Homework 2, Reti Di Calcolatori

Matteo Galiazzo

May 14, 2024

Contents

1	Come eseguire il codice	1
2	Parametri dell'esperimento	1
3	Stima del numero di link attraversati	1
4	Andamento dell'RTT in funzione della dimensione del pacchetto 4.1 RTT minimo	2 2 2 3 3
5	Stima di R e $R_{bottleneck}$	3
6	Discussione dei risultati ottenuti	3

1 Come eseguire il codice

Il codice è stato sviluppato su macos 14.4.1 e Ubuntu 23.10.

Per eseguire il codice bisogna avere python3 (il codice è stato testato su Python 3.12.3 e Python 3.11.6) e le librerie:

- ping3
- numpy
- pandas
- matplotlib

Per eseguire la parte di codice che esegue i ping con ping3 potrebbe essere necessario avere i privilegi da amministratore (sudo)

Per eseguire il codice basta digitare il seguente comando dalla directory principale del progetto:

nvthon3 main.pv

2 Parametri dell'esperimento

Per l'esperimento sono stati scelti i seguenti parametri:

- server: paris.testdebit.info
- \bullet numero di istanze k: 100
- dimensione dei pacchetti: la dimensione dei pacchetti è stata generata usando la funzione np.linspace(10, 1472, 75, dtype = int), e contiene quindi 75 dimensioni diverse a intervalli regolari che variano tra 10 e 1472.

3 Stima del numero di link attraversati

Sono stati attraversati 16 link usando il comando traceroute, e lo stesso numero è stato stimato usando il comando ping e variando il suo TTL.

4 Andamento dell'RTT in funzione della dimensione del pacchetto

Figure 1: RTT in funzione della dimensione del pacchetto

4.1 RTT minimo

Figure 2: RTT minimo in funzione della dimensione del pacchetto

Il fit è la retta $y = 1.16 * 10^{-3}x + 2.48$

4.2 RTT medio

Figure 3: RTT medio in funzione della dimensione del pacchetto

4.3 RTT massimo

Figure 4: RTT massimo in funzione della dimensione del pacchetto

4.4 Deviazione standard del RTT

Figure 5: Deviazione standard del RTT in funzione della dimensione del pacchetto

- 5 Stima di R e $R_{bottleneck}$
- 6 Discussione dei risultati ottenuti