11-12-15

Math 210: Homework 8 - Fall 2015

1. Problem 9.12(c):

PF

Let
$$x \in f(C) - f(D)$$

Therefore $x \in f(C)$ and $x \notin f(D)$

So
$$x = f(y)$$
, where $y \in C$ and $x \notin f(D)$

Then if $y \in D, x = f(y)$ then $x \in f(D)$ this is a contradiction because we know $x \notin f(D)$

So $y \notin D$

Hence
$$x = f(y)$$
, where $y \in C$ and $y \notin D$

Therefore x = f(y) where $y \in C - D$

So
$$x \in f(C - D)$$

Thus
$$x \in f(C) - f(D)$$

$$= x \in f(C - D)$$

So
$$f(C) - f(D) \subseteq f(C - D)$$

//

2. Problem 9.12(f):

PF

(WTS:
$$f^{-1}(E - F) \subseteq f^{-1}(E) - f^{-1}(F)$$
 and $f^{-1}(E) - f^{-1}(F) \subseteq f^{-1}(E - F)$)

 \Rightarrow

Let
$$x \in f^{-1}(E - F)$$

So
$$x = f^{-1}(y) \exists y \in E - F$$
 such that

$$y \in E, Y \not \in F$$

$$\Rightarrow x = f^{-1}(y) \text{ where } y \in E \text{ , } y \notin F$$

$$\Rightarrow x = f^{-1}(y) \text{ where } y \in E \text{ , } x = f^{-1}(y) \text{ where } y \notin F$$

$$\Rightarrow x = f^{-1}(E) \text{ , } x \notin f^{-1}(F)$$

$$\Rightarrow x = f^{-1}(E) - f^{-1}(E)$$
So $x \in f^{-1}(E - F)$

$$\Rightarrow x \in f^{-1}(E - F)$$

$$\Rightarrow x \in f^{-1}(E) - x \in f^{-1}(F) \text{ for every } x$$
Hence $f^{-1}(E - F) \subseteq f^{-1}(E) - f^{-1}(F)$

$$\Leftarrow$$
Let $x \in f^{-1}(E) - f^{-1}(F)$
So \exists and $\notin y \in E$ and $y \notin F$ such that $x = f^{-1}(y)$

$$\Rightarrow x = f^{-1}(y) \text{ where } y \in E - F$$

$$\Rightarrow x \in f^{-1}(E - F)$$
Hence $x \in f^{-1}(E) - f^{-1}(F)$

$$\subseteq f^{-1}(E - F)$$
Therefore $f^{-1}(E - F) = f^{-1}(E) - f^{-1}(F)$
//
3. Problem 9.40:
PF
Let $x \in A$
Then $(f \circ i_A)(a) = f(i_A(a))$

$$= f(a)$$
Similarly $(i_B \circ f)(a) = i_B(f(a))$

$$= f(a)$$
Therefore $(f \circ i_A) = f$ and $(i_B \circ f) = f$

4. Problem 9.46:

PF

$$(g \circ f)(3,8) = g(f(3,8))$$

$$= g(3(3) - 8, 3 + 8)$$

$$= g(1, 11)$$

$$=(1-11,2(1)+11)$$

$$=(-10, 13)$$

Hence
$$(g \circ f)(3,8) = (-10,13)$$

(b.)

Let
$$(w, x), (y, z) \in AxB$$

Assume
$$(g \circ f)(w, x) = (g \circ f)(y, z)$$

So
$$g(f(w,x)) = g(f(y,z))$$

Then
$$g(3w - x, w + x) = g(3y - z, y + z)$$

Thus
$$(3w - x - w - x, 6w - 2x + w + x) = (3y - z - y - z, 6y - 2z + y + z)$$

So
$$(2w - 2x, 5w - x) = (2y - 2z, 5y - z)$$

Hence
$$2w - 2x = 2y - 2z$$
 and $5w - x = 5y - z$

Therefore
$$w - y = x - z$$
 and $5(w - y) = x - z$

So
$$w - y = 5(w - y)$$

$$4(w-y) = 0$$

$$w = y$$

Plugging this into the first equation 4 lines above

$$0 = x - z$$

$$x = z$$

Hence
$$(w, x) = (y, z)$$

So the function is one to one

(c.)

Let
$$(x, y) \in BxA$$

So x, y are odd and even integers

Hence
$$a = \frac{2y-x}{12} \in A$$
 and $b = \frac{2y-7x}{12} \in B$

Therefore g(o f)(a,b) = g(f(a,b))

$$=g(f(\frac{2y-x}{12},\frac{2y-7x}{12}))$$

$$= g\left(3\left(\frac{2y-x}{12}\right) - \frac{2y-7x}{12}, \frac{2y-x}{12} + \frac{2y-7x}{12}\right)$$

$$=g(\frac{4y+4x}{12},\frac{4y-8x}{12})$$

$$= g(\frac{y+x}{3}, \frac{y-2x}{3})$$

$$=\left(\frac{y+x}{3} - \frac{y-2x}{3}, 2\left(\frac{y+x}{3}\right) + \frac{y-2x}{3}\right)$$

$$=(x,y)$$

So the function is onto

//

5. Problem 9.58:

PF

Let $g: B \to A$ be surjective

Then
$$g(B) = A$$

So
$$g(y) = x$$

Consider
$$(f \circ g)(y) = f(g(y))$$

$$= f(x)$$

$$= y$$

$$=I_B(y)$$

Also
$$(g \circ f)(x) = g(f(x))$$

$$= g(y)$$

$$= x$$

$$= I_A(x)$$
 Therefore $(g \circ f)(x) = I_A(x)$ //