3D визуализации 2D плана помещения методом бросания лучей

Выполнил: студент 05230 гр., Шорников А. Е. Научный руководитель — к.ф.-м.н., ст. преп. **Трунин Дмитрий Олегович** Научный консультант — вед. пр. ЛПС БГУ **Брагин Александр Фёдорович**

Бурятский государственный университет Институт математики и информатики Кафедра прикладной математики

> Улан-Удэ 2017г.

Введение

Бурятский государственный университет

Институт математики и информатики

- Улан-Удэ, Ранжурова, 5
- У организации 22 филиала
- Сегодня 08:00–17:00, обед 12:00–13:00
 Откроется завтра в 08:00
- Сегодня 08:00–17:00 закрыто обед 12:00–13:00
- Улан-Удэ, Ранжурова, 5
 1 корпус; 1203, 1204 кабинет
 670000
- 3 этажа
- пл. Советов 350 м
- Р Найти парковки рядом

Университеты

Цели и задачи

Цель работы

Создание кроссплатформеного псевдотрёхмерного движка (англ. engine) для 3D визуализации помещений и маршрутов в них по 2D плану.

Задачи исследования

- исследование и непосредственная реализация эффективного алгоритма отрисовки проекции трёхмерной сцены
- модификация алгоритма рейкастинга для вещественных координат
- обеспечение интерактивности и поиск маршрутов
- платформа для возможной реализации дополнительных сервисов и кроссплатформености

Метод бросания лучей

Метод бросания лучей (англ. raycasting, рейкастинг) - один из методов рендеринга в компьютерной графике, при котором сцена строится на основе замеров пересечения лучей с визуализируемой поверхностью.

Описание метода бросания лучей

$$\overrightarrow{\Delta a} = \frac{\left|\overrightarrow{AB}\right|}{w}$$

$$\overrightarrow{a_{i+1}} = \overrightarrow{a_i} + \overrightarrow{\Delta a}$$

$$\overrightarrow{a_1} = \overrightarrow{A}$$

$$\overrightarrow{a_n} = \overrightarrow{B}$$

$$\overrightarrow{r_i} = \overrightarrow{a_i} - \overrightarrow{P}$$

Алгоритм рейкастинга

для каждой
$$i \in [1, n]$$
: $l \leftarrow$ расстояние-до-стены $(\overrightarrow{P}, \overrightarrow{r_i})$ $h \leftarrow$ высота-отрезка (l) отобразить-отрезок (i, h)

Принцип построения графа

Проскакивания через углы стен

Построение вершин графа вокруг концов отрезков

Алгоритм построения графа для поисков маршрута на карте

- 1) Для каждой точки, являющейся концом отрезка из S найти k точек равномерно расположенных на окружности радиуса r+d c в этой точке. Добавить полученные точки в V.
- 2) Для каждого отрезка для расстояния r найти эквидистанту, приблизить её многоугольником. Удалить из S начальные отрезки и добавить отрезки, являющиеся сторонами полученных многоугольников.
- 3) Удалить из V вершины, лежащие внутри полученных многоугольников.
- 4) Для каждой пары вершин из V, рассмотреть отрезок их соеденяющий. Если этот отрезок не пересекает никакой отрезок из S, то добавить ребро между этими вершинами в E.

Диаграмма компонентов UML

Algo Raycasting View Map Abstract Canvas Abstract Image Buffer QtCanvas(On Desktop) QtImageBuffer(On Desktop)

> **Qt** Desktop

Результаты работы

Результаты работы

- Модифицирован алгоритм рейкастинга для работы в вещественных координатах
- Создан движок на основе модифицированного алгоритма рейкастинга
- На основе движка сделан интерактивный план помещений корпуса ИМИ БГУ
- Проект реализован на многих платформах

Проект разрабатывается открыто, исходные коды доступны по ссылке:

https://github.com/chetca/Raycasting Plan

Ссылка на web-реализацию:

http://imi.bsu.ru/lps/projects/raycasting/

Спасибо за внимание!

Шорников Александр Евгеньевич

3D визуализация 2D плана помещения методом бросания лучей

Производительность

Таблица: Замеры производительности на ПК

OS	Memory	CPU	FPS
Windows 10	25 Mbyte	10%	27-41
Ubuntu 16.04.2 LTS	17.4 Mbyte	8%	34-44
FreeBSD 11.0	18 Mbyte	8%	32-47

Таблица: Замеры производительности на мобильных устройствах

Model	Antutu Test	FPS
Samsung Galaxy A5	59834	24-30
Highscreen Power Ice Evo	31672	20-26
Samsung Galaxy Star Plus	8012	12-20

Таблица: Замеры производительности в различных браузерах

Browser	Memory	FPS
Mozilla Firefox	25.4 Mbyte	42-60
Chromium	28 Mbyte	39-56
Safari	28 Mbyte	39-56
Microsoft Edge	30.6 Mbyte	34-51