## CAMeLiD: Control Adaptation via Meta-Learning Dynamics







James Harrison\*,1, Apoorva Sharma\*,1, Roberto Calandra<sup>2</sup>, Marco Pavone<sup>1</sup>

We develop a Bayesian meta-learning model that is capable of **fast**, **efficient online updates** and is trained for multi-step probabilistic predictions.

Using this model, we build a control algorithm that captures online model uncertainty and automatically trades off safety and performance.



CAMeLiD controlling a quadrotor with a random attached mass. By incorporating model uncertainty into control, we successfully stabilize.

Point estimate meta-learning-based control algorithm results in the quadrotor crashing.

