广告投放和销售额数据分析

1.相关背景

(1) 数据集简介

Advertising数据集包含有关产品在200个不同市场中的销售情况的统计信息,以及在每个市场中针对不同媒体渠道(电视,广播和报纸)的广告预算。销售单位是数千个,预算单位是数千美元。

(2) 分析数据

自变量:广告支出,TV、radio、newspaper

因变量: 商品销售额, sales

求解:上述三个因素对于商品销售额的回归模型

2.数据读取

调用Pandas的read_csv()函数,读取数据。

```
In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import os
data=pd.read_csv("Advertising.csv", header=0)
data.head()
```

Out[1]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

3.数据理解

(1) 查看数据形状

```
In [2]: data.shape
```

Out[2]: (200, 4)

(2) 查看列名

```
In [3]: data.columns
```

```
Out[3]: Index(['TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')
```

(3) 查看数据信息

In [4]: data.info()

```
\langle class 'pandas.core.frame.DataFrame' \rangle
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):
# Column
                Non-Null Count Dtype
0 TV
                 200\ \mathsf{non}\text{-}\mathsf{nu}11
                                   float64
                 200 non-nu11
                                   float64
1
    Radio
    Newspaper 200 non-null
                                   float64
3 Sales
                 200 non-nu11
                                   float64
```

dtypes: float64(4) memory usage: 6.4 KB

(4) 查看描述性统计信息

In [5]: data.describe()

Out[5]:

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	14.022500
std	85.854236	14.846809	21.778621	5.217457
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	10.375000
50%	149.750000	22.900000	25.750000	12.900000
75%	218.825000	36.525000	45.100000	17.400000
max	296.400000	49.600000	114.000000	27.000000

(5) 数据可视化

In [6]: #带线性回归最佳拟合线的散点图

```
def target_scatter(dataframe):
    cols = [col for col in dataframe.columns if col != "Sales"]
    sns.pairplot(dataframe, x_vars=cols, y_vars="Sales", height=4, aspect=1, kind='reg')
    plt.show()
target_scatter(data)
```


In [7]: # 相关图,直观地查看给定数据框(或二维数组)中所有可能的数值变量对之间的相关度量 sns. heatmap(data.corr(), cmap="Dark2", annot = True) plt. show()

从可视化结果中可以看出,三个自变量TV, radio、newspaper均对因变量sales有显著的关系。

4.数据准备

构建特征矩阵Data和目标向量sales。

```
Data.head()
 Out[8]:
                TV Radio Newspaper
           0
                     37.8
                                69.2
             230.1
               44.5
                     39.3
                                45.1
              17.2
                     45.9
                                69.3
           3 151.5
                     41.3
                                58.5
           4 180.8
                     10.8
                                58.4
 In [9]: #修改目标向量为后续statsmodels包中所要求的类型
          Sales=data['Sales']
          import numpy as np
          {\tt Sales=np.\ ravel\,(Sales)}
          type(Sales)
  Out[9]: numpy.ndarray
          5.构建模型
In [10]: import statsmodels.api as sm
          给Data新增一列,列名X_add_const,每行取值1.0。
In [11]: X_add_const=sm. add_constant(Data. to_numpy())
          X_add_const
Out[11]: array([[ 1. , 230.1, 37.8, 69.2],
                    1., 44.5,
                                39. 3,
                                       45. 1],
                    1. , 17.2, 45.9, 69.3],
                   1. , 151.5,
                                41.3, 58.5],
                    1. , 180.8,
                                10.8,
                                       58.4],
                   1., 8.7,
                                48.9, 75.],
                   1. , 57.5,
                                32.8, 23.5],
                    1. , 120.2,
                                 19.6,
                                       11.6],
                         8.6,
                   1. ,
                                 2.1,
                                        1. ],
                    1., 199.8,
                                 2.6,
                                       21.2],
                    1. , 66. 1,
1. , 214. 7,
                                 5. 8, 24. 2],
                                 24. ,
                                        4. ],
                   1., 23.8, 35.1, 65.9],
                   1. , 97. 5,
                                 7. 6,
                                        7.2],
                    1., 204.1,
                                 32.9,
                                       46.],
                   1. , 195. 4,
                                47.7, 52.9],
                   1. , 67. 8,
1. , 281. 4,
                                36.6, 114. ],
                                 39.6, 55.8],
                                20. 5,
                   1. , 69.2,
                                       18.3],
                                        10 11
In [12]: myModel=sm. OLS(Sales, X_add_const)
```

训练具体模型:

In [8]: Data=data.drop(['Sales'], axis=1)

In [13]: results=myModel.fit()
print(results.summary())

OLS Regression Results

Dep. Variable:		OLS Adj.	uared: R-squared:		0. 897 0. 896
Method:	Least Squar		F-statistic:		570. 3 1. 58e-96
Date: Time:	Sun, 13 Mar 20		Prob (F-statistic): Log-Likelihood:		
	01:37	0			
No. Observations:			AIC:		780. 4
Df Residuals:	-	196 BIC:			793. 6
Df Model:		3			
Covariance Type:	nonrobi	ıst			
coe	f std err	t	P> t	[0. 025	0. 975]
const 2.938	9 0. 312	9.422	0.000	2. 324	3. 554
x1 0. 045	8 0.001	32.809	0.000	0.043	0.049
x2 0.188	5 0.009	21.893	0.000	0.172	0. 206
x3 -0.001	0.006	-0. 177	0.860	-0.013	0.011
Omnibus:	 414 Durb	Durbin-Watson:			
Prob(Omnibus):	0. (000 Jarg	ue-Bera (JB):		151. 241
Skew:	-1.5	327 Prob	(JB):		1.44e=33

Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

6.模型预测

通过调用statsmodel包中的predict()函数,基于自变量X对因变量y进行预测。

6.332

```
In [14]: y_pred=results.predict(X_add_const)
y_pred[0:5]
```

454.

Out[14]: array([20.52397441, 12.33785482, 12.30767078, 17.59782951, 13.18867186])

7.模型评价

数据可视化方法显示真实值和拟合值之间的差异

```
In [15]:
import matplotlib.pyplot as plt
plt.figure()
plt.rcParams['font.family']='simHei'
plt.plot(range(len(y_pred)), y_pred, 'blue', label="预测值")
plt.plot(range(len(y_pred)), Sales, 'red', label="真实值")
plt.legend(loc="upper right")
plt.xlabel("广告投放渠道")
plt.ylabel("销售额")
plt.show()
```


医疗保险费用影响因素分析

1.相关背景

(1) 数据集简介

Insurance数据集包含了1138条医疗保险数据,包含年龄、性别、BMI指数等相关数据,这些因素都有可能会影响到医疗保险的费用。以下是数据集中的变量解释:

- · age: age of primary beneficiary
- sex: insurance contractor gender, female, male
- bmi: Body mass index, providing an understanding of body, weights that are relatively high or low relative to height, objective index of body weight (kg / m ^ 2) using the ratio of height to weight, ideally 18.5 to 24.9
- children: Number of children covered by health insurance / Number of dependents
- smoker: Smoking
- region: the beneficiary's residential area in the US, northeast, southeast, southwest, northwest
- (2) 分析数据

```
自变量: age, sex, bmi, children, smoker, region
```

因变量: charge

求解: 哪种因素对保险费的影响最大?

2.数据读取

调用Pandas的read_csv()函数,读取数据。

```
In [1]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import os data=pd.read_csv("insurance.csv", header=0) data.head()
```

Out[1]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

3.数据理解

(1) 查看数据形状

```
In [2]: data. shape
```

Out[2]: (1338, 7)

(2) 查看列名

```
In [3]: data.columns
```

```
Out[3]: Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], dtype='object')
```

(3) 查看数据信息

```
In [4]: data.info()
         \langle class 'pandas.core.frame.DataFrame' \rangle
         RangeIndex: 1338 entries, 0 to 1337
         Data columns (total 7 columns):
          #
             Co1umn
                        Non-Null Count Dtype
          0
              age
                        1338 non-nu11
                                         int64
                        1338 non-null
          1
                                         object
              sex
          2
                        1338 non-null
              bmi
                                         float64
          3
              children 1338 non-null
                                         int64
                        1338 non-null
          4
              smoker
                                         object
          5
              region
                        1338 non-null
                                         object
                        1338 non-null
          6
                                         float64
             charges
         dtypes: float64(2), int64(2), object(3)
         memory usage: 73.3+ KB
          (4) 查看描述性统计信息
In [5]:
         data.describe()
Out[5]:
                                             children
                        age
                                    bmi
                                                          charges
                 1338.000000
                             1338.000000
                                         1338.000000
                                                      1338.000000
          count
          mean
                   39.207025
                               30.663397
                                            1.094918 13270.422265
            std
                   14.049960
                                6.098187
                                            1.205493
                                                      12110.011237
                   18.000000
                               15.960000
                                            0.000000
                                                      1121.873900
            min
           25%
                   27.000000
                                                      4740.287150
                               26 296250
                                            0.000000
           50%
                   39.000000
                               30.400000
                                            1.000000
                                                      9382.033000
           75%
                   51.000000
                               34.693750
                                            2.000000 16639.912515
           max
                   64.000000
                               53.130000
                                            5.000000 63770.428010
           (5) 查看有无空值
In [6]: data.isnull().sum()
Out[6]: age
                      0
         sex
                      0
         bmi
         children
                      0
                      0
         smoker
         region
                      0
                      0
         charges
         dtype: int64
          (6) 查看有无重复值
In [7]: data.duplicated().sum()
Out[7]: 1
         删除重复值:
In [8]:
         data.drop_duplicates(inplace=True)
         data.duplicated()
Out[8]: 0
                 False
                 False
         2
                 False
         3
                 False
         4
                 False
         1333
                 False
```

(7) 数据可视化

False

False

False

False Length: 1337, dtype: bool

1334

1335

1336

1337

保险费用的分布图:

```
In [9]: sns.set(style='whitegrid')
f, ax = plt.subplots(1, 1, figsize=(12, 8))
ax = sns.histplot(data['charges'], kde = True, color = 'c')
plt.title('Distribution of Charges')
```

Out[9]: Text(0.5, 1.0, 'Distribution of Charges')

由于图像是右偏的,所以我们将它log化:

```
In [10]: f, ax = plt.subplots(1, 1, figsize=(12, 8))
ax = sns.histplot(np.log10(data['charges']), kde = True, color = 'r')
```


下一步我们来看不同区域region的费用分布图:

```
In [11]: charges = data['charges'].groupby(data.region).sum().sort_values(ascending = True)
    f, ax = plt.subplots(l, 1, figsize=(8, 6))
    ax = sns.barplot(x=charges.head(), y=charges.head().index, palette='Blues')
```


所以总的来说,医疗费用最高的是在东南部,最低的是在西南部。考虑到某些因素(性别、吸烟、有孩子),让我们看看它在不同地区是如何变化的:

```
In [12]: f, ax = plt.subplots(1, 1, figsize=(12, 8)) ax = sns.barplot(x='region', y='charges', hue='sex', data=data, palette='cool')
```



```
In [13]: f, ax = plt.subplots(1,1, figsize=(12,8))
ax = sns.barplot(x = 'region', y = 'charges', hue='smoker', data=data, palette='Reds_r')
```


我们可以从这些图表看到,由于吸烟而收取的费用最高的仍然是在东南部,但最低的是在东北部。西南地区的人通常比东北地区的人吸烟

接下来让我们根据年龄、bmi和儿童吸烟因素来分析医疗费用:

由上图不难分析发现,吸烟对医疗费用的影响最大,尽管医疗费用随着年龄、bmi和儿童的增加而增加。此外,有孩子的人通常吸烟较少,下面的violinplots也显示了这一点。

```
In [16]: f, ax = plt.subplots(1, 1, figsize=(10, 10))
    ax = sns.violinplot(x = 'children', y = 'charges', data=data, orient='v', hue='smoker', palette='inferno')
```



```
In [17]: ##修改object变量数据类型为category
data[['sex', 'smoker', 'region']] = data[['sex', 'smoker', 'region']].astype('category')
data.dtypes
```

Out[17]: age int64
sex category
bmi float64
children int64
smoker category
region category
charges float64
dtype: object

In [18]: ##用LabelEncoder将category转化为数值型

from sklearn.preprocessing import LabelEncoder
label = LabelEncoder()
label.fit(data.sex.drop_duplicates())
data.sex = label.transform(data.sex)
label.fit(data.smoker.drop_duplicates())
data.smoker = label.transform(data.smoker)
label.fit(data.region.drop_duplicates())
data.region = label.transform(data.region)
data.dtypes

Out[18]: age

age int64
sex int32
bmi float64
children int64
smoker int32
region int32
charges float64
dtype: object

In [19]: ##相关图,直观地查看给定数据框(或二维数组)中所有可能的数值变量对之间的相关度量

```
f, ax = plt.subplots(1, 1, figsize=(10, 10))
ax = sns.heatmap(data.corr(), annot=True, cmap='cool')
```


由此可见, 吸烟 (smoker) 对医疗保险费用的影响最大。

4.回归分析

(1) 线性回归

```
In [20]: from sklearn.model_selection import train_test_split as holdout
    from sklearn.linear_model import LinearRegression
    from sklearn import metrics
    x = data.drop(['charges'], axis = 1)
    y = data['charges']
    x_train, x_test, y_train, y_test = holdout(x, y, test_size=0.2, random_state=0)
    Lin_reg = LinearRegression()
    Lin_reg = LinearRegression()
    Lin_reg.fit(x_train, y_train)
    print(Lin_reg.intercept_)
    print(Lin_reg.coef_)
    print(Lin_reg.score(x_test, y_test))

-10658.974155442043
    [ 244.40254189 -203.81680641 308.01805142 495.56546634
```

[244.40254189 -203.81680641 308.01805142 495.5654663 23771.78167483 -377.96465113] 0.7526726290709553

(2) 岭回归

(3) Lasso回归

(4) 随机森林回归

MSE train data: 3342536.635, MSE test data: 27301132.995 R2 train data: 0.974, R2 test data: 0.803

 ${\tt Out[24]:} \ \ \langle {\tt matplotlib.collections.LineCollection\ at\ 0x1910c718f48} \rangle$


```
In [25]: print('Feature importance ranking\n\n')
          importances = Rfr.feature importances
          std = np.std([tree.feature_importances_ for tree in Rfr.estimators_], axis=0)
          indices = np.argsort(importances)[::-1]
          variables = ['age',
                              'sex', 'bmi', 'children', 'smoker', 'region']
          importance_list = []
          for f in range(x.shape[1]):
              variable = variables[indices[f]]
              importance_list.append(variable)
              print("%d. %s(%f)" % (f + 1, variable, importances[indices[f]]))
          # Plot the feature importances of the forest
          plt.figure()
          plt.title("Feature importances")
          plt.bar(importance_list, importances[indices],
                 color="y", yerr=std[indices], align="center")
```

Feature importance ranking

```
1. smoker (0. 629024)
2. bmi (0. 206035)
3. age (0. 128738)
4. children (0. 017091)
5. region (0. 013517)
6. sex (0. 005595)
```

Out[25]: <BarContainer object of 6 artists>

(5) 多项式回归

```
In [26]: | from sklearn.preprocessing import PolynomialFeatures
         x = data.drop(['charges', 'sex', 'region'], axis = 1)
         y = data, charges
         pol = PolynomialFeatures (degree = 2)
         x_pol = pol.fit_transform(x)
         x_train, x_test, y_train, y_test = holdout(x_pol, y, test_size=0.2, random_state=0)
         Pol_reg = LinearRegression()
         Pol_reg.fit(x_train, y_train)
         y_train_pred = Pol_reg.predict(x_train)
         y_test_pred = Pol_reg.predict(x_test)
         print(Pol reg. intercept )
         print(Pol_reg.coef_)
         print(Pol_reg.score(x_test, y_test))
         -4154. 172427989844
         -1.12260916e+04 3.01311573e+00 3.24610178e-01 -5.35321284e-01
           2. 51089226e+01 -6. 58358646e+00 -8. 22584809e+00 1. 48200077e+03
          -1.41284021e+02 -3.75316527e+01 -1.12260916e+04]
         0.8357482955959796
```

```
In [27]: ##Evaluating the performance of the algorithm

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_test_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_test_pred))
print('Root Mean Squared Error:', np. sqrt(metrics.mean_squared_error(y_test, y_test_pred)))
```

Mean Absolute Error: 3175.8186596347696 Mean Squared Error: 27631993.10614759 Root Mean Squared Error: 5256.614224588637

Out[28]:

	Actua	Predicted
1248	1633.96180	2687.454432
610	8547.69130	10135.037321
393	9290.13950	10754.902954
503	32548.34050	26162.873761
198	9644.25250	9141.656812
809	3309.79260	5013.664929
726	6664.68595	8460.233673
938	2304,00220	4822,210691
474	25382.29700	29294.007454
1084	15019.76005	15921.876412

268 rows × 2 columns

5.结论

吸烟是影响医疗费用的最大因素,其次是bmi和年龄;同时多项式回归被证明是最好的模型。