Walking Robot Gait Optimization Script

This script optimizes the walking gait of a robot using a genetic algorithm (GA).

In this example, a gait is defined as trajectory of waypoints for the reference hip, knee, and ankle joint angles. These waypoints are evenly spaced in time over a predefined gait period and repeated for the duration of the simulation.

Note that there are other approaches for using optimization on walking gaits. For example, you can optimize

- Foot placement position and orientation, and solve inverse kinematics (IK) to get joint angles
- Parameters (gains, thresholds, etc.) of a closed-loop controller or policy

Set initial parameters

Open the optimization model

```
mdlName = 'walkingRobotOptim'; % Main model
open_system(mdlName);
```

Flags to speed up simulation (strongly recommended unless you are testing)

```
accelFlag = true;  % Compile the model to run a single simulation faster parallelFlag = false; % Use parallel computing on multiple cores on your machine or on a cluster or cloud, if available
```

Joint actuator type for optimization: 1 = motion | 2 = torque | 3 = motor

```
actuatorType = 1;
```

Define the number of trajectory points and total gait time (each point is evenly spaced within this time)

To reduce the search space, scale the angle waypoints and solve the optimization algorithm with integer parameters. This scaling factor is from degrees to an integer.

```
scalingFactor = 2.5;
```

Create initial conditions to seed the initial population for optimization. Alternatively you can load from one of the presaved MAT-files provided in the SavedResults folder, as long as you use the scaling factor below to convert the gait waypoints.

```
p0 = zeros(1,numPoints*3); % Create zero motion initial conditions
```

Set optimization options

The options for the genetic algorithm are defined using the optimoptions function.

```
opts = optimoptions('ga');
opts.Display = 'iter';
opts.MaxGenerations = 100;
opts.PopulationSize = 100;
opts.InitialPopulationMatrix = repmat(p0,[5 1]); % Add copies of initial gait
opts.PlotFcn = @gaplotbestf; % Add progress plot of fitness function
opts.UseParallel = parallelFlag;
```

Set joint angle bounds and constraints

Run commands to set up parallel/accelerated simulation

```
doSpeedupTasks;
```

Run optimization

Here we use the ga function from Global Optimization Toolbox to optimize the walking gait, with simulateWalkingRobot as the fitness function.

```
costFcn =
@(p)simulateWalkingRobot(p,mdlName,scalingFactor,gait_period,actuatorType);
disp(['Running optimization. Population: ' num2str(opts.PopulationSize) ...
x ', Max Generations: ' num2str(opts.MaxGenerations)])
```

Running optimization. Population: 100, Max Generations: 100

```
Single objective optimization:
18 Variables
18 Integer variables
Options:
CreationFcn:
                  @gacreationuniformint
CrossoverFcn:
                  @crossoverlaplace
SelectionFcn:
                  @selectiontournament
MutationFcn:
                  @mutationpower
                                 Best
                                              Mean
                                                           Stall
Generation
               Func-count
                              Penalty
                                            Penalty
                                                        Generations
   1
                  200
                              -1.802
                                            -0.03314
                                                            0
   2
                  295
                               -1.802
                                             -0.1436
                                                            1
```

2	200	4 000	0 4706	2
3	390	-1.802	-0.1786	2
4	485	-1.802	-0.1775	3
5	580	-2.533	-0.1741	0
6	675	-2.533	-0.2885	1
7	770	-2.533	-0.2262	2
8	865	-3.942	-0.2442	0
9	960	-3.942	-0.3143	1
10				2
	1055	-3.942	-0.2623	
11	1150	-4.168	-0.3474	0
12	1245	-4.168	-0.3639	1
13	1340	-4.168	-0.3984	2
14	1435	-7.581	-0.4012	0
15	1530	-7.581	-0.3778	1
16	1625	-7.581	-0.3935	2
17	1720	-7.581	-0.4519	3
				4
18	1815	-7.581	-0.3224	
19	1910	-10.42	0.0395	0
20	2005	-10.42	-0.5633	1
21	2100	-10.42	-0.4938	2
22	2195	-10.42	-0.474	3
23	2290	-10.42	-0.3193	4
24	2385	-29.45	-0.8315	0
25	2480	-29.45	-0.7372	1
26	2575	-29.45	-0.8162	2
		-29.45		3
27	2670		-0.8374	
28	2765	-29.45	-0.8926	4
29	2860	-29.45	-0.7327	5
		Best	Mean	Stall
Generation	Func-count	Penalty	Penalty	Generations
30	2955	-29.45	-0.7919	6
31	3050	-29.45	-0.7423	7
32	3145	-29.45	-0.8328	8
33	3240	-29.45	-0.8542	9
34	3335	-29.45	-1.102	10
35	3430	-29.45	-0.9211	11
36	3525	-29.45	-0.9338	12
37	3620	-29.45	-0.9714	13
38	3715	-29.45	-0.7938	14
39	3810	-29.45	-0.8871	15
40	3905	-29.45	-0.8902	16
41	4000	-29.45	-0.8328	17
42	4095	-29.45		18
			-1.071	
43	4190	-29.45	-1.039	19
44	4285	-31.29	-1.247	0
45	4380	-31.29	-1.149	1
46	4475	-31.29	-1.096	2
47	4570	-31.29	-1.156	3
48	4665	-31.29	-1.283	4
49	4760	-31.29	-1.168	5
50	4855	-31.29	-1.133	6
51	4950	-31.29	-1.222	7
52	5045			8
		-31.29	-1.085	
53	5140	-31.29	-1.018	9
54	5235	-31.29	-1.077	10
55	5330	-31.29	-1.207	11
56	5425	-31.29	-1.378	12
57	5520	-31.29	-1.364	13
58	5615	-31.29	-1.301	14
59	5710	-36.82	-1.712	0
		Pos+	Mean	Stall
Conomatica	Euro comat	Best		
Generation	Func-count	Penalty	Penalty	Generations
60	5805	-44.02	-1.902	0

61	5900	-44.02	-1.848	1
62	5995	-44.02	-2.098	2
63	6090	-160.2	-3.615	0
64	6185	-160.2	-3.678	1
65	6280	-160.2	-3.331	2
66	6375	-160.2	-3.33	3
67	6470	-160.2	-3.858	4
68	6565	-160.2	-3.38	5
69	6660	-160.2	-3.369	6
70	6755	-160.2	-3.545	7
71	6850	-160.2	-3.413	8
72	6945	-160.2	-3.391	9
73	7040	-160.2	-3.702	10
74	7135	-160.2	-3.631	11
75	7230	-160.2	-3.668	12
76	7325	-160.2	-3.454	13
77	7420	-160.2	-3.394	14
78	7515	-160.2	-3.861	15
79	7610	-160.2	-3.803	16
80	7705	-160.2	-3.455	17
81	7800	-160.2	-3.439	18
82	7895	-160.2	-3.41	19
83	7990	-160.2	-3.53	20
84	8085	-160.2	-3.598	21
85	8180	-160.2	-4.91	22
86	8275	-160.2	-4.815	23
87	8370	-160.2	-4.807	24
88	8465	-160.2	-4.781	25
89	8560	-160.2	-4.339	26
		D +	M = = :=	C+- 1

		Best	Mean	Stall
Generation	Func-count	Penalty	Penalty	Generations
90	8655	-160.2	-4.547	27
91	8750	-160.2	-4.534	28
92	8845	-160.2	-5.096	29
93	8940	-160.2	-5.66	30
94	9035	-160.2	-5.035	31
95	9130	-160.2	-5.924	32
96	9225	-160.2	-5.608	33
97	9320	-160.2	-5.537	34
98	9415	-160.2	-5.365	35
99	9510	-160.2	-5.269	36
100	9605	-160.2	-5.312	37

 $\label{prop:control} \mbox{\sc ga stopped because it exceeded options.} \mbox{\sc MaxGenerations.}$

disp(['Final reward function value: ' num2str(-reward)])

Analyze and save results

Convert from optimization integer search space to trajectories in radians

```
pScaled = scalingFactor*pFinal;
traj_times = linspace(0,gait_period,numPoints+1);
hip_motion = deg2rad([pScaled(1:numPoints) pScaled(1)]);
knee_motion = deg2rad([pScaled(numPoints+1:2*numPoints) pScaled(numPoints+1)]);
ankle_motion = deg2rad([pScaled(2*numPoints+1:3*numPoints) pScaled(2*numPoints+1)]);
```

Evaluate the trajectory at a few points for visualization

```
numTrajPoints = 101;
evalTimes = linspace(0,gait_period,numTrajPoints);
[q,hip_der,knee_der,ankle_der] =
createSmoothTrajectory(hip_motion,knee_motion,ankle_motion,gait_period,evalTimes);
```

Plot the resulting trajectory

```
figure
subplot(3,1,1)
plot(evalTimes,rad2deg(q(1,:)),'b-',traj_times,rad2deg(hip_motion),'ro');
title('Final Optimized Gait')
xlabel('Time [s]');
ylabel('Hip Angles [deg]');
subplot(3,1,2)
plot(evalTimes,rad2deg(q(2,:)),'b-',traj_times,rad2deg(knee_motion),'ro');
xlabel('Time [s]');
ylabel('Knee Angles [deg]');
subplot(3,1,3)
plot(evalTimes,rad2deg(q(3,:)),'b-',traj_times,rad2deg(ankle_motion),'ro');
xlabel('Time [s]');
ylabel('Ankle Angles [deg]');
```


Save results to a timestamped MAT-file

```
outFileName = ['optimizedData_' datestr(now,'ddmmmyy_HHMM')];
save(outFileName,'reward','gait_period','traj_times','hip_motion','knee_motion','ank
le_motion');
```

Cleanup

Close the model and, if a parallel pool was created, delete it.

```
doCleanup = true;
if doCleanup
    bdclose(mdlName);
    if parallelFlag
        delete(gcp('nocreate'));
    end
end
```

Copyright 2017-2019 The MathWorks, Inc.