Chapter 6 K Means Clustering

- Unsupervised learning
- Requires data, but

- Unsupervised learning
- •Requires data, but NO labels

•Basic idea: Group together similar instances

- Image segmentation
 - Goal: Partition an image into perceptually similar regions

Other examples

- Group emails or search results
- Customer shopping patterns

K-Means Algorithm

- K —means is an <u>iterative algorithm</u>
- Consider the dataset of n —dimensional vectors

K-Means Algorithm

- *K* —means is an <u>iterative algorithm</u>
- Consider the dataset of n —dimensional vectors

$$\bar{\mathbf{x}}(1), \bar{\mathbf{x}}(2), \dots, \bar{\mathbf{x}}(M)$$

• Organize the data into *K clusters*

• Organize the data into K clusters $C_1, C_2, ..., C_K$

•The <u>centroids</u> for the clusters are

• The <u>centroids</u> for the clusters are

$$\overline{\mu}_1, \overline{\mu}_2, \dots, \overline{\mu}_K$$

Clusterassignment

• Let $\alpha_i(j)$ denote the *cluster* assignment indicator

Cluster assignment

Clusterassignment

• Let $\alpha_i(j)$ denote the *cluster* assignment indicator

$$\alpha_i(j) = \begin{cases} 1 & \bar{\mathbf{x}}(j) \in \mathcal{C}_i \\ 0 & \bar{\mathbf{x}}(j) \notin \mathcal{C}_i \end{cases}$$

K-Means procedure

• Initialize centroids randomly

• $\overline{\mu}_i^{(l-1)}$ denotes <u>centroids</u> in iteration l-1

K-Means procedure

• *Initialize centroids* randomly

$$\overline{\mu}_{1}^{(0)}, \overline{\mu}_{2}^{(0)}, ..., \overline{\mu}_{K}^{(0)}$$

• $\overline{\mu}_i^{(l-1)}$ denotes <u>centroids</u> in iteration l-1

Cluster determination

• Assign $\bar{\mathbf{x}}(j)$ to the cluster $\tilde{\imath}$ with closest centroid $\bar{\mu}_{\tilde{\imath}}^{(l-1)}$

Cluster determination

• This is minimized when $\alpha_{\tilde{\imath}}^{(l)}(j)=1$, where

Cluster determination

• This is minimized when $\alpha_{\tilde{\imath}}^{(l)}(j)=1$, where

$$\tilde{\iota} = \arg\min \left\| \bar{\mathbf{x}}(j) - \bar{\boldsymbol{\mu}}_i^{(l-1)} \right\|^2$$

Centroid determination

- The centroid of cluster *i* can be determined as below
- ullet The average of all points assigned to cluster $oldsymbol{i}$ in iteration $oldsymbol{l}$

Centroid determination

This can be mathematically expressed as

Centroid determination

This can be mathematically expressed as

$$\overline{\boldsymbol{\mu}}_{i}^{(l)} = \frac{\sum_{j=1}^{M} \alpha_{i}^{(l)}(j)\overline{\mathbf{x}}(j)}{\sum_{j=1}^{M} \alpha_{i}^{(l)}(j)}$$

$$= \frac{\sum_{j:\overline{\mathbf{x}}(j)\in\mathcal{C}_{i}}^{M} \overline{\mathbf{x}}(j)}{\sum_{j:\overline{\mathbf{x}}(j)\in\mathcal{C}_{i}} 1}$$

Convergence

- •The cluster and centroid computation steps are repeated until convergence
- •i.e., when cluster assignments do NOT change

K-Means Example

- Pick *K random points* as cluster *centroids*
- Shown here for K = 2

•Assign data points to *closest centroid*

• Change each centroid to the average of the assigned points

•Assign data points to *closest centroid*

• Change each centroid to the average of the assigned points

•Assign data points to *closest centroid*

- •Change each centroid to the average of the assigned points
- •Convergence achieved!

- 1 import matplotlib.pyplot as plt
- 2 from sklearn.cluster import KMeans
- 3 from sklearn.datasets import make_blobs

```
7 X, y = make_blobs(n_samples=2500,centers=4, n_features=2,random_state = 10)
```

```
9 plt.figure()
10 plt.scatter(X[:, 0], X[:, 1], c=None, cmap='jet',s=10)
11 plt.suptitle('Original Data')
12 plt.grid(1,which='both')
13 plt.axis('tight')
14 plt.show()
```

Original Data


```
y_pred = KMeans(n_clusters=4, random_state=0).fit_predict(X)
```

```
plt.figure()

plt.scatter(X[:, 0], X[:, 1], c=y_pred, cmap='jet',s=10)

plt.suptitle('K-Means Clusters')

plt.grid(1,which='both')

plt.axis('tight')

plt.show()
```

K-Means Clusters

Number of clusters

How to choose number of clusters?

- Use the Sum Square Error (SSE) as a metric
- Also termed inertia

```
33 plt.plot(range(1, 11), SSE)
34 plt.xlabel("Number of Clusters")
35 plt.ylabel("SSE")
36 plt.grid(1,which='both')
37 plt.axis('tight')
38 plt.show()
39
```


Instructors may use this white area (14.5 cm / 25.4 cm) for the text. Three options provided below for the font size.

Font: Avenir (Book), Size: 32, Colour: Dark Grey

Font: Avenir (Book), Size: 28, Colour: Dark Grey

Font: Avenir (Book), Size: 24, Colour: Dark Grey

Do not use the space below.