Lecture 5: Expected Utility Theory

Instructor: Fei Tan

@econdojo BusinessSchool101

Saint Louis University

Date: October 28, 2025

The Road Ahead

- 1. Why Numbers Matter in Game Theory
- 2. From Words to Utilities
- 3. The Axioms of Rational Choice
- 4. Completeness Axiom
- 5. Transitivity Axiom
- 6. Rationality in Game Theory
- 7. Utility Transformations

Why Numbers Matter in Game Theory

The Challenge: Describing preferences with words is messy and hard to analyze Consider four possible outcomes:

- Outcome 3: "I love this"
- Outcome 1: "I like this"
- Outcome 4: "meh"
- Outcome 2: "This is worse than death"

Problems with descriptive language:

- Becomes an "absolute mess to memorize"
- Impossible to manage with 8, 16, or infinite outcomes
- No clear way to compare intensities
- Cannot perform mathematical analysis

Solution: Use numerical utilities to represent preferences cleanly and compactly

From Words to Utilities

Utilities are a numerical system to represent rank-ordered preferences

• Rule: Larger numbers = better outcomes, smaller numbers = worse outcomes

Preference Description	Assigned Utility
I love outcome 3	0
I like outcome 1	-1
Outcome 4 is meh	-8
Outcome 2 is worse than death	-10

Key insight: Numbers instantly capture rank ordering: 0 > -1 > -8 > -10

The Golden Rule: Preferences Come First

Common misconception: "No one thinks in numbers!"

The reality: We don't care about utilities themselves, we care about what they represent

Golden Rule: Preferences map to utilities, not the other way around

The one-way street:

- 1. You have preferences over outcomes (this comes first)
- 2. We assign utility numbers to represent those preferences
- 3. Higher utility numbers don't cause preferences preferences cause higher utility numbers

Example: In modeling international conflict, we first understand what outcomes leaders prefer, then construct utilities to represent those preferences

The Axioms of Rational Choice

To predict behavior in strategic situations, we need rules governing preferences. Expected Utility Theory rests on **four key axioms**:

- 1. Completeness: For any two outcomes, you can state a preference
- 2. **Transitivity**: Preferences are logically consistent
- 3. Independence: Common components in lotteries don't affect choice
- 4. Continuity: No sudden jumps in preferences

These axioms form the logical bedrock of game theory by ensuring preferences can be represented with utility numbers that allow mathematical analysis.

Next: We'll examine each axiom in detail

Completeness Axiom

Definition: For any two outcomes X and Y, you must be able to state your preference

Three possibilities:

- 1. Prefer X to Y
- 2. Prefer Y to X
- 3. Be indifferent between X and Y

Example with three outcomes: \$1 million, \$0, painful death

Typical preference ordering:

- \$1 million > \$0
- \$0 > Painful death
- \$1 million > Painful death

Key point: Completeness is about having any preference, not a "sensible" one

What Completeness Rules Out

Valid: Indifference between outcomes

- Can be modeled with equal utility numbers
- Example: Indifferent between \$0 and painful death

Invalid: "I don't know" responses

- Creates question marks in payoff matrices
- Makes strategic analysis impossible

Example: Prisoner's Dilemma with unknown payoff

	Player 2: Cooperate Player 2: Defec	
Player 1: Cooperate	3, 3	0, 5
Player 1: Defect	5, 0	?, 1

Cannot predict Player 1's behavior → analysis breaks down

Transitivity Axiom

Definition: If X is preferred to Y and Y is preferred to Z, then X must be preferred to Z

Mathematical analogy: If A > B and B > C, then A > C

Example: Million dollars vs. dying

- 1. Prefer \$1M to 0 (X > Y)
- 2. Prefer 0 to dying Y > Z
- 3. Must prefer 1M to dying (X > Z)

Works with indifference too:

- If indifferent between \$1M and \$0, and between \$0 and dying
- Then must be indifferent between \$1M and dying
- Transitivity: If A = B and B = C, then A = C

Why Transitivity Matters

Problem transitivity solves: Eliminates preference cycles

Illogical preference cycle:

- Prefer \$1M > \$0
- Prefer \$0 > dying
- But prefer dying > \$1M

Consequences of cycles:

- No "best" option exists
- Cannot assign consistent utility numbers
- Mathematical analysis becomes impossible

Example: If dying has utility 1 and \$1M has utility 3, then saying "dying > \$1M" implies 1 > 3, which is impossible

Bottom line: Transitivity is essential for representing preferences with numbers

Rationality in Game Theory

Everyday rationality: Making sensible, logical choices

Game theory rationality: Having preferences that are complete and transitive

Everyday Rationality	Game Theory Rationality
Judges content of preferences	Only cares about structure
Subjective assessment of wisdom	Mechanical check of consistency
"Is this choice sensible?"	"Can you compare outcomes consistently?"

Key insight: A preference for dying over \$1 million can be **rational** (if complete and transitive) even if not **sensible**

The Power of Rational Preferences

Complex preference maps → Simple ordered lists

With 6 outcomes, preference arrows create a tangled mess:

Complex web of preferences transforms into clean ranking:

- 1. Autographed Game Theory textbook
- 2. \$1 million
- 3. \$0
- 4. Painful death
- 5. Brussels sprouts
- 6. \$7 cupcake

Benefits:

- Easy to analyze and compare
- Can assign utility numbers
- Enables mathematical modeling

Dealing with Uncertainty: Lotteries

Lottery: A probability distribution over outcomes

Why lotteries matter:

- Mixed strategies create uncertainty for opponents
- Many real-world situations involve risk
- Need to compare certain outcomes with uncertain ones

Example choice:

- Option A: Get \$0 for certain
- Option B: 50% chance of \$1M, 50% chance of death

Key question: How do we compare these options rationally?

Answer: Expected utility theory provides the framework for consistent choice under uncertainty

Independence Axiom

Principle: When comparing lotteries, identical components should not affect your choice

Formal statement: If you prefer X to Y, then you should prefer:

- [X with probability p, Z with probability (1-p)] to
- [Y with probability p, Z with probability (1-p)]

Example:

- Lottery 1: 50% chance \$1M, 50% chance death
- Lottery 2: 50% chance \$0, 50% chance death

Analysis: The 50% chance of death is common to both → ignore it

Focus on the difference: Do you prefer \$1M or \$0?

If you prefer \$1M > \$0, then choose Lottery 1

Application: Enables consistent decision-making under uncertainty

The Allais Paradox

Choice 1: A vs. B

A: 11% chance of \$1M, 89% chance of \$0

B: 10% chance of \$5M, 90% chance of \$0

Choice 2: C vs. D

• C: 100% chance of \$1M

D: 10% chance of \$5M, 89% chance of \$1M, 1% chance of \$0

The paradox: Many people choose B and C, violating independence

- Both choices reduce to the same core decision.
- Prefer certain \$1M when certainty available (C over D)
- Prefer risky \$5M gamble when risk unavoidable (B over A)

Psychological insight: "Certainty effect" - people overweight guaranteed outcomes

Continuity Axiom

Principle: For any three ranked outcomes (best, middle, worst), there exists a probability that makes you indifferent between the middle outcome for certain and a lottery on the best and worst

Example:

• Best: \$1 million

Middle: \$0

Worst: Painful death

Question: What probability p makes you indifferent between:

- Getting \$0 for certain
- p chance of \$1M, (1-p) chance of death

Key insight: As long as such a probability exists (even if p = 0.9999999), your preferences satisfy continuity

What continuity rules out: Lexicographic preferences with infinite jumps

Utility Transformations

Key insight: Utility numbers are representations, not absolute values

Positive Affine Transformation: u' = au + b where a > 0

Example: Original Stag Hunt game

	Player 2: Stag	Player 2: Hare
Player 1: Stag	3, 3	1, 2
Player 1: Hare	2, 1	0, 0

Transformed game (multiply Player 1's payoffs by 2):

	Player 2: Stag	Player 2: Hare
Player 1: Stag	6, 3	2, 2
Player 1: Hare	4, 1	0, 0

Same strategic properties: Identical equilibria because preference ordering

Rules for Valid Transformations

Three fundamental rules:

- 1. Use positive affine transformations only: u'=au+b with a>0
 - \circ Never use $a \leq 0$ (reverses or eliminates preferences)
 - Avoid squaring, cubing, or other nonlinear transformations
- 2. Apply consistently within player: Same a and b for all payoffs of one player
 - Cannot pick and choose which payoffs to transform
- 3. Players can be transformed independently:
 - Player 1: a = 2, b = 0
 - \circ Player 2: a=1,b=-1
 - Or leave one player unchanged

Bottom line: Preserve preference ordering, maintain strategic equivalence

Pareto Efficiency: Evaluating Outcomes

The problem with adding utilities: Can't compare across players due to transformations

Example: Battle of the Sexes - two versions that are identical games:

Version 1:

	Player 2: Ballet	Player 2: Fight
Player 1: Ballet	1, 2	0, 0
Player 1: Fight	0, 0	100, 1

Version 2 (Player 1's payoffs ÷ 100):

	Player 2: Ballet	Player 2: Fight
Player 1: Ballet	0.01, 2	0, 0
Player 1: Fight	0, 0	1, 1

Sum of utilities: Version 1: (Fight, Fight) = 101 vs (Ballet, Ballet) = 3

Version 2: (Ballet, Ballet) = 2.01 vs (Fight, Fight) = 2

Pareto Efficiency in Classic Games

Stag Hunt Example:

	Player 2: Stag	Player 2: Hare
Player 1: Stag	3, 3	0, 1
Player 1: Hare	1, 0	1, 1

• Pareto efficient: (Stag, Stag) only

Pareto inefficient: All other outcomes

From (Hare, Hare), both players can improve by moving to (Stag, Stag)

Key insight: Efficiency is about improving without hurting anyone

Prisoner's Dilemma and Efficiency

	Player 2: Cooperate	Player 2: Defect
Player 1: Cooperate	3, 3	1, 4
Player 1: Defect	4, 1	2, 2

Surprising result: The unique equilibrium (Defect, Defect) is the **only** inefficient outcome!

Pareto efficient outcomes:

- (Cooperate, Cooperate) both can improve from equilibrium
- (Cooperate, Defect) and (Defect, Cooperate) can't help one without hurting the other

Key lesson: Equilibrium doesn't guarantee efficiency

Risk Preferences: The Million-Dollar Question

Thought experiment: Choose between:

- Lottery 1: 50% chance of \$1,000,000, 50% chance of \$0
- Lottery 2: Guaranteed payment of \$X

Question: For what value of \$X are you indifferent?

Expected value: $(0.5 \times \$1,000,000) + (0.5 \times \$0) = \$500,000$

Your answer reveals your risk preference:

- **Risk-averse**: \$X < \$500,000 (prefer certainty)
- Risk-neutral: \$X = \$500,000 (mathematical calculation)
- Risk-acceptant: \$X > \$500,000 (prefer the gamble)

Understanding Risk Profiles

Risk Profile	Indifference Point	Core Logic
Risk-Averse	< \$500,000	Diminishing value of money; safety preferred
Risk-Neutral	= \$500,000	Pure mathematical expected value
Risk-Acceptant	> \$500,000	Thrill of gamble has positive value

Real-world examples:

- Risk-averse: Buying insurance (accept certain small loss to avoid catastrophic outcome)
- Risk-neutral: Professional traders focusing on long-run averages
- Risk-acceptant: Compulsive gambling (rare in high-stakes scenarios)

Dynamic preferences: Risk tolerance can change with life circumstances (financial security, age, etc.)

Risk and Utility Functions

Mathematical representation: $U(x) = x^a$

Risk-neutral (
$$a=1$$
): $U(x)=x$

- Linear relationship between money and utility
- Each dollar provides same additional happiness

Risk-averse (
$$0 < a < 1$$
): $U(x) = x^{0.5}$ (square root)

- Diminishing marginal utility
- Each additional dollar provides less happiness

Risk-acceptant (
$$a>1$$
): $U(x)=x^2$

- Increasing marginal utility
- Each additional dollar provides more happiness

Critical point: Must use utility values, not raw dollar amounts, in game analysis