Distribution	pmf/pdf	Mean	Variance	Moment Generating Function: $\psi(t) = E[e^{tX}]$	Etc.
$X \sim Bernoulli(p)$	$f_X(x) = p^X (1-p)^{1-x} * \mathbb{I}_{\{x=0,1\}}$	E[X] = p	Var(X) = p(1-p)	$\psi(t) = 1 - p + pe^t$	X = binary event w/P(success) = p $E[X] = E[X^2] = \cdots = E[X^k] = p$
$X \sim Binomial(n, p)$	$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x} * \mathbb{I}_{\{x=0,1,\dots,n\}}$	E[X] = np	Var(X) = np(1-p)	$\psi(t) = (1 - p + pe^t)^n$	X = # of successes in n trials.
$X \sim Poisson(\lambda)$ $\lambda > 0$	$f_X(x) = e^{-\lambda} \frac{\lambda^x}{x!} * \mathbb{I}_{\{x=0,1,\dots\}}$	$E[X] = \lambda$	$Var(X) = \lambda$	$\psi(t) = \exp\{\lambda(e^t - 1)\}$	$X=\#$ of events occurring in a fixed time-period with a known rate λ .
$X \sim Uniform(a, b)$	$f_X(x) = \frac{1}{b-a} * \mathbb{I}_{\{a \le x \le b\}}$	$E[X] = \frac{a+b}{2}$	$Var(X) = \frac{(b-a)^2}{12}$	$\psi(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}$	$Unif(0,1) \equiv Beta(1,1)$
$X \sim Exponential(\lambda)$ $\lambda > 0$	$f_X(x) = \lambda e^{-\lambda x} * \mathbb{I}_{\{x \ge 0\}}$	$E[X] = \frac{1}{\lambda}$	$Var(X) = \frac{1}{\lambda^2}$	$\psi(t) = \frac{\lambda}{\lambda - t} * \mathbb{I}_{\{t < \lambda\}}$	Memoryless Distribution: P(X > s + t X > s) = P(X > t)
$X \sim Gamma(\alpha, \beta)$ $\alpha, \beta > 0$	$f_X(x) = \frac{\beta^{\alpha} e^{-\beta x} x^{\alpha - 1}}{\Gamma(\alpha)} * \mathbb{I}_{\{x \ge 0\}}$	$E[X] = \frac{\alpha}{\beta}$	$Var(X) = \frac{\alpha}{\beta^2}$	$\psi(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha} * \mathbb{I}_{\{t < \beta\}}$	$X \sim Gamma(1, \beta) \equiv Exponential(\beta)$ $\Gamma(\alpha) = (\alpha - 1)! \; ; \; \Gamma(\frac{1}{2}) = \sqrt{\pi}$
$X \sim Beta(\alpha, \beta)$ $\alpha, \beta > 0$	$f_X(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} * \mathbb{I}_{\{0 \le x \le 1\}}$	$E[X] = \frac{\alpha}{\alpha + \beta}$	$Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	-	$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$
$X \sim Normal(\mu, \sigma^2)$ $\sigma^2 < 0$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\} * \mathbb{I}_{\{x \in \mathbb{R}\}}$	$E[X] = \mu$	$Var(X) = \sigma^2$	$\psi(t) = \exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$	-
$X \sim \chi_m^2$ CHI-SQUARE DIST. m degrees of freedom.	$f_X(x) = \frac{1}{2^{m/2} \Gamma(m/2)} x^{(m/2) - 1} e^{-(x/2)} * \mathbb{I}_{\{x > 0\}}$	E[X] = m	Var(X) = 2m	$\psi(t) = (1 - 2t)^{-m/2} * \mathbb{I}_{\{t < 1/2\}}$	$\begin{aligned} Gamma\left(\alpha &= \frac{m}{2}, \beta = \frac{1}{2}\right) \equiv \chi_m^2 \\ &Exponential\left(\beta &= \frac{1}{2}\right) \equiv \chi_2^2 \\ &X_i \text{-}iid\ \chi_{m_i}^2 \forall i = 1,, k \Rightarrow X_i + \cdots + X_i \sim X_{(\widetilde{\Sigma}_{m_i}^+ m_j)} \end{aligned}$
$X{\sim}t_m$ t-DISTRIBUTION	$f_X(x) = \frac{\Gamma(\frac{m+1}{2})}{(m\pi)^{1/2}\Gamma(m/2)} \left(1 + \frac{x^2}{m}\right)^{-(m+1)/2} * \mathbb{I}_{\{x \in \mathbb{R}\}}$	-	$Var(X) = \frac{m}{m-2} \ , \qquad m > 2$	-	$Y \sim \chi_m^2$ and $Z \sim N(0,1)$: $X = \frac{Z}{\sqrt{Y/m}} \sim t_m$

JACOBIAN TRANSFORMATION: Given X_1, X_2 for which the joint pdf is $f(x_1, x_2)$. Define Y_1, Y_2 as $Y_1 = r_1(X_1, X_2)$ and $Y_2 = r_2(X_1, X_2)$ where we assume the functions r_1 and r_2 are one-to-one. Let the inverse of this transformation be given by $x_1 = s_1(y_1, y_2)$ and $x_2 = s_2(y_1, y_2)$. Then the joint pdf g of Y_1, Y_2 is $g(y_1, y_2) = f(s_1, s_2)|\mathcal{J}|$ where \mathcal{J} is the determinant: $\mathcal{J} = \det \begin{bmatrix} \frac{\partial s_1}{\partial y_1} & \frac{\partial s_1}{\partial y_2} \\ \frac{\partial s_2}{\partial y_1} & \frac{\partial s_2}{\partial y_2} \\ \frac{\partial s_2}{\partial y_1} & \frac{\partial s_2}{\partial y_2} \end{bmatrix}$ and $|\mathcal{J}|$ denotes the absolute value of the determinant \mathcal{J} . Thus, the joint pdf $g(y_1, y_2)$ is obtained by starting with the joint pdf $f(x_1, x_2)$ replacing each value x_l by its expression $s_l(y_1, y_2)$ in terms of y_1, y_2 and then multiplying the result by $|\mathcal{J}|$. \mathcal{J} is called the Iacobian of the transformation

```
Theorem 4.7.4: Var(Y) = E[Var(Y|X)] + Var(E[Y|X])
```

 $\textbf{PROOF} : \text{Let } E[Y] = \mu_Y \cdot Var(Y) = E[(Y - \mu_Y)^2] = E\left\{ \left((Y - E[Y|X]) + (E[Y|X] - \mu_Y) \right)^2 \right\} \\ = E[(Y - E[Y|X])^2] + 2E[(Y - E[Y|X])(E[Y|X] - \mu_Y)] \\ + E[(E[Y|X] - \mu_Y)^2] \cdot We \text{ know that } E[(Y - E[Y|X])^2] \\ = E[(Y - E[Y|X])^2] + 2E[(Y - E[Y|X])(E[Y|X] - \mu_Y)] \\ + E[(Y - E[Y|X])(E[Y|X] - \mu_Y)] + E[(Y - E[Y|X])(E[Y|X] - \mu_Y)] \\ + E[(Y - E[Y|X])(E[Y|X] - \mu_Y)] + E[(Y - E[Y|X])(E[Y|X] - \mu_Y)] \\ + E[(Y - E[Y|X] - \mu_Y)] \\ + E[$ $E\{E[(Y-E[Y|X])^2|X]\} = E[Var(Y|X)] \text{ and } E[(Y-E[Y|X])(E[Y|X]-\mu_Y)] = E[E[(Y-E[Y|X])(E[Y|X]-\mu_Y)] + E[(E[Y|X]-\mu_Y) * E(Y-E[Y|X]|X)] = E[(E[Y|X]-\mu_Y) * E(Y-E[Y|X]+\mu_Y) * E$ $E[(E[Y|X] - \mu_Y) * 0] = 0. \text{ Finally, we know } E[(E[Y|X] - \mu_Y)^2] = Var(E[Y|X]). \text{ Therefore, } Var(Y) = E[Var(Y|X)] + Var(E[Y|X]) \blacksquare$

RESUITS – **BB**; The following results show that for any unbiased estimator of a parameter (θ) , we can find another unbiased estimator (a function of a sufficient statistic only) with a smaller variance. In summary, let T_2 be an unbiased, $E[T_2] = \theta$, let T_1 be a sufficient statistic for θ . Then the random variable $\varphi(T_1) = E[T_2|T_1]$ has $E[\varphi(T_1)] = E[E[T_2|T_1]] = E[T_2] = \theta$ and a smaller variance. **RAO BLACKWELL**: Let $X_1, ..., X_n \sim iid f_X(x; \theta), \theta \in \Omega$. Let $T_1 = t(x_1, ..., x_n)$ be a sufficient statistic for θ and let $T_2 = t_2(x_1, ..., x_n)$ (not a function of T_1 alone) be another unbiased estimator of θ . Then, the random

 $\text{variable } \varphi(T_1) = E[T_2|T_1] \text{ is an unbiased estimator of } \theta \text{ and } Var(T_2) \geq Var(\varphi(T_1)) = Var(E[T_2|T_1]) \ .$

 $PROOF: Theorem 4.7.4 \rightarrow Var(Y) = E[Var(Y|X)] + Var(E[Y|X]) \cdot Let Y = T_2 \text{ and } X = T_1 \rightarrow Var(T_2) = E[Var(T_2|T_1)] + Var(E[T_2|T_1]) \cdot As \ Variance > 0 \ , Var(T_2) > Var(E[T_2|T_1]) = Var(\phi(T_1)) \cdot Var(\Phi(T_2)) = Var(\Phi(T_2)) \cdot Var(\Phi(T_2)) = Var(\Phi($

Therefore, in our search for "best" estimators of heta we can and should restrict our attention to functions of the sufficie

 $\textbf{COMPLETE FAMILY}. \ \ \text{The family of pdf's } \{f_X(x;\theta); \ \theta \in \Omega\} \ \text{is said to be complete if } E[u(x)] = 0 \ \text{for every } \theta \in \Omega \ \text{requires } u(x) \ \text{is zero except on a set of points with probability zero.}$

 $\textbf{CRLB}: (\textbf{UNBIASED ESTIMATOR}) \ Cramer-Rao \ Lower \ Bound: \ Var(\widehat{\boldsymbol{\theta}}) \geq \frac{1}{n \cdot I(\boldsymbol{\theta})}. \quad \text{where } I(\boldsymbol{\theta}) = E\left[\left(\frac{\partial}{\partial \boldsymbol{\theta}} \ln f_X(\boldsymbol{x})\right)^2\right]. \ (\textbf{BIASED ESTIMATOR}) \ Var(\widehat{\boldsymbol{\theta}}) \geq \frac{\left(\frac{\partial}{\partial \boldsymbol{\theta}} \mathbb{E}[\widehat{\boldsymbol{\theta}}]\right)^2}{n \cdot I(\boldsymbol{\theta})}.$

If $\widehat{\theta}$ is an unbiased estimator of θ and $Var(\widehat{\theta})$ attains the CRLB, then $\widehat{\theta}$ is a **MVUE** of θ .

MINIMUM VARIANCE UNBIASED ESTIMATOR (MVUE): Let $f_X(x;\theta);\;\theta\in\Omega$ be an exponential family. Let Y_1 be a sufficient statistic for θ . Then $f_X(x;\theta)$ is complete and Y_1 is said to be a complete sufficient statistic for θ .

 $\frac{Z^{-\frac{1}{p-1}} - P(z)}{CONFIDENCE INTERVALS: meaning = range of values that you expect your estimate to fall between a certain percentage of the time if you run your experiment again.$ $\frac{\bar{S}^{-\frac{1}{p}}}{\sigma^{1}\sqrt{n}} \sim N(0,1) \quad \text{If } \sigma^{2} \text{ is known and we want a } 100(1-\alpha)\% \text{ CI for } \mu: P\left(-z_{\alpha/2} < \frac{\bar{S}^{-E|\bar{X}|}}{\sqrt{Var(\bar{X})}} < z_{\alpha/2}\right) = P\left(-z_{\alpha/2} < \frac{\bar{S}^{-\mu}}{\sigma^{1}\sqrt{n}} < z_{\alpha/2}\right) = P\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1-\alpha \ .$ $\frac{\bar{Z}^{-\frac{1}{p}}}{s^{1}\sqrt{n}} - T_{n-1} \text{ as } n \text{ increases } s^{2} \xrightarrow{p} \sigma^{2} \text{ thus } T_{n-1} \rightarrow N(0,1) \ . \text{ If } \sigma^{2} \text{ is unknown use } s^{2} : 100(1-\alpha)\% \text{ CI for } \mu: P\left(-t_{\alpha/2,n-1} < \frac{\bar{X}^{-E|\bar{X}|}}{\sqrt{Var(\bar{X})}} < t_{\alpha/2,n-1}\right) = P\left(\bar{X} - t_{\alpha/2,n-1} \cdot \frac{s}{\sqrt{n}} < \mu < \bar{X} + t_{\alpha/2,n-1} \cdot \frac{s}{\sqrt{n}}\right) = 1-\alpha \ .$ $X_{1}, \dots, X_{n} \sim \text{tid } N(\mu, \sigma^{2}) \text{ where } \mu, \sigma^{2} \text{ are unknown. Construct CI for } \sigma^{2} \cdot \sum_{l=1}^{n} \frac{(X_{l} - \bar{X}_{n})^{2}}{\sigma^{2}} < X_{n-1}^{2} \rightarrow P\left(X_{l-\frac{n}{2},n-1}^{2} < X_{l-\frac{n}{2},n-1}^{2} < X_{l-\frac{n}{2},n-1}^{2}$ After observing $\mathbb{X}=\mathbb{X}$, this yields a $(1-\alpha)100\%$ CI for σ^2 : $P\left(\frac{(n-1)s^2}{\chi_{n-1}^2}<\sigma^2<\frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{n-1}}^2}\right)=1-\alpha$.

```
If X \sim N(0,1); Y = g(X) = X^2 \rightarrow Y \sim Gamma\left(\frac{1}{2},\frac{1}{2}\right). PROOF: F_Y(y) = P(Y \le y) = P(X^2 \le y) = P\left(-\sqrt{y} \le X \le \sqrt{y}\right) = F_X\left(\sqrt{y}\right) - F_X\left(-\sqrt{y}\right) \Rightarrow f_Y(y) = \frac{d}{dy}F_Y(y) = \frac{d}{dy}F_Y(y) - F_X\left(-\sqrt{y}\right) = f_X\left(\sqrt{y}\right) - F_X\left(-\sqrt{y}\right) = f_X\left(-
```

We are given from above $X^2 = Y \sim Gamma\left(\frac{1}{2},\frac{1}{2}\right) \equiv \chi_1^2$. We know chi-square distribution is a sum of iid standard normal random variables squared: $\chi_n^2 = X_1^2 + \dots + X_n^2 = Y_1 + \dots + Y_n$; $(Y_t \text{ iid})$. Therefore, we can use MGF as follows to derive distribution of χ_n^2 : $\psi_{Y_t}(t) = \left(1 - \frac{t}{1/2}\right)^{-1/2} * \mathbb{I}_{\{t < 1/2\}}$ for $j = 1, \dots, n$. Therefore, let $W = Y_1 + \dots + Y_n \rightarrow \psi_W(t) = E[e^{tW}] = E[e^{t(Y_1 + \dots + Y_n)}] = \prod_{j=1}^n E[e^{tY_j}] = \prod_{j=1}^n \psi_{Y_j}(t) = \left(1 - \frac{t}{1/2}\right)^{-n/2}$. Since MGF uniquely describes a distribution. $\psi_W(t) = \left(1 - \frac{t}{1/2}\right)^{-n/2}$ is the MGF given by $Gamma\left(\frac{n}{2},\frac{1}{2}\right)$. Therefore, $W = \chi_n^2 \sim Gamma\left(\frac{n}{2},\frac{1}{2}\right)$.

apply Jacobian transformation and show that the joint pdf for Y_1 , Y_2 factors. Finding the inverse is done with $\begin{cases} X_1 - X_2 = 2\sqrt{\frac{Y_1}{2}} & \text{which yields} \\ X_1 + X_2 = 2Y_2 & \text{which yields} \end{cases} \begin{cases} X_1 = \sqrt{\frac{Y_2}{2}} + Y_2 & \text{Therefore, our inverse functions are given by,} \\ X_2 = Y_2 - \sqrt{\frac{Y_1}{2}} & \text{Therefore, our inverse functions are given by,} \end{cases}$ $x_1 = s_1(y_1, y_2) = \sqrt{\frac{y_1}{2}} + y_2 \text{ and } x_2 = s_2(y_1, y_2) = y_2 - \sqrt{\frac{y_1}{2}} \text{. Since } X_1, X_2 \sim iid \ N(0,1) \text{ their joint pdf is the product of 2 standard normal pdf given by } f_{X_1, X_2}(x_1, x_2) = \prod_{i=1}^2 \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}x_i^2\right\} = \frac{1}{2\pi} \exp\left\{-\frac{1}{2}(x_1^2 + x_2^2)\right\}.$ Therefore, $f(s_1, s_2) = \frac{1}{2\pi} \exp\left\{-\frac{1}{2}(s_1^2 + s_2^2)\right\}$. Note that $s_1^2 + s_2^2 = \left(\sqrt{\frac{y_1}{2}} + y_2\right)^2 + \left(y_2 - \sqrt{\frac{y_1}{2}}\right)^2 = 2y_2^2 + y_1$. Hence this simplifies to $f(s_1, s_2) = \frac{1}{2\pi} \exp\left\{-y_2^2 - \frac{1}{2}y_1\right\}$. Now to compute the Jacobian. : $\mathcal{J} = \frac{1}{2\pi} \exp\left\{-\frac{1}{2}(s_1^2 + s_2^2)\right\}$.

Therefore,
$$f(s_1, s_2) = \frac{1}{2\pi} \exp\left\{-\frac{1}{2}(s_1^2 + s_2^2)\right\}$$
. Note that $s_1^2 + s_2^2 = \left(\sqrt{\frac{y_1}{2}} + y_2\right) + \left(y_2 - \sqrt{\frac{y_1}{2}}\right) = 2y_2^2 + y_1$. Hence this simplifies to $f(s_1, s_2) = \frac{1}{2\pi} \exp\left\{-y_2^2 - \frac{1}{2}y_1\right\}$. Now to compute the Jacobian. : $\mathcal{J} = \begin{bmatrix} \frac{\partial s_1}{\partial y_1} & \frac{\partial s_1}{\partial y_2} \\ \frac{\partial y_1}{\partial y_2} & \frac{\partial s_1}{\partial y_2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(\frac{y_1}{2})^{-\frac{1}{2}} & 1 \\ \frac{1}{2}(\frac{y_1}{2})^{-\frac{1}{2}} & 1 \end{bmatrix}$

 $\det\begin{bmatrix} \frac{\partial s_1}{\partial y_1} & \frac{\partial s_1}{\partial y_2} \\ \frac{\partial s_2}{\partial y_1} & \frac{\partial s_2}{\partial y_2} \end{bmatrix} = \det\begin{bmatrix} \frac{1}{2} \left(\frac{y_1}{2} \right)^{-\frac{1}{2}} & 1 \\ -\frac{1}{2} \left(\frac{y_2}{2} \right)^{-\frac{1}{2}} & 1 \end{bmatrix} = \frac{1}{2} \left(\frac{y_2}{2} \right)^{-\frac{1}{2}} - \frac{1}{2} \left(\frac{y_2}{2} \right)^{-\frac{1}{2}} = \left(\frac{y_$

 $\text{independence between } Y_1 = \overline{X} \text{ and } Y_2 = S^2 \cdot \left. \left. g(y_1, y_2) = \left[\frac{1}{\sqrt{2\pi y_1}} \exp\left\{-\frac{1}{2} y_1\right\} \right] * \left[\frac{1}{\sqrt{\pi}} \exp\left\{-\frac{y_2^2}{2}\right\} \right]. \text{ NOTE: } f_{Y_1}(y_1) = \frac{1}{\sqrt{2\pi y_1}} \exp\left\{-\frac{1}{2} y_1\right\} \equiv Gamma\left(\frac{1}{2}, \frac{1}{2}\right) \equiv \chi_1^2 \text{ AND } f_{Y_2}(y_2) = \frac{1}{\sqrt{\pi}} \exp\left\{-\frac{1}{2} y_1\right\} \equiv N\left(0, \frac{1}{n} \mid n = 2\right). \text{ Hence, } \overline{X}_n \text{ and } \overline{X}_n = \frac{1}{\sqrt{n}} \left(\frac{1}{2} \left(\frac{1}{2}\right) + \frac{1}{\sqrt{n}} \left(\frac{1}{2} \left(\frac{1}{2}\right) + \frac{1}{\sqrt{n}} \left(\frac{1}{2}\right) + \frac{1}{\sqrt{n}} \left(\frac{1}{2} \left(\frac{1}{2}\right) + \frac{1}{\sqrt{n}} \left(\frac{1}{2}\right) + \frac{1}{\sqrt{n}} \left(\frac{1}{2} \left(\frac{1}{2}\right) + \frac{1}{\sqrt{n}} \left(\frac{1}{2}\right) + \frac{1}{\sqrt{n}}$ S^2 are independent random variables where $\bar{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ and $S^2 \sim \chi_{n-1}^2$.

independent for any functions g, h not depending on V or W, we also proved $g(Y_1) \perp h(Y_2)$

Theorem: If $X_1, ..., X_n \sim iid \ N(\mu, \sigma^2)$, then the statistic $\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$.

Proof: First, note that $\sum_{i=1}^n (X_i - \mu)^2 = \sum_{i=1}^n [(X_i - \bar{X}) + (\bar{X} - \mu)]^2 = \sum_{i=1}^n (X_i - \bar{X})^2 + 2\sum_{i=1}^n (X_i - \bar{X})(\bar{X} - \mu) + \sum_{i=1}^n (\bar{X} - \mu)^2 = \sum_{i=1}^n (X_i - \bar{X})^2 + n(\bar{X} - \mu)^2 \sin 2 \sum_{i=1}^n (X_i - \bar{X})(\bar{X} - \mu) + \sum_{i=1}^n (X_i - \bar{X})(\bar{X} - \mu) + \sum_{i=1}^n (X_i - \mu)^2 \sin 2 \sum_{i=1}^n (X_i - \mu)^2 \sin 2 \sum_{i=1}^n (X_i - \mu)^2 \cos 2 \sum_{i=1}^n (X_i - \mu)^2 \sin 2 \sum_{i=1}^n (X_i - \mu)^2 \sin 2 \sum_{i=1}^n (X_i - \mu)^2 \cos 2 \sum_{i=1}^n (X_i - \mu)^2 \cos 2 \sum_{i=1}^n (X_i - \mu)^2 \cos 2 \sum_{i=1}^n (X_i - \mu)^2 \sin 2 \sum_{i=1}^n (X_i - \mu)^2 \cos 2 \sum_{i=1}^n (X_i$

 $\begin{array}{l} \textbf{Theorem}: T = \frac{\bar{X} - \mu}{s/\sqrt{n}} \text{ has the same pdf as the ratio of: } W \sim N(0,1) \text{ divided by } \sqrt{\frac{V_{n-1}}{n-1}} \text{ where } V_{n-1} \sim \chi_{n-1}^2 \text{ and } W \text{ and } V_{n-1} \text{ are independent. } \textbf{Proof}: T = \frac{\bar{X} - \mu}{s/\sqrt{n}} = \frac{\sqrt{n}(\bar{X} - \mu)/\sigma}{s/\sigma} = \frac{W}{\sqrt{V_{n-1}/(n-1)}} \\ \textbf{t-distribution}: \text{ If } T = \frac{W}{\sqrt{V/r}} \text{ given } W \sim N(0,1) \text{ ; } V \sim \chi_r^2 \text{ and } W \perp V \text{ , then } T \sim t_r \text{ (t-distribution with } r \text{ degrees of freedom).} \end{array}$ $\begin{aligned} & \frac{\sqrt{V/r}}{V_1 = \frac{W}{\sqrt{V/r}}} \rightarrow \begin{cases} W = X_1 = Y_1 \sqrt{\frac{Y_2}{r}} \\ V_2 = V \end{cases} & \frac{X_1 = s_1(y_1, y_2) = y_1 \sqrt{\frac{y_2}{r}}}{V} \rightarrow \begin{cases} x_1 = s_1(y_1, y_2) = y_1 \sqrt{\frac{y_2}{r}} \\ x_2 = s_2(y_1, y_2) = y_2 \end{cases} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 = Y_1 \sqrt{\frac{y_2}{r}} \\ y = X_2 = Y_2 \end{cases} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 = Y_1 \sqrt{\frac{y_2}{r}} \\ y = X_2 = Y_2 \end{cases} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 = Y_1 \sqrt{\frac{y_2}{r}} \\ y = X_2 = Y_2 \end{cases} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 = Y_1 \sqrt{\frac{y_2}{r}} \\ y = X_2 = Y_2 \end{cases} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 = Y_1 \sqrt{\frac{y_2}{r}} \\ y = X_2 = Y_2 \end{cases} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 = Y_1 \sqrt{\frac{y_2}{r}} \\ y = X_2 = Y_2 \end{cases} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 = Y_1 \sqrt{\frac{y_2}{r}} \\ y = X_2 = Y_2 \end{cases} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 = Y_1 \sqrt{\frac{y_2}{r}} \\ y = X_2 = Y_2 \end{cases} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 = Y_1 \sqrt{\frac{y_2}{r}} \\ y = X_2 = Y_2 \end{cases} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 = Y_1 \sqrt{\frac{y_2}{r}} \\ y = X_2 = Y_2 \end{cases} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 = Y_1 \sqrt{\frac{y_2}{r}} \\ y = X_2 = Y_2 \end{cases} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 = Y_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1}{2^{y_2}(r/r)} \rightarrow \begin{cases} w = X_1 \sqrt{\frac{y_2}{r}} \\ y = X_1 \sqrt{\frac{y_2}{r}} \end{pmatrix} & \frac{1$ $\begin{aligned} & f_{(Y_1,Y_2)} = f_1 + f_2 \end{aligned} \end{aligned} \qquad & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + \frac{(y_1^2}{\sqrt{r}} \text{ which simplifies to } g_{Y_1,Y_2}(y_1,y_2) = \frac{1}{\sqrt{r}} y_2^{\left[\frac{r+1}{2}\right]} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + \frac{(y_1^2}{\sqrt{r}} \text{ which simplifies to } g_{Y_1,Y_2}(y_1,y_2) = \frac{1}{\sqrt{r}} y_2^{\left[\frac{r+1}{2}\right]} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + \frac{(y_1^2}{\sqrt{r}} \text{ which simplifies to } g_{Y_1,Y_2}(y_1,y_2) = \frac{1}{\sqrt{r}} y_2^{\left[\frac{r+1}{2}\right]} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + \frac{(y_1^2}{\sqrt{r}} \text{ which simplifies to } g_{Y_1,Y_2}(y_1,y_2) = \frac{1}{\sqrt{r}} y_2^{\left[\frac{r+1}{2}\right]} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + \frac{(y_1^2}{\sqrt{r}} y_2^{\left[\frac{r+1}{2}\right]} + y_2^{\left[\frac{r+1}{2}\right]} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + \frac{(y_1^2}{\sqrt{r}} y_2^{\left[\frac{r+1}{2}\right]} + y_2^{\left[\frac{r+1}{2}\right]} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + \frac{(y_1^2}{r} y_2^{\left[\frac{r+1}{2}\right]} + y_2^{\left[\frac{r+1}{2}\right]} \|_{(y_1 \in \mathbb{R})} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + \frac{(y_1^2}{r} y_2^{\left[\frac{r+1}{2}\right]} + y_2^{\left[\frac{r+1}{2}\right]} \|_{(y_1 \in \mathbb{R})} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + \frac{(y_1^2}{r} y_2^{\left[\frac{r+1}{2}\right]} + y_2^{\left[\frac{r+1}{2}\right]} \|_{(y_1 \in \mathbb{R})} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + y_2^{\left[\frac{r+1}{2}\right]} \|_{(y_1 \in \mathbb{R})} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + y_2^{\left[\frac{r+1}{2}\right]} \|_{(y_1 \in \mathbb{R})} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + y_2^{\left[\frac{r+1}{2}\right]} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} \\ & \text{exp} \left\{ -\frac{1}{2} \frac{(y_1^2}{r} + 1) y_2 \right\} \|_{(y_1 \in \mathbb{R}; y_2 > 0)} + y_2^{\left[\frac{r+1}{2}\right]} \|_{(y_1 \in \mathbb{R}; y_2 >$

 $\begin{array}{l} \textbf{Theorem} \ (\text{sufficiency w/o factorization criteria): Let $X_1,\dots,X_n\sim iid \ f_\chi(x;\theta)$ for some $\theta\in\Omega$, then $T_1=T_1(X_1,\dots,X_n)$ is a sufficient statistic for θ if $f_{X_1,\dots,X_n}(x_1,\dots,x_n;\theta|T_1)$ does not depend on θ. \\ \textbf{Example (1): } \ Given $X_1,\dots,X_n\sim f_\chi(x)=\theta^\chi(1-\theta)^{1-\chi}*\ \mathbb{I}_{\{x=0,1\cap0<\theta<0,1\}}: T_1=\sum_{l=1}^nX_l=Y\sim Bin(n,\theta)$. What is $P(\mathbb{X}=\mathbb{X}|T_1=t_1)$? $P(\mathbb{X}=\mathbb{X}|T_1=t_1)=\frac{P(\mathbb{X}=\mathbb{X}\cap T_1=t_1)}{P(T_1=t_1)}$. Suppose if $t_1\neq\sum_{l=1}^nX_l$, then $P(\mathbb{X}=\mathbb{X}|T_1=t_1)=0$, therefore, if $t_1=\sum_{l=1}^nX_l$, $P(\mathbb{X}=\mathbb{X}|T_1=t_1)=\frac{P(\mathbb{X}=\mathbb{X}\cap T_1=t_1)}{P(\Sigma_{l=1}^nX_l=\Sigma_{l=1}^nX_l)}=\frac{P(X_1=X_1,\dots,X_n=X_n)}{P(\Sigma_{l=1}^nX_l=\Sigma_{l=1}^nX_l)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(\Sigma_{l=1}^nX_l=\Sigma_{l=1}^nX_l)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(\Sigma_{l=1}^nX_l=\Sigma_{l=1}^nX_l)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(\Sigma_{l=1}^nX_l=\Sigma_{l=1}^nX_l)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(\Sigma_{l=1}^nX_l=\Sigma_{l=1}^nX_l)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(\Sigma_{l=1}^nX_l=\Sigma_{l=1}^nX_l)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(\Sigma_{l=1}^nX_l=\Sigma_{l=1}^nX_l)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_1)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_n)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_1)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_1)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_1)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_1)}{P(X_1=X_1)^{\kappa-s}P(X_1=X_1)}=\frac{P(X_1=X_1)^{\kappa-s}P(X_1=X_1)}$ not depend on $\boldsymbol{\theta}$. Therefore, T_1 is a sufficient statistic. $\textbf{Example (2)} : \textbf{Given } X_1, \dots, X_n \sim iid \ \textit{Gamma}(2, \theta) \ \text{and} \ T_1 = \sum_{i=1}^n X_i \sim \textit{Gamma}(2n, \theta) \ (\leftarrow \text{find this using iid} \rightarrow \text{product of MGF)}. \ f_{T_1}(t_1; \theta) = \frac{\theta^{2n}}{\Gamma(2n)} t_1^{2n-1} e^{-\theta t_1} * \mathbb{I}_{\{t_1 \geq 0\}}. \ \text{Finding } f(x_1, \dots, x_n | T_1 = t_1) = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{T_1}(t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{T_1}(t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)}{f_{\underline{X}}(x_1, \dots, x_n | T_2 = t_1)} = \frac{f_{\underline{X}}(x_1, \dots, x_n | T_$ $\frac{\prod_{i=1}^n f_{X_i}(x_i)}{f_{T_i}(t_1)} = \frac{\prod_{i=1}^n \theta^2 x_i e^{-\theta x_i s_i}|_{(x_i \ge 0)}}{\frac{\theta^{2n}}{\Gamma(2n)} \frac{1}{\xi^{2n-1}} e^{-\theta t_i s_i}|_{(x_i \ge 0)}}{\frac{\theta^{2n}}{\Gamma(2n)} (\sum_{i=1}^n x_i)^{s_i}|_{(\min(x_1, \dots, x_n) \ge 0)}}{\frac{\theta^{2n}}{\Gamma(2n)} (\sum_{i=1}^n x_i)^{s_i}|_{(\min(x_1, \dots, x_n) \ge 0)}}{\frac{\theta^{2n}}{\Gamma(2n)} (\sum_{i=1}^n x_i)^{s_i}|_{(\sum_{i=1}^n x_i) \ge 0}}} = \frac{\Gamma(2n)(\prod_{i=1}^n x_i)}{(\sum_{i=1}^n x_i)^{s_i}} * \mathbb{I}_{\{\min(x_1, \dots, x_n) \ge 0\}} . \text{ Therefore, } T_1 = \sum_{i=1}^n X_i \text{ does not depend on } \theta \text{ and is sufficient.}$

Relevant Midterm Predictions Problems: (On sufficiency)

Example (1): Assuming $f_{x}(x|\theta)$ comes from an exponential family, i.e., $f_{x}(x|\theta) = a(\theta)b(x) \exp\{c(\theta)d(x)\}$. What is a sufficient statistic? ANSWER: $f_{n}(x|\theta) = \prod_{l=1}^{n} a(\theta)b(x_{l}) \exp\{c(\theta)d(x_{l})\}$. This simplifies to $f_{n}(x|\theta) = \{\prod_{l=1}^{n} b(x_{l})\} * \{a(\theta)\}^{n} \exp\{c(\theta)\sum_{l=1}^{n} d(x_{l})\} *$. Therefore, $T = \sum_{l=1}^{n} d(x_{l})$ is a sufficient statistic for θ by factorization criterion.

Example (2): Assuming k —parameter exponential family, $f_{x}(x|\theta) = a(\theta)b(x) \exp\{\sum_{l=1}^{k} c_{l}(\theta)d_{l}(x)\}$. Sample X_{1}, \dots, X_{n} —itid $f_{x_{l}}(x_{l}|\theta)$. Show $T_{l} = \sum_{l=1}^{n} d_{l}(X_{l})$ is jointly sufficient $\forall l = 1, \dots, k$. ANSWER: $f_{n}(x|\theta) = a(\theta)b(x) \exp\{\sum_{l=1}^{k} c_{l}(\theta)d_{l}(x)\}$. $\prod_{j=1}^n a(\theta)b(x_j) \exp\{\sum_{i=1}^k c_i(\theta)d_i(x_j)\} \text{, this simplifies to } f_n(\mathbf{x}|\theta) = \left[\prod_{j=1}^n b(x_j)\right] * \left[[a(\theta)]^n \exp\{\sum_{i=1}^k c_i(\theta)\sum_{j=1}^n d_i(x_j)\}\right] \text{. Therefore, } T_i \text{ is jointly sufficient } \forall i=1,\dots,k$ Example (3): Suppose $X_1, ..., X_n \sim \text{iid } N(\mu, \sigma^2)$ where (μ, σ^2) are unknown. Prove $T_1 = \bar{X}_n$ and $T_2 = S^2 = \frac{1}{n} \sum_{l=1}^n (X_l - \bar{X}_n)^2$ are jointly sufficient. ANSWER: Since $S^2 = \frac{1}{n} \sum_{l=1}^n (X_l - \bar{X}_n)^2 = \frac{1}{n} \left[\left(\sum_{l=1}^n X_l^2 \right) - n\bar{X}_n \right]$ we can equivalently prove $T_1 = \bar{X}_n$ and $T_3 = \sum_{l=1}^n X_l^2$ are jointly sufficient at $T_2 = S^2 = \frac{1}{n} \sum_{l=1}^n (X_l - \bar{X}_n)^2$ are jointly sufficient at $T_2 = S^2 = \frac{1}{n} \sum_{l=1}^n (X_l - \bar{X}_n)^2$ are jointly sufficient at $T_2 = S^2 = \frac{1}{n} \sum_{l=1}^n (X_l - \bar{X}_n)^2$ are jointly sufficient at $T_2 = S^2 = \frac{1}{n} \sum_{l=1}^n (X_l - \bar{X}_n)^2$ is just a function of T_1 and $T_2 = T_1 = \frac{1}{n} \sum_{l=1}^n (X_l - \mu)^2$. Simplifies to $T_1 = T_2 = T_1 = T_2 = T_2$

If an unbiased estimator $\widehat{\Theta}$ has the smallest variance among all other unbiased estimators. We call such an estimator $\widehat{\Theta}$ a MVUE.

MVUE and **Sufficient Statistics**: $f(x;\theta)$. Let $\hat{\theta}$ be an unbiased estimator of θ , $E[\hat{\theta}] = \theta$. It is desirable to find an unbiased estimator of θ with smallest variance $Var(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^2\right]$ (MVUE).

Question: How do we find an unbiased estimator of parameter θ with minimum variance? (MVUE): (1). Find a sufficient statistic of θ . (2). Minimum variance estimators are functions of the sufficient statistic. (3). Assuming the family of distributions is a complete family of distributions, then $\hat{ heta}$ is an unbiased estimator with minimum variance.

Theorem: Let $X_l \sim iid \ f_X(x;\theta)$, $\theta \in \Omega$, a statistic u is called a "best statistic" if $u(x_1,...,x_n)$ is an unbiased estimator of θ and $E(u-\theta)^2 \le E(v-\theta)^2$ for all other estimators v with $E[v] = \theta$.

Example: Given $X_1, \dots, X_n \sim iid \ N(\theta, \sigma^2)$, \bar{X}_n is a better unbiased estimator of θ then X_1 because $E[(\bar{X}_n - \theta)^2] = Var(\bar{X}_n) = \frac{\sigma^2}{v} \leq E[(X_1 - \theta)^2] = Var(X_1) = \sigma^2$

Important Theorems/Properties/Etc

Factorization Theorem (sufficiency/joint sufficiency): $f_{\mathbb{X}}(x_1,...,x_n|\theta) = u(x_1,...,x_n)v[T_1,...,T_k,\theta]$ where $T_j = r_j(x_1,...,x_n)$ for j=1,...,k.

Invariance Property of MLE (f is one-to-one): If $\hat{\theta}$ is the MLE of θ , then for any function $f(\theta)$, the MLE of $f(\theta)$ is $f(\hat{\theta})$.

e.g. let $X_1, ..., X_n \sim Binomial(\mathring{1}, p)$. $\mathring{p}_{MLE} = \bar{x}_n$. If $f(p) = Var_p(x) = p(1-p)$, then the MLE for $Var_p(x)$ is $\mathring{p}_{MLE}(1-\mathring{p}_{MLE}) = \bar{x}_n(1-\bar{x}_n)$.

Method of Moments: Let $X_1, ..., X_n$ be a random sample from a population. Method of moment estimation (MOME): Equate sample moments to population moments. If the population has r parameters, the MOME

 $\text{consists of solving the system of } r \text{ equations } m_k' = \mu_k' \text{ , } k \in \{1,2,\ldots,r\} \text{ for the } r \text{ parameters, where } m_k' = \frac{1}{n} \sum_{i=1}^n x_i^k \text{ , i.e., (kth sample moment)} \\ \mu_k' = E\left[X_i^k\right] \text{ (kth population moment)}.$

Result: If $X_1, ..., X_n \sim iid N(\mu, \sigma^2)$, then $\sum_{i=1}^n \left(\frac{X_i - \bar{X}_n}{\sigma}\right)^2 \sim \chi_{n-1}^2$ and $\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi_n^2$.