(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-122617 (P2000-122617A)

(43)公開日 平成12年4月28日(2000.4.28)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)
G 0 9 G	3/36		G 0 9 G	3/36		5 C O O 6
	3/20	6 3 1		3/20	631B	5 C O 5 8
H 0 4 N	5/74		H 0 4 N	5/74	K	5 C 0 8 0

審査請求 未請求 請求項の数4 OL (全 9 頁)

	· ·				
(21)出願番号	特願平10-289801	(71)出願人	000003078		
			株式会社東芝		
(22)出願日	平成10年10月12日(1998.10.12)	•	神奈川県川崎市幸区堀川町72番地		
		(71)出願人	000221029		
			東芝エー・ブイ・イー株式会社		
	· · · · · · · · · · · · · · · · · · ·		東京都港区新橋3丁目3番9号		
		(72)発明者	村松 雅弘		
			東京都港区新橋3丁目3番9号 東芝工		
-			ー・ブイ・イー株式会社内		
•		(74)代理人	100076233		
		·	弁理士 伊藤 進		
•		, .			
		,			

最終頁に続く

(54) 【発明の名称】 台形歪み補正装置

(57)【要約】

【課題】 ユーザによる煩雑な補正操作を必要とせず、 自動的に且つ確実に投射画面に生じた台形歪みを補正す ること。

【解決手段】 液晶プロジェクタ本体1前面の異なる位置に複数設けられた第1及び第2の距離センサ30,3 1は、該本体1とスクリーン9との距離をそれぞれ検出する。制御マイコン32はこれらの検出結果に基づきスクリーン9に対する本体1の傾斜角を算出し、この算出結果に基づき、液晶パネル5の投射画像光が本体1の傾斜角に起因する投射画面の台形歪み形状とは逆の台形歪み形状となるように、各ライン毎の画素データの間引き 調整が可能な映像処理回路11Aを制御する。これにより、ユーザの煩雑な操作を必要とせず、自動的に投射画面に生じた台形歪み補正を行うことが可能となる。

【特許請求の範囲】

【請求項1】 入力映像信号に基づき形成された液晶パネル面上の形成画像を、光源からの照射光により投射 し、その投射画像光を光学系手段を介してスクリーシ上に拡大表示する液晶表示装置において、

前記液晶表示装置本体前面の異なる位置に複数設けられ、該液晶表示装置本体と前記スクリーンとの距離をそれぞれ検出し、検出結果を出力する距離検出手段と、前記入力映像信号に基づく画像を前記液晶パネル面上に形成させるための処理を行う処理回路であって、入力映 10 像信号に対応した画素データを記憶するメモリを備え、該メモリの画素データのライン毎の書き込み、読み出しのタイミングを変化させることにより、ライン毎の画素データの間引き調整が可能な映像処理回路と、

前記距離検出手段からの検出結果に基づき前記スクリーンに対する前記液晶表示装置本体の傾斜角を算出し、この算出結果に基づいて、前記液晶表示装置本体の傾斜角に起因する投射画面の台形歪みを補正するように前記映像処理回路を自動制御する補正制御手段と、

を具備したことを特徴とする台形歪み補正装置。

【請求項2】 入力映像信号に基づき形成された液晶パネル面上の形成画像を、光源からの照射光により投射し、その投射画像光を光学系手段を介してスクリーン上に拡大表示する液晶表示装置において、

前記液晶表示装置本体前面の異なる位置に複数設けられ、該液晶表示装置本体と前記スクリーンとの距離をそれぞれ検出し、検出結果を出力する距離検出手段と、前記液晶パネルからの投射画像光を集光し、投射レンズを介してスクリーンへと照射するためのレンズであって、該レンズ自体の傾斜角を自在に変化させる駆動手段 30 を備えたコンデンサレンズと、

前記コンデンサレンズの前記駆動手段を制御可能な角度 調整手段と、

前記距離検出手段からの検出結果に基づき前記スクリーンに対する前記液晶表示装置本体の傾斜角を算出し、この算出結果に基づいて、前記液晶表示装置本体の傾斜角に起因する投射画面の台形歪みを補正するように前記角度調整手段を自動制御する補正制御手段と、

を具備したことを特徴とする台形歪み補正装置。

【請求項3】 入力映像信号に基づき形成された液晶パ 40 ネル面上の形成画像を、光源からの照射光により投射し、その投射画像光を光学系手段を介してスクリーン上に拡大表示する液晶表示装置において、

前記液晶表示装置本体前面の異なる位置に複数設けられ、該液晶表示装置本体と前記スクリーンとの距離をそれぞれ検出し、検出結果を出力する距離検出手段と、前記液晶パネル自体の傾斜角を自在に変化させる駆動手段を備えた液晶パネルと、

前記液晶パネルの前記駆動手段を制御可能な角度調整手段と、

前記距離検出手段からの検出結果に基づき前記スクリーンに対する前記液晶表示装置本体の傾斜角を算出し、この算出結果に基づいて、前記液晶表示装置本体の傾斜角 に起因する投射画面の台形歪みを補正するように前記角

を具備したことを特徴とする台形歪み補正装置。

度調整手段を自動制御する補正制御手段と、

【請求項4】 前記補正制御手段は、前記算出結果に基づき、前記液晶表示装置本体の傾斜角に起因する投射画面の台形歪み形状とは逆の台形歪み形状を有する投射画像光が得られるように前記映像処理回路手段または前記角度調整手段を制御する請求項1乃至請求項3のいずれか一つに記載の台形歪み補正装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、前面投射型液晶プロジェクタの設置状態に起因してその投射映像に生じる台形歪みを補正する台形歪み補正装置に係り、特ユーザによる煩わしい手動操作を必要とせず自動的にしかも最適に台形歪みを補正することのできる台形歪み補正装置20 に関する。

[0002]

【従来の技術】近年、大画面で小型・軽量のディスプレイ装置の要求に伴い、液晶パネルを用いた液晶プロジェクタの開発が盛んに行われている。液晶プロジェクタは大画面化が容易であること等から、高品位テレビジョン用としても期待されている。

【0003】中でも、前面投射型の液晶プロジェクタは、小型・軽量で簡単に設置して使用することができ、またコスト的にもそう高価ではないことから、近年ユーザに人気があるともに幅広く普及しており、今後の需要も十分に期待されている。

【0004】したがって、こうしたユーザの要求を満足するためには、前面投射型の液晶プロジェクタでは、その投射映像の品位を落とさずに優れた投射映像を得ることは勿論のこと、仮にその投射映像に歪み等が発生した場合でも即座に補正可能な機能を併せ持つことが必要であり、またその補正性能が高精度であることが望ましい。

【0005】このような補正機能を備えた従来の一般的な前面投射型の液晶プロジェクタの一例を図8に示す。 【0006】図8に示すように、液晶プロジェクタには、表示する映像ソースの映像信号を入力するための入力端子1aを備え、この入力端子1aを介して供給された入力映像信号は、本体1内部に設けられた主要回路としての映像回路11に供給される。

【0007】映像回路11は、通常、入力映像信号に基づく映像を正確に再現するために、入力映像信号に対し液晶パネル5を駆動するのに必要な電圧まで増幅させたり、液晶の長寿命化のための交流駆動を行う等の機能を 50 有する液晶駆動回路や台形歪みを補正するのに必要な処

理回路等が主となって構成されている。つまり、映像回 路11は、入力映像信号に基づく映像を該液晶プロジェ クタに使用される液晶パネル5の表示面に表示するため に必要な信号処理を入力映像信号に施すことにより、入 力映像信号に応じたパネル駆動信号を得て液晶パネル5 に与える。これにより、液晶パネル5の表示面には入力 映像信号に基づく映像画面が表示される。

【0.008】一方、リフレクタ等を用いて光源3から照 射された可視光4は、液晶パネル5の表示面を透過し、 6によって絞り込まれ、投射レンズ2によって拡大投射 されることによって、スクリーン9上に拡大して表示さ せる。これにより、スクリーン9上には、前記液晶パネー ルに表示された映像画面が投射画面10として形成され ることになる。

【0009】ところで、一般にこのような前面投射型液 晶プロジェクタは、視聴者が本体1の背後からその投射 画面を視聴することが多いため、視聴者の視界を本体1 が遮らないように設置する場合もある。つまり、投射画 面が本体1上方に位置するように投射する角度で本体1 が設置されることになる。しかし、このような場合に は、例えば図9に示すように液晶プロジェクタ本体1の 設置状態に起因した投射角度のずれにより、一般に台形 歪み(キーストン歪みとも呼ばれる)といわれる歪みの ある投射画面10を形成してしまうことになる。

【0010】このような台形歪みを補正する手段として は、一般的に2つの方法があり、その一つは電気的に台 形歪み補正する補正方法であり、もう一つは光学的に台 形歪み補正する補正方法である。

【0011】電気的に台形歪み補正する方法は、映像回 路11により液晶パネル5の表示面に投射画像とは逆の 台形歪みのある映像画面を表示し、これを拡大投射する ことにより、投射画面の台形歪みを補正する方法であ

【0012】もう一つの光学的に台形歪み補正する方法 は、液晶プロジェクタ本体1内の、コンデンサレンズ6 の傾きを調整することにより、投射画面の台形歪みを補 正する方法である。

【0013】あるいは、コンデンサレンズ6を傾けるの ではなく、液晶パネル5自体を傾けるような構造を採用 することで、台形歪みを補正することができる。

【0014】しかしながら、上述した従来の電気的、光 学的な台形歪み補正方法では、いずれもユーザの操作に よってその補正を行うものであることから、確実に台形 歪み補正するには、微妙なレベル調整等が必要であるた め、その操作内容が煩雑であり、容易に行うことが出来 ないという問題点があった。

[0015]

【発明が解決しようとする課題】上記の如く、従来の台 形歪み補正方法では、電気的、あるいは光学的に入力映

像信号自体あるいは液晶パネルの透過光に投射画面とは 逆の台形歪みを発生させて、投射画面に生じた台形歪み を軽減するように補正していたが、これらの方法では、 いずれもユーザの操作によってその補正を行うものであ ることから、確実に台形歪み補正するには、微妙なレベ ル調整等が必要であるため、その操作内容が煩雑であ り、容易に行うことが出来ないという問題点があった。 【0016】そこで、本発明は上記の問題に鑑みてなさ れたもので、ユーザによる煩雑な補正操作を必要とせ 透過した液晶パネル5の透過光7は、コンデンサレンズ 10 ず、自動的に且つ確実に投射画面に生じた台形歪みを補 正することのできる台形歪み補正装置の提供を目的とす るものである。,

[0017]

40

【課題を解決するための手段】請求項1記載の発明によ る台形歪み補正装置は、入力映像信号に基づき形成され た液晶パネル面上の形成画像を、光源からの照射光によ り投射し、その投射画像光を光学系手段を介してスクリ ーン上に拡大表示する液晶表示装置において、前記液晶 表示装置本体前面の異なる位置に複数設けられ、該液晶 表示装置本体と前記スクリーンとの距離をそれぞれ検出 し、検出結果を出力する距離検出手段と、前記入力映像 信号に基づく画像を前記液晶パネル面上に形成させるた めの処理を行う処理回路であって、入力映像信号に対応 した画素データを記憶するメモリを備え、該メモリの画 素データのライン毎の書き込み、読み出しのタイミング を変化させることにより、ライン毎の画素データの間引 き調整が可能な映像処理回路と、前記距離検出手段から の検出結果に基づき前記スクリーンに対する前記液晶表 示装置本体の傾斜角を算出し、この算出結果に基づい 30 て、前記液晶表示装置本体の傾斜角に起因する投射画面 の台形歪みを補正するように前記映像処理回路を自動制 御する補正制御手段と、を具備したものである。

【0018】この発明によれば、前記液晶表示装置本体 前面の異なる位置に複数設けられた距離検出手段によっ て、該液晶表示装置本体と前記スクリーンとの距離がそ れぞれ検出される。前記映像処理回路は、前記入力映像 信号に基づく画像を前記液晶パネル面上に形成させるた めの処理を行う処理回路で、入力映像信号に対応した画 素データを記憶するメモリを備え、該メモリの画素デー タのライン毎の書き込み、読み出しのタイミングを変化 させることにより、ライン毎の画素データの間引き調整 が可能である。台形歪み発生時、補正制御手段は、前記 距離検出手段からの検出結果に基づき前記スクリーンに 対する前記液晶表示装置本体の傾斜角を算出し、この算 出結果に基づいて、前記液晶表示装置本体の傾斜角に起 因する投射画面の台形歪みを補正するように前記映像処 理回路を自動制御する。これにより、液晶パネルの投射 画像光は前記投射画面の台形歪み形状とは逆の台形歪み 形状有するものとなるため、結果として台形歪みを軽減 50 することができ、しかも自動的にこの台形歪み補正を行

うことが可能となる。

【0019】請求項2に記載の発明の台形歪み補正装置 は、入力映像信号に基づき形成された液晶パネル面上の 形成画像を、光源からの照射光により投射し、その投射 画像光を光学系手段を介してスクリーン上に拡大表示す る液晶表示装置において、前記液晶表示装置本体前面の 異なる位置に複数設けられ、該液晶表示装置本体と前記 スクリーンとの距離をそれぞれ検出し、検出結果を出力 する距離検出手段と、前記液晶パネルからの投射画像光 を集光し、投射レンズを介してスクリーンへと照射する ためのレンズであって、該レンズ自体の傾斜角を自在に 変化させる駆動手段を備えたコンデンサレンズと、前記 コンデンサレンズの前記駆動手段を制御可能な角度調整 手段と、前記距離検出手段からの検出結果に基づき前記 スクリーンに対する前記液晶表示装置本体の傾斜角を算 出し、この算出結果に基づいて、前記液晶表示装置本体 の傾斜角に起因する投射画面の台形歪みを補正するよう に前記角度調整手段を自動制御する補正制御手段と、を 具備したものである。

5

【0020】この発明によれば、前記補正制御手段によって、前記角度調整手段を制御してコンデンサレンズの傾斜角を変化させることで、前記投射画面の台形歪み形状とは逆の台形歪み形状を有する液晶パネルの投射画像光が得られる。これにより、上記発明と同様の効果が得られる。

【0021】請求項3に記載の発明の台形歪み補正装置。 は、入力映像信号に基づき形成された液晶パネル面上の 形成画像を、光源からの照射光により投射し、その投射 画像光を光学系手段を介してスクリーン上に拡大表示す る液晶表示装置において、前記液晶表示装置本体前面の 異なる位置に複数設けられ、該液晶表示装置本体と前記 スクリーンとの距離をそれぞれ検出し、検出結果を出力 する距離検出手段と、前記液晶パネル自体の傾斜角を自 在に変化させる駆動手段を備えた液晶パネルと、前記液 晶パネルの前記駆動手段を制御可能な角度調整手段と、 前記距離検出手段からの検出結果に基づき前記スクリー ンに対する前記液晶表示装置本体の傾斜角を算出し、こ の算出結果に基づいて、前記液晶表示装置本体の傾斜角 に起因する投射画面の台形歪みを補正するように前記角 度調整手段を自動制御する補正制御手段と、を具備した ものである。

【0022】この発明によれば、前記補正制御手段によって、前記角度調整手段を制御して液晶パネルの傾斜角を変化させることで、前記投射画面の台形歪み形状とは逆の台形歪み形状を有する液晶パネルの投射画像光が得られる。これにより、上記発明と同様の効果が得られる。

[0023]

【発明の実施の形態】発明の実施の形態について図面を 参照して説明する。図1は本発明の台形歪み補正装置の 一実施の形態を示し、該装置を組み込んで構成された前 面投射型の液晶プロジェクタの構成例を示すブロック図 である。

【0024】本実施の形態では、前面投射型の液晶プロジェクタの設置状態に起因して生じる投射画面の台形歪みを自動的に補正するために、液晶プロジェクタ本体1の前面側上下にスクリーン9との距離をそれぞれ検出する距離検出手段としての第1及び第2の距離センサ30、31を設け、これらの第1及び第2の距離センサ30、31により得られた検出結果に基づいて、従来技術で用いた映像回路内の処理を行うことにより、その目的を達成するようにしている。

【0025】具体的な全体構成としては、本実施の形態の台形歪み補正装置を組み込んだ前面投射型液晶プロジェクタは、図1に示すように、上記第1及び第2の距離センサ30、31、制御マイコン32等を設けた点に特徴がある。

【0026】つまり、図1に示すように、液晶プロジェクタには、表示する映像ソースの映像信号を入力するための入力端子1aを備え、この入力端子1aを介して供給された入力映像信号は、本体1内部に設けられた主要回路としての映像回路11Aに供給される。

【0027】映像回路11Aは、通常、入力映像信号に 基づく映像を正確に再現するために、入力映像信号に対 し液晶パネル5を駆動するのに必要な電圧まで増幅させ たり、液晶の長寿命化のための交流駆動を行う等の機能 を有する液晶駆動回路や台形歪みを補正するのに必要な 処理回路等が主となって構成されている。つまり、この 映像回路11Aは、入力映像信号に基づく映像を該液晶 プロジェクタに使用される液晶パネル5の表示面に表示。 するために必要な信号処理を入力映像信号に施すことに より、入力映像信号に応じたパネル駆動信号を得て液晶 パネル5に与える。これにより、液晶パネル5の表示面 には入力映像信号に基づく映像画面が表示される。ま た、映像処理回路11Aは、投射画面10に台形歪みが 発生している場合には、投射画面10とは逆の台形歪み を発生するための処理を入力映像信号に施すことによ り、投射画面10の台形歪みを軽減せるためのパネル駆 動信号を液晶パネル5に与えることで、液晶パネル5の 40 表示面には投射画面10に生じた台形歪みを補正するの に必要な処理が施された補正映像画面が表示される。

【0028】一方、リフレクタ等を用いて光源3から照射された可視光4は、液晶パネル5の表示面を透過し、透過した液晶パネル5の透過光7は、コンデンサレンズ6によって絞り込まれ、投射レンズ2によって拡大投射されることによって、スクリーン9上に拡大して表示させる。これにより、スクリーン9上には、前記液晶パネルに表示された映像画面が投射画面10として形成されることになる。

【0029】ところが、従来技術で述べたように、視聴

者が本体1の背後からその投射画面を視聴することに起 因して、視聴者の視界を本体1が遮らないように本体1 を設置したりすると、その液晶プロジェクタ本体1の設 置状態に起因した投射角度のずれにより、投射画面に台 形歪みが発生してしまい、見づらい表示映像となる。

【0030】そこで、本実施の形態においては、このよ うな台形歪みを補正する手段として、映像回路11A (図7における映像回路11と略同じ構成)を用いて、 台形歪みの程度に応じて投射レンズ2の出射光に投射画 滅するように補正する補正方法が採用されている。

【0031】この映像回路11Aを用いた補正方法で は、図1に示す映像回路11Aにより液晶パネル5の表 示面に台形歪みのある映像画面を表示し、これを拡大投 射することにより、投射画面の台形歪みを補正する方法 である。すなわち、映像回路11Aによる処理を調整す ることにより、結果的に投射画面の台形歪みを補正す

【0032】具体的には、図3に示すように1ラインも 映像信号)を表示するようにし、垂直走査が進むに従 い、台形歪みの角度に応じて一定の割合で黒信号部分を 少なくして表示する。例えば前記液晶パネル5がM画素 (水平)×N画素(垂直)の画素数で構成され、図の右 下から左へ、また下から上へ走査するものとすると、垂 直走査開始時の1ラインでは、水平走査開始時と終了時 間にはM画素のデータを2q画素分間引いたM-2q画 素の映像データを表示する。垂直走査が数ライン進んだ レラインでは、q 画素より少ないp 画素の無信号部を表 示する。この場合のp画素は、p=q(N-L)/N画 素 という関係式で示すことができる。映像表示部分 は、2p画素分間引いたM-2p画素の映像データを表 示する。そして、図中に示すように垂直走査最終ライン のNラインでは、黒信号部分を表示しない。これによ り、液晶パネル5の表示面に台形歪みのある映画画面を 表示させることで投射画面の台形歪みを補正することが 可能である。

【0033】このように液晶パネル5の表示動作を制御 するのに必要な映像回路11Aの具体構成が図4に示さ れており、また図1の該映像回路11Aの制御動作を説 明するためのタイミングチャートが図5に示されてお り、以下、具体的な動作を説明する。

【0034】映像回路11Aにおいて、図4に示すよう に入力端子11aを介して入力された映像信号は、A/ D変換器11bに供給され、該A/D変換器11bによ り、制御信号発生回路11 dからのサンプルクロック (図5 (a) 参照) によりサンプリング処理が施される ことで、M×N画素で構成されるディジタル化した映像 データ(画素データともいう)に変換される。その後、

この映像データは前記サンプリングクロックと同じタイ ミングの書き込み制御信号に基づくタイミングでメモリ 11 cに書き込まれるようになっている(図5(b), (d), (f)参照)。

【0035】次のフィールドでは、各々のラインに書き 込まれた画素データは、制御信号発生回路11dからの 読み出し制御信号に基づき前記書き込み制御信号とは異 なるタイミングで読み出され、D/A変換器11eに供 給される。すなわち、制御信号発生回路11dは、メモ 面と逆の台形歪みを発生させ、投射画面の台形歪みを軽 10 りへの映像データの書き込み制御及び読み出し制御が可 能であり、これらのタイミングを変化させることによ り、各ラインの映像データを自在に間引くことが可能で ある。

【0036】D/A変換器11eは、制御信号発生回路・ 11 dからのサンプルクロックのタイミングで再度アナ ログ信号に変換して戻し、戻した映像信号を液晶駆動回 路11 f に与える。液晶駆動回路11 f では、入力映像 信号に対し液晶パネル5を駆動するのに必要な電圧まで 増幅させ、その後交流駆動を行うための極性反転処理等 しくは数ライン毎に水平走査開始と終了時に黒信号(無 20 の処理を施すことにより、映像信号に応じたパネル駆動 信号が生成され、液晶パネル5に供給されることで、液 晶パネル5の表示面には入力映像信号に基づく映像が表 示される。

> 【0037】このとき、制御信号発生回路11dは、1 ラインでは走査開始からサンプルクロック1~q個(画 素)分は読み出さず、黒信号を表示するように制御す る。そして、q+1個目に最初の画素データ1を読み出 し、M-q個目で最後の画素データMを読み出すまでの 2 q 個間引いたM-2 q 画素分のデータを読み出す。そ 30 れ以降は、再度 q 画素分を読み出さず、黒信号を表示す るように制御する(図5(c)参照)。

【0038】垂直走査が進んだしラインでは、同様に走 査開始からサンプルクロック1~p個(画素)分は読み 出さず、黒信号を表示するように制御する(図5 (c) 参照)。そして、p+1個目に最初の画素データを読み 出し、サンプルクロックM-p個目で最後の画素データ Mを読み出すまでの2p画素を間引いたM-2p画素分 のデータを読み出すように制御する。それ以後のタイミ ングでは、制御信号発生回路11 dは、再度p画素分を 読み出さず、黒信号を表示するように制御する(図5 (e) 参照)。

【0039】垂直走査最後のNラインでは、無信号部分 を表示せず、書き込んだデータM個をそのまま読み出 し、液晶パネル5に供給することで、その読み出した映 像データに基づく画像を液晶パネル5の表示面に表示さ せる。

【0040】以上、述べた制御動作により、投射画面に 生じた台形歪みを補正するのに必要な、逆の台形歪みを 液晶パネルの表示面上に発生させるようにしている。

【0041】ところが、上述した映像回路11Aのみの

補正処理では、自動補正することができない。

【0042】そこで、本実施の形態では、上記映像回路 1 1 Aによる台形歪み補正処理を自動的に行うために必 要な第1及び第2の距離センサ30、31と、これらの 第2の距離センサ30、31により得られた検出結果に 基づきスクリーン9の投射画面10の傾斜角度を算出 し、算出結果に基づき投射画面10の台形歪みとは逆の 台形歪みを有する液晶パネルの表示画像を精度良く形成 するために前記の映像回路11Aによる処理を制御する 制御マイコン32とが設けられている。

【0043】この制御マイコン32の制御による台形歪 み補正の動作を図2をも参照して説明する。

【0044】前記第第1及び第2の距離センサ30、3 1は、該プロジェクタ本体1の前面側、つまり、投射レ ンズ2側の上下方向にそれぞれ配置して設けられてい る。これらの第1及び第2の距離センサ30、31は、 例えばそれぞれ光りを出射し、その光の反射光を受光す ることによって、本体1の前面部とスクリーン9との距 離 D 1. D 2 を 測定し、 測定結果を電気信号として制御 マイコン32にそれぞれ与える。なお、第1及び第2の 距離センサ30、31としては、光を利用したものでな くともそれぞれの距離が得られるようなものであれば、 他のセンサを用いて構成しても良い。

【0045】制御マイコン32は、例えば液晶プロジェ クタのシステム全般を制御する制御マイコンであって、 前記第1及び第2の距離センサ30、31からの測定結 果が供給された場合には、投射画面10に生じた台形歪 みを補正すべく、供給された測定結果に基づき前記映像・ 回路11Aによる処理を調整制御する。

【0046】例えば、制御マイコン32は、前記第1及 び第2の距離センサ30、31からの測定結果から本体 1とスクリーン9との傾斜角度 θ を算出し、この算出結 果を基にその台形歪みの形状を演算処理した後に、この 演算処理結果に基づき、投射画面 10の台形歪みとは逆 の台形歪みとなるパネル駆動信号が得られるように前記 の映像回路11Aによる処理を制御する。このときの制 御マイコン32による傾斜角度の算出は、例えば図2に 示すように、本体1とスクリーン9との傾斜角度を θ と し、正常な投射画面10の縦幅をd(各センサ30,3 1の光をセンサ平行光した場合、各センサ平行光D1, D2間の距離に相当)とすると、

 $tan\theta=d/(D1-D2)$ … (式1) で、求めることが可能である。

【0047】また、制御マイコン32による映像処理回 路11Aへの制御は、演算処理結果に基づく逆の台形歪 みを発生するための制御信号を、映像回路 1 1 A 内の制 御信号発生回路11 d (図4参照) に与えることによ り、該制御信号発生回路11 dはこれに応答して、各ラ インの読み出し制御信号のタイミングを変化させるよう に制御する。これにより、図3乃至図5にで説明したよ 50 結果に基づき、液晶パネルの可視光が投射画面10の台

10

うなメモリ11c(図4参照)を用いた各ライン毎の画 素データを調整することで、投射画面10に生じている 台形歪み形状とは逆の台形歪みを有するパネル表示画面 を得ることが可能となり、結果として本体1とスクリー ン9との傾斜角度に起因して生じる投射画面10の台形 歪みを、その発生形状に応じて自動的に且つ確実に補正 することが可能となる。

【0048】したがって、本実施の形態では、ユーザの 煩雑な操作を行わずとも、自動的に且つ確実に投射画面 10 に生じた台形歪みを補正することが可能となり、台形歪 みを抑えた品位の高い液晶投射映像が得られる高性能な 前面投射型液晶プロジェクタの提供を実現できる。

【0049】次に、本発明の台形歪み補正装置の他の実 施の形態について図6を用いて詳細に説明する。

【0050】図6は本発明の他の実施の形態の台形歪み 補正装置を組み込んだ液晶プロジェクタの構成例を示す ブロック図である。

【0051】本実施の形態では、前記実施の形態におけ る電気的な台形歪み補正方法ではなく、光学的に台形歪 みを補正する補正方法に適用させることにより、自動的 に台形歪み補正を行うように構成したことが前記実施の 形態と異なる点である。

【0052】具体的な構成としては、本発明の特徴であ る第1及び第2の距離センサ30、31と、これらの第 2の距離センサ30,31により得られた検出結果に基 づきスクリーン9の投射画面10の傾斜角度を算出し、 算出結果に基づき、液晶パネルの透過光が投射画面10 の台形歪みとは逆の台形歪みとなるようにコンデンサレ ンズ6の傾斜角度を制御する制御マイコン32Aとがそ 30 れぞれ組み込まれて構成されている。

【0053】図6に示す主要回路となる角度調整装置2〕 0は、コンデンサレンズ6に備えられた駆動手段(図示 せず)を制御することにより、そのコンデンサレンズ6 自体の傾きを調整するものである。すなわち、コンデン サレンズ6の傾きを、例えば図中に示す波線21のよう に傾けることで、液晶パネル5の透過光に投射画面とは 逆の台形歪みを生じさせるようにして、結果的に投射画 面の台形歪みを補正する。

【0054】本実施の形態では、上記光学的な台形歪み 40 補正を自動的に行うために、第1及び第2の距離センサ 30.31は、前記実施の形態と同様にそれぞれ光りを 出射し、その光の反射光を受光することによって、本体 1の前面部とスクリーン9との距離D1. D2を測定 し、測定結果を電気信号として制御マイコン32Aにそ れぞれ与える。

【0055】制御マイコン32Aは、前記第1及び第2. の距離センサ30.31からの測定結果から本体1とス クリーン9との傾斜角度を算出し、この算出結果を基に その台形歪みの形状を演算処理した後に、この演算処理

形歪みとは逆の台形歪みとなるような制御信号を角度調 整装置20に与えることにより、これに応答して角度調 整装置20はコンデンサレンズ6の傾きを例えば波線2 1に示すように最適な角度に調整制御する。

【0056】これにより、コンデンサレンズ6の傾きが その台形歪みの形状に応じて調整されるため、液晶パネ ルの透過光は投射画面10に生じている台形歪み形状と は逆の台形歪みを有するものとなり、結果として本体 1 とスクリーン9との傾斜角度θに起因して生じる投射画 つ確実に補正することができる。

【0057】また、本発明では、他の光学的な台形歪み の補正方法に適用する事も可能である。このような実施 の形態を図7を参照しながら詳細に説明する。

【0058】図7は本発明の他の実施の形態の台形歪み 補正装置を組み込んだ液晶プロジェクタの構成例を示す ブロック図である。

【0059】本実施の形態では、前記実施の形態にて説 明した光学的な台形歪み補正方法とほぼ同様であるが、 はなく、液晶パネル5自体を台形歪みを補正するの必要 な最適な角度に調整制御することにより、自動的に台形 歪み補正を行うように構成したことが前記実施の形態と 異なる点である。

【0060】具体的な構成としては、本発明の特徴であ る第1及び第2の距離センサ30、31と、これらの第 2の距離センサ30、31により得られた検出結果に基 づきスクリーン9の投射画面10の傾斜角度を算出し、 算出結果に基づき、液晶パネルの透過光が投射画面10 の台形歪みとは逆の台形歪みとなるように液晶パネル5 30 の傾斜角度を制御する制御マイコン32Bとがそれぞれ 組み込まれて構成されている。

【0061】図7に示す主要回路となる角度調整装置2 2は、液晶パネル5に備えられた駆動手段(図示せず) を制御することにより、その液晶パネル5自体の傾きが 調整される。すなわち、液晶パネル5の傾きを、例えば 図中に示す波線23のように傾けることで、液晶パネル 5の透過光に投射画面とは逆の台形歪みを生じさせるよ うにして、結果的に投射画面の台形歪みを補正する。

【0062】本実施の形態では、上記光学的な台形歪み 補正を自動的に行うため、第1及び第2の距離センサ3 0.31は、前記実施の形態と同様にそれぞれ光りを出 射し、その光の反射光を受光することによって、本体1 の前面部とスクリーン9との距離 D1. D2を測定し、 測定結果を電気信号として制御マイコン32Bにそれぞ れ与える。

【0063】制御マイコン32Bは、前記第1及び第2 の距離センサ30,31からの測定結果から本体1とス クリーン9との傾斜角度を算出し、この算出結果を基に その台形歪みの形状を演算処理した後に、この演算処理 結果に基づき、液晶パネルの可視光が投射画面10の台 形歪みとは逆の台形歪みとなるように制御信号を角度調 整装置22に与えることにより、これに応答して角度調 整装置22は、液晶パネル5の傾きを例えば波線23に 示すように最適な角度に調整制御する。

【0064】これにより、液晶パネル5の傾きがその台 形歪みの形状に応じて調整されるため、液晶パネルの透 過光は投射画面10に生じている台形歪み形状とは逆の 台形歪みを有するものとなり、結果として本体1とスク 面10の台形歪みを、その発生形状に応じて自動的に且 10 リーン9との傾斜角度 heta に起因して生じる投射画面10 の台形歪みを、その発生形状に応じて自動的に且つ確実 に補正することができる。

> 【0065】したがって、本実施の形態によれば、前記 実施の形態と同様の効果が得られる。

【0066】なお、本発明に係る各実施の形態において は、制御マイコン32、32A、32Bによって、第1 及び第2の距離センサ30、31からの算出結果に基づ いて投射画面に生じた台形歪み形状とは逆の台形歪み形 状が得られるように演算処理を行い、この演算処理結果 コンデンサレンズの傾斜を最適な角度に制御するもので 20 に基づき映像回路または角度調整装置20,22を制御 することにより、台形歪み補正処理を行うように説明し たが、例えばそれぞれの制御マイコン内に予め本体に対 するスクリーンの傾斜角度に応じた台形歪みの形状デー。 タを記憶したテーブルメモリ等を設け、台形歪み補正す る場合には、前記該テーブルメモリを参照して前記第1 及び第2の距離センサ30,31からの算出結果に対応 する台形歪み形状データを得、この得られた台形歪み形 状に基づき映像回路または角度調整装置等を制御して、 台形歪み補正を行うように構成しても良い。

[0067]

【発明の効果】以上、述べたように本発明によれば、ユ ーザによる煩雑な補正操作を必要とせず、自動的に且つ 確実に投射画面に生じた台形歪みを補正することが可能 となり、その結果、台形歪みを抑えた品位の高い液晶投 射映像が得られる高性能な前面投射型液晶プロジェクタ の提供を実現できる。

【図面の簡単な説明】

【図1】本発明の台形歪み補正装置の一実施の形態を示 し、該装置が組み込まれた液晶プロジェクタの全体構成 を示すブロック図。

【図2】図1の制御マイコンによる本体とスクリーンと の角度算出方法を説明するための説明図。

【図3】台形歪みを電気的に補正する補正方法を説明す るための説明図。

【図4】電気的台形歪み補正を実施するための映像回路 の構成例を示すブロック図。

【図5】図4に示す映像回路によるメモリへの映像デー タの書き込み、読み出し制御を説明するためのタイミン グチャート。

【図6】本発明の他の実施の形態の台形歪み補正装置を

示し、該装置を光学的な補正方法に適用した場合の液晶 プロジェクタの構成を示すブロック図。

【図7】本発明の他の実施の形態の台形歪み補正装置を 示し、該装置を光学的な補正方法に適用した場合の液晶 プロジェクタの構成を示すブロック図。

【図8】一般的な前面投射型液晶プロジェクタの構成を 示すプロック図。

【図9】台形歪みの発生状態を説明するための説明図。 【符号の説明】

- 1…液晶プロジェクタ本体、
- 2…投射レンズ、
- 3…光源、

- 4…可視光、
- 5…液晶パネル、
- 6…コンデンサレンズ、
- 7…パネル透過光、
- 8…光軸、
- 9…スクリーン、
- 10…投射画面、
- 11A…映像回路、
- 20.22…角度調整装置、
- 10 30…第1の距離センサ(距離検出手段)、
- 31…第2の距離センサ(距離検出手段)、
 - 32. 32A. 32B…制御マイコン (制御手段)。

14

【図1】

【図2】

[図3]

【図6】

[図4]

【図7】

【図5】

【図8】

【図9】

フロントページの続き

Fターム(参考) 5C006 AA01 AC26 AF42 AF44 AF46 AF47 AF52 AF53 AF63 AF72 AF81 AF83 BB11 BC13 BF02

BF11 BF15 BF25 BF38 EC11

FA18- FA21

5C058 BA27 BB12 BB25 EA26

5C080 AA10 BB05 DD01 DD13 EE17

FF09 JJ02 JJ04 JJ05 JJ06

KK52