

Model Fusion Through Bayesian Optimization in Language Model Fine-Tuning

Chaeyun Jang¹, Jungtaek Kim², Hyungi Lee¹, Juho Lee¹ Korea Advanced Institute of Science & Technology¹, University of Pittsburgh² The 3rd NeurIPS Workshop
On Efficient Natural Language and
Speech Processing (ENLSP)

Overview

- 1. Seeking to alleviate the constraints of conventional Weight Averaging (WA) in the fine-tuning of Pretrained Language Models (PLMs).
- 2. Intending to propose an efficient model fusion methodology that incorporates Hyperparameter Optimization (HP).

Contributions

1. Multi Objective Bayesian Optimization SWA (MOBO-SWA):

• Employing MOBO optimizes model averaging coefficients by considering both loss and metric.

2. Bilevel Model Fusion (Bilevel-BO-SWA):

• The process is structured as a bilevel procedure, with an outer BO optimizing hyperparameters for PLMs fine-tuning, and an MOBO-SWA for model fusion.

Backgrounds

Model Fusion for Pre-trained Language Models

- The cost of fine-tuning PLMs is **high**, making deep ensemble methods **inefficient**.
- WA methods like <u>Stochastic Weight Averaging (SWA)</u> [1] and <u>Model Soups</u> [2] are more feasible for model fusion, although not always adequate for PLMs [3].
- We discovered that the loss surface of PLMs has a best combination that cannot be found by simple averaging.

Bayesian Optimization (BO)

- BO is a strategy for optimizing black-box functions that are costly to evaluate using the surrogate model.
- Applications range across various domains, and while Gaussian Processes are commonly used as the surrogate model, other models like Bayesian neural networks and tree-based models are also options [4].

Loss Surface of the Language Model

Valid loss surface vs Valid metric surface

> 25

- ✓ While SWA tends to lead to a flat loss minima, this is not necessarily related to better performance according to evaluation metrics.
- ✓ There exists the best combination for combining model weights that is not achievable through SWA.

Experiment Results

Main result

Table 1: **Results on the GLUE dataset using the RoBERTa-base.** Numerical results in boldface and with an underscore indicate the best and the second-best results in the respective datasets, respectively.

Method	RTE	MRPC	CoLA	STS-B	SST-2	Avg.
Fine-tune SWA [16]	74.94 ± 2.28 77.19 ± 1.04	91.65 ± 0.65 91.31 ± 1.82	56.34 ± 2.90 55.05 ± 3.09	89.86 ± 0.16 89.89 ± 0.20	94.49 ± 0.04 94.49 ± 0.08	81.46 81.59
Greedy SWA [37] Learned SWA [37]	$76.52 \pm 1.31 \\ 77.82 \pm 3.58$	$\begin{array}{c} 91.84 \pm 0.14 \\ 90.62 \pm 1.87 \end{array}$	$56.47 \pm 3.20 \\ \underline{59.02} \pm 2.60$	$\frac{89.87}{89.65} \pm 0.18$	$\begin{array}{c} 94.36 \pm 0.05 \\ 94.19 \pm 0.00 \end{array}$	81.81 82.26
MOBO-SWA (ours) Bilevel-BO-SWA (ours)	$\frac{77.86}{78.43} \pm 0.28$	$\frac{92.05}{92.38} \pm 1.05$	58.20 ± 1.72 59.21 ± 3.53	$\begin{array}{c} 89.58 \pm 0.12 \\ 89.86 \pm 0.01 \end{array}$	$\frac{94.55}{94.97} \pm 0.12$	82.45 82.97
Best subset (oracle)	80.66 ± 0.52	92.90 ± 0.22	60.01 ± 1.88	89.93 ± 0.20	95.08 ± 0.06	83.72

Loss vs Metric discrepancy

Table 2: **Results on GLUE benchmark for RoBERTa-base.** Evaluation results of SWA and naive fine-tuned model on the RTE, MRPC, SST-2. We used custom validation sets for the evaluation. Here *NLL* is the loss function and *Error rate* is the 1 - *Accuracy* for the RTE and SST-2, and the *F1 score* for the MRPC. The lower value is the better for all the evaluation functions. Please refer to Appendix B to see how we split the custom validation sets.

			Task		
		RTE	MRPC	SST-2	
NLL (\lambda)	Fine-tune SWA	0.97 ± 0.01 0.87 ± 0.03	0.54 ± 0.02 0.53 ± 0.00	0.28 ± 0.00 0.22 ± 0.00	
Error rate (↓)	Fine-tune SWA	$\begin{array}{c} \textbf{21.21} \pm 0.69 \\ \textbf{21.71} \pm 1.47 \end{array}$	$\begin{array}{c} \textbf{7.82} \pm 0.01 \\ \textbf{7.90} \pm 0.01 \end{array}$	4.94 ± 0.26 5.16 ± 0.24	

Model Fusion Through Bayesian Optimization

- Our target language model as $\mathcal{M}(\boldsymbol{\theta}(\boldsymbol{\lambda}))$ where $\boldsymbol{\lambda}$ is a hyperparameter vector and $\boldsymbol{\theta}(\boldsymbol{\lambda})$ is model parameter trained with $\boldsymbol{\lambda}$ $\bar{\boldsymbol{\theta}}(\boldsymbol{w},\boldsymbol{\lambda}) = w_1\boldsymbol{\theta}_{T-k+1}(\boldsymbol{\lambda}) + w_2\boldsymbol{\theta}_{T-k+2}(\boldsymbol{\lambda}) + \cdots + w_k\boldsymbol{\theta}_T(\boldsymbol{\lambda}), \quad (1)$ Where $w_1,w_2,\ldots w_k \in [0,1]$ subject to $\sum_{i=1}^k w_k = 1$
- Our objective is to aggregate the final k epoch models into a proficient single model $\mathcal{M}(\bar{\theta}(\lambda))$, using a weighted combination shown in equation (1).
- Multi-Objective Bayesian Optimization for Model Fusion

$$\mathcal{P} = \left\{ \boldsymbol{w}^{\dagger} \mid \boldsymbol{w}^{\dagger} = \arg\min\left(f_{\text{loss}}(\mathcal{M}(\bar{\boldsymbol{\theta}}(\boldsymbol{w}, \boldsymbol{\lambda}))), f_{\text{metric}}(\mathcal{M}(\bar{\boldsymbol{\theta}}(\boldsymbol{w}, \boldsymbol{\lambda})))\right) \right\}. (2)$$

We optimize model fusion coefficients with MOBO-SWA (2) considering both loss and metric, employing **qNEHVI** [6] for the hypervolume improvement objective optimization.

• Bilevel Bayesian Optimization for Model Fusion We further refine hyperparameters through Bilevel-BO-SWA with the objective $f_{\text{metric}}(\mathcal{M}(\bar{\boldsymbol{\theta}}(\check{\boldsymbol{w}}^{\dagger}, \boldsymbol{\lambda})))$

Ablation on MOBO and BO

Table 3: Using RoBERTa-base, Performance Analysis of Basic BO on the GLUE Dataset. When employing BO that focuses solely on a single objective, specifically the metric, it was observed that MOBO-SWA exhibited commendable effectiveness in comparison to BO-SWA, which takes into account both the loss and metric.

Method	RTE	MRPC	CoLA	STS-B	SST-2	Avg.
BO-SWA	77.20 ± 1.97	91.92 ± 0.66	57.56 ± 0.30	$\textbf{89.63} \pm 0.05$	94.47 ± 0.15	82.16
MOBO-SWA	77.86 \pm 0.28	92.05 ± 1.05	58.20 ± 1.72	89.58 ± 0.12	94.55 ± 0.12	82.45

Ablation on the Effectiveness of the Outer BO

Table 4: Comparative Performance Analysis Applying Outer BO on Various Baselines. The table shows that Bilevel-BO-SWA outperforms other strategies on RTE and MRPC datasets, according to key performance metrics.

	Baseline	SWA	Greedy SWA	Learned SWA	Bilevel-BO-SWA
RTE	77.20	76.68	76.68	78.22	79.60
MRPC	91.41	90.57	90.57	90.03	93.39

References

[1] Izmailov, Pavel, et al. "Averaging Weights Leads to Wider Optima and Better Generalization."

[2] Wortsman, Mitchell, et al. "Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time." International Conference on Machine Learning. PMLR, 2022.

[3] Kaddour, Jean, et al. "When do flat minima optimizers work?." Advances in Neural Information Processing Systems 35 (2022): 16577-16595.

[4] Frazier, Peter I. "A tutorial on Bayesian optimization." arXiv preprint arXiv:1807.02811 (2018).

[5] Garipov, Timur, et al. "Loss surfaces, mode connectivity, and fast ensembling of dnns." Advances in neural information processing systems 31 (2018).

[6] Daulton, Samuel, Maximilian Balandat, and Eytan Bakshy. "Parallel bayesian optimization of multiple noisy objectives with expected hypervolume improvement." Advances in Neural Information Processing Systems 34 (2021): 2187-2200.

^{*} Following Garipov et al.'s [5] method, we collect SWA models w_1 , w_2 , w_3 and establish an *orthonormal basis* u_1 , u_2 to represent their parameter space on the x-axis and y-axis.