HW 2. Constructing clonal lineages

The purpose of this assignment is to reconstruct clonal lineages for an antibody repertoire taken after a seasonal flu vaccination and analyze their properties. To complete the assignment, follow the instructions:

- 1. Download the <u>repertoire file</u> in FASTA format. It consists of 10,000 sequences.
- 2. (5 points + 5 points) Implement reconstruction of clonal lineages using the Hamming graph (HG) on CDR3s through the following steps:
 - a. Compute CDR3s of sequences (e.g., using IgBlast or DiversityAnalyzer, see HW #1 for the details).
 - b. Compute Hamming distances (HD) for pairs of the computed CDR3s.
 - c. Connect two sequences s1 and s2 by an edge if (i) their CDR3s have the same lengths L and (ii) the $HD(\text{CDR3_}s1, \text{CDR3_}s2) / L \le 0.2$ (i.e., similarity is at least 80%). Since processing all pairs of sequences takes too much time, optimizations are welcome. Implementation and its brief description of any optimization add 5 points to this part.
 - d. Report connected components of the HG as clonal lineages.
 - e. Attach the implemented code to your report.

[optimization description]

3. (5 points) Analyze the computed clonal lineages and fill blank cells in Table 1:

The number of clonal lineages	
The number of sequences in the largest lineage	
The number of clonal lineages presented by at least 10 sequences	

Table 1.

4. (5 points) For each lineage, compute the closest V gene (e.g., using IgBlast or DiversityAnalyzer, see HW #1 for the details), create a usage plot of the computed V genes (x axis shows V genes, y axis shows the number of clonal lineages formed by each of V genes), and insert it below:

[V usage plot]

5. (5 points) Create a web logo plot of CDR3s from the largest clonal lineage and insert it below:

[Web logo plot]

6. (5 points) Extract VDJ sequences from the largest lineage and compute their phylogenetic tree (e.g., using Clustal Omega https://www.ebi.ac.uk/tools/msa/clustalo). Visualize the resulting tree (e.g., via Iroki tool: http://www.iroki.net/viewer) and add it below:

[Tree figure]

Total: 30 points.

Deadline: November 22nd (Sunday), 11:59 pm PST.