

Established in collaboration with MIT

50.007 Machine Learning 2015 Term 6

Date: 6th Nov 2015 Time: 2:30 PM Duration: 2 hours

Instructions to Candidates:

- 1. This paper consists of 11 questions with 5 printed pages (This title page counts as the first page).
- 2. This is a closed book examination.
- 3. Cheet sheets are not allowed.
- 4. Answer all the questions.
- 5. Write your answers in the answer books provided.
- 6. Wish you success!

- 1. (2P) Multiple Choice: Ridge regression optimizes what objective function?
 - O mean average precision with squared $\ell_2\text{-norm }\|w\|_2^2=\sum_{d=1}^D w_d^2$ on weights w
 - O mean squared error with squared $\ell_2\text{-norm }\|w\|_2^2=\sum_{d=1}^D w_d^2$ on weights w
 - O mean squared error with $\ell_1\text{-norm}\; \|w\|_1 = \sum_{d=1}^D |w_d|$ on weights w
- 2. (2P) Multiple Choice: The Support vector machine optimizes what objective function?
 - O mean zero-one error with squared $\ell_2\text{-norm }\|w\|_2^2=\sum_{d=1}^D w_d^2$ on weights w
 - O mean squared error with squared $\ell_2\text{-norm }\|w\|_2^2=\sum_{d=1}^D w_d^2$ on weights w
 - O mean hinge loss with squared $\ell_2\text{-norm} \ \|w\|_2^2 = \sum_{d=1}^D w_d^2$ on weights w
- 3. (1P) Multiple Choice: Neural Networks require feature mappings ϕ : $x \mapsto \phi(x)$ in the lower layers to be designed by hand?
 - O Yes
 - O No
- 4. (2P) Suppose you have two data samples $x_1, x_2 \in \mathbb{R}^3$ with

$$x_i = \begin{pmatrix} x_i^{(1)} \\ x_i^{(2)} \\ x_i^{(3)} \end{pmatrix},$$

then write down a matrix transformation $A \in \mathbb{R}^{3\times 3}$ such that the distance $\|Ax_1 - Ax_2\|$ between sample x_1 and x_2 is equal to

$$||Ax_1 - Ax_2|| = \sqrt{(x_1^{(1)} - x_2^{(1)})^2 + 4(x_1^{(2)} - x_2^{(2)})^2}$$

- 5. (4P)
 - given a set of $((f(x_1),y_1),\ldots,(f(x_N),y_N))$ consisting predictions $f(x_i)$ on features x_i and their corresponding ground truth labels y_i , write down the formula for hinge loss averaged over the number of samples N

2

- given a set of $((f(x_1),y_1),\ldots,(f(x_N),y_N))$ consisting predictions $f(x_i)$ on features x_i and their corresponding ground truth labels y_i , write down the formula for mean squared error (MSE) averaged over the number of samples N
- 6. (4P) compute some derivatives with respect to vector x: either compute the gradient vector

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{pmatrix}$$

or the linear mapping Df(x)[h] which maps a direction vector h onto the directional derivative Df(x)[h] of function f at point x. You can choose for each task separately whether you want to compute the gradient vector or the linear mapping. Hint: think where to apply product rule, and chain rule. Note that product rule is compatible with matrix multiplication, no matter whether the component is a matrix or a vector.

- (a) $f(x) = 3x^7 5x^5 + 7x^2 3$, $x \in \mathbb{R}^1$
- (b) $f(x) = x^{\top}Az\sum_{r=1}^{d}x^{(r)}$, $x \in \mathbb{R}^{d \times 1}$, $A \in \mathbb{R}^{d \times d}$, $z \in \mathbb{R}^{d \times 1}$, where $x^{(r)}$ is the r-th dimension of vector x
- (c) $f(x) = (x^{\top}Ax)^4$, $x \in \mathbb{R}^{d \times 1}$, $A \in \mathbb{R}^{d \times d}$
- (d) $f(x) = ||Ax||_2 x^\top x$, $x \in \mathbb{R}^{d \times 1}$, $A \in \mathbb{R}^{d \times d}$
- 7. (1P) is this function convex, concave or none of both?

8. (1P) is this function convex, concave or none of both?

9. (2P) A task for thinking a bit: Why is the following measure no good objective function for measuring the error in a regression problem? The error is computed between ground truth y_i and prediction $f(x_i)$ as given by the function

$$E = \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - y_i)^3$$

Hint: you can imagine what can happen if this objective is used with a linear model: $f(x_i) = w^{\top}x_i$.

10. (3P) A more complicated task: Consider the the following distribution function (a special case of a so-called gamma distribution). It is defined for positive real numbers x > 0.

$$p(x) = cx^2 \exp(-\beta x)\beta^3$$

Note x, c and β are real numbers. $c > 0, \beta > 0$.

Your task: compute the maximum likelihood estimator for parameter β for given data x_1, \ldots, x_n . We assume that the samples x_i are independent.

Hint: compute the maximum likelihood estimator as the maximum of the log-likelihood, that means after applying a logarithm.

11. (3P) Another somewhat more complicated task: which of the following functions is a kernel and which is not? Give an argument why.

Suppose that $x_i = \begin{pmatrix} x_i^{(1)} \\ x_i^{(2)} \end{pmatrix}$ are two-dimensional vectors.

$$k(x_1, x_2) = x_1^{\top} \begin{pmatrix} 25 & 0 \\ 0 & 9 \end{pmatrix} x_2$$
$$k(x_1, x_2) = x_1^{\top} \begin{pmatrix} 25 & 0 \\ 0 & -9 \end{pmatrix} x_2$$
$$k(x_1, x_2) = x_1^{\top} \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} x_2$$

Hint: Recall: if $k(x_1, x_2)$ is a kernel function, then there must exist a mapping ϕ and a Hilbert space such that

$$k(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle$$

where

$$\langle v_1, v_2 \rangle$$

is the inner product in the Hilbert space for two vectors v_1 and v_2 , and

$$k(x_1, x_1) = \|\phi(x_1)\|^2$$

is the norm of $\phi(x_1)$ in this Hilbert space. Check whether you can find an explicit mapping ϕ for the euclidean inner product, or whether you can find a contradictions to properties of a kernel.

End of Paper