Regularization

He He¹

CDS, NYU

Feb 16, 2021

He He² (CDS, NYU)

¹Slides based on Lecture 2c from David Rosenberg's course material.

 ℓ_2 and ℓ_1 Regularization

Complexity Penalty

Goal: balance between complexity of the hypothesis space ${\mathcal F}$ and the training loss

Complexity measure: $\Omega: \mathfrak{F} \to [0, \infty)$, e.g. number of features

Penalized ERM (Tikhonov regularization)

For complexity measure $\Omega: \mathfrak{F} \to [0,\infty)$ and fixed $\lambda \geqslant 0$,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda \Omega(f)$$

As usual, find λ using validation data.

Number of features as complexity measure is hard to optimize—other measures?

Weight Shrinkage: Intuition

Consider linear regression on the following data, which line would you prefer? [draw]

4/24

Weight Shrinkage: Intuition

Consider linear regression on the following data, which line would you prefer? [draw]

- Prefer the line with smaller slope: small change in the input does not cause large change in the output
- If the estimated weights change by a small amount, it wouldn't cause huge change in the prediction (less sensitive to data)

Feb 16, 2021

4 / 24

He He⁶ (CDS, NYU) DS-GA 1003

⁵Slides based on Lecture 2c from David Rosenberg's course material.

Weight Shrinkage: Polynomial Regression

- Large weights are needed to "wiggle" the curve
- Want to regularize the weights to make them smaller, e.g. $\hat{v} = 0.001x^7 + 0.003x^3 + 1 \text{ vs } \hat{v} = 1000x^7 + 500x^3 + 1$

(Adapated from Mark Schmidt's slide)

He He⁷ (CDS, NYU) DS-GA 1003 Feb 16, 2021 5/24

Linear Regression with L2 Regularization

Consider linear models

$$\mathcal{F} = \left\{ f : \mathsf{R}^d \to \mathsf{R} \mid f(x) = w^T x \text{ for } w \in \mathsf{R}^d \right\}$$

- Square loss: $\ell(\hat{y}, y) = (y \hat{y})^2$
- Training data $\mathfrak{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$
- Linear least squares regression is ERM for square loss over \mathcal{F} :

$$\hat{w} = \operatorname*{arg\,min}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2$$

• Can overfit when d is large compared to n, e.g. $d \gg n$ very common in NLP (e.g. a 1M features for 10K documents).

Linear Regression with L2 Regularization

Penalize "large" weights where size of weights is measured by ℓ_2 norm:

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2,$$

where $||w||_2^2 = w_1^2 + \cdots + w_d^2$ is the square of the ℓ_2 -norm.

- Also known as ridge regression.
- We get back linear least square regression with $\lambda = 0$.
- ℓ_2 regularization can be used for other models too (e.g. neural networks)

He He⁹ (CDS, NYU) DS-GA 1003 Feb 16, 2021 7/24

How does ℓ_2 regularization induce "regularity"?

- Short answer: it controls "sensitivity" of the function.
- For $\hat{f}(x) = \hat{w}^T x$, \hat{f} is **Lipschitz continuous** with Lipschitz constant $L = \|\hat{w}\|_2$.
- That is, when moving from x to x+h, \hat{f} changes no more than L||h||.
- ullet So ℓ_2 regularization controls the maximum rate of change of \hat{f} .
- Proof:

$$\begin{split} \left| \hat{f}(\mathbf{x} + \mathbf{h}) - \hat{f}(\mathbf{x}) \right| &= \left| \hat{\mathbf{w}}^T(\mathbf{x} + \mathbf{h}) - \hat{\mathbf{w}}^T \mathbf{x} \right| = \left| \hat{\mathbf{w}}^T \mathbf{h} \right| \\ &\leqslant \|\hat{\mathbf{w}}\|_2 \|\mathbf{h}\|_2 \quad \text{(Cauchy-Schwarz inequality)} \end{split}$$

• Note that other norms also provides a bound on L due to the equivalence of norms: $\exists C > 0 \text{ s.t. } \|\hat{w}_2\|_2 \leqslant C \|\hat{w}_2\|_p$

Linear Regression vs Ridge Regression

Objective:

- Linear: $L(w) = \frac{1}{2} ||Xw y||_2^2$
- Ridge: $L(w) = \frac{1}{2} ||Xw y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

Gradient:

- Linear: $\nabla L(w) = X^T(Xw y)$
- Ridge: $\nabla L(w) = X^T(Xw y) + \lambda w$
 - Also known as weight decay in neural networks

Closed-form solution:

- Linear: $X^T X w = X^T y$
- Ridge: $(X^TX + \lambda I)w = X^Ty$
 - $(X^TX + \lambda I)$ is always invertible

Ridge Regression: Regularization Path

Regulariztion path shows how the weights vary as we change the regularization strength

$$\begin{array}{rcl} \hat{w}_r & = & \displaystyle \mathop{\arg\min}_{\|w\|_2^2 \le r^2} \frac{1}{n} \sum_{i=1}^n \left(w^T x_i - y_i \right)^2 \\ \hat{w} & = & \hat{w}_{\infty} = \text{Unconstrained ERM} \end{array}$$

- For r = 0, $||\hat{w}_r||_2 / ||\hat{w}||_2 = 0$.
- For $r = \infty$, $\|\hat{w}_r\|_2 / \|\hat{w}\|_2 = 1$

10 / 24

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

Lasso Regression

Penalize the ℓ_1 norm of the weights:

Lasso Regression (Tikhonov Form)

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_1,$$

where $||w||_1 = |w_1| + \cdots + |w_d|$ is the ℓ_1 -norm.

Ridge vs. Lasso: Regularization Paths

Lasso gives sparse weights:

12 / 24

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

Lasso Gives Feature Sparsity: So What?

Coefficient are $0 \implies$ don't need those features. What's the gain?

- Time/expense to compute/buy features
- Memory to store features (e.g. real-time deployment)
- Identifies the important features
- Better prediction? sometimes
- As a feature-selection step for training a slower non-linear model

Regularization and Sparsity

Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure $\Omega: \mathcal{F} \to [0, \infty)$ and fixed $r \geqslant 0$,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$
s.t. $\Omega(f) \leq r$

Lasso Regression (Ivanov Form)

The lasso regression solution for complexity parameter $r \ge 0$ is

$$\hat{w} = \underset{\|w\|_1 \le r}{\arg \min} \frac{1}{n} \sum_{i=1}^n \{w^T x_i - y_i\}^2.$$

r has the same role as λ in penalized ERM (Tikhonov).

Ivanov vs Tikhonov Regularization

- Let $L: \mathcal{F} \to \mathbb{R}$ be any performance measure of f
 - e.g. L(f) could be the empirical risk of f
- For many L and Ω , Ivanov and Tikhonov are "equivalent":
 - Any solution f^* you could get from Ivanov, can also get from Tikhonov.
 - Any solution f^* you could get from Tikhonov, can also get from Ivanov.
- Can get conditions for equivalence from Lagrangian duality theory.
- In practice, both approaches are effective.
- We will use whichever that is more convenient.

Ivanov vs Tikhonov Regularization (Details)

Ivanov and Tikhonov regularization are equivalent if:

• For any choice of r > 0, any Ivanov solution

$$f_r^* \in \operatorname*{arg\,min}_{f \in \mathcal{F}} L(f) \text{ s.t. } \Omega(f) \leqslant r$$

is also a Tikhonov solution for some $\lambda > 0$. That is, $\exists \lambda > 0$ such that

$$f_r^* \in \underset{f \in \mathcal{F}}{\arg\min} L(f) + \lambda \Omega(f).$$

② Conversely, for any choice of $\lambda > 0$, any Tikhonov solution:

$$f_{\lambda}^* \in \operatorname*{arg\,min}_{f \in \mathcal{F}} L(f) + \lambda \Omega(f)$$

is also an Ivanov solution for some r > 0. That is, $\exists r > 0$ such that

$$f_{\lambda}^* \in \operatorname*{arg\,min} L(f) \text{ s.t. } \Omega(f) \leqslant r$$

He He¹⁹ (CDS, NYU)

The ℓ_1 and ℓ_2 Norm Constraints

- For visualization, restrict to 2-dimensional input space
- $\mathcal{F} = \{f(x) = w_1x_1 + w_2x_2\}$ (linear hypothesis space)
- Represent \mathcal{F} by $\{(w_1, w_2) \in \mathsf{R}^2\}$.
 - ℓ_2 contour: $w_1^2 + w_2^2 = r$

• ℓ_1 contour: $|w_1| + |w_2| = r$

Where are the "sparse" solutions?

The Famous Picture for ℓ_2 Regularization

• $f_r^* = \operatorname{arg\,min}_{w \in \mathbb{R}^2} \sum_{i=1}^n (w^T x_i - y_i)^2$ subject to $w_1^2 + w_2^2 \leqslant r$

- Blue region: Area satisfying complexity constraint: $w_1^2 + w_2^2 \le r$
- Red lines: contours of $\hat{R}_n(w) = \sum_{i=1}^n (w^T x_i y_i)^2$.

KPM Fig. 13.3

The Famous Picture for ℓ_1 Regularization

• $f_r^* = \arg\min_{w \in \mathbb{R}^2} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$ subject to $|w_1| + |w_2| \leqslant r$

- Blue region: Area satisfying complexity constraint: $|w_1| + |w_2| \le r$
- Red lines: contours of $\hat{R}_n(w) = \sum_{i=1}^n (w^T x_i y_i)^2$.
- ℓ_1 solution tends to touch the corners.

KPM Fig. 13.3

Why does ℓ_1 gives sparse solution?

Geometric intuition: Euclidean projection onto a convex set encourages solutions at corners or edges.

• \hat{w} in red/green regions are closest to corners in the ℓ_1 ball.

Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.6

Why does ℓ_1 gives sparse solution?

Geometric intuition: Euclidean projection onto a convex set encourages solutions at corners or edges.

• ℓ_2 ball encourages solution in any direction equally.

Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.6

Why does ℓ_1 gives sparse solution?

For ℓ_2 regularization,

- As w_i becomes smaller, there is less and less penalty
 - What is the ℓ_2 penalty for $w_i = 0.0001$?
- The gradient goes to zero as w; moves towards zero

For ℓ_1 regularization,

- The function is non-smooth and the gradient stays the same as the weights becomes smaller
- Thus it pushes them to exactly zero even if the weights are already tiny

(More discussion in lecture)

The $(\ell_q)^q$ Constraint

- Generalize to ℓ_q : $(\|w\|_q)^q = |w_1|^q + |w_2|^q$.
- Contours of $||w||_q^q = |w_1|^q + |w_2|^q$:

- Note: $||w||_q$ is a norm if $q \ge 1$, but not for $q \in (0,1)$
- ullet ℓ_q constraint when q<1 is non-convex, so hard to optimize
- ℓ_0 ($||w||_0$) is defined as the number of non-zero weights, i.e. subset selection