KIỂM THỬ LUỒNG DỮ LIỆU

Nguyễn Văn Huy - 18020651

- 1. Trình bày các bước trong quy trình kiểm thử dòng dữ liệu động
 - i. Bước 1: Biểu diễn chương trình thành đồ thị
 - ii. Bước 2: Lựa chọn tiêu chí kiểm thử
 - + Với dòng điều khiển
 - + Với dòng dữ liệu
 - iii. Bước 3: Xác định đường đi thoả mãn tiêu chí
 - iv. Bước 4: Xác định các ca kiểm thử

2. CalFactorial

- Cho hàm calFactorial viết bằng ngôn ngữ C như Đoạn mã 7.7.
 - Hãy liệt kê các câu lệnh ứng với các khái niệm def, c-use, và p-use ứng với các biến được sử dụng trong hàm này.
 - Hãy vẽ đồ thị dòng dữ liệu của hàm này.

Đoạn mã 7.7: Mã nguồn C của hàm calFactorial

```
1 int calFactorial (int n){
2     int result = 1;
3     int i=1;
4     while (i <= n){
5         result = result *i;
6         i++;
        }//end while
7     return result;
}//the end</pre>
```

a. Liệt kê các câu lệnh:

Biến	def	c-use	p-use
n	(1)	-	(4)
result	(2), (5)	(5), (7)	-
i	(3), (6)	(5), (6)	(4)

b. Vẽ đồ thị dòng dữ liệu:

3. Bài số 3

- Hãy xác định tất cả các Def-clear-path của các biến x và y.
- \bullet Hãy xác định tất cả các du-paths của các biến x và y.
- Hãy xác định tất cả các All-p-uses/Some-c-uses và All-c-uses/Some-p-uses (dựa vào các chuẩn của kiểm thử dòng dữ liệu).
- Biểu thức của các p-use(x,y) tại cạnh (1,3) và (4,5) lần lượt là x+y=4 và $x^2+y^2>17$. Đường đi (0-1-3-4-5-6) có thực thi được không? Giải thích.
- \bullet Tại sao tại đỉnh 3 biến x được định nghĩa và sử dụng nhưng không tồn tại mối quan hệ def-use?

a. Xác định tất cả các Def-clear-path của biến x và y:

 $Def(x)=\{0,3\},$

Use(x)= $\{1,3,4,5\}$, P-use(x)= $\{1,4\}$,

C-use(x)= $\{3,5\}$

 $Def(y)=\{0,2,5\}, Use(y)=\{1,4,6\}, P-use(y)=\{1,4\} C-use(y)=\{6\}$

Biến	Def-clear-path	du-path
x	0-1 0-1-3 0-1-2 0-1-2-4 0-1-2-4-5 0-1-2-4-6 3-4 3-4-5 3-4-5-6 3-4-6	0 - 1 0 - 3 0 - 4 0 - 5 3 - 4 3 - 5
У	0 - 1 0 - 1 - 3 0 - 1 - 3 - 4 0 - 1 - 3 - 4 - 5 0 - 1 - 3 - 4 - 6 2 - 4 2 - 4 - 6 2 - 4 - 5 5 - 6	0 - 1 0 - 4 0 - 6 2 - 4 2 - 6 5 - 6

b. Xác định tất cả các All-p-uses/Some-c-uses và All-c-uses/Some-p-uses

i. All-p-uses/Some-c-uses

Biến	Du-pair	Def-clear path	Complete path	
	0 - 1	0 - 1	0 - 1 - 2 - 4 - 6	
х	0 - 4	0 - 1 - 2 - 4	0 1 2 4 0	
	3 - 4	3 - 4	0 - 1 - 3 - 4 - 6	
У	0 - 1	0 - 1	0 - 1 - 3 - 4 -6	
	0 - 4	0 - 1 - 3 - 4	0-1-3-4-6	
	2 - 4	2 - 4	0 1 2 4 5 6	
	5 - 6	5 - 6	0 - 1 - 2 - 4 - 5 -6	

ii. All-c-uses/Some-p-uses

Biến	Du-pair	Def-clear path	Complete path
	0 - 3	0 - 1 - 3	0 - 1 - 3 - 4 - 5 -6
х	3 - 5	3 - 4 - 5	0 1 3 4 3 0
	0 - 5	0 - 1 - 2 - 4 - 5	0 - 1 - 2 - 4 - 5 -6
	0 - 6	0 - 1 - 3 - 4 - 6	0 - 1 - 3 - 4 - 6
У	2 - 6	2 - 4 - 6	0 - 1 - 2 - 4 - 6
	5 - 6	5 - 6	0 -1 - 2 - 4 - 5 - 6

c. Biểu thức của các p-use(x; y) tại cạnh (1,3) và (4,5) lần lượt là x + y = 4 và $x^2 + y^2 > 17$. Đường đi (0 - 1 - 3 - 4 - 5 - 6) có thực thi được không? Giải thích.

Trả lời: Có thể được thực thi vì tại nút 3, biến x được gán lại giá trị mới và có thể sẽ thỏa mãn điều kiện tại cạnh (4,5).

d. Tại sao tại đỉnh 3 biến x được định nghĩa và sử dụng nhưng không tồn tại mối quan hệ def-use?

Trả lời: Vì câu lệnh use được thực thi trước câu lệnh def.

4. Ước chung lớn nhất

a. Xây dựng CFG cho hàm UCLN

```
int UCLN (int m, int n){\odot
  if (m < 0) {
                         (3)
   m = -m;
  }
  if (n < 0) {
                         5
   n = -n;
  if (m == 0) {
                         6
                         7
      return n;
  if (n == 0) {
                         8
                         13
    return m;
                         9
 while (m != n) {
    if(m > n)
                         10
        m = m - n;
    else
                         12
        n = n - m;
  }// end while
 return m;
                         13
}
```


b. Sinh đường đi và các ca kiểm thử với độ đo C2

c. Sinh đường đi và các ca kiểm thử với độ đo all-def coverage

Biến	Du-pair	Def-clear path	Complete path	Ca kiểm thử (m,n)
m	1 - 2 3 - 6 12 - 10	1 - 2 3 - 4(T) - 5 - 6(F) 3 - 4(F) - 6(F)	1 - 2 - 3 - 4(T) - 5 - 6(F) - 8 (F) - 9(T) - 13 1 - 2 - 3 - 4(F) - 6(F) - 8(F) - 9(T) - 13	(-3, -3) (3, 3)
n	1 - 2 5 - 8 14 - 10	1 - 2(T) 1 - 2(F) 5 - 6(T) - 7 - 8(F) 5 - 6(F) - 8(F)	1 - 2(F) - 4(T) - 5 - 6(T) - 7 - 8(F) 1 - 2(F) - 4(T) - 5 - 6(F) - 8(F) - 9(F) - 13	(-3, 3)

5. BinSearch

```
1 int Binsearch(int x, int v[], int n){
2
          int low = 0, high, mid;
3456
          high = n - 1;
          while (low <= high) {
                   mid = (low + high)/2;
                   if (x < v[mid])
7
                           high = mid - 1;
                   else
8
                           if (x > v[mid])
9
                                    low = mid + 1;
                           else
                                    return mid;
10
          }//end while
11
          return -1;
  }//the end
```

- Xây dựng đồ thị luồng điều khiển cho hàm BinSearch
- Sinh các đường đi và các ca kiểm thử với độ đo C2.
- Liệt kê các cặp du-pairs của tất cả các biến trong chương trình
- Sinh các đường đi và các ca kiểm thử với độ đo All-def cho biến high
- Sinh các đường đi và các ca kiểm thử với độ đo All-p-use cho biến x
 - a. Xây dựng đồ thị luồng điều khiển

b. Sinh đường đi và các ca kiểm thử với độ đo C2

Ca kiểm thử (x , v[], n)	Đường đi
(1, [0, 1], 2)	1 - 2 - 3 - 4(T) - 5 - 6(F) - 8(T) - 9 - 4 - 5 - 6(F) - 8(F) - 10
(0, [0, 1, 2], 3)	1 - 2 - 3 - 4(T) - 5 - 6(T) - 7 - 4(T) -5 - 6(F) - 8(F) - 10
(0, [1], 1)	1 - 2 - 3 - 4(T) - 5 - 6(T) - 7 - 4(F) - 11

c. Liệt kê Du Pair

Biến	Du-pair
х	1 - 6 1 - 8
V	1 - 6 1- 8
n	1 - 3
low	2 - 4 2 - 5 9 - 4 9 - 5
high	2 - 4 2 - 5 7 - 4

	7 - 5
mid	5 - 6 5 - 8 5 - 7 5 - 9 5 - 10

d. Đường đi và ca kiểm thử cho All-def của biến high

Biến	Du pair	Def-clear-path	Complete path	Ca kiểm thử
high	2 - 4(T) 2 - 4(F) 2 - 5 7 - 4(T) 7 - 4(F) 7 - 5	2 - 3 - 4(T) 2 - 3 - 4(F) 2 - 3 - 4(T) - 5 7 - 4(T) 7 - 4(F) 7 - 5	1 - 2 - 3 - 4(T) 1 - 2 - 3 - 4(F) 1 - 2 - 3 - 4(T) - 5 1 - 2 - 3 - 4(T) - 5 - 6(T) - 7 - 4(T) 1 - 2 - 3 - 4(T) - 5 - 6(T) - 7 - 4(T) - 5	(0, [0, 1, 2], 3) (0, [], 0)

e. Đường đi và ca kiểm thử cho All-p-use của biến x

Biến	Du pair	Def-clear path	Complete path	Ca kiểm thử
х	1 - 6 1 - 8	5 - 6(T) 1- 2 - 3 - 4(T) - 5 - 6(F) 1- 2 - 3 - 4(T) -	1-2-3-4(T)-5-6(T)-7- 4(T)-5-6(F)-8(F)-10 1-2-3-4(T)-5-6(F)-8(F)- 10 1-2-3-4(T)-5-6(F)-8(T)- 9-4(T)-5-6(F)-8(F)-10	(0, [0, 1, 2], 3) (1, [0, 1], 2) (2, [0, 1, 2], 3)

6. Kiểm thử chương trình của bạn với độ phủ All-c-uses/some-puses

- a. Bài toán: Nhập tháng và năm (max: 9999), cho biết tháng đó có bao nhiều ngày.
- b. Mã nguồn:

```
const assert = require('assert');
const isLeapYear = (year) => {
  return (year % 4 == 0 && year % 100 != 0) || year % 400 == 0;
};
const countDays = (month, year) => { 0
1 switch (month) {
   case 1: case 3: case 5: case 7: case 8: case 10: case 12:
2
3
     return 31;
     break;
   case 4: case 6: case 9: case 11:
6
      return 30;
     break;
   case 2:
Õ
      let check = isLeapYear(year);
      if (check == 1) {
8
       return 29;
      } else {
1
        return 28;
};
```

c. Xây dựng đồ thị dòng điều khiển :

d. Sinh ca kiểm thử với độ phủ All-c-uses/some-puses

Biến	Def	C-use	P-use
month	(0)	-	(1)
year	(0)	(7)	-
check	(7)	-	(8)

Biến	Du-pair	Def-clear path	Complete path	Ca kiểm thử (month,year)
month	0 - 1	0 - 1		
year	0 - 7	0 - 6 -7	0 - 1 - 6 -7 - 8 -10	(02, 2021)
check	7 - 8	7 - 8		