Amendments to the Claims

Kindly amend claim 1 as indicated in the listing below without prejudice to the subject matter involved. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1. (Currently amended): A compound of formula

$$\begin{array}{c} \text{E} \\ A_{\overline{0}} & \begin{array}{c} R_4 \\ A_{\overline{1}} \end{array} \\ \text{P} & \begin{array}{c} R_3 \\ A_{\overline{1}} \end{array} \\ \text{P} & \begin{array}{c} R_3 \\ A_{\overline{2}} \end{array} \\ \text{P} & \begin{array}{c} R$$

wherein

 A_0 , A_1 and A_2 are each independently of the other a bond or a C_1 - C_6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl,

 $A_3 \text{ is a C_1-$C_8 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C_3-$C_8 cycloalkyl, C_3-$C_8 cycloalkyl-C_1-$C_8 alkyl and C_4-$C_8 haloalkyl:} \\$

D is CH or N:

 X_1 and X_2 are each independently of the other fluorine, chlorine or bromine;

 R_1 , R_2 and R_3 are each independently of the others H, halogen, OH, SH, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkonyl, C_2 - C_6 haloalkonyl, C_2 - C_6 haloalkonyl, C_2 - C_6 haloalkonyl, C_1 - C_6 haloalkonyl, C_2 - C_6 haloalkonyloxy, C_2 - C_6 haloalkonyloxy, C_2 - C_6 haloalkonyloxy, C_3 - C_6 haloalkynyloxy, C_3 - C_6 haloalkynyloxy; the substituents R_3 being independent of one another when m is 2;

 R_4 is H, halogen, OH, SH, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 -alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkenyloxy, C_2 - C_6 haloalkenyloxy, C_2 - C_6 haloalkenyloxy, C_2 - C_6 haloalkenyloxy, C_2 - C_6 alkynyloxy, C_3 - C_6 - C_6 alkyl, -S(=O)₂- C_1 - C_6 alkyl or C_1 - C_6 alkoxycarbonyl; the substituents R_4 being independent of one another when k is greater than 1; or $N(R_4)$ wherein the two substituents R_5 are independent of one another:

or the two substituents R_5 together form a four- to eight-membered, straight-chain or branched alkylene bridge wherein a CH_2 group may have been replaced by O, S or NR_9 , and the alkylene bridge is unsubstituted or substituted by from one to four identical or different substituents selected from C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_9 alkyl and C_1 - C_9 alaloalkyl;

 $\label{eq:wison} W \text{ is O, NR}_{6}, S, SO, SO_{2}, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR_{7^{-}} \text{ or } -NR_{7^{-}}C(=O)-;$ $T \text{ is a bond, O, NH, NR}_{6}, S, SO, SO_{2}, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR_{7^{-}} \text{ or } -NR_{7^{-}}C(=O)-;$ $Q \text{ is O. NR}_{6}, S, SO \text{ or } SO:$

Y is O, NR6, S, SO or SO2;

 R_6 and R_7 are independently of each other H, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_6 alkylcarbonyl, C_1 - C_3 haloalkylcarbonyl, C_1 - C_6 alkoxyalkyl, C_3 - C_8 cycloalkyl or benzyl;

 $R_8 \text{ is } C_1\text{-}C_6\text{alkyl}, C_1\text{-}C_6\text{haloalkyl}, C_2\text{-}C_6\text{alkenyl}, C_2\text{-}C_6\text{haloalkenyl}, C_2\text{-}C_6\text{alkynyl}, C_1\text{-}C_6\text{alkoxy}, C_1\text{-}C_6\text{haloalkoxy}, C_2\text{-}C_6\text{haloalkoxy}, C_2\text{-}C_6\text{-$

 $R_0 \text{ is H, } C_1\text{-}C_6\text{alkyl, } C_1\text{-}C_3\text{-haloalkyl, } C_1\text{-}C_6\text{-alkylcarbonyl, } C_1\text{-}C_6\text{haloalkylcarbonyl, } C_1\text{-}C_6\text{alkoxyalkyl, } C_3\text{-}C_6\text{cycloalkyl or benzyl; }$

k is 1, 2 or 3 when D is nitrogen; or is 1, 2, 3 or 4 when D is CH;

m is 1 or 2:

E is 1,2,4-oxadiazol-3-yl which is unsubstituted or monosubstituted by CN, halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_3 - C_6 alkyl, C_1 - C_6 haloalkylcarbonyl or by C_1 - C_6 alkoxycarbonylheterearyl which is unsubstituted or substituted depending upon the substitutions possible on the ring by from one to four identical or different substituents selected from R_{40} .

Rug is halogen, CN, NO₂, OH, SH, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, Ca-Cacycloalkyl, Ca-Cacycloalkyl-Ca-Calkyl, Ca-Calkenyl, Ca-Cahaloalkenyl, Ca-Calkynyl, C3-C6haloalkynyl, C4-C6alkoxy, C4-C6alkoxy, C4-C6alkoxy, C4-C6haloalkoxy, C4-C6haloalkoxy G1-Galkyl, G2-Galkenyloxy, G2-Galkenyloxy, G2-Galkenyloxy, G2-Galkenyloxy, G2-Galkyl, G2 alkenyloxy-C₄-C₆alkyl, C₂-C₆alkynyloxy, C₂-C₆haloalkynyloxy, C₃-C₆alkynyloxy-C₄-C₆alkyl, C₃-C₆ eveloalkoxy. Ca-Caeveloalkyl-Ca-Caalkoxy. Ca-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caeveloalkoxy-Caev earbonyl-C1-Calkyl, C1-Calkylthio, C2-Calkenylthio, C3-Calkynylthio, C3-Calkynylthio, C3-C6cycloalkyl-C4-C6alkylthio, C2-C6haloalkenylthio, C4-C6haloalkylthio, NH2, NH(C4-C6alkyl), N(C4-C6alkyl)2, C4-C6alkylcarbonylamino, C4-C6haloalkylcarbonylamino, C4-C6alkoxycarbonylamino, C1-C6alkylaminocarbonylamino, SO-C1-C6alkyl, SO-halo-C1-C6alkyl, SO-C1-C6alkyl, SO-halo-C1-C6alkyl, SO-hal G1-Cealkyl, -C(=0)R11, phenyl or benzyl; wherein the phenyl and benzyl radicals may be unbetituted or may carry independently of each other one to three substituents selected form the group consisting of halogon, OH, SH, CN, nitro, C₄-C₆alkyl, C₄-C₆haloalkyl, C₄-C₆alkylcarbonyl, G2-Cealkenyl, G2-Cehaloalkenyl, G2-Cealkynyl, G1-Cealkoxy, G1-Cehaloalkoxy, G2-Cealkenyloxy, C2-C6-haloalkenyloxy, C2-C6-alkynyloxy, -S(=O)-C4-C6-alkyl, -S(O)2-C4-C6-alkyl, C4-C6-alkoxycarbonyl and C2-Cshaloalkenyloxy; and

R₁₁-is-H, OH, C₂-C₆alkyl, C₂-C₆cycloalkyl, C₂-C₆cycloalkyl-C₁-C₆alkyl, C₂-C₆haloalkyl, G₂-C₆alkonyl, G₂-C₆alkonyl, G₂-C₆alkonyl, G₂-C₆alkonyl, G₂-C₆alkonyl, G₂-C₆alkonyl, G₂-C₆alkonyloxy, G₂-C₆alkonyloxy, G₂-C₆alkonyloxy, G₂-C₆alkonyloxy, G₂-C₆alkonyloxy, G₂-C₆alkonyloxy, G₂-C₆alkynyl, G₂-C₆alkynyloxy, NH₂, NH G₂-C₆alkyl, N(G₂-C₆alkyl)₂, NH-phonyl, NH-bonzyl, phonoxy or bonzyloxy;

and, where applicable, their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in each case in free form or in salt form.

Claim 2. (Original): A compound according to claim 1 of formula (I) in free form.

Claim 3. (Previously presented): A compound according to claim 1, of formula (I), wherein X_1 and X_2 are chlorine or bromine.

Claim 4. (Original): A pesticidal composition which comprises as active ingredient at least one compound according to claim 1 of formula (I), in free form or in agrochemically acceptable salt form, and at least one adjuvant.

Claim 5. (Original): A process for the preparation of a composition as described in claim 4, which comprises intimately mixing the active ingredient with the adjuvant(s).

Claim 6. (Original): A method of controlling pests, which comprises applying a pesticidal composition as described in claim 4 to the pests or to the locus thereof.

Claim 7. (Cancelled).