Tech Challenge – Fase 1

A proposta do desafio era desenvolver um modelo preditivo de regressão para prever o valor dos custos médicos individuais cobrados pelo seguro de saúde.

A base de dados escolhida foi encontrada no Kaggle e está disponível no github juntamente com o notebook desenvolvido.

Links:

https://github.com/jubasoler/tech_challenge-fase1

https://www.google.com/url?q=https%3A%2F%2Fwww.kaggle.com%2Fdatasets%2Fmragpavank%2Finsurance1

https://youtu.be/UF_0chAW-f4

Exploração de dados

Inicialmente realizei a importação da base de dados utilizando a biblioteca pandas e passei a fazer a análise exploratória dos dados.

Na análise dos dados pude observar que a base possui 1338 linhas, 6 features, nenhuma possui valores nulos e 3 delas (sex, smoker e region) são do tipo texto. Nossa variável Target é a classe **charges** (encargos/cobranças).

Features

- Idade
- Gênero
- IMC
- · Quantidade de Filhos
- Fumante
- Região

Como três features são categóricas, utilizei a função *value_counts* para verificar quantas categorias existiam em cada uma.

Pude observar que os pacientes da amostra estão aproximadamente distribuídos uniformemente entre as 4 regiões, a maioria são não fumantes e tem praticamente a mesma quantidade de homens e mulheres.

Em seguida utilizei a função **describe** nas features numéricas, que me trouxe os seguintes resultados:

	age	ge bmi		charges	
count	nt 1338.000000 1338.000000		1338.000000	1338.000000	
mean	39.207025	30.663397	1.094918	13270.422265	
std	14.049960	6.098187	1.205493	12110.011237	
min	18.000000	15.960000	0.000000	1121.873900	
25%	27.000000 26.296250		0.000000	4740.287150	
50%	39.000000 30.400000		1.000000	9382.033000	
75%	51.000000	34.693750	2.000000	16639.912515	
max	64.000000 53.130000		5.000000 63770.4280		

Percebe-se que:

- A média de idade dos pacientes é de 39 anos, variando de 18 a 64 anos;
- O IMC varia de 15,96 a 53,13 com média de 30,66;
- Existem pacientes com nenhum filho até paciente com 5 filhos;
- Os custos hospitalares têm uma média de 13270.

Histogramas

Observando especialmente o diagrama de caixa dos custos hospitalares percebe-se a presença de outliers.

Pré-processamento de dados

Feita a análise exploratória iniciei a preparação dos dados para o modelo e verifiquei que as escalas dos dados eram muito diferentes e resolvi aplicar as seguintes técnicas de transformação nos dados:

- Label Enconder para tratar variáveis categóricas que possuem apenas dois tipos de dados como sexo e se é fumante;
- One Hot Encoding para a região.

Após o pré-processamento gerei a matriz de correlação e pude observar que as features mais promissoras para prever o custo hospitalar eram as classes **smoker** e **bmi**.

Plotei, então, essas features em um gráfico de scatter para analisar com mais detalhes:

A correlação realmente mostra uma certa tendência ascendente nos dados.

Modelagem e Validação

Na fase de modelagem utilizei 3 técnicas para verificar qual se encaixava melhor:

- Linear Regression
- Decision Tree Regression
- Random Forest Regression

Para tanto, dividi as bases em conjuntos de treinamento e teste, deixando 20% para os testes e fiz a validação com dados normais e dados padronizados com **StandardScaler**. Abaixo apresento os resultados obtidos em cada modelo.

	Linear Regression	Linear Regression - SC	Decision Tree Regression	Decision Tree Regression - SC	Random Forest Regression	Random Forest Regression - SC
MAE	4181.194500	4254.115900	2911.160000	2911.160000	2495.534000	2553.371700
RMSE	5796.284700	5830.169200	5085.055800	5085.055800	4596.974500	4434.143200
R²	0.783600	0.781100	0.833400	0.833400	0.863900	0.873400
MAPE	46.888256	49.737824	34.554465	34.554465	29.370779	31.471627
SCORE	0.783600	0.781100	0.833400	0.833400	0.863900	0.873400

Conclusão

Pelos resultados obtidos, chegamos a conclusão que o melhor modelo de regressão para ser utilizador seria o de Random Forest, pois apresentou um valor de r² mais próximo de 1.