2024.12.19 Prepare Notes for Discussion Session 3

课上叙述出错的地方:

(i) $\varphi^{-1}(U_1 \oplus U_2) = \varphi^{-1}(U_1) \oplus \varphi^{-1}(U_2)$ 必须要求同构映射,虽然在保持线性和满射前提下已经成立 $\varphi^{-1}(U_1 + U_2) = \varphi^{-1}(U_1) + \varphi^{-1}(U_2)$ 和 $\varphi^{-1}(U_1 \cap U_2) = \varphi^{-1}(U_1) \cap \varphi^{-1}(U_2)$ 。

但是此时 $\varphi^{-1}(U_1 \cap U_2) = \varphi^{-1}(U_1) \cap \varphi^{-1}(U_2) = \text{Ker}\varphi = \{\mathbf{0}\}$ 这是必须要成立的,所以必须单射!

(ii) $\Theta(\mathrm{id}_V)=E_n$ 这一点直接由 Θ 的**定义得到**就可以了,也就是任取定 V 的一组基, id_V 在这组基下的矩阵一定是 E_n ,因为这是恒同映射。

A brief introduction to Jordan Canonical Form:

- 1. 设 dim $V = n, \varphi \in \operatorname{End}_F(V)$,且 $\varphi^3 2\varphi^2 + \varphi = \mathscr{O}$. 证明:
 - (i) $V = \operatorname{Im} \varphi \oplus \operatorname{Ker} \varphi$;
 - (ii) 存在 V 的一组基 ξ_1, \ldots, ξ_n 使得

$$\varphi(\xi_1,\ldots,\xi_n) = (\xi_1,\ldots,\xi_n) \begin{pmatrix} A & O \\ O & O \end{pmatrix},$$

其中 A 为一个 r 阶可逆方阵, $\dim \operatorname{Im} \varphi = r$.

(iii) 你能说明 $\text{Im}\varphi = \text{Ker}(\varphi - \text{id}_V)^2$ 吗?

Hint: $(\varphi - id_V)^2 - (\varphi - 2id_V)\varphi = id_V \rightarrow 同构意义下创造单位阵打洞!$

(iv) 其实 (1) 可以改写为 $V = \text{Ker}\varphi \oplus \text{Ker}(\varphi - \text{id}_V)^2$,能直接证明吗?

Note: (Chapter 5) Generally, if we have $f, g \in F[x], f(\varphi)g(\varphi) = \mathcal{O}, \gcd(f, g) = 1$, then

$$V = \operatorname{Ker} f(\varphi) \oplus \operatorname{Ker} g(\varphi), \operatorname{Im} f(\varphi) = \operatorname{Ker} g(\varphi).$$

(v) 存在 V 的一组基 ξ'_1, \ldots, ξ'_n 使得

$$\varphi(\xi'_1,\ldots,\xi'_n) = (\xi'_1,\ldots,\xi'_n) \operatorname{diag}\{J(1,2),\cdots,J(1,2),J(1,1),\cdots,J(1,1),J(0,1),\cdots,J(0,1)\}.$$

pf:

- (i) 注意到显然有维数 $\dim \operatorname{Im} \varphi + \dim \operatorname{Ker} \varphi = n$,只证明 $\operatorname{Im} \varphi \cap \operatorname{Ker} \varphi = \{\mathbf{0}\}$ 或者 $V = \operatorname{Im} \varphi + \operatorname{Ker} \varphi$ 其中一条:
 - (a) 选择 $\operatorname{Im}\varphi \cap \operatorname{Ker}\varphi = \{0\}$,考虑 $\forall \alpha \in \operatorname{Im}\varphi \cap \operatorname{Ker}\varphi$,那么有

$$\varphi(\alpha) = \mathbf{0}, \ \exists \ \beta \in V, \ \varphi(\beta) = \alpha.$$

利用条件 $\varphi^3 - 2\varphi^2 + \varphi = \mathscr{O}$,得到 $\varphi(\beta) = 2\varphi^2(\beta) - \varphi^3(\beta) = 2\varphi(\alpha) - \varphi^2(\alpha) = \mathbf{0}$.

(b) 选择 $V = \text{Im}\varphi + \text{Ker}\varphi$, 注意到拆分

$$\alpha = (\varphi - \mathrm{id}_V)^2(\alpha) - \varphi^2(\alpha) + 2\varphi(\alpha) = (\varphi - \mathrm{id}_V)^2(\alpha) - \varphi(\varphi(\alpha) - 2\alpha). \tag{1}$$

那么由 $\varphi(\varphi - \mathrm{id}_V)^2 = \mathcal{O}$ 得到 $\varphi[(\varphi - \mathrm{id}_V)^2(\alpha)] = [\varphi(\varphi - \mathrm{id}_V)^2](\alpha) = \mathbf{0} \rightsquigarrow (\varphi - \mathrm{id}_V)^2(\alpha) \in \mathrm{Ker}\varphi$,而 $\varphi(\varphi(\alpha) - 2\alpha) \in \mathrm{Im}\varphi$ 是显然的。

(ii) 不妨取 $\operatorname{Ker}\varphi$ 的一组基为 ξ_{r+1}, \dots, ξ_r ,扩为 V 的一组基 $\xi_1, \dots, \xi_r, \xi_{r+1}, \dots, \xi_n$ 。那么 $\varphi(\xi_1), \dots, \varphi(\xi_r)$ 即为 $\operatorname{Im}\varphi$ 的一组基,根据 (i) 已经证明直和,那么 $\operatorname{Im}\varphi$ 和 $\operatorname{Ker}\varphi$ 的基拼在一起就得到 V 的一组基,即 $\varphi(\xi_1), \dots, \varphi(\xi_r), \xi_{r+1}, \dots, \xi_r$ 为 V 的一组基,又由于 $\operatorname{Im}\varphi, \operatorname{Ker}\varphi$ 均为 φ —子空间,那么 φ 在这组基下的 矩阵为分块对角阵:

$$\varphi(\xi_1, \dots, \xi_n) = (\xi_1, \dots, \xi_n) \begin{pmatrix} A & O \\ O & O \end{pmatrix}$$
 (2)

其中 A 为 r 阶方阵,由扩基假设 $\dim \operatorname{Im} \varphi = r$,即 φ 在任何一组基下的矩阵的秩为 r,那么 $r(A) = r \rightsquigarrow A$ 可逆。

- (iii) 证明两边包含即可:
 - (a) Goal: $\operatorname{Im}\varphi\subseteq\operatorname{Ker}(\varphi-\operatorname{id}_V)^2$,这是很容易的,只要注意到 $\varphi(\varphi-\operatorname{id}_V)^2=\mathscr{O}$,这说明

$$\forall \ \alpha \in \operatorname{Im}\varphi, \exists \ \beta \in V, \ \varphi(\beta) = \alpha \leadsto (\varphi - \operatorname{id}_V)^2(\alpha) = [\varphi(\varphi - \operatorname{id}_V)^2](\beta) = \mathbf{0} \leadsto \alpha \in \operatorname{Ker}(\varphi - \operatorname{id}_V)^2.$$
 (3)

(b) Goal: $\operatorname{Ker}(\varphi - \operatorname{id}_V)^2 \subseteq \operatorname{Im}\varphi$ 。这需要利用Hint,注意到 $(\varphi - \operatorname{id}_V)^2 - (\varphi - 2\operatorname{id}_V)\varphi = \operatorname{id}_V$,那么

$$\forall \ \alpha \in \operatorname{Ker}(\varphi - \operatorname{id}_V)^2, \alpha = \operatorname{id}_V(\alpha) = [(\varphi - \operatorname{id}_V)^2 - (\varphi - 2\operatorname{id}_V)\varphi](\alpha) = \varphi[(2\operatorname{id}_V - \varphi)(\alpha)] \in \operatorname{Im}\varphi. \tag{4}$$

- (iv) 其实空间直和分解的三个条件在此处都能证明出来,逐一叙述:
 - (a) $V = \text{Ker}\varphi + \text{Ker}(\varphi \text{id}_V)^2$: 利用 (i) 中的 (1) 式即可;
 - (b) $\operatorname{Ker}\varphi \cap \operatorname{Ker}(\varphi \operatorname{id}_V)^2 = \{0\}$: 利用 (i) 中的 (1) 式即可;
 - (c) $\dim \operatorname{Ker} \varphi + \dim \operatorname{Ker} (\varphi \operatorname{id}_V)^2 = n$: 利用同构原理,取定空间的一组基,将 φ 转化到基下的矩阵 A。 为证明结论,只需 $r(A) + r[(A - E)^2] = n$ 即可。下面利用矩阵打洞:

$$\begin{bmatrix} A & O \\ O & (A-E)^2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} A & (A-E)^2 - (A-2E)A \\ O & (A-E)^2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} A & E \\ O & (A-E)^2 \end{bmatrix}$$

$$\rightsquigarrow \begin{bmatrix} A & E \\ -(A-E)^2 A (=O) & O \end{bmatrix} \rightsquigarrow \begin{bmatrix} O & E \\ -(A-E)^2 A (=O) & O \end{bmatrix}.$$

(v) 注意到 $\operatorname{Im}\varphi$ 为 φ —子空间,即 $\varphi|_{\operatorname{Im}\varphi}$ 仍然为 $\operatorname{Im}\varphi$ 上的线性变换。而 $(\varphi-\operatorname{id}_V)^2|_{\operatorname{Im}\varphi}=\mathscr{O}$ 。令 $\psi=\varphi-\operatorname{id}_V$,则存在 $\operatorname{Im}\varphi$ 的一组基 ξ_1',\cdots,ξ_r' 使得

$$\psi(\xi_1', \dots, \xi_r') = (\xi_1', \dots, \xi_r') \operatorname{diag}\{J(0, 2), \dots, J(0, 2), J(0, 1), \dots, J(0, 1)\}.$$

这其实说明

$$\varphi(\xi_1', \dots, \xi_r') = (\xi_1', \dots, \xi_r') \operatorname{diag}\{J(1, 2), \dots, J(1, 2), J(1, 1), \dots, J(1, 1)\}.$$

将 ξ'_1, \dots, ξ'_r 扩为 V 的一组基 ξ'_1, \dots, ξ'_n , 则

$$\varphi(\xi_1',\dots,\xi_n') = (\xi_1',\dots,\xi_n') \operatorname{diag}\{J(1,2),\dots,J(1,2),J(1,1),\dots,J(1,1),J(0,1),\dots,J(0,1)\}.$$

2. Pair
$$A = \begin{pmatrix} 2 & 1 & -1 & -1 \\ -1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (1) 能求出可逆矩阵 P 满足 $P^{-1}AP = J$ 吗?
- (2) 将结论转化为几何语言, 也就是 F^4 上的线性变换 φ ...

pf:

(0) 首先验证相似,由第一题可知如果矩阵 A 满足 $(A-E)^2A = O$ 那么必然会相似到形如 $\mathrm{diag}\{J(1,2),\cdots,J(1,2),\ J(1,1),\cdots,J(1,1),J(0,1),\cdots,J(0,1)\}$ 的Jordan标准型,而

$$A^{2} = \begin{bmatrix} 3 & 2 & -2 & -2 \\ -2 & -1 & 2 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, A^{3} = \begin{bmatrix} 4 & 3 & -3 & -3 \\ -3 & -2 & 3 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightsquigarrow A^{3} - 2A^{2} + A = O$$
 (5)

验证发现这是成立的,而 r(A)=3 ,相似保持秩的不变性,则 $\mathbf{J}(0,1)$ 只有1块,只需要说明必定有一个 $\mathbf{J}(1,2)$ 块即可。若剩下的为 3 个 $\mathbf{J}(1,1)$ 这说明 $\dim \operatorname{Ker}(A-E)=3$,即 r(A-E)=1,但简单计算可知 r(A-E)=2 与该假设矛盾,即必定有一个 $\mathbf{J}(1,2)$ 块。

(1) 设 $A(P_1, P_2, P_3, P_4) = (P_1, P_2, P_3, P_4)J \rightsquigarrow AP_1 = P_1, AP_2 = P_1 + P_2, AP_3 = P_3, AP_4 = O$ 。首先求 P_4 ,即求 AX = O的一个基础解系,矩阵打洞得

$$\begin{pmatrix} 2 & 1 & -1 & -1 \\ -1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

得到一个基础解系为 $P_4=(0,0,1,-1)'$ 。接下来求 P_1,P_2,P_3 ,要注意 P_1,P_2 是关联在一起得两个向量,因此不采取直接求解线性方程组 (A-E)X=O 得到 P_1,P_3 后再去求解 P_2 的方法。注意到 $(A-E)P_2=P_1\neq O,\ (A-E)P_1=(A-E)^2P_2=O$ 。因此我们先求解 $(A-E)^2X=O$ 的基础解系中的一个向量,再将其左作用 A-E 后得到 P_1 ,称这时候的 P_2 为J(1,2) 的循环向量。而直接求解 $(A-E)^2$ 再矩阵打洞十分麻烦,注意到 $(A-E)^2A=O$ 以及 $r[(A-E)^2]+r(A)=n$ 这说明 A 的列向量组的极大无关组就是 $(A-E)^2X=O$ 的基础解系。记 $A=(A_1,A_2,A_3,A_4)$,容易发现 A_1,A_2,A_3 即为列向量组的极大无关组,将它们同时用 (A-E) 左作用,得到

$$(A-E)A_1 = (1,-1,0,0)', (A-E)A_2 = (1,-1,0,0)', (A-E)A_3 = (-1,1,0,0)'$$
(6)

这说明 $A_1, A_2, A_3 \in \text{Ker}(A - E)^2, A_1, A_2, A_3 \notin \text{Ker}(A - E)$,均可以作为 J(1,2)的循环向量,不妨取为 A_1 ,将 $P_2 = A_1, P_1 = (A - E)A_1$ 扩为 $\text{Ker}(A - E)^2$ 的一个基。其实此处就差 Ker(A - E) 中的一个与这

两个线性无关的向量,于是求解 (A-E)X=O,得到基础解系的两个向量为 (1,0,1,0)',(1,-1,0,0)'。那么扩基时就选取 $P_3=(1,0,1,0)'$ 即可。

最后得到

$$P = \begin{pmatrix} 1 & 2 & 1 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \ P^{-1}AP = J.$$
 (7)

(2) 取定 F^4 的一组基 ξ_1, \dots, ξ_4 ,那么搭建线性变换 φ :

$$\varphi(\xi_1, \dots, \xi_4) = (\xi_1, \dots, \xi_4)A, \ \alpha_i = (\xi_1, \dots, \xi_4)P_i$$
(8)

即

$$\varphi(\alpha_1, \cdots, \alpha_4) = (\alpha_1, \cdots, \alpha_4)J.$$

Chapter 3: Examples:

3. 设 $\{\alpha_1,\alpha_2,\cdots,\alpha_m\}$ 是 F^m 的一组基, $\{\beta_1,\beta_2,\cdots,\beta_n\}$ 是 F^n 的一组基。证明:

$$\{\alpha_i\beta_j^{\mathrm{T}}\mid 1\leq i\leq m, 1\leq j\leq n\}$$

是 $F^{m \times n}$ 的一组基。

Notes

- (1) (Chapter 4 Review B Ex.6) 设 $A, B \in F^{n \times n}$ 是取定的矩阵。对任意的 $X \in F^{n \times n}$,令 $\sigma(X) = AXB$. 求证 σ 可逆 $\Leftrightarrow \det(AB) \neq 0$.
- (2) (FDU 2024) 若修改 $A \in F^{m \times n}, X \in F^{n \times q}, B \in F^{q \times l}$, 上述充要条件该如何修改呢?
- (3) 你能给出几种证明方式? 如何求 σ^{-1} ?

pf: 首先注意到 $\{\alpha_i\beta_j^{\rm T}\mid 1\leq i\leq m, 1\leq j\leq n\}$ 已经为 mn 个向量,故只需证明线性无关性即可。考虑线性组合:

$$c_{11}\alpha_1\beta_1' + \dots + c_{nn}\alpha_n\beta_n' = \sum_{i,j=1}^n c_{ij}\alpha_i\beta_j' = O$$

$$\tag{9}$$

设 $\alpha_i = (a_{1i}, \cdots, a_{mi})'$, 那么上式可转化为

$$\sum_{i,j=1}^{i=m,j=n} c_{ij} \alpha_i \beta_j' = \left(\sum_{i,j=1}^{i=m,j=n} c_{ij} a_{i1} \beta_j', \cdots, \sum_{i,j=1}^{i=m,j=n} c_{ij} a_{im} \beta_j'\right)' = O \rightsquigarrow \forall k, \sum_{i,j=1}^{n} c_{ij} a_{ik} \beta_j' = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} c_{ij} a_{ik}\right) \beta_j' = O$$

这说明 $\forall k, j, \sum_{i=1}^n c_{ij}a_{ik} = 0$ 。 令 $A = (\alpha_1, \dots, \alpha_m)', C = (c_{ij})_{m \times n}$,那么 AC = O,而 A 可逆,从而 $C = O \leadsto c_{ij} \equiv 0$ 。

注: 其实这个逆命题也成立。即若 $\{\alpha_i\beta_j^{\mathrm{T}} \mid 1 \leq i \leq m, 1 \leq j \leq n\}$ 是 $F^{m \times n}$ 的一组基,那么 $\{\alpha_1, \alpha_2, \cdots, \alpha_m\}$ 是 F^m 的一组基且 $\{\beta_1, \beta_2, \cdots, \beta_n\}$ 是 F^n 的一组基。考虑前者,令

$$d_1\alpha_1 + \dots + d_m\alpha_m = \mathbf{0} \leadsto (d_1\alpha_1 + \dots + d_m\alpha_m)\beta_1' = O \leadsto d_1 = \dots = d_m = 0$$
(10)

- (1) 选取 $F^{n\times n}$ 的一组基 $\{E_{ij}\}_{i,j=1}^n$,那么令 $A=(\alpha_1,\cdots,\alpha_n)',\ B=(\beta_1,\cdots,\beta_n)$,就得到这组基在 σ 下的像为 $\{\alpha_i\beta_j^{\mathrm{T}}\mid 1\leq i,j\leq n\}$ 。那么由上题直接得到结论。下面再介绍一种映射观点的做法:
 - (a) \Leftarrow : $\diamondsuit \sigma^{-1}: X \mapsto A^{-1}XB^{-1}$ 即可;
 - (b) ⇒: 反证,若 A, B 其中之一不可逆,若 A 不可逆,则 AX = O 有非零解,记为 $O \neq X_0 \in F^n$,令 $X_1 = (X_0, O, \dots, O) \in F^{n \times n}$,那么 $\sigma(X_1) = \sigma(O) = O$,这与单射矛盾;若 B 不可逆,那么 B'X = O 有非零解,即 YB = O 有非零解,记为 $O \neq Y_0 \in F_n$,取 $Y_1 = (Y_0, O, \dots, O)'$,则 $\sigma(Y_1) = \sigma(O) = O$,这与单射矛盾。
- (2) 充要条件为 r(A) = n, r(B) = q, 证明同上, 这里叙述逆映射的构造: 由于 A 列满秩, 所以

$$A = P \begin{bmatrix} E_n \\ O \end{bmatrix} \leadsto U = [E_n, O]P^{-1}, \ UA = E_n$$
 (11)

同理可以找到

$$B = [E_n, O]Q, \rightsquigarrow V = Q^{-1} \begin{bmatrix} E_n \\ O \end{bmatrix}, BV = E_n$$
 (12)

那么取 $\sigma^{-1}: X \mapsto UXV$ 即可。

4. 设 $\dim V = n$, V_i $(i = 1, \dots, n)$ 为 V 的两两不同的非平凡子空间,求证:

$$(1) \ \exists \ \alpha \in V, \alpha \notin \bigcup_{i=1}^{2} V_{i}$$

(2)
$$\exists \beta \in V, \beta \notin \bigcup_{i=1}^{n} V_i$$

Hint: Consider the vectors in the set

$$S = \{\xi_1 + j\xi_2 + j^2\xi_3 + \dots + j^{n-1}\xi_n \mid j = 1, 2, \dots\}$$

(3) (Chapter 4 Review C Ex.1) 设 $\varphi_1, \dots, \varphi_s \in \operatorname{End}_F(V)$ 非零,求证:存在 $\alpha \in V$,使得 $\varphi_i(\alpha) \neq \mathbf{0}$ 均成立。

pf:

- (1) 分类讨论:
 - (a) 若存在 V_1, V_2 之间的包含关系,不妨 $V_1 \subseteq V_2$,那么取 $\alpha \in V \setminus V_2$,这是一定可以找到的,因为 V_2 为真子空间,那么 $\alpha \notin V_1 \cup V_2$ 成立;

(b) 若不存在包含关系,令 $\alpha_1 \in V_1, \alpha_1 \notin V_2$; $\alpha_2 \in V_2, \alpha_2 \notin V_1$,取 $\alpha = \alpha_1 + \alpha_2$ 。

可以断言 $\alpha \notin V_1 \cup V_2$,否则有 $\alpha \in V_1$ 或者 $\alpha \in V_2$,不妨 $\alpha \in V_1$,而 $\alpha_1 \in V_1$,这说明 $\alpha_2 = \alpha - \alpha_1 \in V_1$ 与前面的取法矛盾。

- (2) 用归纳法,其中 n = 1, 2 情形已经成立,假设对 n 1 结论成立,考虑对 n 的情形:
 - (a) 若 $\bigcup_{i=1}^{n-1} V_i$ 与 V_n 存在包含关系,那么结论已经成立;
 - (b) 若不存在包含关系,那么可以取 $\alpha \in \bigcup_{i=1}^{n-1} V_i, \alpha \notin V_n \; ; \beta \in V_n, \beta \notin \bigcup_{i=1}^{n-1} V_i, \; \mathbbm{n} \; \gamma_p = \alpha + p\beta, \; 其中 \; p \; 为任$ 意自然数。仿照 (1) 可以证明,不可能有 $\gamma_n \notin V_n$ 。

如果对于任意自然数 p,均有 $\gamma_p \in \bigcup_{i=1}^{n-1} V_i$,那么对每个 p,都存在 V_{k_p} $(k_p=1,2,\cdots,n-1)$,使得 $\gamma_p = \alpha + p\beta \in V_{k_p}$

由抽屉原理,在 $p \in \{1, 2, 3, \cdots, n\}$ 中必然存在两个不同数 $p \neq p'$ 使得 $\gamma_p, \gamma_p' \in V_{k_p} = V_{k_p'}$,这会导致 $\gamma_p - \gamma_p' = (p - p')\beta \in V_{k_p} \subseteq \bigcup_{i=1}^{n-1} V_i \text{。矛盾!}$

从而必定存在至少一个 p ,使得 $\gamma_p = \alpha + p\beta \notin \bigcup_{i=1}^{n-1} V_i$,又 $\gamma_p \notin V_n$,结论得证。 注:此处变得 (2) 困难的原因就在于 $\bigcup_{i=1}^{n-1} V_i$ 不再是一个子空间,没有加法的封闭性。

下面用一种更有技巧性的方法,考虑 V 的一组基 ξ_1, \dots, ξ_n 和一个 V 中的无限集

$$S = \{\xi_1 + j\xi_2 + j^2\xi_3 + \dots + j^{n-1}\xi_n \mid j = 1, 2, \dots\}$$
(13)

容易看出这个集合中的任意 n 个不同向量在基下的过渡矩阵均可逆,是线性无关的。由于 V_1, \cdots, V_n 是真 子空间,每个子空间至多包含 S 中的 n-1 个向量,那么 $\bigcup_{i=1}^n V_i$ 中至多包含 S 中的 n(n-1) 个向量,但 S

为无限集,那么必然存在一个 $j_0 \in \mathbf{N}^*$, $\xi_1 + j_0 \xi_2 + j_0^2 \xi_3 + \dots + j_0^{n-1} \xi_n \notin \bigcup_{i=1}^n V_i$.

(3) 注意到 $\operatorname{Ker}\varphi_i(i=1,\cdots,n)$ 是两两不同的真子空间,利用上述结论即可。