

Instrumentação Industrial Aula 1/1: Introdução à Instrumentação

Josué Morais, Dr. Univers. Federal de Uberlândia – UFU josue@ufu.br

Unidades Base do Sistema Internacional

Tabela 1 – SI Unidades de base			
Grandeza	Unidade	Símbolo	
Comprimento (Geometria)	metro	m	
Massa (Dinâmica)	quilograma	kg	
Tempo (Cinemática)	segundo	S	
Corrente elétrica (Eletrodinâmica)	ampère	A	
Temperatura (Termodinâmica)	kelvin	K	
Quantidade de matéria (Química-Física Nuclear) Nuclear)	mol	mol	
Intensidade luminosa (Fotometria)	candela	cd	

Unidades Base do Sistema Internacional

IV - unidades de base e/ou unidades derivadas, com nomes genéricos.

Tabela 2 SI – Algumas unidades derivadas

Grandeza	Nome	Símbolo	Derivação
Ângulo plano	radiano	rad	1 rad = 1 m/m = 1
Ângulo sólido	esterradiano	sr	1 sr = 1 m ² /m ² = 1
Freqüência	hertz	Hz	1 Hz = 1 s ⁻¹
Força	newton	N	1 N = 1 kg m/s ²
Pressão, tensão mecânica	pascal	Pa	1 Pa = 1N/m ²
Energia, trabalho, quantidade de energia térmica (calor)	joule	J	1 J = N.m

Esterradiano (símbolo: sr),

$$1 \text{ sr} = m^2 \cdot m^{-2} = 1$$

Unidades Base do Sistema Internacional

	watt	W	1 W = 1 J/s
Potência			
Carga elétrica, quantidade de eletricidade	coulomb	С	1 C = 1 A.s
Potencial elétrico, força eletromotriz	volt	v	1 V = 1 W/A
Capacitância elétrica	farad	F	1 F = 1 A.s/V
Resistência elétrica	ohm	Ω	1 Ω = 1 V/A
Condutância elétrica	siemens	S	1 S = 1 A/V
Fluxo magnético	weber	Wb	1 Wb = 1 V.s
Densidade de fluxo magnético indução magnética	tesla	Т	1 T = 1 V.s/m ²
Indutância	henry	Н	1 H = 1 V.s/A
Fluxo luminoso	lumen	lm	1 lm = 1 cd.sr
Iluminância	lux	lx	1 lx = 1 1m/m ²

Unidades Não-SI para uso com o SI: Unidades para uso geral

Volume	Litro	L	1 L=0,001 m ³ =10 ⁶ mm ³	Veja Resolução n ⁰ 6 da 16 ^a CGPM/1979.
Massa	tonelada métrica	t	1 t= 1 Mg = 1000 kg	
Tempo	minuto hora dia (solar médio) ano (calendário)	min h d a	1 min = 60 s	- o dia - o mês lunar - o ano solar constituem a tripla divisão natural do tempo, devido aos movimentos da Terra.
Intervalo de Temperatura	grau Celsius	°C	1°C = 1 K	A temperatura Celsius 0° corresponde a 273,15 K exatamente $(t_{o}C=T_{K}-273,15)(2)$
Ãngulo plano (1)	Grau (de arco) minuto (de arco) segundo (de arco)	o ,,	1°=0,017 453 rad 1°=17,453 mrad 1'=(1/60)°	$1^{\circ} = (\pi / 180) \text{ rad}$ $1' = (\pi / 10 800) \text{rad}$ $1'' = (\pi / 648 000) \text{rad}$
Velocidade	quilômetro por hora	km/h	1 km/h=0,278 m/s	A veloc. do ar pode ser indicada também em número MACH

Unidades Não-SI para uso com o SI: Apenas p/ aplicações limitadas

Área	hectare	ha	1 ha = 10 000 m ²	apenas para uso em medições de terra
Energia	quilowatt hora	kWh	1 kWh=3,6 MJ	apenas para o uso em medições de consumo de energia elétrica.
Velocidade de rotação Velocidade angular	rotação por minuto	rpm	1 rpm =(1/60)r/s = 2π /60 rad/s = π /30 rad/s	apenas para uso em medição de velocidade rotacional em equipamentos de baixa rotação

GRAFIA DOS NOMES DE UNIDADES

■Extenso → Letra minúscula → mesmo quando tem origem nomes pessoas. Exemplos volt, kelvin newton.

GRAFIA DOS NOMES DE UNIDADES

A única exceção é a unidade de temperatura grau Celsius.

GRAFIA DOS NOMES DE UNIDADES

Válidos: metros por segundo e m/s.

Inválidos: m por segundo ou metros por s.

Plural dos nomes de unidades

OS PREFIXOS NUNCA VÃO PARA O PLURAL.

milisnewtons;

Plural dos nomes de unidades: Quando recebe o "S"

- Ampères, candelas, newtons, etc;
- metros quadrados, milhas marítimas e milímetros cúbicos;
- ampères-horas, newtons-metros,pascals-segundos e watts-horas;

Plural dos nomes de unidades: Quando não recebe o "S"

siemens, lux e hertz;

-quilômetros por hora, volts por metro, etc.

Símbolos invariantes: Sempre escritos da mesma forma:

Ex: cem metros é 100m. Estão erradas as formas 100 mts e 100 ms.

Símbolo não é abreviatura → O símbolo não deve ser seguido de ponto a menos que esteja no final de um período.

Não é permitido acrescentar quaisquer sinais, letras ou índices para indicar particularidades. Por exemplo, o símbolo do watt é sempre W, quais quer que seja o tipo de potência a que se refira: mecânica, elétrica, térmica ou acústica.

Símbolos de uma mesma unidade podem coexistir num símbolo composto por divisão. Por exemplo, mm/m, kWh/h;

Símbolos são escritos no mesmo alinhamento do número a que se referem, e não como expoente ou índice → São exceções: os símbolos das unidades de ângulo plano os expoentes dos símbolos e o sinal do símbolo grau Celsius.

Símbolos de unidades compostas por multiplicação podem ser formados pela justaposição dos símbolos componentes, desde que não causem ambiguidades. São exemplos: VA e kWh. Se houver ambiguidades, um ponto deve ser colocado entre os símbolos na base da linha ou a meia altura. Exemplos: N.m ou N·m

Símbolos compostos que contêm divisão em que mais de um símbolo aparece no denominador podem ser formados por qualquer uma das três maneiras exemplificadas a seguir:

$$W/(sr \cdot m^{2})$$

$$W \cdot sr^{-1} \cdot m^{-2}$$

$$\frac{W}{sr \cdot m^{2}}$$

Grafia dos prefixos

Tabela 4 – Prefixos	SI	
Fator pelo qual a Unidade SI é		
multiplicada	Nome	Símbolo
*10 ²⁴	yotta	Y
*10 ²¹	zetta	Z
10 ¹⁸	exa	E
10 ¹⁵	peta	Р
1012	tera	Т
109	giga	G
10 ⁶	mega	М
10 ³	quilo	k
10 ²	hecto	h

10	deca	da
10-1	deci	d
10-2	centi	С
10 ⁻³	mili	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10 ⁻¹²	pico	р
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	а
*10 ⁻²¹	zepto	Z
*10 ⁻²⁴	yocto	У

^{* 19}ª CGPM, Resolução 4

Grafia dos prefixos

- Prefixos nunca são justapostos no mesmo símbolo. Está correta a grafia GWh, mas não é aceita nenhuma das formas kMWh, kkkWh ou Mk Wh.
- Prefixos podem coexistir num símbolo composto por multiplicação ou divisão. Exemplos válidos: kN.cm, kW.mA, KV/mm, ml/km, kV/ms, mW/cm2.

Grafia dos prefixos

- De acordo com o Sistema Internacional, os números que antecedem os símbolos das unidades devem ser escritos seguindo algumas regras:
- 1. A virgula deve ser usada como separador decimal. Quando o valor absoluto de um número é menor que um, coloca-se o zero a esquerda da vírgula;

2.Os algarismos que representam a parte inteira ou decimal de um número podem ser agrupados em conjuntos de três algarismos a contar da virgula para a esquerda ou para direita. NÃO PODEM SER USADOS PONTOS PARA SEPARAR OS GRUPOS DE TRÊS ALGARISMOS; APENAS PEQUENOS ESPAÇOS SÃO PERMITIDOS.

3.É também admitido que os algarismos da parte inteira e os da parte decimal sejam escritos seguidamente, isto é, sem separação em grupos. Estão corretas as grafias:25 482,2 km e 0,04216254 s. são também aceitas as grafias: 25482,2 km. Não são aceitas: 25.482,2 km e 0,042.162.54 s.

Espaçamento entre número e símbolo

- O espaçamento entre um número e o símbolo da unidade correspondente é opcional. Valem as seguintes observações:
 - Normalmente o espaçamento de uma ou meia letra é dado entre o número e o símbolo da unidade;
 - 2. O espaçamento deve ser evitado se há possibilidade de fraude.

Pronúncia dos múltiplos e submúltiplos decimais das unidades

- Algumas regras regem a pronúncia dos nomes de múltiplos e submúltiplos das unidades:
 - Os nomes dos múltiplos e submúltiplos devem ser pronunciados por extenso. Por exemplo, 20 ml deve ser pronunciado como vinte mililitros. Está errada a pronúncia vinte eme ele.

Pronúncia dos múltiplos e submúltiplos decimais das unidades

2. A sílaba tônica da unidade (assinalada em negrito) deve permanecer como sílaba tônica nos seus múltiplos e submúltiplos. Exemplos: segundo e milissegundo, pascal e megapascal, newton e quilonewton. Existem apenas quatro exceções, consagradas pelo uso, em que o acento tônico é deslocado para o prefixo: quilômetro, decímetro, centímetro e milímetro. Os demais múltiplos e submúltiplos do metro devem ser pronunciados segundo a regra descrita: nanometro, micrometro, megametro, etc.

Alguns enganos

Е	rr	a	. 1	O
上	rr		a	0

Km, Kg

μ

a grama

2 hs

15 seg

80 KM/H

250°K

um Newton

Correto

km, kg

 μ m

o grama

2 h

15 s

80 km/h

250 K

um newton

Outros enganos

EXERCICIO:

- a) 210 K= duzentos e dez graus Kelvin
- b) 10°C = dez graus Centígrados
- c) 5.0 kg = cinco quilos
- d) 2.0 N = dois Newton
- e) 220 Vts = duzentos e vinte volts
- f) 34,7 m/s = trinta e quatro vírgula sete metros por segundos.
- g) 180 mm/m
- h) 12,5 m/s/h
- i) 45,7 mm/km
- j) 12.312,4 m
- k) 0,000 0124 3 s
- I) 35 nm = trinta e cinco nanômetros
- m) 1615,4g