НЕРІВНОСТІ, ПОВ'ЯЗАНІ З ЧИСЛАМИ ФІБОНАЧЧІ, ЛЮКА І ВІДНОШЕННЯМ ЗОЛОТОГО ПЕРЕРІЗУ

Р. П. Ушаков, заслужений учитель України, м. Київ

В існуючій літературі, присвяченій числам Фібоначчі і Люка, мало уваги приділяється нерівностям. У пропонованій статті розглядаються нерівності певного типу, пов'язані з числами Фібоначчі, Люка і відношенням золотого перерізу. Основним у статті є поняття опуклої послідовності. Означення і властивості опуклої послідовності даються за допомогою відповідних нерівностей. Це дає змогу одержувати нерівності цього типу.

У статті прийняті загальновідомі позначення. Запис $\{u_n, n \ge k\}$ означає, що задана послідовність розглядається на множині натуральних чисел $\{k, k+1, k+2, \ldots\}$. Знаки \lceil та \rceil означають відповідно початок і кінець доведення.

Означення. Послідовність $\{u_n, n \ge 0\}$ називають опуклою при $n \ge n_0$, якщо для будьякого $n \ge n_0$ виконується нерівність

$$2u_n \le u_{n-1} + u_{n+1}. \tag{1}$$

Деякі опуклі послідовності

1. Послідовність чисел Фібоначчі $\{F_n, n \ge 0\}$.

Ця послідовність задається рівностями $F_0=0$, $F_1=1$, $F_{n+1}=F_n+F_{n-1}$, $n\in\mathbb{N}$.

$$\begin{split} & \big\lceil \ 2F_n \le F_{n-1} + F_{n+1} \,, \quad 2F_n \le F_{n-1} + F_{n-1} + F_n \,, \\ & F_n \le 2F_{n-1} \,, \quad F_{n-2} + F_{n-1} \le 2F_{n-1} \,, \quad F_{n-2} \le F_{n-1} \,, \end{split}$$

що справедливо при $n \ge 2$. (Ми розглядаємо тільки невід'ємні індекси).

Отже, послідовність $\big\{F_n,\; n\geq 0\big\}$ опукла при $n\geq 2$ $\big(n_0=2\big).$ $\Big\rceil$

2. Послідовність чисел Люка $\{L_n, n \ge 0\}$.

Ця послідовність задається рівностями $L_0=2,\ L_1=1,\ L_{n+1}=L_n+L_{n-1},\ n\in\mathbb{N}.$

що справедливо при $n \ge 3$.

Отже, послідовність $\left\{L_n,\ n\geq 0\right\}$ опукла при $n\geq 3$ $(n_0=3).$ \urcorner

$$\begin{aligned} \textbf{3. Послідовність} \ &\left\{\frac{1}{F_n}, \ n \geq 1\right\}. \\ &\left\lceil \frac{2}{F_n} \leq \frac{1}{F_{n-1}} + \frac{1}{F_{n+1}}, \ 2F_{n-1}F_{n+1} \leq F_nF_{n+1} + F_{n-1}F_n, \\ &F_{n-1}F_{n+1} - F_{n-1}F_n \leq F_nF_{n+1} - F_{n-1}F_{n+1}, \\ &F_{n-1} \cdot \left(F_{n+1} - F_n\right) \leq F_{n+1} \cdot \left(F_n - F_{n-1}\right), \ F_{n-1}F_{n-1} \leq F_{n+1}F_{n-2}, \\ &\frac{F_{n-1}}{F_{n-2}} \leq \frac{F_{n+1}}{F_{n-1}}, \ \frac{F_{n-2} + F_{n-3}}{F_{n-2}} \leq \frac{F_n + F_{n-1}}{F_{n-1}}, \\ &1 + \frac{F_{n-3}}{F_{n-2}} \leq 1 + \frac{F_n}{F_{n-1}}, \ \frac{F_{n-3}}{F_{n-2}} \leq \frac{F_n}{F_{n-1}}, \end{aligned}$$

що справедливо, бо $\frac{F_{n-3}}{F_{n-2}}\!<\!1\!<\!\frac{F_n}{F_{n-1}}$ при $n\!\geq\!3.$

Отже, послідовність $\left\{\frac{1}{F_n},\; n\geq 1\right\}$ опукла при $n\geq 3$ $(n_0=3).$ \rceil

4. Послідовність
$$\left\{\frac{1}{L_n},\ n\geq 0\right\}$$
.

$$\frac{L_{n-3}}{L_{n-2}} \le \frac{L_n}{L_{n-1}},$$

що справедливо, при $n \ge 4$. Отже, послідовність $\left\{\frac{1}{I}, n \ge 0\right\}$ опукла при $n \ge 4$ $(n_0 = 4)$.

5. Послідовність $\{F_n^2, n \ge 0\}$.

Cnoci6 1.

$$\begin{split} 2F_n^2 &\leq F_{n-1}^2 + F_{n+1}^2, \quad F_n^2 - F_{n-1}^2 \leq F_{n+1}^2 - F_n^2, \\ & \left(F_n - F_{n-1}\right) \cdot \left(F_n + F_{n-1}\right) \leq \left(F_{n+1} - F_n\right) \cdot \left(F_{n+1} + F_n\right), \\ & F_{n-2} \cdot F_{n+1} \leq F_{n-1} \cdot F_{n+2}, \end{split}$$

що справедливо при $n \ge 2$, бо при $n \ge 2$ $F_{n-2} < F_{n-1} \ {\rm i} \ F_{n+1} < F_{n+2} \, .$

Отже, послідовність $\{F_n^2, n \ge 0\}$ опукла при $n \ge 2$.

Спосіб 2. Лема. Має місце подвійна нерівність $\sqrt{2}F_n < F_{n+1} \le 2F_n$ при $n \ge 2$.

Права частина

$$F_{n+1} \leq 2F_n, \quad F_n + F_{n-1} \leq 2F_n, \quad F_{n-1} \leq F_n,$$

що справедливо при $n \ge 2$.

Ліва частина

$$egin{aligned} \sqrt{2}F_n < F_{n+1}, & 2F_n^2 < F_{n+1}^2, & 2F_n^2 < \left(F_n + F_{n-1}
ight)^2, \ 2F_n^2 < F_n^2 + 2F_n \cdot F_{n-1} + F_{n-1}^2, & F_n^2 < 2F_n \cdot F_{n-1} + F_{n-1}^2. \ F_n^2 < 2F_n \cdot F_{n-1} & \text{при } n \geq 2. & F_n < 2F_{n-1}, \end{aligned}$$

що справедливо при $n \ge 2$, як було доведено в правій частині. Отже,

$$F_n^2 < 2F_nF_{n-1} < 2F_nF_{n-1} + F_{n-1}^2$$
 при $n \ge 2$.

6. Послідовність $\{L_n^2, n \ge 0\}$.

що справедливо при $n \ge 3$. Отже, послідовність $\left\{L_n^2,\ n\geq 0\right\}$ опукла при $n\geq 3$. ight
ceil

Доведіть цей факт другим способом за допомогою подвійної нерівності $\sqrt{2}L_n < L_{n+1} < 2L_n$ при $n \ge 3$.

7. Послідовність

$$ig\{F_n^k,\ n\ge 0,\ k>2$$
 — натуральне фіксоване $ig\}.$
$$ig[2F_n^k\le F_{n-1}^k+F_{n+1}^k.$$

Доведемо, що при k > 2 $2F_n^k < F_{n+1}^k$. Справді, $2F_n^k < F_{n+1}^k$, $\sqrt[k]{2}F_n < F_{n+1}$, що справедливо, бо $\sqrt[k]{2}F_{\cdot\cdot}<\sqrt{2}F_{\cdot\cdot}< F_{\cdot\cdot+1}$ при $n\geq 2.$ Отже, послідовність $\left\{F_n^k,\; n\geq 0,\; k>2$ — натуральне фіксоване $\right\}$ опукла при $n \ge 2$.

8. Послідовність

 $\{L_n^k, n \ge 0, k > 2$ — натуральне фіксоване $\}$.

$$\lceil 2L_n^k \le L_{n-1}^k + L_{n+1}^k.$$

Доведемо, що при k>2 $2L_n^k < L_{n+1}^k$. Справді, $\sqrt[k]{2}L_n \le L_{n+1}$, бо при k > 2 $\sqrt[k]{2}L_n < \sqrt{2}L_n \le L_{n+1}$

Отже, послідовність $\left\{L_n^k,\ n\geq 0,\ k>2\right.$ натуральне фіксоване $\}$ опукла при $n \ge 3$.

9. Послідовність
$$\left\{ \frac{1}{F_n^2}, \ n \ge 1 \right\}$$
.

$$\left[\frac{2}{F_n^2} \le \frac{1}{F_{n-1}^2} + \frac{1}{F_{n+1}^2} \right]$$

що при $n \ge 3$ $\frac{2}{F^2} \le \frac{1}{F^2}$. Доведіть,

i
$$\frac{2}{F_n^2} \le \frac{1}{F_{n-1}^2} + \frac{1}{F_{n+1}^2}$$
. Отже, послідовність $\left\{ \frac{1}{F_n^2} \right\}$

опукла при $n \ge 3$.

10. Послідовність
$$\left\{\frac{1}{L_n^2},\ n\geq 0\right\}$$
.

$$egin{align} iggl[& rac{2}{L_n^2} \! \leq \! rac{1}{L_{n-1}^2} \! + \! rac{1}{L_{n+1}^2}, & rac{2}{L_n^2} \! \leq \! rac{1}{L_{n-1}^2}, & 2L_{n-1}^2 \! \leq \! L_n^2, \ & \sqrt{2}L_{n-1} \! \leq \! L_n, \ \end{pmatrix}$$

що справедливо при $n \ge 2$. Отже, при $n \ge 2$ $rac{2}{L_n^2} \le rac{1}{L_{n-1}^2} < rac{1}{L_{n+1}^2} + rac{1}{L_{n-1}^2}$. Послідовність опукла при *n*≥2. |

ПОЗАКЛАСНА РОБОТА

11. Послідовність

$$\left\{\frac{1}{F_n^k},\ n\geq 1,\ k\geq 3$$
 — натуральне фіксоване $\right\}.$

$$egin{aligned} \lceil & rac{2}{F_n^k} \! \leq \! rac{1}{F_{n-1}^k} \! + \! rac{1}{F_{n+1}^k}, & rac{2}{F_n^k} \! \leq \! rac{1}{F_{n-1}^k}, & 2F_{n-1}^k \! \leq \! F_n^k, \ & \sqrt[k]{2}F_{n-1} \! \leq \! F_n. \end{aligned}$$

При $k\geq 3$ і $n\geq 3$ $\sqrt[k]{2}F_{n-1}<\sqrt{2}F_{n-1}< F_n$, що справедливо. Отже, $\frac{1}{F_n^k}\leq \frac{1}{F_{n-1}^k}<\frac{1}{F_{n-1}^k}+\frac{1}{F_{n+1}^k}\,\big(k\geq 3,\ n\geq 3\big).$

Послідовність опукла при $n \ge 3$.

12. Послідовність

$$\left\{ \frac{1}{L_n^k}, \ n \geq 0, \ k \geq 3 \ - \text{ натуральне фіксоване} \right\}.$$

$$\lceil \ \frac{2}{L_n^k} \leq \frac{1}{L_{n-1}^k} + \frac{1}{L_{n+1}^k}, \ \frac{2}{L_n^k} \leq \frac{1}{L_{n-1}^k}, \ 2L_{n-1}^k \leq L_n^k,$$

$$\sqrt[k]{2}L_{n-1} \leq L_n, \ \sqrt[k]{2}L_{n-1} < \sqrt{2}L_{n-1} < L_n,$$

що справедливо при $n \ge 3$. Отже, послідовність опукла при $n \ge 3$ і $k \ge 3$.

13. Послідовність $\left\{\phi^n,\ n\geq 0\right\}$. ϕ — це відношення золотого перерізу. ϕ — додатний корінь рівняння $z^2-z-1=0$. $\phi=\frac{1+\sqrt{5}}{2}$. Помітимо, що $\phi^2=1+\phi$.

$$\int 2\varphi^n \le \varphi^{n-1} + \varphi^{n+1}, \ 2 \le \frac{1}{\varphi} + \varphi,$$

що справедливо. Отже, послідовність опукла при $n \ge 1$. (Перевірте, що $2\phi^1 \le \phi^0 + \phi^2$).

14. Послідовність $\left\{ \frac{1}{\varphi^n}, \ n \ge 0 \right\}$.

$$\lceil \ \frac{2}{\phi^n} \! \leq \! \frac{1}{\phi^{n-1}} \! + \! \frac{1}{\phi^{n+1}} \, , \ 2 \! \leq \! \phi \! + \! \frac{1}{\phi} ,$$

що справедливо. Послідовність опукла при $n \ge 1$.

Зазначимо дві властивості опуклих послідовностей.

1. Якщо послідовність $\{a_n\}$ опукла при $n \ge n_0$ і k > 0, то послідовність $\{ka_n\}$ також опукла при $n \ge n_0$.

2. Якщо послідовність $\left\{a_n\right\}$ опукла при $n \geq n_1$, а послідовність $\left\{b_n\right\}$ опукла при $n \geq n_2$, $k_1 > 0$ і $k_2 > 0$, то послідовність $\left\{k_1a_n + k_2b_n\right\}$ опукла при $n \geq \max\left(n_1,n_2\right)$.

Ці дві прості властивості доведіть самостійно. За допомогою цих двох властивостей можна одержати багато опуклих послідовностей. Так опуклими є послідовності $\{2F_n\}$ при $n \ge 2$, $\{3L_n\}$ при $n \ge 3$, $\{F_n + L_n\}$ при $n \ge 3$, $\{3F_n + 5L_n\}$ при $n \ge 3$, $\{F_n^2 + 2L_n^2\}$ при $n \ge 3$, $\{\frac{4}{F_n} + \frac{3}{L_n}\}$ при $n \ge 4$, $\{2F_n^3 + 4L_n^2\}$ при $n \ge 3$ тошо.

Теорема 1. Для послідовності $\{a_n\}$, опуклої при $n \ge n_0$, виконується нерівність

$$a_n + a_{n+1} \le a_{n-1} + a_{n+2}$$
 при $n \ge n_0$. (2)

ГОСКІЛЬКИ ПОСЛІДОВНІСТЬ $\left\{a_n\right\}$ ОПУКЛА ПРИ $n \geq n_0$, ВИКОНУЮТЬСЯ НЕРІВНОСТІ $2a_n \leq a_{n-1} + a_{n+1}$ ТА $2a_{n+1} \leq a_n + a_{n+2}$. ДОДАМО ЦІ НЕРІВНОСТІ $2a_n + 2a_{n+1} \leq a_{n-1} + a_n + a_{n+1} + a_{n+2}$, $a_n + a_{n+1} \leq a_{n-1} + a_{n+2}$, що вимагалося довести.

Застосуємо нерівність (2) до опуклих послідовностей.

- \checkmark Для послідовності $\big\{F_n\big\}$ маємо $F_n + F_{n+1} \le F_{n-1} + F_{n+2}, \ n \ge 2;$
- \checkmark для послідовності $\left\{L_{n}\right\}$ маємо $L_{n}+L_{n+1}\leq L_{n-1}+L_{n+2},\ n\geq 3;$
- \checkmark для послідовності $\left\{ \frac{1}{F_n} \right\}$ маємо $\frac{1}{F_n} + \frac{1}{F_{n+1}} \leq \frac{1}{F_{n-1}} + \frac{1}{F_{n+2}}, \ n \geq 3;$
- \checkmark для послідовності $\left\{ rac{1}{L_n}
 ight\}$ маємо $rac{1}{L_n} + rac{1}{L_{n+1}} \leq rac{1}{L_{n-1}} + rac{1}{L_{n+2}}, \ n \geq 4;$
- \checkmark для послідовності $\left\{F_n^2\right\}$ маємо $F_n^2 + F_{n+1}^2 \le F_{n-1}^2 + F_{n+2}^2, \ n \ge 2;$

- \checkmark для послідовності $\left\{L_n^2\right\}$ маємо $L_n^2 + L_{n+1}^2 \le L_{n-1}^2 + L_{n+2}^2, \ n \ge 3;$
- \checkmark для послідовності $\left\{F_n^k,\ k>2\$ натуральне фіксоване $\right\}$ маємо $F_n^k+F_{n+1}^k\le F_{n-1}^k+F_{n+2}^k,\ n\ge 2;$
- \checkmark для послідовності $\left\{L_n^k,\ k>2$ натуральне фіксоване $\right\}$ маємо $L_n^k+L_{n+1}^k\le L_{n-1}^k+L_{n+2}^k,\ n\ge 3;$
- \checkmark для послідовності $\left\{ \frac{1}{F_n^2} \right\}$ маємо $\frac{1}{F_n^2} + \frac{1}{F_{n+1}^2} \le \frac{1}{F_{n-1}^2} + \frac{1}{F_{n+2}^2}, \ n \ge 3;$
- \checkmark для послідовності $\left\{ \frac{1}{L_n^2} \right\}$ маємо $\frac{1}{L_n^2} + \frac{1}{L_{n+1}^2} \le \frac{1}{L_{n-1}^2} + \frac{1}{L_{n+2}^2}, \ n \ge 2;$
- $\left\{rac{1}{F_n^k},\ k \ge 3 ext{ фіксоване}
 ight\}$ маємо $rac{1}{F_{-}^k} + rac{1}{F_{--1}^k} \le rac{1}{F_{n-1}^k} + rac{1}{F_{n+2}^k},\ n \ge 3;$

✓ для послідовності

- \checkmark для послідовності $\left\{ rac{1}{L_n^k},\ k\geq 3
 ight.$ фіксоване brace маємо $rac{1}{L_n^k} + rac{1}{L_n^k} \leq rac{1}{L_n^k} + rac{1}{L_n^k},\ n\geq 3;$
- ✓ для послідовності $\{\phi^n\}$ маємо $\phi^n + \phi^{n+1} \le \phi^{n-1} + \phi^{n+2}, n \ge 1;$
- \checkmark для послідовності $\left\{ \frac{1}{\phi^n} \right\}$ маємо $\frac{1}{\phi^n} + \frac{1}{\phi^{n+1}} \leq \frac{1}{\phi^{n-1}} + \frac{1}{\phi^{n+2}}, \ n \geq 1.$

Теорема 2. Для послідовності $\{a_n\}$, опуклої при $n \geq n_0$, виконується нерівність

$$a_{k-1} + a_{k+1} \le a_{k-l} + a_{k+l} \ (2 \le l \le k - n_0).$$
 (3)

 \lceil Для опуклої послідовності $\{a_n\}$ виконуються три нерівності:

$$2a_{k-1} \le a_{k-2} + a_k, \quad 2a_k \le a_{k-1} + a_{k+1}, \quad 2a_{k+1} \le a_k + a_{k+2}.$$

Додаючи почленно ці три нерівності, дістанемо $a_{k-1}+a_{k+1} \le a_{k-2}+a_{k+2}$. Аналогічно доведемо, що $a_{k-2}+a_{k+2} \le a_{k-3}+a_{k+3}, \ a_{k-3}+a_{k+3} \le a_{k-4}+a_{k+4}, \ \dots$ і нарешті, $a_{k-l+1}+a_{k+l-1} \le a_{k-l}+a_{k+l}$. Із цих нерівностей і випливає нерівність (3).

Покажемо ще один спосіб доведення нерівності (3).

Лема. В опуклої при $n \ge n_0$ послідовності різниці між сусідніми членами не спадають при $n \ge n_0$.

 \lceil Нехай $\{a_n\}$ — опукла послідовність. За означенням

 $2a_n \le a_{n-1} + a_{n+1} \Leftrightarrow a_n - a_{n-1} \le a_{n+1} - a_n$, що вимагалось довести. Ці нерівності виконуються при $n \ge n_0$. \rceil

Далі, згідно з лемою

$$a_{k-1} - a_{k-2} \le a_{k+2} - a_{k+1}, \quad a_{k-1} + a_{k+1} \le a_{k-2} + a_{k+2}.$$

Аналогічно маємо

$$\begin{aligned} a_{k-2} + a_{k+2} &\leq a_{k-3} + a_{k+3}, & a_{k-3} + a_{k+3} \leq a_{k-4} + a_{k+4}, \dots, \\ a_{k-l+1} + a_{k+l-1} &\leq a_{k-l} + a_{k+l}. \end{aligned}$$

Ми одержали ланцюжок нерівностей

$$a_{k-1} + a_{k+1} \le a_{k-2} + a_{k+2} \le a_{k-3} + a_{k+3} \le \dots \le a_{k-l+1} + a_{k+l-1} \le a_{k-l} + a_{k+l},$$

звідки випливає нерівність (3) при $2 \le l \le k - n_0$.

Застосуємо нерівність (3) до опуклих послідовностей.

- \checkmark Для послідовності $\left\{F_{n}\right\}$ маємо $F_{b-1}+F_{b+1}\leq F_{b-l}+F_{b+l}$ при $2\leq l\leq k-2$;
- \checkmark для послідовності $\left\{L_n
 ight\}$
- маємо $L_{k-1} + L_{k+1} \le L_{k-l} + L_{k+l}, 2 \le l \le k-3;$
- \checkmark для послідовності $\left\{\frac{1}{F_n}\right\}$ маємо $\frac{1}{r} + \frac{1}{r} < \frac{1}{r} + \frac{1}{r}$, 2 < l < k

маємо
$$\frac{1}{F_{k-1}} + \frac{1}{F_{k+1}} \le \frac{1}{F_{k-l}} + \frac{1}{F_{k+l}}, 2 \le l \le k-3;$$

ПОЗАКЛАСНА РОБОТА

- \checkmark для послідовності $\left\{ \frac{1}{L_n} \right\}$ маємо $\frac{1}{L_{b-1}} + \frac{1}{L_{b-1}} \leq \frac{1}{L_{b-1}} + \frac{1}{L_{b-1}}, \ 2 \leq l \leq k-4;$
- \checkmark для послідовності $\left\{F_n^2\right\}$ маємо $F_{k-1}^2+F_{k+1}^2\leq F_{k-l}^2+F_{k+l}^2,\ 2\leq l\leq k-2;$
- \checkmark для послідовності $\left\{L_n^2
 ight\}$ маємо $L_{k-1}^2+L_{k+1}^2\le L_{k-l}^2+L_{k+l}^2,\ 2\le l\le k-3;$
- \checkmark для послідовності $\left\{F_n^p,\,p>2$ натуральне фіксоване $\right\}$ маємо $F_{k-l}^p+F_{k+l}^p\leq F_{k-l}^p+F_{k+l}^p,\,\,2\leq l\leq k-2;$
- \checkmark для послідовності $\left\{L_n^p,\,p>2\right\}$ маємо $L_{k-1}^p+L_{k+1}^p\leq L_{k-l}^p+L_{k+l}^p,\,\,2\leq l\leq k-3$;
- \checkmark для послідовності $\left\{ rac{1}{F_n^2}
 ight\}$ маємо $rac{1}{F_{k-1}^2} + rac{1}{F_{k+1}^2} \le rac{1}{F_{k-l}^2} + rac{1}{F_{k+l}^2}, \ 2 \le l \le k-3;$
- \checkmark для послідовності $\left\{ \frac{1}{L_n^2} \right\}$ маємо $\frac{1}{L_n^2} + \frac{1}{L_n^2} \le \frac{1}{L_n^2} + \frac{1}{L_n^2}$, $2 \le l \le k-2$;
- \checkmark для послідовності $\left\{rac{1}{F_n^p},\,p\!>\!2$ натуральне $ight\}$ маємо $rac{1}{F_{k-l}^p}\!+\!rac{1}{F_{k+l}^p}\!\leq\!rac{1}{F_{k-l}^p}\!+\!rac{1}{F_{k+l}^p},\,\,2\!\leq\! l\!\leq\! k\!-\!3;$
- \checkmark для послідовності $\left\{ rac{1}{L_n^p}, \, p > 2 \, \, \text{натуральнe}
 ight\}$ маємо $rac{1}{L_{k-1}^p} + rac{1}{L_{k+1}^p} \leq rac{1}{L_{k-l}^p} + rac{1}{L_{k+l}^p}, \,\, 2 \leq l \leq k-3;$
- \checkmark для послідовності $\left\{ \phi^{n} \right\}$ маємо $\phi^{k-1} + \phi^{k+1} \leq \phi^{k-l} + \phi^{k+l}, \ 2 \leq l \leq k-1;$

$$\checkmark$$
 для послідовності $\left\{ \dfrac{1}{\phi^n} \right\}$ маємо $\dfrac{1}{\phi^{k-1}} + \dfrac{1}{\phi^{k+1}} \leq \dfrac{1}{\phi^{k-l}} + \dfrac{1}{\phi^{k+l}}, \ 2 \leq l \leq k-1.$

Вправа. Довести, що для опуклої послідовності виконується нерівність $2a_n \le a_{n-l} + a_{n+l}$, $(l \le n - n_0, \ n \ge 2)$.

Теорема 3. Для опуклої послідовності $\{a_n\}$ виконується нерівність

$$a_p + a_k \le a_{p-l} + a_{k+l} \ (l (4)$$

Згідно з лемою

$$a_p + a_k \le a_{p-1} + a_{k+1} \le a_{p-2} + a_{k+2} \le \dots \le a_{p-l} + a_{k+l}.$$

Згідно з (4) для послідовності $\left\{F_n\right\}$ маємо $F_p+F_k \leq F_{p-l}+F_{k+l} \ \ (l для послідовності <math>\left\{L_n\right\}$ маємо $L_p+L_k \leq L_{p-l}+L_{k+l} \ \ (l <math>\urcorner$

Побудуйте відповідні нерівності для інших опуклих послідовностей.

Теорема 4. Для опуклої послідовності $\{a_n\}$ виконується нерівність

$$a_{n_0} + a_n \ge \frac{2}{n - n_0 + 1} \sum_{k=n}^{n} a_k.$$
 (5)

Г Згідно з теоремою 1, маємо ланцюжок нерівностей

$$\begin{aligned} a_{n_0} + a_n &\geq a_{n_0+1} + a_{n-1} \geq a_{n_0+2} + a_{n-2} \geq a_{n_0+3} + a_{n-3} \geq \ldots \geq \\ &\geq a_{n-1} + a_{n-1}. \end{aligned}$$

Таких нерівностей $n-n_0-1$. Приєднавши до них дві рівності $a_{n_0}+a_n=a_{n_0}+a_n$, дістанемо $n-n_0+1$ співвідношення:

$$\begin{split} a_{n_0}+a_n&=a_{n_0}+a_n\,,\ a_{n_0}+a_n\geq a_{n_0+1}+a_{n-1},\\ a_{n_0}+a_n\geq a_{n_0+2}+a_{n-2},\ a_{n_0}+a_n\geq a_{n_0+3}+a_{n-3},\ \dots,\\ a_{n_0}+a_n\geq a_{n-1}+a_{n_0+1},\ a_{n_0}+a_n=a_n+a_{n_0}. \end{split}$$

Додаючи почленно всі ці співвідношення, дістаємо нерівність $(n-n_0+1)(a_{n_0}+a_n)\geq 2\sum_{k=n_0}^n a_k$, звідки випливає нерівність (5). \rceil

Застосуємо нерівність (5) до опуклих послідовностей.

- \checkmark Для послідовності $\left\{F_n\right\}$ маємо $F_2+F_n\geq rac{2}{n-1}\sum_{k=2}^n F_k;$
- \checkmark для послідовності $\left\{L_n\right\}$ $\text{маємо} \ L_3 + L_n \geq \frac{2}{n-2} \sum_{k=3}^n L_k \, ;$
- \checkmark для послідовності $\left\{ \frac{1}{F_n} \right\}$ маємо $\frac{1}{F_3} + \frac{1}{F_n} \ge \frac{2}{n-2} \sum_{k=3}^n \frac{1}{F_k};$
- \checkmark для послідовності $\left\{ rac{1}{L_n}
 ight\}$ маємо $rac{1}{L_4} + rac{1}{L_n} \ge rac{2}{n-3} \sum_{k=4}^n rac{1}{L_k};$
- \checkmark для послідовності $\left\{F_n^2\right\}$ маємо $F_2^2+F_n^2\geq rac{2}{n-1}\sum_{k=2}^n F_k;$
- \checkmark для послідовності $\left\{L_n^2
 ight\}$ маємо $L_3^2 + L_n^2 \geq rac{2}{n-2} \sum_{k=3}^n L_k$;
- \checkmark для послідовності $\left\{F_n^k,\,k\!\geq\!2
 ight\}$ маємо $F_2^k+F_n^k\!\geq\!rac{2}{n-1}\!\sum_{p=2}^n\!F_p^k$;
- \checkmark для послідовності $\left\{L_n^k,\ k>2
 ight\}$ маємо $L_3^k+L_n^k\geq rac{2}{n-2}\sum_{p=3}^n L_p^k;$
- \checkmark для послідовності $\left\{ \frac{1}{F_n^2} \right\}$ маємо $\frac{1}{F_3^2} + \frac{1}{F_n^2} \ge \frac{2}{n-2} \sum_{k=3}^n \frac{1}{F_k^2};$
- \checkmark для послідовності $\left\{ \frac{1}{L_n^2} \right\}$ маємо $\frac{1}{L_n^2} + \frac{1}{L_n^2} \ge \frac{2}{n-1} \sum_{k=2}^n \frac{1}{L_k^2};$

- \checkmark для послідовності $\left\{\frac{1}{F_n^k},\ k>2\right\}$
 - маємо $\frac{1}{F_3^k} + \frac{1}{F_n^k} \ge \frac{2}{n-2} \sum_{p=3}^n \frac{1}{F_p^k};$
- \checkmark для послідовності $\left\{ rac{1}{L_n^k},\ k \geq 3
 ight\}$
 - маємо $\frac{1}{L_3^k} + \frac{1}{L_n^k} \ge \frac{2}{n-2} \sum_{p=3}^n \frac{1}{L_p^k};$
- ✓ для послідовності $\left\{\phi^{n}\right\}$
 - маємо $\varphi^1 + \varphi^n \ge \frac{2}{n} \sum_{k=1}^n \varphi^k$;
- \checkmark для послідовності $\left\{ \frac{1}{\phi^n} \right\}$
 - маємо $\frac{1}{\varphi^1} + \frac{1}{\varphi^n} \ge \frac{2}{n} \sum_{k=1}^n \frac{1}{\varphi^k}$.

Теорема 5. Для опуклої послідовності $\{a_n\}$ виконується нерівність

$$\frac{a_2 + a_4 + \dots + a_{2n}}{n} \le \frac{a_1 + a_3 + \dots + a_{2n+1}}{n+1}.$$
 (6)

Доведення цієї нерівності наведене в статті [1].

Ми розглянемо три частинних випадки.

1.
$$\frac{F_2 + F_4 + \ldots + F_{2n}}{n} \le \frac{F_1 + F_3 + \ldots + F_{2n+1}}{n+1}.$$

Гпомітимо, що

$$F_2+F_4+F_6+\ldots+F_{2n}=\\=F_3-F_1+F_5-F_3+F_7-F_5+\ldots+F_{2n+1}-F_{2n-1}=\\=F_{2n+1}-1;$$

$$\begin{split} F_1+F_3+F_5+\ldots+F_{2n+1}&=\\ &=F_2+F_4-F_2+F_6-F_4+\ldots+F_{2n}-F_{2n-2}+F_{2n+2}-F_{2n}&=\\ &=F_{2n+2}. \end{split}$$

Вихідна нерівність рівносильна нерівності

$$\begin{split} \frac{F_{2n+1}-1}{n} &\leq \frac{F_{2n+2}}{n+1}, \ (n+1)\big(F_{2n+1}-1\big) \leq nF_{2n+2}, \\ \big(n+1\big)\big(F_{2n+1}-1\big) &\leq n\big(F_{2n+1}+F_{2n}\big), \ F_{2n+1}-n-1 \leq nF_{2n}, \\ F_{2n+1} &\leq nF_{2n}+n+1. \end{split}$$

ПОЗАКЛАСНА РОБОТА

При $n \ge 2$ $F_{2n+1} \le nF_{2n}$. Справді,

$$F_{2n+1} \leq 2F_{2n}, \quad F_{2n} + F_{2n-1} \leq 2F_{2n}, \quad F_{2n-1} \leq F_n,$$
що справедливо.

2.
$$\frac{L_2 + L_4 + \ldots + L_{2n}}{n} \le \frac{L_1 + L_3 + \ldots + L_{2n+1}}{n+1}$$
.

$$\ \, \bigcap$$
 Доведіть, що $L_2+L_4+\ldots+L_{2n}=L_{2n+1}-1$;
$$L_1+L_3+\ldots+L_{2n+1}=L_{2n+2}-2.$$

Вихідна нерівність рівносильна нерівності

$$\begin{split} \frac{L_{2n+1}-1}{n} &\leq \frac{L_{2n+2}-2}{n+1}, \ (n+1) \left(L_{2n+1}-1\right) \leq n \left(L_{2n+2}-2\right), \\ & \left(n+1\right) \left(L_{2n+1}-1\right) \leq n \left(L_{2n+1}+L_{2n}-2\right), \\ & L_{2n+1}-n-1 \leq n L_{2n}-2n, \ L_{2n+1}-1 \leq n L_{2n}-n. \ (*) \end{split}$$

Далі застосуємо метод математичної індукції.

- 1. Перевірте, що нерівність (*) виконується при n=2 і n=3.
- 2. Нехай при деякому n>3 виконується нерівність (*). Додамо до обох частин нерівності (*) L_{2n+3} .

$$\begin{split} L_{2n+2} + L_{2n+1} - 1 &\leq nL_{2n} + L_{2n+2} - n \,, \\ L_{2n+3} - 1 &\leq nL_{2n} + L_{2n+2} - n \,. \end{split}$$

Тепер доведемо, що

$$\begin{split} nL_{2n}+L_{2n+2}-n&\leq \left(n+1\right)L_{2n+2}-n-1,\\ nL_{2n}&\leq nL_{2n+2}-1,\quad nL_{2n}\leq n\left(L_{2n}+L_{2n+1}\right)-1,\\ &1\leq nL_{2n+1}, \end{split}$$

що справедливо. Отже,

$$L_{2n+2}-1 \le (n+1)L_{2n+2}-n-1$$

що завершує індуктивне доведення.

3.
$$\frac{\varphi^2 + \varphi^4 + \ldots + \varphi^{2n}}{n} \le \frac{\varphi^1 + \varphi^3 + \ldots + \varphi^{2n+1}}{n+1}.$$

Використовуючи формулу суми членів геометричної прогресії, маємо

$$\frac{\varphi^{2}(\varphi^{2n}-1)}{n(\varphi^{2}-1)} \leq \frac{\varphi(\varphi^{2n+2}-1)}{(n+1)(\varphi^{2}-1)},$$

$$(n+1)\varphi(\varphi^{2n}-1) \leq n(\varphi^{2n+2}-1),$$

$$n\varphi^{2n+1}-n\varphi+\varphi^{2n+1}-\varphi \leq n\varphi^{2n+2}-n,$$

$$n-n\varphi-\varphi+\varphi^{2n+1} \leq n(\varphi^{2n+2}-\varphi^{2n+1}),$$

$$n-n\varphi-\varphi \leq n\varphi^{2n+1}(\varphi-1)-\varphi^{2n+1},$$

що справедливо, бо ліва частина нерівності від'ємна, а права додатна.

Справді,

$$n\varphi^{2n+1}(\varphi-1)-\varphi^{2n+1}=\varphi^{2n+1}(n(\varphi-1)-1)>0$$

бо при $n \ge 2$

$$n(\varphi-1)-1 \ge 2\left(\frac{1+\sqrt{5}}{2}-1\right)-1 \ge \sqrt{5}-2 > 0.$$

ЛІТЕРАТУРА

- 1. Ушаков Р. П., Хацет Б. І. Опуклі послідовності та пов'язані з ними нерівності. Збірник статей за 1985 рік. Випуск 16.
- 2. Ушаков Р. П. Числа Фібоначчі і Люка. Х. : $B\Gamma$ «Основа», 2013.

Ми тільки тоді виконаємо свій обов'язок перед молодим поколінням, коли на наших уроках зуміємо переконати, що наука — це нескінченний пошук заради кращого майбутнього людства, і донести ту безмежну мужність, любов до людей і жертовність, які ховаються за скупими рядками наукових законів, формул і теорем...

О. І. Маркушевич (1908–1979)

Потрібні розробки уроків на новий навчальний рік? Обирайте та економте час протягом року!

клас за новою програмою!

Серія «Усі уроки»

- Докладні розробки УСІХ уроків класу.
- Багатий додатковий матеріал, методичні рекомендації для вчителя, різноманітність завдань і вправ відрізняють ці посібники від традиційних планів-конспектів.
- УСІ бренд, визнаний учителями, що користується сталим попитом

Код	Клас	Стор.	Ціна			
Усі уроки математики						
20ПМУ1	6 клас. І семестр	288	40,00			
20ПМУ2	6 клас. II семестр	304	40,00			
Усі уроки алгебри						
20ПМУ004	7 клас	272	50,00			
Усі уроки геометрії						
20ПМУ005	7 клас	288	60,00			

Укр. мова, формат А5, м'яка обкладинка

Серія «Збірники»

Код	Клас	Стор.	Ціна		
Математика					
203БК005*	10 клас. Рівень стандарту	_			
Алгебра					
203EK006*	10 клас. Профільний рівень	_	_		
Геометрія					
203БК007*	10 клас. Профільний рівень	_	_		

^{*} Незабаром у продажу

Серія «Ключові компетентності»

Код	Назва
20КЛК005*	Математика. Завдання із сучасним змістом

* Незабаром у продажу

Серія «Електронний конструктор уроку»

Математика		
Код	Клас	Ціна
▲ 20EKУ233	5 клас	30,00
20ЕКУ331	6 клас. I семестр	99,00
Алгебра		
Код	Клас	Ціна
20ЕКУ364	7 клас	99,00
20ЕКУ427*	9 клас	_
Геометрія		
Код	Клас	Ціна
20ЕКУ365	7 клас	99,00

^{*} Незабаром у продажу

Укр. мова, формат CD

Будьте забезпечені розробками уроків на весь навчальний рік!