

PROBABILISTIC INDUCTORS

Why

In general, a dataset may be both incomplete and inconsistent.

Why

Let (Z, \mathcal{Z}) be a measurable space. Let $\mathcal{M}(Z, \mathcal{Z})$ be the set of measures over (Z, \mathcal{Z}) . A probabilistic inductor for a dataset in Z^n is a function mapping Z^n to $\mathcal{M}(Z, \mathcal{Z})$.

Suppose $(Z, \mathcal{Z}) = (X \times Y, \mathcal{X} \times \mathcal{Y})$ for measurable spaces (X, \mathcal{X}) and (Y, \mathcal{Y}) . Then a probabilistic inductor yields a probabilistic functional inductor. The conditional measure on Y given an observation $x \in X$ is exactly a family of measures indexed by X.

