

申請日期	86	年	3	月	6	日
業 勤	86102741					
類 別	/_	tog	/V	1/4	<u>/</u>	

A4 C4

A21972

():	本局填註) 421972						
發明專利説明書							
一、發明 一 <u>新型</u> 名稱	中文	編碼解碼影像之方法					
	英文	Method of coding and decoding image					
	姓名	(1) 中屋雄一郎					
二、發明人	國籍	(1) 日本國東京都杉並區善福寺——一四—二一					
	住、居所						
	姓 名 (名稱)	(1) 日立製作所股份有限公司 株式会社日立製作所					
三、申請人	國 籍 住、居所 (事務所)	(1) 日本國東京都千代田區神田駿河台四丁目六番 地					
	代表人姓 名	(1) 金井務					

421972

(由本局 共 類: IPC分類:

A6 B6

國(地區) 申請專利,申請日期:

案號:

,□有 □無主張優先權

日本

1996 年 3 月 18 日

8-060572

回有主張優先權

請先閱讀背面之注意事項再填寫本頁各欄)

縓

有關微生物已寄存於:

,寄存日期:

, 寄存號碼:

經濟部中央標準局員工消費合作社印製

)

)

四、中文發明摘要(發明之名稱:

編碼解碼影像之方法

一種用以簡化一全活動補償處理之算術運算之方法, 其近似整個影像之動態向量欄位而不使用很多之參數。於 全活動補償中之活動向量係藉由多數代表點602, 603及604之活動向量之內插及外插加以取得,諸點係具有特定特性於其空間距離。因爲移位運算可以以除 取代,用以合成全活動補償之預定影像,該使用一電腦或一專屬硬體之處理係被簡化。

英文發明摘要(發明之名稱: METHOD OF CODING AND DECODING IMAGE

A method of simplifying the arithmetic operation in a global motion compensation process approximates the motion vector field of the whole image without using many parameters. Motion vectors in the global motion compensation are found by the interpolation and/or extrapolation of the motion vectors of a plurality of representative points 602, 603 and 604 having particular features in the spatial distance thereof. Since the shift operation can be substituted for the division for synthesizing a predicted image of global motion compensation, the processing using a computer or a dedicated hardware is simplified.

訂

五、發明説明(1)

〔發明領域〕

本發明係關係於一種用以編碼及解碼一影像之方法,其係基於線性內插及/或外插或雙線性內插及/或外插,來施加全活動補償給整個影像。

〔發明背景〕

於一動態影像之高效編碼中,於相對於時間,辨識彼此相接近之圖框類似性時,使用活動補償於壓縮資料中係爲已知的。現今影像編碼技術中,最常使用之活動補償系統係爲區塊比對法,其係使用於標準H. 2 6 1 ,

MPEG1及MPEG2係爲用於一動態影像編碼之國際性標準。依據該系統,予以編碼之影像係被分成多數區域,及一活動向量係被指定給每一區塊。

第一圖例示該 H . 2 6 1 標準之編碼器 1 0 0 之構成,其使用一混合編碼系統(適應性幅際/幅內編碼法),其係爲區塊比對法及 D C T (離散正弦轉換)之組合。一減法器 1 0 2 計算於一輸入影像 1 0 1 (現行圖框之原始影像)及一幅際/幅內切換單元 1 1 9 之輸出影像 1 1 3 (將隨後說明)間之差異,並輸出一誤差影像 1 0 3。該誤差影像係被轉換爲一 D C T 係數,經由一 D C T 處理機1 0 4 並藉由一量化器 1 0 5 量化,以獲得一量化之

際 預 估 影 像 。 一 用 以 合 成 該 預 估 影 像 之 程 序 將 如 後 述 。 該

装

訂

五、發明説明(2)

量化 DCT係數106通過一解量化器108及一反向DCT處理機109,以形成 一再重建誤差影像110(相同於再生於接收側之誤差影像之影像)。

該幅際/幅內切換單元 1 1 9 之輸出影像 1 1 3 (其如於後述)係被經由一加法器 1 1 1 施加於其上,藉以獲得該現行圖(框相同於再生於接收側之圖框之再重建影像之影像)之再重建影像1 1 2。該影像係暫時地儲存於一圖框記憶體 1 1 4 及係於時間上被延遲一圖框。因此,於此時,該圖框記憶體 1 1 4 係輸出該前一圖框之一重建影像1 1 5。該前一影像之重建影像及現行圖框之輸入影像1 1 5。該前一影像之重建影像及現行圖框之輸入影像1 0 1 係被輸入至一區塊比對單元 1 1 6 ,其中區塊比對係被執行。

於區塊比對中,一影像係被分爲多數區塊,一多數重組現行圖框之原始影像之部份係被取出,用於來自前估影像之重建影像之每一方塊,藉以合成現行圖框之一面活態像117。於此同時,其係需要以執行一處理(局部活動估計),用以檢測多少區塊已經由前一圖框移至現行區塊之活動向量係被傳送至接收側作爲活動資料120。由活動資料及前一圖框之重建影像,該接收側可以合成一預估影像,其係相同於在發射側所獨自獲得的。

現參照第一圖,該估計影像117係與一 10 信號 118一起輸入給幅際/幅內切換單元119。於選擇兩輸入之一時,該切換單元切換該幅際編碼或幅內編碼。當

五、發明説明(3)

預估影像117係被選擇時(第二圖示出該情形),幅際編碼係被執行。另一方面,當該 10 6 信號被選擇時,輸入影像係直接被 D C T 編碼並被輸入至通訊線。因此,該幅際編碼係被執行。

爲了在接收側適當獲得重建影像,變成必須來知道是 否該幅際編碼係被執行或者幅內編碼係被執行在發射側。 爲了這目的,一區分旗標121係被輸出至通訊線。最後 H.261編碼位元串流123係藉由多工量化DCT係 數,活動向量,及幅際/幅內區分旗標成爲於一多工器 122中之多工資料而加以獲得。 請先閱讀背面之注意事項再填寫本頁

装

訂

第二圖例示一用以接收一輸出自第一圖之編碼器之編碼位元串流之一解碼器 2 0 0 之構成。該被接收之

H. 261位元串流217係被一區分器 2 1 6 所分開成爲一量化 D C T 係數 2 0 1 ,一活動向量 2 0 2 ,及一幅際/幅內區分旗 0 3。該量化 D C T 係數 2 0 1 係被由解量化器 2 0 4 及一反向 D C T 處理機 2 0 5 解碼成爲一段差影像 2 0 6。該影像係藉由一加法器 2 0 7 加入一幅際/幅內切換單元 2 1 4 之輸出影像 2 1 5 ,以形成一重建影像 2 0 8。

該幅際/幅內切換單元依據幅際/幅內編碼區分旗標 203切換輸出。一使用以執行幅際編碼之預估影像 212係爲一預估影像合成器211加以合成。於此,儲 存於該圖框記憶體209中之前一圖框之解碼影像210 係受到依據所接收之活動向量202而移去每一區塊之位

先閱讀背面之注意事項再填寫本頁

裝

訂

五、發明説明(4)

置之處理。另一方面,於幅內編碼中,該幅際/幅內切換單元輸出 * 0 % 信號 2 1 3。

區塊對比係現行最常被使用之活動補價系統。當整個影像被擴大,縮小,旋轉時,所有之區塊之活動向量必須被傳送,造成一低的編碼效率。爲了解決該問題,全活動檢價(例如,哈特於1989年三月發表之 *全活動參數放大及縮小之差分估計 *,信號處理,第249至265頁已經提出以表達整個影像之活動向量場,而不會使用太多參數。依據該活動參數系統,活動向量(於一影像中之一圖素(x,y)之ug(x,y),vg(x,y)係被表示爲:

 $U_{g}(x, y) = a_{0}x + a_{1}y + a_{2}$ $V_{g}(x, y) = a_{3}x + a_{4}y + a_{5} \cdots \cdots \cdots (公式1)$ 或

 $U_{g}(x,y) = b_{0}xy + b_{1}x + b_{2}y + b_{3}$ $V_{g}(x,y) = b_{4}xy + b_{5}x + b_{6}y + b_{7}$ (公式 2)

以及,活動補償係使用活動向量執行。於這些公式中, a 0 至 a 5 及 b 0 至 b 7 係為活動參數。於執行該活動補價時,相同之預估影像必須被於發射側及接收側產生。為了該目的,發射側可以直接發射值 a 0 至 a 5 或 b 0 至 b 7 至接收側或可以發射幾個代表點之活動向量。

裝

訂

五、發明説明(5)

於此,假設代表點(0,0),(r,0)及(0,s)之活動向量之水平及垂直分量係分別爲(ua,va),(ub,vb)及(uc,vc)。公式1係被改寫爲:

$$u_{g}(x,y) = \frac{u_{b} - u_{a}}{r} x + \frac{u_{c} - u_{a}}{s} y + u_{a}$$

$$v_{g}(x,y) = \frac{v_{b} - v_{a}}{r} x + \frac{v_{c} - v_{a}}{s} y + v_{a} \qquad \cdots \quad \infty \quad \vec{x} \quad \vec{3}$$

這意謂即使當 u a , v a , u b , v b , u c 及 v c 係被傳送而不是傳送 a 0 至 a 5 , 相同之函數可以被執行。這狀態係被示於第 3 a 圖及第 3 A 圖。代表點 3 0 3 , 3 0 4 及 3 0 5 之活動向量 3 0 6 , 3 0 7 及 3 0 8 (活動向量係被定義以由現行圖框之原始影像之點開始,於參考影像之相關點結束)可以代替活動參數被傳送,點的分別。於 6 圖 3 A 之參考影像 3 0 1 及示圖 3 B 間之現行圖框之原始影像 3 0 2 間之全活動補價係被作動之限。類似地,籍由使用四代表點(0 , 0),(1 , 0),(0 , s)及,下數)之水平及垂直分量(u a , v a),(u b , v b),(u c , v c) 吸(u d , v d),公式2可以重寫爲:

装

五、發明説明(6)

$$u_{g}(x, Y) = \frac{s - y \left(\frac{r - x}{r} u_{a} + \frac{x}{r} u_{b}\right) + \frac{y}{s} \left(\frac{r - x}{r} u_{c} + \frac{x}{r} u_{d}\right)}{\frac{u_{a} - u_{b} - u_{c} + u_{d}}{rs} xy + \frac{-u_{a} + u_{b}}{r} x + \frac{-u_{a} + u_{c}}{s} y + u_{a}}$$

$$v_{g}(x, Y) = \frac{v_{a} - v_{b} - v_{c} + v_{d}}{rs} xy + \frac{-v_{a} + v_{b}}{r} x + \frac{-v_{a} + v_{c}}{s} y + v_{a}}{rs} x + \frac{v_{a} - v_{a} + v_{c}}{s} x + \frac{v_{a} - v_{a} + v_{a}}{s} x + \frac{v_{a} - v_{a} + v_{a}}{s} x + \frac{v_{a} - v_{a} + v_{a}}{s} x + \frac{v_{a} - v_{a}}{s} x + \frac{v_{a} - v_{a}}{s} x + \frac$$

因此,即使當ua,va,ub,vb,uc,vc,ud及vd係被替代b0至b7被傳送,一類似之函數係被執行。於本說明書中,該使用公式1之系統係被指爲基於線性內插及/或外插而全活動補償,及該使用公式2之系統係被指爲基於雙線性內插及/或外插之全活動補償

第四圖例示,一使用基於線性內插及/或外插之全活動補償系統之影像編碼器之活動補償部份401之構成,其係用以傳送幾個代表點之活動向量。相同於第一圖中之分量係以相同參考標號加以標示。一向量編碼器其執行全活動補償向量部份401者可以藉由替代用於第一圖之區塊比對單元116之活動補償部份401加以構成。

一全活動補償單元 4 0 2 執行有關於前一圖框之已解碼影像 1 1 5 及現行圖框之原始影像 1 0 1 間之全活動補償之活動估算,並估計值 u a , v a , u b , v b , u c 及 v c 。 有關於這些值之資料 4 0 3 係被傳送成爲活動資料 1 2 0 之部份。一預估影像 4 0 4 之全活動補償係藉由使用公式 3 加以合成,並被饋入至區塊比對單元 4 0 5。該活動係藉由區塊比對於全活動補償之預估影像及現行圖

装

訂

五、發明説明(7)

框之原始影像而加以補償,藉以產生區塊之活動向量資料406及一最終預估影像117。該活動向量資料及活動參數資料係被一多工單元407所多工並輸出成爲一活動資料120。

藉由引入上述全活動補償,吾人係可能使用幾個參數加以表達影像之大致活動並完成高資料壓縮比。然而,編碼處理及解碼處理之量係大於傳統系統之量。特別是,於公式3及4之除法係使處理中複雜之主要因素。

〔發明概要〕

於整個影像之活動向量欄位由幾個參數所近似之全活

五、發明説明(8)

動補償中,其涉及增加合成一預估影像之處理量之問題。本發明之目的即是要減少處理之量,其係藉由以一二進位數移位運算來替代於全活動補償中之除法。

該除法係藉由適當地選擇於執行全活動補償時之代表 點之座標之移位運算來實現。

[較佳實施例之詳細說明]

於以下之說明中,於水平及垂直方向中圖素之取樣問 距爲1,以及,如於第3A中所示,圖素於左上,右上, 左下及右下角落之座標係分別由(0,0),(r,0) ,(0,s),(r,s)所表示(其中,r,s係爲正 整數)。

經

五、發明說明(9)

動向量經常不會符合代表點之活動向量,即使是它們具有相同之座標。

 参照第六個,一基於線性內插及/或外插之例子將予以說明。於此,如同於先前技藝中所述,代表點並不是定位於影像601元為務者,而是點602,603及

 604,其分別具有座標(i,j)),(i+p,j)及(i,p)及(i,p)及(i,p)

 點602,600

 102,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

u(x,y) = ((u1-u0)(x-i)q+(u2-u0)(y-j)p+u0pq)m)/(pqk)v(x,y) = ((v1-v0)(x-i)q+(v2-v0)(y-j)p+v0pq)m)/(pqk)

... ... 公 式 5

其中, *// 表除法用以捨入一般除法之商數成爲一鄰近整數, 當除法不是一整數時, 及其作爲運算子之優先順序係相同於乘法及除法。爲了減少運算誤差, 吾人係想要一不是整數之值被捨入爲最接近整數。於這例子中, 用以捨入一整數及 1 / 2 之總和之值之方法爲:

(1) 捨入該值向零;

五、發明説明(10)

- (2) 捨入該值不爲零;
- (3) 當被除數爲負時,捨入該值向零,以及,當被除數爲正時,捨入該值不爲零(假設該除數均爲正); 及
- (4) 當被除數爲負時,捨入該值不爲零,以及,當被除數爲正時,捨入該值爲零(假設該除數均爲正)。

於其間,(3)及(4)以處理量觀點看來是有利的,因爲捨入方向之改變係無關於被除數爲正或爲負以及不需要判別符號爲正或負。依據方法(3)之高速處理可以以下公式加以實現:

u(x, y) = (Lpqk+((u1-u0)(x-i)q + (u2-u0)(y-j)p+u0pq)m+(pqk#2))#(pqk)-L v(x, y) = (Mpqk+((v1-v0)(x-i)q + (v2-v0)(y-j)p+v0pq)m+(pqk#2))#(pqk)-M

… … 公 式 6

其中, *# * 代表整數之除法,用以將小數部份捨入爲零,通常其係最容易由電腦所加以實現。 L 及 M 係足夠大之正整數,用以隨時維持除法之被除數爲正。項次(p q k # 2)是使用以捨入除法之商數至最接近之整數。

整數處理造成了處理量之減少。於此假設 p , q 及 k 是 2 ^α , 2 ^β 2 ^{ho},其中, α 及 β 是正整數以及 h 0 是一不爲負之整數。公式 5 之除法可以藉由 α + β + h 0 位元之移位運算加以實現,使得吾人可以使用一電腦或指定硬體大量地減少處理之量。再者,假設 m 是 2 ^{h 1} (h 1 是不

五、發明說明(11)

$$u(x, y) = ((2L+1) << (\alpha+\beta+h0-h1-1) + (u1-u0) (x-i)$$

$$<< \beta+ (u2-u0) (y-j) << \alpha+u0 << (\alpha+\beta))$$

$$>> (\alpha+\beta+h0-h1) -L$$

$$v(x, y) = ((2M+1) << (\alpha+\beta+h0-h1-1) + (v1-v0) (x-i)$$

$$<< \beta+ (v2-v0) (y-j) << \alpha+v0 << (\alpha+\beta))$$

$$>> (\alpha+\beta+h0-h1) -M$$

... ... 公 式 7

其中,"x<<<a"指的是,x被向左移位α位元以及最低α位元被以零取代,"x>>α意指x係被向右移位α位元,0或1係被替代較高之α位元(當x是2的補數之代表數時,1是被替代,當x的最高位元是1時,以及,0是被替代當其是0時),以及,這些運算子之優先順序係於加/減及乘/除法之間,使得運算可以更簡化。

當線性內插及/或外插被使用時,假設(u3,v3)是一座標,其係由將一在(i+p,j+q)之代表點之活動向量之水平及垂直分量乘以k所決定,公式5係被重寫爲公式8或公式9,如下:

$$u(x,y) = ((u1-u0)(x-i)q+(u3-u1)(y-j)p+u0pq)m)//(pqk)$$

$$v(x,y) = ((v1-v0)(x-i)q+(v3-v1)(y-j)p+v0pq)m)//(pqk)$$

... ... 公 式 8

其中,代表點是(i,j),(i+p,j)及(i+p,j+q)。

五、發明說明(12)

u(x,y) = ((u3-u2)(x-i)q+(u2-u0)(y-j)p+u0pq)m)/(pqk) v(x,y) = ((v3-v2)(x-i)q+(v2-v0)(y-j)p+v0pq)m)/(pqk)

… … … 公 式 9

其中,代表點是(i,j),(i+j+q)及(i+p,j+q)及(i

u(x,y)=((u2-u3)(i+p-x)q+(u1-u3)(j+q-y)p+u3pq)m)/(pqk)v(x,y)=((v2-v3)(i+p-x)q+(v1-v3)(j+q-y)p+v3pq)m)/(pqk)

… … 公式10

其中,代表點是(i+p,j),(i,j+q)及
(i+p,j+q)。

這 使 得 吾 人 可 能 藉 由 使 用 p , q , k 及 m , 其 係 爲

2 n 之 數 (其 中 n 是 一 正 整 數) , 來 減 少 處 理 之 量。

當雙線性內插及/或外插被使用時,假設(u0,

v 0) , (u 1 , v 1) , (u 2 , v 2) 及 (u 3 ,

v 3) 爲由將代表點(i , j) , (i + p , j) , (i

, j + q) 及 (i + p , j + q) 之活動向量之水平及垂

直分量乘以 k 所決定之座標, u (x , y) 及 v (x , y

) 由以下之公式所代表:

u(x,y)

= (((j+q-y))((i+p-x)u0+(x-i)u1+(y-j))((i+p-x)u2+(x-i)u3))m)/(pqk) v(x,y)

= (((j+q-y))((i+p-x)v0+(x-i)v1+(y-j))((i+p-x)v2+(x-i)v3))m)/(pqk)

... ... 公 式 1 1

公式11可以被重寫爲:

五、發明説明(13)

$$u(x, y) = ((2L+1) << (\alpha+\beta+h0-h1-1) + (j+q-y) ((i+p-x)u0 + (x-i)u1) + (y-j) ((i+p-x)u2 + (x-i)u3))$$

$$>> (\alpha+\beta+h0-h1) - L$$

$$v(x, y) = ((2M+1) << (\alpha+\beta+h0-h1-1) + (j+q-y) ((i+p-x)v0 + (x-i)v1) + (y-j) ((i+p-x)v2 + (x-i)v3))$$

$$>> (\alpha+\beta+h0-h1) - M$$

… … … 公式12

藉由使用 p , q , k 及 m , 其分別爲 2 α , 2 α , 2 ιο 及 2 ιο 2 b ο 数 。 使得吾人可以如在上述處理中減少處理之數量。

爲了在發射側及接收側均獲得全活動補償之相同預估 影像,有關於代表點之活動向量之資料必須被以某一格式 傳送至接收側。該代表點之活動向量可以被直接傳送。然 而,其亦係可能傳送影像之角落點之活動向量並由其上計 算出代表點之活動向量。這方法將如下述。

首先,假若線性內插及/或外插係被使用之例子被加以說明。假設,影像三個角落點(0,0),(r,0) 及(0,s)之活動向量只取這些值,其係整數乘以1/n,以及假設由水平及垂直分量乘以n之座標係被傳送。 於這例子中,由活動向量之水平及垂直分量乘以k所決定之座標(u0,v0),(u1,v1),(u2,v2))及(u3,v3)係被定義如下:

```
五、發明說明(14)
```

$$u \ 2 = u \ (i \ , j + q)$$

$$v 2 = v ' (i + q)$$

$$u \ 3 = u \ (i + p \ j + q)$$

$$v \ 3 = v' \ (i + p \cdot j + q) \ \cdots \cdots \cdots \odot \preceq 1 \ 3$$

其中u'(x,y)及v'(x,y)係由下式所定,其係公式5之修正:

其中,"///表除法用以捨入一般除法之商數成為一鄰接整數,當該商數不是一整數時,其作為一運算子之優先順序係相同於乘法或除法。三個點係由(u 0), v 0), (u 1 , v 1), (u 2 , v 2)及 (u 3 , v 3)中選出,以及,該全活動補價可以使用這些點作為表點加以執行。然後,該全活動補價可以使用(0 , 0), (r , 0)及 (0 , s)作為代表點來加以近似。處理可以被如先前所述般簡化。為正整數之內及內,該處理可以被如先前所述般簡化。為了減少運算錯誤,吾人係與可以被如先前所述般簡化。為了減少運算錯誤,是數之值成為過接近之整數之值成為過接近之整數之值成為過接近之整數之值之方法包

五、發明說明(15)

含上述(1)至(4)之方法。然而,相較於使用公式(5) 之例子(用以每一圖素之計算),公式14之運算 對於一影像只有三計算)並不需要很多之計算。因此,即 使假若方法(1)或(2)係被選擇,計算之總量係不受 到大量之影響。

角落點時, 該相同之處理可以藉由修改公式 8 成爲公式 10加以實現。除了上述之例子,藉由讓(u 0 3, v () 3) 成爲藉由將影像之角落點(r , s) 之活動向量 之水平及垂直分量乘以 n 所決定之座標, 公式 1 4 可以被

當不同於使用公式13之三個點係被選擇作爲影像之

 $(x \cdot y) = (((u \ 0 \ 1 - u \ 0 \ 0) \ x \ s)$

 $u \ 0 \ 3 - u \ 0 \ 1 \) \ y \ r + u \ 0 \ 0 \ r \ s \) \ k \) / / / \ ($

rsn)

改寫爲:

 $(x \cdot y) = (((v \cdot 0 \cdot 1 - v \cdot 0 \cdot 0) \cdot x \cdot s + ($

0 3 - v 0 1) y r + v 0 0 r s) k)///(

... ... 公式15 rsn)

當(u 0 0 , v 0 0) , (u 0 1 , v 0 1) 及(

u 0 3 , v 0 3)被傅送時,可以被改寫爲:

u'(x, y) = ((u03-u02)xs+(u02-u00)yr+u00rs)ky//(rsn)v'(x, y) = (((v03-v02)xs+(v02-v00)yr+v00rs)k)//(rsn)

… … … 公式 1 6

,v00),(u02,v02)及(u 03, v03)被傅送時,可以被改寫爲:

```
五、發明說明(16)
```

$$u'(x, y) = ((u02-u03)(r-x)s+(u01-u03)(s-y)r+u03rs)k)$$

 $///(rsn)$
 $v'(x, y) = ((v02-v03)(r-x)s+(v01-v03)(s-y)r+v03rs)k)$
 $///(rsn)$

... ... 公 式 1 7

當(u01,v01),(u02,v02)及(u03,v03)被傳送時。

相同之情形係保持繼續,當雙線性內插及/或外插被執行時。如於以上所述之例子,假設該影像之四角落代表點(0,0),(r,0),(0,s)及(r,s)之活動向量只取其係被整數乘以1/n之值,以及,假設,п倍之代表點之活動向量之水平及垂直分量之(u00,v00),(u01,v01),(u02,v02)及(u03,v03)係被傳送。於這例子中,k倍代表點(i,j),(i+p,j+q)及(i+p,j+q)之活動向量之水平及垂直分量之(u0,v1),(u1,j+q)及(i+p,j+q)之活動向量之水平及垂直分量之(u0,v0),(u1,v1),(u2,v2)及(u3,v3)係被以以上公式13加以定義。然而,於此,藉由修改公式11:

u'(x,y)及v'(x,y)被定義爲:

$$u'(x, y) = (((s-y)((r-x)u00+xu01)+y((r-x)u02+xu03))k)$$

$$//(rsn)$$

$$v'(x, y) = (((s-y)((r-x)v00+xv01)+y((r-x)v02+xv03))k)$$

$$//(rsn)$$

... ... 公式 1 8

該影像之角落點之活動向量被內插及/或外插以尋找

五、發明説明(17)

代表點之活動向量之方法的優點在於用於每一圖素之活動向量之範圍可以被容易地限制。例如,於由公式4所定義之雙線性內插及/或外插之例子中,值ug(x,y)係不大於ua,ub,uc及ud之最大值並不小於其最小值,當點(x,y)係在該影像內之時。因此,假若一限制條件係被加入,使得值ua,ub,uc,及ud係於一限定範圍(例如,在生32圖素之內)在估計配圖內(值ug(x,y)對所有圖素可以被限定於相同範圍內(這對於vg(x,y)當然亦適用)。這使得語或可以明確地決定需用以計算之數位量,其對於設計軟體或硬體之觀點係方便的。

然而,以上之說明係基於使用浮點算術運算加以執行所有之計算,因此,於實用時必須加以注意。用以自影像之角落點之活動向量尋找代表點之活動向量之算術運算(公式18)涉及捨入一值成爲一整數。因此,必須考慮機率之問題,其係爲由公式12所找到之活動向量可以未虧計算誤差而算出在上述限定範圍之外。特別是,當代表點係定位於影像內,必須加以注意。這是因爲活動向量係由外插在由代表點所定義之矩形外之圖素,所以捨入誤差可能被放大。

第七圖例示出活動向量係以外插加以找尋之例子。當全活動補償係執行於影像701之上,藉由使用代表點702,703,704及705,該活動向量係以外插在影像內之斜線部份加以計算。這是因爲斜線部份係在由

訂

五、發明説明(18)

代表點所定義之矩形706之外。

這問題可以藉由安排四個點加以有效地解決,由代表點所定義之矩形包含整個影像。這係示於第八圖。一由代表點802,803,804及805所定義之矩形806包含一影像801。則所有圖素之活動向量可以內插代表點加以找到,以及在代表點之捨入誤差之作用在影像之內係不被放大。所以,在代表點之一較捨入誤差所以為之為差係不會發生在影像之內,以及誤差之上限係爲有限。然而,當由代表點所定義之矩形太大時,在所取係不是點之統而,當由代表點所定義之矩形太大時,在所取代表點之統而,當由代表點所定義之矩形太大時,在所取衛運算之數位之數量增加,由安裝觀點看來造成不便。

由前述說明中,其可以知道 p 係大於 r ,以及,值 q 係大於 s ,以減少捨入誤差之作用。同時吾人係想要 p 及 q 值係儘可能地大,即使當它們係小於 r 及 s 時。吾人係想要值i 及 j 係使得其在影像內之部份儘可能地寬,及值i 及 j 是在由代表點所定義之區域之中。

當雙線性內插及/或外插係被如上所述使用作爲全活動向補償時,由兩代表點所定義之矩形中之圖素之活動向量之分量可以只取代表點之活動向量之分量之最大及最小值間之值。另一方面,當線性內插及/或外插被使用時,由三代表點所定義之三角形中之圖素之活動向量具有相同之性質。當全活動補償係使用線性內插及/或外插加以執行時,其係有效以傳送影像之四角落點之活動向量補償。影像之對角線所分割之兩三角形個別執行活動向量補償。

裝

訂

五、發明説明(19)

然後,在四角落之活動向量之範圍之限制可以直接應用至 在影像內所有圖素之活動向量上。於這例子中,值 i , 及 q 於 兩 直 角 三 角 形 中 可 以 不 相 同 。 再 者 , 以 運 算 誤 差 觀 點 看 來 , 吾 人 係 想 要 由 代 表 點 所 定 義 之 三 角 形 包 含 直 角 三 角 形 , 其 全 活 動 補 償 係 分 別 被 執 行 , 以 避 免 由 外 插 之圖素之活動向量之計算。這是於第九圖中所示。一影像 1之四角落之點909,90 3,908及9 10之 活動向量係被傳送,以及,全活動補償係個別地執行於每 03及910所定義之直角三角形,以 -0 9 9 10及908所定義之直角三角形。 0 9 9 因此,假若一限制係加至頂端之活動向量範圍上,在影像 內之所有圖素之活動向量係包含於這有限範圍內。由點 0 3 及 9 1 0 所定義之直角三角形分別使用點 3 及 9 0 4 作 爲 代 表 點 , 由 點 9 0 9 10及908所定義之直角三角形使用點906 07及908作爲代表點。由代表點所定義之三角形包 含直角三角形,其係分別被執行全活動補償。因此,代表 點之活動向量之捨入誤差之作用在影像內之點係不被放大 。 於 遺 例 子 中 , 由 代 表 點 所 定 義 之 兩 三 角 形 係 彼 此 相 類 似 然 而 , 三 角 形 可 以 不 必 然 彼 此 相 類 似 。

本發明使得移位運算來替代除法,用以合成全活動補償之預估影像並簡化了處理,不論是使用軟體或特定硬體或其組合。

第十圖示出依據本發明之實施例之使用快速全活動補

裝

訂

五、發明説明(20)

價之視訊影像資料之視訊編碼之步驟。於步驟150中,一視訊信號係被輸入及於步驟151中,全活動估計係被執行於一輸入影像及前一圖框之解碼影像之間。然後,於步驟152中,活動向量係由輸入影像之代表點中導出。

於下一步驟即步驟 1 5 3 中,全活動補償之預估影像係使用快速演譯法加以合成。該快速演譯法係揭示於本文中之演譯法之一般表示法,例如雙線性演譯法及仿射演譯法。例如,公式 1 是一仿射演譯法而公式 2 是一雙線性演譯法。再者,公式 3 , 5 , 6 , 7 - 1 0 及 1 4 - 1 7 係爲货制而公式 4 , 1 1 及 1 8 係爲雙線性。

於步驟154中,局部活動估算係執行於輸入影像及前一圖框之解碼影像之間。局部活動補償之預估影像係於步驟155合成,每一區塊之全或局部活動補償係被於步驟156中選擇。選擇步驟係必須的,因爲全活動補償及局部活動補償步驟於這實施例中係被平行執行的。

然後,於步驟157中,誤差影像係被藉由計算於預估影像及輸入影像間之差加以合成,該誤差影像係受到一離散餘弦轉換,以於步驟158中量化DCT係數。最後於步驟159中,壓縮視訊資料係被輸出。

於第十一圖中,另一用以執行視訊編碼之實施例係被揭示,其係類似於第十圖中所揭示之視訊編碼。明白地說,步驟150-153是相同,但示於流程圖中之其他剩餘步驟係不同。此原因是執行於第十一圖中之步驟係連續執行用以全活動補償及局部活動補償而不是第十圖中所示

装

訂

五、發明説明(21)

之平行。所以,於步驟254中,局部活動估算係執行於輸入影像及全活動補償之預估影像之間。然後,於步驟255中,局部活動補償之預估影像係被合成。最後,誤差影像係藉由計算於預估影像及輸入影像間之差而加以合成,如同於第十圖中之步驟157,步驟257及258係相同於如上所述之步驟158及159。

依據第十二圖之實施例,用於選擇使用快速演譯法之 全活動補償之區塊之用於選擇局部活動補償區塊之預估影 像之合成係平行地執行。另一方面,於第十三圖中,流程 圖示出另一實施例,其中,這些步驟係被串聯執行。

於十三圖中,步驟160及161係相同於第十二圖。於步驟262中,使用快速演譯法之全活動補償之預估影像係被合成,於步驟263中,局部活動補償之預估影像係被合成。這些步驟係被串聯執行並隨後由合成誤差影像之步驟,其係藉由施加反DCT至DCT係數,其係相

訂

五、發明説明(22)

同於第十二圖中之步驟165。其後之步驟265及 6 6 係相同於相關於第十二圖中所討論之步驟 1 6 6 及 67,其導致重建視訊信號輸出。

第十四及十五圖係本發明之編碼器及解碼器之元件之 方塊圖,其係用以儲存及執行於第十至十三圖之流程圖中 所揭示之軟體操作。該兩圖中共同之元件具有相同之參考 以及包含資料匯流排140, CPU142及儲存裝 4 3 。用以執行視訊編碼之編碼器程式係於第十四圖 所示, 並被儲存於儲存裝置143中。用以執行視訊解碼 之解碼程式係被儲存於儲存裝置143。儲存裝置143 是儲存媒體,例如硬碟機,軟碟或光碟

藉 由 參 考 第 十 四 圖 , 一 輸 入 視 訊 信 號 係 被 A / D 轉 換 器 1 4 1 所作 A / D 轉換並被於匯流排 1 4 0 上送至 4 2 取 得 並 執 行 儲 存 於 儲 存 裝 置 С РU 1 U 1 4 2 4 3 中之編碼器程式 1 4 4 並然後編碼並壓縮來自 A / D 轉換器 1 4 1 之 視 訊 資 料 。 在 視 訊 資 料 被 編 碼 之 後 , 其 係被儲存於一輸出緩衝器145中並被輸出爲輸出資料。 控制資料及計時信號係被以壓縮視訊資料被輸出。

第十五圖示出編碼視訊信號之處理,其係被接收於輸 入緩衝器148中並然後爲СРU142所讀取。由儲存 裝置 1 4 3 取得解碼器程式 1 4 7 之 C P U 1 4 2 執行編 碼視訊資料之解碼。該解碼視訊資料係被送於匯流排 1 4 0 上而至 D / A 轉換器 1 4 6 , 用以輸出一類比視訊 信號。

訂

五、發明説明(23)

第十六圖示出依據本發明之視訊編碼器之整個方塊圖,其係類似於前技之第一圖所示者。所以,用以兩圖之共同元件具相同之參考數。於第十六圖,第一圖之區塊比對單元方塊116,用以局部活動補償者係被以方塊
1002所替代,其係使用全活動補償及局部活動補償。
否則,於第十六圖中之剩下元件係相同於第一圖中之元件

於第十七圖中,執行連續處理之活動估算及補償單元 1003係被示出。單元1003可以被使用爲第十六圖 中之活動估算及補償單元1002。再者,單元1003 係一硬體實施例,其執行幾乎相等於第十一圖中所示之軟 體處理之步驟之功能。

五、發明説明(24)

預估影像及輸入影像間之差。於第十七圖中之活動補償單元使用串聯全活動估算及局部活動估算。

於第十八圖中,可以使用爲第十六圖中之活動補償單 元 1 0 0 2 之活動補償單元 1 0 0 6 係揭示,其中並聯處 理係如下執行全活動補償單元及局部活動估算。首先 視訊信號 1 0 1 係被全活動估算單元 1 0 0 8 及區塊比對 單元505所輸入及接收。然後,全活動估算係被全活動 估算單元1008所執行於輸入影像及前一圖框之解碼影 像之間。活動參數504例如代表點之活動向量係輸入至 多工器 5 1 0 及全活動補償(GMC)影像合成器 1 0 0 7 。 使 用 快 速 演 譯 法 之 全 活 動 補 償 之 預 估 影 像 係 被 合成及輸出至一區塊比對/全活動補償切換開關508 用以輸出由全活動或局部活動補償之一所獲得給每一區塊 之 現 行 圖 框 1 1 7 之 預 估 影 像 。 切 換 開 關 選 擇 係 選 擇 資 料 0 9 係輸出至多工器 5 1 0。多工器同時接收區塊比對 單元505之輸出507,其係爲活動向量資料。一信號 120係被由多工器所輸出,其包含信號504,507 及509。

第十九圖示出類似於先前技藝之圖 2 之視訊解碼器,但其中包含一預估影像合成器 1 0 1 0 之加入,其係用以依據本發明之實施例來合成預估影像。解碼器 1 0 0 9 之其他剩下元件係相同於第二圖中所示者。

於第二十圖中,依據本發明之一實施例之預估影像合成器1011係被顯示,其可使用作爲示於第十九圖之預

訂

五、發明説明(25)

估影像合成器 1 0 1 0。 串聯處理係示於第二十圖中,其中,活動向量資料 2 0 2 係被多工器 1 0 1 3 所接收,其提供活動參數 4 0 3 及活動向量資料 4 0 6 分別至合活動補償(G M C)影像合成器 1 0 0 5 及區塊比對影像合成器 1 0 1 2。該 G M C 影像合成器 1 0 0 5 導出代表配之活動向量及使用快速演譯法來合成全活動補償之一預估影像。然後,其輸出全活動補償 4 0 4 之預估影像至 B M 影像合成器 1 0 1 2 ,其合成局部活動補償之預估影像。現行圖框 2 1 2 之預估影像係然後被輸出至如於第十九圖所示之切換單元 2 1 4。

第二十一圖示出一預估影像合成器1014,其如下操作以平行處理全活動補償影像合成及區塊比對影像合成

活動向量資料202係輸入至多工器1016,其提供分開之活動參數資料504,活動向量資料507及區塊比對/全活動補償509之選擇資料分別至GMC影像合成器1015及開關508。BM影像合成器1015及開關508。BM影像合成器1017合成每一區塊之預估影像,其局部活動補償及GMC影像合成器1007合成使用快速演譯法選擇全活動補償之區塊之預估影像。相關資料503及506係被輸出至開關508,其依據接收自解多工器之選擇資料509,來選擇這些信號之一。一現行圖框212之預估影像係然後如在第十九圖所示被輸出爲開關單元214所接收。

五、發明説明(26)

依據本發明之實施例,視訊編碼及解碼可以藉由於第十至十三圖中之流程圖中所示之軟體運算,使用示於第十四及十五之軟體編碼器或軟體解碼器,其係如於第16至21之本發明之實施例所示者。

[圖式之簡要說明]

第一圖係例示出一H. 261視訊編碼器之構成。

第二圖係例示出一H. 261 視訊解碼器之構成。

第 3 A 及 3 B 圖 係 例 示 出 一 用 以 傳 送 代 表 點 之 活 動 向 量 之 全 活 動 補 償 之 例 子。

第四圖係例示出一用以作動全活動補償之一預估影像之區塊比對之視訊解碼器之活動補償部份。

第五圖係示出視訊編碼器之活動補償部份,其係用於選擇全活動補償或對每一區塊作區塊比對。

第六圖係例示出用以執行高速處理之代表點之佈置圖

第七圖係例示出一用以藉由外插尋找在影像內之活動 向量之區域之示意圖。

第八圖係一例示圖,示出一例子其中於該影像中之所有圖素之活動向量係藉由由代表點之活動向量之內插而加以獲得。

第九圖係一示意圖,其中,影像被分成兩三角形,該全活動補償係基於來自代表點之活動向量之內插之三角形加以執行。

訂

五、發明説明(27)

第十圖示出一流程圖,用以執行依據本發明之一實施例之視訊編碼。

第十一圖示出一流程圖,用以執行依據本發明之另一實施例之視訊編碼。

第十二圖示出一流程圖,用以依據本發明之一實施例視訊解碼。

第十三圖示出一流程圖,用以依據本發明之另一實施例之視訊解碼。

第十四圖係一依據本發明之一實施例之視訊編碼方法之軟體編碼器之示意圖。

第十五圖係一依據本發明之一視訊解碼方法之軟體解碼器之示意圖。

第十六圖是本發明之一視訊編碼圖之整個示意圖。

第十七圖是一依據本發明之一實施例之使用於第十六圖中之編碼器中之活動補償單元之示意圖。

第十八圖是一依據本發明之另一實施例之使用於第十六圖中之編碼器中之活動補償單元之示意圖。

第十九圖是依據本發明之用以解碼一視訊信號之視訊解碼器之示意圖。

第二十圖是一依據本發明之一實施例之使用於第十九圖中之視訊解碼器中之預估影像合成器之示意圖。

第二十一圖是一依據本發明之另一實施例之使用於第十九圖中之視訊解碼器中之預估影像合成器之示意圖。

第 8 6 1 0 2 7 4 1 號 專利申請案 中文申請專利範圍修正本

民國89年2月修正

本89年2月23日

- 1 . 一種視訊編碼器,包含:
- 一全活動補償單元,用以基於參考圖框之解碼影像及現行圖框之原始影像間之全活動補償,而執行活動估計,並輸出現行圖框之預測影像,其中,該全活動補償單元包含:

計算機構,用以藉由使用具有座標(i,j),(i+p,j),(i,j+q)代表點之活動向量,而計算於預測影像中之每一像素中之活動向量,其中,i及j係整數,及p及q是2的整數乘方,及

合成機構,用以使用每一像素之活動向量而合成該預測影像。

- 2.如申請專利範圍第1項所述之視訊編碼器,其中,該全活動補償單元更包含:計算機構,用以使用於預測影像之角落點之活動向量,而計算代表點之活動向量。
- 3.如申請專利範圍第2項所述之視訊編碼器,其中,該角落點具有座標(0,0),(r,0),及(0,s),其中r及s是整數。
- 4 . 如申請專利範圍第1項所述之視訊編碼器,其中,一爲代表點所定義之矩形包含整個預測影像。
- 5 . 如申請專利範圍第2項所述之視訊編碼器,其中,該計算代表點之活動向量之計算機構及計算每一像素之

活動向量之計算機構執行線性內插及/或外插於計算中。

- 6.一種視訊編碼器,包含:
- 一全活動補償單元,用以基於參考圖框之解碼影像及現行圖框之原始影像間之全活動補償,而執行活動估計,並輸出現行圖框之預測影像,其中,該全活動補償單元包含:

計算機構,用以藉由使用具有座標(i,j),(i+p,j),(i,j+q)代表點之活動向量,而計算於預測影像中之每一像素中之活動向量,其中,i及j係整數,及p及q是2的整數乘方,及

合成機構,用以使用每一像素之活動向量而合成現行 圖框之預測影像,

其中每一像素之活動向量之水平及垂直分量具有 1 / m 之整數倍數值,

代表點之活動向量之水平及垂直分量具有 1 / k 之整數倍值,

藉由分別假設(u(x,y), v(x,y))爲具有座標(x,y)之像素之活動向量之m倍,及(u0,v0),(u1,v1)及(u2,v2)爲代表點(i,j),(i+p,q)及(i,j+q)之活動向量之k倍,

該計算每一像素之活動向量之計算機構,執行公式:
u(x,y)=((u0pq+(u1-u0)(x-i)q+(u2-u0)(y-j)p)m)//
(pqk)

v(x, y) = ((v0pq+(v1-v0)(x-i)q+(v2-v0)(y-j)p)m)//(pqk)

其中,m及k是 2 的整數乘方,及 //表示當該除法之商數不是一整數時,用以捨入該正常除法之商數成爲一鄰近整數之除法,其作爲一運算子之優先順序係相同於一般乘法及除法,及 u(x,y), v(x,y), u0, v0, u1, v1, u2, v2是整數

7.如申請專利範圍第6項所述之視訊編碼器,其中,該用以捨入該 / /之整數及1 / 2 和之值之方法係以下之

捨入值至0,

捨入值離開0,

當被除數是負時,捨入值向 0 ,當被除數爲正時,捨入離開 0 ,或

當被除數爲負時,捨入值離開〇,或當被除數爲正時 ,捨入向〇。

8 . 如申請專利範圍第 6 項所述之視訊編碼器,其中,該全活動補償單元更包含:

計算機構,用以由具有座標(0,0),(r,0)及(0,s)之角落點之活動向量,計算出代表點之活動向量,

其中,角落點之活動向量之水平及垂直分量具有1/n整數倍之值,

藉由假設(u00,v00),(u01,v01)及(u02,v02)是分別n 倍於該該角落點(0,0),(r,0)及(0,s)之活動向量,

用以計算代表點之活動向量之計算機構,執行以下公式:

u'(x,y)=((u00rs+(u01-u00)xs+(u02-u00)yr)k)//(rsn)

v'(x,y)=((v00rs+(v01-v00)xs+(v02-v00)yr)k)///(rsn)

u=u '(i , j), v 0=v '(i , j)

u1=u'(i+p, j) v1=v'(i+p, j)

u2=u'(i, j+q) v2=v'(i, j+q)

其中n是一整數,及"///"表示當該除法之商數不是一整數時,用以捨入該正常除法之商數成爲一鄰近整數之除法,其運算子之優先順序係相同於一般乘法及除法,及,r,s,u00,v00,u01,v01,u02及v02係整數。

9.如申請專利範圍第6項所述之視訊編碼器,其中
拾入該"///"之整數及1/2之總和之值之方法是以下步驟之一:捨入值至0,拾入值遠離0,當被除數爲負時,
捨入至0,當被除數爲正,則拾入離開0,或當被除數爲

1 0 . 如申請專利範圍第 8 項所述之視訊編碼器,其中,該p及r具有關係爲p大於等於r,p/2小於r,及 q及s具有關係,q大於等於s,q/2小於s。

11.一種視訊編碼器,包含:

一全活動補償單元,用以基於參考圖框之解碼影像及現行圖框之原始影像間之全活動補償,來執行活動估計, 並輸出現行圖框之預測影像,其中該全活動補償單元包含

計算機構,用以使用具有座標(i,j),(i+p,j),(i,j+q),(i+p,j+q)之代表點之活動向量,而計算於預測影像中之每一像素之活動向量,其中,i及j是整數,及p及q是2的整數乘方,及

合成機構,用以藉由使用每一像素之活動向量而合成 該預測影像。

- 12.如申請專利範圍第11項所述之視訊編碼器,其中,該全活動補償單元更包含計算機構,用以使用預測影像之角落點之活動向量,而計算代表點之活動向量。
- 13.如申請專利範圍第12項所述之視訊編碼器,其中,該角落點具有座標(0,0),(r,0),(0,s),(r,s), 其中r及s爲整數。
- 1 4 . 如申請專利範圍第 1 1 項所述之視訊編碼器,其中,由該代表點所定義之矩形包含整個預測影像。
- 15.如申請專利範圍第13項所述之視訊編碼器,其中,該計算代表點之活動向量之計算機構及計算像素之活動向量之計算機構及計算像素之活動向量之計算機構執行雙線性內插及/或外插於計算中
 - 16.一種視訊編碼器,包含:
- 一全活動補償單元,用以基於參考圖框之解碼影像及現行圖框之原始影像間之全活動補償,來執行活動估計,並輸出現行圖框之預測影像,其中該全活動補償單元包含

計算機構, 用以使用具有座標(i,j),(i+p,j),(i,j+q

), (i+p, j+q)之代表點之活動向量,而計算於預測影像中之每一像素之活動向量,其中,i及j是整數,及p及q是 2之整數乘方,及

合成機構,用以藉由使用每一像素之活動向量而合成 該預測影像,

其中,每一像素之活動向量之水平及垂直分量具有 1 / m 之整數倍之值,

代表點之活動向量之水平及垂直分量具有 1 / k 之整數倍之值,

藉由分別假設(u(x,y),v(x,y))爲m倍之具有座標(x,y)之像素之活動向量,以及,(u0,v0),(u1,v1),(u2,v2),(u3,v3)是 k 倍於代表點(i,j),(i+p,j),(i,j+q),(i+p,j+

用以計算每一像素之活動向量之機構執行公式:

u(x,y) = ((j+q-y)((i+p-x)u0+(x-i)u1)+(y-j)((i+p-x)u2+(x-)u3))m//(pqk)

v(x,y) = ((j+q-y)((i+p-x)v0+(x-i)v1)+(y-j)((i+p-x)v2+(x-)v3))m//(pqk)

其中,k及m是2的整數乘方,及"//"代表當該除法之商數不是一整數時,用以捨入該常除法之商數成爲一鄰近整數之除法,其運算子之優先順序係相同於一般乘法及除法)及u(x,y),v(x,y),u0,v0,u1,v1,u2,v2,u3及v3是整數。

17.如申請專利範圍第16項所述之視訊編碼器,其中捨入該"//"之整數及1/2之總和之值之方法是以

下步驟之一:捨入值至 0 ,捨入值遠離 0 ,當被除數爲負時,捨入至 0 ,當被除數爲正,則捨入離開 0 ,或當被除數爲正時,捨入向 0。

18.如申請專利範圍第16項所述之視訊編碼器,其中,該全活動補償單元更包含:

計算機構,用以由具有座標(0,0),(r,0)及(0,s),(r,s)之角落點之活動向量,計算出代表點之活動向量,

其中,角落點之活動向量之水平及垂直分量具有1/n整數倍之值,

藉由假設(u00, v00),(u01, v01)及(u02, v02)是分別n 倍於該該角落點(0,0),(r,0)及(0,s)之活動向量,

用以計算代表點之活動向量之計算機構,執行以下公式:

u'(x,y)=((u00rs+(u01-u00)xs+(u02-u00)yr)k)//(rsn)

v'(x,y) = ((v00rs+(v01-v00)xs+(v02-v00)yr)k)///(rsn)

u 0 = u' (i, j), v 0 = v' (i, j)

u1 = u'(i+p, j) v1 = v'(i+p, j)

u2 = u'(i, j+q) v2 = v'(i, j+q)

u 3 = u' (i + p, j + q) v 3 = v' (i + p, j + q)

其中n是一整數,及"///"表示當該常除法之商數不是一整數時,用以捨入該正常除法之商數成爲一鄰近整數之除法,其運算子之優先順序係相同於一般乘法及除法

,及 , u00,v00,u01,v01,u02及 v02係 整 數 。

- 19.如申請專利範圍第18項所述之視訊編碼器,其中,捨入該"///"之整數及1/2之總和之值之方法是以下步驟之一:捨入值至0,捨入值遠離0,當被除數爲百,將入至0,當被除數爲正,則捨入離開0,或當被除數爲負時,捨入離開0,及當被除數爲正時,捨入向0
- 20.如申請專利範圍第18項所述之視訊編碼器, 其中,該p及r之關係爲p大於等於r,及p/2小於r,及

q及 s之關係爲 q大 於 等 於 s, q/2小 於 s。

- 21.一種視訊解碼器,包含:
- 一記憶體,用以儲存先前解碼圖框之解碼影像,
- 一合成器,用以藉由使用該解碼影像及有關現行圖框之接收資訊,而合成現行圖框之影像,其中,該合成器包含:

計算機構,用以使用具有座標(i,j),(i+p,j),(i,j+q)之代表點之活動向量,而計算於現行圖框中該影像中之每一像素之活動向量,其中,i及j是整數,及p及q是2的整數乘方,及

合成機構,用以藉由使用每一像素之活動向量而合成 該預測影像。

22.如申請專利範圍第21項所述之視訊解碼器,其中,該資訊包含現行圖框之影像之角落點之活動向量,以及,該合成器藉由使用角落點之活動向量而計算代表點

之活動向量。

23.如申請專利範圍第22項所述之視訊解碼器, 其中,該角落點具有座標(0,0),(r,0),(0,s)及其中r及s 爲整數。

2 4 . 如申請專利範圍第 2 1 項所述之視訊解碼器,其中,由該代表點所定義之矩形包含整個預測影像。

25.如申請專利範圍第22項所述之視訊解碼器,其中,該計算代表點之活動向量之計算機構及計算每一圖像之活動向量之計算機構執行線性內插及/或外插於計算中。

- 26.一種視訊解碼器,包含:
- 一記憶體,用以儲存先前解碼圖框之解碼影像,
- 一合成器,用以藉由使用該解碼影像及有關現行圖框之接收資訊,而合成現行圖框之影像,其中,該合成器包含:

計算機構,用以使用具有座標(i,j),(i+p,j),(i,j+q)之代表點之活動向量,而計算於現行圖框中該影像中之每一像素之活動向量,其中,p及q是2的整數乘方,及

合成機構,用以藉由使用每一像素之活動向量而合成 該預測影像,

像素之活動向量之水平及垂直分量具有 1 / m 之整數 倍之值,

代表點之活動向量之水平及垂直分量具有 1 / k 之整數倍之值,

藉由分別假設(u(x,y),v(x,y))爲m倍之具有座標(x,y)之像素之活動向量,以及.(u0,v0),(u1,v1),(u2,v2),(u3,v3)是 k 倍於代表點(i,j),(i+p,j),(i,j+q),之活動向量

用以計算每一像素之活動向量之機構執行公式:
u(x,y)=((u0pq+(u1-u0)(x-i)q+(u2-u0)(y-j)p)m)//

(pqk)

v(x,y) = ((v0pq + (v1-v0)(x-i)q + (v2-v0)(y-j)p)m)// (pqk)

其中,k及m是2的整數乘方,及"//"代表當該除法之商數不是一整數時,用以捨入該正常除法之商數成爲一鄰近整數之除法,其運算子之優先順序係相同於一般乘法及除法)及u(x,y),v(x,y),u0,v0,u1,v1,u2,v2,u3及v3是整數。

27.如申請專利範圍第26項所述之視訊解碼器,其中,捨入該"//"之整數及1/2之總和之值之方法是以下步驟之一:捨入值至0,捨入值遠離0,當被除數爲時,捨入至0,當被除數爲正,則捨入離開0,或當被除數爲負時,捨入離開0,及當被除數爲正時,捨入向0。

28.如申請專利範圍第26項所述之視訊解碼器,其中,該全活動補償單元更包含:

計算機構,用以由具有座標(0,0),(r,0)及(0,s)之角落點之活動向量,計算出代表點之活動向量,

其中, 角落點之活動向量之水平及垂直分量具有1/n

整數倍之值,

藉由假設(u00, v00),(u01, v01)及(u02, v02)是分別n 倍於該該角落點(0,0),(r,0)及(0,s)之活動向量,

用以計算代表點之活動向量之計算機構,執行以下公式:

u'(x,y)=((u00rs+(u01-u00)xs+(u02-u00)yr)k)///(rsn)

v'(x,y) = ((v00rs+(v01-v00)xs+(v02-v00)yr)k)//(rsn)

u = u'(i, j), v = v'(i, j)

u1=u'(i+p, j) v1=v'(i+p, j)

u2=u'(i, j+q) v2=v'(i, j+q)

u3=u'(i+p, j+q) v3=v'(i+p, j+q)

其中n是一整數,及"///"表示當該一般除法之商數不是一整數時,用以捨入該正常除法之商數成爲一鄰近整數,其運算子之優先順序係相同於一般乘法及除法,及,u00,v00,u01,v01,u02及v02係整數。

29.如申請專利範圍第26項所述之視訊解碼器, 其中捨入該"///"之整數及1/2之總和之值之方法是以下步驟之一:捨入值至0,捨入值遠離0,當被除數爲負時,捨入至0,當被除數爲正,則捨入離開0,或當被除數爲與爲時,捨入離開0,及當被除數爲正時,捨入向0。

3 0 . 如申請專利範圍第 2 8 項所述之視訊解碼器,其中,該p及r具有關係爲p大於等於r,p/2小於r,及

· 2 · 6 · - ·

q及 s具 有 關 係 爲 q大 於 等 於 s, q/2小 於 s。

- 3 1 . 一種視訊解碼器,包含:
- 一記憶體,用以儲存先前解碼圖框之解碼影像,
- 一合成器,用以藉由使用該解碼影像及有關現行圖框之接收資訊,而合成現行圖框之影像,其中,該合成器包含:

計算機構,用以使用具有座標(i,j),(i+p,j),(i,j+q),(i+p,j+q)之代表點之活動向量,而計算於現行圖框中 該影像中之每一像素之活動向量,其中,i及j是整數,及p及q是2的整數乘方,及

合成機構,用以藉由每一像素之活動向量而合成該預測影像。

- 32.如申請專利範圍第31項所述之視訊解碼器,其中,該資訊包含現行圖框之影像之角落點之活動向量,及該合成器藉由使用角落點之活動向而計代表點之活動向量。
- 3 3 · 如申請專利範圍第 3 2 項所述之視訊解碼器,其中,該角落點具有座標(0,0),(r,0),(0,s),(r,s), 其中r及s爲整數。
- 3 4 . 如申請專利範圍第 3 1 項所述之視訊解碼器,其中,由代表點所定義之矩形包含整個預測影像。
- 35.如申請專利範圍第32項所述之視訊解碼器,其中,該計算代表點之活動向量之計算機構及計算每一像素之活動向量之計算機構執行雙線性內插及/或外插於計

算中。

- 3 6 . 一種視訊解碼器,包含:
- 一記憶體,用以儲存先前解碼圖框之解碼影像,
- 一合成器,用以藉由使用該解碼影像及有關現行圖框之接收資訊,而合成現行圖框之影像,其中,該合成器包含:

計算機構,用以使用具有座標(i,j),(i+p,j),(i,j+q),(i+p,j+q)之代表點之活動向量,而計算於現行圖框中該影像中之每一像素之活動向量,其中,p及q是2的整數乘方,及

合成機構,用以藉由每一像素之活動向量而合成該預 測影像,及

像素之活動向量之水平及垂直分量具有 1 / m 之整數 倍之值,

代表點之活動向量之水平及垂直分量具有 1 / k 之整數倍之值,

藉由分別假設(u(x,y),v(x,y))爲 m倍之具有座標(x,y))之像素之活動向量,以及,(u0,v0),(u1,v1),(u2,v2)是k倍於代表點(i,j),(i+p,j),(i,j+q),之活動向量,

用以計算每一像素之活動向量之機構執行公式:

u(x,y) = ((j+q-y)((i+p-x)u0+(x-i)u1)+(y-j)((i+p-x)u2+(x-)u3))m//(pqk)

v(x,y) = ((j+q-y)((i+p-x)v0+(x-i)v1)+(y-j)((i+p-x)v2+(x-)v3))m)//(pqk)

其中,k及m是 2 的整數乘方,及"//"代表當該除法之商數不是一整數時,用以捨入該正常除法之商數成爲一鄰近整數,其運算子之優先順序係相同於一般乘法及除法)及u(x,y),v(x,y),u0,v0,u1,v1,u2,v2,u3及v3是整數。

37.如申請專利範圍第36項所述之視訊解碼器, 其中捨入該"//"之整數及1/2之總和之值之方法是以 下步驟之一:捨入值至0,捨入值遠離0,當被除數爲負 時,捨入至0,當被除數爲正,則捨入離開0,或當被除 數爲負時,捨入離開0,及當被除數爲正時,捨入向0。 請先閱讀背面之注意事項再填寫本頁

3 8 . 如申請專利範圍第3 6 項所述之視訊解碼器,其中,該全活動補償單元更包含:

計算機構,用以由具有座標(0,0),(r,0)(0,s),(r,s) 之角落點之活動向量,計算出代表點之活動向量,

其中,角落點之活動向量之水平及垂直分量具有1/n整數倍之值,

藉由假設(u00,v00),(u01,v01),(u02,v02)及(u03,v03)是分別n倍於該該角落點(0,0),(r,0)及(0,s),(r,s)之活動向量,

用以計算代表點之活動向量之計算機構,執行以下公式:

u'(x,y) = ((s-y)((r-x)u00+xu01+y((r-x)u02+xu03))k///(rsn)

v'(x, y) = ((s-y)((r-x)v00+xv01+y((r-x)v02+xv03))k///(rsn)

u0=u'(i, j), v0=v'(i, j) u1=u'(i+p, j) v1=v'(i+p, j) u2=u'(i, i+q) v2=v'(i, i+q)

u2 = u'(i, j+q) v2 = v'(i, j+q)

u3 = u'(i+p, j+q) v3 = v'(i+p, j+q)

其中n是一整數,及"///"表示當該一般除法之商數不是一整數時,用以捨入該正常除法之商數成爲一鄰近整數,其運算子之優先順序係相同於一般乘法及除法,及, u00, v00, u01, v01, u02及 v02係整數。

39.如申請專利範圍第38項所述之視訊解碼器, 其中捨入該"///"之整數及1/2之總和之值之方法是以下步驟之一:捨入值至0,捨入值遠離0,當被除數爲負時,捨入至0,當被除數爲正,則捨入離開0,或當被除數爲負時,捨入離開0,及當被除數爲正時,捨入向0。

4 0 . 如申請專利範圍第 3 8 項所述之視訊解碼器, 其中,該 p及 r具有關係爲 p大於等於 r, p/2小於 r,及

q及 s具 有 關 係 爲 q大 於 等 於 s, q/2小 於 s。

41. 一種儲存媒體,用以儲存全活動補償程式,該程式包含:

藉由作動於影像之三個代表點之活動向量之線性內插及/或外插,而計算一影像中之所有像素之活動向量,及假設於相對於影像之水平及垂直方向中之像素之取樣間距爲1,並假設取樣點之座標之水平及垂直分量之取樣

點爲整數,

其中,用以作爲代表點之三點係由四點座標(i,j),(i

 +p, j), (i, j+q), (i+p, j+q)選出 (其中, i及j是整數, 及p

 及q為正整數), 及其中p及q是 2 α 及 2 β (α 及 β 是正整數)。

42.一種用以儲存一全活動補償程式之儲存媒體, 該程式包含:

藉由作動於影像之三個代表點之活動向量之雙線性內插及/或外插,而計算一影像中之所有像素之活動向量,及

假設於相對於影像之水平及垂直方向中之像素之取樣間距爲1,並假設取樣點之座標之水平及垂直分量之取樣點爲整數,

其中,用以作爲代表點之三點係由四點座標(i,j),(i+p,j),(i,j+q),(i+p,j+q)選出(其中,i及j是整數,及p及q爲正整數),及其中p及q是2α及2β(α及β是正整數)。

43. 一種用以合成現行圖框之預測影像之方法,藉由使用活動向量,該活動向量表示於預定影像與參考影像間之關係,該方法包含步驟有:

藉由使用具有座標(i,j),(i+p,j),(i,j+q)代表點之活動向量,而計算於預測影像中之每一像素中之活動向量,其中,i及j係整數,及p及q是2的整數乘方,及

藉由計算參考圖框之相關點,使用每一像素之活動向 量而合成該預測影像。

44.如申請專利範圍第43項所述之方法,其中: 該具有座標(i,j),(i+p,j),(i,j+q)之代表點係藉由使用該預測影像之角落點之活動向量加以計算。

45. 如申請專利範圍第44項所述之方法,其中, 該角落點具有座標(0,0),(r,0),及(0,s),其中r及s是整數。

46.如申請專利範圍第43項所述之方法,其中:一爲代表點所定義之矩形包含整個預測影像。

47.如申請專利範圍第44項所述之方法,其中:該代表點之活動向量及每一像素之活動向量係藉由執行線性內插加以計算。

48.一種合成現行圖框之預測影像之方法,藉由使用指示現行圖框與參考影像間之關係之活動向量,該方法包含步驟:

藉由使用具有座標(0,0),(p,0),(0,q)代表點之活動向量,而計算於預測影像中之每一像素中之活動向量,其中,p及q是2的整數乘方,及

藉由使用每一像素之活動向量,合成現行圖框之預測 影像,

其中每一像素之活動向量之水平及垂直分量具有 1/m之整數倍數值,及代表點之活動向量之水平及垂直 分量具有1/k之整數倍值,

藉_由分別假設(u (x , y) , v (x , y))分別

爲具有座標(x,y)之像素之活動向量之m倍,及(u0,v0),(u1,v1)及(u2,v2)爲代表點(0,0),(p,0)及(0,q)之活動向量之 k倍,

每一像素之活動向量係由下列公式計算:

$$u(x,y) = ((u0pq+(u1-u0)xq+(u2-u0)ypm)//(pqk)$$

$$v(x,y) = ((v0pq + (v1-v0)xq + (v2-v0)ypm)//(pqk)$$

及,該預測影像係藉由以下列公式計算於現行圖框中之像素(x,y)之參考圖框中之相關點(x,y)之 座標之m倍加以合成,該公式爲:

 $x' = mx + u(x, y) = mx + ((u0pq + (u1 - u0)xq + (u2 - U0)yp)_m)$ //(pqk)

$$= mx + ((u0pq + (x1-u0-pk)xq + (x2-u0)yp)m)//(pqk)$$

$$=((u0pq+(x1-u0)xq+(x2-u0)yp)m)//(pqk)$$

$$y' = my + v(x, y) = my + ((v0pq + (v1-v0)xq + (v2-v0)yp)_m)$$

//(pqk)

$$= my + ((v0pq + (Y1 - v0)xq + (Y2 - v0 - qk)yp)m)//(pqk)$$

$$= ((v0pq+(Y1-v0)xq+(Y2-v0)yp)m)//(pqk)$$

其中,m及k是2, X1=u1+pk, X2=u2, Y1=v1, Y2=v2+qk的整數乘方,及"//"表示當該常除法之商數不是一整數時,用以捨入該常除法之商數成爲一鄰近整數之除法,其作爲一運算子之優先順序係相同於一般乘法及除法,及u(x,y),v(x,

本紙張尺度適用中國國家標準 (CNS) A4規格 (210×297公養)

· u l · v l · u 2 · v 2 是整數。

49.如申請專利範圍第48項所述之方法,其中,該用以捨入該//之整數及1/2總和值之方法係當被除數是負時,捨入值向0,當被除數爲正時,捨入離開0。

5 0 . 如申請專利範圍第 4 8 項所述之方法,其中: 代表點之活動向量係由具有座標(0 , 0) , (r , 0) 及(0 , s) 之角落點之活動向量加以計算出,

角落點之活動向量之水平及垂直分量具有 1 / n 整數 倍之值,

藉由假設(u00,v00),(u01,v01)及(u02,v02)是分別n倍於該該角落點(0,0),(r,0)及(0,s)之活動向量,

代表點之活動向量係由以下公式計算:

u'(x, y) = ((u00rs+(u01-u00)xs+(u02-u00)yr)k)/// (rsn)

v'(x, y) = ((v00rs+(v01-v00)xs+(v02-v00)yr)k)///(rsn)

u = u' = (0, 0) = (ku00) / / n, v = v' = (kv00) / / n

u1 = u'(p, 0) = (k(r-p)u00+kpu01)//(rn)

v1 = v'(p, 0) = k(r-p)v00+kpv01)///(rn)

u2 = u'(0,q) = (k(s-q)u00+kqu02)///(sn)

v2 = v'(0,q) = (k(s-q)v00+kqv02)///(sn)

其中 n 是 2 的整數乘方,及"///"表示當該常除法之商數不是一整數時,用以捨入該常除法之商數成爲一鄰近整數之除法,其運算子之優先順序係相同於常乘法

本紙張尺度適用中國國家標準 (CNS) A4規格 (210×297公釐)

及除法,及,r,s,u00,v00,u01,v01,v01,u02及v02係整數,及

該預測影像係藉由以下列公式計算於現行圖框中之像素(x,y)之參考圖框中之相關點(x',y')之座標之 m 倍加以合成,該公式爲:

 $x' = ((u \cdot 0 p q + (x - u \cdot 0) x q + (x \cdot 2 - u \cdot 0) y p)_m) / (pqk)$

= ((((ku00)//n)pq + (x1 - ((ku00)//n))xq + (x2 - ((ku00)//n))yp)m)//(pqk)

 $y' = ((v 0 p q + (Y 1 - v 0) x q + (Y 2 - v 0) y p)_{m}) / / (p q k)$

= (((kv00)//n)pq + (Y1 - ((kv00)//n)xq + (Y2 - ((kv00)//n))yp)m)//(pqk)

5 1 · 如申請專利範圍第 5 0 項所述之方法,其中,該用以捨入該 " / / "之整數及 1 / 2 總和值之方法係捨入值離開 0 。

5 2 . 如申請專利範圍第 5 0 項所述之方法,其中,該 p 及 r 具有關係爲 p 大於等於 r , p / 2 小於 r , 及 q 及 s 具有關係, q 大於等於 s , q / 2 小於 s 。

5 3 . 一種合成現行圖框之預測影像之方法,藉由使用現行圖框及一參考圖框之角落點之活動向量,該方法包含步驟:

計算具有座標(0,0),(p,0),(0,q) 代表點之活動向量,其中p及q是2之整數乘方,藉由使 用現行影像之具有座標(0,0),(r,0)及(0,

s) 之角落點之活動向量

本紙張尺度適用中國國家標準(CNS)A4規格(210×297公釐)

藉由使用代表點之活動向量,計算於預測影像中之每一像素之活動向量,及

藉由使用每一像素之活動向量而合成該預測影像,其中;

角落點之活動向量之水平及垂直分量具有 1 / n 之整數倍之值,

藉由分別假設(u 0 0 , v 0 0) , (u 0 1 , v 0 1) 及(u 0 2 , v 0 2) 為角落點(0 , 0) , (r , 0) 及(0 , s) 之活動向量之 n 倍,

代表點之活動向量之水平及垂直分量具有 1 / k 之整數倍之值,

藉由假設(u 0 , v 0) , (u 1 , v 1) 及(u 2 , v 2) 分別爲代表點(0 , 0) , (p , 0) 及(0 , q) 之活動向量之 k 倍,

每一像素之活動向量之水平及垂直分量具有 1 / m 之整數倍之值,

藉由假設(u(x,y),v(x,y))爲具有座標(x,y)之像素之活動向量之m倍,

代表點之活動向量係由下列公式所計算:

u'(x,y) = ((u00rs+(u01-u00)xs+(u02-u00)yr)k)///0 (rsn)

v'(x,y)=((v00rs+(v01-v00)xs+(v02-v00)yr)k)///(rsn)

u 0 = u' (0, 0) = (ku00) / / / n, v0 = v' (0, 0) = (kv00) / / / n

本紙張尺度適用中國國家標準 (CNS) A4規格 (210×297公釐)

u1=u'(p,0)=(k(r-p)u00+kpu01)//(rn)

v1 = v'(p, 0) = (k(r-p)v00+kpv01)//(rn)

u2=u'(0,q)=(k(s-q)u00+kqu02)//(sn)

v2 = v'(0,q) = (k(s-q)v00+kqv02)//(sn)

每一像素之活動向量係由下列公式所計算:

u(x,y)=((u0pq+(u1-u0)(x-i)q+(u2-u0)(y-j)p)m//(pqk)

v(x,y) = ((v0pq+(v1-v0)(x-i)q+(v2-v0)(y-j)p)m//(pqk)

及

該預測影像係藉由計算於現行圖框之像素(x,y) 中之參考圖框中之相關點(x',y')之座標之m倍而加以合成,藉由以下公式:

x'=mx+u(x,y)=mx+(u0pq+(u1-u0)xq+(u2-u0)yp)m)//(pqk)

- = mx + ((u0pq + (X1-u0-pk)xq + (X2-u0)yp)m)//(pqk)
- $=((u^0pq + (X1-u^0)xq + (X2-u^0)yp)m)//(pqk)$
 - y'=my+v(x,y)=my + ((v0pq+(v1-v0)xq+(v2-v0)yp)m)//(pqk)
- = my + ((v0pq+(Y1-v0)xq+(Y2-v0-qk)yp)m)//(pqk)
- $=((v_0pq + (Y_1-v_0)xq + (Y_2-v_0)yp)m)//(pqk).$

其中 n 爲 2 之整數乘方,及"//"代表當常除法之商數不是整數時,用以捨入該常除法之商數成爲一鄰近整數之除法,其運算子之優先順序係相同於一般乘法及除法,及, r, s, u 0 0, v 0 0, u 0 1, v 0 1,

u 0 2 , v 0 2 為整數,及

其中 m 及 k 爲 2 , X 1 = u 1 + p k , X 2 = u 2 ,

, Y 2 = v 2 + p k 之整數之乘方,及 "代表當該常除法之商數不是一整數時,用以捨入該常除 法之商數成爲一鄰近整數之除法,其運算子之優先順序係 相同於一般乘法及除法,及u(x,y) 'u0'v0'u1'v1'u2'v

4 . 如申請專利範圍第53項所述之方法,其中捨 "///"之整數及1/2之總和值之方法是當被除 數 爲 負 時 , 捨 入 至 0 , 當 被 除 數 爲 正 , 則 捨 入 離 開 0 。

5 5 . 如申請專利範圍第53項所述之方法,其中, 該 p 及 r 具 有 關 係 爲 p 大 於 等 於 r , p / 2 小 於 r , 及

q及s具有關係爲q大於等於s, a/2小於s。

5 6 . 一種儲存藉由使用活動向量以合成現行圖框之 預測影像的程式之儲存媒體,該活動向量表示於現行圖框 及參考影像間之相關,該程式包含:

藉 由 使 用 具 有 座 標 (i , j) , (i + p , i , j + q) 代表點之活動向量,而計算於預測影像中之 每一像素中之活動向量,其中, i 及 j 係整數,及 p 及 q 是 2 的 整 數 乘 方 , 及

使用每一像素之活動向量,藉由計算參考圖框之相關 點,而合成該預測影像。

5 7 . 如申請專利範圍第56項所述之儲存媒體,其 中 , 該 具 有 座 標 (i , j),(i+p,j),(i,j + q) 之代表點係藉由使用現行影像之角落點之活動向量 加以計算。

5 8 · 如申請專利範圍第 5 7 項所述之儲存媒體,其中,該角落點具有座標(0,0),(r,0),及(0,s),其中r及s是整數。

59. 如申請專利範圍第58項所述之儲存媒體,其中:

- 一爲代表點所定義之矩形包含整個預測影像。
- 60.如申請專利範圍第58項所述之儲存媒體,其中:

該代表點之活動向量及每一像素之活動向量係藉由執 行線性內插加以計算。

6 1 . 一種用以儲存一程式之儲存媒體,該程式藉由使用指示於現行圖框及參考影像間關係之活動向量,以合成現行圖框之預測影像,該程式包含:

藉由使用具有座標(0,0),(p,0),(0,q)代表點之活動向量,而計算於預測影像中之每一像素中之活動向量,其中,p及q是2的整數乘方,及

藉由使用每一像素之活動向量,合成現行圖框之預測影像,

其中每一像素之活動向量之水平及垂直分量具有 1/m之整數倍數值,及代表點之活動向量之水平及垂直 分量具有1/k之整數倍值,

藉由分別假設(u(x,y),v(x,y))分別 爲具有座標(x,y)之像素之活動向量之m倍,及(u0,v0),(u1,v1)及(u2,v2)爲代表

本紙張尺度適用中國國家標準 (CNS) A4規格 (210×297公釐)

每一像素之活動向量係由下列公式計算:

$$u(x, y) = ((u0pq+(u1-u0)xq+(u2-u0)ypm)//(pqk)$$

$$v(x,y)=((v0pq+(v1-v0)xq+(v2-v0)ypm)//(pqk)$$

請先閱讀背面之注意事項再填寫本頁)

及,該預測影像係藉由以下列公式計算於現行圖框中 之像素(x , y) 之參考圖框中之相關點(x , y ,) 之 座 標 之 m 倍 加 以 合 成 , 該 公 式 爲 :

 $x' = mx + u(x, y) = mx + ((u0pq + (u1 - u0)xq + (u2 - U0)yp)_m)$ //(pqk)

= mx + ((u0pq + (x1-u0-pk)xq + (x2-u0)yp)m)//(pqk)

=((u0pq+(x1-u0)xq+(x2-u0)yp)m)//(pqk)

 $y' = my + v(x, y) = my + ((v0pq + (v1 - v0)xq + (v2 - v0)yp)_m)$ //(pqk)

= my + ((v0pq + (Y1 - v0)xq + (Y2 - v0 - qk)yp)m)//(pqk)

= ((v0pq+(Y1-v0)xq+(Y2-v0)yp)m)//(pqk)

其中, m 及 k 是 2 , X 1 = u 1 + p k , X 2 = u 2 , Y 1 = v 1 , Y 2 = v 2 + q k 的整數乘方,及"//" 表 示 當 該 常 除 法 之 商 數 不 是 一 整 數 時 , 用 以 捨 入 該 常 除 法 之商數成爲一鄰近整數之除法,其作爲一運算子之優先順 序 係 相 同 於 一 般 乘 法 及 除 法 , 及 u (x , y) , v (x , y), u0, v0, u1, v1, u2, v2是整數。

6 2 . 如申請專利範圍第61項所述之儲存媒體,其 該 用 以 捨 入 該 / / 之 整 數 及 1 / 2 總 和 值 之 方 法 係 常

本紙張尺度適用中國國家標準(CNS)A4規格(210×297公務)

經濟部智慧財產局員工消費合作社印製

製

六、申請專利範圍

被除數是負時,捨入值向0,當被除數爲正時,捨入離開0。

63.如申請專利範圍第62項所述之儲存媒體,其中:

代表點之活動向量係由具有座標(0,0),(r,0)及(0,s)之角落點之活動向量加以計算出,

角落點之活動向量之水平及垂直分量具有 1 / n 整數倍之值,

藉由假設(u00,v00),(u01,v01)及(u02,v02)是分別n倍於該該角落點(0,0),(r,0)及(0,s)之活動向量,

代表點之活動向量係由以下公式計算:

u'(x, y) = ((u00rs+(u01-u00)xs+(u02-u00)yr)k)///(rsn)

v'(x,y) = ((v00rs+(v01-v00)xs+(v02-v00)yr)k)///(rsn)

 $u \cdot 0 = u' \cdot (0, 0) = (ku \cdot 00) / / / n, v \cdot 0 = v' \cdot (0, 0) = (kv \cdot 00) / / / n$ $u \cdot 1 = u' \cdot (p, 0) = (k(r-p)u \cdot 00 + kpu \cdot 01) / / / (rn)$ $v \cdot 1 = v' \cdot (p, 0) = k(r-p)v \cdot 00 + kpv \cdot 01) / / / (rn)$

u2 = u'(0,q) = (k(s-q)u00+kqu02)///(sn)

v2 = v'(0,q) = (k(s-q)v00+kqv02)///(sn)

其中n是2的整數乘方,及"//"表示當該常除法之商數不是一整數時,用以捨入該常除法之商數成爲一鄰近整數之除法,其運算子之優先順序係相同於常乘法

及除法,及,r,s,u00,v00,u01,v01,u02及v02係整數,及

每一像素之活動向量係由下列公式計算:

 $u(x, y) = ((u0pq + (u1-u0)(x-i)q + (u2-u0)(y-j)p)_m)//$ (pqk)

 $v(x,y)=((v0pq+(v1-v0)(x-i)q+(v2-v0)(y-j)p)_m)//$ (pqk),

及

該預測影像係藉由以下列公式計算於現行圖框中之像素(x,y)之参考圖框中之相關點(x',y')之座標之m倍加以合成,該公式爲:

$$x' = ((u0pq+(x-u0)xq+(x2-u0)yp)_m)//(pqk)$$

= ((((ku00)//n)pq + (x1 - ((ku00)//n))xq + (x2 - ((ku00)//n))yp)m)//(pqk)

$$y' = ((v 0 p q + (Y 1 - v 0) x q + (Y 2 - v 0) y p)_m)//(pqk)$$

 $= ((((kv00)//n)pq + (Y1 - ((kv00)//n)xq + (Y2 - ((kv00)//n))yp)m)//(pqk)_{q}$

6 4 · 如申請專利範圍第 6 3 項所述之儲存媒體,其中,該用以捨入該 "/// "之整數及 1 / 2 總和值之方法係捨入值離開 0 。

65.如申請專利範圍第63項所述之儲存媒體,其中,該p及r具有關係為p大於等於r,p/2小於r,及

q 及 s 具有關係, q 大於等於 s, q / 2 小於 s。

6 6 . 一種儲存媒體,用以儲存合成現行圖框之預測影像之方法的程式,藉由使用現行圖框及一參考圖框之角落點之活動向量,該程式包含步驟:

計算具有座標(0,0),(p,0),(0,q) 代表點之活動向量,其中p及q是2之整數乘方,藉由使用現行影像之具有座標(0,0),(r,0)及(0,s)之角落點之活動向量

藉由使用代表點之活動向量,計算於預測影像中之每 一像素之活動向量,及

藉由使用每一像素之活動向量而合成該預測影像,其中; 角落點之活動向量之水平及垂直分量具有 1 / n 之整數倍之值,

藉由分別假設(u00,v00),(u01, v01)及(u02,v02)爲角落點(0,0),(r,0)及(0,s)之活動向量之n倍,

代表點之活動向量之水平及垂直分量具有 1 / k 之整數倍之值,

藉由假設(u 0 , v 0) , (u 1 , v 1) 及(u 2 , v 2) 分別爲代表點(0 , 0) , (p , 0) 及(0 , q) 之活動向量之 k 倍,

每一像素之活動向量之水平及垂直分量具有 1 / m 之整數倍之值,

藉由假設(u(x,y),v(x,y))爲具有座標(x,y)之像素之活動向量之m倍,

代表點之活動向量係由下列公式所計算:

u'(x,y)=((u00rs+(u01-u00)xs+(u02-u00)yr)k)//(rsn)

v'(x, y) = ((v00rs+(v01-v00)xs+(v02-v00)yr)k)///(rsn)

 $u \cdot 0 = u' \cdot (0, 0) = (ku \cdot 00) / / / n, v \cdot 0 = v' \cdot (0, 0) = (kv \cdot 00) / / / n$ $u \cdot 1 = u' \cdot (p, 0) = (k(r-p)u \cdot 00 + kpu \cdot 01) / / / (rn)$ $v \cdot 1 = v' \cdot (p, 0) = (k(r-p)v \cdot 00 + kpv \cdot 01) / / / (rn)$ $u \cdot 2 = u' \cdot (0, q) = (k(s-q)u \cdot 00 + kqu \cdot 02) / / / (sn)$ $v \cdot 2 = v' \cdot (0, q) = (k(s-q)v \cdot 00 + kqv \cdot 02) / / / (sn)$

其中 n 爲 2 的整數乘方,及 " / / / "代表當常除法之商數不是整數時,常除法之商數被捨入至一鄰近整數之除法,其運算子優先順序係相同於一般乘法及除法,及 r , s , u 0 0 , v 0 0 1 , u 0 2 及 v 0 2 爲整數,

每一像素之活動向量係由下列公式所計算:

u(x, y) = ((u0pq+(u1-u0)(x-i)q+(u2-u0)(y-j)p)m//(pqk)

v(x, y) = ((v0pq+(v1-v0)(x-i)q+(v2-v0)(y-j)p)m//(pqk)

其中m及k爲2,X1=u1+pk,X2=u2,Y1=v1,Y2=v2+qk的整數乘方,及"//"代表當常除法之商數不是整數時,用以捨入常除法之商數至鄰近整數之除法,其運算子優先順序係相同於一般常乘法

及除法,及u(x,y),v(x,y),u0,v0, u1,v1,u2,及v2為整數,及

該預測影像係藉由計算於現行圖框之像素(x,y) 中之參考圖框中之相關點(x',y')之座標之m倍而加以合成,藉由以下公式:

x'=mx+u(x,y)=mx+((u0pq+(u1-u0)xq+(u2-u0)yp)m)//(pqk)

- $= mx + ((u^0pq + (X1-u^0-pk)xq + (X2-u^0)yp)m)//(pqk)$
- = $((u^0pq + (X1-u^0)xq + (X2-u^0)yp)m)/(pqk)$ $y'=my+v(x,y)=my + ((v^0pq+(v^1-v^0)xq+(v^2-v^0)yp)m)/(pqk)$
- = my + ((v0pq+(Y1-v0)xq+(Y2-v0-qk)yp)m)//(pqk)
- = $((v^0pq + (Y1-v^0)xq + (Y2-v^0)yp)m)/(pqk)$.

67.如申請專利範圍第66項所述之儲存媒體,其中捨入該"///"之整數及1/2之總和值之方法是當被除數爲負時,捨入至0,當被除數爲正,則捨入離開0

68. 如申請專利範圍第66項所述之儲存媒體,其中,該p及r具有關係爲p大於等於r,p/2小於r,及

q及 s 具有關係爲 q 大於等於 s , q / 2 小於 s 。

69. 一種儲存於儲存媒體中之電腦程式,藉由使用活動向量以合成現行圖框之預測影像,該活動向量表示於現行圖框及參考影像間之相關,該程式包含:

藉由使用具有座標(i,j),(i+p,j),(i,j+q)代表點之活動向量,而計算於預測影像中之

每一像素中之活動向量,其中, i 及 j 係整數,及 p 及 q 是 2 的整數乘方,及

使用每一像素之活動向量,藉由計算參考圖框之相關點,而合成該預測影像。

7 0 . 一種儲存於儲存媒體之電腦程式,該程式藉由使用指示於現行圖框及參考影像間關係之活動向量,以合成現行圖框之預測影像,該程式包含:

藉由使用具有座標(0,0),(p,0),(0,q)代表點之活動向量,而計算於預測影像中之每一像素中之活動向量,其中,p及q是2的整數乘方,及

藉由使用每一像素之活動向量,合成現行圖框之預測 影像,

其中每一像素之活動向量之水平及垂直分量具有 1/m之整數倍數值,及代表點之活動向量之水平及垂直 分量具有1/k之整數倍值,

藉由分別假設(u(x,y),v(x,y))分別 爲具有座標(x,y)之像素之活動向量之m倍,及(u0,v0),(u1,v1)及(u2,v2)爲代表 點(0,0),(p,0)及(0,q)之活動向量之k 倍,

每一像素之活動向量係由下列公式計算:
u(x,y)=((u0pq+(u1-u0)xq+(u2-u0)ypm)//(pqk)
v(x,y)=((v0pq+(v1-v0)xq+(v2-v0)ypm)//(pqk)

及,該預測影像係藉由以下列公式計算於現行圖框中

之像素(x,y)之參考圖框中之相關點(x',y')之 座標之m倍加以合成,該公式爲:

 $x' = mx + u(x, y) = mx + ((u0pq + (u1 - u0)xq + (u2 - U0)yp)_m)$ //(pqk)

- = mx + ((u0pq + (x1 u0 pk)xq + (x2 u0)yp)m)//(pqk)
- =((u0pq+(x1-u0)xq+(x2-u0)yp)m)//(pqk)

 $y' = my + v(x, y) = my + ((v0pq + (v1-v0)xq + (v2-v0)yp)_m)$ //(pqk)

- = my + ((v0pq + (Y1 v0)xq + (Y2 v0 qk)yp)m)//(pqk)
- =((v0pq+(Y1-v0)xq+(Y2-v0)yp)m)//(pqk)

其中,m及k是2, X1=u1+pk, X2=u2, Y1=v1, Y2=v2+qk的整數乘方,及"//"表示當該常除法之商數不是一整數時,用以捨入該常除法之商數成爲一鄰近整數之除法,其作爲一運算子之優先順序係相同於一般乘法及除法,及u(x,y),v(x,y),u0,v0,u1,v1,u2,v2是整數。

7 1 . 一種儲存於儲存媒體中之電腦程式,用以合成現行圖框之預測影像,藉由使用現行圖框及一參考圖框之角落點之活動向量,該程式包含步驟:

計算具有座標(0,0),(p,0),(0,q) 代表點之活動向量,其中p及q是2之整數乘方,藉由使用現行影像之具有座標(0,0),(r,0)及(0,s)之角落點之活動向量

藉由使用代表點之活動向量,計算於預測影像中之每

一像素之活動向量,及

藉由使用每一像素之活動向量而合成該預測影像,其中;角落點之活動向量之水平及垂直分量具有 1 / n 之整數倍之值,

藉由分別假設(u00,v00),(u01, v01)及(u02,v02)爲角落點(0,0),(r,0)及(0,s)之活動向量之n倍,

代表點之活動向量之水平及垂直分量具有 1 / k 之整 數倍之值,

藉由假設(u0,v0),(u1,v1)及(u2,v2)分別爲代表點(0,0),(p,0)及(0,q)之活動向量之 k 倍,

每一像素之活動向量之水平及垂直分量具有 1 / m 之整數倍之值,

藉由假設(u(x,y),v(x,y))為具有座標(x,y)之像素之活動向量之m倍,

代表點之活動向量係由下列公式所計算:

u'(x,y)=((u00rs+(u01-u00)xs+(u02-u00)yr)k)///(rsn)

v'(x, y) = ((v00rs+(v01-v00)xs+(v02-v00)yr)k)///(rsn)

u 0 = u' (0, 0) = (ku00)///n

v 0 = v' (0, 0) = (k v 0 0) / / n

u1 = u'(p, 0) = (k(r-p)u00+kpu01)//(rn)

v1 = v'(p, 0) = (k(r-p)v00+kpv01)//(rn) u2 = u'(0, q) = (k(s-q)u00+kqu02)//(sn)v2 = v'(0, q) = (k(s-q)v00+kqv02)//(sn)

其中 n 爲 2 的整數乘方,及 " / / "代表當常除法之商數不是整數時,常除法之商數被捨入至一鄰近整數之除法,其運算子優先順序係相同於一般乘法及除法,及 r , s , u 0 0 , v 0 0 1 , v 0 1 , u 0 2 及 v 0 2 爲整數,

每一像素之活動向量係由下列公式所計算:

u(x, y) = ((u0pq+(u1-u0)(x-i)q+(u2-u0)(y-j)p)m//(pqk)

v(x, y) = ((v0pq+(v1-v0)(x-i)q+(v2-v0)(y-j)p)m//(pqk)

其中m及k爲2,X1=u1+pk,X2=u2,Y1=v1,Y2=v2+qk的整數乘方,及"//"代表當常除法之商數不是整數時,用以捨入常除法之商數至鄰近整數之除法,其運算子優先順序係相同於一般常乘法及除法,及u(x,y),v(x,y),u0,v0,u1,v1,u2,及v2爲整數,及

該預測影像係藉由計算於現行圖框之像素(x,y) 中之參考圖框中之相關點(x',y')之座標之m倍而加以合成,藉由以下公式:

1:

x'=mx+u(x,y)=mx+((u0pq+(u1-u0)xq+(u2-u0)yp)m)//(pqk) =mx+((u0pq+(x1-u0-pk)xq+(x2-u0)yp)m)//(pqk) =((u0pq+(x1-u0)xq+(x2-u0)yp)m)//(pqk) y'=my+v(x,y)=my+((v0pq+(v1-v0)xq+(v2-v0)yp)m)//(pqk) =my+((v0pq+(Y1-v0)xq+(Y2-v0-qk)yp)m)//(pqk) =((v0pq+(Y1-v0)xq+(Y2-v0)yp)m)//(pqk)

第一圈

第 4 圖

第6圖

第9圖

第10圖

第12圖

第13圖

第14圖

第15圖

第17圖

第18圖

第19國

第21圖

先閱讀背面之注意事項再填寫本頁

裝

訂

五、發明説明(4)

置之處理。另一方面,於幅內編碼中,該幅際/幅內切換單元輸出 * 0 % 信號 2 1 3。

區塊對比係現行最常被使用之活動補價系統。當整個影像被擴大,縮小,旋轉時,所有之區塊之活動向量必須被傳送,造成一低的編碼效率。爲了解決該問題,全活動檢價(例如,哈特於1989年三月發表之 *全活動參數放大及縮小之差分估計 *,信號處理,第249至265頁已經提出以表達整個影像之活動向量場,而不會使用太多參數。依據該活動參數系統,活動向量(於一影像中之一圖素(x,y)之ug(x,y),vg(x,y)係被表示爲:

 $U_{g}(x, y) = a_{0}x + a_{1}y + a_{2}$ $V_{g}(x, y) = a_{3}x + a_{4}y + a_{5} \cdots \cdots \cdots (公式1)$ 或

以及,活動補償係使用活動向量執行。於這些公式中, a 0 至 a 5 及 b 0 至 b 7 係為活動參數。於執行該活動補價時,相同之預估影像必須被於發射側及接收側產生。為了該目的,發射側可以直接發射值 a 0 至 a 5 或 b 0 至 b 7 至接收側或可以發射幾個代表點之活動向量。

經

五、發明說明(9)

動向量經常不會符合代表點之活動向量,即使是它們具有相同之座標。

 参照第六個,一基於線性內插及/或外插之例子將予以說明。於此,如同於先前技藝中所述,代表點並不是定位於影像601元為務者,而是點602,603及

 604,其分別具有座標(i,j)),(i+p,j)及(i,p)及(i,p)及(i,p)

 點602,600

 102,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 202,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

 203,600

u(x,y) = ((u1-u0)(x-i)q+(u2-u0)(y-j)p+u0pq)m)/(pqk)v(x,y) = ((v1-v0)(x-i)q+(v2-v0)(y-j)p+v0pq)m)/(pqk)

... ... 公 式 5

其中, *// 表除法用以捨入一般除法之商數成爲一鄰近整數, 當除法不是一整數時, 及其作爲運算子之優先順序係相同於乘法及除法。爲了減少運算誤差, 吾人係想要一不是整數之值被捨入爲最接近整數。於這例子中, 用以捨入一整數及 1 / 2 之總和之值之方法爲:

(1) 捨入該值向零;

六、申請專利範圍

第 8 6 1 0 2 7 4 1 號 專利申請案 中文申請專利範圍修正本

民國89年2月修正

本89年2月23日

- 1 . 一種視訊編碼器,包含:
- 一全活動補償單元,用以基於參考圖框之解碼影像及現行圖框之原始影像間之全活動補償,而執行活動估計,並輸出現行圖框之預測影像,其中,該全活動補償單元包含:

計算機構,用以藉由使用具有座標(i,j),(i+p,j),(i,j+q)代表點之活動向量,而計算於預測影像中之每一像素中之活動向量,其中,i及j係整數,及p及q是2的整數乘方,及

合成機構,用以使用每一像素之活動向量而合成該預 測影像。

- 2.如申請專利範圍第1項所述之視訊編碼器,其中,該全活動補償單元更包含:計算機構,用以使用於預測影像之角落點之活動向量,而計算代表點之活動向量。
- 3.如申請專利範圍第2項所述之視訊編碼器,其中,該角落點具有座標(0,0),(r,0),及(0,s),其中r及s是整數。
- 4 . 如申請專利範圍第1項所述之視訊編碼器,其中,一爲代表點所定義之矩形包含整個預測影像。
- 5 . 如申請專利範圍第2項所述之視訊編碼器,其中,該計算代表點之活動向量之計算機構及計算每一像素之