

MAKE school

ALGORITHM ANALYSIS

Big O? What's the Big Deal?

WHAT IS AN ALGORITHM?

A sequence of steps to accomplish a task

...described precisely enough for a computer to perform them

Algorithm!= Code

Algorithms can be written in any language, including *pseudocode*, English, Farsi, etc.

More info: algorithm definition, algorithm characterizations, pseudocode

WHO COINED ALGORITHM?

Al Gore... Rhythm?

After all, he did* invent the Internet *not

Muhammad ibn Mūsā al-Khwārizmī

9th century Persian mathematician

Also coined "al-jabr" — a.k.a. algebra

ALGORITHM ANALYSIS

Correctness — does it solve the problem?

Formal verification methods — e.g., NASA

Resource usage – how efficient is it?

Time — idealized work steps (CPU cycles)

Space – working memory (RAM, disk, etc.)

WHY IS THIS IMPORTANT?

Cost — computers and electricity aren't free

Comparison – choose best solution based on analysis *before* implementing and running

Tractability — not all problems can be solved in your lifetime, even with moderate size datasets

Non-deterministic Polynomial-time, NP-hard

RUNTIME IN PRACTICE

Actual runtime depends on many factors:

CPU speed — pace of instruction execution

Language — abstractions on top of CPU instructions

Compiler — optimization of instruction ordering, etc.

Environment – resources available during runtime (not used by other programs running concurrently)

RUNTIME COMPARISON

	Computer A	Computer B
Sorting Algorithm	Bubble Sort Merge Sort	
Time Complexity	n^2 $n \cdot \log_2 n$	
Execution Speed	10 GHz (billion instr/sec)	10 MHz (million instr/sec)
Code Optimization	High (2 instr/step)	Low (50 instr/step)
Actual Complexity	2n ²	50n·log ₂ n
Time to Sort 100K #s	2 seconds	8.3 seconds
Time to Sort 1M #s	3.33 minutes	1.67 minutes
Time to Sort 10M #s	5.56 hours!	19.4 minutes
Time to Sort 100M #s	23.1 days!!!	3.69 hours

RUNTIME ASSUMPTIONS

Need to make some assumptions to easily describe algorithm runtime in the abstract:

Time to execute basic operations is constant

Relative speed of operations is not important

Including arithmetic, logic, comparison, variable assignment, array indexing, function calls, etc.

RUNTIME ANALYSIS

What we really want to analyze is *complexity* — how algorithm runtime grows as the input gets larger

Describe runtime as a function of the size of the input

Input array/list length usually written as n, m, k

Ignore constants and lower-order terms

e.g.,
$$3n \rightarrow n$$
, $6n^2 + 15n + 24 \rightarrow n^2$

CLASSIC LINEAR SEARCH

Return index of target in histogram, or None if not found

```
def linear_search(target, histogram):
       index = None # not found
      i = 0
       for item, count in histogram:
           if item == target:
               index = i # found
6
           i += 1
       return index
```


PYTHONIC LINEAR SEARCH

Return index of target in histogram, or None if not found

return index

```
1 def linear_search(target, histogram):
2   index = None # not found

4   for i, (item, count) in enumerate(histogram):
5    if item == target:
6    index = i # found
```


EARLY EXIT LINEAR SEARCH

Return first index of target in histogram, or None if not found

```
1 def linear_search(target, histogram):
```

```
for i, (item, count) in enumerate(histogram):

if item == target:

return i # found
```

8 return None # not found

ASYMPTOTIC NOTATION

Worst case — upper bound is some function f(n)

Algorithm is O(f(n)) — read as "big oh of f(n)"

Best case — lower bound is another function g(n)

Algorithm is $\Omega(g(n))$ — read as "omega of g(n)"

If both bounds are the same (that is, f(n) = g(n)), then

Algorithm is $\Theta(f(n))$ — read as "theta of f(n)"

RUNNING TIME SUMMARY

	Best Case	Worst Case	Both Cases
Exhaustive Linear Search (find last match)	$\Omega(n)$		
Early Exit Linear Search (find first match)	Ω(1)	O(n)	N/A

RESOURCES

<u>Introduction to Algorithms</u> by Cormen, Leiserson, Rivest, and Stein — widely considered the Bible of Algorithms

Algorithms Unlocked by Thomas Cormen — introductory and more accessible, less technical detail than CLRS

