Dep. Matem., Univ. Minho		6 de Julho de 2009
	Exame de	
	Lógica EI	
Lic. Eng. Informática		Duração: 2 horas

Este exame é constituído por 6 questões. Justifique adequadamente todas as suas respostas.

1. Considere o conjunto T, de fórmulas do Cálculo Proposicional, definido indutivamente pelas seguintes regras:

$$\frac{\varphi \in T}{\neg p_i \in T} \ i \quad (i \in \mathbb{N}_0) \qquad \frac{\varphi \in T}{(\varphi \to \bot) \in T} \ r_1 \qquad \frac{\varphi \in T \quad \psi \in T}{(\neg \varphi \lor \psi) \in T} \ r_2$$

- (a) Construa a árvore de formação da fórmula $\sigma = ((\neg(\neg p_2 \to \bot) \lor \neg p_0) \to \bot)$ de T.
- (b) Dê exemplo de um elemento de T que seja uma tautologia.
- (c) Defina, por recursão estrutural, uma função $g: T \to \mathbb{N}_0$ tal que, para cada $\varphi \in T$, $g(\varphi)$ seja o número de ocorrências do conectivo \neg na fórmula φ .
- (d) Calcule $g(\sigma)$ usando a definição recursiva de g da alínea anterior.
- (e) Enuncie o Princípio de Indução Estrutural para T.
- (f) Mostre que, para todo o $\varphi \in T$, $g(\varphi)$ é impar.
- 2. Determine uma forma normal conjuntiva (FNC) e uma forma normal disjuntiva (FND) logicamente equivalentes à fórmula $\varphi = p_0 \land \neg (\neg p_0 \rightarrow p_2)$.
- 3. Sejam φ e ψ fórmulas do Cálculo Proposicional e seja Γ um conjunto de fórmulas do Cálculo Proposicional. Diga se é verdadeira ou falsa cada uma das afirmações seguintes.
 - (a) Se $\vdash \varphi \to \psi$, então $\models (\varphi \land \psi) \leftrightarrow \varphi$.
 - (b) Se Γ é consistente e $\varphi \in \Gamma$, então $\neg \varphi \notin \Gamma$.
- 4. Seja φ uma fórmula do Cálculo Proposicional. Construa uma derivação da fórmula

$$\varphi \leftrightarrow (\neg \varphi \rightarrow \bot).$$

(v.s.f.f.)

- 5. Seja $L=(\{0,s,+\},\{\leq\},\mathbb{N})$ o tipo de linguagem em que $\mathbb{N}(0)=0,\ \mathbb{N}(s)=1,\ \mathbb{N}(+)=2$ e $\mathbb{N}(\leq)=2.$
 - (a) Das seguintes palavras de \mathcal{A}_L^+ verifique se algumas são L-termos ou L-fórmulas e, nesses casos, construa as respectivas árvores de formação.
 - (i) $((s(x_1) + x_2) \le 0) + (x_3 \le s(0));$
 - (ii) $s(x_1 + (0 + s(x_3)));$
 - (iii) $\forall x_1 (s(x_1) \le x_3 + 0)$.
 - (b) Seja $E = (\mathbb{N}_0, \overline{})$ a L-estrutura tal que:
 - $\overline{0}$ é o número inteiro zero;
 - \bar{s} é a função sucessor em \mathbb{N}_0 ;
 - \mp é a função de *adição* em \mathbb{N}_0 ;
 - \leq é a relação menor ou igual em \mathbb{N}_0 .

Seja a a atribuição em E tal que $a(x_i) = i$ para todo o $i \in \mathbb{N}_0$. Calcule:

- (i) $(x_2 + s(x_3 + 0))[a]$;
- (ii) $\exists_{x_7} (s(x_3) + x_7 \le x_5)[a]$.
- (c) Sejam E a L-estrutura e a a atribuição da alínea (b), e considere o seguinte conjunto de L-fórmulas

$$\Gamma = \{ \neg (s(x_5) + x_1 \le x_7), \ \forall_{x_2} (x_2 \le s(x_2)) \}.$$

Verifique se (E, a) é uma realização de Γ .

6. Considere o tipo de linguagem de Cálculo de Predicados $L = \{\{0, m, s\}, \{<, =\}, \mathcal{N}\}$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(m) = \mathcal{N}(s) = 2$ e $\mathcal{N}(<) = \mathcal{N}(=) = 2$. Considere ainda o L-termo

$$t = m(x_1, x_2)$$

e a L-fórmula

$$\varphi = \forall_{x_2} (s(x_2, x_1) = x_2).$$

- (a) Calcule $\varphi[t/x_1]$.
- (b) Diga se x_1 é substituível por t em φ .
- (c) Considere a L-estrutura (\mathbb{Z} , $\overline{}$) em que $\overline{0} = 0$, \overline{m} e \overline{s} são as operações de mínimo e supremo entre dois inteiros, $\overline{<}$ e \equiv são as relações de menor usual e de igualdade entre inteiros. Seja $a: \mathcal{V} \longrightarrow \mathbb{Z}$ a atribuição tal que

$$a(x_i) = \begin{cases} i & \text{se } i \text{ \'e impar} \\ -i & \text{se } i \text{ \'e par.} \end{cases}$$

Calcule $\varphi[t/x_1][a]$ e $\varphi\left[a\begin{pmatrix} x_1\\t[a]\end{pmatrix}\right]$, e comente os resultados obtidos.

(FIM)

Cotações	1.	2.	3.	4.	5.	6.
	1+1+1+1+1.5	1.5	1.5+1	1.5	1.5 + 1.5 + 1.5	1+1+1.5