# Keras大神歸位 深度學習 用Python實作



# 目錄

人工智慧、機器學習與深度學習

2. 機器學習的基礎技術

為什麼是深度學習?為什麼是現在?

### 1-1人工智慧、機器學習與深度學習

- 人工智慧(AI)是指賦予電腦系統模擬人類智慧行為的能力,使其能夠進行學習、推理、解決問題和自主行動。
- ·機器學習(ML)是AI的一個分支,它關注如何使機器通過經驗學習,而不需明確編程。這使得機器能夠從數據中學到模式,進而改進其性能。
- 深度學習(DL)是機器學習的一種方法,其核心是使用深度神經網絡來模擬人腦神經元之間的連接。這種網絡的深度允許它學習從複雜的數據中提取高層次的抽象特徵。圖像識別、語音辨識、自然語言處理等領域取得了顯著的成就。

總體來說AI致力於創造具備智慧的機器,而機器學習和深度學習則是實現這一目標的技術手段。 ML強調模型的學習能力,而DL則以深度神經網絡為基礎,提供了處理複雜任務的強大工具。

## 人工智慧

1.目標與功能

2.應用範疇

3.社會影響與討論



## 深度學習

1.模擬人腦結構

2.數據學習

3.應用範疇



## 深度學習中的『深度』

- 1.多層結構
- 2.抽象特殊提取
- 3.解決複雜任務

### \*

## 以3張圖來瞭解深度學習如何運作







### 迄今深度學習的成就

語音識別 影像分類 文字轉換語音優化 數位助理 自動駕駛

回答自然語言的提問 網站搜尋引擎

手寫轉譯

戰勝人類棋藝技能的 **AlphaGo** 

機器翻譯的優化

廣告投放精準度的優化





### 不要相信短期的媒體炒作/AI的承諾

- 未來十年發展期望卻遠高於目前所能做到
- 1970年後進入AI寒冬
- 1980年代專家系統出現
- · AI炒作和失望
- 不要相信短期炒作,但要相信長期願景





### 1-2 機器學習的基礎技術

機器學習的基礎技術包括資料處理、特徵工程、模型選擇和評估。 首先,收集、清理和準備數據是關鍵步驟,接著進行特徵工程以提取有效信息。 模型的選擇則需考慮任務和數據,而評估則是確保模型性能的重要一環。 此外,了解過擬合、歸納偏差等概念有助於優化模型。深入了解這些基礎概念可助於建 構強大的機器學習系統。

# 機率建模



單純貝氏演算法Naive Bayes theorem



邏輯斯回歸 logistic regression



## 早期的神經網路



上世紀50年代-80年代初



1980年代中期



1990年代初



## Kernel methods 與 SVM

### Kernel methods

Kernel methods 是一種用於機器學習的技術,主要應用在支持向量機(Support Vector Machine, SVM)等算法上。這種方法的核心思想是使用核函數來計算特徵之間的相似度,進而進行非線性映射,使得在高維空間中進行線性分類或回歸變得可能。

### SVM

SVM 是一種監督式學習算法, 其主要目標是找到在特徵空間 中能夠區分不同類別的最佳超 平面。當數據不是線性可分 時,SVM 使用核方法來將數據 映射到高維空間,使其在該空 間中更容易進行線性分類。



### 決策樹、隨機森林和梯度提升機器

### 決策樹

決策樹是一種樹狀結構,每個 節點代表對某個特徵的測試,每 個分支代表測試的結果,每個葉 節點代表一個類別或數值。 透過分層的決策,它可以用於分 類和回歸任務。 然而,單一決策樹容易過擬合。

### 隨機森林

隨機森林是一種集成學習方法,它構建多個決策樹並將它們的結果組合起來。 每個樹的建立過程中,採用隨機選擇特徵和數據樣本,這有助於減少過擬合,提高模型的泛化能力。

### 梯度提升機器

梯度提升機器是通過將弱學習 者逐個添加到模型中,每個新 模型修正前一個模型的錯誤, 來進行提升的方法。 梯度提升機器在每一步都優化

梯度提升機器在每一步都優化 損失函數,使其在預測上更為 準確。

它同樣可以應用在分類和回歸問題上。

### 是什麼讓深度學習與眾不同

- 1. 多層次特徵學習
- 2. 大數據與計算資源
  - 3. 端對端學習
- 4. 卷積神經網路(CNN)和遞歸神經網路(RNN)
  - 5. 預訓練和遷移學習

### 現代機器學習的概況

- 1.深度學習
- 2.遷移學習
- 3.自監督學習
- 4.增強學習
- 5.生成模型
- 6.解釋性和公平性
- 7.自動機器學習(AutoML)

### 1-3為什麼是深度學習?為什麼是現在?

深度學習強大,因為它能從大量數據中學習複雜模式, 尤其擅長圖像、語音和自然語言處理。現在它盛行,因 為計算能力提高,數據更充足,算法不斷改進。

### 助長機器學習的進步

硬體

資料

演算法

## 投資的新浪潮



## 深度學習的大眾化

深度學習的大眾化歸因於計算能力的提升、開源框架的發展,以 及各行業對於解決複雜問題的需求。 這使得更多人能夠利用深度學習技術,推動其在影像、語音、自 然語言等領域的廣泛應用。

### 深度學習會持續發展嗎?

是的,深度學習領域預計會持續發展。 隨著科技不斷進步,我們可以預期更先進的硬體、更有效的算 法以及更龐大的數據集將推動深度學習不斷演進。 這種發展可能涉及更複雜的模型、更廣泛的應用領域,以及更 好的解釋和解決黑盒問題的方法。





# 報告完畢