

Overview of Thermodynamics

Newton's Second Law

 $\sum \mathbf{F} = m\mathbf{a}$

The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

Two-Block Problem

$$\sum F_x(\text{system}) = F = (m_1 + m_2) a_x$$

$$\sum F_x = P = m_2 a_x$$

$$P = m_2 a_x = \left(\frac{m_2}{m_1 + m_2}\right) F$$

Common sense tells us that both blocks must experience the same acceleration because they remain in contact with each other.

One, Two, Many

$$x_{\rm CM} \equiv \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

$$x_{\text{CM}} \equiv \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots + m_n x_n}{m_1 + m_2 + m_3 + \dots + m_n} = \frac{\sum_{i} m_i x_i}{\sum_{i} m_i}$$

$$\mathbf{r}_{\mathrm{CM}} \equiv \frac{\sum\limits_{i} m_{i} \mathbf{r}_{i}}{M}$$

$$\mathbf{r}_{\mathrm{CM}} = \frac{1}{M} \int \mathbf{r} \ dm$$

One, Two, Many

$$\mathbf{r}_{\mathrm{CM}} \equiv rac{\sum\limits_{i} m_{i} \mathbf{r}_{i}}{M}$$

$$\mathbf{v}_{\text{CM}} = \frac{d\mathbf{r}_{\text{CM}}}{dt} = \frac{1}{M} \sum_{i} m_{i} \frac{d\mathbf{r}_{i}}{dt} = \frac{\sum_{i} m_{i} \mathbf{v}_{i}}{M} \qquad M\mathbf{v}_{\text{CM}} = \sum_{i} m_{i} \mathbf{v}_{i} = \sum_{i} \mathbf{p}_{i} = \mathbf{p}_{\text{tot}}$$

$$M\mathbf{v}_{\mathrm{CM}} = \sum_{i} m_{i}\mathbf{v}_{i} = \sum_{i} \mathbf{p}_{i} = \mathbf{p}_{\mathrm{tot}}$$

$$\mathbf{a}_{\mathrm{CM}} = \frac{d\mathbf{v}_{\mathrm{CM}}}{dt} = \frac{1}{M} \sum_{i} m_{i} \frac{d\mathbf{v}_{i}}{dt} = \frac{1}{M} \sum_{i} m_{i} \mathbf{a}_{i}$$

$$M\mathbf{a}_{\mathrm{CM}} = \sum_{i} m_{i}\mathbf{a}_{i} = \sum_{i} \mathbf{F}_{i}$$

$$\sum \mathbf{F}_{\mathrm{ext}} = M\mathbf{a}_{\mathrm{CM}} = \frac{d\mathbf{p}_{\mathrm{tot}}}{dt}$$

$$\sum \mathbf{F}_{\text{ext}} = M\mathbf{a}_{\text{CM}} = \frac{d\mathbf{p}_{\text{tot}}}{dt}$$

The center of mass of a system of particles of combined mass M moves like an equivalent particle of mass M would move under the influence of the resultant external force on the system.

Already learned:

- Single-particle mechanics:
 translational and rotational variables
- Two particles:center of mass + relative motion
- Many particles: center-of-mass translation
 - Rigid bodies: also rotation about a fixed axis
 - Realistic solids: vibrations

Fluids: gases, liquids

The Naïve Approach

N particles $r_i(t)$, $v_i(t)$; interaction $V(r_i-r_j)$

A Simple Algorithm

Time-step propagator

$$U_{F}(\Delta t) \begin{pmatrix} x \\ v \end{pmatrix} = \begin{pmatrix} x \\ v + (F(x)/m)\Delta t \end{pmatrix}$$

$$U_v(\Delta t) \begin{pmatrix} x \\ v \end{pmatrix} = \begin{pmatrix} x + v\Delta t \\ v \end{pmatrix}$$

Apply $U_F(\frac{1}{2}\Delta t)\,U_v(\Delta t)\,U_F(\frac{1}{2}\Delta t)$ to $x(t_n),v(t_n)$. This yields

$$v_{n+1} = v_n + \frac{1}{2m}F_n\Delta t + \frac{1}{2m}F_{n+1}\Delta t$$

$$x_{n+1} = x_n + (v_n + \frac{1}{2m}F_n\Delta t)\Delta t$$

MD Simulation (Argon)

100 K (above the boiling point)

25 K (below the melting point)

Liquid Argon Freezing

States of matter: phases

- Gases: e.g., water vapor, oxygen
- Liquids: e.g., water, blood, mercury
- Solids: e.g., ice, glacier, rock, rubber

- "... physicist rejects the definition of a solid as (roughly) what hurts your toe when you kick it ..."
 - -- Concepts in Solids, by P.W. Anderson

Comparison of Phases

	Solid	Liquid	Gas
Compression	Difficult	Difficult	Easy
Tension	Strong	Limited	No
Shear force	Normally, sustainable	Not sustainable	Not sustainable
Change shape?	Normally, no	Easily	Easily
Intermolecular forces	Strong	Relatively weak	Very weak

Fluids [Latin, to flow]: liquids & gases

Flow to take the shape of container

Normally, solids do not flow

Statics: fluids at rest

Dynamics: fluids in motion

Condensed matter: solids & liquids

- (Almost) incompressible
- Density changes little with temperature (at constant pressure)

Gases

- Easily compressible
- Density changes substantially with temperature (at constant pressure)

Gases: full symmetry -- disordered

Solids: reduced symmetry -- ordered

Think about snowflakes (hexagonal)

Liquids: short-range order only

Phase transitions

- Disorder to order: symmetry breaking
- Pioneered by Landau, Anderson, ...

Basic concepts of Thermodynamics Ideal Gases The Kinetic Theory of Gases The First Law of Thermodynamics The Second Law of Thermodynamics **Entropy and Information**