

RFDIO Connector Specification v1.0

Copyright 2014 Lime Microsystems Ltd

CC BY 3.0

Rev: 1.0.1

Rev: 1.0.1 Last modified: 12/16/2014 The information contained in thThe information contained in this document is subject to change without prior notice. No responsibility for its use, nor for infringement of patents or other rights of third parties is another rights of third parties is another rights of third parties.

Contents

1General Description.	3						
2Mechanical Specifications	3						
3Electrical Specifications	5						
3.1Power	5 5						
3.4Termination							
Table of Figures							
Figure 1. RFDIO connectors	3						
Figure 2. Recommended PCB footprint.	5						
Figure 3. MyriadRF card mechanical coordinates (Top view)							

1 General Description

The Myriad-RF Radio Frequency Digital Input Output (RFDIO) connector specification defines the electrical and mechanical properties of a high speed card interface for Field Programmable Gate Array (FPGA) based carrier boards. This specification ensures interoperability between carrier (mother) boards and add-on (daughter) RF cards.

The connector is designed to meet the IEEE802.3ap backplane link to meet 10G Ethernet compliant signal channels.

2 Mechanical Specifications

The connector is based on the Hirose 0.5 mm pitch, 80 positions, surface-mount connector. The part numbers are:

The female part number is FX10A-80S/8-SV, to be assembled on the motherboard. The male part number is FX10A-80P/8-SV1, and is to be used by the daughterboard. A typical example of use for an RF application is an Altera FPGA motherboard, using a Myriad-RF daughterboard. This example with be used in the document for clarity.

Figure 1 shows the connectors in 3-D view.

FX10A- 80P/8-SV1
MyriadRF card connector

Figure 2 shows the recommended land pattern (Metal Mask) connector dimensions.

Figure 2. Recommended PCB footprint

A footprint for the open source EDA software, KiCad, is available via the database provided by the Myriad-RF Component Libraries project.

Figure 3 shows the dimensions of the Myriad-RF 1 daughterboard with the Hirose connector.

Figure 3. Myriad-RF card mechanical coordinates (Top view)

3 Electrical Specifications

3.1 Power

The carrier board must provide +5V (1.5A) DC to the RF card through the RFDIO connector. The maximum current via the Hirose connector is 0.3A per pin. To achieve the 1.5A specification, a number of defined supply and ground pins must be used. These are:

+5V: Pin 1, 2, 3, 4, 8 & 10.

GND: Pin 5, 6, 11, 12, 17, 18, 27, 28, 37, 38, 47, 48, 57, 58, 62, 63, 73, 77, 81, 82, 83, 84, 85, 86, 87, 88, 89 & 90

3.2 CMOS Signals

The CMOS class pins are intended to connect directly to pins that support LVTTL compatible single-ended I/O standards such as 3.3-V LVTTL/LVCMOS or 2.5-V LVTTL/LVCMOS.

All CMOS class pins must support bidirectional operation.

Signals between the host FPGA device and HSMC connector are intended to be D/C coupled.

3.3 Bus Widths

Daughterboards must be designed to support the full specified bus widths. This will guarantee interoperability with the greatest number of RF cards.

3.4 Termination

Tracks must have 50 Ω single-ended impedances. An optimum design will be obtained if the host FPGA supports driver strength control where 50 Ω output impedances can be selected. This output impedance will match the characteristic impedance of the tracks themselves. For long track lengths or heavy loads, drive strength may be increased as necessary until optimal signal integrity is achieved for the specific carrier board or RF card combination. When impedance control is not possible, it is recommended to place series resistors on each line of the host board to allow for tuning through resistor value changes. Default resistors should be a nominal 0 Ω since signal direction cannot be assumed on a carrier board and higher value resistors found near a receiver can significantly degrade signal integrity.

3.5 Pinout

The RFDIO connector has a total of 90 pins, including 54 digital signals pins, 6 power pins, 2 analog pins and 28 ground pins.

Table 1 (Part 1 of 2). RFDIO connector's pinout

Pin Nr	Function	Description	Pin Nr	Function	Description
1	5V	Power	2	5V	Power
3	5V	Power	4	5V	Power
5	GND	Power	6	GND	Power
7	RSSI output	analog	8	5V	Power
9	RSSI output	analog	10	5V	Power
81	GND	Power	82	GND	Power
11	GND	Power	12	GND	Power
13	TXNRX2	CMOS IN	14	GPIO5	CMOS IO
15	TXNRX1	CMOS IN	16	G_PWR_DWN	CMOS IN
17	GND	Power	18	GND	Power
19	ENABLE_IQSEL1	CMOS IN	20	GPIO6	CMOS IO
21	SPI_EN_BRD	CMOS IN	22	GPIO7	CMOS IO
23	DIQ1_D0	CMOS IO	24	DIQ1_D1	CMOS IO
25	DIQ1_D2	CMOS IO	26	DIQ1_D3	CMOS IO
27	GND	Power	28	GND	Power
29	DIQ1_D4	CMOS IO	30	DIQ1_D5	CMOS IO
83	GND	Power	84	GND	Power
31	DIQ1_D6	CMOS IO	32	DIQ1_D7	CMOS IO
33	DIQ1_D8	CMOS IO	34	DIQ1_D9	CMOS IO
35	DIQ1_D10	CMOS IO	36	DIQ1_D11	CMOS IO
37	GND	Power	38	GND	Power
39	ENABLE_IQSEL2	CMOS IN	40	BRDPRSNT	Board present, connects to GND on RF card
41	GPIO4	CMOS IO	42	VIO	Digital IOs supply
43	DIQ2_D0	CMOS IO	44	DIQ2_D1	CMOS IO
45	DIQ2_D2	CMOS IO	46	DIQ2_D3	CMOS IO
47	GND	Power	48	GND	Power
49	DIQ2_D4	CMOS IO	50	DIQ2_D5	CMOS IO
85	GND	Power	86	GND	Power
51	DIQ2_D6	CMOS IO	52	DIQ2_D7	CMOS IO
53	DIQ2_D8	CMOS IO	54	DIQ2_D9	CMOS IO
55	DIQ2_D10	CMOS IO	56	DIQ2_D11	CMOS IO

Table 1 (Part 2 of 2). RFDIO connector's pinout

Pin Nr	Function	Description	Pin Nr	Function	Description
57	GND	Power	58	GND	Power
59	FCLK2	CMOS CLK in	60	FCLK1	CMOS CLK in
61	MCLK2	CMOS CLK out	62	GND	Power
63	GND	Power	64	MCLK1	CMOS CLK out
65	GPIO0	CMOS IN	66	RESET	CMOS IN
67	GPIO1	CMOS IN	68	SPI_MOSI	CMOS IN
69	GPIO2	CMOS IN	70	SPI_MISO	CMOS OUT
87	GND	Power	88	GND	Power
71	GPIO3	CMOS IN	72	SPI_CLK	CMOS IN
73	GND	Power	74	SPI_EN_LMS	CMOS IN
75	CLK_IN	CMOS Reference CLK input for RF card	76	MIPI_SDA	CMOS IO
77	GND	Power	78	MIPI_SCL	CMOS IN
79	TXEN	CMOS IN	80	RXEN	CMOS IN
89	GND	Power	90	GND	Power

^{*}for complete signals description and timing diagrams refer to $\underline{LMS6002D}$ or $\underline{LMS7002M}$ datasheet