<u>תורת החבורות – תרגיל בית 3</u>

שאלה 2

תהי X קבוצת השברים המצומצמים. לכל אחת מהקבוצות הבאות <u>בדוק</u> אם היא חבורה ביחס לפעולת חיבור:

1)
$$Y = \left\{ \frac{a}{b} \in X \middle| b \text{ is odd} \right\}$$

2)
$$Z = \left\{ \frac{a}{b} \in X \middle| b \text{ is even} \right\}$$

פתרון:

בשני המקרים אסוציאטיביות מתקיימת (כי חיבור של רציונליים ההינה פעולה אסוציאטיבית),

$$-rac{a}{b}=rac{-a}{b}$$
 אדיש קיים את הדרישה, גם $rac{a}{b}$, ולכל, $\left(0=rac{0}{1}\in Y,\ 0=rac{0}{2}\in Z
ight)$

מקיים אותה הדרישה.

לכן בשני המקרים עלינו לבדוק את הסגירות לחיבור.

ולכן
$$(b \cdot d, 2) = 1$$
 מכאן $(b, 2) = (d, 2) = 1$ אז $(b, 2) = (d, 2) = 1$ מכאן $(b \cdot d, 2) = 1$ ולכן $(b \cdot d, 2) = 1$

$$\frac{ad + bc}{b \cdot d} \in Y \quad \Leftarrow \quad \left(\frac{b \cdot d}{(b \cdot d, ad + bc)}, 2\right) = 1$$

$$\frac{1}{6} + \frac{1}{6} \notin Z$$
 אינה חבורה: $\frac{1}{6} \in Z$ אינה חבורה: $\frac{1}{6} \in Z$ (2)

שאלה 4

$$:$$
 הוכח: היחידה. היחידה. $G=\left\{z\in\mathbb{C}\Big|\ z^n=1,\,n\in\mathbb{Z}^+
ight\}$ תהי

א) חבורה
$$\left(G,\cdot
ight)$$

ב) אינה חבורה.
$$\left(G,+\right)$$

פתרון:

$$z^{n}=w^{m}=1$$
 כך ש n,m כך אז קיימים טבעיים, $z,w\in G$ א

$$zw \in G \iff (zw)^{nm} = (z^n)^m (w^m)^n = 1^m \cdot 1^n = 1$$
מכאן

 (\mathbb{C}^*,\cdot) - אסוציאטיבית: נובעת מאסוציאטיביו : אסוציאטיבית

אדיש כפלי. $1 \in G \iff 1^1 = 1$ אדיש כפלי.

 $(z^{-1})^n=1$. לכן $z^n=1$. $z^n=1$. $z^n=1$. לכן $z^n=1$, ומכאן , ומכאן , ומכאן . ההופכי שייך ל- $z^n=1$ גם כן.

 $.1+1 \notin G$ אין סגירות לגבי חיבור: $G \in G$, אין אין סגירות לגבי חיבור:

שאלה 7

 $\left(ab\right)^{5}=a^{5}b^{5}$ וגם $\left(ab\right)^{3}=a^{3}b^{3}$ מתקיים כי $\left(ab\right)^{5}=a^{5}b^{5}$ וגם חבורה בה לכל

. חבורה אבלית $\left(G,st
ight)$ חבורה אבלית

פתרון: תחילה נציין כי

 $(ab)^5 = a^5b^5 \implies \alpha babababab = \alpha aaaabbbbb \implies$

 \Rightarrow (baba)(baba) = aaaabbbb \Rightarrow (aabb)(aabb) = aaaabbbb \Rightarrow

 \Rightarrow bbaa = aabb \Rightarrow bbaa = bbaa \Rightarrow ba = ab

<u>שאלה 8</u>

מתקיים $a,b,c\in G$ קבוצה איברים שלכל שלושה עם פעולה כך מתקיים תהי קבוצה סופית עם פעולה כ

- 1) $a * b \in G$
- 2) (a*b)*c = a*(b*c)
- 3) $a * b = a * c \Rightarrow b = c$
- 4) $b*a=c*a \Rightarrow b=c$

- א) $\underline{\mathsf{nicn}}: (G,*)$ א
- ב) האם הטענה תישאר נכונה אם נוותר על תנאי הסופיות!

<u>פתרון:</u>

א) לפי תרגיל כיתה, מספיק להראות קיום יחידה ימנית וקיום הופכי ימני לכל אברי G.

. $\mathbf{X_1}\mathbf{G} = \left\{\mathbf{X_1}\mathbf{X_1}, \mathbf{X_1}\mathbf{X_2}, \cdots, \mathbf{X_1}\mathbf{X_n}\right\}$ ונביט בקבוצה $\mathbf{G} = \left\{\mathbf{X_1}, \mathbf{X_2}, \cdots, \mathbf{X_n}\right\}$ נניח כי

. מסגירות מקבלים כי ג $G \subseteq G$, ומחוק הצמצום השמאלי כי השוויון מתקיים, מסגירות מקבלים כי

כעת, $x_1=x_1x_k$ עבורו אם אכן לכן קיים אם גווכיח אם ג $x_1=x_1x_k$ עבורו לכל אכן אכן אכן ג $x_1\in G=x_1G$

. יחידה ימנית, \boldsymbol{x}_{i} יקבל כי , $\boldsymbol{x}_{j}\boldsymbol{x}_{k}=\boldsymbol{x}_{j}$ $1\leq j\leq n$

יהי יהי יהי $Gx_1=G$ (הכלה אחת נובעת מהסגירות, והשוויון -- מחוק הצמצום יהי יהי יהי יהי יה ית $x_j=x_\xi x_1$ עבורו יים יים ייה י $x_j\in G=Gx_1$ מכאן הימני) ומתקיים ומתקיים יים ייה

.
$$x_j x_k = (x_\xi x_1) x_k = x_\xi (x_1 x_k) = x_\xi x_1 = x_j$$
מקבלים כי

כעל נוכיח קיום הופכי ימני לכל אברי G.

יהי $1\leq j\leq n$, אז $1\leq G=G$ (הכלה אחת נובעת מהסגירות, והשוויון מחוק הצמצום $x_j=G=G$ יהי מגיט ומתקיים $x_k=x_j=x_j$, לכן קיים $1\leq \xi\leq n$ הימני) ומתקיים $x_k=G=x_j$.

ב) <u>תשובה</u>: לא

<u>דוגמא</u>: קבוצת הטבעיים לגבי חיבור מקיימת את ארבעת הדרישות של התרגיל, אך אינה חבורה.