AMENDMENTS TO THE CLAIMS

In accordance with Rule 1.121, a complete claim listing is presented below, including appropriate status identifiers. Changes in the amended claims are shown by strikethrough for deleted material, and by underlining for added material.

1-20. (Cancelled)

- 21. (Previously presented) The fuel cell of claim 39, wherein the aqueous electrolyte has a pH of at most 3.
- 22. (Previously presented) The fuel cell of claim 39, wherein the aqueous electrolyte has a pH of at most 1.
- 23. (Previously presented) The fuel cell of claim 39, wherein the aqueous electrolyte comprises a member selected from the group consisting of: H₂SO₄, HNO₃, HClO₄, H₃PO₃, H₃PO₄, HCl, HBr, HCl, CH₃CO₂H, CCl₃CO₂H, CF₃CO₂H, and mixtures thereof.
- 24. (Previously presented) The fuel cell of claim 39, wherein the electrolyte comprises an aqueous solution of H₂SO₄.
- 25. (Currently amended) The fuel cell of claim 39, wherein the aqueous electrolyte has a pH of at most least 10.
- 26. (Withdrawn) The fuel cell of claim 39, wherein the aqueous electrolyte comprises a member selected from the group consisting of LiOH, NaOH, KOH, RbOH, CsOH, Mg(OH)₂, Ca(OH)₂, Sr(OH)₂, and Ba(OH)₂, and mixtures thereof.
- 27. (Withdrawn) The fuel cell of claim 39, wherein: the fluorinated solvent is selected from the group consisting of (C_nF_{2n+1})Si(OCH₃)₃; (C_nF_{2n+1})₂Si(OCH₃)₂; (C_nF_{2n+1})CH₂OC(O)CH₃; CF₃[OCF₂CF₂]_nOCF₃; CF₃[OCF₂CF₂]_nOCF₂CF₂]_nOCF₂CF₂]_nOCF₂CF₂]_nOCF₂CF₂D_nOCF₂CF₂D_nOCF₃; CF₃[OCF₂CF₂D_nCF₂CF₂D_nCF₂CF₂D_nCF₂CF₂D_nCF₂CF₂D_nCF₂CF₂D_nCF₂CF₂D_nCF₂CF₂D_nCF₂CF₂D_nCF₂CF₂D_nCF₂CF₂D_nCF₂D_nCF₂CF

CF3[OCF2CF2]nCF2H; CF3[OCF2CF2]nF; CF3[OCF2CF2]nCl; CF3[OCF2CF2]nBr;
CF3[OCF2CF2]nH; CF3CF2[OCF2CF2]nF; CF3CF2[OCF2CF2]nCl; CF3CF2[OCF2CF2]nBr;
CF3CF2[OCF2CF2]nH; CF3CHF[OCF2CF2]nF; CF3CHF[OCF2CF2]nCl;
CF3CHF[OCF2CF2]nBr; CF3CHF[OCF2CF2]nH; CF3CHF[OCF2CFC2]nCl;
CF3CHF[OCF2CF2]nBr; CF3CHF[OCF2CF2]nH; CF3CHF[OCF2CF(CF3)]nF;
(CF3)2CF(CF2)nF; (CF3)2CF(CF2)nCl; (CF3)2CFO(CF2)nBr; (CF3)2CFO(CF2)nH;
(CF3)2CFO(CF2)nF; (CF3)2CFO(CF2)nCl; (CF3)2CFO(CF2)nBr; (CF3)2CFO(CF2)nH; CnF2n+2;
CF3(CF2)nCl; CF3(CF2)nHCF3(CF2)nBr; N(CnF2n+1)3; C6FmH6-m7; C6FmCl6-m; C6FmBr6-m;
C6Fm(CF3)6-m; and mixtures thereof;
wherein n is 1 to 20; and
wherein m is 1 to 6.

- 28. (Previously presented) The fuel cell of claim 39, wherein the fluorinated solvent is selected from the group consisting of CF₃(CF₂)₇Br; (CF₃)₂CF(CF₂)₄Cl; (CF₃)₂CFO(CF₂)₆F; perfluorobutyltetrahydrofuran; perfluoropropyltetrahydropyran; C₈F₁₈; CF₃CFBrCF₂Br; (CF₃)₂CF(CF₂)₄Br; [(CF₃)₂CFOCF₂CF₂]₂; C₉F₂₀; C₆F₆; CF₃CHF[OCF₂CF(CF₃)]₃F; (CF₃)₂CF(CF₂)₆Cl; C₁₀F₁₆; CF₃CHF[OCF₂CF(CF₃)]₄F; perfluorotetrahydrodicyclopentadiene; [(CF₃)₂CFO(CF₂)₄]₂; perfluorodecalin; CF₃CHF[OCF₂CF(CF₃)]₅F; perfluorodimethyladamantane; N(C₄F₉)₃; perfluoromethyldecalin; C₆H₄(CF₃)₂; and CF₃CHF[OCF₂CF(CF₃)]₉F; and mixtures thereof.
- 29. (Previously presented) The fuel cell of claim 39, wherein the fluorinated solvent is perfluorodecaline.
- 30. (Previously presented) The fuel cell of claim 39, wherein the surfactant is selected from the group consisting of: $F(CF_2CF_2)_y(CH_2CH_2O)_xH$, wherein y is 1 to 10, and x is 0 to 25; $((F(CF_2CF_2)_yCH_2CH_2)_xP(O)(ONH_4)_y$, wherein x is 1 or 2, y is 1 or 2, x+y is 3, and z is 1 to 8; $F(CF_2CF_2)_xCH_2CH_2CH_2CH_2CH_2CO_2Li$, wherein x is 1 to 10; $F(CF_2CF_2)_xCH_2CH_2CO_3Y$, wherein x is 1 to 10, and Y is H or NH₄; and mixtures thereof.

- 31. (Previously presented) The fuel cell of claim 39, wherein the surfactant is a mixture of $CF_3(CF_2)_5CH_2CH_2SO_3H$ and $CF_3(CF_2)_5CH_2CH_2SO_3NH_4$.
- 32. (Previously presented) The fuel cell of claim 39, wherein the volume-to-volume ratio of fluorinated solvent to aqueous electrolyte in the emulsion is from 1:24 to 24:1.
- 33. (Previously presented) The fuel cell of claim 39, wherein the volume-to-volume ratio of fluorinated solvent to aqueous electrolyte in the emulsion is from 3:24 to 12:24.
- 34. (Previously presented) The fuel cell of claim 39, wherein the volume-to-volume ratio of fluorinated solvent to aqueous electrolyte in the emulsion is from 1:6 to 5:7.
- 35. (Previously presented) The fuel cell of claim 39, wherein the volume-to-volume ratio of fluorinated solvent to aqueous electrolyte in the emulsion is from 2:9 to 4:9.
- 36. (Previously presented) The fuel cell of claim 39, wherein the amount of surfactant in the emulsion is from 0.07% to 3% of the total weight of the emulsion.
- 37. (Previously presented) The fuel cell of claim 39, wherein the amount of surfactant in the emulsion is from 0.125% to 2% of the total weight of the emulsion.
- 38. (Previously presented) The fuel cell of claim 39, wherein the amount of surfactant in the emulsion is from 0.5% to 1% of the total weight of the emulsion.

- 39. (Previously presented) A fuel cell for the generation of electricity, comprising:
 - a) an anode;
 - b) a cathode; and
- c) a composition in contact with at least one of the anode and the cathode comprising an emulsion comprising a fluorinated solvent, a surfactant and an aqueous electrolyte with a pH of at most 4 or at least 9.
- 40. (Previously presented) The fuel cell of claim 39, wherein the fuel cell is a fuel cell wherein the cathode and the anode are separated by a membrane.
- 41. (Previously presented) The fuel cell of claim 39, wherein the anode and the cathode are separated by a channel contiguous with at least a portion of each electrode; such that when a first liquid is contacted with the anode, a second liquid is contacted with the cathode, and the first and the second liquids flow through the channel, laminar flow is established in the first and the second liquids.
- 42. (Previously presented) The fuel cell of claim 39, wherein the composition in contact with the anode further comprises a fuel.
- 43. (Previously presented) The fuel cell of claim 39, wherein the composition in contact with the cathode further comprises oxygen.
- 44. (Previously presented) In a fuel cell comprising a) an anode and b) a cathode; the improvement comprising:

transporting a gas to at least one of the anode and the cathode by dissolving the gas in an emulsion comprising a fluorinated solvent, a surfactant and an aqueous electrolyte with a pH of at most 4 or at least 9; and

contacting the emulsion with at least one of the anode and the cathode.