Curs bàsic d'Anàlisi de dades amb Stata

Sessió 3

- Estimació i contrast d'hipòtesi
 - Test per una mostra t-test
 - Test per 2 mostres. T-test- Mann-Whitney
 - Test per 3 o mes mostres: Anova, Kruskal Wallis
 - Probes de Normalitat
 - Test per variables qualitatives: Jicuadrat
- Correlació i Regressió
 - Gràfics de dispersió
 - Introducció a la Correlació
 - Introducció a la regressió lineal simple
 - Exercici Pràctic

Base dades MUNS mortalitat en UCI

- Quants morts hi ha, quin percentatge
- Quina es la mitjana d'edat dels vius i dels morts
- Quina es la mediana de la gravetat TISS i SAPS en els morts
- Es el % de universitaris en la mostra mes gran en els morts que en els vius

Relación entre variable cuantitativasegún los niveles de una variable cualitativa

2 Muestras independientes

Ejemplo: Comparación de edat en mortalidad a las dos semanas de salir en UCI

graph box edad, over (mortdos1)

Fallecidos

Vivos

2 Muestras independientes

Comparación de normalidad

• Test de normalidad (Saphiro-Wilk, Shaphiro-Francia, Skeness/Kurtosis)

swilk var
sfrancia var
sktest var

. swilk edad	Shaj	piro-Wilk W te	st for no	rmal dat	a	
Variable	Obs	W	V	Z	Prob>z	
edad	844	0.94565	29.377	8.312	0.00000	
. sfrancia edad	Shap	iro-Francia W'	test for	normal	data	
Variable	Obs	W '	V'	Z 	Prob>z	
edad	844	0.94628	30.985	7.080	0.00001	
. sktest edad	Ske	ewness/Kurtosi	s tests f	or Norma	-	ioint
Variable	Obs	Pr(Skewness)	Pr(Kur	tosis)		joint Prob>chi2
edad	844	0.0000	0.0	020	•	0.0000

2 Muestras independientes

Comparación de varianzas

• Test de Barlett

sdtest var1,by(vargrupo)

```
. sdtest edad,by(mortdos1)
Variance ratio test
 Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
fallecid | 189 65.66138 .9846041 13.53607 63.71908 67.60367
 vivo | 554 58.87365 .6462106 15.20999 57.60432 60.14297
combined | 743 60.60027 .5534556 15.08611 59.51374 61.68679
                                                   f = 0.7920
  ratio = sd(fallecid) / sd(vivo)
Ho: ratio = 1
                                      degrees of freedom = 188, 553
  Ha: ratio < 1 Ha: ratio != 1 Ha: ratio > 1
 Pr(F < f) = 0.0291  2*Pr(F < f) = 0.0583  Pr(F > f) = 0.9709
```

Comparación de varianzas

Test de Levene y variaciones (+ 2 grupos)
 robvar var1, by (vargrupo)

2 Muestras independientes

Comparación de medias

• T-test para varianzas iguales

ttest var1,by(vargrupo)

ttest edad	,by(mortdo	s1)				
Two-sample	e t test wi	th equal var	iances			
_			Std. Err.		[95% Conf.	Interval]
fallecid vivo	189 554	65.66138	.9846041 .6462106	13.53607 15.20999	63.71908 57.60432	60.14297
combined	743	60.60027		15.08611	59.51374	
		6.787729			4.339663	9.235796
diff = Ho: diff =		 ecid) - mean				= 5.4433 = 741
Ha: di Pr(T < t)					Ha: d: Pr(T > t)	

2 Muestras independientes

Comparación de medias

• T-test para varianzas diferentes o separadas ttest var1,by (vargrupo) unequal

test edad,	by (mortdos:	l) unequal				
_		th unequal v				
Group	Obs	Mean	Std. Err.			Interval]
fallecid vivo	189 554	65.66138	.9846041 .6462106	13.53607 15.20999	63.71908	60.14297
combined	743	60.60027	.5534556	15.08611	59.51374	61.68679
			1.177724			
diff = Ho: diff =		ecid) - mean		te's degrees	t = of freedom =	
Ha: di Pr(T < t)			Ha: diff != T > t) = (Ha: d: Pr(T > t)	

2 Muestras independientes

Comparación no paramétrica

• Prueba Suma-rango de Wilcoxon o U de Mann-Witney ranksum var1, by (vargrupo)

```
ranksum edad,by(mortdos1)
Two-sample Wilcoxon rank-sum (Mann-Whitney) test
   mortdos1 | obs rank sum expected
  fallecido | 189 85060 70308
     vivo | 554 191336 206088
  combined | 743 276396 276396
unadjusted variance 6491772.00
adjustment for ties -3990.77
adjusted variance 6487781.23
Ho: edad(mortdos1==fallecido) = edad(mortdos1==vivo)
           z = 5.792
   Prob > |z| = 0.0000
```

2 Muestras dependientes

Comparación de medias

• T-test apareado

ttest var1=var2

```
. ttest tiss 20= saps 10
Paired t test
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
tiss 20 | 828 -.1763285 .3729507 10.73165 -.9083699 .5557129
saps_10 | 828 -.6400966 .1660687 4.778624 -.9660623 -.314131
  diff | 828 .4637681 .3000386 8.633608 -.1251587 1.052695
   mean(diff) = mean(tiss 20 - saps 10)
                                                    t = 1.5457
Ho: mean(diff) = 0
                                    degrees of freedom = 827
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.9387 Pr(|T| > |t|) = 0.1226 Pr(T > t) = 0.0613
```

Comparación no paramétrica

Prueba signo-rango de Wilcoxon

signrank var1,by(vargrupo)

```
signrank tiss 20= saps 10
Wilcoxon signed-rank test
      sign | obs sum ranks expected
 positive | 310 155982 171015
negative | 470 186048 171015
       zero | 48 1176 1176
    all | 828 343206 343206
unadjusted variance 47391029
adjustment for ties -66284.125
adjustment for zeros -9506
adjusted variance 47315238
Ho: tiss 20 = \text{saps } 10
     z = -2.185
   Prob > |z| = 0.0289
```

Comparación no paramétrica

• Prueba signo

signtest var1 = var2

```
signtest tiss 20= saps 10
Sign test
       sign | observed expected
   positive | 310 390
  negative | 470 390
       zero | 48 48
     all | 828 828
One-sided tests:
 Ho: median of tiss 20 - \text{saps } 10 = 0 \text{ vs.}
 Ha: median of tiss 20 - saps 10 > 0
     Pr(\#positive >= 310) =
         Binomial (n = 780, x >= 310, p = 0.5) = 1.0000
 Ho: median of tiss 20 - \text{saps } 10 = 0 \text{ vs.}
 Ha: median of tiss 20 - saps 10 < 0
     Pr(\#negative >= 470) =
        Binomial (n = 780, x \ge 470, p = 0.5) = 0.0000
Two-sided test:
 Ho: median of tiss 20 - \text{saps } 10 = 0 \text{ vs.}
 Ha: median of tiss 20 - saps 10 != 0
      Pr(\#positive >= 470 \text{ or } \#negative >= 470) =
         min(1, 2*Binomial(n = 780, x >= 470, p = 0.5)) = 0.0000
```

>2 Muestras independientes

Ejemplo: Comparación de la edad en función del nivel educativo de enfermos en UCI

Comparación de medias

ANOVA

oneway var1 vargrupo ,tabulate means standard bonferroni scheffe

. oneway edad e	ducacio, tabulat	e means	standard be	onferroni s	cheffe
nivel de	Summary of ed	.ad			
'	Mean Std				
	68.18617 11.				
2	60.620098 12.	924095			
3	52.067485 18.	161528			
· ·	52.470588 15.				
•	60.141975 15.				
	Analysi	s of Va	riance		
Source	SS	df	MS	F	Prob > F
Between groups	25887 . 11	3	8629.0366	8 44.07	0.0000
Within groups	157827.563	806	195.81583	5	
Total	183714.673	809	227.08859	4	
Bartlett's test	for equal varia	nces:	chi2(3) = 4	44.7951 Pro	ob>chi2 = 0.000

Comparación de medias

ANOVA

oneway var1 vargrupo ,tabulate means estándar bonferroni scheffe

```
. oneway edad educacio, tabulate means standard bonferroni scheffe
   Comparison of edad by nivel de estudios
                      (Bonferroni)
Row Mean-
         1 2 3
Col Mean |
    2 | -7.56607
     0.000
    3 | -16.1187 -8.55261
     0.000 0.000
     4 | -15.7156 -8.14951 .403104
     0.000 0.001 1.000
             Comparison of edad by nivel de estudios
                       (Scheffe)
Row Mean-I
Col Mean | 1 2 3
    2 \mid -7.56607
     0.000
    3 | -16.1187 -8.55261
     0.000 0.000
    4 | -15.7156 -8.14951 .403104
     1 0.000 0.002 0.998
```

Comparación no paramétrica

Prueba Kruskal-Wallis

kwallis var1,by(vargrupo)

```
kwallis edad, by (educacio)
Test: Equality of populations (Kruskal-Wallis test)
  educacio | Obs | Rank Sum
   ----+----
       1 | 188 | 101002.50
      2 | 408 | 163864.00
       3 | 163 | 49147.50 |
         4 | 51 | 14441.00 |
chi-squared = 105.860 with 3 d.f.
probability = 0.0001
chi-squared with ties = 105.923 with 3 d.f.
probability = 0.0001
```

>2 Muestras dependientes

Comparación de medias

• ANOVA de medidas repetidas. Datos "long2

anova var1 varmedicion id, repeated(medicion)

. anova tas medicion numero	o, repeated(med	dicio	n)		
	Number of obs Root MSE			-squared = dj R-squared =	
Source	Partial SS	df	MS	F Pi	cob > F
'	96330.6179	70	1376.15168	12.52	0.0000
medicion	11716.8386	11	1065.16714	9.69	0.0000
numero	82921.013	59	1405.4409	12.78	0.0000
Residual	62448.3054	568	109.9442		
Total	158778.923	638	248.869786		

Comparación de medias

• ANOVA de medidas repetidas. Datos "long"

anova var1 varmedicion id, repeated (medicion)

```
. anova tas medicion numero, repeated (medicion)
Between-subjects error term: numero
                 Levels: 60 (59 df)
    Lowest b.s.e. variable: numero
Repeated variable: medicion
                                   Huynh-Feldt epsilon = 0.8579
                                   Greenhouse-Geisser epsilon = 0.7316
                                   Box's conservative epsilon = 0.0909
                                     ----- Prob > F -----
               Source | df F Regular H-F G-G Box
             medicion | 11 9.69 0.0000 0.0000 0.0000 0.0030
                         568
             Residual I
```

Comparación no paramètrica

• Test de Skillings-Mack. Datos "long"

skilmack var1 ,i(ident) repeated(medicion)

skilma	ck tas	,id(n	umero) repeat	ed (medici	ion)
Weight	ed Sum	of Ce	ntered Ranks		
medic	ion	N	WSumCRank	SE	WSum/SE
1	+- 	 57	136.81	24.06	5.69
2	-	57	102.14	24.06	4.24
3		55	40.97	24.02	1.71
4		53	-22.63	23.77	-0.95
5		52	-11.31	23.85	-0.47
6		52	-88.39	23.85	-3.71
7		51	-69.85	23.64	-2.95
8		52	-25.41	23.85	-1.07
9		52	-37.92	23.85	-1.59
10		52	-1.16	23.85	-0.05
11		51	10.73	23.64	0.45
12	1	52	-33.97	23.85	-1.42
Total			0		

Comparación no paramètrica

• Test de Skillings-Mack. Datos "long"

skilmack var1 ,i(ident) repeated(medicion)

```
skilmack tas ,id(numero) repeated(medicion)
. . . . .
Note N= 3 not included as only had one observation
Skillings Mack = 76.340
P-value (No ties) = 0.0000
    N.B. As P-value <0.02, it is likely to be conservative (unless n large).
Consider obtaining a p-value from a simulated null
     distribution of SM - see options.
  Ties exist. Above SEs and P-value approximate, if not too many ties;
  639 rows of [numero, tas]; 308 different combinations; n(numero) = 60
  Consider using the p-value below, (which is found from a simulated
        conditional null distribution of SM - see options -
  simulating .....)
Empirical P-value (Ties) ~ 0.0000
```

Relación entre variable cualitativa (2 niveles) según los niveles de una variable cualitativa

Relación variables categòricas

Muestras Independientes

• Prueba Ji cuadrado, Exacta de Fisher tabulate variable1 variable2, chi exact exp

```
. tabulate expcateg aids, chi exact exp
Key
frequency |
| expected frequency |
+----+
exposure | aids diagnosis
category | yes no | Total
  HSH | 20 63 | 83
    18.7 64.3 | 83.0
   UDI | 74 260 |
    75.3 258.7 | 334.0
  Total | 94 323 | 417
     94.0 323.0 | 417.0
     Pearson chi2(1) = 0.1434 Pr = 0.705
      Fisher's exact = 0.769
 1-sided Fisher's exact = 0.402
```

2 Muestras Independientes

 Test z paramètrico para diferencia proporciones (variable codificada como 0 y 1)

prtest variable1 ,by(variable2)

```
. prtest aids, by(expcateq)
Two-sample test of proportion
                          HSH: Number of obs = 83
                                 UDI: Number of obs = 334
  Variable | Mean Std. Err. z P>|z| [95% Conf. Interval]
     HSH | .2409639 .0469427
                                        .1489578 .3329699
     UDI | .2215569 .0227239
                                        .1770189 .2660949
     diff | .019407 .0521536
                                      -.0828121 .1216261
     diff = prop(HSH) - prop(UDI)
                                            z = 0.3787
  Ho: diff = 0
           Ha: diff != 0
  Ha: diff < 0
                                Ha: diff > 0
Pr(Z < z) = 0.6475 Pr(|Z| < |z|) = 0.7049 Pr(Z > z) = 0.35
```

2 Muestras Dependientes

• Test Monemar (2 mediciones variables (0,1) a través de un estudio casos control apareado

mcc var1 var2

```
. mcc rtas1 rtas12
                 Controls
Cases
                   Exposed Unexposed
                                             Total
        Exposed | 12
                                                31
      Unexposed |
                                   18
                        15
                                   37
                                                52
          Total |
McNemar's chi2(1) = 11.64 Prob > chi2 = 0.0006
Exact McNemar significance probability = 0.0009
Proportion with factor
       Cases
                   .5961538
       Controls
                   2884615
                                         Interval
                  .3076923
       difference
                                .1327038
                                          .4826808
                  2.066667
                                1.349346
                                           3.16532
       ratio
       rel diff.
                   .4324324
                                .2452494
                                          6196155
                                          33.41648
       odds ratio 6.333333
                               1.864327
                                                    (exact)
```

2 Muestras Dependientes

• Test de simetria (útil para 2 niveles de la variable) symmetry var1 var2

. symmetry	rtas1 rtas	12				
1	 TAS <140mmHg	>140mmHg				
	18	3	21 31			
Total	37 	15 	52			
Prob>chi2				chi2	df	
Symmetry (a	asymptotic) omogeneity	(Stuart-Max	 (well)	11.64 11.64		
symmi 18	3 \ 19 12					

>2 Muestras Dependientes

• Test de Cochran (variable respuesta de 2 niveles de la variable)

cochran var1 var2 ...varN

Relación entre 2 variables cuantitativas (correlación y regresión)

Gràfico de Dispersion

• Scatterplot

```
sc var1 var2, msymbol(sym) mcolor(color) msize(size)
```

sc saps tiss, mcolor(red) msymbol(triangle) msize(small)

Añadir gràficos (Twoway)

• Es poden combinar gràficos amb el comando twoway para mirar la forma de la relación entre las dos variables

twoway sc saps tiss, mcolor(red) msymbol(triangle) msize(small)
|| lfit saps tiss, lpattern(dash) lwidth(thick) lcolor(blue)

Añadir gràficos (Twoway)

Otras opciones para el twoway son

```
||lfit ||mspline ||lowess ||lfit ||qfit
||fpfit ||lfitci ||qfitci ||fpfitci
||, title() subtitle() note() legend( label(# eti#) )
```

```
twoway sc saps tiss, mcolor(red) msymbol(triangle) msize(small)
|| lfit saps tiss, lpattern(dash) lwidth(thick) lcolor(blue)
|| qfit saps tiss, lpattern(dot) lwidth(thick) lcolor(green)
|| lowess saps tiss, lpattern(solid) lwidth(thick) lcolor(magenta)
||, legend( label(1 Saps) label(2 lineal) label(3 Cuadratico) label(4 loess))
```


Correlación

• Existen dos comandos para obtener la correlación

corr var1 var2 var3
pwcorr var1 var2 var3, sig obs

```
. corr tiss saps edad
(obs = 827)
           tiss saps edad
     tiss | 1.0000
      saps | 0.6183 1.0000
      edad | -0.0579 0.2145 1.0000
. pwcorr tiss saps edad, sig obs
              tiss saps edad
      tiss | 1.0000
               829
      saps | 0.6188 1.0000
            0.0000
               828 837
      edad |
           -0.0592 0.2118
                          1.0000
             0.0889 0.0000
               828 836
                          844
```

Regressión lineal con Stata

• Regresión líneal entre dos variables cuantitativas regress depvar [indepvars], opciones

Source L	SS	df	MS		Number of obs	= 828
++					F(1, 826)	
Model	7230.58002	1 7230	.58002		Prob > F	
Residual	11654.1688	826 14.1	.091632		R-squared	= 0.3829
+					Adj R-squared	= 0.3821
Total	18884.7488	827 22.8	3352464		Root MSE	= 3.7562
		Ctd Err	··	D> +		
saps +					[95% Conf.	intervalj
•					.2516389	.2994189
cons	3.897909	.2743255	14.21	0.000	3.359452	4.436366