

第六章二叉树

part 3: 树与森林

张史梁 slzhang.jdl@pku.edu.cn

内容提要

- □ 二叉树基础
 - 树与二叉树的基本概念
 - 二叉树的存储结构
 - 二叉树的周游算法
 - 建立一个二叉树
- □ 二叉树的应用
 - 哈夫曼树
 - 二叉检索树/排序树
- 口 树与树林

树与树林

- □ 树与树林的定义
- □ 树的基本运算
- □ 树和树林的存储表示
- □ 树和树林的周游
- □ 树和二叉树的转换

树的定义

- □ 树的递归定义: n(n≥0)个结点的有穷集合T, 当T非空时:
 - 有且仅有一个特别标出的称为根的结点
 - 除根外,其余结点分为 $m\geq 0$ 个互不相交的非空集合 $T_1,T_2,...,T_m$,而且每个非空集合 T_i 又是一颗树,称为根结点的子树。

$$T_1 = \{B\}, T_2 = \{C, E, H, I, J\}, T_3 = \{D, F, G\}$$

□ 特别地,允许不包括任何结点的树,把它称作空树。

树林的定义

- □ "树林"是由0个到多个不相交的树所组成的集合
- □ 树林中每棵树的根彼此称为"兄弟"
- 与自然界的树林有所不同,这里的树林可以是一个空集
- □ 如果将树林中的两棵树的根结点连接到一个父节点,便得到 一个树

树的基本运算1

Tree t; Node p;

- 1. Tree creatTree (Tree t) 创建一棵空树;
- int isNULL(Tree t)
 判断某棵树是否为空;
- Node root(Tree t)
 求树中的根结点,若为空树,则返回一特殊值;
- 4. Node parent(Tree t, Node P) 求树中某个指定结点p的父结点, 当指定结点为根时, 返回一特殊值;

树的基本运算2

- 5. Node leftChild (Tree t, Node p) 求树中某个指定结点p的最左子结点,当指定结点为树叶时,它没有子女,则返回一特殊值;
- 6. Node rightSibling(Tree t ,Node P)
 求树中某个指定结点p的右兄弟结点,当指定结点没有右兄弟时,返回一特殊值;
- 7. 树的周游,即按某种方式访问树中的所有结点,并使 每个结点恰好被访问一次

- □ 选择存储表示方法原则:结点本身+结点之间 的关系
- □ 树的存储表示
 - 父指针表示法
 - 子表表示法
 - 长子-兄弟表示法(常用)

	顺序存储	链式存储
父指针表示法	数组上每个结点存父 亲的下标	子结点指向父节点(所有结点的范围?)

口 父指针表示法

- 如果两个结点到达同一根结点,它 们一定在同一棵树中。如果找到的 根结点是不同的,那么两个结点就 不在同一棵树中。
- 优点
 - □ 容易找到父结点及其所有的祖先
 - □ 比较节省存储空间
- ■缺点
 - □ 没有表示出结点之间的左右次序
 - □ 找结点的子女和兄弟比较费事 (遍查整个数组)

	info	parent
0	A	-1
1	В	0
2	С	0
234	K	2
	D	-1
5	E	4
6	Н	5
7	F	4
8	J	7
9	G	4
		·

父指针表示法

□ 整棵树组织成一个结点顺序表,其中每一结点包含父节点的下标

```
struct ParTreeNode /* 结点的结构 */
{
    DataType info;
    int parent;
};
struct ParTree /* 树的定义*/
{
    int MAXNUM;
    struct ParTreeNode *nodelist; // struct ParTreeNode nodelist[MAXNUM];
    int n;
};
typedef struct ParTree * PParTree;
```

父指针表示法的改进

按一种周游次序在数组中存放结点

常见的一种方法是依次存放树的先根序列。

	info	parent
0	a	-1
1	b	0
1 2 3	d	1
3	e	1
4	h	3
4 5 6	i	3 3
6	j	3
7	c	0
8	f	7
9	g	7

算法示例

```
在父指针表示的树中求右兄弟结点的位置
int rightSibling_partree(PParTree t, int p)
{
    int i;
    if (p >= 0 && p < t->n) {
        for ( i=p+1; i<t->n; i++)
            if (t->nodelist[i].parent == t->nodelist[p].parent)
            return(i);
    }
    return(-1);
```

a	2	
b		₹ c
d e	f	gò
h i i		

	info	parent
0	a	-1
1	b	0
2	d	1
3	e	1
4	h	3
5	i	3
6	j	3
1 2 3 4 5 6 7 8 9	c	0
8	f	7
9	g	7
		·

	顺序存储	链式存储
子表表示法	数组上每个结点存其 所有子结点的下标	每个结点指向存储其子结点的 链表(所有结点的存顺序表)

□ 子表表示法

■ 整棵树组织成一个结点顺序 表,其中每一结点包含一个 子表,存放该结点的所有子 结点,子表用链接表示。

Nodelist Nodeposition info children 0 a b * * Λ Λ 2 d * 3 Λ e 4 h Λ 5 Λ 6 Λ * c8 f Λ 9 Λ

子表表示法

```
//整棵树组织成一个结点顺序表,每结点包含一个子表,存放其所有子结点
  struct EdgeNode { /* 子表中节点的结构 */
2
       int
              nodeposition;
3
       struct EdgeNode *link;
4 };
⑤ struct ChiTreeNode { /* 结点表中节点的结构 */
6
       DataType
                     info;
7
       struct EdgeNode *children;
8 };
⑨ struct ChiTree { /*树结构定义*/
10
     int
              root;
              n; /* 结点的个数 */
(11)
       int
12)
     struct ChiTreeNode nodelist [MAXNUM];
13 }
(4) typedef struct ChiTree * PChiTree;
```

算法: 在子表表示法求右兄弟的位置

```
int rightSibling_chitree(PChiTree t, int p)
                                                                                           a \otimes
2
                  struct EdgeNode *v;
3
          int i:
                                                                               b
          for (i=0; i<t->n; i++)
(5)
                v = t->nodelist[i].children;
6
                                                                         d
                                                                                          е
                while (v != NULL)
                   if (v->nodeposition == p)
8
                          if (v->link == NULL)
                                                    return(-1);
9
                                  return(v->link->nodeposition);
                   else v = v - \sinh x:
11)
             return(-1);
                                             Nodelist
                                                                                      Nodeposition Link
                                                            children
                                                    info
                                              0
                                                     а
                                              1
                                                     b
                                              2
                                                     d
                                              3
                                                                                              5
                                                                                                           6
```

е

h

С

g

٨

٨

9

17

4

5

6 7

8 9

算法: 在子表表示上求父结点的位置

```
int parent_chitree(PChiTree t, int p)
2
                                                                                           a \otimes
      int i; struct EdgeNode *v;
(3)
                                                                              b
      /* 逐个检查树的各个结点, 是不是父结点 */
(4)
      for (i=0; i<t->n;i++)
(5)
(6)
                                                                                         е
         v = t->nodelist[i].children;
\overline{7}
         while (v != NULL)
(8)
             if (v->nodeposition == p) return(i);
(9)
             else v = v - \sinh x:
(10)
(11)
      return(-1);
                            /* 无父结点,则返回值为-1 */
(12)
                                           Nodelist
(13) }
```

	info	children	Nodeposition Link
0	а	*	1 * 7 ^
1	b	*	2 * 3 ^
2	d	۸	
3	е	*	4 * 5 * 6 ^
4	h	۸	
5	į	۸	
6	j	۸	
7	С	* _	8 * 9 ^
8	f	٨	
9	g	^	

子表表示法

- □特点
 - 找子女容易;找父母难
- □ 合并若干个子树成一个新树时要考虑多个结点 表的合并,比较麻烦

	顺序存储	链式存储
长子-兄弟表示法	数组上每个结点存长 子、兄弟结点的下标	数组上每个结点存长子、兄弟 结点的指针

- □ 长子-兄弟表示法
 - 每个结点存储
 - □ 结点的值
 - 最左子结点指针(下标)
 - □ 右侧兄弟结点指针(下标)

比子表表示法空间效率更高,且结点数组中的每个结点仅需要 固定大小的存储空间,也称左子右兄表示法 21

长子-兄弟表示法

□ 类型定义 struct CSNode; typedef struct CSNode * PCSNode; struct CSNode { DataType info; PCSNode lchild; PCSNode rsibling; typedef struct CSNode *CSTree; typedef CSTree *PCSTree; □ 定义一个指向树/树林的指针变量 PCSTree t;

长子-兄弟表示法的特点

- □ 缺点:找父结点麻烦。
 - 首先找到长子,然后再找父节点
- 口 优点: 方便找子女、找兄弟等运算

leftChild_cstree(p) p->lchild
rightSibling_cstree(p) p->rsibling

root_cstree(t) t

isNull_cstree(t) t==NULL;

找到全部子女很容易,先由lchild找到长子,再由rsibling字段逐个 找右兄弟结点。

树与树林

- □ 树与树林的定义
- □ 树的基本运算
- □ 树和树林的存储表示
- □ 树和树林的周游
- □ 树和二叉树的转换

树的周游

- □ 定义:按某一规律系统地访问树的所有结点, 并使每个结点恰好被访问一次。(又称为遍历)
- □ 周游的结果:
 - 在周游树的过程中,如果将各个结点按其被访问的 先后顺序排列起来,则可得到一个包括所有结点的 线性表;
 - 周游空树得到的线性表为空表;
 - 当树中只有一个结点时,对应的线性表也只有一个 元素。
- □ 本质:将非线性结构转换为线性结构。

周游方法

- □ 周游一棵树所得到的线性表依赖于周游方法
 - 按深度方向周游[纵向遍历]
 - > 先根次序
 - > 中根次序
 - ▶ 后根次序
 - 按宽度方向周游[横向遍历]

先根次序

- ① 访问根结点;
- ② 从左到右按先根次序周游根结点的每棵子树

按先根次序周游所列出的线性表为:

1 2 3 5 8 9 6 10 4 7

- □ 通常按先根次序对一棵树周游得到的线性表称为这 棵树的先根序列。
- □ 按先根次序周游树的算法

先根周游-递归算法

```
void preOrder(Node p)
2
     Node c:
(3)
     visit(p);
4
     c = leftChild(q); /*获取该结点的长子*/
(5)
     //按照从左往右的次序先根遍历该结点的子女
(6)
     while (c!=NULL)
(7)
(8)
                            //先根遍历
        preOrder(c);
(9)
       c = rightSibling(c);
                         //右兄弟
(10)
(11)
(12)
```

中根次序

- ① 按中根次序周游根结点的最左子树;
- ② 访问根结点;
- ③ 从左到右按中根次序周游根结点的其它各子树

按中根次序周游得到的线性表为:

2 1 8 5 9 3 10 6 7 4

□ 通常按中根次序对一棵树周游得到的线性表称为这棵树的中根序列。

□ 按中根次序周游树的算法

教学网提供代码

29

中根周游-递归算法

```
void inOrder(Node p)
(1)
2
    Node c;
(3)
    c = leftChild(q); //获取该结点的长子
4
    if (c==NULL) { visit(p); return; } //不存在,访问该结点
(5)
                     //中根遍历长子
    inOrder(c);
6
   visit(p);
            //访问根
7
   c = rightSibling(c); //中根遍历其它子女
8
    while (c !=NULL)
9
(10)
         inorder(c);
(11)
         c = rightSibling(c);
(12)
13)
(14)
```

后根次序

- ① 从左到右按后根次序周游根结点的每棵子树;
- ② 访问根结点

按后根次序周游得到的线性表为:

2 8 9 5 10 6 3 7 4

- □ 通常按后根次序对一棵树周游得到的线性表称为这棵树的后根序列。
- □ 按后根次序周游树的算法

后根周游-递归算法

```
void postOrder(Node p)
2
    Node c:
(3)
     c = leftChild(q); //获取该结点的长子
4
     //按照从左往右的次序后根遍历该结点的所有子女
(5)
     while (c!=NULL)
6)
\overline{7}
        postOrder( c);
                             //后根遍历
8
       c = rightSibling(c);
                           //继续后根遍历右兄弟
9
(10)
                         //最后访问根
     visit(p);
(11)
(12)
```

深度优先周游的特点

- 口 相同点: 在先、中和后根周游序列中, 树结点的左右次序 不变;
- 不同点:那些属于同一条路径上的结点,即只有祖先和子 孙之间的相对次序,在上述三种序列中可能有所不同
 - 在先根周游序列中,结点的所有子孙都紧密排列在该结点的右边;
 - 假定post(n)表示结点n在先根序列中的位置, desc(n)表示结点n的子孙个数,则结点x是结点n的子孙的充分必要条件为:

$$post(n)+desc(n) \ge post(x) > post(n)$$

- 在后根周游序列中,结点的所有子孙都紧密排列在该结点的左边;
- 假定post(n)表示结点n在后根序列中的位置, desc(n)表示结点n的子孙个数,则结点x是结点n的子孙的充分必要条件为:

$$post(n)-desc(n) \le post(x) \le post(n)$$

广度优先周游树的算法

- □ 按宽度方向周游:这种策略是先访问层数为0的结点,然后从左到右逐个访问层数为1的结点,依此类推,直到访问完树中的全部结点。
 - 1 2 3 4 5 6 7 8 9 10
- □ 按宽度方向周游所得到的线性表叫作树的层次序列
- □ 特点:
 - 在层次序列中,层数较低的结点总是排在层数较高的 结点之前
 - 保持同层结点的左右次序

广度优先周游树的算法

```
void levelOrder(Tree t)
2
    Node c; Queue q; //队列元素的类型为Node
(3)
    q = createEmptyQueue(); //建立空队列
(4)
(5)
    c = root(t);
6
    if (c==NULL) return;
    enQueue(q, c);  //根入队列
\overline{7}
    while (!isEmptyQueue(q)) //队列非空
8
9
(10)
```

树林的周游1

- □ 树林的周游方法有两种: 先根周游和后根周游
- □ 先根周游
- ① 访问树林中第一棵树的根结点;
- ② 先根周游第一棵树的根结点的子树构成的树林;
- ③ 先根周游除去第一棵树之后的子树林。
- □ 先根遍历序列: (A, B, C, K, D, E, H, F, J, G)

树林的周游2

- □ 后根周游
- ① 后根周游第一棵树的根结点的子树构成的树林;
- ② 访问树林中第一棵树的根结点;
- ③ 后根周游除去第一棵树之后的子树林。

后根遍历序列: (B, K, C, A, H, E, J, F, G, D)

对树林的先根或后根次序周游的定义,等价 于逐个按照先根或后根次序周游树林中的每 个树的效果

树/树林与二叉树的转换

- 在树或树林与二叉树之间有一个自然的一一对应的关系
 - 任何树林都唯一地对应到一棵二叉树
 - 反过来,任何二叉树也唯一地对应到一个树林

树、树林 二叉树

树或树林转换为二叉树

- 口 方法
 - 在所有相邻的兄弟结点之间连一条线;
 - 对每个内部结点,只保留它<mark>到其最左子女的连线,</mark>删 去它与其它子女的连线;
 - 以根结点为轴心,将整棵树进行旋转。
- □ 树林($F=T_1,T_2,...,T_n$)对应的二叉树B(F)

 - 若n>0,则B(F)的根是 T_1 ,B(F)的左子树是B(T_{11} , T_{12} ,..., T_{1m}),其中 T_{11} , T_{12} ,..., T_{1m} 是 T_1 的子树;B(F)的右子树是B(T_2 ,..., T_n)

树或树林转换为二叉树

树或树林转换为二叉树

- 口 在树或树林所对应的二叉树里,一个结点的左子 女是它在树里的第一个子女,右子女是它的兄弟。
- 口 树对应到二叉树其根结点的右子树总是为空

二叉树转换为树或树林

- □ 设B是一棵二叉树, r是B的根, L是r的左子树, R是r的 右子树, 则对应于B的树林F(B)的定义是:
 - 若B为空,则F(B)是空的树林;
 - 若B不为空,则F(B)是一棵树 T_1 加上树林F(R),其中树 T_1 的根为r,r的子树为F(L)

二叉树转换为树或树林

口方法

- 若某结点是其父母的左子女,则把该结点的右子女, 右子女的右子女……,都与该结点的父母连起来;
- 去掉原二叉树中所有的父母到右子女的连线

本章小结

- □ 二叉树:
 - 7个重要性质
 - 存储方式:二叉链表
 - 二叉树周游算法: DLR、LDR、LRD
 - HuffMan树: 定义、表示、算法和编/译码过程
- □树
 - 树的三种存储表示
 - 树的遍历方法:深度优先(先根、中根、后根)和宽度优先
- □ 树林
 - 树林到二叉树的相互转换

□ 若某树有n1 个度数为1 的结点,有n2 个度数为2 的结点,有nm 个度数为m的结点, 试问它有多少个叶结点, 给出计算的过程。

假设叶子结点数为n0,并假设树的结点数为N,

N = n0 + n1 + n2 + ... + nm 又等于所有节点的分支数(或度数)+1。

N = n1+2*n2+3*n3+...+m*nm+1

这样得到n0+n1+n2+...+nm = 1+n1+2*n2+3*n3+...+m*nm

即得: n0 = n2 + 2*n3 + 3*n4 + ... + (m-1)*nm + 1

□ 如果结点A有3个兄弟(不包括A本身),而且B是 A的父结点,则B的度是()。

A.3

B.4

C.5

D.1

- □ 设高度为h的二叉树上只有度为0和度为2的结点,则此二叉树中所包含的结点数至少为()。
 - A. 2h
 - B. 2h-1
 - C. 2h+1
 - D. h+1

- □ 树最适合用来表示()
 - A 有序的数据元素
 - B 无序的数据元素
 - C元素之间具有分支层次关系的数据
 - D元素之间无联系的数据

- □ 如图所示二叉树的中序遍历序列是()
 - A abcdgef
 - B dfebagc
 - C dbaefcg
 - D defbagc

□ 已知某二叉树的后序遍历序列是dabec,中序遍历序列是debac,它的前序遍历序列是()。

A acbed

B decab

C deabc

D cedba

- □ 任何一棵二叉树的叶结点在先序、中序和后序的遍历序列中的相对次序()
 - A 不发生改变
 - B发生改变
 - C不能确定
 - D以上都不对

- □ 某二叉树的先根序列和后根序列正好相反,则 该二叉树一定是()二叉树。
 - A. 空或只有一结点
 - B. 树的高度等于其结点数减1
 - C. 任一结点都只有右子结点
 - D. 任一结点都只有左子结点

- □ 设n,m为一棵二叉树上的两个结点,在中序遍历时,n在m前的条件是()
 - A. n在m右方
 - B. n在m祖先
 - C. n在m左方
 - D. n在m子孙

- □ 在一非空二叉树的中序遍历序列中,根结点的 右边()
 - A.只有右子树上的所有结点
 - B.只有右子树上的部分结点
 - C.只有左子树上的所有结点
 - D.只有左子树上的部分结点

- □ 某二叉树T有n个结点,设按某种顺序对T中的每个结点进行编号,编号值为1,2,...n.且有如下性质:T中任意结点v,其编号等于左子树上的最小编号减一,而v的右子树的结点中,其最小编号等于v左子树上结点的最大编号加一,这是按()编号的。
 - A.中序(中根)遍历序列
 - B.前序(先根)遍历序列
 - C.后序(后根)遍历序列
 - D.层次顺序

□ 已知一棵树边的集合为{<A,B>, <A,C>, <B,D>, <B,E>, <B,F>, <C,G>, <C,H>, <E,I>, <E,J>}, 在 这棵树中,结点D的父结点是_____,结点E 的层数是_____,结点B的度数为_____, 后根深度优先遍历该树的序列为

- □ 结点最少的树是_____,结点最少的二叉树是____。
- □ 设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1, M2和M3。与森林F对应的二叉树根结点的右子树上的结点个数是____。
 - A. M1 B. M1+M2 C. M3 D. M2+M3
- □ 已知一棵树的先根次序遍历的结果与其对应二叉树表示 (长子-兄弟表示)的前序遍历结果相同,树的后根次序遍历 结果与其对应二叉树表示的中序遍历结果相同。试问利 用树的先根次序遍历结果和后根次序遍历结果能否唯一 确定一棵树?如果正确,请证明,如果错误,举例说明。

□ 对于表达式(a-b)*d/(e+f)

优先级相同时, 先左后右

- 请画出它的中序二叉树,
- 给出该二叉树的前缀表达式和后缀表达式

判断

- 二 二叉树的先根遍历序列中,任意一个结点均处 在其子女结点的前面。
- □ 由树转换成二叉树, 其根结点的右子树总是空的。
- □ 哈夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。

算法设计

- □ 二叉树采用链式存储结构,设计一个按层次顺序(同一层自左向右)遍历二叉树的算法
 - 采用一个队列q,先将二叉树根结点入队列,然后退队列,输出该结点,若它有左子树,便将左子树的根结点入队列,若它有右子树,便将右子树根结点入队列,如此直到队列为空为止
 - 因为队列是先进先出的,从而达到按层次顺序遍历 二叉树的目的