AULA 13 INTERPOLAÇÃO (PARTE 3)

Prof. Gustavo Resque gustavoresqueufpa@gmail.com

- O problema da interpolação inversa consiste em obter x tal que f(x) = y.
- Pode-se resolver esse problema:
 - 1. Encontrando a $p_n(x)$ que interpola f(x) para $x_1, x_2, x_3, ..., x_n$, em seguida, resolver o polinômio para f(x) = y, sendo y um valor dado.

- 2. Ou, quando f(x) é inversível dentro do intervalo $[x_1, x_n]$
 - Para que f(x) seja inversível é necessário que ela seja monotonamente crescente ou decrescente

- Exemplo 10
 - Caso 1

	1					
X	0.5	0.6	0.7	0.8	0.9	1.0
f(x)	1.65	1.82	2.01	2.23	2.46	2.7

Exemplo 10

Caso 1

Dada a tabela abaixo, encontrar \overline{x} tal que $f(\overline{x}) = 2$:

x	0.5	0.6	0.7	0.8	0.9	1.0	
f(x)	1.65	1.82	2.01	2.23	2.46	2.72	

Como $2 \in (1.82, 2.01)$, usaremos interpolação linear sobre $x_0 = 0.6$ e $x_1 = 0.7$.

Assim,

$$p_1(x) = f(x_0) \frac{x - x_0}{x_0 - x_1} + f(x_1) \frac{x - x_0}{x_1 - x_0}$$

$$= 1.82 \frac{x - 0.7}{-0.1} + 2.01 \frac{x - 0.6}{0.1}$$

$$= -18.2x + 12.74 + 20.1x - 12.06$$

$$= 1.9x + 0.68.$$

Então
$$p_1(\bar{x}) = 2 \Leftrightarrow 1.9\bar{x} + 0.68 = 2 \Leftrightarrow \bar{x} = \frac{2 - 0.68}{1.9} = 0.6947368.$$

- Exemplo 11
 - Caso 2

Dada a tabela

x	0	0.1	0.2	0.3	0.4	0.5
y = e ^x	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter x, tal que ex = 1.3165, usando um processo de interpolação quadrática.

Usaremos a forma de Newton para obter p₂(y) que interpola f⁻¹(y).

Assim, vamos construir a tabela de diferenças divididas

■ Exemplo 11

Caso 2

x	0	0.1	0.2	0.3	0.4	0.5	
y = e ^x	1	1.1052	1.2214	1.3499	1.4918	1.6487	

у	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4065	
		0.8606		0.1994
1.2214	0.2		-0.3367	
		0.7782		0.1679
1.3499	0.3		-0.2718	
		0.7047		0.1081
1.4918)	0.4		-0.2256	
		0.6373		
1.6487	0.5			

Exemp	lo 11

Caso 2

x	0	0.1	0.2	0.3	0.4	0.5	
y = e ^x	1	1.1052	1.2214	1.3499	1.4918	1.6487	

у	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4065	
		0.8606		0.1994
1.2214	0.2		-0.3367	
		0.7782		0.1679
1.3499	0.3		-0.2718)	
		0.7047		0.1081
(1.4918)	0.4		-0.2256	
		0.6373	n (v) -	$g(y_0) + (y - y_0)$
1.6487	0.5		P2(3) -	500 + 0 -

$$\begin{aligned} &p_2(y) = g(y_0) + (y - y_0)g[y_0, y_1] + (y - y_0)(y - y_1) \ g[y_0, y_1, y_2] \\ &p_2(y) = 0.2 + (y - 1.2214) \ 0.7782 + (y - 1.2214)(y - 1.3499) \ (-0.2718) \\ &p_2(1.3165) = 0.27487. \end{aligned}$$

Assim, $e^{0.27487} \approx 1.3165$ (na calculadora, $e^{0.27487} = 1.31659$).

ESCOLHA DO GRAU DE P(X)

- A tabela das diferenças dividas da forma de Newton no ajuda a escolher um polinômio de grau menor para a interpolação
 - Ao construir a tabela examina-se os vizinhos de mesma ordem.
 - Se nessa vizinhança de mesma ordem k os valores são praticamente constantes, podemos concluir que um polinômio de ordem k é bom.

ESCOLHA DO GRAU DE P(X)

Por exemplo

1.05 1.01 1.02 1.03 1.04 1 \sqrt{x} 1 005 1 01 1 01/10 1 0198 1.0247

■ Dessa forma, um polinômio de grau 1 já é uma boa aproximação para f(x)

X

	1.005 1.01	1.0149	1.0198 1.0
x	Ordem 0	Ordem 1	Ordem 2
1	1		
		0.5	
1.01	1.005		0
		0.5	
1.02	1.01		-0.5
		0.49	
1.03	1.0149		0
		0.49	
1.04	1.0198		0
		0.49	
1.05	1.0247		
		† constantes	

FENÔMENO DE RUNGE

- Uma consequência do que vimos no exemplo anterior é que podemos utilizar um polinômio de grau menor em certo intervalo [a,b] mesm que f(x) não tenha grau ou complexidade maior.
- Então podemos nos perguntar se ao utilizar mais pontos dentro de um intervalo [a,b] faz com que o $p_n(x)$, $n \to \infty$ convirja para f(x)
- O fenômeno de Runge nos mostra
 - para $x_{i+1} x_i = h$, i = 0,1,...,n, ou seja, são igualmente espaçados
 - Que há divergências quando se aumenta n

FENÔMENO DE RUNGE

Exemplo 12

Considere $f(x) = \frac{1}{1+25x^2}$ tabelada no intervalo [-1, 1] nos pontos $x_i = -1 + \frac{2i}{n}$, $i = 0, 1, \ldots, n$.

O gráfico a seguir apresenta a curva f(x), o polinômio de grau n = 10 que interpola f(x) em x_i , i = 0, ..., 10 e o polinômio de Chebyshev que a interpola em

$$\overline{x}_i = \cos\left(\frac{2i+1}{n+1} \frac{\pi}{2}\right).$$

FENÔMENO DE RUNGE

Exemplo 12

Considere
$$f(x) = \frac{1}{1+25x^2}$$
 tabelada no intervalo $[-1, 1]$ nos pontos $x_i = -1 + \frac{2i}{n}$, $i = 0, 1, \ldots, n$.

 $\overline{x_i}$ acima

Figura 5.3

FUNÇÕES SPLINE EM INTERPOLAÇÃO

- Uma alternativa à interpolação com polinômio de grau alto para se evitar o fenômeno de Runge é o uso do conceito de funções spline
- Ou seja, interpolar f(x) em grupos de poucos pontos com polinômios de grau menor

FUNÇÕES SPLINE EM INTERPOLAÇÃO

■ Pode-se optar também por a cada 3 pontos interpolar um polinômio de grau 2 e assim sucessivamente.

EXERCÍCIO

■ Implementar dois algoritmos de interpolação, sendo um deles pela forma de Newton

- Escolha 2 funções polinomiais de graus entre 10 e 20 e obtenha o polinômio interpolador dessas 3 funções para 5, 8 e 10 pontos na tabela
- Para 10 pontos igualmente espaçados use a função Spline quadrática e compare com a interpolação de 10 pontos acima.
- Escolha 20 pontos aleatórios dentro do intervalo tabelado, mas diferente dos valores na tabela, e compare o valor da interpolação com o valor da função original.
- Plote os resultados graficamente