PHYS 225 Fundamentals of Physics: Mechanics

Prof. Meng (Stephanie) Shen Fall 2024

Lecture 2: Measurement

Learning goals

- Base quantities
- Unit conversion
- Dimensional analysis

Time

- What is time?
 - Hard to define
 - Measure of the sequence of how long an event takes
 - A "4th dimension"
- SI unit:
 - Second (s)

Time scales

Time = $10^{?}$ s

Age of universe	18	
Age of Earth	17	
Time since appearance of humans on Earth	13	
Average human life expectancy	9	
Winter break at CSUF	6	
This lecture	3	
"This word"	0	
Blink of an eye	-1	
Best human reaction time	-2	
1 cylce of a 1960s computer		
Light travels 1 foot		
1 cycle of modern supercomputer	-11	
Shortest measured period of time	-17	

Mass

- What is mass?
 - Defined as the the resistance to accelerate.
 - Proportional to the "amount of stuff"
- SI unit:
 - Kilograms (kg)

Defined as the mass of a cylinder of platinum and iridium stored in France.

Mass scales

Mass	S =
$10^?$	kg

Mass of observable universe	53
Our galaxy	42
Black hole at center of our galaxy	37
Sun	30
Earth	25
Mass of all living humans	11
Largest living tree	6
Adult human	2
Bottle of soda/pop/Coke	0
Fruit fly	-7
Average human cell	-12
HIV-1 virus	-18
Caffeine molecule	-25
Proton	-27
Electron	-31
Electron neutrino	-35

Mixed units

You can have quantities measured in combinations of basic units

Quantity	Unit	
mass	kg	
time	S	Base quantities
length	m	
area	m^2	
volume	m^3	Mixed quantities
velocity (v)	m/s	
acceleration	m/s^2	Energy: Jowles ~ kg-m²s-2

Unit conversion

- Unit conversion is important in daily life and technology.
- Unit conversion errors can cost money and lives
 - On Sept. 23, 1999, NASA lost the \$125 Million Mars Climate Orbiter spacecraft due to wrong unit conversion. (Watch video: https://youtu.be/urcQAKKAAI0)

https://www.simscale.com/blog/nasa-mars-climate-orbiter-metric/

Remember the Mars Climate Orbiter incident from 1999?

Chain-link rule for unit conversion

• Example: John is 73 inches. How tall is John in meters? Given:

1 in = 2.54 cm = 0.0254 m
Step 1: Conversion factor:

$$1 = \frac{0.0254m}{1 \text{ in}}$$

Step 2: 73 in = 73 in $\frac{0.0254m}{1 \text{ in}} \approx 1.85 \text{ m}$

Chain-link rule for unit conversion

- The chain-link rule standardizes unit conversion
- In chain-link rule, we multiply a physical quantity by "1", where "1" is the conversion factor including units
- For example: Convert 73 in to meters
 - Step 1: Conversion factor, $1 = \frac{0.0254 \ m}{1 \ in}$
 - Step 2: Substitute Step 2 to Step 1: $73.0 in = 73.0 in \times 1 = 73.0 in \times \frac{0.0254 m}{1 in}$

= 1.85 m

Don't forget to write the units

Always write the units in unit conversion:

$$73 in = 73 in \times \frac{0.0254 m}{1 in} = 1.85 m$$

Forgetting to include the units makes Tuffy cry

Clicker question 1

• 1 cm is 0.01 m. How is 1 cm³ converted to m³?

$$1 \text{ cm}^3 = 0.01 \text{ m}^3$$

$$1 \text{ cm}^3 = 1 \times 10^{-6} \text{ m}^3$$

Unit conversion of comprehensive units

- If a unit is raised to a power, so is the conversion factor
 - Examples
 - 1. Convert 1 dm³ to cm³

Unit conversion of comprehensive units

- If a unit is raised to a power, so is the conversion factor
 - Examples
 - 1. Convert 1 dm³ to cm³

$$1 \text{ dm}^3 = 1 dm^3 * (1)^3$$
$$= 1 dm^3 * \left(\frac{10 cm}{1 dm}\right)^3 = 1000 cm^3$$

Clicker question 1

• 1 cm is 0.01 m. How is 1 cm³ converted to m³?

Example 1

• 1 mile = 1609 m. What is 55 mph (miles per hour) in m s⁻¹?

S-tep1: Conv. fac.

$$7 | mile = 1$$
, $1 | hr = 3600 s \rightarrow \frac{1 | hr}{3600 s} = 1$

Step2: 55 mile

 $1 | = \frac{55 \text{ mile}}{1 \text{ mile}} = \frac{1609 \text{ m}}{3600 \text{ s}} = \frac{1 | hr}{3600 \text{ s}} = \frac{1}{3600 \text{ s}}$
 $\approx 24.6 \text{ m s}^{-1}$

Chain-link rule review

Step1: Conv. fac.
$$1 = \frac{7}{7}$$
Step2: $01d \times 1 = new$
Con. fac.

Dimensional analysis

Unit must balance

- Both sides of an equation must have the same units
 - This limits the kinds of equations you can write
 - Example: Relating distance d, velocity v, and time t

m = 1 m = 1 m = 1

Clicker question 2

Which of the following equations correctly relates distance d, velocity v, and time t (i.e., which have the right units?)

Example 3

 Suppose A = BC, where A has the units L/M and C has the units L/T. What's the dimension of B?

Stop 2:
$$B = A + \frac{L}{M}$$

$$\frac{L}{M} = \frac{1}{M}$$

Example 4

Prefixes

Antarctica is roughly semicircular, with a radius of 2.00×10^3 km (see the figure). The average thickness of its ice cover is 3.00×10^3 m. How many cubic centimeters of ice does Antarctica contain? (Ignore the curvature of Earth.)

Goal: Volume

Step1: Volume = Area × h

$$M^3 = M^2 \times M$$

Volume = $M^3 = M^2 \times M$

Volume = $M^3 = M^2 \times M$
 $M^3 = M^3 \times M$

Wrap up concepts of Chapter 1

- Learning objectives
 - Measurements
 - Base quantities and units
 - Order of magnitude and prefixes
 - Significant figures
 - Unit conversion
 - Dimensional analysis

More examples

- In the end of Chapter 1: Measurement and units on Canvas:
 - eTextbook -> Chapter 01 Student Solutions Manual

SI: 4:00 ~ 5:15 PM, Tu, Th

Homework 1

- Due next Thursday
- Module 1.4: Homework assignment
- Need more practice?
 - Canvas -> eTextbook for Chapter 1 -> Chapter 01 Student Solutions Manual

Pre-lecture survey for Chapter 2 before the next class

Module 2.1: Pre-lecture survey (Due before the next lecture)

Next lecture: Motion along a straight line