## Tidy Data

## Tidy data



A data set is **tidy** iff:

- 1. Each variable is in its own column
- 2. Each case is in its own row
- 3. Each value is in its own cell

### table1 is tidy

| country<br><chr></chr> | year<br><int></int> | cases<br><int></int> | population<br><int></int> |
|------------------------|---------------------|----------------------|---------------------------|
| Afghanistan            | 1999                | 745                  | 19987071                  |
| Afghanistan            | 2000                | 2666                 | 20595360                  |
| Brazil                 | 1999                | 37737                | 172006362                 |
| Brazil                 | 2000                | 80488                | 174504898                 |
| China                  | 1999                | 212258               | 1272915272                |
| China                  | 2000                | 213766               | 1280428583                |

6 rows



### table1 is tidy

| country<br><chr></chr> | year<br><int></int> | cases<br><int></int> | population<br><int></int> | rate<br><dbl></dbl> |
|------------------------|---------------------|----------------------|---------------------------|---------------------|
| Afghanistan            | 1999                | 745                  | 19987071                  | 0.0000372741        |
| Afghanistan            | 2000                | 2666                 | 20595360                  | 0.0001294466        |
| Brazil                 | 1999                | 37737                | 172006362                 | 0.0002193930        |
| Brazil                 | 2000                | 80488                | 174504898                 | 0.0004612363        |
| China                  | 1999                | 212258               | 1272915272                | 0.0001667495        |
| China                  | 2000                | 213766               | 1280428583                | 0.0001669488        |

6 rows

table1 %>%
mutate(rate = cases/population)



Adapted hom master the thuyverse cc by Astudio

### table2 isn't tidy

contains two variables

| country<br><chr></chr> | year type<br><int> <chr></chr></int> | count<br><int></int> |
|------------------------|--------------------------------------|----------------------|
| Afghanistan            | 1999 cases                           | 745                  |
| Afghanistan            | 1999 population                      | 19987071             |
| Afghanistan            | 2000 cases                           | 2666                 |
| Afghanistan            | 2000 population                      | 20595360             |
| Brazil                 | 1999 cases                           | 37737                |
| Brazil                 | 1999 population                      | 172006362            |
| Brazil                 | 2000 cases                           | 80488                |
| Brazil                 | 2000 population                      | 174504898            |
| China                  | 1999 cases                           | 212258               |
| China                  | 1999 population                      | 1272915272           |
| 1-10 of 12 rows        |                                      | Previous             |

### It's hard to manipulate



## Your Turn 1

## Is bp\_systolic tidy?

| subject_id<br><dbl></dbl> | time_1<br><dbl></dbl> | time_2<br><dbl></dbl> | time_3<br><dbl></dbl> |  |
|---------------------------|-----------------------|-----------------------|-----------------------|--|
| 1                         | 120                   | 118                   | 121                   |  |
| 2                         | 125                   | 131                   | NA                    |  |
| 3                         | 141                   | NA                    | NA                    |  |

## Your Turn 1

## Is bp\_systolic tidy?

|        | subject_id<br><dbl></dbl> | time_1<br><dbl></dbl> | time_2<br><dbl></dbl> | time_3<br><dbl></dbl> | <i>□</i> . |
|--------|---------------------------|-----------------------|-----------------------|-----------------------|------------|
|        | 1                         | 120                   | 118                   | 121                   |            |
|        | 2                         | 125                   | 131                   | NA                    |            |
|        | 3                         | 141                   | NA                    | NA                    |            |
| 3 rows |                           |                       |                       | Varia                 | bles:      |
|        |                           |                       |                       | • S                   | ubject     |
|        |                           |                       |                       | • t                   | ime        |

systolic blood pressure

### bp\_systolic2 is tidy

| subject_id<br><dbl></dbl> | time<br><dbl></dbl> | systolic<br><dbl></dbl> |
|---------------------------|---------------------|-------------------------|
| 1                         | 1                   | 120                     |
| 1                         | 2                   | 118                     |
| 1                         | 3                   | 121                     |
| 2                         | 1                   | 125                     |
| 2                         | 2                   | 131                     |
| 3                         | 1                   | 141                     |

6 rows



## Your Turn 2

Using bp\_systolic2 with group\_by(), and
summarise()

- Find the average systolic blood pressure for each subject
- Find the last time each subject was measured

```
bp_systolic2 %>%
  group_by(subject_id) %>%
  summarise(avg_sys = mean(systolic),
  last_measurement = max(time))
```

| subject_id<br><dbl></dbl> | avg_sys<br><dbl></dbl> | last_measurement<br><dbl></dbl> |
|---------------------------|------------------------|---------------------------------|
| 1                         | 119.6667               | 3                               |
| 2                         | 128.0000               | 2                               |
| 3                         | 141.0000               | 1                               |

## tidyr



A tidyverse package that reshapes the layout of tabular data.

## Reshaping verbs in tidyr



Move values into column names with spread()



Move column names into values with gather()



Split a column with separate() or separate\_rows()



Unite columns with unite()



## Toy data

```
01-Reshaping-Data.Rmd *
                                                 1 - ---
  2 title: "Reshaping Data"
  3 output: html_notebook
  6 - ```{r setup}
                           cases <- tribble(</pre>
  7 library(tidyverse)
    # Toy data
                              ~Country, ~"2011", ~"2012", ~"2013",
    cases <- tribble(</pre>
      ~Country, ~"2011", ~"2012"
 11
                                     "FR",
                                                  7000,
                                                                  6900,
                                                                                 7000,
 12
                7000,
                      6900
 13
         "DE",
                5800,
                                     "DE",
                                                    5800, 6000,
                                                                                 6200,
 14
         "US", 15000,
 15
                                     "US",
                                                  15000,
                                                                 14000,
                                                                                13000
 16
    pollution <- tribble(</pre>
 17
          ~city, ~size, ~amour
 18
      "New York", "large",
 19
      "New York", "small",
 20
      "London", "large",
 21
                          22,
     "London", "small",
                         16,
     "Beijing", "large",
 23
                         121,
 24
       "Beijing", "small",
 25 )
 26
 27
    bp_systolic <- tribble(</pre>
      ~ subject_id, ~ time_1, ~ time_2, ~ time_3,
  30
                     120,
                            118,
                                    121,
```

## Quiz

### What are the variables in cases?

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

## Quiz

### What are the variables in cases?



- Country
- Year
- Count

### Your Turn 3

On a sheet of paper, draw how the cases data set would look if it had the same values grouped into three columns: country, year, n

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |



| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| Country | Year | n |
|---------|------|---|
|---------|------|---|

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| Country | Year | n    |
|---------|------|------|
| FR      | 2011 | 7000 |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| Country | Year | n    |
|---------|------|------|
| FR      | 2011 | 7000 |
| DE      | 2011 | 5800 |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| Country | Year | n     |
|---------|------|-------|
| FR      | 2011 | 7000  |
| DE      | 2011 | 5800  |
| US      | 2011 | 15000 |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| Country | Year | n     |
|---------|------|-------|
| FR      | 2011 | 7000  |
| DE      | 2011 | 5800  |
| US      | 2011 | 15000 |
| FR      | 2012 | 6900  |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| Country | Year | n     |
|---------|------|-------|
| FR      | 2011 | 7000  |
| DE      | 2011 | 5800  |
| US      | 2011 | 15000 |
| FR      | 2012 | 6900  |
| DE      | 2012 | 6000  |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| Country | Year | n     |
|---------|------|-------|
| FR      | 2011 | 7000  |
| DE      | 2011 | 5800  |
| US      | 2011 | 15000 |
| FR      | 2012 | 6900  |
| DE      | 2012 | 6000  |
| US      | 2012 | 14000 |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| Country | Year | n     |
|---------|------|-------|
| FR      | 2011 | 7000  |
| DE      | 2011 | 5800  |
| US      | 2011 | 15000 |
| FR      | 2012 | 6900  |
| DE      | 2012 | 6000  |
| US      | 2012 | 14000 |
| FR      | 2013 | 7000  |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| Country | Year | n     |
|---------|------|-------|
| FR      | 2011 | 7000  |
| DE      | 2011 | 5800  |
| US      | 2011 | 15000 |
| FR      | 2012 | 6900  |
| DE      | 2012 | 6000  |
| US      | 2012 | 14000 |
| FR      | 2013 | 7000  |
| DE      | 2013 | 6200  |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| Country | Year | n     |
|---------|------|-------|
| FR      | 2011 | 7000  |
| DE      | 2011 | 5800  |
| US      | 2011 | 15000 |
| FR      | 2012 | 6900  |
| DE      | 2012 | 6000  |
| US      | 2012 | 14000 |
| FR      | 2013 | 7000  |
| DE      | 2013 | 6200  |
| US      | 2013 | 13000 |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| Country | Yar  |       |
|---------|------|-------|
| FR      | 2011 | 7000  |
| D       | 2011 | 58)0  |
| US      | 2011 | 15000 |
| FR      | 2012 | 69)0  |
| DE      | 2012 | 6000  |
| US      | 2012 | 14000 |
| FR      | 2013 | 7000  |
|         | 2013 | 6200  |
|         | 2013 | 13000 |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |



| Country | Year | n     |
|---------|------|-------|
| FR      | 2011 | 7000  |
| DE      | 2011 | 5800  |
| US      | 2011 | 15000 |
| FR      | 2012 | 6900  |
| DE      | 2012 | 6000  |
| US      | 2012 | 14000 |
| FR      | 2013 | 7000  |
| DE      | 2013 | 6200  |
| US      | 2013 | 13000 |

| Countr | 2011  | 2012  | 2013  |
|--------|-------|-------|-------|
| FR     | 7000  | 6900  | 7000  |
| DE     | 5800  | 6000  | 6200  |
| US     | 15000 | 14000 | 13000 |

| 4 |  |   |
|---|--|---|
|   |  | 4 |
|   |  |   |

| Country | Year | n     |
|---------|------|-------|
| FR      | 2011 | 7000  |
| DE      | 2011 | 5800  |
| US      | 2011 | 15000 |
| FR      | 2012 | 6900  |
| DE      | 2012 | 6000  |
| US      | 2012 | 14000 |
| FR      | 2013 | 7000  |
| DE      | 2013 | 6200  |
| US      | 2013 | 13000 |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

### key (former column names)

| Country | Year | n     |
|---------|------|-------|
| FR      | 2011 | 7000  |
| DE      | 2011 | 5800  |
| US      | 2011 | 15000 |
| FR      | 2012 | 6900  |
| DE      | 2012 | 6000  |
| US      | 2012 | 14000 |
| FR      | 2013 | 7000  |
| DE      | 2013 | 6200  |
| US      | 2013 | 13000 |

| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

### key value (former cells)

| Country | Year | n     |
|---------|------|-------|
| FR      | 2011 | 7000  |
| DE      | 2011 | 5800  |
| US      | 2011 | 15000 |
| FR      | 2012 | 6900  |
| DE      | 2012 | 6000  |
| US      | 2012 | 14000 |
| FR      | 2013 | 7000  |
| DE      | 2013 | 6200  |
| US      | 2013 | 13000 |

```
cases %>% gather(key = "year", value = "n", 2:4)
```

data frame to reshape

name of the new key column (a character string)

name of the new value column (a character string)

numeric indexes of columns to collapse (or names)



cases %>% gather("year", "n", 2:4) numeric indexes 2012 2013 2011 Country <chr> <dbl> <dbl> <dbl> FR 7000 6900 7000 5800 6000 6200 DE 13000 US 15000 14000



cases %>% gather("year","n", "2011", "2012", "2013") names 2011 2012 2013 2011 2012 2013 Country <dbl> <chr> <dbl> <dbl> FR 7000 6900 7000 DE 5800 6000 6200 15000 US 14000 13000



## gather()

```
cases %>% gather("year","n", -Country)
```

Everything except...

| Country<br><chr></chr> | Not Country<br>2011<br><dbl></dbl> | Not Country<br>2012<br><dbl></dbl> | Not Country<br>2013<br><dbl></dbl> |
|------------------------|------------------------------------|------------------------------------|------------------------------------|
| FR                     | 7000                               | 6900                               | 7000                               |
| DE                     | 5800                               | 6000                               | 6200                               |
| US                     | 15000                              | 14000                              | 13000                              |



### Your Turn 4

Use **gather()** to reorganize **table4a** into three columns: country, year, and cases.

|   | country<br><chr></chr> | <b>1999</b> <int></int> | <b>2000</b> <int></int> |
|---|------------------------|-------------------------|-------------------------|
| 1 | Afghanistan            | 745                     | 2666                    |
| 2 | Brazil                 | 37737                   | 80488                   |
| 3 | China                  | 212258                  | 213766                  |



```
table4a %>%
gather(key = "year", value = "n", 2:3)
```

| country     | year        | n           |
|-------------|-------------|-------------|
| <chr></chr> | <chr></chr> | <int></int> |
| Afghanistan | 1999        | 745         |
| Brazil      | 1999        | 37737       |
| China       | 1999        | 212258      |
| Afghanistan | 2000        | 2666        |
| Brazil      | 2000        | 80488       |
| China       | 2000        | 213766      |
|             |             |             |

6 rows



table4a %>%
 gather(key = "year", value = "n", 2:3, convert = TRUE)



| country<br><chr></chr> | year<br><int></int> | n<br><int></int> |
|------------------------|---------------------|------------------|
| Afghanistan            | 1999                | 745              |
| Brazil                 | 1999                | 37737            |
| China                  | 1999                | 212258           |
| Afghanistan            | 2000                | 2666             |
| Brazil                 | 2000                | 80488            |
| China                  | 2000                | 213766           |

6 rows



# spread()

### Toy data

```
2 03-Tidy-Data.Rmd *
    2 title: "Tidy Data"
  3 output: html_notebook
  6 - ```{r setup}
  7 library(tidyverse)
  8 library(babynames)
                       pollution <- tribble(</pre>
 10 # Toy data
                                  ~city, ~size, ~amount,
 11 cases <- tribble(</pre>
      ~Country, ~"2011",
         "FR", 7000,
                          "New York", "large",
                                                                    23,
         "DE", 5800,
  14
         "US", 15000,
                          "New York", "small",
                                                                   14,
  16
  17
                             "London", "large",
    pollution <- tribble(
                                                                   22,
 19
         ~city, ~size,
      "New York", "large",
                             "London", "small",
                                                                    16,
      "New York", "small",
       "London", "large",
                            "Beijing", "large",
                                                                   121,
       "London", "small",
       "Beijing", "large",
 25
       "Beijing", "small",
                            "Beijing", "small",
                                                                    56
 26
 28 x <- tribble(
      ~x1, ~x2,
     "E", NA
 35
   ■ Tidy Data ‡
                                          R Markdown $
```

### Quiz

### What are the variables in pollution?

| city     | particle<br>size | amount<br>(µg/m³) |
|----------|------------------|-------------------|
| New York | large            | 23                |
| New York | small            | 14                |
| London   | large            | 22                |
| London   | small            | 16                |
| Beijing  | large            | 121               |
| Beijing  | small            | 56                |

### Quiz

#### What are the variables in pollution?

| city     | particle<br>size | amount<br>(µg/m³)       |
|----------|------------------|-------------------------|
| New York | large            | <b>&gt;</b> 23 <b>A</b> |
| NewYork  | small            | 14                      |
| Lordon   | large            | >22                     |
| Lordon   | small            | 16                      |
| Beling   | large            | 121                     |
| Beling   | small            | 56                      |

- City
- Amount of large particulate
- Amount of small particulate

### Your Turn 5

On a sheet of paper, draw how this data set would look if it had the same values grouped into three columns: *city*, *large*, *small* 

| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |



| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |

| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |

| city large small |
|------------------|
|------------------|

| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |

| city     | large | small |
|----------|-------|-------|
| New York | 23    |       |

| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |

| city     | large | small |
|----------|-------|-------|
| New York | 23    | 14    |

| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |

| city     | large | small |
|----------|-------|-------|
| New York | 23    | 14    |
| London   | 22    |       |

| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |

| city     | large | small |
|----------|-------|-------|
| New York | 23    | 14    |
| London   | 22    | 16    |

| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |

| city     | large | small |
|----------|-------|-------|
| New York | 23    | 14    |
| London   | 22    | 16    |
| Beijing  | 121   |       |

| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |

| city     | large | small |
|----------|-------|-------|
| New York | 23    | 14    |
| London   | 22    | 16    |
| Beijing  | 121   | 56    |

| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |



| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |



| city     | large | small |
|----------|-------|-------|
| New York | 23    | 14    |
| London   | 22    | 16    |
| Beijing  | 121   | 56    |

1 2

| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |

| city    | large | small |
|---------|-------|-------|
| New Yor | 23    | 14    |
| London  | 22    | 16    |
| Beijing | 121   | 56    |

#### key (new column names)

| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |

| city     | large | small |
|----------|-------|-------|
| New York | 23    | 14    |
| London   | 22    | 16    |
| Beijing  | 121   | 56    |

#### key value (new cells)

| city     | size  | amount |
|----------|-------|--------|
| New York | large | 23     |
| New York | small | 14     |
| London   | large | 22     |
| London   | small | 16     |
| Beijing  | large | 121    |
| Beijing  | small | 56     |

| city     | large | small |
|----------|-------|-------|
| New York | 23    | 14    |
| London   | 22    | 16    |
| Beijing  | 121   | 56    |

### spread()

pollution %>% spread(key = size, value = amount)

data frame to reshape

column to use for keys
(becomes new
column names)

column to use for values (becomes new column cells)



#### pollution %>% spread(size, amount)

|   | city     | size  | amount |   | city     | large | small |
|---|----------|-------|--------|---|----------|-------|-------|
| 1 | New York | large | 23     | 1 | Beijing  | 121   | 56    |
| 2 | New York | small | 14     | 2 | London   | 22    | 16    |
| 3 | London   | large | 22     | 3 | New York | 23    | 14    |
| 4 | London   | small | 16     |   |          |       |       |
| 5 | Beijing  | large | 121    |   |          |       |       |
| 6 | Beijing  | small | 56     |   |          |       |       |
|   |          |       |        |   |          |       |       |



### Your Turn 6

Use **spread()** to reorganize **table2** into four columns: country, year, cases, and population.

|                        |                     |                     |                      | A. : | ` × |
|------------------------|---------------------|---------------------|----------------------|------|-----|
| country<br><chr></chr> | year<br><int></int> | type<br><chr></chr> | count<br><int></int> |      |     |
| Afghanistan            | 1999                | cases               | 745                  |      |     |
| Afghanistan            | 1999                | population          | 19987071             |      |     |
| Afghanistan            | 2000                | cases               | 2666                 |      |     |
| Afghanistan            | 2000                | population          | 20595360             |      |     |
| Brazil                 | 1999                | cases               | 37737                |      |     |
| Brazil                 | 1999                | population          | 172006362            |      |     |



table2 %>%

spread(key = type, value = count)

|   | country<br><chr></chr> | year<br><int></int> | cases<br><int></int> | population<br><int></int> |
|---|------------------------|---------------------|----------------------|---------------------------|
| 1 | Afghanistan            | 1999                | 745                  | 19987071                  |
| 2 | Afghanistan            | 2000                | 2666                 | 20595360                  |
| 3 | Brazil                 | 1999                | 37737                | 172006362                 |
| 4 | Brazil                 | 2000                | 80488                | 174504898                 |
| 5 | China                  | 1999                | 212258               | 1272915272                |
| 6 | China                  | 2000                | 213766               | 1280428583                |

6 rows



### Reshaping verbs in tidyr



Move values into column names with spread()



Move column names into values with gather()



Split a column with separate() or separate\_rows()



Unite columns with unite()



# Project

# New Housing Price Index

https://www2.gov.bc.ca/gov/content/data/statistics/infoline/infoline-2017/17-146-price-new-housing



# Your Turn

Switch back to the project-housing. Rproj project.

- 1. Open 02-tidy.Rmd
- 2. Take a look at housing\_raw
- 3. **Brainstorm:** What needs to happen to get it in a form to plot?

## lubridate::parse\_date\_time()

Easy way to convert strings into dates

```
lubridate::parse_date_time(c("Jan 2016"), order = "my")
# [1] "2016-01-01 UTC"
```

### stringr::str\_detect()

Easy way to look for matches to a pattern

```
stringr::str_detect(c("apple", "pear", "pineapple"),
   pattern = "apple")
# [1] TRUE FALSE TRUE
```