

دانشگاه صنعتی شریف دانشکدهی مهندسی هوافضا

پروژه کارشناسی ارشد مهندسی فضا

عنوان:

# هدایت یادگیری تقویتی مقاوم مبتنی بر بازی دیفرانسیلی در محیطهای پویای چندجسمی با پیشران کم

نگارش:

علی بنی اسد

استاد راهنما:

دكتر هادى نوبهارى

دی ۳ ۱۴۰



# به نام خدا

# دانشگاه صنعتی شریف

## دانشكدهي مهندسي هوافضا

### پروژه کارشناسی ارشد

عنوان: هدایت یادگیری تقویتی مقاوم مبتنی بر بازی دیفرانسیلی در محیطهای پویای چندجسمی با پیشران کم

نگارش: على بنى اسد

## كميتهى ممتحنين

استاد راهنما: دكتر هادى نوبهارى امضاء:

استاد مشاور: استاد مشاور

استاد مدعو: استاد ممتحن امضاء:

تاريخ:

#### سپاس

از استاد بزرگوارم جناب آقای دکتر نوبهاری که با کمکها و راهنماییهای بیدریغشان، بنده را در انجام این پروژه یاری دادهاند، تشکر و قدردانی میکنم. از پدر دلسوزم ممنونم که در انجام این پروژه مرا یاری نمود. در نهایت در کمال تواضع، با تمام وجود بر دستان مادرم بوسه میزنم که اگر حمایت بیدریغش، نگاه مهربانش و دستان گرمش نبود برگ برگ این دست نوشته و پروژه وجود نداشت.

#### چکیده

در این پژوهش، از یک روش مبتنی بر نظریه بازی به منظور کنترل وضعیت استند سه درجه آزادی چهار پره استفاده شده است. در این روش بازیکن اول سعی در ردگیری ورودی مطلوب می کند و بازیکن دوم با ایجاد اغتشاش سعی در ایجاد خطا در ردگیری بازیکن اول می کند. در این روش انتخاب حرکت با استفاده از تعادل نش که با فرض بدترین حرکت دیگر بازیکن است، انجام می شود. این روش نسبت به اغتشاش ورودی و همچنین نسبت به عدم قطعیت مدل سازی می تواند مقاوم باشد. برای ارزیابی عملکرد این روش ابتدا شبیه سازی هایی در محیط سیمولینک انجام شده است و سپس، با پیاده سازی روی استند سه درجه آزادی صحت عملکرد کنترل کننده تایید شده است.

**کلیدواژهها**: چهارپره، بازی دیفرانسیلی، نظریه بازی، تعادل نش، استند سه درجه آزادی، مدلمبنا، تنظیمکننده مربعی خطی

<sup>&</sup>lt;sup>1</sup>Game Theory

<sup>&</sup>lt;sup>2</sup>Nash Equilibrium

# فهرست مطالب

| ١ | مقدمه  |                                                                                                                                                                                                                                                                                                                 | ١ |
|---|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | 1-1    | انگيزه پژوهش                                                                                                                                                                                                                                                                                                    | ١ |
|   | 7-1    | تعریف مسئله                                                                                                                                                                                                                                                                                                     | ١ |
|   | ۲-۱    | اهداف و نوآوری                                                                                                                                                                                                                                                                                                  | ١ |
|   | 4-1    | محتوای گزارش                                                                                                                                                                                                                                                                                                    | ١ |
| ۲ | پیشینه | ﻪ ﭘــــــــــــــــــــــــــــــــــــ                                                                                                                                                                                                                                                                         | ۲ |
|   | 1-7    | ماموریتهای بین مداری                                                                                                                                                                                                                                                                                            | ۲ |
|   | 7-7    | بازی دیفرانسیلی                                                                                                                                                                                                                                                                                                 | ۲ |
|   | ٣-٢    | يادگيري تقويتي                                                                                                                                                                                                                                                                                                  | ۲ |
|   | 4-1    | ارتباط بین یادگیری تقویتی و بازی دیفرانسیلی                                                                                                                                                                                                                                                                     | ۲ |
| ٣ | یادگیر | ی تقویتی                                                                                                                                                                                                                                                                                                        | ٣ |
|   | 1-4    | مفاهيم اوليه                                                                                                                                                                                                                                                                                                    | ٣ |
|   |        | ۳-۱-۱ حالت و مشاهدات                                                                                                                                                                                                                                                                                            | ۴ |
|   |        | ۳-۱-۳ فضای عمل ۲-۱۰۰۰ منالی عمل ۲۰۰۰ منالی عمل ۲۰۰۰ منالی منالی کارس کارس کارس کارس کارس کارس کارس کارس | ۴ |
|   |        | ۳-۱-۳ سیاست                                                                                                                                                                                                                                                                                                     | ۴ |
|   |        | ٣-١-٣ مسير                                                                                                                                                                                                                                                                                                      | ۵ |
|   |        | ۷-۱-۳ تابع باداش و بانگشت                                                                                                                                                                                                                                                                                       | ۵ |

| ۶  | ۳-۱-۶ ارزش در یادگیری تقویتی ۲۰۰۰، ۲۰۰۰، ۳۰۰۰ ارزش در یادگیری        |
|----|----------------------------------------------------------------------|
| ٧  | ۳-۲ عامل گرادیان سیاست عمیق قطعی ۲۰۰۰،۰۰۰،۰۰۰،۰۰۰                    |
| ٨  | ۱-۲-۳ یادگیری Q در DDPG                                              |
| ٩  | ۲-۲-۳ سیاست در DDPG                                                  |
| ١. | ۳-۲-۳ اکتشاف و بهرهبرداری در DDPG                                    |
| ١. | ۴-۲-۳ شبهکد DDPG شبهکد                                               |
| 17 | ۳-۳ عامل گرادیان سیاست عمیق قطعی تاخیری دوگانه                       |
| ۱۳ | ۳-۳-۱ اکتشاف و بهرهبرداری در TD3                                     |
| ۱۳ | ۲-۳-۳ شبه کد TD3 شبه کد                                              |
| ۱۵ | ۳-۳ عامل عملگر نقاد نرم                                              |
| ۱۵ | ۳-۴-۳ یادگیری تقویتی تنظیمشده با آنتروپی                             |
| ۱۵ | ۲-۴-۳ سیاست در SAC سیاست در                                          |
| 18 | ۳-۴-۳ تابع ارزش در SAC تابع ارزش در                                  |
| 18 | ۳-۴-۳ تابع Q در SAC تابع C در ۴-۴-۳                                  |
| 18 | ۵-۴-۳ معادله بلمن در SAC معادله بلمن در                              |
| 18 | ۳-۴-۳ یادگیری Q یادگیری ۶-۴-۳                                        |
| ١٧ | ۷-۴-۳ سیاست در SAC سیاست در                                          |
| ۱۸ | ۳-۴-۳ اکتشاف و بهرهبرداری در SAC                                     |
| ۱۸ | ۹-۴-۳ شبه کد SAC شبه که                                              |
| ۲۰ | ۳-۵ عامل بهینهسازی سیاست مجاور ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ |
| ۲۱ | ۳-۵-۳ سیاست در الگوریتم PPO میاست در الگوریتم ۱-۵-۳                  |
| ۲۱ | ۳-۵-۲ اکتشاف و بهرهبرداری در PPO                                     |
| 77 | ۳-۵-۳ شبه کد PPO شبه کد                                              |
| 74 | ۴ مدلسازی محیط یادگیری سه جسمی                                       |
|    |                                                                      |

# فهرست جداول

# فهرست تصاوير

۱-۳ حلقه تعامل عامل و محیط

# فهرست الگوريتمها

| 11 | گرادیان سیاست عمیق قطعی ۲۰۰۰،۰۰۰،۰۰۰،۰۰۰، میاست | ١ |
|----|-------------------------------------------------|---|
| 14 | عامل گرادیان سیاست عمیق قطعی تاخیری دوگانه      | ۲ |
| ۱۹ | عامل عملگرد نقاد نرم                            | ٣ |
| 27 | بهینهسازی سیاست مجاور (PPO-Clip)                | ۴ |

### مقدمه

۱-۱ انگیزه پژوهش

۲-۱ تعریف مسئله

در سالهای اخیر، پیشرفتهای فناوری در زمینههای مختلف، از جمله کنترل پرواز، پردازش سیگنال و هوش مصنوعی، به افزایش کاربردهای ماهواره با پیشران کم در منظومه زمین-ماه کمک کرده است. ماهواره با پیشران کم میتواند برای تعقیب ماهوارهها، انتقال مداری و استقرار ماهوارهها استفاده شود. روشهای هدایت بهینه قدیمی جهت کنترل ماهوارهها اغلب نیازمند فرضیات ساده کننده، منابع محاسباتی فراوان و شرایط اولیه مناسب هستند. الگوریتمهای مبتنی بر یادگیری تقویتی این توانایی را دارند که بدون مشکلات اشاره شده هدایت ماهواره را انجام دهند. به همین دلیل، این الگوریتمها میتوانند امکان محاسبات درونی (On-board Computing) را فراهم میکنند.

- ۱-۳ اهداف و نوآوری
- ۱-۴ محتوای گزارش

# پیشینه پژوهش

- ۱-۲ ماموریتهای بین مداری
  - ۲-۲ بازی دیفرانسیلی
    - ۲-۲ یادگیری تقویتی
- ۲-۴ ارتباط بین یادگیری تقویتی و بازی دیفرانسیلی

# يادگيري تقويتي

# ۱-۳ مفاهیم اولیه

دو بخش اصلی یادگیری تقویتی شامل عامل و محیط است. عامل در محیط قرار دارد و با آن تعامل دارد. در هر مرحله از تعامل بین عامل و محیط، عامل یک مشاهده جزئی از وضعیت محیط انجام می دهد و سپس در مورد اقدامی که باید انجام دهد تصمیم می گیرد. وقتی عامل بر روی محیط عمل می کند، محیط تغییر می کند، اما ممکن است محیط به تنهایی نیز تغییر کند. عامل همچنین یک سیگنال پاداش از محیط دریافت می کند، سیگنالی که به آن می گوید وضعیت تعامل فعلی عامل محیط چقدر خوب یا بد است. هدف عامل به حداکثر رساندن پاداش انباشته خود است که بازگشت مام دارد. یادگیری تقویتی به روشهایی گفته می شود که در آنها عامل رفتارهای مناسب برای رسیدن به هدف خود را می آموزد. در شکل -1 تعامل بین محیط و عامل نشان داده شده است.

<sup>&</sup>lt;sup>1</sup>Reinforcement Learning (RL)

<sup>&</sup>lt;sup>2</sup>Agent

<sup>&</sup>lt;sup>3</sup>Environment

<sup>&</sup>lt;sup>4</sup>Reward

<sup>&</sup>lt;sup>5</sup>Return



شكل ٣-١: حلقه تعامل عامل و محيط

#### **۳–۱–۱** حالت و مشاهدات

حالت  $^{8}$  (s) توصیف کاملی از وضعیت محیط است. همه ی اطلاعات محیط در حالت وجود دارد. مشاهده (s) یک توصیف جزئی از حالت است که ممکن است شامل تمامی اطلاعات نباشد. در این پژوهش مشاهده توصیف کاملی از محیط هست در نتیجه حالت و مشاهده برابر هستند.

### ۳-۱-۳ فضای عمل

فضای عمل (a) در یادگیری تقویتی، مجموعهای از تمام اقداماتی است که یک عامل میتواند در محیط انجام دهد. این فضا میتواند گسسته  $^{A}$  یا پیوسته  $^{B}$  باشد. در این پژوهش فضای عمل پیوسته و محدود به یک بازه مشخص است.

### ٣-١-٣ سياست

یک سیاست<sup>۱</sup> قاعدهای است که یک عامل برای تصمیمگیری در مورد اقدامات خود استفاده میکند. در این پژوهش به تناسب الگوریتم پیادهسازی شده از سیاست قطعی<sup>۱۱</sup> یا تصادفی<sup>۱۲</sup> استفاده شدهاست، که به دو صورت

 $<sup>^6\</sup>mathrm{State}$ 

<sup>&</sup>lt;sup>7</sup>Observation

<sup>&</sup>lt;sup>8</sup>Discrete

<sup>&</sup>lt;sup>9</sup>Continuous

<sup>&</sup>lt;sup>10</sup>Policy

<sup>&</sup>lt;sup>11</sup>Deterministic

 $<sup>^{12}</sup> Stochastic \\$ 

زیر نشان داده می شود:

$$a_t = \mu(s_t) \tag{1-T}$$

$$a_t \sim \pi(\cdot|s_t)$$
 (Y-\mathbf{Y})

که زیروند t بیانگر زمان است. در یادگیری تقویتی عمیق از سیاستهای پارامتری شده استفاده می شود. خروجی این سیاستها تابعی از مجموعه ای از پارامترها (برای مثال وزنها و بایاسهای یک شبکه عصبی) هستند که می توان از الگوریتمهای بهینه سازی جهت تعیین پارامترها استفاده کرد. در این پژوهش پارامترهای سیاست با  $\theta$  نشان داده شده است و سپس نماد آن به عنوان زیروند سیاست مانند معادله (T-T) نشان داده شده است.

$$a_t = \mu_{\theta}(s_t)$$
 
$$a_t \sim \pi_{\theta}(\cdot|s_t)$$
 (T-T)

#### ٣-١-٣ مسير

یک مسیر۱۳ توالی از حالتها و عملها در محیط است.

$$\tau = (s_0, a_0, s_1, a_1, \cdots) \tag{\Upsilon-\Upsilon}$$

گذار حالت t+1 در حالت  $s_t$  در محیط بین زمان t در حالت  $s_t$  در حالت t+1 در حالت  $s_t$  رخ می دهد، گفته می شود. این گذارها توسط قوانین طبیعی محیط انجام می شوند و تنها به آخرین اقدام انجام شده توسط عامل می بستگی دارند. گذار حالت را می توان به صورت زیر تعریف کرد.  $(a_t)$ 

$$s_{t+1} = f(s_t, a_t) \tag{2-7}$$

## -1-۳ تابع پاداش و بازگشت

تابع پاداش ۱۵ به حالت فعلی محیط، آخرین عمل انجام شده و حالت بعدی محیط بستگی دارد. تابع پاداش را میتوان به صورت زیر تعریف کرد.

$$r_t = R(s_t, a_t, s_{t+1}) \tag{9-7}$$

 $<sup>^{13}</sup>$ Trajectory

<sup>&</sup>lt;sup>14</sup>State Transition

<sup>&</sup>lt;sup>15</sup>Reward Function

در این پژوهش پاداش تنها تابعی از جفت حالت-عمل  $(r_t = R(s_t, a_t))$  است. هدف عامل این است که مجموع پاداشهای به دستآمده در طول یک مسیر را به حداکثر برساند. در این پژوهش مجموع پاداشها در طول یک مسیر را با نماد  $R(\tau)$  نشان داده شده است و به آن تابع بازگشت گفته می شود. یکی از انواع بازگشت، بازگشت بدون تنزیل  $R(\tau)$  با افق محدود  $R(\tau)$  است که مجموع پاداشهای به دست آمده در یک بازه زمانی ثابت و از مسیر  $\tau$  است که در معادله  $R(\tau)$  نشان داده شده است.

$$R(\tau) = \sum_{t=0}^{T} r_t \tag{Y-T}$$

نوع دیگری از بازگشت، بازگشت تنزیل شده با افق نامحدود ۱۹ است که مجموع همه پاداشهایی است که تا به حال توسط عامل به دست آمده است. اما، فاصله زمانی تا دریافت پاداش باعث تنزیل ارزش آن می شود. این معادله بازگشت (۸-۳) شامل یک فاکتور تنزیل ۲۰ با نماد  $\gamma$  است که عددی بین صفر و یک است.

$$R(\tau) = \sum_{t=0}^{\infty} \gamma^t r_t \tag{A-T}$$

#### ۳-۱-۶ ارزش در یادگیری تقویتی

در یادگیری تقویتی، دانستن ارزش<sup>۱۱</sup> یک حالت یا جفت حالت-عمل ضروری است. منظور از ارزش، بازگشت مورد انتظار<sup>۱۲</sup> است. یعنی اگر از آن حالت یا جفت حالت-عمل شروع شود و سپس برای همیشه طبق یک سیاست خاص عمل شود، به طور میانگین چه مقدار پاداش دریافت خواهد کرد. توابع ارزش تقریبا در تمام الگوریتمهای یادگیری تقویتی به کار میروند. در اینجا به چهار تابع مهم اشاره شده است.

۱. تابع ارزش تحت سیاست $(V^\pi(s))^{(r)}$ : خروجی این تابع بازگشت مورد انتظار است در صورتی که از حالت s شروع شود و همیشه طبق سیاست  $\pi$  عمل شود و بهصورت زیر بیان می شود:

$$V^{\pi}(s) = \underset{\tau \sim \pi}{\mathbb{E}} [R(\tau)|s_0 = s] \tag{9-T}$$

۲۰ تابع ارزش-عمل تحت سیاست $^{\gamma\gamma}$  ( $Q^{\pi}(s,a)$ ): خروجی این تابع بازگشت مورد انتظار است در صورتی که از حالت s شروع شود، یک اقدام دلخواه a (که ممکن است از سیاست  $\pi$  نباشد) انجام شود و سپس که از حالت s

<sup>&</sup>lt;sup>16</sup>Return

<sup>&</sup>lt;sup>17</sup>Discount

<sup>&</sup>lt;sup>18</sup>Finite-Horizon Undiscounted Return

 $<sup>^{19} {\</sup>rm Infinite\text{-}Horizon}$  Discounted Return

<sup>&</sup>lt;sup>20</sup>Discount Factor

 $<sup>^{21}</sup>$ Value

<sup>&</sup>lt;sup>22</sup>Expected Return

<sup>&</sup>lt;sup>23</sup>On-Policy Value Function

<sup>&</sup>lt;sup>24</sup>On-Policy Action-Value Function

برای همیشه طبق سیاست  $\pi$  عمل شود و به صورت زیر بیان می شود:

$$Q^{\pi}(s,a) = \mathbb{E}_{\tau \sim \pi}[R(\tau)|s_0 = s, a_0 = a]$$
 (10-T)

s تابع ارزش بهینه  $(V^*(s))^{-1}$ : خروجی این تابع بازگشت مورد انتظار است در صورتی که از حالت S شروع شود و همیشه طبق سیاست بهینه در محیط عمل شود و به صورت زیر بیان می شود:

$$V^*(s) = \max_{-}(V^{\pi}(s)) \tag{11-T}$$

۴. تابع ارزش–عمل بهینه  $(Q^*(s,a))^{(V^*(s,a))}$ : خروجی این تابع بازگشت مورد انتظار است در صورتی که از حالت s شروع شود، یک اقدام دلخواه a انجام شود و سپس برای همیشه طبق سیاست بهینه در محیط عمل شود و بهصورت زیر بیان می شود:

$$Q^*(s,a) = \max_{\pi} (Q^{\pi}(s,a)) \tag{1Y-Y}$$

# ۲-۳ عامل گرادیان سیاست عمیق قطعی

گرادیان سیاست عمیق قطعی $^{77}$  الگوریتمی است که همزمان یک تابع Q و یک سیاست را یاد میگیرد. این الگوریتم برای الگوریتم برای یادگیری تابع Q از دادههای غیرسیاست محور $^{77}$  و معادله بلمن استفاده میکند. این الگوریتم برای یادگیری سیاست نیز از تابع Q استفاده میکند.

این رویکرد وابستگی نزدیکی به یادگیری Q دارد. اگر تابع ارزش – عمل بهینه مشخص باشد، در هر حالت داده شده عمل بهینه را می توان با حل معادله (Y-Y) به دست آورد.

$$a^*(s) = \arg\max_{a} Q^*(s, a) \tag{1T-T}$$

الگوریتم DDPG ترکیبی از یادگیری تقریبی برای  $Q^*(s,a)$  و یادگیری تقریبی برای  $a^*(s)$  است و به صورتی DDPG محیطهایی با فضاهای عمل پیوسته مناسب باشد. آنچه این الگوریتم را برای فضای طراحی شده است که برای محیطهایی با فضاهای عمل پیوسته مناسب میکند، روش محاسبه  $a^*(s)$  است. فرض می شود که تابع  $Q^*(s,a)$  نسبت به آرگومان عمل مشتق پذیر است. مشتق پذیری این امکان را می دهد که یک روش یادگیری مبتنی بر گرادیان برای سیاست عمل مشتق پذیر است. مشتق پذیری این امکان را می دهد که یک روش یادگیری مبتنی بر گرادیان برای سیاست  $\mu(s)$  استفاده شود. سپس، به جای اجرای یک بهینه سازی زمان بر در هر بار محاسبه  $\max_a Q(s,a) \approx Q(s,\mu(s))$  آن را با رابطه  $\max_a Q(s,a) \approx Q(s,\mu(s))$ 

<sup>&</sup>lt;sup>25</sup>Optimal Value Function

<sup>&</sup>lt;sup>26</sup>Optimal Action-Value Function

<sup>&</sup>lt;sup>27</sup>Deep Deterministic Policy Gradient (DDPG)

<sup>&</sup>lt;sup>28</sup>Off-Policy

#### ۳-۲-۳ یادگیری Q در DDPG

معادله بلمن که تابع ارزش عمل بهینه  $(Q^*(s,a))$  را توصیف میکند، در پایین آورده شدهاست.

$$Q^*(s,a) = \mathop{\mathbf{E}}_{s'\sim P} \left[ r(s,a) + \gamma \max_{a'} Q^*(s',a') \right] \tag{1Y-Y}$$

عبارت  $P(\cdot|s,a)$  به این معنی است که وضعیت بعدی یعنی s' از توزیع احتمال  $P(\cdot|s,a)$  نمونه گرفته می شود. در معادله بلمن نقطه شروع برای یادگیری  $Q^*(s,a)$  یک مقداردهی تقریبی است. پارامترهای شبکه عصبی  $Q^*(s,a)$  با علامت  $\phi$  نشان داده شده است. مجموعه D شامل اطلاعات جمع آوری شده تغییر از یک حالت به حالت دیگر (s,a,r,s',d) (که b نشان می دهد که آیا وضعیت s' پایانی است یا خیر) است. در بهینه سازی از تابع خطای میانگین مربعات بلمن  $S^*(s,a)$  استفاده شده است که معیاری برای نزدیکی  $S^*(s,a)$  به حالت بهینه برای برآورده کردن معادله بلمن است.

$$L(\phi, \mathcal{D}) = \mathop{\mathbf{E}}_{(s, a, r, s', d) \sim \mathcal{D}} \left[ \left( Q_{\phi}(s, a) - \left( r + \gamma (1 - d) \max_{a'} Q_{\phi}(s', a') \right) \right)^{2} \right]$$
 (\\delta-\mathbf{T})

در الگوریتم DDPG دو ترفند برای عمکرد بهتر استفاده شدهاست که در ادامه به بررسی آن پرداخته شدهاست.

#### • بافرهای تکرار بازی

الگوریتمهای یادگیری تقویتی جهت آموزش یک شبکه عصبی عمیق برای تقریب  $Q^*(s,a)$  از بافرهای تکرار بازی  $T^*$  تجربه شده استفاده می کنند. این مجموعه T شامل تجربیات قبلی عامل است. برای داشتن رفتار پایدار در الگوریتم، بافر تکرار بازی باید به اندازه کافی بزرگ باشد تا شامل یک دامنه گسترده از تجربیات شود. انتخاب دادههای بافر به دقت انجام شده است چرا که اگر فقط از دادههای بسیار جدید استفاده شود، بیش برازش  $T^*$  رخ می دهید و اگر از تجربه بیش از حد استفاده شود، ممکن است فرآیند یادگیری کند شود.

#### • شبکههای هدف

الگوریتمهای یادگیری Q از شبکههای هدف استفاده میکنند. اصطلاح زیر به عنوان هدف شناخته می شود.

$$r + \gamma(1 - d) \max_{a'} Q_{\phi}(s', a') \tag{19-T}$$

<sup>&</sup>lt;sup>29</sup>Mean Squared Bellman Error

 $<sup>^{30}</sup>$ Replay Buffers

<sup>&</sup>lt;sup>31</sup>Overfit

در هنگام کمینه کردن تابع خطای میانگین مربعات بلمن، سعی شده است تا تابع Q شبیه تر به هدف یعنی رابطه (۱۶–۳) شود. اما مشکل این است که هدف بستگی به پارامترهای در حال آموزش  $\phi$  دارد. این باعث ایجاد ناپایداری در کمینه کردن تابع خطای میانگین مربعات بلمن می شود. راه حل آن استفاده از یک مجموعه پارامترهایی است که با تأخیر زمانی به  $\phi$  نزدیک می شوند. به عبارت دیگر، یک شبکه دوم ایجاد می شود که به آن شبکه هدف گفته می شود. شبکه هدف با تاخیر پارامترهای شبکه اول را دنبال می کند. پارامترهای شبکه هدف با نشان واده می شوند. در الگوریتم DDPG، شبکه هدف در هر به روزرسانی شبکه اصلی، با میانگین گیری پولیاک ۲۲ به صورت زیر به روزرسانی می شود.

$$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho)\phi \tag{1V-T}$$

در رابطه بالا  $\rho$  یک ابرپارامتر  $^{77}$  است که بین صفر و یک انتخاب می شود. در این پژوهش این مقدار نزدیک به یک درنظرگرفته شده است.

الگوریتم DDPG نیاز به یک شبکه سیاست هدف  $(\mu_{\theta_{targ}})$  برای محاسبه عملهایی که به طور تقریبی بیشینه DDPG نیاز به یک شبکه سیاست هدف از همان روشی که تابع Q به دست  $Q_{\phi_{targ}}$  را حاصل کند، را دارد. برای رسیدن به این شبکه سیاست هدف از همان روشی که تابع Q به دست می آید یعنی با میانگین گیری پولیاک از پارامترهای سیاست در طول زمان آموزش استفاده می شود.

با درنظرگرفتن موارد اشارهشده، یادگیری Q در DDPG با کمینه کردن تابع خطای میانگین مربعات بلمن (MSBE) یعنی معادله ( $\Upsilon$ - $\Upsilon$ ) با استفاده از کاهش گرادیان تصادفی ( $\Upsilon$  انجام می شود.

$$L(\phi, \mathcal{D}) = \mathop{\mathbf{E}}_{(s, a, r, s', d) \sim \mathcal{D}} \left[ \left( Q_{\phi}(s, a) - \left( r + \gamma (1 - d) Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s')) \right) \right)^{2} \right]$$
 (1A-Y)

#### ۳-۲-۳ ساست در DDPG

در این بخش یک سیاست تعیینشده  $\mu_{\theta}(s)$  یاد گرفته می شود تا عملی را انجام می دهد که بیشینه  $Q_{\phi}(s,a)$  رخ دهد. از آنجا که فضای عمل پیوسته است و فرض شده است که تابع Q نسبت به عمل مشتق پذیر است، رابطه زیر با استفاده از صعود گرادیان ۲۵ (تنها نسبت به پارامترهای سیاست) بیشینه می شود.

$$\max_{\theta} \mathop{\mathbb{E}}_{s \sim \mathcal{D}} \left[ Q_{\phi}(s, \mu_{\theta}(s)) \right] \tag{19-T}$$

 $<sup>^{32}</sup>$ Polyak Averaging

<sup>&</sup>lt;sup>33</sup>Hyperparameter

<sup>&</sup>lt;sup>34</sup>Stochastic Gradient Descent

<sup>&</sup>lt;sup>35</sup>Gradient Ascent

#### ۳-۲-۳ اکتشاف و بهرهبرداری در DDPG

برای بهبود اکتشاف<sup>۳۶</sup> در سیاستهای DDPG، در زمان آموزش نویز به عملها اضافه می شود. نویسندگان مقاله DDPG [۱] توصیه کرده اند که نویز ۳۷ با همبندی زمانی<sup>۳۸</sup> اضافه شود. در زمان بهرهبرداری<sup>۳۹</sup> سیاست، از آنچه یاد گرفته است، نویز به عملها اضافه نمی شود.

#### ۳-۲-۳ شبه کد DDPG

در این بخش، شبه کد الگوریتم DDPG پیاده سازی شده آورده شده است. در این پژوهش الگوریتم ۱ در محیط پایتون با استفاده از کتابخانه TensorFlow پیاده سازی شده است.

<sup>&</sup>lt;sup>36</sup>Exploration

<sup>&</sup>lt;sup>37</sup>Ornstein-Uhlenbeck

 $<sup>^{38}\</sup>mathrm{Time\text{-}Correlated}$ 

 $<sup>^{39} {\</sup>rm Exploitation}$ 

#### الگوريتم ١ گراديان سياست عميق قطعي

 $(\mathcal{D})$  ورودی: پارامترهای اولیه سیاست  $(\theta)$ ، پارامترهای تابع  $(\phi)$ ، بافر تکرار بازی خالی

 $\phi_{\text{targ}} \leftarrow \phi$  ،  $\theta_{\text{targ}} \leftarrow \theta$  داد یارامترهای اصلی قرار دهید ابرابر با یارامترهای داد یارامترهای هدف ابرابر با یارامترهای اماره با یارامترهای

۲: تا وقتی همگرایی رخ دهد:

وضعیت s را انتخاب کنید بهطوری که  $a=\mathrm{clip}(\mu_{\theta}(s)+\epsilon,a_{\mathrm{Low}},a_{\mathrm{High}})$  را انتخاب کنید بهطوری که  $\epsilon\sim\mathcal{N}$ 

عمل a را در محیط اجرا کنید. \*

ه وضعیت بعدی s'، پاداش r و سیگنال پایان d را مشاهده کنید تا نشان دهد آیا s' پایانی است یا خیر.

s' اگر s' پایانی است، وضعیت محیط را بازنشانی کنید.

۷: اگر زمان بهروزرسانی فرا رسیده است:

۸: به ازای هر تعداد بهروزرسانی:

 $\mathcal{D}$  از  $B = \{(s,a,r,s',d)\}$  ، از  $B = \{$ 

۱۰: هدف را محاسبه کنید:

$$y(r, s', d) = r + \gamma (1 - d) Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s'))$$

۱۱: تابع Q را با یک مرحله از نزول گرادیان با استفاده از رابطه زیر بهروزرسانی کنید:

$$\nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi}(s,a) - y(r,s',d))^2$$

۱۲: سیاست را با یک مرحله از صعود گرادیان با استفاده از رابطه زیر بهروزرسانی کنید:

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \mu_{\theta}(s))$$

۱۳: شبکههای هدف را با استفاده از معادلات زیر بهروزرسانی کنید:

$$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho)\phi$$

$$\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1 - \rho)\theta$$

# ۳-۳ عامل گرادیان سیاست عمیق قطعی تاخیری دوگانه

عامل گرادیان سیاست عمیق قطعی تاخیری دوگانه  $^{*}$  یکی از الگوریتم های یادگیری تقویتی است که برای حل مسائل کنترل در محیطهای پیوسته طراحی شده است. این الگوریتم بر اساس الگوریتم DDPG توسعه یافته و با استفاده از تکنیکهای مختلف، پایداری و کارایی یادگیری را بهبود می بخشد. در حالی که DDPG گاهی اوقات می تواند عملکرد بسیار خوبی داشته باشد، اما اغلب نسبت به ابرپارامترها و سایر انواع تنظیمات یادگیری حساس است. یک حالت رایج شکست عامل DDPG در یادگیری این است که تابع Q یادگرفته شده شروع به بیش برآورد مقادیر Q می کند که منجر به واگرایی سیاست می شود. واگرایی به این دلیل رخ می دهد که در فرایند یادگیری سیاست از تخمین تابع Q استفاده می شود که افزایش خطای تابع Q منجر به ناپایداری در یادگیری سیاست می شود.

الگوریتم (Twin Delayed DDPG) از دو ترفند زیر جهت بهبود مشکلات اشاره شده استفاده میکند.

• یادگیری دوگانه ی محدود شده  $(V_{\phi_0})^{*}$ : الگوریتم TD3 به جای یک تابع  $(V_{\phi_0})^{*}$  دو تابع  $(V_{\phi_0})^{*}$  در تابع بلمن استفاده (از این رو دوگانه  $(V_{\phi_0})^{*}$  نامیده می شود) و از کوچک ترین مقدار این دو  $(V_{\phi_0})^{*}$  در تابع بلمن استفاده می شود. نحوه محاسبه هدف بر اساس دو تابع  $(V_{\phi_0})^{*}$  اشاره شده در رابطه  $(V_{\phi_0})^{*}$  آورده شده است.

$$y(r, s', d) = r + \gamma (1 - d) \min_{i=1,2} Q_{\phi_{i,\text{targ}}}(s', a'(s'))$$
 (Y \cdot -\mathbf{T})

سپس، در هر دو تابع  $Q_{\phi_{1}}$  و  $Q_{\phi_{2}}$  یادگیری انجام میشود.

$$L(\phi_1, \mathcal{D}) = \mathop{\mathbf{E}}_{(s, a, r, s', d) \sim \mathcal{D}} \left( Q_{\phi_1}(s, a) - y(r, s', d) \right)^2 \tag{YI-Y}$$

$$L(\phi_2, \mathcal{D}) = \mathop{\mathbf{E}}_{(s, a, r, s', d) \sim \mathcal{D}} \left( Q_{\phi_2}(s, a) - y(r, s', d) \right)^2$$
(۲۲-۲)

• بهروزرسانیهای تاخیری سیاست<sup>۴۳</sup>: الگوریتم TD3 سیاست را با تاخیر بیشتری نسبت به تابع Q بهروزرسانی میکند. در مرجع [۳] توصیه شدهاست که برای هر دو بهروزرسانی تابع Q، یک بهروزرسانی سیاست انجام شود.

<sup>&</sup>lt;sup>40</sup>Twin Delayed Deep Deterministic Policy Gradient (TD3)

<sup>&</sup>lt;sup>41</sup>Clipped Double-Q Learning

 $<sup>^{42}</sup>$ twin

<sup>&</sup>lt;sup>43</sup>Delayed Policy Updates

این دو ترفند منجر به بهبود قابل توجه عملکرد TD3 نسبت به DDPG پایه می شوند. در نهایت سیاست با به حداکثر رساندن  $Q_{\phi_1}$  آموخته می شود:

$$\max_{\theta} \mathop{\mathbb{E}}_{s \sim \mathcal{D}} \left[ Q_{\phi_1}(s, \mu_{\theta}(s)) \right] \tag{\Upsilon\Upsilon-\Upsilon}$$

#### ۳-۳-۳ اکتشاف و بهرهبرداری در TD3

الگوریتم TD3 یک سیاست قطعی را بهصورت غیر سیاست محور آموزش را میدهد. از آنجایی که سیاست قطعی است، در ابتدا عامل تنوع کافی از اعمال را برای یافتن روشهای مفید امتحان نمیکند. برای بهبود اکتشاف سیاستهای TD3، در زمان آموزش نویز به عملها اضافه میشود، در این پژوهش نویز گاوسی با میانگین صفر بدون همبندی اعمال شدهاست. شدت نویز جهت بهرهبرداری بهتر در طول زمان کاهش می یابد.

#### TD3 شبه کد TD3

در این بخش الگوریتم TD3 پیادهسازی شده آورده شدهاست. در این پژوهش الگوریتم ۴ در محیط پایتون با استفاده از کتابخانه PyTorch [۴] پیادهسازی شدهاست.

#### الگوريتم ٢ عامل گراديان سياست عميق قطعي تاخيري دوگانه

 $(\mathcal{D})$  ورودی: پارامترهای اولیه سیاست  $(\theta)$ ، پارامترهای تابع  $(\phi_1,\phi_2)$  بافر بازی خالی

 $\phi_{\mathrm{targ},2} \leftarrow \phi_2$  ،  $\phi_{\mathrm{targ},1} \leftarrow \phi_1$  ،  $\theta_{\mathrm{targ}} \leftarrow \theta$  هدف را برابر با پارامترهای اصلی قرار دهید :۱

۲: تا وقتی همگرایی رخ دهد:

را انتخاب کنید، بهطوری  $a=\mathrm{clip}(\mu_{\theta}(s)+\epsilon,a_{\mathrm{Low}},a_{\mathrm{High}})$  و عمل ره و عمل ره و عمل  $a=\mathrm{clip}(\mu_{\theta}(s)+\epsilon,a_{\mathrm{Low}},a_{\mathrm{High}})$  د ده و عمل  $a=\mathrm{clip}(\mu_{\theta}(s)+\epsilon,a_{\mathrm{Low}},a_{\mathrm{High}})$  د ده و عمل ره عمل روحه و عمل دوری در ده و عمل روحه در ده و عمل روحه در ده و عمل دوری در ده و عمل روحه در ده و دم در ده و دم در ده و دم در ده و دم در ده در ده و دم در ده در دم در د

عمل a را در محیط اجرا کنید. \*

ه وضعیت بعدی s'، پاداش r و سیگنال پایان d را مشاهده کنید تا نشان دهد آیا s' پایانی است یا خیر.

s' اگر s' پایانی است، وضعیت محیط را بازنشانی کنید.

۷: اگر زمان بهروزرسانی فرا رسیده است:

به ازای j در هر تعداد بهروزرسانی:  $\lambda$ 

 $\mathcal{D}$  از  $B = \{(s,a,r,s',d)\}$  ، از  $B = \{$ 

۱۰: هدف را محاسبه کنید:

$$y(r, s', d) = r + \gamma (1 - d) \min_{i=1,2} Q_{\phi_{targ,i}}(s', a'(s'))$$

۱۱: تابع Q را با یک مرحله از نزول گرادیان با استفاده از رابطه زیر بهروزرسانی کنید:

$$\nabla_{\phi_i} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi_i}(s,a) - y(r,s',d))^2$$
 for  $i = 1, 2$ 

اگر باقیمانده j بر تاخیر سیاست برابر 0 باشد : ۱۲

۱۳: سیاست را با یک مرحله از صعود گرادیان با استفاده از رابطه زیر بهروزرسانی کنید:

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi_1}(s, \mu_{\theta}(s))$$

۱۴: شبکههای هدف را با استفاده از معادلات زیر بهروزرسانی کنید:

$$\phi_{\mathrm{targ},i} \leftarrow \rho \phi_{\mathrm{targ},i} + (1-\rho)\phi_i \quad \text{for } i = 1, 2$$

$$\theta_{\mathrm{targ}} \leftarrow \rho \theta_{\mathrm{targ}} + (1-\rho)\theta$$

# ۳-۴ عامل عملگر نقاد نرم

عملگرد نقاد نرم <sup>۱۴</sup> الگوریتمی است که یک سیاست تصادفی را بهصورت سیاست محور بهینه میکند و پلی بین بهینهسازی سیاست تصادفی و رویکردهای مانند DDPG ایجاد میکند. این الگوریتم جانشین مستقیم TD3 نیست (زیرا تقریباً همزمان منتشر شده است)، اما ترفند یادگیری دوگانه محدود شده را در خود جای داده است و به دلیل سیاست تصادفی SAC، از چیزی روشی به نام صاف کردن سیاست هدف<sup>6۱</sup> استفاده شدهاست. یکی از ویژگی های اصلی SAC، تنظیم آنتروپی است. آنتروپی معیاری از تصادفی بودن انتخاب عمل در سیاست است. سیاست به گونه ای آموزش داده میشود که حداکثر سازی تعادل بین بازده مورد انتظار و آنتروپی را بهینه کند. این شرایط ارتباط نزدیکی با تعادل اکتشاف—بهرهبرداری دارد. افزایش آنتروپی منجر به اکتشاف بیشتر میشود که میتواند یادگیری را در مراحل بعدی تسریع کند. همچنین میتواند از همگرایی زودهنگام سیاست به یک بهینه محلی بد جلوگیری کند. برای توضیح SAC، ابتدا باید بررسی یادگیری تقویتی تنظیم شده با آنتروپی <sup>۱۹۲</sup> یک بهینه محلی بد جلوگیری کند. برای توضیح SAC، ابتدا باید بررسی یادگیری تقویتی تنظیم شده با آنتروپی <sup>۱۹۲</sup> را پرداخته شود. در IR تنظیم شده با آنتروپی، روابط تابع ارزش کمی متفاوت است.

## ۳-۴-۳ یادگیری تقویتی تنظیمشده با آنتروپی

آنتروپی کمیتی است که به طور کلی می گوید که یک متغیر تصادفی چقدر تصادفی است. اگر وزن یک سکه به گونه ای باشد که تقریباً همیشه نتیجه یک سمت آن باشد، آنتروپی پایینی دارد. اگر به طور مساوی وزن داشته باشد و شانس هر طرف سکه نصف باشد، آنتروپی بالایی دارد. فرض کنید x یک متغیر تصادفی با تابع چگالی احتمال P باشد. آنتروپی P متغیر P از توزیع آن P مطابق با رابطه زیر محاسبه می شود:

$$H(P) = \mathop{\mathbb{E}}_{x \sim P} \left[ -\log P(x) \right]$$

#### ۳-۴-۳ سیاست در SAC

در یادگیری تقویتی تنظیمشده با آنتروپی، عامل در هر مرحله زمانی متناسب با آنتروپی سیاست در آن مرحله زمانی پاداش دریافت میکند. بر اساس توضیحات اشاره شده روابط یادگیری تقویتی بهصورت زیر میشود.

$$\pi^* = \arg\max_{\pi} \mathop{\mathbf{E}}_{\tau \sim \pi} \sum_{t=0}^{\infty} \gamma^t \left( R(s_t, a_t, s_{t+1}) + \alpha H\left(\pi(\cdot | s_t)\right) \right)$$

<sup>&</sup>lt;sup>44</sup>Soft Actor Critic (SAC)

<sup>&</sup>lt;sup>45</sup>Target Policy Smoothing

<sup>&</sup>lt;sup>46</sup>Entropy-Regularized Reinforcement Learning

#### ۳-۴-۳ تابع ارزش در SAC

اکنون می توان تابع ارزش کمی متفاوت را بر اساس این مفهموم تعریف کرد.  $V^{\pi}$  به گونهای تغییر می کند که پاداشهای آنتروپی را از هر مرحله زمانی شامل می شود.

$$V^{\pi}(s) = \mathop{\mathbb{E}}_{\tau \sim \pi} \left[ \sum_{t=0}^{\infty} \gamma^{t} \left( R(s_{t}, a_{t}, s_{t+1}) + \alpha H\left(\pi(\cdot | s_{t})\right) \right) \middle| s_{0} = s \right]$$

## ۳-۴-۳ تابع Q در SAC

تابع  $Q^{\pi}$  به گونه ای تغییر میکند که پاداش های آنتروپی را از هر مرحله زمانی به جز مرحله اول شامل میشود.

$$Q^{\pi}(s, a) = \mathop{\mathbf{E}}_{\tau \sim \pi} \left[ \left. \sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}, s_{t+1}) + \alpha \sum_{t=1}^{\infty} \gamma^{t} H\left(\pi(\cdot | s_{t})\right) \right| s_{0} = s, a_{0} = a \right]$$

با این تعاریف رابطه  $V^{\pi}$  و  $V^{\pi}$  به صورت زیر است.

$$V^{\pi}(s) = \mathop{\mathbb{E}}_{a \sim \pi} \left[ Q^{\pi}(s, a) \right] + \alpha H \left( \pi(\cdot | s) \right)$$

#### SAC معادله بلمن در $\alpha$

معادله بلمن در حالت تنظیمشده با آنتروپی بهصورت زیر ارائه میشود.

$$Q^{\pi}(s,a) = \underset{\substack{s' \sim P \\ a' \sim \pi}}{\mathbb{E}} \left[ R(s,a,s') + \gamma \left( Q^{\pi}(s',a') + \alpha H\left(\pi(\cdot|s')\right) \right) \right] \tag{\UpsilonY-Y}$$

$$= \mathop{\mathbb{E}}_{s' \sim P} \left[ R(s, a, s') + \gamma V^{\pi}(s') \right] \tag{YD-T}$$

#### ۳-۴-۶ یادگیری Q

با درنظرگرفتن موارد اشارهشده، یادگیری Q در SAC با کمینه کردن تابع خطای میانگین مربعات بلمن (MSBE) یعنی معادله ( $\Upsilon$ - $\Upsilon$ - $\Upsilon$ ) با استفاده از کاهش گرادیان انجام میشود.

$$L(\phi_i, \mathcal{D}) = \mathop{\mathbf{E}}_{(s, a, r, s', d) \sim \mathcal{D}} \left[ \left( Q_{\phi_i}(s, a) - y(r, s', d) \right)^2 \right]$$

<sup>&</sup>lt;sup>47</sup>Trade-Off

در معادله (۳-۴-۶) تابع هدف برای روش یادگیری تقویتی SAC به صورت زیر تعریف می شود.

$$y(r, s', d) = r + \gamma(1 - d) \left( \min_{j=1,2} Q_{\phi_{\text{targ},j}}(s', \tilde{a}') - \alpha \log \pi_{\theta}(\tilde{a}'|s') \right), \quad \tilde{a}' \sim \pi_{\theta}(\cdot|s')$$

نماد عمل بعدی را به جای a' به a' به a' تغییر داده شده تا مشخص شود که عملهای بعدی باید آخرین سیاست نمونهبرداری شوند در حالی که a' و a' باید از بافر تکرار بازی آمده باشند.

#### ۳-۴-۳ سیاست در SAC

سیاست باید در هر وضعیت برای به حداکثر رساندن بازگشت مورد انتظار آینده به همراه آنتروپی مورد انتظار آینده عمل کند. یعنی باید  $V^{\pi}(s)$  را به حداکثر برساند، بسط تابع ارزش در ادامه آمده است.

$$V^{\pi}(s) = \mathop{\mathbf{E}}_{a \sim \pi} \left[ Q^{\pi}(s, a) \right] + \alpha H \left( \pi(\cdot | s) \right) \tag{19-T}$$

$$= \mathop{\mathbf{E}}_{a \sim \pi} \left[ Q^{\pi}(s, a) - \alpha \log \pi(a|s) \right] \tag{YV-Y}$$

روش بهینهسازی سیاست از ترفند پارامترسازی مجدد  $^{4\Lambda}$  استفاده میکند، که در آن نمونه ای از (s) با محاسبه یک تابع قطعی از وضعیت، پارامترهای سیاست و نویز مستقل استخراج می شود. در این پژوهش مانند نویسندگان مقاله SAC [۵]، از یک سیاست گاوسی  $^{4\Lambda}$  فشرده استفاده شده است. بر اساس این روش نمونهها مطابق با رابطه زیر بدست می آیند:

$$\tilde{a}_{\theta}(s,\xi) = \tanh(\mu_{\theta}(s) + \sigma_{\theta}(s) \odot \xi), \quad \xi \sim \mathcal{N}(0,I)$$

تابع tanh در سیاست SAC تضمین میکند که اعمال در یک محدوده متناهی محدود شوند. این مورد در سیاستهای TRPO، VPG و جود ندارد. همچنین اعمال این تابع توزیع را از حالت گاوسی تغییر میدهد.

در الگوریتم SAC با استفاده از ترفند پارامتریسازی مجدد، عملها از یک توزیع نرمال بهوسیله نویز تصادفی تولید شده و به این ترتیب امکان محاسبه مشتقها بهطور مستقیم از طریق تابع توزیع فراهم میشود، که باعث ثبات و کارایی بیشتر در آموزش میشود. اما در حالت بدون پارامتریسازی مجدد، عملها مستقیماً از توزیع سیاست نمونهبرداری میشوند و محاسبه گرادیان نیازمند استفاده از ترفند نسبت احتمال ۵۰ است که معمولاً باعث افزایش واریانس و ناپایداری در آموزش میشود.

$$\underset{a \sim \pi_{\theta}}{\mathrm{E}} \left[ Q^{\pi_{\theta}}(s, a) - \alpha \log \pi_{\theta}(a|s) \right] = \underset{\xi \sim \mathcal{N}}{\mathrm{E}} \left[ Q^{\pi_{\theta}}(s, \tilde{a}_{\theta}(s, \xi)) - \alpha \log \pi_{\theta}(\tilde{a}_{\theta}(s, \xi)|s) \right]$$

<sup>&</sup>lt;sup>48</sup>Reparameterization

<sup>&</sup>lt;sup>49</sup>Squashed Gaussian Policy

 $<sup>^{50}{\</sup>rm Likelihood~Ratio~Trick}$ 

برای به دست آوردن تابع هزینه سیاست، گام نهایی این است که باید  $Q^{\pi_{\theta}}$  را با یکی از تخمینزننده های تابع خود  $\min_{j=1,2} Q_{\phi_j}$  که از  $Q_{\phi_1}$  (فقط اولین تخمینزننده (Q استفاده می کند، SAC از  $Q_{\phi_1}$  استفاده می کند. بنابراین، سیاست طبق رابطه زیر بهینه سازی می شود:

$$\max_{\theta} \mathop{\mathbb{E}}_{\substack{s \sim \mathcal{D} \\ \xi \sim \mathcal{N}}} \left[ \min_{j=1,2} Q_{\phi_j}(s, \tilde{a}_{\theta}(s, \xi)) - \alpha \log \pi_{\theta}(\tilde{a}_{\theta}(s, \xi)|s) \right]$$

که تقریباً مشابه بهینهسازی سیاست در DDPG و TD3 است، به جز ترفند min-double-Q، تصادفی بودن و عبارت آنتروپی.

#### SAC اکتشاف و بهرهبرداری در $\Lambda$

الگوریتم SAC یک سیاست تصادفی با تنظیمسازی آنتروپی آموزش میدهد و به صورت سیاست محور به اکتشاف میپردازد. ضریب تنظیم آنتروپی  $\alpha$  به طور صریح تعادل بین اکتشاف و بهرهبرداری را کنترل میکند، به طوری که مقادیر بالاتر  $\alpha$  به اکتشاف بیشتر و مقادیر پایین تر  $\alpha$  به بهرهبرداری بیشتر منجر میشود. مقدار بهینه  $\alpha$  (که به یادگیری پایدارتر و پاداش بالاتر منجر میشود) ممکن است در محیطهای مختلف متفاوت باشد و نیاز به تنظیم دقیق داشته باشد. در زمان آزمایش، برای ارزیابی میزان بهرهبرداری سیاست از آنچه یاد گرفته است، تصادفی بودن را حذف کرده و از عمل میانگین به جای نمونهبرداری از توزیع استفاده میکنیم. این روش معمولاً عملکرد را نسبت به سیاست تصادفی بهبود می بخشد.

#### ۳-۴-۳ شبه کد SAC

در این بخش الگوریتم SAC پیادهسازی شده آورده شده است. در این پژوهش الگوریتم ۲ در محیط پایتون با استفاده از کتابخانه PyTorch [۴] پیادهسازی شده است.

# الگوريتم ٣ عامل عملگرد نقاد نرم

 $(\mathcal{D})$  ورودی: پارامترهای اولیه سیاست  $(\theta)$ ، پارامترهای تابع  $(\phi_1,\phi_2)$  بافر بازی خالی

 $\phi_{\mathrm{targ},2} \leftarrow \phi_2$  ،  $\phi_{\mathrm{targ},1} \leftarrow \phi_1$  ،  $\theta_{\mathrm{targ}} \leftarrow \theta$  هدف را برابر با پارامترهای اصلی قرار دهید :۱

۲: تا وقتی همگرایی رخ دهد:

. وضعیت (s) را مشاهده کرده و عمل  $a\sim\pi_{ heta}(\cdot|s)$  را انتخاب کنید:

عمل a را در محیط اجرا کنید. \*

ه وضعیت بعدی s'، پاداش r و سیگنال پایان d را مشاهده کنید تا نشان دهد آیا s' پایانی است یا خبر.

s' اگر s' پایانی است، وضعیت محیط را بازنشانی کنید.

۷: اگر زمان بهروزرسانی فرا رسیده است:

به ازای j در هر تعداد بهروزرسانی:  $\lambda$ 

 $\mathcal{D}$  از  $\mathcal{B}=\{(s,a,r,s',d)\}$  از  $\mathcal{B}=\{(s,a,r,s',d)\}$  از  $\mathcal{B}=\{(s,a,r,s',d)\}$  از  $\mathcal{B}=\{(s,a,r,s',d)\}$  نمونهگیری شود.

۱۰: هدف را محاسبه کنید:

$$y(r, s', d) = r + \gamma(1 - d) \left( \min_{i=1,2} Q_{\phi_{\text{targ},i}}(s', \tilde{a}') - \alpha \log \pi_{\theta}(\tilde{a}'|s') \right), \quad \tilde{a}' \sim \pi_{\theta}(\cdot|s')$$

۱۱: تابع Q را با یک مرحله از نزول گرادیان با استفاده از رابطه زیر بهروزرسانی کنید:

$$\nabla_{\phi_i} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi_i}(s,a) - y(r,s',d))^2$$
 for  $i = 1, 2$ 

۱۲: سیاست را با یک مرحله از صعود گرادیان با استفاده از رابطه زیر بهروزرسانی کنید:

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} \left( \min_{i=1,2} Q_{\phi_i}(s, \tilde{a}_{\theta}(s)) - \alpha \log \pi_{\theta} \left( \tilde{a}_{\theta}(s) | s \right) \right)$$

۱۳: شبکههای هدف را با استفاده از معادلات زیر بهروزرسانی کنید:

$$\phi_{\text{targ},i} \leftarrow \rho \phi_{\text{targ},i} + (1-\rho)\phi_i \quad \text{for } i = 1, 2$$

#### ۵-۳ عامل بهینهسازی سیاست مجاور

الگوریتم بهینهسازی سیاست مجاور ۵۱ یک الگوریتم بهینهسازی سیاست مبتنی بر گرادیان است که برای حل مسائل کنترل مسئلههای یادگیری تقویتی استفاده می شود. این الگوریتم از الگوریتم ۲۲۳۲۰ الهام گرفته شده است و با اعمال تغییراتی بر روی آن، سرعت و کارایی آن را افزایش داده است. در این بخش به بررسی این الگوریتم و نحوه عملکرد آن می پردازیم. الگوریتم PPO همانند سایر الگوریتمهای یادگیری تقویتی، به دنبال یافتن بهترین گام ممکن برای بهبود عملکرد سیایت با استفاده از داده های موجود است. این الگوریتم تلاش میکند تا از گامهای بزرگ که می توانند منجر به افت ناگهانی عملکرد شوند، اجتناب کند. برخلاف روشهای بیچیده تر مرتبه دوم مانند PPO (TRPO) از مجموعهای از روشهای مرتبه اول ساده تر برای حفظ نزدیکی سیاستهای جدید به سیاستهای قبلی استفاده میکند. این سادگی در پیاده سازی، PPO را به روشی کارآمدتر تبدیل میکند، در حالی که از نظر تجربی نشان داده شده است که عملکردی حداقل به اندازه TRPO دارد. از جمله ویژگیهای مهم این الگوریتم می توان به سیاست محور بودن آن اشاره کرد. این الگوریتم برای عاملهای یادگیری تقویتی که سیاستهای پیوسته و گسسته دارند، مناسب است.

الگوریتم PPO داری دو گونه اصلی PPO-Clip و PPO-Penalty است. در ادامه به بررسی هر یک از این دو گونه یرداخته شده است.

- روش PPO-Penalty: با این حال، واگرایی کولباک لیبلر<sup>۵۴</sup> است، مشابه روشی که در الگوریتم PPO-Penalty: با این حال، به جای اعمال یک محدودیت سخت<sup>۵۴</sup>، PPO-Penalty واگرایی KL را در تابع هدف جریمه میکند. این جریمه به طور خودکار در طول آموزش تنظیم میشود تا از افت ناگهانی عملکرد جلوگیری کند.
- روش PPO-Clip: در این روش، هیچ عبارت واگرایی KL در تابع هدف وجود ندارد و هیچ محدودیتی اعمال نمی شود. در عوض، PPO-Clip از یک عملیات بریدن ۵۵ خاص در تابع هدف استفاده می کند تا انگیزه سیاست جدید برای دور شدن از سیاست قبلی را از بین ببرد.

در این پژوهش از روش PPO-Clip برای آموزش عاملهای یادگیری تقویتی استفاده شده است.

<sup>&</sup>lt;sup>51</sup>Proximal Policy Optimization (PPO)

<sup>&</sup>lt;sup>52</sup>Trust Region Policy Optimization

<sup>&</sup>lt;sup>53</sup>Kullback-Leibler (KL) Divergence

<sup>&</sup>lt;sup>54</sup>Hard Constraint

<sup>&</sup>lt;sup>55</sup>Clipping

## ۳-۵-۳ سیاست در الگوریتم PPO

تابع سیاست در الگوریتم PPO به صورت یک شبکه عصبی پیچیده پیادهسازی شده است. این شبکه عصبی ورودی این محیط را دریافت کرده و اقدامی را که باید عامل انجام دهد را تولید میکند. این شبکه عصبی میتواند شامل چندین لایه پنهان با توابع فعالسازی مختلف باشد. در این پژوهش از یک شبکه عصبی با سه لایه پنهان و تابع فعالسازی tanh استفاده شده است. تابع سیاست در الگوریتم PPO به صورت زیر بهروزرسانی می شود:

$$\theta_{k+1} = \arg\max_{\theta} \mathop{\mathbf{E}}_{s,a \sim \pi_{\theta_k}} \left[ L(s,a,\theta_k,\theta) \right] \tag{YA-Y}$$

در این پژوهش برای به حداکثر رساندن تابع هدف، چندین گام بهینهسازی گرادیان کاهشی تصادفی  $^{68}$  اجرا شده است. در معادله بالا L به صورت زیر تعریف شده است:

(۲۹-۳)

$$L(s, a, \theta_k, \theta) = \min\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), \text{ clip}\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}, 1 - \epsilon, 1 + \epsilon\right) A^{\pi_{\theta_k}}(s, a)\right)$$

که در آن  $\epsilon$  یک فراپامتر است که مقدار آن معمولا کوچک است. این فراپامتر مشخص میکند که چقدر اندازه گام بهینهسازی باید محدود شود. در این پژوهش مقدار  $\epsilon=0.2$  انتخاب شده است.

در حالی که این نوع محدود کردن (PPO-Clip) تا حد زیادی به اطمینان از بهروزرسانیهای معقول سیاست کمک میکند، همچنان ممکن است با سیاست بهدست آید که بیش از حد از سیاست قدیمی دور باشد. برای جلوگیری از این امر، پیادهسازیهای مختلف PPO از مجموعهای از ترفندها استفاده میکنند. در پیادهسازی این پژوهش، از روشی ساده به نام توقف زودهنگام ۵۷ استفاده شده است. اگر میانگین واگرایی کولباک-لیبلر این پژوهش، خطمشی جدید از خطمشی قدیمی از یک آستانه فراتر رود، گامهای گرادیان (بهینهسازی) را متوقف می شوند.

#### ۳-۵-۳ اکتشاف و بهرهبرداری در PPO

الگوریتم PPO از یک سیاست تصادفی به صورت سیاست محور برای آموزش استفاده می کند. این به این معنی است که اکتشاف محیط با نمونه گیری عمل ها بر اساس آخرین نسخه از این سیاست تصادفی انجام می شود. میزان تصادفی بودن انتخاب عمل به شرایط اولیه و فرآیند آموزش بستگی دارد.

در طول آموزش، سیاست به طور کلی به تدریج کمتر تصادفی میشود، زیرا قانون بهروزرسانی آن را تشویق

<sup>&</sup>lt;sup>56</sup>Stochastic Gradient Descent (SGD)

<sup>&</sup>lt;sup>57</sup>Early Stopping

میکند تا از پاداشهایی که قبلاً پیدا کرده است، بهرهبرداری کند. البته این موضوع میتواند منجر به گیر افتادن خطمشی در بهینههای محلی<sup>۵۸</sup> شود.

#### ۳-۵-۳ شبه کد PPO

در این بخش الگوریتم PPO پیادهسازی شده آورده شده است. در این پژوهش الگوریتم ۴ در محیط پایتون با استفاده از کتابخانه PyTorch [۴] پیادهسازی شده است.

### الگوريتم ۴ بهينهسازي سياست مجاور (PPO-Clip)

 $(\phi_0)$  ورودی: پارامترهای اولیه سیاست  $(\theta_0)$ ، پارامترهای تابع ارزش

 $k = 0, 1, 2, \dots$  :۱ به ازای :۱

در محیط جمع آوری شود.  $\pi_k = \pi(\theta_k)$  با اجرای سیاست  $\pi_k = \pi(\theta_k)$  در محیط جمع آوری شود. ۲:

۳: پاداشهای باقیمانده  $(\hat{R}_t)$  محاسبه شود.

بر آساس تابع ارزش برآوردهای مزیت را محاسبه کنید،  $\hat{A}_t$  (با استفاده از هر روش تخمین مزیت) بر اساس تابع ارزش  $V_{\phi_k}$  فعلی  $V_{\phi_k}$ 

۵: سیاست را با به حداکثر رساندن تابع هدف PPO-Clip بهروزرسانی کنید:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \ g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right)$$

معمولاً از طريق گراديان افزايشي تصادفي Adam.

۶: برازش تابع ارزش با رگرسیون بر روی میانگین مربعات خطا:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_t} \sum_{t=0}^{T} \left( V_{\phi}(s_t) - \hat{R}_t \right)^2$$

معمولاً از طریق برخی از الگوریتمهای کاهشی گرادیان.

<sup>&</sup>lt;sup>58</sup>Local Optima

مدلسازی محیط یادگیری سه جسمی

شبیهسازی عامل درمحیط سه جسمی

# **Bibliography**

- [1] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy gradient algorithms. In *International conference on machine learning*, pages 387–395. Pmlr, 2014.
- [2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensor-flow.org.
- [3] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic methods, 2018.
- [4] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.
- [5] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290, 2018.

#### Abstract

In this study, a quadcopter stand with three degrees of freedom was controlled using game theory-based control. The first player tracks a desired input, and the second player creates a disturbance in the tracking of the first player to cause an error in the tracking. The move is chosen using the Nash equilibrium, which presupposes that the other player made the worst move. In addition to being resistant to input interruptions, this method may also be resilient to modeling system uncertainty. This method evaluated the performance through simulation in the Simulink environment and implementation on a three-degree-of-freedom stand.

**Keywords**: Quadcopter, Differential Game, Game Theory, Nash Equilibrium, Three Degree of Freedom Stand, Model Base Design, Linear Quadratic Regulator



# Sharif University of Technology Department of Aerospace Engineering

Master Thesis

# Robust Reinforcement Learning Differential Game Guidance in Low-Thrust, Multi-Body Dynamical Environments

By:

Ali BaniAsad

Supervisor:

Dr.Hadi Nobahari

December 2024