SCHOOL OF ENGINEERING AND SCIENCES

DEPARTMENT OF COMPUTER SCIENCE

Laboratorio de Sistemas Digitales Feb-Jun 2021

P4

Circuitos combinacionales

Objetivos

El alumno deberá realizará circuitos combinacionales mediante la instanciación de componentes sencillos. Así mismo, diseñará un testbench para verificar el correcto funcionamiento de su diseño.

Procedimiento

- 1. Diseñe en VHDL un sumador/restador de 8 bits en complementos a 2, instanciando 8 sumadores completos como componentes.
- Antes de realizar la implementación del diseño en el FGPA, comprueba su funcionamiento utilizando un testbench. Toma como referencia el código anexo al final del documento.
- 3. Para una mejor visualización de las señales de entrada y salida, selecciona las entradas \mathbb{A} y \mathbb{B} , así como la salida \mathbb{R} y con click derecho, selecciona "Signed Decimal" en la opción "Radix".
- 4. Proponga 5 casos diferentes para comprobar el funcionamiento del sumador y 5 casos diferentes para comprobar el funcionamiento del restador (es importante que se pueda observar el correcto funcionamiento de las banderas de acarreo de salida y de desbordamiento).
- 5. Para la implementación en el FGPA, utiliza los siguientes recursos:
 - 16 Slide-switches para representar dos números de 8 bits.
 - 1 Push-button para seleccionar la operación a realizar.
 - 8 LEDs para representar el resultado de la operación.
 - 1 LED para indicar el acarreo de salida.
 - 1 LED para indicar si ha ocurrido un desbordamiento.

Entregables

En tu reporte técnico, incluye lo siguiente:

- Enlace a GitHub de los códigos en VHDL del sumador de 8 bits
- Enlace a YouTube de la demostración de implementación en FPGA
- Diagrama esquemático del sumador de 8 bits
- Evidencias de simulación con capturas de pantalla para las diferentes combinaciones de entradas, mostrando las salidas correctas
- Conclusiones