

Musculoskeletal modeling of the swimming salamander

Jonathan Grizou

Supervisors : Konstantinos Karakasiliotis Jeremie Knüsel

Professor: Auke Jan Ijspeert

Motivations

Understanding the role of muscles during swimming

Use the robots as an animal model to investigate hypotheses

Use biology to design more efficient robot

Objectives

- extract kinematics data from X-ray movies
- muscle/joint model + metabolic cost estimation
- muscle optimization using EMG & kinematics

- from simulation to robot
 - investigations

X-ray

X-ray

Muscle/Joint model

Joint model

Joint model

muscle_length =
$$d \pm r * tan(\theta/2)$$

Joint model

Torque =
$$(F_right - F_left) * (r/2)$$

Reference:

Length dependence of active force production in skeletal muscle D. E. RASSIER, B.R MacINTOSH, AND W. HERZOG

Fig. 2. Force-length relationship of frog skeletal muscle sarcomere, as derived first by Gordon et al. (28) (top), and schematic sarcomeres corresponding to crucial points (1-5) labeled on the force-length curve (bottom).

Ftot = Fmax * activation * FI * Fv + Fppe

u(t) = electrical excitation (EMG)

a(t) = chemical excitation

$$\frac{da(t)}{dt} + \left[\frac{1}{Tact} \cdot \left(B + (1 - B) \cdot u(t)\right)\right] \cdot a(t) = \left(\frac{1}{Tact}\right) \cdot u(t)$$

$$0 < B = const < 1$$

Reference:

Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control Felix E. Zajac

Metabolic cost

$$dE = dH + dW$$

$$dH = dA + dM + dS + dB$$

$$> dA = \Phi * m * a(t) * AHR$$

$$\Phi = 0.06 + \exp(-tstim * a(t) / 0.045)$$

$$> dH = L(Im) * m * a(t) * MHR$$

Fig. 2. Length dependence of the maintenance heat rate. The function $L(l^M/l_o^M)$ is used for approximating the maintenance heat rate \dot{M} (Eq. (7)).

$$> dS = \alpha * Vce$$

$$\alpha = 0.16 F_{iso} + 0.18 F$$

Else

$$\alpha = 0.157 * F$$

$$> dB = 0.0225 * m$$

$$> dW = F * Vce$$

Reference:

A phenomenological model for estimating metabolic energy consumption in muscle contraction

Lindsay J. Bhargava, Marcus G. Pandy, Frank C. Anderson

Test bed

Test bed

Summary

Activation: Tact, B, G

Muscles: Fmax, Lopt, Vmax

Joints: r

Objectives:

- match the kinematics
- minimize the metabolic cost

Coming soon

EMG & kinematics synchronization

Fitting function = fct(matching,energy,r)

Optimization

Direct use of kinematics data with the robot

Add tendon

Bonus

Differentiate slow and fast muscles

Optimization of EMG for speed

40 segment model with biological data

Webots

Webots

Thank you for your time

Any questions?