El Modelo de la Telaraña Ecuaciones en diferencia de primer orden

Mauro Loprete Fabricio Machado

Cálculo 3

9 de septiembre de 2019

Supuestos

- Competencia perfecta
- Un único bien
- Modelo dinámico
- Bien perecedero no almacenable
- $Q_t^s = S(P_{t-1})$ retrasada
- $Q_t^d = D(P_t)$ sin retraso
- $\bullet Q_t^s = Q_t^d$

Condición de equilibrio

$$\begin{cases} Q_t^s = -\gamma + \delta \cdot P_{t-1} & (\gamma, \delta > 0) \\ Q_t^d = \alpha - \beta \cdot P_t & (\alpha, \beta > 0) \\ Q_t^s = Q_t^d \end{cases}$$

$$-\gamma + \delta P_{t-1} = \alpha - \beta P_t$$

Condición de equilibrio

$$\frac{-\gamma + \delta P_{t-1} = \alpha - \beta P_t}{\Longrightarrow \delta P_{t-1} + \beta + P_t = \alpha + \gamma}$$

$$\Longrightarrow \delta P_t + \beta P_{t+1} = \alpha + \gamma \quad \text{(con t=t+1)}$$

$$\Longrightarrow \frac{\delta}{\beta} P_t + P_{t+1} = \frac{\alpha + \gamma}{\beta}$$
Entonces con c=\frac{\alpha + \gamma}{\beta} \text{ a=}\frac{\delta}{\beta} \text{ tenemos}

$$aP_t + P_{t+1} = c$$

$$aP_t + P_{t+1} = c$$

 $\searrow P_{nh}$:Reducida no homogénea (c \neq 0) equilibrio intertemporal de p $\searrow P_h$: Reducida homogénea (c=0) desviaciones de las trayectorias de tiempo respecto al equilibrio

Solución general

$$P_t = \text{Sol}P_h + \text{una Sol de } P_{nh}$$

$$\begin{array}{l} \operatorname{Sol} P_h : \operatorname{a} P_t + P_{t+1} = 0 \\ \Longrightarrow \operatorname{a} P_{t-1} + P_t = 0 \\ \Longrightarrow P_t = -\operatorname{a} P_{t-1} \end{array} \quad \operatorname{con} \ (t = t-1)$$

Sol
$$P_h$$
: $aP_t + P_{t+1} = 0$
 $\Rightarrow aP_{t-1} + P_t = 0$ con (t=t-1)
 $\Rightarrow P_t = -aP_{t-1}$
 $\searrow (t=1)$ $P_1 = -aP_0$
 $\searrow (t=2)$ $P_2 = -aP_1 \rightarrow P_2 = -a(-aP_0)$
 $\searrow (t=3)$ $P_3 = -aP_2 \rightarrow P_3 = -a(-a-a.P_0)$

$$\begin{array}{l} \operatorname{Sol} P_h \colon \operatorname{a} P_t + P_{t+1} = 0 \\ \Longrightarrow \operatorname{a} P_{t-1} + P_t = 0 \quad \operatorname{con} \ (\mathsf{t} = \mathsf{t} - 1) \\ \Longrightarrow P_t = -\operatorname{a} P_{t-1} \\ \searrow (\mathsf{t} = 1) \quad P_1 = -\operatorname{a} P_0 \\ \searrow (\mathsf{t} = 2) \quad P_2 = -\operatorname{a} P_1 \to P_2 = -\operatorname{a} (-\operatorname{a} P_0) \\ \searrow (\mathsf{t} = 3) \quad P_3 = -\operatorname{a} P_2 \to P_3 = -\operatorname{a} (-\operatorname{a} - \operatorname{a} \cdot P_0) \\ \Longrightarrow P_t = -\operatorname{a}^t P_0 \to P_t = \operatorname{A} b^t \quad \operatorname{con} \ P_0 = \operatorname{A} \ \operatorname{ya} \ \operatorname{que} \ \mathsf{c} = 0 \ \operatorname{y} \ \mathsf{b} = -\operatorname{a} \\ (\operatorname{A} b^t \neq 0) \\ \Longrightarrow P_t = \operatorname{A} b^t \to P_{t+1} = \operatorname{A} b^{t+1} \to P_h \colon \operatorname{a} (\operatorname{A} b^t) + \operatorname{A} b^{t+1} = 0 \to \operatorname{dividimos} \ \operatorname{por} \\ \operatorname{A} b^t \implies \operatorname{a} + \operatorname{b} = 0 \to \operatorname{b} = -\operatorname{a} \end{array}$$

$$P_h = Ab^t = A(-a)^t$$

Sol P_{nh} : $aP_t+P_{t+1}=c$ Asumiendo intertemporalidad (ecuación en diferencia con término constante) $P_t=P_{t+1}=k$ $\Longrightarrow a(k)+(k)=c\to k(a+1)=c\to k=\frac{c}{1+a}$ $a\not=-1$ $(\alpha,\gamma>0$ $a=\frac{\delta}{\beta})$ Como $\frac{c}{1+a}$ es una constante, entonces tenemos un equilibrio estacionario

Sol general(
$$P_t$$
)=Sol P_{nh} +Sol P_h =A($-a$) t + $\frac{c}{1+a}$ a \neq -1
 \Longrightarrow (t=0) P_0 =A+ $\frac{c}{1+a}$ \rightarrow A= P_0 - $\frac{c}{1+a}$
 P_t =(P_0 - $\frac{c}{1+a}$)($-a$) t + $\frac{c}{1+a}$

$$P_t = (P_0 - \frac{\frac{\alpha + \gamma}{\beta}}{1 + \frac{\delta}{\beta}})(-\frac{\delta}{\beta})^t + \frac{\frac{\alpha + \gamma}{\beta}}{1 + \frac{\delta}{\beta}}$$

Solución del modelo

$$P_t = (P_0 - \frac{\alpha + \gamma}{\beta + \delta})(-\frac{\delta}{\beta})^t + \frac{\alpha + \gamma}{\beta + \delta}$$

Solución particular de la ecuación en diferencia

$$P_t = (P_0 - \bar{P})((-\frac{\delta}{\beta})^t) + \bar{p}$$

 $\bar{p} = \frac{\alpha + \gamma}{\beta + \delta}$ precio de equilibrio estacionario.

Como
$$\alpha, \beta > 0$$
 y $b = -a = -\frac{\delta}{\beta} < 0$

La solución del modelo es oscilante

Tipos de Telarañas

$$Q_t^s = -\gamma + \delta P_{t-1} = \alpha - \beta P_t = Q_t^d$$

 δ pendiente de $Q_t^{\rm s}$ y β pendiente de $Q_t^{\rm d}$

 $\begin{cases} \delta {>} \beta \text{ la oscilación es explosiva} \\ \delta {<} \beta \text{ la oscilación es amortiguada} \\ \delta {=} \beta \text{ la oscilación es uniforme} \end{cases}$

Desde la óptica del economista

Colocamos los precios en el eje de las ordenadas y las cantidades en el eje de las abscisas.

Se invierten las relaciones de las pendientes δ y β

$$\begin{cases} \frac{1}{\beta} > \frac{1}{\delta} & Oscilación & Amortiguada \\ \frac{1}{\delta} < \frac{1}{\beta} & Oscilación & Explosiva \\ \beta = \delta & Oscilación & Uniforme \end{cases}$$

Aplicación del modelo

Solución del modelo

$$P_t = (P_0 - \frac{\alpha + \gamma}{\beta + \delta})(-\frac{\delta}{\beta})^t + \frac{\alpha + \gamma}{\beta + \delta}$$

Aplicación del modelo

Solución del modelo

$$P_t = (P_0 - \frac{\alpha + \gamma}{\beta + \delta})(-\frac{\delta}{\beta})^t + \frac{\alpha + \gamma}{\beta + \delta}$$

 $P_0 = 40$

 α =12

 β =0,3

 $\gamma = 5$

 δ =0,25

Aplicación del modelo

Solución del modelo

$$P_t = (P_0 - \frac{\alpha + \gamma}{\beta + \delta})(-\frac{\delta}{\beta})^t + \frac{\alpha + \gamma}{\beta + \delta}$$

$$P_0 = 40$$

$$\alpha$$
=12

$$\beta$$
=0,3

$$\gamma = 5$$

$$\delta$$
=0,25

$$P_t = (40 - \frac{12+5}{0.3+0.23})(-\frac{0.25}{0.3})^t + \frac{12+5}{0.3+0.23}$$

Valores

Cuadro: Tabla de Valores

Periodo	Cantidad Demandada	Cantidad Ofrecida	Precio en t
0	0	0	40
1	5	5	23.3
2	0.8	0.8	37.2
3	4.3	4.3	25.6
4	1.4	1.4	35.3
5	3.8	3.8	27.3
6	1.8	1.8	34
7	3.5	3.5	28.4
8	2.1	2.1	33
9	3.3	3.3	29.1
10	2.3	2.3	32.4