Devoir maison 7.

À rendre le jeudi 19 janvier 2023

Exercice 1

Le but de l'exercice est la recherche et l'étude des solutions de l'équation :

$$(E)$$
: $\tan x = x$

- 1°) Soit $n \in \mathbb{N}$. Montrer que l'équation (E) possède une unique solution u_n dans l'intervalle $\left] -\frac{\pi}{2} + n\pi; \frac{\pi}{2} + n\pi \right[$. Préciser u_0 .
- **2**°) **a)** Montrer: $\forall n \in \mathbb{N}^*, \ n\pi < u_n < n\pi + \frac{\pi}{2}.$
 - **b)** En déduire la limite des suites (u_n) et $\left(\frac{u_n}{n\pi}\right)$.
- **3°) a)** Montrer: $\forall n \in \mathbb{N}^*, \ u_n n\pi = \operatorname{Arctan}(u_n).$
 - b) En déduire :

$$u_n \underset{n \to +\infty}{=} n\pi + \frac{\pi}{2} + o(1).$$

 ${\bf 4}^{\circ})$ a) Montrer qu'il existe des réels α et $\beta,$ que l'on déterminera, tels que :

$$\frac{1}{u_n} \underset{n \to +\infty}{=} \frac{\alpha}{n} + \frac{\beta}{n^2} + o\left(\frac{1}{n^2}\right).$$

- **b)** Rappeler et redémontrer la relation entre $\operatorname{Arctan} x$ et $\operatorname{Arctan} \frac{1}{x}$ pour x>0.
- c) En déduire le développement asymptotique suivant de (u_n) :

$$u_n = n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + \frac{1}{2n^2\pi} + o\left(\frac{1}{n^2}\right).$$

Exercice 2

- 1°) Calculer $\lim_{x\to 1} f(x)$ où $f(x) = \frac{\ln(2-x)}{x+3\sqrt{x}-4}$.
- **2°)** Déterminer le développement limité d'ordre 2 en 0 de $f: x \mapsto \frac{e^x \cos(x) x}{x \ln(1+x)}$.
- 3°) On définit la fonction f par $f: x \mapsto (x-1) \exp\left(\frac{1}{2x+1}\right)$. Montrer que la courbe de f admet une asymptote en $+\infty$ que l'on déterminera. Étudier les positions relatives.