ZhdanovDS 01112024-160431

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.513	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
4.3	0.489	171.0	6.548	58.2	0.061	51.1	0.242	-103.9
5.4	0.497	160.1	5.133	47.1	0.076	48.8	0.217	-114.1
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
8.6	0.595	128.1	3.105	14.9	0.118	33.0	0.136	167.9

Найти точку (см. рисунок 1), соответствующую s_{11} на частоте 3.2 ГГц.

Рисунок 1 – Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.349	-165.3	10.751	87.4	0.045	67.0	0.283	-68.4
1.3	0.352	-168.2	9.941	85.5	0.048	66.9	0.266	-70.5
1.4	0.358	-170.8	9.244	83.6	0.051	66.7	0.250	-73.2
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.236	-75.3
1.6	0.362	-175.7	7.985	79.9	0.057	66.1	0.223	-78.0
1.7	0.366	-178.0	7.524	78.6	0.060	65.9	0.211	-80.4
1.8	0.370	-179.8	7.119	77.2	0.063	65.7	0.202	-83.2
1.9	0.373	177.7	6.731	75.2	0.066	65.3	0.194	-85.6
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
2.2	0.379	173.2	5.762	71.6	0.075	64.2	0.176	-93.6
2.4	0.378	170.1	5.218	68.9	0.082	63.1	0.168	-98.4

и частоты $f_{\mbox{\tiny H}}=1.4$ ГГц, $f_{\mbox{\tiny B}}=1.9$ ГГц.

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 2.

Рисунок 2 — Частотная характеристика усиления

- 1) 6.3 дБ
- 2) 1.4 дБ
- 3) 2.8 дБ
- 4) 2.2 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.5	0.393	156.3	3.544	57.2	0.115	57.7	0.151	-118.9
4.0	0.398	150.6	3.099	52.1	0.130	54.7	0.147	-125.9
4.5	0.406	146.0	2.758	47.2	0.145	51.5	0.140	-132.6
5.0	0.410	141.9	2.491	42.4	0.160	48.3	0.131	-139.8
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
6.0	0.422	132.4	2.091	32.7	0.188	41.5	0.106	-159.6
6.5	0.435	127.0	1.934	28.0	0.201	38.0	0.098	-175.7
7.0	0.450	121.5	1.795	23.0	0.214	34.4	0.093	166.3
7.5	0.472	117.4	1.674	18.4	0.226	31.0	0.100	147.0
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5
8.5	0.527	110.3	1.457	9.2	0.247	23.2	0.166	112.6

и частоты $f_{\mbox{\tiny H}}=5$ ГГц, $f_{\mbox{\tiny B}}=7$ ГГц.

Найти модуль s_{22} в дБ на частоте $f_{\rm H}$.

- 1) -7.7 дБ
- 2) -17.7 дБ
- 3) 7.9 дБ
- 4) -15.9 дБ

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса z=1.46-3.18i .

Рисунок 3 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.541	158.9	4.991	69.9	0.059	56.3	0.265	-45.4
1.6	0.557	145.3	3.754	59.4	0.074	54.7	0.253	-50.7
2.0	0.582	133.5	2.973	49.7	0.090	51.7	0.243	-58.1
2.4	0.608	123.1	2.474	40.6	0.106	48.4	0.232	-67.2
2.8	0.639	113.9	2.096	31.5	0.119	44.6	0.222	-77.5
3.2	0.667	105.7	1.819	23.9	0.132	40.9	0.213	-89.1
3.6	0.696	98.3	1.592	15.8	0.144	37.3	0.211	-101.7
4.0	0.723	92.0	1.409	8.2	0.156	33.5	0.215	-115.0
4.4	0.743	86.0	1.256	1.2	0.166	29.8	0.221	-128.3

и частоты $f_{\scriptscriptstyle \rm H}=1.6$ ГГц, $f_{\scriptscriptstyle \rm B}=4$ ГГц.

Найти обратные потери по выходу на $f_{\scriptscriptstyle \mathrm{B}}.$

- 1) 13.4 дБ
- 2) 26.7 дБ
- 3) 6 дБ
- 4) 11.9 дБ

Задан двухполюсник на рисунке 4, причём R1 = 227.99 Om.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.