Indian Institute of Technology, Delhi

EPL208 Electrodynamics and Plasmas Department of Physics

Second Semester 2013-2014

Minor-I

Duration: 1 hour

Date: 08 Feb. 2014 Marks: 20

(a) Two metal objects are embedded in a weakly conducting material of conductivity (σ) as shown in the Figure. Show that the resistance R between them is related to the capacitance C of the

$$R = \frac{\varepsilon_0}{\sigma C}$$
.

(b) In a medium characterized by $\sigma=0$, $\mu=\mu_0$, ϵ_0 the electric field is

$$E = 20 \sin (10^8 t - \beta z) a_y \text{ V/m}$$

Calculate β and H.

Calculate the (time averaged) energy density of an electromagnetic plane wave in a conducting medium. Show that the magnetic contribution always dominates. Also calculate

(3+4)

the intensity. Given the fields

Extraction and the second
$$E(z,t) = E_0 e^{-k_T z} \cos(k_R z - \omega t + \delta_E)\hat{x}$$

 $B(z,t) = B_0 e^{-k_T z} \cos(k_R z - \omega t + \delta_E + \phi)\hat{y}$

where, $k = k_R + i k_I$ is the propagation constant, $k_{RII} = \omega \sqrt{\frac{\varepsilon \mu}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\varepsilon \omega}\right)^2} \pm 1 \right]$

- (i) The typical distance between two electrons in a plasma is of the order of $(n_e)^{-1/3}$. Show that the potential energy associated with bringing two electrons this close together is much less than there typical kinetic energy, so long as $n_e \lambda_D^{-3} >> 1$.
- (ii) Two semi-infinite conducting plates form a wedge region between $\phi = \phi_1$ and $\phi = \phi_2$ where $\phi_2 > \phi_1$. In the region $\phi_1 < \phi < \phi_2$, $\rho = 0$, $\epsilon = \epsilon_0$, $V = V_0$ at $\phi = \phi_1$ and V = 0 at $\phi = \phi_2$ ϕ_2 . Find V, E in the region and charge density on the two conducting plates.

 $\nabla^{2}_{t} = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial t}{\partial s} \right) + \frac{1}{s^{2}} \frac{\partial^{2}_{t}}{\partial \phi^{2}} + \frac{\partial^{2}_{t}}{\partial z^{2}}$