NAME: MADNAU SANKAR KRISHNAKUMAR

UID: 405692669

If A = 1

state 110>

XCNOT (BA) CNOT (AB) XA)10>

06 >

CNOT (A,B)

100>

(NOT (B, A)

100>

×a

110>

A is set to 11>

if A=0 state 100> ×A 110>

2,
$$f(x) = (11.x) \oplus 1$$

So
$$f(x)=1$$
 when $x=00/11$

$$ioe(x, x, x, x, x)$$

Lhich gives

f(x): ((a, ∧x2) (3b) ∨ ((7x, ∧7x2) (3b))

3. P: 95%

& length

f(x): ax +b

Bernstein Vazirani finds a with P=1//

Bun it only once offer

tinding b classically //

$$m > l_0(20)$$

 x_1

$$=\frac{11}{4}\sqrt{2^{32}}-\frac{1}{2}$$

$$=\frac{1}{4}\times2^{16}-\frac{1}{2}$$

6)
$$\begin{bmatrix} 0 & 0 & 1/2 \\ 1 & 1/2 \\ 0 & 0 & 1/2 \\$$

7)
$$\frac{3}{502}$$
 $|009 - \frac{4}{502}$ $|019 - \frac{3}{502}$ $|109 + \frac{4}{502}$ $|119 - \frac{3}{502}$

8.
$$(284)$$
 CNOT $\left(\frac{3}{5}\right)01>-\frac{4}{5}10>$

$$(284)(\frac{3}{5})017 - \frac{4}{5})117$$

$$\frac{3}{5} \left[0\right> \left(\frac{1}{L^2} \left[0\right> - \frac{1}{L^2}\right]\right] - \frac{4}{5} \left[-\left[1\right>\right] \left(\frac{1}{L^2} \left[0\right> - \frac{1}{L^2}\right]\right]$$

$$\frac{3}{5\sqrt{2}} |00\rangle - \frac{3}{5\sqrt{2}} |00\rangle + \frac{4}{5\sqrt{2}} |10\rangle - \frac{4}{5\sqrt{2}} |11\rangle$$

State:
$$\frac{1}{2}1107$$
 $\frac{1}{\sqrt{\frac{1}{4} + \frac{1}{4}}}$ $\sqrt{\frac{1}{4} + \frac{1}{4}}$

Both equally bleely

10. P(getting 0 on lett):
$$\frac{16}{(5\sqrt{6})^2}$$
 $\frac{9}{(5\sqrt{6})^2}$

State of other qubit
$$\sqrt{2+2} = \sqrt{\frac{3}{552}} + (\frac{3}{552})^{2}$$

$$= \sqrt{52}$$

$$\frac{4}{5\sqrt{2}}$$
 $\frac{3}{5\sqrt{2}}$ $\frac{3}{5\sqrt{2}}$ $\frac{1}{5\sqrt{2}}$

$$\frac{4}{5}$$
 107 + $\frac{3}{5}$ 117

$$P(1) = 9(50)$$
Other qubit $\rightarrow 10>$

II.
$$(H \otimes H \otimes X)$$
 (000>
$$\frac{1}{2} (100 \times 101 \times 100 \times 101) 17$$

$$\frac{1}{2} (100 \times 100 \times 100 \times 101) 101 \times 1$$

00

DI

(0

U

S (SUA)

LEFT

[007

4 PFPH

H4 : ±

CNOT is not

P* = [0 0] = *9

a polited
as gobit 1=0

RIUHF

ppt= I Same/

MP CNB9 P1 (4)
$$\frac{1}{52} 144 (200) (10 - i10)$$

$$\frac{1}{52} MB (12 - i10)$$

$$\frac{1}{52} i(12 - i10)$$

$$|O\rangle - H - V$$

measure, we will get 0 => CONSTART

STEP 2:

APPLY Ut

$$U_{1}(x,b) = [x,b] + [010 100 > + [011 111 > + [111 100 > + [010 100 > + [011 111 > + [111 100 > + [010 100 > + [011 100 >$$

STEP 3: APPLY US 3

$$H_{03}^{3} |_{000} = 1/2 \frac{1}{20} \frac{1000}{1000} + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 1$$

When we measure we get

y:000

42: 010

45=101

44=111

(000) - 5=0

(010) - 5 = 0

(101). 5:0

(111). 5:0

these imply if s= S1. 52 S3

$$S_{2} = 0$$

$$S_{1} \bigoplus S_{3} = 0$$

$$S_{1} \bigoplus S_{2} \bigoplus S_{3} = 0$$

$$S_{1} \bigoplus S_{2} \bigoplus S_{3} = 0$$

$$S_{2} = 0$$

$$S_{3} = 0$$

$$S_{4} = 0$$

$$S_{2} = 0$$

$$S_{3} = 0$$

$$S_{4} = 0$$

$$S_{5} = 0$$

So either S,=S,20 gall o case. ignorel

15 ·
$$f(00) = f(0) = 0$$

 $f(10) = f(1) = 1$

hrover's Almorthm:

$$X = 10^{n} > (n \ 10 > qubits)$$
 $H^{\otimes n} \times$

repeat { apply 6 to \times } $O(\sqrt{2^{n}})$ times

measure X and output the result

2. Apply 6

$$- H^{\otimes n} \approx H^{\otimes n} \approx \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} (100 \times + (01 \times + (11 \times))) \right]$$

$$= - H^{\otimes n} \approx H^{\otimes n} \left[\int_{-\infty}^{\infty} (100 \times + (01 \times - (10 \times + (11 \times)))) \right]$$
(21) (21) (21) (21)

$$= + H \otimes Z_0 \left[100 \right]$$

$$= + H \otimes \left[100 \right]$$

$$P = \frac{1}{2} \quad \text{only}$$

BOTH CASES prodocbility of 10 or 11

is 1/2. It is same/

$$K = \frac{11}{40} - \frac{1}{2} = \frac{11}{4} \frac{1}{N} - \frac{1}{2}$$

$$k = \frac{1}{1} \times 2 - \frac{1}{2} = \frac{1}{2} \left(\widehat{1} - 1 \right) = \frac{2 \cdot 14}{2} \approx 1$$