- 1. Le réel $\ln(e^2)$ 2e+ $\ln 1$ est égal à :
 - a) 2-2e
 - b) $e^2 2e$
 - c) 0
- 2. L'équation $ln(x^2)=0$ a pour ensemble des solutions :
 - a) S = [0]
 - b) S = [1]
 - c) S = [-1; 1]
- 3. $\ln(4\sqrt{2})$ est égal à :
 - a) $\ln(\sqrt{2})^4$
 - b) $\frac{5}{2}\ln(2)$
 - c) $(\ln 4) \times (\ln \sqrt{2})$
- 4. L'équation $\ln(x) = \frac{1}{2}$ a pour ensemble des solutions :
 - a) $S = \left\{ \frac{1}{2} \mathbf{e} \right\}$
 - b) $S = \{\sqrt{e}\}$
 - c) S = [2]
- 5. $\ln(2+\sqrt{3})+\ln(2-\sqrt{3})$ est égal a :
 - a) 0
 - b) 4
 - c) $\frac{1}{2+\sqrt{3}} + \frac{1}{2-\sqrt{3}}$
- 6. L'inéquation ln(1-x)>1 a pour ensemble des solutions :
 - a) $S =]-\infty;1[$
 - b) $S =]-\infty; 1-e[$
 - c) $S =]e; +\infty[$

- 7. L'ensemble des solutions de l'inéquation $x \ln(0,3) 1 \le 0$ est :
 - $S=]-\infty;\frac{1}{\ln(0.3)}[$
 - b) $S = [\frac{1}{\ln(0,3)}; +\infty[$
 - c) $S = [0; \frac{1}{\ln(0.3)}]$
- 8. L'ensemble des solutions de l'inéquation $1-x\ln 2 \ge 0$ est :
 - a) $S =]-\infty; \frac{1}{\ln 2}[$
 - b) $S = [\frac{1}{\ln 2}; +\infty[$
 - c) $S = [0; \frac{1}{\ln 2}[$
- 9. La fonction $f(x) = \ln(-x)$ est définie sur :
 - a) $]-\infty;0[$
 - b) $]-\infty;-1[$
 - c) n'est définie pour aucun réel
- 10. L'équation $\ln(x^2-x)=0$ a pour ensemble des solutions :
 - a) $S = \{0, 1\}$
 - b) S = [1; e]
 - c) $S = \left\{ \frac{1 \sqrt{5}}{2}; \frac{1 + \sqrt{5}}{2} \right\}$
- 11. Pour tout nombre réel a et pour tout nombre réel b , on peut affirmer que $\frac{e^a}{e^b}$ est égal à :

 - a) $e^{\frac{a}{b}}$ b) e^{a-b} c) $e^{a}-e^{b}$

12. L'équation $\ln(x+1) + \ln(x+3) = \ln(3x+5)$ a pour ensemble des solutions :

- a) S = [-2; 1]
- b) S = [-2]
- c) S = [1]

13. Pour tout réel x, $(e^x)^2 \times e^{3x-1}$ est égal à :

- a) e^{x^2+3x-1}
- b) $e^{2x(3x-1)}$
- c) $\frac{e^{5x}}{e}$

14. Le nombre -2 est solution de l'équation :

- a) $\ln x = -\ln 2$
- b) $e^{\ln x} = -2$
- c) $\ln e^x = -2$

15. L'ensemble des solutions de l'inéquation $\ln(x+3) < \ln 6$ est :

- a) $S=]-\infty;3[$
- b) S =]-3;3[
- c) S =]0;3[

16. La fonction $f(x) = \frac{x+1}{e^x - 1}$ est définie sur :

- a) IR
- b) $]-\infty;0[\cup]0;+\infty[$
- c) $S=]-1;+\infty[$

17. L'ensemble des solutions de l'inéquation $e^{3x}-1 \ge 0$ est :

- a) $S = [0; +\infty[$
- b) $S = [1; +\infty[$
- c) $S = \left[\frac{1}{3}; +\infty\right[$

18. L'expression algébrique de la fonction affine telle que f(-2)=1 et f(1)=-2 est :

- a) f(x) = x 1
- b) f(x) = -x + 1
- c) f(x) = -x 1

19. L'équation $2e^{2x}-5e^x+3=0$ a pour ensemble des solutions :

- a) $S = \left\{1; \frac{3}{2}\right\}$
- b) $S = [0; \ln 3 \ln 2]$
- c) $S = \left\{ \ln \left(\frac{3}{2} \right) \right\}$

20. Une maison d'édition veut publier un manuel de mathématiques. Les frais de création s'élèvent à 30000 € et l'impression de chaque livre coûte ensuite 3,5 €. Chaque livre est vendu 6,5 €.

Combien de livres la maison d'édition doit-elle vendre pour réaliser un bénéfice ?

- a) Au moins 10000
- b) Plus que 4615
- c) Plus que 10000

2.
$$\ln (x^2) = 0$$
 $x^2 > 0 = > x = 0$ V. I. $x^2 = 1 = > S = \{-1, 1\} = > c\}$

3.
$$\ln(4\sqrt{2}) = \ln(2^{2} \times 2^{1/2}) = \ln(2^{5/2}) = \frac{5}{2} \ln 2 = 5$$

4.
$$ln(x) = \frac{1}{2}$$
 $x > 0$
 $x = e^{1/2} = x > 5 = (\sqrt{e})^2 = x > 5$

5.
$$\ln(2+\sqrt{3}) + \ln(2-\sqrt{3}) = \ln((2+\sqrt{3})(2-\sqrt{3})) =$$

= $\ln(4-2\sqrt{3}+2\sqrt{3}-3) = \ln 4 = 0 => a)$

6.
$$\ln(1-x) > 1$$
 $(-x > 0 = > x \le 1$
 $1-x > e = > -x > e - 1 = > x \le 1 - e$
 $S = 1-\omega; 1-e[=>b)$

$$7. \times \ln(0,3) - 1 \le 0 \implies \times \Rightarrow \frac{1}{\ln(0,3)}$$

$$\left[\triangle \ln(0,3) \le 0 \right] \implies S = \left[\frac{1}{\ln(0,3)}; +\infty \right] => 5$$

8.
$$1-x\ln270 \Rightarrow x \leq \frac{1}{\ln2}$$

$$\Rightarrow S =]-\infty; \frac{1}{\ln2}] \Rightarrow a)$$
[feate de freque dans l'unance, desdé

40.
$$l_{1}(x^{2}-x)=0$$
 $x^{2}-x>0 = 7$ $D=]-x;0[U]1;rx[$
 $x^{2}-x=1=)$ $x^{2}-x-1=0$

$$\Delta = 1+4=5=>$$
 $x_{1}=\frac{1-\sqrt{5}}{2}$ $x_{2}=\frac{1+\sqrt{5}}{2}$

$$S=\left\{\frac{1-\sqrt{5}}{2};\frac{1+\sqrt{5}}{2}\right\}=>c$$

41.
$$\frac{e^{\alpha}}{e^{b}} = e^{a-b} \Rightarrow b$$

12.
$$\ln(x+1) + \ln(x+3) = \ln(3x+5)$$

$$x > -1$$
 $x > -3$ $x > -\frac{5}{3} \Rightarrow D =]-1; +\infty[$

$$\chi^2 + 3x + x + 3 = 3x + 5$$

$$\chi^2 + \chi - 2 = 0$$

$$\Delta = 1 + 8 = 9$$

$$x_{1} = \frac{-1-3}{2} = -2 \qquad x_{2} = \frac{-1+3}{2} = 1$$

$$x_{1} (-1) = x_{1} \neq 0 = x_{2} = \frac{1}{2} = x_{2} = x_{3} = x_{4} = x_{4}$$

$$\Delta = 25 - 24 = 1 \Rightarrow X_1 = \frac{5-1}{4} = 1$$
 $X_2 = \frac{5+1}{4} = \frac{3}{2}$

$$= \gamma \quad \ell^{x} = 1 \quad \Rightarrow \quad x = 0$$

et
$$e^x = \frac{3}{2} = x = \ln \frac{3}{2} = \ln 3 - \ln 2$$

20. $\chi = nembre de livres que la maison doit vendre.$