

1 Cel ćwiczenia

Zapoznanie się z zastosowaniem tablic Karnaugh'a do minimalizacji graficznej złożonych funkcji logicznych oraz zaprojektowanie w Multisimie układu cyfrowego zwiększającego o 1 trzybitową liczbę całkowitą oraz wyświetlacza siedmiosegmentowego.

2 Przebieg ćwiczenia

2.1 Układ cyfrowy inkrementujący trzybitową nieujemną liczbę całkowitą

Dla każdego bitu wyjściowego sporządzono tablice Karnaugh'a (od bitu najstarszego do najmłodszego), gdzie bity wejściowe w kolejności starszeństwa to ABC:

C\AB				10		
0	o	0	0	0		
1	0	0	1	0		
	AB	С				
С∖АВ	00	01	11	10		
0	0	0	1	1		
1	o	1	0	1		
	A(C' + B') + A'BC				=A(BC)' + A'(BC)	
C\AB	00	01	11	10		
0	0	1	1	0		
1	۲.		F_			
1	1	0	0	1		
_		_			=BC' +B'C	
	BC	+ A	'B'C	+ AB'C	=BC' +B'C	
C\AB	BC	+ A	'B'(+ AB'C	=BC' +B'C	
	00 1	+ A	11 1	10 1	=BC' +B'C	
C\AB	00 1	+ A	'B'(+ AB'C	=BC' +B'C	
C\AB 0	00 1	+ A 01	11 1	10 1	=BC' +B'C	

Następnie w Multisimie stworzono układ odpowiadający wyprowadzeniu i przetestowano go używając wyświetlacza siedmiosegmentowego:

2.2 Minimalizacja funkcji metodą tablic Karnaugha

Zadaną funkcję logiczną przedstawiono w poniższej tabeli, a następnie zminimalizowano korzystając z metody Karnaugh'a. Wynik minimalizacji również znajduje się na poniższym zdjęciu:

W MultiSimie swtworzono model bramki niezminimalizowanej oraz zminimalizowanej. Porównano je Logic Analyzerem i oceniono, że minimalizacja przebiegła pomyślnie:

2.3 Transkoder czterobitowych cyfr

W oparciu o poniższą konfigurację segmentów:

Dla każdego z 7 segmentów zrealizowano tablicę Karnaugh'a prezentującą pożądane zachowanie segmentu, zminimalizowano funkcję logiczną i zbudowano odpowiedni obwód:

Segment b:

Segment d: d AB 00 01 11 10 00 1 0 1 1 CD 01 0 1 0 1 11 10 1 1 C+(-A)BD+A(-B)+A(-D)+(-B)(-D)

Segment e:

e					
			AB		
		00	01	11	10
	00	1	0	0	1
CD	01	0	0	0	1
	11				
	10	1	0		
(-A)	(-B)(-D)+	A(-B)		

Segment f:

f				AB		
			00	01	11	10
		00	1	0	0	0
	CD	01	1	1	0	1
		11				
		10	1	1		
(-A)(-B)+	C+(-	B)D+	(-A)[)	

Wszystkie obwody podłączono do wyświetlacza siedmiosegmentowego i przetestowano. Wyświetlacz wskazywał przewidywane cyfry:

