Belief Change with Models as Input

Adapting Expansion and Contraction

Ricardo Guimarães — ricardo.guimaraes@uib.no 02 December 2022

Outline

Belief Change

Finite Based Change via Models

Compatibility

Belief Change

Belief Change [AGM85; Han99]

KBs: sets of formulas

Input: formula(s) to be accepted/rejected

1

Belief Change Triad

Operations: types of rational change

Postulates: properties that must be satisfied

Constructions: syntactic or semantic methods to implement the operations

 Minimise loss of information

- Minimise loss of information
- Remove or add ONLY the necessary models

- Minimise loss of information
- Remove or add ONLY the necessary models
- Indifferent about syntactical structure

- Minimise loss of information
- Remove or add ONLY the necessary models
- Indifferent about syntactical structure
- Preserve finite representability

- Minimise loss of information
- Remove or add ONLY the necessary models
- Indifferent about syntactical structure
- Preserve finite representability
- Few assumptions about the logic

Motivation

- Finiteness: algorithms, limited storage capacity
- · Models as input: flexibility
- Settings: learning from interpreations ([De 97]),
 Horn theories from graphs ([AKM07]), Learning Theory and Iterated Belief Change [BGS18]

[NAS13] 4

Model Change Operations

Finite Based Change via Models

Finite Based Contraction and Expansion via Models [GOS23]

- To appear in AAAI 2023
- · Joint work with Ana Ozaki and Jandson S. Ribeiro

Logic as a Satisfaction System

Logic as a Satisfaction System

Example: propositional logic with signature $\{p,q\}$

$$\mathcal{L}_{\mathsf{Prop}} \text{: } p \text{, } q \text{, } \neg p \text{, } p \wedge q \text{, } p \wedge p \text{, } \dots$$

$$\mathfrak{M}_{\mathsf{Prop}}$$
: $\{\bar{p}\bar{q}, \bar{p}q, p\bar{q}, pq\}$

 \models_{Prop} : the usual satisfaction relation

Finitely Representable Sets of Models

 $X \in \operatorname{FR}(\Lambda)$ iff

- $\cdot X \subseteq \mathfrak{M}$
- · There is $\mathcal{B} \in \mathcal{P}_{\mathrm{f}}(\mathcal{L})$ with $\mathrm{Mod}(\mathcal{B}) = X$

Finitely Representable Sets of Models

 $X \in \operatorname{FR}(\Lambda)$ iff

- $\cdot X \subset \mathfrak{M}$
- There is $\mathcal{B} \in \mathcal{P}_{\mathrm{f}}(\mathcal{L})$ with $\mathrm{Mod}(\mathcal{B}) = X$

Finitely Representable Sets of Models

 $X \in \operatorname{FR}(\Lambda)$ iff

- $\cdot X \subset \mathfrak{M}$
- There is $\mathcal{B} \in \mathcal{P}_{\mathrm{f}}(\mathcal{L})$ with $\mathrm{Mod}(\mathcal{B}) = X$

Selecting Sets of Models

FR selection function: $sel : \mathcal{P}^*(FR(\Lambda)) \to FR(\Lambda)$

Maximal, finitely representable subsets

$$\frac{\operatorname{Mod}(p \wedge q \to \bot)}{\operatorname{MaxFRSubs}(\{\bar{p}\bar{q}, \bar{p}q, p\bar{q}\}, \Lambda(\mathsf{Horn})) = \{\ \{\bar{p}\bar{q}, \bar{p}q, p\bar{q}\}\ \} }$$

MaxFRSubs

Maximal, finitely representable subsets

Eviction

sel: selects a finitely representable set of models

 \mathcal{B} : current base

M: models to remove

$$\operatorname{Mod}(\operatorname{evc}_{\operatorname{sel}}(\mathcal{B},\mathbb{M})) = \operatorname{sel}(\operatorname{MaxFRSubs}(\operatorname{Mod}(\mathcal{B}) \setminus \mathbb{M},\Lambda)).$$

$$\begin{split} \operatorname{Mod}(\operatorname{evc}(\frac{\{p \wedge q \to \bot\}}{\{\bar{p}\bar{q}\}})) &= \operatorname{sel}(\operatorname{MaxFRSubs}(\{\bar{p}q, p\bar{q}\})) = \\ \operatorname{sel}(\{\{\bar{p}q\}, \{p\bar{q}\}\}) &= \operatorname{Mod}(\{\neg p, q\}) \end{split}$$

$$\operatorname{Mod}(\operatorname{evc}_{\operatorname{sel}}(\mathcal{B},\mathbb{M})) = \operatorname{sel}(\operatorname{MaxFRSubs}(\operatorname{Mod}(\mathcal{B}) \setminus \mathbb{M},\Lambda)).$$

(success) all the required models are removed

$$\operatorname{Mod}(\operatorname{evc}_{\operatorname{sel}}(\mathcal{B},\mathbb{M})) = \operatorname{sel}(\operatorname{MaxFRSubs}(\operatorname{Mod}(\mathcal{B}) \setminus \mathbb{M},\Lambda)).$$

(success) all the required models are removed

(inclusion) no new models are added

$$\operatorname{Mod}(\operatorname{evc}_{\operatorname{sel}}(\mathcal{B},\mathbb{M})) = \operatorname{sel}(\operatorname{MaxFRSubs}(\operatorname{Mod}(\mathcal{B}) \setminus \mathbb{M},\Lambda)).$$

(success) all the required models are removed

(inclusion) no new models are added

(finite retainment) only lose extra models if there is no better FR solution (w.r.t. \subseteq)

$$\operatorname{Mod}(\operatorname{evc}_{\operatorname{sel}}(\mathcal{B},\mathbb{M})) = \operatorname{sel}(\operatorname{MaxFRSubs}(\operatorname{Mod}(\mathcal{B}) \setminus \mathbb{M},\Lambda)).$$

(success) all the required models are removed

(inclusion) no new models are added

(finite retainment) only lose extra models if there is no better FR solution (w.r.t. \subseteq)

(uniformity) if

 ${\rm MaxFRSubs}({\rm Mod}(\mathcal{B})\setminus\mathbb{M},\Lambda)={\rm MaxFRSubs}({\rm Mod}(\mathcal{B}')\setminus\mathbb{M}',\Lambda),$ then the final result is the same

Minimal, finitely representable supersets

$$\begin{array}{c} \operatorname{Mod}(p \wedge q \to \bot) \\ \\ \operatorname{MinFRSups}(\{\bar{p}\bar{q},\bar{p}q,p\bar{q}\},\Lambda(\mathsf{Horn})) = \{\ \{\bar{p}\bar{q},\bar{p}q,p\bar{q}\}\ \} \\ \\ \operatorname{MinFRSups}(\{\bar{p}q,p\bar{q}\},\Lambda(\mathsf{Horn})) = \{\{\ \{\bar{p}\bar{q},\bar{p}q,p\bar{q}\}\ \} \end{array}$$

Reception

sel: selects a finitely representable set of models

 \mathcal{B} : current base

M: models to add

$$\operatorname{Mod}(\operatorname{rcp}_{\operatorname{sel}}(\mathcal{B},\mathbb{M})) = \operatorname{sel}(\operatorname{MinFRSups}(\operatorname{Mod}(\mathcal{B}) \cup \mathbb{M},\Lambda)).$$

Reception: Example with $\Lambda(Horn)$

$$\begin{split} \operatorname{Mod}(\operatorname{rcp}(\boxed{\{p, \neg q\}}, \{\bar{p}q, pq\})) &= \operatorname{sel}(\operatorname{MaxFRSubs}(\boxed{\{\bar{p}q, p\bar{q}, pq\}})) = \\ & \operatorname{sel}(\{\ \mathfrak{M}\ \}) &= \operatorname{Mod}(\{\}) \end{split}$$

$$\operatorname{Mod}(\operatorname{rcp}_{\operatorname{sel}}(\mathcal{B},\mathbb{M})) = \operatorname{sel}(\operatorname{MinFRSups}(\operatorname{Mod}(\mathcal{B}) \cup \mathbb{M},\Lambda)).$$

(success) all the required models are added

$$\operatorname{Mod}(\operatorname{rcp}_{\operatorname{sel}}(\mathcal{B},\mathbb{M})) = \operatorname{sel}(\operatorname{MinFRSups}(\operatorname{Mod}(\mathcal{B}) \cup \mathbb{M},\Lambda)).$$

(success) all the required models are added

(persistence) no models are removed

$$\operatorname{Mod}(\operatorname{rcp}_{\operatorname{sel}}(\mathcal{B},\mathbb{M})) = \operatorname{sel}(\operatorname{MinFRSups}(\operatorname{Mod}(\mathcal{B}) \cup \mathbb{M},\Lambda)).$$

(success) all the required models are added

(persistence) no models are removed

(finite temperance) only add extra models if there is no better FR solution (w.r.t. \subseteq)

$$\operatorname{Mod}(\operatorname{rcp}_{\operatorname{sel}}(\mathcal{B},\mathbb{M})) = \operatorname{sel}(\operatorname{MinFRSups}(\operatorname{Mod}(\mathcal{B}) \cup \mathbb{M},\Lambda)).$$

(success) all the required models are added

(persistence) no models are removed

(finite temperance) only add extra models if there is no better FR solution (w.r.t. ⊆)

(uniformity) if

 $\operatorname{MaxFRSubs}(\operatorname{Mod}(\mathcal{B}) \cup \mathbb{M}, \Lambda) = \operatorname{MaxFRSubs}(\operatorname{Mod}(\mathcal{B}') \cup \mathbb{M}', \Lambda)$, then the final result is the same

Eviction & Reception: Propositional Case

$$\begin{split} & \operatorname{evc}_{\mathsf{Prop}}(\mathcal{B}, \mathbb{M}) = \bigvee_{v \in \operatorname{Mod}(\mathcal{B}) \backslash \mathbb{M}} \left(\bigwedge_{v(a) = \mathsf{T}} a \wedge \bigwedge_{v(a) = \mathsf{F}} \neg a \right) \\ & \operatorname{rcp}_{\mathsf{Prop}}(\mathcal{B}, \mathbb{M}) = \bigvee_{v \in \operatorname{Mod}(\mathcal{B}) \cup \mathbb{M}} \left(\bigwedge_{v(a) = \mathsf{T}} a \wedge \bigwedge_{v(a) = \mathsf{F}} \neg a \right) \end{split}$$

Is it always this easy?

Compatibility

• Can we always define eviction and reception?

- · Can we always define eviction and reception?
- · No! MinFRSups or MaxFRSubs can be empty

- · Can we always define eviction and reception?
- · No! MinFRSups or MaxFRSubs can be empty
- \cdot Example: Horn logic without ot

- · Can we always define eviction and reception?
- · No! MinFRSups or MaxFRSubs can be empty
- \cdot Example: Horn logic without ot
- Corollary [GOS23]: if $FR(\Lambda)$ is finite then:
 - Λ is eviction-compatible iff $\emptyset \in FR(\Lambda)$
 - Λ is reception-compatible iff $\mathfrak{M} \in \mathrm{FR}(\Lambda)$

Propositional 3-Valued Logics

Truth values: F < U < T

 $\mathcal{L}_{\mathsf{Prop}}$: propositional formulae

$$\mathfrak{M}_3$$
: $v: \mathcal{L} \to \{\mathsf{F}, \mathsf{U}, \mathsf{T}\}$ s.t.

•

$$v(\neg\varphi) = \begin{cases} \mathsf{T}, & \text{if } v(\varphi) = \mathsf{F} \\ \mathsf{U}, & \text{if } v(\varphi) = \mathsf{U} \\ \mathsf{F}, & \text{if } v(\varphi) = \mathsf{T} \end{cases}$$

•
$$v(\varphi \wedge \psi) = \min_{<}(\{v(\varphi), v(\psi)\})$$

•
$$v(\varphi \lor \psi) = \max_{<} (\{v(\varphi), v(\psi)\})$$

Kleene's and Priest's 3-Valued Logics

Kleene's

$$\Lambda(\mathrm{K3}) = (\mathcal{L}_{\mathrm{Prop}}, \mathfrak{M}_3, \models_{K3})$$

Priest's

$$\Lambda(\mathrm{P3}) = (\mathcal{L}_{\mathrm{Prop}}, \mathfrak{M}_3, \models_{P3})$$

$$v \models_{K3} \varphi \text{ iff } v(\varphi) = \mathsf{T}$$

•
$$\emptyset \in FR(\Lambda(K3))$$

•
$$\mathfrak{M}_3 \in FR(\Lambda(K3))$$

$$v\models_{P3}\varphi \text{ iff }v(\varphi)\neq \mathsf{F}$$

•
$$\emptyset \notin FR(\Lambda(K3))$$

•
$$\mathfrak{M}_3 \in FR(\Lambda(K3))$$

 $v_{\rm U}(\varphi) = {\rm U}, \forall \varphi \ v_{\rm U}$ is a model of every base in $\Lambda({\rm P3})$

Propositional Gödel Logic

$$\Lambda(\mathsf{G\"{o}del},\theta) = (\mathcal{L}_\mathsf{G},\mathfrak{M}_G, \models^\theta_G) \text{ with } \theta \in (0,1]$$

 \mathcal{L}_{G} : propositional formulas over At with \land , \lor , \lnot , and \rightarrow ;

$$\mathfrak{M}_G: \ v: \mathcal{L} \to [0,1] \text{ s.t.}$$

$$v(\neg \varphi) = \begin{cases} 1 & \text{if } v(\varphi) = 0, \\ 0 & \text{otherwise;} \end{cases}$$

$$v(\varphi \land \psi) = \min(v(\varphi), v(\psi));$$

$$v(\varphi \lor \psi) = \max(v(\varphi), v(\psi));$$

$$v(\varphi \to \psi) = \begin{cases} 1 & \text{if } v(\varphi) \le v(\psi), \\ v(\psi) & \text{otherwise; and} \end{cases}$$

$$\mathbf{F}_G^\theta \colon \, v \mathbf{F}_G^\theta \mathcal{B} \text{ iff } \mathcal{B} = \emptyset \text{ or } v(\bigwedge_{\varphi \in B} \varphi) \geq \theta$$

 $\cdot \mathfrak{M}_G$ is infinite now!

- \mathfrak{M}_G is infinite now!
- However, $v \models_G^\theta \mathcal{B}$ depends only on the total preorder defined over finitely many symbols

- \mathfrak{M}_G is infinite now!
- However, $v \models_G^\theta \mathcal{B}$ depends only on the total preorder defined over finitely many symbols
- $\operatorname{FR}(\Lambda(\operatorname{G\"{o}del},\theta))$ is finite

- \mathfrak{M}_G is infinite now!
- However, $v \models_G^\theta \mathcal{B}$ depends only on the total preorder defined over finitely many symbols
- $\operatorname{FR}(\Lambda(\operatorname{G\"{o}del},\theta))$ is finite
- · $\operatorname{Mod}(\{\neg a \wedge a\}) = \emptyset$ and $\operatorname{Mod}(\{\}) = \mathfrak{M}_G$

- \mathfrak{M}_G is infinite now!
- However, $v \models_G^\theta \mathcal{B}$ depends only on the total preorder defined over finitely many symbols
- $\operatorname{FR}(\Lambda(\operatorname{G\"{o}del},\theta))$ is finite
- · $\operatorname{Mod}(\{\neg a \wedge a\}) = \emptyset$ and $\operatorname{Mod}(\{\}) = \mathfrak{M}_G$
- Therefore, $\Lambda(\mathsf{G\"{o}del}, \theta)$ is eviction- and reception-compatible

Infinite $FR(\Lambda)$

$$\Lambda_q = (\mathcal{L}_q, \mathfrak{M}_q, \models_q)$$

- $\mathcal{L}_q = \{[x,y] \mid x,y \in \mathbb{Q} \text{ and } x \leq y\}$
- $\cdot \mathfrak{M}_{a} = \mathbb{Q}$
- $\cdot \ z \models_q \mathcal{B} \text{ iff } x \leq z \leq y \text{ for every } [x,y] \in \mathcal{B}.$

Example:

$$0.3 \models_q \{ [0, 0.25] \,, [0.12, 0.80] \}$$

$$\Lambda_q = (\mathcal{L}_q, \mathfrak{M}_q, \models_q)$$

$$\operatorname{evc}(\{[0,1]\},\{1\}) = [0,0.9]$$

$$\Lambda_q = (\mathcal{L}_q, \mathfrak{M}_q, \models_q)$$

$$\mathrm{evc}(\{[0,1]\},\{1\}) = [0,0.99]$$

$$\Lambda_q = (\mathcal{L}_q, \mathfrak{M}_q, \models_q)$$

$$\operatorname{evc}(\{[0,1]\},\{1\}) = [0,0.999]$$

$$\Lambda_q = (\mathcal{L}_q, \mathfrak{M}_q, \models_q)$$

$$\operatorname{evc}(\{[0,1]\},\{1\}) = [0,0.9999\dots?]$$

$$\Lambda_q = (\mathcal{L}_q, \mathfrak{M}_q, \models_q)$$

$$\operatorname{evc}(\{[0,1]\},\{1\}) = [0,0.9999\dots?]$$

$$\mathrm{rcp}(\{[0.5,1]\}, \{q \in \mathbb{Q} \mid 0.2 < q < 0.5\}) = [?,1]$$

$$\Lambda_q = (\mathcal{L}_q, \mathfrak{M}_q, \models_q)$$

$$evc(\{[0,1]\},\{1\}) = [0,0.9999...?]$$

$$\mathrm{rcp}(\{[0.5,1]\}, \{q \in \mathbb{Q} \mid 0.2 < q < 0.5\}) = [?,1]$$

$$\cdots \subseteq \cdots \qquad \begin{array}{c} \mathsf{Cand.} \\ \mathsf{1} \end{array} \qquad \cdots \subseteq \cdots \qquad \begin{array}{c} \mathsf{Cand.} \\ \mathsf{2} \end{array} \qquad \cdots \subseteq \cdots \qquad \begin{array}{c} \mathsf{Cand.} \\ \mathsf{3} \end{array} \qquad \cdots \subseteq \cdots \qquad \begin{array}{c} \mathsf{Mod}(\mathcal{B}) \\ \backslash \mathsf{M} \end{array}$$

Description Logics

- Fragments of guarded dyadic FOL (usually)
- · Good computational properties (usually decidable)
- Each fragment has a different expressivity and complexities
- Formalisation of OWL ontologies (used in data integration, Medical fields, Biology)

The Description Logic \mathcal{ALC} : Signature and Constructors

Concept names (N_c): Person, Student, University Role names (N_R): studies At, supervisor Of Individual names (N_I): Ann, UiB

$$C ::= \top \mid A \mid \neg C \mid (C \sqcap C) \mid \exists r. C$$

Complex concepts

- \cdot Person $\sqcap \neg Student$
- $\cdot \exists worksAt. \top$
- $Lawyer \sqcap \neg \exists hasPet.Dog$

The Description Logic ALC: Formulae and Semantics

Concept Inclusions: $Student \sqsubseteq Person \sqcap \exists studies. \top$,

 $Professor \sqsubseteq \exists worksAt. University$

Concept Assertions: Student(Ann), University(UiB)

Role Assertions: worksAt(Bob, UiB), studies(Carol, Logic)

Models are interpretations over the signature:

Satisfaction System	Compatible	
	Eviction	Reception
$\Lambda(Prop)$	Yes	Yes
$\Lambda({\sf Horn})$	Yes	Yes
$\Lambda(K3)$	Yes	Yes
$\Lambda(P3)$	No	Yes
$\Lambda(G\ddot{odel},\theta)$	Yes	Yes
$\Lambda(LTL_X)$	No	Yes
$\Lambda(ABox)$	Yes	No
$\Lambda(\mathrm{DL\text{-}Lite}_{\mathcal{R}})^1$	Yes	Yes
$\Lambda(\mathcal{ALC})$	No	No

¹with finite signature

General Criteria

Eviction

- $\mathbb{M} \in FR(\Lambda)$
- M has a FR immediate predecessor
- There is no superset of \mathbb{M} in $\mathrm{FR}(\Lambda)$

Reception

- $\mathbb{M} \in \operatorname{FR}(\Lambda)$
- M has a FR immediate successor
- There is no subset of M in $\operatorname{FR}(\Lambda)$

Concluding Remarks

- · Belief Change: modifying knowledge bases rationally
- · New setting: finite representation and models as input
- · Definition and characterisation of eviction and reception
- Compatibility in different logics
- Future work: what to do when the system is incompatible?

Thank you!

· ricardo.guimaraes@uib.no

· https://rfguimaraes.github.io

<u>License</u>

This presentation written by Ricardo Guimarães is licensed under the CC BY-SA 4.0

References

References i

- [AGM85] Carlos E. Alchourrón, Peter Gärdenfors and David Makinson. 'On the Logic of Theory Change: Partial Meet Contraction and Revision Functions'. In: *Journal of Symbolic Logic* 50.2 (1985), pp. 510–530.
- [AKM07] Marta Arias, Roni Khardon and Jérôme Maloberti. 'Learning Horn Expressions with LOGAN-H'. In: J. Mach. Learn. Res. 8 (2007), pp. 549–587. DOI: 10.5555/1314498.1314518.
- [BGS18] Alexandru Baltag, Nina Gierasimczuk and Sonja Smets. 'Truth-Tracking by Belief Revision'. In: Studia Logica 107.5 (July 2018), pp. 917–947. DOI: 10.1007/s11225-018-9812-x.

References ii

- [De 97] Luc De Raedt. 'Logical settings for concept-learning'. In: *Artificial Intelligence* 95.1 (Aug. 1997), pp. 187–201.
- [GOS23] Ricardo Guimarães, Ana Ozaki and Jandson S. Ribeiro. 'Finite Based Constraction and Expansion via Models'. In: AAAI 2023 (to appear). 2023.
- [Han99] Sven Ove Hansson. A Textbook of Belief Dynamics: Theory Change and Database Updating. Applied Logic Series. Kluwer Academic Publishers, 1999.

References iii

[NAS13] NASA. Curiosity Rover's Self Portrait at 'John Klein'
Drilling Site. License: CC BY 2.0 (https:
//creativecommons.org/licenses/by/2.0/).
Online, accessed on 29 November 2022. Feb. 2013.
URL: https://www.flickr.com/photos/
24662369@N07/8456482502.