Problem R-312. Below are presented variable temperature 56.4 MHz 19 F NMR spectra of SeF₄. From your knowledge of structure of compounds like SF₄ and SeF₄ interpret the NMR spectra.

What conclusion can be drawn form the observation that the +20 °C spectrum does not show the weak peaks flanking the low temperature triplets (see expansion)? (*Z. Anorg. Allg. Chem.* **1975**. *416*, 12).

Problem R-312. Below are presented variable temperature 56.4 MHz 19 F NMR spectra of SeF₄. From your knowledge of structure of compounds like SF₄ and SeF₄ interpret the NMR spectra.

What conclusion can be drawn form the observation that the +20 °C spectrum does not show the weak peaks flanking the low temperature triplets (see expansion)? (*Z. Anorg. Allg. Chem.* **1975**. *416*, 12).

Problem R-312. This type of hypervalent molecule has trigonal bipyramidal structure, with one site unoccupied. At -140 °C the molecule is static on the NMR time scale (slow Berry pseudorotation), giving an A_2X_2 pattern consisting of two triplets, with $\delta_A=37.7\,$ and $\delta_X=12.1,\,J_{AX}=26\,$ Hz

⁷⁷Se: I = 1/2, 7.5% abundant

¹⁹F: I = 1/2, 100% abundant

The small triplets are ⁷⁷Se satellites on the ¹⁹F signals due to the 7.5% abundance of the spin 1/2 selenium isotope

The coalescence between the two triplets is the result of equilibration between the axial and equatorial fluorines. There are two possible mechanisms - one is the "Berry pseudorotation" process where the exial and eq fluorine trade places through a square pyramidal intermediate, or an intermolecular exchange of fluorines, which would also average the two shifts.

The absence of 77 Se satellites in the high-temperature spectrum means that the exchange must be intermolecular (fluorine transfer between molecules), which would cause loss of Se-F coupling in addition to averaging of the chemical shifts. A Berry pseudorotation mechanism would retain the Se-F coupling, and the final coalesced singlet would have singlet 77 Se satellites on the fluorine NMR peak. Their separation would be the average of the two low-temperature J values.