Notes for High-Dimensional Probability Second Edition by Roman Vershynin

Gallant Tsao

July 24, 2025

Contents

0		,	4
	0.1	Covering Geometric Sets	5
1	A (Quick Refresher on Analysis and Probability	7
	1.1	Convex Sets and Functions	7
	1.2	Norms and Inner Products	7
	1.3	Random Variables and Random Vectors	7
	1.4	Union Bound	8
	1.5	Conditioning	9
	1.6	Probabilistic Inequalities	9
	1.7	Limit Theorems	11
2	Cox	ncentration of Sums of Independent Random Variables	.3
4	2.1	*	13
	$\frac{2.1}{2.2}$		L 4
	$\frac{2.2}{2.3}$		16
	$\frac{2.5}{2.4}$	1 0	18
	2.5		20
	$\frac{2.6}{2.6}$		21
	2.0		23
	2.7		23
			24
			24
			25
			26
	2.8	9	26
		1	26
			28
	2.9	Bernstein Inequality	29
3	Dor	ndom Vectors in High Dimensions 3	32
3	3.1		32
	$3.1 \\ 3.2$		33
	3.2		33
		· ·	34
			35
	3.3		35
	0.0	-	35
			36
			37
		-	38
			38
	3.4		10
	0.1		10
			10
			11 11
	3.5	•	12
	0.0	- •	 14
	3.6		16
	2.0		16
			17
	3.7		18
	J.,	- ,	19
			51
			51

4	Ran	ndom Matrices 52
	4.1	A Quick Refresher on Linear Algebra
		4.1.1 Singular value Decomposition
		4.1.4 The Matrix Norms and the Spectrum
		4.1.5 Low-rank Approximation
		4.1.6 Perturbation Theory
		4.1.7 Isometries
	4.2	Nets, Covering, and Packing
		4.2.1 Covering Numbers and Volume
	4.3	Application: Error Correcting Codes
	4.4	Upper Bounds on Subgaussian Random Matrices
		4.4.1 Computing the Norm on an ε net 61
		4.4.2 The Norms of Subgaussian Random Matrices 61
		4.4.3 Symmetric Matrices
	4.5	Application: Community Detection in Networks
	4.6	Two-sided Bounds on Subgaussian Matrices
	4.7	Application: Covariance Estimation and Clustering
5	Con	ncentration Without Independence 66
	5.1	Cencentration of Lipschitz Functions on the Sphere
		5.1.1 Lipschitz Functions
		5.1.2 Concentration via Isoperimetric Inequalities
		5.1.3 Blow-up of Sets on the Sphere
		5.1.4 Proof of Theorem 5.1.3
	5.2	Concentration on Other Metric Measure Spaces
		5.2.1 Gaussian Concentration
		5.2.2 Hamming Cube
		5.2.3 Symmetric Group
		5.2.4 Riemannian Manifolds with Strictly Positive Curvature
		5.2.5 Special Orthogonal Group
		5.2.6 Grassmannian
		5.2.7 Continuous Cube and Euclidean Ball
		5.2.8 Densities of the Form $e^{-U(x)}$
		5.2.9 Random Vectors with Independent Bounded Coordinates
	5.3	Application: Johnson-Lindenstrauss Lemma
	5.4	Matrix Bernstein Inequality
		5.4.1 Matrix Calculus
		5.4.2 Trace Inequalities
		5.4.3 Proof of Matrix Bernstein Inequality
		5.4.4 Matrix Hoeffding and Khintchine Inequalities
	5.5	Application: Community Detection in Sparse Networks
	5.6	Application: Covariance Estimation for General Distributions
	5.7	Extra notes
6	0112	adratic Forms, Symmetrization, and Contraction 78
J	6.1	Decoupling
	6.2	Hanson-Wright Inequality
	6.2	Symmetrization
	6.4	Random Matrices with non-i.i.d. Entries
	6.5	Application: Matrix Completion
	6.6	Contraction Principle
	0.0	

7	Rar	ndom Processes 85
	7.1	Basic Concepts and Examples
		7.1.1 Covariance and Increments
		7.1.2 Gaussian Processes
	7.2	Slepian, Sudakov-Fernique, and Gordon Inequalities 8'
		7.2.1 Gaussian Interpolation
		7.2.2 Proof of Slepian Inequality
		7.2.3 Sudakov-Fernique and Gordon Inequalities
	7.3	Application: Sharp Bounds for Gaussian Matrices
	7.4	Sudakov Inequality
		7.4.1 Application for covering numbers in \mathbb{R}^n
	7.5	Gaussian Width
		7.5.1 Geometric Meaning of Width
		7.5.2 Examples
		7.5.3 Gaussian Complexity and Effective Dimension
	7.6	Application: Random Projection of Sets
8	Cha	aining 99
	8.1	Dudley Inequality
		8.1.1 Variations and Examples
	8.2	Application: Empirical Processes
	8.3	VC Dimension
		8.3.1 Definition and Examples
		8.3.2 Pajor's Lemma
		8.3.3 Sauer-Shelah Lemma
		8.3.4 Growth Function
		8.3.5 Covering Numbers via VC Dimension
		8.3.6 VC Law of Large Numbers
	8.4	Application: Statistical Learning Theory
	8.5	Generic Chaining
		8.5.1 A Makeover of Dudley's Inequality
		8.5.2 The γ_2 Functional and Generic Chaining
		8.5.3 Majorizing Measure and Comparison Theorems
	8.6	Chevet Inequality
9		viations of Random Matrices on Sets 118
	9.1	Matrix Deviation Inequality
	9.2	Random Matrices, Covariance Estimation, and Johnson-Lindenstrauss
	9.3	Random Sections: The M^* Bound and Escape Theorem
	9.4	Application: High-dimensional Linear Models
	9.5	Application: Exact Sparse Recovery
	9.6	Deviations of Random Matrices for General Norms
	9.7	Two-sided Chevet Inequality and Dyoretzky-Milman Theorem

9 Deviations of Random Matrices on Sets

The main question in this chapter is: How does an $m \times n$ matrix act on a general set $t \subset \mathbb{R}^n$?

9.1 Matrix Deviation Inequality

Take an $m \times n$ random matrix X with independent, isotropic, and subgaussian rows. The concentration of the norm (Theorem 3.1.1) tells us that for any fixed vector $x \in \mathbb{R}^n$, the approximation

$$||Ax||_2 \approx \sqrt{m}||x||_2$$

holds with high probability.

Let's ask something more general: Is it true that with high probability, the equation above holds *simultaneously* for many vectors $x \in \mathbb{R}^n$? To quantify how many, pick some bounded set $T \subset \mathbb{R}^n$ and ask if the approximation holds simultaneously for all $x \in T$. It turns out that the maximal error is about $\gamma(T)$, the Gaussian complexity of T.

Theorem 9.1.1 (Matrix deviation inequality). Let A be an $m \times n$ random matrix with independent, isotropic and subgaussian rows A_i . Then for any subset $T \subset \mathbb{R}^n$,

$$\mathbb{E}\left[\sup_{x\in T}\left|\|Ax\|_2 - \sqrt{m}\|x\|_2\right|\right] \le CK^2\gamma(T),$$

where $\gamma(T)$ is the Gaussian complexity from Section 7.5.3, defined as

$$\gamma(T) = \mathbb{E}\left[\sup_{x \in T} |\langle g, x \rangle|\right], \ g \sim N(0, I_n),$$

and $K = \max_i ||A_i||_{\psi_2}$

The plan is to deduce this from Talagrand's comparison inequality (Corollary 8.5.8). To do that, we just have to check the random process

$$Z_x := ||Ax||_2 - \sqrt{m}||x||_2$$

indexed by vectors $x \in \mathbb{R}^n$ has subgaussian increments. Here is the claim:

Theorem 9.1.2 (Subgaussian increments). Let A be an $m \times n$ random matrix with independent, isotropic and subgaussian rows A_i . Then the random process Z_x defined above has subgaussian increments:

$$||Z_x - Z_y||_{\psi_2} \le CK^2 ||x - y||_2$$
 for all $x, y \in \mathbb{R}^n$,

here $K = \max_i ||A_i||_{\psi_2}$.

Once we have proved this theorem, we plug it into Talagrand's comparison inequality (Exercise 8.37 (a)) and get

$$\mathbb{E}\left[\sup_{x\in T}|Z_x|\right] \le CK^2\gamma(T)$$

which directly gives Theorem 9.1.1. So, all we have to do is prove Theorem 9.1.2 - and it is in fact easier since it's for fixed x and y.

Proof of Theorem 9.1.2. This argument will be a bit longer than usual, so we'll (hopefully) make it easier by starting with simpler cases and building up from there.

Step 1: Unit vector x and zero vector y. If $||x||_2 = 1$ and y = 0, the inequality in the theorem statement becomes

$$\| \|Ax\|_2 - \sqrt{m} \|_{\psi_2} \le CK^2.$$

The random vector $Ax \in \mathbb{R}^m$ has independent, subgaussian coordinates $\langle A_i, x \rangle$, which satisfy

$$\mathbb{E}\left[\left\langle A_i, x \right\rangle^2\right] = 1$$

by isotropy. So, the equation above follows from the concentration of the norm (Theorem 3.1.1).

Step 2: Unit vectors x, y and the squared process.

- 9.2 Random Matrices, Covariance Estimation, and Johnson-Lindenstrauss
- 9.3 Random Sections: The M^* Bound and Escape Theorem
- 9.4 Application: High-dimensional Linear Models
- 9.5 Application: Exact Sparse Recovery
- 9.6 Deviations of Random Matrices for General Norms
- 9.7 Two-sided Chevet Inequality and Dvoretzky-Milman Theorem