Test and verification techniques in conformance checking

Kevin Jahns

RWTH Aachen University kevin.jahns@rwth-aachen.de

January 21, 2014

 Kevin Jahns
 MBT
 January 21, 2014
 1 / 12

Overview

Why testing

2 Conformance

 Kevin Jahns
 MBT
 January 21, 2014
 2 / 12

Conformance is ..

 Kevin Jahns
 MBT
 January 21, 2014
 3 / 12

Conformance is ..

(1) when it does not throw errors?

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?
- (3) when it works for the user?

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?
- (3) when it works for the user?
- (4) when it does not explode;)

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?
- (3) when it works for the user?
- (4) when it does not explode;)
- (5) whet it conforms to some sort of specification?

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?
- (3) when it works for the user?
- (4) when it does not explode;)
- (5) whet it conforms to some sort of specification?
- → Conformance is hard to express

How to check conformance

Expressing conformance \rightarrow checking conformance

 Kevin Jahns
 MBT
 January 21, 2014
 4 / 12

Test vs. verification

Test

You may find an error after the execution of a test.

Verification

The evaluation of whether or not something complies with a specified conformance property

 Kevin Jahns
 MBT
 January 21, 2014
 5 / 12

Testing a robot

Test "Don't kill me"

 If the robot kills you, you can be sure that the property is not fulfilled.

→ロト → □ ト → 重 ト → 重 ・ 夕 Q ○

6 / 12

Verifying a robot

Test "Don't kill me"

 After verifying that a robot won't kill you, he will not kill you;)

7 / 12

Monkey testing

Infinite monkey theorem

The infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type a given text, such as the complete works of William Shakespeare.[1]

 Kevin Jahns
 MBT
 January 21, 2014
 8 / 12

Model checking

```
main = do
2
     putStrLn $
3
          "What is the the"
4
5
6
7
8
       ++ "answer to life"
       ++ "the universe"
       ++ "and everything?"
     answer <- getLine
     case answer of
       "42" ->
10
         putStrLn
11
             "You're right"
12
13
         putStrLn
14
             "Nope"
15
     main
```


 Kevin Jahns
 MBT
 January 21, 2014
 9 / 12

Real world TS	thousands of states

10 / 12

Real world TS		thousands of states
Each State depends on the variables of the Programm	Real world programs have thousands of vari- ables	dimension of new TS $\approx 1000^{1000}$

Kevin Jahns MBT January 21, 2014 10 / 12

Real world TS		thousands of states
Each State depends on the variables of the Programm	Real world programs have thousands of vari- ables	dimension of new TS $\approx 1000^{1000}$
Time complexety of model checking algorithm is NP-hard	$O(2^{TS})$ computation steps	$pprox 2^{1000^{1000}} pprox 10^{10^{3000}} cumputationsteps$

10 / 12

Real world TS		thousands of states
Each State depends on the variables of the Programm	Real world programs have thousands of vari- ables	dimension of new TS $\approx 1000^{1000}$
Time complexety of model checking algorithm is NP-hard	O(2 ^{TS}) computation steps	$pprox 2^{1000^{1000}}pprox 10^{10^{3000}}$ cumputationsteps
Number of atoms in the entire observable universe		1080

10 / 12

References

Infinite monkey effect.

11 / 12

The End

 Kevin Jahns
 MBT
 January 21, 2014
 12 / 12