1 Why Swap Moves Satisfy Detailed Balance

1.1 The Joint Distribution

Consider chains i and j with states x_i and x_j respectively. The joint distribution is:

$$\pi_{\text{joint}}(x_1, \dots, x_N) = \prod_{k=1}^N \pi(x_k)^{\gamma_k}$$
(1)

Before swap, the joint probability is:

$$\pi_{\text{before}} = \pi(x_i)^{\gamma_i} \times \pi(x_j)^{\gamma_j} \times \prod_{k \neq i, j} \pi(x_k)^{\gamma_k}$$
 (2)

After swap (exchanging x_i and x_j), the joint probability is:

$$\pi_{\text{after}} = \pi(x_j)^{\gamma_i} \times \pi(x_i)^{\gamma_j} \times \prod_{k \neq i, j} \pi(x_k)^{\gamma_k}$$
(3)

1.2 Detailed Balance Equation

For the swap move to preserve the joint distribution, we require:

$$\pi_{\text{before}} \times P(\text{swap } i \leftrightarrow j) = \pi_{\text{after}} \times P(\text{reverse swap } j \leftrightarrow i)$$
 (4)

Explicitly:

$$\pi(x_i)^{\gamma_i}\pi(x_j)^{\gamma_j} \times \alpha_{\text{swap}}(i \leftrightarrow j) = \pi(x_j)^{\gamma_i}\pi(x_i)^{\gamma_j} \times \alpha_{\text{swap}}(j \leftrightarrow i)$$
 (5)

1.3 The Metropolis-Hastings Acceptance Ratio

We choose the acceptance probability using the Metropolis-Hastings criterion:

$$\alpha_{\text{swap}} = \min\left(1, \frac{\pi_{\text{after}}}{\pi_{\text{before}}}\right) = \min\left(1, \frac{\pi(x_j)^{\gamma_i} \pi(x_i)^{\gamma_j}}{\pi(x_i)^{\gamma_i} \pi(x_j)^{\gamma_j}}\right)$$
(6)

This simplifies to:

$$\alpha_{\text{swap}} = \min\left(1, \left[\frac{\pi(x_j)}{\pi(x_i)}\right]^{\gamma_i - \gamma_j}\right)$$
 (7)

1.4 Verification of Detailed Balance

Case 1: If $\pi_{\text{after}} > \pi_{\text{before}}$, then $\alpha_{\text{swap}} = 1$ and $\alpha_{\text{reverse}} = \frac{\pi_{\text{before}}}{\pi_{\text{after}}}$ Left side:

$$\pi_{\text{before}} \times 1 = \pi_{\text{before}}$$
 (8)

Right side:

$$\pi_{\text{after}} \times \frac{\pi_{\text{before}}}{\pi_{\text{after}}} = \pi_{\text{before}} \quad \checkmark$$
(9)

Case 2: If $\pi_{\text{after}} < \pi_{\text{before}}$, then $\alpha_{\text{swap}} = \frac{\pi_{\text{after}}}{\pi_{\text{before}}}$ and $\alpha_{\text{reverse}} = 1$ Left side:

$$\pi_{\text{before}} \times \frac{\pi_{\text{after}}}{\pi_{\text{before}}} = \pi_{\text{after}}$$
(10)

Right side:

$$\pi_{\text{after}} \times 1 = \pi_{\text{after}} \quad \checkmark$$
 (11)

1.5 Conclusion

In both cases, detailed balance holds. This ensures that the swap moves preserve the joint equilibrium distribution π_{joint} . Since the marginal distribution of chain N (where $\gamma_N=1$) is:

$$\pi_{\text{marginal}}(x_N) \propto \pi(x_N)^{\gamma_N} = \pi(x_N)$$
 (12)

chain N correctly samples from our target distribution $\pi(x)$.