TIME SERIES FORECASTING

Log returns in percentage

Formula used: Difference in the natural logarithm * 100

- > Results obtained for the data:
- Log returns line graph:

• Log returns bar graph:

• Log returns histogram distribution:

Google drive link of the data and calculated log returns https://drive.google.com/file/d/1NhPdH6YxSgA QwOcX-HhXswkE0TaP856/view?usp=sharing

1) Descriptive statistics:

> Results obtained from the data:

• Histogram and stats:

• Stats table:

From the results, it is seen that it is negatively skewed and the value of kurtosis is higher than 3, so the distribution is leptokurtic,

2) AR, MA, ARMA/ARIMA modelling:

Steps used in the assignment:

Box-Jenkins Methodology is followed,

- 1) Identification:
 - Converting to log series
 - Unit root test at level and difference to check whether to reject the null hypothesis
 - Choosing tentative p,d,q
- 2) Estimation:
 - Estimating the values of p, d, q using automatic ARIMA forecasting
 - Selecting five models from the ARMA criteria table
- 3) Diagnostic checking:
 - Selecting the best fit model using the tests
 - Using normality test (residual diagnostics)
 - Using serial correlation test
 - Using heteroskedasticity test (ARCH)
 - Checking R squared

Checking significant terms in the model	
Based on these factors, the appropriate AR, MA, ARMA, ARIMA model is chosen	
AR, MA, AR/MA Model	
Log series of the data	

Log series of the data is generated to perform AR, MA modelling

Unit root test

Phillips-Perron Unit Root Test on LINDEX

0.000125

0.000154

Null Hypothesis: LINDEX has a unit root

Exogenous: Constant

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st Test critical values:	atistic 1% level 5% level	0.085681 -3.435398 -2.863657	0.9646
***************************************	10% level	-2.567947	
*MacKinnon (1996) or	ne-sided p-values.		

Phillips-Perron Test Equation Dependent Variable: D(LINDEX)

Residual variance (no correction)

HAC corrected variance (Bartlett kernel)

Method: Least Squares Date: 05/18/21 Time: 13:13

Sample (adjusted): 1/05/2010 12/31/2014 Included observations: 1243 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LINDEX(-1) C	0.000680 -0.005908	0.001890 0.017710	0.359762 -0.333575	0.7191 0.7388
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000104 -0.000701 0.011208 0.155890 3819.745 0.129429 0.719086	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.000463 0.011204 -6.142792 -6.134545 -6.139691 1.696745

Discussion:

Using the Philips – Perron Unit root test, It is estimated that it has a unit root

At difference 1,

View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph Stats Ident

Phillips-Perron Unit Root Test on D(LINDEX)

Null Hypothesis: D(LINDEX) has a unit root

Exogenous: Constant

Bandwidth: 8 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta Test critical values:	atistic 1% level 5% level 10% level	-30.06895 -3.435402 -2.863659 -2.567948	0.0000

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.000122
HAC corrected variance (Bartlett kernel)	0.000112

Phillips-Perron Test Equation Dependent Variable: D(LINDEX,2)

Method: Least Squares Date: 05/18/21 Time: 13:21

Sample (adjusted): 1/06/2010 12/31/2014 Included observations: 1242 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LINDEX(-1)) C	-0.848513 0.000382	0.028056 0.000315	-30.24362 1.213921	0.0000 0.2250
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.424508 0.424044 0.011076 0.152118 3831.385 914.6767 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-5.72E-06 0.014594 -6.166482 -6.158230 -6.163379 2.001891

Discussion:

On estimating the difference of the series, It is able to reject null hypothesis as the probability is 0% and the series becomes stationary

Therefore, d = 1

So, ARIMA = (p, 1, q)

ARIMA model is formulated from the data

• Difference the series of log (data) to convert ARIMA to ARMA

The difference of the log series is generated to convert the formulated ARIMA model to ARMA model.

Unit root test of d(lindex):

On testing the unit root, null hypothesis is rejected as the probability is 0%.

Automatic ARIMA forecasting

This is the ARMA model(p, q) of dlindex

Series: DLINDEX Workfile: NIFTY NEXT 50 2010-2014::U
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph Stats Ider
Automatic ARIMA Forecasting Selected dependent variable: DLINDEX Date: 05/18/21 Time: 13:43 Sample: 1/04/2010 11/28/2014 Included observations: 1221 Forecast length: 0
Number of estimated ARMA models: 16 Number of non-converged estimations: 0 Selected ARMA model: (2,2)(0,0) AIC value: -6.16810425916

Discussion:

From the results of automatic ARIMA forecasting it can be seen that, ARIMA(2, 1, 2) for Lindex is equivalent to ARMA(2, 2) for DLindex

d = 1

p = 2

q = 2

Estimated ARIMA Model = ARIMA(2, 1, 2) Estimated ARMA Model = ARMA(2, 2)

• ARMA criteria table:

To find out the best fitting models

□ Summary

Automatic ARIMA Forecasting

Selected dependent variable: DLINDEX

Date: 05/18/21 Time: 13:52 Sample: 1/04/2010 12/31/2014 Included observations: 1243

Forecast length: 0

Number of estimated ARMA models: 16 Number of non-converged estimations: 0 Selected ARMA model: (2,2)(0,0) AIC value: -6.16447548953

□ ARMA Criteria Table

Model Selection Criteria Table Dependent Variable: DLINDEX Date: 05/18/21 Time: 13:52 Sample: 1/04/2010 12/31/2014 Included observations: 1243

Model	LogL	AIC*	BIC	HQ
(2,2)(0,0)	3837.221517	-6.164475	-6.139736	-6.155172
(1,0)(0,0)	3834.112113	-6.164299	-6.151930	-6.159648
(0,1)(0,0)	3833.616640	-6.163502	-6.151132	-6.158851
(2,3)(0,0)	3837.599556	-6.163475	-6.134612	-6.152621
(3,2)(0,0)	3837.578018	-6.163440	-6.134577	-6.152586
(0,2)(0,0)	3834.232981	-6.162885	-6.146392	-6.156683
(2,0)(0,0)	3834.123081	-6.162708	-6.146215	-6.156506
(1,1)(0,0)	3834.120148	-6.162703	-6.146210	-6.156501
(3,3)(0,0)	3837.889673	-6.162333	-6.129346	-6.149928
(3,1)(0,0)	3835.694189	-6.162018	-6.137278	-6.152715
(2,1)(0,0)	3834.557729	-6.161798	-6.141182	-6.154046
(3,0)(0,0)	3834.551426	-6.161788	-6.141172	-6.154036
(0,3)(0,0)	3834.233901	-6.161277	-6.140661	-6.153525
(1,2)(0,0)	3834.233162	-6.161276	-6.140660	-6.153524
(1,3)(0,0)	3834.933642	-6.160794	-6.136054	-6.151491
(0,0)(0,0)	3819.680271	-6.142687	-6.134441	-6.139586

Discussion:

Using the ARMA table,

On testing the first 5 models from the ARMA criteria table to find the best fitting model,

(2, 2) - Model1

(1, 0) - Model2

(0, 1) - Model3

(2, 3) - Model4

(3, 2) - Model5

Model 1:

Dependent Variable: DLINDEX

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 05/18/21 Time: 14:02 Sample: 1/05/2010 12/31/2014 Included observations: 1243

Convergence achieved after 18 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) MA(1) MA(2) SIGMASQ	0.000463 1.033308 -0.557999 -0.893094 0.458242 0.000122	0.000351 0.171297 0.109483 0.177982 0.121072 4.21E-06	1.318634 6.032256 -5.096649 -5.017881 3.784869 28.93742	0.1875 0.0000 0.0000 0.0000 0.0002 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.027866 0.023937 0.011069 0.151562 3837.222 7.091723 0.000002	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000463 0.011204 -6.164475 -6.139736 -6.155172 1.984795
Inverted AR Roots Inverted MA Roots	.5254i .45+.51i	.52+.54i .4551i		

Discussion:

Based on the above results, R-squared = 2.78 % AR(1), AR(2), MA(1), MA(2) terms are significant

On checking the autocorrelation using GLS method,

Normality test:

Discussion:

Errors terms (Residuals) follow normal distribution, so it is fine

Serial correlation:

Breusch-Godfrey Serial Correlation LM Test: Null hypothesis: No serial correlation at up to 2 lags

0.479630 0.6191 Prob. F(2,1236) Obs*R-squared 0.963945 Prob. Chi-Square(2) 0.6176

Test Equation:

Dependent Variable: RESID Method: Least Squares Date: 05/18/21 Time: 14:11 Sample: 1/05/2010 12/31/2014 Included observations: 1243

Coefficient covariance computed using outer product of gradients Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-3.09E-09	3.73E-06	-0.000827	0.9993
AR(1)	-0.000407	0.004437	-0.091732	0.9269
AR(2)	0.001371	0.003497	0.392106	0.6950
MA(1)	0.000960	0.006821	0.140804	0.8880
MA(2)	-0.001933	0.004236	-0.456381	0.6482
RESID(-1)	0.057041	0.234869	0.242862	0.8082
RESID(-2)	-0.025993	0.111018	-0.234137	0.8149
R-squared	0.000775	Mean dependent var		-1.01E-06
Adjusted R-squared	-0.004075	S.D. depend	lent var	0.011047
S.E. of regression	0.011069	Akaike info o	riterion	-6.163680
Sum squared resid	0.151444	Schwarz criterion		-6.134817
Log likelihood	3837.727	Hannan-Quinn criter.		-6.152827
F-statistic	0.159875	Durbin-Watson stat		1.998075
Prob(F-statistic)	0.987068			

There is no correlation and we cannot reject the null hypothesis

Heteroskedasticity test - ARCH

Heteroskedasticity Test: ARCH F-statistic 5.241509 Prob. F(1,1240) 0.0222 Obs*R-squared 5.227864 Prob. Chi-Square(1) 0.0222

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 05/18/21 Time: 14:14

Sample (adjusted): 1/06/2010 12/31/2014 Included observations: 1242 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	0.000114 0.064879	6.72E-06 0.028339	16.94521 2.289434	0.0000 0.0222
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.004209 0.003406 0.000203 5.12E-05 8796.940 5.241509 0.022222	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui Durbin-Wats	ent var riterion erion nn criter.	0.000122 0.000204 -14.16254 -14.15429 -14.15944 2.005693

Discussion:

Heteroskedasticity test is fine and the null hypothesis can be rejected.

Model 2:

Dependent Variable: DLINDEX

Method: ARMA Generalized Least Squares (Gauss-Newton)

Date: 05/18/21 Time: 15:35 Sample: 1/05/2010 12/31/2014 Included observations: 1243

Convergence achieved after 3 iterations

Coefficient covariance computed using outer product of gradients

d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1)	0.000466 0.151695	0.000370 0.028064	1.257928 5.405371	0.2087 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.022972 0.022184 0.011079 0.152325 3834.112 29.17820 0.000000	Schwarz criterion		0.000463 0.011204 -6.165908 -6.157662 -6.162807 2.000067
Inverted AR Roots	.15			

Discussion:

AR term is significant R – squared is 2.29 %

Normality test (Residual diagnostics):

The distribution is normal and normality is not violated

Serial correlation:

Breusch-Godfrey Serial Correlation LM Test: Null hypothesis: No serial correlation at up to 2 lags

Obs*R-squared 0.855522 Prob. Chi	0.426678 Prob. F(2,1239) 0.6528 0.855522 Prob. Chi-Square(2) 0.6520
----------------------------------	--

Test Equation:

Dependent Variable: RESID Method: Least Squares Date: 05/18/21 Time: 15:45 Sample: 1/05/2010 12/31/2014 Included observations: 1243

Coefficient covariance computed using outer product of gradients

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) RESID(-1) RESID(-2)	3.81E-09 0.011886 1.072952 0.170813	4.10E-06 0.013511 1.220925 0.187282	0.000930 0.879719 0.878803 0.912061	0.9993 0.3792 0.3797 0.3619
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000688 -0.001731 0.011084 0.152220 3834.552 0.284440 0.836664	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	-1.91E-06 0.011075 -6.163398 -6.146904 -6.157196 2.001927

Discussion:

There is variation in the correlation

Heteroskedasticity test – ARCH:

Heteroskedasticity Test: ARCH

F-statistic	6.559105	Prob. F(1,1240)	0.0106
Obs*R-squared	6.535116	Prob. Chi-Square(1)	0.0106

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 05/18/21 Time: 15:47

Sample (adjusted): 1/06/2010 12/31/2014 Included observations: 1242 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	0.000114 0.072538	6.77E-06 0.028323	16.78708 2.561075	0.0000 0.0106
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.005262 0.004460 0.000205 5.19E-05 8788.506 6.559105 0.010552	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quii Durbin-Wats	ent var riterion terion nn criter.	0.000122 0.000205 -14.14896 -14.14071 -14.14586 2.006799

Discussion:

Heteroskedasticity test is fine

Dependent Variable: DLINDEX

Method: ARMA Generalized Least Squares (Gauss-Newton)

Date: 05/18/21 Time: 15:49 Sample: 1/05/2010 12/31/2014 Included observations: 1243

Convergence achieved after 5 iterations

Coefficient covariance computed using outer product of gradients

d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	0.000465 0.146488	0.000360 0.028084	1.290437 5.216033	0.1971 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.022191 0.021403 0.011083 0.152447 3833.617 28.16437 0.000000	Mean depend S.D. depend Akaike info d Schwarz crit Hannan-Quit Durbin-Wats	ent var riterion terion nn criter.	0.000463 0.011204 -6.165111 -6.156865 -6.162010 1.990082
Inverted MA Roots	15			

Discussion:

MA term is significant R – squared is 2.21 %

Normality test:

The distribution is normal and the normality is not violated

Heteroskedasticity test – ARCH:

Heteroskedasticity Test	:: ARCH		
F-statistic	6.488486	Prob. F(1,1240)	0.0110
Obs*R-squared	6.465121	Prob. Chi-Square(1)	0.0110

Test Equation:

Dependent Variable: RESID*2 Method: Least Squares Date: 05/18/21 Time: 15:59

Sample (adjusted): 1/06/2010 12/31/2014 Included observations: 1242 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	0.000114 0.072148	6.76E-06 0.028324	16.81765 2.547251	0.0000 0.0110
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.005205 0.004403 0.000204 5.18E-05 8789.879 6.488486 0.010977	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quit Durbin-Wats	ent var riterion erion nn criter.	0.000123 0.000205 -14.15117 -14.14292 -14.14807 2.006981

Discussion:

Heteroskedasticity test is fine

Model 4:

Dependent Variable: DLINDEX

Method: ARMA Generalized Least Squares (Gauss-Newton)

Date: 05/18/21 Time: 16:14 Sample: 1/05/2010 12/31/2014 Included observations: 1243

Convergence achieved after 15 iterations

Coefficient covariance computed using outer product of gradients

d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) MA(1) MA(2) MA(3)	0.000463 1.129400 -0.690197 -0.981626 0.558033 0.039646	0.000345 0.193629 0.193777 0.196495 0.173827 0.049938	1.344247 5.832817 -3.561803 -4.995677 3.210276 0.793897	0.1791 0.0000 0.0004 0.0000 0.0014 0.4274
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.028459 0.024532 0.011066 0.151469 3837.600 7.246968 0.000001	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	dent var lent var riterion terion nn criter.	0.000463 0.011204 -6.165084 -6.140344 -6.155781 1.999507
Inverted AR Roots Inverted MA Roots	.56+.61i .5259i	.5661i .52+.59i	06	

Discussion:

AR(1), AR(2), MA(1), MA(2) are significant MA(3) is insignificant R – squared is 2.84 %

Normality test:

Residual distribution is normal and normality is not violated

• Serial correlation test:

Breusch-Godfrey Serial Correlation LM Test: Null hypothesis: No serial correlation at up to 2 lags

F-statistic		Prob. F(2,1235)	0.7243
Obs*R-squared		Prob. Chi-Square(2)	0.7228
Obs 14-squareu	0.040101	1 10b. Oni-Square(2)	0.1220

Test Equation:

Dependent Variable: RESID Method: Least Squares Date: 05/18/21 Time: 16:17 Sample: 1/05/2010 12/31/2014 Included observations: 1243

Coefficient covariance computed using outer product of gradients

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C AR(1) AR(2) MA(1) MA(2) MA(3) RESID(-1) RESID(-2)	-7.31E-08 -0.000130 -0.000462 -0.076707 0.080945 -0.047866 -6.960896 0.452990	3.81E-06 0.003448 0.002616 0.103697 0.110306 0.065650 9.503399 0.654529	-0.019200 -0.037642 -0.176729 -0.739725 0.733822 -0.729117 -0.732464 0.692085	0.9847 0.9700 0.8598 0.4596 0.4632 0.4661 0.4640 0.4890		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000522 -0.005143 0.011072 0.151390 3837.949 0.092183 0.998714	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-1.04E-06 0.011043 -6.162427 -6.129441 -6.150023 1.997812		

• Heteroskedasticity test – ARCH:

Heteroskedasticity Test: ARCH

F-statistic		Prob. F(1,1240)	0.0247
Obs*R-squared	5.047335	Prob. Chi-Square(1)	0.0247

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 05/18/21 Time: 16:18

Date: 05/18/21 Time: 16:18 Sample (adjusted): 1/06/2010 12/31/2014 Included observations: 1242 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID ² (-1)	0.000114 0.063750	6.73E-06 0.028341	16.95196 2.249393	0.0000 0.0247
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.004064 0.003261 0.000203 5.13E-05 8796.374 5.059770 0.024662	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quii Durbin-Wats	ent var riterion terion nn criter.	0.000122 0.000204 -14.16163 -14.15338 -14.15853 2.005612

Discussion:

Heteroskedasticity test is fine

Model 5:

Dependent Variable: DLINDEX

Method: ARMA Generalized Least Squares (Gauss-Newton)

Date: 05/18/21 Time: 16:19 Sample: 1/05/2010 12/31/2014 Included observations: 1243

Convergence achieved after 19 iterations

Coefficient covariance computed using outer product of gradients

d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) AR(3)	0.000464 1.204709 -0.765575 0.045085	0.000345 0.261882 0.282892 0.059714	1.344292 4.600204 -2.706243 0.755019	0.1791 0.0000 0.0069 0.4504
MA(1) MA(2)	-1.057534 0.624146	0.259438 0.241081	-4.076246 2.588946	0.0000 0.0097
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.028425 0.024498 0.011066 0.151475 3837.578 7.238063 0.000001	Mean depen S.D. depend Akaike info d Schwarz crit Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.000463 0.011204 -6.165049 -6.140309 -6.155746 1.998424
Inverted AR Roots Inverted MA Roots	.57+.61i .5359i	.5761i .53+.59i	.07	

Discussion:

AR(1), AR(2), MA(1), MA(2) terms are significant

AR(3) term is insignificant

R – squared is 2.84 %

Normality test:

Residual distribution is normal and normality is not violated

• Serial correlation test:

Breusch-Godfrey Serial Correlation LM Test: Null hypothesis: No serial correlation at up to 2 lags

F-statistic	0.399432	Prob. F(2,1235)	0.6708
Obs*R-squared	0.803519	Prob. Chi-Square(2)	0.6691

Test Equation:

Dependent Variable: RESID Method: Least Squares Date: 05/18/21 Time: 16:23 Sample: 1/05/2010 12/31/2014 Included observations: 1243

Coefficient covariance computed using outer product of gradients

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) AR(3) MA(1) MA(2) RESID(-1) RESID(-2)	-7.19E-08 -0.078208 0.088555 -0.054038 -0.000189 0.000902 -7.101628 -0.453724	3.81E-06 0.097852 0.110241 0.066876 0.004337 0.003011 8.749672 0.534182	-0.018875 -0.799241 0.803289 -0.808039 -0.043491 0.299605 -0.811645 -0.849380	0.9849 0.4243 0.4220 0.4192 0.9653 0.7645 0.4172 0.3958
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000646 -0.005018 0.011071 0.151377 3838.004 0.114122 0.997442	Mean depen S.D. depend Akaike info c Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-1.05E-06 0.011044 -6.162517 -6.129530 -6.150113 1.997472

Heteroskedasticity test – ARCH:

Heteroskedasticity Test: ARCH

F-statistic		Prob. F(1,1240)	0.0247
Obs*R-squared		Prob. Chi-Square(1)	0.0247
Obs*R-squared	5.042139	Prob. Chi-Square(1)	0.0247

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 05/18/21 Time: 16:23

Sample (adjusted): 1/06/2010 12/31/2014 Included observations: 1242 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	0.000114 0.063717	6.73E-06 0.028341	16.95072 2.248230	0.0000 0.0247
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.004060 0.003257 0.000203 5.13E-05 8796.147 5.054539 0.024737	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	0.000122 0.000204 -14.16127 -14.15302 -14.15816 2.005597

Discussion:

Heteroskedasticity test is fine

Residual graphs:

Residual graphs are drawn for all the models to check the residual distribution so as to estimate the best fitting model.

Model 1:

obs	Actual	Fitted	Residual	Residual Plot
1/05/2010	0.01503	0.00067	0.01436	
1/06/2010	0.00847	0.00261	0.00586	
1/07/2010	-0.00822	0.00184	-0.01006	
1/08/2010	-0.00087	-0.00134	0.00047	' 🦎 '
1/11/2010	0.00772	-0.00108	0.00880	1 🔊
1/12/2010	-0.01033	0.00106	-0.01139	≪ '
1/13/2010	0.00540	-0.00054	0.00594	1 791
1/14/2010	0.00901	0.00107	0.00795	ا الحرا ا
1/15/2010	-0.00251	0.00217	-0.00468	'∢ '
1/18/2010	0.00475	0.00044	0.00431]>
1/19/2010	-0.00948	0.00056	-0.01004	
1/20/2010	-0.00067	-0.00127	0.00059	'
1/21/2010	-0.02527	-0.00029	-0.02498	<
1/22/2010	-0.00810	-0.00291	-0.00518	🗀
1/25/2010	-0.01783	-0.00084	-0.01699	
1/27/2010	-0.03668	-0.00086	-0.03582	• </td
1/28/2010	0.01055	-0.00351	0.01406	T +++
1/29/2010	0.00805	0.00265	0.00540	' ∢'
2/01/2010	0.01648	0.00430	0.01219	I
2/02/2010	-0.01085	0.00438	-0.01523	∞
2/03/2010	0.02080	-0.00099	0.02179	□ →
2/04/2010	-0.01908	0.00135	-0.02043	•
2/05/2010	-0.02324	-0.00285	-0.02039	
2/06/2010	0.01346	-0.00428	0.01774	
2/08/2010	0.00108	0.00194	-0.00086	
2/09/2010	0.00387	0.00275	0.00113	'
2/10/2010	-0.00216	0.00224	-0.00441	'≪('
2/11/2010	0.00724	0.00030	0.00694	' ▷•'
2/15/2010	-0.00357	0.00071	-0.00428	'≪('
2/16/2010	0.00771	-0.00048	0.00819	🔊
2/17/2010	0.01045	0.00092	0.00953	

Model 2:

obs	Actual	Fitted	Residual	Residual Plot
1/05/2010	0.01503	0.00063	0.01439	
1/06/2010	0.00847	0.00267	0.00580	🖟
1/07/2010	-0.00822	0.00168	-0.00990	👟
1/08/2010	-0.00087	-0.00085	-2.0E-05	' * '
1/11/2010	0.00772	0.00026	0.00746	
1/12/2010	-0.01033	0.00157	-0.01190	≪ '
1/13/2010	0.00540	-0.00117	0.00657	
1/14/2010	0.00901	0.00121	0.00780	الحرا ا
1/15/2010	-0.00251	0.00176	-0.00427	'≪ '
1/18/2010	0.00475	1.4E-05	0.00473	
1/19/2010	-0.00948	0.00112	-0.01060	
1/20/2010	-0.00067	-0.00104	0.00037	
1/21/2010	-0.02527	0.00029	-0.02556	•
1/22/2010	-0.00810	-0.00344	-0.00466	
1/25/2010	-0.01783	-0.00083	-0.01700	<u> </u>
1/27/2010	-0.03668	-0.00231	-0.03437	•<
1/28/2010	0.01055	-0.00517	0.01572	
1/29/2010	0.00805	0.00200	0.00605	∢1
2/01/2010	0.01648	0.00162	0.01487	ملا_ ا
2/02/2010	-0.01085	0.00290	-0.01375	•
2/03/2010	0.02080	-0.00125	0.02205	🗀
2/04/2010	-0.01908	0.00355	-0.02263	•
2/05/2010	-0.02324	-0.00250	-0.02074	6_1_ 1
2/06/2010	0.01346	-0.00313	0.01659	
2/08/2010	0.00108	0.00244	-0.00136	
2/09/2010	0.00387	0.00056	0.00331	[>
2/10/2010	-0.00216	0.00098	-0.00315	' •{ '
2/11/2010	0.00724	6.7E-05	0.00717	
2/15/2010	-0.00357	0.00149	-0.00506	
2/16/2010	0.00771	-0.00015	0.00785	1 91

Model 3:

obs	Actual	Fitted	Residual	Residual Plot	
1/05/2010	0.01503	0.00062	0.01441		
1/06/2010	0.00847	0.00255	0.00592		
1/07/2010	-0.00822	0.00133	-0.00955		
1/08/2010	-0.00087	-0.00093	6.3E-05	' 🦎 '	
1/11/2010	0.00772	0.00047	0.00725		
1/12/2010	-0.01033	0.00153	-0.01186		
1/13/2010	0.00540	-0.00127	0.00667	1 1	
1/14/2010	0.00901	0.00144	0.00757	الحرا ا	
1/15/2010	-0.00251	0.00157	-0.00409	'∢ '	
1/18/2010	0.00475	-0.00013	0.00488		
1/19/2010	-0.00948	0.00118	-0.01066	≪ '	
1/20/2010	-0.00067	-0.00110	0.00042		
1/21/2010	-0.02527	0.00053	-0.02580	<	
1/22/2010	-0.00810	-0.00331	-0.00478	> '	
1/25/2010	-0.01783	-0.00024	-0.01759	/	
1/27/2010	-0.03668	-0.00211	-0.03457	• </td <td></td>	
1/28/2010	0.01055	-0.00460	0.01515		
1/29/2010	0.00805	0.00268	0.00536	(1	
2/01/2010	0.01648	0.00125	0.01523		
2/02/2010	-0.01085	0.00270	-0.01355	• 4	
2/03/2010	0.02080	-0.00152	0.02232		
2/04/2010	-0.01908	0.00373	-0.02281	Q	
2/05/2010	-0.02324	-0.00288	-0.02037	<u> </u>	
2/06/2010	0.01346	-0.00252	0.01598	│	
2/08/2010	0.00108	0.00281	-0.00173		
2/09/2010	0.00387	0.00021	0.00366	🎉	
2/10/2010	-0.00216	0.00100	-0.00317	'∢('	
2/11/2010	0.00724	1.2E-06	0.00724	🔊	
2/15/2010	-0.00357	0.00152	-0.00509	'≪ '	
2/16/2010	0.00771	-0.00028	0.00799	انها ا	
2/17/2010	0.01045	0.00163	0.00882	ا الحمل ا	
2/18/2010	-0.00788	0.00176	-0.00964		
2/19/2010	-0.01139	-0.00095	-0.01045	<u> </u>	

Model 4:

obs	Actual	Fitted	Residual	Residual Plot
1/05/2010	0.01503	0.00067	0.01435	
1/06/2010	0.00847	0.00270	0.00578	
1/07/2010	-0.00822	0.00174	-0.00996	
1/08/2010	-0.00087	-0.00133	0.00046	1 1
1/11/2010	0.00772	-0.00081	0.00853	<u> </u>
1/12/2010	-0.01033	0.00106	-0.01139	
1/13/2010	0.00540	-0.00078	0.00618	1 1
1/14/2010	0.00901	0.00141	0.00761	الحرا ا
1/15/2010	-0.00251	0.00224	-0.00475	
1/18/2010	0.00475	0.00036	0.00439	
1/19/2010	-0.00948	0.00069	-0.01018	• √
1/20/2010	-0.00067	-0.00148	0.00080	
1/21/2010	-0.02527	-0.00025	-0.02502	<u> </u>
1/22/2010	-0.00810	-0.00321	-0.00489	<u> </u>
1/25/2010	-0.01783	-0.00058	-0.01725	
1/27/2010	-0.03668	-0.00107	-0.03561	≪
1/28/2010	0.01055	-0.00373	0.01428	
1/29/2010	0.00805	0.00292	0.00513	∢1
2/01/2010	0.01648	0.00359	0.01289	L
2/02/2010	-0.01085	0.00409	-0.01495	₩
2/03/2010	0.02080	-0.00131	0.02210	- D
2/04/2010	-0.01908	0.00171	-0.02079	ا المسلم
2/05/2010	-0.02324	-0.00349	-0.01975	<u> </u>
2/06/2010	0.01346	-0.00416	0.01762	
2/08/2010	0.00108	0.00236	-0.00128	
2/09/2010	0.00387	0.00250	0.00138	
2/10/2010	-0.00216	0.00252	-0.00469	
2/11/2010	0.00724	0.00046	0.00678	
2/15/2010	-0.00357	0.00071	-0.00428	•√

Model 5:

Discussion on the choice of AR, MA, ARMA / ARIMA models:

On analysing and observing the five models based on the tests,

a) AR model

Model 2 is chosen (1, 0)

$$P = 1, q = 0$$

AR(1)

Based on the unit root test it is chosen as the null hypothesis is rejected at first difference

Residual diagnostics test is an important test and based on that it can be seen that it works it and the normality assumption is not violated.

Heteroskedasticity tests are also fine with the value of R squared to be 2.29 % There is one term - AR(1) term and it is significant

So, based on observing and checking it can be estimated to be the appropriate AR model.

b) MA model

Model 3 is chosen (0,1)

$$P = 0, q = 1$$

MA(1)

Based on the unit root test it is chosen as the null hypothesis is rejected at first difference

Residual diagnostics test is an important test and based on that it can be seen that it works it and the normality assumption is not violated.

Heteroskedasticity tests are also fine with the value of R squared to be 2.21 % There is one term – MA(1) term and it is significant

So, based on observing and checking it can be estimated to be the appropriate MA model.

c) ARMA model

Model 1 is chosen (2, 2)

$$P = 2, q = 2$$

Residual diagnostics test is an important test and based on that it can be seen that it works it and the normality assumption is not violated.

Heteroskedasticity tests are also fine with the value of R squared to be 2.78 %

All the AR and MA terms are significant

Model 1 is chosen over Model 4 and 5 because all the terms are significant in Model 1 and it is best fit with the data.

ARMA(2, 3) is the best fit model through automatic selection as well as by comparing and checking with other models.

So, based on observing and checking it can be estimated to be the appropriate ARMA model.

Appropriate ARIMA model - ARIMA (2,1,2) Appropriate ARMA model - ARMA(2, 2)

3) ARMA / ARIMA forecasting

Removing the last 20 observations and forecasting it for the most appropriate model,

Model 1:

ARMA(2, 2)

Forecast graphs

The table showing the forecasted values which is DLINDEXF1, it can be observed that the values of DLINDEXF1 and DLINDEX are same till 11/28/2014 and after that the values are forecasted to get the best possible ARMA forecasting after trimming the last 22 obervations.

	DLINDEXF1	DLINDEX	
11/28/2014	0.010201	0.010201	
12/01/2014	0.002668	-0.000245	
12/02/2014	0.001290	0.005573	
12/03/2014	6.56E-05	0.013711	
12/04/2014	-0.000437	0.002393	
12/05/2014	-0.000261	-0.007062	
12/08/2014	0.000218	-0.011404	
12/09/2014	0.000625	-0.016933	
12/10/2014	0.000781	0.011007	
12/11/2014	0.000710	-0.008642	
12/12/2014	0.000544	-0.012382	
12/15/2014	0.000409	-0.003999	
12/16/2014	0.000361	-0.027812	
12/17/2014	0.000389	-0.002714	
12/18/2014	0.000446	0.032806	
12/19/2014	0.000491	0.002023	
12/22/2014	0.000505	0.009107	
12/23/2014	0.000495	-0.008242	
12/24/2014	0.000475	-0.001792	
12/26/2014	0.000460	0.004991	
12/29/2014	0.000456	0.008398	
12/30/2014	0.000460	0.009187	
12/31/2014	0.000467	0.007923	

The graph between DLINDEX and DLINDEXF1

The graph is magnified to show the forecast clearly DLINDEXF1

Discussion:

Thus, we are able to perform ARMA / ARIMA modelling and forecasting to find the best fitting model for the last 22 observations of the data.