

Internett og WWW 6'te forelesning,
Høsten 0x07E2

Vi har gått gjennom:

- Oppbygging
 - Von Neumann modellen
 - Hardware
 - Logiske porter
 - CPU
 - Hovedkort og busser
 - Periferiutstyr
 - Software
 - Datatyper (binære)
 - Instruksjoner (typer)
 - Filformater (noen få)
 - Operativsystem
 - Oppgave
 - Oppbygging
 - Virkemåte

– Virkemåte:

- Digital representasjon
 - Tall (hel- og flyt-)
 - Text (kodeskjema)
 - Bilde (bitmap+vektor)
- Sekvensiell kjøring av instruksjoner
- Adressering i RAM
- Aritmetiske og logiske operasjoner
- Interaksjon (WIMP vs CLI)

- Så langt har vi sett på hvordan enkeltmaskiner fungerer på ulike nivåer
 - Fra logisk port
 - Opp til systemprogramvare
 - I PGR100 ser dere på hvordan man lager programmer som bruker OS og Hardware
 - I DB1100 ser dere på hvordan data organiseres og gjøres brukbare
 - I PRO100 har dere sett på hvordan kode og presentere informasjon i web-sider, men hvordan får vi distribuert dem?

I dag

- Hvordan kan maskiner samarbeid over datanett?
- Svaret er protokoller og standarder.

Introduksjon

- Hva er Internett?
 - Milliarder av computere i nett
 - Nettet tilgjengelig for "alle"
 - Enkle brukergrensesnitt
 - Ikke fullt så enkelt bak kulissene
 - Et sett med standarder for nettverkskommunikasjon som sammenkopler ulikartede LAN og WAN ("TCP/IP-stacken")

 Teknisk Infrastruktur som kopler sammen ulike nettverk ved hjelp av TCP/IP-suiten av protokoller

- WWW er IKKE det samme som Internett!!!
 - Uansett om det har blitt vanlig språkbruk i Norge og andre steder.
 - WWW er en applikasjon levert med HTTP

Antall domener

Internet Domain Survey Host Count

Source: Internet Systems Consortium (www.isc.org)

Antall brukere

Internet Users in the World by Geographic Regions - June 30, 2017

Source: Internet World Stats - www.internetworldstats.com/stats.htm Basis: 3,885,567,619 Internet users estimated in June 30, 2017

Copyright @ 2017, Miniwatts Marketing Group

Tekniske standarder

- ... er normer og krav til tekniske systemer
- Nedskrevet i et dokument som beskriver hvilke krav man må oppfylles for å tilfredsstille standarden.
- De Jure (etter lov) vs De Facto (faktisk)
 - Standarder som følges ...
 - fordi «alle» finner det fordelaktig kalles De Facto.
 - fordi det kreves (typisk i lov) kalles De Jure
 - Eksempel:
 - MP3 i stedet for CD Wav på nettet (De facto)
 - HTML frem til 1995 (De facto -> De jure)
 - Microsoft Word DOC (De facto)

Organisatorisk

RFC'er som standardiseringsprosess

Request for Comment

IANA, RIPE m.fl. adm. (DNS-)NAVN og (IP-)NUMMER

Internet Society (ISOC)

Provides leadership in issues relating to the Internet and serves as the organizational home of groups responsible for Internet standards.

Internet Engineering Task Force (IETF)

Develops and disseminates the standards and protocols that define the architecture and software of the Internet.

Internet Engineering Steering Group (IESG)

Manages the technical activities of the IETF and oversees the process of standards development.

Internet Architecture Board (IAB)

Defines the overall architecture of the Internet, providing guidance and broad direction to the IETF.

Internet Research Task Force (IRTF)

Organizes research groups on topics related to Internet protocols, applications, architecture, and technology.

Hvilke modeller (arkitektur) brukes?

KRONOLOGI

Internett historikk: Forspill

1961

Kleinrock: Pakkeswitching som prinsipp

1964

Baran: Pakkeswitching i militære nett

1967

 ARPAnet (Advanced Research Project Agency) unnfanget

1969

Første ARPAnet node operativ

1972

- ARPAnet demonstrert med 15 noder, NCP, Mail
- Norge tilknyttes

Internett historikk: 70-tallet

1970

ALOHAnet på Hawaii

1973

Metcalfe: Ethernet

1974

 Cerf & Kahn: Nettverksarkitektur, Internetts "fedre": «Ende-til-ende prinsippet»

1976

 UNINETT blir etablert for å levere Internett til norske universitet

1977-79

 Proprietære arkitekturer, SNA, XNA

 Pakkeswitching på fast lengde (forløper til ATM)

1979

ARPAnet har 200 noder

Cerf and Kahn's internetworking prinsipper:

- minimalisme, autonomi –
 krever ingen indre endringer
 for å kople sammen netteverk
- Best effort service model
- Tilstandsløse routere
- Desentralisert kontroll

definerer dagens Internet arkitektur

Internett historikk: 80-tallet

1982

SMTP protokoll (email sending) definert

1983

TCP blir off. standardprotokoll for ARPAnet

1988

- TCP trafikk-kork kontroll, IPv4, UDP

1989

- 100 000 verter i totalt nettverk

Internett historikk: 90-tallet

1991

Berners-Lee: HTML og HTTP

1994

Mosaic, senere Netscape

1994

 ARPAnet «nedlagt», NSFnet overtar, kommersialiseringen starter

2000

- 600 millioner Internett-brukere
- Mer enn 1 milliard tilgjengelige sider på WWW

2008

1,2 milliarder brukere fordelt på 500 millioner hosts

PROTOKOLLER (OG ANDRE BEGREP)

Hva er en protokoll?

- Brukes til kommunikasjon mellom "like" funksjoner
- Må snakke det samme "språk"
- Funksjoner
 - Bruker-applikasjoner
 - E-mail
 - Terminaler
- Systemer
 - Computere
 - Terminaler
 - Sensorer

Protokoll

Nøkkel-elementer for en protokoll

Syntaks

- "ord, ordstilling og grammatikk"
- Data-formater
- Signal-nivåer

Semantikk

- "betydning"
- Kontroll-informasjon
- Feil-behandling

Timing

- Hastighets-tilpasning
- Sekvens-tilordning

Nettverkets ytterkanter

Ende-systemer (verter = hosts)

- Kjører applikasjoner
 - WWW, telnet, email

Tjenestemodeller:

- Klient-tjener modell
 - Forespørsler kommer fra klient som mottar service fra tjener
 - F.eks. WWW browser/tjener
- Peer-peer (P2P) modell
 - Alle computere er likeverdige
 - F.eks. BitTorrent, Skype,...

Nettverkets ytterkanter

- Forbindelses-orientert service
 - Oppretter kontakt (handshake) før data overføres
 - Etablerer overførings-tilstand i endesystemene
- TCP (Transmission Control Protocol)
 - Internetts mest brukte forbindelses-service
 - Pålitelig og ordnet dataoverføring
 - Service ved tap av data
 - Flytkontroll mot oversvømmelse
 - Reduserer farten på avsender ved for stor trengsel på nettet (metningskontroll)

Nettverk av nettverk!

- Internett var opprinnelig laget for å kople sammen ulike typer lokalnettverk
- En datapakke passerer altså (ofte) gjennom mange ulike typer nettverk!

TRACEROUTE APPLIKASJONEN

- Viser hvilke routere en pakke går gjennom
- Kan måle forsinkelsene mellom nodene med applikasjonen traceroute (NT: tracert)
- Stadig oftere stoppet av brannmurer o.l.

```
C:\WINNT\System32\cmd.exe
C:∖>tracert www.cia.gov
Tracing route to www.odci.gov [198.81.129.100]
over a maximum of 30 hops:
      <10 ms
               <10 ms
                          10 ms
                                 10.21.11.2
 2345678
                                 Request timed out.
      <10 ms
               <10 ms
                                 194.19.88.181
       10 ms
                                 oslo-i2.banetele.net [194.19.1.198]
      <10 ms
                10 ms
                         <10 ms
                                 POS5-0.GW3.OSL2.ALTER.NET [146.188.57.205]
      <10 ms
               <10 ms
                                 so-3-0-0.XR1.OSL2.ALTER.NET [146.188.15.93]
                        10 ms
                                 so-4-2-0.TR1.CPH3.ALTER.NET [146.188.3.41]
       10 ms
               10 ms
                        10 ms
      111 ms
               110 ms
                        110 ms
  9
               110 ms
                        110 ms
                                 so-0-0-0.IL1.DCA6.ALTER.NET [146.188.13.33]
               111 ms
                        110 ms
                                 0.so-1-0-0.TL1.DCA6.ALTER.NET
 11
      111 ms
               120 ms
                        120 ms
                                 0.so-6-0-0.CL1.RDU1.ALTER.NET [152.63
                                 123.ATM6-0.GW6.RDU1.ALTER.NET [152.63.38.229]
 12
      121
                        120 ms
               120 ms
                                 res2rdu1-gw.customer.alter.net [157.130.85.234]
 13
      120
               131 ms
 14
                                 Request timed out.
                                 Request timed out.
 15
16
lC:\>
```

Oppdeling av nettverk

- Nettverket består av mange deler
 - Verter
 - Routere
 - Linker til forskjellige media
 - Applikasjoner
 - Protokoller
 - Programvare
 - Maskinvare
- Hvordan skal vi få organisert alt dette?
 - Splitt og hersk!
 - Del opp i «abstraksjonsnivåer» ut fra funksjonalitet

Ex: Organisering av flytur

Vi abstraherer:

- Hva er felles funksjonalitet?
- Vi definerer regler (protokoller) for hvordan ting skal foregå på hvert trinn/nivå

Reservasjons-kontroll
Bagasje-kontroll
Passasjer-kontroll
Flyplass-kontroll
Flytrafikk-kontroll
Fly-kontroll

Internet protocol stacken

- Lag for nettverksapplikasjoner
 - FTP, SMTP, HTTP, ...
- Lag for transport mellom verter/prosesser
 - TCP, UDP,...
- Lag for nettverks-ruting ende-til-ende
 - IP, ICMP, RIP...
- Lag for overføring nabo-til-nabo
 - Ethernet
- Lag for fysisk overføring
 - Kabling, plugger, signalnivå

IPCONFIG (ifconfig)

```
C:∖>ipconfig /all
Windows IP-konfigurasjon
                               . . . . : NITH-blistog
       Primær DNS-suffiks . . . .
       IP-ruting aktivert . . . . . .
       WINS Proxy aktivert. . . . . .
       Sokeliste for DNS-suffiks. . . . : oslo.nith.no
Ethernet-kort eth0:
       Tilkoblingsspesifikt DNS-suffiks : oslo.nith.no
                    . . . . . . . . . : Broadcom NetXtreme 57xx Gigabit
oller
       Fysisk adresse . . . . . . . . .
                                       : 00-13-72-94-FF-78
       DHCP aktivert. . . . . . . . . . . . Ja
Automatisk konfigurasjon aktivert: Ja
       Nettverksmaske . . . . .
       Standard gateway . . . . . . . : 10.21.4.1
       Primær WINS-server . . . . . : 10.21.4.131
       Leasingavtale mottatt. .
                                         26. oktober 2008 17:25:30
       Leasingavtale utgår. . . . . . : 26. oktober 2008 19:25:30
```

- Viser IP-nettverksparametre som de har blitt satt på (NT) arbeidsstasjon
 - For å endre nettverksparametere må du bruke netsh
- Linux/OS X: ifconfig
 - "kraftigere" da du også kan endre oppsett med samme

netstat -an

```
C:∖>netstat −an
Aktive tilkoblinger
         Lokal adresse
                                  Ekstern adresse
                                                           Tilstand
  Prot.
  TCP
         0.0.0.0:135
                                  0.0.0.0:0
  TCP
         0.0.0.0:445
                                  0.0.0.0:0
         0.0.0.0:1028
  TCP
                                  0.0.0.0:0
  TCP
         0.0.0.0:3389
                                  0.0.0.0:0
  TCP
                                  0.0.0.0:0
  TCP
                                  64.233.183.18:443
  TCP
                                  158.36.191.141:443
  TCP
                                  64.233.183.18:443
  TCP
         127.0.0.1:1035
                                  0.0.0.0:0
  TCP
         127.0.0.1:1416
                                  127.0.0.1:1417
  TCP
         127.0.0.1:1417
                                  127.0.0.1:1416
  TCP
         127.0.0.1:1455
                                  127.0.0.1:1456
  TCP
                                  127.0.0.1:1455
  TCP
                                  0.0.0.0:0
  TCP
                                  0.0.0.0:0
                                                           LISTENING
  UDP
         0.0.0.0:161
  UDP
         0.0.0.0:445
  UDP
         0.0.0.0:500
  UDP
         0.0.0.0:1025
  UDP
         0.0.0.0:1029
  UDP
         0.0.0.0:4500
                                  *:*
  UDP
  UDP
  UDP
  UDP
  UDP
  UDP
         127.0.0.1:1030
         127.0.0.1:1040
                                  *:*
```

Viser transportlag-tilstand ("åpne porter")

netstat -r

```
C:∖>netstat −r
Rutingstabell
Grensesnittliste
   Aktive ruter:
Nettverksmål
            Nettverksmaske
                                         Grensesnitt Metrikk
                               Gateway
                      0.0.0.0
                                             10.21.5.228
                                                            20
               255.255.255.255
                                                            20
      127.0.0.0
    169.254.0.0
                                10.21.5.228
 255.255.255.255
Std. gateway:
Faste ruter:
 Ingen
```

- Viser lokal routing-tabell
- route-kommandoen lar deg også endre den...

Mnn/ut- pakking av data

- Avsender: Hvert lag tar data fra laget ovenfor
 - Legger til informasjon (header), lager ny dataenhet
 - Leverer nye data til laget nedenfor
- Mottaker prosesserer data i motsatt rekkefølge

SIKKERHET?

- Internett var designet for et minimum av pålitelighet og med svært lite tanke på sikkerhet
 - Har blitt den viktigste spredningsvektoren for malware
- Nettverkssikkerhet
 - Hvordan beskytte kommunikasjon mot å bli avlyttet, utnyttet eller "krasjet"
 - Virus, ormer, trojanske hester, spyware, spam,...
 - Denial of Service Angrep (DOS)
 - Mye mer om dette i TK2100 (etter jul)

Kritiske tjenestenivåer for applikasjoner

Tap av data

- Noen applikasjoner tåler litt tap av data
 - Audio, video
- Andre må ha 100% pålitelig dataoverføring
 - Filoverføring

Båndbredde/bitrate (bps)

- Noen applikasjoner må ha en viss båndbredde
 - Multimedia
- Andre kan bruke båndbredden dynamisk
 - Filoverføring

Timing

- Noen applikasjoner tåler ikke mye tidsforsinkelse/latens
 - Sanntidsprosesser, spill

BITRATE («båndbredde»)

- Båndbredde heter egentlig bitrate på norsk
 - Båndbredde er en relatert størrelse som måles i Hz (signalbehandling)
 - Uttrykk for den teoretiske dataoverføringskapasiteten på en link
- 1 Mbps = $1\ 000\ 000\ b/s$
 - Merk at dette ikke er Mi, men «m»
 - Cirka 108 KiB per sekund
- Latens = «responstid» er ofte like viktig i forhold til opplevelse av ytelse...

http://info.cern.ch/hypertext/WWW/TheProject.html

var den første «hjemmesiden» publisert 6. August 1991

WORLD WIDE WEB

Noen sentrale protokoller og begreper

Klient/tjener

 Typisk oppsett i et nettverk

Klient

- Tar initiativet
- Ber om en service/tjeneste tjeneren
- På web er klienten i browseren

Tjener

- Leverer etterspurt service til klienten
- På web er dette web-serveren

Klient/tjener: poeng

- Du ser svært lite av hva som skjer «under panseret» i browseren.
- Det du oppfatter som «en side» er resultatet av mengdevis av enkeltutvekslinger av forespørsler og svar
 - F.eks. er hvert enkelt bilde i siden resultatet av en separat forespørsel (GET) og svar (200 OK + fil innhold)
- For å kunne feilsøke må vi hele tiden huske hva som egentlig foregår...

Chrome: Ctrl-Shft-I (Developer Tools)

Nyheter fra Norges mest leste ne X B : TR O ◎ 17 : X VG LIVE TV-GUIDE MENY = <html lang="no" class="desktop deferred-css-loaded has-horseshoe" databasepath="/"; ▶ <head>...</head: Bare lave prise <img src="https://click.vgnett.no/vg/pageview.gif?</pre> p=front&d=desktop&t=1539634848749" id="vgclick" alt style="display: none;"> <script type="text/javascript"> <!--googleoff: index--> Hopp til hovedinnhold > <div id="spritesheet">...</div> ▶ <div id="application">...</div> <script>...</script> <script>...</script> <script>...</script> <script>window.__REDIAL_PROPS__ = [null,null,null]</script> Mann i 20-årene knivdrept i Oslo: <script defer src="//vgc.no/core-nav//app.19e8c6e....js"></script> ><script>...</script> html body#frontpage.front.desktop.section-forsiden.wallpaper-top Funnet dødelig Event Listeners DOM Breakpoints Properties Accessibility Filter :hov .cls + element.style { skadet i kollektiv background-color: transparent; borde background-image: url(https://vcdn.adnxs.com/p/creative-779.200 × 24205.800 image/3e/1a/af/c4/3e1aafc4-451b-4a75-a694e74994144e76.jpg); background-repeat: > no-repeat; ☐ 2200 **L** 2200 0000 🖂 2200@vg.no background-position: ▶ center 123px background-attachment: fixed; will-change: background-position; AVSLORER AVSLORER Show all .wallpaper-top { desktop.css?35b...70fe480a9e10:1 background-at... background-position:> center 71px!important: ▶ background-co... 🖳 rgba (... ▶ background-im... url(http... ▼ body { defer.css?0ba75...095709c2c0dd:1

 Ved sjekke under **Network** får du se mer av hva som har foregått før siden endelig ble rendret i browseren

Hva er en browser/nettleser?

 Programvare som kjører klient-delen av en web-applikasjon

Arkitektur

- Bruker-grensesnitt (UI)
 - Toolbar, nedlastingsinfo, knapper, printing,..
- Browser motor
 - Høynivå grensesnitt mot Rendering motor
 - Laster URI, støtter "surfing": frem, tilbake, reload,..
- Rendering motor
 - Beregner side-layout og viser frem.
 - Parser html, css, ...
- Nettverk
 - Står for filoverføring (http, ftp, ..)
 - Oversetter mellom char-set, kan MIME
 - Cache

- Javascript Interpreterer
 - Kjører Javascript
- XML Parser
 - Parser html/xml til et DOM-tre
- Grafikkbibliotek
 - Tegne-, meny- og vindus-rutinene
 - Fonter
- Persistente data
 - Lagre bokmerker, sertifikater, personlig konfigurering

Layout motor = browser + rendering

- Rendering og browser motoren kombineres ofte i en Layout motor.
- Opera
 - Presto
 - men de gikk i 2013 over til samme som...
- Safari + Chrome
 - WebKit
- Firefox (Mozilla)
 - Gecko
- Lynx
 - Libwww + Curses

Arkitekturer (2006)

Fig. 7. Architecture of Safari

Fig. 8. Architecture of Lynx

Service i transportlag protokoller

 Transportlaget sørger for kommunikasjon mellom prosesser som kjører på vertsmaskiner («hosts»)

TCP

- Forbindelsesorientert
- Pålitelig transport
- Flytkontroll
- Metnings-kontroll
- Ikke timing kontroll eller minimumsgaranti for båndbredde

UDP

Lettvektsprotokoll uten garantier

- Web-side
 - Består av "objekter", adresseres av en URI
- Vanligvis har web-siden
 - En base HTML side (index.html), flere objektreferanser
- URI (url) består av
 - protokoll://bruker:passord@vertsnavn:port/filsti/filnavn#anker ?parametre (protocol://user:pwd@host:port/path?parameters#anchor)
 - http://test.kristiania.no/TK1100/ressursnavn.txt
- Bruker-agenten på web er en browser
 - Netscape, Internet Explorer, Mozilla
- Tjeneren på web kalles web-server
 - Apache, MS IIS

- Browseren foretar et DNS-oppslag og oppretter en TCP-forbindelse til "authority".
- Så følger "filsti" på server (ressurs-ID)
- Etter ? Følger argumenter til script/program
- Etter # typisk et anker/posisjon innenfor ressurs ("dokument") (<a href=....)

HTTP (HyperText Transfer Protocol)

- Webens applikasjons-protokoll
- Klient/tjener modell
 - Klienten spør etter, mottar og viser web "objekter"
 - Tjeneren sender objekter på etterspørsel

Http-klienter

- Utformer og sender http-forespørsler
- Viser frem ("rendrer") web-innhold ("layout-engine")
- Kjører script og plug-ins/add-ons...

HTTP-tjenere

Tar mot og betjener http-forespørsler

HTTP informasjonsflyt

- Bruker TCP transport service
 - Klient setter opp TCP-forbindelsen (lager socket) til tjeneren, port 80
 - Tjeneren godtar forbindelsen til klienten
 - Klient og tjener utveksler infomasjon
 - TCP-forbindelsen lukkes
- HTTP oppbevarer ingen informasjon om tidligere forespørsler (tilstandsløs = stateless)

HTTP meldingsformat: spørring

Meldingsheadere er kodet i 7 bit ASCII-format

HTTP 1.0 meldingsformat

Spørring

```
request line
(GET, POST,
HEAD commands)

Ser-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

Carriage return

line feed
indicates end
of message
```

Svar

```
status line
  (protocol-
                HTTP/1.0 200 OK
 status code
                 Date: Thu, 06 Aug 1998 12:00:15 GMT
status phrase)
                 Server: Apache/1.3.0 (Unix)
                 Last-Modified: Mon, 22 Jun 1998 .....
        header
                 Content-Length: 6821
          lines
                 Content-Type: text/html
                 data data data data ...
data, e.g.,
requested
 html file
```


Typer metoder

HTTP/1.0

- GET
- POST
- HEAD
 - Spør bare server om metainformasjon = headere

<u>HTTP/1.1</u>

- GET, POST, HEAD
- PUT
 - Laster opp en fil til adressen som er spesifisert i URL-feltet
- DELETE
 - Sletter filen som er spesifisert i URL-feltet
- OPTION
- TRACE

HTTP 1.1 Meldingsformat

```
Obligatorish
  request line
 (GET, POST,
                    GET /somedir/page.html HTTP/1.1
HEAD commands)
                    Host: www.someschool.edu
                    User-agent: Mozilla/4.0
            header
                    Connection: close
               lines
                    Accept-language:fr
 Carriage return
                    (extra carriage return, line feed)
     line feed
   indicates end
    of message
   status line
   (protocol-
                  HTTP/1.1 200 OK
  status code
                  Connection close
 status phrase)
                  Date: Thu, 06 Aug 1998 12:00:15 GMT
                  Server: Apache/1.3.0 (Unix)
          header
                  Last-Modified: Mon, 22 Jun 1998 .....
            lines
                  Content-Length: 6821
                  Content-Type: text/html
  data, e.g.,
                  data data data data ...
  requested
  HTML file
                                                                       51
```


Manuell kjøring

HTTP svar statuskoder

- Ligger i første linjen på svarmeldingen
- Eksempler:

200 OK

 spørring vellykket, objektet kommer senere i meldingen

301 Moved Permanently

 etterspurt objekt flyttet, ny adresse senere i meldingen

400 Bad Request

 spørring ikke forstått av tjeneren

404 Not Found

 etterspurt dokument/fil ikke funnet på denne tjeneren

505 HTTP Version Not Supported

System:

Tre siffers statuskode

1xx = Informational

2xx = Success

3xx = Redirection

(alternate URL is supplied)

4xx = Client Error

5xx = Server Error

₩ HTTP/2

- Mai 2015
- Helt tilbake kompatibel med 1.1
- Hentet mye fra Googles SPDY prosjekt.
- Binær, i stedet for textbasert
- Bedrer ytelse (brukeropplevelse) ved
 - parallellisering,
 - komprimering
 - lar serverne proaktivt «dytte» responser inn i klient-cache
- Støttes foreløpig av ca 2% av Webserverne.

Bruker-tjener kommunikasjon (Ex)

Ex: Bekreftelse av identitet

- Navn, passord
- Ligger i header ved spørring
- Responsen ligger i svar-header
- Usikker (Base 64 koding, ikke kryptering)

Vanligvis (stateless) må
dette gjentas ved hver
spørring,
men browseren lagrer navn,
passord for brukeren slik at
det bare ses en gang

Klient-tjener kommunikasjon (Ex)

Betinget GET

- If-modified-since:
- Ikke send svar hvis klient har oppdatert versjon
- Sjekker tidsstempelet på filen
- Klient
 - Spesifiser dato for cachet fil
- Tjener
 - Statuskode 304 dersom ikke oppdatert
- Header-felter som Etag og Vary har Proxy-bruk å gjøre...

Beholde tilstanden med cookie

- HTTP er en tilstandsløs protokoll
 - Fra serveren og klientens perspektiv er alle forespørsler fullstendig uavhengige av hverandre
- Mange Web-steder benytter cookies
- En cookie har 3/4 hoved-elementer
 - Cookie header linje i http-responsen
 - Cookie header linje i http-forespørselen
 - (Cookie fil som ligger hos klienten)
 - Database over cookies hos tjeneren
- Cookie kan
 - Bevare tilstand
 - "Huske" autorisasjoner og settinger

MIME (Multipurpose Internet Mail Extensions)

- Tilleggslinjer i header for MIME innhold
 - Tekst, bilde, audio, video, applikasjon («binære filer»)
 - Opprinnelig for epost, benyttes også av HTTP-klient/tjener
 - Angir koder for innholdstype og hvordan det er (om-kodet) under overføringen

DNS (Domain Name System)

- Mennesker
 - Navn, person-nummer
 - "Ola Nordmann", 161165 42796
- Internett
 - IP-adresse, Navn
 - 10.11.1.21, www.kristiania.no
- Løser dette på Internett med DNS
 - Distribuert database på mange navne-tjenere
 - Protokoll i applikasjons-laget for å knytte navn og IP-adresser

DNS navne-tjenere

Ikke sentralisert!

- Unngå at hele nettet går ned med navne-tjeneren
- Unngå opphopning av trafikk
- Sentralisert database ligger alltid "langt" vekk
- Kan skaleres
- Navne-tjenere fordeles hierarkisk

Hoved (root) navne-tjenere

- Kontaktes av lokale tjenere ved behov
- 13 hoved navne-tjenere

Caching og oppdatering

- Navne-tjenere cacher DNS kartlegging
- Lagring i cache forsvinner etter en tid (timeout)
- Mekanismer for innmelding og oppdatering utvikles hos IETF (Internet Engineering Task Force)
 - Dynamisk oppdatering
 - Sikkerhet
 - Mmm
- Navn (og nummere) forvaltes av <u>IANA</u> med underorganisasjoner
 - Europa: RIPE
 - Norge (.no): NorlD

Distribuert database lagrer RR (resource records)

RR format: navn, verdi, type, ttl

- Type=A
 - Navn=vertsnavn, verdi=IP-adresse
- Type=NS
 - Navn=domene, verdi=IP-adresse til navne-tjener
- Type=CNAME
 - Navn=alias, verdi=virkelig navn
- Type=MX
 - Navn=alias, verdi=post tjener

Win: nslookup

```
C:\Windows\system32\cmd.exe - nslookup
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Users\blistog>nslookup
Default Server: obelix.ad.nith.no
Address: 158.36.131.10
> ?
Commands:
            (identifiers are shown in uppercase, [] means optional)
                - print info about the host/domain NAME using default server
NAME1 NAME2
                - as above, but use NAME2 as server
help or ?
                - print info on common commands
set OPTION
                - set an option
                        - print options, current server and host
                        - print debugging information
    [noldebug
    [no]d2

    print exhaustive debugging information

    [no]defname
                       - append domain name to each query
                       - ask for recursive answer to query
    [no]recurse
    [no]search
                        - use domain search list
    [no]vc
                       - always use a virtual circuit
    domain=NAME

    set default domain name to NAME

    srchlist=N1[/N2/.../N6] - set domain to N1 and search list to N1,N2, etc.
    root=NAME
                       - set root server to NAME
    retry=X
                       - set number of retries to X
    timeout=X
                       - set initial time-out interval to X seconds
    type=X
                        - set query type (ex. A,AAAA,A+AAAA,ANY,CNAME,MX,NS,PTR,SOA,SRV)
    querytype=X
                        - same as type
                        - set query class (ex. IN (Internet), ANY)
    class=X
    [no]msxfr
                        - use MS fast zone transfer
    ixfrver=X
                        - current version to use in IXFR transfer request
                - set default server to NAME, using current default server
server NAME
lserver NAME
                - set default server to NAME, using initial server
                - set current default server to the root
ls [opt] DOMAIN [> FILE] - list addresses in DOMAIN (optional: output to FILE)
                - list canonical names and aliases
                - list all records
    -t TYPE
                - list records of the given RFC record type (ex. A,CNAME,MX,NS,PTR etc.)
view FILE
                    - sort an 'ls' output file and view it with pg
exit
                - exit the program
```

nslookup kan også brukes i OSXog Linux, men der foretrekkes diq

AVSLUTTNING

Hva skal vi kunne?

- Definere Internett
- TCP/IP-modellen
 - Hvilke oppgaver løses på de ulike lagene
- Klient/Tjener-modellen
- HTTP
 - Oppbyggingen av URI og URL
 - Request/response
 - GET og ulike typer responskoder
 - Kort om tilstandsløshet og Cookies
- DNS
 - Hvordan organisert: TLD og NS-servere

Dagens øving

- Finn artikler om ARPA Net (helst flere enn den jeg har linket til), og skriv 1 A4 side med dine egne ord om emnet
- Øving T06.00 og T06.01

Spørsmål?

