

## N32WB452

# 数据手册

N32WB452系列是基于32位ARM Cortex-M4F + Cortex-M0双内核的BLE5.0 MCU芯片,TX/RX功耗 3.5mA,发射功率+3dBm,接收灵敏度-94dBm,主频144MHz,支持浮点运算和DSP指令,内置512KB Flash,144KB SRAM,集成多达512KB Flash,144KB SRAM,2x12bit 5Msps ADC,2x1Msps 12bit DAC,集成多路U(S)ART、I2C、SPI、USB通信接口,2xCAN 2.0B,1xSDIO接口,数字摄像头(DVP)接口,内置密码算法硬件加速引擎

## 关键特性

- BLE5.0
  - 2.4 GHz 射频收发, 支持 BLE5.0
  - 高接收机灵敏度(-94dBm@BLE)
  - 一 可编程的发射机功率,最大可达+3dBm
  - 一 内置 Balun/匹配网络
  - 接收功耗: 3.5mA@3.0V (DCDC)
  - 发射功耗: 3.6mA@3.0V/0 dBm ( DCDC)
- 内核 CPU
  - 一 32 位 ARM Cortex-M4 + Cortex-M0 双内核构架,其中 32bit ARM Cortex-M0 作为协处理器专用于处理 BLE5.0 射频电路和蓝牙核心协议,通过内部总线与 ARM Cortex-M4 核应用处理器进行通信
  - 一 32 位 ARM Cortex-M4 内核+FPU,单周期硬件乘除法指令,支持 DSP 指令和 MPU
  - 一 内置 8KB 指令 Cache 缓存, 支持 Flash 加速单元执行程序 0 等待
  - 最高主频 144MHz, 180DMIPS
- 加密存储器
  - 512K Byte 片内 Flash + 128KB ROM, Flash 支持加密存储、分区管理及数据保护功能,支持硬件 ECC 校验,10 万次擦写次数,10 年数据保持
  - 144KByte 片内 SRAM(包含 16KByte Retention RAM),Retention RAM 支持硬件奇偶校验
- 低功耗模式
  - STANDBY 模式: 4uA, 84 个备份寄存器保持, 所有 IO 保持, 可选 RTC Run, 16KByte Retention SRAM 保持, 支持 VBAT 管脚独立供电, 100uS 快速唤醒
  - STOP2 模式: 6uA, RTC Run, 16KByte Retention SRAM 保持, CPU 寄存器保持, 所有 IO 保持, 40uS 快速唤醒
  - Stop0 模式: 150uA, RTC Run, 所有 SRAM 保持, 所有 IO 保持, 20uS 快速唤醒
- 时钟
  - HSE: 4MHz~32MHz 外部高速晶体
  - LSE: 32.768KHz 外部低速晶体
  - HSI: 内部高速 RC OSC 8MHz
  - LSI: 内部低速 RC OSC 40KHz



- 内置高速 PLL
- 一 支持 1 路时钟输出,可配置系统时钟、HSE、HSI 或 PLL 后分频输出
- 蓝牙协处理器时钟
  - 32MHz 外部高速晶体
  - 32.768KHz 外部低速晶体
  - 内部高速 RC OSC 32MHz
  - 内部低速 RC OSC 32KHz
- 复位
  - 一 支持上电/掉电/欠压/外部引脚复位
  - 支持看门狗复位,软件复位
- 通信接口
  - 7个U(S)ART接口,最高速率达 4.5 Mbps,其中 3个 USART接口(支持 ISO7816, IrDA, LIN),4个 UART接口
  - 3个SPI接口,速率高达36 MHz,其中2个支持I2S
  - 一 4个 I2C 接口,速率高达 1 MHz,主从模式可配,从机模式下支持双地址响应
  - 1个USB2.0 Full Speed Device 接口
  - 2个CAN 2.0A/B 总线接口
  - − 1 个 SDIO 接口(OFN88), 支持 SD/SDIO /MMC 格式
  - 1个DVP (Digital Video Port)接口
- 高性能模拟接口
  - 2 个 12bit 5Msps 高速 ADC,可配置为 12/10/8/6bit 模式,6bit 模式下采样率高达 9Msps,多达 16
     路外部单端输入通道,支持差分模式
  - 2个12bit DAC,采样率1Msps
  - 支持外部输入独立参考电压源
  - 一 所有模拟接口支持 1.8~3.6V 全电压工作
- 最大支持 65 个支持复用功能的 GPIOs, 大多数 GPIO 支持 5V 耐压.
- 2 个高速 DMA 控制器,每个控制器支持 8 通道,通道源地址及目的地址任意可配
- RTC 实时时钟,支持闰年万年历,闹钟事件,周期性唤醒,支持内外部时钟校准
- 定时计数器
  - 2 个 16bit 高级定时计数器,支持输入捕获、输出比较、PWM 输出以及正交编码输入等功能,最高控制精度 6.9ns。每个定时器有 4 个独立的通道,其中 3 个通道支持 6 路互补 PWM 输出
  - 一 4 个 16bit 通用定时计数器, 每个定时器有 4 个独立通道, 支持输入捕获/输出比较/PWM 输出/单脉冲输出
  - 2个16bit 基础定时计数器



- 1x 24bit SysTick
- 1x 7bit 窗口看门狗(WWDG)
- 1x 12bit 独立看门狗(IWDG)
- 编程方式
  - 支持 SWD/JTAG 在线调试接口
  - 支持 UART(QFN48 封装部分版本不支持)、USB Bootloader
- 安全特性
  - 一 内置密码算法硬件加速引擎
  - 支持 AES、DES、SHA、SM1、SM3、SM4、SM7、MD5 算法
  - Flash 存储加密
  - 多用户分区管理(MMU)
  - TRNG 真随机数发生器
  - CRC16/32
  - 支持写保护(WRP), 多种读保护(RDP)等级(L0/L1/L2)
  - 支持安全启动,程序加密下载,安全更新
  - 支持外部时钟失效监测,防拆监测
- 96 位 UID 及 128 位 UCID
- 工作条件
  - 工作电压范围: 1.8V~3.6V
  - 工作温度范围: -40℃~85℃
  - ESD: ±4KV (HBM 模型), ±1KV (CDM 模型)
- 封装
  - QFN48(6mm x 6mm)
  - QFN64(8mm x 8mm)
  - QFN88(10mm x 10mm)
- 订购型号

| 系列         | 型号                                           |
|------------|----------------------------------------------|
| N32WB452xE | N32WB452CEQ6<br>N32WB452REQ6<br>N32WB452LEQ6 |



# 目录

| 1 | 产品简介                                        | 6  |
|---|---------------------------------------------|----|
|   | 1.1 命名规则                                    | 7  |
|   | 1.2 器件一览                                    |    |
| 2 | 功能简介                                        | 0  |
| _ | 11.0-1.0-1                                  |    |
|   | 2.1 处理器内核                                   |    |
|   | 2.2 存储器                                     |    |
|   | 2.2.1 嵌入式闪存存储器                              |    |
|   | 2.2.2 嵌入式SRAM                               |    |
|   | 2.2.3 嵌套的向量式中断控制器(NVIC)                     |    |
|   | 2.4 时钟系统                                    |    |
|   | 2.5 低功耗蓝牙                                   |    |
|   | 2.6 启动模式                                    |    |
|   | 2.7 供电方案                                    |    |
|   | 2.8 复位                                      |    |
|   | 2.9 可编程电压监测器                                |    |
|   | 2.10 电压调压器                                  |    |
|   | 2.11 低功耗模式                                  | 13 |
|   | 2.12 直接存储器存取(DMA)                           | 14 |
|   | 2.13 实时时钟(RTC)                              | 14 |
|   | 2.14 定时器和看门狗                                |    |
|   | 2.14.1 基本定时器-TIM6和TIM7                      |    |
|   | 2.14.2 通用定时器(TIMx)                          |    |
|   | 2.14.3 高级控制定时器(TIM1和TIM8)                   |    |
|   | 2.14.4 系统时基定时器(Systick)                     |    |
|   | 2.14.5 看门狗定时器(WDG)                          |    |
|   | 2.15 I²C总线接口         2.16 通用同步/异步收发器(USART) |    |
|   | 2.10 迪用问步/并少收及裔(USART)                      |    |
|   | 2.17 申行开议按口(SFI)                            |    |
|   | 2.19 安全数字输入输出接口(SDIO)                       |    |
|   | 2.20 控制器区域网络(CAN)                           |    |
|   | 2.21 通用串行总线(USB)                            |    |
|   | 2.22 通用输入输出接口(GPIO)                         |    |
|   | 2.23 模拟/数字转换器(ADC)                          | 24 |
|   | 2.24 数字/模拟转换器(DAC)                          | 24 |
|   | 2.25 温度传感器(TS)                              | 25 |
|   | 2.26 数字视频接口(DVP)                            |    |
|   | 2.27 循环冗余校验计算单元(CRC)                        |    |
|   | 2.28 算法硬件加速引擎(SAC)                          |    |
|   | 2.29 唯一设备序列号(UID)                           |    |
|   | 2.30 串行单线JTAG调试口(SWJ-DP)                    | 26 |
| 3 | 引脚定义和描述                                     | 27 |
|   | 3.1 封装示意图                                   | 27 |
|   | 3.1.1 QFN48                                 |    |
|   | 3.1.2 QFN64                                 |    |
|   | 3.1.3 QFN88                                 |    |
|   | 3.2 引脚复用定义                                  | 30 |



|   | 3.3 蓝牙  | ·应用参考电路                                 | 35 |
|---|---------|-----------------------------------------|----|
| 4 | 电气物     | 寺性                                      | 37 |
|   | 41 测试   | `条件                                     | 37 |
|   | 4.1.1   |                                         |    |
|   | 4.1.2   | 典型数值                                    |    |
|   | 4.1.3   | 典型曲线                                    |    |
|   | 4.1.4   | 负载电容                                    |    |
|   | 4.1.5   | 引脚输入电压                                  |    |
|   | 4.1.6   | 供电方案                                    |    |
|   | 4.1.7   | 电流消耗测量                                  |    |
|   | 4.2 绝对  | ·最大额定值                                  |    |
|   | 4.3 蓝牙  | 电气特性                                    | 41 |
|   | 4.3.1   | 蓝牙工作环境                                  | 41 |
|   | 4.3.2   | 蓝牙 DC 参数                                | 41 |
|   | 4.3.3   | 蓝牙 AC 参数                                | 42 |
|   | 4.4 工作  | :条件                                     | 42 |
|   | 4.4.1   | 通用工作条件                                  | 42 |
|   | 4.4.2   | 上电和掉电时的工作条件                             | 42 |
|   | 4.4.3   | 内嵌复位和电源控制模块特性                           | 43 |
|   | 4.4.4   | 内置的参考电压                                 | 43 |
|   | 4.4.5   | 供电电流特性                                  | 44 |
|   | 4.4.6   | 外部时钟源特性                                 | 47 |
|   | 4.4.7   | 内部时钟源特性                                 |    |
|   | 4.4.8   | 从低功耗模式唤醒的时间                             | 51 |
|   | 4.4.9   | PLL特性                                   | 51 |
|   | 4.4.10  | - 14 14 14 1—                           |    |
|   | 4.4.11  | 18.4.165 4四(8.4.4681四)                  |    |
|   | 4.4.12  | I/O端口特性                                 | 53 |
|   | 4.4.13  | - :                                     |    |
|   | 4.4.14  | , = , , ,                               |    |
|   | 4.4.15  |                                         |    |
|   | 4.4.16  |                                         |    |
|   | 4.4.17  |                                         |    |
|   | 4.4.18  | • • •                                   |    |
|   | 4.4.19  | 7.50                                    |    |
|   | 4.4.20  | . , , , , , , , , , , , , , , , , , , , |    |
|   | 4.4.21  | , process ( ) = 12 cm                   |    |
|   | 4.4.22  | /                                       |    |
|   | 4.4.23  |                                         |    |
|   | 4.4.24  | SMT焊接温度特性                               | 75 |
| 5 | 封装厅     |                                         | 77 |
|   | 5.1 OFN | [48                                     | 77 |
|   |         |                                         |    |
|   |         | [88                                     |    |
|   | 5.4 丝印  | ]说明                                     | 80 |
| 6 | 版本是     | 5史                                      | 81 |
| 7 | 声明.     |                                         | 84 |



# 表目录

| 表 | 1-1  | N32WB452系列资源配置                                         | 8  |
|---|------|--------------------------------------------------------|----|
| 表 | 2-1  | 定时器功能比较                                                | 15 |
| 表 | 3-1  | 管脚定义                                                   | 30 |
| 表 | 4-1  | 电压特性                                                   | 40 |
| 表 | 4-2  | 电流特性                                                   | 40 |
| 表 | 4-3  | 温度特性                                                   | 41 |
| 表 | 4-4  | 蓝牙工作环境                                                 | 41 |
| 表 | 4-5  | 蓝牙DC参数特性                                               | 41 |
| 表 | 4-6  | 1-Mbps GFSK (Bluetooth Low Energy) - RX                | 42 |
| 表 | 4-7  | 1-Mbps GFSK (Bluetooth Low Energy) - TX                | 42 |
| 表 | 4-8  | 通用工作条件                                                 | 42 |
| 表 | 4-9  | 上电和掉电时的工作条件                                            | 43 |
|   |      | 0 内嵌复位和电源控制模块特性                                        |    |
|   |      | 1 内置的参照电压                                              |    |
| 表 | 4-12 | 2 运行模式下的最大电流消耗,数据处理代码从内部闪存中运行                          | 44 |
|   |      | 3 睡眠模式下的最大电流消耗                                         |    |
| 表 | 4-14 | 4 运行模式下的典型电流消耗,数据处理代码从内部Flash中运行                       | 45 |
|   |      | 5 睡眠模式下的典型电流消耗                                         |    |
| 表 | 4-16 | 6 停机和待机模式下的典型和最大电流消耗                                   | 46 |
| 表 | 4-17 | 7 高速外部用户时钟特性(Bypass模式)                                 | 47 |
| 表 | 4-18 | 8 低速外部用户时钟特性(Bypass模式)                                 | 47 |
| 表 | 4-19 | 9 HSE 4~32MHz振荡器特性 <sup>(1)(2)</sup>                   | 49 |
|   |      | 0 LSE振荡器特性(f <sub>LSE</sub> =32.768kHz) <sup>(1)</sup> |    |
|   |      | 1 HSI振荡器特性 <sup>(1)(2)</sup>                           |    |
| 表 | 4-22 | 2 LSI振荡器特性 <sup>(1)</sup>                              | 51 |
|   |      | 3 低功耗模式的唤醒时间                                           |    |
|   |      | 4 PLL特性                                                |    |
|   |      | 5 闪存存储器特性                                              |    |
|   |      | 6 闪存存储器寿命和数据保存期限                                       |    |
|   |      | 7 ESD绝对最大值                                             |    |
|   |      | 8 电气敏感性                                                |    |
|   |      | 9 I/O静态特性                                              |    |
|   |      | 0 IO驱动能力表                                              |    |
|   |      | 1 输出电压特性                                               | 54 |
|   |      | 2 输入输出交流特性 <sup>(1)</sup>                              | 55 |
|   |      | 3 NRST引脚特性                                             |    |
|   |      | 4 TIM1/8特性 <sup>(1)</sup>                              |    |
|   |      | 5 TIM2/3/4/5特性 <sup>(1)</sup>                          |    |
|   |      | 6 IWDG 最大和最小计数复位时间 (LSI = 40 KHz)                      |    |
|   |      | 7 WWDG最大和最小计数复位时间(APB1 PCLK1 = 36MHz)                  |    |
|   |      | 8 I <sup>2</sup> C接口特性                                 |    |
|   |      | 9 SPI1特性 <sup>(1)</sup>                                |    |
|   |      | 0 SPI2特性 <sup>(1)</sup>                                |    |
|   |      | 1 I <sup>2</sup> S特性 <sup>(1)</sup>                    |    |
|   |      | 2 SD/MMC接口特性                                           |    |
|   |      | 3 USB启动时间                                              |    |
|   |      | 4 USB直流特性                                              |    |
|   |      | 5 USB全速电气特性                                            |    |
|   |      | 6 DVP信号动态特性                                            |    |
|   |      | 7 ADC特性                                                |    |
| 表 | 4-48 | 8 ADC采样时间 <sup>(1)(2)</sup>                            | 69 |





| 表 | 4-49 | ADC精度 – 局限的测试条件 <sup>(1)(2)</sup> | 71 |
|---|------|-----------------------------------|----|
| 表 | 4-50 | DAC特性                             | 74 |
| 丰 | 151  | 泪 <b>庄 </b>                       | 75 |



# 图目录

|   |      | N32WB452系列框图                                             |    |
|---|------|----------------------------------------------------------|----|
| 冬 | 1-2  | N32WB452系列订货代码信息图示                                       | 7  |
|   |      | 存储器映射图                                                   |    |
|   |      | 时钟树                                                      |    |
| 冬 | 3-1  | N32WB452系列QFN48引脚分布                                      | 27 |
| 冬 | 3-2  | N32WB452系列LQFP64引脚分布                                     | 28 |
| 冬 | 3-3  | N32WB452系列LQFP88引脚分布                                     | 29 |
|   |      | DCDC工作模式参考电路图                                            |    |
|   |      | LDO工作模式参考电路                                              |    |
|   |      | 引脚的负载条件                                                  |    |
|   |      | 引脚输入电压                                                   |    |
|   |      | 供电方案(非蓝牙部分)                                              |    |
|   |      | 电流消耗测量方案                                                 |    |
|   |      | 外部高速时钟源的交流时序图                                            |    |
|   |      | 外部低速时钟源的交流时序图                                            |    |
|   |      | 使用8MHz晶体的典型应用                                            |    |
|   |      | 使用32.768kH晶体的典型应用 <sup>(1)(2)</sup>                      |    |
|   |      | 输入输出交流特性定义                                               |    |
|   |      | )传输延时                                                    |    |
|   |      | 1 建议的NRST引脚保护                                            |    |
|   |      | 2 I <sup>2</sup> C总线交流波形和测量电路 <sup>(1)</sup>             |    |
|   |      | 3 SPI时序图 – 从模式和CLKPHA=0                                  |    |
| 冬 | 4-14 | 4 SPI时序图 – 从模式和CLKPHA=1 <sup>(1)</sup>                   | 62 |
|   |      | 5 SPI时序图 – 主模式 <sup>(1)</sup>                            |    |
| 冬 | 4-16 | 6 I <sup>2</sup> S从模式时序图(飞利浦协议) <sup>(1)</sup>           | 65 |
| 图 | 4-17 | 7 I <sup>2</sup> S主模式时序图(飞利浦协议) <sup>(1)</sup>           | 65 |
|   |      | 8 SDIO高速模式                                               |    |
|   |      | 9 SD默认模式                                                 |    |
|   |      | O USB时序: 数据信号上升和下降时间定义                                   |    |
|   |      | 1 DVP接口时序图                                               |    |
|   |      | 2 ADC精度特性                                                |    |
|   |      | 3 使用ADC典型的连接图                                            |    |
|   |      | 4 供电电源和参考电源去藕线路(V <sub>REF+</sub> 未与V <sub>DDA</sub> 相连) |    |
|   |      | 5 供电电源和参考电源去藕线路(V <sub>REF+</sub> 与V <sub>DDA</sub> 相连)  |    |
|   |      | 6 SMT焊接温度特性曲线图                                           |    |
|   |      | QFN48封装尺寸                                                |    |
|   |      | QFN64封装尺寸                                                |    |
|   |      | QFN88封装尺寸                                                |    |
| 冬 | 5-4  | 丝印说明图                                                    | 80 |



### 1 产品简介

N32WB452系列BLE5.0微控制器产品采用32位ARM Cortex-M4加32位ARM Cortex-M0双内核构架,其中32bit ARM Cortex-M0核专用于处理BLE5.0射频电路及蓝牙协议,通过内部高速总线,由ARM Cortex-M4核进行配置。ARM Cortex-M4核作为应用处理器,支持浮点运算单元(FPU)和数字信号处理(DSP)指令,支持并行计算指令,最高工作主频144MHz,集成高达512KB加密存储Flash并支持多用户分区管理,最大144KB SRAM。内置一个内部高速AHB总线,二个低速外设时钟总线APB及总线矩阵,最多支持65个通用I/O,提供丰富的高性能模拟接口,包括2个12bit 5Msps ADC,最多支持16个外部输入通道、2个1Msps12bit DAC、多达18通道电容式触摸按键,同时提供多种数字通信接口,包括7个U(S)ART、4个I2C、3个SPI、1个USB 2.0设备、2个CAN 2.0B通信接口,1个数字视频接口(DVP),1个SDIO接口,内置密码算法硬件加速引擎,支持多种国际及国密算法硬件加速。

N32WB452系列产品提供了符合BLE 5.0的无线连接能力,稳定工作于-40 ℃至+85 ℃的温度范围,供电电压 1.8V至3.6V,提供多种功耗模式供用户选择,符合低功耗应用的要求。该系列产品提供QFN48、QFN64和 QFN88封装。根据不同的封装形式,器件中的外设配置不尽相同。这些丰富的外设配置,使得N32WB452系列BLE5.0微控制器芯片适合于智能门锁、智能穿戴、智能标签、智能家居、物联网及移动互联等多种应用场合。

图 1-1给出了该系列产品的框图。



图 1-1 N32WB452系列框图



# 图 1-2 N32WB452系列订货代码信息图示





# 表 1-1 N32WB452系列资源配置

| 器件          | 型号         | N32WB452CE       | N32WB452RE                    | N32WB452LE                   |  |  |
|-------------|------------|------------------|-------------------------------|------------------------------|--|--|
| Flash容量(KB) |            | 512              | 512                           | 512                          |  |  |
|             | M容量<br>(B) | 144              | 144                           | 144                          |  |  |
| CPU         | J频率        |                  | ARM Cortex-M4 @14             | 4MHz,180DMIPS                |  |  |
| BLE         | Core       |                  | BLE 5.0 / 32bit ARM Co        | ortex-M0 @ 32MHz             |  |  |
| 工作          | 环境         |                  | 1.8~3.6V/-4                   | 0~85°C                       |  |  |
|             | 通用         |                  | 4                             |                              |  |  |
| Timer       | 高级         |                  | 2                             |                              |  |  |
|             | 基本         |                  | 2                             |                              |  |  |
|             | SPI        |                  | 3 <sup>(1)</sup>              |                              |  |  |
|             | I2S        |                  | 2                             |                              |  |  |
|             | I2C        | 2                | 3                             | 4                            |  |  |
|             | USART      |                  | 3                             |                              |  |  |
| 通讯          | UART       | 2                | 3                             | 4                            |  |  |
|             | USB        |                  | 1                             | 1                            |  |  |
|             | CAN        |                  | 2                             |                              |  |  |
|             | SDIO       |                  | 0                             | 1                            |  |  |
|             | DVP        |                  | 0                             | 1                            |  |  |
| GI          | PIO        | 29               | 43                            | 65                           |  |  |
| DMA/        | 通道数        |                  | 2/16 Cha                      | nnel                         |  |  |
| 12bit AD    | C/通道数      | 2/6 Channel      | 2/11 Channel                  | 2/16 Channel                 |  |  |
| 12bit DA    | C/通道数      |                  | 2/2 Char                      |                              |  |  |
| 算法          | 支持         | DES/3DES、AES、 SI | HA1/SHA224/SHA256、SM1<br>TRNO | SM3、SM4、SM7、MD5、CRC16/CRC32、 |  |  |
| 安全          | 保护         | 读写               | 写保护(RDP/WRP)、存储               | 加密、分区保护、安全启动                 |  |  |
| 封           | 装          | QFN48            | QFN64                         | QFN88                        |  |  |

1. SPI2和SPI3接口能够灵活地在SPI模式和I2S音频模式间切换。



# 2 功能简介

### 2.1 处理器内核

N32WB452系列BLE5.0 MCU采用32位ARM Cortex-M4加32位ARM Cortex-M0双内核构架,其中32bit ARM Cortex-M0核专用于处理BLE5.0射频电路及蓝牙协议,通过内部高速总线,由ARM Cortex-M4核进行配置。其中ARM Cortex<sup>TM</sup>-M4F内核作为应用处理器,在Cortex<sup>TM</sup>-M3内核的基础上强化了运算能力、新增加了浮点运算处理单元(FPU)、DSP和并行计算指令,提供1.25DMIPS/MHz的优异性能。同时其高效的信号处理能力与Cortex-M系列处理器的低功耗,低成本和易于使用的优点组合,用以满足需要控制和信号处理混合能力且易于使用的应用场景。

ARM Cortex<sup>TM</sup>-M4F 32位精简指令集处理器具有优异的代码效率,通常采用8位和16位器件的存储器空间即可发挥ARM内核的高性能

注: CortexTM-M4F 向下兼容Cortex-M3代码。

### 2.2 存储器

N32WB452系列器件包含嵌入式加密闪存(Flash)存储器、嵌入式SRAM,下图 2-1为存储器映射图。



#### 图 2-1 存储器映射图



#### 2.2.1 嵌入式闪存存储器

片内集成512K字节嵌入式闪存(FLASH),用于存放程序和数据,页面大小 2Kbyte,支持页擦除、字写、字读、半字读、字节读操作。

支持存储加密保护,写入自动加密、读出自动解密(包括程序执行操作)。

支持用户分区管理,最多可分为3个用户分区,不同用户之间不可相互访问数据(仅可执行代码)。

#### 2.2.2 嵌入式SRAM

片内集成多达144K字节的内置SRAM和R-SRAM,其中R-SRAM为Retention SRAM,大小为16K字节。R-SRAM支持Retention,在VBAT、Standby模式下可以保持数据(可以配置为保持或不保持);其他工作模式(RUN/SLEEP/STOP0/ STOP2)数据默认保持;需要PWR对其Retention进行控制管理。

# 2.2.3 嵌套的向量式中断控制器(NVIC)

内置嵌套的向量式中断控制器,能够处理多达86个可屏蔽中断通道(不包括16个Cortex™-M4F的中断线)和16



个优先级。

- 紧耦合的NVIC能够达到低延迟的中断响应处理
- 中断向量入口地址直接进入内核
- 紧耦合的NVIC接口
- 允许中断的早期处理
- 处理晚到的较高优先级中断
- 支持中断尾部链接功能
- 自动保存处理器状态
- 中断返回时自动恢复,无需额外指令开销

该模块以最小的中断延迟提供灵活的中断管理功能。

### 2.3 外部中断/事件控制器(EXTI)

外部中断/事件控制器包含21个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置它的触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;有一个挂起寄存器维持所有中断请求的状态。 EXTI可以检测到脉冲宽度小于内部APB2的时钟周期。多达65个通用I/O口连接到16个外部中断线。

### 2.4 时钟系统

提供多种时钟供用户选择,包括内部高速RC时钟HSI(8MHz),内部低速时钟LSI(40KHz),外部高速时钟HSE(4MHz~32MHz),外部低速时钟LSE(32.768KHz),PLL。

复位时内部HSI时钟被默认设置为CPU时钟,随后用户可以选择外部具有失效监控功能的HSE时钟;当检测到外部时钟失效时,它将被隔离,系统将自动地切换到HSI,如果使能了中断,软件可以接收到相应的中断。同样,在需要时可以采取对PLL时钟安全的中断管理(如当一个间接使用的外部振荡器失效时)。

多个预分频器用于配置AHB的频率、高速APB(APB2)和低速APB(APB1)区域。AHB的最高频率是144MHz, APB2的最高频率是72MHz, APB1的最高频率为36MHz。参考图 2-2的时钟树框图。



#### 图 2-2 时钟树



- 1. 当HSI作为PLL时钟的输入时,最高的系统时钟频率只能达到128MHz。
- 2. 当使用USB功能时,必须同时使用HSE和PLL,CPU的频率必须是48MHz、72MHz、96MHz或144MHz。

# 2.5 低功耗蓝牙

该BLE5.0 SOC芯片内部集成2.4GHZ BLE5.0收发机和调制解调器,如噪声放大器、滤波器、频率综合器、功率放大器等。

具有如下特性:

- -接收灵敏度-94dBm、发射功率可达+3dBm、内置Balun/匹配网络;
- -接收功耗: 3.5Ma@3.0V (DCDC)
- -发射功耗: 3.5Ma@3.0V \0 dBm(DCDC)
- -自带安全和校验特性,包括AES128\CRC16;
- -支持AGC/RSSI。

该BLE5.0 SOC芯片的BLE核心协议栈运行在内部独立Cortex-M0核,应用控制由内置的Cortex-M4内核处理。关于N32WB452系列蓝牙功能的详细应用,请参考《N32WB452系列蓝牙组件参考手册》。



### 2.6 启动模式

在启动时,可以通过BOOT0/1引脚来选择在复位后的启动模式:

- 从程序闪存存储器(FLASH Memory)启动
- 从系统存储器(System Memory)启动
- 从内部SRAM启动

启动加载程序(Bootloader)存放于系统存储器中,可以通过USART1和USB接口对FLASH Memory进行编程。

### 2.7 供电方案

- BLE DVDD =1.8~3.6V,为蓝牙控制模和内部调压器供电。
- BLE\_VCC = 1.8~3.6V,为蓝牙射频电路供电。
- V<sub>DD</sub> = 1.8~3.6V: V<sub>DD</sub>引脚为I/O引脚和内部调压器供电。
- V<sub>SSA</sub>, V<sub>DDA</sub> = 1.8~3.6V: 为ADC、DAC复位模块、RC振荡器和PLL的模拟部分供电。V<sub>DDA</sub>和V<sub>SSA</sub>必须分别连接到V<sub>DD</sub>和V<sub>SS</sub>。
- $V_{BAT} = 1.8 \sim 3.6 V$ : 当关闭 $V_{DD}$ 时,为RTC、外部32kHz振荡器和后备寄存器供电。

关于如何连接电源引脚的详细信息,参见图 4-3供电方案。

### 2.8 复位

内部集成了上电复位(POR)和掉电复位(PDR)电路,这部分电路始终处于工作状态,保证系统在供电超过1.8V时工作;当VDD低于设定的阀值(VPOR/PDR)时,置器件于复位状态,而不必使用外部复位电路。

# 2.9 可编程电压监测器

内置一个可编程电压监测器(PVD),它监视 $V_{DD}/V_{DDA}$ 供电并与阀值 $V_{PVD}$ 比较,当 $V_{DD}$ 低于或高于阀值 $V_{PVD}$ 时将产生中断,中断处理程序可以发出警告信息。PVD功能需要通过程序开启。关于 $V_{POR/PDR}$ 和 $V_{PVD}$ 的值参考表 4-10。

# 2.10 电压调压器

电压调节器工作模式如下:

- 芯片运行在RUN、SLEEP模式: 主电压调节器 (MR) 工作于正常模式
- 芯片运行在STOP0模式: 主电压调节器(MR)可选工作于正常模式或低功耗模式;
- 芯片运行在RUN、SLEEP模式,芯片运行在STOP2、STANDBY模式: 主电压调节器(MR)关闭,备份域电压调节器(BKR)开启。

芯片复位后主电压调节器(MR)默认处于正常工作状态。

# 2.11 低功耗模式

N32WB452系列产品支持五种低功耗模式。

**■** SLEEP模式



在SLEEP模式下,只有CPU停止,所有外设处于工作状态并可在发生中断/事件时唤醒CPU。

#### ■ STOP0模式

STOP0模式基于Cortex-M4F深度睡眠模式,在保持SRAM和寄存器内容不丢失的情况下,STOP0模式可以达到较低的电能消耗。在STOP0模式下,主电源域的大部分时钟关闭,例如PLL、HSI、HSE,主调压器可选置于正常模式或低功耗模式。

唤醒:可以通过任意配置成EXTI的信号把芯片从STOP0模式中唤醒,EXTI信号可以是外部16个EXTI信号 (I/O相关)、PVD的输出、RTC唤醒、RTC闹钟、触控唤醒、USB的唤醒信号。

#### ■ STOP2模式

STOP2模式基于Cortex -M4F深度睡眠模式,所有的核心数字逻辑区域电源全部关闭。主电压调节器关闭,HSE/HSI/PLL关闭。CPU寄存器保持,LSE/LSI可配置工作,所有GPIO保持,外设I/O复用功能不保持。16K字节 R-SRAM保持,其他的SRAM和寄存器数据都将丢失。84字节备份寄存器保持。

唤醒:可以通过任一配置成EXTI的信号把芯片从STOP2模式中唤醒,EXTI信号可以是外部16个EXTI信号 (I/O相关)、PVD的输出、RTC周期性唤醒、RTC闹钟、RTC入侵、NRST复位、IWDG复位。

#### **■ STANDBY**模式

在STANDBY模式下可以达到最低的电流消耗状态。内部的电压调压器被关闭,PLL、HSI的RC振荡器和HSE 晶体振荡器也被关闭;进入STANDBY模式后,寄存器的内容将丢失,但备份寄存器的内容仍然保留,R-SRAM可保持,待机电路仍工作。

NRST上的外部复位信号、IWDG复位、WKUP引脚上的一个上升边沿、RTC唤醒或RTC的闹钟可以把微控制器从STANDBY模式唤醒。

#### ■ VBAT模式

在任何时候,只要V<sub>DD</sub>掉电时,都将自动进入VBAT模式。在VBAT模式下,除了NRST、PA0-WKUP、PC13\_TAMPER、PC14、PC15之外,大多数I/O引脚处于高阻状态。

注:在进入STANDBY模式时,RTC、IWDG和对应的时钟不会被停止。

# 2.12 直接存储器存取(DMA)

集成2个灵活的通用DMA控制器,每个DMA控制器支持8个通道,可以管理存储器到存储器、外设到存储器和存储器到外设的数据传输;2个DMA控制器支持环形缓冲区的管理,避免了控制器传输到达缓冲区结尾时所产生的中断。

每个通道都有专门的硬件DMA请求逻辑,同时可以由软件触发每个通道。可通过软件单独设置每个通道的 传输的长度、传输的源地址和目标地址。

DMA可以用于主要的外设: SPI、I<sup>2</sup>C、USART, 高级/通用/基本定时器TIMx, DAC、I<sup>2</sup>S、SDIO、ADC、DVP。

# 2.13 实时时钟(RTC)

RTC是一组连续运行的计数器,内置日历时钟模块,可提供万年历功能,还具有闹钟中断和周期性中断(最短2个时钟周期)功能。RTC可通过VDD或 $V_{BAT}$ 引脚供电,在 $V_{DD}$ 有效时选择 $V_{DD}$ 供电,否则由 $V_{BAT}$ 引脚供电,由硬件自动选择并切换。RTC不会被系统或电源复位源复位,当从STANDBY模式唤醒时,也不会被复位。

RTC的驱动时钟可以选择为32.768KHz外部晶体振荡器、内部低功耗40KHz RC振荡器、或者高速的外部时钟经128分频任意一个时钟源。对于计时精度要求非常高的应用场景,建议使用外部32.768KHz时钟作为时钟源,同时为补偿天然晶体的时钟偏差,可以通过输出一个512Hz的信号对RTC的时钟进行校准。RTC有一个22位的预分频器用于时基时钟,默认情况下时钟为32.768kHz时,它将产生一个1秒长的时间基准。另外



RTC可以用来触发低功耗状态下唤醒。

### 2.14 定时器和看门狗

最多2个高级控制定时器、4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。 下表比较了高级控制定时器、普通定时器和基本定时器的功能:

计数器分辩 产生DMA请 捕获/比较通 互补输 预分频系数 定时器 计数器类型 率 求 道 出 向上,向 1~65536之 TIM1 下,向上 间的任意整 4 可以 16位. 有 TIM8 /下 数 TIM2 向上,向 1~65536之 TIM3 间的任意整 下,向上 可以 没有 16位 4 TIM4 /下 数 TIM5 1~65536之 TIM6 间的任意整 向上 可以 16位 没有 0 TIM7 数

表 2-1 定时器功能比较

#### 2.14.1基本定时器-TIM6和TIM7

基本定时器TIM6和TIM7各包含一个16位自动装载计数器。这2个定时器是互相独立的,不共享任何资源。 基本定时器可以为通用定时器提供时间基准,特别地可以为数模转换器(DAC)提供时钟。基本定时器在芯片 内部直接连接到DAC并通过触发输出直接驱动DAC。

基本定时器的主要功能如下:

- 16位自动重装载累加计数器
- 16位可编程预分频器(分频系数可配置为1到65536之间的任意值)
- 触发DAC的同步电路
- 在更新事件时产生中断/DMA请求

### 2.14.2通用定时器(TIMx)

4个通用定时器(TIM2、TIM3、TIM4和TIM5) 主要用于以下场合:对输入信号进行计数、测量输入信号的脉冲宽度和产生输出波形等。

通用定时器的主要功能包括:

- 16位自动装载计数器(可实现向上计数、向下计数、向上/下计数);
- 16位可编程预分频器(分频系数可配置为1到65536之间的任意值);
- TIM2、TIM3、TIM4和TIM5最多支持4个通道;
- 通道工作模式: PWM 输出、输出比较、单脉冲模式输出、输入捕获
- 如下事件发生时产生中断/DMA:
  - ◆ 更新事件
  - ◆ 触发事件
  - ◆ 输入捕获
  - ◆ 输出比较
- 可通过外部信号控制定时器



- 多个定时器内部连接在一起,以实现定时器同步或链接
- 增量(正交)编码器接口:用于追踪运行轨迹和解析旋转方位
- 霍尔传感器接口:用于三相电机控制。

### 2.14.3高级控制定时器(TIM1和TIM8)

高级控制定时器(TIM1和TIM8)主要用于以下场合:对输入信号进行计数、测量输入信号的脉冲宽度和产生输出波形等。

高级定时器具有互补输出功能、死区插入和刹车功能。适用于电机控制。

高级定时器的主要功能包括:

- 16 位自动装载计数器。(可实现向上计数、向下计数、向上/下计数)。
- 16 位可编程预分频器。(分频系数可配置为 1 到 65536 之间的任意值)
- 可编程重复计数器
- TIM1 最多 6 个通道, TIM8 最多 6 个通道
- 4 个捕获/比较通道,工作模式为: PWM 输出、输出比较、单脉冲模式输出、输入捕获
- 如下事件发生时产生中断/DMA:
  - ◆ 更新事件
  - ◆ 触发事件
  - ◆ 输入捕获
  - ◆ 输出比较
  - ◆ 刹车信号输入
- 死区时间可编程的互补输出
  - ◆ 对于 TIM1/8, 通道 1、2、3 支持此功能
- 可通过外部信号控制定时器
- 多个定时器内部连接在一起,以实现定时器同步或链接
- 增量(正交)编码器接口:用于追踪运行轨迹和解析旋转方位
- 霍尔传感器接口:用于三相电机控制。

# 2.14.4系统时基定时器(Systick)

这个定时器是专用于实时操作系统,也可当成一个标准的递减计数器。

它具有下述特性:

- 24位的递减计数器
- 自动重加载功能
- 当计数器为0时能产生一个可屏蔽系统中断
- 可编程时钟源

### 2.14.5看门狗定时器(WDG)

支持两个看门狗独立看门狗(IWDG)和窗口看门狗(WWDG),两个看门狗提供了更高的安全性、时间的精确性和使用的灵活性。

#### 独立看门狗 (IWDG)

独立看门狗是基于一个12位的递减计数器和一个3位的预分频器,由独立的的低速RC振荡器驱动,即使主时钟发生故障它也仍然有效,可工作在STOP0模式、STOP2模式和STANDBY模式。IWDG一旦被激活,如果不在设定的时间内喂狗(清除看门狗计数器),则在计数器计数至0x000时产生复位,它可以用于在应用程序发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。复位和低功耗唤醒可配。



#### 窗口看门狗 (WWDG)

窗口看门狗通常被用来监测,由外部干扰或不可预见的逻辑条件造成的应用程序背离正常的运行序列而产生的软件故障。除非递减计数器的值在T6位变成0前被刷新,看门狗电路在达到预置的时间周期时,会产生一个MCU复位。在递减计数器达到窗口寄存器数值之前,如果7位的递减计数器数值(在控制寄存器中)被刷新,那么也将产生一个MCU复位。这表明递减计数器需要在一个有限的时间窗口中被刷新。

#### 主要特点:

- WWDG由APB1时钟分频后得到的时钟驱动
- 可编程的自由运行递减计数器
- 条件复位:
  - ◆ 当递减计数器的值小于0x40,(若看门狗被启动)则产生复位
  - ◆ 当递减计数器在窗口外被重新装载,(若看门狗被启动)则产生复位
  - ◆ 如果启动了看门狗并且允许中断,当递减计数器等于0x40时产生早期唤醒中断(EWINT),它可以被用于重装载计数器以避免WWDG复位

### 2.15 I<sup>2</sup>C总线接口

多达4个独立的I2C总线接口,它提供多主机功能,控制所有I2C总线特定的时序、协议、仲裁和定时。支持多种通信速率模式(最高支持1MHz),支持DMA操作,同时与SMBus 2.0兼容。 I2C模块有多种用途,包括CRC码的生成和校验、SMBus(系统管理总线—System Management Bus)和PMBus(电源管理总线—Power Management Bus)。

I2C接口的主要功能描述如下:

- 多主机功能:该模块既可做主设备也可做从设备;
- I2C主设备功能:
  - ◆ 产生时钟:
  - ◆ 产生起始和停止信号:
- I2C从设备功能:
  - ◆ 可编程的地址检测;
  - ◆ I2C接口支持7位或10位寻址,7位从模式时支持双从地址响应能力;
  - ◆ 停止位检测:
- 产生和检测7位/10位地址和广播呼叫:
- 支持不同的通讯速度;
  - ◆ 标准速度(高达100 kHz);
  - ◆ 快速(高达400 kHz);
  - ◆ 快速+(高达1MHz);
- 状态标志:
  - ◆ 发送器/接收器模式标志;
  - ◆ 字节发送结束标志;
  - ◆ I2C总线忙标志;
- 错误标志:



- ◆ 主模式时的仲裁丢失;
- ◆ 地址/数据传输后的应答(ACK)错误;
- ◆ 检测到错位的起始或停止条件;
- ◆ 禁止拉长时钟功能时的上溢或下溢;
- 2个中断向量:
  - ◆ 1个中断用于地址/数据通讯成功;
  - ◆ 1个中断用于错误;
- 可选的拉长时钟功能
- 具单字节缓冲器的DMA;
- 可配置的PEC(信息包错误检测)的产生或校验
- 发送模式中PEC值可以作为最后一个字节传输
- 用于最后一个接收字节的PEC错误校验
- 兼容SMBus 2.0
  - ◆ 25 ms时钟低超时延时
  - ◆ 10 ms主设备累积时钟低扩展时间
  - ◆ 25 ms从设备累积时钟低扩展时间
  - ◆ 带ACK控制的硬件PEC产生/校验
  - ◆ 支持地址分辨协议(ARP)
- 兼容PMBus

# 2.16 通用同步/异步收发器(USART)

N32WB452系列产品中,集成了7个串行收发接口,包括3个通用同步/异步收发器(USART1、USART2和USART3),和4个通用异步收发器(UART4、UART5、UART6、UART7)。这7个接口提供异步通信、支持IrDASIR ENDEC传输编解码、多处理器通信模式、单线半双工通信模式和LIN主/从功能。

USART1/UART6/UART7接口通信速率可达4.5Mbit/秒,其它接口的通信速率可达2.25Mbit/秒。

USART1、USART2和USART3接口具有硬件的CTS和RTS信号管理、兼容ISO7816的智能卡模式和类SPI通信模式,所有接口都可以使用DMA操作。

#### USART主要特性如下:

- 全双工的,异步通信
- NRZ标准格式
- 分数波特率发生器系统,波特率可编程,用于发送和接收,最高达4.5Mbits/s
- 可编程数据字长度(8位或9位)
- 可配置的停止位,支持1或2个停止位
- LIN主发送同步断开符的能力以及LIN从检测断开符的能力,当USART硬件配置成LIN时,生成13位断开符,检测10/11位断开符
- 输出发送时钟用于步传输
- IRDA SIR 编码器解码器,在正常模式下支持3/16位的持续时间



- 智能卡模拟功能
  - ◆ 智能卡接口支持 ISO7816-3 标准里定义的异步智能卡协议
  - ◆ 智能卡用到的 0.5 和 1.5 个停止位
- 单线半双工通信
- 可配置的使用DMA的多缓冲器通信,在SRAM里利用集中式DMA缓冲接收/发送字节
- 独立的的发送器和接收器使能位
- 检测标志
  - ◆ 接收缓冲器满
  - ◆ 发送缓冲器空
  - ◆ 传输结束标志
- 校验控制
  - ◆ 发送校验位
  - ◆ 对接收数据进行校验
- 四个错误检测标志
  - ◆ 溢出错误
  - ◆ 噪音错误
  - ◆ 帧错误
  - ◆ 校验错误
- 10个带标志的USART中断源
  - ◆ CTS 改变
  - ◆ LIN 断开符检测
  - ◆ 发送数据寄存器空
  - ◆ 发送完成
  - ◆ 接收数据寄存器满
  - ◆ 检测到总线为空闲
  - ◆ 溢出错误
  - ◆ 帧错误
  - ◆ 噪音错误
  - ◆ 校验错误
- 多处理器通信,如果地址不匹配,则进入静默模式
- 从静默模式中唤醒(通过空闲总线检测或地址标志检测)
- 模式配置:

| _ |         |        |        |        |       |       |       |       |
|---|---------|--------|--------|--------|-------|-------|-------|-------|
|   | USART模式 | USART1 | USART2 | USART3 | UART4 | UART5 | UART6 | UART7 |



| 异步模式       | 支持 | 支持 | 支持 | 支持  | 支持  | 支持  | 支持  |
|------------|----|----|----|-----|-----|-----|-----|
| 硬件流控制      | 支持 | 支持 | 支持 | 不支持 | 不支持 | 不支持 | 不支持 |
| 多缓存通讯(DMA) | 支持 | 支持 | 支持 | 支持  | 支持  | 支持  | 支持  |
| 多处理器通讯     | 支持 | 支持 | 支持 | 支持  | 支持  | 支持  | 支持  |
| 同步         | 支持 | 支持 | 支持 | 不支持 | 不支持 | 不支持 | 不支持 |
| 智能卡        | 支持 | 支持 | 支持 | 不支持 | 不支持 | 不支持 | 不支持 |
| 半双工(单线模式)  | 支持 | 支持 | 支持 | 支持  | 支持  | 支持  | 支持  |
| IrDA       | 支持 | 支持 | 支持 | 支持  | 支持  | 支持  | 支持  |
| LIN        | 支持 | 支持 | 支持 | 支持  | 支持  | 支持  | 支持  |

# 2.17 串行外设接口(SPI)

支持3个SPI接口,可作为I2S接口复用,SPI与I2S共享资源。

SPI允许芯片与外部设备以半/全双工、同步、串行方式通信。此接口可以被配置成主模式,并为外部从设备提供通信时钟(SCK)。接口还能以多主配置方式工作。它可用于多种用途,包括使用一条双向数据线的双线单工同步传输,还可使用CRC校验的可靠通信。

SPI接口的主要功能如下:

- 3线全双工同步传输
- 带或不带第三根双向数据线的双线单工同步传输
- 8或16位传输帧格式选择
- 主或从操作
- 支持多主模式
- 8个主模式波特率预分频系数(最大为f<sub>PCLK</sub>/2)
- 从模式频率 (最大为f<sub>PCLK</sub>/2)
- 主模式和从模式的快速通信
- 主模式和从模式下均可以由软件或硬件进行NSS管理: 主/从操作模式的动态改变
- 可编程的时钟极性和相位
- 可编程的数据顺序, MSB在前或LSB在前
- 可触发中断的专用发送和接收标志
- SPI总线忙状态标志
- 支持可靠通信的硬件CRC
  - ◆ 在发送模式下, CRC 值可以被作为最后一个字节发送
  - ◆ 在全双工模式中对接收到的最后一个字节自动进行 CRC 校验
- 可触发中断的主模式故障、过载以及CRC错误标志
- 支持DMA功能的单字节发送和接收缓冲器:产生发送和接受请求
- 接口最高速度: SPI1接口36Mbps, SPI2/SPI3接口18Mbps

# 2.18 串行音频接口(I<sup>2</sup>S)

I<sup>2</sup>S是一种3引脚的同步串行接口通讯协议,芯片集成2个标准的I<sup>2</sup>S接口(与SPI2和SPI3复用)可以工作于主或



从模式,这2个接口可以配置为16位、24位或32位传输,亦可配置为输入或输出通道,支持音频采样频率从8kHz到96kHz。它支持四种音频标准,包括飞利浦I<sup>2</sup>S标准,MSB和LSB对齐标准,以及PCM标准。

它在半双工通讯中,可以工作在主和从2种模式下。当它作为主设备时,通过接口向外部的从设备提供时钟信号。

#### I2S接口的主要功能如下;

- 单工通信(仅发送或接收)
- 主或者从操作
- 8位线性可编程预分频器,获得精确的音频采样频率(8KHz到96kHz)
- 数据格式可以是16位,24位或者32位
- 音频信道固定数据包帧为16位(16位数据帧)或32位(16、24或32位数据帧)
- 可编程的时钟极性(稳定态)
- 从发送模式下的下溢标志位和主/从接收模式下的溢出标志位
- 16位数据寄存器用来发送和接收,在通道两端各有一个寄存器
- 支持的I2S协议:
  - ◆ I2S 飞利浦标
  - ◆ MSB 对齐标准(左对齐)
  - ◆ LSB 对齐标准(右对齐)
  - ◆ PCM 标准(16 位通道帧上带长或短帧同步或者 16 位数据帧扩展为 32 位通道帧)
- 数据方向总是MSB在先
- 发送和接收都具有DMA能力
- 主时钟可以输出到外部音频设备,比率固定为256xFs(Fs为音频采样频率)

# 2.19 安全数字输入输出接口(SDIO)

安全数字输入输出接口(Secure Digital Input and Output),简称SDIO接口,SDIO主机接口为AHB外设总线和多媒体卡(MMC)、SD存储卡、SDIO卡设备间提供了操作接口。

#### SDIO主机功能如下:

- 支持《MultiMediaCard System Specification Version 4.2》,支持1位(默认)、4位和8位数据总线,向前兼容较早MMC协议
- 支持《SD Memory Card Specifications Version 2.0》
- 支持《SD I/O Card Specification Version 2.0》,支持1位(默认)和4位数据格式
- SDIO时钟速率可达48MHz
- SDIO不支持SPI通讯方式

# 2.20 控制器区域网络(CAN)

支持2路CAN总线接口,兼容规范2.0A和2.0B(主动),位速率高达1Mbps。它可以接收和发送11位标识符的标准帧,也可以接收和发送29位标识符的扩展帧。



#### 主要特点:

- 支持CAN协议2.0A和2.0B主动模式
- 波特率最高可达1Mbps
- 支持时间触发通信功能
- 发送
  - ◆ 3个发送邮箱
  - ◆ 发送报文的优先级特性可软件配置
  - ◆ 记录发送 SOF 时刻的时间戳

#### ■ 接收

- ◆ 3级深度的2个接收FIFO
- ◆ 可变的过滤器组
- ◆ 有14个过滤器组
- ◆ 标识符列表
- ◆ FIFO 溢出处理方式可配置
- ◆ 记录接收 SOF 时刻的时间戳
- 时间触发通信模式
  - ◆ 禁止自动重传模式
  - ◆ 16位自由运行定时器
  - ◆ 可在最后2个数据字节发送时间戳
- 管理
  - ◆ 中断可屏蔽
  - ◆ 邮箱占用单独1块地址空间,便于提高软件效率

# 2.21 通用串行总线(USB)

N32WB452系列产品内嵌一个兼容全速USB的设备控制器,遵循全速USB设备(12Mbit/秒)标准,端点可由软件配置,具有待机/唤醒功能。USB专用的48MHz时钟由内部主PLL直接产生(为保证通信稳定性,时钟源必须是HSE外部高速晶体)。

USB设备控制器主要特性如下:

- 符合 USB2.0 全速设备的技术规范
- 可配置1到8个USB端点
- CRC(循环冗余校验)生成/校验,反向不归零(NRZI)编码/解码和位填充
- 支持批量/同步端点的双缓冲区机制
- 支持 USB 挂起/恢复操作
- 帧锁定时钟脉冲生成



■ USB DP 信号线上支持内部 1.5K 上拉电阻(固件控制),精度±5%

### 2.22 通用输入输出接口(GPIO)

支持最多65个GPIO,共被分为5组(GPIOA/GPIOB/GPIOC/GPIOD/GPIOE),其中PA/PB/PC每组16个端口,PD组共8个,PE组共9个。每个GPIO引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口,多数GPIO引脚都与数字或模拟的复用外设共用,有的I/O引脚还与时钟引脚复用;除了具有模拟输入功能的端口,所有的GPIO引脚都有大电流通过能力。

#### GPIO主要特性描述如下:

- GPIO 端口的每个位可以由软件分别配置成多种模式:
  - ◆ 输入浮空
  - ◆ 输入上拉(弱上拉)
  - ◆ 输入下拉 (弱下拉)
  - ◆ 模拟输入
  - ◆ 开漏输出
  - ◆ 推挽式输出
  - ◆ 推挽式复用功能
  - ◆ 开漏复用功能
- 通用 I/O(GPIO)
  - ◆ 复位期间和刚复位后,复用功能未开启,除 BOOT0 和 BOOT1 外(BOOT0 和 BOOT1 为输入下 拉),I/O 端口被配置成模拟输入模式
  - ◆ 复位期间和刚复位后,复用功能未开启,I/O 端口被配置成模拟输入模式,复位后,JTAG 引脚 被置于输入上拉或下拉模式
    - ✓ JTDI 置于上拉模式
    - ✓ JTCK 置于下拉模式
    - ✓ JTMS 置于上拉模式
    - ✓ JNTRST 置于上拉模式
  - ◆ 当作为输出配置时,写到输出数据寄存器上的值输出到相应的 I/O 引脚。可以以推挽模式或开漏模式输出
- 单独的位设置或位清除功能
- 外部中断/唤醒: 所有端口都有外部中断能力, 为了使用外部中断线, 端口必须配置成输入模式
- 复用功能: (使用默认复用功能前必须对端口位配置寄存器编程)
- GPIO 锁定机制,锁定机制允许冻结 IO 配置。当在一个端口位上执行了锁定(LOCK)程序,在下一次复位之前,将不能再更改端口位的配置



### 2.23 模拟/数字转换器(ADC)

支持最多2个12位5Msps采样率的逐次比较型ADC,支持单端输入和差分输入,可测量16个外部和3个内部信号源,其中ADC1支持9个外部通道,ADC2支持12个外部通道,部分引脚共享两个不同的ADC通道。

ADC主要特性描述如下:

- 支持12位、10位、8位、6位分辨率可配置
  - ◆ 12bit 分辨率下最高采样速率 5.14MSPS
  - ◆ 10bit 分辨率下最高采样速率 6MSPS
  - ◆ 8bit 分辨率下最高采样速率 7.2MSPS
  - ◆ 6bit 分辨率下最高采样速率 9MSPS
- ADC 时钟源分为工作时钟源、采样时钟源和计时时钟源
  - ◆ 仅可配置 AHB\_CLK 作为工作时钟源,最高可到 144MHz
  - ◆ 可配置 PLL 作为采样时钟源,最高可到 72MHz,支持分频 1,2,4,6,8,10,12,16,32,32,64,128,256
  - ◆ 可配置 AHB CLK 作为采样时钟源,最高可到 72MHz,支持分频 1,2,4,6,8,10,12,16,32
  - ◆ 计时时钟用于内部计时功能,频率必须配置成 1MHz
- 支持定时器触发 ADC 采样
- 转换结束、注入转换结束和发生模拟看门狗事件时产生中断
- 单次和连续转换模式
- 从通道 0 到通道 N 的自动扫描模式
- 支持自校准
- 带内嵌数据一致性的数据对齐
- 采样间隔可以按通道分别编程
- 规则转换和注入转换均有外部触发选项
- 间断模式
- 双重模式,ADC1 和 ADC2 组合
- ADC 供电要求: 1.8V 到 3.6V
- ADC 输入范围: VREF- < VIN < VREF+
- ADC 可以使用 DMA 操作,规则通道转换期间有 DMA 请求产生
- 模拟看门狗功能,可以非常精准地监视一路、多路或所有选中的通道,当被监视的信号超出预置的阀 值时,将产生中断

# 2.24 数字/模拟转换器(DAC)

支持2个数模转换器(DAC), DAC是12位数字输入、电压输出的数字/模拟转换器。DAC模块有2个输出通道,每个通道都有单独的转换器,2个DAC可以同时使用互不影响。DAC可以通过引脚输入参考电压VREF+以获得更精确的转换结果。



这个双数字接口支持下述功能:

- 两个 DAC 转换器: 各有一个输出通道
- 可配置的 8 位或 12 位输出
- 12 位模式下可配置的左右数据对齐
- 同步更新功能
- 产生噪声波
- 产生三角波
- 双 DAC 通道独立或同步转换
- 每个通道都可使用 DMA 功能
- 外部触发进行转换
- 输入参考电压 VREF+

# 2.25 温度传感器(TS)

温度传感器产生一个随温度线性变化的电压,转换范围在1.8V < V<sub>DDA</sub> < 3.6V之间。温度传感器在内部被连接到ADC1 IN16的输入通道上,用于将传感器的输出转换到数字数值。

### 2.26 数字视频接口(DVP)

DVP是一个灵活、强大的CMOS光学传感器接口,可以非常方便地实现客户的图像采集需求,并且整个采集过程无需CPU干预。

DVP接口模块功能特性如下:

- 纯硬件采集方式
- 支持时钟输出(典型值 24MHz), 给外部 CMOS 芯片提供时钟
- 具有 8 x 32bit 大小的 FIFO, FIFO 一次可传输 4 个字节
- 支持 DMA,采集图像全程无需 CPU 干预
- 采集图像大小必须为4的整数倍
- 支持对采集的图像取反操作

# 2.27 循环冗余校验计算单元(CRC)

集成CRC32和CRC16功能,循环冗余校验(CRC)计算单元是根据固定的生成多项式得到任一CRC计算结果。在众多的应用中,基于CRC的技术被用于验证数据传输或存储的一致性。在EN/IEC 60335-1标准的范围内,它提供了一种检测闪存存储器错误的手段,CRC计算单元可以用于实时地计算软件的签名,并与在链接和生成该软件时产生的签名对比。

CRC的主要特性如下:

- CRC16: 支持多项式 X<sup>16</sup>+X<sup>15</sup>+X<sup>2</sup>+X<sup>0</sup>
- CRC32: 支持多项式 X<sup>32</sup> + X<sup>26</sup> + X<sup>23</sup> + X<sup>22</sup> + X<sup>16</sup> + X<sup>12</sup> + X<sup>11</sup> + X<sup>10</sup> + X<sup>8</sup> + X<sup>7</sup> + X<sup>5</sup> + X<sup>4</sup> + X<sup>2</sup> + X + 1
- CRC16 计算时间: 1 个 AHB 时钟周期(HCLK)



- CRC32 计算时间: 1 个 AHB 时钟周期(HCLK)
- 循环冗余计算初始值可配置
- 支持 DMA 方式

### 2.28 算法硬件加速引擎(SAC)

内嵌算法硬件加速引擎,支持多种国际算法及国家密码对称密码算法和杂凑密码算法加速,相较于纯软件算法而言能极大的提高加解密速度。

硬件支持的算法如下:

- 支持 DES 对称算法
  - ◆ 支持 DES 和 3DES 加解密运算
  - ◆ TDES 支持 2KEY 和 3KEY 模式
  - ◆ 支持 CBC 和 ECB 模式
- 支持 AES 对称算法
  - ◆ 支持 128bit/192bit/ 256bit 密钥长度
  - ◆ 支持 CBC、ECB、CTR 模式
- 支持 SHA 杂凑算法
  - ◆ 支持 SHA1/SHA244/SHA256
- 支持 MD5 摘要算法
- 支持对称式国密 SM1、SM4、 SM7 算法以及 SM3 杂凑算法

# 2.29 唯一设备序列号(UID)

N32WB452系列产品内置两个不同长度的唯一设备序列号,分别为96位的UID(Unique device ID)和128位的UCID(Unique Customer ID),这两个设备序列号存放在闪存存储器的系统配置块中,它们所包含的信息在出厂时编写,并保证对N32WB452系列任意一个微控制器在任何情况下都是唯一的,用户应用程序或外部设备可以通过CPU或JTAG/SWD接口读取,不可被修改。

UID为96位,通常用来做为序列号或作为密码,在编写闪存时,将此唯一标识与软件加解密算法相结合,进一步提高代码在闪存存储器内的安全性。

UCID为128位,遵守国民技术芯片序列号定义,它包含芯片生产及版本相关信息。

# 2.30 串行单线JTAG调试口(SWJ-DP)

内嵌ARM的SWJ-DP接口,结合了JTAG和串行单线调试的接口,可以实现串行单线调试接口或JTAG接口的连接。JTAG的TMS和TCK信号分别与SWDIO和SWCLK共用引脚,JTMS脚上的一个特殊的信号序列用于在JTAG-DP和SW-DP间切换。



# 3 引脚定义和描述

### 3.1 封装示意图

### 3.1.1 QFN48

图 3-1 N32WB452系列QFN48引脚分布





#### 图 3-2 N32WB452系列LQFP64引脚分布





#### 图 3-3 N32WB452系列LQFP88引脚分布





# 3.2 引脚复用定义

表 3-1 管脚定义

| 封装    |       | <u> </u> |                                 | _   | 極      |                                |                             | 可选的复用功能                                                                      |                                 |  |
|-------|-------|----------|---------------------------------|-----|--------|--------------------------------|-----------------------------|------------------------------------------------------------------------------|---------------------------------|--|
| QFN48 | QFN64 | QFN88    | 管脚名称                            | 类型⑴ | I/O 结构 | Fail-safe <sup>(8)</sup><br>支持 | 主功能 <sup>(3)</sup><br>(复位后) | 默认                                                                           | 重定义                             |  |
| -     | -     | 1        | PE2                             | I/O | FT     | Yes                            | PE2                         | UART6_TX                                                                     | DVP_HSYNC                       |  |
| -     | -     | 2        | PE3                             | I/O | FT     | Yes                            | PE3                         | UART6_RX                                                                     | DVP_VSYNC                       |  |
| 1     | 1     | 3        | VBAT                            | S   | -      | -                              | VBAT                        | -                                                                            | -                               |  |
| 2     | 2     | 4        | PC13-TAMPER- RTC <sup>(4)</sup> | I/O | TC     | Yes                            | PC13 <sup>(5)</sup>         | TAMPER-RTC                                                                   | -                               |  |
| 3     | 3     | 5        | PC14- OSC32_IN <sup>(4)</sup>   | I/O | TC     | Yes                            | PC14 <sup>(5)</sup>         | OSC32_IN                                                                     | -                               |  |
| 4     | 4     | 6        | PC15- OSC32_OUT <sup>(4)</sup>  | I/O | TC     | Yes                            | PC15 <sup>(5)</sup>         | OSC32_OUT                                                                    | -                               |  |
| 5     | 5     | 7        | OSC_IN <sup>(7)</sup>           | I   | TC     | Yes                            | OSC_IN                      | -                                                                            | -                               |  |
| 6     | 6     | 8        | OSC_OUT <sup>(7)</sup>          | О   | TC     | No                             | OSC_OUT                     | -                                                                            |                                 |  |
| 7     | 7     | 9        | NRST                            | I/O | -      | -                              | NRST                        | -                                                                            | -                               |  |
| -     | 8     | 10       | PC0                             | I/O | ТТа    | No                             | PC0                         | ADC12_IN6 <sup>(10)</sup><br>I2C3_SCL                                        | DVP_D2<br>UART6_TX              |  |
| -     | 1     | 11       | PC1                             | I/O | ТТа    | No                             | PC1                         | ADC12_IN7 <sup>(10)</sup><br>I2C3_SDA                                        | UART6_RX                        |  |
| -     | -     | 12       | PC2                             | I/O | TTa    | No                             | PC2                         | ADC12_IN8 <sup>(10)</sup>                                                    | UART7_TX<br>SPI3_NSS<br>I2S3_WS |  |
| -     | -     | 13       | PC3                             | I/O | TTa    | No                             | PC3                         | ADC12_IN9 <sup>(10)</sup>                                                    | UART7_RX<br>SPI3_SCK<br>I2S3_CK |  |
| 8     | 9     | 14       | VSSA                            | S   | -      | -                              | VSSA                        | -                                                                            | -                               |  |
| 9     | 10    | 15       | VDDA                            | S   | -      | -                              | VDDA                        | -                                                                            | -                               |  |
| 10    | 11    | 16       | PA0-WKUP                        | I/O | ТТа    | No                             | PA0                         | WKUP USART2_CTS ADC1_IN1 <sup>(9)</sup> TIM2_CH1_ETR TIM5_CH1 TIM8_ETR       | SPI3_MISO                       |  |
| -     | 12    | 17       | PA1                             | I/O | ТТа    | No                             | PA1                         | USART2_RTS ADC1_IN2 <sup>(9)</sup> TIM5_CH2 TIM2_CH2 DVP_HSYNC               | SPI3_MOSI<br>I2S3_SD            |  |
| -     | 13    | 18       | PA2                             | I/O | ТТа    | No                             | PA2                         | USART2_TX<br>TIM5_CH3<br>ADC12_IN11 <sup>(10)</sup><br>TIM2_CH3<br>DVP_VSYNC | -                               |  |
| -     | 14    | 19       | PA3                             | I/O | ТТа    | No                             | PA3                         | USART2_RX<br>TIM5_CH4<br>ADC1_IN4 <sup>(9)</sup><br>TIM2_CH4<br>DVP_PCLK     | -                               |  |
| -     | 15    | 20       | VSS_4                           | S   | -      | -                              | VSS_4                       | -                                                                            | -                               |  |



| 封装    |       | 天技不   |       |     | 極      |                                |                             | 可选的复用功能 <sup>⑥</sup>                                                    |                                                 |  |
|-------|-------|-------|-------|-----|--------|--------------------------------|-----------------------------|-------------------------------------------------------------------------|-------------------------------------------------|--|
| QFN48 | QFN64 | QFN88 | 管脚名称  | 类型⑴ | I/O 结构 | Fail-safe <sup>(8)</sup><br>支持 | 主功能 <sup>(3)</sup><br>(复位后) | 默认                                                                      | 重定义                                             |  |
| -     | 16    | 21    | VDD_4 | S   | -      | -                              | VDD_4                       | -                                                                       | -                                               |  |
| 11    | 17    | 22    | PA4   | I/O | ТТа    | No                             | PA4                         | SPI1_NSS<br>USART2_CK<br>DAC_OUT1<br>ADC2_IN1 <sup>(9)</sup><br>DVP_D0  | I2C2_SCL                                        |  |
| 12    | 18    | 23    | PA5   | I/O | ТТа    | No                             | PA5                         | SPI1_SCK<br>DAC_OUT2<br>ADC2_IN2 <sup>(9)</sup><br>DVP_D1               | I2C2_SDA                                        |  |
| 13    | 19    | 24    | PA6   | I/O | ТТа    | No                             | PA6                         | SPI1_MISO<br>TIM8_BKIN<br>ADC1_IN3 <sup>(9)</sup><br>TIM3_CH1<br>DVP_D2 | TIM1_BKIN                                       |  |
| 14    | 20    | 25    | PA7   | I/O | ТТа    | No                             | PA7                         | SPI1_MOSI<br>TIM8_CH1N<br>ADC2_IN4 <sup>(9)</sup><br>TIM3_CH2<br>DVP_D3 | TIM1_CH1N                                       |  |
| -     | -     | 26    | PC4   | I/O | ТТа    | No                             | PC4                         | ADC2_IN5 <sup>(9)</sup><br>DVP_D4<br>UART7_TX                           | I2C3_SCL                                        |  |
| -     | -     | 27    | PC5   | I/O | ТТа    | No                             | PC5                         | ADC2_IN12 <sup>(10)</sup><br>DVP_D5<br>UART7_RX                         | I2C3_SDA                                        |  |
| -     | 21    | 28    | PB0   | I/O | TC     | No                             | PB0                         | TIM3_CH3<br>TIM8_CH2N<br>DVP_D6                                         | TIM1_CH2N<br>UART6_TX                           |  |
| -     | 22    | 29    | PB1   | I/O | ТТа    | No                             | PB1                         | ADC2_IN3 <sup>(9)</sup> TIM3_CH4 TIM8_CH3N DVP_D7                       | TIM1_CH3N<br>UART6_RX                           |  |
| 15    | 23    | 30    | PB2   | I/O | TTa    | No                             | PB2/BOOT1                   | ADC2_IN13 <sup>(10)</sup>                                               | DVP_D3<br>UART4_TX<br>SPI1_NSS                  |  |
| -     | -     | 31    | PE7   | I/O | TC     | No                             | PE7                         | -                                                                       | TIM1_ETR<br>UART4_RX<br>SPI1_SCK                |  |
| -     | -     | 32    | PE8   | I/O | ТС     | No                             | PE8                         | -                                                                       | TIM1_CH1N<br>UART5_TX<br>SDIO_DAT0<br>SPI1_MISO |  |
| -     | -     | 33    | PE9   | I/O | ТС     | No                             | PE9                         | -                                                                       | TIM1_CH1<br>UART5_RX<br>SDIO_DAT1<br>SPI1_MOSI  |  |
| -     | -     | 34    | PE10  | I/O | ТС     | No                             | PE10                        | -                                                                       | TIM1_CH2N<br>SDIO_DAT2<br>SPI2_NSS<br>I2S2_WS   |  |
| -     | 1     | 35    | PE11  | I/O | TC     | No                             | PE11                        | -                                                                       | TIM1_CH2<br>SDIO_DAT3<br>SPI2_SCK<br>I2S2_CK    |  |
| -     | -     | 36    | PE12  | I/O | TC     | No                             | PE12                        | -                                                                       | TIM1_CH3N<br>SDIO_CLK<br>SPI2_MISO              |  |
| -     | -     | 37    | PE13  | I/O | TC     | No                             | PE13                        | -                                                                       | TIM1_CH3<br>SPI2_MOSI                           |  |



|          | 封装    | ₹fX/ľ |             |       | শ্ব্য  |                          |            | 可选的复用功能 <sup>⑥</sup>                                                  |                                               |  |
|----------|-------|-------|-------------|-------|--------|--------------------------|------------|-----------------------------------------------------------------------|-----------------------------------------------|--|
| <u>∞</u> |       |       | -<br>  管脚名称 | 类型(1) | 5 報    | Fail-safe <sup>(8)</sup> | 主功能(3)     | 7,2010                                                                | /11-50 RE                                     |  |
| QFN48    | QFN64 | QFN88 | 官牌石桥        | *     | 1/0 结构 | 支持                       | (复位后)      | 默认                                                                    | 重定义                                           |  |
|          |       |       |             |       |        |                          |            |                                                                       | I2S2_SD<br>SDIO_CMD                           |  |
| 16       | 24    | 38    | PB10        | I/O   | TC     | Yes                      | PB10       | I2C2_SCL<br>USART3_TX                                                 | TIM2_CH3<br>DVP_D4                            |  |
| 17       | 25    | 39    | PB11        | I/O   | TC     | No                       | PB11       | I2C2_SDA<br>USART3_RX                                                 | TIM2_CH4<br>DVP_D5                            |  |
| 18       | 26    | 40    | VSS_1       | S     | -      | -                        | VSS_1      | -                                                                     | -                                             |  |
| 19       | 27    | 41    | VDD_1       | S     | -      | -                        | VDD_1      | -                                                                     | -                                             |  |
| 20       | 28    | 42    | PB12        | I/O   | TC     | No                       | PB12       | SPI2_NSS<br>I2S2_WS<br>I2C2_SMBA<br>USART3_CK<br>TIM1_BKIN<br>CAN2_RX | -                                             |  |
| 21       | 29    | -     | BLE_SWITCH  | -     | -      | -                        | BLE_SWITCH | BLE_SWITCH                                                            | -                                             |  |
| 22       | 30    | 43    | PB13        | I/O   | ТС     | No                       | PB13       | SPI2_SCK I2S2_CK USART3_CTS TIM1_CH1N CAN2_TX                         | UART5_TX                                      |  |
| 23       | 31    | 44    | PB14        | I/O   | TC     | No                       | PB14       | SPI2_MISO<br>TIM1_CH2N<br>USART3_RTS                                  | UART5_RX                                      |  |
| 24       | 32    | 45    | PB15        | I/O   | TC     | No                       | PB15       | SPI2_MOSI<br>I2S2_SD<br>TIM1_CH3N                                     | -                                             |  |
| -        | ı     | 46    | PD8         | I/O   | TC     | No                       | PD8        | -                                                                     | USART3_TX<br>SPI3_NSS<br>I2S3_WS<br>CAN1_RX   |  |
| -        | -     | 47    | PD9         | I/O   | ТС     | No                       | PD9        | -                                                                     | USART3_RX<br>SPI3_SCK<br>I2S3_CK<br>CAN1_TX   |  |
| -        | -     | 48    | BLE_SWITCH  | ı     | -      | -                        | BLE_SWITCH | BLE_SWITCH                                                            | -                                             |  |
| -        | -     | 49    | PD10        | I/O   | TC     | No                       | PD10       |                                                                       | USART3_CK<br>CAN2_RX                          |  |
| 25       | 33    | 50    | BLE_VDCDC   | 1     | -      | -                        | BLE_DCDC   | BLE_DCDC                                                              | -                                             |  |
| 26       | 34    | 51    | BLE_VCC     | -     | -      | -                        | BLE_VCC    | BLE_VCC                                                               | -                                             |  |
| -        | -     | 52    | PD14        | I/O   | ТС     | No                       | PD14       | -                                                                     | TIM4_CH3<br>I2C4_SCL<br>TIM8_CH1              |  |
| -        | -     | 53    | PD15        | I/O   | FT     | Yes                      | PD15       | -                                                                     | TIM4_CH4<br>I2C4_SDA<br>TIM8_CH2              |  |
| -        | 35    | 54    | PC6         | I/O   | ТС     | Yes                      | PC6        | I2S2_MCK<br>TIM8_CH1<br>SDIO_DAT6<br>I2C4_SCL                         | TIM3_CH1<br>SPI2_NSS<br>I2S2_WS<br>USART2_CTS |  |
| -        | 36    | 55    | PC7         | I/O   | ТС     | Yes                      | PC7        | I2S3_MCK<br>TIM8_CH2<br>SDIO_DAT7<br>I2C4_SDA                         | TIM3_CH2<br>SPI2_SCK<br>I2S2_CK<br>USART2_RTS |  |



| 封装    |       |       | ,            |                          | 極      |                                |                             | 可选的复用功能(6)                                 |                                                 |
|-------|-------|-------|--------------|--------------------------|--------|--------------------------------|-----------------------------|--------------------------------------------|-------------------------------------------------|
| QFN48 | QFN64 | QFN88 | 管脚名称         | <b>类型</b> <sup>(1)</sup> | 1/0 结构 | Fail-safe <sup>(8)</sup><br>支持 | 主功能 <sup>(3)</sup><br>(复位后) | 默认                                         | 重定义                                             |
| -     | 37    | 56    | PC8          | I/O                      | TC     | Yes                            | PC8                         | TIM8_CH3<br>SDIO_DAT0                      | TIM3_CH3<br>SPI2_MISO<br>USART2_TX              |
| -     | 38    | 57    | PC9          | I/O                      | TC     | Yes                            | PC9                         | TIM8_CH4<br>SDIO_DAT1                      | TIM3_CH4<br>SPI2_MOSI<br>I2S2_SD<br>USART2_RX   |
| 27    | 39    | 58    | PA8          | I/O                      | FT     | Yes                            | PA8                         | USART1_CK<br>TIM1_CH1<br>MCO               | -                                               |
| 28    | 40    | 59    | PA9          | I/O                      | FT     | Yes                            | PA9                         | USART1_TX<br>TIM1_CH2                      | I2C4_SCL                                        |
| -     | 41    | 60    | BLE_RFIOP    | -                        | -      | -                              | BLE_RFIOP                   | BLE_RFIOP                                  | -                                               |
| -     | 42    | 61    | BLE_VDCDCCRF | -                        | -      | -                              | BLE_VDCDCCRF                | BLE_VDCDCCRF                               | -                                               |
| -     | 43    | 62    | PA10         | I/O                      | FT     | Yes                            | PA10                        | USART1_RX<br>TIM1_CH3                      | I2C4_SDA                                        |
| 29    | 44    | 63    | PA11         | I/O                      | FT     | Yes                            | PA11                        | USART1_CTS<br>USBDM<br>CAN1_RX<br>TIM1_CH4 | -                                               |
| 30    | 45    | 64    | PA12         | I/O                      | FT     | Yes                            | PA12                        | USART1_RTS<br>USBDP<br>CAN1_TX<br>TIM1_ETR | -                                               |
| 31    | 1     | -     | BLE_RFIOP    | -                        | -      | -                              | BLE_RFIOP                   | BLE_RFIOP                                  | -                                               |
| 32    | 1     | -     | BLE_VDCDCCRF | -                        | -      | -                              | BLE_VDCDCCRF                | BLE_VDCDCCRF                               | -                                               |
| 33    | 46    | 65    | PA13         | I/O                      | FT     | Yes                            | JTMS- SWDIO                 | -                                          | PA13<br>UART4_TX                                |
| 34    | 47    | 66    | VSS_2        | S                        | -      | -                              | VSS_2                       | -                                          | -                                               |
| 35    | 48    | 67    | VDD_2        | S                        | -      | -                              | VDD_2                       | -                                          | -                                               |
| 36    | 49    | 68    | PA14         | I/O                      | FT     | Yes                            | JTCK- SWCLK                 | -                                          | PA14<br>UART4_RX                                |
| 37    | 50    | 69    | PA15         | I/O                      | FT     | Yes                            | JTDI                        | SPI3_NSS<br>I2S3_WS                        | TIM2_CH1_ETR PA15 SPI1_NSS USART2_CTS TIM8_CH1N |
| -     | 51    | 70    | PC10         | I/O                      | TC     | Yes                            | PC10                        | UART4_TX<br>SDIO_DAT2                      | USART3_TX<br>SPI3_SCK<br>I2S3_CK                |
| -     | ı     | 71    | PC11         | I/O                      | TC     | Yes                            | PC11                        | UART4_RX<br>SDIO_DAT3                      | USART3_RX<br>SPI3_MISO                          |
| -     | 52    | 72    | PC12         | I/O                      | ТС     | Yes                            | PC12                        | UART5_TX<br>SDIO_CLK                       | USART3_CK<br>SPI3_MOSI<br>I2S3_SD<br>TIM8_CH2N  |
| -     | -     | 73    | PD0          | I/O                      | FT     | Yes                            | PD0                         | -                                          | CAN1_RX<br>UART4_TX                             |
| -     | -     | 74    | PD1          | I/O                      | FT     | Yes                            | PD1 <sup>(7)</sup>          | -                                          | CAN1_TX<br>UART4_RX                             |



|       | 封装    |       |            | <u> </u>                 | 5. 结构 |                                | 可选的复用功                      | 用功能 <sup>⑥</sup>                  |                                                            |
|-------|-------|-------|------------|--------------------------|-------|--------------------------------|-----------------------------|-----------------------------------|------------------------------------------------------------|
| QFN48 | QFN64 | QFN88 | 管脚名称       | <b>类型</b> <sup>(1)</sup> | 1/0 结 | Fail-safe <sup>(8)</sup><br>支持 | 主功能 <sup>(3)</sup><br>(复位后) | 默认                                | 重定义                                                        |
| -     | 53    | 75    | PD2        | I/O                      | TC    | Yes                            | PD2 <sup>(7)</sup>          | TIM3_ETR<br>UART5_RX<br>SDIO_CMD  | SPI3_NSS<br>I2S3_WS<br>TIM8_CH3N                           |
| -     | 54    | 76    | BLE_DVDD   | -                        | -     | -                              | BLE_DVDD                    | BLE_DVDD                          | -                                                          |
| -     | 55    | 77    | BLE_XO32MM | -                        | -     | -                              | BLE_XO32MM                  | BLE_XO32MM                        | -                                                          |
| -     | 56    | 78    | BLE_XO32MP | -                        | -     | -                              | BLE_XO32MP                  | BLE_XO32MP                        | -                                                          |
| 38    | 57    | 79    | PB3        | I/O                      | FT    | Yes                            | JTDO                        | SPI3_SCK<br>I2S3_CK               | PB3 TRACESWO TIM2_CH2 SPI1_SCK USART2_RTS TIM8_BKIN        |
| 39    | 58    | 80    | PB4        | I/O                      | FT    | Yes                            | NJTRST                      | SPI3_MISO                         | PB4<br>TIM3_CH1<br>SPI1_MISO<br>USART2_TX<br>TIM8_ETR      |
| 40    | 59    | 81    | PB5        | I/O                      | FT    | Yes                            | PB5                         | I2C1_SMBA<br>SPI3_MOSI<br>I2S3_SD | TIM3_CH2<br>SPI1_MOSI<br>CAN2_RX<br>USART2_RX<br>TIM1_BKIN |
| 41    | 1     | 1     | BLE_DVDD   | -                        | -     | -                              | BLE_DVDD                    | BLE_DVDD                          | -                                                          |
| 42    | -     | -     | BLE_XO32MM | -                        | -     | -                              | BLE_XO32MM                  | BLE_XO32MM                        | -                                                          |
| 43    | -     | -     | BLE_XO32MP | -                        | -     | -                              | BLE_XO32MP                  | BLE_XO32MP                        | -                                                          |
| 44    | 60    | 82    | PB6        | I/O                      | TC    | Yes                            | PB6                         | I2C1_SCL<br>TIM4_CH1              | USART1_TX<br>CAN2_TX                                       |
| 45    | 61    | 83    | PB7        | I/O                      | TC    | Yes                            | PB7                         | I2C1_SDA<br>TIM4_CH2              | USART1_RX                                                  |
| 46    | 62    | 84    | воот0      | I                        | -     | -                              | BOOT0                       | -                                 | -                                                          |
| -     | -     | 85    | PB8        | I/O                      | TC    | Yes                            | PB8                         | TIM4_CH3<br>SDIO_DAT4             | I2C1_SCL<br>CAN1_RX<br>UART5_TX                            |
| -     | -     | 86    | PB9        | I/O                      | TC    | Yes                            | PB9                         | TIM4_CH4<br>SDIO_DAT5             | I2C1_SDA<br>CAN1_TX<br>UART5_RX                            |
| 47    | 63    | 87    | VSS_3      | S                        | -     | -                              | VSS_3                       | -                                 | -                                                          |
| 48    | 64    | 88    | VDD_3      | S                        | -     | -                              | VDD_3                       | -                                 | -                                                          |

- 2. FT: 容忍5V; TTa: 容忍3.3V, 支持模拟外设; TC: 普通3.3V I/O。
- 3. 有些功能仅在部分型号芯片中支持。
- 4. PC13, PC14和PC15引脚通过电源开关进行供电,而这个电源开关只能够吸收有限的电流(3mA)。因此这三个引脚作为输出引脚时有以下限制:作为输出脚时只能工作在2MHz模式下,最大驱动负载为30pF,三个引脚同时输出总电流不能超过3mA。
- 5. 这些引脚在备份区域第一次上电时处于主功能状态下,之后即使复位,这些引脚的状态由备份区域寄存器控制;这些寄存器不会被主复位系统所复位)。关于如何控制这些IO口的具体信息,请参考N32WB452用户参考手册的电池备份区域和BKP寄存器的相关章节。



- 6. 部分复用功能能够由软件配置到其他引脚上(如果相应的封装型号有此引脚),详细信息请参考N32WB452用户参考手册的复用功能I/O章节和调试设置章节。
- 7. QFN48和QFN64封装的引脚5和引脚6在芯片复位后默认配置为OSC\_IN和OSC\_OUT功能脚。软件可以重新设置这两个引脚为PD0和PD1 功能,当用做PD0和PD1时,这两个引脚只能用作普通IO功能。但对于QFN88封装,由于PD0和PD1为固有的功能引脚,因此没有必要 再由软件进行重映像设置。更多详细信息请参考N32WB452用户参考手册的复用功能I/O章节和调试设置章节。
- 8. Fail-safe指当芯片没有电源输入时,在IO上加输入高电平,不会存在输入高电平灌入芯片,从而导致电源上有一定电压,并消耗电流的 现象。
- 9. 对应的ADC通道为快速通道,支持最高采样速率5.14MSPS(12Bit)。
- 10. 对应的ADC通道为慢速通道,支持最高采样速率4.23MSPS(12Bit)。

注:表中的引脚名称标注中出现的ADC12\_INx,表示这个引脚可以是ADC1\_INx或ADC2\_INx。例如:ADC12\_IN9表示这个引脚可以配置为ADC1\_IN9,也可以配置为ADC2\_IN9。

表中的引脚PAO 对应的复用功能中的TIM2\_CHI\_ETR ,表示可以配置该功能为TIM2\_TII 或TIM2\_ETR。同理,PA15对应的重映射复用功能的名称TIM2\_CHI\_ETR,具有相同的意义。

表中FT的端口,需要确保IO电压与电源电压压差小于3.6V。

# 3.3 蓝牙应用参考电路

下图列举了N32WB452系列蓝牙部分工作在DCDC模式和LDO模式时,所需要的主要外围器件及其相关参数。BLE\_RFIOP外接天线,BLE\_VCC外接电源供电,BLE\_VDCDC接外部电感和电容,BLE\_DVDD外接电容,另外还需外加32MHz晶体,对计时精度要求不高的应用可以使用内部32kHz RC Oscillator,节省BOM成本;也可以不使用片内DCDC,直接外部供电。

32MHz 100nF GND BLE\_X032MIM BLE\_X032MP DVDD BLE BLE\_RFIOP . VCC  $BLE_VCC$ 4. 7uF N32WB452X GND BLE\_VDCDCCRF BLE\_VDCDC  $\mathfrak{M}$ BLE\_SWITCH 2. 2uF 2. 2uH GND

图 3-4 DCDC工作模式参考电路图



### 图 3-5 LDO工作模式参考电路





# 4 电气特性

### 4.1 测试条件

除非特别说明,所有电压的都以Vss为基准。

## 4.1.1 最小和最大数值

除非特别说明,在生产线上通过对100%的产品在环境温度 $T_A=25$   $\mathbb{C}$ 和 $T_A=T_A$ max下执行的测试( $T_A$ max与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大值是通过样本测试后,取其平均值再加减三倍的标准分布(平均 $\pm 3\Sigma$ )得到。

### 4.1.2 典型数值

除非特别说明,典型数据是基于TA=25℃和VDD=3.3V。这些数据未经测试,仅用于用户的设计指导。

### 4.1.3 典型曲线

除非特别说明,这些典型曲线未经测试,仅用于用户的设计指导。

### 4.1.4 负载电容

测量引脚参数时的负载条件示于图 4-1中。



图 4-1 引脚的负载条件

# 4.1.5 引脚输入电压

引脚上输入电压的测量方式示于图 4-2中。



### 图 4-2 引脚输入电压





# 4.1.6 供电方案

### 图 4-3 供电方案(非蓝牙部分)



注: 上图中的4.7μF电容必须连接到V<sub>DD3</sub>。



## 4.1.7 电流消耗测量





# 4.2 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表(表 4-1、表 4-2、表 4-3)中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

表 4-1 电压特性

| 符号                    | 描述                            | 最小值                                                      | 最大值                   | 单位  |
|-----------------------|-------------------------------|----------------------------------------------------------|-----------------------|-----|
| $V_{DD}$ - $V_{SS}$   | 外部主供电电压(包含VDDA和VDD)(1)        | -0.3                                                     | 4.0                   |     |
|                       | 在5V容忍的引脚上的输入电压 <sup>(3)</sup> | V <sub>SS</sub> -0.3                                     | 5.5                   | V   |
| $V_{\mathrm{IN}}$     | 在其它引脚上的输入电压(2)                | V <sub>SS</sub> -0.3                                     | V <sub>DD</sub> + 0.3 | •   |
| $ \Delta V_{DDx} $    | 不同供电引脚之间的电压差                  | -                                                        | 50                    | w.V |
| $ V_{SSx}-V_{SS} $    | 不同接地引脚之间的电压差                  | -0.3 4.0<br>Vss-0.3 5.5<br>Vss-0.3 V <sub>DD</sub> + 0.3 | mV                    |     |
| V <sub>ESD(HBM)</sub> | ESD静电放电电压(人体模型)               | 见 4.4.1                                                  | 1节                    |     |

- 1. 所有的电源(VDD, VDDA)和地(Vss, Vssa)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. VIN不应超过其最大值,电流特性参考表 4-2。
- 3. 当5V容忍引脚输入5.5V, VDD不能低于2.25V。

表 4-2 电流特性

| 符号                 | 描述                                                                  | 最大值(1) | 单<br>位 |
|--------------------|---------------------------------------------------------------------|--------|--------|
| $I_{\mathrm{VDD}}$ | 经过V <sub>DD</sub> /V <sub>DDA</sub> 电源线的总电流(供应电流) <sup>(1)(4)</sup> | 100    |        |
| I <sub>VSS</sub>   | 经过Vss地线的总电流(流出电流) (1)(4)                                            | 100    | mA     |
| I <sub>IO</sub>    | 任意I/O和控制引脚上的输出灌电流                                                   | 12     |        |



|                         | 任意I/O和控制引脚上的输出电流 | -12  |
|-------------------------|------------------|------|
| I (2)(3)                | NRST引脚的注入电流      | -5/0 |
| $I_{INJ(PIN)}^{(2)(3)}$ | 其他引脚的注入电流        | +/-5 |

- 1. 所有的电源(VDD, VDDA)和地(VSS, VSSA)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. 当V<sub>IN</sub>>V<sub>DD</sub>时,有一个正向注入电流;当V<sub>IN</sub><V<sub>SS</sub>时,有一个反向注入电流。I<sub>INJ(PIN)</sub>不应超过其最大值,电压特性参考表4-1。
- 3. 反向注入电流会干扰器件的模拟性能。见第4.4.21节。
- 4. 发生最大电流时,允许VDD最大的压降为0.1VDD。

#### 表 4-3 温度特性

| 符号               | 描述     | 数值          | 单位 |
|------------------|--------|-------------|----|
| $T_{STG}$        | 储存温度范围 | -40 ~ + 105 | °C |
| $T_{\mathrm{J}}$ | 最大结温度  | 105         | °C |

# 4.3 蓝牙电气特性

## 4.3.1 蓝牙工作环境

表 4-4 蓝牙工作环境

| 符号       | 描述        | 最小值  | 典型值 | 最大值 | 单位  |
|----------|-----------|------|-----|-----|-----|
| VCC(op)  | 正常工作电源电压  | 1.8  | 3   | 3.6 | V   |
| VCC(sto) | 内部存储器工作电压 | -0.3 | /   | 3.6 | V   |
| 信号幅度     | RF输入信号的幅度 | /    | /   | +10 | dBm |
| 电感       | DCDC外部电感  | 1.5  | 2.2 | 3   | uН  |
| COUT     | DCDC负载电容  | 0.8  | 1   | 5   | uF  |

# 4.3.2 蓝牙 DC 参数

表 4-5 蓝牙DC参数特性

| 参数          | 说明                                                            | 最小值 | 典型值 | 最大值 | 单位 |
|-------------|---------------------------------------------------------------|-----|-----|-----|----|
| I(Rx)       | 广播 Rx 电流, VCC=3.0V, 使用片内 DCDC                                 | -   | 4.4 | -   | mA |
| I(Tx)       | 广播 Tx 电流, VCC=3.0V, 0dB 输出, 使用<br>片内 DCDC                     | -   | 4.6 | -   | mA |
| I(idle)     | Idle 模式电流,XO32M 关闭,射频模块关闭,GPADC 关闭,CPU idle 状态,所有接口standby 状态 | -   | 600 | -   | uA |
| I (Sleep)   | DeepSleep 模式下电流,4KB RAM Retention                             | -   | 1.2 | -   | uA |
| I(Shutdown) | Shut-down 模式下电流                                               | -   | 0.1 | -   | uA |
| I(Reset)    | Reset Pin 复位模式下电流                                             | -   | 0.1 | -   | uA |



## 4.3.3 蓝牙 AC 参数

表 4-6 1-Mbps GFSK (Bluetooth Low Energy) – RX

| 参数              | 说明                                         | 最小值 | 典型值 | 最大值 | 单位  |
|-----------------|--------------------------------------------|-----|-----|-----|-----|
| 接收机灵敏度          | 误码率=1‰                                     | /   | -94 | /   | dBm |
| 接收机饱和能量         | 误码率=1‰                                     | /   | /   | 10  | dBm |
|                 | 信号能量 -67 dBm, 干扰信号在信道                      |     |     |     |     |
| 同频C/I           | 内,误码率=1‰                                   | /   | 8   | /   | dB  |
|                 | 信号能量 -67 dBm,干扰信号在信道                       |     |     |     |     |
| C/I, ±1 MHz     | ±1MHz,误码率=1‰                               | /   | -4  | /   | dB  |
|                 | 信号能量 -67 dBm,干扰信号在信道                       |     |     |     |     |
| C/I, ±2 MHz     | ±2MHz,误码率=1‰                               | /   | -33 | /   | dB  |
|                 | 信号能量 -67 dBm,干扰信号在信道                       |     |     |     |     |
| C/I, ±3 MHz     | ±3MHz,误码率=1‰                               | /   | -44 | /   | dB  |
| C/I, Channel    | 信号能量 -67 dBm, 干扰信号在镜像频                     |     |     |     |     |
| Selectivity     | 率处 ,误码率=1‰                                 | /   | -29 | /   | dB  |
| C/I Image 1-MHz | / / / / / / / / / / / / / / / / / / /      |     |     |     |     |
| Adj. Channel    | 信号能量 -67 dBm,干扰信号在镜像频 = 率在信道±1MHz处 ,误码率=1‰ | /   | -37 | /   | dB  |
| Selectivity     |                                            | /   |     | /   |     |
| 411. I 1 pp ch  | 30 MHz 到 2000 MHz                          | /   | 4   | /   | dBm |
| 带外阻塞            | 2003 MHz 到 2999 MHz                        | /   | -7  | /   | dBm |
|                 | 3000 MHz to 12.75 GHz                      | /   | 4   | /   | dBm |
| 交调干扰            | 信号频率为2402 MHz,-64 dBm。干扰                   |     |     |     |     |
| 文明 17元          | 频率分别为2405和2408 MHz                         | /   | -32 | /   | dBm |

#### 表 4-7 1-Mbps GFSK (Bluetooth Low Energy) – TX

| 参数 说明     |                      | 最小值 | 典型值 | 最大值 | 单位  |
|-----------|----------------------|-----|-----|-----|-----|
| Pout      | 单端发射功率(接50ohm负载)     | -20 | 0   | +3  | dBm |
| Pout_step | 功率控制step             | /   | 5   | /   | dB  |
| Pout_HD2  | 发射的二次谐波功率,发射信号功率0dBm | /   | -47 | /   | dBm |
| Pout_HD3  | 发射的三次谐波功率,发射信号功率0dBm | /   | -42 | /   | dBm |
|           | 发射的四次及以上谐波功率,发射信号功率  |     |     |     |     |
| Pout_HD4  | 0dBm                 | /   | -48 | /   | dBm |

# 4.4 工作条件

# 4.4.1 通用工作条件

表 4-8 通用工作条件

| 符号     | 参数          | 条件                       | 最小值 | 最大值 | 单位  |
|--------|-------------|--------------------------|-----|-----|-----|
| fHCLK  | 内部AHB时钟频率   | 1                        | 0   | 144 |     |
| fPCLK1 | 内部APB1时钟频率  | 1                        | 0   | 36  | MHz |
| fPCLK2 | 内部APB2时钟频率  | 1                        | 0   | 72  |     |
| VDD    | 标准工作电压      | -                        | 1.8 | 3.6 | V   |
| VDDA   | 模拟部分工作电压    | 必须与VDD <sup>(1)</sup> 相同 | 1.8 | 3.6 | V   |
| VBAT   | 备份部分工作电压    | -                        | 1.8 | 3.6 | V   |
| TA     | 环境温度(温度标号7) | 后缀版本6                    | -40 | 85  | °C  |
| TJ     | 结温度范围       | 后缀版本6                    | -40 | 105 | °C  |

1. 建议使用相同的电源为VDD和VDDA供电,在上电和正常操作期间,VDD和VDDA之间最多允许有300mV的差别。

## 4.4.2 上电和掉电时的工作条件

下表中给出的参数是依据表 4-8列出的环境温度下测试得出。



#### 表 4-9 上电和掉电时的工作条件

| 符号   | 参数      | 条件 | 最小值 | 最大值 | 单位    |
|------|---------|----|-----|-----|-------|
| TVDD | VDD上升速率 |    | 20  | 8   | /\\ 7 |
|      | VDD下降速率 | -  | 80  | ∞   | μs/V  |

# 4.4.3 内嵌复位和电源控制模块特性

下表中给出的参数是依据表 4-8列出的环境温度下和VDD供电电压下测试得出。

表 4-10 内嵌复位和电源控制模块特性

| 符号                                   | 参数                           | 条件                                                                                       | 最小值  | 典型值       | 最大值  | 单位 |
|--------------------------------------|------------------------------|------------------------------------------------------------------------------------------|------|-----------|------|----|
|                                      |                              | PRS[2:0]=000 (上升沿)                                                                       | 2.09 | 2.18      | 2.27 | V  |
|                                      |                              | PRS[2:0]=000 (下降沿)                                                                       | 2    | 2.08      | 2.16 | V  |
|                                      |                              | PRS[2:0]=001 (上升沿)                                                                       | 2.19 | 2.28      | 2.37 | V  |
|                                      |                              | PRS[2:0]=001 (下降沿)                                                                       | 2.09 | 2.18      | 2.27 | V  |
|                                      |                              | PRS[2:0]=010 (上升沿)                                                                       | 2.28 | 2.38      | 2.48 | V  |
|                                      |                              | PRS[2:0]=010 (下降沿)                                                                       | 2.19 | 2.28      | 2.37 | V  |
|                                      | 그 선생 4만 44 구 드 17 기에 대 44    | PRS[2:0]=011 (上升沿)                                                                       | 2.38 | 2.48      | 2.58 | V  |
|                                      | 可编程的电压检测器的<br>电平选择(PWR_CTRL  | PRS[2:0]=011 (下降沿)                                                                       | 2.28 | 2.38      | 2.48 | V  |
|                                      | 电干选择(PWR_CIRL<br>的MSB为0)     | PRS[2:0]=100 (上升沿)                                                                       | 2.47 | 2.58      | 2.69 | V  |
|                                      | ըյ <b>мор</b> /10)           | PRS[2:0]=100 (下降沿)                                                                       | 2.37 | 2.48      | 2.59 | V  |
|                                      |                              | PRS[2:0]=101 (上升沿)                                                                       | 2.57 | 2.68      | 2.79 | V  |
|                                      |                              | PRS[2:0]=101 (下降沿)                                                                       | 2.47 | 2.58      | 2.69 | V  |
|                                      |                              | PRS[2:0]=110 (上升沿)                                                                       | 2.66 | 2.78      | 2.9  | V  |
|                                      |                              | PRS[2:0]=110 (下降沿)                                                                       | 2.56 | 2.68      | 2.8  | V  |
|                                      |                              | PRS[2:0]=111 (上升沿)                                                                       | 2.76 | 2.88      | 3    | V  |
| $V_{PVD}$                            |                              | PRS[2:0]=111 (下降沿)       2.66       2.78         PRS[2:0]=000 (上升沿)       1.7       1.78 | 2.78 | 2.9       | V    |    |
| V PVD                                |                              | PRS[2:0]=000 (上升沿)                                                                       | 1.7  | 1.78      | 1.85 | V  |
|                                      |                              | PRS[2:0]=000 (下降沿)                                                                       | 1.61 | 1.68      | 1.75 | V  |
|                                      |                              | PRS[2:0]=001 (上升沿)                                                                       | 1.8  | 1.88      | 1.96 | V  |
|                                      |                              | PRS[2:0]=001 (下降沿)                                                                       | 1.7  | 1.78      | 1.85 | V  |
|                                      |                              | PRS[2:0]=010 (上升沿)                                                                       | 1.9  | 1.98      | 2.06 | V  |
|                                      |                              | PRS[2:0]=010 (下降沿)                                                                       | 1.8  | 1.88      | 1.96 | V  |
|                                      | 可绝租的由压协测盟的                   | PRS[2:0]=011 (上升沿)                                                                       | 2    | 2.08      | 2.16 | V  |
|                                      | 可编程的电压检测器的<br>电平选择(PWR_CTRL的 | PRS[2:0]=011 (下降沿)                                                                       | 1.9  | 1.98      | 2.06 | V  |
|                                      | MSB为1)                       | PRS[2:0]=100 (上升沿)                                                                       | 3.15 | 3.28      | 3.41 | V  |
|                                      |                              | PRS[2:0]=100 (下降沿)                                                                       | 3.05 | 3.18      | 3.31 | V  |
|                                      |                              | PRS[2:0]=101 (上升沿)                                                                       | 3.24 | 3.38      | 3.52 | V  |
|                                      |                              | PRS[2:0]=101 (下降沿)                                                                       | 3.15 | 3.28      | 3.41 | V  |
|                                      |                              | PRS[2:0]=110 (上升沿)                                                                       | 3.34 | 3.48      | 3.62 | V  |
|                                      |                              | PRS[2:0]=110 (下降沿)                                                                       | 3.24 | 3.38      | 3.52 | V  |
|                                      |                              | PRS[2:0]=111 (上升沿)                                                                       | 3.44 | 3.58      | 3.72 | V  |
|                                      |                              | PRS[2:0]=111 (下降沿)                                                                       | 3.34 | 3.48      | 3.62 | V  |
| V <sub>PVDhyst</sub> (1)             | PVD迟滞                        | -                                                                                        | -    | 100       | -    | mV |
| $V_{POR}$                            | VDD上电/下电复位阀<br>值             | -                                                                                        | -    | 1.64/1.62 | -    | v  |
| T <sub>RSTTEMPO</sub> <sup>(1)</sup> | 复位持续时间                       | -                                                                                        | -    | 0.8       | 4    | ms |

<sup>1.</sup> 由设计保证,不在生产中测试。

# 4.4.4 内置的参考电压

下表中给出的参数是依据表 4-8列出的环境温度下和VDD供电电压下测试得出。



#### 表 4-11 内置的参照电压

| 符号                     | 参数                      | 条件                                                                | 最小值   | 典型值  | 最大值               | 单位 |
|------------------------|-------------------------|-------------------------------------------------------------------|-------|------|-------------------|----|
| V <sub>REFINT</sub>    | 内置参照电压                  | $-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$ | 1.164 | 1.20 | 1.24              | V  |
| $T_{S\_vrefint}^{(1)}$ | 当读出内部参照电压<br>时,ADC的采样时间 | -                                                                 | -     | 5.1  | 10 <sup>(2)</sup> | μs |

- 1. 最短的采样时间是通过应用中的多次循环得到。
- 2. 由综合评估得出,不在生产中测试。

### 4.4.5 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O引脚的负载、产品的软件配置、工作频率、I/O脚的翻转速率、程序在存储器中的位置以及执行的代码等。

电流消耗的测量方法说明,详见图 4-4。

本节中给出的所有运行模式下的电流消耗测量值,都是在执行一套精简的代码。

### 4.4.5.1 最大电流消耗

微控制器处于下列条件:

- 所有的I/O引脚都处于输入模式,并连接到一个静态电平上——V<sub>DD</sub>或V<sub>SS</sub>(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到所能运行的最快频率(0~32MHz时为0个等待周期,32~64MHz时为1个等待周期,64~96 MHz时为2个等待周期,96~128MHz时为3个等待周期,128~144MHz时为4个等待周期)。
- 指令预取功能开启(提示:这个参数必须在设置时钟和总线分频之前设置)。
- 当开启外设时: f<sub>PCLK1</sub> = f<sub>HCLK</sub>/4, f<sub>PCLK2</sub> = f<sub>HCLK</sub>/2。
- V<sub>DD</sub>=3.63V,环境温度等于85°C。

表 4-12和表 4-13中给出的参数,是依据表 4-8列出的环境温度下和VDD供电电压下测试得出。

表 4-12 运行模式下的最大电流消耗,数据处理代码从内部闪存中运行

| 符号                | 参数       | 条件                    | from              | 典型值(1)(3)           | 单位         |
|-------------------|----------|-----------------------|-------------------|---------------------|------------|
| 10 5              | 少        | <b>ボ</b> ロ            | t <sub>HCLK</sub> | $T_A = 85^{\circ}C$ | <b>平</b> 世 |
|                   |          | 外部时钟 <sup>(2)</sup> , | 144MHz            | 31.1                |            |
|                   |          | 使能所有外设                | 72MHz             | 17                  |            |
| T                 | 运行模式下的供应 | 使配別有外以                | 36MHz             | 11                  | A          |
| $I_{\mathrm{DD}}$ | 电流       | 外部时钟 <sup>(2)</sup> , | 144MHz            | 15.8                | mA         |
|                   |          | 关闭所有外设<br>- 关闭所有外设    | 72MHz             | 9.7                 |            |
|                   |          | 大的別有外区<br>            | 36MHz             | 6.7                 |            |

- 1. 由综合评估得出,不在生产中测试。
- 2. 外部时钟为8MHz, 当fHCLK>8MHz时启用PLL。
- 3. 蓝牙处于关闭状态。



#### 表 4-13 睡眠模式下的最大电流消耗

| 符号                         | 参数      | 条件                    | f <sub>HCLK</sub> | 典型值 <sup>(1)(3)</sup><br>T <sub>A</sub> =85℃ | 单位 |
|----------------------------|---------|-----------------------|-------------------|----------------------------------------------|----|
|                            |         | 外部时钟 <sup>(2)</sup> , | 144MHz            | 25.7                                         |    |
|                            |         | 72MHz                 | 14.2              |                                              |    |
| _ T                        | 睡眠模式下的供 | 使能所有外设                | 36MHz             | 9.8                                          | A  |
| $\mathbf{I}_{\mathrm{DD}}$ | 应电流     | 外部时钟 <sup>(2)</sup> , | 144MHz            | 9.2                                          | mA |
|                            |         |                       | 72MHz             | 6.6                                          |    |
|                            | 关闭所有外设  | 36MHz                 | 5.1               |                                              |    |

- 1. 由综合评估得出,在生产中以VDDmax和以fHCLKmax使能外设为条件测试。
- 2. 外部时钟为8MHz, 当fHCLK>8MHz时启用PLL。
- 3. 蓝牙处于关闭状态。

## 4.4.5.2 典型的电流消耗

### MCU处于下述条件下:

- 所有的I/O引脚都处于输入模式,并连接到一个静态电平上—V<sub>DD</sub>或V<sub>SS</sub>(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到所能运行的最快频率(0~32MHz时为0个等待周期,32~64MHz时为1个等待周期,64~96 MHz时为2个等待周期,96~128MHz时为3个等待周期,128~144MHz时为4个等待周期)。
- 环境温度和V<sub>DD</sub>供电电压条件列于表 4-8。
- 指令预取功能开启(提示:这个参数必须在设置时钟和总线分频之前设置)。当开启外设时:  $f_{PCLK1} = f_{HCLK}/4$ ,  $f_{PCLK2} = f_{HCLK}/2$ ,  $f_{ADCCLK} = f_{PCLK2}/4$ 。

表 4-14 运行模式下的典型电流消耗,数据处理代码从内部Flash中运行

|          |        |                      | 典型值 <sup>(1) (4)</sup> |                           | 台          |    |
|----------|--------|----------------------|------------------------|---------------------------|------------|----|
| 符号       | 参数     | 条件                   | $f_{HCLK}$             | 使能所<br>有外设 <sup>(2)</sup> | 关闭所<br>有外设 | 位位 |
|          |        |                      | 144MHz                 | 28.6                      | 14.2       | mA |
|          |        | 外部时钟(3)              | 72MHz                  | 17.7                      | 8.1        | mA |
| T        | 运行模式下的 |                      | 36MHz                  | 9.1                       | 5.3        |    |
| $I_{DD}$ | 供应电流   | 运行于高速内部RC 振荡器(HSI),使 | 128MHz                 | 27.9                      | 12.7       |    |
|          |        |                      | 72MHz                  | 17.5                      | 7.2        | mA |
|          |        | 用AHB预分频以减低频率         | 36MHz                  | 8.4                       | 3.9        |    |

- 1. 典型值是在T<sub>A</sub>=25℃、V<sub>DD</sub>=3.3V时测试得到。
- 2. 每个模拟部分的ADC要增加额外的0.8mA电流消耗。在应用环境中,这部分电流只有在开启ADC(设置ADC\_CTRL2 寄存器的ON位)时才会增加。
- 3. 外部时钟为8MHz, 当fHCLK>8MHz时启用PLL。
- 4. 蓝牙处于关闭状态。



#### 表 4-15 睡眠模式下的典型电流消耗

|                       |                      |              |               | 典型化                          | 直(1)(4)        |    |
|-----------------------|----------------------|--------------|---------------|------------------------------|----------------|----|
| 符号                    | 参数                   | 条件           | $f_{ m HCLK}$ | 使能所<br>有外设<br><sup>(2)</sup> | 关闭<br>所有<br>外设 | 单位 |
|                       |                      |              | 144MHz        | 23.3                         | 8              |    |
|                       |                      | 外部时钟(3)      | 72MHz         | 12.9                         | 5.3            | mA |
| T                     | 睡眠模式下                |              | 36MHz         | 7.7                          | 3.6            |    |
| I <sub>DD</sub> 的供应电流 | 运行于高速内部RC 振荡器(HSI),使 | 128MHz       | 22.5          | 6.1                          |                |    |
|                       |                      | 用AHB预分频以减低频率 | 72MHz         | 11.8                         | 3.5            | mA |
|                       | 用AIIDI火力 炒火火火火烧烧炒火牛  | 36MHz        | 7.0           | 2.2                          |                |    |

- 1. 典型值是在T<sub>A</sub>=25℃、V<sub>DD</sub>=3.3V时测试得到。
- 2. 每个模拟部分的ADC要增加额外的0.8mA电流消耗。在应用环境中,这部分电流只有在开启ADC(设置ADC\_CTRL2 寄存器的ON位)时才会增加。
- 3. 外部时钟为8MHz, 当fHCLK>8MHz时启用PLL。
- 4. 蓝牙处于关闭状态。

# 4.4.5.3 低功耗模式电流消耗

#### MCU处于下列条件:

- 所有的I/O引脚都处于输入模式,并连接到一个静态电平上——V<sub>DD</sub>或V<sub>SS</sub>(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。

表 4-16 停机和待机模式下的典型和最大电流消耗

| 符号             | 会粉                      | 夕 併                                                   | 典型值(1)               | (2)                  | 单位 |
|----------------|-------------------------|-------------------------------------------------------|----------------------|----------------------|----|
| 有亏             | 参数                      | 条件                                                    | T <sub>A</sub> =25°C | T <sub>A</sub> =85°C |    |
|                | STOP0 模式                | 调压器处于运行模式,低速和高速内部<br>RC振荡器和高速振荡器处于关闭状态<br>(没有独立看门狗)   | 300                  | 1200                 |    |
|                | 下的供应电流                  | 调压器处于低功耗模式,低速和高速内<br>部RC振荡器和高速振荡器处于关闭状<br>态(没有独立看门狗)  | 150                  | 800                  |    |
| $I_{DD}$       | STOP2 模式下<br>的供应电流      | 外部低速时钟开启,RTC运行,R-<br>SRAM保持,所有I/O状态保持,独立看<br>门狗处于关闭状态 | 6                    | 100                  |    |
|                |                         | 低速内部RC振荡器和独立看门狗处于<br>开启状态                             | 3                    | 40                   | μΑ |
|                | STANDBY<br>模式下的供        | 低速内部RC振荡器处于开启状态, 独立<br>看门狗处于关闭状态                      | 3.9                  | 40                   |    |
|                | 应电流                     | 低速内部RC振荡器和独立看门狗处于<br>关闭状态,低速振荡器和RTC 处于关<br>闭状态        | 3.7                  | 35                   |    |
| $I_{DD\_VBAT}$ | 备份区域<br>(VBAT)的<br>供应电流 | 低速振荡器和RTC处于开启状态                                       | 3                    | 15                   |    |

- 1. 典型值是在VDD/VBAT = 3.3V 下测试得到。
- 2. 蓝牙处于低功耗状态。



## 4.4.6 外部时钟源特性

# 4.4.6.1 外部高速时钟源(HSE)

下表中给出的特性参数是使用一个高速的外部时钟源测得,环境温度和供电电压符合表 4-8的条件。

表 4-17 高速外部用户时钟特性 (Bypass模式)

| 符号                         | 参数                            | 条件                               | 最小值                  | 典型<br>值 | 最大值                  | 单位  |
|----------------------------|-------------------------------|----------------------------------|----------------------|---------|----------------------|-----|
| f <sub>HSE_ext</sub>       | 用户外部时钟频率(1)                   |                                  | 4                    | 8       | 32                   | MHz |
| V <sub>HSEH</sub>          | OSC_IN输入引脚高电平电压               |                                  | $0.8V_{\mathrm{DD}}$ | -       | $V_{DD}$             |     |
| V <sub>HSEL</sub>          | OSC_IN输入引脚低电平电压               |                                  | Vss                  | -       | $0.3V_{\mathrm{DD}}$ | V   |
| $t_{w(HSE)} \\ t_{w(HSE)}$ | OSC_IN高或低的时间 <sup>(1)</sup>   | -                                | 16                   | -       | -                    | ns  |
| $t_{r(HSE)} \\ t_{f(HSE)}$ | OSC_IN上升或下降的时间 <sup>(1)</sup> |                                  | -                    | -       | 20                   | lis |
| $C_{\text{in(HSE)}}$       | OSC_IN输入容抗 <sup>(1)</sup>     | -                                | -                    | 5       | -                    | pF  |
| DuCy <sub>(HSE)</sub>      | 占空比                           | -                                | 45                   | -       | 55                   | %   |
| $I_L$                      | OSC_IN输入漏电流                   | $V_{SS} \leq V_{IN} \leq V_{DD}$ | -                    | -       | <u>±1</u>            | μΑ  |
|                            | 晶振                            | 晶体频率                             | -                    | 32      | -                    | MHz |
| BLE 外部                     | 频率容限                          | 包含老化和温<br>度变化                    | -25                  | -       | 25                   | MHz |
| 32MHz时钟                    | 晶振负载电容                        | -                                | 6                    | 8       | 10                   | pF  |
|                            | 建立时间                          | -                                | -                    | 350     | -                    | us  |
| BLE 内部                     | 频率                            | -                                | -                    | 32      | -                    | MHz |
| 32MHz RC                   | 频率偏差                          | -                                | -1.5%                | -       | 1.5%                 | -   |
| Oscillator                 | 建立时间                          | -                                | -                    | 10      | -                    | us  |
| BLE 内部                     | 频率                            | -                                | -                    | 32      | -                    | KHz |
| 32KHz RC                   | 频率偏差                          | -                                | -2%                  | -       | 2%                   | -   |
| Oscillator                 | 建立时间                          | -                                | -                    | 300     | -                    | us  |

<sup>1.</sup> 由综合评估得出,不在生产中测试。

## 4.4.6.2 外部低速时钟源(LSE)

下表中给出的特性参数是使用一个低速的外部时钟源测得,环境温度和供电电压符合表 4-8的条件。

表 4-18 低速外部用户时钟特性 (Bypass模式)

| 符号                                                      | 参数                              | 条件                               | 最小值         | 典型值    | 最大值               | 单位  |
|---------------------------------------------------------|---------------------------------|----------------------------------|-------------|--------|-------------------|-----|
| $f_{LSE\_ext}$                                          | 用户外部时钟频率(1)                     |                                  | 0           | 32.768 | 1000              | KHz |
| $V_{LSEH}$                                              | OSC32_IN输入引脚高电平电压               |                                  | $0.7V_{DD}$ | -      | $V_{\mathrm{DD}}$ | V   |
| $V_{LSEL}$                                              | OSC32_IN输入引脚低电平电压               | _                                | Vss         | -      | 200               | mV  |
| $\begin{array}{c} t_{w(LSE)} \\ t_{w(LSE)} \end{array}$ | OSC32_IN高或低的时间 <sup>(1)</sup>   |                                  | 450         | -      | -                 | ns  |
| $t_{r(LSE)}t_{f(LSE)}$                                  | OSC32_IN上升或下降的时间 <sup>(1)</sup> |                                  | -           | -      | 50                |     |
| DuCy <sub>(LSE)</sub>                                   | 占空比                             | -                                | 30          | -      | 70                | %   |
| $I_{\rm L}$                                             | OSC32_IN输入漏电流                   | $V_{SS} \leq V_{IN} \leq V_{DD}$ | -           | -      | ±1                | μΑ  |



1. 由综合评估得出,不在生产中测试。

#### 图 4-5 外部高速时钟源的交流时序图



图 4-6 外部低速时钟源的交流时序图



### 使用一个晶体/陶瓷谐振器产生的高速外部时钟

高速外部时钟(HSE)可以使用一个4~32MHz的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。(这里提到的晶体谐振器就是我们通常说的无源晶振)



| # | 4 10 | TICE  | 1 221 | (Hz振荡  | 现此                                     | <b>4</b> -(1)(2) |
|---|------|-------|-------|--------|----------------------------------------|------------------|
| ₹ | 4-19 | HSE 4 | 1~321 | 1日27辰汤 | <b>*******************************</b> | 午(1)(2)          |

| 符号                       | 参数         | 条件                                                                | 最小值 | 典型值 | 最大值 | 单位   |
|--------------------------|------------|-------------------------------------------------------------------|-----|-----|-----|------|
| $f_{OSC\_IN}$            | 振荡器频率      | -                                                                 | 4   | 8   | 32  | MHz  |
| R <sub>F</sub>           | 反馈电阻       | -                                                                 | -   | 160 | -   | kΩ   |
| i <sub>2</sub>           | HSE驱动电流    | V <sub>DD</sub> =3.3V, V <sub>IN</sub> =V <sub>SS</sub><br>30pF负载 | -   | 1.3 | -   | mA   |
| g <sub>m</sub>           | 振荡器的跨导     | 启动                                                                | -   | 10  | -   | mA/V |
| t <sub>SU(HSE)</sub> (3) | 启动时间(8M晶体) | VDD是稳定的                                                           | -   | 3   | -   | ms   |

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. 对于 $C_{L1}$ 和 $C_{L2}$ ,建议使用高质量的、为高频应用而设计的(典型值为) $5pF\sim25pF$ 之间的瓷介电容器,并挑选符合要求的晶体或谐振器。通常 $C_{L1}$ 和 $C_{L2}$ 具有相同参数。晶体制造商通常以 $C_{L1}$ 和 $C_{L2}$ 的串行组合给出负载电容的参数。在选择 $C_{L1}$ 和 $C_{L2}$ 时,PCB和N32WB452引脚的容抗应该考虑在内(可以粗略地把引脚与PCB板的电容按10pF估计)。

Resonator with integrated capacitor CL1 OSC\_IN Gain control OSC\_OUT OSC\_OUT

图 4-7 使用8MHz晶体的典型应用

REXT数值由晶体的特性决定。

#### 使用一个晶体/陶瓷谐振器产生的低速外部时钟

低速外部时钟(LSE)可以使用一个32.768kHz的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。(这里提到的晶体谐振器就是我们通常说的无源晶振)

注意:对于 $C_{L1}$ 和 $C_{L2}$ ,建议使用高质量的资介电容器,并挑选符合要求的晶体或谐振器。通常 $C_{L1}$ 和 $C_{L2}$ 具有相同参数。晶体制造商通常以 $C_{L1}$ 和 $C_{L2}$ 的串行组合给出负载电容的参数。

负载电容CL由下式计算:  $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ , 其中 $C_{stray}$ 是引脚的电容和PCB板或PCB相关的电容。

例如:如果选择了一个负载电容 $C_L=6pF$ 的谐振器并且 $C_{strav}=2pF$ ,则 $C_{L1}=C_{L2}=8pF$ 。

| 符号               | 参数      | 条件                                                                                                                    | 最小<br>值 | 典型值 | 最大<br>值 | 单位                |
|------------------|---------|-----------------------------------------------------------------------------------------------------------------------|---------|-----|---------|-------------------|
| $R_{\mathrm{F}}$ | 反馈电阻    | -                                                                                                                     | -       | 5   | ı       | $rac{M}{\Omega}$ |
| 12               | LSE驱动电流 | $\begin{array}{c} \text{VDD=3.3V} \; , \\ \text{CL1=CL2=14pF} \\ \text{R}_{\text{S}} = 30 \text{K}\Omega \end{array}$ | -       | 0.3 | 1       | μ<br>Α            |
| g <sub>m</sub>   | 振荡器的跨导  | -                                                                                                                     | 5       | -   | ı       | μA<br>/V          |
| tsu(lse          | 启动时间    | V <sub>DD</sub> 是稳定的                                                                                                  | -       | 2   | -       | S                 |

表 4-20 LSE振荡器特性(fLSE=32.768kHz)(1)

1. 由综合评估得出,不在生产中测试。



2. 参见本表格上方的注意和警告段落。

#### 图 4-8 使用32.768kH晶体的典型应用(1)(2)



- 1. 请参考LSE晶体选型指南。
- 2. 为保证晶体工作稳定性,晶体工作时,相邻管脚不要翻转。

## 4.4.7 内部时钟源特性

下表中给出的特性参数是使用环境温度和供电电压符合表 4-8的条件测量得到。

# 4.4.7.1 高速内部(HSI)RC振荡器

表 4-21 HSI振荡器特性<sup>(1)(2)</sup>

| 符号                     | 参数                       | 条件                                     | 最小值                 | 典型值 | 最大值                 | 单位  |
|------------------------|--------------------------|----------------------------------------|---------------------|-----|---------------------|-----|
| $f_{HSI}$              | 频率                       | VDD=3.3V, T <sub>A</sub> = 25℃, 校准后    | 7.92 <sup>(3)</sup> | 8   | 8.08 <sup>(3)</sup> | MHz |
| DuCy (HSI)             | 占空比                      | -                                      | 45                  | -   | 55                  | %   |
| ACC <sub>HSI</sub>     | HSI振荡器的温漂 <sup>(4)</sup> | VDD=3.3V,<br>T <sub>A</sub> = -40~85°C | -2.5                | 1   | 2.5                 | %   |
| t <sub>SU(HSI)</sub>   | HSI振荡器启动时间               | -                                      | -                   | 1   | 5                   | μs  |
| $I_{\mathrm{DD(HSI)}}$ | HSI振荡器功耗                 | -                                      | -                   | 40  | -                   | μA  |

- 1.  $V_{DD} = 3.3V$ , $T_A = -40~85$ °C,除非特别说明。
- 2. 由综合评估得出,不在生产中测试。
- 3. 生产校准精度,未包括焊接影响。焊接带来频率偏差范围约+1.5%。
- 4. 频率偏差包括焊接带来的影响,数据来自样品测试,不在生产中进行测试。



## 4.4.7.2 低速内部(LSI)RC振荡器

#### 表 4-22 LSI振荡器特性<sup>(1)</sup>

| 符号                       | 参数         | 条件                                                         | 最小值 | 典型<br>值 | 最大<br>值 | 单<br>位 |
|--------------------------|------------|------------------------------------------------------------|-----|---------|---------|--------|
|                          |            | 25°C 校准, VDD =3.3V                                         | 38  | 40      | 42      | KHz    |
| fLSI <sup>(2)</sup>      | 输出频率       | VDD =1.8V $\sim$ 3.6V,<br>T <sub>A</sub> = -40 $\sim$ 85°C | 30  | 40      | 60      | KHz    |
| tsu(LSI)                 | LSI振荡器启动时间 | -                                                          | -   | 40      | 80      | μs     |
| I <sub>DD(LSI)</sub> (2) | LSI振荡器功耗   | -                                                          | -   | 0.1     | -       | μΑ     |

- 1. V<sub>DD</sub> = 3.3V, T<sub>A</sub> = -40~85℃, 除非特别说明。
- 2. 由综合评估得出,不在生产中测试。

## 4.4.8 从低功耗模式唤醒的时间

表 4-23列出的唤醒时间是在一个8MHz的HSI RC振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- STOP0、STOP2或STANDBY模式: 时钟源是RC振荡器
- SLEEP模式:时钟源是进入SLEEP模式时所使用的时钟

所有的时间是使用环境温度和供电电压符合表 4-8的条件测量得到。

表 4-23 低功耗模式的唤醒时间

| 符号                                  | 参数                  | 典型值 | 单位 |
|-------------------------------------|---------------------|-----|----|
| t <sub>WUSLEEP</sub> (1)            | 从睡眠模式唤醒             | 480 | ns |
|                                     | 从停机模式0唤醒(调压器处于运行模式) | 20  |    |
| twustop0 <sup>(1)</sup>             | 从停机模式0唤醒(调压器为低功耗模式) | 22  |    |
| t <sub>WUSTOP2</sub> <sup>(1)</sup> | 从停机模式2唤醒            | 40  | μs |
| t <sub>WUSTDBY</sub> (1)            | 从待机模式唤醒             | 100 |    |

1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

### 4.4.9 PLL特性

表 4-24列出的参数是使用环境温度和供电电压符合表 4-8的条件测量得到。

#### 表 4-24 PLL特性

| 符号             | 参数                                              | 最小<br>值 | 典型值 | 最大值(1) | 单位  |
|----------------|-------------------------------------------------|---------|-----|--------|-----|
| f              | PLL输入时钟 <sup>(2)</sup>                          | 4       | 8.0 | 32     | MHz |
| $f_{PLL\_IN}$  | PLL输入时钟占空比                                      | 40      | -   | 60     | %   |
| $f_{PLL\_OUT}$ | PLL倍频输出时钟                                       | 32      | -   | 144    | MHz |
| $t_{LOCK}$     | PLL Ready 指示信号输出时间                              | -       | -   | 150    | μs  |
| Jitter         | Rms cycle-to-cycle jitter @144MHz               | -       | 5   | -      | ps  |
| Ipll           | Operating Current of PLL @144MHz VCO frequency. | -       | 700 | -      | uA  |

- 1. 由综合评估得出,不在生产中测试。
- 2. 需要注意使用正确的倍频系数,从而根据PLL输入时钟频率使得fPLL\_OUT处于允许范围内。



### 4.4.10FLASH存储器特性

除非特别说明,所有特性参数是在TA = -40~85℃得到。

#### 表 4-25 闪存存储器特性

| 符号                 | 参数              | 条件                                                       | 最小值 | 典型值<br><sup>(1)</sup> | 最大值(1)                                  | 单<br>位 |
|--------------------|-----------------|----------------------------------------------------------|-----|-----------------------|-----------------------------------------|--------|
| tprog              | 32位的编程时间        | $T_A = -40 \sim 85$ °C                                   | -   | 112                   | 225                                     | μs     |
| t <sub>ERASE</sub> | 页(2K字节)擦除时<br>间 | T <sub>A</sub> = -40~85°C                                | -   | 2                     | 20 <sup>(2)</sup><br>100 <sup>(3)</sup> | ms     |
| t <sub>ME</sub>    | 整片擦除时间          | $T_A = -40 \sim 85$ °C;                                  | -   | -                     | 100                                     | ms     |
|                    |                 | T <sub>A</sub> = -40~85°C;                               | mA  |                       |                                         |        |
| $I_{DD}$           | 供电电流            | 写模式,f <sub>HCLK</sub> =144MHz,<br>V <sub>DD</sub> =3.3V  | -   | -                     | 6.5                                     | mA     |
|                    |                 | 擦除模式,f <sub>HCLK</sub> =144MHz,<br>V <sub>DD</sub> =3.3V | -   | -                     | 4.5                                     | mA     |
|                    |                 | 掉电模式/停机,V <sub>DD</sub> =3.3~3.6V                        | -   | -                     | 0.035                                   | μΑ     |
| Vprog              | 编程电压            | -                                                        | 1.8 | 3.0                   | 3.6                                     | V      |

- 1. 由综合评估得出,不在生产中测试。
- 2. 擦写次数为10k的存储空间
- 3. 擦写次数为100k的存储空间

#### 表 4-26 闪存存储器寿命和数据保存期限

| 符号        | 参数         | 条件                                                  | 最小值 <sup>(1)</sup> | 单位   |
|-----------|------------|-----------------------------------------------------|--------------------|------|
|           |            | TA = -40~85 ℃(尾缀为6);<br>Flash容量为512KB,其中前256KB的存储空间 | 10                 | 千次   |
| $N_{END}$ | 寿命(注:擦写次数) | TA = -40~85 ℃(尾缀为6);<br>Flash容量为512KB,其中后256KB的存储空间 | 100                | 1 () |
| $t_{RET}$ | 数据保存期限     | TA = 85℃时                                           | 20                 | 年    |

1. 由综合评估得出,不在生产中测试。

# 4.4.11绝对最大值(电气敏感性)

基于三个不同的测试(ESD, LU),使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

#### 静电放电(ESD)

静电放电(一个正的脉冲然后间隔一秒钟后一个负的脉冲)施加到所有样品的所有引脚上。

#### 表 4-27 ESD绝对最大值

| 符号                    | 参<br>数         | 条<br>件                                                      | 类型 | 最大值(1) | 单位 |
|-----------------------|----------------|-------------------------------------------------------------|----|--------|----|
| V <sub>ESD(HBM)</sub> | 静电放电电压(人体模型)   | T <sub>A</sub> = +25 °C,<br>符合MIL-STD-883K Method<br>3015.9 | 3A | 4000   | V  |
| V <sub>ESD(CDM)</sub> | 静电放电电压(充电设备模型) | T <sub>A</sub> = +25 ℃,<br>符合ESDA/JEDEC JS-002-2018         | СЗ | 1000   |    |

1. 由综合评估得出,不在生产中测试。

### 静态栓锁

为了评估栓锁性能,需要在6个样品上进行2个互补的静态栓锁测试:



- 为每个电源引脚,提供超过极限的供电电压。
- 在每个输入、输出和可配置的I/O引脚上注入电流。

这个测试符合JEDEC78E集成电路栓锁标准。

#### 表 4-28 电气敏感性

| 符号 | 参<br>数 | 条<br>件                            | 类型    | 最小值(1)             |
|----|--------|-----------------------------------|-------|--------------------|
| LU | 静态栓锁类  | T <sub>A</sub> = +25 ℃,符合JEDEC78E | II 类A | ±100mA, 1.5*VDDMAX |

1. 在常温条件下测试。

### 4.4.12I/O端口特性

### 通用输入/输出特性

除非特别说明,下表列出的参数是按照表 4-8的条件测量得到。所有的I/O端口都是兼容CMOS和TTL。

表 4-29 I/O静态特性

| 符号              | 参数                         | 条件                                   | 最小值                  | 典型值 | 最大值               | 单位 |  |
|-----------------|----------------------------|--------------------------------------|----------------------|-----|-------------------|----|--|
| V <sub>IL</sub> | 输入低电平电压                    | TT 34 H                              | Vss                  |     | 0.8               | V  |  |
| $V_{IH}$        | 输入高电平电压                    | TTL 端口                               | 2                    |     | $V_{DD}$          | V  |  |
| V <sub>IL</sub> | 输入低电平电压                    | CMOC ## □                            | Vss                  |     | $0.35~V_{DD}$     |    |  |
| V <sub>IH</sub> | 输入高电平电压                    | CMOS 端口                              | 0.65 V <sub>DD</sub> |     | $V_{\mathrm{DD}}$ |    |  |
|                 |                            | V <sub>DD</sub> =3.3V                | 200                  |     | -                 |    |  |
| Vhys            | 施密特触发器电压迟滞(1)              | $V_{DD}=2.5V$                        | 200                  |     | -                 | mV |  |
|                 |                            | $V_{DD}=1.8V$                        | $0.1*V_{DD}^{(2)}$   |     | -                 |    |  |
| $I_{lkg}$       | <br>  输入漏电流 <sup>(3)</sup> | V <sub>DD</sub> =Maximum             | -1                   |     | 1                 | ^  |  |
| llkg            | 相/(例 电机)                   | $V_{PAD}=0$ 或 $V_{PAD}=V_{DD}^{(5)}$ | -1                   |     | 1                 | μΑ |  |
|                 |                            | $V_{DD}=3.3V, V_{IN}=V_{SS}$         | 75                   |     | 220               |    |  |
| $R_{PU}$        | 弱上拉等效电阻(4)                 | $V_{DD} = 2.5 V$ , $V_{IN} = V_{SS}$ | 95                   |     | 310               | kΩ |  |
|                 |                            | $V_{DD} = 1.8V$ , $V_{IN} = V_{SS}$  | 135                  |     | 500               |    |  |
|                 |                            | $V_{DD}=3.3V, V_{IN}=V_{DD}$         | 75                   |     | 235               |    |  |
| $R_{PD}$        | 弱下拉等效电阻(4)                 | $V_{DD} = 2.5V$ , $V_{IN} = V_{DD}$  | 85                   |     | 315               | kΩ |  |
|                 |                            | $V_{DD} = 1.8V$ , $V_{IN} = V_{DD}$  | 120                  |     | 495               |    |  |
| $C_{IO}$        | I/O 引脚的电容                  | -                                    | -                    | 5   | -                 | pF |  |

- 1. 施密特触发器开关电平的迟滞电压。由综合评估得出,不在生产中测试。
- 2. 至少100mV。
- 3. 如果在相邻引脚有反向电流倒灌,则漏电流可能高于最大值。
- 4. 上拉和下拉电阻是设计为一个可开关的PMOS/NMOS实现。
- 5. VPAD是指 IO 管脚的输入电压。

所有I/O端口都是CMOS和TTL兼容(不需软件配置),它们的特性考虑了多数严格的CMOS工艺或TTL参数:

#### ● 对于VIH:

- -如果VDD是介于[1.8V~3.08V]; 使用CMOS特性但包含TTL。
- -如果VDD是介于[3.08V~3.60V]; 使用TTL特性但包含CMOS。

#### ● 对于VIL:

- -如果VDD是介于[1.8V~2.28V]; 使用TTL特性但包含CMOS。
- -如果VDD是介于[2.28V~3.60V]; 使用CMOS特性但包含TTL。

#### 输出驱动电流

GPIO(通用输入/输出端口)可以吸收或输出多达+/-12mA电流。在用户应用中,I/O脚的数目必须保证驱动电



流不超过4.2节给出的绝对最大额定值:

- 所有I/O端口从V<sub>DD</sub>上获取的电流总和,加上MCU在V<sub>DD</sub>上获取的最大运行电流,不能超过绝对最大额定值I<sub>VDD</sub>(表 4-2)。
- 所有I/O端口吸收并从Vss上流出的电流总和,加上MCU在Vss上流出的最大运行电流,不能超过绝对最大额定值Ivss(表 4-2)。

#### 输出电压

除非特别说明,表 4-31列出的参数是使用环境温度和 $V_{DD}$ 供电电压符合表 4-8的条件测量得到。所有的I/O 端口都是兼容CMOS和TTL的。

表 4-30 IO驱动能力表

| 驱动等级 | I <sub>OH</sub> <sup>(1)</sup> ,<br>VDD=3.3V | I <sub>OL</sub> <sup>(1)</sup> ,<br>VDD=3.3V | I <sub>OH</sub> <sup>(1)</sup> ,<br>VDD=2.5V | I <sub>OL</sub> <sup>(1)</sup> ,<br>VDD=2.5V | I <sub>OH</sub> <sup>(1)</sup> ,<br>VDD=1.8V | I <sub>OL</sub> <sup>(1)</sup> ,<br>VDD=1.8V | 单位 |
|------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----|
| 2    | -2                                           | 2                                            | -1.5                                         | 1.5                                          | -1.2                                         | 1.2                                          | mA |
| 4    | -4                                           | 4                                            | -3                                           | 3                                            | -2.5                                         | 2.5                                          | mA |
| 8    | -8                                           | 8                                            | -7                                           | 7                                            | -5                                           | 5                                            | mA |
| 12   | -12                                          | 12                                           | -11                                          | 11                                           | -7.5                                         | 7.5                                          | mA |

1. 由综合评估得出,不在生产中测试。

表 4-31 输出电压特性

| 符号                    | 参数    | 条件                                                                                                             | 最小值                | 最大值                 | 单位 |
|-----------------------|-------|----------------------------------------------------------------------------------------------------------------|--------------------|---------------------|----|
|                       |       | $V_{DD} = 3.3 \text{ V},$<br>$I_{OL} = 2\text{mA}, 4\text{mA}, 8\text{mA}, \text{and } 12\text{mA}$            | $V_{SS}$           | 0.4                 |    |
| $V_{\text{OL}}^{(1)}$ | 输出低电平 | $V_{DD} = 2.5 \text{ V},$ $I_{OL} = 1.5 \text{mA}, 3 \text{mA}, 7 \text{mA}, \text{ and } 11 \text{mA}$        | $V_{SS}$           | 0.4                 |    |
|                       |       | $V_{DD} = 1.8 \text{ V}, \\ I_{OL} = 1.2 \text{mA}, 2.5 \text{mA}, 5 \text{mA}, \text{and } 7.5 \text{mA}$     | $V_{SS}$           | 0.2*V <sub>DD</sub> | V  |
|                       |       | $V_{\rm DD} = 3.3 \text{ V},$ $I_{\rm OH} = -2\text{mA}, -4\text{mA}, -8\text{mA}, \text{ and } -12\text{mA}$  | 2.4 <sup>(3)</sup> | $V_{DD}$            | V  |
| $V_{\text{OH}^{(2)}}$ | 输出高电平 | $V_{DD} = 2.5 \text{ V},$<br>$I_{OH} = -1.5 \text{mA}, -3 \text{mA}, -7 \text{mA}, \text{ and } -11 \text{mA}$ | 1.8(3)             | $V_{ m DD}$         |    |
|                       |       | $V_{DD} = 1.8 \text{ V},$<br>$I_{OH}$ = -1.2mA, -2.5mA, -5mA, and -7.5mA                                       | $0.8*V_{DD}$       | $V_{ m DD}$         |    |

- 1. 芯片吸收的电流Iro必须始终遵循表 4-2中给出的绝对最大额定值,同时Iro的总和(所有I/O脚和控制脚)不能超过Ivss。
- 2. 芯片输出的电流Iro必须始终遵循表 4-2中给出的绝对最大额定值,同时Iro的总和(所有I/O脚和控制脚)不能超过Ivpp。
- 3. PC13,PC14,PC15不在此范围内。

### 输入输出交流特性

输入输出交流特性的定义和数值分别在输入输出交流特性定义和表 4-32给出。

除非特别说明,表 4-32列出的参数是使用环境温度和供电电压符合表 4-8的条件测量得到。



### 表 4-32 输入输出交流特性(1)

| DS_CFGy<br>配置 | PMODEy[1:0]<br>配置       | 符号                      | 参数                                     | 条件                                                                  | 最小值 | 最大值  | 单位  |  |
|---------------|-------------------------|-------------------------|----------------------------------------|---------------------------------------------------------------------|-----|------|-----|--|
|               |                         |                         |                                        | $C_L=5pF,V_{DD}=3.3V$                                               | -   | 75   |     |  |
|               |                         | f <sub>max(IO)out</sub> | 最大频率(2)                                | $C_L=5pF,V_{DD}=2.5V$                                               | -   | 50   | MHz |  |
|               |                         |                         |                                        | $C_L=5pF,V_{DD}=1.8V$                                               | -   | 30   |     |  |
|               |                         |                         |                                        | C <sub>L</sub> =5pF,V <sub>DD</sub> =3.3V                           | -   | 3.66 |     |  |
| 0             | xx<br>(2mA)             | t <sub>(IO)out</sub>    | 输出延时                                   | $C_L=5pF, V_{DD}=2.5V$                                              | -   | 4.72 | ns  |  |
|               | (ZIIIA)                 |                         |                                        | C <sub>L</sub> =5pF,V <sub>DD</sub> =1.8V                           | -   | 7.12 |     |  |
|               |                         |                         |                                        | $C_L=50 fF, V_{DD}=2.97 V, V_{DDD}=0.81 V$                          |     |      |     |  |
|               |                         | t(IO)in                 | 输入延时                                   | input characteristics at 1.8V and 2.5V                              | -   | 2    | ns  |  |
|               |                         |                         |                                        | are derated                                                         |     |      |     |  |
|               |                         |                         |                                        | $C_L=10pF,V_{DD}=3.3V$                                              | -   | 90   |     |  |
|               |                         | f <sub>max(IO)out</sub> | 最大频率(2)                                | $C_L=10pF,V_{DD}=2.5V$                                              | -   | 60   | MHz |  |
|               |                         |                         |                                        | $C_L=10pF,V_{DD}=1.8V$                                              | -   | 40   |     |  |
|               | 00/01                   |                         |                                        | $C_L=10pF,V_{DD}=3.3V$                                              | -   | 3.5  |     |  |
| 1             | (4mA)                   | t(IO)out                | 输出延时                                   | C <sub>L</sub> =10pF,V <sub>DD</sub> =2.5V                          | -   | 4.5  |     |  |
|               | (411174)                |                         |                                        | $C_L=10pF,V_{DD}=1.8V$                                              | -   | 6.74 | ne  |  |
|               |                         |                         |                                        | C <sub>L</sub> =50fF,V <sub>DD</sub> =2.97V,V <sub>DDD</sub> =0.81V |     |      | ns  |  |
|               | t <sub>(IO)in</sub> 输入延 | 输入延时                    | input characteristics at 1.8V and 2.5V | -                                                                   | 2   |      |     |  |
|               |                         |                         |                                        | are derated                                                         |     |      |     |  |
|               |                         |                         |                                        | $C_L=20pF,V_{DD}=3.3V$                                              | -   | 100  |     |  |
|               |                         | f <sub>max(IO)out</sub> | 最大频率(2)                                | $C_L=20pF,V_{DD}=2.5V$                                              | -   | 75   | MHz |  |
|               |                         |                         |                                        | $C_L=20pF,V_{DD}=1.8V$                                              | -   | 50   |     |  |
|               | 10                      |                         |                                        | $C_L=20pF,V_{DD}=3.3V$                                              | -   | 3.42 |     |  |
| 1             | (8mA)                   | t(IO)out                | 输出延时                                   | $C_L=20pF,V_{DD}=2.5V$                                              | -   | 4.73 |     |  |
|               | (oniA)                  |                         |                                        | $C_L=20pF,V_{DD}=1.8V$                                              | -   | 6.53 | ns  |  |
|               |                         |                         |                                        | $C_L=50 fF, V_{DD}=2.97 V, V_{DDD}=0.81 V$                          |     |      | 115 |  |
|               |                         | $t_{(IO)in}$            | 输入延时                                   | input characteristics at 1.8V and 2.5V                              | -   | 2    |     |  |
|               |                         |                         |                                        | are derated                                                         |     |      |     |  |
|               |                         |                         |                                        | $C_L=30pF,V_{DD}=3.3V$                                              | -   | 120  |     |  |
|               |                         | f <sub>max(IO)out</sub> | 最大频率(2)                                | $C_L=30pF,V_{DD}=2.5V$                                              | -   | 90   | MHz |  |
|               |                         |                         |                                        | $C_L=30pF,V_{DD}=1.8V$                                              | -   | 60   |     |  |
|               | 11                      |                         |                                        | $C_L=30pF,V_{DD}=3.3V$                                              | -   | 3.34 |     |  |
| 1             | (12mA)                  | t(IO)out                | 输出延时                                   | $C_L=3pF,V_{DD}=2.5V$                                               | -   | 4.26 |     |  |
|               | (12mA)                  |                         |                                        | $C_L=3pF,V_{DD}=1.8V$                                               | -   | 6.34 | ns  |  |
|               |                         |                         |                                        | C <sub>L</sub> =50fF,V <sub>DD</sub> =2.97V,V <sub>DDD</sub> =0.81V |     |      | 118 |  |
|               |                         | t(IO)in                 | 输入延时                                   | input characteristics at 1.8V and 2.5V                              | - 2 |      |     |  |
|               |                         |                         |                                        | are derated                                                         |     |      |     |  |

<sup>1.</sup> I/O端口的驱动能力可以通过DS\_CFGy和PMODEy[1:0]配置。参见N32WB452参考手册中有关GPIO端口配置寄存器的说明。

<sup>2.</sup> 最大频率在图 4-9定义。



#### 图 4-9 输入输出交流特性定义



图 4-10 传输延时



## 4.4.13NRST引脚特性

NRST引脚输入驱动使用CMOS工艺,内部集成一个不能断开的上拉电阻,R<sub>PU</sub>(参见表 4-33)。除非特别说明,表 4-33列出的参数是使用环境温度和供电电压符合表 4-8的条件测量得到。

表 4-33 NRST引脚特性

| 符号                                   | 参数                     | 条件                                   | 最小值     | 典型值 | 最大值     | 单位 |
|--------------------------------------|------------------------|--------------------------------------|---------|-----|---------|----|
| <b>V</b> (1)                         | NRST输入低电平电压            | $V_{\mathrm{DD}} = 3.3 \ \mathrm{V}$ | Vss     | 1   | 0.8     |    |
| V <sub>IL(NRST)</sub> <sup>(1)</sup> | INKS1 棚八似电干电压          | $V_{DD} = 1.8 \text{ V}$             | Vss     |     | 0.3*VDD | v  |
| V (1)                                | MDCT於 ) 宣中亚中国          | $V_{DD} = 3.3 \text{ V}$             | 2       | -   | VDD     | v  |
| V <sub>IH(NRST)</sub> <sup>(1)</sup> | NRST输入高电平电压            | $V_{DD} = 1.8 \text{ V}$             | 0.7*VDD |     | VDD     |    |
| V                                    | NRST施密特触发器电压迟滞         | $V_{DD} = 3.3 \text{ V}$             | 200     | -   | -       | mV |
| $V_{hys(NRST)}$                      | NKS1 施留特融及奋电压处荷        | $V_{DD} = 1.8 \text{ V}$             | 0.1*VDD |     |         | V  |
| R <sub>PU</sub>                      | 弱上拉等效电阻 <sup>(2)</sup> | $V_{DD} = 3.3 \text{ V}$             | 30      | 50  | 70      | ΚΩ |



| 符号                                   | 参数          | 条件 | 最小值 | 典型值 | 最大值 | 单位 |
|--------------------------------------|-------------|----|-----|-----|-----|----|
| $V_{F(NRST)}^{(1)}$                  | NRST输入滤波脉冲  | -  | -   | -   | 100 | ns |
| V <sub>NF(NRST)</sub> <sup>(1)</sup> | NRST输入非滤波脉冲 | -  | 300 | -   | -   | ns |

- 1. 由综合评估得出,不在生产中测试。
- 2. 上拉电阻是设计为一个真正的电阻串联一个可开关的PMOS实现。这个PMON/NMOS开关的电阻很小(约占10%)。

External reset circuit<sup>(1)</sup>

NRST<sup>(2)</sup>

Filter

Internal reset

图 4-11 建议的NRST引脚保护

- 1. 滤波作用。
- 2. 用户必须保证NRST引脚的电位能够低于表 4-33中列出的最大VIL(NRST)以下,否则MCU不能得到复位。

## 4.4.14TIM定时器特性

表 4-34、表 4-35、表 4-36和表 4-37列出的参数由综合评估得出。

有关输入输出复用功能引脚(输出比较、输入捕获、外部时钟、PWM输出)的特性详情,请见第4.4.12节。

| 符号                     | 参<br>数                             | 条件                               | 最小值     | 最大值              | 单位                   |
|------------------------|------------------------------------|----------------------------------|---------|------------------|----------------------|
|                        |                                    | -                                | 1       | 1                | t <sub>TIMxCLK</sub> |
| $t_{res(TIM)}$         | 定时器分辨时间                            | f <sub>TIMxCLK</sub> =<br>144MHz | 6.95    | -                | ns                   |
|                        |                                    | -                                | 0       | $f_{TIMxCLK}/2$  | MHz                  |
| $f_{EXT}$              | f <sub>EXT</sub> CH1至CH4的定时器外部时钟频率 |                                  | 0       | 72               | MHz                  |
| Res <sub>TIM</sub>     | 定时器分辨率                             | -                                | -       | 16               | bit                  |
|                        | 当选择了内部时钟时,16位计数器时钟                 | -                                | 1       | 65536            | $t_{TIMxCLK}$        |
| t <sub>COUNTER</sub>   | 当选择了内部的评的,10位计数器的评<br>周期           | f <sub>TIMxCLK</sub> =<br>144MHz | 0.00695 | 455              | μs                   |
|                        |                                    | -                                | -       | 65536 x<br>65536 | $t_{TIMxCLK}$        |
| t <sub>MAX_COUNT</sub> | 最大可能的计数                            | f <sub>TIMxCLK</sub> =<br>144MHz | -       | 29.8             | S                    |

表 4-34 TIM1/8特性<sup>(1)</sup>

1. 由综合评估得出,不在生产中测试。



#### 表 4-35 TIM2/3/4/5特性<sup>(1)</sup>

| 符号                     | 参<br>数                          | 条件                              | 最小<br>值 | 最大值                    | 单位                   |
|------------------------|---------------------------------|---------------------------------|---------|------------------------|----------------------|
|                        |                                 | -                               | 1       | -                      | $t_{TIMxCLK}$        |
| $t_{\rm res(TIM)}$     | 定时器分辨时间                         | f <sub>TIMxCLK</sub> =<br>72MHz | 13.9    | -                      | ns                   |
|                        |                                 | -                               | 0       | $f_{\text{TIMxCLK}}/2$ | MHz                  |
| $f_{EXT}$              | CH1至CH4的定时器外部时钟频率               | f <sub>TIMxCLK</sub> =<br>72MHz | 0       | 36                     | MHz                  |
| Res <sub>TIM</sub>     | 定时器分辨率                          | -                               | -       | 16                     | bit                  |
|                        | <br>  当选择了内部时钟时,16位计数器时钟周       | -                               | 1       | 65536                  | $t_{TIMxCLK}$        |
| t <sub>COUNTER</sub>   | 当选择 J 内部的 针的, 10位 I 效益的 针向<br>期 | f <sub>TIMxCLK</sub> =<br>72MHz | 0.0139  | 910                    | μs                   |
|                        |                                 | -                               | -       | 65536 x<br>65536       | t <sub>TIMxCLK</sub> |
| t <sub>MAX_COUNT</sub> | 最大可能的计数                         | f <sub>TIMxCLK</sub> =<br>72MHz | -       | 59.6                   | S                    |

1. 由综合评估得出,不在生产中测试。

表 4-36 IWDG 最大和最小计数复位时间 (LSI = 40 KHz)

|       | I          | F 1 11:00             |                           | 37 |
|-------|------------|-----------------------|---------------------------|----|
| 预分频   | IWDG_PREDI | 最小值 <sup>(1)</sup>    | 最大值 <sup>(1)</sup>        | 单  |
| 1英刀 炒 | V.PD[2:0]  | IWDG_RELV.REL[11:0]=0 | IWDG_RELV.REL[11:0]=0xFFF | 位  |
| /4    | 000        | 0.1                   | 409.6                     |    |
| /8    | 001        | 0.2                   | 819.2                     |    |
| /16   | 010        | 0.4                   | 1638.4                    |    |
| /32   | 011        | 0.8                   | 3276.8                    | ms |
| /64   | 100        | 1.6                   | 6553.6                    |    |
| /128  | 101        | 3.2                   | 13107.2                   |    |
| /256  | 11x        | 6.4                   | 26214.4                   |    |

1. 由综合评估得出,不在生产中测试。

表 4-37 WWDG最大和最小计数复位时间(APB1 PCLK1 = 36MHz)

| 预分频 | WWDG_CFG.<br>TIMERB[1:0] | 最小值 <sup>(1)</sup><br>WWDG_CGF.W[6:0]=0x3F | 最大值 <sup>(1)</sup><br>WWDG_CFG.W[6:0]=0x7F | 单<br>位 |
|-----|--------------------------|--------------------------------------------|--------------------------------------------|--------|
| /1  | 00                       | 0.113                                      | 7.28                                       |        |
| /2  | 01                       | 0.227                                      | 14.56                                      |        |
| /3  | 10                       | 0.455                                      | 29.12                                      | ms     |
| /4  | 11                       | 0.910                                      | 58.25                                      |        |

1. 由综合评估得出,不在生产中测试。

# 4.4.15I2C接口特性

除非特别说明,表 4-38列出的参数是使用环境温度,f<sub>PCLK1</sub>频率和V<sub>DD</sub>供电电压符合表 4-8的条件测量得到。

N32WB452产品的I<sup>2</sup>C接口符合标准I<sup>2</sup>C通信协议,但有如下限制: SDA和SCL不是"真"开漏的引脚,当配置为开漏输出时,在引出脚和V<sub>DD</sub>之间的PMOS管被关闭,但仍然存在。

I<sup>2</sup>C接口特性列于表 4-38, 有关输入输出复用功能引脚(SDA和SCL)的特性详情,参见第4.4.12节。



| 寿   | 4-38        | I <sup>2</sup> C接 | 口特性  |
|-----|-------------|-------------------|------|
| AX. | <b>+</b> 70 | 1 ( ) TE          | HITT |

| 符号                         | 参数                     | 标准模   | 式(1)(2) | 快速模      | 式(1)(2) | 快速+模 | 式(1)(2) | 单位   |
|----------------------------|------------------------|-------|---------|----------|---------|------|---------|------|
| 42.2                       | <b>少</b> 叙             | 最小    | 最大      | 最小       | 最大      | 最小   | 最大      | 1 平位 |
| fscl                       | I2C 接口频率               | 0.0   | 100     | 0        | 400     | 0    | 1000    | KHz  |
| t <sub>h(STA)</sub>        | 开始条件保持时间               | 4.0   | -       | 0.6      | 1       | 0.26 | -       | μs   |
| $t_{w(SCLL)}$              | SCL 时钟低时间              | 4.7   | -       | 1.3      | 1       | 0.5  | -       | μs   |
| $t_{w(SCLH)}$              | SCL 时钟高时间              | 4.0   | -       | 0.6      | 1       | 0.26 | -       | μs   |
| $t_{su(STA)}$              | 重复的开始条件建立时间            | 4.7   | -       | 0.6      | -       | 0.26 | -       | μs   |
| $t_{h(SDA)}$               | SDA 数据保持时间             | -     | 3.4     | -        | 0.9     | -    | 0.4     | μs   |
| $t_{su(SDA)}$              | SDA 建立时间               | 250.0 | -       | 100      | -       | 50   | -       | ns   |
| $t_{r(SDA)} \\ t_{r(SCL)}$ | SDA 和 SCL 上升时间         | -     | 1000    | 20+0.1Cb | 300     | -    | 120     | ns   |
| $t_{f(SDA)}$ $t_{f(SCL)}$  | SDA 和 SCL 下降时间         | -     | 300     | 20+0.1Cb | 300     | -    | 120     | ns   |
| t <sub>su(STO)</sub>       | 停止条件建立时间               | 4.0   | -       | 0.6      | 1       | 0.26 | -       | μs   |
| t <sub>w(STO:STA)</sub>    | 停止条件至开始条件的时间(总线<br>空闲) | 4.7   | -       | 1.3      | -       | 0.5  | -       | μs   |
| Cb                         | 每条总线的容性负载              | -     | 400     | -        | 400     | -    | 100     | pf   |
| $t_{v(SDA)}$               | 数据有效时间                 | 3.45  | -       | 0.9      | -       | 0.45 | -       | μs   |
| t <sub>v</sub> (ACK)       | 应答有效时间                 | 3.45  | -       | 0.9      | -       | 0.45 | -       | μs   |

- 1. 由综合评估得出,不在生产中测试。
- 2. 为达到标准模式I<sup>2</sup>C的最大频率,fpcLKI必须大于2MHz。为达到快速模式I<sup>2</sup>C的最大频率,fpcLKI必须大于4MHz。

图 4-12 I<sup>2</sup>C总线交流波形和测量电路<sup>(1)</sup>



- 1. 测量点设置于CMOS电平: 0.3V<sub>DD</sub>和0.7V<sub>DD</sub>。
- 2. 上拉电阻阻值取决于I2C接口速度。
- 3. 电阻值取决于实际电气特性,可以不连接串行电阻,信号线直连。



## 4.4.16SPI/I<sup>2</sup>S接口特性

除非特别说明,表 4-39 和表 4-40 列出的SPI参数和表 4-41 列出的 $I^2S$ 参数是使用环境温度, $f_{PCLKx}$ 频率和  $V_{DD}$ 供电电压符合表 4-8的条件测量得到。

有关输入输出复用功能引脚(SPI的NSS、SCLK、MOSI、MISO,I<sup>2</sup>S的WS、CLK、SD)的特性详情,参见第4.4.12节。

表 4-39 SPI1特性<sup>(1)</sup>

| 符号                                        | 参数                         | 条件                            | 最小值                   | 最大值                   | 单位    |
|-------------------------------------------|----------------------------|-------------------------------|-----------------------|-----------------------|-------|
| $f_{SCLK}$                                |                            | 主模式                           | -                     | 36                    | MHz   |
| $1/t_{c(SCLK)}$                           | SPI时钟频率                    | 从模式                           | -                     | 36                    | MITIZ |
| $t_{r(SCLK)}$                             | SPI时钟上升和下降时间               | 负载电容: C=30pF                  | _                     | 6                     | ns    |
| t <sub>f(SCLK)</sub>                      |                            | -                             |                       |                       |       |
| DuCy(SCK)                                 | SPI从输入时钟占空比                | SPI从模式                        | 45                    | 55                    | %     |
| t <sub>su(NSS)</sub> (1)                  | NSS建立时间                    | 从模式                           | 4t <sub>PCLK</sub>    | -                     |       |
| $t_{h(NSS)}^{(1)}$                        | NSS保持时间                    | 从模式                           | $2t_{PCLK}$           | -                     |       |
| $t_{w(SCLKH)}^{(1)}$ $t_{w(SCLKL)}^{(1)}$ | SCLK高和低的时间                 | 主模式                           | t <sub>PCLK</sub> - 2 | t <sub>PCLK</sub> + 2 |       |
| t <sub>su(MI)</sub> <sup>(1)</sup>        | 数据输入建立时间                   | 主模式                           | 3.5                   | -                     |       |
| $t_{su(SI)}^{(1)}$                        | 1                          | 从模式                           | 3                     | -                     |       |
| t <sub>h(MI)</sub> <sup>(1)</sup>         | <ul><li>数据输入保持时间</li></ul> | 主模式                           | 3                     | -                     |       |
| $t_{h(SI)}^{(1)}$                         | 双加州八床行时间                   | 从模式                           | 3                     | -                     |       |
| t <sub>a(SO)</sub> (1)(2)                 | 数据输出访问时间                   | 从模式,f <sub>PCLK</sub> = 20MHz | 0                     | 3t <sub>PCLK</sub>    | ns    |
| tdis(SO) <sup>(1)(3)</sup>                | 数据输出禁止时间                   | 从模式                           | 2                     | 10                    |       |
| $t_{v(SO)}^{(1)}$                         | │<br>一 数据输出有效时间            | 从模式(使能边沿之后)                   | -                     | 12.5                  |       |
| $t_{v(MO)}^{(1)}$                         | 双项相凹自 从时间                  | 主模式(使能边沿之后)                   | -                     | 6.5                   |       |
| $t_{h(SO)}^{(1)}$                         |                            | 从模式(使能边沿之后)                   | 5                     | -                     |       |
| $t_{h(MO)}^{(1)}$                         | 数据输出保持时间                   | 主模式(使能边沿之后)                   | -0.5                  | -                     |       |



#### 表 4-40 SPI2/3特性<sup>(1)</sup>

| 符号                                                        | 参数                                     | 条件                                    |              | 最小值                   | 最大值                   | 单位  |
|-----------------------------------------------------------|----------------------------------------|---------------------------------------|--------------|-----------------------|-----------------------|-----|
| $f_{SCLK}$                                                | L. E. Lines, N.                        | 主模式                                   |              | -                     | 18                    | MHz |
| 1/t <sub>c(SCLK)</sub>                                    | SPI时钟频率                                | 从模式                                   |              | -                     | 18                    | MHZ |
| $\begin{array}{c} t_{r(SCLK)} \\ t_{f(SCLK)} \end{array}$ | SPI时钟上升和下降时间                           | 负载电容: C = 30pF                        |              | -                     | 8                     | ns  |
| DuCy(SCK)                                                 | SPI从输入时钟占空比                            | SPI从模式                                |              | 45                    | 55                    | %   |
| t <sub>su(NSS)</sub> (1)                                  | NSS建立时间                                | 从模式                                   |              | 4t <sub>PCLK</sub>    | -                     |     |
| $t_{h(NSS)}^{(1)}$                                        | NSS保持时间                                | 从模式                                   |              | $2t_{PCLK}$           | -                     |     |
| $t_{w(SCLKH)}^{(1)}$<br>$t_{w(SCLKL)}^{(1)}$              | SCLK高和低的时间                             | 主模式                                   |              | t <sub>PCLK</sub> - 2 | t <sub>PCLK</sub> + 2 |     |
|                                                           |                                        | <br>  主模式                             | SPI2         | 4                     | -                     |     |
| $t_{su(MI)}^{(1)}$                                        | <br>- 数据输入建立时间                         | 土俣八                                   | SPI3         | 5                     | -                     |     |
| $t_{su(SI)}^{(1)}$                                        | 数 加 制 八 连 五 时 问                        | <br>  从模式                             | SPI2         | 4                     | -                     |     |
| tsu(SI)                                                   |                                        | 外供其                                   | SPI3         | 5                     | -                     |     |
|                                                           |                                        | 主模式                                   | SPI2         | 2                     | _                     |     |
| $t_{h(MI)}^{(1)}$                                         | <br>- 数据输入保持时间                         | 工侠八                                   | SPI3         | 2.5                   |                       |     |
|                                                           | 数项型型/CMJ/LETTE                         | <br>  从模式                             | SPI2         | 2                     | _                     |     |
| th(SI) <sup>(1)</sup>                                     |                                        | //\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | SPI3         | 2                     |                       | ns  |
| $t_{a(SO)}^{(1)(2)}$                                      | 数据输出访问时间                               | 从模式,f <sub>PCLK</sub> = 20MHz         |              | 0                     | $3t_{PCLK}$           |     |
| $t_{\rm dis(SO)}^{(1)(3)}$                                | 数据输出禁止时间                               | 从模式                                   |              | 2                     | 10                    |     |
|                                                           |                                        | 从模式(使能边沿之后)                           | SPI2         | -                     | 13.5                  |     |
| $t_{v(SO)}^{(1)}$                                         | <br>- 数据输出有效时间                         | 州铁风(民能超祖之川)                           | SPI3         | -                     | 17.5                  |     |
|                                                           | 双油制田竹及町門                               | 主模式(使能边沿之后)                           | SPI2         | -                     | 6.5                   |     |
| $t_{v(MO)}^{(1)}$                                         |                                        | 工法人(区形处1日之归)                          | SPI3         | -                     | 9                     |     |
| $t_{h(SO)}^{(1)}$                                         | ************************************** | 从模式(使能边沿之后)                           | SPI2<br>SPI3 | 4                     | -                     |     |
| $t_{h(MO)}^{(1)}$                                         | 数据输出保持时间                               | 主模式(使能边沿之后)                           | SPI2<br>SPI3 | 1                     | -                     |     |

- 1. 由综合评估得出,不在生产中测试。
- 2. 最小值表示驱动输出的最小时间,最大值表示正确获得数据的最大时间。
- 3. 最小值表示关闭输出的最小时间,最大值表示把数据线置于高阻态的最大时间。



### 图 4-13 SPI时序图 – 从模式和CLKPHA=0



图 4-14 SPI时序图 - 从模式和CLKPHA=1<sup>(1)</sup>



1. 测量点设置于0.3V<sub>DD</sub>和0.7V<sub>DD</sub>。



#### 图 4-15 SPI时序图 - 主模式(1)



1. 测量点设置于0.3V<sub>DD</sub>和0.7V<sub>DD</sub>。



#### 表 4-41 I2S特性(1)

| 符号                         | 参数                                    | 条<br>件                         |                   | 最小值   | 最大值                  | 单<br>位 |
|----------------------------|---------------------------------------|--------------------------------|-------------------|-------|----------------------|--------|
| $f_{MCLK}$                 | I <sup>2</sup> S主时钟频率                 | 主模式                            |                   | -     | 256Fs <sup>(3)</sup> |        |
| $f_{CLK}$                  |                                       | 主模式(32bit)                     |                   | -     | 64*Fs <sup>(3)</sup> | MHz    |
| 1/t <sub>c(CLK)</sub>      | I <sup>2</sup> S时钟频率                  | 从模式(32bit)                     |                   | -     | 64*Fs <sup>(3)</sup> |        |
| DuCy(SCK)                  | I <sup>2</sup> S从输入时钟占空比              | I <sup>2</sup> S从模式            |                   | 30    | 70                   | %      |
| t <sub>r(CLK)</sub>        | I <sup>2</sup> S时钟上升和下降时间             | 负载电容: CL = 50pF                |                   | -     | 8                    |        |
| t <sub>v(WS)</sub> (1)     | WS有效时间                                | 主模式                            | I2S2              | 4.5   | -                    |        |
| t <sub>v</sub> (WS) \ /    | M 2. 日 XX 由1 由1                       | 工铁八                            | I2S3              | 6.5   | -                    |        |
| $t_{h(WS)}^{(1)}$          | WS保持时间                                | 主模式                            | I2S2              | 4.5   | _                    |        |
| en(ws)                     | 44 D NC14 h1 le1                      | 工沃工                            | I2S3              | 0.5   |                      |        |
| $t_{su(WS)}^{(1)}$         | WS建立时间                                | 从模式                            | I2S2              | 5.5   | -                    |        |
| -su(ws)                    | 11.DXE-32.11.1                        | 7/ D.Z.                        | I2S3              | 7     | -                    |        |
| $t_{h(WS)}^{(1)}$          | WS保持时间                                | 从模式                            | I2S2              | 1.5   | -                    |        |
| -11(W3)                    | 11 D MC14 41 L4                       | 7/ D.Z.                        | I2S3              | 2.5   | -                    |        |
| $t_{w(CLKH)}^{(1)}$        |                                       | ). htt - D                     |                   | 312.5 | -                    |        |
| t <sub>w(CLKL)</sub> (1)   | CLK高和低的时间                             | 主模式,f <sub>PCLK</sub> = 16MHz, | 音频48kHz           | 345   | _                    |        |
|                            |                                       | → +☆ //_ □□                    | I2S2              | 4     | -                    | 1      |
| $t_{su(SD\_MR)}^{(1)}$     | ** 把 **                               | 主接收器                           | I2S3              | 5     | -                    |        |
|                            | 数据输入建立时间                              | 11 +> 16 00                    | I2S2              | 4     | -                    | ns     |
| $t_{su(SD\_SR)}{}^{(1)}$   |                                       | 从接收器                           | I2S3              | 4.5   | -                    | 1      |
|                            |                                       | ∑ 12-11. HH                    | I2S2              | 1.5   |                      | 1      |
| $t_{h(SD\_MR)}{}^{(1)(2)}$ | W 1046 > 1014 = 130                   | 主接收器                           | I2S3              | 1.5   | i -                  |        |
|                            | 数据输入保持时间                              | 11 4-2-11, 111                 | I2S2              | 1.5   |                      | 1      |
| $t_{h(SD\_SR)}{}^{(1)(2)}$ |                                       | 从接收器                           | I2S3              | 1.5   | i -                  |        |
|                            | W. 10 to 11 to 21 o 1 20              | 从发送器(使能边沿之                     | I <sup>2</sup> S2 | -     | 14                   | 1      |
| $t_{v(SD\_ST)}{}^{(1)(2)}$ | 数据输出有效时间                              | 后)                             | I <sup>2</sup> S3 | -     | 16.5                 | 1      |
|                            | W. 10 to 11 to 12 o                   | 从发生器(使能边沿之                     | I <sup>2</sup> S2 | 3.5   | -                    | 1      |
| $t_{h(SD\_ST)}^{(1)}$      | 数据输出保持时间                              | 后)                             | I <sup>2</sup> S3 | 4.5   | -                    | 1      |
|                            | ************************************* | 主发生器(使能边沿之                     | I2S2              | -     | 6.5                  | 1      |
| $t_{v(SD\_MT)}^{(1)(2)}$   | 数据输出有效时间                              | 后)                             | I2S3              | -     | 6                    | 1      |
|                            | 粉捏於山伊桂叶包                              | 主发生器(使能边沿之                     | I2S2              | -0.5  | -                    |        |
| $t_{h(SD\_MT)}{}^{(1)}$    | 数据输出保持时间                              | 后)                             | I2S3              | -0.5  | -                    |        |

- 1. 由综合评估得出,不在生产中测试。
- 2. 依赖于fpclk。例如,如果fpclk=8MHz,则Tpclk=1/fpclk=125ns。
- 3. 音频采样频率。



#### 图 4-16 I2S从模式时序图(飞利浦协议)(1)



- 1. 测量点设置于0.3V<sub>DD</sub>和0.7V<sub>DD</sub>。
- 2. 前一字节的最低位发送/接收。在第一个字节之前没有这个最低位的发送/接收。



图 4-17 I<sup>2</sup>S主模式时序图(飞利浦协议)<sup>(1)</sup>

- 1. 测量点设置于0.3V<sub>DD</sub>和0.7V<sub>DD</sub>。
- 2. 前一字节的最低位发送/接收。在第一个字节之前没有这个最低位的发送/接收。

## 4.4.17SD/SDIO主机接口特性

除非特别说明,表 4-42列出的参数是使用环境温度、 $f_{PCLKx}$ 频率和 $V_{DD}$ 供电电压符合表 4-8的条件测量得到。有关输入输出复用功能引脚(D[7:0]、CMD、CK)的特性详情,参见第4.4.12节。



### 图 4-18 SDIO高速模式



图 4-19 SD默认模式



表 4-42 SD/MMC接口特性

| 符号                | 参数                   | 条件        | 最小值 | 最大值 | 单位  |  |  |  |  |
|-------------------|----------------------|-----------|-----|-----|-----|--|--|--|--|
| $f_{PP}$          | 数据传输模式下的时钟频率         | CL ≤ 30pF | 0   | 48  | MHz |  |  |  |  |
| $t_{W(CKL)}$      | 时钟低时间,fpp = 16 MHz   | CL ≤ 30pF | 32  | -   |     |  |  |  |  |
| $t_{W(CKH)}$      | 时钟高时间,Clock low time | CL ≤ 30pF | 30  | -   | ns  |  |  |  |  |
| $t_{\rm r}$       | 时钟上升时间               | CL ≤ 30pF | -   | 6   | 113 |  |  |  |  |
| $t_{\mathrm{f}}$  | 时钟下降时间               | CL ≤ 30pF | -   | 6   |     |  |  |  |  |
| CMD、D输入           | CMD、D输入(参照CK)        |           |     |     |     |  |  |  |  |
| $t_{ m ISU}$      | 输入建立时间               | CL ≤ 30pF | 1   | -   | ns  |  |  |  |  |
| $t_{\mathrm{IH}}$ | 输入保持时间               | CL ≤ 30pF | 1   | -   | 118 |  |  |  |  |
| 在MMC和SD           | 高速模式CMD、D输出(参照CK)    |           |     |     |     |  |  |  |  |
| $t_{OV}$          | 输出有效时间               | CL ≤ 30pF | -   | 6   | ns  |  |  |  |  |
| $t_{OH}$          | 输出保持时间               | CL ≤ 30pF | 0   | -   | 118 |  |  |  |  |
| 在SD默认模式           | 式CMD、D输出(参照CK)       |           |     |     |     |  |  |  |  |
| t <sub>OVD</sub>  | 输出有效默认时间             | CL ≤ 30pF | -   | 8   | ns  |  |  |  |  |
| t <sub>OHD</sub>  | 输出保持默认时间             | CL ≤ 30pF | -1  | -   | 115 |  |  |  |  |



### 4.4.18USB特性

USB(全速)接口已通过USB-IF认证。

#### 表 4-43 USB启动时间

| 符号                       | 参数         | 最大值 | 单位 |
|--------------------------|------------|-----|----|
| t <sub>STARTUP</sub> (1) | USB收发器启动时间 | 1   | μs |

1. 由综合评估得出,不在生产中测试。

#### 表 4-44 USB直流特性

| 符号                      | 参数                     | 条件                                                   | 最小值(1)      | 最大值(1) | 单<br>位 |
|-------------------------|------------------------|------------------------------------------------------|-------------|--------|--------|
| 输入电平                    |                        |                                                      |             |        |        |
| $V_{\mathrm{DD}}$       | USB操作电压 <sup>(2)</sup> | -                                                    | $3.0^{(3)}$ | 3.6    | V      |
| $V_{\mathrm{DI}^{(4)}}$ | 差分输入灵敏度                | I(USBDP, USBDM)                                      | 0.2         | ı      |        |
| $V_{\text{CM}}^{(4)}$   | 差分共模范围                 | 包含VDI范围                                              | 0.8         | 2.5    | V      |
| $V_{SE}^{(4)}$          | 单端接收器阀值                | -                                                    | 1.3         | 2.0    |        |
| 输出电平                    |                        |                                                      |             |        |        |
| $V_{OL}$                | 静态输出低电平                | 1.5kΩ的RL接至3.6V <sup>(5)</sup>                        | -           | 0.3    | V      |
| $V_{\mathrm{OH}}$       | 静态输出高电平                | 15kΩ的R <sub>L</sub> 接至V <sub>SS</sub> <sup>(5)</sup> | 2.8         | 3.6    | V      |

- 1. 所有的电压测量都是以设备端地线为准。
- 2. 为了与USB2.0全速电气规范兼容,USB操作电压为3.0~3.6V电压。
- 3. N32WB452系列产品的正确USB功能可以在2.7V得到保证,而不是在2.7~3.0V电压范围下降级的电气特性。
- 4. 由综合评估保证,不在生产中测试。
- 5. RL是连接到USB驱动器上的负载。

图 4-20 USB时序: 数据信号上升和下降时间定义



表 4-45 USB全速电气特性

| 符<br>号           | 参数                  | 条件                      | 最小值(1) | 最大值 <sup>(1)</sup> | 单<br>位 |
|------------------|---------------------|-------------------------|--------|--------------------|--------|
| $t_{\rm r}$      | 上升时间(2)             | CL ≤ 50pF               | 4      | 20                 | ns     |
| $t_{\mathrm{f}}$ | 下降时间 <sup>(2)</sup> | CL ≤ 50pF               | 4      | 20                 | ns     |
| $t_{rfm}$        | 上升下降时间匹配            | $t_{ m r}$ / $t_{ m f}$ | 90     | 110                | %      |
| $V_{CRS}$        | 输出信号交叉电压            | -                       | 1.3    | 2.0                | V      |
| Rs               | 输出串联匹配电阻            | 需匹配电阻外置,靠近芯片引<br>脚      | 27     | 39                 | Ohm    |

- 1. 由综合评估得出,不在生产中测试。
- 2. 测量数据信号从10%至90%。更多详细信息,参见USB规范第7章(2.0版)。



## 4.4.19数字视频端口(DVP)接口特性

表 4-46展示了DVP接口信号的特性,图 4-21显示了相关的时序。

#### 图 4-21 DVP接口时序图



表 4-46 DVP信号动态特性

| 符号                       | 参数                | 条件 | 最小值 | 最大值 | 单位  |
|--------------------------|-------------------|----|-----|-----|-----|
| PCLK                     | 像素时钟输入            | -  | 0   | 24  | MHz |
| Dpixel                   | 像素时钟输入占空比         | -  | 30% | 70% | -   |
| $t_{su(DATA)}$           | 数据输入建立时间          | -  | 4   | 1   |     |
| $t_{h(DATA)}$            | 数据保持时间            | -  | 5   | ı   |     |
| t <sub>su(HSYNC)</sub> , | HSYNC输入建立时间       | -  | 6.5 | -   | ns  |
| t <sub>su(VSYNC)</sub>   | VSYNC输入建立时间       | -  | 6   |     |     |
| th(HSYNC),<br>th(VSYNC)  | HSYNC/VSYNC输入保持时间 | -  | 3.5 | -   |     |

# 4.4.20控制器局域网络(CAN)接口特性

有关输入输出复用功能引脚(CAN\_TX和CAN\_RX)的特性详情,请见第4.4.12节。

## 4.4.2112位模数转换器(ADC)电气参数

除非特别说明,表 4-47的参数是使用符合表 4-8的条件的环境温度、 $f_{HCLK}$ 频率和 $V_{DDA}$ 供电电压测量得到。 注意: 建议在每次上电时执行一次校准。



#### 表 4-47 ADC特性

| 符号                               | 参数             | 条件                                         | 最小值                                                   | 典型值 | 最大值                 | 单位                 |
|----------------------------------|----------------|--------------------------------------------|-------------------------------------------------------|-----|---------------------|--------------------|
| $V_{\mathrm{DDA}}$               | 供电电压           | -                                          | 1.8                                                   | -   | 3.6                 | V                  |
| $V_{REF+}$                       | 正参考电压          | -                                          | 1.8                                                   | -   | $V_{DDA}$           | ·                  |
| $f_{ADC}$                        | ADC时钟频率        | -                                          | -                                                     | -   | 72                  | MHz                |
|                                  | 采样速率           | 1.8V ≤ V <sub>DD</sub> ≤ 3.6V,<br>分辨率12bit | 0.01 <sup>(2)</sup>                                   | -   | 5.14 <sup>(1)</sup> | MHz                |
| f <sub>s</sub> (2)               |                | 1.8V ≤ V <sub>DD</sub> ≤ 3.6V,<br>分辨率10bit | 0.012(2)                                              |     | 6 <sup>(1)</sup>    |                    |
| I <sub>S</sub> (-/               |                | 1.8V ≤ V <sub>DD</sub> ≤ 3.6V,<br>分辨率8bit  | 0.014 <sup>(2)</sup>                                  |     | 7.2 <sup>(1)</sup>  |                    |
|                                  |                | 1.8V ≤ V <sub>DD</sub> ≤ 3.6V,<br>分辨率6bit  | 0.0175 <sup>(2)</sup>                                 |     | 9(1)                |                    |
| $V_{AIN}$                        | 转换电压范围(3)      | -                                          | 0(Vss <sub>A</sub> 或V <sub>REF</sub><br>连接到地)         | -   | $V_{REF+}$          | V                  |
|                                  | 采样开关电阻         | 快速通道,<br>3.6V电压条件下                         | -                                                     | -   | 80                  | Ω                  |
| R <sub>ADC</sub> (2)             |                | 快速通道,<br>1.8V电压条件下                         |                                                       |     | 110                 | Ω                  |
| KADC                             |                | 慢速通道,<br>3.6V电压条件下                         |                                                       |     | 265                 | Ω                  |
|                                  |                | 慢速通道,<br>1.8V电压条件下                         | -                                                     | -   | 430                 | Ω                  |
| $C_{ADC}^{(2)}$                  | 内部采样和保持电容      | -                                          | -                                                     | 5   |                     | pF                 |
| SNDR                             | 信噪失真率          | -                                          | -                                                     | 65  |                     | dBFS               |
| $T_{cal}$                        | 校准时间           | -                                          | 82                                                    |     | $1/f_{ADC}$         |                    |
| (2)                              | 采样时间           | f <sub>ADC</sub> = 72 MHz<br>(快速通道)        | 0.0208                                                | -   | 8.35                | NG.                |
| $t_{\mathrm{S}}$                 |                | f <sub>ADC</sub> = 72 MHz<br>(慢速通道)        | 0.0625                                                | -   | 8.35                | us                 |
| Ts <sup>(2)</sup>                | 采样周期           | 快速通道                                       | 1.5                                                   | -   | 601.5               | 1/f <sub>ADC</sub> |
|                                  |                | 慢速通道                                       | 4.5                                                   | -   | 601.5               |                    |
| t <sub>STAB</sub> <sup>(2)</sup> | 上电时间           | -                                          | 6                                                     | 10  | 20                  | μs                 |
| t <sub>CONV</sub> (2)            | 总的转换时间(包括采样时间) | -                                          | 8~614 (采样 T <sub>S</sub> + 逐步逼近<br>6.5/8.5/10.5/12.5) |     |                     | 1/f <sub>ADC</sub> |

- 1. 仅快速通道支持。
- 2. 由综合评估得出,不在生产中测试。
- 3. 依据不同的封装,V<sub>REF+</sub>可以在内部连接到V<sub>DDA</sub>, V<sub>REF-</sub>可以在内部连接到V<sub>SSA</sub>。

公式1:最大RAIN公式

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times ln(2^{N+2})} - R_{ADC}$$

上述公式(公式1)用于决定最大的外部阻抗,使得误差可以小于1/4 LSB。其中N=12(表示12位分辨率)。

表 4-48 ADC采样时间<sup>(1)(2)</sup>

| 输入   | 分辨率    | Rin (kΩ) | 最小采样时<br>间的典型值<br>(ns) | 输入   | 分辨率    | Rin (kΩ) | 最小采样时<br>间的典型值<br>(ns) |
|------|--------|----------|------------------------|------|--------|----------|------------------------|
| 快速通道 | 12-bit | 0        | 11                     | 慢速通道 | 12-bit | 0        | 19                     |
|      |        | 0.05     | 12                     |      |        | 0.05     | 21                     |
|      |        | 0.1      | 14                     |      |        | 0.1      | 23                     |
|      |        | 0.2      | 20                     |      |        | 0.2      | 30                     |
|      |        | 0.5      | 38                     |      |        | 0.5      | 48                     |



| 输入   | 分辨率    | Rin (kΩ) | 最小采样时<br>间的典型值<br>(ns) | 输入   | 分辨率    | Rin (kΩ) | 最小采样时<br>间的典型值<br>(ns) |
|------|--------|----------|------------------------|------|--------|----------|------------------------|
|      |        | 1        | 64                     |      |        | 1        | 77                     |
|      |        | 5        | 276                    |      |        | 5        | 310                    |
|      |        | 10       | 543                    |      |        | 10       | 607                    |
|      |        | 20       | 1082                   |      |        | 20       | 1207                   |
|      |        | 50       | 2788                   |      |        | 50       | 3144                   |
|      |        | 100      | 6162                   |      |        | 100      | 8244                   |
|      |        | 0        | 10                     |      |        | 0        | 17                     |
|      |        | 0.05     | 11                     |      |        | 0.05     | 18                     |
|      |        | 0.1      | 13                     |      |        | 0.1      | 20                     |
|      |        | 0.2      | 17                     |      |        | 0.2      | 25                     |
|      |        | 0.5      | 32                     |      |        | 0.5      | 40                     |
| 快速通道 | 10-bit | 1        | 54                     | 慢速通道 | 10-bit | 1        | 64                     |
|      |        | 5        | 229                    |      |        | 5        | 257                    |
|      |        | 10       | 448                    |      |        | 10       | 499                    |
|      |        | 20       | 888                    |      |        | 20       | 983                    |
|      |        | 50       | 2223                   |      |        | 50       | 2457                   |
|      |        | 100      | 4500                   |      |        | 100      | 5001                   |
|      |        | 0        | 9                      |      |        | 0        | 14                     |
|      |        | 0.05     | 10                     |      |        | 0.05     | 16                     |
|      |        | 0.1      | 11                     |      |        | 0.1      | 17                     |
|      |        | 0.2      | 14                     |      |        | 0.2      | 21                     |
|      |        | 0.5      | 26                     |      |        | 0.5      | 33                     |
| 快速通道 | 8-bit  | 1        | 43                     | 慢速通道 | 8-bit  | 1        | 52                     |
|      |        | 5        | 183                    |      |        | 5        | 206                    |
|      |        | 10       | 358                    |      |        | 10       | 399                    |
|      |        | 20       | 707                    |      |        | 20       | 783                    |
|      |        | 50       | 1759                   |      |        | 50       | 1941                   |
|      |        | 100      | 3523                   |      |        | 100      | 3887                   |
|      |        | 0        | 8                      |      |        | 0        | 12                     |
|      |        | 0.05     | 8                      |      |        | 0.05     | 13                     |
|      |        | 0.1      | 9                      |      |        | 0.1      | 14                     |
|      |        | 0.2      | 12                     |      |        | 0.2      | 17                     |
|      |        | 0.5      | 20                     |      |        | 0.5      | 25                     |
| 快速通道 | 6-bit  | 1        | 33                     | 慢速通道 | 6-bit  | 1        | 40                     |
|      |        | 5        | 138                    |      |        | 5        | 156                    |
|      |        | 10       | 269                    |      |        | 10       | 300                    |
|      |        | 20       | 531                    |      |        | 20       | 588                    |
|      |        | 50       | 1316                   |      |        | 50       | 1451                   |
|      |        | 100      | 2627                   |      |        | 100      | 2894                   |

- 1. 由设计保证,不在生产中测试。
- 2. 典型值是在T<sub>A</sub>=25℃、V<sub>DD</sub>=3.3V时测试得到。



### 表 4-49 ADC精度 - 局限的测试条件 $^{(1)(2)}$

| 符号                | 参<br>数 | 测试条件                                                             | 典型值       | 最大值 | 单位  |
|-------------------|--------|------------------------------------------------------------------|-----------|-----|-----|
| ET <sup>(4)</sup> | 综合误差   | $f_{HCLK} = 72 \text{ MHz},$                                     | ±1.3      | -   |     |
| EO <sup>(4)</sup> | 偏移误差   | $f_{ADC} = 72 \text{ MHz}, \text{ sample}$                       | <u>±1</u> | -   |     |
| ED                | 微分线性误差 | rate=1.75M sps, $V_{DDA} = 3.3V$ , $T_A$                         | ±0.7      | -   | LSB |
| EL                | 积分线性误差 | = 25 ℃<br>测量是在ADC校准之后进行的<br>V <sub>REF+</sub> = V <sub>DDA</sub> | ±0.8      | -   | _32 |

- 1. ADC的直流精度数值是在经过内部校准后测量的。
- 2. ADC精度与反向注入电流的关系:需要避免在任何标准的模拟输入引脚上注入反向电流,因为这样会显著地降低另一个模拟输入引脚上正在进行的转换精度。建议在可能产生反向注入电流的标准模拟引脚上,(引脚与地之间)增加一个肖特基二极管。
- 3. 如何正向的注入电流,只要处于第4.4.12节中给出的 $I_{INJ(PIN)}$ 和 $\Sigma I_{INJ(PIN)}$ 范围之内,就不会影响ADC精度。
- 4. 由综合评估保证,不在生产中测试。

#### 图 4-22 ADC精度特性





### 图 4-23 使用ADC典型的连接图



- 1. 有关RAIN、RADC和CADC的数值,参见表 4-47。
- 注: Cparasitic表示PCB(与焊接和PCB布局质量相关)与焊盘上的寄生电容(大约7pF)。较大的Cparasitic数值将降低转换的精度,解决的办法是减小fadc。

### PCB设计建议

依据 $V_{REF+}$ 是否与 $V_{DDA}$ 相连,电源的去藕必须按照图 4-24或图 4-25连接。图中的10nF电容必须是瓷介电容 (好的质量),它们应该尽可能地靠近MCU芯片。

VREF+
See (1)

VDDA

VSSA/VREFSee (1)

图 4-24 供电电源和参考电源去藕线路(VREF+未与VDDA相连)

1. VREF+和VREF-输入只出现在100脚以上的产品。



### 图 4-25 供电电源和参考电源去藕线路(VREF+与VDDA相连)



1. V<sub>REF+</sub>和V<sub>REF</sub>-输入只出现在100脚以上的产品。

## 4.4.2212位数模转换器(DAC)电气参数

除非特别说明,表 4-50的参数是使用符合表 4-8的条件的环境温度、 $f_{HCLK}$ 频率和 $V_{DDA}$ 供电电压测量得到。



### 表 4-50 DAC特性

|                       |                                                                        | 最小      | 典型        |                             |      |                                                                                   |  |
|-----------------------|------------------------------------------------------------------------|---------|-----------|-----------------------------|------|-----------------------------------------------------------------------------------|--|
| 符号                    | 参数                                                                     | 取小<br>值 | 典型<br>值   | 最大值                         | 单位   | 注释                                                                                |  |
| $V_{DDA}$             | 模拟供电电压                                                                 | 2.4     | -         | 3.6                         | V    | -                                                                                 |  |
| $V_{DDD}$             | 数字供电电压                                                                 | 1.0     | 1.1       | 1.2                         | V    | -                                                                                 |  |
| $V_{REF+}$            | 参考电压                                                                   | 2.4     | -         | 3.6                         | V    | V <sub>REF+</sub> 必须始终低于V <sub>DDA</sub>                                          |  |
| $V_{SSA}$             | 地线                                                                     | 0       | -         | 0                           | V    | -                                                                                 |  |
| $R_{\rm L}$           | 缓冲器打开时的负载电阻                                                            | 5       | -         | -                           | ΚΩ   | DAC_OUT和Vssa之间的最小<br>负载电阻                                                         |  |
| $C_L$                 | 负载电容                                                                   | 1       | -         | 50                          | pF   | 在DAC_OUT引脚上的最大电容                                                                  |  |
| DAC_OUT<br>最小         | 缓冲器打开时的<br>DAC_OUT电压                                                   | 0.2     | -         | -                           | V    | 给出了最大的DAC输出跨度<br>当V <sub>REF+</sub> =3.6V 对应于 12 位<br>输入数值                        |  |
| DAC_OUT               | 缓冲器打开时的<br>DAC_OUT电压                                                   | -       | -         | V <sub>REF+</sub> - 0.2     | V    | - 棚八数恒<br>0x0E0~0xF1C,<br>当V <sub>REF+</sub> =2.4V 对应于 12 位                       |  |
| 最大                    | 缓冲器关闭时的<br>DAC_OUT电压                                                   | -       | -         | V <sub>REF+</sub> –<br>5LSB | v    | 输入数值<br>0x155~0xEAB。                                                              |  |
|                       | 在静止模式(待机模                                                              | -       | 425       | 600                         |      | 无负载,输入中值0x800                                                                     |  |
| $I_{DD}$              | 式)DAC 直流消耗<br>(V <sub>DDD</sub> +V <sub>DDA</sub> +V <sub>REF+</sub> ) | -       | 500       | 700                         | μΑ   | 无负载,当V <sub>REF+</sub> =3.6V时输<br>入最大值                                            |  |
| ${ m I}_{ m DDQ}$     | 在断电模式DAC直流消耗<br>(Vdd+Vdda+V <sub>REF+</sub> )                          | -       | 5         | 350                         | nA   | 无负载                                                                               |  |
|                       | 在断电模式DAC直流消耗<br>(V <sub>DDA+</sub> V <sub>REF+</sub> )                 | -       | 5         | 200                         |      |                                                                                   |  |
| DNL                   | 非线性失真(2个连续代码                                                           | -       | ±0.5      | -                           | LSB  | DAC配置为10位(始终是<br>B1=B0=0)                                                         |  |
| DNL                   | 间的偏差)                                                                  |         | <u>+2</u> |                             | LSB  | DAC配置为12位                                                                         |  |
| INL                   | 非线性积累(在代码i时测量的数值与代码0和代码4095 之间的连线间的偏差)                                 | -       | ±6        | -                           | LSB  | DAC配置为12位                                                                         |  |
|                       | 偏移误差(代码0x800时测                                                         | -       | ±10       | -                           | mV   | DAC配置为12位                                                                         |  |
| 偏移                    | 量的数值与理想数值<br>V <sub>REF+</sub> /2 之间的偏差)                               | -       | ±12       | -                           | LSB  | V <sub>REF+</sub> =3.6V时,DAC配置为12<br>位                                            |  |
| 增益误差                  | 增益误差                                                                   | ı       | ±0.5      | -                           | %    | DAC配置为12位                                                                         |  |
| 放大器<br>增益             | 开环时放大器的增益                                                              | 80      | 85        | -                           | dB   | 5kΩ的负载(最大负载),输入<br>中值为0x800                                                       |  |
| t <sub>SETTLING</sub> | 设置时间(全范围: 10位输入代码从最小值转变为最大值,DAC_OUT达到其终值的±1 LSB)                       | -       | 5         | 7                           | μs   | $\begin{aligned} C_{LOAD} &\leq 50 pF \\ R_{LOAD} &\geq 5 k \Omega \end{aligned}$ |  |
| 更新速率                  | 当输入代码为较小变化时<br>(从数值i变到i+1LSB),得<br>到正确DAC_OUT的最大<br>频率                 | -       | -         | 1                           | MS/s | $\begin{aligned} C_{LOAD} &\leq 50 pF \\ R_{LOAD} &\geq 5 k \Omega \end{aligned}$ |  |
| t <sub>WAKEUP</sub>   | 从关闭状态唤醒的时间(设<br>置DAC控制寄存器中的<br>CHxEN)                                  | -       | 6.5       | 10                          | μѕ   | C <sub>LOAD</sub> ≤ 50pF,R <sub>LOAD</sub> ≥ 5kΩ<br>输入代码介于最小和最大可<br>能数值之间         |  |
| PSRR+                 | 供电抑制比(相对于<br>V <sub>DD</sub> 33A)(静态直流测量)                              | -       | -67       | -40                         | dB   | 没有R <sub>LOAD</sub> ,C <sub>LOAD</sub> ≤ 50pF                                     |  |



### 4.4.23温度传感器(TS)特性

除非特别说明,表 4-51的参数是使用符合表 4-8的条件的环境温度、fHCLK频率和VDDA供电电压测量得到。

表 4-51 温度传感器特性

| 符号                       | 参数              | 最小<br>值 | 典型<br>值 | 最大<br>值 | 单位   |
|--------------------------|-----------------|---------|---------|---------|------|
| $T_{L}^{(1)}$            | Vsense相对于温度的线性度 | -       | ±1      | ±4      | C    |
| Avg_Slope <sup>(1)</sup> | 平均斜率            | -3.7    | -4.1    | -       | mV/℃ |
| $V_{30}^{(1)}$           | 在30℃时的电压        | -       | 1.32    | -       | V    |
| tstart <sup>(1)</sup>    | 建立时间            | -       | 10      | -       | μs   |
| $T_{S\_temp}^{(2)(3)}$   | 当读取温度时,ADC采样时间  | 8.3     | -       | -       | μs   |

- 1. 由综合评估得出,不在生产中测试。
- 2. 由综合评估得出,不在生产中测试。
- 3. 最短的采样时间可以由应用程序通过多次循环决定。

## 4.4.24 SMT焊接温度特性

N32WB452系列SMT焊接温度特性曲线请参考图 4-26,详细SMT焊接工艺请参考行业标准: IPC/JEDEC J-STD-020E。



### 图 4-26 SMT焊接温度特性曲线图





## 封装尺寸

## 5.1 QFN48

图 5-1 QFN48封装尺寸



|                    |            | SYMBOL | MIN       | NOM   | MAX  |
|--------------------|------------|--------|-----------|-------|------|
| TOTAL THICKNESS    |            | A      | 0.7       | 0.75  | 0.8  |
| STAND OFF          |            | A1     | 0 0.02    |       | 0.05 |
| MOLD THICKNESS     | A2         |        | 0.55      |       |      |
| L/F THICKNESS      |            | A3     | 0.203 REF |       |      |
| LEAD WIDTH         |            | ь      | 0.15      | 0.2   | 0.25 |
| BODY SIZE          | X          | D      | 6 BSC     |       |      |
| BOOT SIZE          | Y          | E      |           | 6 BSC |      |
| LEAD PITCH         |            | e      | 0.4 BSC   |       |      |
| EP SIZE            | ×          | D2     | 4.5       | 4.6   | 4.7  |
| Er SIZE            | Y          | E2     | 4.5       | 4.6   | 4.7  |
| LEAD LENGTH        |            | L      | 0.3       | 0.4   | 0.5  |
| LEAD TIP TO EXPOSE | D PAD EDGE | K      | 0.3 REF   |       |      |
| PACKAGE EDGE TOLE  | RANCE      | aaa    | 0.1       |       |      |
| MOLD FLATNESS      |            | ccc    | 0.1       |       |      |
| COPLANARITY        | eee        | 0.08   |           |       |      |
| LEAD OFFSET        | bbb        | 0.07   |           |       |      |
| EXPOSED PAD OFFSE  | fff        |        | 0.1       |       |      |

1.REFER TO JEDEC MO-220; 2.COPLANARITY APPLIES TO LEADS, CORNER LEADS AND DIE ATTACH PAD; 3.BAN TO USE THE LEVEL 1 ENVIRONMENT-RELATED SUBSTANCES; 4.FINISH:Cu/EP \*Sn8-208



## 5.2 QFN64

### 图 5-2 QFN64封装尺寸



| SYMBOL | MI       | LLIMET   | ER    |  |  |
|--------|----------|----------|-------|--|--|
| SYMBOL | MIN      | NOM      | MAX   |  |  |
| A      | 0.85     | 0.90     | 0.95  |  |  |
| A1     | 0        | 0.02     | 0.05  |  |  |
| b      | 0. 15    | 0. 20    | 0. 25 |  |  |
| b1     |          | 0. 14REF | 7     |  |  |
| с      |          | 0. 20REF | 7     |  |  |
| D      | 7. 90    | 8.00     | 8. 10 |  |  |
| D2     | 6. 40    | 6. 50    | 6.60  |  |  |
| е      | 0. 40BSC |          |       |  |  |
| Nd     | 6        | 6. 00BSC | -     |  |  |
| Е      | 7. 90    | 8.00     | 8. 10 |  |  |
| E2     | 6. 40    | 6. 50    | 6.60  |  |  |
| Ne     | 6        | . 00BSC  |       |  |  |
| L      | 0.40     | 0.40     | 0.45  |  |  |
| K      | 0. 35REF |          |       |  |  |
| h      | 0.30     | 0.35     | 0.40  |  |  |



## 5.3 QFN88

图 5-3 QFN88封装尺寸



| SYMBOL           | MILLIMETER |         |       |  |  |
|------------------|------------|---------|-------|--|--|
| SIMDUL           | MIN        | NOM     | MAX   |  |  |
|                  | 0.70       | 0.75    | 0.80  |  |  |
| A                | 0.80       | 0.85    | 0. 90 |  |  |
|                  | 0.85       | 0. 90   | 0. 95 |  |  |
| A1               | 0          | 0. 02   | 0. 05 |  |  |
| b                | 0. 15      | 0. 20   | 0. 25 |  |  |
| b1               |            | 0. 10RE | F     |  |  |
| С                | 0.18       | 0. 20   | 0. 25 |  |  |
| D                | 9. 90      | 10.00   | 10.10 |  |  |
| D2               | 6. 64      | 6.74    | 6.84  |  |  |
| e                | (          | . 40BSC |       |  |  |
| Nd               | 8          | . 40REF |       |  |  |
| Е                | 9. 90      | 10.00   | 10.10 |  |  |
| E2               | 6. 64      | 6.74    | 6.84  |  |  |
| Ne               | 8          | . 40REF |       |  |  |
| L                | 0.30       | 0.40    | 0. 50 |  |  |
| K                | 0. 20      | -       | -     |  |  |
| h                | 0.30       | 0.35    | 0. 40 |  |  |
| L/F载体尺寸<br>(mil) | 3          | 00x300  |       |  |  |

### QFN88 recommended footprint





## 5.4 丝印说明





# 6 版本历史

| 日期         | 版本          | 修改                                                                                |
|------------|-------------|-----------------------------------------------------------------------------------|
| 2020.02.20 | NX本<br>V1.0 | 初始版本                                                                              |
|            |             | 1. 更新 QFN88 封装尺寸信息                                                                |
| 2020.05.17 | V1.01       | 2. 增加 4.4.24 节 SMT 焊接温度特性                                                         |
|            |             | 1. 删除 Flash 页编程功能描述                                                               |
| 2020.06.28 | V1.1        | 2. 更新 ADC1, ADC2 所支持通道数及支持的最多外部通道数                                                |
|            |             | 3. 更新电气特性章节                                                                       |
|            |             | 1. 修改 2.29 节 DVP FIFO 大小: 32x 32bit 改为 8 x 32bit                                  |
|            |             | 2. 修改了 4.1.6 供电方案                                                                 |
|            |             | 3. 修改了绝对最大额定值部分参数                                                                 |
|            |             | 4. 修改了 4.3.2 上电和掉电时的工作条件 VDD 上升速率最小值                                              |
|            |             | 5. 修改了 4.3.3 内嵌复位和电源控制模块特性                                                        |
|            |             | 6. 修改了 4.3.5 供电电流特性 f <sub>HCLK</sub> 的频率和 f <sub>PCLK1</sub> /f <sub>PCLK2</sub> |
|            |             | 7. 修改了 4.3.7 内部时钟源特性 LSI 参数                                                       |
|            | V1.2        | 8. 修改了 4.3.9 FLASH 存储特性参数                                                         |
| 2020.9.16  |             | 9. 修改了 4.3.12 I/O 端口特性                                                            |
|            |             | 10. 修改了 4.3.13 NRST 引脚特性                                                          |
|            |             | 11. 修改了 4.3.14 TIM 特性 t <sub>COUNTER</sub> 参数                                     |
|            |             | 12. 修改了 4.3.15 SPI/I2S 接口特性图 4-14                                                 |
|            |             | 13. 修改了 4.21 12 位模数转换器(ADC)电气参数                                                   |
|            |             | 14. 修改了 4.3.22 DAC 电气参数                                                           |
|            |             | 15. 修改了 4.23 运算放大器(OPAMP)电气参数部分参数                                                 |
|            |             | 16. 修改了 4.3.24 温度传感器特性                                                            |
|            |             | 1. 修改 3.1 封装示意图                                                                   |
|            |             | 2. 修改图 2-1 存储器映射图                                                                 |
| 2020.11.27 | V1.2.1      | 3. 修改表 3-1 管脚定义补充说明                                                               |
|            |             | 4. 修改图 3-4 DCDC 工作模式参考电路图                                                         |
|            |             | 1. 修改内嵌复位和电源控制模块特性相关参数                                                            |
|            |             | 2. 修改高速外部用户时钟特性相关参数                                                               |
| 2021.08.02 | V.1.2.2     | 3. 修改低速外部用户时钟特性相关参数                                                               |
| 2021.00.02 | V.1.2.2     | 4. 修改闪存存储器特性相关参数                                                                  |
|            |             | 5. 修改 ESD 绝对最大值相关条件                                                               |
|            |             |                                                                                   |



| 国民技术       |         |     |                             |
|------------|---------|-----|-----------------------------|
|            |         | 6.  | 修改 I/O 静态特性相关参数             |
|            |         | 7.  | 修改输出电压特性条件,参考新增驱动能力表        |
|            |         | 8.  | 修改输入输出交流特性相关参数              |
|            |         | 9.  | 修改输入 NRST 引脚特性相关参数          |
|            |         | 10. | 修改输入 I2C 接口特性相关参数           |
|            |         | 11. | 修改输入 SPI1 特性相关参数            |
|            |         | 12. | 修改输入 SPI2 特性相关参数            |
|            |         | 13. | 修改输入 I2S 特性相关参数             |
|            |         | 14. | 修改输入 I2S 主模式时序图标识错误         |
|            |         | 15. | 修改输入 SD/MMC 接口特性相关参数        |
|            |         | 16. | 修改输入 DVP 信号动态特性相关参数         |
|            |         | 17. | 修改输入 ADC 特性条件及相关参数          |
|            |         | 18. | 修改输入 DAC 特性相关参数             |
|            |         | 19. | 修改输入温度传感器特性相关参数             |
|            |         | 1.  | 修改供电电流特性相关参数                |
|            | V.1.2.2 | 2.  | IO 静态特性增加备注                 |
|            |         | 3.  | 输出电压特性增加备注                  |
| 2021.09.17 |         | 4.  | 电气敏感性增加备注                   |
|            |         | 5.  | 修改通用工作条件相关条件                |
|            |         | 6.  | 新增丝印说明                      |
| 2021.09.23 | V2.0.0  | 1.  | 版本变更                        |
|            |         | 1.  | 修改 I/O 端口特性条件相关描述           |
|            |         | 2.  | 引脚复用定义 ADC 引脚注明是慢速通道或快速通道   |
|            |         | 3.  | HSI 振荡器特性增加注明               |
|            |         | 4.  | 修改 ADC 特性上电时间参数             |
|            |         | 5.  | 更新 QFN48 封装图                |
|            |         | 6.  | ADC 特性注明采样速率最大 5MHz 仅快速通道支持 |
| 2022.05.23 | V2.1    | 7.  | LSE 振荡器特性删除 ESR CL 限制       |
| 2022.03.23 |         | 8.  | 更新使用 32.768kH 晶体的典型应用       |
|            |         | 9.  | 更新输入输出交流特性表                 |
|            |         | 10. | 更新建议的 NRST 引脚保护图            |
|            |         | 11. | 修正 LU 静态栓锁类的 TA 条件          |
|            |         | 12. | 补充定时器电气特性章节参数表              |
|            |         | 13. | 修正 SPI 输入时钟占空比参数            |
|            | ]       |     |                             |



- 14. 资源配置描述修改(只有 88pin 封装支持 DVP)
- 15. 修改嵌入式 R-SRAM 保持描述
- 16. CRC 计算时间改为 1 个 HCLK
- 17. 增加加 STOP2 唤醒源: RTC 入侵、NRST 复位、IWDG 复位唤醒
- 18. 修改 RTC 实时时钟输出信号频率 512Hz 到 256Hz
- 19. 修改图 4-3/4-4/4-5/4-6/4-17/4-23/4-24/4-25
- 20. 修改表 4-11 内置参考电压
- 21. 添加表 4-17/4-18 Bypass 模式说明
- 22. 修改表 4-21 IDD 典型值
- 23. 修改表 4-21 焊接偏差注释
- 24. 修改表 4-22 描述
- 25. 修改表 4-26 存储年限
- 26. 修改静态栓锁测试标准
- 27. 修改表 4-29 描述,添加 VIH/VIL 描述
- 28. 修改表 4-33 描述
- 29. 修改表 4-47 描述
- 30. 添加表 4-48 ADC 采样时间
- 31. 修改表 4-19/4-21/4-22/4-24/4-50/4-51 描述
- 32. 修改 EXTI 边沿检测器为 21 个
- 33. 修改 IWDG 预分频器为 3 位
- 34. 修改关键特性中复位描述
- 35. 修改 STOP0 模式主电压调节器工作模式描述
- 36. 修改表 3-1 中 I/O 结构描述



## 7 声明

国民技术股份有限公司(下称"国民技术")对此文档拥有专属产权。依据中华人民共和国的法律、条约以及世界其他法域相适用的管辖,此文档及其中描述的国民技术产品(下称"产品")为公司所有。

国民技术在此并未授予专利权、著作权、商标权或其他任何知识产权许可。所提到或引用的第三方名称或品牌(如有)仅用作区别之目的。

国民技术保留随时变更、订正、增强、修改和改良此文档的权利,恕不另行通知。请使用人在下单购买前联系国民技术获取此文档的最新版本。

国民技术竭力提供准确可信的资讯,但即便如此,并不推定国民技术对此文档准确性和可靠性承担责任。使用此文档信息以及生成产品时,使用者应当进行合理的设计、编程并测试其功能性和安全性,国民技术不对任何因使用此文档或本产品而产生的任何直接、间接、意外、特殊、惩罚性或衍生性损害结果承担责任。

国民技术对于产品在系统或设备中的应用效果没有任何故意或保证,如有任何应用在其发生操作不当或故障情况下,有可能致使人员伤亡、人身伤害或严重财产损失,则此类应用被视为"不安全使用"。

不安全使用包括但不限于:外科手术设备、原子能控制仪器、飞机或宇宙飞船仪器、所有类型的安全装置以及其他旨在支持或维持生命的应用。

所有不安全使用的风险应由使用人承担,同时使用人应使国民技术免于因为这类不安全使用而导致被诉、 支付费用、发生损害或承担责任时的赔偿。

对于此文档和产品的任何明示、默示之保证,包括但不限于适销性、特定用途适用性和不侵权的保证责任,国民技术可在法律允许范围内进行免责。

未经明确许可,任何人不得以任何理由对此文档的全部或部分进行使用、复制、修改、抄录和传播。