1. W.W. Daniel (*Biostatistics*. John Wiley, 1995 p 409) gives data for temperature in laboratory animals ($T = \deg C$) at 10 successive time (t = hours after inoculation).

Using the symbols provided, write a general linear model for the relation of temperature to time after inoculation.

$$T = \mathbf{b}_o + \mathbf{b}_t t + error$$

2. Complete the ANOVA table

SOURCE	DF	SS	MS	F
Time	_1_	8.4160	8.4160	77.13
Error	_8_	0.8730	0.1091	
Total	9	9.2890		

3. Here is a plot of residuals versus fitted values for this regression. Comment on whether a linear model is appropriate for this data.

Residual plot shows clear arch, hence data deviate from linear (straight line) model.

The regression equation is degC = 37.5 + 0.0798 time

Predictor	Coef	Stdev	t-ratio	р
Constant	37.4564	0.3959	94.61	0.000
time	0.079849	0.009092	8.78	0.000

s = 0.3303 R-sq = 90.6% R-sq(adj) = 89.4%

Analysis of Variance

SOURCE	DF	SS	MS	F	р
Regression	1	8.4160	8.4160	77.13	0.000
Error	8	0.8730	0.1091		
Total	9	9.2890			