(1.2) Frist-order PDEJ - linear advection equation
del: lèrear advection equation in 1):
$\frac{\partial u(x,t)}{\partial t} + \alpha \frac{\partial u(x,t)}{\partial x} = 0 \text{ (i) } (\alpha \in \mathbb{R})$
Thm: $u(x,t) = f(x-\alpha t)$ is a solution of (1)
for very gierction f(s) Out is sufficiently
differentiable
proof: let s = x - at
let $u(x,t) = f(x-at) = f(s(x,t))$
then Du = df(s) Ds = f . 1
$\frac{\partial u}{\partial y} = \frac{df(s)}{ds} \frac{\partial s}{\partial y} = f' \cdot (-\alpha)$
Jo du + or du = - or f' + or f' = 0 "full derivoetrive" (not
(note: $df(s) = f'(s) = f'$, sine Shas only one originant)

