Solid Mechanics - Zak Olech - October 3, 2019

Variables (Alphbetical By Variable)

a	Constant; distance
A, B, C,	Forces; reactions
A, B, C, \ldots	Points
A , α	Area
b	Distance; width
c	Constant; distance; radius
\boldsymbol{C}	Centroid
C_1 , C_2 ,	Constants of integration
C_P	Column stability factor
d	Distance; diameter; depth
D	Diameter
e	Distance; eccentricity; dilatation
E	Modulus of elasticity
f	Frequency; function
\mathbf{F}	Force
F.S.	Factor of safety
G	Modulus of rigidity; shear modulus
h	Distance; height
H	Force
H, J, K	Points
I, I_x, \ldots	Moment of inertia
I_{xy} ,	Product of inertia

- Polar moment of inertia kSpring constant; shape factor; bulk modulus; constant K Stress concentration factor; torsional spring constant Length; span l
- LLength; span L_e
- Effective length
- mMass
- Couple \mathbf{M}
- Bending moment M, M_{r}, \dots
 - Bending moment, dead load (LRFD) M_D Bending moment, live load (LRFD) M_L
 - Bending moment, ultimate load (LRFD) M_{U}
 - Number; ratio of moduli of elasticity; nnormal direction
 - pPressure
 - P Force: concentrated load
 - Dead load (LRFD) P_D
 - Live load (LRFD)

P_U	Ultimate load	(LRFD)
-------	---------------	--------

- Shearing force per unit length; shear q flow
- Force \mathbf{Q}
- QFirst moment of area
 - Radius; radius of gyration
- \mathbf{R} Force; reaction
- RRadius; modulus of rupture
 - Length
- S Elastic section modulus
- Thickness; distance; tangential deviation
- \mathbf{T} Torque
- TTemperature
- Rectangular coordinates u, v
- Strain-energy density u
- UStrain energy; work
- Velocity \mathbf{v}
- \mathbf{v} Shearing force
- Volume; shear V
- \boldsymbol{w} Width; distance; load per unit length
- \mathbf{W} , WWeight, load
 - \mathbf{V} Shearing force
 - VVolume; shear
 - \boldsymbol{w} Width; distance; load per unit length
 - \mathbf{W} , WWeight, load
 - Rectangular coordinates; distance; x, y, zdisplacements; deflections
 - \overline{x} , \overline{y} , \overline{z} Coordinates of centroid
 - \mathbf{Z} Plastic section modulus
- α, β, γ Angles
 - Coefficient of thermal expansion; α influence coefficient
 - Shearing strain; specific weight
 - Load factor, dead load (LRFD) γ_D
 - Load factor, live load (LRFD) γ_L
 - Deformation; displacement δ
 - Normal strain ϵ
 - θ Angle; slope
 - Direction cosine λ
 - Poisson's ratio
 - Radius of curvature; distance; density
 - Normal stress σ
 - Shearing stress au
 - Angle; angle of twist; resistance factor φ
 - Angular velocity

Conversion Factors

$$1hp = 550ft*lb/s = 6600 in*lb/s$$
 (1)

Freedom Unit BS

Force P – pounds (lb) or kilopound (kip)

Stress σ – pounds per square inch (psi) or kilopounds per square inch (ksi)

General

SI Prefixes

Multiplication Factor	Prefix [†]	Symbol T
$1\ 000\ 000\ 000\ 000 = 10^{12}$	tera	
$1\ 000\ 000\ 000 = 10^9$	giga	G
$1\ 000\ 000 = 10^6$	mega	M
$1\ 000 = 10^3$	kilo	k
$100 = 10^2$	hecto‡	h
$10 = 10^{1}$	deka‡	da
$0.1 = 10^{-1}$	deci‡	d
$0.01 = 10^{-2}$	centi‡	c
$0.001 = 10^{-3}$	milli	m
$0.000\ 001 = 10^{-6}$	micro	μ
$0.000\ 000\ 001 = 10^{-9}$	nano	n
$0.000\ 000\ 000\ 001 = 10^{-12}$	pico	р
$0.000\ 000\ 000\ 000\ 001 = 10^{-15}$	femto	p f
$0.000\ 000\ 000\ 000\ 000\ 001 = 10^{-18}$	atto	a

Moments

Moment of Inertia

Area Moment of Inertia for Rectangular Section

$$I_x = bh^3/12 \tag{2}$$

Parallel Axis Theorm (2-Dimensional)

$$I = I_{\text{Original}} + Ad^2 \tag{3}$$

Chapter 1 - Concept of stress

Axial Loading: Normal Stress

$$\sigma = \frac{P}{A} \tag{4}$$

Transverse Forces and Shearing Stress

$$\tau_{\text{ave}} = \frac{P}{A} \tag{5}$$

Single and Double Shear

Single Shear

$$\tau_{\text{avg}} = \frac{P}{A} = \frac{F}{A} \tag{6}$$

Double Shear

$$\tau_{\text{avg}} = \frac{P}{A} = \frac{F/2}{A} = \frac{F}{2A} \tag{7}$$

Bearing Stress

$$\sigma_b = \frac{P}{A} = \frac{P}{td} \tag{8}$$

Method of Solution

- 1. Clear and precise statement of problem
- 2. Draw one or several free-body diagrams; used to write equilibrium equations
- 3. Think SMART. Strategy, Modeling, Analysis, and Reflect

Stresses on an Oblique Section

$$\sigma = \frac{P}{A_0} \cos^2 \theta \tag{9}$$

$$\tau = \frac{P}{A_0} sin\theta cos\theta \tag{10}$$

Stress Under General Loading **Factor of Safety**

Factor of safety = F.S. =
$$\frac{\text{ultimate load}}{\text{allowable load}}$$
 (11)

Chapter 2 - Stress and Strain -Axial Loading

Normal Strain

$$\epsilon = \frac{\delta}{I} \tag{12}$$

Hooke's Law and Modulus of Elasticity

$$\sigma = E\epsilon \tag{13}$$

Elastic Deformation Under Axial Loading

$$\delta = \frac{PL}{AE} \tag{14}$$

$$\delta = \Sigma = \frac{P_i L_i}{A_i E_i} \tag{15}$$

Problems with Temperature Change

$$\delta_T = \alpha(\Delta T)L \tag{16}$$

$\epsilon_T = \alpha \Delta T$ (17)

Lateral Strain and Poisson's Ratio

$$v = -\frac{\text{lateral strain}}{\text{axial strain}} \tag{18}$$

Multiaxial Loading

$$\epsilon_x = \frac{\sigma_x}{F} \tag{19}$$

$$\sigma_y = \sigma_x = -\frac{v\sigma_x}{F} \tag{20}$$

Generalized Hooke's law for multiaxial loading

$$\sigma_x = +\frac{\sigma_x}{E} - \frac{v\sigma_y}{E} - \frac{v\sigma_z}{E} \tag{21}$$

$$\sigma_{x} = +\frac{\sigma_{x}}{E} - \frac{v\sigma_{y}}{E} - \frac{v\sigma_{z}}{E}$$

$$\sigma_{y} = -\frac{\sigma_{x}}{E} - \frac{v\sigma_{y}}{E} - \frac{v\sigma_{z}}{E}$$

$$\sigma_{z} = -\frac{\sigma_{x}}{E} - \frac{v\sigma_{y}}{E} + \frac{v\sigma_{z}}{E}$$
(22)

$$\sigma_z = -\frac{\sigma_x}{E} - \frac{v\sigma_y}{E} + \frac{v\sigma_z}{E} \tag{23}$$

Dilation

$$e = \frac{1 - 2v}{E}(\sigma_x + \sigma_y + \sigma_z) \tag{24}$$

Bulk Modulus

p: Hydrostatic Pressure

$$e = -\frac{p}{k} \tag{25}$$

k: bulk modulus of the material

$$k = \frac{E}{3(1 - 2v)} \tag{26}$$

Shearing Strain: Modulus of Rigidity

$$\tau_{xy} = G\gamma_{xy} \tag{27}$$

$$\tau_{yz} = G\gamma yz \tag{28}$$

$$\tau_{zx} = G\gamma_{zx} \tag{29}$$

$$\frac{E}{2G} = 1 + v \tag{30}$$

Stress Concentrations

$$K = \frac{\sigma_{\text{max}}}{\sigma_{\text{avg}}} \tag{31}$$

Chapter 3 - Torsion

General

Deformation in Circular Shafts

$$\gamma = \frac{\rho\phi}{L} \tag{32}$$

$$\gamma_{max} = \frac{c\phi}{L} \tag{33}$$

$$\gamma = \frac{\rho}{c} * \gamma_{max} \tag{3}$$

Shearing Stresses in Elastic Range

$$\tau = -\frac{\rho}{c}\tau_{max} \tag{35}$$

$$\tau_{max} = \frac{Tc}{J} \tag{36}$$

$$\tau = \frac{T\rho}{I} \tag{37}$$

Polar Moment of Inertia Solid Shaft

$$J = \frac{1}{2}\pi c^4 \tag{38}$$

c = radius

Polar Moment of Inertia of a Hollow Shaft inner radius c1, outer radius c2

$$J = \frac{1}{2}\pi(c_2^4 - c_2^4) \tag{39}$$

Angle of Twist

$$\phi = \frac{TL}{JG} \tag{40}$$

$$\phi = \Sigma \frac{TL}{IC} \tag{41}$$

Statically Indeterminante Shafts

Transmission Shafts

Power P is transmitted as:

$$P = 2\pi f T \tag{42}$$

T is the torque exerted at each end of the shaft (34) | f the frequency (hz or s^{-1})

Stress Concentrations

$$\tau_{\text{max}} = K \frac{Tc}{I} \tag{43}$$

K = Stress concentration factor stress $\frac{Tc}{T}$ is computed for the smaller-diameter shaft

Fig. 3.28 Plot of stress concentration factors for fillets in circular shafts. (Source: W. D. Pilkey and D. F. Pilkey, *Peterson's Stress Concentration Factors*, 3rd ed., John Wiley & Sons, New York, 2008.)

Plastic Deformations

$$T = \int_0^c \rho \tau(2\pi d\rho) = 2\pi \int_0^c \rho^2 \tau d\rho \tag{44}$$

Modulus of Rupture

This is a ficticious value.

$$R_t = \frac{T_u c}{j} \tag{45}$$

Solid Shaft of Elastoplastic Material

Maximum Elastic Torque; Solid Circular Shaft, Radius c

$$\tau_y = \frac{1}{2}\pi c^3 \tau Y \tag{46}$$

Torque Related to ρ_y

$$T = -\frac{4}{3}T_y(1 - \frac{1}{4}\rho\rho^3 yc^3)$$
 (47)

Plastic Torque

$$T_p = \frac{4}{3}T_y \tag{48}$$

Plastic Torque Vs. Angle of Twist

$$T = \frac{4}{3}T_y(1 - \frac{1}{4}\frac{\phi^3 y}{\phi^3})\tag{49}$$

Torsional Loading or Shaft Cross-Section Changes Along Length

$$\phi = \sum_{i} \frac{T_i L_i}{J_i G_i} \tag{50}$$

Thin-Walled Hollow Shafts

Shear Flow

$$q = \tau t \tag{51}$$

Average Shearing Stress τ at any given point in cross section

$$\tau = \frac{T}{2tA} \tag{52}$$

Chapter 4 - Pure Bending

1 - Symmetric Members in Pure Bending

$$\epsilon_x = -\frac{y}{\rho} \tag{53}$$

 ρ - Radius of curvature of the neutral surface y - Distance from neutral surface

2 - Stresses and Deformatoins in the Elastic Range

$$\sigma_x = -\frac{y}{c}\sigma_m \tag{54}$$

c - largest distance from the neutral axis to a point in the section

Elastic Flexture formula

$$\sigma_m = \frac{Mc}{I} \tag{55}$$

Equation To Use When Finding Normal Internal Stress

$$\sigma_x = -\frac{My}{I} \tag{56}$$

 $-\sigma$ – Compression σ – Tension

Eleastic Section Modulus

$$S = \frac{I}{c} \tag{57}$$

$$\sigma_m = \frac{M}{S} \tag{58}$$

Curvature of Member

$$\frac{1}{\rho} = \frac{M}{EI} \tag{59}$$

Eccentric Axial Loading

$$\sigma_x = \frac{P}{A} - \frac{M_y}{I} \tag{60}$$

Unsymmetric Bending

$$\sigma_x = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y} \tag{61}$$

General Eccentric Axial Loading

$$\sigma_x = \frac{P}{A} - \frac{M_z y}{I_z} + \frac{M_y Z}{I_y} \tag{62}$$

Curved Members

$$R = \frac{A}{\int \frac{dA}{r}} \tag{63}$$

$$\sigma_x = -\frac{My}{Ae(R-y)} \tag{64}$$

Factor of Safety

$$\sigma_m = K \frac{Mc}{I} \tag{65}$$

Fig. 4.24 Stress-concentration factors for *flat bars* with fillets under pure bending. (Source: W. D. Pilkey and D. F. Pilkey, *Peterson's Stress Concentration Factors*, 3rd ed., John Wiley & Sons, New York, 2008.)

Fig. 4.25 Stress-concentration factors for flat bars with grooves (notches) under pure bending. (Source: W. D. Pilkey and D. F. Pilkey, Peterson's Stress Concentration Factors, 3rd ed., John Wiley & Sons, New York, 2008.)

Equation for Force on a Single Area Within a T Section

$$F = \int dF = -\int \frac{My}{I} dA = -\frac{M}{I} \int y dA = -\frac{M}{I} \bar{y} * A*$$
 (66)

Additional Notes

Area, width, and moment of inertia for W shapes should be given on a test or found in appendix c of textbook.

c in this section is the largest distance from the neutral axis to a point in the section.

Chapter 5 - Analysis and Design of Beams for Bending

Only statically determinate beams are considered in this chapter.

- 1 Shear and Bending-Moment Diagrams | Design of Prismatic Beams
- 2 Relationships Between Load, Shear, and Bending Moment
- 3 Design of Prismatic Beams for Bending

Review and Summary

Fig. 5.9 (a) Simply supported beam subjected to a distributed load, with a small element between C and C', (b) Free-body diagram of the element.

Normal Stresses Due to Bending **Shear and Bending-Moment Diagrams**

Fig. 5.22 Positive sign convention for internal shear and bending moment.

Relationships Between Load, Shear, and **Bending Moment**

Design of Prismatic Beams