IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No.	09/525,206
Filing Date	03/14/2000
Inventorship	Peinado et al.
Confirmation No.	7714
Applicant	Microsoft Corp.
Group Art Unit	3621
Examiner	Backer, Firmin
Attorney's Docket No.	MS1-0394US

Title: BORE-Resistant Software Configuration And Distribution Methods And Arrangements

APPEAL BRIEF

MS: Appeal Brief - Patents Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Keith W. Saunders Tel. 509-324-9256 ext. 238 Fax 509-323-8979

Customer # 22801

Pursuant to 37 C.F.R. §41.37, Appellant hereby submits an Appeal Brief for Application No. 09/525,206 filed March 14, 2000. A Notice of Appeal was filed October 12, 2005. Accordingly, Appellant appeals to the Board of Patent Appeals and Interferences seeking review of the Examiner's rejections.

8

9

11

14

15

16

18

20

21

22

23 24 25

13 To:

From:

TABLE OF CONTENTS

Appea	<u>l Brief Items</u>	Page
(i)	Real Party in Interest	3
(ii)	Related Appeals and Interferences	4
(iii)	Status of Claims	5
(iv)	Status of Amendments	6
(v)	Summary of Claimed Subject Matter	7
(vi)	Grounds of Rejection to be Reviewed on Appeal	14
(vii)	Argument	15
(viii)	Claims Appendix	34
(ix)	Evidence Appendix	54
(x)	Related Proceedings Appendix	55

The real party in interest is the Microsoft Corporation, the assignee of all right and title to the subject invention.

(ii) Related Appeals and Interferences

Appellant is not aware of any other appeals or interferences which will directly affect, be directly affected by, or otherwise have a bearing on the Board's decision to this pending appeal.

(iii) Status of Claims

Originally-Filed Claims: Claims 1-66 were originally filed.

Allowed Claims: No claims have been allowed.

Canceled Claims: No claims have been canceled.

<u>Pending Claims</u>: Claims 1-66 are pending and stand rejected as set forth

in the Final Office Action dated May 12, 2005.

Appealed Claims: All of the pending claims 1-66 are subject to this appeal. Of claims 1-66, six (6) claims are independent. These six independent claims are claims 1, 18, 27, 34, 43, and 50.

(iv) Status of Amendments

In short, the claims have not been amended since a Final Office Action was issued on May 12, 2005.

More specifically, in response to the Final Office Action that was issued May 12, 2005, a Reply was filed on August 12, 2005. In that Reply, no claims were canceled, added, or amended. The August 12, 2005, Reply was thus effectively a Request for Reconsideration.

An Advisory Action was issued on September 1, 2005. The Advisory Action that Applicants' arguments were not considered to be persuasive. Hence, the version of the claims that were submitted in the August 12, 2005, Reply is the version of the claims that are subject to the instant Appeal.

Appellant filed a Notice of Appeal on October 12, 2005 in response to both the Final Office Action and the Advisory Action.

(v) Summary of Claimed Subject Matter

1 2

The following is a concise explanation of each independent claim under appeal. The six (6) independent claims are claims 1, 18, 27, 34, 43, and 50. Selected dependent claims are also individually explained below in this section. These dependent claims are claims 7/10, 22, 31, 38, 45/47, and 56/59.

The explanations below include example specification references and example numeric drawing references. However, the claims are not limited solely to the elements and aspects identified by the references to the written description and/or figures. For example, the references below focus primarily on the apparatus-centric portion of the disclosure, but certain aspects of the method-centric portion of the disclosure also provide support for claimed elements.

Claim 1: Claim 1 is directed to a method that involves providing an initial digital good (Figures 3-6/Element 202; Page 11/Lines 9-13; Page 16/Lines 10-23; and Page 16/Line 24 to Page 18/Line 4) [and/or digital good first portion (Figures 3 & 6/Element 206; Page 11/Lines 18-22; and Page 16/Line 24 to Page 18/Line 4)] to at least one computer (Figures 1 & 3-5/Element 22; Page 11/Lines 6-9; and Page 16/Lines 10-23). The initial digital good includes multiple selectively arranged parts (Figure 6/Element 240 and Page 16/Line 24 to Page 17/Line 11) in an initial configuration, and the initial digital good is configured so as to not properly function with the computer.

The computer receives unique key data (Figures 3 & 4/Element "K1"; Page 13/Line 10 to Page 14/Line 6; and Page 16/Lines 10-16). The computer also converts the initial digital good into a modified digital good (Figures 3-6/Element

5

6

8

9

10 11

14 15 16

12

13

18 19 20

21

22

17

23 24 202 ("Q" and/or "Q1"); Page 11/Lines 9-13; Page 16/Lines 10-23; and Page 16/Line 24 to Page 18/Line 4) using the unique key data to selectively individualize [using an individualizer (Figures 3-5/Elements 208 & 214; Page 12/Lines 13-21; and Page 13/Line 23 to Page 14/Line 15)] the initial digital good for use with the computer. The multiple selectively arranged parts (Figure 6/Element 242 and Page 17/Line 12 to Page 18/Line 4) in the modified digital good are rearranged to have a substantially unique operative configuration that properly functions with the computer and is different from the initial configuration.

The method also involves causing the computer to run the modified digital good.

Claim 18: Claim 18 is directed to a computer-readable medium including computer-executable instructions for causing at least one computer to perform a number of actions. The actions include receiving an initial digital good, receiving unique key data, and converting the initial digital good into a modified digital good.

The initial digital good (Figures 3-6/Element 202; Page 11/Lines 9-13; Page 16/Lines 10-23; and Page 16/Line 24 to Page 18/Line 4) [and/or digital good first portion (Figures 3 & 6/Element 206; Page 11/Lines 18-22; and Page 16/Line 24 to Page 18/Line 4)] includes multiple selectively arranged parts (Figure 6/Element 240 and Page 16/Line 24 to Page 17/Line 11) in an initial configuration, and the initial digital good is configured so as to not properly function with the computer.

The converting [with an individualizer (Figures 3-5/Elements 208 & 214; Page 12/Lines 13-21; and Page 13/Line 23 to Page 14/Line 15)] of the initial digital good into the modified digital good (Figures 3-6/Element 218; Page 3 14/Lines 16-23; Page 16/Lines 10-23; and Page 16/Line 24 to Page 18/Line 4) 4 uses the unique key data (Figures 3 & 4/Element "K1"; Page 13/Line 10 to Page 5 14/Line 6; and Page 16/Lines 10-16) to selectively individualize the initial digital good for use with the computer. The selective individualization is such that the multiple selectively arranged parts (Figure 6/Element 242 and Page 17/Line 12 to Page 18/Line 4) in the modified digital good are rearranged to have a substantially 9 unique operative configuration that properly functions with the computer but is

8

10

12

14

15

16

18

19

20

21

22

23

24

25

different from the initial configuration. 11

Claim 27: Claim 27 is directed to a computer-readable medium including computer-executable instructions. The instructions are for the following actions: receiving unique identifier data, generating unique key data, receiving at least a portion of an initial digital good, converting the at least a portion, and providing at least the modified portion.

More specifically, the actions involve receiving unique identifier data [from an identifier (Figures 3-5/Element 210 and Page 12/Line 22 to Page 13/Line 9)] associated with a computer (Figures 1 & 3-5/Element 22; Page 11/Lines 6-9; and Page 16/Lines 10-23) and generating unique key data (Figures 3-5/Elements "K1" and/or "K2"; Page 13/Line 10 to Page 14/Line 15; and Page 16/Lines 10-23) based on at least the unique identifier data. Also, at least a portion of an initial digital good (Figures 3-6/Element 202; Page 11/Lines 9-13; Page 16/Lines 10-23; and Page 16/Line 24 to Page 18/Line 4) [and/or digital good first portion (Figures 3 & 6/Element 206; Page 11/Lines 18-22; and Page 16/Line 24 to Page 18/Line 4)] that includes multiple selectively arranged parts (Figure 6/Element 240 and Page 16/Line 24 to Page 17/Line 11) in an initial configuration is received.

The at least a portion is converted [with an individualizer (Figures 3-5/Elements 208 & 214; Page 12/Lines 13-21; and Page 13/Line 23 to Page 14/Line 15)] using the unique key data to selectively individualize the portion. As a result, a modified portion of the digital good (Figures 3-6/Element 218 and/or Element "Q2"; Page 14/Lines 16-23; Page 16/Lines 10-23; and Page 16/Line 24 to Page 18/Line 4) is produced; the modified portion has the multiple parts (Figure 6/Element 242 and Page 17/Line 12 to Page 18/Line 4) rearranged in a different configuration as compared to the initial configuration. At least the modified portion of the digital good and at least a portion of the unique key data are provided to the computer.

Claim 34: Claim 34 is directed to an apparatus for use in a host computer. The apparatus includes an individualizer (Figures 3-5/Elements 208 & 214; Page 12/Lines 13-21; and Page 13/Line 23 to Page 14/Line 15). The individualizer is configured to receive unique key data (Figures 3 & 4/Element "K1"; Page 13/Line 10 to Page 14/Line 6; and Page 16/Lines 10-16) and at least a portion of an initial digital good (Figures 3-6/Element 202; Page 11/Lines 9-13; Page 16/Lines 10-23; and Page 16/Line 24 to Page 18/Line 4) [and/or digital good first portion (Figures 3 & 6/Element 206; Page 11/Lines 18-22; and Page 16/Line 24 to Page 18/Line 4)] that includes multiple selectively arranged parts (Figure 6/Element 240 and Page 16/Line 24 to Page 17/Line 11) in an initial configuration. The individualizer produces at least a portion of a modified digital good (Figures 3-6/Element 218;

Page 14/Lines 16-23; Page 16/Lines 10-23; and Page 16/Line 24 to Page 18/Line 4) using the unique key data to selectively individualize the initial digital good for use with the host computer. As a result, the multiple selectively arranged parts (Figure 6/Element 242 and Page 17/Line 12 to Page 18/Line 4) in the modified digital good are rearranged to be operatively different in configuration as compared to the initial configuration of the digital good.

Claim 43: Claim 43 is directed to an apparatus for use in a source computer (Figures 1 & 3-5/Element 26; Page 11/Lines 6-9; and Page 16/Lines 10-23). The apparatus includes a key generator (Figures 3-5/Element 212 and Page 13/Line 10 to Page 13/Line 22) and an individualizer (Figures 3-5/Elements 208 & 214; Page 12/Lines 13-21; and Page 13/Line 23 to Page 14/Line 15).

The key generator is configured to receive a unique identifier data (Figures 3-5/Element 210 and Page 12/Line 22 to Page 13/Line 9) from a destination computer (Figures 1 & 3-5/Element 22; Page 11/Lines 6-9; and Page 16/Lines 10-23) and to generate unique key data (Figures 3-5/Elements "K1" and/or "K2"; Page 13/Line 10 to Page 14/Line 15; and Page 16/Lines 10-23) based on the received unique identifier data. The received unique identifier data is associated with the destination computer.

The individualizer is configured to receive the unique key data and at least a portion of an initial digital good digital good (Figures 3-6/Element 202; Page 11/Lines 9-13; Page 16/Lines 10-23; and Page 16/Line 24 to Page 18/Line 4) [and/or digital good first portion (Figures 3 & 6/Element 206; Page 11/Lines 18-22; and Page 16/Line 24 to Page 18/Line 4)] having multiple selectively arranged parts (Figure 6/Element 240 and Page 16/Line 24 to Page 17/Line 11) in an initial

configuration. The individualizer further outputs at least a portion of a modified digital good (Figures 3-6/Element 218; Page 14/Lines 16-23; Page 16/Lines 10-23; and Page 16/Line 24 to Page 18/Line 4) using the unique key data to selectively individualize the initial digital good. As a result, in the modified digital good, the multiple selectively arranged parts (Figure 6/Element 242 and Page 17/Line 12 to Page 18/Line 4) have been rearranged to have an operatively different configuration from the initial configuration.

Claim 50: Claim 50 is directed to a system. The system includes an identifier (Figures 3-5/Element 210 and Page 12/Line 22 to Page 13/Line 9), a key generator (Figures 3-5/Element 212 and Page 13/Line 10 to Page 13/Line 22), and at least one individualizer (Figures 3-5/Elements 208 & 214; Page 12/Lines 13-21; and Page 13/Line 23 to Page 14/Line 15).

The identifier is configured to output unique identifier data associated with a computer (Figures 1 & 3-5/Element 22; Page 11/Lines 6-9; and Page 16/Lines 10-23). The key generator is coupled to the identifier in order to receive the unique identifier data. The key generator generates at least one unique key data [first key data (Figures 3 & 4/Element "K1"; Page 13/Line 10 to Page 14/Line 6; and Page 16/Lines 10-16) and/or second key data (Figures 3 & 5/Element "K2"; Page 13/Lines 10-22; Page 14/Lines 7-15; and Page 16/Lines 17-23)] based on the received unique identifier data.

The individualizer is configured to receive the unique key data and at least a portion of an initial digital good (Figures 3-6/Element 202; Page 11/Lines 9-13; Page 16/Lines 10-23; and Page 16/Line 24 to Page 18/Line 4) [and/or digital good first portion (Figures 3 & 6/Element 206; Page 11/Lines 18-22; and Page 16/Line

24 to Page 18/Line 4)] that includes multiple selectively arranged parts (Figure 6/Element 240 and Page 16/Line 24 to Page 17/Line 11) in an initial configuration. The individualizer outputs at least a portion of a modified digital good (Figures 3-6/Element 218; Page 14/Lines 16-23; Page 16/Lines 10-23; and Page 16/Line 24 to Page 18/Line 4) using the unique key data to selectively individualize the initial digital good. As a result, the multiple selectively arranged parts (Figure 6/Element 242 and Page 17/Line 12 to Page 18/Line 4) in the modified digital good are rearranged to be operatively different in configuration from the initial configuration of the digital good.

Claims 7/10, 22, 31, 38, 45/47, and 56/59: Claims 7, 22, 31, 38, 45, and 56 depend directly or indirectly from independent claims 1, 18, 27, 34, 43, and 50, respectively. Each of these dependent claims includes elements directed to some aspect of having two portions (Figure 3/Elements 206-Pl and 207-P2) of a digital good (Figure 3/Element 202-P) that are converted/individualized into two modified portions (Figure 3/Elements Q1 and Q2) and then (re-)combined into a modified digital good (Figure 3/Element 218-Q). Relevant functional elements include a splitter (Figure 3/Element 204), individualizers (Figure 3/Elements 208 & 214), and a combiner (Figure 3/Element 216). (These functional elements are described at Page 11/Line 6 to Page 12/Line 10 and at Page 12/Line 11 to Page 15/Line 6.)

(vi) Grounds of Rejection to be Reviewed on Appeal

The rejection of all pending claims 1-66 under 35 U.S.C. §102(e) is being appealed. Claims 1-66 were rejected under 35 U.S.C. §102(e) in the Final Office Action dated May 12, 2005.

Specifically, the Final Office Action reads on page 2 at paragraph #2, "Claims 1-66 [are] rejected under 35 U.S.C. 102(e) as being anticipated by Maytal et al (U.S. Patent No 6,715,079)."

Thus, the Board is being asked to consider whether claims 1-66 are anticipated by Maytal et al. (U.S. Patent No 6,715,079).

- 3. As per claim 1, Halstead et al teach a method of providing an initial good to a computer wherein the initial digital good include a plurality of selectively arranged parts in an initial configuration and the initial digital good is configured as to not properly function with the computer receiving unique key data converting the initial good into a modified digital good using unique key data to selectively individualize the initial digital with at least one computer such that the plurality of selectively arrange parts in the modified digital good have been rearrange to have a substantially unique operative configuration tat properly functions with the computer and is different that the initial configuration and causing the at least one computer to run the modified digital good (see columns 5 lines 56-6 line 5, 10 lines 16-52).
- As per claims 2-66, they disclose the same inventive concept as claim 1. Therefore, they are rejected under the same rationale.

(italicized emphasis present in Final Office Action)

3

4

6

7

8

9

10

11

12

13

14

15

16

18

19

20

21

22

23 24 25 The "Response to Arguments" section is provided on Pages 3-4 at Paragraph #5 of the Final Office Action. It is reproduced below in its entirety:

 Applicant's arguments filed January 1st, 2005 have been fully considered but they are not persuasive.

Applicant argue that the prior art fail to teach an inventive such that the plurality of selectively arranged parts in the modified digital good have been rearranged to be operatively different. Examiner respectfully disagrees with Applicant's characterization of the prior art. Maytal a system for protecting soft modem software, the system including a local computer having a unique key, and an external computer. The external computer receives the key from the local computer when the local computer accesses the external computer in order to download the software. The external computer embeds information related to the key in a customized version of the software, and downloads the customized version to the local computer. The system also includes means for altering operation of the customized version. The means for altering includes at least one of a group including the following means for stopping execution of the customized version, means for limiting the operation of the customized version to a predetermined service level, and means for changing data samples passing through the customized version in a magnitude and frequency which prevents useful communication. The software is written to accept at least one parameter, as is known in the art, the at least one parameter representing information related to the unique identifier. The software is then compiled with the at least one parameter as is known in the art, in order to produce the customized version (emphasis added). For the reason above, the rejection is maintained

(italicized emphasis present in Final Office Action)

3

4

5

8

9

10

12

13

14

15

16

17

18 19

20

21

22

23

24

25

The rejection of the Final Office Action as reproduced above cites to Column 5/Line 56 to Column 6/Line 5 and Column 10/Lines 16-52. The cited portions of columns 5 and 6 are part of the "SUMMARY OF THE INVENTION" of Maytal et al. The cited portion of Column 10 appears to relate to Figure 12 of Maytal et al. The "Response to Arguments" section of the Final Office Action as

reproduced above appears to be quoting from Maytal et al. at two locations. Specifically, it appears that this section of the Final Office Action is quoting from Column 3/Line 67 to Column 4/Line 16 and from Column 11/Lines 14-20.

The following portions of Maytal et al. are therefore reproduced below:

- [1] Column 3/Line 66 to Column 4/Line 16:
- **[21** Column 5/Line 56 to Column 6/Line 5;
- [3] Column 10/Lines 16-52;
- [4] Column 11/Lines 14-20; and
- [5] Maytal et al. is also reproduced from Column 10/Line 53 to Column 11/Line 13 because this portion lies between portions [3] and [4].

[1] Column 3/Line 66 to Column 4/Line 16 of Maytal et al. reads:

There is also provided, in accordance with a preferred embodiment of the present invention, a system for protecting soft modem software, the system including a local computer having a unique key, and an external computer. The external computer receives the key from the local computer when the local computer accesses the external computer in order to download the software. The external computer embeds information related to the key in a customized version of the software, and downloads the customized version to the local computer. The system also includes means for altering operation of the customized version. The means for altering includes at least one of a group including the following: means for stopping execution of the customized version, means for limiting the operation of the customized version to a predetermined service level, and means for changing data samples passing through the customized version in a magnitude and frequency which prevents useful communication.

[2] Column 5/Line 56 to Column 6/Line 5 of Maytal et al. reads:

There is also provided, in accordance with a preferred embodiment of the present invention, a method for protecting soft modem software to be downloaded from an external computer to a local computer having a unique key. The method includes the steps of sending the unique key to the external computer, generating a customized version of the modem software with which the key is associated, downloading the customized version to the local computer, reading the unique key from the local computer, and altering operation of the customized version if the read key is incompatible with the associated key. The alteration step includes at least one of the following steps: stopping execution of the customized version, limiting the operation of the customized version to a predetermined service level, and changing data samples passing through the customized version at a predefined magnitude and frequency.

[3] Column 10/Lines 16-52 of Maytal et al. reads:

In accordance with an additional preferred embodiment of the present invention, the key is provided from a unique identifier attached to the CPU of a PC, as shown in FIG. 12, to which reference is now made. This embodiment is suitable for the protection of soft modem software downloaded from the Internet, as shown in FIG. 12, to which reference is now made. FIG. 12 is a schematic illustration of a system for downloading customized software, in accordance with an additional preferred embodiment of the present invention. Two personal computers 90A and 90B are connected to an Internet site 92 in order to download software 94 from the site 92. Each PC 90 includes a unique identifier 96. In a preferred embodiment, the unique identifier 96 is provided along with a CPU 98 of the PC 90, as is known in the art. The personal computers 90A and 90B send the unique identifiers 96A and 96B, respectively to the internet site 92, where they are used to generate customized versions 100A and 100B of the software 94, respectively. The customized versions 100A and 100B of the software 94 are downloaded to the computers 90A and 90B, respectively, where the CPUs 98A and 98B, respectively, can access and execute them. In operation, the customized software 100 reads the unique identifier 96 from the CPU 98 and compares it with the key contained in the customized software 100. The customized software

2

3

5

8

10

11

12

13

14

15

16

17

18

19

20

2.1

22

23

24

100 then handles the key with any or a combination of the handling methods described hereinabove, with the result that the customized software 100 runs properly only on the PC 90 whose CPU 98 has the unique identifier 96. If, for example, the customized software 100A is copied to another PC 102, whose CPU 104 has a unique identifier 106, then in operation, the customized software 100A will read the unique identifier 106 and compare it with the key 96A contained in the customized software 100. Since the unique identifier 106 is incompatible with the key, the customized software 100 will behave as described hereinabove with regard to the key handling methods, and will not run properly on the PC 102.

[4] Column 11/Lines 14-20 of Maytal et al. reads:

In another preferred embodiment of the present invention, the software 94 is written to accept at least one parameter, as is known in the art, the at least one parameter representing information related to the unique identifier 96. The software 94 is then compiled with the at least one parameter as is known in the art, in order to produce the customized version 100.

[5] Column 10/Line 53 to Column 11/Line 13 of Maytal et al. reads:

In a preferred embodiment of the present invention, the compiled object code of the software 94 is overwritten in at least one predetermined location with at least one number related to the unique identifier 96, in order to produce the customized version 100. For example, the at least one predetermined location might refer to the "1" in a computer statement:

```
if (key == 1) {
   . . . /* handle the key */
}
```

When the compiled object code is overwritten with the number related to the unique identifier 96, say the number 8439486765821, it is as if the computer statement was:

```
if (key == 8439486765821) {
    . . /* handle the key */
}
```

In other words, the customized version 100 of the software 94 has information related to the unique identifier 96 embedded directly in the code.

3 4

8

10 11

9

14 15 16

13

18 19

20 21 22

23 24 25

The following explanation of the requirements of an anticipation rejection is reproduced from MPEP §2131, Page 2100-76, Right Column (Rev. 3, August 2005):

TO ANTICIPATE A CLAIM, THE REFERENCE MUST TEACH EVERY ELEMENT OF THE CLAIM

"A claim is anticipated only if each and every element as set forth in the claim is found, either expressly or inherently described, in a single prior art reference." Verdegaal Bros. v. Union Oil Co. of California, 814 F.2d 628, 631, 2 USPO2d 1051, 1053 (Fed. Cir. 1987).

[...]

"The identical invention must be shown in as complete detail as is contained in the ... claim." Richardson v. Suzuki Motor Co., 868 F.2d 1226, 1236, 9 USPQ2d 1913, 1920 (Fed. Cir. 1989).

The elements must be arranged as required by the claim, but this is not an ipsissimis verbis test, i.e., identity of terminology is not required. In re Bond, 910 F.2d 831, 15 USPQ2d 1566 (Fed. Cir. 1990).

claimed.

 Whether Maytal et al. describes rearranging a digital good as

Whether Maytal et al. describes using a key to convert/individualize a digital good into a modified digital good having differently arranged parts as claimed.

Ш. Whether Maytal et al. describes bifurcating a digital good as claimed.

I. At least independent claims 1, 18, 27, 34, 43, and 50 are allowable over the art of record because Maytal et al. does not describe rearranging a digital good.

In the instant Patent Application, the rearrangement of the parts of a digital good is illustrated and described in a number of locations. Example illustrations include those of Figures 3-6, especially with respect to how digital good elements 202, 206, and/or 207 (P, P1, and/or P2) are changed by individualizer elements 208 and/or 214 to produce modified digital good element 218 (Q, Q1, and/or Q2). With respect to Figure 6 in particular, block elements 240 of digital good P element 202 are rearranged as compared to block elements 242 of modified digital good Q element 218. Generally, example descriptions of the rearrangement of the parts of a digital good are included in the instant Patent Application at Page 11/Line 6 to Page 14/Line 23 and Page 16/Line 24 to Page 18/Line 4.

Specifically, three excerpted portions from the instant Patent Application are reproduced below:

(1) The Instant Patent Application reads at Page 12/Lines 11-21:

With this basic process in mind, referring to Fig. 3, in this exemplary arrangement digital good P 202 is split or otherwise divided into at least two portions, e.g., P1 and P2, by a splitter 204. First portion P1 206 is provided to an individualizer 208 within consumer computer 22. Second portion P2 207 is provided to an individualizer 214 within provider computer 26. By way of example, individualizers 208 and 214 may include a program flow manipulator or other like mechanism that allows the respective portions of digital good P 202 to be operatively, functionally, sequentially, associatively, or otherwise individualized based at least in part on one or more inputs. Here, for example, keys K1 and K2 are generated and/or otherwise provided to their respective individualizers 208 and 214 and used to "individualize" portions P1 and P2, respectively.

Individualizer208, having received key K1, selectively individualizes first portion P1 based on key K1. When a program flow manipulator is employed, for example, this can include rearranging at least one program section, block of code, pointer, address, adding/deleting code, etc., as definable within a program flow-graph associated with first portion P1. Preferably, several modifications occur within individualizer 208 to cause the resulting modified first portion Q1 to be uniquely associated with key K1 and distinctly different from first portion P1 206. Data from key K1 may be included within modified portion Q1. Modified first portion Q1 is then provided to a combiner 216.

(3) The Instant Patent Application reads at Page 17/Lines 12-23:

As a result of arrangement 200, in Fig. 3, for example, a modified digital good Q 218 has been created as shown at the bottom of Fig. 6. Here, the blocks 240 have been rearranged as blocks 242, and operatively or associatively reconfigured as represented, for example, by arrows 244a-c. This produces a functionally equivalent version of digital good P 202. Thus, for example, arrow 244a illustrates that "block F" and "block F" are now operatively or associatively coupled, arrow 244b illustrates that "block F" and "block F" and "block H" are now operatively or associatively coupled, and arrow 244c illustrates that "block H" and "block D" are now operatively or associatively coupled, where they were not previously. Similarly, the absence of an arrow between "block A" and "block B" represents that they are no longer directly operatively or associatively coupled as before, but rather "block C" has been introduced there between.

On the one hand, Maytal et al. does describe generating customized software versions using unique identifiers. On the other hand, however, generating these

customized software versions does not entail any rearrangement. Specifically, at Column 10/Lines 30-33, Maytal et al. reads with reference to Figure 12:

The personal computers 90A and 90B send the unique identifiers 96A and 96B, respectively to the internet site 92, where they are used to generate customized versions 100A and 100B of the software 94, respectively.

Maytal et al. describes two approaches to generating the customized software versions. These two approaches are (1) overwriting compiled object code in at least one predetermined location with at least one number and (2) having the software accept at least one parameter representing information related to the unique identifier and then having the software compiled with the at least one parameter. The first approach is described at Column 10/Line 53 to Column 11/Line 13. The second approach is described at Column 11/Lines 14-20. Both of these portions of Maytal et al. are reproduced above.

Only the first of the two approaches is described with any specificity. This first approach involves the overwriting of a location of compiled object code. The specifics entail merely inserting the unique identifier. The insertion may also include the possible replacement of a preexisting number with the unique identifier. This is apparent from the above-quoted pseudo-code, which is reproduced from Maytal et al. at Columns 10 and 11.

Maytal et al. is silent as to the specifics of the second approach, which is the providing of the parameter to the software prior to the compiling of the software. At most, it may be assumed that the source code of the software receives the parameter, and then the source code is compiled to generate an object code customized version of the software having the parameter.

 With regard to both approaches that are described in Maytal et al., it is therefore apparent that the customized versions 100A and 100B of the software 94 are *not* rearranged as compared to the original version of the software 94. There is neither description nor teaching in Maytal et al. to perform any rearranging of the software 94 when generating the customized versions 100A and 100B.

Consequently, no art of record, either alone or in any combination, anticipates or renders obvious at least the following elements in conjunction with the other elements of their respective claims:

Claim 1: converting the initial digital good into a modified digital good using the unique key data to selectively individualize the initial digital good for use with the computer, such that the plurality of selectively arranged parts in the modified digital good have been rearranged to have a substantially unique operative configuration that properly functions with the computer and is different than the initial configuration.

Claim 18: converting the initial digital good into a modified digital good using the unique key data to selectively individualize the initial digital good for use with the at least one computer, such that the plurality of selectively arranged parts in the modified digital good are rearranged to have a substantially unique operative configuration that properly functions with the at least one computer and is different than the initial configuration.

Claim 27: converting the at least a portion using the unique key data to selectively individualize the portion, such that a modified portion of the digital good is produced having the plurality of parts rearranged in a different configuration than the initial configuration.

Claim 34: an individualizer configured to receive unique key data and at least a portion of an initial digital good that includes a plurality of selectively arranged parts in an initial configuration, and produce at least a portion of a modified digital good using the unique key data to selectively individualize the initial digital good for use with the host computer, and such that the plurality of selectively arranged parts in the modified digital good are rearranged to be operatively different in configuration than the initial configuration of the digital good.

Claim 43: an individualizer configured to receive the unique key data and at least a portion of an initial digital good having a plurality of selectively arranged parts in an initial configuration and output at least a portion of a modified digital good using the unique key data to selectively individualize the initial digital good, such that in the modified digital good the plurality of selectively arranged parts have been rearranged to have an operatively different configuration than the initial configuration.

Claim 50: at least one individualizer configured to receive the unique key data and at least a portion of an initial digital good that includes a plurality of selectively arranged parts in an initial configuration, and output at least a portion of a modified digital good using the unique key data to selectively individualize the initial digital good, such that the plurality of selectively arranged parts in the modified digital good

have been rearranged to be operatively different in configuration than the initial configuration of the digital good.

Moreover, because Maytal et al. neither describes nor teaches rearranging parts, Maytal et al. certainly does not describe or teach: a parts rearrangement such that the modification results in a unique operative configuration (claims 1 and 18) or operatively different configuration (claims 34, 43, and 50).

In view of the above, it is apparent that Maytal et al. does not describe or teach the claimed rearranging, and it therefore cannot anticipate the claims. Consequently, it is respectfully submitted that independent claims 1, 18, 27, 34, 43, and 50 are allowable over the art of record.

ì

2

3

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21 22

23 24

25

II. At least independent claims 1, 18, 27, 34, 43, and 50 are allowable over the art of record because Maytal et al. does not describe using a key to convert/individualize a digital good into a modified digital good having differently arranged parts.

It appears that the Final Office Action is drawing a correspondence between (i) "altering operation of the customized version" as described in Maytal et al. and (ii) the converting/individualizing as claimed. This correspondence is drawn at Paragraph #5 in the "Response to Arguments" section as reproduced above.

For example, the Final Office Action quotes the following from Maytal et al.:

The means for altering includes at least one of a group including the following[:] means for stopping execution of the customized version, means for limiting the operation of the customized version to a predetermined service level, and means for changing data samples passing through the customized version in a magnitude and frequency which prevents useful communication.

(italicized emphasis present in Final Office Action)

These alteration means or steps do not involve rearrangement of the software. In fact, they only involve changing the operation of the customized version of the software. More importantly, each so-called "customized version" actually has its operation changed in exactly the same manner. Specifically, if there is not a match between keys, one of the prescribed operation alterations is implemented for each and every "customized version" of the software, regardless of the key value. See, e.g., Maytal et al., Column 10/Lines 30-53.

Furthermore, the key is not used to effectuate the operation changes. On the contrary, the key is used merely to determine if the operation changes will be implemented. The actual or potential operation changes are identical from one

"customized version" to the next regardless of the value of the key. Thus, the key is not used to effectuate operational changes to the customized software in Maytal et al.

Consequently, no art of record, either alone or in any combination, anticipates or renders obvious at least the following elements in conjunction with the other elements of their respective claims:

Claim 1: converting the initial digital good into a modified digital good using the unique key data to selectively individualize the initial digital good for use with the computer, such that the plurality of selectively arranged parts in the modified digital good have been rearranged to have a substantially unique operative configuration that properly functions with the computer and is different than the initial configuration.

Claim 18: converting the initial digital good into a modified digital good using the unique key data to selectively individualize the initial digital good for use with the at least one computer, such that the plurality of selectively arranged parts in the modified digital good are rearranged to have a substantially unique operative configuration that properly functions with the at least one computer and is different than the initial configuration.

Claim 27: converting the at least a portion using the unique key data to selectively individualize the portion, such that a modified portion of the digital good is produced having the plurality of parts rearranged in a different configuration than the initial configuration.

Claim 34: an individualizer configured to receive unique key data and at least a portion of an initial digital good that includes a plurality of selectively arranged parts in an initial configuration, and produce at least a portion of a modified digital good using the unique key data to selectively individualize the initial digital good for use with the host computer, and such that the plurality of selectively arranged parts in the modified digital good are rearranged to be operatively different in configuration than the initial configuration of the digital good.

Claim 43: an individualizer configured to receive the unique key data and at least a portion of an initial digital good having a plurality of selectively arranged parts in an initial configuration and output at least a portion of a modified digital good using the unique key data to selectively individualize the initial digital good, such that in the modified digital good the plurality of selectively arranged parts have been rearranged to have an operatively different configuration than the initial configuration.

Claim 50: at least one individualizer configured to receive the unique key data and at least a portion of an initial digital good that includes a plurality of selectively arranged parts in an initial configuration, and output at least a portion of a modified digital good using the unique key data to selectively individualize the initial digital good, such that the plurality of selectively arranged parts in the modified digital good have been rearranged to be operatively different in configuration than the initial configuration of the digital good.

23 24 25

In view of the above, it is apparent that Maytal et al. does not describe or teach the claimed use of a key to convert/individualize a digital good into a modified digital good having differently arranged parts, and it therefore cannot anticipate the claims. Consequently, it is respectfully submitted that independent claims 1, 18, 27, 34, 43, and 50 are allowable over the art of record.

III. Certain dependent claims are allowable over the art of record because Maytal et al. does not describe any bifurcating of a digital good.

More specifically, Maytal et al. does not describe any dividing, splitting, separately individualizing, combining, or otherwise handling of multiple portions of a digital good.

With reference to (i) the paragraph beginning at Column 10/Line 16 and (ii) Figure 12 of Maytal et al., Maytal et al. only describes customizing and otherwise utilizing a single piece of homogenous software both in terms of the download software 94 and the customized versions 100.

In contrast, dependent claims 7, 22, 31, 38, 45, and 56 do recite elements relating to dividing, splitting, separately individualizing, combining, and/or otherwise handling multiple portions of a digital good.

In short, Maytal et al. does not describe (or teach) dividing, splitting, separately individualizing, combining, or otherwise handling two portions of a digital good. Consequently, it is respectfully submitted that at least dependent claims 7/10, 22, 31, 38, 45/47, and 56/59 are allowable over the art of record for this additional reason.

Conclusion

Thus, for any and all of the reasons presented above under Issues I., II., and III., the rejection of claims 1-66 under 35 U.S.C. 102(e) that relies on the disclosure of Maytal et al. is factually and/or legally insufficient and unsustainable. Accordingly, reversal of this rejection and allowance of claims 1-66 are respectfully requested.

In summary, Appellants respectfully request that the 35 U.S.C. §102(e) rejections of all pending claims 1-66 be overturned and that the pending claims be allowed and passed to issuance.

Respectfully Submitted,

Dated: 2/8/06

Keith W. Saunders

Lee & Hayes, PLLC Reg. No. 41,462 (509) 324-9256 x 238

į 2

8

9

16 17

1. (previously presented) A method comprising:

providing an initial digital good to at least one computer, wherein the initial digital good includes a plurality of selectively arranged parts in an initial configuration and the initial digital good is configured as to not properly function with the computer;

with the at least one computer:

receiving unique key data;

converting the initial digital good into a modified digital good using the unique key data to selectively individualize the initial digital good for use with the computer, such that the plurality of selectively arranged parts in the modified digital good have been rearranged to have a substantially unique operative configuration that properly functions with the computer and is different than the initial configuration; and

causing the at least one computer to run the modified digital good.

2. (previously presented) A method as recited in claim 1, wherein converting the initial digital good into the modified digital good further includes manipulating at least one flow control operation within the initial digital good.

 (previously presented) A method as recited in claim 1, further comprising:

causing at least one other computer to generate the unique key data based on at least one unique identifier data associated with the at least one computer.

- 4. (original) A method as recited in claim 3, further comprising: selectively limiting operation of the modified digital good to computers that are properly associated with at least the unique identifier data.
- 5. (previously presented) A method as recited in claim 3, wherein causing the at least one other computer to generate the unique key data further includes:

causing the at least one computer to provide the unique identifier data associated with the at least one computer to the at least one other computer; and

causing the at least one other computer to cryptographically generate the unique key data based on the unique identifier data provided by the at least one computer and at least one secret key.

6. (previously presented) A method as recited in claim 5, wherein the at least one other computer generates at least a first key and a second key, and the first key and the second key are different, but cryptographically related to the secret key, and wherein the received unique key data includes the first key.

(previously presented) A method as recited in claim 1, wherein
 providing an initial digital good to the at least one computer further includes:

dividing the initial digital good into at least a first portion and a second portion using at least one other computer:

providing the first portion to the at least one computer via a first computer readable medium; and

subsequently providing the second portion to the at least one computer via a second computer readable medium.

- 8. (original) A method as recited in claim 7, wherein the first computer readable medium includes a different type of computer readable medium than the second computer readable medium.
- 9. (original) A method as recited in claim 8, wherein the first computer readable medium includes a fixed computer readable medium and the second computer readable medium includes a network communication.

3

4

5

7

8

10

11

13

14

15

16

18

20

21

22

23 24 25 providing the second portion to the at least one computer further includes:

converting the second portion into a modified second portion using the
unique key data to selectively manipulate at least one flow control operation
within the second portion, such that the modified second portion is operatively
different in configuration to the second portion; and

providing the modified second portion to the at least one computer via the second computer readable medium, in place of the second portion.

- 11. (previously presented) A method as recited in claim 10, wherein the at least one other computer is used to convert the second portion into the modified second portion.
- 12. (original) A method as recited in claim 10, wherein the unique key data includes at least a first key and a second key, and converting the second portion into a modified second portion further includes using the second key to selectively manipulate at least one flow control operation within the second portion.
- 13. (previously presented) A method as recited in claim 10, wherein the unique key data includes at least a first key and a second key, and providing the second portion to the at least one computer further includes providing the first key to the at least one computer.

 (previously presented) A method as recited in claim 13, wherein converting the initial digital good into a modified digital good further includes

with the at least one computer, converting the first portion into a modified first portion using the first key to selectively manipulate at least one flow control operation within the first portion, such that the modified first portion is operatively different in configuration; and

causing the at least one computer to operatively combine the modified first portion and the modified second portion to produce the modified digital good.

- 15. (original) A method as recited in claim 13, further comprising: selectively limiting operation of the modified digital good to computers that are properly associated with at least the first key.
- 16. (previously presented) A method as recited in claim 3, further comprising:

causing the at least one computer to provide the unique identifier data associated with the at least one computer to the at least one other computer; and

accessing computer identification data within the at least one computer and including the computer identification data within the unique identifier data associated with the at least one computer.

23 24

25

17. (previously presented) A method as recited in claim 16, wherein causing the at least one computer to provide the unique identifier data associated with the at least one computer to the at least one other computer further includes:

receiving user identification data at the at least one computer and including the user identification data within the unique identifier data associated with the at least one computer.

medium 18. (previously presented) computer-readable comprising computer-executable instructions for:

with the at least one computer:

receiving an initial digital good, wherein the initial digital good includes a plurality of selectively arranged parts in an initial configuration and the initial digital good is configured as to not properly function with the computer;

receiving unique key data; and

converting the initial digital good into a modified digital good using the unique key data to selectively individualize the initial digital good for use with the at least one computer, such that the plurality of selectively arranged parts in the modified digital good are rearranged to have a substantially unique operative configuration that properly functions with the at least one computer and is different than the initial configuration:

19. (previously presented) A computer-readable medium as recited in claim 18, wherein converting the initial digital good into the modified digital good further includes manipulating at least one flow control operation within the initial digital good.

20. (previously presented) A computer-readable medium as recited in claim 18, comprising further computer-executable instructions for:

subsequently determining if the at least one computer is properly associated with at least the unique identifier data; and

disabling operation of the modified digital good if the at least one computer that is not properly associated with the unique identifier data.

21. (previously presented) A computer-readable medium as recited in claim 18, comprising further computer-executable instructions for:

causing the at least one computer to provide unique identifier data associated with the at least one computer to at least one other computer that is configurable to cryptographically generate the unique key data based on the unique identifier data and at least one secret key.

3

4

5

6

8

o

10

12

13

14

15

17

18

19

20

23 24 25 receiving the initial digital good further includes receiving a first portion of the digital good via a first type of computer readable medium and a modified second portion of the digital good via a second computer readable medium; and

converting the initial digital good into a modified digital good further includes converting the first portion using the unique key data to selectively manipulate at least one flow control operation within the first portion, to produce a modified first portion that is operatively different in configuration, and then operatively combining the modified first portion and the modified second portion to produce the modified digital good.

- 23. (original) A computer-readable medium as recited in claim 22, wherein the first computer readable medium includes a different type of computer readable medium than the second computer readable medium.
- 24. (original) A computer-readable medium as recited in claim 23, wherein the first computer readable medium includes a fixed computer readable medium and the second computer readable medium includes a network communication.

25. (previously presented) A computer-readable medium as recited in claim 20, wherein causing the at least one computer to provide unique identifier data further includes:

accessing computer identification data within the at least one computer and including the computer identification data within the unique identifier data associated with the at least one computer.

26. (previously presented) A computer-readable medium as recited in claim 20, wherein causing the at least one computer to provide unique identifier data further includes:

receiving user identification data and including the user identification data within the unique identifier data associated with the at least one computer.

3

4

5

6

7

10

11

12 13

14

15

17

18 19

20

22

24 25 receiving unique identifier data associated with at least one computer;

generating unique key data based on at least the unique identifier data;

Α

receiving at least a portion of an initial digital good having a plurality of selectively arranged parts in an initial configuration;

converting the at least a portion using the unique key data to selectively individualize the portion, such that a modified portion of the digital good is produced having the plurality of parts rearranged in a different configuration than the initial configuration; and

providing at least the modified portion of the digital good and at least a portion of the unique key data to the at least one computer.

- 28. (original) A computer-readable medium as recited in claim 27, wherein converting at least the portion of the initial digital good using the unique key data to selectively individualize the portion of the initial digital good further includes manipulating at least one flow control operation within the portion of the initial digital good.
- 29. (previously presented) A computer-readable medium as recited in claim 27, wherein generating the unique key data further includes:

cryptographically generating the unique key data based on the unique identifier data provided by the at least one computer and at least one secret key.

30. (original) A computer-readable medium as recited in claim 29, wherein the unique key data includes at least a first key and a second key, and the first key and the second key are different, but cryptographically related to the secret key.

31. (previously presented) A computer-readable medium as recited in claim 29, wherein converting at least portion of the initial digital good using the unique key data further includes:

dividing the initial digital good into at least a first portion and a second portion;

providing the first portion to the at least one computer via a first computer readable medium;

converting the second portion using the second key to selectively manipulate at least one flow control operation within the second portion, such that a modified second portion is produced that is operatively different in configuration[, but substantially functionally equivalent to the second portion]; and

providing the modified second portion and the first key to the at least one computer via a second computer readable medium.

32. (original) A computer-readable medium as recited in claim 31, wherein the first computer readable medium includes a different type of computer readable medium than the second computer readable medium.

- 33. (original) A computer-readable medium as recited in claim 32, wherein the first computer readable medium includes a fixed computer readable medium and the second computer readable medium includes a network communication.
- 34. (previously presented) An apparatus for use in a host computer, the apparatus comprising:

an individualizer configured to receive unique key data and at least a portion of an initial digital good that includes a plurality of selectively arranged parts in an initial configuration, and produce at least a portion of a modified digital good using the unique key data to selectively individualize the initial digital good for use with the host computer, and such that the plurality of selectively arranged parts in the modified digital good are rearranged to be operatively different in configuration than the initial configuration of the digital good.

- 35. (previously presented) An apparatus as recited in claim 34, wherein the individualizer is further configured to selectively individualize the initial digital good by selectively manipulating at least one program flow control operation within the initial digital good.
- 36. (previously presented) An apparatus as recited in claim 34, wherein the unique key data is cryptographically related to unique identifier data associated with the host computer.

37. (previously presented) An apparatus as recited in claim 36, further comprising:

an identifier configured to output the unique identifier data associated with the host computer to the source computer.

- 38. (previously presented) An apparatus as recited in claim 34, further comprising:
- a program combiner configured to receive a modified first portion of the digital good from the individualizer and a modified second portion from the source computer, and output the modified digital good by combining the modified first portion with the modified second portion.
- 39. (previously presented) An apparatus as recited in claim 34, wherein the modified digital good is operatively configured to selectively verify that the host computer is properly associated with the unique identifier data output by the identifier.
- 40. (previously presented) An apparatus as recited in claim 34, wherein the modified digital good is operatively configured to selectively verify that the host computer is properly associated with the unique key data.

- **41.** (previously presented) An apparatus as recited in claim 37, wherein the identifier is further configured to access computer identification data within the host computer and include the computer identification data within the unique identifier data associated with the host computer.
- **42.** (previously presented) An apparatus as recited in claim 37, wherein the identifier is further configured to receive user identification data at the host computer and include the user identification data within the unique identifier data associated with the host computer.
- 43. (previously presented) An apparatus for use in a source computer, the apparatus comprising:
- a key generator configured to receive a unique identifier data from a destination computer and generate unique key data based on the received unique identifier data associated with the destination computer; and

an individualizer configured to receive the unique key data and at least a portion of an initial digital good having a plurality of selectively arranged parts in an initial configuration and output at least a portion of a modified digital good using the unique key data to selectively individualize the initial digital good, such that in the modified digital good the plurality of selectively arranged parts have been rearranged to have an operatively different configuration than the initial configuration.

44. (previously presented) An apparatus as recited in claim 43, wherein the individualizer is further configured to selectively individualize the initial digital good by manipulating at least one program flow control operation within the initial digital good.

45. (previously presented) An apparatus as recited in claim 43, further comprising:

a splitter configured to divide the initial digital good into at least a first portion and a second portion, provide the first portion to the individualizer, and provide the second portion to the destination computer.

- 46. (previously presented) An apparatus as recited in claim 45, wherein the key generator is further configured to cryptographically generate the unique key data based on the unique identifier data and at least one secret key, the unique key data includes at least a first key and a second key which are unique, but cryptographically related to the secret key, and wherein the key generator is configured to provide the first key is to the individualizer, and the second key to the destination computer.
- 47. (previously presented) An apparatus as recited in claim 46, wherein the individualizer is further configured to use the second key to selectively individualize the second portion, such that a resulting modified second portion is operatively different in configuration from the second portion.

16 18

23

24 25

lee@haves

48. (previously presented) An apparatus as recited in claim 45, wherein the splitter is further configured to allow the first portion to be provided to the destination computer via a first computer readable medium, and to provide the modified second portion to the destination computer via a second computer readable medium that is a different type of computer readable medium than the first computer readable medium.

49. (previously presented) An apparatus as recited in claim 48, wherein the first computer readable medium includes a fixed computer readable medium and the second computer readable medium includes a network communication

50. (previously presented) A system comprising:

an identifier configured to output unique identifier data associated with a computer:

a key generator coupled to receive the unique identifier data and generate at least one unique key data based on the received unique identifier data; and

at least one individualizer configured to receive the unique key data and at least a portion of an initial digital good that includes a plurality of selectively arranged parts in an initial configuration, and output at least a portion of a modified digital good using the unique key data to selectively individualize the initial digital good, such that the plurality of selectively arranged parts in the modified digital good have been rearranged to be operatively different in configuration than the initial configuration of the digital good.

3

21

- 51. (original) A system as recited in claim 50, wherein the individualizer is further configured to selectively individualize the initial digital good by manipulating at least one program flow control operation within the initial digital good.
 - 52. A system as recited in claim 50, further comprising: (original) at least one source computer; and at least one destination computer coupled to the source computer.
- 53. A system as recited in claim 52, wherein the identifier is provided within the destination computer and is configured to output unique identifier data associated with the destination computer to the source computer, and the key generator and individualizer are each provided within the source computer.
- 54. (original) A system as recited in claim 52, wherein the identifier is provided within the destination computer and is configured to output unique identifier data associated with the destination computer to the source computer, the key generator is provided within the source computer, and the individualizer is provided within the destination computer.

- 56. (original) A system as recited in claim 55, further comprising: a splitter provided within the source computer and configured to divide the initial digital good into at least a first portion and a second portion, provide the first portion to the first individualizer, and provide the second portion to the
- 57. (original) A system as recited in claim 56, wherein the key generator is further configured to cryptographically generate the unique key data based on the unique identifier data and at least one secret key, the unique key data includes at least a first key and a second key which are unique, but cryptographically related to the secret key, the first key is provided to the first individualizer, and the second key is provided to the second individualizer.
- 58. (previously presented) A system as recited in claim 57, wherein the first individualizer is further configured to use the first key to selectively individualize the first portion, such that the resulting modified first portion is operatively different in configuration from the first portion.

3

5

8

9

10

11

12

14

15

16

17

18

19 20

21

22

23

25

second individualizer.

- 59. (previously presented) A system as recited in claim 58, wherein the second individualizer is further configured to use the second key to selectively individualize the second portion, such that the resulting modified second portion is operatively different in configuration from the second portion.
 - 60. (original) A system as recited in claim 59, further comprising:
- a combiner provided within the destination computer and configured to receive the modified first portion from the first individualizer and the modified second portion from the second individualizer, and output the modified digital good by combining the modified first portion with the modified second portion.
- 61. (original) A system as recited in claim 50, wherein the modified digital good is operatively configured to selectively verify that the destination computer is properly associated with the unique identifier data output by the identifier.
- 62. (original) A system as recited in claim 50, wherein the modified digital good is operatively configured to selectively verify that the destination computer is properly associated with the first key as provided by the key generator.

63. (original) A system as recited in claim 56, wherein the first portion is provided to the destination computer via a first computer readable medium, the modified second portion is provided to the destination computer via a second computer readable medium that is a different type of computer readable medium than the first computer readable medium.

- 64. (original) A system as recited in claim 63, wherein the first computer readable medium includes a fixed computer readable medium and the second computer readable medium includes a network communication.
- 65. (original) A system as recited in claim 50, wherein the identifier is further configured to access computer identification data within a destination computer and includes the computer identification data within the unique identifier data associated with the destination computer.
- 66. (previously presented) A system as recited in claim 65, wherein the identifier is further configured to receive user identification data at a destination computer and include the user identification data within the unique identifier data associated with the destination computer.

None.