Canonical and Standard Forms

CSE 4205: Digital Logic Design

Aashnan Rahman

Junior Lecturer

Department of Computer Science and Engineering (CSE)

Islamic University of Technology

01
Minterms and Maxterms

ANDed or ORed Terms

Minterms

A product (**AND**ed term) that contains **all the variables** of a particular function in either in **original form** or **complemented form**.

Also known as **Standard Product**.

- **n** variables can be combined using **AND** to form 2^n minterms. $(0 \text{ to } 2^n 1)$
- Symbol $\rightarrow m_j$
- 1 priority
 - 1) $0 \rightarrow \text{complemented form}$
 - 2) $1 \rightarrow \text{original form}$

Minterms

			M	interms
x	y	z	Term	Designation
0	0	0	x'y'z'	m_0
0	0	1	x'y'z	m_1
0	1	0	x'yz'	m_2
0	1	1	x'yz	m_3
1	0	0	xy'z'	m_4
1	0	1	xy'z	m_5
1	1	0	xyz'	m_6
1	1	1	xyz	m_7

Maxterms

A sum (**OR**ed term) that contains **all the variables** of a particular function in either in **original form** or **complemented form**.

Also known as Standard Sum.

- **n** variables can be combined using **OR** to form 2^n **Maxterms**. $(0 \text{ to } 2^n 1)$
- Symbol $\rightarrow M_j$
- 0 priority
 - 1) $1 \rightarrow \text{complemented form}$
 - 2) $0 \rightarrow \text{original form}$

Maxterms

• Maxterm and its corresponding Minterm are complements to each other.

$$m_j=M_j'$$

Maxterms

			Maxte	erms
x	y	z	Term	Designation
0	0	0	x + y + z	M_0
0	0	1	x + y + z'	M_1
0	1	0	x + y' + z	M_2
0	1	1	x + y' + z'	M_3
1	0	0	x' + y + z	M_4
1	0	1	x' + y + z'	M_5
1	1	0	x' + y' + z	M_6
1	1	1	x' + y' + z'	M_7

Any boolean function can be expressed as a sum of minterms (or product of maxterms).

From a given truth table, **minterms** are produced from those combinations of variables which produces **1 (True)**.

The required function is the **AND** or **sum** of the **minterms** having **output 1**.

x	y	z	Function f ₁	Function f ₂	minterms
0	0	0	0	0	m_0
0	0	1	1 x'y'z	0	m_1
0	1	0	0	0	m_2
0	1	1	0	1 x'yx	m_3
1	0	0	1 $xy'z'$	0	m_4
1	0	1	0	1 $xy'z$	m_5
1	1	0	0	1 xyz	m_6
1	1	1	$_1$ xyz	1 xyz	m_7

x	y	z	Function f ₁	Function
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1 f
1	1	0	0	1
1	1	1	1	1

Boolean Functions using Maxterms (PoS)

Any boolean function can be expressed as a product of maxterms (or sum of minterms).

From a given truth table, **maxterms** are produced from those combinations of variables which produces **0** (False).

The required function is the **OR** or **product** of the **maxterms** having **output 0**.

x	y	z	Function f ₁	Function	n f 2	maxterm
0	0	0	0 x+y	+z 0	x + y + z	M_0
0	0	1	1	0	x + y + z'	M_1
0	1	0	0 x+y'	'+z=0	x + y' + z	M_2
0	1	1	0 x + y'	+z' 1		M_3
1	0	0	1	0	x'+y+z	M_4
1	0	1	0 x' + y	+z' 1		M_5
1	1	0	0 x' + y	' + z = 1		M_6
1	1	1	1	1		M_7

x	y	z	Function f ₁	Function
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Complement of Boolean Functions

Taking each combination of variables (**minterms**) that produces 0 (**False**) in the function and **OR** them.

Or, taking each combination of variables (maxterms) that produces 1 (True) in the function and AND them.

02 Standard and Canonical Form SoP and Pos Forms

Canonical Form

A Boolean expression is in **canonical form** when **each term** in the expression contains **all the variables** in the domain (either complemented or not).

There exists two such forms

- Sum of minterms / Products (SoP)
- Product of maxterms / Sums (PoS)

Sum of Minterms

If the function is not in this form,

- The expression is expanded into a sum of ANDed terms.
- Each term is inspected whether it **contains all the variables**, if missing it is introduced by **ANDing** the term with (x + x').

$$F = A + B'C$$

 $F = A'B'C + AB'C + AB'C + ABC' + ABC$
 $= m_1 + m_4 + m_5 + m_6 + m_7$ Notation 1
 $F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$ Notation 2

Sum of Minterms

Α	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$F = \sum (1, 4, 5, 6, 7)$$

Product of Maxterms

If the function is not in this form,

- The expression is expressed into a product of ORed terms.
- Each term is inspected whether it **contains all the variables**, if missing it is introduced by **ORing** the term with (x.x').

$$F = xy + x'z$$

 $F = (x + y + z)(x + y' + z)(x' + y + z)(x' + y + z')$
 $= M_0 M_2 M_4 M_5$ Notation 1
 $F(x, y, z) = \Pi(0, 2, 4, 5)$ Notation 2

Conversion between Canonical Forms

The complement of a function expressed as SOP equals SOP of missing minterms from the original function

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

 $F'(A, B, C) = \Sigma(0, 2, 3) = m_0 + m_2 + m_3$

If the complement of F' is taken following **De Morgan's Law**, we will get the original function F in different form

$$F = (m_0 + m_2 + m_3)' = m_0' \cdot m_2' \cdot m_3' = M_0 M_2 M_3 = \Pi(0, 2, 3)$$

Form this conversion, it is proved that:

$$m_j=M_j'$$

Conversion between Canonical Forms

$$F = xy + x'z$$

$$F(x, y, z) = \Sigma(1, 3, 6, 7)$$

$$F(x, y, z) = \Pi(0, 2, 4, 5)$$

X	y	z	F
0	0	0	0\
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0_
1	0	1	0-/
1	1	0	1 ^V /
1	1	1	1 ×

Standard Form

- Canonical forms:
 - Both are easily formed from truth table
 - Each minterm or maxterm must contain all variables; either primed or unprimed
- Standard form:
 - Terms may have **one**, **two**, **three** or **any** number of literals.
 - Two types: SOP and POS

Standard Form (SoP)

- Has ANDed terms (products) which are finally ORed (sum)
- Logic diagrams contain a group of AND gates followed by a single OR gate. It's assumed that the complements of variables are directly available in their input. Known as two-level-implementation

SOP:
$$F_1 = y' + xy + x'yz'$$

Standard Form (PoS)

- Has ORed terms (sums) which are finally ANDed (product)
- Logic diagrams contain a group of OR gates followed by a single AND gate. It's assumed that the complements of variables are directly available in their input. Another two-level-implementation

POS:
$$F_2 = x(y' + z)(x' + y + z')$$

SoP and PoS

Two level implementation

Non -Standard Form

The boolean expression is neither in SoP or PoS form.

Nonstandard Form:
$$F_3 = AB + C(D + E)$$

Standard Form:
$$F_3 = AB + C(D + E) = AB + CD + CE$$

Can be converted to standard form following the distributive law.

Non -Standard Form

Worksheets

• Worksheet 1

Feel free to ask any questions