(v,u) \in \mathbb{R}$, then u = v
- Transitive, if $\forall u,v,w \in U$, if (u,v) and $(v,w) \in \mathbb{R}$, then $(u,w) \in \mathbb{R}$ too.

(idmec 🔷 Laeta 108

Examples

- R is an *equivalence relation* if it is reflexive, symmetric and transitive.
- R is a partial order relation if it is reflexive, antisymmetric and transitive.
- R is a total order relation if R is a partial order relation, and $\forall u, v \in U$, either (u,v) or $(v,u) \in R$.
- Examples:
 - The subset relation on sets (<u></u>) is a partial order relation.
 - The relation \leq on \mathbb{N} is a total order relation.