UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autor: Adrián Aguilera Moreno

Autómatas y Lenguajes Formales

La propuesta de estos boletines fue hecha por:

- Dr. Favio E. Miranda Parea.
- Dra. Lourdes González Huesca.
- Mtra. A. Liliana Reyes Cabello.

Boletín 1

- 1. Sea w = babbab una cadena sobre el alfabeto $\Sigma = \{a, b\}$. Describa los conjuntos de todos los prefijos y sufijos de w. ¿Cuáles son propios?
 - ∇ Solución:

Prefijos: $\{babbab, babba, babb, bab, ba, b, \lambda\}$. Sufijos: $\{babbab, abbab, bab, bab, ab, b, \lambda\}$. Prefijos propios: $\{babba, babb, bab, bab, ba, b, \lambda\}$. Sufijos propios: $\{abbab, bab, bab, ab, b, \lambda\}$.

 \triangleleft

- 2. Demostrar las propiedades de concatenación de cadenas usando inducción:
 - Asociatividad: (uv)w = u(vw).
 - Identidad: $v\lambda = \lambda v = v$.
 - Longitud: |vw| = |v| + |w|.

Demostración: Consideremos las definiciones recursivas de cadena concatenada por la izquierda. Así, analicemos 3 posibles casos:

(a) Asociatividad. Sea Σ un alfabeto, $\forall_{w_1,w_2,w_3} \in \Sigma^*$; y $a \in \Sigma$: Para este inciso haremos inducción sobre la estructura de las cadenas. Si $w_1 = \lambda$, entonces

$$w_1 \cdot (w_2 \cdot w_3) = \lambda \cdot (w_2 \cdot w_3)$$
 Sabemos que $w_1 = \lambda$.
 $= (w_2 w_3)$ Identidad en cadenas.
 $= (w_2 \cdot w_3) \cdot \lambda$ Definición de concatenación.

Obsérvese que "·" es usado para indicar la concatenación, cuando se omite podemos trabajar esa concatenación como una cadena. En adelante se omite esta observación y se emplea de manera indistinta.

Así, supongamos sin pérdida de generalidad que, para alguna cadena $w \in \Sigma^*$ se cumple que $w \cdot (w_2 \cdot w_3) = (w \cdot w_2) \cdot w_3$, entonces

$$a \cdot (w \cdot (w_2 \cdot w_3)) = aw \cdot (w_2 \cdot w_3)$$
 Concatenación de un símbolo y una cadena.
$$= aw \cdot w_2 w_3$$
 Resultado de concatenar 2 cadenas.
$$= aw w_2 \cdot w_3$$
 Resultado de concatenar 2 cadenas.
$$= aw w_2 \cdot w_3$$
 Concatenación respecto a un sufijo.
$$= (a \cdot w_2) \cdot w_3$$
 Concatenación respecto a un prefijo.
$$= (a \cdot (w \cdot w_2)) \cdot w_3$$
 Definición de concatenación.

$$(uv)w = u(vw)$$

- (b) Identidad. Propongamos a λ como el neutro para la concatenación de cadenas.
- (c) Longitud. Sea Σ un alfabeto, $\forall_{w_1,w_2} \in \Sigma^*$; y $a \in \Sigma$:

Para este inciso haremos inducción sobre la estructura de las cadenas. Nótese que si $w_1 = \lambda$, entonces

$$|w_1 \cdot w_2| = |\lambda \cdot w_2|$$
 Recordemos que $w_1 = \lambda$.
$$= |w_2|$$
 Concatenación con la cadena vacía.
$$= 0 + |w_2|$$
 El cero es el neutro aditivo.
$$= |\lambda| + |w_2|$$
 Por definición: $|\lambda| = 0$.
$$= |w_1| + |w_2|$$
 Nuevamente: $w_1 = \lambda$.

Ahora, supongamos sin pérdida de generalidad que, para alguna cadena $w \in \Sigma^*$ se cumple que $|w \cdot w_2| = |w| + |w_2|$, luego

$$\begin{split} |(a \cdot w) \cdot w_2| &= |a \cdot (w \cdot w_2)| & \text{Asociatividad en la concatenación.} \\ &= 1 + |w \cdot w_2| & \text{Para } u \text{ cadena y } b \text{ símbolo, se tiene que } |b \cdot u| = 1 + |u|. \\ &= 1 + |w| + |w_2| & \text{Uso de la hipótesis de inducción.} \\ &= |a \cdot w| + |w_2| & \text{Para } u \text{ cadena y } b \text{ símbolo, se tiene que } |b \cdot u| = 1 + |u|. \end{split}$$

$$|vw| = |v| + |w|$$

QED

- 3. Demostrar que dado un alfabeto cualquiera y para cualesquiera cadenas u, v, w en la cerradura, se cumplen las siguientes propiedades:
 - (a) |w| = |w|.
 - (b) $(w^R)^R = w$.
 - (c) $(uv)^R = v^R u^R$.
 - (d) Para cada $n \ge 0$, $(w^n)^R = (w^n)^R$.
- 4. Sea $\Sigma = \{a, b\}$, el lenguaje L se define como:
 - i) $\lambda \in L$.
 - ii) Si $w_1, w_2 \in L$, entonces aw_1bw_2 y bw_1aw_2 pertenecen a L.
 - iii) Son todas las cadenas en L.
- 5. Suponer que $L_1 \geq \{a, b\}^*$ esta definido por:
 - i) $\lambda \in L_1$.
 - ii) para cada $w \in L_1$ sucede que wa y wba también pertenecen a L_1 .

Demuestre que para cada $v \in L_1$ las siguientes afirmaciones se cumplen:

- (a) Cualquier cadena $u \in L_1$ tiene mayor o igual número de a's que de b's $(\#_a \ge \#_b)$.
- (b) Cualquier cadena $u \in L_1$ no contiene la subcadena bb.