Data Mining

Introdução à Data Mining

- Processo de descoberta de conhecimento
 - Data warehouse e bancos de dados multidimensionais
 - Pré-processamento: seleção de atributos
 - Pós-processamento: refinamento do conjunto de regras descobertas
- Abordagens para acelerar o data mining em grandes bancos de dados
 - Abordagens com redução de dados
 - Abordagens sem redução de dados

Introdução à Data Mining

- Tarefas desempenhadas por sistemas de DM
 - Descoberta de regras de associação
 - Classificação
 - Clustering (agrupamento)
- Métodos para DM
 - Indução de regras
 - Redes neurais
 - Aprendizado baseado em casos (vizinho mais próximo)
 - Algoritmos genéticos

DM incorpora várias técnicas de outras disciplinas

Estrutura

Exemplo: Extração de Informação

 Banco de dados sobre vendas de vários tipos de produtos com dados de clientes e produtos

• Quantos videogames do tipo XYZ foram vendidos para o cliente ABC na data dd/mm/aaaa?

 Aplicação: atividades do dia-a-dia da empresa (baixo nível de administração)

Exemplo: Extração de conhecimento

- Quais os clientes que têm alta probabilidade de comprar videogames?
- SE (idade < 18)
 E (profissão = "estudante")
 ENTÃO (compra = "videogame") (90%)
- Aplicações:
 - Marketing (mala direta direcionada)
 - Planejamento de estoque/novas filiais
 - e outras decisões estratégicas (alto nível de administração)

Associação

Descoberta de Regras de Associação

 Cada registro corresponde a uma transação de um cliente com itens assumindo valores binários (sim/não), indicando se o cliente comprou ou não o respectivo item

Descoberta de Regras de Associação

No.	Leite	Café	Cerveja	Pão	Manteiga	Arroz	Feijão
1	não	sim	não	sim	sim	não	não
2	sim	não	sim	sim	sim	não	não
3	não	sim	não	sim	sim	não	não
4	sim	sim	não	sim	sim	não	não
5	não	não	sim	não	não	não	não
6	não	não	não	não	sim	não	não
7	não	não	não	sim	não	não	não
8	não	não	não	não	não	não	sim
9	não	não	não	não	não	sim	sim
10	não	não	não	não	não	sim	não

Descoberta de Regras de Associação

Uma regra de associação é um relacionamento: SE (X) ENTÃO (Y) onde X e Y são conjuntos de itens

Para cada regra são atribuídos 2 fatores:

Suporte (Sup.) = No. de registros com X e Y No. Total de registros

Confiança (Conf.) = No. de registros com X e Y
No. de registros com X

Algoritmo

Fase I: Descobrir conjuntos de itens frequentes

Descobrir todos os conjuntos de itens com suporte maior ou igual ao mínimo suporte especificado pelo usuário

Fase II: Descobrir regras com alto fator de confiança

A partir dos conjuntos de itens frequentes, descobrir regras de associação com fator de confiança maior ou igual ao especificado pelo usuário

Suporte de conjuntos de itens

Suporte (Sup.) = No. de registros com X e Y
No. Total de registros

Passo 1: Calcular suporte de conjuntos com 1 item

Item	Sup
	•
leite	0,2
café	0,3
cerveja	0,2
pão	0,5
manteiga	0,5
arroz	0,2
feijão	0,2

Itens frequentes (SUP ≥ 0,3): café, pão, manteiga

Suporte de conjuntos de itens

Suporte (Sup.) = No. de registros com X e Y No. Total de registros

- Passo 2: Calcular suporte de conjuntos com 2 itens
- Otimização: Se um item / não é frequente, um conjunto com 2 itens, um dos quais é o item /, não pode ser frequente. Logo, conjuntos contendo item / podem ser ignorados

Item	Sup
café, pão	0,3
café, manteiga	0,3
manteiga, pão	0,4

```
Conjuntos de itens
freqüentes (SUP ≥ 0,3):
{café, pão}, {café,manteiga},
{manteiga,pão}
```

Suporte de conjuntos de itens

Suporte(Sup.) = No. de registros com X e Y
No. Total de registros

- Passo 3: Calcular suporte de conjuntos com 3 itens
- Otimização: Se o conjunto de itens {I, J} não é frequente, um conjunto com 3 itens incluindo os itens {I,J} não pode ser frequente.
 Logo, conjuntos contendo itens {I,J} podem ser ignorados

Sup
0,3

Conjuntos de itens freqüentes (SUP ≥ 0,3): {café, pão,manteiga}

Fator de confiança de regras candidatas

```
Confiança(Conf.) = No. de registros com X e Y
No. de registros com X
```

```
Conjunto de itens: {café, pão}
SE café ENTÃO pão. Conf = 1,0.
SE pão ENTÃO café. Conf = 0,6.
```

```
Conjunto de itens: {café, manteiga}.

SE café ENTÃO manteiga. Conf = 1,0.

SE manteiga ENTÃO café. Conf = 0,6.
```

```
Conjunto de itens: {manteiga, pão}.

SE manteiga ENTÃO pão. Conf = 0,8.

SE pão ENTÃO manteiga. Conf = 0,8.
```

Fator de confiança de regras candidatas

```
Confiança(Conf.) = No. de registros com X e Y
No. de registros com X
```

Conjunto de itens: {café, manteiga, pão}.

SE café, pão ENTÃO manteiga. Conf = 1,0.

SE café, manteiga ENTÃO pão. Conf = 1,0.

SE manteiga, pão ENTÃO café. Conf = 0,75.

SE café ENTÃO pão, manteiga. Conf = 1,0.

SE pão ENTÃO café, manteiga. Conf = 0,6.

SE manteiga ENTÃO café, pão . Conf = 0,6.

Finalmente, seleciona-se regras com Conf. Maior ou igual ao valor mínimo especificado pelo usuário (ex. 0,8).

Regras de Associação Descobertas

(Sup ≥ 0.3 ; Conf ≥ 0.8)

Conjunto de itens frequente: {café, pão}. Sup = 0,3. Regra: SE (café) ENTÃO (pão). Conf = 1.

Conjunto de itens frequente: {café, manteiga}. Sup = 0,3. Regra: SE (café) ENTÃO (manteiga). Conf = 1.

Conjunto de itens freqüente: {pão, manteiga}. Sup = 0,4. Regra: SE (pão) ENTÃO (manteiga). Conf = 0,8. Regra: SE (manteiga) ENTÃO (pão). Conf = 0,8.

Conjunto de itens frequente: {café, pão, manteiga}.

Regra: SE café, pão ENTÃO manteiga. Conf = 1,0. Regra: SE café, manteiga ENTÃO pão. Conf = 1,0.

Regra: SE café ENTÃO pão, manteiga. Conf = 1,0.

Regras de Associação e Vários Níveis Hierárquicos

- Regras em níveis mais baixos da hierarquia podem não ter suporte mínimo
- Heurísticas podem ser usadas para podar regras não-interessantes

Regras de Associação com Restrições

- O usuário pode estar interessado em apenas um subconjunto de associações, referente a produtos mais interessantes para ele
- Em vez de filtrar as regras descobertas, é muito mais eficiente incorporar restrições/heurísticas no algoritmo para descoberta de regras
- A preferência do usuário pode referenciar itens em vários níveis de hierarquias.

Classificação

Classificação

- Cada registro pertence a uma classe, indicada pelo valor de um atributo meta
- Cada registro consiste de:
 - um atributo meta
 - um conjunto de atributos previsores
- <u>Tarefa:</u> descobrir um relacionamento entre os atributos previsores e o atributo meta, usando registros cuja classe é conhecida
- Objetivo: usar o relacionamento descoberta para prever a classe (o valor do atributo meta) de um registro com classe desconhecida

Representação da Classificação

Método Indutivo

 O paradigma de aprendizado indutivo busca aprender conceitos através de instâncias destes conceitos

Método Indutivo

• O classificador utiliza os conceitos aprendidos para classificar novos exemplos.

Exemplo de Classificação

- Uma editora internacional publica o livro "Guia de Restaurantes Franceses na Inglaterra" em 3 países: Inglaterra, França e Alemanha
- A editora tem um banco de dados sobre clientes nesses 3 países, e deseja saber quais clientes são mais prováveis compradores do livro (para fins de mala direta direcionada)
 - Atributo meta: comprar (sim/não)
- Para coletar mais dados: enviar material de propaganda para uma amostra de clientes, registrando se cada cliente que recebeu a propaganda comprou ou não o livro

Exemplo de Classificação

4	/ 1	•
ı	met	O I
ı		<i>1</i> 1 1
۱		~,

			<u>(meta)</u>
Sexo	País	Idade	Comprar
М	França	25	SIM
М	Inglaterra	21	SIM
F	França	23	SIM
F	Inglaterra	34	SIM
F	França	30	NÃO
М	Alemanha	21	NÃO
М	Alemanha	20	NÃO
F	Alemanha	18	NÃO
F	França	34	NÃO
М	França	55	NÃO

Regras de classificação descobertas a partir dos dados ao lado

```
SE (País = "Alemanha")
ENTÃO (Comprar = "NÃO")
```

ENTÃO (Comprar = "SIM")

SE (País = "França") E (Idade > 25)

ENTÃO (Comprar = "NÃO")

Prevendo esporte praticado por estudantes: futebol vs. aeróbica

M

F

M

F

F

M

M

não

não

não

sim

não

não

não

azul

castanho

castanho

castanho

castanho

azul

azul

estudantes: futebol vs. aeróbica					
Cor dos olhos	Casado	Sexo	Comprimento do cabelo	Esporte (meta)	
castanho	sim	M	longo	futebol	
azul	sim	M	curto	futebol	
castanho	sim	M	longo	futebol	
castanho	não	F	longo	aeróbica	
castanho	não	F	longo	aeróbica	

longo

longo

curto

curto

longo

longo

curto

futebol

aeróbica

futebol

aeróbica

aeróbica

futebol

futebol

Árvore de decisão para prever esporte

Árvore de decisão para prever esporte

Sem considerar o atributo SEXO

- Se há estudantes do sexo M que praticam aeróbica, mas que não foram incluídos nos dados de treinamento, essa árvore de decisão falhará na previsão para esses estudantes, enquanto a árvore anterior poderia acertar a previsão para eles
- O grau de exatidão das previsões feitas pela árvore depende da natureza do domínio e da qualidade dos dados

Processo de KDD (*Knowledge Discovery in DataBases*) - Etapas

Data Warehouse

Uma visão geral do processo de Descoberta de Conhecimento em Bancos de Dados

- D/W: Data Warehouse
- PRÉ-PROC: Pré-processamento para DM
- DM: Data Mining
- PÓS-PROC: Pós-processamento dos resultados de DM

Data Warehouse

- É um repositório de dados:
 - Integrados
 - Orientados para análise (alto nível de abstração)
 - Somente-leitura
 - Projetado para ser usado como suporte a sistema de apoio à decisão e sistemas de data mining

Componente de um Data Warehouse

 Data Warehouse não é o fim, ele é um meio que as empresas dispõem para analisar informações podendo utilizá-las para a melhoria dos processos atuais e futuros

Data Warehouse

Não volatilidade

Trabalho

Baseado na tabela a seguir (utilizando classificação)

inteligência	beleza	situação financeira	classe
sim	bonito	rico	namorar_sim_namora
não	feio	pobre	namorar_não_namora
sim	feio	pobre	namorar_sim_namora
sim	feio	mediano	namorar_sim_namora
não	bonito	pobre	namorar_não_namora
não	bonito	mediano	namorar_sim_namora
não	bonito	rico	namorar_sim_namora
não	feio	rico	namorar_sim_namora

Trabalho

- Montar a árvore de decisão
- Montar as regras
- Criar a base de dados em formato para executar no Weka
- Mostrar a árvore de decisão gerada pelo Weka
- Verificar a confiabilidade da classificação através da matriz de confusão
- Inserir novos registros na base de dados e executar novos testes