Hashing 2 Modular Programming in ASS1 **Assignment 2: Introduction** 3 4 LAB: Implementing hashtables Questions on Ass1 & Ass1 feedbacks (if available) - Ass2 Q&A 5 Non-examined Materials: 2-3-4 Trees

***k-D(2-D) Trees

Hashing: Introduction

Task: Build a dictionary where keys are unique and in the range of 0..799. Insert and Search are major operations.

Q: What concrete data type is the best?

Hashing: Introduction

Task: Build a dictionary where keys are unique and in the range of 0..799. Insert and Search are major operations.

Q: What concrete data type is the best?

Q: What if the keys are in range 1200..1999, or 0..1600?

Concepts: hash function, hash table, bucket, collision

Hashing

```
Hashing= hash tables + hash functions

Hash table is an array of m buckets.

Hash function h is to map key x to h(x)

h(x) = index into the hash table,

ie. mapping x to the bucket where x will be likely stored.

Example: m = 7, h(x) = x m
```

Potentially, hashing gives us a dictionary with O(1) for both insertion and search!

Collisions

h(x1) = h(x2) for some $x1 \neq x2$.

Collisions are normally unavoidable.

One method to reduce collisions using a prime number for hash table size m. (remember the lecture on this point?)

Another method is to make the table size m big enough (but that affects space efficiency).

Colisions

h(x1) = h(x2) for some $x1 \neq x2$.

Example:

$$m=5, h(x) = x% m$$

Here: h(8) = h(5)

One method to **reduce** collisions using a prime number for hash table size m. (remember the lecture on this point?)

Another method is to make the table size m big enough (but that affects space efficiency).

Collision Solution 1: Separate Chaining

h(x) = x % 7, keys (entered in decreasing order in this example):

Collision Solution 1: Separate Chaining

h(x) = x % 7, keys (entered in decreasing order in this example):

Collision Solution 1: Separate Chaining

h(x) = x % 7, keys entered:

Solution 2: Open Addressing (here, data are stored in the buckets)

Unlike separate chaining:

- Data are stored inside the buckets
- At any point, the size of the table must be greater than or equal to the total number of keys

Solution 2a: Open Addressing with Linear Probing

That is, when inserting we do some *probes* until getting a vacant slot.

- Start at position h(x)
- If collided at position i, we try position (i+1)%m (and continue like that until reaching a vacant)

Example: m=5, $h(x) = x \mod 5$, and inserting

Solution 2b: Open Addressing with Double Hashing

Here, in addition to the hash function h(x), we have a second hash function h2(x).

- Start at position h(x)
- If collided at position i, we try position (i+h2(x))%m (and continue like that until reaching a vacant)

Example:
$$m=5$$
, $h(x) = x \mod m$,
$$h2(x) = x \mod 3 +1$$
and inserting

Double hashing summary

```
In addition to h(x), use a second hashing function h2(x):
```

- Start at position h(x)
- If collided at position i, we try position i+h2(x) (and continue like that until reaching a vacant)

Note that:

```
h2(x) \neq 0 (must be!) for all x,
to be good, h2(x) should be co-prime with m (see example in lecture),
linear probing is just a special case of double hashing when h2(x)=1.
```

Example (Lesson \rightarrow Quiz \rightarrow 1)

You are given a hash table of size 13 and a hash function hash(key) = key % 13. Insert the following keys in the table, one-by-one, using linear probing for collision resolution:

14, 30, 17, 55, 31, 29, 16

Example double hashing (Lesson \rightarrow Quiz \rightarrow 2)

Keys to insert: 14, 30, 17, 55, 31, 29, 16

Now insert the same keys into an (initially empty) table of the same size (13), using double hashing for collision resolution, with hash2(key) = (key % 5) + 1

$$h2(29) = 5 h(31) = 5$$

$$h(16)=3 \rightarrow h2(16)=2 \ 3 \ 3+2+2+2$$

0 1 2 3 4 5 6 7 8 9 10 11 12

14	55	30	31	17	29	16		

What is the big-O complexity to search for an element in a hash table if there are no collisions?

- A. O(1).
- B. O(n).
- C. $O(n^2)$.
- D. O(log n)

What is the big-O complexity to search for an element in a hash table?

- A. O(1).
- B. O(n).
- C. $O(n^2)$.
- D. O(log n)

The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function $h(k) = k \mod 10$ and linear probing. What could be the resultant hash table?

(A)			(B)		(C)		(D)		
9		9		9	15	9			
8	18	8	18	8	18	8	18		
7		7		7	5	7			
6		6	-	6	23	6			
5	15	5	5	5	3	5	5, 15		
4		4		4	2	4			
3	23	3	13	3	13	3	13, 3, 23		
2	2	2	12	2	12	2	12, 2		
1		1		1		1			
0		0		0		0			

The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table of length 10 using separate chaining with hash function $h(k) = k \mod 10$. What could be the resultant hash table?

(A)			(B)	(C)		(D)
9		9		9	15	9	
8	18	8	18	8	18	8	18
7		7		7	5	7	
6		6	1	6	23	6	
5	15	5	5	5	3	5	5, 15
4		4		4	2	4	
3	23	3	13	3	13	3	13, 3, 23
2	2	2	12	2	12	2	12, 2
1		1		1		1	
0		0		0		0	

Prep. for ASS2

- ASS1 review on Modular Programming
- Initial information/preparation for ASS2

Remember:

- Start ASS2 ASAP
- Seek help early
- You can also check WorkSpace → base voronoi2.c

I might put more on that workspace if receive some demands by this Saturday.

Assignment 1: Modular Programming

A simple module has 2 files: one header file .h and one (or more) implementation file .c.

A module normally supply all facilities to declare and manipulate a single datatype, or a collection of mutually-related datatypes.

Assignment 1: Modular Programming

Suggested Modules: tower, dcel, utils

Example Module for ASS1:

tower: datatypes and function for working with towers, including:

Datatype: typedef ... tower t;

Reading csv file:

- tower_t **read_tower(tower_t **T, int *n, int *size, char *fname),or
- read_tower(tower_t ***pT, int **n, int *size, char *fname)

Print a tower:

```
print_tower(tower_t *t, FILE *f)
```

simple Makefile has the format:

```
all: voronoi1
voronoil: voronoil.o dcel.o tower.o utils.o
   gcc -Wall -o voronoil voronoil.o dcel.o tower.o utils.o
dcel.o: dcel.h dcel.c
   gcc -Wall -g -c dcel.c
clean:
   rm -f *.o voronoil
```

Makefile: a better and easier version

```
CC = qcc
CFLAGS = -Wall - g
HDR = dcel.h tower.h utils.h
SRC = voronoil.c dcel.c tower.c utils.c
EXE = voronoi2
OBJ = \$(SRC: .c=.0)
all: $(EXE)
$(EXE): $(HDR) $(OBJ)
   $(CC) $(CFLAGS) —o $(EXE) $(OBJ)
clean:
   rm -f \$(EXE) *.o
$(OBJ): $(HDR)
```

Assignment 2: General Information

- Being developed further from ASS1 code
- You can use your ASS1 code, or the supplied solution, or even your friend 's ASS1 code [with acknowledgment)
- Having 4 small tasks
- BAD NEWS: you probably can get the easy 4 marks of stage 4 only after finishing the hard 7 marks of stage 3

Ass2 (Voronoi Diagram). The Main Task

The Task: Computing the Voronoi diagram iteratively.

Input: filenames in argv[]

- A region file for the region's boundary (= the initial polygon in assignment 1)
- A watchtower: here, important data are the list of 2D points

Main Task [7 marks + 2 marks for the follow-up stage]

- After processing the region file, we have the first face. That face and the first watchtower forms the first Voronoi cell
- From the second input point, each will add one Voronoi cell (ie. one face) to the space.

Region, points, and bisector. Computing the bisector of 2 points

Adding new points (fig fom Grady's slides)

Adding new points (fig fom Grady's slides)

Adding new points (fig fom Grady's slides)

- You can start to think about the steps for adding a new points (draw a more complicated situation, when the cell being added to share edges with more than 2 cells).
- The spec will briefly introduce the steps

The tasks, as currently introduced in Grady's slides

- Assignment 4 parts
 - Calculate Bisectors
 - Intersection edge + points (code given)
 - Incrementally Construct Voronoi Diagram
 - Sort Faces by Largest Distance Between Vertices in Face

More details, as currently provided by Grady

- Incrementally Construct Voronoi Diagram
 - Find Face (Assignment 1, provided)
 - Add Bisector
 - Find Intersection (Provided)
 - Perform Split (Assignment 1, provided)
 - Set Edges Inside New Face to -1
 - Find furthest vertices (diameter) by looping through all pairs

Grady's Slides

```
pp 4-7 : example insert 14,30,17,55,31,29,16 into hashtable with h(x) = x\%13
pp8 collision
```

pp9-13: chaining, continue 14,30,17,55,31,29,16

pp14-25: linear probing for the above 14,30,17,55,31,29,16

pp26-37 : doiuble hashinh h2(x)(x%5)+1 for 14,30,17,55,31,29,16

pp 38- 70: step-by-step 234 tree example on 1 2 3 4 5 6 7 7 7 8

71-74 efficiency

75: B++ trees

76-77 Incremental Voronoi Construction

Non-examine Materials

2-3-4 Tree [a self-balancing search tree]

Each node might have 1, 2 or 3 data, and 2, 3, or 4 pointers to children, respectively

2-3-4 Insertion: inserts a key x into a non-empty tree

- from root, walks down by comparing x with keys in nodes until arriving to a leaf node (ie. node with no children)
- if the leaf is not full (ie. <3 key), insert x into the leaf, otherwise:
 - splits the leaf by promoting the middle key to be the parent of 2 splitted leaves
 - then, insert x into the appropriate one of the 2 new leaves

Example of splitting leaf: insert into an empty 2-3-4 tree: 3 7 4 5

Example: insert **EXAMPLETRES** into an empty tree

Supposing:

an equal key will be placed in the right children

Example: insert **EXAMPLETREE** into an empty tree

Supposing:

an equal key will be placed in the right children

2-3-4 Tree: Time Complexity

```
Insert
O(?)
Lookup
O(?)
```

2-3-4 Tree: Time Complexity

```
Insert
O(log n)
Lookup
O(log n)
```

Still wondering about hashing and/or 2-3-4 trees?

Sea a very detailed workshop .ppt for Week 6 in Canvas.

Also note that this presentation is available for download at github.com/anhvir/c203

2D trees: BST tree for 2-component keys

- is a BST tree (not necessarily balanced!)
- but each key has 2 components: X (or key[0]) and Y (or key[1])
- at node with depth d, compare/switch/split using key [d%2]

2D tree: Example

Insert the following keys into an initially empty tree:

```
(51,75)
(25,40)
(70,70)
(10,30)
(1,10)
(35,90)
(55,1)
(50,50)
(60,80)
```

2D tree: Example

Insert the following keys into an empty tree

- → depth d, switch by key[d % 2]
- → in ass2 you might want to keep d in nodes for easy debugging

2D tree: Example

Visualisation in the 2D map: Nodes A, D, E divide their respective areas into left and right parts; node B and D — into top and bottom parts.

