Оглавление

1			2
	1.1	Парабола (продолжение)	2
		Классификация КВП (кривых второго порядка)	

Глава 1

1.1 Парабола (продолжение)

Теорема 1 (Касательная к параболе).

$$y^2 = 2px$$

 (x_0,y_0) – точка на параболе $yy_0=p(x+x_0)$ – касательная

Доказательство.

$$\begin{cases} yy_0 = p(x+x_0) \\ y^2 = 2px \end{cases}$$

$$px = yy_0 - px_0$$

$$y^2 = 2yy_0 - 2px_0 = 2yy_0 - y_0^2$$

$$y^2 - 2yy_0 + y_0^2 = 0$$

$$(y - y_0)^2 = 0$$

Теорема 2 (Оптическое свойство параболы).

Доказательство.

$$TF\stackrel{?}{=}FM$$

$$TF=x_0+\frac{p}{2}$$
 $FM=|M,$ директриса $|=x_0+\frac{p}{2}$

1.2 Классификация КВП (кривых второго порядка)

Уравнение второго порядка: $\underbrace{a_{11}x^2 + 2a_{12}xy + a_{22}y^2}_{\text{квадратичная форма}(\neq 0)} + 2b_1x + 2b_2y + b_3 = 0$

Немного его упростим:

1. Поворотом плоскости избавляемся от $2a_{12}xy$:

$$a_{11}(x'\cos\alpha - y'\sin\alpha)^{2} + 2a_{12}(x'\cos\alpha - y'\sin\alpha)^{2} \cdot (x'\sin\alpha + y'\cos\alpha) + a_{22}(x'\sin\alpha + y'\cos\alpha)^{2} + \dots$$

$$x'y' - 2a_{11}\cos\alpha\sin\alpha + 2a_{12}(\cos^{2}\alpha - \sin^{2}\alpha) + 2a_{22}\sin\alpha\cos\alpha = 0$$

$$(a_{22} - a_{11})\sin2\alpha + a_{12}\cos\alpha = 0 \quad | : \sin\alpha$$

$$a_{22} - a_{11} + 2a_{2}\cot2\alpha = 0$$

$$ctg 2\alpha = \frac{a_{11} - a_{22}}{2a_{12}}$$

$$a'_{11}x'^2 + a'_{22}y'^2 + 2a'_{11}x' + 2b'_2y' + b'_3 = 0$$

$${}_{(b'_3 = b_3)}$$

2. • Если $a'_{11} \neq 0$, то считаем $b'_{1} = 0$:

$$a'_{11}x^2 + 2b'_1x = a_{11}(x^2 + 2\frac{b'_1}{a'_{11}}x + \frac{b'^2}{a'_{11}})$$

• Если $a'_{11} = 0$, то считаем $b'_{3} = 0$

Полярная система координат. Поворот

 (r, φ) — полярные координаты M Переход:

$$\begin{cases} x = r\cos\varphi \\ y = r\cos\varphi \end{cases}$$

Поворот на α :

$$x' = r\cos\varphi' = r\cos(\varphi - \alpha) = r\cos\varphi \cdot \cos\alpha + r\sin\varphi \cdot \sin\alpha = x\cos\alpha + y\sin\alpha$$
$$y' = \dots = -x\sin\alpha + y\cos\alpha$$