2.2 函数的极限

- 2.2.1 函数极限的概念
 - 1. 自变量趋于无穷大时函数的极限
 - 2. 自变量趋于有限值时函数的极限
- 2.2.2 函数极限的性质
- 2.2.3 函数极限存在的判别 两个重要极限

2.2.1 函数极限的概念

观察函数 $\frac{x+1}{x}$ 当 $x \to \infty$ 时的变化趋势观察函数 $\frac{x+1}{x}$ 当 $x \to 0$ 时的变化趋势

观察函数 $\frac{\cos x}{x}$ 当 $x \to \infty$ 时的变化趋势

通过图形演示实验的观察:

当
$$x$$
无限增大时 $f(x) = \frac{x+1}{x}$ 无限接近于1.
当 x 无限趋向时, $f(x) = \frac{x+1}{x}$ 无限趋向于无穷

看出: 函数 y = f(x)在 $x \to \infty(x \to 0)$ 的过程中,对应函数值 f(x) 无限趋近于确定值 A.

问题:如何用数学语言刻划函数"无限接近"?

$$|f(x)-A|<\varepsilon$$
表示 $|f(x)-A|$ 任意小;

$$|x| > X \$$
表示 $x \to \infty$ 的过程.

1. 自变量趋于无穷大时函数的极限

定义: 如果对任意给定的正数 \mathcal{E} (不论其多么小),总存在正数 X,当 |x| > X 时,不等式 $|f(x) - A| < \mathcal{E}$,恒成立,那么称数值A是函数 f(x) 当 $x \to \infty$ 时的极限.

$$\varepsilon - X \stackrel{\circ}{\approx} \stackrel{\circ}{\chi} : \lim_{x \to \infty} f(x) = A \Leftrightarrow$$

$$\forall \varepsilon > 0, \exists X > 0,$$
 当 $|x| > X$ 时, 有 $|f(x) - A| < \varepsilon$.

几何解释:

当x < -X或x > X时,函数y = f(x)图形。函数y = f(x)图形完全落在以直线。 完全落在以直线。 y = A为中心线,宽为2 ε 的带形区域内

定义:如果 $\lim_{x\to\infty} f(x) = A$,则称直线y = A为函数y = f(x)的图形的水平渐近线

例1.
$$\lim_{x\to\infty}\frac{\cos x}{x}=0$$

证:
$$\forall \varepsilon > 0$$
, 要使 $\left| \frac{\cos x}{x} - 0 \right| = \left| \frac{\cos x}{x} \right| < \frac{1}{|x|} < \varepsilon$,

只需
$$|x| > \frac{1}{\varepsilon}$$
, 取 $X = \frac{1}{\varepsilon}$, 则当 $|x| > X$ 时恒有

适当放大

$$\left|\frac{\cos x}{x}-0\right|<\varepsilon,$$

所以
$$\lim_{x\to\infty}\frac{\cos x}{x}=0.$$

例2. 证明:
$$\lim_{x\to\infty}\frac{1+x^3}{2x^3}=\frac{1}{2}$$
.

 $\widetilde{\mathbf{L}} \quad \forall \varepsilon > 0,$

要使
$$\left| \frac{1+x^3}{2x^3} - \frac{1}{2} \right| = \frac{1}{2|x|^3} < \varepsilon$$
, 只需 $|x| > \frac{1}{\sqrt[3]{2\varepsilon}}$,

取
$$X = \frac{1}{\sqrt[3]{2\varepsilon}}$$
 , 则当 $|x| > X$ 时 , 必有

$$\left| \frac{1+x^3}{2x^3} - \frac{1}{2} \right| < \varepsilon,$$

由极限的定义可知:
$$\lim_{x\to\infty}\frac{1+x^3}{2x^3}=\frac{1}{2}.$$

注: 另外两种情形

$$1^0. x \to +\infty: \lim_{x \to +\infty} f(x) = A \Leftrightarrow$$

 $\forall \varepsilon > 0, \exists X > 0,$ 使当x > X时, 恒有 $|f(x) - A| < \varepsilon$.

$$2^0 \cdot x \to -\infty$$
: $\lim_{x \to -\infty} f(x) = A \Leftrightarrow$

 $\forall \varepsilon > 0, \exists X > 0,$ 使当x < -X时, 恒有 $f(x) - A < \varepsilon$.

3º充要条件:

$$\lim_{x\to\infty} f(x) = A \Leftrightarrow \lim_{x\to+\infty} f(x) = A = \lim_{x\to-\infty} f(x).$$

例3. 证明
$$\lim_{x\to +\infty} (e^{-x}+1)=1$$
.

证明 因为
$$|e^{-x}+1-1|=|e^{-x}|$$
 $\forall \varepsilon > 0$, 要使 $|e^{-x}+1-1| < \varepsilon$,即 $e^{-x} < \varepsilon$ 也即 $x > \ln \frac{1}{\varepsilon}$,只要取 $X = \ln \frac{1}{\varepsilon}$,则当 $x > X$ 时恒有 $|e^{-x}+1-1| < \varepsilon$,所以 $\lim_{x \to \infty} (e^{-x}+1) = 1$.

例4. 证明
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
.

证 任给
$$\varepsilon > 0$$
 ($\varepsilon < \frac{\pi}{2}$), 取 $M = \tan(\frac{\pi}{2} - \varepsilon)$.

因为 $\arctan x$ 严格增, 当x > M 时,

$$\left| \arctan x - \frac{\pi}{2} \right| = \frac{\pi}{2} - \arctan x$$

$$<\frac{\pi}{2}-(\frac{\pi}{2}-\varepsilon)=\varepsilon.$$

这就是说
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
.

2. 自变量趋向有限值时函数的极限

考虑函数
$$y = \frac{x^2 - 4}{x - 2}$$
 $(x \neq 2)$

(I) 双侧极限

$$|f(x)-A| < \varepsilon$$
 表示 $|f(x)-A|$ 任意小; $0 < |x-x_0| < \delta$ 表示 $x \to x_0$ 的过程

13

定义: 如果对于任意给定的正数ε(不论它多 $么小),总存在正数<math>\delta$,使得对于适合不等式 $0 < |x - x_0| < \delta$ 的一切x,对应的函数值f(x)都 满足不等式 $f(x) - A < \varepsilon$, 那末常数 A 就叫函数 f(x)当 $x \to x_0$ 时的极限,记作

注: 1.函数极限与f(x)在点 x_0 是否有定义无关;

- $2.\delta$ 与任意给定的正数 ε 有关,即 δ = $\delta(\varepsilon)$;
- 3. (几何解释)

当x在 x_0 的去心 δ 邻域时,函数y = f(x)图形完全落在以直缘y = A为中心线,宽为 2ε 的带形区域内.

显然,找到一个 δ 后, δ 越小越好.

目的:对任意的 $\varepsilon>0$,要找 $\delta>0$,使得当 $0<|x-x_0|<\delta$ 时,有

 $|f(x)-A|<\varepsilon$.

例5. 证明
$$\lim_{x\to x_0} C = C$$
, (C为常数).

证 这里
$$f(x)-A=|c-c|=0$$
,

任给
$$\varepsilon > 0$$
, 任取 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时,

$$|f(x)-A|=|C-C|=0$$
 < ϵ 成立,所以 $\lim_{x\to x_0}C=C$.

例6. 证明
$$\lim_{x\to x_0} x = x_0$$
.

证 这里
$$|f(x)-A|=|x-x_0|$$
,因此

任给
$$\varepsilon > 0$$
, 取 $\delta = \varepsilon$, 当 $0 < |x - x_0| < \delta = \varepsilon$ 时,
$$|f(x) - A| = |x - x_0| < \varepsilon$$
成立, 所以 $\lim_{x \to \infty} x = x_0$.

例7. 证明
$$\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$$
.

证 函数在点x=2处没有定义.

这里
$$|f(x)-A| = \left|\frac{x^2-4}{x-2}-4\right| = |x-2|$$

任给 $\varepsilon > 0$, 要使 $|f(x) - A| < \varepsilon$, 只要取 $\delta = \varepsilon$,

当
$$0<|x-2|<\delta$$
时,就有 $\left|\frac{x^2-4}{x-2}-4\right|<\varepsilon$,

所以
$$\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$$
.

if
$$|f(x) - A| = |\sqrt{x} - \sqrt{x_0}| = \left| \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}} \right| \le \frac{|x - x_0|}{\sqrt{x_0}},$$

任给 $\varepsilon > 0$, 要使 $|f(x) - A| < \varepsilon$,

只要
$$|x-x_0| < \sqrt{x_0}\varepsilon$$
且 x 不取负值. 取 $\delta = \min\{x_0, \sqrt{x_0}\varepsilon\}$,

当
$$0<|x-x_0|<\delta$$
时,就有 $|\sqrt{x}-\sqrt{x_0}|<\varepsilon$,

所以
$$\lim_{x\to x_0} \sqrt{x} = \sqrt{x_0}$$
.

(II) 单侧极限

设
$$f(x) = \begin{cases} 2-x, & x < 0 \\ x^2 + 2, & x \ge 0 \end{cases}$$

考虑极限 $\lim_{x\to 0} f(x)$.

分x > 0和x < 0两种情况分别讨论

x从左侧无限趋近0,函数值无限接近于2。

x从右侧无限趋近0,函数值无限接近于2。

左极限:

$$\lim_{\substack{x \to x_0 - 0 \\ (x \to x_0^-)}} f(x) = A \quad \vec{\boxtimes} \quad f(x_0 - 0) = A \quad \Longleftrightarrow$$

$$\forall \varepsilon > 0, \exists \delta > 0,$$
使当 $x_0 - \delta < x < x_0$ 时,
恒有 $|f(x) - A| < \varepsilon$.

右极限:

$$\lim_{\substack{x \to x_0 + 0 \\ (x \to x_0^+)}} f(x) = A \quad \vec{\boxtimes} \quad f(x_0 + 0) = A \quad \Leftrightarrow$$

$$\forall \varepsilon > 0, \exists \delta > 0,$$
使当 $x_0 < x < x_0 + \delta$ 时,
恒有 $|f(x) - A| < \varepsilon$.

注1:左极限与右极限都称之为单侧极限

注2: 单侧极限与双侧极限的关系

极限存在定理:

$$\lim_{x \to x_0} f(x) = A \iff f(x_0 - 0) = f(x_0 + 0) = A.$$

注:极限存在定理主要用于讨论分段函数在分段点处的极限.

例9. 证明
$$\lim_{x\to 0} \frac{|x|}{x}$$
 不存在

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x}$$

$$=\lim_{x\to 0^{-}}(-1)=-1$$

$$\begin{array}{c|c}
 & y \\
 & 1 \\
\hline
 & 0 \\
\hline
 & -1
\end{array}$$

$$\lim_{x \to 0^{+}} \frac{|x|}{x} = \lim_{x \to 0^{+}} \frac{x}{x} = \lim_{x \to 0^{+}} 1 = 1$$

左右极限存在但不相等, :. $\lim_{x\to 0} f(x)$ 不存在.

例10. 设
$$f(x) = \begin{cases} 1-x, & x < 0 \\ x^2 + 1, & x \ge 0 \end{cases}$$
, 求 $\lim_{x \to 0} f(x)$.

解 x=0是函数的分段点,两个单侧极限为

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} (1-x) = 1,$$

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (x^2 + 1) = 1,$$

左右极限存在且相等,

故
$$\lim_{x\to 0} f(x) = 1$$
.

极限定义一览表

极限形式	度量	过程描述	目标不等式
$\lim_{n\to\infty} x_n = a$	$\forall \varepsilon > 0$	$\exists N > 0, $ 当 $n > N$ 时	$ x_n - a < \varepsilon$
$\lim_{x \to \infty} f(x) = a$		$\exists X > 0, $ 当 $ x > X$ 时	
$\lim_{x \to +\infty} f(x) = a$		$\exists X > 0, $ 当 $x > X$ 时	
$\lim_{x \to -\infty} f(x) = a$		$\exists X > 0, $ 当 $x < -X$ 时	$ f(x)-a <\varepsilon$
$\lim_{x \to x_0} f(x) = a$		$\exists \delta > 0, \text{当} 0 < x - x_0 < \delta $ 时	
$\lim_{x \to x_0^+} f(x) = a$		$\exists \delta > 0, \text{当} 0 < x - x_0 < \delta $ 时	
$\lim_{x \to x_0^-} f(x) = a$		$\delta > 0$, 当 $-\delta < x - x_0 < 0$ 时	

2.2.2 函数极限的性质

前面引进的六种类型的函数极限,它们都有类似于数列极限的一些性质.这里仅以

$$\lim_{x\to x_0} f(x) = A$$

为代表叙述并证明这些性质,至于其它类型的性质与证明,只要相应作一些修改即可.

性质1(唯一性): 若 $\lim_{x\to x_0} f(x)$ 存在,则此极限惟一.

证 不妨设 $\lim_{x\to x_0} f(x) = A$ 以及 $\lim_{x\to x_0} f(x) = B$.

由极限的定义,对于任意的正数 ε ,存在正数 δ_1,δ_2

当
$$0 < |x-x_0| < \delta_1$$
 时, $|f(x)-A| < \frac{\varepsilon}{2}$ (1)

$$\stackrel{\text{def}}{=} 0 < |x - x_0| < \delta_2 \text{ 时}, \quad |f(x) - B| < \frac{\varepsilon}{2}.$$
 (2)

令 $\delta = \min\{\delta_1, \delta_2\}$, 当 $0 < |x - x_0| < \delta$ 时,(1) 式与(2) 式均成立,所以

$$|A-B| \le |A-f(x)| + |f(x)-B| < \varepsilon$$
.

由 ε 的任意性,推得A=B. 这就证明了极限是惟一的.

性质2(局部有界性)

若 $\lim_{x \to x_0} f(x) = A$,则存在 $U^{\circ}(x_0)$,f(x) 在 $U^{\circ}(x_0)$ 上有界.

证 取 $\varepsilon = 1$,存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时,

$$|f(x)-A|<1$$
.

由此得

$$|f(x)| < |A| + 1$$
.

这就证明了f(x)在某个空心邻域 $U^{\circ}(x_0,\delta)$ 上有界.

性质3 (局部保号性) 若 $\lim_{x\to x_0} f(x) = A > 0$ (或<0),

则对任何正数 r < A (或 r < -A), 存在 $U^{\circ}(x_0)$, 使得

对一切 $x \in U^{\circ}(x_0)$,有

$$f(x) > r > 0$$
 ($\vec{\mathfrak{g}}$ $f(x) < -r < 0$).

证 不妨设A>0. 对于任何 $r\in(0,A)$, 取 $\varepsilon=A-r$,

存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, 有

$$|f(x)-A| < \varepsilon, \implies f(x) > A-\varepsilon > r > 0.$$

推论: 设 $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$, 且A < B, 则 $\exists \delta > 0$, $\forall x \in U^0(x_0, \delta)$, 有f(x) < g(x).

性质4(保不等式性) 设 $\lim_{x\to x_0} f(x)$ 与 $\lim_{x\to x_0} g(x)$

都存在,且在某邻域 $U^{\circ}(x_0)$ 内有 $f(x) \leq g(x)$,则

$$\lim_{x\to x_0} f(x) \le \lim_{x\to x_0} g(x).$$

证 设 $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$, 那么对于任意

 $\varepsilon > 0$,分别存在正数 δ_1, δ_2 ,使当 $0 < |x - x_0| < \delta_1$

时,有 $f(x)>A-\varepsilon$;

而当 $0 < |x - x_0| < \delta_2$ 时,有 $g(x) < B + \varepsilon$.

令 $\delta = \min\{\delta_1, \delta_2\}$,则当 $0 < |x - x_0| < \delta$ 时,满足 $A - \varepsilon < f(x) \le g(x) < B + \varepsilon,$

从而有 $A < B + 2\varepsilon$. 因为 ε 是任意正数,所以证得 $A \le B_{\sigma}$

性质5 (四则运算法则) 若 $\lim_{x\to x_0} f(x)$, $\lim_{x\to x_0} g(x)$

都存在,则 $f \pm g$, $f \cdot g$ 在点 x_0 的极限也存在,且

(1)
$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x);$$

(2)
$$\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x);$$

(3) 又若
$$\lim_{x\to x_0} g(x) \neq 0$$
,则 $\frac{f}{g}$ 在点 x_0 的极限也存在,并有

$$\lim_{x\to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x\to x_0} f(x)}{\lim_{x\to x_0} g(x)}.$$

例11 求
$$\lim_{x\to 2} \frac{x^3-1}{x^2-3x+5}$$
.

$$\Re : \lim_{x \to 2} (x^2 - 3x + 5) = \lim_{x \to 2} x^2 - \lim_{x \to 2} 3x + \lim_{x \to 2} 5$$

$$= (\lim_{x \to 2} x)^2 - 3\lim_{x \to 2} x + \lim_{x \to 2} 5$$

$$= 2^2 - 3 \cdot 2 + 5 = 3 \neq 0,$$

$$\therefore \lim_{x\to 2} \frac{x^3 - 1}{x^2 - 3x + 5} = \frac{\lim_{x\to 2} x^3 - \lim_{x\to 2} 1}{\lim_{x\to 2} (x^2 - 3x + 5)} = \frac{2^3 - 1}{3} = \frac{7}{3}.$$

注: 1. 设
$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$$
,则有

$$\lim_{x \to x_0} f(x) = a_0 (\lim_{x \to x_0} x)^n + a_1 (\lim_{x \to x_0} x)^{n-1} + \dots + a_n$$

$$= a_0 x_0^n + a_1 x_0^{n-1} + \dots + a_n = f(x_0).$$

2. 设
$$f(x) = \frac{P(x)}{Q(x)}$$
, 且 $Q(x_0) \neq 0$, 则有

$$\lim_{x \to x_0} f(x) = \frac{\lim_{x \to x_0} P(x)}{\lim_{x \to x_0} Q(x)} = \frac{P(x_0)}{Q(x_0)} = f(x_0).$$

若 $Q(x_0) = 0$, 则商的法则不能应用.

例12. 求
$$\lim_{x\to 1} \frac{x^2-1}{x^2+2x-3}$$
.

解 $x \to 1$ 时,分子,分母的极限都是零. $(\frac{1}{0} 型)$

先约去不为零的无穷小因子x-1后再求极限.

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 2x - 3} = \lim_{x \to 1} \frac{(x+1)(x-1)}{(x+3)(x-1)}$$

$$= \lim_{x \to 1} \frac{x+1}{x+3} = \frac{1}{2}.$$
 (消去零因子法)

例13. 求
$$\lim_{x\to\infty} \frac{2x^3+3x^2+5}{7x^3+4x^2-1}$$
.

 \mathbf{m} $x \to \infty$ 时,分子、分母的极限都是无穷大. ($\frac{\mathbf{w}}{\mathbf{w}}$ 型)

先用x3去除分子分母、分出无穷小,再求极限.

$$\lim_{x \to \infty} \frac{2x^3 + 3x^2 + 5}{7x^3 + 4x^2 - 1} = \lim_{x \to \infty} \frac{2 + \frac{3}{x} + \frac{5}{x^3}}{7 + \frac{4}{x} - \frac{1}{x^3}} = \frac{2}{7}.$$

(无穷小因子分出法)

$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_m}{b_0 x^n + b_1 x^{n-1} + \dots + b_n} = \begin{cases} \frac{a_0}{b_0}, \stackrel{\cong}{\Rightarrow} n = m, \\ 0, \stackrel{\cong}{\Rightarrow} n > m, \\ \infty, \stackrel{\cong}{\Rightarrow} n < m, \end{cases}$$

无穷小分出法:以分母中自变量的最高次幂除分子, 分母,以分出无穷小,然后再求极限.

例14. 求
$$\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \cdots + \frac{n}{n^2}\right)$$
.

解 $n \to \infty$ 时,是无限多个无穷小之和.

先变形再求极限.

$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2} \right) = \lim_{n \to \infty} \frac{1 + 2 + \dots + n}{n^2}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{2}n(n+1)}{n^2} = \lim_{n \to \infty} \frac{1}{2}(1+\frac{1}{n}) = \frac{1}{2}.$$

性质6.复合函数极限运算法则

定理:设
$$\lim_{x\to x_0} \varphi(x) = a$$
,且 x 满足 $0 < |x-x_0| < \delta_1$ 时,

$$\varphi(x) \neq a$$
,又 $\lim_{u \to a} f(u) = A$,则有

$$\lim_{x\to x_0} f[\varphi(x)] = \lim_{u\to a} f(u) = A$$

取
$$\delta = \min\{\delta_1, \delta_2\}$$
,则当 $0 < |x - x_0| < \delta$ 时 $0 < |\varphi(x) - a| = |u - a| < \eta$

故
$$|f[\phi(x)]-A|=|f(u)-A|<\varepsilon$$
, 因此①式成立.

*注: 定理中,条件 $\varphi(x) \neq a$, $0 < |x - x_0| < \delta_1$ 不能少,否则结论可能不成立。例如,

$$u = \varphi(x) = x \sin \frac{1}{x}, \quad y = f(u) = \begin{cases} 0, & u = 0, \\ 1, & u \neq 0 \end{cases}$$

则有 $\lim_{x\to 0} \varphi(x) = 0$, $\lim_{u\to 0} f(u) = 1$,

$$f(\varphi(x)) = \begin{cases} 0, x = 1/(n\pi), \\ 1, x \neq 1/(n\pi), \end{cases} n \in N^{+}$$

但 $\lim_{x\to 0} f(\varphi(x))$ 不存在.

性质6 (复合函数的极限运算法则)

$$\begin{cases} \lim_{x \to x_0} \varphi(x) = a, u = \varphi(x) \neq a, \\ \lim_{u \to a} f(u) = A, \end{cases} \Rightarrow \lim_{x \to x_0} f[\varphi(x)] = \lim_{u \to a} f(u) = A.$$

意义:复合函数极限法则实质上是变代换法则,即

$$\lim_{x \to x_0} f[\varphi(x)] \qquad \Leftrightarrow u = \varphi(x) \qquad \qquad \lim_{u \to a} f(u)$$

$$a = \lim_{x \to x_0} \varphi(x)$$

例15. 试确定常数 a 使 $\lim_{x\to\infty}(\sqrt[3]{1-x^3}-ax)=0$.

解: $\diamondsuit t = \frac{1}{x}$,则

$$\lim_{x \to \infty} (\sqrt[3]{1 - x^3} - a x) = \lim_{t \to 0} \left[\sqrt[3]{1 - \frac{1}{t^3}} - \frac{a}{t} \right] = \lim_{t \to 0} \frac{\sqrt[3]{t^3 - 1} - a}{t} = 0$$

因为分母 $t \to 0$, 所以要使上式成立,必须有

$$\lim_{t \to 0} \left[\sqrt[3]{t^3 - 1} - a \right] = 0,$$

$$\Rightarrow$$
 $-1-a=0$, 因此 $a=-1$.

2.2.3 函数极限存在的判别,两个重要极限

仍以 $\lim_{x \to x_0} f(x)$ 为代表,介绍函数极限存在的条件. 对于其他类型的极限, 也有类似的结论.

- 一、归结原则
- 二、迫敛性
- 三、单调有界原理
- 四、两个重要极限
- 五、柯西收敛准则

一、归结原则 (Heine定理)

定理 2.2.6 设 f 在 $U^{\circ}(x_0,\eta)$ 有定义. $\lim_{x\to x_0} f(x)$ 存在 的充要条件是:对于在 $U^{\circ}(x_0,\eta)$ 内以 x_0 为极限的 任何数列 $\{x_n\}$, 极限 $\lim f(x_n)$ 都存在, 并且相等. 证 (必要性) 设 $\lim f(x) = A$,则对任给 $\varepsilon > 0$,存 在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$. 设 $\{x_n\}\subset U^\circ(x_0,\eta), x_n\to x_0$,那么对上述 δ ,存在 N, 当 n > N 时, 有 $0 < |x_n - x_0| < \delta$, 所以 $|f(x_n)-A|<\varepsilon$. 这就证明了 $\lim f(x_n)=A$.

(充分性) 设任给 $\{x_n\}\subset U^\circ(x_0,\eta), x_n\to x_0,$ 恒有 $\lim_{n\to\infty} f(x_n)=A$.

$$|f(x_{\delta})-A| \geq \varepsilon_0.$$

现分别取 $\delta_1 = \eta, \delta_2 = \frac{\eta}{2}, \dots, \delta_n = \frac{\eta}{n}, \dots,$ 存在相应的 $x_1, x_2, \dots, x_n, \dots, x_n \in U^\circ(x, \delta_n),$

使得 $|f(x_n)-A| \ge \varepsilon_0, n=1,2,\cdots$.

另一方面, $0<|x_n-x_0|<\delta_n=\frac{\eta}{n}$,所以 $\lim_{n\to\infty}x_n=x_0$. 这与 $\lim_{n\to\infty}f(x_n)=A$ 矛盾.

注1 归结原则有一个重要应用:

若存在
$$\{x_n\}, \{y_n\} \subset U^{\circ}(x_0), x_n \to x_0, y_n \to x_0,$$
但是
$$\lim_{n \to \infty} f(x_n) = A \neq B = \lim_{n \to \infty} f(y_n),$$

则 $\lim_{x\to x_0} f(x)$ 不存在.

注2 $x \rightarrow x_0^+$ 时的归结原则如下:

定理 设f(x) 在 x_0 的某空心右邻域 $U_+^\circ(x_0)$ 有定义,则

$$\lim_{x \to x_0^+} f(x) = A \Leftrightarrow \begin{cases} \text{任给}\{x_n\} \subset U_+^{\circ}(x_0), x_n \to x_0, \\ \text{必有}\lim_{n \to \infty} f(x_n) = A. \end{cases}$$

例16. 证明 $\lim_{x\to 0} \sin\frac{1}{x}$, $\lim_{x\to \infty} \cos x$ 都不存在.

解取
$$x_n = \frac{1}{2n\pi} \to 0$$
, $y_n = \frac{1}{2n\pi + \frac{\pi}{2}} \to 0$, 有

$$\lim_{n\to\infty}\sin\frac{1}{x_n}=0\neq 1=\lim_{n\to\infty}\sin\frac{1}{y_n},\quad \text{th}\quad \lim_{x\to 0}\sin\frac{1}{x}$$
 不存在.

二、迫敛性

定理 2.2.7 (迫敛性) 设 $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = A$,且 在 x_0 的某个空心邻域 $U^{\circ}(x_0)$ 内有 $f(x) \le h(x) \le g(x)$. 那么 $\lim_{x\to x_0} h(x) = A$.

证 因为 $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = A$,所以对于任意 $\varepsilon > 0$,存在 $\delta > 0$,当 $0 < |x-x_0| < \delta$ 时,有 $A-\varepsilon < f(x) < A+\varepsilon$, $A-\varepsilon < g(x) < A+\varepsilon$. 再由定理的条件,得 $A-\varepsilon < f(x) \le h(x) \le g(x) < A+\varepsilon$.

这就证明了h(x)在点 x_0 的极限存在,并且就是A.

例 17. 求
$$\lim_{x\to 0} x \left[\frac{1}{x}\right]$$
.

解 由取整函数的性质, $\frac{1}{x}-1<\left[\frac{1}{x}\right]\leq\frac{1}{x}$. 当 x>0

时,有
$$1-x < x \left[\frac{1}{x}\right] \le 1$$
,由于 $\lim_{x \to 0^+} (1-x) = \lim_{x \to 0^+} 1 = 1$,

因此由迫敛性得 $\lim_{x\to 0^+} x \left[\frac{1}{x}\right] = 1;$ 又当 x < 0 时,有

$$1 < x \left[\frac{1}{x} \right] \le 1 - x$$
,同理得 $\lim_{x \to 0^{-}} x \left[\frac{1}{x} \right] = 1$. 于是求得

$$\lim_{x\to 0} x \left[\frac{1}{x}\right] = 1.$$

例18. 求证
$$\lim_{x\to 0} a^x = 1 \ (a > 1)$$
.

证 因为
$$\lim_{n\to\infty} \sqrt[n]{a} = 1$$
, $\lim_{n\to\infty} \frac{1}{\sqrt[n]{a}} = 1$, 所以 $\forall \varepsilon > 0, \exists N$,

当 $n \ge N$ 时,有 $1-\varepsilon < a^{-\frac{1}{n}} < a^{\frac{1}{n}} < 1+\varepsilon$, 特别又有

$$1-\varepsilon < a^{-\frac{1}{N}} < a^{\frac{1}{N}} < 1+\varepsilon.$$

取
$$\delta = \frac{1}{N}$$
, 当 $0 < |x - 0| < \delta$ 时,
$$1 - \varepsilon < a^{-\frac{1}{N}} < a^x < a^{\frac{1}{N}} < 1 + \varepsilon$$
,

即 $\lim_{x\to 0} a^x = 1$ 得证.

注: 本利实际上证明了 a^x 在 x=0 处连续.

有例18可得:
$$\lim_{x\to 0} a^x = 1 \ (0 < a < 1), \quad \lim_{x\to \infty} a^{\frac{1}{x}} = 1.$$

例19. 设 $a_i > 0$ $(i = 1, 2, \dots, n)$, 证明:

$$\lim_{x \to +\infty} \left(\frac{a_1^x + a_2^x + \dots + a_n^x}{n} \right)^{\frac{1}{x}} = \max_{1 \le i \le n} \{a_i\}.$$

证: 设 $\max_{1 \le i \le n} \{a_i\} = a_k \ (1 \le k \le n)$, 则当 x > 0 时,有

$$a_{k} \left(\frac{1}{n}\right)^{\frac{1}{x}} = \left(\frac{a_{k}^{x}}{n}\right)^{\frac{1}{x}} \le \left(\frac{a_{1}^{x} + a_{2}^{x} + \dots + a_{n}^{x}}{n}\right)^{\frac{1}{x}} \le \left(\frac{na_{k}^{x}}{n}\right)^{\frac{1}{x}} = a_{k}$$

因为 $\lim_{x\to +\infty} \left(\frac{1}{n}\right)^{\frac{1}{x}} = 1$,所以由迫敛性可知原式成立.

三、单调有界原理*

相应于数列极限的单调有界定理,关于 $x \to x_0^+$, $x \to x_0^-$,

 $x \to +\infty$ 和 $x \to -\infty$ 这四种类型的单侧极限也有相应的定理.

现以 $x \to x_0^+$ 这种类型为例叙述如下:

定理: 设f 是定义在 $U_+^0(x_0)$ 上的单调有界函数,则右极限 $\lim_{x\to x_0^+} f(x)$ 存在.

证:不妨设 f 在 $U_{+}^{0}(x_{0})$ 上递增. 因 f 在 $U_{+}^{0}(x_{0})$ 上有界,由确界原理, $\inf_{x \in U_{+}^{0}(x_{0})} f(x)$ 存在,记为 A.下证 $\lim_{x \to x_{0}^{+}} f(x) = A$

事实上,任给 $\varepsilon > 0$,按下确界定义,存在 $x' \in U_{+}^{0}(x_{0})$,使得 $f(x') < A + \varepsilon. 取 \delta = x' - x_{0} > 0$,则由f的递增性,对一切 $x \in (x_{0}, x') = U_{+}^{0}(x_{0}; \delta)$,有 $f(x) \leq f(x') < A + \varepsilon$.

另一方面,由 $A \le f(x)$,更有 $A - \varepsilon \le f(x)$.从而对一切 $x \in U_{+}^{0}(x_{0}; \delta)$ 有 $A - \varepsilon < f(x) < A + \varepsilon$

这就证得 $\lim_{x \to x_0^+} f(x) = A.$

思考题:

请写出函数极限其它三种形式($x \to x_0^-, x \to -\infty, x \to +\infty$) 的单调有界原理.

例:设f(x) 在 $(a,+\infty)$ 上单调增,且有上界,证明极限 $\lim_{x\to +\infty} f(x)$ 存在。

四、柯西收敛准则

这里给出 $\lim_{x\to +\infty} f(x)$ 的柯西收敛准则,请读者自行写出其他五种极限类型的柯西收敛准则,并证明之.

定理: 设 f(x) 在 +∞ 的某个邻域 $\{x \mid x > M\}$ 上有定义,则极限 $\lim_{x \to +\infty} f(x)$ 存在的充要条件是: 任给 $\varepsilon > 0$,存在 X(> M),对于任意 $x_1, x_2 > X$,均有 $|f(x_1) - f(x_2)| < \varepsilon$.

证(必要性)设 $\lim_{x\to+\infty} f(x) = A$,则对于任意 $\varepsilon > 0$,

存在X(> M),对一切x > X,

$$|f(x)-A|<\frac{\varepsilon}{2}$$
.

所以对一切 $x_1, x_2 > X$,有

$$|f(x_1)-f(x_2)| \le |f(x_1)-A|+|f(x_2)-A| < \varepsilon.$$

(充分性) 对任意的 $\varepsilon > 0$, 存在X(>M),对一切

$$x_1, x_2 > X, \hat{\eta}$$

$$|f(x_1)-f(x_2)|<\varepsilon.$$

任取 $\{x_n\}, x_n \to +\infty$,则存在N,当n > N时,

 $x_n > X$. 又当n,m > N时, $x_n,x_m > M$,故

$$|f(x_n)-f(x_m)|<\varepsilon.$$

这就是说 $\{f(x_n)\}$ 是柯西列,因此收敛.

若存在 $\{x_n\},\{y_n\},x_n\to+\infty,y_n\to+\infty$,使

$$f(x_n) \rightarrow A, f(y_n) \rightarrow B, B \neq A,$$

则令 $\{z_n\}$ 为 $x_1, y_1, x_2, y_2, \dots, x_n, y_n, \dots$,显然 $z_n \to +\infty$.

但 $\{f(z_n)\}$ 发散,矛盾.

这样就证明了对于任意的 $\{x_n\}, x_n \to +\infty$,

 $\lim_{n\to\infty} f(x_n)$ 存在且相等.由归结原则, $\lim_{x\to+\infty} f(x)$ 存在.

注 由柯西准则可知, $\lim_{x \to +\infty} f(x)$ 不存在的充要条件

是: $\exists \varepsilon_0 > 0$, 以及 $\{x_n\}, \{y_n\}$,虽然

$$x_n \to +\infty$$
, $y_n \to +\infty$,

但是

$$|f(x_n)-f(y_n)|\geq \varepsilon_0.$$

例如,对于
$$y = \sin x$$
,取 $\varepsilon_0 = 1$,
$$x_n = 2n\pi, \ y_n = 2n\pi + \frac{\pi}{2},$$

但是 $|\sin x_n - \sin y_n| = 1 \ge \varepsilon_0$. 这就说明 $\lim_{x \to +\infty} \sin x$ 不存在.

注: 函数极限柯西收敛准则的其它形式

1) 函数极限 $\lim_{x\to x_0} f(x)$ 的柯西收敛准则:

$$\lim_{x \to x_0} f(x)$$
 存在 $\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \quad \text{当} \ 0 < |x' - x_0| < \delta,$
$$0 < |x'' - x_0| < \delta \quad \text{时,} \quad f(x') - f(x'') | < \varepsilon.$$

2) 函数极限 $\lim_{x\to x_0} f(x)$ 柯西收敛准则的否定形式

$$\lim_{x \to x_0} f(x) \, \text{不存在} \iff \exists \varepsilon_0 > 0, \forall \delta > 0 \text{ (无论 } \delta \text{多么小)},$$
 总存在 $x', x'' \in U^0(x_0; \delta),$ 使得 $|f(x') - f(x'')| \ge \varepsilon_0.$

例20. 用柯西收敛准则证明 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

证: 取 $\varepsilon_0 = \frac{1}{2}$. 对于任意的 $\delta > 0$, 取

$$x' = \frac{1}{2n\pi + \frac{\pi}{2}}, \quad x'' = \frac{1}{2n\pi},$$

则当 $n > \frac{1}{\delta}$,有 $0 < |x'-0| = \frac{1}{2n\pi + \pi/2} < \frac{1}{n} < \delta$,

$$0 < |x'' - 0| = \frac{1}{2n\pi} < \frac{1}{n} < \delta,$$

且 $|f(x') - f(x'')| = |\sin(2n\pi + \frac{\pi}{2}) - \sin 2n\pi| = 1 > \frac{1}{2} = \varepsilon_0,$

由柯西收敛准则, $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

五、两个重要极限:

$$(1) \quad \lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \left(\frac{0}{0} \, \stackrel{\square}{2}\right)$$

作单位圆的切线, 得 ΔACO .

扇形OAB的圆心角为x, $\triangle OAB$ 的高为BD,

于是有 $\sin x = BD$, x =弧AB, $\tan x = AC$,

$$\therefore \sin x < x < \tan x, \qquad \text{$\mathbb{P} \cos x < \frac{\sin x}{x} < 1,$}$$

$$|0| < |\cos x - 1| = 1 - \cos x = 2\sin^2 \frac{x}{2} < 2(\frac{x}{2})^2 = \frac{x^2}{2},$$

$$\lim_{x\to 0}\frac{x^2}{2}=0, \qquad \lim_{x\to 0}(1-\cos x)=0,$$

般地:
$$\lim_{f(x)\to 0} \frac{\sin f(x)}{f(x)} = 1$$

例21. (1)
$$\lim_{x\to 0} \frac{\tan x}{x} = \lim_{x\to 0} \frac{\sin x}{x} \frac{1}{\cos x} = 1$$

(2)
$$\lim_{x\to 0} \frac{\sin \alpha x}{\sin \beta x} = \lim_{x\to 0} \frac{\sin \alpha x / \alpha x}{\sin \beta x / \beta x} \frac{\alpha}{\beta} = \frac{\alpha}{\beta}$$

(3)
$$\lim_{x\to 0} \frac{\arcsin x}{x} = \lim_{t\to 0} \frac{t}{\sin t} = 1$$

例22. 求
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
.

解 原式 =
$$\lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = \frac{1}{2} \lim_{x \to 0} \frac{\sin^2 \frac{x}{2}}{(\frac{x}{2})^2}$$

$$= \frac{1}{2} \lim_{x \to 0} (\frac{\sin \frac{x}{2}}{\frac{x}{2}})^2 = \frac{1}{2} \cdot 1^2$$

$$= \frac{1}{2}.$$

(2)
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$
 $\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$

$$\lim_{n\to\infty} (1+\frac{1}{n})^n = e$$

一般地:

$$\lim_{f(x)\to\infty} \left(1 + \frac{1}{f(x)}\right)^{f(x)} = e \quad \text{in} \quad \lim_{g(x)\to 0} (1 + g(x))^{\frac{1}{g(x)}} = e$$

证明:
$$\exists x \ge 1$$
时, 有 $[x] \le x \le [x] + 1$,

$$(1+\frac{1}{[x]+1})^{[x]} \le (1+\frac{1}{x})^x \le (1+\frac{1}{[x]})^{[x]+1},$$

$$\overrightarrow{\text{mi}} \lim_{x \to +\infty} (1 + \frac{1}{[x]})^{[x]+1} = \lim_{x \to +\infty} (1 + \frac{1}{[x]})^{[x]} \cdot \lim_{x \to +\infty} (1 + \frac{1}{[x]}) = e,$$

$$\lim_{x \to +\infty} (1 + \frac{1}{[x] + 1})^{[x]}$$

$$= \lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{[x]+1} \cdot \lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{-1} = e,$$

$$\therefore \lim_{x \to +\infty} (1 + \frac{1}{x})^x = e.$$

$$\Leftrightarrow t = -x$$

$$\therefore \lim_{x \to -\infty} (1 + \frac{1}{x})^x = \lim_{t \to +\infty} (1 - \frac{1}{t})^{-t} = \lim_{t \to +\infty} (1 + \frac{1}{t - 1})^t$$

$$= \lim_{t \to +\infty} (1 + \frac{1}{t-1})^{t-1} (1 + \frac{1}{t-1}) = e.$$

$$\therefore \lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

注 若令
$$t = \frac{1}{x}$$
,则 $x \to \infty$ 时, $t \to 0$. 可得

$$\lim_{t\to 0} \left(1+t\right)^{\frac{1}{t}} = e.$$

例23. 求
$$\lim_{x\to\infty}(1-\frac{1}{x})^x$$
.

解 原式 =
$$\lim_{x \to \infty} [(1 + \frac{1}{-x})^{-x}]^{-1} = \lim_{x \to \infty} \frac{1}{(1 + \frac{1}{-x})^{-x}} = \frac{1}{e}.$$

例24. 求
$$\lim_{x\to\infty} (\frac{3+x}{2+x})^{2x}$$
.

解 原式 =
$$\lim_{x\to\infty} [(1+\frac{1}{x+2})^{x+2}]^2 (1+\frac{1}{x+2})^{-4} = e^2$$
.

例25. 求
$$\lim_{n\to\infty} \left(1+\frac{1}{n}-\frac{1}{n^2}\right)^n$$
.

解 因为
$$\left(1+\frac{1}{n}-\frac{1}{n^2}\right)^n < \left(1+\frac{1}{n}\right)^n$$
,

$$\left(1+\frac{1}{n}-\frac{1}{n^2}\right)^n = \left(1+\frac{n-1}{n^2}\right)^{\frac{n^2}{n-1}-\frac{n}{n-1}} \ge \left(1+\frac{n-1}{n^2}\right)^{\frac{n^2}{n-1}-2}.$$

而
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
, $\frac{n-1}{n^2}\to 0$, 所以由归结原则,

$$\lim_{n\to\infty} \left(1+\frac{n-1}{n^2}\right)^{\frac{n}{n-1}} = \mathbf{e}.$$

再由迫敛性,求得
$$\lim_{n\to\infty} \left(1+\frac{1}{n}-\frac{1}{n^2}\right)^n = e$$
.

思考题

 $np_n = \lambda$,则对于任意一个固定的非负整数 k ,有

$$\lim_{n \to \infty} C_n^k p_n^k (1 - p_n)^{n-k} = \frac{\lambda^k e^{-\lambda}}{k!}.$$
二项分布 泊松分布

证明上述等式成立.

定理的解释:在n重贝努力试验中,事件A在每次试验中发生的概率为p,出现A的总次数K服从二项分布 b (n,p) ,当 n 很大 p 很小, $\lambda = np$ 大小适中时,二项分布可用参数为 $\lambda = np$ 的泊松分布来近似。

利用函数的连续性求极限

定理: 若 $\lim_{x \to x_0} \varphi(x) = a$,函数f(u)在点a连续,则有

$$\lim_{x \to x_0} f[\varphi(x)] = f(a) = f[\lim_{x \to x_0} \varphi(x)].$$

例24.
$$\lim_{x \to +\infty} x (\sqrt{x^2 + 1} - x) = \lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + 1} + x}$$
$$= \lim_{x \to +\infty} \frac{1}{\sqrt{1 + \frac{1}{x^2} + 1}} = \frac{1}{2}$$

例25.
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln[\lim_{x \to 0} (1+x)^{\frac{1}{x}}]$$
$$= \ln e = 1$$

两个结论:

1. 若 $\lim u(x) = a, \lim v(x) = b, (a, b$ 有限,且a > 0),则 $\lim u(x)^{v(x)} = a^b$.

证: 读
$$y = u(x)^{v(x)}$$
,则 $\ln y = \ln u(x)^{v(x)} = v(x) \ln u(x)$
 $y = e^{v(x)\ln u(x)}$, $\lim y = \lim u^v = e^{\lim v \ln u} = e^{b\ln a} = a^b$.

2.若
$$\lim_{x \to \infty} f(x) = 1$$
, $\lim_{x \to \infty} g(x) = \infty$, 且 $\lim_{x \to \infty} g(x)(f(x) - 1) = \alpha$, 但 $\lim_{x \to \infty} f(x)^{g(x)} = e^{\alpha}$.

$$\mathbf{iE:} \quad f(x)^{g(x)} = \left[1 + (f(x) - 1)\right]^{g(x)}$$

$$= \left\{ \left[1 + (f(x) - 1)\right]^{\frac{1}{f(x) - 1}} \right\}^{[f(x) - 1]g(x)} \to e^{\alpha}$$

例26. 求
$$\lim_{x\to 0} \left(\frac{1+\tan x}{1+\sin x}\right)^{\frac{1}{x^3}}$$

解: 原式 =
$$\lim_{x \to 0} \left[1 + \left(\frac{1 + \tan x}{1 + \sin x} - 1 \right) \right]^{\frac{1}{x^3}} = \lim_{x \to 0} \left(1 + \frac{\tan x - \sin x}{1 + \sin x} \right)^{\frac{1}{x^3}}$$

$$= \lim_{x \to 0} \left[\left(1 + \frac{\tan x - \sin x}{1 + \sin x} \right) \frac{1 + \sin x}{\tan x - \sin x} \right] \frac{\tan x - \sin x}{1 + \sin x} \frac{1}{x^3}$$

$$\lim_{x\to 0} \frac{\tan x - \sin x}{1 + \sin x} \cdot \frac{1}{x^3} = \lim_{x\to 0} \frac{\sin x (1 - \cos x)}{(1 + \sin x)\cos x} \cdot \frac{1}{x^3}$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1 - \cos x}{x^2} \cdot \frac{1}{(1 + \sin x)\cos x} = \frac{1}{2} \cdot \qquad \therefore \mathbb{R} = e^{\frac{1}{2}}.$$

例27.
$$\lim_{x\to 1} (2-x)^{\tan\frac{\pi x}{2}} = \lim_{x\to 1} \left\{ [1+(1-x)] \right\}^{\cot\frac{\pi(1-x)}{2}}$$

$$= \lim_{x \to 1} \left\{ [1 + (1 - x)]^{\frac{1}{1 - x}} \right\}^{\frac{1 - x}{\tan \frac{\pi(1 - x)}{2}}}$$

$$\lim_{x \to 1} \frac{\frac{\pi(1-x)}{1-x}}{\tan \frac{\pi(1-x)}{2}} = \lim_{x \to 1} \frac{\frac{\pi(1-x)}{2}}{\sin \frac{\pi(1-x)}{2}} \cos \frac{\pi(1-x)}{2} \frac{2}{\pi} = \frac{2}{\pi}$$

$$∴原式=e^{\frac{2}{\pi}}$$

小结

1. 函数极限的统一定义

$$\lim_{n\to\infty}f(n)=A;$$

$$\lim_{x\to\infty} f(x) = A; \quad \lim_{x\to+\infty} f(x) = A; \quad \lim_{x\to-\infty} f(x) = A;$$

$$\lim_{x \to x_0} f(x) = A; \qquad \lim_{x \to x_0^+} f(x) = A; \qquad \lim_{x \to x_0^-} f(x) = A.$$

$$\lim f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists$$
时刻,从此时刻以后, 恒有 $|f(x) - A| < \varepsilon$. (见下表)

过 程	$n \rightarrow \infty$	x	$\rightarrow \infty$	$x \rightarrow +$	-∞	$x \to -\infty$
时 刻	$oldsymbol{N}$					
从此时刻以后	n > N	x > N		x > N		x < -N
f(x)	$ f(x)-A <\varepsilon$					
过程	$x \rightarrow x_0$		$x \rightarrow x_0^+$		$x \rightarrow x_0^-$	
时 刻	δ					
从此时刻以后	$ 0< x-x_0 <\delta$		$0 < x - x_0 < \delta$		$\left -\delta < x - x_0 < 0 \right $	
f(x)	$ f(x)-A <\varepsilon$					

2.极限存在定理:

$$\lim_{x \to x_0} f(x) = A \iff f(x_0 - 0) = f(x_0 + 0) = A.$$

- 3. 函数极限的性质: 唯一性、局部有界性、局部保号性、不等式、归结性质、四则运算、复合函数的极限.
- 4. 两个重要极限:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \qquad \lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

5. 函数极限存在性的判别准则.

思考题

试问函数
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x > 0 \\ 10, & x = 0 \text{ } ex = 0 \text{ } \text{处} \end{cases}$$

的左、右极限是否存在? 当 $x \to 0$ 时, f(x)的极限是否存在?

思考题解答

$$\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x) \qquad \therefore \lim_{x\to 0} f(x) \quad \text{不存在.}$$

练习题

- 一、填空题:
 - 1、当 $x \to 2$ 时, $y = x^2 \to 4$,问当 δ 取____时,只要 $0 < |x-2| < \delta$,必有 |y-4| < 0.001.
 - 2、当 $x \to \infty$ 时, $y = \frac{x^2 1}{x^2 + 3} \to 1$,问当z取_____ 时,只要|x| > z,必有|y - 1| < 0.01.
- 二、用函数极限的定义证明:

1.
$$\lim_{x \to -\frac{1}{2}} \frac{1 - 4x^2}{2x + 1} = 2$$

$$2, \lim_{x\to+\infty}\frac{\sin x}{\sqrt{x}}=0$$

- 三、试证:函数 f(x) 当 $x \to x_0$ 时极限存在的充分 必要条件是左极限、右极限各自存在并且相等.
- 四、讨论: 函数 $\phi(x) = \frac{|x|}{x}$ 在 $x \to 0$ 时的极限是否存在?

练习题答案

一、1、0.0002;

 $2\sqrt{397}$.

四、不存在.