Методы оптимизации. Семинар 3. Проекция точки на множество, отделимость, опорная гиперплоскость.

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

19 сентября 2016 г.

Напоминание

- Аффинная оболочка и аффинное множество
- Выпуклая оболочка и выпуклое множество
- Коническая оболочка и выпуклый конус
- Операции, сохраняющие выпуклость

Внутренности множества

Внутренность множества

Внутренность множества G состоит из точек из G, таких что:

$$int G = \{ \mathbf{x} \in G \mid \exists \varepsilon > 0, B(\mathbf{x}, \varepsilon) \subset G \},\$$

где
$$B(\mathbf{x}, \varepsilon) = \{\mathbf{y} \mid \|\mathbf{x} - \mathbf{y}\| \le \varepsilon\}$$

Относительная внутренность

Относительной внутреностью множества G называют следующее множество:

$$\mathsf{relint} G = \{ \mathsf{x} \in G \mid \exists \varepsilon > 0, B(\mathsf{x}, \varepsilon) \cap \mathsf{aff} G \subseteq G \}$$

Вопрос: зачем нужна концепция относительной внутренности?

Найти относительные внутренности следующих множеств

•
$$\{x \in \mathbb{R}^n | Ax = b\}$$

•
$$\{\mathbf{x} \in \mathbb{R}^n | \sum_{i=1}^n \alpha_i x_i^2 \le 1, \ \alpha_i > 0, i = 1, \dots, n\}$$

•
$$\{\mathbf{x} \in \mathbb{R}^n | \sum_{i=1}^n \alpha_i x_i^2 = 1, \ \alpha_i > 0, i = 1, \dots, n \}$$

•
$$\{(x_1, x_2, x_3) \in \mathbb{R}^3 | -1 \le x_1 \le 1, -1 \le x_2 \le 1, x_3 = 0\}$$

Проекция точки на множество

Расстояние между точкой и множеством

Расстоянием d от точки $\mathbf{a} \in \mathbb{R}^n$ до замкнутого множества $X \subset \mathbb{R}^n$ по норме $\|\cdot\|$ является $d(\mathbf{a}, X, \|\cdot\|) = \inf\{\|\mathbf{a} - \mathbf{y}\| \mid \mathbf{y} \in X\}$

Проекция точки на множество

Проекцией точки $\mathbf{a}\in\mathbb{R}^n$ на множество $X\subset\mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_X(\mathbf{a})\in X$, что $\pi_X(\mathbf{a})=\arg\min_{\mathbf{y}\in X}\|\mathbf{a}-\mathbf{y}\|$

Вопросы: единственна ли проекция? Если нет, то в каких случаях единственна? Какая связь между единственностью проекции и выпуклостью множества?

Факты о проекциях

Критерий проекции

Точка $\pi_X(\mathbf{a}) \in X$ является проекцией точки \mathbf{a} на множество $X \Leftrightarrow \|\mathbf{a} - \mathbf{x}\| \ge \|\mathbf{a} - \pi_X(\mathbf{a})\|, \ \forall \mathbf{x} \in X.$

Критерий проекции для нормы ℓ_2

Точка $\pi_X(\mathbf{a}) \in X$ является проекцией точки \mathbf{a} на множество $X \Leftrightarrow \langle \pi_X(\mathbf{a}) - \mathbf{a}, \mathbf{x} - \pi_X(\mathbf{a}) \rangle \geq 0, \ \forall \mathbf{x} \in X.$

- ullet Проекция на шар $\{\mathbf{x} \in \mathbb{R}^2 | \|\mathbf{x}\|_* \leq 1\}$ в различных нормах
- ullet Проекция на аффинное множество $\{\mathbf{x}\in\mathbb{R}^n|\mathbf{A}\mathbf{x}=\mathbf{b},\;\mathbf{A}\in\mathbb{R}^{m imes n},\mathit{rank}(\mathbf{A})=m\}$
- Проекция на аффинное множество $\{\mathbf{x} \in \mathbb{R}^n | \mathbf{x} = \mathbf{x}_0 + \mathsf{S}\mathbf{y}, \ \mathsf{S} \in \mathbb{R}^{n \times m}, \ \mathbf{y} \in \mathbb{R}^m, \mathit{rank}(\mathsf{S}) = m\}$

Отделимость выпуклых множеств

Определение

Пусть $X_1, X_2 \subset \mathbb{R}^n$ произвольные множества. Они называются:

- отделимыми, если $\exists \mathbf{p}, \beta: \langle \mathbf{p}, \mathbf{x}_1 \rangle \geq \beta \geq \langle \mathbf{p}, \mathbf{x}_2 \rangle$, $\forall \mathbf{x}_1 \in X_1$ и $\forall \mathbf{x}_2 \in X_2$.
- собственно отделимыми, если они отделимы и $\exists {\sf x}_1^* \in X$ и $\exists {\sf x}_2^* \in X \colon \langle {\sf p}, {\sf x}_1^* \rangle > \langle {\sf p}, {\sf x}_2^* \rangle$
- сильно отделимыми, если $\exists \mathbf{p} \neq 0$ и β : $\inf_{\mathbf{x}_1 \in X_1} \langle \mathbf{p}, \mathbf{x}_1 \rangle > \beta > \sup_{\mathbf{x}_2 \in X_2} \langle \mathbf{p}, \mathbf{x}_2 \rangle$
- строго отделимы, если $\forall x_1 \in X_1$ и $\forall x_2 \in X_2$: $\langle \mathbf{p}, \mathbf{x}_1 \rangle > \langle \mathbf{p}, \mathbf{x}_2 \rangle$.

Разделяющая гиперплоскость

Разделяющей гиперплоскостью для множеств X_1, X_2 является такая гиперплоскость $\{\mathbf{x}|\langle\mathbf{p},\mathbf{x}\rangle=\beta\}$, что $\langle\mathbf{p},\mathbf{x}_1\rangle\geq\beta$ для всех $\mathbf{x}_1\in X_1$ и $\langle\mathbf{p},\mathbf{x}_2\rangle\leq\beta$ для всех $\mathbf{x}_2\in X_2$

Факты об отделимости

Существование

Пусть X_1 и X_2 выпуклые непересекающиеся множества, тогда существует разделяющая их гиперплоскость.

Критерий для выпуклых множеств

Два выпуклых множества, таких что по крайней мере одно из них открыто, не пересекаются тогда и только тогда, когда существует разделяющая гиперплоскость.

Критерий сильной отделимости

Два выпуклых множества сильно отделимы тогда и только тогда когда расстояние между ними положительно.

- Построить разделяющую гиперплоскость для множеств $X_1,X_2\colon X_1=\{(x_1,x_2)\in\mathbb{R}^2|x_1x_2>1,x_1>0\},$ $X_2=\{(x_1,x_2)\in\mathbb{R}^2|x_2\leq 9+\frac{4}{x_1-1}\}.$
- Критерий разрешимости системы строгих линейных неравенств $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ как не пересечение аффинного множества $\{\mathbf{b} \mathbf{A}\mathbf{x} | \mathbf{x} \in \mathbb{R}^n\}$ и множества $\{\mathbf{y} \in \mathbb{R}^m | y_i > 0\}$
- Пример двух замкнутых выпуклых не пересекающихся множеств, которые не являются строго отделимыми
- Построить разделяющую гиперплоскость для множеств $X_1 = \{\mathbf{x} \in \mathbb{R}^n | ||\mathbf{x}||_2^2 \le 1\}$ и $X_2 = \{\mathbf{x} \in \mathbb{R}^n | x_1^2 + \ldots + x_{n-1}^2 + 1 \le x_n\}.$

Опорная гиперплоскость

Опорная гиперплоскость

Гиперплоскость $\{\mathbf{x}\in\mathbb{R}^n|\langle\mathbf{p},\mathbf{x}\rangle=\beta\}$ называется опорной к множеству X в граничной точке \mathbf{x}_0 , если $\langle\mathbf{p},\mathbf{x}\rangle\geq\beta=\langle\mathbf{p},\mathbf{x}_0\rangle$ для всех $\mathbf{x}\in X$.

Собственно опорная гиперплоскость

Гиперплоскость $\{\mathbf{x} \in \mathbb{R}^n | \langle \mathbf{p}, \mathbf{x} \rangle = \beta \}$ называется опорной к множеству X в точке \mathbf{x}_0 , если она опорная и $\exists \tilde{\mathbf{x}} \in X$: $\langle \mathbf{p}, \tilde{\mathbf{x}} \rangle > \beta$.

Теорема об опорной гиперплоскости

В любой граничной (относительно граничной) точке выпуклого множества существует опорная (собственно опорная) гиперплоскость.

- Выразить множество $\{(x_1,x_2)\in \mathbb{R}^2_+|x_1x_2\geq 1\}$ как пересечение гиперплоскостей.
- Построить опорную гиперплоскость к множеству $X = \{(x_1, x_2) \in \mathbb{R}^2 | e^{x_1} \leq x_2 \}$ в точке $\mathbf{x}_0 = (0, 1)$
- Найти уравнене гиперплоскости опорной к множеству $X=\{(x_1,x_2,x_3)\in\mathbb{R}^3|x_3\geq x_1^2+x_2^2\}$ и отделяющей его от точки $\mathbf{x}_0=(-5/4,5/16,15/16)$

Резюме

- Внутренность и относительная внутренность выпуклого множества
- Проекция точки на множство
- Отделимость выпуклых множеств
- Опорная гиперплоскость