TENSÃO INTERFACIAL

Prof. Harley P. Martins Filho

• Forças em interfaces

Tensão interfacial entre fases α e β : $\gamma_{\alpha\beta} = \frac{dw}{dA_{\alpha\beta}}$

Trabalho de aumento ou destruição de interfaces: $dw = \gamma_{\alpha\beta} dA_{\alpha\beta}$

> Trabalho de adesão

Trabalho para separar fases α e β , por unidade de área:

$$\tau_a = \gamma_\alpha + \gamma_\beta - \gamma_{\alpha\beta} \eqno (I)$$

> Trabalho de coesão

Trabalho para separar uma coluna de um líquido com seção reta de $1\ m^2$ em duas:

$$\tau_c = 2\gamma$$
 (II)

• Condição de solubilização de dois líquidos

Líquidos α e β são insolúveis quando as atrações entre as moléculas α e β são mais fracas que as atrações entre uma molécula α e outra ou entre uma molécula β e outra (ou mais fraca que ambas), mas **sempre** há atração entre moléculas diferentes, por mais diferentes que sejam.

Exemplo: Dados para água e benzeno puros (mN m⁻¹)

$\gamma(H_2O)$	72,75
γ(benzeno)	28,9
$\gamma(H_2O/benz.)$	35,0

$$\tau_a = 72,75 + 28,9 - 35,0 = 66,65 \text{ mN m}^{-1}$$

→ Há adesão mesmo entre um líquido muito polar e outro apolar. A solubilidade mútua é uma questão de competição entre atrações mais fortes e mais fracas.

 $\tau_a \rightarrow$ reflete as forças entre as moléculas α e β $\tau_c \rightarrow$ reflete as forças entre as moléculas do próprio líquido

Condições de solubilização: $\tau_a \ge \tau_c(\alpha)$ e $\tau_a \ge \tau_c(\beta)$

Somando as condições: $2\tau_a \ge \tau_c(\alpha) + \tau_c(\beta)$

$$\boldsymbol{\to} \boldsymbol{\tau}_a \geq \boldsymbol{\tau}_c(\alpha)/2 + \boldsymbol{\tau}_c(\beta)/2 = \boldsymbol{\gamma}_\alpha + \boldsymbol{\gamma}_\beta$$

Usando equação (I) para τ_a : $\gamma_\alpha + \gamma_\beta$ - $\gamma_{\alpha\beta} \geq \gamma_\alpha + \gamma_\beta$

$$\rightarrow \gamma_{\alpha\beta} \leq 0$$

Critério só é válido para solubilização completa em qualquer proporção. Verifica-se que quando a tensão interfacial é maior que zero mas tem valor baixo, ocorre miscibilidade parcial.

Exemplos: solubilidades e tensões interfaciais de líquidos com água

	Solubilidade (g L ⁻¹)	$\gamma_{\alpha\beta} (mN \; m^{-1})$
Dietil éter	69	10,7
Benzeno	0,8	35,0
N-hexano	0,013	51,0

Se a condição de solubilidade não é satisfeita, líquidos solubilizam-se parcialmente absorvendo calor do ambiente para romper forças de coesão do líquido mais coeso → entalpia de mistura geralmente positiva. Neste caso o fator que determina a espontaneidade da mistura parcial é o aumento de entropia resultante do processo.

• Espalhamento de um líquido sobre outro

Análise termodinâmica da variação de G no processo de espalhamento:

A T e P constantes, qualquer trabalho além do de expansão (trabalho extra) equivale à variação de G no processo:

$$dw_e = dG = \gamma dA$$
 (para cada interface)
 $dG = \gamma_\alpha dA_\alpha + \gamma_\beta dA_\beta + \gamma_{\alpha\beta} dA_{\alpha\beta}$ Mas $dA_\beta = dA_{\alpha\beta} = -dA_\alpha$
 $\rightarrow dG = (-\gamma_\alpha + \gamma_\beta + \gamma_{\alpha\beta}) dA_\beta$

Definição: coeficiente de espalhamento

$$\sigma_{\beta\alpha} = -\left(\frac{\partial G}{\partial A_{\beta}}\right)_{p,T}$$

Da equação acima para d $G
ightarrow \sigma_{\beta\alpha} = \gamma_{\alpha} - \gamma_{\beta} - \gamma_{\alpha\beta}$

ightarrow Se $\sigma_{\beta\alpha}$ é positivo, $(\partial G/\partial A_{\beta})<0
ightarrow G$ diminui com aumento de $A_{\beta}
ightarrow$ espalhamento é espontâneo

Exemplo: Dados para água e benzeno puros (mN m⁻¹)

$\gamma(H_2O)$	72,75
γ(benzeno)	28,9
$\gamma(H_2O/benz.)$	35,0

 $\rightarrow \sigma_{benz./\acute{a}gua}$ = 72,75 - 28,9 - 35,0 = 8,9 mN m $^{-1}$ \rightarrow espalhamento

Dados para H₂O e benzeno mutuamente saturados:

$\gamma(H_2O)$	62,4
γ(benzeno)	28,8
$\gamma(H_2O/benz.)$	35,0

$$ightarrow \sigma_{benz./\acute{a}gua} = 62,4-28,8-35,0 = -1,4 \text{ mN m}^{-1}$$

→ Uma gota de benzeno puro espalha-se sobre água pura, mas após a saturação mútua qualquer benzeno adicional contrai-se em uma lentilha

• Espalhamento de líquidos sobre sólidos

Variação de G com espalhamento infinitesimal da gota:

$$dG = \gamma_{1s} dA_{1s} + \gamma_{s} dA_{s} + \gamma_{1} dA_{1}$$

Relações entre áreas:

$$dA_s = -dA_{ls}$$
 e $dA_l = dA_{ls}cos\theta_c$

$$\rightarrow dG = (\gamma_{ls} - \gamma_{s} + \gamma_{l}\cos\theta_{c})dA_{ls}$$

Introduzindo o coeficiente de espalhamento:

$$\sigma_{ls} = \gamma_s - \gamma_{ls} - \gamma_1 \cos \theta_c$$

 \rightarrow líquido se espalha (θ_c diminui) até σ_{ls} chegar a zero

Equilíbrio: $0 = \gamma_s - \gamma_{ls} - \gamma_{l}\cos\theta_c$

$$ightharpoonup \cos \theta_c = \frac{\gamma_s - \gamma_{ls}}{\gamma_l}$$
 Equação de Young-Dupré

Se γ_{ls} é muito alta, $\gamma_s - \gamma_{ls}$ pode resultar negativo $\rightarrow \cos\theta_c$ negativo $\rightarrow \theta_c > 90^\circ \rightarrow$ líquido não molha superfície

Exemplo: chumbo líquido não molha o ferro porque γ_{ls} é alta. Mas γ_{ls} é abaixada com adição de estanho ou antimônio \rightarrow solda aderente ao ferro

Mas γ_s e γ_{ls} não são facilmente mensuráveis. Definindo o trabalho de adesão líquido-sólido:

$$\tau_a(ls) = \gamma_s + \gamma_l - \gamma_{ls} \qquad \rightarrow \qquad \gamma_s - \gamma_{ls} = \tau_a(ls) - \gamma_l$$

Substituindo na equação de Young-Dupré:

$$\tau_{a}(ls) - \gamma_{l} = \gamma_{l}cos\theta_{c}$$

$$\rightarrow \quad \tau_{a}(ls) = \gamma_{l}(1 + cos\theta_{c})$$

O trabalho de adesão é uma medida do grau de aderência, calculado nesta equação a partir de propriedades facilmente mensuráveis

 θ_c pequeno \rightarrow maior aderência γ_1 mais alto \rightarrow maior aderência

Exemplo: Dados para água, benzeno e superfície de grafite

	γ (mN m ⁻¹)	$\theta_{\rm c}$
H_2O	72,75	86°
benzeno	28,9	0

$$\tau_a(benz./grafite) = 28,9(1+1) = 57,8 \text{ mN m}^{-1}$$

$$\tau_a(H_2O/grafite) = 72{,}75(1+0{,}07) = 77{,}8~mN~m^{\text{-}1}$$

→ água adere mais em grafite

Dois líquidos apresentam adesão equivalente em uma certa superfície sólida, mas um deles tem ângulo de contato (θ_c) de 35° com a superfície enquanto o outro tem $\theta_c = 53$ °. Qual o líquido de tensão superficial mais alta e quanto a sua tensão é mais alta que a do outro (percentualmente)?