Listing of Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

1. (Original) A compound of formula (I),

$$(CH_2)_s \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{X} \xrightarrow{X} R^1$$
(I)

the *N*-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0 or 1;

s is 0 or 1;

X is -N= or -CR⁴=, wherein R⁴ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

Y is -N < or -CH <;

Q is -NH-, -O-, -C(O)-, -CH₂-CH₂- or -CHR⁵-, wherein R⁵ is hydrogen, hydroxy, C₁₋₆alkyl, arylC₁₋₆alkyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxyC₁₋₆alkylamino or haloindazolyl;

 R^1 is C_{1-6} alkyl or thienyl;

 R^2 is hydrogen or taken together with R^3 may form =0;

R³ is hydrogen, C₁₋₆alkyl or a radical selected from

- NR^6R^7 (a-1), -O-H (a-2),

 $-O-R^{8}$ (a-3),

-S- R^9 (a-4), or —C=N (a-5),

wherein

R⁶ is –CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl,

(c-13)

piperidinylC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy,

C₁₋₆alkyloxyC₁₋₆alkyl, thienylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl,

aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, or aryl C_{1-6} alkyl $(C_{1-6}$ alkyl)amino C_{1-6} alkyl; and R^7 is hydrogen or C_{1-6} alkyl;

 R^8 is C_{1-6} alkyl, C_{1-6} alkylcarbonyl or di(C_{1-6} alkyl)amino C_{1-6} alkyl; and R^9 is di(C_{1-6} alkyl)amino C_{1-6} alkyl;

or R³ is a group of formula

$$-(CH_2)_t$$
-Z- (b-1),

wherein

t is 0, 1 or 2;

(c-9)

Z is a heterocyclic ring system selected from

wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

(c-11)

(c-12)

—
$$C_{1-6}$$
alkanediyl— N
— C_{1-6} alkanediyl

(c-10)

 $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkylamino, di(phenyl $C_{2\text{-}6}$ alkenyl), piperidinyl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkyl $C_{1\text{-}6}$ alkyl, aryloxy(hydroxy) $C_{1\text{-}6}$ alkyl, haloindazolyl, aryl $C_{1\text{-}6}$ alkyl, aryl $C_{2\text{-}6}$ alkenyl, morpholino, $C_{1\text{-}6}$ alkylimidazolyl, or pyridinyl $C_{1\text{-}6}$ alkylamino; each R^{11} independently is hydrogen, hydroxy, piperidinyl or aryl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy;

with the proviso that 6-(cyclohexyl-1*H*-imidazol-1-ylmethyl)-3-methyl-2(1*H*)-quinoxalinone is not included.

- 2. (Original) A compound as claimed in claim 1 wherein X is –N= or -CH=; R¹ is C₁-6alkyl; R³ is hydrogen, C₁-6alkyl, a radical selected from (a-1), (a-2), (a-3) or (a-4) or a group of formula (b-1); R⁶ is di(C₁-6alkyl)aminoC₁-6alkyl or C₁-6alkyloxyC₁-6alkyl; R³ is hydrogen; R³ is di(C₁-6alkyl)aminoC₁-6alkyl; t is 0 or 2; Z is a heterocyclic ring system selected from (c-1), (c-5), (c-6), (c-8), (c-10), (c-12) or (c-13); each R¹⁰ independently is hydrogen, C₁-6alkyl, hydroxy, C₁-6alkyloxyC₁-6alkyl, C₁-6alkyloxyC₁-6alkylamino, morpholino, C₁-6alkylimidazolyl, or pyridinylC₁-6alkylamino; each R¹¹ independently is hydrogen or hydroxy; and aryl is phenyl.
- 3. (Previously Presented) A compound according to claim 1 wherein n is 0; X is CH; Q is –NH-, -CH₂-CH₂- or -CHR⁵-, wherein R⁵ is hydrogen, hydroxy, or arylC₁₋₆alkyl; R¹ is C₁₋₆alkyl; R² is hydrogen; R³ is hydrogen, hydroxy or a group of formula (b-1); t is 0; Z is a heterocyclic ring system selected from (c-8) or (c-13); each R¹⁰ independently is hydrogen; and aryl is phenyl.

4. (Currently Amended) A compound selected from the group consisting of:

and the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof.

5. (Cancelled)

- 6. (Previously Presented) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 1.
- 7. (Cancelled).
- 8. (Currently Amended) A method of treating in a subject a PARP mediated disorder, <u>said</u> <u>method</u> comprising administering to the subject a therapeutically effective amount of a compound of formula (I)

$$(CH_2)_s \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{X} \xrightarrow{X} R^1$$
(I)

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0 or 1;

s is 0 or 1;

X is -N= or -CR⁴=, wherein R⁴ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

Y is -N < or -CH <;

 R^1 is C_{1-6} alkyl or thienyl;

 R^2 is hydrogen or taken together with R^3 may form =O;

(a-1),

 R^3 is hydrogen, $C_{1\text{--}6}$ alkyl or a radical selected from

$$-NR^6R^7$$

$$-O-R^8$$
 (a-3),

-S-
$$R^9$$
 (a-4), or
—C \equiv N (a-5),

wherein

 R^6 is –CHO, $C_{1\text{-}6}$ alkyl, hydroxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonyl, di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonylamino $C_{1\text{-}6}$ alkyl, piperidinyl $C_{1\text{-}6}$ alkylaminocarbonyl, $C_{1\text{-}6}$ alkyloxy, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, thienyl $C_{1\text{-}6}$ alkyl, pyrrolyl $C_{1\text{-}6}$ alkyl, arylcarbonylpiperidinyl $C_{1\text{-}6}$ alkyl, arylcarbonylpiperidinyl $C_{1\text{-}6}$ alkyl, haloindozolylpiperidinyl $C_{1\text{-}6}$ alkyl, or aryl $C_{1\text{-}6}$ alkyl, amino $C_{1\text{-}6}$ alkyl; and R^7 is hydrogen or $C_{1\text{-}6}$ alkyl;

 R^8 is C_{1-6} alkyl, C_{1-6} alkylcarbonyl or di(C_{1-6} alkyl)amino C_{1-6} alkyl; and R^9 is di(C_{1-6} alkyl)amino C_{1-6} alkyl;

or R³ is a group of formula

$$-(CH_2)_t$$
-Z- (b-1),

wherein

t is 0, 1 or 2;

Z is a heterocyclic ring system selected from

wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

$$-C_{1-6}$$
alkanediyl $-N$, $-C_{1-6}$ alkanediyl N O

Page 8 of 15

 $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkylamino, di(phenyl $C_{2\text{-}6}$ alkenyl), piperidinyl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkyl $C_{1\text{-}6}$ alkyl, aryl $C_{2\text{-}6}$ alkyl, aryl $C_{2\text{-}6}$ alkenyl, morpholino, $C_{1\text{-}6}$ alkylimidazolyl, or pyridinyl $C_{1\text{-}6}$ alkylamino; each R^{11} independently is hydrogen, hydroxy, piperidinyl or aryl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

- 9. (Cancelled)
- 10. (Previously Presented) A method for enhancing the effectiveness of chemotherapy of comprising administration of a compound according to claim 1, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy.
- 11. (Previously Presented) A method for enhancing the effectiveness of radiotherapy of comprising administration of a compound according to claim 1, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy.
- 12. (Original) A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of formula (I)

$$(CH_2)_{s} \xrightarrow{R^2} (CH_2)_{n} \xrightarrow{X} \xrightarrow{X} R^1$$

$$(I)$$

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0 or 1; s is 0 or 1;

X is -N= or -CR⁴=, wherein R⁴ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

Y is -N < or -CH <:

Q is –NH-, -O-, -C(O)-, -CH₂-CH₂- or -CHR⁵-, wherein R⁵ is hydrogen, hydroxy, C₁₋₆alkyl, arylC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino or haloindazolyl;

 R^1 is C_{1-6} alkyl or thienyl;

 R^2 is hydrogen or taken together with R^3 may form =0;

R³ is hydrogen, C₁₋₆alkyl or a radical selected from

 $-NR^6R^7$

(a-1),

-О-Н

(a-2),

-O-R⁸

(a-3),

-S- R⁹

(a-4), or

—C≡N

(a-5),

wherein

R⁶ is –CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl,

di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl,

piperidinylC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy,

C₁₋₆alkyloxyC₁₋₆alkyl, thienylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl,

 $arylC_{1\text{--}6}alkylpiperidinyl,\ arylcarbonylC_{1\text{--}6}alkyl,\ arylcarbonylpiperidinylC_{1\text{--}6}alkyl,$

 $\label{eq:condition} halo indozoly lpiperidiny lC_{1-6} alkyl, \ or \ ary lC_{1-6} alkyl (C_{1-6} alkyl) amino C_{1-6} alkyl; \ and \ -$

R⁷ is hydrogen or C₁₋₆alkyl;

 R^8 is $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonyl or di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyl; and

R⁹ is di(C₁₋₆alkyl)aminoC₁₋₆alkyl;

or R³ is a group of formula

(b-1),

wherein

t is 0, 1 or 2;

Z is a heterocyclic ring system selected from

wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

$$-C_{1-6}$$
alkanediyl $-N$
, $-C_{1-6}$ alkanediyl N
O

$$\begin{split} &C_{1\text{-}6}alkyloxyC_{1\text{-}6}alkyl,\ C_{1\text{-}6}alkyloxyC_{1\text{-}6}alkylamino,\ di(phenylC_{2\text{-}6}alkenyl),\\ &piperidinylC_{1\text{-}6}alkyl,\ C_{3\text{-}10}cycloalkyl,\ C_{3\text{-}10}cycloalkylC_{1\text{-}6}alkyl,\\ &aryloxy(hydroxy)C_{1\text{-}6}alkyl,\ haloindazolyl,\ arylC_{1\text{-}6}alkyl,\ arylC_{2\text{-}6}alkenyl,\ morpholino,\\ &C_{1\text{-}6}alkylimidazolyl,\ or\ pyridinylC_{1\text{-}6}alkylamino;\\ &each\ R^{11}\ independently\ is\ hydrogen,\ hydroxy,\ piperidinyl\ or\ aryl; \end{split}$$

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

13. (Previously Presented) A process for preparing a compound as claimed in claim 1, comprising a) hydrolysis of intermediates of formula (VIII),

$$(CH_2)_{\overline{h}} \xrightarrow{R^2} (CH_2)_{\overline{h}} \xrightarrow{X} \xrightarrow{X} R^1$$

$$(VII I)$$

$$(I)$$

b) cyclization of intermediates of formula (X), and

$$(CH_2)_{s} \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{Q} (CH_2)_{\overline{n}} \xrightarrow{Q} (CH_2)_{\overline{n}} \xrightarrow{R^2} (CH_2)_{\overline{n}}$$

c) condensation of an appropriate ortho-benzenediamine of formula (XI) with an ester of formula (XII) into compounds of formula (I), wherein X is N and R² taken together with R³ forms =O, herein referred to as compounds of formula (I-a-1),

$$(CH_2)_{\overline{s}} \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{NH_2} R^1 \xrightarrow{O} OR^h \xrightarrow{R^2} (CH_2)_{\overline{s}} \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{NH_2} O$$

$$(XI) \qquad (XII) \qquad (I-i)$$

- 14. (New) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 2.
- 15. (New) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 3.
- 16 (New) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 4.
- 17. (New) A method of treating in a subject a PARP mediated disorder, said method comprising administering to the subject a therapeutically effective amount of a compound of claim 2.
- 18. (New) A method for enhancing the effectiveness of chemotherapy comprising administration of a compound according to claim 2, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy.

- 19. (New) A method for enhancing the effectiveness of radiotherapy comprising administration of a compound according to claim 2, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy.
- 20. (New) A method of treating in a subject a PARP mediated disorder, said method comprising administering to the subject a therapeutically effective amount of a compound of claim 3.
- 21. (New) A method for enhancing the effectiveness of chemotherapy comprising administration of a compound according to claim 3, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy.
- 22. (New) A method for enhancing the effectiveness of radiotherapy comprising administration of a compound according to claim 3, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy.
- 23. (New) A method of treating in a subject a PARP mediated disorder, said method comprising administering to the subject a therapeutically effective amount of a compound of claim 4.
- 24. (New) A method for enhancing the effectiveness of chemotherapy comprising administration of a compound according to claim 4, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy.
- 25. (New) A method for enhancing the effectiveness of radiotherapy comprising administration of a compound according to claim 4, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy.
- 26 (New) A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of claim 2.

- 27 (New) A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of claim 3.
- 28 (New) A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of claim 4.
- 29. (New) A product made by the process of claim 13.
- 30. (New) A pharmaceutical composition made by the process of claim 13.