Chapitre 7

Racines carrées

I. Racine carrée d'un nombre positif

1) <u>Définition</u>

Définition:

Pour tout nombre **positif** a, la **racine carrée** de a est le nombre positif dont le carré est a.

Exemple:

La racine carrée de 64 est 8 parce que $8^2 = 64$ et $8 \ge 0$.

Notation:

La racine carrée de a se note \sqrt{a} .

2) <u>Conséquence</u>

Pour tout nombre **positif** $a: \sqrt{a^2} = a$ et $(\sqrt{a})^2 = a$.

II. Résolution de l'équation $x^2 = a$

Propriétés :

- Si a < 0, il n'existe aucun nombre x tel que $x^2 = a$. L'équation n'a **pas de solution.**
- Si a=0, le seul nombre tel que $x^2=0$ est 0.

La solution est 0.

• Si a>0, il existe deux nombres tels que $x^2=a$. L'équation a **deux solutions** \sqrt{a} et $-\sqrt{a}$.

Démonstration :

$$x^2 = a \Leftrightarrow x^2 - a = 0 \Leftrightarrow x^2 - (\sqrt{a})^2 = 0 \Leftrightarrow (x - \sqrt{a})(x + \sqrt{a}) = 0$$

Donc $x - \sqrt{a} = 0$ ou $x + \sqrt{a} = 0$
En conclusion : $x = \sqrt{a}$ ou $x = -\sqrt{a}$

1

Exemple:

L'équation $x^2 = 13$ a pour solutions les nombres $\sqrt{13}$ et $-\sqrt{13}$.

III. Produit et quotient de deux racines carrées

Propriété:

Le produit de deux racines carrées est égal à la racine carrée du produit.

Pour
$$a \ge 0$$
 et $b \ge 0$:
 $\sqrt{a} \times \sqrt{b} = \sqrt{a \times b}$

Propriété:

Le quotient de deux racines carrées est égal à la racine carrée du quotient.

Pour a
$$\geq$$
0 *et b*>0:

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

Exemples:

$$\frac{\sqrt{9} \times 2}{\sqrt{9} \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \qquad ; \qquad \sqrt{7} \times \sqrt{5} = \sqrt{7} \times 5 = \sqrt{35}
\sqrt{\frac{4}{3}} = \frac{\sqrt{4}}{\sqrt{3}} = \frac{2}{\sqrt{3}} \qquad ; \qquad \frac{\sqrt{80}}{\sqrt{5}} = \sqrt{\frac{80}{5}} = \sqrt{16} = 4$$

Annexe 1: Approximation

Nous avons vu que, dans la plupart des cas, la racine carrée d'un nombre est un nombre irrationnel. Il existe toutefois (et c'est déjà très bien) des algorithmes permettant de déterminer des valeurs approchées de racines carrées.

Algorithme de dichotomie.

La connaissance des carrées parfaits permet de trouver un encadrement à l'unité de notre nombre, il suffit ensuite d'affiner la précision de l'encadrement.

Exemple:

Pour trouver un encadrement de $\sqrt{33}$, on sait que :

 $5^2 = 25$

et

puis $5.7^2 = 32.49$

et

 $6^2 = 36$, donc: $5 < \sqrt{33} < 6$ $5.8^2 = 33.64$ donc: $5.7 < \sqrt{33} < 5.8$

L'utilisation du tableur est appropriée à ce genre de démarche.

Encadrement au dixième :													
5,0	5,1	5,2	5,3	5,4	5,5	5,6	5,7	5,8	5,9	6,0			
25,00	26,01	27,04	28,09	29,16	30,25	31,36	32,49	33,64	34,81	36,00			
Encadrement au centième :													
5,70	5,71	5,72	5,73	5,74	5,75	5,76	5,77	5,78	5,79	5,80			
32,4900	32,6041	32,7184	32,8329	32,9476	33,0625	33,1776	33,2929	33,4084	33,5241	33,6400			
Encadrement au millième :													
5,740	5,741	5,742	5,743	5,744	5,745	5,746	5,747	5,748	5,749	5,750			
32,947600	32,959081	32,970564	32,982049	32,993536	33,005025	33,016516	33,028009	33,039504	33,051001	33,062500			
Encadrement au dix	r-milliàma :												
5.7440	5.7441	5,7442	5.7443	5,7444	5,7445	5,7446	5,7447	5,7448	5.7449	5.7450			
32,99353600	32,99468481	32,99583364	32,99698249	32,99813136	32,99928025	33,00042916		33,00272704	33,00387601	33,00502500			
32,99353600	32,99400401	32,99003304	32,99090249	32,99013130	32,99920025	33,00042916	33,00157609	33,00212104	33,00307001	33,00002000			
Encadrement au cent-millième :													
5,74450	5,74451	5,74452	5,74453	5,74454	5,74455	5,74456	5,74457	5,74458	5,74459	5,74460			
32,9992802500	32,9993951401	32,9995100304	32,9996249209	32,9997398116	32,9998547025	32,9999695936	33,0000844849	33,0001993764	33,0003142681	33,0004291600			
Encadrement au millionième :													
5,744560	5.744561	5,744562	5,744563	5,744564	5.744565	5.744566	5.744567	5.744568	5.744569	5,744570			
					,	,	,	,	,				
32,999969593600	32,999981082721	32,999992571844	33,000004060969	33,000015550096	33,000027039225	33,000038528356	33,000050017489	33,000061506624	33,000072995761	33,000084484900			

• Extraction de racine carrée

Avant l'utilisation des calculatrices, il était possible d'effectuer le calcul des racines carrées « manuellement ».

L'introduction de la notation décimale des nombres, par position, a permis de développer un algorithme tirant parti de cette notation.

On sépare les chiffres du nombre par paires en commençant à partir de la virgule. On place le nombre dont on veut extraire la racine en haut, de la même façon que lorsqu'on effectue une division selon la méthode classique ; la racine carrée sera inscrite au-dessus de ce nombre.

À chaque étape :

- on abaisse la paire de chiffres la plus significative non encore utilisée et on la place au côté d'un reste éventuel de l'étape précédente (initialement nul) ;
- soit r le résultat intermédiaire de la racine carrée obtenu précédemment (égal à zéro au début). On cherche le plus grand chiffre x tel que le nombre y = (20r + x)x ne dépasse pas le reste courant ;
- on complète r en plaçant la décimale x à sa droite, pour former le nouveau résultat intermédiaire ;
- on soustrait y de la valeur courante pour former le nouveau reste ;
- si le reste est nul et qu'il n'y a plus de chiffre à abaisser alors l'algorithme se termine sinon on recommence

Remarques:

- Chaque étape de l'algorithme donne une décimale de la racine carrée
- Lorsqu'on a un nombre à virgule, on peut se ramener à un nombre entier par un décalage de la virgule par tranche de 2 chiffres : cela correspond à un décalage de la virgule d'1 chiffre pour la racine carrée. En pratique, le passage de la virgule consiste à mettre une virgule dans la racine (voir l'exemple).

Exemple:

On souhaite calculer $\sqrt{152,275}$.

On utilise donc 152,275.

On commence par décaler la virgule, par tranche de 2 afin d'obtenir un nombre entier.

On applique ainsi l'algorithme au nombre 1522750.

	1	52	27	50			у	х	r
Init	1						0		0
n=1	1					$(20 \times 0 + 1) \times 1 = 1$ $(20 \times 0 + 2) \times 2 = 4$	1	1	01
n=2	-1 0	52				$(20 \times 1 + 2) \times 2 = 44$ $(20 \times 1 + 3) \times 3 = 69$	44	2	012
n=3		-44 8	27			$(20 \times 12 + 3) \times 3 = 729$ $(20 \times 12 + 4) \times 4 = 976$	729	3	0123
n=4		-7	29 98	50		$(20 \times 123 + 3) \times 3 = 7389$ $(20 \times 123 + 4) \times 4 = 9856$	7389	3	01233
n=5			-73 24	89 61	00	$(20 \times 1233 + 9) \times 9 = 222021$	222021	9	01233,9

Ainsi $\sqrt{1522750} \approx 1233.9$ (troncature au dixième) donc $\sqrt{152,275} \approx 12,339$