STAT 200

$\mathrm{Data} \leftrightarrow \mathrm{Variable}$ (Characteristic of Interest)

- Qualitative / Categorical: can be ordered \rightarrow ordinal variables
- Quantitative (attach units): measured on a numerical scale
 - Discrete, Continuous

Displaying Data

- Categorical Variables
 - $\bullet\,$ (Relative) Frequency Tables: expressed in percentages/proportions add to 100%
 - Bar charts: $Area \propto Height \propto Proportions$, with legends, labelled axes, notes
 - Pie charts: can only introduce some # of categories
 - Contingency Tables: 2 categorical variable relationship + breakdown of data
 - Simpson's Paradox: the breakdown (grouping) of data can show an opposite trend compared to all data observed altogether
- Quantitative Variables
 - \bullet Histogram: can change interval width + no gaps between intervals
 - Stem-and-leaf Display: Trailing digit is always the leaf, whereas everything before it is the stem
 - Observation = Stem + Leaf, Stem is x-axis, Leaf is y-axis
 - $\bullet~$ A stemplot is histogram rotated 90°
 - Boxplot: 5-number summary
 - $\bullet \quad min, Q_1, Q_2(median), Q_3, max$
 - Upper fence and Lower fence to detect outliers; When no outliers, the whiskers are the *max* and *min*

Distributions

- Conditional Distribution: Fix one variable, distribution for the other variable
- Marginal Distribution (Frequency taken along the margins of the table):
 Collapse one variable, distribution of the other variable
- Describing a distribution
 - Shape
- Unimodal, Bimodal, Multimodal
- Center

• Mean (Arithmetic Mean)
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$y_i = i^{th} \ observation$$

•

- Median
- $\bullet~$ Arrange data in ${\bf ascending}$ order

$$Odd: median = rac{n+1}{2} th \ observation$$

Even: $median = average \ of \frac{n}{2} \ and \ \frac{n+1}{2} \ th \ observation$

- Spread
- Range = max min
- $IQR = Q_3 Q_1$

$$ullet y_1,y_2,y_3,y_4,y_5
ightarrow Q_2 = y_3, Q_1 = y_2(y_1,y_2,y_3), Q_3 = y_4(y_3,y_4,y_5)$$

•
$$y_1,y_2,y_3,y_4,y_5,y_6 o Q_2=rac{y_3+y_4}{2},Q_1=y_2(y_1,y_2,y_3),Q_3=y_5(y_4,y_5,y_6)$$

- Variance and Standard Deviation (Sample: s^2, s , Theoretical: σ^2, σ)
 - Non-negative
 - More spread = Larger variance
 - SD has the same unit as the data
 - $s^2 = s = 0$, if all observations are the same

$$s^2 = rac{1}{n-1} \sum_{i=1}^n (y_i - ar{y})^2$$

$$s = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (y_i - \overline{y})^2}$$

- Outliers?
 - Symmetric vs. Skewed (The skew always follows the tail)
 - Either $> Q_3 + 1.5 \times IQR$, or $< Q_1 1.5 \times IQR$
- Sensitivity to outliers
 - Sensitive: Mean; Range, Variance, SD
 - Non-sensitive: Median; IQR
- What to use?
 - Range is a crude measure
 - Symmetric: Mean, Variance, SD
 - Skewed: Median, IQR
- Shifting and Scaling of observations
 - Shifting ($\pm c$ to each observation)
 - Measure of center: $\pm c$
 - Measure of spread: Unchanged
 - Scaling ($\times c$ to each observation)
 - Measure of center & Measure of spread: $\times c$, (variance $\rightarrow \times c^2$)
- Standardization (for 2 different scale comparison)

$$z = \frac{y - \overline{y}}{s}$$

- Normal Model
 - Bell-shaped, unimodal, perfectly symmetric about μ , SD is σ (parameters)
 - Denoted by $N(\mu, \sigma)$
 - Standardizing values from the Normal Model

$$z = \frac{observation - mean}{standard\ deviation} = \frac{y - \mu}{\sigma}$$

- Empirical Rule
 - $|y \mu| \le \sigma : 68\%, |y \mu| \le 2\sigma : 95\%, |y \mu| \le 3\sigma : 99.7\%$

Scatterplots, Association & Correlation

- Scatterplot
 - 2 quantitative variables: explanatory variable, response variable
 - Each observation is (x_i, y_i)
 - Line of regression always cross (\bar{x}, \bar{y}) , the mean-mean point
 - Direction: Positive/Negative
 - Form: Linear/Non-linear
 - How scattered: Strong/Weak/No relationship
 - Outliers?
- Correlation: Degree of linear association between 2 quantitative variables
 - Correlation coefficient $(-1 \le r \le 1)$: measure the strength of **ONLY** linear correlation
 - r is sensitive to outliers, but will not change if x&y are swapped or the observations are scaled
- \bullet Calculating r
 - Standardize x & y

$$egin{aligned} z_x &= rac{x-ar{x}}{s_x} \ z_y &= rac{y-ar{y}}{s_y} \ r &= rac{1}{n-1} \sum z_x z_y \end{aligned}$$

• Covariance (NOT standardized)

$$egin{aligned} cov(X,Y) &= rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})(y_i - ar{y}) \ & r &= rac{cov(X,Y)}{s_x s_y} \end{aligned}$$

- Linear Regression $(y = b_0 + b_1 x)$
 - Predict on the response given the explanatory
 - Regression line

- $b_1 = \frac{rs_y}{s_x}$
- $\bullet \quad b_0 = \bar{y} b_1 \bar{x}$
- Predicting values: $\hat{y} = b_0 + b_1 x$
- Beware of extrapolations (outside of observed ranges)
- Residuals (e): $e = y \hat{y}, \sum (y_i \hat{y}_i) = 0$
 - minimizing $\sum (y_i \hat{y}_i)^2$: ordinary least squares regression
 - Plots: if done properly, there will not be any pattern
- Fitting the model
 - x & y has sufficient linearity
 - Reality check: Do the values make sense?
 - Attention to outliers if they are on the end, they affect more (exclusion of data?)

Sampling

- Census: complete collection of individuals under study \rightarrow **population**, they are costly and inefficient
- Sample is a subset of population
- Statistics (m, s) $\overrightarrow{estimate}$ Parameters (μ, σ)
- Randomization
 - Randomness give samples that have population characteristics to prevent non-representativeness
 - Sample size matters, the actual number of individuals/subjects is important
- Methods
 - Sampling frame: every subject that **SHOULD** be sampled, this defines the population clearly
 - Sampling variability: difference in characteristics from sample to sample (As sample size increases, the sample variability decreases)
 - Simple Random Sampling (SRS)
 - Each subject has equal chance of being selected
 - Each possible sample of size n is equally likely
 - Stratified sampling
 - First breakdown population into strata (subset with same particular characteristic)
 - Then SRS drawn within each stratum, combining to form a stratified sample
 - Cluster sampling
 - Population is naturally divided into groups or clusters
 - One-stage cluster sample: choose random clusters to form a sample
 - Two-stage cluster sample: first choose random clusters, then SRS from each selected cluster
 - Multistage sampling

- Systematic sampling
 - Selecting every k^{th} individual from the sampling frame, this works if the list has no hidden order
- Bad sampling
 - Undercoverage: completely excludes or underrepresents certain kinds of individuals
 - Convenient sampling: sample based on easy availability & accessibility
 - Voluntary response bias: individuals with strong opinions tend to respond more often \to overrepresentation
 - Non-response bias
 - Response bias
 - response influenced by how questions are phrased or worded
 - misunderstanding of a question
 - unwillingness to disclose the truth

Probability and Random Variables

- Sample space (S): set of all possible outcomes of a random phenomenon
- Event: outcome(s) from a random phenomenon, denoted by UPPER CASE LETTER
- P(A): probability that an event A will occur
 - $0 \le P(A) \le 1$, P(A) = 0: impossible, P(A) = 1: certain
 - \sum Probability of all **non-overlapping** events in S=1
- True positive, True negative, False positive, False negative

	SPAM	HAM
Positive (Classified as Spam)	True Positive	False Positive
Negative (Classified as Ham)	False Negative	True Negative

$$F,P=rac{ham\ as\ spam}{ham}$$

$$F,N=rac{spam\ as\ ham}{spam}$$

- Independence of Events
 - P(B|A) = P(B) & P(A|B) = P(A)
 - If A and B are independent, $P(A\&B) = P(A) \times P(B)$
- Random Variables
 - Discrete RV (can come from a **countable** set of values): a *numeric* quantity of an outcome from a random phenomenon
 - ullet set of possible values + associated theoretical probability = probability model
 - Continuous RV: uncountable set of values → denoted by density curves

- Mean: Long run average of the observed values \rightarrow weighted sum
- Variance: how spread out the observations are
- Probability Models
 - Normal RV: $X \sim N(\mu, \sigma)$
 - Uniform RV: $X \sim U(a, b)$, a is minimum, b is maximum
 - mean: $\frac{a+b}{2}$
 - sd: $\sqrt{\frac{(b-a)^2}{12}}$
 - Binomial Model: $X \sim Bin(n, p)$
 - n identical independent trials, p is success rate, q is failure rate
 - $P(X = x) = C_n^x p^x q^{n-x}$, where $C_n^x = \frac{n!}{x!(n-x)!}$
 - Mean: np, Variance: npq, SD: \sqrt{npq}

Sampling Distribution

- Assumptions
 - Randomness: samples are randomly drawn
 - Independence: individual values are independent
 - Sufficiency: large sample size $(np \ge 10, nq \ge 10)$
 - Sample size < 10% population
- Sampling distribution of proportions
 - Distribution of sample proportions, using \hat{p} to estimate p
 - $\hat{p} \sim N(p, \sqrt{\frac{pq}{n}}), n = 10 \text{ in class}$
- Sampling distribution of means
 - Distribution of sampled mean, using \bar{y} to estimate μ
 - $ar{y} \sim N(\mu, rac{\sigma}{\sqrt{n}})$
- Central Limit Theorem (CLT)
 - $y_1, y_2, y_3, ..., y_n$ be independent observations (random sample), if the sample is sufficiently large, \bar{y} will approximate the normal model
 - If the sample comes from a normal model, sample mean is always normal

Confidence Interval and Hypothesis Testing

- Assumptions
 - The samples are randomly chosen within the population.
 - The samples are independent of each other.
 - The sample size is large enough to be representative of the population.
 - The sample size is less than 10% of the population
 - For 2 populations
 - For independent populations, each of the populations and the samples drawn follow the above assumptions.

- For paired populations, each **pair** are random, independent, sufficient, representative, and have unknown
- Sample size determination for sampling proportions

$$\therefore ME = z^* \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$
 $\therefore n = rac{(z^*)^2 imes \hat{p}(1-\hat{p})}{ME^2}$

Without knowing the actual proportion, choose $\hat{p} = 0.5$ for largest sample size, round up to the nearest integer.

- Confidence Interval Sample size $\times 2 \to \text{Standard error } \div \sqrt{2}$ (C: probability that a Confidence Interval encloses p)
 - We are C% confident that population proportion p is in (interval)
- Hypothesis Testing Process
 - State the parameter of interest
 - State whether or not the assumptions are met
 - Define relevant notations and state the null hypothesis and the alternative hypothesis
 - Define relevant variables used in the calculations
 - State the testing model used (Specify one/(independent/paired)two-sample/proportion left/right/two-tail z/t-test)
 - Calculate the test statistic and compare it with the critical value
 - State whether or not the null hypothesis is rejected
 - Formulate a one/two-sentence conclusion

	\hat{p}	\bar{y} (σ KNOWN)		$egin{aligned} ar{y_1} - ar{y_2} \ \end{aligned}$ (INDEPENDENT)	$ar{d}$ (PAIRED)
Population Parameter	p	μ	μ	$\mu_1-\mu_2$	μ_d
Sampling Distribution Standard Deviation	$\sqrt{rac{p(1-p)}{n}}$	$\frac{\sigma}{\sqrt{n}}$	$\frac{\sigma}{\sqrt{n}}$	$\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$	$rac{\sigma_d}{\sqrt{n}}$
Sampling Distribution Standard Error (SE)	$\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$	$\frac{\sigma}{\sqrt{n}}$	$\frac{s}{\sqrt{n}}$	$\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$	$\frac{s_d}{\sqrt{n}}$
Confidence Interval	$\hat{p}\pm z^{*}SE$	$ar{y}\pm z^*SE$	$ar{y}\pm t^*SE$	$(ar{y_1} - ar{y_2}) \pm t^*SE$	$ar{d}\pm t^*SE$
Test Statistic	$z_0=rac{\hat{p}-p_0}{\sqrt{rac{p_0(1-p_0)}{n}}}$	$z_0=rac{ar{y}-\mu_0}{SE}$	$t_0=rac{ar{y}-\mu_0}{SE}$	$t_0=rac{(ar{y_1}-ar{y_2})-\Delta_0}{SE}$	$t_0=rac{ar{d}-\mu_{d_0}}{SE}$
Distribution Model	N(0,1)	N(0,1)	t_{n-1}	t_{min-1}	t_{n-1}
Margin of Error	z^*SE	z^*SE	t^*SE	t^*SE	t^*SE
Degrees of Freedom (df)	/	/	n-1	$min(n_1,n_2)-1$	n-1

- Hypothesis Testing for Independence between Variables
 - Null hypothesis: H_0 : not associated Alternative hypothesis: H_A : associated
 - Define # of rows to be r, and # of columns to be c, total # of categories $(n) = r \times c$
 - Assume H_0 is true, calculate the expected value for each category, denote the expected value for cell (i, j), row i, column j, to be $E_{i,j}$
 - Each expected value ≥ 5 .
 - Test Statistic $(X^2) = \sum rac{(O_{i,j} E_{i,j})^2}{E_{i,j}}$
 - Degrees of freedom (df) is df = (r-1)(c-1)
- Rejecting H_0 or not
 - Reject H_0 if the test statistic is larger than the critical value, or the p-value is less than α (significance level)
 - Do not reject H_0 if the test statistic is less than or equal to the critical value, or the *p*-value is larger than or equal to α (significance level)
 - p-value: conditional probability given H_0 is true, **NOT** the probability that H_0 is true.
 - Errors
- Type I error: rejecting H_0 when H_0 is defacto true, the probability of this happening is α
- Type II error: failing to reject H_0 when H_0 is de facto false.
- Analysis of Variance (ANOVA) \rightarrow F-test
 - \bullet Comparing 2+ independent population means, compare both the center of the groups and the spread within the groups
 - Null hypothesis H₀: μ₁ = μ₂ = ... = μ_k
 Alternative hypothesis H_A: not all μ are equal, at least two population means are different
 - Assumptions
 - k samples drawn from k populations must be independent of each other
 - Within each sample, individual observations are randomly chosen and are independent of each other
 - Within each population, the individual observations follow the **Normal Distribution** with some μ and a **common** standard deviation σ

SOURCE OF VARIATION	df	SUM OF SQUARES	MEAN SQUARES	F- RATIO
Treatments	k-1	SS_T : Treatment sum of squares	$MS_T = rac{SS_T}{k-1}$	
Error	N-k	SS_E : Error sum of squares	$MS_E=rac{SS_E}{N-k}$	
Total	N-1	SS_{Total}		$F=rac{MS_T}{MS_E}$

- F^* has three parameters: α (significance level), ν_1 (k-1), ν_2 (N-k)
- Treatment sum of squares represent the variation between groups, and the Error sum of squares represent variation within a group.
- $N = \sum n$, where n is the sample size from each population; $\overline{\overline{y}} = \frac{\sum y_{i,j}}{N}$