Notes of Introduction to Quantum Mechanics

He Yingqiu

June 21, 2022

Contents

1	The	Wave	e Function	1									
	1.1	The S	Schrodinger Equation	1									
	1.2	The S	tatistical Interpretation	1									
	1.3	Proba	bility	1									
		1.3.1	Discrete Variables	1									
		1.3.2	Continuous Variables	2									
	1.4	Norm	n <mark>alization</mark>	2									
	1.5	Mome	entum	2									
	1.6		Uncertainty Principle	3									
2	Time-Independent Schrodinger Equation 4												
	2.1	Static	onary States	4									
	2.2	The I	Infinite Square Well	5									
	2.3	The H	Iarmonic Oscillator	6									
		2.3.1	Algebratic Method	6									
		2.3.2	Analytic Method	7									
	2.4	The F	ree Particle	8									
	2.5	The I	Delta-Function Potential	8									
		2.5.1	Bound States and Scattering States	8									
		2.5.2	The Delta-Fuction Well	9									
	2.6	The F	inite Square Well	10									
3	Fori	malism	1	12									
	3.1	Hilber	t Space	12									
	3.2	Obser	vables	13									
		3.2.1	Hermitian Operators	13									
		3.2.2	Determinate State	13									
	3.3	Eigenf	fuctions of a Hermitain Operator	14									
		3.3.1	Discrete Spectra	14									
		3.3.2	Continuous Spectra	14									
	3.4	Gener	alized Statistical Interpretation	15									
	3.5		Incertainty Principle	16									
		3.5.1	Proof of the Generalized Uncertainty Principle	16									
		3.5.2	The Minimum-Uncertainty Wave Packet	16									
		3.5.3	The Energy-Time Uncertainty Principle	16									
	3.6	Vector	rs and Operators	17									
		3.6.1	Bases in Hillbert Space	17									
		3.6.2	Dirac Notation	17									

CONTENTS ii

		3.6.3	Changing Bases in Dirac Notation
	3.7	Wave	Functions in Position and Momentum Space(Addition) 18
		3.7.1	Position-Space Wave Function
		3.7.2	Momentum Operator in the Position Basis
		3.7.3	Momentum-Space Wave Function
	0		
4	•		Mechanics in Three Dimensionss 20
	4.1		chroding Equation
		4.1.1	Cartesian Coordinates
		4.1.2	Spherical Coordinates
		4.1.3	The Angular Equation
	4.0	4.1.4	The Radial Equation
	4.2		ydrogen Atom
		4.2.1	The Radial Wave Function
	4.0	4.2.2	The Spectrum of Hydrogen
	4.3	0	ar Momentum
		4.3.1	Eigenvalues
		4.3.2	Eigenfunctions
	4.4	-	
		4.4.1	$\frac{\text{Spin }1/2}{\text{Spin }1/2} \dots \dots$
		4.4.2	Electron in a Magnetic Field
		4.4.3	Addition of Angular Momenta
	4.5		omagnetic Interactions
		4.5.1	Minimal Coupling
		4.5.2	The Aharonov-Bohm Effect
5	Ide	ntical I	Particles 28
J	5.1		Particle System
	0.1	5.1.1	Bosons and Fermions
		5.1.2	Exchange Forces
		5.1.3	Spin
			Generlized Symmetrization Principle
	5.2		30
	0.2	5.2.1	Helium
		5.2.1	The Periodic Table
	5.3	Solids	30
	0.0	5.3.1	The Free Elctron Gas
		5.3.2	Band Structure
		0.0.2	Dana Structure
6	Syn	nmetie	s and Conservation Laws 32
	6.1	Introd	uction
		6.1.1	Transformations in Space
	6.2	The T	ranslation Operator
		6.2.1	How Operators Transform
		6.2.2	Translational Symmetry
	6.3	Conse	rvation Laws
	6.4	Parity	
		6.4.1	Parity in One Dimension
		6.4.2	Parity in Three Dimensions

CONTENTS iii

		6.4.3 Parity Selection Rules	3
	6.5	Rotational Symmetry	3
		6.5.1 Rotations About the z Axis	3
		6.5.2 Rotations in Three Dimension	4
	6.6	Degeneracy	4
	6.7	Rotational Selection Rules	4
		6.7.1 Selection Rules for Scalar Operators	
		6.7.2 Selection Rules for Vector Operators	
	6.8	Translation in Time	
	0.0	6.8.1 The Heisenberg Picture	
		6.8.2 Time-Translation Invaraince	
		0.8.2 Time-Translation invarance	7
7	Tim	e-Independent Perturbation Theory 3	5
	7.1	Nondegenerate Perturbation Theory	5
		7.1.1 General Formulation	
		7.1.2 First-Order Theory	
		7.1.3 Second-Order Energies	
	7.2	Degenerate Perturbation Theory	
	1.2	7.2.1 Two-Fold Degeneracy	
		7.2.2 "Good" States	
	7.3		
	1.5	\checkmark Θ	
	7 4		
	7.4	The Zeeman Effect	
	7.5	Hyperfine Splitting in Hydrogen	(
8	The	Variational Principle 38	8
	8.1	Theory	
	8.2	The Ground State of Helium	
	8.3	The Hydrogen Molecule Ion	
	8.4	The Hydrogen Molecule	
	0.4	The Hydrogen Molecule	J
9	The	WKB Approximation 4	0
	9.1	The "Classical" Region	0
	9.2	Tunneling	1
	9.3	The Connection Formulas	1
10		tering 4	
	10.1	Introduction	
		10.1.1 Classical Scattering Theory	
		10.1.2 Quantum Scattering Theory	
	10.2	Partial Wave Analysis	2
		10.2.1 Formalism	
		10.2.2 Strategy	2
	10.3	Phase Shifts	2
	10.4	The Born Approximation	2
		10.4.1 Integral Form of the Schrodinger Equation	2
		10.4.2 The First Born Approximation	2
		10.4.3 The Born Series	2

CONTENTS iv

11	Qua	intum Dynamics	43
	11.1	Two-level System	43
		11.1.1 The Perturbed System	
		11.1.2 Time-Dependent Perturbation Theory	
		11.1.3 Sinusoidal Perturbations	44
	11.2	Emission and Absortion of Radiationj	44
		11.2.1 Electromagnetic Waves	
		11.2.2 Absortion, Stimulation Emission, and Spontaneous Emission	
		11.2.3 Incoherent Perturbations	45
	11.3	Spontaneous Emission	45
		11.3.1 Einstein's A and B	
		11.3.2 The Life tiem of an Excites State	
		11.3.3 Selection Rules	
	11.4	Fermi's Golden Rule	
		The Adiabatic Approximation	

Chapter 1

The Wave Function

1.1 The Schrodinger Equation

Looking for Particle's wave function

$$\Psi(x,t)$$

by solving the Schrodinger equation

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V\Psi$$

Planck's constant

$$\hbar = \frac{h}{2\pi} = 1.054573 \times 10^{-34} \text{Js}$$

1.2 The Statistical Interpretation

Born's statistical interpretation

$$\int_a^b |\Psi(x,t)|^2 dx = \text{probability of finding the particle between a and b}$$

• All quantum mechanics has to offer is statistical information about the possible results.

1.3 Probability

1.3.1 Discrete Variables

The average value of some *function* of *j* is given by

$$\langle f(j) \rangle = \sum_{j=0}^{\infty} f(j) P(j)$$

The **variance** of the distribution

$$\sigma^2 \equiv \langle (\Delta j)^2 \rangle$$

The **standard deviation**

$$\sigma = \sqrt{\langle j^2 \rangle - \langle j \rangle^2}$$

1.3.2 Continuous Variables

 $\rho(x)$: **probability density**

Rules:

$$P_{ab} = \int_{a}^{b} \rho(x) \, dx$$
$$\int_{-\infty}^{\infty} \rho(x) \, dx = 1$$
$$\langle x \rangle = \int_{-\infty}^{\infty} x \rho(x) \, dx$$
$$\langle f(x) \rangle = \int_{-\infty}^{\infty} f(x) \rho(x) \, dx$$
$$\sigma^{2} \equiv \langle (\Delta x)^{2} \rangle = \langle x^{2} \rangle - \langle x \rangle^{2}$$

1.4 Normalization

Normalizing the wave function (square-integrable)

$$\int_{-\infty}^{\infty} |\Psi(x)|^2 \, \mathrm{d}x = 1$$

Proof the Schrodinger equation automatically preserves the normalization of the wave function:

$$\frac{\partial \Psi}{\partial t} = \frac{i\hbar}{2m} \frac{\partial^2 \Psi}{\partial x^2} - \frac{i}{\hbar} V \Psi, \quad \frac{\partial \Psi^*}{\partial t} = -\frac{i\hbar}{2m} \frac{\partial^2 \Psi^*}{\partial x^2} + \frac{i}{\hbar} V \Psi^*$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{\partial}{\partial t} |\Psi|^2 = \frac{\partial}{\partial t} (\Psi^* \Psi) = \Psi^* \frac{\partial \Psi}{\partial t} + \frac{\partial \Psi^*}{\partial t} \Psi$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{d}{dt} \int_{-\infty}^{\infty} |\Psi(x)|^2 dx = \int_{-\infty}^{\infty} \frac{\partial}{\partial t} |\Psi(x)|^2 dx = 0 \quad \text{QED}$$

1.5 Momentum

For a particle in state Ψ , the expectation value of x is

$$\langle x \rangle = \int_{-\infty}^{\infty} x |\Psi(x)|^2 dx = \int \Psi^* [x] \Psi dx$$

the expectation value of **momentum** is

$$\frac{d\langle x \rangle}{dt} = \frac{i\hbar}{2m} \int x \frac{\partial}{\partial x} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right) dx = -\frac{i\hbar}{m} \int \Psi^* \frac{\partial \Psi}{\partial x} dx \implies \langle p \rangle = m \frac{d\langle x \rangle}{dt} = -i\hbar \int \left(\Psi^* \frac{\partial \Psi}{\partial x} \right) dx = \int \Psi^* \left[-i\hbar (\partial/\partial x) \right] \Psi dx$$

• operator: $x \to \text{position}; -i\hbar(\partial/\partial x) \to \text{momentum}$ the expectation of any Q(x,p) is

$$\langle Q(x,p)\rangle = \int \Psi^*[Q(x,-i\hbar\partial/\partial x)]\Psi dx$$

• **Ehrenfest's theorem**

Therefiest's theorem**
$$\frac{d\langle p\rangle}{dt} = \left\langle \frac{\partial V}{\partial x} \right\rangle$$
proof:
$$\frac{d\langle p\rangle}{dt} = -i\hbar \int \frac{\partial}{\partial t} \left(\Psi^* \frac{\partial \Psi}{\partial x} \right) dx = -i\hbar \left(\frac{i}{\hbar} \right) \int -|\Psi|^2 \frac{\partial V}{\partial x} dx$$

1.6 The Uncertainty Principle

• **de Broglie formula**

$$p = \frac{h}{\lambda} = \frac{2\pi\hbar}{\lambda}$$

• Heisenberg's **uncertainty principle**

$$\sigma_x \sigma_p \geqslant \frac{\hbar}{2}$$

Chapter 2

Time-Independent Schrodinger Equation

2.1 Stationary States

Separation of variables $\Psi(x,t) = \psi(x)\varphi(t)$

$$\frac{d\varphi}{dt} = -\frac{iE}{\hbar}\varphi \qquad \rightarrow \qquad \varphi(t) = e^{-iEt/\hbar}$$
$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V\psi = E\psi \qquad \text{time-independent Schrodinger equation}$$

Three Answers:

• stationary states

$$\Psi(x,t) = \psi(x)e^{-iEt/\hbar}$$

• states of definite total energy

– Hamiltonain:
$$H(x,p) = \frac{p^2}{2m} + V(x)$$

- Hamiltonain operator:

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$$

- Rewrite time-independent Schrodinger Equation:

$$\hat{H}\psi = E\psi$$

– expectation value of the total energy: $\langle H \rangle = E$ $\langle H^2 \rangle = E^2$

– variance: $\sigma_H = 0$

• linear combination of separable solutions

$$\Psi(x,t) = \sum_{n=1}^{\infty} \psi(x) e^{-iE_n t/\hbar} = \sum_{n=1}^{\infty} c_n \Psi_n(x,t)$$

- stationary states: $\Psi_n(x,t)$

 $-|c_n|^2$: probability that a measurement of the energy would return the valur E_n

$$\sum_{n=1}^{\infty} |c_n|^2 = 1$$
$$\langle H \rangle = \sum_{n=1}^{\infty} |c_n|^2 E_n$$

Four therom

- \bullet For normalizable solutions, the separation constant E must be real
- $\psi(x)$ can always be taken to real; from any complex solution, we can

$$\psi = \frac{1}{2} [(\psi + \psi^*) - i(i(\psi - \psi^*))]$$

- If V(-x) = V(x) then $\psi(x)$ can always be taken to be either even or odd
- $E \text{ must} > V_{min}$

2.2 The Infinite Square Well

$$V(x) = \begin{cases} 0 & 0 \le x \le a \\ \infty & otherwise \end{cases}$$

Outside the well, $\psi(x) = 0$ Inside the well (**simple harmonic oscillator** equation)

$$\frac{d^2\psi}{dx^2} = -k^2\psi, \quad \text{where } k \equiv \frac{\sqrt{2mE}}{\hbar}$$

- *E* ≥ 0
- general solution: $\psi(x) = A\sin(kx) + B\cos(kx)$
- **boundary conditions**: $\psi(0) = \psi(a) = 0$
- *distinct* solutions and normalize

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right), \quad \text{with } E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2} \quad (n = 1, 2, 3, ...)$$

- **ground state**: ψ_1
- properties for ψ_n
 - alternately **even** or **odd**
 - each successive state has one more **node**(zero-crossing)
 - matually **orthogonal**

$$\int \psi_m(x)^* \psi_n(x) \, \mathrm{d}x = \delta_{mn}$$

- **complete**

$$f(x) = \sum_{n=1}^{\infty} c_n \psi_n(x)$$
$$\int \psi_m(x)^* f(x) dx = \sum_{n=1}^{\infty} c_n \int \psi_m(x)^* \psi_n(x) dx = \sum_{n=1}^{\infty} c_n \delta_{mn} = c_m$$
$$\Rightarrow c_n = \int \psi_n(x)^* f(x) dx$$

$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) e^{-i(n^2\pi^2\hbar/2ma^2)t}$$
$$c_n = \sqrt{\frac{2}{a}} \int_0^a \sin\left(\frac{n\pi}{a}x\right) \Psi(x,0) dx$$

$$\hat{H}\psi_n = E_n\psi_n \quad \rightarrow \quad \langle H \rangle = \int \Psi^* \hat{H}\Psi dx = \sum |c_n|^2 E_n$$

2.3 The Harmonic Oscillator

$$V(x) = \frac{1}{2}m\omega^2 x^2$$
$$\hat{H} = \frac{1}{2m} \left[\hat{p}^2 + (m\omega x)^2 \right]$$

2.3.1 Algebratic Method

There occurs a "lowest rung" : $\hat{a}_-\psi_0 = 0 \rightarrow \hbar\omega(\hat{a}_+\hat{a}_- + 1/2)\psi_0 = E_0\psi_0 \rightarrow$

$$\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2}, \quad \text{with} \quad E_0 = \frac{1}{2}\hbar\omega$$

Exited states, increasing the energy by $\hbar\omega$ with each step:

$$\psi_n = A_n(\hat{a}_+)^n \psi_0(x), \quad \text{with} \quad E_n = \left(n + \frac{1}{2}\right) \hbar \omega$$

Normalization algebraically

2.3.2 Analytic Method

$$\frac{d^2\psi}{d\xi^2} = (\xi^2 - K)\psi \qquad \xi \equiv \sqrt{\frac{m\omega}{\hbar}}x \quad K \equiv \frac{2E}{\hbar\omega}$$

To begin with at very large ξ

$$\frac{d^2\psi}{d\xi^2} \approx \xi^2\psi \qquad \frac{|x| \to \infty \quad \text{asymptotic form}}{d\xi^2} \qquad \psi(\xi) = h(\xi)e^{-\xi^2/2}$$

$$\frac{d\psi}{d\xi}, \frac{d^2\psi}{d\xi^2} \qquad \frac{d^2h}{d\xi^2} - 2\xi\frac{dh}{d\xi} + (K-1)h = 0$$

In the form of *power serires* in ξ

$$h(\xi) = \sum_{j=0}^{\infty} a_j \xi^j \qquad \frac{dh}{d\xi}, \frac{d^2h}{d\xi^2} \longrightarrow \sum_{j=0}^{\infty} [(j+1)(j+2)a_{j+2} - 2ja_j + (K-1)a_j]\xi^j = 0$$

$$\downarrow \downarrow$$

$$a_{j+2} = \frac{(2j+1-K)}{(jh+1)(j+2)}a_j \longrightarrow h(\xi) = h_{\text{even}}(\xi) + h_{\text{odd}}(\xi)$$

For physically acceptable solutions:

$$K = 2n + 1 \Rightarrow E = (n + 1/2)\hbar\omega \quad , \text{ for } n = 0, 1, 2, \dots$$

$$\downarrow$$

$$a_{j+2} = \frac{-2(n-j)}{(jh+1)(j+2)}a_j$$

Nomalized stationary state

$$\star \qquad \psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n(\xi) e^{-\xi^2/2}$$

• The first few of $H_n(\xi)$

$$- H_0 = 1$$

$$- H_1 = 2\xi$$

$$- H_2 = 4\xi^2 - 2$$

$$- H_3 = 8\xi^3 - 12\xi$$

2.4 The Free Particle

$$V(x) = 0$$

$$\frac{d^2\psi}{dx^2} = -k^2\psi, \text{ where } k \equiv \frac{\sqrt{2mE}}{\hbar}$$

$$\downarrow$$

$$\Psi(x,t) = Ae^{ik\left(x - \frac{\hbar k^2}{2m}t\right)} + Be^{-ik\left(x - \frac{\hbar k^2}{2m}t\right)}$$

Represents a wave traveling to *right* and another going to *left*, as well write

$$\Psi_k(x,t) = Ae^{i\left(kx - \frac{\hbar k^2}{2m}t\right)}$$

$$k \equiv \pm \frac{\sqrt{2mE}}{\hbar}, \quad \text{with} \quad \begin{cases} k > 0 \Rightarrow \text{traveling to the right} \\ k < 0 \Rightarrow \text{traveling to the left} \end{cases}$$

This wave function is not normalizable

$$\int_{-\infty}^{+\infty} \Psi_k^* \Psi_k dx = |A|^2 \int_{-\infty}^{+\infty} dx = |A|^2 (\infty)$$

• **Plancherel's therem**

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(k)e^{ikx} dk \leftrightarrow F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ikx} dx$$

Now *this* can be normalized

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \phi(k) e^{i\left(kx - \frac{\hbar k^2}{2m}t\right)} dk$$

$$\begin{cases} \Psi(x,0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \phi(k) e^{ikx} dk \\ \phi(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \Psi(x,0) e^{-ikx} dx \end{cases}$$

• $v_{\text{classical}} = v_{\text{group}} = 2v_{\text{phase}}$

2.5 The Delta-Function Potential

2.5.1 Bound States and Scattering States

$$\begin{cases} E < V(\infty) \Rightarrow \text{bound state} \\ E > V(\infty) \Rightarrow \text{scattering state} \end{cases}$$

2.5.2 The Delta-Fuction Well

$$V(x) = -\alpha \delta(x)$$

(1) bound state E < 0

$$\frac{d^2\psi}{dx^2} = \kappa^2\psi, \quad \text{where} \quad \kappa \equiv \frac{\sqrt{-2mE}}{\hbar}$$

$$\psi(x) = \begin{cases} Be^{\kappa x}, & (x < 0) \\ Fe^{-\kappa x}, & (x > 0) \end{cases}$$

- boundary conditions at x = 0:
 - $-\psi$ is always continuous; $\Rightarrow F = B$
 - $-d\psi/dx$ is continuous except at points where the potential is infinite.

$$\kappa = \frac{m\alpha}{\hbar^2}$$

Proof:
$$(\epsilon \to 0)$$

$$\begin{split} -\frac{\hbar^2}{2m} \int_{-\epsilon}^{+\epsilon} \frac{d^2 \psi}{d^2 x} dx + \int_{-\epsilon}^{+\epsilon} V(x) \psi(z) dx &= E \int_{-\epsilon}^{+\epsilon} \psi(x) dx = 0 \\ \Rightarrow \Delta \left(\frac{d \psi}{dx} \right) &= \frac{2m}{\hbar^2} \lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} -\alpha \delta(x) \psi(z) dx = -\frac{2m\alpha}{\hbar^2} \psi(0) = -\frac{2m\alpha}{\hbar^2} B_{\kappa} \\ \left\{ \frac{d\psi/dx}{|x|_{-}} &= +B\kappa \right\} &\Rightarrow \Delta \left(\frac{d\psi}{dx} \right) &= -2B\kappa \quad \Rightarrow \end{split}$$

Norminized $\rightarrow B = \sqrt{\kappa}$

$$\star$$
 $\psi(x) = \frac{\sqrt{m\alpha}}{\hbar} e^{-m\alpha|x|/\hbar^2}; \qquad E = -\frac{m\alpha^2}{2\hbar^2}$

(2) scattering state E > 0

$$\frac{d^2\psi}{dx^2} = -k^2\psi, \quad \text{where} \quad k \equiv \frac{\sqrt{2mE}}{\hbar}$$

$$\psi(x) = \begin{cases} Ae^{ikx} + Be^{-ikx}, & (x < 0) \\ Fe^{ikx} + Ge^{-ikx}, & (x > 0) \end{cases}$$

- Boundary conditions

$$F + G = A + B$$

$$\begin{cases} \Delta(d\psi/dx) = ik(F - G - A + B) \\ \psi(0) = (A + B) \end{cases} \Rightarrow$$

$$ik(F - G - A + B) = -\frac{2m\alpha}{\hbar^2}(A + B)$$

$$F - G = A(1 + 2i\beta) - B(1 - 2i\beta), \quad \text{where } \beta \equiv \frac{m\alpha}{\hbar^2 k}$$

When wave come from left:

- A: amplitude of the incident wave
- B: amplitude of the reflected wave
- F: amplitude of the transmitted wave

$$B = \frac{i\beta}{1 - i\beta}A, \qquad F = \frac{1}{1 - i\beta}A, \qquad G = 0$$

The *relative* probability of reflection and transmission:

$$R \equiv \frac{|B|^2}{|A|^2} = \frac{\beta^2}{1+\beta} = \frac{1}{1+(2\hbar^2 E/m\alpha^2)}$$

$$T \equiv \frac{|F|^2}{|A|^2} = \frac{1}{1+\beta} = \frac{1}{1+(m\alpha^2/2\hbar^2 E)}$$

Discussion:

- If $E > V_{\text{max}}$, then T = 1 and R = 0
- If $E < V_{\text{max}}$, then T = 0 and R = 1- if $T \neq 0$, **tunneling**

Fourier transform of $\delta(x)$

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ikx} \, dk \qquad \leftrightarrow \qquad F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \delta(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}}$$

2.6 The Finite Square Well

$$V(x) = \begin{cases} -V_0, & -a \le x \le a \\ 0, & |x| > a \end{cases}$$

(1) bound state E < 0

1.
$$x < -a, V(x) = 0$$

$$\frac{d^2\psi}{dx^2} = \kappa^2\psi, \quad \text{where} \quad \kappa \equiv \frac{\sqrt{-2mE}}{\hbar}$$

$$\Rightarrow \qquad \psi(x) = Be^{\kappa x}$$

2.
$$-a < x < a, V(x) = -V_0$$

$$\frac{d^2\psi}{dx^2} = -l^2\psi, \quad \text{where} \quad l \equiv \frac{\sqrt{2m(E+V_0)}}{\hbar}$$

$$\Rightarrow \qquad \psi(x) = C\sin(lx) + D\cos(lx)$$

3.
$$x > a, V(x) = 0$$

$$\psi(x) = Fe^{-\kappa x}$$

• even solutions

$$\psi(x) = \begin{cases} Fe^{-\kappa x}, & (x > a) \\ D\cos(lx), & (0 < x < a) \\ \psi(-x), & (x < 0) \end{cases}$$

• boundary condition at x = a

$$\begin{cases} Fe^{-\kappa a} = D\cos(la) \\ -\kappa Fe^{-\kappa a} = -lD\sin(la) \end{cases} \Rightarrow \kappa = l\tan(la)$$

$$\begin{cases} z \equiv la & z_0 \equiv \frac{a}{\hbar} \sqrt{2mV_0} \\ \kappa^2 + l^2 = 2mV_0/\hbar^2 \end{cases} \Rightarrow \boxed{\tan z = \sqrt{(z_0/z)^2 - 1}}$$

Discussion:

• Wide, deep well

$$z_0 \to \infty \quad \Rightarrow z_n = n\pi/2 \quad \Rightarrow$$

$$E_n + V_0 \approx \frac{n^2 \pi^2 \hbar^2}{2m(2a)^2} \quad (n = 1, 3, 5, \cdots)$$

- Shallow, narrow well
 - for $z_0 < \pi/2$, only one remains
- (2) scattering state E > 0 When wave come from left

$$\psi(x) = \begin{cases} Ae^{ikx} + B^{-ikx}, & x < -a \\ C\sin(lx) + D\cos(lx) & -a < x < a \\ Fe^{ikx} & x > a \end{cases}$$

Boundary conditions

$$Ae^{-ika} + B^{ika} = -C\sin(la) + D\cos(la)$$

$$ik[Ae^{-ika} - B^{ika}] = l[C\cos(la) + D\sin(la)]$$

$$C\sin(la) + D\cos(la) + Fe^{ika}$$

$$l[C\cos(la) - D\sin(la)] = ikFe^{ika}$$

Eliminate

$$B = i \frac{\sin(2la)}{2kl} (l^2 - k^2) F$$

$$F = \frac{e^{-2ika} A}{\cos(2la) - i \frac{(k^2 + l^2)}{2kl} \sin(2la)} \Rightarrow$$

Transmission coefficient

$$T^{-1} = 1 + \frac{V_0^2}{4E(E + V_0)} \sin^2 \left(\frac{2a}{\hbar} \sqrt{2m(E + V_0)}\right)$$

when T=1

$$\frac{2a}{\hbar}\sqrt{2m(E+V_0)} = n\pi \qquad \Rightarrow E_n + V_0 = \frac{n^2\pi^2\hbar^2}{2m(2a)^2}$$

Chapter 3

Formalism

3.1 Hilbert Space

Contructs:

• state: wave function

• observables: operators

• vectors: defining conditions

• linear transformation: the operators act on vectors

• linear algebra: the natural language of Quantum Mechanics

Properties:

1. wave function live in

2. complete inner product space

3. squre-integrable

Definition 1 Inner product of two function

$$\langle f|g\rangle \equiv \int_a^b f(x)^* g(x) dx$$

Discussion:

• Schwarz inequality:

$$\left| \int_a^b f(x)^* g(x) dx \right| \le \sqrt{\int_a^b |f(x)|^2 dx} \int_a^b |g(x)|^2 dx$$

• $\langle g|f\rangle = \langle f|g\rangle^*$

• normalized $\langle f|f\rangle = 1$

• orthonormal $\langle f_m | f_n \rangle = \delta_{mn}$

• complete and orthonormal $f(x) = \sum_{n=1}^{\infty} c_n f_n(x), c_n = \langle f_n | f \rangle$

3.2 Observables

3.2.1 Hermitian Operators

Definition 2 Hermitian Operators

$$\langle f|\hat{Q}g\rangle = \langle \hat{Q}f|g\rangle$$
 for all $f(x)$ and $g(x)$

Discussion:

- Observables are represented by hermitian operators
- hermitian transformation $\hat{Q}^{\dagger} = \hat{Q}$
- momentum operator is hermitian

$$\langle f|\hat{p}g\rangle = \int_{-\infty}^{\infty} f^*(-i\hbar) \frac{\mathrm{d}g}{\mathrm{d}x} \mathrm{d}x = -i\hbar f^*g \Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \left(-i\hbar \frac{\mathrm{d}f}{\mathrm{d}x}\right)^* g \mathrm{d}x = \langle \hat{p}f|g\rangle$$

Definition 3 Hermitian conjugate of a matrix

$$\mathsf{T}^\dagger = \tilde{\mathsf{T}}^*$$
$$\left\langle \alpha \middle| \hat{T}\beta \right\rangle = \mathsf{a}^\dagger \mathsf{T} \mathsf{b} = \left(\mathsf{T}^\dagger \mathsf{a} \right)^\dagger \mathsf{b} = \left\langle \hat{T}^\dagger \alpha \middle| \beta \right\rangle$$

Discussion:

• The eigenvalues of a hermitian transformation are real Proof: Let $\hat{T} |\alpha\rangle = \lambda |\alpha\rangle$, with $|\alpha\rangle \neq |0\rangle$. Then

$$\left\langle \alpha \middle| \hat{T}\alpha \right\rangle = \left\langle \alpha \middle| \lambda\alpha \right\rangle = \lambda \left\langle a \middle| a \right\rangle$$

Meanwhile, if \hat{T} is hermitian, Then

$$\left\langle \alpha \middle| \hat{T}\alpha \right\rangle = \left\langle \hat{T}\alpha \middle| \alpha \right\rangle = \left\langle \lambda\alpha \middle| \alpha \right\rangle = \lambda^* \left\langle a \middle| a \right\rangle$$

But $\langle \alpha | \alpha \rangle \neq 0$, so $\lambda = \lambda^*$ QED

- The eigenvectors of a hermitian transformation belonging to distinct eigenvalues are orthogoal
- The eigenvectors of a hermitian transformation span the space

3.2.2 Determinate State

Discussion:

- This is eigenvalue equation for \hat{Q}
- Ψ if an eigenfuction of \hat{Q} , and q is the corresponding eigenvalue
- Determinate state of Q are eigenfuction of \hat{Q}
- spectrum: the collection of all the eigenvalues of an operator
- degenerate: linearly independent eigenfuctions share the same eigenvalue

3.3 Eigenfuctions of a Hermitain Operator

3.3.1 Discrete Spectra

- the eigenvalues are separated from another
- the eigenfuctions lie in Hilbert space and constitute physically realizable states

Properties of normalizable eigenfuctions of a hermitian operator:

- 1. Their eigenvalues are real
- 2. Eigenfuctions belonging to distinct eigenvalues are orthognal

3.3.2 Continuous Spectra

- the eigenvalues fill out an entire range
- the eigenfuctions are not normalizable and do not represent possible wave functions

The eigenfuctions and eigenvalues of the momentum operator (on the interval $(-\infty < x < \infty)$:

$$-i\hbar \frac{\mathrm{d}}{\mathrm{d}x} f_p(x) = p f_p(x) \quad \Rightarrow \quad f_p(x) = A e^{ipx/\hbar}$$

$$\downarrow$$

$$\int_{-\infty}^{\infty} f_{p'}^*(x) f_p(x) \mathrm{d}x = |A|^2 \int_{-\infty}^{\infty} e^{i(p-p')x/\hbar} \mathrm{d}x = |A|^2 2\pi \hbar \delta(p-p')$$

$$\downarrow$$

$$f_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}$$

- Dirac orthonormality: $\langle f_{p'}|f_p\rangle = \delta(p-p')$
- Complete:

$$f(x) = \int_{-\infty}^{\infty} c(p) f_p(x) dp = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} c(p) e^{ipx/\hbar} dp$$
$$\langle f_{p'} | f \rangle = \int_{-\infty}^{\infty} c(p) \langle f_{p'} | f_p \rangle dp = \int_{-\infty}^{\infty} c(p) \delta(p - p') dp = c(p')$$

The eigenfuctions and eigenvalues of the position operator:

$$\hat{x}g_{y}(x) = xg_{y}(x) = yg_{y}(y) \Rightarrow g_{y}(x) = A\delta(x - y)$$

$$\downarrow$$

$$\int_{-\infty}^{\infty} g_{y'}^{*}g_{y}(x)dx = |A|^{2} \int_{-\infty}^{\infty} \delta(x - y')\delta(x - y)dx = |A|^{2}\delta(y - y')$$

$$\downarrow$$

$$g_{y}(x) = \delta(x - y)$$

3.4 Generalized Statistical Interpretation

Observable: Q(x, p)

State: $\Psi(x,t)$

One of eigenvalues: $\hat{Q}(x - i\hbar d/dx)$

The probability of getting eigenvalues(orthonormal):

1. Discrete spectrum

• probability of getting q_n

$$|c_n|^2$$
, where $c_n = \langle f_n | \Psi \rangle$

• Complete:

$$\Psi(x,t) = \sum_{n} c_n(t) f_n(x)$$

$$c_n(t) = \langle f_n | \Psi \rangle = \int f_n(x)^* \Psi(x,t) dx$$

$$\sum_{n} |c_n|^2 = 1$$

• The expectation value of Q:

$$\langle Q \rangle = \left\langle \Psi | \hat{Q} \Psi \right\rangle = \sum_{n} \sum_{n'} c_{n'}^* c_n q_n \left\langle f_{n'} | f_n \right\rangle = \sum_{n} q_n |c_n|^2$$

2. Continuous spectrum

• probability of getting a result in the range dz

$$|c(z)|^2 dz$$
, where $c(z) = \langle f_z | \Psi \rangle$

• For position measurements:

$$c(y) = \langle g_y | \Psi \rangle = \int_{-\infty}^{\infty} \delta(x - y) \Psi(x, t) dx = \Psi(y, t)$$

• For momentum measurements:

$$c(p) = \langle f_p | \Psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x, t) dx$$

• Fourier transformation:

$$\Phi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x,t) dx$$

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{ipx/\hbar} \Phi(p,t) dp$$

• Expectation:

$$\langle Q(x,p,t)\rangle = \begin{cases} \int \Psi^* \hat{Q}\left(x,-i\hbar\frac{\partial}{\partial x},t\right) \Psi \,\mathrm{d}x, & \text{in position space} \\ \int \Phi^* \hat{Q}\left(i\hbar\frac{\partial}{\partial p},p,t\right) \Phi \,\mathrm{d}p, & \text{in momentum space} \end{cases}$$

3.5 The Uncertainty Principle

3.5.1 Proof of the Generalized Uncertainty Principle

$$f \equiv \left(\hat{A} - \langle A \rangle\right) \Psi \quad \rightarrow \quad \sigma_A^2 \sigma_B^2 = \langle f | f \rangle \langle g | g \rangle \geqslant |\langle f | g \rangle|^2$$

$$|z|^2 \geqslant [\operatorname{Im}(z)]^2 = \left[\frac{1}{2i}(z - z^*)\right]^2 \quad \Rightarrow \quad \sigma_A^2 \sigma_B^2 \geqslant \left(\frac{1}{2i}\left[\langle f | g \rangle - \langle g | f \rangle\right]\right)^2$$

$$\langle f | g \rangle - \langle g | f \rangle = \left\langle \hat{A} \hat{B} \right\rangle - \langle A \rangle \langle B \rangle - \left(\left\langle \hat{B} \hat{A} \right\rangle - \langle A \rangle \langle B \rangle\right) = \left\langle \left[\hat{A}, \hat{B}\right]\right\rangle$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sigma_A^2 \sigma_B^2 \geqslant \left(\frac{1}{2i}\left\langle \left[\hat{A}, \hat{B}\right]\right\rangle\right)^2$$

3.5.2 The Minimum-Uncertainty Wave Packet

$$g(x) = iaf(x), \quad \text{where } a \text{ is real}$$

$$\Rightarrow \left(-i\hbar \frac{\mathrm{d}}{\mathrm{d}x} - \langle p \rangle\right) \Psi = ia(x - \langle x \rangle) \Psi$$

$$\Rightarrow \Psi(x) = Ae^{-a(x - \langle x \rangle)^2/2\hbar} e^{i\langle p \rangle/\hbar}$$

3.5.3 The Energy-Time Uncertainty Principle

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \langle Q \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \Psi | \hat{Q} \Psi \right\rangle \\ i\hbar \frac{\partial \Psi}{\partial t} = \hat{H} \Psi, \quad \text{where} \quad H = \frac{p^2}{2m} + V \\ \left\langle \hat{H} \Phi \middle| \hat{Q} \Phi \right\rangle = \left\langle \Phi \middle| \hat{H} \hat{Q} \Phi \right\rangle \end{cases} \Rightarrow$$

$$\boxed{\frac{\mathrm{d}}{\mathrm{d}t} \langle Q \rangle = \frac{i}{\hbar} \left\langle \left[\hat{H}, \hat{Q} \right] \right\rangle + \left\langle \frac{\partial \hat{Q}}{\partial t} \right\rangle}$$

Assume that Q does not depend explicity on t:

$$\sigma_H^2 \sigma_Q^2 \geqslant \left(\frac{1}{2i} \left\langle \left[\hat{H}, \hat{Q} \right] \right\rangle \right)^2 = \left(\frac{\hbar}{2}\right)^2 \left(\frac{d \langle Q \rangle}{dt}\right)^2$$

$$\Delta E \equiv \sigma_H$$

$$\Delta t \equiv \frac{\sigma_Q}{|d \langle Q \rangle/dt|} \Rightarrow \Delta t \Delta E \geqslant \frac{\hbar}{2}$$

3.6 Vectors and Operators

3.6.1 Bases in Hillbert Space

$$\Psi(x,t) = \langle x|\mathcal{S}(t)\rangle
\Phi(p,t) = \langle p|\mathcal{S}(t)\rangle
c_n(t) = \langle n|\mathcal{S}(t)\rangle
|\mathcal{S}(t)\rangle \to \int \Psi(y,t)\delta(x-y) \,dy = \int \Phi(p,t) \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} \,dp
= \sum c_n e^{-iE_nt/\hbar} \psi_n(x)$$

Operator "Trandform"

$$|\beta\rangle = \hat{Q} |\alpha\rangle, \quad \text{components} \begin{cases} |\alpha\rangle = \sum_{n} a_{n} |e_{n}\rangle & a_{n} = \langle e_{n} |\alpha\rangle \\ |\beta\rangle = \sum_{n} b_{n} |e_{n}\rangle & b_{n} = \langle e_{n} |\beta\rangle \end{cases}$$

$$\Rightarrow \qquad \sum_{n} b_{n} \langle e_{m} |e_{n}\rangle = \sum_{n} a_{n} \langle e_{m} |\hat{Q}|e_{n}\rangle & \rightarrow \langle e_{m} |\hat{Q}|e_{n}\rangle \equiv Q_{mn}$$

$$\Rightarrow \qquad b_{m} = \sum_{n} Q_{mn} a_{n}$$

Schrodinger equation:

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\mathcal{S}(t)\rangle = \hat{H} |\mathcal{S}(t)\rangle,$$
 Time-dependent $\hat{H}|s\rangle = E|s\rangle,$ Time-independent

Particular example of vectors:

$$\hat{x} \text{ (the position operator)} \rightarrow \begin{cases} x & \text{(in positoin space)} \\ i\hbar\partial/\partial p & \text{(in momentum space)} \end{cases}$$

$$\hat{p} \text{ (the momentum operator)} \rightarrow \begin{cases} -i\hbar\partial/\partial x & \text{(in positoin space)} \\ p & \text{(in momentum space)} \end{cases}$$

3.6.2 Dirac Notation

bra: $\langle \alpha |$ ket: $|\beta \rangle$

Orthonormal basis (complete):

• Discrete

$$\langle e_m | e_n \rangle = \delta_{mn} \qquad \rightarrow \qquad \sum_n |e_n \rangle \langle e_n| = 1$$

• Continuous

$$\langle e_z | e_{z'} \rangle = \delta(z - z')$$
 $\rightarrow \int |e_z \rangle \langle e_{z'}| dz = 1$

Baker-Campbell-Hausdrff formula:

$$e^{\hat{A}+\hat{B}} = e^{\hat{A}}e^{\hat{B}}e^{-\hat{C}/2}, \quad \text{where} \quad \hat{C} = \left[\hat{A}, \hat{B}\right]$$

3.6.3 Changing Bases in Dirac Notation

the position eigenstats :
$$|x\rangle$$

$$1 = \int dx \, |x\rangle\langle x|$$

$$\rightarrow |\mathcal{S}(t)\rangle = \int dx \, |x\rangle\langle x|\mathcal{S}(t)\rangle \equiv \int \Psi(x,t) \, |x\rangle \, \mathrm{d}x$$
 the momentum eigenstats : $|p\rangle$
$$1 = \int dp \, |p\rangle\langle p|$$

$$\rightarrow |\mathcal{S}(t)\rangle = \int dp \, |p\rangle\langle p|\mathcal{S}(t)\rangle \equiv \int \Phi(p,t) \, |p\rangle \, \mathrm{d}p$$
 the energy eigenstats : $|n\rangle$
$$1 = \sum |n\rangle\langle n|$$

$$\rightarrow |\mathcal{S}(t)\rangle = \sum_{n} |n\rangle\langle n|\mathcal{S}(t)\rangle \equiv \sum c_n(t) \, |n\rangle$$

Operators act on kets

$$\langle x|\hat{x}|\mathcal{S}(t)\rangle$$
 = action of position operator in x basis = $x\Psi(x,t)$
 $\langle p|\hat{x}|\mathcal{S}(t)\rangle$ = action of position operator in p basis = $i\hbar\frac{\partial\Phi}{\partial p}$

Proof:

$$\langle p|\hat{x}|\mathcal{S}(t)\rangle = \left\langle p\left|\hat{x}\int dx|x\rangle\langle x|\right|\mathcal{S}(t)\right\rangle = \int\langle p|x|x\rangle\langle x|\mathcal{S}(t)\rangle dx = i\hbar\frac{\partial}{\partial p}\langle p|\mathcal{S}(t)\rangle$$

3.7 Wave Functions in Position and Momentum Space(Additional Control of the Contr

NOTE: x, f(x), p are operators, different form all above

3.7.1 Position-Space Wave Function

The base ket used are the position kets satisfying

$$x|x'\rangle = x'|x'\rangle$$
 $\langle x''|x'\rangle = \delta(x'' - x')$

A physical state can be expanded in terms of x'

$$|\alpha\rangle = \int dx'|x'\rangle\langle x'|\alpha\rangle$$
$$|\langle x'|\alpha\rangle|^2 dx' \quad \text{probablility}$$
$$\langle x'|\alpha\rangle \equiv \psi_{\alpha}(x') \quad \text{wave function}$$

Using the completness of $|x'\rangle$, we have

$$\langle \beta | \alpha \rangle = \int dx' \langle \beta | x' \rangle \langle x' | \alpha \rangle = \int dx' \psi_{\beta}^*(x') \psi_{\alpha}^*(x')$$

the probability amplitude for state $|\alpha\rangle$ to be found in state $|\beta\rangle$ f(x) is a function of x

$$\langle x'|f(x)|x''\rangle = (\langle x'|) \cdot (f(x'')|x'') = f(x')\delta(x' - x'')$$

$$\langle \beta|f(x)|\alpha\rangle = \int dx' \int dx'' \langle \beta|x'\rangle \langle x'|f(x)|x''\rangle \langle x''|\alpha\rangle$$

$$= \int dx' \,\psi_{\beta}^*(x')f(x')\psi_{\alpha}(x')$$

3.7.2 Momentum Operator in the Position Basis

$$p|\alpha\rangle = \int dx'|x'\rangle \left(-i\hbar \frac{\partial}{\partial x'}\langle x'|\alpha\rangle\right)$$
$$\Rightarrow \langle x'|p|\alpha\rangle = -i\hbar \frac{\partial}{\partial x'}\langle x'|\alpha\rangle$$

Properties:

$$\langle x'|p^n|x''\rangle = (-i\hbar)^n \frac{\partial^n}{\partial x'^n} \delta(x' - x'')$$
$$\langle \beta|p^n|\alpha\rangle = \int dx' \, \psi_\beta^*(x') \left((-i\hbar)^n \frac{\partial^n}{\partial x'^n} \right) \psi_\alpha(x')$$

3.7.3 Momentum-Space Wave Function

The base eigenkets in the p-basis specify

$$p|p'\rangle = p'|p'\rangle$$
 $\langle p'|p''\rangle = \delta(p'-p'')$

Same way as $|x'\rangle$

$$\begin{split} |\alpha\rangle &= \int dp'|p'\rangle\langle p'|\alpha\rangle \\ |\langle p'|\alpha\rangle|^2 dp' & \text{probablility} \\ \langle p'|\alpha\rangle &\equiv \phi_\alpha(p') & \text{momentum-space wave function} \end{split}$$

Transformation function from x to p: $\langle x'|p'\rangle$

$$\langle x'|p|p'\rangle = -i\hbar \frac{\partial}{\partial x'} \langle x'|p'\rangle = p'\langle x'|p'\rangle$$

$$\Rightarrow \langle x'|p'\rangle = N \exp\left(\frac{ip'x'}{\hbar}\right)$$

Discussion:

- the probablility amplitude for $|p'\rangle$ specified by p' to be found at position x'
- the wave function for $|p'\rangle$, referred to as the momentum eigenfuction (still in the x-space)

• Nomalization:
$$N = \frac{1}{\sqrt{2\pi\hbar}}$$

$$\langle x'|x'' \rangle = \int dp' \langle x'|p' \rangle \langle p'|x'' \rangle$$

$$\delta(x'-x'') = |N|^2 \int dp' \exp\left[\frac{ip'(x'-x'')}{\hbar}\right]$$

$$= 2\pi\hbar\delta(x'-x'')$$

Rewrite:

$$\begin{cases} \langle x'|\alpha\rangle = \int dp'\langle x'|p'\rangle\langle p'|\alpha\rangle & \qquad \Leftrightarrow \qquad \psi_{\alpha}(x') = \left[\frac{1}{\sqrt{2\pi\hbar}}\right]\int dp'\exp\left(\frac{ip'x'}{\hbar}\right)\phi_{\alpha}(p') \\ \langle p'|\alpha\rangle = \int dx'\langle p'|x'\rangle\langle x'|\alpha\rangle & \qquad \Leftrightarrow \qquad \phi_{\alpha}(p') = \left[\frac{1}{\sqrt{2\pi\hbar}}\right]\int dx'\exp\left(\frac{-ip'x'}{\hbar}\right)\psi_{\alpha}(x') \end{cases}$$

Chapter 4

Quantum Mechanics in Three Dimensionss

4.1 The Schroding Equation

4.1.1 Cartesian Coordinates

Laplacian

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Schroding's Equation

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi$$

Canonical commutation relations

$$[r_i, p_j] = i\hbar \delta_{ij}$$
 $[r_i, r_j] = [p_i, p_j] = 0$

Three-Dimensional of Ehrenfest's theorem

$$\frac{\mathrm{d}}{\mathrm{d}r}\langle\mathbf{r}\rangle = \frac{1}{m}\langle\mathbf{p}\rangle, \quad \text{and} \quad \frac{\mathrm{d}}{\mathrm{d}t}\langle\mathbf{p}\rangle = \langle-\nabla V\rangle$$

Heisenberg's uncertainty principle

$$\sigma_{x,y,z}\sigma_{p_x,p_y,p_z} \geqslant \hbar/2$$

4.1.2 Spherical Coordinates

Time-independent Schrodinger equation

$$-\frac{\hbar^2}{2m} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin \theta^2} \left(\frac{\partial^2 \psi}{\partial \phi^2} \right) \right] + V \psi = E \psi$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\psi(r, \theta, \phi) = R(r) Y(\theta, \phi) \qquad \Rightarrow \qquad \frac{1}{R} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}R}{\mathrm{d}r} \right) - \frac{2mr^2}{\hbar^2} [V(r) - E] = \ell(\ell + 1)$$

$$\frac{1}{Y} \left\{ \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right\} = -\ell(\ell + 1)$$

4.1.3 The Angular Equation

$$Y(\theta, \phi) = \Theta(\theta)\Phi(\phi) \qquad \Rightarrow \qquad \frac{1}{\Theta} \left[\sin \theta \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) \right] + \ell(\ell+1)\sin^2 \theta = m^2$$
$$\frac{1}{\Phi} \frac{\mathrm{d}^2\Theta}{\mathrm{d}\theta^2} = -m^2$$

Associated Legendre function

$$P_{\ell}^{m}(x) \equiv (-1)^{m} (1 - x^{2})^{m/2} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{m} P_{\ell}(x)$$

Legendre polynomial

$$P_{\ell}(x) \equiv \frac{1}{2^{\ell}\ell!} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{\ell} (x^2 - 1)^{\ell}$$

Spherical harmonics

$$Y_{\ell}^{m}(\theta,\phi) = \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} e^{im\phi} P_{\ell}^{m}(\cos\theta)$$

- $\ell = 0, 1, 2 \cdots$
- $m = -\ell, -\ell + 1, \cdots, -1, 0, 1, \cdots, \ell 1, \ell$

Nomalization

$$\int_0^\infty |R|^2 r^2 dr = 1 \qquad \int_0^\pi \int_0^{2\pi} |Y|^2 \sin\theta d\theta d\phi = 1$$

orthognal

$$\int_{0}^{\pi} \int_{0}^{2\pi} [Y_{\ell}^{m}(\theta,\phi)]^{*} [Y_{\ell'}^{m'}(\theta,\phi)] \sin \theta d\theta d\phi = \delta_{\ell\ell'} \delta_{mm'}$$

4.1.4 The Radial Equation

$$u(r) \equiv rR(r)$$

$$\Rightarrow -\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left[V + \frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}\right]u = Eu$$

Effective potential

$$V_{\text{eff}} = V + \frac{\hbar^2}{2m} \frac{\ell(\ell+1)}{r^2}$$

Nomalization

$$\int_0^\infty |u|^2 \mathrm{d}r = 1$$

4.2 The Hydrogen Atom

$$V(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}$$

4.2.1 The Radial Wave Function

Let

$$\kappa \equiv \frac{\sqrt{-2m_e E}}{\hbar} \qquad \rho \equiv \kappa r \qquad \rho_0 \equiv \frac{m_e e^2}{2\pi\epsilon_0 \hbar^2 \kappa}$$

$$\Rightarrow \qquad \frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} = \left[1 - \frac{\rho_0}{\rho} + \frac{\ell(\ell+1)}{\rho^2}\right] u$$

Asymptitic behavior

• As $\rho \to \infty$

$$u(\rho) \sim Ae^{-\rho}$$

• As $\rho \to 0$

$$u(\rho) = C\rho^{\ell+1}$$

Peel off Asymptitic behavior

$$u(\rho) = \rho^{\ell+1} e^{\rho} v(\rho) \rightarrow v(\rho) = \sum_{j=0}^{\infty} c_j \rho^j \rightarrow c_{j+1} = \left\{ \frac{2(j+\ell+1) - \rho_0}{(j+1)(j+2\ell+2)} \right\} c_j$$

For large j

$$c_j \approx \frac{2^j}{j!} c_0$$

Then

$$v(\rho) = c_0 e^{2\rho} \longrightarrow u(\rho) = c_0 \rho^{\ell+1} e^{\rho}$$

The series must terminate

$$c_{N-1} \neq 0$$
 but $c_N = 0$

$$\begin{cases} 2(N+\ell) - \rho_0 = 0 \\ n \equiv N+\ell \end{cases} \Rightarrow \rho_0 = 2n \Rightarrow$$

Bohr formula

$$E_n = -\left[\frac{m_e}{2\hbar^2} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2\right] \frac{1}{n^2} = \frac{E_1}{n^2}, \qquad n = 1, 2, 3, \dots$$

Summary

- n: principal quantum number
- ℓ : azimuthal quantum number
- m: magnetic quantum number

Ground State

The polynomial $v(\rho)$

$$v(\rho) = L_{n-\ell-1}^{2\ell+1}(2\rho)$$

- Associated Laguerre polynomial
- qth Laguerre polynomial

$$\psi_{n\ell m} = \sqrt{\left(\frac{2}{na}\right)^3 \frac{(n-\ell-1)!}{2n(n+\ell)!}} e^{-r/na} \left(\frac{2r}{na}\right)^{\ell} \left[L_{n-\ell-1}^{2\ell+1}(2r/na)\right] Y_{\ell}^m(\theta,\phi)$$

4.2.2 The Spectrum of Hydrogen

$$E_{\gamma} = E_i - E_f = -13.6 \text{eV} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
$$\frac{1}{\lambda} = \mathcal{R} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

4.3 Angular Momentum

$$\mathbf{L} = \mathbf{r} \times \mathbf{p}$$

$$L_x = yp_z - zp_y, \quad L_y = zp_x - xp_z, \quad L_z = xp_y - yp_x$$

4.3.1 Eigenvalues

Fundamental commutation relations for angular momentum

$$[L_x, L_y] = i\hbar L_z$$
 $[L^2, L_x] = 0$ $[L^2, \mathbf{L}] = 0$ $\sigma_{L_x} \sigma_{L_y} \geqslant \frac{\hbar}{2} |\langle L_z \rangle|$

Find simultaneous eigenstates

$$L^2 f = \lambda f$$
 and $L_z f = \mu f$

Let

$$L_{\pm} \equiv L_x \pm iL_y \qquad \rightarrow \qquad \begin{cases} \left[L_z, L_{\pm}\right] = \pm \hbar L_{\pm} \\ \left[L^2, L_{\pm}\right] = 0 \\ L^2 = L_{\pm}L_{\mp} + L_z^2 \mp \hbar L_z \end{cases} \Rightarrow$$

f is an eigenfuction of L^2 and L_z

$$L^{2}(L_{\pm}f) = L_{\pm}(L^{2}f) = L_{\pm}(\lambda f)$$

$$= \lambda(L_{\pm}f)$$

$$L_{z}(L_{\pm}f) = (L_{z}L_{\pm} - L_{\pm}L_{z})f + L_{\pm}L_{z}f = \pm \hbar L_{\pm}f + L_{\pm}(\mu f)$$

$$= (\mu \pm \hbar)(L_{\pm}f)$$

• top rung

$$L_{+}f_{t} = 0$$

$$L^{2}f_{t} = (L_{-}L_{+} + L_{z}^{2} + \hbar L_{z})f_{t} = \hbar^{2}\ell(\ell+1)f_{t}$$

• bottom rung

let $L_z = \hbar \ell f_t$

$$L_-f_b=0$$
 let $L_z=\hbar \bar{\ell} f_b$
$$\lambda=\hbar \bar{\ell} (\bar{\ell}-1)$$

• compare them

$$\bar{\ell} = \ell + 1; \qquad \bar{\ell} = -\ell; \qquad \ell = -\ell + N \implies$$

$$\boxed{L^2 f_\ell^m = \hbar^2 \ell (\ell + 1) f_\ell^m \qquad L_z f_\ell^m = \hbar m f_\ell^m}$$

where

$$\ell = 0, 1/2, 1, 3/2, \dots; \quad m = -\ell, -\ell + 1, \dots, \ell - 1, \ell$$

4.3.2 Eigenfunctions

$$\mathbf{L} = -i\hbar(\mathbf{r} \times \nabla) \quad \rightarrow \quad \nabla = \hat{r}\frac{\partial}{\partial r} + \hat{\theta}\frac{1}{r}\frac{\partial}{\partial \theta} + \hat{\phi}\frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}$$

$$\mathbf{L} = -i\hbar\left(\hat{\phi}\frac{\partial}{\partial \theta} - \hat{\theta}\frac{1}{\sin\theta}\frac{\partial}{\partial \phi}\right)$$

$$\begin{cases} \hat{\theta} = (\cos\theta\cos\phi)\hat{\imath} + (\cos\theta\sin\phi)\hat{\jmath} + (-\sin\theta)\hat{k} \\ \hat{\phi} = -\sin\phi\hat{\imath} + \cos\phi\hat{\jmath} \end{cases} \Rightarrow \qquad \boxed{L_z = -i\hbar\frac{\partial}{\partial \phi}}$$

$$\boxed{L^2 = -\hbar^2\left[\frac{1}{\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial}{\partial \theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial \phi^2}\right]}$$

Conclusion: Spherical harmonics are the eigenfuctions of L^2 and L_z

4.4 Spin

$$[S_x, S_y] = i\hbar S_z \qquad S_{\pm} \pm iS_y$$

$$S^2 |s m\rangle = \hbar^2 s(s+1) |s m\rangle$$

$$S_z |s m\rangle = \hbar m |s m\rangle$$

$$S_+ |s m\rangle = \hbar \sqrt{s(s+1) - m(m \pm 1)} |s (m \pm 1)\rangle$$

where

$$s = 0, \frac{1}{2}, 2, \frac{3}{2}, \dots$$
 $m = -s, -s + 1, \dots, s - 1, s$

4.4.1 Spin 1/2

for s = 1/2, there are two eigenstates

- spin up (\uparrow): $\left|\frac{1}{2}\frac{1}{2}\right\rangle$
- spin down (\downarrow): $\left| \frac{1}{2} \left(-\frac{1}{2} \right) \right\rangle$

spinor

$$\chi = \begin{pmatrix} a \\ b \end{pmatrix} = a\chi_+ + b\chi_-$$

- spin up (†): $\chi_+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- spin down (\downarrow): $\chi_- = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

in Matrix

$$\begin{cases} \mathsf{S}^2 \chi_+ = \frac{3}{4} \hbar^2 \chi_+ \\ \mathsf{S}^2 \chi_- = \frac{3}{4} \hbar^2 \chi_- \end{cases} \Rightarrow \mathsf{S}^2 = \frac{3}{4} \hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{cases} \mathsf{S}_{z}\chi_{+} = \frac{\hbar}{2}\chi_{+} \\ \mathsf{S}_{z}\chi_{-} = -\frac{\hbar}{2}\chi_{-} \end{cases} \Rightarrow \mathsf{S}_{z} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\begin{cases} \mathsf{S}_{+}\chi_{-} = \hbar\chi_{+} \\ \mathsf{S}_{-}\chi_{+} = \hbar\chi_{-} \\ \mathsf{S}_{+}\chi_{+} = \mathsf{S}_{-}\chi_{-} = 0 \end{cases} \Rightarrow \mathsf{S}_{z} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\Leftrightarrow \mathsf{S}_{z} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\Leftrightarrow \mathsf{S}_{z} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\Leftrightarrow \mathsf{S}_{z} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\Leftrightarrow \mathsf{S}_{z} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\Leftrightarrow \mathsf{S}_{z} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\Leftrightarrow \mathsf{S}_{z} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Pauli spin Matrix

$$\mathsf{S} = \frac{\hbar}{2} \boldsymbol{\sigma} \qquad \Rightarrow \qquad \boxed{\sigma_x \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_y \equiv \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_z \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}$$

The eigenspinors of S are:

$$\chi_{+} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \left(\text{eigenvalue} + \frac{\hbar}{2} \right); \quad \chi_{-} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \left(\text{eigenvalue} - \frac{\hbar}{2} \right)$$

The eigenspinors of S_x are: (normalized)

$$\chi_{+}^{(x)} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}, \left(\text{eigenvalue} + \frac{\hbar}{2} \right); \quad \chi_{-}^{(x)} = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}, \left(\text{eigenvalue} - \frac{\hbar}{2} \right)$$

$$\Rightarrow \qquad \chi = \left(\frac{a+b}{\sqrt{2}} \right) \chi_{+}^{(x)} + \left(\frac{a-b}{\sqrt{2}} \right) \chi_{-}^{(x)}$$

4.4.2 Electron in a Magnetic Field

Hamiltonian matrix for a spinning charged particle, at rest in B

$$\begin{cases} \boldsymbol{\mu} = \gamma \mathbf{S} \\ H = -\boldsymbol{\mu} \cdot \mathbf{B} \end{cases} \Rightarrow \mathbf{H} = -\gamma \mathbf{B} \cdot \mathbf{S}$$

- μ : magnetic dipole momentum
- γ : gyromagnetic ratio
- 1. Larmor precession:

$$\mathbf{B} = B_0 \hat{k} \quad \Rightarrow \quad \mathbf{H} = -\gamma B_0 \mathbf{S}_z = -\frac{\gamma B_0 \hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\Rightarrow \quad \text{eigenstates} \begin{cases} \chi_+, \text{ with } E_+ = -(\gamma B_0 \hbar)/2 \\ \chi_-, \text{ with } E_- = +(\gamma B_0 \hbar)/2 \end{cases}$$

$$i\hbar \frac{\partial \chi}{\partial t} = \mathbf{H}\chi \quad \Rightarrow$$

$$\chi(t) = a\chi_+ e^{-iE_+ t/\hbar} + b\chi_- e^{-iE_- t/\hbar} = \begin{pmatrix} ae^{i\gamma B_0 t/2} \\ be^{-i\gamma B_0 t/2} \end{pmatrix}$$

$$|a|^{2} + |b|^{2} = 1 \implies \chi(t) = \begin{pmatrix} \cos(\alpha/2)e^{i\gamma B_{0}t/2} \\ \sin(\alpha/2)e^{-i\gamma B_{0}t/2} \end{pmatrix}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\langle S_{x} \rangle = \chi(t)^{\dagger} S_{x} \chi(t) = \frac{\hbar}{2} \sin \alpha \cos(\gamma B_{0}t)$$

$$\langle S_{y} \rangle = \chi(t)^{\dagger} S_{y} \chi(t) = -\frac{\hbar}{2} \sin \alpha \sin(\gamma B_{0}t)$$

$$\langle S_{z} \rangle = \chi(t)^{\dagger} S_{z} \chi(t) = \frac{\hbar}{2} \cos \alpha$$

Larmor frequency:

$$\omega = \gamma B_0$$

2. The Stern-Gerlach experiment

4.4.3 Addition of Angular Momenta

Two Particles

$$S^{(1)^{2}} |s_{1}s_{2}m_{1}m_{2}\rangle = s_{1}(s_{1}+1)\hbar^{2} |s_{1}s_{2}m_{1}m_{2}\rangle$$

$$S^{(2)^{2}} |s_{1}s_{2}m_{1}m_{2}\rangle = s_{2}(s_{2}+1)\hbar^{2} |s_{1}s_{2}m_{1}m_{2}\rangle$$

$$S_{z}^{(1)} |s_{1}s_{2}m_{1}m_{2}\rangle = m_{1}\hbar |s_{1}s_{2}m_{1}m_{2}\rangle$$

$$S_{z}^{(2)} |s_{1}s_{2}m_{1}m_{2}\rangle = m_{2}\hbar |s_{1}s_{2}m_{1}m_{2}\rangle$$

totol angular momentum

$$\mathbf{S} = \mathbf{S}^{(1)} + \mathbf{S}^{(2)}$$

z component

$$S_{z} |s_{1}s_{2}m_{1}m_{2}\rangle = S_{z}^{(1)} |s_{1}s_{2}m_{1}m_{2}\rangle + S_{z}^{(2)} |s_{1}s_{2}m_{1}m_{2}\rangle$$

$$= \hbar(m_{1} + m_{2}) |s_{1}s_{2}m_{1}m_{2}\rangle = \hbar m |s_{1}s_{2}m_{1}m_{2}\rangle \Rightarrow m = m_{1} + m_{2}$$

Consider the spin-1/2 Particles

$$\begin{cases}
|11\rangle = |\uparrow\uparrow\rangle \\
|10\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \\
|1-1\rangle = |\downarrow\downarrow\rangle
\end{cases} s = 1 \text{ (triplet)}$$

• triplet states are eigenvectors of S^2 with eigenvalue $2\hbar^2$

$$\boxed{\left\{ \left| 0 \, 0 \right\rangle \, = \, \frac{1}{\sqrt{2}} (\left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle) \right\} \quad s = 0 \, (\text{singlet})}$$

ullet singlet state is an eigenvector of S^2 with eigenvalue 0

Clebsch-Gordan coefficients

$$|s\,m\rangle = \sum_{m_1+m_2=m} C_{m_1m_2m}^{s_1s_2s} |s_1\,s_2\,m_1\,m_2\rangle$$

4.5 Electromagnetic Interactions

4.5.1 Minimal Coupling

$$i\hbar \frac{\partial \Psi}{\partial t} = \left[\frac{1}{2m} (-i\hbar \nabla - q\mathbf{A})^2 + q\varphi \right] \Psi$$

- $\bullet\,$ quantum implementation of the Lorentz force law
- minimal coupling rule

4.5.2 The Aharonov-Bohm Effect

Chapter 5

Identical Particles

5.1 Two-Particle System

- $\Psi(\mathbf{r}_1,\mathbf{r}_2,t)$
- $i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi$, where $\hat{H} = -\frac{\hbar^2}{2m_1}\nabla_1^2 \frac{\hbar^2}{2m_2}\nabla_2^2 + V(\mathbf{r}_1, \mathbf{r}_2, t)$
- $\int |\Psi(\mathbf{r}_1, \mathbf{r}_2, t)|^2 d^3 \mathbf{r}_1 d^3 \mathbf{r}_2 = 1$
- $\Psi(\mathbf{r}_1, \mathbf{r}_2, t) = \psi(\mathbf{r}_1, \mathbf{r}_2)e^{-iEt/\hbar}$
- $-\frac{\hbar^2}{2m_1}\nabla_1^2\psi \frac{\hbar^2}{2m_2}\nabla_2^2\psi + V\psi = E\psi$
- 1. Nointeracting Particles

$$V(\mathbf{r}_1, \mathbf{r}_2) = V(\mathbf{r}_1) + V(\mathbf{r}_2)$$

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, t) = \psi_a(\mathbf{r}_1)\psi_b(\mathbf{r}_2)e^{-i(E_a + E_b)t/\hbar} = \Psi_a(\mathbf{r}_1, t)\Psi_b(\mathbf{r}_2, t)$$

2. Central potential (helium atom)

$$V(|\mathbf{r}_1 - \mathbf{r}_2|) \leftarrow V(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{4\pi\epsilon_0} \left(-\frac{2e^2}{|\mathbf{r}_1|} - \frac{2e^2}{|\mathbf{r}_2|} + \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} \right)$$

5.1.1 Bosons and Fermions

1. Bosons state

$$\psi_+(\mathbf{r}_1,\mathbf{r}_2) = A[\psi_a(\mathbf{r}_1)\psi_b(\mathbf{r}_2) + \psi_b(\mathbf{r}_1)\psi_a(\mathbf{r}_2)] \qquad A = \frac{1}{\sqrt{2}}$$

- symmetric under interchange: $\psi_{+}(\mathbf{r}_1, \mathbf{r}_2) = \psi_{+}(\mathbf{r}_2, \mathbf{r}_1)$
- all particles with integer spin are bosons
- 2. Fermions state

$$\psi_{-}(\mathbf{r}_1, \mathbf{r}_2) = A[\psi_a(\mathbf{r}_1)\psi_b(\mathbf{r}_2) - \psi_b(\mathbf{r}_1)\psi_a(\mathbf{r}_2)] \qquad A = \frac{1}{\sqrt{2}}$$

- symmetric under interchange: $\psi_{-}(\mathbf{r}_1, \mathbf{r}_2) = -\psi_{-}(\mathbf{r}_2, \mathbf{r}_1)$
- all particles with half integer spin are fermions
- Pauli exclusion principle: two identical fermions cannot occupy the same state

$$\psi_{-}(\mathbf{r}_1, \mathbf{r}_2) = A[\psi_a(\mathbf{r}_1)\psi_a(\mathbf{r}_2) - \psi_a(\mathbf{r}_1)\psi_a(\mathbf{r}_2)] = 0$$

5.1.2 Exchange Forces

Suppose $\psi(x_1, x_2) = \psi_a(x_1)\psi_b(x_2)$ calculate $\langle (x_1 - x_2)^2 \rangle = \langle x_1^2 \rangle + \langle x_2^2 \rangle - 2 \langle x_1 x_2 \rangle$

1. Distinguishable particles

$$\langle (x_1 - x_2)^2 \rangle_d = \langle x^2 \rangle_a + \langle x^2 \rangle_b + 2 \langle x \rangle_a \langle x \rangle_b$$

2. Identical particles

$$\langle x_1^2 \rangle = \langle x_2^2 \rangle = \frac{1}{2} (\langle x^2 \rangle_a + \langle x^2 \rangle_b)$$
$$\langle x_1 x_2 \rangle = \langle x \rangle_a \langle x \rangle_b \pm |\langle x \rangle_{ab}|^2$$

where

$$\langle x \rangle_{ab} \equiv \int x \psi_a(x)^* \psi_b(x) \mathrm{d}x$$

thus

$$\langle (x_1 - x_2)^2 \rangle_{\pm} = \langle x^2 \rangle_a + \langle x^2 \rangle_b + 2 \langle x \rangle_a \langle x \rangle_b \mp 2 |\langle x \rangle_{ab}|^2$$

$$\Rightarrow \langle (\Delta x)^2 \rangle_{\pm} = \langle (\Delta x)^2 \rangle_d \mp 2 |\langle x \rangle_{ab}|^2$$

Exchange force: (if $\langle x \rangle_{ab} \neq 0$)

- force of attraction between identical bosons
- force of repulsion between identical fermions

5.1.3 Spin

Pauli principle: two electrons in a given position state as long as their spins are in the singlet configuration

$$\psi(\mathbf{r}_1, \mathbf{r}_2)\chi(1, 2) = -\psi(\mathbf{r}_2, \mathbf{r}_1)\chi(2, 1)$$

5.1.4 Generlized Symmetrization Principle

general statement, if you have n identical particles

$$|(1,2,\cdots,i,\cdots,j,\cdots,n)\rangle = \pm |(1,2,\cdots,j,\cdots,i,\cdots,n)\rangle$$

5.2 Atoms

$$\hat{H} = \sum_{j=1}^{Z} \left\{ -\frac{\hbar^2}{2m} \nabla_j^2 - \left(\frac{1}{4\pi\epsilon_0} \right) \frac{Ze^2}{r_j} \right\} + \frac{1}{2} \left(\frac{1}{4\pi\epsilon_0} \right) \sum_{j \neq k}^{Z} \frac{e^2}{|\mathbf{r}_j - \mathbf{r}_j|}$$

- \bullet Z: atomic number
- Ze: electric charge
- in curly brackets: kinetic plus potential energy of the jth electron
- the second sum: the potential energy associated with the mutual repulsion of the electrons

5.2.1 Helium

$$\hat{H} = \left\{ -\frac{\hbar^2}{2m} \nabla_1^2 - \left(\frac{1}{4\pi\epsilon_0} \right) \frac{2e^2}{r_1} \right\} + \left\{ -\frac{\hbar^2}{2m} \nabla_2^2 - \left(\frac{1}{4\pi\epsilon_0} \right) \frac{2e^2}{r_2} \right\} + \frac{1}{4\pi\epsilon_0} \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

ignore the last term

$$\psi(\mathbf{r}_1, \mathbf{r}_2) = \psi_{n\ell m}(\mathbf{r}_1)\psi_{n'\ell'm'}(\mathbf{r}_2)$$
 with $E = 4(E_n + E_{n'})$

ground state

$$\psi_0(\mathbf{r}_1, \mathbf{r}_2) = \psi_{100}(\mathbf{r}_1)\psi_{100}(\mathbf{r}_2) = \frac{8}{\pi a^3} e^{-2(r_1 + r_2)/a}$$
 with $E = 8(-13.6 \text{ eV}) = -109 \text{ eV}$

- symmetric function
- singlet

5.2.2 The Periodic Table

Hund's rules

$$^{2S+1}L_J$$

5.3 Solids

5.3.1 The Free Elctron Gas

Suppose

$$V(x, y, z) = \begin{cases} 0, & 0 < x < l_x, 0 < y < l_y, 0 < z < l_z \\ \infty & otherwise \end{cases}$$

Wave functions are

$$\psi_{n_x,n_y,n_z} = \sqrt{\frac{8}{l_x l_y l_z}} \sin\left(\frac{n_x \pi}{l_x} x\right) \sin\left(\frac{n_y \pi}{l_y} y\right) \sin\left(\frac{n_z \pi}{l_z} z\right)$$

energies are

$$E_{n_x,n_y,n_z} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{n_x^2}{l_x^2} + \frac{n_y^2}{l_y^2} + \frac{n_z^2}{l_z^2} \right) = \frac{\hbar^2 k^2}{2m} \qquad \mathbf{k} \equiv (k_x, k_y, k_z)$$

5.3.2 Band Structure

Bloch's therem

$$V(x+a) = V(x)$$
 \rightarrow $\psi(x+a) = e^{iqa}\psi(x)$

Dirac comb

$$V(x) = \alpha \sum_{j=0}^{N-1} \delta(x - ja)$$

Symmeties and Conservation Laws

6.1 Introduction

what a symmetry is: that the Hamiltonian is unchanged by some transformation, such as a rotation or a translation

6.1.1 Transformations in Space

Translation Operator

$$\hat{T}(a)\psi(x) = \psi'(x) = \psi(x-a)$$

Parity Operator

$$\hat{\Pi}\psi(x) = \psi'(x) = \psi(-x)$$

$$\hat{\Pi}\psi(x, y, z) = \psi'(x, y, z) = \psi(-x, -y, -z)$$

$$\hat{\Pi}\psi(r, \theta, \varphi) = \psi'(x, y, z) = \psi(r, \pi - \theta, \phi + \pi)$$

Rotation Operator (about z axis through an φ)

$$\hat{R}_z(\varphi)\psi(r,\theta,\phi) = \psi'(r,\theta,\phi) = \psi(r,\theta,\phi-\varphi)$$

6.2 The Translation Operator

by Taylor series

$$\hat{T}(a)\psi(x) = \psi(x - a) = \sum_{n=0}^{\infty} \frac{1}{n!} (-a)^n \frac{\mathrm{d}^n}{\mathrm{d}x^n} \psi(x)$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-ia}{\hbar} \hat{p}\right)^n \psi(x)$$

"generator" of translations

$$\left| \hat{T}(a) = \exp\left[-\frac{ia}{\hbar} \hat{p} \right] \right|$$

• $\hat{T}(a)$ is a unitary operator

$$\hat{T}(a)^{-1} = \hat{T}(-a) = \hat{T}(a)^{\dagger}$$

6.2.1 How Operators Transform

6.2.2 Translational Symmetry

A system is translationally invariant if the Hamiltonian is unchanged by the transformation, then

$$\hat{H}' = \hat{T}^{\dagger} \hat{H} \hat{T} = \hat{H} \quad \Rightarrow \quad \left[\hat{H}, \hat{T} \right] = 0$$

- 1. Discrete translation symmetry and Bloch's Theorem
- 2. Continuous translational symmetry and MomentumConservation

6.3 Conservation Laws

- First Definition: $\langle Q \rangle$ is independent of time
- Second Definition: The probability of getting any particular value is independent of time

6.4 Parity

6.4.1 Parity in One Dimension

• $\hat{\Pi}(a)$ is a unitary operator

$$\hat{\Pi}(a)^{-1} = \hat{\Pi}(-a) = \hat{\Pi}(a)^{\dagger}$$

• $\hat{\Pi}$ is Hermitian

Inversion symmetry

$$\left[\hat{H}, \hat{\Pi}\right] = 0$$

Parity Conservation

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \Pi \rangle = 0$$

- 6.4.2 Parity in Three Dimensions
- 6.4.3 Parity Selection Rules

6.5 Rotational Symmetry

6.5.1 Rotations About the z Axis

$$\hat{R}_z(\varphi) = \exp\left[-\frac{i\varphi}{\hbar}\hat{L}_z\right]$$

6.5.2 Rotations in Three Dimension

$$\hat{R}_n(\varphi) = \exp\left[-\frac{i\varphi}{\hbar}\mathbf{n} \cdot \hat{\mathbf{L}}\right]$$

6.6 Degeneracy

6.7 Rotational Selection Rules

6.7.1 Selection Rules for Scalar Operators

reduced matrix element

$$\langle n'\ell'm'|\hat{f}|n\ell m\rangle = \delta_{\ell\ell'}\delta_{mm'}\langle n'\ell||f||n\ell\rangle$$

6.7.2 Selection Rules for Vector Operators

6.8 Translation in Time

generator of translations in time

$$\hat{U}(t) = \exp\left[-\frac{it}{\hbar}\hat{H}\right]$$

6.8.1 The Heisenberg Picture

6.8.2 Time-Translation Invaraince

Energy Conservation is a consequence of time-translation invaraince

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{H} \right\rangle = 0$$

Time-Independent Perturbation Theory

7.1 Nondegenerate Perturbation Theory

7.1.1 General Formulation

Perturbation theory is a systematic procedure for obtaining approximation solutions to the perturbed problem, by building on the known exact solutions to the unperturbed theory

$$H = H^0 + \lambda H'$$

$$\psi_n = \psi_n^0 + \lambda \psi_n^1 + \lambda^2 \psi_n^2 + \cdots$$

$$E_n = E_n^0 + \lambda E_n^1 + \lambda^2 E_n^2 + \cdots$$

- E_n^1 : first-order correction to the *n*th eigenvalue
- ψ_n^1 : first-order correction to the *n*th eigenfunction

Plugging into

$$H\psi_n = E_n\psi$$

we have

• to lowest order (λ^0)

$$H^0\psi_n^0 = E_n^0\psi_n^0$$

• to first order λ^1

$$H^{0}\psi_{n}^{1} + H'\psi_{n}^{0} = E_{n}^{0}\psi_{n}^{1} + E_{n}^{1}\psi_{n}^{0}$$

• to second order λ^2

$$H^0\psi_n^2 + H'\psi_n^1 = E_n^0\psi_n^2 + E_n^1\psi_n^1 + E_n^2\psi_n^0$$

7.1.2 First-Order Theory

$$\left\langle \psi_n^0 \middle| H^0 \psi_n^1 \right\rangle + \left\langle \psi_n^0 \middle| H' \psi_n^0 \right\rangle = E_n^0 \left\langle \psi_n^0 \middle| \psi_n^1 \right\rangle + E_n^1 \left\langle \psi_n^0 \middle| \psi_n^0 \right\rangle$$

$$\left\langle \psi_n^0 \middle| H^0 \psi_n^1 \right\rangle = \left\langle H^0 \psi_n^0 \middle| \psi_n^1 \right\rangle = E_n^0 \left\langle \psi_n^0 \middle| \psi_n^1 \right\rangle \qquad \Rightarrow \qquad \boxed{E_n^1 = \left\langle \psi_n^0 \middle| H' \middle| \psi_n^0 \right\rangle }$$

rewrite first-order wave function

$$(H^0 - E_n^0)\psi_n^1 = -(H' - E_n^1)\psi_n^0 \qquad \leftarrow \qquad \psi_n^1 = \sum_{m \neq n} c_m^{(n)}\psi_m^0$$

Taking the inner product with ψ_l^0

$$\sum_{m\neq n}(E_m^0-E_n^0)c_m^{(n)}\left\langle\psi_l^0\big|\psi_m^0\right\rangle = -\left\langle\psi_l^0\big|H'\big|\psi_n^0\right\rangle + E_n^1\left\langle\psi_l^0\big|\psi_n^0\right\rangle$$

If $l \neq m$

$$\Rightarrow \qquad \boxed{\psi_n^1 = \sum_{m \neq n} \frac{\langle \psi_m^0 | H' | \psi_n^0 \rangle}{E_n^0 - E_m^0} \psi_m^0}$$

7.1.3 Second-Order Energies

$$\left\langle \psi_n^0 \middle| H^0 \psi_n^2 \right\rangle + \left\langle \psi_n^0 \middle| H' \psi_n^1 \right\rangle = E_n^0 \left\langle \psi_n^0 \middle| \psi_n^2 \right\rangle + E_n^1 \left\langle \psi_n^0 \middle| \psi_n^1 \right\rangle + E_n^2 \left\langle \psi_n^0 \middle| \psi_n^0 \right\rangle$$

$$\Rightarrow \qquad E_n^2 = \left\langle \psi_n^0 \middle| H' \middle| \psi_n^1 \right\rangle = \sum_{m \neq n} \frac{\left\langle \psi_m^0 \middle| H' \middle| \psi_n^0 \right\rangle \left\langle \psi_n^0 \middle| H' \middle| \psi_m^0 \right\rangle}{E_n^0 - E_m^0}$$

$$\Rightarrow \qquad \left[E_n^2 = \sum_{m \neq n} \frac{\left| \left\langle \psi_m^0 \middle| H' \middle| \psi_n^0 \right\rangle \middle|^2}{E_n^0 - E_m^0} \right|$$

7.2 Degenerate Perturbation Theory

7.2.1 Two-Fold Degeneracy

Suppose that

$$H^0 \psi_a^0 = E^0 \psi_a^0, \qquad H^0 \psi_b^0 = E^0 \psi_b^0, \qquad \langle \psi_a^0 | \psi_b^0 \rangle = 0$$

Note that

$$\psi_0 = \alpha \psi_a^0 + \beta \psi_b^0, \qquad H^0 \psi^0 = E^0 \psi^0$$

The fundamental result of degenerate perturbation theory

$$E_{\pm}^{1} = \frac{1}{2} \left[W_{aa} + W_{bb} \pm \sqrt{(W_{aa} - W_{bb})^{2} + 4|W_{ab}|^{2}} \right]$$

7.2.2 "Good" States

Theorem: Let A be a hermitian operator that commutes with H^0 and H'. If ψ_a^0 and ψ_b^0 (the degenerate eigenfunction of H^0) are also eigenfunctions of A, with distinct eigenvalues,

$$A\psi_a^0 = \mu \psi_a^0$$
, $A\psi_a^0 = \mu \nu_a^0$, and $\mu \neq \nu$

then ψ_a^0 and ψ_b^0 are the "good" states to use in perturbation theory. Proof:

7.2.3 Higher-Order Degeneracy

7.3 The Fine Structure of Hydrogen

7.3.1 The Relativistic Correction

$$T = \frac{mc^2}{\sqrt{1 - (v/c)^2}} - mc^2$$

$$p = \frac{mv}{\sqrt{1 - (v/c)^1}} \Rightarrow$$

expanding in powers of small number (p/mc)

$$T = \sqrt{p^{2}c^{2} + m^{2}c^{4}} - mc^{2}$$

$$= mc^{2} \left[\sqrt{1 + \left(\frac{p}{mc}\right)^{2}} - 1 \right] = mc^{2} \left[1 + \frac{1}{2} \left(\frac{p}{mc}\right)^{2} - \frac{1}{8} \left(\frac{p}{mc}\right)^{4} \dots - 1 \right]$$

$$= \frac{p^{2}}{2m} - \frac{p^{4}}{8m^{3}c^{2}} + \dots$$

$$E_{r}^{1} = \langle H_{r}' \rangle = -$$

7.4 The Zeeman Effect

7.5 Hyperfine Splitting in Hydrogen

The Variational Principle

8.1 Theory

Variational principle

$$E_{gs} \leqslant \langle \psi | H | \psi \rangle \equiv \langle H \rangle$$

- Pick any normalized function ψ whatsoever
- E_{gs} : ground state energy
- Proof:

$$\psi = \sum_{n} c_{n} \psi_{n}, \quad \text{with} \quad H \psi_{n} = E_{n} \psi_{n}$$

$$1 = \langle \psi | \psi \rangle = \sum_{n} |c_{n}|^{2} \qquad \langle H \rangle = \sum_{n} E_{n} |c_{n}|^{2}$$

$$\therefore E_{gs} \leqslant E_{n} \qquad \therefore \langle H \rangle \geqslant E_{gs} \sum_{n} |c_{n}|^{2} = E_{gs}$$

Examples:

• 1-d harmonic oscillator

"trial wave function":
$$\psi(x) = Ae^{-bx^2}$$
 $A = \left(\frac{2b}{\pi}\right)^{1/4}$
$$\langle H \rangle = \langle T \rangle + \langle V \rangle = \frac{\hbar^2 b}{2m} - \frac{m\omega}{8b^2} = 0 \quad \Rightarrow \frac{\mathrm{d}\langle H \rangle}{\mathrm{d}b} = 0 \Rightarrow \quad b = \frac{m\omega}{2\hbar} \quad \Rightarrow \langle H \rangle_{\min} = \frac{1}{2}\hbar\omega$$

• delta function potential

"trial wave function":
$$\psi(x) = Ae^{-bx^2}$$
 $A = \left(\frac{2b}{\pi}\right)^{1/4}$
$$\langle H \rangle = \frac{\hbar^2 b}{2m} - \frac{\alpha}{\sqrt{2\pi b}} \implies b = \frac{2m^2 \alpha^2}{\pi \hbar^4} \implies \langle H \rangle_{\min} = -\frac{m\alpha^2}{\pi \hbar^2}$$

8.2 The Ground State of Helium

$$H = -\frac{\hbar^2}{2m} \left(\nabla_1^2 + \nabla_2^2 \right) - \frac{e^2}{4\pi\epsilon_0} \left(\frac{2}{r_1} + \frac{2}{r_2} - \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \right)$$

The ground state energy measured in lab:

$$E_{qs} = -78.975 \,\mathrm{eV}$$
 experimental

If ignore V_{ee}

$$\psi_0(\mathbf{r}_1, \mathbf{r}_2) \equiv \psi_{100}(\mathbf{r}_1)\psi_{100}(\mathbf{r}_2) = \frac{8}{\pi a^3} e^{-2(r_1 + r_2)/a} \quad \text{with } 8E_1 = -109 \text{ eV}$$

$$\Rightarrow \quad H\psi_0 = (8E_1 + V_{ee})\psi_0 \quad \Rightarrow \quad \langle H \rangle = 8E_1 + \langle V_{ee} \rangle$$

trial function

$$\psi_1(\mathbf{r}_1, \mathbf{r}_2) \equiv \frac{Z^3}{\pi a^3} e^{-Z(r_1 + r_2)/a}$$

• Z: effective nuclear charge, variational parameter

rewrite H

$$H = -\frac{\hbar^2}{2m} \left(\nabla_1^2 + \nabla_2^2 \right) - \frac{e^2}{4\pi\epsilon_0} \left(\frac{Z}{r_1} + \frac{Z}{r_2} \right)$$

$$+ \frac{e^2}{4\pi\epsilon_0} \left(\frac{(Z-2)}{r_1} + \frac{(Z-2)}{r_2} + \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \right)$$

$$\langle H \rangle = 2Z^2 E_1 + 2(Z-2) \left(\frac{e^2}{4\pi\epsilon_0} \right) \left\langle \frac{1}{r} \right\rangle + \langle V_{ee} \rangle$$

$$\left\langle \frac{1}{r} \right\rangle = \frac{Z}{a} \qquad \langle V_{ee} \rangle = \frac{5Z}{8a} \left(\frac{e^2}{4\pi\epsilon_0} \right) = -\frac{5Z}{4} E_1$$

$$\Rightarrow \langle H \rangle = \left[-aZ^2 + (27/4)Z \right] E_1 \qquad \Rightarrow \qquad \frac{\mathrm{d}}{\mathrm{d}Z} \langle H \rangle = 0$$

$$\Rightarrow \qquad Z = \frac{27}{16} \qquad \langle H \rangle = \frac{1}{2} \left(\frac{3}{2} \right)^6 E_1 = -77.5 \,\mathrm{eV}$$

8.3 The Hydrogen Molecule Ion

Hamiltonian

$$H = -\frac{\hbar^2}{2m}\nabla^2 - \frac{e^2}{4\pi\epsilon_0} \left(\frac{1}{r} + \frac{1}{r'}\right)$$

Trial wave function

$$\psi_0(\mathbf{r}) = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$$

8.4 The Hydrogen Molecule

The WKB Approximation

Imagine a particle of energy E moving through a region where the potential V(x) is constant.

• if E > V

$$\psi(x) = Ae^{\pm ikx}$$
, with $k \equiv \frac{2m\sqrt{E-V}}{\hbar}$

• if E < V

$$\psi(x) = Ae^{\pm \kappa x}$$
, with $\kappa \equiv \frac{2m\sqrt{V - E}}{\hbar}$

• if $E \approx V$

9.1 The "Classical" Region

Rewrite

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = -\frac{p^2}{\hbar^2} \psi \qquad p(x) \equiv \sqrt{2m[E - V(x)]}$$

Assume E > V(x), use prime and put \downarrow into $\uparrow \psi(x) = A(x)e^{i\phi(x)}$

$$\Rightarrow A'' + 2iA'\phi' + iA\phi'' - A(\phi')^2 = -\frac{p^2}{\hbar^2}A$$

one for real part

$$(A^2 \phi')' = 0 \quad \Rightarrow \quad A = \frac{C}{\sqrt{|\phi'|}}$$

and one for imaginary part, Assume amplitude A varises slowly

$$(\phi')^2 = \frac{p^2}{\hbar^2} \quad \Rightarrow \quad \phi(x) = \pm \frac{1}{\hbar} \int p(x) dx$$

$$\Rightarrow$$
 $\psi(x) \approx \frac{C}{\sqrt{p(x)}} e^{\pm \frac{i}{\hbar} \int p(x) dx}$

- p(x) is real
- the two part are entirely equivalent to the original Schrödinger equation

ullet probability of finding the particle at point x is inversely proportional to its (classical) momentum

$$|\psi(x)|^2 \approx \frac{|C|^2}{p(x)}$$

• the general approximate solution will be a linear combination

9.2 Tunneling

$$\psi(x) \approx \frac{C}{\sqrt{|p(x)|}} e^{\pm \frac{1}{\hbar} \int p(x) dx}$$

9.3 The Connection Formulas

Scattering

10.1	Introduction
10.1.1	Classical Scattering Theory
10.1.2	Quantum Scattering Theory
10.2	Partial Wave Analysis
10.2.1	Formalism
10.2.2	Strategy
10.3	Phase Shifts
10.4	The Born Approximation
10.4.1	Integral Form of the Schrodinger Equation
10.4.2	The First Born Approximation
10.4.3	The Born Series

Quantum Dynamics

11.1 Two-level System

Suppose two states of (unperturbed) System

$$\hat{H}^0 \psi_b = E_a \psi_a \qquad \hat{H}^0 \psi_b = E_b \psi_b$$

$$\langle \psi_i | \psi_j \rangle = \delta_{ij}, \qquad (i, j = a, b)$$

11.1.1 The Perturbed System

$$\Psi(t) = c_a(t)\psi_a e^{-iE_a t/\hbar} + c_b(t)\psi_b e^{-iE_b t/\hbar}$$
$$|c_a|^2 + |c_b|^2 = 1$$

Solve for $c_a(t)$ and $c_b(t)$

$$\hat{H}\Psi = i\hbar \frac{\partial \Psi}{\partial t}$$
, where $\hat{H} = \hat{H}^0 + \hat{H}'(t)$

We find

$$c_a \left(\hat{H}' \psi_a \right) e^{-iE_a t/\hbar} + c_b \left(\hat{H}' \psi_b \right) e^{-iE_b t/\hbar} = i\hbar \left(\dot{c_a} \psi_a e^{-iE_a t/\hbar} + \dot{c_b} \psi_b e^{-iE_b t/\hbar} \right)$$

We define

$$H'_{ij} \equiv \langle \psi_i | \hat{H}' | \psi_j \rangle \qquad \Rightarrow \quad \hat{H}'_{ji} = (H'_{ij})^*$$

Take the inner product with ψ_a and ψ_b

$$\begin{cases} \dot{c_a} = -\frac{i}{\hbar} \left[c_a \hat{H}'_{aa} + c_b \hat{H}'_{ab} e^{-i(E_b - E_a)t/\hbar} \right] \\ \dot{c_b} = -\frac{i}{\hbar} \left[c_a \hat{H}'_{bb} + c_b \hat{H}'_{ba} e^{i(E_b - E_a)t/\hbar} \right] \end{cases}$$

$$\hat{H}'_{aa} = \hat{H}'_{bb} = 0 \qquad \Rightarrow \begin{bmatrix} \dot{c}_a = -\frac{i}{\hbar} \hat{H}'_{ab} e^{-i\omega_0 t} c_b \\ \dot{c}_b = -\frac{i}{\hbar} \hat{H}'_{ba} e^{-i\omega_0 t} c_a \end{bmatrix} \text{ with } \omega_0 \equiv \frac{E_a - E_b}{\hbar}$$

11.1.2 Time-Dependent Perturbation Theory

Suppose the particles states out in the lower state:

$$c_a(0) = 1 \qquad c_b(0) = 0$$

Zeroth Order:

$$c_a^{(0)}(t) = 1$$
 $c_b^{(0)}(t) = 0$

First Order:

$$\Rightarrow \frac{\mathrm{d}c_a^{(1)}}{\mathrm{d}t} = 0 \qquad \Rightarrow \qquad c_a^{(1)}(t) = 1$$

$$\Rightarrow \frac{\mathrm{d}c_b^{(1)}}{\mathrm{d}t} = -\frac{i}{\hbar}\hat{H}'_{ba}\mathrm{e}^{-i\omega_0 t} \qquad \Rightarrow \qquad c_b^{(1)}(t) = -\frac{i}{\hbar}\int_0^t \hat{H}'_{ba}(t')\mathrm{e}^{i\omega_0 t'}\mathrm{d}t'$$

11.1.3 Sinusoidal Perturbations

Suppose

$$\hat{H}'(\mathbf{r},t) = V(\mathbf{r})\cos(\omega t)$$
 \Rightarrow $H'_{ab} = V_{ab}\cos(\omega t)$ $V_{ab} \equiv \langle \psi_a | V | \psi_b \rangle$

Assume

$$\omega_0 + \omega \gg |\omega_0 - \omega|$$

we have

$$c_b(t) \approx c_b^{(1)}(t) = -\frac{iV_{ba}}{2\hbar} \int_0^t \left[e^{i(\omega_0 + \omega)t'} + e^{i(\omega_0 - \omega)t'} \right] dt'$$

$$= -\frac{V_{ba}}{2\hbar} \left[\frac{e^{i(\omega_0 + \omega)t} - 1}{\omega_0 + \omega} + \frac{e^{i(\omega_0 - \omega)t} - 1}{\omega_0 - \omega} \right]$$

$$\approx -\frac{V_{ba}}{2\hbar} \frac{e^{i(\omega_0 - \omega)t/2}}{\omega_0 - \omega} \left[e^{i(\omega_0 - \omega)t/2} - e^{-i(\omega_0 - \omega)t/2} \right]$$

$$= -i \frac{V_{ba}}{\hbar} \frac{\sin \left[(\omega_0 - \omega)t/2 \right]}{\omega_0 - \omega} e^{i(\omega_0 - \omega)t/2}$$

Transition probability

$$P_{a\to b}(t) = |c_b(t)|^2 \approx \frac{|V_{ba}|^2}{\hbar^2} \frac{\sin^2\left[(\omega_0 - \omega)t/2\right]}{(\omega_0 - \omega)^2}$$

11.2 Emission and Absortion of Radiationj

11.2.1 Electromagnetic Waves

The atom is exposed to a sinusoidally oscillating electric field

$$\mathbf{E} = E_0 \cos(\omega t) \hat{k} \qquad H' = -q E_0 z \cos(\omega t)$$

$$\Rightarrow H_{ba} = -\wp E_0 \cos(\omega t), \quad \text{where } \wp \equiv q \langle \psi_b | z | \psi_a \rangle$$

in section 11.1.3, with

$$V_{ba} = -\wp E_0$$

11.2.2 Absortion, Stimulation Emission, and Spontaneous Emission

1. Absortion (start off in the lower state)

$$P_{a\to b}(t) = \left(\frac{|\wp|E_0}{\hbar}\right)^2 \frac{\sin^2[(\omega_0 - \omega)t/2]}{(\omega_0 - \omega)^2}$$

- $c_a(0) = 1, c_b(0) = 0$
- the atom absorts energy $E_b E_a = \hbar \omega_0$ from the electromagnetic field
- 2. Stimulation Emission (start off in the upper state)

$$P_{b\to a}(t) = |c_a(t)|^2 = P_{a\to b}(t)$$

- $c_a(0) = 0, c_b(0) = 1$
- The electromagnetic field gains energy $\hbar\omega_0$ form the atom
- 3. Spontaneous Emission
 - An atom in the excited state makes a transition downward, with the release
 of a photon, but without any applied electromagnetic field to initate the
 process

11.2.3 Incoherent Perturbations

11.3 Spontaneous Emission

- 11.3.1 Einstein's A and B
- 11.3.2 The Life tiem of an Excites State
- 11.3.3 Selection Rules

$$\Delta \ell \equiv \ell' - \ell = \pm 1, \qquad \Delta m \equiv m' - m = 0 \text{ or } \pm 1$$

• if m' = m, then

$$\langle n'\ell'm'|x|n\ell m\rangle = \langle n'\ell'm'|y|n\ell m\rangle = 0$$

• if $m' = m \pm 1$, then

$$\langle n'\ell'm'|x|n\ell m\rangle = \pm i\langle n'\ell'm'|y|n\ell m\rangle$$

 $\langle n'\ell'm'|z|n\ell m\rangle = 0$

otherwise

$$\langle n'\ell'm'|x|n\ell m\rangle = \langle n'\ell'm'|y|n\ell m\rangle = \langle n'\ell'm'|z|n\ell m\rangle = 0$$

11.4 Fermi's Golden Rule

11.5 The Adiabatic Approximation