Problemas de Aproximación de funciones. Aproximación por mínimos cuadrados. Aproximación polinomial. Polinomios ortogonales.

(1) Consideremos la siguiente tabla de datos:

$\overline{x_i}$	4.000	4.2000	4.5000	4.7000	5.1000	5.5000	5.9000	6.3000	6.8000	7.1000
y_i	125.977	125.0189	126.7981	127.3632	129.3904	128.1228	131.4274	131.3781	131.7926	134.4182

Se pide:

- a) Hallar la mejor recta que aproxima la tabla de puntos anterior por el método de mínimos cuadrados y calcular el error cometido.
- b) Hallar la mejor parábola o el mejor polinomio de grado 2 que aproxima la tabla de puntos anterior por el método de mínimos cuadrados y calcular el error cometido.
- c) Hallar la mejor cúbica o el mejor polinomio de grado 3 que aproxima la tabla de puntos anterior por el método de mínimos cuadrados y calcular el error cometido.
- d) Hallar la mejor aproximación de la forma be^{ax} por el método de mínimos cuadrados y calcular el error cometido.
- e) Hallar la mejor aproximación de la forma bx^a por el método de mínimos cuadrados y calcular el error cometido.
- (2) Hallar el polinomio lineal por mínimos cuadrados, es decir, de grado menor o igual que 1, que aproxime la función f(x) en el intervalo indicado. Calcular el error cometido E.
 - a) $f(x) = x^3$, intervalo [0, 2].
 - b) $f(x) = \cos(x) + \frac{1}{2}\sin(3x)$, intervalo $[0, \pi]$.
 - c) $f(x) = x \ln x$, intervalo [1, 3].
- (3) Repetir el ejercicio anterior pero ahora hallar la parábola por mínimos cuadrados, es decir el polinomio de grado menor o igual que 2.
- (4) Usando el Teorema de construcción de Polinomios ortogonales, hallar los polinomios ortogonales mónicos $L_0(x), L_1(x), L_2(x)$ y $L_3(x)$ respecto al peso $w(x) = e^{-x}$ en el intervalo $(0, \infty)$. Dichos polinomios se denominan **Polinomos de Laguerre**.
- (5) Usando los polinomios de Laguerre introducidos en el ejercicio anterior hallar la aproximación por mínimos cuadrados de grados 1, 2 y 3 de la función $f(x) = e^{-2x}$ en el intervalo $(0, \infty)$.