ANSWER KEY (AIPMT-2000)

Oues.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans	2	1	3	2	2	2	2	3	3	2	2	2	1	1	1	1	1	1	3	1
Ques.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	2	2	3	2	1	1	1	2	1	2	1	2	1	2	2	1	1	2	3	2
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	2	2	4	2	2	1	2	2	3	2	1	2	4	2	1	1	2	1	2	1
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	3	1	3	1	1	4	1	2	2	2	3	4	2	1	2	2	1	2	3	1
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans	1	2	1	2	1	1	3	3	3	1	1	1	1	1	1	1	4	2	2	1
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	2	1	3	2	1	3	4	4	1	1	2	3	1	1	1	4	2	3	3	1
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans	1	1	1	1	1	2	2	1	3	1	1	1	3	1	2	4	1	1	2	1
Ques.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans	2	4	1	3	2	1	3	1	1	2	2	2	1	1	1	1	3	1	2	3
Ques.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans	1	1	1	1	1	1	2	3	1	1	1	1	1	3	3	1	1	1	1	2
Ques.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Ans	1	1	3	3	1	2	1	2	1	1	2	2	2	2	1	1	2	3	2	1

HINTS & SOLUTIONS

$$F = \frac{\Delta p}{\Delta t} = \frac{mv\cos 30^{\circ} - (-mv\cos 30^{\circ})}{\Delta t}$$
$$= \frac{2mv\cos 30^{\circ}}{\Delta t} = \frac{2 \times 3 \times 10 \times \sqrt{3}}{0.2 \times 2} = 150\sqrt{3} \text{ N}$$

3. Velocity after 5 second $v = 100 - 10 \times 5$ v = 50 m/s. from conservation of momentum

$$1 \times 50 \,\hat{\mathbf{j}} = 0.4 \times 25 \,(-\,\hat{\mathbf{j}}\,) + 0.6 \,\hat{\mathbf{v}}$$

$$50 \,\hat{\mathbf{j}} + 10 \,\hat{\mathbf{j}} = 0.6 \,\hat{\mathbf{v}}$$

$$\vec{\mathbf{v}} = \frac{60 \,\hat{\mathbf{j}}}{0.6} = 100 \,\hat{\mathbf{j}} = 100 \,\text{m/s} \,\hat{\mathbf{j}}$$

4. It is balanced wheatstone bridge so equivalent resistance between A & B

energy stored (U) = $\frac{q^2}{2C}$

After connecting with another capacitor

$$V_{\text{Common}} = \frac{q_1 + q_2}{C_1 + C_2} = \frac{q + 0}{C + C} = \frac{q}{2C}$$

: Energy on each capacitor

$$=\frac{1}{2} \text{ CV}_{\text{Common}}^2 = \frac{1}{2} \left(\frac{q}{2C} \right)^2 = \frac{U}{4}$$
.

6.
$$R = \frac{2u^2 \sin \theta \cos \theta}{g}$$

Range of a projectile for angles of projection θ and $90 - \theta$ are same.

7. Tension in the string at the lowest position B is maximum.

10.
$$F = mg = 72N$$

$$g' = g \left(\frac{R_e}{R_e + h}\right)^2 = g \left(\frac{R_e}{R_e + R_e/2}\right)^2$$
$$= g \left[\frac{2R_e}{3R_e}\right]^2 = \frac{4}{9} g$$

$$F' = mg' = mg \times \frac{4}{9} = 72 \times \frac{4}{9} = 32N$$

13. Equivalent power of combination

$$P_{eq} = 2P_L + P_M$$

$$=2(\mu-1)\left(\frac{1}{R}\right)+0$$

The required focal length

$$f = -\frac{1}{P_{eq}} = -\frac{R}{2(\mu - 1)} = -\frac{10}{2(1.5 - 1)} = -10cm$$

$$\Rightarrow \frac{2}{f} = \gamma - 1 \Rightarrow f = \frac{2}{\gamma - 1}$$

19.

Electric field at $O = \frac{2K\lambda}{3} \sin(\alpha/2)$

$$= \frac{2\lambda}{4\pi \in_0 a} \sin \frac{\pi}{2} = \frac{\lambda}{2\pi \in_0 a}$$

$$t = \frac{d}{\sqrt{u^2 - v^2}}$$

$$\frac{1}{4} = \frac{1}{\sqrt{(5)^2 - v^2}}$$

$$\frac{1}{16} = \frac{1}{25 - v^2}$$

v = 3 km/hr.

21.
$$v = \frac{ds}{dt} = \frac{d}{dt} (3t^3 + 7t^2 + 14t + 8)$$

$$=9t^2+14t+14$$

$$a = \frac{dv}{dt} = 18t + 14$$

at,
$$t = 1 \text{ sec.}$$

$$a = 32 \text{ ms}^{-2}$$
.

23. Magnetic field due to
$$5A \rightarrow \frac{5\mu_0}{2\pi \times 2.5} = \frac{2\mu_0}{2\pi} \otimes$$

Magnetic field due to 2.5A
$$\rightarrow \frac{2.5\mu_0}{2\pi \times 2.5} = \frac{\mu_0}{2\pi}$$
 ①

Resultant Magnetic field =
$$\frac{2\mu_0}{2\pi} - \frac{\mu_0}{2\pi} = \frac{\mu_0}{2\pi} \otimes$$

$$\overrightarrow{V} \sin 30^{\circ}$$

$$r = \frac{mV_{\perp}}{aB}$$

$$r = \left(\frac{m}{q}\right) \left(\frac{3 \times 10^5 \times \sin 30^\circ}{0.3}\right)$$

$$r = \frac{3 \times 10^5}{10^8 \times 0.3 \times 2} = 0.5 \times 10^{-2} \text{ m} = 0.5 \text{ cm}$$

26.
$$\overset{\bullet}{\underset{s_1}{\bullet}} \overset{u}{\underset{O}{\bullet}} \overset{u}{\underset{s_2}{\bullet}}$$

For first source

$$n_1 = n \left(\frac{v - u}{v} \right) = \left(1 - \frac{u}{v} \right) n$$

for IInd source

$$n_2 = n \left(\frac{v+u}{v} \right) = \left(1 + \frac{u}{v} \right) n$$

Beat freq. =
$$|n_1 - n_2| = n + \frac{nu}{v} - n + \frac{nu}{v}$$

= $\frac{2nu}{v} = 2\frac{u}{\lambda} \left[\because v = n\lambda : \frac{1}{\lambda} = \frac{n}{v}\right]$

27.
$$\ell = \ell_1 + \ell_2 + \ell_3$$

$$\frac{\mathbf{k}}{\mathbf{n}} = \frac{\mathbf{k}}{\mathbf{n}_1} + \frac{\mathbf{k}}{\mathbf{n}_2} + \frac{\mathbf{k}}{\mathbf{n}_3}$$

$$\Rightarrow \frac{1}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$$

30.
$$\frac{W}{Q} = \frac{1}{6}$$

$$1 - \frac{T_L}{T_H} = \frac{1}{6}$$

$$\frac{T_{L}}{T_{H}} = n \frac{5}{6}$$

If sink temp. decrease by 62°C then

$$1 - \frac{T_L - 62}{T_H} = \frac{2}{6} \Rightarrow \frac{T_L - 62}{T_H} = \frac{2}{3}$$

$$2T_{\rm H} = 3T_{\rm L} - 186 \implies 2T_{\rm H} = 3 \times \frac{5}{6} T_{\rm H} - 186$$

$$2T_{H} - \frac{5}{2}T_{H} = -186 \implies \frac{5-4}{2}T_{H} = 186$$

$$T_H = 186 \times 2 = 372 \text{ K} = 99^{\circ}\text{C}$$

$$T_L = \frac{5}{6} \times 372 = 310 \text{ K} = 37^{\circ}\text{C}$$

Potential energy at extreme position = kinetic energy at mean position

$$mg\ell (1-\cos\theta) = \frac{1}{2} mv^2$$

$$v = \sqrt{2g\ell(1-\cos\theta)}$$

$$P = \overrightarrow{F} \cdot \overrightarrow{v}$$

= $(60 \hat{i} + 15 \hat{j} - 3 \hat{k}) \cdot (2 \hat{i} - 4 \hat{j} + 5 \hat{k})$

=(120-60-15)=45 watt

Longest side
$$\rightarrow I_{min}$$

Smallest side
$$\rightarrow I_{max}$$

Therefore
$$I_2 > I_1 > I_3$$

$$\mathbf{36.} \qquad \mathbf{f} = \frac{1}{2\pi} \sqrt{\frac{\mathbf{g}}{\ell}}$$

$$f \propto \frac{1}{\sqrt{\ell}}$$

$$\frac{f_A}{f_B} = \sqrt{\frac{\ell_B}{\ell_A}}$$

$$\Rightarrow \frac{2f_B}{f_B} = \sqrt{\frac{\ell_B}{\ell_A}}$$

$$\Rightarrow 4 = \frac{\ell_B}{\ell_A}$$

$$\Rightarrow \ell_{A} = \frac{\ell_{B}}{4}$$

39.
$$V = E + IR$$

$$= 12 + 60 \times 5 \times 10^{-2}$$

$$= 12 + 3$$

$$= 15 \text{ V}$$

40.
$$P = \frac{V^2}{R}, P \propto \frac{1}{R}$$

i.e.
$$R_{40} > R_{100}$$

42. The minimum height of mirror

$$=\frac{h}{2} = \frac{6}{2} = 3$$
 feet

44. V_{es} for earth is 11.2 km/sec.

$$v_{\rm es} = \sqrt{\frac{2GM_e}{R_e}} = 11.2 \text{ km/sec.}$$

$$v_{es}' = \sqrt{\frac{2GM_e \times 4}{R_e}} = \sqrt{\frac{2GM_e}{R_e}}$$

$$= 2 \times 11.2 = 22.4 \text{ km/sec}.$$

49. From one side, $\frac{t-x}{5} = 1.5$

From other side,
$$\frac{x}{2} = 1.5 \rightarrow x = 3$$

$$\therefore \frac{t-3}{5} = 1.5 \Rightarrow t = 7.5 + 3 = 10.5 \text{ cm}$$