

Cours de Mathématiques

Table des matières

1	Compléments sur la dérivation	1
	I. Dérivation : les outils de la classe de 1^{re}	1
	II. Trois nouvelles formules	3
	III. Convexité	4
	IV. Composée de deux fonctions	6
	V. Une démonstration	8
2	Raisonnement par récurrence	9
	I. Rappel sur les suites géométriques	9
		10
	III. Quelques programmes en Python	13
	IV. Appendice : règles de manipulation des inégalités	14
3	Dénombrement	15
		15
	•	19
		21
4	Limites de suites	22
4		22 22
		24
		2 4 25
		28
		28
	The demonstrations of the second seco	
5	The state of the s	31
	1	31
	0	33
	III. Orthogonalité, produit scalaire	36
6	Continuité et limites de suites	38
		38
		41
	III. Appendice: tableau de valeurs avec la calculatrice	43
7	Variables aléatoires, loi binomiale	44
	I. Variables aléatoires et arbres pondérés	44
	II. La loi binomiale	46
	III. Appendice: loi binomiale avec les calculatrices graphiques	49
8	Limites de fonctions	51
		51
		53
		55
		56
9	Équations de plans, représentations de droites	58
-		58
		59
		61

10 Le l	ogarithme népérien	62
I.	Définition, courbe représentative	62
II.	Propriétés algébriques	64
III.	Croissances comparées	65
IV.	Des démonstrations	66
11 Équ	uations différentielles	69
I.	Primitives	69
II.	Équations différentielles linéaires	70
III.	Des démonstrations	72
12 Trig	gonométrie	74
I.	Rappels de la classe de 1^{re}	74
II.	Étude d'une fonction trigonométrique	78
13 Inte	égration	80
I.	Intégrale d'une fonction positive	80
II.	Intégrales et primitives	82
III.	Intégrale d'une fonction de signe quelconque	84
IV.	Linéarité de l'intégrale, applications	85
V.	Intégration par parties	86
VI.	Fonction définie par une intégrale	87
VII.	Des démonstrations	87
14 Son	nmes de variables aléatoires	89
I.	Rappels sur l'espérance et la variance	89
II.	Espérance et variance d'une somme de v.a	90
III.	Inégalité de Bienaymé-Tchebychev	91
IV.	Loi des grands nombres	
V	Des démonstrations	94

CHAPITRE

1 Compléments sur la dérivation

Plan de ce chapitre

I.	Dérivation : les outils de la classe de 1 ^{re}	1
II.	Trois nouvelles formules	3
III.	Convexité	4
IV.	Composée de deux fonctions	6
V.	Une démonstration	8

I. Dérivation : les outils de la classe de 1re

Ce qui suit est le matériel de base pour la moitié des leçons de T^{ale}. Il faut tout connaître par ♡!!!

Théorème 1 (signe du 1^{er} degré)

Soient a et b deux nombres réels, avec $a \neq 0$.

- 1. Si a > 0, le tableau de signe de ax + b est de la forme $-\phi +$
- 2. Si a < 0, le tableau de signe de ax + b est de la forme $+ \phi -$

Théorème 2 (équation du 2nd degré)

Soient a, b, c trois nombres réels, avec $a \neq 0$. On s'intéresse à l'équation

$$(E) \qquad ax^2 + bx + c = 0.$$

Le discriminant est $\Delta = b^2 - 4ac$.

1. Si $\Delta > 0$, (*E*) a deux solutions (ou racines) :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}, \qquad x_2 = \frac{-b + \sqrt{\Delta}}{2a}.$$

2. Si $\Delta = 0$, (*E*) a une solution (ou racine) :

$$x_0 = -\frac{b}{2a}.$$

3. Si Δ < 0, (*E*) n'a pas de solution

Théorème 3 (signe du 2nd degré)

 $ax^2 + bx + c$ est du signe de a, sauf entre les racines, si elles existent.

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

2 Graphiquement : le coefficient directeur de la tangente à la courbe représentative $\mathscr C$ de f au point A d'abscisse a.

Remarque. Pour le physicien, si d(t) donne la distance parcourue au temps t, alors $d'(t_0)$ est la vitesse instantanée au temps $t = t_0$.

Théorème 4

Définition 1

1. Dérivées usuelles

f(x)	f'(x)
constante	0
х	1
x^2	2x
x^3	$3x^2$
$x^n \ (n \in \mathbb{N}^*)$	nx^{n-1}
$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{1}{x^n} \ (n \in \mathbb{N}^*)$	$-\frac{n}{x^{n+1}}$
e ^x	e^x
e ^{ax+b}	ae^{ax+b}
\sqrt{x}	$\frac{1}{2\sqrt{x}}$

2. Opérations sur les dérivées

 \boldsymbol{u} et \boldsymbol{v} sont deux fonctions dérivables, \boldsymbol{k} est un nombre réel.

$$\bullet \quad (u+v)' = u' + v'$$

$$\bullet \quad (u-v)' = u' - v'$$

•
$$(k \times u)' = k \times u'$$

•
$$(u \times v)' = u' \times v + u \times v'$$

•
$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

•
$$\left(\frac{u}{v}\right)' = \frac{u' \times v - u \times v'}{v^2}$$

Théorème 5

I désigne un intervalle.

- 1. Si f'(x) > 0 pour tout $x \in I$ (sauf éventuellement en quelques points où on peut avoir f'(x) = 0), alors f est strictement croissante sur I.
- **2.** Si f'(x) < 0 pour tout $x \in I$ (sauf éventuellement en quelques points où on peut avoir f'(x) = 0), alors f est strictement décroissante sur I.
- 3. Si f'(x) = 0 pour tout $x \in I$, alors f est constante sur I.

Théorème 6

Équation de la tangente au point d'abscisse a :

$$y = f'(a)(x - a) + f(a).$$

II. Trois nouvelles formules

On admet le théorème :

Théorème 7

Soit u une fonction dérivable sur un intervalle I et n un entier supérieur ou égal à 1. Alors :

1. e^u est dérivable sur I et

$$(\mathbf{e}^u)' = u' \times \mathbf{e}^u.$$

2. u^n est dérivable sur I et

$$(u^n)' = n \times u' \times u^{n-1}.$$

3. Si u est strictement positive sur I, alors \sqrt{u} est dérivable sur I et

$$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}.$$

Exemples 1

1. On pose $f(x) = e^{-x^2 + 3x + 5}$ pour tout $x \in \mathbb{R}$. La fonction f est de la forme $f(x) = e^{u(x)}$, avec

$$u(x) = -x^2 + 3x + 5,$$
 $u'(x) = -2x + 3.$

On a donc, pour tout $x \in \mathbb{R}$:

$$f'(x) = u'(x) \times e^{u(x)} = (-2x+3)e^{-x^2+3x+5}.$$

2. On pose $g(x) = e^{4x-5}$ pour tout $x \in \mathbb{R}$. La fonction g est de la forme $g(x) = e^{u(x)}$, avec

$$u(x) = 4x - 5,$$
 $u'(x) = 4.$

On a donc, pour tout $x \in \mathbb{R}$:

$$g'(x) = u'(x) \times e^{u(x)} = 4e^{4x-5}$$
.

3. On pose $h(x) = (2x+1)^4$ pour tout $x \in \mathbb{R}$. La fonction h est de la forme $h(x) = (u(x))^n$, avec

$$u(x) = 2x + 1,$$
 $u'(x) = 2,$ $n = 4.$

On a donc, pour tout $x \in \mathbb{R}$:

$$h'(x) = n \times u'(x) \times (u(x))^{n-1} = 4 \times 2 \times (2x+1)^{4-1} = 8(2x+1)^3$$
.

III. Convexité

Étant donnée une fonction f, on appelle corde tout segment qui joint deux points A et B de sa courbe représentative.

On dit qu'une fonction f est convexe (respectivement concave) sur un intervalle I si sa courbe représentative est en dessous (resp. au dessus) de ses cordes sur l'intervalle I.

Définition 2

Fonction convexe

Fonction concave

Théorème 8

Soit f une fonction deux fois dérivable sur un intervalle I.

Les propriétés suivantes sont équivalentes :

- 1. f est convexe sur I.
- **2.** f'' est positive sur I.
- 3. La courbe représentative de f est au dessus de ses tangentes sur l'intervalle I.

Les propriétés suivantes sont équivalentes :

- 1. f est concave sur I.
- **2.** f'' est négative sur I.
- 3. La courbe représentative de f est en dessous de ses tangentes sur l'intervalle I.

Exemple 2

On pose $f(x) = x^3 - 3x$ pour $x \in [-2; 2]$.

On va d'abord calculer la dérivée, étudier les variations et construire la courbe représentative. Puis on calculera la dérivée seconde et on étudiera la convexité.

Pour tout $x \in [-2;2]$:

$$f'(x) = 3x^2 - 3$$
.

Exemple 2 - Suite

On résout :

$$3x^2 - 3 = 0 \iff 3x^2 = 3 \iff x^2 = \frac{3}{3} \iff x^2 = 1 \iff (x = 1 \text{ ou } x = -1).$$

D'après le théorème 3, $f'(x) = 3x^2 - 3$ (qui est du second degré) est du signe de a, donc positif (a = 3), sauf entre les racines : $f'(x) \mid + \varphi - \varphi + |$.

On a donc le tableau:

x	-2		-1		1		2
f'(x)		+	0	_	0	+	
f(x)	-2		× ² \		-2		, ²

Remarque. On aurait pu calculer Δ pour trouver les racines de $x^2 - 3x$, mais ç'aurait été inutilement compliqué.

On calcule ensuite la dérivée seconde et on étudie son signe. Pour tout $x \in [-2;2]$:

$$f''(x) = 6x.$$

х	-2		0		2
f''(x)		-	0	+	

En utilisant le théorème 8, on peut donc dire que :

- f est concave sur l'intervalle [-2;0];
- *f* est convexe sur l'intervalle [0;2].

On dit qu'un point A d'abscisse a de la courbe représentative d'une fonction f est un point d'inflexion si la dérivée seconde change de signe en a.

Exemple 3

Dans l'exemple précédent, le point A(0;0) est un point d'inflexion. La tangente T passant par A traverse la courbe puisque :

- sur [-2;0], f est concave, donc la courbe est en dessous de T;
- sur [0;2], f est convexe, donc la courbe est au dessus de T.

Exemple 3 - Suite

Notons enfin que la tangente T a pour équation y = -3x. En effet, on a

$$f(0) = 0$$
 , $f'(0) = 3 \times 0^2 - 3 = -3$,

donc

$$T: y = f'(a)(x-a) + f(a)$$

$$T: y = f'(0)(x-0) + f(0)$$

$$T: y = -3(x-0) + 0$$

$$T: y = -3x$$
.

Remarque. Pour un physicien, si d(t) est la distance parcourue au temps t, alors $d''(t_0)$ est l'accélération instantanée au temps $t = t_0$. Une fonction convexe est une fonction qui « accélère » et une fonction concave une fonction qui « décélère » . Un point d'inflexion signe le passage d'une accélération à une décélération, ou l'inverse.

IV. Composée de deux fonctions

Dans ce paragraphe, on introduit la notion de composée de deux fonctions, que nous avons utilisée sans le dire dans le paragraphe 2.

Exemples 4

- **1.** Pour tout nombre réel x, on pose $h(x) = (2x+1)^4$ (on a déjà rencontré cette fonction dans l'exemple 2.3). On peut écrire $h = u^4$, avec u(x) = 2x+1.
- 2. Pour tout nombre réel x, on pose $z(x) = \sqrt{x^2 + 5}$. On a alors $z = \sqrt{u}$, avec $u(x) = x^2 + 5$.
- **3.** Revenons sur l'exemple 1 et posons $v(x) = x^4$. On a alors le schéma :

$$x \xrightarrow{u} 2x + 1 \xrightarrow{v} (2x + 1)^4$$

Pour tout réel x:

$$h(x) = (2x+1)^4 = v(2x+1) = v(u(x)).$$

On dit que h est la composée de v et u, on note $h=v\circ u$. On a donc, pour tout $x\in\mathbb{R}$:

$$h(x) = (2x+1)^4 = v(2x+1) = v(u(x)) = v \circ u(x).$$

Dans l'exemple 4.2, $z(x) = \sqrt{x^2 + 5} = v(u(x))$, avec $v(x) = \sqrt{x}$.

$$x \xrightarrow{u} x^2 + 5 \xrightarrow{v} \sqrt{x^2 + 5}$$

À nouveau on peut écrire $z = v \circ u$.

Attention

Reprenons le point 3 des exemples 4 et calculons $u \circ v(x)$:

$$u \circ v(x) = u(v(x)) = u(x^4) = 2x^4 + 1.$$

En se rappelant que l'on a trouvé $v \circ u(x) = (2x+1)^4$, on voit que $u \circ v$ et $v \circ u$ sont deux fonctions différentes!

Pour terminer ce paragraphe, on donne une définition plus rigoureuse de la composée, ainsi que la formule pour la dérivée d'une composée.

Définition 5

Soient $u: I \to J$ et $v: J \to K$ deux fonctions. La composée de v et u, notée $v \circ u$, est définie par

$$v \circ u(x) = v(u(x))$$

pour tout $x \in I$.

Théorème 9 (dérivée d'une composée)

Soient $u: I \to J$ et $v: J \to K$ deux fonctions dérivables sur I et J respectivement. Alors $v \circ u$ est dérivable sur I et

$$(v \circ u)' = u' \times v' \circ u$$
.

Exemple 6

Reprenons $h(x) = (2x+1)^4 = v \circ u(x)$, avec $v(x) = x^4$ et u(x) = 2x+1. ^a On a alors:

$$u(x) = 2x + 1$$
 , $v(x) = x^4$
 $u'(x) = 2$, $v'(x) = 4x^3$

Donc pour tout $x \in \mathbb{R}$:

$$h'(x) = u'(x) \times v'(u(x)) = 2 \times 4(2x+1)^3 = 8(2x+1)^3$$
.

On retombe sur la formule de l'exemple 1.3; le calcul est d'ailleurs très ressemblant. C'est normal : l'exemple 1.3 utilise le théorème 7; et ce théorème 7 est un cas particulier du théorème 9 ^b.

- a. Chacune des deux fonctions u et v est définie et dérivable sur \mathbb{R} , donc on peut prendre $I=J=K=\mathbb{R}$ dans le théorème précédent.
- b. On invite les élèves qui se destinent à des études mathématiques à s'interroger sur cette affirmation.

V. Une démonstration

Démonstration (implication $2 \implies 3$ dans la 1^{re} série d'équivalences du théorème 8

On suppose que f est deux fois dérivable sur un intervalle I = [a; b] et que la dérivée seconde est **strictement** positive sur I: pour tout $x \in I$, f''(x) > 0.

Remarque. Dans l'énoncé du théorème, f'' est simplement supposée positive. Le fait d'ajouter « strictement » permet de simplifier un peu la démonstration.

Soit $c \in I$. Pour tout $x \in I$, on pose

$$g(x) = f(x) - (f'(c)(x-c) + f(c)) = f(x) - f'(c)x + cf'(c) - f(c).$$

On sait que T: y = f'(c)(x-c) + f(c) est la tangente à la courbe représentative de f au point C d'abscisse c. On va prouver que g est positive sur I; par conséquent la courbe d'équation y = f(x) sera au-dessus de la tangente T sur l'intervalle I.

Pour mener à bien notre projet, on calcule les dérivées première et seconde : pour tout $x \in I$,

$$g'(x) = f'(x) - f'(c),$$

 $g''(x) = f''(x)$

(on a utilisé le fait que c est une constante, donc les termes cf'(c), f(c) et f'(c) « disparaissent » quand on dérive, tandis que le terme f'(c)x « devient » f'(c)).

Par hypothèse f''(x) > 0 pour tout $x \in I$, donc g'' est strictement positive sur I. On en déduit que g' est strictement croissante sur I et on a donc le tableau :

x	а	c	b
g"(x)		+	
g'(x)	×	0	×

La valeur obtenue en x = c est

$$g'(c) = f'(c) - f'(c) = 0.$$

Les deux valeurs aux extrémités (signalées par une croix) ne nous intéressent pas.

On en déduit le tableau de signe de g' et le tableau de variations de g:

x	a	С		b
g'(x)	-	0	+	
g(x)	×	0		×

Pour compléter en x = c, on calcule :

$$g(c) = f(c) - f'(c)c + cf'(c) - f(c) = 0.$$

Conclusion : le minimum de g est 0, donc la fonction g est positive sur I. Par conséquent, $f(x) - (f'(c)(x-c) + f(c)) \ge 0$ pour tout $x \in I$; et donc la courbe d'équation y = f(x) est au-dessus de la tangente T : y = f'(x)(x-c) + f(x) sur l'intervalle I.

CHAPITRE

2 Raisonnement par récurrence

Plan de ce chapitre

I.	Rappel sur les suites géométriques	9
II.	Démonstration par récurrence	10
III.	Quelques programmes en Python	13
IV.	Appendice : règles de manipulation des inégalités	14

I. Rappel sur les suites géométriques

Une suite $(v_n)_{n\in\mathbb{N}}$ est dite géométrique de raison q si tout terme se déduit du précédent en le multipliant par q: pour tout $n\in\mathbb{N}$,

$$v_{n+1} = q \times v_n$$
.

Théorème 1

Si la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison q, alors pour tout $n\in\mathbb{N}$:

$$v_n = v_0 \times q^n$$
.

Exemple 1

Soit $(v_n)_{n\in\mathbb{N}}$ la suite géométrique de premier terme $v_0=3$ et de raison q=2. On a

$$v_0 = 3$$
, $v_1 = 3 \times 2 = 6$, $v_2 = 6 \times 2 = 12$, $v_3 = 12 \times 2 = 24$, ...

Puis (par exemple)

$$v_{10} = v_0 \times q^{10} = 3 \times 2^{10} = 3072.$$

Exemple 2

La suite $(w_n)_{n\in\mathbb{N}}$ est définie par $w_0=6$ et pour tout $n\in\mathbb{N}$:

$$w_{n+1} = 0,5w_n + 1.$$

On pose également $v_n = w_n - 2$ pour tout $n \in \mathbb{N}$.

On va prouver que $(v_n)_{n\in\mathbb{N}}$ est géométrique, puis en déduire une formule générale pour v_n et pour w_n en fonction de n.

Exemple 2 - Suite

Pour tout $n \in \mathbb{N}$:

$$\begin{split} v_{n+1} &= w_{n+1} - 2 & (\text{d\'ef. de } (v_n)_{n \in \mathbb{N}}) \\ &= (0, 5w_n + 1) - 2 \text{ (rel. r\'ec. pour } (w_n)_{n \in \mathbb{N}}) \\ &= 0, 5w_n - 1 & (\text{calcul}) \\ &= 0, 5 \left(w_n - \frac{1}{0, 5} \right) \text{ (factorisation!)} \\ &= 0, 5(w_n - 2) & (\text{calcul}) \\ &= 0, 5v_n. & (\text{d\'ef. de } (v_n)_{n \in \mathbb{N}}) \end{split}$$

Conclusion : pour tout $n \in \mathbb{N}$, $v_{n+1} = 0.5v_n$, donc $(v_n)_{n \in \mathbb{N}}$ est géométrique de raison q = 0.5. Et comme $v_0 = w_0 - 2 = 6 - 2 = 4$, pour tout $n \in \mathbb{N}$:

$$v_n = v_0 \times q^n = 4 \times 0.5^n.$$

Enfin $v_n = w_n - 2$ donc

$$w_n = v_n + 2 = 4 \times 0.5^n + 2.$$

À reteni

Dans l'exemple précédent, la suite $(w_n)_{n\in\mathbb{N}}$ vérifie une relation de récurrence de la forme $w_{n+1}=aw_n+b$, avec a=0,5 et b=1. Dans cette situation (si $a\neq 1$), l'étude de $(w_n)_{n\in\mathbb{N}}$ se ramène à celle d'une suite géométrique de raison a – cette suite géométrique vous sera toujours donnée, comme ça a été le cas pour $(v_n)_{n\in\mathbb{N}}$. Il y a trois étapes :

- **1** On prouve que $(v_n)_{n\in\mathbb{N}}$ est géométrique.
- **2** On en déduit une formule pour v_n .
- **3** Puis une formule pour w_n .

On dit que la suite $(w_n)_{n\in\mathbb{N}}$ est arithmético-géométrique a.

a. C'est un peu un mélange de suite géométrique, avec le 0,5×, et de suite arithmétique, avec le +1.

II. Démonstration par récurrence

Exemple 3

Imaginons des dominos (en nombre infini) numérotés à partir de 0. On suppose que :

- le domino numéro 0 va tomber;
- les dominos sont positionnés de telle sorte que la chute du domino numéro k entraînera celle du numéro k+1, et ce pour tout entier naturel k.

0

• •

Dans ce cas, le domino numéro 0 tombe, ce qui entraîne la chute du numéro 1, ce qui entraîne la chute du numéro 2, ce qui entraîne la chute du numéro 3, etc. De proche en proche, tous les dominos tombent.

La propriété \mathscr{P}_n : « le domino numéro n tombe » est donc vraie pour tout entier naturel n.

Théorème 2 (principe de récurrence)

Pour qu'une propriété \mathcal{P}_n soit vraie pour tout $n \in \mathbb{N}$, il suffit que :

- **1. Initialisation.** \mathcal{P}_0 soit vraie.
- **2. Hérédité.** Pour tout $k \in \mathbb{N}$,

$$(\mathscr{P}_k \text{ vraie}) \Longrightarrow (\mathscr{P}_{k+1} \text{ vraie}).$$

Remarque.

Si on doit prouver que la propriété est vraie pour tout $n \in \mathbb{N}^*$, on initialise à n = 1.

Exemple 4

On reprend la suite de l'exemple 2 : $w_0 = 6$ et pour tout $n \in \mathbb{N}$:

$$w_{n+1} = 0.5w_n + 1.$$

Pour tout $n \in \mathbb{N}$, on note \mathcal{P}_n la propriété

$$w_n = 4 \times 0.5^n + 2.$$

Dans l'exemple 2, nous avons démontré cette formule à l'aide d'une suite récurrente annexe; ici, on fait une démonstration par récurrence.

• **Initialisation.** On prouve que \mathcal{P}_0 est vraie.

$$\begin{bmatrix} w_0 & = 6 \\ 4 \times 0, 5^0 + 2 & = 4 \times 1 + 2 = 6 \end{bmatrix} \implies \mathcal{P}_0 \text{ est vraie.}$$

• **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathcal{P}_k soit vraie. On a donc

$$w_k = 4 \times 0.5^k + 2.$$

Objectif

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$w_{k+1} = 4 \times 0,5^{k+1} + 2.$$

On part de

$$w_k = 4 \times 0.5^k + 2$$
 (H.R.: hypothèse de récurrence).

On a alors:

$$w_{k+1} = 0.5 \frac{w_k}{w_k} + 1$$
 (rel. réc. pour $(w_n)_{n \in \mathbb{N}}$)
 $= 0.5 \left(4 \times 0.5^k + 2 \right) + 1$ (H.R.)
 $= 4 \times 0.5 \times 0.5^k + 0.5 \times 2 + 1$ (on développe)
 $= 4 \times 0.5^{k+1} + 2$ (calcul).

La propriété \mathcal{P}_{k+1} est donc vraie.

• Conclusion. \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.

Remarque

Il n'est pas obligatoire d'écrire la partie en vert. On conseille toutefois fortement de le faire pour fixer l'objectif de l'hérédité.

Exemple 5

La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=3$ et pour tout $n\in\mathbb{N}$:

$$u_{n+1} = 0,6u_n + 4.$$

Pour tout $n \in \mathbb{N}$, on note \mathcal{P}_n la propriété

$$u_n \le 10$$
.

On démontre que cette propriété est vraie pour tout $n \in \mathbb{N}$.

- **Initialisation.** On prouve que \mathcal{P}_0 est vraie. $u_0 = 3 \le 10$, donc \mathcal{P}_0 est vraie.
- **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathcal{P}_k soit vraie. On a donc

$$u_k \le 10$$
.

Objectif

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$u_{k+1} \le 10$$
,

ou encore

$$0,6u_k+4 \le 10.$$

On part donc de

$$u_k \le 10$$
.

On multiplie par 0,6 et on ajoute 4:

$$\begin{aligned} u_k &\leq 10 \\ \mathbf{0}, 6 \times u_k &\leq \mathbf{0}, 6 \times 10 \\ 0, 6u_k &\leq 6 \\ 0, 6u_k + 4 &\leq 6 + 4 \\ u_{k+1} &\leq 10. \end{aligned}$$

La propriété \mathcal{P}_{k+1} est donc vraie.

• Conclusion. \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.

À retenii

On a manipulé des inégalités au cours de l'hérédité. On renvoie à l'appendice pour les règles de calcul à ce sujet.

III. Quelques programmes en Python

On prend encore une fois la suite de l'exemple 2 : $w_0 = 6$ et pour tout $n \in \mathbb{N}$:

$$w_{n+1} = 0.5w_n + 1.$$

On écrit quatre programmes en Python:

w = 0.5 * w + 1

print(w)

Affichage de tous les termes de u₁ à u₁₀

w=6 for i in range(10):

Calcul de u_{10} avec une fonction

```
def terme():
    w=6
    for i in range(10):
        w=0.5*w+1
    return w
```

Calcul de un avec une fonction

```
def terme(n):
    w = 6
    for i in range(n):
        w = 0.5*w+1
    return w
```

Liste des termes jusqu'à u_n , avec une fonction

On renvoie aux exercices pour les explications. Faisons tout de même quelques remarques :

Remarques.

• La commande

for i in range(10)

signifie que i va de 0 à 9. Elle est équivalente à

for i in range(0,10).

• Quelle est la différence entre return et print?

La commande *return*, qui s'utilise uniquement à la dernière ligne d'une fonction, indique la valeur renvoyée par celle-ci. À l'inverse, *print* peut être utilisé autant de fois que l'on veut, dans une fonction ou ailleurs. La commande *print* est donc plus souple, mais elle permet seulement de faire un affichage à l'écran et elle est donc très limitée : en effet, la plupart des programmes informatiques utilisent de nombreuses fonctions, qui sont liées les unes aux autres par les valeurs qu'elles renvoient – via la commande *return*.

IV. Appendice : règles de manipulation des inégalités

Théorème 3

- 1. On ne change pas le sens d'une ou plusieurs inégalités quand :
 - on ajoute ou on retranche à tous les membres un même nombre;
 - on multiplie tous les membres par un nombre strictement positif.
- **2.** On change le sens d'une ou plusieurs inégalités quand on multiplie tous les membres par un nombre strictement négatif.
- 3. Deux nombres positifs sont rangés dans le même ordre que leurs carrés (\iff la fonction carré est strictement croissante sur $[0; +\infty[)$.
- **4.** Deux nombres strictement positifs sont rangés en sens contraire de leurs inverses (\iff la fonction inverse est strictement décroissante sur]0; $+\infty$ [).

Exemple 6

Prenons un nombre $x \ge 4$. Que dire de $\frac{1}{x^2+4}$?

On part de $x \ge 4$. Deux nombres positifs sont rangés dans le même ordre que leurs carrés, donc $x^2 \ge 4^2$, soit $x^2 \ge 16$. On ajoute $4: x^2 + 4 \ge 16 + 4$, soit $x^2 + 4 \ge 20$. Enfin, deux nombres strictement positifs sont rangés en sens contraire de leurs inverses, donc $\frac{1}{x^2 + 4} \le \frac{1}{20}$.

3 Dénombrement

Plan de ce chapitre

I.	Listes et permutations	15
II.	Combinaisons	19
III.	Bilan	21

I. Listes et permutations

Définition 1

On pose, pour tout entier naturel n:

$$n! = \begin{cases} 1 \times 2 \times \dots \times n & \text{si } n \ge 1\\ 1 & \text{si } n = 0 \end{cases}$$

n! se lit « factorielle n », ou « n factorielle ».

Exemples 1

- 1. $5! = 1 \times 2 \times 3 \times 4 \times 5 = 120$.
- 2.

$$3! = 1 \times 2 \times 3 = 6.$$

Les mots de 3 lettres (ayant un sens ou non) que l'on peut former en utilisant chacune des lettres A, B, C une fois sont :

$$ABC - ACB - BAC - BCA - CAB - CBA$$

On dit qu'il y a 6 permutations possibles des lettres.

On peut représenter la situation par un arbre :

On généralise l'exemple 1.2 :

Soit E un ensemble non vide. On appelle permutation de E tout « mélange » des éléments de E (l'opération qui consiste à ne rien faire est considérée comme un mélange).

Théorème 1

Si *E* a *n* éléments, il y a *n*! permutations possibles des éléments de *E*.

Soit E un ensemble non vide. On appelle k-liste (ou k-uplet) d'éléments de E une liste de k éléments de E, éventuellement répétés.

Exemples 2

1. On prend $E = \{0; 1; 2\}$. Une 5-liste d'éléments de E est (par exemple)

(1,0,0)

2. On prend $E = \{0, 1\}$. Les 3-listes (ou triplets) d'éléments de E sont

- (0,0,0)
- (0,0,1)
- (0, 1, 0)
- (0, 1, 1)
- (1,0,1)
- (1, 1, 0)
- (1, 1, 1).

Ces triplets sont représentés par les chemins de l'arbre ci-dessous :

On notera qu'il y a $2^3 = 8$ chemins (ou triplets) possibles.

Théorème 2

Si E a n éléments, il y a n^k k-listes possibles d'éléments de E.

Exemple 3

Quatre amis en vacances choisissent tous les jours au hasard celui des quatre qui fera la vaisselle (une personne donnée peut donc faire la vaisselle plusieurs fois; mais aussi ne jamais la faire). S'ils partent 7 jours, il y a $4^7 = 4096$ plannings possibles pour la vaisselle.

On en vient à présent aux listes sans répétition, qu'on appelle arrangements :

Exemple 4

Dans une classe de 30 élèves, le professeur désigne chaque jour un élève différent pour venir au tableau. Si l'on prend 3 cours consécutifs, le nombre de choix d'élèves est

$$30 \times 29 \times 28 = 24360$$
.

On remarque que

$$30 \times 29 \times 28 = \frac{30 \times 29 \times 28 \times 27 \times 26 \times \dots \times 1}{27 \times 26 \times \dots \times 1} = \frac{30!}{27!} = \frac{30!}{(30-3)!}.$$

On dit qu'il y a 24360 arrangements de 3 élèves.

Soit E un ensemble à n éléments ($n \ge 1$) et soit $1 \le k \le n$. On appelle arrangement de k éléments de E une k-liste d'éléments distincts de E. On note A_n^k le nombre d'arrangements possibles.

Théorème 3

Soit E un ensemble à n éléments et soit $1 \le k \le n$. Alors le nombre d'arrangements de k éléments de E est

$$A_n^k = n(n-1)(n-2)\cdots(n-k+1) = \frac{n!}{(n-k)!}.$$

Déf.5

Soit U un ensemble non vide fini (appelé univers). La probabilité uniforme P est l'application qui, à tout sous-ensemble E de U (aussi appelé événement) associe le nombre

$$P(E) = \frac{\text{nombre d'éléments de } E}{\text{nombre d'éléments de } U}.$$

Remarque.

Dire que P est la probabilité uniforme revient à dire que tous les événements élémentaires a sont équiprobables : si l'univers a n éléments, chaque événement élémentaire a pour probabilité $\frac{1}{n}$. C'est toujours cette probabilité qu'on utilisera dans cette leçon, sans le répéter à chaque fois.

a. On appelle événement élémentaire un événement ayant un seul élément.

Exemple 5

On lance un dé équilibré à 6 faces. L'ensemble des cas possibles est

$$U = \{1; 2; 3; 4; 5; 6\}$$
.

On s'intéresse à l'événement

A = « obtenir un n° impair » = $\{1; 3; 5\}$.

On munit U de la probabilité uniforme P^a . On a donc

$$P(A) = \frac{\text{nombre de cas favorables à } A}{\text{nombre de cas possibles}} = \frac{3}{6} = \frac{1}{2}.$$

a. Ce qui signifie que chaque face a une chance sur six de sortir, et est sous-entendu dans l'énoncé par l'expression « dé équilibré ».

Exemple 6

On lance deux dés équilibrés à 4 faces. On s'intéresse à l'événement

B =« la somme des n° vaut 4 ».

On utilise un tableau:

SOMME		1 ^{er} dé				
		1	2	3	4	
	1	2	3	4	5	
2º dé	2	3	4	5	6	
2°	3	4	5	6	7	
	4	5	6	7	8	

Il y a $4 \times 4 = 16$ cas possibles et 3 cas favorables à *B* donc $P(B) = \frac{3}{16}$.

Exemple 7

On lance 3 dés équilibrés à 6 faces : un rouge, un bleu et un vert. On s'intéresse à l'événement :

$$A$$
: « obtenir 421 »,

c'est-à-dire que l'un des dés tombe sur 4, un autre sur 2 et le dernier sur 1.

On note les éléments de l'univers sous la forme

(résultat du dé bleu, résultat du dé rouge, résultat du dé vert).

- L'univers est l'ensemble des 3-listes d'éléments de $\{1;2;3;4;5;6\}$. Il contient $6^3 = 216$ éléments.
- Les cas favorables à A correspondent aux permutations de 1, 2, 4:

$$(1,2,4)$$
 $(1,4,2)$ $(2,1,4)$ $(2,4,1)$ $(4,1,2)$ $(4,2,1)$.

Il y en a $3! = 3 \times 2 \times 1 = 6$.

Conclusion : $P(A) = \frac{6}{216} = \frac{1}{36}$.

Exemple 8

Dans une classe de 30 élèves, quelle est la probabilité que tous les élèves aient des dates d'anniversaire différentes? ^a

On note A: « les dates d'anniversaires sont toutes différentes ».

- les cas possibles sont les 30-listes d'un ensemble à 365 éléments (les dates de l'année). Il y en a 365³⁰.
- les cas favorables à A sont les arrangements de 30 éléments d'un ensemble à 365 éléments. Il y en a $\frac{365!}{(365-30)!} = \frac{365!}{335!}$.

On a donc

$$P(A) = \frac{\frac{365!}{335!}}{365^{30}} = \frac{365!}{335! \times 365^{30}} \approx 0,27.$$

a. On considérera que personne n'est né le 29 février et que les listes de dates d'anniversaires sont équiprobables (probabilité uniforme).

Remarques.

- Les calculatrices ne sont pas assez performantes pour calculer $\frac{365!}{335! \times 365^{30}}$ les nombres en jeu sont trop grands. Pour obtenir la réponse, il faut remarquer que $\frac{365!}{335! \times 365^{30}} = \frac{365}{365} \times \frac{364}{365} \times \cdots \times \frac{336}{365}$ et faire les multiplications étape par étape on peut accélérer les calculs en faisant un programme en Python ou en utilisant un tableur.
- Si $A = \{1,2\}$ et $B = \{1,2,3\}$, l'ensemble des couples possibles d'éléments de A et de B est noté $A \times B$. On l'appelle produit cartésien de A par B. On a donc

$$A \times B = \{(1,1); (1,2); (1,3); (2,1); (2,2); (2,3)\}.$$

Ce produit cartésien contient $2 \times 3 = 6$ éléments.

On retrouve les produits cartésiens dans de nombreux problèmes de probabilités, comme les exemples 7, 8 et 9, pour lesquels on peut écrire les univers comme des produits cartésiens ^a.

a. Dans la situation de l'exemple 7, on a $U = \{1, 2, 3, 4\} \times \{1, 2, 3, 4\}$; et dans l'exemple 8, $U = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$. Pour l'exemple 9, c'est trop long à écrire!

II. Combinaisons

Définition 6

- Soient $1 \le k \le n$ deux entiers. Le nombre $\binom{n}{k}$ est le nombre de façons que l'on a de choisir k éléments dans un ensemble à n éléments, l'ordre dans lequel le choix a été fait n'ayant pas d'importance. $\binom{n}{k}$ se lit « k parmi n ».
- Par convention $\binom{n}{0} = 1$.

Remarque.

On dit aussi que $\binom{n}{k}$ est le nombre de combinaisons de k éléments d'un ensemble à n éléments.

Exemple 9

Par exemple $\binom{4}{2}$ = 6, puisque les choix possibles de 2 éléments parmi 4 éléments A, B, C, D sont :

$$AB - AC - AD - BC - BD - CD$$

Remarque.

La différence avec les arrangements, c'est qu'on ne distingue pas les listes même si l'ordre est différent. Par exemple, lorsqu'on calcule $\binom{4}{2} = 6$, les deux listes AB et BA comptent pour une seule.

Exemple 10

Un sachet contient 5 lettres A, B, C, D, E. On tire 3 lettres du sachet, on compte le nombre de tirages possibles ^a.

Si l'ordre de sortie avait de l'importance, cela reviendrait à compter le nombre d'arrangements de 3 éléments : il y en aurait $\frac{5!}{(5-3)!} = \frac{5!}{2!} = 5 \times 4 \times 3 = 60$.

Mais l'ordre de sortie n'a pas d'importance, donc chaque tirage de 3 lettres est compté $3! = 3 \times 2 \times 1 = 6$ fois. Par exemple, les tirages

ne doivent compter que pour un seul. Finalement, il n'y a que $\frac{60}{6}$ = 10 tirages possibles. On peut d'ailleurs les énumérer :

Notons pour finir que $10 = \frac{60}{6} = \frac{\frac{5!}{2!}}{3!} = \frac{5!}{3! \times 2!}$, ce que généralise le théorème suivant.

a. On décide que l'ordre dans lequel les lettres sortent n'a pas d'importance.

Théorème 4

Soient $0 \le k \le n$ deux entiers. On a

$$\binom{n}{k} = \frac{n!}{k! \times (n-k)!}.$$

Exemple 11

On tire au sort 4 personnes dans un groupe de 12 pour partir en voyage. Il y a

$$\binom{12}{4} = \frac{12!}{4! \times (12-4)!} = \frac{12!}{4! \times 8!} = 495$$

quatuors possibles.

Remarques.

• Pour obtenir $\binom{12}{4}$ avec la calculatrice :

Calculatrices collège

Il faut écrire le calcul (le symbole! est sur le clavier):

$$\frac{12!}{4! \times 8!}$$

NUMWORKS

- - Calculs EXE puis (boîte à outils)
- choisir Probabilités, puis Dénombrement
- choisir binomial(n,k)
- compléter $\binom{12}{4}$ EXE

TI graphiques

- math puis PROB
- 3 :Combinaison
- 12C4 EXE

CASIO graphiques

- MENU puis RUN
 EXE
- 12 OPTN ▷
- F3 (on choisit donc PROB)
- F3 (on choisit donc nCr)
- 4 EXE (on affiche 12C4 à l'écran avant d'exécuter)

• Le théorème 4 fonctionne encore quand k = 0:

$$\frac{n!}{0! \times (n-0)!} = \frac{n!}{1 \times n!} = 1 = \binom{n}{0},$$

conformément à la définition 6.

- Lorsque k = 1 ou k = 2, le calcul de $\binom{n}{k}$ peut se faire par un simple dénombrement ou en utilisant le théorème 4. Par exemple, pour $\binom{n}{1}$:
 - avec la définition 6 : lorsqu'on choisit 1 élément dans un ensemble à n éléments, il y a n choix possibles, donc $\binom{n}{1} = n$;
 - avec le théorème 4 : $\frac{n!}{1! \times (n-1)!} = \frac{(n-1)! \times n}{(n-1)!} = n$.

Le lecteur pourra voir de même que $\binom{n}{2} = \frac{n(n-1)}{2}$.

• Si $0 \le k \le n$, alors $\binom{n}{k} = \binom{n}{n-k}$. Là aussi, on peut démontrer cette formule par le calcul ou par un dénombrement. La deuxième méthode est plus rapide : il suffit de dire que prendre k éléments parmi n revient à choisir les n-k éléments qu'on ne prend pas.

On obtient également les $\binom{n}{k}$ avec le triangle de Pascal ¹. Par exemple, pour $\binom{4}{2} = 6$:

	0	1	2	3	4	5
0	1	0	0	0	0	0
1	1	1	0	0	0	0
2	1	2	1	0	0	0
3	1	3	3	1	0	0
4	1	4	6	4	1	0
5	1	5	10	10	5	1

Exemple 12

On choisit 5 cartes dans un jeu de 32. Quelle est la probabilité d'obtenir une paire de rois (événement *E*)?

- Il y a $\binom{32}{5}$ tirages (ou mains) possibles.
- Il y a $\binom{4}{2}$ façons possibles de choisir les rois, puis $\binom{28}{3}$ façons de choisir trois autres cartes parmi les 28 « non-rois », donc au total $\binom{4}{2} \times \binom{28}{3}$ cas favorables à E. a

a. Il faut bien multiplier. En effet, si A désigne l'ensemble des couples de rois possibles (il y en a donc $\binom{4}{2} = 6$: cœur-carreau, cœur-pique, cœur-trèfle, carreau-pique, carreau-trèfle, pique-trèfle), et B l'ensemble des triplets de cartes possibles à choisir parmi les 28 non-rois (il y en $\binom{28}{3} = 3276$), alors l'ensemble des mains favorables à E s'identifie à $A \times B$: on écrit successivement les deux rois, puis les trois autres cartes – une main est de la forme Roi-Roi – Non-roi-Non-roi, comme par exemple $R \diamondsuit - R \clubsuit - V \spadesuit - 10 \heartsuit - V \clubsuit$.

^{1.} Voir exercices pour l'explication du lien entre les $\binom{n}{k}$ et le triangle de Pascal.

Exemple 12 - Suite

Conclusion:

$$P(E) = \frac{\binom{4}{2} \times \binom{28}{3}}{\binom{32}{5}} = \frac{\frac{4!}{2!2!} \times \frac{28!}{3!25!}}{\frac{32!}{5!27!}} = \frac{6 \times 3276}{201376} \approx 0, 10.$$

III. Bilan

Un sachet contient 5 jetons marqués A, B, C, D, E. Dans les exemples ci-dessous, on examine les trois situations standards.

Exemples 13

1. On tire 3 jetons **avec remise**. **On tient compte de l'ordre** du tirage. On parle de 3-liste d'un ensemble à 5 éléments.

Exemples de tirages: ABE - BEA - DCA - BBD

Il y a $5^3 = 125$ tirages possibles.

2. On tire 3 jetons **sans remise**. **On tient compte de l'ordre** du tirage. On parle d'arrangement de 3 éléments d'un ensemble à 5 éléments.

Exemples de tirages : ABE - BEA - DCA - BBEX

Il y a $\frac{5!}{(5-3)!} = \frac{5!}{2!} = 5 \times 4 \times 3 = 60$ tirages possibles.

3. On tire 3 jetons **sans remise. On ne tient pas compte de l'ordre** du tirage. On parle de combinaison de 3 éléments d'un ensemble à 5 éléments.

Exemples de tirages : ABE - BEA - DCA - BBE

Il y a $\binom{5}{3}$ = $\frac{5!}{3!(5-3)!}$ = $\frac{5!}{3!2!}$ = 10 tirages possibles.

CHAPITRE

4 Limites de suites

Plan de ce chapitre

I.	Suite convergente	22
II.	Suite de limite infinie	24
III.	Limites des suites monotones	25
IV.	Un programme en Python	28
V.	Des démonstrations	28

I. Suite convergente

Soit $(u_n)_{n \in \mathbb{N}}$ une suite et $\ell \in \mathbb{R}$. On dit que $(u_n)_{n \in \mathbb{N}}$ a pour limite ℓ si tout intervalle [a;b] tel que $a < \ell < b$ contient tous les termes de la suite à partir d'un certain rang.

. 2

- 1 On dit aussi que $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ et on note $\lim_{n\to+\infty}u_n=\ell$.
- Quand une suite a une limite finie ℓ , on dit qu'elle converge (ou qu'elle est convergente). Dans le cas contraire, on dit qu'elle diverge (ou qu'elle est divergente).

Exemple 1

La suite $(u_n)_{n\in\mathbb{N}^*}$ est définie par $u_n = \frac{1}{n}$ pour tout $n\in\mathbb{N}^*$.

Pour avoir une idée de sa limite, on complète un petit tableau de valeurs :

n	1	10	100	1 000	10 000
u_n	1	0,1	0,01	0,001	0,0001

Quand n grandit, u_n se rapproche de 0. De façon plus précise, il semblerait que $\lim_{n\to+\infty}u_n=0$. C'est ce que l'on prouve maintenant de façon rigoureuse :

Soit [a;b] un intervalle tel que a < 0 < b. On a les équivalences :

Exemple 1 - Suite

$$u_n \le b \iff \frac{1}{n} \le b$$

$$\iff \frac{1}{\frac{1}{n}} \ge \frac{1}{b} \quad \text{(car deux nombres strictement positifs sont rangés en sens contraire de leurs inverses)}$$

$$\iff n \ge \frac{1}{b}.$$

Conclusion : quand *n* dépasse $\frac{1}{h}$, u_n est inférieur à *b*. Comme par ailleurs $a < 0 < u_n$, on a

$$a \le u_n \le b$$
.

Conclusion : à partir d'un certain rang (quand n dépasse $\frac{1}{b}$), u_n est dans l'intervalle [a;b]. On a donc $\lim_{n\to+\infty}u_n=0$.

On a donc démontré:

Théorème 1

$$\lim_{n\to+\infty}\frac{1}{n}=0.$$

Théorème 2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite constante égale à c: pour tout $n\in\mathbb{N}$, $u_n=c$. Alors $\lim_{n\to+\infty}u_n=c$.

Théorème 3

Si une suite est convergente, sa limite est unique.

Le théorème suivant recense les règles de calcul avec les limites pour les suites convergentes.

Théorème 4 (opérations sur les limites)

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes.

- 1. Si $\lim_{n \to +\infty} u_n = \ell$, alors pour tout réel c, $\lim_{n \to +\infty} (c \times u_n) = c \times \ell$ et $\lim_{n \to +\infty} (u_n + c) = \ell + c$.
- 2. Si $\lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} v_n = \ell'$, alors

$$\lim_{n\to+\infty}(u_n+v_n)=\ell+\ell',$$

$$\lim_{n\to+\infty}(u_n-v_n)=\ell-\ell',$$

$$\lim_{n\to+\infty}(u_n\times v_n)=\ell\times\ell'.$$

23

3. Si $\lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} v_n = \ell'$, avec $\ell' \neq 0$, alors $v_n \neq 0$ pour n assez grand et $\lim_{n \to +\infty} \frac{u_n}{v_n} = \frac{\ell}{\ell'}$.

Exemple 2

On pose $u_n = 3 + \frac{2}{n^2}$ pour tout entier $n \ge 1$. On peut écrire

$$u_n = 3 + 2 \times \frac{1}{n} \times \frac{1}{n}.$$

- D'après le théorème 1, $\lim_{n \to +\infty} \frac{1}{n} = 0$.
- D'après le théorème 2, $\lim_{n \to +\infty} 3 = 3$.

Donc d'après les points 1 et 2 du théorème 4 :

$$\lim_{n \to +\infty} u_n = 3 + 2 \times 0 \times 0 = 3.$$

Théorème 5 (conservation des inégalités)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente et soit M un nombre réel.

- **1.** Si pour tout $n \in \mathbb{N}$, $u_n \ge M$, alors $\lim_{n \to +\infty} u_n \ge M$.
- **2.** Si pour tout $n \in \mathbb{N}$, $u_n \le M$, alors $\lim_{n \to +\infty} u_n \le M$.

Théorème 6 (théorème des gendarmes)

Soient $(u_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ deux suites ayant la même limite ℓ et soit $(v_n)_{n\in\mathbb{N}}$ une troisième suite telle que pour tout $n\in\mathbb{N}$:

$$u_n \le v_n \le w_n$$
.

Alors $\lim_{n\to+\infty} v_n = \ell$.

II. Suite de limite infinie

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. On dit que $\lim_{n\to+\infty}u_n=+\infty$ si tout intervalle de la forme $[M;+\infty[$, avec M>0, contient tous les termes de la suite à partir d'un certain rang.

Exemple 3

Définition 3

On pose $u_n = \sqrt{n}$ pour tout $n \in \mathbb{N}$. On prouve que $\lim_{n \to +\infty} u_n = +\infty$.

Soit M > 0. On a les équivalences :

Exemple 3 - Suite

$$u_n \ge M \iff \sqrt{n} \ge M$$
 $\iff \sqrt{n^2} \ge M^2$ (car deux nombres positifs sont rangés dans le même ordre que leurs carrés) $\iff n \ge M^2$.

Conclusion : quand n dépasse M^2 , u_n dépasse M. On a donc bien $\lim_{n\to+\infty} u_n = +\infty$.

Théorème 7

Si
$$\lim_{n \to +\infty} u_n = +\infty$$
, alors $\lim_{n \to +\infty} \frac{1}{u_n} = 0$.

Théorème 8 (limite par comparaison)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que

$$\lim_{n\to+\infty}u_n=+\infty$$

et pour tout $n \in \mathbb{N}$,

$$u_n \leq v_n$$
.

Alors

$$\lim_{n\to+\infty}\nu_n=+\infty.$$

Remarque. On a des définitions et des théorèmes analogues pour des suites qui tendent vers $-\infty$.

III. Limites des suites monotones

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ est : Définition 4

- 1 majorée par le réel M si $u_n \le M$ pour tout $n \in \mathbb{N}$;
- 2 minorée par le réel m si $u_n \ge m$ pour tout $n \in \mathbb{N}$;
- 3 bornée si elle est à la fois minorée et majorée.

Une suite $(u_n)_{n\in\mathbb{N}}$ est dite :

- 1 croissante si pour tout $n \in \mathbb{N}$, $u_{n+1} \ge u_n$ (ou de façon équivalente $u_{n+1} u_n \ge 0$);
- décroissante si pour tout $n \in \mathbb{N}$, $u_{n+1} \le u_n$ (ou de façon équivalente $u_{n+1} u_n \le 0$).

Lorsqu'une suite est croissante ou lorsqu'elle est décroissante, on dit qu'elle est monotone.

Théorème 9

- 1. Si $(u_n)_{n\in\mathbb{N}}$ est croissante, pour tout $n\in\mathbb{N}$, $u_n\geq u_0$.
- **2.** Si $(u_n)_{n\in\mathbb{N}}$ est décroissante, pour tout $n\in\mathbb{N}$, $u_n\leq u_0$.

Exemple 4

Soit $(v_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $v_0=5$ et de raison q=0,6. On a donc $v_n=v_0\times q^n=0$ $5 \times 0,6^n$ pour tout $n \in \mathbb{N}$, puis

Exemple 4 - Suite

$$\nu_{n+1} - \nu_n = 5 \times 0, 6^{n+1} - 5 \times 0, 6^n$$

$$= 5 \times 0, 6^n \times 0, 6 - 5 \times 0, 6^n$$

$$= 3 \times 0, 6^n - 5 \times 0, 6^n$$

$$= \underbrace{-2}_{\Theta} \times \underbrace{0, 6^n}_{\Phi}.$$

Pour tout $n \in \mathbb{N}$, $v_{n+1} - v_n \le 0$, donc $(v_n)_{n \in \mathbb{N}}$ est décroissante. De plus, elle est clairement minorée par 0 puisque $v_n = \underbrace{5}_{\underline{x}} \times \underbrace{0,6^n}_{\underline{x}}$.

Théorème 10 (de limite monotone)

- 1. Si $(u_n)_{n\in\mathbb{N}}$ est croissante majorée par M, alors $(u_n)_{n\in\mathbb{N}}$ converge et sa limite vérifie $\lim_{n\to+\infty} u_n \leq M$.
- **2.** Si $(u_n)_{n\in\mathbb{N}}$ est croissante non majorée, alors $\lim_{n\to+\infty}u_n=+\infty$.
- 3. Si $(u_n)_{n\in\mathbb{N}}$ est décroissante minorée par m, alors $(u_n)_{n\in\mathbb{N}}$ converge et sa limite vérifie $\lim_{n\to+\infty}u_n\geq m$.
- **4.** Si $(u_n)_{n\in\mathbb{N}}$ est décroissante non minorée, alors $\lim_{n\to+\infty}u_n=-\infty$.

Exemple 5

Soit $(w_n)_{n\in\mathbb{N}}$ la suite définie par $w_0=6$ et la relation de récurrence : $w_{n+1}=0,5$ w_n+1 pour tout $n\in\mathbb{N}$.

Dans l'exemple 2 de la leçon n°2, on a ramené l'étude de $(w_n)_{n\in\mathbb{N}}$ à celle d'une suite géométrique. Ici, on va déterminer la limite de $(w_n)_{n\in\mathbb{N}}$ par une méthode complètement différente.

Pour tout $n \in \mathbb{N}$, on note \mathcal{P}_n la propriété

$$2 \le w_{n+1} \le w_n.$$

On démontre par récurrence que cette propriété est vraie pour tout $n \in \mathbb{N}$:

• **Initialisation.** On prouve que \mathcal{P}_0 est vraie.

$$\begin{array}{ll} w_0 &= 6 \\ w_1 &= 0,5\,w_0+1=0,5\times 6+1=4 \\ 2 &\leq 4\leq 6 \end{array} \right\} \Longrightarrow 2\leq w_1\leq w_0 \Longrightarrow \mathscr{P}_0 \text{ est vraie.}$$

• **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathscr{P}_k soit vraie. On a donc

$$2 \le w_{k+1} \le w_k$$
.

Objectif

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$2 \le w_{k+2} \le w_{k+1}$$
.

On part de

$$2 \le w_{k+1} \le w_k.$$

On multiplie par 0,5:

$$0,5 \times 2 \le 0,5 \times w_{k+1} \le 0,5 \times w_k$$

 $1 \le 0,5 \times w_{k+1} \le 0,5 \times w_k$.

Exemple 5 – Suite

Puis on ajoute 1:

$$\begin{aligned} 1 + 1 &\leq 0, 5 \times w_{k+1} + 1 \leq 0, 5 \times w_k + 1 \\ 2 &\leq w_{k+2} \leq w_{k+1}. \end{aligned}$$

La propriété \mathcal{P}_{k+1} est donc vraie.

• **Conclusion.** \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.

Comme $w_{n+1} \le w_n$ pour tout $n \in \mathbb{N}$, la suite $(w_n)_{n \in \mathbb{N}}$ est décroissante. Et comme $2 \le w_n$ pour tout $n \in \mathbb{N}$, la suite $(w_n)_{n \in \mathbb{N}}$ est minorée par 2.

Or toute suite décroissante minorée converge (point 3 du théorème de limite monotone), donc $(w_n)_{n\in\mathbb{N}}$ converge. On note ℓ sa limite.

Pour trouver la valeur de ℓ , il faut mener un raisonnement astucieux : les suites $(w_n)_{n\in\mathbb{N}}=(w_0,w_1,w_2,\cdots)$ et $(w_{n+1})_{n\in\mathbb{N}}=(w_1,w_2,w_3,\cdots)$ ont la même limite, puisque les indices sont simplement décalés. On peut donc « passer à la limite » dans la relation de récurrence :

$$w_{n+1} = 0.5w_n + 1$$
 pour tout $n \in \mathbb{N}$,

donc par opération sur les limites,

$$\ell = 0.5\ell + 1.$$

On résout :

$$\ell = 0.5\ell + 1 \iff \ell - 0.5\ell = 1 \iff 0.5\ell = 1 \iff \ell = \frac{1}{0.5} = 2.$$

Conclusion : $\ell = 2$, soit $\lim_{n \to +\infty} w_n = 2$.

À retenir

L'astuce qui consiste à passer à la limite dans la relation de récurrence est à retenir, il faudra l'utiliser dans plusieurs exercices.

Théorème 11

- 1. Si q > 1, $\lim_{n \to +\infty} q^n = +\infty$.
- **2.** Si q = 1, $(q^n)_{n \in \mathbb{N}}$ est la suite constante égale à 1.
- 3. Si -1 < q < 1, $\lim_{n \to +\infty} q^n = 0$.
- **4.** Si $q \le -1$, $(q^n)_{n \in \mathbb{N}}$ n'a pas de limite.

Exemple 6

On reprend l'exemple 5. On a vu dans l'exemple 2 de la leçon n°2 que pour tout $n \in \mathbb{N}$:

$$w_n = 4 \times 0.5^n + 2.$$

-1 < 0,5 < 1, donc d'après le théorème 11,

$$\lim_{n\to+\infty}0,5^n=0.$$

Et donc, par opération sur les limites :

$$\lim_{n \to +\infty} w_n = 4 \times 0 + 2 = 2.$$

On obtient ainsi la limite par une méthode alternative à celle de l'exemple 5. Cette méthode semble plus rapide, mais elle repose sur la formule pour w_n , qui demande du travail (utilisation d'une suite géométrique annexe).

27

IV. Un programme en Python

On prend encore une fois la suite définie par $w_0 = 6$ et pour tout $n \in \mathbb{N}$:

$$w_{n+1} = 0.5w_n + 1.$$

On a vu que $(w_n)_{n \in \mathbb{N}}$ était décroissante et que sa limite était égale à 2. On écrit ci-dessous une fonction qui détermine le plus petit entier naturel n tel que $w_n \le 2,05$.

```
def seuil():
    w=6
    n=0
    while w>2.05:
        w=0.5*w+1
        n=n+1
    return n
```

On renvoie aux exercices pour les explications.

V. Des démonstrations

Seule une partie des théorèmes est démontrée, d'abord parce que certaines démonstrations sont proches les unes des autres et qu'il ne nous a pas paru utile de reproduire plusieurs fois d'affilée les mêmes arguments; ensuite parce que plusieurs démonstrations sont trop difficiles au niveau de la classe de terminale.

Démonstration (du théorème 2)

 $(u_n)_{n\in\mathbb{N}}$ est une suite constante égale à c: pour tout $n\in\mathbb{N}$, $u_n=c$.

Soient a et b deux réels tels que a < c < b. Tous les termes de la suite sont égaux à c, donc ils sont dans l'intervalle [a;b].

Conclusion : les termes de la suite $(u_n)_{n\in\mathbb{N}}$ sont dans l'intervalle [a;b] à partir du rang n=0, donc $\lim_{n\to+\infty}u_n=c$.

Démonstration (point 2 du théorème 4, pour la somme)

Pour simplifier la rédaction, on se place dans la situation où $\ell = \ell' = 0$. On a donc

$$\lim_{n\to+\infty}u_n=0 \qquad ; \qquad \lim_{n\to+\infty}v_n=0.$$

Soit [a;b] un intervalle tel que a < 0 < b. L'intervalle $\left[\frac{a}{2};\frac{b}{2}\right]$ contient 0, et 0 n'en est pas une extrémité, donc :

• pour *n* assez grand, disons $n \ge N_1$,

$$\frac{a}{2} \le u_n \le \frac{b}{2} \,; \tag{4.1}$$

• pour *n* assez grand, disons $n \ge N_2$,

$$\frac{a}{2} \le v_n \le \frac{b}{2}.\tag{4.2}$$

On pose $N = \max(N_1, N_2)$. Si $n \ge N$, alors $n \ge N_1$ et $n \ge N_2$, donc les deux lignes (4.1) et (4.2) ci-dessus sont vraies et en additionnant membre à membre on obtient :

$$\frac{a}{2} + \frac{a}{2} \le u_n + v_n \le \frac{b}{2} + \frac{b}{2}$$
$$a \le u_n + v_n \le b.$$

Cela prouve que $\lim_{n \to +\infty} (u_n + v_n) = 0$.

Démonstration (point 2 du théorème 4, pour la somme) - Suite

Illustration:

Pour $n \ge N_1$, u_n est dans cet intervalle

Pour $n \ge N_2$, v_n est dans cet intervalle

Pour $n \ge \max(N_1, N_2)$, $(u_n + v_n)$ est dans cet intervalle

Démonstration (point 1 du théorème 5)

Nous raisonnons par l'absurde. Notons $\ell = \lim_{n \to +\infty} u_n$ et supposons que $\ell < M$. Soit d la distance entre ℓ et M.

Par définition de la limite d'une suite, à partir d'un certain rang, u_n est dans l'intervalle $\left[\ell-\frac{d}{2};\ell+\frac{d}{2}\right]$. En particulier $u_n \leq \ell + \frac{d}{2} < \ell + d = M$, ce qui est absurde puisque par hypothèse, pour tout $n \in \mathbb{N}$, $u_n \geq M$.

Démonstration (du théorème 6)

Soit [a;b] un intervalle tel que $a < \ell < b$.

Par hypothèse $\lim_{n\to+\infty}u_n=\ell$ donc pour n assez grand, disons $n\geq N_1,\ a\leq u_n\leq b$.

De même $\lim_{n\to+\infty} w_n = \ell$ donc pour n assez grand, disons $n \ge N_2$, $a \le w_n \le b$.

Enfin, pour $n \in \mathbb{N}$, $u_n \le v_n \le w_n$.

Posons $N = \max(N_1, N_2)$. Alors pour $n \ge N$:

$$a \le u_n \le v_n \le w_n \le b.$$

On a donc $a \le v_n \le b$, et par suite $\lim_{n \to +\infty} v_n = \ell$.

Démonstration (du théorème 8)

Soit M > 0. On sait que $\lim_{n \to +\infty} u_n = +\infty$, donc $u_n \ge M$ à partir d'un certain rang N. On a donc $v_n \ge u_n \ge M$ à partir du rang N. On en déduit $\lim_{n \to +\infty} v_n = +\infty$.

Démonstration (point 1 du théorème 9)

On suppose que $(u_n)_{n\in\mathbb{N}}$ est croissante et, pour tout $n\in\mathbb{N}$, on note \mathscr{P}_n la propriété $u_n\geq u_0$. On fait une démonstration par récurrence abrégée :

- \mathscr{P}_0 est vraie car $u_0 \ge u_0$.
- Soit $k \in \mathbb{N}$ tel que \mathscr{P}_k soit vraie; on a donc $u_k \ge u_0$. Or $(u_n)_{n \in \mathbb{N}}$ est croissante, donc $u_{k+1} \ge u_k$; et ainsi $u_{k+1} \ge u_k \ge u_0$. La propriété \mathscr{P}_{k+1} est donc vraie.
- \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.

Démonstration (point 2 du théorème 10)

Soit M > 0. La suite $(u_n)_{n \in \mathbb{N}}$ est non majorée, donc il existe $N \in \mathbb{N}$ tel que $u_N \ge M$. Et comme $(u_n)_{n \in \mathbb{N}}$ est croissante, pour tout entier $n \ge N$: $u_n \ge u_N \ge M$. Cela prouve que $\lim_{n \to +\infty} u_n = +\infty$.

Remarque

Les premier et troisième points du théorème 10 sont les seules choses du programme que l'on ne puisse pas démontrer de façon rigoureuse en terminale : il faudrait introduire la notion de borne supérieure, qu'il semble raisonnable de laisser pour le niveau bac+1.

Démonstration (point 3 du théorème 11)

Commençons par le cas $0 \le q < 1$ et posons $v_n = q^n$ pour tout $n \in \mathbb{N}$. On a

$$v_{n+1} - v_n = q^{n+1} - q^n = q^n (q-1).$$

Or $q^n \ge 0$ et $q-1 \le 0$, puisque $0 \le q < 1$. La suite $(v_n)_{n \in \mathbb{N}}$ est donc décroissante. De plus, elle est clairement minorée par 0, donc elle converge d'après le point 3 du théorème 10.

On note ℓ sa limite et on reprend le raisonnement de l'exemple 5 :

$$v_{n+1} = q \times v_n$$
 pour tout $n \in \mathbb{N}$,

donc en passant la limite :

$$\ell = q \times \ell$$
.

On a donc $\ell - q\ell = 0$, soit $\ell(1 - q) = 0$. Et puisque $1 - q \neq 0$, nécessairement $\ell = 0$.

Pour le cas -1 < q < 0, on se contente d'une explication en prenant l'exemple q = -0.6.

Dans ce cas, $q^0 = (-0.6)^0 = 1$, $q^1 = (-0.6)^1 = -0.6$, $q^2 = (-0.6)^2 = 0.36$, $q^3 = (-0.6)^3 = -0.216$, etc. On remarque que le résultat est alternativement positif et négatif. On peut alors écrire :

$$(-0,6)^n = \begin{cases} 0,6^n & \text{si } n \text{ est pair,} \\ -0,6^n & \text{si } n \text{ est impair.} \end{cases}$$

On a donc, dans tous les cas (que *n* soit pair ou impair)

$$-0.6^{n} \le (-0.6)^{n} \le 0.6^{n}. \tag{4.3}$$

Mais $\lim_{n \to +\infty} 0, 6^n = 0$ d'après la première partie de la démonstration $(0 \le 0, 6 < 1)$, donc aussi $\lim_{n \to +\infty} (-0, 6^n) = -0 = 0$; et donc, d'après le théorème des gendarmes et l'encadrement (4.3) :

$$\lim_{n\to+\infty} (-0,6)^n = 0.$$

Démonstration (point 1 du théorème 11)

On donne seulement l'idée, les ingrédients techniques étant proches de ceux de la démonstration précédente : on prouve d'abord que la suite $(q^n)_{n\in\mathbb{N}}$ est croissante. Ensuite, si elle était majorée, elle convergerait d'après le point 1 du théorème 10. Mais alors sa limite serait égale à 0, en raisonnant comme dans la démonstration précédente. C'est absurde, puisqu'elle est croissante, donc minorée par son premier terme $q^0=1$; et sa limite devrait alors être supérieure à 1.

Conclusion : la suite $(q^n)_{n\in\mathbb{N}}$ est croissante non majorée ; et donc sa limite est $+\infty$ d'après le point 2 du théorème 10.

5 Géométrie repérée dans l'espace

Plan de ce chapitre

I.	Repères et vecteurs de l'espace	31
II.	Règles d'incidence, parallélisme	33
III.	Orthogonalité, produit scalaire	36

Dans ce chapitre, nous étendons à l'espace plusieurs concepts de géométrie du plan : repères et coordonnées, vecteurs, colinéarité et produit scalaire. Ces nouveaux outils nous permettent d'étudier les problèmes d'incidence, de parallélisme et d'orthogonalité.

I. Repères et vecteurs de l'espace

Un repère orthonormé de l'espace est la donnée de trois droites :

- graduées avec la même unité de longueur;
- deux à deux perpendiculaires.

Ces droites sont appelées axe des abscisses, axe des ordonnées et axe des cotes. Elles permettent de repérer chaque point de l'espace par un triplet de nombres (x; y; z).

Définition 1

Attention

Dans toute la leçon, tous les repères utilisés sont des repères orthonormés.

Exemple 1

ABCDEFGH est un cube. Ce cube permet de définir un repère de l'espace, noté $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$, dans lequel

$$H(0;1;1)$$
.

Soit *I* le milieu de [CG]. Les coordonnées de ce point peuvent être :

- soit directement « lues » graphiquement : *I*(1;1;0,5) ;
- soit obtenues avec la formule (voir théorème 1) :

$$I\left(\frac{x_C + x_G}{2}; \frac{y_C + y_G}{2}; \frac{z_C + z_G}{2}\right) \qquad I\left(\frac{1+1}{2}; \frac{1+1}{2}; \frac{0+1}{2}\right) \qquad I(1;1;0,5).$$

Exemple 1 - Suite

Les coordonnées du vecteur \overrightarrow{CE} (voir définition 2) sont

$$\overrightarrow{CE} \begin{pmatrix} x_E - x_C \\ y_E - y_C \\ z_E - z_C \end{pmatrix} \qquad \overrightarrow{CE} \begin{pmatrix} 0 - 1 \\ 0 - 1 \\ 1 - 0 \end{pmatrix} \qquad \overrightarrow{CE} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}.$$

La longueur du segment [CE] est (voir théorème 1) :

$$CE = \sqrt{(x_E - x_C)^2 + (y_E - y_C)^2 + (z_E - z_C)^2} = \sqrt{(0 - 1)^2 + (0 - 1)^2 + (1 - 0)^2} = \sqrt{3}.$$

Théorème 1

Soient $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$ deux points de l'espace.

1. Le milieu *I* du segment [*AB*] a pour coordonnées

$$I\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2};\frac{z_A+z_B}{2}\right).$$

2. La longueur du segment [AB] est

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

Remarque.

Pour démontrer le point 2 du théorème 1, il faut utiliser deux fois de suite le théorème de Pythagore (demandez-vous comment un collégien pourrait calculer la longueur [CE] sur la figure de droite de l'exemple 1).

Soient $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$ deux points de l'espace. On définit :

- le vecteur \overrightarrow{AB} est le couple de points (A, B);
- les coordonnées du vecteur \overrightarrow{AB} sont

$$\overrightarrow{AB}$$
 $\begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$ \leftarrow abscisse \leftarrow ordonnée \leftarrow cote

• deux vecteurs sont dits égaux s'ils ont les mêmes coordonnées.

Soient
$$\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ et soit $k \in \mathbb{R}$.

Définition 3

1 Le vecteur $\overrightarrow{v} = k \overrightarrow{u}$ est le vecteur de coordonnées

- - 2 La somme de \overrightarrow{u} et \overrightarrow{v} , notée $\overrightarrow{u} + \overrightarrow{v}$, est le vecteur de coordonnées $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$
 - 3 Le vecteur nul, noté $\overrightarrow{0}$, est le vecteur de coordonnées 0

Théorème 2

1. Relation de Chasles : pour tous points *A*, *B*, *C* :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
.

2. Géométrie vectorielle : On peut manipuler des combinaisons linéaires de vecteurs comme on manipule des nombres. Par exemple :

$$5\overrightarrow{v} + 3(\overrightarrow{u} - 2\overrightarrow{v}) = 5\overrightarrow{v} + 3\overrightarrow{u} - 6\overrightarrow{v} = 3\overrightarrow{u} - \overrightarrow{v}$$
.

II. Règles d'incidence, parallélisme

Théorème 3

- 1. Par trois points non alignés passe un unique plan.
- 2. Si deux plans distincts sont sécants ^a et non confondus, leur intersection est une droite.
 - a. C'est-à-dire qu'ils se coupent.

Exemple 2

Sur la figure ci-contre:

- A, B et C ne sont pas alignés. Ils déterminent un plan, noté (ABC). Ce plan, représenté en bleu, est en fait « illimité dans toutes les directions ». Il contient notamment le point D.
- E, A et D déterminent également le plan (EAD) représenté en rouge.
- Ces deux plans (ABC) et (EAD) sont sécants suivant la droite $(AD)^a$.

a. C'est-à-dire que (AD) est la droite à l'intersection des plans (ABC) et (EAD).

- 1 Des objets de l'espace sont dits coplanaires lorsqu'ils sont dans un même plan.
- 2 Deux droites de l'espace sont dites parallèles lorsqu'elles sont coplanaires et parallèles dans ce plan a.
- 3 Deux plans sont dits parallèles lorsqu'ils sont confondus ou lorsqu'ils n'ont aucun point commun.
- 4 Une droite et un plan sont dits parallèles lorsque la droite est incluse dans le plan ou lorsqu'ils n'ont aucun point commun.

a. Autrement dit, il faut déjà qu'elles soient dans un même plan. Ensuite, il faut qu'elles soient parallèles dans ce plan – on se ramène donc à un problème de géométrie du plan.

Exemple 3

Sur la figure de l'exemple 2 :

- Les droites (AB) et (CD) sont coplanaires (dans le plan bleu) et parallèles.
- Les plans (ABC) et (EFG) sont parallèles.
- La droite (*EF*) est parallèle au plan (*ABC*).

Théorème 4

Pour qu'une droite soit parallèle à un plan, il suffit qu'elle soit parallèle à une droite de ce plan.

Comme dans le plan, l'outil usuel pour étudier les problèmes de parallélisme est la colinéarité :

Théorème 5

- 1. Trois points A, B, C sont alignés si, et seulement si, \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- 2. Deux droites (AB) et (CD) sont parallèles si, et seulement si, \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Exemple 4

Les points A(0;1;2), B(2;4;5) et C(-3;0;6) déterminent un plan. En effet, on calcule les coordonnées des vecteurs :

$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix} \qquad \overrightarrow{AB} \begin{pmatrix} 2 - 0 \\ 4 - 1 \\ 5 - 2 \end{pmatrix} \qquad \overrightarrow{AB} \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}$$

$$\overrightarrow{AC} \begin{pmatrix} x_C - x_A \\ y_C - y_A \\ z_C - z_A \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} -3 - 0 \\ 0 - 1 \\ 6 - 2 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} -3 \\ -1 \\ 4 \end{pmatrix}$$

Exemple 4 – Suite

Ces vecteurs ne sont pas colinéaires, parce que le tableau avec leurs coordonnées

n'est pas un tableau de proportionnalité.

On en déduit que A, B, C ne sont pas alignés, et donc qu'ils déterminent un plan.

On termine ce paragraphe avec le théorème utile pour étudier les problèmes de sections ¹.

Théorème 6

Si un plan coupe deux faces parallèles d'un solide, alors il les coupe suivant des segments parallèles.

Exemple 5

ABCDEFGH est un cube. Dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$, le point J a pour coordonnées (1;0,3;0). Le plan (FHJ) coupe le segment [CD] en un point K, dont on cherche les coordonnées.

Le point K est sur le segment [CD], donc il a des coordonnées de la forme (x;1;0). Il faut trouver x.

Les faces ABCD et EFGH sont parallèles, donc d'après le théorème 6, le plan (FHJ) les coupe suivant deux segments parallèles. Les segments [FH] et [JK] sont donc parallèles, et les vecteurs \overrightarrow{FH} et \overrightarrow{JK} sont colinéaires. Or F(1;0;1) et H(0;1;1), donc

$$\overrightarrow{FH} \begin{pmatrix} x_H - x_F \\ y_H - y_F \\ z_H - z_F \end{pmatrix} \qquad \overrightarrow{FH} \begin{pmatrix} 0 - 1 \\ 1 - 0 \\ 1 - 1 \end{pmatrix} \qquad \overrightarrow{FH} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

et

$$\overrightarrow{JK} \begin{pmatrix} x_K - x_J \\ y_K - y_J \\ z_K - z_J \end{pmatrix} \qquad \overrightarrow{JK} \begin{pmatrix} x - 1 \\ 1 - 0, 3 \\ 0 - 0 \end{pmatrix} \qquad \overrightarrow{JK} \begin{pmatrix} x - 1 \\ 0, 7 \\ 0 - 0 \end{pmatrix}.$$

Les vecteurs étant colinéaires, le tableau

-1	<i>x</i> – 1
1	0,7
0	0

est un tableau de proportionnalité. On a donc -1×0 , $7 = 1 \times (x - 1)$. On développe et on résout :

$$-0.7 = x - 1 \iff x = -0.7 + 1 = 0.3.$$

Conclusion : K(0,3;1;0).

^{1.} Une section est l'intersection d'un solide avec un plan.

III. Orthogonalité, produit scalaire

Deux droites (AB) et (CD) sont dites orthogonales (notation (AB) \perp (CD)) si la parallèle à (CD) passant par A est perpendiculaire à (AB).

On dit qu'une droite Δ est orthogonale à un plan P (notation $\Delta \perp P$) si elle est orthogonale à deux droites non parallèles du plan P.

On illustre ces définitions en travaillant dans un cube ABCDEFGH.

Exemple 6

Les droites (AB) et (DH) sont orthogonales puisque la parallèle (AE) à (DH) passant par A est perpendiculaire à (AB).

La droite (AE) est orthogonale au plan (ABC) puisqu'elle est orthogonale aux droites (AB) et (AD).

Remarque.

Lorsque des droites se coupent, dire qu'elles sont orthogonales ou qu'elles sont perpendiculaires revient au même.

Théorème 7

Si une droite est orthogonale à un plan, elle est orthogonale à toute droite incluse dans ce plan.

Exemple 7

Dans le cube de l'exemple 6, (AE) est orthogonale au plan (ABC), donc elle est orthogonale à la droite (BD) (qui est incluse dans ce plan).

- On dit que deux vecteurs non nuls \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux (notation $\overrightarrow{AB} \perp \overrightarrow{CD}$) quand les droites (AB) et (CD) sont orthogonales. Par convention, le vecteur nul est orthogonal à tout vecteur.
- 2 On dit qu'un vecteur non nul \overrightarrow{AB} est orthogonal à un plan P (notation $\overrightarrow{AB} \perp P$) quand (AB) est orthogonale à P. Par convention, le vecteur nul est orthogonal à tout plan.

Théorème 8

- 1. Pour qu'un vecteur \overrightarrow{n} soit orthogonal à un plan (ABC), il suffit qu'il soit orthogonal à \overrightarrow{AB} et à \overrightarrow{AC} .
- 2. Si un vecteur \vec{n} est orthogonal à un plan P et si A et B sont deux points de P, alors \vec{n} est orthogonal à \overrightarrow{AB} .

Le grand outil pour étudier les problèmes d'orthogonalité est le produit scalaire :

Définition

Soient
$$\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ deux vecteurs de l'espace. Le produit scalaire de \overrightarrow{u} et \overrightarrow{v} , noté $\overrightarrow{u} \cdot \overrightarrow{v}$, est le nombre défini par

$$\overrightarrow{u}\cdot\overrightarrow{v}=xx'+yy'+zz'.$$

Exemple 8

ABCDEFGH est un cube de côté 1, I est le milieu de On travaille dans le repère $[A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE}]$. [*CG*].

Dans ce repère A(0;0;0), I(1;1;0,5), B(1;0;0) et D(0;1;0), donc

$$\overrightarrow{AI} \begin{pmatrix} 1\\1\\0,5 \end{pmatrix}$$
 et $\overrightarrow{BD} \begin{pmatrix} -1\\1\\0 \end{pmatrix}$.

On a donc

$$\overrightarrow{AI} \cdot \overrightarrow{BD} = 1 \times (-1) + 1 \times 1 + 0, 5 \times 0 = 0.$$

On en déduit que (AI) et (BD) sont orthogonales grâce au théorème 10 (ci-dessous).

De façon heureuse, on retrouve dans l'espace les propriétés importantes du produit scalaire du plan (bilinéarité et symétrie, caractérisation de l'orthogonalité).

Théorème 9 (symétrie et bilinéarité du produit scalaire)

Pour tous vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $\overrightarrow{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$, $\overrightarrow{w} \begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix}$, pour tous réels k, j:

- 1. $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$.
- **2.** $\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$.
- 3. $(\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w}$
- **4.** $(k\overrightarrow{u}) \cdot (\overrightarrow{j}\overrightarrow{v}) = k \times j \times (\overrightarrow{u} \cdot \overrightarrow{v})$.

Théorème 10

Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux si, et seulement si, $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$.

On termine avec la dernière formulation du produit scalaire, utile pour calculer des angles (et donc aussi des longueurs d'arcs sur des sphères - voir exercices) :

Théorème 11

Soient A, B, C trois points distincts de l'espace. Alors

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos \widehat{BAC}$$
.

CHAPITRE

6 Continuité et limites de suites

Plan de ce chapitre

I.	Continuité	38
II.	Application aux limites de suites	41
III.	Appendice: tableau de valeurs avec la calculatrice	43

I. Continuité

Définition 1

Soit f une fonction, I un intervalle inclus dans son ensemble de définition et soit $a \in I$. On dit que f est continue en a si

$$\lim_{x \to a} f(x) = f(a).$$

2 On dit que f est continue sur l'intervalle I si elle est continue en tout point a de I.

Remarque. Graphiquement, le fait qu'une fonction f soit continue sur un intervalle I se reconnaît à ce qu'il n'y ait pas de « saut » dans sa courbe représentative.

Théorème 1

Une fonction dérivable sur un intervalle I est continue sur l'intervalle I.

Remarques.

- Toutes les fonctions étudiées au lycée sont dérivables sur leur ensemble de définition ^a. Elles sont donc continues en vertu du théorème ci-dessus.
- Il ne vous sera pas demandé en terminale de justifier la continuité des fonctions : l'affirmer suffira.
 - *a.* Mis à part la fonction $x \mapsto \sqrt{x}$, qui n'est pas dérivable en 0.

Théorème 2 (de la bijection)

Soit f une fonction continue et strictement monotone a sur un intervalle [a;b]. Alors tout nombre y_0 compris entre f(a) et f(b) admet exactement un antécédent x_0 dans [a;b].

a. Donc strictement croissante, ou bien strictement décroissante.

Exemple 1

On pose $f(x) = x^3 + x + 2$ pour $x \in [-1;1]$. On cherche le nombre de solutions de l'équation f(x) = 3.

Pour cela, on étudie les variations de f. On calcule la dérivée : pour tout $x \in [-1;1]$,

$$f'(x) = 3x^2 + 1.$$

La dérivée est strictement positive sur [-1;1], donc on a le tableau de variations :

x	-1	x_0	1
f'(x)		+	
f(x)	0	3	_* 4

La fonction « monte » strictement de 0 à 4, donc elle prend une fois et une seule la valeur 3, pour un certain $x_0 \in [-1;1]$.

Conclusion : l'équation f(x) = 3 a une seule solution x_0 dans l'intervalle [-1;1].

À retenir (rédaction rigoureuse)

- La fonction f est continue et strictement croissante sur [-1;1];
- f(-1) = 0, f(1) = 4;
- 3 ∈ [0:4].

D'après le théorème de la bijection, l'équation f(x) = 3 a exactement une solution x_0 dans [-1;1].

Le théorème de la bijection donne l'existence de x_0 , mais ne dit rien sur sa valeur. Il est d'ailleurs difficile de la déterminer : il faudrait résoudre l'équation $x^3 + x + 2 = 3$, ce qui dépasse le niveau de la classe de terminale et demande d'être astucieux (méthode de Cardan). On peut néanmoins donner une valeur approchée de x_0 grâce

à un algorithme de balayage, comme on l'explique ci-dessous.

Exemple 2 (algorithme de balayage)

On reprend l'exemple 1 et on cherche un encadrement de x_0 d'amplitude 0,01.

Étape 1 : encadrement à l'unité. On complète un tableau de valeurs avec toutes les valeurs entières de x dans l'intervalle d'étude [-1;1] :

D'après le tableau de valeurs (ou le tableau de variations à côté), la fonction f prend la valeur 3 pour une valeur de x comprise entre 0 et 1 :

$$0 < x_0 < 1$$
.

Étape 2 : encadrement au dixième. Sachant que x_0 est entre 0 et 1, on fait un tableau de valeurs sur l'intervalle [0;1], avec un pas 10 fois plus petit – donc un pas de 0, 1. Pour aller plus vite, on programme le tableau avec la calculatrice (voir appendice).

La valeur 3 est prise pour un x compris entre 0,6 et 0,7 :

$$0,6 < x_0 < 0,7$$
.

Étape 3 : encadrement au centième. On fait un nouveau tableau de valeurs, cette fois sur l'intervalle [0,6;0,7], et avec un pas 10 fois plus petit – donc un pas de 0,01.

х	0,60	0,61	 0,68	0,69	0,70
f(x)	2,816	2,837	 2,9944	3,0185	3,043

On obtient finalement l'encadrement d'amplitude 0,01:

$$0,68 < x_0 < 0,69$$
.

Remarques.

- Lorsqu'on programme l'algorithme de balayage sur machine, il est plus simple de couper les intervalles en deux plutôt qu'en dix à chaque étape (on parle alors aussi d'*algorithme de dichotomie*).
- On a des versions analogues du théorème de la bijection pour des fonctions f définies sur des intervalles ouverts ou semi-ouverts, y compris si une extrémité vaut $\pm \infty$. On en reparlera plus tard au cours de l'année.

Ici l'équation g(x) = 0 a une unique solution x_0 .

II. Application aux limites de suites

Exemple 3

On définit une suite $(w_n)_{n\in\mathbb{N}}$ par

$$\begin{cases} w_0 = 6 \\ w_{n+1} = 0.5w_n + 1 \text{ pour tout } n \in \mathbb{N}. \end{cases}$$

Les premiers termes sont :

$$w_0 = 6$$
;
 $w_1 = 0.5 \times w_0 + 1 = 0.5 \times 6 + 1 = 4$;
 $w_2 = 0.5 \times w_1 + 1 = 0.5 \times 4 + 1 = 3$;
 $w_3 = 0.5 \times w_2 + 1 = 0.5 \times 3 + 1 = 2.5$.

On a déjà cherché la limite de cette suite dans les exemples 5 et 6 de la leçon n°4. Ici, on va obtenir cette limite graphiquement ^a.

Pour commencer, on définit la suite $(w_n)_{n\in\mathbb{N}}$ de manière équivalente par

$$\begin{cases} w_0 = 6 \\ w_{n+1} = f(w_n) \text{ pour tout } n \in \mathbb{N}, \end{cases}$$

avec f(x) = 0.5x + 1.

On trace dans un même repère:

- en bleu, la droite d'équation y = 0.5x + 1 (c'est-à-dire la courbe de la fonction f);
- en noir, la droite d'équation y = x.

Prenons le terme $w_0 = 6$ de la suite et plaçons-le sur l'axe des abscisses. Son image par f est

$$f(w_0) = w_1 = 0,5 \times 6 + 1 = 4,$$

donc on l'obtient à partir de w_0 en montant jusqu'à la courbe de f, puis en allant jusqu'à l'axe des ordonnées. On retrouve alors w_1 en abscisse grâce à la droite d'équation y=x. Finalement, sachant placer le terme w_0 sur l'axe des abscisses, on peut placer le terme suivant, w_1 , également sur l'axe des abscisses. On recommence pour placer w_2 , w_3 , etc.

On voit se dessiner un « escalier » qui descend et qui se rapproche du point de coordonnées (2;2), à l'intersection des deux droites. On peut donc penser que :

- $(w_n)_{n\in\mathbb{N}}$ est décroissante;
- $(w_n)_{n\in\mathbb{N}}$ converge et sa limite est 2.

a. On va faire un raisonnement graphique, donc non rigoureux, mais qui permet de trouver la limite de façon très rapide.

Remarque.

D'autres constructions sont proposées en exercice.

Dans l'exemple précédent, la limite de la suite est solution de l'équation f(x) = x. C'est une situation générale, conséquence du théorème ci-dessous 1 :

Théorème 3

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de limite finie ℓ . Si une fonction f est continue en ℓ , alors $\lim_{n\to+\infty} f(u_n) = f(\ell)$.

Ce théorème justifie le fait que sous les hypothèses

- pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$,
- $\lim_{n\to+\infty}u_n=\ell$,
- f fonction continue en ℓ ,

on peut « passer à la limite » dans la relation de récurrence

$$u_{n+1} = f(u_n).$$

On obtient:

$$\ell = f(\ell)$$
.

La résolution de cette équation permet de déterminer la valeur de ℓ après avoir prouvé son existence (voir exercices).

Exemple 4

Revenons sur l'exemple $3: w_0 = 6$ et $w_{n+1} = 0,5w_n + 1$ pour tout $n \in \mathbb{N}$. On a constaté graphiquement que la suite $(w_n)_{n \in \mathbb{N}}$ était décroissante et minorée, donc convergente. On avait en fait déjà prouvé rigoureusement ce résultat dans l'exemple 5 du chapitre 4. En notant ℓ sa limite, comme la fonction $f: x \mapsto 0,5x+1$ est continue sur \mathbb{R} , on obtient

$$\ell = 0.5\ell + 1.$$

On trouve ℓ en résolvant cette équation :

$$\ell - 0.5\ell = 1$$
 $0.5\ell = 1$ $\ell = \frac{1}{0.5} = 2$.

Cela ressemble beaucoup à la méthode de l'exemple 5 du chapitre 4, mais l'argumentation est différente : dans le chapitre 4, on a raisonné à partir d'opérations sur les limites ; ici, on utilise la continuité d'une fonction.

À retenir

Cette suite de l'exemple 3 nous a servi de fil conducteur dans l'étude des suites et de leurs limites : exemples 2 et 4, puis exemples de programmes (paragraphe 3) dans le chapitre 2; exemples 5 et 6, puis programme de seuil (paragraphe 4) dans le chapitre 4; exemples 3 et 4 dans la présente leçon. On y a vu quatre méthodes pour étudier la limite de $(w_n)_{n\in\mathbb{N}}$:

- Méthode graphique (construction d'un « escalier ») : c'est l'exemple 3 de cette leçon ^a.
- Utilisation d'une suite géométrique annexe ($v_n = w_n 2$) pour obtenir la formule $w_n = 4 \times 0, 5^n + 2$, puis utilisation de la limite de q^n lorsque -1 < q < 1. C'est le travail des exemples 2 et 4 du chapitre 2, et de l'exemple 6 du chapitre 4.
- Preuve du fait que $(w_n)_{n\in\mathbb{N}}$ est décroissante et minorée, donc convergente, via une preuve par récurrence : $2 \le w_{n+1} \le w_n$ pour tout $n \in \mathbb{N}$. Puis « passage à la limite » dans la formule $w_{n+1} = 0, 5w_n + 1$, grâce aux opérations sur les limites. On obtient alors $\ell = 0, 5\ell + 1$, et on résout pour trouver ℓ . Ce raisonnement a été mené dans l'exemple 5 du chapitre 4.
- Même méthode que la précédente, avec l'utilisation d'une fonction continue pour « passer à la limite » dans la formule de récurrence. C'est ce que nous venons de faire dans l'exemple 4.

 $[\]it a$. Cette méthode n'est pas rigoureuse, puisqu'elle repose sur une lecture graphique.

^{1.} Comme le théorème de la bijection, ce théorème sera démontré en L1.

III. Appendice : tableau de valeurs avec la calculatrice

La fonction f est celle des exemples 1 et 2 : elle est définie sur l'intervalle [-1;1] par

$$f(x) = x^3 + x + 2.$$

Pour obtenir un tableau de valeurs pour f sur [0;1] avec un pas de 0,1 (étape 2 de l'exemple 2) :

Calculatrices collège	NUMWORKS	TI graphiques	CASIO graphiques
 MODE 4: TABLE ou 4: Tableau f(X)=X³+X+2 EXE (si on demande g(X)=, ne rien rentrer) Début? 0 EXE Fin? 1 EXE Pas? 0,1 EXE 	x s'obtient avec les touches alpha x • Fonctions EXE puis choisir Fonctions EXE • f(x)=x³+x+2 EXE • choisir Tableau EXE puis Régler l'intervalle EXE • X début 0 EXE • X fin 1 EXE • Pas 0.1 EXE • choisir Valider	X s'obtient avec la touche x, t, θ, n • $f(x)$ • $Y_1 = X^3 + X + 2$ EXE • 2nde déf table • DébTable=0 EXE • PasTable=0.1 EXE ou $\Delta Tbl=0.1$ EXE	X s'obtient avec la touche X,θ,T • MENU puis choisir TABLE EXE • Y ₁ : X ³ + X + 2 EXE • F5 (on choisit donc SET) • Start:0 EXE • End:1 EXE • Step:0.1 EXE • EXIT • F6 (on choisit donc TABLE)

CHAPITRE

/ Variables aléatoires, loi binomiale

Plan de ce chapitre

I.	Variables aléatoires et arbres pondérés	44
II.	La loi binomiale	46
III.	Appendice : loi binomiale avec les calculatrices graphiques	49

I. Variables aléatoires et arbres pondérés

On rappelle d'abord avec un exemple ce qu'est une variable aléatoire, sa loi et son espérance.

Exemple 1

Un joueur choisit une boîte au hasard et gagne son contenu (en euros).

On note X le gain (aléatoire) du joueur. X est ce que l'on appelle une variable aléatoire. Sa loi est donnée par le tableau :

x	0	50	100
P(X = x)	$\frac{1}{4}$	$\frac{2}{4} = \frac{1}{2}$	$\frac{1}{4}$

L'espérance de X est

$$E(X) = \frac{1}{4} \times 0 + \frac{2}{4} \times 50 + \frac{1}{4} \times 100 = 50.$$

On rappelle à présent comment on utilise un arbre pondéré, ainsi que la notion de probabilité conditionnelle.

Exemple 2

Une maladie est apparue dans le cheptel bovin d'un pays (vaches, bœufs, etc.). Elle touche 5 % des 10 000 bêtes.

Un test permet de détecter systématiquement la maladie lorsqu'elle est présente chez un animal; en revanche le test indique la présence de la maladie chez 4 % des animaux sains (on parle de « faux positifs »).

On choisit un animal au hasard. On considère les événements

M : « l'animal est malade »,

T: « le test est positif ».

Exemple 2 – Suite

On peut représenter la situation par un tableau d'effectif ou par un arbre pondéré (U désigne l'univers) :

	M	\overline{M}	U
T	500	380	880
\overline{T}	0	9 120	9 120
U	500	9 5 0 0	10 000

Détails des calculs :

- $\frac{10000 \times 5}{100} = 500.$
- 10000 500 = 9500.

On étudie trois problèmes :

Problème n°1. La probabilité qu'un animal ait un test positif est :

- En utilisant le tableau : $P(T) = \frac{880}{10000} = 0,088$.
- En utilisant l'arbre:

$$P(T) = P(M \cap T) + P(\overline{M} \cap T)$$
 (formule des probabilités totales)
= 0,05 × 1 + 0,95 × 0,04 = 0,088.

Problème n°2. Sachant qu'un animal est malade, la probabilité qu'il ait un test positif est $P_M(T) = 1$.

Problème n°3. Sachant qu'un animal a un test positif, la probabilité qu'il soit malade est :

- En utilisant le tableau : $P_T(M) = \frac{500}{880} \approx 0,57$.
- En utilisant la formule vue en 1^{re} et l'arbre : $P_T(M) = \frac{P(T \cap M)}{P(T)} = \frac{0.05 \times 1}{0.088} \approx 0,57$.

À retenir La formule $P_A(B) = \frac{P(A \cap B)}{P(A)}$ (probabilité conditionnelle de B sachant A).

Exemple 3

Alain et Benjamin pratiquent assidûment le tennis. On estime que la probabilité que Benjamin gagne une rencontre est 0,4. Les deux amis font deux parties. On note Y le nombre de victoires de Benjamin.

On construit ci-contre un arbre pondéré, avec de gauche à droite le vainqueur du 1er match, puis du 2e. On indique à l'extrémité droite (en rouge) le nombre *Y* de victoires de Benjamin.

On détermine la loi de Y grâce à l'arbre :

- $P(Y = 2) = 0, 4 \times 0, 4 = 0, 16.$
- $P(Y = 1) = 0.4 \times 0.6 + 0.6 \times 0.4 = 0.48$.
- $P(Y = 0) = 0,6 \times 0,6 = 0,36.$

On peut aussi présenter la loi avec un tableau :

y	0	1	2
P(Y = y)	0,36	0,48	0,16

Exemple 3 – Suite

L'espérance de Y est

$$E(Y) = 0.36 \times 0 + 0.48 \times 1 + 0.16 \times 2 = 0.80.$$

Remarques.

- Chaque match est ce que l'on appelle une épreuve de Bernoulli : soit Benjamin gagne, soit il perd.
- Si on veut rentrer dans les détails, il y a plusieurs modélisations possibles du problème, c'est-à-dire plusieurs choix possibles pour l'univers U et pour la probabilité P. On peut choisir par exemple $U = \{BB; BA; AB; AA\}$, où BA correspond à une victoire de Benjamin à la première partie et à une victoire d'Alain à la deuxième [...]; puis définir P par

élément	BB	BA	AB	AA
probabilité	0,16	0,24	0,24	0,36

P n'est donc plus la probabilité uniforme ^a!

• Pour prolonger le point précédent, une définition rigoureuse de Y serait

$$Y(BB) = 2$$
, $Y(BA) = 1$, $Y(AB) = 1$, $Y(AA) = 0$.

Autrement dit, Y associe à chaque élément de l'univers le nombre de victoires de Benjamin.

- Dans le paragraphe suivant, on travaillera dans des situations analogues à celle de l'exemple 3, mais avec éventuellement davantage d'épreuves de Bernoulli (donc des arbres plus étendus). Pour simplifier la présentation, on passera sous silence les problèmes d'univers et de probabilités sous-jacents.
 - a. Contrairement à tous les exemples qu'on a donnés jusque là en probabilités.

II. La loi binomiale

Exemple 4

On lance un dé à 6 faces quatre fois de suite. On note X le nombre de 6. On calcule la probabilité des deux événements :

C: « on obtient exactement deux 6 »;

D: « on obtient exactement trois 6 ».

Sur la page suivante, on a représenté la situation par un arbre pondéré et on a placé :

- un trèfle à l'extrémité des 6 branches qui conduisent à l'événement *C* ;
- un cœur à l'extrémité des 4 branches qui conduisent à l'événement D.

Il y a 6 « chemins » qui mènent à l'événement C. Cela vient du fait qu'il faut choisir la position des deux 6 parmi quatre lancers, ce qui donne $\binom{4}{2} = 6$ possibilités.

Chacune de ces éventualités a pour probabilité $\left(\frac{1}{6}\right)^2 \times \left(\frac{5}{6}\right)^2$, donc

$$P(C) = 6 \times \left(\frac{1}{6}\right)^2 \times \left(\frac{5}{6}\right)^2.$$

Calculons à présent P(D). Il y a 4 « chemins » qui mènent à l'événement D, puisqu'il faut choisir trois 6 parmi quatre et que $\binom{4}{3} = 4$.

Chacune de ces éventualités a pour probabilité $\left(\frac{1}{6}\right)^3 \times \left(\frac{5}{6}\right)^1$, donc

$$P(D) = 4 \times \left(\frac{1}{6}\right)^3 \times \left(\frac{5}{6}\right)^1.$$

Le théorème suivant généralise la situation.

Théorème 1

On dispute successivement n parties d'un jeu de hasard, indépendantes les unes des autres, la probabilité de gagner une partie donnée étant p, la probabilité de la perdre 1-p (on dit qu' « on répète n épreuves indépendantes de Bernoulli de paramètre p »). On note X le nombre de parties gagnées.

Alors pour tout entier $0 \le k \le n$:

$$P(X = k) = \binom{n}{k} \times p^k \times (1 - p)^{n - k}.$$

On dit que X suit la loi binomiale de paramètres n, p.

Exemple 5

Une urne contient 2 boules bleues et 3 rouges indiscernables au toucher. On tire successivement dix boules au hasard, en remettant à chaque fois la boule tirée dans l'urne. On note X le nombre de boules bleues tirées.

À retenir (loi de X et justification)

On répète 10 épreuves indépendantes de Bernoulli de paramètre $\frac{2}{5} = 0, 4$, donc X suit la loi binomiale de

On a donc par exemple:

La probabilité de tirer trois boules bleues est

$$P(X=3) = {10 \choose 3} \times 0.4^3 \times (1-0.4)^{10-3} = 120 \times 0.4^3 \times 0.6^7 \approx 0.215.$$

À retenir

La probabilité de tirer au moins une boule bleue est $P(X \ge 1)$. Pour faire le calcul, il est judicieux d'utiliser l'événement contraire :

$$P(X \ge 1) = 1 - P(X = 0) = 1 - \underbrace{\begin{pmatrix} 10 \\ 0 \end{pmatrix}}_{=1} \times \underbrace{0, 4^{0}}_{=1} \times (1 - 0, 4)^{10 - 0} = 1 - 0, 6^{10} \approx 0,994.$$

Remarques.

- Dans l'appendice, on donne les instructions pour obtenir directement les probabilités de l'exemple 5 en utilisant une calculatrice graphique.
- Dans l'exemple 3, le nombre Y de victoires de Benjamin suit la loi binomiale de paramètres n=2, p=0,4. Et dans l'exemple 4, le nombre X de 6 suit la loi binomiale de paramètres n=4, $p=\frac{1}{6}$.

Théorème 2

Si une variable aléatoire X suit la loi binomiale de paramètres n, p, alors

$$E(X) = n \times p$$
.

Exemple 6

On reprend l'exemple 5 : X suit la loi binomiale de paramètres n = 10, p = 0, 4, donc

$$E(X) = 10 \times 0, 4 = 4.$$

Exemple 7

On joue n parties indépendantes d'un jeu de hasard, la probabilité de gagner une partie donnée étant p = 0, 4. On note X le nombre de parties gagnées.

On répète n épreuves indépendantes de Bernoulli de paramètre 0,4, donc X suit la loi binomiale de paramètres n, p = 0,4. On a donc

$$P(X = 0) = \underbrace{\binom{n}{0}}_{1} \times \underbrace{0,4^{0}}_{1} \times 0,6^{n-0} = 0,6^{n}.$$

Bien sûr, la méthode de l'exemple précédent se généralise :

Théorème 3

Si *X* suit la loi binomiale de paramètres *n*, *p*, alors $P(X = 0) = (1 - p)^n$.

III. Appendice : loi binomiale avec les calculatrices graphiques

On reprend l'exemple 5 : la variable aléatoire X suit la loi binomiale de paramètres n=10, p=0,4. On explique comment calculer P(X=3) et $P(X\le 3)$.

Calcul de P(X = 3). **NUMWORKS** TI **CASIO** | , on choisit Proba-Touche MENU puis STAT – DIST bilités, puis on choisit Binomiale - BINM - Bpd Touches 2nde var, on choisit bi-(après si nécessaire 5). Ensuite puis on complète nomFdp(puis on complète on complète : Variable Data 10 nbreEssais: 10 : 3 p 0.4 : 0.4 Numtrial: 10 valeur de x: 3 : 0.4 et on choisit Suivant. On se déplace vers la gauche, touche EXE et on choisit / ; enfin on remplace la on va sur Coller et on appuie deux on va sur Execute et on appuie sur valeur grisée P(X = 3) EXE fois sur entrer entrer

Quel que soit le modèle, on obtient la réponse :

$$P(X = 3) \approx 0,215.$$

Calcul de $P(X \le 3)$.

NUMWORKS

Touche , on choisit Probabilités, puis on choisit Binomiale (après si nécessaire). Ensuite on complète

n 10 p 0.4

et on choisit Suivant. On se déplace vers la gauche, touche $\boxed{\text{EXE}}$ et on choisit $\boxed{ }$; enfin on remplace la valeur grisée $P(X \le 3)$ $\boxed{\text{EXE}}$

ΤI

Touches 2nde var , on choisit binomFRép(puis on complète

nbreEssais: 10 p: 0.4 valeur de x: 3

on va sur Coller et on appuie deux fois sur entrer

CASIO

Touche MENU puis STAT – DIST – BINM – Bcd puis on complète

Data : Variable x : 3 Numtrial : 10 p : 0.4

on va sur Execute et on appuie sur entrer

Quel que soit le modèle, on obtient la réponse :

$$P(X \le 3) \approx 0.382.$$

Remarques.

• Pour calculer $P(X \ge 4)$ avec une **TI** ou une **CASIO**, on utilise l'événement contraire : on calcule $P(X \le 3)$ comme ci-dessus et on écrit

$$P(X \ge 4) = 1 - P(X \le 3) \approx 1 - 0.382 \approx 0.618.$$

Avec une calculatrice **NUMWORKS**, il suffit de choisir 🗘

• Avec les Calculatrices collège, on peut calculer P(X = 3), mais seulement en utilisant la formule

$$P(X=3) = \frac{10!}{3!7!} \times 0.4^3 \times 0.6^7.$$

En revanche, aucune commande ne permet de calculer $P(X \le 3)$: il faut « décomposer »

$$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3),$$

faire chaque calcul comme pour P(X = 3) ci-dessus et ajouter de proche en proche.

CHAPITRE

SLimites de fonctions

Plan de ce chapitre

I.	Étude de deux exemples	51
II.	Limites de référence, règles de calcul	53
III.	Cas particuliers	55
IV.	Limite d'une composée, limites par comparaison	56

I. Étude de deux exemples

Exemple 1

La fonction f est définie sur $]0; +\infty[$ par $f(x) = \frac{1}{x} + 2$. Sa courbe représentative est une branche d'hyperbole.

Tableau pour le tracé

x	0,25	0,5	1	2	4
f(x)	6	4	3	2,5	2,25

Tableau pour deviner les limites

х	0,001	0,01	0,1	•••	10	100	1 000
f(x)	1 002	102	12	•••	2,1	2,01	2,001

Il semble que f(x) se rapproche de 2 lorsque x tend vers $+\infty$. On écrit

$$\lim_{x \to +\infty} f(x) = 2.$$

On dit que la droite d'équation y = 2 est asymptote horizontale à la courbe représentative de f en $+\infty$.

Il semble également que f(x) se rapproche de $+\infty$ lorsque x tend vers 0. On écrit

$$\lim_{x \to 0} f(x) = +\infty.$$

On dit que la droite d'équation x = 0 est asymptote verticale à la courbe représentative de f.

Remarque.

Dans l'exemple qui précède, nous avons travaillé de façon intuitive, mais nos résultats ne sont basés sur aucun raisonnement formel. Que signifie par exemple le fait que $\lim_{x\to +\infty} f(x) = 2$? Et comment démontrer que c'est vrai?

La définition de la limite est la suivante :

On dit que $\lim_{x \to +\infty} f(x) = \ell$ si, pour tout intervalle [a; b] contenant ℓ et dont ℓ n'est pas une extrémité, f(x) appartient à cet intervalle dès que x est assez grand.

On notera la proximité de cette définition avec celle donnée dans la leçon n°4 sur les limites de suites (définition 1). La seule véritable différence est que n et u_n sont remplacés par x et f(x).

Pour prouver rigoureusement que $\lim_{x \to +\infty} f(x) = 2$ dans l'exemple précédent, il faut donc fixer un intervalle [a;b] tel que a < 2 < b et prouver que f(x) appartient à cet intervalle à partir d'une certaine valeur de x (qui dépend de a et b). C'est en fait le même travail que celui que nous avons déjà mené dans l'exemple 1 de la leçon n°4 (nous avions prouvé que $\lim_{n\to+\infty} \frac{1}{n} = 0$).

Dans un souci d'allègement, nous ne mènerons pas ce travail ici, ni aucun autre consacré au calcul des limites de référence (les résultats de base sur les limites). Nous allons nous contenter de donner ces limites de référence, en travaillant de façon intuitive, ainsi que les règles de calcul avec les limites. Nous évoquerons également la question des asymptotes et nous étudierons quelques cas particuliers.

Exemple 2

On reprend $f(x) = \frac{1}{x} + 2$, mais cette fois pour $x \in \mathbb{R} - \{0\}$. On voit que la limite en 0 n'est pas la même suivant que x se rapproche de 0 en étant supérieur à 0, ou que xse rapproche de 0 en étant inférieur à 0 :

x se rapproche de 0 en étant positif

x	1	0,1	0,01	0,001	0,0001
f(x)	3	12	102	1 002	10 002

x se rapproche de 0 en étant négatif

x	-1	-0,1	-0,01	-0,001	-0,0001
f(x)	1	-8	-98	-998	-9998

On le voit également sur la courbe représentative :

On écrit:

$$\lim_{x \to 0, \ x > 0} f(x) = +\infty \qquad , \qquad \lim_{x \to 0, \ x < 0} f(x) = -\infty$$

Il semble également que

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 2.$$

a et ℓ désignent deux nombres réels

- Lorsque $\lim_{x \to +\infty} f(x) = \ell$, on dit que la droite d'équation $y = \ell$ est asymptote horizontale à la courbe représentative de f en $+\infty$.
- 2 Lorsque $\lim_{x \to -\infty} f(x) = \ell$, on dit que la droite d'équation $y = \ell$ est asymptote horizontale à la courbe représentative de f en $-\infty$.
- Lorsque $\lim_{x \to a} f(x) = +\infty$ ou lorsque $\lim_{x \to a} f(x) = -\infty$ (la limite est prise en a, en (a, x > a) ou en (a, x < a)), on dit que la droite d'équation x = a est asymptote verticale à la courbe représentative de f.

Exemple 3

Dans l'exemple 2 :

- la droite d'équation y = 2 est asymptote à la courbe représentative à la fois en $-\infty$ et en $+\infty$;
- la droite d'équation x = 0 est asymptote à la courbe représentative.

II. Limites de référence, règles de calcul

Théorème 1 (limites de référence en $\pm\infty$)

- 1. Si $c \in \mathbb{R}$, $\lim_{r \to -\infty} c = \lim_{r \to +\infty} c = c$
- 2. $\lim_{x \to +\infty} x = +\infty$, $\lim_{x \to +\infty} x^2 = +\infty$ et plus généralement, pour tout entier $n \ge 1$:

$$\lim_{x \to +\infty} x^n = +\infty.$$

3. $\lim_{x \to -\infty} x = -\infty$, $\lim_{x \to -\infty} x^2 = +\infty$, $\lim_{x \to -\infty} x^3 = -\infty$ et plus généralement, pour tout entier $n \ge 1$:

$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ est pair} \\ -\infty & \text{si } n \text{ est impair.} \end{cases}$$

- 4. $\lim_{x \to +\infty} e^x = +\infty, \lim_{x \to -\infty} e^x = \lim_{x \to +\infty} e^{-x} = 0.$
- $\mathbf{5.} \quad \lim_{x \to +\infty} \sqrt{x} = +\infty.$
- **6.** $\lim_{x \to +\infty} \frac{1}{x} = 0$, $\lim_{x \to +\infty} \frac{1}{x^2} = 0$ et plus généralement, pour tout entier $n \ge 1$:

$$\lim_{x \to +\infty} \frac{1}{x^n} = 0.$$

7. De même, pour tout entier $n \ge 1$: $\lim_{x \to -\infty} \frac{1}{x^n} = 0$.

Théorème 2 (limites de référence en 0)

1. $\lim_{x\to 0, x>0} \frac{1}{x} = +\infty$, $\lim_{x\to 0, x>0} \frac{1}{x^2} = +\infty$ et plus généralement, pour tout entier $n \ge 1$:

$$\lim_{x\to 0,\ x>0}\frac{1}{x^n}=+\infty.$$

2. $\lim_{x\to 0, x<0} \frac{1}{x} = -\infty$, $\lim_{x\to 0, x<0} \frac{1}{x^2} = +\infty$, $\lim_{x\to 0, x<0} \frac{1}{x^3} = -\infty$ et plus généralement, pour tout entier $n \ge 1$:

$$\lim_{x \to 0, \ x < 0} \frac{1}{x^n} = \begin{cases} +\infty & \text{si } n \text{ est pair} \\ -\infty & \text{si } n \text{ est impair.} \end{cases}$$

Théorème 3 (règles de calcul avec les limites)

On résume dans un tableau les règles de calcul avec les limites. Dans chaque cas, la limite est prise en $+\infty$, $-\infty$, a (nombre réel), (a, x > a) ou (a, x < a).

c, ℓ et ℓ' désignent trois nombres réels.

$\lim f$	lim g	$\lim(f+g)$	$\lim(f \times g)$	$\lim \frac{f}{g}$
ℓ	ℓ'	$\ell + \ell'$	$\ell \times \ell'$	$\frac{\ell}{\ell'}$ si $\ell' \neq 0$
ℓ	+∞	+∞	$\begin{cases} +\infty & \text{si } \ell > 0 \\ -\infty & \text{si } \ell < 0 \end{cases}$	0
ℓ	-∞	-∞	$\begin{cases} -\infty & \text{si } \ell > 0 \\ +\infty & \text{si } \ell < 0 \end{cases}$	0
+∞	+∞	+∞	+∞	FI
+∞	-∞	FI	-∞	FI
$-\infty$	-∞	-∞	+∞	FI

$\lim f$	$\lim(c \times f)$				
ℓ	$c \times \ell$				
+∞	$\int +\infty \text{si } c > 0$				
100	$\int -\infty \text{si } c < 0$				
-~	$\int -\infty \text{si } c > 0$				
$-\infty$	$+\infty$ si $c < 0$				

FI: forme indéterminée

Exemples 4

1. On calcule $\lim_{x \to +\infty} \left(4 - \frac{3}{x^2}\right)$.

On utilise les deux théorèmes précédents : d'abord

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{1}{x^2} = 0$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} (-3) = -3$$

$$\implies \lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(-3 \times \frac{1}{x^2} \right) = -3 \times 0 = 0,$$

puis

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to +\infty} -\frac{3}{x^2}}} 4 = 0 \implies \lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(4 - \frac{3}{x^2}\right) = 4 + 0 = 4.$$

En pratique, on s'autorise à aller plus vite :

$$\lim_{x \to +\infty} \left(4 - \frac{3}{x^2} \right) = \lim_{x \to +\infty} \left(4 - 3 \times \frac{1}{x^2} \right) = 4 - 3 \times 0 = 4.$$

2. On calcule $\lim_{x\to 0} (2+\frac{1}{x})(2-\frac{1}{x})$.

Pour alléger, on écrit entre guillemets certaines opérations qui n'ont pas de sens véritable, mais qui correspondent à des opérations sur les limites du théorème 3 ^a. C'est autorisé et cela fait gagner du temps :

$$\lim_{\substack{x \to 0, \ x > 0}} \left(2 + \frac{1}{x}\right) = \quad \text{$<$} \ 2 + (+\infty) \ \ \text{$> = +\infty$} \\ \lim_{\substack{x \to 0, \ x > 0}} \left(2 - \frac{1}{x}\right) = \quad \text{$<$} \ 2 - (+\infty) \ \ \text{$> = -\infty$}.$$

Remarque.

Certaines limites ne peuvent être obtenues simplement à partir des règles de calcul du théorème 3 et nécessitent une étude complémentaire. C'est le cas des calculs des quatre formes suivantes

$$\infty - \infty$$
 , $0 \times \infty$, $\frac{\infty}{\infty}$, $\frac{0}{0}$

que l'on appelle formes indéterminées.

Par exemple $\lim_{x \to +\infty} (x^2 - x)$ et $\lim_{x \to +\infty} (x - x^2)$ sont toutes les deux de la forme $\infty - \infty$, mais les deux limites sont différentes :

a. Ou qui s'y ramènent facilement.

Remarque (suite).

d'un côté

$$\lim_{x \to +\infty} \left(x^2 - x\right) = \lim_{x \to +\infty} x(x - 1) = (+\infty) \times (+\infty) = +\infty,$$

de l'autre

$$\lim_{x \to +\infty} \left(x - x^2 \right) = \lim_{x \to +\infty} x (1 - x) = (+\infty) \times (-\infty) = -\infty.$$

Nous apprendrons à « lever » ce type d'indétermination de façon systématique dans la section suivante.

III. Cas particuliers

Exemple 5

On calcule $\lim_{x \to +\infty} (x^2 - 4x + 1)$.

Il s'agit d'une forme indéterminée. On met le terme de plus haut degré, x^2 , en facteur :

$$x^{2} - 4x + 1 = x^{2} \left(1 - \frac{4x}{x^{2}} + \frac{1}{x^{2}} \right) = x^{2} \left(1 - \frac{4}{x} + \frac{1}{x^{2}} \right).$$

On a donc

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} x^2 = +\infty$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(1 - \frac{4}{x} + \frac{1}{x^2}\right) = 1 - 4 \times 0 + 0 = 1$$

$$\implies \lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(x^2 - 4x + 1\right) = \lim_{\substack{x \to +\infty \\ x \to +\infty}} x^2 \left(1 - \frac{4}{x} + \frac{1}{x^2}\right) = \left((+\infty) \times 1\right) = +\infty.$$

Exemple 6

On calcule $\lim_{x\to 3, x>3} \frac{x-5}{-2x+6}$

Lorsque x se rapproche de 3, le numérateur x-5 se rapproche de 3-5=-2, et le dénominateur -2x+6 se rapproche de $-2\times 3+6=0$. On est donc ramené à un calcul de la forme « $\frac{-2}{0}$ ».

La réponse dépend du signe du dénominateur : -2x+6 se rapproche-t-il de 0 en étant du signe +, auquel cas on a « $\frac{-2}{0^+}$ » = $-\infty$; ou en étant du signe -, auquel cas on a « $\frac{-2}{0^-}$ » = $+\infty$?

Pour le savoir, on construit le tableau de signe :

où l'on voit que quand x se rapproche de 3 en étant supérieur à 3, donc par la droite (flèche ◀), -2x + 6 se rapproche de $\frac{1}{2}$ en étant négatif.

Finalement

$$\lim_{x \to 3, x > 3} \frac{x - 5}{-2x + 6} = \left(\frac{-2}{0} \right) = +\infty.$$

IV. Limite d'une composée, limites par comparaison

Exemple 7 (limite d'une composée)

On calcule $\lim_{x \to +\infty} e^{-x^2}$.

C'est une expression de la forme e^X , avec $X = -x^2$. Lorsque x tend vers $+\infty$, $X = -x^2$ tend vers $-\infty$, donc son exponentielle, $e^X = e^{-x^2}$, tend vers 0. Autrement dit :

$$\lim_{x \to +\infty} -x^2 = -\infty \qquad \text{donc} \qquad \lim_{x \to +\infty} e^{-x^2} = 0.$$

On a les mêmes théorèmes de limites par comparaison ou par encadrement que dans la leçon sur les limites de suites.

Théorème 4 (limite par comparaison)

a désigne un nombre réel ou $+\infty$ ou $-\infty$. I est un intervalle contenant a ou dont a est une extrémité. f et g sont deux fonctions définies sur I (sauf peut-être en a) telles que :

- **1.** Pour tout $x \in I$ (sauf peut-être pour x = a), $f(x) \ge g(x)$,
- $\lim_{x\to a} g(x) = +\infty.$

Alors $\lim_{x \to a} f(x) = +\infty$.

Exemple 8

On prouve que $\lim_{x \to +\infty} e^x = +\infty$ (le résultat a été admis dans le théorème 1).

Pour cela, on pose $d(x) = e^x - x$ pour $x \in [0; +\infty[$ et on étudie les variations de d: pour tout $x \in [0; +\infty[$,

$$d'(x) = e^x - 1$$
.

Or

$$e^x - 1 = 0 \iff e^x = 1 \iff x = 0$$

donc on a le tableau de variations :

x	0	+∞
d'(x)	0	+
d(x)	1	

Le minimum de d est 1, donc pour tout $x \in [0; +\infty[$: $e^x - x \ge 1$, ou encore

$$e^x \ge x + 1$$
.

Mais $\lim_{x \to +\infty} (x+1) = +\infty$, donc par le théorème de comparaison :

$$\lim_{x \to +\infty} e^x = +\infty.$$

Remarque.

Pour démontrer l'inégalité $e^x \ge x + 1$, on peut aussi utiliser la convexité (voir exercice 18).

Théorème 5 (théorème des gendarmes)

a désigne un nombre réel ou $+\infty$ ou $-\infty$. I est un intervalle contenant a ou dont a est une extrémité, ℓ est un nombre réel. f, g, h sont trois fonctions définies sur I (sauf peut-être en a) telles que :

- **1.** Pour tout $x \in I$ (sauf peut-être pour x = a), $f(x) \le g(x) \le h(x)$.
- **2.** $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = \ell$.

Alors $\lim_{x \to a} g(x) = \ell$.

Illustration:

Les deux courbes bleue et rouge se rapprochent de la limite $\ell = 2$ en $+\infty$. La courbe verte, coincée entre les deux, s'en rapproche aussi.

CHAPITRE

9 Équations de plans, représentations de droites

Plan de ce chapitre

I.	Équations de plans	58
II.	Représentations paramétriques de droites	59
III.	Projeté orthogonal sur un plan	61

Dans toute la leçon, l'espace est muni d'un repère orthonormé.

I. Équations de plans

Soit *P* un plan passant par un point *A* et soit $\overrightarrow{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ un vecteur non nul orthogonal (= normal) au plan *P*.

Soit M(x; y; z) un point de l'espace. On a les équivalences :

$$M \in P \iff \overrightarrow{n} \perp \overrightarrow{AM} \iff \overrightarrow{n} \cdot \overrightarrow{AM} = 0.$$

Or
$$\overrightarrow{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 et $\overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \\ z - z_A \end{pmatrix}$, donc

$$\overrightarrow{n} \cdot \overrightarrow{AM} = a(x-x_A) + b(y-y_A) + c(z-z_A) = ax - ax_A + by - by_A + cz - cz_A = ax + by + cz + d,$$

où l'on a posé $d = -ax_A - by_A - cz_A$.

On a donc les équivalences :

$$M \in P \iff \overrightarrow{n} \cdot \overrightarrow{AM} = 0 \iff ax + by + cz + d = 0.$$

On vient ainsi de démontrer :

Théorème 1

Soit $\overrightarrow{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ un vecteur non nul orthogonal (= normal) à un plan *P*. Alors *P* a une équation de la forme ax + by + cz + d = 0, où *d* est un nombre réel. On note

$$P: ax + by + cz + d = 0.$$

Exemple 1

Soient A(4;2;0), B(0;3;0), C(5;0;-4) et $\overrightarrow{n} \begin{pmatrix} -4 \\ -16 \\ 7 \end{pmatrix}$.

Les vecteurs $\overrightarrow{AB}\begin{pmatrix} -4\\1\\0 \end{pmatrix}$ et $\overrightarrow{AC}\begin{pmatrix} 1\\-2\\-4 \end{pmatrix}$ ne sont pas colinéaires, donc les points A,B,C ne sont pas alignés et déterminent un plan.

Le vecteur \overrightarrow{n} est orthogonal à \overrightarrow{AB} et à \overrightarrow{AC} car

$$\overrightarrow{n} \cdot \overrightarrow{AB} = -4 \times (-4) + (-16) \times 1 + 7 \times 0 = 0,$$

 $\overrightarrow{n} \cdot \overrightarrow{AC} = -4 \times 1 + (-16) \times (-2) + 7 \times (-4) = 0.$

On en déduit que \overrightarrow{n} $\begin{pmatrix} -4 \\ -16 \\ 7 \end{pmatrix}$ est orthogonal au plan (*ABC*) (théorème 8 de la leçon n°5), et donc (*ABC*) a une équation de la forme

$$-4x - 16y + 7z + d = 0$$
.

Enfin (*ABC*) passe par A(4;2;0), donc $-4 \times 4 - 16 \times 2 + 7 \times 0 + d = 0$, ce qui donne d = 48.

Conclusion:

$$(ABC)$$
: $-4x - 16y + 7z + 48 = 0$.

Remarque. Bien sûr, les coordonnées des points A, B, C vérifient l'équation du plan. Par exemple, pour C(5;0;-4):

$$-4 \times 5 - 16 \times 0 + 7 \times (-4) + 48 = 0$$
.

On admet la réciproque du théorème 1 :

Théorème 2

Si a, b, c, d sont quatre nombres réels tels que $(a, b, c) \neq (0, 0, 0)$, alors l'ensemble des points M(x; y; z) tels que ax + by + cz + d = 0 est un plan et le vecteur $\overrightarrow{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est normal à ce plan.

II. Représentations paramétriques de droites

Soit D une droite passant par un point A et dirigée par un vecteur $\overrightarrow{u} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$. Cela signifie qu'un point M(x;y;z) appartient à la droite D si, et seulement si, \overrightarrow{AM} et \overrightarrow{u} sont colinéaires; donc si, et seulement s'il existe un réel t

appartient à la droite D si, et seulement si, AM et \overrightarrow{u} sont colinéaires; donc si, et seulement s'il existe un réel tel que $\overrightarrow{AM} = t \overrightarrow{u}$.

Cette égalité se réécrit

$$\begin{pmatrix} x - x_A \\ y - y_A \\ z - z_A \end{pmatrix} = t \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix},$$

soit après développement et transposition :

$$\begin{cases} x = x_A + t\alpha \\ y = y_A + t\beta \\ z = z_A + t\gamma \end{cases}$$
(9.1)

Déf. 1

Dans la situation qui précède, on dit que (9.1) est la représentation paramétrique de la droite D. Cela signifie que les points M(x;y;z) qui appartiennent à D sont ceux qui vérifient (9.1) pour une certaine valeur de t.

Exemple 2

On considère les points A(4;2;0) et B(0;3;2). Comme $\overrightarrow{AB}\begin{pmatrix} -4\\1\\2 \end{pmatrix}$, une représentation paramétrique de (AB) est

$$\begin{cases} x = x_A + t \times (-4) \\ y = y_A + t \times 1 \\ z = z_A + t \times 2 \end{cases}$$
 soit
$$\begin{cases} x = 4 - 4t \\ y = 2 + t \\ z = 2t \end{cases}$$

Lorsqu'on prend t = 0, on obtient $\begin{cases} x = 4 - 4 \times 0 = 4 \\ y = 2 + 0 = 2 \end{cases}$. Il s'agit bien sûr du point A. Et si on prend t = 1, on $\begin{cases} x = 4 - 4 \times 1 = 0 \end{cases}$

obtient $\begin{cases} x = 4 - 4 \times 1 = 0 \\ y = 2 + 1 = 3 \end{cases}$. Cette fois, il s'agit du point *B*. C'est là aussi une évidence : nous sommes partis de $z = 2 \times 1 = 2$

A et avons ajouté 1 fois le vecteur \overrightarrow{AB} . Enfin, si t = 0,5, on vérifie sans peine que le point obtenu est le milieu du segment [AB].

Exemple 2 – Suite

Demandons-nous à présent si le point K(8;1;-2) appartient, ou non, à la droite (AB). Pour répondre, il suffit de savoir s'il existe un réel t tel que

$$\begin{cases} 8 &= 4 - 4t \\ 1 &= 2 + t \\ -2 &= 2t \end{cases}$$

Il est (assez) clair que t = -1 convient, donc $K \in D$. On peut même dire (puisque t = -1) que K est le symétrique de *B* par rapport à *A* (cf la figure qui précède cet exemple).

III. Projeté orthogonal sur un plan

Exemple 3

Soient P: 2x - 3y + z - 4 = 0 et D(4; -2; 4). On cherche les coordonnées du projeté orthogonal E de D sur le plan P, c'est-à-dire que $E \in P$ et $(DE) \perp P$.

On sait que si un plan P a pour équation ax + by + cz + d = 0, un vecteur orthogonal à ce plan a pour coordon-

nées $\begin{bmatrix} a \\ b \end{bmatrix}$. Dans notre exemple, la droite (*DE*) est orthogonale à P: 2x-3y+1z-4=0, donc elle est dirigée

par le vecteur de coordonnées $\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$ et sa représentation paramétrique est $\begin{cases} x = x_D + t \times 2 \\ y = y_D + t \times (-3) \\ z = z_D + t \times 1 \end{cases}$ soit $\begin{cases} x = 4 + 2t \\ y = -2 - 3t \\ z = 4 + t \end{cases}$

$$\begin{cases} x = x_D + t \times 2 \\ y = y_D + t \times (-3) \\ z = z_D + t \times 1 \end{cases}$$
 soit
$$\begin{cases} x = 4 + 2t \\ y = -2 - 3t \\ z = 4 + t \end{cases}$$

Cette droite coupe le plan P en E, donc on obtient les coordonnées de E en « injectant » la représentation paramétrique de (DE) dans l'équation de P, puis en résolvant l'équation d'inconnue t:

$$2x-3y+z-4=0$$

$$2(4+2t)-3(-2-3t)+(4+t)-4=0$$

$$8+4t+6+9t+4+t-4=0$$

$$14t+14=0$$

$$t=-1$$

On en déduit

$$\begin{cases} x_E = 4 + 2 \times (-1) = 2 \\ y_E = -2 - 3 \times (-1) = 1 , \\ z = 4 + (-1) = 3 \end{cases}$$

soit E(2;1;3).

Le logarithme népérien

Plan de ce chapitre

I.	Définition, courbe représentative	62
II.	Propriétés algébriques	64
III.	Croissances comparées	65
IV.	Des démonstrations	66

Définition, courbe représentative

Pour tout nombre y > 0, il existe un unique nombre x tel que $e^x = y$. On dit que x est le logarithme népérien de y, on note $x = \ln y$.

On dit que les fonctions exponentielle (exp) et logarithme népérien (ln) sont réciproques l'une de l'autre.

Exemples 1

Définition 1

- 1. $e^0 = 1$ donc ln(1) = 0 (on peut ne pas écrire les parenthèses : ln 1 = 0).
- **2.** $e^1 = e \text{ donc ln}(e) = 1.$

Remarque. On peut aussi écrire $ln(1) = ln(e^0) = 0$ (l'exponentielle et logarithme se « simplifient »), mais aussi $e^0 = e^{\ln 1} = 1$.

D'une manière générale :

• Pour tout réel x :

$$ln(e^x) = x$$
.

• Pour tout réel y > 0:

$$e^{\ln y} = y$$
.

On ne peut considérer le logarithme népérien que d'un nombre strictement positif!

Les courbes des fonctions exp et ln sont symétriques par rapport à la droite d'équation y = x.

Théorème 1

La fonction ln est dérivable sur]0; $+\infty$ [et pour tout $x \in$]0; $+\infty$ [:

$$(\ln)'(x) = \frac{1}{x}.$$

La dérivée de la fonction ln est strictement positive sur]0; $+\infty$ [. On en déduit le théorème :

Théorème 2

La fonction ln est strictement croissante sur $]0; +\infty[$:

x	0) 1 +∞
$\ln x$		+\infty \(\)

On en déduit également :

Théorème 3

- 1. Deux nombres strictement positifs sont rangés dans le même ordre que leurs logarithmes népériens.
- 2. Tableau de signe :

x	0		1		+∞
$\ln x$		_	0	+	

On sait que $\lim_{x\to -\infty} \mathrm{e}^x = 0$ et que $\lim_{x\to +\infty} \mathrm{e}^x = +\infty$. Par symétrie, on a aussi :

Théorème 4

$$\lim_{x \to 0, \ x > 0} \ln x = -\infty, \qquad \qquad \lim_{x \to +\infty} \ln x = +\infty$$

Exemple 2

On peut résoudre des équations avec des exp et des ln en utilisant leur réciprocité. Par exemple, la solution de l'équation $e^x = 3$ est $x = \ln 3$. Pour la présentation, il est agréable de rédiger ainsi :

$$e^{x} = 3$$

$$\ln(e^{x}) = \ln 3$$

$$x = \ln 3.$$

De même pour l'équation $\ln x = -5$:

$$\ln x = -5$$

$$e^{\ln x} = e^{-5}$$

$$x = e^{-5}$$

Attention cependant, certaines équations n'ont pas de solution, comme par exemple $e^x = -3$ (une exponentielle est strictement positive – autre façon de voir : on ne peut pas considérer le logarithme d'un nombre négatif).

Remarque.

En sciences physiques, on utilise souvent le logarithme décimal, noté log et défini comme la réciproque de la fonction $x \mapsto 10^x$.

Par exemple, $10^4 = 10000$, donc $\log(10000) = 4$. Ou encore $10^{-2} = 0.01$, donc $\log(0.01) = -2$.

En utilisant le théorème sur la dérivée d'une composée (théorème 9 de la leçon n°1), on obtient le théorème suivant.

Théorème 5

Soit u une fonction dérivable et strictement positive sur un intervalle I. Alors $\ln \circ u$ est dérivable sur I et

$$(\ln \circ u)' = \frac{u'}{u}.$$

Exemple 3

La fonction f est définie sur \mathbb{R} par $f(x) = \ln(x^2 + 1)$.

Elle est de la forme $\ln \circ u$, avec $u(x) = x^2 + 1$, donc elle est dérivable sur \mathbb{R} et pour tout réel x:

$$f'(x) = \frac{u'(x)}{u(x)} = \frac{2x}{x^2 + 1}.$$

II. Propriétés algébriques

Théorème 6

Pour tous x > 0, y > 0, $n \in \mathbb{Z}$:

- $1. \quad \ln(xy) = \ln x + \ln y.$
- 2. $\ln\left(\frac{x}{y}\right) = \ln x \ln y$.
- 3. $\ln\left(\frac{1}{x}\right) = -\ln x$.
- $4. \quad \ln(x^n) = n \ln x.$
- 5. $\ln(\sqrt{x}) = \frac{1}{2} \ln x$.

Exemples 4

1. On écrit le nombre ln 27 – 2 ln 3 sous la forme du logarithme d'un seul nombre :

$$\ln 27 - 2\ln 3 = \ln 27 - \ln (3^2) = \ln 27 - \ln 9 = \ln \left(\frac{27}{9}\right) = \ln 3.$$

2. On résout l'équation $e^{2x} = 25$:

$$e^{2x} = 25$$

 $\ln(e^{2x}) = \ln(25)$
 $2x = \ln 25$
 $x = \frac{1}{2}\ln(25) = \ln(\sqrt{25}) = \ln 5.$

Conclusion : la seule solution est $x = \ln 5$.

3. On résout dans N l'inéquation

$$0.5^n \le 10^{-6}$$
.

Autrement dit, on cherche les entiers naturels n tels que $0.5^n \le 0.000001$.

Remarque.

$$0.5^0 = 1$$
; $0.5^1 = 0.5$; $0.5^2 = 0.25$; $0.5^3 = 0.125$; etc.

En fait la suite $(0,5^n)_{n\in\mathbb{N}}$ est décroissante (on passe d'un terme au suivant en divisant par 2) et $\lim_{n\to+\infty}0,5^n=0$, puisque -1<0,5<1. Il s'agit de savoir à partir de quand $0,5^n\leq 10^{-6}$.

$$0.5^n \le 10^{-6}$$
 $\ln(0.5^n) \le \ln(10^{-6})$ (par stricte croissance de la fonction ln)
 $n\ln 0.5 \le -6\ln 10$
 $n \ge \frac{-6\ln 10}{\ln 0.5}$ (car $\ln 0.5 < 0$, donc \le devient \ge).

Avec la calculatrice on trouve $\frac{-6\ln 10}{\ln 0.5} \approx 19,93$, donc $0.5^n \le 10^{-6}$ quand $n \ge 20$ (on cherche les **entiers** solutions).

Conclusion: les solutions sont 20, 21, 22, 23, ..., ce que l'on note $[20; +\infty]$

III. Croissances comparées

On a vu dans un exercice traité plus tôt dans l'année que

$$\lim_{x \to +\infty} x e^{-x} = 0.$$

En écrivant $x^n e^{-x} = \left(\frac{x}{n} e^{-x/n}\right)^n \times n^n$ et en utilisant la limite d'une composée, on peut faire un peu mieux et prouver que pour tout entier $n \ge 1$:

$$\lim_{x \to +\infty} x^n e^{-x} = 0.$$

Ce résultat est non évident, car c'est une forme indéterminée « $+\infty \times 0$ ». En l'utilisant on obtient également

$$\lim_{x\to +\infty}\frac{\mathrm{e}^x}{x^n}=\lim_{x\to +\infty}\frac{1}{\frac{x^n}{\mathrm{e}^x}}=\lim_{x\to +\infty}\frac{1}{x^n\mathrm{e}^{-x}}= \left(\frac{1}{0^+}\right)=+\infty.$$

On a en fait trois résultats équivalents les uns aux autres :

Théorème 7 (croissances comparées)

Pour tout entier $n \ge 1$:

- 1. $\lim_{x \to +\infty} x^n e^{-x} = 0$.
- $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty.$
- $\lim_{x \to -\infty} x^n e^x = 0.$

Exemple 5

On calcule $\lim_{x \to +\infty} (x^2 + 1) e^{-x}$. Pour cela on développe :

$$(x^2 + 1)e^{-x} = x^2e^{-x} + e^{-x}$$
.

Par croissance comparée $\lim_{x \to +\infty} x^2 e^{-x} = 0$, donc

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to +\infty}}} x^2 e^{-x} = 0 \\ \lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(x^2 + 1 \right) e^{-x} = \lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(x^2 e^{-x} + e^{-x} \right) = 0 + 0 = 0.$$

On a de même des résultats de croissances comparées avec le logarithme népérien :

Théorème 8 (croissances comparées)

Pour tout entier $n \ge 1$:

- $\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0.$
- 2. $\lim_{x \to 0, x > 0} x^n \ln x = 0$

Exemple 6

On calcule $\lim_{x \to +\infty} (x - \ln x)$. On met x en facteur:

$$x - \ln x = x \left(1 - \frac{\ln x}{x} \right).$$

Par croissance comparée $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$, donc

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} x = +\infty$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(1 - \frac{\ln x}{x}\right) = 1 - 0 = 1$$

$$\implies \lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(x - \ln x\right) = \lim_{\substack{x \to +\infty \\ x \to +\infty}} x \left(1 - \frac{\ln x}{x}\right) = +\infty.$$

IV. Des démonstrations

Démonstration (du théorème 1)

On admet que la fonction ln est dérivable sur $]0; +\infty[$ et on va seulement prouver la formule. Pour cela, on pose $f(x) = e^{\ln x}$ pour tout $x \in]0; +\infty[$. On calcule la dérivée de deux façons différentes :

• D'une part, $f(x) = e^{\ln x} = x$, donc pour tout x > 0:

$$f'(x) = 1. (10.1)$$

• D'autre part, on utilise la formule $(e^u)' = u'e^u$, avec $u(x) = \ln x$. On a donc, pour tout x > 0:

$$f'(x) = u'(x) \times e^{u(x)} = (\ln)'(x) \times \underbrace{e^{\ln(x)}}_{=x} = (\ln)'(x) \times x.$$
 (10.2)

Démonstration (du théorème 1) - Suite

En comparant (10.1) et (10.2) on obtient, pour tout x > 0:

$$1 = (\ln)'(x) \times x$$
 $(\ln)'(x) = \frac{1}{x}.$

Démonstration (du théorème 6)

Point 1. On sait que $e^a \times e^b = e^{a+b}$ pour tous réels a et b. Donc en appliquant cette propriété avec $a = \ln x$ et $b = \ln y$:

$$x \times y = e^{\ln x} \times e^{\ln y} = e^{\ln x + \ln y}$$
.

Puis en prenant le logarithme dans les termes aux extrémités gauche et droite ci-dessus :

$$\ln(x \times y) = \ln\left(e^{\ln x + \ln y}\right)$$
$$\ln(xy) = \ln x + \ln y.$$

Point 2. D'après le point 1

$$\ln\left(\frac{x}{y}\right) + \ln y = \ln\left(\frac{x}{y} \times y\right) = \ln x,$$

donc en transposant:

$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y.$$

Point 3. On prend x = 1 et y = x dans le point 2 :

$$\ln\left(\frac{1}{x}\right) = \underbrace{\ln 1}_{0} - \ln x = -\ln x.$$

Point 4. On fait d'abord la démonstration pour $n \in \mathbb{N}$ avec une récurrence abrégée :

- La propriété est vraie pour n=0 puisque $\ln(x^0)=\ln 1=0$ d'un côté, et $0 \ln x=0$ de l'autre.
- Si la propriété est vraie pour un entier naturel k, alors $\ln(x^k) = k \ln x$, donc grâce au point 1 :

$$\ln\left(x^{k+1}\right) = \ln\left(x^k \times x\right) = \ln\left(x^k\right) + \ln x = k\ln x + \ln x = (k+1)\ln x.$$

La propriété est donc vraie pour l'entier k + 1.

• La propriété est vraie pour n = 0 et elle est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.

À présent, si n est un entier strictement négatif, on peut l'écrire n=-p, avec $p\in\mathbb{N}$. Par définition des puissances négatives :

$$x^n = x^{-p} = \frac{1}{x^p}.$$

On a donc, grâce au point 3 et à la première partie de la démonstration du point 4 :

$$\ln(x^n) = \ln\left(\frac{1}{x^p}\right) = -\ln(x^p) = -p\ln x = n\ln x.$$

Point 5. D'après le point 4, avec n = 2:

$$2\ln\left(\sqrt{x}\right) = \ln\left(\sqrt{x}^2\right) = \ln x,$$

donc

$$\ln\left(\sqrt{x}\right) = \frac{1}{2}\ln x.$$

Démonstration (point 2 du théorème 8)

Pour alléger la démonstration, on se place dans le cas n=1 – qui entraı̂ne le cas général de façon évidente (pourquoi?). On utilise la limite d'une composée : d'après le point 3 du théorème 7, $\lim_{X\to -\infty} X \mathrm{e}^X = 0$, donc

$$\lim_{\substack{x \to 0, \ x > 0}} \ln x = -\infty \\ \lim_{\substack{x \to -\infty}} X e^X = 0 \end{cases} \Longrightarrow \lim_{\substack{x \to 0, \ x > 0}} \ln x e^{\ln x} = 0.$$

Il ne reste plus qu'à écrire $\ln x e^{\ln x} = x \ln x$ pour pouvoir conclure.

Remarque.

Tous les résultats de croissances comparées sont équivalents les uns aux autres et se démontrent à partir d'un seul d'entre eux par des « jeux d'écriture » et grâce à la limite d'une composée.

CHAPITRE 1 1

Équations différentielles

Plan de ce chapitre

I.	Primitives	69
II.	Équations différentielles linéaires	70
III.	Des démonstrations	72

I. Primitives

On dit qu'une fonction F est une primitive d'une fonction f sur un intervalle I si F est dérivable sur I et si F'(x) = f(x) pour tout $x \in I$.

Exemple 1

Posons $f(x) = 3x^2$ pour $x \in \mathbb{R}$. Alors la fonction F définie par $F(x) = x^3$ est une primitive de f sur \mathbb{R} .

On pourrait aussi prendre $F(x) = x^3 + 2$, ou $F(x) = x^3 - 4$, ... et plus généralement $F(x) = x^3 + C$ (C constante). Mais il n'y a pas d'autre choix possible d'après le théorème ci-dessous.

Théorème 1

Si F est une primitive d'une fonction f sur un intervalle I, alors les primitives de f sont les fonctions $x \mapsto F(x) + C$ (C constante).

La « primitivation » est donc l'opération inverse de la dérivation (à une constante additive près), et cette seule information doit permettre aux élèves les plus à l'aise de déterminer les primitives ¹. Il nous a tout de même paru opportun d'indiquer dans un tableau les trois primitives qui reviennent le plus souvent dans le cours de terminale :

Théorème 2

Fonctions	Primitives
$e^{ax} (a \neq 0)$	$\frac{1}{a}e^{ax} + C$
$\frac{u'}{u} \ (u > 0)$	ln(u) + C
$x^n \ (n \in \mathbb{N})$	$\frac{1}{n+1}x^{n+1} + C$

C désigne une constante réelle.

^{1.} Comme on utilise les tables de multiplication pour effectuer les divisions.

Exemple 2

On pose $f(x) = 6x^3 + e^{0.5x}$ pour $x \in \mathbb{R}$. Les primitives de f sont les fonctions de la forme (C désigne une constante réelle):

$$F(x) = 6 \times \frac{1}{4}x^4 + \frac{1}{0.5}e^{0.5x} + C$$
$$= 1.5x^4 + 2e^{0.5x} + C.$$

Une équation différentielle est une équation dont l'inconnue est une fonction *y*, et dans laquelle apparaît la dérivée de *y* (voire la dérivée seconde, etc.).

La connaissance des primitives permet de résoudre les équations différentielles les plus basiques :

Exemple 3

Les solutions de l'équation différentielle y'(x) = 2x + 5 sont les fonctions de la forme $y(x) = x^2 + 5x + C$, où C est une constante.

II. Équations différentielles linéaires

Dans cette section, on s'intéresse d'abord aux équations différentielles y' = ay et y' = ay + b, où a et b sont deux nombres réels. Résoudre y' = ay par exemple, c'est trouver toutes les fonctions y définies et dérivables sur \mathbb{R} et telles que

$$y'(x) = ay(x)$$

pour tout réel x (pour alléger, on omet parfois la variable x quand on écrit une équation différentielle).

À la fin de la section, on généralise à des équations du type y' = ay + g, où g est une fonction continue.

Théorème 3 (y'=ay)

Soit a un nombre réel. Les solutions de l'équation différentielle

$$y' = ay$$

sont les fonctions de la forme $y(x) = Ce^{ax}$, où C est une constante.

Exemple 4

Dans un laboratoire agroalimentaire, on modélise l'évolution d'une population de bactéries par l'équation différentielle y'(t) = 0,12y(t), où y(t) donne le nombre de bactéries au temps t, exprimé en jours. Au départ, il y a 140 bactéries. On souhaite exprimer y(t) en fonction de t.

D'après le théorème 3, il existe une constante C telle que

$$y(t) = Ce^{0,12t}$$

pour tout $t \ge 0$. On sait par ailleurs que y(0) = 140, donc

$$C\underbrace{e^{0,12\times0}}_{1} = 140$$

$$C = 140$$
.

Finalement

$$y(t) = Ce^{0.12t} = 140e^{0.12t}$$

Théorème 4 (y'=ay+b)

Soient a et b deux nombres réels, avec $a \neq 0$. Les solutions de l'équation différentielle

$$y' = ay + b$$

sont les fonctions de la forme $y(x) = Ce^{ax} - \frac{b}{a}$, où C est une constante.

Exemple 5

On résout l'équation différentielle

$$v' + 2v = 6$$

On transpose:

$$v' = -2v + 6$$

D'après le théorème 4, les solutions sont de la forme

$$y(x) = Ce^{-2x} - \frac{6}{-2} = Ce^{-2x} + 3,$$

où C est une constante.

Dans le théorème 4, la fonction $y_P(x) = -\frac{b}{a}$ est une solution particulière de l'équation différentielle y' = ay + b. En effet, d'un côté $y_P'(x) = 0$, puisque y_P est constante; de l'autre, $ay_P(x) + b = a \times \left(-\frac{b}{a}\right) + b = -b + b = 0$. On a donc bien $y_P'(x) = ay_P(x) + b$.

Autrement dit, la solution générale de y' = ay + b s'écrit sous la forme

$$Ce^{ax}$$
 + $-\frac{b}{a}$

(solution générale de y' = ay) + (solution particulière de y' = ay + b).

Ce principe se généralise :

Théorème 5 (y'=ay+g)

Soient a un nombre réel, g une fonction continue. Les solutions de l'équation différentielle

$$(E): y' = ay + g$$

sont les fonctions de la forme $y(x) = Ce^{ax} + y_P$, où C est une constante et y_P est une solution particulière de (E).

Exemple 6

On considère l'équation différentielle

(E)
$$y'(x) - y(x) = -x^2$$
.

• On vérifie que la fonction y_P , définie sur \mathbb{R} par $y_P(x) = x^2 + 2x + 2$, est solution de (E).

Pour tout réel x:

$$y_P'(x) - y_P(x) = (2x+2) - (x^2+2x+2) = 2x+2-x^2-2x-2 = -x^2$$

donc y_P est bien solution de (E).

• (*E*) se réécrit $y' = y - x^2$, donc d'après le théorème 5, ses solutions sont les fonctions de la forme

$$y(x) = Ce^{ax} + y_P(x)$$
 (avec $a = 1$, $y_P(x) = x^2 + 2x + 2$)
 $y(x) = Ce^x + x^2 + 2x + 2$

71

III. Des démonstrations

Démonstration (du théorème 1)

On fait une démonstration par analyse-synthèse.

Analyse.

Supposons que G soit une primitive de f sur I. On a donc G' = f; mais aussi F' = f puisque F est également une primitive de f. Donc

$$(G-F)' = G'-F' = f-f = 0.$$

La fonction G - F a une dérivée nulle, donc elle est constante : il existe une constante C telle que G = F + C.

Synthèse.

Réciproquement, si G = F + C, on a bien

$$G' = (F + C)' = F' + (C)' = f + 0 = f,$$

c'est-à-dire que G est une primitive de f.

Démonstration (du théorème 3)

On fait une démonstration par analyse-synthèse.

Analyse.

Supposons que *y* soit solution de l'équation (*E*) : y' = ay et posons $z(x) = y(x)e^{-ax}$ pour $x \in \mathbb{R}$. La fonction z est dérivable sur \mathbb{R} comme produit de fonctions dérivables :

$$z(x) = \underbrace{y(x)}_{u(x)} \times \underbrace{\mathrm{e}^{-ax}}_{v(x)}.$$

Pour tout réel x:

$$z'(x) = y'(x) \times v(x) + y(x) \times v'(x)$$
$$= y'(x) \times e^{-ax} + y(x) \times (-ae^{-ax}).$$

Or y' = ay, car y est solution de (E) par hypothèse, donc

$$z'(x) = y'(x) \times e^{-ax} + y(x) \times (-ae^{-ax})$$
$$= ay(x) \times e^{-ax} - ay(x) \times e^{-ax}$$
$$= 0.$$

On en déduit que z est constante : il existe $C \in \mathbb{R}$ tel que z(x) = C pour tout $x \in \mathbb{R}$. Mais alors, par définition de z :

$$y(x)e^{-ax} = C.$$

Puis en multipliant par e^{ax} :

$$y(x)e^{-ax} \times e^{ax} = C \times e^{ax}$$

 $y(x) = C e^{ax}$.

Synthèse.

Réciproquement, si on pose $y(x) = Ce^{ax}$ pour $x \in \mathbb{R}$, alors pour tout réel x:

$$y'(x) = C \times ae^{ax} = a(Ce^{ax}) = ay(x),$$

c'est-à-dire que y est solution de (E).

Démonstration (du théorème 4 6)

On note

$$(E): y' = ay + b.$$

On remarque d'abord que la fonction constante définie par $y_P(x) = -\frac{b}{a}$ est solution de (E). En effet, d'un côté $y_P'(x) = 0$, puisque y_P est constante; de l'autre, $ay_P(x) + b = a \times \left(-\frac{b}{a}\right) + b = -b + b = 0$. On a donc bien $y_P'(x) = ay_P(x) + b$.

On considère (E_0) : y' = ay et on raisonne par équivalences : si y est une fonction dérivable,

$$y - y_P$$
 solution de $(E_0) \iff y'(x) - y_P'(x) = a(y(x) - y_P(x))$
 $\iff y'(x) - ay(x) = y_P'(x) - ay_P(x)$
 $\iff y'(x) - ay(x) = b$ (car on sait que y_P est solution de (E))
 $\iff y'(x) = ay(x) + b$
 $\iff y$ solution de (E) .

On peut alors conclure grâce à une nouvelle série d'équivalences :

y solution de
$$(E) \iff y - y_P$$
 solution de (E_0)
 $\iff y(x) - y_P(x) = Ce^{ax}$ (C constante)
 $\iff y(x) = y_P(x) + Ce^{ax}$
 $\iff y(x) = -\frac{b}{a} + Ce^{ax}$.

Conclusion : les solutions de (*E*) sont les fonctions définies par $y(x) = Ce^{ax} - \frac{b}{a}$.

Définition 1

CHAPITRE 12

Trigonométrie

Plan de ce chapitre

I.	Rappels de la classe de 1^{re}	74
II.	Étude d'une fonction trigonométrique	78

I. Rappels de la classe de 1^{re}

Le plan est muni d'un repère orthonormé (O, I, J). On appelle cercle trigonométrique le cercle $\mathscr C$ de centre O de rayon 1.

En utilisant la même unité de longueur que celle du repère (O, I, J), on gradue le cercle \mathscr{C} , de $-\infty$ à $+\infty$, en plaçant la graduation 0 au point I et en tournant dans le sens inverse des aiguilles d'une montre = sens direct = sens trigonométrique.

Soit $x \in \mathbb{R}$ et soit N le point de \mathscr{C} situé à la graduation x. On dit alors que N est le point de $\mathscr C$ associé à x.

Le théorème ci-contre montre toutes les valeurs remarquables du cercle trigonométrique :

$$0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi,$$

pour lesquelles on tourne de

$$0^{\circ}$$
 , 30° , 45° , 60° , 90° , 180°

dans le sens trigonométrique, à partir de la graduation

À titre informatif, on a ajouté les valeurs $-\frac{\pi}{2}$, $-\frac{\pi}{4}$ et $\frac{3\pi}{4}$. On notera que le point associé à $\frac{\pi}{3}$ a pour abscisse $\frac{1}{2}$; tandis que celui associé à $\frac{\pi}{6}$ a pour ordonnée $\frac{1}{2}$.

Remarque. Tout point du cercle trigonométrique est associé à une infinité de valeurs. Par exemple, le point associé à 0 est aussi associé à 2π (on fait 1 tour de cercle dans le sens direct), 4π (2 tours dans le sens direct), 6π (3 tours dans le sens direct), ..., -2π (1 tour dans le sens indirect), -4π (2 tours dans le sens indirect), -6π (3 tours dans le sens indirect), ...

Soit x un nombre réel et soit N le point du cercle trigonométrique $\mathscr C$ associé à x. On pose :

- $\cos x = x_N$.
- $\sin x = y_N$.

Définition 2

Le théorème ci-dessous recense les valeurs remarquables du cos et du sin.

Théorème 2

х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	1
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	0

Exemple 1

On place les points associés à $\frac{3\pi}{4}$ et à $-\frac{\pi}{3}$. Par simple lecture du cercle trigonométrique on obtient :

- $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$, $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$. $\cos \left(-\frac{\pi}{3}\right) = \frac{1}{2}$, $\sin \left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$.

Remarques.

Notre définition du cos et du sin étend aux nombres réels la définition du cos et du sin donnée au collège pour les angles géométriques. Notant par exemple N le point du cercle trigonométrique associé à $\frac{\pi}{3}$, on a :

$$\cos\left(60^{\circ}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}.$$

Le radian est une unité de mesure des angles proportionnelle au degré. Par définition, un angle de 180° mesure π radians. Donc par exemple, sur la figure ci-contre:

$$\widehat{ION} = 60^{\circ} = \frac{\pi}{3}$$
 radians.

Lorsqu'on utilise la calculatrice, il faut mettre en mode degré ou en mode radian suivant la situation : pour calculer $\cos{(60^{\circ})}$, il faut mettre en mode degrés; et pour $\cos\left(\frac{\pi}{3}\right)$, en mode radians.

Venons-en à présent aux fonctions cos et sin. On commence par un rappel sur la parité et sur la périodicité.

Une fonction f définie sur \mathbb{R} est dite :

1 Paire si pour tout réel x,

2 Impaire si pour tout réel x,

Théorème 3

Définition 3

- 1. La courbe d'une fonction paire est symétrique par rapport à l'axe des ordonnées.
- 2. La courbe d'une fonction impaire est symétrique par rapport à l'origine du repère.

$$f(x+T) = f(x).$$

La courbe d'une fonction T-périodique se reproduit identique à elle-même tous les T.

Théorème 4

Définition 4

1. La fonction cos est paire : pour tout réel *x*,

$$\cos(-x) = \cos x$$
.

2. La fonction sin est impaire : pour tout réel *x*,

$$\sin(-x) = -\sin x$$
.

3. Les fonctions cos et sin sont 2π -périodiques : pour tout réel x,

$$cos(x+2\pi) = cos x$$
 , $sin(x+2\pi) = sin x$.

On termine ces rappels en traçant les courbes représentatives des fonctions cos et sin. Il y a trois étapes :

- On commence par tracer les courbes sur l'intervalle $[0;\pi]$ grâce à un tableau de valeurs.
- On complète par symétrie grâce à la parité : la courbe de la fonction cos est symétrique par rapport à l'axe des ordonnées; tandis que celle de la fonction sin est symétrique par rapport à l'origine du repère. On obtient ainsi les courbes sur l'intervalle $[-\pi;\pi]$ intervalle dont la longueur est égale à 2π .
- On complète par périodicité. On obtient les courbes sur $\mathbb R$ tout entier.

II. Étude d'une fonction trigonométrique

On admet le théorème suivant :

Théorème 5

Les fonctions cos et sin sont dérivables sur \mathbb{R} et pour tout réel x:

- 1. $(\cos)'(x) = -\sin x$.
- 2. $(\sin)'(x) = \cos x$.

On termine la leçon avec l'étude d'une fonction trigonométrique particulière :

Exemple 2

On pose $g(x) = \sin^2 x + \cos x = (\sin x)^2 + \cos x$ pour $x \in \mathbb{R}$. Nous allons successivement :

- **Étape 1.** Étudier la parité de *g* et sa périodicité. On pourra alors réduire l'intervalle d'étude.
- Étape 2. Calculer la dérivée et étudier les variations de g sur l'intervalle réduit.
- **Étape 3.** Construire la courbe représentative de g.

Étape 1.

La fonction cos est paire et la fonction sin est impaire, donc pour tout réel x:

$$g(-x) = (\sin(-x))^2 + \cos(-x) = (-\sin(x))^2 + \cos x = (\sin x)^2 + \cos x = g(x).$$

La fonction g est donc paire.

Les fonctions cos et sin sont 2π -périodique, donc pour tout réel x:

$$g(x+2\pi) = (\sin(x+2\pi))^2 + \cos(x+2\pi) = (\sin x)^2 + \cos x = g(x).$$

La fonction g est donc 2π -périodique.

Comme g est 2π -périodique, on peut l'étudier sur $[-\pi;\pi]$ uniquement; et comme elle est paire, on peut même réduire l'étude à l'intervalle $[0;\pi]$.

Étape 2.

D'après le théorème 5 et la formule $(u^2)' = 2 \times u' \times u$, pour tout $x \in [0; \pi]$:

$$g'(x) = 2\sin'(x) \times \sin x + \cos'(x) = 2\cos x \sin x - \sin x = \sin x (2\cos x - 1)$$
.

Pour étudier les variations, on résout les équations $\sin x = 0$ et $2\cos x - 1 = 0$ dans $[0; \pi]$:

$$2\cos x - 1 = 0 \iff \cos x = \frac{1}{2} \iff x = \frac{\pi}{3}$$

Exemple 2 – Suite

On peut donc construire le tableau de variations :

x	0		$\frac{\pi}{3}$		π
sin x	0	+		+	0
$2\cos x - 1$		+	0	-	
g'(x)	0	+	0	-	0
g(x)	1		5/4		-1

Pour obtenir le signe de $\sin x$ et de $2\cos x - 1$ sur chaque intervalle, on remplace par des valeurs de x. Par exemple, pour la ligne $2\cos x - 1$:

- $2\cos 0 1 = 2 \times 1 1 = 1 \oplus$,
- $2\cos \pi 1 = 2 \times (-1) 1 = -3 \ominus$

d'où les signes $2\cos x - 1 + \phi - 1$

De plus:

- $g(0) = (\sin 0)^2 + \cos 0 = 0^2 + 1 = 1$;
- $g\left(\frac{\pi}{3}\right) = \left(\sin\frac{\pi}{3}\right)^2 + \cos\left(\frac{\pi}{3}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 + \frac{1}{2} = \frac{3}{4} + \frac{1}{2} = \frac{5}{4};$ $g(\pi) = (\sin\pi)^2 + \cos\pi = 0^2 + (-1) = -1.$

Remarque.

Comme la dérivée s'annule, on a des tangentes horizontales aux points de la courbe d'abscisses 0, $\frac{\pi}{3}$ et π (tracées en rouge sur la courbe à l'étape 3).

Étape 3.

On trace la courbe sur $[0;\pi]$ à partir du tableau de variations, puis on complète par parité et par périodicité.

Intégration

Plan de ce chapitre

I.	Intégrale d'une fonction positive	80
II.	Intégrales et primitives	82
III.	Intégrale d'une fonction de signe quelconque	84
IV.	Linéarité de l'intégrale, applications	85
V.	Intégration par parties	86
VI.	Fonction définie par une intégrale	87
VII.	Des démonstrations	87

I. Intégrale d'une fonction positive

Dans toute cette leçon, on travaille dans des repères orthogonaux (O, I, J). L'unité d'aire est alors définie par : 1 u.a. = $OI \times OJ$.

Soient $a \le b$ et soit f une fonction continue et positive sur l'intervalle [a;b]. L'aire du domaine compris entre l'axe des abscisses, la courbe de f et les droites verticales d'équations x = a et x = b est notée

$$\int_{a}^{b} f(x) \mathrm{d}x$$

(lire « intégrale de a à b de f »).

Définition 2

Définition 1

Exemples 1

1. La fonction f est définie sur [1;5] par f(x) = 3. C'est une fonction constante, donc $\int_1^5 f(x) dx$ est l'aire d'un rectangle :

$$\int_{1}^{5} f(x) dx = \int_{1}^{5} 3 dx = \ell \times L = 4 \times 3 = 12.$$

2. Plus généralement, pour tous réels $a \le b$, pour tout $c \ge 0$:

$$\int_{a}^{b} c dx = (b - a) \times c.$$

Remarques.

- x est une variable muette dans $\int_a^b f(x) dx$: on peut noter $\int_a^b f(t) dt$, etc.
- La notation $\int_a^b f(x) dx$ est un héritage de l'époque où on a défini l'intégrale : à l'origine, le symbole \int désignait une somme; et on peut voir une intégrale comme la somme des aires d'une infinité de rectangles de largeur nulle. Précisons cela avec une figure :

L'aire sous la courbe est approximée par la somme des aires de petits rectangles de largeur $\mathrm{d}x$ et dont la hauteur dépend de la valeur de la fonction : l'aire vaut approximativement

$$f(x_1) dx + f(x_2) dx + f(x_3) dx + f(x_4) dx = \sum_{i=1}^{4} f(x_i) dx.$$

Pour définir rigoureusement $\int_a^b f(x) dx$, on regarde la limite de la somme lorsque dx tend vers 0.

81

II. Intégrales et primitives

Exemple 2

La vitesse v(t) d'une voiture téléguidée en fonction du temps t est donnée par le graphique ci-dessous pendant un intervalle de temps de 10 secondes.

À quoi l'aire du domaine hachuré correspond-elle concrètement? Autrement dit, que représente $\int_1^5 v(t) dt$ pour le physicien?

Pour le savoir, on prend un petit intervalle de temps Δt et on considère l'aire du petit domaine hachuré en rouge :

De façon approximative, on peut dire que ce domaine est un rectangle de largeur Δt et de hauteur V, où V est la vitesse de la voiture pendant le petit intervalle de temps a . L'aire de la zone rouge vaut donc approximativement

$$V \times \Delta t$$
,

qui n'est rien d'autre que la distance parcourue pendant le petit intervalle de temps b :

aire de la zone rouge \approx distance parcourue pendant l'intervalle de temps Δt .

La zone hachurée en bleu peut être découpée en petites surfaces comme la surface rouge ci-dessus, donc en ajoutant les aires de ces petites surfaces, on ajoute les distances parcourues dans chaque petit intervalle de temps. On obtient ainsi la distance totale parcourue c :

aire de la zone bleue =
$$\int_{1}^{5} v(t) dt$$
 = distance totale parcourue entre les temps $t = 1$ et $t = 5$.

Rappelons-nous maintenant que pour le physicien, la vitesse est la dérivée de la distance. Donc si on note d(t) la distance parcourue au temps t, on a v(t) = d'(t); et la partie droite de la chaîne d'égalités ci-dessus peut se récrire :

$$\int_{1}^{5} d'(t) dt = d(5) - d(1).$$

a. C'est une approximation, parce que la vitesse n'est pas constante : elle varie au cours du temps.

b. C'est la formule habituelle $d = v \times t$.

c. Pour que la formule ci-dessous soit exacte, il faut faire tendre 2t vers 0, comme si on prenait une infinité de petits rectangles.

Dans l'exemple précédent, d' est la dérivée de d, donc d est une primitive de d'; on calcule donc l'intégrale à l'aide d'une primitive. La méthode se généralise en fait à toute fonction continue :

Théorème 1 (théorème fondamental de l'analyse)

Soit f une fonction continue et F une primitive de f sur un intervalle [a;b] On a alors

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Le nombre F(b) - F(a) est noté $[F(x)]_a^b$.

Exemples 3

1. Une primitive de $x \mapsto x^2$ sur \mathbb{R} est $x \mapsto \frac{1}{3}x^3$, donc

$$\int_0^1 x^2 dx = \left[\frac{1}{3} x^3 \right]_0^1 = \left(\frac{1}{3} \times 1^3 \right) - \left(\frac{1}{3} \times 0^3 \right) = \frac{1}{3}.$$

2. On retrouve l'intégrale d'une fonction constante : pour tous réels $a \le b$, pour tout $c \ge 0$:

$$\int_{a}^{b} c dx = [cx]_{a}^{b} = cb - ca = c(b - a).$$

Remarques.

- Les primitives d'une fonction f sont égales à une constante additive près, donc la valeur de F(b) F(a) ne change pas si on prend une autre primitive.
- On reprend l'exemple 2. La vitesse moyenne de la voiture entre les temps t=1 et t=5 est

$$v = \frac{\text{distance parcourue}}{\text{temps}} = \frac{d(5) - d(1)}{5 - 1}.$$

Mais $d(5) - d(1) = \int_1^5 v(t) dt$, donc la vitesse moyenne de la voiture se réécrit :

$$v = \frac{1}{5-1} \int_{1}^{5} v(t) dt.$$

D'une façon générale, la valeur moyenne d'une fonction continue a f sur un intervalle [a;b] (avec a < b) est

valeur moyenne =
$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$
.

a. Mais non nécessairement positive – cf paragraphe suivant.

III. Intégrale d'une fonction de signe quelconque

Soit f une fonction continue sur un intervalle [a;b], mais non nécessairement positive. L'intégrale de a à b de f, notée $\int_a^b f(x) dx$, est définie comme la différence entre :

- la somme des aires des zones situées au dessus de l'axe des abscisses et entre cet axe et la courbe;
- la somme des aires des zones situées en dessous de l'axe des abscisses et entre cet axe et la courbe.

 $\int_{-2}^{8} f(x) dx$ = somme des aires des zones bleues – somme des aires des zones vertes.

On admet le théorème suivant :

Théorème 2 (théorème fondamental de l'analyse)

Soit f une fonction continue et F une primitive de f sur un intervalle [a;b] On a alors

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Le nombre F(b) - F(a) est noté $[F(x)]_a^b$.

Exemple 4

Définition 3

Une primitive de $x \mapsto e^x - e^{-x}$ est $x \mapsto e^x + e^{-x}$, donc

$$\int_{-1}^{1} (e^x - e^{-x}) dx = [e^x + e^{-x}]_{-1}^{1} = (e^1 + e^{-1}) - (e^{-1} + e^1) = e^1 + e^{-1} - e^1 - e^1 = 0.$$

On pouvait prévoir que l'intégrale serait nulle, parce que les deux aires se compensent :

Théorème 3 (relation de Chasles)

Pour tous réels $a \le b \le c$, pour toute fonction f continue sur [a; c]:

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx.$$

IV. Linéarité de l'intégrale, applications

Théorème 4 (linéarité de l'intégrale)

Pour toutes fonctions f, g continues sur [a;b], pour tous réels α , β :

$$\alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx = \int_{a}^{b} (\alpha f(x) + \beta g(x)) dx.$$

Remarque.

- On utilise généralement les trois cas particuliers : $\int_a^b f(x) dx + \int_a^b g(x) dx = \int_a^b (f(x) + g(x)) dx$; $\int_a^b f(x) dx \int_a^b g(x) dx = \int_a^b (f(x) g(x)) dx$;

 - $\alpha \int_a^b f(x) dx = \int_a^b \alpha f(x) dx$

Exemple 5

Posons $I = \int_0^1 \frac{x^3}{x^2+1}$ et $J = \int_0^1 \frac{2x}{x^2+1} dx$. I est difficile à calculer telle quelle, mais il y a une astuce :

On commence par calculer *J*. On reconnaît la formule $\frac{u'}{u} = (\ln \circ u)'$, avec $u(x) = x^2 + 1$. On a donc

$$J = \int_0^1 \frac{2x}{x^2 + 1} dx = \left[\ln \left(x^2 + 1 \right) \right]_0^1 = \ln \left(1^2 + 1 \right) - \ln \left(0^2 + 1 \right) = \ln 2 - \ln 1 = \ln 2.$$

Ensuite on calcule $I + \frac{1}{2}J$. Par linéarité de l'intégrale :

$$I + \frac{1}{2}J = \int_0^1 \frac{x^3}{x^2 + 1} dx + \frac{1}{2} \int_0^1 \frac{2x}{x^2 + 1} dx = \int_0^1 \left(\frac{x^3}{x^2 + 1} + \frac{1}{2} \times \frac{2x}{x^2 + 1} \right) dx = \int_0^1 \frac{x^3 + x}{x^2 + 1} dx = \int_0^1 \frac{x(x^2 + 1)}{x^2 + 1} dx$$
$$= \int_0^1 x dx = \left[\frac{1}{2} x^2 \right]_0^1 = \frac{1}{2} \times 1^2 - \frac{1}{2} \times 0^2 = \frac{1}{2}.$$

On peut conclure:

$$I = \left(I + \frac{1}{2}J\right) - \frac{1}{2}J = \frac{1}{2} - \frac{1}{2}\ln 2.$$

85

Si f est positive sur [a;b], le nombre $\int_a^b f(x) dx$ est une aire. Il est donc positif :

Théorème 5 (positivité de l'intégrale)

Soit f une fonction continue et positive sur l'intervalle [a;b]. Dans ce cas

$$\int_{a}^{b} f(x) \mathrm{d}x \ge 0.$$

Théorème 6 (croissance de l'intégrale)

Soient f et g deux fonctions continues sur l'intervalle [a;b]. Si $f(x) \le g(x)$ pour tout $x \in [a;b]$, alors

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

Exemple 6

On sait que pour tout $x \ge 0$:

$$1 + x \le e^x$$

(voir l'exemple 8 de la leçon n°8). Donc par croissance de l'intégrale :

$$\int_0^1 (1+x) dx \le \int_0^1 e^x dx$$
$$\left[x + \frac{1}{2} x^2 \right]_0^1 \le \left[e^x \right]_0^1$$
$$\left(1 + \frac{1}{2} \times 1^2 \right) - \left(0 + \frac{1}{2} \times 0^2 \right) \le e^1 - e^0$$
$$1, 5 \le e - 1.$$

On en déduit donc que

$$e \ge 1.5 + 1 = 2.5$$

(ce qui n'est pas d'un exceptionnel intérêt, mais laisse deviner le potentiel de la méthode).

V. Intégration par parties

Théorème 7 (intégration par parties)

Soient u et v deux fonctions dérivables et dont les dérivées u' et v' sont continues sur l'intervalle [a;b]. Dans ce cas :

$$\int_{a}^{b} u'(x) v(x) dx = [u(x) v(x)]_{a}^{b} - \int_{a}^{b} u(x) v'(x) dx.$$

Exemple 7

On calcule $\int_1^e \ln x dx$.

Pour cela, on écrit $\int_1^e \ln x dx = \int_1^e 1 \times \ln x dx$ et on intègre par parties : on pose

$$u'(x) = 1$$
 ; $v(x) = \ln x$

$$u(x) = x$$
 ; $v'(x) = \frac{1}{x}$.

Exemple 7 – Suite

On a donc:

$$\int_{1}^{e} \ln x dx = \int_{1}^{e} \frac{1}{u'(x)} \times \lim_{v(x)} x dx = \left[\frac{x}{u(x)} \times \lim_{v(x)} x \right]_{1}^{e} - \int_{1}^{e} \frac{x}{u(x)} \times \frac{1}{x} dx$$

$$= e \ln e - 1 \ln 1 - \int_{1}^{e} 1 dx$$

$$= \underbrace{e \times 1 - 1 \times 0}_{=e} - [x]_{1}^{e}$$

$$= e - (e - 1)$$

$$= 1$$

VI. Fonction définie par une intégrale

Théorème 8

Soit f une fonction continue sur un intervalle I et soit $x_0 \in I$. On définit

$$F: I \to \mathbb{R}, \ x \mapsto \int_{x_0}^x f(t) dt.$$

La fonction F est l'unique primitive de f s'annulant en x_0 . Autrement dit :

- pour tout $x \in I$, F'(x) = f(x);
- $F(x_0) = 0$.

Remarque

Toute fonction continue sur un intervalle *I* y admet donc une primitive!

Exemple 8

La fonction $f: x \mapsto \int_0^x \frac{1}{1+t^4} dt$ est dérivable sur \mathbb{R} , et sa dérivée est $f': x \mapsto \frac{1}{1+x^4}$.

VII. Des démonstrations

Démonstration (du théorème 4)

On admet pour la démonstration que f et g admettent des primitives sur [a;b], que l'on note respectivement F et G. Dans ce cas :

$$\alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx = \alpha (F(b) - F(a)) + \beta (G(b) - G(a)) = (\alpha F(b) + \beta G(b)) - (\alpha F(a) + \beta G(a)).$$
 (13.1)

D'un autre côté, $\alpha F + \beta G$ est une primitive de $\alpha f + \beta g$, puisque

$$(\alpha F + \beta G)' = \alpha F' + \beta G' = \alpha f + \beta g.$$

Donc

$$\int_{a}^{b} \left(\alpha f(x) + \beta g(x) \right) dx = \left[\alpha F(x) + \beta G(x) \right]_{a}^{b} = \left(\alpha F(b) + \beta G(b) \right) - \left(\alpha F(a) + \beta G(a) \right). \tag{13.2}$$

En comparant (13.1) et (13.2), on obtient

$$\alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx = \int_{a}^{b} (\alpha f(x) + \beta g(x)) dx.$$

Démonstration (du théorème 6)

Par hypothèse $f(x) \le g(x)$ pour tout $x \in [a;b]$, donc aussi $g(x) - f(x) \ge 0$; et donc, par le théorème 5 (positivité de l'intégrale), $\int_a^b \left(g(x) - f(x)\right) \mathrm{d}x \ge 0$. Finalement, par linéarité de l'intégrale :

$$\int_{a}^{b} g(x) dx - \int_{a}^{b} f(x) dx = \int_{a}^{b} (g(x) - f(x)) dx \ge 0.$$

On en déduit $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

Démonstration (du théorème 7)

Les fonctions u' et v' étant continues sur [a;b], chacune des fonctions $x \mapsto u'(x)v(x)$, $x \mapsto u(x)v'(x)$ et $x \mapsto (u'(x)v(x) + u(x)v'(x))$ est continue sur [a;b] et on peut l'intégrer.

On calcule alors $\int_a^b \left(u'(x)v(x)+u(x)v'(x)\right)\mathrm{d}x$ de deux façons différentes :

• D'une part, d'après la formule $(u \times v)' = u' \times v + u \times v'$,

$$\int_{a}^{b} \left(u'(x)v(x) + u(x)v'(x) \right) dx = \int_{a}^{b} \left(uv'(x) dx = \left[u(x)v(x) \right]_{a}^{b}.$$

• D'autre part, par linéarité de l'intégrale :

$$\int_a^b \left(u'(x)v(x) + u(x)v'(x) \right) \mathrm{d}x = \int_a^b u'(x)v(x) \mathrm{d}x + \int_a^b u(x)v'(x) \mathrm{d}x.$$

Rassemblant ce qui précède, on obtient

$$[u(x)v(x)]_a^b = \int_a^b u'(x)v(x)dx + \int_a^b u(x)v'(x)dx,$$

et finalement

$$\int_{a}^{b} u'(x)v(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x)dx.$$

Sommes de variables aléatoires

Plan de ce chapitre

I.	Rappels sur l'espérance et la variance	89
II.	Espérance et variance d'une somme de v.a	90
III.	Inégalité de Bienaymé-Tchebychev	91
IV.	Loi des grands nombres	93
V.	Des démonstrations	94

Rappels sur l'espérance et la variance

Soit X une variable aléatoire dont la loi est donnée par le tableau :

valeurs de X	x_1	x_2	 x_n
probabilités	p_1	p_2	 p_n

L'espérance de X est le nombre

$$E(X) = p_1 \times x_1 + p_2 \times x_2 + \dots + p_n \times x_n.$$

La variance de *X* est le nombre

$$V(X) = p_1 \times (x_1 - E(X))^2 + p_2 \times (x_2 - E(X))^2 + \dots + p_n \times (x_n - E(X))^2.$$

L'écart-type de X est le nombre

$$\sigma(X) = \sqrt{V(X)}$$
.

Exemple 1

Définition 1

On lance un dé équilibré à 4 faces, on note X le résultat obtenu.

La loi de X est donnée par :

x	1	2	3	4
P(X = x)	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

L'espérance de X est

$$E(X) = \frac{1}{4} \times 1 + \frac{1}{4} \times 2 + \frac{1}{4} \times 3 + \frac{1}{4} \times 4 = 2, 5.$$

La variance de X est

$$V(X) = \frac{1}{4} \times (1 - 2, 5)^2 + \frac{1}{4} \times (2 - 2, 5)^2 + \frac{1}{4} \times (3 - 2, 5)^2 + \frac{1}{4} \times (4 - 2, 5)^2 = 1,25.$$

L'écart-type de X est

$$\sigma(X) = \sqrt{V(X)} = \sqrt{1,25} \approx 1,12.$$

Théorème 1

Si une variable aléatoire X suit la loi binomiale de paramètres n, p, alors :

- 1. $E(X) = n \times p$.
- **2.** $V(X) = n \times p \times (1 p)$.

Exemple 2

On lance 10 fois de suite un dé équilibré à 4 faces, on note *X* le nombre de 4.

On répète 10 épreuves indépendantes de Bernoulli de paramètre $\frac{1}{4}$, donc X suit la loi binomiale de paramètres $n=10,\ p=\frac{1}{4}$.

On rappelle la formule

$$P(X = k) = \binom{n}{k} \times p^k \times (1 - p)^{n - k}, \text{ pour } k \in [0, n].$$

Par exemple, la probabilité d'obtenir 3 fois le chiffre 4 est

$$P(X=3) = {10 \choose 3} \times \left(\frac{1}{4}\right)^3 \times \left(\frac{3}{4}\right)^7 \approx 0,250.$$

Par ailleurs, l'espérance et la variance sont :

- $E(X) = 10 \times 0, 4 = 4$;
- $V(X) = 10 \times 0, 4 \times (1 0, 4) = 0, 24.$

II. Espérance et variance d'une somme de v.a.

Théorème 2 (linéarité de l'espérance)

Si X, Y sont deux variables aléatoires et si a, b sont deux réels, alors

- **1.** E(aX + b) = aE(X) + b.
- **2.** E(X + Y) = E(X) + E(Y).

Plus généralement, si $X_1, X_2, ..., X_n$ sont des variables aléatoires :

$$E(X_1 + X_2 + \cdots + X_n) = E(X_1) + E(X_2) + \cdots + E(X_n)$$

Exemple 3

On lance deux dés équilibrés à 4 faces, on note S la somme des deux numéros.

On peut écrire $S = X_1 + X_2$, où X_1 est le résultat du dé n°1, X_2 celui du dé n°2. D'après l'exemple 1

$$E(X_1) = E(X_2) = 2,5,$$

donc

$$E(S) = E(X_1 + X_2) = E(X_1) + E(X_2) = 2,5 + 2,5 = 5.$$

Pour la variance, les choses sont un peu plus compliquées :

Théorème 3

1. Si *X* est une variable aléatoire et si *a*, *b* sont deux réels, alors

$$V(aX+b) = a^2V(X).$$

2. Si *X*, *Y* sont deux variables aléatoires **indépendantes** (c'est-à-dire que le résultat de l'une n'a pas d'incidence sur le résultat de l'autre), alors

$$V(X+Y) = V(X) + V(Y).$$

Plus généralement, si $X_1, X_2, ..., X_n$ sont des variables aléatoires **indépendantes** :

$$V(X_1 + X_2 + \cdots + X_n) = V(X_1) + V(X_2) + \cdots + V(X_n)$$
.

Exemple 4

On reprend les exemples 1 et 3 :

$$V(X_1) = V(X_2) = 1,25.$$

De plus les résultats des deux dés sont indépendants, donc

$$V(S) = V(X_1 + X_2) = V(X_1) + V(X_2) = 1,25 + 1,25 = 2,5.$$

III. Inégalité de Bienaymé-Tchebychev

On rappelle que la valeur absolue d'un nombre x est définie par

$$|x| = \begin{cases} x & \text{si } x > 0 \\ -x & \text{si } x < 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Par exemple:

- |3| = 3, car 3 > 0.
- |-3| = -(-3) = 3, car -3 < 0.

On rappelle également que la distance entre deux nombres a et b est toujours égale à |a-b|.

Théorème 4 (inégalité de Bienaymé-Tchebychev)

Soit X une variable aléatoire d'espérance μ et de variance V. Alors pour tout $\delta > 0$:

$$P(|X - \mu| \ge \delta) \le \frac{V}{\delta^2}.$$

Remarque.

Le nombre $|X - \mu|$ est la distance entre X et μ . L'inégalité de Bienaymé-Tchebychev permet donc de majorer la probabilité que X s'éloigne de μ d'une distance supérieure à δ . En français, elle peut se réécrire :

« La probabilité que la distance entre X et μ soit supérieure à δ est inférieure à $\frac{V}{\delta^2}$. »

Exemple 5

Lors d'une expérience en physique, on modélise la température de fusion d'un matériau par une variable aléatoire *X* telle que

$$\mu = E(X) = 80$$
 , $V = V(X) = 4$.

Utilisons l'inégalité de Bienaymé-Tchebychev avec $\delta = 5$:

$$P(|X - \mu| \ge \delta) \le \frac{V}{\delta^2}$$

$$P(|X - 80| \ge 5) \le \frac{4}{5^2}$$

$$P(|X - 80| \ge 5) \le 0, 16.$$

Le nombre |X - 80| représente la distance entre X et 80, donc l'inégalité de Bienaymé-Tchebychev dit que X a moins de 16 % de chances d'être dans la zone rouge ci-dessous (les extrémités, 75 et 85, sont incluses dans la zone rouge).

Par conséquent, la probabilité d'être dans la zone verte est supérieure à 1-0,16=0,84:

$$P(|X - 80| < 5) \ge 0.84$$

soit

$$P(75 < X < 85) \ge 0.84.$$

Remarques.

- |X 80| < 5 est l'événement contraire de $|X 80| \ge 5$ ».
- Plus la variance est faible, plus $\frac{V}{\delta^2}$ l'est également; et donc plus la probabilité $P(|X \mu| \ge \delta)$ est petite d'après l'inégalité de Bienaymé-Tchebychev. Cela montre que la variance peut être vue comme une mesure de dispersion pour X.
- L'inégalité de Bienaymé-Tchebychev n'a d'intérêt que si $\frac{V}{\delta^2} < 1$ (on majore une probabilité, donc on sait de toute façon qu'elle est inférieure à 1).

Exemple 6

On lance 1 000 fois de suite un dé équilibré à 4 faces, on note X le nombre de 4

On répète 1 000 épreuves indépendantes de Bernoulli de paramètre $\frac{1}{4}$ = 0,25, donc X suit la loi binomiale de paramètres n = 1 000, p = 0,25. D'après le théorème 1 :

$$\mu = E(X) = n \times p = 1000 \times 0, 25 = 250,$$

$$V = V(X) = n \times p \times (1 - p) = 1000 \times 0, 25 \times (1 - 0, 25) = 187, 5.$$

Donc d'après l'inégalité de Bienaymé-Tchebychev, avec $\delta = 25$:

$$P(|X - \mu| \ge \delta) \le \frac{V}{\delta^2}$$

$$P(|X - 250| \ge 25) \le \frac{187, 5}{25^2}$$

$$P(|X - 250| \ge 25) \le 0, 3.$$

Exemple 6 – Suite

La probabilité d'être dans la zone rouge est inférieure à 0,3. On a donc aussi

$$P(|X - 250| < 25) \ge 0.7$$

(probabilité d'être dans la zone verte), soit

$$P(226 \le X \le 274) \ge 0.7$$

(on va de 226 à 274 puisque X est un entier).

On dit que l'intervalle [226;274] est un intervalle de fluctuation de niveau 70 % pour X

Remarques.

• L'inégalité de Bienaymé-Tchebychev permet de minorer $P(226 \le X \le 274)$, mais la minoration n'est pas optimale : le calcul avec une calculatrice donne

$$P(226 \le X \le 274) \approx 0.93.$$

L'intervalle [226;274] est donc en réalité un intervalle de fluctuation de niveau 93 % environ.

• On utilise les intervalles de fluctuation en statistiques : si la probabilité d'être dans un intervalle de fluctuation est forte, il est suspect de ne pas s'y trouver. Il est par exemple peu probable de n'obtenir que 400 *pile* sur 1 000 lancers d'une pièce de monnaie équilibrée.

IV. Loi des grands nombres

Dans cette section, on fixe une variable aléatoire X, puis on choisit un échantillon $(X_1, X_2, ..., X_n)$ de même loi que X. Cela signifie que les X_i sont indépendantes et suivent chacune la même loi que X. On note M_n la moyenne des X_i :

$$M_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Les théorèmes 2 et 3 entraînent :

Théorème 5

- 1. $E(M_n) = E(X)$.
- **2.** $V(M_n) = \frac{V(X)}{n}$

Exemple 7

On reprend l'exemple 5, mais au lieu d'une seule mesure, on en réalise successivement 100. Cette série de mesures peut être modélisée par un échantillon $(X_1, X_2, ..., X_{100})$ de même loi que X, où E(X) = 80 et V(X) = 4.

On fait la moyenne des 100 mesures : on pose

$$M_{100} = \frac{X_1 + X_2 + \dots + X_{100}}{100}.$$

D'après le théorème 5 :

- $\mu = E(M_{100}) = E(X) = 80$,
- $V = V(M_{100}) = \frac{V(X)}{100} = \frac{4}{100} = 0.04.$

Utilisons l'inégalité de Bienaymé-Tchebychev avec $\delta = 0.5$:

$$P(|M_{100} - \mu| \ge \delta) \le \frac{V}{\delta^2}$$

$$P(|M_{100} - 80| \ge 0, 5) \le \frac{0,04}{0,5^2}$$

$$P(|M_{100} - 80| \ge 0, 5) \le 0,16.$$

Exemple 7 – Suite

Conclusion : on a moins de 16 % de chances d'être dans la zone rouge ; et donc plus de 84 % de chances d'être dans la zone verte.

Dans l'exemple 5, on avait trouvé

$$P(|X - 80| \ge 5) \le 0.16$$
:

X avait donc (au moins) 84 % de chances d'être dans l'intervalle]75;85[. En faisant la moyenne des mesures, on trouve que M_{100} a 84 % de chances d'être dans l'intervalle]79,5;80,5[, donc dans un intervalle 10 fois plus petit. Le fait de calculer une moyenne permet donc de gagner en précision a.

a. Pour avoir un résultat 10 fois plus précis, il faut faire $10^2 = 100$ mesures.

Si on faisait tendre le nombre n de mesures vers $+\infty$ dans l'exemple précédent, la probabilité tendrait vers 0. Ce résultat est formalisé par la loi des grands nombres :

Théorème 6 (loi des grands nombres)

Soit X une variable aléatoire d'espérance μ et soit (X_1, X_2, X_3, \cdots) une suite infinie de variables aléatoires indépendantes et de même loi que X. Pour tout entier $n \ge 1$, on pose $M_n = \frac{X_1 + X_2 + \cdots + X_n}{n}$.

Pour tout $\delta > 0$:

$$\lim_{n \to +\infty} P(|M_n - \mu| \ge \delta) = 0.$$

On dit que M_n converge en probabilité vers μ .

V. Des démonstrations

Démonstration (inégalité de Bienaymé-Tchebychev

On suppose que la loi de X est donnée par

$$P(X = x_1) = p_1, P(X = x_2) = p_2, \dots, P(X = x_n) = p_n.$$

On note μ son espérance. Sa variance est

$$V = p_1 \times (x_1 - \mu)^2 + p_2 \times (x_2 - \mu)^2 + \dots + p_n \times (x_n - \mu)^2 = \sum_{i=1}^n p_i (x_i - \mu)^2.$$

On fixe $\delta > 0$ et on coupe la somme en deux :

$$V = \sum_{\substack{i=1\\|x_i-\mu| \ge \delta}}^{n} p_i (x_i - \mu)^2 + \sum_{\substack{i=1\\|x_i-\mu| < \delta}}^{n} p_i (x_i - \mu)^2.$$

La première somme porte sur les indices i tels que $|x_i - \mu| \ge \delta$, la deuxième sur les indices i tels que $|x_i - \mu| < \delta$.

Comme on ajoute des nombres positifs,

$$V \ge \sum_{\substack{i=1\\|x_i-\mu| \ge \delta}}^n p_i (x_i - \mu)^2.$$

La somme ci-dessus ne porte que sur les indices i tels que $|x_i - \mu| \ge \delta$; on a donc dans ce cas $(x_i - \mu)^2 \ge \delta^2$. Il vient donc

$$V \geq \sum_{\substack{i=1\\|x_i-\mu|\geq \delta}}^n p_i \left(x_i-\mu\right)^2 \geq \sum_{\substack{i=1\\|x_i-\mu|\geq \delta}}^n p_i \delta^2 = \delta^2 \sum_{\substack{i=1\\|x_i-\mu|\geq \delta}}^n p_i.$$

Démonstration (inégalité de Bienaymé-Tchebychev 💍 – Suite

Par définition, la somme qui apparaît à droite est $P(|X - \mu| \ge \delta)$; on a ainsi

$$V \ge \delta^2 P(|X - \mu| \ge \delta),$$

et finalement

$$P(|X - \mu| \ge \delta) \le \frac{V}{\delta^2}.$$

Démonstration (loi des grands nombres)

On note μ l'espérance et V la variance de X. D'après le théorème 5,

•
$$E(M_n) = E(X) = \mu$$
,

•
$$V(M_n) = \frac{V(X)}{n} = \frac{V}{n}$$
,

donc d'après l'inégalité de Bienaymé-Tchebychev :

$$P(|M_n - \mu| \ge \delta) \le \frac{\frac{V}{n}}{\delta^2}.$$

Et comme une probabilité est positive,

$$0 \le P(|M_n - \mu| \ge \delta) \le \frac{V}{n\delta^2}.$$

Or $\lim_{n\to +\infty} 0=0$ et $\lim_{n\to +\infty} \frac{V}{n\delta^2}=0$, donc d'après le théorème des gendarmes :

$$\lim_{n \to +\infty} P(|M_n - \mu| \ge \delta) = 0.$$