Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	6	/	0	1	Signature	

Paper Reference(s)

6666/01

Edexcel GCE

Core Mathematics C4

Advanced

Tuesday 22 January 2008 – Afternoon

Time: 1 hour 30 minutes

|--|

Mathematical Formulae (Green)

Items included with question papers

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Check that you have the correct question paper.

You must write your answer for each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

Examiner's use only

Team Leader's use only

1

3

4

5

6

7

8

Turn over

1.

Figure 1

The curve shown in Figure 1 has equation $y = e^x \sqrt{(\sin x)}$, $0 \le x \le \pi$. The finite region *R* bounded by the curve and the *x*-axis is shown shaded in Figure 1.

(a) Complete the table below with the values of y corresponding to $x = \frac{\pi}{4}$ and $\frac{\pi}{2}$, giving your answers to 5 decimal places.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
у	0			8.87207	0

(2)

Leave blank

(b) Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region *R*. Give your answer to 4 decimal places.

(4)

	Leave blank
Question 1 continued	
	Q1
(Total 6 marks)	

• (a) Use the binomial theo			
	$(8-3x)^{\frac{1}{3}}$,	$ x < \frac{8}{3} ,$	
in ascending powers of simplified fraction.	of x , up to and incl	uding the term in a	c ³ , giving each term as a
simplified fluction.			(5)
(b) Use your expansion, v Give your answer to 7		e of x , to obtain an	approximation to $\sqrt[3]{(7.7)}$.
Give your unit wer to 7	deemar praces.		(2)

Question 2 continued	Leave blank	
	Q2	
(Total 7 marks)		

3.

Figure 2

The curve shown in Figure 2 has equation $y = \frac{1}{(2x+1)}$. The finite region bounded by the

curve, the x-axis and the lines x = a and x = b is shown shaded in Figure 2. This region is rotated through 360° about the x-axis to generate a solid of revolution.

Find the volume of the solid generated. Express your answer as a single simplified fraction, in terms of a and b.

(5)	

Leave blank

Question 3 continued	Leave blank	
(Total 5 marks)	Q3	

(i) Find $\int \ln(\frac{x}{2}) dx$.	(4)
(ii) Find the exact value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x dx$.	(5)

Question 4 continued	bl
	Q4

A curve is described by the equation	
$x^3 - 4y^2 = 12xy$	
(a) Find the coordinates of the two points on the curve where $x = -8$.	(3)
(b) Find the gradient of the curve at each of these points.	
(c) I ma the gradient of the early at each of these points.	(6)

uestion 5 continued	

The points A and B have position vectors $2\mathbf{i} + 6\mathbf{j} - \mathbf{k}$ and $3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ respectively. The line I_1 passes through the points A and B . (a) Find the vector \overrightarrow{AB} . (2) (b) Find a vector equation for the line I_1 . (2) A second line I_2 passes through the origin and is parallel to the vector $\mathbf{i} + \mathbf{k}$. The line meets the line I_2 at the point C . (c) Find the acute angle between I_1 and I_2 . (3) (d) Find the position vector of the point C .	The line l_1 passes through the points A and B . (a) Find the vector \overrightarrow{AB} .
 (a) Find the vector \$\overline{AB}\$. (2) (b) Find a vector equation for the line \$l_1\$. (2) A second line \$l_2\$ passes through the origin and is parallel to the vector \$\overline{i} + \overline{k}\$. The line meets the line \$l_2\$ at the point \$C\$. (c) Find the acute angle between \$l_1\$ and \$l_2\$. (d) Find the position vector of the point \$C\$. 	(a) Find the vector \overrightarrow{AB} .
 (b) Find a vector equation for the line l₁. (2) A second line l₂ passes through the origin and is parallel to the vector i + k. The line meets the line l₂ at the point C. (c) Find the acute angle between l₁ and l₂. (d) Find the position vector of the point C. 	
 (b) Find a vector equation for the line l₁. (2) A second line l₂ passes through the origin and is parallel to the vector i + k. The line meets the line l₂ at the point C. (c) Find the acute angle between l₁ and l₂. (d) Find the position vector of the point C. 	
A second line l_2 passes through the origin and is parallel to the vector $\mathbf{i} + \mathbf{k}$. The line meets the line l_2 at the point C . (c) Find the acute angle between l_1 and l_2 . (d) Find the position vector of the point C .	
A second line l_2 passes through the origin and is parallel to the vector $\mathbf{i} + \mathbf{k}$. The line meets the line l_2 at the point C . (c) Find the acute angle between l_1 and l_2 . (d) Find the position vector of the point C .	
(d) Find the position vector of the point <i>C</i> .	A second line l_2 passes through the origin and is parallel to the vector $\mathbf{i} + \mathbf{k}$. The line

Question 6 continued	Leave blank

Question 6 continued	b]

Question 6 continued	Leave blank	
(Total 11 marks)	Q6	

7.

Figure 3

The curve *C* has parametric equations

$$x = \ln(t+2), \quad y = \frac{1}{(t+1)}, \quad t > -1.$$

The finite region R between the curve C and the x-axis, bounded by the lines with equations $x = \ln 2$ and $x = \ln 4$, is shown shaded in Figure 3.

(a) Show that the area of R is given by the integral

$$\int_{0}^{2} \frac{1}{(t+1)(t+2)} \, \mathrm{d}t. \tag{4}$$

(b) Hence find an exact value for this area.

(6)

Leave blank

(c) Find a cartesian equation of the curve C, in the form y = f(x).

(4)

(d) State the domain of values for x for this curve.

(1)

Question 7 continued	Leave

Question 7 continued	b

Question 7 continued	Leave blank	
(Total 15 marks)	Q7	

Leave blank

- **8.** Liquid is pouring into a large vertical circular cylinder at a constant rate of 1600 cm³ s⁻¹ and is leaking out of a hole in the base, at a rate proportional to the square root of the height of the liquid already in the cylinder. The area of the circular cross section of the cylinder is 4000 cm².
 - (a) Show that at time t seconds, the height h cm of liquid in the cylinder satisfies the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - k\sqrt{h}, \text{ where } k \text{ is a positive constant.}$$
(3)

When h = 25, water is leaking out of the hole at 400 cm³ s⁻¹.

(b) Show that k = 0.02

(1)

(c) Separate the variables of the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - 0.02\sqrt{h},$$

to show that the time taken to fill the cylinder from empty to a height of 100 cm is given by

$$\int_{0}^{100} \frac{50}{20 - \sqrt{h}} \, \mathrm{d}h. \tag{2}$$

Using the substitution $h = (20 - x)^2$, or otherwise,

(d) find the exact value of $\int_0^{100} \frac{50}{20 - \sqrt{h}} \, dh.$

(6)

(e) Hence find the time taken to fill the cylinder from empty to a height of 100 cm, giving your answer in minutes and seconds to the nearest second.

(1)

Question 8 continued	Leave

	I t
Question 8 continued	

Question 8 continued		blan
		-
		_
		_
		-
		-
		-
		-
		_
		_
		_
		-
		-
		-
		-
		-
		-
		_
		_
		-
		-
		-
		-
		-
		-
		_
		_
		-
		Q
	(Total 13 marks)	
	TOTAL FOR PAPER: 75 MARKS	

