

Which of the following figures correspond to possible values that PCA may return for  $u^{(1)}$  (the first eigenvector / first principal component)? Check all that apply (you may have to check more than one figure).



**~** 



**⊘** Correct

The maximal variance is along the y = x line, so the negative vector along that line is correct for the first principal component.

| <b>2.</b> Which of the following is a reasonable way to select the number of principal components $k$ ?                                                                                                                                                                                                |              | 1/1 point   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
| (Recall that $n$ is the dimensionality of the input data and $m$ is the number of input examples.)                                                                                                                                                                                                     |              |             |
| lacktriangledown Choose $k$ to be the smallest value so that at least 99% of the variance is retained.                                                                                                                                                                                                 |              |             |
| Use the elbow method.                                                                                                                                                                                                                                                                                  |              |             |
| $\bigcirc$ Choose $k$ to be the largest value so that at least 99% of the variance is retained                                                                                                                                                                                                         |              |             |
| $\bigcirc$ Choose $k$ to be 99% of $m$ (i.e., $k=0.99*m$ , rounded to the nearest integer).                                                                                                                                                                                                            |              |             |
| Correct This is correct, as it maintains the structure of the data while maximally reducing its dimension                                                                                                                                                                                              | ın.          |             |
| 3. Suppose someone tells you that they ran PCA in such a way that "95% of the variance was retained." equivalent statement to this?                                                                                                                                                                    | " What is an | 1/1 point   |
| $igcolumn{ & rac{1}{m}\sum_{i=1}^{m}  x^{(i)}-x_{	ext{approx}}^{(i)}  ^2}{rac{1}{m}\sum_{i=1}^{m}  x^{(i)}  ^2} \geq 0.05 \ & egin{equation} & & & & & & & & & & & & & & & & & & &$                                                                                                                  | ^            |             |
| m ————————————————————————————————————                                                                                                                                                                                                                                                                 | •            |             |
| $igcap_{rac{1}{m}\sum_{i=1}^{m}  x^{(i)}  ^2}{rac{1}{m}\sum_{i=1}^{m}  x^{(i)}-x_{	ext{approx}}^{(i)}  ^2}\geq 0.95$                                                                                                                                                                                 | Î            |             |
| $\log rac{rac{1}{m}\sum_{i=1}^{m}  x^{(i)}-x_{	ext{approx}}^{(i)}  ^2}{rac{1}{m}\sum_{i=1}^{m}  x^{(i)}  ^2} \geq 0.95$                                                                                                                                                                             | ^<br>•       |             |
| $igotimes rac{rac{1}{m}\sum_{i=1}^{m}  x^{(i)}-x_{	ext{approx}}^{(i)}  ^2}{rac{1}{m}\sum_{i=1}^{m},  x^{(i)}  ^2} \leq 0.05$                                                                                                                                                                        | Û            |             |
|                                                                                                                                                                                                                                                                                                        |              |             |
| <ul> <li>Feature scaling is not useful for PCA, since the eigenvector calculation (such as using Octave's svd(Sigma) routine) takes care of this automatically.</li> <li>If the input features are on very different scales, it is a good idea to perform feature scaling before apple PCA.</li> </ul> | iying        |             |
| Correct Feature scaling prevents one feature dimension from becoming a strong principal component only because of the large magnitude of the feature values (as opposed to large variance on that dimension)                                                                                           | n).          |             |
| PCA can be used only to reduce the dimensionality of data by 1 (such as 3D to 2D, or 2D to 1D).                                                                                                                                                                                                        |              |             |
| $igspace$ Given an input $x\in\mathbb{R}^n$ , PCA compresses it to a lower-dimensional vector $z\in\mathbb{R}^k$ .                                                                                                                                                                                     | \$           |             |
| <ul> <li>Correct         PCA compresses it to a lower dimensional vector by projecting it onto the learned principal component     </li> </ul>                                                                                                                                                         | ents.        |             |
| Which of the following are recommended applications of PCA? Select all that apply.                                                                                                                                                                                                                     |              | 1 / 1 point |
| Clustering: To automatically group examples into coherent groups.                                                                                                                                                                                                                                      |              | -, - p      |
| <ul> <li>✓ Data compression: Reduce the dimension of your input data x<sup>(i)</sup>, which will be used in a supervised learning algorithm (i.e., use PCA so that your supervised learning algorithm runs faster).</li> </ul>                                                                         |              |             |
| Correct If your learning algorithm is too slow because the input dimension is too high, then using PCA to specup is a reasonable choice.                                                                                                                                                               | ed it        |             |
| Data visualization: Reduce data to 2D (or 3D) so that it can be plotted.                                                                                                                                                                                                                               |              |             |
| Correct This is a good use of PCA, as it can give you intuition about your data that would otherwise be impost o see.                                                                                                                                                                                  | sible        |             |
| To get more features to feed into a learning algorithm                                                                                                                                                                                                                                                 |              |             |