浙江工业大学

32 学时线性代数期末试卷

 $(2021 \sim 2022$ **学年第二学期**)

院系_				任课教师_	考试时间	
学号_				名		
题号	_		三	四	总分	
得分						

一. 得分 填空题 (每小题 3 分, 共 30 分)

1. 设
$$D = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = -1$$
,则 $D_1 = \begin{vmatrix} 4a_1 & 2a_2 & 2a_3 \\ 2b_1 & b_2 & b_3 \\ -2c_1 & -c_2 & -c_3 \end{vmatrix} = \underline{\qquad}$.

- 2. 设n 维向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的秩为 4, 则向量组 $\beta_1 = \alpha_1 + \alpha_2, \beta_2 = \alpha_2 + \alpha_3, \beta_3 = \alpha_3 + \alpha_4$ 的秩为 .
- 3. 设A 为三阶方阵, A^* 为A 的伴随矩阵, 且 $|A| = \frac{1}{2}$, 则 $|-3A^*| = _____.$

4. 设矩阵
$$B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
, 已知矩阵 A 相似于 B , 则 $R(A - 2E) + R(A - E) =$

- 6. 向量 $\beta = (1, -1, 3)$ 在 \mathbb{R}^3 的一个基 $\alpha_1 = (1, 0, 2), \ \alpha_2 = (0, 1, 2), \ \alpha_3 = (1, 2, 0)$ 下的 坐标为 _____.
- 7. 与向量 $(1,2,2), (-1,0,2) \in \mathbb{R}^3$ 都垂直的单位向量为 _____.

8. 若矩阵
$$\begin{pmatrix} -2 & 0 & 0 \\ 2 & x & 2 \\ 3 & 1 & 1 \end{pmatrix}$$
 与 $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & y \end{pmatrix}$ 的特征多项式相同, 则 $x = \underline{\qquad}$.

9. 已知
$$A = \begin{pmatrix} 1 & 2 & 3 \\ x & y & z \\ 0 & 0 & 1 \end{pmatrix}$$
 的特征值为 $1, 2, 3$, 则 $x + y =$ ______.

10. 若二次型
$$f(x_1, x_2, x_3) = k(x_1^2 + x_2^2 + x_3^2) - 2x_1x_2 + 2x_2x_3$$
 是正定的, 则 k 的取值范围是 _____.

二. [得	骨分 │ 単项选择题 (每小题 2 分,	共 10分)
1. 设	$A \stackrel{\cdot}{\neq} 2 \times 3$ 矩阵, $B \stackrel{\cdot}{\neq} 3 \times 2$ 矩阵, 则	下列正确的是()
,	A) $ AB = 0$. C) $ AB = BA $	(B) AB 与 BA 的秩相等 (D) $ BA = 0$
2. 非 则		g为 n ,方程个数为 m ,系数矩阵 A 的秩为 r ,
`	,	(B) $r = n$ 时, 方程组 $AX = b$ 有唯一解 译 (D) $r < n$ 时, 方程组 $AX = b$ 有无穷多解
3. <i>n</i>	阶方阵 A 与对角矩阵相似的充要条件是	<u>l</u> ±()
`	A) 方阵 A 有 n 个特征值 C) 方阵 A 有 n 个线性无关的特征向量	(B) 方阵 A 的特征方程没有重根 (D) $A \neq 0$.
4. 向	\exists 量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 的秩为 $s,$ 则 ().
`	A) $r = s$ C) $s \le r$	(B) $r \le s$ (D) $s < r$
5. 设	(A,B) 为 n 阶方阵,则下列说法正确的	是().
`	A) $(AB)^{-1} = A^{-1}B^{-1}$ C) $(AB)^T = A^TB^T$	(B) $AB = 0$, $\mathbb{M} A = 0$ $\mathbb{R} B = 0$ (D) $(A + B)(A - B) = A^2 - B^2$
三. [得分 计算题(每小题10 分, 共50	0分)
1. 设3	阶矩阵 $A = (\alpha_1, \alpha_2, \alpha_3), B = (\alpha_1 + 2\alpha_1)$	$(\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3, \alpha_1 + 4\alpha_2 + 16\alpha_3),$

已知 |A|=1, 求 |B|.

2. 已知
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
, $C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 2 & 1 \end{pmatrix}$, 求解矩阵方程: $AX = X + C$.

3. 求一个非齐次线性方程组, 使得其通解为

$$X = (1, -1, 3)^{T} + k_{1}(-1, 3, 2)^{T} + k_{2}(2, 1, 1)^{T},$$

其中k1,k2为任意常数.

4. 用正交线性变换将 $f(x_1, x_2, x_3) = 7x_1^2 + x_2^2 + 7x_3^2 - 8x_1x_2 - 4x_1x_3 - 8x_2x_3$ 化为标准形.

- 5. λ 取何值时, 非齐次线性方程组 $\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$ (1) 有唯一解; (2)无解; (3) 有无穷多解.

- 四. (10分) 得分 证明题(每小题5分,共10分)
- 1. 设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的秩为r,在其中任取m个向量 $\alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_m}$,证明: $R(\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_m}) \ge r + m - s.$

2. 设 A, B 都是 n 阶正交矩阵, 若 |A| = 1, |B| = -1, 证明: |A + B| = 0.