拉格朗日方程和哈密顿方程

• 非保守系统的拉格朗日方程为

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_{\mathrm{i}}} \right) - \frac{\partial L}{\partial q_{\mathrm{i}}} = \widetilde{Q}_{\mathrm{j}} \qquad j = 1, 2, \dots, k$$

其中 \widetilde{Q}_i 为非有势力相应的广义力。

- 拉格朗日函数是广义速度和广义坐标的函数 $L = L(q_1, q_2, ..., q_k; q_1, q_2, ..., q_k)$
- 哈密顿(Hamilton)引入广义动量(1834): $p_j = rac{\partial L}{\partial \dot{q}_i}$ $j=1,2,\cdots,k$
- 通过**勒让德变换**,将广义速度 \dot{q}_{j} 变换成**广义动量** p_{j} ,相应的拉格朗日函数L变换成**哈密顿函数H**:

$$H = H(p_1, p_2, \dots, p_k; q_1, q_2, \dots, q_k) = \left(\sum_{i=1}^k p_i \dot{q}_i - L\right)_{\dot{q}_i \to p_i}$$

从而得到哈密顿方程:

$$\dot{q_j} = \frac{\partial H}{\partial p_j}$$
 $\eta_j = -\frac{\partial H}{\partial q_j} + \widetilde{Q_j}$ $j = 1, 2, \dots, k$

从拉格朗日方程变换到哈密顿方程,方程数由k增加到2k,但是微分方程由 二阶降为一阶

勒让德变换

函数 $X=X(x_1,x_2,...,x_n;\alpha_1,\alpha_2,...,\alpha_m)$ 是变量 $x_1,x_2,...,x_n$ 的函数,且包含参数 $\alpha_1,\alpha_2,...,\alpha_m$ 。

将变量 $x_1, x_2, ..., x_n$ 变换为另一组变量 $y_1, y_2, ..., y_n$,相应地函数X成为 $Y=Y(y_1, y_2, ..., y_n; \alpha_1, \alpha_2, ..., \alpha_m)。$

其中
$$y_i = \frac{\partial X}{\partial x_i} \qquad i = 1, 2, \dots, n$$

 y_i 为X关于 x_i 的导数

由上面方程组可以解得 x_i ,通过 y_i 来表示,即

$$x_i = x_i(y_1, y_2, \dots, y_n)$$

$$i = 1, 2, \dots, n$$

如果函数X变换成Y,满足:

$$Y = \left(\sum_{i=1}^{n} x_i y_i - X\right)_{x_i \to y_i}$$

称该变换为

勒让德变换

勒让德变换

$$Y = \left(\sum_{i=1}^{n} x_i y_i - X\right)_{x_i \to y_i}$$

$$\frac{\partial Y}{\partial y_i} = \sum_{j=1}^n \frac{\partial x_j}{\partial y_i} y_j + x_i - \sum_{j=1}^n \frac{\partial X}{\partial x_j} \frac{\partial x_j}{\partial y_i}$$

$$= \sum_{j=1}^n \frac{\partial x_j}{\partial y_i} y_j + x_i - \sum_{j=1}^n y_j \frac{\partial x_j}{\partial y_i}$$

$$= x_i$$

$$y_i = \frac{\partial X}{\partial x_i}$$

勒让德变换的逆变换也是勒让德变换,变量 x_i 由函数Y关于 y_i 的导数生成

$$X = \left(\sum_{i=1}^{n} x_i y_i - Y\right)_{y_i \to x_i}$$

变换的函数X与Y之间可以相差一个与参数 α_1 ,

 α_2 , ..., α_m 相关的常数。

函数关于参数 α_i 的偏导数

$$Y = \left(\sum_{i=1}^{n} x_i y_i - X\right)_{x_i \to y_i}$$

$$\frac{\partial Y}{\partial \alpha_{j}} = \sum_{i=1}^{n} \frac{\partial x_{i}}{\partial \alpha_{j}} y_{i} - \frac{\partial X}{\partial \alpha_{j}} - \sum_{i=1}^{n} \frac{\partial X}{\partial x_{i}} \frac{\partial x_{i}}{\partial \alpha_{j}} \qquad y_{i} = \frac{\partial X}{\partial x_{i}}$$

$$y_i = \frac{\partial X}{\partial x_i}$$

$$= \sum_{i=1}^{n} \frac{\partial x_{i}}{\partial \alpha_{j}} y_{i} - \frac{\partial X}{\partial \alpha_{j}} - \sum_{i=1}^{n} y_{i} \frac{\partial x_{i}}{\partial \alpha_{j}}$$

$$= -\frac{\partial X}{\partial \alpha_j}$$

• 拉格朗日函数是广义速度和广义坐标的函数

$$L = L(\dot{q}_1, \dot{q}_2, ..., \dot{q}_k; q_1, q_2, ..., q_k)$$

• 哈密顿(Hamilton)引入广义动量

$$p_j = \frac{\partial L}{\partial \dot{q}_j} \qquad j = 1, 2, \dots, k$$

• 将广义速度 \dot{q}_j 变换成广义动量 p_j ,把拉格朗日函数L通过勒让德变换成哈密顿函数H:

$$H = H(p_1, p_2, ..., p_k; q_1, q_2, ..., q_k) = \left(\sum_{i=1}^k p_i \dot{q}_i - L\right)_{\dot{q}_i \to p_i}$$

$$\begin{split} L &= L(\dot{q}_1, \dot{q}_2, \dots, \dot{q}_k; q_1, q_2, \dots, q_k) \\ H &= H(p_1, p_2, \dots, p_k; q_1, q_2, \dots, q_k) = \left(\sum_{i=1}^k p_i \dot{q}_i - L\right)_{\dot{q}_i \to p_i} \end{split}$$

• 勒让德变换引出的等式:
$$y_i = \frac{\partial X}{\partial x_i}$$
 $x_i = \frac{\partial Y}{\partial y_i}$

则有:
$$p_i = \frac{\partial L}{\partial \dot{q}_i}$$
 $\dot{q}_i = \frac{\partial H}{\partial p_i}$

 $\frac{\partial Y}{\partial \alpha_i} = -\frac{\partial X}{\partial \alpha_i}$ • 勒让德变换引出的等式:

$$\frac{\partial \alpha_j}{\partial \alpha_j} = \frac{\partial \alpha_j}{\partial \alpha_j}$$

则有: $\frac{\partial H}{\partial q_i} = -\frac{\partial L}{\partial q_i}$

• 非保守系统的拉格朗日方程为

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_{\mathrm{j}}} \right) - \frac{\partial L}{\partial q_{\mathrm{j}}} = \widetilde{Q}_{\mathrm{j}} \qquad j = 1, 2, \dots, k$$

• 则对于非保守系统有:

$$\dot{p} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_{\mathrm{j}}} \right) = \frac{\partial L}{\partial q_{\mathrm{j}}} + \widetilde{Q}_{\mathrm{j}} = -\frac{\partial H}{\partial q_{\mathrm{j}}} + \widetilde{Q}_{\mathrm{j}}$$

其中 $\widetilde{Q}_{\mathbf{j}}$ 为非有势力相应的广义力。

的2k个一阶微分方程组

关于系统状态变量 q_1 、 q_2 、...、 q_k 和 p_1 、 p_2 、...、 p_k

$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$

$$i = 1, 2, \dots, k$$

$$\dot{p_i} = -\frac{\partial H}{\partial q_i} + \widetilde{Q_i}$$

哈密顿方程

建立动力学系统哈密顿方程的一般过程

- 明确研究对象及约束性质
- 分析系统自由度,确定广义坐标
- → 计算系统的动能和势能,确定拉格朗日函数(广义坐标和广义速度的函数)

$$L = T - V$$

▼ 求拉格朗日函数对广义速度的偏导数,从 而确定广义动量

$$p_j = \frac{\partial L}{\partial \dot{q}_i} \qquad j = 1, 2, \dots, k$$

建立动力学系统哈密顿方程的一般过程

$$p_j = \frac{\partial L}{\partial \dot{q}_i}$$
 $j = 1, 2, \dots, k$

● 从广义动量表达式中,反解出广义速度

$$\dot{q}_{j} = \dot{q}_{j}(p_{1}, p_{2}, ..., p_{k})$$
 $j = 1, 2, ..., k$

ullet 通过如下勒让德变换,计算哈密顿函数。将上面广义速度的表达代入哈密顿函数,使得哈密顿函数通过广义动量 p_i 和广义坐标 q_i 来表示

$$H = \left(\sum_{i=1}^{k} p_i \dot{q}_i - L\right)_{\dot{q}_i \to p_i}$$

建立动力学系统哈密顿方程的一般过程

- ullet 对于非保守系统,计算非有势力相应的广义力 $ilde{Q}$
- ullet 将哈密顿函数及广义力 $ilde{Q}$ 代入到哈密顿方程,求导并整理得到系统的运动微分方程组。

$$\dot{q}_{i} = \frac{\partial H}{\partial p_{i}}$$

$$i = 1, 2, \dots, k$$

$$\dot{p}_{i} = -\frac{\partial H}{\partial q_{i}} + \widetilde{Q}_{i}$$

例题: 如图所示,质量弹簧系统由质量为m的物块A和刚度系数为k的水平弹簧构成。试用哈密顿方程求出系统的运动微分方程。

解: 该系统为单自由度的完整保守系统。以弹簧原长处为坐标原点,建立如图坐标系,取位移x为广义坐标

系统的动能:

$$T = \frac{1}{2}m\dot{x}^2$$

若以弹簧原长处为势能零点,则系统的势能:

$$V = \frac{1}{2}kx^2$$

因此, 系统的拉格朗日函数:

$$L = T - V = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

求得广义动量
$$p$$
为:
$$p = \frac{\partial L}{\partial \dot{x}} = m\dot{x}$$

则广义速度可以表示为:
$$\dot{x} = \frac{p}{m}$$

$$L = T - V = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2 \qquad \dot{x} = \frac{p}{m}$$
求得系統的哈察顿承数为

求得系统的哈密顿函数为

$$H = \left(\sum_{i=1}^{k} p_i \dot{q}_i - L\right)_{\dot{q}_i \to p_i}$$

$$H = p\dot{x} - L = p(\frac{p}{m}) - \left[\frac{1}{2}m(\frac{p}{m})^2 - \frac{1}{2}kx^2\right] = \frac{p^2}{2m} + \frac{1}{2}kx^2$$

系统的哈密顿方程为

$$\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m}, \ \dot{p} = -\frac{\partial H}{\partial x} = -kx$$

哈密顿方程为
$$\dot{q}_i = \frac{\partial H}{\partial p_i} \qquad \qquad i = 1, 2, \cdots, k$$

$$\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m}, \quad \dot{p} = -\frac{\partial H}{\partial x} = -kx$$

由以上两式消去p,即得系统的运动微分方程

$$m\ddot{x} + kx = 0$$

例题: 一半径为r的光滑圆环形细管,可绕其过直径的铅直轴z转动,该圆环对转轴z的转动惯量为 J_z 。 质量为m的小球A可在圆环内滑动。试写出系统的哈密顿方程。

解:此系统为二自由度完整保守系统,取圆环的转角 φ 和半径OA的转角 θ 为广义坐标。

取固定在圆环上,与圆环转动的坐标系为动坐标系,小球为动点。

小球A的相对速度 $v_r = r\dot{\theta}$,方向沿圆环在A点的切线;

又小球A的牵连速度 $v_e = r \sin \theta \dot{\phi}$, 垂直于圆环平面,

故系统的动能

$$T = \frac{1}{2}J_z\dot{\varphi}^2 + \frac{1}{2}m[(r\dot{\varphi}\sin\theta)^2 + r^2\dot{\theta}^2]$$
 (1)

取过点O的水平面为零势面,则系统的势能

$$V = -mgr\cos(\pi - \theta) = mgr\cos\theta \tag{2}$$

所以系统的拉格朗日函数

$$L = T - V = \frac{1}{2} J_z \dot{\phi}^2 + \frac{1}{2} m [(r\dot{\phi}\sin\theta)^2 + r^2\dot{\theta}^2] - mgr\cos\theta$$
 (3)

求得广义动量

$$p_{\varphi} = \frac{\partial L}{\partial \dot{\varphi}} = (J_z + mr^2 \sin^2 \theta) \dot{\varphi}$$
 (4)

$$p_{\theta} = \frac{\partial L}{\partial \dot{\theta}} = mr^2 \dot{\theta} \tag{5}$$

系统的哈密顿函数为

哈密顿函数为
$$H=p_{oldsymbol{\phi}}\dot{oldsymbol{\phi}}+p_{oldsymbol{ heta}}\dot{oldsymbol{ heta}}-L=$$

$$\frac{1}{2}(J_z + mr^2\sin^2\theta)\dot{\varphi}^2 + \frac{1}{2}mr^2\dot{\theta}^2 + mgr\cos\theta$$

利用式(4)和(5)中的 p_{φ} 和 p_{θ} 代换上式中的 $\dot{\boldsymbol{\varphi}}$ 与 $\dot{\boldsymbol{\theta}}$,可得求得系统的哈密顿函数为

$$H = \frac{p_{\varphi}^2}{2(J_z + mr^2 \sin^2 \theta)} + \frac{p_{\theta}^2}{2mr^2} + mg \cos \theta$$

系统的哈密顿方程为

$$\dot{\phi} = \frac{\partial H}{\partial p_{\varphi}} = \frac{p_{\varphi}}{J_z + mr^2 \sin^2 \theta}$$

$$\dot{p}_{\varphi} = -\frac{\partial H}{\partial \varphi} = 0$$

$$\dot{\theta} = \frac{\partial H}{\partial p_{\theta}} = \frac{p_{\theta}}{mr^2}$$

$$\dot{p}_{\theta} = -\frac{\partial H}{\partial \theta} = \frac{mp_{\varphi}^2 r^2 \sin \theta \cos \theta}{(J_z + mr^2 \sin^2 \theta)^2} + mgr \sin \theta$$

由以上四式消去 p_{φ} 和 p_{θ} ,即得系统的运动微分方程。

例3.4 图2.3所示的摆(例2.3)。求:摆的哈密顿方程。

图 2.3

解:摆受定常、理想、完整约束,系统自由度为2,选取物块的 x_1 与杆的 φ 为广义坐标。

该摆为保守系统,由例2.3的分析,系统的动能与势能

$$T = \frac{1}{2} (m_1 + m_2) \dot{x}_1^2 + \frac{1}{2} m_2 l^2 \dot{\phi}^2 + m_2 l \dot{x}_1 \dot{\phi} \cos \phi$$

$$V = m_2 g l (1 - \cos \phi)$$

拉格朗日方程

$$L = \frac{1}{2} (m_1 + m_2) \dot{x}_1^2 + \frac{1}{2} m_2 l^2 \dot{\phi}^2 + m_2 l \dot{x}_1 \dot{\phi} \cos \varphi - m_2 g l (1 - \cos \varphi)$$

$$p_{x} = \frac{\partial L}{\partial \dot{x}_{1}} = (m_{1} + m_{2})\dot{x}_{1} + m_{2}l\dot{\varphi}\cos\varphi$$

$$p_{\varphi} = \frac{\partial L}{\partial \dot{\varphi}} = m_{2}l^{2}\dot{\varphi} + m_{2}l\dot{x}_{1}\cos\varphi$$

$$p_{x} = \frac{\partial L}{\partial \dot{x}_{1}} = (m_{1} + m_{2})\dot{x}_{1} + m_{2}l\dot{\varphi}\cos\varphi$$

$$p_{\varphi} = \frac{\partial L}{\partial \dot{\varphi}} = m_{2}l^{2}\dot{\varphi} + m_{2}l\dot{x}_{1}\cos\varphi$$

上面两式联立解出用广义动量表示的广义速度:

$$\dot{x}_{1} = \frac{lp_{x} - p_{\varphi} \cos \varphi}{(m_{1} + m_{2} \sin^{2} \varphi)l}$$

$$\dot{\varphi} = \frac{(m_{1} + m_{2})p_{\varphi} - m_{2}lp_{x} \cos \varphi}{(m_{1} + m_{2} \sin^{2} \varphi)m_{2}l^{2}}$$

哈密顿函数为:

$$H = \left(\sum_{i=1}^{k} p_i \dot{q}_i - L\right)_{\dot{q}_i \to p_i}$$

$$H = (p_{x}\dot{x}_{1} + p_{\varphi}\dot{\varphi} - L)_{\dot{x}_{1} \to p_{x}, \dot{\varphi} \to p_{\varphi}}$$

$$= \frac{1}{2(m_{1} + m_{2}\sin^{2}\varphi)m_{2}l^{2}} [m_{2}l^{2}p_{x}^{2} + (m_{1} + m_{2})p_{\varphi}^{2} - 2m_{2}lp_{x}p_{\varphi}\cos\varphi] + m_{2}gl(1 - \cos\varphi)$$

将哈密顿函数代入,得到哈密顿方程:

$$\dot{x}_1 = \frac{\partial H}{\partial p_x} = \frac{lp_x - p_\varphi \cos \varphi}{\left(m_1 + m_2 \sin^2 \varphi\right)l}$$

$$\dot{p}_x = -\frac{\partial H}{\partial x_1} = 0$$

$$\dot{\varphi} = \frac{\partial H}{\partial p_\varphi} = \frac{\left(m_1 + m_2\right)p_\varphi - m_2lp_x \cos \varphi}{\left(m_1 + m_2 \sin^2 \varphi\right)m_2l^2}$$

$$\dot{p}_{\varphi} = -\frac{\partial H}{\partial \varphi} = \frac{\left[m_{2}l^{2}p_{x}^{2} + (m_{1} + m_{2})p_{\varphi}^{2}\right]\sin\varphi\cos\varphi}{\left(m_{1} + m_{2}\sin^{2}\varphi\right)^{2}l^{2}} - \frac{\left(m_{1} + m_{2} + m_{2}\cos^{2}\varphi\right)lp_{x}p_{\varphi}\sin\varphi}{\left(m_{1} + m_{2}\sin^{2}\varphi\right)^{2}l^{2}} + m_{2}gl\sin\varphi$$

由以上四式消去 p_x 和 p_{φ} ,即得系统的运动微分方程:

$$(m_1 + m_2)\ddot{x}_1 + m_2 l\ddot{\varphi}\cos\varphi - m_2 l\dot{\varphi}^2\sin\varphi = 0$$

$$\ddot{x}_1\cos\varphi + l\ddot{\varphi} + g\sin\varphi = 0$$

$$\dot{q}_{i} = \frac{\partial H}{\partial p_{i}}$$

$$\dot{p} = -\frac{\partial H}{\partial q_{i}} + \widetilde{Q_{i}}$$

$$i = 1, 2, \dots, k$$

作业

作业1: 设某单自由度系统的广义坐标为 θ , 动能 T、势能 V、及非保守广义力分别为

$$T = \frac{1}{2}mb\dot{\theta}^2$$
, $V = mg(b + \theta - \cos\theta)$, $\tilde{Q} = Fb$ (m, b, g, F) \ddot{R}

求系统的哈密顿方程。

作业2: 设某单自由度系统的广义坐标为x, 动能T、势能V、及非保守广义力分别为

$$T = \frac{1}{2}m(b+x)^2\dot{x}^2$$
, $V = \frac{1}{2}mgx^2$, $\widetilde{Q} = -c\dot{x}$ (m, b, g, c 为常数)

求系统的哈密顿方程。

• 教材习题,Page 65: 3.2, 3.3

有关期末考试

- 时间: 2019年1月22日, 星期二, 10:30-12:30
- 地点: 紫金港西1-219
- 开卷考试,但是只准带教科书
- 可以携带计算器

期末考试题型及分值分配

- 1. 平面任意力系平衡问题: 15分
- 2. 桁架: 15分
- 3. 运动学(一般两小题,点的合成运动和刚体平面运动各一道):20分
- 4. 动力学: 20分
- 5. 达朗贝尔原理(惯性力系简化)和虚位 移原理: 15分
- 6. 分析力学(求系统的拉格朗日方程和哈密顿方程): 15分

静力学

分清约束的性质: 固定铰链支座, 移动铰链支座, 固定端约束

静力学

平面任意力系的平衡方程有三个

$$\sum F_x = 0, \quad \sum F_y = 0, \quad \sum M_o(\mathbf{F}) = 0$$

静力学

平面任意力系的平衡方程有三个

$$\sum F_x = 0$$
, $\sum F_y = 0$, $\sum M_O(\mathbf{F}) = 0$

求A处约束力。

- 求平面桁架各杆内力的方法
 - 节点法: 分别考虑各节点的平衡
 - 每个节点都受一平面汇交力系的作用,只能列写两个平衡方程, 解两个未知数。
 - 注意选择节点顺序, 适合于求解全部杆件内力

2019/1/2

三、如图所示桁架结构。A 处固定较支座约束,B 处滑动铰支座约束。ABCD 和 CHGE 均为边长为 α 的 正方形。AB 水平方向,DC 垂直于 EC。水平力 F作用于 D 处,竖直力 F作用于 H 处,各杆的重力不 计。求 BC、DE 和 CG 杆的内力。 $\boxed{}$

- 求平面桁架各杆内力的方法
 - 节点法: 分别考虑各节点的平衡
 - 每个节点都受一平面汇交力系的作用,只能列写两个平衡方程, 解两个未知数。
 - 注意选择节点顺序, 适合于求解全部杆件内力
 - **截面法**: 假想地把桁架截开, 再考虑其中任一部分的平衡, 求出被截杆件的内力。
 - 平面任意力系的求解方法。因平面任意力系只有3个独立的平 衡方程,所以不宜截断三杆以上。
 - 适当地选取一截面以及力矩方程,常可较快地求得某些指定杆件的内力。

2019/1/2

简单平面桁架的内力计算

思考题

用截面法求杆1、2的内力。

先用截面m (选右侧刚体

为研究对象) $\sum M_c = 0$, 求出杆1的内力 F_1 。

再用截面n。 $\sum M_D = 0$,求出杆2的内力 F_2 。

合成运动基本概念

三种运动

绝对运动: 动点对于定参考系的运动。

相对运动: 动点对于动参考系的运动。

牵连运动: 动参考系对于定参考系的运动。

● 速度合成定理

动点M在时间 Δt 内的绝对位移

$$\overrightarrow{MM}' = \overrightarrow{MM}_1 + \overrightarrow{M}_1 \overrightarrow{M}'$$

$$\lim_{\Delta t \to 0} \frac{\overrightarrow{MM'}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\overrightarrow{MM_1}}{\Delta t} + \lim_{\Delta t \to 0} \frac{\overrightarrow{M_1M'}}{\Delta t}$$

$$\boldsymbol{v}_a \qquad \boldsymbol{v}_e \qquad \boldsymbol{v}_r$$

$$(1)$$

因此,

$$v_a$$
= v_e + v_r

绝对速度矢量等于牵连速度 与相对速度的矢量和

例题8-2 刨床的摆动导杆机构如图所示。曲柄OM长 20 cm, 以转速n=30 r/min绕O点逆时针向转动,曲柄转轴与导杆转轴之间距离OA=20 cm。 试求当曲柄在水平位置时导杆AB的角速度 ω_{AB} 。

解:

(1) 运动分析

动点 - 滑块 M。

动系 - Ax'y'固连于摇杆 AB。

定系 - 固连于机座。

绝对运动 - 以0为圆心的圆周运动。

相对运动 - 沿AB的直线运动。

牵连运动 - 摇杆绕A轴的摆动。

(2) 速度分析

根据点的速度合成定理,动点的绝对速度

$$\mathbf{v}_{\mathrm{a}} = \mathbf{v}_{\mathrm{e}} + \mathbf{v}_{\mathrm{r}}$$

速度	$v_{\rm a}$	$v_{\rm e}$	$v_{\rm r}$
大小	$r\omega_0$	AMω _{AB} (未知)	未知
方向	上 <i>OM</i> 向上	$\perp AB$	沿AB

设摇杆在此瞬时的角速度为 ω_{AB} ,则

$$v_{\rm e} = AM \ \omega_{AB}$$

解得

$$\omega_{AB} = \frac{v_{\rm e}}{AM} = \omega_0 \frac{OM^2}{AM^2}$$

$$\mathbf{a}_{\mathrm{a}} = \mathbf{a}_{\mathrm{e}} + \mathbf{a}_{\mathrm{r}} + \mathbf{a}_{\mathrm{C}}$$

$$\mathbf{a}_{\mathrm{C}} = 2\boldsymbol{\omega} \times \boldsymbol{v}_{\mathrm{r}}$$

牵连运动是平移时点的加速度合成定理

当 ω =0时, $a_{\rm C}$ =0,此时有

$$\boldsymbol{a}_{\mathrm{a}} = \boldsymbol{a}_{\mathrm{e}} + \boldsymbol{a}_{\mathrm{r}}$$

即,牵连运动为平移时,点的绝对加速度等于牵连加速度、相对加速度的矢量和。

例题8-4 半径为r的半 圆凸轮在水平面上向右作 移动,从而推动顶杆AB沿 铅垂导轨上下滑动,如图 所示。在图示位置时, ϕ =60°, 凸轮具有向右的速 度 v_0 和加速度a。试求该瞬 时顶杆AB的速度和加速度 的大小。

(1) 运动分析

动点—AB的端点A。

动系— Ox y , 固连于凸轮。

定系—固连于机座。

绝对运动—沿铅垂导轨直线运动。

相对运动—沿凸轮轮廓曲线运动。

牵连运动—凸轮水平直线平动。

(2) 速度分析

根据速度合成定理

$$v_a = v_e + v_r$$

求得

$$v_{\rm a} = v_{\rm e} \cot \varphi = v \cot 60^{\circ} = \frac{\sqrt{3}}{3}v$$

此瞬时杆AB的速度方向向上。

并可求得相对速度

速度
$$v_a$$
 v_e v_r 大小未知 v 未知方向沿铅垂线水平向右 $\bot AO$

$v_{\rm r} =$	$v_{\rm e}$	_ <i>v</i>	$2\sqrt{3}$
	$\sin \varphi$	$\sin 60^{\circ}$	3

(3) 加速度分析

牵连运动是平移,应用加速度合成定理

$$a_a = a_e + a_r^t + a_r^n$$

上式投影到 OA 上, 得

$$a_{\rm a} \sin \varphi = a_{\rm e} \cos \varphi - a_{\rm r}^{\rm n}$$

解得杆AB加速度为

加速度	$a_{\rm a}$	$a_{ m e}$	$a_{\mathrm{r}}^{}}$	$a_{\rm r}^{\rm n}$
大小	未知	а	未知	$v_{\rm r}^2/r$
方向	铅直	水平向右	$\perp AO$	由A指向O

$$a_{a} = a \cot \varphi - \frac{v_{r}^{2}}{r \sin \varphi}$$
$$= \frac{\sqrt{3}}{3} \left(a - \frac{8v^{2}}{3r}\right)$$