

AFRL-RQ-WP-TR-2014-0226

RAPID RESPONSE RESEARCH AND DEVELOPMENT (R&D) FOR THE AEROSPACE SYSTEMS DIRECTORATE

Delivery Order 0021: Engineering Research and Technical Analyses of Advanced Airbreathing Propulsion Fuels

Subtask: Fit-For-Purpose (FFP) and Dynamic Seal Testing of Alternative Aviation Fuels

Scott A. Hutzler, Nigil Jeyashekar, and Keri M. Petersen

Southwest Research Institute (SwRI®)

AUGUST 2014 Interim Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
AEROSPACE SYSTEMS DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7541
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public Affairs Office (PAO) and is available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RQ-WP-TR-2014-0226 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature//

JAMES T. EDWARDS

Program Manager

Fuels and Energy Branch

Turbine Engine Division

*//Signature//

//Signature//

//Signature//

//Signature//

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government's approval or disapproval of its ideas or findings.

ROBERT HANCOCK, PhD

Principal Scientist Turbine Engine Division

^{*}Disseminated copies will show "//Signature//" stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY)	2. REPORT TYPE	3. DATES COVERED (From - To)		
August 2014	Interim	06 December 2011 – 22 July 2014		
4. TITLE AND SUBTITLE RAPID RESPONSE RESEARCH A AEROSPACE SYSTEMS DIRECT Delivery Order 0021: Engineering I Airbreathing Propulsion Fuels Subtask: Fit-For-Purpose (FFP) and Fuels	5b. GRANT NUMBER anced 5c. PROGRAM ELEMENT NUMBER 63216F			
6. AUTHOR(S)		5d. PROJECT NUMBER		
Scott A. Hutzler, Nigil Jeyashekar,	and Keri M. Petersen	2480		
		5e. TASK NUMBER		
		5f. WORK UNIT NUMBER		
		Q0SJ		
7. PERFORMING ORGANIZATION NAME(S) AI By: Southwest Research Institute 6220 Culebra Road San Antonio, TX 78228	For: Universal Technology Corporation 1270 N. Fairfield Road Dayton, OH, 45432-2600	8. PERFORMING ORGANIZATION REPORT NUMBER 08.17149		
9. SPONSORING/MONITORING AGENCY NAM	IE(S) AND ADDRESS(ES)	10. SPONSORING/MONITORING		
Air Force Research Laboratory Aerospace Systems Directorate	VV 45400 5544	AGENCY ACRONYM(S) AFRL/RQTF		
Wright-Patterson Air Force Base, C Air Force Materiel Command United States Air Force	11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL-RQ-WP-TR-2014-0226			
12. DISTRIBUTION/AVAILABILITY STATEMEN Approved for public release; distrib				
13. SUPPLEMENTARY NOTES PA Case Number: 88ABW-2014-4-4	141; Clearance Date: 24 Sep 2014.			
analysis and other specification test	rom a number of emerging synthetic path ing. The fuels included in the study were otreated depolymerized cellulosic jet (HI hydrothermolysis (CH).	of the type: direct sugar-to-hydrocarbon		
15. SUBJECT TERMS				

alternative fuels, fit-for-purpose, seal, material compatibility, DSHC, ATJ, HDCJ, HDO-SK, CH 8

OF ABSTRACT:

SAR

18. NUMBER

294

OF PAGES

17. LIMITATION

16. SECURITY CLASSIFICATION OF:

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19a. NAME OF RESPONSIBLE PERSON (Monitor)

19b. TELEPHONE NUMBER (Include Area Code)

James T. Edwards

N/A

Table of Contents

<u>Section</u>	Page
List of Figures	iv
List of Tables	
Preface	viii
1.0 EXECUTIVE SUMMARY	1
1.1 Effect of Aromatic Content on Dynamic Seal Properties and Performance	1
1.2 Fit-For-Purpose (FFP) Testing of Alternative Aviation Fuels	1
1.3 Effect of Fame Contamination on Permittivity and Density	
2.0 INTRODUCTION	
Appendix A Task 1B – Dynamic Seal Testing	4
A.1.0 INTRODUCTION AND OBJECTIVE	
A.2.0 TECHNICAL APPROACH	9
A.3.0 RESULTS	10
A.3.1 Dynamic Seal Performance	10
A.3.2 Elastomer Weight	
A.3.3 Elastomer Thickness and Hardness	11
A.3.4 Volume Change	13
A.4.0 CONCLUSIONS	
A.5.0 RECOMMENDATIONS FOR FUTURE RESEARCH	
Appendix B Task 1A & 6 – Fit-For-Purpose and Miscellaneous Testing	16
Executive Summary	22
Acronyms & Abbreviations	
B.1.0 INTRODUCTION	
B.2.0 METHODS, ASSUMPTIONS, AND PROCEDURES	
B.2.1 Sample Terminology	
B.2.2 Test Methods and Specifications	
B.2.3 Non-Standard Test Methods	
B.2.3.1 Thermal Conductivity (Transient Hot Wire)	
B.3.0 RESULTS AND DISCUSSION	
B.3.1 Sample Cross-Reference	
B.3.2 Evaluation of Alternative Aviation Fuels and Blendstocks	
B.3.2.1 AMJ 700 – Jet A Blend	
B.3.2.2 Swedish Biofuel / Jet A Blend	
B.3.2.3 Kior HDCJ	
B.3.2.4 Virent SK / Jet A Blend	
B.3.2.5 ARA ReadiJet	
B.3.2.6 Total / Amyris Farnesane Blends	
B.3.3 Miscellaneous Testing	
B.3.3.1 Additional Amyris Testing	
B.3.3.2 Baseline O-Ring Testing	
B.3.3.3 Additional Testing for Tri-Service Samples	
B.3.3.4 Derived Cetane Number (IQT) Analysis	
B.3.4 Discussion of Selected Fuel Properties	
B.3.4.1 Speed-of-Sound and Isentropic Bulk Modulus	30

Section	<u>Page</u>
B.3.4.2 Distillation (D86)	32
B.3.4.3 Vapor Pressure (D6378)	
B.3.4.4 Density (D4052)	
B.3.4.5 Dielectric Constant	
B.3.4.6 Spontaneous Ignition	40
B.3.4.7 Minimum Ignition Energy (ASTM E582)	
B.3.4.8 Upper/Lower Explosion Limits (E681)	
B.3.4.9 Specific Heat Capacity (E2716)	
B.3.4.10 Thermal Conductivity (Transient Hot Wire)	45
B.3.4.11 Surface Tension (D1331A)	
B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)	48
B.3.4.13 Water Content (D6304) vs. Temperature	48
B.3.4.14 Kinematic Viscosity (D445)	51
B.3.4.15 Electrical Conductivity (D2624) vs. SDA Concentration (Stadis	450)54
B.3.4.16 Electrical Conductivity vs. Temperature	54
B.3.4.17 Elastomer Compatibility	57
B.3.5 PQIS Comparison	
B.4.0 CONCLUSIONS	69
B.5.0 RECOMMENDATIONS	70
B.6.0 REFERENCES	71
Appendix BA Amyris AMJ 700 / Jet A Evaluations	72
Appendix BB Swedish Biofuel / Jet A Data	
Appendix BC Kior HDCJ Evaluations	
Appendix BD Virent Evaluations	90
Appendix BE ARA (ReadiJet) Evaluations	
Appendix BF Total / Amyris Blends	
Appendix BG Miscellaneous Amyris Testing	
Appendix BH O-Ring Material Compatibility Testing	
Appendix BI Miscellaneous Tri-Service Sample Testing	
Appendix BJ EPA Testing Reports: CL12-3339 and CL12-3599	
Appendix BK EPA Testing Report: CL12-3883	
Appendix BL EPA Testing Report: CL12-4367	
Appendix BM EPA Testing Report: CL13-4826	
Appendix BN EPA Testing Reports: CL12-4716 and CL12-4717	
Appendix BO EPA Testing Reports: CL13-5265	
Appendix BP Certificates of Analysis (CoA) by POSF Number	
Appendix C Effect of FAME Contamination on Permittivity and Density	
C.1.0 Introduction	
C.2.0 Background	
C.3.0 Test Materials	
C.3.1Fuel	
C.3.2FAME Contaminant	
C.3.3FAME Contaminated Jet A	
C.4.0 Test equipment	256

Section	<u>Page</u>
C.5.0 Technical Approach	257
C.5.1 Test Temperatures	
C.5.2Temperature Sequence Order	257
C.5.3Test Method	258
C.6.0 Results and Discussions	259
C.6.1 Measured Density Data	259
C.6.2Measured Permittivity Values and Corresponding Density Values	259
C.6.3 Permittivity vs. Temperature	261
C.6.4 Density vs. Temperature	263
C.6.5 Density vs. Permittivity	265
C.6.6Permittivity vs. Temperature vs. FAME Concentration	266
C.6.7 Density vs. Temperature vs. FAME Concentration	266
C.6.8 Density vs. Permittivity vs. FAME Concentration	267
C.6.9 Permittivity vs. FAME Concentration	268
C.6.10 Comparison of all the Results to CRC Data	268
C.6.10.1 Permittivity vs. Temperature	269
C.6.10.2 Density vs. Temperature	270
C.6.10.3 Density vs. Permittivity	272
C.6.11 Miscellaneous Supporting Data	274
C.6.11.1 Density of n-hexane	274
C.6.11.2 Permittivity of Cyclohexane	275
C.7.0 Conclusions	276
Appendix CA Jet A Certificate of Analysis	
Appendix CB SwRI Permittivity Procedure	278

List of Figures

<u>Figure</u>	Page
Figure A-1. Dynamic Seal Performance	10
Figure A-2. Elastomer Weight versus Aromatic Content	
Figure A-3. Elastomer Thickness versus Aromatic Content	
Figure A-4. Elastomer Hardness versus Aromatic Content	
Figure A-5. Aromatic Content versus Volume Change	
Figure B-1. Speed of Sound (30 °C at Atmospheric Pressure)	
Figure B-2. Isentopic Bulk Modulus (30 °C at Atmospheric Pressure)	
Figure B-3. Distillation (D86)	
Figure B-4. Absolute Vapor Pressure (D6378) – Raw Data	34
Figure B-5. Absolute Vapor Pressure (D6378) – Arrhenius Plot	
Figure B-6. Density (D4502)	36
Figure B-7. Dielectric Constant vs. Temperature	38
Figure B-8. Dielectric Constant vs. Density	
Figure B-9. Autoignition Temperature	40
Figure B-10. Hot Surface Ignition Temperature	41
Figure B-11. Minimum Ignition Energy	41
Figure B-12. Explosion Limits	
Figure B-13. Reversing Heat Capacity	44
Figure B-14. Thermal Conductivity	46
Figure B-15. Surface Tension (D1331A) vs. Temperature	47
Figure B-16. BOCLE (D5001) vs. CI/LI Concentration (DCI-4A)	49
Figure B-17. Water Content (D6304) vs. Temperature	
Figure B-18. Kinematic Viscosity (D445)	51
Figure B-19. Kinematic Viscosity by ASTM D445/D341	52
Figure B-20. Kinematic Viscosity by ASTM D445/D341	53
Figure B-21. Electrical Conductivity vs. Stadis 450 Concentration	55
Figure B-22. Electrical Conductivity vs. Temperature	56
Figure B-23. Elastomer Compatibility – Tensile Strength	57
Figure B-24. Elastomer Compatibility – Volume Change	57
Figure B-25. PQIS Comparison: Initial Boiling Point	58
Figure B-26. PQIS Comparison: 10% Recovered	
Figure B-27. PQIS Comparison: 20% Recovered	
Figure B-28. PQIS Comparison: 50% Recovered	
Figure B-29. PQIS Comparison: 90% Recovered	60
Figure B-30. PQIS Comparison: Final Boiling Point	61
Figure B-31. PQIS Comparison: Density (D4052)	
Figure B-32. PQIS Comparison: Aromatics (D1319)	62
Figure B-33. PQIS Comparison: Olefins (D1319)	
Figure B-34. PQIS Comparison: Hydrogen Content (D3701)	
Figure B-35. PQIS Comparison: Viscosity at -20°C (D445)	63
Figure B-36. PQIS Comparison: Water Content (D6304)	
Figure B-37. PQIS Comparison: Microseparometer (D3948)	
Figure B-38. POIS Comparison: Smoke Point (D1322)	65

<u>Figure</u>	Page
Figure B-39. PQIS Comparison: Naphthalene Content (D1840)	65
Figure B-40. PQIS Comparison: Sulfur Mercaptan (D3227)	
Figure B-41. PQIS Comparison: Acid Number (D3242)	
Figure B-42. PQIS Comparison: Existent Gums (D381)	
Figure B-43. PQIS Comparison: Net Heat of Combustion (D4809)	
Figure B-44. PQIS Comparison: Sulfur Content (D2622)	
Figure BA-1. Tensile Strength – Amyris AMJ 700 / Jet A Blend	
Figure BA-2. Volume Change – Amyris AMJ 100 / Jet A Blend	77
Figure BB-1. Tensile Strength – Swedish Biofuel / Jet A Blend	
Figure BB-2. Volume Change – Swedish Biofuel / Jet A Blend	
Figure BC-1. Tensile Strength – Kior HDCJ / Jet A Blend	
Figure BC-2. Volume Change – Kior HDCJ / Jet A Blend	
Figure BD-1. Tensile Strength – Virent / Jet A Blend	
Figure BD-2. Volume Change – Virent / Jet A Blend	
Figure BE-1. Tensile Strength – ARA ReadiJet	
Figure BE-2. Volume Change – ARA ReadiJet	
Figure BF-1. Tensile Strength – Total / Amyris 20% Blend	
Figure BF-2. Volume Change – Total / Amyris 20% Blend	
Figure BF-3. Tensile Strength – Total / Amyris 10% Blend	
Figure BF-4. Volume Change – Total / Amyris 10% Blend	
Figure BH-1. Tensile Strength – Jet A (CL12-4134)	
Figure BH-2. Volume Change – Jet A (CL12-4134)	
Figure BH-3. Tensile Strength – JP-8 (CL11-2680, POSF4751)	
Figure BH-4. Volume Change – JP-8 (CL11-2680, POSF4751)	
Figure BH-5. Tensile Strength – 50/50 GEVO ATJ / Low ArH JP8	
Figure BH-6. Volume Change – 50/50 GEVO ATJ / Low ArH JP8	115
Figure C-1. Permittivity vs. Temperature – Neat Jet A	262
Figure C-2. Permittivity vs. Temperature - 100 ppmw FAME	
Figure C-3. Permittivity vs. Temperature - 400 ppmw FAME	
Figure C-4. Density vs. Temperature – Neat Jet A	
Figure C-5. Density vs. Temperature 100 ppmw FAME	
Figure C-6. Density vs. Temperature - 400 ppmw FAME	
Figure C-7. Density vs. Permittivity – Neat Jet A	
Figure C-8. Density vs. Permittivity - 100 ppmw FAME	
Figure C-9. Density vs. Permittivity - 400 ppmw FAME	
Figure C-10. Permittivity vs. Temperature vs. FAME Concentration	
Figure C-11. Density vs. Temperature vs. FAME Concentration	
Figure C-12. Density vs. Permittivity vs. FAME Concentration	
Figure C-13. Permittivity vs. FAME Concentration	
Figure C-14. Permittivity vs. Temperature – Neat Jet A (w/ CRC Limits)	
Figure C-15. Permittivity vs. Temperature – 100 ppm FAME (w/ CRC Limits)	
Figure C-16. Permittivity vs. Temperature – 400 ppm FAME (w/ CRC Limits)	
Figure C-17. Density vs. Temperature – 400 ppm FAME (w/ CRC Limits)	
Figure C-18. Density vs. Temperature – Neat Jet A (w/ CRC Limits)	
Figure C-19. Density vs. Temperature – 400 ppm FAME (w/ CRC Limits)	4/1

<u>Figure</u>		Page
Figure C-20. Densit	ty vs. Permittivity – Neat Jet A (w/ CRC Limits)	272
Figure C-21. Densit	ty vs. Permittivity – 100 ppm FAME (w/ CRC Limits)	273
Figure C-22. Densit	ty vs. Permittivity – 400 ppm FAME (w/ CRC Limits)	273
Figure C-23. Permi	ttivity vs. Temperature – Cyclohexane	275

List of Tables

<u>Table</u>	<u>Page</u>
Table A-1. Representative Fuel Samples for Dynamic Seal Tests	9
Table A-2. Dynamic Seal Test Results	
Table B-1. Sample Identifiers	28
Table B-2. Reversing Heat Capacity	43
Table BA-1. Amyris AMJ 700 / Jet A Evaluations	72
Table BB-1. Swedish Biofuel / Jet A Evaluations	
Table BC-1. Kior HDCJ Evaluations	84
Table BD-1. Virent Evaluations	90
Table BE-1. ARA (ReadiJet) Evaluations	96
Table BF-1. Total / Amyris Blends Evaluations	102
Table BG-1. Amyris Jet A-1 (CL13-5265)	109
Table BG-2. Additional Results for Amyris 10% Farnesane Blend (CL13-4717)	110
Table BG-3. Amyris Viscosity Analysis of Seven Fuels	111
Table BI-1. Additive Compatibility for Nominal Jet A (DLA #22, CL13-5892)	116
Table BI-2. Additional Results for Nominal Jet A (DLA Sample #22, CL13-5892)	116
Table BI-3. Nitrogen Results for DLA Samples	117
Table BI-4. Surface Tension Results for Three (3) Tri-Service Samples	117
Table C-1. Test Point Sequence	258
Table C-2. Density Data	259
Table C-3. Measured Permittivity and Extrapolated Density Values NEAT Jet A	260
Table C-4. Measured Permittivity and Extrapolated Density Values 100 ppm FAME in	Jet A 260
Table C-5. Measured Permittivity and Extrapolated Density Values 400 ppm FAME in	Jet A 261
Table C-6. Density Values for n-hexane	274
Table C-7. Permittivity of Cyclohexane	275
Table C-8. Literature Values for Permittivity of Cyclohexane	275

Preface

This report was prepared for the Universal Technology Corporation (UTC), 1270 North Fairfield Road, Dayton, Ohio, 45432-2600 under Sub Contract Number 12-S590-0021-02-C1 (Contract Number FA8650-08-D-2806 Task Order 0021, SwRI task numbers 1a, 1b, 6) for the Air Force Research Laboratory's Fuel & Energy Branch (AFRL/RQTF). Ms. Michele Puterbaugh (UTC) was the Task Order Program Manager for this effort. Ms. Amanda Welch (UTC) was the Task Order Assistant Program Manager for this effort. Mr. James Klein, (Subcontractor, Klein Consulting LLC), was the technical leader in support of Dr. James T. Edwards, Government Task Order Program Manager and Technical Point of Contact, of the Energy & Fuels Branch, (AFRL/RQTF), Turbine Engine Division, Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio. The research reported herein was performed by Southwest Research Institute, 6220 Culebra Road, San Antonio, TX and covers the period of 06 December 2011 – 22 July 2014. This effort was funded by the Air Force Research Laboratory.

1.0 EXECUTIVE SUMMARY

1.1 Effect of Aromatic Content on Dynamic Seal Properties and Performance

The research task was an extension of work that was conducted on dynamic seal test rig under Report No. AFRL-RQ-WP-TM-2013-0010. This report addressed the engineering performance and properties of elastomer O-rings; and compared the results from alternative fuel and alternative fuel blends to conventional jet fuel. The objective of this task was to address the effect of aromatic content on dynamic performance of the O-ring seal and its properties.

The test fuel set consists of two JP-8 fuels, with 24% and 13% aromatic content. The remaining four test fuel set consisted of R-8/JP-8 blends with aromatic content ranging from 8% to 1%. A pair of Buna-N O-rings was tested at 200°F until failure (fuel leak).

Based on the results from the dynamic seal tests, it was concluded that, at higher aromatic content there was a net weight gain by the elastomer due to absorption of fuel, which resulted in increase in percentage thickness and provided the O-ring sufficient squeeze and sealing capability throughout its operation. At higher aromatic content, the hardness increased and provided the O-ring with sufficient elastic modulus along with sufficient volume swell for sealing application. As the aromatic content decreased, the loss of O-ring material into fuel coupled with decreased thickness (elastomer squeeze) and/or insufficient volume swell, resulted in O-ring failure.

The overall conclusion was that the non-linear nature of the elastomer performance curve was directly related to the percentage thickness change and hence, elastomer squeeze of the O-ring. The elastomer weight, hardness and volume swell measurements were used to understand fuel absorption, material loss, modulus of elasticity and nature of dynamic performance of the O-ring. A unique research finding was that different trends emerged with respect to each fuel type in regards to property changes and accounted for the non-linear nature of the elastomer performance curve.

The results were obtained for one pair of Buna-N O-ring per fuel sample. These results provided an insight into the relationship between aromatic content versus dynamic seal performance. Future research should focus on validation studies with statistically relevant number of samples. Besides R-8 blends, other alternative fuel blends must be tested relative to JP-8 fuel with different aromatic levels to gain a complete understanding of the effect of aromatic content on dynamic performance of the elastomer O-ring.

1.2 Fit-For-Purpose (FFP) Testing of Alternative Aviation Fuels

The overall objective of this effort was to provide continued support to UTC/AFRL in the area of alternative aviation fuels. New synthetic pathways continue to emerge for generating blend stocks and drop-in replacement jet fuels. Some of these pathways allow the production of aromatic components simultaneously with paraffins thus overcoming the need to blend with petroleum based fuel. Therefore, the need for fit-for-purpose testing, component/rig testing, engine/pump testing, and material compatibility still play a key role in assessing these new fluids.

The fuels included in this study have been developed by several processes and include samples of the type: Direct Sugar to Hydrocarbon (DSHC), Alcohol-to-Jet (ATJ), Hydrotreated Depolymerized Cellulosic Jet (HDCJ), Hydro-Deoxygenated Synthesized Kerosene (HDO-SK), and Catalytic Hydrothermolysis (CH). From these blend stocks, samples have been obtained containing anywhere from 10% to 100% synthetic jet fuel.

This report contains all of the fit-for-purpose and miscellaneous specification testing performed to date under TO 21. Several of the fuels exhibited excellent jet fuel characteristics that would meet or exceed many of the specification requirements. Others seemed to perform well with only marginal issues that could be handled by adjusting the blend ratios.

1.3 Effect of Fame Contamination on Permittivity and Density

Testing at 400 ppm FAME contamination is required in support of clearance activity for western commercial aviation fuels. Based on an initial assessment of the raw data, both the permittivity and density values appeared to be essentially identical for the neat jet fuel and FAME-additized fuels. The subsequent analysis, provided herein, shows strong linear relationships among permittivity, density, and temperature. There appears to be little hysteresis in the permittivity measurement technique across the full range of test points. The results also appear to fall well within the experience-base provided by the CRC World Fuel Sampling Program. Based on these results, it is a reasonable conclusion that FAME contamination up to 400 ppmw does not significantly affect the measurement of permittivity or density over a relatively wide-temperature range beyond the normal expected variation in the test methods themselves.

2.0 INTRODUCTION

This final report contains a compilation of results for task numbers 1a, 1b, and 6 under Contract Number FA-8650-08-D-2806 Task Order 0021 in partial fulfillment of UTC Subcontract Number 12-S590-0021-02-C1.

Task 1a included various specification testing per ASTM D1655 and MIL-DTL-83133G. Test results are reported with the task 6 evaluations.

Task 1b addressed the effect of aromatic content on dynamic performance of the O-ring seal and its properties using the SwRI dynamic seal test rig.

Task 6 included evaluations of several emerging alternative aviation fuels. Fit-for-purpose (FFP) and other related testing as defined in ASTM D4054 was accomplished. Miscellaneous testing of interest to the Air Force including SAE J1488 fuel/water separation, speed of sound and isentropic bulk modulus, elastomer compatibility, vapor pressure vs. temperature, and lubricity (HFRR, SLBOCLE, BOCLE) vs. CI/LI concentration were also accomplished. The effect of fame contamination on permittivity and density was also determined in support of clearance activity for western commercial aviation fuels.

Appendix A

Task 1B - Dynamic Seal Testing

EFFECT OF AROMATIC CONTENT ON DYNAMIC SEAL PROPERTIES AND PERFORMANCE

Prepared by

Nigil Jeyashekar, Ph.D., P.E., Sr. Research Engineer

Southwest Research Institute® (SwRI®)
San Antonio, TX

Prepared for

Universal Technology Corporation

July 2014

Table of Contents

Section	<u>Page</u>
A.1.0 INTRODUCTION AND OBJECTIVE	8
A.2.0 TECHNICAL APPROACH	9
A.3.0 RESULTS	10
A.3.1 Dynamic Seal Performance	10
A.3.2 Elastomer Weight	11
A.3.3 Elastomer Thickness and Hardness	11
A.3.4 Volume Change	13
A.4.0 CONCLUSIONS	14
A.5.0 RECOMMENDATIONS FOR FUTURE RESEARCH	15

Executive Summary

The research task was an extension of work that was conducted on dynamic seal test rig under Report No. AFRL-RQ-WP-TR-2013-0010. This report addressed the engineering performance and properties of elastomer O-rings; and compared the results from alternative fuel and alternative fuel blend to conventional jet fuel. The objective of this task was to address the effect of aromatic content on dynamic performance of the O-ring seal and its properties.

The test fuel set consists of two JP-8 fuels, with 24% and 13% aromatic content. The remaining four test fuel set consisted of R-8/JP-8 blends with aromatic content ranging from 8% to 1%. A pair of Buna-N O-rings was tested at 200°F until failure (fuel leak).

Based on the results from the dynamic seal tests, it was concluded that, at higher aromatic content there was a net weight gain by the elastomer due to absorption of fuel, which resulted in increase in percentage thickness and provided the O-ring sufficient squeeze and sealing capability throughout its operation. At higher aromatic content, the hardness increased and provided the O-ring with sufficient elastic modulus along with sufficient volume swell for sealing application. As the aromatic content decreased, the loss of O-ring material into fuel coupled with decreased thickness (elastomer squeeze) and/or insufficient volume swell, resulted in O-ring failure.

The overall conclusion was that the non-linear nature of the elastomer performance curve was directly related to the percentage thickness change and hence, elastomer squeeze of the O-ring. The elastomer weight, hardness and volume swell measurements were used to understand fuel absorption, material loss, modulus of elasticity and nature of dynamic performance of the O-ring. A unique research finding was that different trends emerged with respect to each fuel type in regards to property changes and accounted for the non-linear nature of the elastomer performance curve.

The results were obtained for one pair of Buna-N O-ring per fuel sample. These results provided an insight into the relationship between aromatic content versus dynamic seal performance. Future research should focus on validation studies with statistically relevant number of samples. Besides R-8 blends, other alternative fuel blends must be tested relative to JP-8 fuel with different aromatic levels to gain a complete understanding of the effect of aromatic content on dynamic performance of the elastomer O-ring.

Acronyms & Abbreviations

°F	Fahrenheit
hrs	Hours

SwRI Southwest Research Institute

 $\begin{array}{lll} \Delta H & Change \ in \ Hardness \\ \Delta T & Change \ in \ Thickness \\ \Delta V & Change \ in \ Volume \\ \Delta W & Change \ in \ Weight \end{array}$

A.1.0 INTRODUCTION AND OBJECTIVE

The results from the dynamic seal test rig in Report No. AFRL-RQ-WP-TR-2013-0010, have shown that the test was capable of assessing the engineering performance of elastomer O-rings in turbojet fuel systems. It was also established that the test rig was capable of distinguishing the dynamic performance of Fluorosilicone, Buna-N and Viton O-rings. The performance and properties of the three elastomer O-rings under pre-test and post-test conditions were assessed for jet fuel, alternative fuel and a 50/50 jet fuel/alternative fuel blend. This research was effective in addressing the performance elastomer O-rings in alternative fuels and fuel blends relative to conventional jet fuels. However, the outcomes of this research were not sufficient to examine the relationship between aromatic content and elastomer performance. In light of this technical void, the objective of this task was to assess the effect of aromatic content on dynamic performance of elastomer O-ring. In addition, the changes in elastomer properties with aromatic content have been addressed in this research task.

A.2.0 TECHNICAL APPROACH

The test fuel set consisted of two JP-8 fuels provided by AFRL, with 24% aromatic content (POSF 10130) and 13% aromatic content (POSF 9698). The results from these two fuels would indicate if elastomer performance under dynamic conditions and properties are affected by variation in aromatic content with JP-8 fuel. 50/50 R-8/ JP-8 blend (POSF 7386) with an aromatic content of 10.1% and R-8 fuel (POSF 5469) with an aromatic content of 0.9% were used to prepare the remaining four test fuel blends, with aromatic content ranging from 8% to 1%. The test fuels and fuel blends are listed in Table A-1.

A detailed description and working principle of the dynamic seal test rig was provided in Report No. AFRL-RQ-WP-TR-2013-0010. This report provides the test results of three elastomers, namely, Fluorosilicone, Buna-N and Viton O-rings, with Jet-A, R-8 and 50/50 R-8/JP-8 blend. For the current research task, a pair of Buna-N O-rings (AS568-O12) was tested with fuels and fuel blends listed in Table A-1. The O-rings were run at 200°F until failure (fuel leak) was detected. Pre-test and post-test properties such as weight, thickness, and hardness were measured and volume swell was calculated.

Table A-1. Representative Fuel Samples for Dynamic Seal Tests

# Description		Aromatics (%)
1	JP-8 (POSF 10130)	24
2	JP-8 (POSF 9698)	13
3	R-8/JP-8 Blend (CL13-4964)	8
4	R-8/JP-8 Blend (CL13-4965)	4
5	R-8/JP-8 Blend (CL13-4966)	2
6	R-8/JP-8 Blend (CL13-4967)	1

A.3.0 RESULTS

The results from the dynamic seal tests are listed in Table A-2. The effect of aromatic content in jet fuel on elastomer O-rings have been discussed in terms of dynamic performance, and percent change in elastomer weight (ΔW) , thickness (ΔT) , hardness (ΔH) , and volume (ΔV) .

Aromatic Content	Failure Time		Left O-r	ing Data			Right O-ı	ring Data	
(%)	(hrs)	ΔΤ (%)	ΔΗ (%)	ΔV (%)	ΔW (%)	ΔΤ (%)	ΔΗ (%)	ΔV %	ΔW %
24	235.3	7.7195	4.1096	6.0255	2.2430	12.2024	2.3256	10.6430	5.9609
13	182.7	7.1215	0.4525	0.2260	-0.4587	9.4912	0.9174	4.7253	1.4097
8	160.5	9.8834	10.9005	1.6018	-1.6529	11.6691	8.8785	4.0526	0.7916
4	162.5	11.6870	7.3394	3.8002	-0.6969	8.8697	3.2258	2.1052	-0.3759
2	68.5	9.6936	5.2381	3.2768	0.0905	8.2049	4.2254	3.2439	-0.5357
1	45.4	6.2284	3.6364	-0.0701	-2.4889	5.2840	2.2727	0.0411	-3.1334

Table A-2. Dynamic Seal Test Results

A.3.1 Dynamic Seal Performance

The dynamic seal performance (failure time) was plotted as a function of aromatic content, as shown in Figure A-1. The dynamic performance of the elastomer O-ring was 235.3 hours for JP-8 fuel with 24% aromatic content and 182.7 hours for JP-8 with 13% aromatic content. The performance dropped from 235.3 hours to 162.5 hours as the aromatic content reduced from 24% to 4%, averaging a performance reduction of 3.64 hours for 1% drop in aromatic content. At 8% and 4% aromatic contents, the level of performance remained the same at approximately 160 hours. Below 4%, the performance reduction was approximately 39 hours for every 1% drop in aromatic content. Based on this result, it was concluded that the desirable range for aromatic content was between 23% and 4%. The performance points at 8% and 4% aromatic levels resulted in a non-linear performance curve. The subsequent sections address the non-linearity in O-ring dynamic performance curve in terms of elastomer properties.

Figure A-1. Dynamic Seal Performance

A.3.2 Elastomer Weight

The percentage weight change of the elastomer O-ring, as a function of aromatic content, is shown in Figure A-2. Since the data was measured for a pair of O-rings, the results are represented in Figure A-2 in the form of a vertical bar.

Figure A-2. Elastomer Weight versus Aromatic Content

At 24% aromatic content, there was increase in the weight of the elastomer O-ring indicating that there was a net absorption of fuel by the elastomer. As the aromatic content decreased to 1%, there was a net loss of material from the elastomer into the fuel. It should be noted that the total run time for the low aromatic fuel (1%) is much less than JP-8 with 24% aromatic content and during this short run time, the O-ring had lost a significant amount of material into the fuel.

A.3.3 Elastomer Thickness and Hardness

The elastomer thickness is a direct measure of elastomer squeeze, and hardness is a measure of modulus of elasticity. As the aromatic content decreased, the percentage change in thickness also decreased, indicating a similar trend for elastomer squeeze. Thus, at lower aromatic content, the O-ring will be unable to provide the same sealing capability as that of a high aromatic fuel. The results are shown in Figure A-3. It should be noted that the change in percentage thickness for 8% and 4% aromatic level fuel blends were as high as JP-8 fuel, indicating that the O-rings at these aromatic levels provided the same level of elastomer squeeze providing sealing capability and hence, contributed to increase in performance duration of the O-ring, as indicated by the low rate of failure between 24% and 4% aromatic levels.

Figure A-3. Elastomer Thickness versus Aromatic Content

The elastomer hardness results shown in Figure A-4, shows that the overall percentage change in hardness and hence modulus of elasticity decreased with decrease in fuel aromatic content. It should be noted that this trend is different for each fuel type, namely, JP-8 and R-8, as shown in Figure A-4. When R-8 fuel is in use, the percentage increase in hardness of the elastomer is much higher, which could possibly explain the higher performance of the O-ring at 8% and 4% despite lower aromatic content. However, at 2% and 1% aromatic levels the percentage change in hardness is comparable to JP-8 fuel. Since the elastomers do not have significantly higher elastomer squeeze or hardness (modulus of elasticity) at these aromatic levels. Based in the trends in Figure A-4, it can be concluded that the percentage change in elastomer thickness and hardness is a function of aromatic content only for a particular type of fuel under investigation and the trend varies for each fuel being tested. This is attributed to the non-linear behavior of the dynamic seal performance curve, in Figure A-1, at 8% and 4% aromatic levels.

Figure A-4. Elastomer Hardness versus Aromatic Content

A.3.4 Volume Change

The results of volume change as a function of aromatic content is plotted in Figure A-5. As the aromatic level reduced from 24% to 13%, for JP-8 fuel, there was a reduction in volume swell of elastomers that reduced dynamic performance. At 13%, 8%, 4% and 2%, the volume swell values showed a steady decrease. This fact explained the steady decrease in O-ring performance at these aromatic levels, as shown in Figure A-1, except at 2% aromatic level. The drastic reduction in O-ring performance at 2% aromatic level could only be attributed to the low value of percentage thickness change and hence, elastomer squeeze. At 1% aromatic level there is no change in volume. This factor combined with net loss of O-ring material into fuel, as shown in Figure A-2, and lower elastomer squeeze, resulted in insufficient sealing capacity, and contributed to poor dynamic performance at this aromatic level.

Figure A-5. Aromatic Content versus Volume Change

A.4.0 CONCLUSIONS

For JP-8 fuel, as the aromatic content reduced from 24% to 13%, the reduction in performance of Buna-N O-ring was approximately 22%. As the aromatic content reduced further from 13% to 4%, there was no significant change in dynamic performance. Below 4%, the performance dropped drastically to 45.4 hours at 1% aromatic content. Therefore, it was concluded that the desirable range for aromatic content is 4% to 24% of the given fuel set and that R-8 blends with aromatic content below 4% were not suitable for dynamic seal applications.

The percentage weight change was positive for 24% aromatic content jet fuel indicating net fuel absorption by the elastomer. As the aromatic content reduced further, the percentage weight change became negative indicating a net material loss from the O-ring into the fuel. The trend was uniform for both R-8 blends and JP-8 fuel indicating that the overall weight change was governed by the aromatic content in the given set of test fuels. However, the percentage thickness and hardness change had two trends for each type of fuel, namely, R-8 blends and JP-8. Thickness is a measure of elastomer squeeze, required for providing sufficient sealing for O-ring operation and hardness is a measure of modulus of elasticity. The percentage thickness and hardness decreased as the aromatic content dropped from 24% to 13% for JP-8 fuel. However, at 8% and 4% (R-8 blends), the percentage change in thickness and hardness was significantly higher compared to JP-8 fuel. This implied that the O-rings had sufficient squeeze at those aromatic levels which further explained the slow rate of reduction in dynamic performance at those aromatic levels.

The percentage thickness for R-8 blends at 2% and 1% aromatic levels were lower compared to JP-8 fuel. However, the percentage hardness, at these aromatic levels, was marginally higher than JP-8 fuel. The lower thickness signified lower elastomer squeeze and insufficient sealing capability and hence, the dynamic performance reduced at a drastic rate at these aromatic levels, despite marginally higher percentage hardness. This inference indicated that the dynamic performance was highly dependent on percentage thickness change and elastomer squeeze than on hardness and modulus of elasticity.

Overall, two broad conclusions were reached, based on property measurements. While elastomer weight, hardness and volume swell measurements were important, the non-linear nature of the elastomer performance curve was directly related to the percentage thickness change and hence, elastomer squeeze of the O-ring, for the set of test fuels under study. Secondly, two different trends emerged for each test fuel type, JP-8 fuel and R-8 blends, which needs further investigation with increase in the number of O-ring samples being tested.

A.5.0 RECOMMENDATIONS FOR FUTURE RESEARCH

All the results were obtained by testing one pair of Buna-N O-ring, per fuel sample. In order to validate these results, statistically relevant number of samples must be tested. Besides R-8, other alternative fuels needs to be tested in order to determine the extent to which the alternative fuel type affects the elastomer O-ring properties and hence, its' dynamic performance.

Appendix B

Task 1A & 6 - Fit-For-Purpose and Miscellaneous Testing

FIT-FOR-PURPOSE (FFP) TESTING OF ALTERNATIVE AVIATION FUELS

Prepared by

Scott A. Hutzler, Manager Keri M. Petersen, Engineer

Southwest Research Institute® (SwRI®)
San Antonio, TX

Prepared for

Universal Technology Corporation

July 2014

Table of Contents

<u>Section</u> <u>P</u>	age
Executive Summary	
Acronyms & Abbreviations	23
B.1.0 INTRODUCTION	
B.2.0 METHODS, ASSUMPTIONS, AND PROCEDURES	26
B.2.1 Sample Terminology	
B.2.2 Test Methods and Specifications	26
B.2.3 Non-Standard Test Methods	26
B.2.3.1 Thermal Conductivity (Transient Hot Wire)	27
B.3.0 RESULTS AND DISCUSSION	28
B.3.1 Sample Cross-Reference	28
B.3.2 Evaluation of Alternative Aviation Fuels and Blendstocks	28
B.3.2.1 AMJ 700 – Jet A Blend	28
B.3.2.2 Swedish Biofuel / Jet A Blend	28
B.3.2.3 Kior HDCJ	28
B.3.2.4 Virent SK / Jet A Blend	29
B.3.2.5 ARA ReadiJet	29
B.3.2.6 Total / Amyris Farnesane Blends	29
B.3.3 Miscellaneous Testing	29
B.3.3.1 Additional Amyris Testing	
B.3.3.2 Baseline O-Ring Testing	
B.3.3.3 Additional Testing for Tri-Service Samples	
B.3.3.4 Derived Cetane Number (IQT) Analysis	
B.3.4 Discussion of Selected Fuel Properties	
B.3.4.1 Speed-of-Sound and Isentropic Bulk Modulus	
B.3.4.2 Distillation (D86)	
B.3.4.3 Vapor Pressure (D6378)	
B.3.4.4 Density (D4052)	
B.3.4.5 Dielectric Constant	37
B.3.4.6 Spontaneous Ignition	
B.3.4.7 Minimum Ignition Energy (ASTM E582)	
B.3.4.8 Upper/Lower Explosion Limits (E681)	
B.3.4.9 Specific Heat Capacity (E2716)	
B.3.4.10 Thermal Conductivity (Transient Hot Wire)	
B.3.4.11 Surface Tension (D1331A)	
B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)	
B.3.4.13 Water Content (D6304) vs. Temperature	
B.3.4.14 Kinematic Viscosity (D445)	
B.3.4.15 Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450)	
B.3.4.16 Electrical Conductivity vs. Temperature	
B.3.4.17 Elastomer Compatibility	
B.3.5 PQIS Comparison	
B.4.0 CONCLUSIONS	

B.5.0 RECOMMENDATIONS	70
B.6.0 REFERENCES	71
Appendix BA Amyris AMJ 700 / Jet A Evaluations	72
Appendix BB Swedish Biofuel / Jet A Data	78
Appendix BC Kior HDCJ Evaluations	84
Appendix BD Virent Evaluations	90
Appendix BE ARA (ReadiJet) Evaluations	96
Appendix BF Total / Amyris Blends	102
Appendix BG Miscellaneous Amyris Testing	109
Appendix BH O-Ring Material Compatibility Testing	112
Appendix BI Miscellaneous Tri-Service Sample Testing	116
Appendix BJ EPA Testing Reports: CL12-3339 and CL12-3599	118
Appendix BK EPA Testing Report: CL12-3883	
Appendix BL EPA Testing Report: CL12-4367	158
Appendix BM EPA Testing Report: CL13-4826	177
Appendix BN EPA Testing Reports: CL12-4716 and CL12-4717	197
Appendix BO EPA Testing Reports: CL13-5265	
Appendix BP Certificates of Analysis (CoA) by POSF Number	247

List of Figures

<u>Figure</u>	<u>Page</u>
Figure B-1. Speed of Sound (30 °C at Atmospheric Pressure)	31
Figure B-2. Isentopic Bulk Modulus (30 °C at Atmospheric Pressure)	
Figure B-3. Distillation (D86)	
Figure B-4. Absolute Vapor Pressure (D6378) – Raw Data	
Figure B-5. Absolute Vapor Pressure (D6378) – Arrhenius Plot	
Figure B-6. Density (D4502)	
Figure B-7. Dielectric Constant vs. Temperature	38
Figure B-8. Dielectric Constant vs. Density	
Figure B-9. Autoignition Temperature	40
Figure B-10. Hot Surface Ignition Temperature	41
Figure B-11. Minimum Ignition Energy	41
Figure B-12. Explosion Limits	
Figure B-13. Reversing Heat Capacity	44
Figure B-14. Thermal Conductivity	46
Figure B-15. Surface Tension (D1331A) vs. Temperature	47
Figure B-16. BOCLE (D5001) vs. CI/LI Concentration (DCI-4A)	49
Figure B-17. Water Content (D6304) vs. Temperature	50
Figure B-18. Kinematic Viscosity (D445)	51
Figure B-19. Kinematic Viscosity by ASTM D445/D341	52
Figure B-20. Kinematic Viscosity by ASTM D445/D341	53
Figure B-21. Electrical Conductivity vs. Stadis 450 Concentration	55
Figure B-22. Electrical Conductivity vs. Temperature	56
Figure B-23. Elastomer Compatibility – Tensile Strength	
Figure B-24. Elastomer Compatibility – Volume Change	
Figure B-25. PQIS Comparison: Initial Boiling Point	58
Figure B-26. PQIS Comparison: 10% Recovered	
Figure B-27. PQIS Comparison: 20% Recovered	
Figure B-28. PQIS Comparison: 50% Recovered	
Figure B-29. PQIS Comparison: 90% Recovered	
Figure B-30. PQIS Comparison: Final Boiling Point	
Figure B-31. PQIS Comparison: Density (D4052)	61
Figure B-32. PQIS Comparison: Aromatics (D1319)	
Figure B-33. PQIS Comparison: Olefins (D1319)	
Figure B-34. PQIS Comparison: Hydrogen Content (D3701)	
Figure B-35. PQIS Comparison: Viscosity at -20°C (D445)	
Figure B-36. PQIS Comparison: Water Content (D6304)	
Figure B-37. PQIS Comparison: Microseparometer (D3948)	
Figure B-38. PQIS Comparison: Smoke Point (D1322)	
Figure B-39. PQIS Comparison: Naphthalene Content (D1840)	
Figure B-40. PQIS Comparison: Sulfur Mercaptan (D3227)	
Figure B-41. PQIS Comparison: Acid Number (D3242)	
Figure B-42. PQIS Comparison: Existent Gums (D381)	
Figure B-43. POIS Comparison: Net Heat of Combustion (D4809)	67

Figure B-44.	PQIS Comparison: Sulfur Content (D2622)	. 68
Figure BA-1.	Tensile Strength – Amyris AMJ 700 / Jet A Blend	. 77
Figure BA-2.	Volume Change – Amyris AMJ 100 / Jet A Blend	. 77
Figure BB-1.	Tensile Strength – Swedish Biofuel / Jet A Blend	. 83
Figure BB-2.	Volume Change – Swedish Biofuel / Jet A Blend	. 83
Figure BC-1.	Tensile Strength – Kior HDCJ / Jet A Blend	. 89
	Volume Change – Kior HDCJ / Jet A Blend	
Figure BD-1.	Tensile Strength – Virent / Jet A Blend	. 95
Figure BD-2.	Volume Change – Virent / Jet A Blend	. 95
Figure BE-1.	Tensile Strength – ARA ReadiJet	100
Figure BE-2.	Volume Change – ARA ReadiJet	101
Figure BF-1.	Tensile Strength – Total / Amyris 20% Blend	107
Figure BF-2.	Volume Change – Total / Amyris 20% Blend	107
Figure BF-3.	Tensile Strength – Total / Amyris 10% Blend	108
Figure BF-4.	Volume Change – Total / Amyris 10% Blend	108
Figure BH-1.	Tensile Strength – Jet A (CL12-4134)	113
Figure BH-2.	Volume Change – Jet A (CL12-4134)	113
Figure BH-3.	Tensile Strength – JP-8 (CL11-2680, POSF4751)	114
Figure BH-4.	Volume Change – JP-8 (CL11-2680, POSF4751)	114
Figure BH-5.	Tensile Strength – 50/50 GEVO ATJ / Low ArH JP8	115
Figure BH-6.	Volume Change – 50/50 GEVO ATJ / Low ArH JP8	115

List of Tables

<u>Table</u>	Page
Table B-1. Sample Identifiers	28
Table B-2. Reversing Heat Capacity	
Table BA-1. Amyris AMJ 700 / Jet A Evaluations	72
Table BB-1. Swedish Biofuel / Jet A Evaluations	
Table BC-1. Kior HDCJ Evaluations	84
Table BD-1. Virent Evaluations	90
Table BE-1. ARA (ReadiJet) Evaluations	96
Table BF-1. Total / Amyris Blends Evaluations	102
Table BG-1. Amyris Jet A-1 (CL13-5265)	109
Table BG-2. Additional Results for Amyris 10% Farnesane Blend (CL13-4717)	110
Table BG-3. Amyris Viscosity Analysis of Seven Fuels	111
Table BI-1. Additive Compatibility for Nominal Jet A (DLA #22, CL13-5892)	116
Table BI-2. Additional Results for Nominal Jet A (DLA Sample #22, CL13-5892)	116
Table BI-3. Nitrogen Results for DLA Samples	117
Table BI-4. Surface Tension Results for Three (3) Tri-Service Samples	117

Executive Summary

The overall objective of this effort was to provide continued support to UTC/AFRL in the area of alternative aviation fuels. New synthetic pathways continue to emerge for generating blend stocks and drop-in replacement jet fuels. Some of these pathways allow the production of aromatic components simultaneously with paraffins thus overcoming the need to blend with petroleum based fuel. Therefore, the need for fit-for-purpose testing, component/rig testing, engine/pump testing, and material compatibility still play a key role in assessing these new fluids.

The fuels included in this study have been developed by several processes and include samples of the type: Direct Sugar to Hydrocarbon (DSHC), Alcohol-to-Jet (ATJ), Hydrotreated Depolymerized Cellulosic Jet (HDCJ), Hydro-Deoxygenated Synthesized Kerosene (HDO-SK), and Catalytic Hydrothermolysis (CH). From these blend stocks, samples have been obtained containing anywhere from 10% to 100% synthetic jet fuel.

This report contains all of the fit-for-purpose and miscellaneous specification testing performed to date under TO 21. Several of the fuels exhibited excellent jet fuel characteristics that would meet or exceed many of the specification requirements. Others seemed to perform well with only marginal issues that could be handled by adjusting the blend ratios.

Acronyms & Abbreviations

°C Celsius
°F Fahrenheit
µm Micrometer

AA Atomic Absorption

BOCLE Ball-On-Cylinder Lubricity Evaluator

BTU British Thermal Unit

CI/LI Corrosion Inhibitor/Lubricity Improver

cSt Centistokes

DCN Derived Cetane Number
DLA Defense Logistics Agency

EPA Environmental Protective Agency

FFP Fit-For-Purpose FT Fischer-Tropsch FTM Federal Test Method

g Gram

HDCJ Hydroprocessed Depolymerized Cellulosic Jet HEFA Hydroprocessesd Esters and Fatty Acids HFRR High Frequency Reciprocating Rig

HRJ Hydroprocessed Renewable Jet

Hz Hertz

ID Ignition Delay

IPK Iso-Paraffinic Kerosene IQTTM Ignition Quality Tester

JFTOT Jet Fuel Thermal Oxidation Tester

K Kelvin
kg Kilogram
kHz Kilohertz
kJ Kilojoule
kPa Kilopascal
L Liter
lb Pound

LEL Lower Explosion Limit

lpm Liters Per Minute

m Meter Milligram mg Mega joule MJ mJ Mill joule Milliliter mLMillimeter mm mN Mill newton MPa Mega Pascal Millisecond ms

NMR Nuclear Magnetic Resonance

ppb Parts Per Billion ppm Parts Per Million psi(a or g) Pounds Per Square Inch (Absolute Or Gauge)

SAE Society of Automotive Engineers

SDA Static Dissipater Additive

SK Synthetic Kerosene

SPK Synthetic Paraffinic Kerosene

TWO WRE Time Weighted Average Water Removal Efficiency

UEL Upper Explosion Limit

W Watts

B.1.0 INTRODUCTION

The work reported herein is a continuation of prior work to provide fit-for-purpose testing and subject matter expertise to UTC and AFRL in support of emerging synthetic aviation fuels. This report contains information on the following subjects:

- Evaluation of alternative aviation fuels, blends, and blendstocks
 - o 50/50 AMJ 700 / Jet A Blend
 - o 50/50 Swedish Biofuel / Jet A Blend
 - o 30/70 Kior HDCJ / Jet A Blend
 - Neat Kior HDCJ
 - o 50/50 Virent SK / Jet A Blend
 - Neat Virent SK
 - ARA ReadiJet
 - o Total / Amyris 20/80 Farnesane/Jet A Blend
 - o Total / Amyris 10/90 Farnesane/Jet A Blend
- Miscellaneous Analyses
 - o O-ring Material Compatibility Testing
 - o Viscosity
 - o Derived Cetane Number (IQT)

B.2.0 METHODS, ASSUMPTIONS, AND PROCEDURES

B.2.1 Sample Terminology

Throughout this report, various means of identifying samples, fuels, and blendstocks are utilized. The Sample Identifiers, shown below in Table B-1 should be used as the primary sample reference. In figures and tables (where space is limited) and in the text to improve readability, shortened versions of the formal fuel descriptions may appear. Unless noted otherwise, blends denoted in this manner – "Virent SK / JP-8" – are assumed to be 50/50 volumetric blends of the synthetic and petroleum-based fuels. For those blends containing "JP-8" as the petroleum based fraction, the JP-8 additives are assumed to have been added to the proper levels after the blend was prepared.

B.2.2 Test Methods and Specifications

Numerous analytical methods were used in the conduct of this testing. The large majority of those are ASTM "D" and "E" methods. Throughout this document, those methods are simply referenced by their method numbers, e.g. "D4052" and "E2716." Non-ASTM methods, such as Federal Test Methods (FTM) and those maintained by SAE, EPA, etc. are noted accordingly. Standardized test methods are not discussed at length in this document. These can be acquired from the presiding organizations and some are freely available via the Internet (e.g. FTM). Unless noted otherwise, it is assumed that the standardized tests were run as prescribed. New tests, modifications to standardized tests, or non-standardized tests are described in more detail below.

The primary fuel specifications referenced during the conduct of this work are indicated below. Many of these specifications are undergoing extensive modifications to accommodate the new emerging turbine fuels.

- ASTM D1655 Standard Specification for Aviation Turbine Fuels
- ASTM D4054 Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives
- ASTM D7566 Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons
- MIL-DTL-83133H Detail Specification: Turbine Fuel, Aviation, Kerosene Type, JP-8 (NATO F-34), NATO F-35, and JP-8+100 (NATO F-37)
- DEF STAN 91-91 Turbine Fuel, Aviation Kerosene Type, Jet A-1, NATO Code: F-35

B.2.3 Non-Standard Test Methods

The reader is referred to previously published reports [1], [2] describing the use of alternative/modified methods shown below. Having had difficulties obtaining satisfactory data for thermal conductivity, a new instrument was acquired and utilized for this testing. That instrument is described below in Section B.2.3.1.

- Thermal Conductivity (Transient Hot Wire)
- Hot Surface Ignition Temperature (FTM 791-6053)
- True Vapor Pressure (ASTM D6378)

- Specific Heat Capacity (ASTM E2716)
- Surface Tension (ASTM D1331A)
- Dielectric Constant (SwRI)
- Elastomer (O-ring) Evaluations

B.2.3.1 Thermal Conductivity (Transient Hot Wire)

Since most of the literature data for thermal conductivity of liquids is based on hot wire data (referencing ASTM D2717), we sought to acquire an instrument that would provide comparable measurements. One such instrument is the Transient Hot Wire (THW) Liquid Thermal Conductivity Meter from ThermTest, Inc (http://www.thermtest.com/Products/THW.aspx). This instrument uses small test volumes and rapid test times to limit the effects of convection. Verification checks using hydrocarbon standards showed a <2% deviation from literature values across a wide temperature range. The upper temperature limit was generally restricted to less than 50% of the boiling point to avoid non-linear behavior.

In 2014, a method for the use of the THW with liquids was established under ASTM D7896-14.

B.3.0 RESULTS AND DISCUSSION

B.3.1 Sample Cross-Reference

The samples I, Table B-1were the primary focus of the fit-for-purpose testing under this effort. With the exception of the farnesane blends, all of the fuels were supplied by AFRL. Miscellaneous samples received for the analysis are described below. Where available, Certificates of Analysis (CofA) are provided in Appendix BP.

POSF #	SwRI CL#	Description
7708	CL12-3599	50/50 AMJ 700 / Jet A Blend
7658	CL12-3339	50/50 Swedish Biofuel / Jet A Blend
8123	CL12-3883/5832	30/70 Kior HDCJ / Jet A Blend
80076	CL12-4384	Neat Kior HDCJ
9404	CL12-4367	50/50 Virent SK / Jet A Blend
8535	CL12-4370	Neat Virent SK
10136	CL12-4826	ARA ReadiJet
	CL12-4716	Total / Amyris 20/80 Farnesane/Jet A Blend
	CL12-4717	Total / Amyris 10/90 Farnesane/Jet A Blend

Table B-1. Sample Identifiers

B.3.2 Evaluation of Alternative Aviation Fuels and Blendstocks

A description of each fuel is provided below. All of the data collected under this effort is tabulated in appendices and noted below.

B.3.2.1 AMJ 700 – Jet A Blend

This fuel was provided as a 50/50 blend of Amyris AMJ 700 with Jet A. AMJ 700 is a fuel derived from engineered microorganisms that operate like living factories to convert sugars into renewable hydrocarbon molecules. This fuel exhibited elevated cycloparaffins but otherwise fell within the JP-8 specification for those properties tested.

Results of FFP testing can found tabulated in Table BA-1 in Appendix BA.

B.3.2.2 Swedish Biofuel / Jet A Blend

Swedish Biofuels fully synthetic jet fuel process incorporates their advanced processes for the conversion of alcohols with LanzaTech's unique gas fermentation process for converting waste gas streams to ethanol. The alcohol conversion process begins with grain/wood being converted to sugar followed by fermentation into a mixture of C2-C5 alcohols. These are then converted to a mixture of C4-C20 hydrocarbons. In testing, this was one of the fuels that had an elevated UEL value of approximately 7.3% but otherwise exhibited good jet fuel characteristics.

Results of FFP testing can found tabulated in Table BB-1 in Appendix BB.

B.3.2.3 Kior HDCJ

The blendstock for this fuel is created from Kior's biofuel process and is known as Hydrotreated Depolymerized Cellulosic Jet or HDCJ and was supplied as a 30/70 HDJC/Jet A blend. The most unusual characteristic of this fuel is it's high aromatic content. Because of the strong relationship between aromatic content and several other fuel properties, the HDCJ blend has

several properties that marginal such as aromatic content, hydrogen content, and heat of combustion. There was also a potential issue with its distillation slope. Many of its properties are exaggerated relative to the other fuels and it was shown to have some impact on material compatibility.

Results of FFP testing can found tabulated in Table BC-1 in Appendix BC.

B.3.2.4 Virent SK / Jet A Blend

This fuel was supplied as a 50/50 blend of Virent Synthetic Kerosene (SK) and Jet A. This version of the SK contained no aromatics and is known as a Hydro-Deoxygenated Synthesized Kerosene or HDO-SK. It is produced using Virent's BioForming® platform which utilizes their Aqueous Phase Reforming (APR) technology. Other than a reduced aromatic content due to blending, this fuel exhibited good characteristics and met all of the JP-8 specification properties that were tested.

Results of FFP testing can found tabulated in Table BD-1 in Appendix BD.

B.3.2.5 ARA ReadiJet

Using a Biofuels ISOCONVERSION (BIC) process based on Catalytic Hydrothermolysis (CH) and hydroprocessing, renewable oil feedstocks are converted into Renewable, Aromatic, Drop-in (Readi) fuels known as ReadiJet. The interesting part of this process is that it also yields aromatics along with cycloparaffins and isoparaffins so no blending is required. Testing revealed that the fuel has a freeze point(approx -43°C) that would not meet the JP-8 specification. This results was verified by two different instruments/methods. It's unknown if this is typical of that fuel or some artifact of that particular sample. Otherwise, the fuel exhibited good characteristics.

Results of FFP testing can found tabulated in Table BE-1 in Appendix BE.

B.3.2.6 Total / Amyris Farnesane Blends

The farnesane blendstock is a Synthesized Iso-Paraffinic Kerosene (SIK). Total/Amyris produce farnesene by fermentation of sugar feedstocks. Farnesene is then converted to farnesane through a combination of hydroprocessing and fractionation steps resulting in nearly total conversion to a branched C15 paraffin. The targeted blends for incorporation into ASTM standards are 10% and 20% farnesane in jet fuel.

Results of FFP testing can found tabulated in Table BF-1 in Appendix BF.

B.3.3 Miscellaneous Testing

B.3.3.1 Additional Amyris Testing

To provide additional support to Amyris for their research report, AFRL authorized some additional testing as outlined below. Results can be found in Appendix BG.

- Amyris Jet A-1 FFP Testing, Table BG-1
- Speed-of-Sound and Bulk Modulus for 10% Farnesane Blend, Table BG-2
- Amyris Viscosity Analysis, Table BG-3

B.3.3.2 Baseline O-Ring Testing

UTC/AFRL authorized another round of O-ring baseline testing for JP-8 and Jet A. The results for tensile strength and volume swell for each fuel can be found in Appendix BH. The results were found to be comparable to those generated under TO 112. The differences between the JP-8 and Jet A appear to be negligible.

B.3.3.3 Additional Testing for Tri-Service Samples

AFRL identified one of the DLA Tri-Service fuel samples (#22) as having nominal Jet A characteristics. To provide additional reference data, AFRL authorized some extended testing on this and a few other Tri-Service samples. Data is tabulated in Appendix BI as follows:

- Additive Compatibility of DLA #22, Table BI-1
- FFP Testing of DLA #22, Table BI-2
- Nitrogen content of Tri-Service samples, Table BI-3
- Surface Tension vs. Temperature for Tri-Service samples, Table BI-4

B.3.3.4 Derived Cetane Number (IQT) Analysis

Three samples were received for IQT analysis:

• R-8 Renewable Jet Fuel, POSF7272 (SwRI CL12-4174)

o ID: 3.417

o DCN: 59.1

• HRJ Blend, Bio-Oil Derived SPK, POSF7665, 50:50 Camelina JP-8 (SwRI CL12-4175)

o ID: 3.924

o DCN: 52.0

• Jet Fuel JP-8, Valero (SwRI CL12-4176)

o ID: 4.315

o DCN: 47.7

B.3.4 Discussion of Selected Fuel Properties

Selected properties of the test fuels are discussed below. Where possible, the data is plotted against reference data such as found in the Handbook of Aviation Fuel Properties [3], fuels from the CRC World Fuel Sampling Program [4], or a nominal Jet A.

B.3.4.1 Speed-of-Sound and Isentropic Bulk Modulus

Speed-of-Sound and Bulk Modulus data are shown in Figure B-1 and Figure B-2, respectively. For the most part, these fuels behave similar to the nominal Jet A (Sample #22). The HDCJ blend could be somewhat deceiving. Its values are approaching that of a diesel fuel. Speed-of-sound and hence bulk modulus are density-driven and therefore strongly tied to aromatic content. Like density, these results tend to follow a linear trend with blending. So, a blend of two fuels will tend to fall proportionally in between each of the blendstocks.

Figure B-1. Speed of Sound (30 °C at Atmospheric Pressure)

Figure B-2. Isentopic Bulk Modulus (30 °C at Atmospheric Pressure)

B.3.4.2 Distillation (D86)

The distillation curves for the test fuels are shown in Figure B-3. These fuels tend to follow the expected trends see in the literature values.

B.3.4.3 Vapor Pressure (D6378)

Vapor pressure curves are depicted in two ways:

- Pressure (psi) vs. Temperature (°C), Raw data, Figure B-4
- ln(Pressure (kPa) vs. 1/Temperature (K), Figure B-5

The results in Figure B-5 are only plotted for values with vapor pressures ≥ 1.0 kPa. This data shows good linearity and compares well with the CRC data. The vapor pressures at temperatures below 20°C are very low and therefore less repeatable.

B.3.4.4 Density (D4052)

The density data for the test fuels is shown in Figure B-6. These fuels fall in a small band around the nominal CRC and World Survey data due to variations in chemical composition of the samples.

Figure B-3. Distillation (D86)

Figure B-4. Absolute Vapor Pressure (D6378) – Raw Data

Figure B-5. Absolute Vapor Pressure (D6378) – Arrhenius Plot

Figure B-6. Density (D4502)

B.3.4.5 Dielectric Constant

The results for dielectric constant are presented below as follows:

Dielectric Constant vs. Temperature, Figure B-7

Dielectric Constant vs. Density, Figure B-8

The measurement of dielectric constant continues to be a hotly debated subject. In part, the debate is over the measurement of density and whether the values collected on an automated densitometer can be extrapolated to low temperature extremes. In unpublished work, we've found that values for hydrocarbons can be extrapolated with good accuracy to meet this need. The dielectric values from CRC and the World Survey spear to be the same data and have a similar slope to the fuels in this study. However, when plotted against density, the slope of the World Survey data deviates substantially. This could be an issue with the density data in the World Survey. The CRC data shows a slope that's very comparable to the data measured in this effort.

Figure B-7. Dielectric Constant vs. Temperature

Figure B-8. Dielectric Constant vs. Density

B.3.4.6 Spontaneous Ignition

B.3.4.6.1 Autoignition Temperature (ASTM E659)

With the exception of the HDCJ blend, the fuels in this study fall within 5-10°C of the CRC data (Figure B-9). Curiously, the HDCJ blend autoignition temperature and minimum ignition energy is significantly higher than other fuels while its upper explosion limit it substantially lower.

Figure B-9. Autoignition Temperature

B.3.4.6.2 Hot Surface Ignition Temperature (FTM 791-6053)

All of the fuels in this study exhibited a minimum hot surface ignition temperature in the range of 1100-1250°F (Figure B-10). This seems to be a nominal range for most fuels tested by this method to date. As written, this method is a pass/fail test at 1300°F so, strictly speaking, all of these fuels would fail.

Figure B-10. Hot Surface Ignition Temperature

B.3.4.7 Minimum Ignition Energy (ASTM E582)

With the exception of the HDCJ blend, most of the fuels in this study showed a similar response to this test (Figure B-11). While most of those values are below the expected CRC data, it's uncertain how the CRC data was generated or how the sensitivity of those measurements compare to the modern day instrumentation.

Figure B-11. Minimum Ignition Energy

B.3.4.8 Upper/Lower Explosion Limits (E681)

The upper and lower explosion (a.k.a flammability) limits are shown in Figure B-12. This set of samples showed a wider range of response for the upper limit than had been seen previously. In some cases, the results were checked against a second lab and found to give comparable results. The lower limits all seem to vary between 0.5-1.0% so they present about the same hazards as far as handling is concerned. The HDCJ blend did show a lower upper limit compared to other fuels and lower than the expected CRC values.

Figure B-12. Explosion Limits

B.3.4.9 Specific Heat Capacity (E2716)

The results for specific heat capacity are tabulated in Table B-2 and shown in Figure B-13. While the slopes of these curves are often in good agreement across many labs, the bias has been cause for concern. Based on our experience with this method, we would estimate the repeatability to be in the range of 5-10%.

Table B-2. Reversing Heat Capacity

SwRI Sample	Reversing Heat Capacity (kJ/kg.K)						Equation
ID	-25°C	0°C	25°C	50°C	100°C	150°C	Equation
CL12-3599	1.880	1.966	2.062	2.163	2.346	2.563	y=(0.00389)*x+1.96863
CL12-3339	1.810	1.880	1.970	2.050	2.200	2.380	y=(0.00325)*x+1.88598
CL12-3883	1.601	1.684	1.764	1.849	2.042	2.249	y=(0.00370)*x+1.67983
CL12-4367	1.702	1.793	1.892	1.983	2.176	2.398	y=(0.00395)*x+1.79302
CL13-4826	1.703	1.790	1.870	1.960	2.160	2.370	y=(0.00372)*x+1.79412
CL12-4716	1.953	2.032	2.136	2.244	2.445	2.673	y=(0.00414)*x+2.03993
CL13-4717	1.976	2.058	2.146	2.242	2.470	2.676	y=(0.00406)*x+2.05816

Figure B-13. Reversing Heat Capacity

B.3.4.10 Thermal Conductivity (Transient Hot Wire)

Using the new transient hot wire device, the thermal conductivity data, Figure B-14, appears more consistent with values for typical hydrocarbons and the samples in this study appear to fall about both sides a of typical Jet A (DLA Sample #22). Like other hydrocarbon properties, thermal conductivity appears to follow expected trends and shows only a slight variation across a wide temperature range.

B.3.4.11 Surface Tension (D1331A)

The trends in surface tension were similar for all of the fuels and compared well to the CRC data (Figure B-15). The apparent bias of 2-3 mN/m units relative to the CRC data is negligible. Additive treatment alone can result in much larger changes (5-25mN/m) in surface tension.

Figure B-14. Thermal Conductivity

Figure B-15. Surface Tension (D1331A) vs. Temperature

B.3.4.12 BOCLE (D5001 vs. Ci/LI Concentration (DCI-4A)

Most of the fuels in this study had an inherent baseline lubricity at or slightly above the 0.65 mm wear scar limit established in MIL-PRF-25017. While all of the fuels showed a fairly linear response to treatment with DCI-4A (Figure B-16), most required up to 20 mg/L to achieve a value at or below 0.65 mm.

B.3.4.13 Water Content (D6304) vs. Temperature

Water Content vs. Temperature data is often debated due to the inconsistent nature of the testing. The inconsistencies stem from the lack of an established procedure resulting in slight differences in methodology and sampling technique. Repeatability of the D6304 test is also suspect. As one might expect, all fuels show an increased affinity for water with an increase in temperature (Figure B-17). More important would be the fuel/water separation characteristics of these fuels which have not been sufficiently tested to date. In previous research, tallow-based fuels showed an affinity for water and subsequent fuel/water separation tests confirmed that it was difficult to remove that water using standard filtration equipment.

Figure B-16. BOCLE (D5001) vs. CI/LI Concentration (DCI-4A)

Figure B-17. Water Content (D6304) vs. Temperature

B.3.4.14 Kinematic Viscosity (D445)

Three different views of viscosity data are provided below:

- Raw data on a log scale, Figure B-19
- Viscosity vs. Temperature on a linear scale with artificial x and y axes, Figure B-20
- Viscosity vs. Temperature, linearized and extrapolated on a log scale, Figure B-18

The last figure was generated using the MATAB script designed for the Navy. These fuels follow the general trends see in the World Survey Data and fall well within the upper limit of 8 cSt required for JP-8.

Figure B-18. Kinematic Viscosity (D445)

Figure B-19. Kinematic Viscosity by ASTM D445/D341

Figure B-20. Kinematic Viscosity by ASTM D445/D341

B.3.4.15 Electrical Conductivity (D2624) vs. SDA Concentration (Stadis 450)

The fuels in this effort showed a good response to treatment with static dissipater additive (Figure B-21). Most showed a linear response and 1 mg/L was sufficient to bring the electrical conductivity into the JP-8 range. The distinct clustering of the samples into two groups seemed odd; however, no systematic variation could be found. The samples were analyzed over a wide period of time, using up to three different meters and some samples that were run at the same time fell into different clusters.

B.3.4.16 Electrical Conductivity vs. Temperature

Apparently, most of the fuels in this effort contained no static dissipater as evidenced by their lack of baseline electrical conductivity and little response to temperature (Figure B-22). The Swedish biofuel had a baseline conductivity falling in the JP-8 range and responded to temperature changes. Only above 30°C did it exceed 600 pS/m.

Figure B-21. Electrical Conductivity vs. Stadis 450 Concentration

Figure B-22. Electrical Conductivity vs. Temperature

B.3.4.17 Elastomer Compatibility

Figure B-23 and Figure B-24 provides a summary of the tensile strength and volume change, respectively, following immersion in each fuel. This chart is compiled from the individual figures in the appendices and includes Jet A as a reference. Other than the high aromatic HDCJ fuels, fluorosilicone seems to be impervious to changes in fuel composition. The HDCJ also appears to impact tensile strength for viton and all three materials with respect to volume change.

Figure B-23. Elastomer Compatibility – Tensile Strength

Figure B-24. Elastomer Compatibility – Volume Change

B.3.5 PQIS Comparison

Utilizing the PQIS 2013 Annual Report database, fuel quality data for Jet A, Jet A-1, JP-8, and JP-5 was extracted and plotted for comparison against the samples evaluated under this effort. Figures for selected properties are shown in Figure B-24 through Figure B-43 and indicate where the test fuels fall within the distribution of data in the PQIS database. When reading the x-axis, the lower bound is inclusive and the upper bound is exclusive. For example, in Figure B-24 the second column indicates the % of total sample volume that has an IBP between 90.00 and 99.99. The textboxes indicate to which bin the data point for each of those samples belongs.

Note that the PQIS values for net heat of combustion are calculated (D3338/4529) and some properties are a mix of data from several methods. Generally, the data shows that the values for these samples fall within the range of values found in the PQIS database. A few properties such as low aromatic content for the Virent Blend and high aromatic content / high density for the Kior HDCJ Blend lie at the furthest extremes of their respective distribution curves. These properties are not unexpected given the composition of the blendstocks.

Figure B-25. PQIS Comparison: Initial Boiling Point

Figure B-26. PQIS Comparison: 10% Recovered

Figure B-27. PQIS Comparison: 20% Recovered

Figure B-28. PQIS Comparison: 50% Recovered

Figure B-29. PQIS Comparison: 90% Recovered

Figure B-30. PQIS Comparison: Final Boiling Point

Figure B-31. PQIS Comparison: Density (D4052)

Figure B-32. PQIS Comparison: Aromatics (D1319)

Figure B-33. PQIS Comparison: Olefins (D1319)

Figure B-34. PQIS Comparison: Hydrogen Content (D3701)

Figure B-35. PQIS Comparison: Viscosity at -20°C (D445)

Figure B-36. PQIS Comparison: Water Content (D6304)

Figure B-37. PQIS Comparison: Microseparometer (D3948)

Figure B-38. PQIS Comparison: Smoke Point (D1322)

Figure B-39. PQIS Comparison: Naphthalene Content (D1840)

Figure B-40. PQIS Comparison: Sulfur Mercaptan (D3227)

Figure B-41. PQIS Comparison: Acid Number (D3242)

Figure B-42. PQIS Comparison: Existent Gums (D381)

Figure B-43. PQIS Comparison: Net Heat of Combustion (D4809)

Figure B-44. PQIS Comparison: Sulfur Content (D2622)

B.4.0 CONCLUSIONS

The testing performed under this effort provided the opportunity to see blendstocks from several different synthetic pathways used to create alternative aviation fuel. One fuel, the ARA ReadiJet, was a supplied as a fully synthetic drop-in fuel since its process also yields aromatics in addition to paraffins. The Swedish Biofuel, derived from an ATJ process and the Virent HDO-SK were both supplied as 50/50 blends with Jet A and both exhibited good jet fuel characteristics. This version of the Virent blendstock contained no aromatics so the blend concentration was just above the 8 vol% minimum. The Total/Amyris blends derived from a DSHC process were supplied as 10% and 20% blends in Jet A and seemed to perform well. The Kior fuel stood out the most because of its high aromatic content. This affected the properties one might expect: density, speed-of-sound, hydrogen content, heat of combustion, cetane number, distillation slope, material compatibility etc. These properties were all marginal and could probably be corrected with a modified blend ratio. In general, most of the candidate fuels performed remarkably well, only showing marginal results in one or two properties.

B.5.0 RECOMMENDATIONS

It's clear that the vast amount of data being collected on candidate fuels has provided a wealth of information and contributed to the on-going research and approval process. The state-of-the-art for historical methods has improved over the last few years to the point they are becoming more routine and better understood. There are perhaps some areas that have received less attention but are nonetheless critical to the industry. Fuel/water separation is one area that has critical ramifications to the airline industry. While some types of fuels, like the FT-SPKs, have demonstrated excellent fuel/water separation, others derived from bio-based processes or sourced from biomass have revealed possible issues. The MSEP test or Water Solubility test has identified these problems in the past. The likely problem is that natural compounds from the feedstock that have survived the fuel processing can behave as surfactants and change the interfacial tension of the fuel. As a minimum, it might be wise to add interfacial tension to the FFP testing. A step beyond that would be to include a screening test like SAE J1488 and ultimately a full scale EI 1581 test.

B.6.0 REFERENCES

- [1] Propulsion and Power Rapid Response Research and Development (R&D) Support Delivery Order 0011: Analysis of Synthetic Aviation Fuels, AFRL-RZ-WP-TR-2011-2084, April 2011.
- [2] Propulsion and Power Rapid Response Research and Development (R&D) Support Delivery Order 0011: Advanced Propulsion Fuels R&D Subtask: Advanced Propulsion Fuels Research and Development Support to AFRL/RQTF, AFRL-RQ-WP-TM-2013-0010, December 2012.
- [3] Handbook of Aviation Fuel Properties, CRC Report No. 635, 3rd Edition, Coordinating Research Council, Alpharetta, GA, 2004.
- [4] CRC World Fuel Sampling Program, CRC Report No. 647, Coordinating Research Council, Alpharetta, GA, 2006.

Appendix BA

Amyris AMJ 700 / Jet A Evaluations

Table BA-1. Amyris AMJ 700 / Jet A Evaluations

			CL12-3599		
Test	Method	Units	AMJ 700 / Jet A Blend (POSF7708)	MIL DTL 83133H Table 1 Limits	
Chemistry					
Hydrocarbon Types by Mass Spec	D2425				
Paraffins		mass%	40.6		
Monocycloparaffins		mass%	44.1		
Dicycloparaffins		mass%	0.0		
Tricycloparaffins		mass%	0.0		
TOTAL SATURATES		mass%	84.7		
Alkylbenzenes		mass%	10.4		
Indans/Tetralins		mass%	3.0		
Indenes		mass%	0.3		
Naphthalene		mass%	0.2		
Naphthalene, Alkyl		mass%	1.1		
Acenaphthenes		mass%	0.2		
Acenaphthylenes		mass%	0.1		
Tricyclic Aromatics		mass%	0.0		
TOTAL AROMATICS	D1319	mass%	15.3		
Aromatic Content Aromatics	D1319	vol%	14.5	25.0 max	
Aromaucs Olefins		vol%	14.5	25.0 max	
Saturates		vol%	84.4		
	D5291	V0176	04.4		
Carbon/Hydrogen Carbon	D5291	0/0	85.85		
Hydrogen		⁷ 0 %	14.05		
Hydrogen Content (NMR)	D3701	mass%	13.98	13.4 min	
Carbonyls, Alcohols, Esters, Phenols	D3/01	mass 70	13.96	15.4 11111	
Alcohols	EPA 8015B	mg/kg			
Carbonyls, Esters	EPA 8260B	mg/kg	Appendix BJ		
Phenols	EPA 8270C	mg/kg	Appendix D3		
Nitrogen Content	D4629	mg/kg	2		
Copper by AA	D3237M	ppb	0.01		
Elemental Analysis	D7111	рро	0.01		
Al	Dilli	ppb	145 ppb		
Ba		ppb	<100 ppb		
Ca		ppb	<100 ppb		
Cr		ppb	<100 ppb		
Cu		ppb	<100 ppb		
Fe		ppb	<100 ppb		
Li		ppb	<100 ppb		
Pb		ppb	<100 ppb		
Mg		ppb	<100 ppb		
Mn		ppb	<100 ppb		
Mo		ppb	<100 ppb		
Ni		ppb	<100 ppb		
K			<1 ppm		
Na			<1 ppm		
Si			1.3 ppm		
Ag		ppb	<100 ppb		
Ti		ppb	<100 ppb		
V		ppb	<100 ppb		
Zn		ppb	<100 ppb		
Bulk Physical and Performance Properties					
Distillation	D86				
IBP		°C	164.9		
5%		°C	174.6		
10%		°C	177.5	205 max	
15%		°C	179.2		
20%		°C	181.5		

Table BA-1. Amyris AMJ 700 / Jet A Evaluations

			CL12-3599	MIL DTL 83133H
Test	Method	Units	AMJ 700 / Jet A Blend (POSF7708)	Table 1 Limits
30%		°C	186.5	
40%		°C	191.9	
50%		°C	200.1	
60%		°C	211.6	
70%		°C	226.9	
80%		°C	240	
90%		°C	248.3	
95%		°C	254.8	
FBP		°C	269.8	300 max
Residue		%	1.3	1.5 max
Loss T50-T10		% °C	0.4 22.6	1.5 max
T90-T10		°C	70.8	
Simulated Distillation	D2887	·C	/0.8	
IBP	D2007	°C	118.3	
5%		°C	157.9	
10%		°C	166.9	
15%		°C	168.5	
20%		°C	169.4	
25%		°C	170.6	
30%		°C	170.0	
35%		°C	173.2	
40%		°C	179.5	
45%		°C	183.7	
50%		°C	196.2	
55%		°C	208.4	
60%		°C	219	
65%		°C	234.5	
70%		°C	247.1	
75%		°C	250.3	
80%		°C	251.3	
85%		°C	251.9	
90%		°C	253.4	
95%		°C	269	
FBP		°C	305.7	
Vapor pressure (Absolute)	D6378			
0 °C		psi	0.0	
20 °C		psi	0.04	
40 °C		psi	0.08	
60 °C		psi	0.24	
80 °C		psi	0.63	
100 °C		psi	1.34	
120 °C		psi	2.54	
JFTOT Breakpoint	D3241BP	°C		
Test Temperature		°C	290.0	
ASTM Code		rating	<2	<3 max
Maximum Pressure Drop		mm Hg	0.1	25 max
Lubricity (BOCLE) as received	D5001	mm	0.66	
Lubricity (BOCLE) vs. CI/LI Concentration	D5001			
0 mg/L		mm	0.81	
5 mg/L		mm	0.74	
10 mg/L		mm	0.68	
15 mg/L		mm	0.64	
20 mg/L		mm	0.61	
Lubricity (HFRR)	D6079	μm	0.71	
Lubricity (HFRR) vs. CI/LI Concentration	D6079			
0 mg/L		μm	0.69	
5 mg/L		μm	0.70	
10 mg/L		μm	0.72	
15 mg/L		μm	0.72	

Table BA-1. Amyris AMJ 700 / Jet A Evaluations

			CL12-3599	MIL DTL 83133H
Test	Method	Units	AMJ 700 / Jet A Blend (POSF7708)	Table 1 Limits
20 mg/L		μm	0.73	
Lubricity (Scuffing Load BOCLE)	D6078	g	2850	
Lubricity (Scuffing Load BOCLE) vs.	D6078			
CI/LI Concentration			1500	
0 mg/L		g	1600	
5 mg/L		g	1900	
10 mg/L		g	2900	
15 mg/L		g	2850	
20 mg/L	D445	g	3200	
Kinematic Viscosity	D445	-G4	0.52	
-40 -20		cSt	9.53 4.69	9.0
-20 25°C		cSt		8.0 max
40°C		cSt cSt	1.70 1.35	
	E2716	est	1.35	
Specific Heat Capacity	E2716	la I /lag I/	1.880	
-25°C 0°C		kJ/kg.K kJ/kg.K	1.966	
25°C		kJ/kg.K kJ/kg.K	2.062	
50°C		kJ/kg.K kJ/kg.K	2.163	
100°C		kJ/kg.K kJ/kg.K	2.346	
150°C		kJ/kg.K kJ/kg.K	2.563	
Density	D4052	KJ/Kg.K	2,503	
Density 5°C	D4052	g/cm ³	0.8099	
15°C		g/cm ³	0.8024	0.775 to 0.840
40°C		g/cm ³	0.7840	0.775 to 0.840
60°C		g/cm ³	0.7692	
80°C		g/cm ³	0.7541	
	D1331A	g/cm	0.7541	
Surface tension -10°C	D1551A	mN/m	28.1	
22°C		mN/m	25.3	
40°C		mN/m	23.9	
Speed of Sound @ 30°C		m/s	1272	
Isentropic Bulk Modulus @ 30°C		psi	185853	
Thermal Conductivity	SwRI	psi	183833	
0°C	SWKI	W/m.K	0.1211	
25°C		W/m.K	0.1163	
50°C		W/m.K	0.1115	
Water Content	D6304	ppm	59	
Water Content Water Content	D6304	ppin		
°C	20007	ppm	37	
30°C		ppm	115	
40°C		ppm	213	
50°C		ppm	287	
Water Content	D6304	ppiii	201	
-10°C	D0307	ppm		
40°C		ppm		
50°C		ppm		
Flash Point - Tag Closed	D56	°C	47	38 min
Freeze Point (manual)	D2386	°C	-58	
Freeze Point	D5972	°C	-53.3	-47 max
Electrical Properties				<u> </u>
Dielectric Constant (10kHz)	SwRI			
-40.2°C			2.187	
-20.0°C			2.160	
0.9°C			2.129	
30.0°C			2.092	
			2.069	
50.0*C 1			=.502	
50.0°C -40°C				
-40°C				

Table BA-1. Amyris AMJ 700 / Jet A Evaluations

m .	25.0	** **	CL12-3599	MIL DTL 83133H
Test	Method	Units	AMJ 700 / Jet A Blend	Table 1 Limits
E00.C			(POSF7708)	
50°C	D2/24		0	
Electrical Conductivity (as received)	D2624	pS/m	0	
Electrical Conductivity vs. SDA	D2624			
Concentration		GU	0	
0 mg/L		pS/m	0	
1 mg/L		pS/m	480 930	
2 mg/L		pS/m		
3 mg/L		pS/m pS/m	1330 1720	
4 mg/L	D2624	ps/m	1720	
Electrical Conductivity vs. Temperature	D2624	C/	0.0	
-40		pS/m	0.0	
-30		pS/m	0.0	
-20		pS/m	0.0	
-10		pS/m	0.0	
0		pS/m	0.0	
10		pS/m	0.0	
20		pS/m	0.0	
30		pS/m	0.0	
40		pS/m	10.0	
Ground Handling Properties and Safety	D40 10		0.5	= 0.00
MSEP	D3948	rating	83	70-90 min
Storage Stability - Peroxides @65°C	D3703			
0 week		mg/kg	1.44	
1 week		mg/kg	3.40	
2 week		mg/kg	3.72	
3 week		mg/kg	4.04	
6 week		mg/kg	4.12	
Storage Stability – Potential Gums	D5304			
16 hours		mg/100m	0.0	
		L		
Upper Explosion Limit (UEL), @100°C	E681	%	5.7 ± 0.1	
Lower Explosion Limit (LEL), @100°C	E681	%	0.5 ± 0.1	
Autoignition temperature	E659			
Hot Flame Autoignition Temperature		°C	241.0	
Hot Flame Lag Time		seconds	52.0	
Cool Flame Autoignition Temperature		°C	229.0	
Cool Flame Lag Time		seconds	273.0	
Barometric Pressure		mm Hg	739.8	
Reaction Threshold Temperature		°C	223.0	
Hot surface ignition	FTM 791-	$^{\circ}\mathbf{F}$	1150 (burns on tube and in	
o a constant of the constant o	6053		pan)	
Compatibility				
Fuel/Additive Compatibility (2x treat rate)	D4054B			
			 large droplets after 	
			initial cold soak	
FSII, DIEGME (0.3 vol%)		effect	 not present after 	
(**********************************			raising temperature	
		I	above room	
GD 4 G: 71 170 (10		ac :	temperature	
SDA, Stadis 450 (10 mg/L)		effect	no issues observed	
CI/LI, DCI-4A (46 mg/L)		effect	no issues observed	
Metal Deactivator, DMD (11.4 mg/L)		effect	no issues observed	
Antioxidant, AO-30 (48 mg/L)		effect	 no issues observed 	
Thermal Stability, +100 (512 mg/L)		effect	 no issues observed 	
			thin film on bottom	
Additive Coakteil (DMD, AO 20 C4-31-			after initial cold soak	
Additive Cocktail (DMD, AO-30, Stadis 450, DCI-4A, DIEGME, +100)		effect	 not present after 	
(same concentrations as above)		enect	raising temperature	
(same concentrations as above)			above room	
			temperature	
Elastomer Compatibility (O-Ring Tests)	SwRI		See Figure B-45	
Enastonici Compatibility (O-King Tests)	SWKI		and Figure B-46	

Table BA-1. Amyris AMJ 700 / Jet A Evaluations

Test	Method	Units	CL12-3599 AMJ 700 / Jet A Blend (POSF7708)	MIL DTL 83133H Table 1 Limits
Miscellaneous				
Copper Strip Corrosion (100°C for 2 hours)	D130	rating	1A	No. 1 max
Smoke Point	D1322	mm	24	25.0 min or 19.0 min
Naphthalene Content	D1840	vol%	0.57	3.0 max
Sulfur - Mercaptan	D3227	mass%	0.0006	0.002 max
Acid Number	D3242	mg KOH/g	0.009	0.015 max
Existent Gums	D381	mg/100m L	4	7.0 max
Heat of Combustion	D4809			
BTUHeat_Net	let BTU/lb		18516.8	18400.7 min
MJHeat_Net		MJ/kg	43.07	42.8 min
Sulfur Content - (Antek)	D5453	ppm	423.9	0.30 mass % max
Ignition Quality Test (IQT)	D6890			
Ignition Delay, ID		ms	4.793	
Derived Cetane Number, DCN			43.39	
Minimum Ignition Energy @ 100°C	E582	mJ	0.13 - 0.18	
Sulfur Content - (XRY)	D2622	ppm	444.8	0.30 mass % max

Figure BA-1. Tensile Strength – Amyris AMJ 700 / Jet A Blend

Figure BA-2. Volume Change – Amyris AMJ 100 / Jet A Blend

Appendix BB

Swedish Biofuel / Jet A Data

Table BB-1. Swedish Biofuel / Jet A Evaluations

			CL12-3339	
Test	Method	Units	Swedish Biofuel / Jet A Blend (POSF7658)	MIL DTL 83133H Table 1 Limits
Chemistry			() , , , , , , , , , , , , , , , , , ,	
Hydrocarbon Types by Mass Spec	D2425			
Paraffins		mass%	44.0	
Monocycloparaffins		mass%	37.4	
Dicycloparaffins		mass%	0.0	
Tricycloparaffins		mass%	0.0	
TOTAL SATURATES		mass%	81.4	
Alkylbenzenes		mass%	13.8	
Indans/Tetralins		mass%	4.0	
Indenes		mass%	0.0	
Naphthalene		mass%	0.3	
Naphthalene, Alkyl		mass%	0.2	
Acenaphthenes		mass%	0.1	
Acenaphthylenes		mass%	0.2	
Tricyclic Aromatics		mass%	0.0	
TOTAL AROMATICS	D1210	mass%	18.6	
Aromatic Content	D1319	10/	15 (25.0
Aromatics		vol%	15.6	25.0 max
Olefins Saturates		vol% vol%	1.2 83.2	
	D5291	V01%	83.2	
Carbon/Hydrogen Carbon	D5291	0/	85.67	
		% %		
Hydrogen (NACR)	D2701	mass%	14.04	12.4
Hydrogen Content (NMR) Carbonyls, Alcohols, Esters, Phenols	D3701	mass%	14.12	13.4 min
Carbonyis, Aiconois, Esters, Filenois	EPA			
Alcohols	8015B	mg/kg		
	EPA		-	
Carbonyls, Esters	8260B	mg/kg	Appendix BJ	
	EPA		†	
Phenols	8270C	mg/kg		
Nitrogen Content	D4629	mg/kg	<1	
Copper by AA	D3237M	ppb	0.006	
Elemental Analysis	D7111	PF~		
Al		ppb	<100 ppb	
Ba		ppb	<100 ppb	
Ca		ppb	<100 ppb	
Cr		ppb	<100 ppb	
Cu		ppb	<100 ppb	
Fe		ppb	<100 ppb	
Li		ppb	<100 ppb	
Pb		ppb	<100 ppb	
Mg		ppb	<100 ppb	
Mn		ppb	<100 ppb	
Mo		ppb	<100 ppb	
Ni		ppb	<100 ppb	
K			<1 ppm	
Na			<1 ppm	
Si			3.1 ppm	
Ag		ppb	<100 ppb	
Ti		ppb	<100 ppb	
V		ppb	<100 ppb	
Zn		ppb	<100 ppb	
Bulk Physical and Performance Properties				
Distillation	D86			
IBP		°C	169.4	
5%		°C	179.4	

Table BB-1. Swedish Biofuel / Jet A Evaluations

CT 10 2020						
Test	Method	Units	CL12-3339 Swedish Biofuel / Jet A Blend	MIL DTL 83133H		
Test	Method	Ullits	(POSF7658)	Table 1 Limits		
10%		°C	181.4	205 max		
15%		°C	183.3			
20%		°C	185.7			
30%		°C	189.8			
40%		°C	194.4			
50%		°C	199.1			
60%		°C	204.5			
70%		°C	210.4			
80%		°C	217.8			
90%		°C	228.6			
95%		°C	238.3			
FBP		°C	250.3	300 max		
Residue		%	1.2	1.5 max		
Loss		%	0.7	1.5 max		
T50-T10		°C	17.7			
T90-T10		°C	47.2			
Simulated Distillation	D2887					
IBP		°C	122.1			
5%		°C	150.2			
10%		°C	162.7			
15%		°C	168.7			
20%		°C	174.2			
25%		°C	179.8			
30%		°C	186.2			
35%		°C	190.3			
40%		°C	194.3			
45%		°C	197.3			
50%		°C	201.1			
55%		°C	206.5			
60%		°C	210.2			
65%		°C	214.8			
70%		°C	217.7			
75%		°C	223			
80%		°C	228.9			
85%		°C	235.1			
90%		°C	241.4			
95%		°C	253.2			
FBP	D (250	°C	282.1			
Vapor pressure (Absolute)	D6378	•	0.07			
0 °C		psi	0.05			
20 °C		psi	0.06			
40 °C		psi	0.15			
60 °C		psi	0.35			
80 °C		psi	0.72			
100 °C		psi	1.38			
120 °C	D2241DB	psi °C	2.10			
JFTOT Breakpoint	D3241BP		205			
Test Temperature ASTM Code		°C rating	305 2.0	<3 max		
Maximum Pressure Drop		mm Hg	0.0	<3 max 25 max		
Lubricity (BOCLE) as received	D5001		0.61	45 Illax		
Lubricity (BOCLE) as received Lubricity (BOCLE) vs. CI/LI Concentration	D5001 D5001	mm	0.01			
Lubricity (BOCLE) vs. CI/LI Concentration 0 mg/L	D2001	mm	0.93			
5 mg/L		mm	0.93			
5 mg/L 10 mg/L		mm	0.80			
10 mg/L 15 mg/L		mm	0.63			
20 mg/L		mm	0.60			
Lubricity (HFRR)	D6079	mm	0.70			
Lubricity (HFRR) vs. CI/LI Concentration	D6079 D6079	μm	0.70			
Lubricity (HFRR) vs. CI/LI Concentration 0 mg/L	D00/9	11775	0.70			
5 mg/L		μm	0.69			
5 mg/L		μm	0.09			

Table BB-1. Swedish Biofuel / Jet A Evaluations

Test	Method	Units	CL12-3339 Swedish Biofuel / Jet A Blend (POSF7658)	MIL DTL 83133H Table 1 Limits
10 mg/I		um	0.67	
10 mg/L 15 mg/L		μm	0.67	
		μm		
Lybricity (Scuffing Load BOCLE)	D6078	μm	0.67 1450	
Lubricity (Scuffing Load BOCLE) Lubricity (Scuffing Load BOCLE) vs. CI/LI	D00/8	g	1450	
Concentration	D6078			
0 mg/L		g	1150	
5 mg/L		g	1100	
10 mg/L		g	1300	
15 mg/L		g	1650	
20 mg/L		g	2050	
Kinematic Viscosity	D445			
-40		cSt	8.32	
-20		cSt	4.12	8.0 max
25°C		cSt	1.55	
40°C		cSt	1.24	
Specific Heat Capacity	E2716			
-25°C		kJ/kg.K	1.81	
0°C		kJ/kg.K	1.88	
25°C		kJ/kg.K	1.97	
50°C		kJ/kg.K	2.05	
100°C		kJ/kg.K	2.20	
150°C		kJ/kg.K	2.38	
Density	D4052	110/115-111	2100	
5°C	2.002	g/cm ³	0.8045	
15°C		g/cm ³	0.7970	0.775 to 0.840
40°C		g/cm ³	0.7786	01772 to 01010
60°C		g/cm ³	0.7636	
80°C		g/cm ³	0.7485	
Surface tension	D1331A	g/CIII	0.7403	
-10°C	DISSIA	mN/m	26.6	
22°C		mN/m	24.0	
40°C		mN/m	23.0	
Speed of Sound @ 30°C		m/s	1268	
Isentropic Bulk Modulus @ 30°C		psi	183217	
Thermal Conductivity	SwRI	psi	183217	
Thermal Conductivity 0°C	SWKI	W/m.K	0.1228	
25°C		W/m.K	0.1228	
50°C		W/m.K	0.1176	
Water Content	D6304		58	
		ppm	36	
Water Content 0°C	D6304		25	
		ppm	35	
30°C		ppm	107	
40°C		ppm	196	
50°C	D6304	ppm	215	
Water Content	D0304			
-10°C		ppm		
40°C		ppm		
50°C		ppm		
Flash Point - Tag Closed	D56	°C	55	38 min
Freeze Point (manual)	D2386	°C	-48	-47 max
Freeze Point	D5972	°C	-61.3	
Electrical Properties	l a == '			
Dielectric Constant (10kHz)	SwRI			
-40°C			2.174	
-20°C			2.146	
0°C			2.116	
30°C			2.079	
50°C			2.057	
Electrical Conductivity	D2624	pS/m	410	
Electrical Conductivity vs. SDA Concentration	D2624			

Table BB-1. Swedish Biofuel / Jet A Evaluations

			CL12-3339	MIL DTL 83133H	
Test	Method	Units	Swedish Biofuel / Jet A Blend (POSF7658)	Table 1 Limits	
0 mg/L		pS/m	0		
1 mg/L		pS/m	480		
2 mg/L		pS/m	870		
3 mg/L		pS/m	1240		
4 mg/L		pS/m	1680		
Electrical Conductivity vs. Temperature	D2624	•			
-40		pS/m	210		
-30		pS/m	240		
-20		pS/m	290		
-10		pS/m	330		
0		pS/m	340		
10		pS/m	360		
20		pS/m	420		
30		pS/m	590		
40		pS/m	750		
		p5/III	730		
Ground Handling Properties and Safety MSEP	D3948	rating	74	70-90 min	
		raung	/4	/U-9U MIN	
Storage Stability - Peroxides @65°C	D3703	/I-	17		
0 week		mg/kg	1.6		
1 week		mg/kg	2.28		
2 week		mg/kg	3.56		
3 week		mg/kg	3.96		
6 week		mg/kg	4.04		
Storage Stability – Potential Gums	D5304				
16 hours		mg/100mL	0.0		
Upper Explosion Limit (UEL), @100°C	E681	%	$7.3 \pm 0.1 \text{ (re-run } 7.48)$		
Lower Explosion Limit (LEL), @100°C	E681	%	0.5 ± 0.1 (re-run 0.96)		
Autoignition temperature	E659				
Hot Flame Autoignition Temperature		°C	242		
Hot Flame Lag Time		seconds	60		
Cool Flame Autoignition Temperature		°C	236		
Cool Flame Lag Time		seconds	110		
Barometric Pressure		mm Hg	735.5		
Reaction Threshold Temperature		°C	203		
_	FTM				
Hot surface ignition	791-6053	°F	1250 (burns on tube and in pan)		
Compatibility					
Fuel/Additive Compatibility (2x treat rate)	D4054B				
•			small droplets after initial		
			cold soak		
FSII, DIEGME (0.3 vol%)		effect	not present after raising		
, , , , ,			temperature above room		
			temperature		
SDA, Stadis 450 (10 mg/L)		effect	no issues observed		
CI/LI, DCI-4A (46 mg/L)		effect	no issues observed no issues observed		
Metal Deactivator, DMD (11.4 mg/L)					
wietai Deactivator, DIVID (11.4 mg/L)		effect	no issues observed		
			anomalous large droplet		
4 4 4 4 4 4 6 70 (40 7)			seen at room temperature		
Antioxidant, AO-30 (48 mg/L)		effect	not present after raising		
			temperature above room		
m			temperature		
Thermal Stability, +100 (512 mg/L)		effect	no issues observed		
			 thin film on bottom after 		
Additive Cocktail (DMD, AO-30, Stadis 450,			initial cold soak		
DCI-4A, DIEGME, +100)		effect	 not present after raising 		
(same concentrations as above)			temperature above room		
			temperature		
			See Figure BB-1		
Elastomer Compatibility (O-Ring Tests)	SwRI		and Figure BB-2		
Miscellaneous					
Copper Strip Corrosion (100°C for 2 hours)	D130	rating	1A	No. 1 max	

Table BB-1. Swedish Biofuel / Jet A Evaluations

Test	Method	Units	CL12-3339 Swedish Biofuel / Jet A Blend (POSF7658)	MIL DTL 83133H Table 1 Limits
Smoke Point	D1322	mm	25	25.0 min or 19.0 min
Naphthalene Content	D1840	vol%	0.18	3.0 max
Sulfur - Mercaptan	D3227	mass%	<0.0003	0.002 max
Acid Number	D3242	mg KOH/g	0.008	0.015 max
Existent Gums	D381	mg/100mL	2	7.0 max
Heat of Combustion	D4809			
BTUHeat_Net		BTU/lb	18489.3	18400.7 min
MJHeat_Net		MJ/kg	43.00	42.8 min
Sulfur Content - (Antek)	D5453	ppm	40.7	0.30 mass % max
Ignition Quality Test (IQT)	D6890			
Ignition Delay, ID		ms	4.893	
Derived Cetane Number, DCN			42.60	
Minimum Ignition Energy @ 100°C	E582	mJ	0.13 - 0.18	
Sulfur Content - (XRY)	D2622	ppm	45.8	

Figure BB-1. Tensile Strength – Swedish Biofuel / Jet A Blend

Figure BB-2. Volume Change – Swedish Biofuel / Jet A Blend

Appendix BC

Kior HDCJ Evaluations

Table BC-1. Kior HDCJ Evaluations

	CL12-3883/5832 CL12-4384 CL12-4384						
Test	Method	Units	Kior HDCJ/Jet A Blend	neat Kior HDCJ	MIL DTL 83133H		
1 est	Witting	Cints	(POSF8123)	(POSF8076)	Table 1 Limits		
Chemistry			()	<u> </u>			
Hydrocarbon Types by Mass Spec	D2425						
Paraffins		mass%	34.8	0.0			
Monocycloparaffins		mass%	37.2	See Table			
Dicycloparaffins		mass%		Footnote (1)			
Tricycloparaffins		mass%		roomote (1)			
TOTAL SATURATES		mass%	72.0	49.3			
Alkylbenzenes		mass%	11.0	7.1			
Indans/Tetralins		mass%	13.2	32.8			
Indenes		mass%	2.1	6.7			
Naphthalene		mass%	1.2	2.9			
Naphthalene, Alkyl		mass%					
Acenaphthenes		mass%	0.3	0.7			
Acenaphthylenes		mass%	0.2	0.5			
Tricyclic Aromatics		mass%					
TOTAL AROMATICS		mass%	28.0	50.7			
Aromatic Content	D1319						
Aromatics		vol%	25.6	45.7	25.0 max		
Olefins		vol%	2.0	2.2			
Saturates		vol%	72.4	52.1			
Carbon/Hydrogen	D5291						
Carbon		%	85.99	88.0			
Hydrogen		%	13.33	11.8			
Hydrogen Content (NMR)	D3701	mass%	13.46	13.9	13.4 min		
Carbonyls, Alcohols, Esters, Phenols							
Alaskala	EPA						
Alcohols	8015B	mg/kg					
Carbonyls, Esters	EPA	mg/kg	Appendix BK	N/A			
Carbonyis, Esters	8260B	mg/kg	Appendix BK	IV/A			
Phenols	EPA	mg/kg					
	8270C						
Nitrogen Content	D4629	mg/kg	<0.3	<1			
Copper by AA	D3237M	ppb	0.007	N/A			
Elemental Analysis	D7111						
Al		ppb	<100	286.0			
Ba		ppb	<100	<100			
Ca		ppb	<100	<100			
Cr		ppb	<100	<100			
Cu		ppb	<100	<100			
Fe		ppb	<100	<100			
Li		ppb	<100	<100			
Pb		ppb	<100	<100			
Mg		ppb	<100	<100			
Mn		ppb	<100	<100			
Mo		ppb	<100	<100			
Ni		ppb	<100	<100			
K		ppm	<1	<1			
Na		ppm	<1	<1			
Si		ppm	<100	<100			
Ag		ppb	<100	<100			
Ti		ppb	<100	<100			
V		ppb	<100	<100			
Zn		ppb	<100	<100			
Bulk Physical and Performance							
Properties							
Distillation	D86						
IBP		°C	177.5 (175.2)	N/A			

Table BC-1. Kior HDCJ Evaluations

			CL12-3883/5832	CL12-4384	
Test	Method U	Units	Kior HDCJ/Jet A Blend	neat Kior HDCJ	MIL DTL 83133H
			(POSF8123)	(POSF8076)	Table 1 Limits
5%		°C	181.9 (181.8)	N/A	
10%		°C	183.0 (182.5)	N/A	205 max
15%		°C	182.9 (183.2)	N/A	
20%		°C	185.0 (184.9)	N/A	
30%		°C	187.6 (188.0)	N/A	
40%		°C	191.8 (191.6)	N/A	
50%		°C	195.7 (195.7)	N/A	
60%		°C	201.3 (201.1)	N/A	
70%		°C	208.2 (207.9)	N/A	
80%		°C	217.8 (217.2)	N/A	
90%		°C	232.6 (232.4)	N/A	
95%		°C	246.6 (246.8)	N/A	• • • • • • • • • • • • • • • • • • • •
FBP		°C	264.1 (263.1)	N/A	300 max
Residue		%	1.2 (1.1)	N/A	1.5 max
Loss		%	0.3 (0.3)	N/A	1.5 max
T50-T10		°C	12.7 (13.2)	N/A	
T90-T10	D200=	°C	49.6 (49.9)	N/A	
Simulated Distillation	D2887	°C	143.3	NI/A	
IBP 5%		°C	143.3	N/A N/A	
10%		°C	167.0	N/A N/A	
15%		°C	171.5	N/A N/A	
20%		°C	171.5	N/A N/A	
25%		°C	179.0	N/A N/A	
30%		°C	182.7	N/A	
35%		°C	187.6	N/A	
40%		°C	192.0	N/A	
45%		°C	196.1	N/A	
50%		°C	198.2	N/A	
55%		°C	204.0	N/A	
60%		°C	208.6	N/A	
65%		°C	213.4	N/A	
70%		°C	217.2	N/A	
75%		°C	222.3	N/A	
80%		°C	229.8	N/A	
85%		°C	236.6	N/A	
90%		°C	248.0	N/A	
95%		°C	265.4	N/A	
FBP		°C	293.3	N/A	
Vapor pressure (Absolute)	D6378				
0°C		psi	0.00	N/A	
20°C		psi	0.03	N/A	
40°C		psi	0.03	N/A	
60°C		psi	0.17	N/A	
80°C		psi	0.48	N/A	
100°C		psi	1.09	N/A	
120°C		psi	2.68	N/A	
JFTOT Breakpoint	D3241BP	°C	200	*****	
Test Temperature		°C	300	N/A	2
ASTM Code		rating	2.0	N/A	<3 max
Maximum Pressure Drop	D5001	mm Hg	0.4	N/A	25 max
Lubricity (BOCLE) as received	D5001	mm	0.720	N/A	
Lubricity (BOCLE) vs. CI/LI Concentration	D5001				
		22.22	0.000	NI/A	
0 mg/L 5 mg/L		mm	0.890 0.780	N/A N/A	
5 mg/L 10 mg/L		mm	0.780	N/A N/A	
10 mg/L 15 mg/L		mm	0.710	N/A N/A	
15 mg/L 20 mg/L		mm	0.650	N/A N/A	
Lubricity (HFRR)	D6079	mm	710	N/A N/A	
Lubricity (HFRR) vs. CI/LI	D6079 D6079	μm	/10	1 1//A	

Table BC-1. Kior HDCJ Evaluations

			CL12-3883/5832	CL12-4384	
Test	Method	Units	Kior HDCJ/Jet A Blend	neat Kior HDCJ	MIL DTL 83133H
2 450	1/1001104	C 11105	(POSF8123)	(POSF8076)	Table 1 Limits
Concentration					
0 mg/L		μm	745	N/A	
5 mg/L		μm	735	N/A	
10 mg/L		μm	738	N/A	
15 mg/L		μm	727	N/A	
20 mg/L		μm	696	N/A	
Lubricity (Scuffing Load BOCLE)	D6078	g	1650	N/A	
Lubricity (Scuffing Load BOCLE) vs. CI/LI Concentration	D6078				
0 mg/L		g	1550	N/A	
5 mg/L		g	1550	N/A	
10 mg/L		g	1750	N/A	
15 mg/L		g	1800	N/A	
20 mg/L		g	1950	N/A	
Kinematic Viscosity	D445				
-40		cSt	8.20	N/A	0.0
-20		cSt	4.10	N/A	8.0 max
25°C		cSt	1.56	N/A	
40°C	772716	cSt	1.25	N/A	
Specific Heat Capacity	E2716	1 70 77	1 (04	NT/ 4	
-25°C		kJ/kg.K	1.601	N/A	
0°C		kJ/kg.K	1.684	N/A	
25°C 50°C		kJ/kg.K	1.764 1.849	N/A	
100°C		kJ/kg.K kJ/kg.K	2.042	N/A N/A	
150°C		kJ/kg.K	2.249	N/A N/A	
Density	D4052	KJ/Kg.K	2.249	N/A	
5°C	D4032	g/cm ³	0.8262	N/A	
15°C		g/cm ³	0.8189	N/A	0.775 to 0.840
40°C		g/cm ³	0.8001	N/A	0.773 to 0.040
60°C		g/cm ³	0.7850	N/A	
80°C		g/cm ³	0.7698	N/A	
Surface tension	D1331A	g, c	01.020	1 1/12	
-10°C		mN/m	28.4	N/A	
22°C		mN/m	25.1	N/A	
40°C		mN/m	24.4	N/A	
Speed of Sound @ 30°C		m/s	1289	N/A	
Isentropic Bulk Modulus @ 30°C		psi	194592	N/A	
Thermal Conductivity	SwRI				
0°C		W/m.K	0.1240	N/A	
25°C		W/m.K	0.1191	N/A	
50°C		W/m.K	0.1142	N/A	
Water Content	D6304	ppm	93	90	
Water Content	D6304				
0°C		ppm	58	N/A	
30°C			157	N/A	
40°C		ppm	354	N/A	
50°C		ppm	412	N/A	:
Flash Point - Tag Closed	D56	°C	55	N/A	38 min
Freeze Point (manual)	D2386	°C	-58	N/A	-47 max
Freeze Point	D5972	°C	-63.2	N/A	
Electrical Properties	0 77				
Dielectric Constant (10kHz)	SwRI		2224	NT/ A	
-40°C			2.234	N/A	
-20°C			2.206	N/A	
-0.4°C			2.177	N/A	
30°C			2.139	N/A	
50°C	D2(24		2.113	N/A	
Electrical Conductivity	D2624	pS/m	3.0	N/A	
Electrical Conductivity vs. SDA Concentration	D2624				
Content ation					

Table BC-1. Kior HDCJ Evaluations

			CT 12 2002/5022	CL12-4384	
Test	Method	Units	CL12-3883/5832 Kior HDCJ/Jet A Blend	neat Kior HDCJ	MIL DTL 83133H
Test	Methou	Cints	(POSF8123)	(POSF8076)	Table 1 Limits
0 mg/L		pS/m	0	N/A	
1 mg/L		pS/m	600	N/A	
2 mg/L		pS/m	1150	N/A	
3 mg/L		pS/m	1730	N/A	
4 mg/L		pS/m	2300	N/A	
Electrical Conductivity vs.	D2624				
Temperature	D2024				
-40		pS/m	0	N/A	
-30		pS/m	0	N/A	
-20		pS/m	0	N/A	
-10		pS/m	0	N/A	
0		pS/m	0	N/A	
10		pS/m	0	N/A	
20		pS/m	3	N/A	
30		pS/m	40	N/A	
40		pS/m	113	N/A	
Ground Handling Properties and					
Safety MSEP	D3948	rating	97	N/A	70-90 min
Storage Stability - Peroxides @65°C	D3948 D3703	rating	71	IN/A	/ U-9U IIIII
0 week	טונע	mg/kg	0.36	N/A	
1 week		mg/kg	0.76	N/A N/A	
2 week		mg/kg	1.56	N/A	
3 week		mg/kg	2.08	N/A	
6 week		mg/kg	6.28	N/A	
Storage Stability – Potential Gums	D5304	mg/mg	0.20	1472	
16 hours	20001	mg/100mL	0.1	N/A	
Upper Explosion Limit (UEL),	F (04				
@100°C	E681	%	4.0±0.1%	N/A	
Lower Explosion Limit (LEL),	E681	%	0.5±0.1%	N/A	
@100°C		70	0.5±0.1 %	IN/A	
Autoignition temperature	E659				
Hot Flame Autoignition Temperature		°C	259	N/A	
Hot Flame Lag Time		seconds	33	N/A	
Cool Flame Autoignition		°C		N/A	
Temperature					
Cool Flame Lag Time		seconds		N/A	
Barometric Pressure		mm Hg	740.2	N/A	
Reaction Threshold Temperature	7777. 6	°C	238	N/A	
Hot surface ignition	FTM 791-6053	° F	1200 (burns on tube and	N/A	
Compatibility	/91-0055		pan)		
Fuel/Additive Compatibility (2x treat					
rate)	D4054B				
Tate)			large droplets after		
			initial cold soak		
FSII, DIEGME (0.3 vol%)		effect	went back into	N/A	
Ton, Diedvie (0.5 vor/0)		circu	solution only upon	14/12	
			heating to 100°F		
SDA, Stadis 450 (10 mg/L)		effect	no issues observed	N/A	
CI/LI, DCI-4A (46 mg/L)		effect	no issues observed	N/A	
Metal Deactivator, DMD (11.4 mg/L)		effect	no issues observed	N/A	
Antioxidant, AO-30 (48 mg/L)		effect	no issues observed	N/A	
Thermal Stability, +100 (512 mg/L)		effect	no issues observed	N/A	
included the second of the sec		Jiict	thin film on	* W * *	
			bottom after initial		
Additive Cocktail (DMD, AO-30,			cold soak		
Stadis 450, DCI-4A, DIEGME, +100)		effect	went back into	N/A	
(same concentrations as above)			solution only upon		
			heating to 100°F		
Elastomer Compatibility	SwRI		See Figure BC-1	N/A	
(O-Ring Tests)	SWKI		and Figure BC-2	IN/A	

Table BC-1. Kior HDCJ Evaluations

			CV 40 2002/E022	CV 10 1001	
			CL12-3883/5832	CL12-4384	MIL DTL 83133H
Test	Method	Units	Kior HDCJ/Jet A Blend	neat Kior HDCJ	Table 1 Limits
			(POSF8123)	(POSF8076)	Table 1 Lillins
Miscellaneous					
Copper Strip Corrosion (100°C for 2	D120		4.4	27/4	N. 4
hours)	D130	rating	1A	N/A	No. 1 max
G I D I	D1222		20.5	77/4	25.0 min or 19.0
Smoke Point	D1322	mm	20.5	N/A	min
Naphthalene Content	D1840	vol%	0.32	N/A	3.0 max
Sulfur - Mercaptan	D3227	mass%	< 0.003	N/A	0.002 max
Acid Number	D3242	mg KOH/g	0.011	0.019	0.015 max
Existent Gums	D381	mg/100mL	0.8	0.5	7.0 max
Heat of Combustion	D4809				
BTUHeat_Net		BTU/lb	18402.0	N/A	18400.7 min
MJHeat_Net		MJ/kg	42.80	N/A	42.8 min
Sulfur Content - (Antek)	D5453	ppm	51	5.8	0.30 mass % max
Ignition Quality Test (IQT)	D6890				
Ignition Delay, ID		ms	5.38	N/A	
Derived Cetane Number, DCN			39.2	N/A	
Minimum Ignition Energy @ 100°C	E582	mJ	0.45 - 0.63	N/A	
Sulfur Content - (XRY)	D2622	ppm	59.4	10.2	
FAME Content	IP585	ppm	<4.5	N/A	

(1) ASTM D2425 - Duplicate runs gave conflicting results. ASTM D2425 does not distinguish well between mono/di/tri cycloparaffins. One run showed all mono and the other run was spread across mono/di/tri. The Total value was similar in both cases so only that is being reported.

Figure BC-1. Tensile Strength – Kior HDCJ / Jet A Blend

Figure BC-2. Volume Change – Kior HDCJ / Jet A Blend

Appendix BD

Virent Evaluations

Table BD-1. Virent Evaluations

			CL12-4367	CL12-4370	
Test	Method	Units	Virent / Jet A Blend	neat Virent	MIL DTL 83133H
Test	Method	Units	(POSF9404)	(POSF8535)	Table 1 Limits
Chemistry			(10319404)	(1 (31 (333)	
Hydrocarbon Types by Mass Spec	D2425				
Paraffins	D2423	mass%	33.9	17.0	
Monocycloparaffins		mass%	24.9	42.5	
Dicycloparaffins		mass%	26,2	36.2	
Tricycloparaffins		mass%	5.6	4.2	
TOTAL SATURATES		mass%	90.6	99.9	
Alkylbenzenes		mass%	4.1	-	
Indans/Tetralins		mass%	2.5	-	
Indenes		mass%	0.5	-	
Naphthalene		mass%	0.3	-	
Naphthalene, Alkyl		mass%	1.5	-	
Acenaphthenes		mass%	0.3	0.1	
Acenaphthylenes		mass%	0.2	-	
Tricyclic Aromatics		mass%	-	-	
TOTAL AROMATICS		mass%	9.4	0.1	
Aromatic Content	D1319				
Aromatics		vol%	8.3	0.7	25.0 max
Olefins		vol%	2.3	1.2	
Saturates		vol%	89.4	98.1	
Carbon/Hydrogen	D5291				
Carbon		%	85.4	85.7	
Hydrogen		%	14.0	14.2	
Hydrogen Content (NMR)	D3701	mass%	14.1	14.3	13.4 min
Carbonyls, Alcohols, Esters, Phenols					
Alcohols	EPA 8015B			N/A	
Carbonyls, Esters	EPA 8260B		Appendix BL	N/A	
Phenols	EPA 8270C			N/A	
Nitrogen Content	D4629	mg/kg	<1	<1	
Copper by AA	D3237M	ppb	< 0.005	N/A	
Elemental Analysis	D7111				
Al		ppb	311	287	
Ba		ppb	<100	<100	
Ca		ppb	<100	<100	
Cr		ppb	<100	<100	
Cu		ppb	<100	<100	
Fe		ppb	<100	<100	
Li		ppb	<100	<100	
Pb		ppb	<100	<100	
Mg		ppb	<100	<100	
Mn		ppb	<100	<100	
Mo		ppb	<100	<100	
Ni V		ppb	<100	<100	
K Na		ppm	<1	<1	
Na Si		ppm	<1 <100	<1 102	
		ppm		102 <100	
Ag Ti		ppb ppb	<100 <100	<100 <100	
V			<100 <100	<100 <100	
Zn		ppb ppb	<100	<100	
Bulk Physical and Performance		hhn	<100	<100	
Properties					
Distillation	D86				
IBP	D00	°C	159.7	N/A	
5%		°C	173.4	N/A N/A	
10%		°C	177.0	N/A N/A	205 max
15%		°C	182.1	N/A N/A	205 IIIAX
15%		L	104.1	1 V/A	

Table BD-1. Virent Evaluations

m .			CL12-4367	CL12-4370	MIL DTL 83133H
Test	Method	Units	Virent / Jet A Blend	neat Virent	Table 1 Limits
Chamiatur			(POSF9404)	(POSF8535)	
Chemistry 20%		°C	185.7	N/A	
30%		°C	194.5	N/A N/A	
40%		°C	203.1	N/A N/A	
50%		°C	210.9	N/A N/A	
60%		°C	219.5	N/A N/A	
70%		°C	228.6	N/A	
80%		°C	239.8	N/A	
90%		°C	255.3	N/A	
95%		°C	267.0	N/A	
FBP		°C	279.4	N/A	300 max
Residue		%	1.3	N/A	1.5 max
Loss		%	0.1	N/A	1.5 max
T50-T10		°C	33.9	N/A	
T90-T10		°C	78.3	N/A	
Simulated Distillation	D2887		1 0.10		
IBP		°C	113.7	N/A	
5%		°C	146.4	N/A	
10%		°C	157.6	N/A	
15%		°C	169.2	N/A	
20%		°C	175.5	N/A	
25%		°C	184.6	N/A	
30%		°C	192.6	N/A	
35%		°C	196.8	N/A	
40%		°C	204.1	N/A	
45%		°C	209.1	N/A	
50%		°C	215.3	N/A	
55%		°C	218.4	N/A	
60%		°C	225.7	N/A	
65%		°C	232.1	N/A	
70%		°C	238.3	N/A	
75%		°C	246.7	N/A	
80%		°C	254.2	N/A	
85%		°C	263.6	N/A	
90%		°C	272.4	N/A	
95%		°C	287.0	N/A	
FBP		°C	314.3	N/A	
Vapor pressure (Absolute)	D6378				
0 °C		psi	0.0	N/A	
20 °C		psi	0.0	N/A	
40 °C		psi	0.1	N/A	
60 °C		psi	0.3	N/A	
80 °C		psi	0.6	N/A	
100 °C		psi	1.3	N/A	
120 °C		psi	2.3	N/A	
JFTOT Breakpoint	D3241BP	°C			
Test Temperature		°C	335	N/A	
ASTM Code		rating	<3	N/A	<3 max
Maximum Pressure Drop		mm Hg	0.0	N/A	25 max
Lubricity (BOCLE)	D5001	mm	0.75	N/A	
Lubricity (BOCLE) vs. CI/LI	D5001				
Concentration			0.01	****	
0 mg/L		mm	0.86	N/A	
5 mg/L		mm	0.79	N/A	
10 mg/L		mm	0.72	N/A	
15 mg/L		mm	0.68	N/A	
20 mg/L	D.COZO	mm	0.66	N/A	
Lubricity (HFRR)	D6079	μm	0.70	N/A	
Lubricity (HFRR) vs. CI/LI	D6079				
Concentration 0 mg/I		1,	0.70	N7/4	
0 mg/L		μm	0.70	N/A	

Table BD-1. Virent Evaluations

m .	35.0	** *.	CL12-4367	CL12-4370	MIL DTL 83133H
Test	Method	Units	Virent / Jet A Blend	neat Virent	Table 1 Limits
CI 11			(POSF9404)	(POSF8535)	
Chemistry			0.51	27/4	
5 mg/L		μm	0.71 0.65	N/A	
10 mg/L 15 mg/L		μm	0.63	N/A	
20 mg/L		μm	0.65	N/A	
Lubricity (Scuffing Load BOCLE)	D6078	μm	1700	N/A N/A	
Lubricity (Scuffing Load BOCLE) vs.		mm	1700	IV/A	
CI/LI Concentration	D6078				
0 mg/L		g	1600	N/A	
5 mg/L		g	1450	N/A N/A	
10 mg/L		g	1400	N/A	
15 mg/L		g	1850	N/A	
20 mg/L		g	1900	N/A	
Kinematic Viscosity	D445	, s	1700	11/21	
-39.95°C	D443	cSt	10.9	N/A	
-20.0°C		cSt	5.1	N/A	8.0 max
25°C		cSt	1.8	N/A N/A	0.0 max
40°C		cSt	1.4	N/A N/A	
Specific Heat Capacity	E2716	CSI	1.7	11//21	
-25°C	12/10	kJ/kg.K	1.702	N/A	
0°C		kJ/kg.K	1.793	N/A	
25°C		kJ/kg.K	1.892	N/A N/A	
50°C		kJ/kg.K	1.983	N/A N/A	
100°C		kJ/kg.K	2.176	N/A N/A	
150°C		kJ/kg.K	2.398	N/A N/A	
Density	D4052	NJ/Ng.IX	2.370	IV/AL	
5°C	D4032	g/cm ³	0.8168	N/A	
15°C		g/cm ³	0.8095	N/A	0.775 to 0.840
40°C		g/cm ³	0.7912	N/A	0.775 to 0.040
60°C		g/cm ³	0.7765	N/A	
80°C		g/cm ³	0.7618	N/A	
Surface tension	D1331A	g/cm	0.7010	14/21	
-10.0°C	Diccini	mN/m	27.7	N/A	
22°C		mN/m	25.7	N/A	
40.0°C		mN/m	24.1	N/A	
Speed of Sound @ 30°C		m/s	1277	N/A	
Isentropic Bulk Modulus @ 30°C		psi	188813	N/A	
Thermal Conductivity	SwRI	PSI	100010	14/11	
0°C	5,,,112	W/m.K	0.1217	N/A	
25°C		W/m.K	0.1170	N/A	
50°C		W/m.K	0.1124	N/A	
Water Content	D6304	ppm	54.0	43.0	
Water Content	D6304	FF			
0°C		ppm	35	N/A	
30°C		ppm	97	N/A	
40°C		ppm	125	N/A	
50°C		ppm	158	N/A	
Flash Point - Tag Closed	D56	°C	47.0	N/A	38 min
Freeze Point (manual)	D2386	°C	-56.0	N/A	-47 max
Freeze Point	D5972	°C	-52.7	N/A	
Electrical Properties					
Dielectric Constant (10kHz)	SwRI				
-34.3°C			2.1650	N/A	
-20°C			2.1437	N/A	
0.0°C			2.1190	N/A	
30°C			2.0865	N/A	
50°C			2.0613	N/A	
Electrical Conductivity	D2624	pS/m	0.0	N/A	
Electrical Conductivity vs. SDA					
Concentration	D2624				
0 mg/L		pS/m	0.0	N/A	
		-	·		

Table BD-1. Virent Evaluations

			CT 12 42CT	CI 12 4270	
Test	Method	Units	CL12-4367 Virent / Jet A Blend	CL12-4370 neat Virent	MIL DTL 83133H
Test	Method	Units	(POSF9404)	(POSF8535)	Table 1 Limits
Chemistry			(1 001)404)	(1 051 0555)	
1 mg/L		pS/m	470.0	N/A	
2 mg/L		pS/m	900.0	N/A	
3 mg/L		pS/m	1350.0	N/A	
4 mg/L		pS/m	1790.0	N/A	
Electrical Conductivity vs.	D2624				
Temperature	D2024				
-40		pS/m	0.0	N/A	
-30		pS/m	0.0	N/A	
-20		pS/m	0.0	N/A	
-10		pS/m	0.0	N/A	
0		pS/m	0.0	N/A	
10		pS/m	0.0	N/A	
20		pS/m	0.0	N/A	
30		pS/m	0.0	N/A	
40		pS/m	10.0	N/A	
Ground Handling Properties and					
Safety MSEP	D2049	potin-	99	N/A	70-90 min
	D3948 D3703	rating	99	IV/A	/U-9U min
Storage Stability - Peroxides @65°C 0 week	D3/03	mg/kg	1.2	N/A	
1 week		mg/kg	1.5	N/A N/A	
2 week			2.0	N/A N/A	
3 week		mg/kg mg/kg	2.0	N/A N/A	
6 week		mg/kg	3.2		
Storage Stability – Potential Gums	D5304	nig/kg	3.2	IV/A	
16 hours	D3304	mg/100mL	0.0	N/A	
			7.2 ± 0.2 (re-run		
Upper Explosion Limit (UEL), @100°C	E681	%	7.46)	N/A	
Lower Explosion Limit (LEL), @100°C	E681	%	0.5 ± 0.1 (re-run 0.92)	N/A	
Autoignition temperature	E659				
Hot Flame Autoignition Temperature		°C	233	N/A	
Hot Flame Lag Time		seconds	179	N/A	
Cool Flame Autoignition Temperature		°C		N/A	
Cool Flame Lag Time		seconds	720.5	N/A	
Barometric Pressure		mm Hg	739.5	N/A	
Reaction Threshold Temperature	FTM 791-	°C	223 1125 (burns on tube	N/A	
Hot surface ignition	6053	°F	and pan)	N/A	
Compatibility	0033		anu pan)		
Fuel/Additive Compatibility (2x treat	D4054B				
rate)			large droplets after initial		
			cold soak		
			small droplet		
			remaining at		
			room		
FSII, DIEGME (0.3 vol%)		effect	temperature	N/A	
			went back		
			into solution		
		I	only upon		
		I	heating to		
		L	100°F		
SDA, Stadis 450 (10 mg/L)		effect	no issues observed	N/A	
CI/LI, DCI-4A (46 mg/L)		effect	• no issues	N/A	
Metal Deactivator, DMD (11.4 mg/L)		effect	observed ono issues	N/A	
Antioxidant, AO-30 (48 mg/L)		effect	observed o no issues	N/A	
Amadaidait, AO-30 (40 liig/L)		circu	- 110 155005	11//1	

Table BD-1. Virent Evaluations

			CL12-4367	CL12-4370	
Test	Method	Units	Virent / Jet A Blend	neat Virent	MIL DTL 83133H
		C	(POSF9404)	(POSF8535)	Table 1 Limits
Chemistry				,	
·			observed		
The annual Stabilities (100 (512 //L))		effect	 no issues 	N/A	
Thermal Stability, +100 (512 mg/L)		enect	observed	IV/A	
			 thin film on 		
			bottom after		
			initial cold		
			soak		
			 small droplet 		
Additive Cocktail (DMD, AO-30, Stadis			remaining at		
450, DCI-4A, DIEGME, +100)		effect	room	N/A	
(same concentrations as above)			temperature		
			• went back		
			into solution		
			only upon		
			heating to 100°F		
Elastomer Compatibility (O-Ring			See Figure BD-1		
Tests)	SwRI		and Figure BD-2	N/A	
Miscellaneous					
Copper Strip Corrosion (100°C for 2	D130	4:	1 A	37/4	N- 1
hours)	D130	rating	1A	N/A	No. 1 max
Smoke Point	D1322	mm	26.0	N/A	25.0 min or 19.0
				IV/A	min
Naphthalene Content	D1840	vol%	0.9	N/A	3.0 max
Sulfur - Mercaptan	D3227	mass%	< 0.0003	N/A	0.002 max
Acid Number	D3242	mg KOH/g	0.005	0.003	0.015 max
Existent Gums	D381	mg/100mL	0.6	1.4	7.0 max
Heat of Combustion	D4809				
BTUHeat_Net		BTU/lb	18522.4	N/A	18400.7 min
MJHeat_Net		MJ/kg	43.08	N/A	42.8 min
Sulfur Content - (Antek)	D5453	ppm	341.4	0.5	0.30 mass % max
Ignition Quality Test (IQT)	D6890				
Ignition Delay, ID		ms	4.6	N/A	
Derived Cetane Number, DCN			44.9	N/A	
Minimum Ignition Energy @ 100°C	E582	mJ	0.13-0.28	N/A	
Sulfur Content - (XRY)	D2622	ppm	352.2	2.8	

Figure BD-1. Tensile Strength – Virent / Jet A Blend

Figure BD-2. Volume Change – Virent / Jet A Blend

Appendix BE

ARA (ReadiJet) Evaluations

Table BE-1. ARA (ReadiJet) Evaluations

			CV 42 400 (
m .	35.0	T T •.	CL13-4826	MIL DTL 83133H
Test	Method	Units	ARA ReadiJet	Table 1 Limits
CI			(POSF10136)	
Chemistry	D2425			
Hydrocarbon Types by Mass Spec	D2425	0/	22.1	
Paraffins		mass%	33.1	
Monocycloparaffins		mass%	35.2	
Dicycloparaffins		mass%	10.0	
Tricycloparaffins		mass%	1.9	
TOTAL SATURATES		mass%	80.2	
Alkylbenzenes		mass%	9.3	
Indans/Tetralins		mass%	8.5	
Indenes		mass%	0.9	
Naphthalene		mass%	0.7	
Naphthalene, Alkyl		mass%	0.2	
Acenaphthenes		mass%	0.1	
Acenaphthylenes		mass%	0.1	
Tricyclic Aromatics		mass%	0.0	
TOTAL AROMATICS		mass%	19.8	
Aromatic Content	D1319			
Aromatics		vol%	16.9	25.0 max
Olefins		vol%	1.9	
Saturates		vol%	81.2	
Carbon/Hydrogen	D5291			
Carbon		%	86.1	
Hydrogen		%	13.9	
Hydrogen Content (NMR)	D3701	mass%	14.0	13.4 min
Carbonyls, Alcohols, Esters, Phenols				
Alcohols	EPA 8015B			
Carbonyls, Esters	EPA 8260B		Appendix BM	
Phenols	EPA 8270C			
Nitrogen Content	D4629	mg/kg	<1	
Copper by AA	D3237M	ppb	<5	
Elemental Analysis	D7111			
Al		ppb	211.0	
Ba		ppb	<100	
Ca		ppb	220.0	
Cr		ppb	<100	
Cu		ppb	<100	
Fe		ppb	<100	
Li		ppb	<100	
Pb		ppb	<100	
Mg		ppb	<100	
Mn		ppb	<100	
Mo		ppb	<100	
Ni		ppb	<100	
K		ppm	<1	
Na		ppm	<1	
Si		ppm	<100	
Ag		ppb	<100	
Ti		ppb	<100	
V		ppb	<100	
Zn		ppb	<100	
Bulk Physical and Performance Properties				
Distillation	D86			
IBP		°C	152.3	
5%		°C	163.5	
10%		°C	166.1	205 max
15%		°C	169.6	
20%		°C	173.7	
			1	

Table BE-1. ARA (ReadiJet) Evaluations

Test					
Solution	MIL DTL 83133H	CL13-4826		35.0	m .
30% C 182.0 40% C 191.1 1 1 1 1 1 1 1 1 1	Table 1 Limits		Units	Method	Test
Sumarrian Suma			0.0		2007
S0% °C 201.2					
G0% °C 211.9					
T0% C 222.6			°C		
S0% °C 234.7					
99% °C 248.6 95% °C 257.2 FBP °C 267.2 Residue % 1.2 Loss % 0.2 T50-T10 °C 35.1 T90-T10 °C 35.1 T00-T10 °C 152.3 S80-C 152.0 S80-C 152.0 S80-C 152.0 S80-C 152.0 S80-C 177.1 S80-C 177.1 S80-C 177.1 S80-C 177.1 S80-C 177.1 S80-C 177.1 S80-C 193.2 S80-C 193.2 S80-C 193.2 S80-C 210.3 S80-C 221.3 S80-C 222.4 S80-C 223.4 S80-C 223.4 S80-C 247.6 S80-C 247.6 S80-C 255.0 S80-C 264.3 S80-C 264.3 S80-C 265.0 S80-C 265.0					
Sys					
Residue					
Residue					95%
Loss % 0.2	300 max	267.2	°C		FBP
TS0-T10	1.5 max	1.2	%		Residue
Simulated Distillation	1.5 max	0.2	%		Loss
Simulated Distillation		35.1	°C		T50-T10
D2887 C					
Section				D2887	
S% C 136.1 10% C 150.2 15% C 150.2 15% C 152.0 20% C 152.0 20% C 163.6 25% C 172.1 30% C 175.1 33% C 175.1 35% C 184.7 40% C 193.2 45% C 193.2 45% C 193.2 45% C 203.1 55% C 210.3 60% C 210.3 60% C 216.2 65% C 224.4 70% C 232.7 75% C 239.4 80% C 247.6 80% C 247.6 90% C 273.3 95% C 264.3 95% C 273.3 75% C 273.3 75% C 239.4 80% C 247.6 80% C 247.6 90% C 273.3 95% C 273.3 95% C 273.3 100 C psi 0.01 40 C psi 0.14 40 C psi 0.19 100 C psi 0.36 80 C psi 0.36 80 C psi 0.36 100 C psi 0.36 100 C psi 0.36 Maximum Pressure Drop mm Hg 0 Lubricity (BOCLE) vs. CI/L1 Concentration D5001 Lubricity (BOCLE) vs. CI/L1 Concentration D6079 Lubricity (HFRR) D6079 mm 0.65		122.3	°C	2200.	
10% C 150.2					
15%			°C		
C					
25% °C 172.1					
30% °C 175.1					
35%					
40%					
45% C 196.4 50% C 203.1 55% C 210.3 66% C 216.2 66% C 216.2 65% C 224.4 70% C 232.7 75% C 233.4 80% C 233.4 80% C 247.6 885% C 255.0 90% C 264.3 99% C 264.3 99% C 264.3 99% C 273.3 FBP C 304.3 Vapor pressure (Absolute) D6378 0 °C psi 0.14 40 °C psi 0.19 60 °C psi 0.36 80 °C psi 0.36 80 °C psi 0.36 80 °C psi 0.36 100 °C psi 0.36 100 °C psi 0.324 100 °C psi 3.23 IFTOT Breakpoint D3241BP C C 295 ASTM Code rating 2 Maximum Pressure Drop mm Hg 0 Lubricity (BOCLE) D5001 mm 0.68 Lubricity (BOCLE) D5001 mm 0.65 15 mg/L mm 0.62 Lubricity (HFRR) D6079 mm Lubricity (HFRR) D6079 mm					
S0% °C 203.1					
S5% °C 210.3					
60% °C 216.2					
C 224.4					
To% C 232.7					
75% °C 239.4 80% °C 247.6 85% °C 255.0 90% °C 264.3 95% °C 264.3 95% °C 273.3 FBP °C 304.3 Vapor pressure (Absolute) D6378 0 °C psi 0.01 20 °C psi 0.14 40 °C psi 0.19 60 °C psi 0.36 80 °C psi 0.36 80 °C psi 0.36 100 °C psi 0.34 100 °C psi 3.23 JFTOT Breakpoint D3241BP °C Test Temperature °C 295 ASTM Code rating 2 Maximum Pressure Drop mm Hg 0 Lubricity (BOCLE) D5001 mm 0.68 Lubricity (BOCLE) vs. CI/LI Concentration D5001 Lubricity (BOCLE) mm 0.72 5 mg/L mm 0.65 15 mg/L mm 0.62 Lubricity (HFRR) D6079 μm 642 Lubricity (HFRR) D6079 μm 0.62 Lubricity (HFRR) D6079 μm 0.62 Lubricity (HFRR) D6079 μm 0.642 Lubricity (HFRR) D607					
80% °C 247.6					
S5% °C 255.0 90% °C 264.3 95% °C 264.3 95% °C 273.3 FBP °C 304.3 Vapor pressure (Absolute) D6378 0 °C psi 0.01 20 °C psi 0.14 40 °C psi 0.19 60 °C psi 0.36 80 °C psi 0.36 80 °C psi 0.36 80 °C psi 0.34 100 °C psi 3.23 JFTOT Breakpoint D3241BP °C Test Temperature °C 295 ASTM Code rating 2 Maximum Pressure Drop mm Hg 0 Lubricity (BOCLE) D5001 mm 0.68 Lubricity (BOCLE) vs. CI/LI Concentration D5001 Lubricity (BOCLE) D5001 mm 0.72 5 mg/L mm 0.70 10 mg/L mm 0.62 Lubricity (HFRR) D6079 μm 642 Lubricity (HFRR) D6079 μm 642 Lubricity (HFRR) D6079 μm 642 C 273.3 C 264.3		239.4	°C		75%
90% °C 264.3 95% °C 273.3		247.6	°C		80%
90% °C 264.3 95% °C 273.3		255.0	°C		85%
Page			°C		
Vapor pressure (Absolute)			°C		95%
Vapor pressure (Absolute) D6378 0 °C psi 0.01 20 °C psi 0.14 40 °C psi 0.19 60 °C psi 0.36 80 °C psi 0.84 100 °C psi 1.73 120 °C psi 3.23 JFTOT Breakpoint D3241BP °C Test Temperature °C 295 ASTM Code rating 2 Maximum Pressure Drop mm Hg 0 Lubricity (BOCLE) D5001 mm 0.68 Lubricity (BOCLE) vs. CI/LI Concentration D5001 mm 0.72 5 mg/L mm 0.70 mm 10 mg/L mm 0.65 mm 15 mg/L mm 0.62 mm 20 mg/L mm 0.62 mm Lubricity (HFRR) D6079 μm 642		304.3			
0 °C psi 0.01 20 °C psi 0.14 40 °C psi 0.19 60 °C psi 0.36 80 °C psi 0.84 100 °C psi 1.73 120 °C psi 3.23 JFTOT Breakpoint D3241BP °C Test Temperature °C 295 ASTM Code rating 2 Maximum Pressure Drop mm Hg 0 Lubricity (BOCLE) D5001 mm 0.68 Lubricity (BOCLE) vs. CI/LI Concentration D5001 mm 0.72 5 mg/L mm 0.72 mm 0.65 10 mg/L mm 0.65 mm 0.62 20 mg/L mm 0.62 mm 0.62 Lubricity (HFRR) D6079 μm 642		0 0 110	_	D6378	
20 °C		0.01	nei	B0870	
40 °C					
60 °C					
S0 °C					
100 °C					
Test Temperature C Psi 3.23					
D3241BP °C 295		2.22			
Test Temperature		3.43	psi °C	D2241DD	
ASTM Code rating 2 Maximum Pressure Drop mm Hg 0 Lubricity (BOCLE) D5001 mm 0.68 Lubricity (BOCLE) vs. CI/LI Concentration D5001 0 mg/L mm 0.72 5 mg/L mm 0.70 10 mg/L mm 0.65 15 mg/L mm 0.65 Lubricity (HFRR) D6079 μm 642		205		D3241BP	
Maximum Pressure Drop mm Hg 0					Test Temperature
Lubricity (BOCLE) D5001 mm 0.68 Lubricity (BOCLE) vs. CI/LI Concentration D5001 mm 0.72 0 mg/L mm 0.70 mm 5 mg/L mm 0.65 mm 15 mg/L mm 0.62 mm 20 mg/L mm 0.62 mm Lubricity (HFRR) D6079 μm 642	<3 max				
Lubricity (BOCLE) vs. CI/LI Concentration D5001 0 mg/L mm 0.72 5 mg/L mm 0.70 10 mg/L mm 0.65 15 mg/L mm 0.62 20 mg/L mm 0.62 Lubricity (HFRR) D6079 μm 642	25 max				
0 mg/L mm 0.72 5 mg/L mm 0.70 10 mg/L mm 0.65 15 mg/L mm 0.62 20 mg/L mm 0.62 Lubricity (HFRR) D6079 μm 642		0.68	mm		
5 mg/L mm 0.70				D5001	
10 mg/L mm 0.65 15 mg/L mm 0.62 20 mg/L mm 0.62 Lubricity (HFRR) D6079 μm 642			mm		
15 mg/L mm 0.62 20 mg/L mm 0.62 Lubricity (HFRR) D6079 μm 642			mm		
20 mg/L mm 0.62			mm		
20 mg/L mm 0.62			mm		
Lubricity (HFRR) D6079 µm 642					
I whilefely (HEDD) vs. CI/I I Concentration DC070				D6079	Lubricity (HFRR)
Ludrichy (fif kk) vs. CI/LI Concentration D00/9			·	D6079	Lubricity (HFRR) vs. CI/LI Concentration
0 mg/L μm 712		712	μm		
5 mg/L			•		
10 mg/L μm 719					10 mg/I
15 mg/L μm 722			•		
20 mg/L µm 736					

Table BE-1. ARA (ReadiJet) Evaluations

			CT 12 4026	
Test	Method	Units	CL13-4826 ARA ReadiJet	MIL DTL 83133H
Test	Memoa	Units	(POSF10136)	Table 1 Limits
Lubricity (Scuffing Load BOCLE)	D6078	mm	2150	
Lubricity (Scuffing Load BOCLE) Lubricity (Scuffing Load BOCLE) vs. CI/LI		111111	2130	
Concentration	D6078			
0 mg/L		g	1700	
5 mg/L			2200	
10 mg/L		g	2100	
15 mg/L		g g	2050	
20 mg/L			2200	
Kinematic Viscosity	D445	g	2200	
-39.95°C	D443	cSt	7.90	
-39.93 C		cSt	4.05	8.0 max
25°C		cSt	1.56	8.0 max
40°C		cSt	1.26	
Specific Heat Capacity	E2716	est	1.20	
-25°C	E2/10	kJ/kg.K	1.73	
-25 C 0°C				
25°C		kJ/kg.K kJ/kg.K	1.79 1.87	
50°C				
100°C		kJ/kg.K	1.96	
		kJ/kg.K	2.16	
150°C	D4053	kJ/kg.K	2.37	
Density	D4052	, 3	0.0444	
5°C		g/cm ³	0.8111	0.885 (0.040
15°C		g/cm ³	0.8036	0.775 to 0.840
25°C		g/cm ³	0.7962	
35°C		g/cm ³	0.7887	
45°C		g/cm ³	0.7812	
55°C		g/cm ³	0.7736	
65°C		g/cm ³	0.7661	
75°C		g/cm ³	0.7585	
85°C		g/cm ³	0.7508	
Surface tension	D1331A			
-10.0°C		mN/m	28.2	
22°C		mN/m	25.7	
40.0°C		mN/m	24.3	
Speed of Sound @ 30°C		m/s	1281	
Isentropic Bulk Modulus @ 30°C		psi	188541	
Thermal Conductivity	SwRI			
0°C		W/m.K	0.1284	
25°C		W/m.K	0.1227	
50°C		W/m.K	0.1170	
Water Content	D6304	ppm	52	
Water Content	D6304			
0°C		ppm	33	
30°C		ppm	101	
40°C		ppm	138	
50°C		ppm	201	
Flash Point - Tag Closed	D56	°C	42.0	38 min
Freeze Point (manual)	D2386	°C	-43.0	-47 max
Freeze Point	D5972	°C	-43.9	
Electrical Properties			-43.7	
Dielectric Constant (10kHz)	SwRI			
-40°C	SWKI		2.191	
-40°C				
			2.161	
0.0°C			2.137	
30°C			2.103	
50°C	D2<24		2.078	
Electrical Conductivity	D2624	pS/m	0.0	
Electrical Conductivity vs. SDA Concentration	D2624	g.:		
0 mg/L		pS/m	0	
1 mg/L		pS/m	303	
2 mg/L		pS/m	714	

Table BE-1. ARA (ReadiJet) Evaluations

			CV 12 102 (
Toot	Mathad	I Inita	CL13-4826	MIL DTL 83133H
Test	Method	Units	ARA ReadiJet (POSF10136)	Table 1 Limits
3 mg/L		pS/m	1425	
4 mg/L		pS/m	2700	
Electrical Conductivity vs. Temperature	D2624	ps/m	2700	
-40	D2024	pS/m	11	
-30		pS/m	11	
-20		pS/m	7	
-10		pS/m	3	
0		pS/m	1	
10		pS/m	1	
20		pS/m	3	
30		pS/m	5	
40		pS/m	8	
Ground Handling Properties and Safety				
MSEP	D3948	rating	97.0	70-90 min
Storage Stability - Peroxides @65°C	D3703			
0 week		mg/kg	1.08	
1 week		mg/kg	1.92	
2 week		mg/kg	2.16	
3 week		mg/kg	2.76	
6 week		mg/kg	3.00	
Storage Stability – Potential Gums	D5304			
16 hours		mg/100mL	0.4	
Upper Explosion Limit (UEL), @100°C	E681	%	6.0 +/- 0.1	
Lower Explosion Limit (LEL), @100°C	E681	%	0.5 +/- 0.1	
Autoignition temperature	E659			
Hot Flame Autoignition Temperature		°C	234	
Hot Flame Lag Time		seconds	209	
Cool Flame Autoignition Temperature		°C	N/A	
Cool Flame Lag Time		seconds	0	
Barometric Pressure		mm Hg	741	
Reaction Threshold Temperature		°C	217	
TT A P to tate	FTM 791-	010	1200 (burns on tube and	
Hot surface ignition	6053	°F	pan)	
Compatibility				
Fuel/Additive Compatibility (2x treat rate)	D4054B			
	D4034D		Large droplets after	
FSII, DIEGME (0.3 vol%)		effect	cold soak	
SDA, Stadis 450 (10 mg/L)		effect	No issues	
CI/LI, DCI-4A (46 mg/L)		effect	No issues	
Metal Deactivator, DMD (11.4 mg/L)		effect	No issues	
Antioxidant, AO-30 (48 mg/L)		effect	No issues	
Thermal Stability, +100 (512 mg/L)		effect	No issues	
Additive Cocktail (DMD, AO-30, Stadis 450,				
DCI-4A, DIEGME, +100)		effect	No issues	
(same concentrations as above)				
Elastomer Compatibility (O-Ring Tests)	SwRI		See Figure BE-1	
• • • • • • • • • • • • • • • • • • • •	SWKI		and Figure BE-2	
Miscellaneous				
Copper Strip Corrosion (100°C for 2 hours)	D130	rating	1A	No. 1 max
Smoke Point	D1322	mm	27.5	25.0 min or 19.0 min
Naphthalene Content	D1840	vol%	0.32	3.0 max
Sulfur - Mercaptan	D3227	mass%	<0.0003	0.002 max
Acid Number	D3242	mg KOH/g	0.008	0.015 max
Existent Gums	D381	mg/100mL	5.0	7.0 max
Heat of Combustion	D4809	**************************************	40204	40400 = :
BTUHeat_Net		BTU/lb	18604	18400.7 min
MJHeat_Net	D 5 4 5 2	MJ/kg	43.3	42.8 min
Sulfur Content - (Antek)	D5453	ppm	1.3	0.30 mass % max
Ignition Quality Test (IQT)	D6890		4.	
Ignition Delay, ID Derived Cetane Number, DCN		ms	4.1	
			49.9	

Table BE-1. ARA (ReadiJet) Evaluations

Test	Method	Units	CL13-4826 ARA ReadiJet (POSF10136)	MIL DTL 83133H Table 1 Limits
Minimum Ignition Energy @ 100°C	E582	mJ	0.15-0.18	
Sulfur Content - (XRY)	D2622	ppm	<1.0	

Figure BE-1. Tensile Strength – ARA ReadiJet

Figure BE-2. Volume Change – ARA ReadiJet

Appendix BF

Total / Amyris Blends

Table BF-1. Total / Amyris Blends Evaluations

			CL12-4716	CL12-4717		
Test	Method	Units	Total / Amyris 20% Blend	Total / Amyris 10% Blend	MIL DTL 83133H Table 1 Limits	
Chemistry						
Hydrocarbon Types by Mass Spec	D2425					
Paraffins		mass%	56.1	50.2		
Monocycloparaffins		mass%	25.9	28.8		
Dicycloparaffins		mass%	0.0	0.0		
Tricycloparaffins		mass%	0.0	0.0		
TOTAL NAPTHENES		mass%	25.9	28.8		
TOTAL SATURATES		mass%	82.0	79.0		
Alkylbenzenes		mass%	13.4	15.4		
Indans/Tetralins		mass%	3.5	4.2		
Indenes		mass%	0.0	0.0		
Naphthalene		mass%	0.2	0.3		
Naphthalene, Alklyl		mass%	0.7	0.9		
Acenaphthenes		mass%	0.1	0.1		
Acenaphthylenes		mass%	0.1	0.1		
Tricyclic Aromatics		mass%	0.0	0.0		
TOTAL PNAs		mass%	1.1	1.4		
TOTAL AROMATICS		mass%	18.0	21.0		
Aromatic Content	D1319		2 . =	100	27.0	
Aromatics		vol%	14.5	17.2	25.0 max	
Olefins		vol%	1.7	1.5		
Saturates		vol%	83.8	81.3		
Carbon/Hydrogen	D5291					
Carbon		%	86.02	86.23		
Hydrogen		%	14.07	13.93	10.1	
Hydrogen Content (NMR)	D3701	mass%	14.13	14.06	13.4 min	
Carbonyls, Alcohols, Esters, Phenols	ED.					
Carbonyls, Esters	EPA					
Carbonyis, Esters	92/0D					
Carbonyis, Esters	8260B		Append	ix BN		
Phenols	EPA		Append	ix BN		
Phenols	EPA 8270C	ma/ka				
Phenols Nitrogen Content	EPA 8270C D4629	mg/kg	<1	<1		
Phenols Nitrogen Content Copper by AA	EPA 8270C D4629 D3237M	mg/kg ppb				
Phenols Nitrogen Content Copper by AA Elemental Analysis	EPA 8270C D4629	ppb	<1 <0.01	<1 <0.01		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al	EPA 8270C D4629 D3237M	ppb ppb	<1 <0.01	<1 <0.01		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba	EPA 8270C D4629 D3237M	ppb ppb ppb	<1 <0.01 <100 <100	<1 <0.01 104 <100		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca	EPA 8270C D4629 D3237M	ppb ppb ppb ppb	<1 <0.01 <100 <100 <100	<1 <0.01 104 <100 <100		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr	EPA 8270C D4629 D3237M	ppb ppb ppb ppb	<1 <0.01 <0.01 <100 <100 <100 <100	<1 <0.01 104 <100 <100 <100		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cr	EPA 8270C D4629 D3237M	ppb ppb ppb ppb ppb	<1 <0.01 <0.01 <100 <100 <100 <100 <100 <100	<1 <0.01 104 <100 <100 <100 <100		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cr Cu Fe	EPA 8270C D4629 D3237M	ppb ppb ppb ppb ppb ppb	<1 <0.01 <0.01 <100 <100 <100 <100 <100 <100 <100	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cr Cu Fe	EPA 8270C D4629 D3237M	ppb ppb ppb ppb ppb ppb ppb	<1	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb	EPA 8270C D4629 D3237M	ppb ppb ppb ppb ppb ppb ppb	<1	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cr Cu Fe Li Pb Mg	EPA 8270C D4629 D3237M	ppb ppb ppb ppb ppb ppb ppb ppb ppb	<1	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn	EPA 8270C D4629 D3237M	ppb	<1	<1		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo	EPA 8270C D4629 D3237M	ppb	<1	<1		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni	EPA 8270C D4629 D3237M	ppb	<1	<1		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni K	EPA 8270C D4629 D3237M	ppb	<1	<1		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni K	EPA 8270C D4629 D3237M	ppb	<1	<1		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni K Na	EPA 8270C D4629 D3237M	ppb	<1	<1		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni K Na Si Ag	EPA 8270C D4629 D3237M	ppb	<1	<1		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni K Na Si Ag	EPA 8270C D4629 D3237M	ppb	<1	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <1		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni K Na Si Ag Ag Ti	EPA 8270C D4629 D3237M	ppb	<1	<1		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni K Na Si Ag Ti V	EPA 8270C D4629 D3237M	ppb	<1	<1 <0.01 104 <100 <100 <100 <100 <100 <100 <1		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni K Na Si Ag Ti V Zn Bulk Physical and Performance	EPA 8270C D4629 D3237M	ppb	<1	<1		
Phenols Nitrogen Content Copper by AA Elemental Analysis Al Ba Ca Cr Cu Fe Li Pb Mg Mn Mo Ni K Na Si Ag Ti V	EPA 8270C D4629 D3237M	ppb	<1	<1		

Table BF-1. Total / Amyris Blends Evaluations

			CL12-4716	CL12-4717		
Test	Method	Units	Total / Amyris 20% Blend	Total / Amyris 10% Blend	MIL DTL 83133H Table 1 Limits	
IBP		°C	158.2	157.4		
5%		°C	169.3	167.3		
10%		°C	171.2	169.0	205 max	
15%		°C	174.4	171.6		
20%		°C	177.6	174.6		
30% 40%		°C	184.0 191.6	180.0 186.1		
50%		°C	200.4	193.6		
60%		°C	210.4	202.3		
70%		°C	221.6	213.0		
80%		°C	232.7	225.5		
90%		°C	242.5	238.8		
95%		°C	247.8	247.0		
FBP		°C	260.7	261.1	300 max	
Residue		%	1.3	1.3	1.5 max	
Loss		%	0.0	0.1	1.5 max	
T50-T10		°C	29.2	24.6		
T90-T10	Dacc=	°C	71.3	69.8		
Simulated Distillation	D2887	0.0	02.7	94.0		
IBP 5%		°C	92.7 142.9	84.0 142.4		
10%		°C	151.2	150.8		
15%		°C	159.3	158.0		
20%		°C	166.0	164.9		
25%		°C	172.0	168.5		
30%		°C	174.7	173.7		
35%		°C	180.8	177.1		
40%		°C	188.2	182.7		
45%		°C	195.1	189.2		
50%		°C	200.3	195.5		
55%		°C	208.5	200.1		
60%		°C	215.9	207.8		
65%		°C	223.8	215.0		
70%		°C	234.7	219.8		
75% 80%		°C	246.1 248.6	230.2		
85%		°C	249.8	239.7 248.3		
90%		°C	250.7	250.1		
95%		°C	259.5	258.6		
FBP		°C	330.2	304.2		
Vapor pressure (Absolute)	D6378		2211=			
0 °C		psi	0.00	0.00		
20 °C		psi	0.03	0.02		
40 °C		psi	0.08	0.09		
60 °C		psi	0.28	0.30		
80 °C		psi	0.69	0.77		
100 °C		psi	1.48	1.65		
120 °C	D2241DD	psi	2.61	2.81		
JFTOT Breakpoint Test Temperature	D3241BP	°C	310	295		
ASTM Code		rating	2	<2	<3 max	
Maximum Pressure Drop		mm Hg	0	0	25 max	
Lubricity (BOCLE)	D5001	mm	0.730	0.780		
Lubricity (BOCLE) vs. CI/LI						
Concentration	D5001					
0 mg/L		mm	0.870	0.920		
5 mg/L		mm	0.800	0.830		
10 mg/L		mm	0.730	0.680		
15 mg/L		mm	0.630	0.640		
20 mg/L	D COPO	mm	0.610	0.620		
Lubricity (HFRR)	D6079	μm	768	758		

Table BF-1. Total / Amyris Blends Evaluations

			CL12-4716	CL12-4717		
Test	Method	Units	Total / Amyris 20% Blend	Total / Amyris 10% Blend	MIL DTL 83133H Table 1 Limits	
Lubricity (HFRR) vs. CI/LI Concentration	D6079					
0 mg/L		μm	726	755		
5 mg/L		μm	719	741		
10 mg/L		μm	723	749		
15 mg/L		μm	715	689		
20 mg/L		μm	717	695		
Lubricity (Scuffing Load BOCLE)	D6078	g	1700	2100		
Lubricity (Scuffing Load BOCLE) vs. CI/LI Concentration	D6078					
0 mg/L		g	1300	1150		
5 mg/L		g	1400 1600	1500 1350		
10 mg/L 15 mg/L		g	1950	1650		
20 mg/L		g g	1950	2050		
Kinematic Viscosity	D445	. s	1550	2030		
-40°C		cSt	8.49	7.28		
-20°C		cSt	4.19	3.75	8.0 max	
25°C		cSt	1.58	1.47		
40°C		cSt	1.26	1.18		
Specific Heat Capacity	E2716					
-25°C		kJ/kg.K	1.953	1.976		
0°C		kJ/kg.K	2.032	2.058		
25°C 50°C		kJ/kg.K	2.136 2.244	2.146 2.242		
100°C		kJ/kg.K kJ/kg.K	2.445	2.470		
150°C		kJ/kg.K	2.673	2.676		
Density	D4052	KJ/Kg.IX	2.073	2.070		
5°C	21002	g/cm ³	0.7996	0.8020		
15°C		g/cm ³	0.7922	0.7946	0.775 to 0.840	
25°C		g/cm ³	0.7848	0.7872		
35°C		g/cm ³	0.7774	0.7797		
45°C		g/cm ³	0.7699	0.7721		
55°C		g/cm ³	0.7624	0.7646		
65°C		g/cm ³	0.7549	0.7570		
75°C 85°C		g/cm ³ g/cm ³	0.7473 0.7396	0.7493 0.7416		
Surface tension	D1331A	g/cm	0.7390	0.7410		
-10.0°C	DISSIA	mN/m	27.5	27.5		
22°C		mN/m	25.0	25.1		
40.0°C		mN/m	23.5	23.5		
Speed of Sound @ 30°C and atm pressure	SwRI	m/s	1265	1263		
Isentropic Bulk Modulus @ 30°C and atm pressure	SwRI	psi	181175	181325		
Thermal Conductivity – THW	SwRI					
0°C		W/m.K	0.1250	0.1252		
25°C		W/m.K	0.1197	0.1198		
50°C	D.CCC.	W/m.K	0.1144	0.1143		
Water Content	D6304	ppm	42	37		
Water Content 0°C	D6304	nnm	29	36		
30°C		ppm ppm	94	111		
40°C		ppm	140	147		
50°C		ppm	208	202		
Flash Point - Tag Closed	D56	°C	44	43	38 min	
Freeze Point (manual)	D2386	°C	-54.0	-55.0	-47 max	
Freeze Point	D5972	°C	-58.1	-57.2		
Electrical Properties						
Dielectric Constant (10kHz)	SwRI					
-40°C			2.172			

Table BF-1. Total / Amyris Blends Evaluations

			OF 14 1512	OF 12 1515	
			CL12-4716	CL12-4717	MIL DTL 83133H
Test	Method	Units	Total / Amyris 20% Blend	Total / Amyris 10% Blend	Table 1 Limits
-20°C			2.143		
0.0°C			2.120		
30°C			2.085		
50.1°C			2.062		
-40.1°C				2.179	
-20°C				2.150	
0.0°C				2.125	
30°C				2.089	
50°C				2.065	
Electrical Conductivity	D2624	pS/m	0.0	0.0	
Electrical Conductivity vs. SDA	D2624				
Concentration		.CI	0	0.0	
0 mg/L		pS/m	0	0.0	
1 mg/L		pS/m	610	640.0	
2 mg/L		pS/m	1160	1170.0	
3 mg/L		pS/m	1640	1710.0	
4 mg/L	D2/24	pS/m	2190	2280.0	
Electrical Conductivity vs. Temperature	D2624	G/	0.0	0.0	
-40		pS/m	0.0	0.0	
-30		pS/m	0.0	0.0	
-20		pS/m	0.0	0.0	
-10		pS/m	0.0	0.0	
0		pS/m	0.0	0.0	
10		pS/m	0.0	0.0	
20		pS/m	0.0	0.0	
30		pS/m	10.0	10.0	
40		pS/m	20.0	20.0	
Ground Handling Properties and Safety	7.20.40		00.0	000	= 0.00
MSEP - Alumicel	D3948	rating	99.0	99.0	70-90 min
Storage Stability - Peroxides @65°C	D3703	0	0.44	1 10	
0 week		mg/kg	0.44	1.12	
1 week		mg/kg	1.08	1.80	
2 week		mg/kg	1.24	2.00	
3 week		mg/kg	1.80	2.12	
6 week	D 520.4	mg/kg	2.08	2.68	
Storage Stability – Potential Gums	D5304	/100 T	0.4	0.5	
16 hours	E (01	mg/100mL	0.4	0.5	
Upper Explosion Limit (UEL), @100°C	E681	%	3.8	4.1	
Lower Explosion Limit (LEL), @100°C	E681	%	0.4	0.5	
Autoignition temperature	E659	0.0	222	222	
Hot Flame Autoignition Temperature		°C	233	233	
Hot Flame Lag Time		seconds	147.0	165.1	
Cool Flame Autoignition Temperature		°C	0	0	
Cool Flame Lag Time		seconds	0.0	0.0	
Barometric Pressure		mm Hg °C	743.2	743.2	
Reaction Threshold Temperature		- · · · ·	217	217	
Hot surface ignition	FTM 791-	°F	1250 (burns on tube	1250 (burns on tube	
Hot surface ignition	6053	r	tube and in pan)	and in pan)	
Compatiblity			unu m pun)	una in pan)	
Fuel/Additive Compatibility (4x treat rate)	D4054B				
FSII		effect	Large droplets after cold soak	Large droplets after cold soak	
SDA		effect	no issues	no issues	
CI/LI		effect	no issues	no issues	
MDA		effect	no issues	no issues	
AO-30		effect	no issues	no issues	
+100		effect	no issues	no issues	
Additive Cocktail (MDA, AO, SDA, CI/LI, FSII,+100)		effect	no issues	no issues	

Table BF-1. Total / Amyris Blends Evaluations

			CL12-4716	CL12-4717		
Test	Method	Units	Total / Amyris 20% Blend	Total / Amyris 10% Blend	MIL DTL 83133H Table 1 Limits	
Elastomer Compatibility (O-Ring Tests)	SwRI		See Figure BF-1 and Figure BF-2	See Figure BF-3 and Figure BF-4		
Miscellaneous						
Copper Strip Corrosion (100°C for 2 hours)	D130	rating	1A	1A	No. 1 max	
Smoke Point	D1322	mm	27.5	28.0	25.0 min or 19.0 min	
Naphthalene Content	D1840	vol%	0.63	0.62	3.0 max	
Sulfur - Mercaptan	D3227	mass%	< 0.0003	< 0.0003	0.002 max	
Acid Number	D3242	mg KOH/g	0.001	0.001	0.015 max	
Existent Gums	D381	mg/100mL	<1	4.0	7.0 max	
Heat of Combustion	D4809					
BTUHeat_Net		BTU/lb	18586.0	18509.1	18400.7 min	
MJHeat_Net		MJ/kg	43.231	43.052	42.8 min	
Sulfur Content - (Antek)	D5453	ppm	4.8	5.1	0.30 mass % max	
Ignition Quality Test (IQT)	D6890					
Ignition Delay, ID		ms	4.609	4.772		
Derived Cetane Number, DCN			44.95	43.57		
Minimum Ignition Energy @ 100°C	E582	mJ	0.13 - 0.18	0.13 - 0.15		
Sulfur Content - (XRY)	D2622	ppm	5.8	6.6		

Figure BF-1. Tensile Strength – Total / Amyris 20% Blend

Figure BF-2. Volume Change – Total / Amyris 20% Blend

Figure BF-3. Tensile Strength – Total / Amyris 10% Blend

Figure BF-4. Volume Change – Total / Amyris 10% Blend

Appendix BG

Miscellaneous Amyris Testing

Table BG-1. Amyris Jet A-1 (CL13-5265)

Test				SwRI Sample ID
Test Temperature	Tost	Mathad	Unite	
D3241 C	Test	Method	Cints	
Test Temperature	JETOT Breaknoint	D3241		Kesuit
Maximum Pressure Drop		D3241	°C	335
Maximum Pressure Drop Lubricity (BOCLE) vs. Concentration D5001				
Lubricity (BOCLE) vs. Concentration D5001 mm 0.90 S ppm CI/L1 mm 0.80 mm 0.80 mm 0.67 mm 0.67 mm 0.67 mm 0.67 mm 0.67 mm 0.63 mm				
Oppm CILI mm 0.90		D5001		v
S ppm CI/LI	0 nnm CI/LI	D2001	mm	0.90
10 ppm CI/LI				
Section				
Minimum Ignition Energy Minimum Ignition Incompanies and minimum Ignition I				
Minimum Ignition Energy Minimum Ignition Image Ign In Image In Image Ign Image I				
A0°C		D445		0,000
25°C c8t 1.37 -20°C c8t 3.29 -40°C c8t 3.29 -40°C c8t 6.36 -40°C c8t k1/kg.K 1.663 -40°C k1/kg.K 1.797 -40°C k1/kg.K 1.797 -40°C k1/kg.K 1.797 -40°C k1/kg.K 1.797 -40°C k1/kg.K 2.285 -40°C c8t c		2	cSt	1.11
CST A0°C CST A3.29				
Specific Heat Capacity				
Specific Heat Capacity				
1.52°C kl/kg,K 1.663 0°C kl/kg,K 1.722 1.722 kl/kg,K 1.797 1.722 kl/kg,K 1.797 1.723 kl/kg,K 1.797 1.724 kl/kg,K 1.887 1.725 kl/kg,K 1.887 1.726 kl/kg,K 2.071 1.727 kl/kg,K 2.285 1.728 kl/kg,K 2.285 1.728 kl/kg,K 2.285 1.729 kl/kg,K 2.285 1.729 kl/kg,K 2.285 1.729 kl/kg,K 2.295 1.720 kl/kg,K 2.285 1.720 kl/kg,K 2.285 1.720 kl/kg,K 2.285 2.200 kl/kg,K 2.205 2.200 kl/kg,K 2.285 2.200 kl/kg,K 2.205 2		E2716	CDI	0.00
0°C kJ/kg,K 1.722 25°C kJ/kg,K 1.797 150°C kJ/kg,K 1.887 100°C kJ/kg,K 2.201 150°C kJ/kg,K 2.201 150°C kJ/kg,K 2.285 Dielectric Constant 50°C 2.066 30°C 2.090 0°C 2.126 -19.8°C 2.188 -40°C 2.186 Density (5°-85°C) 2.186 D		22/10	k,J/kø.K	1,663
So	== ==			
S0°C KJ/kg,K 1.887 100°C kJ/kg,K 2.071 150°C kJ/kg,K 2.285 Dielectric Constant SwR1				
100°C kJ/kg.K 2.071 150°C kJ/kg.K 2.285 Dielectric Constant 50°C 2.066 30°C 2.126 2.158 2.158 2.158 2.158 2.158 2.186				
Dielectric Constant				
SwRI				
S0°C 2.066 30°C 2.090 0°C 2.126 -19.8°C 2.158 -19.8°C 2.158 -40°C 2.158 -40°C 2.186 Density (5°-85°C) 2.186 Dens		SwRI	Ko/ Kg.IX	Z.ZOC
30°C 2.090 0°C 2.126 -19.8°C 2.158 -40°C 2.158 -40°C 2.186 Density (5°-85°C)		SWILL		2.066
0°C 2.126				
19.8°C -40°C 2.158				
Density (5°-85°C)				
Density (5°-85°C) D4052 S'C g/mL 0.8042 15°C g/mL 0.7968 25°C g/mL 0.7968 25°C g/mL 0.7892 35°C g/mL 0.7817 45°C g/mL 0.7741 55°C g/mL 0.7741 55°C g/mL 0.7585 65°C g/mL 0.7512 85°C g/mL 0.7854 60°C g/mL 0.7854 60°C g/mL 0.8082 19.8°C g/mL 0.8082 19.8°C g/mL 0.8386 Surface Tension D1331A 0.8386 Surface Tension				
S°C g/mL 0.8042 15°C g/mL 0.7968 25°C g/mL 0.7892 35°C g/mL 0.7817 45°C g/mL 0.7411 45°C g/mL 0.7411 55°C g/mL 0.7665 65°C g/mL 0.7588 75°C g/mL 0.7512 85°C g/mL 0.7512 85°C g/mL 0.7512 85°C g/mL 0.7434 Extrapolated Density (for Dielectric Constant) SwRI		D4052		21100
15°C g/mL 0.7968 25°C g/mL 0.7892 35°C g/mL 0.7817 45°C g/mL 0.7741 55°C g/mL 0.7741 55°C g/mL 0.7665 65°C g/mL 0.7588 65°C g/mL 0.7512 85°C g/mL 0.7512 85°C g/mL 0.7512 85°C g/mL 0.7434 Extrapolated Density (for Dielectric Constant) SwRI Extrapolated Density (for Dielectric Constant) SwRI 50°C g/mL 0.7702 30°C g/mL 0.7854 0°C g/mL 0.8082 -19.8°C g/mL 0.8232 -40°C g/mL 0.8386 Surface Tension D1331A Surface Tension D1331A Constant D133			g/mL	0.8042
25°C g/mL 0.7892 35°C g/mL 0.7817 45°C g/mL 0.7741 45°C g/mL 0.7741 55°C g/mL 0.7588 65°C g/mL 0.7512 65°C g/mL 0.7512 75°C g/mL 0.7434 Extrapolated Density (for Dielectric Constant) SwRI Extrapolated Density (for Dielectric Constant) SwRI				
35°C g/mL 0.7817 45°C g/mL 0.7741 55°C g/mL 0.7665 65°C g/mL 0.7588 75°C g/mL 0.7588 75°C g/mL 0.7512 85°C g/mL 0.7434 Extrapolated Density (for Dielectric Constant) SwRI				
45°C g/mL 0.7741 55°C g/mL 0.7665 65°C g/mL 0.7588 75°C g/mL 0.7512 85°C g/mL 0.7512 85°C g/mL 0.7434 Extrapolated Density (for Dielectric Constant) SwRI				
S5°C g/mL 0.7665 65°C g/mL 0.7588 75°C g/mL 0.7512 85°C g/mL 0.7512 85°C g/mL 0.7434 Extrapolated Density (for Dielectric Constant) SwRI				
Constant Constant				
T5°C g/mL 0.7512 85°C g/mL 0.7434 Extrapolated Density (for Dielectric Constant) SwRI				
S5°C g/mL 0.7434				
Extrapolated Density (for Dielectric Constant) SwRI				
SWKI			- B	
30°C g/mL 0.7854 0°C g/mL 0.8082 -19.8°C g/mL 0.8232 -40°C g/mL 0.8336 Surface Tension D1331A -10°C mN/m 27.4 22°C mN/m 25.1 40°C mN/m 23.5 Water Solubility vs. Temperature D6304 0°C ppm 37 30°C ppm 109 40°C ppm 155 50°C ppm 189 Minimum Ignition Energy E582 Minimum Ignition Energy mJ 0.11-0.18		SWRI		
0°C g/mL 0.8082 -19.8°C g/mL 0.8232 -40°C g/mL 0.8386 Surface Tension D1331A -10°C mN/m 27.4 22°C mN/m 25.1 40°C mN/m 23.5 Water Solubility vs. Temperature D6304 0°C ppm 37 30°C ppm 109 40°C ppm 155 50°C ppm 189 Minimum Ignition Energy E582 mJ Minimum Ignition Energy mJ 0.11-0.18	50°C		g/mL	0.7702
0°C g/mL 0.8082 -19.8°C g/mL 0.8232 -40°C g/mL 0.8386 Surface Tension D1331A -10°C mN/m 27.4 22°C mN/m 25.1 40°C mN/m 23.5 Water Solubility vs. Temperature D6304 0°C ppm 37 30°C ppm 109 40°C ppm 155 50°C ppm 189 Minimum Ignition Energy E582 mJ Minimum Ignition Energy mJ 0.11-0.18			- V	
-19.8°C g/mL 0.8232 -40°C g/mL 0.8386 Surface Tension D1331A -10°C mN/m 27.4 22°C mN/m 25.1 40°C mN/m 23.5 Water Solubility vs. Temperature D6304 0°C ppm 37 30°C ppm 109 40°C ppm 155 50°C ppm 189 Minimum Ignition Energy E582 Minimum Ignition Energy mJ 0.11-0.18				
Column			g/mL	
Surface Tension D1331A -10°C mN/m 27.4 22°C mN/m 25.1 40°C mN/m 23.5 Water Solubility vs. Temperature D6304 0°C ppm 37 30°C ppm 109 40°C ppm 155 50°C ppm 189 Minimum Ignition Energy E582 mJ 0.11-0.18				
-10°C		D1331A	, in the second	
22°C mN/m 25.1 40°C mN/m 23.5 Water Solubility vs. Temperature D6304 0°C ppm 37 30°C ppm 109 40°C ppm 155 50°C ppm 189 Minimum Ignition Energy E582 Minimum Ignition Energy mJ 0.11-0.18	-10°C		mN/m	27.4
Mater Solubility vs. Temperature				
Water Solubility vs. Temperature D6304 0°C ppm 37 30°C ppm 109 40°C ppm 155 50°C ppm 189 Minimum Ignition Energy E582 mJ 0.11-0.18				23.5
0°C ppm 37 30°C ppm 109 40°C ppm 155 50°C ppm 189 Minimum Ignition Energy E582 mJ 0.11-0.18		D6304		
30°C ppm 109 40°C ppm 155 50°C ppm 189 Minimum Ignition Energy E582 mJ 0.11-0.18			ppm	37
40°C ppm 155 50°C ppm 189 Minimum Ignition Energy E582 mJ 0.11-0.18	30°C			109
50°C ppm 189 Minimum Ignition Energy E582 ————————————————————————————————————				
Minimum Ignition Energy E582 mJ 0.11-0.18				
Minimum Ignition Energy mJ 0.11-0.18	Minimum Ignition Energy	E582		
Sample Concentration mg/cm ³ 0.14-0.19	Minimum Ignition Energy		mJ	0.11-0.18

Table BG-1. Amyris Jet A-1 (CL13-5265)

Test	Method	Units	SwRI Sample ID CL13-5265 Result	
Carbonyls/Esters	EPA 8260B	mg/kg	Appendix BN	
Phenols	EPA 8270C	mg/kg	Appendix BN	
Upper Explosion Limits (UEL) at 100°C	E681	%	7.70	
Lower Explosion Limits (LEL) at 100°C	E681	%	0.84	
Electrical Conductivity vs. SDA Concentration	D2624			
0 mg/L Stadis 450		pS/m	0	
1 mg/L Stadis 450		pS/m	520	
2 mg/L Stadis 450		pS/m	970	
3 mg/L Stadis 450		pS/m	1460	
4 mg/L Stadis 450		pS/m	1980	
Speed-of-Sound (atmospheric pressure)	SwRI			
3.8°C		m/s	1370.8	
21.8°C		m/s	1294.9	
29.8°C		m/s	1263.6	
50.2°C		m/s	1183.8	
Isentropic Bulk Modulus (atmospheric pressure)	SwRI			
3.8°C		psi	219,464	
21.8°C		psi	192,524	
29.8°C		psi	181,923	
50.2°C		psi	156,523	

Table BG-2. Additional Results for Amyris 10% Farnesane Blend (CL13-4717)

Test	Method	Units	SwRI Sample ID# CL13-4717 Results
Speed-of-Sound (atmospheric pressure)	SwRI		
4°C		m/s	1370.8
22.2°C		m/s	1294.7
29.8°C		m/s	1264.5
50.2°C		m/s	1186.2
Isentropic Bulk Modulus (atmospheric pressure)	SwRI		
4°C		psi	218,848
22.2°C		psi	191,866
29.8°C		psi	181,693
50.2°C		psi	156,788

Table BG-3. Amyris Viscosity Analysis of Seven Fuels

Method	Parameter	Units	Takreer-10	10:90-Biojet	20:80-Biojet	Concord-Jet	Honeywell-Jet-A	10%-Amyris-Blend	20%-Amyris-Blend
D2532	Visc @ 35 min	cSt	3.39	4.37	4.9	3.99	4.57	5	5.59
	Visc @ 3 hours	cSt	3.39	4.39	4.9	3.98	4.57	4.99	5.58
	Visc @ 72 hours	cSt	3.38	4.41	4.91	3.98	4.57	4.99	5.58
	Temp	°C	-20	-20	-20	-20	-20	-20	-20
	Visc @ 35 min	cSt	6.41	9.25	10.58	8.13	8.45	10.97	12.55
	Visc @ 3 hours	cSt	6.41	9.27	10.57	8.13	8.44	10.97	12.55
	Visc @ 72 hours	cSt	6.41	9.23	10.55	8.13	8.45	11.02	12.6
	Temp	°C	-40	-40	-40	-40	-40	-40	-40
D2983 -20°C	Visc	cPs							
	RPM	rpm	60	60	60	60	60	60	60
D2983 -40°C	Visc	cPs							
	RPM	rpm	60	60	60	60	60	60	60
D445	Visc	cSt	3.41	4.47	4.91	4.07	4.61	5.1	5.57
	Temp	°C	-20	-20	-20	-20	-20	-20	-20
	Visc	cSt	6.42	9.26	10.58	8.12	9.67	10.76	12.31
	Temp	°C	-40	-40	-40	-40	-40	-40	-40
D5133	Gelation Index	•							
	Gelation Temp	°C							
	Temp @ 5,000 cPs	°C	<-40	<-40	<-40	<-40	<-40	<-40	<-40
	Temp @ 10,000 cPs	°C	<-40	<-40	<-40	<-40	<-40	<-40	<-40
	Temp @ 20,000 cPs	°C	<-40	<-40	<-40	<-40	<-40	<-40	<-40
	Temp @ 30,000 cPs	°C	<-40	<-40	<-40	<-40	<-40	<-40	<-40
	Temp @ 40,000 cPs	°C	<-40	<-40	<-40	<-40	<-40	<-40	<-40

Note: No usable data could be obtained from D2983 and D5133 as a result of the viscosity being too low to measure.

Appendix BH

O-Ring Material Compatibility Testing

The following O-ring material compatibility evaluations were performed:

- Jet A (CL12-4134, sourced at SwRI)
 - o Tensile Strength Figure BH-1
 - Volume Change Figure BH-2
- JP-8 (CL11-2680, POSF4751)
 - o Tensile Strength Figure BH-3
 - Volume Change Figure BH-4

An O-ring material compatibility test was performed using a blend of low aromatic JP-8 (CL13-5864, 11.3 % ArH) and GEVO ATJ (CL14-5998)

- Tensile Strength
 - o Figure BH-5
 - o The tensile strength appears to be relatively unaffected for all materials
- Volume Swell
 - o Figure BH-6
 - O Although some spread in the individual replicates was observed, the average for the fluorosilicone was nearly the same as a baseline JP-8 (Figure BH-4). However, compared to the same JP-8, the nitrile and viton O-rings were more severely impacted. The nitrile O-rings were reduced from ~10% to ~4% swell and the viton O-rings increased from approximately -0.5% swell to ~3% swell.

Figure BH-1. Tensile Strength – Jet A (CL12-4134)

Figure BH-2. Volume Change – Jet A (CL12-4134)

Figure BH-3. Tensile Strength – JP-8 (CL11-2680, POSF4751)

Figure BH-4. Volume Change – JP-8 (CL11-2680, POSF4751)

Figure BH-5. Tensile Strength – 50/50 GEVO ATJ / Low ArH JP8

Figure BH-6. Volume Change – 50/50 GEVO ATJ / Low ArH JP8

Appendix BI

Miscellaneous Tri-Service Sample Testing

Table BI-1. Additive Compatibility for Nominal Jet A (DLA #22, CL13-5892)

Fuel/Additive	e Compat	ibility (2x treat rate)
FSII, DIEGME (0.2 vol%)	effect	 large droplets after initial cold soak and at room temperature not present after 100°F soak
SDA, Stadis 450 (10 mg/L)	effect	 no issues observed
CI/LI, DCI-4A (46 mg/L)	effect	 no issues observed
Metal Deactivator, DMD (11.4 mg/L)	effect	 no issues observed
Antioxidant, AO-30 (48 mg/L)	effect	no issues observed
Thermal Stability, +100 (512 mg/L)	effect	no issues observed
Additive Cocktail (DMD, AO-30, Stadis		
450, DCI-4A, DIEGME, +100)	effect	 no issues observed
(same concentrations as above)		

Table BI-2. Additional Results for Nominal Jet A (DLA Sample #22, CL13-5892)

Test	Method	Units	SwRI Sample ID# CL13-5892
Electrical Conductivity	D2624		
0 mg/L SDA, 20.9°C		pS/m	0
1 mg/L SDA, 22.2°C		pS/m	430
2 mg/L SDA, 21.4°C		pS/m	790
3 mg/L SDA, 21.7°C		pS/m	1180
4 mg/L SDA, 22.2°C		pS/m	1620
Peroxides (at 65°C)	D3703		
0 week		mg/kg	0.360
1 weeks		mg/kg	0.960
2 weeks		mg/kg	1.120
3 weeks		mg/kg	2.360
6 weeks		mg/kg	2.96
Dielectric Constants (at 10 kHz)	SwRI		
-40.1°C			2.192
-20.0°C			2.163
0.2°C			2.136
30.0°C			2.099
50.0°C			2.073
Minimum Ignition Energy	E582		
Minimum Ignition Energy		mJ	0.63-0.69
Upper Explosion Limits (UEL) at 100°C	E681	%	7.58
Lower Explosion Limits (LEL) at 100°C	E681	%	1.02
Thermal Conductivity (transient hot wire)	SwRI		
0°C		W/mK	0.1244
20°C		W/mK	0.1204
40°C		W/mK	0.1163
60°C		W/mK	0.1123
Speed-of-Sound (atmospheric pressure)	SwRI		
2.4°C		m/s	1388.3
21.0°C		m/s	1310.2
29.8°C		m/s	1276.4
50.1°C		m/s	1197.2
Isentropic Bulk Modulus (atmospheric pressure)	SwRI		
2.4°C		psi	227,167
21.0°C		psi	198,860
29.8°C		psi	187,188
50.1°C		Psi	161,543

Table BI-3. Nitrogen Results for DLA Samples

SwRI Sample ID#	DLA Sample #	Description	D4629 Nitrogen Content [ppm]
CL13-5471	23	Best case Jet A (3.4 cSt, 40 C, 14% ArH)	<1.0
CL13-5231	14	Jet A - PADD 1	4.2
CL13-4901	15	Jet A - PADD 2	10.1
CL13-4848	16	Jet A - PADD 3	2.0
CL13-5508	17	Jet A - PADD 4	3.3
CL13-4928	18	Jet A - PADD 5	8.9
CL13-5441	13	Jet-A (FAME Sensitive, POSF 9326)	<1.0
CL13-5352	19	JP-5 - Supplier 1 (Valero?)	4.1
CL13-5351	8	JP-8 - PADD 1	3.9
CL13-5111	9	JP-8 - PADD 2	2.2
CL13-4851	10	JP-8 - PADD 3	<1.0
CL13-5092	11	JP-8 - PADD 4	<1.0
CL13-5059	12	JP-8 - PADD 5	2.8
CL13-5440	7	JP-8 (Blend Stock for above)	2.2
CL13-5892	22	Nominal Jet A (4.5 cSt, 50 C flash, 17% ArH)	1.3
CL13-5470	24	Worst case JP-5 (6.5 cSt, 66 C, 21% ArH)	2.4
CL13-5443	25	WPAFB JP-8 (13% ArH, POSF 9698)	2.4

Table BI-4. Surface Tension Results for Three (3) Tri-Service Samples

		Surface Tension (D1331.	A) vs. Temperature			
JP-5		JP-8		Jet A	•	
POSF 10	289	POSF 10	264	POSF 10325		
SwRI CL13	3-5470	SwRI CL13-5471		SwRI CL13-5472		
Temp (°C)	mN/m	Temp (°C)	mN/m	Temp (°C)	mN/m	
40	24.7	40	22.8	40	23.6	
22	25.7	22	23.8	22	24.8	
-10	28.4	-10	25.8	-10	28.0	

Appendix BJ EPA Testing Reports: CL12-3339 and CL12-3599

Analytical Report 441475

for Southwest Research Institute

Project Manager: Scott Hutzler 17149.26.001 SO091904E 10-MAY-12

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

4143 Greenbriar Dr., Stafford, TX 77477

Xenco-Houston (EPA Lab code: TX00122):
Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002)
Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054)
New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610)
Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Lakeland: Florida (E84098)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Page 1 of 23

10-MAY-12

Project Manager: Scott Hutzler Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228

Reference: XENCO Report No: 441475

17149.26.001 Project Address:

Scott Hutzler:

Respectfully

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 441475. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 441475 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Skip Harden

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 23

CASE NARRATIVE

Client Name: Southwest Research Institute

Project Name: 17149.26.001

Project ID:SO091904EReport Date:10-MAY-12Work Order Number:441475Date Received:04/26/2012

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-887395 VOAs by SW-846 8260B

S10:

Due to matrix interference, the surrogate recovered above acceptance criteria.

Page 3 of 23

Flagging Criteria

Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 3.0 9/20/2007. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- D1 Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- L1 The associated blank spike recovery was above laboratory acceptance limits.
- L2 The associated blank spike recovery was below laboratory acceptance limits.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- M3 The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to spike level. The associated blank spike recovery was acceptable.
- S1 Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.
- S10 Surrogate recovery was above laboratory and method acceptance limits. See case narrative.
- S8 The analysis of the sample required a dilution such that the surrogate recovery calculation does not provide any useful information. The associated blank spike recovery was acceptable.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Sample Cross Reference 441475

Southwest Research Institute, San Antonio, TX 17149.26.001

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CL12-3339	W	04-23-12 00:00		441475-001
CL12-3599	W	04-23-12 00:00		441475-002

Page 5 of 23

Southwest Research Institute, San Antonio, TX 17149.26.001

Date Prep: Apr-30-12 10:18

Sample Id: CL12-3339 Matrix: Product Date Received: Apr-26-12 09:30

Analytical Method: SVOAs by SW-846 8270C Prep Method: SW3580A

Tech: LRA % Moisture:

Analyst: MCH Seq Number: 886890

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	472	mg/kg	04/30/12 17:35	D1	10
Acenaphthylene	208-96-8	BRL	472	mg/kg	04/30/12 17:35	D1	10
Aniline (Phenylamine, Aminobenzene)	62-53-3	BRL	472	mg/kg	04/30/12 17:35	D1	10
Anthracene	120-12-7	BRL	472	mg/kg	04/30/12 17:35	D1	10
Benzo(a)anthracene	56-55-3	BRL	472	mg/kg	04/30/12 17:35	D1	10
Benzo(a)pyrene	50-32-8	BRL	472	mg/kg	04/30/12 17:35	D1	10
Benzo(b)fluoranthene	205-99-2	BRL	472	mg/kg	04/30/12 17:35	D1	10
Benzo(g,h,i)perylene	191-24-2	BRL	472	mg/kg	04/30/12 17:35	D1	10
Benzo(k)fluoranthene	207-08-9	BRL	472	mg/kg	04/30/12 17:35	D1	10
Benzoic Acid	65-85-0	BRL	2830	mg/kg	04/30/12 17:35	D1L1	10
Benzyl Butyl Phthalate	85-68-7	BRL	472	mg/kg	04/30/12 17:35	D1	10
bis(2-chloroethoxy) methane	111-91-1	BRL	472	mg/kg	04/30/12 17:35	D1	10
bis(2-chloroethyl) ether	111-44-4	BRL	472	mg/kg	04/30/12 17:35	D1	10
bis(2-chloroisopropyl) ether	108-60-1	BRL	472	mg/kg	04/30/12 17:35	D1	1
bis(2-ethylhexyl) phthalate	117-81-7	BRL	472	mg/kg	04/30/12 17:35	D1	1
4-Bromophenyl-phenylether	101-55-3	BRL	472	mg/kg	04/30/12 17:35	D1	10
Di-n-butylphthalate	84-74-2	BRL	472	mg/kg	04/30/12 17:35	D1	10
1-chloro-3-methylphenol	59-50-7	BRL	472	mg/kg	04/30/12 17:35	D1	10
4-Chloroaniline	106-47-8	BRL	472	mg/kg	04/30/12 17:35	D1	1
2-Chloronaphthalene	91-58-7	BRL	472	mg/kg	04/30/12 17:35	D1L1	10
2-Chlorophenol	95-57-8	BRL	472	mg/kg	04/30/12 17:35	D1	10
4-Chlorophenyl Phenyl Ether	7005-72-3	BRL	472	mg/kg	04/30/12 17:35	D1	10
Chrysene	218-01-9	BRL	472	mg/kg	04/30/12 17:35	D1	10
Dibenz(a,h)anthracene	53-70-3	BRL	472	mg/kg	04/30/12 17:35	D1	10
Dibenzofuran	132-64-9	BRL	472	mg/kg	04/30/12 17:35	D1	10
1,2-Dichlorobenzene	95-50-1	BRL	472	mg/kg	04/30/12 17:35	D1	10
1,3-Dichlorobenzene	541-73-1	BRL	472	mg/kg	04/30/12 17:35	D1	10
1,4-Dichlorobenzene	106-46-7	BRL	472	mg/kg	04/30/12 17:35	D1	10
3,3-Dichlorobenzidine	91-94-1	BRL	472	mg/kg	04/30/12 17:35	D1	10
2,4-Dichlorophenol	120-83-2	BRL	472	mg/kg	04/30/12 17:35	D1	10
Diethylphthalate	84-66-2	BRL	472	mg/kg	04/30/12 17:35	D1	10
Dimethyl Phthalate	131-11-3	BRL	472	mg/kg	04/30/12 17:35	D1	10
2,4-Dimethylphenol	105-67-9	BRL	472	mg/kg	04/30/12 17:35	D1	10
4,6-dinitro-2-methyl phenol	534-52-1	BRL	472	mg/kg	04/30/12 17:35	D1L2	10
2,4-Dinitrophenol	51-28-5	BRL	472	mg/kg	04/30/12 17:35	D1L2	10
2,4-Dinitrotoluene	121-14-2	BRL	472	mg/kg	04/30/12 17:35	D1	10
2,6-Dinitrotoluene	606-20-2	BRL	472	mg/kg	04/30/12 17:35	D1L1	10
Fluoranthene	206-44-0	BRL	472	mg/kg	04/30/12 17:35	D1	10
Fluorene	86-73-7	BRL	472	mg/kg	04/30/12 17:35	D1	10
Hexachlorobenzene	118-74-1	BRL	472	mg/kg	04/30/12 17:35	D1	1

Project: Standard List of Methods

Page 6 of 23

$Southwest\ Research\ Institute,\ San\ Antonio,\ TX$

17149.26.001

Date Prep: Apr-30-12 10:18

Sample Id: CL12-3339 Matrix: Product Date Received: Apr-26-12 09:30

Lab Sample Id: 441475-001 **Date Collected:** Apr-23-12 00:00

Analytical Method: SVOAs by SW-846 8270C Prep Method: SW3580A

Tech: LRA % Moisture:

Analyst: MCH Seq Number: 886890

Seq Number: 886890								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Hexachlorobutadiene	87-68-3	BRL	472		mg/kg	04/30/12 17:35	D1	10
Hexachlorocyclopentadiene	77-47-4	BRL	472		mg/kg	04/30/12 17:35	D1L2	10
Hexachloroethane	67-72-1	BRL	472		mg/kg	04/30/12 17:35	D1	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	472		mg/kg	04/30/12 17:35	D1	10
Isophorone	78-59-1	BRL	472		mg/kg	04/30/12 17:35	D1	10
2-Methylnaphthalene	91-57-6	BRL	472		mg/kg	04/30/12 17:35	D1	10
2-methylphenol	95-48-7	BRL	472		mg/kg	04/30/12 17:35	D1	10
3&4-Methylphenol	15831-10-4	BRL	472		mg/kg	04/30/12 17:35	D1	10
Naphthalene	91-20-3	BRL	472		mg/kg	04/30/12 17:35	D1	10
4-Nitroaniline	100-01-6	BRL	472		mg/kg	04/30/12 17:35	D1	10
3-Nitroaniline	99-09-2	BRL	472		mg/kg	04/30/12 17:35	D1	10
2-Nitroaniline	88-74-4	BRL	472		mg/kg	04/30/12 17:35	D1	10
Nitrobenzene	98-95-3	BRL	472		mg/kg	04/30/12 17:35	D1	10
2-Nitrophenol	88-75-5	BRL	472		mg/kg	04/30/12 17:35	D1	10
4-Nitrophenol	100-02-7	BRL	472		mg/kg	04/30/12 17:35	D1L1	1
N-Nitrosodi-n-Propylamine	621-64-7	BRL	472		mg/kg	04/30/12 17:35	D1	1
N-Nitrosodiphenylamine	86-30-6	BRL	472		mg/kg	04/30/12 17:35	D1	1
di-n-Octyl Phthalate	117-84-0	BRL	472		mg/kg	04/30/12 17:35	D1	1
Pentachlorophenol	87-86-5	BRL	472		mg/kg	04/30/12 17:35	D1	1
Phenanthrene	85-01-8	BRL	472		mg/kg	04/30/12 17:35	D1	1
Phenol	108-95-2	BRL	472		mg/kg	04/30/12 17:35	D1	1
Pyrene	129-00-0	BRL	472		mg/kg	04/30/12 17:35	D1	10
Pyridine	110-86-1	BRL	472		mg/kg	04/30/12 17:35	D1L1	10
1,2,4-Trichlorobenzene	120-82-1	BRL	472		mg/kg	04/30/12 17:35	D1	1
2,4,6-Trichlorophenol	88-06-2	BRL	472		mg/kg	04/30/12 17:35	D1	1
2,4,5-Trichlorophenol	95-95-4	BRL	472		mg/kg	04/30/12 17:35	D1	1
Tetradecane (CAS); n-Tetradecane; (TIC) *	TIC	5890			mg/kg	04/30/12 17:35	D2T4	1
Nonane, 2,6-dimethyl-; 2,6-Dimethy (TIC) *	TIC	5430			mg/kg	04/30/12 17:35	D2T4	10
Undecane (CAS); n-Undecane; Hendec (TIC) *	TIC	16000			mg/kg	04/30/12 17:35	D2T4	1
Undecane, 5-methyl- (TIC) *	TIC	4340			mg/kg	04/30/12 17:35	D2T4	10
Benzene, 1-methyl-3-(1-methylethyl (TIC) *	TIC	7070			mg/kg	04/30/12 17:35	D2T4	1
Undecane, 3-methyl-; 3-Methylundec (TIC) *	TIC	4030			mg/kg	04/30/12 17:35	D2T4	1
Decane, 3-methyl-; 3-Methyldecane; (TIC) *	TIC	3940			mg/kg	04/30/12 17:35	D2T4	1
Benzene, 1,2,3-trimethyl- (TIC) *	TIC	4480			mg/kg	04/30/12 17:35	D2T4	1
Tridecane (CAS); n-Tridecane; Trid (TIC) *	TIC	10300			mg/kg	04/30/12 17:35	D2T4	10
Heptadecane, 2,6,10,15-tetramethyl (TIC) *	TIC	3690		1	mg/kg	04/30/12 17:35	D2T4	10
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
2-Fluorobiphenyl	321-60-8	100	%	30-115		04/30/12 17:35		
2-Fluorophenol	367-12-4	294	%	25-121		04/30/12 17:35	S8	

Project: Standard List of Methods

Page 7 of 23

Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12-3339 Matrix: Product Date Received: Apr-26-12 09:30

Analytical Method: SVOAs by SW-846 8270C Prep Method: SW3580A

Tech: LRA % Moisture:

Analyst: MCH Date Prep: Apr-30-12 10:18

Seq Number: 886890

Surrogate	Cas Number	% Recovery			Analysis Date	Flag
Nitrobenzene-d5	4165-60-0	266	%	23-120	04/30/12 17:35	S8
Phenol-d6	13127-88-3	146	%	24-113	04/30/12 17:35	S8
Terphenyl-D14	1718-51-0	94	%	18-137	04/30/12 17:35	
2,4,6-Tribromophenol	118-79-6	82	%	19-122	04/30/12 17:35	

Project: Standard List of Methods

Page 8 of 23

Basis: Wet Weight

$Southwest\ Research\ Institute,\ San\ Antonio,\ TX$

17149.26.001

Date Prep: May-04-12 18:43

Sample Id: CL12-3339 Matrix: Product Date Received: Apr-26-12 09:30

Lab Sample Id: 441475-001 **Date Collected:** Apr-23-12 00:00

Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B

Tech: CYE % Moisture:

Analyst: CYE
Seq Number: 887395

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Benzene	71-43-2	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Bromobenzene	108-86-1	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Bromochloromethane	74-97-5	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Bromodichloromethane	75-27-4	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Bromoform	75-25-2	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Methyl bromide	74-83-9	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
MTBE	1634-04-4	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
tert-Butylbenzene	98-06-6	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Sec-Butylbenzene	135-98-8	715	50.0	mg/kg	05/04/12 22:06	D2	1000
n-Butylbenzene	104-51-8	1240	50.0	mg/kg	05/04/12 22:06	D2	1000
Carbon Tetrachloride	56-23-5	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Chlorobenzene	108-90-7	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Chloroethane	75-00-3	BRL	100	mg/kg	05/04/12 22:06	D1	1000
Chloroform	67-66-3	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Methyl Chloride	74-87-3	BRL	100	mg/kg	05/04/12 22:06	D1	1000
2-Chlorotoluene	95-49-8	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
1-Chlorotoluene	106-43-4	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
p-Cymene (p-Isopropyltoluene)	99-87-6	1050	50.0	mg/kg	05/04/12 22:06	D2	1000
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Dibromochloromethane	124-48-1	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
1,2-Dibromoethane	106-93-4	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Methylene bromide	74-95-3	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
1,2-Dichlorobenzene	95-50-1	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
1,3-Dichlorobenzene	541-73-1	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
1,4-Dichlorobenzene	106-46-7	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Dichlorodifluoromethane	75-71-8	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
1,2-Dichloroethane	107-06-2	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
1,1-Dichloroethane	75-34-3	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
rans-1,2-dichloroethylene	156-60-5	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
cis-1,2-Dichloroethylene	156-59-2	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
1,1-Dichloroethene	75-35-4	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
2,2-Dichloropropane	594-20-7	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
1,3-Dichloropropane	142-28-9	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
1,2-Dichloropropane	78-87-5	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
rans-1,3-dichloropropene	10061-02-6	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
1,1-Dichloropropene	563-58-6	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
cis-1,3-Dichloropropene	10061-01-5	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Ethylbenzene	100-41-4	308	50.0	mg/kg	05/04/12 22:06	D2	1000
Hexachlorobutadiene	87-68-3	BRL	50.0	mg/kg	05/04/12 22:06	D1	1000
Naphthalene	91-20-3	163	100	mg/kg	05/04/12 22:06	D2	1000

Project: Standard List of Methods

Page 9 of 23

Basis: Wet Weight

Southwest Research Institute, San Antonio, TX

17149.26.001

Date Prep: May-04-12 18:43

Sample Id: CL12-3339 Matrix: Product Date Received: Apr-26-12 09:30

Lab Sample Id: 441475-001 **Date Collected:** Apr-23-12 00:00

17060-07-0

2037-26-5

Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B

Tech: CYE % Moisture:

Analyst: CYE
Seq Number: 887395

Seq Number: 887395			•					
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Isopropylbenzene	98-82-8	229	50.0		mg/kg	05/04/12 22:06	D2	1000
Methylene Chloride	75-09-2	BRL	200		mg/kg	05/04/12 22:06	D1	1000
n-Propylbenzene	103-65-1	661	50.0		mg/kg	05/04/12 22:06	D2	1000
Styrene	100-42-5	BRL	50.0		mg/kg	05/04/12 22:06	D1	1000
1,1,1,2-Tetrachloroethane	630-20-6	BRL	50.0		mg/kg	05/04/12 22:06	D1	1000
1,1,2,2-Tetrachloroethane	79-34-5	BRL	50.0		mg/kg	05/04/12 22:06	D1	1000
Tetrachloroethylene	127-18-4	BRL	50.0		mg/kg	05/04/12 22:06	D1	1000
Toluene	108-88-3	123	50.0		mg/kg	05/04/12 22:06	D2	1000
1,2,4-Trichlorobenzene	120-82-1	BRL	50.0		mg/kg	05/04/12 22:06	D1	1000
1,2,3-Trichlorobenzene	87-61-6	BRL	50.0		mg/kg	05/04/12 22:06	D1	1000
1,1,2-Trichloroethane	79-00-5	BRL	50.0		mg/kg	05/04/12 22:06	D1	1000
1,1,1-Trichloroethane	71-55-6	BRL	50.0		mg/kg	05/04/12 22:06	D1	1000
Trichloroethylene	79-01-6	BRL	50.0		mg/kg	05/04/12 22:06	D1	1000
Trichlorofluoromethane	75-69-4	BRL	50.0		mg/kg	05/04/12 22:06	D1	1000
1,2,3-Trichloropropane	96-18-4	BRL	50.0		mg/kg	05/04/12 22:06	D1	1000
1,2,4-Trimethylbenzene	95-63-6	8380	500		mg/kg	05/04/12 22:27	D2	1000
1,3,5-Trimethylbenzene	108-67-8	713	50.0		mg/kg	05/04/12 22:06	D2	1000
Vinyl Chloride	75-01-4	BRL	20.0		mg/kg	05/04/12 22:06	D1	1000
o-Xylene	95-47-6	648	50.0		mg/kg	05/04/12 22:06	D2	1000
m,p-Xylenes	179601-23-1	1070	100		mg/kg	05/04/12 22:06	D2	1000
Hexadecane (TIC)	TIC	3210	10.0		mg/kg	05/04/12 22:06	D2T4	1000
Undecane (TIC)	TIC	1530	10.0		mg/kg	05/04/12 22:06	D2T4	1000
Formaldehyde, (1-methylethyl)(2-propenyl)hyd	d (T TIC	3690	10.0		mg/kg	05/04/12 22:06	D2T4	1000
Octane, 2,3-dimethyl- (TIC)	TIC	2000	10.0		mg/kg	05/04/12 22:06	D2T4	1000
Nonane, 3-methyl- (TIC)	TIC	2280	10.0		mg/kg	05/04/12 22:06	D2T4	1000
Cyclohexane, 1-ethyl-4-methyl-, cis- (TIC)	TIC	1020	10.0		mg/kg	05/04/12 22:06	D2T4	1000
Nonane, 3-methyl- (TIC)	TIC	1920	10.0		mg/kg	05/04/12 22:06	D2T4	1000
Octane, 3-methyl- (TIC)	TIC	1710	10.0		mg/kg	05/04/12 22:06	D2T4	1000
Cyclohexane, 1-ethyl-4-methyl-, cis- (TIC)	TIC	1650	10.0		mg/kg	05/04/12 22:06	D2T4	1000
Heptane, 3-methyl- (TIC)	TIC	997	10.0		mg/kg	05/04/12 22:06	D2T4	1000
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
4-Bromofluorobenzene	460-00-4	111	%	58-152		05/04/12 22:06		
Dibromofluoromethane	1868-53-7	96	%	74-126		05/04/12 22:06		

Project: Standard List of Methods

1,2-Dichloroethane-D4

Toluene-D8

Page 10 of 23

97

129

%

%

80-120

73-132

Final 1.000

05/04/12 22:06

05/04/12 22:06

$Southwest\ Research\ Institute,\ San\ Antonio,\ TX$

17149.26.001

Date Prep: Apr-30-12 10:24

Sample Id: CL12-3599 Matrix: Product Date Received: Apr-26-12 09:30

Analytical Method: SVOAs by SW-846 8270C Prep Method: SW3580A

Tech: LRA % Moisture:

Analyst: MCH Seq Number: 886890

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	BRL	442	mg/kg	04/30/12 17:58	D1	10
Acenaphthylene	208-96-8	BRL	442	mg/kg	04/30/12 17:58	D1	10
Aniline (Phenylamine, Aminobenzene)	62-53-3	BRL	442	mg/kg	04/30/12 17:58	D1	10
Anthracene	120-12-7	BRL	442	mg/kg	04/30/12 17:58	D1	10
Benzo(a)anthracene	56-55-3	BRL	442	mg/kg	04/30/12 17:58	D1	10
Benzo(a)pyrene	50-32-8	BRL	442	mg/kg	04/30/12 17:58	D1	10
Benzo(b)fluoranthene	205-99-2	BRL	442	mg/kg	04/30/12 17:58	D1	10
Benzo(g,h,i)perylene	191-24-2	BRL	442	mg/kg	04/30/12 17:58	D1	10
Benzo(k)fluoranthene	207-08-9	BRL	442	mg/kg	04/30/12 17:58	D1	10
Benzoic Acid	65-85-0	BRL	2650	mg/kg	04/30/12 17:58	D1L1	10
Benzyl Butyl Phthalate	85-68-7	BRL	442	mg/kg	04/30/12 17:58	D1	10
bis(2-chloroethoxy) methane	111-91-1	BRL	442	mg/kg	04/30/12 17:58	D1	10
bis(2-chloroethyl) ether	111-44-4	BRL	442	mg/kg	04/30/12 17:58	D1	10
bis(2-chloroisopropyl) ether	108-60-1	BRL	442	mg/kg	04/30/12 17:58	D1	10
bis(2-ethylhexyl) phthalate	117-81-7	BRL	442	mg/kg	04/30/12 17:58	D1	1
4-Bromophenyl-phenylether	101-55-3	BRL	442	mg/kg	04/30/12 17:58	D1	10
Di-n-butylphthalate	84-74-2	BRL	442	mg/kg	04/30/12 17:58	D1	10
1-chloro-3-methylphenol	59-50-7	BRL	442	mg/kg	04/30/12 17:58	D1	10
4-Chloroaniline	106-47-8	BRL	442	mg/kg	04/30/12 17:58	D1	1
2-Chloronaphthalene	91-58-7	BRL	442	mg/kg	04/30/12 17:58	D1L1	10
2-Chlorophenol	95-57-8	BRL	442	mg/kg	04/30/12 17:58	D1	10
4-Chlorophenyl Phenyl Ether	7005-72-3	BRL	442	mg/kg	04/30/12 17:58	D1	10
Chrysene	218-01-9	BRL	442	mg/kg	04/30/12 17:58	D1	10
Dibenz(a,h)anthracene	53-70-3	BRL	442	mg/kg	04/30/12 17:58	D1	10
Dibenzofuran	132-64-9	BRL	442	mg/kg	04/30/12 17:58	D1	10
1,2-Dichlorobenzene	95-50-1	BRL	442	mg/kg	04/30/12 17:58	D1	10
1,3-Dichlorobenzene	541-73-1	BRL	442	mg/kg	04/30/12 17:58	D1	10
1,4-Dichlorobenzene	106-46-7	BRL	442	mg/kg	04/30/12 17:58	D1	10
3,3-Dichlorobenzidine	91-94-1	BRL	442	mg/kg	04/30/12 17:58	D1	10
2,4-Dichlorophenol	120-83-2	BRL	442	mg/kg	04/30/12 17:58	D1	10
Diethylphthalate	84-66-2	BRL	442	mg/kg	04/30/12 17:58	D1	10
Dimethyl Phthalate	131-11-3	BRL	442	mg/kg	04/30/12 17:58	D1	10
2,4-Dimethylphenol	105-67-9	BRL	442	mg/kg	04/30/12 17:58	D1	10
4,6-dinitro-2-methyl phenol	534-52-1	BRL	442	mg/kg	04/30/12 17:58	D1L2	10
2,4-Dinitrophenol	51-28-5	BRL	442	mg/kg	04/30/12 17:58	D1L2	10
2,4-Dinitrotoluene	121-14-2	BRL	442	mg/kg	04/30/12 17:58	D1	10
2,6-Dinitrotoluene	606-20-2	BRL	442	mg/kg	04/30/12 17:58	D1L1	10
Fluoranthene	206-44-0	BRL	442	mg/kg	04/30/12 17:58	D1	10
Fluorene	86-73-7	BRL	442	mg/kg	04/30/12 17:58	D1	10
Hexachlorobenzene	118-74-1	BRL	442	mg/kg	04/30/12 17:58	D1	1

Project: Standard List of Methods

Page 11 of 23

Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12-3599 Matrix: Product Date Received: Apr-26-12 09:30

Lab Sample Id: 441475-002 **Date Collected:** Apr-23-12 00:00

Analytical Method: SVOAs by SW-846 8270C Prep Method: SW3580A

Tech: LRA % Moisture:

Teem Date 1								
Analyst: MCH		Dat	e Prep: Ap	or-30-12 10:2	4			
Seq Number: 886890								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Hexachlorobutadiene	87-68-3	BRL	442		mg/kg	04/30/12 17:58	D1	10
Hexachlorocyclopentadiene	77-47-4	BRL	442		mg/kg	04/30/12 17:58	D1L2	10
Hexachloroethane	67-72-1	BRL	442		mg/kg	04/30/12 17:58	D1	10
Indeno(1,2,3-c,d)Pyrene	193-39-5	BRL	442		mg/kg	04/30/12 17:58	D1	10
Isophorone	78-59-1	BRL	442		mg/kg	04/30/12 17:58	D1	10
2-Methylnaphthalene	91-57-6	1340	442		mg/kg	04/30/12 17:58	D2	10
2-methylphenol	95-48-7	BRL	442		mg/kg	04/30/12 17:58	D1	10
3&4-Methylphenol	15831-10-4	BRL	442		mg/kg	04/30/12 17:58	D1	10
Naphthalene	91-20-3	687	442		mg/kg	04/30/12 17:58	D2	10
4-Nitroaniline	100-01-6	BRL	442		mg/kg	04/30/12 17:58	D1	10
3-Nitroaniline	99-09-2	BRL	442		mg/kg	04/30/12 17:58	D1	10
2-Nitroaniline	88-74-4	BRL	442		mg/kg	04/30/12 17:58	D1	10
Nitrobenzene	98-95-3	BRL	442		mg/kg	04/30/12 17:58	D1	10
2-Nitrophenol	88-75-5	BRL	442		mg/kg	04/30/12 17:58	D1	10
4-Nitrophenol	100-02-7	BRL	442		mg/kg	04/30/12 17:58	D1L1	10
N-Nitrosodi-n-Propylamine	621-64-7	BRL	442		mg/kg	04/30/12 17:58	D1	10
N-Nitrosodiphenylamine	86-30-6	BRL	442		mg/kg	04/30/12 17:58	D1	10
di-n-Octyl Phthalate	117-84-0	BRL	442		mg/kg	04/30/12 17:58	D1	10
Pentachlorophenol	87-86-5	BRL	442		mg/kg	04/30/12 17:58	D1	10
Phenanthrene	85-01-8	BRL	442		mg/kg	04/30/12 17:58	D1	10
Phenol	108-95-2	BRL	442		mg/kg	04/30/12 17:58	D1	10
Pyrene	129-00-0	BRL	442		mg/kg	04/30/12 17:58	D1	10
Pyridine	110-86-1	BRL	442		mg/kg	04/30/12 17:58	D1L1	10
1,2,4-Trichlorobenzene	120-82-1	BRL	442		mg/kg	04/30/12 17:58	D1	10
2,4,6-Trichlorophenol	88-06-2	BRL	442		mg/kg	04/30/12 17:58	D1	10
2,4,5-Trichlorophenol	95-95-4	BRL	442		mg/kg	04/30/12 17:58	D1	10
Octane, 3,6-dimethyl- (TIC) *	TIC	9080			mg/kg	04/30/12 17:58	D2T4	10
Benzene, 2-ethyl-1,4-dimethyl- (CA (TIC) *	TIC	4350			mg/kg	04/30/12 17:58	D2T4	10
Benzene, 1,2,3-trimethyl- (TIC) *	TIC	5330			mg/kg	04/30/12 17:58	D2T4	10
Tetradecane (TIC) *	TIC	11200			mg/kg	04/30/12 17:58	D2T4	10
Benzene, 1-methyl-4-(1-methylethyl (TIC) *	TIC	39400			mg/kg	04/30/12 17:58	D2T4	10
Benzene, 1,4-dimethyl- (CAS); p-Xy (TIC) *	TIC	4220			mg/kg	04/30/12 17:58	D2T4	10
Nonane (CAS); n-Nonane; Shellsol 1 (TIC) *	TIC	7470			mg/kg	04/30/12 17:58	D2T4	10
1-Methyl-4-(1-methylethyl)-cyclohe (TIC) *	TIC	84100			mg/kg	04/30/12 17:58	D2T4	10
Decane (TIC) *	TIC	13000			mg/kg	04/30/12 17:58	D2T4	10
Undecane (TIC) *	TIC	16600			mg/kg	04/30/12 17:58	D2T4	10
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
2-Fluorobiphenyl	321-60-8	104	%	30-115		04/30/12 17:58		
2-Fluorophenol	367-12-4	156	%	25-121		04/30/12 17:58	S8	

Project: Standard List of Methods

Page 12 of 23

Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12-3599 Matrix: Product Date Received: Apr-26-12 09:30

Analytical Method: SVOAs by SW-846 8270C Prep Method: SW3580A

Tech: LRA % Moisture:

Analyst: MCH Date Prep: Apr-30-12 10:24

Seq Number: 886890

Surrogate	Cas Number	% Recovery			Analysis Date	Flag
Nitrobenzene-d5	4165-60-0	556	%	23-120	04/30/12 17:58	S8
Phenol-d6	13127-88-3	0	%	24-113	04/30/12 17:58	S8
Terphenyl-D14	1718-51-0	96	%	18-137	04/30/12 17:58	
2,4,6-Tribromophenol	118-79-6	84	%	19-122	04/30/12 17:58	

Project: Standard List of Methods

Page 13 of 23

Basis: Wet Weight

Southwest Research Institute, San Antonio, TX

17149.26.001

Date Prep: May-04-12 18:45

Sample Id: CL12-3599 Matrix: Product Date Received: Apr-26-12 09:30

Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B

Tech: CYE % Moisture:

Analyst: CYE
Seq Number: 887395

Seq Number: 88739	'5						
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Benzene	71-43-2	BRL	50.0	mg/kg	05/04/12 22:49	D1	1000
Bromobenzene	108-86-1	BRL	50.0	mg/kg	05/04/12 22:49	D1	1000
Bromochloromethane	74-97-5	BRL	50.0	mg/kg	05/04/12 22:49	D1	1000
Bromodichloromethane	75-27-4	BRL	50.0	mg/kg	05/04/12 22:49	D1	1000
Bromoform	75-25-2	BRL	50.0	mg/kg	05/04/12 22:49	D1	1000
Methyl bromide	74-83-9	BRL	50.0	mg/kg	05/04/12 22:49	D1	1000
MTBE	1634-04-4	BRL	50.0	mg/kg	05/04/12 22:49	D1	1000
tert-Butylbenzene	98-06-6	BRL	50.0	mg/kg	05/04/12 22:49	D1	1000
Sec-Butylbenzene	135-98-8	443	50.0	mg/kg	05/04/12 22:49	D2	1000
n-Butylbenzene	104-51-8	909	50.0	mg/kg	05/04/12 22:49	D2	1000
Carbon Tetrachloride	56-23-5	BRL	50.0	mg/kg	05/04/12 22:49	D1	1000
Chlorobenzene	108-90-7	BRL	50.0	mg/kg	05/04/12 22:49	D1	1000
Chloroethane	75-00-3	BRL	100	mg/kg	05/04/12 22:49	D1	1000
Chloroform	67-66-3	BRL	50.0	mg/kg	05/04/12 22:49	D1	1000
Methyl Chloride	74-87-3	BRL	100	mg/kg	05/04/12 22:49	D1	100
2-Chlorotoluene	95-49-8	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
1-Chlorotoluene	106-43-4	BRL	50.0	mg/kg	05/04/12 22:49	D1	1000
p-Cymene (p-Isopropyltoluene)	99-87-6	41300	10000	mg/kg	05/07/12 21:27	D2	20000
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
Dibromochloromethane	124-48-1	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
1,2-Dibromoethane	106-93-4	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
Methylene bromide	74-95-3	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
1,2-Dichlorobenzene	95-50-1	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
1,3-Dichlorobenzene	541-73-1	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
1,4-Dichlorobenzene	106-46-7	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
Dichlorodifluoromethane	75-71-8	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
1,2-Dichloroethane	107-06-2	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
1,1-Dichloroethane	75-34-3	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
rans-1,2-dichloroethylene	156-60-5	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
cis-1,2-Dichloroethylene	156-59-2	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
I,1-Dichloroethene	75-35-4	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
2,2-Dichloropropane	594-20-7	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
1,3-Dichloropropane	142-28-9	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
1,2-Dichloropropane	78-87-5	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
rans-1,3-dichloropropene	10061-02-6	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
1,1-Dichloropropene	563-58-6	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
cis-1,3-Dichloropropene	10061-01-5	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
Ethylbenzene	100-41-4	637	50.0	mg/kg	05/04/12 22:49	D2	100
Hexachlorobutadiene	87-68-3	BRL	50.0	mg/kg	05/04/12 22:49	D1	100
Naphthalene	91-20-3	666	100	mg/kg	05/04/12 22:49	D2	100

Project: Standard List of Methods

Page 14 of 23

Southwest Research Institute, San Antonio, TX

17149.26.001

Sample Id: CL12-3599 Matrix: Product Date Received: Apr-26-12 09:30

Lab Sample Id: 441475-002 **Date Collected:** Apr-23-12 00:00

Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B

Tech: CYE % Moisture:

Analyst: CYE		Date	e Prep: Ma	ay-04-12 18:	Basis: Wet Weight			
Seq Number: 88739	95							
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Isopropylbenzene	98-82-8	321	50.0		mg/kg	05/04/12 22:49	D2	1000
Methylene Chloride	75-09-2	BRL	200		mg/kg	05/04/12 22:49	D1	1000
n-Propylbenzene	103-65-1	782	50.0		mg/kg	05/04/12 22:49	D2	100
Styrene	100-42-5	BRL	50.0		mg/kg	05/04/12 22:49	D1	100
1,1,1,2-Tetrachloroethane	630-20-6	BRL	50.0		mg/kg	05/04/12 22:49	D1	100
1,1,2,2-Tetrachloroethane	79-34-5	BRL	50.0		mg/kg	05/04/12 22:49	D1	100
Tetrachloroethylene	127-18-4	BRL	50.0		mg/kg	05/04/12 22:49	D1	100
Toluene	108-88-3	606	50.0		mg/kg	05/04/12 22:49	D2	100
1,2,4-Trichlorobenzene	120-82-1	BRL	50.0		mg/kg	05/04/12 22:49	D1	100
1,2,3-Trichlorobenzene	87-61-6	BRL	50.0		mg/kg	05/04/12 22:49	D1	100
1,1,2-Trichloroethane	79-00-5	BRL	50.0		mg/kg	05/04/12 22:49	D1	100
1,1,1-Trichloroethane	71-55-6	BRL	50.0		mg/kg	05/04/12 22:49	D1	100
Trichloroethylene	79-01-6	BRL	50.0		mg/kg	05/04/12 22:49	D1	100
Trichlorofluoromethane	75-69-4	BRL	50.0		mg/kg	05/04/12 22:49	D1	100
1,2,3-Trichloropropane	96-18-4	BRL	50.0		mg/kg	05/04/12 22:49	D1	100
1,2,4-Trimethylbenzene	95-63-6	5160	500		mg/kg	05/04/12 23:11	D2	100
1,3,5-Trimethylbenzene	108-67-8	1240	50.0		mg/kg	05/04/12 22:49	D2	100
Vinyl Chloride	75-01-4	BRL	20.0		mg/kg	05/04/12 22:49	D1	100
o-Xylene	95-47-6	1270	50.0		mg/kg	05/04/12 22:49	D2	100
m,p-Xylenes	179601-23-1	2340	100		mg/kg	05/04/12 22:49	D2	100
Cyclohexane, methyl- (TIC)	TIC	500	10.0		mg/kg	05/04/12 22:49	D2T4	100
Heptane, 2-methyl- (TIC)	TIC	362	10.0		mg/kg	05/04/12 22:49	D2T4	100
Hexyl octyl ether (TIC)	TIC	747	10.0		mg/kg	05/04/12 22:49	D2T4	100
Octane, 3-methyl- (TIC)	TIC	500	10.0		mg/kg	05/04/12 22:49	D2T4	100
Heptane, 3-methyl- (TIC)	TIC	422	10.0		mg/kg	05/04/12 22:49	D2T4	100
Cyclohexane, 1,1,3-trimethyl- (TIC)	TIC	301	10.0		mg/kg	05/04/12 22:49	D2T4	100
Cyclohexane, propyl- (TIC)	TIC	1050	10.0		mg/kg	05/04/12 22:49	D2T4	100
Octane (TIC)	TIC	555	10.0		mg/kg	05/04/12 22:49	D2T4	100
m-Menthane, (1S,3S)-(+)- (TIC)	TIC	870	10.0		mg/kg	05/04/12 22:49	D2T4	100
Nonane, 3-methyl- (TIC)	TIC	1580	10.0		mg/kg	05/04/12 22:49	D2T4	100
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
4-Bromofluorobenzene	460-00-4	137	%	58-152		05/04/12 22:49		
Dibromofluoromethane	1868-53-7	97	%	74-126		05/04/12 22:49		
1,2-Dichloroethane-D4	17060-07-0	98	%	80-120		05/04/12 22:49		
-,		, ,						

Project: Standard List of Methods

Toluene-D8

Page 15 of 23

119

73-132

2037-26-5

Final 1.000

05/04/12 22:49

QC Summary 441475

Southwest Research Institute, San Antonio, TX

17149.26.001

 Analytical Method:
 SVOAs by SW-846 8270C
 Prep Method:
 SW3580A

 Seq Number:
 886890
 Matrix: Oil
 Date Prep:
 04/30/2012

 MB Sample Id:
 621152-1-BLK
 LCS Sample Id: 621152-1-BKS
 LCSD Sample Id: 621152-1-BSD
 621152-1-BSD

MB Sample Id: 621152-1-1	3LK	LCS Sample 1d: 621152-1-BKS						LCSD Sample 1d: 621152-1-BSD					
Parameter	MB Result	Spike Amount	LCS Result	LCS % Rec	LCSD Result	LCSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag	
Acenaphthene	<15.0	50.0	50.1	100	51.1	102	41-134	2	25	mg/kg	04/30/12 16:47		
Acenaphthylene	<15.0	50.0	49.0	98	50.5	101	65-135	3	25	mg/kg	04/30/12 16:47		
Aniline (Phenylamine, Aminobenzene)	<15.0	50.0	29.4	59	29.4	59	2-145	0	25	mg/kg	04/30/12 16:47		
Anthracene	<15.0	50.0	48.9	98	48.7	97	65-135	0	25	mg/kg	04/30/12 16:47		
Benzo(a)anthracene	<15.0	50.0	51.6	103	53.0	106	44-126	3	25	mg/kg	04/30/12 16:47		
Benzo(a)pyrene	<15.0	50.0	48.9	98	48.9	98	65-135	0	25	mg/kg	04/30/12 16:47		
Benzo(b)fluoranthene	<15.0	50.0	46.9	94	48.3	97	65-135	3	25	mg/kg	04/30/12 16:47		
Benzo(g,h,i)perylene	<15.0	50.0	46.8	94	47.9	96	65-135	2	25	mg/kg	04/30/12 16:47		
Benzo(k)fluoranthene	<15.0	50.0	50.5	101	47.6	95	25-125	6	25	mg/kg	04/30/12 16:47		
Benzoic Acid	<150	150	186	124	206	137	50-125	10	25	mg/kg	04/30/12 16:47	L1	
bis(2-chloroethoxy) methane	<15.0	50.0	50.4	101	50.6	101	65-135	0	25	mg/kg	04/30/12 16:47		
bis(2-chloroethyl) ether	<15.0	50.0	51.6	103	52.1	104	65-135	1	25	mg/kg	04/30/12 16:47		
bis(2-chloroisopropyl) ether	<15.0	50.0	45.1	90	43.9	88	65-135	3	25	mg/kg	04/30/12 16:47		
bis(2-ethylhexyl) phthalate	<15.0	50.0	56.4	113	55.5	111	65-135	2	25	mg/kg	04/30/12 16:47		
4-Bromophenyl-phenylether	<15.0	50.0	50.7	101	47.3	95	65-135	7	25	mg/kg	04/30/12 16:47		
Di-n-butylphthalate	<15.0	50.0	53.7	107	52.2	104	65-135	3	25	mg/kg	04/30/12 16:47		
4-chloro-3-methylphenol	<15.0	50.0	47.0	94	45.2	90	28-134	4	25	mg/kg	04/30/12 16:47		
4-Chloroaniline	<15.0	50.0	37.7	75	36.1	72	4-149	4	25	mg/kg	04/30/12 16:47		
2-Chloronaphthalene	<15.0	50.0	70.8	142	70.4	141	65-135	1	25	mg/kg	04/30/12 16:47	L1	
2-Chlorophenol	<15.0	50.0	50.0	100	51.2	102	25-140	2	25	mg/kg	04/30/12 16:47		
4-Chlorophenyl Phenyl Ether	<15.0	50.0	50.8	102	51.7	103	65-135	2	25	mg/kg	04/30/12 16:47		
Chrysene	<15.0	50.0	52.9	106	52.5	105	65-135	1	25	mg/kg	04/30/12 16:47		
Dibenz(a,h)anthracene	<15.0	50.0	48.8	98	48.9	98	65-135	0	25	mg/kg	04/30/12 16:47		
Dibenzofuran	<15.0	50.0	51.9	104	51.6	103	65-135	1	25	mg/kg	04/30/12 16:47		
1,2-Dichlorobenzene	<15.0	50.0	51.3	103	48.8	98	65-135	5	25	mg/kg	04/30/12 16:47		
1,3-Dichlorobenzene	<15.0	50.0	49.1	98	50.5	101	65-135	3	25	mg/kg	04/30/12 16:47		
1,4-Dichlorobenzene	<15.0	50.0	49.8	100	51.0	102	36-134	2	25	mg/kg	04/30/12 16:47		
3,3-Dichlorobenzidine	<15.0	50.0	46.9	94	47.6	95	20-140	1	25	mg/kg	04/30/12 16:47		
2,4-Dichlorophenol	<15.0	50.0	47.4	95	41.4	83	65-135	14	25	mg/kg	04/30/12 16:47		
Diethylphthalate	<15.0	50.0	52.9	106	51.2	102	37-125	3	25	mg/kg	04/30/12 16:47		
2,4-Dimethylphenol	<15.0	50.0	47.3	95	46.1	92	65-135	3	25	mg/kg	04/30/12 16:47		
4,6-dinitro-2-methyl phenol	<15.0	50.0	<15.0	0	<15.0	0	65-135	NC	25	mg/kg	04/30/12 16:47	L2	
2,4-Dinitrophenol	<15.0	50.0	<15.0	0	<15.0	0	65-135	NC	25	mg/kg	04/30/12 16:47	L2	
2,4-Dinitrotoluene	<15.0	50.0	46.1	92	43.6	87	40-130	6	25	mg/kg	04/30/12 16:47		
2,6-Dinitrotoluene	<15.0	50.0	46.9	94	46.0	92	28-89	2	25	mg/kg	04/30/12 16:47	L1	
Fluoranthene	<15.0	50.0	51.8	104	52.4	105	65-135	1	25	mg/kg	04/30/12 16:47		
Fluorene	<15.0	50.0	49.8	100	51.0	102	65-135	2	25	mg/kg	04/30/12 16:47		
Hexachlorobenzene	<15.0	50.0	52.2	104	51.6	103	65-135	1	25	mg/kg	04/30/12 16:47		
Hexachlorobutadiene	<15.0	50.0	49.3	99	52.4	105	65-135	6	25	mg/kg	04/30/12 16:47		
Hexachlorocyclopentadiene	<15.0	50.0	<15.0	0	<15.0	0	65-135	NC	25	mg/kg	04/30/12 16:47	L2	
Hexachloroethane	<15.0	50.0	43.8	88	43.8	88	65-135	0	25	mg/kg	04/30/12 16:47		
Indeno(1,2,3-c,d)Pyrene	<15.0	50.0	44.4	89	45.8	92	65-135	3	25	mg/kg	04/30/12 16:47		
Isophorone	<15.0	50.0	49.7	99	48.7	97	65-135	2	25	mg/kg	04/30/12 16:47		
2-Methylnaphthalene	<15.0	50.0	52.0	104	49.6	99	25-175	5	25	mg/kg	04/30/12 16:47		
2-methylphenol	<15.0	50.0	47.6	95	47.8	96	65-135	0	25	mg/kg	04/30/12 16:47		
3&4-Methylphenol	<15.0	50.0	45.0	90	43.4	87	65-135	4	25	mg/kg	04/30/12 16:47		

Page 16 of 23

Southwest Research Institute, San Antonio, TX

17149.26.001

Analytical Method:	SVOAs by SW-8	46 8270C						1	Prep Meth	od: SW	3580A	
Seq Number:	886890			Matrix:	Oil				Date Pr	rep: 04/3	0/2012	
MB Sample Id:	621152-1-BLK		LCS Sa	mple Id:	621152-1-	-BKS		LC	SD Sampl	e Id: 621	152-1-BSD	
Parameter	M Resu		LCS Result	LCS % Rec	LCSD Result	LCSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Naphthalene	<15	.0 50.0	50.0	100	50.8	102	65-135	2	25	mg/kg	04/30/12 16:47	
4-Nitroaniline	<15	.0 50.0	54.4	109	55.5	111	65-135	2	25	mg/kg	04/30/12 16:47	
3-Nitroaniline	<15	.0 50.0	46.7	93	47.9	96	65-135	3	25	mg/kg	04/30/12 16:47	
2-Nitroaniline	<15	.0 50.0	45.2	90	49.3	99	65-135	9	25	mg/kg	04/30/12 16:47	
Nitrobenzene	<15	.0 50.0	49.2	98	47.3	95	65-135	4	25	mg/kg	04/30/12 16:47	
2-Nitrophenol	<15	.0 50.0	46.2	92	43.6	87	65-135	6	25	mg/kg	04/30/12 16:47	
4-Nitrophenol	<15	.0 50.0	64.5	129	53.8	108	13-106	18	25	mg/kg	04/30/12 16:47	L1
N-Nitrosodi-n-Propylan	nine <15	.0 50.0	49.6	99	48.2	96	53-130	3	25	mg/kg	04/30/12 16:47	
N-Nitrosodiphenylamin	e <15	.0 50.0	46.6	93	49.0	98	65-135	5	25	mg/kg	04/30/12 16:47	
di-n-Octyl Phthalate	<15	.0 50.0	53.3	107	53.3	107	65-135	0	25	mg/kg	04/30/12 16:47	
Pentachlorophenol	<15	.0 50.0	39.9	80	36.3	73	14-111	9	25	mg/kg	04/30/12 16:47	
Phenanthrene	<15	.0 50.0	49.2	98	49.8	100	65-135	1	25	mg/kg	04/30/12 16:47	
Phenol	<15	.0 50.0	47.0	94	48.6	97	27-127	3	25	mg/kg	04/30/12 16:47	
Pyrene	<15	.0 50.0	47.2	94	46.4	93	41-144	2	25	mg/kg	04/30/12 16:47	
Pyridine	<15	.0 50.0	50.4	101	48.5	97	39-98	4	25	mg/kg	04/30/12 16:47	L1
1,2,4-Trichlorobenzene	<15	.0 50.0	51.6	103	51.2	102	37-133	1	25	mg/kg	04/30/12 16:47	
2,4,6-Trichlorophenol	<15	.0 50.0	53.3	107	53.9	108	65-135	1	25	mg/kg	04/30/12 16:47	
2,4,5-Trichlorophenol	<15	.0 50.0	53.0	106	51.8	104	65-135	2	25	mg/kg	04/30/12 16:47	
Surrogate	M % R				LCS Flag	LCSD % Rec			Limits	Units	Analysis Date	
2-Fluorobiphenyl	98	3		100		98		3	0-115	%	04/30/12 16:47	
2-Fluorophenol	11	9		118		115		2	5-121	%	04/30/12 16:47	
Nitrobenzene-d5	9:	5		97		95		2	3-120	%	04/30/12 16:47	
Phenol-d6	10	4		114	S1	115	S1	2	4-113	%	04/30/12 16:47	
Terphenyl-D14	99	9		97		91		1	8-137	%	04/30/12 16:47	
2,4,6-Tribromophenol	11	6		128	S1	121		1	9-122	%	04/30/12 16:47	

Page 17 of 23 Final 1.000

Southwest Research Institute, San Antonio, TX

17149.26.001

Analytical Method:	VOAs by SW-846 8260		Prep Method:	SW5030B
Seq Number:	887395	Matrix: Solid	Date Prep:	05/04/2012
MB Sample Id:	621552-1-BLK	LCS Sample Id: 621552-1-BKS		

MB Sample Id: 621552	-1-BLK		LCS Sa	mple Id:	621552-1-BKS			
Parameter	MB Result	Spike Amount	LCS Result	LCS % Rec	Limits	Units	Analysis Date	Flag
Benzene	< 0.000450	0.0500	0.0539	108	66-142	mg/kg	05/04/12 13:28	
Bromobenzene	< 0.000259	0.0500	0.0512	102	75-125	mg/kg	05/04/12 13:28	
Bromochloromethane	< 0.000645	0.0500	0.0541	108	73-125	mg/kg	05/04/12 13:28	
Bromodichloromethane	< 0.000364	0.0500	0.0517	103	75-125	mg/kg	05/04/12 13:28	
Bromoform	< 0.000442	0.0500	0.0512	102	75-125	mg/kg	05/04/12 13:28	
Methyl bromide	< 0.000811	0.0500	0.0460	92	65-135	mg/kg	05/04/12 13:28	
MTBE	< 0.000166	0.0500	0.0558	112	65-135	mg/kg	05/04/12 13:28	
tert-Butylbenzene	< 0.000223	0.0500	0.0514	103	75-125	mg/kg	05/04/12 13:28	
Sec-Butylbenzene	< 0.0000840	0.0500	0.0517	103	75-125	mg/kg	05/04/12 13:28	
n-Butylbenzene	< 0.000297	0.0500	0.0496	99	75-125	mg/kg	05/04/12 13:28	
Carbon Tetrachloride	< 0.000161	0.0500	0.0499	100	62-125	mg/kg	05/04/12 13:28	
Chlorobenzene	< 0.000290	0.0500	0.0540	108	60-133	mg/kg	05/04/12 13:28	
Chloroethane	< 0.000757	0.0500	0.0392	78	65-135	mg/kg	05/04/12 13:28	
Chloroform	< 0.000398	0.0500	0.0512	102	74-125	mg/kg	05/04/12 13:28	
Methyl Chloride	< 0.000362	0.0500	0.0395	79	65-135	mg/kg	05/04/12 13:28	
2-Chlorotoluene	< 0.000247	0.0500	0.0536	107	73-125	mg/kg	05/04/12 13:28	
4-Chlorotoluene	< 0.000183	0.0500	0.0497	99	74-125	mg/kg	05/04/12 13:28	
p-Cymene (p-Isopropyltoluene)	< 0.000171	0.0500	0.0508	102	75-125	mg/kg	05/04/12 13:28	
1,2-Dibromo-3-Chloropropane	< 0.00290	0.0500	0.0451	90	59-125	mg/kg	05/04/12 13:28	
Dibromochloromethane	< 0.000532	0.0500	0.0535	107	73-125	mg/kg	05/04/12 13:28	
1,2-Dibromoethane	< 0.000480	0.0500	0.0537	107	73-125	mg/kg	05/04/12 13:28	
Methylene bromide	< 0.000553	0.0500	0.0570	114	69-127	mg/kg	05/04/12 13:28	
1,2-Dichlorobenzene	< 0.000329	0.0500	0.0531	106	75-125	mg/kg	05/04/12 13:28	
1,3-Dichlorobenzene	< 0.000270	0.0500	0.0515	103	75-125	mg/kg	05/04/12 13:28	
1,4-Dichlorobenzene	< 0.00100	0.0500	0.0515	103	75-125	mg/kg	05/04/12 13:28	
Dichlorodifluoromethane	< 0.000248	0.0500	0.0437	87	65-135	mg/kg	05/04/12 13:28	
1,2-Dichloroethane	< 0.000523	0.0500	0.0495	99	68-127	mg/kg	05/04/12 13:28	
1,1-Dichloroethane	< 0.000281	0.0500	0.0505	101	72-125	mg/kg	05/04/12 13:28	
trans-1,2-dichloroethylene	< 0.000227	0.0500	0.0508	102	75-125	mg/kg	05/04/12 13:28	
cis-1,2-Dichloroethylene	< 0.000413	0.0500	0.0552	110	75-125	mg/kg	05/04/12 13:28	
1,1-Dichloroethene	< 0.000445	0.0500	0.0525	105	59-172	mg/kg	05/04/12 13:28	
2,2-Dichloropropane	< 0.000380	0.0500	0.0471	94	75-125	mg/kg	05/04/12 13:28	
1,3-Dichloropropane	< 0.000304	0.0500	0.0517	103	75-125	mg/kg	05/04/12 13:28	
1,2-Dichloropropane	< 0.000348	0.0500	0.0512	102	74-125	mg/kg	05/04/12 13:28	
trans-1,3-dichloropropene	< 0.00108	0.0500	0.0449	90	66-125	mg/kg	05/04/12 13:28	
1,1-Dichloropropene	< 0.000366	0.0500	0.0515	103	75-125	mg/kg	05/04/12 13:28	
cis-1,3-Dichloropropene	< 0.000315	0.0500	0.0467	93	74-125	mg/kg	05/04/12 13:28	
Ethylbenzene	< 0.000200	0.0500	0.0535	107	75-125	mg/kg	05/04/12 13:28	
Hexachlorobutadiene	< 0.000270	0.0500	0.0506	101	75-125	mg/kg	05/04/12 13:28	
Isopropylbenzene	< 0.000228	0.0500	0.0518	104	75-125	mg/kg	05/04/12 13:28	
Naphthalene	< 0.00100	0.0500	0.0490	98	70-130	mg/kg	05/04/12 13:28	
Methylene Chloride	0.00228	0.0500	0.0596	119	75-125	mg/kg	05/04/12 13:28	
n-Propylbenzene	< 0.000233	0.0500	0.0521	104	75-125	mg/kg	05/04/12 13:28	
Styrene	< 0.000201	0.0500	0.0514	103	75-125	mg/kg	05/04/12 13:28	
1,1,1,2-Tetrachloroethane	< 0.000325	0.0500	0.0525	105	72-125	mg/kg	05/04/12 13:28	
1,1,2,2-Tetrachloroethane	< 0.000214	0.0500	0.0516	103	74-125	mg/kg	05/04/12 13:28	

Page 18 of 23 Final 1.000

Southwest Research Institute, San Antonio, TX

17149.26.001

Analytical Method:	VOAs by SW-846 8	260					Prep Meth	od: SW:	5030B	
Seq Number:	887395			Matrix:	Solid		Date Pr	rep: 05/0	4/2012	
MB Sample Id:	621552-1-BLK		LCS Sa	mple Id	621552-1-BKS					
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec		Limits		Units	Analysis Date	Flag
Tetrachloroethylene	0.00108	0.0500	0.0556	111		71-125		mg/kg	05/04/12 13:28	
Toluene	< 0.000321	0.0500	0.0505	101		59-139		mg/kg	05/04/12 13:28	
1,2,4-Trichlorobenzene	< 0.000348	0.0500	0.0488	98		75-135		mg/kg	05/04/12 13:28	
1,2,3-Trichlorobenzene	< 0.000347	0.0500	0.0492	98		75-137		mg/kg	05/04/12 13:28	
1,1,2-Trichloroethane	< 0.000380	0.0500	0.0504	101		75-127		mg/kg	05/04/12 13:28	
1,1,1-Trichloroethane	< 0.000276	0.0500	0.0519	104		75-125		mg/kg	05/04/12 13:28	
Trichloroethylene	< 0.000440	0.0500	0.0520	104		62-137		mg/kg	05/04/12 13:28	
Trichlorofluoromethan	e <0.000248	0.0500	0.0573	115		67-125		mg/kg	05/04/12 13:28	
1,2,3-Trichloropropane	< 0.000384	0.0500	0.0472	94		75-125		mg/kg	05/04/12 13:28	
1,2,4-Trimethylbenzene	< 0.000142	0.0500	0.0515	103		75-125		mg/kg	05/04/12 13:28	
1,3,5-Trimethylbenzene	< 0.000131	0.0500	0.0515	103		70-130		mg/kg	05/04/12 13:28	
Vinyl Chloride	< 0.000500	0.0500	0.0434	87		65-135		mg/kg	05/04/12 13:28	
o-Xylene	< 0.000206	0.0500	0.0546	109		75-125		mg/kg	05/04/12 13:28	
m,p-Xylenes	< 0.000321	0.100	0.105	105		75-125		mg/kg	05/04/12 13:28	
Surrogate	MB %Rec	MB Flag		.CS Rec	LCS Flag		Limits	Units	Analysis Date	
4-Bromofluorobenzene	95			95			58-152	%	05/04/12 13:28	
Dibromofluoromethane	104		1	107			74-126	%	05/04/12 13:28	
1,2-Dichloroethane-D4	103		1	108			80-120	%	05/04/12 13:28	
Toluene-D8	103		1	103			73-132	%	05/04/12 13:28	
							9	100 00	0.01	

Analytical Method:	VOAs by SW-846 8260		Prep Method:	SW5030B
Seq Number:	887436	Matrix: Solid	Date Prep:	05/07/2012

Parameter	Result	Amount	Result	% Rec		Limits		Units	Date	Flag
p-Cymene (p-Isopropyltoluene)	< 0.000171	0.0500	0.0550	110)	75-125		mg/kg	05/07/12 15:46	
Surrogate	MB % Rec	MB Flag	LC %R		LCS Flag		Limits	Units	Analysis Date	
4-Bromofluorobenzene	110		99	9			58-152	%	05/07/12 15:46	
Dibromofluoromethane	93		10)5			74-126	%	05/07/12 15:46	
1,2-Dichloroethane-D4	101		10)6			80-120	%	05/07/12 15:46	
Toluene-D8	109		10)2			73-132	%	05/07/12 15:46	

Page 19 of 23 Final 1.000

Southwest Research Institute, San Antonio, TX

17149.26.001

						1/147.20	.001						
Analytical Method:	VOAs by	SW-846 8	260						P	rep Meth	od: SW	5030B	
Seq Number:	887395				Matrix:	Solid				Date Pr	rep: 05/0	4/2012	
Parent Sample Id:	441276-00	04		MS Sa	mple Id:	441276-00	04 S		MS	D Sampl	e Id: 4412	276-004 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS % Rec	MSD Result	MSD % Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Benzene		<4.50	500	505	101	505	101	66-142	0	25	mg/kg	05/04/12 18:22	
Bromobenzene		< 2.59	500	511	102	529	106	75-125	3	25	mg/kg	05/04/12 18:22	
Bromochloromethane		< 6.45	500	488	98	483	97	73-125	1	25	mg/kg	05/04/12 18:22	
Bromodichloromethane		< 3.64	500	455	91	449	90	75-125	1	25	mg/kg	05/04/12 18:22	
Bromoform		<4.42	500	386	77	368	74	75-125	5	25	mg/kg	05/04/12 18:22	M2
Methyl bromide		<8.11	500	275	55	260	52	65-135	6	25	mg/kg	05/04/12 18:22	M2
MTBE		61.1	500	621	112	576	103	65-135	8	25	mg/kg	05/04/12 18:22	
tert-Butylbenzene		< 2.23	500	541	108	557	111	75-125	3	25	mg/kg	05/04/12 18:22	
Sec-Butylbenzene		< 0.840	500	534	107	532	106	75-125	0	25	mg/kg	05/04/12 18:22	
n-Butylbenzene		< 2.97	500	507	101	513	103	75-125	1	25	mg/kg	05/04/12 18:22	
Carbon Tetrachloride		<1.61	500	412	82	396	79	62-125	4	25	mg/kg	05/04/12 18:22	
Chlorobenzene		< 2.90	500	521	104	519	104	60-133	0	25	mg/kg	05/04/12 18:22	
Chloroethane		< 7.57	500	329	66	287	57	65-135	14	25	mg/kg	05/04/12 18:22	M2
Chloroform		4.80	500	466	92	473	94	74-125	1	25	mg/kg	05/04/12 18:22	
Methyl Chloride		< 3.62	500	316	63	308	62	65-135	3	25	mg/kg	05/04/12 18:22	M2
2-Chlorotoluene		< 2.47	500	510	102	518	104	73-125	2	25	mg/kg	05/04/12 18:22	
4-Chlorotoluene		<1.83	500	507	101	518	104	74-125	2	25	mg/kg	05/04/12 18:22	
p-Cymene (p-Isopropyl	toluene)	< 1.71	500	555	111	544	109	75-125	2	25	mg/kg	05/04/12 18:22	
1,2-Dibromo-3-Chlorop	ropane	<29.0	500	435	87	385	77	59-125	12	25	mg/kg	05/04/12 18:22	
Dibromochloromethane		< 5.32	500	417	83	421	84	73-125	1	25	mg/kg	05/04/12 18:22	
1,2-Dibromoethane		<4.80	500	529	106	492	98	73-125	7	25	mg/kg	05/04/12 18:22	
Methylene bromide		< 5.53	500	532	106	513	103	69-127	4	25	mg/kg	05/04/12 18:22	
1,2-Dichlorobenzene		< 3.29	500	513	103	506	101	75-125	1	25	mg/kg	05/04/12 18:22	
1,3-Dichlorobenzene		< 2.70	500	513	103	510	102	75-125	1	25	mg/kg	05/04/12 18:22	
1,4-Dichlorobenzene		<10.0	500	499	100	503	101	75-125	1	25	mg/kg	05/04/12 18:22	
Dichlorodifluoromethan	ne	< 2.48	500	312	62	294	59	65-135	6	25	mg/kg	05/04/12 18:22	M2
1,2-Dichloroethane		< 5.23	500	467	93	440	88	68-127	6	25	mg/kg	05/04/12 18:22	
1,1-Dichloroethane		< 2.81	500	469	94	463	93	72-125	1	25	mg/kg	05/04/12 18:22	
trans-1,2-dichloroethyle	ne	<2.27	500	432	86	428	86	75-125	1	25	mg/kg	05/04/12 18:22	
cis-1,2-Dichloroethylen	e	<4.13	500	498	100	493	99	75-125	1	25	mg/kg	05/04/12 18:22	
1,1-Dichloroethene		<4.45	500	517	103	500	100	59-172	3	25	mg/kg	05/04/12 18:22	
2,2-Dichloropropane		<3.80	500	448	90	451	90	75-125	1	25	mg/kg	05/04/12 18:22	
1,3-Dichloropropane		< 3.04	500	533	107	513	103	75-125	4	25	mg/kg	05/04/12 18:22	
1,2-Dichloropropane		<3.48	500	467	93	463	93	74-125	1	25	mg/kg	05/04/12 18:22	
trans-1,3-dichloroprope	ne	<10.8	500	410	82	414	83	66-125	1	25	mg/kg	05/04/12 18:22	
1,1-Dichloropropene		< 3.66	500	498	100	491	98	75-125	1	25	mg/kg	05/04/12 18:22	
cis-1,3-Dichloropropen	9	<3.15	500	463	93	459	92	74-125	1	25	mg/kg	05/04/12 18:22	
Ethylbenzene		2.20	500	525	105	530	106	75-125	1	25	mg/kg	05/04/12 18:22	
Hexachlorobutadiene		< 2.70	500	534	107	529	106	75-125	1	25	mg/kg	05/04/12 18:22	
Isopropylbenzene		7.80	500	531	105	535	105	75-125	1	25	mg/kg	05/04/12 18:22	
Naphthalene		<10.0	500	525	105	485	97	70-130	8	25	mg/kg	05/04/12 18:22	
Methylene Chloride		14500	500	14100	0	13500	0	75-125	4	25	mg/kg	05/04/12 18:22	M3
n-Propylbenzene		<2.33	500	547	109	544	109	75-125	1	25	mg/kg	05/04/12 18:22	
Styrene		< 2.01	500	512	102	495	99	75-125	3	25	mg/kg	05/04/12 18:22	
1,1,1,2-Tetrachloroetha		<3.25	500	434	87	430	86	72-125	1	25	mg/kg	05/04/12 18:22	
1,1,2,2-Tetrachloroetha	1e	<2.14	500	487	97	458	92	74-125	6	25	mg/kg	05/04/12 18:22	

Page 20 of 23

Southwest Research Institute, San Antonio, TX

17149.26.001

Analytical Method: Seq Number: Parent Sample Id:	VOAs by SW-846 8 887395 441276-004	260	MS Sa	Matrix: mple Id:	Solid 441276-0	04 S			rep Meth Date Pr D Sampl	rep: 05/0	5030B 4/2012 276-004 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS % Rec	MSD Result	MSD % Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Tetrachloroethylene	17.9	500	543	105	572	111	71-125	5	25	mg/kg	05/04/12 18:22	
Toluene	443	500	901	92	896	91	59-139	1	25	mg/kg	05/04/12 18:22	
1,2,4-Trichlorobenzene	<3.48	500	521	104	508	102	75-135	3	25	mg/kg	05/04/12 18:22	
1,2,3-Trichlorobenzene	<3.47	500	505	101	485	97	75-137	4	25	mg/kg	05/04/12 18:22	
1,1,2-Trichloroethane	< 3.80	500	490	98	458	92	75-127	7	25	mg/kg	05/04/12 18:22	
1,1,1-Trichloroethane	<2.76	500	463	93	464	93	75-125	0	25	mg/kg	05/04/12 18:22	
Trichloroethylene	<4.40	500	501	100	489	98	62-137	2	25	mg/kg	05/04/12 18:22	
Trichlorofluoromethan	e <2.48	500	569	114	529	106	67-125	7	25	mg/kg	05/04/12 18:22	
1,2,3-Trichloropropane	< 3.84	500	449	90	435	87	75-125	3	25	mg/kg	05/04/12 18:22	
1,2,4-Trimethylbenzene	2.10	500	533	106	534	106	75-125	0	25	mg/kg	05/04/12 18:22	
1,3,5-Trimethylbenzene	<1.31	500	532	106	532	106	70-130	0	25	mg/kg	05/04/12 18:22	
Vinyl Chloride	< 5.00	500	396	79	376	75	65-135	5	25	mg/kg	05/04/12 18:22	
o-Xylene	3.30	500	522	104	521	104	75-125	0	25	mg/kg	05/04/12 18:22	
m,p-Xylenes	8.20	1000	1030	102	1060	105	75-125	3	25	mg/kg	05/04/12 18:22	
Surrogate				AS Rec	MS Flag	MSD % Rec		_	imits	Units	Analysis Date	
4-Bromofluorobenzene				99		101		58	3-152	%	05/04/12 18:22	
Dibromofluoromethane	,		1	00		99		74	1-126	%	05/04/12 18:22	
1,2-Dichloroethane-D4			1	89	S10	198	S10	80)-120	%	05/04/12 18:22	
Toluene-D8			1	01		100		73	3-132	%	05/04/12 18:22	

Page 21 of 23

139

Page 22 of 23

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Southwest Research Institute

Date/ Time Received: 04/26/2012 09:30:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 441475

Temperature Measuring device used: R-66

Work Order #: 4414/5	romporatar	o incusuring device asca . It ou
	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		20
#2 *Shipping container in good condition	on?	Yes
#3 *Samples received on ice?		No
#4 *Custody Seals intact on shipping of	container/ cooler?	N/A
#5 Custody Seals intact on sample bo	ttles/ container?	N/A
#6 *Custody Seals Signed and dated f	or Containers/coolers	N/A
#7 *Chain of Custody present?		Yes
#8 Sample instructions complete on C	hain of Custody?	Yes
#9 Any missing/extra samples?		No
#10 Chain of Custody signed when rel	inquished/ received?	Yes
#11 Chain of Custody agrees with sam	nple label(s)?	Yes
#12 Container label(s) legible and inta	ct?	Yes
#13 Sample matrix/ properties agree w	vith Chain of Custody?	Yes
#14 Samples in proper container/ bottl	e?	Yes
#15 Samples properly preserved?		Yes
#16 Sample container(s) intact?		Yes
#17 Sufficient sample amount for indic	ated test(s)?	Yes
#18 All samples received within hold ti	me?	Yes
#19 Subcontract of sample(s)?		No
#20 VOC samples have zero headspa	ce (less than 1/4 inch bubble)?	N/A
#21 <2 for all samples preserved with	HNO3,HCL, H2SO4?	No
#22 >10 for all samples preserved with	n NaAsO2+NaOH, ZnAc+NaOH?	N/A
* Must be completed for after-hours d	elivery of samples prior to placing	g in the refrigerator
Analyst: AM PH De	evice/Lot#:	
Checklist completed by:	Angel Morales	Date: 04/27/2012
Checklist reviewed by:		Date: 04/27/2012

Page 23 of 23

Appendix BK EPA Testing Report: CL12-3883

Analytical Report 444478

for Southwest Research Institute

Project Manager: Scott Hutzler 16246.05.001

02-JUL-12

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

4143 Greenbriar Dr., Stafford, TX 77477

Xenco-Houston (EPA Lab code: TX00122):
Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002)
Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054)
New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610)
Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Lakeland: Florida (E84098)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Page 1 of 17

02-JUL-12

Project Manager: Scott Hutzler Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228

Reference: XENCO Report No: 444478

16246.05.001Project Address:

Scott Hutzler:

Respectfully

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 444478. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 444478 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Skip Harden

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 17

CASE NARRATIVE

Client Name: Southwest Research Institute

Project ID:Report Date:02-JUL-12Work Order Number:444478Date Received:06/14/2012

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-891280 SVOAs by SW-846 8270C

S10:

The surrogate was above acceptance criteria due to matrix interference.

Page 3 of 17

Flagging Criteria

Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 3.0 9/20/2007. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- D1 Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- L1 The associated blank spike recovery was above laboratory acceptance limits.
- L2 The associated blank spike recovery was below laboratory acceptance limits.
- M1 Matrix spike recovery was high; the associated blank spike recovery was acceptable.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- R5 MS/MSD RPD exceeded the laboratory acceptance limit. Recovery met acceptance criteria.
- S10 Surrogate recovery was above laboratory and method acceptance limits. See case narrative.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Sample Cross Reference 444478

Southwest Research Institute, San Antonio, TX

16246.05.001

 Sample Id
 Matrix
 Date Collected
 Sample Depth
 Lab Sample Id

 CL12-3883
 W
 06-13-12 00:00
 444478-001

Page 5 of 17

Southwest Research Institute, San Antonio, TX

16246.05.001

Sample Id: CL12-3883 Matrix: Product Date Received: Jun-14-12 10:24

Date Collected: Jun-13-12 00:00 **Lab Sample Id:** 444478-001

Analytical Method: SVOAs by SW-846 8270C Prep Method: SW3580A

% Moisture: Tech: LEB

Analyst: MCH		Dat	te Prep: Jun-26-	12 10:24			
Seq Number: 891280)						
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Acenaphthene	83-32-9	<240	240	mg/kg	06/29/12 22:07	D1	5
Acenaphthylene	208-96-8	<240	240	mg/kg	06/29/12 22:07	D1	5
Aniline (Phenylamine, Aminobenzene)	62-53-3	<240	240	mg/kg	06/29/12 22:07	D1	5
Anthracene	120-12-7	<240	240	mg/kg	06/29/12 22:07	D1	5
Benzo(a)anthracene	56-55-3	<240	240	mg/kg	06/29/12 22:07	D1	5
Benzo(a)pyrene	50-32-8	<240	240	mg/kg	06/29/12 22:07	D1	5
Benzo(b)fluoranthene	205-99-2	<240	240	mg/kg	06/29/12 22:07	D1	5
Benzo(g,h,i)perylene	191-24-2	<240	240	mg/kg	06/29/12 22:07	D1	5
Benzo(k)fluoranthene	207-08-9	<240	240	mg/kg	06/29/12 22:07	D1	5
Benzoic Acid	65-85-0	<1440	1440	mg/kg	06/29/12 22:07	D1	5
Benzyl Butyl Phthalate	85-68-7	<240	240	mg/kg	06/29/12 22:07	D1	5
bis(2-chloroethoxy) methane	111-91-1	<240	240	mg/kg	06/29/12 22:07	D1	5
bis(2-chloroethyl) ether	111-44-4	<240	240	mg/kg	06/29/12 22:07	D1	5
bis(2-chloroisopropyl) ether	108-60-1	<240	240	mg/kg	06/29/12 22:07	D1	5
bis(2-ethylhexyl) phthalate	117-81-7	<240	240	mg/kg	06/29/12 22:07	D1	5
4-Bromophenyl-phenylether	101-55-3	<240	240	mg/kg	06/29/12 22:07	D1	5
Di-n-butylphthalate	84-74-2	<240	240	mg/kg	06/29/12 22:07	D1	5
4-chloro-3-methylphenol	59-50-7	<240	240	mg/kg	06/29/12 22:07	D1	5
4-Chloroaniline	106-47-8	<240	240	mg/kg	06/29/12 22:07	D1	5
2-Chloronaphthalene	91-58-7	<240	240	mg/kg	06/29/12 22:07	D1	5
2-Chlorophenol	95-57-8	<240	240	mg/kg	06/29/12 22:07	D1	5
4-Chlorophenyl Phenyl Ether	7005-72-3	<240	240	mg/kg	06/29/12 22:07	D1	5
Chrysene	218-01-9	<240	240	mg/kg	06/29/12 22:07	D1	5
Dibenz(a,h)anthracene	53-70-3	<240	240	mg/kg	06/29/12 22:07	D1L2	5
Dibenzofuran	132-64-9	<240	240	mg/kg	06/29/12 22:07	D1	5
1,2-Dichlorobenzene	95-50-1	<240	240	mg/kg	06/29/12 22:07	D1	5
1,3-Dichlorobenzene	541-73-1	<240	240	mg/kg	06/29/12 22:07	D1	5
1,4-Dichlorobenzene	106-46-7	<240	240	mg/kg	06/29/12 22:07	D1	5
3,3-Dichlorobenzidine	91-94-1	<240	240	mg/kg	06/29/12 22:07	D1	5
2,4-Dichlorophenol	120-83-2	<240	240	mg/kg	06/29/12 22:07	D1	5
Diethylphthalate	84-66-2	<240	240	mg/kg	06/29/12 22:07	D1	5
Dimethyl Phthalate	131-11-3	<240	240	mg/kg	06/29/12 22:07	D1	5
2,4-Dimethylphenol	105-67-9	<240	240	mg/kg	06/29/12 22:07	D1	5
1,6-dinitro-2-methyl phenol	534-52-1	<240	240	mg/kg	06/29/12 22:07	D1L2	5
2,4-Dinitrophenol	51-28-5	<240	240	mg/kg	06/29/12 22:07	D1L2	5
2.4-Dinitrotoluene	121-14-2	<240	240	mg/kg	06/29/12 22:07	D1	4
2.6-Dinitrotoluene	606-20-2	<240	240	mg/kg	06/29/12 22:07	D1	4
Fluoranthene	206-44-0	<240	240	mg/kg	06/29/12 22:07	DI	5
Fluorene	86-73-7	<240	240	mg/kg	06/29/12 22:07	D1	5
Hexachlorobenzene	118-74-1	<240	240	mg/kg	06/29/12 22:07	D1	5

Project: 16246.05.001

Page 6 of 17

Southwest Research Institute, San Antonio, TX

16246.05.001

Sample Id: CL12-3883 Matrix: Product Date Received: Jun-14-12 10:24

Lab Sample Id: 444478-001 **Date Collected:** Jun-13-12 00:00

Analytical Method: SVOAs by SW-846 8270C Prep Method: SW3580A

Tech: LEB % Moisture:

Analyst: MCH		Dat	e Prep: Jui	n-26-12 10:24				
Seq Number: 891280								
Parameter	Cas Number	Result	RL	U	nits	Analysis Date	Flag	Di
Hexachlorobutadiene	87-68-3	<240	240	mg	/kg	06/29/12 22:07	D1	4
Hexachlorocyclopentadiene	77-47-4	<240	240	mg	/kg	06/29/12 22:07	D1L2	
Hexachloroethane	67-72-1	<240	240	mg	/kg	06/29/12 22:07	D1	:
Indeno(1,2,3-c,d)Pyrene	193-39-5	<240	240	mg	/kg	06/29/12 22:07	D1	
Isophorone	78-59-1	<240	240	mg	/kg	06/29/12 22:07	D1	:
2-Methylnaphthalene	91-57-6	349	240	mg	/kg	06/29/12 22:07	D2	:
2-methylphenol	95-48-7	<240	240	mg	/kg	06/29/12 22:07	D1	4
3&4-Methylphenol	15831-10-4	<240	240	mg	/kg	06/29/12 22:07	D1	:
Naphthalene	91-20-3	958	240	mg	/kg	06/29/12 22:07	D2	:
4-Nitroaniline	100-01-6	<240	240	mg	/kg	06/29/12 22:07	D1	
3-Nitroaniline	99-09-2	<240	240	mg	/kg	06/29/12 22:07	D1	4
2-Nitroaniline	88-74-4	<240	240	mg	/kg	06/29/12 22:07	D1	:
Nitrobenzene	98-95-3	<240	240	mg	/kg	06/29/12 22:07	D1	4
2-Nitrophenol	88-75-5	<240	240	mg	/kg	06/29/12 22:07	D1	4
4-Nitrophenol	100-02-7	<240	240	mg	/kg	06/29/12 22:07	D1L2	
N-Nitrosodi-n-Propylamine	621-64-7	<240	240	mg	/kg	06/29/12 22:07	D1	
N-Nitrosodiphenylamine	86-30-6	<240	240	mg	/kg	06/29/12 22:07	D1	
di-n-Octyl Phthalate	117-84-0	<240	240	mg	/kg	06/29/12 22:07	D1	
Pentachlorophenol	87-86-5	<240	240	mg	/kg	06/29/12 22:07	D1	
Phenanthrene	85-01-8	<240	240	mg	/kg	06/29/12 22:07	D1	4
Phenol	108-95-2	<240	240	mg	/kg	06/29/12 22:07	D1	
Pyrene	129-00-0	<240	240	mg	/kg	06/29/12 22:07	D1	
Pyridine	110-86-1	<240	240	mg	/kg	06/29/12 22:07	D1L1	4
1,2,4-Trichlorobenzene	120-82-1	<240	240	mg	/kg	06/29/12 22:07	D1	
2,4,6-Trichlorophenol	88-06-2	<240	240	mg		06/29/12 22:07	D1	
2,4,5-Trichlorophenol	95-95-4	<240	240	mg	/kg	06/29/12 22:07	D1	
Benzene, 1,2-diethyl- (CAS); 1,2-D (TIC) *	TIC	22800		mg		06/29/12 22:07	D2T4	
Nonane, 2-methyl-; 2-Methylnonane (TIC) *	TIC	14500		mg	/kg	06/29/12 22:07	D2T4	
Nonane (CAS); n-Nonane; Shellsol 1 (TIC) *	TIC	13100		mg	_	06/29/12 22:07	D2T4	
Decane; n-Decane; n-C10H22; UN 224 (TIC) *	TIC	41500		mg	_	06/29/12 22:07	D2T4	
Benzene, 1-ethyl-2-methyl- (CAS); (TIC) *	TIC	22000		mg	/kg	06/29/12 22:07	D2T4	
Cyclohexane, 1-methyl-3-propyl-; 1 (TIC) *	TIC	13800		mg		06/29/12 22:07	D2T4	
Benzene, 1,2,4-trimethyl- (CAS); 1 (TIC) *	TIC	17600		mg	-	06/29/12 22:07	D2T4	
Nonane, 3-methyl- (TIC) *	TIC	12600		mg	-	06/29/12 22:07	D2T4	
Indane; 1H-Indene, 2,3-dihydro-; I (TIC) *	TIC	22100		mg	-	06/29/12 22:07	D2T4	
Benzene, 1-methyl-2-propyl- (CAS); (TIC) *	TIC	15900		mg	_	06/29/12 22:07	D2T4	
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
2-Fluorobiphenyl	321-60-8	112	%	30-115		06/29/12 22:07		
2-Fluorophenol	367-12-4	29	%	25-121		06/29/12 22:07		

Project: 16246.05.001

Page 7 of 17

Southwest Research Institute, San Antonio, TX

16246.05.001

Date Received: Jun-14-12 10:24 Sample Id: CL12-3883 Matrix: Product

Lab Sample Id: 444478-001 Date Collected: Jun-13-12 00:00

Analytical Method: SVOAs by SW-846 8270C Prep Method: SW3580A

> % Moisture: Tech: LEB

Analyst: MCH Date Prep: Jun-26-12 10:24 Seq Number: 891280

Surrogate % Recovery Cas Number **Analysis Date** Flag Nitrobenzene-d5 4165-60-0 526 23-120 06/29/12 22:07 S10 Phenol-d6 13127-88-3 29 24-113 06/29/12 22:07 Terphenyl-D14 1718-51-0 82 18-137 06/29/12 22:07 118-79-6 06/29/12 22:07 2,4,6-Tribromophenol 19-122

Project: 16246.05.001

Page 8 of 17

Basis: Wet Weight

Southwest Research Institute, San Antonio, TX

16246.05.001

Date Prep: Jun-28-12 10:54

Sample Id: CL12-3883 Matrix: Product Date Received: Jun-14-12 10:24

Lab Sample Id: 444478-001 **Date Collected:** Jun-13-12 00:00

Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B

Tech: ROL % Moisture:

Analyst: ROL Seq Number: 891213

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Benzene	71-43-2	<49.6	49.6	mg/kg	06/28/12 20:14	D1	1000
Bromobenzene	108-86-1	<49.6	49.6	mg/kg	06/28/12 20:14	D1	1000
Bromochloromethane	74-97-5	<49.6	49.6	mg/kg	06/28/12 20:14	D1	1000
Bromodichloromethane	75-27-4	<49.6	49.6	mg/kg	06/28/12 20:14	D1	1000
Bromoform	75-25-2	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
Bromomethane	74-83-9	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
MTBE	1634-04-4	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
ert-Butylbenzene	98-06-6	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
Sec-Butylbenzene	135-98-8	243	49.6	mg/kg	06/28/12 20:14	D2	100
n-Butylbenzene	104-51-8	652	49.6	mg/kg	06/28/12 20:14	D2	100
Carbon Tetrachloride	56-23-5	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
Chlorobenzene	108-90-7	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
Chloroethane	75-00-3	<99.2	99.2	mg/kg	06/28/12 20:14	D1	100
Chloroform	67-66-3	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
Chloromethane	74-87-3	<99.2	99.2	mg/kg	06/28/12 20:14	D1	100
-Chlorotoluene	95-49-8	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
-Chlorotoluene	106-43-4	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
-Cymene (p-Isopropyltoluene)	99-87-6	376	49.6	mg/kg	06/28/12 20:14	D2	100
,2-Dibromo-3-Chloropropane	96-12-8	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
Dibromochloromethane	124-48-1	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
,2-Dibromoethane	106-93-4	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
Dibromomethane	74-95-3	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
,2-Dichlorobenzene	95-50-1	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
,3-Dichlorobenzene	541-73-1	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
,4-Dichlorobenzene	106-46-7	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
Dichlorodifluoromethane	75-71-8	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
,2-Dichloroethane	107-06-2	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
,1-Dichloroethane	75-34-3	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
rans-1,2-dichloroethene	156-60-5	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
is-1,2-Dichloroethene	156-59-2	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
,1-Dichloroethene	75-35-4	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
2,2-Dichloropropane	594-20-7	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
,3-Dichloropropane	142-28-9	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
,2-Dichloropropane	78-87-5	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
rans-1,3-dichloropropene	10061-02-6	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
,1-Dichloropropene	563-58-6	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
is-1,3-Dichloropropene	10061-01-5	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
Ethylbenzene	100-41-4	75.5	49.6	mg/kg	06/28/12 20:14	D2	100
Hexachlorobutadiene	87-68-3	<49.6	49.6	mg/kg	06/28/12 20:14	D1	100
sopropylbenzene	98-82-8	113	49.6	mg/kg	06/28/12 20:14	D2	100

Project: 16246.05.001

Page 9 of 17

Southwest Research Institute, San Antonio, TX

16246.05.001

Sample Id: CL12-3883 Matrix: Product Date Received: Jun-14-12 10:24

17060-07-0

2037-26-5

Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B

Tech: ROL % Moisture:

Tech. ROL		/V Mostare								
Analyst: ROL	Date	e Prep: Ju	n-28-12 10:5	Basis: Wet Weight						
Seq Number: 8912	213									
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil		
Naphthalene	91-20-3	243	99.2		mg/kg	06/28/12 20:14	D2	100		
Methylene Chloride	75-09-2	<198	198		mg/kg	06/28/12 20:14	D1	100		
n-Propylbenzene	103-65-1	764	49.6		mg/kg	06/28/12 20:14	D1	100		
Styrene	100-42-5	<49.6	49.6		mg/kg	06/28/12 20:14	D1	100		
1,1,1,2-Tetrachloroethane	630-20-6	<49.6	49.6		mg/kg	06/28/12 20:14	D1	100		
1,1,2,2-Tetrachloroethane	79-34-5	<49.6	49.6		mg/kg	06/28/12 20:14	D1	100		
Tetrachloroethylene	127-18-4	<49.6	49.6		mg/kg	06/28/12 20:14	D1	100		
Toluene	108-88-3	<49.6	49.6		mg/kg	06/28/12 20:14	D1	100		
1,2,4-Trichlorobenzene	120-82-1	<49.6	49.6		mg/kg	06/28/12 20:14	D1	100		
1,2,3-Trichlorobenzene	87-61-6	<49.6	49.6		mg/kg	06/28/12 20:14	D1	100		
1,1,2-Trichloroethane	79-00-5	<49.6	49.6		mg/kg	06/28/12 20:14	D1	100		
1,1,1-Trichloroethane	71-55-6	<49.6	49.6		mg/kg	06/28/12 20:14	D1	100		
Trichloroethene	79-01-6	<49.6	49.6		mg/kg	06/28/12 20:14	D1	100		
Trichlorofluoromethane	75-69-4	<49.6	49.6		mg/kg	06/28/12 20:14	D1	100		
1,2,3-Trichloropropane	96-18-4	<49.6	49.6		mg/kg	06/28/12 20:14	D1	100		
1,2,4-Trimethylbenzene	95-63-6	2410	496		mg/kg	06/29/12 17:13	D2	100		
1,3,5-Trimethylbenzene	108-67-8	511	49.6		mg/kg	06/28/12 20:14	D2	100		
Vinyl Chloride	75-01-4	<19.8	19.8		mg/kg	06/28/12 20:14	D1	100		
o-Xylene	95-47-6	255	49.6		mg/kg	06/28/12 20:14	D2	100		
m,p-Xylenes	179601-23-1	289	99.2		mg/kg	06/28/12 20:14	D2	100		
Total Xylenes	1330-20-7	544	49.6		mg/kg	06/28/12 20:14	D2	100		
Napthalene derivated (TIC)	TIC	1110	9.92		mg/kg	06/28/12 20:14	D2T4	100		
Benzene derivated (TIC)	TIC	864	9.92		mg/kg	06/28/12 20:14	D2T4	100		
Cyclohexane-propyl (TIC)	TIC	2260	9.92		mg/kg	06/28/12 20:14	D2T4	100		
Undecane (TIC)	TIC	1850	9.92		mg/kg	06/28/12 20:14	D2T4	100		
Dodecane (TIC)	TIC	1210	9.92		mg/kg	06/28/12 20:14	D2T4	100		
Benzene derivated (TIC)	TIC	942	9.92		mg/kg	06/28/12 20:14	D2T4	100		
Benzene derivated (TIC)	TIC	833	9.92		mg/kg	06/28/12 20:14	D2T4	100		
Benzene derivated (TIC)	TIC	2280	9.92		mg/kg	06/28/12 20:14	D2T4	100		
Octane, 2,6-dimethyl (TIC)	TIC	865	9.92		mg/kg	06/28/12 20:14	D2T4	100		
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag			
4-Bromofluorobenzene	460-00-4	104	%	68-152		06/28/12 20:14				
Dibromofluoromethane	1868-53-7	94	%	53-142		06/28/12 20:14				
	/	,	, •							

Project: 16246.05.001

1,2-Dichloroethane-D4

Toluene-D8

Page 10 of 17

95

103

%

56-150

70-130

Final 1.001

06/28/12 20:14

06/28/12 20:14

Southwest Research Institute, San Antonio, TX

16246.05.001

 Analytical Methot:
 SVOAs by SW-846 8270C
 Prep Method:
 SW3580A

 Seq Number:
 891280
 Matrix: Oil
 Date Prep:
 06/26/2012

 MB Sample Id:
 623705-1-BLK
 LCS Sample Id: 623705-1-BKS
 LCSD Sample Id: 623705-1-BSD
 LCSD Sample Id: 623705-1-BSD

MB Sample Id: 623705-1	I-BLK		LCS Sa	mple Id:	623705-1-	23705-1-BKS LCSD Sample Id: 623705-1-BS					705-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS % Rec	LCSD Result	LCSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	<15.0	50.0	46.0	92	44.3	89	41-134	4	25	mg/kg	06/29/12 21:18	
Acenaphthylene	<15.0	50.0	43.5	87	42.4	85	65-135	3	25	mg/kg	06/29/12 21:18	
Aniline (Phenylamine, Aminobenzene)	<15.0	50.0	40.2	80	39.6	79	2-145	2	25	mg/kg	06/29/12 21:18	
Anthracene	<15.0	50.0	45.4	91	42.4	85	65-135	7	25	mg/kg	06/29/12 21:18	
Benzo(a)anthracene	<15.0	50.0	46.5	93	45.1	90	44-126	3	25	mg/kg	06/29/12 21:18	
Benzo(a)pyrene	<15.0	50.0	40.7	81	39.0	78	65-135	4	25	mg/kg	06/29/12 21:18	
Benzo(b)fluoranthene	<15.0	50.0	45.0	90	44.3	89	65-135	2	25	mg/kg	06/29/12 21:18	
Benzo(g,h,i)perylene	<15.0	50.0	37.4	75	35.7	71	65-135	5	25	mg/kg	06/29/12 21:18	
Benzo(k)fluoranthene	<15.0	50.0	43.6	87	40.5	81	25-125	7	25	mg/kg	06/29/12 21:18	
Benzoic Acid	<150	150	151	101	156	104	50-125	3	25	mg/kg	06/29/12 21:18	
bis(2-chloroethoxy) methane	<15.0	50.0	43.9	88	43.8	88	65-135	0	25	mg/kg	06/29/12 21:18	
bis(2-chloroethyl) ether	<15.0	50.0	43.9	88	45.4	91	65-135	3	25	mg/kg	06/29/12 21:18	
bis(2-chloroisopropyl) ether	<15.0	50.0	50.7	101	47.4	95	65-135	7	25	mg/kg	06/29/12 21:18	
bis(2-ethylhexyl) phthalate	<15.0	50.0	41.8	84	41.1	82	65-135	2	25	mg/kg	06/29/12 21:18	
4-Bromophenyl-phenylether	<15.0	50.0	41.4	83	40.6	81	65-135	2	25	mg/kg	06/29/12 21:18	
Di-n-butylphthalate	<15.0	50.0	43.2	86	41.2	82	65-135	5	25	mg/kg	06/29/12 21:18	
4-chloro-3-methylphenol	<15.0	50.0	43.5	87	45.2	90	28-134	4	25	mg/kg	06/29/12 21:18	
4-Chloroaniline	<15.0	50.0	40.7	81	42.7	85	4-149	5	25	mg/kg	06/29/12 21:18	
2-Chloronaphthalene	<15.0	50.0	48.4	97	47.4	95	65-135	2	25	mg/kg	06/29/12 21:18	
2-Chlorophenol	<15.0	50.0	44.9	90	43.2	86	25-140	4	25	mg/kg	06/29/12 21:18	
4-Chlorophenyl Phenyl Ether	<15.0	50.0	44.7	89	42.8	86	65-135	4	25	mg/kg	06/29/12 21:18	
Chrysene	<15.0	50.0	43.9	88	41.5	83	65-135	6	25	mg/kg	06/29/12 21:18	
Dibenz(a,h)anthracene	<15.0	50.0	33.0	66	32.1	64	65-135	3	25	mg/kg	06/29/12 21:18	L2
Dibenzofuran	<15.0	50.0	45.8	92	44.2	88	65-135	4	25	mg/kg	06/29/12 21:18	
1,2-Dichlorobenzene	<15.0	50.0	47.8	96	46.0	92	65-135	4	25	mg/kg	06/29/12 21:18	
1,3-Dichlorobenzene	<15.0	50.0	46.4	93	45.5	91	65-135	2	25	mg/kg	06/29/12 21:18	
1,4-Dichlorobenzene	<15.0	50.0	48.4	97	46.4	93	36-134	4	25	mg/kg	06/29/12 21:18	
3,3-Dichlorobenzidine	<15.0	50.0	36.6	73	35.6	71	20-140	3	25	mg/kg	06/29/12 21:18	
2,4-Dichlorophenol	<15.0	50.0	44.1	88	41.9	84	65-135	5	25	mg/kg	06/29/12 21:18	
Diethylphthalate	<15.0	50.0	43.6	87	42.6	85	37-125	2	25	mg/kg	06/29/12 21:18	
2,4-Dimethylphenol	<15.0	50.0	47.7	95	42.6	85	65-135	11	25	mg/kg	06/29/12 21:18	
4,6-dinitro-2-methyl phenol	<15.0	50.0	<15.0	0	<15.0	0	65-135	NC	25	mg/kg	06/29/12 21:18	L2
2,4-Dinitrophenol	<15.0	50.0	<15.0	0	<15.0	0	65-135	NC	25	mg/kg	06/29/12 21:18	L2
2,4-Dinitrotoluene	<15.0	50.0	45.0	90	42.6	85	40-130	5	25	mg/kg	06/29/12 21:18	
2,6-Dinitrotoluene	<15.0	50.0	42.0	84	41.6	83	28-89	1	25	mg/kg	06/29/12 21:18	
Fluoranthene	<15.0	50.0	46.1	92	42.0	84	65-135	9	25	mg/kg	06/29/12 21:18	
Fluorene	<15.0	50.0	43.9	88	42.7	85	65-135	3	25	mg/kg	06/29/12 21:18	
Hexachlorobenzene	<15.0	50.0	42.6	85	41.6	83	65-135	2	25	mg/kg	06/29/12 21:18	
Hexachlorobutadiene	<15.0	50.0	45.2	90	43.8	88	65-135	3	25	mg/kg	06/29/12 21:18	
Hexachlorocyclopentadiene	<15.0	50.0	<15.0	0	<15.0	0	65-135	NC	25	mg/kg	06/29/12 21:18	L2
Hexachloroethane	<15.0	50.0	45.6	91	45.2	90	65-135	1	25	mg/kg	06/29/12 21:18	
Indeno(1,2,3-c,d)Pyrene	<15.0	50.0	40.4	81	38.1	76	65-135	6	25	mg/kg	06/29/12 21:18	
Isophorone	<15.0	50.0	46.3	93	43.9	88	65-135	5	25	mg/kg	06/29/12 21:18	
2-Methylnaphthalene	<15.0	50.0	43.9	88	42.3	85	25-175	4	25	mg/kg	06/29/12 21:18	
2-methylphenol	<15.0	50.0	42.3	85	40.2	80	65-135	5 2	25	mg/kg	06/29/12 21:18	
3&4-Methylphenol	<15.0	50.0	46.7	93	47.6	95	65-135	2	25	mg/kg	06/29/12 21:18	

Page 11 of 17

Southwest Research Institute, San Antonio, TX

16246.05.001

Analytical Method:	SVOAs by SW	-846	8270C			0.7			P	rep Meth		3580A	
Seq Number:	891280				Matrix:					Date Pr		6/2012	
MB Sample Id:	623705-1-BLK			LCS Sar	nple Id	623705-1-	-BKS		LCS	D Sampl	e Id: 6237	705-1-BSD	
Parameter		MB sult	Spike Amount	LCS Result	LCS % Rec	LCSD Result	LCSD % Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Naphthalene	<	<15.0	50.0	47.6	95	44.8	90	65-135	6	25	mg/kg	06/29/12 21:18	
4-Nitroaniline	<	15.0	50.0	44.5	89	40.9	82	65-135	8	25	mg/kg	06/29/12 21:18	
3-Nitroaniline	<	<15.0	50.0	42.2	84	37.2	74	65-135	13	25	mg/kg	06/29/12 21:18	
2-Nitroaniline	<	<15.0	50.0	41.5	83	41.4	83	65-135	0	25	mg/kg	06/29/12 21:18	
Nitrobenzene	<	<15.0	50.0	47.9	96	43.7	87	65-135	9	25	mg/kg	06/29/12 21:18	
2-Nitrophenol	<	<15.0	50.0	38.0	76	35.4	71	65-135	7	25	mg/kg	06/29/12 21:18	
4-Nitrophenol	<	<15.0	50.0	<15.0	0	<15.0	0	13-106	NC	25	mg/kg	06/29/12 21:18	L2
N-Nitrosodi-n-Propylan	nine <	15.0	50.0	47.4	95	46.4	93	53-130	2	25	mg/kg	06/29/12 21:18	
N-Nitrosodiphenylamin	e <	<15.0	50.0	45.0	90	42.7	85	65-135	5	25	mg/kg	06/29/12 21:18	
di-n-Octyl Phthalate	<	<15.0	50.0	39.8	80	39.2	78	65-135	2	25	mg/kg	06/29/12 21:18	
Pentachlorophenol	<	<15.0	50.0	34.3	69	35.0	70	14-111	2	25	mg/kg	06/29/12 21:18	
Phenanthrene	<	<15.0	50.0	45.1	90	43.4	87	65-135	4	25	mg/kg	06/29/12 21:18	
Phenol	<	<15.0	50.0	44.3	89	46.1	92	27-127	4	25	mg/kg	06/29/12 21:18	
Pyrene	<	<15.0	50.0	44.7	89	42.6	85	41-144	5	25	mg/kg	06/29/12 21:18	
Pyridine	<	15.0	50.0	50.1	100	49.5	99	39-98	1	25	mg/kg	06/29/12 21:18	L1
1,2,4-Trichlorobenzene	<	<15.0	50.0	45.2	90	43.5	87	37-133	4	25	mg/kg	06/29/12 21:18	
2,4,6-Trichlorophenol	<	<15.0	50.0	41.9	84	38.5	77	65-135	8	25	mg/kg	06/29/12 21:18	
2,4,5-Trichlorophenol	<	15.0	50.0	45.2	90	42.4	85	65-135	6	25	mg/kg	06/29/12 21:18	
Surrogate		MB 6 Rec	MB Flag	L0 %1	CS Rec	LCS Flag	LCSD % Rec			imits	Units	Analysis Date	
2-Fluorobiphenyl		103		9	8		90		30	0-115	%	06/29/12 21:18	
2-Fluorophenol		124	S10	1	07		106		25	5-121	%	06/29/12 21:18	
Nitrobenzene-d5		103		9	9		91		23	3-120	%	06/29/12 21:18	
Phenol-d6		89		1	11		107		24	4-113	%	06/29/12 21:18	
Terphenyl-D14		96		8	88		84		18	8-137	%	06/29/12 21:18	
2,4,6-Tribromophenol		95		1	03		97		19	9-122	%	06/29/12 21:18	

Page 12 of 17

Southwest Research Institute, San Antonio, TX

16246.05.001

Analytical Method:	VOAs by SW-846 8260		Prep Method:	SW5030B
Seq Number:	891213	Matrix: Solid	Date Prep:	06/28/2012
MB Sample Id:	623909-1-BLK	LCS Sample Id: 623909-1-BKS		

MB Sample 10: 62390	19-1-BLK		LCS Sa	inpie iu.	023909-1-DK3			
Parameter	MB Result	Spike Amount	LCS Result	LCS % Rec	Limits	Units	Analysis Date	Flag
Benzene	< 0.000450	0.0500	0.0449	90	66-142	mg/kg	06/28/12 10:50	
Bromobenzene	< 0.000259	0.0500	0.0580	116	75-125	mg/kg	06/28/12 10:50	
Bromochloromethane	< 0.000645	0.0500	0.0464	93	73-125	mg/kg	06/28/12 10:50	
Bromodichloromethane	< 0.000364	0.0500	0.0476	95	75-125	mg/kg	06/28/12 10:50	
Bromoform	< 0.000442	0.0500	0.0501	100	75-125	mg/kg	06/28/12 10:50	
Bromomethane	< 0.000811	0.0500	0.0411	82	65-135	mg/kg	06/28/12 10:50	
MTBE	< 0.000166	0.100	0.0862	86	65-135	mg/kg	06/28/12 10:50	
tert-Butylbenzene	< 0.000223	0.0500	0.0596	119	75-125	mg/kg	06/28/12 10:50	
Sec-Butylbenzene	< 0.0000840	0.0500	0.0575	115	75-125	mg/kg	06/28/12 10:50	
n-Butylbenzene	< 0.000297	0.0500	0.0544	109	75-125	mg/kg	06/28/12 10:50	
Carbon Tetrachloride	< 0.000161	0.0500	0.0454	91	62-125	mg/kg	06/28/12 10:50	
Chlorobenzene	< 0.000290	0.0500	0.0544	109	60-133	mg/kg	06/28/12 10:50	
Chloroethane	< 0.000757	0.0500	0.0518	104	65-135	mg/kg	06/28/12 10:50	
Chloroform	< 0.000398	0.0500	0.0488	98	74-125	mg/kg	06/28/12 10:50	
Chloromethane	< 0.000362	0.0500	0.0450	90	65-135	mg/kg	06/28/12 10:50	
2-Chlorotoluene	< 0.000247	0.0500	0.0587	117	73-125	mg/kg	06/28/12 10:50	
4-Chlorotoluene	< 0.000183	0.0500	0.0575	115	74-125	mg/kg	06/28/12 10:50	
p-Cymene (p-Isopropyltoluene	< 0.000171	0.0500	0.0575	115	75-125	mg/kg	06/28/12 10:50	
1,2-Dibromo-3-Chloropropane	< 0.00290	0.0500	0.0507	101	59-125	mg/kg	06/28/12 10:50	
Dibromochloromethane	< 0.000532	0.0500	0.0547	109	73-125	mg/kg	06/28/12 10:50	
1,2-Dibromoethane	< 0.000480	0.0500	0.0554	111	73-125	mg/kg	06/28/12 10:50	
Dibromomethane	< 0.000553	0.0500	0.0470	94	69-127	mg/kg	06/28/12 10:50	
1,2-Dichlorobenzene	< 0.000329	0.0500	0.0525	105	75-125	mg/kg	06/28/12 10:50	
1,3-Dichlorobenzene	< 0.000270	0.0500	0.0553	111	75-125	mg/kg	06/28/12 10:50	
1,4-Dichlorobenzene	< 0.00100	0.0500	0.0533	107	75-125	mg/kg	06/28/12 10:50	
Dichlorodifluoromethane	< 0.000248	0.0500	0.0372	74	65-135	mg/kg	06/28/12 10:50	
1,2-Dichloroethane	< 0.000523	0.0500	0.0446	89	68-127	mg/kg	06/28/12 10:50	
1,1-Dichloroethane	< 0.000281	0.0500	0.0453	91	72-125	mg/kg	06/28/12 10:50	
trans-1,2-dichloroethene	< 0.000227	0.0500	0.0391	78	75-125	mg/kg	06/28/12 10:50	
cis-1,2-Dichloroethene	< 0.000413	0.0500	0.0481	96	75-125	mg/kg	06/28/12 10:50	
1,1-Dichloroethene	< 0.000445	0.0500	0.0459	92	59-172	mg/kg	06/28/12 10:50	
2,2-Dichloropropane	< 0.000380	0.0500	0.0397	79	75-125	mg/kg	06/28/12 10:50	
1,3-Dichloropropane	< 0.000304	0.0500	0.0597	119	75-125	mg/kg	06/28/12 10:50	
1,2-Dichloropropane	< 0.000348	0.0500	0.0485	97	74-125	mg/kg	06/28/12 10:50	
trans-1,3-dichloropropene	< 0.00108	0.0500	0.0530	106	66-125	mg/kg	06/28/12 10:50	
1,1-Dichloropropene	< 0.000366	0.0500	0.0454	91	75-125	mg/kg	06/28/12 10:50	
cis-1,3-Dichloropropene	< 0.000315	0.0500	0.0566	113	74-125	mg/kg	06/28/12 10:50	
Ethylbenzene	< 0.000200	0.0500	0.0522	104	75-125	mg/kg	06/28/12 10:50	
Hexachlorobutadiene	< 0.000270	0.0500	0.0507	101	75-125	mg/kg	06/28/12 10:50	
Naphthalene	< 0.00100	0.0500	0.0540	108	70-130	mg/kg	06/28/12 10:50	
isopropylbenzene	< 0.000228	0.0500	0.0558	112	75-125	mg/kg	06/28/12 10:50	
Methylene Chloride	< 0.000526	0.0500	0.0408	82	75-125	mg/kg	06/28/12 10:50	
n-Propylbenzene	< 0.000233	0.0500	0.0604	121	75-125	mg/kg	06/28/12 10:50	
Styrene	< 0.000201	0.0500	0.0523	105	75-125	mg/kg	06/28/12 10:50	
1,1,1,2-Tetrachloroethane	< 0.000325	0.0500	0.0481	96	72-125	mg/kg	06/28/12 10:50	
1,1,2,2-Tetrachloroethane	< 0.000214	0.0500	0.0603	121	74-125	mg/kg	06/28/12 10:50	

Page 13 of 17

Southwest Research Institute, San Antonio, TX

16246.05.001

Analytical Method:	VOAs by SW-846 8	260					Prep Metho	od: SW:	5030B	
Seq Number:	891213			Matrix:	Solid		Date Pr	ep: 06/2	8/2012	
MB Sample Id:	623909-1-BLK		LCS Sar	mple Id	: 623909-1-BKS					
Parameter	MB Result	Spike Amount	LCS Result	LCS % Rec		Limits		Units	Analysis Date	Flag
Tetrachloroethylene	0.000220	0.0500	0.0562	112		71-125		mg/kg	06/28/12 10:50	
Toluene	< 0.000321	0.0500	0.0484	97		59-139		mg/kg	06/28/12 10:50	
1,2,4-Trichlorobenzene	< 0.000348	0.0500	0.0522	104		75-135		mg/kg	06/28/12 10:50	
1,2,3-Trichlorobenzene	< 0.000347	0.0500	0.0523	105		75-137		mg/kg	06/28/12 10:50	
1,1,2-Trichloroethane	< 0.000380	0.0500	0.0515	103		75-127		mg/kg	06/28/12 10:50	
1,1,1-Trichloroethane	< 0.000276	0.0500	0.0390	78		75-125		mg/kg	06/28/12 10:50	
Trichloroethene	< 0.000440	0.0500	0.0486	97		62-137		mg/kg	06/28/12 10:50	
Trichlorofluoromethan	e <0.000248	0.0500	0.0515	103		67-125		mg/kg	06/28/12 10:50	
1,2,3-Trichloropropane	< 0.000384	0.0500	0.0586	117		75-125		mg/kg	06/28/12 10:50	
1,3,5-Trimethylbenzene	< 0.000131	0.0500	0.0577	115		70-130		mg/kg	06/28/12 10:50	
Vinyl Chloride	< 0.000500	0.0500	0.0525	105		65-135		mg/kg	06/28/12 10:50	
o-Xylene	< 0.000206	0.0500	0.0476	95		75-125		mg/kg	06/28/12 10:50	
m,p-Xylenes	< 0.000321	0.100	0.102	102		75-125		mg/kg	06/28/12 10:50	
Surrogate	MB % Rec	MB Flag		CS Rec	LCS Flag		Limits	Units	Analysis Date	
4-Bromofluorobenzene	103		1	10			68-152	%	06/28/12 10:50	
Dibromofluoromethane	90		8	88			53-142	%	06/28/12 10:50	
1,2-Dichloroethane-D4	93		8	89			56-150	%	06/28/12 10:50	
Toluene-D8	95		9	98			70-130	%	06/28/12 10:50	
Analytical Method:	VOAs by SW-846 8	260					Prep Metho	od: SW:	5030B	
Seq Number:	891270			Matrix:	Solid		Date Pr	ep: 06/2	9/2012	

MB Sample Id: 623949-1-BLK LCS Sample Id: 623949-1-BKS

Parameter	МВ	Spike	LCS	LCS		Limits		Units	Analysis	Flag
1 arameter	Result	Amount	Result	% Rec					Date	
1,2,4-Trimethylbenzene	< 0.000142	0.0500	0.0563	113	;	75-125		mg/kg	06/29/12 12:31	
Surrogate	MB % Rec	MB Flag		CS Rec	LCS Flag		Limits	Units	Analysis Date	
4-Bromofluorobenzene	103		1	107			68-152	%	06/29/12 12:31	
Dibromofluoromethane	89		9	86			53-142	%	06/29/12 12:31	
1,2-Dichloroethane-D4	92			85			56-150	%	06/29/12 12:31	
Toluene-D8	96		1	100			70-130	%	06/29/12 12:31	

Page 14 of 17 Final 1.001

Southwest Research Institute, San Antonio, TX

16246.05.001

 Analytical Method:
 VOAs by SW-846 8260
 Prep Method:
 SW 5030B

 Seq Number:
 891213
 Matrix:
 Soil
 Date Prep:
 06/28/2012

 Parent Sample Id:
 444290-002
 MS Sample Id:
 444290-002
 MSD Sample Id:
 444290-002 SD

Parent Sample Id: 444290-	002		MS Sa	MS Sample Id: 444290-002 S					MSD Sample Id: 444290-002 SD					
Parameter	Parent Result	Spike Amount	MS Result	MS % Rec	MSD Result	MSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag		
Benzene	< 0.000554	0.0616	0.0503	82	0.0506	82	66-142	1	25	mg/kg	06/28/12 13:43			
Bromobenzene	< 0.000319	0.0616	0.0751	122	0.0760	123	75-125	1	25	mg/kg	06/28/12 13:43			
Bromochloromethane	< 0.000794	0.0616	0.0544	88	0.0571	93	73-125	5	25	mg/kg	06/28/12 13:43			
Bromodichloromethane	< 0.000448	0.0616	0.0527	86	0.0539	88	75-125	2	25	mg/kg	06/28/12 13:43			
Bromoform	< 0.000544	0.0616	0.0585	95	0.0615	100	75-125	5	25	mg/kg	06/28/12 13:43			
Bromomethane	< 0.000999	0.0616	0.0496	81	0.0479	78	65-135	3	25	mg/kg	06/28/12 13:43			
MTBE	< 0.000204	0.123	0.108	88	0.116	94	65-135	7	25	mg/kg	06/28/12 13:43			
tert-Butylbenzene	< 0.000275	0.0616	0.0686	111	0.0705	114	75-125	3	25	mg/kg	06/28/12 13:43			
Sec-Butylbenzene	< 0.000103	0.0616	0.0623	101	0.0632	103	75-125	1	25	mg/kg	06/28/12 13:43			
n-Butylbenzene	< 0.000366	0.0616	0.0491	80	0.0507	82	75-125	3	25	mg/kg	06/28/12 13:43			
Carbon Tetrachloride	< 0.000198	0.0616	0.0487	79	0.0488	79	62-125	0	25	mg/kg	06/28/12 13:43			
Chlorobenzene	< 0.000357	0.0616	0.0593	96	0.0591	96	60-133	0	25	mg/kg	06/28/12 13:43			
Chloroethane	< 0.000932	0.0616	0.0610	99	0.0608	99	65-135	0	25	mg/kg	06/28/12 13:43			
Chloroform	< 0.000490	0.0616	0.0542	88	0.0551	89	74-125	2	25	mg/kg	06/28/12 13:43			
Chloromethane	< 0.000446	0.0616	0.0511	83	0.0533	87	65-135	4	25	mg/kg	06/28/12 13:43			
2-Chlorotoluene	< 0.000304	0.0616	0.0724	118	0.0713	116	73-125	2	25	mg/kg	06/28/12 13:43			
4-Chlorotoluene	< 0.000225	0.0616	0.0686	111	0.0678	110	74-125	1	25	mg/kg	06/28/12 13:43			
p-Cymene (p-Isopropyltoluene)	< 0.000211	0.0616	0.0599	97	0.0608	99	75-125	1	25	mg/kg	06/28/12 13:43			
1,2-Dibromo-3-Chloropropane	< 0.00357	0.0616	0.0783	127	0.0892	145	59-125	13	25	mg/kg	06/28/12 13:43	M1		
Dibromochloromethane	< 0.000655	0.0616	0.0671	109	0.0683	111	73-125	2	25	mg/kg	06/28/12 13:43			
1,2-Dibromoethane	< 0.000591	0.0616	0.0746	121	0.0770	125	73-125	3	25	mg/kg	06/28/12 13:43			
Dibromomethane	< 0.000681	0.0616	0.0576	94	0.0590	96	69-127	2	25	mg/kg	06/28/12 13:43			
1,2-Dichlorobenzene	< 0.000405	0.0616	0.0547	89	0.0549	89	75-125	0	25	mg/kg	06/28/12 13:43			
1,3-Dichlorobenzene	< 0.000333	0.0616	0.0584	95	0.0586	95	75-125	0	25	mg/kg	06/28/12 13:43			
1,4-Dichlorobenzene	< 0.00123	0.0616	0.0553	90	0.0564	92	75-125	2	25	mg/kg	06/28/12 13:43			
Dichlorodifluoromethane	< 0.000305	0.0616	0.0446	72	0.0448	73	65-135	0	25	mg/kg	06/28/12 13:43			
1,2-Dichloroethane	< 0.000644	0.0616	0.0530	86	0.0549	89	68-127	4	25	mg/kg	06/28/12 13:43			
1,1-Dichloroethane	< 0.000346	0.0616	0.0519	84	0.0527	86	72-125	2	25	mg/kg	06/28/12 13:43			
trans-1,2-dichloroethene	< 0.000280	0.0616	0.0442	72	0.0444	72	75-125	0	25	mg/kg	06/28/12 13:43	M2		
cis-1,2-Dichloroethene	< 0.000509	0.0616	0.0539	88	0.0545	88	75-125	1	25	mg/kg	06/28/12 13:43			
1,1-Dichloroethene	< 0.000548	0.0616	0.0523	85	0.0516	84	59-172	1	25	mg/kg	06/28/12 13:43			
2,2-Dichloropropane	< 0.000468	0.0616	0.0444	72	0.0445	72	75-125	0	25	mg/kg	06/28/12 13:43	M2		
1,3-Dichloropropane	< 0.000374	0.0616	0.0781	127	0.0834	135	75-125	7	25	mg/kg	06/28/12 13:43	M1		
1,2-Dichloropropane	< 0.000429	0.0616	0.0564	92	0.0566	92	74-125	0	25	mg/kg	06/28/12 13:43			
trans-1,3-dichloropropene	< 0.00133	0.0616	0.0574	93	0.0595	97	66-125	4	25	mg/kg	06/28/12 13:43			
1,1-Dichloropropene	< 0.000451	0.0616	0.0495	80	0.0499	81	75-125	1	25	mg/kg	06/28/12 13:43			
cis-1,3-Dichloropropene	< 0.000388	0.0616	0.0589	96	0.0617	100	74-125	5	25	mg/kg	06/28/12 13:43			
Ethylbenzene	< 0.000246	0.0616	0.0576	94	0.0557	90	75-125	3	25	mg/kg	06/28/12 13:43			
Hexachlorobutadiene	< 0.000333	0.0616	0.0264	43	0.0311	50	75-125	16	25	mg/kg	06/28/12 13:43	M2		
Naphthalene	< 0.00123	0.0616	0.0411	67	0.0442	72	70-130	7	25	mg/kg	06/28/12 13:43	M2		
isopropylbenzene	< 0.000281	0.0616	0.0730	119	0.0741	120	75-125	1	25	mg/kg	06/28/12 13:43			
Methylene Chloride	< 0.000648	0.0616	0.0464	75	0.0478	78	75-125	3	25	mg/kg	06/28/12 13:43			
n-Propylbenzene	< 0.000287	0.0616	0.0728	118	0.0729	118	75-125	0	25	mg/kg	06/28/12 13:43			
Styrene	< 0.000248	0.0616	0.0538	87	0.0536	87	75-125	0	25	mg/kg	06/28/12 13:43			
1,1,1,2-Tetrachloroethane	< 0.000400	0.0616	0.0543	88	0.0548	89	72-125	1	25	mg/kg	06/28/12 13:43			
1,1,2,2-Tetrachloroethane	< 0.000264	0.0616	0.101	164	0.109	177	74-125	8	25	mg/kg	06/28/12 13:43	M1		

Page 15 of 17

Toluene-D8

QC Summary 444478

Flag

06/29/12 16:08

Southwest Research Institute, San Antonio, TX

16246.05.001

Analytical Method:	VOAs by SW-846 8260			Prep Method:	SW5030B
Seq Number:	891213	Matrix:	Soil	Date Prep:	06/28/2012
Parent Sample Id:	444290-002	MS Sample Id:	444290-002 S	MSD Sample Id:	444290-002 SD

Parent Sample Id. 4	+4290-002		IVID Dai	iipic iu.	TTT270-00	02.0	WISD Sample 1d. 444290-002 SD					
Parameter	Parent Result	Spike Amount	MS Result	MS % Rec	MSD Result	MSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Tetrachloroethylene	0.000244	0.0616	0.118	191	0.0667	108	71-125	56	25	mg/kg	06/28/12 13:43	M1R5
Toluene	< 0.000395	0.0616	0.0508	82	0.0500	81	59-139	2	25	mg/kg	06/28/12 13:43	
1,2,4-Trichlorobenzene	< 0.000429	0.0616	0.0303	49	0.0324	53	75-135	7	25	mg/kg	06/28/12 13:43	M2
1,2,3-Trichlorobenzene	< 0.000427	0.0616	0.0285	46	0.0296	48	75-137	4	25	mg/kg	06/28/12 13:43	M2
1,1,2-Trichloroethane	< 0.000468	0.0616	0.0604	98	0.0625	101	75-127	3	25	mg/kg	06/28/12 13:43	
1,1,1-Trichloroethane	< 0.000340	0.0616	0.0439	71	0.0440	71	75-125	0	25	mg/kg	06/28/12 13:43	M2
Trichloroethene	< 0.000542	0.0616	0.0576	94	0.0525	85	62-137	9	25	mg/kg	06/28/12 13:43	
Trichlorofluoromethane	< 0.000305	0.0616	0.0597	97	0.0597	97	67-125	0	25	mg/kg	06/28/12 13:43	
1,2,3-Trichloropropane	< 0.000473	0.0616	0.0929	151	0.102	166	75-125	9	25	mg/kg	06/28/12 13:43	M1
1,3,5-Trimethylbenzene	< 0.000161	0.0616	0.0687	112	0.0700	114	70-130	2	25	mg/kg	06/28/12 13:43	
Vinyl Chloride	< 0.000616	0.0616	0.0601	98	0.0612	99	65-135	2	25	mg/kg	06/28/12 13:43	
o-Xylene	< 0.000254	0.0616	0.0518	84	0.0512	83	75-125	1	25	mg/kg	06/28/12 13:43	
m,p-Xylenes	< 0.000395	0.123	0.110	89	0.109	89	75-125	1	25	mg/kg	06/28/12 13:43	
Surrogate				1S Rec	MS Flag	MSD % Rec			imits	Units	Analysis Date	
4-Bromofluorobenzene			1	24		129		68	3-152	%	06/28/12 13:43	
Dibromofluoromethane				90		90		53	3-142	%	06/28/12 13:43	
1,2-Dichloroethane-D4				95		101		50	5-150	%	06/28/12 13:43	
Toluene-D8			9	96		95		70)-130	%	06/28/12 13:43	

Analytical Method:	VOAs by SW-846 8260		Prep Method:	SW5030B
Seq Number:	891270	Matrix: Soil	Date Prep:	06/29/2012

 Seq Number:
 891270
 Matrix:
 Soil
 Date Prep:
 06/29/2012

 Parent Sample Id:
 444290-003
 MS Sample Id:
 444290-003 S
 MSD Sample Id:
 444290-003 SD

 Parent Spike
 MS
 MS
 MSD
 MSD
 Limits
 %RP
 RPD
 Units
 Analysis

Parameter	Result	Amount	Result	% Rec	Result	%Rec		D	Limit		Date
1,2,4-Trimethylbenzene	0.000215	0.0540	0.0475	88	0.0473	87	75-125	0	25	mg/kg	06/29/12 16:08
Surrogate				AS Rec	MS Flag	MSD % Rec	MSD Flag	1	Limits	Units	Analysis Date
4-Bromofluorobenzene			1	39		144		(58-152	%	06/29/12 16:08
Dibromofluoromethane			9	99		93		5	53-142	%	06/29/12 16:08
1,2-Dichloroethane-D4			1	07		100		5	56-150	%	06/29/12 16:08

Page 16 of 17 Final 1.001

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Southwest Research Institute

Date/ Time Received: 06/11/2012 10:24:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 444478

Temperature Measuring device used :

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	20	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	No	
#4 *Custody Seals intact on shipping container/ cooler?	No	
#5 Custody Seals intact on sample bottles/ container?	No	
#6 *Custody Seals Signed and dated for Containers/coolers	No	
#7 *Chain of Custody present?	No	
#8 Sample instructions complete on Chain of Custody?	N/A	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ received?	N/A	
#11 Chain of Custody agrees with sample label(s)?	N/A	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Custody?	N/A	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	N/A	
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A	
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	N/A	
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: tt	PH Device/Lo	ot#:	
Checklis	t completed by:	Tanya Torres	Date: 06/22/2012
Checkli	st reviewed by:		Date: 06/22/2012

Page 17 of 17

Appendix BL EPA Testing Report: CL12-4367

Analytical Report 451437

for Southwest Research Institute

Project Manager: Scott Hutzler SO091904E CL12-4367 07-NOV-12

Collected By: Client

4143 Greenbriar Dr., Stafford, TX 77477

Xenco-Houston (EPA Lab code: TX00122):
Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002)
Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054)
New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610)
Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Lakeland: Florida (E84098)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

07-NOV-12

Project Manager: Scott Hutzler Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228

Reference: XENCO Report No: 451437

SO091904E Project Address:

Scott Hutzler:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 451437. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 451437 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Skip Harden

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 19

CASE NARRATIVE

Client Name: Southwest Research Institute Project Name: S0091904E

Project ID:CL12-4367Report Date:07-NOV-12Work Order Number:451437Date Received:10/26/2012

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Flagging Criteria

Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 3.0 9/20/2007. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- D1 Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- L1 The associated blank spike recovery was above laboratory acceptance limits.
- M1 Matrix spike recovery was high; the associated blank spike recovery was acceptable.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- S4 Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the sample.
- S8 The analysis of the sample required a dilution such that the surrogate recovery calculation does not provide any useful information. The associated blank spike recovery was acceptable.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Sample Cross Reference 451437

Southwest Research Institute, San Antonio, TX

SO091904E

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CL12-4367	L	10-25-12 00:00		451437-001

Page 5 of 19

Southwest Research Institute, San Antonio, TX SO091904E

Sample Id: CL12-4367 Matrix: Product Date Received: 10.26.12 09.00

Lab Sample Id: 451437-001 Date Collected: 10.25.12 00.00

Analytical Method: SVOCs by EPA 8270C Prep Method: SW3550

Tech: LEB % Moisture:

Analyst: WEW Date Prep: 10.30.12 09.53 Basis: Wet Weight

Seq Number: 899835

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,2,4-Trichlorobenzene	120-82-1	< 500	500	mg/kg	10.30.12 18.07	D1	100
1,2-Dichlorobenzene	95-50-1	< 500	500	mg/kg	10.30.12 18.07	D1	100
1,3-Dichlorobenzene	541-73-1	< 500	500	mg/kg	10.30.12 18.07	D1	100
1,4-Dichlorobenzene	106-46-7	< 500	500	mg/kg	10.30.12 18.07	D1	100
2,4,5-Trichlorophenol	95-95-4	< 500	500	mg/kg	10.30.12 18.07	D1	100
2,4,6-Trichlorophenol	88-06-2	< 500	500	mg/kg	10.30.12 18.07	D1	100
2,4-Dichlorophenol	120-83-2	< 500	500	mg/kg	10.30.12 18.07	D1	100
2,4-Dimethylphenol	105-67-9	< 500	500	mg/kg	10.30.12 18.07	D1	100
2,4-Dinitrophenol	51-28-5	<1000	1000	mg/kg	10.30.12 18.07	D1	100
2,4-Dinitrotoluene	121-14-2	< 500	500	mg/kg	10.30.12 18.07	D1	100
2,6-Dinitrotoluene	606-20-2	< 500	500	mg/kg	10.30.12 18.07	D1	100
2-Chloronaphthalene	91-58-7	< 500	500	mg/kg	10.30.12 18.07	D1	100
2-Chlorophenol	95-57-8	< 500	500	mg/kg	10.30.12 18.07	D1	100
2-Methylnaphthalene	91-57-6	1670	500	mg/kg	10.30.12 18.07	D2	100
2-methylphenol	95-48-7	< 500	500	mg/kg	10.30.12 18.07	D1	100
2-Nitroaniline	88-74-4	<1000	1000	mg/kg	10.30.12 18.07	D1	100
2-Nitrophenol	88-75-5	< 500	500	mg/kg	10.30.12 18.07	D1	100
3&4-Methylphenol	15831-10-4	< 500	500	mg/kg	10.30.12 18.07	D1	100
3,3-Dichlorobenzidine	91-94-1	<1000	1000	mg/kg	10.30.12 18.07	D1	100
3-Nitroaniline	99-09-2	<1000	1000	mg/kg	10.30.12 18.07	D1	100
4,6-dinitro-2-methyl phenol	534-52-1	<1000	1000	mg/kg	10.30.12 18.07	D1	100
4-Bromophenyl-phenylether	101-55-3	< 500	500	mg/kg	10.30.12 18.07	D1	100
4-chloro-3-methylphenol	59-50-7	< 500	500	mg/kg	10.30.12 18.07	D1	100
4-Chloroaniline	106-47-8	<1000	1000	mg/kg	10.30.12 18.07	D1	100
4-Chlorophenyl-phenyl ether	7005-72-3	< 500	500	mg/kg	10.30.12 18.07	D1	100
4-Nitroaniline	100-01-6	<1000	1000	mg/kg	10.30.12 18.07	D1	100
4-Nitrophenol	100-02-7	<1000	1000	mg/kg	10.30.12 18.07	D1	100
Acenaphthene	83-32-9	< 500	500	mg/kg	10.30.12 18.07	D1	100
Acenaphthylene	208-96-8	< 500	500	mg/kg	10.30.12 18.07	D1	100
Aniline (Phenylamine, Aminobenzene)	62-53-3	<1000	1000	mg/kg	10.30.12 18.07	D1	100
Anthracene	120-12-7	< 500	500	mg/kg	10.30.12 18.07	D1	100
Benzo(a)anthracene	56-55-3	< 500	500	mg/kg	10.30.12 18.07	D1	100
Benzo(a)pyrene	50-32-8	< 500	500	mg/kg	10.30.12 18.07	D1	100
Benzo(b)fluoranthene	205-99-2	< 500	500	mg/kg	10.30.12 18.07	D1	100
Benzo(g,h,i)perylene	191-24-2	< 500	500	mg/kg	10.30.12 18.07	D1	100
Benzo(k)fluoranthene	207-08-9	< 500	500	mg/kg	10.30.12 18.07	D1	100
Benzoic Acid	65-85-0	< 3000	3000	mg/kg	10.30.12 18.07	D1	100
Benzyl Butyl Phthalate	85-68-7	< 500	500	mg/kg	10.30.12 18.07	D1	100
bis(2-chloroethoxy) methane	111-91-1	< 500	500	mg/kg	10.30.12 18.07	D1	100
bis(2-chloroethyl) ether	111-44-4	< 500	500	mg/kg	10.30.12 18.07	D1	100
bis(2-chloroisopropyl) ether	108-60-1	< 500	500	mg/kg	10.30.12 18.07	D1	100

Page 6 of 19 Final 1.000

Southwest Research Institute, San Antonio, TX SO091904E

Sample Id: CL12-4367 Matrix: Product Date Received: 10.26.12 09.00

Lab Sample Id: 451437-001 Date Collected: 10.25.12 00.00

Analytical Method: SVOCs by EPA 8270C Prep Method: SW3550

Tech: LEB % Moisture:

Analyst: WEW Date Prep: 10.30.12 09.53 Basis: Wet Weight

Seq Number: 899835

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
bis(2-ethylhexyl) phthalate	117-81-7	< 500	500		mg/kg	10.30.12 18.07	D1	100
Chrysene	218-01-9	< 500	500		mg/kg	10.30.12 18.07	D1	100
Dibenz(a,h)Anthracene	53-70-3	< 500	500		mg/kg	10.30.12 18.07	D1	100
Dibenzofuran	132-64-9	< 500	500		mg/kg	10.30.12 18.07	D1	100
Diethyl Phthalate	84-66-2	< 500	500		mg/kg	10.30.12 18.07	D1	100
Dimethyl Phthalate	131-11-3	< 500	500		mg/kg	10.30.12 18.07	D1	100
di-n-Butyl Phthalate	84-74-2	< 500	500		mg/kg	10.30.12 18.07	D1	100
di-n-Octyl Phthalate	117-84-0	< 500	500		mg/kg	10.30.12 18.07	D1	100
Fluoranthene	206-44-0	< 500	500		mg/kg	10.30.12 18.07	D1	100
Fluorene	86-73-7	< 500	500		mg/kg	10.30.12 18.07	D1	100
Hexachlorobenzene	118-74-1	< 500	500		mg/kg	10.30.12 18.07	D1	100
Hexachlorobutadiene	87-68-3	< 500	500		mg/kg	10.30.12 18.07	D1	100
Hexachlorocyclopentadiene	77-47-4	< 500	500		mg/kg	10.30.12 18.07	D1	100
Hexachloroethane	67-72-1	< 500	500		mg/kg	10.30.12 18.07	D1	100
Indeno(1,2,3-c,d)Pyrene	193-39-5	< 500	500		mg/kg	10.30.12 18.07	D1	100
Isophorone	78-59-1	< 500	500		mg/kg	10.30.12 18.07	D1	100
Naphthalene	91-20-3	1210	500		mg/kg	10.30.12 18.07	D2	100
Nitrobenzene	98-95-3	< 500	500		mg/kg	10.30.12 18.07	D1	100
N-Nitrosodi-n-Propylamine	621-64-7	< 500	500		mg/kg	10.30.12 18.07	D1	100
N-Nitrosodiphenylamine	86-30-6	< 500	500		mg/kg	10.30.12 18.07	D1	100
Pentachlorophenol	87-86-5	<1000	1000		mg/kg	10.30.12 18.07	D1	100
Phenanthrene	85-01-8	< 500	500		mg/kg	10.30.12 18.07	D1	100
Phenol	108-95-2	<1000	1000		mg/kg	10.30.12 18.07	D1	100
Pyrene	129-00-0	< 500	500		mg/kg	10.30.12 18.07	D1	100
Pyridine	110-86-1	<1000	1000		mg/kg	10.30.12 18.07	D1	100
Decane, 4-methyl- (CAS); 4-Methyldecane (T	IC) TIC	6990			mg/kg	10.30.12 18.07	D2T4	100
Cyclohexane, propyl- (TIC)	TIC	11600			mg/kg	10.30.12 18.07	D2T4	100
Undecane (CAS); n-Undecane; Hendecane; n-	-C11TIC	10600			mg/kg	10.30.12 18.07	D2T4	100
1-Pentene, 2,3-dimethyl- (TIC)	TIC	7630			mg/kg	10.30.12 18.07	D2T4	100
Pentadecane (CAS); n-Pentadecane; CH3(CH	(2)1: TIC	6630			mg/kg	10.30.12 18.07	D2T4	100
Decane (TIC)	TIC	21000			mg/kg	10.30.12 18.07	D2T4	100
Cyclopentane, 1-ethyl-3-methyl-; 1-Methyl-3-	(TI TIC	8630			mg/kg	10.30.12 18.07	D2T4	100
Nonane (CAS); n-Nonane; Shellsol 140; n-C9	H2 (TIC	14200			mg/kg	10.30.12 18.07	D2T4	100
Tetradecane (CAS); n-Tetradecane; Isotetrad	le (T TIC	10000			mg/kg	10.30.12 18.07	D2T4	100
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
2-Fluorophenol	367-12-4	0	%	25-121		10.30.12 18.07	S8	
Phenol-d6	13127-88-3	0	%	24-113		10.30.12 18.07	S8	
Nitrobenzene-d5	4165-60-0	0	%	23-120		10.30.12 18.07	S8	
2-Fluorobiphenyl	321-60-8	0	%	30-115		10.30.12 18.07	S8	
2,4,6-Tribromophenol	118-79-6	0	%	19-122		10.30.12 18.07	S8	

Page 7 of 19 Final 1.000

Southwest Research Institute, San Antonio, TX

SO091904E

Sample Id: CL12-4367 Matrix: Product Date Received: 10.26.12 09.00

Lab Sample Id: 451437-001 Date Collected: 10.25.12 00.00

Analytical Method: SVOCs by EPA 8270C Prep Method: SW3550

Tech: LEB % Moisture:

Analyst: WEW Date Prep: 10.30.12 09.53 Basis: Wet Weight

Seq Number: 899835

 Surrogate
 Cas Number
 % Recovery
 Analysis Date
 Flag

 Terphenyl-D14
 1718-51-0
 0
 %
 18-137
 10.30.12 18.07
 S8

Analytical Method: TPH DRO by SW846-8015 Prep Method: SW3550

Tech: PJB % Moisture:

Analyst: VIC Date Prep: 10.31.12 17.09 Basis: Wet Weight

Seq Number: 899987

Parameter Cas Number Result RL Units **Analysis Date** Dil 68334-30-5 TPH-DRO 769000 10000 mg/kg 11.01.12 13.34 D2 200 Surrogate Cas Number Analysis Date Limits % Recovery Units

Pentacosane 629-99-2 111 % 40-130 11.01.12 13.58

Southwest Research Institute, San Antonio, TX SO091904E

Sample Id: CL12-4367 Matrix: Product Date Received: 10.26.12 09.00

Lab Sample Id: 451437-001 Date Collected: 10.25.12 00.00

Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B

Tech: MCH % Moisture:

Analyst: MCH Date Prep: 10.31.12 14.22 Basis: Wet Weight

Seq Number: 899983

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,1,1-Trichloroethane	71-55-6	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,1,2,2-Tetrachloroethane	79-34-5	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,1,2-Trichloroethane	79-00-5	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,1-Dichloroethane	75-34-3	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,1-Dichloroethene	75-35-4	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,1-Dichloropropene	563-58-6	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,2,3-Trichlorobenzene	87-61-6	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,2,3-Trichloropropane	96-18-4	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,2,4-Trichlorobenzene	120-82-1	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,2,4-Trimethylbenzene	95-63-6	1960	125	mg/kg	10.31.12 16.12	D2	25000
1,2-Dibromo-3-Chloropropane	96-12-8	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,2-Dibromoethane	106-93-4	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,2-Dichlorobenzene	95-50-1	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,2-Dichloroethane	107-06-2	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,2-Dichloropropane	78-87-5	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,3,5-Trimethylbenzene	108-67-8	772	125	mg/kg	10.31.12 16.12	D2	25000
1,3-Dichlorobenzene	541-73-1	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,3-Dichloropropane	142-28-9	<125	125	mg/kg	10.31.12 16.12	D1	25000
1,4-Dichlorobenzene	106-46-7	<125	125	mg/kg	10.31.12 16.12	D1	25000
2,2-Dichloropropane	594-20-7	<125	125	mg/kg	10.31.12 16.12	D1	25000
2-Butanone	78-93-3	<1250	1250	mg/kg	10.31.12 16.12	D1	25000
2-Chlorotoluene	95-49-8	<125	125	mg/kg	10.31.12 16.12	D1	25000
2-Hexanone	591-78-6	<1250	1250	mg/kg	10.31.12 16.12	D1	25000
4-Chlorotoluene	106-43-4	<125	125	mg/kg	10.31.12 16.12	D1	25000
Acetone	67-64-1	<2500	2500	mg/kg	10.31.12 16.12	D1	25000
Benzene	71-43-2	<125	125	mg/kg	10.31.12 16.12	D1	25000
Bromobenzene	108-86-1	<125	125	mg/kg	10.31.12 16.12	D1	25000
Bromochloromethane	74-97-5	<125	125	mg/kg	10.31.12 16.12	D1	25000
Bromodichloromethane	75-27-4	<125	125	mg/kg	10.31.12 16.12	D1	25000
Bromoform	75-25-2	<125	125	mg/kg	10.31.12 16.12	D1	25000
Bromomethane	74-83-9	<125	125	mg/kg	10.31.12 16.12	D1	25000
Carbon Disulfide	75-15-0	<1250	1250	mg/kg	10.31.12 16.12	D1	25000
Carbon Tetrachloride	56-23-5	<125	125	mg/kg	10.31.12 16.12	D1	25000
Chlorobenzene	108-90-7	<125	125	mg/kg	10.31.12 16.12	D1	25000
Chloroethane	75-00-3	<250	250	mg/kg	10.31.12 16.12	D1	25000
Chloroform	67-66-3	<125	125	mg/kg	10.31.12 16.12	D1	25000
Chloromethane	74-87-3	<250	250	mg/kg	10.31.12 16.12	D1	25000
cis-1,2-Dichloroethene	156-59-2	<125	125	mg/kg	10.31.12 16.12	D1	25000
cis-1,3-Dichloropropene	10061-01-5	<125	125	mg/kg	10.31.12 16.12	D1	25000
Dibromochloromethane	124-48-1	<125	125	mg/kg	10.31.12 16.12	D1	25000

Page 9 of 19 Final 1.000

Southwest Research Institute, San Antonio, TX SO091904E

Sample Id: CL12-4367 Matrix: Product Date Received: 10.26.12 09.00

Lab Sample Id: 451437-001 Date Collected: 10.25.12 00.00

Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B

Tech: MCH % Moisture:

Analyst: MCH Date Prep: 10.31.12 14.22 Basis: Wet Weight

Seq Number: 899983

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Dibromomethane	74-95-3	<125	125		mg/kg	10.31.12 16.12	D1	25000
Dichlorodifluoromethane	75-71-8	<125	125		mg/kg	10.31.12 16.12	D1	25000
Ethylbenzene	100-41-4	294	125		mg/kg	10.31.12 16.12	D2	25000
Hexachlorobutadiene	87-68-3	<125	125		mg/kg	10.31.12 16.12	D1	25000
Iodomethane (Methyl Iodide)	74-88-4	<499	499		mg/kg	10.31.12 16.12	D1	25000
isopropylbenzene	98-82-8	<125	125		mg/kg	10.31.12 16.12	D1	25000
m,p-Xylenes	179601-23-1	1610	250		mg/kg	10.31.12 16.12	D2	25000
Methylene Chloride	75-09-2	<499	499		mg/kg	10.31.12 16.12	D1	25000
MTBE	1634-04-4	<125	125		mg/kg	10.31.12 16.12	D1	25000
Naphthalene	91-20-3	575	250		mg/kg	10.31.12 16.12	D1	25000
n-Butylbenzene	104-51-8	290	125		mg/kg	10.31.12 16.12	D2	25000
n-Propylbenzene	103-65-1	219	125		mg/kg	10.31.12 16.12	D2	25000
o-Xylene	95-47-6	560	125		mg/kg	10.31.12 16.12	D2	25000
p-Cymene (p-Isopropyltoluene)	99-87-6	165	125		mg/kg	10.31.12 16.12	D2	25000
Sec-Butylbenzene	135-98-8	138	125		mg/kg	10.31.12 16.12	D2	25000
Styrene	100-42-5	<125	125		mg/kg	10.31.12 16.12	D1	25000
tert-Butylbenzene	98-06-6	<125	125		mg/kg	10.31.12 16.12	D1	25000
Tetrachloroethylene	127-18-4	<125	125		mg/kg	10.31.12 16.12	D1	25000
Toluene	108-88-3	551	125		mg/kg	10.31.12 16.12	D2	25000
Total Xylenes	1330-20-7	2170	125		mg/kg	10.31.12 16.12	D2	25000
trans-1,2-dichloroethene	156-60-5	<125	125		mg/kg	10.31.12 16.12	D1	25000
trans-1,3-dichloropropene	10061-02-6	<125	125		mg/kg	10.31.12 16.12	D1	25000
Trichloroethene	79-01-6	<125	125		mg/kg	10.31.12 16.12	D1	25000
Trichlorofluoromethane	75-69-4	<125	125		mg/kg	10.31.12 16.12	D1	25000
Vinyl Acetate	108-05-4	<1250	1250		mg/kg	10.31.12 16.12	D1	25000
Vinyl Chloride	75-01-4	<49.9	49.9		mg/kg	10.31.12 16.12	D1	25000
Benzene, 1-ethyl-3-methyl- (TIC)	TIC	1510			mg/kg	10.31.12 16.12	D2T4	25000
Cyclohexane, propyl- (TIC)	TIC	4460			mg/kg	10.31.12 16.12	D2T4	25000
Octane (TIC)	TIC	2640			mg/kg	10.31.12 16.12	D2T4	25000
Octane, 3-methyl- (TIC)	TIC	1080			mg/kg	10.31.12 16.12	D2T4	25000
Cyclohexane, butyl- (TIC)	TIC	1150			mg/kg	10.31.12 16.12	D2T4	25000
Octane, 4-methyl- (TIC)	TIC	2160			mg/kg	10.31.12 16.12	D2T4	25000
Benzene, 1,2,3-trimethyl- (TIC)	TIC	893			mg/kg	10.31.12 16.12	D2T4	25000
Benzene, 1-methyl-3-(1-methylethyl)- (TIC)	TIC	993			mg/kg	10.31.12 16.12	D2T4	25000
Undecane (TIC)	TIC	983			mg/kg	10.31.12 16.12	D2T4	25000
Cyclohexane, ethyl- (TIC)	TIC	1580			mg/kg	10.31.12 16.12	D2T4	25000
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
Dibromofluoromethane	1868-53-7	92	%	53-142		10.31.12 16.12		
1,2-Dichloroethane-D4	17060-07-0	95	%	56-150		10.31.12 16.12		
Toluene-D8	2037-26-5	103	%	70-130		10.31.12 16.12		

Page 10 of 19 Final 1.000

Southwest Research Institute, San Antonio, TX

SO091904E

Sample Id: CL12-4367 Matrix: Product Date Received: 10.26.12 09.00

Lab Sample Id: 451437-001 Date Collected: 10.25.12 00.00

Analytical Method: VOAs by SW-846 8260 Prep Method: SW5030B

Tech: MCH % Moisture:

Analyst: MCH Date Prep: 10.31.12 14.22 Basis: Wet Weight

Seq Number: 899983

 Surrogate
 Cas Number
 % Recovery
 Analysis Date
 Flag

 4-Bromofluorobenzene
 460-00-4
 97
 %
 68-152
 10.31.12 16.12

Page 11 of 19

Southwest Research Institute, San Antonio, TX SO091904E

 Analytical Method:
 SVOCs by EPA 8270C
 Prep Method:
 SW3550

 Seq Number:
 899835
 Matrix:
 Solid
 Date Prep:
 10/30/2012

 MB Sample Id:
 629237-1-BLK
 LCS Sample Id:
 629237-1-BKS
 LCSD Sample Id:
 629237-1-BKS

MB Sample Id: 629237-1-BLK		LCS Sar	LCS Sample Id: 629237-1-BKS			LCSD Sample Id: 629237-1-BSD						
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene	< 0.0303	1.66	1.64	99	1.60	96	55-106	2	30	mg/kg	10/30/12 12:14	
1,2-Dichlorobenzene	< 0.0360	1.66	1.41	85	1.39	84	54-104	1	30	mg/kg	10/30/12 12:14	
1,3-Dichlorobenzene	< 0.0304	1.66	1.37	83	1.36	82	53-105	1	30	mg/kg	10/30/12 12:14	
1,4-Dichlorobenzene	< 0.0327	1.66	1.36	82	1.34	81	52-104	1	30	mg/kg	10/30/12 12:14	
2,4,5-Trichlorophenol	< 0.0389	1.66	1.75	105	1.68	101	53-128	4	30	mg/kg	10/30/12 12:14	
2,4,6-Trichlorophenol	< 0.0267	1.66	1.72	104	1.69	102	58-119	2	30	mg/kg	10/30/12 12:14	
2,4-Dichlorophenol	< 0.0313	1.66	1.75	105	1.70	102	58-113	3	30	mg/kg	10/30/12 12:14	
2,4-Dimethylphenol	< 0.0781	1.66	1.79	108	1.75	105	56-112	2	30	mg/kg	10/30/12 12:14	
2,4-Dinitrophenol	< 0.0688	1.66	1.77	107	1.63	98	38-136	8	40	mg/kg	10/30/12 12:14	
2,4-Dinitrotoluene	< 0.0317	1.66	1.81	109	1.69	102	59-115	7	30	mg/kg	10/30/12 12:14	
2,6-Dinitrotoluene	< 0.0318	1.66	1.73	104	1.65	99	58-114	5	30	mg/kg	10/30/12 12:14	
2-Chloronaphthalene	< 0.0263	1.66	1.72	104	1.65	99	40-132	4	30	mg/kg	10/30/12 12:14	
2-Chlorophenol	< 0.0322	1.66	1.44	87	1.39	84	53-109	4	30	mg/kg	10/30/12 12:14	
2-Methylnaphthalene	< 0.0340	1.66	1.75	105	1.72	104	53-108	2	30	mg/kg	10/30/12 12:14	
2-methylphenol	< 0.0431	1.66	1.50	90	1.46	88	48-118	3	30	mg/kg	10/30/12 12:14	
2-Nitroaniline	< 0.0292	1.66	1.87	113	1.77	107	54-116	5	40	mg/kg	10/30/12 12:14	
2-Nitrophenol	< 0.0227	1.66	1.69	102	1.69	102	54-113	0	30	mg/kg	10/30/12 12:14	
3&4-Methylphenol	< 0.0755	1.66	1.54	93	1.49	90	53-115	3	30	mg/kg	10/30/12 12:14	
3,3-Dichlorobenzidine	< 0.0455	1.66	1.78	107	1.65	99	55-129	8	40	mg/kg	10/30/12 12:14	
3-Nitroaniline	< 0.0345	1.66	1.85	111	1.73	104	57-119	7	40	mg/kg	10/30/12 12:14	
4,6-dinitro-2-methyl ph	enol <0.0270	1.66	1.77	107	1.71	103	56-117	3	40	mg/kg	10/30/12 12:14	
4-Bromophenyl-phenyl	ether <0.0338	1.66	1.76	106	1.72	104	57-118	2	30	mg/kg	10/30/12 12:14	
4-chloro-3-methylphen-	ol <0.0349	1.66	1.91	115	1.84	111	55-114	4	30	mg/kg	10/30/12 12:14	L1
4-Chloroaniline	< 0.0665	1.66	1.77	107	1.72	104	54-112	3	40	mg/kg	10/30/12 12:14	
4-Chlorophenyl-phenyl	ether <0.0334	1.66	1.64	99	1.57	95	57-111	4	30	mg/kg	10/30/12 12:14	
4-Nitroaniline	< 0.0299	1.66	1.86	112	1.72	104	56-121	8	40	mg/kg	10/30/12 12:14	
4-Nitrophenol	< 0.0310	1.66	2.23	134	2.00	120	42-134	11	40	mg/kg	10/30/12 12:14	
Acenaphthene	< 0.0356	1.66	1.70	102	1.64	99	54-112	4	30	mg/kg	10/30/12 12:14	
Acenaphthylene	< 0.0336	1.66	1.73	104	1.67	101	54-113	4	30	mg/kg	10/30/12 12:14	
Aniline (Phenylamine, Am	ninobenzene) <0.111	1.66	1.50	90	1.45	87	50-112	3	40	mg/kg	10/30/12 12:14	
Anthracene	< 0.0256	1.66	1.93	116	1.84	111	57-118	5	30	mg/kg	10/30/12 12:14	
Benzo(a)anthracene	< 0.0279	1.66	1.77	107	1.66	100	58-119	6	30	mg/kg	10/30/12 12:14	
Benzo(a)pyrene	< 0.0290	1.66	2.06	124	1.68	101	58-127	20	30	mg/kg	10/30/12 12:14	
Benzo(b)fluoranthene	< 0.0269	1.66	1.82	110	1.60	96	50-122	13	30	mg/kg	10/30/12 12:14	
Benzo(g,h,i)perylene	< 0.0292	1.66	1.94	117	1.62	98	57-125	18	30	mg/kg	10/30/12 12:14	
Benzo(k)fluoranthene	< 0.0388	1.66	2.04	123	1.65	99	59-126	21	30	mg/kg	10/30/12 12:14	
Benzoic Acid	< 0.0481	4.98	4.58	92	5.26	105	31-133	14	50	mg/kg	10/30/12 12:14	
Benzyl Butyl Phthalate	< 0.0258	1.66	1.82	110	1.75	105	55-129	4	30	mg/kg	10/30/12 12:14	
bis(2-chloroethoxy) me	ethane <0.0371	1.66	1.80	108	1.77	107	49-112	2	30	mg/kg	10/30/12 12:14	
bis(2-chloroethyl) ether	< 0.0356	1.66	1.50	90	1.48	89	50-108	1	30	mg/kg	10/30/12 12:14	
bis(2-chloroisopropyl)	ether <0.0333	1.66	1.52	92	1.48	89	45-111	3	30	mg/kg	10/30/12 12:14	
bis(2-ethylhexyl) phtha	late <0.0265	1.66	1.82	110	1.74	105	54-134	4	30	mg/kg	10/30/12 12:14	
Chrysene	< 0.0301	1.66	1.82	110	1.69	102	58-120	7	30	mg/kg	10/30/12 12:14	
Dibenz(a,h)Anthracene	< 0.0349	1.66	1.84	111	1.60	96	60-121	14	30	mg/kg	10/30/12 12:14	
Dibenzofuran	< 0.0327	1.66	1.70	102	1.62	98	56-110	5	30	mg/kg	10/30/12 12:14	
Diethyl Phthalate	< 0.0344	1.66	1.75	105	1.65	99	58-113	6	30	mg/kg	10/30/12 12:14	
Dimethyl Phthalate	< 0.0342	1.66	1.70	102	1.61	97	58-112	5	30	mg/kg	10/30/12 12:14	
di-n-Butyl Phthalate	< 0.0286	1.66	1.98	119	1.87	113	58-126	6	30	mg/kg	10/30/12 12:14	
di-n-Octyl Phthalate	< 0.0315	1.66	1.92	116	1.69	102	54-130	13	30	mg/kg	10/30/12 12:14	

Page 12 of 19

Southwest Research Institute, San Antonio, TX SO091904E

Analytical Method:	SVOCs by EPA 82	70C						Pr	ep Method	: SW:	3550	
Seq Number:	899835		N	Matrix:	Solid				Date Prep	: 10/3	30/2012	
MB Sample Id:	629237-1-BLK		LCS Sam	ple Id:	629237-1-	-BKS		LCSI	D Sample I	d: 6292	237-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Fluoranthene	< 0.0314	1.66	2.03	122	1.86	112	59-119	9	30	mg/kg	10/30/12 12:14	L1
Fluorene	< 0.0355	1.66	1.73	104	1.65	99	56-112	5	30	mg/kg	10/30/12 12:14	
Hexachlorobenzene	< 0.0291	1.66	1.80	108	1.71	103	58-119	5	30	mg/kg	10/30/12 12:14	
Hexachlorobutadiene	< 0.0312	1.66	1.57	95	1.56	94	55-105	1	30	mg/kg	10/30/12 12:14	
Hexachlorocyclopentad	iene <0.0146	1.66	1.17	70	1.16	70	18-119	1	30	mg/kg	10/30/12 12:14	
Hexachloroethane	< 0.0372	1.66	1.38	83	1.38	83	54-105	0	30	mg/kg	10/30/12 12:14	
Indeno(1,2,3-c,d)Pyrene	< 0.0308	1.66	1.96	118	1.61	97	59-118	20	30	mg/kg	10/30/12 12:14	
Isophorone	< 0.0297	1.66	1.79	108	1.74	105	46-116	3	30	mg/kg	10/30/12 12:14	
Naphthalene	< 0.0343	1.66	1.70	102	1.67	101	54-106	2	30	mg/kg	10/30/12 12:14	
Nitrobenzene	< 0.0290	1.66	1.67	101	1.67	101	44-118	0	30	mg/kg	10/30/12 12:14	
N-Nitrosodi-n-Propylan	nine <0.0397	1.66	1.56	94	1.51	91	50-111	3	30	mg/kg	10/30/12 12:14	
N-Nitrosodiphenylamin	e <0.0248	1.66	1.85	111	1.79	108	55-119	3	30	mg/kg	10/30/12 12:14	
Pentachlorophenol	< 0.0220	1.66	1.89	114	1.79	108	38-128	5	40	mg/kg	10/30/12 12:14	
Phenanthrene	< 0.0330	1.66	1.90	114	1.79	108	56-118	6	30	mg/kg	10/30/12 12:14	
Phenol	< 0.0357	1.66	1.52	92	1.47	89	50-114	3	40	mg/kg	10/30/12 12:14	
Pyrene	< 0.0332	1.66	1.78	107	1.72	104	56-125	3	30	mg/kg	10/30/12 12:14	
Pyridine	< 0.0425	1.66	1.36	82	1.30	78	44-102	5	40	mg/kg	10/30/12 12:14	
Surrogate	MB %Rec	MB Flag	LC %I		LCS Flag	LCSI %Re			mits	Units	Analysis Date	
2-Fluorophenol	112		8	6		85		25	-121	%	10/30/12 12:14	
Phenol-d6	121	S4	9	4		92		24	-113	%	10/30/12 12:14	
Nitrobenzene-d5	123	S4	10)5		105		23	-120	%	10/30/12 12:14	
2-Fluorobiphenyl	119	S4	10	01		97		30	-115	%	10/30/12 12:14	
2,4,6-Tribromophenol	114		10)9		106		19	-122	%	10/30/12 12:14	
Terphenyl-D14	137		10)7		105		18	-137	%	10/30/12 12:14	

Southwest Research Institute, San Antonio, TX SO091904E

 Analytical Method:
 SVOCs by EPA 8270C
 Prep Method:
 SW3550

 Seq Number:
 899835
 Matrix:
 Soil
 Date Prep:
 10/30/2012

 Parent Sample Id:
 451440-001
 MS Sample Id:
 451440-001 SD
 MSD Sample Id:
 451440-001 SD

Parent Sample Id: 451440-0	01		MS Sar	nple Id:	451440-00)1 S		MSI) Sample	e Id: 451	440-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene	< 0.0371	2.03	1.29	64	1.45	71	37-133	12	30	mg/kg	10/30/12 13:48	
1,2-Dichlorobenzene	< 0.0441	2.03	1.26	62	1.39	68	65-135	10	30	mg/kg	10/30/12 13:48	M2
1,3-Dichlorobenzene	< 0.0372	2.03	1.24	61	1.37	67	65-135	10	30	mg/kg	10/30/12 13:48	M2
1,4-Dichlorobenzene	< 0.0401	2.03	1.24	61	1.36	67	36-134	9	30	mg/kg	10/30/12 13:48	
2,4,5-Trichlorophenol	< 0.0477	2.03	1.65	81	1.71	84	65-135	4	30	mg/kg	10/30/12 13:48	
2,4,6-Trichlorophenol	< 0.0327	2.03	1.56	77	1.64	81	65-135	5	30	mg/kg	10/30/12 13:48	
2,4-Dichlorophenol	< 0.0383	2.03	1.42	70	1.55	76	65-135	9	30	mg/kg	10/30/12 13:48	
2,4-Dimethylphenol	< 0.0956	2.03	1.45	71	1.56	77	65-135	7	30	mg/kg	10/30/12 13:48	
2,4-Dinitrophenol	< 0.0842	2.03	1.52	75	1.52	75	65-135	0	40	mg/kg	10/30/12 13:48	
2,4-Dinitrotoluene	< 0.0388	2.03	1.62	80	1.69	83	40-130	4	30	mg/kg	10/30/12 13:48	
2,6-Dinitrotoluene	< 0.0389	2.03	1.53	75	1.60	79	28-89	4	30	mg/kg	10/30/12 13:48	
2-Chloronaphthalene	< 0.0322	2.03	1.47	72	1.47	72	65-135	0	30	mg/kg	10/30/12 13:48	
2-Chlorophenol	< 0.0394	2.03	1.32	65	1.41	69	25-140	7	30	mg/kg	10/30/12 13:48	
2-Methylnaphthalene	< 0.0417	2.03	1.42	70	1.55	76	25-175	9	30	mg/kg	10/30/12 13:48	
2-methylphenol	< 0.0528	2.03	1.38	68	1.49	73	65-135	8	30	mg/kg	10/30/12 13:48	
2-Nitroaniline	< 0.0358	2.03	1.72	85	1.75	86	65-135	2	40	mg/kg	10/30/12 13:48	
2-Nitrophenol	< 0.0278	2.03	1.35	67	1.49	73	65-135	10	30	mg/kg	10/30/12 13:48	
3&4-Methylphenol	< 0.0925	2.03	1.43	70	1.52	75	65-135	6	30	mg/kg	10/30/12 13:48	
3,3-Dichlorobenzidine	< 0.0557	2.03	1.67	82	1.70	84	20-140	2	40	mg/kg	10/30/12 13:48	
3-Nitroaniline	< 0.0422	2.03	1.70	84	1.70	84	65-135	0	40	mg/kg	10/30/12 13:48	
4,6-dinitro-2-methyl phenol	< 0.0331	2.03	1.64	81	1.69	83	65-135	3	40	mg/kg	10/30/12 13:48	
4-Bromophenyl-phenylether	< 0.0414	2.03	1.59	78	1.65	81	65-135	4	30	mg/kg	10/30/12 13:48	
4-chloro-3-methylphenol	< 0.0427	2.03	1.60	79	1.70	84	28-134	6	30	mg/kg	10/30/12 13:48	
4-Chloroaniline	< 0.0815	2.03	1.42	70	1.52	75	4-149	7	40	mg/kg	10/30/12 13:48	
4-Chlorophenyl-phenyl ether	< 0.0409	2.03	1.50	74	1.57	77	65-135	5	30	mg/kg	10/30/12 13:48	
4-Nitroaniline	< 0.0366	2.03	1.70	84	1.69	83	65-135	1	40	mg/kg	10/30/12 13:48	
4-Nitrophenol	< 0.0379	2.03	1.82	90	1.93	95	13-106	6	40	mg/kg	10/30/12 13:48	
Acenaphthene	< 0.0436	2.03	1.48	73	1.57	77	41-134	6	30	mg/kg	10/30/12 13:48	
Acenaphthylene	< 0.0412	2.03	1.51	74	1.61	79	65-135	6	30	mg/kg	10/30/12 13:48	
Aniline (Phenylamine, Aminobenzene)	< 0.136	2.03	1.34	66	1.47	72	2-145	9	40	mg/kg	10/30/12 13:48	
Anthracene	< 0.0313	2.03	1.73	85	1.76	87	65-135	2	30	mg/kg	10/30/12 13:48	
Benzo(a)anthracene	< 0.0342	2.03	1.73	85	1.77	87	44-126	2	30	mg/kg	10/30/12 13:48	
Benzo(a)pyrene	< 0.0355	2.03	1.76	87	1.82	90	65-135	3	30	mg/kg	10/30/12 13:48	
Benzo(b)fluoranthene	< 0.0329	2.03	1.70	84	1.79	88	65-135	5	30	mg/kg	10/30/12 13:48	
Benzo(g,h,i)perylene	< 0.0358	2.03	1.65	81	1.71	84	65-135	4	30	mg/kg	10/30/12 13:48	
Benzo(k)fluoranthene	< 0.0476	2.03	1.69	83	1.90	94	25-125	12	30	mg/kg	10/30/12 13:48	
Benzoic Acid	0.940	6.10	5.07	68	5.22	70	50-125	3	50	mg/kg	10/30/12 13:48	
Benzyl Butyl Phthalate	< 0.0316	2.03	1.80	89	1.89	93	65-135	5	30	mg/kg	10/30/12 13:48	
bis(2-chloroethoxy) methane	< 0.0454	2.03	1.42	70	1.56	77	65-135	9	30	mg/kg	10/30/12 13:48	
bis(2-chloroethyl) ether	< 0.0436	2.03	1.33	66	1.49	73	65-135	11	30	mg/kg	10/30/12 13:48	
bis(2-chloroisopropyl) ether	< 0.0407	2.03	1.35	67	1.54	76	65-135	13	30	mg/kg	10/30/12 13:48	
bis(2-ethylhexyl) phthalate	0.0336	2.03	1.82	88	1.94	94	65-135	6	30	mg/kg	10/30/12 13:48	
Chrysene	< 0.0369	2.03	1.75	86	1.80	89	65-135	3	30	mg/kg	10/30/12 13:48	
Dibenz(a,h)Anthracene	< 0.0428	2.03	1.70	84	1.75	86	65-135	3	30	mg/kg	10/30/12 13:48	
Dibenzofuran	< 0.0401	2.03	1.52	75	1.58	78	65-135	4	30	mg/kg	10/30/12 13:48	
Diethyl Phthalate	< 0.0421	2.03	1.62	80	1.70	84	37-125	5	30	mg/kg	10/30/12 13:48	
Dimethyl Phthalate	< 0.0419	2.03	1.53	75	1.61	79	65-135	5	30	mg/kg	10/30/12 13:48	
di-n-Butyl Phthalate	0.0520	2.03	1.79	86	1.85	89	65-135	3	30	mg/kg	10/30/12 13:48	
di-n-Octyl Phthalate	< 0.0386	2.03	1.83	90	1.93	95	65-135	5	30	mg/kg	10/30/12 13:48	

Page 14 of 19

TPH-DRO

Surrogate

Pentacosane

<312

MB

%Rec

1000

MB

Flag

1100

LCS

%Rec

80

110

1080

LCS

Flag

QC Summary 451437

Southwest Research Institute, San Antonio, TX SO091904E

Analytical Method: Seq Number:	SVOCs by EPA 82' 899835	70C		Matrix:	Soil			Pr	rep Method Date Prep		3550 30/2012	
	451440-001			nple Id:	451440-0	11 8		MSI			440-001 SD	
Parent Sample Id:												
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Fluoranthene	< 0.0384	2.03	1.75	86	1.75	86	65-135	0	30	mg/kg	10/30/12 13:48	
Fluorene	< 0.0434	2.03	1.54	76	1.62	80	65-135	5	30	mg/kg	10/30/12 13:48	
Hexachlorobenzene	< 0.0356	2.03	1.59	78	1.66	82	65-135	4	30	mg/kg	10/30/12 13:48	
Hexachlorobutadiene	< 0.0382	2.03	1.24	61	1.39	68	65-135	11	30	mg/kg	10/30/12 13:48	M2
Hexachlorocyclopentad	iene <0.0179	2.03	1.07	53	1.16	57	65-135	8	30	mg/kg	10/30/12 13:48	M2
Hexachloroethane	< 0.0455	2.03	1.27	63	1.42	70	65-135	11	30	mg/kg	10/30/12 13:48	M2
Indeno(1,2,3-c,d)Pyrene	< 0.0377	2.03	1.64	81	1.73	85	65-135	5	30	mg/kg	10/30/12 13:48	
Isophorone	< 0.0364	2.03	1.42	70	1.55	76	65-135	9	30	mg/kg	10/30/12 13:48	
Naphthalene	< 0.0420	2.03	1.35	67	1.48	73	65-135	9	30	mg/kg	10/30/12 13:48	
Nitrobenzene	< 0.0355	2.03	1.36	67	1.46	72	65-135	7	30	mg/kg	10/30/12 13:48	
N-Nitrosodi-n-Propylan	nine <0.0486	2.03	1.37	67	1.53	75	53-130	11	30	mg/kg	10/30/12 13:48	
N-Nitrosodiphenylamin	e <0.0304	2.03	1.65	81	1.71	84	65-135	4	30	mg/kg	10/30/12 13:48	
Pentachlorophenol	< 0.0269	2.03	1.79	88	1.84	91	14-111	3	40	mg/kg	10/30/12 13:48	
Phenanthrene	< 0.0405	2.03	1.71	84	1.73	85	65-135	1	30	mg/kg	10/30/12 13:48	
Phenol	< 0.0437	2.03	1.41	69	1.50	74	27-127	6	40	mg/kg	10/30/12 13:48	
Pyrene	< 0.0406	2.03	1.76	87	1.84	91	41-144	4	30	mg/kg	10/30/12 13:48	
Pyridine	< 0.0520	2.03	1.17	58	1.31	65	39-98	11	40	mg/kg	10/30/12 13:48	
Surrogate				AS Rec	MS Flag	MSE %Re			mits	Units	Analysis Date	
2-Fluorophenol				54		68		25	-121	%	10/30/12 13:48	
Phenol-d6				70		75		24	-113	%	10/30/12 13:48	
Nitrobenzene-d5				59		75		23	-120	%	10/30/12 13:48	
2-Fluorobiphenyl			,	71		75		30	-115	%	10/30/12 13:48	
2,4,6-Tribromophenol				87		86		19	-122	%	10/30/12 13:48	
Terphenyl-D14				87		89		18	-137	%	10/30/12 13:48	
Analytical Method:	TPH DRO by SW8	46 901 5						De	on Mathad	. cw	3550	
Seq Number:	899987	40-0013		Matrix:	Solid			PI	rep Method Date Prep		31/2012	
MB Sample Id:	629323-1-BLK		LCS Sar			-BKS		LCSI			323-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag

Page 15 of 19 Final 1.000

108 70-130

%Rec 79

LCSD LCSD

35

Limits

40-130

mg/kg

Units

11/01/12 12:45

Analysis Date

11/01/12 12:45

Southwest Research Institute, San Antonio, TX SO091904E

 Analytical Method:
 VOAs by SW-846 8260
 Prep Method:
 SW 5030B

 Seq Number:
 89983
 Matrix:
 Solid
 Date Prep:
 10/31/2012

 MB Sample Id:
 629372-1-BLK
 LCS Sample Id:
 629372-1-BKS
 LCSD Sample Id:
 629372-1-BSD

MB Sample Id:	629372-	1-BLK		LCS Sar	nple Id:	629372-1	-BKS		LCSI) Sample	e Id: 629	372-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroetha	ane	< 0.000148	0.0500	0.0547	109	0.0515	103	81-127	6	25	mg/kg	10/31/12 09:47	
1,1,1-Trichloroethane		< 0.000602	0.0500	0.0561	112	0.0468	94	71-124	18	25	mg/kg	10/31/12 09:47	
1,1,2,2-Tetrachloroetha	ane	< 0.000194	0.0500	0.0565	113	0.0521	104	75-133	8	25	mg/kg	10/31/12 09:47	
1,1,2-Trichloroethane		< 0.000225	0.0500	0.0539	108	0.0523	105	75-131	3	25	mg/kg	10/31/12 09:47	
1,1-Dichloroethane		< 0.000125	0.0500	0.0584	117	0.0500	100	73-124	15	25	mg/kg	10/31/12 09:47	
1,1-Dichloroethene		< 0.000192	0.0500	0.0568	114	0.0449	90	68-119	23	25	mg/kg	10/31/12 09:47	
1,1-Dichloropropene		< 0.000198	0.0500	0.0541	108	0.0475	95	72-118	13	25	mg/kg	10/31/12 09:47	
1,2,3-Trichlorobenzene	e	< 0.000106	0.0500	0.0561	112	0.0531	106	75-131	5	25	mg/kg	10/31/12 09:47	
1,2,3-Trichloropropane	9	< 0.000359	0.0500	0.0531	106	0.0522	104	75-131	2	25	mg/kg	10/31/12 09:47	
1,2,4-Trichlorobenzene	Э	< 0.000191	0.0500	0.0565	113	0.0517	103	79-128	9	25	mg/kg	10/31/12 09:47	
1,2,4-Trimethylbenzen	e	< 0.000103	0.0500	0.0565	113	0.0529	106	60-159	7	25	mg/kg	10/31/12 09:47	
1,2-Dibromo-3-Chloro	propane	< 0.00107	0.0500	0.0548	110	0.0483	97	58-133	13	25	mg/kg	10/31/12 09:47	
1,2-Dibromoethane		< 0.000193	0.0500	0.0556	111	0.0538	108	80-127	3	25	mg/kg	10/31/12 09:47	
1,2-Dichlorobenzene		< 0.000129	0.0500	0.0541	108	0.0517	103	84-121	5	25	mg/kg	10/31/12 09:47	
1,2-Dichloroethane		< 0.000177	0.0500	0.0525	105	0.0485	97	70-123	8	25	mg/kg	10/31/12 09:47	
1,2-Dichloropropane		< 0.000162	0.0500	0.0527	105	0.0500	100	75-122	5	25	mg/kg	10/31/12 09:47	
1,3,5-Trimethylbenzen	e	< 0.000166	0.0500	0.0576	115	0.0535	107	61-160	7	25	mg/kg	10/31/12 09:47	
1,3-Dichlorobenzene		< 0.000159	0.0500	0.0551	110	0.0523	105	84-124	5	25	mg/kg	10/31/12 09:47	
1,3-Dichloropropane		< 0.000227	0.0500	0.0560	112	0.0532	106	82-131	5	25	mg/kg	10/31/12 09:47	
1,4-Dichlorobenzene		< 0.0000970	0.0500	0.0515	103	0.0486	97	82-120	6	25	mg/kg	10/31/12 09:47	
2,2-Dichloropropane		< 0.000127	0.0500	0.0601	120	0.0505	101	67-137	17	25	mg/kg	10/31/12 09:47	
2-Butanone		< 0.00173	0.600	0.567	95	0.528	88	46-137	7	25	mg/kg	10/31/12 09:47	
2-Chlorotoluene		< 0.000217	0.0500	0.0572	114	0.0525	105	83-129	9	25	mg/kg	10/31/12 09:47	
2-Hexanone		< 0.00112	0.600	0.562	94	0.566	94	52-137	1	25	mg/kg	10/31/12 09:47	
4-Chlorotoluene		< 0.000118	0.0500	0.0541	108	0.0501	100	83-125	8	25	mg/kg	10/31/12 09:47	
Acetone		0.00521	0.600	0.567	95	0.521	87	33-148	8	25	mg/kg	10/31/12 09:47	
Benzene		< 0.000300	0.0500	0.0553	111	0.0498	100	71-119	10	25	mg/kg	10/31/12 09:47	
Bromobenzene		< 0.000198	0.0500	0.0552	110	0.0517	103	84-123	7	25	mg/kg	10/31/12 09:47	
Bromochloromethane		< 0.000215	0.0500	0.0543	109	0.0475	95	71-120	13	25	mg/kg	10/31/12 09:47	
Bromodichloromethane	e	< 0.000186	0.0500	0.0550	110	0.0510	102	78-126	8	25	mg/kg	10/31/12 09:47	
Bromoform		< 0.000393	0.0500	0.0546	109	0.0512	102	63-136	6	25	mg/kg	10/31/12 09:47	
Bromomethane		< 0.000274	0.0500	0.0438	88	0.0414	83	57-118	6	25	mg/kg	10/31/12 09:47	
Carbon Disulfide		< 0.0000880	0.550	0.617	112	0.500	91	55-136	21	25	mg/kg	10/31/12 09:47	
Carbon Tetrachloride		< 0.000132	0.0500	0.0533	107	0.0453	91	63-135	16	25	mg/kg	10/31/12 09:47	
Chlorobenzene		< 0.000104	0.0500	0.0541	108	0.0498	100	83-121	8	25	mg/kg	10/31/12 09:47	
Chloroethane		< 0.000254	0.0500	0.0426	85	0.0389	78	57-122	9	25	mg/kg	10/31/12 09:47	
Chloroform		< 0.000139	0.0500	0.0553	111	0.0478	96	74-118	15	25	mg/kg	10/31/12 09:47	
Chloromethane		< 0.000322	0.0500	0.0435	87	0.0394	79	58-110	10	25	mg/kg	10/31/12 09:47	
cis-1,2-Dichloroethene		< 0.000165	0.0500	0.0603	121	0.0525	105	72-131	14	25	mg/kg	10/31/12 09:47	
cis-1,3-Dichloropropen		< 0.000128	0.0500	0.0571	114	0.0535	107	74-135	7	25	mg/kg	10/31/12 09:47	
Dibromochloromethan		< 0.000422	0.0500	0.0545	109	0.0522	104	77-130	4	25	mg/kg	10/31/12 09:47	
Dibromomethane		< 0.000260	0.0500	0.0525	105	0.0493	99	73-126	6	25	mg/kg	10/31/12 09:47	
Dichlorodifluorometha	me	< 0.000484	0.0500	0.0473	95	0.0415	83	54-122	13	25	mg/kg	10/31/12 09:47	
Ethylbenzene		< 0.000104	0.0500	0.0552	110	0.0509	102	80-123	8	25	mg/kg	10/31/12 09:47	
Hexachlorobutadiene		< 0.000346	0.0500	0.0572	114	0.0513	103	77-130	11	25	mg/kg	10/31/12 09:47	
Iodomethane (Methyl I	lodide)	< 0.000200	0.0500	0.0543	109	0.0467	93	63-116	15	25	mg/kg	10/31/12 09:47	
isopropylbenzene)	< 0.000112	0.0500	0.0543	108	0.0488	98	55-155	10	25	mg/kg	10/31/12 09:47	
m,p-Xylenes		< 0.000112	0.100	0.113	113	0.104	104	78-127	8	25	mg/kg	10/31/12 09:47	
Methylene Chloride		0.000650	0.0500	0.0507	101	0.0437		57-134	15	25	mg/kg	10/31/12 09:47	
zarytono emorido		0.000000	0.0500	0.0507	101	0.0437	37	J 1-134	15	20	mg kg		

Page 16 of 19 Final 1.000

Southwest Research Institute, San Antonio, TX SO091904E

Analytical Method:		SW-846 8	260						Pı	ep Metho		5030B	
Seq Number:	899983				Matrix:	Solid				Date Pre		1/2012	
MB Sample Id:	629372-1	-BLK		LCS San	iple Id:	629372-1	-BKS		LCS	O Sample	Id: 6293	372-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE		< 0.000142	0.100	0.113	113	0.102	102	64-148	10	25	mg/kg	10/31/12 09:47	
Naphthalene		< 0.000148	0.0500	0.0529	106	0.0498	100	53-162	6	25	mg/kg	10/31/12 09:47	
n-Butylbenzene		< 0.0000990	0.0500	0.0557	111	0.0500	100	82-127	11	25	mg/kg	10/31/12 09:47	
n-Propylbenzene		< 0.000137	0.0500	0.0586	117	0.0533	107	84-131	9	25	mg/kg	10/31/12 09:47	
o-Xylene		< 0.000149	0.0500	0.0570	114	0.0524	105	79-125	8	25	mg/kg	10/31/12 09:47	
p-Cymene (p-Isopropylt	oluene)	<0.0000800	0.0500	0.0582	116	0.0527	105	84-130	10	25	mg/kg	10/31/12 09:47	
Sec-Butylbenzene		< 0.000121	0.0500	0.0577	115	0.0522	104	84-131	10	25	mg/kg	10/31/12 09:47	
Styrene		< 0.000158	0.0500	0.0572	114	0.0530	106	80-126	8	25	mg/kg	10/31/12 09:47	
tert-Butylbenzene		< 0.0000900	0.0500	0.0582	116	0.0521	104	83-132	11	25	mg/kg	10/31/12 09:47	
Tetrachloroethylene		< 0.000173	0.0500	0.0593	119	0.0525	105	79-124	12	25	mg/kg	10/31/12 09:47	
Toluene		< 0.000117	0.0500	0.0544	109	0.0491	98	74-122	10	25	mg/kg	10/31/12 09:47	
trans-1,2-dichloroethene	:	< 0.000123	0.0500	0.0572	114	0.0482	96	63-110	17	25	mg/kg	10/31/12 09:47	L1
trans-1,3-dichloroproper	ne	< 0.000361	0.0500	0.0513	103	0.0485	97	73-125	6	25	mg/kg	10/31/12 09:47	
Trichloroethene		< 0.000147	0.0500	0.0526	105	0.0475	95	78-119	10	25	mg/kg	10/31/12 09:47	
Trichlorofluoromethane		< 0.000186	0.0500	0.0571	114	0.0496	99	71-148	14	25	mg/kg	10/31/12 09:47	
Vinyl Acetate		< 0.000213	0.500	0.570	114	0.505	101	40-154	12	25	mg/kg	10/31/12 09:47	
Vinyl Chloride		< 0.000193	0.0500	0.0445	89	0.0397	79	60-123	11	25	mg/kg	10/31/12 09:47	
Surrogate		MB %Rec	MB Flag			LCS Flag	LCSI %Re			mits	Units	Analysis Date	
Dibromofluoromethane		100		10	01		96		53	-142	%	10/31/12 09:47	
1,2-Dichloroethane-D4		105		10	05		99		56	-150	%	10/31/12 09:47	
Toluene-D8		100		10	01		102		70	-130	%	10/31/12 09:47	
4-Bromofluorobenzene		100		9	8		97		68	-152	%	10/31/12 09:47	

Southwest Research Institute, San Antonio, TX SO091904E

 Analytical Method:
 VOAs by SW-846 8260
 Prep Method:
 SW 5030B

 Seq Number:
 899983
 Matrix:
 Oil
 Date Prep:
 10/31/2012

 Parent Sample Id:
 451386-002
 MS Sample Id:
 451386-002 SD
 MSD Sample Id:
 451386-002 SD

Parent Sample Id: 4513	86-002		MS Sar	nple Id:	451386-0	02 S		MSI	D Sample	e Id: 451	386-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.0148	4.99	5.00	100	4.73	95	72-125	6	25	mg/kg	10/31/12 17:24	
1,1,1-Trichloroethane	< 0.0601	4.99	5.04	101	4.55	91	75-125	10	25	mg/kg	10/31/12 17:24	
1,1,2,2-Tetrachloroethane	< 0.0194	4.99	6.01	120	5.30	106	74-125	13	25	mg/kg	10/31/12 17:24	
1,1,2-Trichloroethane	< 0.0225	4.99	8.59	172	7.83	157	75-127	9	25	mg/kg	10/31/12 17:24	M1
1,1-Dichloroethane	< 0.0125	4.99	5.52	111	4.91	98	72-125	12	25	mg/kg	10/31/12 17:24	
1,1-Dichloroethene	< 0.0192	4.99	5.23	105	4.67	94	59-172	11	25	mg/kg	10/31/12 17:24	
1,1-Dichloropropene	< 0.0198	4.99	5.11	102	4.57	92	75-125	11	25	mg/kg	10/31/12 17:24	
1,2,3-Trichlorobenzene	< 0.0106	4.99	4.50	90	4.40	88	75-137	2	25	mg/kg	10/31/12 17:24	
1,2,3-Trichloropropane	< 0.0358	4.99	5.50	110	5.04	101	75-125	9	25	mg/kg	10/31/12 17:24	
1,2,4-Trichlorobenzene	< 0.0191	4.99	4.55	91	4.34	87	75-135	5	25	mg/kg	10/31/12 17:24	
1,2,4-Trimethylbenzene	9.35	4.99	14.5	103	14.2	97	75-125	2	25	mg/kg	10/31/12 17:24	
1,2-Dibromo-3-Chloropropane	< 0.106	4.99	6.14	123	5.92	119	59-125	4	25	mg/kg	10/31/12 17:24	
1,2-Dibromoethane	< 0.0193	4.99	5.44	109	5.12	103	73-125	6	25	mg/kg	10/31/12 17:24	
1,2-Dichlorobenzene	< 0.0129	4.99	5.18	104	4.88	98	75-125	6	25	mg/kg	10/31/12 17:24	
1,2-Dichloroethane	< 0.0177	4.99	5.05	101	4.38	88	68-127	14	25	mg/kg	10/31/12 17:24	
1,2-Dichloropropane	< 0.0162	4.99	5.24	105	4.66	93	74-125	12	25	mg/kg	10/31/12 17:24	
1,3,5-Trimethylbenzene	2.49	4.99	7.98	110	7.52	101	70-130	6	25	mg/kg	10/31/12 17:24	
1,3-Dichlorobenzene	< 0.0159	4.99	5.30	106	4.95	99	75-125	7	25	mg/kg	10/31/12 17:24	
1,3-Dichloropropane	< 0.0227	4.99	5.54	111	5.02	101	75-125	10	25	mg/kg	10/31/12 17:24	
1,4-Dichlorobenzene	< 0.00968	4.99	4.96	99	4.69	94	75-125	6	25	mg/kg	10/31/12 17:24	
2,2-Dichloropropane	< 0.0127	4.99	5.04	101	4.65	93	75-125	8	25	mg/kg	10/31/12 17:24	
2-Butanone	2.17	59.9	62.0	100	51.9	83	75-125	18	25	mg/kg	10/31/12 17:24	
2-Chlorotoluene	< 0.0217	4.99	5.76	115	5.39	108	73-125	7	25	mg/kg	10/31/12 17:24	
2-Hexanone	< 0.112	59.9	54.0	90	50.1	84	75-125	7	25	mg/kg	10/31/12 17:24	
4-Chlorotoluene	< 0.0118	4.99	5.47	110	5.21	104	74-125	5	25	mg/kg	10/31/12 17:24	
Acetone	1.05	59.9	58.9	97	47.1	77	50-150	22	25	mg/kg	10/31/12 17:24	
Benzene	0.166	4.99	5.42	105	4.89	95	66-142	10	25	mg/kg	10/31/12 17:24	
Bromobenzene	< 0.0198	4.99	5.58	112	5.21	104	75-125	7	25	mg/kg	10/31/12 17:24	
Bromochloromethane	< 0.0215	4.99	5.25	105	4.68	94	60-140	11	25	mg/kg	10/31/12 17:24	
Bromodichloromethane	< 0.0186	4.99	5.13	103	4.55	91	75-125	12	25	mg/kg	10/31/12 17:24	
Bromoform	< 0.0392	4.99	4.81	96	4.47	90	75-125	7	25	mg/kg	10/31/12 17:24	
Bromomethane	< 0.0273	4.99	1.42	28	1.40	28	60-140	1	25	mg/kg	10/31/12 17:24	M2
Carbon Disulfide	< 0.00878	54.9	56.4	103	50.3	92	60-140	11	25	mg/kg	10/31/12 17:24	
Carbon Tetrachloride	< 0.0132	4.99	4.50	90	4.13	83	62-125	9	25	mg/kg	10/31/12 17:24	
Chlorobenzene	< 0.0104	4.99	5.27	106	4.97	100	60-133	6	25	mg/kg	10/31/12 17:24	
Chloroethane	< 0.0253	4.99	3.70	74	3.38	68	60-140	9	25	mg/kg	10/31/12 17:24	
Chloroform	< 0.0139	4.99	5.19	104	4.52	91	74-125	14	25	mg/kg	10/31/12 17:24	
Chloromethane	< 0.0321	4.99	4.92	99	4.36	87	60-140	12	25	mg/kg	10/31/12 17:24	
cis-1,2-Dichloroethene	< 0.0165	4.99	5.86	117	5.20	104	75-125	12	25	mg/kg	10/31/12 17:24	
cis-1,3-Dichloropropene	< 0.0128	4.99	5.46	109	4.87	98	74-125	11	25	mg/kg	10/31/12 17:24	
Dibromochloromethane	< 0.0421	4.99	5.16	103	4.69	94	73-125	10	25	mg/kg	10/31/12 17:24	
Dibromomethane	< 0.0259	4.99	5.21	104	4.51	90	69-127	14	25	mg/kg	10/31/12 17:24	
Dichlorodifluoromethane	< 0.0483	4.99	5.38	108	4.55	91	65-135	17	25	mg/kg	10/31/12 17:24	
Ethylbenzene	2.65	4.99	7.85	104	7.55	98	75-125	4	25	mg/kg	10/31/12 17:24	
Hexachlorobutadiene	< 0.0345	4.99	2.77	56	2.60	52	75-125	6	25	mg/kg	10/31/12 17:24	M2
Iodomethane (Methyl Iodide)	< 0.0200	4.99	5.33	107	4.72	95	75-125	12	25	mg/kg	10/31/12 17:24	
isopropylbenzene	0.631	4.99	5.94	106	5.64	100	75-125	5	25	mg/kg	10/31/12 17:24	
m,p-Xylenes	8.28	9.98	18.7	104	18.1	98	75-125	3	25	mg/kg	10/31/12 17:24	
Methylene Chloride	0.0529	4.99	4.85	96	4.28	85	75-125	12	25	mg/kg	10/31/12 17:24	
	0.0327	7.22	4.05	20	7.20	05	. 5-125	12	20	mg ng		

Page 18 of 19

Southwest Research Institute, San Antonio, TX SO091904E

Assolution I Model at MOA	L. CW 04/ 02/	0						D	3.6.4		5020D	
Analytical Method: VOAs Seg Number: 89998	•	U	,	Matrix:	Oil			PT	ep Method		5030B 1/2012	
1			-			20.0		MOT	Date Prep			
Parent Sample Id: 45138	6-002		MS San	ipie ia:	451386-00)2 S		MSI	Sample	.a: 451.	386-002 SD	
Parameter	Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD	Units	Analysis	Flag
x un univers	Result A	mount	Result	%Rec	Result	%Rec			Limit		Date	
MTBE	< 0.0142	9.98	11.2	112	9.85	99	60-140	13	25	mg/kg	10/31/12 17:24	
Naphthalene	1.85	4.99	7.08	105	6.84	100	70-130	3	25	mg/kg	10/31/12 17:24	
n-Butylbenzene	2.44	4.99	6.90	89	6.72	86	75-125	3	25	mg/kg	10/31/12 17:24	
n-Propylbenzene	2.54	4.99	8.29	115	7.78	105	75-125	6	25	mg/kg	10/31/12 17:24	
o-Xylene	4.16	4.99	9.34	104	9.17	100	75-125	2	25	mg/kg	10/31/12 17:24	
p-Cymene (p-Isopropyltoluene)	0.594	4.99	5.66	102	5.43	97	75-125	4	25	mg/kg	10/31/12 17:24	
Sec-Butylbenzene	0.849	4.99	6.07	105	5.72	98	75-125	6	25	mg/kg	10/31/12 17:24	
Styrene	< 0.0158	4.99	5.66	113	5.36	107	75-125	5	25	mg/kg	10/31/12 17:24	
tert-Butylbenzene	< 0.00898	4.99	5.50	110	5.20	104	75-125	6	25	mg/kg	10/31/12 17:24	
Tetrachloroethylene	4.50	4.99	9.98	110	9.57	102	71-125	4	25	mg/kg	10/31/12 17:24	
Toluene	5.21	4.99	10.4	104	9.69	90	59-139	7	25	mg/kg	10/31/12 17:24	
trans-1,2-dichloroethene	< 0.0123	4.99	5.45	109	4.82	97	75-125	12	25	mg/kg	10/31/12 17:24	
trans-1,3-dichloropropene	< 0.0360	4.99	4.65	93	4.32	87	66-125	7	25	mg/kg	10/31/12 17:24	
Trichloroethene	< 0.0147	4.99	5.10	102	4.65	93	62-137	9	25	mg/kg	10/31/12 17:24	
Trichlorofluoromethane	< 0.0186	4.99	6.06	121	5.38	108	67-125	12	25	mg/kg	10/31/12 17:24	
Vinyl Acetate	< 0.0213	49.9	43.9	88	35.7	72	60-140	21	25	mg/kg	10/31/12 17:24	
Vinyl Chloride	< 0.0193	4.99	5.03	101	4.55	91	60-140	10	25	mg/kg	10/31/12 17:24	
Surrogate				IS Rec	MS Flag	MSD %Re			mits	Units	Analysis Date	
Dibromofluoromethane			c	9		96	-	53	-142	%	10/31/12 17:24	
1,2-Dichloroethane-D4				9		97			-142	%	10/31/12 17:24	
Toluene-D8				03		101			-130	%	10/31/12 17:24	
4-Bromofluorobenzene				05		101			-150 -152	%	10/31/12 17:24	
4-Diomonuologizene			11	05		104		08	132	70	10/31/12 17.24	

Page 19 of 19

Appendix BM EPA Testing Report: CL13-4826

Analytical Report 457983

for Southwest Research Institute

Project Manager: Scott Hutzler

Jet Fuel

CL12-4367

28-FEB-13

Collected By: Client

4143 Greenbriar Dr., Stafford, TX 77477

Xenco-Houston (EPA Lab code: TX00122):
Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002)
Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054)
New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610)
Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Lakeland: Florida (E84098)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Page 1 of 20

28-FEB-13

Project Manager: Scott Hutzler Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228

Reference: XENCO Report No(s): 457983

Jet Fuel Project Address:

Scott Hutzler:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 457983. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 457983 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Skip Harden

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 20

CASE NARRATIVE

Client Name: Southwest Research Institute Project Name: Jet Fuel

Project ID: CL12-4367 Report Date: 28-FEB-13 Work Order Number(s): 457983 Date Received: 02/20/2013

Sample receipt non conformances and comments:
None

Sample receipt non conformances and comments per sample:
None

Flagging Criteria

Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 3.0 9/20/2007. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- D1 Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- M1 Matrix spike recovery was high; the associated blank spike recovery was acceptable.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- M3 The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to spike level. The associated blank spike recovery was acceptable.
- S8 The analysis of the sample required a dilution such that the surrogate recovery calculation does not provide any useful information. The associated blank spike recovery was acceptable.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Sample Cross Reference 457983

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id	Matrix	Date Collected Sample Dept	h Lab Sample Id
CL13-4826	W	02-19-13 00:00	457983-001
CL13-4826	S	02-19-13 00:00	457983-001

Page 5 of 20

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-4826 Matrix: Product Date Received: 02.20.13 12.00

Lab Sample Id: **457983-001** Date Collected: 02.19.13 00.00

Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3550

Tech: COR % Moisture:

Analyst: WEW Date Prep: 02.21.13 10.03 Basis: Wet Weight

Seq Number: 907636 SUB: TX104704215

1,2,4-princhlorobenzene 120-82-1 -500 500 mg/kg 02.26 13 1,14 D1 100 1,2-Dichlorobenzene 541-73-1 -500 500 mg/kg 02.26 13 1,14 D1 100 100 1,4-Dichlorobenzene 541-73-1 -500 500 mg/kg 02.26 13 1,14 D1 100 100 1,4-Dichlorobenzene 106-46-7 -500 500 mg/kg 02.26 13 1,14 D1 100 100 1,4-Dichlorobenzene 106-46-7 -500 500 mg/kg 02.26 13 1,14 D1 100 100 2,4-G-Trichlorophenol 88-06-2 -500 500 mg/kg 02.26 13 1,14 D1 100 100 2,4-Dichlorophenol 106-67-9 -500 500 mg/kg 02.26 13 1,14 D1 100 100 2,4-Dimitrophenol 105-67-9 -500 500 mg/kg 02.26 13 1,14 D1 100 100 2,4-Dimitrophenol 121-14-2 -500 500 mg/kg 02.26 13 1,14 D1 100 100 1,00	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,3-Dichlorobenzene	1,2,4-Trichlorobenzene	120-82-1	< 500	500	mg/kg	02.26.13 15.14	D1	100
1,4-Dichlorobenzene 106-46-7 < < 2,4,5-Trichlorophenol 95-95-4 < < 2,4,6-Trichlorophenol 88-06-2 < < 2,4-6-Trichlorophenol 120-83-2 < < 2,4-6-Trichlorophenol 120-83-2 < < 2,4-Dimitrophenol 105-67-9 < 2,4-Dimitrophenol 15-28-5 < < 2,4-Dimitrophenol 15-28-5 < < 2,4-Dimitrophenol 120-83-2 < < 2,4-Dimitrophenol 120-83-2 < < 2,4-Dimitrophenol 15-28-5 < < 2,4-Dimitrophenol 121-14-2 < < < 2,4-Dimitrophenol < 2,4-Dimitrophenol 2,4-Dimitrophenol 2,5-Dimitrophenol 2,5-Dimitrophenol 2,5-Ta 3,5-Ta <br< td=""><td>1,2-Dichlorobenzene</td><td>95-50-1</td><td>< 500</td><td>500</td><td>mg/kg</td><td>02.26.13 15.14</td><td>D1</td><td>100</td></br<>	1,2-Dichlorobenzene	95-50-1	< 500	500	mg/kg	02.26.13 15.14	D1	100
2.4,5-Trichlorophenol 95-95-4 <500 500 mg/kg 02.26,13 15.14 D1 100 2.4,6-Trichlorophenol 188-06-2 <500 500 mg/kg 02.26,13 15.14 D1 100 2.4-Dichlorophenol 105-67-9 <500 500 mg/kg 02.26,13 15.14 D1 100 2.4-Dimitrophenol 51-28-5 <1000 1000 mg/kg 02.26,13 15.14 D1 100 2.4-Dimitrobluene 121-14-2 <500 500 mg/kg 02.26,13 15.14 D1 100 2.4-Dimitrobluene 606-20-2 <500 500 mg/kg 02.26,13 15.14 D1 100 2-Chlorophenol <95-57-8 <500 500 mg/kg 02.26,13 15.14 D1 100 2-Methylaphthalene <91-57-6 <551 500 mg/kg 02.26,13 15.14 D1 100 2-methylphenol <95-48-7 <500 500 mg/kg 02.26,13 15.14 D1 100 2-mitrophenol <88-75-5	1,3-Dichlorobenzene	541-73-1	< 500	500	mg/kg	02.26.13 15.14	D1	100
2.4,6-Trichlorophenol 88-06-2 <500 500 mg/kg 02.26,13 15,14 D1 100 2.4-Dinichlorophenol 120-83-2 <500	1,4-Dichlorobenzene	106-46-7	< 500	500	mg/kg	02.26.13 15.14	D1	100
2,4-Dichlorophenol 120-83-2 <500 500 mg/kg 02.26.13 15.14 DI 100 2,4-Dimitrophenol 105-67-9 <500	2,4,5-Trichlorophenol	95-95-4	< 500	500	mg/kg	02.26.13 15.14	D1	100
2.4-Dimethylphenol 105-67-9 <500 500 mg/kg 02.26.13 15.14 DI 100 2,4-Dimitrophenol 51-28-5 <1000	2,4,6-Trichlorophenol	88-06-2	< 500	500	mg/kg	02.26.13 15.14	D1	100
2.4-Dinitrophenol 51-28-5 <1000 1000 mg/kg 02.26.13 15.14 DI 100 2.4-Dinitrofoluene 121-14-2 <500	2,4-Dichlorophenol	120-83-2	< 500	500	mg/kg	02.26.13 15.14	D1	100
2.4-Dinitrotoluene 121-14-2 <500 500 mg/kg 02.26.13 15.14 D1 100 2,6-Dinitrotoluene 606-20-2 <500	2,4-Dimethylphenol	105-67-9	< 500	500	mg/kg	02.26.13 15.14	D1	100
2,6-Dinitrotoluene 606-20-2 <500 500 mg/kg 0.2.6.13 15.14 DI 100 2-Chloropaphthalene 91-58-7 <500	2,4-Dinitrophenol	51-28-5	<1000	1000	mg/kg	02.26.13 15.14	D1	100
2-Chloropaphthalene	2,4-Dinitrotoluene	121-14-2	< 500	500	mg/kg	02.26.13 15.14	D1	100
2-Chlorophenol 95-57-8 \$00 \$	2,6-Dinitrotoluene	606-20-2	< 500	500	mg/kg	02.26.13 15.14	D1	100
2-Methylnaphthalene	2-Chloronaphthalene	91-58-7	< 500	500	mg/kg	02.26.13 15.14	D1	100
2-methylphenol 95-48-7 \$500 \$500 mg/kg 02.26.13 15.14 D1 100	2-Chlorophenol	95-57-8	< 500	500	mg/kg	02.26.13 15.14	D1	100
2-Nitroaniline 88-74-4 < 1000 1000 mg/kg 02.26.13 15.14 D1 100 2-Nitrophenol 88-75-5 < 500	2-Methylnaphthalene	91-57-6	551	500	mg/kg	02.26.13 15.14	D2	100
2-Nitrophenol 88-75-5 <500 500 mg/kg 0.2.61.3 15.14 D1 100 3&4-Methylphenol 15831-10-4 <500 500 mg/kg 0.2.61.3 15.14 D1 100 3,3-Dichlorobenzidine 91-94-1 <1000 1000 mg/kg 0.2.61.3 15.14 D1 100 3-Nitroaniline 99-90-2 <1000 1000 mg/kg 0.2.61.3 15.14 D1 100 3-Nitroaniline 99-90-2 <1000 1000 mg/kg 0.2.61.3 15.14 D1 100 3-Nitroaniline 534-52-1 <1000 1000 mg/kg 0.2.61.3 15.14 D1 100 3-Nitroaniline 534-52-1 <1000 1000 mg/kg 0.2.61.3 15.14 D1 100 3-Nitroaniline 59-50-7 <500 500 mg/kg 0.2.61.3 15.14 D1 100 3-Nitroaniline 39-50-7 <500 500 mg/kg 0.2.61.3 15.14 D1 300 3-Nitroaniline 306-47-8 <1000 3000 mg/kg 0.2.61.3 15.14 D1 300 3-Nitroaniline 300-47-8 <1000 3000 mg/kg 0.2.61.3 15.14 D1 300 3-Nitroaniline 300-47-8 <1000 3000 mg/kg 0.2.61.3 15.14 D1 300 3-Nitroaniline 300-47-8 3000 3000 mg/kg 0.2.61.3 15.14 D1 300 3-Nitroaniline 300-47-8 3000 3000 mg/kg 0.2.61.3 15.14 D1 300 3-Nitroaniline 300-47-8 3000 3000 mg/kg 0.2.61.3 15.14 D1 300 3000	2-methylphenol	95-48-7	< 500	500	mg/kg	02.26.13 15.14	D1	100
3&4-Methylphenol 15831-10-4 <500 500 mg/kg 02.26.13 15.14 D1 100 3,3-Dichlorobenzidine 91-94-1 <1000	2-Nitroaniline	88-74-4	<1000	1000	mg/kg	02.26.13 15.14	D1	100
3,3-Dichlorobenzidine 91-94-1 <1000 1000 mg/kg 02.26.13 15.14 D1 100 1000 mg/kg 02.26.13 15.14 D1 100 4,6-dinitro-2-methyl phenol 534-52-1 <1000 1000 mg/kg 02.26.13 15.14 D1 100 4-Bromophenyl-phenylether 101-55-3 <500 500 mg/kg 02.26.13 15.14 D1 100 4-Chloro-3-methylphenol 59-50-7 <500 500 mg/kg 02.26.13 15.14 D1 100 4-Chloro-3-methylphenol 106-47-8 <1000 1000 mg/kg 02.26.13 15.14 D1 100 4-Chloro-3-methylphenylether 7005-72-3 <500 500 mg/kg 02.26.13 15.14 D1 100 4-Chlorophenyl-phenylether 7005-72-3 <500 500 mg/kg 02.26.13 15.14 D1 100 4-Nitrophenyl-phenylether 7005-72-3 <500 500 mg/kg 02.26.13 15.14 D1 100 4-Nitrophenol 100-01-6 <1000 1000 mg/kg 02.26.13 15.14 D1 100 4-Nitrophenol 100-02-7 <1000 1000 mg/kg 02.26.13 15.14 D1 100 4-Nitrophenol 208-96-8 <500 500 mg/kg 02.26.13 15.14 D1 100 4-Nitrophenol 62-53-3 <1000 1000 mg/kg 02.26.13 15.14 D1 100 4-Nitrophenol 62-53-3 <1000 1000 mg/kg 02.26.13 15.14 D1 100 4-Nitrophenol 62-53-3 <1000 1000 mg/kg 02.26.13 15.14 D1 100 4-Nitrophenol 62-53-3 <1000 1000 mg/kg 02.26.13 15.14 D1 100 4-Nitrophenol 62-53-3 <1000 1000 mg/kg 02.26.13 15.14 D1 100 4-Nitrophenol 62-53-3 <1000 500 mg/kg 02.26.13 15.14 D1 100 4-Nitrophenol 62-53-3 <1000 500 mg/kg 02.26.13 15.14 D1 100 6-100 6-1000 6-	2-Nitrophenol	88-75-5	< 500	500	mg/kg	02.26.13 15.14	D1	100
3-Nitroaniline 99-09-2 <1000 1000 mg/kg 02.26.13 15.14 D1 100 1000 1000 mg/kg 02.26.13 15.14 D1 100 1000 1000 mg/kg 02.26.13 15.14 D1 100 1000 1000 1000 mg/kg 02.26.13 15.14 D1 100 1000 1000 1000 mg/kg 02.26.13 15.14 D1 100 1000 1000 1000 mg/kg 02.26.13 15.14 D1 1000 1000 1000 1000 mg/kg 02.26.13 15.14 D1 10000 10000 1000 100	3&4-Methylphenol	15831-10-4	< 500	500	mg/kg	02.26.13 15.14	D1	100
A,6-dinitro-2-methyl phenol 534-52-1 <1000 1000 mg/kg 02.26.13 15.14 D1 100	3,3-Dichlorobenzidine	91-94-1	<1000	1000	mg/kg	02.26.13 15.14	D1	100
4-Bromophenyl-phenylether 101-55-3 <500 500 mg/kg 02.26.13 15.14 D1 100 4-chloro-3-methylphenol 59-50-7 <500	3-Nitroaniline	99-09-2	<1000	1000	mg/kg	02.26.13 15.14	D1	100
4-chloro-3-methylphenol 59-50-7 <500 500 mg/kg 02.26.13 15.14 D1 100 4-Chloroaniline 106-47-8 <1000	4,6-dinitro-2-methyl phenol	534-52-1	<1000	1000	mg/kg	02.26.13 15.14	D1	100
4-Chloroaniline 106-47-8 <1000 1000 mg/kg 02.26.13 15.14 D1 100 4-Chlorophenyl-phenyl ether 7005-72-3 <500	4-Bromophenyl-phenylether	101-55-3	< 500	500	mg/kg	02.26.13 15.14	D1	100
4-Chlorophenyl-phenyl ether 7005-72-3 <500 500 mg/kg 02.26.13 15.14 D1 100 4-Nitroaniline 100-01-6 <1000	4-chloro-3-methylphenol	59-50-7	< 500	500	mg/kg	02.26.13 15.14	D1	100
4-Nitroaniline 100-01-6 <1000 1000 mg/kg 02.26.13 15.14 D1 100 4-Nitrophenol 100-02-7 <1000	4-Chloroaniline	106-47-8	<1000	1000	mg/kg	02.26.13 15.14	D1	100
4-Nitrophenol 100-02-7 <1000 1000 mg/kg 02.26.13 15.14 D1 100 Acenaphthene 83-32-9 <500	4-Chlorophenyl-phenyl ether	7005-72-3	< 500	500	mg/kg	02.26.13 15.14	D1	100
Acenaphthene 83-32-9 < 500 500 mg/kg 02.26.13 15.14 D1 100 Acenaphthylene 208-96-8 < 500	4-Nitroaniline	100-01-6	<1000	1000	mg/kg	02.26.13 15.14	D1	100
Acenaphthylene 208-96-8 <500 500 mg/kg 02.26.13 15.14 D1 100 Aniline (Phenylamine, Aminobenzene) 62-53-3 <1000	4-Nitrophenol	100-02-7	<1000	1000	mg/kg	02.26.13 15.14	D1	100
Aniline (Phenylamine, Aminobenzene) 62-53-3 <1000 1000 mg/kg 02.26.13 15.14 D1 100 Anthracene 120-12-7 <500	Acenaphthene	83-32-9	< 500	500	mg/kg	02.26.13 15.14	D1	100
Anthracene 120-12-7 <500 500 mg/kg 02.26.13 15.14 D1 100 Benzo(a)anthracene 56-55-3 <500	Acenaphthylene	208-96-8	< 500	500	mg/kg	02.26.13 15.14	D1	100
Benzo(a)anthracene 56-55-3 <500 500 mg/kg 02.26.13 15.14 D1 100 Benzo(a)pyrene 50-32-8 <500	Aniline (Phenylamine, Aminobenzene)	62-53-3	<1000	1000	mg/kg	02.26.13 15.14	D1	100
Benzo(a)pyrene 50-32-8 <500 500 mg/kg 02.26.13 15.14 D1 100 Benzo(b)fluoranthene 205-99-2 <500	Anthracene	120-12-7	< 500	500	mg/kg	02.26.13 15.14	D1	100
Benzo(b)fluoranthene 205-99-2 <500 500 mg/kg 02.26.13 15.14 D1 100 Benzo(g,h,i)perylene 191-24-2 <500	Benzo(a)anthracene	56-55-3	< 500	500	mg/kg	02.26.13 15.14	D1	100
Benzo(g,h,i)perylene 191-24-2 <500 500 mg/kg 02.26.13 15.14 D1 100 Benzo(k)fluoranthene 207-08-9 <500	Benzo(a)pyrene	50-32-8	< 500	500	mg/kg	02.26.13 15.14	D1	100
Benzo(k)fluoranthene 207-08-9 <500 500 mg/kg 02.26.13 15.14 D1 100 Benzoic Acid 65-85-0 <3000	Benzo(b)fluoranthene	205-99-2	< 500	500	mg/kg	02.26.13 15.14	D1	100
Benzoic Acid 65-85-0 <3000 3000 mg/kg 02.26.13 15.14 D1 100 Benzyl Butyl Phthalate 85-68-7 <500	Benzo(g,h,i)perylene	191-24-2	< 500	500	mg/kg	02.26.13 15.14	D1	100
Benzyl Butyl Phthalate 85-68-7 <500 500 mg/kg 02.26.13 15.14 D1 100 bis(2-chloroethoxy) methane 111-91-1 <500	Benzo(k)fluoranthene	207-08-9	< 500	500	mg/kg	02.26.13 15.14	D1	100
bis(2-chloroethoxy) methane 111-91-1 <500 500 mg/kg 02.26.13 15.14 D1 100 bis(2-chloroethyl) ether 111-44-4 <500 500 mg/kg 02.26.13 15.14 D1 100	Benzoic Acid	65-85-0	<3000	3000	mg/kg	02.26.13 15.14	D1	100
bis(2-chloroethyl) ether 111-44-4 <500 500 mg/kg 02.26.13 15.14 D1 100	Benzyl Butyl Phthalate	85-68-7	< 500	500	mg/kg	02.26.13 15.14	D1	100
	bis(2-chloroethoxy) methane	111-91-1	< 500	500	mg/kg	02.26.13 15.14	D1	100
bis(2-chloroisopropyl) ether 39638-32-9 <500 500 mg/kg 02.26.13 15.14 D1 100	bis(2-chloroethyl) ether	111-44-4	< 500	500	mg/kg	02.26.13 15.14	D1	100
	bis(2-chloroisopropyl) ether	39638-32-9	< 500	500	mg/kg	02.26.13 15.14	D1	100

Page 6 of 20 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-4826 Matrix: Product Date Received: 02.20.13 12.00

Lab Sample Id: **457983-001** Date Collected: 02.19.13 00.00

Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3550

Tech: COR % Moisture:

Analyst: WEW Date Prep: 02.21.13 10.03 Basis: Wet Weight

Seq Number: 907636 SUB: TX104704215

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
bis(2-ethylhexyl) phthalate	117-81-7	< 500	500	mg/kg	02.26.13 15.14	D1	100
Chrysene	218-01-9	< 500	500	mg/kg	02.26.13 15.14	D1	100
Dibenz(a,h)Anthracene	53-70-3	< 500	500	mg/kg	02.26.13 15.14	D1	100
Dibenzofuran	132-64-9	< 500	500	mg/kg	02.26.13 15.14	D1	100
Diethyl Phthalate	84-66-2	< 500	500	mg/kg	02.26.13 15.14	D1	100
Dimethyl Phthalate	131-11-3	< 500	500	mg/kg	02.26.13 15.14	D1	100
di-n-Butyl Phthalate	84-74-2	< 500	500	mg/kg	02.26.13 15.14	D1	100
di-n-Octyl Phthalate	117-84-0	< 500	500	mg/kg	02.26.13 15.14	D1	100
Fluoranthene	206-44-0	< 500	500	mg/kg	02.26.13 15.14	D1	100
Fluorene	86-73-7	< 500	500	mg/kg	02.26.13 15.14	D1	100
Hexachlorobenzene	118-74-1	< 500	500	mg/kg	02.26.13 15.14	D1	100
Hexachlorobutadiene	87-68-3	< 500	500	mg/kg	02.26.13 15.14	D1	100
Hexachlorocyclopentadiene	77-47-4	< 500	500	mg/kg	02.26.13 15.14	D1	100
Hexachloroethane	67-72-1	< 500	500	mg/kg	02.26.13 15.14	D1	100
Indeno(1,2,3-c,d)Pyrene	193-39-5	< 500	500	mg/kg	02.26.13 15.14	D1	100
Isophorone	78-59-1	< 500	500	mg/kg	02.26,13 15.14	D1	100
Naphthalene	91-20-3	< 500	500	mg/kg	02.26.13 15.14	D1	100
Nitrobenzene	98-95-3	< 500	500	mg/kg	02.26.13 15.14	D1	100
N-Nitrosodi-n-Propylamine	621-64-7	< 500	500	mg/kg	02.26.13 15.14	D1	100
N-Nitrosodiphenylamine	86-30-6	< 500	500	mg/kg	02.26.13 15.14	D1	100
Pentachlorophenol	87-86-5	<1000	1000	mg/kg	02.26.13 15.14	D1	100
Phenanthrene	85-01-8	< 500	500	mg/kg	02.26.13 15.14	D1	100
Phenol	108-95-2	<1000	1000	mg/kg	02.26.13 15.14	D1	100
Pyrene	129-00-0	< 500	500	mg/kg	02.26.13 15.14	D1	100
Pyridine	110-86-1	<1000	1000	mg/kg	02.26.13 15.14	D1	100
3-Octyne, 2,2-dimethyl- (TIC)	TIC	16100		mg/kg	02.26.13 15.14	D2T4	100
Benzene, 1-ethyl-2-methyl- (TIC)	TIC	14200		mg/kg	02.26.13 15.14	D2T4	100
Benzene, propyl- (TIC)	TIC	18000		mg/kg	02.26.13 15.14	D2T4	100
Cyclohexane, (2-methylpropyl)- (TIC)	TIC	22100		mg/kg	02.26.13 15.14	D2T4	100
Cyclohexane, 1-ethyl-2-methyl-, tr (TIC)	TIC	8860		mg/kg	02.26.13 15.14	D2T4	100
Cyclohexane, ethyl- (TIC)	TIC	17400		mg/kg	02.26.13 15.14	D2T4	100
Cyclohexane, propyl- (TIC)	TIC	29000		mg/kg	02.26.13 15.14	D2T4	100
Cyclooctane, 1,2-dimethyl- (TIC)	TIC	20000		mg/kg	02.26.13 15.14	D2T4	100
Cyclopentane, hexyl- (TIC)	TIC	12900		mg/kg	02.26.13 15.14	D2T4	100
Cyclopentane, nonyl- (TIC)	TIC	12800		mg/kg	02.26.13 15.14	D2T4	100
Cyclopentanone, 2,4,4-trimethyl- (TIC)	TIC	9490		mg/kg	02.26.13 15.14	D2T4	100
Decane (TIC)	TIC	79800		mg/kg	02.26.13 15.14	D2T4	100
Ethylbenzene (TIC)	TIC	12200		mg/kg	02.26.13 15.14	D2T4	100
Hexadecane (TIC)	TIC	10600		mg/kg	02.26.13 15.14	D2T4	100
Indane (TIC)	TIC	7380		mg/kg	02.26.13 15.14	D2T4	100
Nonane (TIC)	TIC	79500		mg/kg	02.26.13 15.14	D2T4	100

Page 7 of 20 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-4826 Matrix: Product Date Received: 02.20.13 12.00

Lab Sample Id: **457983-001** Date Collected: 02.19.13 00.00

Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3550

Tech: COR % Moisture:

Analyst: WEW Date Prep: 02.21.13 10.03 Basis: Wet Weight

Seq Number: 907636 SUB: TX104704215

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Octane (TIC)	TIC	31900			mg/kg	02.26.13 15.14	D2T4	100
Undecane (TIC)	TIC	89600			mg/kg	02.26.13 15.14	D2T4	100
n-Nonylcyclohexane (TIC)	TIC	7430			mg/kg	02.26.13 15.14	D2T4	100
o-Xylene (TIC)	TIC	9060			mg/kg	02.26.13 15.14	D2T4	100
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
2-Fluorophenol	367-12-4	0	%	25-121		02.26.13 15.14	S8	
Phenol-d6	13127-88-3	0	%	24-113		02.26.13 15.14	S8	
Nitrobenzene-d5	4165-60-0	0	%	23-120		02.26.13 15.14	S8	
2-Fluorobiphenyl	321-60-8	108	%	30-115		02.26.13 15.14		
2,4,6-Tribromophenol	118-79-6	94	%	19-122		02.26.13 15.14		
Terphenyl-D14	1718-51-0	110	%	18-137		02.26.13 15.14		

Page 8 of 20 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-4826 Matrix: Product Date Received: 02.20.13 12.00

Lab Sample Id: **457983-001** Date Collected: 02.19.13 00.00

Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B

Tech: ZHO % Moisture:

Analyst: ZHO Date Prep: 02.22.13 15.56 Basis: Wet Weight

Seq Number: 907617 SUB: TX104704215

1,1,2-Ternachloroethane	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,2,2-Tetrachloroethane	1,1,1,2-Tetrachloroethane	630-20-6	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,1,2-Trichloroethane	1,1,1-Trichloroethane	71-55-6	<125	125	mg/kg	02.22.13 16.13	D1	5000
1-Dichloroethane	1,1,2,2-Tetrachloroethane	79-34-5	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,1-Dichloroethene	1,1,2-Trichloroethane	79-00-5	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,1-Dichloropropene 563-58-6 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2,3-Trichlorobenzene 87-61-6 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2,4-Trichloropropane 96-18-4 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2,4-Trichlorobenzene 120-82-1 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2,4-Trichlorobenzene 95-63-6 1480 125 mg/kg 02.22.13 6.13 D1 5000 1,2,4-Trichlorobenzene 106-93-4 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2-Dibromo-Chloropropane 96-12-8 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2-Dibromo-Chloropropane 95-50-1 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2-Dichlorobenzene 95-50-1 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2-Dichlorobenzene 95-50-1 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2-Dichlorobenzene 78-87-5 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2-Dichlorobenzene 108-67-8 216 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichlorobenzene 142-28-9 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichlorobenzene 142-28-9 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropropane 142-28-9 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropropane 142-28-9 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropropane 142-28-9 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropropane 19-40-7 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropropane 19-40-7 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropropane 19-40-7 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropropane 19-40-7 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropropane 19-40-7 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropropane 19-40-7 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropropane 19-40-7 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropropa	1,1-Dichloroethane	75-34-3	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,2,3-Trichlorobenzene 87-61-6 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2,3-Trichloropropane 96-18-4 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2,4-Trichloropropane 120-83-1 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2,4-Trindhorbenzene 120-83-1 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2-Dichromo-3-Chloropropane 96-12-8 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2-Dichromo-Endere 106-93-4 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2-Dichlorobenzene 95-50-1 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2-Dichlorobenzene 107-06-2 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2-Dichloropane 78-87-5 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,2-Dichloropane 78-87-5 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropane 108-67-8 216 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropane 414-28-9 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropane 142-28-9 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropopane 142-28-9 <125 125 mg/kg 02.22.13 6.13 D1 5000 1,3-Dichloropopane 594-20-7 <125 125 mg/kg 02.22.13 6.13 D1 5000 2,2-Dichloropopane 594-20-7 <125 125 mg/kg 02.22.13 6.13 D1 5000 2,2-Dichloropopane 594-9-8 <125 125 mg/kg 02.22.13 6.13 D1 5000 2,2-Dichloropopane 594-9-8 <125 125 mg/kg 02.22.13 6.13 D1 5000 2,2-Dichloropopane 594-9-8 <125 125 mg/kg 02.22.13 6.13 D1 5000 2,2-Dichloropopane 594-9-8 <125 125 mg/kg 02.22.13 6.13 D1 5000 2,2-Dichloropopane 594-9-8 <125 125 mg/kg 02.22.13 6.13 D1 5000 2,2-Dichloropopane 594-9-8 <125 125 mg/kg 02.22.13 6.13 D1 5000 2,2-Dichloropopane 594-9-8 <125 125 mg/kg 02.22.13 6.13 D1 5000 2,2-Dichloropopane 594-9-8 <125 125 mg/kg 02.22.13 6.13 D1 5000 2,2-Dichloropopane 594-9-8 <125 125 mg/kg	1,1-Dichloroethene	75-35-4	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,2,3-Trichloropropane 96-18-4 < 25 125 mg/kg 0,2,2,13 6,13 D1 5000 1,2,4-Trichlorobenzene 120-82-1 < 215 125 mg/kg 0,2,2,13 6,13 D1 5000 1,2,4-Trimethylenzene 95-63-6 1480 125 mg/kg 0,2,2,13 6,13 D1 5000 1,2-Dibromo-3-Chloropropane 96-12-8 < 125 125 mg/kg 0,2,2,13 6,13 D1 5000 1,2-Dibromo-4-Chloropropane 95-50-1 < 125 125 mg/kg 0,2,2,13 6,13 D1 5000 1,2-Dichlorobenzene 95-50-1 < 125 125 mg/kg 0,2,2,13 6,13 D1 5000 1,2-Dichloropropane 95-50-1 < 125 125 mg/kg 0,2,2,13 6,13 D1 5000 1,2-Dichloropropane 78-87-5 < 125 mg/kg 0,2,2,13 6,13 D1 5000 1,2-Dichloropropane 78-87-5 < 125 mg/kg 0,2,2,13 6,13 D1 5000 1,3-Dichloropropane 108-67-8 216 125 mg/kg 0,2,2,13 6,13 D1 5000 1,3-Dichloropropane 142-28-9 < 125 mg/kg 0,2,2,13 6,13 D1 5000 1,3-Dichloropropane 142-28-9 < 125 mg/kg 0,2,2,13 6,13 D1 5000 1,4-Dichloropropane 142-28-9 < 125 mg/kg 0,2,2,13 6,13 D1 5000 1,4-Dichloropropane 594-20-7 < 125 125 mg/kg 0,2,2,13 6,13 D1 5000 1,4-Dichloropropane 594-20-7 < 125 125 mg/kg 0,2,2,13 6,13 D1 5000 2,2-Dichloropropane 594-20-7 < 125 125 mg/kg 0,2,2,13 6,13 D1 5000 2,2-Dichloropropane 594-8 < 125 mg/kg 0,2,2,13 6,13 D1 5000 2,2-Dichloropropane 594-8 < 125 mg/kg 0,2,2,13 6,13 D1 5000 2,2-Dichloropropane 594-8 < 125 mg/kg 0,2,2,13 6,13 D1 5000 2,2-Dichloropropane 594-8 < 125 mg/kg 0,2,2,13 6,13 D1 5000 2,2-Dichloropropane 594-8 < 125 mg/kg 0,2,2,13 6,13 D1 5000 2,2-Dichloropropane 594-8 < 125 mg/kg 0,2,2,13 6,13 D1 5000 2,2-Dichloropropane 594-8 < 125 mg/kg 0,2,2,13 6,13 D1 5000 2,2-Dichloropropane 594-8 < 125 mg/kg 0,2,2,13 6,13 D1 5000 3,	1,1-Dichloropropene	563-58-6	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,2,4-Trichlorobenzene 120-82-1 2125 125 mg/kg 0.22.13 16.13 D1 5000 1,2,4-Trimethylbenzene 95-63-6 1480 125 mg/kg 0.22.21 13 16.13 D1 5000 1,2-Dibromo-3-Chloropropane 96-12-8 2125 mg/kg 0.22.21 13 16.13 D1 5000 1,2-Dibromo-3-Chloropropane 95-63-1 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 1,2-Dibrohochane 107-06-2 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 1,2-Dichloropropane 78-87-5 2125 mg/kg 0.22.21 13 16.13 D1 5000 1,2-Dichloropropane 78-87-5 2125 mg/kg 0.22.21 13 16.13 D1 5000 1,3-Dichloropropane 108-67-8 216 125 mg/kg 0.22.21 13 16.13 D1 5000 1,3-Dichloropropane 142-28-9 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 1,3-Dichloropropane 142-28-9 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 1,4-Dichloropropane 106-46-7 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 1,4-Dichloropropane 594-20-7 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 1,4-Dichloropropane 594-20-7 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 2,2-Dichloropropane 594-20-7 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 2,2-Dichloropropane 594-8 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 2,2-Dichloropropane 594-8 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 2,2-Dichloropropane 594-8 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 2,2-Dichloropropane 594-8 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 2,2-Dichloropropane 594-8 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 2,2-Dichloropropane 594-8 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 2,2-Dichloropropane 594-8 2125 125 mg/kg 0.22.21 13 16.13 D1 5000 2,2-Dichloropropane 108-66-1 250 250 mg/kg 0.22.21 13 16.13 D1 5000 2,2-Dichloropropane 108-66-1 250 125 mg/kg 0.22.21 13 16.13 D1 5000 3,2-Dichloropropane 108-66-1 215 125 mg/kg 0.22.21 13 16.13 D1	1,2,3-Trichlorobenzene	87-61-6	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,24-Trimethylbenzene 95-63-6 1480 125 mg/kg 0.2.2.1 3 16.13 D1 5000 1,2-Dirbiromo-3-Chloropropane 96-12-8 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 1,2-Dirbiromo-s-Chloropropane 96-50-1 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 1,2-Dichlorobenzene 95-50-1 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 1,2-Dichloropropane 78-87-5 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 1,2-Dichloropropane 78-87-5 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 1,3-Dichlorobenzene 108-67-8 216 125 mg/kg 0.2.2.1 3 16.13 D1 5000 1,3-Dichlorobenzene 541-73-1 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 1,3-Dichlorobenzene 164-64-7 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 1,4-Dichlorobenzene 106-46-7 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 1,4-Dichloropropane 594-20-7 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 1,4-Dichloropropane 594-20-7 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 1,4-Dichloropropane 594-20-7 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 2-Butanone 78-93-3 <1250 1250 mg/kg 0.2.2.1 3 16.13 D1 5000 2-Hexanone 591-78-6 <1250 1250 mg/kg 0.2.2.1 3 16.13 D1 5000 2-Hexanone 106-43-4 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 4-Chlorotoluene 106-43-4 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 Benzene 71-43-2 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 Benzene 71-43-2 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 Bromochloromethane 74-97-5 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 Bromochloromethane 74-97-5 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 Bromochloromethane 74-83-9 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 Bromochloromethane 75-03-3 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 Bromochloromethane 75-03-3 <125 125 mg/kg 0.2.2.1 3 16.13 D1 5000 Bromochloromethane 75-03-3	1,2,3-Trichloropropane	96-18-4	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,2-Dibromo-3-Chloropropane 96-12-8 -125 125 mg/kg 02.22.13 16.13 D1 5000 1,2-Dibromoethane 106-93-4 -125 125 mg/kg 02.22.13 16.13 D1 5000 1,2-Dichlorobenzene 95-50-1 -125 125 mg/kg 02.22.13 16.13 D1 5000 1,2-Dichlorocthane 107-06-2 -125 125 mg/kg 02.22.13 16.13 D1 5000 1,2-Dichlorocthane 107-06-2 -125 125 mg/kg 02.22.13 16.13 D1 5000 1,2-Dichlorocthane 108-67-8 216 125 mg/kg 02.22.13 16.13 D1 5000 1,3-Dichlorobenzene 198-67-8 216 125 mg/kg 02.22.13 16.13 D1 5000 1,3-Dichlorocthane 142-28-9 -125 125 mg/kg 02.22.13 16.13 D1 5000 1,3-Dichloropropane 142-28-9 -125 125 mg/kg 02.22.13 16.13 D1 5000 1,3-Dichloropropane 594-20-7 -125 125 mg/kg 02.22.13 16.13 D1 5000 1,4-Dichlorobenzene 594-20-7 -125 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 594-20-7 -125 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 594-8-8 -125 125 mg/kg 02.22.13 16.13 D1 5000 2-Chlorotoluene 95-49-8 -125 125 mg/kg 02.22.13 16.13 D1 5000 2-Hexanone 591-78-6 -125 125 mg/kg 02.22.13 16.13 D1 5000 2-Hexanone 67-64-1 -2500 2500 mg/kg 02.22.13 16.13 D1 5000 Benzene 71-43-2 -125 125 mg/kg 02.22.13 16.13 D1 5000 Benzonehonzene 108-86-1 -125 125 mg/kg 02.22.13 16.13 D1 5000 Bromochloromethane 75-27-4 -125 125 mg/kg 02.22.13 16.13 D1 5000 Bromochromethane 75-15-0 -125 125 mg/kg 02.22.13 16.13 D1 5000 Bromochromethane 75-15-0 -125 125 mg/kg 02.22.13 16.13 D1 5000 Bromochromethane 75-0-3 -125 125 mg/kg 02.22.13 16.13 D1 5000 Bromochromethane 75-0-3 -125 125 mg/kg 02.22.13 16.13 D1 5000 Bromochromethane 75-0-3 -125 125 mg/kg 02.22.13 16.13 D1 5000 Bromochromethane 75-0-3 -125 125 mg/kg 02.22.13 16.13 D1 5	1,2,4-Trichlorobenzene	120-82-1	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,2-Dibromoethane 106-93-4 -125 125 mg/kg 0.22.13 16.13 D1 5000 1,2-Dichlorobenzene 95-50-1 -125 125 mg/kg 0.22.13 16.13 D1 5000 1,2-Dichloropthane 107-06-2 -125 125 mg/kg 0.22.13 16.13 D1 5000 1,2-Dichloropthane 78-87-5 -125 125 mg/kg 0.22.13 16.13 D1 5000 1,3-Dichloroptopane 78-87-5 -125 125 mg/kg 0.22.13 16.13 D1 5000 1,3-Dichlorobenzene 108-67-8 216 125 mg/kg 0.22.13 16.13 D1 5000 1,3-Dichlorobenzene 142-28-9 -125 125 mg/kg 0.22.13 16.13 D1 5000 1,3-Dichloroptopane 142-28-9 -125 125 mg/kg 0.22.13 16.13 D1 5000 1,4-Dichloroptopane 594-20-7 -125 125 mg/kg 0.22.13 16.13 D1 5000 2,2-Dichloroptopane 594-20-7 -125 125 mg/kg 0.22.213 16.13 D1 5000 2,2-Dichloroptopane 594-9-8 -125 125 mg/kg 0.22.213 16.13 D1 5000 2,2-Dichloroptopane 594-9-8 -125 125 mg/kg 0.22.213 16.13 D1 5000 2,2-Dichloroptopane 591-78-6 -125 125 mg/kg 0.22.213 16.13 D1 5000 2,2-Dichloroptopane 591-78-6 -125 125 mg/kg 0.22.213 16.13 D1 5000 2,2-Dichloroptopane 591-78-6 -125 125 mg/kg 0.22.213 16.13 D1 5000 4-Chlorotoluene 106-43-4 -125 125 mg/kg 0.22.213 16.13 D1 5000 4-Chlorotoluene 106-43-4 -125 125 mg/kg 0.22.213 16.13 D1 5000 4-Chlorotoluene 108-86-1 -125 125 mg/kg 0.22.213 16.13 D1 5000 Bromochloromethane 74-97-5 -125 125 mg/kg 0.22.213 16.13 D1 5000 Bromochloromethane 75-27-4 -125 125 mg/kg 0.22.213 16.13 D1 5000 Bromochloromethane 74-83-9 -125 125 mg/kg 0.22.213 16.13 D1 5000 Bromochloromethane 74-83-9 -125 125 mg/kg 0.22.213 16.13 D1 5000 Bromochloromethane 74-83-9 -125 125 mg/kg 0.22.213 16.13 D1 5000 Carbon Tetrachloride 55-03 -125 125 mg/kg 0.22.213 16.13 D1 5000 Chloroform 67-66-3 -125 125 mg/kg 0.2	1,2,4-Trimethylbenzene	95-63-6	1480	125	mg/kg	02.22.13 16.13	D2	5000
1,2-Dichlorobenzene 95-50-1 125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 1,2-Dichloroethane 107-06-2 125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 1,2-Dichloropropane 78-87-5 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 1,3-S-Trimethylbenzene 108-67-8 216 125 mg/kg 0.2.2.1.3 16.13 D1 5000 1,3-Dichlorobenzene 541-73-1 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 1,3-Dichlorobenzene 142-28-9 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 1,4-Dichlorobenzene 106-46-7 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 1,4-Dichlorobenzene 594-20-7 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 2,2-Dichloropropane 78-93-3 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 2,2-Dichloropenae 78-93-3 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 2,2-Dichloropenae 591-86 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 2,2-Dichloropenae 591-86 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 2,2-Dichloropenae 591-86 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 2,2-Dichloropenae 591-86 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 2,2-Dichloropenae 591-86 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 3,4-Dichloropenae 591-86 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 4-Chlorotoluene 591-86 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 4-Chlorotoluene 67-64-1 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 5 mombenzene 108-86-1 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 5 mombenzene 108-86-1 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 5 mombenzene 74-87-9 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 5 mombenzene 75-52-2 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 6 mombenzene 108-90-7 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 6 mombenzene 108-90-7 -125 125 mg/kg 0.2.2.1.3 16.13 D1 5000 6 mombenzene 108-90-7 -125 125 mg/kg 0.2.2.1.3 16.13 D	1,2-Dibromo-3-Chloropropane	96-12-8	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,2-Dichloroethane 107-06-2 3 25 125 mg/kg 02.22.13 16.13 D1 5000 1,2-Dichloropropane 78-87-5 3 25 125 mg/kg 02.22.13 16.13 D1 5000 1,3-5-Trimethylbenzzee 108-67-8 216 125 mg/kg 02.22.13 16.13 D2 5000 1,3-Dichloropenzene 541-73-1 3 25 125 mg/kg 02.22.13 16.13 D1 5000 1,3-Dichloropenzene 142-28-9 3 25 125 mg/kg 02.22.13 16.13 D1 5000 1,4-Dichlorobenzene 106-46-7 3 25 125 mg/kg 02.22.13 16.13 D1 5000 1,4-Dichloropropane 594-20-7 3 25 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 594-20-7 3 25 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 594-20-7 3 25 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 594-20-7 3 25 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 594-20-7 3 25 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 594-20-7 3 25 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 594-8-8 3 25 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 591-78-6 3 25 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 591-78-6 3 25 125 mg/kg 02.22.13 16.13 D1 5000 3,5-Timethylbenzene 591-78-6 3 25 125 mg/kg 02.22.13 16.13 D1 5000 4-Chlorotluene 67-64-1 3 25 125 mg/kg 02.22.13 16.13 D1 5000 4-Chlorotluene 74-97-5 3 25 125 mg/kg 02.22.13 16.13 D1 5000 4-Chloromethane 74-97-5 3 25 125 mg/kg 02.22.13 16.13 D1 5000 4-Chloromethane 74-83-9 3 25 125 mg/kg 02.22.13 16.13 D1 5000 4-Chloromethane 74-83-9 3 25 125 mg/kg 02.22.13 16.13 D1 5000 4-Chloromethane 74-83-9 3 25 125 mg/kg 02.22.13 16.13 D1 5000 4-Chloroform 67-66-3 3 25 125 mg/kg 02.22.13 16.13 D1 5000 5-Chloroform 67-66-3 3 25 125 mg/kg 02.22.13 16.13 D1 5000 5-Chloroformethane 74-87-3 3 25 250 mg/kg 0	1,2-Dibromoethane	106-93-4	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,2-Dichloropropane 78-87-5 2125 125 mg/kg 02.22.13 16.13 D1 5000 1,3-Dichlorobenzene 541-73-1 2125 125 mg/kg 02.22.13 16.13 D1 5000 1,3-Dichlorobenzene 142-28-9 2125 125 mg/kg 02.22.13 16.13 D1 5000 1,3-Dichlorobenzene 142-28-9 2125 125 mg/kg 02.22.13 16.13 D1 5000 1,4-Dichlorobenzene 166-46-7 2125 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 594-20-7 2125 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 594-20-7 2125 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichlorobenzene 78-93-3 21250 1250 mg/kg 02.22.13 16.13 D1 5000 2,2-Hexanone 95-49-8 2125 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Hexanone 591-78-6 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 164-34 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 164-34 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 164-34 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 164-34 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 164-34 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 164-34 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 168-86-1 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 174-97-5 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 74-97-5 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 74-83-9 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 74-83-9 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 74-83-9 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobluene 74-83-9 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobenzene 108-90-7 2125 125 mg/kg 02.22.13 16.13 D1 5000 4,2-Chlorobenzene 108-90-7 2125 125 mg/kg 02.22.13 16.13 D1 500	1,2-Dichlorobenzene	95-50-1	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,3,5-Trimethylbenzene 108-67-8 216 125 mg/kg 02.22.13 16.13 D1 5000 1,3-Dichlorobenzene 142-28-9 <125 125 mg/kg 02.22.13 16.13 D1 5000 1,4-Dichloropropane 142-28-9 <125 125 mg/kg 02.22.13 16.13 D1 5000 1,4-Dichlorobenzene 106-46-7 <125 125 mg/kg 02.22.13 16.13 D1 5000 1,4-Dichlorobenzene 106-46-7 <125 125 mg/kg 02.22.13 16.13 D1 5000 1,4-Dichloropropane 594-20-7 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditalorone 78-93-3 <1250 1250 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 95-49-8 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 591-78-6 <1250 1250 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 106-43-4 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 106-43-4 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-86-1 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-86-1 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-86-1 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-86-1 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-86-1 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-86-1 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-86-1 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-90-7 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-90-7 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-90-7 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-90-7 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-90-7 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-90-7 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditaloropenzene 108-90-7 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Ditalo	1,2-Dichloroethane	107-06-2	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,3-Dichlorobenzene 541-73-1 4125 125 mg/kg 02.22.13 16.13 D1 5000 1,3-Dichloropropane 142-28-9 4125 125 mg/kg 02.22.13 16.13 D1 5000 1,4-Dichlorobenzene 106-46-7 4125 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Dichloropropane 594-20-7 4125 125 mg/kg 02.22.13 16.13 D1 5000 2,2-Butanone 78-93-3 41250 1250 mg/kg 02.22.13 16.13 D1 5000 2-Chlorotoluene 95-49-8 4125 125 mg/kg 02.22.13 16.13 D1 5000 2-Hexanone 591-78-6 4125 125 mg/kg 02.22.13 16.13 D1 5000 4-Chlorotoluene 106-43-4 4125 125 mg/kg 02.22.13 16.13 D1 5000 4-Chlorotoluene 67-64-1 4250 2500 mg/kg 02.22.13 16.13 D1 5000 Acetone 67-64-1 4250 2500 mg/kg 02.22.13 16.13 D1 5000 Bromobenzene 108-86-1 4125 125 mg/kg 02.22.13 16.13 D1 5000 Bromobloromethane 74-97-5 4125 125 mg/kg 02.22.13 16.13 D1 5000 Bromodichloromethane 75-27-4 4125 125 mg/kg 02.22.13 16.13 D1 5000 Bromoform 75-25-2 4125 125 mg/kg 02.22.13 16.13 D1 5000 Bromomethane 74-83-9 4125 125 mg/kg 02.22.13 16.13 D1 5000 Bromomethane 75-15-0 4125 125 mg/kg 02.22.13 16.13 D1 5000 Bromomethane 75-15-0 4125 125 mg/kg 02.22.13 16.13 D1 5000 Carbon Tetrachloride 56-23-5 4125 125 mg/kg 02.22.13 16.13 D1 5000 Carbon Tetrachloride 56-23-5 4125 125 mg/kg 02.22.13 16.13 D1 5000 Chlorobenzene 108-90-7 4125 125 mg/kg 02.22.13 16.13 D1 5000 Chlorobenzene 108-90-7 4125 125 mg/kg 02.22.13 16.13 D1 5000 Chlorobenzene 74-87-3 425 125 mg/kg 02.22.13 16.13 D1 5000 Chlorobenzene 75-00-3 425 125 mg/kg 02.22.13 16.13 D1 5000 Chlorobenzene 75-00-3 425 125 mg/kg 02.22.13 16.13 D1 5000 Chlorobenzene 75-00-3 425 125 mg/kg 02.22.13 16.13 D1 5000 Chlorobenzene 74-87-3 425 125 mg/kg 02	1,2-Dichloropropane	78-87-5	<125	125	mg/kg	02.22.13 16.13	D1	5000
1,3-Dichloropropane 142-28-9 <125 125 mg/kg 0.2.2.13 16.13 D1 5000 1,4-Dichlorobenzene 106-46-7 <125	1,3,5-Trimethylbenzene	108-67-8	216	125	mg/kg	02.22.13 16.13	D2	5000
1,4-Dichlorobenzene 106-46-7 <125 125 mg/kg 02.22.13 16.13 D1 5000	1,3-Dichlorobenzene	541-73-1	<125	125	mg/kg	02.22.13 16.13	D1	5000
2,2-Dichloropropane 594-20-7 <125 125 mg/kg 02.22.13 16.13 D1 5000 2-Butanone 78-93-3 <1250	1,3-Dichloropropane	142-28-9	<125	125	mg/kg	02.22.13 16.13	D1	5000
2-Butanone 78-93-3 <1250 1250 mg/kg 02.22.13 16.13 D1 5000 2-Chlorotoluene 95-49-8 <125	1,4-Dichlorobenzene	106-46-7	<125	125	mg/kg	02.22.13 16.13	D1	5000
2-Chlorotoluene 95-49-8 < 125 125 mg/kg 02.22.13 16.13 D1 5000 2-Hexanone 591-78-6 <1250	2,2-Dichloropropane	594-20-7	<125	125	mg/kg	02.22.13 16.13	D1	5000
2-Hexanone 591-78-6 <1250 1250 mg/kg 02.22.13 16.13 D1 5000 4-Chlorotoluene 106-43-4 <125	2-Butanone	78-93-3	<1250	1250	mg/kg	02.22.13 16.13	D1	5000
4-Chlorotoluene 106-43-4 <125 125 mg/kg 02.22.13 16.13 D1 5000 Acetone 67-64-1 <2500	2-Chlorotoluene	95-49-8	<125	125	mg/kg	02.22.13 16.13	D1	5000
Acetone 67-64-1 <2500 2500 mg/kg 02.22.13 16.13 D1 5000 Benzene 71-43-2 <125	2-Hexanone	591-78-6	<1250	1250	mg/kg	02.22.13 16.13	D1	5000
Benzene 71-43-2 <125 125 mg/kg 02.22.13 16.13 D1 5000 Bromobenzene 108-86-1 <125	4-Chlorotoluene	106-43-4	<125	125	mg/kg	02.22.13 16.13	D1	5000
Bromobenzene 108-86-1 <125 125 mg/kg 02.22.13 16.13 D1 5000 Bromochloromethane 74-97-5 <125	Acetone	67-64-1	<2500	2500	mg/kg	02.22.13 16.13	D1	5000
Bromochloromethane 74-97-5 <125 125 mg/kg 02.22.13 16.13 D1 5000 Bromodichloromethane 75-27-4 <125	Benzene	71-43-2	<125	125	mg/kg	02.22.13 16.13	D1	5000
Bromodichloromethane 75-27-4 <125 125 mg/kg 02.22.13 16.13 D1 5000 Bromoform 75-25-2 <125	Bromobenzene	108-86-1	<125	125	mg/kg	02.22.13 16.13	D1	5000
Bromoform 75-25-2 <125 125 mg/kg 02.22.13 16.13 D1 5000 Bromomethane 74-83-9 <125	Bromochloromethane	74-97-5	<125	125	mg/kg	02.22.13 16.13	D1	5000
Bromomethane 74-83-9 <125 125 mg/kg 02.22.13 16.13 D1 5000 Carbon Disulfide 75-15-0 <1250	Bromodichloromethane	75-27-4	<125	125	mg/kg	02.22.13 16.13	D1	5000
Carbon Disulfide 75-15-0 <1250 1250 mg/kg 02.22.13 16.13 D1 5000 Carbon Tetrachloride 56-23-5 <125	Bromoform	75-25-2	<125	125	mg/kg	02.22.13 16.13	D1	5000
Carbon Tetrachloride 56-23-5 <125 125 mg/kg 02.22.13 16.13 D1 5000 Chlorobenzene 108-90-7 <125	Bromomethane	74-83-9	<125	125	mg/kg	02.22.13 16.13	D1	5000
Chlorobenzene 108-90-7 <125 125 mg/kg 02.22.13 16.13 D1 5000 Chloroethane 75-00-3 <250	Carbon Disulfide	75-15-0	<1250	1250	mg/kg	02.22.13 16.13	D1	5000
Chloroethane 75-00-3 <250 250 mg/kg 02.22.13 16.13 D1 5000 Chloroform 67-66-3 <125	Carbon Tetrachloride	56-23-5	<125	125	mg/kg	02.22.13 16.13	D1	5000
Chloroform 67-66-3 <125 125 mg/kg 02.22.13 16.13 D1 5000 Chloromethane 74-87-3 <250	Chlorobenzene	108-90-7	<125	125	mg/kg	02.22.13 16.13	D1	5000
Chloromethane 74-87-3 <250 250 mg/kg 02.22.13 16.13 D1 5000 cis-1,2-Dichloroethene 156-59-2 <125	Chloroethane	75-00-3	<250	250	mg/kg	02.22.13 16.13	D1	5000
cis-1,2-Dichloroethene 156-59-2 <125 125 mg/kg 02.22.13 16.13 D1 5000 cis-1,3-Dichloropropene 10061-01-5 <125 125 mg/kg 02.22.13 16.13 D1 5000	Chloroform	67-66-3	<125	125	mg/kg	02.22.13 16.13	D1	5000
cis-1,3-Dichloropropene 10061-01-5 <125 125 mg/kg 02.22.13 16.13 D1 5000	Chloromethane	74-87-3	<250	250	mg/kg	02.22.13 16.13	D1	5000
	cis-1,2-Dichloroethene	156-59-2	<125	125	mg/kg	02.22.13 16.13	D1	5000
Dibromochloromethane 124-48-1 <125 125 mg/kg 02.22.13 16.13 D1 5000	cis-1,3-Dichloropropene	10061-01-5	<125	125	mg/kg	02.22.13 16.13	D1	5000
	Dibromochloromethane	124-48-1	<125	125	mg/kg	02.22.13 16.13	D1	5000

Page 9 of 20 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-4826 Matrix: Product Date Received: 02.20.13 12.00

Lab Sample Id: **457983-001** Date Collected: 02.19.13 00.00

Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B

Tech: ZHO % Moisture:

Analyst: ZHO Date Prep: 02.22.13 15.56 Basis: Wet Weight

Seq Number: 907617 SUB: TX104704215

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Dibromomethane	74-95-3	<125	125		mg/kg	02.22.13 16.13	D1	5000
Dichlorodifluoromethane	75-71-8	<125	125		mg/kg	02.22.13 16.13	D1	5000
Ethylbenzene	100-41-4	2230	125		mg/kg	02.22.13 16.13	D2	5000
Hexachlorobutadiene	87-68-3	<125	125		mg/kg	02.22.13 16.13	D1	5000
Iodomethane (Methyl Iodide)	74-88-4	< 500	500		mg/kg	02.22.13 16.13	D1	5000
isopropylbenzene	98-82-8	270	125		mg/kg	02.22.13 16.13	D2	5000
m,p-Xylenes	179601-23-1	2960	250		mg/kg	02.22.13 16.13	D2	5000
Methylene Chloride	75-09-2	< 500	500		mg/kg	02.22.13 16.13	D1	5000
MTBE	1634-04-4	<125	125		mg/kg	02.22.13 16.13	D1	5000
Naphthalene	91-20-3	340	250		mg/kg	02.22.13 16.13	D2	5000
n-Butylbenzene	104-51-8	2190	125		mg/kg	02.22.13 16.13	D2	5000
n-Propylbenzene	103-65-1	2670	125		mg/kg	02.22.13 16.13	D2	5000
o-Xylene	95-47-6	3110	125		mg/kg	02.22.13 16.13	D2	5000
p-Cymene (p-Isopropyltoluene)	99-87-6	165	125		mg/kg	02.22.13 16.13	D2	5000
Sec-Butylbenzene	135-98-8	160	125		mg/kg	02.22.13 16.13	D2	5000
Styrene	100-42-5	<125	125		mg/kg	02.22.13 16.13	D1	5000
tert-Butylbenzene	98-06-6	<125	125		mg/kg	02.22.13 16.13	D1	5000
Tetrachloroethylene	127-18-4	<125	125		mg/kg	02.22.13 16.13	D1	5000
Toluene	108-88-3	231	125		mg/kg	02.22.13 16.13	D2	5000
Total Xylenes	1330-20-7	6070	125		mg/kg	02.22.13 16.13	D2	5000
trans-1,2-dichloroethene	156-60-5	<125	125		mg/kg	02.22.13 16.13	D1	5000
trans-1,3-dichloropropene	10061-02-6	<125	125		mg/kg	02.22.13 16.13	D1	5000
Trichloroethene	79-01-6	<125	125		mg/kg	02.22.13 16.13	D1	5000
Trichlorofluoromethane	75-69-4	<125	125		mg/kg	02.22.13 16.13	D1	5000
Vinyl Acetate	108-05-4	<1250	1250		mg/kg	02.22.13 16.13	D1	5000
Vinyl Chloride	75-01-4	< 50.0	50.0		mg/kg	02.22.13 16.13	D1	5000
Benzene, 1-ethyl-2-methyl- (TIC)	TIC	5910			mg/kg	02.22.13 16.13	D2T4	5000
Benzene, 1-propenyl- (TIC)	TIC	4320			mg/kg	02.22.13 16.13	D2T4	5000
Benzene, pentyl- (TIC)	TIC	4500			mg/kg	02.22.13 16.13	D2T4	5000
Cyclohexane, pentyl- (TIC)	TIC	3900			mg/kg	02.22.13 16.13	D2T4	5000
Cyclohexane, propyl- (TIC)	TIC	7440			mg/kg	02.22.13 16.13	D2T4	5000
Dodecane (TIC)	TIC	8870			mg/kg	02.22.13 16.13	D2T4	5000
Indan, 1-methyl- (TIC)	TIC	4550			mg/kg	02.22.13 16.13	D2T4	5000
Octane (TIC)	TIC	9210			mg/kg	02.22.13 16.13	D2T4	5000
Tridecane (TIC)	TIC	5090			mg/kg	02.22.13 16.13	D2T4	5000
Undecane (TIC)	TIC	20600			mg/kg	02.22.13 16.13	D2T4	5000
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
Dibromofluoromethane	1868-53-7	92	%	53-142		02.22.13 16.13		
1,2-Dichloroethane-D4	17060-07-0	99	%	56-150		02.22.13 16.13		
Toluene-D8	2037-26-5	101	%	70-130		02.22.13 16.13		

Page 10 of 20 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-4826 Matrix: Product Date Received: 02.20.13 12.00

Lab Sample Id: **457983-001** Date Collected: 02.19.13 00.00

Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B

Tech: ZHO % Moisture:

Analyst: ZHO Date Prep: 02.22.13 15.56 Basis: Wet Weight

Seq Number: 907617 SUB: TX104704215

 Surrogate
 Cas Number
 % Recovery
 Analysis Date
 Flag

 4-Bromofluorobenzene
 460-00-4
 113
 %
 68-152
 02.22.13 16.13
 *

Page 11 of 20

Southwest Research Institute

Jet Fuel

Analytical Method:	SVOCs by SW-846 8270C			Prep Method:	SW3550
Seq Number:	907636	Matrix:	Solid	Date Prep:	02/21/2013
MB Sample Id:	634141-1-BLK	LCS Sample Id:	634141-1-BKS	LCSD Sample Id:	634141-1-BSD

MB Sample Id:	534141-1-BLK		LCS Sar	mple ld:	634141-1	-BKS		LCSI	D Sample	e Id: 634	141-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene	< 0.0304	1.67	1.25	75	1.19	71	55-106	5	30	mg/kg	02/22/13 14:43	
1,2-Dichlorobenzene	< 0.0362	1.67	1.33	80	1.29	77	54-104	3	30	mg/kg	02/22/13 14:43	
1,3-Dichlorobenzene	< 0.0305	1.67	1.29	77	1.25	75	53-105	3	30	mg/kg	02/22/13 14:43	
1,4-Dichlorobenzene	< 0.0329	1.67	1.30	78	1.28	77	52-104	2	30	mg/kg	02/22/13 14:43	
2,4,5-Trichlorophenol	< 0.0391	1.67	1.49	89	1.50	90	53-128	1	30	mg/kg	02/22/13 14:43	
2,4,6-Trichlorophenol	< 0.0268	1.67	1.41	84	1.39	83	58-119	1	30	mg/kg	02/22/13 14:43	
2,4-Dichlorophenol	< 0.0314	1.67	1.39	83	1.37	82	58-113	1	30	mg/kg	02/22/13 14:43	
2,4-Dimethylphenol	< 0.0784	1.67	1.39	83	1.39	83	56-112	0	30	mg/kg	02/22/13 14:43	
2,4-Dinitrophenol	< 0.0691	1.67	1.88	113	1.91	114	38-136	2	40	mg/kg	02/22/13 14:43	
2,4-Dinitrotoluene	< 0.0318	1.67	1.53	92	1.51	90	59-115	1	30	mg/kg	02/22/13 14:43	
2,6-Dinitrotoluene	< 0.0319	1.67	1.37	82	1.38	83	58-114	1	30	mg/kg	02/22/13 14:43	
2-Chloronaphthalene	< 0.0264	1.67	1.34	80	1.32	79	40-132	2	30	mg/kg	02/22/13 14:43	
2-Chlorophenol	< 0.0323	1.67	1.38	83	1.37	82	53-109	1	30	mg/kg	02/22/13 14:43	
2-Methylnaphthalene	< 0.0342	1.67	1.33	80	1.29	77	53-108	3	30	mg/kg	02/22/13 14:43	
2-methylphenol	< 0.0433	1.67	1.51	90	1.48	89	48-118	2	30	mg/kg	02/22/13 14:43	
2-Nitroaniline	< 0.0294	1.67	1.21	72	1.23	74	54-116	2	40	mg/kg	02/22/13 14:43	
2-Nitrophenol	< 0.0228	1.67	1.35	81	1.35	81	54-113	0	30	mg/kg	02/22/13 14:43	
3&4-Methylphenol	< 0.0758	1.67	1.58	95	1.55	93	53-115	2	30	mg/kg	02/22/13 14:43	
3,3-Dichlorobenzidine	< 0.0457	1.67	1.45	87	1.45	87	55-129	0	40	mg/kg	02/22/13 14:43	
3-Nitroaniline	< 0.0346	1.67	1.38	83	1.40	84	57-119	1	40	mg/kg	02/22/13 14:43	
4,6-dinitro-2-methyl pheno	ol <0.0271	1.67	1.62	97	1.63	98	56-117	1	40	mg/kg	02/22/13 14:43	
4-Bromophenyl-phenyleth	er <0.0339	1.67	1.33	80	1.31	78	57-118	2	30	mg/kg	02/22/13 14:43	
4-chloro-3-methylphenol	< 0.0350	1.67	1.49	89	1.40	84	55-114	6	30	mg/kg	02/22/13 14:43	
4-Chloroaniline	< 0.0668	1.67	1.36	81	1.35	81	54-112	1	40	mg/kg	02/22/13 14:43	
4-Chlorophenyl-phenyl etl	her <0.0335	1.67	1.43	86	1.46	87	57-111	2	30	mg/kg	02/22/13 14:43	
4-Nitroaniline	< 0.0300	1.67	1.46	87	1.41	84	56-121	3	40	mg/kg	02/22/13 14:43	
4-Nitrophenol	< 0.0311	1.67	1.18	71	1.26	75	42-134	7	40	mg/kg	02/22/13 14:43	
Acenaphthene	< 0.0358	1.67	1.41	84	1.37	82	54-112	3	30	mg/kg	02/22/13 14:43	
Acenaphthylene	< 0.0338	1.67	1.42	85	1.40	84	54-113	1	30	mg/kg	02/22/13 14:43	
Aniline (Phenylamine, Amino	benzene) <0.111	1.67	1.41	84	1.38	83	50-112	2	40	mg/kg	02/22/13 14:43	
Anthracene	< 0.0257	1.67	1.36	81	1.32	79	57-118	3	30	mg/kg	02/22/13 14:43	
Benzo(a)anthracene	< 0.0280	1.67	1.40	84	1.43	86	58-119	2	30	mg/kg	02/22/13 14:43	
Benzo(a)pyrene	< 0.0291	1.67	1.47	88	1.49	89	58-127	1	30	mg/kg	02/22/13 14:43	
Benzo(b)fluoranthene	< 0.0270	1.67	1.50	90	1.49	89	50-122	1	30	mg/kg	02/22/13 14:43	
Benzo(g,h,i)perylene	< 0.0294	1.67	1.46	87	1.47	88	57-125	1	30	mg/kg	02/22/13 14:43	
Benzo(k)fluoranthene	< 0.0390	1.67	1.36	81	1.43	86	59-126	5	30	mg/kg	02/22/13 14:43	
Benzoic Acid	< 0.0483	5.00	6.19	124	5.95	119	31-133	4	50	mg/kg	02/22/13 14:43	
Benzyl Butyl Phthalate	< 0.0259	1.67	1.52	91	1.51	90	55-129	1	30	mg/kg	02/22/13 14:43	
bis(2-chloroethoxy) metha	me <0.0372	1.67	1.40	84	1.38	83	49-112	1	30	mg/kg	02/22/13 14:43	
bis(2-chloroethyl) ether	< 0.0358	1.67	1.49	89	1.43	86	50-108	4	30	mg/kg	02/22/13 14:43	
bis(2-chloroisopropyl) eth	er <0.0334	1.67	1.61	96	1.54	92	45-111	4	30	mg/kg	02/22/13 14:43	
bis(2-ethylhexyl) phthalate	e <0.0266	1.67	1.59	95	1.58	95	54-134	1	30	mg/kg	02/22/13 14:43	
Chrysene	< 0.0303	1.67	1.45	87	1.38	83	58-120	5	30	mg/kg	02/22/13 14:43	
Dibenz(a,h)Anthracene	< 0.0351	1.67	1.48	89	1.48	89	60-121	0	30	mg/kg	02/22/13 14:43	
Dibenzofuran	< 0.0329	1.67	1.43	86	1.43	86	56-110	0	30	mg/kg	02/22/13 14:43	
Diethyl Phthalate	< 0.0345	1.67	1.42	85	1.43	86	58-113	1	30	mg/kg	02/22/13 14:43	
Dimethyl Phthalate	< 0.0344	1.67	1.43	86	1.43	86	58-112	0	30	mg/kg	02/22/13 14:43	
di-n-Butyl Phthalate	< 0.0287	1.67	1.37	82	1.40	84	58-126	2	30	mg/kg	02/22/13 14:43	
di-n-Octyl Phthalate	< 0.0316	1.67	1.53	92	1.59	95	54-130	4	30	mg/kg	02/22/13 14:43	

Page 12 of 20

Flag

Southwest Research Institute

Jet Fuel

Analytical Method:	SVOCs by SW-846	8270C						Pr	ep Metho	od: SW	3550	
Seq Number:	907636			Matrix:	Solid				Date Pro	ep: 02/2	21/2013	
MB Sample Id:	Sample Id: 634141-1-BLK				634141-1-	-BKS		LCSI	D Sample	ld: 634	634141-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	
Fluoranthene	< 0.0315	1.67	1.30	78	1.32	79	59-119	2	30	mg/kg	02/22/13 14:43	
Fluorene	< 0.0356	1.67	1.40	84	1.41	84	56-112	1	30	mg/kg	02/22/13 14:43	
								_				

Surrogate	MB %Rec	MB Flag	LCS		CS	LCSD			Limits	Units	Analysis Date	
Pyridine	< 0.0427	1.67	1.30	78	1.27	76	44-102	2	40	mg/kg	02/22/13 14:43	
Pyrene	< 0.0333	1.67	1.51	90	1.49	89	56-125	1	30	mg/kg	02/22/13 14:43	
Phenol	< 0.0358	1.67	1.47	88	1.45	87	50-114	1	40	mg/kg	02/22/13 14:43	
Phenanthrene	< 0.0332	1.67	1.31	78	1.33	80	56-118	2	30	mg/kg	02/22/13 14:43	
Pentachlorophenol	< 0.0221	1.67	1.38	83	1.38	83	38-128	0	40	mg/kg	02/22/13 14:43	
N-Nitrosodiphenylamine	< 0.0249	1.67	1.39	83	1.35	81	55-119	3	30	mg/kg	02/22/13 14:43	
N-Nitrosodi-n-Propylamine	< 0.0399	1.67	1.56	93	1.53	92	50-111	2	30	mg/kg	02/22/13 14:43	
Nitrobenzene	< 0.0291	1.67	1.32	79	1.29	77	44-118	2	30	mg/kg	02/22/13 14:43	
Naphthalene	< 0.0344	1.67	1.30	78	1.27	76	54-106	2	30	mg/kg	02/22/13 14:43	
Isophorone	< 0.0299	1.67	1.44	86	1.43	86	46-116	1	30	mg/kg	02/22/13 14:43	
Indeno(1,2,3-c,d)Pyrene	< 0.0309	1.67	1.44	86	1.46	87	59-118	1	30	mg/kg	02/22/13 14:43	
Hexachloroethane	< 0.0373	1.67	1.30	78	1.28	77	54-105	2	30	mg/kg	02/22/13 14:43	
Hexachlorocyclopentadiene	< 0.0147	1.67	0.683	41	0.644	39	18-119	6	30	mg/kg	02/22/13 14:43	
Hexachlorobutadiene	< 0.0313	1.67	1.23	74	1.20	72	55-105	2	30	mg/kg	02/22/13 14:43	
Hexachlorobenzene	< 0.0292	1.67	1.28	77	1.28	77	58-119	0	30	mg/kg	02/22/13 14:43	
Fluorene	< 0.0356	1.67	1.40	84	1.41	84	56-112	1	30	mg/kg	02/22/13 14:43	

Surrogate	MB MB %Rec Flag	LCS LCS %Rec Flag	LCSD LCSD %Rec Flag	Limits	Units	Analysis Date
2-Fluorophenol	74	79	79	25-121	%	02/22/13 14:43
Phenol-d6	81	88	89	24-113	%	02/22/13 14:43
Nitrobenzene-d5	65	71	72	23-120	%	02/22/13 14:43
2-Fluorobiphenyl	67	74	76	30-115	%	02/22/13 14:43
2,4,6-Tribromophenol	72	79	81	19-122	%	02/22/13 14:43
Terphenyl-D14	76	78	79	18-137	%	02/22/13 14:43

Southwest Research Institute

Jet Fuel

Analytical Method:	SVOCs by SW-846 8270C			Prep Method:	SW3550
Seq Number:	907636	Matrix:	Soil	Date Prep:	02/21/2013
Parent Sample Id:	457936-001	MS Sample Id:	457936-001 S	MSD Sample Id:	457936-001 SD

Parent Sample Id: 457936-0	01		MS Sar	nple Id:	457936-0	01 S		MSI	D Sample	e Id: 457	936-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene	< 0.0304	1.67	1.18	71	1.15	69	37-133	3	30	mg/kg	02/22/13 15:32	
1,2-Dichlorobenzene	< 0.0362	1.67	1.25	75	1.19	71	65-135	5	30	mg/kg	02/22/13 15:32	
1,3-Dichlorobenzene	< 0.0305	1.67	1.21	72	1.16	69	65-135	4	30	mg/kg	02/22/13 15:32	
1,4-Dichlorobenzene	< 0.0329	1.67	1.24	74	1.18	71	36-134	5	30	mg/kg	02/22/13 15:32	
2,4,5-Trichlorophenol	< 0.0391	1.67	1.49	89	1.48	89	65-135	1	30	mg/kg	02/22/13 15:32	
2,4,6-Trichlorophenol	< 0.0268	1.67	1.41	84	1.38	83	65-135	2	30	mg/kg	02/22/13 15:32	
2,4-Dichlorophenol	< 0.0314	1.67	1.35	81	1.35	81	65-135	0	30	mg/kg	02/22/13 15:32	
2,4-Dimethylphenol	< 0.0784	1.67	1.38	83	1.37	82	65-135	1	30	mg/kg	02/22/13 15:32	
2,4-Dinitrophenol	< 0.0691	1.67	2.04	122	2.07	124	65-135	1	40	mg/kg	02/22/13 15:32	
2,4-Dinitrotoluene	< 0.0318	1.67	1.57	94	1.57	94	40-130	0	30	mg/kg	02/22/13 15:32	
2,6-Dinitrotoluene	< 0.0319	1.67	1.39	83	1.39	83	28-89	0	30	mg/kg	02/22/13 15:32	
2-Chloronaphthalene	< 0.0264	1.67	1.30	78	1.28	77	65-135	2	30	mg/kg	02/22/13 15:32	
2-Chlorophenol	< 0.0323	1.67	1.33	80	1.28	77	25-140	4	30	mg/kg	02/22/13 15:32	
2-Methylnaphthalene	< 0.0342	1.67	1.27	76	1.24	74	25-175	2	30	mg/kg	02/22/13 15:32	
2-methylphenol	< 0.0433	1.67	1.44	86	1.40	84	65-135	3	30	mg/kg	02/22/13 15:32	
2-Nitroaniline	< 0.0294	1.67	1.25	75	1.23	74	65-135	2	40	mg/kg	02/22/13 15:32	
2-Nitrophenol	< 0.0228	1.67	1.33	80	1.31	78	65-135	2	30	mg/kg	02/22/13 15:32	
3&4-Methylphenol	< 0.0758	1.67	1.51	90	1.48	89	65-135	2	30	mg/kg	02/22/13 15:32	
3,3-Dichlorobenzidine	< 0.0457	1.67	1.56	93	1.54	92	20-140	1	40	mg/kg	02/22/13 15:32	
3-Nitroaniline	< 0.0346	1.67	1.45	87	1.41	84	65-135	3	40	mg/kg	02/22/13 15:32	
4,6-dinitro-2-methyl phenol	< 0.0271	1.67	1.76	105	1.76	105	65-135	0	40	mg/kg	02/22/13 15:32	
4-Bromophenyl-phenylether	< 0.0339	1.67	1.33	80	1.33	80	65-135	0	30	mg/kg	02/22/13 15:32	
4-chloro-3-methylphenol	< 0.0350	1.67	1.44	86	1.42	85	28-134	1	30	mg/kg	02/22/13 15:32	
4-Chloroaniline	< 0.0668	1.67	1.37	82	1.36	81	4-149	1	40	mg/kg	02/22/13 15:32	
4-Chlorophenyl-phenyl ether	< 0.0335	1.67	1.39	83	1.42	85	65-135	2	30	mg/kg	02/22/13 15:32	
4-Nitroaniline	< 0.0300	1.67	1.44	86	1.53	92	65-135	6	40	mg/kg	02/22/13 15:32	
4-Nitrophenol	< 0.0311	1.67	1.43	86	1.35	81	13-106	6	40	mg/kg	02/22/13 15:32	
Acenaphthene	< 0.0358	1.67	1.34	80	1.34	80	41-134	0	30	mg/kg	02/22/13 15:32	
Acenaphthylene	< 0.0338	1.67	1.39	83	1.36	81	65-135	2	30	mg/kg	02/22/13 15:32	
Aniline (Phenylamine, Aminobenzene)	< 0.111	1.67	1.36	81	1.29	77	2-145	5	40	mg/kg	02/22/13 15:32	
Anthracene	< 0.0257	1.67	1.41	84	1.39	83	65-135	1	30	mg/kg	02/22/13 15:32	
Benzo(a)anthracene	0.0387	1.67	1.57	92	1.47	86	44-126	7	30	mg/kg	02/22/13 15:32	
Benzo(a)pyrene	0.0340	1.67	1.60	94	1.48	87	65-135	8	30	mg/kg	02/22/13 15:32	
Benzo(b)fluoranthene	0.0450	1.67	1.66	97	1.39	81	65-135	18	30	mg/kg	02/22/13 15:32	
Benzo(g,h,i)perylene	< 0.0294	1.67	1.59	95	1.50	90	65-135	6	30	mg/kg	02/22/13 15:32	
Benzo(k)fluoranthene	< 0.0390	1.67	1.52	91	1.55	93	25-125	2	30	mg/kg	02/22/13 15:32	
Benzoic Acid	< 0.0483	5.00	4.38	88	4.69	94	50-125	7	50	mg/kg	02/22/13 15:32	
Benzyl Butyl Phthalate	< 0.0259	1.67	1.60	96	1.59	95	65-135	1	30	mg/kg	02/22/13 15:32	
bis(2-chloroethoxy) methane	< 0.0372	1.67	1.35	81	1.32	79	65-135	2	30	mg/kg	02/22/13 15:32	
bis(2-chloroethyl) ether	< 0.0358	1.67	1.38	83	1.35	81	65-135	2	30	mg/kg	02/22/13 15:32	
bis(2-chloroisopropyl) ether	< 0.0334	1.67	1.51	90	1.43	86	65-135	5	30	mg/kg	02/22/13 15:32	
bis(2-ethylhexyl) phthalate	< 0.0266	1.67	1.68	101	1.62	97	65-135	4	30	mg/kg	02/22/13 15:32	
Chrysene	0.0370	1.67	1.52	89	1.51	88	65-135	1	30	mg/kg	02/22/13 15:32	
Dibenz(a,h)Anthracene	< 0.0351	1.67	1.59	95	1.52	91	65-135	5	30	mg/kg	02/22/13 15:32	
Dibenzofuran	< 0.0329	1.67	1.41	84	1.39	83	65-135	1	30	mg/kg	02/22/13 15:32	
Diethyl Phthalate	< 0.0345	1.67	1.46	87	1.44	86	37-125	1	30	mg/kg	02/22/13 15:32	
Dimethyl Phthalate	< 0.0344	1.67	1.45	87	1.42	85	65-135	2	30	mg/kg	02/22/13 15:32	
di-n-Butyl Phthalate	< 0.0287	1.67	1.51	90	1.41	84	65-135	7	30	mg/kg	02/22/13 15:32	
di-n-Octyl Phthalate	< 0.0316	1.67	1.69	101	1.59	95	65-135	6	30	mg/kg	02/22/13 15:32	

Page 14 of 20

2-Fluorobiphenyl

Terphenyl-D14

2,4,6-Tribromophenol

QC Summary 457983

02/22/13 15:32

02/22/13 15:32

02/22/13 15:32

30-115

19-122

18-137

Final 1.000

72 83

Southwest Research Institute

Jet Fuel

Analytical Method:	SVOCs by	SW-846	8270C						Pr	ep Metho	d: SW3	3550	
Seq Number:	907636			N	Matrix:	Soil				Date Pre	ep: 02/2	1/2013	
Parent Sample Id:	457936-00	1		MS Sam	ple Id:	457936-00	01 S		MS	D Sample	Id: 4579	936-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Fluoranthene		0.0637	1.67	1.48	85	1.37	78	65-135	8	30	mg/kg	02/22/13 15:32	
Fluorene		< 0.0356	1.67	1.42	85	1.37	82	65-135	4	30	mg/kg	02/22/13 15:32	
Hexachlorobenzene		< 0.0292	1.67	1.32	79	1.31	78	65-135	1	30	mg/kg	02/22/13 15:32	
Hexachlorobutadiene		< 0.0313	1.67	1.17	70	1.14	68	65-135	3	30	mg/kg	02/22/13 15:32	
Hexachlorocyclopentadi	ene	< 0.0147	1.67	0.593	36	0.589	35	65-135	1	30	mg/kg	02/22/13 15:32	M2
Hexachloroethane		< 0.0373	1.67	1.25	75	1.17	70	65-135	7	30	mg/kg	02/22/13 15:32	
Indeno(1,2,3-c,d)Pyrene		< 0.0309	1.67	1.57	94	1.50	90	65-135	5	30	mg/kg	02/22/13 15:32	
Isophorone		< 0.0299	1.67	1.44	86	1.41	84	65-135	2	30	mg/kg	02/22/13 15:32	
Naphthalene		< 0.0344	1.67	1.26	75	1.22	73	65-135	3	30	mg/kg	02/22/13 15:32	
Nitrobenzene		< 0.0291	1.67	1.27	76	1.25	75	65-135	2	30	mg/kg	02/22/13 15:32	
N-Nitrosodi-n-Propylam	ine	< 0.0399	1.67	1.49	89	1.50	90	53-130	1	30	mg/kg	02/22/13 15:32	
N-Nitrosodiphenylamine	;	< 0.0249	1.67	1.41	84	1.41	84	65-135	0	30	mg/kg	02/22/13 15:32	
Pentachlorophenol		< 0.0221	1.67	1.56	93	1.52	91	14-111	3	40	mg/kg	02/22/13 15:32	
Phenanthrene		< 0.0332	1.67	1.42	85	1.39	83	65-135	2	30	mg/kg	02/22/13 15:32	
Phenol		< 0.0358	1.67	1.41	84	1.35	81	27-127	4	40	mg/kg	02/22/13 15:32	
Pyrene		0.0590	1.67	1.63	94	1.54	89	41-144	6	30	mg/kg	02/22/13 15:32	
Pyridine		< 0.0427	1.67	1.20	72	1.23	74	39-98	2	40	mg/kg	02/22/13 15:32	
Surrogate				М % Г		MS Flag	MSD %Rec			mits	Units	Analysis Date	
2-Fluorophenol				7	5		73		25	-121	%	02/22/13 15:32	
Phenol-d6				8	6		84		24	-113	%	02/22/13 15:32	
Nitrobenzene-d5				6	9		68		23	-120	%	02/22/13 15:32	
2 F1 1:1 1				_	_								

73

80

82

Page 15 of 20

Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846 8260B			Prep Method:	SW5030B
Seq Number:	907617	Matrix:	Solid	Date Prep:	02/22/2013
MB Sample Id:	634196-1-BLK	LCS Sample Id:	634196-1-BKS	LCSD Sample Id:	634196-1-BSD

MB Sample Id:	634196-1-BLK		LCS Sar	nple ld:	634196-1	-BKS		LCS	D Sample	e Id: 634	196-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.000148	0.0500	0.0542	108	0.0500	100	81-127	8	25	mg/kg	02/22/13 11:36	
1,1,1-Trichloroethane	< 0.000602	0.0500	0.0496	99	0.0459	92	71-124	8	25	mg/kg	02/22/13 11:36	
1,1,2,2-Tetrachloroethane	< 0.000194	0.0500	0.0520	104	0.0468	94	75-133	11	25	mg/kg	02/22/13 11:36	
1,1,2-Trichloroethane	< 0.000225	0.0500	0.0514	103	0.0481	96	75-131	7	25	mg/kg	02/22/13 11:36	
1,1-Dichloroethane	< 0.000125	0.0500	0.0497	99	0.0462	92	73-124	7	25	mg/kg	02/22/13 11:36	
1,1-Dichloroethene	< 0.000192	0.0500	0.0431	86	0.0398	80	68-119	8	25	mg/kg	02/22/13 11:36	
1,1-Dichloropropene	< 0.000198	0.0500	0.0475	95	0.0438	88	72-118	8	25	mg/kg	02/22/13 11:36	
1,2,3-Trichlorobenzene	< 0.000106	0.0500	0.0524	105	0.0514	103	75-131	2	25	mg/kg	02/22/13 11:36	
1,2,3-Trichloropropane	< 0.000359	0.0500	0.0583	117	0.0529	106	75-131	10	25	mg/kg	02/22/13 11:36	
1,2,4-Trichlorobenzene	< 0.000191	0.0500	0.0515	103	0.0510	102	79-128	1	25	mg/kg	02/22/13 11:36	
1,2,4-Trimethylbenzene	< 0.000103	0.0500	0.0543	109	0.0505	101	60-159	7	25	mg/kg	02/22/13 11:36	
1,2-Dibromo-3-Chloropro	opane <0.00107	0.0500	0.0479	96	0.0458	92	58-133	4	25	mg/kg	02/22/13 11:36	
1,2-Dibromoethane	< 0.000193	0.0500	0.0520	104	0.0482	96	80-127	8	25	mg/kg	02/22/13 11:36	
1,2-Dichlorobenzene	< 0.000129	0.0500	0.0502	100	0.0464	93	84-121	8	25	mg/kg	02/22/13 11:36	
1,2-Dichloroethane	< 0.000177	0.0500	0.0491	98	0.0445	89	70-123	10	25	mg/kg	02/22/13 11:36	
1,2-Dichloropropane	< 0.000162	0.0500	0.0483	97	0.0446	89	75-122	8	25	mg/kg	02/22/13 11:36	
1,3,5-Trimethylbenzene	< 0.000166	0.0500	0.0548	110	0.0503	101	61-160	9	25	mg/kg	02/22/13 11:36	
1,3-Dichlorobenzene	< 0.000159	0.0500	0.0509	102	0.0475	95	84-124	7	25	mg/kg	02/22/13 11:36	
1,3-Dichloropropane	< 0.000227	0.0500	0.0514	103	0.0480	96	82-131	7	25	mg/kg	02/22/13 11:36	
1,4-Dichlorobenzene	< 0.0000970	0.0500	0.0490	98	0.0461	92	82-120	6	25	mg/kg	02/22/13 11:36	
2,2-Dichloropropane	< 0.000127	0.0500	0.0502	100	0.0491	98	67-137	2	25	mg/kg	02/22/13 11:36	
2-Butanone	< 0.00173	0.600	0.612	102	0.542	90	46-137	12	25	mg/kg	02/22/13 11:36	
2-Chlorotoluene	< 0.000217	0.0500	0.0525	105	0.0478	96	83-129	9	25	mg/kg	02/22/13 11:36	
2-Hexanone	< 0.00112	0.600	0.650	108	0.583	97	52-137	11	25	mg/kg	02/22/13 11:36	
4-Chlorotoluene	< 0.000118	0.0500	0.0517	103	0.0471	94	83-125	9	25	mg/kg	02/22/13 11:36	
Acetone	0.00535	0.600	0.533	89	0.476	79	33-148	11	25	mg/kg	02/22/13 11:36	
Benzene	< 0.000300	0.0500	0.0475	95	0.0433	87	71-119	9	25	mg/kg	02/22/13 11:36	
Bromobenzene	< 0.000198	0.0500	0.0505	101	0.0462	92	84-123	9	25	mg/kg	02/22/13 11:36	
Bromochloromethane	< 0.000215	0.0500	0.0458	92	0.0426	85	71-120	7	25	mg/kg	02/22/13 11:36	
Bromodichloromethane	< 0.000186	0.0500	0.0554	111	0.0509	102	78-126	8	25	mg/kg	02/22/13 11:36	
Bromoform	< 0.000393	0.0500	0.0471	94	0.0429	86	63-136	9	25	mg/kg	02/22/13 11:36	
Bromomethane	< 0.000274	0.0500	0.0405	81	0.0374	75	57-118	8	25	mg/kg	02/22/13 11:36	
Carbon Disulfide	0.000280	0.550	0.590	107	0.546	99	55-136	8	25	mg/kg	02/22/13 11:36	
Carbon Tetrachloride	< 0.000132	0.0500	0.0494	99	0.0455	91	63-135	8	25	mg/kg	02/22/13 11:36	
Chlorobenzene	< 0.000104	0.0500	0.0493	99	0.0456	91	83-121	8	25	mg/kg	02/22/13 11:36	
Chloroethane	< 0.000254	0.0500	0.0421	84	0.0384	77	57-122	9	25	mg/kg	02/22/13 11:36	
Chloroform	0.000140	0.0500	0.0498	100	0.0455	91	74-118	9	25	mg/kg	02/22/13 11:36	
Chloromethane	< 0.000322	0.0500	0.0437	87	0.0398	80	58-110	9	25	mg/kg	02/22/13 11:36	
cis-1,2-Dichloroethene	< 0.000165	0.0500	0.0509	102	0.0472	94	72-131	8	25	mg/kg	02/22/13 11:36	
cis-1,3-Dichloropropene	< 0.000128	0.0500	0.0564	113	0.0520	104	74-135	8	25	mg/kg	02/22/13 11:36	
Dibromochloromethane	< 0.000422	0.0500	0.0453	91	0.0418	84	77-130	8	25	mg/kg	02/22/13 11:36	
Dibromomethane	< 0.000260	0.0500	0.0500	100	0.0459	92	73-126	9	25	mg/kg	02/22/13 11:36	
Dichlorodifluoromethane	< 0.000484	0.0500	0.0505	101	0.0463	93	54-122	9	25	mg/kg	02/22/13 11:36	
Ethylbenzene	< 0.000104	0.0500	0.0509	102	0.0466	93	80-123	9	25	mg/kg	02/22/13 11:36	
Hexachlorobutadiene	< 0.000346	0.0500	0.0504	101	0.0495	99	77-130	2	25	mg/kg	02/22/13 11:36	
Iodomethane (Methyl Iod	ide) <0.000200	0.0500	0.0457	91	0.0421	84	63-116	8	25	mg/kg	02/22/13 11:36	
isopropylbenzene	< 0.000112	0.0500	0.0499	100	0.0464	93	55-155	7	25	mg/kg	02/22/13 11:36	
m,p-Xylenes	< 0.000185	0.100	0.106	106	0.0979	98	78-127	8	25	mg/kg	02/22/13 11:36	
Methylene Chloride	0.00649	0.0500	0.0515	103	0.0486	97	57-134	6	25	mg/kg	02/22/13 11:36	

Page 16 of 20 Final 1.000

Southwest Research Institute

Jet Fuel

Analytical Method:	260B	Matrix: Solid					Pr	ep Method		5030B			
Seq Number:	907617									Date Prep		22/2013	
MB Sample Id:	634196	-1-BLK		LCS Sar	nple Id:	634196-1	-BKS		LCSI	D Sample	ld: 634	196-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE		< 0.000142	0.100	0.114	114	0.107	107	64-148	6	25	mg/kg	02/22/13 11:36	
Naphthalene		< 0.000148	0.0500	0.0491	98	0.0481	96	53-162	2	25	mg/kg	02/22/13 11:36	
n-Butylbenzene		< 0.0000990	0.0500	0.0527	105	0.0494	99	82-127	6	25	mg/kg	02/22/13 11:36	
n-Propylbenzene		< 0.000137	0.0500	0.0538	108	0.0496	99	84-131	8	25	mg/kg	02/22/13 11:36	
o-Xylene		< 0.000149	0.0500	0.0512	102	0.0473	95	79-125	8	25	mg/kg	02/22/13 11:36	
p-Cymene (p-Isopropylto	oluene)	<0.0000800	0.0500	0.0548	110	0.0513	103	84-130	7	25	mg/kg	02/22/13 11:36	
Sec-Butylbenzene		< 0.000121	0.0500	0.0535	107	0.0494	99	84-131	8	25	mg/kg	02/22/13 11:36	
Styrene		< 0.000158	0.0500	0.0554	111	0.0508	102	80-126	9	25	mg/kg	02/22/13 11:36	
tert-Butylbenzene		< 0.0000900	0.0500	0.0529	106	0.0490	98	83-132	8	25	mg/kg	02/22/13 11:36	
Tetrachloroethylene		< 0.000173	0.0500	0.0493	99	0.0455	91	79-124	8	25	mg/kg	02/22/13 11:36	
Toluene		< 0.000117	0.0500	0.0475	95	0.0442	88	74-122	7	25	mg/kg	02/22/13 11:36	
trans-1,2-dichloroethene		< 0.000123	0.0500	0.0456	91	0.0420	84	63-110	8	25	mg/kg	02/22/13 11:36	
trans-1,3-dichloropropen	ie	< 0.000361	0.0500	0.0440	88	0.0418	84	73-125	5	25	mg/kg	02/22/13 11:36	
Trichloroethene		< 0.000147	0.0500	0.0519	104	0.0468	94	78-119	10	25	mg/kg	02/22/13 11:36	
Trichlorofluoromethane		< 0.000186	0.0500	0.0448	90	0.0409	82	71-148	9	25	mg/kg	02/22/13 11:36	
Vinyl Acetate		< 0.000213	0.500	0.553	111	0.498	100	40-154	10	25	mg/kg	02/22/13 11:36	
Vinyl Chloride		< 0.000193	0.0500	0.0411	82	0.0371	74	60-123	10	25	mg/kg	02/22/13 11:36	
Surrogate		MB %Rec	MB Flag	_		LCS Flag	LCSI %Rec		_	mits	Units	Analysis Date	
Dibromofluoromethane		92		1	02		102		53	-142	%	02/22/13 11:36	
1,2-Dichloroethane-D4		101		1	01		98		56	-150	%	02/22/13 11:36	
Toluene-D8		100		1	01		101		70	-130	%	02/22/13 11:36	
4-Bromofluorobenzene		103		1	01		99		68	-152	%	02/22/13 11:36	

Page 17 of 20

Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846 8260B			Prep Method:	SW5030B
Seq Number:	907617	Matrix:	Product	Date Prep:	02/22/2013
Parent Sample Id:	457697-002	MS Sample Id:	457697-002 S	MSD Sample Id:	457697-002 SD

Parent Sample Id: 457697-00)2		MS Sar	nple Id:	457697-00	02 S		MSI) Sample	e Id: 457	697-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 3.70	1250	1150	92	1160	93	72-125	1	25	mg/kg	02/22/13 14:28	
1,1,1-Trichloroethane	<15.1	1250	1100	88	1110	89	75-125	1	25	mg/kg	02/22/13 14:28	
1,1,2,2-Tetrachloroethane	<4.85	1250	2560	205	2760	221	74-125	8	25	mg/kg	02/22/13 14:28	M1
1,1,2-Trichloroethane	< 5.63	1250	1400	112	1460	117	75-127	4	25	mg/kg	02/22/13 14:28	
1,1-Dichloroethane	<3.13	1250	1120	90	1140	91	72-125	2	25	mg/kg	02/22/13 14:28	
1,1-Dichloroethene	<4.80	1250	992	79	998	80	59-172	1	25	mg/kg	02/22/13 14:28	
1,1-Dichloropropene	< 4.95	1250	1060	85	1060	85	75-125	0	25	mg/kg	02/22/13 14:28	
1,2,3-Trichlorobenzene	< 2.65	1250	1340	107	1400	112	75-137	4	25	mg/kg	02/22/13 14:28	
1,2,3-Trichloropropane	< 8.98	1250	1230	98	1270	102	75-125	3	25	mg/kg	02/22/13 14:28	
1,2,4-Trichlorobenzene	<4.78	1250	1310	105	1340	107	75-135	2	25	mg/kg	02/22/13 14:28	
1,2,4-Trimethylbenzene	13500	1250	13200	0	14200	56	75-125	7	25	mg/kg	02/22/13 14:28	M3
1,2-Dibromo-3-Chloropropane	<26.7	1250	1430	114	1530	122	59-125	7	25	mg/kg	02/22/13 14:28	
1,2-Dibromoethane	<4.83	1250	1180	94	1190	95	73-125	1	25	mg/kg	02/22/13 14:28	
1,2-Dichlorobenzene	<3.23	1250	1140	91	1160	93	75-125	2	25	mg/kg	02/22/13 14:28	
1,2-Dichloroethane	< 4.43	1250	1070	86	1090	87	68-127	2	25	mg/kg	02/22/13 14:28	
1,2-Dichloropropane	< 4.05	1250	1100	88	1130	90	74-125	3	25	mg/kg	02/22/13 14:28	
1,3,5-Trimethylbenzene	3790	1250	4590	64	4830	83	70-130	5	25	mg/kg	02/22/13 14:28	M3
1,3-Dichlorobenzene	< 3.98	1250	1150	92	1160	93	75-125	1	25	mg/kg	02/22/13 14:28	
1,3-Dichloropropane	< 5.68	1250	1170	94	1200	96	75-125	3	25	mg/kg	02/22/13 14:28	
1,4-Dichlorobenzene	< 2.43	1250	1120	90	1130	90	75-125	1	25	mg/kg	02/22/13 14:28	
2,2-Dichloropropane	<3.18	1250	1030	82	1120	90	75-125	8	25	mg/kg	02/22/13 14:28	
2-Butanone	<43.2	15000	13700	91	14100	94	75-125	3	25	mg/kg	02/22/13 14:28	
2-Chlorotoluene	< 5.43	1250	1180	94	1190	95	73-125	1	25	mg/kg	02/22/13 14:28	
2-Hexanone	<28.0	15000	13900	93	15900	106	75-125	13	25	mg/kg	02/22/13 14:28	
4-Chlorotoluene	< 2.95	1250	1490	119	1510	121	74-125	1	25	mg/kg	02/22/13 14:28	
Acetone	212	15000	11900	78	12400	81	50-150	4	25	mg/kg	02/22/13 14:28	
Benzene	13.3	1250	1070	85	1100	87	66-142	3	25	mg/kg	02/22/13 14:28	
Bromobenzene	< 4.95	1250	1140	91	1150	92	75-125	1	25	mg/kg	02/22/13 14:28	
Bromochloromethane	< 5.38	1250	1020	82	1060	85	60-140	4	25	mg/kg	02/22/13 14:28	
Bromodichloromethane	<4.65	1250	1190	95	1210	97	75-125	2	25	mg/kg	02/22/13 14:28	
Bromoform	<9.83	1250	926	74	921	74	75-125	1	25	mg/kg	02/22/13 14:28	M2
Bromomethane	< 6.85	1250	845	68	857	69	60-140	1	25	mg/kg	02/22/13 14:28	
Carbon Disulfide	4.50	13800	13300	96	13500	98	60-140	1	25	mg/kg	02/22/13 14:28	
Carbon Tetrachloride	<3.30	1250	1070	86	1090	87	62-125	2	25	mg/kg	02/22/13 14:28	
Chlorobenzene	< 2.60	1250	1110	89	1120	90	60-133	1	25	mg/kg	02/22/13 14:28	
Chloroethane	< 6.35	1250	892	71	893	71	60-140	0	25	mg/kg	02/22/13 14:28	
Chloroform	<3.48	1250	1100	88	1130	90	74-125	3	25	mg/kg	02/22/13 14:28	
Chloromethane	< 8.05	1250	968	77	1000	80	60-140	3	25	mg/kg	02/22/13 14:28	
cis-1,2-Dichloroethene	<4.13	1250	1130	90	1160	93	75-125	3	25	mg/kg	02/22/13 14:28	
cis-1,3-Dichloropropene	<3.20	1250	1250	100	1290	103	74-125	3	25	mg/kg	02/22/13 14:28	
Dibromochloromethane	<10.6	1250	965	77	984	79	73-125	2	25	mg/kg	02/22/13 14:28	
Dibromomethane	<6.50	1250	1100	88	1140	91	69-127	4	25	mg/kg	02/22/13 14:28	
Dichlorodifluoromethane	<12.1	1250	1110	89	1140	91	65-135	3	25	mg/kg	02/22/13 14:28	
Ethylbenzene	1570	1250	2540	78	2640	86	75-125	4	25	mg/kg	02/22/13 14:28	
Hexachlorobutadiene	< 8.65	1250	1240	99	1240	99	75-125	0	25	mg/kg	02/22/13 14:28	
Iodomethane (Methyl Iodide)	< 5.00	1250	1030	82	1040	83	75-125	1	25	mg/kg	02/22/13 14:28	
isopropylbenzene	684	1250	1720	83	1780	88	75-125	3	25	mg/kg	02/22/13 14:28	
m,p-Xylenes	6510	2500	7940	57	8340	73	75-125	5	25	mg/kg	02/22/13 14:28	M2
Methylene Chloride	170	1250	1120	76	1150	78	75-125	3	25	mg/kg	02/22/13 14:28	
	1,0	1200	1120	, 5	1100	, 3		-				

Page 18 of 20 Final 1.000

Southwest Research Institute

Jet Fuel

Seq Number:	907617			1	Matrix:	Product				Date Pre	p: 02/2	22/2013	
Parent Sample Id:	457697-00	2		MS Sam	nple Id:	457697-00	02 S		MSI	O Sample	Id: 4576	697-002 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE		<3.55	2500	2590	104	2690	108	60-140	4	25	mg/kg	02/22/13 14:28	
Naphthalene		1350	1250	2540	95	2740	111	70-130	8	25	mg/kg	02/22/13 14:28	
n-Butylbenzene		1730	1250	2780	84	2960	98	75-125	6	25	mg/kg	02/22/13 14:28	
n-Propylbenzene		2010	1250	3030	82	3180	94	75-125	5	25	mg/kg	02/22/13 14:28	
o-Xylene		3440	1250	4190	60	4400	77	75-125	5	25	mg/kg	02/22/13 14:28	M2
p-Cymene (p-Isopropylte	oluene)	708	1250	1850	91	1930	98	75-125	4	25	mg/kg	02/22/13 14:28	
Sec-Butylbenzene		799	1250	1930	90	1990	95	75-125	3	25	mg/kg	02/22/13 14:28	
Styrene		< 3.95	1250	1370	110	1390	111	75-125	1	25	mg/kg	02/22/13 14:28	
tert-Butylbenzene		42.5	1250	1270	98	1280	99	75-125	1	25	mg/kg	02/22/13 14:28	
Tetrachloroethylene		<4.33	1250	1100	88	1110	89	71-125	1	25	mg/kg	02/22/13 14:28	
Toluene		662	1250	1670	81	1710	84	59-139	2	25	mg/kg	02/22/13 14:28	
trans-1,2-dichloroethene		<3.08	1250	1020	82	1040	83	75-125	2	25	mg/kg	02/22/13 14:28	
trans-1,3-dichloroproper	ne	< 9.03	1250	969	78	1020	82	66-125	5	25	mg/kg	02/22/13 14:28	
Trichloroethene		< 3.68	1250	1130	90	1140	91	62-137	1	25	mg/kg	02/22/13 14:28	
Trichlorofluoromethane		< 4.65	1250	947	76	983	79	67-125	4	25	mg/kg	02/22/13 14:28	
Vinyl Acetate		< 5.33	12500	12000	96	12400	99	60-140	3	25	mg/kg	02/22/13 14:28	
Vinyl Chloride		<4.83	1250	879	70	890	71	60-140	1	25	mg/kg	02/22/13 14:28	
Surrogate				M %I		MS Flag	MSD %Rec			mits	Units	Analysis Date	
Dibromofluoromethane				10	00		101		53	-142	%	02/22/13 14:28	
1,2-Dichloroethane-D4				10	00		98		56	-150	%	02/22/13 14:28	
Toluene-D8				10	05		104		70	-130	%	02/22/13 14:28	
4-Bromofluorobenzene				10	09		108		68	-152	%	02/22/13 14:28	

Page 19 of 20

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Southwest Research Institute

Date/ Time Received: 02/20/2013 12:00:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 457983

Temperature Measuring device used: r-31

Sample	Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	20	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ coole	er? No	
#5 Custody Seals intact on sample bottles?	No	
#6 *Custody Seals Signed and dated?	No	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody	/? Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ rece	eived? Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Cu	50 (March - 1974)	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	N/A	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	N/A	
#20 VOC samples have zero headspace (less than 1/		
#21 <2 for all samples preserved with HNO3,HCL, H2		
#22 >10 for all samples preserved with NaAsO2+NaC	DH, ZnAc+NaOH? N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: tt	PH Device/	Lot#:	
Checkli	ist completed by:	Tanya Torres	Date: 02/21/2013
Check	list reviewed by:		Date: 02/21/2013

Page 20 of 20

Appendix BN EPA Testing Reports: CL12-4716 and CL12-4717

Analytical Report 457697

for Southwest Research Institute

Project Manager: Scott Hutzler

Jet Fuel

CL12-4367

25-FEB-13

Collected By: Client

3725 E. Atlanta Ave, Phoenix, AZ 85040 Ph: (602) 437-0330

Xenco-Houston (EPA Lab code: TX00122):
Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002)
Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054)
New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610)
Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Lakeland: Florida (E84098)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco-Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Page 1 of 29

25-FEB-13

Project Manager: Scott Hutzler Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228

Reference: XENCO Report No(s): 457697

Jet Fuel
Project Address:

Scott Hutzler:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 457697. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 457697 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Skip Harden

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 29

CASE NARRATIVE

Client Name: Southwest Research Institute Project Name: Jet Fuel

Project ID: CL12-4367 Report Date: 25-FEB-13 Work Order Number(s): 457697 Date Received: 02/14/2013

Sample receipt non conformances and comments:
None

Sample receipt non conformances and comments per sample:
None

Flagging Criteria

Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 3.0 9/20/2007. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- D1 Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- M1 Matrix spike recovery was high; the associated blank spike recovery was acceptable.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- M3 The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to spike level. The associated blank spike recovery was acceptable.
- S8 The analysis of the sample required a dilution such that the surrogate recovery calculation does not provide any useful information. The associated blank spike recovery was acceptable.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Sample Cross Reference 457697

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CL12-4716	W	02-13-13 00:00		457697-001
CL12-4717	W	02-13-13 00:00		457697-002

Page 5 of 29

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12-4716 Matrix: Product Date Received: 02.14.13 09.30

Lab Sample Id: 457697-001 Date Collected: 02.13.13 00.00

Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3550

Tech: COR % Moisture:

Analyst: WEW Date Prep: 02.18.13 08.30 Basis: Wet Weight

Seq Number: 907226 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,2,4-Trichlorobenzene	120-82-1	< 500	500	mg/kg	02.18.13 18.09	D1	3000
1,2-Dichlorobenzene	95-50-1	< 500	500	mg/kg	02.18.13 18.09	D 1	3000
1,3-Dichlorobenzene	541-73-1	< 500	500	mg/kg	02.18.13 18.09	D1	3000
1,4-Dichlorobenzene	106-46-7	< 500	500	mg/kg	02.18.13 18.09	D1	3000
2,4,5-Trichlorophenol	95-95-4	< 500	500	mg/kg	02.18.13 18.09	D1	3000
2,4,6-Trichlorophenol	88-06-2	< 500	500	mg/kg	02.18.13 18.09	D1	3000
2,4-Dichlorophenol	120-83-2	< 500	500	mg/kg	02.18.13 18.09	D1	3000
2,4-Dimethylphenol	105-67-9	< 500	500	mg/kg	02.18.13 18.09	D1	3000
2,4-Dinitrophenol	51-28-5	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
2,4-Dinitrotoluene	121-14-2	< 500	500	mg/kg	02.18.13 18.09	D1	3000
2,6-Dinitrotoluene	606-20-2	< 500	500	mg/kg	02.18.13 18.09	D1	3000
2-Chloronaphthalene	91-58-7	< 500	500	mg/kg	02.18.13 18.09	D1	3000
2-Chlorophenol	95-57-8	< 500	500	mg/kg	02.18.13 18.09	D1	3000
2-Methylnaphthalene	91-57-6	1470	500	mg/kg	02.18.13 18.09	D2	3000
2-methylphenol	95-48-7	< 500	500	mg/kg	02.18.13 18.09	D1	3000
2-Nitroaniline	88-74-4	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
2-Nitrophenol	88-75-5	< 500	500	mg/kg	02.18.13 18.09	D1	3000
3&4-Methylphenol	15831-10-4	< 500	500	mg/kg	02.18.13 18.09	D1	3000
3,3-Dichlorobenzidine	91-94-1	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
3-Nitroaniline	99-09-2	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
4,6-dinitro-2-methyl phenol	534-52-1	<1000	1000	mg/kg	02.18.13 18.09	D 1	3000
4-Bromophenyl-phenylether	101-55-3	< 500	500	mg/kg	02.18.13 18.09	D1	3000
4-chloro-3-methylphenol	59-50-7	< 500	500	mg/kg	02.18.13 18.09	D1	3000
4-Chloroaniline	106-47-8	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
4-Chlorophenyl-phenyl ether	7005-72-3	< 500	500	mg/kg	02.18.13 18.09	D1	3000
4-Nitroaniline	100-01-6	<1000	1000	mg/kg	02.18.13 18.09	D 1	3000
4-Nitrophenol	100-02-7	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
Acenaphthene	83-32-9	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Acenaphthylene	208-96-8	< 500	500	mg/kg	02.18.13 18.09	D 1	3000
Aniline (Phenylamine, Aminobenzene)	62-53-3	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
Anthracene	120-12-7	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Benzo(a)anthracene	56-55-3	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Benzo(a)pyrene	50-32-8	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Benzo(b)fluoranthene	205-99-2	< 500	500	mg/kg	02.18.13 18.09	D 1	3000
Benzo(g,h,i)perylene	191-24-2	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Benzo(k)fluoranthene	207-08-9	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Benzoic Acid	65-85-0	<3000	3000	mg/kg	02.18.13 18.09	D1	3000
Benzyl Butyl Phthalate	85-68-7	< 500	500	mg/kg	02.18.13 18.09	D1	3000
bis(2-chloroethoxy) methane	111-91-1	< 500	500	mg/kg	02.18.13 18.09	D1	3000
bis(2-chloroethyl) ether	111-44-4	<500	500	mg/kg	02.18.13 18.09	D1	3000
bis(2-chloroisopropyl) ether	39638-32-9	< 500	500	mg/kg	02.18.13 18.09	D1	3000

Page 6 of 29 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12-4716 Matrix: Product Date Received: 02.14.13 09.30

Lab Sample Id: 457697-001 Date Collected: 02.13.13 00.00

Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3550

Tech: COR % Moisture:

Analyst: WEW Date Prep: 02.18.13 08.30 Basis: Wet Weight

Seq Number: 907226 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
bis(2-ethylhexyl) phthalate	117-81-7	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Chrysene	218-01-9	< 500	500	mg/kg	02.18.13 18.09	D 1	3000
Dibenz(a,h)Anthracene	53-70-3	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Dibenzofuran	132-64-9	< 500	500	mg/kg	02.18.13 18.09	D 1	3000
Diethyl Phthalate	84-66-2	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Dimethyl Phthalate	131-11-3	< 500	500	mg/kg	02.18.13 18.09	D1	3000
di-n-Butyl Phthalate	84-74-2	< 500	500	mg/kg	02.18.13 18.09	D1	3000
di-n-Octyl Phthalate	117-84-0	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Fluoranthene	206-44-0	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Fluorene	86-73-7	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Hexachlorobenzene	118-74-1	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Hexachlorobutadiene	87-68-3	< 500	500	mg/kg	02.18.13 18.09	D 1	3000
Hexachlorocyclopentadiene	77-47-4	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Hexachloroethane	67-72-1	< 500	500	mg/kg	02.18.13 18.09	D 1	3000
Indeno(1,2,3-c,d)Pyrene	193-39-5	< 500	500	mg/kg	02.18.13 18.09	D 1	3000
Isophorone	78-59-1	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Naphthalene	91-20-3	1770	500	mg/kg	02.18.13 18.09	D2	3000
Nitrobenzene	98-95-3	< 500	500	mg/kg	02.18.13 18.09	D1	3000
N-Nitrosodi-n-Propylamine	621-64-7	< 500	500	mg/kg	02.18.13 18.09	D1	3000
N-Nitrosodiphenylamine	86-30-6	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Pentachlorophenol	87-86-5	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
Phenanthrene	85-01-8	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Phenol	108-95-2	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
Pyrene	129-00-0	< 500	500	mg/kg	02.18.13 18.09	D1	3000
Pyridine	110-86-1	<1000	1000	mg/kg	02.18.13 18.09	D1	3000
2-Octenal, (E)- (TIC)	TIC	2040		mg/kg	02.18.13 18.09	D2T4	3000
Benzene, 1,3-dimethyl- (TIC)	TIC	1520		mg/kg	02.18.13 18.09	D2T4	3000
Benzene, 1-ethyl-2-methyl- (TIC)	TIC	4570		mg/kg	02.18.13 18.09	D2T4	3000
Benzene, 1-ethyl-2-methyl- (TIC)	TIC	2120		mg/kg	02.18.13 18.09	D2T4	3000
Benzene, 1-methyl-2-(1-methylethyl)- (TIC)	TIC	1610		mg/kg	02.18.13 18.09	D2T4	3000
Benzene, 1-methyl-3-propyl- (TIC)	TIC	2820		mg/kg	02.18.13 18.09	D2T4	3000
Benzene, 1-methyl-4-(1-methylethyl)- (TIC)	TIC	2250		mg/kg	02.18.13 18.09	D2T4	3000
Cycloheptane, methyl- (TIC)	TIC	3060		mg/kg	02.18.13 18.09	D2T4	3000
Cyclohexane, propyl- (TIC)	TIC	2120		mg/kg	02.18.13 18.09	D2T4	3000
Cyclooctane, 1,4-dimethyl-, cis- (TIC)	TIC	1520		mg/kg	02.18.13 18.09	D2T4	3000
Decane (TIC)	TIC	8650		mg/kg	02.18.13 18.09	D2T4	3000
Decane, 3-methyl- (TIC)	TIC	2350		mg/kg	02.18.13 18.09	D2T4	3000
Ether, hexyl pentyl (TIC)	TIC	1500		mg/kg	02.18.13 18.09	D2T4	3000
Naphthalene, 2,6-dimethyl- (TIC)	TIC	1840		mg/kg	02.18.13 18.09	D2T4	3000
Nonane (TIC)	TIC	6800		mg/kg	02.18.13 18.09	D2T4	3000
Nonane, 4-methyl- (TIC)	TIC	2870		mg/kg	02.18.13 18.09	D2T4	3000

Page 7 of 29 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12-4716 Matrix: Product Date Received: 02.14.13 09.30

Lab Sample Id: 457697-001 Date Collected: 02.13.13 00.00

Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3550

Tech: COR % Moisture:

Analyst: WEW Date Prep: 02.18.13 08.30 Basis: Wet Weight

Seq Number: 907226 SUB: AZ0765

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Octane, 2,6-dimethyl- (TIC)	TIC	3280			mg/kg	02.18.13 18.09	D2T4	3000
Tridecane (TIC)	TIC	1860			mg/kg	02.18.13 18.09	D2T4	3000
Tridecane (TIC)	TIC	6040			mg/kg	02.18.13 18.09	D2T4	3000
Undecane (TIC)	TIC	5610			mg/kg	02.18.13 18.09	D2T4	3000
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
2-Fluorophenol	367-12-4	0	%	25-121		02.18.13 18.09	S8	
Phenol-d6	13127-88-3	0	%	24-113		02.18.13 18.09	S8	
Nitrobenzene-d5	4165-60-0	0	%	23-120		02.18.13 18.09	S8	
2-Fluorobiphenyl	321-60-8	66	%	30-115		02.18.13 18.09		
2,4,6-Tribromophenol	118-79-6	70	%	19-122		02.18.13 18.09		
Terphenyl-D14	1718-51-0	88	%	18-137		02.18.13 18.09		

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12-4716 Matrix: Product Date Received: 02.14.13 09.30

Lab Sample Id: 457697-001 Date Collected: 02.13.13 00.00

Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B

Tech: MCH % Moisture:

Analyst: ZHO Date Prep: 02.21.13 17.10 Basis: Wet Weight

Seq Number: 907536 SUB: AZ0765

Dilution Analysis:

Seq#: 907536 Date Analyzed: 02/21/13 18:32 Date Prep: 02/21/13 17:12

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,1,1-Trichloroethane	71-55-6	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,1,2,2-Tetrachloroethane	79-34-5	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,1,2-Trichloroethane	79-00-5	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,1-Dichloroethane	75-34-3	<125	125	mg/kg	02.21.13 18.10	D 1	25000
1,1-Dichloroethene	75-35-4	<125	125	mg/kg	02.21.13 18.10	D 1	25000
1,1-Dichloropropene	563-58-6	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,2,3-Trichlorobenzene	87-61-6	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,2,3-Trichloropropane	96-18-4	<125	125	mg/kg	02.21.13 18.10	D 1	25000
1,2,4-Trichlorobenzene	120-82-1	<125	125	mg/kg	02.21.13 18.10	D 1	25000
1,2,4-Trimethylbenzene	95-63-6	5630	625	mg/kg	02.21.13 18.32	D2	125000
1,2-Dibromo-3-Chloropropane	96-12-8	<125	125	mg/kg	02.21.13 18.10	D 1	25000
1,2-Dibromoethane	106-93-4	<125	125	mg/kg	02.21.13 18.10	D 1	25000
1,2-Dichlorobenzene	95-50-1	<125	125	mg/kg	02.21.13 18.10	D 1	25000
1,2-Dichloroethane	107-06-2	<125	125	mg/kg	02.21.13 18.10	D 1	25000
1,2-Dichloropropane	78-87-5	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,3,5-Trimethylbenzene	108-67-8	2690	125	mg/kg	02.21.13 18.10	D2	25000
1,3-Dichlorobenzene	541-73-1	<125	125	mg/kg	02.21.13 18.10	D 1	25000
1,3-Dichloropropane	142-28-9	<125	125	mg/kg	02.21.13 18.10	D1	25000
1,4-Dichlorobenzene	106-46-7	<125	125	mg/kg	02.21.13 18.10	D1	25000
2,2-Dichloropropane	594-20-7	<125	125	mg/kg	02.21.13 18.10	D1	25000
2-Butanone	78-93-3	<1250	1250	mg/kg	02.21.13 18.10	D 1	25000
2-Chlorotoluene	95-49-8	<125	125	mg/kg	02.21.13 18.10	D1	25000
2-Hexanone	591-78-6	<1250	1250	mg/kg	02.21.13 18.10	D1	25000
4-Chlorotoluene	106-43-4	<125	125	mg/kg	02.21.13 18.10	D1	25000
Acetone	67-64-1	<2500	2500	mg/kg	02.21.13 18.10	D1	25000
Benzene	71-43-2	<125	125	mg/kg	02.21.13 18.10	D1	25000
Bromobenzene	108-86-1	<125	125	mg/kg	02.21.13 18.10	D1	25000
Bromochloromethane	74-97-5	<125	125	mg/kg	02.21.13 18.10	D1	25000
Bromodichloromethane	75-27-4	<125	125	mg/kg	02.21.13 18.10	D1	25000
Bromoform	75-25-2	<125	125	mg/kg	02.21.13 18.10	D1	25000
Bromomethane	74-83-9	<125	125	mg/kg	02.21.13 18.10	D1	25000
Carbon Disulfide	75-15-0	<1250	1250	mg/kg	02.21.13 18.10	D 1	25000
Carbon Tetrachloride	56-23-5	<125	125	mg/kg	02.21.13 18.10	D 1	25000
Chlorobenzene	108-90-7	<125	125	mg/kg	02.21.13 18.10	D1	25000
Chloroethane	75-00-3	<250	250	mg/kg	02.21.13 18.10	D1	25000
Chloroform	67-66-3	<125	125	mg/kg	02.21.13 18.10	D1	25000
Chloromethane	74-87-3	<250	250	mg/kg	02.21.13 18.10	D1	25000

Page 9 of 29 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12-4716 Matrix: Product Date Received: 02.14.13 09.30

Lab Sample Id: 457697-001 Date Collected: 02.13.13 00.00

Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B

Tech: MCH % Moisture:

Analyst: ZHO Date Prep: 02.21.13 17.10 Basis: Wet Weight

Seq Number: 907536 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
cis-1,2-Dichloroethene	156-59-2	<125	125	mg/kg	02.21.13 18.10	D1	25000
cis-1,3-Dichloropropene	10061-01-5	<125	125	mg/kg	02.21.13 18.10	D1	25000
Dibromochloromethane	124-48-1	<125	125	mg/kg	02.21.13 18.10	D1	25000
Dibromomethane	74-95-3	<125	125	mg/kg	02.21.13 18.10	D1	25000
Dichlorodifluoromethane	75-71-8	<125	125	mg/kg	02.21.13 18.10	D1	25000
Ethylbenzene	100-41-4	1130	125	mg/kg	02.21.13 18.10	D2	25000
Hexachlorobutadiene	87-68-3	<125	125	mg/kg	02.21.13 18.10	D1	25000
Iodomethane (Methyl Iodide)	74-88-4	< 500	500	mg/kg	02.21.13 18.10	D1	25000
isopropylbenzene	98-82-8	481	125	mg/kg	02.21.13 18.10	D2	25000
m,p-Xylenes	179601-23-1	4660	250	mg/kg	02.21.13 18.10	D2	25000
Methylene Chloride	75-09-2	< 500	500	mg/kg	02.21.13 18.10	D1	25000
MTBE	1634-04-4	<125	125	mg/kg	02.21.13 18.10	D1	25000
Naphthalene	91-20-3	1010	250	mg/kg	02.21.13 18.10	D2	25000
n-Butylbenzene	104-51-8	1230	125	mg/kg	02.21.13 18.10	D2	25000
n-Propylbenzene	103-65-1	1410	125	mg/kg	02.21.13 18.10	D2	25000
o-Xylene	95-47-6	2440	125	mg/kg	02.21.13 18.10	D2	25000
p-Cymene (p-Isopropyltoluene)	99-87-6	497	125	mg/kg	02.21.13 18.10	D2	25000
Sec-Butylbenzene	135-98-8	568	125	mg/kg	02.21.13 18.10	D2	25000
Styrene	100-42-5	<125	125	mg/kg	02.21.13 18.10	D1	25000
tert-Butylbenzene	98-06-6	<125	125	mg/kg	02.21.13 18.10	D1	25000
Tetrachloroethylene	127-18-4	<125	125	mg/kg	02.21.13 18.10	D1	25000
Toluene	108-88-3	493	125	mg/kg	02.21.13 18.10	D2	25000
Total Xylenes	1330-20-7	7100	125	mg/kg	02.21.13 18.10	D2	25000
trans-1,2-dichloroethene	156-60-5	<125	125	mg/kg	02.21.13 18.10	D1	25000
trans-1,3-dichloropropene	10061-02-6	<125	125	mg/kg	02.21.13 18.10	D1	25000
Trichloroethene	79-01-6	<125	125	mg/kg	02.21.13 18.10	D1	25000
Trichlorofluoromethane	75-69-4	<125	125	mg/kg	02.21.13 18.10	D1	25000
Vinyl Acetate	108-05-4	<1250	1250	mg/kg	02.21.13 18.10	D1	25000
Vinyl Chloride	75-01-4	< 50.0	50.0	mg/kg	02.21.13 18.10	D1	25000
Benzene, 1,2,3-trimethyl- (TIC)	TIC	3140		mg/kg	02.21.13 18.10	D2T4	25000
Benzene, 1,2,4,5-tetramethyl- (TIC)	TIC	3040		mg/kg	02.21.13 18.10	D2T4	25000
Benzene, 1-ethyl-2-methyl- (TIC)	TIC	3110		mg/kg	02.21.13 18.10	D2T4	25000
Benzene, 1-ethyl-3-methyl- (TIC)	TIC	6870		mg/kg	02.21.13 18.10	D2T4	25000
Benzene, 1-methyl-3-propyl- (TIC)	TIC	3110		mg/kg	02.21.13 18.10	D2T4	25000
Cyclohexane, propyl- (TIC)	TIC	4100		mg/kg	02.21.13 18.10	D2T4	25000
Dodecane (TIC)	TIC	4650		mg/kg	02.21.13 18.10	D2T4	25000
Dodecane, 2,6,10-trimethyl- (TIC)	TIC	11200		mg/kg	02.21.13 18.10	D2T4	25000
Nonane, 3-methyl- (TIC)	TIC	3660		mg/kg	02.21.13 18.10	D2T4	25000
Undecane (TIC)	TIC	6890		mg/kg	02.21.13 18.10	D2T4	25000

Page 10 of 29 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12-4716 Matrix: Product Date Received: 02.14.13 09.30

Lab Sample Id: 457697-001 Date Collected: 02.13.13 00.00

Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B

Tech: MCH % Moisture:

Analyst: ZHO Date Prep: 02.21.13 17.10 Basis: Wet Weight

Seq Number: 907536 SUB: AZ0765

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date Flag
Dibromofluoromethane	1868-53-7	97	%	53-142	02.21.13 18.10
1,2-Dichloroethane-D4	17060-07-0	100	%	56-150	02.21.13 18.10
Toluene-D8	2037-26-5	103	%	70-130	02.21.13 18.10
4-Bromofluorobenzene	460-00-4	103	%	68-152	02.21.13 18.10

Page 11 of 29

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12-4717 Matrix: Product Date Received: 02.14.13 09.30

Lab Sample Id: 457697-002 Date Collected: 02.13.13 00.00

Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3550

Tech: COR % Moisture:

Analyst: WEW Date Prep: 02.18.13 08.33 Basis: Wet Weight

Seq Number: 907226 SUB: AZ0765

Seq Number. 907220					SUB. AZ0703		
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,2,4-Trichlorobenzene	120-82-1	< 500	500	mg/kg	02.18.13 18.25	D1	3000
1,2-Dichlorobenzene	95-50-1	< 500	500	mg/kg	02.18.13 18.25	D1	3000
1,3-Dichlorobenzene	541-73-1	< 500	500	mg/kg	02.18.13 18.25	D1	3000
1,4-Dichlorobenzene	106-46-7	< 500	500	mg/kg	02.18.13 18.25	D1	3000
2,4,5-Trichlorophenol	95-95-4	< 500	500	mg/kg	02.18.13 18.25	D1	3000
2,4,6-Trichlorophenol	88-06-2	< 500	500	mg/kg	02.18.13 18.25	D1	3000
2,4-Dichlorophenol	120-83-2	< 500	500	mg/kg	02.18.13 18.25	D1	3000
2,4-Dimethylphenol	105-67-9	< 500	500	mg/kg	02.18.13 18.25	D1	3000
2,4-Dinitrophenol	51-28-5	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
2,4-Dinitrotoluene	121-14-2	< 500	500	mg/kg	02.18.13 18.25	D1	3000
2,6-Dinitrotoluene	606-20-2	< 500	500	mg/kg	02.18.13 18.25	D1	3000
2-Chloronaphthalene	91-58-7	< 500	500	mg/kg	02.18.13 18.25	D1	3000
2-Chlorophenol	95-57-8	< 500	500	mg/kg	02.18.13 18.25	D1	3000
2-Methylnaphthalene	91-57-6	4270	500	mg/kg	02.18.13 18.25	D2	3000
2-methylphenol	95-48-7	< 500	500	mg/kg	02.18.13 18.25	D 1	3000
2-Nitroaniline	88-74-4	<1000	1000	mg/kg	02.18.13 18.25	D 1	3000
2-Nitrophenol	88-75-5	< 500	500	mg/kg	02.18.13 18.25	D1	3000
3&4-Methylphenol	15831-10-4	< 500	500	mg/kg	02.18.13 18.25	D1	3000
3,3-Dichlorobenzidine	91-94-1	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
3-Nitroaniline	99-09-2	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
4,6-dinitro-2-methyl phenol	534-52-1	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
4-Bromophenyl-phenylether	101-55-3	< 500	500	mg/kg	02.18.13 18.25	D1	3000
4-chloro-3-methylphenol	59-50-7	< 500	500	mg/kg	02.18.13 18.25	D1	3000
4-Chloroaniline	106-47-8	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
4-Chlorophenyl-phenyl ether	7005-72-3	< 500	500	mg/kg	02.18.13 18.25	D1	3000
4-Nitroaniline	100-01-6	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
4-Nitrophenol	100-02-7	<1000	1000	mg/kg	02.18.13 18.25	D 1	3000
Acenaphthene	83-32-9	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Acenaphthylene	208-96-8	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Aniline (Phenylamine, Aminobenzene)	62-53-3	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
Anthracene	120-12-7	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Benzo(a)anthracene	56-55-3	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Benzo(a)pyrene	50-32-8	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Benzo(b)fluoranthene	205-99-2	< 500	500	mg/kg	02.18.13 18.25	D 1	3000
Benzo(g,h,i)perylene	191-24-2	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Benzo(k)fluoranthene	207-08-9	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Benzoic Acid	65-85-0	<3000	3000	mg/kg	02.18.13 18.25	D1	3000
Benzyl Butyl Phthalate	85-68-7	< 500	500	mg/kg	02.18.13 18.25	D1	3000
bis(2-chloroethoxy) methane	111-91-1	< 500	500	mg/kg	02.18.13 18.25	D1	3000
bis(2-chloroethyl) ether	111-44-4	< 500	500	mg/kg	02.18.13 18.25	D1	3000
bis(2-chloroisopropyl) ether	39638-32-9	< 500	500	mg/kg	02.18.13 18.25	D1	3000
				3 - 3			

Page 12 of 29

Southwest Research Institute, San Antonio, TX

Jet Fuel

SUB: AZ0765

Sample Id: CL12-4717 Matrix: Product Date Received: 02.14.13 09.30

Lab Sample Id: 457697-002 Date Collected: 02.13.13 00.00

Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3550

Tech: COR % Moisture:

Analyst: WEW Date Prep: 02.18.13 08.33 Basis: Wet Weight

Seq Number: 907226

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
bis(2-ethylhexyl) phthalate	117-81-7	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Chrysene	218-01-9	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Dibenz(a,h)Anthracene	53-70-3	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Dibenzofuran	132-64-9	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Diethyl Phthalate	84-66-2	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Dimethyl Phthalate	131-11-3	< 500	500	mg/kg	02.18.13 18.25	D1	3000
di-n-Butyl Phthalate	84-74-2	< 500	500	mg/kg	02.18.13 18.25	D1	3000
di-n-Octyl Phthalate	117-84-0	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Fluoranthene	206-44-0	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Fluorene	86-73-7	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Hexachlorobenzene	118-74-1	< 500	500	mg/kg	02.18.13 18.25	D 1	3000
Hexachlorobutadiene	87-68-3	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Hexachlorocyclopentadiene	77-47-4	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Hexachloroethane	67-72-1	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Indeno(1,2,3-c,d)Pyrene	193-39-5	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Isophorone	78-59-1	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Naphthalene	91-20-3	4760	500	mg/kg	02.18.13 18.25	D2	3000
Nitrobenzene	98-95-3	< 500	500	mg/kg	02.18.13 18.25	D1	3000
N-Nitrosodi-n-Propylamine	621-64-7	< 500	500	mg/kg	02.18.13 18.25	D1	3000
N-Nitrosodiphenylamine	86-30-6	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Pentachlorophenol	87-86-5	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
Phenanthrene	85-01-8	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Phenol	108-95-2	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
Pyrene	129-00-0	< 500	500	mg/kg	02.18.13 18.25	D1	3000
Pyridine	110-86-1	<1000	1000	mg/kg	02.18.13 18.25	D1	3000
Benzene, 1-ethyl-2-methyl- (TIC)	TIC	5660		mg/kg	02.18.13 18.25	D2T4	3000
Benzene, 1-ethyl-2-methyl- (TIC)	TIC	3120		mg/kg	02.18.13 18.25	D2T4	3000
Benzene, 1-methyl-3-propyl- (TIC)	TIC	3820		mg/kg	02.18.13 18.25	D2T4	3000
Benzene, 1-methyl-4-(1-methylethyl (TIC)	TIC	2280		mg/kg	02.18.13 18.25	D2T4	3000
Benzene, 4-ethyl-1,2-dimethyl- (TIC)	TIC	2810		mg/kg	02.18.13 18.25	D2T4	3000
Benzene, 4-ethyl-1,2-dimethyl- (TIC)	TIC	2170		mg/kg	02.18.13 18.25	D2T4	3000
Benzene, propyl- (TIC)	TIC	2880		mg/kg	02.18.13 18.25	D2T4	3000
Cyclohexane, butyl- (TIC)	TIC	2700		mg/kg	02.18.13 18.25	D2T4	3000
Decane (TIC)	TIC	9690		mg/kg	02.18.13 18.25	D2T4	3000
Decane, 3-methyl- (TIC)	TIC	3310		mg/kg	02.18.13 18.25	D2T4	3000
Hexadecane (TIC)	TIC	2490		mg/kg	02.18.13 18.25	D2T4	3000
Hexadecane (TIC)	TIC	6140		mg/kg	02.18.13 18.25	D2T4	3000
Hexanal, 3,5,5-trimethyl- (TIC)	TIC	2490		mg/kg	02.18.13 18.25	D2T4	3000
Naphthalene, 2,3-dimethyl- (TIC)	TIC	4240		mg/kg	02.18.13 18.25	D2T4	3000
Nonane (TIC)	TIC	8730		mg/kg	02.18.13 18.25	D2T4	3000
Octane, 2,6-dimethyl- (TIC)	TIC	4360		mg/kg	02.18.13 18.25	D2T4	3000

Page 13 of 29 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12-4717 Matrix: Product Date Received: 02.14.13 09.30

Lab Sample Id: 457697-002 Date Collected: 02.13.13 00.00

Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3550

Tech: COR % Moisture:

Analyst: WEW Date Prep: 02.18.13 08.33 Basis: Wet Weight

Seq Number: 907226 SUB: AZ0765

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Octane, 4-methyl- (TIC)	TIC	2100			mg/kg	02.18.13 18.25	D2T4	3000
Tetradecane (TIC)	TIC	4470			mg/kg	02.18.13 18.25	D2T4	3000
Tetradecane (TIC)	TIC	10600			mg/kg	02.18.13 18.25	D2T4	3000
p-Xylene (TIC)	TIC	2260			mg/kg	02.18.13 18.25	D2T4	3000
Surrogate	Cas Number	% Recovery	Units	Limits		Analysis Date	Flag	
2-Fluorophenol	367-12-4	0	%	25-121		02.18.13 18.25	S8	
Phenol-d6	13127-88-3	0	%	24-113		02.18.13 18.25	S8	
Nitrobenzene-d5	4165-60-0	0	%	23-120		02.18.13 18.25	S8	
2-Fluorobiphenyl	321-60-8	52	%	30-115		02.18.13 18.25		
2,4,6-Tribromophenol	118-79-6	64	%	19-122		02.18.13 18.25		
Terphenyl-D14	1718-51-0	86	%	18-137		02.18.13 18.25		

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12-4717 Matrix: Product Date Received: 02.14.13 09.30

Lab Sample Id: 457697-002 Date Collected: 02.13.13 00.00

Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B

Tech: ZHO % Moisture:

Analyst: ZHO Date Prep: 02.22.13 13.14 Basis: Wet Weight

Seq Number: 907617 SUB: AZ0765

Dilution Analysis:

Seq#: 907617 Date Analyzed: 02/22/13 14:06 Date Prep: 02/22/13 13:42

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,1,1-Trichloroethane	71-55-6	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,1,2,2-Tetrachloroethane	79-34-5	<125	125	mg/kg	02.22.13 13.31	D1M1	25000
1,1,2-Trichloroethane	79-00-5	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,1-Dichloroethane	75-34-3	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,1-Dichloroethene	75-35-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,1-Dichloropropene	563-58-6	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2,3-Trichlorobenzene	87-61-6	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2,3-Trichloropropane	96-18-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2,4-Trichlorobenzene	120-82-1	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2,4-Trimethylbenzene	95-63-6	15400	625	mg/kg	02.22.13 14.06	D2M2	125000
1,2-Dibromo-3-Chloropropane	96-12-8	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2-Dibromoethane	106-93-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2-Dichlorobenzene	95-50-1	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2-Dichloroethane	107-06-2	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,2-Dichloropropane	78-87-5	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,3,5-Trimethylbenzene	108-67-8	4350	625	mg/kg	02.22.13 14.06	D2M2	125000
1,3-Dichlorobenzene	541-73-1	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,3-Dichloropropane	142-28-9	<125	125	mg/kg	02.22.13 13.31	D1	25000
1,4-Dichlorobenzene	106-46-7	<125	125	mg/kg	02.22.13 13.31	D1	25000
2,2-Dichloropropane	594-20-7	<125	125	mg/kg	02.22.13 13.31	D1	25000
2-Butanone	78-93-3	<1250	1250	mg/kg	02.22.13 13.31	D1	25000
2-Chlorotoluene	95-49-8	<125	125	mg/kg	02.22.13 13.31	D1	25000
2-Hexanone	591-78-6	<1250	1250	mg/kg	02.22.13 13.31	D1	25000
4-Chlorotoluene	106-43-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
Acetone	67-64-1	<2500	2500	mg/kg	02.22.13 13.31	D1	25000
Benzene	71-43-2	<125	125	mg/kg	02.22.13 13.31	D1	25000
Bromobenzene	108-86-1	<125	125	mg/kg	02.22.13 13.31	D 1	25000
Bromochloromethane	74-97-5	<125	125	mg/kg	02.22.13 13.31	D1	25000
Bromodichloromethane	75-27-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
Bromoform	75-25-2	<125	125	mg/kg	02.22.13 13.31	D1M2	25000
Bromomethane	74-83-9	<125	125	mg/kg	02.22.13 13.31	D1	25000
Carbon Disulfide	75-15-0	<1250	1250	mg/kg	02.22.13 13.31	D1	25000
Carbon Tetrachloride	56-23-5	<125	125	mg/kg	02.22.13 13.31	D1	25000
Chlorobenzene	108-90-7	<125	125	mg/kg	02.22.13 13.31	D1	25000
Chloroethane	75-00-3	<250	250	mg/kg	02.22.13 13.31	D1	25000
Chloroform	67-66-3	<125	125	mg/kg	02.22.13 13.31	D1	25000
Chloromethane	74-87-3	<250	250	mg/kg	02.22.13 13.31	D1	25000

Page 15 of 29

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12-4717 Matrix: Product Date Received: 02.14.13 09.30

Lab Sample Id: 457697-002 Date Collected: 02.13.13 00.00

Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B

Tech: ZHO % Moisture:

Analyst: ZHO Date Prep: 02.22.13 13.14 Basis: Wet Weight

Seq Number: 907617 SUB: AZ0765

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
cis-1,2-Dichloroethene	156-59-2	<125	125	mg/kg	02.22.13 13.31	D1	25000
cis-1,3-Dichloropropene	10061-01-5	<125	125	mg/kg	02.22.13 13.31	D1	25000
Dibromochloromethane	124-48-1	<125	125	mg/kg	02.22.13 13.31	D1	25000
Dibromomethane	74-95-3	<125	125	mg/kg	02.22.13 13.31	D1	25000
Dichlorodifluoromethane	75-71-8	<125	125	mg/kg	02.22.13 13.31	D1	25000
Ethylbenzene	100-41-4	1570	125	mg/kg	02.22.13 13.31	D2	25000
Hexachlorobutadiene	87-68-3	<125	125	mg/kg	02.22.13 13.31	D1	25000
Iodomethane (Methyl Iodide)	74-88-4	< 500	500	mg/kg	02.22.13 13.31	D1	25000
isopropylbenzene	98-82-8	684	125	mg/kg	02.22.13 13.31	D2	25000
m,p-Xylenes	179601-23-1	6510	250	mg/kg	02.22.13 13.31	D2M2	25000
Methylene Chloride	75-09-2	< 500	500	mg/kg	02.22.13 13.31	D1	25000
MTBE	1634-04-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
Naphthalene	91-20-3	1350	250	mg/kg	02.22.13 13.31	D2	25000
n-Butylbenzene	104-51-8	1730	125	mg/kg	02.22.13 13.31	D2	25000
n-Propylbenzene	103-65-1	2010	125	mg/kg	02.22.13 13.31	D2	25000
o-Xylene	95-47-6	3440	125	mg/kg	02.22.13 13.31	D2M2	25000
p-Cymene (p-Isopropyltoluene)	99-87-6	708	125	mg/kg	02.22.13 13.31	D2	25000
Sec-Butylbenzene	135-98-8	799	125	mg/kg	02.22.13 13.31	D2	25000
Styrene	100-42-5	<125	125	mg/kg	02.22.13 13.31	D1	25000
tert-Butylbenzene	98-06-6	<125	125	mg/kg	02.22.13 13.31	D1	25000
Tetrachloroethylene	127-18-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
Toluene	108-88-3	662	125	mg/kg	02.22.13 13.31	D2	25000
Total Xylenes	1330-20-7	9950	125	mg/kg	02.22.13 13.31	D2	25000
trans-1,2-dichloroethene	156-60-5	<125	125	mg/kg	02.22.13 13.31	D1	25000
trans-1,3-dichloropropene	10061-02-6	<125	125	mg/kg	02.22.13 13.31	D1	25000
Trichloroethene	79-01-6	<125	125	mg/kg	02.22.13 13.31	D1	25000
Trichlorofluoromethane	75-69-4	<125	125	mg/kg	02.22.13 13.31	D1	25000
Vinyl Acetate	108-05-4	<1250	1250	mg/kg	02.22.13 13.31	D1	25000
Vinyl Chloride	75-01-4	< 50.0	50.0	mg/kg	02.22.13 13.31	D1	25000
Benzene, 1-ethyl-2-methyl- (TIC)	TIC	3850		mg/kg	02.22.13 13.31	D2T4	25000
Benzene, 1-ethyl-3-methyl- (TIC)	TIC	8150		mg/kg	02.22.13 13.31	D2T4	25000
Benzene, 1-methyl-3-propyl- (TIC)	TIC	3780		mg/kg	02.22.13 13.31	D2T4	25000
Cyclohexane, propyl- (TIC)	TIC	6490		mg/kg	02.22.13 13.31	D2T4	25000
Dodecane (TIC)	TIC	4920		mg/kg	02.22.13 13.31	D2T4	25000
Nonane, 3,7-dimethyl- (TIC)	TIC	5890		mg/kg	02.22.13 13.31	D2T4	25000
Nonane, 4,5-dimethyl- (TIC)	TIC	4720		mg/kg	02.22.13 13.31	D2T4	25000
Octane, 3,6-dimethyl- (TIC)	TIC	5710		mg/kg	02.22.13 13.31	D2T4	25000
Octane, 3-methyl- (TIC)	TIC	3760		mg/kg	02.22.13 13.31	D2T4	25000
Undecane (TIC)	TIC	8500		mg/kg	02.22.13 13.31	D2T4	25000

Page 16 of 29 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL12-4717 Matrix: Product Date Received: 02.14.13 09.30

Lab Sample Id: 457697-002 Date Collected: 02.13.13 00.00

Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B

Tech: ZHO % Moisture:

Analyst: ZHO Date Prep: 02.22.13 13.14 Basis: Wet Weight

Seq Number: 907617 SUB: AZ0765

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date Flag
Dibromofluoromethane	1868-53-7	90	%	53-142	02.22.13 13.31
1,2-Dichloroethane-D4	17060-07-0	96	%	56-150	02.22.13 13.31
Toluene-D8	2037-26-5	106	%	70-130	02.22.13 13.31
4-Bromofluorobenzene	460-00-4	105	%	68-152	02.22.13 13.31

Page 17 of 29

Southwest Research Institute

Jet Fuel

 Analytical Methot
 SVOCs by SW-846 8270C
 Prep Method
 SW3550

 Seq Number:
 907226
 Matrix:
 Solid
 Date Prep:
 02/18/2013

 MB Sample Id:
 633898-1-BLK
 LCS Sample Id:
 633898-1-BKS
 LCSD Sample Id:
 633898-1-BSD

MB Sample Id:	33898-1-BLK		LCS Sai	npie ia:	033898-1	-DV2		LCS	D Sample	e 1a: 633	999-1-DSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene	< 0.0304	1.67	1.02	61	1.05	63	55-106	3	30	mg/kg	02/18/13 16:16	
1,2-Dichlorobenzene	< 0.0362	1.67	1.08	65	1.15	69	54-104	6	30	mg/kg	02/18/13 16:16	
1,3-Dichlorobenzene	< 0.0305	1.67	1.07	64	1.15	69	53-105	7	30	mg/kg	02/18/13 16:16	
1,4-Dichlorobenzene	< 0.0329	1.67	1.08	65	1.14	68	52-104	5	30	mg/kg	02/18/13 16:16	
2,4,5-Trichlorophenol	< 0.0391	1.67	1.22	73	1.21	72	53-128	1	30	mg/kg	02/18/13 16:16	
2,4,6-Trichlorophenol	< 0.0268	1.67	1.12	67	1.16	69	58-119	4	30	mg/kg	02/18/13 16:16	
2,4-Dichlorophenol	< 0.0314	1.67	1.13	68	1.15	69	58-113	2	30	mg/kg	02/18/13 16:16	
2,4-Dimethylphenol	< 0.0784	1.67	1.17	70	1.19	71	56-112	2	30	mg/kg	02/18/13 16:16	
2,4-Dinitrophenol	< 0.0691	1.67	1.24	74	1.27	76	38-136	2	40	mg/kg	02/18/13 16:16	
2,4-Dinitrotoluene	< 0.0318	1.67	1.28	77	1.25	75	59-115	2	30	mg/kg	02/18/13 16:16	
2,6-Dinitrotoluene	< 0.0319	1.67	1.16	69	1.14	68	58-114	2	30	mg/kg	02/18/13 16:16	
2-Chloronaphthalene	< 0.0264	1.67	1.11	66	1.13	68	40-132	2	30	mg/kg	02/18/13 16:16	
2-Chlorophenol	< 0.0323	1.67	1.13	68	1.18	71	53-109	4	30	mg/kg	02/18/13 16:16	
2-Methylnaphthalene	< 0.0342	1.67	1.11	66	1.14	68	53-108	3	30	mg/kg	02/18/13 16:16	
2-methylphenol	< 0.0433	1.67	1.22	73	1.24	74	48-118	2	30	mg/kg	02/18/13 16:16	
2-Nitroaniline	< 0.0294	1.67	1.03	62	1.19	71	54-116	14	40	mg/kg	02/18/13 16:16	
2-Nitrophenol	< 0.0228	1.67	0.943	56	1.06	63	54-113	12	30	mg/kg	02/18/13 16:16	
3&4-Methylphenol	< 0.0758	1.67	1.29	77	1.29	77	53-115	0	30	mg/kg	02/18/13 16:16	
3,3-Dichlorobenzidine	< 0.0457	1.67	1.39	83	1.30	78	55-129	7	40	mg/kg	02/18/13 16:16	
3-Nitroaniline	< 0.0346	1.67	1.25	75	1.20	72	57-119	4	40	mg/kg	02/18/13 16:16	
4,6-dinitro-2-methyl pheno	ol <0.0271	1.67	1.22	73	1.18	71	56-117	3	40	mg/kg	02/18/13 16:16	
4-Bromophenyl-phenyleth		1.67	1.19	71	1.10	66	57-118	8	30	mg/kg	02/18/13 16:16	
4-chloro-3-methylphenol	< 0.0350	1.67	1.18	71	1.19	71	55-114	1	30	mg/kg	02/18/13 16:16	
4-Chloroaniline	< 0.0668	1.67	1.17	70	1.18	71	54-112	1	40	mg/kg	02/18/13 16:16	
4-Chlorophenyl-phenyl eth	ner <0.0335	1.67	1.19	71	1.15	69	57-111	3	30	mg/kg	02/18/13 16:16	
4-Nitroaniline	< 0.0300	1.67	1.29	77	1.23	74	56-121	5	40	mg/kg	02/18/13 16:16	
4-Nitrophenol	< 0.0311	1.67	1.41	84	1.33	80	42-134	6	40	mg/kg	02/18/13 16:16	
Acenaphthene	< 0.0358	1.67	1.17	70	1.15	69	54-112	2	30	mg/kg	02/18/13 16:16	
Acenaphthylene	< 0.0338	1.67	1.14	68	1.15	69	54-113	1	30	mg/kg	02/18/13 16:16	
Aniline (Phenylamine, Amino		1.67	1.24	74	1.28	77	50-112	3	40	mg/kg	02/18/13 16:16	
Anthracene	< 0.0257	1.67	1.28	77	1.14	68	57-118	12	30	mg/kg	02/18/13 16:16	
Benzo(a)anthracene	< 0.0280	1.67	1.34	80	1.24	74	58-119	8	30	mg/kg	02/18/13 16:16	
Benzo(a)pyrene	< 0.0291	1.67	1.36	81	1.27	76	58-127	7	30	mg/kg	02/18/13 16:16	
Benzo(b)fluoranthene	< 0.0270	1.67	1.33	80	1.31	78	50-122	2	30	mg/kg	02/18/13 16:16	
Benzo(g,h,i)perylene	< 0.0294	1.67	1.35	81	1.26	75	57-125	7	30	mg/kg	02/18/13 16:16	
Benzo(k)fluoranthene	< 0.0390	1.67	1.34	80	1.17	70	59-126	14	30	mg/kg	02/18/13 16:16	
Benzoic Acid	< 0.0483	5.00	3.81	76	4.09	82	31-133	7	50	mg/kg	02/18/13 16:16	
Benzyl Butyl Phthalate	< 0.0259	1.67	1.35	81	1.28	77	55-129	5	30	mg/kg	02/18/13 16:16	
bis(2-chloroethoxy) metha	ne <0.0372	1.67	1.15	69	1.18	71	49-112	3	30	mg/kg	02/18/13 16:16	
bis(2-chloroethyl) ether	< 0.0358	1.67	1.14	68	1.20	72	50-108	5	30	mg/kg	02/18/13 16:16	
bis(2-chloroisopropyl) eth	er <0.0334	1.67	1.29	77	1.33	80	45-111	3	30	mg/kg	02/18/13 16:16	
bis(2-ethylhexyl) phthalate	< 0.0266	1.67	1.45	87	1.35	81	54-134	7	30	mg/kg	02/18/13 16:16	
Chrysene	< 0.0303	1.67	1.34	80	1.26	75	58-120	6	30	mg/kg	02/18/13 16:16	
Dibenz(a,h)Anthracene	< 0.0351	1.67	1.35	81	1.26	75	60-121	7	30	mg/kg	02/18/13 16:16	
Dibenzofuran	< 0.0329	1.67	1.16	69	1.16	69	56-110	0	30	mg/kg	02/18/13 16:16	
Diethyl Phthalate	< 0.0345	1.67	1.24	74	1.18	71	58-113	5	30	mg/kg	02/18/13 16:16	
Dimethyl Phthalate	< 0.0344	1.67	1.21	72	1.15	69	58-112	5	30	mg/kg	02/18/13 16:16	
di-n-Butyl Phthalate	< 0.0287	1.67	1.33	80	1.22	73	58-126	9	30	mg/kg	02/18/13 16:16	
di-n-Octyl Phthalate	< 0.0316	1.67	1.38	83	1.30	78	54-130	6	30	mg/kg	02/18/13 16:16	
										0 8		

Page 18 of 29

Pyridine

Analytical Method: SVOCs by SW-846 8270C

< 0.0427

1.67

QC Summary 457697

Southwest Research Institute

Jet Fuel

Prep Method: SW3550

mg/kg 02/18/13 16:16

40

rining tiem method.	0.0000, 0 0	02.00						1.1	cp mem	Ju. 511.	3330	
Seq Number:	907226			Matrix:	Solid				Date Pr	ep: 02/1	8/2013	
MB Sample Id:	633898-1-BLK		LCS Sar	mple Id:	633898-1	-BKS		LCSI	O Sample	e Id: 633	898-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Fluoranthene	< 0.0315	1.67	1.28	77	1.16	69	59-119	10	30	mg/kg	02/18/13 16:16	
Fluorene	< 0.0356	1.67	1.19	71	1.16	69	56-112	3	30	mg/kg	02/18/13 16:16	
Hexachlorobenzene	< 0.0292	1.67	1.19	71	1.10	66	58-119	8	30	mg/kg	02/18/13 16:16	
Hexachlorobutadiene	< 0.0313	1.67	0.986	59	1.05	63	55-105	6	30	mg/kg	02/18/13 16:16	
Hexachlorocyclopentad	iene <0.0147	1.67	0.576	34	0.620	37	18-119	7	30	mg/kg	02/18/13 16:16	
Hexachloroethane	< 0.0373	1.67	1.07	64	1.14	68	54-105	6	30	mg/kg	02/18/13 16:16	
Indeno(1,2,3-c,d)Pyrene	< 0.0309	1.67	1.35	81	1.24	74	59-118	8	30	mg/kg	02/18/13 16:16	
Isophorone	< 0.0299	1.67	1.19	71	1.18	71	46-116	1	30	mg/kg	02/18/13 16:16	
Naphthalene	< 0.0344	1.67	1.10	66	1.13	68	54-106	3	30	mg/kg	02/18/13 16:16	
Nitrobenzene	< 0.0291	1.67	1.10	66	1.16	69	44-118	5	30	mg/kg	02/18/13 16:16	
N-Nitrosodi-n-Propylan	nine <0.0399	1.67	1.32	79	1.31	78	50-111	1	30	mg/kg	02/18/13 16:16	
N-Nitrosodiphenylamin	e <0.0249	1.67	1.23	74	1.17	70	55-119	5	30	mg/kg	02/18/13 16:16	
Pentachlorophenol	< 0.0221	1.67	1.36	81	1.26	75	38-128	8	40	mg/kg	02/18/13 16:16	
Phenanthrene	< 0.0332	1.67	1.22	73	1.15	69	56-118	6	30	mg/kg	02/18/13 16:16	
Phenol	< 0.0358	1.67	1.17	70	1.21	72	50-114	3	40	mg/kg	02/18/13 16:16	
Pyrene	< 0.0333	1.67	1.37	82	1.28	77	56-125	7	30	mg/kg	02/18/13 16:16	
D ' I'	-0.0427	1.67	1 17	70	1 27	7.0	44 100	0	4.0		02/10/12 16:16	

Surrogate		MB LCS lag %Rec	LCS LCSD Flag %Rec		Units	Analysis Date
2-Fluorophenol	70	66	70	25-121	%	02/18/13 16:16
Phenol-d6	73	75	76	24-113	%	02/18/13 16:16
Nitrobenzene-d5	57	58	60	23-120	%	02/18/13 16:16
2-Fluorobiphenyl	58	61	60	30-115	%	02/18/13 16:16
2,4,6-Tribromophenol	55	72	66	19-122	%	02/18/13 16:16
Terphenyl-D14	69	71	67	18-137	%	02/18/13 16:16

1.27

76 44-102 8

1.17 70

Southwest Research Institute

Jet Fuel

Analytical Method:	SVOCs by SW-846 8270C			Prep Method:	SW3550
Seq Number:	907226	Matrix:	Soil	Date Prep:	02/18/2013
Parent Sample Id:	457734-001	MS Sample Id:	457734-001 S	MSD Sample Id:	457734-001 SD

Parent Sample Id: 457/34-00	I		MS Sai	npie ia:	43//34-00	113		MSI	Sample	e Id: 437	734-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trichlorobenzene	< 0.0334	1.83	1.08	59	1.05	57	37-133	3	30	mg/kg	02/18/13 17:04	
1,2-Dichlorobenzene	< 0.0397	1.83	1.17	64	1.10	60	65-135	6	30	mg/kg	02/18/13 17:04	M2
1,3-Dichlorobenzene	< 0.0335	1.83	1.14	62	1.06	58	65-135	7	30	mg/kg	02/18/13 17:04	M2
1,4-Dichlorobenzene	< 0.0360	1.83	1.14	62	1.07	58	36-134	6	30	mg/kg	02/18/13 17:04	
2,4,5-Trichlorophenol	< 0.0429	1.83	1.39	76	1.32	72	65-135	5	30	mg/kg	02/18/13 17:04	
2,4,6-Trichlorophenol	< 0.0294	1.83	1.30	71	1.22	67	65-135	6	30	mg/kg	02/18/13 17:04	
2,4-Dichlorophenol	< 0.0344	1.83	1.23	67	1.17	64	65-135	5	30	mg/kg	02/18/13 17:04	M2
2,4-Dimethylphenol	< 0.0860	1.83	1.29	70	1.22	67	65-135	6	30	mg/kg	02/18/13 17:04	
2,4-Dinitrophenol	< 0.0758	1.83	1.46	80	1.32	72	65-135	10	40	mg/kg	02/18/13 17:04	
2,4-Dinitrotoluene	< 0.0349	1.83	1.43	78	1.30	71	40-130	10	30	mg/kg	02/18/13 17:04	
2,6-Dinitrotoluene	< 0.0350	1.83	1.33	73	1.24	68	28-89	7	30	mg/kg	02/18/13 17:04	
2-Chloronaphthalene	< 0.0290	1.83	1.22	67	1.18	64	65-135	3	30	mg/kg	02/18/13 17:04	M2
2-Chlorophenol	< 0.0354	1.83	1.24	68	1.18	64	25-140	5	30	mg/kg	02/18/13 17:04	
2-Methylnaphthalene	< 0.0375	1.83	1.22	67	1.17	64	25-175	4	30	mg/kg	02/18/13 17:04	
2-methylphenol	< 0.0475	1.83	1.35	74	1.27	69	65-135	6	30	mg/kg	02/18/13 17:04	
2-Nitroaniline	< 0.0322	1.83	1.16	63	1.29	70	65-135	11	40	mg/kg	02/18/13 17:04	M2
2-Nitrophenol	< 0.0250	1.83	1.08	59	1.07	58	65-135	1	30	mg/kg	02/18/13 17:04	M2
3&4-Methylphenol	< 0.0832	1.83	1.46	80	1.35	74	65-135	8	30	mg/kg	02/18/13 17:04	
3,3-Dichlorobenzidine	< 0.0501	1.83	1.54	84	1.34	73	20-140	14	40	mg/kg	02/18/13 17:04	
3-Nitroaniline	< 0.0380	1.83	1.36	74	1.27	69	65-135	7	40	mg/kg	02/18/13 17:04	
4,6-dinitro-2-methyl phenol	< 0.0298	1.83	1.33	73	1.21	66	65-135	9	40	mg/kg	02/18/13 17:04	
4-Bromophenyl-phenylether	< 0.0372	1.83	1.29	70	1.18	64	65-135	9	30	mg/kg	02/18/13 17:04	M2
4-chloro-3-methylphenol	< 0.0384	1.83	1.33	73	1.24	68	28-134	7	30	mg/kg	02/18/13 17:04	
4-Chloroaniline	< 0.0733	1.83	1.30	71	1.27	69	4-149	2	40	mg/kg	02/18/13 17:04	
4-Chlorophenyl-phenyl ether	< 0.0368	1.83	1.34	73	1.27	69	65-135	5	30	mg/kg	02/18/13 17:04	
4-Nitroaniline	< 0.0329	1.83	1.37	75	1.25	68	65-135	9	40	mg/kg	02/18/13 17:04	
4-Nitrophenol	< 0.0341	1.83	1.57	86	1.39	76	13-106	12	40	mg/kg	02/18/13 17:04	
Acenaphthene	< 0.0392	1.83	1.31	72	1.22	67	41-134	7	30	mg/kg	02/18/13 17:04	
Acenaphthylene	< 0.0370	1.83	1.31	72	1.24	68	65-135	5	30	mg/kg	02/18/13 17:04	
Aniline (Phenylamine, Aminobenzene)	< 0.122	1.83	1.37	75	1.31	72	2-145	4	40	mg/kg	02/18/13 17:04	
Anthracene	< 0.0282	1.83	1.38	75	1.24	68	65-135	11	30	mg/kg	02/18/13 17:04	
Benzo(a)anthracene	< 0.0307	1.83	1.42	78	1.24	68	44-126	14	30	mg/kg	02/18/13 17:04	
Benzo(a)pyrene	< 0.0319	1.83	1.47	80	1.30	71	65-135	12	30	mg/kg	02/18/13 17:04	
Benzo(b)fluoranthene	< 0.0296	1.83	1.52	83	1.17	64	65-135	26	30	mg/kg	02/18/13 17:04	M2
Benzo(g,h,i)perylene	< 0.0322	1.83	1.45	79	1.26	69	65-135	14	30	mg/kg	02/18/13 17:04	
Benzo(k)fluoranthene	< 0.0428	1.83	1.36	74	1.37	75	25-125	1	30	mg/kg	02/18/13 17:04	
Benzoic Acid	< 0.0529	5.48	4.76	87	4.36	79	50-125	9	50	mg/kg	02/18/13 17:04	
Benzyl Butyl Phthalate	< 0.0284	1.83	1.47	80	1.32	72	65-135	11	30	mg/kg	02/18/13 17:04	
bis(2-chloroethoxy) methane	< 0.0408	1.83	1.24	68	1.20	66	65-135	3	30	mg/kg	02/18/13 17:04	
bis(2-chloroethyl) ether	< 0.0392	1.83	1.22	67	1.17	64	65-135	4	30	mg/kg	02/18/13 17:04	M2
bis(2-chloroisopropyl) ether	< 0.0366	1.83	1.39	76	1.34	73	65-135	4	30	mg/kg	02/18/13 17:04	
bis(2-ethylhexyl) phthalate	< 0.0292	1.83	1.55	85	1.36	74	65-135	13	30	mg/kg	02/18/13 17:04	
Chrysene	< 0.0332	1.83	1.48	81	1.31	72	65-135	12	30	mg/kg	02/18/13 17:04	
Dibenz(a,h)Anthracene	< 0.0385	1.83	1.45	79	1.29	70	65-135	12	30	mg/kg	02/18/13 17:04	
Dibenzofuran	< 0.0360	1.83	1.35	74	1.25	68	65-135	8	30	mg/kg	02/18/13 17:04	
Diethyl Phthalate	< 0.0379	1.83	1.37	75	1.25	68	37-125	9	30	mg/kg	02/18/13 17:04	
Dimethyl Phthalate	< 0.0377	1.83	1.38	75	1.26	69	65-135	9	30	mg/kg	02/18/13 17:04	
di-n-Butyl Phthalate	< 0.0314	1.83	1.39	76	1.23	67	65-135	12	30	mg/kg	02/18/13 17:04	
di-n-Octyl Phthalate	< 0.0347	1.83	1.51	83	1.33	73	65-135	13	30	mg/kg	02/18/13 17:04	

Page 20 of 29

Southwest Research Institute

Jet Fuel

Analytical Method:	SVOCs by SW-846 8270C			Prep Method:	SW3550
Seq Number:	907226	Matrix:	Soil	Date Prep:	02/18/2013
Parent Sample Id:	457734-001	MS Sample Id:	457734-001 S	MSD Sample Id:	457734-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Fluoranthene	< 0.0346	1.83	1.34	73	1.18	64	65-135	13	30	mg/kg	02/18/13 17:04	M2
Fluorene	< 0.0390	1.83	1.35	74	1.27	69	65-135	6	30	mg/kg	02/18/13 17:04	
Hexachlorobenzene	< 0.0320	1.83	1.29	70	1.16	63	65-135	11	30	mg/kg	02/18/13 17:04	M2
Hexachlorobutadiene	< 0.0343	1.83	1.05	57	1.03	56	65-135	2	30	mg/kg	02/18/13 17:04	M2
Hexachlorocyclopentadiene	< 0.0161	1.83	0.587	32	0.579	32	65-135	1	30	mg/kg	02/18/13 17:04	M2
Hexachloroethane	< 0.0409	1.83	1.14	62	1.09	60	65-135	4	30	mg/kg	02/18/13 17:04	M2
Indeno(1,2,3-c,d)Pyrene	< 0.0339	1.83	1.44	79	1.27	69	65-135	13	30	mg/kg	02/18/13 17:04	
Isophorone	< 0.0328	1.83	1.32	72	1.25	68	65-135	5	30	mg/kg	02/18/13 17:04	
Naphthalene	< 0.0377	1.83	1.18	64	1.13	62	65-135	4	30	mg/kg	02/18/13 17:04	M2
Nitrobenzene	< 0.0319	1.83	1.17	64	1.14	62	65-135	3	30	mg/kg	02/18/13 17:04	M2
N-Nitrosodi-n-Propylamine	< 0.0437	1.83	1.47	80	1.37	75	53-130	7	30	mg/kg	02/18/13 17:04	
N-Nitrosodiphenylamine	< 0.0273	1.83	1.37	75	1.23	67	65-135	11	30	mg/kg	02/18/13 17:04	
Pentachlorophenol	< 0.0242	1.83	1.45	79	1.29	70	14-111	12	40	mg/kg	02/18/13 17:04	
Phenanthrene	< 0.0364	1.83	1.31	72	1.20	66	65-135	9	30	mg/kg	02/18/13 17:04	
Phenol	< 0.0393	1.83	1.29	70	1.23	67	27-127	5	40	mg/kg	02/18/13 17:04	
Pyrene	< 0.0365	1.83	1.49	81	1.32	72	41-144	12	30	mg/kg	02/18/13 17:04	
Pyridine	< 0.0468	1.83	1.23	67	1.17	64	39-98	5	40	mg/kg	02/18/13 17:04	

Surrogate	MS MS %Rec Flag	MSD MSD %Rec Flag	Limits	Units	Analysis Date
2-Fluorophenol	63	61	25-121	%	02/18/13 17:04
Phenol-d6	73	71	24-113	%	02/18/13 17:04
Nitrobenzene-d5	56	56	23-120	%	02/18/13 17:04
2-Fluorobiphenyl	59	59	30-115	%	02/18/13 17:04
2,4,6-Tribromophenol	69	64	19-122	%	02/18/13 17:04
Terphenyl-D14	70	62	18-137	%	02/18/13 17:04

Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846 8260B			Prep Method:	SW5030B
Seq Number:	907536	Matrix:	Solid	Date Prep:	02/21/2013
MB Sample Id:	634151-1-BLK	LCS Sample Id:	634151-1-BKS	LCSD Sample Id:	634151-1-BSD

MB Sample Id:	MB Sample Id: 634151-1-BLK		LCS Sample Id: 6					LCSD Sample Id: 634151-1-B				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroetha	ne <0.000148	0.0500	0.0533	107	0.0529	106	81-127	1	25	mg/kg	02/21/13 12:15	
1,1,1-Trichloroethane	< 0.000602	0.0500	0.0515	103	0.0528	106	71-124	2	25	mg/kg	02/21/13 12:15	
1,1,2,2-Tetrachloroetha	ne <0.000194	0.0500	0.0475	95	0.0459	92	75-133	3	25	mg/kg	02/21/13 12:15	
1,1,2-Trichloroethane	< 0.000225	0.0500	0.0476	95	0.0479	96	75-131	1	25	mg/kg	02/21/13 12:15	
1,1-Dichloroethane	< 0.000125	0.0500	0.0494	99	0.0495	99	73-124	0	25	mg/kg	02/21/13 12:15	
1,1-Dichloroethene	< 0.000192	0.0500	0.0465	93	0.0468	94	68-119	1	25	mg/kg	02/21/13 12:15	
1,1-Dichloropropene	< 0.000198	0.0500	0.0491	98	0.0501	100	72-118	2	25	mg/kg	02/21/13 12:15	
1,2,3-Trichlorobenzene	< 0.000106	0.0500	0.0486	97	0.0500	100	75-131	3	25	mg/kg	02/21/13 12:15	
1,2,3-Trichloropropane	< 0.000359	0.0500	0.0523	105	0.0511	102	75-131	2	25	mg/kg	02/21/13 12:15	
1,2,4-Trichlorobenzene	< 0.000191	0.0500	0.0507	101	0.0522	104	79-128	3	25	mg/kg	02/21/13 12:15	
1,2,4-Trimethylbenzene	< 0.000103	0.0500	0.0560	112	0.0567	113	60-159	1	25	mg/kg	02/21/13 12:15	
1,2-Dibromo-3-Chlorop	oropane <0.00107	0.0500	0.0420	84	0.0407	81	58-133	3	25	mg/kg	02/21/13 12:15	
1,2-Dibromoethane	< 0.000193	0.0500	0.0484	97	0.0471	94	80-127	3	25	mg/kg	02/21/13 12:15	
1,2-Dichlorobenzene	< 0.000129	0.0500	0.0492	98	0.0501	100	84-121	2	25	mg/kg	02/21/13 12:15	
1,2-Dichloroethane	< 0.000177	0.0500	0.0455	91	0.0448	90	70-123	2	25	mg/kg	02/21/13 12:15	
1,2-Dichloropropane	< 0.000162	0.0500	0.0473	95	0.0472	94	75-122	0	25	mg/kg	02/21/13 12:15	
1,3,5-Trimethylbenzene	< 0.000166	0.0500	0.0563	113	0.0573	115	61-160	2	25	mg/kg	02/21/13 12:15	
1,3-Dichlorobenzene	< 0.000159	0.0500	0.0515	103	0.0520	104	84-124	1	25	mg/kg	02/21/13 12:15	
1,3-Dichloropropane	< 0.000227	0.0500	0.0488	98	0.0476	95	82-131	2	25	mg/kg	02/21/13 12:15	
1,4-Dichlorobenzene	< 0.0000970	0.0500	0.0494	99	0.0503	101	82-120	2	25	mg/kg	02/21/13 12:15	
2,2-Dichloropropane	< 0.000127	0.0500	0.0581	116	0.0621	124	67-137	7	25	mg/kg	02/21/13 12:15	
2-Butanone	< 0.00173	0.600	0.533	89	0.505	84	46-137	5	25	mg/kg	02/21/13 12:15	
2-Chlorotoluene	< 0.000217	0.0500	0.0534	107	0.0545	109	83-129	2	25	mg/kg	02/21/13 12:15	
2-Hexanone	< 0.00112	0.600	0.580	97	0.554	92	52-137	5	25	mg/kg	02/21/13 12:15	
4-Chlorotoluene	< 0.000118	0.0500	0.0529	106	0.0535	107	83-125	1	25	mg/kg	02/21/13 12:15	
Acetone	0.00315	0.600	0.457	76	0.439	73	33-148	4	25	mg/kg	02/21/13 12:15	
Benzene	< 0.000300	0.0500	0.0476	95	0.0474	95	71-119	0	25	mg/kg	02/21/13 12:15	
Bromobenzene	< 0.000198	0.0500	0.0503	101	0.0499	100	84-123	1	25	mg/kg	02/21/13 12:15	
Bromochloromethane	< 0.000215	0.0500	0.0434	87	0.0432	86	71-120	0	25	mg/kg	02/21/13 12:15	
Bromodichloromethane	< 0.000186	0.0500	0.0530	106	0.0537	107	78-126	1	25	mg/kg	02/21/13 12:15	
Bromoform	< 0.000393	0.0500	0.0424	85	0.0424	85	63-136	0	25	mg/kg	02/21/13 12:15	
Bromomethane	< 0.000274	0.0500	0.0446	89	0.0416	83	57-118	7	25	mg/kg	02/21/13 12:15	
Carbon Disulfide	< 0.0000880	0.550	0.638	116	0.659	120	55-136	3	25	mg/kg	02/21/13 12:15	
Carbon Tetrachloride	< 0.000132	0.0500	0.0515	103	0.0530	106	63-135	3	25	mg/kg	02/21/13 12:15	
Chlorobenzene	< 0.000104	0.0500	0.0495	99	0.0494	99	83-121	0	25	mg/kg	02/21/13 12:15	
Chloroethane	< 0.000254	0.0500	0.0454	91	0.0422	84	57-122	7	25	mg/kg	02/21/13 12:15	
Chloroform	< 0.000139	0.0500	0.0484	97	0.0483	97	74-118	0	25	mg/kg	02/21/13 12:15	
Chloromethane	< 0.000322	0.0500	0.0452	90	0.0426	85	58-110	6	25	mg/kg	02/21/13 12:15	
cis-1,2-Dichloroethene	< 0.000165	0.0500	0.0502	100	0.0508	102	72-131	1	25	mg/kg	02/21/13 12:15	
cis-1,3-Dichloropropen	e <0.000128	0.0500	0.0535	107	0.0544	109	74-135	2	25	mg/kg	02/21/13 12:15	
Dibromochloromethane	< 0.000422	0.0500	0.0422	84	0.0425	85	77-130	1	25	mg/kg	02/21/13 12:15	
Dibromomethane	< 0.000260	0.0500	0.0459	92	0.0457	91	73-126	0	25	mg/kg	02/21/13 12:15	
Dichlorodifluorometha	ne <0.000484	0.0500	0.0544	109	0.0510	102	54-122	6	25	mg/kg	02/21/13 12:15	
Ethylbenzene	< 0.000104	0.0500	0.0524	105	0.0525	105	80-123	0	25	mg/kg	02/21/13 12:15	
Hexachlorobutadiene	< 0.000346	0.0500	0.0537	107	0.0547	109	77-130	2	25	mg/kg	02/21/13 12:15	
Iodomethane (Methyl I	odide) <0.000200	0.0500	0.0464	93	0.0489	98	63-116	5	25	mg/kg	02/21/13 12:15	
isopropylbenzene	< 0.000112	0.0500	0.0515	103	0.0522	104	55-155	1	25	mg/kg	02/21/13 12:15	
m,p-Xylenes	< 0.000185	0.100	0.110	110	0.109	109	78-127	1	25	mg/kg	02/21/13 12:15	
Methylene Chloride	0.00120	0.0500	0.0478	96	0.0472	94	57-134	1	25	mg/kg	02/21/13 12:15	

Page 22 of 29

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

89

105

104

QC Summary 457697

Southwest Research Institute

Jet Fuel

Analytical Method: VOAs Seq Number: 90753	-	260B		Matrix:	Solid				ep Metho Date Pro	ep: 02/2	5030B 21/2013	
MB Sample Id: 63415	1-1-BLK		LCS San	iple Id:	634151-1-	BKS		LCS	D Sample	Id: 634	151-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	< 0.000142	0.100	0.107	107	0.108	108	64-148	1	25	mg/kg	02/21/13 12:15	
Naphthalene	< 0.000148	0.0500	0.0441	88	0.0440	88	53-162	0	25	mg/kg	02/21/13 12:15	
n-Butylbenzene	< 0.0000990	0.0500	0.0555	111	0.0567	113	82-127	2	25	mg/kg	02/21/13 12:15	
n-Propylbenzene	< 0.000137	0.0500	0.0564	113	0.0576	115	84-131	2	25	mg/kg	02/21/13 12:15	
o-Xylene	< 0.000149	0.0500	0.0528	106	0.0528	106	79-125	0	25	mg/kg	02/21/13 12:15	
p-Cymene (p-Isopropyltoluene)	< 0.0000800	0.0500	0.0573	115	0.0587	117	84-130	2	25	mg/kg	02/21/13 12:15	
Sec-Butylbenzene	< 0.000121	0.0500	0.0563	113	0.0570	114	84-131	1	25	mg/kg	02/21/13 12:15	
Styrene	< 0.000158	0.0500	0.0554	111	0.0559	112	80-126	1	25	mg/kg	02/21/13 12:15	
tert-Butylbenzene	< 0.0000900	0.0500	0.0549	110	0.0559	112	83-132	2	25	mg/kg	02/21/13 12:15	
Tetrachloroethylene	< 0.000173	0.0500	0.0509	102	0.0517	103	79-124	2	25	mg/kg	02/21/13 12:15	
Toluene	< 0.000117	0.0500	0.0484	97	0.0492	98	74-122	2	25	mg/kg	02/21/13 12:15	
trans-1,2-dichloroethene	< 0.000123	0.0500	0.0469	94	0.0477	95	63-110	2	25	mg/kg	02/21/13 12:15	
trans-1,3-dichloropropene	< 0.000361	0.0500	0.0410	82	0.0416	83	73-125	1	25	mg/kg	02/21/13 12:15	
Trichloroethene	< 0.000147	0.0500	0.0517	103	0.0530	106	78-119	2	25	mg/kg	02/21/13 12:15	
Trichlorofluoromethane	< 0.000186	0.0500	0.0480	96	0.0444	89	71-148	8	25	mg/kg	02/21/13 12:15	
Vinyl Acetate	< 0.000213	0.500	0.514	103	0.498	100	40-154	3	25	mg/kg	02/21/13 12:15	
Vinyl Chloride	< 0.000193	0.0500	0.0433	87	0.0406	81	60-123	6	25	mg/kg	02/21/13 12:15	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			mits	Units	Analysis Date	

96

100

103

100

90

101

101

53-142

56-150

70-130

68-152

%

%

02/21/13 12:15

02/21/13 12:15

02/21/13 12:15

02/21/13 12:15

Southwest Research Institute

Jet Fuel

 Analytical Methot
 VOAs by SW-846 8260B
 Prep Method
 SW 503 0B

 Seq Number:
 907617
 Matrix:
 Solid
 Date Prep:
 02/22/2013

 MB Sample Id:
 6341961-BLK
 LCS Sample Id:
 6341961-BKS
 LCSD Sample Id:
 6341961-BSD

MB Sample Id:	634196-1 -B LK		LCS Sar	nple ld:	634196-1	-BKS		LCS	D Sample	e Id: 634	196-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroetha	ne <0.000148	0.0500	0.0542	108	0.0500	100	81-127	8	25	mg/kg	02/22/13 11:36	
1,1,1-Trichloroethane	< 0.000602	0.0500	0.0496	99	0.0459	92	71-124	8	25	mg/kg	02/22/13 11:36	
1,1,2,2-Tetrachloroetha	ne <0.000194	0.0500	0.0520	104	0.0468	94	75-133	11	25	mg/kg	02/22/13 11:36	
1,1,2-Trichloroethane	< 0.000225	0.0500	0.0514	103	0.0481	96	75-131	7	25	mg/kg	02/22/13 11:36	
1,1-Dichloroethane	< 0.000125	0.0500	0.0497	99	0.0462	92	73-124	7	25	mg/kg	02/22/13 11:36	
1,1-Dichloroethene	< 0.000192	0.0500	0.0431	86	0.0398	80	68-119	8	25	mg/kg	02/22/13 11:36	
1,1-Dichloropropene	< 0.000198	0.0500	0.0475	95	0.0438	88	72-118	8	25	mg/kg	02/22/13 11:36	
1,2,3-Trichlorobenzene	< 0.000106	0.0500	0.0524	105	0.0514	103	75-131	2	25	mg/kg	02/22/13 11:36	
1,2,3-Trichloropropane	< 0.000359	0.0500	0.0583	117	0.0529	106	75-131	10	25	mg/kg	02/22/13 11:36	
1,2,4-Trichlorobenzene	< 0.000191	0.0500	0.0515	103	0.0510	102	79-128	1	25	mg/kg	02/22/13 11:36	
1,2,4-Trimethylbenzene	< 0.000103	0.0500	0.0543	109	0.0505	101	60-159	7	25	mg/kg	02/22/13 11:36	
1,2-Dibromo-3-Chlorop	oropane <0.00107	0.0500	0.0479	96	0.0458	92	58-133	4	25	mg/kg	02/22/13 11:36	
1,2-Dibromoethane	< 0.000193	0.0500	0.0520	104	0.0482	96	80-127	8	25	mg/kg	02/22/13 11:36	
1,2-Dichlorobenzene	< 0.000129	0.0500	0.0502	100	0.0464	93	84-121	8	25	mg/kg	02/22/13 11:36	
1,2-Dichloroethane	< 0.000177	0.0500	0.0491	98	0.0445	89	70-123	10	25	mg/kg	02/22/13 11:36	
1,2-Dichloropropane	< 0.000162	0.0500	0.0483	97	0.0446	89	75-122	8	25	mg/kg	02/22/13 11:36	
1,3,5-Trimethylbenzene	< 0.000166	0.0500	0.0548	110	0.0503	101	61-160	9	25	mg/kg	02/22/13 11:36	
1,3-Dichlorobenzene	< 0.000159	0.0500	0.0509	102	0.0475	95	84-124	7	25	mg/kg	02/22/13 11:36	
1,3-Dichloropropane	< 0.000227	0.0500	0.0514	103	0.0480	96	82-131	7	25	mg/kg	02/22/13 11:36	
1,4-Dichlorobenzene	< 0.0000970	0.0500	0.0490	98	0.0461	92	82-120	6	25	mg/kg	02/22/13 11:36	
2,2-Dichloropropane	< 0.000127	0.0500	0.0502	100	0.0491	98	67-137	2	25	mg/kg	02/22/13 11:36	
2-Butanone	< 0.00173	0.600	0.612	102	0.542	90	46-137	12	25	mg/kg	02/22/13 11:36	
2-Chlorotoluene	< 0.000217	0.0500	0.0525	105	0.0478	96	83-129	9	25	mg/kg	02/22/13 11:36	
2-Hexanone	< 0.00112	0.600	0.650	108	0.583	97	52-137	11	25	mg/kg	02/22/13 11:36	
4-Chlorotoluene	< 0.000118	0.0500	0.0517	103	0.0471	94	83-125	9	25	mg/kg	02/22/13 11:36	
Acetone	0.00535	0.600	0.533	89	0.476	79	33-148	11	25	mg/kg	02/22/13 11:36	
Benzene	< 0.000300	0.0500	0.0475	95	0.0433	87	71-119	9	25	mg/kg	02/22/13 11:36	
Bromobenzene	< 0.000198	0.0500	0.0505	101	0.0462	92	84-123	9	25	mg/kg	02/22/13 11:36	
Bromochloromethane	< 0.000215	0.0500	0.0458	92	0.0426	85	71-120	7	25	mg/kg	02/22/13 11:36	
Bromodichloromethane	< 0.000186	0.0500	0.0554	111	0.0509	102	78-126	8	25	mg/kg	02/22/13 11:36	
Bromoform	< 0.000393	0.0500	0.0471	94	0.0429	86	63-136	9	25	mg/kg	02/22/13 11:36	
Bromomethane	< 0.000274	0.0500	0.0405	81	0.0374	75	57-118	8	25	mg/kg	02/22/13 11:36	
Carbon Disulfide	0.000280	0.550	0.590	107	0.546	99	55-136	8	25	mg/kg	02/22/13 11:36	
Carbon Tetrachloride	< 0.000132	0.0500	0.0494	99	0.0455	91	63-135	8	25	mg/kg	02/22/13 11:36	
Chlorobenzene	< 0.000104	0.0500	0.0493	99	0.0456	91	83-121	8	25	mg/kg	02/22/13 11:36	
Chloroethane	< 0.000254	0.0500	0.0421	84	0.0384	77	57-122	9	25	mg/kg	02/22/13 11:36	
Chloroform	0.000140	0.0500	0.0498	100	0.0455	91	74-118	9	25	mg/kg	02/22/13 11:36	
Chloromethane	< 0.000322	0.0500	0.0437	87	0.0398	80	58-110	9	25	mg/kg	02/22/13 11:36	
cis-1,2-Dichloroethene	< 0.000165	0.0500	0.0509	102	0.0472	94	72-131	8	25	mg/kg	02/22/13 11:36	
cis-1,3-Dichloropropen	e <0.000128	0.0500	0.0564	113	0.0520	104	74-135	8	25	mg/kg	02/22/13 11:36	
Dibromochloromethane	< 0.000422	0.0500	0.0453	91	0.0418	84	77-130	8	25	mg/kg	02/22/13 11:36	
Dibromomethane	< 0.000260	0.0500	0.0500	100	0.0459	92	73-126	9	25	mg/kg	02/22/13 11:36	
Dichlorodifluoromethar	ne <0.000484	0.0500	0.0505	101	0.0463	93	54-122	9	25	mg/kg	02/22/13 11:36	
Ethylbenzene	< 0.000104	0.0500	0.0509	102	0.0466	93	80-123	9	25	mg/kg	02/22/13 11:36	
Hexachlorobutadiene	< 0.000346	0.0500	0.0504	101	0.0495	99	77-130	2	25	mg/kg	02/22/13 11:36	
Iodomethane (Methyl Io	odide) <0.000200	0.0500	0.0457	91	0.0421	84	63-116	8	25	mg/kg	02/22/13 11:36	
isopropylbenzene	< 0.000112	0.0500	0.0499	100	0.0464	93	55-155	7	25	mg/kg	02/22/13 11:36	
m,p-Xylenes	< 0.000185	0.100	0.106	106	0.0979	98	78-127	8	25	mg/kg	02/22/13 11:36	
Methylene Chloride	0.00649	0.0500	0.0515	103	0.0486	97	57-134	6	25	mg/kg	02/22/13 11:36	

Page 24 of 29

Southwest Research Institute

Jet Fuel

Analytical Method: VOA		260B			_ 171			Pr	ep Method		5030B	
Seq Number: 9076				Matrix:	Solid				Date Prep		22/2013	
MB Sample Id: 6341	96-1-BLK		LCS San	nple Id:	634196-1	-BKS		LCSI	O Sample 1	d: 634	196-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	< 0.000142	0.100	0.114	114	0.107	107	64-148	6	25	mg/kg	02/22/13 11:36	
Naphthalene	< 0.000148	0.0500	0.0491	98	0.0481	96	53-162	2	25	mg/kg	02/22/13 11:36	
n-Butylbenzene	< 0.0000990	0.0500	0.0527	105	0.0494	99	82-127	6	25	mg/kg	02/22/13 11:36	
n-Propylbenzene	< 0.000137	0.0500	0.0538	108	0.0496	99	84-131	8	25	mg/kg	02/22/13 11:36	
o-Xylene	< 0.000149	0.0500	0.0512	102	0.0473	95	79-125	8	25	mg/kg	02/22/13 11:36	
p-Cymene (p-Isopropyltoluene)	<0.0000800	0.0500	0.0548	110	0.0513	103	84-130	7	25	mg/kg	02/22/13 11:36	
Sec-Butylbenzene	< 0.000121	0.0500	0.0535	107	0.0494	99	84-131	8	25	mg/kg	02/22/13 11:36	
Styrene	< 0.000158	0.0500	0.0554	111	0.0508	102	80-126	9	25	mg/kg	02/22/13 11:36	
tert-Butylbenzene	< 0.0000900	0.0500	0.0529	106	0.0490	98	83-132	8	25	mg/kg	02/22/13 11:36	
Tetrachloroethylene	< 0.000173	0.0500	0.0493	99	0.0455	91	79-124	8	25	mg/kg	02/22/13 11:36	
Toluene	< 0.000117	0.0500	0.0475	95	0.0442	88	74-122	7	25	mg/kg	02/22/13 11:36	
trans-1,2-dichloroethene	< 0.000123	0.0500	0.0456	91	0.0420	84	63-110	8	25	mg/kg	02/22/13 11:36	
trans-1,3-dichloropropene	< 0.000361	0.0500	0.0440	88	0.0418	84	73-125	5	25	mg/kg	02/22/13 11:36	
Trichloroethene	< 0.000147	0.0500	0.0519	104	0.0468	94	78-119	10	25	mg/kg	02/22/13 11:36	
Trichlorofluoromethane	< 0.000186	0.0500	0.0448	90	0.0409	82	71-148	9	25	mg/kg	02/22/13 11:36	
Vinyl Acetate	< 0.000213	0.500	0.553	111	0.498	100	40-154	10	25	mg/kg	02/22/13 11:36	
Vinyl Chloride	< 0.000193	0.0500	0.0411	82	0.0371	74	60-123	10	25	mg/kg	02/22/13 11:36	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			mits	Units	Analysis Date	
Dibromofluoromethane	92		1	02		102		53	-142	%	02/22/13 11:36	
1,2-Dichloroethane-D4	101		1	01		98		56	-150	%	02/22/13 11:36	
Toluene-D8	100		1	01		101		70	-130	%	02/22/13 11:36	
4-Bromofluorobenzene	103		1	01		99		68	-152	%	02/22/13 11:36	

Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846 8260B			Prep Method:	SW5030B
Seq Number:	907536	Matrix:	Soil	Date Prep:	02/21/2013
Parent Sample Id:	457772-004	MS Sample Id:	457772-004 S	MSD Sample Id:	457772-004 SD

Parent Sample Id: 45777:		MS Sample Id: 457772-004 S			S MSD Sample Id: 457772-004 SD							
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.00102	0.345	0.381	110	0.367	106	72-125	4	25	mg/kg	02/21/13 17:03	
1,1,1-Trichloroethane	< 0.00416	0.345	0.324	94	0.298	86	75-125	8	25	mg/kg	02/21/13 17:03	
1,1,2,2-Tetrachloroethane	< 0.00134	0.345	0.394	114	0.373	108	74-125	5	25	mg/kg	02/21/13 17:03	
1,1,2-Trichloroethane	< 0.00155	0.345	0.358	104	0.342	99	75-127	5	25	mg/kg	02/21/13 17:03	
1,1-Dichloroethane	< 0.000864	0.345	0.326	94	0.294	85	72-125	10	25	mg/kg	02/21/13 17:03	
1,1-Dichloroethene	< 0.00133	0.345	0.261	76	0.236	68	59-172	10	25	mg/kg	02/21/13 17:03	
1,1-Dichloropropene	< 0.00137	0.345	0.279	81	0.261	76	75-125	7	25	mg/kg	02/21/13 17:03	
1,2,3-Trichlorobenzene	< 0.000732	0.345	0.372	108	0.358	104	75-137	4	25	mg/kg	02/21/13 17:03	
1,2,3-Trichloropropane	< 0.00248	0.345	0.399	116	0.372	108	75-125	7	25	mg/kg	02/21/13 17:03	
1,2,4-Trichlorobenzene	< 0.00132	0.345	0.355	103	0.347	101	75-135	2	25	mg/kg	02/21/13 17:03	
1,2,4-Trimethylbenzene	< 0.000712	0.345	0.348	101	0.347	101	75-125	0	25	mg/kg	02/21/13 17:03	
1,2-Dibromo-3-Chloropropane	< 0.00737	0.345	0.368	107	0.327	95	59-125	12	25	mg/kg	02/21/13 17:03	
1,2-Dibromoethane	< 0.00133	0.345	0.340	99	0.325	94	73-125	5	25	mg/kg	02/21/13 17:03	
1,2-Dichlorobenzene	< 0.000891	0.345	0.351	102	0.346	100	75-125	1	25	mg/kg	02/21/13 17:03	
1,2-Dichloroethane	< 0.00122	0.345	0.330	96	0.307	89	68-127	7	25	mg/kg	02/21/13 17:03	
1,2-Dichloropropane	< 0.00112	0.345	0.339	98	0.319	92	74-125	6	25	mg/kg	02/21/13 17:03	
1,3,5-Trimethylbenzene	< 0.00115	0.345	0.348	101	0.347	101	70-130	0	25	mg/kg	02/21/13 17:03	
1,3-Dichlorobenzene	< 0.00110	0.345	0.342	99	0.339	98	75-125	1	25	mg/kg	02/21/13 17:03	
1,3-Dichloropropane	< 0.00157	0.345	0.335	97	0.321	93	75-125	4	25	mg/kg	02/21/13 17:03	
1,4-Dichlorobenzene	< 0.000670	0.345	0.335	97	0.330	96	75-125	2	25	mg/kg	02/21/13 17:03	
2,2-Dichloropropane	< 0.000878	0.345	0.337	98	0.323	94	75-125	4	25	mg/kg	02/21/13 17:03	
2-Butanone	< 0.0119	4.15	3.63	87	3.29	79	75-125	10	25	mg/kg	02/21/13 17:03	
2-Chlorotoluene	< 0.00150	0.345	0.345	100	0.349	101	73-125	1	25	mg/kg	02/21/13 17:03	
2-Hexanone	< 0.00774	4.15	3.78	91	3.31	80	75-125	13	25	mg/kg	02/21/13 17:03	
4-Chlorotoluene	< 0.000815	0.345	0.339	98	0.336	97	74-125	1	25	mg/kg	02/21/13 17:03	
Acetone	0.0259	4.15	3.40	81	3.00	72	50-150	13	25	mg/kg	02/21/13 17:03	
Benzene	< 0.00207	0.345	0.297	86	0.284	82	66-142	4	25	mg/kg	02/21/13 17:03	
Bromobenzene	< 0.00137	0.345	0.341	99	0.333	97	75-125	2	25	mg/kg	02/21/13 17:03	
Bromochloromethane	< 0.00149	0.345	0.332	96	0.288	83	60-140	14	25	mg/kg	02/21/13 17:03	
Bromodichloromethane	< 0.00129	0.345	0.381	110	0.355	103	75-125	7	25	mg/kg	02/21/13 17:03	
Bromoform	< 0.00272	0.345	0.332	96	0.307	89	75-125	8	25	mg/kg	02/21/13 17:03	
Bromomethane	< 0.00189	0.345	0.239	69	0.205	59	60-140	15	25	mg/kg	02/21/13 17:03	M2
Carbon Disulfide	0.000684	3.80	1.80	47	1.59	42	60-140	12	25	mg/kg	02/21/13 17:03	M2
Carbon Tetrachloride	< 0.000912	0.345	0.311	90	0.283	82	62-125	9	25	mg/kg	02/21/13 17:03	
Chlorobenzene	< 0.000719	0.345	0.325	94	0.312	90	60-133	4	25	mg/kg	02/21/13 17:03	
Chloroethane	< 0.00176	0.345	0.249	72	0.215	62	60-140	15	25	mg/kg	02/21/13 17:03	
Chloroform	< 0.000960	0.345	0.356	103	0.321	93	74-125	10	25	mg/kg	02/21/13 17:03	
Chloromethane	< 0.00222	0.345	0.199	58	0.178	52	60-140	11	25	mg/kg	02/21/13 17:03	M2
cis-1,2-Dichloroethene	< 0.00114	0.345	0.332	96	0.298	86	75-125	11	25	mg/kg	02/21/13 17:03	
cis-1,3-Dichloropropene	< 0.000884	0.345	0.365	106	0.341	99	74-125	7	25	mg/kg	02/21/13 17:03	
Dibromochloromethane	< 0.00292	0.345	0.316	92	0.299	87	73-125	6	25	mg/kg	02/21/13 17:03	
Dibromomethane	< 0.00180	0.345	0.331	96	0.304	88	69-127	9	25	mg/kg	02/21/13 17:03	
Dichlorodifluoromethane	< 0.00334	0.345	0.191	55	0.165	48	65-135	15	25	mg/kg	02/21/13 17:03	M2
Ethylbenzene	< 0.000719	0.345	0.321	93	0.313	91	75-125	3	25	mg/kg	02/21/13 17:03	
Hexachlorobutadiene	< 0.00239	0.345	0.327	95	0.330	96	75-125	1	25	mg/kg	02/21/13 17:03	
Iodomethane (Methyl Iodide)	< 0.00138	0.345	0.270	78	0.240	70	75-125	12	25	mg/kg	02/21/13 17:03	M2
isopropylbenzene	< 0.000774	0.345	0.346	100	0.332	96	75-125	4	25	mg/kg	02/21/13 17:03	
m,p-Xylenes	< 0.00128	0.691	0.659	95	0.638	92	75-125	3	25	mg/kg	02/21/13 17:03	
Methylene Chloride	0.0332	0.345	0.037	76	0.267	68	75-125	11	25	mg/kg	02/21/13 17:03	M2
rone emonae	0.0332	0.010	0.271	, 0	0.201	00	. 5 125		20	1115 115		1412

Page 26 of 29 Final 1.000

QC Summary 457697

Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846	8260B						Pı	ep Metho	od: SW:	5030B	
Seq Number:	907536			Matrix:	Soil				Date Pre	ep: 02/2	1/2013	
Parent Sample Id:	457772-004		MS Sar	nple Id:	457772-00	04 S		MS	D Sample	Id: 457	772-004 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE	< 0.000981	0.691	0.756	109	0.661	96	60-140	13	25	mg/kg	02/21/13 17:03	
Naphthalene	< 0.00102	0.345	0.343	99	0.327	95	70-130	5	25	mg/kg	02/21/13 17:03	
n-Butylbenzene	< 0.000684	0.345	0.343	99	0.339	98	75-125	1	25	mg/kg	02/21/13 17:03	
n-Propylbenzene	< 0.000947	0.345	0.331	96	0.328	95	75-125	1	25	mg/kg	02/21/13 17:03	
o-Xylene	< 0.00103	0.345	0.336	97	0.323	94	75-125	4	25	mg/kg	02/21/13 17:03	
p-Cymene (p-Isopropylto	oluene) <0.000553	0.345	0.350	101	0.351	102	75-125	0	25	mg/kg	02/21/13 17:03	
Sec-Butylbenzene	< 0.000836	0.345	0.348	101	0.350	101	75-125	1	25	mg/kg	02/21/13 17:03	
Styrene	< 0.00109	0.345	0.369	107	0.350	101	75-125	5	25	mg/kg	02/21/13 17:03	
tert-Butylbenzene	< 0.000622	0.345	0.350	101	0.353	102	75-125	1	25	mg/kg	02/21/13 17:03	
Tetrachloroethylene	< 0.00120	0.345	0.273	79	0.271	79	71-125	1	25	mg/kg	02/21/13 17:03	
Toluene	< 0.000808	0.345	0.299	87	0.289	84	59-139	3	25	mg/kg	02/21/13 17:03	
trans-1,2-dichloroethene	< 0.000850	0.345	0.266	77	0.240	70	75-125	10	25	mg/kg	02/21/13 17:03	M2
trans-1,3-dichloropropen	e <0.00249	0.345	0.305	88	0.293	85	66-125	4	25	mg/kg	02/21/13 17:03	
Trichloroethene	< 0.00102	0.345	0.297	86	0.279	81	62-137	6	25	mg/kg	02/21/13 17:03	
Trichlorofluoromethane	< 0.00129	0.345	0.268	78	0.239	69	67-125	11	25	mg/kg	02/21/13 17:03	
Vinyl Acetate	< 0.00147	3.45	3.59	104	3.31	96	60-140	8	25	mg/kg	02/21/13 17:03	
Vinyl Chloride	< 0.00133	0.345	0.219	63	0.194	56	60-140	12	25	mg/kg	02/21/13 17:03	M2
Surrogate				AS Rec	MS Flag	MSE %Re			mits	Units	Analysis Date	
Dibromofluoromethane			1	06		100		53	-142	%	02/21/13 17:03	
1,2-Dichloroethane-D4			1	04		101		56	-150	%	02/21/13 17:03	
Toluene-D8			1	00		102		70	-130	%	02/21/13 17:03	
4-Bromofluorobenzene			1	03		103		68	-152	%	02/21/13 17:03	

Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846 8260B			Prep Method:	SW5030B
Seq Number:	907617	Matrix:	Product	Date Prep:	02/22/2013
Parent Sample Id:	457697-002	MS Sample Id:	457697-002 S	MSD Sample Id:	457697-002 SD

Parent Sample Id: 457697-0	002		MS Sar	nple ld:	457697-00	02 S		MSI	D Sample	e Id: 457	697-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 3.70	1250	1150	92	1160	93	72-125	1	25	mg/kg	02/22/13 14:28	
1,1,1-Trichloroethane	<15.1	1250	1100	88	1110	89	75-125	1	25	mg/kg	02/22/13 14:28	
1,1,2,2-Tetrachloroethane	< 4.85	1250	2560	205	2760	221	74-125	8	25	mg/kg	02/22/13 14:28	M1
1,1,2-Trichloroethane	< 5.63	1250	1400	112	1460	117	75-127	4	25	mg/kg	02/22/13 14:28	
1,1-Dichloroethane	<3.13	1250	1120	90	1140	91	72-125	2	25	mg/kg	02/22/13 14:28	
1,1-Dichloroethene	<4.80	1250	992	79	998	80	59-172	1	25	mg/kg	02/22/13 14:28	
1,1-Dichloropropene	< 4.95	1250	1060	85	1060	85	75-125	0	25	mg/kg	02/22/13 14:28	
1,2,3-Trichlorobenzene	< 2.65	1250	1340	107	1400	112	75-137	4	25	mg/kg	02/22/13 14:28	
1,2,3-Trichloropropane	<8.98	1250	1230	98	1270	102	75-125	3	25	mg/kg	02/22/13 14:28	
1,2,4-Trichlorobenzene	<4.78	1250	1310	105	1340	107	75-135	2	25	mg/kg	02/22/13 14:28	
1,2,4-Trimethylbenzene	13500	1250	13200	0	14200	56	75-125	7	25	mg/kg	02/22/13 14:28	M3
1,2-Dibromo-3-Chloropropane	<26.7	1250	1430	114	1530	122	59-125	7	25	mg/kg	02/22/13 14:28	
1,2-Dibromoethane	<4.83	1250	1180	94	1190	95	73-125	1	25	mg/kg	02/22/13 14:28	
1,2-Dichlorobenzene	<3.23	1250	1140	91	1160	93	75-125	2	25	mg/kg	02/22/13 14:28	
1,2-Dichloroethane	< 4.43	1250	1070	86	1090	87	68-127	2	25	mg/kg	02/22/13 14:28	
1,2-Dichloropropane	< 4.05	1250	1100	88	1130	90	74-125	3	25	mg/kg	02/22/13 14:28	
1,3,5-Trimethylbenzene	3790	1250	4590	64	4830	83	70-130	5	25	mg/kg	02/22/13 14:28	M3
1,3-Dichlorobenzene	< 3.98	1250	1150	92	1160	93	75-125	1	25	mg/kg	02/22/13 14:28	
1,3-Dichloropropane	< 5.68	1250	1170	94	1200	96	75-125	3	25	mg/kg	02/22/13 14:28	
1,4-Dichlorobenzene	< 2.43	1250	1120	90	1130	90	75-125	1	25	mg/kg	02/22/13 14:28	
2,2-Dichloropropane	<3.18	1250	1030	82	1120	90	75-125	8	25	mg/kg	02/22/13 14:28	
2-Butanone	<43.2	15000	13700	91	14100	94	75-125	3	25	mg/kg	02/22/13 14:28	
2-Chlorotoluene	< 5.43	1250	1180	94	1190	95	73-125	1	25	mg/kg	02/22/13 14:28	
2-Hexanone	<28.0	15000	13900	93	15900	106	75-125	13	25	mg/kg	02/22/13 14:28	
4-Chlorotoluene	< 2.95	1250	1490	119	1510	121	74-125	1	25	mg/kg	02/22/13 14:28	
Acetone	212	15000	11900	78	12400	81	50-150	4	25	mg/kg	02/22/13 14:28	
Benzene	13.3	1250	1070	85	1100	87	66-142	3	25	mg/kg	02/22/13 14:28	
Bromobenzene	< 4.95	1250	1140	91	1150	92	75-125	1	25	mg/kg	02/22/13 14:28	
Bromochloromethane	< 5.38	1250	1020	82	1060	85	60-140	4	25	mg/kg	02/22/13 14:28	
Bromodichloromethane	< 4.65	1250	1190	95	1210	97	75-125	2	25	mg/kg	02/22/13 14:28	
Bromoform	< 9.83	1250	926	74	921	74	75-125	1	25	mg/kg	02/22/13 14:28	M2
Bromomethane	< 6.85	1250	845	68	857	69	60-140	1	25	mg/kg	02/22/13 14:28	
Carbon Disulfide	4.50	13800	13300	96	13500	98	60-140	1	25	mg/kg	02/22/13 14:28	
Carbon Tetrachloride	< 3.30	1250	1070	86	1090	87	62-125	2	25	mg/kg	02/22/13 14:28	
Chlorobenzene	< 2.60	1250	1110	89	1120	90	60-133	1	25	mg/kg	02/22/13 14:28	
Chloroethane	< 6.35	1250	892	71	893	71	60-140	0	25	mg/kg	02/22/13 14:28	
Chloroform	< 3.48	1250	1100	88	1130	90	74-125	3	25	mg/kg	02/22/13 14:28	
Chloromethane	< 8.05	1250	968	77	1000	80	60-140	3	25	mg/kg	02/22/13 14:28	
cis-1,2-Dichloroethene	<4.13	1250	1130	90	1160	93	75-125	3	25	mg/kg	02/22/13 14:28	
cis-1,3-Dichloropropene	< 3.20	1250	1250	100	1290	103	74-125	3	25	mg/kg	02/22/13 14:28	
Dibromochloromethane	<10.6	1250	965	77	984	79	73-125	2	25	mg/kg	02/22/13 14:28	
Dibromomethane	< 6.50	1250	1100	88	1140	91	69-127	4	25	mg/kg	02/22/13 14:28	
Dichlorodifluoromethane	<12.1	1250	1110	89	1140	91	65-135	3	25	mg/kg	02/22/13 14:28	
Ethylbenzene	1570	1250	2540	78	2640	86	75-125	4	25	mg/kg	02/22/13 14:28	
Hexachlorobutadiene	< 8.65	1250	1240	99	1240	99	75-125	0	25	mg/kg	02/22/13 14:28	
Iodomethane (Methyl Iodide)	< 5.00	1250	1030	82	1040	83	75-125	1	25	mg/kg	02/22/13 14:28	
isopropylbenzene	684	1250	1720	83	1780	88	75-125	3	25	mg/kg	02/22/13 14:28	
m,p-Xylenes	6510	2500	7940	57	8340	73	75-125	5	25	mg/kg	02/22/13 14:28	M2
Methylene Chloride	170	1250	1120	76	1150	78	75-125	3	25	mg/kg	02/22/13 14:28	

Page 28 of 29

Toluene

trans-1,2-dichloroethene

trans-1,3-dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl Acetate

Analytical Method: VOAs by SW-846 8260B

662

<3.08

< 9.03

< 3.68

< 4.65

< 5.33

1250

1250

1250

1250

1250

12500

1670

1020

969

1130

947

12000

QC Summary 457697

Southwest Research Institute

Jet Fuel

Prep Method: SW5030B

mg/kg 02/22/13 14:28

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

02/22/13 14:28

02/22/13 14:28

02/22/13 14:28

02/22/13 14:28

02/22/13 14:28

Seq Number:	907617				Matrix:	Product				Date Pr	ep: 02/2	2/2013	
Parent Sample Id:	457697-00	2		MS Sar	nple Id:	457697-00	02 S		MS	D Sample	e Id: 457	697-002 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
MTBE		<3.55	2500	2590	104	2690	108	60-140	4	25	mg/kg	02/22/13 14:28	
Naphthalene		1350	1250	2540	95	2740	111	70-130	8	25	mg/kg	02/22/13 14:28	
n-Butylbenzene		1730	1250	2780	84	2960	98	75-125	6	25	mg/kg	02/22/13 14:28	
n-Propylbenzene		2010	1250	3030	82	3180	94	75-125	5	25	mg/kg	02/22/13 14:28	
o-Xylene		3440	1250	4190	60	4400	77	75-125	5	25	mg/kg	02/22/13 14:28	M2
p-Cymene (p-Isopropy	ltoluene)	708	1250	1850	91	1930	98	75-125	4	25	mg/kg	02/22/13 14:28	
Sec-Butylbenzene		799	1250	1930	90	1990	95	75-125	3	25	mg/kg	02/22/13 14:28	
Styrene		< 3.95	1250	1370	110	1390	111	75-125	1	25	mg/kg	02/22/13 14:28	
tert-Butylbenzene		42.5	1250	1270	98	1280	99	75-125	1	25	mg/kg	02/22/13 14:28	
Tetrachloroethylene		<4.33	1250	1100	88	1110	89	71-125	1	25	mg/kg	02/22/13 14:28	

1710

1040

1020

1140

983

12400

84 59-139 2

83 75-125

82 66-125

91 62-137

79 67-125

99 60-140 3

25

25

25

25

25

25

Villy1 Acctate	-5.55	12300	12000	70	12400	"	00-140	5	23	mg/kg	02/22/10 17.20
Vinyl Chloride	<4.83	1250	879	70	890	71	60-140	1	25	mg/kg	02/22/13 14:28
Surrogate			MS %Rec		MS Tag	MSD %Rec	MSD Flag	1	Limits	Units	Analysis Date
Dibromofluoromethane			100			101		4	53-142	%	02/22/13 14:28
1,2-Dichloroethane-D4			100			98			56-150	%	02/22/13 14:28
Toluene-D8			105			104		1	70-130	%	02/22/13 14:28
4-Bromofluorobenzene			109			108		(68-152	%	02/22/13 14:28

81

82

78

90

76

96

Appendix BO EPA Testing Reports: CL13-5265

Analytical Report 476075

for Southwest Research Institute

Project Manager: Scott Hutzler

Jet Fuel

CL13-5265

30-DEC-13

Collected By: Client

4143 Greenbriar Dr., Stafford, TX 77477

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-13-15-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901). Arizona (AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Page 1 of 21

30-DEC-13

Project Manager: Scott Hutzler Southwest Research Institute 6220 Culebra Road P.O. Box 28510 San Antonio, TX 78228

Reference: XENCO Report No(s): 476075

Jet Fuel
Project Address:

Scott Hutzler:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 476075. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 476075 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Skip Harden

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 21

None

CASE NARRATIVE

Client Name: Southwest Research Institute Project Name: Jet Fuel

 Project ID:
 CL13-5265
 Report Date:
 30-DEC-13

 Work Order Number(s):
 476075
 Date Received:
 12/18/2013

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

Page 3 of 21

Flagging Criteria

Arizona Flags

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 3.0 9/20/2007. Data qualifiers (flags) contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

- D1 Sample required dilution due to matrix.
- D2 Sample required dilution due to high concentration of target analyte.
- L2 The associated blank spike recovery was below laboratory acceptance limits.
- M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable.
- S1 Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Sample Cross Reference 476075

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CL13-5265	W	12-17-13 00:00		476075-001

Page 5 of 21

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-5265 Matrix: Product Date Received: 12.18.13 10.00

Lab Sample Id: 476075-001 Date Collected: 12.17.13 00.00

Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3580A

Tech: RIM % Moisture:

Analyst: PKH Date Prep: 12.24.13 12.09 Basis: Wet Weight

Seq Number: 930871 SUB: TX104704215

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,2,4-Trichlorobenzene	120-82-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
1,2-Dichlorobenzene	95-50-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
1,3-Dichlorobenzene	541-73-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
1,4-Dichlorobenzene	106-46-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2,4,5-Trichlorophenol	95-95-4	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2,4,6-Trichlorophenol	88-06-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2,4-Dichlorophenol	120-83-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2,4-Dimethylphenol	105-67-9	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2,4-Dinitrophenol	51-28-5	< 5000	5000	mg/kg	12.27.13 12.01	D1	50
2,4-Dinitrotoluene	121-14-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2,6-Dinitrotoluene	606-20-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2-Chloronaphthalene	91-58-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2-Chlorophenol	95-57-8	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2-Methylnaphthalene	91-57-6	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2-methylphenol	95-48-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
2-Nitroaniline	88-74-4	< 5000	5000	mg/kg	12.27.13 12.01	D1	50
2-Nitrophenol	88-75-5	<2500	2500	mg/kg	12.27.13 12.01	D1	50
3&4-Methylphenol	15831-10-4	<2500	2500	mg/kg	12.27.13 12.01	D1	50
3,3-Dichlorobenzidine	91-94-1	< 5000	5000	mg/kg	12.27.13 12.01	D1	50
3-Nitroaniline	99-09-2	< 5000	5000	mg/kg	12.27.13 12.01	D1	50
4,6-dinitro-2-methyl phenol	534-52-1	< 5000	5000	mg/kg	12.27.13 12.01	D1	50
4-Bromophenyl-phenylether	101-55-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
4-chloro-3-methylphenol	59-50-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
4-Chloroaniline	106-47-8	< 5000	5000	mg/kg	12.27.13 12.01	D1	50
4-Chlorophenyl-phenyl ether	7005-72-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
4-Nitroaniline	100-01-6	< 5000	5000	mg/kg	12.27.13 12.01	D1	50
4-Nitrophenol	100-02-7	< 5000	5000	mg/kg	12.27.13 12.01	D1	50
Acenaphthene	83-32-9	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Acenaphthylene	208-96-8	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Aniline (Phenylamine, Aminobenzene)	62-53-3	< 5000	5000	mg/kg	12.27.13 12.01	D1	50
Anthracene	120-12-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Benzo(a)anthracene	56-55-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Benzo(a)pyrene	50-32-8	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Benzo(b)fluoranthene	205-99-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Benzo(g,h,i)perylene	191-24-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Benzo(k)fluoranthene	207-08-9	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Benzoic Acid	65-85-0	<15000	15000	mg/kg	12.27.13 12.01	D1L2	50
Benzyl Butyl Phthalate	85-68-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
bis(2-chloroethoxy) methane	111-91-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50

Page 6 of 21 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-5265 Matrix: Product Date Received: 12.18.13 10.00

Lab Sample Id: 476075-001 Date Collected: 12.17.13 00.00

Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3580A

Tech: RIM % Moisture:

Analyst: PKH Date Prep: 12.24.13 12.09 Basis: Wet Weight

Seq Number: 930871 SUB: TX104704215

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
bis(2-chloroethyl) ether	111-44-4	<2500	2500	mg/kg	12.27.13 12.01	D1	50
bis(2-chloroisopropyl) ether	108-60-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
bis(2-ethylhexyl) phthalate	117-81-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Chrysene	218-01-9	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Dibenz(a,h)Anthracene	53-70-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Dibenzofuran	132-64-9	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Diethyl Phthalate	84-66-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Dimethyl Phthalate	131-11-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
di-n-Butyl Phthalate	84-74-2	<2500	2500	mg/kg	12.27.13 12.01	D1	50
di-n-Octyl Phthalate	117-84-0	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Fluoranthene	206-44-0	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Fluorene	86-73-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Hexachlorobenzene	118-74-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Hexachlorobutadiene	87-68-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Hexachlorocyclopentadiene	77-47-4	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Hexachloroethane	67-72-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Indeno(1,2,3-c,d)Pyrene	193-39-5	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Isophorone	78-59-1	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Naphthalene	91-20-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Nitrobenzene	98-95-3	<2500	2500	mg/kg	12.27.13 12.01	D1	50
N-Nitrosodi-n-Propylamine	621-64-7	<2500	2500	mg/kg	12.27.13 12.01	D1	50
N-Nitrosodiphenylamine	86-30-6	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Pentachlorophenol	87-86-5	<5000	5000	mg/kg	12.27.13 12.01	D1	50
Phenanthrene	85-01-8	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Phenol	108-95-2	<5000	5000	mg/kg	12.27.13 12.01	D1	50
Pyrene	129-00-0	<2500	2500	mg/kg	12.27.13 12.01	D1	50
Pyridine	110-86-1	<5000	5000	mg/kg	12.27.13 12.01	D1	50
Benzene, 1,2,3-trimethyl- (TIC)	TIC	17300		mg/kg	12.27.13 12.01	D2T4	50
Benzene, 1,2,4,5-tetramethyl- (TIC)	TIC	9640		mg/kg	12.27.13 12.01	D2T4	50
Benzene, 1-ethyl-2,4-dimethyl- (TIC)	TIC	13200		mg/kg	12.27.13 12.01	D2T4	50
Benzene, 1-ethyl-3-methyl- (TIC)	TIC	47400		mg/kg	12.27.13 12.01	D2T4	50
Benzene, 2-propenyl- (TIC)	TIC	18200		mg/kg	12.27.13 12.01	D2T4	50
Cycloheptane, 1,3,5-tris(methylene)- (TIC)	TIC	22300		mg/kg	12.27.13 12.01	D2T4	50
Cyclohexane, 1,1,3-trimethyl- (TIC)	TIC	12100		mg/kg	12.27.13 12.01	D2T4	50
Cyclohexane, 1,4-dimethyl- (TIC)	TIC	11700		mg/kg	12.27.13 12.01	D2T4	50
Cyclohexanol, 2-(1,1-dimethylethyl)- (TIC)	TIC	8230		mg/kg	12.27.13 12.01	D2T4	50
Decane, 2,5,6-trimethyl- (TIC)	TIC	10700		mg/kg	12.27.13 12.01	D2T4	50
Decane, 2-methyl- (TIC)	TIC	12100		mg/kg	12.27.13 12.01	D2T4	50
Dodecane (TIC)	TIC	20600		mg/kg	12.27.13 12.01	D2T4	50

Page 7 of 21 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-5265 Matrix: Product Date Received: 12.18.13 10.00

Lab Sample Id: 476075-001 Date Collected: 12.17.13 00.00

Analytical Method: SVOCs by SW-846 8270C Prep Method: SW3580A

Tech: RIM % Moisture:

Analyst: PKH Date Prep: 12.24.13 12.09 Basis: Wet Weight

Seq Number: 930871					S	UB: TX10470421	.5	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Ethylbenzene (TIC)	TIC	9610			mg/kg	12.27.13 12.01	D2T4	50
Heptane, 3-ethyl-2-methyl- (TIC)	TIC	13800			mg/kg	12.27.13 12.01	D2T4	50
Nonane (TIC)	TIC	41500			mg/kg	12.27.13 12.01	D2T4	50
Octane (TIC)	TIC	8210			mg/kg	12.27.13 12.01	D2T4	50
Octane, 2,6-dimethyl- (TIC)	TIC	24900			mg/kg	12.27.13 12.01	D2T4	50
Tetradecane (TIC)	TIC	11800			mg/kg	12.27.13 12.01	D2T4	50
Undecane (TIC)	TIC	48100			mg/kg	12.27.13 12.01	D2T4	50
p-Xylene (TIC)	TIC	17800			mg/kg	12.27.13 12.01	D2T4	50
-			%				_	
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
2-Fluorophenol		367-12-4	123	%	25-121	12.27.13 12.01	S1	
Phenol-d6		13127-88-3	108	%	24-113	12.27.13 12.01		
Nitrobenzene-d5		4165-60-0	116	%	23-120	12.27.13 12.01		
2-Fluorobiphenyl		321-60-8	114	%	30-115	12.27.13 12.01		
2,4,6-Tribromophenol		118-79-6	94	%	19-122	12.27.13 12.01		
Terphenyl-D14		1718-51-0	115	%	18-137	12.27.13 12.01		

Page 8 of 21 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-5265 Matrix: Product Date Received: 12.18.13 10.00

Lab Sample Id: 476075-001 Date Collected: 12.17.13 00.00

Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B

Tech: MCH % Moisture:

Analyst: MCH Date Prep: 12.20.13 12.20 Basis: Wet Weight

Seq Number: 930572 SUB: TX104704215

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,1,1-Trichloroethane	71-55-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,1,2,2-Tetrachloroethane	79-34-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,1,2-Trichloroethane	79-00-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,1-Dichloroethane	75-34-3	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,1-Dichloroethene	75-35-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,1-Dichloropropene	563-58-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2,3-Trichlorobenzene	87-61-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2,3-Trichloropropane	96-18-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2,4-Trichlorobenzene	120-82-1	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2,4-Trimethylbenzene	95-63-6	3800	501	mg/kg	12.24.13 19.31	D2	100000
1,2-Dibromo-3-Chloropropane	96-12-8	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2-Dibromoethane	106-93-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2-Dichlorobenzene	95-50-1	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2-Dichloroethane	107-06-2	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,2-Dichloropropane	78-87-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,3,5-Trimethylbenzene	108-67-8	2920	251	mg/kg	12.24.13 02.12	D2	50000
1,3-Dichlorobenzene	541-73-1	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,3-Dichloropropane	142-28-9	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
1,4-Dichlorobenzene	106-46-7	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
2,2-Dichloropropane	594-20-7	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
2-Butanone	78-93-3	<251	251	mg/kg	12.20.13 20.26	D1	5000
2-Chlorotoluene	95-49-8	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
2-Hexanone	591-78-6	<251	251	mg/kg	12.20.13 20.26	D1	5000
4-Chlorotoluene	106-43-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Acetone	67-64-1	< 501	501	mg/kg	12.20.13 20.26	D1	5000
Benzene	71-43-2	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Bromobenzene	108-86-1	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Bromochloromethane	74-97-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Bromodichloromethane	75-27-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Bromoform	75-25-2	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Bromomethane	74-83-9	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Carbon Disulfide	75-15-0	<251	251	mg/kg	12.20.13 20.26	D1	5000
Carbon Tetrachloride	56-23-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Chlorobenzene	108-90-7	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Chloroethane	75-00-3	< 50.1	50.1	mg/kg	12.20.13 20.26	D1	5000
Chloroform	67-66-3	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Chloromethane	74-87-3	< 50.1	50.1	mg/kg	12.20.13 20.26	D1	5000
cis-1,2-Dichloroethene	156-59-2	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000

Page 9 of 21 Final 1.000

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-5265 Matrix: Product Date Received: 12.18.13 10.00

Lab Sample Id: 476075-001 Date Collected: 12.17.13 00.00

Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B

Tech: MCH % Moisture:

Analyst: MCH Date Prep: 12.20.13 12.20 Basis: Wet Weight

Seq Number: 930572 SUB: TX104704215

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
cis-1,3-Dichloropropene	10061-01-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Dibromochloromethane	124-48-1	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Dibromomethane	74-95-3	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Dichlorodifluoromethane	75-71-8	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Ethylbenzene	100-41-4	652	25.1	mg/kg	12.20.13 20.26	D2	5000
Hexachlorobutadiene	87-68-3	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Iodomethane (Methyl Iodide)	74-88-4	<100	100	mg/kg	12.20.13 20.26	D1	5000
isopropylbenzene	98-82-8	273	25.1	mg/kg	12.20.13 20.26	D2	5000
m,p-Xylenes	179601-23-1	3210	501	mg/kg	12.24.13 02.12	D2	50000
Methylene Chloride	75-09-2	<100	100	mg/kg	12.20.13 20.26	D1	5000
MTBE	1634-04-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Naphthalene	91-20-3	674	50.1	mg/kg	12.20.13 20.26	D2	5000
n-Butylbenzene	104-51-8	498	25.1	mg/kg	12.20.13 20.26	D2	5000
n-Propylbenzene	103-65-1	727	25.1	mg/kg	12.20.13 20.26	D2	5000
o-Xylene	95-47-6	2230	251	mg/kg	12.24.13 02.12	D2	50000
p-Cymene (p-Isopropyltoluene)	99-87-6	295	25.1	mg/kg	12.20.13 20.26	D2	5000
Sec-Butylbenzene	135-98-8	316	25.1	mg/kg	12.20.13 20.26	D2	5000
Styrene	100-42-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
tert-Butylbenzene	98-06-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Tetrachloroethylene	127-18-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Toluene	108-88-3	286	25.1	mg/kg	12.20.13 20.26	D2	5000
Total Xylenes	1330-20-7	5440	251	mg/kg	12.24.13 02.12	D2	50000
trans-1,2-dichloroethene	156-60-5	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
trans-1,3-dichloropropene	10061-02-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Trichloroethene	79-01-6	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Trichlorofluoromethane	75-69-4	<25.1	25.1	mg/kg	12.20.13 20.26	D1	5000
Vinyl Acetate	108-05-4	<251	251	mg/kg	12.20.13 20.26	D1	5000
Vinyl Chloride	75-01-4	<10.0	10.0	mg/kg	12.20.13 20.26	D1	5000
Benzene, 1-ethyl-2-methyl- (TIC)	TIC	551		mg/kg	12.20.13 20.26	D2T4	5000
Benzene, 1-ethyl-3-methyl- (TIC)	TIC	218		mg/kg	12.20.13 20.26	D2T4	5000
Cyclohexane, 1,2-dimethyl- (TIC)	TIC	280		mg/kg	12.20.13 20.26	D2T4	5000
Decane, 4-methyl- (TIC)	TIC	228		mg/kg	12.20.13 20.26	D2T4	5000
Heptane, 2-methyl- (TIC)	TIC	277		mg/kg	12.20.13 20.26	D2T4	5000
Heptane, 3-methyl- (TIC)	TIC	240		mg/kg	12.20.13 20.26	D2T4	5000
Hexadecane (TIC)	TIC	351		mg/kg	12.20.13 20.26	D2T4	5000
Octane, 3,5-dimethyl- (TIC)	TIC	258		mg/kg	12.20.13 20.26	D2T4	5000
Tridecane (TIC)	TIC	182		mg/kg	12.20.13 20.26	D2T4	5000
Undecane (TIC)	TIC	498		mg/kg	12.20.13 20.26	D2T4	5000

Page 10 of 21

Southwest Research Institute, San Antonio, TX

Jet Fuel

Sample Id: CL13-5265 Matrix: Product Date Received: 12.18.13 10.00

Lab Sample Id: 476075-001 Date Collected: 12.17.13 00.00

Analytical Method: VOAs by SW-846 8260B Prep Method: SW5030B

Tech: MCH % Moisture:

Analyst: MCH Date Prep: 12.20.13 12.20 Basis: Wet Weight

Seq Number: 930572 SUB: TX104704215

		%				
Surrogate	Cas Number	Recovery	Units	Limits	Analysis Date	Flag
Dibromofluoromethane	1868-53-7	108	%	53-142	12.20.13 20.26	
1,2-Dichloroethane-D4	17060-07-0	107	%	56-150	12.20.13 20.26	
Toluene-D8	2037-26-5	115	%	70-130	12.20.13 20.26	
4-Bromofluorobenzene	460-00-4	132	%	68-152	12.20.13 20.26	

Page 11 of 21

QC Summary 476075

Southwest Research Institute

Jet Fuel

Analytical Method: SVC Seq Number: 930	871	8270C		Matrix:		DVC			Date Prep	12.	73580A 26.13	
MB Sample Id: 648	898-1-BLK				648898-1	-BK2					8898-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Fla
1,2,4-Trichlorobenzene	<45.7	500	372	74	383	77	35-129	3	30	mg/kg	12.26.13 15:19	
1,2-Dichlorobenzene	<54.3	500	377	75	387	77	38-122	3	30	mg/kg	12.26.13 15:19	
1,3-Dichlorobenzene	<45.8	500	376	75	388	78	38-120	3	30	mg/kg	12.26.13 15:19	
1,4-Dichlorobenzene	<49.3	500	376	75	394	79	37-121	5	30	mg/kg	12.26.13 15:19	
2,4,5-Trichlorophenol	<58.7	500	374	75	408	82	40-135	9	30	mg/kg	12.26.13 15:19	
2,4,6-Trichlorophenol	<40.2	500	375	75	390	78	39-139	4	30	mg/kg	12.26.13 15:19	
2,4-Dichlorophenol	<47.1	500	369	74	378	76	36-135	2	30	mg/kg	12.26.13 15:19	
2,4-Dimethylphenol	<118	500	378	76	396	79	38-133	5	30	mg/kg	12.26.13 15:19	
2,4-Dinitrophenol	<104	500	529	106	547	109	19-131	3	40	mg/kg	12.26.13 15:19	
2,4-Dinitrotoluene	<47.7	500	362	72	373	75	48-131	3	30	mg/kg	12.26.13 15:19	
2,6-Dinitrotoluene	<47.9	500	352	70	377	75	42-136	7	30	mg/kg	12.26.13 15:19	
2-Chloronaphthalene	<39.6	500	327	65	341	68	32-138	4	30	mg/kg	12.26.13 15:19	
2-Chlorophenol	<48.5	500	388	78	392	78	38-125	1	30	mg/kg	12.26.13 15:19	
2-Methylnaphthalene	<51.3	500	379	76	390	78	36-126	3		mg/kg	12.26.13 15:19	
2-methylphenol	<65.0	500	394	79	401	80	37-128	2	30	mg/kg	12.26.13 15:19	
2-Nitroaniline	<44.1	500	351	70	363	73	30-133	3	40	mg/kg	12.26.13 15:19	
2-Nitrophenol	<34.2	500	360	72	367	73	33-142	2		mg/kg	12.26.13 15:19	
3&4-Methylphenol	<114	500	388	78	397	79	38-126	2		mg/kg	12.26.13 15:19	
3,3-Dichlorobenzidine	<68.6	500	339	68	353	71	35-134	4		mg/kg	12.26.13 15:19	
3-Nitroaniline	<52.0	500	337	67	363	73	41-135	7		mg/kg	12.26.13 15:19	
4,6-dinitro-2-methyl phenol	<40.7	500	321	64	334	67	30-146	4		mg/kg	12.26.13 15:19	
4-Bromophenyl-phenylether	<50.9	500	353	71	379	76	37-140	7		mg/kg	12.26.13 15:19	
4-chloro-3-methylphenol	<52.6	500	375	75	381	76	40-134	2		mg/kg	12.26.13 15:19	
4-Chloroaniline	<100	500	337	67	351	70	34-124	4		mg/kg	12.26.13 15:19	
4-Chlorophenyl-phenyl ether	<50.3	500	376	75	396	79	41-131	5		mg/kg	12.26.13 15:19	
4-Nitroaniline	<45.1	500	359	72	373	75	46-132	4		mg/kg	12.26.13 15:19	
4-Nitrophenol	<46.7	500	321	64	309	62	21-152	4		mg/kg	12.26.13 15:19	
Acenaphthene	<53.7	500	375	75	389	78	37-131	4		mg/kg	12.26.13 15:19	
Acenaphthylene	<50.7	500	372	74	385	77	39-129	3		mg/kg	12.26.13 15:19	
Aniline (Phenylamine, Aminobena		500	332	66	336	67	33-117	1		mg/kg	12.26.13 15:19	
Anthracene	<38.5	500	372	74	388	78	39-139	4		mg/kg	12.26.13 15:19	
Benzo(a)anthracene	<42.1	500	379	76	389	78	44-135	3		mg/kg	12.26.13 15:19	
Benzo(a)pyrene	<43.6	500	373	75	386	77	43-153	3		mg/kg	12.26.13 15:19	
Benzo(b)fluoranthene	<40.5	500	337	67	399	80	40-153	17		mg/kg	12.26.13 15:19	
Benzo(g,h,i)perylene	<44.1	500	379	76	395	79	40-153	4		mg/kg	12.26.13 15:19	
Benzo(k)fluoranthene	<58.5	500	415	83	368	74	33-156	12		mg/kg	12.26.13 15:19	
Benzoic Acid	<72.4	1500	249	17	252	17	31-135	1		mg/kg	12.26.13 15:19	L
Benzyl Butyl Phthalate	<38.9	500	368	74	384	77	43-145	4		mg/kg	12.26.13 15:19	L
bis(2-chloroethoxy) methane	<55.9	500	353	71	377	75	30-129	7		mg/kg	12.26.13 15:19	
bis(2-chloroethyl) ether	<53.7	500	380	76	392	78	33-127	3		mg/kg	12.26.13 15:19	
bis(2-chloroisopropyl) ether	<50.1	500	369	74	369	74	25-124	0		mg/kg	12.26.13 15:19	
	<39.9	500	373	75	386	77	46-145	3			12.26.13 15:19	
bis(2-ethylhexyl) phthalate			369	74		77		5		mg/kg	12.26.13 15:19	
Chrysene Dibang(a b) Anthrogona	<45.4	500 500	370	74	386		42-135 41-155	4		mg/kg	12.26.13 15:19	
Dibenz(a,h)Anthracene	<52.6				384	77				mg/kg		
Dibenzofuran	<49.3	500	364	73	387	77	39-132	6		mg/kg	12.26.13 15:19	
Diethyl Phthalate	<51.8	500	372	74	390	78	45-131	5		mg/kg	12.26.13 15:19	
Dimethyl Phthalate	<51.6	500	372	74	387	77	43-132	4		mg/kg	12.26.13 15:19	
di-n-Butyl Phthalate	<43.0	500	366	73	384	77	43-142	5		mg/kg	12.26.13 15:19	
di-n-Octyl Phthalate	<47.5	500	374	75	384	77	34-166	3		mg/kg	12.26.13 15:19	
Fluoranthene	<47.3	500	371	74	387	77	41-138	4		mg/kg	12.26.13 15:19	
Fluorene	<53.4	500	373	75	387	77	41-131	4		mg/kg	12.26.13 15:19	
Hexachlorobenzene	<43.8	500	368	74	388	78	36-142	5	30	mg/kg	12.26.13 15:19	

Page 12 of 21

Final 1.000

Southwest Research Institute

Jet Fuel

Analytical Method: Seq Number: MB Sample Id:	SVOCs by SW-846 930871 648898-1-BLK	8270C	M LCS Samp	latrix:	Solid 648898-1-	-BKS			rep Method Date Prep D Sample I	: 12.2	3580A 6.13 898-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Hexachlorobutadiene	<47.0	500	363	73	384	77	35-129	6	30	mg/kg	12.26.13 15:19	
Hexachlorocyclopentad	iene <22.0	500	404	81	412	82	16-106	2	30	mg/kg	12.26.13 15:19	
Hexachloroethane	< 56.0	500	370	74	384	77	36-121	4	30	mg/kg	12.26.13 15:19	
Indeno(1,2,3-c,d)Pyrene	<46.4	500	370	74	388	78	39-154	5	30	mg/kg	12.26.13 15:19	
Isophorone	<44.8	500	369	74	381	76	36-128	3	30	mg/kg	12.26.13 15:19	
Naphthalene	<51.6	500	370	74	384	77	35-128	4	30	mg/kg	12.26.13 15:19	
Nitrobenzene	<43.7	500	366	73	382	76	32-129	4	30	mg/kg	12.26.13 15:19	
N-Nitrosodi-n-Propylan	nine <59.8	500	380	76	396	79	34-129	4	30	mg/kg	12.26.13 15:19	
N-Nitrosodiphenylamin	e <37.4	500	373	75	388	78	27-155	4	30	mg/kg	12.26.13 15:19	
Pentachlorophenol	<33.1	500	280	56	284	57	14-148	1	40	mg/kg	12.26.13 15:19	
Phenanthrene	<49.8	500	372	74	387	77	37-139	4	30	mg/kg	12.26.13 15:19	
Phenol	<53.7	500	377	75	384	77	34-127	2	40	mg/kg	12.26.13 15:19	
Pyrene	<50.0	500	373	75	391	78	42-138	5	30	mg/kg	12.26.13 15:19	
Pyridine	<64.0	500	441	88	440	88	30-113	0	40	mg/kg	12.26.13 15:19	
Surrogate	MB %Rec	MB Flag	LC		LCS Flag	LCSE %Rec			mits	Units	Analysis Date	
2-Fluorophenol	85		76			77		25	-121	%	12.26.13 15:19	
Phenol-d6	75		79			78		24	-113	%	12.26.13 15:19	
Nitrobenzene-d5	80		73			74		23	-120	%	12.26.13 15:19	
2-Fluorobiphenyl	86		73			75		30	-115	%	12.26.13 15:19	
2,4,6-Tribromophenol	68		78			77		19	-122	%	12.26.13 15:19	
Terphenyl-D14	85		75			74		18	-137	%	12.26.13 15:19	

Page 13 of 21

Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846 8260B			Prep Method:	SW5035A
Seq Number:	930572	Matrix:	Solid	Date Prep:	12.20.13
MB Sample Id:	648873-1-BLK	LCS Sample Id:	648873-1-BKS	LCSD Sample Id:	648873-1-BSD

MB Sample Id: 648873-1-BLK		LCS Sample Id:			6488/3-1-BKS			LCSD Sample Id: 648873-1-BSD				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.000148	0.0500	0.0480	96	0.0491	98	81-127	2	25	mg/kg	12.20.13 09:58	
1,1,1-Trichloroethane	< 0.000602	0.0500	0.0493	99	0.0455	91	71-124	8	25	mg/kg	12.20.13 09:58	
1,1,2,2-Tetrachloroethane	< 0.000194	0.0500	0.0472	94	0.0475	95	75-133	1	25	mg/kg	12.20.13 09:58	
1,1,2-Trichloroethane	< 0.000225	0.0500	0.0463	93	0.0462	92	75-131	0	25	mg/kg	12.20.13 09:58	
1,1-Dichloroethane	< 0.000125	0.0500	0.0471	94	0.0447	89	73-124	5	25	mg/kg	12.20.13 09:58	
1,1-Dichloroethene	< 0.000192	0.0500	0.0454	91	0.0419	84	68-119	8	25	mg/kg	12.20.13 09:58	
1,1-Dichloropropene	< 0.000198	0.0500	0.0452	90	0.0457	91	72-118	1	25	mg/kg	12.20.13 09:58	
1,2,3-Trichlorobenzene	< 0.000106	0.0500	0.0477	95	0.0495	99	75-131	4	25	mg/kg	12.20.13 09:58	
1,2,3-Trichloropropane	< 0.000359	0.0500	0.0504	101	0.0518	104	75-131	3	25	mg/kg	12.20.13 09:58	
1,2,4-Trichlorobenzene	< 0.000191	0.0500	0.0472	94	0.0480	96	79-128	2	25	mg/kg	12.20.13 09:58	
1,2-Dibromo-3-Chloropropa	ne <0.00107	0.0500	0.0469	94	0.0485	97	58-133	3	25	mg/kg	12.20.13 09:58	
1,2-Dibromoethane	< 0.000193	0.0500	0.0488	98	0.0486	97	80-127	0	25	mg/kg	12.20.13 09:58	
1,2-Dichlorobenzene	< 0.000129	0.0500	0.0473	95	0.0475	95	84-121	0	25	mg/kg	12.20.13 09:58	
1,2-Dichloroethane	< 0.000177	0.0500	0.0495	99	0.0473	95	70-123	5	25	mg/kg	12.20.13 09:58	
1,2-Dichloropropane	< 0.000162	0.0500	0.0475	95	0.0440	88	75-122	8	25	mg/kg	12.20.13 09:58	
1,3-Dichlorobenzene	< 0.000159	0.0500	0.0478	96	0.0489	98	84-124	2	25	mg/kg	12.20.13 09:58	
1,3-Dichloropropane	< 0.000227	0.0500	0.0483	97	0.0479	96	82-131	1	25	mg/kg	12.20.13 09:58	
1,4-Dichlorobenzene	< 0.0000970	0.0500	0.0457	91	0.0467	93	82-120	2	25	mg/kg	12.20.13 09:58	
2,2-Dichloropropane	< 0.000127	0.0500	0.0493	99	0.0456	91	67-137	8	25	mg/kg	12.20.13 09:58	
2-Butanone	< 0.00173	0.600	0.511	85	0.508	85	46-137	1	25	mg/kg	12.20.13 09:58	
2-Chlorotoluene	< 0.000217	0.0500	0.0499	100	0.0501	100	83-129	0	25	mg/kg	12.20.13 09:58	
2-Hexanone	< 0.00112	0.600	0.544	91	0.547	91	52-137	1	25	mg/kg	12.20.13 09:58	
4-Chlorotoluene	< 0.000118	0.0500	0.0510	102	0.0514	103	83-125	1	25	mg/kg	12.20.13 09:58	
Acetone	0.00283	0.600	0.491	82	0.481	80	33-148	2	25	mg/kg	12.20.13 09:58	
Benzene	< 0.000300	0.0500	0.0474	95	0.0459	92	71-119	3	25	mg/kg	12.20.13 09:58	
Bromobenzene	< 0.000198	0.0500	0.0455	91	0.0453	91	84-123	0	25	mg/kg	12.20.13 09:58	
Bromochloromethane	< 0.000215	0.0500	0.0452	90	0.0422	84	71-120	7	25	mg/kg	12.20.13 09:58	
Bromodichloromethane	< 0.000186	0.0500	0.0498	100	0.0471	94	78-126	6	25	mg/kg	12.20.13 09:58	
Bromoform	< 0.000393	0.0500	0.0486	97	0.0501	100	63-136	3	25	mg/kg	12.20.13 09:58	
Bromomethane	< 0.000274	0.0500	0.0468	94	0.0425	85	57-118	10	25	mg/kg	12.20.13 09:58	
Carbon Disulfide	< 0.0000880	0.550	0.433	79	0.410	75	55-136	5	25	mg/kg	12.20.13 09:58	
Carbon Tetrachloride	< 0.000132	0.0500	0.0477	95	0.0470	94	63-135	1	25	mg/kg	12.20.13 09:58	
Chlorobenzene	< 0.000104	0.0500	0.0473	95	0.0477	95	83-121	1	25	mg/kg	12.20.13 09:58	
Chloroethane	< 0.000254	0.0500	0.0446	89	0.0402	80	57-122	10	25	mg/kg	12.20.13 09:58	
Chloroform	< 0.000139	0.0500	0.0465	93	0.0443	89	74-118	5	25	mg/kg	12.20.13 09:58	
Chloromethane	< 0.000322	0.0500	0.0421	84	0.0390	78	58-110	8	25	mg/kg	12.20.13 09:58	
cis-1,2-Dichloroethene	< 0.000165	0.0500	0.0467	93	0.0441	88	72-131	6	25	mg/kg	12.20.13 09:58	
cis-1,3-Dichloropropene	< 0.000128	0.0500	0.0502	100	0.0491	98	74-135	2	25	mg/kg	12.20.13 09:58	
Dibromochloromethane	< 0.000422	0.0500	0.0489	98	0.0518	104	77-130	6	25	mg/kg	12.20.13 09:58	
Dibromomethane	< 0.000260	0.0500	0.0479	96	0.0462	92	73-126	4	25	mg/kg	12.20.13 09:58	
Dichlorodifluoromethane	< 0.000484	0.0500	0.0438	88	0.0388	78	54-122	12	25	mg/kg	12.20.13 09:58	
Ethylbenzene	< 0.000104	0.0500	0.0496	99	0.0492	98	80-123	1	25	mg/kg	12.20.13 09:58	
Hexachlorobutadiene	< 0.000346	0.0500	0.0483	97	0.0475	95	77-130	2	25	mg/kg	12.20.13 09:58	
Iodomethane (Methyl Iodide	< 0.000200	0.0500	0.0437	87	0.0413	83	63-116	6	25	mg/kg	12.20.13 09:58	
isopropylbenzene	< 0.000112	0.0500	0.0534	107	0.0532	106	55-155	0	25	mg/kg	12.20.13 09:58	
Methylene Chloride	0.000820	0.0500	0.0448	90	0.0414	83	57-134	8	25	mg/kg	12.20.13 09:58	
MTBE	< 0.000142	0.100	0.0997	100	0.0966	97	64-148	3	25	mg/kg	12.20.13 09:58	
Naphthalene	< 0.000148	0.0500	0.0481	96	0.0506	101	53-162	5	25	mg/kg	12.20.13 09:58	
n-Butylbenzene	< 0.0000990	0.0500	0.0530	106	0.0531	106	82-127	0	25	mg/kg	12.20.13 09:58	
n-Propylbenzene	< 0.000137	0.0500	0.0507	101	0.0512	102	84-131	1	25	mg/kg	12.20.13 09:58	
p-Cymene (p-Isopropyltolue	ne) <0.0000800	0.0500	0.0546	109	0.0545	109	84-130	0	25	mg/kg	12.20.13 09:58	
Sec-Butylbenzene	< 0.000121	0.0500	0.0516	103	0.0541	108	84-131	5	25	mg/kg	12.20.13 09:58	

Page 14 of 21 Final 1.000

QC Summary 476075

Southwest Research Institute

Jet Fuel

Analytical Method: Seq Number: MB Sample Id:	VOAs by SW-846 8 930572 648873-1-BLK	260B	LCS San	Matrix:	Solid 648873-1-	-BKS			rep Method Date Prep D Sample	: 12.2	5035A 0.13 873-1-BSD			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag		
Styrene	< 0.000158	0.0500	0.0524	105	0.0532	106	80-126	2	25	mg/kg	12.20.13 09:58			
tert-Butylbenzene	< 0.0000900	0.0500	0.0517	103	0.0536	107	83-132	4	25	mg/kg	12.20.13 09:58			
Tetrachloroethylene	< 0.000173	0.0500	0.0445	89	0.0438	88	79-124	2	25	mg/kg	12.20.13 09:58			
Toluene	0.000140	0.0500	0.0464	93	0.0460	92	74-122	1	25	mg/kg	12.20.13 09:58			
trans-1,2-dichloroethene	< 0.000123	0.0500	0.0442	88	0.0431	86	63-110	3	25	mg/kg	12.20.13 09:58			
trans-1,3-dichloroproper	ne <0.000361	0.0500	0.0523	105	0.0510	102	73-125	3	25	mg/kg	12.20.13 09:58			
Trichloroethene	< 0.000147	0.0500	0.0453	91	0.0441	88	78-119	3	25	mg/kg	12.20.13 09:58			
Trichlorofluoromethane	< 0.000186	0.0500	0.0475	95	0.0444	89	71-148	7	25	mg/kg	12.20.13 09:58			
Vinyl Acetate	< 0.000213	0.500	0.566	113	0.546	109	40-154	4	25	mg/kg	12.20.13 09:58			
Vinyl Chloride	< 0.000193	0.0500	0.0435	87	0.0394	79	60-123	10	25	mg/kg	12.20.13 09:58			
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date			
Dibromofluoromethane	116		1	02		95		53	3-142	%	12.20.13 09:58			
1,2-Dichloroethane-D4	113		1	02		91		56	5-150	%	12.20.13 09:58			
Toluene-D8	98		1	00		100		70	-130	%	12.20.13 09:58			
4-Bromofluorobenzene	94		1	02		105		68	3-152	%	12.20.13 09:58			
Analytical Method:	VOAs by SW-846 8	260B						Pı	rep Method	ı: SW:	5030B			
Seq Number:	930651]	Matrix:	Solid				Date Prep	: 12.2	3.13			
MB Sample Id:					LCS Sample Id: 648928-1-BKS					LCSD Sample Id: 648928-1-BSD				

MB Sample Id:	648928-1-BLK		LCS Sample Id: 648928-1-BKS			BKS		LCSI	Sample	e Id: 6489		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trimethylbenzene	< 0.000103	0.0500	0.0587	117	0.0580	116	60-159	1	25	mg/kg	12.23.13 16:13	
1,3,5-Trimethylbenzene	< 0.000166	0.0500	0.0590	118	0.0571	114	61-160	3	25	mg/kg	12.23.13 16:13	
m,p-Xylenes	< 0.000185	0.100	0.110	110	0.105	105	78-127	5	25	mg/kg	12.23.13 16:13	
o-Xylene	< 0.000149	0.0500	0.0580	116	0.0555	111	79-125	4	25	mg/kg	12.23.13 16:13	
							LOCE			** •		
Surrogate	MB %Rec	MB Flag	Le %]		LCS Flag	LCSD %Rec			mits	Units	Analysis Date	
Surrogate Dibromofluoromethane			%						-142	Units %	•	
0	%Rec		%]	Rec		%Rec		53			Date	
Dibromofluoromethane	%Rec 100		%] (Rec 97		%Rec 98		53 56	-142	%	Date 12.23.13 16:13	
Dibromofluoromethane 1,2-Dichloroethane-D4	%Rec 100 97		%l	Rec 97 98		%Rec 98 106		53 56 70	-142 -150	% %	Date 12.23.13 16:13 12.23.13 16:13	

Page 15 of 21

Southwest Research Institute

Jet Fuel

Analytical Method: Seq Number: MB Sample Id:	VOAs by SW-846 8 930791 649007-1-BLK	Matrix: Solid LCS Sample Id: 649007-1-BKS				5035A 4.13 007-1-BSD						
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trimethylbenzene	< 0.000103	0.0500	0.0553	111	0.0548	110	60-159	1	25	mg/kg	12.24.13 09:21	
1,3,5-Trimethylbenzene	< 0.000166	0.0500	0.0559	112	0.0553	111	61-160	1	25	mg/kg	12.24.13 09:21	
m,p-Xylenes	< 0.000185	0.100	0.105	105	0.106	106	78-127	1	25	mg/kg	12.24.13 09:21	
o-Xylene	< 0.000149	0.0500	0.0529	106	0.0536	107	79-125	1	25	mg/kg	12.24.13 09:21	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
Dibromofluoromethane	108		9	95		95		53	-142	%	12.24.13 09:21	
1,2-Dichloroethane-D4	104		9	97		98		56	5-150	%	12.24.13 09:21	
Toluene-D8	98		9	98		101		70	-130	%	12.24.13 09:21	
4-Bromofluorobenzene	97		1	00		97		68	3-152	%	12.24.13 09:21	

Page 16 of 21

QC Summary 476075

Southwest Research Institute

Jet Fuel

Analytical Method:	VOAs by SW-846 8260B			Prep Method:	SW5035A
Seq Number:	930572	Matrix:	Soil	Date Prep:	12.20.13
Parent Sample Id:	476047-001	MS Sample Id:	476047-001 S	MSD Sample Id:	476047-001 SD

Parent Sample Id: 476047	ant Sample Id: 476047-001 MIS Sample Id. 476047-001 S					IVIS	D Sample	iu. 470	047-001 SD			
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1,2-Tetrachloroethane	< 0.00554	1.87	1.77	95	1.68	90	72-125	5	25	mg/kg	12.20.13 14:48	
1,1,1-Trichloroethane	< 0.0225	1.87	1.55	83	1.42	76	75-125	9	25	mg/kg	12.20.13 14:48	
1,1,2,2-Tetrachloroethane	< 0.00726	1.87	1.66	89	1.74	93	74-125	5	25	mg/kg	12.20.13 14:48	
1,1,2-Trichloroethane	< 0.00842	1.87	1.64	88	1.71	91	75-127	4	25	mg/kg	12.20.13 14:48	
1,1-Dichloroethane	< 0.00468	1.87	1.58	84	1.46	78	72-125	8	25	mg/kg	12.20.13 14:48	
1,1-Dichloroethene	< 0.00719	1.87	1.59	85	1.43	76	59-172	11	25	mg/kg	12.20.13 14:48	
1,1-Dichloropropene	< 0.00741	1.87	1.63	87	1.57	84	75-125	4	25	mg/kg	12.20.13 14:48	
1,2,3-Trichlorobenzene	< 0.00397	1.87	1.74	93	1.66	89	75-137	5	25	mg/kg	12.20.13 14:48	
1,2,3-Trichloropropane	< 0.0134	1.87	1.72	92	1.88	101	75-125	9	25	mg/kg	12.20.13 14:48	
1,2,4-Trichlorobenzene	< 0.00715	1.87	1.66	89	1.63	87	75-135	2	25	mg/kg	12.20.13 14:48	
1,2-Dibromo-3-Chloropropane	< 0.0399	1.87	1.71	91	1.64	88	59-125	4	25	mg/kg	12.20.13 14:48	
1,2-Dibromoethane	< 0.00722	1.87	1.65	88	1.71	91	73-125	4	25	mg/kg	12.20.13 14:48	
1,2-Dichlorobenzene	< 0.00483	1.87	1.74	93	1.74	93	75-125	0	25	mg/kg	12.20.13 14:48	
1,2-Dichloroethane	< 0.00662	1.87	1.71	91	1.64	88	68-127	4	25	mg/kg	12.20.13 14:48	
1,2-Dichloropropane	< 0.00606	1.87	1.61	86	1.56	83	74-125	3	25	mg/kg	12.20.13 14:48	
1,3-Dichlorobenzene	< 0.00595	1.87	1.71	91	1.82	97	75-125	6	25	mg/kg	12.20.13 14:48	
1,3-Dichloropropane	< 0.00850	1.87	1.71	91	1.80	96	75-125	5	25	mg/kg	12.20.13 14:48	
1,4-Dichlorobenzene	< 0.00363	1.87	1.63	87	1.67	89	75-125	2	25	mg/kg	12.20.13 14:48	
2,2-Dichloropropane	< 0.00475	1.87	1.48	79	1.36	73	75-125	8	25	mg/kg	12.20.13 14:48	M2
2-Butanone	< 0.0646	22.5	17.0	76	17.4	77	75-125	2	25	mg/kg	12.20.13 14:48	1112
2-Chlorotoluene	< 0.00812	1.87	1.79	96	1.80	96	73-125	1	25	mg/kg	12.20.13 14:48	
2-Hexanone	< 0.0419	22.5	18.3	81	20.7	92	75-125	12	25	mg/kg	12.20.13 14:48	
4-Chlorotoluene	< 0.00442	1.87	1.79	96	1.87	100	74-125	4	25	mg/kg	12.20.13 14:48	
Acetone	0.146	22.5	16.2	71	15.4	68	50-150	5	25	mg/kg	12.20.13 14:48	
Benzene	< 0.0112	1.87	1.65	88	1.57	84	66-142	5	25	mg/kg	12.20.13 14:48	
Bromobenzene	< 0.00741	1.87	1.70	91	1.77	95	75-125	4	25	mg/kg	12.20.13 14:48	
Bromochloromethane	< 0.00741	1.87	1.60	86	1.48	79	60-140	8	25	mg/kg	12.20.13 14:48	
Bromodichloromethane	< 0.00696	1.87	1.67	89	1.63	87	75-125	2	25	mg/kg	12.20.13 14:48	
Bromoform	< 0.0147	1.87	1.71	91	1.80	96	75-125	5	25	mg/kg	12.20.13 14:48	
Bromomethane	< 0.0147	1.87	1.18	63	1.03	55	60-140	14	25	mg/kg	12.20.13 14:48	M2
Carbon Disulfide	< 0.00329	20.6	13.9	67	12.6	61	60-140	10	25	mg/kg	12.20.13 14:48	1012
Carbon Tetrachloride	< 0.00329	1.87	1.61	86	1.52	81	62-125	6	25	mg/kg	12.20.13 14:48	
Chlorobenzene	< 0.00389	1.87	1.74	93	1.71	91	60-133	2	25	mg/kg	12.20.13 14:48	
Chloroethane	< 0.00383	1.87	1.18	63	1.03	55	60-133	14	25	mg/kg	12.20.13 14:48	M2
Chloroform	<0.00520	1.87	1.18	82	1.42	76	74-125	8	25	mg/kg	12.20.13 14:48	1012
Chloromethane	< 0.00320	1.87	1.42	76	1.42	68	60-140	10	25		12.20.13 14:48	
	< 0.00121	1.87	1.42	85	1.45	78	75-125	9	25	mg/kg mg/kg	12.20.13 14:48	
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	< 0.00479	1.87	1.75	94	1.43	98	74-125	4	25		12.20.13 14:48	
		1.87		97	1.83		73-125		25	mg/kg	12.20.13 14:48	
Dibromochloromethane	< 0.0158		1.81			96	69-127	1		mg/kg	12.20.13 14:48	
Dibromomethane	< 0.00973	1.87	1.62	87 72	1.59	85 63		2	25	mg/kg	12.20.13 14:48	M2
Dichlorodifluoromethane	< 0.0181	1.87	1.34		1.18		65-135	13	25	mg/kg	12.20.13 14:48	IVIZ
Ethylbenzene	< 0.00389	1.87	1.74	93	1.75	94	75-125	1	25	mg/kg	12.20.13 14:48	
Hexachlorobutadiene	< 0.0129	1.87	1.62	87	1.63	87	75-125	1	25	mg/kg		
Iodomethane (Methyl Iodide)	< 0.00749	1.87	1.53	82	1.40	75	75-125	9	25	mg/kg	12.20.13 14:48	
isopropylbenzene	< 0.00419	1.87	1.88	101	1.93	103	75-125	3	25	mg/kg	12.20.13 14:48	
Methylene Chloride	< 0.0160	1.87	1.49	80	1.36	73	75-125	9	25	mg/kg	12.20.13 14:48	M2
MTBE	< 0.00531	3.74	3.50	94	3.24	87	60-140	8	25	mg/kg	12.20.13 14:48	
Naphthalene	< 0.00554	1.87	1.75	94	1.75	94	70-130	0	25	mg/kg	12.20.13 14:48	
n-Butylbenzene	< 0.00371	1.87	1.82	97	1.85	99	75-125	2	25	mg/kg	12.20.13 14:48	
n-Propylbenzene	<0.00513	1.87	1.80	96	1.89	101	75-125	5	25	mg/kg	12.20.13 14:48	
p-Cymene (p-Isopropyltoluene)	< 0.00299	1.87	1.94	104	1.93	103	75-125	1	25	mg/kg	12.20.13 14:48	
Sec-Butylbenzene	< 0.00453	1.87	1.84	98	1.86	99	75-125	1	25	mg/kg	12.20.13 14:48	

Page 17 of 21 Final 1.000

QC Summary 476075

Flag

Southwest Research Institute

Jet Fuel

Analytical Method: Seq Number: Parent Sample Id:	VOAs by SW-846 8 930572 476047-001	260B	MS Sam	Matrix:	Soil 476047-00	01 S			rep Metho Date Pro D Sample	ep: 12.2	5035A 0.13 047-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Styrene	< 0.00591	1.87	1.91	102	1.93	103	75-125	1	25	mg/kg	12.20.13 14:48	
tert-Butylbenzene	< 0.00337	1.87	1.89	101	1.93	103	75-125	2	25	mg/kg	12.20.13 14:48	
Tetrachloroethy lene	< 0.00647	1.87	1.60	86	1.55	83	71-125	3	25	mg/kg	12.20.13 14:48	
Toluene	0.00785	1.87	1.66	88	1.67	89	59-139	1	25	mg/kg	12.20.13 14:48	
trans-1,2-dichloroethene	< 0.00460	1.87	1.46	78	1.31	70	75-125	11	25	mg/kg	12.20.13 14:48	M2
trans-1,3-dichloroproper	ne <0.0135	1.87	1.84	98	1.87	100	66-125	2	25	mg/kg	12.20.13 14:48	
Trichloroethene	< 0.00550	1.87	1.64	88	1.59	85	62-137	3	25	mg/kg	12.20.13 14:48	
Trichlorofluoromethane	< 0.00696	1.87	1.49	80	1.35	72	67-125	10	25	mg/kg	12.20.13 14:48	
Vinyl Acetate	< 0.00797	18.7	16.4	88	17.5	94	60-140	6	25	mg/kg	12.20.13 14:48	
Vinyl Chloride	< 0.00722	1.87	1.39	74	1.24	66	60-140	11	25	mg/kg	12.20.13 14:48	
Surrogate				IS Rec	MS Flag	MSD %Ree			mits	Units	Analysis Date	
Dibromofluoromethane			9	03		87		53	-142	%	12.20.13 14:48	
1,2-Dichloroethane-D4			8	39		85		56	-150	%	12.20.13 14:48	
Toluene-D8			9	9		99		70	-130	%	12.20.13 14:48	
4-Bromofluorobenzene			10	01		103		68	-152	%	12.20.13 14:48	

Analytical Method:	VOAs by SW-846 8260B			Prep Method:	SW5030B
Seq Number:	930651	Matrix:	Sludge	Date Prep:	12.23.13
Parent Sample Id:	476349-001	MS Sample Id:	476349-001 S	MSD Sample Id:	476349-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	
1,2,4-Trimethylbenzene	0.217	2.50	2.85	105	2.84	105	75-125	0	25	mg/kg	12.23.13 20:29	
1,3,5-Trimethylbenzene	0.0891	2.50	2.66	103	2.67	103	70-130	0	25	mg/kg	12.23.13 20:29	
m,p-Xylenes	0.0180	5.01	4.68	93	4.81	96	75-125	3	25	mg/kg	12.23.13 20:29	
o-Xylene	0.0160	2.50	2.50	99	2.57	102	75-125	3	25	mg/kg	12.23.13 20:29	

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
Dibromofluoromethane	90		87		53-142	%	12.23.13 20:29
1,2-Dichloroethane-D4	99		93		56-150	%	12.23.13 20:29
Toluene-D8	98		95		70-130	%	12.23.13 20:29
4-Bromofluorobenzene	98		100		68-152	%	12.23.13 20:29

Page 18 of 21 Final 1.000

QC Summary 476075

Southwest Research Institute

Jet Fuel

Analytical Method: Seq Number: Parent Sample Id:	VOAs by SW-846 8 930791 476189-002	260B		Matrix:		02 S			rep Meth Date Pr D Sample	rep: 12.2	5035A 4.13 189-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,2,4-Trimethylbenzene	< 0.00423	2.05	2.26	110	2.66	109	75-125	16	25	mg/kg	12.24.13 14:04	
1,3,5-Trimethylbenzene	< 0.00681	2.05	2.25	110	2.51	102	70-130	11	25	mg/kg	12.24.13 14:04	
m,p-Xylenes	< 0.00759	4.11	4.22	103	4.80	98	75-125	13	25	mg/kg	12.24.13 14:04	
o-Xylene	< 0.00612	2.05	2.25	110	2.48	101	75-125	10	25	mg/kg	12.24.13 14:04	
Surrogate				AS Rec	MS Flag	MSD %Ree			imits	Units	Analysis Date	
Dibromofluoromethane			1	88		89		53	3-142	%	12.24.13 14:04	
1,2-Dichloroethane-D4			9	93		94		56	-150	%	12.24.13 14:04	
Toluene-D8			9	97		95		70	-130	%	12.24.13 14:04	
4-Bromofluorobenzene			1	00		100		68	3-152	%	12.24.13 14:04	

476075-H

19			0110010
. ,	Army Lab (Cher		
	Work Instruction Form	(SHIPPING)	
WI No.	13-296		
Requestor:	Scott Hutzler		
ssue Date:	12/17/2013		
Required Arrival Date:	12/20/2013		
The state of the s	emight shipments must be receive	d by 9 AM	
Charge Number:	1.08.07.13.17149.36.001		
Assigned To:	_		
Authorized by (Initiator):	Scott Hutzler		
Completed By:			
Completion Date			
Completion Approved By:	1		
	Shipping Instruc	ctions	
Sample #	Container Volume	Sample Type	Notes
CL13-5265	100mL	Aviation	
		 	
		 	
Western Company of the Company of th		 	
		 	
ISDS must be attached for all samp	ole types		
Point of Contact	Attn: Jose Londono		
Address:	Xenco Laboratories		
	4143 Greenbriar Dr.		
~	Stafford, TX 77477		
Telephone Number:	281-240-4280		
relephone Number.	201-240-4200		
Lab Notes			
Please run EPA 8260B and	EPA 8270C		

Al ChemLab Work Instruction

Page 20 of 21

Final 1.000

SOUTHWEST RESEARCH INSTITUTE

SHIPPING TICKET NO.

73536

				9	
	9503 W. COMMERCE - SAN (210) 68	ANTONIO, TX 78 34-5111	227-1301	(THIS IS NOT	A P.O. NO.1
					17/13
PRIOR TO REPAI	R OF ANY ITEM MENTIONED BELOW, PLEASE CONT	TACT 210/522-3074	WITH ESTIMAT	E AND FOR P.O	. NO.
Xenco Laboratories		Plea	se check box for	method of shipr	ment
4143 Greenbriar Dr	,	Circle speci	to and from the method of ship	oment by Air Fre	eight or UPS
Stafford, TX 77477		SHIF	VIA	TO VENDOR R	ETURN TO SW
Ph.# 281-240-4280	0	MOTOR FREIG	нт	Ц	
		AIR FREIGHT (F	PRIORITY AIR ENERAL CARGO)		
		UPS (1 day, 2days	or 7-10 days)		
ATTN: Jose London	no		RESS (1 day, 2 days)	X	П
VENDOR PHONE NO.	R.M.A. NO.		1233 (1 00), 2 00)		
D. X INSURE FOR		DEPT NO. PURCH	ASE		
B BILL OR W/B NO.	\$ 0.00 PROJ. L.]	08 ORDER		URN INITIATED B	γ Γ EXT.
QUANTITY	17149.36.001 DESCRIPTION & SERIAL NO.		Hut	zler/mwc S.O., R.O., C.O.D	
COAMIT		EOT Date	URIGINAL P.O.,	S.U., N.U., C.U.D	anti-cum Nombis
7.7.77					
	1 - 100mL Aviation Fuel Sample Coded: CL13-5265				
	,	-	0.10 L		
	UNIER KANNER & POITE				20
	,				
		Assessed			
W.R.I.		BUYER			ĭ YES
JYER		BUYER NOTIFIED [Please indicate are HAZARDO	if items US MATERIAL	⊠ YES
JYER	■ BOX CTN DRUM W	NOTIFIED L	Please indicate are HAZARDO DIMENSIONS	if items US MATERIAL	
D. OF PACKAGES	BOX TYPE OF PACKAGE WI REASON FOR SHIPMENT A WARRANTY CREDIT CR	EIGHT LESS	are HAZARDO DIMENSIONS	US MATERIAL.	□ _{NO}
UYER O. OF PACKAGES 1	BOX TYPE OF PACKAGE WI REASON FOR SHIPMENT A WARRANTY CREDIT CR	NOTIFIED L	are HAZARDO	US MATERIAL OTH	□ _{NO}
JYER D. OF PACKAGES T REPAIR (INDICATE PROBLEM IN REMARKS AREA)	BOX TYPE OF PACKAGE WI REASON FOR SHIPMENT A WARRANTY CREDIT CR	EIGHT LESS	are HAZARDO DIMENSIONS	US MATERIAL OTH	□ NO ER LAIN IN
JYER D. OF PACKAGES 1 REPAIR (INDICATE PROBLEM IN REMARKS AREA)	BOX TYPE OF PACKAGE WI REASON FOR SHIPMENT A WARRANTY CREDIT CR	EIGHT LESS	are HAZARDO DIMENSIONS	US MATERIAL OTH	□ NO ER LAIN IN
JYER D. OF PACKAGES 1 REPAIR (INDICATE PROBLEM IN REMARKS AREA)	BOX TYPE OF PACKAGE WI REASON FOR SHIPMENT A WARRANTY CREDIT CR	EIGHT LESS	are HAZARDO DIMENSIONS	US MATERIAL OTH	□ NO ER LAIN IN
JYER D. OF PACKAGES 1 REPAIR (INDICATE PROBLEM IN REMARKS AREA)	BOX CTN DRUM WITH BOX BOX CTN DRUM CTN CREDIT CREDI	EIGHT LESS	are HAZARDO DIMENSIONS	US MATERIAL OTH	□ NO ER LAIN IN
JYER D. OF PACKAGES 1 REPAIR (INDICATE PROBLEM IN REMARKS AREA)	BOX TYPE OF PACKAGE WARRANTY REASON FOR SHIPMENT A CREDIT CR R VENDOR RECEIPT BY:	NOTIFIED LIBERT SERVICE SERVIC	are HAZARDO DIMENSIONS EXCHANGE	US MATERIAL OTH	□ NO ER LAIN IN
REPAIR (INDICATE PROBLEM IN REMARKS AREA)	WARRANTY CREDIT CREDIT CREDIT THIS FORM TO BE USED FOR A	NOTIFIED LEGHT ND/OR REMARKS REDIT LESS RESTOCKING CHG.	EXCHANGE M S.W.R.I.	OTH (EXP)	ER LAIN IN IARKS AREA)
O. OF PACKAGES T REPAIR (INDICATE PROBLEM IN REMARKS AREA) A A A A A A A A A A A A	WENDOR RECEIPT BY: THIS FORM TO BE USED FOR AN IMPORTANT LIST (PINK COPY) SHOULD BE ATTACHED TO	NOTIFIED LIBERT SEED FROM THE PROPERTY OF THE	EXCHANGE M S.W.R.I.	US MATERIAL OTH (EXP) REM	ER LAIN IN AARKS AREA)
UYER O. OF PACKAGES T REPAIR (INDICATE PROBLEM IN REMARKS AREA)	BOX TYPE OF PACKAGE REASON FOR SHIPMENT A REASON FOR SHIPMENT A CREDIT CR R VENDOR RECEIPT BY: THIS FORM TO BE USED FOR AN	NOTIFIED LIND/OR REMARKS REDIT LESS RESTOCKING CHG. NYTHING SHIPPED FRO IT THE OUTSIDE OF PING & RECEIVING DEPARTMENT IN	EXCHANGE M S.W.R.I.	US MATERIAL OTH (EXP) REM	ER LAIN IN AARKS AREA)

Appendix BP Certificates of Analysis (CoA) by POSF Number

SOUTHWEST RESEARCH INSTITUTE®

6220 CULEBRA ROAD 78238-5166 • P.O. DRAWER 28510 78228-0510 • SAN ANTONIO, TEXAS, USA • (210) 684-5111 • WWW.SWRI.ORG FUELS AND LUBRICANTS RESEARCH DIVISION ISO 9001 CERTIFIED ISO 14001 CERTIFIED

AFPET LABORATORY REPORT AFPA/PTPLA 2430 C Street Building 70, Area B Wright-Patterson AFB, OH 45433-7632

Lab Report No:2012LA36413001 Cust Sample No:POSF 7708 Date Received:02/29/12 1330 hrs* Date Reported:03/02/12 1536 hrs* Date Sampled: 02/29/2012** Protocol:FU-AVI-0019

JON: GENERAL FUND

JON: GENERAL FUND

Sample Submitter: Rhonda Cook AFRL/RZPF

1790 Loop Road N Bldg 490

Wright-Patterson AFB, OH 45433

Reason for Submission: AFRL Research Product: Aviation Turbine Fuel, Kerosene Specification: MIL-DTL-83133H Grade:JP-8

Source: AMYRIS Biotechnologies Batch/Lot/Origin: BIOFUEL

Qty Submitted: 2 gal

Baten/Lot/Origin: BIOFUEL

Method	Test	Min	Max	Result	Fail
ASTM D 2622 - 10	Sulfur (ug/g)			43	2
MIL-STD-3004C	Appearance			Pas	5
MIL-DTL-83133H	Workmanship			Pas	5
ASTM D 6045 - 09	Color, Saybolt	Repor	t Only	+2	8
ASTM D 3242 - 11	Total Acid Number (mg KOH/g)		0.015	0.00	4
ASTM D 1319 - 10	Aromatics (% vol)		25.0	14.	4
ASTM D 3227 - 04a	Mercaptan Sulfur (% mass)		0.002	0.00	0
ASTM D 86 - 11b	Distillation				
	Initial Boiling Point (°C)			16	4
	10% Recovered (°C)		205	17	7
	20% Recovered (°C)			18	2
	50% Recovered (°C)			20	0
	90% Recovered (°C)			24	8
	End Point (°C)		300	26	8
	Residue (% vol)		1.5	1.	2
	Loss (% vol)		1.5	0.	7
ASTM D 93 - 11	Flash Point (°C)	38		5	2
ASTM D 4052 - 11	API Gravity @ 60°F	37.0	51.0	44.	8
ASTM D 4052 - 11	Density @ 15°C (kg/L)	0.775	0.840	0.80	2
ASTM D 5972 - 05el	Freesing Point (°C)		-47	-5	4
ASTM D 976 - 06	Cetane Index, Calculated	Repor	t Only	4	4
(2011)			-		
ASTM D 3343 - 05	Hydrogen Content (% mass)	13.4		14.	4
ASTM D 1322 - 08	Smoke Point (mm)	25.0		27.	0
ASTM D 130 - 10	Copper Strip Corrosion (2 h @ 100°C)	1 (Max)	1	a
ASTM D 3241 - 11a	Thermal Stability @ 260°C				
	Tube Deposit Rating, Visual	<3	(Max)		1
	Change in Pressure (mmHg)		25		0
ASTM D 381 - 04	Existent Gum (mg/100 mL)		7.0	2.	6
ASTM D 5452 - 08	Particulate Matter (mg/L)		1.0	0.	4
MIL-DTL-83133H	Filtration Time (min)		15		4
ASTM D 1094 - 07	Water Reaction Interface Rating	1b	(Max)		1
ASTM D 7224 - 08	WSIM	70		8	1
ASTM D 2624 - 09	Conductivity (pS/m)	150	600		0 X
ASTM D 5001 - 10	Lubricity Test (BOCLE) Wear Scar (mm)	Repor	t Only	0.5	7
ASTM D 3338 - 08	Net Heat of Combustion (MJ/kg)	42.8	-	43.	6
ASTM D 4809 - 09a	Net Heat of Combustion (MJ/kg)	42.8		43.	2
ASTM D 1319 - 10	Olefins (% vol)	Repor	t Only	1.	5
ASTM D 445 - 11a	Viscosity @ -20°C (mm ² /s)		8.0	5.	0

^{*} Date reflects Eastern Standard Time(EST)

| Report Generated: 03/2/12 15:37*

Benefiting government, industry and the public through innovative science and technology

^{**} Date as provided by customer

AFPET LABORATORY REPORT AFPA/PTPLA

2430 C Street Building 70, Area B Wright-Patterson AFB, OH 45433-7632

Lab Report No:2012LA36413001

| Report Generated: 03/2/12 15:37*

Cust Sample No: POSF 7708

JON: GENERAL FUND

Date Reported:03/02/12 1536 hrs*

Sample Submitter: Rhonda Cook AFRL/RZPF

1790 Loop Road N

Bldg 490

Wright-Patterson AFB, OH 45433

Reason for Submission: AFRL Research Product: Aviation Turbine Fuel, Kerosene Specification: MIL-DTL-83133H Grade:JP-8

Source: AMYRIS Biotechnologies Qty Submitted: 2 gal

Batch/Lot/Origin: BIOFUEL

Method	Test	Min	Max	Result	Fail
ASTM D 445 - 11a	Viscosity @ 40°C (mm²/s)	Repor	t Only	1.	4

Dispositions:

For information purposes only.

Approved By Date 03/02/2012*

Michael Cole \\SIGNED\\

This report was electronically delivered to: david.vowell@wpafb.af.mil, donald.minus@wpafb.af.mil, janet.stewart2@wpafb.af.mil, jennifer.engelman@wpafb.af.mil, linda.shafer@wpafb.af.mil, michael.cole@wpafb.af.mil, michael.thiede@wpafb.af.mil, raymond.bunch@wpafb.af.mil, rhonda.cook.ctr@wpafb.af.mil

Date reflects Eastern Standard Time(EST)

^{**} Date as provided by customer

AFPET LABORATORY REPORT

AFPA/PTPLA 2430 C Street Building 70, Area B Wright-Patterson AFB, OH 45433-7632

Lab Report No:2012LA36126001 Cust Sample No:7708 Date Received:02/10/12 1036 hrs* Date Reported:02/10/12 1525 hrs* Date Sampled: ** Protocol:FU-AVI-0019 JON: GENERAL FUND

Sample Submitter: AFRL/RZPF 1790 Loop Road N Bldg 490 WPAFB, OH 45433

Reason for Submission: AFRL Research Product: Aviation Turbine Fuel, Kerosene Specification: MIL-DTL-83133H Grade:JP-8

Qty Submitted: 200 mL

Batch/Lot/Origin: BIOFUEL / JET A

BLEND

Method	Test	Min	Max	Result
ASTM D 381 - 04	Existent Gum (mg/100 mL)		7.0	2.4

Dispositions:

For information purposes only.

Approved By Date Michael Cole 02/10/2012*

This report was electronically delivered to: afpa.lab@wpafb.af.mil, donald.minus@wpafb.af.mil, jennifer.engelman@wpafb.af.mil, linda.shafer@wpafb.af.mil, michael.cole@wpafb.af.mil, rhonda.cook.ctr@wpafb.af.mil

| Report Generated: 02/10/12 15:25*

^{*} Date reflects Eastern Standard Time(EST)

^{**} Date as provided by customer

AFPET LABORATORY REPORT AFPA/PTPLA

2430 C Street Building 70, Area B

Wright-Patterson AFB, OH 45433-7632

Lab Report No:2012LA37315001 Cust Sample No:8123 Date Received:04/13/12 1214 hrs* Date Reported:04/19/12 1403 hrs* Date Sampled: ** Protocol:FU-AVI-0019 JON: GENERAL FUND

Sample Submitter: AFRL/RZPF

1790 Loop Road N

Bldg 490

Wright-Patterson AFB, OH 45433

Reason for Submission: AFRL Research Product: Aviation Turbine Fuel, Kerosene Specification: MIL-DTL-83133H Grade:JP-8

Qty Submitted: 1 L

Batch/Lot/Origin: BIOFUEL / JET A

Method	Test	Min	Max	Result	Fail
ASTM D 3241 - 11a	Thermal Stability @ 300°C				
	Tube Deposit Rating, Visual				2
	Change in Pressure (mmHg)			(0
ASTM D 1319 - 10	Aromatics (% vol)		25.0	26.	5 X

Dispositions:

For information purposes only.

Approved By David Craycroft, 04/19/2012* Lead Chemist \\SIGNED\\

This report was electronically delivered to: david.craycroft@wpafb.af.mil, donald.minus@wpafb.af.mil, jennifer.engelman@wpafb.af.mil, linda.shafer@wpafb.af.mil, michael.thiede@wpafb.af.mil, rhonda.cook.ctr@wpafb.af.mil, richard.wilkes@wpafb.af.mil

| Report Generated: 04/19/12 14:03*

^{*} Date reflects Eastern Standard Time(EST)

^{**} Date as provided by customer

Appendix C

Effect of FAME Contamination on Permittivity and Density

December 5, 2013

Energy Institute Attn: Mr. Martin Hunnybun 61 New Cavendish Street London W1G 7AR, UK

Via e-mail: MHunnybun@energyinst.org.uk

Subject: Letter Report for Southwest Research Institute® Project No. 08.17149.36.001,

entitled, "Effect of FAME Contamination on Permittivity and Density"

Dear Mr. Hunnybun:

Please find attached the results for the permittivity study of FAME-contaminated jet fuel.

C.1.0 Introduction

A test plan was provided by Airbus which defined the requirements to determine the effect of Fatty Acid Methyl Ester (FAME) contamination within western commercial aviation turbine fuels, on the properties of relative permittivity and density across the useful fuel temperature range.

The evidence provided herein is necessary to satisfy the process of fuel additive / contamination level clearance, as stipulated by ASTM D4054 [1]. The evidence must be judged to be acceptable by airframe, engine and fuel system equipment manufacturers. The properties of permittivity and density are of particular importance in the measurement of fuel quantity using aircraft gauging systems. Their relationships against fuel temperature across the aircraft operating range, as well as their relationship to each other, are critically important to suppliers of fuel gauging system equipment to aircraft OEMs.

¹ "Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives"

C.2.0 Background

The Energy Institute (EI) is coordinating the clearance activity for western commercial aviation fuels with FAME contamination at a maximum concentration of 100 ppm. Clearance of this level requires the acquisition of test evidence at four times the desired cleared concentration. Consequently, testing at 400 ppm FAME contamination is required. There are four main types (sources) of FAME. The principle adopted for the ASTM D4054 process has been to use a cocktail of equal parts of these four types as the contaminant, added to the base fuel to give a FAME concentration of 400 ppm.

The EI had previously commissioned the testing of permittivity against temperature for fuel contaminated with FAME at 400 ppm. This particular testing did not include the testing of density. The results of the testing were presented in the EI report dated 10th October 2011 [2]. Review of these results identified significant anomalies, and Airbus concluded that the results were fallacious.

Consequently, the robustness of the ASTM D4054 process, for qualifying FAME to 100 ppm, has been undermined since the test plan for establishing the permittivity characteristics against temperature and density has not provided usable results, as required by ASTM D4054 Section 8.2. The previous EI report also contained test data for both density and permittivity against temperature for a military fuel grade (JP-8), with and without a singular type of FAME. This evidence is considered to be supplemental only, due to its limited scope, and the fact that it was not commissioned or performed specifically as part of this EI FAME approval initiative. The evidence is not the robust, primary data required by the ASTM D4054 process; this is a validation issue for the clearance activity. Furthermore, this evidence was evaluated by a fuel gauging system supplier who judged it to be insufficient to clear its equipment for FAME at 100 ppm. It should be noted that the ASTM D4054 principle of testing at a concentration of four times the desired clearance level presents a dilemma when considering fuel gauging system performance. The performance (e.g. accuracy of contents, propensity for out-of-range alerts), might be intrinsically related to the level of contamination. Consequently, the effect on system performance at 400 ppm could possibly be four times greater than that seen at 100 ppm. In other words, the consequences of accounting for 400 ppm (due to the approval process) may be onerous, compared to those for 100 ppm. An example of such an onerous consequence might be a requirement to increase the aircraft fuel reserves significantly to account for gauging inaccuracies, which would be an unwarranted penalty. Testing at concentrations of 0 ppm, 100 ppm, and 400 ppm would resolve this dilemma.

The majority of the testing of density reported in the previous EI report (with and without FAME contamination), was performed independently, and without any permittivity testing, by several fuel test houses (as part of a comprehensive analysis of fuel properties). Consequently, this testing of density was carried out on different base fuels and FAME contaminants. Furthermore, density was measured by these fuel test houses at single temperatures only. Characteristics of density against either temperature or permittivity cannot be determined from such results. The

_

² "Seeking Original Equipment Manufacturer (OEM) Approvals for 100 mg/kg Fatty Acid Methyl Ester (FAME) In Aviation Turbine Fuel," EI Research Report, 10 October 2011

issues presented above explain why it was considered necessary to re-commission robust testing for both permittivity and density against temperature. The results of such testing will allow the determination of valid characteristics both for these relationships, and for the density versus permittivity relationship. Additional testing at 100 ppm FAME concentration would contribute to a more insightful judgment on the acceptability of FAME in aviation fuel with respect to the performance for aircraft fuel gauging systems. The evidence obtained from such testing will contribute to the library of public domain knowledge, and the importance of its validity cannot be over-stressed.

C.3.0 Test Materials

C.3.1 Fuel

The following test fuel was provided by the Air Force Research Lab (AFRL)

• Jet A (POSF 9326, SwRI CL13-4804)

The provided fuel type was marked as "Jet A" but has a measured freeze point of -54°C. Therefore, this fuel should be suitable as a Jet A-1. A copy of the Certificate of Analysis (CoA) is provided in Appendix C-1.

C.3.2 FAME Contaminant

The FAME cocktail used to contaminate the Jet A consisted of an equal part by weight mixture of the following individual FAME components:

- Palm Oil Methyl Ester (POME)
- Rapeseed Methyl Ester (RME)
- Soy(bean) Methyl Ester (SME)
- Tallow Methyl Ester (TME)

The FAME cocktail was also provided by AFRL (SwRI CL13-4806).

C.3.3 FAME Contaminated Jet A

Using the Jet A and FAME cocktail provided by AFRL, three samples were prepared in sufficient quantity to perform the full scope of work:

- Neat Jet A with 0 ppmw FAME cocktail (SwRI CL13-4804)
- Jet A with 100 ppmw FAME cocktail (SwRI CL13-4908)
- Fuel with 400 ppmw FAME cocktail (SwRI CL13-4909)

The samples were stored at ambient temperature (nominally 15-20°C) when not in use.

C.4.0 Test equipment

The following equipment was used to perform this study:

Capacitance Cell

- o Provided by Goodrich Sensors and Integrated Systems, Inc.
- o k-Cell (2-wire)
- Capacitance Bridge
 - o Andeen Hagerling AH 2700A Ultra-Precision Capacitance Bridge
 - o Operated at 10 kHz
- Benchtop Densitometer
 - o Anton Paar D4500 M
 - o Operable Range: 0 to 95°C
 - o Stated Accuracy: 0.05 kg/m³
- Thermocouple Reader
 - o Fluke 54 II
 - o Type K Thermocouple

C.5.0 Technical Approach

C.5.1 Test Temperatures

The nominal test temperatures requested for this study were as follows:

- -40°C
- -25°C
- -10°C
- +20°C
- +35°C
- +50°C

Although it was requested that density and permittivity be performed simultaneously, this was not practical given the nature of the equipment used. However, the measurements were conducted in the same facility, on the same fuels, within a short timeframe. Further supporting evidence as to the stability of the individual measurements can be found in section below.

C.5.2 Temperature Sequence Order

The following nominal test point sequence order was requested. The rationale for the specific order was to exercise the fuel and test apparatus across the dynamic range for temperature. This approach provides more independent measurements upon which the repeatability of each test point can be evaluated.

The specific objectives behind this rationale were:

- To obtain at least 2 results per nominal temperature point (for repeatability assessment)
- To acquire data to provide any evidence of any hysteresis characteristic
- To minimize the number of large temperature changes between test points for a particular fuel sample under test (for test cell practicalities)
- To minimize the number of test points to achieve all other objectives

The following twelve test point sequence was utilized:

- -40°C
- -25°C
- -10°C
- +20°C
- +35°C
- +50°C
- +35°C
- +20°C
- -10°C
- -25°C
- -40°C
- +50°C

Given the unlikely possibility that all test points could be completed in a single session for a given fuel, any deviations to the test point sequence were to be noted. The actual test point sequence recorded for each fuel is shown in Table C-1.

Table C-1. Test Point Sequence

Neat Jet A	Jet A w/ 100 ppm FAME	Jet A w/ 400 ppm FAME
15.0*	16.0*	16.3*
-39.9	-40.0	-40.1
-24.9	-25.1	-25.0
-10.1	-10.1	-10.0
20.0	19.9	20.0
35.0	35.0	35.1
49.9	50.0	50.1
15.7*	16.9*	20.9*
35.1	35.1	34.9
19.9	19.9	20.0
-10.0	-9.9	-10.0
-25.0	-25.0	-25.1
-40.0	-40.0	-40.0
50.0	50.1	50.1

^{*} Beginning temperature at the start of each measurement session before continuing to the next test point in the prescribed sequence. No data from this temperature is reported.

C.5.3 Test Method

The test procedure utilized in this study is documented in Appendix C-2.

C.6.0 Results and Discussions

C.6.1 Measured Density Data

For each of the three fuels, the density values were measured according to ASTM D4052 as a curve over the range of 5-85°C in 5°C increments. The measured values are tabulated in Table C-2. The slope and intercept of the linear best-fit line for each sample is also shown and was used to extrapolate values from the curve for the actual test points measured during the permittivity runs.

Table C-2. Density Data

Tomas anothers (QC)	NEAT Jet A	100 ppm	400 ppm
Temperature (°C)	Density (kg/m ³)	Density (kg/m ³)	Density (kg/m ³)
5	813.0	813.0	813.1
15	805.6	805.6	805.6
25	798.1	798.1	798.1
35	790.6	790.6	790.6
45	783.0	783.1	783.0
55	775.4	775.4	775.5
65	767.8	767.8	767.9
75	760.2	760.2	760.2
85	752.5	752.5	752.4
m	-0.756667	-0.756667	-0.757500
b	816.961111	816.972222	817.020833

C.6.2 Measured Permittivity Values and Corresponding Density Values

The measured permittivity values and the density values calculated from the corresponding density curves are shown below as follows:

Neat Jet A Table C-3
 100 ppm FAME Table C-4
 400 ppm FAME Table C-5

Table C-3. Measured Permittivity and Extrapolated Density Values NEAT Jet A

Temperature (°C)	Permittivity	Density (kg/m³)
-39.9	2.212	847.2
-24.9	2.189	835.8
-10.1	2.167	824.6
20.0	2.125	801.8
35.0	2.107	790.5
49.9	2.086	779.2
35.1	2.105	790.4
19.9	2.125	801.9
-10.0	2.171	824.5
-25.0	2.193	835.9
-40.0	2.217	847.2
50.0	2.087	779.1

Table C-4. Measured Permittivity and Extrapolated Density Values $100\; ppm\; FAME$ in Jet A

Temperature (°C)	Permittivity	Density (kg/m³)
-40.0	2.216	847.2
-25.1	2.193	836.0
-10.1	2.171	824.6
19.9	2.127	801.9
35.0	2.107	790.5
50.0	2.088	779.1
35.1	2.108	790.4
19.9	2.128	801.9
-9.9	2.171	824.5
-25.0	2.192	835.9
-40.0	2.216	847.2
50.1	2.088	779.1

Table C-5. Measured Permittivity and Extrapolated Density Values 400 ppm FAME in Jet A

Temperature (°C)	Permittivity	Density (kg/m ³)
-40.1	2.215	847.4
-25.0	2.192	836.0
-10.0	2.171	824.6
20.0	2.128	801.9
35.1	2.107	790.4
50.1	2.088	779.1
34.9	2.107	790.6
20.0	2.128	801.9
-10.0	2.170	824.6
-25.1	2.192	836.0
-40.0	2.216	847.3
50.1	2.087	779.1

C.6.3 Permittivity vs. Temperature

The Permittivity vs. Temperature plots for each of the fuels are shown below in Figure C-1, Figure C-2, and Figure C-3 for Neat Jet A, 100 ppm FAME, and 400 ppm FAME, respectively. The upper and lower uncertainty range limits are shown on each plot in red.

Note on error analysis: For these and subsequent plots below, the uncertainty analysis was performed by first determining the linear best-fit line through the data (using MS Excel). Then, two data points, one above and one below, with the largest difference in the y-variable from the best fit line were selected. For each point, error bars were applied to both dimensions (permittivity = 0.005 and density = 0.1 kg/m^3). For each point, the outermost vertex of the rectangular area formed by the errors bars was determined (upper right vertex for upper uncertainty and lower left vertex for lower uncertainty). A line having the same slope and passing through each of these respective vertices was determined and plotted as the upper and lower uncertainty range bars.

Figure C-1. Permittivity vs. Temperature – Neat Jet A

Figure C-2. Permittivity vs. Temperature - 100 ppmw FAME

Figure C-3. Permittivity vs. Temperature - 400 ppmw FAME

C.6.4 Density vs. Temperature

The Density vs. Temperature plots for each of the fuels are shown below in Figure C-4, Figure C-5, and Figure C-6 for Neat Jet A, 100 ppm FAME, and 400 ppm FAME, respectively. The linearity of the data provided a true, perfect fit line. No further error analysis was performed on this data.

Figure C-4. Density vs. Temperature - Neat Jet A

Figure C-5. Density vs. Temperature 100 ppmw FAME

Figure C-6. Density vs. Temperature - 400 ppmw FAME

C.6.5 Density vs. Permittivity

The Density vs. Permittivity plots for each of the fuels are shown below in Figure C-7, Figure C-8, and Figure C-9 for Neat Jet A, 100 ppm FAME, and 400 ppm FAME, respectively. The upper and lower uncertainty error bars were determined in the same manner as before.

Figure C-7. Density vs. Permittivity – Neat Jet A

Figure C-8. Density vs. Permittivity - 100 ppmw FAME

Figure C-9. Density vs. Permittivity - 400 ppmw FAME

C.6.6 Permittivity vs. Temperature vs. FAME Concentration

A family of constant temperature curves for Permittivity vs. FAME is shown in Figure C-10.

Figure C-10. Permittivity vs. Temperature vs. FAME Concentration

C.6.7 Density vs. Temperature vs. FAME Concentration

A family of constant temperature curves for Density vs. FAME is shown in Figure C-11.

Figure C-11. Density vs. Temperature vs. FAME Concentration

C.6.8 Density vs. Permittivity vs. FAME Concentration

A family of constant permittivity curves for Density vs. FAME is shown in Figure C-12.

Figure C-12. Density vs. Permittivity vs. FAME Concentration

C.6.9 Permittivity vs. FAME Concentration

A family of constant density curves for Permittivity vs. FAME is shown in Figure C-13.

Figure C-13. Permittivity vs. Density vs. FAME Concentration

C.6.10 Comparison of all the Results to CRC Data

Comparative plots of permittivity, density, and temperature are shown below with CRC minimum and maximum limits overlaid for reference. CRC limits were extracted from CRC report No. 647 (World Fuel Sampling Program). To the extent possible (as indicated in the CRC report), synthetic or partially synthetic fuels were avoided when establishing CRC limits. The synthetic fuels often lie at the extremes of the density and permittivity curves which would skew the true limits of the average global aviation fuel.

C.6.10.1 Permittivity vs. Temperature

Permittivity vs. Temperature plots with CRC limits are shown below in Figure C-14, Figure C-15, and Figure C-16 for Neat Jet A, 100 ppm FAME, and 400 ppm FAME, respectively.

Figure C-14. Permittivity vs. Temperature – Neat Jet A (w/ CRC Limits)

Figure C-15. Permittivity vs. Temperature – 100 ppm FAME (w/ CRC Limits)

Figure C-16. Permittivity vs. Temperature – 400 ppm FAME (w/ CRC Limits)

C.6.10.2 Density vs. Temperature

Density vs. Temperature plots with CRC limits are shown below in Figure C-17, Figure C-18, and Figure C-19 for Neat Jet A, 100 ppm FAME, and 400 ppm FAME, respectively. The specification range limits (775-840 kg/m 3 @ 15 $^{\circ}$ C), common to both military and commercial fuel specifications, is indicated in the figures below.

Figure C-17. Density vs. Temperature – Neat Jet A (w/ CRC Limits)

Figure C-18. Density vs. Temperature – 100 ppm FAME (w/ CRC Limits)

Figure C-19. Density vs. Temperature – 400 ppm FAME (w/ CRC Limits)

C.6.10.3 Density vs. Permittivity

Density vs. Permittivity plots with CRC limits are shown below in Figure C-20, Figure C-21, and Figure C-22 for Neat Jet A, 100 ppm FAME, and 400 ppm FAME, respectively.

Note that these limits were determined by plotting the Density vs. Permittivity for a given temperature for all fuels in the CRC report and then selecting the two fuels that appeared to lie at the extremes of that data set.

Figure C-20. Density vs. Permittivity – Neat Jet A (w/ CRC Limits)

Figure C-21. Density vs. Permittivity – 100 ppm FAME (w/ CRC Limits)

Figure C-22. Density vs. Permittivity – 400 ppm FAME (w/ CRC Limits)

C.6.11 Miscellaneous Supporting Data

Many of the concerns surrounding the dielectric values are related to the accuracy of the permittivity and density measurements themselves in addition to the extrapolation of density values to extreme temperatures. To address those concerns, the following sections provide data generated on hydrocarbon standards for those respective measurements.

C.6.11.1 Density of n-hexane

A sample of n-hexane was measured on the benchtop densitometer at the highlighted temperatures shown in Table C-6. From those measurements, a linear curve fit was applied and then extrapolated to a range of -50°C to 70°C. Those values were then compared to literature values for n-hexane and found to have an average error of approximately 0.08%.

Table C-6. Density Values for n-hexane

Temperature (°C)	Literature Values kg/m ³	Measured/Extrapolated kg/m³	Absolute Difference	% Error
-50	722.7	723.4	0.6	0.09
-45	718.2	718.8	0.6	0.09
-40	713.7	714.3	0.6	0.09
-35	709.1	709.7	0.6	0.09
-30	704.6	705.2	0.6	0.09
-25	700.0	700.6	0.6	0.09
-20	695.5	696.1	0.6	0.09
-15	690.9	691.5	0.6	0.09
-10	686.4	687.0	0.6	0.09
-5	681.9	682.4	0.6	0.09
0	677.3	677.9	0.6	0.08
5	672.8	673.3	0.6	0.08
10	668.2	668.8	0.6	0.08
15	663.7	664.2	0.5	0.08
20	659.1	659.7	0.5	0.08
25	654.6	655.1	0.5	0.08
30	650.1	650.6	0.5	0.08
35	645.5	646.0	0.5	0.08
40	641.0	641.5	0.5	0.08
45	636.4	636.9	0.5	0.08
50	631.9	632.4	0.5	0.08
55	627.4	627.8	0.5	0.08
60	622.8	623.3	0.5	0.08
65	618.3	618.7	0.5	0.08
70	613.7	614.2	0.5	0.08

C.6.11.2 Permittivity of Cyclohexane

The permittivities for a sample of cyclohexane were measured at the temperatures shown in Table C-7. Those values were then compared to literature values, shown in Table C-8, and found to have an average error of approximately 0.04%. The permittivities of cyclohexane and the corresponding linear curve fit are shown in Figure C-23.

Table C-7. Permittivity of Cyclohexane

Temperature (°C)	Permittivity	Literature Value	% Error
15.0	2.031	2.032	0.05%
19.9	2.024	2.024	0.01%
25.1	2.015	2.016	0.04%
30.0	2.009	2.008	0.06%
35.2	2.000	1.999	0.05%
39.9	1.993	1.992	0.06%

Table C-8. Literature Values for Permittivity of Cyclohexane

Temperature (°C)	Permittivity
10	2.040
20	2.024
30	2.008
40	1.992
50	1.975
m	b
-0.00162	2.0564

Figure C-23. Permittivity vs. Temperature – Cyclohexane

C.7.0 Conclusions

Based on an initial assessment of the raw data, both the permittivity and density values appeared to be essentially identical for the neat jet fuel and FAME-additized fuels. The subsequent analysis, provided herein, shows strong linear relationships among permittivity, density, and temperature. There appears to be little hysteresis in the permittivity measurement technique across the full range of test points. The results also appear to fall well within the experience-base provided by the CRC World Fuel Sampling Program. Based on these results, it is a reasonable conclusion that FAME contamination up to 400 ppmw does not significantly affect the measurement of permittivity or density over a relatively wide-temperature range beyond the normal expected variation in the test methods themselves.

Based on the computed uncertainty range limits, approximate accuracy statements are as follows:

Permittivity vs. Temperature: ±0.006
 Density vs. Temperature: ±0.1 kg/m³
 Density vs. Permittivity: ±3.9 kg/m³

We appreciate the opportunity to perform this testing for you. If you have any questions regarding this data, please do not hesitate to contact me at (210) 522-6978 or by e-mail at scott.hutzler@swri.org.

Prepared by:

Scott A. Hutzler, Manager

Fluids Filtration and Handling Research

Fuels & Lubricants Technology Department

Approved by:

Gary Bessee, Director

Fuels & Lubricants Technology Department

SH/kp/rs

r:\working\Report_EnergyInstitute_1714936001_120513

-

cc:

J. Edwards, AFRL (via e-mail)

G. Wilson III, SwRI (via e-mail)

D. Barrera, SwRI (via e-mail) rrecordcopyb, SwRI (via e-mail)

This report must be reproduced in full, unless SwRI approves a summary or abridgement.

Appendix CA Jet A Certificate of Analysis

AFPET LABORATORY REPORT AFPA/PTPLA Alfa/Filma 2430 C Street Building 70, Area B Wright-Patterson AFB, OH 45433-7632

Lab Report No:2012LA40064001 Cust Sample No:9326 JON: GENERAL FUND

Date Reported:10/01/12 1331 hrs*

Sample Submitter: AFRL/RZPF 1790 Loop Road N Bldg 490 Wright-Patterson AFB, OH 45433

Reason for Submission: AFRL Research Product: Aviation Turbine Fuel, Kerosene Specification: ASTM D 1655 - 12 Grade:Jet A

Qty Submitted: 2 gal

Batch/Lot/Origin: JET A

Method	Test	Min Max	Result Fai
ASTM D 3241 - 11a	Thermal Stability @ 290°C		
	Tube Deposit Rating, Visual		1A X
	Change in Pressure (mmHg)		0
ASTM D 3241 - 11a	Thermal Stability @ 280°C		
	Tube Deposit Rating, Visual		1
	Change in Pressure (mmHg)		0
ASTM D 3241 - 11a	Thermal Stability Breakpoint		
	Tube Deposit Rating, Visual		1
	Change in Pressure (mmHg)		0
	Breakpoint (°C)		285
MIL-STD-3004C	Appearance		Pass
ASTM D 3242 - 11	Total Acid Number (mg KOH/g)	0.10	0.00
ASTM D 1319 - 10	Aromatics (% vol)	25	21
ASTM D 3227 - 04a	Mercaptan Sulfur (% mass)	0.003	0.002
ASTM D 4294 - 10	Total Sulfur (% mass)	0.30	0.06
ASTM D 86 - 11b	Distillation		
	10% Recovered (°C)	205	164
	20% Recovered (°C)	Report Only	171
	50% Recovered (°C)	Report Only	194
	90% Recovered (°C)	Report Only	246
	End Point (°C)	300	269
	Residue (% vol)	1.5	1.3
	Loss (% vol)	1.5	0.5
ASTM D 56 - 05	Flash Point (°C)	38	43
ASTM D 4052 - 11	Density @ 15°C (kg/m³)	775 840	805
ASTM D 5972 - 05e1	Freesing Point (*C)	-40	-54
ASTM D 445 - 12	Viscosity @ -20°C (mm2/s)	8.0	3.8
ASTM D 1322 - 08	Smoke Point		
	Smoke Point (w/allowable Naphthalenes) (mm)	18	20
ASTM D 1840 - 07	Naphthalenes (% vol)	3.0	1.2
ASTM D 130 - 10	Copper Strip Corrosion (2 h @ 100°C)	1 (Max)	la
ASTM D 3241 - 11a	Thermal Stability @ 260°C		
	Change in Pressure (mmHg)	25	0
	Tube Deposit Rating, Visual	<3 (Max)	1
ASTM D 381 - 12	Existent Gum (mg/100 mL)	7	<1
ASTM D 1094 - 07	Water Reaction Interface Rating	1b (Max)	1
ASTM D 3948 - 11	WSIM	70	99
ASTM D 2624 - 09	Conductivity (pS/m)	50 600	0 X
ASTM D 5001 - 10	Lubricity Test (BOCLE) Wear Scar (mm)	Report Only	0.66
MIL-DTL-83133H	Filtration Time (min)		3

^{*} Date reflects Eastern Standard Time(EST)

^{**} Date as provided by customer

Appendix CB SwRI Permittivity Procedure

Apparatus

- k-cell
- k-cell holder
- Andeen-Hagerling Ultra-Precision Capacitance Bridge (2700A), 50Hz-20kHz
- Thermocouple
- Thermocouple reader

The "system" shall refer to the combination of the capacitance bridge and k-cell.

Materials

- 1000mL Beaker
- Isopropanol (Grade Certified ACS Plus or better)
- Cyclohexane, HPLC Grade or better
- Solvent bottle

Cleaning the k-cell

To clean the k-cell, use the following procedure:

- Disconnect the k-cell from the capacitance bridge
- Allow the k-cell to drain thoroughly
- Perform an initial flush of the k-cell using isopropanol from a solvent bottle
- Allow the k-cell to drain thoroughly
- Submerge the k-cell into a beaker filled with isopropanol. Do not submerge the BNC connectors of the k-cell.
- Remove the k-cell from the isopropanol.
- Repeat steps 5-6 two more times
- Allow the k-cell to drain thoroughly.
- Submerge the k-cell into a second beaker filled with isopropanol. Do not submerge the BNC connectors of the k-cell.
- Remove the k-cell from the isopropanol.
- Repeat steps 9-10 two more times
- Allow the k-cell to drain thoroughly.
- Dry the k-cell using a stream of dry, oil-free air. The k-cell should be kept vertical so that fluid can drain.

System Verification

When verification of the system is required, the following procedure shall be followed.

- Determine the dielectric constant of cyclohexane at ambient temperature (18-25°C) according to the procedure below.
- The dielectric constant of cyclohexane shall not deviate by more than ± 0.01 units from those established by the following curve:

$$\varepsilon_r = -0.00162T + 2.0564$$

where.

 ε_r = dielectric constant

 $T = temperature (^{\circ}C)$

Instrument Calibration

Calibration of the capacitance bridge shall only be performed by the manufacturer.

Sample Preparation

Other than equilibrating the sample to the appropriate test temperature, no sample preparation is required in the normal execution of this procedure.

Test Procedure

The following procedures are used to measure the capacitance of an air or a liquid sample. Refer to the operating manual for instructions on using the capacitance bridge. For all procedures, allow the capacitance bridge at least 30 minutes of warm-up time prior to performing a measurement.

Dielectric Constant of Air

- Ensure that the k-cell has been cleaned as described above.
- Connect the k-cell to the capacitance bridge (the cables are labeled to match the inputs on the rear of the bridge)
- Set the desired frequency of the capacitance bridge (e.g. 10 kHz)
- Air measurements should be performed at room temperature (18-23°C). Allow the k-cell and its holder to equilibrate to the room temperature for at least 30 minutes prior to running.
- Place the k-cell in its holder.
- Collect and record three separate capacitance and temperature readings within two minutes. The temperature should not deviate by more than 0.1°C.
- Calculate the average air capacitance.

Dielectric Constant of a Liquid Sample

- Ensure that the k-cell has been cleaned as described above.
- Connect the k-cell to the capacitance bridge (the cables are labeled to match the inputs on the rear of the bridge).
- Set the desired frequency of the capacitance bridge (e.g. 10 kHz).
- Assemble the k-cell, k-cell holder, and sample under ambient conditions in a low humidity environment (50% non-condensing).
- Equilibrate the k-cell, k-cell holder, and sample together to the desired temperature. Under cold conditions, this prevents humid air from condensing out on the k-cell and k-cell holder which will affect the results.
- Collect and record three separate capacitance and temperature readings within two minutes. The temperature should not deviate by more than 0.1°C.
- Calculate the dielectric constant from each of the three capacitance readings using the average of the air capacitance as described below.

Calculations

The dielectric constant, ε_r , is calculated as the ratio of the capacitance of the fuel-wetted k-cell to the capacitance of air (dry k-cell):

$$\varepsilon_{\rm r} = C_{\rm sample} / C_{\rm air}$$

where,

 $\varepsilon_{\rm r}$ = dielectric constant

 $C_{\text{sample}} = \text{capacitance of the sample (pF)}$

 C_{air} = capacitance of air (dry cell) (pF)

The capacitance of air, C_{air} , is measured once per day, in triplicate, prior to samples being run. The final value is computed as an average of the three runs and used in all subsequent calculations for samples run that day.

Data to Be Recorded

- Capacitance of air (in triplicate) at ambient temperature (pF)
- Air temperature (°C)
- Capacitance of the sample (in triplicate) (pF)
- Sample temperature (°C)
- k-cell holder ID#
- Thermocouple S/N
- Thermocouple reader S/N

Capacitance values shall include all digits displayed by the capacitance bridge.