Lecture 26, Nov. 9

26.1 Theorem. If f(x) is continuous on [a, b], then f is uniformly continuous.

Basic Facts about Uniform Continuity

- 1. If f is uniformly continuous on $S \subset \mathbb{R}$ and if $T \subseteq S$ then f is uniformly continuous on T.
- 2. If f is uniformly continuous on S and if $\{x_n\} \subset S$ is Cauchy then $\{f(x_n)\}$ is Cauchy.
- 3. If f is uniformly continuous on (a, b), then $\lim_{x\to a^+} f(x)$ exists and $\lim_{x\to b^-} f(x)$ exists.
- 4. f is uniformly continuous on (a, b) iff there exists $F: [a, b] \to R$ such that F is continuous on [a, b] and F(x) = f(x) for all $x \in (a, b)$.
- 5. if f(x) is uniformly continuous on (a, b), then f((a, b)) is bounded.

Derivatives

26.2 Definition (Differentiable). We say that f is differentiable at x = a if

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists. In this case, we write

$$f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

and we call f'(x) the derivative of f at x = a.

26.3 Definition (Tangent Line). Assume that f'(x) exists. Then the line with slope f'(x) passing through (a, f(a)) is called the tangent line to f(x) at x = a.

$$y = f(a) + f'(a(x - a))$$

26.4 Definition (Alternative Definition).

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

26.5 Example. $f(x) = \cos x$, find f'(0)

Solution.

$$f'(0) = \lim_{h \to 0} \frac{\cos h - \cos 0}{h}$$

$$= \lim_{h \to 0} \frac{\cos h - 1}{h}$$

$$= \lim_{h \to 0} \frac{(\cos h - 1)(\cos h + 1)}{h(\cos x + 1)}$$

$$= \lim_{h \to 0} \frac{\cos^2 h - 1}{h(\cos h + 1)}$$

$$= \lim_{h \to 0} \frac{-\sin h}{h} \frac{\sin h}{(\cos h + 1)}$$

$$= 0$$

26.6 Example. $f(x) = \sin x$, find f'(a)

Solution.

$$f'(a) = \lim_{h \to 0} \frac{\sin(a+h) - \sin(a)}{h}$$

$$= \lim_{h \to 0} \frac{\sin a \cos h + \cos a \sin h - \sin a}{h}$$

$$= \lim_{h \to 0} \sin a \frac{\cos h - 1}{h} + \cos a \frac{\sin h}{h}$$

$$= \cos a$$

26.7 Theorem. If f(x) is differentiable at x = a, then f(x) is continuous at x = a.

Proof. Since $\lim_{x\to a} (f(x)-f(a))/(x-a)$ exists and $\lim_{x\to a} x-a=0$, we have $\lim_{x\to a} f(x)-f(a)=0 \iff \lim_{x\to a} f(x)=f(a)$.

26.8 Example.

$$g(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is g(x) differentiable at x = 0?

26.9 Example.

$$h(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is h(x) differentiable at x = 0?