中山大学移动信息工程学院学生会

Student Union of School of Mobile Information Engineering SYSU

(10 points) Let A, B and C be sets, decide if the following statements are true. Mark the correct statements with √ and false statements with ×.

- (a) $P(\emptyset) = \emptyset X$
- (b) $\emptyset \in P(\emptyset)$ and $\emptyset \subseteq P(\emptyset)$
- (c) If $B \neq C$, then $A \cap B \neq A \cap C \times$
- (d) If A B = A C, then B = C.
- (e) If $|A \cap B| = 4$, |A| = 10, |B| = 9, then $|A \cup B| = 15$.

(10 points) Let A = { a , b , c ,d}, B={0,1}.

- (a) How many relations there are from A to B?
- (b) Let $B^A = \{f \mid f : A \rightarrow B, f \text{ is everywhere defined}\}$. Compute $|B^A|$.
- (c) Is there a bijection k : B^A -> 2^A, where 2^A is the power set of A? If the answer is yes, please define such a function. If the answer is no, explain why.
 - 3. (10 points) Let A = {1,2,3,4}. Define the following binary relations on A:

$$R_1 = \{(1,1),(1,2),(2,2),(3,3),(2,1),(4,4)\};$$

$$R_2 = \{(1,2),(3,3),(3,4)\};$$

$$R_3 = \{(1,2), (2,3), (4,4)\},$$

$$R_4 = \{(1,2), (2, 1), (3,4), (4,3)\}$$

For every relation above state if it is reflexive, symmetric, antisymmetric and transitive by filling table 1. Mark Y for yes and N for no.

Table 1

	reflexive	Symmetric	antisymmetric	transitive
R ₁	Y	Y	N	Y
R ₂	N	N	Ý	Y
R ₃	N	N/	Ý	N
R ₄	N	Y	1/	1/

- 4. (10 points) Suppose that following assumptions:
 - (1) Logic is not difficult, or not many students like logic;
 - (2) If mathematics is easy, then logic is not difficult.

By translating these assumptions into statements involving propositional variables and connectives, deciding whether each of the following is a valid conclusion of these assumptions:

- (a) That mathematics is not easy, if many students like logic;
- (b) That not many students like logic, if mathematics is not easy;
- (c) That logic is not difficult or mathematics is not easy.

中山大学移动信息工程学院学生会

Student Union of School of Mobile Information Engineering SYSU

(C). valid

5. (10 points) Define the following propositions and answer the following questions by drawing

A. p => ~p B. $(p \Rightarrow q) \lor (q \Rightarrow p)$

C. It.

- C. $((p \Rightarrow q) \land \neg q) \Rightarrow p$ D. $(p \Rightarrow q) \land (p \lor r) \Rightarrow q$
- (a) Which of the propositions above are contingencies?
- (b) Which of the propositions above are tautologies?
- (c) Which of the propositions above are absurdities?

块

- 6. (10 points) Let W be the set of propositions containing three proposition variables p1, p2 and p_3 . Define a relation R on W such that p R q if and only if $p \Leftrightarrow q$ is a tautology.
 - (a) Prove that R is an equivalence relation on W.
 - (b) Compute | W/R |.

|W/R = 28 = 256.

- (10 points) Let A={1, 2, 3, 4}, and R={(1, 4), (3, 1), (3, 2), (3, 3), (4, 2)}
 - (a) Show the corresponding matrix M_R and draw the digraph of R;
 - (b) Compute the matrix of R2;
 - (c) Compute the matrix of the transitive closure of R.
 - 8. (10 points) Let S = {1, 2, 3, 4, 5} and A=SxS. Define the following relation R on A: (a, b) R (a', b') if and only if b=b'.
 - (a) Show that R is an equivalence relation
 - (b) Compute A/R and |A/R|.
 - 9. (10 points) Let A={1, 2, 3, 4, 5, 6} and $p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 4 & 6 \end{pmatrix}$ be a permutation of A, i.e. a

bijection from A to A: p(1) = 3, p(2) = 1, p(2) = 2, ..., p(6) = 6

- (a) Compute p⁻¹ and p² = p₀p, and write them in the form above.
- (b) Is it possible that p" is the identity function for some n? If yes, why and what is such a possible integer? If not, why?
- 10. (10 points) Let f: A->B and g: B ->C be two functions that are everywhere defined. Prove
 - (a) If f and g are surjections, then g. f is a surjection from A to C.
 - (b) If g. f is surjective(onto), then g is surjective.
 - (c) Disprove that the following proposition: If g. f is surjective, then f is surjective.