ROZDZIAŁ V

CAŁKA RIEMANNA

§ 1. Całka pojedyncza

1. Podział przedziału. Weźmy pod uwagę w przedziałe zamkniętym $\langle a,b \rangle$ skończoną liczbę punktów $a=x_0 < x_1 < ... < x_n=b$.

Zbiór przedziałów zamkniętych $\langle x_0, x_1 \rangle, \dots, \langle x_{n-1}, x_n \rangle$ nazywamy podziałem Δ przedziału $\langle a, b \rangle$.

Długość przedziału $\langle x_{i-1}, x_i \rangle$ oznaczamy przez δx_i :

$$\delta x_i = x_i - x_{i-1}$$
 dla $i = 1, 2, ..., n$,

a przez $|\Delta|$ – największą z liczb $\delta x_1, ..., \delta x_n$.

Ciąg podziałów $\{\Delta_n\}$ nazywamy normalnym, jeżeli $|\Delta_n| \to 0$ dla $n \to \infty$, tzn. jeżeli długość najdłuższego przedziału podziału Δ_n dąży do zera, gdy n wzrasta nieograniczenie.

Jeżeli np. Δ_n jest podziałem przedziału $\langle a, b \rangle$ na n równych przedziałów, to ciąg $\{\Delta_n\}$ jest ciągiem normalnym, gdyż $|\Delta_n| = (b-a)/n \rightarrow 0$ dla $n \rightarrow \infty$.

2. Całka Riemanna. Niech f(x) będzie funkcją ograniczoną, określoną w przedziałe zamkniętym $\langle a,b\rangle$. Weźmy pod uwagę w każdym przedziałe $\langle x_{i-1},x_i\rangle$ podziału Δ dowolny punkt ξ_t i utwórzmy sumę

(1)
$$R = \sum_{i=1}^{n} f(\xi_i) \delta x_i.$$

Jeżeli dla każdego ciągu normalnego podziałów $\{\Delta_n\}$ odpowiadające im sumy R_n dążą do jednej i tej samej granicy (niezależnie od wyboru punktów ξ_i), to granicę tę nazywamy całką Riemanna funkcji f(x) w przedziale $\langle a,b\rangle$ i oznaczamy przez

$$\int_{a}^{b} f(x) dx.$$

Funkcję f(x) nazywamy wówczas całkowalną \Re czyli całkowalną w sensie Riemanna w przedziale $\langle a,b \rangle$.

Uwaga. Jeżeli dla każdego ciągu normalnego podziałów odpowiednie sumy (1) są zbieżne, to są zawsze zbieżne do tej samej granicy. Jeżeli bowiem $\{\Delta_n\}$ i $\{\Delta'_n\}$ są dowolnymi ciągami normalnymi podziałów przedziału $\langle a,b\rangle$, a $\{R_n\}$ i $\{R'_n\}$ — ciągami zbieżnymi odpowiednich sum, to ponieważ ciąg $\{\Delta_1,\Delta'_1,\Delta_2,\Delta'_2,...\}$ jest również ciągiem normalnym podziałów, ciąg $\{R_1,R'_1,R_2,R'_2,...\}$ jest zbieżny. Zatem ciągi $\{R_n\}$ i $\{R'_n\}$ są zbieżne do tej samej granicy.

(2.1) Dla każdej funkcji f całkowanej \Re w przedziałe $\langle a,b \rangle$ zachodzi wzór:

(2)
$$m(b-a) \leqslant \int_{a}^{b} f(x) dx \leqslant M(b-a),$$

gdzie m i M oznaczają kresy dolny i górny funkcji f(x) dla $a \le x \le b$.

Dowód. Dla każdego podziału Δ i każdej sumy (1) mamy $m \leq f(\xi_i) \leq M$, gdzie i=1,2,...,n. Zatem

$$m(\delta x_1 + \ldots + \delta x_n) \leq R \leq M(\delta x_1 + \ldots + \delta x_n).$$

Ponieważ $\delta x_1 + ... + \delta x_n = b - a$, więc otrzymujemy nierówność (2), c. b. d. d.

(2.2) Jeżeli funkcja f(x) jest całkowalna \Re w przedziale $\langle a,b \rangle$, to

(3)
$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant L(b-a),$$

gdzie L oznacza kres górny wartości |f(x)| w tym przedziale.

Nierówność (3) wynika łatwo z (2), gdyż $-L \le m \le M \le L$. (2.3) Jeżeli funkcja f(x) jest całkowalna \Re i nieujemna w przedziale $\langle a,b \rangle$, to

$$\int_{a}^{b} f(x) dx \geqslant 0.$$

Wynika to z tw. (2.1), gdyż $m \ge 0$.

3. Całka sumy funkcyj. Okażemy teraz, że:

(3.1) Suma oraz różnica dwu funkcji f(x) i $\varphi(x)$ całkowalnych \Re w przedziałe $\langle a,b \rangle$ jest całkowalna \Re i

$$\int_{a}^{b} [f(x) \pm \varphi(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} \varphi(x) dx.$$

Dowód. Biorąc jakiekolwiek punkty ξ_i w przedziałach podziału Δ i oznaczając przez R, R' i R'' odpowiednie sumy dla $f \pm \varphi$, f i φ , mamy $R = R' \pm R''$. Dla ciągu normalnego podziałów $\{\Delta_n\}$ mamy zatem $R_n = R'_n \pm R''_n$. Ponieważ R'_n i R''_n dążą do całek z funkcyj f(x) i $\varphi(x)$, więc R_n dąży również do granicy, którą jest suma (różnica) całek funkcyj f i φ .

Równie prosto dowodzi się, że:

(3.2) Roczyn funkcji f(x) całkowalnej \Re w przedziałe $\langle a,b \rangle$ przez liczbę stałą c jest funkcją całkowalną \Re w tym przedziałe i

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx.$$

(3.3) Jeżeli $f_1(x),...,f_n(x)$ są funkcjami całkowalnymi \Re w przedziale $\langle a,b \rangle$, a $c_1,...,c_n$ są dowolnymi stałymi, to

$$\int_{a}^{b} [c_{1}f_{1}(x) + ... + c_{n}f_{n}(x)] dx = c_{1} \int_{a}^{b} f_{1}(x) dx + ... + c_{n} \int_{a}^{b} f_{n}(x) dx.$$

Dowód wynika od razu z (3.1) i (3.2).

4. Sumy dolna i górna. Oznaczmy przez m_i i M_i kresy dolny i górny funkcji f(x) w przedziałe $\langle x_{i-1}, x_i \rangle$ podziału Δ . Niech

(4)
$$s = \sum_{i=1}^{n} m_i \delta x_i, \qquad S = \sum_{i=1}^{n} M_i \delta x_i.$$

Sumę s nazywamy sumą dolną, S zaś — sumą górną odpowiadającą podziałowi Δ .

Niech m i M oznaczają dolny i górny kres funkcji f(x) w przedziale $\langle a,b \rangle$; wówczas mamy oczywiście na mocy (3) i (1):

$$(5) m(b-a) \leqslant s \leqslant R \leqslant S \leqslant M(b-a).$$

Udowodnimy, że S jest kresem górnym wartości sumy R, odpowiadającej podziałowi Δ dla wszelkich możliwych wyborów punktów ξ_i (p. wzór (1), str. 162).

Niech bowiem $\varepsilon > 0$. W *i*-tym przedziale podziału Δ możemy wyznaczyć taki punkt ξ_i , by $f(\xi_i) \geqslant M_i - \frac{\varepsilon}{b-a}$, skąd:

$$R = \sum_{i=1}^{n} f(\xi_i) \delta x_i \geqslant \sum_{i=1}^{n} \left(M_i - \frac{\varepsilon}{b-a} \right) \delta x_i = S - \varepsilon.$$

Ponieważ $\varepsilon > 0$ jest dowolne oraz $R \leqslant S$ na mocy (5), więc S jest kresem górnym wartości sumy R.

Podobnie dowodzi się, że s jest kresem dolnym wartości sumy R dla podziału Δ .

Zauważmy, że na mocy (3)

$$S - s = \sum_{i=1}^{n} (M_i - m_i) \delta x_i.$$

Oznaczając więc przez ω_i oscylację funkcji f(x) w przedziale δx_i , tzn. przyjmując $\omega_i = M_i - m_i$, dostajemy

(6)
$$S - s = \sum_{i=1}^{n} \omega_i \delta x_i.$$

5. Całki górna i dolna. Kres dolny sum górnych S przy dowolnych podziałach Δ przedziału $\langle a,b\rangle$ nazywamy całką górną funkcji f(x) w przedziałe $\langle a,b\rangle$ i oznaczamy przez

$$\int_{a}^{\underline{b}} f(x) \, dx.$$

Analogicznie kres górny sum dolnych s nazywamy całka dolną funkcji f(x) w przedziałe $\langle a,b\rangle$ i oznaczamy przez

$$\int_{a}^{b} f(x) dx.$$

Dla każdego podziału ⊿ mamy na mocy określenia całek górnej i dolnej:

(7)
$$s \leqslant \int_{\overline{a}}^{b} f(x) dx, \qquad \int_{a}^{\overline{b}} f(x) dx \leqslant S.$$

PRZYKŁAD. Niech y=f(x) będzie funkcją Dirichleta określoną w przedziałe $\langle 0,1 \rangle$, tzn. $f(x)=\begin{cases} 0 & \text{dla } x \text{ wymiernych,} \\ 1 & \text{dla } x \text{ niewymiernych.} \end{cases}$

Dla każdego podziału Δ mamy wówczas s=0 i S=1, zatem:

$$\int_{0}^{1} f(x) dx = 0, \qquad \int_{0}^{1} f(x) dx = 1.$$

(5.1) Do każdego $\varepsilon > 0$ istnieje takie $\eta > 0$, że jeżeli podział Δ spełnia nierówność

$$|\Delta| \leqslant \eta,$$

to sumy s i S spełniają nierówności

(9)
$$s \ge \int_{a}^{b} f(x) dx - \varepsilon, \qquad S \le \int_{a}^{b} f(x) dx + \varepsilon.$$

Dowód. Udowodnimy drugą z nierówności (9). Ponieważ całka górna jest dolnym kresem sum górnych, więc do liczby $\varepsilon > 0$ istnieje podział $\overline{\Delta}$, dla którego suma górna \overline{S} spełnia nierówność

(10)
$$\overline{S} \leqslant \int_{a}^{b} \overline{f}(x) \, dx + \varepsilon/2.$$

Niech η spełnia nierówność

$$(11) 0 < \eta \leqslant |\bar{\Delta}|$$

i weźmy pod uwagę podział \(\Delta \) spełniający nierówność (8).

Niech \bar{I}_k będzie dowolnym odcinkiem podziału $\bar{\Delta}$, a $I_i, I_{i+1}, ..., I$ odcinkami podziału Δ , które całkowicie leżą w \bar{I}_k , a więc które zawierają każdy punkt przedziału \bar{I}_k odległy od jego końców o więcej niż $|\bar{\Delta}|$. Z (9) dostajemy zatem

$$I_{k} - \sum_{r=i}^{j} I_{r} \leqslant 2\eta.$$

Niech M i m oznaczają kresy górny i dolny funkcji f(x) w przedziałe $\langle a,b \rangle$, a \overline{M}_k i M_r — kresy górne tej funkcji w przedziałach \overline{I}_k i I_r . Mamy

(13)
$$\overline{\delta}_{k}(M - \overline{M}_{k}) = \sum_{r=i}^{j} \delta_{r}(M - \overline{M}_{k}) + (\overline{\delta}_{k} - \sum_{r=i}^{j} \delta_{r}) (M - \overline{M}_{k}).$$

Ponieważ $\overline{M}_k \geqslant M_r$, więc $M - \overline{M}_k \leqslant M - M_r$ dla r = i, i+1, ..., j; zatem na mocy (12) i (13)

(14)
$$\overline{\delta}_{k}(M-\overline{M}_{k}) \leqslant \sum_{r=i}^{j} \delta_{r}(M-M_{r}) + 2\eta(M-m).$$

Podobne nierówności zachodzą dla pozostałych przedziałów podziału $\overline{\Delta}$. Dodając te nierówności stronami, otrzymujemy po lewej stronie $M(b-a)-\overline{S}$. W sumach po prawej stronie nierówności (14) nie występują składniki odpowiadające tym odcinkom podziału Δ , które nie mieszczą się całkowicie w żadnym przedziałe podziału $\overline{\Delta}$. Sumy te po dodaniu nie przekroczą więc

$$\sum_{r=1}^{p} \delta_r(M - M_r) = M(b - a) - S.$$

Niech \overline{n} będzie liczbą odcinków podziału $\overline{\Delta}$. Ostatnie wyrazy po prawej stronie nierówności (14) nie przekroczą więc łącznie $2\overline{n}\eta(M-m)$. Tym sposobem w wyniku dodawania stronami wszystkich nierówności (14) otrzymamy

$$M(b-a)-\overline{S} \leq M(b-a)-S+2\overline{n}\eta(M-m)$$

skąd

(15)
$$S \leqslant \overline{S} + 2\overline{n}\eta(M-m).$$

Przyjmując zatem, że η spełnia prócz nierówności (11) jeszcze nierówność

$$(16) 2\overline{n}\eta(M-m) \leqslant \varepsilon/2,$$

otrzymamy z (15) i (10) nierówność $S \leqslant \int_{a}^{b} f(x) dx + \varepsilon$, t.j. drugą

z nierówności (9), zachodzącą — jak udowodniliśmy — dla każdego podziału Δ spełniającego nierówność (8), gdy tylko η spełnia nierówności (11) i (16).

Podobnie dowodzi się pierwszej z nierówności (9).

(5.2) Dla każdego ciągu normalnego podziałów $\{\Delta_n\}$ ciąg sum $\{S_n\}$ dąży do całki górnej, a ciąg sum $\{s_n\}$ — do całki dolnej.

Dowód. Niech dane będzie dowolne $\varepsilon > 0$ i dobrane do niego $\eta > 0$ według lematu (5.1). Ponieważ $\{\Delta_n\}$ jest z założenia ciągiem normalnym, więc istnieje takie N, że n > N pociąga $|\Delta_n| \leq \eta$. Na mocy (5.1) otrzymujemy zatem

(17)
$$S_{n} \leqslant \int_{a}^{b} f(x) dx + \varepsilon \quad \text{dla} \quad n > N.$$

Ponieważ całka górna jest kresem dolnym sum górnych S, więc

(18)
$$\int_{a}^{b} f(x) dx \leqslant S_{n}.$$

Z (17) i (18) dostajemy

$$0 \leqslant S_n - \int_a^b f(x) dx \leqslant \varepsilon$$
 dla $n > N$.

Wynika stąd, że S_n dąży do całki górnej. Podobnie dowodzi się twierdzenia dla sum dolnych ε_n .

(5.3) Całka dolna jest niewiększa od całki górnej:

$$\int_{\overline{a}}^{b} f(x) dx \leqslant \int_{a}^{\overline{b}} f(x) dx.$$

Wynika to z (5.2), ponieważ $s_n \leq S_n$ dla dostatecznie wielkich n.

6. Warunki całkowalności funkcji według Riemanna. (6.1) Jeżeli całki dolna i górna funkcji f(x) w przedziale $\langle a,b\rangle$ są równe, to funkcja f(x) jest całkowalna \Re w tym przedziale i

$$\int_{\overline{a}}^{b} f(x) dx = \int_{a}^{b} f(x) dx = \int_{a}^{\overline{b}} \overline{f}(x) dx.$$

Dowód. Dla każdego ciągu normalnego podziałów $\{\Delta_n\}$ mamy $s_n \leqslant R_n \leqslant S_n$. Ponieważ s_n i S_n dążą dla $n \to \infty$ do całek dolnej i górnej, które według założenia są równe, więc R_n dąży również do granicy. Wynika stąd, że funkcja f(x) jest całkowalna w przedziale $\langle a,b\rangle$ i że jej całka równa się całce górnej i dolnej, c. b. d. d.

(6.2) Jeżeli funkcja f(x) jest całkowalna w przedziale $\langle a,b\rangle$, to jej całki górna i dolna w tym przedziale są równe.

Dowód. Niech $\{\Delta_n\}$ będzie dowolnym ciągiem normalnym podziałów. Ponieważ suma dolna s_n jest według określenia kresem dolnym, suma zaś górna S_n — kresem górnym sum R_n odpowiadających podziałowi Δ_n , więc istnieją dla podziału Δ_n sumy R'_n i R''_n dostatecznie wielkie, by

(19)
$$R'_{n} \leqslant s_{n} + 1/n \quad \text{oraz} \quad S_{n} - 1/n \leqslant R''_{n}.$$

Ponieważ R'_n i R''_n dążą do całki funkcji f(x), więc s_n i S_n dążą na mocy (19) również do całki tej funkcji. Na mocy tw. (5.3) całka górna i dolna funkcji f(x) są więc równe całce funkcji f(x).

Z twierdzeń (6.1) i (6.2) wynika od razu twierdzenie

(6.3) Warunkiem koniecznym i wystarczającym na to, by funkcja ograniczona w przedziale $\langle a,b \rangle$ była w nim całkowalna \Re , jest, żeby jej całki górna i dolna w tym przedziale były równe.

Twierdzeniu (6.3) można nadać postać następującą:

(6.4) Warunkiem koniecznym i wystarczającym na to, by funkcja ograniczona f(x) była w przedziale $\langle a,b \rangle$ całkowalna \Re , jest, żeby do każdej liczby $\varepsilon > 0$ istniał podział Δ , dla którego zachodziłaby nierówność

(20)
$$S - s = \sum_{i=1}^{n} \omega_i \delta x_i < \varepsilon,$$

 $gdzie \ \omega_i \ oznacza \ oscylację funkcji \ f(x) \ w \ przedziale \ \delta x_i.$

Dowód. Jeżeli funkcja f(x) jest całkowalna w przedziale $\langle a,b\rangle$, to na mocy tw. (6.3) jej całki górna i dolna w tym przedziale są równe. Zatem dla każdego ciągu normalnego podziałów $\{\Delta_n\}$ ciągi $\{S_n\}$ i $\{s_n\}$ dążą do tej samej granicy, skąd $S_n - s_n \to 0$. Wynika stąd, że do każdej liczby $\varepsilon > 0$ istnieje taki podzial Δ_n , dla którego $S_n - s_n < \varepsilon$, tzn. dla którego zachodzi nierówność (20). Warunek jest więc konieczny.

Na odwrót, jeżeli do liczby $\varepsilon > 0$ istnieje podział Δ o własności (20), to na mocy (7), str. 165

$$0 \leqslant \int_{a}^{b} f(x) dx - \int_{a}^{b} f(x) dx < \varepsilon.$$

Ponieważ $\varepsilon > 0$ jest dowolne, więc wynika stąd, że całki górna i dolna są równe. Na mocy tw. (6.3) funkcja f(x) jest zatem całkowalna \Re w przedziale $\langle a,b \rangle$. Warunek jest więc także dostateczny, c. b. d. d.

PRZYKŁADY. 1. Każda funkcja f(x) ciągła w przedziale $\langle a,b \rangle$ jest w nim całkowalna \Re .

Z jednostajnej ciągłości funkcji f(x) w przedziale $\langle a,b \rangle$ (tw. (4.2), str. 112) wynika bowiem, że do każdego $\varepsilon > 0$ istnieje taki podział Δ na odcinki $I_1, I_2, ..., I_n$, że oscylacja ω_i funkcji f na odcinku I_i spełnia nierówność $\omega_i \leqslant \varepsilon/(b-a)$ dla i=1,2,...,n. Stąd dla podziału Δ

$$S - s = \sum_{i=1}^{n} \omega_i \delta x_i \leqslant \frac{\varepsilon}{b - a} \sum_{i=1}^{n} \delta x_i = \varepsilon,$$

na mocy więc tw. (6.4) funkcja f jest całkowalna w przedziale $\langle a, b \rangle$.

2. Każda funkcja f(x) monotoniczna w przedziałe $\langle a,b \rangle$ jest w nim całkowalna \Re .

Niech bowiem f(x) będzie funkcją niemalejącą w $\langle a,b\rangle$, a \triangle dowolnym podziałem tego przedziału punktami $x_0=a< x_1< ... < x_n=b$. Ponieważ oscylacja ω_i w przedziałe $I_i=\langle x_{i-1},x_i\rangle$ jest niewiększa niż $f(x_i)-f(x_{i-1})$, więc

$$S - s = \sum_{i=1}^{n} \omega_{i} \delta x_{i} \leqslant \sum_{i=1}^{n} \omega_{i} |\Delta| \leqslant [f(b) - f(a)] \cdot |\Delta|.$$

Jeżeli zatem do dowolnie danej liczby $\varepsilon > 0$ dobierzemy Δ tak, by $[f(b)-f(a)]\cdot |\Delta| \leqslant \varepsilon$, to otrzymamy $S-s \leqslant \varepsilon$. Na mocy tw. (6.4) wynika stąd całkowalność \Re funkcji f(x) w przedziale $\langle a,b \rangle$.

- 7. Zbiory miary Lebesgue'a 0. Mówimy, że zbiór liniowy E ma miarę Lebesgue'a zero, albo że jego miara $\mathfrak L$ jest 0, i piszemy m(E)=0, jeżeli do każdej liczby $\varepsilon>0$ istnieje skończony lub przeliczalny ciąg przedziałów $\{I_n\}$, spełniający warunki:
 - (i) $E \subset \sum_{n} I_{n}$
 - (ii) $\sum_{n} \delta_{n} \leqslant \varepsilon$, gdzie $\delta_{n} = \delta(I_{n})$.

PRZYKŁADY. 1. Punkt jest miary $\mathfrak Q$ zero. Punkt a mieści się bowiem w przedziale $\langle a-\varepsilon/2,\ a+\varepsilon/2\rangle$ o długości ε , gdzie ε jest dowolną liczbą dodatnią.

- 2. Każdy zbiór skończony lub przeliczalny jest miary Ω zero. Jeżeli bowiem E jest zbiorem skończonym lub przeliczalnym złożonym z punktów $\{a_n\}$, a ε dowolną liczbą dodatnią, to oznaczając przez I_n przedział $\langle a_n \varepsilon/2^n, a_n + \varepsilon/2^n \rangle$, stwierdzamy łatwo, że spełnione są warunki (i) i (ii).
- 3. Zbiór Cantora $\mathcal C$ jest zbiorem miary $\mathfrak L$ zero. Przy konstrukcji bowiem zbioru Cantora (str. 65) po wyrzuceniu przedziałów otwartych środkowych w n pierwszych przybliżeniach pozostaje z przedziału $\langle 0,1\rangle$ 2^n równych przedziałów zamkniętych $I_1,...,I_2$ o łącznej długości $2^n \cdot (\frac{1}{3})^n = (\frac{2}{3})^n$. Oczywiście $\mathcal C \subset I_1 + ... + I_{2^n}$. Do każdej liczby $\varepsilon > 0$ istnieje takie n, że $(\frac{2}{3})^n \leqslant \varepsilon$, skąd $|I_1| + ... + |I_{2^n}| \leqslant \varepsilon$. Miara $\mathfrak L$ zbioru $\mathcal C$ jest więc zerem.

Na mocy określenia

(7.1) Każda część zbioru miary $\mathfrak L$ zero jest zbiorem miary $\mathfrak L$ zero. Np. każda część zbioru Cantora jest zbiorem miary zero.

(7.2) Jeżeli zbiór E jest miary $\mathfrak L$ zero, to do każdej liczby $\varepsilon > 0$ istnieje skończony lub przeliczalny zbiór przedziałów $\{I'_n\}$ spełniających warunki (i) i (ii) oraz stanowiących pokrycie zbioru E.

 ${\tt Dowód.}$ Na mocy założenia istnieje skończony lub przeliczalny zbiór przedziałów $\{I'_n\}$ spełniający warunki:

- (i') $E \subset I_1' + I_2' + ...,$
- (ii') $|I_1'| + |I_2'| + ... \le \varepsilon/2$.

Oznaczając przez I_n przedział zawierający w swoim wnętrzu I'_n i taki, by $|I'_n| \leq 2|I_n|$, stwierdzamy łatwo, że przedziały $\{I_n\}$ spełniają warunki (i) i (ii) oraz stanowią pokrycie (str. 69) zbioru E.

Z tw. (7.2) wynika w szczególności, że:

(7.3) Jeżeli E jest zbiorem zamkniętym ograniczonym miary $\mathfrak L$ zero, wówczas do każdej liczby $\varepsilon > 0$ istnieje skończony zbiór przedziałów $I_1, I_2, ..., I_N$ spełniający warunki (i), (ii) i stanowiący pokrycie zbioru E.

Jeżeli bowiem przedziały $\{I_n\}$ tworzą pokrycie zbioru E i $|I_1|+|I_2|+...\leqslant \varepsilon$, to na mocy tw. (6.2), str. 70, istnieje wśród tych przedziałów skończona liczba przedziałów $I_1,...,I_N$ stanowiących również pokrycie zbioru E i oczywiście mamy tym bardziej $|I_1|+...+|I_N|\leqslant \varepsilon$.

(7.4) Suma skończonej lub przeliczalnej ilości zbiorów miary $\mathfrak L$ zero jest zbiorem miary $\mathfrak L$ zero.

Dowód. Niech $E_1, E_2, ..., E_n, ...$ będą zbiorami miary $\mathfrak L$ zero. Na mocy tw. (7.2) do każdej liczby $\varepsilon > 0$ istnieje więc ciąg przedziałów $I_1^{(1)}, I_2^{(1)}, ...$ pokrywający E_1 , ciąg przedziałów $I_1^{(2)}, I_2^{(2)}, ...$ pokrywający E_2 itd. tak, by

(21)
$$|I_1^{(1)}| + |I_2^{(1)}| + \dots \leq \varepsilon/2$$
, $|I_1^{(2)}| + |I_2^{(2)}| + \dots \leq \varepsilon/2^2$ itd.

Przedziały $I_1^{(1)}, I_2^{(1)}, ..., I_1^{(2)}, I_2^{(2)}, ...$ itd. pokrywają oczywiście sumę $E_1 + E_2 + ...$ i ponadto na mocy (21)

$$(|I_1^{(1)}| + |I_2^{(1)}| + \dots) + (|I_1^{(2)}| + |I_2^{(2)}| + \dots) + \dots \leq \varepsilon/2 + \varepsilon/2^2 + \dots \leq \varepsilon.$$

Ponieważ $\varepsilon > 0$ jest dowolne, więc miara $\mathfrak L$ sumy $E_1 + E_2 + \dots$ jest zerem.

(7.5) Przedział nie jest zbiorem miary 2 zero.

Dowód. Przypuśćmy, że miara $\mathfrak L$ przedziału $\langle a,b\rangle$ jest zerem. Zatem dla $\varepsilon=\frac{1}{2}(b-a)$ istnieje takie pokrycie przedziału $\langle a,b\rangle$ przedziałami $I_1,I_2,...,I_n,...$, że

$$(22) |I_1| + |I_2| + \dots + |I_n| + \dots \leq \frac{1}{2}(b-a).$$

Przedział zamknięty $\langle a',b'\rangle$, gdzie $a'=a+\varepsilon/4$ i $b'=b-\varepsilon/4$, jest zawarty w $\langle a,b\rangle$; zatem przedziały $I_1,I_2,...$ tworzą również pokrycie przedziału $\langle a',b'\rangle$. Na mocy (7.3) istnieje więc takie N, że przedziały $I_1,I_2,...,I_n$ pokrywają przedział $\langle a',b'\rangle$. Wynika stąd, że

$$|I_1| + |I_2| + \dots + |I_n| \geqslant b' - a' = b - a - \varepsilon/2 = \frac{3}{4}(b - a),$$

wbrew (22). Doszliśmy więc do sprzeczności.

(7.6) Zbiór miary Q zero nie posiada punktów wewnętrznych.

Dowód. Gdyby bowiem punkt a zbioru E miary $\mathfrak L$ zero był jego punktem wewnętrznym, wówczas istniałby przedział otwarty $a',b' \subset E$. Ponieważ na mocy (7.5) przedział nie jest zbiorem miary $\mathfrak L$ zero, więc na mocy (7.1) miara $\mathfrak L$ zbioru E też nie mogłaby być zerem.

W szczególności

(7.7) Zaden zbiór otwarty nie jest miary $\mathfrak L$ zero.

8. Warunki Lebesgue'a całkowalności R funkcji.

(8.1) Warunkiem koniecznym i wystarczającym na to, by funkcja f(x) ograniczona w przedziale $\langle a,b \rangle$, była w nim całkowalna \Re , jest żeby zbiór punktów nieciągłości funkcji f(x) w tym przedziale był zbiorem miary \Re zero.

Dowód. Załóżmy, że funkcja f(x) jest całkowalna w $\langle a,b\rangle$. Oznaczmy przez $\omega(x)$ oscylację tej funkcji w punkcie x i przez E_k zbiór tych punktów x przedziału $\langle a,b\rangle$ w których $\omega(x)\geqslant 1/k$. Na mocy tw. (6.4) do każdej liczby $\varepsilon>0$ istnieje taki podział Δ przedziału $\langle a,b\rangle$, że

(23)
$$\sum_{i=1}^{n} \omega_i \delta x_i \leqslant \varepsilon/k.$$

Weźmy pod uwagę te spośród odcinków I_i podziału Δ , na których oscylacja funkcji f przybiera wartości $\omega_i \ge 1/k$. Oznaczmy te odcinki przez $I'_1, I'_2, ..., I'_r$, a oscylację funkcji f na nich przez $\omega'_1, \omega'_2, ..., \omega'_r$. Zatem

(24)
$$\omega_i \ge 1/k$$
 dla $i = 1, 2, ..., r$.

Pozostałe odcinki podziału Δ oznaczmy przez $I''_1, I''_2, ..., I''_s$, a oscylacje funkcji f na nich przez $\omega''_1, \omega''_2, ..., \omega''_s$. Zatem

$$\sum_{i=1}^{n} \omega_{i} \delta x_{i} = \sum_{i=1}^{r} \omega'_{i} |I'_{i}| + \sum_{i=1}^{s} \omega''_{i} |I''_{i}| \geqslant \sum_{i=1}^{r} \omega'_{i} |I'_{i}|,$$

skąd na mocy (23) i (24)

(25)
$$\frac{1}{k} \sum_{i=1}^{r} |I_i'| \leqslant \frac{\varepsilon}{k} \quad \text{ezyli} \quad \sum_{i=1}^{r} |I_i'| \leqslant \varepsilon.$$

Ponieważ oscylacje funkcji f na odcinkach $I''_1, I''_2, ..., I''_s$ są mniejsze od 1/k, więc w punktach położonych wewnątrz tych odcinków są one również mniejsze od 1/k. Wynika stąd, że każdy punkt zbioru E_k należy do jednego z odcinków $I'_1, I'_2, ..., I'_r$. Zatem na mocy (25) miara $\mathfrak L$ zbioru E_k jest zerem, gdyż $\varepsilon > 0$ jest dowolne.

Niech H będzie zbiorem punktów nieciągłości funkcji f w przedziale $\langle a,b \rangle$. Oczywiście

$$(26) H = \sum_{k=1}^{\infty} E_k,$$

w każdym bowiem punkcie nieciągłości x oscylacja $\omega(x)$ jest dodatnia, a zatem punkt ten należy do jakiegoś zbioru E_k , mianowicie do takiego, że $\omega(x) > 1/k$.

Ponieważ każdy ze zbiorów E_k jest miary $\mathfrak L$ zero, więc na mocy (26) i tw. (7.4) zbiór H jest też zbiorem miary $\mathfrak L$ zero. Warunek jest zatem konieczny.

Na odwrót, załóżmy, że zbiór punktów nieciągłości funkcji f(x) na odcinku $\langle a,b \rangle$ jest miary Ω zero. Dla każdej liczby naturalnej k zbiór tych punktów x, w których $\omega(x) \geqslant 1/k$, tj. zbiór E_k , jest na mocy (7.1) miary Ω zero.

Ponieważ nadto E_k jest na mocy tw. (2.6), str. 108, zbiorem zamkniętym i ograniczonym, więc na mocy (6.2), str. 69, istnieje do każdego $\varepsilon > 0$ skończony zbiór przedziałów otwartych $I_1, I_2, ..., I_n$ tworzący pokrycie zbioru E_k , przy czym $|I_1| + |I_2| + ... + |I_n| \leq \varepsilon$.

Utwórzmy taki podział $\bar{\Delta}$ przedziału $\langle a,b \rangle$, by każdy z odcinków $I_1,...,I_n$ był sumą skończonej liczby odcinków podziału $\bar{\Delta}$. Oznaczmy przez $I'_1,I'_2,...,I'_r$ odcinki podziału $\bar{\Delta}$ pokryte przez odcinki $I_1,I_2,...,I_n$, a przez $\omega'_1,...,\omega'_r$ oscylacje funkcji f na tych odcinkach. Mamy

(27)
$$|I_1'| + |I_2'| + ... + |I_r'| \leqslant \varepsilon.$$

Pozostałe odcinki podziału $\bar{\Delta}$ oznaczymy przez $\bar{I}_1,...,\bar{I}_m$. W każdym punkcie x przedziału zamkniętego \bar{I}_j , gdzie j=1,2,...,m oscylacja funkcji f spełnia nierówność $\omega(x)<1/k$, gdyż $x\in E_k$. Możemy więc podzielić odcinek \bar{I}_i na tak małe odcinki, by oscylacja na żadnym z nich nie przekraczała 1/k. Dzieląc w ten sposób każdy z przedziałów $\bar{I}_1,\bar{I}_2,...,\bar{I}_m$, otrzymamy nowe odcinki $I''_1,I''_1,...,I''_s$, na których oscylacje $\omega''_1,\alpha''_2,...,\alpha''_s$ funkcji f spełniają nierówności

(28)
$$\omega_i'' \leqslant 1/k \qquad \text{dla} \quad i = 1, 2, ..., s.$$

Przedziały $I_1', I_2', ..., I_r', I_1'', I_2'', ..., I_s''$ tworzą pewien podział Δ , dla którego

$$S - s = \sum_{i=1}^{r} \omega_i' |I_i'| + \sum_{i=1}^{s} \omega_i'' |I_i''|,$$

skąd na mocy (27) i (28) otrzymujemy

$$S-s \leqslant \omega \varepsilon + \frac{1}{\overline{k}}(b-a),$$

gdzie ω jest oscylacją funkcji f w przedziale $\langle a, b \rangle$.

Ponieważ ε i 1/k mogą być dowolnie małymi liczbami dodatnimi, więc na mocy tw. (6.4) funkcja f(x) jest całkowalna \Re w $\langle a,b \rangle$. Warunek jest zatem dostateczny, c. b. d. d.

PRZYKŁADY. 1. Każda funkcja ciągła w przedziałe zamkniętym jest w nim całkowalna \Re .

Jest bowiem na nim ograniczona i jej zbiór punktów nieciągłości jest pusty, zatem miary $\mathfrak L$ zero.

2. Każda funkcja ograniczona w przedziale zamkniętym i mająca w nim skończony lub przeliczalny zbiór punktów nieciągłości jest całkowalna R w tym przedziale.

Zbiór skończony lub przeliczalny jest bowiem miary Ω zero (p. str. 170, przykład 2).

- 9. Własności funkcyj całkowalnych R. Użyjemy teraz twierdzenia (8.1) do dowodu następujących twierdzeń:
- (9.1) Wartość bezwzględna funkcji całkowalnej \Re w przedziałe $\langle a,b \rangle$ jest funkcją całkowalną \Re w tym przedziałe.

Dowód. Jeżeli funkcja f(x) jest całkowalna \Re , to punkty nieciągłości funkcji |f(x)| są zarazem punktami nieciągłości funkcji f(x). Ponieważ zbiór ostatnich jest miary Ω zero na mocy tw. (8.1),

więc zbiór punktów nieciągłości funkcji |f(x)| (jako część poprzedniego) jest na mocy tw. (7.1) również miary $\mathfrak L$ zero. Na mocy tw. (8.1) funkcja |f(x)| jest więc całkowalna $\mathfrak R$, gdyż jest ograniczona.

(9.2) Iloczyn dwu funkcyj $f_1(x)$ i $f_2(x)$ całkowalnych \Re jest funkcją całkowalną \Re .

Dowód. Niech H_1, H_2 i H będą zbiorami punktów nieciągłości funkcyj $f_1(x)$, $f_2(x)$ i $f_1(x) f_2(x)$. Oczywiście $H \subset H_1 + H_2$. Ponieważ H_1 i H_2 są na mocy tw. (8.1) zbiorami miary $\mathfrak L$ zero, więc na mocy tw. (7.4) H jest miary $\mathfrak L$ zero. Ponieważ nadto $f_1(x) f_2(x)$ jest funkcją ograniczoną, więc na mocy tw. (8.1) jest całkowalną $\mathfrak R$.

(9.3) Funkcja całkowalna \Re w przedziale $\langle a,b \rangle$ jest całkowalna \Re w każdym przedziale zawartym w $\langle a,b \rangle$.

Dowód. Wówczas jej zbiór punktów nieciągłości w całym przedziale jest miary $\mathfrak L$ zero na mocy tw. (8.1). Tym bardziej więc miary $\mathfrak L$ zero jest, na mocy tw. (7.1), zbiór jej punktów nieciągłości w każdym przedziale częściowym.

(9.4) Jeżeli funkcja f(x) ograniczona w przedziałe $\langle a,b \rangle$ przybiera w nim wszędzie wartość 0 z wyjątkiem punktów pewnego zbioru zamkniętego A miary $\mathfrak L$ zero, to jest ona całkowalna $\mathfrak R$ w tym przedziałe i $\int_a^b f(x) dx = 0$.

Dowód. Jeżeli jakiś punkt x nie należy do A, to z uwagi, że A jest zbiorem zamkniętym, x nie jest punktem skupienia tego zbioru i wobec tego istnieje pewne otoczenie punktu x rozłączne z A (p. tw. (7.5), str. 72). W tym otoczeniu funkcja f(x), jako tożsamościowo równa 0, jest ciągła, w szczególności więc jest ciągła w punkcie x.

Punkty nieciągłości funkcji f(x) mieszczą się zatem w A i przeto stanowią z założenia zbiór miary $\mathfrak L$ zero. Na mocy tw. (8.1) funkcja f(x) jest więc całkowalna $\mathfrak R$.

Niech Δ będzie dowolnym podziałem przedziału $\langle a,b \rangle$. Ponieważ A, jako zbiór miary Ω zero, nie zawiera na mocy tw. (7.6) żadnego odcinka, więc w każdym odcinku δx_i podziału Δ istnieje punkt x_i nie należący do A. Oczywiście $f(x_i)=0$, skąd $R=\sum_i f(x_i)\delta x_i=0$, a zatem $\int_a^b f(x)dx=0$, c. b. d. d.

(9.5) Jeżeli ciąg funkcyj $\{f_n(x)\}$ całkowalnych \Re w przedziale $\langle a,b\rangle$ jest w nim jednostajnie zbieżny do funkcji f(x), to funkcja f(x) jest całkowalna w tym przedziale i

(29)
$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx.$$

Dowód. Niech H_n będzie zbiorem punktów nieciągłości funkcji $f_n(x)$ i niech $H=H_1+H_2+\ldots$ Ponieważ zbiory H_1,H_2,\ldots są miary $\mathfrak L$ zero, zatem na mocy tw. (7.4) H jest również zbiorem miary $\mathfrak L$ zero. Jeżeli więc punkt x przedziału $\langle a,b\rangle$ nie należy do H, to wszystkie funkcje ciągu $\{f_n(x)\}$ są ciągłe w x_0 , skąd na mocy tw. (2.5), str. 125, funkcja f(x) jest ciągła w x_0 . Zatem zbiór punktów nieciągłości funkcji f(x) mieści się w H, więc jego miara $\mathfrak L$ jest również zerem na mocy tw. (7.1). Ponieważ nadto funkcja f(x) jest na mocy tw. (2.4), str. 125, ograniczona w przedziałe $\langle a,b\rangle$, więc na mocy tw. (8.1) jest ona całkowalna $\mathfrak R$ w tym przedziałe.

Wobec założenia, że $f(x) = \lim_{n \to \infty} f_n(x)$ w przedziale $\langle a, b \rangle$, istnieje dla każdego $\varepsilon > 0$ takie N, że $|f_n(x) - f(x)| \le \varepsilon$ dla n > N, skąd

(30)
$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} [f_{n}(x) - f(x)] dx \right| \leqslant \varepsilon |b - a|$$

dla $x \in \langle a,b \rangle$ i $n \geqslant N$. Z nierówności (30) wynika (29), ponieważ $\varepsilon > 0$ było dowolne.

10. Całka Riemanna a funkcja pierwotna. Możemy teraz dowieść następujących własności całki Riemanna:

(10.1) Jeżeli funkcja f(x) jest całkowalna \Re w przedziałach $\langle a,c\rangle$ $i \langle c,b\rangle$, oraz a < c < b, to funkcja f(x) jest całkowalna w przedziałe $\langle a,b\rangle$ i

(31)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

Dowód. Zbiér punktów nieciągłości funkcji f(x) w przedziale $\langle a,b \rangle$ jest na mocy tw. (7.1) miary $\mathfrak L$ zero, jako suma zbierów punktów nieciągłości tej funkcji w przedziałach $\langle a,c \rangle$ i $\langle c,b \rangle$, które są miary $\mathfrak L$ zero na mocy tw. (8.1). Zatem na mocy tw. (8.1) funkcja f(x) jest całkowalna w przedziale $\langle a,b \rangle$.

Niech $\{\Delta_n\}$ będzie ciągiem podziałów przedziału $\langle a,b\rangle$ zachowujących stale punkt c jako punkt podziału. Oznaczając przez R_n sumę dla podziału Δ_n , a przez R'_n i R''_n sumę składników, które odpowiadają odcinkom podziału Δ_n mieszczącym się w przedziałach $\langle a,c\rangle$ i $\langle c,b\rangle$, otrzymamy $R_n=R'_n+R''_n$. Otrzymujemy stąd równość (30), przechodząc do granicy dla $n\to\infty$.

Uwaga. Jeżeli funkcja f(x) jest całkowalna w przedziałe $\langle a,b\rangle$, to przyjmujemy, że

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx, \quad \int_{a}^{a} f(x) dx = 0.$$

Dowodzi się łatwo, że w tym znakowaniu wzór (31) zachodzi dla dowolnych liczb a,b,c, byleby istniały wszystkie całki występujące w tym wzorze.

Jezeli funkcja f(x) jest całkowalna w przedziale o końcach a, b i K jest kresem górnym funkcji |f(x)| w tym przedziale, to

(32)
$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant |b - a| K.$$

Gdy a < b, nierówność (32) jest identyczna z nierównością (3), str. 163. Stąd wynika łatwo nierówność (32) dla $a \ge b$.

(10.2) Jeżeli funkcja f(x) jest całkowalna \Re w przedziale $\langle a,b \rangle$, to funkcja

$$F(x) = \int_{c}^{x} f(t) dt, \quad gdzie \quad a \leqslant c \leqslant b \quad i \quad a \leqslant x \leqslant b,$$

jest ciągła w przedziale $\langle a,b \rangle$, a ponadto w każdym punkcie x_0 , w którym funkcja f(x) jest ciągła, istnieje pochodna $F'(x_0)$ i

$$F'(x_0) = f(x_0).$$

Dowód. Oznaczmy przez K kres górny funkcji |f(x)| w przedziałe $\langle a,b \rangle$. Dla dowolnych punktów x' i x'' tego przedziału mamy, stosując tw. (10.1),

$$\begin{split} |F(x') - F(x'')| &= \Big| \int_{c}^{x'} f(t) \, dt - \int_{c}^{x''} f(t) \, dt \Big| = \Big| \int_{c}^{x''} f(t) \, dt + \int_{x''}^{x'} f(t) \, dt - \int_{c}^{x''} f(t) \, dt \Big| = \\ &= \Big| \int_{x''}^{x'} f(t) \, dt \Big| \leqslant |x' - x''| K. \end{split}$$

Funkcja F(x) spełnia więc w przedziale $\langle a,b \rangle$ warunek Lipschitza, a tym samym jest ciągła w $\langle a,b \rangle$.

Niech teraz $x_0 \in \langle a, b \rangle$ będzie punktem ciągłości funkcji f(x). Dla każdego $x \in \langle a, b \rangle$ oznaczmy przez K_x kres górny różnicy $|f(x) - f(x_0)|$ w przedziałe $\langle x_0, x \rangle$. Wówczas

$$\left|\frac{F(x)-F(x_0)}{x-x_0}-f(x_0)\right|=\left|\frac{1}{x-x_0}\int\limits_{x_0}^x [f(t)-f(x_0)]\ dt\right|\leqslant K_x.$$

Zciągłości funkcji f(x) w punkcie x_0 wynika, że $K_x{\to}\,0$ dla $x{\to}\,x_0,$ skąd

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0),$$

ezyli $F'(x_0) = f(x_0)$, c. b. d. d.

Funkcję F(x) nazywamy funkcją pierwotną funkcji f(x) w przedziałe $\langle a,b\rangle$, gdy w każdym punkcie tego przedziału F'(x)=f(x).

(10.3) Jeżeli F(x) jest funkcją pierwotną funkcji f(x) całkowalnej \Re w przedziale $\langle a,b \rangle$, to

(33)
$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Dowód. Niech Δ będzie dowolnym podziałem odcinka $\langle a,b \rangle$ punktami $a=x_0 < x_1 < ... < x_n = b$. Mamy

$$F(b) - F(a) = (F(x_1) - F(x_0)) + (F(x_2) - F(x_1)) + \dots + (F(x_n) - F(x_{n-1})).$$

Na mocy twierdzenia o wartości średniej

$$F(x_i) - F(x_{i-1}) = F'(\xi_i) \; (x_i - x_{i-1}), \qquad \text{gdzie} \quad x_{i-1} < \xi_i < x_i.$$

Ponieważ $F'(\xi_i) = f(\xi_i)$, więc dla $\delta x_i = \langle x_{i-1}, x_i \rangle$ otrzymujemy

$$F(b) - F(a) = \sum_{i=1}^{n} f(\xi_i) \delta x_i = R.$$

Jeżeli więc $\{\Delta_n\}$ jest dowolnym ciągiem normalnym podziałów, dostaniemy $F(b)-F(a)=R_n$, skąd otrzymujemy (33), przechodząc do granicy dla $n\to\infty$.

§ 2. Całki wielokrotne.

1. Podział przedziału. Niech I będzie dowolnym przedziałem zamkniętym przestrzeni \mathcal{E}^n .

Podziałem przedziału I nazywamy dowolny skończony zbiór Δ nie zachodzących na siebie przedziałów zamkniętych $I_1,...,I_m$, których sumą jest I.

Podział przedziału $I = \langle a_1, ..., a_n; b_1, ..., b_n \rangle$ możemy otrzymać np., tworząc najpierw dla każdego i = 1, 2, ..., m dowolny podział Δ_i przedziału $\langle a_i, b_i \rangle$ za pomocą punktów

(1)
$$a_i = x_i^{(0)} < x_i^{(1)} < \dots < x_i^{(k_i)} = b_i.$$

Podziałem przedziału I będzie wówczas zbiór wszystkich przedziałów postaci

(2)
$$\langle x_1^{(j_1)}, ..., x_n^{(j_n)}; x_1^{(j_1+1)}, ..., x_n^{(j_n+1)} \rangle$$

gdzie j_i jest dowolną z liczb $0,1,...,k_i-1$, a więc gdzie $\langle x_i^{(j_i)}, x_i^{(j_i+1)} \rangle$ jest dowolnym odcinkiem podziału Δ_i odcinka $\langle a_i, b_i \rangle$.

Taki podział nazywamy siatką przedziału I.

Siatkę prostokąta otrzymujemy np., dzieląc go na prostokąty za pomocą prostych równoległych do jego boków. Podobnie, siatkę prostopadłościanu $I=\langle a_1,a_2,a_3;b_1,b_2,b_3\rangle$ dostajemy, dzieląc go na prostopadłościany płaszczyznami równoległymi do płaszczyznxy, yz i zx.

(1.1) Jeżeli przedziały $I_1,...,I_m$ (zachodzące na siebie lub nie) leżą w przedziałe I, to istnieje siatka Δ o tej własności, że każdy przedział I_l , gdzie l=1,...,m, jest sumą pewnych przedziałów tej siatki.

Niech bowiem I_l będzie postaci (2). Utwórzmy podział Δ_i odcinka $\langle a_i, b_i \rangle$ za pomocą punktów (1). Siatka Δ otrzymana z podziałów Δ_i dla i=1,2,...,n spełnia oczywiście tezę twierdzenia.

Uwaga. W szczególności, jeżeli przedziały $I_1, ..., I_m$ nie zachodzą na siebie, to dołączając do nich te przedziały siatki Δ , które nie są w nich zawarte, otrzymamy siatkę, w której skład wchodzą przedziały $I_1, ..., I_n$.

Podział Δ_1 nazywamy podziałem następczym podziału Δ , jeżeli każdy przedział podziału Δ_1 jest zawarty w jakimś przedziałe podziału Δ .

Oczywiście

(1.2) Jeżeli Δ_2 jest podziałem następczym podziału Δ_1 , a Δ_3 podziału Δ_2 , to Δ_3 jest podziałem następczym podziału Δ_1 .

Z (1.1) wynika, że

- (1.3) Dla każdego podziału Δ istnieje siatka Δ_1 , która jest jego podziałem następczym.
- (1.4) Dla każdych dwóch siatek Δ' i Δ'' przedziału I istnieje siatka Δ , która jest podziałem następczym zarówno siatki Δ' jak siatki Δ'' .

Niech bowiem siatka Δ' powstaje z podziałów odcinków $\langle a_i, b_i \rangle$ dla i=1,...,n za pomocą punktów $a_i=\xi_i^{(0)}<\xi_i^{(1)}<...<\xi_i^{(r_i)}=b_i$, a Δ'' za pomocą punktów $a_i=\eta_i^{(0)}<\eta_i^{(1)}<...<\eta_i^{(s_i)}=b_i$. Wówczas siatkę Δ następczą siatek Δ' i Δ'' otrzymamy, tworząc siatkę powstającą z podziałów odcinków $\langle a_i, b_i \rangle$ za pomocą punktów $\xi_i^{(0)}, \xi_i^{(1)},..., \xi_i^{(r_i)}, \eta_i^{(0)}, \eta_i^{(1)},..., \eta_i^{(s_i)}$.

(1.5) Dla każdych dwóch podziałów Δ' i Δ'' przedziału I istnieje siatka Δ , która jest podziałem następczym zarówno podziału Δ' jak podziału Δ'' .

Na mocy tw. (1.3) istnieją bowiem siatki $\overline{\Delta'}$ i $\overline{\Delta''}$ następcze podziałów Δ' i Δ'' . Na mocy zaś tw. (1.4) istnieje siatka Δ następcza siatek Δ' i Δ'' . Oczywiście siatka Δ jest na mocy (1.2) podziałem następczym podziałów Δ' i Δ'' .

Największą średnicę przedziałów $I_1,...,I_m$ podziału Δ oznaczamy przez $|\Delta|$:

$$|\Delta| = \max_{i=1,\dots,m} d(I_i).$$

Ciąg podziałów $\{\Delta_v\}_{v=1,2,\dots}$ nazywamy normalnym, jeżeli $|\Delta_v| \to 0$ dla $v \to \infty$.

Np. dzieląc przedziały $\langle a_i, b_i \rangle$ na $\nu = 1, 2, ...$ równych części i tworząc do tych podziałów siatki Δ_{ν} , otrzymamy ciąg normalny podziałów. Mamy bowiem $|\Delta_{\nu}| = \frac{1}{\nu} \sqrt{(b_1 - a_1)^2 + ... + (b_n - a_n)^2} \to 0$ dla $\nu \to \infty$.

2. Miara przedziału. Miarq przedziału zamkniętego lub otwartego $I=[a_1,...,a_n;\ b_1,...,b_n]$ nazywamy iloczyn

(3)
$$|I| = (b_1 - a_1) (b_2 - a_2) \dots (b_n - a_n) = \prod_{i=1}^n (b_i - a_i).$$

W szczególności więc miarą przedziału [a,b] linii prostej jest jego dlugość |b-a|; miarą przedziału $[a_1,a_2;b_1,b_2]$ płaszczyzny \mathcal{E}^2 jest jego pole pole $(b_1-a_1)(b_2-a_2)$; miarą przedziału $[a_1,a_2,a_3;b_1,b_2,b_3]$ przestrzeni \mathcal{E}^3 jest jego $objętość (b_1-a_1)(b_2-a_2)(b_3-a_3)$ itd.

(2.1) Jeżeli przedział zamkniety I jest sumą skończonej liczby przedziałów $I_1,...,I_m$ nie zachodzących na siebie, to

$$|I| = |I_1| + \ldots + |I_m|.$$

Dowód. Załóżmy najpierw, że przedziały te tworzą siatkę Δ otrzymaną z podziałów punktami $a_i = x_i^{(0)} < x_i^{(1)} < ... < x_i^{(k_i)} = b_i$, gdzie i = 1, 2, ..., n. Wówczas $|b_i - a_i| = |x_i^{(1)} - x_i^{(0)}| + ... + |x_i^{(k_i)} - x_i^{(k_i-1)}|$, a zatem na mocy (3)

$$|I| = (|x_1^{(1)} - x_1^{(0)}| + \ldots + |x_1^{(k_1)} - x_1^{(k_1-1)}|) \cdot \ldots \cdot (|x_n^{(1)} - x_n^{(0)}| + \ldots + |x_n^{(k_n)} - x_n^{(k_n-1)}|).$$

Składniki sumy, jakie otrzymamy po wykonaniu mnożenia, są to miary przedziałów $I_1,...,I_m$ tworzących siatkę Δ .

Załóżmy teraz ogólnie, że przedziały te tworzą dowolny podział Δ przedziału I. Utwórzmy siatkę Δ' będącą podziałem następczym podziału Δ (p. str. 180). Każdy przedział I_j dla j=1,...,m jest sumą pewnej liczby przedziałów siatki Δ' (które, jak łatwo widzieć, tworzą siatkę przedziału I_j). Zatem miara przedziału I_j jest sumą miar tych przedziałów. Wynika stąd, że suma miar przedziałów $I_1,...,I_m$ równa jest sumie miar przedziałów siatki Δ' , a więc mierze przedziału I, c. b. d. d.

(2.2) Jeżeli przedziały $I_1,...,I_m$ nie zachodzą na siebie i zawarte są w sumie przedziałów $J_1,...,J_l$, to

(5)
$$|I_1| + ... + |I_m| \leq |J_1| + ... + |J_l|.$$

 ${\operatorname{Dow}}$ ód. Niech I będzie dowolnym przedziałem zamkniętym, zawierającym wszystkie przedziały

(6)
$$I_1,...,I_m, J_1,...,J_l$$

Na mocy tw. (1.1) istnieje siatka \varDelta przedziału I o tej własności, że każdy z przedziałów (6) jest sumą pewnej liczby przedziałów siatki \varDelta . A zatem miara każdego z przedziałów (6) jest sumą miar tych przedziałów siatki \varDelta , które w nim leżą. Stąd wynika już łatwo (5).

3. Określenie całki wielokrotnej. Niech $f(x_1,...,x_n)$ będzie funkcją ograniczoną, określoną w przedziałe zamkniętym

$$I=\langle a_1,...,a_n; b_1,...,b_n\rangle.$$

Utwórzmy dowolny podział Δ przedziału I, złożony z przedziałów $I_1,...,I_m$. Dla każdego j=1,...,m weźmy pod uwagę w przedziale I_j dowolny punkt p_j o współrzędnych $\xi_1^{(j)},\xi_2^{(j)},...,\xi_n^{(j)}$ i niech

(7)
$$R = \sum_{j=1}^{m} f(\xi_1^{(j)}, \xi_2^{(j)}, ..., \xi_n^{(j)}) \cdot |I_j| = \sum_{j=1}^{m} f(p_j) \cdot |I_j|.$$

Jeżeli dla wszystkich ciągów normalnych podziałów $\{\Delta_{\nu}\}$ przedziału I sumy R dążą do tej samej granicy (niezależnie od wyboru punktów p_{j}), wówczas granicę tą nazywamy n-krotną całką $Riemanna\ funkcji\ f(x_{1},...,x_{n})\ w\ I$ i oznaczamy ją przez

$$\int \dots \int f(x_1, \dots, x_n) dx_1 \dots dx_n \text{ lub przez } \int_I f(p) dp.$$

Funkcję f nazywamy wówczas całkowalną \Re (czyli całkowalną według Riemanna) w przedziale I.

Uwaga. Jeżeli dla każdego ciągu normalnego podziałów sumy (7) są zbieżne, to są one zbieżne do tej samej granicy (p. str. 163).

- (3.1) Niech f(p) będzie funkcją całkowalną \Re w przedziałe I. Wówczas:
 - (i) Jeżeli k i K są kresami dolnym i górnym funkcji f(p) w I, to

$$k|I| \! \leqslant \! \int \! f(p) \, dp \! \leqslant \! K|I|.$$

(ii) Jeżeli L jest kresem górnym funkcji |f(p)| w I, to

$$\left|\int_{I} f(p) dp\right| \leqslant L|I|.$$

(iii) Dla każdej liczby c funkcja cf(p) jest całkowalna $\Re \ w \ I \ i$

$$\int_{I} cf(p) dp = c \int_{I} f(p) dp.$$

(iv) Jeżeli $\varphi(p)$ jest również funkcją całkowalną \Re w przedziałe I, to suma $f(p)+\varphi(p)$ jest funkcją całkowalną \Re w I i

$$\int_{I} [f(p) + \varphi(p)] dp = \int_{I} f(p) dp + \int_{I} \varphi(p) dp.$$

Dowody przebiegają podobnie jak dowód tw. (3.1), str. 164.

4. Sumy dolne i górne. Oznaczmy przez k_j i K_j kresy dolny i górny funkcji f w przedziale I_j .

Suma dolna s i górna S nazywamy wyrażenia (p. str. 164):

$$s = \sum_{j=1}^{m} k_j |I_j|, \qquad S = \sum_{j=1}^{m} K_j |I_j|.$$

Oznaczając przez k i K kresy dolny i górny funkcji f w przedziale I, mamy $k_i \geqslant k$ i $K_i \leqslant K$, więc

$$k|I| \leqslant s \leqslant S \leqslant K|I|$$
.

Podobnie jak na str. 165, można udowodnić, że S jest kresem górnym, s zaś kresem dolnym sum R odpowiadających podziałowi Δ przedziała I i dowolnie obranym punktom $p_j \in I_j$. Oznaczając oscylację funkcji f w przedziałe I_j przez ω_j , t. zn. przyjmując $\omega_j = K_j - k_j$, mamy (p. str. 165):

$$S - s = \sum_{j=1}^{m} \omega_j |I_j|.$$

5. Całki dolne i górne. Kres górny sum dolnych s i kres dolny sum górnych S nazywamy odpowiednio całką dolną i całką górną funkcji f w przedziale I. Całkę dolną oznaczamy przez

$$\underbrace{\int ... \int}_{I} f(x_1, ..., x_n) dx_1 ... dx_n \quad \text{lub} \quad \underbrace{\int}_{I} f(p) dp,$$

całkę zaś górną przez

$$\int \overline{....} \int_{I} f(x_1,...,x_n) dx_1 ...dx_n$$
 lub $\int_{I} \overline{f}(p) dp$.

Podobnie jak dla całek pojedynczych (str. 166), dla całek wielokrotnych zachodzi następujący lemat:

(5.1) Dla każdego $\varepsilon > 0$ istnieje takie $\eta > 0$, że jeżeli podział Δ spełnia nierówność $|\Delta| \leq \eta$, to

(8)
$$\int_{\overline{I}} f(p) dp - \varepsilon \leq s \quad oraz \quad S \leq \int_{\overline{I}} \overline{f}(p) dp + \varepsilon.$$

Dowód. Dla każdej liczby $\varepsilon>0$ istnieje podział $\overline{\Delta},$ dla którego suma górna \overline{S} spełnia nierówność

(9)
$$\bar{S} \leqslant \int_{I} f(p) dp + \varepsilon/2.$$

Oznaczmy przez $\bar{\eta}$ najmniejszą szerokość (str. 76) przedziałów podziału \bar{A} i niech

$$(10) 0 < \eta < \overline{\eta}/2.$$

Utwórzmy dowolny podział Δ przedziału I tak, by

$$|\Delta| \leqslant \eta.$$

Weźmy pod uwagę dowolny przedział \bar{I}_j podziału $\bar{\Delta}$ i oznaczmy przez $I_1,...,I_r$ przedziały podziału Δ zawarte w \bar{I}_j . Przedziały te pokrywają zatem wszystkie punkty przedziału \bar{I}_j odległe od jego brzegu co najmniej o η . Jeżeli więc $\bar{I}_j = \langle a_1,...,a_n;b_1,...,b_n \rangle$, to $I_1 + ... + I_r$ zawiera przedział $\langle a_1 + \eta,...,a_n + \eta;b_1 - \eta,...,b_n - \eta \rangle$. Zatem

$$\sum_{i=1}^{r} |I_i| \geqslant (b_1 - a_1 - 2\eta) \cdot \dots \cdot (b_n - a_n - 2\eta),$$

skąd

$$|\bar{I}_{j}| - \sum_{i=1}^{r} |I_{i}| \leq [(b_{1} - a_{1}) \cdot \dots \cdot (b_{n} - a_{n})] - [(b_{1} - a_{1} - 2\eta) \cdot \dots \cdot (b_{n} - a_{n} - 2\eta)] \leq (12)$$

$$\leq (b_{1} - a_{1}) \cdot \dots \cdot (b_{n} - a_{n}) \left[1 - \left(1 - \frac{2\eta}{b_{1} - a_{1}} \right) \cdot \dots \cdot \left(1 - \frac{2\eta}{b_{n} - a_{n}} \right) \right].$$

Zokreślenia liczby η wynika, że

$$\overline{\eta} \leqslant |b_1 - a_1|, ..., \overline{\eta} \leqslant |b_n - a_n|.$$

Na mocy (10) mamy wiec

$$2\eta/(b_1-a_1) \leqslant 1$$
 itd.

Opierając się na nierówności $(1-\varepsilon_1)\cdot\ldots\cdot(1-\varepsilon_n)\geqslant 1-\varepsilon_1\cdot\ldots\cdot\varepsilon_n$ dla $0\leqslant\varepsilon_1\leqslant 1,\ldots,0\leqslant\varepsilon_n\leqslant 1$, otrzymujemy tedy z (12)

$$(13) |\bar{I}_j| - \sum_{i=1}^r |I_i| \leqslant |\bar{I}_j| \left[\frac{2\eta}{b_1 - a_1} + \dots + \frac{2\eta}{b_n - a_n} \right] \leqslant \frac{2n|I|}{\overline{\eta}} \eta.$$

Oznaczając przez k i K kresy dolny i górny funkcji f w I, a przez \overline{K}_j i K_i jej kresy górne w \overline{I}_j i I_i , mamy

$$|\bar{I}_{j}|(K-\bar{K}_{j}) = \sum_{i=1}^{r} |I_{i}|(K-\bar{K}_{j}) + [|\bar{I}_{j}| - \sum_{i=1}^{r} |I_{i}|](K-\bar{K}_{j}),$$

a ponieważ $\overline{K} \geqslant K_i$ dla i=1,...,r, więc na mocy (13)

$$|\bar{I}_j|(K-\overline{K}_j) \leqslant \sum_{i=1}^r |I_i|(K-\overline{K}) + \frac{2n|I|}{\overline{\eta}} \eta(K-k).$$

Sumując ostatnie dwa wzory stronami dla wszystkich \overline{m} przedziałów \overline{I}_J podziału $\overline{\Delta}$ i stosując podobne rozumowanie jak na str. 167, otrzymujemy

$$K|I| - \overline{S} \leqslant K|I| - S + \frac{2n\overline{m}|I|}{\overline{\eta}} \eta(K - k),$$

skąd

(14)
$$S \leqslant \overline{S} + \frac{2n\overline{m}|I|}{\overline{\eta}} \eta(K - k).$$

Dobierając więc liczbę η tak, aby prócz nierówności (10) spełniona była jeszcze nierówność

(15)
$$\frac{2n\,\overline{m}|I|}{\overline{\eta}}\eta(K-k)\leqslant \frac{\varepsilon}{2},$$

otrzymamy z (14) i (9)

$$S \leqslant \int_{I} f(p) \, dp + \varepsilon$$

dla każdego podziału Δ spełniającego warunek (11) i dla każdej liczby $\eta > 0$, spełniającej warunki (10) i (15).

Podobnie wyprowadza się pierwszą z nierówności (8).

- (5.2) Dla każdego ciągu normalnego podziałów $\{\Delta_{\nu}\}$ przedziału I ciąg sum $\{s_{\nu}\}$ dąży dla $\nu \rightarrow \infty$ do całki dolnej, a ciąg $\{S_{\nu}\}$ do górnej.
- (5.3) Całka dolna jest niewiększa od całki górnej:

$$\int_{\overline{I}} f(p) dp \leqslant \int_{\overline{I}} \overline{f}(p) dp.$$

Dowody twierdzeń (5.2) i (5.3) za pomocą lematu (5.1) są, podobne do dowodów twierdzeń (5.2) i (5.3), str. 167 i 168, za pomocą lematu (5.1).

(5.4) Jeżeli f(p) jest funkcją ograniczoną w przedziałe I, a Δ jest dowolnym podziałem tego przedziału na przedziały $I_1, ..., I_m$, to

(16)
$$\int_{I} f(p) dp = \sum_{i=1}^{m} \int_{I_{i}} f(p) dp, \quad \int_{I} f(p) dp = \sum_{i=1}^{m} \int_{I_{i}} f(p) dp.$$

Dowód. Niech $\{\mathcal{A}_{ij}\}$ będzie ciągiem normalnym podziałów następczych podziału Δ . Oznaczając przez S_j sumę górną dla podziału Δ_j , a przez $S_j^{(i)}$ składniki (sumy górnej) odpowiadające tym przedziałom podziału Δ_j , które zawarte są w przedziałe I_i (gdzie i=1,...,m), dostajemy

(17)
$$S_j = \sum_{i=1}^m S_j^{(i)}$$
 dla $j = 1, 2, ...$

Ponieważ na mocy tw. (5.2) S_j dla $j \to \infty$ dąży do lewej strony pierwszej z równości (16), a $S_i^{(i)}$ — do całki górnej $\int_{I_i} f(p) dp$, więc z (17) otrzymujemy pierwszą z równości (16) dla $j \to \infty$.

Podobnie dowodzi się drugiej z równości (16) (dla całek dolnych).

- 6. Warunki całkowalności R. Następujących twierdzeń dowodzi się podobnie jak twierdzeń (6.1)-(6.4) dla całek pojedynczych (str. 168 i 169):
- (6.1) Warunkiem koniecznym i wystarczającym na to, by funkcja ograniczona $f(x_1,...,x_n)$ w przedziale I była w tym przedziale całkowalna według Riemanna, jest to, żeby jej całki dolna i górna były równe.
- (6.2) Jeżeli funkcja $f(x_1,...,x_n)$ jest całkowalna \Re w przedziałe I, wówczas

(18)
$$\int_{\overline{I}} f(p) dp = \int_{I} f(p) dp = \int_{I} f(p) dp.$$

(6.3) Warunkiem koniecznym i wystarczającym na to, by funkcja $f(x_1,...,x_n)$ była całkowalna \Re w przedziałe I, jest, żeby do każdej liczby $\varepsilon > 0$ istniał podział Δ przedziału I na przedziały $I_1,...,I_m$, czyniący zadość nierówności

$$(19) S - s = \sum_{i=1}^{m} \omega_i |I_i| \leqslant \varepsilon$$

(gdzie ω_i oznacza, jak poprzednio, oscylację funkcji f w przedziale I_i). (6.4) Każda funkcja ciągła w przedziale I jest w tym przedziale całkowalna \Re .

7. Zbiory miary Lebesgue'a 0. Mówimy, że zbiór E, leżący w przestrzeni \mathcal{E}^n , jest miary Lebesgue'a zero lub miary \mathfrak{L} zero, jeżeli do każdej liczby $\varepsilon > 0$ istnieje skończony lub przeliczalny zbiór przedziałów $\{I_i\}$, dla którego

(i)
$$E\subset\sum_{i}I_{i}$$
 (ii) $\sum_{i}|I_{i}|\leqslant \varepsilon$.

Twierdzenia (7.1)-(7.6), str. 171 i 172, dla zbiorów liniowych miary $\mathfrak L$ zero zachodzą również dla zbiorów miary $\mathfrak L$ zero w przestrzeni $\mathcal E^n$ i dowodzą się podobnie.

(7.1) Brzeg każdego przedziału $I\subset\mathcal{E}^n$ jest zbiorem miary $\mathfrak L$ zero.

Dowód. Niech $I = \langle a_1, ..., a_n; b_1, ..., b_n \rangle$. Oznaczmy dla każdego i = 1, ..., n przez A_i zbiór punktów $(x_1, ..., x_n)$ przedziału I, dla których $x_i = a_i$, a przez B_i zbiór punktów przedziału I, dla których $x_i = b_i$. Brzeg przedziału I jest oczywiście sumą zbiorów A_i i B_i . Wystarczy zatem dowieść, że każdy ze zbiorów A_i i B_i jest miary $\mathfrak L$ zero. Ze względu na symetrię założeń można ograniczyć dowód np. do zbiorów A_i .

Niech $\varepsilon > 0$. Łatwo stwierdzić, że zbiór A_i zawarty jest w przedziale

$$I'_{i} = \langle a_{1}, ..., a_{i-1}, a_{i} - \varepsilon, ..., a_{n}; b_{1}, ..., b_{i-1}, b_{i} + \varepsilon, ..., b_{n} \rangle.$$

Ponieważ miara przedziału I_i jest równa $|I|2\varepsilon/(b_i-a_i)$, więc z uwagi na to, że $\varepsilon > 0$ jest dowolne, A_i jest zbiorem miary $\mathfrak L$ zero, c. b. d. d.

Rzutem punktu $(x_1,...,x_{n+1})$ przestrzeni \mathcal{E}^{n+1} na \mathcal{E}^n nazywamy punkt $(x_1,...,x_n)$ przestrzeni \mathcal{E}^n , a rzutem zbioru $A \subset \mathcal{E}^{n+1}$ na \mathcal{E}^n — zbiór rzutów punktów należących do A, t.j. zbiór (p. Rozdział I, str. 13)

$$r(A) = E_{x_1,...,x_n} \sum_{x_{n+1}} [(x_1,...,x_n,x_{n+1}) \in A].$$

(7.2) Jeżeli rzut zbioru $A \subset \mathcal{E}^{n+1}$ na \mathcal{E}^n jest miary Ω zero $w \mathcal{E}^n$, to A jest miary Ω zero $w \mathcal{E}^{n+1}$.

Dowód. Ponieważ zbiór r(A) jest z założenia miary \mathfrak{L} zero w \mathcal{E}^n , więc do każdego $\varepsilon > 0$ istnieje skończony lub przeliczalny zbiór przedziałów $\{I_i\}$ przestrzeni \mathcal{E}^n , spełniających warunki:

(i)
$$r(A)\subset \sum_{i}I_{i}$$
, (ii) $\sum_{i}|I_{i}|\leqslant \varepsilon$.

Dla dowolnego k=1,2,... weźmy pod uwagę w przestrzeni \mathcal{E}^{n+1} przedział $I_k=\langle -k,...,-k;+k,...,+k \rangle$ oraz przedziały J_i złożone z punktów $(x_1,...,x_{n+1})$, dla których $(x_1,...,x_n)$ ϵ I_i i $-k \leqslant x_{n+1} \leqslant k$:

$$J_i = E[(x_1, ..., x_n) \in I_i] [-k \leq x_{n+1} \leq k].$$

Oczywiście $|J_i| = 2k|I_i|$. Zatem na mocy (ii)

(20)
$$\sum_{i} |J_{i}| \leqslant 2k \sum_{i} |I_{i}| \leqslant 2k \varepsilon.$$

Ponieważ, jak łatwo widzieć, $A \cdot I_k \subset \sum_i J_i$, więc dla każdego k=1,2,... zbiór $A \cdot I_k$ jest na mocy (20) miary $\mathfrak L$ zero w $\mathcal E^{n+1}$ (gdyż wzór (20) zachodzi dla dowolnego $\varepsilon > 0$). Z uwagi na to, że $A = A \cdot I_1 + A \cdot I_2 + ...$, zbiór A jest również miary $\mathfrak L$ zero w $\mathcal E^{n+1}$ jako suma przeliczalnej rodziny zbiorów miary $\mathfrak L$ zero.

Wykresem lub wykresem geometrycznym funkcji o wartościach rzeczywistych $f(x_1,...,x_n)$ określonej w zbiorze $A \subset \mathcal{E}^n$ nazywamy zbiór takich punktów $(x_1,...,x_{n+1})$ przestrzeni \mathcal{E}^{n+1} , że $(x_1,...,x_n) \in A$ i $x_{n+1} = f(x_1,...,x_n)$, tj. zbiór

$$W = E[(x_1, ..., x_n) \in A] \cdot [x_{n+1} = f(x_1, ..., x_n)].$$

Udowodnimy obecnie twierdzenie, z którego w szczególności wynika, że wykres funkcji ciągłej nie może zawierać przedziału przestrzeni \mathcal{E}^{n+1} .

(7.3) Jeżeli funkcja $f(x_1, ..., x_n)$ jest ciągła w zbiorze zamkniętym A przestrzeni \mathcal{E}^n , to jej wykres jest zbiorem miary Ω zero w przestrzeni \mathcal{E}^{n+1} .

Dowód. Niech I będzie dowolnym przedziałem zamkniętym przestrzeni \mathcal{E}^n . Iloczyn $A \cdot I$ jest więc zbiorem ograniczonym zamkniętym, a przeto funkcja $f(x_1,...,x_n)$ jest jednostajnie ciągła w $A \cdot I$. Dla każdego $\varepsilon > 0$ istnieje więc takie $\eta > 0$, że

(21)
$$\varrho(p',p'') \leqslant \eta$$
 pociąga $|f(p')-f(p'')| \leqslant \varepsilon$ dla $p',p'' \in A \cdot I$.

Utwórzmy dowolny podział Δ przedziału I i oznaczmy przez $I_1,...,I_r$ te przedziały podziału Δ , które mają punkty wspólne ze zbiorem A. Niech k_i i K_i będą kresami dolnym i górnym funkcji f

w I_i i niech J_i będzie przedziałem przestrzeni \mathcal{E}^{n+1} złożonym z punktów $(x_1,...,x_{n+1})$, dla których $(x_1,...,x_n) \in I_i$ i $k_i \leqslant x_{n+1} \leqslant K_i + \varepsilon$:

$$J_i = E_{\substack{x_1, \dots, x_{n+1} \\ x_1, \dots, x_{n+1}}} [(x_1, \dots, x_n) \in I_i] \cdot [k_i \leq x_{n+1} \leq K_i + \varepsilon].$$

Oczywiście $|J_i| = (K_i - k_i + \varepsilon)|I_i|$ dla i = 1, 2, ..., r. Jeżeli przyjmiemy $|\Delta| \leqslant \eta$, to na mocy (21) będzie $K_i - k_i \leqslant \varepsilon$, zatem $|J_i| \leqslant 2\varepsilon |I_i|$, skąd

$$(22) |J_1| + \dots + |J_r| \leqslant 2\varepsilon(|I_1| + \dots + |I_r|) \leqslant 2\varepsilon|I|.$$

Łatwo widzieć, że wykres geometryczny funkcji f dla zbioru $A \cdot I$ jest zawarty w sumie $J_1 + ... + J_r$. Na mocy więc (22) ta część wykresu funkcji f jest zbiorem miary \mathfrak{L} zero (gdyż $\varepsilon > 0$ jest dowolne).

Jeżeli teraz przestrzeń \mathcal{E}^n podzielimy na przeliczalną mnogość przedziałów zamkniętych I (por. pojęcie kraty, str. 77), to części wykresu funkcji f, odpowiadające tym przedziałom, będą zbiorami miary \mathfrak{L} zero. Na mocy tw. (7.4), str. 171, cały wykres funkcji f, jako suma przeliczalnej rodziny zbiorów miary \mathfrak{L} zero, jest więc zbiorem miary \mathfrak{L} zero, c. b. d. d.

(7.4) Jeżeli współrzędne $x_1, ..., x_n$ punktów zbioru ograniczonego A leżącego w przestrzeni \mathcal{E}^n spełniają równanie

$$(23) a + a_1 x_1 + \ldots + a_n x_n = 0,$$

w którym przynajmniej jeden ze współczynników $a_1, ..., a_n$ jest różny od 0, to A jest zbiorem miary Ω zero w \mathcal{E}^n .

Dowód. Twierdzenie jest prawdziwe dla n=1, gdyż w tym przypadku zbiór A redukuje się do jednego punktu $x_1 = -a/a_1$. Załóżmy, że twierdzenie jest prawdziwe dla n-1.

Jeżeli $a_n = 0$, to punkty rzutu zbioru A na \mathcal{E}^{n-1} spełniają równanie $a + a_1x_1 + ... + a_{n-1}x_{n-1} = 0$, zatem rzut jest zbiorem miary \mathfrak{L} zero w \mathcal{E}^{n-1} , wobec czego na mocy tw. (7.2) zbiór A jest miary \mathfrak{L} zero w \mathcal{E}^n .

Jeżeli zaś $a_n \neq 0$, to zbiór A jest zawarty w wykresie geometrycznym funkcji $x_n = (a + a_1x_1 + ... + a_{n-1}x_{n-1})/a_n$, ciągłej w \mathcal{E}^{n-1} , wobec czego na mocy tw. (7.3) A jest zbiorem miary \mathfrak{L} zero w \mathcal{E}^n .

Na mocy zasady indukcji twierdzenie zachodzi więc dla każdego n=1,2,..., c. b. d. d.

Z tw. (7.4) wynika od razu dla zbiorów płaskich (p. str. 75), że (7.5) Każdy zbiór płaski w \mathcal{E}^n jest miary Ω zero w \mathcal{E}^n .

W szczególności zbiorem miary $\mathfrak L$ zero jest linia prosta w $\mathcal E^n$ dla $n \geqslant 2$, płaszczyzna w $\mathcal E^n$ dla $n \geqslant 3$ itd. Na mocy tw. (7.5), zbiorem miary $\mathfrak L$ zero jest więc także odcinek w $\mathcal E^n$ dla $n \geqslant 2$, wielokąt płaski w $\mathcal E^n$ dla $n \geqslant 3$ itd. Wynika stąd, że linia łamana w $\mathcal E^n$ dla $n \geqslant 2$, brzeg wielościanu w $\mathcal E^n$ dla $n \geqslant 3$ itd. są również zbiorami miary $\mathcal L$ zero w tych przestrzeniach.

PRZYKŁADY. 1. Wykres funkcji y=f(x), ciągłej w przedziale liniowym $\langle a,b \rangle$, jest zbiorem płaskim miary $\mathfrak L$ zero, gdy tymczasem — jak widzieliśmy (p. tw. (2.1), str. 152) — wykres dwóch funkcyj ciągłych w przedziale liniowym (krzywa ciągła) może zawierać przedział płaski (kwadrat).

- 2. Powierzchnia, która jest wykresem geometrycznym funkcji z=f(x,y), ciągłej w przedziale płaskim $a_1 \leqslant x \leqslant b_1$, $a_2 \leqslant y \leqslant b_2$ (t.j. w przedziale $\langle a_1, a_2; b_1, b_2 \rangle$), jest zbiorem miary $\mathfrak L$ zero w przestrzeni trójwymiarowej.
- 3. Okrąg koła $x^2+y^2=1$ jest zbiorem miary Ω zero w płaszczyźnie, gdyż jest sumą wykresów funkcyj $y=-\sqrt{1-x^2}$ i $y=\sqrt{1-x^2}$, ciągłych w przedziale $\langle -1,1\rangle$, a więc sumą dwu zbiorów miary Ω zero w płaszczyźnie.
- 4. Powierzchnia kuli $x^2+y^2+z^2=1$ jest zbiorem miary $\mathfrak L$ zero w przestrzeni $\mathcal E^2$ jako suma wykresów funkcyj $z=\sqrt{1-x^2-y^2}$ i $z=-\sqrt{1-x^2-y^2}$, ciągłych w kole $x^2+y^2\leqslant 1$.
- 8. Warunki Lebesgue'a całkowalności R. Następujące twierdzenia dowodzą się zupełnie podobnie do twierdzeń dla całek pojedynczych:
- (8.1) Warunkiem koniecznym i wystarczającym na to, by funkcja ograniczona f(p), określona w przedziale I przestrzeni \mathcal{E}^n , była w tym przedziale całkowalna \Re , jest, żeby zbiór jej punktów nieciąyłości był zbiorem miary \Re zero.
- (8.2) Wartość bezwzględna funkcji całkowalnej \Re jest funkcją całkowalną \Re .
- (8.3) Roczyn dwóch funkcyj całkowalnych \Re jest funkcją całkowalną \Re .
- (8.4) Funkcja całkowalna R w przedziałe I jest całkowalna R w każdym przedziałe $\dot{J} \subset I$.

(8.5) Funkcja ograniczona f(p), określona w przedziałe I przestrzeni \mathcal{E}^n , która przybiera w nim wartość 0 z wyjątkiem zbioru zamkniętego miary \mathfrak{L} zero, jest funkcją całkowalną \mathfrak{R} w I i jej całka równa jest zeru: $\int f(p) dp = 0$.

Z tw. (8.5) otrzymujemy następujący wniosek:

(8.6) Jeżeli wartości funkcji ograniczonej $\varphi(p)$ całkowalnej \Re w przedziałe I zmienić dowolnie w zbiorze zamkniętym miary Ω zero, tak jednak, by otrzymana funkcja $\psi(p)$ też była ograniczona, to $\psi(p)$ będzie również funkcją całkowalną \Re w I i $\int_{\Gamma} \varphi(p) dp = \int_{\Gamma} \psi(p) dp$.

Wynika to łatwo z twierdzenia (8.5), jeżeli zastosować je do funkcji $f(p) = \varphi(p) - \psi(p)$.

- 9. Własności całki wielokrotnej. Poprzestaniemy tu na następującyh trzech twierdzeniach:
- (9.1) Jeżeli ciąg funkcyj $\{f_n(p)\}$ całkowalnych \Re w przedziale I dąży w nim jednostajnie do funkcji f(p), wówczas f(p) jest funkcją całkowalną \Re w I i

(23)
$$\lim_{n\to\infty} \int_I f_n(p) dp = \int_I f(p) dp.$$

Dowód przebiega podobnie do dowodu tw. (9.5), str. 176.

(9.2) Jeżeli przedział I jest podzielony na przedziały $I_1,...,I_m$ i funkcja f(p) jest w nich całkowalna \Re , to jest ona całkowalna \Re w całym przedziałe I i

(24)
$$\int_{I} f(p) dp = \sum_{i=1}^{m} \int_{I_{i}} f(p) dp.$$

Dowód. Ponieważ dla każdego i=1,...,m punkty nieciągłości funkcji f(p) w przedziale I_i tworzą na mocy tw. (8.1) zbiór H_i miary $\mathfrak L$ zero, więc zbiór $H=H_1+...+H_m$ punktów nieciągłości tej funkcji w całym przedziale I jest również miary $\mathfrak L$ zero.

Ponieważ ponadto funkcja f(p) jest ograniczona w I, jako ograniczona w każdym z przedziałów $I_1, ..., I_m$, więc na mocy tw. (8.1) jest ona całkowalna \Re w I. Stąd i z tw. (5.3) wynika łatwo wzór (24). (9.3) Jeżeli funkcja f(p) jest ograniczona w przedziałe I, a poza tym przedziałem wszędzie f(p)=0, wówczas dla każdego przedziału $J \subset I$:

(25)
$$\int_{J} \overline{f}(p) dp = \int_{I} \overline{f}(p) dp, \qquad \int_{\overline{J}} f(p) dp = \int_{\overline{I}} f(p) dp.$$

Dowód. Utwórzmy dowolny podział Δ przedziału J, tak jednak, by I był jednym z przedziałów podziału Δ . We wnętrzu każdego przedziału I_i podziału Δ , różnego od I, funkcja f(p) jest zerem. Ponieważ brzeg przedziału I_i jest zbiorem miary $\mathfrak L$ zero na mocy tw. (7.1), str. 187, więc na mocy tw. (8.1) funkcja f(p) jest całkowalna $\mathfrak R$ w I_i i całka jej w tym przedziałe jest równa zeru. Wzory (25) wynikają stąd na mocy tw. (5.3), str. 185.

Uwaga. Jeżeli do założeń twierdzenia (9.3) dodamy założenie, że funkcja f(p) jest całkowalna \Re w I, wówczas — jak to wynika ze wzorów (25) — funkcja f(p) jest całkowalna w każdym przedziale $J\supset I$ i

10. Całka wielokrotna jako całka iterowana. Niech dany będzie w przestrzeni \mathcal{E}^n przedział

(27)
$$I = \langle a_1, ..., a_n; b_1, ..., b_n \rangle,$$

a w przestrzeni $\mathcal{E}^k \subset \mathcal{E}^n$, gdzie k jest jedną z liczb 1,...,n, przedział

(28)
$$J' = \langle a_1, ..., a_k; b_1, ..., b_k \rangle;$$

wreszcie, w przestrzeni $\mathcal{E}^{n-k}\subset\mathcal{E}^n$ zmiennych $x_{k+1},...,x_n$ – przedział

(29)
$$J'' = \langle a_{k+1}, ..., a_n; b_{k+1}, ..., b_n \rangle.$$

(10.1) Jeżeli funkcja $f(x_1,...,x_n)$ jest całkowalna \Re w przedziałe I, wówczas funkcje:

(i)
$$\varphi(x_1,...,x_k) = \overline{\int ... \int_{n} f(x_1,...,x_n) dx_{k+1}...dx_n},$$

(ii)
$$\psi(x_{k+1},...,x_n) = \int \overline{...} \int f(x_1,...,x_n) dx_1...dx_k$$

są całkowalne \Re : pierwsza w J', a druga w J'', i ponadto

(iii)
$$\int_{I} f(p) dp = \int \dots \int_{J'} \left[\int \overline{\dots \int} f(x_1, \dots, x_n) dx_{k+1} \dots dx_n \right] dx_1 \dots dx_k =$$

$$= \int \dots \int_{J''} \left[\int \overline{\dots \int} f(x_1, \dots, x_n) dx_1 \dots dx_k \right] dx_{k+1} \dots dx_n,$$

przy czym całki górne we wzorach (i)-(iii) można zastąpić dolnymi.

Dowód. Niech Δ' będzie dowolnym podziałem przedziału J' na przedziały $J'_1,...,J'_{\mu}$, a Δ'' podziałem przedziału J'' na przedziały $J''_1,...,J''_{\nu}$. Oznaczmy przez I_{ij} przedział przestrzeni \mathcal{E}^n , złożony z punktów $p=(x_1,...,x_k,x_{k+1},...,x_n)$, dla których $(x_1,...,x_k)$ $\epsilon J'_i$ oraz $(x_{k+1},...,x_n)$ $\epsilon J''_j$. Wszystkie tak określone przedziały I_{ij} dla $i=1,2,...,\mu$ i $j=1,2,...,\nu$ tworzą pewien podział Δ przedziału I i miary ich spełniają równości

$$|I_{ij}| = |J_i'| \cdot |J_j''|,$$

a średnice ich czynią zadość nierównościom

$$d(I_{ij}) = \sqrt{[d(J_i')]^2 + d(J_i'')^2} \leq \sqrt{|\Delta'|^2 + |\Delta''|^2}$$

czyli

$$|\Delta| \leqslant \sqrt{|\Delta'|^2 + |\Delta''|^2}.$$

Weźmy pod uwagę dla każdego $i=1,2,...,\mu$ dowolny punkt $(\xi_1^{(i)},...,\xi_k^{(i)}) \in J_i'$ i utwórzmy sumę

(32)
$$R = \sum_{i=1}^{\mu} \varphi(\xi_1^{(i)}, ..., \xi_k^{(i)}) \cdot [J_i'].$$

Na mocy tw.(9.2)

(33)
$$\varphi(\xi_{1}^{(i)},...,\xi_{k}^{(i)}) = \overline{\int ... \int} f(\xi_{1}^{(i)},...,\xi_{k}^{(i)},x_{k+1},...,x_{n}) dx_{k+1}...dx_{n} = \sum_{j=1}^{\nu} \overline{\int ... \int} f(\xi_{1}^{(i)},...,\xi_{k}^{(i)},x_{k+1},...,x_{n}) dx_{k+1}...dx_{n}.$$

Niech m_{ij} i M_{ij} oznaczają kresy dolny i górny funkcji $f(x_1,...,x_n)$ w przedziałe I_{ij} . Wówczas na mocy określenia przedziału I_{ij}

skąd na mocy (33)

$$\sum_{j=1}^{\nu} m_{ij} |J_j''| \leqslant q(\xi_1^{(i)}, ..., \xi_k^{(i)}) \leqslant \sum_{j=1}^{\nu} M_{ij} |J_j''|,$$

a stąd wobec (32)

$$\sum_{i=1}^{\mu} \left[\sum_{j=1}^{\nu} m_{ij} |J_j''| \right] |J_i'| \leqslant R \leqslant \sum_{i=1}^{\mu} \left[\sum_{j=1}^{\nu} M_{ij} |J_j''| \right] |J_i'|.$$

Na mocy więc (30)

$$\sum_{i=1}^{\mu} \sum_{j=1}^{\nu} m_{ij} |I_{ij}| \leqslant R \leqslant \sum_{i=1}^{\mu} \sum_{j=1}^{\nu} M_{ij} |I_{ij}|.$$

Lewa strona powyższej nierówności jest sumą dolną s, a prawa — sumą górną S dla funkcji $f(x_1,...,x_n)$, dla podziału Δ przedziału I. Zatem

$$(34) s \leqslant R \leqslant S.$$

Niech teraz $\{\Delta'_l\}$ i $\{\Delta''_l\}$ będą ciągami normalnymi podziałów przedziałów J' i J''. Utwórzmy za ich pomocą ciąg podziałów $\{\Delta_l\}$ przedziału I tak, jak poprzednio utworzyliśmy podział Δ za pomocą podziałów Δ' i Δ'' . Z (31) wynika, że ciąg $\{\Delta_l\}$ będzie ciągiem normalnym podziałów przedziału I i na mocy (34) otrzymamy

$$(35) s_l \leqslant R_l \leqslant S_l dla l=1,2,...$$

Ponieważ sumy s_l i S_l dążą dla $l \to \infty$ do całki funkcji $f(x_1, ..., x_n)$ w przedziale I, więc na mocy (35)

$$R_l \rightarrow \int \dots \int_I f(x_1, \dots, x_n) dx_1 \dots dx_n$$
 dla $l \rightarrow \infty$.

Wynika stąd całkowalność \Re funkcji $q(x_1,...,x_k)$ w przedziale J'', a ponadto pierwsza część wzoru (iii). Podobnie dowodzi się drugiej części wzoru (iii), jak również analogicznego twierdzenia dla całek dolnych.

(10.2) Jeżeli funkcja $f(x_1,...,x_n)$ jest ciągła w przedziałe zamkniętym I, wówczas

(iv)
$$\int_{I} f(p) dp = \int \dots \int_{J'} \left[\int \dots \int_{J''} f(x_1, \dots, x_n) dx_{k+1} \dots dx_n \right] dx_1 \dots dx_k =$$

$$= \int \dots \int_{J''} \left[\int \dots \int_{J'} f(x_1, \dots, x_n) dx_1 \dots dx_k \right] dx_{k+1} \dots dx_n.$$

Wzór (iv) wynika ze wzoru (iii) twierdzenia (10.1), w którym dzięki założeniu ciągłości możemy całki górne zastąpić całkami zwykłymi (p. tw. (8.1), str. 190).

Uwaga. Wzór (iv) zachodzi przy założeniach ogólniejszych. Wystarczy założyć, że funkcja $f(x_1,...,x_n)$ jest całkowalna w I i że istnieją całki występujące w nawiasach []: pierwsza dla każdego układu wartości $(x_1,...,x_n) \in J'$, a druga dla każdego układu wartości $(x_{k+1},...,x_n) \in J''$.

Wzór (iv) wyraża również twierdzenie o zmianie porządku całkowania.

(10.3) Jeżeli funkcja $f(x_1,...,x_n)$ jest ciągła w przedziale

$$I = \langle a_1, ..., a_n; b_1, ..., b_n \rangle$$

wówczas

$$\int_{I} f(p) dp = \int_{a_{1}}^{b_{1}} \dots \int_{a_{n}}^{b_{n}} f(x_{1}, ..., x_{n}) dx_{1} \dots dx_{n}.$$

We wzorze tym granice a_i i b_i , gdzie i=1,2,...,n, odnoszą się oczywiście do zmiennej x_i , przy czym całki pojedyncze można napisać w dowolnym porządku.

Dowód polega na zastosowaniu wzoru (iii) nie do całki w przedziałe I, lecz do całek w przedziałach J' i J'' itd., aż się dojdzie do całek pojedynczych.

PRZYKŁADY. 1. Jeżeli f(x,y) jest funkcją ciągłą w prostokącie $a \le x \le b$, $c \le y \le d$, tj. w przedziale płaskim $I = \langle a,c;b,d \rangle$, wówczas

$$\int_{I} \int f(x,y) dx dy = \int_{a}^{b} \left[\int_{c}^{d} f(x,y) dy \right] dx = \int_{c}^{d} \left[\int_{a}^{b} f(x,y) dx \right] dy.$$

2. Jeżeli f(x,y,z) jest funkcją ciągłą w prostopadłościanie I $a \leqslant x \leqslant b, \ c \leqslant y \leqslant d$ i $e \leqslant z \leqslant f$, to

$$\int_{I} \int_{I} f(x,y,z) \, dx \, dy \, dz = \int_{a}^{b} \left[\int_{c}^{d} \int_{e}^{f} f(x,y,z) \, dy \, dz \right] dx = \\
= \int_{a}^{b} \int_{c}^{d} \left[\int_{e}^{f} f(x,y,z) \, dz \right] dx \, dy = \int_{a}^{b} \left\{ \int_{c}^{d} \left[\int_{e}^{f} f(x,y,z) \, dz \right] dy \right\} dx.$$

\S 3. Miara Jordana. Całka \Re na zbiorze.

1. Miara zewnętrzna \mathfrak{J} . Niech A będzie zbiorem ograniczonym w przestrzeni \mathcal{E}^n , a $I_1,...,I_k$ dowolną skończoną rodziną przedziałów tej przestrzeni, których suma zawiera (pokrywa) zbiór A.

Kres dolny sumy miar przedziałów dla wszelkich takich rodzin nazywamy miarą zewnętrzną Jordana lub miarą zewnętrzną \mathfrak{Z} zbioru A w przestrzeni \mathcal{E}^n i oznaczamy przez $m_z(A)$. Zatem:

(1.1)
$$Je\dot{z}eli\ A\subset I_1+...+I_k$$
, to
$$m_z(A)\leqslant |I_1|+...+|I_k|.$$

(1.2) Do każdej liczby $\varepsilon > 0$ istnieje taka skończona rodzina przedziałów $I_1,...,I_k$, że

(i)
$$A \subset I_1 + ... + I_k$$
, (ii) $m_z(A) + \varepsilon > |I_1| + ... + |I_k|$.

W szczególności:

(1.3) Dla przedziałów (otwartych i zamkniętych) miara zewnętrzna J i miara (w sensie określonym w Rozdziale III, § 2, str. 76) są równe:

$$m_z(I) = |I|$$
.

Istotnie, $I \subset I$, więc $m_z(I) \leq |I|$. Z drugiej strony, jeżeli $I \subset I_1 + ... + I_k$, to $|I| \leq |I_1| + ... + |I_k|$, a zatem $|I| \leq m_z(I)$.

Z określenia miary zewnętrznej \mathfrak{J} wynika bezpośrednio, że: (1.4) Jeżeli zbiór A składa się z jednego punktu, to $m_z(A) = 0$.

- (1.5) Jeżeli $A \subset B$, to $m_z(A) \leqslant m_z(B)$.
- **2. Miara wewnętrzna** \mathfrak{J} . Niech $I_1',...,I_l'$ będzie dowolną skończoną rodziną niezachodzących na siebie przedziałów przestrzeni \mathfrak{E}^n , zawartych w zbiorze A.

Kres górny sumy miar przedziałów dla wszelkich takich rodzin nazywamy miarą wewnętrzną Jordana lub miarą wewnętrzną \mathfrak{J} zbioru A w przestrzeni \mathcal{E}^n i oznaczamy przez $m_w(A)$.

Przy tym, jeżeli A jest zbiorem brzegowym w \mathcal{E}^n , a przeto (p. definicję str. 62 i tw. (4.1), str. 79) nie zawierającym żadnego przedziału, wówczas przyjmujemy $m_w(A) = 0$. Zatem:

(2.1) Jeżeli $I_1' + ... + I_l' \subset A$ i przedziały $I_1, ..., I_l'$ nie zachodzą na siebie, to

$$|I_1'| + ... + |I_l'| \leq m_w(A)$$
.

(2.2) Jeżeli $m_w(A) \neq 0$, to do każdej liczby $\varepsilon > 0$ istnieje taka skończona rodzina niezachodzących na siebie przedziałów $I'_1, ..., I'_l$, że:

(i')
$$I'_1 + ... + I'_l \subset A$$
, (ii') $|I'_1| + ... + |I'_l| > m_w(A) - \varepsilon$.

W szczególności:

(2.3) Dla przedziałów (otwartych i zamkniętych) miara wewnętrzna J i miara (w sensie określonym w Rozdziałe III, § 2, str. 76) są równe:

$$m_{w}(I) = |I|$$
.

Istotnie, $I \subset I$, więc $|I| \leq m_w(I)$. Z drugiej strony, jeżeli $I_1' + ... + I_l' \subset I$ i przedziały $I'_1,...,I'_l$ nie zachodzą na siebie, to $|I'_1|+...+|I'_l| \leq |I|$, a zatem $m_w(I) \leqslant |I|$.

Z określenia miary wewnętrznej 3 wynika wprost, że (2.4) Jeżeli $A \subset B$, to $m_w(A) \leqslant m_w(B)$.

3. Własności miary Jordana. Między miarami zewnętrzną $\mathfrak J$ a wewnętrzną $\mathfrak J$ dowolnego zbioru A zachodzi związek

$$(3.1) m_w(A) \leqslant m_z(A).$$

Dowód. Jeżeli $m_w(A) = 0$, nierówność (3.1) jest oczywista. W przeciwnym razie do każdego $\varepsilon > 0$ istnieją na mocy (1.2) i (2.2) przedziały $I_1,...,I_k$ oraz $I_1',...,I_l'$, czyniące zadość warunkom (ii) oraz (ii'), skąd na mocy tw. (2.2), str. 181, $|I_1'| + ... + |I_l'| \le |I_1| + ... + |I_k|$, więc $m_w(A) - \varepsilon \leqslant m_z(A) + \varepsilon$. Stąd wobec dowolności liczby ε wynika nierówność (3.1), c. b. d. d.

Ponieważ dla każdego zbioru A mamy oczywiście $m_z(A) \geqslant 0$ i $m_w(A) \geqslant 0$, wiec wnosimy stąd na mocy (3.1), że

- (3.2) Jeżeli $m_z(A) = 0$, to również $m_w(A) = 0$.
- Dla każdej rodziny skończonej zbiorów ograniczonych A1,...,Ar zachodzi wzór

$$m_z(A_1 + ... + A_r) \leq m_z(A_1) + ... + m_z(A_r).$$

Dowód. Wystarczy oczywiście dowieść, że

(1)
$$m_z(A_1+A_2) \leqslant m_z(A_1)+m_z(A_2).$$

Do każdego $\varepsilon > 0$ istnieją na mocy tw. (1.2) przedziały $I_1, ..., I_{k_1}$ i $I_{k_1+1},...,I_{k_2}$ o własnościach:

(2)
$$A_1 \subset I_1 + ... + I_{k_1}, \quad A_2 \subset I_{k_1+1} + ... + I_{k_2},$$

(3)
$$|I_1| + ... + |I_{k_1}| < m_z(A_1) + \varepsilon$$
, $|I_{k_1+1}| + ... + |I_{k_2}| < m_z(A_2) + \varepsilon$.

Na mocy (2) jest $A_1+A_2\subset I_1+...+I_k$, skąd

$$m_z(A_1+A_2) \leqslant |I_1|+\ldots+|I_{k_2}|,$$

a stad na mocy (3)

$$m_z(A_1+A_2) < m_z(A_1) + m_z(A_2) + 2\varepsilon.$$

Wobec dowolności liczby ε wynika stąd nierówność (1), c. b. d. d.

(3.3') Dla każdej rodziny skończonej zbiorów ograniczonych rozłącznych $A_1,...,A_r$ zachodzi wzór

$$m_w(A_1) + ... + m_w(A_r) \leq m_w(A_1 + ... + A_r).$$

Dowód. Wystarczy oczywiście dowieść, że

(1')
$$m_w(A_1) + m_w(A_2) \leqslant m_w(A_1 + A_2).$$

Do każdego $\varepsilon > 0$ istnieją na mocy (2.1) niezachodzące na siebie przedziały $I'_1, ..., I'_{l_1}$ i niezachodzące na siebie przedziały $I'_{l_1+1}, ..., I'_{l_2}$ o własnościach:

(2')
$$I'_1 + ... + I'_l \subset A_1, \qquad I'_{l_1+1} + ... + I'_l \subset A_2,$$

(3')
$$m_w(A_1) - \varepsilon < |I_1'| + \dots + |I_{l_1}'|, \qquad m_w(A_2) - \varepsilon < |I_{l_1+1}'| + \dots + |I_{l_2}'|.$$

Wobec rozłączności zbiorów A_1 i A_2 , wnosimy z (2'), że przedziały całej rodziny $I'_1,...,I'_{l_2}$ nie zachodzą na siebie, a ponadto że $I'_1+...+I'_{l_2}\subset A_1+A_2$, skąd $|I'_1|+...+|I'_{l_2}|\leqslant m_w(A_1+A_2)$, a stąd na mocy (3')

$$m_w(A_1) + m_w(A_2) - 2\varepsilon < m_w(A_1 + A_2).$$

Wobec dowolności liczby ε wynika stąd nierówność (1'), c. b. d. d. (3.4) Dla miar ζ dowolnego zbioru ograniczonego A i jego pochodnej A' (p. str. 59) zachodzi wzór

$$m_w(A) \leqslant m_w(A') \leqslant m_z(A') = m_z(A).$$

Dowód. Pierwsza z nierówności wynika stąd, że jeżeli przedział jest zawarty w zbiorze, to jest zawarty także w jego pochodnej. Druga jest bezpośrednim wnioskiem z (3.1).

Niech $I_1,...,I_k$ będą takimi przedziałami zamkniętymi, że $A \subset I_1 + ... + I_k$. Ponieważ suma tych przedziałów jest zbiorem zamkniętym, więc $A' \subset I_1 + ... + I_k$. Zatem

$$(4) m_z(A') \leqslant m_z(A).$$

Zdrugiej strony, dla każdego $\varepsilon\!>\!0$ istnieją takie przedziały otwarte $J_1,...,J_r,$ że

$$A' \subset J_1 + \dots + J_r,$$

(6)
$$|J_1| + \dots + |J_r| < m_z(A') + \varepsilon.$$

Na mocy (5) zbiór A nie ma punktów skupienia poza przedziałami $J_1,...,J_r$, a więc poza tymi przedziałami leży co najwyżej skończona liczba punktów zbioru A. Punkty te można tedy pokryć skończoną liczbą przedziałów $J_{r+1},...,J_s$ o sumie miar nie przekraczającej ε . Ponieważ $A \subset J_1 + ... + J_s$, więc

$$m_z(A) \leqslant |J_1| + \ldots + |J_s| \leqslant m_z(A') + 2\varepsilon$$

na mocy (6). Wobec dowolności ε mamy zatem

$$(7) m_z(A) \leqslant m_z(A').$$

Z (4) i (7) wynika równość $m_z(A') = m_z(A)$, c. b. d. d.

PRZYKŁADY. 1. Zbiór liczb postaci 1/n, gdzie n=1,2,..., ma miarę zewnętrzną \mathfrak{J} równą zeru, taka jest bowiem miara pochodnej tego zbioru, jako złożonej z jednego punktu (punktu 0).

2. Zbiór liczb wymiernych przedziału $\langle 0, 1 \rangle$ ma miarę zewnętrzną $\mathfrak J$ równą jedności, czyli mierze tego przedziału (jako swej pochodnej), miarę zaś wewnętrzną $\mathfrak J$ równą zeru, ponieważ jest zbiorem brzegowym.

To samo dotyczy zbioru liczb niewymiernych przedziału $\langle 0, 1 \rangle$.

- 3. Każdy zbiór gęsty w przedziałe ma miarę zewnętrzną $\mathfrak J$ równą mierze tego przedziału.
- (3.5) Jeżeli A jest zbiorem ograniczonym, a B(A) jego brzegiem, to:

$$m_w[B(A)] = 0,$$
 $m_z[B(A)] = m_z(A) - m_w(A).$

 $\operatorname{Dowód}$. Pierwsza równość jest oczywista, ponieważ zbiór B(A)nie ma punktów wewnętrznych.

Na mocy (i), (ii), (i') i (ii') istnieją dla każdego $\varepsilon > 0$ przedziały zamknięte $I_1, ..., I_k, I_{k+1}, ..., I_r$ i niezachodzące na siebie przedziały $I'_1, ..., I'_l$ o własnościach:

$$(8) I_1' + \ldots + I_l' \subset A \subset I_1 + \ldots + I_k,$$

(9)
$$m_z(A) + \varepsilon > |I_1| + ... + |I_k|, \quad m_w(A) - \varepsilon < |I_1'| + ... + |I_1'|,$$

(10)
$$B(A) \subset I_{k+1} + ... + I_r,$$

(11)
$$m_z[B(A)] + \varepsilon > |I_{k+1}| + ... + |I_r|.$$

Niech I będzie przedziałem zamkniętym, zawierającym $I_1, ..., I_r$ a Δ podziałem przedziału I na takie podprzedziały, żeby $I_1, ..., I_r$ były ich sumami.

Oznaczmy przez $J_1,...,J_{\mu}$ te spośród przedziałów podziału Δ , których wnętrza zawarte są w różnicy $(I_1+...+I_k)-(I'_1+...+I'_l)$, a przez $J'_1,...,J'_{\nu}$ te, których wnętrza zawarte są w różnicy $A-(I_{k+1}+...+I_r)$. Zatem:

$$I_1 + \dots + I_k = J_1 + \dots + J_{\mu} + I'_1 + \dots + I'_l,$$

 $A \subset J'_1 + \dots + J'_{\nu} + I_{k+1} + \dots + I_r$

i na mocy (8) i (10) po prawej stronie każdego z tych wzorów występują przedziały nie zachodzące na siebie. Na mocy (9) i (11) otrzymujemy więc:

(12)
$$m_{z}(A) + \varepsilon \geqslant |J_{1}| + \dots + |J_{\mu}| + m_{w}(A) - \varepsilon,$$

$$m_{z}(A) \leqslant |J'_{1}| + \dots + |J'_{\nu}| + m_{z}[B(A)] + \varepsilon.$$

Ponieważ zbiór B(A), jako brzeg zbioru A, jest zawarty na mocy (8) w $J_1+\ldots+J_\mu$, więc

(13)
$$m_z[B(A)] \leq |J_1| + \dots + |J_{\mu}|,$$

a ponieważ wnętrza przedziałów $J_1',...,J_\nu'$ są zawarte w A, więc

$$(14) m_{w}(A) \geqslant |J_{1}'| + \ldots + |J_{v}'|.$$

Z nierówności (12), (13) i (14) otrzymujemy

$$m_z(A) - m_w(A) - \varepsilon \leqslant m_z[B(A)] \leqslant m_z(A) - m_w(A) + 2\varepsilon$$

dla każdego $\varepsilon > 0$, a więc równość, c. b. d. d.

(3.6) Jeżeli A jest zbiorem ograniczonym, a W(A) jego wnętrzem, to

$$m_{w}[W(A)] = m_{w}(A).$$

Istotnie, wobec $W(A) \subset A$ mamy na mocy (1.5)

$$m_w[W(A)] \leqslant m_w(A)$$
.

Z drugiej strony, każdy przedział otwarty, zawarty w A, jest zawarty w W(A), skąd $m_w(A) \leq m_w[W(A)]$.

4. Zbiory mierzalne J. Zbiór ograniczony A nazywamy mierzalnym w sensie Jordana lub mierzalnym J, jeżeli jego miary zewnętrzna J i wewnętrzna J są równe, t.j. jeżeli $m_w(A) = m_z(A)$.

Wspólną wartość obu miar nazywamy wówczas miarq \mathfrak{J} zbioru A i oznaczamy przez m(A).

PRZYKŁADY. 1. Każdy przedział I jest zbiorem mierzalnym \mathfrak{J} i m(I) = |I| (por. (1.3) i (2.3)).

- 2. Zbiór W liczb wymiernych przedziału $\langle 0, 1 \rangle$ nie jest mierzalny \Im , gdyż $m_w(W)=0$ i $m_z(W)=1$ (p. przykład 2, str. 199).
- (4.1) Jeżeli m(A) = 0, to A jest zbiorem miary \mathfrak{Q} zero.

Wynika to wprost z określenia miary zewnętrznej \Im i miary $\mathfrak L$ zero.

(4.2) Jeżeli $m_z(A) = 0$, to A jest zbiorem mierzalnym \mathfrak{J} i m(A) = 0.

Na mocy bowiem (3.1), str. 197, mamy wtedy $m_w(A) = 0$.

Natomiast zbiór miary $\mathfrak L$ zero może nie być mierzalny $\mathfrak J$, jak wskazuje przykład zbioru liczb wymiernych, który nie jest mierzalny $\mathfrak L$, a jako przeliczalny jest miary $\mathfrak L$ zero.

(4.3) Każdy zbiór A zamknięty, ograniczony i miary \mathfrak{L} zero jest mierzalny \mathfrak{J} i m(A) = 0.

Istotnie, na mocy tw. (8.2), str. 92, dla każdego $\varepsilon > 0$ istnieje wówczas skończona liczba przedziałów pokrywających zbiór A, których suma miar jest mniejsza niż ε . Zatem $m_z(A) < \varepsilon$ dla każdego $\varepsilon > 0$, skąd $m_z(A) = 0$. Zatem na mocy tw. (4.1) jest m(A) = 0.

W szczególności, ponieważ brzeg przedziału jest zbiorem zamkniętym i ograniczonym o mierze $\mathfrak L$ zero (tw. (7.1), str. 187), więc:

- (4.4) Miara 3 brzegu przedziału jest zerem.
- (4.5) Jeżeli A jest zbiorem mierzalnym \mathfrak{J} , to jego pochodna A' jest również zbiorem mierzalnym \mathfrak{J} i m(A) = m(A').

Wynika to wprost z tw. (3.4).

Uwaga. Twierdzenie odwrotne byłoby falszywe: pochodna A' może być zbiorem mierzalnym \mathfrak{J} , a sam zbiór A może nie być mierzalny \mathfrak{J} . Np. zbiór liczb wymiernych przedziału $\langle 0,1 \rangle$ nie jest mierzalny \mathfrak{J} (przykład 2, str. 201), podczas gdy jego pochodna jest przedziałem $\langle 0,1 \rangle$, a więc zbiorem mierzalnym \mathfrak{J} .

(4.6) Warunkiem koniecznym i wystarczającym na to, by zbiór ograniczony był mierzalny J, jest, żeby jego brzeg był zbiorem miary J zero.

Wynika to z tw. (3.6).

Uwaga. Ponieważ brzeg jest zbiorem zamkniętym, więc tw. (4.6) pozostaje prawdziwe, gdy miarę \Im brzegu zastąpić miarą $\mathfrak L$. Z tw. (3.7) wynika, że

(4.7) Mierzalność $\mathfrak J$ zbioru A jest równoważna mierzalności $\mathfrak J$ jego wnętrza W(A) i

m(A) = m[W(A)].

PRZYKŁADY. 1. Wielokat jest zbiorem mierzalnym 3.

Brzeg jego jest bowiem linią łamaną, a więc zbiorem miary \mathfrak{L} zero (p. tw. (7.3), str. 188).

2. Koło $x^2+y^2 \leq r^2$ jest zbiorem mierzalnym \mathfrak{J} .

Brzeg jego jest bowiem sumą wykresów funkcyj $y = \sqrt{r^2 - x^2}$, $y = -\sqrt{r^2 - x^2}$, ciągłych w przedziale $\langle -r, r \rangle$; na mocy tw. (7.3), str. 188. jest on więc zbiorem miary $\mathfrak L$ zero.

Podobnie, kula jest zbiorem mierzalnym J.

- 3. Każdy wielościan w przestrzeni \mathcal{E}^n jest zbiorem mierzalnym \mathfrak{J} . Brzeg wielościanu tworzą bowiem jego ściany, a każda ściana jest zbiorem miary \mathfrak{L} zero (p. str. 190).
- (4.8) Suma skończonej liczby zbiorów $A_1,...,A_r$ mierzalnych \Im jest zbiorem mierzalnym \Im i

$$m(A_1 + ... + A_r) \leq m(A_1) + ... + m(A_r).$$

Mierzalność sumy $A_1+...+A_r$ wynika z tw. (4.6), ponieważ brzeg sumy zbiorów $A_1,...,A_r$ zawarty jest w sumie brzegów tych zbiorów. Wzór zaś wynika z tw. (3.3), str. 197, przez zastąpienie w nim miary zewnętrznej $\mathfrak J$ przez miarę $\mathfrak J$.

(4.9) Jeżeli zbiory $A_1,...,A_r$ są mierzalne $\mathfrak J$ i rozłączne, to

(15)
$$m(A_1 + ... + A_r) = m(A_1) + ... + m(A_r).$$

Istotnie, zastępując w tw. (3.3'), str. 198, miarę wewnętrzną $\mathfrak J$ przez miarę $\mathfrak J$, dostajemy

(16)
$$m(A_1 + ... + A_r) \geqslant m(A_1) + ... + m(A_r),$$

a nierówność odwrotną mamy z tw. (4.8).

Uwaga. Tw. (4.9) zachodzi już przy założeniu, że zbiory $A_1,...,A_r$ mierzalne \Im mają wnętrza rozłączne.

Mamy bowiem wobec tw. (3.3')

(17)
$$m_w[W(A_1) + ... + W(A_r)] \ge m_w[W(A_1)] + ... + m_w[W(A_r)].$$

Ponieważ na mocy tw. (4.6) jest $m_w[W(A_i)] = m_w(A_i) = m(A_i)$ dla i=1,2,...,r oraz $W(A_1)+...+W(A_r)\subset A_1+...+A_r$, więc

$$m_w[W(A_1) + ... + W(A_r)] \leq m(A_1 + ... + A_r).$$

Stad na mocy (4.7) dostajemy (16), a z (4.9) równość (15).

(4.10) Iloczyn skończonej liczby zbiorów mierzalnych \Im jest zbiorem mierzalnym \Im .

Wynika to z tw. (4.7), ponieważ brzeg iloczynu zbiorów jest zawarty w sumie ich brzegów.

(4.11) Dopełnienie zbioru mierzalnego $\mathfrak J$ do przedziału jest zbiorem mierzalnym $\mathfrak J$.

Dowód. Jeżeli zbiór A jest zawarty w przedziale I, to brzeg zbioru I-A jest zawarty w sumie brzegu zbioru A i brzegu przedziału I. Ponieważ oba brzegi są zbiorami miary $\mathfrak L$ zero na mocy tw. (4.1) i (4.6), więc ich suma, a tym bardziej brzeg zbioru I-A, jako jej część, ma miarę $\mathfrak L$ zero. Na mocy tw. (4.6) zbiór I-A jest więc mierzalny $\mathfrak J$.

(4.12) Jeżeli zbiory A i B są mierzalne \mathfrak{J} , to różnica A-B jest zbiorem mierzalnym \mathfrak{J} .

Jeżeli ponadto $B\subseteq A$, wówczas

$$m(A-B) = m(A) - m(B).$$

Dowód. Niech I będzie przedziałem zawierającym A+B. Wówczas $A-B=A\cdot(I-B)$ i różnica A-B jest zbiorem mierzalnym \Im na mocy tw. (4.10), jako iloczyn zbiorów A i I-B, z których pierwszy jest mierzalny \Im z założenia, a drugi na mocy tw. (4.11).

Jeżeli ponadto BCA, wówczas A = B + (A - B), skąd

$$m(A) = m[B + (A - B)] = m(B) + m(A - B),$$

gdyż zbiory A i A-B są rozłączne.

,

5. Przesunięcie równoległe. Niech E będzie dowolnym zbiorem ograniczonym w \mathcal{E}^n , a $(a_1,...,c_n)$ dowolnym układem n liczb. Niech każdemu punktowi $p=(x_1,...,x_n)$ zbioru E przyporządkowany będzie punkt $p'=(x'_1,...,x'_n)$ za pomocą równań

$$(18) x_i' = x_i + a_i (i = 1, 2, ..., n).$$

Przyporządkowanie to jest odwzorowaniem wzajemnie jednoznacznym i ciągłym zbioru E na zbiór E' punktów p'.

Odwzorowanie (18) nazywamy przesunięciem (równoleglym). Z określenia wynika, że odwzorowanie odwrotne

jest przesunięciem (równoległym) zbioru E' na zbiór E.

Przez przesunięcie równoległe przedział $I = \langle a_1, ..., a_n; b_1, ..., b_n \rangle$ przechodzi na przedział $I' = \langle a_1 + a_1, ..., a_n + a_n; b_1 + a_1, ..., b_n + a_n \rangle$ i miara przedziału zostaje zachowana, t.j. |I| = |I'|. Ogólnie:

(5.1) Jeżeli zbiór ograniczony E przechodzi przez przesunięcie równoległe w zbiór E', to

$$m_w(E) = m_w(E'), \qquad m_z(E) = m_z(E').$$

Dowód. Niech $E \subset I_1 + ... + I_m$. Zbiór E' jest oczywiście zawarty w sumie przedziałów $I'_1, ..., I'_m$, na które przejdą przedziały $I_1, ..., I_m$ przez przesunięcie (18). Ponieważ przesunięcie równoległe zachowuje miarę przedziałów, więc $|I_1| + ... + |I_m| = |I'_1| + ... + |I'_m|$, skąd $m_z(E) \geqslant m_z(E')$. Na odwrót, ponieważ przez przesunięcie (19) E' przechodzi na E, więc dostajemy $m_z(E') \geqslant m_z(E)$. Zatem $m_z(E) = m_z(E')$.

Podobnie dowodzi się równości miar wewnętrznych.

Wynika stąd od razu twierdzenie następujące:

- (5.2) Jeżeli zbiór E jest mierzalny \Im , to jego przesunięcie E' jest również zbiorem mierzalnym \Im i miary \Im obu zbiorów są równe.
- 6. Całka \Re funkcji w zbiorze. Niech E będzie zbiorem ograniczonym w \mathcal{E}^n , a f(p) funkcją ograniczoną, określoną w E.

Oznaczmy przez f^* funkcję, która jest przedłużeniem funkcji f na całą przestrzeń \mathcal{E}^n , przyjmując $f^*(p) = 0$ dla p nie należących do E. Zatem funkcja $f^*(p)$ jest określona w całej przestrzeni \mathcal{E}^n i ograniczona w tej przestrzeni.

Dla dowolnych dwóch przedziałów zamkniętych I' i I'', z których każdy zawiera E, mamy

(20)
$$\int_{I'} f^*(p) dp = \int_{I''} f^*(p) dp, \qquad \int_{\overline{I'}} f^*(p) dp = \int_{\overline{I''}} f^*(p) dp.$$

W przypadku, gdy $I' \subset I''$, wzór (20) wynika z tw. (9.3), str. 191. W przypadku przeciwnym, oznaczając przez I dowolny przedział zawierający I' + I'', widzimy, że całki funkcji f^* w I' i I'' są równe jej całce w I, a zatem równe między sobą.

 $Calkq\ g\'ornq\ (dolnq)$ funkcji f(p) w zbiorze E nazywamy całkę g\'orną (dolną) funkcji $f^*(p)$ w przedziale I zawierającym E i ozna-

czamy ją przez

$$\int_{E} f(p) dp \qquad \left(\int_{E} f(p) dp \right).$$

Zatem według określenia

(21)
$$\int_{E} \overline{f}(p) dp = \int_{I} \overline{f}^{*}(p) dp, \qquad \int_{E} f(p) dp = \int_{I} f^{*}(p) dp,$$

przy czym całki górna i dolna funkcji f w zbiorze E nie zależą od wyboru przedziału I, zawierającego ten zbiór.

Jeżeli całki górna i dolna w E są równe, mówimy, że funkcja f(p) jest całkowalna R w zbiorze E i całkę jej w tym zbiorze oznaczamy przez

 $\int_{E} f(p) dp.$

Na mocy (20) funkcja $f^*(p)$ jest wówczas całkowana \Re w każdym przedziałe I zawierającym E i

$$\int_{E} f(p) dp = \int_{I} f^{*}(p) dp.$$

Dla całek \Re w zbiorach zachodzą niektóre spośród twierdzeń zachodzących dla całek \Re w przedziałach.

(6.1) Jeżeli funkcje f(p) i $\varphi(p)$ są całkowalne \Re w zbiorze ograniczonym E, to funkcje $f(p) \pm \varphi(p)$, i cf(p), gdzie c = const, są całkowalne \Re w E i

(22)
$$\int_{E} [f(p) \pm \varphi(p)] dp = \int_{E} f(p) dp \pm \int_{E} \varphi(p) dp,$$

(23)
$$\int_{E} c f(p) dp = c \int_{E} f(p) dp.$$

Dowód. Weźmy pod uwagę przedłużenia funkcyj f(p) i $\varphi(p)$:

$$f^*(p) = \begin{cases} f(p) & \text{dla} & p \in E, \\ 0 & \text{dla} & p \in -E, \end{cases} \qquad \varphi^*(p) = \begin{cases} \varphi(p) & \text{dla} & p \in E, \\ 0 & \text{dla} & p \in -E. \end{cases}$$

Łatwo zauważyć, że wówczas funkcja $f^*(p) \pm \varphi^*(p)$ jest przedłużeniem funkcji $f(p) \pm \varphi(p)$ i że również $f^*(p) \pm \varphi^*(p) = 0$ dla p nie należących do E. Na mocy określenia całki funkcji w zbiorze wynika stąd całkowalność sumy (różnicy) dwóch funkcyj i wzór (22) na jej całkę. Podobnie dowodzi się pozostałej części twierdzenia oraz wzoru (23).

7. Miara Jordana jako całka. Niech $E \subset \mathcal{E}^n$ i niech f(p) będzie funkcją charakterystyczną zbioru E, t.j. funkcją

$$f(p) = \begin{cases} 1 & \text{dla } p \in E, \\ 0 & \text{dla } p \in -E. \end{cases}$$

(7.1) Jeżeli zbiór E jest ograniczony, to

(24)
$$m_w(E) = \int_{\overline{E}} 1 \, dp, \qquad m_z(E) = \int_{\overline{E}} \overline{1} \, dp.$$

Dowód. Niech $\varepsilon > 0$. Na mocy tw. (1.2) i (2.2), str. 196, istnieją przedziały zamknięte $I_1, ..., I_k$ oraz $I'_1, ..., I'_l$, spełniające warunki:

(25)
$$I_1' + ... + I_l' \subset E \subset I_1 + ... + I_k$$

(26)
$$m_z(E) + \varepsilon > |I_1| + ... + |I_k|, \qquad m_w(E) - \varepsilon < |I_1'| + ... + |I_1'|.$$

Niech I będzie dowolnym przedziałem zawierającym sumę

$$I_1 + ... + I_k + I'_1 + ... + I'_l$$

Na mocy tw. (1.1), str. 179. istnieje taka siatka Δ przedziału I_{i} że każdy z przedziałów występujących w (25) jest sumą pewnych przedziałów tej siatki. Oznaczmy przez s i S sumę dolną i górną dla funkcji f_{i} , odpowiadającą podziałowi Δ . Suma dolna s jest więc sumą miar tych przedziałów siatki Δ , które są zawarte w E. Ponieważ przedziały $I'_{1},...,I'_{l}$ są zawarte w E i każdy z nich jest sumą przedziałów siatki Δ , więc na mocy (25)

(27)
$$|I_1'| + ... + |I_l'| \leq s \leq m_w(E).$$

Podobnie S jest sumą miar przedziałów siatki Δ , mających punkty wspólne z E. Ponieważ przedziały takie pokrywają E, a zarazem są zawarte w $I_1+...+I_k$, więc na mocy (25)

(28)
$$m_z(E) \leqslant S \leqslant |I_1| + ... + |I_k|.$$

Z (27) i (28) dostajemy na mocy (26)

$$m_w(E) - \varepsilon \leqslant \int_{\overline{I}} f(p) dp \leqslant m_w(E), \qquad m_z(E) \leqslant \int_{\overline{I}} f(p) dp \leqslant m_z(E) + \varepsilon,$$

skąd wobec dowolności liczby $\varepsilon > 0$

$$m_w(E) = \int_{\overline{I}} f(p) dp, \qquad m_z(E) = \int_{\overline{I}} \overline{f}(p) dp,$$

co daje wzory (24) na mocy określenia funkcji f(p).

Otrzymujemy stąd od razu twierdzenia następujące:

- (7.2) Warunkiem koniecznym i wystarczającym na to, by zbiór E był mierzalny \mathfrak{I} , jest, żeby funkcja charakterystyczna zbioru E była całkowalna w E.
- (7.3) Jeżeli zbiór E jest mierzalny J, to

$$m(E) = \int_{E} 1 dp$$
.

- 8. Warunki całkowalności R funkcji w zbiorze. Udowodnimy teraz, że
- (8.1) Warunkiem koniecznym i wystarczającym na to, by funkcja ograniczona, określona w zbiorze E mierzalnym \Im , była w nim całkowalna \Re , jest, żeby zbiór punktów nieciągłości tej funkcji w zbiorze E był miary \Im zero.

Dowód. Załóżmy, że funkcja f(p) jest całkowalna \Re w zbiorze $E\subset I$. Jej przedłużenie

$$f^*(p) = \begin{cases} f(p) & \text{dla } p \in E, \\ 0 & \text{dla } p \in -E \end{cases}$$

jest więc funkcją całkowalną \Re w I, a przeto na mocy tw. (8.1), str. 190, zbiór H^* jej punktów nieciągłości w przedziale I jest miary $\mathfrak L$ zero. Ponieważ H^* zawiera zbiór H punktów nieciągłości funkcji f(p) w zbiorze E, więc i H jest miary $\mathfrak L$ zero. Warunek jest zatem konieczny.

Załóżmy teraz, że zbiór H punktów nieciągłości funkcji f(p) jest miary $\mathfrak L$ zero. Ponieważ zbiór E jest z założenia mierzalny $\mathfrak J$, więc na mocy tw. (4.6), str. 202, jego brzeg B(E) jest miary $\mathfrak L$ zero. Ponieważ funkcja $f^*(p)$ jest stała (bo równa 0), a zatem ciągła w punktach wewnętrznych zbioru I-E, więc $H^* \subset H + B(E)$. Wynika stąd, że H^* jest zbiorem miary $\mathfrak L$ zero, a zatem że funkcja $f^*(p)$ jest całkowalna w I, czyli że funkcja f(p) jest całkowalna w E. Warunek jest więc dostateczny.

(8.2) Jeżeli zbiory $A_1,...,A_m$ ograniczone i mierzalne $\mathfrak I$ nie zachodzą na siebie i funkcja f(p) jest w każdym z nich całkowalna $\mathfrak R$, to jest ona całkowalna $\mathfrak R$ w sumie $E = A_1 + ... + A_m$ i

 $\operatorname{Dow\'od}$. Weźmy pod uwagę przedłużenia funkcji f(p):

(31)
$$f^*(p) = \begin{cases} f(p) & \text{dla } p \in E, \\ 0 & \text{dla } p \in -E. \end{cases}$$

Ponieważ zbiory $A_1,...,A_m$ mają z założenia wnętrza rozłączne, więc funkcja

(32)
$$\varphi(p) = f^*(p) - f_1^*(p) - \dots - f_m^*(p)$$

przybiera wartość 0 we wszystkich punktach zbioru E, z wyjątkiem być może punktów należących do brzegów zbiorów $A_1, ..., A_m$, a więc do zbiorów zamkniętych miary $\mathfrak L$ zero, funkcja $\varphi(p)$ jest przeto zerem wszędzie poza sumą tych brzegów, t.j. poza pewnym zbiorem zamkniętym miary $\mathfrak L$ zero. Wynika stąd na mocy tw. (8.1), że całka $\mathfrak R$ funkcji $\varphi(p)$ w każdym przedziale zamkniętym I istnieje i jest równa 0.

Niech teraz $E \subset I$. Ponieważ funkcje $\varphi(p), f_1^*(p), ..., f_m^*(p)$ są całkowalne \Re w I, więc wnosimy z (32) na mocy tw. (3.1), str. 182, że funkcja $f^*(p)$ jest całkowalna \Re w I, a stąd na mocy tw. (6.1), że funkcja f(p) jest całkowalna \Re w E.

Wzór (32) daje zarazem

$$\int_{I} f^{*}(p) dp = \int_{I} f_{1}^{*}(p) dp + ... + \int_{I} f_{m}^{*}(p) dp,$$

skąd wynika (29) na mocy określenia całki R w zbiorze.

- 9. Całka Riemanna jako miara Jordana. Następujące twierdzenia wyrażają związki między całkowalnością R a mierzalnością J:
- (9.1) Jeżeli funkcja y = f(p), określona w zbiorze ograniczonym $E \subset \mathcal{E}^n$, jest ograniczona i nieujemna, a zbiór $D \subset \mathcal{E}^{n+1}$ składa się z punktów $q = (x_1, ..., x_n, x_{n+1})$, których współrzędne spełniają warunki

(33)
$$(x_1,...,x_n) \in E, \qquad 0 \leqslant x_{n+1} \leqslant f(x_1,...,x_n),$$

to całkowalność \Re funkcji f(p) w zbiorze E jest równoważna mierzalności \Im zbioru D.

Ponadto, jeżeli funkcja f(p) jest całkowalna \Re w E, to jej całka \Re w tym zbiorze równa się mierze \Im zbioru D w przestrzeni \mathcal{E}^{n+1} :

(34)
$$\int_{E} f(p) dp = m(D).$$

Dowód. Niech $E \subset I$ i niech Δ będzie podziałem przedziału I na przedziały $I_1,...,I_m$. Przedłużmy funkcję f(p) w przedziałe I:

(35)
$$f^*(p) = \begin{cases} f(p) & \text{dla} & p \in E, \\ 0 & \text{dla} & p \in I - E \end{cases}$$

i oznaczmy: przez k_i i K_i kresy dolny i górny funkcji $f^*(p)$ w przedziale I_i , przez I_i' zbiór tych punktów $q = (x_1, ..., x_{n+1})$ przestrzeni \mathcal{E}^{n+1} , których współrzędne spełniają warunki

$$(x_1,...,x_n) \in I_i, \qquad 0 \leqslant x_{n+1} \leqslant k_i,$$

wreszcie przez I_i'' zbiór tych punktów przestrzeni \mathcal{E}^{n+1} , których współrzędne spełniają warunki

$$(x_1,...,x_n) \in I_i, \qquad 0 \leqslant x_{n+1} \leqslant K_i.$$

Weźmy pod uwagę te zbiory I_i , dla których $k_i > 0$; zbiory te są niezachodzącymi na siebie przedziałami o miarach $\mu_i = k_i |I_i|$, zawartymi w D. Z określenia miary wewnętrznej wynika zatem, że

przy czym suma powyższa dlatego mogła zostać rozciągnięta na wszystkie wskaźniki i=1,...,m, że dla $k_i=0$ jest $k_i|I_i|=0$.

Zauważmy teraz, że $E \subset I_1 + ... + I_m$. Jeżeli $K_i > 0$, to I_i'' jest przedziałem o mierze $K_i |I_i|$, jeżeli zaś $K_i = 0$, to I_i'' jest zbiorem mierzalnym \mathfrak{J} o mierze $K_i |I_i| = 0$. Na mocy więc tw. (4.8) mamy

(37)
$$m_z(D) \leqslant m_z(I_1 + \ldots + I_m) \leqslant \sum_{i=1}^m K_i |I_i|.$$

 $\sum_{i=1}^{m} k_i |I_i|$ jest sumą dolną, a $\sum_{i=1}^{m} K_i |I_i|$ — sumą górną funkcji $f^*(p)$ dla podziału A. Ponieważ dla ciągu normalnego podziałów sumy te dążą do całek dolnej i górnej funkcji $f^*(p)$ w I, więc z określenia pojęcia całki \Re w zbiorze dostajemy na mocy (36) i (37)

(38)
$$\int_{\overline{E}} f(p) dp \leqslant m_w(D) \leqslant m_z(D) \leqslant \int_{E} \overline{f}(p) dp.$$

Wynika stąd, że jeżeli funkcja f(p) jest całkowalna \Re w zbiorze E, to zbiór D jest mierzalny \Im i miara jego wyraża się wzorem (34).

Na odwrót, załóżmy, że zbiór D jest mierzalny \mathfrak{J} i oznaczmy przez J przedział przestrzeni \mathcal{E}^{n+1} złożony z punktów $q=(x_1,...,x_{n+1})$, których współrzędne spełniają warunki:

$$(x_1,...,x_n) \in I, \qquad 0 \leqslant x_{n+1} \leqslant \alpha,$$

gdzie α jest dowolną liczbą większą od kresu górnego funkcji f(p) w zbiorze E:

$$\alpha > K$$
.

Niech $\chi(q)$ będzie funkcją charakterystyczną zbioru D.

Z określenia tego zbioru i funkcji $f^*(p)$ wynika, że jeżeli $(x_1,...,x_n)$ ϵ I, to $\chi(x_1,...,x_n,x_{n+1})$ jest zerem lub jednością zależnie od tego, czy $0 \leqslant x_{n+1} \leqslant f^*(x_1,...,x_n)$, czy $f^*(x_1,...,x_n) < x_{n+1}$. Zatem

(39)
$$\int_{0}^{\alpha} \chi(x_{1},...,x_{n+1}) dx_{n+1} = \int_{0}^{f^{*}(x_{1},...,x_{n})} dx_{n+1} = f^{*}(x_{1},...,x_{n}).$$

Ponieważ zbiór D jest mierzalny \mathfrak{J} , więc funkcja χ jest całkowalna \mathfrak{R} w D. Na mocy więc tw. (10.1), str. 192, wynika z (39), że funkcja f^* jest całkowalna \mathfrak{R} w I, czyli funkcja f w E, i że zachodzi wzór (34).

W szczególności, z tw. (9.1) otrzymujemy następujący wniosek: (9.2) Jeżeli funkcja $y = f(x_1, ..., x_n)$ jest całkowalna w E, to jej wykres w \mathcal{E}^{n+1} jest zbiorem miary \mathfrak{I} zero.

Wykres ten jest bowiem (p. str. 188) zbiorem punktów, których współrzędne spełniają warunki

$$(x_1,...,x_n) \in E, \qquad x_{n+1} = f(x_1,...,x_n),$$

a więc punktów leżących na brzegu zbioru D określonego w tw. (9.1) i mierzalnego $\mathfrak J$ na mocy tego twierdzenia; brzeg zaś zbioru mierzalnego $\mathfrak J$ jest miary $\mathfrak J$ zero na mocy tw. (4.6), str. 202.

PRZYKŁADY. 1. Jeżeli funkcja nieujemna f(x) jest całkowalna \Re na odcinku $\langle a,b \rangle$, to zbiór płaski D, określony nierównościami $a \leqslant x \leqslant b$ i $0 \leqslant y \leqslant f(x)$, jest mierzalny i jego miara \Im (płaska) równa się $\int_a^b f(x) dx$. Wykres zaś funkcji f(x) ma (również względem płaszczyzny) miarę \Im zero.

- 2. Jeżeli funkcja f(x,y) jest nieujemna i całkowalna \Re w prostokącie $\langle a_1, a_2; b_1, b_2 \rangle$, to zbiór punktów, których współrzędne spełniają nierówności $a_1 \leqslant x \leqslant b_1$, $a_2 \leqslant y \leqslant b_2$ i $0 \leqslant z \leqslant f(x,y)$, jest mierzalny \Im i jego miara \Im (przestrzenna) równa się całce funkcji f(x,y) w tym prostokącie.
- (9.3) Jeżeli funkcje $f_1(x_1,...,x_n)$ i $f_2(x_1,...,x_n)$ są całkowalne \Re w zbiorze $E \subset \mathcal{E}^n$ mierzalnym \Im i jeżeli

(40)
$$f_1(x_1,...,x_n) \gg f_2(x_1,...,x_n)$$
 $dla\ (x_1,...,x_n) \in E$,

wówczas zbiór $R \subset \mathcal{E}^{n+1}$ złożony z punktów o współrzędnych spełniających warunki

$$(x_1,...,x_n) \in E, \qquad f_2(x_1,...,x_n) \leqslant x_{n+1} \leqslant f_1(x_1,...,x_n)$$

jest mierzalny J i

(41)
$$m(R) = \int_{E} [f_1(p) - f_2(p)] dp.$$

 Dow ód. Niech k będzie kresem dolnym funkcji $f_2(p)$ w E. Zatem z założenia

$$(42) f_1(p) - k \geqslant f_2(p) - k \geqslant 0 dla p \in E.$$

Oznaczmy kolejno przez D_1 , D_2 i D zbiory punktów

$$q = (x_1, ..., x_n, x_{n+1})$$

przestrzeni \mathcal{E}^n , dla których $(x_1,...,x_n) \in E$ oraz $0 \le x_{n+1} \le f_1(x_1,...,x_n) - k$, $0 \le x_{n+1} \le f_2(x_1,...,x_n) - k$ i

$$(43) f_2(x_1,...,x_n) - k \leqslant x_{n+1} \leqslant f_1(x_1,...,x_n) - k.$$

Ponieważ zbićr E jest mierzalny \mathfrak{J} , więc funkcja y = const. jest całkowalna \mathfrak{R} w E. Wobec tego funkcje $f_1(p)-k$ i $f_2(p)-k$ są całkowalne \mathfrak{R} w E; na mocy tw. (9.1) zbiory D_1 i D_2 są więc mierzalne \mathfrak{J} i

(44)
$$m(D_1) = \int_E [f_1(p) - k] dp, \qquad m(D_2) = \int_E [f_2(p) - k] dp.$$

Oznaczając przez W wykres funkcji $y=f_2(p)-k$ w przestrzeni \mathcal{E}^{n+1} , mamy z (43)

$$(45) D = (D_1 - D_2) + W.$$

Na mocy tw. (9.2) zbiór W jest mierzalny $\mathfrak J$ i m(W)=0. Zbiór D_1-D_2 jest mierzalny $\mathfrak J$ jako różnica dwóch zbiorów mierzalnych $\mathfrak J$, a stąd wobec (45) również zbiór D jest mierzalny $\mathfrak J$.

Ponieważ $D_2 \subset D_1$ i $D_1 W = 0$, wiec na mocy (44) i (45)

(46)
$$m(D) = m(D_1 - D_2) + m(W) = m(D_1) - m(D_2) = \int_E [f_1(p) - f_2(p)] dp$$
.

Łatwo zauważyć, że D przechodzi w R przez przesunięcie równoległe $x'_1 = x_1, ..., x'_n = x_n, x'_{n+1} = x_{n+1} + k$. Zatem na mocy tw. (5.2), str. 46, zbiór R jest mierzalny \Im i m(R) = m(D), skąd na mocy (46) wynika (41), c. b. d. d.

PRZYKŁADY. 1. Jeżeli funkcje f(x) i $\varphi(x)$ są calkowalne \Re na odcinku $\langle a,b \rangle$ i $\varphi(x) \leqslant f(x)$ dla $x \in \langle a,b \rangle$, to zbiór płaski R, określony nierównościami $a \leqslant x \leqslant b$ i $\varphi(x) \leqslant y \leqslant f(x)$, jest mierzalny \Im i $m(R) = \int_{0}^{b} [f(x) - \varphi(x)] dx$.

2. Jeżeli funkcje f(x,y) i $\varphi(x,y)$ są ciągłe w zbiorze E mierzalnym \Im i $f(x,y) \geqslant \varphi(x,y)$ dla $(x,y) \in E$, to zbiór przestrzenny R, złożony z punktów (x,y,z), dla których $(x,y) \in E$ i $\varphi(x,y) \leqslant z \leqslant f(x,y)$, jest mierzalny \Im i

$$m(R) = \int_{E} \int [f(x,y) - q(x,y)] dx dy.$$

3. Koło $x^2+y^2 \leqslant 1$ jest zbiorem mierzalnym \Im jako zbiór płaski R złożony z punktów (x,y) spełniaącyjch nierówności

 $-1 \le x \le 1$ oraz $-\sqrt{1-x^2} \le y \le \sqrt{1-x^2}$. Wynika to z zastosowania przykładu 1 dla a=-1 i b=1.

Podobnie kula $x^2+y^2+z^2\leqslant 1$ jest zbiorem mierzalnym $\mathfrak{J},$ jako złożona z punktów, które spełniają warunki $(x,y)\in E$ oraz $-\sqrt{1-x^2-y^2}\leqslant z\leqslant \sqrt{1-x^2-y^2},$ gdzie E jest kołem $x^2+y^2\leqslant 1.$

10. Całka w zbiorze jako całka iterowana. Niech E będzie zbiorem ograniczonym w przestrzeni \mathcal{E}^n . Oznaczmy dla j=1,...,n-1 rzut zbioru E na przestrzeń \mathcal{E}^j zmiennych $x_1,...,x_j$ przez R', a na przestrzeń \mathcal{E}^{n-j} zmiennych $x_{j+1},...,x_n$ przez R''. Oznaczmy dalej dla każdego punktu $(x_1,...,x_j) \in R'$ przez $A'(x_1,...,x_j)$ zbiór tych wszystkich punktów $(x_1,...,x_n)$ należących do E, których rzutem jest punkt p; podobnie, dla każdego punktu $q=(x_{j+1},...,x_n)$ zbioru R'' niechaj $A''(x_{j+1},...,x_n)$ oznacza największy podzbiór zbioru E, którego rzutem jest punkt q.

(10.1) Jeżeli funkcja $f(x_1,...,x_n)$ jest całkowalna \Re w E, to funkcje

$$\overline{F}(x_1, ..., x_j) = \int_{A'(x_1, ..., x_j)} \overline{f(x_1, ..., x_n)} \, dx_{j+1} ... dx_n,$$

$$\overline{\Phi}(x_{j+1}, ..., x_n) = \int_{A''(x_{j+1}, ..., x_n)} f(x_1, ..., x_n) \, dx_1 ... dx_j,$$

$$\underline{F}(x_1, ..., x_j) = \int_{A''(x_1, ..., x_j)} f(x_1, ..., x_n) \, dx_{j+1} ... dx_n,$$

$$\underline{\Phi}(x_{j+1}, ..., x_n) = \int_{A''(x_{j+1}, ..., x_n)} f(x_1, ..., x_n) \, dx_1 ... dx_j$$

$$\underline{\Phi}(x_{j+1}, ..., x_n) = \int_{A''(x_{j+1}, ..., x_n)} f(x_1, ..., x_n) \, dx_1 ... dx_j$$

są całkowalne odpowiednio w R' i R", a ponadto

$$\int_{R'} f(p) dp = \int_{R'} \dots \int_{A'(x_1, \dots, x_j)} f(x_1, \dots, x_n) dx_{j+1} \dots dx_n dx_1 \dots dx_j =$$

$$= \int_{R''} \dots \int_{A''(x_{j+1}, \dots, x_n)} f(x_1, \dots, x_n) dx_1 \dots dx_j dx_{j+1} \dots dx_n.$$

Dowód. Niech $E \subset I = \langle a_1, ..., a_n; b_1, ..., b_n \rangle$. Wówczas $R' \subset J' = \langle a_1, ..., a_j; b_1, ..., b_j \rangle$ i $R'' \subset J'' = \langle a_{j+1}, ..., a_n; b_{j+1}, ..., b_n \rangle$.

Dla przedłużenia $f^*(p)$ funkcji f(p) według wzoru (31), str. 208, mamy

- 1

$$\int f^{*}(p) dp = \int f(p) dp,$$

$$\int \dots \int f^{*}(x_{1}, \dots, x_{n}) dx_{j+1} \dots dx_{n} = \int \dots \int f(x_{1}, \dots, x_{n}) dx_{j+1} \dots dx_{n},$$

$$\int \dots \int f^{*}(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{j} = \int \dots \int f(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{j},$$

$$\int \dots \int f^{*}(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{j} = \int \dots \int f(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{j},$$

skąd otrzymujemy (47) na mocy tw. (10.1), str. 192.

Uwaga. Jeżeli funkcja $f(x_1,...,x_n)$ jest całkowalna \Re w zbiorach A' i A'', tw. (10.1) pozostaje prawdziwe, gdy w nim całki górne i dolne zastąpić wprost jej całkami F(x) i $\Phi(x)$.

W szczególności jest tak zawsze, ilekroć zbiory $E,\ R'$ i R'' są mierzalne $\Im,\ a\ f$ jest funkcją ciągłą w E.

PRZYKŁADY. 1. Niech funkcje F(x) i $\Phi(x)$ będą ciągłe na odcinku $\langle a,b \rangle$ i spełniają dla $a \leqslant x \leqslant b$ nierówność $\Phi(x) \leqslant F(x)$, a funkcja f(x,y) niechaj będzie ciągła w zbiorze plaskim E, określonym nierównościami $a \leqslant x \leqslant b$ i $\Phi(x) \leqslant y \leqslant F(x)$. Wówczas

$$\int_{E} \int f(x,y) \, dx \, dy = \int_{a}^{b} \left[\int_{\Phi(x)}^{F(x)} f(x,y) \, dy \right] dx.$$

Rzut bowiem R' zbioru E na oś x-ów jest odcinkiem $\langle a,b \rangle$, a A'(x) czyli zbiór punktów $(x,y) \in E$, których rzutem jest x, jest odcinkiem $\langle \Phi(x), F(x) \rangle$.

2. Jeżeli funkcja f(x,y,z) jest ciągła w kuli $x^2+y^2+z^2 \leqslant 1$, to

Kula jest bowiem zbiorem mierzalnym $\mathfrak J$ (p. przykład 2, str. 202), rzut R' danej kuli na płaszczyznę xy jest kołem $x^2+y^2\leqslant 1$,

a zbiór A'(x,y) (tj. zbiór punktów tej kuli, których rzutem jest punkt $(x,y) \in R'$) jest odcinkiem $\langle -\sqrt{1-x^2-y^2}, \sqrt{1-x^2-y^2} \rangle$. Z tw. (10.1) dostajemy więc równość pierwszą.

Ponieważ R' jest zbiorem określonym nierównościami $-1 \le x \le 1$, $-\sqrt{1-x^2} \le y \le \sqrt{1-x^2}$, więc z przykładu 1 otrzymujemy równość drugą.

11. Miara (objętość) kuli w \mathcal{E}^n . Kulą (zamkniętą) $\mathcal{K}_n(r)$ o środku $p_0 = (\xi_1, ..., \xi_n)$ i o promieniu r > 0 przestrzeni \mathcal{E}^n nazywamy zbiór punktów $p = (x_1, ..., x_n)$, dla których (p. str. 73)

$$\varrho(p,p_0) \leqslant r.$$

Współrzędne punktów kuli (zamkniętej) spełniają zatem wzór

(49)
$$(x_1 - \xi_1)^2 + \dots + (x_n - \xi_n)^2 - r^2 \leq 0.$$

Punkty kuli, dla których we wzorze (49) zachodzi równość, tworzą brzeg (powierzchnię) kuli w \mathcal{E}^n , pozostałe zaś punkty są jej punktami wewnętrznymi. Brzeg kuli $\mathcal{K}_n(r)$ jest sumą wykresów geometrycznych w przestrzeni \mathcal{E}^n następujących dwóch funkcyj:

$$\begin{split} x_n &= \xi_n + \sqrt{r^2 - (x_1 - \xi_1)^2 - \dots - (x_{n-1} - \xi_{n-1})^2}, \\ x_n &= \xi_n - \sqrt{r^2 - (x_1 - \xi_1)^2 - \dots - (x_{n-1} - \xi_{n-1})^2}, \end{split}$$

t.j. funkcyj określonych w zbiorze $\mathcal{K}_{n-1}(r)$ złożonym z punktów $(x_1,...,x_{n-1})$ przestrzeni \mathcal{E}^{n-1} , których współrzędne spełniają nierówność

(50)
$$(x_1 - \xi_1)^2 + \dots + (x_{n-1} - \xi_{n-1})^2 - r^2 \leq 0,$$

i eiagłych w tym zbiorze.

Zbiór $\mathcal{K}_{n-1}(r)$, jak widać ze wzoru (50), jest kulą w \mathcal{E}^{n-1} . Z tw. (7.3), str. 188, wynika, że brzeg kuli jest zbiorem miary \mathfrak{L} zero. Zatem na mocy tw. (4.6), str. 202,

(11.1) Kula jest zbiorem mierzalnym \mathfrak{J} .

Przez przesunięcie równoległe $x_i'=x_i+\xi_i$, gdzie i=1,...,n, kula (49) przechodzi w zbiór \mathcal{K}_n' określony nierównością

(51)
$$x_1^2 + \dots + x_n^2 - r^2 \leq 0.$$

Jest to kula o promieniu r i środku w punkcie O. Na mocy tw. (5.2), str. 204, kule (50) i (51) mają zatem równe miary \mathfrak{J} . A więc (11.2) Miara kuli w \mathcal{E}^n zależy tylko od promienia r.

Oznaczmy przez $v_n(r)$ miarę $\mathfrak J$ kuli $\mathcal K_n$ w $\mathcal E^n$. Udowodnimy za pomocą indukcji, że

$$(11.3) v_n(r) = \alpha_n r^n,$$

gdzie σ_n jest liczbą stałą zależną tylko od n.

Dowód. Twierdzenie zachodzi dla n=1, gdyż kula $\mathcal{K}_{i}(r)$ jest odcinkiem $\langle -r,r \rangle$; zatem $v_{i}(r)=2r$ i $a_{i}=2$.

Załóżmy więc prawdziwość twierdzenia dla n-1. Z tw. (7.1), str. 207, mamy

(52)
$$v_n(r) = \int \dots \int 1 \, dx_1 \dots dx_n.$$

Przyjmując j=n-1 w twierdzeniu (10.1), widzimy, że zbiór R'', czyli rzut kuli (51) na oś x_n , jest odcinkiem $\langle -r,r \rangle$; zbiór zaś $A''(x_n)$ jest kulą w przestrzeni \mathcal{E}^{n-1} , określoną nierównością

$$x_1^2 + ... + x_{n-1}^2 - (r^2 - x_n^2) \le 0,$$

a więc kulą $\mathcal{K}'_{n-1}(\sqrt{r^2-x_n^2});$ zatem

$$v_{n}(r) = \int_{-r}^{r} \left[\int \dots \int_{\mathcal{K}_{n-1}(\sqrt{r^{2} - x_{n}^{2}})} 1 dx_{1} \dots dx_{n-1} \right] dx_{n}.$$

Całka w [] równa się mierze kuli w \mathcal{E}^{n-1} o promieniu $\sqrt{r^2-x_n^2}$. Na mocy założenia prawdziwości wzoru (11.3) dla n-1 całka ta wynosi zatem $a_{n-1}(\sqrt{r^2-x_n^2})^{n-1}$, skąd

$$v_{n}(r) = \int_{-r}^{r} a_{n-1} (\sqrt{r^{2} - x_{n}^{2}})^{n-1} dx_{n}.$$

Podstawiając $x_n = r \cos \varphi$, otrzymujemy

$$v_n(r) = \alpha_{n-1} r^n \int_0^{\pi} \sin^n \varphi \, d\varphi = 2\alpha_{n-1} r^n \int_0^{\pi/2} \sin^n \varphi \, d\varphi.$$

Tym samym tw. (11.3) jest dowiedzione.

Udowodniliśmy zarazem, że $v_n(r)$ jest postaci (11.3), gdzie

(53)
$$a_n = 2a_{n-1} \int_{0}^{\pi/2} \sin^n \varphi \, d\varphi = 2a_{n-1} I_n.$$

Udowodnimy teraz, że

$$(11.4) \quad v_{2n}(r) = \frac{\pi^n r^{2n}}{n!} \quad i \quad v_{2n+1}(r) = \frac{2^n \pi^n r^{2n+1}}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)} \quad dla \quad n \geqslant 1.$$

Dowód. Obliczając całkę $J_n = \int_0^{\pi/2} \sin^n \varphi \, d\varphi$, dostajemy 1) dla $n \ge 1$:

(54)
$$I_1 = 1, \quad I_{2n} = \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot \dots \cdot 2n} \frac{\pi}{2}, \quad I_{2n-1} = \frac{1 \cdot 2 \cdot 4 \cdot \dots \cdot 2n}{1 \cdot 3 \cdot 5 \cdot \dots \cdot 2n + 1}.$$

Podstawiając w (6) n-1 zamiast n, dostajemy $a_{n-1}=2a_{n-2}I_{n-1}$, skąd na mocy (6) $a_n=2^2a_{n-2}I_nI_{n-1}$, zatem:

$$a_{2n} = 2^2 a_{2n-2} I_{2n} I_{2n-1}, \qquad a_{2n+1} = 2^2 a_{2n-1} I_{2n+1} I_{2n},$$

a wiec na mocy (7)

$$a_{2n} = 2^2 a_{2n-2} \cdot \frac{1}{2n} \frac{\pi}{2} = \frac{\pi}{n} a_{2n-2}, \qquad a_{2n+1} = 2^2 a_{2n-1} \frac{\pi}{2} \cdot \frac{1}{2n+1} = \frac{2\pi}{2n+1} \cdot a_{2n-1}.$$

Ponieważ $a_1=2$ i $a_2=\pi$, otrzymujemy z powyższych wzorów redukcyjnych dla $n \ge 1$

$$a_{2n} = \frac{\pi^n}{n!}, \qquad a_{2n+1} = \frac{2^n \pi^n}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)},$$

skąd na mocy (11.3) wynika (11.4), c. b. d. d.

¹⁾ P. S. Banach, Rachunek różniczkowy i całkowy, tom II, str. 158, Książnica Atlas, Wrocław 1949 (przedruk wydania z 1931 r.).