2008-2009 学年第二学期《高等数学》期末试卷

- **一、填空题**(每小题 3 分, 共 36 分)
- 1. 已知 $\overrightarrow{OA} = \vec{i} + 3\vec{k}$, $\overrightarrow{OB} = \vec{j} + 3\vec{k}$,则 Δ AOB 的面积为_____。
- 2. 点 P(1,2,1) 到平面 x + 2y + 2z 10 = 0 的距离为______。
- 3. xOy 坐标面上曲线 $\frac{x^2}{4} \frac{y^2}{9} = 1$ 绕 y 轴一周的旋转面名称是______。
- 4. $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{2 \sqrt{xy + 4}}{xy} = \underline{\qquad}_{\circ}$
- 5. 函数 $z = \ln(1 + x^2 + y^2)$ 在点 (1,2) 的全微分为_____。

- 8. 设 Σ 为 $x^2 + y^2 + z^2 = 1$ 在第一卦限的部分,则 $\iint_{\Sigma} (x^2 + y^2 + z^2) dS =$ _______。
- 9. 级数 $\sum_{n=1}^{\infty} \frac{\sqrt{2n+1}}{n^k}$ 收敛的充要条件是 k 满足不等式_______。
- 10. 设 f(x) 以 2π 为周期,在 $(-\pi,\pi]$ 上的表达式为 $f(x) = \begin{cases} -1, & -\pi < x \le 0 \\ 1+x^2, & 0 < x \le \pi \end{cases}$, S(x) 为 f(x) 的 傅立叶级数的和函数,则 $S(2009\pi) =$ _______。
- 11. 设微分方程为 $y' = xy^2 x$,则其通解为_____。
- 12. 设 $y = C_1 e^{-x} + C_2 e^{2x}$ (C_1, C_2 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程是_____。
- 二、计算题(每小题6分,共24分)
- 1. 一平面通过原点和点M(0,1,-1),且与平面4x-y+2z=8垂直,求此平面的方程。

2. 设
$$g$$
 具二阶导数, f 具二阶偏导, $z = g(x+y) + f(xy, \frac{x}{y})$,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$ 。

3.
$$\int_L (e^x \sin y - 8y) dx + (e^x \cos y - 8) dy$$
, L 为上半圆周 $x^2 + y^2 = ax$ 从 $(0,0)$ 到 $(a,0)$ 的一段弧。

4. 计算
$$\iint_{\Omega} e^{x+y+z} dv$$
, $\Omega = \{(x,y,z) \mid 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$

三、 $(10 \, \text{分})$ 欲围一个面积为 $60 \, \text{m}^2$ 的矩形场地,正面所用材料每米造价 $10 \, \text{元}$,其余三面每米造价 $5 \, \text{元}$,求场地的长、宽各为多少米时,所用材料费最少?

四、 $(10 \, \, \, \, \, \, \, \,)$ 设 Σ 是曲面 $z=2-\sqrt{x^2+y^2}$ $(0 \le z \le 2)$ 的上侧,计算曲面积分 $I=\iint\limits_{\Sigma} (y^2+xz)\,dydz+(z^2+y)\,dzdx+(x^2-z)\,dxdy\;.$

五、 $(10 \, \text{分})$ 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛区间与和函数,并计算 $\sum_{n=1}^{\infty} \frac{2^n}{n \, 3^{2n}}$ 。

六、 $(10\, eta)$ 已知曲线积分 $\int_L \left[4f(x)y\right]dx + \left[f'(x) - \frac{e^{2x}}{2}\right]dy$ 与路径无关,其中 f(x) 具有二阶连续导数,且 f(0)=1, f'(0)=2, 求 f(x)。