

Navy Experimental Diving Unit
321 Bullfinch Road
Panama City, FL 32407-7015

NEDU TR 02-10
August 2002

**DEVELOPMENT AND VALIDATION OF
1.3 ATA PO₂-in-He DECOMPRESSION TABLES FOR THE
MK 16 MOD 1 UBA**

Authors: WAYNE A. GERTH, Ph.D.
Associate Investigator

THOMAS M. JOHNSON
CDR, MC, USN
Principal Investigator

DISTRIBUTION STATEMENT A:

Approved for public release;
distribution is unlimited.

20021029 081

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE			
1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited	
2b. DECLASSIFICATION/DOWNGRADING AUTHORITY			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) NEDU Technical Report No. 02-10		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Navy Experimental Diving Unit	6b. OFFICE SYMBOL (If Applicable) 02	7a. NAME OF MONITORING ORGANIZATION	
6c. ADDRESS (City, State, and ZIP Code) 321 Bullfinch Road, Panama City, FL 32407-7015		7b. ADDRESS (City, State, and Zip Code)	
8a. NAME OF FUNDING SPONSORING ORGANIZATION Naval Sea Systems Command	8b. OFFICE SYMBOL (If Applicable) 00C	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
8c. ADDRESS (City, State, and ZIP Code) 1333 Isaac Hull Avenue, SE, Washington Navy Yard, D.C. 20376		10. SOURCE OF FUNDING NUMBERS	
		PROGRAM ELEMENT NO.	PROJECT NO.
		TASK NO. 98-28	WORK UNIT ACCESSION NO.
11. TITLE (Include Security Classification) (U) DEVELOPMENT AND VALIDATION OF 1.3 ATA PO ₂ -in-He DECOMPRESSION TABLES FOR THE MK 16 MOD 1 UBA			
12. PERSONAL AUTHOR(S) Wayne A. Gerth, Ph.D., Thomas M. Johnson, CDR, MC, USN			
13a. TYPE OF REPORT Technical Report	13b. TIME COVERED FROM OCT 00 TO JUL 01	14. DATE OF REPORT (Year, Month, Day) 2002 August 30	15. PAGE COUNT 421
16. SUPPLEMENTARY NOTATION			
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) MK 16 MOD 1 Underwater Breathing Apparatus, decompression, decompression sickness, probabilistic model, deterministic model, helium-oxygen, oxygen toxicity	
FIELD	GROUP	SUB-GROUP	
19. ABSTRACT (Continue on reverse if necessary and identify by block number) The Navy Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop and validate repetitive helium-oxygen (He-O ₂) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus (UBA). The present report provides details of the work that was completed to meet this tasking and produce the tables published in NEDU Technical Report 14-01. The report includes a description of the probabilistic model used as the basis for the tables, and presents a novel method to map this model to an easily-used deterministic model. The latter produces a repetitive decompression table set of format similar to that for standard air diving in the current U.S. Navy Diving Manual, but with schedules that incur explicitly controlled estimated DCS risks.			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION Unclassified	
22a. NAME OF RESPONSIBLE INDIVIDUAL NEDU Librarian		22b. TELEPHONE (Include Area Code) (850) 230-3100	22c. OFFICE SYMBOL

DD Form 1473

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

TABLE OF CONTENTS

<u>SECTION</u>	<u>PAGE NO.</u>
1. INTRODUCTION	1
1.1 THE MK 15/16 EXPONENTIAL-LINEAR REAL TIME ALGORITHM (EL-RTA) AND MOTIVATION FOR DEVELOPMENT OF THE MK 16 MOD 1 UBA	1
1.2 PROBABILISTIC LINEAR-EXPONENTIAL (LE) AND LINEAR-EXPONENTIAL MULTIGAS (LEM) MODELS	2
1.3 PROGRAM OBJECTIVES AND APPROACH	9
2. METHODS	10
2.1 DECOMPRESSION TABLE CALCULATION	10
2.1.1 LEM TO EL-RTA MAPPING	10
2.2 DIVE TRIAL DESIGN	15
2.2.1 OVERALL STRATEGY: SEQUENTIAL DESIGN, TEST REJECTION RULES AND POWER.....	15
2.2.2 PROFILE SELECTION	17
2.2.2.1 PHASE I	17
2.2.2.2 PHASE II	18
2.3 DIVE PROCEDURES	19
3. RESULTS	22
3.1 PHASE I DIVE TRIAL	22
3.1.1 DCS INCIDENCE AND OTHER OUTCOMES	23
3.1.2 MK 16 MOD 1 PO ₂ CONTROL	23
3.2 LEM EVALUATION	27
3.3 LEM TO EL-RTA MAP	29
3.4 PHASE II DIVE TRIAL	36
3.4.1 DCS INCIDENCE AND OTHER OUTCOMES	36
3.4.2 MK 16 MOD 1 PO ₂ CONTROL AND OXYGEN SENSOR PERFORMANCE	37
3.5 THEORETICAL EVALUATION OF MK 16 MOD 1 He-O ₂ DECOMPRESSION TABLES	47
4. DISCUSSION	49
5. CONCLUSIONS AND RECOMMENDATIONS	56
6. ACKNOWLEDGEMENTS	56
7. REFERENCES	57

A1 - A11

APPENDIX A. DCS MODEL DESCRIPTIONS

APPENDIX B. OXYGEN CONTENT AND PARTIAL PRESSURE IN A CLOSED CIRCUIT REBREATHER DURING AND AFTER CONSTANT VOLUME, CONSTANT TEMPERATURE COMPRESSIONS

B1 - B6

APPENDIX C. DIVER ATTRIBUTES	C1 - C2
APPENDIX D. TEST DIVES COMPLETED	D1 - D13
D1. PHASE I DIVE TRIAL	D2
D2. PHASE II DIVE TRIAL	D8
APPENDIX E. SPECIFIC COMMENTS ABOUT THE DIVES PERFORMED	E1 - E19
APPENDIX F. CASE REPORTS FOR MEDICAL EVENTS	F1 - F4
F1. DIAGNOSED DCS CASES	F1
F2. OTHER	F4
APPENDIX G. DIVER INSPIRED GAS ANALYSIS	G1 - G12
APPENDIX H. DIVE-BY-DIVE MK 16 MOD 1 PO ₂ CONTROL SUMMARIES	H1 - H18
APPENDIX I. INDIVIDUAL DIVE DEPTH-INSPIRED PO ₂ PROFILES FOR DIVES PERFORMED	I1 - I203
APPENDIX J. MK 16 MOD 1 HELIOX DECOMPRESSION TABLES	J1 - J20
APPENDIX K. COMPARISON OF REPETITIVE DIVE SCHEDULES AS PLANNED FOR TEST TO CORRESPONDING SCHEDULES PRESCRIBED BY THE MK 16 MOD 1 HELIOX DECOMPRESSION TABLES	K1 - K17
APPENDIX L. ESTIMATED DCS RISKS OF DIVE PROFILES AS ACTUALLY DIVED	L1 - L14
APPENDIX M. ESTIMATED DCS RISKS OF DIVE PROFILES RANDOMLY CONSTRUCTED FROM MK 16 MOD 1 HELIOX DECOMPRESSION TABLES	M1 - M14
APPENDIX N. SUMMARY FEATURES OF OXYGEN PARTIAL PRESSURES IN THE CANADIAN UNDERWATER MINE APPARATUS (CUMA) AND THE ROYAL NAVY CLEARANCE DIVERS BREATHING APPARATUS (CDBA)	N1 - N6

Table 1. he8n25 Calibration Data Set

Data Subset	Dives	DCS	Marginal	Comments
He-O₂:				
EDU185S	1582	57	2	NEDU Report 1-85: 0.7 ATA O ₂ in He table trial
EDUHE70	264	31	3	Most 300-400 ft for 15-60 m. Lots O ₂
NMR86H6	62	1	0	Long 40% O ₂ No-D
NSMTMX	69	4	0	132 ft 'air sat.'/40%He decompression
DRATMXW	190	10	10	DERA wet trimix dives
DC8416W	182	4	0	230-265 ft/15-30 min, 84%He/16%O ₂ ⁽¹⁾
NMR9404 ⁽²⁾	472	26	22	NMRI Report 98-09, 1.3 ATA O ₂ in He trial
(Before review)	(471)	(24)	(16)	
He-O ₂ subtotals	2821	133	37	
N₂-O₂:				
EDU885A	483	30	0	Single Air
NMR94EOD	284	16	13	Single Air; O ₂ decompression
EDU885M	81	4	0	Single Non-Air
EDU885S	94	4	0	"
EDU1180S	120	10	0	"
NMR8697	477	11	18	"
ASATNSM	132	18	21	Air Saturation
ASATEDU	120	13	27	"
NSM6HR	57	3	2	Non-Air saturation
N ₂ -O ₂ subtotals	1848	109	81	
Grand Totals	4669	242	118	

(1) Data and report discrepancies unresolved.

(2) Figures for the NMR904 data set were modified from those in parentheses used to obtain `plemgenhe8n25_114.out` after a retrospective review of the cases in this data set by a panel of Diving Medical Officers. The review, performed on the written case records, resulted in addition of two definite and 9 marginal cases to the overall trial outcome. It also resulted in removal of three cases that had initially been labeled marginal, and correction of the number of subjects on profile FA from 18 to 19 (Flynn, *Personal Communication*). The corrected figures are shown here and in the final 1998 report.⁶

In preliminary work for the present program, an independent implementation of the probabilistic LEM model was developed. The implementation was validated by comparing its performance on the he8n25 calibration data to that of the original NMRI implementation. The present implementation was also re-optimized about this calibration data to ensure that a fully self-consistent model and parameter set was in hand. Results are summarized in Tables 2, 3, and 4.

In Tables 2 and 3, reference to the different versions of LEM is made using original nomenclature for historical traceability. The form of LEM adopted for present work was originally called "LEMGREN." Accordingly, the software implementation of this form

developed at NMRI was called "NMRI LEMGEN," while the software implementation developed by the present senior author was called "Duke LEMGEN." The parameter set for the model calibrated about the he8n25 data set using NMRI LEMGEN was called "plemgenhe8n25_114." Subsequent references to "LEM" or the "LEM model" in the present report will refer to the "Duke LEMGEN" in Tables 2 and 3, and the parameter set in Table 4 obtained with this implementation about the he8n25 data set. A more complete description of LEM parameterization and performance in applications other than those in present work will be published elsewhere.

Table 2. Comparison of Observed DCS Incidences with Various Model-Estimated DCS Incidences for he8n25 Calibration Data Subsets

Data Set	# Dives	# DCS Observed ^a	# DCS Estimated		
			NMRI LEMGEN w/ plemgenhe8n25_114	Duke LEMGEN w/ plemgenhe8n25_114	Duke LEMGEN he8n25 (reoptimized)
EDU185S	1582	57.2	74.18	73.33	73.35
EDUHE70	264	31.3	30.86	30.40	30.37
NMR86H6	62	1.0	3.95	3.91	3.91
NSMTMX	69	4.0	4.90	3.41	3.41
DC8416W	182	4.0	16.75	16.60	16.60
DRATMXW	190	11.0	8.67	8.52	8.47
NMR9404	472	28.2	22.85	22.20	22.12
He-O ₂ Subtotals	2821	136.7	162.16	158.37	158.23
NMR94EOD	284	17.3	14.65	14.30	14.28
NSM6HR	57	3.2	3.83	3.80	3.80
EDU885A	483	30.0	22.06	21.87	21.87
EDU885M	81	4.0	3.08	3.04	3.04
EDU885S	94	4.0	4.12	4.07	4.08
EDU1180S	120	10.0	6.39	6.33	6.33
NMR8697	477	12.8	14.47	14.33	14.33
ASATNSM	132	20.1	12.03	10.61	10.62
ASATEDU	120	15.7	9.26	8.44	8.44
N ₂ -O ₂ Subtotals	1848	117.1	89.89	86.79	86.79
Grand totals	4669	253.8	252.05	245.16	245.02

^a "Marginal" counted as 0.1 DCS

Results in Table 3 show that all of the LEM versions tested, including the independent reoptimized version implemented for present work, fail a chi-square goodness-of-fit test¹⁰ to the full calibration data set. Examination of the Pearson residuals for the individual data subsets shows that the lack-of-fit in each case is concentrated on three particular subsets: the 84/16 (%He/%O₂) dive data set DC8416W, and the air saturation dive data sets ASATNSM and ASATEDU. Removal of these sets from the tests yields chi-squares that are too low to warrant rejection of the hypothesis that LEM-estimated DCS incidences equal the observed DCS incidences for the remaining data subsets.

The LEM model consequently remains arguably applicable to the types of dives in these latter data sets, but inapplicable to air saturation dives and He-O₂ dives of type in DC8416W.

Model inapplicability to air saturation diving was inconsequential with respect to the purposes of the present program; model use in present work entailed applications to sub-saturation He-O₂ dives. Model inapplicability to the types of dives in the DC8416W data subset was also of arguably limited consequence because many of the dives in the data subset were of He-O₂ mixes with higher PO₂ than encountered in MK 16 MOD 1 diving. In the context of the LEM model as presently parameterized, this feature of the dives made them substantially different from MK 16 MOD 1 He-O₂ dives. Other work that exceeds our present scope for description here indicates that LEM overestimation of the DCS incidence in the DC8416W dives is due to inordinate ascription of risk to the O₂ component of compartmental gas contents. This model feature does not come into play at the levels of inspired PO₂ encountered in MK 16 MOD 1 diving.

Table 3. Chi-Square Goodness-of-Fit Results for Various Implementations of LEM

Data Set	# Exposures	# DCS Incidents Observed	NMRI LEMGEN w/pflemgenhe8n25_114				Duke LEMGEN w/pflemgenhe8n25_114				Duke LEMGEN he8n25 (reoptimized)			
			(f)	n	π	Pearson Residual (f-n) $\sqrt{2/n(1-\pi)}$	n	π	Pearson Residual (f-n) $\sqrt{2/n(1-\pi)}$	n	π	Pearson Residual (f-n) $\sqrt{2/n(1-\pi)}$		
He-O₂														
EDU185S	1582	57.2	74.18	0.05	4.078	73.33	0.05	3.720	73.35	0.05	3.729			
EDUHE70	264	31.3	30.86	0.12	0.007	30.40	0.12	0.030	30.37	0.12	0.032			
NMR86H6	62	1	3.95	0.06	2.353	3.91	0.06	2.312	3.91	0.06	2.312			
NSMTMX	69	4	4.90	0.07	0.178	3.41	0.05	0.107	3.41	0.05	0.107			
DC8416W	182	4	16.75	0.09	10.689	16.60	0.09	10.524	16.60	0.09	10.524			
DRATMXW	190	11	8.67	0.05	0.656	8.52	0.04	0.756	8.47	0.04	0.791			
NMR9404	472	28.2	22.85	0.05	1.316	22.20	0.05	1.702	22.12	0.05	1.753			
N₂O₂														
NMR94EOD	284	17.3	14.65	0.05	0.505	14.30	0.05	0.663	14.28	0.05	0.672			
NSM6HR	57	3.2	3.83	0.07	0.111	3.80	0.07	0.102	3.80	0.07	0.102			
EDU885A	483	30	22.06	0.05	2.995	21.87	0.05	3.166	21.87	0.05	3.166			
EDU885M	81	4	3.08	0.04	0.286	3.04	0.04	0.315	3.04	0.04	0.315			
EDU885S	94	4	4.12	0.04	0.004	4.07	0.04	0.001	4.08	0.04	0.002			
EDU1180S	120	10	6.39	0.05	2.154	6.33	0.05	2.246	6.33	0.05	2.246			
NMR8697	477	12.8	14.47	0.03	0.199	14.33	0.03	0.168	14.33	0.03	0.168			
ASATNSM	132	20.1	12.03	0.09	5.956	10.61	0.08	9.230	10.62	0.08	9.203			
ASATEDU	120	15.7	9.26	0.08	4.853	8.44	0.07	6.717	8.44	0.07	6.717			
TOTALS	4669	253.8	252.05	$\chi^2 =$ (df=15) P=0.0016	36.341	245.16	$\chi^2 =$ (df=15) P=0.0002	41.759	245.02	$\chi^2 =$ (df=15) P=0.0002	41.839			
w/DC8416W and ASAT* data sets omitted:														
				$\chi^2 =$ (df=12) P=0.2502	14.842				$\chi^2 =$ (df=12) P=0.2261	15.288	$\chi^2 =$ (df=12) P=0.2205	15.395		

Table 4. LEM Model Parameters

Parameter Description	Value	Standard Error*
PTH2O	0	
Respiratory Quotient.	1.000000E+00	
PTCO2=PVC02; Tissue PCO2 == Venous PCO2 (mm-Hg).	0	
PTO2=PVO2; Tissue PO2 == Venous PO2 (mm-Hg).	0	
PACO2; Arterial PCO2 (mm-Hg).	0	
Gain/10**3 [/min], tis 1	1.458592E-06	4.895464E-07
Gain/10**3 [/min], tis 2	2.480900E-05	7.091730E-06
Gain/10**3 [/min], tis 3	5.780815E-07	3.982650E-08
alphab-O2(ml/ml) O2	2.610000E-02	
alphab-N2(ml/ml) N2	1.580000E-02	
alphab-HE(ml/ml) He	1.040000E-02	
alphat(t); O2 tissue solubility, ml/ml/atm, cmptmnt 1	0	
alphat(t); N2 tissue solubility, ml/ml/atm, cmptmnt 1	7.300000E-02	
alphat(t); HE tissue solubility, ml/ml/atm, cmptmnt 1	0	
alphat(t); O2 tissue solubility, ml/ml/atm, cmptmnt 2	0	
alphat(t); N2 tissue solubility, ml/ml/atm, cmptmnt 2	7.300000E-02	
alphat(t); HE tissue solubility, ml/ml/atm, cmptmnt 2	0	
alphat(t); O2 tissue solubility, ml/ml/atm, cmptmnt 3	0	
alphat(t); N2 tissue solubility, ml/ml/atm, cmptmnt 3	7.300000E-02	
alphat(t); HE tissue solubility, ml/ml/atm, cmptmnt 3	0	
PSET, O2 tracking threshold, (ATA), cmptmnt 1	9.900000E+01	
PSET, O2 tracking threshold, (ATA), cmptmnt 2	9.087054E-01	1.888563E-03
PSET, O2 tracking threshold, (ATA), cmptmnt 3	9.900000E+01	
TC(t); O2 exchange time constant [min], cmptmnt 1	1.000000E+00	
TC(t); N2 exchange time constant [min], cmptmnt 1	4.739182E+00	1.115894E+00
TC(t); HE exchange time constant [min], cmptmnt 1	1.507232E+01	2.283401E+00
TC(t); O2 exchange time constant [min], cmptmnt 2	2.322581E+01	2.070738E+00
TC(t); N2 exchange time constant [min], cmptmnt 2	4.756701E+01	6.067547E+00
TC(t); HE exchange time constant [min], cmptmnt 2	3.135001E+01	1.770515E+00
TC(t); O2 exchange time constant [min], cmptmnt 3	1.000000E+00	
TC(t); N2 exchange time constant [min], cmptmnt 3	3.277423E+02	6.377812E+00
TC(t); HE exchange time constant [min], cmptmnt 3	2.907310E+02	5.575822E+00
PXO(t); E->L kinetic threshold (atm), cmptmnt 1	5.789038E-01	1.634894E-01
PXO(t); E->L kinetic threshold (atm), cmptmnt 2	-2.710900E-02	
PXO(t); E->L kinetic threshold (atm), cmptmnt 3	1.000000E+10	
THR(t); risk threshold [atm], in cmptmnt 1	7.877900E-01	
THR(t); risk threshold [atm], in cmptmnt 2	1.978600E+00	
THR(t); risk threshold [atm], in cmptmnt 3	-1.492947E-01	6.157504E-04

* Parameters with no tabulated standard error were fixed at the values shown during optimization.

With this new methodology, schedules in 1.3 ATA PO2-in-He decompression tables computed by simple extrapolation of the deterministic EL-RTA with the HVAL 21 M-VAL set were found to have unacceptably high risks of DCS under the LEM model.

Figure 2. Comparison of estimated DCS risks of constant 0.7 ATA PO_2 and constant 1.3 ATA PO_2 decompression schedules. Schedules were computed using the deterministic MK 15/16 Exponential-Linear Real Time Algorithm (EL-RTA) with the HVAL21 M-VAL set. DCS risks were estimated using the probabilistic linear-exponential multigas model, or LEM.

The decision was therefore made to use LEM to compute the tables required for MK 16 MOD 1 diving with He-O₂ mixes for better control of DCS risk. Pursuit of the path following from this decision required solution of two problems:

- 1) Applicability of the LEM model to the problem. The he8n25 data set used to calibrate LEM lacked data for repetitive He-O₂ dives, so that LEM applications to compute decompression schedules for such dives were extrapolations from single dive data. It was therefore unclear at the outset of present work whether the LEM model required recalibration for valid application to such dives.
- 2) Computation of tables in U.S. Navy Diving Manual format. The LEM model can be used to directly generate tables of pre-specified DCS risk, but the parts of such tables that support repetitive diving are extremely difficult to cast in the familiar U. S. Navy Diving Manual format. The latter support repetitive diving via a single table of decompression schedules accompanied by a surface interval credit and residual gas table. On the other hand, tables produced using probabilistic models had been much more cumbersome, requiring a different table of decompression schedules for each repetitive group.¹¹

1.3. PROGRAM OBJECTIVES AND APPROACH

The present program was undertaken to complete development and validation of decompression tables for MK 16 MOD 1 He-O₂ diving to meet the following requirements:

- No-decompression capability 40 - 200 fsw
- Decompression dive capability 40 – 320 fsw
- Repetitive diving capability 40 - 200 fsw.
 - No decompression: initial dive and up to 2 repetitive dives
 - Decompression: initial dive and 1 repetitive dive
 - Surface intervals as short as 30 min
- Descent rate: 60 fsw/min
- Ascent rate: 30 fsw/min
- Up to 140 min total dive time per day

The first program objective was to establish that the LEM model, on which the new tables were to be based, was applicable to repetitive diving. For this purpose, data from the Defence and Civil Institute of Environmental Medicine (DCIEM, Downsview, Ontario CA) for single 1.3 ATA PO₂-in-He dives and repetitive 1.3 ATA PO₂-in-He dives preceded by three and six hour surface intervals was obtained. Additional data for single 1.3 ATA PO₂-in-He dives was also obtained from the Defence Evaluation Research Agency (DERA, Alverstoke UK). However, there was still no data available for 1.3 ATA PO₂-in-He repetitive dives preceded by surface intervals less than three hours. Therefore, a series of repetitive dive profiles with 30-minute surface intervals was computed using the LEM model and man-tested in program Phase I to obtain data to address this deficiency.

After establishing that the LEM model was indeed applicable to the computation of repetitive 1.3 ATA PO₂-in-He dive schedules, a method was developed to use this model to compute a complete set of MK 16 MOD 1 He-O₂ decompression tables in U.S. Navy Dive Manual format. In program Phase II, these tables were validated by man-testing selected dive profiles representative of those prescribed by the tables. As in earlier programs, these profiles were not directly from the tables *per se*, but were computed using the same algorithm used to compute the tables. Tested profiles were consequently less conservative than their table-prescribed counterparts, a feature that was confirmed using the LEM model.

Diver inspired PO₂ was closely monitored throughout each dive in both program phases in order to characterize UBA O₂ delivery to the diver.

2. METHODS

2.1. DECOMPRESSION TABLE CALCULATION

While the LEM model can be used to directly compute schedules for repetitive dives, it is not readily used to produce repetitive dive tables in the convenient format that such tables for air and MK 16 MOD 0 N₂-O₂ diving currently have in the U.S. Navy Diving Manual. In order to produce such tables for MK 16 MOD 1 He-O₂ diving, a method was developed to map the probabilistic LEM model onto a deterministic overpressure model similar to that previously used¹² to produce the MK 16 MOD 1 N₂-O₂ tables. The method parameterizes the deterministic model to compute schedules at any pre-specified risk of DCS. The resultant model is then readily used to produce tables for repetitive diving in the desired U.S. Navy Diving Manual format.

2.2.1. LEM TO EL-RTA MAPPING

The method is based on the presumption that a sufficiently large and heterogeneous data set of completed dive profiles contains all information required to parameterize a deterministic overpressure model. While different models in this class may use different means to compute compartmental gas tensions, with different conceptualizations of blood-tissue gas exchange and the underlying compartments in which this exchange occurs, they share a common essential feature of the "Haldanian" method of computing decompression: Ascent decisions are based on the value of an overpressure with respect to a Maximum Permissible Tissue Tension (MPTT). The MPTT, also called an MVAL (M), for each of $i=1, 2, \dots, n$ modeled compartments is generally a function of depth, D , and a vector, β_i , of Ω fundamental parameters¹:

$$M_{i,D} = f(\beta_i, D); \beta_i = [\beta_{i,1}, \dots, \beta_{i,\Omega}]. \quad (1)$$

Note that the β_i are rows of an $n \times \Omega$ matrix, β :

$$\beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} = \begin{bmatrix} \beta_{1,1} & \cdots & \beta_{1,\Omega} \\ \vdots & & \vdots \\ \beta_{n,1} & \cdots & \beta_{n,\Omega} \end{bmatrix}. \quad (2)$$

A Haldanian decompression is begun by ascending to the shallowest allowed stop depth, D_λ , at which no compartmental gas tension exceeds the corresponding M_{i,D_λ} . Ascent to the next stop is then allowed when compartmental gas tensions decay to the point where none exceed the corresponding MVAL for the next stop; i.e., when the overpressure with respect to MVAL in all compartments first satisfies $(p_i - M_{i,D_{\lambda-1}}) \leq 0$,

¹ Equivalently, ascent decisions may be based on the value of a prevailing compartmental tissue ratio, or TR_i , where $TR_i = M_{i,D}/D$.

where p_i is the gas tension in the i^{th} compartment, and $M_{i,D_{\lambda-1}}$ is the compartmental MVAL for the next stop at depth $D_{\lambda-1}$. Thus, ascent to the next stop is allowed when:

$$\max \left[(p_i - M_{i,D_{\lambda-1}}), i = 1, 2, \dots, n \right] = 0. \quad (3)$$

The compartment in which this end-stop maximum occurs is called the "controlling tissue" for that stop. Upon completion of ascent to the next stop, λ is decremented and the process is repeated with ascent to successively shallower stops until the diver is surfaced at depth D_0 .

The objective is to find the values of parameters in a given deterministic overpressure model that enable it to produce decompression schedules that are as close as possible to those prescribed by another model, all essential features of which are considered to be embodied in a "standard" data set of N dive profiles completed by the other model. Ideally, all end-stop gas tensions in these profiles will satisfy Eq. (3) in the desired deterministic model. However, this satisfaction cannot generally be made exact, because the safe ascent criteria in the original model, as well as the number of compartments and their associated gas exchange kinetics, will not generally be the same as those in the deterministic model. The closest possible overall approximation is obtained by adjusting the $n \times Q$ elements of the β matrix in the deterministic model to minimize the sum of squares given by

$$ss = \sum_{\eta=1}^N \left\{ \sum_{\delta=1}^{\Delta_\eta} \left\{ \sum_{\lambda=\Lambda_{\eta,\delta}}^1 \left(\max \left[(p_{i,\eta,\delta,\lambda} - M_{i,D_{\lambda-1}}), i = 1, 2, \dots, n \right] \right)^2 \right\} \right\}, \quad (4)$$

where the summation in the η^{th} profile is over all of the $\Delta_{\eta,\Delta_\eta}$ decompression stops in each of the Δ_η dives in the profile, and $p_{i,\eta,\delta,\lambda}$ is the gas tension in the i^{th} compartment at the end of decompression stop λ in dive δ of the η^{th} profile as evaluated using the blood-tissue gas exchange kinetics of the deterministic model.

Depending on the structure of any given standard data set schedule, the pressure dependence of the MVALs, and the relation of surfacing MVALs to compartmental gas exchange kinetics, the argument of the square in Eq. (4) can be negative at any given stop. If this occurs at a sufficient number of stops throughout the standard data set schedules, ss minimization drives the M_i towards zero and the process fails. However, in what might be called "well-behaved" Haldanian models, the controlling tissue at any stop is also the tissue with the maximum prevailing gas tension at the end of the stop. Under such conditions, ascent occurs when the overpressure with respect to MVAL in the controlling tissue decays to zero, and Eq. (3) is replaced by:

$$(p_i - M_{i,D_{\lambda-1}}) \Big|_{p_{i,\max}} = 0, \quad (5)$$

where $P_{i,\max}$ is the maximum compartmental gas tension at the end of stop λ . This behavior is forced in the ss minimization process by using the following in place of Eq. (4):

$$ss = \sum_{\eta=1}^N \left\{ \sum_{\delta=1}^{\Delta_\eta} \left\{ \sum_{\lambda=\Lambda_{\eta,\delta}} \left((p_{i,\eta,\delta,\lambda} - M_{i,D_{\lambda-1}})_{p_{i,\eta,\delta,\lambda,\max}} \right)^2 \right\} \right\}, \quad (6)$$

where the squared quantity is the overpressure with respect to MVAL in the controlling tissue at the end of decompression stop λ in dive δ of the η^{th} profile as evaluated using the blood-tissue gas exchange kinetics of the deterministic model. Use of Eq. (6) in place of Eq. (4) can avert failure of the ss minimization processes in these cases.

The $p_{i,\eta,\delta,\lambda}$ in either Eq. (4) or (6) also depend on additional parameters, such as the compartmental time constants for blood-tissue gas exchange, that in principle can also be adjusted in the ss minimization process. In present work, these parameters were considered to be intrinsic parts of the deterministic model definition, and were consequently fixed at pre-specified values. This left the β matrix as the only adjustable part of the deterministic algorithm, which reduced the overall number of adjustable parameters.

Minimization of either Eq. (4) or (6) requires a standard data set that is sufficiently large and heterogeneous to include profiles that exercise as much of the final MVAL domain as possible. Many of the profiles in the standard set may be well outside the range of profiles that one would advocate actually be dived.

The β extracted from the standard set by ss minimization is then used with the appropriate form of Eq. (1) to generate a table of MVALs that can in turn be used in the classical overpressure algorithm in real-time mode, or to generate decompression tables in U.S. Navy Diving Manual format. If the model approximated by the deterministic model is a probabilistic model, the resultant MVALs can be called PVALs to denote that the deterministic model embodies an essential feature of the probabilistic model; control of DCS risk according to an explicit acceptable risk scheme. An advantage of the approach in such cases is that decompression tables computed using the final deterministic model can be checked for conformance to the originally specified DCS risk scheme by evaluating the DCS risks of the schedules using the original probabilistic model. The entire process is schematized in Figure 3.

In the versions of the EL-RTA algorithm used to compute decompression tables for the MK 16 MOD 0 constant 0.7 ATA PO₂ UBA, a convention used by Workman¹³ was adopted to make compartmental MPTT increase linearly with stop depth, D , giving Eq. (1) the following explicit form:

$$M_i = M_{0,i} + a_i D ; i=1, \dots, n , \quad (7)$$

where $M_{0,i}$ is the "surfacing" MPTT and a_i is a slope parameter. Referring to Eq. (1), the β_i vector under this convention is $\beta_i = [M_{0,i}, a_i]$, and an MPTT Table for n compartments with pre-specified blood-tissue gas exchange half-times is completely specified by $nx2$ parameters. This form for $f(\beta, D)$ was retained in present work, but it should be noted that the EL-RTA does not preclude use of more complex formulations.

Figure 3. Table development schematic. Processes in the dotted line are used to parameterize a classical approximation of a statistical model and produce statistically based decompression tables in standard U.S. Navy Diving Manual format.

2.2. TRIAL DESIGN

2.2.1. OVERALL STRATEGY: SEQUENTIAL DESIGN, TEST REJECTION RULES AND POWER

Man-dives in each phase of the program were completed to test the hypothesis that DCS incidence in selected dive profiles is not higher than some specific value that is arguably representative of the DCS risk normally accepted in U.S. Navy diving. In Program Phase I, profiles were selected to test applicability of the LEM model to particular types of repetitive dives. In program Phase II, profiles representative of those prescribed by the new MK 16 MOD 1 He-O₂ decompression tables were tested.

In either case, the objective was to establish that the hypothesis could not be rejected according to pre-specified rejection rules. The rejection rules chosen for present work provided for rejection of any given profile with 95% binomial confidence that the true DCS risk of the profile exceeds 4% (Table 5). Occurrence of one significant DCS Type II case or one serious case (life threatening, paralysis, etc.), as agreed upon by the Principal Investigator and the NEDU Senior Medical Officer, were additional arbitrary causes for rejection of a profile.

TABLE 5. Number Of DCS Cases On Which To Reject
At 95% Binomial Confidence That True DCS
Risk Is Greater Than 4%.

# Exposures	# DCS
10-21	3
22-34	4
35-50	5
51-66	6
67-83	7
84-101	8
102-119	9
120-137	10
138-156	11
157-175	12
176-194	13
195-213	14
214-233	15
234-253	16
254-273	17
274-293	18
294-313	19

The rejection rules not only limited the overall risks to which the experimental divers were exposed, but also determined the probability that a schedule of given true DCS risk would in fact be rejected. This probability was estimated for profiles of various true DCS risks using a Monte Carlo simulation of 50,000 exposures at each true DCS risk to

generate the power curve for prospective trials. Exposures in each simulated trial were taken 4 man-dives at a time and limited to maximum number of either 16 or 64. Results illustrated in Figure 4 show that the probability of reaching the reject criteria during trials of profiles of different true DCS risks is relatively low unless the true DCS risk is very high. For example, if the true underlying risk of a profile is 10%, the probability of rejecting the profile in a trial of 16 exposures is only 21.3% (Panel A). Similarly, if the true underlying risk of a profile is 5%, the probability of rejecting the profile in a trial of 16 exposures is only 4.3%. The situation is improved if the trial consists of 64 exposures, where the probability of rejecting a 10% risk profile is 69.6% (Panel B). However, the probability of rejecting a 5% risk profile is still only 16.9%. Rejection of the null hypothesis clearly requires as large a sample size as possible for each profile to be evaluated; i.e., that as many divers as possible perform each test profile. Indeed, it is practically impossible to perform the number of exposures required to attain the usually-sought statistical power of approximately 80% probability of rejecting an intrinsically unacceptable profile, even if all dives are made on only a single dive profile.

Figure 4. Power curves for sequential trials conducted under the rejection rules in Table 5 and consisting of: A) 16 exposures per trial, and B) 64 exposures per trial.

It was therefore decided to test as large a variety of dive profiles as possible and combine the results under the presumption that all profiles incurred nearly the same DCS risk. Trials of 228 or 300 exposures under this presumption then have power curves illustrated in Figure 5, which were generated as above using a Monte Carlo simulation of 50,000 exposures taken four at a time at each true DCS risk. The probability of rejecting 5 and 10% risk profiles in a trial of 228 exposures is 34.2 and 98.6%, respectively (Panel A), while the probability of rejecting such profiles in a trial of 300 exposures is 39.1 and 99.7%, respectively (Panel B).

Figure 5. Power curves for sequential trials conducted under the rejection rules in Table 5 and consisting of: A) 228 exposures per trial, and B) 300 exposures per trial.

2.2.2. PROFILE SELECTION

PHASE I

The first 42 profiles in program Phase I were repetitive dive profiles consisting of two or three MK 16 MOD 1 He-O₂ dives separated by 30-minute surface intervals. The dives in each profile were to depths of 120, 160, or 200 fsw, with bottom times ranging from 15 to 25 minutes. The maximum total in-water time of each profile was 170 minutes. The profiles were generated by first building profile templates that each specified the number of dives per profile and the dive depths and bottom times. The number of dives per profile and the dive depths and bottom times were randomly selected for each template as follows:

Step	Description	Possible values
i	Randomly select the number of dives for the profile	2 or 3
ii	Randomly select the dive depth for the first dive	120, 160, or 200 fsw
iii	Randomly select the bottom time for the first dive	15, 20, or 25 min;
iv	Repeat steps (ii) and (iii) for each remaining dive	

Each template included breathing gas composition changes as per idealized MK 16 MOD 1 performance with 88/12 ($F_{\text{He}}/F_{\text{O}_2}$) as the diluent gas: The diver was assumed to breathe a 0.7 ATA PO₂-in-He mixture starting with descent from surface and continuing until arrival at 33 fsw, whereupon the inspired PO₂ was assumed to be 1.3 ATA-in-He for the remainder of the descent, time on the bottom, and subsequent ascent to 12 fsw. The inspired PO₂ was then assumed to be 0.7 ATA-in-He for the remaining ascent from 12 fsw to surface, after which the diver was assumed to breathe air. All descents were at 60 fsw/min and all ascents were at 30 fsw/min.

The templates were then completed by computing the decompression schedules for each dive in each profile to a certain pre-specified conditional DCS risk using the LEM

model described in Section 1.2 and Appendix A. Throughout the present work, the conditional DCS risk was defined as the probability of DCS occurrence during and after any given dive, subject to the condition that DCS has not occurred up to the time of leaving surface on the dive. Final profiles for test were then taken as the first 42 in the series of completed profile templates that had total in-water times of 140-170 minutes.

Two series of dive profiles were generated. Dive Series A was generated under limiting conditional DCS risk of 2.3%, and Dive Series B was generated under a limiting conditional DCS risk of 2.0%. The latter series was intended for use if the incidence or severity of decompression sickness observed in divers participating in dive profiles from Series A was unacceptably high. Indeed, a diver participating in the first profile of Dive Series A experienced elbow pain and vertigo after completing the profile. As a result of this early outcome, it was decided to switch to the B series of dive profiles after completion of only the first four "A" series profiles.

Three additional single and repetitive MK 16 MOD 1 He-O₂ dive profiles to 80 fsw were also tested in this program phase. These dives were completed to obtain a "quick look" at a longer, potentially acceptable no-stop limit for MK 16 MOD 1 He-O₂ dives to this depth than prescribed by the LEM model at 2.3% DCS risk.

PHASE II

Profiles tested in study Phase II were selected to test schedules prescribed by the new MK 16 MOD 1 He-O₂ decompression tables. For dives to depths of 200 fsw or less, where the new tables were engineered to support repetitive diving, dive profile templates were constructed in which the depths, bottom times and surface intervals were randomly selected from pools of possible properties outlined in Table 8. The templates were then completed using the EL-RTA with the PVAL set derived from the LEM model as described in Section 2.1.1.

Single dives to depths from 120 to 300 fsw were also selected for test as considered relevant to EOD operational needs, or to test operationally relevant extremes of the tables. The distribution of the planned 296 exposures among the 37 different profiles finally selected is shown in Figure 6.

Figure 6. Distribution of 296 man-exposures on 37 dive profiles tested in Phase II. Eight exposures per profile were planned.

All of the profiles performed in program Phases I and II had an overall estimated DCS risk of less than 5.0%.

2.3. DIVE PROCEDURES

Each phase of the study was reviewed and approved by the NEDU Committee for the Protection of Human Subjects (CPHS) before any manned trials commenced. The study involved U.S. Navy military divers. In this report, the personnel acting as experimental divers are referred to as "divers". All the divers read and signed a consent form prior to the study. They were required to meet the usual physical qualifications criteria for diving. All divers were trained on the standard and emergency NEDU diving procedures before participating in the study.

Divers were allowed to participate in more than one dive profile in each program phase. To minimize the potential for having results of a dive profile confounded by effects of a preceding dive profile, the divers, unless otherwise noted, spent a minimum of 60 hours at sea level between profiles. If a diver did not experience any symptoms of decompression sickness (DCS) for 48 hours after completing an experimental dive profile, he was given the diagnosis of "no DCS" and could participate in another profile after an additional 12 hours had elapsed. If a diver was diagnosed with a Type I DCS injury, he could not participate in any study during the ensuing week. Further diver participation in the study after a Type II DCS injury or arterial gas embolism (AGE) was handled on a case-by-case basis. Physical attributes of the divers, along with the

number of profiles dived by each diver in the two program phases, are summarized in Appendix C.

No systemic drugs except antibiotics and approved decongestants were allowed unless cleared by the diving medical officer (DMO). Since many divers normally take nonsteroidal anti-inflammatory drugs (NSAIDS) or vitamins daily, such use was allowed if 1) The DMO was notified and 2) No more than the diver's routine amount was taken while participating in the dive.

In the U.S. Navy dive decompression research programs, experimental divers have traditionally been instructed to abstain from alcohol for a minimum of 72 hours before and after participating in an experimental dive. However, this does not reflect operational diving practice. In an effort to make the experimental diver population a more accurate reflection of operational divers, the divers were allowed to engage in their usual social drinking behavior. Alcohol consumption was documented in the pre-dive medical screening. In this way there was no incentive for the divers to be less than completely forthright about their alcohol consumption. Divers were also instructed to engage in their regular physical training on the day of the experimental dive. This was another effort to make the experimental divers reflect operational divers more closely.

Three to four divers participated in each dive. Each diver had a tender to assist him with dressing for the dive, entering the chamber, supporting him during the surface interval between dives, and assisting him after the dive. The tenders were not exposed to a hyperbaric environment.

The divers were interviewed each morning by a Diving Medical Officer and the Dive Watch Supervisor (DWS) to verify their fitness to dive. Divers were kept on-site for 2 hours after surfacing from each dive. Each diver was queried about their status on surfacing and at 2 hours, 24 hours, and 48 hours after surfacing, and could volunteer information about symptoms at any time. Treatment of any decompression sickness was per standard U.S. Navy Standard Recompression Treatment Tables.

All diving was conducted with divers fully water immersed above a high-stand platform in the wet chamber of the NEDU OSF. The water temperature was 78-84°F (36-30°C) for all dives. Each diver wore a neoprene wet suit with booties, farmer johns, and weight belt as needed. A hot water hose was available for use if a diver became cold during a decompression stop or a surface interval.

Four pedal ergometers (W.E. Collins, Braintree, MA) were positioned on the high-stand platform to support diver exercise in the horizontal position during dive bottom times. The control room monitored all diving via in water video cameras.

The water level in the OSF wet pot was set at approximately 5 fsw above the high-stand platform. Because each diver was either at rest or working in the horns of his assigned bicycle ergometer, the water depth at the horns determined the diver's actual mid-chest depth. This water depth was measured on each dive day and was invariably from 0.8 to 1.0 fsw. All depths reported here are for diver at mid-chest depth, corrected for immersion.

All dives were performed with the divers breathing on the MK 16 MOD 1 UBA's with 88% Helium/12% Oxygen as the diluent gas. Each UBA was fitted with either a T-bit or a MK 24 Full Face Mask (FFM) configured to support communications between the diver and Control. The mouthpieces of the MK 24 FFMs were also fitted with a gas switch block that allowed the diver to select and breathe either emergency breathing (EGS) or UBA gas.

EGS gas was available throughout each dive for divers to breathe in the event of a gas monitoring system or UBA malfunction. This gas was available to all divers via an open circuit hooka secured at each bike. EGS gas to divers using a MK 24 FFM was also available via the selector valve on their mouthpiece gas switch block. Finally, a diver could also abort at any time by simply standing and breathing chamber air.

EGS gases were switched at various times throughout each dive so that a diver on an EGS abort could complete any remaining bottom time and ensuing decompression with the other MK 16 MOD 1 divers. Comprehensive sets of separate decompression schedules were on hand during each dive for use in the event of an air abort.

Preparation and Compression

The divers donned their UBA's in front of Alpha Chamber with the assistance of tenders and under the supervision of the Diving Watch Supervisor (DWS). When directed by the DWS, the dressed divers entered Alpha chamber of the OSF and proceeded directly to the trunk, where a tender made umbilical connections for diver inspired gas and temperature monitoring to each diver's UBA inhalation hose where it exits the body of the rig. The tender also connected a communications and EGS umbilical to the MK 24 FFM of divers so equipped. At surface, the EGS umbilical was charged with air. One-by-one, the divers then descended the trunk into the wet pot, entered the water and proceeded to their assigned bikes breathing air. (Divers using a T-bit simply stood during this period with head out of water breathing chamber air. Divers with a MK 24 FFM breathed EGS air from the mouthpiece of their FFM.) All bikes were situated in such a fashion that they were in full view of the video monitors. After all the divers had completed this procedure and were ready to dive, the DWS instructed them to "go on gas", meaning start breathing from the UBA and prepare to descend.

Immediately before descent to dive depths of 250 fsw or greater, divers performed a "breathe-down procedure" to mitigate the PO₂ overshoots in the MK 16 MOD 1 UBAs that accompany descent. The procedure, adopted from Royal Navy procedures for diving with the Royal Navy MK 16 MOD 1 analog, the Clearance Divers Breathing Apparatus (CDBA), was performed as follows:

- a) Diver inhaled from the rig and held breath at end-inspiration;
- b) While in end-inspiratory breath-hold, diver switched the barrel valve on his or her MK 24 Full Face Mask (FFM) or T-bit to the closed position;
- c) Diver exhaled into surrounding water or air and held his or her breath at end-expiration;
- d) Diver switched barrel valve on FFM or T-bit back to UBA gas;

- e) Steps (a) through (d) were repeated two more times or until diluent valve was heard to fire;
- f) Diver breathed normally and descent was commenced.

Three minutes after the divers went on gas, the OSF complex was pressurized with air to the desired depth. The target compression rate was 60 fsw/min, but slower rates were more typically achieved. The divers gave OK's throughout descent. If there was a halt for a squeeze, the chamber was decompressed a few feet, and the affected diver was allowed to clear. The DWS then continued to press the chamber to the desired bottom depth.

At Depth

After arrival at bottom and giving OK's, the divers began exercising at a rate of approximately 35-50 watts/minute. The divers alternated between equal periods of exercise and rest in the horns of the bike while at depth (typically 5 minutes of exercise was alternated with 5 minutes of rest).

Decompression

Divers were instructed to remain at rest in an upright position during decompression, which was at a rate as close to 30 fsw/min as possible. The divers were instructed not to manually add O₂ to their UBAs unless specifically instructed to do so.

At Surface

Divers remained in the OSF wet pot, standing with head above water breathing air, during surface intervals before repetitive dives.

Instrumentation

Diver depth and diver inspired gas composition and temperature were monitored in real-time throughout every dive and automatically recorded in ASCII text file format. Data acquisition and post-dive processing are described in detail in Appendix G.

3. RESULTS

3.1. PHASE I DIVE TRIAL

A total of 228 man-exposures were completed on 45 different dive profiles in program Phase I. A description of the profiles, with the number of exposures and DCS outcome for each profile, is given in Appendix D.

3.1.1. DCS INCIDENCE AND OTHER OUTCOMES

Two DCS cases occurred in 228 exposures, yielding an overall observed DCS incidence of 0.88%. Under the null hypothesis that this observed incidence is in fact the true DCS risk of the 228 exposures, it can be asserted at 95% confidence that the overall DCS risk of the profiles is less than 3.13%. This figure compares favorably with the estimated DCS risks of the current U.S. Navy Standard Air Decompression schedules, which vary widely from fractions of 1% to greater than 10% under the probabilistic models available to make such estimates. Thus, the observed overall DCS incidence in the Phase I trials fell well within the range of DCS risks accepted under current U.S. Navy Standard Air diving practice. The LEM model used to compute the Phase I schedules could not be rejected as producing profiles of unacceptably high DCS risk.

Other medical events in the Phase I man dives are described in Appendix F.

3.1.2. MK 16 MOD 1 PO₂ CONTROL

MK 16 MOD 1 control of diver inspired PO₂ was closely monitored throughout each dive profile (see Appendix G). Various periods in each dive, defined as illustrated in Figure 7, were used to facilitate summarization of results, which are illustrated graphically in Figures 8 through 11, and in detail in Appendix H. In present work, the PO₂ Overshoot Period in each dive was defined as the period beginning after leaving surface when measured diver inspired PO₂ first exceeded 1.45 ATA, and ending after reaching bottom when measured diver inspired PO₂ first fell below 1.45 ATA. The Post-Overshoot Bottom Period was nearly equivalent to the "bottom control period" used in earlier work.¹⁴

Summary results include the time-weighted averages of measured diver inspired PO₂ over the bottom time and total dive time of each dive. These averages include the diver inspired PO₂ during descent and ascent when the MK 16 MOD 1 PO₂ set-point was at its shallow value of 0.75 ATA. The period during descent when diver inspired PO₂ was near 0.75 ATA constituted only a small fraction of the overall bottom or dive times, while UBA PO₂ during the short 12 fsw-to-surface stage of their ascents was effected predominantly by the Boyle's law-driven decrease in PO₂ that normally accompanies ascent. The influences of MK 16 MOD 1 PO₂ set-point transitions on the reported averages were consequently negligible.

Figure 7. Illustration of different periods in a MK 16 MOD 1 dive used to characterize MK 16 MOD 1 PO₂ control. (First dive in profile 110600BN91.) TLS ≡ Time Leave Surface, TLB ≡ Time Leave Bottom, TRS ≡ Time Reach Surface.

Figure 8. Maximum PO_2 during PO_2 overshoot periods in Phase I dives. Dotted line is the nominal 1.3 ATA PO_2 set-point of the MK 16 MOD 1 at the dive depths shown. The two illustrated peak PO_2 values in excess of 5 ATA occurred in profiles 112200AN05 and 112200AN36. Examination of these profiles in Appendix I reveals that these values are in obvious error. Similarly, all other peak PO_2 values in excess of 3.0 ATA can be traced to erroneous PO_2 spikes during descent (see profiles 111400AN** and 112000BN59 in Appendix I).

Figure 9. Time-weighted average PO_2 during PO_2 overshoot periods in Phase I dives. Dotted line is the nominal 1.3 ATA PO_2 set-point of the MK 16 MOD 1 at the dive depths shown. Time-weighted Average Overshoot PO_2 is zero for dives in which no overshoot occurred (PO_2 did not exceed 1.45 atm during and immediately after descent).

Figure 10. Duration of PO_2 overshoot periods in Phase I dives. PO_2 overshoot duration is zero for dives in which no overshoot occurred (PO_2 did not exceed 1.45 atm during and immediately after descent).

Figure 11. Summary of MK 16 MOD 1 P_{O_2} control characteristics at bottom after the P_{O_2} overshoot periods, during dive bottom times, and throughout the dives; Phase I dives. Time-weighted Average Post-Overshoot P_{O_2} is zero for dives in which no overshoot occurred (P_{O_2} did not exceed 1.45 atm during and immediately after descent).

3.2. LEM EVALUATION

Phase I dive trial results are summarized in Table 6, with 95% binomial confidence limits for the overall trial outcome, as well as LEM-estimated DCS incidence for the profiles. The table also includes data from man-trials completed at DCIEM with divers using the Canadian Underwater Mine Apparatus (CUMA). This latter data, some of which is reported in References 15 and 16, includes information from 1343 man-exposures; 913 of which were completed to test single and repetitive SURD O₂ schedules, and 430 of which were completed to test single-dive no-decompression and in-water decompression schedules.

Table 6. Summary DCS Outcomes; Present Program Phase I and DCIEM CUMA Trials.

Data Source	# Exposures	DCS, # (95% Confidence Limits)	
		Observed	LEM-Estimated (profiles as dived)
Phase I	228	2.0 (0.24-7.14)	5.8 (4.7-7.1)
DCIEM, CUMA	1343	4.2 (1.09-10.22)	7.5 (5.7-13.9)

The LEM probabilistic model tends to overestimate the number of DCS incidents in each case, but the estimates fall comfortably within the 95% binomial confidence limits of the observed incidences. Results from incorporation of these two new data sets with the other he8n25 calibration data into a chi-square goodness-of-fit test of LEM are given in Table 7. Pearson residuals for the new data sets are of magnitude similar to those for the other data subsets, excepting the DC8416W, ASATNSM and ASATEDU subsets that were concluded in Section 1.2 to fall outside the range of LEM model applicability. The overall chi-square with omission of these data subsets is associated with a relatively high probability (15%) that differences between observed and LEM-estimated DCS incidences are due to random chance alone. The test therefore fails to reject LEM as applicable to these new data. It was decided to proceed using LEM with parameters from preliminary work in Table 4.

Table 7. Results of Chi-Square Goodness-of-Fit of LEM Parameterized About he8n25 Calibration Data to Phase I and DCIEM CUMA Data.

Data Set	# Exposures	# DCS Incidents				
		Observed	Predicted	Duke LEMGEN he8n25 (reoptimized)		
		(N)	(f)	n	π	Pearson Residual $(f-n)^2/n(1-\pi)$
He-O ₂						
EDU185S	1582	57.2		73.35	0.05	3.729
EDUHE70	264	31.3		30.37	0.12	0.032
NMR86H6	62	1		3.91	0.06	2.312
NSMTMX	69	4		3.41	0.05	0.107
DC8416W	182	4		16.60	0.09	10.524
DRATMXW	190	11		8.47	0.04	0.791
NMR9404	472	28.2		22.12	0.05	1.753
Phase I	228	2		5.80	0.03	2.555
DCIEM, CUMA	1343	4.2		7.50	0.01	1.460
N ₂ -O ₂						
NMR94EOD	284	17.3		14.28	0.05	0.672
NSM6HR	57	3.2		3.80	0.07	0.102
EDU885A	483	30		21.87	0.05	3.166
EDU885M	81	4		3.04	0.04	0.315
EDU885S	94	4		4.08	0.04	0.002
EDU1180S	120	10		6.33	0.05	2.246
NMR8697	477	12.8		14.33	0.03	0.168
ASATNSM	132	20.1		10.62	0.08	9.203
ASATEDU	120	15.7		8.44	0.07	6.717
TOTALS	6240	260.0		258.32	$\chi^2 =$ (df=17)	45.854 P=0.0002

3.3 | EM TO EI -RTA MAP

The method described in Section 2.1.1. was new and required validation. Accordingly, the method was first confirmed able to correctly extract MVALs from a standard data set of 6,250 air dive profiles completed using a known deterministic overpressure model; namely, the EL MK 15/16 VVAL18 RTA. The standard set for this exercise was built by first assembling 6,250 dive profile templates using an elaboration of the random construction process described in Section 2.2.2. The steps for construction of each template in this elaborated process were:

Step	Description
i	Randomly select the number of dives, N_D , for the profile and start processing dive $j=1$
ii	Randomly select the dive depth for the j^{th} dive
iii	Randomly select the bottom time for the j^{th} dive
iv	Randomly select the ascent rate for the j^{th} dive
v	If $j < N_D$, then
v.a	Randomly select the surface interval time to precede dive $j+1$
v.b	Advance to next j and repeat steps (ii) through (v)
v.c	Else QUIT

The pools of possible profile and dive properties used for the various steps in this process are given in Table 8.

Table 8. Allowed Properties of Profiles in Standard Sets Used in Present Work.

Dives/Profile:	1, 2, or 3
Dive depths:	40 to 300 fsw, 10 fsw increments
Dive bottom times:	5 to 240 min, 5 min increments
Descent rates:	all 60 fsw/min
Ascent rates:	30-120 fsw/min, 5 fsw/min increments
Surface interval times:	30-720 min, 5 min increments

The single-gas EL MK 15/16 RTA with the VVAL18 MPTT table was then used to complete each profile template by adding any required decompression stops. Finally, the $M_{0,i}$ and a_i parameters were extracted using a nonlinear least-squares minimization routine based on Marquardt's algorithm. The routine included provisions to keep parameters from "dropping out" of the fit when parameter adjustments occurred that caused any $\frac{\partial s_s}{\partial \beta_{i,\omega}} = 0$. The extracted parameters are compared in Table 9 to those used to construct the original VVAL18 MPTT Table.

Table 9. Original and Extracted β for EL-MK 15/16 VVAL18 RTA.

Compartmental Half-Time (min)	VVAL18 β (Original)	Extracted β			
	M_0 (atm)	Slope, a	M_0 (atm)	Slope, a	(+/-)
5	3.325473	1.000000	4.1573910640	1.0131884592E-01	5.1137431489D-01
10	2.660378	1.000000	2.6541991497	1.6602929540E-01	9.9755658436D-01
20	2.055747	1.000000	2.0520490650	1.0329812499E-01	9.9904887464D-01
40	1.390652	1.000000	1.3883417620	5.3197343128E-02	9.99446999327D-01
80	1.163916	1.000000	1.1603678985	1.0513980220E-01	9.9891507796D-01
120	1.073221	1.000000	1.0695265720	1.4716565177E-01	9.9823687284D-01
160	1.042989	1.000000	1.0395944062	2.2183738147E-01	9.9809734236D-01
200	1.027874	1.000000	1.0246291998	3.31863233300E-01	9.9787290260D-01
240	1.012758	1.000000	1.0098339679	1.0997956269E-01	9.9767216964D-01

All parameters of the β matrix for the $f(\beta, D)$ function were successfully recovered except those for the 5-minute half-time compartment.

The complete process outlined in Figure 3 was then used with Eq. (4) to extract PVALS for the EL MK 15/16 RTA from profiles completed by the LEM model described in Section 1.2 and Appendix A. A standard set of 6,250 MK 16 MOD 1 He-O₂ dive profiles was built by first assembling profile templates in which the properties of each profile were specified by random selection from the pools of possible properties given in Table 8. These templates included breathing gas composition changes as per idealized MK 16 MOD 1 performance with 88/12 ($F_{I_{He}}/F_{I_{O_2}}$) as the diluent gas. The diver was assumed to breathe a 0.7 ATA PO₂-in-He mixture starting with descent from surface and continuing until arrival at 33 fsw, whereupon the inspired PO₂ was assumed to be 1.3 ATA-in-He for the remainder of the descent, time on the bottom, and subsequent ascent to 12 fsw. The inspired PO₂ was then assumed to be 0.7 ATA-in-He for the remaining ascent from 12 fsw to surface, after which the diver was assumed to breathe air. The LEM model was used to complete these templates at 2.3% fixed conditional DCS risk with 20 fsw as the shallowest allowed decompression stop.

The β matrix for a 9-compartment single-gas deterministic EL-RTA was then extracted from these profiles after setting each inspired inert gas fraction equal to the sum of the inspired N₂ and He fractions:

$$F_{I_{N_2}} = 1 - F_{I_{O_2}} = F_{I_{N_2}} + F_{I_{He}}. \quad (8)$$

Results are given Table 10.

Table 10. Extracted β for Single-Gas EL RTA Approximation of LEM.

Compartmental Half-Time (min)	Extracted β	
	M_0 (atm)	Slope, a
5	3.8862658847	0.33419042769
10	3.2530411741	0.80040718224
20	1.6516881159	1.0244650367
40	2.1573713860	1.0501531224
80	1.9442800335	1.0875015513
120	0.88439535826	1.2477082949
160	0.71938369704	1.1325581371
200	1.0619074770	0.89880196526
240	0.77353416931	0.90032370927

Eq. (7) was then used with the extracted β in Table 10 to produce the table of Maximum Permissible Tissue Tensions (PVALs) given in Table 11 for final parameterization of the EL-RTA.

Table 11. PVAL Table for Single-Gas EL RTA Approximation of LEM.

TABLE OF MAXIMUM PERMISSIBLE TISSUE TENSIONS

(xval_he_4 - HELIUM)

TISSUE HALF-TIMES

DEPTH	5 MIN 1.00 SDR	10 MIN 1.00 SDR	20 MIN 1.00 SDR	40 MIN 1.00 SDR	80 MIN 1.00 SDR	120 MIN 1.00 SDR	160 MIN 1.00 SDR	200 MIN 1.00 SDR	240 MIN 1.00 SDR
10 FSW	131.892	115.608	64.879	81.863	75.188	41.731	35.121	44.114	34.590
20 FSW	135.234	123.613	75.124	92.365	86.063	54.208	46.447	53.102	43.594
30 FSW	138.576	131.617	85.369	102.866	96.938	66.685	57.773	62.090	52.597
40 FSW	141.918	139.621	95.613	113.368	107.813	79.162	69.098	71.078	61.600
50 FSW	145.260	147.625	105.858	123.869	118.688	91.640	80.424	80.066	70.603
60 FSW	148.602	155.629	116.103	134.371	129.563	104.117	91.749	89.054	79.606
70 FSW	151.944	163.633	126.347	144.872	140.438	116.594	103.075	98.042	88.610
80 FSW	155.286	171.637	136.592	155.374	151.313	129.071	114.401	107.030	97.613
90 FSW	158.627	179.641	146.837	165.876	162.188	141.548	125.726	116.018	106.616
100 FSW	161.969	187.645	157.081	176.377	173.063	154.025	137.052	125.006	115.619
110 FSW	165.311	195.649	167.326	186.879	183.938	166.502	148.377	133.994	124.623
120 FSW	168.653	203.653	177.570	197.380	194.813	178.979	159.703	142.982	133.626
130 FSW	171.995	211.657	187.815	207.882	205.688	191.456	171.028	151.970	142.629
140 FSW	175.337	219.661	198.060	218.383	216.563	203.933	182.354	160.958	151.632
150 FSW	178.679	227.666	208.304	228.885	227.438	216.410	193.680	169.946	160.636
160 FSW	182.021	235.670	218.549	239.386	238.313	228.887	205.005	178.934	169.639
170 FSW	185.363	243.674	228.794	249.888	249.188	241.365	216.331	187.922	178.642
180 FSW	188.705	251.678	239.038	260.389	260.063	253.842	227.656	196.910	187.645
190 FSW	192.046	259.682	249.283	270.891	270.938	266.319	238.982	205.898	196.649
200 FSW	195.388	267.686	259.528	281.392	281.813	278.796	250.307	214.886	205.652
210 FSW	198.730	275.690	269.772	291.894	292.688	291.273	261.633	223.874	214.655
220 FSW	202.072	283.694	280.017	302.395	303.563	303.750	272.959	232.862	223.658
230 FSW	205.414	291.698	290.262	312.897	314.438	316.227	284.284	241.850	232.661
240 FSW	208.756	299.702	300.506	323.398	325.313	328.704	295.610	250.838	241.665
250 FSW	212.098	307.706	310.751	333.900	336.188	341.181	306.935	259.826	250.668
260 FSW	215.440	315.710	320.996	344.401	347.063	353.658	318.261	268.814	259.671
270 FSW	218.782	323.714	331.240	354.903	357.938	366.135	329.587	277.802	268.674
280 FSW	222.124	331.718	341.485	365.405	368.813	378.612	340.912	286.790	277.678
290 FSW	225.465	339.722	351.730	375.906	379.688	391.089	352.238	295.778	286.681
300 FSW	228.807	347.726	361.974	386.408	390.563	403.567	363.563	304.766	295.684

BLOOD PARAMETERS

(PRESSURE IN FSW; 33 FSW/ATA)

PACO2	PH2O	PVC02	PVO2	AMBAO2	PBOVP
1.50	0.00	2.30	2.00	0.00	0.000

The pressure dependence of the PVALs in Table 11 is illustrated in Figure 12. In accord with the form for the $f(\beta, D)$ function adopted in present work, PVALs exhibit the linearity typical of the VVALs and HVALs of Thalmann's earlier versions of the EL-RTA. However, the present PVALs for different half-time compartments increase with depth along different slopes, which departs from the parallelism of the lines for the different compartments in similar plots of the earlier MPTTs.

Figure 12. Depth-dependence of compartmental PVALs in the EL RTA approximation of LEM.

The EL-RTA with the XVAL-He-4 MPTT table was used to produce the parts of new MK 16 MOD 1 HeO₂ decompression tables in which repetitive diving is supported; i.e., schedules for dives to depths of 200 fsw or less. The 120-minute half-time compartment was used as the reference compartment for repetitive group calculations. The remaining parts of the new tables in which repetitive diving is not supported; i.e., schedules for dives to depths of 210 fsw or greater; were computed using LEM directly. The latter schedules were computed using an acceptable estimated DCS risk of 2.3%. The complete set of final tables was published in an earlier preliminary report and is reproduced here in Appendix J.

Profiles representative of those prescribed by the new tables were then selected for man-test as described in Section 2.2.2. Decompressions in these profiles were

computed using the EL-RTA in its "real-time" mode, where the schedule for each repetitive dive is based on the model state at the end of the preceding surface interval. Such schedules tend to be less conservative than those prescribed by the tables *per se* because in the latter

- washout of residual gas during surface intervals is presumed to be governed by a single, relatively slow 120-min half-time reference compartment;
- washout of residual gas from the reference compartment during surface intervals is presumed to start from the maximum gas tension allowed in the surfacing repetitive group, and;
- adjusted bottom times are rounded-up to the next largest tabulated bottom time.

A comparison of each repetitive dive schedule selected for test to its corresponding schedule as prescribed by the MK 16 MOD 1 He-O₂ decompression Tables is given in Appendix K.

3.4. PHASE II DIVE TRIAL

A total of 299 man-exposures were completed on 37 different dive profiles in Phase II of the program. A description of the profiles, with the number of exposures and DCS outcome for each profile, is given in Appendix D.

3.4.1. DCS INCIDENCE AND OTHER OUTCOMES

Six DCS cases occurred in the 299 exposures in this program phase, yielding an overall observed DCS incidence of 2.01%. Again, as in the description of the Phase I results, it can be asserted at 95% confidence that the overall DCS risk of the profiles is less than 4.32% under the null hypothesis that the observed DCS incidence was in fact the true DCS risk of the 299 exposures.

Other medical events in this program phase are described in Appendix F.

3.4.2. MK 16 MOD 1 PO₂ CONTROL AND OXYGEN SENSOR PERFORMANCE

Figure 13. Peak PO₂ during PO₂ overshoot periods in Phase II dives. Dotted line is the nominal 1.3 ATA PO₂ set-point of the MK 16 MOD 1 at the dive depths shown. The four illustrated peak PO₂ values in excess of 4 ATA each occurred as a spike during descent in the profiles for divers on the same second dive (see profiles 05072001N04A, 05072001N09A, 05072001N14A, and 05072001N35A in Appendix I), and can thus be disregarded as artifact. Remaining peaks in excess of 3.0 ATA can be traced to similar spikes during descent (see profiles 04122001N34A, 04172001N31B, 04242001N09A, 04242001N10A, 04242001N30A, 04252001N521, 04262001N48B), and can also be disregarded.

Figure 14. Time-weighted average P_{O_2} during P_{O_2} overshoot periods in Phase II dives. Dotted line is the nominal P_{O_2} set-point of the MK 16 MOD 1 at the dive depths shown. Time-weighted Average Overshoot P_{O_2} is zero for dives in which no overshoot occurred (P_{O_2} did not exceed 1.45 atm during and immediately after descent).

Figure 15. Duration of PO_2 overshoot periods in Phase II dives. PO_2 overshoot duration is zero for dives in which no overshoot occurred (PO_2 did not exceed 1.45 atm during and immediately after descent).

Figure 16. Summary of MK 16 MOD 1 PO₂ control characteristics at bottom after the PO₂ overshoot periods, during dive bottom times, and throughout the dives; Phase II dives. Dotted line is nominal PO₂ set-point of the MK 16 MOD 1 UBA at the depths shown. Post-Overshoot PO₂ is zero for dives in which no overshoot occurred (PO₂ did not exceed 1.45 atm during and immediately after descent). The two points at PO₂ in excess of 2.0 ATA occurred in profile 04242001N38B, the real-time record for which is obviously corrupted by periods at depth with erroneous gas composition values (see Appendix I).

Uncontrolled Increases in Diver Inspired PO₂

In the course of the Phase I man-dives, it was observed that diver inspired PO₂ in some UBAs continued to increase throughout the bottom phase of the dives. This behavior, an example of which is illustrated in Figure 17, was typical of that expected with O₂ add valve failure in the open condition, but post-dive examination of the UBAs involved revealed no evidence of malfunction of these valves. Instead it was determined that the uncontrolled increases in UBA PO₂ were caused by nonideal behavior of the R10-DV PO₂ sensors in the rigs.

Figure 17. Example of "uncontrolled" PO_2 increase during bottom phase of first dive in profile 020501BN67. (The complete profile is illustrated in Appendix I. Also see profiles 020801AN67 and 021201AN12 in Appendix I.)

Nonideal sensor behavior is illustrated in Figure 18, along with a schematic of how this behavior causes improper, even catastrophic, PO_2 regulation in the MK 16. (For clarity, we ignore the "voting" scheme by which outputs from the three sensors in the MK 16 are integrated and consider MK 16 PO_2 to be controlled using output from only a single sensor.) Here, the PO_2 set-point is assumed to be 1.3 atm, indicated on the abscissa at point A. This PO_2 corresponds via the sensor calibration to a certain voltage (indicated by the height of point B on the ordinate, or 161 mv). However, because of sensor nonideality (deviation from the straight calibration line), a PO_2 higher than 1.3 atm is required to obtain this voltage. Because the MK 16 MOD 1 PEA regulates the voltage it detects from each of its sensors, not the PO_2 per se, the PEA will keep adding O_2 to the rig until the target voltage of 161 mv is attained. As indicated by the BC and CD arrows, this voltage actually corresponds to a PO_2 of 1.43 atm, about 10% higher than the intended 1.3 atm. As the deviations from linearity increase over this operating range, the erroneous PO_2 over-regulation also increases. Catastrophic failure occurs as actual sensor voltage output becomes independent of PO_2 (voltage vs PO_2 becomes flat). When this occurs, the PEA signals for indefinite addition of O_2 because sensor output cannot be elevated to the ideal value at 1.3 atm, no matter how high the PO_2 .

Figure 18. Mechanism of errant PO₂ regulation with nonideal O₂ sensor performance in the MK 16 MOD 1 UBA. Dotted line shows linear relationship between sensor voltage output and PO₂; the ideal performance assumed by the MK 16 MOD 1 Primary Electronics Assembly. The solid line through measured data is nonideal behavior leading to regulation of PO₂ in excess of the 1.3 ATA set-point in an otherwise properly set up MK 16 MOD 1. Note that this line is practically linear through a PO₂ of 1 ATA, the maximum PO₂ at which the O₂ sensors are checked in normal MK 16 MOD 1 setup.

This mode of MK 16 MOD 1 failure was recognized as a serious problem. First, the O₂ sensors are calibrated at a maximum PO₂ of only 1 atm in normal setup procedures, where sensor nonlinearity may not be evident (Cf., Figure 18). Thus, a UBA with malfunctioning sensors in the PO₂ range where proper operation is presumed can easily be inadvertently fielded for use. To compound the problem, UBA PO₂ in excess of 1.99 atm is not registered on the secondary display, so a diver using such a malfunctioning UBA will remain oblivious of the extent, and hence gravity, of the failure.

An upgraded O₂ sensor (Teledyne, Inc., R10DN) to replace the original equipment O₂ sensor (Teledyne, Inc., R10-DV) was identified as a solution to the problem. Samples of the upgrade R10-DN sensors were examined in the NEDU unmanned testing laboratory and, despite long ageing times in air, found to remain linear to within 5% with increasing PO₂ up to 2 atm (Figure 19). Moreover, the upgrade sensors were also found to have response times to changes in PO₂ that were substantially shorter than those for the original R10-DV sensors (Figure 20). As shown in Figure 21, these faster response times will tend to reduce the peak PO₂ attained in PO₂ overshoot periods.

Figure 19. Output vs. PO_2 of upgrade R10-DN sensors with either N_2 or He as background gas. The sensors remain linear to within about 5% at PO_2 up to 2.0 ATA with either background inert gas.

Figure 20. Responses of MK 16 MOD 1 PO_2 sensors to a step change in PO_2 from 0 to 1 ATA at time = 0. Data for two R10-DV and two upgrade R10-DN sensors are shown.

Figure 21. Sensor response time and PO_2 overshoot mitigation in a hypothetical MK 16 MOD 1 He-O₂ (88/12) dive to 300 fsw @ 60 fsw/min. The heavy solid line for UBA PO_2 was computed using equations derived in Appendix B with circuit volume = 13.5 l (8.5 l UBA volume + 5 l diver pulmonary vital capacity), and diver O_2 consumption = 1.0 l (STP)/min. Diver reaches 33 fsw, the MK 16 MOD 1 PO_2 set-point transition pressure, at point A. Because the UBA PO_2 does not exceed the new set-point PO_2 of 1.3 ATA at this point, the O_2 add valve will open. This sets the UBA PO_2 on a trajectory shown by the heavy dotted line towards a larger PO_2 overshoot than would occur if the O_2 add valve remained closed. The valve should then close at point B, when the UBA PO_2 attains a value of 1.3 ATA. However, due to the response latency of the O_2 sensors, the UBA control circuitry does not "learn" of the new PO_2 until point C, where the O_2 add valve will finally close. The period between B and C is consequently a period of inappropriate O_2 addition that exacerbates the PO_2 overshoot. Faster sensors reduce this period and mitigate the PO_2 overshoot.

Towards the end of the Phase II man-dive series, approval was obtained to use the upgrade R10-DN sensors in the MK 16 MOD 1 UBAs during the planned remaining dives. Thereafter, a total of twenty profiles were completed with divers using MK 16 MOD 1 UBAs fitted with the new sensors (a diver on an additional profile was aborted from the profile after completing only the first of two dives in the profile). Various aspects of measured diver inspired PO_2 during each of the dives in these profiles are summarized in Figures 22 – 25.

Figure 22. Peak PO₂ during PO₂ overshoots in Phase II dives completed using MK 16 MOD 1 UBAs fitted with upgrade R10-DN O₂ sensors. Dotted line is nominal PO₂ set-point of the MK 16 MOD 1 UBA at the depths shown.

Figure 23. Time-weighted average PO₂ during PO₂ overshoot periods in Phase II dives completed using MK 16 MOD 1 UBAs fitted with upgrade R10-DN O₂ sensors. Dotted line is nominal PO₂ set-point of the MK 16 MOD 1 UBA at the depths shown.

Figure 24. Duration of PO_2 overshoot periods in Phase II dives completed using MK 16 MOD 1 UBAs fitted with upgrade R10-DN O_2 sensors. PO_2 overshoot duration is zero for dives in which no overshoot occurred (PO_2 did not exceed 1.45 atm during and immediately after descent).

Figure 25. Summary of MK 16 MOD 1 PO_2 control characteristics at bottom after the PO_2 overshoot periods, during dive bottom times, and throughout the dives, Phase II dives using MK 16 MOD 1 UBAs fitted with upgrade R10 DN oxygen sensors.

3.5. THEORETICAL EVALUATION OF MK 16 MOD 1 He-O₂ DECOMPRESSION TABLES

The extent to which any decompression table set can be validated by direct man-testing is inevitably limited by time and funding constraints. However, confidence in a decompression table set can be enhanced beyond that obtained through direct man testing by using a probabilistic model to evaluate DCS risks of table-prescribed decompression schedules that are assembled in numbers much larger than can be directly tested. To support such an exercise, the implementation of the EL-RTA used in present work was outfitted with a capability to complete dive profile templates in "Table" mode. In this mode, the EL-RTA computes the same schedule for any given decompression as would be obtained through direct use of the tables. Sets of 6,250 hypothetical MK 16 MOD 1 He-O₂ dive templates were then constructed using the elaborated random assembly procedure described in Section 3.2. Different sets were constrained to cover possible dive profiles within different depth/bottom time/surface interval regions of the tables. After completing the templates in each set using the EL-RTA in table mode, the conditional DCS probability for each dive in each profile, and the cumulative DCS probability for each profile, was computed using LEM.

Distributions of conditional and cumulative DCS probabilities resulting from this process for the set encompassing the entire repetitive dive region of the tables are shown in Figure 26. For each profile with one or more repetitive dives, only the maximum conditional DCS probability was used. In accord with our design objectives, table-prescribed dives tend to incur estimated conditional DCS probabilities less than 3.0%, regardless of whether they are single or repetitive dives. The distribution of estimated cumulative DCS probabilities exhibits at least two modes: a maximum in the 2.0 – 3.0% range, obviously reflecting the contribution of single dive profiles, and another maximum in the 4.0 – 5.0% range. This second mode consists largely of cumulative risks associated with three-dive profiles, while cumulative risks of two-dive profiles tend to overlap with those of the single dive profiles. These cumulative DCS risks are conservative with respect to the estimated cumulative DCS risks of other currently accepted U.S. Navy repetitive air and He-O₂ diving procedures.

Table Evaluation: Depths: 40-200 Surface Intervals: 30-720

Figure 26. Frequency distribution of the estimated DCS risks of 6,250 MK 16 MOD 1 He-O₂ dive profiles randomly constructed from the new MK 16 MOD 1 He-O₂ decompression tables. The distribution of conditional DCS probabilities includes only the maximum conditional DCS probability from the dives in each repetitive dive profile.

Appendix M gives results of similar analyses focused on particular depth/bottom-time/surface interval regions of the tables. Results for each of the regions examined closely resemble those in Figure 26 for the entire repetitive dive region of the tables. Results overall thus indicate that DCS risks should remain within the presently used design limits for any dives conducted using the tables and their accompanying guidance.¹⁷

4. DISCUSSION

The present report provides details of the development and validation of the MK 16 MOD 1 He-O₂ Decompression Tables published in NEDU Technical Report 14-01.¹⁷ Overall outcomes of the man-dives completed in the table development and validation process are summarized in Table 12.

Table 12. Summary of Completed Man-Dives

Profile	# Exposures	Completed # Dives	# DCS
Phase Ia 40 Various 2- & 3-dive repetitive profiles; 30 min SIs	148	361	2
Phase Ib 3 x (120/25) 2 x (160/25) 80/110 no-D 80/130 no-D 5 x (80/25) no-D Phase Ib Totals	23 14 7 24 12 80	69 28 7 24 60 188	0 0 0 0 0 0
Phase I Totals	228*	549	2
Phase II 21 Single Dive 13 Two-Dive 3 Three-Dive	185 90 24	185 180 72	2 1 3
Phase II Totals	299	437	6
GRAND TOTALS	527	986	8

* Differs from the Phase I total of 227 exposures reported in NEDU TR 14-01,¹⁷ where a successfully completed exposure on profile I-A was inadvertently omitted.

Figures 27 and 28 illustrate that the new MK 16 MOD 1 He-O₂ tables realize the potential for decreased decompression obligations afforded by adoption of a higher diver inspired PO₂, while controlling estimated DCS risk to within more conservative limits than those for the earlier MK 16 MOD 0 He-O₂ tables.

Figure 27. Comparison of estimated DCS risks of single dive schedules in the MK 16 MOD 0 Constant 0.7 ATA PO₂-in-He tables with those for single dive schedules in the new MK 16 MOD 1 1.3 ATA PO₂-in-He tables.

Figure 28. Comparison of total decompression stop times of single dive schedules in the MK 16 MOD 0 Constant 0.7 ATA PO₂-in-He tables with those of single dive schedules in the new MK 16 MOD 1 1.3 ATA PO₂-in-He tables.

The technique developed in present work to map a probabilistic algorithm onto a more operationally tractable deterministic algorithm provides a solution to long standing problems with probabilistic models; namely, that their use is very computation intensive, precluding their real-time operation in currently available diver-worn decompression computers, and that they are not readily used to produce decompression tables in the familiar U.S. Navy Dive Manual format. The method differs fundamentally from that used in earlier attempts to parameterize deterministic algorithms directly from DCS incidence data using maximum likelihood methods,¹⁸ and is hence able to meet the requirement of practically-useful deterministic algorithms for more adjustable parameters than are statistically warranted by the data in hand. The product of the method, the EL-RTA map of LEM, uses the same logic and arithmetic that supports operation of the new U.S. Navy decompression computer,¹⁹ the latter being distinguished from the present EL-RTA only its use of the VVAL18 MPTT table instead of the current XVAL_He_4 MPTT table.

Requirements for optimum application of this technique remain to be established. For example, the number of different profiles required in the standard data sets and the corresponding required ranges of profile properties are not known.

Subsaturation He-O₂ dives entail tri-mix decompressions, because nitrogen remaining in tissues from air breathing before the dives must be considered. Thus, the LEM model explicitly considers washout of such N₂ during the dives, along with N₂ uptake during surface intervals before repetitive dives. As described in Appendix A, LEM also includes provisions for a portion of compartmental O₂ contents to contribute to DCS risk, depending on parameterization. In contrast, the EL-RTA map of LEM is only a single-gas model in which consideration of the separate exchanges of He, N₂ and O₂ is precluded. Instead the net compartmental He, N₂, and O₂ contents in LEM are combined under the guise of a single nameless inert gas in the EL-RTA map of LEM. Thalmann considered the consequences of such a simplification in some detail,³ and decided not to support a repetitive dive capability in the 0.7 ATA PO₂-in-He decompression tables developed for the MK 16 MOD 0. However, successful maintenance of target conditional DCS risks through repetitive dive schedules prescribed by the present EL-RTA map (Section 3.5) indicates that any essential nuances of the separate kinetics of the two inert gases and O₂ in LEM were captured in the extracted β for the EL-RTA.

The present series of MK 16 MOD 1 man dives is the most extensive to date in which diver inspired PO₂ with this UBA was monitored. Results confirmed the occurrence of PO₂ overshoots during descent and PO₂ undershoots during ascent, as well as the occurrence of control oscillations in PO₂ during prolonged isobaric periods at depth. The observed characteristics of MK 16 MOD 1 PO₂ control can be considered in view of the PO₂ control goals set forth for the MK 16 MOD 1:²⁰

- (a) PO₂ ≤ 1.9 ATA during descent at rates not to exceed 60 fsw/min;
- (b) Time-weighted average PO₂ after stabilization at depth = 1.30 ± 0.05 ATA, with control oscillations to remain within 1.15 – 1.45 ATA range;
- (c) PO₂ ≥ 0.2 ATA during ascents at rates not to exceed 30 fsw/min.

For this purpose, further condensation of results summarized in Figures 8-11, 13-16, and 22-25 is given in Table 13. Although the statistics for the Phase I and II dives completed with UBAs fitted with R10-DV O₂ sensors are somewhat high due to inclusion of erroneously high values flagged in Figures 8, 13, and 16, the conclusion is unavoidable that criteria (a) and (b) above were frequently violated in the present man-dives. Deviations from the PO₂ control goals were considerably less with use of upgrade R10-DN sensors in the UBAs, although the number of dives performed with these sensors was limited.

Table 13. Mean Time-Weighted Average PO₂ During Different Parts of Phases I and II Man Dives.

	Peak Overshoot PO ₂ (ATA)	Time-Weighted Average PO ₂ , (ATA)			
		Overshoot*	Post Overshoot, Bottom*	Bottom Time* (LS→LB)	Dive Time* (LS→RS)
Phase I					
Mean:	1.889	1.612	1.413	1.398	1.339
Standard Deviation:	0.408	0.142	0.088	0.142	0.125
Phase II					
UBAs w/R10-DV Sensors					
Mean:	1.977	1.620	1.409	1.442	1.348
Standard Deviation:	0.469	0.162	0.061	0.125	0.087
UBAs w/R10-DN Sensors					
Mean:	1.663	1.518	1.310	1.307	1.250
Standard Deviation:	0.142	0.091	0.035	0.053	0.036

* Tabulated standard deviations are *not* measures of the amplitudes of PO₂ oscillations during the indicated periods, but are measures of the dispersion of the means about which these oscillations occurred over the different dives.

This experience is not inconsistent with that reported by earlier workers. For example, Long and Fennewald reported that UBA PO₂ was maintained to within 0.05 ATA of 1.30 ATA in MK 16 MOD 1 man-dives using N₂ or He in the diluent gas.¹⁴ In this earlier work, however, PO₂ values from the R10-DV sensors in the UBA itself were used to reach this conclusion. As discussed in Section 3.4.2, such sensors can under-report the actual PO₂ if they have aged sufficiently to exhibit nonlinear response to increasing PO₂. Moreover, as illustrated in Figure 20, such sensors are relatively slow to respond to changes in PO₂. Consequent convolution of the actual PO₂ signal thus smooths PO₂ oscillations, leading to attenuation of the actual oscillatory amplitude and a mistaken tendency to indicate that the amplitude is low. Finally, the PO₂ control sensors in the MK 16 MOD 1 are located in such a fashion that they do not sample actual diver inspired gas. In contrast, present results were obtained using an independent measure of UBA PO₂ from faster-responding sensing equipment that was sampling actual diver inspired gas. Measures of diver inspired PO₂ were digitally smoothed in present work (see Appendix G), but the quadratic convolute method used preserves the relatively large-scale PO₂ oscillations associated with PO₂ control in the MK 16 MOD 1.

Present experience is also consistent with that obtained in use of similar UBAs. Peak PO₂ and time-weighted average PO₂ in the Canadian Underwater Mine Apparatus (CUMA) and the Royal Navy Clearance Divers Breathing Apparatus (CDBA) are illustrated vs. dive depth in Appendix N. Peak PO₂ in excess of 2.0 ATA is commonly

attained in the CUMA UBA, particularly at depths greater than 150 fsw (Figure N1). PO₂ in the 1.3 to 1.5 ATA range is then sustained throughout the remainder of many CUMA dives (Figure N2). Peak overshoot PO₂ levels and time-weighted average overshoot PO₂ similar to those observed in the present MK 16 MOD 1 dives also occur in the CDBA (Figures N3 and N4).

High diver inspired PO₂ is of principal physiological concern for its impact on the risk of CNS O₂ toxicity. The CUMA has been in service for many years, and has supported thousands of dives without a single report of a CNS O₂ toxicity event. Similarly no diagnosed case of CNS O₂ toxicity has been reported during CDBA diving.

Parenthetically, the observed zero incidence of definite CNS O₂ toxicity events in present MK 16 MOD 1 man-dives does not agree with the 9.18 seizure incidents predicted for these dives by the Harabin model²¹ (=sum of predicted P_{CNS}(%) for all the dives in Appendix L x 100). Thus, the Harabin model grossly overestimates the risk of seizures and therefore does not appear to be a useful model for these types of dives.

Recommendation to adopt the upgrade R10-DN O₂ sensors for routine use in the MK 16 MOD 1 is nearly a foregone conclusion to mitigate risks of CNS O₂ toxicity, but such use will have the consequence of increasing the DCS risks of dives undertaken with the UBA. It is of interest to establish that the attendant increases will not elevate DCS risk beyond the accepted limits for the new tables.

Most dives in the present program were completed using MK 16 MOD 1 UBAs fitted with original-issue R10-DV O₂ sensors. The consequent maintenance of relatively high diver inspired PO₂ throughout the dives reduced the DCS risk of the dives to levels often well below those accepted in planning the dives, where maintenance of diver inspired PO₂ in accord with ideal MK 16 MOD 1 performance was assumed. This can be seen by comparing the estimated DCS risk of any given profile as planned, given in Appendix K, with the estimated DCS risk of the profile as actually performed, given in Appendix L (via Appendix C). Such comparisons are left to the reader for dives completed using UBAs fitted with original-issue R10-DV O₂ sensors. However, Figure 30 shows such comparisons for the Phase II dives completed using UBAs fitted with upgrade R10-DN O₂ sensors. Although the gap between accepted and actual DCS risks is narrowed, estimated DCS risks of the dives as performed remain equal to or lower than the risks originally accepted in planning the dives. Evidence therefore indicates that use of the R10-DN O₂ sensors will not elevate DCS risk beyond acceptable limits.

Figure 29. Estimated cumulative DCS risks of Phase II dives completed using MK 16 MOD 1 UBAs fitted with upgrade R10-DN O₂ sensors. Each filled circle is the DCS risk for the dive estimated using the measured pressure-PO₂ profile for the diver. Each filled square is the DCS risk for the dive estimated assuming that the dive was performed exactly as planned and with ideal MK 16 MOD 1 PO₂ delivery. Error bars on each data point give the ±95% confidence range of the estimate, while lines through the data points are for clarity only. Notes: Diver in profile 07182001N17A completed only the first of two dives in the planned profile. Data for another diver (#08), who successfully completed profile 07172001B using a MK 16 MOD 1 fitted with R10-DN O₂ sensors, was lost due to error in data acquisition setup.

As noted in our original report,¹⁷ successful results of this trial are strictly applicable only to the schedules dived with the MK 16 MOD 1. If the MK 16 MOD 1 UBA is engineered to control diver inspired PO₂ to within tighter limits than obtained through use of the upgrade R10-DN O₂ sensors, including further reductions of PO₂ overshoots during and after descent, the suitability of these schedules for use with the new UBA will require re-evaluation.

5. CONCLUSIONS AND RECOMMENDATIONS

- a. A complete set of new 1.3 ata PO₂-in-He decompression tables for MK 16 MOD 1 diving has been developed and tested. These tables, which were originally forwarded in an earlier communication and are reproduced in attached Appendix J, support repetitive diving as per USN EOD requirements at an approximate 2.3% risk of DCS.
- b. We continue to recommend approval of the attached tables for use with the MK 16 MOD 1 UBA using 88/12 (%He/%O₂) as the diluent gas under the operational limits and guidance that accompanied their original communication.
- c. Although no clear-cut cases of CNS O₂ toxicity were observed in the present man-dives, it is recommended that the MK 16 MOD 1 UBA be used only with the upgrade R10-DN O₂ sensors, or their equivalent, to mitigate the risks of such toxicity.
- d. New analytic technology has been developed to map a probabilistic model into a deterministic algorithm that readily produces decompression tables in USN Diving Manual format. This analytic technology can potentially be used to generate different tables for optimizing the balance between DCS risks and other hazards in different EOD operational scenarios. The algorithm produced by this technology is operable in currently available diver-worn dive computers.

6. Acknowledgements

The authors gratefully acknowledge the support of all divers who volunteered as subjects for this work. The authors are also grateful to ENS Faye M. Bradfish, who assisted in final preparation of the dive profile data presented in Appendix I, to Mr. Keith A. Gault, who assembled Appendix M and also assisted in preparation of Appendix I, and to Dr. Dan Warkander for provision of data describing R10-DV and R10-DN O₂ sensor performance. Finally, the authors gratefully acknowledge R.Y. Nishi of the Defence and Civil Institute of Environmental Medicine in Ontario, Canada, and T.G. Anthony of the Defence Evaluation and Research Agency in Alverstoke, U.K., for provision of detailed data from the extensive He-O₂ man-dives completed in their laboratories.

7. REFERENCES

- 1 Thalmann, E. D. *Computer Algorithms Used in Computing the MK 15/16 Constant 0.7 ATA, Oxygen Partial Pressure Decompression Tables.* NEDU TR 1-83, Navy Experimental Diving Unit, January 1983.
- 2 Thalmann, E. D., *Phase II Testing of Decompression Algorithms for Use in the U.S. Navy Underwater Decompression Computer,* NEDU TR 1-84, Navy Experimental Diving Unit, January 1984.
- 3 Thalmann, E. D., *Development of a Decompression Algorithm for Constant 0.7 ATA Oxygen Partial Pressure in Helium Diving.* NEDU TR 1-85, Navy Experimental Diving Unit, April 1985.
- 4 Naval Sea Systems Command, *U.S. Navy Diving Manual*, NAVSEA SS521-AG-PRO-010, Vol. #5, Rev. 4, Table 17-9,17-10.
- 5 (1991) Terms of Reference for Joint Development of a Common HeO₂ Decompression Probabilistic Algorithm Under IEP ABCA-10 Agreement dated 25 Sep 91.
- 6 Survanshi, S.S., Parker, E.C., Gummin, D.D., Flynn, E.T., Toner, C.B., Temple, D.J., Ball, R., Homer, L.D. *Human Decompression Trial with 1.3 ATA Oxygen in Helium.* Bethesda, MD, NMRI 98-09, June 1998.
- 7 Survanshi, S. S., Parker, E. C., Massell, E. D., Thalmann, E.D., Weathersby, P. K. A *Probabilistic Model of Decompression Sickness Risk in Helium, Nitrogen and Oxygen Mixed Gas Diving.* (unpublished manuscript, November 1999).
- 8 Thalmann, E.D., Parker, E.C., Survanshi, S.S. and Weathersby, P.K. (1997) *Improved probabilistic decompression model predictions using linear-exponential kinetics.* Undersea and Hyperbaric Medicine 24(4):255-274.
- 9 Parker, E. C., Survanshi, S. S., Massell, P. B., Weathersby, P. K. "Probabilistic models of the role of oxygen in human decompression sickness." *Journal of Applied Physiology* 84:1096-1102 (1998).
- 10 Gerth, W. A. *Overview of Survival Analysis and Maximum Likelihood Techniques.* In: Weathersby P. K. and Gerth, W. A., eds. *Workshop on Survival Analysis and Maximum Likelihood Techniques as Applied to Physiological Modeling.* Undersea and Hyperbaric Medical Society, Bethesda, MD. (*In Press*).
- 11 Survanshi, S.S., Parker, E.C., Thalmann, E.D. and Weathersby, P.K. *Statistically based decompression tables XII: Volume I. Repetitive decompression tables for air and constant 0.7 ATA PO₂ in N₂ using a probabilistic model.* NMRI 97-36 (Vol I), Bethesda, MD: Naval Medical Research Institute, 1997.

- 12 Johnson, T. M., Gerth, W. A., Southerland, D. G. *1.3 ATA PO₂ N₂O₂ Decompression Table Validation*. NEDU TR 9-00, Navy Experimental Diving Unit, September 2000.
- 13 Workman, R. D. *Calculation of Decompression Schedules for Nitrogen-Oxygen and Helium-Oxygen Dives*. Research Report 6-65, U.S. Navy Experimental Diving Unit, Washington, D.C., 1965.
- 14 Long, E.T., Fennewald, M. J. *Manned Evaluation of the Carleton .3 ATA PO₂ Primary Electronics Assembly with the MK 16 Underwater Breathing Apparatus*. NEDU TR 2-00, Navy Experimental Diving Unit, 2000.
- 15 Nishi, R. Y., Warlow, M. R. N. *Development of CUMA HeO₂ Decompression Tables: Final Report*. DCIEM Report No. 97-R-68, 1997.
- 16 Nishi, R. Y., Kessler, M. L., Eaton, D. J. *Reduced Surface Interval Between Dives for CUMA HeO₂ Decompression Tables – Final Report*. DCIEM Technical Report TR 2000-063, Defence and Civil Institute of Environmental Medicine, North York, Ontario, 2000.
- 17 Johnson, T. M., Gerth, W. A. *1.3 ATA PO₂-in-He Decompression Tables for MK 16 MOD 1 Diving: Summary Report and Operational Guidance*. NEDU TR 14-01, Navy Experimental Diving Unit, 2001.
- 18 Parsons Y. J., Weathersby P. K., Survanshi S. S., Flynn E. T. *Statistically Based Decompression Tables V: Haldane-Vann Models for Air Diving*. NMRI 89-34, Naval Medical Research Institute, Bethesda, MD, 1989.
- 19 Butler, F. K., Southerland, D. *The U.S. Navy decompression computer*. Undersea and Hyperbaric Medicine, 28(4):213-228, 2001.
- 20 Program Executive Officer-Mine Warfare and Program Office – Explosive Ordnance Disposal, *MK 16 MOD 0 Underwater Breathing Apparatus (UBA) Partial Pressure of Oxygen (PPO₂) Control Band Goal*, Indian Head, MD, December 1998.
- 21 Harabin, A. L., Survanshi, S. S., Homer, L. D. *A Model for Predicting Central System Oxygen Toxicity from Hyperbaric Oxygen Toxicity in Humans*. Toxicology and Applied Pharmacology 132, 19-26 (1995).

APPENDIX A.

DCS Model Descriptions

The different decompression algorithms used in the present work provide a means to compute gas contents of diver tissues throughout a dive profile so that the profile can be configured to keep those contents always within limits associated with acceptable incidences of DCS.

The algorithms are based on the conceptualization shown in Figure A1, when the diver is presumed to be breathing a mixture of oxygen in m inert gases. Parts of the body involved in the etiology of DCS are considered to consist of a series of n parallel-perfused, well-stirred gas exchange compartments, or "tissues," as shown in panel A. A detail of one compartment is shown in panel B. Subscript g for arterial, venous, and tissue gas tensions ranges from 1 to $m+j$, where $j=1$ if oxygen is considered to contribute dynamically to each compartmental sum of dissolved gas tensions in a multiple gas model, or $j=0$ otherwise. p_{fix} denotes the sum of the tensions of water vapor, carbon dioxide, and oxygen that are assumed constant and uniform throughout the modeled compartments [see Eq. (A4) below]. Gas exchange between tissue and blood in each compartment is assumed to be perfusion limited, so that the tension of a gas g in venous blood leaving the tissue equals the tension of that gas in the tissue:

$$p_{v,i,g} = p_{t,i,g}$$

In a subject breathing air or N_2O_2 , arterial blood is assumed to be always equilibrated with alveolar gas having an N_2 partial pressure $P_{A_{N_2}}$ at ambient barometric pressure P_{amb} given by rearrangement of the alveolar gas equation¹ for no CO_2 in the inspired gas ($P_{I_{CO_2}} = 0$):

$$p_{a,N_2} = P_{A_{N_2}} = F_{I_{N_2}} \cdot \{(P_{amb} - P_{H_2O}) - P_{A_{CO_2}} (1 - 1/RQ)\}, \quad (A1)$$

where p_{a,N_2} is the arterial inert gas tension, $F_{I_{N_2}} = 1 - F_{I_{O_2}}$ is the N_2 fraction in dry inspired gas, RQ is the respiratory quotient, and $P_{A_{CO_2}}$ is the alveolar carbon dioxide partial pressure. The latter, along with water vapor pressure, P_{H_2O} , is assumed to remain constant. Equation (A1) is generalized for each of m inspired inert gases:

$$p_{a,g} = F_{I_g} \cdot \left\{ (P_{amb} - P_{H_2O}) - P_{A_{CO_2}} (1 - 1/RQ) \right\}; g = 1, \dots, m \quad (A2)$$

Figure A1. Schematic of the LEM model, in which the subject is assumed to be breathing a mixture of oxygen in m inert gases. A) n parallel-perfused compartment model of whole body. Association of compartments with specific anatomical sites is disclaimed, except to assert that the modeled compartments represent tissues or tissue components that are involved in the occurrence of DCS. B) Detail of compartment in (A). The jagged lines with double-headed arrows indicate that the overall volume of the compartment, $(V_{t,i} + V_{b,i})$, varies with bubble volume, while the compartmental liquid volume, $V_{t,i}$, remains constant.

The dissolved gas tension of gas g in the i^{th} compartment, $p_{t,i,g}$, at any time t in a profile stage is given generally by the expression for mass balance between bubble, tissue, and blood in a perfusion-limited system:

$$\frac{dp_{t,i,g}}{dt} = \frac{k_g \cdot t + (p_{a,g}^0 - p_{t,i,g})}{\tau_{i,g}} - \left(\frac{1}{\alpha_{t,i,g} V_t} \right) \left(\frac{d(P_{b,i,g} V_{b,i})}{dt} \right) - Z_{met,i,g} ; g=1, \dots, m+j, \quad (\text{A3})$$

where $RT(P_{b,i,g} V_{b,i})$ is the number of moles of gas g at partial pressure $P_{b,i,g}$ in a bubble of volume $V_{b,i}$; $p_{a,g}^0$ is the arterial tension of the gas at t^0 , the beginning of the stage; and $Z_{met,i,g}$ is the rate at which the gas is consumed by metabolic processes in the tissue. With $p_{a,g}$ equal to the arterial tension of the gas at time t , k_g is the rate of change of the arterial gas tension during the stage:

$$k_g = \frac{p_{a,g} - p_{a,g}^0}{t - t^0}. \quad (\text{A3.a})$$

The compartmental time constant, $\tau_{i,g}$, is given in terms of the Ostwald solubility of the gas in the compartment, $\alpha_{i,i,g}$; the compartmental volume, $V_{t,i}$; the compartmental blood flow, Q_i ; and the Ostwald solubility of the gas in blood, $\alpha_{blood,g}$:

$$\tau_{i,g} = \frac{\alpha_{i,i,g} V_{t,i}}{\alpha_{blood,g} Q_i} . \quad (\text{A3.b})$$

The compartmental half-time, $t_{1/2,i,g}$, or the time required to halve an initial tissue-blood gas tension difference with constant $\tau_{i,g}$ and $p_{a,g}$, is then given by

$$t_{1/2,i,g} = \ln(2) \cdot \tau_{i,g} \equiv 0.693 \cdot \tau_{i,g} \quad (\text{A3.c})$$

Note that Q_i in Eq. (A3.b) is the blood flow to the entire compartmental volume per unit time, not the perfusion rate obtained by normalizing this flow to the compartmental volume.

Unless otherwise noted, Z_{met,i,O_2} for oxygen is assumed always to have values sufficient to keep the tissue p_{O_2} constant and the same in all compartments. The index j in the above equations is then 0, and the tissue p_{O_2} is added to the other fixed gas tensions, p_{CO_2} and p_{H_2O} , to define a compartment-independent constant:

$$p_{fix} = p_{H_2O} + p_{CO_2} + p_{O_2} . \quad (\text{A4})$$

On the other hand, if Z_{met,i,O_2} is too small to keep the tissue p_{O_2} constant, oxygen may contribute dynamically to the overall compartmental dissolved gas content. In order to simulate and track these contributions, oxygen in excess of a certain arterial tension $PSET_i$ is considered to behave as an inert gas that follows Henry's law in blood and tissue. Under these conditions $j=1$, and quantities with subscript $g=m+1$ in the above equations correspond to compartmental O_2 contents that arise from this excess arterial O_2 , where

$$p_{a,O_2} = 0 \quad \text{if } P_{A_{O_2}} \leq PSET_i , \quad (\text{A5})$$

$$p_{a,O_2} = P_{A_{O_2}} - PSET_i \quad \text{if } P_{A_{O_2}} > PSET_i , \quad (\text{A6})$$

and [see Eq. (A2)]

$$P_{A_{O_2}} = P_{amb} - P_{H_2O} - P_{A_{CO_2}} - \sum_{g=1}^m p_{a,g} . \quad (\text{A7})$$

Note that specification of a sufficiently high value of $PSET_i$ forces a constant compartmental p_{O_2} , which is equivalent to setting $j=0$ for the compartment.

For each of the $m+j$ "inert" gases that by definition are not reactants or products of tissue metabolism, the $Z_{met,i,g}$ term vanishes and Eq. (A3) simplifies to

$$\frac{dp_{t,i,g}}{dt} = \frac{k_g \cdot t + (p_{a,g}^o - p_{t,i,g})}{\tau_{i,g}} - \left(\frac{1}{\alpha_{t,i,g} V_t} \right) \frac{d(P_{b,i,g} V_{b,i})}{dt}; g=1, \dots, m+j. \quad (\text{A8})$$

In the absence of a bubble, the rightmost term in Eq. (A8) vanishes so that each gas exchanges between tissue and blood independently. The analytic solution of the resultant expression is used to determine the tension of gas g in tissue at any time t :

$$p_{t,i,g} = p_{a,g}^o + (p_{t,i,g}^o - p_{a,g}^o) \cdot \exp\left(\frac{-t}{\tau_{i,g}}\right) + k_g t + k_g \tau_{i,g} \left\{ \exp\left(\frac{-t}{\tau_{i,g}}\right) - 1 \right\}, \quad (\text{A9})$$

where $p_{t,i,g}^o$ is the compartmental inert gas tension at $t=0$.

Impact of Bubble Evolution

Once a bubble has nucleated in a compartment at time t_{bf} in a profile stage, its subsequent evolution affects blood-tissue gas exchange kinetics and renders Eq. (A9) inapplicable. Blood-tissue gas exchange kinetics are then considered in terms of the compartmental inert gas burden $P'_{t,i}$, defined as the sum of the dissolved inert gas tension and the inert gas tension that would be exerted by the undissolved inert gas in bubbles if that gas had remained in solution. The differential equation for $P'_{t,i}$ is obtained by rearranging Eq. (A8) for each gas and collecting terms:

$$\frac{dP'_{t,i}}{dt} = \sum_{g=1}^{m+j} \left\{ \frac{dp_{t,i,g}}{dt} + \left(\frac{1}{\alpha_{t,i,g} V_{t,i}} \right) \frac{d(P_{b,i,g} V_{b,i})}{dt} \right\} = \sum_{g=1}^{m+j} \left\{ \frac{[k_g t - (p_{t,i,g}^o - p_{a,g}^o)]}{\tau_{i,g}} \right\}. \quad (\text{A10})$$

Note that in the absence of bubbles, $P'_{t,i} = \sum_{g=1}^{m+j} p_{t,i,g}$, where the $p_{t,i,g}$ are given by Eq. (A8).

The bubble is assumed to be always in equilibrium with its surroundings, so that $p_{t,i,g} = P_{b,i,g}$ for $g=1, \dots, m+j$ and $p_{fix} = P_{fix}$, where p_{fix} is given by Eq. (A4) and P_{fix} is the sum of the fixed gas partial pressures in the bubble. The sum of the inert gas partial pressures in the bubble is then given by the Laplace equation, which with neglect of mechanical effects from tissue deformation is

$$\sum_{g=1}^{m+j} P_{b,i,g} = P_{amb} - P_{fix} + \frac{2\sigma}{r_i} , \quad (A11)$$

where σ is the gas-liquid surface tension and r_i is radius of the bubble. This equation indicates that the total gas pressure in the bubble exceeds the ambient pressure by an amount equal to the surface pressure, $2\sigma/r_i$. Neglecting the dependence of the surface pressure on r_i , the contribution of the surface pressure to the bubble pressure is simplified by setting the surface pressure equal to a constant of value PXO_i , so that Eq. (A11) is written

$$\sum_{g=1}^{m+j} P_{b,i,g} = P_{amb} - P_{fix} + PXO_i . \quad (A12)$$

It follows from the assumed equilibrium between bubble and tissue that the sum of the tissue tensions equals the sum of the bubble partial pressures, so that we have from Eq. (A12) that

$$\sum_{g=1}^{m+j} p_{t,i,g} = \sum_{g=1}^{m+j} P_{b,i,g} = P_{amb} - P_{fix} + PXO_i , \quad (A13)$$

which couples the sum of the tissue tensions to the ambient hydrostatic pressure.

Single inert gas dynamics: The Exponential-Linear Real-Time Algorithm (EL-RTA)

When a subject breathes a mix that contains only a single inert gas, $m=1$ and $j=0$, and Eq. (A13) reduces to

$$p_{t,i} = P_{b,i} = P_{amb} - P_{fix} + PXO_i , \quad (A14)$$

where we suppress expression of the subscript g because it is always 1. The dissolved inert gas tension in tissue is given directly in terms of the ambient hydrostatic pressure, and the simple expressions for the exponential-linear (EL) model are obtained. Thus, if ambient pressure changes are also always considered time-linear, Equation (A14) becomes

$$p_{t,i} = P_{b,i} = k_p(t - t_{bf}) + P_{bf} - P_{fix} + PXO_i , \quad (A15)$$

where k_p is the rate of change of the hydrostatic pressure during the stage and P_{bf} is the hydrostatic pressure at $t=t_{bf}$. If the stage was entered with a bubble already present, $t_{bf}=0$ and $P_{bf} = P_{amb}^0$. Substitution into Equation (A10) then yields

$$\frac{dP'_{t,i}}{dt} = TC_i \cdot [p_a^o + (k - k_p)(t - t_{bf}) - P_{bf} + P_{fix} - PXO_i], \quad (A16)$$

where $TC_i = 1/\tau_i$, p_a^o is evaluated at $t=t_{bf}$, and k is given for the single inert gas by Eq. (A3.a). Integration of this expression from t_{bf} to t yields the EL model expression for the compartmental inert gas burden at any time t in a profile stage when a bubble is present:

$$P'_{t,i} = P'_{t,i}^o + TC_i \cdot \{[p_a^o - p_{bf} + P_{fix} - PXO_i] \cdot (t - t_{bf}) + [(k - k_p)/2] \cdot (t - t_{bf})^2\}, \quad (A17)$$

where $P'_{t,i}^o$ is the inert gas burden at $t=t_{bf}$. Eq. (A17) is readily cast in the form given by Parker, et al.² by recalling that $p_a^o = P_{amb}^o - p_{a_{O_2}}^o - p_{a_{CO_2}}^o - P_{H_2O}$ and that arterial blood is assumed to be in equilibrium with alveolar gas:

$$P'_{t,i} = P'_{t,i}^o + TC_i \cdot \{[p_{a_{O_2}} + p_{a_{CO_2}} - P_{a_{O_2}}^o - P_{a_{CO_2}}^o - PXO_i] \cdot (t - t_{bf}) - [k_{O_2}/2] \cdot (t - t_{bf})^2\}, \quad (A17.a)$$

where $k_{O_2} = k_p - k$ is the rate of change of the alveolar oxygen pressure in the stage.

Under the assumed equilibrium of the bubble with its surroundings, Eq. (A8) is solved to obtain the following expression for the rate of change of bubble volume at constant ambient pressure and p_a :³

$$\frac{dV_{b,i}}{dt} = \alpha_{blood} \dot{Q}_i \left(\frac{p_a}{p_{t,i}} - 1 \right). \quad (A18)$$

Eq. (A15) is readily shown to imply that the bubble volume must decrease monotonically during any isobaric stage in which p_a is constant after decompression. Eq. (A15) is also readily integrated to obtain an analytical solution for $V_{b,i}$, which contrasts with the required resort to numerical methods in the Linear-Exponential Multiple Gas, or LEM model below.

Multiple inert gas dynamics: The Linear-Exponential Multiple Gas Model (LEM)

When a gas mix with more than one inert gas is breathed, Eq. (A10) must be solved numerically. The individual $p_{t,i,g}$ are obtained by rearranging the expression for the total number of moles of each gas in the tissue;

$$n_{i,g} = \alpha_{t,i,g} p_{t,i,g} + \frac{p_{t,i,g} V_{b,i}}{RT}; \quad (A19)$$

to yield:

$$P_{t,i,g} = \frac{n_{i,g}}{\alpha_{t,i,g} + V_{b,i}/RT} . \quad (\text{A20})$$

The first term on the right of Eq. (A19) is the amount of gas g in solution, and the second term is the amount of undissolved gas g in one or more bubbles. If we let $X_i = V_{b,i}/RT$ and note that the contribution of gas g to the overall inert gas burden is simply

$$P_{t,i,g} = \frac{n_{i,g}}{\alpha_{t,i,g}} , \text{ Eq. (A20) becomes}$$

$$P_{t,i,g} = \frac{P'_{t,i,g}}{1 + X_i/\alpha_{t,i,g}} . \quad (\text{A21})$$

At any time, all compartmental quantities except X_i are known for determination of the individual $P_{t,i,g}$. The unknown X_i is obtained by substituting Eq. (A20) into Eq. (A13). Rearrangement then yields a homogeneous polynomial of the order $m+j$ with positive real root equal to X_i . This root is determined by standard methods and updated for each time step in the numerical solution of Eq. (A10) as $n_{i,g}$ and $P_{t,i,g}$ change with time.

For example, when $m+j=2$, Eq. (A13) becomes

$$\sum_g^{m+j} P_{t,i,g} = \frac{n_{i,1}}{\alpha_{t,i,1} + V_{b,i}/RT} + \frac{n_{i,2}}{\alpha_{t,i,2} + V_{b,i}/RT} = P_{amb} - P_{fix} + PXO_i , \quad (\text{A22})$$

which rearranges to

$$0 = A_i X_i^2 + B_i X_i + C_i \quad (\text{A23})$$

where

$$A_i = P_{amb} - P_{fix} + PXO_i , \quad (\text{A23.a})$$

$$B_i = \{A_i(\alpha_{t,i,2} + \alpha_{t,i,1}) - (n_{i,1} + n_{i,2})\} , \quad (\text{A23.b})$$

$$C_i = \{A_i\alpha_{t,i,1}\alpha_{t,i,2} - (n_{i,1}\alpha_{t,i,2} + n_{i,2}\alpha_{t,i,1})\} . \quad (\text{A23.c})$$

The quadratic Equation (A23) has positive real root given by

$$X_i = \frac{-B_i + \sqrt{B_i^2 - 4A_iC_i}}{2A_i} . \quad (\text{A24})$$

Similarly, when $m+j=3$, Eq. (A13) becomes

$$0 = A_i X_i^3 + B_i X_i^2 + C_i X_i + D_i \quad (\text{A25})$$

where A_i is as defined in Eq. (A23.a) and

$$B_i = \{A_i(\alpha_{t,i,1} + \alpha_{t,i,2} + \alpha_{t,i,3}) - (n_{i,1} + n_{i,2} + n_{i,3})\} \quad (\text{A25.a})$$

$$C_i = A_i(\alpha_{t,i,1}\alpha_{t,i,2} + \alpha_{t,i,1}\alpha_{t,i,3} + \alpha_{t,i,2}\alpha_{t,i,3}) - [n_{i,1}(\alpha_{t,i,2} + \alpha_{t,i,3}) + n_{i,2}(\alpha_{t,i,1} + \alpha_{t,i,3}) + n_{i,3}(\alpha_{t,i,1} + \alpha_{t,i,2})] \quad (\text{A25.b})$$

$$D_i = A_i\alpha_{t,i,1}\alpha_{t,i,2}\alpha_{t,i,3} - (n_{i,1}\alpha_{t,i,2}\alpha_{t,i,3} + n_{i,2}\alpha_{t,i,1}\alpha_{t,i,3} + n_{i,3}\alpha_{t,i,1}\alpha_{t,i,2}). \quad (\text{A25.c})$$

The root X_i of Eq. (A25) is determined from Cardan's formula for cubic polynomials.⁴

Deterministic Models

Use of computed compartmental gas contents to schedule decompressions in deterministic or classical overpressure models is discussed in Section 2.2.1. Present work was commenced using software described by Thalmann, which implements the Haldanian method of computing decompression using the single-gas LE model of whole-body gas uptake and elimination.^{5,6,7} This software was enhanced to support the added requirements of present work.

Probabilistic Models and DCS risk

Probabilistic models require an additional function to relate the inert gas burden to the probability of DCS occurrence. For these purposes, DCS, irrespective of its particular manifestation or severity, is assumed only to occur or not occur in any dive profile. The probability, $P_{DCS}(t)$, that an individual will suffer DCS by any time t in a profile started at $t=0$ is then given in terms of the DCS risk function, $h(t)$:

$$P_{DCS}(t) = 1.0 - S(t) = 1.0 - \exp\left\{-\int_0^t h(t) dt\right\}, \quad (\text{A26})$$

where the survivor function, $S(t)$, is the probability that the individual will remain free of DCS up to time t .^{8,9} The latter is defined as the joint probability of remaining DCS-free in each of the n compartments of the model schematized in Figure A1. Statistical independence of the compartmental outcomes is then assumed to define the risk function in terms of the time courses of the ambient pressure and inspired gas composition and their influences on compartmental dissolved gas contents and bubble volumes.

The instantaneous risk, $h(t)$, is defined as the weighted sum of the prevailing compartmental gas supersaturations, $SS_i(t)$, in excess of compartmental threshold values, Thr_i , relative to the ambient hydrostatic pressure, P_{amb} .²

$$h(t) = \sum_{i=1}^n G_i (SS_i(t) - Thr_i) / P_{amb} ; \quad SS_i(t) - Thr_i > 0 , \quad (A27)$$

$$h(t) = 0 ; \quad SS_i(t) - Thr_i \leq 0 ,$$

where G_i is a constant compartmental gain, and $SS_i(t)$ is given in terms of the prevailing compartmental inert gas burden:

$$SS_i(t) = P'_{t,i} - (P_{amb} - P_{fix}) . \quad (A27.a)$$

Implementation

In order to compute $h(t)$ throughout an arbitrarily complex profile of pressure and respired gas, the profile is encoded as a sequence of nodes each characterized by a pressure or depth, an inspired O₂ fraction, and a time elapsed since the preceding node. An unbroken description of the exposure profile is then obtained by linear interpolation in the time domain between pressures and respired O₂ fractions at successive nodes. Each node consequently describes the conditions prevailing at the end of a profile stage that is either a travel (compression or decompression) stage, an isobaric stage, a breathing gas switch stage, or a combination travel and breathing gas switch stage. The model is exercised on the profile by sequentially processing these stages, preserving the model state at the end of each stage as the initial state for the next.

Compartmental contributions to the cumulative DCS risk in Eq. (A26) were determined numerically by trapezoidal integration. DCS risk accumulation does not require the presence of a bubble, but occurs in any compartment whenever the hydrostatic pressure is less than a risk accumulation threshold pressure given by $(P'_{t,i} + P_{fix} - Thr_i)$.

However, bubble formation and resolution still must be tracked in order to properly transition between the exponential kinetics of Eq. (A9) and the more complex kinetics that prevail after bubble formation (linear/quadratic kinetics, Eq. (A17), if $m+j=1$; nonlinear kinetics if $m+j>1$). Model equations for a compartment are consequently solved over small time steps as long as risk continues to accumulate or a bubble is present in the compartment. During most other periods, compartmental dissolved inert gas tensions are tracked analytically from node to node using Eq. (A9).

If a bubble is not present or DCS risk is not already accumulating in a compartment on advance to a new stage, the compartmental dissolved gas tensions at the stage start node and at the stage end node as evaluated with Eq. (A9) are examined to determine

whether a bubble will nucleate or DCS risk will begin to accumulate in the stage. Risk accumulation, bubble nucleation, or both will occur if the hydrostatic pressure is less than the risk accumulation threshold pressure or the EL bubble formation pressure, $\left(\sum_{g=1}^{m+j} p_{t,i,g} + P_{fix} - PXO_i \right)$, at either of the nodes.

At the start of a stage in which bubble nucleation or DCS risk accumulation occurs, processing is undertaken over dt_{min} time steps, switching from use of Eq. (A9) to Eq. (A17) or numerical solution of Eq. (A10), as appropriate. The integral compartmental contribution to the cumulative DCS risk is updated for each time step that starts or ends with a hydrostatic pressure less than the concurrent risk accumulation threshold pressure.

REFERENCES

- 1 West, J. B., *Respiratory Physiology*, 3rd ed. (Baltimore, MD: Williams and Wilkins, 1985).
- 2 Parker, E.C., Survanshi, S.S., Weathersby, P.K. and Thalmann, E.D. *Statistically Based Decompression Tables VIII: Linear-Exponential Kinetics*. NMRI Technical Report 92-73, Bethesda, MD: Naval Medical Research Institute, 1992.
- 3 Vann, R.D. (1982) Decompression Theory and Applications. In: Bennett, P.B. and Elliott, D.H., (Eds.) *The Physiology and Medicine of Diving and Compressed Air Work*, Third edn. (London: Bailliere Tindall, 1989) pp. 352-382.
- 4 Marcus, M. and Minch, H., *Modern University Algebra* (New York: MacMillan Company, 1966), pp. 200-201.
- 5 Thalmann, E. D. *Computer Algorithms Used in Computing the MK 15/16 Constant 0.7 ATA, Oxygen Partial Pressure Decompression Tables*. NEDU Report No. 1-83, Navy Experimental Diving Unit, Panama City, FL, 1983.
- 6 Thalmann, E. D. *Repetitive/Multi-Level Dive Procedures and Tables for Constant 0.7 ATA Oxygen Partial Pressure in Nitrogen Diving*. NEDU Report 9-85, Navy Experimental Diving Unit, Panama City, FL, 1985
- 7 Thalmann, E. D. NEDU Technical Memorandum TM 85-12, Enclosure (1), Navy Experimental Diving Unit, Panama City, FL, 1985.
- 8 Weathersby, P.K., Homer, L.D. and Flynn, E.T. (1984) On the likelihood of decompression sickness. *Journal of Applied Physiology: Respiration, Environmental and Exercise Physiology* 57 (3):815-825.

- 9 Gerth, W. A. Overview of Survival Analysis and Maximum Likelihood Techniques.
Weathersby, P.K. and Gerth, W.A., (Eds.) *Workshop on Survival Analysis and
Maximum Likelihood Techniques as Applied to Physiological Modeling*. Bethesda,
MD: Undersea and Hyperbaric Medical Society. (*in press*)

APPENDIX B

Oxygen Content and Partial Pressure in a Closed-Circuit Rebreather During and After Constant Volume, Constant Temperature Compressions

Nukols¹ described the theoretical basis for PO₂ overshoots that occur during descent in closed circuit rebreathers by examining the consequences of mass conservation in the diver-UBA system. The theoretical development, however, was based on conservation of mass *per se*, which required gas mix dependent ideal gas constants that complicated the final equations. In this appendix, we follow the development used by Nukols, but obtain simpler expressions by considering the problem in terms of conservation of moles rather than conservation of mass.

We assume that the gas in the circuit is ideal: *i.e.*,

$$N_C = P_C V_C / RT_C , \quad (\text{B.1})$$

where N_C is the total number of moles of gas in the circuit, P_C is the circuit gas pressure assumed always equal to the ambient hydrostatic pressure, V_C is the circuit volume consisting of rig volume *per se* and diver pulmonary vital capacity, R is the gas constant, and T_C is the circuit gas temperature. We also assume that the circuit remains well mixed at a constant known volume and temperature. (Water vapor is neglected in the following equations, but the water vapor content of the circuit will not change if the circuit is saturated with water vapor at the start of any constant volume, constant temperature transition.)

Mass balance requires that the overall gas contents of the circuit change according to

$$\frac{dN_C}{dt} = \frac{dN_D}{dt} - \frac{dN_{met}}{dt} - \frac{dN_{ex}}{dt} , \quad (\text{B.2})$$

where N_D is the number of moles of diluent gas added, N_{met} is the net number of moles of gas removed (or added) by diver metabolism, and N_{ex} is the number of moles of gas vented from the rig via exhaust. We confine ourselves to conditions in which no venting occurs: *i.e.*, changes in rig pressure, P_C , are non-negative, so the last term in Eq. (B.2) vanishes. The remaining terms in Eq. (B.2) are then rearranged to give the rate of diluent gas addition:

$$\frac{dN_D}{dt} = \frac{dN_C}{dt} + \frac{dN_{met}}{dt} . \quad (\text{B.3})$$

When Eq. (B.1) is used, the first term on the right of Eq. (B.3) becomes

$$\begin{aligned}\frac{dN_C}{dt} &= \frac{d}{dt} \left(\frac{P_C V_C}{RT_C} \right) \\ &= \frac{1}{RT_C} \left[V_C \left(\frac{dP_C}{dt} \right) + P_C \left(\frac{dV_C}{dt} \right) \right]\end{aligned}\quad (\text{B.4})$$

in which the last term vanishes under the constant volume assumption, $\left(\frac{dV_C}{dt} \right) = 0$. If all CO₂ is scrubbed from the rig, the second term on the right of Eq. (B.3) is

$$\frac{dN_{met}}{dt} = \frac{P^o V_{O_2}^o}{RT^o}, \quad (\text{B.5})$$

where $V_{O_2}^o$ is the diver standard O₂ consumption rate (e.g., 1 STPD/min, if the equations are to be solved in units of liters for volume and minutes for time), P^o is standard pressure, and T^o is standard temperature. Eqs. (B.4) and (B.5) are substituted into Eq. (B.3) to yield the following expression for the rate of diluent gas addition as the rig changes pressure at rate $\left(\frac{dP_C}{dt} \right)$:

$$\frac{dN_D}{dt} = \frac{V_C}{RT_C} \left(\frac{dP_C}{dt} \right) + \frac{P^o V_{O_2}^o}{RT^o}. \quad (\text{B.6})$$

It follows from Eq. (B.1) that, after subscripts are changed to refer to the diluent gas, the volume of added diluent gas at standard temperature and pressure is

$$\frac{dV_D^o}{dt} = \frac{RT^o}{P^o} \left(\frac{dN_D}{dt} \right), \quad (\text{B.7})$$

which, after substitution of Eq. (B.6), becomes

$$\frac{dV_D^o}{dt} = \frac{V_C T^o}{T_C P^o} \left(\frac{dP_C}{dt} \right) + V_{O_2}^o. \quad (\text{B.8})$$

The time to complete a known constant volume circuit compression from P_1 to P_2 at a constant compression rate, $\left(\frac{dP_C}{dt} \right)$, is

$$\Delta t = \frac{(P_2 - P_1)}{\left(\frac{dP_C}{dt} \right)}. \quad (\text{B.9})$$

Eq. (B.8) is readily integrated to yield the volume of diluent (STPD) added during the compression:

$$\Delta V_D^o = \Delta t \cdot \left\{ \frac{V_C T^o}{T_C P^o} \left(\frac{dP_C}{dt} \right) + V_{O_2}^o \right\}. \quad (\text{B.10})$$

For a two-component gas mix containing O_2 and an inert gas, we have from Dalton's law of partial pressures that

$$\begin{aligned} N_C &= n_I + n_{O_2} \\ &= \frac{p_I V_C}{RT_C} + \frac{p_{O_2} V_C}{RT_C} \end{aligned} \quad (\text{B.11})$$

where p_I and p_{O_2} are the respective circuit inert gas and O_2 partial pressures.

The rate of change in the circuit O_2 contents must equal the rate of the O_2 addition via diluent gas minus the rate of O_2 consumption by the diver:

$$\frac{dn_{O_2}}{dt} = X_{O_2} \left(\frac{dN_D}{dt} \right) - \frac{P^o V_{O_2}^o}{RT^o}, \quad (\text{B.12})$$

where X_{O_2} is the known O_2 fraction of the diluent gas. Substitution of Eq. (B.6) yields, after simplification,

$$\frac{dn_{O_2}}{dt} = \left(\frac{X_{O_2} V_C}{RT_C} \right) \left(\frac{dP_C}{dt} \right) + (X_{O_2} - 1) \frac{P^o V_{O_2}^o}{RT^o}. \quad (\text{B.13})$$

The corresponding rate of change for circuit P_{O_2} is then obtained with the terms for the O_2 fraction in Eq. (B.11):

$$\begin{aligned} \frac{dP_{O_2}}{dt} &= \frac{RT_C}{V_C} \left(\frac{dn_{O_2}}{dt} \right) \\ &= X_{O_2} \left(\frac{dP_C}{dt} \right) + (X_{O_2} - 1) \frac{T_C P^o V_{O_2}^o}{T^o V_C} \end{aligned} \quad (\text{B.14})$$

Note that solving Eq. (B.14) for (dP_C/dt) with $(dP_{O_2}/dt)=0$ gives the maximum compression rate at which diver O_2 consumption prevents circuit P_{O_2} increases:

$$\left(\frac{dP_C}{dt} \right) = \frac{(1-X_{O_2}) \cdot T_C P^o V_{O_2}^o}{X_{O_2} T^o V_C}. \quad (\text{B.15})$$

For given X_{O_2} , T_C , V_C , and $V_{O_2}^o$, compression rates greater than that given by Eq. (B.15) will be accompanied by circuit P_{O_2} increases, while compression rates less than that given by Eq. (B.15) will be accompanied by circuit P_{O_2} decreases.

For a constant volume circuit compression from P_1 to P_2 at constant compression rate, $\left(\frac{dP_C}{dt} \right)$, the peak circuit O_2 content, $n_{O_2}^f$, is obtained by integration of Eq. (B.13),

$$n_{O_2}^f = n_{O_2}^i + \Delta t \cdot \left\{ \left(\frac{X_{O_2} V_C}{RT_C} \right) \left(\frac{dP_C}{dt} \right) + (X_{O_2} - 1) \frac{P^o V_{O_2}^o}{RT^o} \right\}, \quad (\text{B.16})$$

where $n_{O_2}^i$ is the initial circuit O_2 contents and Δt is given by Eq. (B.9). If the compression is assumed to start with the circuit at P_{O_2set} , its nominal P_{O_2} set point, $n_{O_2}^i$ is given by

$$n_{O_2}^i = \frac{P_{O_2set} \cdot V_C}{RT_C}. \quad (\text{B.17})$$

The peak circuit P_{O_2} at completion of the compression is then

$$P_{O_2 \max} = \frac{n_{O_2}^f}{N_C^f} P_2, \quad (\text{B.18})$$

where N_C^f is the circuit gas content given at P_2 by

$$N_C^f = \frac{P_2 V_C}{RT_C}. \quad (\text{B.19})$$

After completion of the compression, the time to recover a known circuit P_{O_2} set point, P_{O_2set} , is given by

$$t_{rec} = \frac{P_{O_2set} - P_{O_2 \max}}{\left(\frac{dP_{O_2}}{dt} \right)}, \quad (\text{B.20})$$

where $\left(\frac{dP_{O_2}}{dt}\right)$ is given by Eq. (B.14) with $\left(\frac{dP_C}{dt}\right) = 0$.

All of the above equations are readily solved with consistent use of units for time, volume, temperature, and pressure. For example, with volume in liters, temperature in degrees Kelvin, and pressure in atmospheres, $R=0.08205 \text{ l-atm/gm-mole } ^\circ\text{K}$, $P^o=1 \text{ atm}$, and $T^o=273.15 \text{ }^\circ\text{K}$. The effects of diluent x_{O_2} on the peak P_{O_2} and duration of the P_{O_2} overshoot in a hypothetical MK 16 MOD 1 dive are shown in Figure B1.

Figure B1. Effects of diluent x_{O_2} (= diluent FO₂) on the peak P_{O_2} (Panel A) and duration of the P_{O_2} overshoot (Panel B) in a diver with 5 l pulmonary vital capacity compressed on the MK 16 MOD 1 to 300 fsw at 60 fsw/min.

It must be noted that any influence of O₂ addition from opening of the O₂ add valve during descent is neglected in this derivation. That the O₂ add valve must open in the MK 16 MOD 1 during slow descents as its P_{O_2} set-point transitions from 0.75 ATA to 1.3 ATA can be shown by integrating Eq. (B.14) and solving for Δt to obtain:

$$\Delta t = \frac{P_{O_2}^f - P_{O_2}^i}{\left\{ X_{O_2} \left(\frac{dP_C}{dt} \right) + (X_{O_2} - 1) \frac{T_C P^o V_{O_2}^o}{T^o V_C} \right\}}. \quad (\text{B.21})$$

With $P_{O_2}^f = 1.3 \text{ ATA}$ and $P_{O_2}^i = 0.75 \text{ ATA}$, Δt is the time during descent at which a circuit P_{O_2} of 1.3 ATA is attained by compression alone. The O₂ add valve will open before Δt if Δt

is after the time at which the diver reaches the P_{O_2} set-point transition pressure of the MK 16 MOD 1 at 33 fsw. Note that because Δr decreases as the compression rate increases, more rapid compression rates will tend to obviate O₂ add valve opening during descent.

REFERENCES

- 1 Nuckols, M. L. "Oxygen levels in closed circuit UBAs during descent." Life Support and Biosphere Science, (2):117-124, 1996.

APPENDIX C.

Diver Attributes

Diver ID #	D.O.B. (dd/m/yr)	HT (in)	WT (lb)	BODY FAT* (%)	# Profiles Phase I	# Profiles Phase II
2	26/08/72	73	195	13	3	4
1	21/12/67	59	225	20	0	3
4	02/04/62	67	175	17	2	6
3	19/09/59	70	175	18	0	1
5	16/04/58	71	165	12	8	8
7	08/10/55	70	190	17	3	5
8	08/05/70	68	212	17	3	8
9	23/07/57	74.5	230	18	4	5
10	05/06/67	69	160	25	2	10
11	30/08/64	65	150	15.5	1	1
79	22/09/57	67	180	--	7	0
12	30/09/52	70	195	13	4	6
13	01/07/62	69	180	14	0	2
14	27/08/61	72	190	12	3	3
91	11/05/61	68	165	34	2	0
15	18/08/71	--	--	--	0	1
16	24/07/52	72	227	20	0	1
17	04/08/70	--	--	10	1	4
18	30/12/62	75	196	12	1	5
19	03/07/60	69	175	15	1	4
20	08/02/64	69	185	16	4	6
21	12/6/61	71	--	28	7	1
22	25/12/63	--	--	13	3	6
23	--	--	--	--	0	1
24	30/5/70	68	174	16	0	12
99	30/04/70	--	--	--	0	3
25	02/05/65	--	--	15	2	8
30	12/04/57	72	190	18	2	4
26	18/03/69	70	170	14	0	2
80	03/10/70	67	--	--	4	0
27	01/11/57	--	--	--	0	1
28	08/10/62	70	190	18	0	2
29	21/06/65	73	170	16	6	2
31	11/02/63	73	200	12	5	6
32	08/08/69	74	210	21	5	10
33	19/01/62	--	--	17.5	3	2
34	02/10/59	72	185	14	9	7
35	02/06/63	72	172	16	8	11
36	14/08/57	72	210	20	7	3
37	26/09/62	73	236	8	4	7
38	30/11/52	64	120	18	2	1
39	06/06/60	72	184	11	7	5
85	--	--	--	--	1	0
88	--	--	--	--	1	0
40	24/10/69	73	195	11	0	3
42	24/02/69	69	188	13	4	3

Diver ID #	D.O.B. (dd/m/yr)	HT (in)	WT (lb)	BODY FAT* (%)	# Profiles Phase I	# Profiles Phase II
89	17/10/56	67	--	--	2	0
43	--	--	--	--	0	1
44	--	74	230	16	0	1
45	09/10/59	72	200	18	5	10
87	--	--	--	--	1	0
41	15/11/69		195	13	3	6
81	07/01/48	69	165	20%	3	0
48	23/02/64	71	189	16	5	8
47	02/10/64	74	200	15	0	1
49	29/03/64	70	178	21	4	1
86	22/04/56	72	--	--	3	0
50	01/02/56	74	224	22	3	1
51	8/11/68	69	180	16	0	1
92	--	--	--	--	1	0
52	12/02/72	74	220	22	6	7
53	12/07/61	73.5	192	16	7	4
83	10/10/57	--	--	13	5	0
55	27/03/57	68	165	13.5	8	2
46	20/11/62	68	166	15	2	7
56	30/11/61	72	175	16	2	12
57	24/10/71	--	--	--	1	6
58	19/01/67	72	199	14	9	8
60	28/08/62	72	207	20	3	12
94	27/03/64	--	--	--	0	0
61	02/05/68	71	195	15	1	2
59	07/02/70	68	185	14	2	8
62	20/09/56	--	--	20	2	6
63	18/08/70	69	162	12	1	0
90	19/11/58	70	190	--	0	0
64	01/02/78	--	--	15	1	2
65	24/07/70	--	--	--	3	4
66	31/05/71	72	194	--	2	7
84	21/10/59		205	--	2	0
67	14/11/62	71	203	21	6	5
68	28/02/67	70	160	12	0	4
93	20/09/68	--	--	--	2	0
69	20/05/69	69	200	19	4	7
70	06/07/60	72	247	20	2	2
71	25/09/56	72.5	182	13	0	2
72	08/1/69	68	175	13	4	2
73	10/02/67	58	170	13	0	1
74	28/10/68	69	186	12	6	6
75	29/10/57	67	188	21	4	4
76	--	--	--	--	0	1
77	18/11/64	69	210	25	6	3
78	18/10/62	71	185	11	5	4

* From self-reported abdomen and neck circumferences and height, as per OPNAVINST 6110.1E.

APPENDIX D.

Test Dives Completed

The dive profiles tested in Phases I and II of the study are listed in the following table, where "- SI30 -" indicates a 30 minute surface interval; or "-SI180-" indicates a 180 minute surface interval. Divers breathed air during all but the last 3 min of any surface interval, when they breathed 0.7 ATA O₂ in He from the MK 16 MOD 1. Any required decompression stops (Depth/Stop time) are listed in order of decreasing depth under each dive. The dive numbers range from one to five, depending on the number of repetitive dives in the profile. All depths are in fsw and all times are in minutes. Bottom times include descent time. Ascent times to stops are not included in the stop times. The number of exposures and number of DCS cases on each profile are in the two right-most columns.

Phase I.

Profile #	Dive 1	Dive 2	Dive 3	# Exposures	# DCS
1	160/ 25 50/ 2 40/ 2 30/ 3 20/ 6	- SI30 - 160/ 25 50/ 2 40/ 3 30/ 4 20/ 79		3	1
2	120/ 20	- SI30 - 160/ 15 30/ 2 20/ 14	- SI30 - 160/ 20 40/ 2 30/ 3 20/ 65	3	0
3	200/ 15 50/ 1 40/ 2 30/ 3 20/ 4	- SI30 - 160/ 15 30/ 2 20/ 36	- SI30 - 160/ 15 30/ 1 20/ 49	4	0
4	200/ 15 50/ 1 40/ 2 30/ 3 20/ 4	- SI30 - 200/ 20 70/ 2 60/ 2 50/ 2 40/ 3 30/ 12 20/ 73		3	0
5-B	200/ 22 80/ 2 70/ 2 60/ 3 50/ 2 40/ 2 30/ 2 20/ 47	- SI30 - 160/ 15 30/ 1 20/ 49		4	0
6-B	120/ 15	- SI30 - 200/ 23 80/ 2 70/ 3 60/ 2 50/ 2 40/ 2 30/ 12 20/ 71		4	0
7-B	160/ 15 30/ 1 20/ 2	- SI30 - 200/ 23 80/ 2 70/ 3 60/ 2 50/ 3 40/ 7 30/ 12 20/ 81		4	0

Profile #	Dive 1	Dive 2		Dive 3	# Exposures	# DCS	
8-B	120/ 15	- SI30 -	160/ 20 40/ 2 30/ 2 20/ 23	- SI30 -	120/ 21 20/ 52	4	0
9-B	120/ 19 20/ 2	- SI30 -	120/ 15 20/ 2	- SI30 -	200/ 15 50/ 2 40/ 2 30/ 3 20/ 68	4	0
10-B	160/ 20 40/ 2 30/ 2 20/ 4	- SI30 -	120/ 15 20/ 13	- SI30 -	160/ 17 40/ 2 30/ 3 20/ 65	4	0
11-B	200/ 22 80/ 2 70/ 2 60/ 3 50/ 2 40/ 2 30/ 2 20/ 47	- SI30 -	120/ 20 20/ 40			4	0
12-B	120/ 15	- SI30 -	160/ 15 30/ 2 20/ 14	- SI30 -	200/ 15 50/ 2 40/ 2 30/ 2 20/ 69	4	0
13-B	160/ 20 40/ 2 30/ 2 20/ 4	- SI30 -	200/ 18 70/ 2 60/ 2 50/ 2 40/ 2 30/ 12 20/ 72			4	1
14-B	200/ 15 50/ 1 40/ 2 30/ 3 20/ 4	- SI30 -	120/ 15 20/ 15	- SI30 -	200/ 13 50/ 2 40/ 2 30/ 3 20/ 68	3	0
15-B	120/ 20	- SI30 -	160/ 16 40/ 2 30/ 3 20/ 34	- SI30 -	160/ 15 30/ 1 20/ 48	3	0

Profile #	Dive 1		Dive 2		Dive 3	# Exposures	# DCS
16-B	160/ 20 40/ 2 30/ 2 20/ 4	- SI30 -	120/ 25 20/ 40	- SI30 -	120/ 16 20/ 40	4	0
17-B	200/ 20 70/ 1 60/ 2 50/ 2 40/ 3 30/ 2 20/ 18	- SI30 -	160/ 17 40/ 2 30/ 3 20/ 64			4	0
18-B	120/ 20	- SI30 -	120/ 20 20/ 20	- SI30 -	160/ 15 30/ 1 20/ 49	3	0
19-B	160/ 15 30/ 1 20/ 2	- SI30 -	200/ 11 50/ 2 40/ 3 30/ 2 20/ 42	- SI30 -	120/ 15 20/ 28	3	0
20-B	200/ 17 70/ 1 60/ 2 50/ 2 40/ 3 30/ 2 20/ 18	- SI30 -	200/ 15 50/ 2 40/ 2 30/ 2 20/ 68			4	0
21-B	120/ 25 20/ 2	- SI30 -	120/ 20 20/ 17	- SI30 -	200/ 13 50/ 2 40/ 2 30/ 3 20/ 67	4	0
22-B	120/ 25 20/ 2	- SI30 -	200/ 18 70/ 2 60/ 2 50/ 3 40/ 2 30/ 7 20/ 68			4	0
23-B	200/ 17 70/ 1 60/ 2 50/ 2 40/ 3 30/ 2 20/ 18	- SI30 -	200/ 15 50/ 2 40/ 2 30/ 2 20/ 68			4	0

Profile #	Dive 1	Dive 2	Dive 3	# Exposures	# DCS
24-B	160/ 25 50/ 2 40/ 2 30/ 3 20/ 6	- SI30 - 160/ 22 50/ 2 40/ 3 30/ 4 20/ 79		4	0
25-B	120/ 25 20/ 2	- SI30 - 200/ 18 70/ 2 60/ 2 50/ 3 40/ 2 30/ 7 20/ 68		4	0
26-B	160/ 20 40/ 2 30/ 2 20/ 4	- SI30 - 200/ 18 70/ 2 60/ 2 50/ 2 40/ 2 30/ 12 20/ 72		3	0
27-B	200/ 22 80/ 2 70/ 2 60/ 3 50/ 2 40/ 2 30/ 2 20/ 47	- SI30 - 120/ 20 20/ 40		4	0
28-B	160/ 25 50/ 2 40/ 2 30/ 3 20/ 6	- SI30 - 160/ 22 50/ 2 40/ 3 30/ 4 20/ 79		4	0
29-B	160/ 15 30/ 1 20/ 2	- SI30 - 200/ 23 80/ 2 70/ 3 60/ 2 50/ 3 40/ 7 30/ 12 20/ 81		4	0
30-B	200/ 15 50/ 1 40/ 2 30/ 3 20/ 4	- SI30 - 120/ 20 20/ 28	- SI30 - 120/ 16 20/ 41	4	0

Profile #	Dive 1		Dive 2		Dive 3	# Exposures	# DCS
31-B	120/ 25 20/ 2	- SI30 -	120/ 15 20/ 2	- SI30 -	200/ 13 50/ 2 40/ 2 30/ 3 20/ 68	4	0
32-B	160/ 15 30/ 1 20/ 2	- SI30 -	200/ 23 80/ 2 70/ 3 60/ 2 50/ 3 40/ 7 30/ 12 20/ 81			3	0
33-B	120/ 20	- SI30 -	200/ 23 80/ 2 70/ 3 60/ 2 50/ 3 40/ 4 30/ 12 20/ 79			3	0
35-B	200/ 17 70/ 1 60/ 2 50/ 2 40/ 3 30/ 2 20/ 18	- SI30 -	200/ 15 50/ 2 40/ 2 30/ 2 20/ 68			4	0
36-B	120/ 15	- SI30 -	120/ 15	- SI30 -	160/ 22 50/ 2 40/ 3 30/ 2 20/ 68	4	0
37-B	200/ 22 80/ 2 70/ 2 60/ 3 50/ 2 40/ 2 30/ 2 20/ 47	- SI30 -	120/ 20 20/ 40			4	0
38-B	120/ 15	- SI30 -	160/ 21 50/ 2 40/ 3 30/ 2 20/ 42	- SI30 -	120/ 20 20/ 40	3	0

Profile #	Dive 1		Dive 2		Dive 3	# Exposures	# DCS
40-B	120/ 20	- SI30 -	160/ 15 30/ 2 20/ 14		- SI30 - 120/ 21 20/ 53	4	0
41-B	120/ 20	- SI30 -	120/ 25 20/ 20		- SI30 - 200/ 13 50/ 2 40/ 2 30/ 3 20/ 67	3	0
42-B	160/ 20 40/ 2 30/ 2 20/ 4	- SI30 -	200/ 18 70/ 2 60/ 2 50/ 2 40/ 2 30/ 12 20/ 72			4	0
43	120/ 25 20/ 2	- SI30 -	120/ 25 20/ 30	- SI30 -	120/ 25 20/ 53	23	0
44	160/ 25 50/ 2 40/ 2 30/ 3 20/ 6	- SI30 -	160/ 25 50/ 2 40/ 3 30/ 4 20/ 79			14	0
45	80/ 110					7	0
46	80/ 130					24	0

Profile #	Dv 1	Dv 2	Dv 3	Dv 4	Dv 5	# Exposures	# DCS		
47	80/25	- SI30 -	80/25	- SI30 -	80/25	- SI30 -	80/25	12	0

Phase II.

Profile #	Dive 1	Dive 2	Dive 3	# Exposures	# DCS
II.1	120/ 60 30/ 7 20/ 60			14	0
II.2	140/ 20 20/ 7			9	0
II.3	140/ 45 40/ 6 30/ 7 20/ 52			8	0
II.4	160/ 20 20/ 13			8	0
II.5	160/ 45 60/ 2 50/ 8 40/ 7 30/ 7 20/73			10	0
II.6	180/ 15 20/ 11			7	0
II.7	180/ 40 70/ 2 60/ 7 50/ 7 40/ 7 30/ 7 20/ 79			11	0
II.8	200/ 15 40/ 1 30/ 1 20/ 14			4	0
II.9	200/ 35 160/ 1 140/ 1 100/ 1 70/ 6 60/ 7 50/ 7 40/ 7 30/ 7 20/ 87			4	0

Profile #	Dive 1	Dive 2	Dive 3	# Exposures	# DCS
II.10	220/ 15 60/ 2 50/ 2 40/ 2 30/ 3 20/ 5			13	0
II.11	220/ 25 100/ 1 90/ 2 80/ 2 70/ 2 60/ 3 50/ 2 40/ 2 30/ 8 20/ 64			12	1
II.12	220/ 35 120/ 1 110/ 2 100/ 2 90/ 3 80/ 3 70/ 1 60/ 2 50/ 11 40/ 12 30/ 12 20/ 104			7	0
II.13	240/ 15 70/ 2 60/ 2 50/ 2 40/ 3 30/ 2 20/ 16			12	0
II.14	240/ 20 90/ 2 80/ 3 70/ 2 60/ 2 50/ 2 40/ 3 30/ 2 20/ 54			8	0

Profile #	Dive 1	Dive 2	Dive 3	# Exposures	# DCS
II.15	240/ 25 110/ 2 100/ 2 90/ 3 80/ 2 70/ 2 60/ 3 50/ 2 40/ 7 30/ 11 20/ 79			8	0
II.16	260/ 15 80/ 2 70/ 2 60/ 3 50/ 2 40/ 2 30/ 3 20/ 31			4	0
II.17	260/ 25 120/ 3 110/ 3 100/ 2 90/ 2 80/ 2 70/ 2 60/ 2 50/ 7 40/ 12 30/ 12 20/ 95			3	0
II.18	280/ 15 90/ 3 80/ 2 70/ 2 60/ 2 50/ 3 40/ 2 30/ 2 20/ 47			20	0

Profile #	Dive 1	Dive 2	Dive 3	# Exposures	# DCS
II.19	280/ 20 120/ 1 110/ 3 100/ 3 90/ 2 80/ 2 70/ 3 60/ 1 50/ 2 40/ 9 30/ 12 20/ 80			8	1
II.20	300/ 15 100/ 3 90/ 2 80/ 2 70/ 3 60/ 2 50/ 2 40/ 2 30/ 5 20/ 60			8	0
II.21	300/ 20 130/ 1 120/ 4 110/ 2 100/ 2 90/ 3 80/ 2 70/ 2 60/ 2 50/ 7 40/ 12 30/ 12 20/ 95			7	0
II.22	120/ 30 20/ 8	- SI30 - 30/ 4 20/ 62	120/ 35 20/ 53	120/ 25 20/ 53	10 0
II.23	100/ 15	- SI180 -	100/ 30	- SI180 - 20/ 39	120/ 30 20/ 39 8 0
II.24	120/ 35 20/ 12	- SI30 -	100/ 35 20/ 52		8 0
II.25	140/ 35 ¹ 30/ 3 20/ 16	- SI30 -	120/ 30 30/ 1 20/ 62		6 0

¹ Profile II.25 was computed with first dive as 140/30, but dove with first dive as shown due to typographical error.

Profile #	Dive 1		Dive 2		Dive 3	# Exposures	# DCS
II.26	140/ 30 30/ 3 20/ 16	- SI180 -	140/ 30 30/ 5 20/ 60			5	0
II.27	140/ 20 20/ 7	- SI30 -	140/ 30 40/ 4 30/ 7 20/ 57			7	0
II.28	160/ 30 40/ 4 30/ 7 20/ 31	- SI30 -	160/ 25 40/ 2 30/ 7 20/ 74			8	0
II.29	120/ 25 20/ 4	- SI180 -	160/ 20 30/ 3 20/ 32	- SI30 -	140/ 15 20/ 42	6	3 ²
II.30	160/ 25 30/ 6 20/ 15	- SI180 -	120/ 35 20/ 57			8	0
II.31	140/ 20 20/ 7	- SI30 -	160/ 30 50/ 5 40/ 7 30/ 7 20/ 70			7	0
II.32	180/ 25 40/ 6 30/ 7 20/ 29	- SI180 -	160/ 30 40/ 4 30/ 7 20/ 72			6	0
II.33	180/ 20 30/ 6 20/ 14	- SI180 -	180/ 35 60/ 7 50/ 7 40/ 7 30/ 7 20/ 95			7	0
II.34	180/ 20 30/ 6 20/ 14	- SI30 -	180/ 25 60/ 2 50/ 7 40/ 7 30/ 7 20/ 80			11	1

² This profile is outside the recommended limit of only one repetitive dive after a decompression stop dive (see item 3 in Conclusions and Recommendations, NEDU TR 14-01).

Profile #	Dive 1	Dive 2	Dive 3	# Exposures	# DCS
II.35	200/ 20 ³ 140/ 1 100/ 1 60/ 1 50/ 6 40/ 7 30/ 7 20/ 47	- SI30 - 40/ 6 30/ 6 20/ 84	180/ 25	3	0
II.36	200/ 15 40/ 1 30/ 1 20/ 14	- SI180 - 60/ 7 50/ 7 40/ 7 30/ 7 20/ 91	180/ 35	8	0
II.37	200/ 20 100/ 1 70/ 1 40/ 4 30/ 7 20/ 24	- SI30 -	180/ 15 30/ 4 20/ 57	6	0

³ Profile II.35 was computed with the first dive as 200/25, but dived with the first dive as shown due to typographical error.

APPENDIX E.
SPECIFIC COMMENTS ON DIVES PERFORMED

PHASE I

DIVE DATE	PRO-FILE #	Diver ID #	COMMENTS
11/01/00	110100A (1-A)	79 83 72 39	<p>(NOTE: Diver #39 was scrubbed from the profile after splash due to an irreparable break in the gas sampling line at the gas sample block.)</p> <p>Diver #83 experienced a feeling of fullness in his left elbow on the last decompression stop of the second dive. When he was climbing up the ladder in the trunk of the OSF after the dive, he may also have briefly felt "dizzy." About one hour after the event, he noted the gradual onset of left elbow pain. He was seen and evaluated by a Diving Medical Officer (DMO) and noted to have an abnormal Romberg test: he fell to the left side. He was diagnosed with Type II DCS and treated with TT 6. He had a full resolution of symptoms. The next day, unknown to the DMO, he felt somewhat dizzy and briefly felt nauseated. Two days after the dive he reported to medical personnel and complained that his sensation of feeling dizzy and his arm pain had returned. His neurologic examination at that time revealed horizontal nystagmus with head shake and Dix-Hallpike maneuvers. There appeared to be a component of latency, and the nystagmus fatigued and disappeared after a few seconds. He also had a positive Romberg. He was treated again with a TT 6 and his symptoms resolved. Three days after the dive he felt fine, and a neurological exam was normal. Four days after the dive he had a return of the left arm pain and a sensation of feeling dizzy, albeit milder than before. He had felt a little "dizzy" after head shake maneuvers but had an otherwise normal neurologic examination, including a normal Romberg. He was treated again with a TT 6, with full resolution of symptoms. He had two subsequent treatments with TT 9s over the next two days, with no recurrence of his symptoms.</p> <p>This patient was seen and evaluated over the next</p>

DIVE DATE	PRO-FILE #	Diver ID #	COMMENTS
			four weeks after the event. An ENT evaluation was normal. He had an MRI of the brain with fine cuts of the posterior fossa as well as the region of the thalamus, cuts which revealed a normal brain. He had a CT of the head with fine cuts of the mastoids, which were normal. Several weeks after the event, he noted episodic recurrence of the elbow pain after doing pull-ups. This was treated with a steroid injection and resolved completely.
11/01/00	110100B (2-A)	12 21 58 60	Diver #60 was placed on EGS because UBA failed to maintain satisfactory PO ₂ , and diluent bottle pressure was low. O ₂ add valve and diluent add valve failures (?)
11/02/00	110200A (3-A)	22 31 32 89	Diver #32 added oxygen manually on descent. Diver #89 noted that his UBA was "gurgling" during the 20 fsw stop of the first dive, due to water in the breathing system. His UBA had flooded, and he was placed on EGS. His flooded rig was replaced during the subsequent surface interval. His second dive was completed OK, but his replacement rig failed to reach 0.7 ATA PO ₂ during predive for a third dive. Diver #89 was aborted from the profile before the 3 rd dive. As a result, the surface interval before the 3 rd dive was a few minutes longer than the 30 minutes prescribed by the protocol.
11/02/00	110200B (4-A)	35 80 53	Diver #80 experienced a caustic cocktail during the pre-dive stabilization period before the 2 nd dive. He was aborted from the profile. (NOTE: Diver #69 also splashed for this dive. However, his monitoring umbilical failed during the predive stabilization period for the dive and he was aborted from the profile.)
11/06/00	110600B (5-B)	60 65 35 91	Diver #91 became short of breath during his work cycle; he was instructed to stop work and was switched to EGS. Diver #65 added oxygen on his own initiative during the dive.
11/07/00	110700A (6-B)	55 89 39 79	Diver #55 became short of breath and was switched to EGS. Diver #39 measured inspired PO ₂ low; diver switched to EGS during the dive.

DIVE DATE	PRO-FILE #	Diver ID #	COMMENTS
11/08/00	110800A (7-B)	7 84 69 53	Diver #7 had a cramp in his left thigh while exercising on the bottom during 2 nd dive; cramp was relieved with rest. Diver #69 UBA O ₂ add valve stuck open during 20 fsw stop in 2 nd dive decompression.
11/09/00	110900A (8-B)	42 81 58 45	Uneventful dive.
11/13/00	111300A (9-B)	25 79 60 39	Left arm of Diver #25 was struck by a weight while he was in the trunk. During subsequent dive, this diver had transient arm pain due to this mechanical injury; he also had a cramp in the groin area during exercise. He was told not to pedal, and his pains resolved.
11/14/00	111400A (10-B)	48 32 37 9	Diver #48 inspired PO ₂ low during bottom time of 2 nd dive, even after repeated manual O ₂ adds; he was switched to EGS during decompression. Diver # 48 rig was changed out during subsequent surface interval.
11/14/00	111400B (11-B)	53 22 5 69	Uneventful dive.
11/15/00	111500A (12-B)	29 84 74 77	Diver #29 was told to add diluent, because his PO ₂ values were high.
11/15/00	111500B (13-B)	34 65 70 50	Diver #70 had transient episode nausea and vomited while on the bottom. The DMO was notified and the diver removed from the OSF. Over the next several hours, the diver developed an abdominal rash that was pruritic and purplish in color. It was not clear whether this presentation was skin bends or some other manifestation of DCS. The diver was treated with a TT 6, with full resolution of symptoms.
11/16/00	111600A (14-B)	75 55 14 35	Diver #75 had a hold during his descent because of difficulty clearing.
11/17/00	111700A (15-B)	5 79 36	Only three divers participated in this profile due to problems with the medical deck equipment, but it was otherwise an uneventful dive.

DIVE DATE	PRO-FILE #	Diver ID #	COMMENTS
11/20/00	112000A (16-B)	67 77 74 29	R-10 functioned sporadically for diver #74.
11/20/00	112000B (17-B)	59 41 58	Uneventful dive.
11/21/00	112100A (18-B)	35 12 78 55	Diver #12 aborted due to tooth squeeze.
11/21/00	112100B (19-B)	60 52 80 34	Diver #52 had R-10 failure in his first dive and was aborted from the profile during the surface interval after that dive. The software system for the divers had to be rebooted during the first dive.
11/22/00	112200A (20-B)	5 36 32 7	Diver #5 and #36 readings were suspect: water was in the mass spec and in the gas sample line. Diver #32 was switched to EGS because of low bottle pressure.
11/22/00	112200B (21-B)	53 31 37 48	Divers #31 and 53 had unreliable depth readings on descent due to problems with the data collection system.
11/27/00	112700A (22-B)	77 34 29 74	Uneventful dive.
11/27/00	112700B (23-B)	45 2 20 30	Uneventful dive.
11/28/00	112800A (24-B)	9 79 18 55	Diver #79 noted gurgling in UBA: suspecting that water had entered his system, he was switched to EGS.
11/28/00	112800B (25-B)	58 21 38	Diver #58 noted a sensation of increased work of breathing. He added diluent, oxygen with no relief of this sensation.
11/29/00	112900B (26-B)	33 22 5 36	Diver #33 suffered a sinus squeeze during first dive descent; was aborted from the profile during the surface interval after this dive. Diver #36 was switched to EGS during the 60 fsw stop in decompression from the second dive: his rig was not controlling his PO ₂ .

DIVE DATE	PRO-FILE #	Diver ID #	COMMENTS
11/30/00	113000A (27-B)	49 67 34 74	Diver #67 had a hold during descent due to problems in equalizing left ear pressure; these were resolved and his dive was continued.
11/30/00	113000B (28-B)	80 62 20 35	Uneventful dive.
12/04/00	120400A (29-B)	21 79 75 78	Uneventful dive.
12/04/00	120400B (30-B)	55 80 72 45	Uneventful dive.
12/05/00	120500A (31-B)	36 48 69 5	Diver #48 was pulled from the dive profile during his surface interval because of problems clearing during his descent on the first dive.
12/05/00	120500B (32-B)	7 50 2 38	Diver #2 had a hold on descent because the nosepiece in his face mask fell out of place; diver #50 aborted due to problems in using the mask nosepiece to clear his ears.
12/06/00	120600A (33-B)	30 67 74 62	Diver #67 aborted because of problems clearing his ears.
12/07/00	120700A (35-B)	79 72 45 81	Uneventful dive.
12/07/00	120700B (36-B)	78 21 52 75	Uneventful dive.
12/11/00	121100A (37-B)	69 37 85 5	Uneventful dive.

DIVE DATE	PRO-FILE #	Diver ID #	COMMENTS
12/12/00	121200A (38-B)	33 9 86 49	Surface interval before second dive was prolonged to 75 minutes due to time required to remedy problem with mass spectrometer on MED Deck. Diver #9 UBA primary display failure during ascent in 2 nd dive. Diver #49 was aborted from profile during surface interval before third dive due to problems clearing ears on 2 nd dive descent. Diver #9 complained of chest pain with deep inspiration during 20 fsw stop of 3 rd dive, which resolved within 5 min after following instruction to assume upright position. The DMO was notified; the diver was evaluated and diagnosed as having musculoskeletal pain.
12/13/00	121300A (40-B)	87 92 57	Uneventful dive.
12/14/00	121400A (41-B)	58 53 32 14	Diver # 58 was scrubbed from profile after splash before the first dive with report of excessive bubbling in rig. The UBA was checked out and cleared for use in next dive on this date. Remaining divers completed the profile uneventfully.
12/14/00	121400B (42-B)	31 88 48 5	Diver #31 UBA O ₂ add valve stuck open or leaking during end of 30 fsw stop and throughout 20 fsw stop. (Same UBA used by aborted Diver #58 in AM dive.)
2/5/01	(43-B)	34 77 83 67	Diver #67 was switched to EGS due to elevated PO ₂ values.
2/6/01	(43-B)	52 21 4 35	Uneventful dive. Data acquisition failure for Diver 4; no pressure/gas profile.
2/7/01	(44-B)	93 8 53	One of the R-10 cells malfunctioned, so only three divers were in the OSF when this profile was tested. Otherwise, uneventful dive.
2/8/01	(43-B)	67 58 86 77	Diver #67 was switched to EGS while on the bottom during the third dive of profile, due to high measured inspired PO ₂ . The diver remained on EGS for the remainder of the profile.

DIVE DATE	PRO-FILE #	Diver ID #	COMMENTS
2/8/01	(44-B)	56 45 46 65	Diver #65 was switched to EGS near the end of the 30 fsw stop of first dive in profile, due to low diver inspired PO ₂ readings on Med Deck. He remained on EGS for the remainder of the dive, but he was put back on the UBA for his second dive. He was switched to EGS during the 30 fsw stop of his second dive, again due to low measured inspired PO ₂ values. He completed the profile on EGS.
2/12/01	(43-B)	19 58 12 52	Diver #58 was switched to EGS shortly after arrival at bottom in first dive, due to low measured inspired PO ₂ values. He completed the dive on EGS and was successfully put back on his rig for the entire second dive. Diver #12 UBA exhibited uncontrolled PO ₂ increase during first dive, but was kept on rig. Completed second dive normally. Uncontrolled PO ₂ increase recurred in third dive shortly after arrival on bottom and he was switched to EGS. He completed the profile on EGS. UBA PO ₂ increases typical of O ₂ sensor failure.
2/12/01	(44-B)	70 39 11 94	Diver #11 had a hold during descent on the first dive of the profile. His rig appeared to fail to transition to 1.3 ATA PO ₂ mode during subsequent descent, and he was put on EGS for the remainder of the dive. The diver was aborted from the profile and removed from the OSF during the following surface interval. Diver #39 had a hold on descent during the second dive of the profile. (R10-DS gas monitoring system failed on Diver #94 after splash for first dive. Diver #94 was aborted from profile.)
2/13/01	(43-B)	61 36 63 33	Divers #61 and 36 were placed on EGS due to elevated PO ₂ values. Diver #63 added oxygen to his UBA.
2/14/01	(43-B)	49 53 34 83	Diver #49 aborted during the surface interval due to difficulty clearing his ear.
2/15/01	(44-B)	55 21 4 78	Diver #55 had a leak in his mask; he was told to stop cycling. Diver #21 reported an excessive workload on his bike.

DIVE DATE	PRO-FILE #	Diver ID #	COMMENTS
2/20/01	45-B	48 35 31 60	Diver #60 aborted due to a gas sampling system failure.
2/20/01	45-B	5 61 59 66	Uneventful dive.
2/21/01	46-B	2 20 77 34	Uneventful dive.
2/21/01	47-B	29 41 83 10	Diver #83 directed to go on EGS at ends of dives 2, 3, and 4 for high measured inspired PO ₂ readings on Med Deck. High inspired PO ₂ not substantiated on review of computer-logged data.
2/22/01	022201C (46-B)	52 36 42 46	Problems with mass spectrometer in Med Deck gas monitoring system for Divers #42 and 46 beginning in second dive: apparent systematic over-estimation of diver inspired PO ₂ . Efforts to diagnose problem may have led to corruption of data for Diver # 52 during 5 th dive.
2/22/01	47-B	8 21 37 4	Diver #4 had a hold due to an ear squeeze. Med Deck data acquisition system failure for Divers #37 and #4; recorded inspired gas data for these divers incorrectly shows divers on EGS gas, when they in fact remained on rig throughout the dive.
2/23/01	46-B	75 7 59 22	R10-DS PO ₂ data only for Divers #59 and #22 due to mass spectrometer off-line. Diver #75 was switched to EGS for violation of monitored inspired PO ₂ > 1.45 for more than 15 minutes (probable incipient O ₂ sensor linearity failure in rig).
2/26/01	022601A (46-B)	10 20 67 34	Divers #34 and #67 had a hold on their descents. Mass spectrometer failure for Divers #34 and #67 shortly after arrival on bottom; Divers were switched to EGS to complete the remainder of their dives.
2/26/01	022601B (47-B)	9 56 83 74	Mass spectrometer for Divers #74 and #83 off-line (see 022601A). Divers #74 and #83 completed all five dives of the profile on EGS.

DIVE DATE	PRO-FILE #	Diver ID #	COMMENTS
2/27/01	46-B	58 55 86 25	Uneventful dive.
2/27/01	47-B	8 14 39 78	Divers #8, 14, and 78 were placed on EGS due to an R-10 failure; diver #39 had a hold on his descent.
2/28/01	022801B 46-B	32 57 35 66	Diver #32's sampling system PO ₂ values were high, and he was switched to EGS.

PHASE II

DIVE DATE	PRO-FILE #	Diver ID #	COMMENT
4/11/01	II-28	19 59 36 5	Uneventful dive.
4/11/01	04112001B (II-5)	32 66 69 47	Diver #69 had a hold due to a left ear squeeze. Divers #32 and #69 were switched to EGS, due to system and communication problems.
4/12/01	04112001A II-28	34 24 30 56	Uneventful dive.
4/16/01	II-24	55 72 75 21	Diver #75 had a hold due to an ear squeeze.
4/16/01	II-5	78 52 41 8	Uneventful dive.
4/17/01	II-24	32 59 69 7	R-10 cells malfunctioned for all the divers; otherwise, the dive was uneventful.
4/17/01	II-5	60 31 22 5	Uneventful dive.
4/18/01	II-7	24 49 10 35	Diver #49 to EGS at bottom due to reported difficulty with exhalation; gurgling sounds in rig. Completed dive on EGS
4/18/01	II-37	45 58 34 67	Uneventful dive.
4/19/01	II-37	18 2 75 25	Diver #18 had problems clearing; he aborted during the surface interval. Diver #2 added oxygen because his UBA gas sample readings revealed low PO ₂ . He was later noted to have elevated PO ₂ and was eventually shifted to EGS.

DIVE DATE	PRO-FILE #	Diver ID #	COMMENT
4/19/01	II-7	46 4 50 40	Diver #50 had many holds due to problems with his mask.
4/23/01	II-25	60 61 5 58	Uneventful dive after Diver #58 aborted at surface before first dive for failure of rig PO ₂ to reach and maintain 0.7 ata.
4/23/01	II-9	17 31 66 32	Diver #66 had a hold on his descent due to an ear squeeze.
4/24/01	II-25	9 30 10 33	Water in diver #30 gas sample line; real-time inspired gas profile corrupted. Dive otherwise uneventful.
4/24/01	II-9	38 64 56 74	Divers #38 and #64 had water in their gas sampling lines to mass spectrometer; both divers completed the profile on EGS. Real-time inspired gas profiles corrupted.
4/25/01	II-31	70 53 52 4	Diver #53 had a hold due to an ear squeeze. An R10-DS cell for diver #52 malfunctioned.
4/25/01	II-3	12 57 18 45	R10-DS cell for diver #18 malfunctioned.
4/26/01	II-31	22 32 7 66	Uneventful dive.
4/26/01	II-3	25 48 35 60	Diver #48 had malfunctions of both his gas sample line and his R10-DS cell.
4/30/01	II-27	34 56 37 9	Uneventful dive.
4/30/01	II-1	77 71 29 35	Uneventful dive.

DIVE DATE	PROFILE #	Diver ID #	COMMENT
5/1/01	II-27	58 63 74 45	Diver #58 put his head out of the water to adjust his mask. Diver #58's gas sampling system PO ₂ values were high, so he was switched to EGS.
5/1/01	II-1	4 75 78 52	Diver # 52 had an episode of decreased level of consciousness while on the bottom. His dive was aborted and he was taken into the dry chamber at his 20 fsw stop. His symptoms resolved while on ascent, and he had normal neurologic and physical examinations at the 20 fsw decompression stop and at the surface. Diver #75 was switched to EGS after he complained that his rig was "gurgling."
5/2/01	II-26	61 60 28 69	Diver #28 manually added O ₂ to his rig on the bottom during his first dive; he was placed on EGS during his 20 fsw stop. Diver #60 added O ₂ to his rig during the second dive; he was placed on EGS before starting his ascent.
5/2/01	II-2	48 31 59 66	Diver #31's UBA leaked water during his first dive; he was switched to EGS for the remainder of the profile.
5/3/01	II-26	56 20 77 2	Diver #20 was placed on EGS near the end of his 30 fsw stop due to low measured inspired PO ₂ . Diver #2 had an episode of mask flooding on bottom, with a decreased level of consciousness within 30 minutes of surfacing after the first dive of this repetitive dive profile. He was diagnosed with AGE, treated with TT 6A that day, and then two TT 9s, with full recovery. His labwork, MRI brain, and cardiac echo bubble study were all normal.
5/3/01	II-2	49 10 24 30	Diver #49 had a left ear squeeze during descent. All divers returned to surface and Diver #49 was pulled from the profile. Remaining divers continued with restart of profile. Diver #10 was switched to EGS during the dive, due to low measured inspired PO ₂ .

DIVE DATE	PRO-FILE #	Diver ID #	COMMENT
5/7/01	II-29	9 4 35 14	Uneventful dive. Diver #9 complained of excess fatigue the next day; he was seen and examined by the DMO. Diver #9 had a normal neurologic examination, but he was treated with a TT 6 for presumptive Type II DCS, with full resolution of his subjective complaints. Diver #4 complained of paresthesias in a patchy distribution on the left chest the day after the dive. When he was seen and examined by the DMO, he had subjective sensory changes on the left side, patchy in distribution, and an otherwise normal neurologic examination. He was treated with a TT 6 for presumptive Type II DCS, with full resolution of his complaints.
5/7/01	II-6	58 8 3 17	Problems occurred with Diver #8's rig during predive of his first dive: his rig was not reaching the target 0.7 ATA PO ₂ .
5/8/01	II-29	66 60 69 48	Diver #66 had a hold on his descent due to an ear squeeze; he was subsequently placed on EGS due to a system malfunction. Diver #69 felt some shoulder and arm paresthesias. He reported this to the DMO the next day. Neurologic examination then revealed some subjective changes during sensory examination of the shoulder and arm, but exam results were otherwise normal. The diver was treated with a single TT 6, with full resolution of symptoms.
5/8/01	II-6	61 7 28 22	Diver #7 had a hold due to an ear squeeze.
5/9/01	II-1	67 44 77 51	Uneventful dive.
5/9/01	II-11	56 24 32 34	Diver #32 had two holds on his descent due to an ear squeeze.

DIVE DATE	PROFILE #	Diver ID #	COMMENT
5/10/01	II-11	53 11 35 45	Diver #11 was placed on EGS due to a system malfunction; no real-time inspired gas data. Diver #53 had transient blurry vision in his eye and was seen and evaluated by the duty DMO, diver #53 was determined to have NID in his eye.
5/14/01	II-15	59 74 22 48	Uneventful dive.
5/14/01	II-14	60 41 45 72	Uneventful dive.
5/15/01	II-8	67 20 34 73	Diver #34 and diver #73 added oxygen.
5/15/01	II-8	65 36 70 56	Diver #70 had a hold due to an ear squeeze on descent.
5/15/01	II-8	58 35 57 55	Uneventful dive.
5/16/01	II-22	8 26 78 13	Diver #13 had a hold due to an ear squeeze on descent.
5/16/01	II-4	24 15 46 76	Uneventful dive.
5/17/01	II-22	23 16 32 43	Diver #16 had hold on descent due to an ear squeeze on the first dive; subsequently he was removed from the OSF during the surface interval. Diver #32 had a hold on descent due to an ear squeeze on the second dive.
5/23/01	II-13	31 36 60 13	Uneventful dive.

DIVE DATE	PRO-FILE #	Diver ID #	COMMENT
5/24/01	II-16	45 20 56 26	Uneventful dive.
5/24/01	II-16	25 24 10 35	Uneventful dive.
5/29/01	11 14	39 37 11 64	Uneventful dive.
5/30/01	11 13	5 71 66 32	Uneventful dive.
5/30/01	II-16	59 48 31 58	Diver #58's gas sample readings revealed low PO ₂ , so he was switched to EGS
5/31/01	II-18	46 24 20 34	Uneventful dive.
5/31/01	II-19	65 10 30 41	Uneventful dive.
6/1/01	II-19	78 25 42 37	Uneventful dive. Diver #78 complained of excessive fatigue and decreased mental alertness, but he did not report it to the DMO for two days. After he reported his symptoms, he was immediately seen and evaluated. He had a normal neurological examination, other than his subjective complaints; he was treated with a TT 6, with full recovery.
6/1/01	II-18	39 14 53 12	Uneventful dive.
6/4/01	II-12	48 57 59 31	Uneventful dive.

DIVE DATE	PRO-FILE #	Diver ID #	COMMENT
6/4/01	II-10	32 37 1 36	Uneventful dive. After the dive, diver #36 complained of shoulder pain and upper extremity numbness. He was diagnosed with Type II DCS and treated with a TT 6, with full recovery.
6/5/01	II-21	60 10 24 74	Uneventful dive.
6/5/01	II-20	67 65 46 56	Dive abort due to unresolvable ear squeeze in Diver #67. Divers decompressed breathing MK 16 MOD 1s on air abort schedule.
6/6/01	II-21	18 45 35 12	Uneventful dive.
6/6/01	II-20	39 25 58 42	Uneventful dive.
6/7/01	II-20	8 1 57 31	Uneventful dive.
6/8/01	II-10	4 41 20 33	Uneventful dive.
6/8/01	II-13	56 10 24 65	Diver #10 had a hold due to an ear squeeze.
6/18/01	II-11	64 74 27 40	Uneventful dive.
6/18/01	II-35	37 68 25 18	Diver #18 had a hold due to an ear squeeze.
6/19/01	II-35	5 60 7 59	Diver #59 was shifted to EGS due to an R-10 cell malfunction.

DIVE DATE	PRO-FILE #	Diver ID #	COMMENT
6/20/01	II-34	34 10 45 20	Temperature measurements malfunctioned on Diver #10. Diver #20 noted excess fatigue approximately one hour after surfacing. Seen and evaluated by the DMO, this diver had the subjective complaint of fatigue; results from his neurological examination were normal. He was diagnosed with Type II DCS and treated with a TT 6, with full resolution of symptoms.
6/21/01	II-34	68 25 62 52	Diver #68 had a hold due to an ear squeeze.
6/21/01	II-7	46 8 9 42	Uneventful dive.
6/25/01	II-32	66 48 32 57	Diver #66 felt "dizzy" upon surfacing from the first dive. His symptoms resolved in a few minutes, but he was aborted from the second dive and pulled from the OSF. The duty DMO was called, and the diver underwent a physical examination, EKG, chemistries, and CBC, which were all normal. No further workup was pursued.
6/25/01	II-10	5 69 60 68	Uneventful dive.
6/26/01	II-32	34 56 24 99	Uneventful dive.
6/27/01	II-36	45 8 4 74	Diver #45's R-10 was inaccurate.
6/27/01	II-4	52 63 19 12	Diver #63 had a hold on descent.
6/28/01	II-36	69 68 48 58	R-10 and temperature readings were inaccurate because of a calibration error.

DIVE DATE	PRO-FILE #	Diver ID #	COMMENT
7/02/01	II-12	35 5 8	Only three divers participated in this profile, due to instrumentation problems.
7/02/01	II-10	10 46 67	Uneventful dive.
7/03/01	II-15	52 53 19 25	Uneventful dive.
7/03/01	II-14	12 40 63 37	Diver #63 had a hold due to an ear squeeze on descent.
7/09/01	II-22	5 60 2 22	Diver #2 added oxygen.
7/09/01	II-18	58 99 57 69	Uneventful dive.
7/10/01	II-5	63 41 8 52	Uneventful dive.
7/11/01	II-30	39 37 18 19	Uneventful dive.
7/12/01	II-30	59 9 24 17	Uneventful dive.
7/16/01	II-23	10* 46* 45* 41*	Diver #45 added oxygen. *Used MK 16 MOD 1 UBA fitted w/R10-DN O ₂ sensors.
7/16/01	II-4	29* 56* 99* 32*	Uneventful dive. *Used MK 16 MOD 1 UBA fitted w/R10-DN O ₂ sensors.

DIVE DATE	PRO-FILE #	Diver ID #	COMMENT
7/17/01	II-34	39* 42* 37* 2	Uneventful dive. *Used MK 16 MOD 1 UBA fitted w/R10-DN O ₂ sensors.
7/17/01	II-18	14* 11* 8* 63	Real-time pressure and inspired gas data lost for Diver #8 and corrupted for Diver #63 due to user error in setup of mass spectrometer and data acquisition system. *Used MK 16 MOD 1 UBA fitted w/R10-DN O ₂ sensors.
7/18/01	II-33	69* 17* 7* 22	Diver #17 experienced mild upper extremity pain when he was leaving the bottom on the first dive of the profile. He was aborted from the profile and removed from the OSF during the subsequent surface interval. A DMO determined during subsequent examination that this diver's pain was musculoskeletal. *Used MK 16 MOD 1 UBA fitted w/R10-DN O ₂ sensors.
7/19/01	II-33	10* 35* 24* 56*	Uneventful dive. *Used MK 16 MOD 1 UBA fitted w/R10-DN O ₂ sensors.

APPENDIX F.

Case Reports for Medical Events

Phase I

PROFILE: 110100AN83

The diver was a 43-year-old male who completed Profile 1-A (160 fsw for 25 minutes) with 2-, 2-, 3-, and 6-minute decompression stops at 50, 40, 30, and 20 fsw, respectively. After a 30-minute surface interval, the profile continued with a second dive to 160 fsw for 25 minutes, with 2-, 3-, 4-, and 79-minute decompression stops at 50, 40, 30, and 20 fsw, respectively. The diver reported having had a vague feeling of fullness in his left elbow during the last decompression stop of the second dive. When he was climbing up the ladder to the trunk of the OSF after the second dive, he may have also had a brief episode of feeling "dizzy." About one hour after the event, he noted the gradual onset of left elbow pain. He was seen and evaluated by a Diving Medical Officer (DMO). His examination was remarkable for the elbow pain and a propensity to fall to the left during the Romberg test. He was diagnosed as a case of Type II DCS. He was treated with TT 6, and his symptoms resolved: his elbow pain was gone, and he had a normal neurologic examination. The next day he felt somewhat dizzy and had a brief episode of nausea, but he failed to report these developments to the DMO. On 3 November he reported to medical personnel that his sensation of feeling dizzy and his arm pain had returned. His neurologic examination at that time revealed horizontal nystagmus to the left with head shake and Dix-Hallpike maneuvers. There appeared to be a component of latency, and the nystagmus fatigued and disappeared after a few seconds. He also had a positive Romberg. He was treated again with a TT 6 and his symptoms resolved. On 4 November he felt fine, and a brief neurological exam was normal. On 5 November his dizzy feeling returned, albeit milder than it had been before, and he had left arm pain. He felt a little "dizzy" after head shake maneuvers, but he had an otherwise normal neurologic examination, including a normal Romberg. He was treated again with a TT 6, and two TT 9s. After these treatments he had no complaints and a normal physical and neurological examination.

The patient was seen by an Ear Nose and Throat specialist on 13 November 2000 and found to have bilateral high frequency hearing loss, but his exam was otherwise normal. On 21 November 2000 he had an MRI of the brain with fine cuts of the posterior fossa, as well as the region of the thalamus: the grey and white matter was normal, but the scan suggested a left mastoid effusion. On 7 December 2000, the patient had a CT of the head with fine cuts of the mastoids to better visualize that area of the skull, which was normal. His left elbow pain recurred several months later after performing multiple sets of pull ups. The elbow was injected with steroids, and his symptoms resolved

PROFILE: 111500bN701

The diver was a 40-year-old male who dove to 160 fsw for 20 minutes, with 2-, 2-, and 4-minute decompression stops at 40, 30, and 20 fsw, respectively. He states that he had an excessively large amount of Chinese food for lunch just prior to the dive. While on descent he experienced some nausea, and subsequently experienced transient vomiting while on the bottom. He was aborted from the remaining 200 fsw dive of the profile and removed from the OSF during the intervening surface interval. Over the next several hours he developed a purple, pruritic abdominal rash. He had no other symptoms. It was not clear exactly what was causing the rash (the diver's wet suit did not fit well and may have contributed to it). The diver was treated with a TT 6, during which the rash improved. It resolved completely several hours after the TT 6.

Phase II

PROFILE: 04192001N02a

Diver was a 29-year-old male who dove to 140 fsw for 30 minutes, with a 3-minute decompression stop at 30 fsw and a 16-minute decompression stop at 20 fsw. During the dive his mask flooded while on the bottom, but the dive was otherwise uneventful. Upon surfacing, he was noted to have a flattened affect, and his level of consciousness decreased while he was being escorted to the recompression chamber. He was diagnosed with AGE and was treated with TT 6A that day and two TT 9s on subsequent days. He recovered fully. His labwork, MRI brain, and cardiac echo bubble studies were all normal.

PROFILE: 05072001N09a

The diver was a 43-year-old male who dove to 120 fsw for 25 minutes. He had a 4-minute decompression stop at 20 fsw. He had a 180-minute surface interval before diving to 160 fsw — with decompression stops for 3 minutes at 30 fsw and 32 minutes at 20 fsw before a 30-minute surface interval. He then dove to 140 fsw for 15 minutes, with a 42-minute decompression stop at 20 fsw. He complained of excess fatigue the day after the dive. He was seen and examined by the DMO. He had a normal neurologic examination but was treated with a TT 6 for presumptive Type II DCS. His subjective complaints resolved.

PROFILE: 05072001N04a

The diver was a 39-year-old male who dove to 120 fsw for 25 minutes. He had a 4-minute decompression stop at 20 fsw. He had a 180-minute surface interval before diving to 160 fsw — with decompression stops for 3 minutes at 30 fsw and 32 minutes at 20 fsw before a 30-minute surface interval. He then dove to 140 fsw for 15 minutes with a 42-minute decompression stop at 20 fsw. The day after the dive he complained of excess fatigue and paresthesias in a patchy distribution on the left chest. Examination by the DMO revealed that the diver had subjective sensory changes,

patchy in distribution on the left side. His neurologic examination was otherwise normal. He was treated with a TT 6 for presumptive Type II DCS, and his complaints resolved.

PROFILE: 05082001N69a

The diver was a 39-year-old male who dove to 120 fsw for 25 minutes, with a 4-minute decompression stop at 20 fsw before a 180-minute surface interval. He then dove to 160 fsw — with decompression stops for 3 minutes at 30 fsw and 32 minutes at 20 fsw before a 30-minute surface interval. He then dove to 140 fsw for 15 minutes, with a 42-minute decompression stop at 20 fsw. Several hours after the dive, he felt some right shoulder and arm paresthesias and some "fuzziness" in thinking. He reported these symptoms to the DMO the next day. Neurologic examination then revealed some subjective sensory changes in the right shoulder and arm, but results from the examination were otherwise normal. The diver was treated with a single TT 6, and his symptoms resolved.

PROFILE: 06012001N78a

The diver was a 38-year-old male who dove to 280 fsw for 20 minutes, with decompression stops for 1 minute at 120 fsw, 3 minutes at 110 fsw, 3 minutes at 100 fsw, 2 minutes at 90 fsw, 2 minutes at 80 fsw, 3 minutes at 70 fsw, 1 minute at 60 fsw, 2 minutes at 50 fsw, 9 minutes at 40 fsw, 12 minutes at 30 fsw, and 80 minutes at 20 fsw. Upon surfacing from the dive, he experienced excessive fatigue and decreased mental alertness, but did not report these symptoms to the DMO for two days: he attributed his symptoms to normal fatigue from a busy work schedule. After he reported his symptoms, he was immediately evaluated. Results from his neurological examination were normal, despite his subjective complaints. He was treated with a TT 6, and he recovered fully.

PROFILE: 06042001N36b

The diver was 40-year-old man who dove to 220 fsw for 15 minutes, with a 2-minute decompression stop at 60 fsw, a 2-minute stop at 50 fsw, a 2-minute stop at 40 fsw, a 3-minute stop at 30 fsw, and a 5-minute stop at 20 fsw. Within 10 minutes of reaching the surface, he complained of shoulder pain and upper extremity numbness. This was confirmed by examination by the DMO. He was diagnosed with Type II DCS and treated with a TT 6. He recovered fully.

PROFILE: 06202001N20a

The diver was a 37-year-old man who dove to 180 fsw for 20 minutes, with a 6-minute decompression stop at 30 fsw and a 14-minute stop at 20 fsw. He began experiencing excess fatigue approximately one hour after surfacing. He was seen and evaluated by the DMO, who noted the diver's subjective complaint of fatigue and conducted a neurological examination that yielded normal results. The diver was diagnosed with Type II DCS and treated with a TT 6. His symptoms were fully resolved.

OTHER EVENTS

PROFILE: 05012001N521

The diver was a 39-year-old male whose mask leaked where a screw was anchoring the primary display holder. As a result of this mechanical problem, he was leaning forward in an awkward position on the bicycle and was having difficulty pedaling. . He began to feel "woozy" and appeared to be falling off his bike. His dive buddy, who found the diver awake, responsive, but apparently confused, assisted the stricken diver by switching him to EGS. The dive was aborted. At the 30 fsw stop, the diver felt "8/10," and at the 20 fsw stop he felt "9/10." He was transferred to a dry chamber, and after 10–20 minutes in the chamber he felt completely normal.

PROFILE: 06252001N66a

The diver was a 29-year-old male who felt "dizzy" upon surfacing from a dive to 180 fsw for 25 minutes, with 6-, 7-, and 29-minute decompression stops at 40, 30, and 20 fsw, respectively. His symptoms resolved in a few minutes, and the duty DMO was called. The diver underwent a physical examination, an EKG, blood chemistries, and a CBC, which were all normal. Because the diver was asymptomatic and the examination and tests were normal, no further workup was pursued.

APPENDIX G.

DIVER INSPIRED GAS ANALYSIS

Diver inspired gas was analyzed throughout the study using two independent methods in order to characterize MK 16 MOD 1 O₂ delivery. The first method entailed use of an O₂ fuel cell (Teledyne, Inc., R10-DS) located in a gas sampling fitting mounted at the base of each MK 16 MOD 1 inhalation hose. The other method entailed transport of a continuous stream of gas from a port in the same gas sampling fitting through approximately 110 feet of 0.032 inch inner diameter nylon tubing to one of two mass spectrometers (Extrel MS 250 Gas Analyzer; Extrel Corporation, Pittsburgh, PA) on the OSF Medical Deck for fractional analysis.

The fuel cell PO₂ reading and chamber pressure for each diver were sampled in real-time throughout each dive at 2 sec intervals and recorded in computer data files. Each mass spectrometer was used to analyze the sampled gas from two divers, with gas switching from diver to diver effected via a computer-controlled motorized rotary sampling valve under control of the respective Extrel control computer. RED and GRN divers were monitored using RED Extrel, and YEL and BLU divers were monitored using GRN Extrel. Because of valve switching and line washout times, a mass spectrometer record of each diver's inspired gas composition was available at only about 35-40 sec intervals.

The product of measured diver depth and inspired O₂ fraction yielded instantaneous diver inspired PO₂. While the measured diver depth was obtained in real-time without appreciable time delay, measured inspired FO₂ values had to be corrected for the transit delay between the gas sample inlet at the diver and the gas analyzer on the Med Deck.

Mass Spectrometer Response Characterization

The mass spectrometer gas sampling and analysis system is schematized, with components used to characterize mass spectrometer response, in Figure G-1.

Figure G-1. Schematic of the mass spectrometer gas sampling and analysis system. The response characterization subsystem is shown connected to the ends of the diver umbilicals on the left side of the figure.

The sampling latency and response time for each diver-mass spectrometer sampling line was determined as follows: The OSF was pressurized to various depths with the sampling system drawing low oxygen fraction gas from a bag at a pressure slightly higher than ambient chamber pressure. At each depth, a switch was closed on the OSF Medical Deck to energize a solenoid valve, which opened the gas sample line to a bag containing high oxygen fraction gas, also at a pressure slightly greater than chamber pressure. The change in voltage passed by the switch provided an exact time for the low-to-high oxygen switch at the gas sample line inlet. After the ON response was complete several seconds later, the process was reversed to obtain the OFF response by opening the switch on the Medical Deck to open the sample inlet back to the low oxygen fraction gas. Again, the change in voltage passed by the switch provided an exact time for the high-to-low oxygen switch at the gas sample line inlet. Elapsed time, switch voltage, and mass spectrometer O₂ channel voltage were recorded in real time at 100Hz throughout the procedure for later analysis. While the gas sample flow from one line was being analyzed by the mass spectrometer, the gas sample flow from the other line was vented to atmosphere through a bubble flowmeter and manually maintained at 150 ± 5 ml/minute (Figure G-1). Typical "ON/OFF" response data are illustrated in Figure G-2.

Figure G-2. Typical "ON/OFF" response of mass spectrometer O₂ channel output to near-instantaneous changes in gas concentration at the diver end of the gas sampling umbilical.

Six ON/OFF response curves were obtained at each depth from 20 to 200 fsw in 10 fsw increments. Separate ON and OFF latencies and response half-times were determined from each "ON/OFF" response curve by fitting the following equations to the mass spectrometer O₂ channel output using nonlinear least squares:

$$y^{ON}(t^{ON}) = y_0^{ON} + A^{ON} \cdot \left\{ 1 - \exp \left[\left(\frac{\ln(0.5)}{t_{1/2,D}^{ON}} \right) (t^{ON} - t_{lat,D}^{ON}) \right] \right\} \quad (G-1)$$

$$t^{ON} = t - t_{SW}^{ON}; \quad t_{SW}^{ON} \leq t < t_{SW}^{OFF}$$

$$y^{OFF}(t^{OFF}) = y_0^{OFF} + A^{OFF} \cdot \exp \left[\left(\frac{\ln(0.5)}{t_{1/2,D}^{OFF}} \right) (t^{OFF} - t_{lat,D}^{OFF}) \right] \quad (G-2)$$

$$t^{OFF} = t - t_{SW}^{OFF}; \quad t_{SW}^{OFF} \leq t < \infty$$

where y^{ON} is the mass spectrometer O₂ channel ON response; t^{ON} is the time (sec) from solenoid switch closing at t_{SW}^{ON} ;

y_0^{ON} is the baseline mass spectrometer O₂ channel signal;
 A^{ON} is the mass spectrometer O₂ channel ON amplitude;
 $t_{1/2,D}^{ON}$ is the mass spectrometer O₂ channel ON response half-time (sec);
 $t_{lat,D}^{ON}$ is the mass spectrometer O₂ channel ON response latency (sec).

Variables with "OFF" superscripts denote the analogous parameters for the OFF response.

As illustrated in Figure G-3, the ON latency at each depth, D , tended to be lower than the corresponding OFF latency, while the ON response time tended to be higher than the corresponding OFF response time. These were collapsed into a single metric for each measured ON/OFF response curve, the effective latency, or $t_{el,D}$, defined as the mean of the ON and OFF latencies plus the mean of the ON and OFF 0-90% response times:

$$t_{el,D} = \frac{(t_{lat,D}^{ON} + t_{lat,D}^{OFF})}{2} + \frac{\ln(0.9)}{\ln(0.5)} \left[\frac{t_{1/2,D}^{ON} + t_{1/2,D}^{OFF}}{2} \right]. \quad (G-3)$$

Effective latencies from all depths, including repeat measures at given depths, were then collected and fitted by the following 5th-order polynomial to obtain a quantitative expression for the relationship between effective mass spectrometer latency and depth:

$$t_{el}(D) = b_0 + b_i D^i, \quad i=1, 2, \dots, 5 \quad (G-4)$$

The depth dependence of the effective latency for the GRN diver mass spectrometer sampling line, as measured and as reproduced by the fitted Eq. (G-4), is shown in Figure G-3.

Figure G-3. Effective mass spectrometer latency vs. depth, GRN diver umbilical.

Separate accommodation of analyzer sampling latency with signal deconvolution for analyzer 0-95% response time was not considered necessary.

Fuel cell data were smoothed using a 25-point moving quadratic convolute.

Mass Spectrometer Data:

Corrections for mass spectrometer calibration drift.

Each diver profile was preceded and followed by an automatic run through xx calibration gases to acquire information to quantify mass spectrometer linearity and calibration drift through the course of a profile. Raw mass spectrometer data were corrected for drift if both pre-run and post-run calibration curves were linear to within an $r^2 > 95\%$ by linear regression. Mass spectrometer linearity in the O₂ channel is typified by the calibration data from one of the runs shown in Figure G-4.

Figure G-4. Mass spectrometer linearity. Post-run calibration curve is graphically indistinguishable from the identity, or ideal calibration, line.

Corrections for effective latency and interpolation between records using fuel cell data.

Raw recorded mass spectrometer data were time-lagged by the effective mass spectrometer latency, t_{el} . A simple approach to correcting the data for this latency would have been to shift each measured mass spectrometer record backward in time by t_{el} . However, as noted above, fuel cell PO_2 data were also available at a much higher temporal frequency than the mass spectrometer data, providing information to interpolate FO_2 data between actual mass spectrometer records. Interpolation and correction for effective latency were thus completed using a combined procedure described following.

With record-by-record advance through the combined fuel cell PO_2 and mass spectrometer profile for a given diver, the mass spectrometer reading appropriate to a given current time, t_c , was obtained by looking forward in the profile by the effective latency to the raw recorded mass spectrometer data at time t_F given by

$$t_F = t_c + t_{el},$$

where t_{el} was obtained by solution of Eq. (G-4) at the current time depth D. If a mass spectrometer record was available at t_F , as in the case illustrated in Figure G-5, it was used directly as the corrected mass spectrometer value at the current

time, $\text{FO}_{2,\text{ms}}(t_c)$. More often, however, a mass spectrometer record was not available at t_F , as illustrated in Figures G-6 and G-7.

Figure G-5. Schematization of real-time data matrix with mass spectrometer values only at tick marks and fuel cell PO_2 values at tick marks and at 2 sec intervals in between. In the case illustrated, mass spectrometer data are available at t_F to obtain latency-corrected interpolated values for the current time, t_c .

Figure G-6. Schematization of real-time data matrix as in Figure G-5. Here, however, mass spectrometer data are not available at t_F to obtain latency-corrected values for the current time, t_c . Note that the mass spectrometer data at t_c apply to an earlier real time, as illustrated in Figure G-5, and the latency-corrected value at t_c must be determined by interpolation of the value at t_F .

Figure G-7. Generalized instance of the case illustrated in Figure G-6, where mass spectrometer data are not available at t_F . Latency-corrected interpolated value at t_c was obtained as schematized in Figure G-8.

In these cases, the latency-corrected $FO_{2,ms}(t_c)$ was determined by interpolation as schematized in Figure G-8. The nearest mass spectrometer record applicable to the current time was first located at time t_N . The applicable fuel cell value for this record was then obtained by looking back from t_N by the effective latency to time t_B :

$$t_B = t_N - t_{el}.$$

The fuel cell OFFSET at t_N was determined from the recorded mass spectrometer value at t_N and the fuel cell value at t_B :

$$\text{OFFSET} = FO_{2,FC}(t_B) - FO_{2,ms}(t_N).$$

Finally, the latency-corrected interpolated mass spectrometer value at the current time was calculated using:

$$FO_{2,ms}(t_c) = FO_{2,FC}(t_c) - \text{OFFSET}.$$

Figure G-8. Determination of the latency-corrected interpolated mass spectrometer data at current time, t_c , using mass spectrometer data at t_N and fuel cell data at t_B when directly measured mass spectrometer data at t_f were not available.

The effect of these mass spectrometer FO_2 corrections and interpolations is illustrated for a section of a profile in Figure G-9.

A

B

Figure G-9. Section of a profile: A) before fuel cell PO₂ data smoothing and correction and interpolation of mass spectrometer FO₂ data, and; B) after fuel cell PO₂ data smoothing and correction and interpolation of mass spectrometer FO₂ data.

PO₂ Overshoots

PO₂ overshoots accompanying descent were a feature of MK 16 MOD 1 performance of particular interest. The overshoot accompanying each descent was characterized from the measured and corrected PO₂-depth profile during the course of the above data processing procedures. For these purposes, the PO₂ overshoot period was considered to begin during descent when the PO₂ first exceeded 1.45 atm, and end when the PO₂ first decreased to below 1.45 atm thereafter. Characteristics of interest during this period were the average descent rate, the maximum depth attained, the peak PO₂ attained, and the time-weighted average PO₂ during the period.

APPENDIX H.

Dive-by-Dive MK 16 MOD 1 PO₂ Control Summaries

PHASE I

Profile	Dive	---PO2 Overshoot Data---										Pst OS	BT	Dive
		DSCNT	BOTTOM	Total	PO2	Time	TWA	TWA	TWA	PO2	PO2			
	Depth	RATE	Time	Dive Time	MAX	PO2>1.45	PO2	PO2	PO2	PO2	PO2	(atm)	(atm)	(atm)
	(fsw)	(fsw/min)	(min)	(min)	(atm)	(min)	(atm)	(atm)	(atm)	(atm)	(atm)			
103100AN91	161.4	49.4	25.43	43.80	1.666	3.211	1.580	1.428	1.410	1.420	1.457			
103100AN29	161.4	48.4	25.43	43.80	1.880	6.165	1.641	1.453	1.473	1.457	1.427			
110100AN83	161.3	48.3	25.47	43.75	1.987	6.009	1.605	1.455	1.479	1.459	1.416			
	161.2	36.2	25.53	118.67	2.098	6.568	1.626	1.463	1.452	1.389				
110100AN79	161.1	48.4	25.40	43.77	2.185	6.516	1.719	1.380	1.443	1.381	1.459			
	161.1	39.4	25.57	118.67	2.154	7.955	1.703	1.413	1.459	1.416				
110100AN72	161.3	48.3	25.41	43.75	2.125	2.366	1.820	1.442	1.452	1.394				
	161.2	37.3	25.53	118.70	1.785	4.687	1.581	1.434	1.420	1.400				
110100BN121	120.8	52.4	20.40	24.07	1.917	3.082	1.667	1.441	1.445	1.372				
	160.6	51.8	15.67	36.56	2.110	7.334	1.706	1.446	1.537	1.351				
	160.9	49.6	20.43	95.64	2.173	8.441	1.691	1.409	1.517	1.394				
110100BN601	120.9	52.0	20.40	24.07	1.713	3.947	1.505	1.442	1.436	1.368				
	160.8	51.8	15.60	36.57	2.163	6.734	1.673	1.441	1.520	1.381				
	160.8	49.7	20.47	95.64	2.251	4.299	1.670	1.426	1.463	1.434				
110100BN581	120.9	53.5	20.43	24.10	1.527	0.346	1.496	1.409	1.369	1.320				
	160.7	51.6	15.60	36.57	1.668	3.565	1.487	1.428	1.374	1.325				
	160.8	49.2	20.44	95.64	1.725	4.133	1.524	1.452	1.426	1.438				
110100BN211	120.9	53.4	20.47	24.07	2.407	5.770	1.808	1.450	1.537	1.461				
	160.6	53.0	15.67	36.57	1.961	7.113	1.593	1.479	1.515	1.395				
	160.9	49.9	20.47	95.64	2.090	5.626	1.651	1.496	1.503	1.486				
110200AN321	203.4	48.0	15.37	32.27	1.609	2.760	1.402	1.424	1.361	1.234				
	161.3	52.1	15.53	58.63	1.975	1.974	1.644	1.423	1.424	1.361				
	160.9	50.3	15.43	70.63	1.828	4.068	1.541	1.419	1.404	1.371				
110200AN221	203.2	49.6	15.68	32.23	1.876	6.716	1.636	1.387	1.445	1.424				
	161.3	50.7	15.30	58.66	1.742	4.565	1.599	1.392	1.408	1.368				
	160.8	49.9	15.50	70.67	1.877	3.408	1.601	1.434	1.409	1.365				
110200AN891	203.4	48.8	15.57	32.27	2.260	7.776	1.782	1.375	1.557	1.397				
	161.3	51.4	15.60	58.63	2.036	6.682	1.662	1.418	1.491	1.384				
110200AN311	203.2	49.2	15.50	32.27	1.775	5.498	1.608	1.385	1.399	1.390				
	161.3	51.5	15.43	58.63	1.728	0.809	1.579	1.435	1.376	1.364				
	160.8	50.1	15.47	70.64	2.011	0.048	1.919	0.000	1.251	1.504				
110200BN531	201.5	49.8	15.53	32.00	1.891	6.128	1.637	1.445	1.472	1.348				
	200.8	48.7	20.70	120.90	2.129	7.028	1.655	1.431	1.497	1.405				
110200BN80	201.4	50.3	15.70	32.00	1.715	1.057	1.578	1.468	1.401	1.369				
110200BN35	201.4	50.0	15.47	32.00	2.077	8.071	1.647	1.414	1.517	1.366				
	200.7	49.3	20.67	120.90	2.045	6.392	1.671	1.399	1.468	1.392				
110600BN652	200.2	51.2	22.50	89.63	2.576	9.621	1.978	1.527	1.694	1.535				
	160.7	49.7	15.50	70.47	2.501	15.167	1.738	0.000	1.721	1.459				
110600BN602	200.2	50.3	22.53	89.63	1.966	7.616	1.720	1.496	1.546	1.426				
	160.7	49.9	15.47	70.47	1.852	3.029	1.627	1.440	1.426	1.351				
110600BN912	200.3	50.8	22.56	89.63	1.826	7.128	1.598	1.420	1.449	1.370				
	160.8	49.2	15.50	70.47	1.816	6.643	1.626	1.394	1.456	1.336				
110600BN352	200.3	50.5	22.53	89.63	1.687	5.342	1.566	1.409	1.414	1.398				
	160.8	49.5	15.50	70.47	1.576	0.957	1.446	1.441	1.387	1.372				
110700AN392	120.5	50.6	15.47	18.97	2.011	0.049	1.917	0.000	1.223	1.212				
	200.5	49.3	23.60	124.17	2.029	0.047	1.932	0.000	1.204	1.472				
110700AN893	120.5	50.8	15.40	18.97	1.549	1.699	1.512	1.482	1.413	1.353				
	200.5	48.8	23.50	124.13	1.838	8.802	1.577	1.605	1.582	1.540				
110700AN553	120.5	51.3	15.40	18.97	1.571	0.656	1.511	1.471	1.403	1.353				
	200.5	48.6	23.46	124.13	1.793	5.944	1.625	1.311	1.358	1.501				
110700N792	120.5	52.3	15.47	18.97	1.495	1.119	1.390	1.434	1.390	1.327				
	200.5	49.7	23.60	124.17	1.917	7.817	1.709	1.477	1.528	1.453				
110800AN531	161.4	50.6	15.60	23.43	1.706	1.442	1.582	1.369	1.334	1.205				
	200.6	50.8	23.40	139.70	1.999	5.499	1.700	1.399	1.431	1.348				
110800AN071	161.3	48.9	15.33	23.43	2.002	5.500	1.615	1.441	1.471	1.337				
	200.6	51.2	23.37	139.73	2.163	6.535	1.712	1.533	1.585	1.453				

Profile	Dive	---PO2 Overshoot Data---										Pst OS	BT	Dive
		Depth (fsw)	DSCNT RATE (fsw/min)	BOTTOM Time (min)	Total Dive Time (min)	PO2 MAX (atm)	PO2>1.45 (min)	PO2 (atm)	TWA PO2 (atm)	TWA PO2 (atm)	TWA PO2 (atm)			
110800AN691	161.4	50.3	15.57	23.43	1.795	4.566	1.571	1.384	1.397	1.286	1.397	1.397	1.397	1.286
	200.6	52.1	23.60	139.70	1.855	5.964	1.626	1.433	1.456	1.516	1.456	1.456	1.456	1.516
110800AN841	161.3	33.8	15.27	23.42	2.203	6.295	1.725	1.551	1.569	1.399	1.569	1.569	1.399	1.399
	200.6	51.4	23.37	139.74	2.547	22.021	1.729	0.000	1.688	1.466	1.688	1.688	1.466	1.466
110900AN581	120.9	21.7	15.30	19.27	1.740	4.985	1.621	1.404	1.438	1.366	1.438	1.438	1.366	1.366
	161.2	54.1	20.53	52.03	1.787	5.974	1.628	1.438	1.468	1.373	1.468	1.468	1.373	1.373
	120.8	54.8	21.54	76.84	1.905	4.303	1.617	1.475	1.476	1.452	1.476	1.476	1.452	1.452
	120.9	36.5	15.37	19.30	1.634	1.161	1.540	1.389	1.337	1.278	1.337	1.337	1.278	1.278
110900AN451	161.2	54.0	20.33	52.03	1.494	0.846	1.459	1.399	1.374	1.326	1.374	1.374	1.326	1.326
	120.7	55.0	21.57	76.84	1.492	0.258	1.474	1.380	1.348	1.318	1.380	1.348	1.318	1.318
	120.8	37.1	15.73	19.27	1.465	0.622	1.395	1.421	1.357	1.314	1.421	1.357	1.314	1.314
110900AN813	161.1	54.0	20.57	52.00	1.668	2.773	1.561	1.417	1.403	1.367	1.403	1.367	1.367	1.367
	120.7	55.2	21.57	76.84	1.454	0.534	1.431	1.400	1.363	1.343	1.400	1.363	1.343	1.343
	120.8	36.0	15.77	19.27	1.756	3.019	1.572	1.381	1.364	1.294	1.381	1.364	1.294	1.294
110900AN423	161.1	53.9	20.57	52.00	1.917	5.265	1.532	1.435	1.452	1.396	1.452	1.452	1.396	1.396
	120.7	55.3	21.57	76.84	2.259	1.795	1.566	1.424	1.424	1.396	1.424	1.424	1.396	1.396
	121.1	53.3	19.54	25.03	1.624	0.298	1.545	1.398	1.357	1.316	1.398	1.357	1.316	1.316
111300AN251	120.8	52.4	15.53	21.10	2.017	0.047	1.922	0.000	1.226	1.253	1.922	0.000	1.226	1.253
	200.7	50.9	15.33	96.80	2.043	0.032	2.011	0.000	1.160	1.487	2.011	0.000	1.160	1.487
	121.1	53.8	19.43	25.03	1.668	2.004	1.586	1.469	1.446	1.356	1.469	1.446	1.356	1.356
111300AN391	121.0	52.7	15.47	21.13	1.783	2.411	1.582	1.489	1.454	1.351	1.489	1.454	1.351	1.351
	200.9	50.6	15.50	96.81	1.518	11.526	1.508	1.427	1.350	0.546	1.508	1.427	1.350	0.546
	121.1	53.3	19.47	25.07	1.608	3.339	1.522	1.434	1.417	1.329	1.434	1.417	1.329	1.329
111300AN601	121.0	53.0	15.42	21.13	1.696	2.795	1.550	1.443	1.418	1.308	1.443	1.418	1.308	1.308
	200.9	50.7	15.50	96.80	2.008	0.047	1.918	0.000	1.160	1.487	1.918	0.000	1.160	1.487
	161.4	195.0	18.93	32.24	3.889	6.455	1.790	1.444	1.562	1.409	1.444	1.562	1.409	1.409
111400AN372	121.2	51.9	15.27	32.20	2.255	2.433	1.668	1.429	1.450	1.320	1.429	1.450	1.320	1.320
	161.2	50.3	17.57	92.51	2.302	7.932	1.669	1.410	1.510	1.361	1.669	1.410	1.361	1.361
	121.2	50.4	15.30	32.20	1.646	2.525	1.428	1.437	1.402	1.303	1.428	1.437	1.303	1.303
111400AN322	161.0	50.5	17.54	92.51	2.210	4.819	1.667	1.460	1.503	1.379	1.667	1.460	1.503	1.379
	161.3	189.8	19.03	32.27	3.793	2.708	1.834	1.448	1.503	1.372	1.834	1.448	1.503	1.372
	121.2	50.4	15.30	32.20	1.646	2.525	1.428	1.437	1.402	1.303	1.428	1.437	1.303	1.303
111400AN092	161.0	50.5	17.54	92.51	2.210	4.819	1.667	1.460	1.503	1.379	1.667	1.460	1.503	1.379
	161.4	185.1	18.97	32.24	3.334	1.311	1.456	1.420	1.422	1.357	1.420	1.422	1.357	1.357
	121.2	50.6	15.33	32.20	1.645	1.204	1.564	1.480	1.431	1.360	1.564	1.480	1.431	1.360
111400AN482	161.2	50.9	17.47	92.51	1.607	3.482	1.529	1.502	1.474	1.444	1.529	1.502	1.474	1.444
	161.3	188.2	19.07	32.27	4.232	5.435	1.948	1.421	1.571	1.370	1.948	1.421	1.571	1.370
	121.2	51.1	15.27	32.20	2.216	2.367	1.517	1.451	1.450	1.373	1.451	1.450	1.373	1.373
111400BN22	161.0	50.1	17.53	92.51	1.849	1.232	1.608	1.432	1.392	1.375	1.608	1.432	1.392	1.375
	200.8	51.8	22.63	89.03	1.721	4.966	1.574	1.444	1.422	1.432	1.574	1.444	1.422	1.432
	121.0	54.4	20.43	64.20	1.517	0.577	1.503	1.430	1.383	1.366	1.503	1.430	1.383	1.366
111400BN53	200.8	52.0	22.40	89.03	1.876	6.235	1.591	1.402	1.435	1.374	1.591	1.402	1.435	1.374
	121.1	54.9	20.50	64.20	2.601	1.423	1.783	1.379	1.388	1.331	1.783	1.379	1.388	1.331
	200.9	50.1	22.37	89.03	2.057	5.681	1.640	1.418	1.442	1.428	1.640	1.418	1.442	1.428
111400BN69	121.0	55.0	20.53	64.24	2.659	2.444	2.017	1.466	1.422	1.409	2.017	1.466	1.422	1.409
	200.9	50.8	22.37	89.04	1.705	5.906	1.566	1.395	1.414	1.377	5.906	1.566	1.395	1.377
	121.0	54.6	20.53	64.24	2.223	2.643	1.725	1.403	1.427	1.337	2.643	1.725	1.403	1.337
111500AN771	121.0	50.6	15.53	18.93	1.963	2.470	1.622	1.402	1.397	1.319	1.622	1.402	1.397	1.319
	161.2	49.2	15.50	36.07	2.106	6.065	1.556	1.448	1.471	1.363	1.556	1.448	1.471	1.363
	201.5	50.5	15.40	96.67	2.103	7.545	1.644	1.450	1.517	1.412	1.644	1.450	1.517	1.412
111500AN741	121.0	50.8	15.57	18.94	1.798	3.595	1.555	1.412	1.390	1.315	1.555	1.412	1.390	1.315
	161.2	48.8	15.43	36.07	1.832	6.697	1.601	1.459	1.470	1.361	1.601	1.459	1.470	1.361
	201.5	49.6	15.44	96.67	1.781	7.109	1.601	1.483	1.484	1.384	1.781	1.483	1.484	1.384
111500AN841	121.1	50.8	15.37	18.93	1.862	5.055	1.543	1.373	1.416	1.330	1.862	1.543	1.373	1.330
	161.2	48.9	15.33	36.07	2.291	8.574	1.747	1.391	1.575	1.382	8.574	1.747	1.575	1.382
	201.4	49.6	15.33	96.64	2.250	9.102	1.735	1.415	1.594	1.369	9.102	1.735	1.415	1.369
111500AN291	121.1	50.0	15.33	18.92	1.543	0.622	1.496	1.342	1.296	1.225	1.496	1.342	1.296	1.225
	161.2	48.4	15.33	36.06	1.516	0.675	1.475	1.382	1.326	1.358	1.475	1.382	1.326	1.358
	201.4	49.6	15.37	96.67	2.009	4.630	1.705	1.405	1.457	1.508	4.630	1.705	1.405	1.508
111500BN701	161.3	53.9	20.40	33.33	1.511	1.781	1.428	1.396	1.344	1.317	1.781	1.428	1.396	1.317
	161.4	52.7	20.37	33.34	2.370	4.300	1.650	1.424	1.362	1.362	4.300	1.650	1.424	1.362
	201.1	53.9	18.53	117.07	2.191	7.862	1.685	1.474	1.555	1.434	7.862	1.685	1.474	1.555
111500BN501	161.4	53.1	20.43	33.34	1.646	3.246	1.533	1.427	1.407	1.348	1.646	1.533	1.427	1.348
	161.3	52.6	20.47	33.33	1.722	2.896	1.524	1.366	1.358	1.260	1.722	1.524	1.366	1.260
	201.1	53.4	18.33	117.07	1.741	4.538	1.558	1.409	1.401	1.340	1.741	4.538	1.558	1.340
111600AN141	200.8	47.2	15.36	31.89	1.843	7.224	1.630	1.434	1.491	1.392	7.224	1.630	1.434	1.392
	120.8	40.8	15.33	33.90	1.570	1.610	1.505	1.416	1.391	1.311	1.610	1.505	1.416	1.311

Profile	Dive	---PO2 Overshoot Data---										Pst OS	BT	Dive
		Depth (fsw)	DSCNT RATE (fsw/min)	BOTTOM Time (min)	Total Dive Time (min)	PO2 MAX (atm)	Time PO2>1.45 (min)	TWA PO2 (atm)	TWA PO2 (atm)	BT PO2 (atm)	TWA PO2 (atm)			
111600AN751	200.8	47.2	15.37	31.90	1.858	3.359	1.689	1.374	1.412	1.315				
	120.7	40.6	15.36	33.93	1.972	2.719	1.435	1.333	1.341	1.255				
	200.8	39.0	13.19	95.07	1.795	6.734	1.507	1.341	1.405	1.325				
111600AN551	200.7	47.8	15.37	31.90	1.990	6.967	1.667	1.354	1.448	1.343				
	120.8	39.6	15.37	33.93	2.126	2.583	1.597	1.421	1.431	1.330				
	200.8	40.3	13.20	95.07	2.036	8.369	1.687	1.418	1.520	1.404				
111600AN351	200.8	47.4	15.61	31.90	2.297	8.071	1.713	1.414	1.547	1.347				
	120.8	41.0	15.53	33.90	1.909	4.489	1.638	1.493	1.514	1.372				
	200.9	42.1	13.40	95.11	2.154	11.338	1.697	1.423	1.612	1.489				
111700AN361	121.1	52.5	20.44	23.97	1.512	0.990	1.420	1.389	1.363	1.317				
	161.1	49.6	16.47	60.43	2.155	2.497	1.786	1.492	1.481	1.412				
	161.4	48.9	15.53	69.57	1.731	1.548	1.542	1.524	1.479	1.397				
111700AN791	121.1	52.6	20.50	23.97	1.556	1.653	1.528	1.354	1.333	1.289				
	161.1	48.6	16.53	60.43	1.746	4.457	1.621	1.353	1.386	1.341				
	161.4	48.6	15.51	69.57	1.681	5.110	1.550	1.349	1.366	1.310				
111700AN05	121.0	52.7	20.53	23.97	1.450	0.027	1.450	1.408	1.341	1.312				
	161.0	49.0	16.53	60.43	1.496	1.982	1.478	1.375	1.331	1.346				
	161.3	49.0	15.50	69.54	1.561	2.430	1.495	1.422	1.361	1.348				
112000AN671	161.5	42.2	20.40	33.43	2.043	6.315	1.674	1.489	1.525	1.415				
	121.4	48.1	25.53	69.00	1.957	3.894	1.575	1.521	1.511	1.449				
	121.4	50.0	16.44	60.11	2.117	8.188	1.591	1.498	1.531	1.451				
112000AN771	161.5	42.4	20.43	33.43	2.080	7.537	1.572	1.385	1.443	1.353				
	121.4	48.5	25.46	69.00	1.806	2.871	1.594	1.373	1.375	1.312				
	121.4	48.8	16.37	60.11	1.793	1.894	1.525	1.334	1.334	1.280				
112000AN742	161.5	42.4	20.40	33.44	1.866	4.592	1.559	1.436	1.431	1.328				
	121.4	48.1	25.43	69.00	1.834	1.482	1.631	1.443	1.421	1.368				
	121.5	49.4	16.37	60.11	1.808	4.188	1.550	1.475	1.451	1.378				
112000AN292	161.6	42.2	20.43	33.44	2.121	4.990	1.708	1.364	1.411	1.324				
	121.4	48.1	25.43	69.00	1.966	2.916	1.473	1.374	1.378	1.308				
	121.5	49.3	16.37	60.11	2.303	2.093	1.611	1.382	1.399	1.301				
112000BN591	201.8	52.0	20.27	54.30	2.279	8.125	1.759	1.479	1.564	1.484				
	161.4	51.0	17.66	91.10	3.017	9.156	1.681	1.525	1.594	1.485				
	201.8	52.2	20.30	54.30	1.973	5.069	1.591	1.360	1.387	1.297				
112000BN581	161.3	51.4	17.67	91.10	1.956	3.145	1.638	1.347	1.377	1.294				
	201.8	52.5	20.33	54.30	2.331	8.343	1.709	1.441	1.537	1.405				
	161.3	51.4	17.67	91.10	2.111	6.724	1.652	1.393	1.476	1.341				
112000BN411	201.8	52.5	20.33	54.30	2.331	8.343	1.709	1.441	1.537	1.405				
	161.3	51.4	17.67	91.10	2.111	6.724	1.652	1.393	1.476	1.341				
	121.0	45.7	20.49	24.06	1.482	0.152	1.468	1.397	1.344	1.317				
112100AN122	121.0	45.7	20.49	24.06	1.482	0.152	1.468	1.397	1.344	1.317				
	121.0	45.6	20.37	24.03	2.548	1.154	1.500	1.391	1.365	1.315				
	120.9	49.1	20.47	44.03	1.643	4.178	1.469	1.435	1.424	1.368				
112100AN552	160.8	46.9	15.33	70.47	1.714	5.834	1.608	1.470	1.494	1.399				
	121.0	47.6	20.43	24.03	1.920	3.830	1.601	1.398	1.400	1.343				
	121.0	49.6	20.43	44.03	1.772	1.887	1.604	1.497	1.478	1.405				
112100AN352	160.8	46.0	15.50	70.50	1.798	5.383	1.631	1.530	1.515	1.420				
	121.0	46.4	20.50	24.07	1.709	2.672	1.377	1.346	1.336	1.279				
	120.8	32.8	20.30	44.00	1.748	4.572	1.474	1.324	1.347	1.275				
112100BN521	160.9	45.8	15.47	70.47	1.964	5.281	1.563	1.348	1.403	1.292				
	201.8	49.6	15.37	23.53	1.507	0.336	1.486	1.411	1.342	1.273				
	160.8	49.1	15.47	23.57	1.730	1.490	1.600	1.391	1.369	1.272				
112100BN341	201.2	54.7	11.47	66.73	1.644	4.752	1.527	1.599	1.450	1.432				
	120.8	43.4	15.33	47.07	1.512	0.101	1.485	1.489	1.424	1.371				
	201.2	55.6	11.50	66.73	1.918	8.435	1.626	1.424	1.390	1.295				
112100BN801	160.8	50.1	15.50	23.57	1.586	0.735	1.634	1.420	1.513	1.424				
	201.2	48.7	15.80	95.94	2.379	3.699	1.386	1.411	1.381	1.470				
	120.8	43.8	15.33	47.07	1.687	1.878	1.556	1.485	1.417	1.358				
112200AN321	201.6	48.0	17.30	52.30	2.196	4.251	1.441	1.407	1.399	1.301				
	201.3	48.7	15.80	95.94	2.379	3.699	1.386	1.411	1.381	1.470				
	201.6	49.0	17.33	52.29	1.862	5.268	1.651	1.392	1.430	1.393				
112200AN071	201.6	49.0	15.80	95.94	1.958	4.627	1.718	1.466	1.488	1.421				
	201.2	48.7	15.80	95.94	1.958	4.627	1.718	1.466	1.488	1.421				
	201.5	48.5	17.60	52.27	2.362	9.928	1.781	1.486	1.636	1.563				
112200AN361	201.2	49.0	15.73	95.94	5.841	6.800	2.238	1.456	1.774	1.455				
	201.6	48.6	17.60	52.30	2.181	10.155	1.802	1.620	1.700	1.577				
	201.2	49.1	15.77	95.94	7.063	6.490	2.089	1.351	1.627	1.330				
112200AN051	201.6	48.6	17.60	52.30	2.181	10.155	1.802	1.620	1.700	1.577				
	201.2	49.1	15.77	95.94	7.063	6.490	2.089	1.351	1.627	1.330				
	121.0	47.7	25.37	30.94	1.570	1.078	1.516	1.404	1.384	1.316				
112200BN37	121.0	46.6	20.33	40.87	1.719	4.290	1.579	1.381	1.386	1.302				
	121.0	46.6	13.63	93.57	1.844	8.159	1.649	1.374	1.495	1.327				
	200.9	46.5	13.63	93.57	1.844	8.159	1.649	1.374	1.495	1.327				

Profile	Dive		DSCNT	BOTTOM	Total	---PO2 Overshoot Data---			Pst OS	BT	Dive	
	Depth	Rate				(fsw)	(fsw/min)	Time	Dive Time	PO2 MAX	Time PO2>1.45 (min)	TWA PO2 (atm)
112200BN531	121.1	47.8	25.44		30.93		2.323	2.643	2.050	1.320	1.382	1.295
	121.0	46.4	20.43		40.90		1.955	2.951	1.585	1.334	1.358	1.265
	200.9	46.7	13.37		93.57		1.768	8.241	1.565	1.360	1.472	1.310
112200BN481	121.1	48.1	25.37		30.94		1.965	3.536	1.526	1.416	1.419	1.331
	121.0	46.9	20.30		40.86		1.943	4.089	1.558	1.539	1.530	1.411
	200.9	46.5	13.43		93.60		2.282	12.201	1.651	1.369	1.611	1.458
112200BN311	121.1	48.3	25.47		30.93		2.421	2.336	2.059	1.368	1.415	1.337
	120.9	46.5	20.40		40.90		1.891	2.773	1.541	1.440	1.435	1.348
	200.9	47.1	13.38		93.57		2.508	6.736	1.674	1.484	1.556	1.431
112700AN771	120.6	46.5	25.56		31.12		1.830	0.586	1.679	1.341	1.322	1.254
	200.6	49.3	18.73		108.97		1.897	7.961	1.595	1.431	1.491	1.415
112700AN341	120.6	47.2	25.50		31.14		1.638	0.967	1.511	1.351	1.320	1.243
	200.6	49.6	18.76		108.97		2.124	7.951	1.556	1.396	1.447	1.352
112700AN741	120.6	47.3	25.50		31.13		1.592	0.577	1.542	1.400	1.376	1.311
	200.8	49.2	18.70		108.97		1.970	8.374	1.672	1.400	1.486	1.358
112700AN291	120.6	47.2	25.50		31.14		1.733	0.700	1.623	1.400	1.380	1.308
	200.8	50.0	18.73		108.97		1.873	8.052	1.612	1.395	1.461	1.346
112700BN20	200.8	48.7	17.63		52.17		1.657	5.533	1.554	1.361	1.372	1.315
	200.6	54.0	15.36		95.70		1.692	1.530	1.552	1.434	1.391	1.293
112700BN45	200.8	48.9	17.47		52.17		1.658	4.833	1.584	1.483	1.421	1.434
	200.5	55.2	15.27		95.69		1.659	6.726	1.542	1.500	1.426	1.411
112700BN30	200.8	48.0	17.63		52.17		1.795	7.268	1.626	1.370	1.442	1.378
	200.6	54.3	15.27		95.70		1.847	5.826	1.634	1.373	1.433	1.341
112700BN02	200.8	49.8	17.63		52.17		2.514	9.192	1.717	1.497	1.587	1.431
	200.6	54.0	15.30		95.70		2.095	9.169	1.714	1.459	1.586	1.366
112800AN091	160.8	50.1	25.30		43.47		1.583	1.375	1.419	1.347	1.302	1.280
	160.7	52.0	22.53		115.37		1.896	1.452	1.640	1.340	1.328	1.342
112800AN181	160.7	50.9	25.41		43.50		1.587	0.961	1.498	1.374	1.353	1.310
	160.7	51.3	22.27		115.34		1.781	1.943	1.561	1.398	1.384	1.316
112800AN791	160.8	50.3	25.47		43.47		2.174	5.530	1.670	1.344	1.353	1.310
	160.7	51.3	22.50		115.34		1.922	5.990	1.591	1.364	1.413	1.495
112800AN551	160.7	49.7	25.42		43.49		1.876	5.778	1.620	1.391	1.418	1.362
	160.7	51.2	22.33		115.34		1.785	4.854	1.594	1.379	1.405	1.335
112800BN381	121.1	51.8	25.37		31.00		1.632	0.599	1.585	1.382	1.363	1.301
	201.1	46.6	18.40		108.67		1.650	2.842	1.503	1.368	1.358	1.351
112800BN581	121.1	51.2	25.44		31.00		1.756	0.914	1.643	1.466	1.443	1.371
	201.1	46.7	18.50		108.70		1.876	7.536	1.590	1.415	1.470	1.362
112800BN211	121.1	51.8	25.44		31.00		1.827	5.140	1.557	1.350	1.378	1.298
	201.1	47.4	18.46		108.67		2.092	8.916	1.670	1.392	1.493	1.359
112900BN221	162.1	50.8	20.44		33.47		1.955	4.544	1.556	1.302	1.348	1.269
	200.8	51.4	18.37		116.84		1.760	4.252	1.592	1.285	1.336	1.299
112900BN331	162.1	49.5	20.44		33.47		1.923	3.065	1.660	1.337	1.352	1.298
112900BN361	162.1	50.2	20.43		33.47		1.828	5.344	1.643	1.427	1.448	1.321
	200.8	52.0	18.60		116.84		2.250	5.804	1.805	1.419	1.514	1.550
112900BN051	162.1	50.3	20.43		33.47		1.772	4.423	1.666	1.480	1.477	1.387
	200.8	52.5	18.60		116.83		1.909	7.357	1.647	1.553	1.544	1.452
113000AN491	201.2	52.8	22.64		89.37		1.963	5.817	1.681	1.371	1.430	1.344
	121.2	46.9	20.47		64.04		1.862	1.904	1.498	1.333	1.333	1.272
113000AN671	201.2	52.5	22.64		89.37		2.035	6.543	1.729	1.418	1.474	1.351
	121.2	48.5	20.50		64.04		2.357	2.410	1.598	1.345	1.364	1.285
113000AN341	201.3	52.2	22.57		89.34		2.061	9.562	1.691	1.487	1.558	1.442
	121.1	45.4	20.47		64.04		2.508	6.136	1.682	1.542	1.572	1.437
113000AN741	201.3	52.9	22.70		89.34		1.970	7.367	1.670	1.401	1.451	1.349
	121.1	49.1	20.43		64.04		1.928	5.957	1.602	1.420	1.454	1.347
113000BN621	160.9	53.7	25.37		43.50		2.342	4.741	1.630	1.373	1.411	1.343
	161.0	48.3	22.44		115.57		2.214	5.412	1.497	1.361	1.385	1.337
113000BN801	160.9	52.6	25.37		43.50		1.881	3.670	1.631	1.383	1.379	1.378
	161.0	49.3	22.40		115.57		1.645	3.226	1.555	1.367	1.348	1.340
113000BN201	161.0	53.8	25.40		43.54		1.879	4.763	1.618	1.413	1.420	1.371
	160.9	49.1	22.41		115.57		1.849	5.560	1.629	1.482	1.465	1.412
113000BN351	160.9	53.0	25.37		43.54		1.558	1.602	1.497	1.385	1.364	1.356
	160.9	48.2	22.40		115.57		1.638	1.656	1.541	1.411	1.389	1.379
120400AN791	160.9	41.9	15.33		23.74		1.904	7.069	1.647	1.443	1.460	1.317
	201.6	49.2	23.30		140.14		2.139	8.532	1.713	1.452	1.529	1.354
120400AN781	161.1	41.4	15.33		23.70		1.844	8.366	1.668	1.434	1.514	1.382
	201.7	48.5	23.36		140.13		1.928	7.796	1.723	1.488	1.535	1.444

Profile	Dive	---PO2 Overshoot Data---										BT TWA PO2 (atm)	Dive TWA PO2 (atm)
		Depth (fsw)	DSCNT RATE (fsw/min)	BOTTOM Time (min)	Total Dive Time (min)	PO2 MAX (atm)	Time PO2>1.45 (min)	TWA PO2 (atm)	Pst OS TWA PO2 (atm)				
120400AN751	161.0	40.4	15.30	23.70	1.808	6.932	1.639	1.432	1.486	1.361			
	201.7	49.4	23.47	140.14	1.881	6.646	1.693	1.491	1.522	1.428			
120400AN211	160.9	41.9	15.34	23.70	2.133	9.678	1.706	1.454	1.573	1.384			
	201.6	49.0	23.30	140.14	1.982	10.175	1.661	1.483	1.552	1.381			
120400BN551	201.2	52.3	15.30	31.87	1.779	6.257	1.616	1.425	1.457	1.381			
	121.0	50.4	20.30	51.90	1.662	2.430	1.554	1.481	1.453	1.377			
	120.9	55.8	16.64	61.11	1.633	1.407	1.488	1.483	1.451	1.383			
120400BN451	201.1	41.5	15.20	31.87	1.948	7.243	1.677	1.436	1.508	1.341			
	121.0	50.8	20.45	51.90	1.812	2.187	1.480	1.398	1.395	1.297			
	120.9	53.7	16.57	61.11	2.139	1.829	1.545	1.385	1.385	1.284			
120400BN801	201.1	53.0	15.30	31.87	2.516	8.565	1.678	1.472	1.562	1.379			
	120.9	51.0	20.43	51.90	2.185	3.667	1.563	1.437	1.439	1.320			
	120.9	55.6	16.53	61.07	1.941	4.272	1.646	1.403	1.429	1.301			
120400BN721	201.1	52.7	15.40	31.87	2.148	7.948	1.600	1.408	1.480	1.387			
	121.0	52.1	20.33	51.90	1.644	0.965	1.395	1.483	1.447	1.365			
	120.9	56.5	16.60	61.11	1.793	2.314	1.639	1.471	1.446	1.363			
120500AN691	121.1	53.3	25.47	30.87	1.534	2.153	1.488	1.372	1.351	1.292			
	121.5	52.9	15.53	20.93	1.615	3.778	1.558	1.391	1.403	1.296			
	201.2	52.0	13.43	94.71	1.875	8.692	1.657	1.329	1.513	1.334			
120500AN361	121.1	53.9	25.50	30.90	1.875	3.444	1.656	1.369	1.391	1.314			
	121.8	52.6	15.40	20.93	2.196	1.833	1.602	1.424	1.428	1.309			
	201.2	52.9	13.43	94.74	2.056	4.300	1.709	1.448	1.454	1.419			
120500AN481	121.1	53.4	25.50	30.90	1.685	3.179	1.575	1.395	1.385	1.313			
	121.6	52.5	15.43	20.93	1.898	4.321	1.650	1.423	1.441	1.308			
	201.2	51.9	13.47	94.74	2.048	7.279	1.644	1.448	1.531	1.396			
120500AN051	121.1	53.2	25.50	30.87	1.545	0.062	1.927	1.390	1.362	1.298			
	121.6	52.0	15.53	20.93	1.550	0.903	1.518	1.386	1.343	1.252			
	201.2	52.1	13.43	94.70	1.749	5.835	1.610	1.354	1.422	1.323			
120500BN501	160.9	46.2	15.63	23.67	1.633	1.326	1.577	1.399	1.320	1.259			
120500BN071	160.9	45.4	15.60	23.67	2.101	2.345	1.829	1.365	1.387	1.263			
	200.9	51.6	23.63	139.97	2.047	6.180	1.739	1.435	1.495	1.421			
120500BN381	160.9	44.4	15.57	23.63	1.729	5.422	1.563	1.371	1.388	1.254			
	201.0	51.5	23.33	139.97	2.048	7.013	1.706	1.394	1.459	1.369			
120500BN021	160.9	44.7	15.57	23.64	1.599	0.301	1.545	1.355	1.266	1.201			
	201.0	51.3	23.36	139.97	1.818	7.809	1.656	1.350	1.434	1.339			
120600AN671	121.2	56.3	20.60	24.07	1.552	1.243	1.519	1.416	1.387	1.350			
120600AN621	121.2	55.6	20.73	24.10	1.542	1.181	1.490	1.331	1.313	1.266			
	201.3	54.3	23.67	134.97	1.765	4.970	1.633	1.352	1.392	1.317			
120600AN741	121.2	56.1	20.73	24.10	1.700	4.179	1.565	1.434	1.422	1.358			
	201.3	53.3	23.37	134.97	1.872	7.833	1.642	1.501	1.521	1.438			
120600AN301	121.2	55.2	20.64	24.07	1.660	1.702	1.185	1.371	1.345	1.292			
	201.3	54.0	23.60	135.00	2.214	7.716	1.687	1.446	1.518	1.433			
120600BN391	121.3	56.5	20.50	24.10	1.626	0.500	1.594	1.452	1.414	1.361			
	121.1	54.8	20.53	30.03	1.841	4.137	1.544	1.461	1.449	1.344			
	32.8	19.4	3.27	3.70	1.092	0.000	0.000	0.000	0.928	0.903			
120600BN641	121.2	56.6	20.53	24.10	1.514	0.135	1.482	1.304	1.268	1.223			
	121.1	56.2	20.56	30.06	1.448	0.000	0.000	0.000	0.759	0.737			
	32.6	19.5	3.30	3.70	1.195	0.000	0.000	0.000	0.759	0.737			
120600BN341	121.1	56.5	20.60	24.14	1.504	0.107	1.477	1.370	1.339	1.284			
	121.0	56.0	20.63	30.03	1.910	2.753	1.492	1.471	1.460	1.335			
	61.8	1512.2	0.00	0.00	1.144	0.000	0.000	0.000	0.000	0.000			
120700AN791	201.3	46.8	17.67	52.10	2.006	8.428	1.740	1.376	1.519	1.426			
	201.1	51.8	15.60	95.84	2.193	8.529	1.815	1.445	1.631	1.443			
120700AN451	201.3	46.7	17.40	52.10	1.841	6.124	1.598	1.372	1.411	1.354			
	201.1	49.1	15.30	95.87	1.711	7.272	1.505	1.462	1.434	1.359			
120700AN811	201.2	46.7	17.43	52.10	2.043	6.381	1.571	1.347	1.411	1.320			
	201.2	51.4	15.30	95.87	2.049	7.208	1.697	1.336	1.493	1.305			
120700AN721	201.3	46.9	17.63	52.10	1.956	6.044	1.689	1.387	1.461	1.358			
	201.0	51.0	15.60	95.84	1.912	5.129	1.681	1.365	1.421	1.334			
120700BN521	121.0	53.0	15.47	19.07	1.541	0.974	1.458	1.359	1.330	1.273			
	120.8	56.2	15.61	19.10	1.623	3.525	1.513	1.425	1.413	1.343			
	160.9	51.7	22.53	102.67	1.888	6.134	1.680	1.434	1.481	1.409			
120700BN781	120.9	52.4	15.50	19.10	1.907	3.499	1.552	1.345	1.375	1.299			
	121.0	57.9	15.47	19.07	2.273	3.066	1.683	1.415	1.452	1.373			
	160.8	51.7	22.47	102.67	2.429	5.995	1.740	1.438	1.510	1.437			

Profile	Dive		Depth (fsw)	DSCNT RATE (fsw/min)	BOTTOM Time (min)	Total Dive Time (min)	---PO2 Overshoot Data---			Pst OS	BT	Dive TWA PO2 (atm)
	PO2 MAX	Time PO2>1.45 (min)					TWA PO2 (atm)	TWA PO2 (atm)				
120700BN751	121.0	53.1	15.43	19.07	1.434	0.000	0.000	0.000	1.269	1.226		
	120.8	56.2	15.57	19.10	1.505	0.402	1.472	1.339	1.319	1.264		
	160.9	51.7	22.53	102.67	2.205	5.234	1.718	1.335	1.405	1.329		
120700BN211	120.9	53.2	15.50	19.10	1.807	3.792	1.554	1.305	1.340	1.266		
	121.0	56.9	15.50	19.07	1.860	3.205	1.620	1.382	1.405	1.323		
	160.9	52.7	22.50	102.67	2.229	5.930	1.644	1.374	1.430	1.352		
121100AN372	200.8	43.7	22.47	89.07	1.863	6.529	1.609	1.398	1.409	1.386		
	120.3	45.6	20.50	64.27	2.530	2.436	1.653	1.407	1.418	1.361		
121100AN851	200.8	44.6	22.73	89.07	1.831	8.143	1.604	1.440	1.468	1.414		
	120.3	45.5	20.40	64.27	1.637	1.501	1.485	1.449	1.430	1.381		
121100AN692	200.8	44.7	22.50	89.07	1.743	5.527	1.600	1.470	1.431	1.491		
	120.3	44.7	20.40	64.27	1.694	2.374	1.533	1.392	1.373	1.358		
121100AN051	200.8	44.3	22.73	89.07	1.885	7.957	1.682	1.408	1.480	1.400		
	120.3	45.6	20.38	64.27	1.625	3.159	1.496	1.388	1.375	1.320		
121200AN491	120.9	45.9	15.47	19.03	1.604	3.266	1.522	1.413	1.396	1.335		
	161.1	57.7	21.67	61.37	1.651	3.439	1.538	1.431	1.425	1.360		
121200AN091	120.8	45.6	15.50	19.07	1.518	0.638	1.486	1.190	1.166	1.111		
	161.1	57.1	21.67	61.37	1.882	3.181	1.541	1.438	1.432	1.377		
	121.0	53.4	20.60	67.00	2.266	1.945	1.576	1.408	1.414	1.370		
121200AN331	120.8	45.7	15.53	19.07	1.927	2.881	1.575	1.231	1.275	1.199		
	161.1	57.4	21.67	61.37	2.180	3.599	1.745	1.445	1.484	1.417		
	121.0	53.1	20.57	67.01	1.613	1.535	1.574	1.446	1.420	1.384		
121200AN861	120.9	45.8	15.46	19.04	1.900	5.065	1.574	1.426	1.437	1.349		
	161.1	57.9	21.57	61.37	2.164	8.210	1.702	1.476	1.551	1.428		
	121.0	53.7	20.54	66.97	1.970	4.924	1.641	1.479	1.487	1.403		
121300AN791	201.0	50.2	20.40	55.07	2.089	8.486	1.771	1.411	1.535	1.434		
121300AN751	201.0	50.7	20.43	55.07	1.824	7.348	1.661	1.431	1.492	1.427		
121300AN411	201.1	51.1	20.63	55.03	1.930	6.965	1.666	1.418	1.483	1.389		
121300BN922	120.9	53.8	20.47	23.87	1.953	2.789	1.665	1.397	1.407	1.341		
	160.8	54.8	15.43	36.30	2.213	6.702	1.686	1.428	1.524	1.349		
	120.7	53.8	21.43	77.91	1.947	1.255	1.582	1.471	1.448	1.368		
121300BN872	120.8	54.3	20.57	23.87	1.715	1.578	1.619	1.370	1.364	1.307		
	160.9	54.7	15.30	36.30	1.857	5.583	1.569	1.364	1.425	1.287		
	120.9	55.2	21.50	77.94	2.114	4.781	1.640	1.362	1.416	1.322		
121300BN57	120.9	54.5	20.47	23.87	2.159	4.898	1.624	1.358	1.410	1.347		
	160.8	55.0	15.37	36.30	2.129	6.959	1.679	1.397	1.514	1.339		
	120.7	54.4	21.27	77.91	2.240	4.851	1.644	1.385	1.435	1.335		
121400AN531-2	120.9	53.4	20.50	24.14	1.945	1.207	1.674	1.393	1.365	1.306		
	120.9	53.7	25.40	49.06	1.831	1.230	1.473	1.387	1.373	1.314		
	201.1	51.6	13.50	93.78	2.132	3.571	1.481	1.295	1.333	1.311		
121400AN321-2	120.7	53.0	20.47	24.14	1.531	0.466	1.499	1.410	1.383	1.324		
	120.9	53.2	25.50	49.10	1.501	0.485	1.483	1.444	1.418	1.343		
	201.1	52.7	13.50	93.78	1.866	8.626	1.648	1.583	1.579	1.406		
121400AN141-2	120.7	52.7	20.53	24.13	1.583	1.054	1.508	1.408	1.391	1.343		
	120.9	54.2	25.43	49.10	1.569	2.852	1.501	1.401	1.391	1.353		
	201.1	52.5	13.52	93.77	1.757	5.417	1.629	1.452	1.474	1.403		
121400BN881	162.4	53.5	20.43	33.47	2.498	8.027	1.674	1.433	1.511	1.374		
	200.8	52.9	18.40	117.00	2.198	8.309	1.679	1.414	1.525	1.395		
121400BN481	162.4	32.2	20.24	33.50	1.750	5.823	1.594	1.414	1.420	1.337		
	200.8	52.0	18.26	117.03	1.948	6.505	1.631	1.419	1.471	1.427		
121400BN311	162.4	53.2	20.44	33.47	1.757	3.925	1.573	1.462	1.422	1.376		
	200.8	52.7	18.20	117.00	1.819	4.763	1.655	1.435	1.426	1.359		
020501AN491	97.9	35.5	4.93	7.90	1.553	0.231	1.504	1.513	1.198	1.179		
020501AN291	98.0	34.4	4.90	7.93	1.631	2.755	1.541	1.412	1.372	1.249		
020501AN551	98.0	33.6	4.93	7.90	1.620	1.175	1.451	1.409	1.240	1.173		
020501BN671	121.0	45.4	25.44	31.37	1.617	2.933	1.547	1.731	1.662	1.564		
	121.2	31.2	25.36	59.26	1.633	3.229	1.535	1.438	1.422	1.343		
	121.1	45.8	25.54	82.17	1.617	3.015	1.533	1.431	1.424	1.334		
020501BN772	121.0	45.7	25.43	31.40	1.797	4.900	1.617	1.393	1.425	1.333		
	121.1	41.2	25.40	59.30	1.693	3.432	1.570	1.386	1.393	1.439		
	121.2	46.7	25.50	82.17	1.756	4.377	1.589	1.400	1.413	1.475		
020501BN342	120.9	45.2	25.53	31.40	1.487	0.208	1.477	1.435	1.383	1.337		
	121.2	42.2	25.47	59.30	1.472	0.078	1.464	1.413	1.362	1.355		
	121.1	44.6	25.50	82.17	1.562	0.438	1.515	1.422	1.380	1.362		

Profile	Dive	---PO2 Overshoot Data---										Pst OS	BT	Dive
		DSCNT	BOTTOM	Total	PO2	Time	TWA	TWA	PO2	PO2	TWA			
Depth (fsw)	RATE (fsw/min)	Time (min)	Dive Time (min)	MAX (atm)	PO2>1.45 (min)	PO2 (atm)	PO2 (atm)	PO2 (atm)	PO2 (atm)	PO2 (atm)	PO2 (atm)	Pst OS	BT	Dive
020501BN831	120.9	44.9	25.40	31.40	1.603	1.548	1.524	1.477	1.450	1.404				
	121.2	28.8	25.33	59.26	1.672	3.484	1.466	1.471	1.445	1.382				
	121.1	46.0	25.53	82.17	1.719	3.101	1.545	1.473	1.451	1.372				
020501AN581	98.0	35.0	4.90	7.93	2.014	0.047	1.922	0.000	1.028	1.076				
020601AN501	29.0	45.3	2.57	3.47	0.930	0.000	0.000	0.000	0.745	0.714				
020601AN391	28.9	44.9	2.70	3.50	0.961	0.000	0.000	0.000	0.821	0.780				
020601AN121	28.9	45.3	2.73	3.47	0.893	0.000	0.000	0.000	0.749	0.728				
020601AN421	29.0	45.2	2.60	3.47	1.003	0.000	0.000	0.000	0.808	0.771				
020601BN521	120.7	44.6	25.47	31.03	1.944	2.322	1.589	1.424	1.425	1.340				
	120.5	44.4	25.33	59.00	1.785	0.795	1.604	1.434	1.410	1.353				
	120.5	42.9	25.37	81.97	1.550	1.288	1.461	1.433	1.405	1.356				
020601BN351	120.7	45.9	25.40	31.00	1.682	0.906	1.593	1.547	1.512	1.438				
	120.5	45.5	25.40	59.00	1.587	1.433	1.494	1.559	1.534	1.417				
	120.5	44.2	25.34	82.01	1.534	0.932	1.476	1.547	1.517	1.408				
020601BN211	120.7	45.1	25.50	31.03	1.980	3.901	1.676	1.462	1.472	1.382				
	120.5	44.7	25.36	59.00	1.910	5.355	1.543	1.463	1.467	1.379				
	120.5	42.9	25.37	81.97	2.269	2.426	1.607	1.459	1.461	1.381				
020701N531	160.8	45.2	25.47	43.74	1.921	5.366	1.551	1.399	1.417	1.361				
	160.6	47.5	25.37	118.64	2.129	5.454	1.636	1.405	1.446	1.369				
020701N172	40.8	12.8	7.03	7.90	1.555	0.520	1.503	1.220	1.063	1.051				
020701N662	40.9	33.4	7.07	7.93	2.017	0.381	1.858	0.000	0.640	0.725				
020701N362	40.9	14.3	6.97	7.93	1.662	1.115	1.578	0.457	0.996	0.942				
020701N312	40.8	14.2	7.00	7.90	1.424	0.000	0.000	0.000	1.021	1.012				
020701N931	160.8	44.8	25.47	43.73	1.953	5.568	1.619	1.397	1.412	1.368				
	160.5	48.0	25.40	118.63	2.439	5.562	1.682	1.447	1.488	1.420				
020701N081	160.8	45.1	25.47	43.74	1.758	2.861	1.578	1.462	1.441	1.403				
	160.6	47.9	25.47	118.64	1.664	3.799	1.518	1.454	1.436	1.379				
020801AN671	120.8	45.9	25.43	30.97	1.565	2.393	1.505	1.537	1.491	1.441				
	121.0	44.2	25.47	58.96	1.454	0.016	1.452	1.517	1.474	1.447				
	120.8	48.3	25.43	81.90	2.575	8.408	1.908	1.298	1.483	1.548				
020801AN771	120.9	45.4	25.53	30.97	1.640	0.807	1.562	1.425	1.396	1.338				
	121.1	43.7	25.40	58.96	1.775	2.625	1.646	1.443	1.435	1.347				
	120.8	47.1	25.50	81.91	1.696	2.632	1.550	1.443	1.420	1.344				
020801AN581	120.8	45.8	25.53	30.97	2.133	2.375	1.660	1.414	1.422	1.336				
	120.9	43.4	25.46	58.96	2.110	3.029	1.700	1.431	1.451	1.349				
	120.8	46.2	25.53	81.90	2.139	3.043	1.661	1.419	1.433	1.343				
020801AN861	120.9	46.5	25.53	30.97	1.755	3.420	1.601	1.412	1.400	1.322				
	121.1	43.3	25.47	58.96	1.786	2.266	1.408	1.425	1.402	1.328				
	120.8	46.6	25.50	81.91	2.051	3.545	1.571	1.414	1.427	1.346				
020801BN651	161.2	43.1	25.47	43.47	1.866	6.232	1.668	1.405	1.450	1.422				
	161.0	45.3	25.57	118.50	1.790	3.061	1.648	1.629	1.595	1.560				
020801BN561	161.1	42.9	25.47	43.47	1.633	3.132	1.550	1.389	1.362	1.378				
	161.0	44.7	25.56	118.50	1.670	3.877	1.585	1.398	1.383	1.397				
020801BN451	161.2	43.8	25.47	43.47	1.497	0.396	1.477	1.367	1.318	1.321				
	161.0	45.4	25.60	118.50	1.550	1.096	1.493	1.382	1.345	1.337				
020801BN461	161.2	43.8	25.47	43.47	2.182	9.637	1.674	1.471	1.539	1.422				
	161.0	45.7	25.47	118.50	2.082	5.454	1.703	1.474	1.514	1.377				
021201AN521	121.2	39.7	25.40	31.02	2.010	4.452	1.525	1.435	1.438	1.354				
	121.4	46.1	25.43	59.00	1.917	5.344	1.569	1.414	1.437	1.354				
	121.4	46.1	25.47	82.07	2.053	2.457	1.650	1.405	1.415	1.346				
021201AN121	121.2	39.6	25.40	31.04	1.641	4.677	1.518	1.726	1.633	1.605				
	121.4	45.7	25.50	59.00	1.675	3.417	1.533	1.579	1.538	1.456				
	121.3	46.0	25.53	82.07	2.281	4.970	1.895	1.301	1.399	1.528				
021201AN192	121.3	39.1	25.47	31.03	1.467	0.134	1.462	1.445	1.396	1.344				
	121.5	46.9	25.47	59.00	1.556	0.928	1.479	1.435	1.399	1.374				
	121.3	46.0	25.53	82.07	1.524	1.868	1.501	1.441	1.394	1.384				
021201AN582	121.3	39.6	25.43	31.03	2.038	0.040	1.973	0.000	1.203	1.227				
	121.4	45.3	25.43	59.00	1.671	3.428	1.547	1.465	1.443	1.404				
	121.3	46.3	25.57	82.07	1.996	0.047	1.905	0.000	1.252	1.482				
021201BN701	161.3	17.2	25.37	43.40	1.938	15.172	1.575	1.436	1.285	1.274				
	161.1	38.7	25.43	118.60	1.966	5.304	1.662	1.467	1.473	1.401				
021201BN391	161.3	18.3	25.50	43.40	2.364	9.816	1.817	1.506	1.365	1.327				
	161.2	40.0	25.40	118.60	2.278	9.767	1.777	1.506	1.598	1.460				
021201BN111	161.2	18.3	25.60	43.42	2.011	0.047	1.919	0.000	1.054	1.180				

Profile	Dive	---PO2 Overshoot Data---						Pst OS	BT	Dive
		DSCNT	BOTTOM	Total	PO2	Time	TWA			
	Depth (fsw)	RATE (fsw/min)	Time (min)	Dive Time (min)	MAX (atm)	PO2>1.45 (min)	PO2 (atm)	PO2 (atm)	PO2 (atm)	TWA (atm)
022701BN3912	80.4	39.1	25.60	27.57	2.017	0.048	1.930	0.000	1.054	1.064
	80.3	49.6	25.53	27.63	2.023	0.047	1.934	0.000	1.069	1.079
	80.3	49.0	25.30	27.57	2.023	0.047	1.928	0.000	1.068	1.075
	80.2	50.8	25.67	27.67	2.008	0.048	1.917	0.000	1.069	1.080
	80.4	42.9	25.63	27.56	2.017	0.047	1.928	0.000	1.065	1.075
021301AN331	121.0	46.5	25.44	31.10	1.999	0.046	1.912	0.000	1.249	1.258
	120.9	43.1	25.57	59.10	2.010	19.752	1.660	1.290	1.567	1.565
	120.9	45.9	25.37	82.04	2.031	6.638	1.574	1.514	1.518	1.439
021301AN361	121.2	46.7	25.40	31.07	1.718	1.092	1.305	1.469	1.424	1.363
	120.8	43.5	25.57	59.07	1.667	0.313	1.594	1.452	1.404	1.375
	120.9	44.6	25.36	82.03	1.851	0.661	1.748	1.365	1.351	1.507
021301N611	121.2	45.4	25.40	31.10	2.002	0.047	1.906	0.000	1.223	1.236
	120.8	43.9	25.60	59.07	1.882	4.018	1.620	1.423	1.422	1.400
	120.9	45.5	25.37	82.04	1.514	0.370	1.487	1.448	1.408	1.423
021301AN631	121.0	46.1	25.44	31.10	2.002	0.048	1.915	0.000	1.249	1.258
	120.8	43.7	25.60	59.10	1.544	0.857	1.518	1.578	1.538	1.432
	120.9	45.5	25.40	82.04	1.935	11.732	1.648	1.613	1.596	1.450
021401AN491	121.1	43.0	25.63	31.28	1.490	0.204	1.466	1.362	1.327	1.289
021401AN531	121.0	42.0	25.63	31.30	1.740	1.764	1.618	1.416	1.390	1.302
	121.1	45.4	25.36	58.96	1.992	3.569	1.564	1.490	1.488	1.402
	120.9	45.9	25.37	81.94	2.056	2.319	1.517	1.485	1.480	1.416
021401AN34	121.1	42.2	25.37	31.30	1.715	1.684	1.509	1.495	1.464	1.387
	121.1	46.5	25.33	58.96	1.756	3.911	1.568	1.524	1.501	1.412
	120.9	46.7	25.47	81.97	1.654	2.507	1.553	1.524	1.501	1.409
021401AN83	121.1	42.8	25.40	31.30	1.605	3.827	1.515	1.422	1.409	1.349
	121.1	46.2	25.37	58.96	1.673	4.182	1.581	1.460	1.453	1.370
	120.8	46.7	25.53	81.97	1.599	2.109	1.513	1.458	1.437	1.352
021501AN041	120.9	47.3	25.40	31.20	1.842	6.085	1.599	1.553	1.531	1.452
021501AN781	120.9	46.0	25.46	31.19	1.716	5.627	1.615	1.540	1.530	1.457
021501AN551	120.9	46.1	25.40	31.17	1.451	0.019	1.451	1.469	1.431	1.374
021501AN211	120.9	47.1	25.43	31.17	1.502	0.151	1.476	1.388	1.333	1.306
021501BN521	161.1	44.9	25.50	43.57	1.546	1.664	1.500	1.408	1.372	1.395
	160.7	46.8	25.37	118.54	1.701	4.062	1.608	1.415	1.413	1.461
021501BN581	161.1	45.5	25.47	43.57	1.909	3.105	1.668	1.320	1.339	1.271
	160.7	44.2	25.56	118.56	1.956	4.401	1.618	1.292	1.330	1.297
021501BN421	161.1	44.8	25.57	43.57	2.004	1.734	1.712	1.434	1.423	1.367
	160.7	45.0	25.40	118.54	2.056	7.159	1.657	1.416	1.473	1.364
021501BN721	160.9	45.2	25.43	43.57	1.716	5.302	1.558	1.410	1.413	1.385
	160.7	45.5	25.46	118.54	1.880	6.644	1.618	1.431	1.461	1.389
022001AN481	80.6	48.3	110.33	112.73	1.738	0.883	1.312	1.420	1.417	1.406
022001AN311	80.7	48.1	110.33	112.73	1.451	-0.348	1.398	1.446	1.441	1.431
022001AN351	80.6	48.7	110.33	112.73	1.543	1.811	1.512	1.503	1.492	1.482
022001BN591	80.9	46.5	110.47	112.57	1.721	1.584	1.560	1.431	1.428	1.420
022001BN661	80.9	44.8	110.50	112.60	1.465	0.213	1.458	1.460	1.453	1.444
022001BN051	80.9	45.3	110.53	112.60	1.537	3.367	1.104	1.419	1.406	1.397
022101AN021	80.7	43.9	130.53	132.70	1.456	0.067	1.455	1.428	1.420	1.413
022101AN771	80.7	43.8	130.64	132.70	1.546	0.659	1.516	1.328	1.318	1.312
022101AN341	80.7	44.1	130.67	132.70	1.557	0.598	1.534	1.327	1.316	1.309
022101AN201	80.7	43.3	130.53	132.70	1.461	0.310	1.456	1.442	1.432	1.425
022101BN832	80.4	45.4	25.57	27.60	1.494	0.447	1.471	1.401	1.353	1.324
	80.3	44.6	25.63	27.76	1.574	0.377	1.530	1.371	1.346	1.337
	80.4	42.0	25.44	27.80	1.621	2.526	1.526	1.367	1.355	1.339
	80.7	47.1	25.57	27.63	1.574	2.820	1.494	1.364	1.355	1.339
	80.8	47.2	25.57	27.60	1.515	1.867	1.479	1.416	1.392	1.360
022101BN102	80.3	46.9	25.67	27.63	1.477	0.252	1.465	1.378	1.356	1.326
	80.3	44.4	25.56	27.76	1.527	0.150	1.492	1.425	1.401	1.367
	80.4	41.6	25.34	27.80	1.872	5.416	1.585	1.415	1.437	1.399
	80.7	48.5	25.37	27.67	1.669	2.720	1.580	1.418	1.423	1.388
	80.7	46.0	25.53	27.60	1.455	0.192	1.392	1.429	1.411	1.375
022101BN291	80.4	47.5	25.60	27.63	1.568	0.328	1.528	1.328	1.313	1.280
	80.3	45.2	25.60	27.76	1.759	0.932	1.416	1.373	1.365	1.326
	80.4	41.8	25.47	27.80	1.659	0.744	1.569	1.402	1.392	1.354
	80.5	47.9	25.57	27.67	1.780	2.167	1.508	1.396	1.395	1.363
	80.9	46.6	25.60	27.60	1.955	1.079	1.506	1.402	1.402	1.365

Profile	Dive	---PO2 Overshoot Data---										Pst OS	BT	Dive
		Depth (fsw)	DSCNT RATE (fsw/min)	BOTTOM Time (min)	Total Dive Time (min)	PO2 MAX (atm)	PO2>1.45 (min)	TWA PO2 (atm)	TWA PO2 (atm)	Pst OS	BT			
022101BN411	80.4	45.7	25.60	27.63	1.495	0.195	1.473	1.355	1.335	1.308				
	80.3	43.2	25.60	27.76	1.488	0.192	1.472	1.394	1.372	1.343				
	80.4	42.0	25.70	27.80	1.568	1.173	1.520	1.410	1.391	1.362				
	80.5	47.3	25.57	27.67	1.529	0.263	1.491	1.433	1.414	1.387				
	80.9	46.2	25.40	27.60	1.517	1.549	1.480	1.425	1.408	1.379				
022201BN371	80.8	44.4	130.69	132.65	1.469	0.620	1.466	1.210	1.229	1.229				
022201BN041	80.9	43.7	130.63	132.67	1.614	2.220	1.514	1.159	1.163	1.164				
022201BN211	80.8	43.8	130.63	132.66	1.677	0.702	1.638	1.424	1.420	1.412				
022201BN081	80.8	42.9	130.63	132.66	1.681	0.759	1.560	1.449	1.447	1.437				
022201cN5212	80.4	48.1	25.37	27.63	1.706	0.905	1.439	1.350	1.343	1.309				
	80.5	28.0	25.56	27.66	1.974	4.883	1.448	1.354	1.363	1.328				
	80.4	45.5	25.60	27.60	1.532	0.840	1.519	1.354	1.343	1.309				
	80.4	43.1	25.60	27.60	1.542	0.325	1.517	1.345	1.328	1.300				
	80.2	47.9	25.57	27.63	2.008	0.047	1.916	0.000	1.065	1.073				
022201cN3612	80.4	47.1	25.37	27.63	2.236	0.885	1.780	1.311	1.309	1.272				
	80.5	25.2	25.60	27.66	1.964	2.462	1.640	1.375	1.375	1.338				
	80.4	45.1	25.64	27.64	2.153	1.179	1.618	1.394	1.392	1.357				
	80.5	42.8	25.64	27.60	1.803	1.145	1.632	1.393	1.387	1.352				
	80.2	47.6	25.33	27.63	1.771	1.052	1.440	1.411	1.395	1.356				
022201cN46123	80.2	48.2	25.37	27.64	1.755	1.451	1.540	1.285	1.294	1.259				
	80.4	24.8	25.56	27.66	1.981	6.458	1.639	1.492	1.494	1.453				
	80.4	45.5	25.64	27.64	1.894	24.761	1.707	1.425	1.687	1.638				
	80.5	43.2	25.64	27.60	2.160	24.736	2.132	0.000	2.096	2.033				
	80.2	47.3	25.33	27.63	2.032	0.047	1.934	0.000	1.066	1.075				
022201cN42123	80.2	47.6	25.37	27.64	1.399	0.000	0.000	0.000	0.000	1.274	1.245			
	80.4	24.9	25.56	27.67	1.846	1.289	1.620	1.511	1.481	1.447				
	80.4	44.4	25.47	27.60	1.904	0.953	1.633	1.733	1.704	1.659				
	80.5	43.5	25.64	27.60	1.641	0.563	1.569	1.588	1.558	1.518				
	80.2	47.7	25.37	27.63	2.035	0.047	1.935	0.000	1.066	1.075				
022301AN591	82.0	45.1	130.53	132.57	2.002	0.047	1.910	0.000	1.093	1.093				
	82.0	32.5	130.30	132.60	1.999	0.046	1.906	0.000	1.093	1.093				
	82.0	43.8	130.33	132.60	1.467	0.191	1.461	1.373	1.368	1.362				
	82.0	44.0	130.30	132.60	1.454	0.101	1.452	1.391	1.383	1.379				
	83.1	11.9	130.47	132.77	2.139	16.006	1.274	1.088	1.111	1.112				
022601AN671	83.1	12.3	130.47	132.77	1.861	15.496	1.239	1.088	1.106	1.107				
	83.1	11.8	130.43	132.76	1.518	10.410	1.363	1.393	1.384	1.377				
	83.1	12.1	130.46	132.76	1.507	0.600	1.505	1.466	1.428	1.420				
	80.0	50.8	25.70	27.70	1.680	0.769	1.561	1.396	1.389	1.352				
	80.2	50.3	25.63	27.60	2.136	2.219	1.698	1.445	1.460	1.422				
022601BN561	81.1	49.2	25.40	27.70	2.089	1.225	1.670	1.457	1.456	1.415				
	80.3	48.1	25.64	27.60	1.850	0.694	1.593	1.466	1.452	1.414				
	80.5	45.8	25.66	27.63	1.866	1.058	1.578	1.451	1.446	1.410				
	80.0	50.4	25.67	27.70	1.499	0.608	1.494	1.338	1.324	1.292				
	80.2	48.2	25.66	27.60	1.510	0.417	1.389	1.385	1.369	1.336				
022601BN831	81.1	50.9	25.40	27.70	2.116	1.627	1.407	1.424	1.413	1.372				
	80.4	48.3	25.67	27.60	2.091	1.229	1.516	1.408	1.401	1.369				
	80.5	45.3	25.66	27.62	1.963	1.358	1.458	1.419	1.415	1.381				
	80.1	50.6	25.70	27.70	1.911	0.727	1.714	1.087	1.104	1.112				
	80.2	49.0	25.73	27.63	2.008	0.047	1.915	0.000	1.035	1.046				
022601BN741	81.1	49.9	25.67	27.70	1.728	0.764	1.645	1.090	1.106	1.111				
	80.2	47.6	25.44	27.60	1.776	1.425	1.399	1.085	1.101	1.106				
	80.4	47.1	25.40	27.64	1.513	0.403	1.497	1.092	1.097	1.103				
	80.1	51.6	25.73	27.73	2.010	0.810	1.771	1.087	1.108	1.116				
	80.2	49.0	25.63	27.63	1.756	0.836	1.668	1.088	1.106	1.111				
022701AN251	80.9	44.8	130.57	132.60	1.591	0.413	1.530	1.421	1.417	1.410				
	80.9	46.7	130.59	132.63	1.814	1.023	1.431	1.410	1.408	1.400				
	80.9	46.1	130.60	132.63	1.627	0.599	1.619	1.470	1.464	1.457				
	80.9	45.0	130.54	132.60	1.451	0.012	1.450	1.379	1.375	1.368				
	80.4	39.1	25.60	27.57	2.017	0.048	1.930	0.000	1.054	1.064				
022701BN3912	80.3	49.6	25.53	27.63	2.023	0.047	1.934	0.000	1.069	1.079				
	80.3	49.0	25.30	27.57	2.023	0.047	1.928	0.000	1.068	1.075				
	80.2	50.8	25.67	27.67	2.006	0.048	1.917	0.000	1.069	1.080				
	80.4	42.9	25.63	27.56	2.017	0.047	1.928	0.000	1.065	1.075				

Profile	Dive		DSCNT	BOTTOM	---PO2 Overshoot Data---				Pst OS	BT	Dive
	Depth (fsw)	RATE (fsw/min)			Total Time (min)	Dive Time (min)	PO2 MAX (atm)	Time PO2>1.45 (min)			
022701BN1412	80.4	39.3	25.63	27.57	1.497	0.571	1.491	1.411	1.380	1.352	
	80.4	50.5	25.36	27.66	1.500	1.774	1.477	1.475	1.440	1.409	
	80.3	49.4	25.53	27.57	1.542	1.883	1.503	1.483	1.462	1.429	
	80.3	51.4	25.64	27.67	1.507	0.120	1.479	1.486	1.462	1.429	
	80.5	43.1	25.63	27.57	1.493	1.219	1.204	1.458	1.439	1.409	
022701BN7812	80.4	37.4	25.60	27.57	2.017	0.047	1.928	0.000	1.040	1.050	
	80.4	50.3	25.67	27.67	2.026	0.018	1.847	0.000	1.067	1.079	
	80.3	48.1	25.37	27.57	2.020	0.047	1.924	0.000	1.068	1.075	
	80.2	51.3	25.67	27.67	2.008	0.047	1.916	0.000	1.069	1.080	
	80.4	42.0	25.63	27.56	2.014	0.047	1.924	0.000	1.065	1.075	
022701BN0812	80.4	37.5	25.63	27.57	2.017	0.047	1.928	0.000	1.054	1.064	
	80.4	49.9	25.33	27.66	2.023	0.047	1.930	0.000	1.069	1.078	
	80.3	48.1	25.53	27.57	2.026	0.039	1.919	0.000	1.067	1.076	
	80.3	50.9	25.63	27.65	2.005	0.046	1.912	0.000	1.069	1.079	
	80.5	43.2	25.67	27.57	2.008	0.046	1.929	0.000	1.064	1.074	
022801BN321	80.4	44.5	130.23	132.39	1.759	1.109	1.476	1.287	1.287	1.284	
022801BN812	80.4	45.1	130.27	132.40	1.636	0.497	1.533	1.377	1.373	1.366	
022801BN631	80.4	45.8	130.26	132.40	1.522	0.596	1.493	1.432	1.425	1.419	
022801BN352	80.4	45.8	130.27	132.40	1.479	0.235	1.466	1.422	1.417	1.409	

PHASE II

Profile	Dive		DSCNT (fsw/min)	BOTTOM Time (min)	Total Dive Time (min)	---PO2 Overshoot Data---				Pst OS TWA PO2 (atm)	BT TWA PO2 (atm)	Dive TWA PO2 (atm)
	Depth (fsw)	RATE (fsw/min)				PO2 MAX (atm)	Time PO2>1.45 (min)	TWA PO2 (atm)				
04102001N39	43.6	30.5	0.00	1.37	1.156	0.000	0.000	0.000	0.000	0.000	0.922	1.171
	120.5	68.2	23.50	41.20	1.831	5.483	1.593	1.434	1.470	1.470	1.171	
04102001N04	43.4	27.5	1.30	1.37	1.033	0.000	0.000	0.000	0.000	0.866	0.866	
	120.5	65.1	23.50	41.20	1.479	1.512	1.467	1.398	1.376	1.376	1.096	
04102001N14	44.7	28.0	1.43	1.50	1.031	0.000	0.000	0.000	0.000	0.800	0.798	
	120.9	25.8	23.27	41.30	1.557	7.585	1.377	1.396	1.389	1.389	1.149	
04102001N75	44.8	27.2	1.47	1.53	1.446	0.000	0.000	0.000	0.000	1.105	1.110	
	120.9	39.5	23.33	41.30	1.642	2.509	1.524	1.383	1.397	1.397	1.145	
04112001N32B	160.9	27.2	45.26	147.99	1.461	1.579	1.382	1.386	1.349	1.349	1.399	
04112001N59A	160.7	40.7	30.37	77.49	1.916	7.144	1.539	1.425	1.441	1.441	1.351	
	160.7	49.7	24.83	113.00	2.478	8.078	1.741	1.423	1.520	1.520	1.384	
04112001N19A	160.7	39.9	30.30	77.49	1.849	9.134	1.648	1.460	1.498	1.498	1.398	
	160.7	44.3	24.87	113.00	1.644	2.875	1.580	1.491	1.479	1.479	1.367	
04112001N66B	160.8	26.8	45.30	147.99	1.664	6.042	1.535	1.363	1.362	1.362	1.358	
04112001N36A	160.9	39.8	30.56	77.59	1.857	1.166	1.698	1.415	1.398	1.398	1.353	
	160.9	50.0	25.03	113.06	1.642	2.192	1.426	1.406	1.395	1.395	1.331	
04112001N47B	161.0	26.2	45.34	148.08	2.004	11.988	1.710	1.466	1.466	1.466	1.387	
04112001N05A	161.0	40.1	30.50	77.59	1.690	5.073	1.567	1.493	1.474	1.474	1.447	
	160.9	52.4	24.97	113.07	1.730	20.845	1.604	1.519	1.566	1.566	1.414	
04122001N56A	160.4	41.4	30.47	78.00	2.111	2.955	1.689	1.402	1.402	1.402	1.361	
	160.3	45.6	25.40	113.90	1.688	4.405	1.528	1.392	1.395	1.395	1.333	
04122001N34A	160.4	41.3	30.40	78.00	1.842	7.292	1.558	1.448	1.462	1.462	1.396	
	160.3	44.1	25.50	113.90	3.430	6.852	1.886	1.498	1.592	1.592	1.452	
04122001N30A	160.4	40.4	30.40	78.00	2.172	6.583	1.601	1.382	1.417	1.417	1.368	
	160.3	45.3	25.40	113.90	1.942	3.363	1.627	1.401	1.415	1.415	1.363	
04122001N24A	160.4	41.5	30.40	78.00	1.755	6.301	1.553	1.438	1.454	1.454	1.402	
	160.3	45.9	25.50	113.90	2.451	6.991	1.706	1.463	1.521	1.521	1.419	
04162001N522	164.4	44.7	45.33	147.79	1.714	4.176	1.558	1.437	1.436	1.436	1.413	
04162001N782	164.4	45.2	45.33	147.79	1.731	4.866	1.601	1.392	1.400	1.400	1.369	
04162001N751	120.5	29.9	35.44	50.84	1.489	0.612	1.457	1.402	1.342	1.342	1.306	
	100.6	40.1	35.26	90.40	1.598	2.960	1.521	1.427	1.417	1.417	1.367	
04162001N551	120.5	30.9	35.40	50.86	1.887	3.068	1.625	1.421	1.379	1.379	1.320	
	100.6	38.8	35.26	90.36	1.714	0.720	1.572	1.420	1.402	1.402	1.335	
04162001N412	164.4	45.6	45.26	147.79	2.392	6.150	1.577	1.412	1.427	1.427	1.379	
04162001N211	120.5	32.2	35.43	50.86	1.557	1.113	1.453	1.426	1.364	1.364	1.322	
	100.6	39.2	35.23	90.36	1.777	3.762	1.633	1.396	1.403	1.403	1.349	
04162001N721	120.5	30.2	35.37	50.86	2.014	1.591	1.564	1.407	1.364	1.364	1.294	
	100.6	39.5	35.30	90.40	2.267	1.872	1.623	1.435	1.437	1.437	1.366	
04162001N082	164.4	45.5	45.33	147.79	1.781	4.850	1.602	1.414	1.420	1.420	1.372	
04172001N321	120.6	45.1	35.50	51.33	1.596	2.460	1.516	1.398	1.379	1.379	1.330	
	100.5	54.7	35.43	90.26	1.556	0.945	1.503	1.365	1.357	1.357	1.325	
04172001N591	120.6	45.7	35.47	51.33	1.882	4.843	1.582	1.383	1.388	1.388	1.321	
	100.5	54.1	35.43	90.26	2.447	1.729	1.828	1.383	1.400	1.400	1.348	
04172001N22B	160.8	52.2	45.70	147.59	1.999	5.959	1.603	1.388	1.409	1.409	1.352	
04172001N60B	160.8	52.0	45.46	147.56	1.847	6.122	1.572	1.409	1.421	1.421	1.356	
04172001N071	120.5	45.9	35.50	51.33	2.135	7.305	1.627	1.440	1.469	1.469	1.386	
	100.5	54.5	35.16	90.26	2.061	4.762	1.698	1.475	1.499	1.499	1.441	
04172001N691	120.6	45.1	35.53	51.33	1.922	5.830	1.643	1.408	1.425	1.425	1.374	
	100.5	53.7	35.19	90.26	1.691	4.758	1.582	1.383	1.400	1.400	1.347	
04172001N31B	160.8	52.6	45.63	147.59	3.152	2.489	1.972	1.385	1.407	1.407	1.374	
04172001N05B	160.7	52.4	45.73	147.56	2.155	7.821	1.609	1.454	1.477	1.477	1.415	
04182001N491	181.3	47.1	40.50	155.39	1.870	6.470	1.589	1.340	1.367	1.367	1.418	
04182001N67B	201.0	51.8	20.77	64.20	1.719	6.323	1.597	1.403	1.437	1.437	1.363	
	181.2	47.5	15.36	82.10	1.783	5.527	1.614	1.422	1.455	1.455	1.343	
04182001N34B	201.0	53.0	20.53	64.20	2.010	9.111	1.684	1.424	1.522	1.522	1.404	
	181.2	47.7	15.53	82.10	2.264	4.299	1.601	1.489	1.505	1.505	1.354	
04182001N581	201.0	51.8	20.50	64.20	2.126	8.700	1.689	1.386	1.497	1.497	1.373	
	181.2	47.6	15.43	82.10	2.593	6.857	1.652	1.429	1.510	1.510	1.344	
04182001N101	181.3	47.3	40.40	155.39	1.935	9.588	1.708	1.449	1.498	1.498	1.405	
04182001N451	201.0	53.1	20.57	64.20	2.708	9.392	1.602	1.419	1.496	1.496	1.402	
	181.2	47.6	15.63	82.10	1.712	3.064	1.560	1.456	1.424	1.424	1.368	
04182001N241	181.3	47.0	40.57	155.39	1.861	6.213	1.678	1.462	1.489	1.489	1.427	
04182001N351	181.3	46.9	40.46	155.39	1.801	3.077	1.562	1.406	1.387	1.387	1.366	

Profile	Dive	---PO2 Overshoot Data---										Pst OS	BT	Dive
		Depth (fsw)	DSCNT RATE (fsw/min)	BOTTOM Time (min)	Total Dive Time (min)	PO2 MAX (atm)	Time PO2>1.45 (min)	TWA PO2 (atm)	TWA PO2 (atm)	PO2 TWA (atm)	PO2 TWA (atm)			
04192001N25A	200.7	35.3	20.53	64.16	2.053	10.828	1.642	1.423	1.505	1.364				
	181.2	52.3	15.60	81.86	1.904	2.131	1.697	1.416	1.419	1.327				
04192001N50B	181.2	18.1	40.33	155.32	1.510	6.692	1.352	1.403	1.294	1.333				
04192001N40B	181.2	17.3	40.26	155.32	1.797	11.067	1.657	1.452	1.435	1.362				
04192001N04B	181.2	18.2	40.27	155.32	1.987	12.427	1.715	1.448	1.420	1.398				
04192001N18A	200.6	34.1	20.53	64.16	1.753	8.346	1.613	1.414	1.435	1.382				
04192001N75A	200.7	34.3	20.53	64.16	1.999	10.475	1.678	1.402	1.500	1.379				
	181.2	50.8	15.56	81.83	2.135	7.814	1.659	1.415	1.527	1.365				
04192001N46B	181.2	17.1	40.23	155.32	1.635	10.127	1.483	1.478	1.379	1.371				
04192001N02A	200.6	34.1	20.57	64.16	2.050	10.325	1.777	1.383	1.529	1.486				
	181.2	50.6	15.58	81.81	2.011	0.047	1.920	0.000	1.080	1.476				
04232001N60A	140.3	60.8	30.40	53.56	2.335	4.292	1.643	1.423	1.443	1.326				
	120.2	57.6	30.56	96.90	2.913	5.531	1.803	1.397	1.461	1.355				
04232001N17B	200.9	33.0	35.57	165.86	2.092	11.203	1.725	1.418	1.489	1.326				
04232001N32B	200.9	33.9	35.57	165.86	2.148	9.566	1.580	1.339	1.396	1.336				
04232001N60A	140.3	61.3	30.40	53.56	1.821	6.059	1.615	1.489	1.496	1.384				
	120.1	55.8	30.37	96.90	1.895	3.756	1.555	1.429	1.430	1.352				
04232001N66B	200.9	33.2	35.60	165.86	2.014	5.962	1.495	1.400	1.411	1.327				
04232001N31B	200.9	32.9	35.57	165.86	2.000	10.310	1.586	1.374	1.426	1.391				
04232001N05A	140.3	61.9	30.33	53.56	1.816	5.225	1.532	1.384	1.402	1.304				
	120.2	56.4	30.48	96.90	2.460	4.903	1.701	1.362	1.409	1.317				
04242001N09A	141.1	57.1	30.57	54.03	2.761	5.625	1.650	1.431	1.460	1.327				
	120.3	62.1	30.43	97.23	3.560	1.244	2.499	1.464	1.494	1.354				
04242001N56B	200.7	44.7	35.63	166.76	1.983	9.243	1.662	1.427	1.463	1.349				
04242001N33A	141.1	56.1	30.50	54.03	2.009	4.779	1.630	1.416	1.424	1.330				
	120.4	62.7	30.59	97.23	2.845	4.890	1.706	1.385	1.425	1.344				
04242001N74B	200.7	44.9	35.82	166.76	2.229	6.071	1.678	1.426	1.451	1.423				
04242001N38B	200.7	45.3	35.83	166.76	1.717	6.260	1.523	2.303	2.151	1.567				
04242001N10A	141.1	57.6	30.53	54.03	1.978	6.005	1.604	1.412	1.449	1.351				
	120.4	62.4	30.36	97.23	3.203	5.596	1.904	1.335	1.440	1.520				
04242001N30A	141.1	57.2	30.77	54.03	2.092	5.522	1.656	1.411	1.449	1.327				
	120.3	61.8	30.50	97.23	2.963	1.880	2.114	1.585	1.609	1.396				
04252001N70I	140.6	59.4	20.36	32.11	2.057	4.232	1.562	1.393	1.413	1.280				
	160.5	45.4	30.43	125.07	1.750	5.772	1.529	1.420	1.414	1.338				
04252001N53I	140.7	59.2	20.50	32.10	2.533	2.021	1.632	1.404	1.406	1.271				
	160.6	43.7	30.50	125.07	1.851	3.520	1.578	1.456	1.443	1.392				
04252001N52I	140.6	60.2	20.37	32.10	3.600	6.097	1.811	1.431	1.509	1.340				
	160.5	47.2	30.46	125.06	1.978	7.297	1.489	1.464	1.458	1.374				
04252001N122	141.2	66.3	45.70	114.93	2.100	2.918	1.507	1.345	1.352	1.331				
04252001N04I	140.6	59.1	20.33	32.10	1.905	6.732	1.709	1.458	1.518	1.384				
	160.6	44.4	30.46	125.06	1.658	6.689	1.640	1.498	1.456	1.389				
04252001N182	141.1	64.3	45.60	114.92	2.220	1.505	1.199	1.421	1.403	1.372				
04252001N45Z	141.1	65.2	45.53	114.92	2.329	1.823	1.585	1.432	1.428	1.373				
04252001N57Z	141.2	65.9	45.63	114.92	1.844	1.816	1.586	1.356	1.356	1.337				
04262001N32A	141.8	72.9	20.13	31.53	1.545	0.790	1.511	1.352	1.346	1.259				
	161.5	51.6	30.56	124.83	1.726	4.767	1.410	1.328	1.336	1.309				
04262001N25B	141.6	56.6	45.60	114.66	2.785	2.163	1.662	1.392	1.401	1.349				
04262001N22A	141.8	71.2	20.13	31.53	1.555	4.352	1.408	1.357	1.367	1.266				
	161.5	50.5	30.53	124.83	1.633	5.635	1.530	1.401	1.404	1.340				
04262001N60B	141.6	56.0	45.40	114.66	1.811	5.044	1.588	1.489	1.496	1.419				
04262001N07A	141.8	74.3	20.03	31.50	1.804	5.745	1.503	1.414	1.439	1.344				
	161.5	51.7	30.46	124.79	2.001	7.023	1.584	1.402	1.440	1.376				
04262001N66A	141.8	54.6	20.00	31.50	1.783	4.848	1.511	1.444	1.460	1.347				
	161.5	50.8	30.43	124.79	1.648	4.594	1.525	1.461	1.456	1.389				
04262001N48B	141.6	56.2	45.57	114.66	3.225	2.393	1.568	1.427	1.429	1.367				
04262001N35B	141.6	55.6	45.36	114.66	1.490	1.708	1.337	1.474	1.428	1.354				
04302001N37A	141.2	53.6	20.53	31.83	1.632	3.538	1.548	1.443	1.426	1.333				
	141.6	47.0	30.53	102.89	1.737	4.848	1.511	1.444	1.460	1.347				
04302001N77B	120.9	51.0	60.43	131.32	1.737	2.124	1.442	1.415	1.409	1.371				
04302001N09A	141.2	53.5	20.47	31.83	1.594	2.775	1.511	1.442	1.430	1.345				
	141.5	44.5	30.50	102.89	1.695	2.486	1.569	1.407	1.402	1.362				
04302001N56A	141.2	53.6	20.50	31.83	1.609	0.364	1.535	1.382	1.359	1.270				
	141.6	45.7	30.46	102.93	1.526	3.173	1.488	1.393	1.368	1.334				
04302001N34A	141.2	54.1	20.53	31.83	1.502	0.744	1.423	1.366	1.329	1.243				
	141.5	46.3	30.46	102.93	1.623	3.556	1.505	1.409	1.398	1.376				
04302001N71B	120.9	50.5	60.40	131.32	1.510	0.311	1.483	1.381	1.361	1.315				

Profile	Dive	---PO2 Overshoot Data---										Pst OS	BT	Dive
		Depth (fsw)	DSCNT RATE (fsw/min)	BOTTOM Time (min)	Total Dive Time (min)	PO2 MAX (atm)	Time PO2>1.45 (min)	TWA PO2 (atm)	TWA PO2 (atm)	Pt OS PO2 (atm)	BT TWA PO2 (atm)			
04302001N29B	120.9	47.2	60.36	131.29	1.997	2.902	1.471	1.413	1.413	1.372				
04302001N35B	120.9	47.6	60.36	131.29	2.370	2.459	1.651	1.436	1.439	1.374				
05012001N522	120.8	63.1	50.70	175.08	1.731	4.200	1.599	1.408	1.415	1.406				
05012001N042	120.8	63.2	50.67	101.76	1.997	6.981	1.703	1.442	1.461	1.384				
05012001N741	141.3	56.5	20.60	31.66	1.919	2.241	1.485	1.433	1.428	1.304				
	141.8	39.9	30.40	102.89	2.153	5.433	1.533	1.413	1.410	1.343				
05012001N782	120.8	63.1	50.76	101.79	1.706	3.657	1.606	1.407	1.409	1.313				
05012001N581	141.4	56.9	20.67	31.67	1.647	4.188	1.539	1.458	1.447	1.297				
	141.8	32.0	30.30	102.89	2.490	5.648	1.790	1.168	1.273	1.462				
05012001N752	120.8	61.5	50.57	101.76	2.848	1.562	1.923	1.453	1.463	1.412				
05012001N451	141.3	56.5	20.60	31.66	1.653	5.967	1.469	1.422	1.424	1.331				
	141.8	41.8	30.46	102.89	1.769	5.560	1.585	1.404	1.402	1.333				
05012001N621	141.4	55.8	20.57	31.67	1.629	1.106	1.548	1.438	1.423	1.317				
	141.8	40.4	30.53	102.93	1.657	4.993	1.529	1.451	1.428	1.396				
05022001N611	140.9	59.7	30.56	53.73	1.793	2.676	1.636	1.438	1.434	1.362				
	141.0	62.7	30.56	99.58	1.733	4.250	1.564	1.408	1.412	1.360				
05022001N59B	140.8	62.8	20.50	31.76	1.769	4.377	1.553	1.423	1.429	1.321				
05022001N28A	140.9	60.7	30.63	53.70	1.719	3.296	1.587	1.497	1.494	1.443				
	140.9	62.7	30.56	99.58	1.653	1.702	1.376	1.432	1.424	1.372				
05022001N60A	140.9	60.8	30.57	53.73	1.697	3.105	1.563	1.418	1.408	1.353				
	140.9	62.4	30.43	99.58	2.014	0.047	1.921	0.000	1.130	1.435				
05022001N66B	140.8	62.0	20.53	31.76	1.582	1.285	1.530	1.383	1.367	1.287				
05022001N69A	140.9	60.5	30.60	53.73	1.578	0.685	1.495	1.416	1.387	1.355				
	140.9	63.1	30.56	99.58	1.603	1.448	1.423	1.412	1.388	1.370				
05022001N48A	140.8	62.5	20.53	31.77	1.836	6.629	1.638	1.482	1.495	1.352				
05022001N31B	140.7	62.9	20.67	31.79	2.029	0.032	2.006	0.000	1.114	1.222				
05032001N77A	140.9	61.2	30.43	53.93	1.542	0.548	1.516	1.431	1.408	1.352				
	141.1	32.7	30.26	99.71	1.580	4.123	1.473	1.449	1.431	1.362				
05032001N56A	140.9	60.7	30.57	53.93	1.493	1.508	1.425	1.431	1.409	1.341				
	141.1	31.4	30.33	99.71	1.645	4.433	1.519	1.437	1.431	1.349				
05032001N10B	12.4	64.6	2.83	2.90	0.822	0.000	0.000	0.000	0.752	0.751				
	141.3	45.6	20.47	31.80	1.840	4.919	1.634	1.235	1.304	1.349				
05032001N20A	140.9	61.2	30.57	53.93	1.859	3.235	1.673	1.442	1.451	1.431				
	141.1	32.9	30.26	99.71	1.642	6.704	1.456	1.396	1.395	1.354				
05032001N30B	12.5	63.7	2.83	2.90	0.844	0.000	0.000	0.000	0.795	0.794				
	141.4	44.4	20.43	31.80	1.669	4.724	1.567	1.438	1.439	1.321				
05032001N24A	12.5	57.6	2.83	2.90	0.858	0.000	0.000	0.000	0.759	0.758				
	141.4	44.9	20.47	31.80	1.640	4.153	1.541	1.434	1.431	1.332				
05032001N02A	140.9	60.0	30.54	53.91	1.711	2.884	1.582	1.409	1.401	1.356				
05072001N17A	180.9	60.1	15.50	31.76	2.011	6.196	1.649	1.410	1.458	1.313				
05072001N09A	119.8	43.5	25.47	32.77	1.822	1.319	1.668	1.418	1.390	1.304				
	159.7	52.5	20.86	60.45	5.741	5.711	2.553	1.459	1.750	1.436				
	140.0	63.9	15.43	61.42	2.412	2.454	1.642	1.419	1.445	1.321				
05072001N04A	119.8	44.0	25.47	32.77	1.989	5.329	1.586	1.388	1.412	1.321				
	159.7	52.5	20.79	60.45	4.505	3.256	2.911	1.429	1.642	1.383				
05072001N03A	180.9	56.4	15.20	61.42	2.630	6.231	1.672	1.445	1.521	1.325				
05072001N14A	119.9	44.2	25.40	32.73	1.644	1.781	1.553	1.395	1.381	1.297				
	159.7	52.4	20.82	60.49	5.571	6.622	2.362	1.396	1.696	1.412				
05072001N58A	180.8	59.4	15.50	31.77	1.923	6.341	1.635	1.451	1.492	1.340				
05072001N35A	119.8	44.1	25.40	32.73	1.785	0.635	1.619	1.381	1.359	1.257				
	159.8	52.4	20.82	60.45	5.641	5.724	2.546	1.368	1.685	1.397				
	140.0	64.1	15.46	61.42	2.659	4.867	1.676	1.398	1.472	1.312				
05072001N08A	180.8	60.2	15.43	31.77	1.816	2.209	1.612	1.442	1.283	1.302				
05082001N61B	182.0	34.2	15.43	32.43	2.003	8.867	1.713	1.399	1.549	1.355				
05082001N22B	182.0	35.6	15.40	32.43	1.918	10.358	1.655	1.388	1.559	1.312				
05082001N60A	120.9	30.2	25.30	33.00	1.982	8.580	1.573	1.392	1.445	1.338				
	161.1	46.8	20.80	60.53	2.037	9.228	1.673	1.447	1.534	1.370				
	140.8	49.0	15.43	61.48	2.387	6.834	1.649	1.401	1.493	1.335				
05082001N28B	182.0	35.9	15.37	32.43	1.835	7.282	1.647	1.373	1.467	1.316				
05082001N07B	182.0	34.5	15.40	32.43	1.826	7.536	1.640	1.397	1.488	1.353				
05082001N66A	120.9	32.4	25.32	32.98	1.810	3.153	1.482	1.402	1.387	1.299				
	161.1	46.7	20.70	60.53	1.453	1.745	1.407	1.404	1.370	1.289				
	140.8	49.4	15.43	61.48	1.596	2.823	1.510	1.465	1.439	1.474				

Profile	Dive	---PO2 Overshoot Data---										BT	Dive
		Depth (fsw)	DSCNT RATE (fsw/min)	BOTTOM Time (min)	Total Dive Time (min)	PO2 MAX (atm)	Time PO2>1.45 (min)	TWA PO2 (atm)	TWA PO2 (atm)	Pst OS	TWA PO2 (atm)		
05082001N69A	121.0	35.3	25.33	33.00	1.868	6.625	1.613	1.402	1.434	1.326			
	161.1	46.3	20.69	60.53	2.102	6.435	1.750	1.433	1.491	1.385			
	140.8	50.4	15.53	61.52	1.869	3.474	1.493	1.518	1.495	1.349			
05082001N48A	120.9	34.4	25.33	33.00	1.740	5.563	1.532	1.380	1.385	1.281			
	161.1	45.8	20.67	60.53	1.963	3.927	1.476	1.381	1.391	1.331			
	140.7	50.4	15.50	61.52	1.490	0.232	1.401	1.379	1.322	1.312			
05092001N67A	120.8	42.1	60.40	130.99	1.587	2.027	1.530	1.430	1.423	1.360			
05092001N77A	120.7	39.9	60.40	130.99	1.513	1.326	1.332	1.441	1.427	1.366			
05092001N32B	221.5	36.3	24.67	118.22	1.689	4.665	1.369	1.458	1.406	1.493			
05092001N56B	221.5	34.8	24.50	118.22	1.659	8.169	1.524	1.356	1.374	1.345			
05092001N34B	221.5	35.0	24.53	118.22	1.640	6.378	1.500	1.391	1.385	1.389			
05092001N51A	120.7	40.3	60.36	130.99	1.479	1.049	1.434	1.432	1.419	1.378			
05092001N45B	244.2	58.5	20.43	98.63	1.899	8.339	1.539	1.389	1.440	1.299			
05092001N44A	120.8	40.9	60.40	130.99	2.037	2.487	1.610	1.424	1.425	1.356			
05092001N24B	221.5	34.7	24.47	118.22	1.794	9.680	1.680	1.393	1.489	1.373			
05102001N53A	221.9	48.4	24.47	117.66	1.799	8.705	1.652	1.414	1.467	1.344			
05102001N12A	221.9	47.6	24.33	117.62	2.028	9.337	1.756	1.386	1.509	1.523			
05102001N45A	222.0	47.6	24.40	117.66	1.772	6.927	1.629	1.396	1.430	1.349			
05102001N35A	222.0	48.1	24.33	117.66	1.697	6.417	1.569	1.391	1.411	1.361			
05142001N59A	241.7	54.8	25.60	146.89	2.238	12.239	1.729	1.422	1.554	1.364			
05142001N22A	241.7	54.4	25.53	146.89	1.773	7.017	1.638	1.361	1.411	1.305			
05142001N60B	244.1	57.6	20.40	98.66	1.815	8.199	1.629	1.400	1.469	1.352			
05142001N74A	241.7	55.6	25.53	146.89	1.888	7.884	1.704	1.411	1.473	1.368			
05142001N48A	241.7	55.1	25.66	146.89	2.366	13.381	1.800	1.393	1.593	1.388			
05142001N41B	244.2	57.7	20.33	98.66	1.769	7.687	1.546	1.395	1.441	1.367			
05142001N72B	244.2	58.1	20.43	98.63	2.221	7.964	1.684	1.362	1.449	1.336			
05152001N702	42.3	27.5	3.07	3.70	1.311	0.000	0.000	0.000	0.985	0.955			
	201.2	43.4	15.40	37.66	2.132	12.999	1.869	0.000	1.737	1.430			
05152001N671	201.3	64.5	14.80	37.13	1.923	7.530	1.702	1.354	1.516	1.338			
05152001N652	42.3	28.0	2.90	3.70	1.427	0.000	0.000	0.000	1.068	1.043			
	201.2	45.8	15.43	37.70	1.844	3.190	1.563	1.530	1.427	1.310			
05152001N562	42.3	29.0	3.07	3.70	1.523	2.044	1.126	1.244	1.089	1.054			
	201.2	43.7	15.43	37.66	2.199	10.750	1.708	1.339	1.561	1.339			
05152001N731	201.3	65.4	14.96	37.12	1.916	5.469	1.686	1.388	1.478	1.325			
05152001N341	201.3	64.5	14.93	37.13	1.573	1.140	1.455	1.422	1.383	1.284			
05152001N583	201.7	58.0	15.40	37.60	2.420	3.105	1.759	1.475	1.511	1.319			
05152001N553	201.7	58.6	15.38	37.63	2.188	8.366	1.743	1.377	1.547	1.328			
05152001N201	201.3	64.4	14.83	37.13	1.915	5.665	1.642	1.384	1.453	1.309			
05152001N573	201.7	58.1	15.40	37.63	1.794	7.697	1.551	1.413	1.454	1.350			
05152001N353	201.7	57.7	15.37	37.60	1.678	5.596	1.527	1.357	1.386	1.278			
05162001N26A	120.8	50.6	30.33	41.93	1.585	0.776	1.522	1.441	1.428	1.355			
	120.9	59.7	35.43	104.96	1.902	6.871	1.649	1.408	1.446	1.358			
	120.7	43.2	25.43	81.92	1.653	5.136	1.539	1.429	1.432	1.337			
05162001N15B	161.1	52.6	20.33	38.27	1.755	5.563	1.615	1.383	1.406	1.317			
05162001N13A	120.8	53.9	30.43	41.93	1.672	2.607	1.547	1.400	1.394	1.315			
	120.9	60.4	35.43	104.96	1.632	2.906	1.566	1.393	1.394	1.345			
	120.6	44.4	25.40	81.92	1.591	3.214	1.492	1.399	1.373	1.319			
05162001N78A	120.8	38.9	30.30	41.93	1.813	3.418	1.574	1.366	1.372	1.281			
	120.9	59.8	35.53	104.96	1.923	3.973	1.581	1.363	1.378	1.307			
	120.6	45.4	25.43	81.92	1.722	2.606	1.384	1.356	1.341	1.276			
05162001N76B	161.0	54.4	20.37	38.26	1.502	0.582	1.478	1.363	1.342	1.273			
05162001N24B	161.0	54.7	20.40	38.27	1.757	5.194	1.575	1.390	1.406	1.308			
05162001N46B	161.0	54.8	20.60	38.26	1.567	1.273	1.487	1.333	1.322	1.236			
05162001N08A	120.8	22.7	30.27	41.93	1.529	5.534	1.409	1.408	1.387	1.316			
05172001N32A	120.8	25.0	30.47	42.70	1.799	4.106	1.533	1.381	1.373	1.289			
	120.5	38.0	35.49	104.93	2.455	4.399	1.424	1.380	1.331				
	120.7	49.7	25.40	81.82	2.385	1.861	1.653	1.375	1.384	1.325			
05172001N23A	121.0	24.0	30.33	42.67	1.631	*****	1.425	1.418	1.387	1.326			
	120.6	37.2	35.46	104.89	1.525	3.160	1.389	1.383	1.372	1.320			
	120.6	50.6	25.34	81.82	1.916	2.822	1.647	1.295	1.325	1.476			
05172001N16A	121.0	24.1	30.43	42.67	2.016	21.139	1.796	0.000	1.564	1.458			
05172001N43A	120.8	25.4	30.44	42.66	1.533	3.792	1.351	1.393	1.365	1.316			
	120.6	36.8	35.43	104.93	1.608	1.910	1.482	1.356	1.345	1.315			
	120.6	50.7	25.33	81.82	1.512	0.979	1.256	1.409	1.380	1.307			
05232001N13A	240.8	50.0	15.63	50.25	2.336	11.336	1.827	1.450	1.684	1.447			
05232001N60A	240.8	50.3	15.67	50.26	1.902	9.492	1.690	1.456	1.550	1.456			

Profile	Dive	DSCNT	BOTTOM	Total	---PO2			Pst OS	BT	Dive
					Depth (fsw)	RATE (fsw/min)	Dive Time (min)	PO2 MAX (atm)	Time PO2>1.45 (min)	TWA PO2 (atm)
05232001N36A	240.8	50.0	15.62	50.23	1.951	8.616	1.555	1.384	1.464	1.381
05232001N31A	240.8	38.5	15.50	50.26	2.061	10.619	1.744	1.414	1.604	1.404
05242001N26A	261.0	56.3	15.63	69.36	2.119	12.097	1.700	1.357	1.604	1.433
05242001N25B	261.0	56.0	25.69	176.32	2.062	12.249	1.623	1.381	1.491	1.334
05242001N56A	260.9	56.1	15.63	69.36	1.995	9.468	1.688	1.410	1.533	1.409
05242001N20A	261.0	56.6	15.67	69.36	2.647	10.573	1.753	1.355	1.603	1.348
05242001N10B	261.1	56.2	25.67	176.32	2.521	19.018	1.696	1.377	1.601	1.401
05242001N45A	261.0	56.2	15.53	69.36	1.903	9.445	1.685	1.348	1.520	1.347
05242001N24B	261.0	56.6	25.63	176.32	1.947	8.360	1.721	1.396	1.481	1.322
05242001N35B	261.1	55.8	25.63	176.32	1.964	8.506	1.660	1.398	1.461	1.513
05292001N37A	240.7	51.3	20.40	98.19	1.798	5.506	1.634	1.387	1.412	1.364
05292001N39A	240.7	51.6	20.53	98.19	2.137	12.986	1.743	1.464	1.617	1.419
05292001N64A	240.8	50.9	20.53	98.16	2.489	8.805	1.936	1.383	1.605	1.510
05292001N11A	240.8	50.9	20.37	98.16	2.050	9.309	1.707	1.407	1.516	1.411
05302001N32A	241.0	55.8	15.90	50.66	2.061	8.626	1.723	1.405	1.540	1.400
05302001N59B	261.6	49.3	25.33	176.22	2.287	11.205	1.713	1.471	1.560	1.391
05302001N71	241.1	56.1	16.00	50.70	1.989	9.979	1.716	1.417	1.573	1.384
05302001N66A	241.0	55.8	15.93	50.66	1.894	9.693	1.660	1.468	1.541	1.422
05302001N58B	261.6	53.6	25.67	176.26	2.163	10.366	1.726	1.432	1.539	1.393
05302001N48B	261.6	49.0	25.33	176.22	2.270	11.798	1.836	1.446	1.617	1.397
05302001N31B	261.6	53.3	25.67	176.26	2.214	11.628	1.807	1.455	1.591	1.415
05302001N05	241.1	56.1	15.97	50.70	1.871	9.159	1.669	1.423	1.504	1.352
05312001N65B	281.1	53.1	15.70	87.86	2.242	12.427	1.769	1.355	1.656	1.408
05312001N20A	281.2	52.5	20.63	148.42	2.135	10.786	1.684	1.422	1.539	1.382
05312001N10B	281.1	52.5	15.67	87.86	2.052	11.170	1.718	1.362	1.576	1.396
05312001N30B	281.2	54.1	15.63	87.86	2.593	9.336	1.891	1.444	1.646	1.460
05312001N24A	281.2	52.7	20.53	148.42	2.021	8.644	1.770	1.436	1.547	1.378
05312001N46A	281.2	53.3	20.60	148.42	2.208	15.554	1.798	1.454	1.687	1.408
05312001N41B	281.2	53.7	15.60	87.86	2.697	10.172	1.788	1.386	1.610	1.396
05312001N35A	281.2	52.6	20.67	148.42	2.152	13.102	1.775	1.402	1.592	1.350
06012001N37A	281.8	57.5	20.60	147.69	2.271	10.774	1.791	1.482	1.598	1.470
06012001N53B	281.7	58.5	15.53	87.69	2.107	11.543	1.678	1.392	1.579	1.372
06012001N25A	281.7	57.9	20.59	147.66	2.259	14.262	1.789	1.406	1.647	1.377
06012001N39B	281.8	58.3	15.50	87.66	2.523	13.058	1.787	1.374	1.705	1.423
06012001N12B	281.8	58.6	15.73	87.69	2.194	11.362	1.775	1.421	1.630	1.458
06012001N14B	281.8	58.2	15.50	87.66	2.913	9.333	1.769	1.391	1.589	1.381
06012001N78A	281.7	57.6	20.57	147.66	2.100	14.095	1.764	1.412	1.608	1.423
06012001N42A	281.8	58.0	20.63	147.69	2.283	12.822	1.806	1.463	1.657	1.393
06042001N37B	221.0	44.3	15.40	36.87	1.764	4.923	1.603	1.419	1.428	1.381
06042001N32B	221.0	51.0	15.43	36.87	1.748	6.784	1.614	1.439	1.464	1.418
06042001N59A	221.1	46.3	35.40	195.92	1.901	8.799	1.621	1.411	1.449	1.352
06042001N36B	221.0	51.1	15.73	36.83	1.808	2.412	1.536	1.479	1.433	1.382
06042001N48A	221.0	46.4	35.37	195.92	2.139	9.328	1.617	1.497	1.518	1.452
06042001N01B	221.0	26.8	15.37	36.86	1.906	25.771	1.430	0.000	1.485	1.414
06042001N57A	221.0	46.0	35.50	195.92	1.904	7.013	1.647	1.439	1.465	1.429
06042001N31A	221.1	46.8	35.50	195.95	1.935	8.194	1.665	1.452	1.474	1.383
06052001N67B	94.1	33.0	6.10	27.53	1.461	0.042	1.456	1.308	1.238	1.307
06052001N65B	94.2	33.3	6.10	27.53	1.677	1.619	1.383	1.292	1.251	1.274
06052001N56B	94.4	33.2	6.10	27.53	1.458	0.029	1.454	1.349	1.234	1.274
06052001N60A	302.2	46.0	20.53	174.76	2.364	18.783	1.840	1.439	1.761	1.411
06052001N74A	302.3	45.9	20.60	174.77	2.252	18.563	1.814	1.444	1.739	1.422
06052001N10A	302.2	46.1	20.57	174.76	2.196	14.800	1.720	1.347	1.575	1.358
06052001N24A	302.3	46.2	20.63	174.79	2.449	17.035	1.852	1.407	1.735	1.416
06052001N46B	94.3	34.3	6.10	27.53	1.594	2.455	1.470	1.388	1.309	1.326
06062001N25B	302.4	44.5	15.30	106.42	2.680	13.078	1.732	1.396	1.651	1.329
06062001N39B	302.5	45.2	15.40	106.42	2.116	14.875	1.753	0.000	1.724	1.434
06062001N12A	301.8	47.8	20.47	174.82	2.154	14.217	1.734	1.427	1.625	1.371
06062001N18A	301.7	47.2	20.38	174.89	2.114	10.468	1.662	1.459	1.540	1.382
06062001N58B	302.5	44.5	15.37	106.46	2.254	14.563	1.785	1.393	1.750	1.382
06062001N45A	301.7	47.0	20.30	174.86	1.845	8.022	1.658	1.412	1.461	1.314
06062001N42B	302.5	44.6	15.40	106.46	2.159	13.053	1.716	1.398	1.625	1.405
06062001N35A	301.8	46.7	20.37	174.82	2.123	12.767	1.764	1.408	1.611	1.369
06072001N01A	301.8	54.3	15.50	106.69	2.059	11.133	1.756	1.378	1.614	1.409
06072001N57A	301.8	34.6	15.27	106.66	2.225	13.677	1.777	1.412	1.694	1.395
06072001N08A	301.8	54.4	15.50	106.69	2.032	12.324	1.750	1.351	1.646	1.357
06072001N31A	301.8	54.3	15.60	106.66	2.184	13.149	1.769	1.401	1.668	1.398

Profile	Dive		DSCNT	BOTTOM	Total	---PO2 Overshoot Data---				Pst OS	BT	Dive
	Depth (fsw)	RATE (fsw/min)				Dive Time (min)	PO2 (atm)	Time (min)	TWA (atm)			
06082001N04A	220.3	48.8	15.47		36.73	1.998	9.837	1.683	1.397	1.553	1.445	
06082001N65B	241.0	44.3	15.43		50.16	1.924	8.594	1.714	1.366	1.529	1.367	
06082001N56B	241.0	44.9	15.37		50.20	1.892	8.819	1.677	1.469	1.554	1.451	
06082001N33A	220.4	49.8	15.43		36.73	1.998	8.884	1.697	1.361	1.511	1.393	
06082001N10B	241.0	41.9	15.27		50.20	1.959	10.204	1.705	1.432	1.564	1.425	
06082001N20A	220.4	49.2	15.43		36.73	2.026	9.678	1.616	1.379	1.515	1.418	
06082001N24B	241.0	43.7	15.37		50.16	1.974	10.639	1.739	1.392	1.609	1.411	
06082001N41A	220.4	49.0	15.47		36.73	1.874	8.566	1.570	1.381	1.468	1.388	
06182001N37B	200.3	17.0	25.33		102.16	1.713	16.635	1.448	1.393	1.408	1.365	
	180.8	44.7	25.43		128.87	1.679	5.138	1.544	1.383	1.362	1.326	
06182001N25B	200.1	64.6	25.50		102.16	1.883	1.673	1.599	1.472	1.450	1.337	
	180.8	44.3	25.54		128.90	1.844	2.300	1.662	1.391	1.370	1.292	
06182001N40A	220.8	60.7	25.50		119.06	2.187	8.286	1.718	1.386	1.483	1.342	
06182001N64A	220.7	60.3	25.43		119.02	1.922	7.118	1.721	1.416	1.474	1.372	
06182001N18B	200.1	65.6	25.50		102.16	2.344	8.408	1.831	1.380	1.520	1.374	
	180.8	45.4	25.50		128.90	1.851	5.801	1.639	1.348	1.388	1.313	
06182001N74A	220.8	61.1	25.47		119.06	1.756	6.732	1.627	1.437	1.464	1.410	
06182001N27A	220.8	60.4	25.50		119.06	1.807	6.572	1.656	1.437	1.469	1.416	
06182001N68B	200.3	63.4	25.58		102.14	1.945	4.335	1.608	1.421	1.431	1.402	
	180.7	45.5	25.43		128.87	1.899	5.061	1.600	1.468	1.446	1.380	
06192001N59A	200.8	57.6	25.40		102.06	1.855	2.241	1.728	1.453	1.439	1.366	
	181.2	59.0	25.60		129.39	1.858	5.564	1.636	1.364	1.398	1.237	
06192001N60A	200.7	59.9	25.67		102.06	2.167	7.405	1.710	1.447	1.511	1.386	
	181.1	59.4	25.53		129.43	2.059	6.419	1.632	1.385	1.432	1.383	
06192001N07A	200.7	60.0	25.60		102.02	2.419	6.109	1.663	1.422	1.469	1.429	
	181.2	58.5	25.63		129.39	2.314	6.768	1.662	1.435	1.485	1.418	
06192001N05A	200.7	56.2	25.37		102.06	2.702	8.088	1.770	1.439	1.529	1.360	
	181.1	58.8	25.53		129.40	2.304	6.765	1.564	1.380	1.424	1.312	
06202001N34A	180.3	64.6	20.37		46.07	1.534	0.485	1.488	1.441	1.402	1.338	
	180.6	63.7	25.60		134.63	1.578	1.187	1.460	1.449	1.417	1.352	
06202001N10A	180.3	48.5	20.33		46.07	1.879	5.294	1.647	1.379	1.410	1.352	
	180.6	63.3	25.63		134.63	1.972	6.308	1.723	1.379	1.438	1.340	
06202001N20A	180.4	64.0	20.43		46.06	1.754	4.481	1.625	1.352	1.357	1.287	
	180.6	64.4	25.43		134.63	2.760	7.951	1.725	1.350	1.456	1.330	
06202001N45A	180.4	48.9	20.33		46.06	1.700	3.894	1.554	1.393	1.388	1.310	
	180.6	64.8	25.36		134.63	1.665	3.097	1.570	1.465	1.438	1.372	
06212001N25A	180.6	30.7	20.33		46.03	1.913	3.738	1.599	1.385	1.289	1.284	
	180.6	63.9	25.36		134.58	1.606	3.849	1.488	1.365	1.361	1.331	
06212001N62A	180.6	30.5	20.33		46.03	1.758	6.912	1.569	1.445	1.378	1.337	
	180.8	64.0	25.40		134.59	1.820	5.032	1.640	1.491	1.495	1.430	
06212001N52A	180.6	30.8	20.37		46.03	2.401	10.268	1.754	1.388	1.502	1.350	
	180.8	64.3	25.50		134.59	2.500	7.312	1.583	1.364	1.419	1.316	
06212001N09B	180.6	60.7	40.36		155.12	1.591	1.013	1.509	1.472	1.450	1.434	
06212001N68A	180.6	31.3	20.33		46.03	1.835	6.987	1.663	1.413	1.398	1.330	
06212001N01B	180.6	60.8	40.36		155.12	2.454	2.652	1.550	1.401	1.403	1.354	
06212001N46B	180.6	60.0	40.41		155.12	1.842	5.874	1.625	1.423	1.441	1.365	
06212001N08B	180.6	60.2	40.50		155.12	2.325	4.309	1.582	1.375	1.393	1.337	
06252001N32	180.7	34.0	25.57		73.00	1.697	4.973	1.552	1.469	1.404	1.381	
	160.2	43.3	30.46		118.93	1.527	1.811	1.478	1.421	1.398	1.412	
06252001N60B	220.6	48.0	15.53		36.50	1.949	8.988	1.690	1.486	1.553	1.438	
06252001N66A	180.7	33.9	25.37		73.00	1.671	3.753	1.486	1.371	1.321	1.305	
06252001N69B	220.6	47.9	15.60		36.50	1.835	7.074	1.589	1.368	1.436	1.447	
06252001N68B.	220.6	48.0	15.57		36.50	1.936	9.771	1.665	1.357	1.539	1.314	
06252001N48A	180.7	33.8	25.40		73.00	1.888	6.853	1.596	1.364	1.372	1.323	
	160.2	43.7	30.42		118.97	1.880	3.584	1.520	1.451	1.446	1.418	
06252001N57A	180.7	34.1	25.40		72.98	1.894	4.298	1.543	1.414	1.365	1.329	
	160.2	43.2	30.49		118.93	2.080	3.400	1.196	1.313	1.289	1.481	
06252001N05B	220.6	48.0	15.53		36.50	1.786	6.357	1.619	1.411	1.458	1.393	
06262001N56A	180.2	50.3	25.43		73.16	1.775	6.322	1.462	1.442	1.435	1.406	
	159.9	48.0	30.46		118.54	1.732	4.452	1.554	1.442	1.446	1.413	
06262001N34A	180.3	50.0	25.50		73.19	1.788	4.722	1.561	1.389	1.391	1.350	
	159.9	47.4	30.46		118.54	1.510	1.738	1.487	1.390	1.364	1.337	
06262001N99A	180.3	49.6	25.43		73.19	1.808	5.713	1.560	1.383	1.391	1.331	
	160.0	47.6	30.49		118.57	1.686	2.985	1.566	1.350	1.346	1.313	
06262001N24A	180.3	49.8	25.50		73.19	1.712	5.950	1.570	1.364	1.391	1.323	
	160.0	48.0	30.49		118.57	1.691	2.751	1.572	1.322	1.323	1.295	

Profile	Dive	DSCNT	BOTTOM	Total	---PO2 Overshoot Data---			Pst OS	BT	Dive
					Depth (fsw)	RATE (fsw/min)	Dive Time (min)	PO2 MAX	Time PO2>1.45 (min)	TWA PO2 (atm)
06272001N52B	159.9	30.3	20.47	38.53	1.849	8.702	1.568	1.345	1.396	1.265
06272001N12B	159.9	29.8	20.47	38.53	1.570	6.380	1.470	1.427	1.413	1.328
06272001N04A	200.5	58.1	15.33	38.00	2.647	3.613	1.818	1.607	1.642	1.403
	180.7	65.9	35.50	160.07	1.971	8.227	1.601	1.416	1.452	1.392
06272001N19B	159.9	30.2	20.50	38.53	1.745	6.539	1.460	1.414	1.407	1.330
06272001N74A	200.5	55.9	15.33	38.00	2.264	5.702	1.668	1.406	1.448	1.354
	180.6	65.6	35.50	160.07	1.688	3.757	1.586	1.432	1.424	1.420
06272001N45A	200.4	57.6	15.27	37.97	2.459	6.835	1.614	1.358	1.450	1.282
	180.6	64.3	35.40	160.03	1.568	1.385	1.396	1.370	1.344	1.308
06272001N62B	159.9	30.7	20.60	38.53	1.477	0.160	1.464	1.346	1.317	1.254
06272001N08A	200.4	57.3	15.30	37.97	2.319	7.447	1.617	1.354	1.468	1.319
	180.6	65.0	35.53	160.07	2.100	2.402	1.659	1.399	1.409	1.349
06282001N69A	200.0	48.2	15.43	38.13	2.004	7.385	1.594	1.369	1.449	1.300
	180.7	54.2	35.53	160.17	2.093	6.778	1.698	1.395	1.442	1.345
06282001N58A	200.1	48.1	15.57	38.10	1.960	6.836	1.598	1.335	1.432	1.292
	180.6	54.1	35.57	160.17	2.107	3.631	1.740	1.355	1.385	1.316
06282001N68A	200.0	48.5	15.60	38.13	1.830	6.118	1.574	1.458	1.447	1.323
	180.7	54.0	35.50	160.17	1.710	5.366	1.585	1.492	1.487	1.435
06282001N48A	200.1	47.3	15.53	38.10	1.760	4.590	1.593	1.365	1.391	1.332
	180.7	54.2	35.47	160.13	1.469	1.093	1.408	1.422	1.390	1.400
07022001N67B	220.6	52.5	15.50	36.53	1.819	5.636	1.613	1.388	1.438	1.358
07022001N10B	220.5	52.1	15.33	36.50	1.885	6.262	1.651	1.357	1.429	1.343
07022001N46B	220.6	52.6	15.47	36.50	1.922	9.093	1.596	1.352	1.486	1.354
07022001N35A	220.4	55.0	35.60	195.99	1.949	7.586	1.699	1.396	1.435	1.350
07022001N08A	220.5	54.9	35.38	195.97	1.804	6.130	1.646	1.458	1.468	1.377
07022001N05A	220.5	55.4	35.43	195.99	1.977	7.293	1.662	1.393	1.424	1.344
07032001N37B	240.5	37.7	20.33	98.13	2.064	11.898	1.632	1.417	1.523	1.386
07032001N53A	240.7	64.1	25.27	146.59	2.628	8.729	1.713	1.388	1.489	1.349
07032001N25A	240.8	64.6	25.47	146.59	2.062	9.595	1.699	1.420	1.515	1.377
07032001N52A	240.7	64.5	25.30	146.63	2.241	9.738	1.832	1.456	1.587	1.394
07032001N12B	240.5	37.0	20.40	98.09	2.025	11.504	1.643	1.414	1.528	1.375
07032001N40B	240.6	37.3	20.50	98.13	2.028	10.479	1.604	1.341	1.453	1.321
07032001N19A	240.8	64.4	25.47	146.62	2.280	10.326	1.787	1.417	1.554	1.365
07032001N62B	240.5	38.2	20.33	98.13	1.866	7.669	1.626	1.350	1.417	1.343
07092001N22A	120.3	43.6	30.40	42.10	1.473	0.322	1.461	1.353	1.331	1.283
	119.9	52.2	35.40	104.96	1.588	0.609	1.557	1.350	1.336	1.297
	119.9	54.0	25.40	81.99	1.456	0.065	1.454	1.338	1.311	1.278
07092001N60A	120.1	44.9	30.67	42.07	1.548	0.322	1.559	1.436	1.411	1.334
	119.9	53.9	35.43	104.96	1.798	2.365	1.339	1.500	1.484	1.425
	119.8	54.0	25.37	81.99	1.583	0.653	1.506	1.483	1.455	1.406
07092001N69B	281.1	46.1	15.63	87.76	2.065	7.667	1.751	1.400	1.462	1.366
07092001N58B	281.1	45.6	15.60	87.73	2.074	11.073	1.733	1.399	1.592	1.383
07092001N99B	281.1	46.0	15.67	87.76	2.182	10.629	1.741	1.395	1.573	1.448
07092001N57B	281.1	46.7	15.43	87.76	2.143	12.935	1.775	1.425	1.647	1.366
07092001N02A	120.3	44.6	30.67	42.06	1.751	0.972	1.463	1.376	1.356	1.279
	119.9	52.6	35.40	104.96	2.267	1.863	1.818	1.340	1.356	1.297
	119.9	53.8	25.43	82.02	2.243	2.454	1.685	1.341	1.367	1.287
07092001N05A	120.1	45.1	30.66	42.07	2.154	2.345	1.411	1.411	1.395	1.308
	119.8	53.5	35.43	104.96	2.418	4.351	1.544	1.395	1.404	1.340
	119.9	54.0	25.33	81.99	2.349	1.656	1.643	1.383	1.383	1.312
07102001N52B	159.8	45.4	45.47	147.89	1.634	4.932	1.519	1.436	1.431	1.431
07102001N41B	159.8	45.8	45.40	147.89	1.726	4.502	1.597	1.380	1.389	1.341
07102001N62B	159.8	46.0	45.37	147.89	1.872	5.452	1.559	1.358	1.376	1.333
07102001N08B	159.8	45.8	45.47	147.89	1.538	0.677	1.509	1.430	1.416	1.377
07112001N37A	160.1	50.4	25.43	51.20	1.705	4.778	1.542	1.390	1.398	1.320
	119.8	58.6	35.49	95.85	1.618	2.591	1.352	1.379	1.372	1.327
07112001N39A	160.2	50.2	25.47	51.20	1.569	1.105	1.427	1.383	1.361	1.314
	119.8	58.5	35.33	95.85	1.874	2.264	1.605	1.376	1.375	1.332
07112001N19A	160.3	50.7	25.47	51.16	1.695	1.190	1.480	1.388	1.365	1.305
	119.8	59.3	35.36	95.87	1.530	1.163	1.461	1.385	1.374	1.320
07112001N18A	160.2	40.6	25.33	51.16	1.888	4.181	1.500	1.341	1.357	1.269
	119.8	59.2	35.63	95.88	2.058	2.349	1.528	1.340	1.346	1.272
07122001N17A	160.0	49.3	25.53	51.30	2.148	3.553	1.660	1.408	1.436	1.349
	119.9	46.4	35.46	96.01	1.910	1.823	1.472	1.365	1.363	1.324
07122001N59A	160.0	48.7	25.50	51.29	1.781	4.936	1.575	1.373	1.395	1.336
	119.8	45.9	35.63	95.98	1.612	1.396	1.516	1.368	1.361	1.317

Profile	Dive		Depth (fsw)	DSCNT RATE (fsw/min)	BOTTOM Time (min)	Total Dive Time (min)	---PO2 Overshoot Data---				Pst OS TWA PO2 (atm)	BT TWA PO2 (atm)	Dive TWA PO2 (atm)
							PO2 MAX (atm)	PO2>1.45 (min)	TWA PO2 (atm)				
07122001N09A	160.1	49.1	25.53	51.30	2.269	3.104	1.582	1.387	1.397	1.332			
	119.8	46.3	35.43	96.01	1.894	2.320	1.406	1.358	1.353	1.313			
07122001N24A	160.0	49.6	25.60	51.30	1.776	4.778	1.625	1.396	1.420	1.356			
	119.8	45.5	35.50	96.01	1.719	5.058	1.524	1.362	1.380	1.327			
07162001N32B	159.8	21.8	20.27	38.20	1.802	7.736	1.537	1.350	1.360	1.278			
07162001N56B	159.8	22.5	20.20	38.20	1.636	2.862	1.522	1.258	1.228	1.189			
07162001N10A	100.2	47.0	15.67	18.27	1.588	1.236	1.498	1.290	1.278	1.230			
	99.8	48.7	30.43	33.23	1.565	0.682	1.513	1.293	1.278	1.250			
	119.9	44.8	30.69	73.02	1.582	0.463	1.407	1.286	1.274	1.236			
07162001N99B	159.8	21.3	20.23	38.20	1.898	6.313	1.525	1.297	1.235	1.201			
07162001N29	159.8	22.8	20.27	38.20	1.691	4.787	1.501	1.308	1.295	1.234			
07162001N45A	100.1	46.6	15.50	18.27	1.407	0.000	0.000	0.000	0.000	1.267	1.223		
	99.8	49.1	30.47	33.23	1.351	0.000	0.000	0.000	0.000	1.241	1.216		
	120.0	44.5	30.56	73.01	1.427	0.000	0.000	0.000	0.000	1.238	1.202		
07162001N46A	100.2	47.0	15.67	18.27	1.452	0.054	1.451	1.316	1.284	1.239			
	99.8	49.3	30.43	33.23	1.440	0.000	0.000	0.000	0.000	1.226	1.202		
	119.9	44.1	30.56	73.02	1.463	0.161	1.456	1.241	1.238	1.193			
07162001N41A	100.1	47.0	15.40	18.26	1.537	0.786	1.506	1.334	1.308	1.259			
	99.8	48.6	30.47	33.23	1.468	0.056	1.458	1.343	1.326	1.300			
	120.0	44.8	30.42	73.01	1.494	0.362	1.484	1.343	1.324	1.294			
07172001N37A	180.8	56.9	20.47	46.03	1.519	0.787	1.435	1.351	1.312	1.259			
	181.0	57.6	25.40	134.53	1.504	2.715	1.143	1.272	1.252	1.221			
07172001N39A	180.8	55.9	20.40	46.00	1.697	5.824	1.578	1.328	1.380	1.267			
	181.0	57.4	25.63	134.53	1.586	4.504	1.506	1.297	1.319	1.247			
07172001N11B	281.4	61.3	15.67	87.76	1.850	7.431	1.657	1.323	1.451	1.297			
07172001N14B	281.4	61.3	15.60	87.76	1.952	3.336	1.689	1.344	1.384	1.235			
07172001N42A	180.8	56.2	20.44	46.00	1.731	4.156	1.566	1.342	1.372	1.285			
	181.1	57.8	25.43	134.53	1.633	1.944	1.510	1.307	1.309	1.241			
07172001N02A	180.9	57.4	20.63	46.03	1.856	4.869	1.631	1.473	1.477	1.418			
	181.0	57.6	25.43	134.53	2.057	2.109	1.619	1.455	1.440	1.423			
07172001N63B	281.3	61.1	15.47	87.76	1.839	6.868	1.651	1.370	1.444	1.403			
07182001N17	180.8	49.3	20.33	46.17	1.661	5.192	1.536	1.325	1.339	1.263			
07182001N22A	180.8	47.6	20.33	46.17	1.531	0.244	1.489	1.405	1.353	1.325			
	180.6	58.5	35.46	164.16	1.512	0.640	1.416	1.427	1.403	1.386			
07182001N07A	180.7	47.6	20.47	46.17	1.717	5.642	1.569	1.317	1.342	1.284			
	180.5	57.9	35.36	164.16	1.596	3.077	1.513	1.264	1.272	1.251			
07182001N69A	180.7	48.3	20.47	46.17	1.673	4.219	1.528	1.294	1.294	1.238			
	180.5	57.8	35.33	164.16	1.731	3.765	1.618	1.282	1.301	1.253			
07192001N56A	180.6	55.0	20.50	46.10	1.816	4.914	1.599	1.377	1.402	1.332			
	180.7	54.4	35.50	164.63	1.700	4.034	1.544	1.388	1.386	1.345			
07192001N10A	180.6	54.8	20.57	46.10	1.802	4.486	1.617	1.321	1.356	1.275			
	180.7	54.6	35.53	164.66	1.456	0.699	1.416	1.325	1.308	1.245			
07192001N24A	180.6	54.9	20.50	46.10	1.655	3.919	1.549	1.298	1.323	1.260			
	180.7	54.0	35.50	164.66	1.667	3.613	1.581	1.247	1.273	1.263			
07192001N35A	180.6	54.4	20.53	46.10	1.745	1.918	1.542	1.306	1.287	1.212			
	180.7	54.2	35.50	164.66	2.005	5.480	1.549	1.269	1.305	1.239			

Appendix I.

Individual Dive Depth-Inspired PO₂ Profiles for Dives Performed

Phase I Profiles I-2 thru I-87
Phase II Profiles I-88 thru I-203

Phase I Profiles

Profile 103100AN91

Profile 103100AN29

Profile 110100AN83

Profile 110100AN79

Profile 110100AN72

Profile 110100BN12

Profile 110100BN60

Profile 110100BN58

Profile 110100BN21

Profile 110200AN32

Profile 110200AN22

Profile 110200AN89

Profile 110200AN31

Profile 110200BN53

Profile 110200BN80

Profile 110200BN35

Profile 110600BN65

Profile 110600BN60

Profile 110600BN91

Profile 110600BN35

Profile 110700AN39

Profile 110700AN89

Profile 110700AN55

Profile 110700AN79

Profile 110800AN53

Profile 110800AN07

Profile 110800AN69

Profile 110800AN84

file110900AN58

Profile 110900AN45

Profile 110900AN81

Profile 110900AN42

Profile 111300AN25

Profile 111300AN39

Profile 111300AN60

Profile 111400AN37

Profile 111400AN32

Profile 111400AN09

Profile 111400AN48

Profile 111400BN22

Profile 111400BN53

Profile 111400BN69

Profile 111400BN05

Profile 111500AN77

Profile 111500AN74

Profile 111500AN84

Profile 111500AN29

Profile 111500BN70

Profile 111500BN65

Profile 111500BN50

Profile 111500BN34

Profile 111600AN14

Profile 111600AN75

Profile 111600AN55

Profile 111600AN35

Profile 111700AN36

Profile 111700AN79

Profile 111700AN05

Profile 112000AN67

Profile 112000AN77

Profile 112000AN74

Profile 112000AN29

Profile 112000BN59

Profile 112000BN58

Profile 112000BN41

Profile 112100AN12

Profile 112100AN78

Profile 112100AN55

Profile 112100AN35

Profile 112100BN52

Profile 112100BN34

Profile 112100BN80

Profile 112200AN32

Profile 112200AN07

Profile 112200AN36

Profile 112200AN05

Profile 112200BN37

Profile 112200BN53

Profile 112200BN48

Profile 112200BN31

Profile 112700AN77

Profile 112700AN34

Profile 112700AN74

Profile 112700AN29

Profile 112700BN20

Profile 112700BN45

Profile 112700BN30

Profile 112700BN02

Profile 112800AN09

Profile 112800AN18

Profile 112800AN79

Profile 112800AN55

Profile 112800BN38

Profile 112800BN58

Profile 112800BN21

Profile 112900BN22

Profile 112900BN33

Profile 112900BN36

Profile 112900BN05

Profile 113000AN49

Profile 113000AN67

Profile 113000AN34

Profile 113000AN74

Profile 113000BN62

Profile 113000BN80

Profile 113000BN20

Profile 113000BN35

Profile 120400AN79

Profile 120400AN78

Profile 120400AN75

Profile 120400AN21

Profile 120400BN55

Profile 120400BN45

Profile 120400BN80

Profile 120400BN72

Profile 120500AN69

Profile 120500AN36

Profile 120500AN48

Profile 120500AN05

Profile 120500BN50

Profile 120500BN07

Profile 120500BN38

Profile 120500BN02

Profile 120600AN67

Profile 120600AN62

Profile 120600AN74

Profile 120600AN30

Profile 120600BN39

Profile 120600BN64

Profile 120600BN34

Profile 120700AN79

Profile 120700AN45

Profile 120700AN81

Profile 120700AN72

Profile 120700BN52

Profile 120700BN78

Profile 120700BN75

Pro

file 120700BN21

Profile 121100AN37

Profile 121100AN85

Profile 121100AN69

Profile 121100AN05

Profile 121200AN49

Profile 121200AN09

Profile 121200AN33

Profile 121200AN86

Profile 121300AN79

Profile 121300AN75

Profile 121300AN41

Profile 121300BN92

Profile 121300BN87

Profile 121300BN57

Profile 121400AN53

Profile 121400AN32

Profile 121400AN14

Profile 121400BN88

Profile 121400BN48

Profile 121400BN31

Profile 121400BN05

Profile 020501AN49

Profile 020501AN29

Profile 020501AN55

Profile 020501BN67

Profile 020501BN77

Profile 020501BN34

Profile 020501BN83

Profile 020501AN58

Profile 020601AN50

Profile 020601AN39

Profile 020601AN12

Profile 020601AN42

Profile 020601BN52

Profile 020601BN35

Profile 020601BN21

Profile 020701N53

Profile 020701N17

Profile 020701N66

Profile 020701N36

Profile 020701N31

Profile 020701N93

Profile 020701N08

Profile 020801AN67

Profile 020801AN77

Profile 020801AN58

Profile 020801AN86

Profile 020801BN65

Profile 020801BN56

Profile 020801BN45

Profile 020801BN46

Profile 021201AN52

Profile 021201AN12

Profile 021201AN19

Profile 021201AN58

Profile 021201BN70

Profile 021201BN39

Profile 021201BN11

Profile 021301AN33

Profile 021301AN36

Profile 021301N61

Profile 021301AN63

Profile 021401AN49

Profile 021401AN53

Profile 021401AN34

Profile 021401AN83

Profile 021501AN04

Profile 021501AN78

Profile 021501AN55

Profile 021501AN21

Profile 021501BN52

Profile 021501BN58

Profile 021501BN42

Profile 021501BN72

Profile 022001AN48

Profile 022001AN31

Profile 022001AN35

Profile 022001BN59

Profile 022001BN66

Profile 022001BN05

Profile 022101AN02

Profile 022101AN77

Profile 022101AN34

Profile 022101AN20

Profile 022101BN83

Profile 022101BN10

Profile 022101BN29

Profile 022101BN41

Profile 022201BN37

Profile 022201BN04

Profile 022201BN21

Profile 022201BN08

Profile 022201CN52

Profile 022201CN36

Profile 022201CN46

Profile 022201CN42

Profile 022301AN071

Profile 022301AN75

Profile 022301AN221

Profile 022301AN59

Profile 022601AN67

Profile 022601AN34

Profile 022601AN10

Profile 022601AN20

Profile 022601BN09

Profile 022601BN56

Profile 022601BN83

Profile 022601BN74

Profile 022701AN25

Profile 022701AN58

Profile 022701AN55

Profile 022701AN86

Profile 022701BN39

Profile 022701BN14

Profile 022701BN78

Profile 022701BN08

Profile 022801BN32

Profile 022801BN57

Profile 022801BN66

Profile 022801BN35

Phase II Profiles

Profile 04102001N39

Profile 04102001N04

Profile 04102001N14

Profile 04102001N75

Profile 04112001N32B

Profile 04112001N59A

Profile 04112001N19A

Profile 04112001N66B

Profile 04112001N36A

Profile 04112001N47B

Profile 04112001N05A

Profile 04112001N56A

Profile 04122001N34A

Profile 04122001N30A

Profile 04122001N24A

Profile 04162001N522

Profile 04162001N782

Profile 04162001N751

Profile 04162001N551

Profile 04162001N412

Profile 04162001N211

Profile 04162001N721

Profile 04162001N082

Profile 04162001N321

Profile 04172001N591

Profile 04172001N22B

Profile 04172001N60B

Profile 04172001N071

Profile 04172001N691

Profile 04172001N31B

Profile 04172001N05B

Profile 04182001N491

Profile 04182001N67B

Profile 04182001N34B

Profile 04182001N581

Profile 04182001N101

Profile 04182001N451

Profile 04182001N241

Profile 04182001N351

Profile 04192001N25A

Profile 04192001N50B

Profile 04192001N40B

Profile 04192001N04B

Profile 04192001N18A

Profile 04192001N75A

Profile 04192001N46B

Profile 04192001N02A

Profile 04232001N61A

Profile 04232001N17B

Profile 04232001N32B

Profile 04232001N60A

Profile 04232001N66B

Profile 04232001N31B

Profile 04232001N05A

Profile 04242001N09A

Profile 04242001N56B

Profile 04242001N33A

Profile 04242001N74B

Profile 04242001N38B

Profile 04242001N10A

Profile 04242001N30A

Profile 04252001N701

Profile 04252001N531

Profile 04252001N521

Profile 04252001N122

Profile 04252001N041

Profile 04252001N182

Profile 04242001N452

Profile 04252001N572

Profile 04262001N32A

Profile 04262001N25B

Profile 04262001N22A

Profile 04262001N60B

Profile 04262001N07A

Profile 04262001N66A

Profile 04262001N48B

Profile 04262001N35B

Profile 04302001N37A

Profile 04302001N09A

Profile 04302001N56A

Profile 04302001N34A

Profile 04302001N77B

Profile 04302001N71B

Profile 04302001N29B

Profile 04302001N35B

Profile 05012001N522

Profile 05012001N042

Profile 05012001N741

Profile 05012001N782

Profile 05012001N581

Profile 05012001N752

Profile 05012001N451

Profile 05012001N631

Profile 05022001N611

Profile 05022001N59B

Profile 05022001N28A

Profile 05022001N60A

Profile 05022001N66B

Profile 05022001N69A

Profile 05022001N48A

Profile 05022001N31B

Profile 05032001N77A

Profile 05032001N56A

Profile 05032001N10B

Profile 05032001N20A

Profile 05032001N30B

Profile 05032001N24A

Profile 05032001N02A

Profile 05072001N17A

Profile 05072001N09A

Profile 05072001N04A

Profile 05072001N03A

Profile 05072001N14A

Profile 05072001N58A

Profile 05072001N35A

Profile 05072001N08A

Profile 05082001N61B

Profile 05082001N22B

Profile 05082001N60A

Profile 05082001N28B

Profile 05082001N07B

Profile 05082001N66A

Profile 05082001N69A

Profile 05082001N48A

Profile 05092001N67A

Profile 05092001N77A

Profile 05092001N32B

Profile 05092001N56B

Profile 05092001N34B

Profile 05092001N51A

Profile 05092001N44A

Profile 05092001N24B

Profile 05092001N53A

Profile 05092001N12A

Profile 05102001N45A

Profile 05102001N35A

Profile 05142001N59A

Profile 05142001N22A

Profile 05142001N74A

Profile 05142001N48A

Profile 05142001N60B

Profile 05142001N45B

Profile 05142001N41B

Profile 05142001N72B

Profile 05152001N702

Profile 05152001N671

Profile 05152001N652

Profile 05152001N562

Profile 05152001N731

Profile 05152001N341

Profile 05152001N583

Profile 05152001N553

Profile 05152001N201

Profile 05152001N573

Profile 05152001N353

Profile 05162001N26A

Profile 05162001N15B

Profile 05162001N13A

Profile 05162001N78A

Profile 05162001N76B

Profile 05162001N24B

Profile 05162001N46B

Profile 05162001N08A

Profile 05172001N32A

Profile 05172001N23A

Profile 05172001N16A

Profile 05172001N43A

Profile 05232001N13A

Profile 05232001N60A

Profile 05232001N36A

Profile 05232001N31A

Profile 05242001N26A

Profile 05242001N25B

Profile 05242001N56A

Profile 05242001N20A

Profile 05242001N10B

Profile 05242001N45A

Profile 05242001N24B

Profile 05242001N35B

Profile 05292001N37A

Profile 05292001N39A

Profile 05292001N64A

Profile 05292001N11A

Profile 05302001N32A

Profile 05302001N59B

Profile 05302001N71

Profile 05302001N66A

Profile 05302001N58B

Profile 05302001N48B

Profile 05302001N31B

Profile 05302001N05

Profile 05312001N65B

Profile 05312001N20A

Profile 05312001N10B

Profile 05312001N30B

Profile 05312001N24A

Profile 05312001N46A

Profile 05312001N41B

Profile 05312001N34A

Profile 06012001N37A

Profile 06012001N53B

Profile 06012001N25A

Profile 06012001N39B

file 06012001N12B

Pro

Profile 06012001N14B

Profile 06012001N78A

Profile 06012001N42A

Profile 06042001N37B

Profile 06042001N32B

Profile 06042001N59A

Profile 06042001N36B

Profile 06042001N48A

Profile 06042001N01B

Profile 06042001N57A

Profile 06042001N31A

Profile 06052001N67B

Profile 06052001N65B

Profile 06052001N56B

Profile 06052001N60A

Profile 06052001N74A

Profile 06052001N10A

Profile 06052001N24A

Profile 06052001N46B

Profile 06062001N12A

Profile 06062001N18A

Profile 06062001N45A

Profile 06062001N35A

Profile 06062001N25B

Profile 06062001N39B

Profile 06062001N58B

Profile 06062001N42B

Profile 06072001N01A

Profile 06072001N57A

Profile 06072001N08A

Profile 06072001N21A

Profile 06082001N04A

Profile 06082001N65B

Profile 06082001N56B

Profile 06082001N33A

Profile 06082001N10B

Profile 06082001N20A

Profile 06082001N24B

Profile 06082001N41A

Profile 06182001N37B

Profile 06182001N25B

Profile 06182001N40A

Profile 06182001N64A

Profile 06182001N18B

Profile 06182001N74A

Profile 06182001N27A

Profile 06182001N68B

Profile 06192001N59A

Profile 06192001N60A

Profile 06192001N07A

Profile 06192001N05A

Profile 06202001N34A

Profile 06202001N10A

Profile 06202001N20A

Profile 06202001N45A

Profile 06212001N25A

Profile 06212001N62A

Profile 06212001N52A

Profile 06212001N09B

Profile 06212001N68A

Profile 06212001N42B

Profile 06212001N46B

Profile 06212001N08B

Profile 06252001N32

Profile 06252001N60B

Profile 06252001N66A

Profile 06252001N69B

Profile 06252001N68B

Profile 06252001N48A

Profile 06252001N57A

Profile 06252001N05B

Profile 06262001N56A

Profile 06262001N34A

Profile 06262001N99A

Profile 06262001N24A

Profile 06272001N52B

Profile 06272001N12B

Profile 06272001N04A

Profile 06272001N19B

Profile 06272001N74A

Profile 06272001N45A

Profile 06272001N63B

Profile 06272001N08A

Profile 06282001N69A

Profile 06282001N58A

Profile 06282001N68A

Profile 06282001N48A

Profile 07022001N67B

Profile 07022001N10B

Profile 07022001N46B

Profile 07022001N35A

Profile 07022001N08A

Profile 07022001N05A

Profile 07032001N37B

Profile 07032001N53A

Profile 07032001N25A

Profile 07032001N52A

Profile 07032001N12B

Profile 07032001N40B

Profile 07032001N19A

Profile 07032001N63B

Profile 07092001N22A

Profile 07092001N60A

Profile 07092001N69B

Profile 07092001N58B

Profile 07092001N99B

Profile 07092001N57B

Profile 07092001N02A

Profile 07092001N05A

Profile 07102001N52B

Profile 07102001N41B

Profile 07102001N63B

Profile 07102001N08B

Profile 07112001N37A

Profile 07112001N39A

Profile 07112001N19A

Profile 07112001N18A

Profile 07122001N17A

Profile 07122001N59A

Profile 07122001N09A

Profile 07122001N24A

Profile 07162001N32B

Profile 07162001N56B

Profile 07162001N10A

Profile 07162001N99B

Profile 07162001N29

Profile 07162001N45A

Profile 07162001N46A

Profile 07162001N41A

Profile 07172001N37A

Profile 07172001N39A

Profile 07172001N42A

Profile 07172001N02A

Profile 07172001N11B

Profile 07172001N14B

Profile 07172001N63B

Profile 07182001N17

Profile 07182001N22A

Profile 07182001N07A

Profile 07182001N69A

Profile 07192001N56A

Profile 07192001N10A

Profile 07192001N24A

Profile 07192001N35A

APPENDIX J.

1.3 ATA PO₂-in-He DECOMPRESSION TABLES FOR MK 16 MOD 1 DIVING

Note: Operational guidance for use of the tables and for the rationale of limit line placement in the tables was given with their original issue in NEDU TR 14-01.¹

Reference

- 1 Johnson, T. M., Gerth, W. A. *1.3 ATA PO₂-in-He Decompression Tables for MK 16 MOD 1 Diving: Summary Report and Operational Guidance*. NEDU TR 14-01, Navy Experimental Diving Unit, Panama City, FL, 2001.

**Table 1. No-Decompression Limits and Repetitive Group Designators for
MK 16 MOD 1 HeO₂ No-Decompression Dives**

1.30 ATA FIXED PO2 IN HELIUM

RATES: DESCENT 60 FPM; ASCENT 30 FPM

NO-DECOMPRESSION DIVES

REPETITIVE GROUP DESIGNATOR
BOTTOM TIME (MIN)

DEPTH (FSW)	NO-STOP LIMIT	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	Z
20	720	129	269	720													
30	332	27	43	60	78	100	124	152	185	227	281	332					
40	720	122	246	720													
50	325	27	43	59	78	99	123	150	183	223	276	325					
60	134	15	23	32	41	51	61	71	83	95	108	123	134				
70	86	11	16	22	28	34	41	47	54	61	69	77	85	86			
80	63	8	12	17	21	26	30	35	40	45	51	56	62	63			
90	44	6	10	13	17	20	24	28	32	36	40	44					
100	31	5	8	11	14	17	20	23	26	30	31						
110	24	4	7	9	12	14	17	20	22	24							
120	20	4	6	8	10	13	15	17	19	20							
130	17	3	5	7	9	11	13	15	17								
140	15	3	4	6	8	10	12	13	15								
150	13	3	4	6	7	9	10	12	13								
160	12	3	5	6	8	9	11	12	12								
170	11	3	4	6	7	9	10	11	11								
180	10	3	4	5	6	8	9	10	10								
190	9	3	4	5	6	7	8	9	9								
200	8		3	4	5	7	8										

**Table 2. Schedules and Repetitive Group Designators for
MK 16 MOD 1 HeO₂ Decompression Dives**

1.30 ATA FIXED PO2 IN HELIUM										RATES: DESCENT 60 FPM; ASCENT 30 FPM								
DEPTH (FSW)	BTM TIM (M)	TM FIRST STOP (M:S)	DECOMPRESSION STOPS (FSW) STOP TIMES (MIN)										TOTAL ASCNT TIME (M:S)	RPT GRP DES				
			150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	
40	238	1:20														0	0	1:20 B
<hr/>																		
40	720	1:20														0	0	1:20 C
<hr/>																		
50	238	1:40														0	0	1:40 J
<hr/>																		
50	325	1:40														0	0	1:40 K
50	330	1:00														1	0	2:40 K
50	340	1:00														2	0	3:40 K
50	350	1:00														3	0	4:40 K
50	360	1:00														4	0	5:40 K
<hr/>																		
60	134	2:00														0	0	2:00 L
60	140	1:20														3	0	5:00 L
60	150	1:20														8	0	10:00 L
60	160	1:20														12	0	14:00 L
60	170	1:20														16	0	18:00 L
60	180	1:20														20	0	22:00 K
60	190	1:20														24	0	26:00 K
60	200	1:20														27	0	29:00 K
<hr/>																		
60	210	1:20														31	0	33:00 K
60	220	1:20														34	0	36:00 K
60	230	1:20														37	0	39:00 J
60	240	1:20														39	0	41:00 J
60	250	1:20														42	0	44:00 J
60	260	1:20														45	0	47:00 J
60	270	1:20														47	0	49:00 J
60	280	1:20														49	0	51:00 J

DEPTH (FSW)	BTM TIM	TO (M)	DECOMPRESSION STOPS (FSW) STOP TIMES (MIN)												TOTAL ASCNT TIME (M:S)	RPT GRP DES		
			150	140	130	120	110	100	90	80	70	60	50	40			30	20
60	290	1:20													51	0	53:00	J
60	300	1:20													53	0	55:00	J
60	310	1:20													55	0	57:00	J
60	320	1:20													57	0	59:00	I
60	330	1:20													59	0	61:00	I
60	340	1:20													61	0	63:00	I
60	350	1:20													64	0	66:00	I
60	360	1:20													66	0	68:00	I
<hr/>																		
70	86	2:20													0	0	2:20	M
70	90	1:40													3	0	5:20	M
70	95	1:40													7	0	9:20	L
70	100	1:40													12	0	14:20	L
70	110	1:40													19	0	21:20	L
70	120	1:40													26	0	28:20	L
70	130	1:40													33	0	35:20	K
70	140	1:40													39	0	41:20	K
70	150	1:40													45	0	47:20	K
70	160	1:40													50	0	52:20	K
70	170	1:40													55	0	57:20	J
limit line -----																		
70	180	1:40													60	0	62:20	J
70	190	1:40													64	0	66:20	J
70	200	1:40													68	0	70:20	J
70	210	1:40													72	0	74:20	J
70	220	1:40													76	0	78:20	I
<hr/>																		
80	63	2:40													0	0	2:40	M
80	65	2:00													2	0	4:40	M
80	70	2:00													8	0	10:40	L
80	75	2:00													13	0	15:40	L
80	80	2:00													19	0	21:40	L
80	85	2:00													24	0	26:40	L

DEPTH (FSW)	BTM TIM FIRST	(M) STOP (M:S)	DECOMPRESSION STOPS (FSW) STOP TIMES (MIN)												TOTAL ASCNT TIME (M:S)	RPT GRP DES	
			150	140	130	120	110	100	90	80	70	60	50	40			30
80	90	2:00												29	0	31:40	L
80	95	2:00												34	0	36:40	L
80	100	2:00												39	0	41:40	K
80	110	2:00												47	0	49:40	K
80	120	2:00												56	0	58:40	K
80	130	2:00												63	0	65:40	K
80	140	2:00												70	0	72:40	J
80	150	2:00												76	0	78:40	J
<hr/>																	
limit line -----																	
80	160	2:00												82	0	84:40	J
80	170	2:00												88	0	90:40	J
80	180	2:00												93	0	95:40	I
80	190	2:00												98	0	100:40	I
<hr/>																	
90	44	3:00												0	0	3:00	K
90	45	2:20												1	0	4:00	K
90	50	2:20												2	0	5:00	L
90	55	2:20												7	0	10:00	M
90	60	2:20												15	0	18:00	L
90	65	2:20												22	0	25:00	L
90	70	2:20												29	0	32:00	L
90	75	2:20												35	0	38:00	L
90	80	2:20												41	0	44:00	L
90	85	2:20												47	0	50:00	K
90	90	2:20												53	0	56:00	K
90	95	2:20												58	0	61:00	K
90	100	2:20												63	0	66:00	K
90	110	2:20												73	0	76:00	J
90	120	2:20												82	0	85:00	J
90	130	2:20												90	0	93:00	J
<hr/>																	

DEPTH (FSW)	BTM TIM (M)	TM FIRST STOP (M:S)	DECOMPRESSION STOPS (FSW) STOP TIMES (MIN)												TOTAL ASCNT TIME (M:S)	RPT GRP DES	
			150	140	130	120	110	100	90	80	70	60	50	40			30
90	140	2:20													97	0 100:00	J
90	150	2:20													104	0 107:00	J
90	160	2:20													112	0 115:00	I
<hr/>																	
100	31	3:20													0	0 3:20	J
100	35	2:40													2	0 5:20	K
100	40	2:40													4	0 7:20	L
100	45	2:40													6	0 9:20	M
100	50	2:40													16	0 19:20	L
100	55	2:40													24	0 27:20	L
100	60	2:40													33	0 36:20	L
100	65	2:40													40	0 43:20	L
100	70	2:40													48	0 51:20	K
100	75	2:40													55	0 58:20	K
100	80	2:40													62	0 65:20	K
100	85	2:40													68	0 71:20	K
100	90	2:40													74	0 77:20	K
100	95	2:40													80	0 83:20	J
100	100	2:40													85	0 88:20	J
100	110	2:40													96	0 99:20	J
100	120	2:40													105	0 108:20	J
<hr/>																	
limit line -----																	
100	130	2:20													1 114	0 118:36	I
100	140	2:20													1 123	0 127:36	I
<hr/>																	
110	24	3:40													0	0 3:40	I
110	25	3:00													1	0 4:40	I
110	30	3:00													4	0 7:40	J
110	35	3:00													7	0 10:40	L
110	40	3:00													10	0 13:40	M
110	45	3:00													21	0 24:40	L
110	50	3:00													31	0 34:40	L
110	55	3:00													40	0 43:40	L

DEPTH (FSW)	BTM TIM (M)	TM TO STOP (M:S)	DECOMPRESSION STOPS (FSW) STOP TIMES (MIN)												TOTAL ASCNT TIME (M:S)	RPT GRP DES			
			150	140	130	120	110	100	90	80	70	60	50	40			30	20	10
110	60	2:40												1	49	0	53:40	K	
110	65	2:40												2	56	0	61:40	K	
110	70	2:40												3	63	0	69:40	K	
110	75	2:40												4	70	0	77:40	K	
110	80	2:40												5	77	0	85:40	J	
110	85	2:40												5	83	0	91:40	J	
110	90	2:40												6	89	0	98:40	J	
110	95	2:40												6	95	0	104:40	J	
110	100	2:40												6	101	0	110:40	J	
110	110	2:40												7	111	0	121:40	J	
<hr/>																			
limit line -----																			
110	120	2:40												7	123	0	133:40		
110	130	2:40												7	136	0	146:56		
110	140	2:20												1	7	148	0	159:56	
<hr/>																			
120	20	4:00												0	0	4:00	I		
120	25	3:20												4	0	8:00	J		
120	30	3:20												8	0	12:00	K		
120	35	3:20												12	0	16:00	M		
120	40	3:20												23	0	27:00	L		
120	45	3:00												2	33	0	39:00	L	
120	50	3:00												4	43	0	51:00	L	
120	55	3:00												6	51	0	61:00	K	
120	60	3:00												7	60	0	71:00	K	
120	65	2:40												1	7	68	0	80:00	K
120	70	2:40												2	7	76	0	89:00	K
120	75	2:40												3	7	83	0	97:00	J
120	80	2:40												4	7	90	0	105:00	J
120	85	2:40												5	7	97	0	113:00	J
120	90	2:40												5	7	103	0	119:00	J
120	95	2:40												6	7	109	0	126:00	J
120	100	2:40												6	7	116	0	133:00	
<hr/>																			

DEPTH (FSW)	BTM TIM (M)	TM FIRST STOP (M:S)	DECOMPRESSION STOPS (FSW) STOP TIMES (MIN)												TOTAL ASCNT TIME (M:S)	RPT GRP DES				
			150	140	130	120	110	100	90	80	70	60	50	40			30	20	10	
120	110	2:40										6	7	130	0	147:00				
120	120	2:40										7	7	145	0	163:00				
<hr/>																				
130	17	4:20											0	0	4:20	H				
130	20	3:40											3	0	7:20	I				
130	25	3:40											8	0	12:20	K				
130	30	3:40											13	0	17:20	L				
130	35	3:20											2	21	0	27:20	L			
130	40	3:20											5	32	0	41:20	L			
130	45	3:00											1	7	42	0	54:20	L		
130	50	3:00											3	7	53	0	67:20	K		
130	55	3:00											5	7	62	0	78:20	K		
130	60	3:00											6	7	71	0	88:20	K		
130	65	2:40											1	7	7	80	0	99:20	J	
130	70	2:40											2	7	7	88	0	108:20	J	
130	75	2:40											3	7	7	96	0	117:20	J	
130	80	2:40											3	7	7	104	0	125:20	J	
130	85	2:40											4	7	7	111	0	133:20	J	
130	90	2:40											5	7	7	118	0	141:20		
<hr/>																				
limit line -----																				
130	95	2:40											5	7	7	126	0	149:20		
130	100	2:40											5	8	7	135	0	159:20		
130	110	2:40											6	7	7	151	0	175:20		
130	120	2:40											7	7	18	158	0	194:20		
<hr/>																				
140	15	4:40											0	0	4:40	H				
140	20	4:00											7	0	11:40	J				
140	25	4:00											12	0	16:40	K				
140	30	3:40											2	16	0	22:40	M			
140	35	3:40											7	28	0	39:40	L			
140	40	3:20											3	7	41	0	55:40	L		
140	45	3:20											6	7	52	0	69:40	K		
140	50	3:00											1	7	7	63	0	82:40	K	

DEPTH (FSW)	BTM TIM	TO FIRST (M) STOP (M:S)	DECOMPRESSION STOPS (FSW) STOP TIMES (MIN)												TOTAL ASCNT TIME (M:S)	RPT GRP DES								
			150	140	130	120	110	100	90	80	70	60	50	40			30	20	10					
140	55	3:00										3	7	7	74	0	95:40	K						
140	60	3:00										5	7	7	83	0	106:40	J						
140	65	3:00										7	7	7	92	0	117:40	J						
140	70	2:40										1	7	7	7	101	0	127:40	J					
140	75	2:40										2	7	7	7	109	0	136:40	J					
140	80	2:40										3	7	7	7	117	0	145:40						
<hr/>																								
limit line -----																								
140	85	2:40										3	8	7	7	126	0	155:40						
140	90	2:40										4	7	7	7	137	0	166:40						
140	95	2:40										5	7	7	7	146	0	176:40						
140	100	2:40										5	7	7	8	154	0	185:40						
<hr/>																								
150	13	5:00														0	0	5:00	H					
150	15	4:20														3	0	8:00	H					
150	20	4:20														10	0	15:00	J					
150	25	4:00														2	14	0	21:00	L				
150	30	4:00														7	23	0	35:00	L				
150	35	3:40														4	7	37	0	53:00	L			
150	40	3:20														1	7	7	50	0	70:00	K		
150	45	3:20														4	7	7	63	0	86:00	K		
150	50	3:20														7	7	7	74	0	100:00	K		
150	55	3:00														2	7	7	7	85	0	113:00	J	
150	60	3:00														4	7	7	7	95	0	125:00	J	
150	65	3:00														6	7	7	7	104	0	136:16	J	
150	70	3:00														7	7	7	7	114	0	147:00	I	
150	75	2:40														1	7	7	7	7	124	0	158:16	
<hr/>																								
limit line -----																								
150	80	2:40														2	7	7	7	7	135	0	170:16	
150	85	2:40														3	7	7	7	7	146	0	182:16	
150	90	2:40														4	7	7	7	8	155	0	193:00	

DEPTH (FSW)	BTM TIM (M)	TM FIRST STOP (M:S)	DECOMPRESSION STOPS (FSW) STOP TIMES (MIN)												TOTAL ASCNT TIME (M:S)	RPT GRP DES									
			150	140	130	120	110	100	90	80	70	60	50	40			30	20	10						
160	12	5:20													0	0	5:20	H							
160	15	4:40													5	0	10:20	I							
160	20	4:40													13	0	18:20	K							
160	25	4:20													6	15	0	26:20	M						
160	30	4:00													4	7	31	0	47:20	L					
160	35	3:40													2	7	7	46	0	67:20	L				
160	40	3:40													6	7	7	60	0	85:20	K				
160	45	3:20													2	8	7	7	73	0	102:20	J			
160	50	3:20													5	7	7	8	84	0	116:20	J			
160	55	3:00													1	7	7	7	96	0	130:20	J			
160	60	3:00													3	7	7	7	107	0	143:20	J			
160	65	3:00													5	7	7	7	117	0	155:36				
160	70	3:00													6	7	7	7	129	0	168:36				
<hr/>																									
limit line -----																									
160	75	3:00													7	7	8	7	7	141	0	182:36			
160	80	2:40													1	7	8	7	7	7	153	0	195:20		
160	85	2:40													2	7	7	7	7	16	157	0	208:36		
160	90	2:40													3	7	7	7	7	25	161	0	222:36		
<hr/>																									
170	11	5:40																	0	0	5:40	H			
170	15	5:00																	8	0	13:40	I			
170	20	4:40																	2	15	0	22:40	K		
170	25	4:20																	2	7	22	0	36:40	L	
170	30	4:00														1	8	7	38	0	59:40	L			
170	35	4:00														7	7	7	55	0	81:40	K			
170	40	3:40														4	7	7	7	70	0	100:40	K		
170	45	3:20														1	7	7	7	83	0	117:40	J		
170	50	3:20														4	7	7	7	96	0	133:40	J		
170	55	3:20														7	7	7	7	108	0	148:40	J		
170	60	3:00														2	7	7	7	119	0	161:40			
<hr/>																									
limit line -----																									
170	65	3:00														4	7	7	7	7	134	0	178:56		
170	70	3:00														5	7	7	7	7	8	146	0	192:40	

DEPTH (FSW)	BTM TIM (M) STOP (M:S)	TM TO FIRST STOP (M:S)	DECOMPRESSION STOPS (FSW)												TOTAL ASCNT TIME (M:S)	RPT GRP DES								
			150	140	130	120	110	100	90	80	70	60	50	40			30	20	10					
170	75	3:00						7	7	7	7	7	11	156	0	207:56								
170	80	2:40						1	7	7	7	7	7	22	160	0	223:40							
<hr/>																								
180	10	6:00													0	0	6:00	H						
180	15	5:20													11	0	17:00	J						
180	20	5:00													6	14	0	26:00	L					
180	25	4:40													6	7	29	0	48:00	L				
180	30	4:20													6	7	47	0	73:00	K				
180	35	4:00													4	7	7	64	0	95:00	K			
180	40	3:40													2	7	7	79	0	115:00	J			
180	45	3:40													6	7	7	94	0	134:00	J			
180	50	3:20													2	7	8	7	7	107	0	151:00	J	
180	55	3:20													5	7	7	7	7	8	119	0	166:00	
<hr/>																								
limit line -----																								
180	60	3:00													1	7	7	7	7	7	7	136	0	185:00
180	65	3:00													3	7	7	7	7	7	7	151	0	202:16
180	70	3:00													5	7	7	7	7	7	16	158	0	220:00
<hr/>																								

RPT GRP DES	DEPTH (FSW)	BTM (M)	TM FIRST STOP	DECOMPRESSION STOPS (FSW)																TOTAL ASCNT TIME										
				STOP TIMES (MIN)																										
				170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		10									
				(M:S)																		(M:S)								
H	190	9	6:20														0	0	6:20											
H	190	10	5:40														2	0	8:20											
J	190	15	5:40														14	0	20:20											
M	190	20	4:40														1	1	7	16	0	31:20								
L	190	25	3:20														1	0	0	0	2	7	7	37	0	60:20				
K	190	30	3:00														1	0	0	1	1	7	7	56	0	86:20				
J	190	35	2:40														1	0	0	1	0	7	7	7	74	0	110:20			
J	190	40	2:20														1	0	0	0	1	5	7	7	8	7	90	0	132:20	
J	190	45	2:20														1	0	0	0	4	7	7	7	7	7	105	0	151:20	
I	190	50	2:20														1	0	0	0	7	7	7	7	7	7	119	0	168:20	
----- limit line -----																														
G	190	55	2:20														1	0	0	3	7	7	7	7	7	7	137	0	189:20	
I	190	60	2:20														1	0	0	6	7	7	7	7	7	7	7	153	0	208:20
K	190	65	2:20														1	0	1	7	7	7	7	7	7	7	19	159	0	228:36
I	190	70	2:20														1	0	3	7	7	7	7	7	7	7	31	164	0	247:20

G	200	8	6:40																							0	6:40			
I	200	10	6:00																							4	0	10:40		
K	200	15	5:20																							1	1	14	0	22:40
L	200	20	3:20															1	0	0	1	0	0	4	7	24	0	43:40		
K	200	25	2:00														1	0	0	1	0	0	1	6	7	7	47	0	76:40	
K	200	30	1:20					1	0	0	1	0	0	0	1	0	0	0	7	7	7	7	7	68	0	105:40				

J 200 35 1:20 1 0 1 0 0 0 1 0 0 6 7 7 7 7 87 0 130:40

J 200 40 1:00 1 0 1 0 0 0 1 0 0 4 7 7 7 7 7 104 0 152:40

I 200 45 1:00 1 0 1 0 0 1 0 0 1 7 8 7 7 7 7 120 0 173:40

limit line -----

200 50 1:00 1 0 1 0 0 0 1 0 0 5 7 7 7 7 7 139 0 195:40

200 55 1:00 1 0 1 0 0 0 1 0 1 7 7 7 7 7 8 155 0 215:40

200 60 1:00 1 0 1 0 0 0 1 0 4 7 7 7 7 7 23 160 0 238:40

DEPTH (FSW)	BTM (M)	TM (M:S)	DECOMPRESSION STOPS												TOTAL ASCNT TIME (M:S)															
			140	130	120	110	100	90	80	70	60	50	40	30		20	10													
210	5	7:00														7:00														
210	10	6:00											2	2	0	11:00														
210	15	5:00											1	1	3	2	5	0	19:00											
210	20	4:40											2	3	2	2	28	0	46:00											
210	25	4:00											1	3	2	3	1	3	57	0	79:00									
210	30	3:40											1	3	2	2	3	4	12	76	0	112:00								
210	35	3:20											1	2	3	2	2	6	11	12	95	0	143:00							
210	40	3:20											3	2	2	2	2	5	12	11	11	113	0	170:00						
<hr/>																														
limit line -----																														
210	45	3:00											1	3	2	2	3	2	12	11	12	11	130	0	196:00					
210	50	3:00											2	2	2	3	2	9	12	11	11	11	148	0	220:00					
210	55	3:00											3	2	2	2	6	11	11	11	11	12	165	0	243:00					
210	60	2:40											1	2	3	1	3	10	11	11	11	11	20	173	0	264:00				
<hr/>																														
220	5	7:20																				0	7:20							
220	10	6:00																1	2	2	0	12:20								
220	15	5:20																2	2	2	3	5	0	21:20						
220	20	4:40																2	2	2	3	2	36	0	56:20					
220	25	4:00																1	2	2	2	2	8	64	0	93:20				
220	30	3:40																1	3	2	2	3	2	10	11	85	0	128:20		
220	35	3:20																1	2	2	3	3	1	2	11	12	12	104	0	160:20
220	40	3:20																2	3	2	2	2	3	11	11	11	11	124	0	189:20
<hr/>																														
limit line -----																														
220	45	3:00											1	2	3	2	2	2	10	11	11	11	12	143	0	217:20				
220	50	3:00											2	2	2	3	2	7	11	11	11	11	12	162	0	243:20				
220	55	3:00											2	3	2	2	4	11	11	11	11	11	19	174	0	268:20				
<hr/>																														

DEPTH (FSW)	BTM TIM (M) (M:S)	TM TO FIRST STOP (M:S)	DECOMPRESSION STOPS STOP TIMES (MIN)												TOTAL ASCNT TIME (M:S)				
			140	130	120	110	100	90	80	70	60	50	40	30	20	10			
230	5	7:40													0	7:40			
230	10	6:20											1	3	2	0	13:40		
230	15	5:20										1	2	2	3	8	0	25:40	
230	20	4:40							1	2	2	3	2	2	2	46	0	67:40	
230	25	4:20						2	3	2	3	2	2	2	12	71	0	106:40	
230	30	3:40				1	2	2	2	3	2	2	6	12	11	93	0	143:40	
230	35	3:20			1	2	2	2	3	2	2	7	12	12	12	114	0	178:40	
<hr/>																			
limit line -----																			
230	40	3:20			2	2	3	2	2	2	8	11	12	11	11	136	0	209:40	
230	45	3:00	1	2	2	3	2	2	7	12	10	11	11	11	12	157	0	239:40	
230	50	3:00	2	2	2	2	3	4	12	11	11	11	11	11	16	173	0	267:40	
230	55	3:00	2	3	2	3	2	10	11	11	11	11	11	11	37	172	0	293:40	
<hr/>																			
240	5	8:00													0	8:00			
240	10	6:40											2	3	3	0	16:00		
240	15	5:40										2	2	2	3	2	16	0	35:00
240	20	5:00							2	3	2	2	2	3	2	54	0	78:00	
240	25	4:20						2	2	3	2	2	3	2	7	11	79	0	121:00
240	30	4:00			3	2	2	2	2	3	2	11	12	11	11	103	0	161:00	
240	35	3:40			3	2	2	3	1	3	3	12	11	12	11	126	0	197:00	
<hr/>																			
limit line -----																			
240	40	3:20	2	2	3	2	2	2	4	12	11	11	11	12	149	0	231:00		
240	45	3:20	3	3	1	3	2	4	11	11	12	11	11	12	171	0	263:00		
240	50	3:20	4	2	2	3	11	11	11	11	11	11	11	33	173	0	293:00		
<hr/>																			

DEPTH (FSW)	BTM TIM (M) (M:S)	TM TO FIRST STOP	DECOMPRESSION STOPS STOP TIMES (MIN)												TOTAL ASCNT TIME (M:S)										
			140	130	120	110	100	90	80	70	60	50	40	30	20	10									
250	5	8:20													0	8:20									
250	10	6:40													1	2	2	4	0	17:20					
250	15	5:40													1	2	2	3	3	1	24	0	44:20		
250	20	5:00													2	2	2	2	3	2	3	5	61	0	90:20
250	25	4:20					1	3	2	2	2	2	3	2	12	12	12	86	0	135:20					
250	30	4:00			2	3	2	2	2	2	3	6	12	12	12	111	0	177:20							
<hr/>																									
limit line -----																									
250	35	3:40	2	2	3	2	2	2	2	10	11	12	11	11	137	0	215:20								
250	40	3:40	4	2	3	2	2	2	11	11	11	11	11	11	163	0	252:20								
250	45	3:40	5	3	2	2	2	10	12	11	11	11	11	11	173	0	286:20								
250	50	3:40	6	2	2	3	9	11	11	12	10	12	11	47	174	0	318:20								
<hr/>																									
260	5	8:40													0	8:40									
260	10	7:00													2	2	2	4	0	18:40					
260	15	6:00													2	2	3	2	2	3	31	0	53:40		
260	20	5:00					1	2	2	3	2	3	2	2	10	67	0	102:40							
260	25	4:40			3	3	2	2	2	2	2	2	7	12	12	95	0	150:40							
260	30	4:00	2	2	3	2	2	2	2	3	11	12	12	10	123	0	194:40								
<hr/>																									
limit line -----																									
260	35	4:00	4	2	2	3	2	2	6	11	12	11	11	11	150	0	235:40								
260	40	4:00	6	2	2	3	7	11	12	11	11	11	11	13	175	0	274:40								
260	45	4:00	7	2	3	2	7	12	11	11	11	11	11	42	172	0	310:40								
<hr/>																									

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	DECOMPRESSION STOPS												TOTAL ASCNT TIME (M:S)	
			140	130	120	110	100	90	80	70	60	50	40	30	20	
270	5	8:20													1	0 10:00
270	10	7:00										1	2	2	3	4 0 21:00
270	15	6:00						1	2	3	2	3	2	2	39 0 63:00	
270	20	5:20				3	2	2	3	2	2	2	4	12	74 0 115:00	
270	25	4:40	0	3	2	2	2	2	3	2	3	11	11	12	103 0 165:00	
270	30	4:20	4	2	2	2	2	3	3	7	11	11	12	11	133 0 212:00	
limit line -----																
270	35	4:20	6	2	2	3	2	3	10	12	11	11	11	11	163 0 256:00	
270	40	4:20	8	2	2	2	5	11	11	12	10	11	11	29	175 0 298:00	
270	45	4:20	9	3	2	4	12	11	11	11	11	11	11	56	175 0 336:00	
<hr/>																
280	5	8:40													1	0 10:20
280	10	7:40										4	2	3	5	0 23:20
280	15	6:20						3	2	2	2	3	2	2	47 0 72:20	
280	20	5:20			1	3	3	2	2	3	1	2	9	12	80 0 127:20	
280	25	4:40	1	3	2	3	2	2	3	2	7	11	12	11	113 0 181:20	
limit line -----																
280	30	4:40	5	3	2	2	3	2	3	12	11	11	11	12	144 0 230:20	
280	35	4:40	8	2	2	2	3	7	12	12	10	11	11	12	176 0 277:20	
280	40	4:40	10	2	2	3	10	11	11	11	11	11	11	44	175 0 321:20	
280	45	4:40	11	2	3	11	11	11	11	11	11	11	11	71	178 0 362:20	
<hr/>																
290	5	8:40											1	1	0 11:40	
290	10	8:00										4	3	3	5	0 24:40
290	15	6:20						2	2	2	3	2	2	3	54 0 81:40	
290	20	5:40			3	3	2	2	2	3	2	3	12	11	88 0 140:40	
290	25	5:00	4	2	2	2	3	3	1	2	12	11	12	11	121 0 195:40	
limit line -----																

DEPTH (FSW)	BTM (M)	TM FIRST (M:S)	STOP (M:S)	DECOMPRESSION STOPS STOP TIMES (MIN)												TOTAL ASCNT TIME (M:S)						
				140	130	120	110	100	90	80	70	60	50	40	30	20						
290	30	5:00	7	2	3	2	2	3	8	11	12	11	11	11	156	0	248:40					
290	35	5:00	10	2	2	2	4	12	11	11	11	11	11	11	27	175	0	298:40				
290	40	5:00	12	2	2	7	12	11	11	11	11	10	11	58	178	0	345:40					
290	45	5:00	13	3	8	11	11	11	12	12	9	10	19	82	179	0	389:40					
<hr/>																						
300	5	9:00													1	2	0	13:00				
300	10	7:40													1	3	2	2	3	7	0	28:00
300	15	6:40							3	2	2	3	2	2	2	5	60	0	91:00			
300	20	5:40		1	4	2	2	3	2	2	2	7	12	12	12	95	0	154:00				
300	25	5:20	5	3	2	2	2	2	3	6	12	11	12	11	11	131	0	212:00				
limit line -----																						
300	30	5:20	9	2	2	3	2	4	12	11	11	11	11	12	168	0	268:00					
300	35	5:20	12	2	2	2	10	11	12	11	10	11	11	41	177	0	322:00					
300	40	5:20	14	2	4	11	11	11	11	11	11	11	11	73	180	0	371:00					
<hr/>																						
310	6	9:00													1	3	2	0	16:20			
310	10	8:00													3	2	2	2	3	14	0	36:20
310	15	6:40					1	3	2	3	2	3	1	3	8	65	0	101:20				
310	20	6:00		4	3	2	2	3	2	2	11	12	11	11	103	0	167:20					
310	25	5:40	7	3	1	3	2	2	3	11	11	11	11	12	141	0	228:20					
310	30	5:40	11	2	2	2	3	9	11	12	11	11	11	16	177	0	288:20					
310	35	5:40	14	2	2	6	11	12	11	11	10	11	11	54	179	0	344:20					
310	40	5:40	16	2	10	11	11	12	11	9	11	19	82	182	0	397:20						
<hr/>																						
320	6	9:00													1	1	2	3	0	17:40		
320	10	8:00													1	3	2	2	3	20	0	43:40

DEPTH (FSW)	BTM (M)	TM TO FIRST (M:S)	STOP	DECOMPRESSION STOPS STOP TIMES (MIN)												TOTAL ASCNT TIME (M:S)
				140	130	120	110	100	90	80	70	60	50	40	30	
320	15	7:00		3	3	2	2	2	2	3	2	12	70	0	111:40	
320	20	6:00	1	5	2	3	1	3	3	1	6	11	12	12	110	0 180:40
320	25	6:00	9	2	2	3	2	2	6	12	11	11	11	12	152	0 245:40
320	30	6:00	13	2	2	2	6	11	11	11	11	11	11	29	178	0 308:40
320	35	6:00	15	3	2	11	12	11	11	11	10	11	11	68	182	0 368:40
320	40	6:00	18	7	11	11	11	11	10	11	11	12	36	83	182	0 424:40

Table 3. MK 16 MOD 1 HeO₂ Surface Interval Credit and Residual Gas Time Table

START																
A	0:30 2:01															
B	0:30 1:11 1:10 3:11															
C	0:30 0:51 2:01 0:50 2:00 4:01															
D	0:30 0:43 1:33 2:44 0:42 1:32 2:43 4:44															
E	0:30 0:43 1:26 2:16 3:26 0:42 1:25 2:15 3:25 5:26															
F	0:30 0:43 1:26 2:08 2:09 0:42 1:25 2:07 2:57 4:08 6:08															
G	0:30 0:43 1:26 2:08 2:50 0:42 1:25 2:07 2:49 3:39 4:50 6:51															
H	0:30 0:43 1:26 2:08 2:50 0:42 1:25 2:07 2:49 3:32 4:22 5:32 7:33															
I	0:30 0:43 1:26 2:08 2:50 3:33 0:42 1:25 2:07 2:49 3:32 4:14 5:04 6:15 8:15															
J	0:30 0:43 1:26 2:08 2:50 3:33 4:15 4:57 5:46 0:42 1:25 2:07 2:49 3:32 4:14 4:56 5:39 6:57 8:58															
K	0:30 0:43 1:26 2:08 2:50 3:33 4:15 4:57 5:40 0:42 1:25 2:07 2:49 3:32 4:14 4:56 5:39 6:29 7:39 9:40															
L	0:30 0:43 1:26 2:08 2:50 3:33 4:15 4:57 5:40 0:42 1:25 2:07 2:49 3:32 4:14 4:56 5:39 6:21 7:11 8:22 10:22															
M	0:30 0:43 1:26 2:08 2:50 3:33 4:15 4:57 5:40 6:22 0:42 1:25 2:07 2:49 3:32 4:14 4:56 5:39 6:21 7:03 7:53 9:04 11:05															
N	0:30 0:43 1:26 2:08 2:50 3:33 4:15 4:57 5:40 6:22 7:04 0:42 1:25 2:07 2:49 3:32 4:14 4:56 5:39 6:21 7:03 7:46 8:36 9:46 11:47															
O	0:30 0:43 1:26 2:08 2:50 3:33 4:15 4:57 5:40 6:22 7:04 7:47 8:29 9:19 10:30 0:42 1:25 2:07 2:49 3:32 4:14 4:56 5:39 6:21 7:03 7:46 8:28 9:18 10:29 12:29															
Z	0:30 0:43 1:26 2:08 2:50 3:33 4:15 4:57 5:40 6:22 7:04 7:47 8:29 9:11 10:01 11:12 0:42 1:25 2:07 2:49 3:32 4:14 4:56 5:39 6:21 7:03 7:46 8:28 9:10 10:00 11:11 13:12															
FINAL	Z	O	N	M	L	K	J	I	H	G	F	E	D	C	B	A
REPETS BREATHING	1.30 ATA FIXED PO2 IN HELIUM															
DEPTH																
10																
20																
30	720 516 362 281 227 185 152 124 100 78 60 43 27															
40																
50	720 490 352 276 223 183 150 123 99 78 59 43 27															
60	220	195	174	155	138	123	108	95	83	71	51	32	23	15		
70	123	112	103	94	85	77	69	61	54	47	34	22	16	11		
80	86	80	74	67	62	56	51	45	40	35	26	17	12	8		
90	67	62	57	53	48	44	40	36	32	28	20	17	13	10	6	
100	54	51	47	43	40	36	33	30	26	23	17	11	8	5		
110	46	43	40	37	34	31	28	25	22	20	17	14	12	9	4	
120	40	37	34	32	29	27	24	22	19	17	15	13	10	8	4	
130	35	32	30	28	26	24	21	19	17	15	13	11	9	7	3	
140	31	29	27	25	23	21	19	17	15	13	12	10	8	6	3	
150	28	26	24	22	21	19	17	15	14	12	10	9	7	6	3	
160	25	24	22	20	19	17	16	14	12	11	9	8	6	5	3	
170	23	22	20	19	17	16	14	13	11	10	9	7	6	4	3	
180	21	20	19	17	16	14	13	12	10	9	8	6	5	4	3	
190	20	18	17	16	15	13	12	11	10	8	7	6	5	4	3	
200	18	17	16	15	13	12	11	10	9	8	7	5	4	3	3	

Appendix K.

Comparison of Repetitive Dive Schedules as Planned for Test to Corresponding Schedules Prescribed by the MK 16 MOD 1 Heliox Decompression Tables

NOTE: The tabulated estimated DCS risk for each schedule was computed assuming ideal MK 16 MOD 1 PO₂ control.

Phase I.

Tested Schedule (Computed using Probabilistic LEM algorithm)

Profile #	Dive 1			Dive 2			Dive 3			Corresponding Schedule as Prescribed by MK 16 MOD 1 He-O ₂ Decompression Tables		
	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{DCS} , %	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{DCS} , %	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{DCS} , %
1-A	160/ 25 - SI30 - 160/ 25 50/ 2 40/ 2 30/ 3 20/ 6	50/ 2 40/ 3 30/ 4 20/ 79	2.697 2.344 - 3.086	160/ 25 - SI30 - 160/ 25 30/ 6 20/ 15	40/ 2 30/ 3 40/ 7 30/ 7	40/ 4 30/ 7 40/ 7 20/ 73	40/ 4 30/ 7 40/ 7 20/ 73	2.633 2.299 - 3.001	160/ 20 - SI30 - 160/ 15 - SI30 - 160/ 15 - SI30 - 160/ 20 - 3.616	160/ 20 - SI30 - 160/ 15 - SI30 - 160/ 15 - SI30 - 160/ 20 - 3.616	160/ 20 - SI30 - 160/ 15 - SI30 - 160/ 15 - SI30 - 160/ 20 - 3.616	160/ 20 - SI30 - 160/ 15 - SI30 - 160/ 15 - SI30 - 160/ 20 - 3.616
2-A	120/ 20 - SI30 - 160/ 15 - SI30 - 160/ 20 4.072 3.278 - 4.989 30/ 2 20/ 14	40/ 2 30/ 3 20/ 65	120/ 20 - SI30 - 160/ 15 - SI30 - 160/ 15 - SI30 - 160/ 15 - SI30 - 160/ 20 - 4.481 40/ 4 30/ 7 20/ 31	40/ 4 30/ 7 20/ 60	50/ 6 40/ 7 30/ 7	120/ 15 - SI30 - 160/ 20 - 4.481 40/ 1 30/ 1 20/ 14	120/ 15 - SI30 - 160/ 20 - 4.481 40/ 1 30/ 1 20/ 14	120/ 15 - SI30 - 160/ 20 - 4.481 40/ 1 30/ 1 20/ 14	120/ 15 - SI30 - 160/ 20 - 4.481 40/ 1 30/ 1 20/ 14			
3-A	200/ 15 - SI30 - 160/ 15 - SI30 - 160/ 15 3.442 2.698 - 4.319 50/ 1 40/ 2 30/ 3 20/ 4	30/ 1 20/ 49	200/ 15 - SI30 - 160/ 20 - 2.889 40/ 1 30/ 1 20/ 46	40/ 1 30/ 1 20/ 46	50/ 2 40/ 7 30/ 7 20/ 46	50/ 2 40/ 7 30/ 7 20/ 46	50/ 2 40/ 7 30/ 7 20/ 46	50/ 2 40/ 7 30/ 7 20/ 46	200/ 15 - SI30 - 160/ 20 - 2.889 40/ 1 30/ 1 20/ 46	200/ 15 - SI30 - 160/ 20 - 2.889 40/ 1 30/ 1 20/ 46	200/ 15 - SI30 - 160/ 20 - 2.889 40/ 1 30/ 1 20/ 46	200/ 15 - SI30 - 160/ 20 - 2.889 40/ 1 30/ 1 20/ 46

Tested Schedule (Computed using Probabilistic LEM algorithm)

**Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables**

Profile #	Dive 1	Dive 2	Dive 3	Estimated P _{DCS} , %	Dive 1	Dive 2	Dive 3
4-A	200/ 15 - S130 - 200/ 20		3.052 2.312 - 3.947		200/ 15 - S130 - 200/ 20		2.464 2.115 - 2.853
	50/ 1	70/ 2			40/ 1	160/ 1	
	40/ 2	60/ 2			30/ 1	140/ 1	
	30/ 3	50/ 2			20/ 14	100/ 1	
	20/ 4	40/ 3				70/ 6	
		30/ 12				60/ 7	
		20/ 73				50/ 7	
						40/ 7	
						30/ 7	
						20/ 7	
						20/ 87	
5-B	200/ 22 - S130 - 160/ 15		2.268 1.967 - 2.600		200/ 22 - S130 - 160/ 15		2.586 2.265 - 2.939
	80/ 2	30/ 1			140/ 1	50/ 2	
	70/ 2	20/ 49			100/ 1	40/ 7	
	60/ 3				60/ 1	30/ 7	
	50/ 2				50/ 6	20/ 46	
	40/ 2				40/ 7		
	30/ 2				30/ 7		
	20/ 47				20/ 47		
6-B	120/ 15 - S130 - 200/ 23		2.410 1.829 - 3.115		120/ 15 - S130 - 200/ 23		2.768 2.147 - 3.509
	80/ 2				160/ 1		
	70/ 3				130/ 1		
	60/ 2				90/ 1		
	50/ 2				60/ 7		
	40/ 2				50/ 7		
	30/ 12				40/ 7		
	20/ 71				30/ 7		
					20/ 68		

Tested Schedule (Computed using Probabilistic LEM algorithm)

**Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables**

Tested Schedule (Computed using Probabilistic LEM algorithm)

Profile #	Corresponding Schedule as Prescribed by MK 16 MOD 1 He-O ₂ Decompression Tables							
	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{DCS} , %	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{DCS} , %
11-B	200/ 22 - SI30 - 120/ 20 80/ 2 20/ 40	2.292 1.987 - 2.629	200/ 22 - SI30 - 120/ 20 140/ 1 30/ 4 100/ 1 20/ 43					2.546 2.227 - 2.897
	70/ 2				60/ 1			
	60/ 3				50/ 6			
	50/ 2				40/ 7			
	40/ 2				30/ 7			
	30/ 2				20/ 47			
	20/ 47							
12-B	120/ 15 - SI30 - 160/ 15 - SI30 - 200/ 15 2.781 2.122 - 3.577	120/ 15 - SI30 - 160/ 15 - SI30 - 200/ 15 2.839 2.221 - 3.572						
	30/ 2	50/ 2			30/ 6			
	20/ 14	40/ 2			20/ 15			
		30/ 2			20/ 15			
		20/ 69			90/ 1			
					60/ 7			
					50/ 7			
					40/ 7			
					30/ 7			
					20/ 68			
13-B	160/ 20 - SI30 - 200/ 18 40/ 2 70/ 2 30/ 2 60/ 2 20/ 4 50/ 2	2.768 2.138 - 3.521	160/ 20 - SI30 - 200/ 18 160/ 1 130/ 1 130/ 1 90/ 1 60/ 7 50/ 7 40/ 7 40/ 7 30/ 7 30/ 7 20/ 72					2.657 2.308 - 3.014

Tested Schedule (Computed using Probabilistic LEM algorithm)

**Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables**

Profile #	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs} , %	Dive 1		Dive 2		Dive 3		Estimated Cumulative P _{Dcs} , %
					Dive 1	Dive 2	Dive 2	Dive 3	Dive 3	Dive 3	
14-B	200/ 15 - SI30 - 120/ 15 - SI30 - 200/ 13 2.710 2.316 - 3.151	200/ 15 - SI30 - 120/ 15 - SI30 - 200/ 13 2.350 2.006 - 2.736	40/ 1	30/ 2	40/ 1	30/ 2	30/ 33	20/ 33	20/ 13	20/ 13	160/ 1
	50/ 1 20/ 15 50/ 2	40/ 2 40/ 2	30/ 3 30/ 3	20/ 68	30/ 1	20/ 14	60/ 7	60/ 7	60/ 7	60/ 7	130/ 1
15-B	120/ 20 - SI30 - 160/ 16 - SI30 - 160/ 15 3.671 2.923 - 4.543	120/ 20 - SI30 - 160/ 16 - SI30 - 160/ 15 3.606 2.864 - 4.473	40/ 2	40/ 4	40/ 2	40/ 4	30/ 7	30/ 7	30/ 15	30/ 15	50/ 2
	40/ 2 30/ 3 20/ 48	30/ 3 20/ 48	20/ 34		20/ 34	20/ 31	20/ 31	20/ 31	20/ 31	20/ 31	40/ 7
16-B	160/ 20 - SI30 - 120/ 25 - SI30 - 120/ 16 3.143 2.489 - 3.911	160/ 20 - SI30 - 120/ 25 - SI30 - 120/ 16 2.428 2.098 - 2.79	20/ 13	20/ 13	20/ 13	20/ 13	30/ 6	30/ 6	30/ 16	30/ 16	30/ 2
	40/ 2 30/ 2 20/ 4	20/ 40 20/ 40	20/ 4		20/ 4	20/ 4	20/ 51	20/ 51	20/ 51	20/ 51	20/ 33
17-B	200/ 20 - SI30 - 160/ 17	2.380 2.050 - 2.746	200/ 20 - SI30 - 160/ 17		100/ 1	100/ 1	70/ 1	70/ 1	70/ 1	70/ 1	50/ 6
	70/ 1 60/ 2 50/ 2	40/ 2 30/ 3 20/ 64			40/ 4	40/ 4	40/ 4	40/ 4	40/ 4	40/ 4	40/ 7
	40/ 3 30/ 2 20/ 18				30/ 7	30/ 7	30/ 7	30/ 7	30/ 7	30/ 7	30/ 7
					20/ 24	20/ 24	20/ 24	20/ 24	20/ 24	20/ 24	20/ 60

Tested Schedule (Computed using Probabilistic LEM algorithm)

Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables

Profile #	Dive 1	Dive 2	Dive 3	Estimated P _{DCS} , %	Dive 1	Dive 2	Dive 3	Estimated P _{DCS} , %
18-B	120/ 20 - SI30 - 120/ 20 - SI30 - 160/ 15 3.721	20/ 20	30/ 1	2.969 - 4.597	120/ 20 - SI30 - 120/ 20 - SI30 - 160/ 15 3.346	30/ 2	50/ 2	4.212
			20/ 49		20/ 33	40/ 7		
					30/ 7			
					20/ 46			
19-B	160/ 15 - SI30 - 200/ 11 - SI30 - 120/ 15 3.423	30/ 1	50/ 2	2.600 - 4.413	160/ 15 - SI30 - 200/ 11 - SI30 - 120/ 15 2.431	20/ 5	140/ 1	3.095
		20/ 2	40/ 3		20/ 33	100/ 1	30/ 2	
			30/ 2		60/ 1		20/ 33	
			20/ 42		50/ 6			
					40/ 7			
					30/ 7			
					20/ 47			
20-B	200/ 17 - SI30 - 200/ 15			2.251 1.944 - 2.594	200/ 17 - SI30 - 200/ 15			
	70/ 1	50/ 2			100/ 1	160/ 1		
	60/ 2	40/ 2			70/ 1	130/ 1		
	50/ 2	30/ 2			40/ 4	90/ 1		
	40/ 3	20/ 68			30/ 7	60/ 7		
	30/ 2				20/ 24	50/ 7		
	20/ 18					40/ 7		
						30/ 7		
						20/ 68		

Tested Schedule (Computed using Probabilistic LEM algorithm)

Profile #	Corresponding Schedule as Prescribed by MK 16 MOD 1 He-O ₂ Decompression Tables					
	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{DCCS} , %	Dive 1	Dive 2
21-B	120/ 25 - SI30 - 120/ 20 - SI30 - 200/ 13 3.729	50/ 2	20/ 4	4.478	120/ 25 - SI30 - 120/ 20 - SI30 - 200/ 13 2.677	2.198 - 3.227
	20/ 2	20/ 17	40/ 2	30/ 3	20/ 33	160/ 1
			20/ 67		130/ 1	
					90/ 1	
					60/ 7	
					50/ 7	
					40/ 7	
					30/ 7	
					20/ 68	
22-B	120/ 25 - SI30 - 200/ 18	70/ 2	3.335	2.698 - 4.071	120/ 25 - SI30 - 200/ 18	2.743 2.259 - 3.298
	20/ 2	60/ 2	20/ 4		160/ 1	
		50/ 3			130/ 1	
		40/ 2			90/ 1	
		30/ 7			60/ 7	
		20/ 68			50/ 7	
					40/ 7	
					30/ 7	
					20/ 68	
23-B	200/ 17 - SI30 - 200/ 15	50/ 2	2.251	1.944 - 2.594	200/ 17 - SI30 - 200/ 15	2.669 2.331 - 3.042
	70/ 1	40/ 2			100/ 1	
	60/ 2	30/ 2			70/ 1	
	50/ 2	20/ 68			40/ 4	
	40/ 3				30/ 7	
	30/ 2				20/ 24	
	20/ 18					
					60/ 7	
					50/ 7	
					40/ 7	
					30/ 7	
					20/ 68	

Tested Schedule (Computed using Probabilistic LEM algorithm)

**Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables**

Profile #	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{dcst.} %	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{dcst.} %
24-B	160/ 25 - SI30 - 160/ 22 50/ 2 40/ 2 30/ 3 20/ 6	160/ 25 - SI30 - 160/ 22 50/ 2 40/ 3 30/ 4 20/ 79	2.379 2.067 - 2.724 30/ 6 20/ 15	160/ 25 - SI30 - 160/ 22 30/ 6 20/ 15	160/ 25 - SI30 - 160/ 22 30/ 6 20/ 15	2.344 2.039 - 2.682 50/ 8 40/ 7	2.344 2.039 - 2.682 30/ 7 20/ 73	2.344 2.039 - 2.682
25-B	120/ 25 - SI30 - 200/ 18 20/ 2	120/ 25 - SI30 - 200/ 18 70/ 2 60/ 2 50/ 3 40/ 2 30/ 7 20/ 68	3.335 2.698 - 4.071 20/ 4	120/ 25 - SI30 - 200/ 18 160/ 1 130/ 1 90/ 1 60/ 7 50/ 7 40/ 7 30/ 7 20/ 68	120/ 25 - SI30 - 200/ 18 160/ 1 130/ 1 90/ 1 60/ 7 50/ 7 40/ 7 30/ 7 20/ 68	2.743 2.259 - 3.298 160/ 1 130/ 1 90/ 1 60/ 7 50/ 7 40/ 7 30/ 7 20/ 68	2.743 2.259 - 3.298 160/ 1 130/ 1 90/ 1 60/ 7 50/ 7 40/ 7 30/ 7 20/ 68	2.743 2.259 - 3.298
26-B	160/ 20 - SI30 - 200/ 18 40/ 2 30/ 2 20/ 4	160/ 20 - SI30 - 200/ 18 70/ 2 60/ 2 50/ 2 40/ 2 30/ 12 20/ 72	2.768 2.138 - 3.521 20/ 13	160/ 20 - SI30 - 200/ 18 160/ 1 130/ 1 90/ 1 60/ 7 50/ 7 40/ 7 30/ 7 20/ 68	160/ 20 - SI30 - 200/ 18 160/ 1 130/ 1 90/ 1 60/ 7 50/ 7 40/ 7 30/ 7 20/ 68	2.657 2.308 - 3.044 160/ 1 130/ 1 90/ 1 60/ 7 50/ 7 40/ 7 30/ 7 20/ 68	2.657 2.308 - 3.044 160/ 1 130/ 1 90/ 1 60/ 7 50/ 7 40/ 7 30/ 7 20/ 68	2.657 2.308 - 3.044

Tested Schedule (Computed using Probabilistic LEM algorithm)

**Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables**

Tested Schedule (Computed using Probabilistic LEM algorithm)							Corresponding Schedule as Prescribed by MK 16 MOD 1 He-O ₂ Decompression Tables			
Profile #	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs.} %	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs.} %		
27-B	200/ 22 - SI30 - 120/ 20 80/ 2 20/ 40		2.292 1.987 - 2.629	200/ 22 - SI30 - 120/ 20 140/ 1 30/ 4				2.546 2.227 - 2.897 100/ 1 20/ 43		
	70/ 2				100/ 1					
	60/ 3				60/ 1					
	50/ 2				50/ 6					
	40/ 2				40/ 7					
	30/ 2				30/ 7					
	20/ 47				20/ 47					
28-B	160/ 25 - SI30 - 160/ 22 50/ 2 50/ 2		2.379 2.067 - 2.724	160/ 25 - SI30 - 160/ 22 30/ 6 60/ 2				2.344 2.039 - 2.682 20/ 15 50/ 8		
	40/ 2				20/ 15					
	30/ 3				40/ 7					
	20/ 6				30/ 7					
	20/ 79				20/ 73					
29-B	160/ 15 - SI30 - 200/ 23 30/ 1 80/ 2		3.342 2.513 - 4.348	160/ 15 - SI30 - 200/ 23 20/ 5 160/ 1				2.755 2.182 - 3.429 140/ 1 100/ 1		
	20/ 2				140/ 1					
					100/ 1					
					70/ 6					
					60/ 7					
					50/ 7					
					40/ 7					
					30/ 7					
					20/ 87					
30-B	200/ 15 - SI30 - 120/ 20 - SI30 - 120/ 16 3.140 2.424 - 3.993 50/ 1 20/ 28 20/ 41				200/ 15 - SI30 - 120/ 20 - SI30 - 120/ 16 2.412 2.053 - 2.815 40/ 1 30/ 4 20/ 43					
	40/ 2				30/ 1					
	30/ 3				20/ 14					
	20/ 4				20/ 87					

Tested Schedule (Computed using Probabilistic LEM algorithm)

Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables

Profile #	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs} , %	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs} , %
31-B	120/ 25 - SI30 - 120/ 15 - SI30 - 200/ 13 3.844 2.974 - 4.878	20/ 2 20/ 2 50/ 2 40/ 2 30/ 3 20/ 68	20/ 4	120/ 25 - SI30 - 120/ 15 - SI30 - 20/ 23	120/ 25 - SI30 - 120/ 15 - SI30 - 20/ 23	120/ 25 - SI30 - 120/ 15 - SI30 - 20/ 23	120/ 25 - SI30 - 120/ 15 - SI30 - 20/ 23	120/ 25 - SI30 - 120/ 15 - SI30 - 20/ 23
32-B	160/ 15 - SI30 - 200/ 23 30/ 1 80/ 2 20/ 2	30/ 1 80/ 2 70/ 3 60/ 2 50/ 3 40/ 7 30/ 12 20/ 81	3.342 2.513 - 4.348	160/ 15 - SI30 - 200/ 23 20/ 5	160/ 15 - SI30 - 200/ 23 20/ 5	160/ 15 - SI30 - 200/ 23 20/ 5	160/ 15 - SI30 - 200/ 23 20/ 5	160/ 15 - SI30 - 200/ 23 20/ 5
33-B	120/ 20 - SI30 - 200/ 23	80/ 2 70/ 3 60/ 2 50/ 3 40/ 4 30/ 12 20/ 79	3.394 2.661 - 4.260	120/ 20 - SI30 - 200/ 23	120/ 20 - SI30 - 200/ 23	120/ 20 - SI30 - 200/ 23	120/ 20 - SI30 - 200/ 23	120/ 20 - SI30 - 200/ 23

Tested Schedule (Computed using Probabilistic LEM algorithm)

Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables

Profile #	Dive 1	Dive 2	Dive 3	Estimated P _{Dcs.} %	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs.} %
35-B	200/ 17 - SI30 - 200/ 15		2.251	1.944 - 2.594	200/ 17 - SI30 - 200/ 15			2.669 2.331 - 3.042
	70/ 1	50/ 2			100/ 1	160/ 1		
	60/ 2	40/ 2			70/ 1	130/ 1		
	50/ 2	30/ 2			40/ 4	90/ 1		
	40/ 3	20/ 68			30/ 7	60/ 7		
	30/ 2				20/ 24	50/ 7		
	20/ 18					40/ 7		
						30/ 7		
						20/ 68		
36-B	120/ 15 - SI30 - 120/ 15 - SI30 -	160/ 22	3.224	2.241 - 4.479	120/ 15 - SI30 - 120/ 15	- SI30 -	160/ 22	2.633 2.031 - 3.356
		50/ 2			20/ 8		50/ 6	
		40/ 3				40/ 7		
		30/ 2				30/ 7		
		20/ 68				20/ 60		
37-B	200/ 22 - SI30 - 120/ 20		2.426	2.108 - 2.778	200/ 22 - SI30 - 120/ 20			2.546 2.227 - 2.897
	80/ 2	20/ 40			140/ 1	30/ 4		
	70/ 2				100/ 1	20/ 43		
	60/ 3				60/ 1			
	50/ 2				50/ 6			
	40/ 2				40/ 7			
	30/ 2				30/ 7			
	20/ 47				20/ 47			
38-B	120/ 15 - SI30 - 160/ 21 - SI30 -	120/ 20	2.710	2.120 - 3.410	120/ 15 - SI30 - 160/ 21	- SI30 -	120/ 20	2.789 2.158 - 3.542
		50/ 2	20/ 40			40/ 4		
		40/ 3				30/ 4		
		30/ 2				30/ 7		
		20/ 42				20/ 31		

Tested Schedule (Computed using Probabilistic LEM algorithm)

Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables

Profile #	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs} , %	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs} , %
40-B	120/ 20 - SI30 - 160/ 15 - SI30 - 20/ 2	120/ 21 3.786 3.028 - 4.666	120/ 20 - SI30 - 160/ 15 - SI30 - 20/ 53	40/ 4 30/ 7 20/ 31	40/ 4 30/ 7 20/ 31	40/ 4 30/ 7 20/ 31	40/ 4 30/ 7 20/ 31	40/ 4 30/ 7 20/ 31
41-B	120/ 20 - SI30 - 120/ 25 - SI30 - 20/ 20	120/ 20 - SI30 - 120/ 25 - SI30 - 20/ 20	120/ 20 - SI30 - 120/ 25 - SI30 - 20/ 20	30/ 4 20/ 43	30/ 4 20/ 43	30/ 4 20/ 43	30/ 4 20/ 43	30/ 4 20/ 43
42-B	160/ 20 - SI30 - 200/ 18 2.768 2.138 - 3.521	160/ 20 - SI30 - 200/ 18 2.768 2.138 - 3.521	160/ 20 - SI30 - 200/ 18 2.768 2.138 - 3.521	160/ 13 20/ 13	160/ 13 20/ 13	160/ 13 20/ 13	160/ 13 20/ 13	160/ 13 20/ 13
43	120/ 25 - SI30 - 120/ 25 - SI30 - 20/ 30 20/ 2 20/ 2 20/ 53	120/ 25 - SI30 - 120/ 25 - SI30 - 20/ 30 20/ 2 20/ 2 20/ 53	120/ 25 - SI30 - 120/ 25 - SI30 - 20/ 30 20/ 2 20/ 2 20/ 53	25/ 4 30/ 4 20/ 43	25/ 4 30/ 4 20/ 43	25/ 4 30/ 4 20/ 43	25/ 4 30/ 4 20/ 43	25/ 4 30/ 4 20/ 43

Tested Schedule (Computed using Probabilistic LEM algorithm)

Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables

Profile #	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{DCS} , %	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{DCS} , %
44	160/ 25 - SI30 - 160/ 25 50/ 2 40/ 2 30/ 3 20/ 6	50/ 2 40/ 3 30/ 4 20/ 79	30/ 6 20/ 15 30/ 7 20/ 73	160/ 25 - SI30 - 160/ 25 30/ 6 20/ 15 30/ 7 20/ 73	160/ 25 - SI30 - 160/ 25 30/ 6 20/ 15 30/ 7 20/ 73	160/ 25 - SI30 - 160/ 25 30/ 6 20/ 15 30/ 7 20/ 73	160/ 25 - SI30 - 160/ 25 30/ 6 20/ 15 30/ 7 20/ 73	2.633 2.299 - 3.001

Phase II.

Tested Schedule (Computed using EL-RTA-XVAL_He_4 algorithm)

Profile #	Corresponding Schedule as Prescribed by MK 16 MOD 1 He-O ₂ Decompression Tables					
	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs.} %	Dive 1	Dive 2
II.22	120/ 30 - SI30 - 120/ 35 - SI30 - 120/ 25 - 2.824 20/ 8 30/ 4 20/ 53	20/ 30 - SI30 - 120/ 25 - 2.467 - 3.217 30/ 4 20/ 62	20/ 8 - SI30 - 120/ 35 - SI30 - 120/ 25 - 2.529 20/ 8 40/ 1 30/ 6	20/ 8 - SI30 - 120/ 35 - SI30 - 120/ 25 - 2.209 - 2.882 20/ 62 30/ 7 20/ 51		
II.23	100/ 15 - SI180 - 100/ 30 - SI180 - 120/ 30 - 4.110 20/ 39	20/ 39 - 3.470 - 4.827 20/ 39	100/ 15 - SI180 - 100/ 30 - SI180 - 120/ 30 - 2.818 20/ 4 20/ 4 20/ 4	100/ 15 - SI180 - 100/ 30 - SI180 - 120/ 30 - 2.384 - 3.305 20/ 39 30/ 4 20/ 43		
II.24	120/ 35 - SI30 - 100/ 35 20/ 12 20/ 52	2.442 2.121 - 2.798 20/ 12 20/ 52	20/ 12 - SI30 - 100/ 35 20/ 62	20/ 12 - SI30 - 100/ 35 20/ 62		
II.25	140/ 35 ¹ - SI30 - 120/ 30 30/ 3 20/ 16	2.547 2.220 - 2.908 30/ 1 20/ 62	20/ 16 - SI30 - 120/ 30 20/ 68	20/ 16 - SI30 - 120/ 30 20/ 68	2.211 1.922 - 2.530 20/ 68	2.128 1.842 - 2.446 20/ 68

¹ Profile II.25 was computed with first dive as 140/30, but dove with first dive as shown due to typographical error.

Tested Schedule (Computed using EL RTA-XVAL_He_4 algorithm)

Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables

Profile #	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs.} , %	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs.} , %
II.26	140/ 30 - SI180 - 140/ 30 30/ 3 20/ 16	3.389 2.947 - 3.876 30/ 5 20/ 60	140/ 30 - SI180 - 140/ 30 30/ 3 20/ 16	3.129 2.719 - 3.582 50/ 1 40/ 7 30/ 7				
II.27	140/ 20 - SI30 - 140/ 30 20/ 7	2.443 2.075 - 2.856 40/ 4 30/ 7 20/ 57	140/ 20 - SI30 - 140/ 30 20/ 7	2.223 1.864 - 2.631 50/ 1 40/ 7 30/ 7				
II.28	160/ 30 - SI30 - 160/ 25 40/ 4 30/ 7 20/ 31	2.832 2.467 - 3.234 40/ 2 30/ 7 20/ 74	160/ 30 - SI30 - 160/ 25 40/ 4 30/ 7 20/ 31	2.682 2.352 - 3.044 60/ 2 50/ 8 40/ 7				
II.29 ²	120/ 25 - SI180 - 160/ 20 - SI30 - 140/ 15 20/ 4 30/ 3 20/ 32	3.040 - 4.243 20/ 42	120/ 25 - SI180 - 160/ 20 - SI30 - 140/ 20 20/ 4	3.999 40/ 3 30/ 7 20/ 41				

² This profile is outside the recommended limit of only one repetitive dive after a decompression stop dive (c.f., item 3 in Conclusions and Recommendations).

Tested Schedule (Computed using EL-RTA-XVAL_He_4 algorithm)

Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables

Profile #	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs.} , %	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{Dcs.} , %
II.30	160/ 25 - SI180 - 120/ 35 30/ 6 20/ 15	20/ 57	3.400 2.952 - 3.894	160/ 25 - SI180 - 120/ 35 30/ 6 20/ 15	30/ 6 20/ 15	30/ 7 20/ 60	30/ 7 20/ 60	3.128 2.710 - 3.590
II.31	140/ 20 - SI30 - 160/ 30 20/ 7	50/ 5 40/ 7 30/ 7 20/ 70	2.569 2.199 - 2.981	140/ 20 - SI30 - 160/ 30 20/ 7	140/ 20 - SI30 - 160/ 30 20/ 7	160/ 30 60/ 5 50/ 7 40/ 7 30/ 8 20/ 84	160/ 30 60/ 5 50/ 7 40/ 7 30/ 8 20/ 84	2.108 1.765 - 2.497
II.32	180/ 25 - SI180 - 160/ 30 40/ 6 30/ 7 20/ 29	40/ 4 30/ 7 20/ 72	3.775 3.286 - 4.313	180/ 25 - SI180 - 160/ 30 40/ 6 30/ 7 20/ 29	40/ 6 30/ 7 20/ 29	60/ 2 50/ 8 40/ 7 30/ 7 20/ 73	60/ 2 50/ 8 40/ 7 30/ 7 20/ 73	3.560 3.108 - 4.057
II.33	180/ 20 - SI180 - 180/ 35 30/ 6 20/ 14	60/ 7 50/ 7 40/ 7 30/ 7 20/ 95	3.820 3.327 - 4.361	180/ 20 - SI180 - 180/ 35 30/ 6 20/ 14	30/ 6 20/ 14	70/ 6 60/ 7 50/ 7 40/ 7 30/ 7 20/ 94	70/ 6 60/ 7 50/ 7 40/ 7 30/ 7 20/ 94	3.842 3.346 - 4.386

Tested Schedule (Computed using EL-RTA-XVAL_He_4 algorithm)

Corresponding Schedule as Prescribed by
MK 16 MOD 1 He-O₂ Decompression Tables

Profile #	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{DCS} , %	Dive 1	Dive 2	Dive 3	Estimated Cumulative P _{DCS} , %
II.34	180/ 20 30/ 6 20/ 14	- SI30 - 180/ 25 60/ 2 50/ 7	2.846 2.451 - 3.286	180/ 20 - SI30 - 180/ 25 30/ 6 20/ 14	180/ 20 - SI30 - 180/ 25 30/ 6 20/ 14	180/ 20 - SI30 - 180/ 25 30/ 6 20/ 14	2.443 2.111 - 2.812	2.443 2.111 - 2.812
II.35	200/ 20 ³ 140/ 1 100/ 1 60/ 1 50/ 6 40/ 7 30/ 7 20/ 47	- SI30 - 180/ 25 40/ 6 30/ 6 20/ 84 50/ 6 40/ 7 30/ 7 20/ 47	3.079 2.675 - 3.525	200/ 20 - SI30 - 180/ 25 140/ 1 100/ 1 60/ 1 50/ 6 40/ 7 30/ 7 20/ 47	200/ 20 - SI30 - 180/ 25 140/ 1 100/ 1 60/ 1 50/ 6 40/ 7 30/ 7 20/ 47	200/ 20 - SI30 - 180/ 25 140/ 1 100/ 1 60/ 1 50/ 6 40/ 7 30/ 7 20/ 47	3.049 2.673 - 3.460	3.049 2.673 - 3.460
II.36	200/ 15 40/ 1 30/ 1 20/ 14	- SI180 - 180/ 35 60/ 7 50/ 7 40/ 7 30/ 7 20/ 91	3.645 3.152 - 4.189	200/ 15 - SI180 - 180/ 35 40/ 1 30/ 1 20/ 14	200/ 15 - SI180 - 180/ 35 40/ 1 30/ 1 20/ 14	200/ 15 - SI180 - 180/ 35 40/ 1 30/ 1 20/ 14	3.538 3.060 - 4.065	3.538 3.060 - 4.065
II.37	200/ 20 100/ 1 70/ 1 40/ 4 30/ 7 20/ 24	- SI30 - 180/ 15 30/ 4 20/ 57	2.640 2.270 - 3.053	200/ 20 - SI30 - 180/ 15 100/ 1 70/ 1 40/ 4 30/ 7 20/ 24	200/ 20 - SI30 - 180/ 15 100/ 1 70/ 1 40/ 4 30/ 7 20/ 24	200/ 20 - SI30 - 180/ 15 100/ 1 70/ 1 40/ 4 30/ 7 20/ 24	2.277 1.976 - 2.610	2.277 1.976 - 2.610

³ Profile II.35 was computed with first dive as 200/25, but dove with first dive as shown due to typographical error.

APPENDIX L.

Estimated DCS Risks of Dive Profiles as Actually Dived

PHASE I

Profile #	Estimated Cumulative DCS Risk, %		CUPTD ¹	Minimum VC % Normal ³	P _{CNS} , % ²
	Mean	95% Confidence Band			
103100AN91	1.857	1.576 - 2.175	79.82	99.51	0.52
103100AN29	1.795	1.520 - 2.106	83.00	99.49	0.58
110100AN83	1.925	1.664 - 2.215	282.73	98.32	1.72
110100AN79	1.860	1.607 - 2.142	285.10	98.31	1.80
110100AN72	1.922	1.662 - 2.211	282.00	98.33	1.67
110100BN121	2.566	2.038 - 3.188	268.03	98.48	1.64
110100BN601	2.448	1.899 - 3.105	276.89	98.43	1.81
110100BN581	2.619	2.042 - 3.305	272.04	98.46	1.63
110100BN211	2.078	1.535 - 2.752	292.80	98.34	2.15
110200AN321	2.538	1.874 - 3.358	263.33	98.51	1.36
110200AN221	2.013	1.735 - 2.324	276.22	98.43	1.56
110200AN891	1.961	1.633 - 2.337	155.97	99.12	1.01
110200AN311	1.702	1.452 - 1.982	292.20	98.33	1.99
110200BN531	1.737	1.450 - 2.065	265.13	98.44	1.57
110200BN80	1.392	1.153 - 1.668	55.26	99.66	0.32
110200BN35	1.746	1.501 - 2.020	263.74	98.45	1.54
110600BN652	1.019	0.829 - 1.241	309.86	98.16	2.96
110600BN602	1.542	1.314 - 1.799	276.03	98.36	1.67
110600BN912	1.729	1.484 - 2.003	264.46	98.43	1.43
110600BN352	1.554	1.324 - 1.813	274.22	98.37	1.56
110700AN392	1.572	1.017 - 2.331	256.63	98.50	2.25
110700AN893	0.882	0.583 - 1.292	282.74	98.32	2.30
110700AN553	0.972	0.703 - 1.314	272.58	98.38	2.44
110700N792	1.271	0.925 - 1.708	260.66	98.46	1.72
110800AN531	2.813	2.008 - 3.829	260.39	98.45	1.33
110800AN071	1.684	1.161 - 2.368	296.12	98.24	1.99
110800AN691	1.673	1.052 - 2.538	310.68	98.15	2.33
110800AN841	1.593	1.120 - 2.204	302.65	98.20	2.38
110900AN581	1.570	1.229 - 1.978	263.10	98.52	1.70
110900AN451	2.105	1.682 - 2.602	236.17	98.68	1.12
110900AN813	1.928	1.522 - 2.409	245.61	98.62	1.27
110900AN423	1.770	1.381 - 2.237	254.57	98.57	1.46
111300AN251	1.638	1.211 - 2.170	253.52	98.60	1.90
111300AN391	5.110	4.424 - 5.865	108.84	99.50	0.66
111300AN601	1.606	1.250 - 2.033	257.20	98.58	1.98
111400AN372	1.902	1.606 - 2.238	264.69	98.50	1.50
111400AN322	1.947	1.577 - 2.378	264.54	98.50	1.46
111400AN092	1.672	1.352 - 2.046	278.59	98.42	1.67
111400AN482	2.063	1.580 - 2.649	265.27	98.50	1.58

Profile #	Estimated Cumulative DCS Risk, % 95% Confidence Band	CUPTD ¹	Minimum VC % Normal ³		P _{CNS} , % ²
			Mean	Low - High	
111400BN22	1.585	1.351 - 1.849	267.48	98.41	1.62
111400BN53	1.839	1.582 - 2.126	252.34	98.50	1.34
111400BN69	1.505	1.278 - 1.762	272.41	98.39	1.72
111400BN05	1.823	1.568 - 2.109	253.74	98.50	1.36
111500AN771	1.698	1.279 - 2.212	263.58	98.51	1.53
111500AN741	1.794	1.373 - 2.306	258.05	98.54	1.46
111500AN841	1.839	1.397 - 2.379	257.81	98.54	1.55
111500AN291	1.544	1.047 - 2.203	276.98	98.43	1.98
111500BN701	1.603	1.169 - 2.149	54.81	99.66	0.27
111500BN651	1.558	1.206 - 1.984	268.27	98.42	1.67
111500BN501	1.423	1.112 - 1.798	56.41	99.65	0.30
111500BN341	1.960	1.438 - 2.612	253.84	98.50	1.42
111600AN141	2.041	1.737 - 2.382	111.32	99.38	0.61
111600AN751	2.127	1.747 - 2.564	251.41	98.60	1.18
111600AN551	1.717	1.464 - 2.002	273.39	98.47	1.60
111600AN351	1.488	1.107 - 1.962	291.21	98.37	2.05
111700AN361	2.464	1.863 - 3.195	265.26	98.50	1.58
111700AN791	2.811	2.212 - 3.518	244.37	98.62	1.19
111700AN05	2.045	1.527 - 2.684	264.16	98.41	1.30
112000AN671	1.504	1.271 - 1.769	298.90	98.30	2.03
112000AN771	2.302	1.924 - 2.731	256.02	98.55	1.23
112000AN742	2.008	1.665 - 2.401	272.51	98.46	1.53
112000AN292	2.324	1.918 - 2.790	256.12	98.55	1.22
112000BN591	1.220	1.017 - 1.454	276.83	98.36	2.08
112000BN581	2.128	1.841 - 2.448	222.97	98.68	1.01
112000BN411	1.804	1.549 - 2.088	243.02	98.56	1.39
112100AN122	1.469	0.936 - 2.207	39.06	99.76	0.20
112100AN782	2.380	1.838 - 3.032	236.23	98.68	1.33
112100AN552	2.296	1.737 - 2.976	243.32	98.64	1.52
112100AN352	3.055	2.387 - 3.845	211.24	98.82	0.94
112100BN521	1.565	0.961 - 2.421	36.20	99.77	0.18
112100BN341	2.155	1.477 - 3.039	236.56	98.67	1.39
112100BN801	2.003	1.399 - 2.782	236.12	98.68	1.37
112200AN321	1.399	1.174 - 1.657	258.12	98.47	1.75
112200AN071	1.374	1.157 - 1.620	261.05	98.45	1.62
112200AN361	1.072	0.877 - 1.300	284.75	98.32	9.38
112200AN051	1.446	1.222 - 1.702	262.63	98.45	9.98
112200BN37	2.815	2.260 - 3.461	262.85	98.51	1.33
112200BN531	3.137	2.517 - 3.857	255.09	98.55	1.22
112200BN481	2.312	1.757 - 2.986	296.99	98.31	1.95
112200BN311	2.384	1.842 - 3.034	287.38	98.37	1.71
112700AN771	2.479	1.915 - 3.156	238.11	98.60	1.38
112700AN341	2.766	2.178 - 3.462	224.47	98.68	1.14
112700AN741	2.408	1.903 - 3.004	229.68	98.65	1.24
112700AN291	2.503	1.982 - 3.119	226.96	98.66	1.19
112700BN20	2.008	1.734 - 2.314	228.34	98.64	1.05

Profile #	Estimated Cumulative DCS Risk, % 95% Confidence Band	CUPTD ¹	Minimum		P _{CNS} , % ² ³
			Mean	Low - High	
112700BN45	1.502	1.275 - 1.758	260.54	98.47	1.64
112700BN30	1.752	1.502 - 2.031	243.54	98.56	1.30
112700BN02	1.594	1.359 - 1.859	254.13	98.49	1.57
112800AN091	1.945	1.683 - 2.238	252.74	98.50	1.23
112800AN181	2.033	1.761 - 2.334	249.08	98.52	1.17
112800AN791	1.312	1.107 - 1.543	289.35	98.28	2.07
112800AN551	1.884	1.627 - 2.170	258.80	98.46	1.32
112800BN381	2.537	2.003 - 3.168	226.90	98.66	1.15
112800BN581	2.307	1.808 - 2.900	233.28	98.62	1.30
112800BN211	2.585	2.032 - 3.239	228.00	98.66	1.25
112900BN221	2.239	1.760 - 2.808	229.92	98.63	1.01
112900BN331	1.568	1.166 - 2.067	53.23	99.67	0.25
112900BN361	1.131	0.842 - 1.491	288.62	98.29	2.68
112900BN051	1.360	1.136 - 1.617	272.71	98.38	1.82
113000AN491	2.000	1.727 - 2.304	241.09	98.57	1.16
113000AN671	1.954	1.686 - 2.254	244.05	98.55	1.23
113000AN341	1.358	1.144 - 1.603	278.88	98.35	1.90
113000AN741	1.811	1.557 - 2.095	250.82	98.51	1.38
113000BN621	1.888	1.631 - 2.174	257.45	98.47	1.28
113000BN801	1.831	1.580 - 2.111	261.20	98.45	1.36
113000BN201	1.559	1.332 - 1.813	277.09	98.35	1.68
113000BN351	1.700	1.461 - 1.967	268.20	98.41	1.46
120400AN791	2.201	1.669 - 2.848	268.41	98.40	1.51
120400AN781	1.650	1.206 - 2.207	295.77	98.24	2.01
120400AN751	1.749	1.288 - 2.325	290.43	98.27	1.86
120400AN211	1.988	1.496 - 2.593	278.79	98.34	1.74
120400BN551	1.828	1.563 - 2.126	249.28	98.60	1.43
120400BN451	2.250	1.917 - 2.624	225.82	98.74	1.10
120400BN801	2.155	1.812 - 2.545	232.49	98.70	1.23
120400BN721	1.912	1.639 - 2.218	245.34	98.63	1.38
120500AN691	2.868	2.232 - 3.624	233.62	98.69	1.19
120500AN361	2.636	1.944 - 3.490	251.06	98.59	1.47
120500AN481	2.641	1.980 - 3.450	246.52	98.62	1.43
120500AN051	2.977	2.277 - 3.818	229.64	98.71	1.11
120500BN501	1.478	0.941 - 2.221	36.02	99.78	0.17
120500BN071	1.983	1.376 - 2.770	283.08	98.32	1.72
120500BN381	2.292	1.635 - 3.125	268.58	98.40	1.49
120500BN021	2.143	1.609 - 2.798	257.52	98.47	1.28
120600AN671	1.588	1.063 - 2.289	41.41	99.74	0.23
120600AN621	2.888	2.292 - 3.589	247.91	98.53	1.17
120600AN741	2.032	1.559 - 2.605	284.14	98.31	1.84
120600AN301	2.307	1.741 - 2.999	280.07	98.34	1.74
120600BN391	2.632	2.083 - 3.279	95.80	99.51	0.54
120600BN641	3.229	2.598 - 3.963	81.27	99.58	0.32
120600BN341	1.171	0.689 - 1.881	93.91	99.53	0.47
120700AN791	1.291	1.081 - 1.530	267.90	98.41	1.85

Profile #	Estimated Mean	Cumulative DCS Risk, % 95% Confidence Band	CUPTD ¹	Minimum VC % Normal ³		P _{CNS} , % ²
				Low - High	% Normal ³	
120700AN451	1.648	1.408 - 1.918	245.10	98.54	1.32	
120700AN811	1.909	1.645 - 2.203	230.66	98.63	1.11	
120700AN721	1.732	1.485 - 2.009	240.81	98.57	1.26	
120700BN521	2.142	1.384 - 3.170	241.10	98.65	1.39	
120700BN781	1.955	1.234 - 2.952	248.94	98.60	1.54	
120700BN751	2.687	1.846 - 3.774	219.73	98.77	1.04	
120700BN211	2.400	1.614 - 3.436	228.77	98.72	1.18	
121100AN372	1.561	1.329 - 1.823	258.67	98.47	1.47	
121100AN851	1.449	1.225 - 1.702	266.47	98.42	1.60	
121100AN692	1.294	1.084 - 1.535	276.10	98.36	1.85	
121100AN051	1.644	1.403 - 1.914	256.18	98.48	1.44	
121200AN491	1.889	1.482 - 2.373	134.53	99.36	0.72	
121200AN091	2.306	1.717 - 3.031	241.15	98.60	1.27	
121200AN331	2.068	1.548 - 2.708	250.23	98.55	1.44	
121200AN861	1.778	1.393 - 2.238	259.16	98.67	1.67	
121300AN791	1.861	1.581 - 2.177	100.71	99.38	0.73	
121300AN751	1.873	1.592 - 2.189	99.67	99.38	0.65	
121300AN411	1.948	1.660 - 2.273	95.79	99.41	0.58	
121300BN922	2.748	2.146 - 3.464	230.87	98.71	1.30	
121300BN872	3.110	2.443 - 3.897	217.53	98.79	1.08	
121300BN57	2.888	2.259 - 3.634	225.46	98.74	1.20	
121400AN531-2	2.817	2.250 - 3.481	262.07	98.51	1.24	
121400AN321-2	2.431	1.909 - 3.051	283.04	98.39	1.66	
121400AN141-2	2.408	1.867 - 3.055	285.41	98.38	1.61	
121400BN881	1.749	1.379 - 2.190	259.00	98.47	1.56	
121400BN481	1.604	1.286 - 1.978	263.21	98.44	1.61	
121400BN311	1.134	0.859 - 1.473	291.20	98.28	2.36	
020501AN491	0.000	0.000 - 0.000	14.32	99.90	0.03	
020501AN291	0.000	0.000 - 0.000	16.00	99.89	0.05	
020501AN551	0.000	0.000 - 0.000	14.41	99.90	0.04	
020501BN671	2.088	1.798 - 2.412	294.84	98.33	2.12	
020501BN772	1.957	1.608 - 2.360	313.77	98.21	2.21	
020501BN342	2.387	2.033 - 2.784	287.31	98.37	1.57	
020501BN831	2.201	1.875 - 2.567	296.58	98.31	1.73	
020501AN581	0.000	0.000 - 0.000	8.89	99.94	0.01	
020601AN501	0.000	0.000 - 0.000	2.69	99.98	0.00	
020601AN391	0.000	0.000 - 0.000	2.90	99.98	0.00	
020601AN121	0.000	0.000 - 0.000	2.43	99.98	0.00	
020601AN421	0.000	0.000 - 0.000	2.97	99.98	0.00	
020601BN521	2.760	2.224 - 3.384	284.71	98.38	1.55	
020601BN351	2.118	1.709 - 2.596	306.72	98.26	2.02	
020601BN211	2.536	2.026 - 3.135	294.83	98.32	1.74	
020701N531	2.023	1.752 - 2.323	271.32	98.40	1.47	
020701N172	0.000	0.000 - 0.000	9.32	99.94	0.01	
020701N662	0.000	0.000 - 0.000	3.28	99.98	0.00	
020701N362	0.000	0.000 - 0.000	7.87	99.95	0.01	

Profile #	Estimated Cumulative DCS Risk, % 95% Confidence Band	CUPTD ¹	Minimum VC % Normal ³			P _{CNS} , % ²
			Mean	Low - High	% Normal ³	
020701N312	0.000	0.000 - 0.000	8.65	99.94	0.01	
020701N931	1.803	1.555 - 2.080	283.87	98.32	1.71	
020701N081	1.923	1.663 - 2.213	277.52	98.36	1.59	
020801AN671	1.473	1.217 - 1.768	332.73	98.10	2.75	
020801AN771	2.526	2.140 - 2.960	281.69	98.40	1.51	
020801AN581	2.604	2.192 - 3.069	281.22	98.40	1.51	
020801AN861	2.608	2.202 - 3.066	278.89	98.41	1.45	
020801BN651	1.226	1.029 - 1.452	318.47	98.12	2.81	
020801BN561	1.836	1.585 - 2.116	279.70	98.34	1.62	
020801BN451	2.150	1.867 - 2.463	260.88	98.45	1.29	
020801BN461	1.900	1.641 - 2.187	278.82	98.34	1.69	
021201AN521	2.657	2.154 - 3.241	286.59	98.37	1.52	
021201AN121	1.188	0.974 - 1.436	344.20	98.04	3.40	
021201AN192	2.466	2.014 - 2.988	292.57	98.33	1.67	
021201AN582	2.691	2.112 - 3.376	301.32	98.29	2.04	
021201BN701	1.024	0.833 - 1.248	270.01	98.39	1.62	
021201BN391	0.773	0.598 - 0.986	288.64	98.28	2.21	
021201BN111	0.951	0.755 - 1.186	57.28	99.64	0.31	
022701BN3912	5.504	4.304 - 6.904	153.04	99.38	0.26	
021301AN331	2.643	2.060 - 3.336	316.13	98.22	2.29	
021301AN361	2.253	1.714 - 2.907	317.74	98.20	2.18	
021301N611	2.734	2.150 - 3.426	300.84	98.30	1.71	
021301AN631	2.745	2.158 - 3.439	304.85	98.29	2.04	
021401AN491	1.514	1.077 - 2.074	50.02	99.69	0.24	
021401AN531	2.575	2.029 - 3.220	298.61	98.32	1.83	
021401AN34	2.147	1.737 - 2.626	306.06	98.26	1.94	
021401AN83	2.533	2.067 - 3.071	288.62	98.37	1.58	
021501AN041	1.066	0.802 - 1.393	59.82	99.63	0.47	
021501AN781	1.264	0.921 - 1.699	60.49	99.63	0.46	
021501AN551	1.583	1.151 - 2.127	55.20	99.66	0.34	
021501AN211	1.710	1.261 - 2.271	50.22	99.69	0.26	
021501BN521	1.534	1.312 - 1.784	295.72	98.24	1.94	
021501BN581	2.397	2.084 - 2.743	246.07	98.53	1.10	
021501BN421	1.992	1.725 - 2.289	270.61	98.39	1.49	
021501BN721	1.849	1.597 - 2.129	278.12	98.35	1.59	
022001AN481	3.547	3.042 - 4.108	201.63	98.77	1.26	
022001AN311	3.423	2.937 - 3.964	207.53	98.74	1.38	
022001AN351	3.030	2.625 - 3.479	218.21	98.67	1.68	
022001BN591	3.457	2.985 - 3.980	202.30	98.76	1.32	
022001BN661	3.321	2.865 - 3.827	208.18	98.73	1.45	
022001BN051	3.690	3.160 - 4.280	197.11	98.79	1.22	
022101AN021	4.156	3.599 - 4.771	237.55	98.55	1.53	
022101AN771	5.033	4.343 - 5.793	211.66	98.70	1.03	
022101AN341	4.900	4.248 - 5.615	210.04	98.71	1.02	
022101AN201	4.170	3.594 - 4.805	240.57	98.53	1.61	
022101BN832	3.490	3.029 - 3.997	231.79	98.88	1.23	

Profile #	Estimated Mean	Cumulative DCS Risk, % 95% Confidence Band	CUPTD ¹	Minimum VC % Normal ³		P _{CNS} , % ²
				Low - High	% Normal ³	
022101BN102	3.293	2.855 - 3.776	240.55	98.82	1.36	
022101BN291	3.488	3.027 - 3.995	229.23	98.88	1.20	
022101BN411	3.380	2.933 - 3.874	235.01	98.85	1.28	
022201BN371	6.109	5.225 - 7.085	188.40	98.83	0.79	
022201BN041	6.432	5.508 - 7.448	171.51	98.93	0.56	
022201BN211	4.187	3.633 - 4.795	236.33	98.56	1.51	
022201BN081	4.178	3.620 - 4.792	243.33	98.52	1.67	
022201cN5212	3.870	3.319 - 4.481	212.37	98.99	0.91	
022201cN3612	3.305	2.867 - 3.788	231.17	98.86	1.19	
022201cN46123	2.598	2.238 - 2.999	272.28	98.65	7.48	
022201cN42123	3.341	2.846 - 3.894	242.10	98.83	1.85	
022301AN591	6.959	5.978 - 8.035	152.06	99.05	0.31	
022301AN221	6.960	5.979 - 8.036	152.06	99.05	0.31	
022301AN071	4.753	4.117 - 5.453	222.81	98.64	1.25	
022301AN751	5.493	4.703 - 6.366	227.04	98.61	1.77	
022601AN671	6.757	5.797 - 7.811	158.65	99.01	0.36	
022601AN341	6.785	5.823 - 7.842	156.84	99.02	0.34	
022601AN101	4.385	3.805 - 5.023	227.64	98.61	1.36	
022601AN201	4.234	3.657 - 4.870	239.00	98.54	1.61	
022601BN091	3.175	2.752 - 3.642	248.16	98.77	1.52	
022601BN561	3.422	2.969 - 3.921	234.57	98.85	1.25	
022601BN831	5.033	3.992 - 6.241	166.79	99.26	0.30	
022601BN741	4.945	3.968 - 6.071	168.87	99.24	0.32	
022701AN251	4.358	3.763 - 5.015	236.11	98.56	1.50	
022701AN581	4.412	3.804 - 5.083	233.09	98.58	1.45	
022701AN551	3.879	3.374 - 4.434	248.61	98.49	1.79	
022701AN861	4.663	4.025 - 5.365	224.66	98.62	1.28	
022701BN3912	5.504	4.304 - 6.904	153.04	99.38	0.26	
022701BN1412	3.079	2.666 - 3.537	252.60	98.75	1.56	
022701BN7812	5.477	4.278 - 6.877	152.38	99.39	0.26	
022701BN0812	5.460	4.267 - 6.853	152.99	99.38	0.26	
022801BN321	5.888	5.024 - 6.841	202.13	98.76	1.09	
022801BN812	4.447	3.855 - 5.097	224.05	98.63	1.27	
022801BN631	4.156	3.593 - 4.776	237.81	98.55	1.54	
022801BN352	4.263	3.688 - 4.897	235.13	98.56	1.49	

PHASE II

Profile #	Estimated Cumulative DCS Risk, %	95% Confidence Band	CUPTD*	Minimum			
				Mean	Low - High	% Normal	P _{CNS} , %
04102001N39	0.796	0.617 - 1.015	60.31	99.63	0.33		
04102001N04	0.913	0.722 - 1.141	53.40	99.67	0.24		
04102001N14	0.867	0.679 - 1.094	58.10	99.64	0.26		
04102001N75	0.865	0.678 - 1.089	56.93	99.64	0.26		
04112001N32B	1.378	1.178 - 1.604	255.73	98.41	1.57		
04112001N59A	1.743	1.497 - 2.017	321.81	98.09	1.81		
04112001N19A	1.682	1.445 - 1.947	325.20	98.07	1.87		
04112001N66B	1.620	1.398 - 1.868	243.25	98.49	1.30		
04112001N36A	2.041	1.769 - 2.343	310.78	98.15	1.56		
04112001N47B	1.553	1.336 - 1.797	253.01	98.43	1.61		
04112001N05A	1.452	1.232 - 1.702	343.43	97.96	2.24		
04122001N56A	1.981	1.716 - 2.276	311.36	98.14	1.59		
04122001N34A	1.439	1.221 - 1.685	343.81	97.95	2.30		
04122001N30A	1.844	1.591 - 2.127	319.32	98.09	1.72		
04122001N24A	1.583	1.355 - 1.838	335.50	98.01	2.07		
04162001N522	1.541	1.326 - 1.781	260.08	98.39	1.59		
04162001N782	1.763	1.528 - 2.025	247.32	98.46	1.35		
04162001N751	1.650	1.405 - 1.925	231.75	98.63	1.25		
04162001N551	1.727	1.476 - 2.010	228.14	98.66	1.19		
04162001N412	1.719	1.488 - 1.976	249.98	98.45	1.40		
04162001N211	1.675	1.427 - 1.955	231.30	98.64	1.22		
04162001N721	1.676	1.429 - 1.955	231.13	98.64	1.25		
04162001N082	1.750	1.516 - 2.010	248.36	98.46	1.38		
04172001N321	2.021	1.742 - 2.331	227.14	98.66	1.13		
04172001N591	1.957	1.686 - 2.260	230.62	98.64	1.20		
04172001N22B	1.955	1.700 - 2.237	241.77	98.50	1.27		
04172001N60B	1.930	1.678 - 2.210	242.93	98.49	1.30		
04172001N071	1.555	1.320 - 1.820	254.24	98.50	1.66		
04172001N691	1.870	1.606 - 2.166	236.26	98.61	1.29		
04172001N31B	1.830	1.588 - 2.098	248.08	98.46	1.38		
04172001N05B	1.637	1.413 - 1.887	260.17	98.39	1.61		
04182001N491	1.643	1.426 - 1.883	273.95	98.30	2.22		
04182001N67B	1.898	1.631 - 2.197	241.70	98.57	1.27		
04182001N34B	1.779	1.521 - 2.068	249.03	98.52	1.44		
04182001N581	1.880	1.610 - 2.183	243.53	98.56	1.34		
04182001N101	1.771	1.538 - 2.030	271.13	98.32	1.70		
04182001N451	1.742	1.488 - 2.026	250.72	98.51	1.42		
04182001N241	1.646	1.426 - 1.892	277.45	98.28	1.79		
04182001N351	1.953	1.703 - 2.230	259.00	98.39	1.42		
04192001N25A	1.611	1.359 - 1.897	237.16	98.60	1.34		
04192001N50B	1.218	1.031 - 1.431	248.31	98.45	1.28		
04192001N40B	1.123	0.940 - 1.332	256.79	98.40	1.49		
04192001N04B	0.946	0.776 - 1.144	267.84	98.34	1.76		
04192001N18A	1.190	0.977 - 1.439	109.63	99.32	0.66		

Profile #	Estimated Cumulative DCS Risk, %			CUPTD*	VC	Minimum P _{CNS} , %
	Mean	Low	- High			
04192001N75A	1.464	1.229	- 1.732	245.43	98.55	1.45
04192001N46B	1.060	0.882	- 1.265	260.49	98.38	1.52
04192001N02A	0.988	0.797	- 1.214	274.02	98.39	2.33
04232001N60A	1.920	1.656	- 2.214	248.65	98.54	1.38
04232001N17B	1.956	1.704	- 2.235	263.11	98.36	1.50
04232001N32B	1.830	1.593	- 2.092	265.62	98.34	1.34
04232001N60A	1.809	1.555	- 2.093	253.58	98.51	1.44
04232001N66B	1.885	1.642	- 2.153	262.99	98.36	1.28
04232001N31B	1.526	1.318	- 1.758	283.80	98.24	1.66
04232001N05A	2.113	1.830	- 2.426	237.71	98.60	1.17
04242001N09A	2.060	1.786	- 2.364	247.48	98.54	1.38
04242001N56B	1.973	1.721	- 2.251	272.52	98.30	1.48
04242001N33A	2.056	1.781	- 2.363	245.11	98.55	1.29
04242001N74B	1.495	1.293	- 1.720	295.72	98.16	2.50
04242001N38B	0.986	0.819	- 1.177	343.98	97.89	100.00
04242001N10A	1.366	1.157	- 1.603	283.36	98.32	2.07
04242001N30A	1.951	1.688	- 2.243	254.50	98.50	1.59
04252001N701	1.918	1.655	- 2.212	252.67	98.51	1.26
04252001N531	1.705	1.462	- 1.977	264.35	98.44	1.48
04252001N521	1.764	1.516	- 2.041	263.29	98.45	1.54
04252001N122	1.970	1.703	- 2.267	183.87	98.85	0.90
04252001N041	1.529	1.301	- 1.786	277.80	98.38	1.64
04252001N182	1.840	1.585	- 2.125	192.33	98.81	1.08
04252001N452	1.837	1.582	- 2.121	192.85	98.80	1.08
04252001N572	1.946	1.681	- 2.240	185.12	98.85	0.93
04262001N32A	2.281	1.982	- 2.611	242.07	98.56	1.08
04262001N25B	1.924	1.661	- 2.217	188.08	98.83	0.98
04262001N22A	2.143	1.859	- 2.458	250.25	98.51	1.23
04262001N60B	1.661	1.421	- 1.930	203.72	98.74	1.30
04262001N07A	1.931	1.667	- 2.224	263.65	98.44	1.45
04262001N66A	1.871	1.613	- 2.159	266.81	98.42	1.51
04262001N48B	1.955	1.690	- 2.251	187.20	98.84	0.99
04262001N35B	1.870	1.612	- 2.159	191.92	98.81	1.06
04302001N37A	1.980	1.702	- 2.289	218.93	98.71	1.15
04302001N77B	1.729	1.487	- 1.999	221.21	98.63	1.24
04302001N09A	1.862	1.596	- 2.159	224.51	98.68	1.19
04302001N56A	2.027	1.747	- 2.338	214.14	98.74	1.04
04302001N34A	1.892	1.627	- 2.189	221.10	98.70	1.16
04302001N71B	1.987	1.720	- 2.284	206.64	98.71	1.00
04302001N29B	1.758	1.513	- 2.033	221.12	98.63	1.24
04302001N35B	1.759	1.513	- 2.034	221.80	98.63	1.26
05012001N522	0.006	0.000	- 0.115	308.98	98.11	2.42
05012001N042	1.693	1.443	- 1.974	173.55	98.93	1.06
05012001N741	1.839	1.575	- 2.135	220.19	98.71	1.12
05012001N782	1.944	1.672	- 2.247	160.92	99.00	0.88
05012001N581	1.457	1.230	- 1.715	240.01	98.59	1.88

Profile #	Estimated Cumulative DCS Risk, %	95% Confidence Band			CUPTD*	Minimum VC	P _{CNS} , %			
		Mean	Low - High							
			Low	High						
05012001N752	1.580	1.341	-	1.849	179.25	98.89	1.12			
05012001N451	1.841	1.577	-	2.137	220.15	98.71	1.12			
05012001N621	1.619	1.375	-	1.895	231.33	98.65	1.31			
05022001N611	2.433	2.088	-	2.818	257.65	98.90	1.39			
05022001N59B	0.960	0.764	-	1.193	53.19	99.68	0.28			
05022001N28A	2.188	1.869	-	2.544	266.28	98.85	1.61			
05022001N60A	2.293	1.964	-	2.661	267.15	98.85	1.83			
05022001N66B	1.010	0.810	-	1.247	50.44	99.69	0.23			
05022001N69A	2.442	2.098	-	2.826	257.91	98.90	1.40			
05022001N48A	0.924	0.732	-	1.154	54.96	99.66	0.35			
05022001N31B	1.202	0.981	-	1.459	44.41	99.72	0.18			
05032001N77A	2.503	2.151	-	2.894	255.93	98.91	1.38			
05032001N56A	2.575	2.218	-	2.972	252.24	98.94	1.33			
05032001N10B	0.849	0.664	-	1.074	56.00	99.67	0.29			
05032001N20A	2.326	1.993	-	2.699	260.95	98.89	1.51			
05032001N30B	0.865	0.678	-	1.092	55.14	99.67	0.29			
05032001N24A	0.854	0.669	-	1.079	55.56	99.67	0.29			
05032001N02A	1.737	1.471	-	2.038	90.61	99.44	0.49			
05072001N17A	1.024	0.813	-	1.277	53.00	99.67	0.28			
05072001N09A	2.593	2.135	-	3.118	258.78	98.43	12.99			
05072001N04A	2.678	2.214	-	3.208	253.90	98.47	3.98			
05072001N03A	0.993	0.786	-	1.241	54.36	99.66	0.28			
05072001N14A	2.632	2.197	-	3.126	250.96	98.47	10.42			
05072001N58A	0.976	0.770	-	1.222	55.24	99.65	0.31			
05072001N35A	2.933	2.389	-	3.561	249.83	98.48	11.82			
05072001N08A	1.148	0.923	-	1.414	49.49	99.69	0.28			
05082001N61B	0.826	0.642	-	1.049	53.99	99.67	0.38			
05082001N22B	0.834	0.647	-	1.060	52.29	99.67	0.36			
05082001N60A	2.351	1.916	-	2.855	256.91	98.50	1.47			
05082001N28B	0.821	0.637	-	1.045	52.81	99.67	0.30			
05082001N07B	0.777	0.598	-	0.996	54.93	99.66	0.33			
05082001N66A	2.219	1.831	-	2.666	261.21	98.47	1.55			
05082001N69A	2.304	1.866	-	2.814	260.37	98.47	1.52			
05082001N48A	2.663	2.174	-	3.228	245.93	98.56	1.20			
05092001N67A	1.770	1.524	-	2.045	217.83	98.65	1.19			
05092001N77A	1.754	1.509	-	2.028	219.21	98.64	1.23			
05092001N32B	1.017	0.850	-	1.208	225.38	98.60	1.72			
05092001N56B	1.604	1.374	-	1.864	192.08	98.80	0.99			
05092001N34B	1.433	1.218	-	1.677	202.25	98.74	1.16			
05092001N51A	1.690	1.451	-	1.957	222.16	98.62	1.27			
05092001N45B	2.172	1.871	-	2.506	151.74	99.05	0.71			
05092001N44A	1.799	1.549	-	2.077	216.85	98.65	1.18			
05092001N24B	1.521	1.297	-	1.772	198.34	98.76	1.15			
05102001N53A	1.737	1.492	-	2.011	191.25	98.81	1.03			
05102001N12A	1.036	0.852	-	1.249	230.55	98.57	2.03			
05102001N45A	1.709	1.467	-	1.981	192.77	98.80	1.02			

Profile #	Estimated Cumulative DCS Risk, %	95% Confidence Band	CUPTD*	Minimum			
				Mean	Low - High	% Normal	P _{CNS} , %
05102001N35A	1.650	1.414 - 1.915	195.53	98.78	1.05		
05142001N59A	1.831	1.587 - 2.103	243.80	98.48	1.46		
05142001N22A	2.109	1.835 - 2.413	227.58	98.58	1.08		
05142001N60B	1.970	1.693 - 2.279	161.79	98.99	0.87		
05142001N74A	1.793	1.553 - 2.060	245.84	98.47	1.39		
05142001N48A	1.720	1.488 - 1.980	251.19	98.44	1.74		
05142001N41B	1.908	1.640 - 2.207	164.81	98.97	0.91		
05142001N72B	2.030	1.749 - 2.344	158.76	99.01	0.84		
05152001N702	0.839	0.648 - 1.071	72.94	99.55	0.87		
05152001N671	1.335	1.089 - 1.621	61.80	99.61	0.36		
05152001N652	1.097	0.873 - 1.363	65.14	99.60	0.34		
05152001N562	1.047	0.828 - 1.309	67.47	99.58	0.44		
05152001N731	1.375	1.122 - 1.669	60.55	99.62	0.33		
05152001N341	1.447	1.185 - 1.752	57.77	99.64	0.26		
05152001N583	1.432	1.171 - 1.736	60.66	99.62	0.34		
05152001N553	1.432	1.172 - 1.735	61.46	99.62	0.41		
05152001N201	1.302	1.042 - 1.609	58.68	99.63	0.30		
05152001N573	1.362	1.112 - 1.653	63.27	99.61	0.35		
05152001N353	1.422	1.172 - 1.710	57.67	99.64	0.27		
05162001N26A	1.908	1.655 - 2.189	376.35	97.85	1.99		
05162001N15B	1.354	1.117 - 1.629	61.41	99.62	0.33		
05162001N13A	2.041	1.775 - 2.336	367.06	97.90	1.85		
05162001N78A	2.337	2.038 - 2.668	348.94	98.01	1.58		
05162001N76B	1.440	1.192 - 1.725	57.96	99.64	0.26		
05162001N24B	1.368	1.129 - 1.645	61.05	99.62	0.31		
05162001N46B	1.505	1.250 - 1.797	55.10	99.65	0.22		
05162001N08A	1.365	1.129 - 1.636	69.19	99.58	0.35		
05172001N32A	2.071	1.797 - 2.374	363.74	97.89	1.79		
05172001N23A	1.631	1.399 - 1.890	387.31	97.75	2.24		
05172001N16A	0.983	0.790 - 1.211	80.56	99.51	0.98		
05172001N43A	2.137	1.857 - 2.447	360.31	97.91	1.70		
05232001N13A	1.745	1.475 - 2.049	93.29	99.42	0.84		
05232001N60A	1.709	1.443 - 2.010	94.76	99.41	0.70		
05232001N36A	1.864	1.583 - 2.181	86.72	99.46	0.53		
05232001N31A	1.814	1.538 - 2.126	89.51	99.44	0.66		
05242001N26A	1.717	1.458 - 2.010	125.99	99.22	0.91		
05242001N25B	1.908	1.660 - 2.183	281.82	98.24	1.48		
05242001N56A	1.780	1.514 - 2.081	122.66	99.24	0.82		
05242001N20A	1.954	1.667 - 2.276	114.36	99.29	0.70		
05242001N10B	1.558	1.347 - 1.794	304.11	98.11	2.00		
05242001N45A	1.946	1.660 - 2.267	114.46	99.29	0.66		
05242001N24B	1.981	1.725 - 2.264	277.45	98.27	1.42		
05242001N35B	0.892	0.732 - 1.077	342.00	97.89	2.90		
05292001N37A	1.850	1.588 - 2.143	163.50	98.98	0.90		
05292001N39A	1.672	1.428 - 1.947	174.02	98.92	1.25		
05292001N64A	1.320	1.113 - 1.556	190.46	98.82	1.77		

Profile #	Estimated Cumulative DCS Risk, %	95% Confidence Band			CUPTD*	VC	P _{CNS} , %			
		Mean	Low - High							
05292001N11A	1.683	1.437	-	1.958	172.71	98.93	1.12			
05302001N32A	2.040	1.740	-	2.378	89.39	99.45	0.61			
05302001N59B	1.633	1.414	-	1.877	301.24	98.13	1.83			
05302001N71	2.064	1.759	-	2.405	88.22	99.45	0.59			
05302001N66A	1.991	1.696	-	2.322	91.58	99.43	0.63			
05302001N58B	1.616	1.399	-	1.858	301.64	98.13	1.84			
05302001N48B	1.626	1.408	-	1.868	303.47	98.12	2.04			
05302001N31B	1.511	1.305	-	1.742	309.31	98.08	2.10			
05302001N05	2.140	1.824	-	2.496	84.86	99.47	0.52			
05312001N65B	1.735	1.481	-	2.020	154.23	99.04	1.11			
05312001N20A	1.706	1.474	-	1.964	251.33	98.44	1.52			
05312001N10B	1.778	1.519	-	2.068	152.19	99.05	1.03			
05312001N30B	1.570	1.332	-	1.839	163.12	98.99	1.37			
05312001N24A	1.715	1.484	-	1.973	250.52	98.44	1.51			
05312001N46A	1.574	1.356	-	1.818	259.57	98.39	1.91			
05312001N41B	1.779	1.521	-	2.068	151.93	99.05	1.05			
05312001N35A	1.875	1.626	-	2.151	242.26	98.49	1.51			
06012001N37A	1.432	1.194	-	1.704	275.42	98.30	2.07			
06012001N53B	1.989	1.708	-	2.304	147.39	99.08	0.92			
06012001N25A	1.912	1.660	-	2.192	248.55	98.46	1.68			
06012001N39B	1.829	1.566	-	2.124	156.05	99.03	1.17			
06012001N12B	1.700	1.450	-	1.982	162.16	98.99	1.25			
06012001N14B	1.964	1.687	-	2.274	149.06	99.07	0.92			
06012001N78A	1.647	1.421	-	1.899	261.92	98.38	1.86			
06012001N42A	1.812	1.569	-	2.082	253.21	98.43	1.72			
06042001N37B	1.880	1.592	-	2.205	64.51	99.60	0.38			
06042001N32B	1.822	1.541	-	2.141	67.35	99.58	0.44			
06042001N59A	1.847	1.606	-	2.114	320.12	98.01	1.72			
06042001N36B	1.887	1.599	-	2.213	64.17	99.60	0.38			
06042001N48A	1.248	1.067	-	1.452	358.06	97.79	2.43			
06042001N01B	1.833	1.552	-	2.150	65.49	99.60	0.43			
06042001N57A	1.366	1.175	-	1.580	349.07	97.84	2.23			
06042001N31A	1.656	1.435	-	1.900	332.11	97.94	1.93			
06052001N67B	0.000	0.000	-	0.000	43.94	99.72	0.19			
06052001N65B	0.000	0.000	-	0.000	41.85	99.73	0.16			
06052001N56B	0.000	0.000	-	0.000	41.91	99.73	0.17			
06052001N60A	1.488	1.283	-	1.717	306.23	98.10	2.56			
06052001N74A	1.436	1.236	-	1.659	309.71	98.08	2.49			
06052001N10A	1.768	1.535	-	2.027	287.97	98.21	1.80			
06052001N24A	1.470	1.266	-	1.698	307.20	98.10	2.65			
06052001N46B	0.000	0.000	-	0.000	44.67	99.72	0.21			
06062001N25B	1.837	1.579	-	2.126	169.44	98.94	0.99			
06062001N39B	1.445	1.224	-	1.694	191.14	98.81	1.48			
06062001N12A	1.735	1.505	-	1.991	291.52	98.19	1.84			
06062001N18A	1.642	1.420	-	1.889	295.05	98.17	1.73			
06062001N58B	1.646	1.407	-	1.915	180.16	98.88	1.33			

Profile #	Estimated Cumulative DCS Risk, %	95% Confidence Band			CUPTD*	VC	P _{CNS} , %	Minimum
		Mean	Low	- High				
06062001N45A	2.024	1.762	-	2.314	272.35	98.30	1.34	
06062001N42B	1.548	1.319	-	1.807	185.09	98.85	1.26	
06062001N35A	1.724	1.494	-	1.981	291.16	98.19	1.79	
06072001N01A	1.718	1.473	-	1.993	186.79	98.84	1.26	
06072001N57A	1.783	1.529	-	2.066	183.88	98.86	1.38	
06072001N08A	1.919	1.652	-	2.217	176.05	98.90	1.10	
06072001N31A	1.772	1.521	-	2.053	184.52	98.85	1.31	
06082001N04A	1.704	1.435	-	2.010	68.81	99.58	0.51	
06082001N65B	1.909	1.623	-	2.231	85.06	99.47	0.54	
06082001N56B	1.728	1.460	-	2.030	93.80	99.42	0.67	
06082001N33A	1.786	1.508	-	2.101	64.68	99.60	0.45	
06082001N10B	1.780	1.508	-	2.088	91.31	99.43	0.67	
06082001N20A	1.745	1.472	-	2.056	66.80	99.59	0.49	
06082001N24B	1.817	1.541	-	2.129	89.65	99.44	0.67	
06082001N41A	1.793	1.514	-	2.108	64.32	99.60	0.40	
06182001N37B	2.168	1.888	-	2.478	373.73	97.75	1.90	
06182001N25B	2.430	2.117	-	2.776	360.45	97.83	1.73	
06182001N40A	1.972	1.705	-	2.269	194.76	98.79	1.05	
06182001N64A	1.839	1.585	-	2.121	201.51	98.75	1.15	
06182001N18B	2.233	1.942	-	2.554	372.22	97.76	2.00	
06182001N74A	1.663	1.427	-	1.928	210.03	98.70	1.29	
06182001N27A	1.684	1.446	-	1.950	210.24	98.69	1.31	
06182001N68B	1.844	1.592	-	2.124	393.89	97.63	2.28	
06192001N59A	2.793	2.445	-	3.176	355.18	97.87	1.74	
06192001N60A	2.023	1.758	-	2.317	394.23	97.64	2.29	
06192001N07A	1.742	1.504	-	2.007	412.88	97.53	2.54	
06192001N05A	2.444	2.132	-	2.789	372.46	97.77	1.91	
06202001N34A	2.210	1.914	-	2.538	294.69	98.24	1.54	
06202001N10A	2.213	1.917	-	2.540	294.98	98.24	1.55	
06202001N20A	2.408	2.085	-	2.766	285.23	98.30	1.42	
06202001N45A	2.158	1.860	-	2.489	298.91	98.22	1.60	
06212001N25A	1.880	1.619	-	2.171	285.42	98.29	1.38	
06212001N62A	1.389	1.172	-	1.637	315.62	98.12	1.95	
06212001N52A	1.898	1.633	-	2.194	286.37	98.29	1.53	
06212001N09B	1.574	1.360	-	1.813	278.87	98.27	1.81	
06212001N68A	1.056	0.847	-	1.302	75.09	99.53	0.43	
06212001N01B	2.011	1.755	-	2.294	253.98	98.42	1.33	
06212001N46B	1.953	1.702	-	2.231	257.95	98.40	1.41	
06212001N08B	2.094	1.828	-	2.388	249.58	98.45	1.24	
06252001N32	2.043	1.738	-	2.385	333.29	98.43	2.01	
06252001N60B	1.718	1.447	-	2.026	68.12	99.58	0.50	
06252001N66A	1.750	1.488	-	2.045	114.05	99.29	0.55	
06252001N69B	1.717	1.447	-	2.024	67.90	99.58	0.48	
06252001N68B	1.914	1.622	-	2.243	58.90	99.63	0.39	
06252001N48A	2.211	1.891	-	2.570	326.66	98.47	1.87	
06252001N57A	1.824	1.548	-	2.134	340.49	98.38	2.45	

Profile #	Estimated Cumulative DCS Risk, %	95% Confidence Band		CUPTD*	Minimum	
		Mean	Low - High		VC	P _{CNS} , %
06252001N05B	1.783	1.505	- 2.097	64.76	99.60	0.40
06262001N56A	2.213	1.897	- 2.566	336.81	98.41	2.03
06262001N34A	2.692	2.332	- 3.091	311.06	98.57	1.58
06262001N99A	2.850	2.474	- 3.265	302.72	98.61	1.45
06262001N24A	2.953	2.567	- 3.379	297.03	98.65	1.37
06272001N52B	1.230	1.004	- 1.493	57.56	99.64	0.30
06272001N12B	1.051	0.843	- 1.296	63.10	99.61	0.33
06272001N04A	2.401	2.062	- 2.780	341.29	97.90	2.10
06272001N19B	1.049	0.841	- 1.294	63.08	99.61	0.33
06272001N74A	2.313	1.981	- 2.684	346.26	97.87	2.11
06272001N45A	3.085	2.676	- 3.538	305.23	98.12	1.42
06272001N62B	1.167	0.947	- 1.425	57.52	99.64	0.24
06272001N08A	2.744	2.370	- 3.159	321.86	98.01	1.66
06282001N69A	2.659	2.290	- 3.068	319.91	98.05	1.67
06282001N58A	2.833	2.448	- 3.260	309.54	98.11	1.48
06282001N68A	2.190	1.865	- 2.555	348.28	97.88	2.20
06282001N48A	2.274	1.946	- 2.640	339.25	97.93	1.94
07022001N67B	1.834	1.551	- 2.154	62.94	99.61	0.35
07022001N10B	1.864	1.577	- 2.188	61.21	99.62	0.35
07022001N46B	1.860	1.575	- 2.184	61.69	99.62	0.37
07022001N35A	1.782	1.548	- 2.042	319.33	98.01	1.71
07022001N08A	1.617	1.401	- 1.857	330.51	97.95	1.87
07022001N05A	1.811	1.574	- 2.074	317.03	98.03	1.65
07032001N37B	1.445	1.220	- 1.700	167.53	98.96	1.04
07032001N53A	1.939	1.683	- 2.222	239.12	98.51	1.29
07032001N25A	1.830	1.587	- 2.101	246.90	98.46	1.43
07032001N52A	1.719	1.487	- 1.978	252.62	98.43	1.64
07032001N12B	1.473	1.246	- 1.729	165.52	98.97	0.97
07032001N40B	1.658	1.414	- 1.933	154.94	99.03	0.79
07032001N19A	1.892	1.642	- 2.171	243.34	98.48	1.46
07032001N62B	1.580	1.343	- 1.847	159.41	99.00	0.85
07092001N22A	2.379	2.074	- 2.715	348.28	97.98	1.52
07092001N60A	1.564	1.340	- 1.816	400.65	97.67	2.46
07092001N69B	1.625	1.381	- 1.901	146.19	99.09	0.89
07092001N58B	1.569	1.330	- 1.839	149.29	99.07	0.97
07092001N99B	1.354	1.135	- 1.603	160.94	99.00	1.20
07092001N57B	1.627	1.382	- 1.902	146.48	99.09	1.04
07092001N02A	2.369	2.065	- 2.704	349.63	97.97	1.57
07092001N05A	2.118	1.841	- 2.425	365.57	97.88	1.81
07102001N52B	1.514	1.302	- 1.751	263.68	98.37	1.69
07102001N41B	1.930	1.678	- 2.210	239.31	98.51	1.22
07102001N62B	1.967	1.712	- 2.250	236.91	98.52	1.17
07102001N08B	1.744	1.510	- 2.005	249.88	98.45	1.40
07112001N37A	2.584	2.224	- 2.985	237.31	99.03	1.20
07112001N39A	2.654	2.288	- 3.061	235.11	99.04	1.15
07112001N19A	2.736	2.361	- 3.152	231.83	99.05	1.11

Profile #	Estimated Cumulative DCS Risk, % 95% Confidence Band	CUPTD*	Minimum			
			Mean	Low - High	% Normal	
07112001N18A	3.009	218.50	2.605	2.455 - 3.455	98.65	0.94
07122001N17A	2.589	238.08	2.226	2.992	99.03	1.21
07122001N59A	2.644	234.70	2.277	3.051	99.05	1.15
07122001N09A	2.661	234.10	2.292	3.072	99.05	1.14
07122001N24A	2.555	239.13	2.197	2.954	99.02	1.22
07162001N32B	0.732	58.68	0.558	0.948	99.63	0.29
07162001N56B	0.853	51.83	0.666	1.079	99.67	0.18
07162001N10A	3.580	180.95	3.063	4.155	98.90	0.70
07162001N99B	0.826	53.45	0.643	1.049	99.66	0.23
07162001N29	0.789	55.45	0.607	1.011	99.65	0.23
07162001N45A	3.725	174.29	3.2	4.308	98.94	0.61
07162001N46A	3.908	171.21	3.358	4.517	98.95	0.58
07162001N41A	3.254	193.45	2.751	3.818	98.82	0.87
07172001N37A	2.904	254.81	2.528	3.318	98.47	0.92
07172001N39A	2.778	261.86	2.416	3.179	98.43	1.04
07172001N11B	2.164	135.07	1.863	2.498	99.15	0.66
07172001N14B	2.423	124.18	2.057	2.834	99.22	0.49
07172001N42A	2.755	262.19	2.397	3.150	98.43	1.03
07172001N02A	1.695	322.82	1.454	1.965	98.07	1.99
07172001N63B	1.812	153.27	1.548	2.109	99.05	0.94
07182001N17	1.395	69.05	1.138	1.695	99.57	0.30
07182001N22A	2.453	353.65	2.118	2.826	97.81	1.95
07182001N07A	3.256	306.51	2.841	3.713	98.09	1.24
07182001N69A	3.372	302.79	2.941	3.846	98.11	1.20
07192001N56A	2.871	341.13	2.495	3.286	97.89	1.74
07192001N10A	3.525	304.72	3.078	4.016	98.10	1.21
07192001N24A	3.436	308.27	3.000	3.916	98.08	1.29
07192001N35A	3.701	296.34	3.232	4.216	98.15	1.10

REFERENCES

- 1 Harabin, A.L., Homer, L.D., Weathersby, P.K., Flynn, E.T. "An analysis of decrements in vital capacity as an index of pulmonary oxygen toxicity." J. Appl. Physiol. 63(3):1130-1135, 1987.
- 2 Harabin, A. L., Survanshi, S. S., Homer, L. D. "A Model for Predicting Central System Oxygen Toxicity from Hyperbaric Oxygen Toxicity in Humans." Toxicology and Applied Pharmacology 132, 19-26, 1995.
- 3 Vann, R. D. *Oxygen Toxicity Risk Assessment*. Final Report. ONR Contract N00014-87-C-0283. May 31, 1988.

APPENDIX M.

**Estimated DCS Risks of Dive Profiles Randomly Constructed from
MK 16 MOD 1 Decompression Tables**

Table Evaluation: Depths: 40-200 Surface Intervals: 30-720

Table Evaluation: Depths: 40-80 Surface Intervals: 30-720

Table Evaluation: Depths: 40-80 Surface Intervals: 30-90

Table Evaluation: Depths: 40-80 Surface Intervals: 95-150

Table Evaluation: Depths: 40-80 Surface Intervals: 155-210

Table Evaluation: Depths: 40-80 Surface Intervals: 215-270

Table Evaluation: Depths: 40-80 Surface Intervals: 275-330

Table Evaluation: Depths: 40-80 Surface Intervals: 335-390

Table Evaluation: Depths: 40-80 Surface Intervals: 395-550

Table Evaluation: Depths: 40-80 Surface Intervals: 560-720

Table Evaluation: Depths: 85-120 Surface Intervals: 30-720

Table Evaluation: Depths: 85-120 Surface Intervals: 30-90

Table Evaluation: Depths: 85-120 Surface Intervals: 95-150

Table Evaluation: Depths: 85-120 Surface Intervals: 155-210

Table Evaluation: Depths: 85-120 Surface Intervals: 215-270

Table Evaluation: Depths: 85-120 Surface Intervals: 275-330

Table Evaluation: Depths: 85-120 Surface Intervals: 335-390

Table Evaluation: Depths: 85-120 Surface Intervals: 395-555

Table Evaluation: Depths: 85-120 Surface Intervals: 560-720

Table Evaluation: Depths: 125-160 Surface Intervals: 30-720

Table Evaluation: Depths: 125-160 Surface Intervals: 30-90

Table Evaluation: Depths: 125-160 Surface Intervals: 95-150

Table Evaluation: Depths: 125-160 Surface Intervals: 155-210

Table Evaluation: Depths: 125-160 Surface Intervals: 215-270

Table Evaluation: Depths: 125-160 Surface Intervals: 275-330

Table Evaluation: Depths: 125-160 Surface Intervals: 335-390

Table Evaluation: Depths: 125-160 Surface Intervals: 395-555

Table Evaluation: Depths: 125-160 Surface Intervals: 560-720

Table Evaluation: Depths: 165-200 Surface Intervals: 30-720

Table Evaluation: Depths: 165-200 Surface Intervals: 30-90

Table Evaluation: Depths: 165-200 Surface Intervals: 95-150

Table Evaluation: Depths: 165-200 Surface Intervals: 155-210

Table Evaluation: Depths: 165-200 Surface Intervals: 215-270

Table Evaluation: Depths: 165-200 Surface Intervals: 275-330

Table Evaluation: Depths: 165-200 Surface Intervals: 335-390

Table Evaluation: Depths: 165-200 Surface Intervals: 395-555

Table Evaluation: Depths: 165-200 Surface Intervals: 560-720

APPENDIX N.

Summary Features of Oxygen Partial Pressures in the Canadian Underwater Mine Apparatus (CUMA) and the Royal Navy Clearance Divers Breathing Apparatus (CDBA)

CUMA

The Canadian Underwater Mine-countermeasures Apparatus, or CUMA, is a semi-closed He-O₂ mixed gas UBA designed, like the MK 16 MOD 1, to maintain high diver inspired PO₂ to minimize decompression obligations. Its operating principles, however, are different from those of the MK 16 MOD 1, and are described in the following excerpt from a DCIEM report:¹

"The CUMA diving equipment utilises a supply of helium (He) and oxygen (O₂) to provide the diver with a nominal constant partial pressure of O₂ (PO₂) of 1.6 atmospheres absolute (ATA) at all depths. This is achieved by the addition of a variable flow of diluent (He) gas to a constant mass flow of O₂ at 3.6 litres/min at 0°C at 1 ATA (slm). At the surface, only pure O₂ is supplied to the breathing loop; then as the depth increases past 6 msw, the diluent gas flow rate increases linearly in proportion to depth. The combined flow of O₂ and He produces a heliox (HeO₂) gas mixture entering the breathing loop with a PO₂ of 1.6 ATA, with an allowable range of 1.5 ATA to 1.7 ATA at depths of 10 msw to 81 msw. The PO₂ in the breathing loop depends on the diver's work rate but should not exceed 1.62 ATA when the diver is at rest (assuming a metabolic O₂ consumption rate (VO₂) of 0.25 slm), nor drop below a minimum of 0.29 ATA if the diver is working strenuously (assuming VO₂ of 3.0 slm) for an extended period."

Features of PO₂ control in the CUMA were compiled from detailed records of 1343 CUMA man-dives completed at the Defence and Civil Institute of Environmental Medicine (DCIEM).²

Figure N1. Peak diver inspired PO_2 in Canadian CUMA UBA. The dotted line is the nominal 1.6 ATA PO_2 set-point of the CUMA UBA. (Compiled from data provided courtesy of R.Y. Nishi, DCIEM, CA.)

CUMA

Figure N2. Time weighted average diver inspired PO₂ throughout dive times in CUMA UBA. The heavy dotted line is the nominal 1.6 ATA PO₂ set-point of the CUMA. For comparison, the light dotted line is the nominal 1.3 ATA PO₂ set-point of the MK 16 MOD 1. (Compiled from data provided courtesy of R.Y. Nishi, DCIEM, CA.)

CDBA

The Royal Navy Clearance Divers Breathing Apparatus (CDBA) is essentially the same as the U.S. Navy MK 16 MOD 1, with the same breathing loop and electronic control circuitry. Features of PO₂ control in the CDBA were compiled from detailed records of 133 CDBA man-dives completed at the Defence Evaluation and Research Agency (Alverstoke) (DERA(A)): ³

Figure N3. Peak diver inspired PO₂ in Royal Navy CDBA. The dotted line is the nominal 1.3 ATA PO₂ set-point of the CDBA. (Compiled from data provided courtesy of T.G. Anthony, DERA(A), UK.)

Figure N4. Time weighted average diver inspired PO₂ at bottom after PO₂ overshoots in Royal Navy CDBA. The dotted line is the nominal 1.3 ATA PO₂ set-point of the CDBA.
(Compiled from data provided courtesy of T.G. Anthony, DERA(A), UK.)

