Exercises Set 6

Paul Dubois

September 29, 2023

Abstract

As this is the last session, there will be no compulsory questions this time.

1 Lagrangian multiplier technique

1.1 Unconstrained optimization

Let $f(x,y) = 2x^2 - 3x + 4y^2 + 4y + 20$. Find $(x^*,y^*) \in \mathbb{R}^2$ such that f reaches its minimum (i.e. $f(x^*,y^*) \leq f(x,y) \quad \forall (x,y) \in \mathbb{R}^2$).

1.2 Constrained optimization

Let $f(x,y)=2x^2-3x+4y^2+4y+20$. Suppose further that we want 3x+5y=2. Find $(x^*,y^*)\in\mathbb{R}^2$ such that $3x^*+5y^*=2$ and f reaches its minimum (i.e. $f(x^*,y^*)\leq f(x,y) \quad \forall (x,y)\in\mathbb{R}^2,\ 3x+5y=2$).

1.3 Lagrange multiplier

Let $f(x,y) = 2x^2 - 3x + 4y^2 + 4y + 20$. Suppose further that we want 3x + 5y = 2. Let $\mathcal{L}(x,y,\lambda) = f(x,y) - \lambda(3x + 5y - 2)$. Find the point where $\nabla f = 0$

2 Support Vector Machines

2.1 Theory

Define a line in \mathbb{R}^2 with parameters \mathbf{w} and b defined by $\mathbf{w}.\mathbf{x} = b$ (or $\mathbf{w}.\mathbf{x} - b = 0$) for $\mathbf{x} \in \mathbb{R}^2$. This line cut the plane in 2 regions:

- $\mathbf{x} \in \mathbb{R}^2$ such that $\mathbf{w}.\mathbf{x} b < 0$
- $\mathbf{x} \in \mathbb{R}^2$ such that $\mathbf{w}.\mathbf{x} b > 0$

The goal is to find \mathbf{w} and b such that all points of the first class are in the first region, and all points of the second class are in the second region.

2.2 Practice