3D-µNMADs

3D Nanofiber-based Microfluidic Analytical Devices Literature Review>

Osamu Katagiri-Tanaka A01212611@itesm.mx

28 Oct 2020

Article

A Flexible Method for Nanofiber-based 3D Microfluidic Device Fabrication for Water Quality Monitoring

Xiaojun Chen *, Deyun Mo * and Manfeng Gong

School of Mechanical and Electronic Engineering, Lingnan Normal University, Zhanjiang 524048, China; gongmf@lingnan.edu.cn

* Correspondence: Email: chxj@lingnan.edu.cn (X.C.); dewin_mo@163.com (D.M.); Tel: +86-180-3025-0016 (X.C.); +86-135-9003-8503 (D.M.)

Received: 20 February 2020; Accepted: 5 March 2020; Published: 6 March 2020

nanofibers + microfluidic chips + sensors + electrospinning

Applications:

e.g. by Liu et al.

Fabrication techniques (state-of-the-art):

2D structures

- photolithography
- spray printing
- paper cutting
- inkjet printing
- screen printing

3D structures

- 2D stacking
- paper origami

Well know techniques, Simple & Easy to implement

Increased functionality & Fewer geometry limitations

Materials and Methods:

FFES ink: polyimide (PI) and silicon powder (Si) in dimethylacetamide (DMAc)

melt-NFES: wax

X&Y Axes

(b)

channe

Process parameters (applied voltage & working distance):

"NFES wax printing is an atomization process rather than a spinning

process."

Process parameters (temperature & stage velocity):

Performance of 3D-µNMADs:

"Faster flow rates were observed in thin membranes."

Membrane porosity decreased and became denser after a long deposition time (No. 4), which resulted in a reduced flow.

Conclusions:

Wax spreading can be controlled by the alignment of the electrospun nanofibers

Nanofiber-based (this paper)

Inkjet printing (Carrilho et al.)

Conclusions (resolution):

Nanofiber-based (this paper)

Photolithography (He et al.)

Conclusions (resolution):

μm

Nanofiber-based (this paper)

Screen printing (Dungchai et al.)

Photolithography

Paper cutting

inkjet printing

Screen printing

2D stacking Step 3 Step 1 paper seal tape to pattern paper bottom layer of photoresist patterned paper Step 2 tape fill holes with cellulose powder cut holes in tape Zhole.

Paper origami

