### **Algoritmos**

MATA37: Introdução à Lógica de Programação

Prof.: Rafael A. Melo (melo@dcc.ufba.br)
Departamento de Ciência da Computação
Instituto de Matemática
Universidade Federal da Bahia





# Quatro princípios de Pólya para resolução de problemas

- Descritos por George Polya (Pólya György)
- Princípio 1: Entender o problema
  - Você entendeu realmente o problema?
  - Quais são os dados disponíveis?
  - Pode-se resolver o problema com o que foi dado?
  - Desenhar uma figura pode te ajudar?

# Quatro princípios de Pólya para resolução de problemas

- Príncipio 2: Elaborar um plano
  - Encontrar uma conexão entre os dados e o que se quer encontrar
  - Você já viu este problema antes? Ou este problema de outra forma?
  - Você conhece um problema relacionado o qual você sabe como resolver?

# Quatro princípios de Pólya para resolução de problemas

- Princípio 3: Colocar o plano em prática
  - Execute o plano
  - Você consegue verificar que cada passo funciona?
- Princípio 4: Analisar o seu trabalho
  - Examinar a solução obtida
  - Você pode verificar o resultado?
  - Você pode encontrar a solução de maneira diferente?

# Princípios de Pólyak para a construção de um programa

- Definir requisitos do problema (resolver o problema certo)
  - Entradas
  - Cálculos
  - Saída
- Desenvolvimento do algoritmo (resolver certo o problema)
  - Portugol
  - Pseudocódigo
  - Fluxograma
- Codificação do programa
  - Utilizando uma linguagem de programação.
- Teste do programa
  - Defeito na escrita do algoritmo
  - Defeito no algoritmo

### Algoritmos: o que são?

- O que é um Algoritmo?
  - Definição informal: é uma receita para resolver um problema
  - ou seja, uma sequência de passos que visa atingir um objetivo bem definido.
- Na nossa vida cotidiana utilizamos algoritmos em diversas circunstâncias
  - Receita de bolo;
  - Resolução de uma equação do segundo grau;
  - Montagem de um equipamento com Manual de Instruções;
  - Instruções para uso de um medicamento.

### Problema: Preparar bifes à milanesa

- Exemplo:
  - Problema: preparar "bifes à milanesa"
  - Algoritmo: descrição da receita
- 1: Qual é realmente o problema?
- 2: Quais são as entradas?
- 3: Quais os materiais necessários?
- 4: Qual o resultado esperado?

### Problema: Preparar bifes à milanesa

- Objetos de "consumo" (entrada):
  - carne
  - farinha
  - ovos
  - alface
- Objetos de "apoio" (atores, executores):
  - faca: instrução de cortar
  - travessa: instrução de armazenar
  - fogão: instrução de esquentar
  - cozinheiro: instrução de preparar

#### Problema: Preparar bifes à milanesa

- Objetos "produzidos" (saída):
  - bifes à milanesa
- Objeto que "controla" o processo (receita):
  - algoritmo

#### Algoritmo para preparar um bife à milanesa

#### **BIFE À MILANESA**

- 1. Limpar a peça de carne
- 2. Fatiar a carne em bifes
- 3. Colocar farinha de rosca em um prato
- 4. Bater 2 ovos em outro prato
- 5. Repetir, para cada bife:
  - 5.1. passar cada lado do bife nos ovos;
  - 5.2. passar cada lado do bife na mistura de farinha;
  - 5.3. levar o bife à frigideira;
  - 5.4. aguardar dourar, virando ambas as faces;
  - 5.5. retirar bife e colocar sobre papel toalha até secar;
  - 5.6. retirar do papel toalha e juntar numa travessa;
- 6. Decorar a travessa com folhas de alface
- 7. Servir

### **Algoritmo**

**ENTRADA** 

Ingredientes —

ESTADO INICIAL



Algoritmo

SAÍDA



ESTADO FINAL

#### Um pouco de história

- Um dos primeiros algoritmos:
  - Euclides (300 . . . 400 BC): algoritmo para obter o máximo divisor comum de dois inteiros positvos
- Século IX (800-899 DC), península arábica/Pérsia:
  - Matemático Mohammed al-Khowârizmî
  - Cria regras passo-a-passo para se fazer aritmética com algarismos decimais
- Origem do nome:
  - Al-Khowârizmî, em latim tornou-se algorismus
  - Do latim algorismus, derivou-se algoritmo em português

#### **Algoritmo**

- Definição mais formal de Algoritmo: conjunto de regras e operações bem definidas e ordenadas, destinadas à solução de um problema ou de uma classe de problemas, em um número finito de etapas.
- Segundo Dijkstra, um algoritmo corresponde a uma descrição de um padrão de comportamento, expresso em termos de um conjunto finito de ações.
  - Considere um algoritmo para somar dois números a e b.
  - percebe-se um padrão de comportamento que se repete, independente de quais sejam esses números.
  - O algoritmo é destinado então à classe de problemas "adição de dois números".

### Propriedades de um algoritmo

- Formado por um texto finito;
- Instruções elementares
  - Ações simples, claras e bem definidas (não ambíguas) que possam ser realizadas;
- Texto metódico (sequência ordenada de ações)
  - Passo inicial
  - Passo final
  - Dado o passo atual, sabe-se qual o próximo passo
- É correto
  - Partindo de dados válidos, deve sempre terminar.
  - Partindo de dados inválidos, não necessariamente termina.

#### Exercício 1: Torre de Hanói

- Escreva um algoritmo para transferir os discos da haste A para a haste C usando a haste B como auxiliar.
- Restrições:
  - Apenas um disco pode ser movido por vez;
  - Um disco n\u00e3o pode ser colocado sobre outro disco menor do que ele.



#### Representação de Algoritmos

- Descrição Narrativa
  - Especificação textual dos passos em linguagem natural.
  - Desvantagens: a linguagem natural é prolixa e imprecisa e frequentemente pouco confiável como um veículo de transferir informação.
- Fluxograma
  - Um fluxograma mostra, de forma gráfica, a lógica de um algoritmo, enfatizando passos individuais e o fluxo de execução.
  - Desvantagem: pouco escalável.

#### Representação de Algoritmos

- Pseudocódigo ou Linguagem Algorítmica ou Pseudolinguagem
  - Linguagem especial para expressão de algoritmos.
  - Funciona como uma "linguagem simplificada de programação".
  - Utiliza expressões concisas e pré-definidas.
  - Descrição textual, estruturada e regida por regras.
  - Utiliza-se palavras-chaves, endentação, apenas um passo por linha.
- Vamos usar o Portugol
  - Estrutura similar à do Pascal.

## Fluxograma

| Símbolo | Nome              | Função                                                                                                       |
|---------|-------------------|--------------------------------------------------------------------------------------------------------------|
|         | Terminador        | Representar a saida para ou entrada do ambiente externo, por exemplo, inicio ou final de programa.           |
|         | Processo          | Representar qualquer tipo de processo, geralmente utilizado para definir cada passo sequencial do algoritmo. |
|         | Linha<br>basica   | Representar o fluxo dos dados ou controle. Pode-se usar pontas de setas para indicar a direção do fluxo.     |
|         | Entrada<br>manual | Representar os dados que sejam fornecidos manualmente em tempo de processamento.                             |
|         | Exibicao          | Representar dados que devem ser exibidos para uso humano, como em um monitor ou impressora.                  |
|         | Decisao           | Representar uma decisão ou um desvio de fluxo.                                                               |
|         | Repeticao         | Uma decisão combinada com um fluxo (linha básica) de retorno.                                                |

# Fluxograma – Algoritmo troca de lâmpada



### Pseudocódigo – Algoritmo troca de lâmpada

```
Início
```

```
Ir até o interruptor do primeiro soquete;
enquanto <houver soquetes> faça
       acionar interruptor;
       se <lâmpada não acender> então
               pegar uma escada;
                       posicionar a escada embaixo da lâmpada;
                       buscar uma lâmpada nova;
                       subir na escada;
                       retirar a lâmpada velha;
                       colocar a lâmpada nova;
               ir até interruptor do próximo soquete;
       fim se
fim enquanto
```

Fim

### Exercício 2: A raposa, as galinhas e o milho

• Um senhor está numa das margens de um rio com uma raposa, algumas galinhas e um saco de milho. Ele pretende atravessar o rio com suas cargas, num barco que só comporta ele mesmo e uma das cargas. Evidentemente, ele não pode deixar em uma das margens, sozinhos, a raposa e a galinha, nem a galinha e o milho. Escreva um algoritmo que oriente o senhor a realizar o seu intento.



#### Exercício 3: Problema das garrafas

- Escreva um algoritmo para separar o líquido de três garrafas com formatos diferentes e não milimetradas em duas quantidades iguais, sendo que:
  - Uma garrafa está cheia até a boca, com 8 litros
  - Uma está vazia, com capacidade de 5 litros
  - Uma está vazia, com capacidade de 3 litros



#### Exercício 4: Problema da moeda falsa

- Escreva um algoritmo para descobrir a moeda falsa (mais leve) de um total de 5 moedas usando uma balança analítica
- Dica: é possível resolver com somente duas pesagens



### **Algoritmos**

MATA37: Introdução à Lógica de Programação

Prof.: Rafael A. Melo (melo@dcc.ufba.br)
Departamento de Ciência da Computação
Instituto de Matemática
Universidade Federal da Bahia



