

海思智能机顶盒3级安全方案 **使用指南**

文档版本 00B01

发布日期 2015-06-25

版权所有 © 深圳市海思半导体有限公司 2015。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形 式传播。

商标声明

(上) 、HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、 服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明 示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导, 本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: http://www.hisilicon.com/cn/

客户服务邮箱: support@hisilicon.com

前言

概述

本文档主要介绍海思3级安全方案的使用方法。

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明	
⚠ DANGER	表示有高度潜在危险,如果不能避免,会导致人员死亡或严重伤害。	
WARNING	表示有中度或低度潜在危险,如果不能避免,可能导致人员轻微或中等伤害。	
A CAUTION	表示有潜在风险,如果忽视这些文本,可能导致设备损坏数据丢失、设备性能降低或不可预知的结果。	
©=/L TIP	*=== \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
NOTE		

作者信息

章节号	章节名称	作者信息
全文	全文	W00269678

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

修订日期	版本	修订说明
2015-06-25	00B01	第一次临时发布。

目 录

前	言	i
1 1	概述	1
	1.1 安全方案 L3 介绍	
	1.2 安全方案 L3 分工	1
2 }	运营商使用指导	3
	2.1 生成 Key 的步骤	
	2.2 签名 fastboot 步骤	5
	2.2.1 环境准备	5
	2.2.1 操作流程	5
	2.3 签名 bootargs 分区	6
	2.3.1 环境准备	6
	2.3.2 操作流程	6
	2.4 签名 recovery 分区	8
	2.4.1 环境准备	8
	2.4.2 操作流程	8
	2.5 签名 kernel 分区	9
	2.5.1 环境准备	9
	2.5.2 操作流程	10
3 2	客户使用指导	13
	3.1 编译	13
	3.2 签名	13
	3.3 修改制作 update.zip	13
	3.4 USB 烧写	14
	3.4.1 USB 裸片烧写	14
	3.4.2 USB 非裸片烧写	14
	3.5 烧片器烧写	15
	3.6 HiTools 烧写	16

插图目录

图 2-1 CASignTool 生成 RSA Key	3
图 2-2 工具生成的 key 文件	
图 2-3 签名 fastboot	
图 2-4 生成文件	
图 2-5 生成 FinalBoot.bin 文件	
图 2-6 签名 bootargs	
图 2-7 生成文件夹	7
图 2-8 生成 bootargs_Sign.img 文件	8
图 2-9 签名 recovery	9
图 2-10 生成文件夹	9
图 2-11 签名 kernel	10
图 2-12 生成文件夹	11
图 3-1 裸片烧写流程	15

1 概述

1.1 安全方案 L3 介绍

和安全方案 L2(见文档《海思智能机顶盒 2 级安全方案》)相比,厂商没有签名的 key,所以编译阶段无法生成带签名的 fastboot、bootargs、recovery、kernel 分区,需要把未签名的镜像给运营商签名,然后运营商再把签名好的镜像发给客户。当厂商得到签名后的镜像数据后烧写方法同安全方案 L2。

□ 说明

本文以 Hi3798MV100 为例,其他支持的芯片类似处理。

1.2 安全方案 L3 分工

海思:

- 提供芯片和开发环境给机顶盒厂商:
- 提供给运营商 windows 签名工具,路径在: device/hisilicon/bigfish/sdk/tools/windows/advca/CASignTool

运营商:

- 用签名工具生成两对 key 并对客户的分区镜像签名,步骤见 2.1 和 2.2 节;
- 提供给机顶盒厂商 root_rsa_pub.bin, roor_rsa_pub_crc.bin

机顶盒厂商:

- 编译出未签名的高安 fastboot 和其他分区镜像;
- 提供未签名的 fastboot, bootargs, recovery, kernel 给运营商,运营商对这些分区签名, 再发给客户;
- 得到签名的镜像后,重新打包 update.zip

2 运营商使用指导

2.1 生成 Key 的步骤

安全启动涉及到的镜像都需要使用密钥签名。一共有两对密钥:

- 一对用于对 fastboot 签名校验;
- 一对用于对除 fastboot 以外的其它镜像签名校验。

使用海思提供的工具生成两对密钥的步骤如下:

步骤 1 打开应用程序 CASignTool, 切换至 Create RSA Key 页面, 输入 RSA key E value 默认值: 03, 如图 2-1 所示。

图2-1 CASignTool 生成 RSA Key

注意

输入的 RSA key E value 默认值为 0x03,会用来生成 RSA Key 对。也可以输入其他 16 进制正整数,最大为 0xfffffffff。不过改为其他值会大大增加生成密钥的计算量,推荐使用默认值 0x03。

步骤 2 点击 OK 键,工具会在其所在目录生成一个"RSA_XXXXXXX"的目录用于存放生成的 Key 文件,如图 2-2 所示。

图2-2 工具生成的 key 文件

rsa_priv.txt	2015/1/4 14:14
📤 rsa_pub.bin	2015/1/4 14:14
rsa_pub.h	2015/1/4 14:14
rsa_pub.txt	2015/1/4 14:14
🔔 rsa_pub_crc.bin	2015/1/4 14:14

生成的第一对密钥,用于对 fastboot 的签名校验。

- 将 rsa_priv.txt 重命名为 root_rsa_priv.txt
- 将 rsa_pub.bin 重命名为 root_rsa_pub.bin
- 将 rsa pub crc.bin 重命名为 root rsa pub crc.bin
- 其他文件用不到,可以删除

步骤 3 再次点击 OK, 生成第二对密钥, 用于 bootargs、recovery、kernel 等的签名校验。

- 将 rsa_pub.txt 重命名为 extern_rsa_pub.txt
- 将 rsa priv.txt 重命名为 extern rsa priv.txt
- 其他文件用不到,可以删除
- 步骤 4 把 root_rsa_priv.txt, extern_rsa_pub.txt, extern_rsa_priv.txt, root_rsa_pub.bin, root_rsa_pub crc.bin 五个文件保存到一个文件夹,不要泄露。

----结束

注意

运营商需要自己保留 root_rsa_priv.txt, extern_rsa_pub.txt, extern_rsa_priv.txt 三个 key 对 fastboot 签名;

运营商需要发送给厂商的是 root_rsa_pub.bin 和 root_rsa_pub_crc.bin。

2.2 签名 fastboot 步骤

2.2.1 环境准备

环境准备步骤如下:

步骤1 配置密钥对。

- root 私钥——root_rsa_priv.txt
- external 公钥——external_rsa_pub.txt
- external 私钥——external rsa priv.txt
- 步骤 2 单板配置参数 cfg.bin (由客户提供)。
- 步骤3 准备普通 boot (由客户提供)。

----结束

2.2.1 操作流程

操作流程如下:

- 步骤 1 打开应用程序 CASignTool。芯片类型选择 Hi3798MV100 为例。
- 步骤 2 切换至 Sign BootImage 页面,按照图 2-3 配置。

图2-3 签名 fastboot

步骤 3 单击 "ok" 键。

步骤 4 工具将会在工具所在的文件夹新建一个文件夹, 生成文件放在这个文件夹下。

图2-4 生成文件

步骤 5 带签名的安全 boot 的名字为 FinalBoot.bin

图2-5 生成 FinalBoot.bin 文件

2.3 签名 bootargs 分区

2.3.1 环境准备

环境准备步骤如下:

步骤1 配置密钥对。

- external 公钥——external_rsa_pub.txt
- external 私钥——external rsa priv.txt

步骤 2 准备未签名的 bootargs.bin——由客户提供。

----结束

2.3.2 操作流程

操作流程如下:

步骤 1 打开应用程序 CASignTool, 切换至 Sign Non-BootImage 页面。

步骤 2 按照图 2-6 配置,签名方式选择 Common CA Signature。

图2-6 签名 bootargs

步骤 3 单击 "ok" 键。

步骤 4 工具将会在工具所在的文件夹新建一个文件夹,生成文件放在这个文件夹下。

图2-7 生成文件夹

步骤 5 带签名的 bootargs 的名字为 bootargs Sign.img

图2-8 生成 bootargs_Sign.img 文件

----结束

2.4 签名 recovery 分区

2.4.1 环境准备

环境准备步骤如下:

步骤1 配置密钥对。

- external 公钥——external_rsa_pub.txt
- external 私钥——external_rsa_priv.txt

步骤 2 准备未签名的 recovery.img(由客户提供)。

----结束

2.4.2 操作流程

操作流程如下:

步骤 1 打开应用程序 CASignTool,切换至 Sign Non-BootImage 页面。

步骤 2 按照图 2-6, 配置签名方式选择 Special CA Signature。

图2-9 签名 recovery

步骤 3 单击 "ok" 键。

步骤 4 工具将会在工具所在的文件夹新建一个文件夹,生成文件放在这个文件夹下。

图2-10 生成文件夹

步骤 5 带签名的 recovery 的名字为 FinalImage.bin,需要重命名为 recovery_Sign.img。

----结束

2.5 签名 kernel 分区

2.5.1 环境准备

环境准备步骤如下:

步骤1 配置密钥对。

- external 公钥——external_rsa_pub.txt
- external 私钥——external_rsa_priv.txt

步骤 2 准备未签名的 kernel.img(由客户提供)。

----结束

2.5.2 操作流程

操作流程如下:

步骤 1 打开应用程序 CASignTool, 切换至 Sign Non-BootImage 页面。

步骤 2 按照图 2-11 配置,配置签名方式选择 Special CA Signature。

图2-11 签名 kernel

步骤 3 单击 "ok" 键。

步骤 4 工具将会在工具所在的文件夹新建一个文件夹,生成文件放在这个文件夹下。

图2-12 生成文件夹

步骤 5 带签名的 kernel 的名字为 FinalImage.bin,需要重命名为 kernel_Sign.img。

----结束

当所有的镜像签过名后,把带签名的分区镜像发送给机顶盒厂商。

3 客户使用指导

3.1 编译

在 device/hisilicon/Hi3798MV100/customer.mk 增加安全方案 L3 开关:

HISILICON_SECURITY_L3 := true

当打开开关后,能编译出未签名的安全 fastboot.bin 和其它未签名的各个分区镜像在如下目录:

out/target/product/Hi3798MV100/Emmc

3.2 签名

- 厂商编译出未签名的镜像后,提供如下文件给运营商签名:
 - 未签名的 fastboot.bin、bootargs.bin、recovery.img、kernel.img
 - 版本对应的 boot cfg 文件:
 - 文件路径: device/hisilicon/bigfish/sdk/source/boot/sysreg
 - 镜像签名方式:
 - bootargs用 common 方式签名;
 - recovery 和 kernel 通过 special 方式签名
- 运营商对这些分区签名,再发给厂商如下文件;
 - 签名后的分区镜像: Finalboot.bin、bootargs_Sign.img、recovery_Sign.img、kernel_Sign.img
 - 安全启动 otp root key: root rsa pub.bin、root rsa pub crc.bin

3.3 修改制作 update.zip

用签名后的 Finalboot.bin、bootargs_Sign.img、recovery_Sign.img 和 kernel_Sign.img 替换 update.zip 中未签名的这几个分区,重新生成 update.zip。需要用到 HiUpdateEdit 工具,路径在:

device/hisilicon/bigfish/sdk/tools/windows/advca/HiUpdateEdit

使用方法见文档《HiUpdateEdit 工具使用指南》。

注意

使用 HiUpdateEdit 工具制作升级包时,需要拷贝源码包 device/hisilicon/Hi3798MV100/security 下的所有 key 到工具文件夹 HiUpdateEdit\Config\下,同时把 releasekey.pk8 和 releasekey.x509.pem 分别命名为 testkey.pk8 和 testkey.x509.pem 。

3.4 USB 烧写

3.4.1 USB 裸片烧写

裸片烧写前需要准备如下:

- 未签名的 fastboot.bin、bootargs.bin、recovery.img 和重新生成的 update.zip
- 运营商提供的 key: root rsa pub crc.bin
- FAT32 格式的 U 盘

USB 裸片烧写的步骤如下:

- 步骤 1 将 fastboot.bin、bootargs.bin、recovery.img、update.zip、root_rsa_pub_crc.bin 拷贝至 U 盘根目录。
- 步骤 2 将 U 盘插入 USB2.0 接口。
- 步骤3 将单板上电,将自动进入烧写流程。烧写过程中指示灯会不断闪烁,烧写完成后,指示灯将常亮。

----结束

3.4.2 USB 非裸片烧写

经过 USB 裸片烧写,启动完成的单板,已经锁定为安全芯片。安全芯片再烧写,需使用 USB 非裸片烧写方式。

非裸片烧写需要准备:

- 运营商签过名的 FinalBoot.bin、bootargs_Sign.img、recovery_Sign.img 和重新生成的 update.zip
- FAT32 格式的 U 盘
- 步骤 1 将 FinalBoot.bin、bootargs_Sign.img、recovery_Sign.img 分别重命名为 fastboot.bin、bootargs.bin、recovery.img,和重新生成的 update.zip 拷贝至 U 盘根目录。
- 步骤 2 将 U 盘插入 USB2.0 接口。
- 步骤 3 按住单板上的 USB 烧写按键上电,进入烧写流程。烧写过程中指示灯会不断闪烁,烧写完成后,指示灯将常亮。

----结束

3.5 烧片器烧写

图3-1 裸片烧写流程

烧片器烧写步骤如下:

- 步骤 1 用烧片器烧写未签名的 fastboot.bin 和签过名的 bootargs_Sign、recovery_Sign, kernel_Sign,以及其他各分区。
- 步骤 2 单板上电,此时 fastboot.bin 会把单板烧写成安全芯片,并进入厂测程序。
- 步骤 3 通过厂测程序烧写运营商签过名的 Finalboot.bin,烧写时需要从 flash 初始地址偏移 512 Byte 的地方烧写。
- 步骤 4 通过厂测程序烧写 OTP root key 和安全启动标志位。

----结束

3.6 HiTools 烧写

HiTools 裸片烧写步骤如下:

步骤 1 HiTools 烧写未签名 fastboot.bin。

- 选择芯片类型: Hi3798MV100
- 选择烧写未签名的 fastboot.bin
- 启动烧写,烧写完毕后上电,单板将被烧写成安全芯片

步骤 2 HiTools 烧写其他镜像。

- 选择芯片类型: Hi3798MV100_CA
- Programmer 文件选择: 运营商签过名的 Finalboot.bin
- Fastboot、bootargs、recovery、kernel 选择签过名的分区镜像
- 其他分区镜像均未被签名,选择默认的
- 启动烧写

步骤 3 系统起来后通过命令行烧写 root_rsa_pub.bin 和安全启动标志位:

sample_ca_writeRSAkey /sdcard/root_rsa_pub.bin
sample_ca_opensecboot emmc

----结束

对于非裸片,通过 HiTools 烧写只需从上面步骤 2 开始执行就可以。