THINGS TO DISCUSS IN MATH 321 12-4-17: CLASSIFYING SUBSETS **TOPOLOGICALLY**

Definition 1. A set $P \subseteq \mathbb{R}$ is **perfect** if P is closed and every point of P is a limit point of P.

Two nonempty sets $A, B \in \mathbb{R}$ are separated if $\overline{A} \cup B$ and $A \cup \overline{B}$ are both empty.

A set $E \subseteq \mathbb{R}$ is **disconnected** if it can be written as $E = A \cup B$, where A, B are both nonempty, separated

Exercise 2. (Reading question) For each of the following subsets of \mathbb{R} , state which of the following properties applies: closed, bounded, compact, perfect, disconnected. Explain your answers.

- (1) $\{x \in \mathbb{R} : 2 \le |x| \le 4\}$
- $(2) \mathbb{Q}$
- $(3) \mathbb{R}$
- $\begin{array}{ll}
 (4) & \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\} \\
 (5) & \left\{ 0 \right\} \cup \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\}
 \end{array}$
- (1) $\{x \in \mathbb{R} : 2 \le |x| \le 4\}$
 - (a) this is the union of two closed intervals $[-4, -2] \cup [2, 4]$, hence is closed. It's not open because 2 has no ϵ -neighborhood contained in the set.
 - (b) bounded (in [-4,4])
 - (c) compact
 - (d) perfect
 - (e) disconnected: let A = (-5, -1) and B = (1, 5)
- - (a) not closed since its complement I is not open. To see this, consider the point $\sqrt{2} \in \mathbb{I}$, say. Then any ϵ -neighborhood of $\sqrt{2}$ contains a rational number by the Density of \mathbb{Q} in \mathbb{R} , so there is no ϵ for which $V_{\epsilon}(\sqrt{2}) \subseteq \mathbb{I}$.
 - (b) Unbounded (can use e.g. Archimedean Principle)
 - (c) Not compact
 - (d) Not perfect since it isn't closed
 - (e) is disconnected. If we let

$$A = \mathbb{Q} \cap (-\infty, \sqrt{2})$$
 and $B = \mathbb{Q} \cap (\sqrt{2}, \infty)$,

then $\mathbb{Q} = A \cup B$, and $\bar{A} \cap B = A \cap \bar{B} = \emptyset$.

- $(3) \mathbb{R}$
 - (a) closed
 - (b) unbounded
 - (c) not compact
 - (d) for any $x \in \mathbb{R}$, the sequence $(x + \frac{1}{n})$ converges to x, so \mathbb{R} is perfect.
 - (e) connected
- (4) $A = \{\frac{1}{n} : n \in \mathbb{N}, n \ge 2\}$
 - (a) not closed because the limit point 0 is not in the set
 - (b) bounded
 - (c) not compact
 - (d) not perfect
 - (e) disconnected: we can write

$$A = C \cup D$$
 where $C = A \cap (0, \frac{5}{12}), D = A \cap (\frac{5}{12}, 1).$

- $(5) A \cup \{0\}$
 - (a) closed because the only limit point, 0, is contained in the set

- (b) bounded
- (c) compact
- (d) not perfect; $\frac{1}{2}$ is an isolated point since $V_{\frac{t}{12}}(\frac{1}{2})$ does not intersect the set at any point other than $\frac{1}{2}$
- (e) still disconnected; the same example as above works
- Though we've made a lot of statements about closed, compact, and perfect sets, it remains to prove a handful of them.
- Remember, we have to prove everything rigorously to make sure we aren't getting fooled by our intuition.
- We have some powerful characterizations of exactly the sets in \mathbb{R} that are compact, and it's very useful to know that closed sets are the complements of open sets and vice versa.
- Today: "cleaning up" by:
 - (1) proving characterizations of open/closed sets in terms of their complements
 - (2) proving a characterization of compact sets as closed and bounded
 - (3) proving that the NIP still holds if you replace "closed interval" with "compact set"

1. OPEN AND CLOSED SETS ARE COMPLEMENTS

Theorem 3. A set O is open if and only if O^c is closed. Likewise, a set F is closed if and only if F^c is open.

• We prove the first sentence; the second will follow.

Exercise 4. (Reading Question) Prove (\Longrightarrow) .

Proof. (\Longrightarrow) Let $O \subseteq \mathbb{R}$ be an open set. We want to show that O^c is closed. Let x be a limit point of O^c . Then every neighborhood of x contains some point of O^c . But this means that x cannot be in the open set O, because $x \in O$ implies there exists a neighborhood $V_{\epsilon}(x) \subseteq O$. Thus, $x \in O^c$, as desired.

(\Leftarrow) Assume O^c is closed. Let $x \in O$ be arbitrary; we want to produce an ϵ -neighborhood $V_{\epsilon}(x) \subseteq O$. Because O^c is closed, we can be sure that x is *not* a limit point of O^c . Hence, by definition, there must be some neighborhood $V_{\epsilon}(x)$ of x that does not intersect the set O^c . But this means $V_{\epsilon}(x) \subseteq O$, as desired.

The second statement follows quickly from the first using the observation that $(E^c)^c = E$ for any set $E \subseteq \mathbb{R}$.

- Finally, we want to make some statement about when unions and intersections of closed sets are closed, similar to our statement about open sets.
- Topologists take these statements as defining properties of open and closed sets.
 - To a topologist, a list of subsets of a given set are given and decreed to be "open". These sets must have the property that countable unions and finite intersections of open sets are open.
 - Then, by definition, the closed sets are all the complements of the open sets.

2. Compact Sets

• All of the compact sets we know are closed and bounded. How do we know there aren't any others?

Definition 5. A set $A \subseteq \mathbb{R}$ is **bounded** if there exists M > 0 so that $|a| \leq M$ for all $a \in A$.

A set $K \subseteq \mathbb{R}$ is **compact** if it satisfies "generalized B-W": every sequence (a_n) with $a_n \in K$ for all n has a subsequence (a_{n_k}) converging to some $a \in K$.

Theorem 6. (Characterization of Compactness in \mathbb{R}) A set $K \subseteq \mathbb{R}$ is compact if and only if it is closed and bounded.

Proof. (\iff) Exercise 3.3.3, unclaimed HW.

 (\Longrightarrow) Let K be compact and assume for contradiction that K is unbounded. We'll produce a sequence in K that marches off to ∞ in such a way that it can't have a convergent subsequence. To do this, notice that because K is unbounded, there exists an element $x_1 \in K$ satisfying $|x_1| > 1$. Likewise, there must exist $x_2 \in K$ with $|x_2| > 2$, and in general, given $n \in \mathbb{N}$, we can produce $x_n \in K$ so that $|x_n| > n$.

Now, because K is assumed to be compact, (x_n) should have a convergent subsequence (x_{n_k}) . But the elements of the subsequence must satisfy $|x_{n_k}| > n_k$, and consequently (x_{n_k}) is unbounded. Because convergent sequences are bounded, we have a contradiction. Thus, K must be a bounded set.

Now, we'll show that K is also closed. To see that K contains its limit points, we let $x = \lim x_n$, where (x_n) is contained in K, and argue that $x \in K$ as well. Since K is bounded, so is (x_n) , and by B-W, (x_n) must have a subsequence (x_{n_k}) converging to some limit x. Since K is compact, $x \in K$. Since subsequences of convergent sequences converge to the same limit, it must be that $(x_n) \to x \in K$ as well. Hence K is closed.

Exercise 7. What are some examples of compact sets that aren't closed intervals?

- The Cantor set
- The set $\{0,1\}$
- Really, compact sets are a sort of generalization of closed intervals: whenever a fact about closed intervals is true, it often remains true if we replace "closed interval" with "compact set".
- As an example, let's generalize the Nested Interval Property.

Theorem 8. (Nested Compact Set Property) If

$$K_1 \supseteq K_2 \supseteq K_3 \supseteq K_4 \supseteq \dots$$

is a nested sequence of nonempty compact sets, then the intersection $\bigcap_{n=1}^{\infty} K_n$ is not empty.

Proof. We know that each K_n is compact, so any sequence in any of the K_n , say K_1 , has a subsequence converging to a point in K_1 . For each $n \in \mathbb{N}$, we can construct a sequence by picking a point $x_n \in K_n$. \square

Exercise 9. Finish the proof.

- Because each of these x_n is also in K_1 , (x_n) has a convergent subsequence (x_{n_k}) whose limit $x = \lim x_n$ is an element of K_1 .
- We want to argue that x is an element of every K_n ; the reasoning is essentially the same. Given a particular $n_0 \in \mathbb{N}$, the terms in the sequence (x_n) are contained in K_{n_0} as long as $n \geq n_0$. Ignoring the finite number of terms for which $n_k < n_0$, the same subsequence (x_{n_k}) is thus also contained in K_{n_0} . The conclusion is that $x = \lim x_{n_k}$ is an element of K_{n_0} . Because n_0 was arbitrary, $x \in \bigcap_{n=1}^{\infty} K_n$.