Algebra II (Doble grado Informática-Matemáticas)

Mayo- 2020

Tema 7: Clasificación de grupos abelianos finitos.

Nos ocupamos en estas notas de demostrar el $Teorema\ de\ Estructura\ de\ grupos\ abelianos\ finitos\ que nos permitirá clasificarlos completamente. Esto es, dado un número natural <math>n$ podremos listar todos los grupos abelianos de orden n, salvo isomorfismo.

Comenzaremos recordando dos hechos fundamentales:

1. Si C_n denota el grupo cíclico de orden n entonces

$$C_n \times C_m \cong C_{nm} \iff m.c.d.(n,m) = 1.$$
 (0.1)

2. Si G es un grupo finito con $|G| = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ y G posee un único p_i -subgrupo de Sylow \mathcal{P}_i , para cada $i = 1, \dots, k$, entonces

$$G \cong \mathcal{P}_1 \times \cdots \times \mathcal{P}_k$$
.

Comenzaremos viendo cómo es la estructura de los p-grupos abelianos finitos.

Definición 0.1. Un p-grupo abeliano E diremos que es un p-grupo abeliano elemental si $x^p = 1$ para todo $x \in E$.

Ejemplo 0.2. Para cada $n \geq 1$, $C_p \times \mathbb{R}$. $\times C_p$ es un p-grupo abeliano elemental. De hecho, haciendo uso de la proposición siguiente, los p-grupos abelianos elementales y finitos son todos de esta forma.

El resultado fundamental es la siguiente proposición:

Teorema 0.3. Sea A un p-grupo abeliano finito con $|A| = p^n$, $n \ge 1$. Entonces existen enteros $\beta_1 \ge \beta_2 \ge \cdots \ge \beta_t \ge 1$ tal que $\beta_1 + \beta_2 + \cdots + \beta_t = n$

$$A \cong C_{p^{\beta_1}} \times C_{p^{\beta_2}} \times \cdots \times C_{p^{\beta_t}}.$$

Además está expresión es única salvo el orden. Esto es si

$$A \cong C_{p^{\alpha_1}} \times C_{p^{\alpha_2}} \times \cdots \times C_{p^{\alpha_s}},$$

con $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_s \ge 1$ y $\alpha_1 + \alpha_2 + \cdots + \alpha_s = n$, entonces

$$s = t \ y \ \alpha_i = \beta_i$$

para todo $i = 1, \ldots, t$.

Para su demostración, veamos primero el siguiente lema:

Lema 0.4. Sea E un p-grupo abeliano finito y elemental. Para cada $x \in E$ existe un subgrupo $M \le E$ tal que $E = M \times \langle x \rangle$.

Demostración. Para x=1 basta tomar M=E. Supongamos pues $x\neq 1$ (y entonces ord(x)=p pues E es un p-grupo abeliano elemental) y sea $\sum:=\{H\leq E/x\not\in H\}$. Puesto que el subgrupo trivial pertenece a \sum , entonces $\sum\neq\emptyset$ y elegimos $M\in\sum$ de orden mayor.

Puesto que [E:M] divide a |E| entonces $[E:M]=p^i$ con i>0 pues $x\not\in M$. Veamos que i=1

Supongamos i>1 y consideremos el grupo cociente E/M que tendrá $|E/M|=p^i>p$. E/M es también un p-grupo abeliano elemental y podemos elegir $yM\in E/M$ con $yM\not\in\langle xM\rangle$ y con ord(yM)=p. Además $xM\not\in\langle yM\rangle$, pues si así fuera sería $\langle xM\rangle=\langle yM\rangle$ pues ambos elementos tienen orden p.

Consideramos la proyección $q: E \to E/M$. Puesto que $xM \notin \langle yM \rangle$ entonces $x \notin q^*(\langle yM \rangle)$ y entonces $q^*(\langle yM \rangle)$ es un elemento de \sum que contiene propiamente a M pues $y \notin M$, en contradicción con la elección de M.

Así [E:M]=p, con lo que si $|E|=p^k\Rightarrow |M|=p^{k-1}$. Además $M\cap\langle x\rangle=1$, pues si $\exists x^j\in M, j\neq 0$ entonces $\langle x^j\rangle=\langle x\rangle\leq M$ y en particular $x\in M$ en contra de que $M\in \Sigma$. Aplicando ahora el tercer teorema de isomorfía a M y $\langle x\rangle$ (notemos que la normalidad la tenemos asegurada pues el grupo E es abeliano) tendremos

$$M\langle x \rangle / \langle x \rangle \cong M/M \cap \langle x \rangle = M$$

y entonces $|M\langle x\rangle|=|M|\cdot|\langle x\rangle|=p^k$. Consecuentemente $M\langle x\rangle=E$ y $E\cong M\times\langle x\rangle$, como queríamos demostrar.

Demostración del Teorema 0.3.

Demostración. Nos ocupamos en primer lugar de la existencia de tal descomposición.

Procedemos por inducción en el orden de A. Si $|A| = p \Rightarrow A \cong C_p$ y se tiene el resultado con t = 1 y $\beta_1 = 1$. Supongamos $|A| = p^n > p$ y el resultado cierto para todo p-grupo abeliano finito de orden < |A|.

Consideramos el homomorfismo

$$\varphi: A \to A, \ \varphi(x) := x^p,$$

y sean

$$K = Ker(\varphi) = \{x \in A/x^p = 1\} \ \text{y} \ H = Img(\varphi) = \{x^p/x \in A\}.$$

Se tiene

- Por definición, tanto K como A/H son p-grupos abelianos elementales.
- $A/K \cong H$ y entonces [A:K] = |H|,
- $|A/H| = \frac{|A|}{|H|} = \frac{|A|}{|A:K|} = |K|$ y entonces [A:H] = |K|.

Como en A existen elementos de orden p (por el Teorema de Cauchy), entonces K es no trivial y entonces $|A/H| = |K| \neq 1$. Consecuentemente H es un subgrupo propio de A y por hipótesis de inducción, si $|H| = p^m$, m < n, existen enteros $\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_r \geq 1$, con $\gamma_1 + \cdots + \gamma_r = m$ y

$$H \cong \langle h_1 \rangle \times \cdots \times \langle h_r \rangle \cong C_{p^{\gamma_1}} \times \cdots \times C_{p^{\gamma_r}},$$

siendo cada $\langle h_i \rangle \leq H$ y $\langle h_i \rangle \cong C_{p^{\gamma_i}}$.

Como $H = Img(\varphi)$, para cada i = 1, ..., r elegimos $g_i \in A$ tal que $\varphi(g_i) = g_i^p = h_i$. Notemos que puesto que $ord(h_i) = p^{\gamma_i}$ entonces

$$ord(g_i) = p^{\gamma_i + 1}$$

para todo $i = 1, \ldots, r$.

Consideremos el grupo

$$A_0 := \langle g_1, \dots, g_r \rangle.$$

Por definición H es un subgrupo de A_0 y se verifica

- (a) $A_0 \cong \langle g_1 \rangle \times \cdots \times \langle g_r \rangle$,
- (b) $A_0/H \cong \langle g_1 H \rangle \times \cdots \times \langle g_r H \rangle$, y es un *p*-grupo abeliano elemental con orden p^r .
- (c) $H \cap K \cong \left\langle h_1^{p^{\gamma_1-1}} \right\rangle \times \cdots \times \left\langle h_r^{p^{\gamma_r-1}} \right\rangle$, y es un p-grupo abeliano elemental de orden p^r .

Supuesto demostrado (a), (b) y (c), razonamos como sigue:

Caso 1: K es un subgrupo de H, entonces $K = K \cap H$ y será $|K| \stackrel{(c)}{=} p^r$. Como $[A:H] = |K| = p^r$ y $[A_0:H] \stackrel{(b)}{=} p^r$, entonces $[A_0:H] = [A:H]$ y entonces $A_0 = A$ con lo que

$$A \cong \langle g_1 \rangle \times \cdots \times \langle g_r \rangle \cong C_{p^{\gamma_1+1}} \times \cdots \times C_{p^{\gamma_r+1}}$$

y obtendríamos la descomposición buscada para A siendo $\beta_1 = \gamma_1 + 1 \ge \beta_2 = \gamma_2 + 1 \ge \cdots \ge \beta_r = \gamma_r + 1$. Notemos que $\beta_1 + \beta_2 + \cdots + \beta_r = \gamma_1 + \cdots + \gamma_r + r = m + r$ y $|A| = |A_0| \stackrel{(a)}{=} p^{m+r}$.

Caso 2: K no es un subgrupo de H. Elegimos entonces $x \in K-H$. Entonces $xH \in A/H$ es un elemento no trivial y, puesto que A/H es un p-grupo

abeliano elemental, será ord(xH) = p. Además, por el lema anterior, existe un subgrupo $M/H \le A/H$ tal que $A/H \cong M/H \times \langle xH \rangle$.

Tenemos entonces $x \notin M$ pues $xH \notin M/H$, y ord(x) = p pues $x \in K$, con lo que $M \cap \langle x \rangle = 1$. Como

$$|A/H| = |M/H| \cdot |\langle xH \rangle| = |M/H|p \Rightarrow |A| = |M|p = |M\langle x \rangle| \Rightarrow A = M\langle x \rangle,$$

concluimos que $A\cong M\times \langle x\rangle$ y entonces basta aplicar la hipótesis de inducción a M.

Veamos pues la demostración de (a), (b) y (c):

Demostración de (a): Hemos de ver que

1.
$$\langle g_1 \rangle \dots \langle g_r \rangle = A_0$$
 y

2.
$$\langle g_1 \rangle \dots \langle g_{i-1} \rangle \cap \langle g_i \rangle = 1$$
 para todo $i \geq 2$.

La primera igualdad es clara pues $\langle g_1 \rangle \dots \langle g_r \rangle = \langle g_1, \dots, g_r \rangle = A_0$. La segunda la vemos por inducción en i. Para i = 2 sea

$$x \in \langle g_1 \rangle \cap \langle g_2 \rangle \Rightarrow \left\{ \begin{array}{l} x \in \langle g_1 \rangle \Rightarrow x = g_1^t \Rightarrow x^p = h_1^t \in \langle h_1 \rangle \\ x \in \langle g_2 \rangle \Rightarrow x^p \in \langle h_2 \rangle \end{array} \right\} \Rightarrow x^p \in \langle h_1 \rangle \cap \langle h_2 \rangle = 1.$$

Consecuentemente $x^p = 1 \Rightarrow ord(x) = p$. Como $x = g_1^t$, entonces

$$p = ord(x) = \frac{ord(g_1)}{mcd(t, ord(g_1))} = \frac{p^{\gamma_1 + 1}}{mcd(t, p^{\gamma_1 + 1})} \Rightarrow mcd(t, p^{\gamma_1 + 1}) = p^{\gamma_1} \Rightarrow t = p^{\gamma_1} k$$

con lo que

$$x = (g_1)^{p^{\gamma_1}k} = (h_1)^{p^{\gamma_1-1}k} \in \langle h_1 \rangle.$$

De la misma forma concluimos que $x \in \langle h_2 \rangle$ y como $\langle h_1 \rangle \cap \langle h_2 \rangle = 1$, será x = 1.

Supuesto cierto para i, veámoslo para i+1. Notemos que, puesto que $\langle g_1 \rangle \dots \langle g_{j-1} \rangle \cap \langle g_j \rangle = 1$ para todo $j \leq i$, entonces $\langle g_1, \dots, g_i \rangle = \langle g_1 \rangle \times \dots \times \langle g_i \rangle$.

Sea $x \in (\langle g_1 \rangle \dots \langle g_i \rangle) \cap \langle g_{i+1} \rangle$, entonces

$$\left\{ \begin{array}{l} x = g_1^{t_1} \dots g_i^{t_i} \Rightarrow x^p = h_1^{t_1} \dots h_i^{t_i} \\ x = g_{i+1}^{t_{i+1}} \Rightarrow x^p = h_{i+1}^{t_{i+1}} \end{array} \right\} \Rightarrow x^p \in (\langle h_1 \rangle \dots \langle h_i \rangle) \cap \langle h_{i+1} \rangle$$

con lo que $x^p = 1$ y ord(x) = p. Razonando como anteriormente, concluimos que $x \in \langle h_{i+1} \rangle$.

Como $\langle g_1, \ldots, g_i \rangle = \langle g_1 \rangle \times \cdots \times \langle g_i \rangle$, entonces el elemento $(g_1^{t_1}, \ldots, g_i^{t_i}) \in \langle g_1 \rangle \times \cdots \times \langle g_i \rangle$ tiene orden p y tenemos

$$p = ord(g_1^{t_1}, \dots, g_i^{t_i}) = mcm(ord(g_1^{t_1}), \dots, ord(g_i^{t_i}))$$
$$= mcm(\frac{p^{\gamma_1+1}}{mcd(t_1, p^{\gamma_1+1})}, \dots, \frac{p^{\gamma_i+1}}{mcd(t_1, p^{\gamma_i+1})}).$$

Entonces o todos valen p o algunos valen p y otros valen 1. Pero si $\frac{p^{\gamma_j+1}}{mcd(t_1,p^{\gamma_j+1})} = p \Rightarrow t_j = p^{\gamma_j}r$, mientras que si $\frac{p^{\gamma_j+1}}{mcd(t_1,p^{\gamma_j+1})} = 1 \Rightarrow t_j = p^{\gamma_j+1}$. En el primer caso $g_j^{t_j} = (h_j)^{p^{\gamma_j-1}r}$ y en el segundo caso $g_j^{t_j} = 1$. Consecuentemente

$$\left\{\begin{array}{l} x = g_1^{t_1} \dots g_i^{t_i} \in \langle h_1 \dots h_i \rangle \\ x \in \langle h_{i+1} \rangle \end{array}\right\} \Rightarrow x \in (\langle h_1 \rangle \dots \langle h_i \rangle) \cap \langle h_{i+1} \rangle = 1$$

esto es, x = 1, lo que concluye la demostración de (a).

Demostración de (b): En primer lugar, puesto que $(g_iH)^p = g_i^pH = h_iH = H$ entonces $ord(g_iH) = p$ con lo que

$$|\langle g_1 H \rangle \times \cdots \times \langle g_r H \rangle| = p^r.$$

y es además un p-grupo abeliano elemental pues es isomorfo a $C_p \times .^r. \times C_p$. Sea

$$f: A_0/H \to \langle g_1 H \rangle \times \cdots \times \langle g_r H \rangle$$

dado por

$$f(g_1^{t_1} \dots g_r^{t_r} H) = (g_1^{t_1} H, \dots, g_r^{t_r} H),$$

f está bien definido pues si $g_1^{t_1}\dots g_r^{t_r}\in H$ entonces $g_1^{t_1}\dots g_r^{t_r}=h_1^{s_1}\dots h_r^{s_r}=g_1^{pt_1}\dots g_r^{pt_r}$, lo que implica, utilizando el apartado (a) ya probado, que $t_i=ps_i$ para todo $i=1,\dots,r$ y entonces $g_i^{t_i}=h_i^{s_i}\in H$. Es decir $g_i^{t_i}H=H$ para todo $i=1,\dots,r$.

Es fácil ver que f es un epimorfismo de grupos. Como

$$|A_0/H| = \frac{|A_0|}{|H|} \stackrel{(a)}{=} \frac{|\langle g_1 \rangle \times \dots \langle g_r \rangle|}{|\langle h_1 \rangle \times \dots \langle h_r \rangle|} = \frac{p^{\gamma_1 + 1} \dots p^{\gamma_r + 1}}{p^{\gamma_1} \dots p^{\gamma_r}} = p^r$$

y $|\langle g_1 H \rangle \times ... \langle g_r H \rangle| = p^r$ entonces Ker(f) = 1 y f es un isomorfismo, lo que demuestra (b).

Demostración de (c): Puesto que $ord(h_i) = p^{\gamma_i}$ entonces $ord(h_i^{p^{\gamma_i-1}}) = p$ para todo i = 1, ..., r. Pero entonces $h_i^{p^{\gamma_i-1}} \in K$ y consecuentemente $\langle h_i^{p^{\gamma_i-1}} \rangle \leq H \cap K$, para todo i = 1, ..., r. Tendremos entonces que

$$\langle h_1^{p^{\gamma_1-1}} \rangle \dots \langle h_r^{p^{\gamma_r-1}} \rangle = \langle h_1^{p^{\gamma_1-1}}, \dots, h_r^{p^{\gamma_r-1}} \rangle \le H \cap K.$$

Veamos la otra inclusión: sea

$$x \in H \cap K \Rightarrow \begin{cases} x \in H = \langle h_1 \rangle \times \dots \times \langle h_r \rangle \Rightarrow x = (h_1^{t_1}, \dots, h_r^{t_r}) \\ x \in K \Rightarrow ord(x) = p \end{cases}$$

entonces $ord(h_i^{t_i} = 1 \circ p$. Como $ord(h_i) = p^{\gamma_i}$ ha de ser $mcd(p^{\gamma_i}, t_i) = \begin{cases} p^{\gamma_i-1} \\ p^{\gamma_i} \end{cases}$. En ambos casos $p^{\gamma_i-1}|t_i$ y por tanto $x \in \langle h_1^{p^{\gamma_1-1}}, \dots, h_r^{p^{\gamma_r-1}} \rangle$, lo que demuestra la otra inclusión.

Obviamente $\langle h_1^{p^{\gamma_1-1}}\rangle\dots\langle h_i^{p^{\gamma_i-1}}\rangle\cap\langle h_{i+1}^{p^{\gamma_{i+1}-1}}\rangle=1$ pues dicha intersección está contenida en $\langle h_1\rangle\dots\langle h_i\rangle\cap\langle h_{i+1}\rangle$ que sabemos que es trivial. Consecuentemente

$$H \cap K \cong \left\langle h_1^{p^{\gamma_1 - 1}} \right\rangle \times \dots \times \left\langle h_r^{p^{\gamma_r - 1}} \right\rangle \cong C_p \times \dots \times C_p$$

y así $H \cap K$ es un p-grupo abeliano elemental de orden p^r . Demostración de la unicidad: Supongamos $|A| = p^n$ y sean

$$A \cong C_{p^{\beta_1}} \times C_{p^{\beta_2}} \times \cdots \times C_{p^{\beta_t}}, \ \text{con} \ \beta_1 \geq \beta_2 \geq \cdots \geq \beta_t \geq 1 \ \text{y} \ \beta_1 + \beta_2 + \cdots + \beta_t = n$$

у

$$A \cong C_{p^{\alpha_1}} \times C_{p^{\alpha_2}} \times \cdots \times C_{p^{\alpha_s}}, \text{ con } \alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_s \geq 1 \text{ y } \alpha_1 + \alpha_2 + \cdots + \alpha_s = n$$

dos expresiones distintas de A como producto directo de grupos cíclicos. Hemos de ver que t=s y $\alpha_i=\beta_i$ para todo i. Hacemos inducción en n. Si n=1 entonces $A\cong C_p$ con lo que necesariamente t=1=s y $\beta_1=1=\alpha_1$ y se tiene el resultado. Supongamos n>1 y consideremos el subgrupo $H=Img(\varphi)=\{x^p/x\in G\}$.

Si H fueran el grupo trivial entonces todos los elementos de A tendrían orden p con lo que necesariamente $\beta_1 = \beta_2 = \cdots = \beta_t = 1$ y $\alpha_1 = \alpha_2 = \cdots = \alpha_s = 1$. Pero entonces

$$|A| = p^t = p^s \Rightarrow s = t$$

y lo tendríamos probado.

Supongamos $H \neq 1$. Por el primer isomorfismo ponemos $A = \langle a_1 \rangle \times \cdots \times \langle a_t \rangle$ con $ord(a_i) = p^{\beta_i}, i = 1, ..., t$; por el segundo tendremos $A = \langle b_1 \rangle \times \cdots \times \langle b_s \rangle$ con $ord(b_j) = p^{\alpha_j}, j = 1, ..., s$. Pero entonces, es fácil ver que

$$H = \langle a_1^p \rangle \times \dots \times \langle a_t^p \rangle$$

con $ord(a_i^p) = p^{\beta_i - 1}, i = 1, \dots, t$ y también

$$H = \langle b_1^p \rangle \times \cdots \times \langle b_s^p \rangle$$

con $ord(b_j^p) = p^{\alpha_j - 1}, \ j = 1, \ldots, s$. Aplicando la hipótesis de inducción t = s y $\beta_i - 1 = \alpha_i - 1$ para todo $i = 1, \ldots, t$, lo que acaba la demostración de la unicidad y de la proposición.

Como corolario tenemos:

Teorema 0.5. TEOREMA DE ESTRUCTURA DE GRUPOS ABELIANOS FINITOS. DESCOMPOSICIÓN CÍCLICA PRIMARIA.

Sea A un grupo abeliano finito con $|A| = p_1^{r_1} \dots p_k^{r_k}$. Entonces

$$A \cong \prod_{i=1}^k \left(\prod_{j=1}^{t_i} C_{p_i^{n_{ij}}} \right)$$

donde para cada $i = 1, \ldots k$

$$n_{i1} \ge n_{i2} \ge \cdots \ge n_{it_i} \ge 1$$
 y $n_{i1} + n_{i2} + \cdots + n_{it_i} = r_i$.

Además esta descomposición es única salvo el orden. Esta descomposición se llama la descomposición cíclica primaria (DCP) de A. Los

$$\{p_i^{n_{ij}}/1 \le i \le k, 1 \le j \le t_i\}$$

se llaman los <u>divisores elementales</u> del grupo A.

Demostraci'on. Es consecuencia directa del teorema anterior pues, al ser A abeliano finito A es el producto directo interno de sus subgrupos de Sylow. Esto es

$$A = \mathcal{P}_1 \times \mathcal{P}_2 \times \cdots \times \mathcal{P}_k$$

 $\operatorname{con} |\mathcal{P}_i| = p_i^{r_i}, \ i = 1, \dots, k.$

Ahora no hay mas que aplicar la proposición anterior a cada \mathcal{P}_i .

Observación 0.6. Después del teorema anterior, un grupo abeliano finito está totalmente determinado por sus divisores elementales. Esto es dos grupos abelianos finitos son isomorfos si y sólamente si tienen los mismos divisores elementales.

Consecuentemente, podemos entonces clasificar todos los grupos abelianos finitos del mismo orden. Veamos un ejemplo:

Ejemplo 0.7. Vamos a determinar todos los grupos abelianos de orden 360, salvo isomorfismo.

Puesto que $360 = 2^3 3^2 5$, entonces las posibles listas de divisores elementales son:

- 1. $\{2^3, 3^2, 5\}$ que corresponde a los grupos isomorfos a $C_8 \times C_9 \times C_5$,
- 2. $\{2^2,2,3^2,5\}$ que corresponde a los grupos isomorfos a $C_4 \times C_2 \times C_9 \times C_5$,
- 3. $\{2,2,2,3^2,5\}$ que corresponde a los grupos isomorfos a $C_2 \times C_2 \times C_2 \times C_3 \times C_5$.
- 4. $\{2^3,3,3,5\}$ que corresponde a los grupos isomorfos a $C_8 \times C_3 \times C_3 \times C_5$,

- 5. $\{2^2, 2, 3, 3, 5\}$ que corresponde a los grupos isomorfos a $C_4 \times C_2 \times C_3 \times C_3 \times C_5$,
- 6. $\{2,2,2,3,3,5\}$ que corresponde a los grupos isomorfos a $C_2 \times C_2 \times C_2 \times C_3 \times C_3 \times C_5$,

Teniendo en cuenta el hecho (0.1), la descomposición cíclica primaria de un grupo abeliano nos da lugar a la que es conocida simplemente por descomposición cíclica de grupos abelianos finitos y que enunciamos en el teorema siguiente:

Teorema 0.8. Teorema de descomposición cíclica de un grupo abeliano finito

Sea A un grupo abeliano finito. Entonces

$$A \cong C_{d_1} \times C_{d_2} \times \cdots \times C_{d_t}$$

donde d_1, d_2, \ldots, d_t son números enteros positivos tales que

$$d_1d_2 \dots d_t = |A| \ y \ d_i|d_j \ para \ cada \ j \leq i.$$

Además esta descomposición es única. Esto es si

$$A \cong C_{m_1} \times C_{m_2} \times \cdots \times C_{m_s}$$

 $con \ m_1m_2...m_s = |A| \ y \ m_i|m_j \ para \ cada \ j \leq i., \ entonces$

$$s = t \ y \ d_i = m_i, i = 1, \dots, t.$$

La lista $\{d_1, d_2, \dots, d_t\}$ se llaman los <u>factores invariantes</u> del grupo A y la descomposición anterior se llama la <u>descomposición cíclica</u> (DC) del grupo A.

Demostración. Supongamos que $|A|=p_1^{r_1}\dots p_k^{r_k}$ y consideremos la descomposición cíclica primaria de A

$$A \cong \prod_{i=1}^k \left(\prod_{j=1}^{t_i} C_{p_i^{n_{ij}}} \right)$$

con $n_{i1} \geq n_{i2} \geq \cdots \geq n_{it_i} \geq 1$ y $n_{i1} + n_{i2} + \cdots + n_{it_i} = r_i$. Sea $t = m\acute{a}x\{t_1, t_2, \ldots, t_r\}$ y pongamos $n_{i\ell} = 0$ si $t_i < \ell \leq t$, formamos la matriz

$$\begin{pmatrix} p_1^{n_{11}} & p_2^{n_{21}} & \dots & p_k^{n_{k1}} \\ p_1^{n_{12}} & p_2^{n_{22}} & \dots & p_k^{n_{k2}} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ p_1^{n_{1t}} & p_2^{n_{2t}} & \dots & p_k^{n_{kt}} \end{pmatrix}$$

Sean

$$d_1 = p_1^{n_{11}} p_2^{n_{21}} \dots p_k^{n_{k1}} d_2 = p_1^{n_{12}} p_2^{n_{22}} \dots p_k^{n_{k2}} \vdots d_t = p_1^{n_{1t}} p_2^{n_{2t}} \dots p_k^{n_{kt}}$$

es decir, cada d_i es el producto de los elementos de la fila *i*-ésima. Puesto que $n_{ij} \geq n_{ij+1}$ para todo $1 \leq i \leq k$ y $1 \leq j \leq t$, entonces $d_i|d_j$ para todo $j \leq i$ y como

$$C_{d_1} \cong C_{p_1^{n_{11}}} \times C_{p_2^{n_{21}}} \times \dots \times C_{p_k^{n_{k1}}},$$

$$C_{d_2} \cong C_{p_1^{n_{12}}} \times C_{p_2^{n_{22}}} \times \dots \times C_{p_k^{n_{k2}}},$$

$$\vdots$$

$$C_{d_t} \cong C_{p_1^{n_{1t}}} \times C_{p_2^{n_{2t}}} \times \dots \times C_{p_k^{n_{kt}}},$$

concluimos que

$$A \cong C_{d_1} \times C_{d_2} \times \cdots \times C_{d_t}$$
.

La unicidad de la descomposición cíclica se sigue de la unicidad de la descomposición cíclica primaria. \Box

Ejemplo 0.9. Veamos cúal es la descomposición cíclica de los grupos de orden 360.

En el ejemplo anterior hemos calculado las posibles listas de divisores elementales: Entonces si

- 1. los divisores elementales del grupo A son $\{2^3, 3^2, 5\}$ (y entonces su DCP es $A \cong C_8 \times C_9 \times C_5$) entonces hay únicamente un factor invariante $d_1 = 2^3 35 = 360$ y la descomposición cíclica será $A \cong C_{365}$.
- 2. Si los divisores elementales son $\{2^2, 2, 3^2, 5\}$ (y entonces su DCP es $C_4 \times C_2 \times C_9 \times C_5$), entonces, procediendo como en la demostración del teorema, los colocamos en forma matricial, completando con 1:

$$\begin{pmatrix} 2^2 & 3^2 & 5 \\ 2 & 1 & 1 \end{pmatrix} \Rightarrow d_1 = 2^2 3^2 5 = 180, d_2 = 2$$

y la DC será $A \cong C_{180} \times C_2$.

3. Si los divisores elementales son $\{2,2,2,3^2,5\}$ (y entonces su DCP es $A\cong C_2\times C_2\times C_2\times C_9\times C_5$), entonces la matriz sería

$$\begin{pmatrix} 2 & 3^2 & 5 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \Rightarrow d_1 = 23^25 = 90, d_2 = 2, d_3 = 2$$

y la DC será $A \cong C_{90} \times C_2 \times C_2$.

4. Para el caso de que la lista de divisores elementales sean $\{2^3, 3, 3, 5\}$ (y la DCP de A sea $A \cong C_8 \times C_3 \times C_3 \times C_5$), entonces

$$\begin{pmatrix} 2^3 & 3 & 5 \\ 1 & 3 & 1 \end{pmatrix} \Rightarrow d_1 = 2^3 3 5 = 120, d_2 = 3$$

y la DC será $A \cong C_{120} \times C_3$.

5. Si los divisores elementales son $\{2^2, 2, 3, 3, 5\}$ (y la DCP es $A \cong C_4 \times C_2 \times C_3 \times C_3 \times C_5$) entonces

$$\begin{pmatrix} 2^2 & 3 & 5 \\ 2 & 3 & 5 \end{pmatrix} \Rightarrow d_1 = 60, d_2 = 6$$

y la DC será $A \cong C_{60} \times C_6$.

6. Finalmente si los divisores elementales son $\{2,2,2,3,3,5\}$ (y la DCP es $A \cong C_2 \times C_2 \times C_2 \times C_3 \times C_3 \times C_5$) entonces

$$\begin{pmatrix} 2 & 3 & 5 \\ 2 & 3 & 1 \\ 2 & 1 & 1 \end{pmatrix} \Rightarrow d_1 = 30, d_2 = 6, d_3 = 2$$

y entonces la DC será $A \cong C_{30} \times C_6 \times C_2$.

Observación 0.10. A la hora de listar los grupos, salvo isomorfismo, de un orden dado, podemos también dar las posibles listas de factores invariantes, Para ello hay que tener en cuenta que si A es un grupo finito con |A| = n y

$$A \cong C_{d_1} \times C_{d_2} \times \cdots \times C_{d_t}$$

es su descomposición cíclica, entonces

- Como $d_1d_2...d_t = n$ entonces $d_i|n$ para todo i = 1,...t.
- Si p es un número primo con p|n entonces $\exists i \geq 1$ tal que $p|d_i$, pero entonces (puesto que $d_i|d_j$ para $j \leq i$) $p|d_j$ para todo $j \leq i$. En particular
- Cada divisor primo de n divide a d_1

En particular tenemos:

Corolario 0.11. Si $n = p_1 p_2 \dots p_k$, entonces salvo isomorfismo el único grupo abeliano de orden n es el grupo cíclico C_n .

Demostración. Si |A| = n, únicamente puede tener un factor invariante $d_1 = p_1 p_2 \dots p_k$ con lo que

$$A \cong C_n \cong C_{p_1} \times C_{p_2} \times \cdots \times C_{p_k}$$