Motivation Point Forecast Reconciliation Probabilistic Reconciliation Scoring

Probabilistic Forecast Reconciliation

Puwasala Gamakumara, Anastasios Panagiotelis, George Athanasopoulos and Rob Hyndman

November 14, 2018

Motivating Examples

- Gross Domestic Product
 - An aggregate of consumption, investment, government spending and trade balance
 - Further breakdown, e.g. consumption of food, rent, etc.
- Wind power
 - Forecasts required at a daily and hourly resolution.
 - Daily series is aggregate of 24 hourly series.
- Potentially need forecasts of all time series.

Incoherent Forecasts

- Potential approaches
 - Univariate models
 - Multivariate models
 - Judgemental forecasts
- Forecasts do not respect aggregation structure (Incoherent)
- Outcome does respect aggregation structure (Coherent)
- Motivation is aggregation but can be generalised to any linear constraints.

Reconciliation

- Begin with a vector of base forecasts that are incoherent.
- Adjust these **ex post** to make them coherent.
- There are good solutions for point forecasting that:
 - Guarantee coherent forecasts.
 - Improve forecast accuracy overall.
- Generalisation to probabilistic forecasts is our contribution.
- Getting there necessitates a rethink of the existing point forecasting literature.

What we do NOT do

- All information is contained in the most disaggregate series.
- In principle using the correct multivariate model for the most disaggregate series and aggregating them should work.
- Disaggregate series are:
 - Very noisy
 - High-dimensional
 - Prone to model misspecification

A simple hierarchy

Consider a hierarchy given by

- Let n be the number of series, y be an n-vector of all series.
- Let m be the number of bottom level series and b be an m-vector of the bottom level series.

The **S** matrix

The $n \times m$ matrix **S** defines the aggregation constraints, e.g.

$$m{S} = egin{pmatrix} 1 & 1 & 1 & 1 \ 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ & m{I}_{4 imes4} & & \end{pmatrix}$$

Coherence holds when

$$y = Sb$$

As a regression model

• Cast the problem as a regression model with base forecasts \hat{y} as the "dependent variable" and S as the "design matrix".

$$\hat{\mathbf{y}} = \mathbf{S}\boldsymbol{eta} + \mathbf{e}$$

• Initial approach (Athanasopoulos et al, 2009; Hyndman et al, 2011) was to fit by OLS yielding reconciled forecasts:

$$\tilde{\mathbf{y}} = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{y}}$$

Generalisation

• Wherever we can use OLS we can use GLS

$$\tilde{\mathbf{y}} = \mathbf{S}(\mathbf{S}'\mathbf{W}^{-1}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}^{-1}\hat{\mathbf{y}}$$

- Diagonal W considered by Athanasopoulos et al (2017)
- MinT approach (Wickremasuriya et al, 2018) use a W that is an estimate of the in-sample forecast error covariance matrix.

 $\label{eq:approx} \mathsf{A}\mathsf{\Gamma}\mathsf{E}\Omega\mathsf{M}\mathsf{T}\mathsf{E}\mathsf{T}\mathsf{P}\mathsf{H}\mathsf{T}\mathsf{O}\Sigma\ \mathsf{M}\mathsf{H}\Delta\mathsf{E}\mathsf{I}\Sigma\ \mathsf{E}\mathsf{I}\Sigma\mathsf{I}\mathsf{T}\Omega$ Those without knowledge of geometry may not enter.

Coherent Subspace

Definition

The **coherent subspace** is the *m*-dimensional linear subspace of \mathbb{R}^n spanned by the columns of S, i.e. $\mathfrak{s} = \mathsf{sp}(S)$

Instead of using bottom-level series a different combination of m basis series could be used (e.g. top and m-1 bottom). Although \boldsymbol{S} would be different $\mathfrak s$ would be the same.

Coherent Point Forecast

Definition

A **coherent point forecast** is any forecast lying in the linear subspace $\mathfrak s$

Reconciled Point Forecast

Let $\hat{\mathbf{y}} \in \mathbb{R}^n$ be an incoherent forecast and g(.) be a function $g: \mathbb{R}^n \to \mathbb{R}^m$.

Definition

A **point forecast** \tilde{y} is reconciled with respect to g(.) iff

$$\tilde{\pmb{y}} = \pmb{S}g(\hat{\pmb{y}})$$

when g(.) is linear it is easier to write $\tilde{y} = SG\hat{y}$

Geometry

Why reconciliation works

- The realised observation always lies on s.
- Orthogonal projections always get us 'closer' to all points in sincluding the actual realisation.
- Ergo reconciliation reduces the error and not just in expectation.
- What about the MinT approach?

Finding a direction

- Consider the covariance matrix of $\mathbf{y} \hat{\mathbf{y}}$.
- This can be estimated using in-sample forecast errors.
- This provides information about the likely direction of an error.
- Projecting along this direction is more likely to result in a reconciled forecast that is closer to the target.

Motivation
Point Forecast Reconciliation
Probabilistic Reconciliation
Scoring

Animation

content...

Geometry: Oblique Projection

Is this overkill?

- Is this geometric interpretation really necessary?
- When we generalise to probabilistic forecasts the regression interpretation does not really fit.
- Geometric ideas can easily be generalised.

Coherent Probabilistic Forecast

Let $(\mathbb{R}^m, \mathcal{F}_{\mathbb{R}^m}, \nu)$ and $(\mathfrak{s}, \mathcal{F}_{\mathfrak{s}}, \mu)$ be probability triples on m-dimensional space and the coherent subspace respectively.

Definition

The probability measure μ is coherent if

$$u(\mathcal{B}) = \mu(s(\mathcal{B})) \quad \forall \mathcal{B} \in \mathcal{F}_{\mathbb{R}_m}$$

where $s(\mathcal{B})$ is the image of \mathcal{B} under premultiplication by \boldsymbol{S}

Reconciled Probabilistic Forecast

Let $g: \mathbb{R}^n \to \mathbb{R}^m$ be a mapping. Then

Definition

The probability triple $(\mathfrak{s}, \mathcal{F}_{\mathfrak{s}}, \tilde{\nu})$ reconciles the probability triple $(\mathbb{R}^n, \mathcal{F}_{\mathbb{R}^n}, \hat{\nu})$ with with respect to g iff

$$\tilde{\nu}(s(\mathcal{B})) = \nu(\mathcal{B}) = \hat{\nu}(g^{-1}(\mathcal{B})) \quad \forall \mathcal{B} \in \mathcal{F}_{\mathbb{R}_m}$$

where g^{-1} is the pre-image of g.

Geometry

Analytically

If we have an unreconciled density the reconciled density can be obtained by linear transformations and marginalisation.

$$\begin{aligned} \Pr(\tilde{\boldsymbol{b}} \in \mathcal{B}) &= \Pr(\hat{\boldsymbol{y}} \in g^{-1}(\mathcal{B})) \\ &= \int\limits_{g^{-1}(\mathcal{B})} f(\hat{\boldsymbol{y}}) d\hat{\boldsymbol{y}} \\ &= \int\limits_{\mathcal{B}} \int f(\boldsymbol{S}\tilde{\boldsymbol{b}} + \boldsymbol{R}\tilde{\boldsymbol{a}}) |\left(\boldsymbol{S} \ \boldsymbol{R}\right)| d\tilde{\boldsymbol{a}} d\tilde{\boldsymbol{b}} \end{aligned}$$

Elliptical distributions

Consider case where the base true predictive distributions are elliptical.

Theorem

There exists a function G such that the true predictive distribution can be recovered by linear reconciliation.

This follows from the closure property of elliptical distributions under affine transformations and marginalisation.

With a sample

- Often densities are unavailable but we can simulate a sample from the predictive distribution.
- Suppose $\hat{\mathbf{y}}^{[1]}, \dots, \hat{\mathbf{y}}^{[J]}$ is a sample from the unreconciled probabilistic forecast.
- Then setting $\tilde{\mathbf{y}}^{[j]} = \mathbf{S}\mathbf{G}\hat{\mathbf{y}}^{[j]}$ produces a sample from the reconciled distribution with respect to g.

Multivariate Scores

- Scoring rules can be used to evaluate probabilistic forecasts
 - Log Score
 - Energy Score
 - Variogram score
- We may want to compare
 - Coherent v Incoherent
 - Coherent v Coherent

Coherent v Incoherent

When using log score

Theorem

Let f(y) be the true predictive density (on \mathfrak{s}) and LS be the (negatively-oriented) log score. Then there exists an unreconciled density $\hat{f}(y)$ on \mathbb{R}^n such that

$$E_{\mathbf{y}}\left[LS(\hat{f},\mathbf{y})\right] < E_{\mathbf{y}}\left[LS(f,\mathbf{y})\right]$$

The log score is not proper in this context.

Simulations

- We have run lots of simulations
- The main takeaway messages are:
 - Reconciliation is better than no reconciliation.
 - Bottom up does not do well.
 - OLS (an orthogonal projection) does poorly.
 - MinT (an oblique projection) does best.

Looking ahead

- The optimal feasible reconciliation method remains an open question even for elliptical distributions.
 - It is likely to depend on the specific score used.
- Are non-linear reconciliation methods worthwhile?
- How should probabilistic reconciliation work for non-elliptical distributions.
- Further development of multivariate scoring rules.