PROJECT DESIGN PHASE-II

FUNCTIONAL REQUIREMENT

Date	19 October 2022
Team ID	PNT2022TMID47348
Project Name	Real-Time Communication System Powered
	by AI for Specially Abled
Maximum Marks	4 marks

FUNCTIONAL REQUIREMENTS

REQUIREMENTS	FUNCTIONAL REQUIREMENTS
Objective	Most people communicate efficiently without
	any issues, but many cannot due to disability.
focus	The hand gesture recognition system consists
	of three major parts: palm detection, hand
	tracking, and trajectory recognition.
Documentation	In Ideation phase
End case	This aimed at evaluating and comparing the
	methods used in the sign recognition systems,
	classification methods used and identifies the
	most promising approach for this project.
Essentially	Web camera is essential for capturing image.
Origin type	Artificial intelligence that was being
	developed can identify errors on hand gesture
	matches and will stop as a default. It will
	generate corresponding gestures that allow
	every user to read and be able to understand
	what the gesture means.
Testing	Feature extraction depends on the
	application. On D-talk, finger status, skin
	color, alignments of the finger, and the palm
	position are taken into consideration. After
	features extracted, they sent to training and
	testing classification algorithms to reach the
	output.