

Please feel free to introduce yourself to your neighbors—name, pronouns, a hobby, etc.

and/or

Answer the first question on Wooclap!

Learning outcome for Topic 6: The Molecule – Lewis Structures

LO: Predict bonding arrangements and bond orders based on Lewis rules

The arrangement of electrons and chemical bonds in molecules gives us information about:

- Shape
- Physical properties
- Reactivity
- How to design molecular machines

Nobel Prize in Chemistry, 2016 (Sauvage, Stoddart & Feringa) 'for the design and synthesis of molecular machines' e.g., the nanocar

Lewis Electron-Dot Symbols

- Convenient representations of valence electrons
- Consists of the chemical symbol for the element plus a dot for each valence electron
- 2 electrons per side, 4 sides
- If all the sides are full, 8 electrons are in the the valence shell (stable octet)

Drawing Lewis Diagrams for Compounds

Example

Draw the Lewis structure for CH₂Cl₂

Atom

Molecular

Formula

Sum of

placement

valence e

Remaining valence e

Lewis

Structure

valence electrons are there?

How many total

42

a)

wooclap

13

20

22

When the central atom isn't clear, calculate formal charges!

Formal charge:

- The charge an atom would have if all electrons were shared equally
- Must sum to the actual charge on the molecule

```
F.C. = # of valence e<sup>-</sup> - (# of unshared valence e<sup>-</sup> + 1/2 # of shared valence e<sup>-</sup>)

Simpler: FC = # valence e<sup>-</sup> - # of actual e<sup>-</sup>
```

Example: Which is the correct Lewis structure for CS_2 (both EN = 2.5)?

Valence electrons Actual electrons Formal Charge

Lewis Structures for ions

- We can also draw Lewis structure of anions and cations
 - Cations: subtract 1 valence e⁻ for each + charge
 - Anions: add 1 valence e⁻ for each charge
- To determine which atom(s) hold the charge(s), we can calculate the formal charge (F.C.) of each atom in the Lewis structure

Example: Draw the Lewis diagram for BF₄- anion

Step 1: B more EN than F

Step 2:

- B: $1 \times 3e^{-} = 3$
- F: $4 \times 7e^{-} = 28$
- -1: + $1e^{-}$ = 1

Total valence electrons = 32

Step 3: Remaining electrons

• $32 - (4bonds \times 2e^{-}) = 24$

Step 4: complete octets with remaining electrons

F.C. of each F atom:

F.C. of the B atom:

Example: Cation

Draw the Lewis diagram for ICl₄⁺

Molecular Formula

Note: subtract 1 valence e⁻ for each + charge

Atom placement

Sum of valence e

Remaining valence e

Lewis Structure What is the formal charge of Iodine?

- a) +1
- b) (
 - -1
- d) +2

Multiple Bonds (optimizing the octet)

- If there are not enough electrons to attain octets, a multiple bond (double or triple bond) is present
- Oxygen, Carbon and Nitrogen often form multiple bond
- Change lone pair on surrounding atom into another bonding pair to central atom

e.g. N₂

Example: Multiple Bonds

wooclap

Draw the Lewis structure for HCO₃-, bicarbonate anion

Atom placement

Molecular

Formula

Sum of valence e

Remaining valence e

Lewis Structure valence electrons are there?

a) 20 b) 23

24

22

How many total

10

Resonance Structures

HCO₃- can be drawn in 2 ways:

- There are two different reasonable Lewis Structures for the same molecule
- The formal charge is "shared" between both oxygen atoms through resonance
 & must sum to the actual charge on the species for all resonance forms.
- Neither structure depicts HCO₃⁻ accurately, because in reality the two C-O bonds are identical in length and energy
- Bond order: bond order of the identified bond in a resonance structure
 # of resonance structures

Other examples of resonance structures

O₃ can be drawn in 2 ways:

CO₃-2 can be drawn in 3 ways:

$$\begin{bmatrix} : \ddot{O} : \\ & | \\ & | \\ & C \\ & C$$

Choosing the more important resonance form

- Smaller formal charges (positive or negative) are preferable to larger ones.
- The same nonzero formal charges on adjacent atoms are not preferred
- A more negative formal charge should reside on a more electronegative atom.

e.g. NCO

Some exceptions to the Octet Rule

The octet rule applies for most compounds with period 2 central atoms

Exceptions exist for:

- 1. Electron deficient atoms (e.g. Be, B, Al)
- Depends on electronegativity of atoms they are bonded to

2. Odd electron atoms

Free radicals e.g. NO₂ and NO

3. Atoms with expanded valence shells

- Nonmetals from Period (row) 3 or higher (have d orbitals available)
- e.g. SO₂

Example – atoms with expanded valence shells

Molecular Formula Draw the lewis diagram for SF₆

wooclap

How many electrons does sulfur have in its valence shell?

Atom placement

Sum of valence e

Remaining valence e⁻

Lewis Structure

Other examples – atoms with expanded valence shells

Hints on Lewis Dot Structures

- 1. Octet rule is the most useful guideline.
- 2. Carbon forms 4 bonds.
- 3. Hydrogen typically forms one bond to other atoms.
- 4. If multiple bonds are present, they usually involve C, N, O or S.
- 5. Nonmetals can form single, double, and triple bonds, but not quadruple bonds.
- Always account for single bonds and lone pairs before forming multiple bonds.
- 7. Look for resonance structures.

