Advanced Machine Learning

Constrained Optimisation

Lagrangians, Inequalities, KKT, Linear Programming, Quadratic Programming, Duality

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Outline

1. Constrained Optimisation

- 2. Inequalities
- 3. Duality

https://ecs-vlc.github.io/comp6208/

Optimisation with Constraints

- There are a number of important applications where we wish to minimise an objective function subject to inequality constraints
- A prominent example of this is support vector machines
- More generally there are a large number of kernel models that involve constraints
- However, constraints are ubiquitous in machine learning (e.g. in Wasserstein GANs)

Solving Constrained Optimisation Problems

• Suppose we have a problem

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text{subject to } g(\boldsymbol{x}) = 0 \text{I\hspace{-.07cm}I}$$

• A standard procedure is to define the Lagrangian

$$\mathcal{L}(\boldsymbol{x},\alpha) = f(\boldsymbol{x}) - \alpha g(\boldsymbol{x})$$

where α is known as a Lagrange multiplier

• In the extended space (x,α) we have to solve

$$\max_{\alpha} \min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \alpha)$$

Conditions on Optimum

• The optimisation problem is

$$\max_{\alpha} \min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \alpha) \quad \text{where} \quad \mathcal{L}(\boldsymbol{x}, \alpha) = f(\boldsymbol{x}) - \alpha g(\boldsymbol{x}) \blacksquare$$

Assuming differentiability

$$\nabla_{x} \mathcal{L}(x, \alpha) = \nabla_{x} f(x) - \alpha \nabla_{x} g(x) = 0$$
$$\frac{\partial \mathcal{L}}{\partial \alpha} = -g(x) = 0$$

- The second condition is just the constraint
- But what about first condition: $\nabla_{x} f(x) = \alpha \nabla_{x} g(x)$?

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Constrained Optima

Note on Gradients

ullet Note that for any function $f(oldsymbol{x})$ we can Taylor expand around $oldsymbol{x}_0$

$$f(x) = f(x_0) + (x - x_0)^{\mathsf{T}} \nabla_x f(x_0) + \frac{1}{2} (x - x_0)^{\mathsf{T}} \mathsf{H}(x - x_0) + \dots$$

where H is a matrix of second derivative known as the Hessian

• If we consider the set of points perpendicular to $\nabla_x f(x_0)$ which go through x_0 (the tangent plane), these will have values

$$f(\boldsymbol{x}) = f(\boldsymbol{x}_0) + O(\|\boldsymbol{x} - \boldsymbol{x}_0\|^2)$$
 { $\mathbf{x} | (\mathbf{x} - \mathbf{x}_0)^T \nabla f(\mathbf{x}_0) = 0$ }

thus $\nabla_x f(x)$ is always orthogonal to the contour lines

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Example

- $\bullet \ \ \text{Minimise} \ f(\boldsymbol{x}) = x^2 + 2y^2 xy$
- Subject to g(x) = x 2y 3 = 0
- Writing $\mathcal{L} = f(x) \alpha g(x)$
- Condition for minima is $\nabla_x \mathcal{L} = 0$

$$\nabla_{x} f(x) = \begin{pmatrix} 2x - y \\ -x + 4y \end{pmatrix} = \alpha \nabla_{x} g(x) = \alpha \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

and
$$\frac{\partial \mathcal{L}}{\partial \alpha} = -g(\boldsymbol{x}) = -x + 2y + 3 = 0$$

• Solving simultaneous equations gives minima at $(x,y)=(\frac{3}{4},-\frac{9}{8})$ with $\alpha=\frac{21}{8}$

Surface

Saddle-Point y = -9/8

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Multiple Constraints

• Given an optimisation problem with multiple constraints

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 subject to $g_k(\boldsymbol{x}) = 0$ for $k = 1, 2, ..., m$

• We introduce multiple Lagrange multipliers

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}) = f(\boldsymbol{x}) - \sum_{k=1}^{m} \alpha_k g_k(\boldsymbol{x})$$

ullet The condition for an optima is $oldsymbol{
abla}_x \mathcal{L}(x, oldsymbol{lpha}) = 0$ which implies

$$\mathbf{
abla}_{m{x}}f(m{x}) = \sum_{k=1}^m lpha_k \mathbf{
abla}_{m{x}}g_k(m{x})$$

plus the original constraints $\frac{\partial \mathcal{L}(x,\alpha)}{\partial \alpha_k} = -g_k(x) = 0$

Example

- Minimise $f(x) = x^2 + 2y^2 + 5z^2 xy xz$ subject to $g_1(x) = x 2y z 3 = 0$ and $g_2(x) = 2x + 3y + z 2 = 0$
- Writing $\mathcal{L}(\boldsymbol{x}, \alpha) = f(\boldsymbol{x}) \alpha_1 g_1(\boldsymbol{x}) \alpha_2 g_2(\boldsymbol{x})$
- Condition for minima is $\nabla_x \mathcal{L} = 0$ or $\nabla_x f(x) = \sum_{k=1}^2 \alpha_k \nabla_x g_k(x)$

$$\begin{pmatrix} 2x - y - z \\ -x + 4y \\ 10z - x \end{pmatrix} = \alpha_1 \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$

and
$$\frac{\partial \mathcal{L}}{\partial \alpha_i} = -g_i(\boldsymbol{x}) = 0$$

• Solving simultaneous equations gives minima at $(\frac{37}{20},-\frac{11}{20},-\frac{1}{20})$ with $\alpha_1=3$ and $\alpha_2=\frac{13}{20}$

Outline

Inequality Constraints

- 1. Constrained Optimisation
- 2. Inequalities
- 3. Duality

• Suppose we have the problem

$$\min_{{m x}} f({m x})$$
 subject to $g({m x}) \geq 0$

- Looks much more complicated, but
- Only two things can happen
 - \star Either a minimum, x^* , of f(x) satisfies $g(x^*) > 0$
 - * We then have an unconstrained optimisation problem
 - \star Otherwise, it satisfies $g(x^*) = 0$
 - * We have a constrained optimisation problem

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/ 14

Inside Region

On the Boundary

KKT Conditions

• To minimise f(x) subject to q(x) > 0

$$\mathcal{L}(\boldsymbol{x}, \alpha) = f(\boldsymbol{x}) - \alpha g(\boldsymbol{x})$$

• Then $\nabla_x \mathcal{L} = 0$ or

$$\nabla_x \mathcal{L} = \nabla_x f(x) - \alpha \nabla_x g(x) = 0$$

- where either
 - $\star \alpha = 0$ and the solutions in the interior or
 - $\star \alpha > 0$ and g(x) = 0, i.e. the solution is on the boundary
- These conditions are known as the Karush-Kuhn-Tucker conditions

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Outline

- 1. Constrained Optimisation
- 2. Inequalities
- 3. **Duality**

Many Inequalities

• Given the problem

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 subject to $g_k(\boldsymbol{x}) \geq 0$ for $k = 1, 2, ..., m$

• We introduce multiple Lagrange multipliers

$$\mathcal{L}(\boldsymbol{x}, \alpha) = f(\boldsymbol{x}) - \sum_{k=1}^{m} \alpha_k g_k(\boldsymbol{x})$$

• The condition for an optima is

$$abla_{m{x}} f(m{x}) = \sum_{k=1}^m lpha_k m{
abla}_{m{x}} g_k(m{x}) m{1}$$

• Plus the constraints that either $\alpha_k = 0$ or $\alpha_k > 0$ and $g_k(\boldsymbol{x}) = 0$

https://ecs-vlc.github.io/comp6208/

Solving the Lagrangian for x

- Consider minimising a function f(x) subject to a set of constraints $q_i(x) = 0$ or $q_i(x) < 0$
- We can consider this a double optimisation problem

$$\max_{\alpha} \min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}) = \max_{\alpha} \min_{\boldsymbol{x}} \left(f(\boldsymbol{x}) + \sum_{i} \alpha_{i} g_{i}(\boldsymbol{x}) \right)$$

where there would be constraints on α_i if we had an inequality constraint

Dual Problem

• If f(x) and $g_i(x)$ are simple we can sometimes find a set of variables $x^*(\alpha)$ that minimises the Lagrangian

$$\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}^*(\boldsymbol{\alpha}), \boldsymbol{\alpha}) = 0$$

• This leaves us with the dual problem

$$\max_{lpha} \mathcal{L}(oldsymbol{x}^*(oldsymbol{lpha}), oldsymbol{lpha})$$

• If we had an inequality constraint $g_i(x) \ge 0$ then we would have the additional constraint in the dual problem $\alpha_i > 0$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

nub.io/comp6208/ 21 Adam Prü

Linear Programming Example

 Suppose we eat potatoes and rice and we want to ensure that we get enough vitamin A and CI

	Potatoes	Rice	Daily Requirement
Vitamin A	3	5	20
Vitamin C	5	2	24
Price	5	4	

 We want to buy P kg potatoes and R kg of rice as cheaply as possible subject to fulfilling our vitamin requirement

$$\min_{P,R} 5P + 4R$$

subject to $P,R \ge 0$, $3P + 5R \ge 20$ and $5P + 2R \ge 24$

Linear Programming

- In linear programming we minimise a linear objective function $c^{\mathsf{T}}x$ subject to linear constraints g(x) = Mx b = 0 (or $g(x) \ge 0$)
- The Lagrangian becomes

$$\mathcal{L}(oldsymbol{x},oldsymbol{lpha}) = oldsymbol{c}^{\mathsf{T}}oldsymbol{x} - oldsymbol{lpha}^{\mathsf{T}}(oldsymbol{M}oldsymbol{x} - oldsymbol{b})$$

• An equivalent way of writing the Lagrangian is

$$\mathcal{L}(oldsymbol{x},oldsymbol{lpha}) = oldsymbol{b}^{\mathsf{T}}oldsymbol{lpha} - oldsymbol{x}^{\mathsf{T}}ig(oldsymbol{M}^{\mathsf{T}}oldsymbol{lpha} - oldsymbol{c}ig)$$

• An entirely equivalent interpretation is that we maximise an objective function ${m b}^{\sf T} {m \alpha}$ subject to constraints ${m M}^{\sf T} {m \alpha} - {m c} = 0$ (or ${m M}^{\sf T} {m \alpha} - {m c} \leq 0$)

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Linear Programming

- Minimise 5P + 4R
- Subject to
 - \star $3P + 5R \ge 20$
 - \star $5P + 2R \ge 24$
 - $\star P, R \geq 0$

Lagrangian

• We can write the problem as a Lagrange problem

$$\min_{P,R} \max_{A,C} \quad 5P + 4R - A(3P + 5R - 20) - C(5P + 2R - 24)$$

- subject to P,R,A,B>0
- A and C are Lagrange multipliers for vitamin A and C
- We can rearrange the Lagrangian to obtain

$$\max_{A,C} \min_{P,R} \quad 20A + 24C - P(3A + 5C - 5) - R(5A + 2C - 4)$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Dual Linear Programme

- Maximise 20A + 24C
- Subject to
 - $\star 3A + 5C < 5$
 - $\star 5A + 2C < 4$
 - $\star A, C > 0$

Dual Problem

• The Lagrangian

$$\max_{A,C,P,R} \quad 20A + 24C - P(3A + 5C - 5) - R(5A + 2C - 4)$$

leads to the dual problem

• Consider someone selling vitamins A and C. They want to maximise the price of vitamins A and C, but their prices cannot exceed the price of the vitamins in potatoes or ricel

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Why?

- Why are we bothered about translating one linear programme into another?
- Sometime one form is massively easier to solve than the other
- This is because the first linear programme depends on the dimensionality of x while the second linear programme depends on the number of constraints (or dimensionality of α)
- This is important, for example, in Wasserstein GANs

Quadratic Programming

- A quadratic programme involves minimising a quadratic function $x^{\mathsf{T}}Qx$ (with $Q \succ 0$) subject to linear constraints Mx = b (or $\mathbf{M}\mathbf{x} \leq \mathbf{b}$
- We can define the Lagrangian

$$\mathcal{L}(x, lpha) = x^\mathsf{T} \mathbf{Q} x - lpha^\mathsf{T} (\mathbf{M} x - b)$$

- ullet Where the solution is given by $\max \min_{x} \mathcal{L}(x, lpha)$
- If the constraints are inequality constraints then $\alpha_i > 0$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

- A useful tool for performing constrained optimisation is the introduction of Lagrange multipliers
- This is particularly useful for problems with unique solutions (it will work when there are multiple solutions, but finding many saddle points is a pain)
- For inequality constraints we need to satisfy KKT conditions
- For simple situations (linear and quadratic programming) we can eliminate the original variables to obtain the dual problem

Dual Quadratic Programming Problem

• Substituting $x^* = \frac{1}{2} \mathbf{Q}^{-1} \mathbf{M}^\mathsf{T} \alpha$ into

$$\mathcal{L}(x, lpha) = x^\mathsf{T} \mathbf{Q} x - lpha^\mathsf{T} (\mathbf{M} x - b)$$

• We get the dual problem

$$\max_{\boldsymbol{\alpha}} -\frac{1}{4} \boldsymbol{\alpha}^\mathsf{T} \mathbf{M} \mathbf{Q}^{-1} \mathbf{M}^\mathsf{T} \boldsymbol{\alpha} + \boldsymbol{\alpha}^\mathsf{T} \boldsymbol{b} \mathbf{I}$$

- If the constraints were inequality constraints then we have $\alpha_i \geq 0$
- We have exchanged one quadratic programme for another, but sometimes that very useful (e.g. SVMs)

Using

$$\mathcal{L}(oldsymbol{x},oldsymbol{lpha}) = oldsymbol{x}^\mathsf{T} \mathbf{Q} oldsymbol{x} - oldsymbol{lpha}^\mathsf{T} (\mathbf{M} oldsymbol{x} - oldsymbol{b})$$

Then

$$\nabla_{x}\mathcal{L}(x, \alpha) = 2\mathbf{Q}x - \mathbf{M}^{\mathsf{T}}\alpha$$

• So $\nabla_x \mathcal{L}(x,\alpha) = 0$ implies

$$\boldsymbol{x}^* = \frac{1}{2} \mathbf{Q}^{-1} \mathbf{M}^\mathsf{T} \boldsymbol{\alpha}$$