Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt
Luminositeten øker med en faktor 3.30e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas luminositet er halvparten av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE B) det finnes hovedsaklig helium men også noe karbon i stjernas kjerne

STJERNE C) stjernas luminositet er 1/10 av solas luminositet og det finnes

noe helium i kjernen men ingen tyngre grunnstoffer STJERNE D) stjerna fusjonerer helium i kjernen STJERNE E) det finnes karbon i et skall rundt kjernen

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 5.645e+06 kg/m3̂ og temperatur 28 millioner K.

Kjernen i stjerne B har massetet
thet 5.084e+06 kg/m3 og temperatur 35 millioner K.

Kjernen i stjerne C har massetet
thet 3.207e+06 kg/m3 og temperatur 21 millioner K.

Kjernen i stjerne D har massetet
thet 2.061e+06 kg/m3̂ og temperatur 15 millioner K.

Kjernen i stjerne E har massetet
thet 8.298e+06 kg/m3 og temperatur 17 millioner K.

Filen 1K/1K.txt

Påstand 1: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 2: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig større enn den tilsynelatende størrelseklassen i blått filter

Påstand 3: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig mindre enn den tilsynelatende størrelseklassen i blått filter

Påstand 4: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

Figur A tilsynelatende størrelseklasse 20.95

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

Figur B tilsynelatende størrelseklasse 10.46

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 4.716e+05 kg/m3̂ og temperatur 29.62 millioner K.

Kjernen i stjerne B har massetet
thet $3.456\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 19.56 millioner K.

Kjernen i stjerne C har massetet
thet 1.536e+05 kg/m3̂ og temperatur 23.02

millioner K.

Kjernen i stjerne D har massetet
thet 9.400e+04 kg/m3̂ og temperatur 31.57 millioner K.

Kjernen i stjerne E har massetet
thet 1.396e+05 kg/m3̂ og temperatur 27.22 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 1O/1O.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_Figur_3_.png$

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

6.00

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 2.54 buesekunder i løpet av et millisekund. 54.04 48.03 y-posisjon (10⁻⁶ buesekunder) 42.03 36.03 30.02 24.02 18.01 12.01 6.00 0.00

12.01 18.01 24.02 30.02 36.03 42.03

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tønsberg som ligger i en avstand av 150 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 96.65620 km/t.

Filen 3E.txt

Tog1 veier 90500.00000 kg og tog2 veier 109700.00000 kg.

Filen 4A.png

15.30 - 15.20 - 15.10 - 14.90 - 14.80 - 14.70 - 0 10 20 30 40 50 Observasjonstid (dager)

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 483 km/s.

Filen 4E.txt

Massen til gassklumpene er 4800000.00 kg.

Hastigheten til G1 i x-retning er 58200.00 km/s.

Hastigheten til G2 i x-retning er 64200.00 km/s.

Filen 4G.txt

Massen til stjerna er 56.90 solmasser og radien er 1.59 solradier.