CSC3001: Discrete Mathematics Assignment 3

Instructions:

- 1. Print out this question paper (**two-sided**) and write down your full working on the blank area.
- 2. You can have discussions with your classmates. However, make sure all the solutions you submit are your own work. Any plagirism will be given **ZERO** mark.
- 3. Submission of this assignment should **NOT** be later than **11:59am on 30th** of **November**.
- 4. Before your submission, please **make a softcopy** of your work for further discussion in a tutorial.
- 5. After making your softcopy, submit your assignment to the dropbox located on the 4th floor in Chengdao Building.

Student Number		
Student Number:	Name:	

1. (20 points) For the stable matching problem with equal number of boys and girls, prove that there is always a girl who does not receive any proposals until the last day of the marrying procedure.

2. (20 points) Let G be a bipartite graph with a bipartition (A, B) where |A| = |B| = n. Suppose that all the vertices in A have distinct positive degrees. Prove that G has a perfect matching.

3. (20 points) Let G=(V,E) be a graph. The complement \overline{G} of G is the graph on the same vertex set V such that two distinct vertices are adjacent in \overline{G} if and only if they are not adjacent in G. Suppose that G is isomorphic to \overline{G} . Prove that G is connected.

4. (20 points) There are a few lockers in a building for the delivery men to deposite parcels. Each locker stores only one parcel at a time. There were 7 residents who picked up the parcels on a day. The system records the deposite time and pick-up time for each parcel as follows. (Note: the letters in the table entries indicate the different parcels.)

Delivery man Deposite time	Rabit	Turtle	Dinosaur	Wolf
7:05	A			
8:13		В		
8:20		С		
8:57			D	
10:04				Е
11:51	F			
11:53	G			
14:11				Н

Residents Pick-up time	Kiwi	Moa	Morepork	Tuatara	Kakapo	Penguin	Emu
9:31					С		
10:50							A
11:58			E				
12:01					F		
12:42	G						
15:23				Н			
16:15						В	
17:35		D					

Model this problem as a graph problem and determine the least number of lockers in the building.

5. (20 points) Let G be a simple graph such that it can be drawn on a plane and its edges intersect only at their endpoints. If all vertices of G lie on the unbounded face in this case, then G is outerplanar. The following are two examples of outerplanar graphs.

- (a) Suppose that G has $n \geq 2$ vertices and m edges. Determine the maximum value of m and prove your claim.
- (b) Does there exist a planar graph that is not outerplanar? If yes, give an example and explain why; otherwise, prove your claim.

6. (10 points) [Bonus qustion] An automorphism of a graph G is an isomorphism from G to G. Determine the total number of automorphisms of the following graph.

