

Key Revocation for Identity-Based Schemes in Mobile Ad Hoc Networks

Guang Gong

Outline

- Security requirements
- Solutions & challenges in MANETs
- Review identity-based crypto schemes
- Existing schemes
- Proposed key revocation & renewal scheme
- Security analysis
- Conclusions

Communication Scenario in MANET

Challenges in MANETs

- □ Properties of MANETs
 - ♦ self-organizing
 - ♦ no central trusted third party (TTP)
 - ♦ dynamic
 - ♦ wireless channels
- □ Properties of devices
 - ♦ constrained devices
 - □ CPU, memory, battery
 - ♦ limited physical protection

Routing Attacks

Communication Attacks

Security Requirements

- □Routing (hop to hop)
 - **\$**source authentication
 - ♦message integrity
- □Communication (end to end)
 - entity authentication
 - ♦message integrity
 - ◆confidentiality

Existing Security Solutions

- ☐Symmetric schemes
 - ♦ require secure key distribution
- □Public key infrastructures (PKIs)
 - ♦ require Certificate Authority (CA) to issue & distribute public key certificates
- □Identity-based crypto (IBC) schemes
 - ◆require Key Generation Center (KGC) to generate and distribute private keys

Review: ID-Based Schemes

- □[Shamir`84] First identity-based signature scheme
 - ♦ idea: use common information, "identity" (ID), as public keys
 - key generation center (KGC) computes and distributes private keys

Review: ID-Based Schemes (cont'd)

- □[BF`01] First ID-based encryption scheme
 - ♦ Boneh-Franklin scheme uses bilinear mappings
 - ♦ set up
 - \square 2 groups G_1, G_2 of order q
 - □bilinear map \hat{e} : $G_1 \times G_1 \rightarrow G_2$
 - □ arbitrary generator $P \in G_1$
 - □ hash function H_1 : $\{0,1\}^* \rightarrow G_1^*$
 - **♦**KGC
 - □ master key $s \in Z_q^*$
 - □ public key P_{pub} = sP

user ID_i

public key $Q_i = H_1(ID_i)$

private key $d_i = sQ_i$

Features of ID-Based Schemes

- □Efficient key management
 - ♦ no public key certificates
 - ♦no key exchange prior communication
 - ♦ implicit public key validation

$$Q_i = H_1(ID_i \parallel 'expiry date')$$

- ♦additionally in pairing based schemes
 - □ non-interactive pre-shared pairwise keys

$$K_{i,j} = \hat{e}(d_i, Q_j) = \hat{e}(d_j, Q_i)$$
 (1)

Problems of ID-Based Schemes

Key escrow

- inherent property of all ID-based schemes
- ♦ KGC knows all private & pairwise keys

2. Key revocation

- revocation crucial due to likelihood of compromises
- no central TTP available to maintain revocation lists

current schemes do not provide such mechanisms

3. Key renewal

 after revocation new ID-based keys need to be issued for the same identity

Revocation Problem

Conventional Revocation Schemes

- ☐ Certificate Revocation Lists (CRLs)
 - ♦ distributed by a central trusted server or TTP to all users
- □ ΔCRLs
 - ◆ TTP distributes only CRL updates to reduce bandwidth
- ☐ Online Certificate Status Protocol (OCSP)
 - ♦ users query current certificate status from CA
- ☐ Micali's Novomodo scheme
 - new elements of hash chain are published by CA if certificate is still valid, more efficient than OCSP
 - all these solutions work only for PKIs and require a fixed infrastructure, e.g. an on-line CA, TTP or trusted server
 - **\$solutions** are not applicable to MANETs!

Revocation Schemes for MANETs

- ☐ [Luo et al.`02]
 - ♦ users send signed accusations to all users
 - \blacklozenge δ accusation against the same user revoke his key
 - problems: no details provided; no possibility for users to revoke their own keys; joining users need to verify many signatures
- ☐ [Crépeau et al.`03]
 - \blacklozenge accusation scheme with δ -threshold
 - problems: accusations not secured; requires broadcasts to entire network
 - ⇔Still no secure sophisticated revocation scheme for MANETs
 ⇒Still no revocation schemes for ID-based schemes yet!

Proposed Scheme

- ☐ System set up:
 - 1. based on BF scheme
 - 2. preshared key $K_{i,j}$ provides message authentication, e.g., f(x) where f(x) is a hash function
- Assumptions for our key renewal and revocation scheme:
 - 1. bidirectional communication links
 - 2. nodes are in promiscuous mode
 - 3. each node has a unique identity
 - 4. nodes know identities of their one-hop neighbors
 - 5. nodes know their *m*-hop neighborhood
 - 6. nodes obtain keys from off-line KGC before joining network

Key Renewal

- □Renew key if previous key is
 - **♦** revoked
 - **♦** compromised
 - **♦** expired
- □New keys issued for same identity
 - $\blacklozenge Q_i = H_1(ID_i \parallel t_i \parallel v_i)$
 - $\blacklozenge t_i$: expiry date of public key Q_i
 - $\diamond v_i$: version number of Q_i
 - ♦ user needs to re-authenticate to external KGC

Key Revocation

- Revocations need to be on-line
- Revoke key if
 - 1. nodes behave suspiciously
 - observe & tell others
 - send accusation message am
 - \Box δ accusations for revoking key
 - 2. own key is compromised
 - tell others
 - send harakiri message hm

Neighborhood Watch

- \square All nodes observe their 1-hop neighborhood N_i
 - ♦ each node ID_i maintains accusation matrix AMⁱ containing accusation values aⁱ_{j,i}

$$AM^i = \begin{pmatrix} ID_1 & (t_1^i, v_1^i) & a_{1,i}^i \\ \vdots & \vdots & \vdots \\ ID_{N_i} & (t_{N_i}^i, v_{N_i}^i) & a_{N_i,i}^i \end{pmatrix} \textit{N}_i\text{: number of 1-hop neighbors}$$

- $\Box a_{j,l}^i = 0$, ID_i marks ID_j as trustworthy
- $\Box a_{j,l}^i = 1$, ID_i marks ID_j as malicious, only reset if a new valid key Q_i ' is received
- □ update AMⁱ every time malicious behavior is observed

Propagation

- □Accusation messages *am*
 - ♦ after AM^i or KRL^i update, ID_i propagates update am_i $am_{i,j} = (f_{K_{i,j}}(ID_i, am_i), ID_i, am_i))$ to all $ID_j \in N_i$
- ☐ Harakiri messages *hm*
 - upon noticing that private key d_i is compromised, ID_i broadcasts $hm_i = (ID_i, d_i, Q_i, t_i, v_i, "revoke", hopcount)$
- Messages send to 1-hop neighborhood
 - verify authenticity and forward
 - ♦ repeated *m* times

Accusation Scheme

□ Every node *ID_i* generates key revocation list *KRLⁱ* from

- ♠ M_i number of nodes in m-hop neighborhood
- $\blacklozenge Q_i^i$ considered revoked if revocation value $R_i^i = 1$

$$R_{j}^{i} = 1 \text{ if } t_{j}^{i} \text{ expired } \vee a_{j,i}^{i} = 1 \vee a_{j,j}^{i} = 1 \vee \sum_{k=1}^{M_{i}} a_{j,k}^{i} > \delta$$

lackloss is the threshold for revoking a key

Update Key Revocation List

 \square *ID*_i repeats for all received accusation messages ami

- \square After processing all received am_i
 - ♦ ID_i checks the number d_k of collected columns k
 - \blacklozenge ϵ is threshold for updating columns of nodes that are 2 to m hops away

 \square *ID*_i updates column k in KRL^{i}

$$a_{l,k}^{i} = \begin{cases} 1 & \text{if } \sum_{j=1}^{d_{k}} a_{l,k}^{j} > \frac{d_{k}}{2} \\ 0 & \text{if } \sum_{j=1}^{d_{k}} a_{l,k}^{j} < \frac{d_{k}}{2} \\ a_{l,k}^{i} & \text{otherwise} \end{cases}$$

Toy Example: $(\delta, \varepsilon, m) = (3, 2, 2)$

- $\square ID_1$ receives am_2 , am_3 , am_4
 - ♦ discard am_2 , save am_3 and am_4
 - ♦ copy column 3 from am₃ and column 4 from am₄ into KRL¹
 - ♦ collect vectors *k*
 - □ k = (3,3,3,4,5,6) from am_3 $D_5 = 2$, update k = (3,3,3,4,5,6) from am_4 column 5

Before update

$$KRL^{1} = \begin{pmatrix} ID_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ ID_{2} & 1 & 1 & 0 & 0 & 0 & 0 \\ ID_{3} & 0 & 0 & 0 & 0 & 0 & 0 \\ ID_{4} & 0 & 0 & 0 & 0 & 0 & 0 \\ ID_{5} & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

After update

$$KRL^{1} = \begin{pmatrix} ID_{1} & 0 & 0 & 0 & 0 & 0 \\ ID_{2} & 1 & 1 & 0 & 1 & 1 & - \\ ID_{3} & 0 & 0 & 0 & 0 & 0 & 0 \\ ID_{4} & 0 & 0 & 0 & 0 & 0 & 1 \\ ID_{5} & 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Recap Revocation Scheme

Security Analysis I

□Outsider attacks

- routing attacks prevented by using secure routing protocols
- eavesdropping and impersonation prevented by using secure AKE protocols
- attacks on revocation and renewal scheme prevented by using MACs for message authentication

Security Analysis II

☐Insider attacks

- malicious insider can be identified and their keys be revoked by our neighborhood scheme
- ♦ false revocations prevented for up to ∠ -1 false accusations
- lacktriangle more than $\frac{\varepsilon}{2}$ undetected one-hop neighbors have to collude for a false revocation of a single node that is 2 to m hops away
- ♦ recognized key compromises are securely & quickly propagated throughout an m-hop network

Conclusions

We designed a self-organized key revocation scheme for ID-based schemes employed in MANETs

- proposed revocation scheme enables user to instantly verify whether a key is revoked and revoke their own keys
- \blacklozenge revocation scalable in security & performance in terms of security parameters (\boxtimes , ε , m)
- ♦ efficient due to use of pre-shared symmetric keys with MACs and propagation to *m*-hop neighborhood
- our ID-based key format allows key renewal

Future Work

- ☐ Many extensions are possible
 - ♦ adopt solution to PKI schemes
 - ♦ maintain accusation values for all network nodes, i.e. m = N (remove Assumption 5)
 - ♦ include weighted accusation values (0..1) [Crépeau et al.`03] (Note. In this case, the accusation values do not represent the status of the keys.)
 - ♦ include sleeping mode for nodes
- ☐ Further performance & security analysis
 - ♦ sign & broadcast vs. MAC & m-hop
 - ♦ false positive & false negative accusations

References

- ♦ K. Hoeper and G. Gong, "Key Revocation for Identity-Based Schemes in Mobile Ad Hoc Networks", Ad-Hoc, Mobile, and Wireless Networks (ADHOC-NOW 2006), August, 2006, Ottawa. Lecture Notes in Computer Science, vol. 4104, pp. 224-237, 2006.
- ♦ K. Hoeper and G. Gong, Bootstrapping Security in Mobile Ad Hoc Networks Using Identity-Based Schemes with Key Revocation, Technical Report, University of Waterloo, CACR 2006-04, 2006.