Smarter Mining: Detecting Coal Trucks with Real-Time Al

Revolutionizing mining operations with custom object-detection model

By Team QuantumSenses

Untracked Trucks, Missed Opportunities

Mining companies face **chaos in coal logistics**:

- Trucks carrying coal deposits aren't systematically tracked.
- Delays and bottlenecks disrupt operations.
- **Untracked movements** increase the risk of theft and mismanagement.

This inefficiency translates to **lost revenue**, **increased costs**, and **environmental impact**.

"It's time for mining logistics to enter the era of automation"

The Solution: Real-Time Object Detection at Work

Introducing an AI-powered object detection system to automate truck monitoring.

Built on YOLOv3, a cutting-edge algorithm for:

- Real-time detection of trucks with coal deposits.
- Precision, even in challenging environments like dust and poor lighting.

Deployed on edge devices for instant insights right on the ground.

"From chaos to clarity, our model in action"

Why YOLOv3?

- **Real-Time Ready:** Inference so fast, decisions happen in the blink of an eye.
- **Built for the Tough Stuff:** Detects small objects (like coal piles) in complex scenes.
- Deploy Anywhere: Compact enough to run on edge devices—right where you need it.
- Better Than the Rest:
 - Faster than Faster R-CNN
 - Smarter than SSD
 - Robust enough for real-world mining operations

How It Works

Custom Dataset

Captured images from the mining grounds using high-resolution cameras at various times of the day to account for different lighting conditions. Diverse scenarios included:

- Trucks partially loaded with coal.
- Varying backgrounds (e.g., piles of coal, mining machinery, dirt roads).

Training the Model

- A single-shot detector that processes the entire image in one forward pass.
- Darknet-53 Backbone: A convolutional neural network optimized for feature extraction.
- Multi-Scale Detection: YOLOv3 uses three scales to detect objects of varying sizes.

Process Workflow

Objects detected and classified

Centralised Server

Images get stored in server with bounding boxes for representation

Database

The Impact

Smarter Scheduling

Automates truck tracking, eliminating bottlenecks.

Lower Costs

Reduces human intervention and streamlines operations.

Enhanced Security

Tracks every truck to prevent unauthorized movement.

Actionable Insights

Real-time analytics for data-driven decisions in fleet and resource management.

Environmental Win

Optimized routes and reduced idle times cut down emissions.

"Efficiency, Security, and Data like never before"

Expansion across multiple mining sites

NVIDIA Jetson or cloud-edge hybrid systems enable rapid deployment without extensive infra changes.

Adopting Advanced Models

Transition to newer versions of YOLO (like YOLOv5 or YOLOv8) or explore transformer-based architectures such as DETR

Load Balancing and Distributive Processing

Distributed inference pipelines where edge devices process initial frames and relay results to centralized servers for analysis.

Global Deployment and Customization

Extend the model to handle datasets from **different geographies** and types of mining (e.g., **iron ore, copper, or gold**).

We are a team of 2 passionate student devs aiming to solve real problems in mining automation.

Aditya Subramanian

AI/ML Research, Deep Learning Architect

Aditya Sinha

MLOps Engineer, Data Strategist

References

- Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv preprint arXiv:1804.02767.
- Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 318–327.
- Liu, W., et al. (2016). SSD: Single Shot MultiBox Detector. European Conference on Computer Vision (ECCV).
- Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The PASCAL Visual Object Classes Challenge (VOC). International Journal of Computer Vision.

Thank You!