Akademia ETI edycja 2019

Programowalne układy cyfrowe FPGA

Autorzy:

- Maciej Brzeski
- Mikołaj Barcikowski

- Jakub Gierowski
- Jan Olencki

Opiekun:

 dr hab. inż. Bogdan Pankiewicz, prof. nadzwyczajny PG

Plan wykładu

- 1. Czym jest sygnał cyfrowy?
 - Jak wygląda sygnał cyfrowy?
 - Sygnał cyfrowy w układach synchronicznych
- 2. Algebra Boole'a w elektronice cyfrowej
- 3. Wybrane układy cyfrowe
 - Układy kombinacyjne bramka NOT, AND i OR
 - Układy sekwencyjne przerzutnik RS i JK
- 4. System binarny i jego zastosowanie w technice cyfrowej
 - Podstawowe informacje o systemie binarnym
 - Układ licznika modulo n
- 5. Elementarne informacje o układach FPGA
 - Czym są układy FPGA?
 - Kluczowe informacje o budowie układów FPGA
 - Wykorzystanie schematu do opisu układów cyfrowych

Czym jest sygnał cyfrowy? – Jak wygląda sygnał cyfrowy?

Sygnał to funkcja czasu przenosząca informację. Sygnał cyfrowy przyjmuje tylko skończoną liczbę wartości (dyskretna przeciwdziedzina).

W elektronice cyfrowej sygnały są binarne (przyjmują dwie wartości) oraz najczęściej są reprezentowane przez napięcie zmieniające się w czasie.

Przykładowy sygnał cyfrowy

Czym jest sygnał cyfrowy? – Sygnał cyfrowy w układach synchronicznych

Stan wysoki – 1 – jedynka – prawda

Stan niski – 0 – zero – fałsz

Układ synchroniczny to taki w którym stan zmienia się w momentach wyznaczanych przez sygnał zegara.

Algebra Boole'a w elektronice cyfrowej

Iloczyn logiczny – $a \cdot b$

$$a \cdot a = a$$

$$a \cdot 0 = 0$$

$$a \cdot 1 = a$$

Suma logiczna – a + b

$$a + a = a$$

$$a + 0 = a$$

$$a + 1 = 1$$

Negacja –
$$\overline{a}$$

$$\overline{\overline{a}} = a$$

а	b	$a \cdot b$
0	0	0
0	1	0
1	0	0
1	1	1

а	b	a + b
0	0	0
0	1	1
1	0	1
1	1	1

а	\overline{a}
0	1
1	0

Wybrane układy cyfrowe – *Układy kombinacyjne – bramka NOT, AND i OR*

Bramka AND – Iloczyn logiczny

Bramka OR – Suma logiczna

Bramka NOT – Negacja

а	b	$a \cdot b$
0	0	0
0	1	0
1	0	0
1	1	1

а	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

а	ā
0	1
1	0

Wybrane układy cyfrowe – *Układy sekwencyjne* – *przerzutnik RS i JK*

Przerzutnik RS

_		
Przerzi	ıtnik	IK

R	S	Q_{n+1}
0	0	Q_n
0	1	1
1	0	0
1	1	_

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	\overline{Q}_n

System binarny i jego zastosowanie w technice cyfrowej –

Podstawowe informacje o systemie binarnym

Najbardziej popularnym systemem pozycyjnym jest system dziesiętny wykorzystujący do zapisu liczb cyfry od 0 do 9. W elektronice szeroko stosowany jest system dwójkowy (binarny) wykorzystujący dwie cyfry 0 i 1, które odpowiadają stanowi wysokiemu i niskiemu w sygnale cyfrowym.

$$183_{10} = 1 \cdot 10^{2} + 8 \cdot 10^{1} + 3 \cdot 10^{0} = 100 + 80 + 3$$

$$10110111_{2} = 1 \cdot 2^{7} + 0 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} = 128 + 0 + 32 + 16 + 0 + 4 + 2 + 1 = 183_{10}$$

System binarny i jego zastosowanie w technice cyfrowej

Układ licznika modulo n

Licznik modulo 10

Elementarne informacje o układach FPGA – Czym są układy FPGA?

Układy FPGA to programowalne układy logiczne pozwalające na tworzenie dowolnego układu cyfrowego (synchronicznego). Składają się z od tysięcy do nawet kilku milionów programowalnych bloków logicznych. Są wykorzystywane w prototypowaniu układów scalonych (szczególnie wyspecjalizowanych – ASIC) oraz wszędzie tam gdzie potrzebna jest duża wydajność lub energooszczędność przy przetwarzaniu równoległym.

Przy projektowaniu układu cyfrowego z wykorzystaniem układu FPGA wykorzystujemy języki opisu sprzętu (HDL), takie jak VHDL lub Verilog. Można również tworzyć schematy, jednakże jest to skrajnie nieefektywne.

Elementarne informacje o układach FPGA – Czym są układy

FPGA? – Porównanie na podstawie kopania bitcoinów

ASIC - Bitmain BM1385

$$38750 \frac{MHash}{s} \text{ przy } 10,2 W$$
$$3802 \frac{MHash}{I}$$

FPGA - Xilinx Spartan-6 LX150

$$200 \frac{MHash}{s} \text{ przy } 8,6 W$$

$$23,25 \frac{MHash}{I}$$

GPU - Nvidia GeForce GTX460

$$158 \frac{MHash}{s} \text{ przy } 240 W$$

$$0,658 \frac{MHash}{I}$$

CPU - Intel Core i7 2600

23,9
$$\frac{MHash}{s}$$
 przy 95 W
0,25 $\frac{MHash}{J}$

Elementarne informacje o układach FPGA – Kluczowe informacje

o budowie układów FPGA

Układy FPGA zbudowane są z:

- konfigurowalnych bloków logicznych (CLB) zawierających zazwyczaj m. in.
 przerzutnik D oraz układ kombinacyjny realizujący dowolną funkcję logiczną,
- bloków wejść/wyjść (IOB)
- o ścieżek oraz połączeń pomiędzy nimi pozwalających na łączenie bloków
- o dodatkowych bloków pamięci, mnożenia, operacji zmiennoprzecinkowych itp. Wejścia zegarowe przerzutników D w CLB są podłączone do sieci dystrybucji sygnału zegarowego. Ilość ścieżek w sieci dystrybucji sygnału zegarowego jest ograniczona i stosunkowo mała, co wymusza wykorzystanie małej ilości różnych sygnałów zegarowych.

Elementarne informacje o układach FPGA – Wykorzystanie schematu do opisu układów cyfrowych

Akademia ETI edycja 2019

Programowalne układy cyfrowe FPGA

Autorzy:

- Maciej Brzeski
- Mikołaj Barcikowski

- Jakub Gierowski
- Jan Olencki

Opiekun:

 dr hab. inż. Bogdan Pankiewicz, prof. nadzwyczajny PG

