Text Clustering

Ayoub Bagheri

Introduction to Text Mining with R

Lecture's plan

- 1. What is text clustering?
- 2. What are the applications?
- 3. How to cluster text data?

Unsupervised learning

Clustering versus classification

CLASSIFICATION

- Labeled data points
- Want a "rule" that assigns labels to new points
- Supervised learning

CLUSTERING

- Data is not labeled
- Group points that are "close" to each other
- Identify structure or patterns in data
- Unsupervised learning

Clustering

- Clustering: the process of grouping a set of objects into clusters of similar objects
- Discover "natural structure" of data
 - What is the criterion?
 - How to identify them?
 - How to evaluate the results?

Clustering

- Basic criteria
 - high intra-cluster similarity
 - low inter-cluster similarity
- No (little) supervision signal about the underlying clustering structure
- Need similarity/distance as guidance to form clusters

Applications of text clustering

- Organize document collections
 - Automatically identify hierarchical/topical relation among documents

Applications of text clustering

- Grouping search results
 - Organize documents by topics
 - Facilitate user browsing

http://search.carrot2.org/stable/search

Applications of text clustering

- Topic modeling
 - Grouping words into topics

Clustering algorithms

Clustering algorithms

- Partitional clustering
- Hierarchical clustering
- Topic modeling

Hard versus soft clustering

- Hard clustering: Each document belongs to exactly one cluster
 - More common and easier to do
- Soft clustering: A document can belong to more than one cluster.

Partitional clustering

Partitional clustering algorithms

- Partitional clustering method: Construct a partition of n documents into a set of K clusters
- Given: a set of documents and the number *K*
- Find: a partition of *K* clusters that optimizes the chosen partitioning criterion
 - Globally optimal

- Intractable for many objective functions
- Ergo, exhaustively enumerate all partitions
- Effective heuristic methods: K-means and K-medoids algorithms

Partitional clustering algorithms

- Typical partitional clustering algorithms
 - k-means clustering
 - Partition data by its closest mean

K-Means algorithm

- Assumes documents are real-valued vectors.
- Clusters based on centroids of points in a cluster, *c*:

$$\vec{\mu}(c) = \frac{1}{|c|} \sum_{\vec{a} \in c} \vec{x}$$

• Reassignment of instances to clusters is based on distance to the current cluster centroids.

K-Means algorithm

- Select K random docs $\{s_1, s_2, ... s_K\}$ as seeds.
- Until clustering converges (or other stopping criterion):
 - For each doc d_i :
 - Assign d_i to the cluster c_i such that $dist(x_i, s_i)$ is minimal.
 - (Next, update the seeds to the centroid of each cluster)
 - For each cluster cj
 - $s_j = \mu(c_j)$

K-Means example (K=2)

Hierarchical Clustering

Dendrogram: Hierarchical clustering

- Build a tree-based hierarchical taxonomy (dendrogram) from a set of documents.
- Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.

Clustering algorithms

- Typical hierarchical clustering algorithms
 - Bottom-up agglomerative clustering
 - Start with individual objects as separated clusters

• Repeatedly merge closest pair of clusters

Clustering algorithms

- Typical hierarchical clustering algorithms
 - Top-down divisive clustering
 - Start with all data as one cluster
 - Repeatedly splitting the remaining clusters into two

Hierarchical Agglomerative Clustering (HAC)

- Starts with each doc in a separate cluster
 - then repeatedly joins the closest pair of clusters, until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

Closest pair of clusters

- Many variants to defining closest pair of clusters (linkage methods):
 - Single-link
 - Similarity of the most cosine-similar
 - Complete-link
 - Similarity of the "furthest" points, the least cosine-similar
 - Centroid
 - Clusters whose centroids (centers of gravity) are the most cosine-similar
 - Average-link
 - Average cosine between pairs of elements
 - Ward's linkage
 - Ward's minimum variance method, much in common with analysis of variance (ANOVA)
 - The distance between two clusters is computed as the increase in the "error sum of squares" (ESS) after fusing two clusters into a single cluster.

Topic Modeling

Topic models

- Three concepts: words, topics, and documents
- Documents are a collection of words and have a probability distribution over topics
- Topics have a probability distribution over words
- Model:
 - Topics made up of words used to generate documents

Topic models | Reality: Documents observed, infer topics

LDA graphical model

Probabilistic modeling

- 1. Treat data as observations that arise from a generative probabilistic process that includes hidden variables: For documents, the hidden variables reflect the thematic structure of the collection.
- 2. Infer the hidden structure using posterior inference: What are the topics that describe this collection?
- 3. Situate new data into the estimated model: How does this query or new document fit into the estimated topic structure?

LDA: Identifying structure in text

Cluster Validation

Desirable properties of clustering algorithms

- Scalability
 - Both in time and space
- Ability to deal with various types of data
 - No/less assumption about input data
 - Minimal requirement about domain knowledge
- Interpretability and usability

What is a good clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the intra-class (that is, intra-cluster) similarity is high
 - the inter-class similarity is low
 - The measured quality of a clustering depends on both the document representation and the similarity measure used

Cluster validation

- Criteria to determine whether the clusters are meaningful
 - Internal validation
 - Stability and coherence
 - External validation
 - Match with known categories

Internal validation

- Coherence
 - Inter-cluster similarity v.s. intra-cluster similarity
 - Davies–Bouldin index
 - $DB = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} (\frac{\sigma_i + \sigma_j}{d(c_i, c_j)}) \leftarrow \text{Evaluate every pair of clusters}$
 - where k is total number of clusters, σ_i is average distance of all elements in cluster i from the cluster center, $d(c_i, c_j)$ is the distance between cluster centroid c_i and c_j .

We prefer smaller DB-index!

External criteria for clustering quality

- Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data
- Assesses a clustering with respect to ground truth ... requires labeled data
- Assume documents with C gold standard classes, while our clustering algorithms produce K clusters, $\omega_1, \omega_2, ..., \omega_K$ with n_i members.

Summary

Summary

- Text clustering
- In clustering, clusters are inferred from the data without human input (unsupervised learning)
- Many ways of influencing the outcome of clustering: number of clusters, similarity measure, representation of documents
- Evaluation

Practical 5