Optimization 1 — Tutorial 6

November 26, 2020

Convex Function

A function $f : C \subseteq \mathbb{R}^n \to \mathbb{R}$ for a convex set C is called convex if

$$f(\lambda \mathbf{x} + (1 - \lambda) \mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{y}),$$

for any $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in [0, 1]$. We say that f is strictly convex if the above is satisfied with a strict inequality and for every $\lambda \in (0, 1)$. We say that f is concave if -f is convex.

Level Set

The level set of $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ with level $\alpha \in \mathbb{R}$ is

Lev
$$(f, \alpha) = \{ \mathbf{x} \in S : f(\mathbf{x}) < \alpha \} \subset \mathbb{R}^n$$
.

Epigraph

The epigraph of a function $f: C \subseteq \mathbb{R}^n \to \mathbb{R}$ for a convex set C is

$$\operatorname{epi}(f) = \{(\mathbf{x}, t) \in C \times \mathbb{R} : f(\mathbf{x}) \leq t\} \subseteq \mathbb{R}^{n+1}.$$

Quasi-Convex

A function $f: C \subseteq \mathbb{R}^n \to \mathbb{R}$ for a convex set C is called quasi-convex if Lev (f, α) is a convex set for every $\alpha \in \mathbb{R}$.

Remark: a convex function is quasi-convex, but a quasi-convex function is not necessarily convex.

Characterization of Convex Functions

Let $f: C \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function defined over a convex set C.

1. Gradient Inequality: suppose that f is continuously differentiable over C. Then, f is convex if and only if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{x}, \mathbf{y} \in C.$$

2. Second-order Characterization: suppose that f is twice continuously differentiable over C and that C is open. Then f is convex if and only if $\nabla^2 f(\mathbf{x}) \succeq 0$ for any $\mathbf{x} \in \mathbb{R}$. Additionally, if $\nabla^2 f(\mathbf{x}) \succ 0$ for any $\mathbf{x} \in \mathbb{R}$ then f is strictly convex.

Jensen's Inequality

Let $f: C \subseteq \mathbb{R}^n \to \mathbb{R}$ be a convex function defined over a convex set C. Then, for every $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in C$ and $\lambda \in \triangle_k$ we have

$$f\left(\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i}\right) \leq \sum_{i=1}^{k} \lambda_{i} f\left(\mathbf{x}_{i}\right).$$

Problem 1

For each of the following functions, determine whether it is convex, concave, quasi-convex or quasi-concave.

- (a) $f(x) = e^x 1$ over \mathbb{R} .
- **(b)** $f(x,y) = xy \text{ over } \mathbb{R}^2_{++}$.
- (c) $f(x,y) = \frac{1}{xy}$ over \mathbb{R}^2_{++} .
- (d) $f(x,y) = \frac{x}{y}$ over \mathbb{R}^2_{++} .
- (e) $f(\mathbf{x}) = \sqrt{\|\mathbf{x}\|^2 + 1}$ over \mathbb{R}^n .

Problem 2

Arithmetic-Geometric Mean (AGM) Inequality. Prove that for any $x_1, x_2, \ldots, x_n \ge 0$, the following inequality holds:

$$\frac{1}{n} \sum_{i=1}^{n} x_i \ge \sqrt[n]{\prod_{i=1}^{n} x_i}.$$

In general, for any $\lambda \in \triangle_n$ we have

$$\sum_{i=1}^{n} \lambda_i x_i \ge \prod_{i=1}^{n} x_i^{\lambda_i}.$$

Problem 3

Young's Inequality. Prove that for any $s,t\geq 0$ and $p,q\geq 1$ such that $\frac{1}{p}+\frac{1}{q}=1$, we have

$$st \le \frac{s^p}{p} + \frac{t^q}{q}.$$

Problem 4

Hölder's Inequality. Prove that for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $p, q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$\left|\mathbf{x}^{T}\mathbf{y}\right| \leq \left\|\mathbf{x}\right\|_{p} \left\|\mathbf{y}\right\|_{q}.$$