Normalização e Redução dos Dados

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br github.com/andrehochuli/teaching

Plano de Aula

- Discussões Iniciais
- Normalização
- Redução
- Visualização
- Exercícios

Discussões Iniciais

- Dados Desbalanceados
 - KNN, NB e Árvores

Aprendizado de Máquina - Prof. André Hochuli

Normalização & Redução

- Analisar dados na mesma escala
 - 100 == 1 ? Sim, se considerarmos 100cm e 1 Metro
 - 100 cm == 100 cm ou 1 m == 1 m
 - Importante para algoritmos que analisam a distribuição espacial das características
 - A normalização é por atributo (características)

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal
297	59	1	0	164	176	1	0	90	0	1.0	1	2	1
243	57	1	0	152	274	0	1	88	1	1.2	1	1	3
269	56	1	0	130	283	1	0	103	1	1.6	0	0	3
215	43	0	0	132	341	1	0	136	1	3.0	1	0	3
83	52	1	3	152	298	1	1	178	0	1.2	1	0	3
152	64	1	3	170	227	0	0	155	0	0.6	1	0	3

- MinMax (sklearn.preprocessing.MinMaxScaler)
- $\frac{x_i \min(\boldsymbol{x})}{\max(\boldsymbol{x}) \min(\boldsymbol{x})}$
- Std (sklearn.preprocessing.StandardScaler)

$$\frac{x_i - \text{mean}(\boldsymbol{x})}{\text{stdev}(\boldsymbol{x})}$$

• MinMax (sklearn.preprocessing.MinMaxScaler) $\frac{x_i - \min(m{x})}{\max(m{x}) - \min(m{x})}$

• Standard (sklearn.preprocessing.StandardScaler) $\frac{x_i - \operatorname{mean}(\boldsymbol{x})}{\operatorname{stdev}(\boldsymbol{x})}$

• E qual o impacto disso nos modelos?

• KNN vs Naive Bayes

KNN - Sem		zação - AC		22222222	
	preci	ision r	ecall f1	-score	support
	0	0.80	0.84	0.82	19
	1	0.30	0.84	0.82	22
	2	0.50	0.46	0.48	13
	2	0.50	0.40	0.40	13
accurac	CV			0.72	54
macro av		0.69	0.69	0.69	54
weighted av	/g	0.72	0.72	0.72	54
KNN - Com		zação - AC			
	preci	ision r	ecall f1	-score	support
	•		1 00	1 00	10
	0	1.00	1.00	1.00	19
	1	1.00	1.00	1.00	22
	2	1.00	1.00	1.00	13
accura	~\/			1.00	54
accurad macro av		1.00	1.00	1.00	54
weighted a	_	1.00	1.00	1.00	54
weighted at				1100	J-1

Naive Bayes	- Sem Norma precision		ACC: 0.94 f1-score	
0 1 2	0.90 1.00 0.93	0.86	0.93	22
accuracy macro avg weighted avg	0.94 0.95			
Naive Bayes			ACC: 0.94 fl-score	
0 1 2	0.90 1.00 0.93	0.86	0.93	
accuracy macro avg weighted avg	0.94 0.95		0.94 0.95 0.94	54 54 54

Redução de Características

- Redução de complexidade
- Ganho de Performance (tempo vs acc)
- Evitar o overfitting
- Seleção de features relevantes
 - Redução de ruído
 - Correlação
- Outras applicações
 - Visualização dos Dados
 - Compressão dos Dados

Redução de Características

- PCA (sklearn.decomposition.PCA)
 - Autovalores e autovetores
 - Covariância e Correlação


```
n comp: 2, acc: 0.5574
n_comp: 6, acc: 0.8333
n comp: 10, acc: 0.820
n comp: 14, acc: 0.827
n comp: 18, acc: 0.833
n comp: 22, acc: 0.838
n comp: 26, acc: 0.831
n comp: 30, acc: 0.833
n comp: 34, acc: 0.814
n comp: 38, acc: 0.822
n comp: 42, acc: 0.820
n comp: 46, acc: 0.827
n comp: 50, acc: 0.811
n comp: 54, acc: 0.824
n comp: 58, acc: 0.820
n comp: 62, acc: 0.838
```

Visualização dos Dados

• PCA (n_comp=2 ou 3)

Visualização dos Dados

- TSNE (n_comp=2 ou 3)
 - · Aprendizado de Máquina
 - Preserva Relações
 - Probabilidade em Alta e Baixa dimensão

Let's code

- [LINK] Tópico_02_Aprendizado_Supervisionado_Normalizacao&Reducao.ipynb
- Off-topic:
 - Análise por Quartil
 - PCA para Redução e Compressão dos dados

Considerações Finais

- Normalização:
 - Vantagens
 - Ajuda a garantir que as variáveis de entrada tenham a mesma escala e * unidade de medida
 - Evita que valores extremos em uma variável dominem os valores de outras variáveis
 - Pode melhorar a precisão dos modelos de aprendizado de máquina
 - Desvantagens
 - Pode levar a uma perda de informação
 - Pode afetar a distribuição dos dados

Considerações Finais

- Redução de dimensionalidade:
 - Vantagens
 - Ajuda a lidar com problemas de alta dimensionalidade
 - Identifica as variáveis mais importantes para a previsão
 - Reduz a complexidade dos dados
 - Desvantagens
 - Pode levar a uma perda de informação
 - Pode afetar a interpretabilidade dos dados