Puits de potentiel assymétrique • • •

On considère une particule de masse m et d'énergie E piégée dans un puit de potentiel comme représenté ci-dessous :

On ne s'intéresse qu'au mouvement unidimentionnel de la particule suivant x. On cherche un état stationnaire de l'équation de Schrödinger de la forme $\Psi(x,t)=\psi(x)e^{-iEt/\hbar}$

- \clubsuit Montrer que, malgré la discontinuité de V en $x=a, \psi$ et sa dérivée sont continues.
- \clubsuit Montrer que pour $E < V_0$, la fonction d'onde pour un état lié, ou localisé dans le puit, s'écrit :

$$\psi(x,t) = A\sin(qx) \quad \text{si} \quad 0 < x < a$$

$$\psi(x) = Be^{-x/x_0} \quad \text{si} \quad x > a$$

avec $E = \hbar^2 q^2/2m$ et $x_0 = \hbar/\sqrt{2m(V_0 - E)}$. On ne demande pas de donner l'expression des constantes A et B.

- \clubsuit La solution met en évidence une longueur caractéristique x_0 , proposer une interprétation physique. Existe t-il une longueur équivalente pour une particule matérielle clasique? Donner un exemple de longueur analogue dans un autre domaine de la physique.
- \clubsuit Utiliser les conditions aux limites pour en déduire que le vecteur d'onde q doit satisfaire à la relation :

$$\cot (y) = -\frac{\sqrt{\gamma^2 - y^2}}{y}$$

avec y = qa et $V_0 = \hbar^2 \gamma^2 / 2ma^2$.

 \clubsuit Tracer qualitativement les solutions graphiques de cette équation. En déduire qu'il n'existe aucun état lié pour des valeurs de V_0 inférieures à un seuil W que l'on exprimera.

1

Etats stationnaire d'une particule d
ns un puits de profondeur finie • • •

Une particule de masse m et d'énergie E (avec $-V_0 < E < 0$) est confinée dans un puits de largeur 2a et de profondeur $-V_0$. L'énergie potentielle de la particule prend alors la forme :

- (1): V(x) = 0 pour x < -a
- (2): $V(x) = -V_0$ pour -a < x < a
- (3): V(x) = 0 pour x > a

On note $\Psi(x,t)=\phi(x)e^{-iEt/\hbar}$ la fonction d'onde pour un état stationnaire d'énergie E de la particule confinée dans ce puits.

- * Etablir les équations différentielles vérifiées par la fonction $\phi(x)$ dans les différentes régions de potentiel (on notera la fonction d'onde $\phi_n(x)$ pour la région n=1, 2 ou 3).
- * En déduire que $\phi_1(x) = A_1 e^{\alpha x}$, $\phi_2(x) = A_2 e^{ikx} + B_2 e^{-ikx}$ et $\phi_3(x) = A_3 e^{-\alpha x}$, en précisant les expressions de α et k. Etablir le système d'équations vérifiées par A_1 , A_2 , A_3 et B_2 .

La parité du potentiel permet d'affirmer que les fonctions $\phi(x)$ décrivant les états stationnaires sont paires (modes symétriques) ou impaires (modes antisymétriques).

- * Etablir pour les modes symétriques la relation reliant les grandeurs k et α , puis celle reliant les variables adimensionnées $u=2mV_0a^2/\hbar^2$ et $\xi=ka$. Justifier à l'aide d'un tracé qu'il y a quantification des niveaux d'énergie de la particule.
- * Même question pour les modes antisymétriques.
- * Le mode fondamental est-il symétrique ou antisymétrique ?