Виртуальная реальность занятие №4

Рябинин Константин Валентинович

e-mail: icosaeder@ya.ru

jabber: icosaeder@jabber.ru

- Для типов существуют квалификаторы точности
 - lowp низкая точность
 - mediump средняя точность
 - highp высокая точность
- Скалярные (базовые типы)
 - float вещественное число:
 - lowp float: [-2; 2] mediump float: [-2^14; 2^14] highp float: [-2^62; 2^62]
 - - lowp int: [-2^8; 2^8] mediump int: [-2^10; 2^10] highp int: [-2^16; 2^16]
 - bool логическое значение
 - Особенности:
 - Отсутствие неявных приведений типа: float a = 1; // порождает ошибку float b = 1.0, c = float(1);
 - Тип int не всегда поддерживается аппаратно (в общем случае обёртка над float), поэтому результат переполнения, вообще говоря, не определён
 - Отсутствуют побитовые операции
 - Тип bool обёртка над int, то есть, в общем случае, так же обёртка над float

Векторы

- **●** vec2, vec3, vec4 вещественные вектора на 2, 3 и 4 компоненты
- **●** ivec2, ivec3, ivec4 целочисленные вектора на 2, 3 и 4 компоненты
- Особенности:
 - Реализована перегрузка операций сложения и вычитания векторов, причём код оптимизируется и выполняется GPU за O(1)
 - Инициализация вектора может быть осуществлена при помощи конструкторов вида

```
vec3 a = vec3(0.1, 0.2, 0.3);
vec4 b = vec4(a, 0.4);
vec2 c = vec2(a); // будут взяты первые две компоненты
```

Для доступа к компонентам можно использовать индекс: vec3 a; a[1] = 0.5; либо мнемонические поля (x, y, z, w ~ r, g, b, a ~ s, t, p, q): vec3 a; a.v = 0.5;

 Существуют вспомогательные поля, предоставляющие доступ к любому подмножеству значений в любой последовательности:

```
vec3 a, b;
a.xy = b.zy = vec2(0.5, 0.8);
vec3 c = vec3(0.9, a.xy);
```

Мнемоника полей существует лишь для пользователя, представляя собой обёртку доступа к данным

Матрицы

- mat2 вещественная матрица 2x2
- mat3 вещественная матрица 3x3
- mat4 вещественная матрица 4x4
- Особенности:
 - Реализована перегрузка операций сложения, вычитания и умножения матриц
 - Реализована перегрузка операции умножения матрицы на вектор
 - Матрица хранится по столбцам и могут быть рассмотрены как массив векторов-столбцов
 - Как правило, матрицы приходят в шейдер из основной программы и используются для произведения аффинных преобразований

- Дискретизаторы специализированные структуры данных для доступа к текстурам
 - sampler1D предоставляет доступ к одномерной текстуре
 - sampler2D предоставляет доступ к двухмерной текстуре
 - sampler3D предоставляет доступ к трехмерной текстуре
 - samplerCube предоставляет доступ к кубической текстуре
 - Особенности:

 - Используется для доступа к текстуре
 - Для извлечения данных из дискретизатора используются специализированные фцнкции, например:

```
// fragment shader
uniform sampler2D tex;
void main()
{
   vec4 color = texture2D(tex, gl_TexCoord[0].st);
   gl_FragColor = color;
}
```

- Структуры
 - struct Light { vec3 position; vec3 color; };
 - Особенности:
 - **●** Структуры, фактически, полностью идентичны структурам в С
 - union и enum зарезервированы в качестве ключевых слов, но пока не поддерживаются
- Массивы
 - float a[10];
 vec4 points[5];
 - Особенности:
 - Можно объявлять массивы любых типов
 - Массивы являются статическими
- Void тип для функций, не возвращающих значения
- → Более никаких типов в GLSL нет; динамическое выделение памяти (указатели) не поддерживается; строки и абстрактные типы не предусмотрены

Встроенные функции GLSL

- Перегрузка операций для векторных и матричных типов данных
- Функции над векторами:
 - dot скалярное произведение
 - normalize нормирование вектора

 - refract преломление вектора относительно вектора с коэффициентом преломления
 - **length** длина вектора

 - <u>. . . . </u>

Встроенные функции GLSL

- Функции над матрицами:

 - <u>_</u> . . .
- Тригонометрические фцнкции
 - sin, cos, tan − функции
 - asin, acos, atan − аркфункции
 - radians, degrees перевод из градусов в радианы и обратно
 - . . .
- Гиперфункции
 - sinh, cosh, tanh функции
 - e asinh, acosh, atanh аркфункции
 - ◉ . . .

Встроенные функции GLSL

- Математические функции
 - роw возведение произвольную в степень

 - log натуральный логарифм

 - clamp ограничение значения
 - abs − моудль
 - eceil, floor, round округление в разные стороны
 - sign − сигнум
 - min, max минимум, максимум
 - € . . .