- Supplementary material -

Knowledge-based probabilistic representations of branching ratios in chemical networks: the case of dissociative recombinations

Sylvain Plessis

Univ Paris-Sud, Laboratoire de Chimie Physique, UMR 8000, Orsay, F-91405

Nathalie Carrasco

Laboratoire Atmosphères, Milieux, Observations Spatiales, Université de Versailles Saint-Quentin, UMR 8190, 91371 Verrières le Buisson cedex, France

Pascal Pernot*

Univ Paris-Sud, Laboratoire de Chimie Physique, UMR 8000, Orsay, F-91405 and CNRS, Orsay, F-91405

^{*}Electronic address: pascal.pernot@u-psud.fr

I. THE DATABASE

Models of ion-neutral chemistry generally include DR processes through the reaction rate constant

$$\alpha(T_e) = \alpha_0 \times (T_e/T_0)^{-\beta} \tag{1}$$

where α_0 is the rate constant at a reference electron temperature T_0 (typically 300 K), and T_e is the electron temperature of interest. When more than one product channel is accessible, the partial rate for channel i is $\alpha_i(T_e) = b_i \times \alpha(T_e)$, where $\{b_i, i = 1, N\}$ are the branching ratios of the reaction. As the global DR rate $\alpha(T_e)$ and the branching ratios $\{b_i\}$ are typically derived from different experiments, they are treated separately.

The following tables report data for ions identified in Titan's ionosphere. At the present stage, this is a demonstration database for the use of Nested Dirichlet representations of uncertain branching ratios, and it should not be considered or used as a reference database without caution.

A. Rate parameters

The present article being focussed on branching ratios and their uncertainties, the DR rate coefficients were taken at their nominal value.

Reaction	$\alpha_0(cm^3.s^{-1})$	β
$H_2^+ + e^-$	$1.6 \times 10^{-6} [1]$	0.43 [1]
$H_3^+ + e^-$	$7.2 \times 10^{-8} [2-4]$	$0.74\ [1,\ 5-7]$
C^++e^-	$4.67 \times 10^{-12} [8, 9]$	0.6 [9]
$\mathrm{CH^+}{+}\mathrm{e^-}$	$1.73 \times 10^{-7} [1, 9-11]$	$0.63\ [1,\ 911]$
$\mathrm{CH}_2^+{+}\mathrm{e}^-$	$4.66 \times 10^{-7} [10, 12]$	0.55 [10, 12]
$\mathrm{CH}_3^+{+}\mathrm{e}^-$	$6.54 \times 10^{-7} [1, 10, 11]$	$0.51\ [1,\ 10,\ 11]$
$\mathrm{CH_4^+}{+}\mathrm{e^-}$	$6.69 \times 10^{-7} [1, 10, 11]$	$0.51\ [1,\ 10,\ 11]$
$\mathrm{CH}_5^+{+}\mathrm{e}^-$	$6.26 \times 10^{-7} [1, 10, 11, 13-17]$	$0.65~(T_e \leq 300~{\rm K}); 1.5~(T_e \geq 300~{\rm K})$
		[1, 10, 11, 13, 16, 17]
$C_2H^++e^-$	$2.7 \times 10^{-7} [1, 18]$	0.76 [1, 11, 18]
$C_2H_2^+ + e^-$	$5.20 \times 10^{-7} [1, 11]$	0.75 [1, 11]
$C_2H_3^+ + e^-$	$8.49 \times 10^{-7} [1, 11, 19, 20]$	$0.84~(T_e \leq 800~{\rm K})~[1,~11,~19,~20];~1.44$
		$(T_e \ge 800 \text{ K}) [19, 20]$

$C_2H_4^+ + e^-$ 5.6 × 10 ⁻⁷ [18] $C_2H_5^+ + e^-$ 8.35 × 10 ⁻⁷ [1, 14, 15, 17] $C_3^+ + e^-$ 1.22 × 10 ⁻⁶ [Note 3(b)]	0.76 [18, 20] $0.8 (T_e \le 300 \text{ K}) [17]; 1.2 (T_e \ge 300 \text{ K}) [17]$
$\mathbb{C}_{2}^{+} + e^{-}$ 1.22 × 10 ⁻⁶ [Note 3(b)]	K) [17]
$C_2^+ + e^-$ 1.22 × 10 ⁻⁶ [Note 3(b)]	, i i
2 . [2()]	1.00 [Note 6]
$C_3H^++e^-$ 1.22 × 10 ⁻⁶ [Note 3(b)]	1.00 [Note 6]
$C_3H_2^+ + e^-$	1.00 [Note 6]
$c - C_3 H_3^+ + e^ 8.00 \times 10^{-7} [21]$	0.0 [1, 11, 20]
$-C_3H_3^++e^-$	0.0 [1, 11, 20]
$C_3H_4^+ + e^ 2.95 \times 10^{-6} [22]$	0.67 [22]
$C_3H_5^+ + e^-$	1.00 [Note 6]
$C_3H_6^+ + e^-$	1.00 [Note 6]
$C_3H_7^+ + e^-$	0.68 [23]
$C_3H_8^+ + e^-$ 1.22 × 10 ⁻⁶ [Note 3(b)]	1.00 [Note 6]
$C_4H^++e^-$ 1.22 × 10 ⁻⁶ [Note 3(b)]	1.00 [Note 6]
$C_4H_2^+ + e^-$	1.00 [Note 6]
$C_4H_3^+ + e^ 6.2 \times 10^{-7} [1, 11, 25]$	1.00 [Note 6]
$C_4H_4^+ + e^-$	1.00 [Note 6]
$C_4H_5^+ + e^ 8.2 \times 10^{-7} [26]$	1.00 [Note 6]
$C_4H_6^+ + e^-$ 1.22 × 10 ⁻⁶ [Note 3(b)]	1.00 [Note 6]
$C_4H_7^+ + e^-$ 1.22 × 10 ⁻⁶ [Note 3(b)]	1.00 [Note 6]
$C_4H_8^+ + e^-$	1.00 [Note 6]
$C_4H_9^+ + e^ 8.3 \times 10^{-7} [14]$	1.00 [Note 6]
$N^{+} + e^{-}$ $4.0 \times 10^{-12} [8, 9]$	0.58 [8, 9]
$NH^{+}+e^{-}$ 4.33 × 10 ⁻⁸ [1, 9, 11]	1.00 [Note 6]
$NH_2^+ + e^ 2.24 \times 10^{-7} $ [Note 3(a)]	1.00 [Note 6]
$NH_3^+ + e^ 3.1 \times 10^{-7} [9]$	1.00 [Note 6]
$NH_4^+ + e^-$	0.75 [1, 11, 28, 29]
$N_2^+ + e^-$	0.35[30, 31, 33, 34, 37]
$N_2H^++e^-$	$0.5 \ [38, 4143]$
$CN^{+}+e^{-}$ $3.4 \times 10^{-7} [44]$	0.55 [20, 44]
$HCN^{+}+e^{-}$ $2.5 \times 10^{-6} [45]$	1.00 [45]
$HNC^{+}+e^{-}$	$0.98\ [45,\ 46]$

Reaction	$\alpha_0(cm^3.s^{-1})$	β
HCNH ⁺ +e ⁻	$3.2 \times 10^{-7} [1, 47-49]$	1.01 [47, 49]
$\mathrm{CH_2NH}_2^+{+}\mathrm{e}^-$	$1.22 \times 10^{-6} \text{ [Note 3(b)]}$	1.00 [Note 6]
$\mathrm{CH_{3}CNH^{+}}{+}\mathrm{e^{-}}$	$3.3 \times 10^{-7} [1, 11, 35, 48, 49]$	1.03 [49]
$C_2N_2^+ + e^-$	$1.22 \times 10^{-6} \text{ [Note 3(b)]}$	1.00 [Note 6]
$C_3N^+ + e^-$	$1.22 \times 10^{-6} \text{ [Note 3(b)]}$	1.00 [Note 6]
$CHCCN^+ + e^-$	$1.22 \times 10^{-6} \text{ [Note 3(b)]}$	1.00 [Note 6]
$CHCCNH^++e^-$	$1.22 \times 10^{-6} \text{ [Note 3(b)]}$	1.00 [Note 6]
$CH_2CHCNH^+ + e^-$	$1.76 \times 10^{-6} [50]$	0.80 [50]
OH^++e^-	$3.75 \times 10^{-8} [1, 9, 11, 51]$	0.5 [1, 9, 11, 51]
$\mathrm{H_2O^+}{+}\mathrm{e^-}$	$3.34 \times 10^{-7} [1, 11, 52, 53]$	0.77 [1, 11]
$\mathrm{H_{3}O^{+}+e^{-}}$	$8 \times 10^{-7} [1, 15, 54, 55]$	0.9 [54, 56]
$CO^+ + e^-$	$2.0 \times 10^{-7} [35, 57, 58]$	0.55 [57]
$HCO^+ + e^-$	$2.1 \times 10^{-7} [1, 9, 11, 13, 38, 42, 59-62]$	[0.69[1, 9, 11, 20, 38, 42]]
$\mathrm{CH_2OH^+}{+}\mathrm{e^-}$	$7 \times 10^{-7} [63]$	0.78 [63]
$NO^+ + e^-$	$4 \times 10^{-7} [1, 9, 32, 64-66]$	0.8 [1, 9, 66]

1. Notes for rate constant parameters

The guidelines we followed to establish the nominal values for both rate parameters α_0 and β in Eq. 1 are described here.

- 1. α_0 : when a single reference value was available, it was taken at face value;
- 2. α_0 : when several reference values were found:
 - (a) with discrepant values: the most recent was considered;
 - (b) with compatible values: the mean value of a loguniform distribution covering all values was used. This was retained to compensate for the absence of uncertainty statement in some references.
- 3. α_0 : when no reference values were available, we used the mean values of loguniform distributions covering intervals with limits defined by existing rates for similar ions:

- (a) for light species (less than 3 heavy atoms) the interval is $[5 \times 10^{-8}, 1 \times 10^{-6}] \text{ cm}^3.\text{s}^{-1}$, and the nominal value is $2.24 \times 10^{-7} \text{ cm}^3.\text{s}^{-1}$; e.g. NH₂⁺;
- (b) for heavy species, presenting generally enhanced reaction rates, the interval is $[5\times10^{-7},\,3\times10^{-6}]\,\mathrm{cm^3.s^{-1}},\,\mathrm{and}\;\mathrm{the\;nominal\;value\;is}\;1.22\times10^{-6}\,\mathrm{cm^3.s^{-1}};\;e.g.\;\mathrm{C_3H_5^+},\\ \mathrm{C_4H_7^+...}$
- 4. β : when a single reference value was available, it was taken at face value;
- 5. β : when several reference values were found, we used the mean of a uniform interval covering these values, i.e. $\beta = (\beta_{min} + \beta_{max})/2$;
- 6. β : when no reference values were available, the mean value of the largest interval as defined by the theoretical values of β for direct and indirect processes was used, *i.e.* $\beta = (0.5 + 1.5)/2 = 1$.

B. Branching ratios

Information on branching ratios is typically sparser than for reaction rates, and it is exceptional to have to consider conflicting data. The following set of considerations is used in order to define the structures of the (Nested) Dirichlet distributions.

- a. Maximum number of fragments. In absence of experimentally characterized products, one should consider all the exoergic channels and state a total lack of knowledge on the corresponding branching ratios (Diun distribution). It is not possible to make further hypotheses wrt. the relative stability of the products. From Ref. [1], we know for instance that the measured branching ratios have no definite correlation with the exoergicity of the pathways. An issue in building a list of exoergic pathways is the number of fragments that can be accepted in each pathway. For instance, on the basis of their previous results, for $C_3H_7^+$ Ehlerding et al.[23] stop at a three body breakup pattern, even though some four body channels are opened ($C_3H_3 + H_2 + 2 H$, $C_2H_2 + CH_3 + 2 H$). Other authors consider also four body breakup patterns in their analysis: CD_3CDO^+ ,[67] CD_3CND^+ ,[68] and CH_2CHCNH^+ .[50] In the present treatment, we favored an exhaustive treatment and we enabled four body breakups when possible.
- b. H_2 vs. 2H. An empirical rule appears throughout the database of branching ratios: the loss of 2 H atoms is more often much more probable than the loss of an H_2 molecule. The only measured exception is NH_4^+ . This rule is used to reduce uncertainty by nesting both pathways using a Dior distribution.
- c. Heavy fragments as a basis for nesting. A corrolary of the previous rule is that we are often induced to nest together pathways involving the same heavy fragment (e.g. X + 2H and $X + H_2$). For hydrocarbons, and in absence of experimental values, we adopted this as a general guideline to ensure a balanced treatment amongst those heavy fragments. This rule becomes ambiguous for N-bearing molecules and was restricted to hydrocarbon ions.
- d. Spin states. Some species in the photochemical model have specified spin states. This is mostly the case for CH_2 and N. When the spin states of DR products have not been measured, we nest them inside a uniform Dirichlet subtree.

Reaction	Products	Branching ratios
$H_2^+ + e^-$	$ ightarrow 2\mathrm{H}$	-
$H_3^+ + e^-$	$ ightarrow \mathrm{H}_3$	0.00 - 0.09 [1]
	$\rightarrow \mathrm{H}_2 + \mathrm{H}$	0.25 - 0.40 [1, 6]
	$\rightarrow 3\mathrm{H}$	0.51 - 0.75 [1, 6]
$C^{+} + e^{-}$	\rightarrow C + h ν	-
$\mathrm{CH^{+}} + \mathrm{e^{-}}$	\rightarrow C + H	-
$\mathrm{CH}_2^+ + \mathrm{e}^-$	\rightarrow CH + H	0.25 ± 0.04 [12]
	$\rightarrow \mathrm{C} + \mathrm{H}_2$	0.12 ± 0.02
	$\rightarrow C + 2H$	0.63 ± 0.06
$CH_3^+ + e^-$	$\rightarrow \begin{cases} {}^{1}\mathrm{CH}_{2} + \mathrm{H} \\ {}^{3}\mathrm{CH}_{2} + \mathrm{H} \end{cases}$	0.40 ± 0.1 [69]
	$\rightarrow \mathrm{CH} + \mathrm{H}_2$	0.14 ± 0.1
	$\rightarrow \mathrm{CH} + 2\mathrm{H}$	0.16 ± 0.15
	$\rightarrow C + H_2 + H$	0.30 ± 0.08
$CH_4^+ + e^-$	$\rightarrow \begin{cases} CH_{3} + H \\ \begin{cases} \begin{cases} {}^{1}CH_{2} + H_{2} \\ {}^{3}CH_{2} + H_{2} \end{cases} \end{cases} \\ \begin{cases} \begin{cases} {}^{1}CH_{2} + 2H \\ {}^{3}CH_{2} + 2H \end{cases} \\ \begin{cases} CH + H_{2} + H \\ CH + 3H \end{cases} \\ C + 2H_{2} \end{cases}$	Exoergic channels
$CH_5^+ + e^-$	$\rightarrow \mathrm{CH_4} + \mathrm{H}$	0.049 ± 0.013 [16]; 0.95 ± 0.05 [70] [Note 4]
	$\rightarrow \mathrm{CH_3} + \mathrm{H_2} \ \mathrm{(a)}$	0.048 ± 0.002 [16]; (a) + (b) ≤ 0.08 [70]
	$\rightarrow \mathrm{CH_3} + 2\mathrm{H}\ \mathrm{(b)}$	0.698 ± 0.008 [16]; (a) + (b) ≤ 0.08 [70]
	$\rightarrow \begin{cases} {}^{1}\mathrm{CH}_{2} + \mathrm{H}_{2} + \mathrm{H} \\ {}^{3}\mathrm{CH}_{2} + \mathrm{H}_{2} + \mathrm{H} \end{cases}$	$0.172 \pm 0.016 \ [16]; \le 0.01 \ [70]$
	$\rightarrow \mathrm{CH} + 2\mathrm{H}_2$	$0.033 \pm 0.011 \ [16]; \le 0.01 \ [70]$
$C_2H^+ + e^-$	$\rightarrow C_2 + H$	$0.43 \pm 0.03 \; [18]$
	\rightarrow CH + C	0.39 ± 0.04
	$\rightarrow 2\mathrm{C} + \mathrm{H}$	0.18 ± 0.04
$C_2H_2^+ + e^-$	$\rightarrow C_2H + H$	0.50 ± 0.06 [71]

Reaction	Products	Branching ratios
	$\rightarrow \mathrm{C}_2 + 2\mathrm{H}$	0.30 ± 0.05
	$\rightarrow \mathrm{C}_2 + \mathrm{H}_2$	0.02 ± 0.03
	$\rightarrow \begin{cases} {}^{1}\mathrm{CH}_{2} + \mathrm{C} \\ {}^{3}\mathrm{CH}_{2} + \mathrm{C} \end{cases}$	0.05 ± 0.01
	$^{\circ}$ CH ₂ + C	0.00 ± 0.01
	$\rightarrow 2\mathrm{CH}$	0.13 ± 0.01
$C_2H_3^+ + e^-$	$\rightarrow C_2H_2 + H$	0.29 ± 0.04 [19]
	$\rightarrow \mathrm{C_2H} + \mathrm{H_2}$	0.06 ± 0.03
	$\rightarrow \mathrm{C_2H} + 2\mathrm{H}$	$0.584 \pm 0.06 \text{ for } \sum = 1 \ (0.59)$
	$\rightarrow \mathrm{C}_2 + \mathrm{H} + \mathrm{H}_2$	0.03 ± 0.01
	$\rightarrow \mathrm{CH_3} + \mathrm{C}$	0.006 ± 0.002
	$\rightarrow \begin{cases} {}^{1}\mathrm{CH}_{2} + \mathrm{CH} \end{cases}$	0.03 ± 0.01
	$\stackrel{ ightarrow}{\longrightarrow} \left\{ {}^{3}\mathrm{CH}_{2} + \mathrm{CH} \right.$	0.03 ± 0.01
$C_2H_4^+ + e^-$	$\rightarrow C_2H_3 + H$	0.11 ± 0.07 [18]
	$\rightarrow C_2H_2+H_2$	0.06 ± 0.03
	$\rightarrow \mathrm{C_2H_2} + 2\mathrm{H}$	0.66 ± 0.06
	$\rightarrow C_2H + H_2 + H$	0.10 ± 0.04
	$\rightarrow \mathrm{CH_4} + \mathrm{C}$	0.01 ± 0.01
	$\rightarrow \mathrm{CH}_3 + \mathrm{CH}$	0.02 ± 0.02
	$\int {}^{1}\mathrm{CH}_{2} + {}^{1}\mathrm{CH}_{2}$	
	$\rightarrow \begin{cases} {}^{1}\mathrm{CH}_{2} + {}^{3}\mathrm{CH}_{2} \end{cases}$	0.04 ± 0.02
	$^{3}\mathrm{CH}_{2}+^{3}\mathrm{CH}_{2}$	
$C_2H_5^+ + e^-$	$\rightarrow C_2H_4 + H$	0.12 ± 0.03 [72] [Note 5]
	$\rightarrow C_2H_3 + 2H$	0.27 ± 0.04
	$\rightarrow C_2H_2 + 3H$	0.13 ± 0.03
	$\rightarrow \mathrm{C_2H_2} + \mathrm{H_2} + \mathrm{H}$	$0.30 \pm 0.03 \text{ for } \sum = 1 \ (0.29)$
	$\int CH_3 + ^1CH_2$	0.17 ± 0.01
	$\rightarrow \begin{cases} \operatorname{CH}_3 + {}^{1}\operatorname{CH}_2 \\ \operatorname{CH}_3 + {}^{3}\operatorname{CH}_2 \end{cases}$	0.17 ± 0.01
	$\rightarrow \mathrm{CH_4} + \mathrm{CH}$	0.01 ± 0.01
$C_3^+ + e^-$	$\rightarrow C_3$	$0.000 \pm 0.001 \; [20, 73]$
	$\rightarrow C_2 + C$	1.000 ± 0.002
	$\rightarrow 3\mathrm{C}$	0.000 ± 0.001
$C_3H^+ + e^-$	$\rightarrow \mathrm{C}_3 + \mathrm{H}$	$0.662 \pm 0.015 [1, 11, 74, 75]$

Reaction	Products	Branching ratios
	$\rightarrow \mathrm{C_2H} + \mathrm{C}$	0.338 ± 0.017
	\rightarrow C ₂ + CH	0.00 ± 0.01
	$ \rightarrow \begin{cases} C_3 + H_2 \\ C_3 + 2 H \\ C_3 H + H \\ C_2 H_2 + C \end{cases} $ $ \rightarrow \begin{cases} C_2 +^1 CH_2 \\ C_2 +^3 CH_2 \end{cases} $	
$C_3H_2^+ + e^-$	$\rightarrow \left\{ \begin{array}{c} \subset 3 + 2 \mathrm{H} \end{array} \right.$	$0.875 \pm 0.017 [1, 11, 74, 75]$
	$C_3H + H$	
	$C_2H_2 + C$	
	$ ightarrow \left\{ egin{array}{l} \operatorname{C}_2 + ^1\operatorname{CH}_2 \end{array} ight.$	0.125 ± 0.021
	$\left(\begin{array}{c} C_2 +^3 \mathrm{CH}_2 \end{array} \right)$	
	$ \begin{array}{c} C_{3}H_{2} + H \\ C_{3}H + H_{2} \\ C_{3}H + 2 H \\ C_{3} + H + H_{2} \end{array} $ $ \begin{cases} C_{2}H_{2} + CH \\ C_{2}H_{2} + C + H \end{cases} $ $ \rightarrow \begin{cases} C_{2}H_{2} + C + H \\ C_{2}H + ^{1} CH_{2} \\ C_{2}H + ^{3} CH_{2} \end{cases} $	
$c - C_3H_2^+ + e^-$	$ ightarrow \left\{ egin{array}{l} { m C}_3{ m H} + { m H}_2 \end{array} ight.$	0.907 ± 0.011 [1, 11, 74, 75] [Note 3]
0 3	$\int C_3H + 2H$	[, , ,][
	$\begin{array}{c} C_3 + H + H_2 \end{array}$	
	$\left\{\begin{array}{l} C_2H_2 + CH \end{array}\right.$	
	$\rightarrow \left\{ \int C_2 H +^1 C H_2 \right\}$	0.093 ± 0.005
	$C_2 + CH_3$	
	$\rightarrow \begin{cases} C_3H_2 + H \\ C_3H + H_2 \end{cases}$	
$1 - C_3H_3^+ + e^-$	$\rightarrow \left\{ \begin{array}{l} C_3H + H_2 \end{array} \right.$	$0.907 \pm 0.011 [1, 11, 74, 75] [Note 3]$
- 0	$\int C_3H + 2H$	
	$\begin{array}{c} C_3 + H + H_2 \end{array}$	
	$\rightarrow \left\{ \begin{array}{l} \subset _2\mathrm{H} + ^1\mathrm{CH}_2 \end{array} \right.$	0.093 ± 0.005
$C_3H_4^+ + e^-$	$\rightarrow C_3H_3 + H$	$0.87 \pm 0.04 \; [1, 11, 22, 74, 75]$
	$\rightarrow \mathrm{C_3H_2} + \mathrm{H_2}$	≤ 0.02
	$\rightarrow \mathrm{C_3H_2} + 2\mathrm{H}$	≤ 0.05
	$ ightarrow \mathrm{C_2H_3} + \mathrm{CH}$	0.01 ± 0.01
	$\to \begin{cases} C_2 H_2 +^1 C H_2 \\ C_2 H_2 +^3 C H_2 \end{cases}$	0.06 ± 0.02
	$C_2H_2 + ^3CH_2$	

Reaction	Products	Branching ratios
	$\rightarrow C_2H + CH_3$	0.01 ± 0.01
$C_3H_5^+ + e^-$	$\rightarrow \begin{cases} C_{3}H_{4} + H \\ C_{3}H_{3} + H_{2} \\ C_{3}H_{3} + 2H \\ C_{3}H_{2} + H_{2} + H \\ C_{3}H + 2H_{2} \end{cases}$	$0.867 \pm 0.004 [1, 11, 74, 75]$
	$ \rightarrow \begin{cases} C_3H_4 + H \\ C_3H_3 + 2H \\ C_3H_2 + H_2 + H \end{cases} $ $ C_3H_2 + H_2 + H $ $ C_3H + 2H_2 $ $ \begin{cases} C_2H_5 + C \\ C_2H_4 + CH \\ \begin{cases} C_2H_3 +^1 CH_2 \\ C_2H_3 +^3 CH_2 \end{cases} $ $ \rightarrow \begin{cases} C_2H_2 +^1 CH_2 + H \\ C_2H_2 +^3 CH_2 + H \end{cases} $ $ C_2H_2 + CH + H_2 $ $ C_2H_2 + CH_3 + H $ $ C_2H + CH_3 + H $ $ C_2H + CH_4 $	0.133 ± 0.026
$C_3H_6^+ + e^-$	$ \begin{array}{l} C_{3}H_{5} + H \\ C_{3}H_{4} + 2 H \\ C_{3}H_{3} + H_{2} + H \\ \begin{cases} C_{3}H_{2} + 2 H_{2} \\ C_{3}H_{2} + H_{2} + 2 H \end{cases} $	$0.693 \pm 0.016 [1, 11, 74, 75]$

Reaction	Products	Branching ratios
	$C_2H_5 + CH$	
	$\begin{cases} C_2H_5 + CH \\ \begin{cases} C_2H_4 +^1 CH_2 \\ C_2H_4 +^3 CH_2 \end{cases} \\ C_2H_4 + CH + H \\ C_2H_4 + C + H_2 \end{cases} \\ \Rightarrow \begin{cases} C_2H_3 + CH + H_2 \\ C_2H_3 + CH_3 \end{cases} \\ \begin{cases} C_2H_2 + CH_4 \\ \begin{cases} C_2H_2 +^1 CH_2 + H_2 \\ C_2H_2 +^3 CH_2 + H_2 \end{cases} \\ C_2H_2 + CH_3 + H \\ \end{cases} \\ \begin{cases} C_2H + CH_4 + H \\ C_2H + CH_3 + H_2 \end{cases} \\ \Rightarrow C + CH_2 + CH_4 \end{cases}$	
	$\rightarrow \left\{ \left\{ C_2H_3 + CH_3 \right\} \right\}$	0.307 ± 0.013
	$\int C_2H_2 + CH_4$	
	$ \int \int C_2 H_2 + {}^{1}CH_2 + H_2 $	
	$\int C_2 H_2 + ^3 C H_2 + H_2$	
	$\int C_2 H + CH_4 + H$	
	$\left(\begin{array}{c} C_2H + CH_3 + H_2 \end{array} \right.$	
	$\rightarrow C + CH_2 + CH_4$	0.00 ± 0.01
$C_3H_7^+ + e^-$	$\rightarrow \mathrm{C_3H_6} + \mathrm{H}$	0.13 ± 0.05 [76] [Note 5]
	$\rightarrow C_3H_5+H_2$	0.12 ± 0.05
	$\rightarrow \mathrm{C_3H_5} + 2\mathrm{H}$	0.22 ± 0.08
	$\rightarrow C_3H_4+H_2+H$	0.09 ± 0.02
	$\rightarrow C_2H_4 + CH_3$	0.03 ± 0.02
	$\rightarrow C_2H_3+CH_4$	0.02 ± 0.02
	$\rightarrow C_2H_3+CH_3+H$	0.15 ± 0.04
	$\rightarrow C_2H_2 + CH_4 + H$	0.03 ± 0.03
	$\rightarrow C_2H_2 + CH_3 + H_2$	0.21 ± 0.04
	$\int C_3H_7 + H$	
$C_3H_8^+ + e^-$	$\int C_3 H_6 + H_2$	
	$\int C_3 H_6 + 2 H$	$0.670 \pm 0.020 [1.11.74.75]$
	$C_3H_5 + H_2 + H$	$0.679 \pm 0.029 [1, 11, 74, 75]$
	$\rightarrow \begin{cases} C_{3}H_{7} + H \\ C_{3}H_{6} + H_{2} \\ C_{3}H_{6} + 2H \\ C_{3}H_{5} + H_{2} + H \\ \begin{cases} C_{3}H_{4} + 2H_{2} \\ C_{3}H_{4} + H_{2} + 2H \end{cases} \end{cases}$	
	$\left(\begin{array}{c} C_3H_4 + H_2 + 2H \end{array}\right)$	

Reaction	Products	Branching ratios
Reaction	$ \begin{cases} C_{2}H_{6} +^{1} CH_{2} \\ C_{2}H_{6} +^{3} CH_{2} \end{cases} \\ \begin{cases} C_{2}H_{5} + CH_{3} \\ C_{2}H_{5} +^{1} CH_{2} + H \\ C_{2}H_{5} +^{3} CH_{2} + H \end{cases} \\ \begin{cases} C_{2}H_{5} + CH + H_{2} \\ C_{2}H_{5} + CH + 2H \end{cases} \\ \end{cases} \\ \begin{cases} C_{2}H_{4} + CH_{4} \\ C_{2}H_{4} + CH_{3} + H \end{cases} \\ \begin{cases} \begin{cases} C_{2}H_{4} +^{1} CH_{2} + H_{2} \\ C_{2}H_{4} +^{1} CH_{2} + 2H \end{cases} \\ \begin{cases} C_{2}H_{4} +^{3} CH_{2} + 2H \\ C_{2}H_{4} +^{3} CH_{2} + 2H \end{cases} \\ \end{cases} \\ \begin{cases} C_{2}H_{3} + CH_{3} + H_{2} \\ C_{2}H_{3} + CH_{3} + 2H \end{cases} \\ \end{cases} $	Branching ratios 0.321 ± 0.028
	$\begin{cases} \begin{cases} C_2H_3 + CH_3 + H_2 \\ C_2H_3 + CH_3 + 2H \end{cases} \\ C_2H_3 + CH_4 + H \end{cases}$ $C_2H_2 + CH_4 + H_2$ $CH_4 + CH_3 + CH$ $\begin{cases} CH_4 + ^1 CH_2 + ^1 CH_2 \\ CH_4 + ^1 CH_2 + ^3 CH_2 \end{cases}$ $CH_4 + ^3 CH_2 + ^3 CH_2$ $\begin{cases} 2CH_3 + ^1 CH_2 \\ 2CH_3 + ^3 CH_2 \end{cases}$	0.00 ± 0.01
$\overline{\mathrm{C_4H^+ + e^-}}$	$ ightarrow \mathrm{C_4} + \mathrm{H}$	0.439 ± 0.012 for $\sum = 1 (0.438) [1, 75, 77]$
	$\rightarrow C_3H+C$	0.282 ± 0.021
	$ ightarrow \mathrm{C}_2\mathrm{H} + \mathrm{C}_2$	0.279 ± 0.017
$C_4H_2^+ + e^-$	$ \rightarrow \begin{cases} C_4H + H \\ C_4 + H_2 \end{cases} $ $ \rightarrow \begin{cases} C_3H_2 + C \\ C_3H + CH \end{cases} $ $ \rightarrow \begin{cases} C_3 + CH_2 \end{cases} $	0.783 ± 0.013 for $\sum = 1 \ (0.784) \ [1, 75, 77]$ 0.040 ± 0.016
	$ \begin{array}{c} \overrightarrow{} \\ C_3 + {}^{1} CH_2 \\ C_3 + {}^{3} CH_2 \end{array} $	0.040 ± 0.010

Reaction	Products	Branching ratios
	$\int_{-\infty} C_2 H_2 + C_2$	0.177 ± 0.015
	$2\mathrm{C}_2\mathrm{H}$	0.111 ± 0.010
	$\int C_4 H_2 + H$	
C.H ⁺ + o ⁻	$\int C_4 H + H_2$	0.759 ± 0.005 for $\sum = 1 (0.760) [1, 75, 77]$
$C_4H_3^+ + e^-$	\bigcap C ₄ H + 2 H	$0.799 \pm 0.009 \text{ for } \sum = 1 \ (0.700) \ [1, 79, 77]$
	$C_4 + H + H_2$	
	$\int C_3H_3 + C$	
	$C_3H_2 + CH$	
	$ \begin{array}{c} C_{4}H_{2} + H \\ C_{4}H + H_{2} \\ C_{4}H + 2 H \\ C_{4} + H + H_{2} \end{array} $ $ \begin{array}{c} C_{3}H_{3} + C \\ C_{3}H_{2} + CH \end{array} $ $ \begin{array}{c} C_{3}H_{2} + CH \\ C_{3}H +^{3} CH_{2} \end{array} $ $ \begin{array}{c} C_{3}H + CH_{3} \\ C_{2}H_{3} + CH_{2} \end{array} $ $ \begin{array}{c} C_{2}H_{3} + CH_{3} \end{array} $	0.063 ± 0.004
	$\int C_3H +^3 CH_2$	
	$C_3 + CH_3$	
	$\int \mathrm{C}_2\mathrm{H}_3 + \mathrm{C}_2$	0.178 ± 0.004
	C ₂ H ₂ + C ₂ H	0.178 ± 0.004
	$\int C_4 H_3 + H$	
C.H ⁺ + o ⁻	$\int C_4 H_2 + H_2$	$0.766 \pm 0.027 [1, 75, 77]$
$C_4H_4^+ + e^-$	brace $ brace$	0.100 ± 0.021 [1, 10, 11]
	$ C_4H + H_2 + H $	
	$\int C_3 H_4 + C$	
	$C_3H_3 + CH$	
	$\int C_3 H_2 + {}^1 CH_2$	
	$\int \left\{ \begin{array}{c} C_3H_2 + ^3CH_2 \end{array} \right.$	0.063 ± 0.02
		0.000 ± 0.02
	$C_3H + CH_3$	
	$\int C_3 + CH_4$	
	$\int \mathrm{C}_2\mathrm{H}_4 + \mathrm{C}_2$	
	$\mathrm{C_2H_3} + \mathrm{C_2H}$	
	$ ightarrow \left\{ egin{array}{ll} 2\mathrm{C}_2\mathrm{H}_2 \end{array} ight.$	0.171 ± 0.021
		0.111 1 0.021
	$C_{2}H_{2} + C_{2}H$ $C_{4}H_{3} + H$ $C_{4}H_{2} + H_{2}$ $C_{4}H_{2} + 2 H$ $C_{4}H + H_{2} + H$ $C_{3}H_{4} + C$ $C_{3}H_{3} + CH$ $\begin{cases} C_{3}H_{2} +^{1} CH_{2} \\ C_{3}H_{2} +^{3} CH_{2} \end{cases}$ $C_{3}H_{2} + C + H_{2}$ $C_{3}H_{2} + C + H_{2}$ $C_{3}H_{3} + CH_{4}$ $C_{3} + CH_{4}$ $C_{3} + CH_{4} + C_{2}$ $C_{2}H_{4} + C_{2}$ $C_{2}H_{3} + C_{2}H$ $\Rightarrow \begin{cases} C_{2}H_{2} + C_{2}H + H \\ C_{2}H_{2} + C_{2} + H_{2} \end{cases}$	
	$2 \mathrm{C}_2\mathrm{H} + \mathrm{H}_2$	

Reaction	Products	Branching ratios	
$C_4H_5^+ + e^-$	$ \rightarrow \begin{cases} C_4H_4 + H \\ C_4H_3 + H_2 \\ C_4H_3 + 2H \end{cases} $ $ C_4H_2 + H_2 + H $ $ C_4H_4 + H_2 + H_3 + H_4 + H_4 + H_4 + H_4 + H_4 + H_5 + H$	$0.460 \pm 0.054 \; [1, 75, 77]$	
	$ \begin{array}{l} C_4H_4 + H \\ C_4H_3 + H_2 \\ C_4H_3 + 2 H \\ C_4H_2 + H_2 + H \\ C_4H + 2 H_2 \end{array} $ $ \begin{array}{l} C_3H_5 + C \\ C_3H_4 + CH \\ C_3H_3 +^3 CH_2 \end{array} $ $ \begin{array}{l} C_3H_2 + CH_3 \\ C_3H_2 + CH_3 \end{array} $ $ \begin{array}{l} C_3H + CH_4 \end{array} $ $ \begin{array}{l} C_2H_5 + C_2 \\ C_2H_4 + C_2H \end{array} $ $ \begin{array}{l} C_2H_3 + C_2H_2 \\ C_2H_2 + H \\ C_2H_2 + C_2H + H_2 \end{array} $	0.093 ± 0.021	
	$\rightarrow \begin{cases} C_2H_5 + C_2 \\ C_2H_4 + C_2H \\ C_2H_3 + C_2H_2 \\ \\ 2C_2H_2 + H \\ C_2H_2 + C_2H + H_2 \end{cases}$	0.447 ± 0.053	
$C_4H_6^+ + e^-$	$\rightarrow \begin{cases} C_4H_5 + H \\ C_4H_4 + H_2 \\ C_4H_4 + 2H \\ C_4H_3 + H_2 + H \\ \begin{cases} C_4H_2 + 2H_2 \\ C_4H_2 + H_2 + 2H \end{cases} \end{cases}$	$0.589 \pm 0.035 \; [1, 75, 77]$	

Reaction	Products	Branching ratios
	$\begin{cases} C_{3}H_{6} + C \\ C_{3}H_{5} + CH \\ \begin{cases} \begin{cases} C_{3}H_{4} +^{1} CH_{2} \\ C_{3}H_{4} +^{3} CH_{2} \end{cases} \\ C_{3}H_{4} + C + H_{2} \end{cases} \\ \begin{cases} C_{3}H_{3} + CH_{3} \\ C_{3}H_{3} + CH + H_{2} \end{cases} \end{cases}$ $\Rightarrow \begin{cases} \begin{cases} C_{3}H_{2} + CH_{4} \\ C_{3}H_{2} + CH_{3} + H \end{cases} \\ \begin{cases} C_{3}H_{2} +^{1} CH_{2} + H_{2} \\ C_{3}H_{2} +^{3} CH_{2} + H_{2} \end{cases} \\ \begin{cases} C_{3}H_{4} + CH_{3} + H_{2} \end{cases} \\ \begin{cases} C_{2}H_{6} + C_{2} \\ C_{2}H_{5} + C_{2}H \end{cases} \\ \begin{cases} C_{2}H_{4} + C_{2}H + H \\ C_{2}H_{4} + C_{2}H_{2} + H_{2} \end{cases} \\ \begin{cases} C_{2}H_{4} + C_{2} + H_{2} \\ C_{2}H_{3} + C_{2}H_{2} + H \end{cases} \\ \end{cases}$	
	$C_3H_5 + CH$	
	$\int \int C_3H_4 + ^1CH_2$	
	$\left\{ \begin{array}{c} C_3H_4 + ^3CH_2 \end{array} \right.$	
	$\int C_3H_3 + CH_3$	
	$\rightarrow \left\{ \begin{array}{c} C_3H_3 + CH + H_2 \end{array} \right.$	0.090 ± 0.015
	$\int C_3H_2 + CH_4$	
	$\int C_3H_2 + CH_3 + H$	
	$\int C_3 H_2 + ^1 C H_2 + H_2$	
	$\int C_3H + CH_4 + H$	
	$\left(\begin{array}{c} C_3H + CH_3 + H_2 \end{array} \right.$	
	$\int C_2 H_6 + C_2$	
	$C_2H_5+C_2H$	
	$\rightarrow \left\{ \begin{array}{l} C_2H_4 + C_2H_2 \end{array} \right.$	0.321 ± 0.034
	$\left[\begin{array}{c} C_2H_4 + C_2 + H_2 \end{array}\right]$	
	$\int C_2H_3 + C_2H_2 + H$	
	$\left[\begin{array}{c} \\ \end{array}\right] \mathrm{C_2H_3} + \mathrm{C_2H} + \mathrm{H_2}$	
	$ \begin{cases} C_2H_3 + C_2H + H_2 \\ C_2H_2 + CH + CH_3 \\ C_2H_2 + C + CH_4 \end{cases} $	0.00 ± 0.01
	$\rightarrow \begin{cases} C_4H_6 + H \\ C_4H_5 + H_2 \\ C_4H_5 + 2H \\ C_4H_4 + H_2 + H \\ C_4H_3 + 2H_2 \end{cases}$	
	$\int C_4 H_5 + H_2$	
$C_4H_7^+ + e^-$	$\rightarrow \left\{ \left\{ C_4 H_5 + 2 H \right\} \right\}$	$0.198 \pm 0.044 [1, 75, 77]$
	$C_4H_4 + H_2 + H$	
	$\left[\text{ C}_4\text{H}_3 + 2\text{H}_2 \right]$	

Reaction	Products	Branching ratios
	$\int C_3H_7 + C$	
	$\mathrm{C_3H_6}+\mathrm{CH}$	
	$\int C_3H_5 + ^1CH_2$	
	$\int C_3H_4 + CH_3$	
	$\int C_3H_4 + ^1CH_2 + H$	
	$\rightarrow \left\{ \begin{array}{c} C_3H_4 + CH + H_2 \end{array} \right.$	0.655 ± 0.059
	$\int C_3H_3 + CH_4$	
	$\int C_3H_3 + CH_3 + H$	
	$\int C_3 H_3 + {}^{1}CH_2 + H_2$	
	$\int \int C_3 H_3 +^3 C H_2 + H_2$	
	$\int C_3H_2 + CH_4 + H$	
	$\begin{array}{c} C_{3}H_{7}+C\\ C_{3}H_{6}+CH\\ \\ \begin{cases} C_{3}H_{5}+^{1}CH_{2}\\ C_{3}H_{5}+^{3}CH_{2}\\ \end{cases}\\ \begin{cases} C_{3}H_{4}+CH_{3}\\ \\ C_{3}H_{4}+^{1}CH_{2}+H\\ \end{cases}\\ \\ C_{3}H_{4}+^{3}CH_{2}+H\\ \end{cases}\\ \\ \begin{cases} C_{3}H_{4}+CH+H_{2}\\ \end{cases}\\ \begin{cases} C_{3}H_{3}+CH_{4}+H_{2}\\ \end{cases}\\ \\ \begin{cases} C_{3}H_{3}+CH_{3}+H\\ \end{cases}\\ \\ \begin{cases} C_{3}H_{3}+CH_{2}+H_{2}\\ \end{cases}\\ \\ \begin{cases} C_{3}H_{3}+^{3}CH_{2}+H_{2}\\ \end{cases}\\ \\ \begin{cases} C_{3}H_{2}+CH_{4}+H\\ \end{cases}\\ \\ \\ C_{3}H_{2}+CH_{3}+H_{2}\\ \end{cases}\\ \\ \\ C_{3}H_{6}+C_{2}H\\ \end{cases}\\ \\ \\ \\ C_{2}H_{6}+C_{2}H\\ \end{cases}$	
	$\int C_2 H_6 + C_2 H$	
	$\mathrm{C_2H_5} + \mathrm{C_2H_2}$	
	$\int C_2 H_4 + C_2 H_2 + H$	0.147 ± 0.034
	$\left(C_{2}H_{4}+C_{2}H+H_{2}\right)$	0.147 ± 0.004
	$\int 2 C_2 H_3 + H$	
	$\left(\ \right) \mathrm{C_2H_3} + \mathrm{C_2H_2} + \mathrm{H_2}$	
	$\int C_2 H_2 + {}^{1}CH_2 + CH_3$	0.00 ± 0.01
	$ \begin{array}{c} C_{2}H_{6} + C_{2}H \\ C_{2}H_{5} + C_{2}H_{2} \\ \begin{cases} C_{2}H_{4} + C_{2}H_{2} + H \\ C_{2}H_{4} + C_{2}H + H_{2} \end{cases} \\ \begin{cases} 2 C_{2}H_{3} + H \\ C_{2}H_{3} + C_{2}H_{2} + H_{2} \end{cases} \\ \rightarrow \begin{cases} C_{2}H_{2} + {}^{1}CH_{2} + CH_{3} \\ C_{2}H_{2} + {}^{3}CH_{2} + CH_{3} \end{cases} $	0.00 ± 0.01
	$I_{4}H_{7}+H_{7}$	
	$\int C_4 H_6 + H_2$	
$\mathrm{C_4H_8^+} + \mathrm{e^-}$	$ ightarrow \left\{ egin{array}{l} \displaystyle \int \mathrm{C_4H_5} + \mathrm{H_2} + \mathrm{H} \end{array} ight.$	$0.305 \pm 0.031 [1, 75, 77]$
	$ \Rightarrow \begin{cases} C_4H_6 + H_2 \\ C_4H_6 + 2H \end{cases} $ $ \Rightarrow \begin{cases} C_4H_5 + H_2 + H \\ C_4H_5 + 3H \end{cases} $ $ \begin{cases} C_4H_4 + 2H_2 \\ C_4H_4 + H_2 + 2H \end{cases} $	
	$\int C_4 H_4 + 2 H_2$	
	$\int C_4 H_4 + H_2 + 2 H$	

$$\begin{array}{c} C_3H_3 + C \\ C_3H_7 + CH \\ \end{array} \\ \left\{ \begin{array}{c} C_3H_6 +^1 \, CH_2 \\ C_3H_6 + CH + H \\ C_3H_6 + C + H_2 \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_3H_5 + CH_3 \\ C_3H_5 + CH_3 + H \\ C_3H_5 +^3 \, CH_2 + H \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_3H_5 + CH_3 + H \\ C_3H_5 + CH + H_2 \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_3H_4 + CH_4 + H_2 \\ C_3H_4 + CH_3 + H \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_3H_4 + CH_2 + H_2 \\ C_3H_4 +^3 \, CH_2 + H_2 \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_3H_3 + CH_4 + H \\ C_3H_3 + CH_4 + H \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_3H_2 + CH_4 + H_2 \\ C_3H_2 + CH_4 + 2 + H \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_3H_2 + CH_4 + H_2 \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_3H_2 + CH_4 + H_2 \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_2H_6 + C_2H_2 + H \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_2H_5 + C_2H_3 \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_2H_5 + C_2H_2 + H \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_2H_5 + C_2H_2 + H \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_2H_5 + C_2H_4 + H_2 \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_2H_5 + C_2H_4 + H_2 \\ \end{array} \right. \\ \left\{ \begin{array}{c} C_2H_4 + C_3H_2 + H \\ \end{array} \right. \end{array} \right. \end{array} \right.$$

Reaction	Products	Branching ratios
	$ \begin{cases} C_{2}H_{4} + CH + CH_{3} \\ C_{2}H_{4} + C + CH_{4} \end{cases} $ $ C_{2}H_{3} + CH + CH_{4} $ $ \begin{cases} C_{2}H_{2} + 2 CH_{3} \\ C_{2}H_{2} + ^{1} CH_{2} + CH_{4} \\ C_{2}H_{2} + ^{3} CH_{2} + CH_{4} \end{cases} $ $ C_{2}H_{2} + CH_{4} + CH_{3} $ $ C_{2} + 2 CH_{4} $	0.000 ± 0.010
$C_4H_9^+ + e^-$	$\rightarrow \begin{cases} C_4H_8 + H \\ C_4H_7 + H_2 \\ C_4H_7 + 2H \\ C_4H_6 + H_2 + H \\ \begin{cases} C_4H_5 + 2H_2 \\ C_4H_5 + H_2 + 2H \end{cases} \end{cases}$	0.574 ± 0.041 for $\sum = 1 \ (0.575) \ [1, 75, 77, 78]$
	$\begin{cases} C_{3}H_{8} + CH \\ \begin{cases} C_{3}H_{7} +^{1} CH_{2} \\ C_{3}H_{7} +^{3} CH_{2} \end{cases} \\ \begin{cases} C_{3}H_{6} + CH_{3} \\ \begin{cases} C_{3}H_{6} +^{1} CH_{2} + H \\ C_{3}H_{6} +^{3} CH_{2} + H \end{cases} \\ \begin{cases} C_{3}H_{5} + CH_{4} + H_{2} \end{cases} \\ \begin{cases} C_{3}H_{5} + CH_{4} + H_{2} \\ C_{3}H_{5} + CH_{2} + H_{2} \end{cases} \\ \begin{cases} C_{3}H_{5} +^{1} CH_{2} + H_{2} \\ C_{3}H_{5} +^{3} CH_{2} + H_{2} \end{cases} \\ \begin{cases} C_{3}H_{4} + CH_{4} + H \\ C_{3}H_{4} + CH_{3} + H_{2} \end{cases} \\ \end{cases} \end{cases}$	0.411 ± 0.038

Reaction	Products	Branching ratios
	$\rightarrow \begin{cases} \begin{cases} C_2H_6 + C_2H_3 \\ C_2H_6 + C_2H_2 + H \end{cases} \\ C_2H_6 + C_2H + H_2 \\ C_2H_5 + C_2H_4 \\ C_2H_5 + C_2H_3 + H \\ C_2H_5 + C_2H_2 + H_2 \end{cases}$	0.015 ± 0.026
	$ \begin{cases} C_{2}H_{6} + C_{2}H_{3} \\ C_{2}H_{6} + C_{2}H_{2} + H \\ C_{2}H_{6} + C_{2}H + H_{2} \\ C_{2}H_{5} + C_{2}H_{4} \\ C_{2}H_{5} + C_{2}H_{3} + H \\ C_{2}H_{5} + C_{2}H_{2} + H_{2} \\ 2C_{2}H_{4} + H \end{cases} $ $ \begin{cases} C_{2}H_{4} + CH + CH_{4} \\ C_{2}H_{4} + CH + CH_{3} \\ C_{2}H_{4} + ^{3}CH_{2} + CH_{3} \\ C_{2}H_{3} + ^{2}CH_{3} \end{cases} $ $ \begin{cases} C_{2}H_{3} + ^{2}CH_{3} \\ C_{2}H_{3} + ^{3}CH_{2} + CH_{4} \end{cases} $ $ C_{2}H_{2} + CH_{3} + CH_{4} $ $ \Rightarrow N + h\nu $	0.000 ± 0.010
$N^+ + e^-$	$\rightarrow N + h\nu$	-
$NH^+ + e^-$	\rightarrow N + H	-
$\mathrm{NH_2^+} + \mathrm{e^-}$	$\rightarrow N + H_2$ $\rightarrow NH + H$ $\rightarrow \begin{cases} (^4S)N + 2H \\ (^2D)N + 2H \\ (^2P)N + 2H \end{cases}$	$0.04 \pm 0.03 [79, 80]$ $0.38 \pm 0.06 [Note 6]$ $0.58 \pm 0.09 \begin{cases} 0.53 \pm 0.04 \\ 0.45 \pm 0.05 \\ 0.02 \pm 0.02 \end{cases}$
$NH_3^+ + e^-$		Exoergic channels
$NH_4^+ + e^-$	$\rightarrow NH_3 + H$	$0.85 \pm 0.04 [20, 29, 79, 81]$
	$\rightarrow \mathrm{NH_2} + \mathrm{H_2}$	0.2 ± 0.02
	$\rightarrow \mathrm{NH_2} + 2\mathrm{H}$	0.13 ± 0.01
	$\rightarrow \mathrm{NH} + \mathrm{H} + \mathrm{H_2}$	0.00 ± 0.01
	$\rightarrow N + 2H_2$	0.00 ± 0.01
$N_2^+ + e^-$	$\to (^4S)N + (^2D)N$	$0.42 \pm 0.10 \; [37, 82]$

Reaction	Products	Branching ratios	
	$\to (^4S)N + (^2P)N$	0.09 ± 0.09	
	$\rightarrow (^2D)\mathbf{N} + (^2D)\mathbf{N}$	0.49 ± 0.10	
$N_2H^+ + e^-$	$\rightarrow N_2 + H$	0.95-1 [13, 70, 83]	
	\rightarrow NH + N	0-0.05	
$CN^+ + e^-$	$\rightarrow (^4S)N + (^3P)C$	$\leq 0.018 \ [44] \ [Note 7]$	
	$\to (^4S){\rm N} + (^1D){\rm C}$	0.038 ± 0.028	
	$ \rightarrow \begin{cases} (^{2}D)N + (^{3}P)C \\ (^{4}S)N + (^{1}S)C \end{cases} $ $ \rightarrow \begin{cases} (^{2}P)N + (^{3}P)C \\ (^{2}D)N + (^{1}D)C \end{cases} $ $ \rightarrow \begin{cases} (^{2}P)N + (^{1}D)C \\ (^{2}D)N + (^{1}S)C \end{cases} $	0.142 ± 0.014	
	$\rightarrow \begin{cases} (^4S)N + (^1S)C \end{cases}$	0.142 ± 0.014	
	$\int (^2P)N + (^3P)C$	0.561 ± 0.026	
	$\stackrel{\rightarrow}{\longrightarrow} \left\{ (^2D)N + (^1D)C \right.$	0.561 ± 0.026	
	$\int (^2P)N + (^1D)C$	0.055 0.014	
	$\stackrel{\rightarrow}{\longrightarrow} \left\{ (^2D)N + (^1S)C \right.$	0.255 ± 0.014	
	$\to (^2P)N + (^1S)C$	≤ 0.014	
$HCN^+ + e^-$	\rightarrow CN + H	-	
$\mathrm{HNC^{+}} + \mathrm{e^{-}}$	\rightarrow CN + H	-	
$HCNH^+ + e^-$	\rightarrow HCN + H	0.26-0.41 [47, 84, 85] [Note 2]	
	$\rightarrow {\rm HNC} + {\rm H}$	$0.29 \text{-} 0.39 \ [47, 84, 85]$	
	$\rightarrow \text{CN} + \text{H}_2$	$0 \pm 0.017 \ [47]$	
	\rightarrow CN + 2H	$0.325\pm0.032[47]$	
$\mathrm{CH_2NH}_2^+ + \mathrm{e}^-$		Exoergic channels	
$\mathrm{CH_{3}CNH^{+}} + \mathrm{e^{-}}$	$ \rightarrow \left\{ \begin{array}{l} a \\ a \\ \begin{cases} \mathrm{CH_{3}CN + H} \\ \mathrm{C_{2}H_{2}N + H_{2}} \\ \mathrm{C_{2}H_{2}N + 2H} \\ \mathrm{C_{2}HN + H_{2} + H} \\ \\ b \ \mathrm{C_{2}N + 2H_{2}} \end{array} \right. $	$0.65 \pm 0.03, a \in [0.25, 1], b \in [0, 0.25] [68] [Note 5]$	

Reaction	Products	Branching ratios
	$c\begin{cases} C_{2}H_{4} + N \\ C_{2}H_{2} + NH_{2} \\ C_{2}H_{2} + NH + H \\ C_{2}H_{2} + N + H_{2} \\ C_{2}H + NH_{3} \\ C_{2}H + NH + H_{2} \end{cases}$ $\begin{cases} \begin{cases} HCN + CH_{3} \\ HNC + CH_{3} \\ HNC + CH_{2} + H \\ HCN + ^{3}CH_{2} + H \end{cases}$ $\begin{cases} HCN + ^{1}CH_{2} + H \\ HCN + ^{3}CH_{2} + H \end{cases}$ $\begin{cases} HCN + CH_{2} + H \\ HNC + CH + H_{2} \\ HNC + CH + H_{2} \end{cases}$ $\begin{cases} CH_{3}N + CH \\ CH_{2}N + ^{1}CH_{2} \\ CH_{2}N + ^{3}CH_{2} \end{cases}$ $\begin{cases} CH_{2}N + ^{1}CH_{2} \\ CN + CH_{4} \\ CN + CH_{4} \end{cases}$	$0.35\pm0.03,d\geq c,e\geq f$
$\frac{C_2N_2^+ + e^-}{}$	\rightarrow 2 CN	- [86]
$\frac{\mathrm{C_3N^+} + \mathrm{e^-}}{\mathrm{CHCCN^+} + \mathrm{e^-}}$	\rightarrow CN + C ₂	- [9]
$CHCCN^+ + e^-$	$\rightarrow C_{3}N + H$ $\rightarrow \begin{cases} C_{2}H + CN \\ C_{2} + H + CN \end{cases}$ $\rightarrow \begin{cases} HCN + C_{2} \\ HNC + C_{2} \end{cases}$ $\rightarrow H + C + C_{2}N$ $\rightarrow \begin{cases} C_{2}N + CH \\ N + C_{3}H \end{cases}$ $\rightarrow HC_{2}N + C$	0.44 ± 0.04 [87] [Note 5] 0.48 ± 0.05 0.04 ± 0.02 0.02 ± 0.01 0.02 ± 0.01

Reaction	Products	Branching ratios	
	$ ightarrow$ NH + C_3	0.00 ± 0.01	
$\mathrm{CHCCNH^{+}} + \mathrm{e^{-}}$	$ \rightarrow \begin{cases} \begin{cases} a \\ HC_3N + H \\ C_3NH + H \end{cases} \\ b \begin{cases} C_2NCH + H \\ HC_2NC + H \end{cases} \\ C_3N + H_2 \end{cases} $	$0.52 \pm 0.05, a \ge b [88, 89] [\text{Note 5}]$	
	$\rightarrow \left\{ \begin{array}{l} \mathrm{HNC} + \mathrm{C_2H} \\ \\ \mathrm{HCN} + \mathrm{C_2H} \\ \\ \mathrm{CN} + \mathrm{C_2H_2} \end{array} \right.$	0.48 ± 0.05	
$\mathrm{CH_{2}CHCNH^{+}} + \mathrm{e}^{-}$	$\begin{array}{c} C_{3}H_{3}N+H \\ \begin{cases} C_{3}H_{2}N+H_{2} \\ C_{3}H_{2}N+2H \\ \\ C_{3}HN+H+H_{2} \\ \end{cases} \\ \begin{cases} C_{3}N+2H_{2} \\ \\ C_{3}N+2H+H_{2} \end{cases} \end{array}$	0.50 ± 0.04 [50] [Note 5]	
	$\left\{ \begin{array}{l} C_{3}N+2H+H_{2} \\ \\ CNH_{3}+C_{2}H \\ \\ CNH_{2}+C_{2}H_{2} \\ \\ \\ HCN+C_{2}H_{3} \\ \\ HNC+C_{2}H_{3} \\ \\ HCN+C_{2}H_{2}+H \\ \\ HNC+C_{2}H_{2}+H \\ \\ \\ HCN+C_{2}H+H_{2} \\ \\ HNC+C_{2}H+H_{2} \\ \\ CN+C_{2}H_{4} \\ \\ CN+C_{2}H_{2}+H_{2} \end{array} \right.$	0.49 ± 0.04	

Reaction	Products	Branching ratios	
	$\begin{cases} C_2H_3N + CH \\ \begin{cases} C_2H_2N +^1 CH_2 \\ C_2H_2N +^3 CH_2 \end{cases} \\ \\ C_2HN + CH_3 \\ \\ C_2N + CH_4 \\ \\ C_2N + CH_3 + H \\ \\ NH_3 + C_3H \\ \\ NH_2 + C_3H_2 \\ \\ NH + C_3H_3 \\ \\ N + C_3H_4 \end{cases}$	0.01 ± 0.01	
$H_2O^+ + e^-$	\rightarrow OH + H	$0.25 \pm 0.1 \ [52, 53, 69, 90]$	
	$\rightarrow \mathrm{O} + \mathrm{H}_2$	0.10 ± 0.06	
	$\rightarrow \mathrm{O} + 2\mathrm{H}$	0.65 ± 0.1	
$\mathrm{H_3O^+} + \mathrm{e^-}$	$\rightarrow \mathrm{OH} + 2\mathrm{H}$	$0.60 \pm 0.15 \ [55, 56, 69, 91, 92] \ [Note 8]$	
	$\rightarrow \rm{H_2O} + \rm{H}$	0.25 ± 0.05	
	ightarrow OH + H ₂	0.14 ± 0.05	
	\rightarrow O + H ₂ + H	0.01 ± 0.05	
$CO^+ + e^-$	\rightarrow C + O	-	
$HCO^+ + e^-$	\rightarrow CO + H	$0.92 \pm 0.03 \; [42, 81]$	
	\rightarrow C + OH	0.07 ± 0.02	
	\rightarrow O + CH	0.01 ± 0.01	
$NO^+ + e^-$	$\to (^4S)N + (^3P)O$	$0.85 \pm 0.06 \; [69, 93]$	
	$\rightarrow \begin{cases} (^4S)N + (^1D)O\\ (^2D)N + (^3D)O \end{cases}$	$0.15 \pm 0.06 \; [69]$	
$\mathrm{OH^{+}} + \mathrm{e^{-}}$	\rightarrow O + H	-	

1. Notes for branching ratios

1. Sometimes the values of the branching ratios do not exactly add up to unity. In this case the highest value is adapted for the sum constrain. This change is specified when necessary, the measured value is given in parenthesis.

- 2. HCNH⁺: The available data are for the ratio and the sum of the two species HNC and HCN. The ratio is characterized by (0.77 ≤ [HCN]/[HNC] ≤ 1.32)[85] and the sum by (HCN + HNC = 0.675 ± 0.016)[47]. The values given in the database have been estimated from a Monte Carlo propagation with the former equations; they are in agreement Hickman's with calculations, [84] and no further spreading of the branching ratios was necessary.
- 3. l,c-C₃H₃⁺: the measurements of the C₃H₃⁺ dissociative recombination rate and branching ratios are difficult to translate into a database. Mv Lain et al. [21] give two different global rate constants for the l,c species, but the branching ratios only for the global form C₃H₃⁺ of the species. Angelova et al. [74] give the branching ratios as follows: "We find that the most probable channel for the recombination of C₃H₃⁺ is the C₃ channel accounting for 90.7% of the total. This channel corresponds to the loss of a single hydrogen atom or to the loss of a H₂ molecule from the cyclic ion. The linear ion, if recombining, can also lose two separate H atoms. The C₂ + C channel is not negligible, and accounts either for a unique C-C bond break in the linear ion, or for ring opening in the cyclic ion. In this case, two C-C bonds must be broken, or considerable rearrangement must occur prior to splitting." Florescu-Mitchell and Mitchell [1] translate this information to

$$C_{3}H_{3}^{+} + e^{-} \begin{cases} C_{3}H_{2} + H \\ C_{3}H + H_{2} \\ C_{3}H + 2H \end{cases}$$

$$C_{2}H + CH_{2}$$

$$C_{2}H_{2} + CH$$

$$C_{2}H_{2} + C + H$$

We accepted here that each isomer gives all the channels, even though this is probably not what is actually happening.

4. There is an actual controversy over CH₅⁺, indeed Molek *et al.* [70] found values totally different from the previous experiment by Semaniak *et al.* [16]:

Reaction	Products	Branching ratios	
		FAEI [70]	CRYRING [16]
$CH_5^+ + e^-$	$\rightarrow \mathrm{CH_4} + \mathrm{H}$	$95{\pm}5\%$	$4.9 \pm 1.3\%$
	$\rightarrow CH_3 + H_2$	(a)	$4.8 {\pm} 0.2\%$
	\rightarrow CH ₃ + 2H	$(b); (a) + (b) \le 8\%$	$69.8 {\pm} 0.8\%$
	\rightarrow CH ₂ + H + H ₂	$\leq 1\%$	$17.2 \pm 1.6\%$
	\rightarrow CH + H ₂ + H ₂	$\leq 1\%$	$3.3 \pm 1.1\%$

"The reasons for this difference are not understood at present and need more investigation in both the FA and SR." (from Ref. [70]). The CRYRING values for the branching ratios are taken at a null center-of-mass energy.

- 5. The neutral products and branching ratios are directly transposed from the values for deuterated ions. Geppert et al. [72] measured the branching ratios for the DR of C₂D₅⁺, Vigren et al. [68] for the DR of CD₃CND⁺, and Geppert et al. [87] for DCCCN⁺ and DCCCND⁺, which completes calculation for the DR of CHCCNH⁺.[88] Larsson et al. [24] discuss the comparison of C₃H₇⁺ and C₃D₇⁺ dissociative recombination branching ratios.
- 6. N_2H^+ : [40, 42] give from CRYRING results a branching ratio of circa $\frac{2}{3}$ for the NH + H channels. However, [70, 83] suspect the parasitic reaction $^{15}N^{14}N + e^- \rightarrow ^{15}N + ^{14}N$ and a detection of ^{15}N to be the reason for a measurement of so high a value for the NH channel.
- 7. CN⁺: the different spin states of the carbon atom are given, even though the differenciation is not made in the model.
- 8. H₃O⁺: Ref. [94] provides branching ratios in contradiction with the other measurements, they were not taken into account.

C. Thermodynamical data

For a given DR reaction

$$A^+ + e^- \to B + C \tag{2}$$

The reaction enthalpy is given by

$$\Delta_r H^0 = (\Delta_r H^0(B) + \Delta_r H^0(C)) - \Delta_f H^0((A^+))$$

$$= (\Delta_r H^0(B) + \Delta_r H^0(C)) - (\Delta_f H^0((A) + EI(A)))$$
(3)

with EI(A) being the ionisation energy of neutral molecule A.[95]

A channel is exoergic if $\Delta_r H^0$ is negative.

^[1] A.I. Florescu-Mitchell and J.B.A. Mitchell. Dissociative recombination. *Physics Reports*, 430:277–374, 2006.

- [2] C.H. Kokoouline, V.and Greene. Theory of dissociative recombination of D_{3h} triatomic ions applied to H_3^+ . Phys. Rev. Lett., 90:133201, 2003.
- [3] V. Kokoouline and C.H. Greene. Unified theoretical treatment of dissociative recombination of D_{3h} triatomic ions: Application to H_3^+ and D_3^+ . Phys. Rev. A, 68:012703, 2003.
- [4] M. Larsson, B.J. McCall, and A.E. Orel. The dissociative recombination of H₃⁺- a saga coming to an end? *Chemical Physics Letters*, 462:145–151, 2008.
- [5] M.T. Leu, M.A. Biondi, and R. Johnsen. Measurements of recombination of electrons with H_3^+ and H_5^+ ions. *Phys. Rev. A*, 8:413–419, 1973.
- [6] B.J. McCall, A.J. Huneycutt, R.J. Saykally, N. Djuric, G.H. Dunn, J. Semaniak, O. Novotny, A. Al-Khalili, A. Ehlerding, F. Hellberg, S. Kalhori, A. Neau, R.D. Thomas, A. Paal, F. Österdahl, and M. Larsson. Dissociative recombination of rotationally cold H₃⁺. Phys. Rev. A, 70:052716, 2004.
- [7] J. Glosík, R. Plašil, A. Pysanenko, O. Novotný, P. Hlavenka, P. Macko, and G. Bánó. Recombination studies in a He-Ar-H₂ plasma. *Journal of Physics: Conference Series*, 4:104–110, 2005.
- [8] S.N. Nahar and A.K. Pradhan. Electron-ion recombination rate coefficients, photoionization cross sections, and ionization fractions for astrophysically abundant elements. I. Carbon and Nitrogen. The Astrophysical Journal Supplement Series, 111:339–355, 1997.
- [9] J. Woodall, M. Agúndez, A.J. Markwick-Kemper, and T.J. Millar. The UMIST database for astrochemistry 2006. Astron. Astrophys., 466:1197–1204, 2007.
- [10] C.H. Sheehan and J.P. St.-Maurice. Dissociative recombination of the methane family ions: rate coefficients and implications. *Advances in Space Research*, 33:216–220, 2004.
- [11] Molecular Physics Group. Dissociative recombination database. http://mol.physto.se/DRdatabase/.
- [12] A. Larson, A. Le Padellec, J. Semaniak, C. Stromholm, M. Larsson, S. Rosen, R. Peverall, H. Danared, N. Djuric, G.H. Dunn, and S. Datz. Branching fractions in dissociative recombination of CH₂⁺. The Astrophysical Journal, 505:459–465, 1998.
- [13] N.G. Adams, D. Smith, and E. Alge. Measurements of dissociative recombination coefficients of H₃⁺, HCO⁺, N₂H⁺, and CH₅⁺ at 95 and 300 K using the FALP apparatus. *J. Chem. Phys.*, 81:1778–1784, 1984.
- [14] L. Lehfaoui, C. Rebrion-Rowe, S. Laube, J.B.A. Mitchell, and B.R. Rowe. The dissociative recombination of hydrocarbon ions. I. Light alkanes. *J. Chem. Phys.*, 106:5406–5412, 1997.
- [15] T. Gougousi, M.F. Golde, and R. Johnsen. Electron-ion recombination rate coefficient measurements in a flowing afterglow plasma. *Chemical Physics Letters*, 265:399–403, 1997.
- [16] J. Semaniak, A. Larson, A. Le Padellec, C. Strömholm, M. Larsson, S. Rosén, R. Peverall,

- H. Danared, N. Djurić, G. H. Dunn, and S. Datz. Dissociative recombination and excitation of CH₅⁺: absolute cross sections and branching fractions. *The Astrophysical Journal*, 498:886–895, 1998.
- [17] J.L. McLain, V. Poterya, C.D. Molek, L.M. Babcock, and N.G. Adams. Flowing afterglow studies of the temperature dependencies for dissociative recombination of O₂⁺, CH₅⁺, C₂H₅⁺, and C₆H₇⁺ with electrons. J. Phys. Chem. A, 108:6704–6708, 2004.
- [18] A. Ehlerding, F. Hellberg, R. Thomas, S. Kalhori, A.A. Viggiano, S.T. Arnold, M. Larsson, and M. af Ugglas. Dissociative recombination of C₂H⁺ and C₂H₄⁺: absolute cross sections and product branching ratios. *Phys. Chem. Chem. Phys.*, 6:949–954, 2004.
- [19] S. Kalhori, A.A. Viggiano, S.T. Arnold, S. Rosén, J. Semaniak, A.M. Derkatch, M. af Ugglas, and M. Larsson. Dissociative recombination of C₂H₃⁺. Astron. Astrophys., 391:1159–1165, 2002.
- [20] N.G. Adams, V. Poterya, and L.M. Babcock. Electron molecular ion recombination: Product excitation and fragmentation. Mass Spectrometry Reviews, 25:798–828, 2006.
- [21] J.L. McLain, V. Poterya, C.D. Molek, D.M. Jackson, L.M. Babcock, and N.G. Adams. C₃H₃⁺ isomers: Temperature dependencies of production in the H₃⁺ reaction with allene and loss by dissociative recombination with electrons. *The Journal of Physical Chemistry A*, 109:5119–5123, 2005.
- [22] W.D. Geppert, R. Thomas, A. Ehlerding, F. Hellberg, F. Österdahl, M. af Ugglas, and M. Larsson. Dissociative recombination of C₃H₄⁺: preferential formation of the C₃H₃ radical. *International Journal of Mass Spectrometry*, 237:25–32, 2004.
- [23] A. Ehlerding, S.T. Arnold, A.A. Viggiano, S. Kalhori, J. Semaniak, A.M. Derkatch, S. Rosen, M. af Ugglas, and M. Larsson. Rates and products of the dissociative recombination of C₃H₇⁺ in low-energy electron collisions. *Journal of Physical Chemistry A*, 107:2179–2184, 2003.
- [24] M. Larsson, A. Ehlerding, W. D. Geppert, F. Hellberg, S. Kalhori, R. D. Thomas, N. Djuric, F. Osterdahl, G. Angelova, J. Semaniak, O. Novotny, S. T. Arnold, and A. A. Viggiano. Rate constants and branching ratios for the dissociative recombination of C₃D₇⁺ and C₄D₉⁺. The Journal of Chemical Physics, 122:156101, 2005.
- [25] N.G. Adams and D. Smith. Measurements of the dissociative recombination coefficients for several polyatomic ion species at 300 K. *Chemical Physics Letters*, 144:11–14, 1988.
- [26] C. Rebrion-Rowe, L. Lehfaoui, B.R. Rowe, and J.B.A. Mitchell. The dissociative recombination of hydrocarbon ions. ii. alkene and alkyne derived species. *J. Chem. Phys.*, 108:7185–7189, 1998.
- [27] C-M. Huang, M.A. Biondi, and R. Johnsen. Recombination of electrons with NH_4^+ .(NH_3)_n-series ions. *Phys. Rev. A*, 14:984–, 1976.
- [28] R. D. DuBois, J. B. Jeffries, and G. H. Dunn. Dissociative recombination cross sections for NH₄⁺

- ions and electrons. Phys. Rev. A, 17(4):1314-, April 1978.
- [29] J. Öjekull, P.U. Andersson, M.B. Någård, J.B.C. Pettersson, A.M. Derkatch, A. Neau, S. Rosén, R. Thomas, M. Larsson, F. Österdahl, J. Semaniak, H. Danared, A. Källberg, M. af. Ugglas, and N. Marković. Dissociative recombination of NH₄⁺ and ND₄⁺ ions: Storage ring experiments and ab initio molecular dynamics. J. Chem. Phys., 120:7391–7399, 2004.
- [30] W.H. Kasner. Study of the temperature dependence of electron-ion recombination in Nitrogen. *Phys. Rev.*, 164:194–200, 1967.
- [31] F.J. Mehr and M.A. Biondi. Electron temperature dependence of recombination of O_2^+ and N_2^+ ions with electrons. *Phys. Rev.*, 181:264–271, 1969.
- [32] M.R. Mahdavi, J.B. Hasted, and M.M. Nakshbandi. Electron-ion recombination measurements in the flowing afterglow. *Journal of Physics B: Atomic and Molecular Physics*, 4:1726–1737, 1971.
- [33] A.J. Cunningham and R.M. Hobson. Dissociative recombination at elevated temperatures. IV. N₂⁺ dominated afterglows. Journal of Physics B: Atomic and Molecular Physics, 5:2328–2331, 1972.
- [34] E.C. Zipf. The dissociative recombination of vibrationally excited N ions. *Geophys. Res. Lett.*, 7:645–648, 1980.
- [35] M. Geoghegan, N.G. Adams, and D. Smith. Determination of the electron-ion dissociative recombination coefficients for several molecular ions at 300 K. Journal of Physics B: Atomic, Molecular and Optical Physics, 24:2589–2599, 1991.
- [36] A. Canosa, J. C. Gomet, B. R. Rowe, and J. L. Queffelec. Flowing afterglow langmuir probe measurement of the N₂⁺(v=0) dissociative recombination rate coefficient. The Journal of Chemical Physics, 94:7159–7163, 1991.
- [37] J. R. Peterson, A. Le Padellec, H. Danared, G. H. Dunn, M. Larsson, A. Larson, R. Peverall, C. Strömholm, S. Rosén, M. af Ugglas, and W. J. van der Zande. Dissociative recombination and excitation of N₂⁺: Cross sections and product branching ratios. The Journal of Chemical Physics, 108(5):1978–1988, 1998.
- [38] T. Amano. The dissociative recombination rate coefficients of $\mathrm{H_3}^+$, $\mathrm{HN_2}^+$, and HCO^+ . J. Chem. Phys., 92:6492–6501, 1990.
- [39] R.E. Rosati, R. Johnsen, and M.F. Golde. Yield of electronically excited N_2 molecules from the dissociative recombination of N_2H^+ with e^- . J. Chem. Phys., 120:8025–8030, 2004.
- [40] W.D. Geppert, R. Thomas, J. Semaniak, A. Ehlerding, T.J. Millar, F. Österdahl, M. af Ugglas, N. Djurić, A. Paál, and M. Larsson. Dissociative recombination of N₂H⁺: Evidence for fracture of the N-N bond. *The Astrophysical Journal*, 609:459–464, 2004.
- [41] V. Poterya, J.L. McLain, N.G. Adams, and L.M. Babcock. Mechanisms of electron-ion recombi-

- nation of N_2H^+/N_2D^+ and HCO^+/DCO^+ ions: Temperature dependence and isotopic effect. J. Phys. Chem. A, 109:7181–7186, 2005.
- [42] W.D. Geppert, R. Thomas, A. Ehlerding, F. Hellberg, F Österdahl, M. Hamberg, J. Semaniak, V. Zhaunerchyk, M. Kaminska, A Källberg, A. Paál, and M. Larsson. Dissociative recombination branching ratios and their influence on interstellar clouds. J. Phys.: Conf. Ser., 4:26–31, 2005.
- [43] N.G. Adams and L.M. Babcock. Molecular ion recombination in trapped and flowing plasmas: methods, recent results, new goals, open questions. *Journal of Physics: Conference Series*, pages 38–49, 2005.
- [44] A. Le Padellec, J.B.A. Mitchell, A. Al-Khalili, H. Danared, A. Källberg, Å. Larson, S. Rosén, M. af Ugglas, L. Vikor, and M. Larsson. Storage ring measurements of the dissociative recombination and excitation of the cyanogen ion $\text{CN}^+(X^1\Sigma^+ \text{ and } a^3\Pi, \nu = 0)$. The Journal of Chemical Physics, 110:890–901, 1999.
- [45] D. Talbi, A. Le Padellec, and J.B.A. Mitchell. Quantum chemical calculations for the dissociative recombination of HCN⁺ and HNC⁺. *Journal of Physics B: Atomic, Molecular and Optical Physics*, page 3631, 2000.
- [46] C. Sheehan, A. Le Padellec, C. Lennard, D. Talbi, and J.B.A. Mitchell. Merged beam measurement of the dissociative recombination of HCN⁺ and HNC⁺. Journal of Physics B: Atomic, Molecular and Optical Physics, 32:3347–3360, 1999.
- [47] J. Semaniak, B.F. Minaev, A.M. Derkatch, F. Hellberg, A. Neau, S. Rosen, R. Thomas, M. Larsson, H. Danared, A. Paal, and M. af Ugglas. Dissociative recombination of HCNH⁺: Absolute cross-sections and branching ratios. *The Astrophysical Journal Supplement Series*, 135:275–283, 2001.
- [48] J.L. McLain, C.D. Molek, D. Osborne Jr., and N.G. Adams. Flowing afterglow studies of the electron recombination of protonated cyanides (RCN)H⁺ and their proton-bound dimer ions (RCN)₂H⁺ where R is H, CH₃, and CH₃CH₂. *International Journal of Mass Spectrometry*, 282:85–90, 2009.
- [49] J.L. McLain and N.G. Adams. Flowing afterglow studies of temperature dependencies for electron dissociative recombination of HCNH⁺, CH₃CNH⁺ and CH₃CH₂CNH⁺ and their symmetrical proton-bound dimers. *Planetary and Space Science*, 57:1642–1647, 2009.
- [50] E. Vigren, M. Hamberg, V. Zhaunerchyk, M. Kaminska, R. D. Thomas, M. Larsson, T. J. Millar, C. Walsh, , and W. D. Geppert. The dissociative recombination of protonated acrylonitrile, CH₂CHCNH⁺, with implications for the nitrile chemistry in dark molecular clouds and the upper atmosphere of Titan. The Astrophysical Journal, 695:317–324, 2009.
- [51] P.M. Mul, J.W. McGowan, P. Defrance, and J.B.A. Mitchell. Merged electron-ion beam experi-

- ments. V. Dissociative recombination of OH⁺, H₂O⁺, H₃O⁺ and D₃O⁺. Journal of Physics B: Atomic and Molecular Physics, 16:3099–3107, 1983.
- [52] M.J. Jensen, R.C. Bilodeau, O. Heber, H.B. Pedersen, C.P. Safvan, X. Urbain, D. Zajfman, and L.H. Andersen. Dissociative recombination and excitation of H₂O⁺ and HDO⁺. Phys. Rev. A, 60:2970–2976, 1999.
- [53] S. Rosén, A. Derkatch, J. Semaniak, A. Neau, A. Al-Khalili, A. Le Padellec, L. Vikor, R. Thomas, H. Danared, M. af Ugglas, and M. Larsson. Recombination of simple molecular ions studied in storage ring: dissociative recombination of H₂O⁺. Faraday Discussions, 115:295–302, 2000.
- [54] R.A. Heppner, F.L. Walls, W.T. Armstrong, and G.H. Dunn. Cross-section measurements for electron-H₃O⁺ recombination. *Phys. Rev. A*, 13:1000–1011, 1976.
- [55] M.J. Jensen, R.C. Bilodeau, C.P. Safvan, K. Seiersen, L.H. Andersen, H.B. Pedersen, and O. Heber. Dissociative recombination of H₃O⁺, HD₂O⁺, and D₃O⁺. The Astrophysical Journal, 543:764–774, 2000.
- [56] A. Neau, A. Al Khalili, S. Rosén, A. Le Padellec, A.M. Derkatch, W. Shi, L. Vikor, M. Larsson, J. Semaniak, R. Thomas, M.B. Någård, K. Andersson, H. Danared, and M. af Ugglas. Dissociative recombination of D₃O⁺ and H₃O⁺: Absolute cross sections and branching ratios. *The Journal of Chemical Physics*, 113:1762–1770, 2000.
- [57] S. Rosén, R. Peverall, M. Larsson, A. Le Padellec, J. Semaniak, Å. Larson, C. Strömholm, W.J. van der Zande, H. Danared, and G.H. Dunn. Absolute cross sections and final-state distributions for dissociative recombination and excitation of CO⁺(v=0) using an ion storage ring. *Phys. Rev.* A, 57:4462–4471, 1998.
- [58] S. Laubé, L. Lehfaoui, B.R. Rowe, and J.B.A. Mitchell. The dissociative recombination of CO⁺.
 Journal of Physics B: Atomic, Molecular and Optical Physics, 31:4181, 1998.
- [59] M.T. Leu, M.A. Biondi, and R. Johnsen. Measurements of recombination of electrons with HCO⁺ ions. *Phys. Rev. A*, 8:420–422, 1973.
- [60] B. Ganguli, M. A. Biondi, R. Johnsen, and J. L. Dulaney. Electron-temperature dependence of the recombination of HCO⁺ ions with electrons. *Phys. Rev. A*, 37(7):2543–2547, Apr 1988.
- [61] B. R. Rowe, J. C. Gomet, A. Canosa, C. Rebrion, and J. B. A. Mitchell. A further study of HCO⁺ dissociative recombination. *The Journal of Chemical Physics*, 96(2):1105–1110, 1992.
- [62] T. Gougousi, R. Johnsen, and M.F. Golde. Yield determination of $OH(\nu=0.1)$ radicals produced by the electron-ion recombination of H_3O^+ ions. The Journal of Chemical Physics, 107:2430–2439, 1997.
- [63] M. Hamberg, W. D. Geppert, R. D. Thomas, V. Zhaunerchyk, F. Österdahl, A. Ehlerding, M. Kaminska, J. Semaniak, M. af Ugglas, A. Källberg, A. Paal, A. Simonsson, and M. Larsson.

- Experimental determination of dissociative recombination reaction pathways and absolute reaction cross-sections of CH_2OH^+ , CD_2OD^+ and $CD_2OD_2^+$. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 105:899–906, 2007.
- [64] C.S. Weller and M.A. Biondi. Recombination, attachment, and ambipolar diffusion of electrons in photo-ionized NO afterglows. *Phys. Rev.*, 172:198–206, 1968.
- [65] T. Mostefaoui, S. Laubé, G. Gautier, C. Rebrion-Rowe, B.R. Rowe, and J.B.A. Mitchell. The dissociative recombination of NO⁺: the influence of the vibrational excitation state. *Journal of Physics B: Atomic, Molecular and Optical Physics*, 32:5247–5256, 1999.
- [66] C.H. Sheehan and J-P. St-Maurice. Dissociative recombination of N_2^+ , O_2^+ , and NO^+ : rate coefficients for ground state and vibrationally excited ions. *J. Geophys. Res.*, 109:A03302, 2004.
- [67] E. Vigren, M. Kaminska, M. Hamberg, V. Zhaunerchyk, R.D. Thomas, J. Semaniak, M. Danielsson, M. Larsson, and W.D. Geppert. Dissociative recombination of the deuterated acetaldehyde ion, CD₃CDO⁺: product branching fractions, absolute cross sections and thermal rate coefficient. *Physical Chemistry Chemical Physics*, 9:2856–2861, 2007.
- [68] E. Vigren, M. Kaminska, M. Hamberg, V. Zhaunerchyk, R.D. Thomas, M. Danielsson, J. Semaniak, P.U. Andersson, M. Larsson, and W.D. Geppert. Dissociative recombination of fully deuterated protonated acetonitrile, CD₃CND⁺: product branching fractions, absolute cross section and thermal rate coefficient. *Physical Chemistry Chemical Physics*, 10:4014–4019, 2008.
- [69] L. Vejby-Christensen, L.H. Andersen, O. Heber, D. Kella, H.B. Pedersen, H.T. Schmidt, and D. Zajfman. Complete branching ratios for the dissociative recombination of H₂O⁺, H₃O⁺, and CH₃⁺. The Astrophysical Journal, 483:531–540, 1997.
- [70] C.D. Molek, V. Poterya, N.G. Adams, and J.L. McLain. Development of a novel technique for quantitatively determining the products of electron-ion dissociative recombination. *International Journal of Mass Spectrometry*, 285:1–11, 2009.
- [71] A.M. Derkatch, A. Al-Khalili, L. Vikor, A. Neau, W. Shi, H. Danared, M. af Ugglas, and M. Larsson. Branching ratios in dissociative recombination of the C₂H₂⁺ molecular ion. *Journal of Physics B: Atomic, Molecular and Optical Physics*, 32:3391, 1999.
- [72] W. Geppert, A. Ehlerding, F. Hellberg, S. Kalhori, R.D. Thomas, O. Novotny, S.T. Arnold, T.M. Miller, A.A. Viggiano, and M. Larsson. First observation of four-body breakup in electron recombination: C₂D₅⁺. Phys. Rev. Lett., 93:153201, 2004.
- [73] O. Heber, K. Seiersen, H. Bluhme, A. Svendsen, L.H. Andersen, and L. Maunoury. Dissociative recombination of small carbon cluster cations. *Physical Review A*, 73:022712, 2006.
- [74] G. Angelova, O. Novotny, J.B.A. Mitchell, C. Rebrion-Rowe, J.L. Le Garrec, H. Bluhme, A. Svendsen, and L.H. Andersen. Branching ratios for the dissociative recombination of hy-

- drocarbon ions: III: the cases of $C_3H_n^+$ (n=1-8). International Journal of Mass Spectrometry, 235:7–13, 2004.
- [75] J.B.A. Mitchell, G. Angelova, C. Rebrion-Rowe, O. Novotny, J.L. Le Garrec, H. Bluhme, K. Seiersen, A. Svendsen, and L.H. Andersen. Branching ratios for the dissociative recombination of hydrocarbon ions. *Journal of Physics: Conference Series*, 4:198–204, 2005.
- [76] M. Larsson, A. Ehlerding, W. D. Geppert, F. Hellberg, S. Kalhori, R. D. Thomas, N. Djuric, F. Osterdahl, G. Angelova, J. Semaniak, O. Novotny, S. T. Arnold, and A. A. Viggiano. Rate constants and branching ratios for the dissociative recombination of C₃D₇⁺ and C₄D₉⁺. The Journal of Chemical Physics, 122(15):156101, 2005.
- [77] G. Angelova, O. Novotny, J.B.A. Mitchell, C. Rebrion-Rowe, J.L. Le Garrec, H. Bluhme, K. Seiersen, and L.H. Andersen. Branching ratios for the dissociative recombination of hydrocarbon ions: II. the cases of C₄H_n⁺ (n=1-9). *International Journal of Mass Spectrometry*, 232:195–203, 2004.
- [78] J.B.A. Mitchell, C. Rebrion-Rowe, J.L. Le Garrec, G. Angelova, H. Bluhme, K. Seiersen, and L.H. Andersen. Branching ratios for the dissociative recombination of hydrocarbon ions. I: The cases of C₄H₉⁺ and C₄H₅⁺. *International Journal of Mass Spectrometry*, 227:273–279, 2003.
- [79] L. Vikor, A. Al-Khalili, H. Danared, N. Djurić, G.-H. Dunn, M. Larsson, A. Le Padellec, S. Rosén, and M. Af Ugglas. Branching fractions in the dissociative recombination of NH₄⁺ and NH₂⁺ molecular ions. Astron. Astrophys., 344:1027–1033, 1999.
- [80] R.D. Thomas, F. Hellberg, A. Neau, S. Rosén, M. Larsson, C.R. Vane, M.E. Bannister, S. Datz, A. Petrignani, and W.J. van der Zande. Three-body fragmentation dynamics of amidogen and methylene radicals via dissociative recombination. *Phys. Rev. A*, 71:032711–16, 2005.
- [81] N.G. Adams, C.R. Herd, M. Geoghegan, D. Smith, A. Canosa, J.C. Gomet, B.R. Rowe, J.L. Queffelec, and M. Morlais. Laser induced fluorescence and vacuum ultraviolet spectroscopic studies of H-atom production in the dissociative recombination of some protonated ions. *The Journal of Chemical Physics*, 94:4852–4857, 1991.
- [82] D. Kella, P.J. Johnson, H.B. Pedersen, L. Vejby-Christensen, and L.H. Andersen. Branching ratios for dissociative recombination of ¹⁵N¹⁴N⁺. *Phys. Rev. Lett.*, 77:2432–2435, 1996.
- [83] C.D. Molek, J.L. McLain, V. Poterya, and N.G. Adams. A remeasurement of the products for electron recombination of N₂H⁺ using a new technique: No significant NH + N production. *The Journal of Physical Chemistry A*, 111:6760–6765, 2007.
- [84] A.P. Hickman, R.D. Miles, C. Hayden, and D. Talbi. Dissociative recombination of e + HCNH⁺: Diabatic potential curves and dynamics calculations. *Astronomy & Astrophysics*, 438:31–37, 2005.
- [85] K. Ishii, A. Tajima, T. Taketsugu, and K. Yamashita. Theoretical elucidation of the unusually

- high [HNC]/[HCN] abundance ratio in interstellar space: Two-dimensional and two-state quantum wave packet dynamics study on the branching ratio of the dissociative recombination reaction $HCNH^+ + e^- \rightarrow HNC/HCN + H$. The Astrophysical Journal, 636:927–931, 2006.
- [86] M.E. Jacox and W.E. Thompson. Infrared spectroscopy and photochemistry of NCCN⁺ and CNCN⁺ trapped in solid neon. *The Journal of Chemical Physics*, 126:054308, 2007.
- [87] W.D. Geppert, A. Ehlerding, F. Hellberg, J. Semaniak, F. Osterdahl, M. Kaminska, A. Al-Khalili, V. Zhaunerchyk, R. Thomas, M. af Ugglas, A. Kallberg, A. Simonsson, and M. Larsson. Dissociative recombination of nitrile ions: DCCCN⁺ and DCCCND⁺. The Astrophysical Journal, 613:1302–1309, 2004.
- [88] Y. Osamura, K. Fukuzawa, R. Terzieva, and E. Herbst. A molecular orbital study of the $HC_3NH^++e^-$ dissociative recombination and its role in the production of cyanoacetylene isomers in interstellar clouds. *The Astrophysical Journal*, 519:697–704, 1999.
- [89] W.D. Geppert, A. Ehlerding, F. Hellberg, J. Semaniak, F. Osterdahl, M. Kaminska, A. Al-Khalili, V. Zhaunerchyk, R. Thomas, M. af Ugglas, A. Kallberg, A. Simonsson, and M. Larsson. Dissociative recombination of nitrile ions: DCCCN⁺ and DCCCND⁺. The Astrophysical Journal, 613(2):1302–1309, 2004.
- [90] B.R. Rowe, F. Vallee, J.L. Queffelec, J.C. Gomet, and M. Morlais. The yield of oxygen and hydrogen atoms through dissociative recombination of H₂O⁺ ions with electrons. The Journal of Chemical Physics, 88:845–850, 1988.
- [91] L.H. Andersen, O. Heber, D. Kella, H.B. Pedersen, L. Vejby-Christensen, and D. Zajfman. Production of water molecules from dissociative recombination of H₃O⁺ with electrons. *Phys. Rev. Lett.*, 77:4891–4894, 1996.
- [92] M. Kayanuma, T. Taketsugu, and K. Ishii. Ab initio surface hopping simulation on dissociative recombination of H₃O⁺. *Chemical Physics Letters*, 418:511–518, 2006.
- [93] D. Kley, G.M. Lawrence, and E.J. Stone. The yield of $N(^2D)$ atoms in the dissociative recombination of NO^+ . The Journal of Chemical Physics, 66:4157–4165, 1977.
- [94] T.L. Williams, N.G. Adams, L.M. Babcock, C.R. Herd, and M. Geoghegan. Production and loss of the water-related species H₃O⁺, H₂O and OH in dense interstellar clouds. *Monthly Notices of the Royal Astronomical Society*, 282:413–420, 1996.
- [95] G. Angelova, O. Novotny, J. B. A. Mitchell, C. Rebrion-Rowe, J. L. Le Garrec, H. Bluhme, K. Seiersen, and L. H. Andersen. Branching ratios for the dissociative recombination of hydrocarbon ions: II. The cases of C₄H_n⁺ (n=1-9). International Journal of Mass Spectrometry, 232(2):195 – 203, 2004.