10.5.2 Dijkstra's Algorithm

The Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a graph, which may represent (for example, road networks). It was conceived by computer scientist $Edsger\ W.\ Dijkstra$ in 1956. Dijkstra's original variant found the shortest path between two nodes, but a more common variant fixes a single node as the "source" vertex and finds shortest paths from the source to all other vertices in the graph, producing a shortest-path tree. Given a path P from vertex s to vertex t in a weighted graph G, we define the length of P to be the sum of the weights of its edges.

The steps involved in Dijkstra's Algorithm are as follows:

1. Set $\lambda(s) = 0$ and for all vertices $v \neq s$, $\lambda(v) = \infty$. Set T = V, the vertex set of G. (We will think of T as the set of vertices uncoloured.)

- 2. Let u be a vertex in T for which $\lambda(u)$ is the minimum.
- 3. If u = t, stop.
- 4. For every edge e = uv incident with u, if $v \in T$ and $\lambda(v) > \lambda(u) + w(uv)$, change the value of $\lambda(v)$ to $\lambda(u) + w(uv)$ (That is, given an edge e = uv from an uncoloured vertex v to u, change $\lambda(v)$ to $\min\{\lambda(v), \lambda(u) + w(uv)\}$.
- 5. Change T to $T \{u\}$ and go to Step-2, (That is, colour u and then go back to Step-2 to find an uncoloured vertex with the minimum label).

Consider the weighted graph in Figure 10.17.

Figure 10.17: A weighted graph G

A step by step illustration of Dijkstra's Algorithm for the graph given in Figure ?? is explained as follows:

Step 1. The initial labeling is given by:

$_{\rm vertex}\ v$	s	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	d	t
$\lambda(v)$	0	∞	∞	∞	∞	∞
T	$\{s,$	a,	b,	c,	d,	\overline{t}

Step 2. u = s has $\lambda(u)$ a minimum (with value 0).

Step 4. There are two edges incident with u, namely sa and sc. Both a and c are in T, i.e., they are not yet coloured. $\lambda(a) = \infty > 18 = 0 + 18 = \lambda(s) + w(sa)$. Hence, $\lambda(a)$ becomes 18. Similarly, $\lambda(c)$ becomes 15.

Step 5. T becomes $T - \{s\}$, i.e., we colour s. Thus we have

Step 2. u = c has $\lambda(u)$ a minimum and u in T (with $\lambda(u) = 15$).

Step 4. There are 3 edges cv incident with u=c having v in T, namely ca, cb, cd. Considering the edge ca, we have $\lambda(a)=18<21=15+6=\lambda(c)+w(ca)$ and hence $\lambda(a)$ remains as 18. Considering the edge cb, we have $\lambda(b)=\infty>29=15+14=\lambda(c)+w(cb)$. So, $\lambda(b)$ becomes 29. Similarly, considering the edge cd, we have $\lambda(d)$ becomes 15+7=22.

Step 5. T becomes $T - \{c\}$, i.e., we colour c. Thus, we have

Step 2. u = a has $\lambda(u)$ a minimum and for u in T (with $\lambda(u) = 18$).

Step 4. There is only one edge av incident with u=a having v in T, namely ab. Then, $\lambda(b)=29>27=18+9=\lambda(a)+w(ab)$. So, $\lambda(b)$ becomes 27.

Step 5. T becomes $T - \{a\}$, i.e., we colour a. Thus, we have

vertex v	s	a	\boldsymbol{b}	c	d	t
$\lambda(v)$	0	18	27	15	22	00
T	{		\overline{b} ,		\overline{d} ,	t }

Step 2. u = d has $\lambda(u)$ minimum for u in T (with $\lambda(u) = 22$).

Step 4. There are two edges dv incident with u=d having v in T, namely db and dt. Considering the edge db, we have $\lambda(b)=27<32=22+10=\lambda(d)+w(db)$ and hence $\lambda(b)$ remains as 27. For the edge dt, we have $\lambda(t)=\infty>58=22+36=\lambda(d)+w(dt)$. Hence, $\lambda(t)$ becomes 58.

Step 5. T becomes $T - \{d\}$, i.e., we colour d. Thus, we have

Step 2. u = b has $\lambda(u)$ minimum for u in T (with $\lambda(u) = 27$).

Step 2. u=0 has $\lambda(u)$. Step 4. There is only one edge bv for v in T, namely bt. $\lambda(t)=58>55=27+28=\lambda(b)+w(bt)$ so $\lambda(t)$ becomes 55.

Step 5. T becomes T - ab, i.e., we colour b. Thus, we have

Step 2. u = t, the only choice. Step 3. Stop. All steps, we did above can be written in a single table as follows:

	r.		\boldsymbol{b}	C	d	\boldsymbol{t}			\mathbf{T}	1	1		_
Steps	. 8	\underline{a}			~	00	s	a	b	\boldsymbol{c}	d	t	
1	0	∞	∞	00	~	00		\boldsymbol{a}	\boldsymbol{b}	C	d	t	
2	0	18	∞	15	000				h		d	+	
2	0	18	29	15	22	∞		\boldsymbol{a}	L		,	4	
3	0	18	27	15	22	∞		1	0		\boldsymbol{d}	ι	
4	U	10	27	15	22	58	in it		b			t	
5	0	18	21	15	22	55						$oldsymbol{t}$	
6	0	18	27					. 51. 1	14/ D	4.4	illin)	41	

Table 10.3: Combined table of Dijkstra's Procedure.