

Формат данных ORC (Optimized Row Columnar)

Драль Алексей, study@bigdatateam.org CEO at BigData Team, https://bigdatateam.org https://www.facebook.com/bigdatateam

Q&A

Как расшифровывается ORC?

ORC и Parquet

ORC = Optimized Row Columnar (File Format)

ORC и Parquet

ORC = Optimized Row Columnar (File Format)

 Parquet - основан на статье Google Dremel (для вложенных структур данных, nested structures)

twitter> + cloudera

- ± 1. Быстрая загрузка данных в хранилище
- ✓ 2. Высокая скорость обработки запросов
- ✓ 3. Эффективное использование жесткого диска
- Адаптивность к динамическому изменению паттернов аналитических запросов
- ✓ ORC = Optimized Row Columnar (File Format)

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

Статистики в ORC

```
message IntegerStatistics {
    optional sint64 minimum = 1;
    optional sint64 maximum = 2;
    optional sint64 sum = 3;
}
```


Статистики в ORC

```
message ColumnStatistics {
  optional uint64 numberOfValues = 1;
  optional IntegerStatistics intStatistics = 2;
  optional DoubleStatistics doubleStatistics = 3;
  ...
  optional bool hasNull = 10;
}
```


□ Bloom Filter Calculator □	p vs n
Bloom filters are space-efficient probablistic data structures used to test whether an element is a member of a set.	
They're surprisingly simple: take an array of m bits, and for up to n different elements, either test or set k bits using positions chosen using hash functions. If all bits are set, the element probably already exists, with a false positive rate of p ; if any of the bits are not set, the element certainly does not exist.	0.75
Bloom filters find a wide range of uses, including tracking which articles you've read, speeding up Bitcoin clients, detecting malicious web sites, and improving the performance of caches.	۵ 0.5
This page will help you choose an optimal size for your filter, or explore how the different parameters interact.	0.25
Number of items in the filter (optionally with SI units: k, M, G, T, P, E, Z, Y) 4000	Sout Set 12th eath line Pet let list let list let let let let let let let let let le
Probability of false positives, fraction between 0 and 1 or a number indicating 1-in-p (1.0E-7	p vs m
m Number of bits in the filter (or a size with KB, KiB, MB, Mb, GiB, etc)	1
k Number of hash functions Submit	0.001
n = 4.000 p = 0.0000001 (1 in 9.994.297) m = 134.191 (16.38KiB) k = 23	0.000001
	Lawer Territoria tong tang tang territoria t
<pre>n = ceil[n / (-k / log(1 - exp(log(p) / k)))) p = pow(1 - exp(-k / (m / n)), k) m - ceil(in * log(p)) / log(1 / pow(2, log(2)))); k = round((m / n) * log(2));</pre>	p vs k
	0.01
	0.0001
	0.00001
https://hur.st/bloomfilter/	le-8 - 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 k

NoSQL поверх больших данных

Архитектура БД Cassandra

Cassandra - AP система в теореме CAP. На практике это означает:

- высокая доступность данных
- нет транзакций (не совсем)
- можно строить гео-кластера
- слабая согласованность (eventual)
- линейная масштабируемость
- высокая пропускная способность (особенно на запись)

Cassandra имеет симметричную архитектуру. Каждый узел отвечает за хранение данных, обработку запросов и состояние кластера.

Расположение данных определяется значением хеш функции от Partition key.

Высокая доступность данных обеспечивается за счет репликации.

$$\begin{aligned} & token(n_1) = t_1 \\ & token(n_2) = t_2 \\ & token(n_3) = t_3 \end{aligned}$$

range(
$$t_1$$
, t_2] \rightarrow { n_2 , n_3 , n_4 }
range(t_2 , t_3] \rightarrow { n_3 , n_4 , n_5 }
range(t_3 , t_4] \rightarrow { n_4 , n_5 , n_6 }

Андрей Титов BIGDATA INSTRUCTOR

ORC File Footer

```
Stripe
     Index Data
MΒ
      Row Data
250
    Stripe Footer
                            enum CompressionKind {
Stripe
     Index Data
                                 NONE = 0;
MΒ
      Row Data
                                 ZLIB = 1;
250
                                 SNAPPY = 2;
    Stripe Footer
                                 LZ0 = 3;
Stripe
     Index Data
                                 LZ4 = 4;
                                 ZSTD = 5;
MΒ
      Row Data
250
    Stripe Footer
     File Footer
     Postscript
```

ORC v.1 спецификация: https://orc.apache.org/specification/ORCv1/

Параметры ORC

Ключ	Значение по умолчанию	Комментарии
orc.compress	ZLIB	верхнеуровневый кодек {NONE;ZLIB;SNAPPY}
orc.compress.size	262,144	число байт (чанк) для сжатия кодеком
orc.stripe.size	67,108,864	число байт в каждом stripe

Параметры ORC

Ключ	Значение по умолчанию	Комментарии
orc.compress	ZLIB	верхнеуровневый кодек {NONE;ZLIB;SNAPPY}
orc.compress.size	262,144	число байт (чанк) для сжатия кодеком
orc.stripe.size	67,108,864	число байт в каждом stripe

```
CREATE TABLE my_orc_table (
    ...
)
STORED AS orc
    TBLPROPERTIES ("orc.compress"="NONE")
...;
```