(To be)	filled up by the candidate by blue/blac	k ball-point pen)
Roll No.		
Roll No. (Write the digits in words)	2017	
Serial No. of OMR Answer S	heet	
Day and Date		(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ट पर दिये गए हैं]

[No. of Printed Pages: 20+2

Full Marks: 360

(P.T.O.)

No. of Questions: 120

Time: 2 Hours

(46)

Note :	ote: (1) Attempt as many questions as you can. Each question carries One mark will be deducted for each incorrect answer. Zero ma awarded for each unattempted question.						n carries 3 marks. . Zero mark will be
		more than orrect answ				to be a	pproximate to the
1.		n code, 'PLA ELAY writte				ZID' is w	ritten as 'β64@%'.
	(1) β4*2%	(2)	β4@2%	(3)	%42@β	(4)	%4@2p
2.		meaningfi letter only		20 TOTAL SHEET AND		ed with	the letters ARILT
	(1) One	(2)	Two	(3)	Three	(4)	More than three
3.	D said, "A related to	l's father is D?	the only	brother o	f my sister	r's son".	How is A's father
	(1) Cousir	(2)	Nephew	(8)	Aunt	(4)	Uncle

т.	following is the	가지 않아 있다면 아니라 하는 그렇게 하는 사람이 하다.	어머니의 아내는 아내는 아내는 아니다.				on, which of	tne
	(1) 81	(2) 79		(3) 80)	(4) 7	78	
5.	Which of the FAN: HEAT?	following p	oairs of w	ords	have the	same	relationship	as
	(1) WATER : D	RINK	20	(2) LI	GHT: NIG	HT		
	(3) FOOD : HU	NGER	27	(4) AI	R : BREAT	THE		
6.	Q types faster than V. Who as				- 10 T	er than	R. S types fas	ter
	(1) V	(2) T		(3) S		(4) I	Data inadequa	te
7.	Select the miss	ing number			responses	:		
			0, 7, 26, 6	53, ?				
	(1) 124	(2) 98	Ü	(3) 14	8	(4) 1	88	
	tions (Question N atives.	o. 8 to 11) ; S	Select the re	elated	letter/wore	d/numl	oer from the giv	en
8.	Reasoning : Log	gic : : Scienc	ce : ?					
	(1) Evolution	(2) Facts	s ((3) La	boratory	(4) 8	Scientists	
9.	Petal : Flower :	: Branch :	?					
	(1) Bee	(2) Office	e	(3) Tr	ree	(4) 5	Sports	
10.	EJOT : KPUZ :	: CHMR : 7	•					
	(1) JOTY	(2) HMR	ew	(3) IN	ISX	(4) 3	LQVA	
(46)		∞•	2					

11.	5:625::3	3 ; ?				
	(1) 27	(2) 81		(3) 243	(4) 99	
12.	If the 4th de Saturday of	ay of a month the month?	is Mon	day, what dat	e will it be 4 days after	3rd
	(1) 16	(2) 20		(3) 23	(4) 28	
13.	Abhay moves left and move from the sta	es 60 km. Fina	then he ally, he t	turns left and urns right and	moves 40 km. Again he tu ranges 30 km. How far is	rns he
	(1) 70 km	(2) 60 1	tm	(3) 50 km	(4) 40 km	
14.	Find the odd	number from	the giv	en alternatives	s :	
		93	8, 86, 79	, 72, 65, 59		
	(1) 93	(2) 79		(3) 72	(4) 59	
15.	Select the m	issing number	from th	e given respo	nses :	
		144 256	150		Ma 44	
	1	6 8	5			
	1	8 5	9	1		
	L	32 37	2			
	(1) 25	(2) 34		(3) 39	(4) 40	
16.	Artist is to P	ainting as Sen	ator is	to		
	(1) Attorney	(2) Law		(9) Ponticiar	(') Consumente	
17.	A can do a pie help of C, the	ce of work in 2 y finish the w	ork in 8	while B alone c	an do it in 16 days. With the can do the work in	ie.
28	(1) 48 days	(2) 42 da	ays	(3) 36 days	(4) 32 days	
(46)		558 9	3		- Julys	
					(P.T.O	.)

18.	A train 700 m lon tunnel in 1 minu	ng is running at the te, then the length	e speed of 72 km p of the tunnel is	er hour. If it crosses a
	(1) 500 m	(2) 550 m	(3) 600 m	(4) 650 m
19.	A trader lists his a cash payment. His	articles 20% above is gain percent is	cost price and allow	s a discount of 10% on
	(1) 5	(2) 6	(3) 7	(4) 8
20.	The sides of a unlength of the small	angle are in the ra allest side is	tio $\frac{1}{3}$: $\frac{1}{4}$: $\frac{1}{5}$ and its p	perimeter is 94 cm, the
	(1) 18·4 cm	(2) 22·5 cm	(3) 23·2 cm	(4) 24 cm
21.	A mixture of 40 l should be added	itres of milk and w to this so that wa	ater contains 10% vater may be 20% ir	water. How much water the new mixture?
	(1) 5 litres	(2) 5.5 litres	(3) 6 litres	(4) 8 litres
22.	The profit of a c	ompany is given b	elow:	

Profit (in crores of Rs)

5.2

6.5

7.8

9.9

10.8

9.5

11.4

In how many years, the profit was above the average?

(1) 2

(2) 3

Year

2001

2002

2003

2004

2005

2006

2007

(3) 4

(4) 5

23. The loan disbursed by 5 banks for three years are given below:

D1	Years				
Banks	2005	2006	2007		
A	23	45	30		
В	33	18	41		
C	29	22	19		
D	16	28	32		
E	19	27	34		

What was the percentage increase of disbursement of loans of all banks together from 2005 to 2007?

- (1) 10
- (2) 20
- (3) 30
- (4) $23\frac{1}{13}$

24. Fare by bus and car are Rs 5 and Rs 14 per km respectively. A man who travels 220 km spends Rs 2,270 in going a part of distance by bus and the remaining in car. How many km did he travel in car?

- (1) 90
- (2) 75
- (3) 130
- (4) 82

25. The surface area of a sphere is same as the total surface area of a cylinder whose height is 4 cm and the diameter of the base is 8 cm. Then the radius of the sphere is

- (1) 4 cm
- (2) 4·5 cm
- (3) 6 cm
- (4) 8 cm

26. Production of a company in 2012 was 468 tonnes. If it increases by 15% in the first year and decreases by 8% in the second year, then the production of the company after two years will be

- (1) 500-76
- (2) 495.14 (8) 493.875
- (4) 487-14

Directions (Question No. 27 to 29): Three of the following four are alike in a certain way and so form a group. Which is the one that does not belong to the group?

- (1) Spain 27.
- (2) Croatia
- (3) Italy
- (4) Brazil

- 28. (1) Phoenix
- (2) Miami
- (3) Nashville
- (4) Boston

- 29. (1) Basic
- (2) Barley
- (3) Fortran
- (4) Cobol
- Which number replaces the question (?) mark? 30.

- (1) 9

- (4) 13
- Which number replaces the question (?) mark? 31.

- (1) 20
- (2) 24
- (3) 12
- (4) 16
- Find the number of triangles in the following figure:

- (1) 11
- (2) 13
- (3) 15
- (4) 17

6

(P.T.O.)

33. Find the missing number from the given responses : (1) 860 (2) 1140 (3) 2880 (4) 3240 The missing term in the series $11\frac{1}{9}$, $12\frac{1}{2}$, $14\frac{2}{7}$, $16\frac{2}{3}$, ? is (1) 8 1 $(2) 19\frac{1}{3}$ (3) 20 (4) 221 35. A cube painted yellow on all faces is cut into 27 small cubes of equal size. How many small cubes are painted on one face only? (1) 1(2) 6 (3) 8 (4) 12 What number must be added to the numbers 3, 7 and 13 so that they are in a 36. continued proportion? (1) 5 (2) 6 (3) 7 . (4) 8 37. The radii of two cylinders are in the ratio of 2:3 and their heights are in the ratio 5:3. The ratio of their volumes is (1) 27:20 (2) 20:27 (3) 4:9 (4) 9:4 38. If the height of a cone is doubled, then its volume is increased by (1) 100% (2) 200% (3) 300% (4) 400% The greatest number of four digits which is divisible by each one of the numbers 39. (1) 9848 (2) 9864 (3) 9828 (4) 9636 (46)

40. Find the odd one from the following :

253, 136, 352, 460, 324, 631, 244

- (1) 136
- (2) 324
- (3) 352
- (4) 631
- 41. If log 27 = 1.431, then the value of log 9 is
 - (1) 0.934
- (2) 0.945
- (3) 0.954
- (4) 0.958
- **42.** The value of $\left(\frac{1}{\log_3 60} + \frac{1}{\log_4 60} + \frac{1}{\log_5 60}\right)$ is
 - (1) 0
- (2) 1
- (3) 5
- (4) 60
- **43.** If $\log_{10} 5 + \log_{10} (5x+1) = \log_{10} (x+5) + 1$, then x is equal to
 - (1) 1
- (2) 3
- (3) 5
- (4) 10
- **44.** Solve for x: -9x+5<17 and 13x+25<-1
 - (1) x < -2 or $x > -\frac{4}{3}$
- (2) x < -2

(3) $x > -\frac{4}{3}$

- (4) there are no solutions
- 45. Choose the correct solution that best describes the following inequality:

 $\frac{5x-32}{2} > 9$ and $\frac{1}{3}(12x-21) < 9$

(1) x < 4

- (2) $x \le 4$ or x > 10
- (3) x < 4 or x > 10

(4) x > 10

(46)

46.	If $ 3-x < 10$, then a	ll values of x wh	nich make this inco	quality true is
	(1) $\{x \mid x \in (-7,13)\}$		(2) $\{x \mid x \in (-7,7)\}$	
	(3) $\{x \mid x \in (-13, 13)\}$		(4) $\{x \mid x \in (-13, 7)\}$	\$177
47.	If the matrix $A = \begin{bmatrix} 0 \\ 2 \\ c \end{bmatrix}$	a 3] b 1 is a skew-s	symmetric matrix, t	then the values of a, b
	(1) (2, 0, 3) (2)	(-2, 0, -3)	(3) (2, 0, -3)	(4) (-2, 0, 3)
48.	If A is a square matrix is		= A, then the value	of $(I + A)^3$, where I is
	(1) $7A + I$ (2)	3A+2I	(3) $4A + 3I$	(4) 7A + 2I
49.	If $A = \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}$, then the	e value of $A^2 + 2$	2 <i>A</i> – 5 <i>I</i> is	
	$(1) \begin{pmatrix} 6 & 8 \\ 16 & 6 \end{pmatrix} \tag{2}$	$\begin{pmatrix} 6 & 16 \\ 8 & 6 \end{pmatrix}$	$(3)\begin{pmatrix}11&8\\16&11\end{pmatrix}$	$(4) \begin{pmatrix} 11 & 16 \\ 8 & 11 \end{pmatrix}$
50.	If A is a 3×3 non-sing equals (I is the iden	gular matrix such	n that AA' = A'A and	$dB = A^{-1} \cdot A'$, then BB
	(1) I+B (2)	I	(3) B^{-1}	(4) (B ⁻¹)'
51.	[a 2 b]	matrîx satisfyin	ng the equation AA	'=91, where I is 3×3
	14011419 IIIME21, W.V	or manage bourself was	rey is equal to	
4.01	$(1) \ (-2,1) \qquad \qquad (2)$		(3) (-2, -1)	(4) (2, -1)
46)		9		(P.T.O.)

- **52.** If $A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$, then (adj A) A is (where adj is adjoint)
 - (1) 4I
- $(2) \ 5I$
- (3) 6I
- (4) 81
- The value of $\begin{vmatrix} a+b & a & b \\ a & a+c & c \\ b & c & b+c \end{vmatrix}$ is

 (1) abc (2) 4abc (3) $a^2b^2c^2$ (4) $4a^2b^2c^2$

- The system given by 2x y + 3z = 4, x + y 3z = -1 and 5x y + 3z = 7 has 54.
 - (1) no solution

(2) one solution

- (3) two solutions
- (4) infinite number of solutions
- If the equations x = ay + z, y = z + ax, z = x + y are consistent (have non-zero 55. solution), then

- (1) $a^2 + a = 1$ (2) $a^3 + 1 = 0$ (3) $a^3 1 = 0$ (4) $a^2 = 2$ 56. If $\begin{vmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{vmatrix}^2 = pa^2b^2c^2$, then the value of p is
 - (1) 4

- (4) 1
- 57. If x, y, z (all are non-zero) are in AP and $\tan^{-1} x$, $\tan^{-1} y$ and $\tan^{-1} z$ are also in AP, then
 - (1) 2x = 3y = 6z (2) 6x = 3y = 2z (3) 6x = 4y = 3z (4) x = y = z

58.	If the 2nd, 5th ar	ad 9th terms of a n is	on-constant AP are	in GP, then the common
	(1) $\frac{8}{5}$	(2) 1	(3) $\frac{4}{3}$	(4) 7
59.	Three positive nu doubled, the nev	umbers form an inc v numbers are in	reasing GP. If the r AP, then the comm	middle term in this GP is non ratio of the GP is
	(1) $\sqrt{2} + \sqrt{3}$	(2) $3+\sqrt{2}$	(3) 3 - √3	(4) 2 + √3
60.	If m is AM of two three geometric	distinct real numb means between p	pers p and q (p , q > and q , then $G_1^4 + 2$	(G_1, G_2) and (G_3) are (G_2, G_3) are (G_3, G_3)
			(3) $4p^2m^2q^2$	
61.			ence 5 + 55 + 555 +	
	(1) $5(10^n-1)$	(2) $5^n(10^n-1)$	(3) $\left(\frac{5}{9}\right)(10^n - 1)$	(4) $\left(\frac{5}{9}\right)^n (10^n - 1)$
62.	The term indeper	ident of x in $\left(x^2 - \frac{1}{2}\right)$	$\left(\frac{1}{x}\right)^{12}$ is	
	(1) 275	(2) 355	(3) 495	(4) 512
63.	The term which i $x=1, y=2$ is	s numerically grea	test in the expans	ion of $(2x-3y)^{12}$, when
	(1) 9th	(2) 10th	(3) 11th	(4) 12th
64.	The sum of the e	ven powers of x in	the expansion of	$(1+x+x^2)^{15}$ is
	(1) $\frac{3^{15}+1}{2}$	al5 .	(3) 8220	
(46)	¥	11		26400TC TO
				(P.TO)

 $(1) 2^7$

 $c_0 + c_2 + c_4 + c_6 + c_8 =$

(2) 256

66. If $x = \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \cdots$, then $3x^2 + 6x =$

	(1) 0	(2) 1	(3) 2	(4) -1
67.	The number of wa	ys of distributing 8 is empty is	identical balls in 3	distinct boxes so that
	(1) 5	(2) 21	(3) 38	(4) ⁸ c ₃
68.	A polygon has 54 formed using the	diagonals. The tota vertices is	l number of distinc	et triangles that can be
	(1) 220	(2) 165	(3) 286	(4) 216
69.	Number of divisor	rs of the form $4n +$	$2(n \ge 0)$ of the int	teger 240 is
	(1) 4	(2) 8	(3) 10	(4) 3
70.	The value of 50 ca	$+\sum_{r=1}^{6} {}^{56-r}c_3$ is		55
	(1) 55 c ₄	(2) $^{55}c_3$	(3) $^{56}c_3$	(4) 56 C ₄
71.	How many ways	are there to arrange etical order?	23	word GARDEN with the
	(1) 120	(2) 240	(3) 360	(4) 480
72.		ays in which 6 men are to sit together,	and 4 women can is given by	dine at a round table, if
	(1) 30	(2) 51×51	(3) 5!×4!	(4) 71×51
	1-1	1	12	
(46)				

65. If c_0, c_2, c_4, \cdots are the binomial coefficients in the expansion of $(1+x)^9$, then

 $(3) 2^9$

(4) 258

73.	If repetition of the digits is allowed, then the number of even natural numbers having three digits is					
	(1) 250	(2) 350	(3) 450	(4) 550		
74.	If ${}^{n}c_{r-1} = 36$, ${}^{n}c_{r}$. = 84 and "c,	+1 = 126, then r is			
	(1) 1	(2) 2	(3) 3	(4) 4		
75.	A five digit number and 5 without re	per divisible by petition. The to	3 is to be formed using otal number of ways in	the numerals 0, 1, 2, 3, 4 which this can be done is		
	(1) 216	(2) 600	(3) 240	(4) 3125		
76.	The number of in 3, 5, 6, 7 and 8	ntegers greater without repe	than 6000 that can b	e formed, using the digits		
	(1) 192	(2) 120	(3) 72	(4) 216		
77.	If $x^2 - 7x + a$ has	s a remainder	1 when divided by x	+1, then		
	(1) $a = -7$	(2) $a = 7$	(3) $a = 0$	(4) $a = 1$		
78.	If $a < 0$, then fur	ection $f(x) = c$	$ax^2 + bx + c$ has a max	imum value at		
	$(1) x = \frac{a}{2b}$			$(4) \frac{\mathbf{b}}{2a}$		
79.	If a and B are ro	ots of $x^2 - 2x$	+3=0, then equation	with roots $\frac{1}{a}$, $\frac{1}{a}$ is		
	$\{1\} \ x^2 - 6x + 11 =$	0	(2) $x^2 + 6x - 11 =$	- u p =0		
	(3) $x^2 - 11x + 6 =$	0	$(2) x^2 + 6x - 11 = $ $(4) 3x^2 - 2x + 1 = $	-0		
(46)			13	- 0		
				(P.T.O.)		

				×		
80.	If $a \in R$ and the equation the interval	quation $-3(x-[x])$ $x \le x$) has no integra	2 + 2 al sol	$(x-[x])+a^2$ ution, then all	= 0 (v possi	where $[x]$ denotes ible values of a lie
	(1) (-1,0)-(0,1)	60	(2) ((1, 2)		
	(3) (-2, -1)		•	$[-\infty, -2) \cup (2, 9)$		3 ¥
81.		e roots of equation $\frac{a_{10} - 2a_8}{2a_9}$ is equal		-6x - 2 = 0. If a	$a_n = 0$	$\alpha^n - \beta^n$, for $n \ge 1$,
		y	(3)		(a)	6
	(1) -6	(2)	/14.50.80		(4)	
82.	The value of a for $x^2 - (a-2)x - a -$	which the sum of $1 = 0$ assume the 1	the east	squares of the value is	roof	ts of the equation
	(1) 1	(2) 0	(3)	3	(4)	2
83.	If the roots of the b^2-4c equals	e equation $x^2 - bx$	+ c =	0 be two cons	secut	ive integers, then
	(1) -2	(2) 3	(3)	2	(4)	1
84.	Let $R = \{(3,3), (6 \text{ on the set } A = \{3\})\}$, 6), (9, 9), (12, 12), , 6, 9, 12}. The relat	(6, 12 tion i	2), (3, 9), (3, 12) s), (3,	6)} be a relation
	(1) reflexive and	transitive		reflexive only		
	(3) an equivalence	e relation	(4)	reflexive and	sym	metric only
85.	Let $R = \{(1, 3), (4, 7), (4,$	2), (2, 4), (2, 3), (3,	, 1)} t	oe a relation or	the	set $A = \{1, 2, 3, 4\}.$
	(1) a function			transitive		
	(3) not symmetr	ic .	(4)	reflexive		
(46)		.1	4			

- The range of the function $f(x) = {}^{7-x}P_{x-3}$ is
 - (1) {1,2,3}

(2) { 1, 2, 3, 4, 5, 6}

(3) { 1, 2, 3, 4}

- (4) { 1, 2, 3, 4, 5}
- 87. If $f: R \to S$ defined by $f(x) = \sin x \sqrt{3}\cos x + 1$ is onto, then the interval of S is
 - (1) [0,3]
- (2) [-1,1]
- (3) [0, 1]
- (4) [-1,3]
- **88.** The domain of definition of the function $y = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$ is
 - (I) (-3, -2) excluding -2.5
- (2) [0,1] excluding 0.5

(3) [-2,1] excluding 0

- (4) [1, 2] excluding 1.5
- **89.** If $g(f(x)) = (\sin x)$ and $f(g(x)) = (\sin \sqrt{x})^2$, then
 - (1) $f(x) = \sin^2 x$, $g(x) = \sqrt{x}$ (2) $f(x) = \sin x$, g(x) = |x|

 - (3) $f(x) = x^2$, $g(x) = \sin \sqrt{x}$ (4) f and g cannot be determined
- **90.** If f(x) = 3x 5, then $f^{-1}(x)$
 - (1) is given by $\frac{1}{3x-5}$
 - (2) is given by $\frac{x+5}{3}$
 - (3) does not exist because f is not one one
 - (4) does not exist because f is not onto

91.	The domain of $2^x + 2^y = 2$ is	definition of the f	iunction $y(x)$ as g	iven by the equation	
	(1) $0 < x \le 1$	(2) $0 \le x \le 1$	$(3) -\infty < x \le 0$	$(4) -\infty < x < 1$	
92.	If $E = \{1, 2, 3, 4\}$ as	$nd F = \{1, 2\}, then then$	he number of onto f	unctions from E to F is	
	(1) 14	(2) 16	(3) 12	(4) 8	
93.	If z is a complex n	umber such that z	≥2, then the mini	num value of $\left z+\frac{1}{2}\right $	
	(1) is equal to $\frac{5}{2}$		(2) lies in (1, 2)		
	(3) is strictly gre	eater than $\frac{5}{2}$	(4) lies in (0,1)		
94.	A value of 0 for which $\frac{2+3i\sin\theta}{1-2i\sin\theta}$ is purely imaginary is				
	(1) $\frac{\pi}{6}$	$(2) \sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$	$(3) \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$	$(4) \frac{\pi}{3}$	
95.	The argument of	the complex numl	ber $\frac{1+2i}{1-3i}$ is		
	$(1) \frac{\pi}{4}$	$(2) \ \frac{3\pi}{4}$	(3) $\frac{5\pi}{9}$	(4) 2π	
96.	 Area of the triangle formed by the three complex numbers 1 + i, 1 - i and 2i in the triangle formed by the three complex numbers 1 + i, 1 - i and 2i in the triangle formed by the three complex numbers 1 + i, 1 - i and 2i in the triangle formed by the three complex numbers 1 + i, 1 - i and 2i in the triangle formed by the three complex numbers 1 + i, 1 - i and 2i in the triangle formed by the three complex numbers 1 + i, 1 - i and 2i in the triangle formed by the three complex numbers 1 + i, 1 - i and 2i in the triangle formed by the three complex numbers 1 + i, 1 - i and 2i in the triangle formed by the three complex numbers 1 + i, 1 - i and 2i in the triangle formed by the three complex numbers 1 + i, 1 - i and 2i in the triangle formed by the triangle form				
	(1) $\frac{1}{2}$	(2) 1	(3) √2	(4) 2	
97.	If $z = \cos\theta + i \sin\theta$	$n \theta$, then $\frac{z^{2n}-1}{z^{2n}+1} =$			
	(1) $\cos n\theta$	(2) $\sin n\theta$	(3) −i sin nθ	(4) $-i \tan n\theta$	
IASI			16		
(46)					

(P.T.O.)

98.	If the circles v2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
20.	n die energy +	$y = a \operatorname{and} x^2 + y^2$	-6x - 8y + 9 = 0 to	uch externally, then $a =$	
	(1) 1	(2) -1	(3) 21	(4) 16	
99.	The area of $x^2 + y^2 - 6x - 8y$	an equilateral -25 = 0 is	triangle inscr	ibed in the circle	
	(1) $\frac{225\sqrt{3}}{6}$	(2) 25π	(3) 50π –100	(4) 225	
100.	A circle S passes through the point $(0,1)$ and is orthogonal to the circle $(x-1)^2 + y^2 = 16$ and $x^2 + y^2 = 1$. Then				
	(1) radius of S is	. 8	(2) radius of S is	s`7	
	(3) centre of S is	(-8,1)	(4) centre of S is		
101.	The length of the latus-rectum of the parabola $4y^2 + 2x - 20y + 17 = 0$ is				
	(1) 3	(2) 6	(3) $\frac{1}{2}$	(4) $\frac{1}{3}$	
102.	The equation to the common tangent of $y^2 = 2x$ and $x^2 = 16y$ is				
	(1) x + 2y - 2 = 0	(2) $x+2y+2=0$	(3) $x + 2y = 0$	(4) $2x+y-4=0$	
103.	The eccentricity o	f the ellipse $9x^2 + 3$	$25y^2 - 18x - 100y -$	116 = 0 is	
	(1) $\frac{25}{16}$	(2) $\frac{4}{5}$	(3) $\frac{16}{25}$	(4) $\frac{5}{4}$	
104.	The minimum area $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ and } co$	(in sq. units) of tri pordinate axes is	angle formed by th	e tangent to the elli pse	

17

(1) ab

(46)

			100	Q.	
105.	The eccentricity of	of the hyperbola x	$=\frac{a}{2}\left(t+\frac{1}{t}\right), \ y=\frac{a}{2}\left(t+\frac{1}{t}\right)$	$-\frac{1}{t}$) is	
	(1) √2	(2) √3	(3) 2√3	(4) 3√2	
106.	06. If the line $2x + \sqrt{6}y = 2$ touches the hyperbola $x^2 - 2y^2 = 4$, then the percentage of the contact is				
16	(1) (-2,√6)	(2) $(-5, 2\sqrt{6})$	$(3) \left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right)$	(4) $(4, -\sqrt{6})$	

107. Two diec are thrown simultaneously. What is the probability of getting two

numbers whose product is $(1) \frac{3}{4} \qquad (2) \frac{1}{4} \qquad (3) \frac{7}{4} \qquad (4) \frac{1}{2}$

108. A speaks truth in 75% of cases and B in 80% of cases. In what percentage of cases are they likely to contradict each other, narrating the same incident?

(1) 30 (2) 32 (3) 35 (4) 40

109. The probability of a razor blade to be defective is 0.002, the blades are in packet of 10. The number of packets containing no defective blades in a stock of 10000 packets is

(1) 2000 (2) 9802 (3) 9950 (4) 8000

110. The minimum number of times a fair coin needs to be tossed, so that the probability of getting at least two heads is at least 0.96 is

(1) 4 (2) 6 (3) 8 (4) 10

111.	A six faced fair dice is thrown until 1 comes, then the probability that 1 comes in even no. of trials is				
	(1) $\frac{5}{11}$	(2) $\frac{5}{6}$	(3) $\frac{6}{11}$	(4) $\frac{1}{6}$	9
112.	A determination of order 2 we chosen is no	with elements 0	andom from the set of and 1 only. The probe	all determinants bility that the o	of matrices leterminant
	(1) $\frac{3}{16}$	(2) $\frac{3}{8}$	(3) $\frac{1}{4}$	(4) $\frac{2}{7}$	
113.	For $x \in R$, $f($	$ x\rangle = \log 2 - \sin x $	$x \mid \text{and } g(x) = f(f(x))$. then	
	(1) $g'(0) = \cos(\log 2)$ (2) $g'(0) = -\cos(\log 2)$				
	(3) $g'(0) = -\sin(\log 2)$ (4) g is not differentiable at $x = 0$				x = 0
114.	If a curve u	f(x) passes the			
	If a curve $y = f(x)$ passes through the point $(1, -1)$ and satisfies the differential equation $y(1 + xy) dx = xdy$, then $f\left(-\frac{1}{2}\right)$ is equal to				
	(1) $-\frac{4}{5}$	(2) $\frac{2}{5}$	(3) $\frac{4}{5}$	(4) $-\frac{2}{5}$	
115.	Let $y(x)$	be the	solution of the	differential	equation
$(x \log x) \frac{dy}{dx} + y = 2x \log x$, $(x \ge 1)$. Then $y(e)$ is equal to					
	(1) 0	(2) 2	(3) 2e	(4) e	
116.	$\lim_{x\to 0} \frac{(1-\cos 2x)}{x}$	$(x)(3+\cos x)$ is $\tan 4x$	equal to		ħ.
	(1) 3	(2) 2	<u>(3) 1</u>	(4) $\frac{1}{4}$	
(46)			19	, 4	
(10)					(P.T.O.)

- The area (in sq. units) of the region described by $\{(x, y): y^2 \le 2x \text{ and } y \ge 4x 1\}$

 - (1) $\frac{5}{64}$ (2) $\frac{15}{64}$ (3) $\frac{9}{32}$
- (4) $\frac{7}{32}$

- 118. The integral $\int \frac{dx}{x^2(x^4+1)^{3/4}}$ equals
 - (1) $(x^4+1)^{1/4}+c$

(2) $-(x^4+1)^{1/4}+c$

- (3) $-\left(\frac{x^4+1}{x^4}\right)^{1/4}+c$
- (4) $\left(\frac{x^4+1}{x^4}\right)^{1/4}+c$
- The value of integral $\int_0^{\pi/2} \log \tan x \, dx$ is

 - (1) π (2) $\frac{\pi}{2}$
- (3) $\frac{\pi}{3}$
- (4) 0

- **120.** If $f(x) \int_0^x t \sin t \, dt$, then f'(x) is
 - (1) $\cos x + x \sin x$

(2) $x \sin x$

 $(3) \times \cos x$

(4) $\frac{x^2}{2}$

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृतों को गाड़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. औ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों की खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होग्।/होगी।