

SIPMOS[®] Small-Signal-Transistor

Features

- P-Channel
- Enhancement mode / Logic level
- Avalanche rated
- Pb-free lead plating; RoHS compliant
- Footprint compatible to SOT23
- Qualified according to AEC Q101
- Halogen free according to IEC61249-2-21

Drain Pin 3 249-2-21 Gate Pin 1 Source Pin 2

Product Summary

Туре	pe Package Tape and Reel Information		Marking	Halogen-free	Packing	
BSR92P	PG-SC59	H6327 = 3000 pcs. / reel	LDs	Yes	Non dry	

Maximum ratings, at T_j =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit	
			steady state		
Continuous drain current	ID	T _A =25 °C	-0.14	А	
		T _A =70 °C	-0.11		
Pulsed drain current	I _{D,pulse}	T _A =25 °C	-0.56		
Avalanche energy, single pulse	E _{AS}	$I_{\rm D}$ =-0.14 A, $R_{\rm GS}$ =25 Ω	24	mJ	
Gate source voltage	V_{GS}		±20	V	
Power dissipation	P_{tot}	T _C =25 °C	0.5	W	
Operating and storage temperature	$T_{\rm j},T_{\rm stg}$		-55 150	°C	
ESD class		JESD22-A114 (HBM)	1A (250V to 500V)		
Soldering temperature			260 °C		
IEC climatic category; DIN IEC 68-1			55/150/56		

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Thermal characteristics						
Thermal resistance, junction - ambient	R_{thJA}	minimal footprint, steady state	-	-	250	K/W

Electrical characteristics, at T_j =25 °C, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	$V_{(BR)DSS}$	V _{GS} =0 V, I _D =-250 μA	-250	-	-	V
Gate threshold voltage	$V_{\rm GS(th)}$	V _{DS} =V _{GS} , I _D =-130 μA	-2	-1.5	-1	
Zero gate voltage drain current	I _{DSS}	$V_{\rm DS}$ =-250 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =25 °C	1	-0.1	-1	μA
		$V_{\rm DS}$ =-250 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =150 °C	1	-10	-100	
Gate-source leakage current	I _{GSS}	V _{GS} =-20 V, V _{DS} =0 V	-	-10	-100	nA
		V _{GS} =-2.8 V, I _D =-0.025 A	1	11	20	
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =-4.5 V, I _D =- 0.13 A	1	9	13	Ω
		V _{GS} =-10 V, I _D =-0.14 A	-	8	11	
Transconductance	g_{fs}	$ V_{\rm DS} > 2 I_{\rm D} R_{\rm DS(on)max},$ $I_{\rm D} = -0.11~{\rm A}$	0.1	0.3	-	S

Parameter	Symbol Conditions		Values			Unit
			min.	typ.	max.	
Dynamic characteristics ³⁾						
Input capacitance	Ciss		-	82	109	pF
Output capacitance	Coss	V _{GS} =0 V, V _{DS} =-25 V, f=1 MHz	-	12	16	
Reverse transfer capacitance	Crss		-	5	8	
Turn-on delay time	$t_{\sf d(on)}$		-	6.4	9.0	ns
Rise time	t _r	V _{DD} =-125 V, V _{GS} =-10 V,	-	6.3	9.0	
Turn-off delay time	$t_{d(off)}$	I_{D} =-0.14 A, $R_{G,ext}$ =6 Ω	-	75.0	112	
Fall time	t_{f}		-	71.0	163	
Gate Charge Characteristics ^{2), 3)}						
Gate to source charge	Q _{gs}		-	-0.2	-0.3	nC
Gate to drain charge	Q _{gd}	V _{DD} =-200 V, I _D =- 0.14 A, V _{GS} =0 to - 10 V	-	-1.2	-1.8	
Gate charge total	Qg		-	-3.6	-4.8	
Gate plateau voltage	V _{plateau}		-	-2.7	-	V
Reverse Diode						
Diode continuous forward current	Is	−7 _C =25 °C	-	-	-0.14	А
Diode pulse current	I _{S,pulse}		-	-	-0.56	
Diode forward voltage	V_{SD}	V _{GS} =0 V, I _F =0.14 A, T _j =25 °C	-	-0.8	-1.2	V
Reverse recovery time ³⁾	t _{rr}	.,	-	66	-	ns
Reverse recovery charge ³⁾	Q _{rr}	V_R =125 V, I_F = $ I_S $, di_F / dt =100 A/ μ s	-	125	-	nC

See figure 16 for gate charge parameter definition
 Defined by design. Not subjected to production test

1 Power dissipation

$P_{\text{tot}} = f(T_{\text{C}})$

2 Drain current

3 Safe operating area

 $I_D=f(V_{DS}); T_C=25 \text{ °C}; D=0$

parameter: t_p

4 Max. transient thermal impedance

 $Z_{\rm thJC}$ =f $(t_{\rm p})$

parameter: $D=t_p/T$

5 Typ. output characteristics

 $I_D=f(V_{DS}); T_j=25 °C$

parameter: $V_{\rm GS}$

6 Typ. drain-source on resistance

 $R_{DS(on)}=f(I_D); T_j=25 \text{ °C}$

parameter: V_{GS}

7 Typ. transfer characteristics

 $I_{D}=f(V_{GS}); |V_{DS}|>2|I_{D}|R_{DS(on)max}$

parameter: T_j

8 Typ. forward transconductance

$$g_{fs}=f(I_D); T_j=25 \text{ °C}$$

9 Drain-source on-state resistance

$$R_{DS(on)} = f(T_i); I_D = -0.14 \text{ A}; V_{GS} = -10 \text{ V}$$

10 Typ. gate threshold voltage

$$V_{GS(th)}=f(T_i); V_{GS}=V_{DS}; I_D=-130 \mu A$$

11 Typ. capacitances

$$C=f(V_{DS}); V_{GS}=0 V; f=1 MHz$$

12 Forward characteristics of reverse diode

$$I_{\mathsf{F}} = \mathsf{f}(V_{\mathsf{SD}})$$

parameter: T_i

13 Avalanche characteristics

 I_{AS} =f(t_{AV}); R_{GS} =25 Ω

parameter: $T_{j(start)}$

14 Typ. gate charge

 V_{GS} =f(Q_{gate}); I_D =-0.14 A pulsed

parameter: $V_{\rm DD}$

15 Drain-source breakdown voltage

 $V_{BR(DSS)}$ =f(T_j); I_D =-250 μ A

16 Gate charge waveforms

Package Outline

SC-59: Outline

Footprint

Packaging

Dimensions in mm

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2006. All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.