Part I

```
We can model this system with the tuple S = (Q, \Sigma_1, \Sigma_2, q_0, \vee, \wedge), where: Q = \left\{ \begin{array}{l} \textit{dormant, exit, init, idle, monitoring, error\_diagnosis, safe\_shutdown} \right\} \\ \Sigma_1 = \left\{ \begin{array}{l} \textit{kill, start, init\_ok, begin\_monitoring, init\_crash, retry\_init, shutdown, sleep, idle\_crash, idle\_rescue, moni\_rescue} \right\} \\ \Sigma_2 = \left\{ \begin{array}{l} \textit{retry} + +, \ \textit{broadcast init\_err\_msg, broadcast idle\_err\_msg, broadcast moni\_err\_msg} \right\} \\ q_0 = \textit{dormant} \\ \vee = \textit{retry} : \mathbf{N}_0 \ ; \ \textit{init\_err\_msg} : \textit{string} \ ; \ \textit{idle\_err\_msg} : \textit{string} \ ; \ \textit{moni\_err\_msg} : \textit{string} \\ \wedge : \textit{transition specification} : \end{array} \right.
```

- $1. \longrightarrow dormant$
- 2. $dormant \xrightarrow{kill} exit$
- 3. $dormant \xrightarrow{start} init$
- 4. $init \xrightarrow{kill} exit$
- 5. $init \xrightarrow{init_ok} idle$
- 6. $idle \xrightarrow{kill} exit$
- 7. $idle \xrightarrow{begin_monitoring} monitoring$
- 8. $init \xrightarrow{init_crash/broadcastinit_err_msg} \rightarrow error_diagnosis$
- 9. $error_diagnosis \xrightarrow{retry_init[retry<3]/retry++} \rightarrow init$
- 10. $error_diagnosis \xrightarrow{kill} exit$
- 11. $error_diagnosis \xrightarrow{shutdown[retry>2]} safe_shutdown$
- 12. $safe_shutdown \xrightarrow{kill} exit$
- 13. $safe_shutdown \xrightarrow{sleep} dormant$
- 14. $idle \xrightarrow{idle_crash/broadcastidle_err_msg} \rightarrow error_diagnosis$
- 15. $error_diagnosis \xrightarrow{idle_rescue} idle$
- 16. $monitoring \xrightarrow{monitor_crash/broadcast moni_err_msg} \rightarrow error_diagnosis$
- 17. error_diagnosis monitoring → monitoring
- 18. monitoring \xrightarrow{kill} exit

Part II

As **init** is a composed state, we define it as the tuple $S = \left(Q, \Sigma_1, q_0, \wedge\right)$, where:

$$Q = \{ boot_hw, senchk, tchk, psichk, ready \}$$

$$\Sigma_1 = \{ hw_ok, senok, psi_ok \}$$

$$q_0 = boot_hw$$

 \land : transition specification:

$$1. \longrightarrow boot_hw$$

- 2. $boot hw \xrightarrow{hw ok} senchk$
- 3. $senchk \xrightarrow{senok} tchk$
- 4. $tchk \xrightarrow{t-ok} psichk$
- 5. $psichk \xrightarrow{psi_ok} ready$

Part III

As **monitoring** is a composed state, we define it as the tuple $S = (Q, \Sigma_1, \Sigma_2, q_0, \vee, \wedge)$, where:

```
Q = \left\{ \begin{array}{l} monidle, \ regulate\_enironment, \ lockdown \ \right\} \\ \Sigma_1 = \left\{ \begin{array}{l} no\_contagion, \ after\_100ms, \ contagion\_alert, \ purge\_succ \ \right\} \\ \Sigma_2 = \left\{ \begin{array}{l} broadcast \ FACILITY\_CRIT\_MESG \ \right\} \\ q_0 = monidle \\ \vee = FACILITY\_CRIT\_MESG : string \ ; \ inlockdown : Boolean \\ \wedge : transition \ specification : \\ 1. \longrightarrow monidle \\ 2. \ monidle \xrightarrow{no\_contagion} regulate\_environment \\ 3. \ regulate\_environment \xrightarrow{after\_100ms} monidle \\ 4. \ regulate\_environment \xrightarrow{contagion\_alert/broadcast FACILITY\_CRIT\_MESG, \ inlockdown:=true} psichk \\ 5. \ lockdown \xrightarrow{purge\_succ/inlockdown:=false} monidle \\ \text{super} : \\ 6. \ monitoring \xrightarrow{monitor\_crash \left\{ \text{linlockdown} \right\} broadcast moni\_err\_msg} + error\_diagnosis \\ 7. \ monitoring \xrightarrow{kill \left\{ \text{linlockdown} \right\} + exit \\ \end{array}
```

Part IV

As **lockdown** is a composed state, we define it as the tuple $S = (Q, \Sigma_1, \Sigma_2, q_0, \vee, \wedge)$, where

```
Q = \left\{ \begin{array}{l} prep\_vpurge, \ alt\_temp, \ alt\_psi, \ risk\_assess, \ safe\_status, \ exit \ \right\} \\ \Sigma_1 = \left\{ \begin{array}{l} initiate\_purge, \ tcyc\_comp, \ psicyc\_comp \ \right\} \\ \Sigma_2 = \left\{ \begin{array}{l} lock\_doors, \ unlock\_doors \ \right\} \\ q_0 = prep\_vpurge \\ \vee = risk : \left\{ risk \in Q \ | \ 0 \le risk \le 1 \right\} \\ \wedge : transition \ specification : \end{array} \right.
```

. .

$$1. \longrightarrow prep_vpurge$$

2.
$$prep_vpurge \xrightarrow{initiate_purge/lock_doors} alt_temp$$

4.
$$alt_temp \xrightarrow{tcyc_comp} risk_assess$$

5.
$$alt_psi \xrightarrow{psicyc_comp} risk_assess$$

6.
$$risk_assess \xrightarrow{[risk>0.01]} prep_vpurge$$

7.
$$risk_assess \xrightarrow{[risk<0.01]/unlock_doors} safe_status$$

8.
$$safe_status \longrightarrow exit$$