

- The goal: correct data interpretation
- Effective length vectors, impedance/ admittance matrices, field patterns
- Numerical and experimental analysis:
 - Wire/Patchgrid modeling
 - Rheometry
 - Anechoic chamber
 - Inflight calibration

Antenna	<i>h</i> ^m [m]	ζ ^m [deg]	ξ ^m [deg]
E_x	6.00	125.3	-120.0
E _y	6.00	125.3	120.0
Ez	6.00	125.3	0.0

Antenna	<i>h</i> ^m [m]	Ö	m [deg]	ξ ^m [deg]
E_x	6.00		125.3	-120.0
E_{y}	6.00		125.3	120.0
Ez	6.00		125.3	0.0

Antenna	<i>h</i> ^m [m]	ζ ^m [deg]	ξm	deg	
E_x	6.00	125.3	-1	20.0	
E _y	6.00	125.3	1	20.0	
Ez	6.00	125.3		0.0	

- A gold-plated model of the spacecraft is submerged into a water tank
- A low-frequency electric field is applied
- The response (induced voltage) of the antennas is measured as a function of spacecraft orientation
- The effective length vectors and the antenna impedances can be computed from the data
- Rheometry is only applicable to the quasi-static limit

Rheometry results

HGA	Antenna		STEREO A		STEREO B			
orientatio n		h° [m]	ζ° [deg]	ξ° [deg]	h° [m]	ζ° [deg]	ξ° [deg]	
	E_x	2.89	126.5	-140.2	2.93	126.2	-140.8	
-90 deg	Ey	3.83	118.9	127.8	3.86	118.8	127.7	
	Ez	2.37	132.2	21.1	2.36	132.4	20.0	
	$\mathbf{E}_{\mathbf{x}}$	2.89	126.2	-140.7	2.92	126.0	-141.2	
0 deg	$\mathbf{E}_{\mathbf{y}}$	3.84	118.7	127.9	3.87	118.8	127.6	
	\mathbf{E}_{z}	2.36	132.2	21.6	2.36	132.8	20.6	
	E_{x}	2.85	126.2	-140.8	2.89	125.8	-141.3	
+90 deg	E _y	3.84	118.6	128.1	3.86	118.6	127.2	
	Ez	2.36	131.7	21.6	2.36	132.5	20.8	

Antenna	<i>h</i> ^m [m]	ζ ^m [deg]	ξ ^m [deg]
E _x	6.00	125.3	-120.0
E _y	6.00	125.3	120.0
Ez	6.00	125.3	0.0

open feeds

loaded feeds

HGA	Antenna	STEREO A			STEREO B			
orientatio n		h° [m]	ζº [deg]	ξ° [deg]	<i>h</i> ° [m]	ζº [deg]	ξ° [deg]	
	Ex	2.89	126.5	-140.2	2.93	126.2	-140.8	
-90 deg	Ey	3.83	118.9	127.8	3.86	118.8	127.7	
	Ez	2.37	132.2	21.1	2.36	132.4	20.0	
	$\mathbf{E}_{\mathbf{x}}$	2.89	126.2	-140.7	2.92	126.0	-141.2	
0 deg	\mathbf{E}_{y}	3.84	118.7	127.9	3.87	118.8	127.6	
	\mathbf{E}_{z}	2.36	132.2	21.6	2.36	132.8	20.6	
	E_x	2.85	126.2	-140.8	2.89	125.8	-141.3	
+90 deg	Ey	3.84	118.6	128.1	3.86	118.6	127.2	
	Ez	2.36	131.7	21.6	2.36	132.5	20.8	
		h [m]	ζ [deg]	ζ [deg]	h [m]	ζ [deg]	ξ [deg]	
	E _x	1.17	121.0	-134.5	1.17	120.8	-135.0	
-90 deg	Ey	1.46	114.9	126.6	1.46	114.8	126.4	
	Ez	0.99	124.6	15.5	0.98	124.6	14.4	
	$\mathbf{E}_{\mathbf{x}}$	1.16	120.8	-134.9	1.18	120.6	-135.4	
0 deg	$\mathbf{E}_{\mathbf{y}}$	1.46	114.7	126.7	1.47	114.8	126.3	
	\mathbf{E}_{z}	0.99	124.6	15.9	0.98	125.0	14.9	
	E _x	1.15	120.8	-135.0	1.16	120.5	-135.5	
+90 deg	E _y	1.45	114.7	127.0	1.47	114.7	126.0	
	Ez	0.98	124.3	15.9	0.98	124.9	15.0	

- The spacecraft is modeled as a grid of wires or patches
- Then the currents along these wires/patches are computed
- This calculation is done with ASAP (wires) and CONCEPT II (wires and patches)
- On base of the current distribution, all other antenna properties (effective length vectors, impedances) can be calculated with MATLAB routines

- The equation governing the current distribution is the electric field integral equation (EFIE. CONCEPT), or the reaction integral equation (RIE, ASAP)
- For patches, the magnetic field integral equation (MFIE, CONCEPT) is used
- The antenna is excited at the feed
- Due to reciprocity, the receiving antenna results in the same current distribution as the transmitting

- Calculations were performed for open feeds and base capacitances of 90pF.
- A correction for the real antenna diameters has to be applied on the ASAP results.
 CONCEPT can deal with real antenna diameters.

The effect of changing

Component	Antenna	δh° [m]	$\delta\zeta^{\circ}$ [deg]	$δ$ ξ $^{\circ}$ [deg]	Illustration
	E_{x}	0.01	0.1	0.2	
1. Battery	Ey	0.00	0.0	0.2	
	E_z	0.00	0.1	0.0	
• CECCIII	E_{x}	0.00	0.0	0.1	
2. SECCHI (HI)	E _y	0.00	0.0	0.1	
	Ez	0.00	0.1	0.0	
3. Beveling	E_{x}	0.01	0.0	0.2	
of hull	E _y	0.02	0.0	0.0	
edges	Ez	0.01	0.0	0.3	
4. Change	E_{x}	0.08	1.3	6.6	
of antenna	Ey	0.02	0.2	0.1	
connections	Ez	0.13	3.8	0.1	
5. Change	E_{x}	0.11	0.0	0.1	
of feed	E _x	0.12	0.1	0.1	→
positions	Ez	0.09	0.1	0.3	
6 D. 1. 1	E_{x}	0.00	0.0	0.0	
6. Redesign of feed area	Ey	0.01	0.1	0.0	→
	Ez	0.00	0.0	0.0	
	E _x	0.03	0.2	0.5	
7. Redesign of HGA	Ey	0.03	0.1	0.4	1 → ◆
0111011	Ez	0.01	0.8	0.9	N .
	E _x	0.05	0.6	0.2	
8. Redesign of boom	Ey	0.03	0.6	0.3	→
	Ez	0.02	1.2	0.3	
9. Change	E _x	0.10	3.1	0.9	
of boom length by	Ey	0.07	2.8	0.3	
1 m	Ez	0.16	3.0	1.1	boom length 5m → 6m

- Spacecraft antennas are usually coupled to the surrounding space plasma.
- The electromagnetic coupling can be modeled by a system of a resistance and a capacitance.
- In rarefied plasma the coupling can not take place without photoelectrons.
- The sheath thickness must not be larger than the antennas.

- STEREO operates in solar wind conditions at 1AU.
- The photo-electron production rate is higher than the thermal electron impact rate.
 --> positive charge.
- i_{ph} ...10⁻⁴Am⁻² [Fahrleson 1967]
- A_{rel}...0.5
- l=6m
- d=1in (0.0254m) on average
- Mean energy of photoelectrons=1.5eV [Grard 1973]
- Mean energy of thermal electrons=10eV

$$I_{ph} = A_{rel}i_{ph}ld \sim 7.6 \cdot 10^{-6}A$$

$$I_e = -en_e d\pi \sqrt{\frac{\kappa T_e}{2\pi m_e}} \sim -2 \cdot 10^{-7} A$$

•
$$\overline{n}_e = 10^6 \text{m}^{-3}$$

$$-->n_{nh}(0)=2x10^8m^{-3}$$

- -->2.5% of the photoelectrons reach the plasma.
- $-->\lambda_{sh}=0.6m$ or 0.4m, depending on the method.

- Using the appropriate equations, one finds:
 - $R_s = 0.2 M\Omega$
 - **◦** C_s=87pF
- Via these parameters the sheath can be included into the numerical antenna calibration (wire-grid).
- Computation of the impedances show that the inclusion of the sheath has an effect.

- Comparing the location of the second resonance of antenna E_z with measured data shows that the inclusion of the sheath capacitance has a corrective effect.
- Further and more accurate data is needed to verify the model.

Thank You for Your attention!

