SYSTEMS OF EQUATIONS

Solution of	Systems of	Llinear	Eguations
14 Direct met	rod - Gaus	sion elin	rination
2/. Herative me	thods- Jack	obi/ gans	s-Seidel methods.

Systems of Linear Equations Example: an+ by=c and dx+ey=f, give A general egstern of order 2. A general egstern of order in conse weitten 911 x1 + 912 x2 + 913 x3 + ... + Q1 xn = b1 azi xi + azz xz + azz xz + ... + azn xn = bz In the coefficients ais, i -> equation number. defining in matrix keroes in 2 vectors We can write the System as $\widetilde{A} \times = \widetilde{b}$. $\widetilde{A} \rightarrow matrix \widetilde{A}, \widetilde{b} \rightarrow vectors$.

Matrix Anithmetic

Sovena

Matrix Anithmetic

Maxn

matrix

A = [an a12 ... ann]

matrix

A = [an a22 ... a2n]

n > No. of

ann ann ... ann

Cohumns

its transhouse is its transpose is A = [air ... ami] obtained by exchanging the row and astrona elements, notating about the diagonal elements Z_{Xample} : $\widetilde{A} = \begin{bmatrix} a & b & 1 \\ 2 & c & d \end{bmatrix} \widetilde{A}^{T} = \begin{bmatrix} a & 2 \\ b & c \\ 1 & d \end{bmatrix}$ Egnality of Matrices: Two matrices are egnal if they have the same order and if their corresponding elements are equal. Arithmetic Operations 1/. Multiplication by a scalar: $\widetilde{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \vdots & \vdots \\ a_{mn} \end{bmatrix} \Rightarrow b\widetilde{A} = \begin{bmatrix} ba_{11} & \cdots & ba_{1n} \\ \vdots & \vdots & \vdots \\ ba_{mn} & \vdots & \vdots \\ b$ bis a scalar mondon. When b=-1. bå: - A -> negative of A. Note: The Scalm b in an artitrum real number.

2/ Summation of two matrices: If A and B are two matrices of the Same the order (mxn), then, A+B= [an+bn ann+brown] Each element of the new anix=
[ami+bm amn+brown] matrix=
[aij+3ij] The zero matrix $\tilde{O} = \begin{bmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{bmatrix}$ for any order $(m \times m)$.

3) $\tilde{O} + \tilde{A} = \tilde{A} + \tilde{O} = \tilde{A}$ be (are elements are zero) The difference of two matrices in defined as $\left[\widetilde{A}-\widetilde{B}:\widetilde{A}+(-1)\widetilde{B}\right]:\widetilde{A}+(-1)\widetilde{A}=\widetilde{O}$. 3/ Multiplication of two matrices: If A is a matrix of order mxn and B is a matrix of order nxp, then C = AB has the order mxp, in which, Cij = 5 aik brj with [1 si sm] and 1 ≤ j ≤ p (Order Enxi) [am, x, + ... + amne axxn (order mxn)

-4-

Hence, a system of linear Equations

 $A_{11}X_{1} + A_{12}X_{2} + \cdots + A_{1m}X_{m} = b_{1}$ $A_{21}X_{1} + A_{22}X_{2} + \cdots + A_{2n}X_{m} = b_{2}$ \vdots $A_{m1}X_{1} + A_{m2}X_{2} + \cdots + A_{mn}X_{m} = b_{m}$

Com be written in terms of matrices and $X = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \end{bmatrix}$ $\vec{\lambda} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$ $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$

as $\vec{A}\vec{n} = \vec{b}$ (in a consist form)

Row Operation

1/. Interchange too wws.

21. Multiply a low by a non-zuo stalar.

31. Add multiple of one was to another.

Example: $\tilde{A} = \begin{bmatrix} 3 & 3 & 3 & 1 \\ 2 & 2 & 3 & 1 \\ 1 & 2 & 3 & 1 \end{bmatrix}$ matrix

i) (1002) x(1)+(1001) and (1003) x (-1) + (1002) give

Now if \tilde{A} and \tilde{B} are square matrices, and $\tilde{A}\tilde{B}=\tilde{I}$ as, $\tilde{B}\tilde{A}=\tilde{I}$, then \tilde{B} is the Also \tilde{A} can have exactly one inverse.

The inverse of A in A. The inverse of a matrix exits if det (A) \$ 0 (a non-singular matrix). If det (X) = 0 Here X is a singular matrix.

 $\widetilde{A}^{-1} = \frac{1}{|\widetilde{A}|} \tilde{A}^{CT} |\widetilde{A}| \rightarrow \text{determinant of } \widetilde{A}.$ $\widetilde{A}^{-1} = \frac{1}{|\widetilde{A}|} \tilde{A}^{CT} |\widetilde{A}| \rightarrow \text{determinant of } \widetilde{A}.$ $\widetilde{A}^{CT} \rightarrow \text{Cofactor of } \widetilde{A}$ $\widetilde{A}^{CT} \rightarrow \text{Transpose of Cofactor.}$ $\widetilde{A}^{CT} \rightarrow \text{Transpose of } Cofactor.$ $\widetilde{A}^{CT} \rightarrow \text{Transpose } Cofactor.$

 $A_{11} = (-1)^{1+1} d = d$, $A_{12} = (-1)^{1+2} c = -c$. $A_{21} = (-1)^{2+1} b = -b$, $A_{22} = (-1)^{2+2} a = a$

Hence, $\widetilde{A}^c = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$: $\begin{bmatrix} \widetilde{A}^{-1} = 1 \\ ad-bc \end{bmatrix} = \begin{bmatrix} d & -b \end{bmatrix}$

 $\frac{2}{2}$ xample: $\tilde{A} = \begin{bmatrix} 2 & L & 0 \\ L & 2 & L \\ 0 & 1 & 2 \end{bmatrix} \Rightarrow |\tilde{A}| = 2 (4-1)$ = 1(2-0) + 0 = 6-2=4

The cofactor matrix is

 $\overset{\mathsf{A}^{\mathsf{C}}}{\mathsf{A}^{\mathsf{C}}} = \begin{bmatrix}
\mathsf{A}_{\mathsf{I}\mathsf{I}} & \mathsf{A}_{\mathsf{I}\mathsf{2}} & \mathsf{A}_{\mathsf{I}\mathsf{3}} \\
\mathsf{A}_{\mathsf{2}\mathsf{I}} & \mathsf{A}_{\mathsf{2}\mathsf{2}} & \mathsf{A}_{\mathsf{2}\mathsf{3}} \\
\mathsf{A}_{\mathsf{2}\mathsf{I}} & \mathsf{A}_{\mathsf{2}\mathsf{2}} & \mathsf{A}_{\mathsf{2}\mathsf{3}}
\end{bmatrix}
\overset{\mathsf{Hence}}{\mathsf{A}_{\mathsf{1}\mathsf{2}}} = (-1)^{\mathsf{I}+\mathsf{2}} (2-0) = -2,$ $\begin{bmatrix}
\mathsf{A}_{\mathsf{3}\mathsf{I}} & \mathsf{A}_{\mathsf{2}\mathsf{2}} & \mathsf{A}_{\mathsf{2}\mathsf{3}} \\
\mathsf{A}_{\mathsf{3}\mathsf{2}} & \mathsf{A}_{\mathsf{3}\mathsf{2}}
\end{bmatrix}
\overset{\mathsf{A}_{\mathsf{1}\mathsf{2}}}{\mathsf{A}_{\mathsf{1}\mathsf{3}}} = (-1)^{\mathsf{I}+\mathsf{3}} (1-0) = 1,$

 $A_{21} = (-1)^{2+1} (2-0) = -2$, $A_{22} = (-1)^{2+2} \cdot (4-0) = 4$ $A_{23} = (-1)^{2+3} (2-0) = -2$, $A_{31} = (-1)^{3+1} (1-0) = 1$

 $A_{32} = (-1)^{3+2}(2-0) = -2$, $A_{32} = (-1)^{3+3}(4-1) = 3$ (P.T.O.)

Rules of Matrix Algebra Associative Laws: 4. (Â+B)+c = Ã+(B+C), 2/. (ÂB)C = Ã(BC) The Commutative Law: 3/. Ã+B = B+Ã The Distributive Laws! 4/. Ã(B+c) = ÃB+Ãc, 5/. (Ã+B)c = Ãc+Bc 6/. (AB) = BTAT , 7/. (A+B) = AT+BT 8/. (CA) = = = = A-1, 9/. (AB) = B-1A-1 [$c \rightarrow non-zero constant$]

[$det(\tilde{A}\tilde{B}) = det(\tilde{A}) det(\tilde{B}), 11/. det(\tilde{A}^{T})$ = $det(\tilde{A})$

Solvability of Linear Systems

Solvability of Linear Systems

Cliven $\vec{A}\vec{x} = \vec{b}$, $\vec{x} = \vec{A}^{-1}\vec{b}$. A solution

exists only if $|\vec{A}| \neq 0$. Emther, $|\vec{A}|$ is a Square matrix, and $|\vec{A}|\vec{x} = \vec{b}|$ has a unique solution. This is implicitly assumed when finding determinants (inverses.

Saussian Shimination

2x ample: $2x_1 + 2x_2 + 2x_3 = 0 - (21)$ $2x_1 + 2x_2 + 3x_3 = 3 - (22)$ $-x_1 - 3x_2 + 0x_3 = 2 - (23)$

i) (22)-2(21) and (23) - (-1)(21) will eliminate x, from (22) and (23).

Hence. $\chi_1 + 2 \pi_2 + \pi_3 = 0 - (21)$ (Slinination) $-2 \pi_2 + \pi_3 = 3 - (22)$ Step Starts $-\pi_2 + \pi_3 = 2 - (23)$

ii) (23) - (2)(22) will elininate 12 from(23).

Hence, $x_1 + 2x_2 + x_3 = 0$ — (21) Upper triangular $-2x_2 + x_3 = 3$ — (22) System of ends $+\frac{x_3}{2} = \frac{1}{2}$ — (23) System of equations

 $|\chi_{1}-2+1=0|\Rightarrow |\chi_{1}=1|$ $|\chi_{1}-2+1=0|\Rightarrow |\chi_{1}=1|$ $|\chi_{1} and \chi_{2} ane obtained by back substitution.$

The principle of Sanstian elimation:

i) Elimination Steps.

ii) Obtain upper triangular system of linear equations.

iii) Back substitution.

(Works for several hundred equations).

Augmented Matrix

The previous example can be solved by an augmented matrix [A/b].

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & 1 & 3 \\ 0 & -1 & 1 & 2 \end{bmatrix}$$
 and then
$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & 1 & 3 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

This is the Egnivalent of

$$\begin{bmatrix} 0 & 1 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 1/2 \end{bmatrix} & \text{is } \chi_1 = 1, \\ \chi_2 = -1, & \chi_3 = 1. \end{bmatrix}$$

Saussian Elimination with General Coefficients

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1 - (21)$$

 $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2 - (22)$
 $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3 - (23)$
 $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3 - (23)$

 $a_{11} \neq 0$. Define $M_{21} = \frac{a_{21}}{a_{11}}$ and $M_{31} = \frac{a_{31}}{a_{11}}$.

The first subscript is the equation number and the second subscript is the rasiable number

Apply
$$(\xi_2)$$
 - $M_{21} \times (\xi_1)$ and (ξ_3) - $M_{31} \times (\xi_1)$
 $A_{11} \times (\xi_1)$ and (ξ_3) - $M_{31} \times (\xi_1)$
 $A_{11} \times (\xi_1)$ and (ξ_3) - $M_{31} \times (\xi_1)$
 $A_{21} \times (\xi_1)$ and (ξ_3) - $M_{31} \times (\xi_1)$
 $A_{21} \times (\xi_1)$ and (ξ_3) - $M_{31} \times (\xi_1)$
 $A_{21} \times (\xi_1)$ and (ξ_3) - (ξ_3)
 $A_{21} \times (\xi_1)$ - (ξ_2)
 $A_{32} \times (\xi_1)$ - (ξ_2)
 $A_{32} \times (\xi_1)$ - (ξ_2)
 $A_{32} \times (\xi_1)$ - (ξ_1)
 $A_{32} \times (\xi_2)$ - (ξ_1)
 $A_{21} \times (\xi_1)$ - (ξ_1)
 $A_{22} \times (\xi_1)$ - (ξ_1)
 $A_{23} \times (\xi_2)$ - (ξ_1)
 $A_{23} \times (\xi_1)$ - (ξ_1)
 $A_{23} \times (\xi_2)$ - (ξ_1)
 $A_{23} \times (\xi_1)$ - (ξ_1)
 $A_{23} \times (\xi_2)$ - (ξ_1)
 $A_{23} \times (\xi_1)$ - (ξ_1)
 $A_{23} \times (\xi_2)$ - (ξ_1)
 $A_{23} \times (\xi_1)$ - (ξ_1)
 $A_{23} \times (\xi_2)$ - (ξ_2)
 $A_{23} \times (\xi_1)$ - (ξ_1)
 $A_{23} \times (\xi_2)$ - (ξ_2)
 $A_{23} \times (\xi_1)$ - (ξ_1)
 $A_{23} \times (\xi_2)$ - (ξ_1)
 $A_{23} \times (\xi_1)$ - (ξ_1)
 $A_{23} \times (\xi_2)$ - (ξ_1)
 $A_{23} \times (\xi_1)$ - (ξ_1)
 $A_{23} \times (\xi_2)$ - (ξ_1)
 $A_{23} \times (\xi_1)$ - (ξ_1)
 $A_{23} \times (\xi_2)$ - (ξ_1)
 $A_{23} \times (\xi_1)$ - (ξ_2)
 $A_{23} \times (\xi_1)$ - (ξ_1)
 $A_{24} \times (\xi_1)$ - (ξ_1)
 $A_{25} \times (\xi_1)$ - (ξ_1)
 $A_{25} \times (\xi_1)$ - (ξ_2)
 $A_{25} \times (\xi_1)$ - (ξ_1)
 $A_{25} \times (\xi_1)$ - (ξ_2)
 $A_{25} \times (\xi_1)$ - (ξ_2)
 $A_{25} \times (\xi_1)$ - (ξ_1)

A General n-Order Linear System

$$a_{11}^{(i)}x_1 + \cdots + a_{1n}^{(i)}x_n = b_1^{(i)} - (\xi_1)$$

$$\vdots$$

$$a_{n1}^{(i)}x_1 + \cdots + a_{nn}^{(i)}x_n = b_n^{(i)} - (\xi_n)$$

For [K=1,2,...,n-1], Carry ont elimination. Elimination. Eliminate x_K from $(\mathcal{E}(K+1))$ through $(\mathcal{E}n)$. The preceding steps from 1,...,K-1 will give a system of the form

$$A_{11}^{(1)} \chi_{1} + A_{12}^{(1)} \chi_{2} + \cdots + A_{1n}^{(1)} \chi_{n} = b_{1}^{(1)} - (\xi_{1})$$

$$A_{22}^{(2)} \chi_{2} + \cdots + A_{2n}^{(2)} \chi_{n} = b_{2}^{(2)} - (\xi_{2})$$

$$\vdots$$

 $a_{kk}^{(k)} x_k^{+} + a_{kn}^{(k)} x_n = b_k^{(k)} - (83)$

For $a_{kk}^{(k)} \neq 0$ define $m_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}}$, i = k+1,...,n

for equations i= K+1,..., n subtract mix x (Ek) disconsistent from (2i) to eliminate xx from (2i)

Hence, $a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)} \rightarrow i,j = k+1,...,n$ $b_{i}^{(k+1)} = b_{i}^{(k)} - m_{ik} b_{k}^{(k)} \rightarrow i = k+1,...,n$

For all n-1 steps, the upper triangular linem system will be formed.

 $u_{11} x_1 + \cdots + u_{1n} x_n = g_1$ $+ u_{22}x_2 + \cdots + u_{2n}x_n = g_2$ \vdots $u_{nn}x_n = g_n$

of the upper,

System of

line on

equations

after elimination

steps.

Here, $[u_{ij} = a_{ij}^{(i)}]$, $[g_i = b_i^{(i)}]$

Solving successively and back substituting for An, An-1, ..., Al will give

 $\chi_{n} = \frac{9n/u_{n}n}{g_{i} - \sum_{j=i+1}^{n} u_{ij} \chi_{j}}$ $\chi_{i} = \frac{g_{i} - \sum_{j=i+1}^{n} u_{ij} \chi_{j}}{u_{ii}}$

i = N-1, ..., 1

This provides the full solution of the norder system by Saussian climination.

$$4x_1 + 3x_2 + 2x_3 + x_4 = 1$$

 $3x_1 + 4x_2 + 3x_3 + 2x_4 = 1$
 $2x_1 + 3x_2 + 4x_3 + 3x_4 = -1$
 $x_1 + 2x_2 + 3x_3 + 4x_4 = -1$

Diskne an augmented matrix

$$\begin{bmatrix} 4 & 3 & 2 & 1 & 1 \\ 3 & 4 & 3 & 2 & 1 \\ 2 & 3 & 4 & 3 & -1 \\ 1 & 2 & 3 & 4 & -1 \end{bmatrix} \xrightarrow{M_{21} = \frac{3}{4}} \begin{bmatrix} 4 & 3 & 2 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 \\ 0 & \frac{7}{4} & \frac{3}{2} & \frac{5}{4} & \frac{1}{4} \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{5}{4} & \frac{5}{2} & \frac{15}{4} & -\frac{5}{4} \end{bmatrix}$$

From the second table we get $|M_{32}=\frac{3}{2}\pi\frac{4}{7}=6/7$ This gives, $|M_{42}=\frac{5}{4}\pi\frac{4}{7}=5/7$

$$\begin{bmatrix} 4 & 3 & 2 & 1 & 1 \\ 0 & 7/4 & 3/2 & 5/4 & 1/4 \\ 0 & 0 & 12/7 & 10/7 & -12/7 \\ 0 & 0 & 10/7 & 20/7 & -10/7 \end{bmatrix} \xrightarrow{= 10 \times \frac{7}{4}} \begin{bmatrix} 4 & 3 & 2 & 1 & 1 \\ 0 & 7/4 & 3/2 & 5/4 & 1/4 \\ 0 & 0 & 12/7 & 10/7 & -12/7 \\ \hline 0 & 0 & 0 & 5/3 & 0 \end{bmatrix}$$

Hence, $\frac{5}{3} \times_4 = 0 \Rightarrow \boxed{\chi_4 = 0} \Rightarrow \boxed{\chi_4 = 0} \Rightarrow \boxed{\chi_4 = 0} \Rightarrow \boxed{\chi_7} \times_3 + \boxed{10.0} = -12$ $\Rightarrow \boxed{\chi_3 = -1}$. Next, $\frac{7}{4} \times_2 + \frac{3}{2} \times_{-1} + \frac{5}{4} \times_0 = \frac{1}{4}$ $\Rightarrow \boxed{\gamma_7} \times_2 = \frac{7}{4} \Rightarrow \boxed{\gamma_2 = 1}$. Next, $4 \times_1 + 3.1 + 2.1 + 1.0 = 1$ $\Rightarrow 4 \times_1 + 1 = 1 \Rightarrow \boxed{\chi_1 = 0}$. (0, 1, -1, 0) -14-

Calculation of Matrix Inverses by Sanssian Elimination

Consider two $\underline{m=3}$ matrices \widetilde{A} and \widetilde{x} . If $\widetilde{A}\widetilde{x}=\widetilde{1}$, then $\widetilde{x}=\widetilde{A}^{-1}$.

Write [AX =] moo in matrix form as

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix} = \begin{bmatrix} a_{12} & a_{23} & a_{23} \\ a_{21} & a_{22} & a_{23} & a_{23} & a_{23} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{32} & a_{33} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} & a_{33} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{2$

Taking the product on the left hand site and egn - ting with the sight hand side, we get from the first column.

 $A_{11} \times_{11} + A_{12} \times_{21} + A_{13} \times_{31} = 1$ $A_{21} \times_{11} + A_{22} \times_{21} + A_{23} \times_{31} = 0$ $A_{21} \times_{11} + A_{32} \times_{21} + A_{33} \times_{31} = 0$ $A_{31} \times_{11} + A_{32} \times_{21} + A_{33} \times_{31} = 0$ $A_{31} \times_{11} + A_{32} \times_{21} + A_{33} \times_{31} = 0$ $A_{31} \times_{11} + A_{32} \times_{21} + A_{33} \times_{31} = 0$

Similarly from the second and thind whomes

 $a_{11} x_{12} + a_{12} x_{22} + a_{13} x_{32} = 0$ $a_{21} x_{12} + a_{22} x_{22} + a_{23} x_{32} = 1$ $a_{31} x_{12} + a_{32} x_{22} + a_{33} x_{31} = 0$

 $Q_{11} \chi_{13} + Q_{12} \chi_{23} + Q_{13} \chi_{33} = 0$ $Q_{21} \chi_{13} + Q_{22} \chi_{23} + Q_{23} \chi_{33} = 0$ $Q_{31} \chi_{13} + Q_{32} \chi_{23} + Q_{33} \chi_{33} = 1$

In all there are nine of Xij variables, Which Can be solved for by the Saussian Chimination

method.