

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields

David HURTADO Zijie NING

Interest

Inferring the pose of multiple people in images on real time.

Challenges:

- Unkown number of people (Position & Scale)
- People Interaction (Occlusion, spatial interference)
- Runtime Complexity

Architecture

Architecture

Part Confidence Map

$$\mathbf{S}_{j,k}^*(\mathbf{p}) = \exp\left(-\frac{||\mathbf{p} - \mathbf{x}_{j,k}||_2^2}{\sigma^2}\right)$$

A 2D representation of the belief that a particular body part occurs at each pixel location

$$\mathbf{S}_{j}^{*}(\mathbf{p}) = \max_{k} \mathbf{S}_{j,k}^{*}(\mathbf{p}).$$

each visible part j for each person k

Part Affinity Fields

A field of 2D vectors encoding the direction that points from one joint of the limb to the other.

$$\mathbf{L}_{c,k}^*(\mathbf{p}) = \begin{cases} \mathbf{v} & \text{if } \mathbf{p} \text{ on limb } c, k \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

$$\mathbf{L}_{c}^{*}(\mathbf{p}) = \frac{1}{n_{c}(\mathbf{p})} \sum_{k} \mathbf{L}_{c,k}^{*}(\mathbf{p})$$

$$E = \int_{u=0}^{u=1} \mathbf{L}_{c}(\mathbf{p}(u)) \cdot \frac{\mathbf{d}_{j_{2}} - \mathbf{d}_{j_{1}}}{||\mathbf{d}_{j_{2}} - \mathbf{d}_{j_{1}}||_{2}} du.$$

two candidate part locations d_{j1} and d_{j2}

Identifying Limbs

Figure 6. Graph matching. (a) Original image with part detections (b) K-partite graph (c) Tree structure (d) A set of bipartite graphs

- b. The edges are all possible connections between pairs of detection candidates
- c. No two limbs of the same type (e.g., left forearm) share a part.
- d. Decomposition $\max_{\mathcal{Z}} E = \sum_{c=1}^{c} \max_{\mathcal{Z}_c} E_c$

Test & Result

COCO Dataset & MPII MultiPerson Dataset

Team	AP	AP ⁵⁰ AP ⁷⁵		AP^M	AP^L	
		Test-chall	enge			
Ours	60.5	83.4	66.4	55.1	68.1 66.7 54.8	
G-RMI [19]	59.8	81.0	65.1	56.7		
DL-61	53.3	75.1	48.5	55.5		
R4D	49.7	74.3	54.5	45.6	55.6	
		Test-de	ev			
Ours	61.8	84.9	67.5	57.1	68.2	
G-RMI [19]	60.5	82.2	66.2	57.6	66.6 54.3	
DL-61	54.4	75.3	50.9	58.3		
R4D	51.4	75.0	55.9	47.4	56.7	

Method	Hea	Sho	Elb	Wri	Hip	Kne	Ank	mAP	s/image
		Subs	et of 28	88 imag	es as in	[22]			
Deepcut [22]	73.4	71.8	57.9	39.9	56.7	44.0	32.0	54.1	57995
Iqbal et al. [12]	70.0	65.2	56.4	46.1	52.7	47.9	44.5	54.7	10
DeeperCut [11]	87.9	84.0	71.9	63.9	68.8	63.8	58.1	71.2	230
Ours	93.7	91.4	81.4	72.5	77.7	73.0	68.1	79.7	0.005
			Ful	testing	set				
DeeperCut [11]	78.4	72.5	60.2	51.0	57.2	52.0	45.4	59.5	485
Iqbal et al. [12]	58.4	53.9	44.5	35.0	42.2	36.7	31.1	43.1	10
Ours (one scale)	89.0	84.9	74.9	64.2	71.0	65.6	58.1	72.5	0.005
Ours	91.2	87.6	77.7	66.8	75.4	68.9	61.7	75.6	0.005

Test & Result

Our Work

- 1. Network Visualization
- 2. Webcam Integration
- 3. Pretrained Network Modification

THANKS FOR YOUR ATTENTION

