

QUÍMICA NIVEL MEDIO PRUEBA 2

Martes 8 de mayo de 2012 (tarde)

1 hora 15 minutos

0	0							
---	---	--	--	--	--	--	--	--

Código del examen

2	2	1	2	_	6	1	2	9
---	---	---	---	---	---	---	---	---

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Sección A: conteste todas las preguntas.
- Sección B: conteste una pregunta.
- Escriba sus respuestas en las casillas provistas.
- En esta prueba es necesario usar una calculadora.
- Se necesita una copia sin anotaciones del *Cuadernillo de Datos de Química* para esta prueba.
- La puntuación máxima para esta prueba de examen es [50 puntos].

SECCIÓN A

Conteste todas las preguntas. Escriba sus respuestas en las casillas provistas.

1. El peróxido de hidrógeno, $H_2O_2(aq)$, libera oxígeno gaseoso, $O_2(g)$, puesto que se descompone de acuerdo con la siguiente ecuación.

$$2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(g)$$

Se colocaron 50,0 cm³ de solución de peróxido de hidrógeno en un tubo de ebullición, y se añadió una gota de detergente líquido para crear una capa de burbujas en la parte superior de la solución de peróxido de hidrógeno a medida que se liberara el oxígeno gaseoso. El tubo se colocó en un baño de agua a 75 °C y se midió la altura de la capa de burbujas cada treinta segundos. Se representó un gráfico de la altura de la capa de burbujas en función del tiempo.

(a)	Explique por qué la curva alcanza un máximo.	[1]

(Pregunta 1: continuación)

(b)		el gráfico para calcular la velocidad de descomposición del peróxido de hidrógeno 120 s.	[3]
(c)		epitió el experimento usando como catalizador óxido de manganeso(IV) sólido, $O_2(s)$.	
	(i)	Dibuje una curva en el gráfico de la página anterior para mostrar cómo varía la altura de la capa de burbujas a lo largo del tiempo en presencia del óxido de manganeso(IV).	[1]
	(ii)	Explique el efecto del catalizador sobre la velocidad de descomposición del peróxido de hidrógeno.	[2]

(Pregunta	1:	continu	ación)

(d)	La descomposición	del	peróxido	de	hidrógeno	para	formar	agua	y	oxígeno	es	una
	reacción rédox.											

(i) Deduzca los números de oxidación del oxígeno presente en cada una de las especies de abajo.

[2]

Especie	Número de oxidación del oxígeno
H_2O_2	
H ₂ O	
O_2	

-		T 1' 1		1 1	, 1 1	7 1 1 1 1 1	,	$\Gamma \cap T$
- (111	Indiane do	s semiecijaci	ones para la descoi	nnosición del	neroxido de hid	rogeno /	[2]
١,	11)	illulque do	s scillice daci	nies para la descoi	iiposicioni aci	peroxido de ma	rogeno.	- 1

Oxidación:			
Reducción:			

2.

2,00	estudiante añadió 7,40×10 ⁻² g de cinta de magnesio a 15,0 cm³ de ácido clorhídric mol dm ⁻³ . El hidrógeno gaseoso producido se recogió en una jeringa para gas a 20,0° l 10 ⁵ Pa.	
(a)	Indique la ecuación para la reacción entre magnesio y ácido clorhídrico.	[1]
(b)	Determine el reactivo limitante.	[3]
(c)	Calcule el rendimiento teórico del hidrógeno gaseoso:	
	(i) en moles.	[1]
	(ii) en cm³, en las condiciones de presión y temperatura indicadas.	[2]

(Pregunta 2: continuación)

	Sugiera dos razones por las que el volumen de hidrógeno gaseoso obtenido fue menor.	_
(a)	Indique la ecuación para la reacción entre sodio y agua.	
(u)		
(b)	Indique y explique una diferencia entre las reacciones de sodio y potasio con agua.	
(b)	Indique y explique una diferencia entre las reacciones de sodio y potasio con agua.	
(b)	Indique y explique una diferencia entre las reacciones de sodio y potasio con agua.	
(b)	Indique y explique una diferencia entre las reacciones de sodio y potasio con agua.	
(b)	Indique y explique una diferencia entre las reacciones de sodio y potasio con agua.	

(a)	El 13	I es un isótopo radiactivo del yodo.	
	(i)	Defina el término isótopo.	[1]
	(ii)	Determine el número de neutrones en un átomo de yodo-131.	[1]
	(iii)	Identifique un uso del yodo-131 en medicina y explique por qué es potencialmente peligroso.	[2]
(b)	Disc	uta el uso del carbono-14 en datación.	[3]

SECCIÓN B

Conteste **una** pregunta. Escriba sus respuestas en las casillas provistas.

Fórmula empírica: Fórmula molecular: (ii) Determine la fórmula empírica de X.	(i)	Distinga entre los términos fórmula empírica y fórmula molecular.
Fórmula molecular: (ii) Determine la fórmula empírica de X .		Fórmula empírica:
(ii) Determine la fórmula empírica de X .		
		Fórmula molecular:
	(ii)	Determine la fórmula empírica de X .

(Pregunta 5: continuación)

X es un ácido carboxílico de cadena lineal. Dibuje su fórmula estructural.	[1]
Dibuje la fórmula estructural de un éster isómero de X.	[1]
El ácido carboxílico contiene dos enlaces carbono-oxígeno diferentes. Identifique cuál enlace es más fuerte y cuál enlace es más largo.	[2]
Enlace más fuerte:	
Enlace más largo:	
	Dibuje la fórmula estructural de un éster isómero de X. El ácido carboxílico contiene dos enlaces carbono-oxígeno diferentes. Identifique cuál enlace es más fuerte y cuál enlace es más largo. Enlace más fuerte: Enlace más largo:

(Pregunta 5: continuación)

	metoxietano, CH ₃ OCH ₂ CH ₃ .
(ii)	El 1-propanol, CH ₃ CH ₂ CH ₂ OH, y el 1-hexanol, CH ₃ (CH ₂) ₄ CH ₂ OH son alcoholes. Indique y explique cuál compuesto es más soluble en agua.
(ii)	
(ii)	El 1-propanol, CH ₃ CH ₂ CH ₂ OH, y el 1-hexanol, CH ₃ (CH ₂) ₄ CH ₂ OH son alcoholes. Indique y explique cuál compuesto es más soluble en agua.

(Pregunta 5: continuación)

(c)	El grafito se usa como lubricante y es conductor eléctrico. El diamante es duro y no
	conduce la electricidad. Explique estas afirmaciones en función de la estructura y de
	los enlaces de estos alótropos del carbono.

[6]

	• • • • • • •	 	 	

	Disti	inga entre los términos base fuerte y base débil, e indique un ejemplo de cada una.	[3
(b)		moníaco, NH ₃ , es una base de acuerdo con ambas teorías de ácidos y bases, e Brønsted–Lowry y la de Lewis.	
	(i)	Indique la ecuación para la reacción de amoníaco con agua.	[]
	(ii)	Explique por qué el amoníaco puede actuar como base de Brønsted-Lowry.	[1
	(11)	Explique por qué el amoníaco puede actuar como base de Brønsted–Lowry.	[1]
	(iii)		[1]

(Pregunta 6: continuación)

(i)	Cuando se añade cloruro de amonio, NH ₄ Cl(aq), a un exceso de carbonato de sodio sólido, Na ₂ CO ₃ (s), se produce una reacción ácido—base. Se desprenden burbujas de gas y la masa del carbonato de sodio sólido disminuye. Indique una diferencia que se observaría si se usara ácido nítrico, HNO ₃ (aq), en lugar de cloruro de amonio.	
(ii)	Deduzca las estructuras de Lewis del ion amonio, NH_4^+ , y del ion carbonato, CO_3^{2-} .	
	Ion amonio Ion carbonato	
(iii)	Prediga las formas de NH_4^+ y CO_3^{2-} .	
(iii)	Prediga las formas de NH_4^+ y CO_3^{2-} . NH_4^+ :	
(iii)	Prediga las formas de NH_4^+ y CO_3^{2-} . NH_4^+ :	
(iii)		
(iii)		
(iii)	NH ₄ ⁺ :	

(Pregunta 6: continuación)

(d)	La ecuación para la reacción entre hidróxido de sodio, NaOH, y ácido nítrico, HNO3
	se muestra a continuación.

 $NaOH(aq) + HNO_3(aq) \rightarrow NaNO_3(aq) + H_2O(1)$ $\Delta H = -57.6 \text{ kJ mol}^{-1}$

(i)	Esquematice y rotule un diagrama entálpico para esta reacción.	[3]

(ii)	Deduzca	si	los	reactivos	0	los	productos	son	más	estables	energéticamente,	
	indicando	su	raze	onamiento								[1]

 •	 	 •	 ٠	•	•	•	•	 	•	•	•	•	٠	٠	٠	•	٠	•	•	•	 	 •	٠	•	•	٠	•	•	 •	•	•	٠	٠	٠	•	•	•	•	 •	•	٠	٠	•	•	•	•	•

(iii) Calcule la variación de calor, en kJ, cuando se añaden 50,0 cm³ de solución de hidróxido de sodio 2,50 mol dm⁻³ a un exceso de ácido nítrico. [2]

(Pregunta 6: continuación)

1	a le	t	21	n	p	e	r	at	ι	ır	a	. (d	e	1	a	2	ζl	18	l	d	is	SI	r	i	n	ıι	ıy	/(e	Ċ	10	2:	S	d	e	1	9),	3	0) [']	°(7	h	ıa	S	ta	1	1:	5,	8	0	0	Ć	ĺ.	Ι)	e1	e	rı	'n	i						_	_	_	
																																																																•								
												•	•	-				-	•	•							•					-	-							-	•																			•				•				•				
	•																	•														•	•							•																																
																		•	•								•	•				•	•	•	•					•			•		•								•							•			•	•				•				
												•	•						•	•		•					•	•				-		•	•					-	•		•		•															•			•	•				•			-	

7.

Los	halóg	enoalcanos se pueden clasificar como primarios, secundarios o terciarios.	
(a)	(i)	Indique el significado del término isómeros.	[1]
	(ii)	Deduzca las fórmulas estructurales del 2-bromobutano y el 1-bromo-2-metilpropano, e identifique cada molécula como primaria, secundaria o terciaria.	[4]
		- Table - Tabl	

(Pregunta 7: continuación)

(i)	Explique por qué la reactividad de los alcanos es baja.	
(ii)	Resuma el significado del término fisión homolítica.	
(iii)	Describa el significado del símbolo Br•.	
(iv)	Indique una ecuación para la reacción de etano con bromo.	
1		

(Pregunta 7: continuación)

Baio	o ciertas condiciones el 2-buteno puede reaccionar con agua para formar 2-butano
-5	
	Identifique un catalizador adecuado para esta reacción.
i)	
(i)	
(i)	
(i)	
(i)	

[4]

(Pregunta 7: continuación)

(ii) El 2-buteno se puede convertir en 2-bromobutano y luego en 2-butanol como sigue:

$$CH_3CH=CHCH_3 \xrightarrow{\mathbf{I}} CH_3CH(Br)CH_2CH_3 \xrightarrow{\mathbf{II}} CH_3CH(OH)CH_2CH_3$$

Identifique el(los) reactivo(s) y condiciones necesarias para cada una de las etapas \mathbf{I} y \mathbf{II} .

	· • • • •	 							
		 	• •						
	· • • •	 							
Etapa 1	1:								

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

