## **DERIVATIVE COMPUTATION BY 1D CONVOLUTION**

```
F[n] = \{1.0, 1.11, 1.35, 1.20, 4.32, 2.1, 0.11, -2.1, -1.1, 7.32\};
Forward Difference Kernel = \{1,-1,0\};
Backward Difference Kernel = \{0,1,-1\};
Central Difference Kernel = \{0.5,0,-0.5\};
```

```
main.c
器 〈 〉 C main.c 〉 main()
      switch (mthd) {
           case 1:
               //Forward Difference
               for (i = istart; i <= iend; i++) {
                   h[i] = 0;
                   p = &kforw[1];
                   for (a = -1; a \le 1; a++){
                       if(((i-a) > iend)||((i-a) < istart))
                           h[i] += 0;
                       else
                       h[i] += p[a]*f[i-a];
                   }
               strcpy(DerMthd, "Forward Difference");
               break;
           case 2:
               //Backward Difference
               for (i = istart; i <= iend; i++) {
                   h[i] = 0;
                   p = \&kback[1];
                   for (a = -1; a \le 1; a++){
                       if(((i-a) > iend)||((i-a) < istart))
                           h[i] += 0;
                       else
                       h[i] += p[a]*f[i-a];
                   }
               strcpy(DerMthd, "Backward Difference");
               break:
           case 3:
               //Central Difference
               for (i = istart; i <= iend; i++) {
                   h[i] = 0;
                   p = &kcentr[1];
                   for (a = -1; a \le 1; a++){
                       if(((i-a) > iend)||((i-a) < istart))
                           h[i] += 0;
                       else
                       h[i] += p[a]*f[i-a];
                   }
               strcpy(DerMthd, "Central Difference");
               break;
           default:
               goto end;
               break;
      }
```

```
funa@funa-VirtualBox:~/Documents/CMPE242/LAB2/HW3/derivative_calc$ ./output
Select approximation method:
(1) Forward Difference
(2) Backward Difference
(3) Central Difference
(4) Quit
:::: >>>> 1
Forward Difference Derivative Computation result:
h[n] = {0.11, 0.24, -0.15, 3.12, -2.22, -1.99, -2.21, 1.00, 8.42, -7.32}
Select approximation method:
Forward Difference
(2) Backward Difference
(3) Central Difference
(4) Quit
:::: >>>> 2
Backward Difference Derivative Computation result:
h[n] = \{1.00, 0.11, 0.24, -0.15, 3.12, -2.22, -1.99, -2.21, 1.00, 8.42\}
Select approximation method:
Forward Difference
(2) Backward Difference
(3) Central Difference
(4) Ouit
:::: >>>> 3
Central Difference Derivative Computation result:
h[n] = \{0.56, 0.18, 0.04, 1.49, 0.45, -2.10, -2.10, -0.61, 4.71, 0.55\}
Select approximation method:
Forward Difference
(2) Backward Difference
(3) Central Difference
(4) Quit
:::: >>>>
```

## PID CONTROLLER TEST RESULTS

$$Error = \frac{Cntl(output)}{Control(PID)*VehModel}$$
 (Closed Loop Equation)

$$Error[n] = x[n] - h[n]$$

Proportional Control:  $K_p * Error[n]$ 

Integral of Past Performance (Integral Control):  $K_I \int_{\Omega} Error^2[n] dn$ 

Changing rate of function (Derivative Control):  $K_d \frac{dError}{dn}$ 

SumError = Proportional Control + Integral Control + Derivative Control

$$F_{pwm} = \frac{1}{2} SumError [n]$$

Central Difference kernel k[b] for Derivative Control computation:

$$\begin{array}{|c|c|} \hline 0.5 & 0 & -0.5 \\ \hline CDError[n] & = \sum_{b=-1}^{b=1} k[b] * Error[n-b] \\ \hline \end{array}$$

1x7 Gaussian Kernel g[b] for 1D Convolution of H[n] ( $\sigma = 6 pixels$ ):

| 0.0587 | 0.0629 | 0.0656 | 0.0665 | 0.0656 | 0.0629 | 0.0587 |
|--------|--------|--------|--------|--------|--------|--------|
| 1      | l      | l      |        |        |        |        |

$$hprime[n] = \sum_{b=-3}^{b=3} g[b] * h[n-b]$$

```
🕒 🗊 funa@funa-VirtualBox: ~/Documents/CMPE242/LAB2/HW3/hw3_ver_ubuntu/pid_controller
funa@funa-VirtualBox:~/Documents/CMPE242/LAB2/HW3/hw3_ver_ubuntu/pid_controller$ ./output
PID Controller Computation results:
x[n] = \{1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00\}
Contl[n] = {0.0000, 0.9802, 0.9971, 1.0036, 1.0038, 1.0001, 1.0000, 1.0000, 1.0000, 1.0000}
Error[n] = {1.0000, 0.0198, 0.0029, -0.0036, -0.0038, -0.0001, -0.0000, -0.0000, -0.0000, -0.0000}
CDError[n] = {0.0000, -0.5000, -0.0099, -0.0015, 0.0018, 0.0019, 0.0001, 0.0000, 0.0000, 0.0000}
IError[n] = {1.0000, 1.0004, 1.0004, 1.0004, 0.0004, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000}
Kp = 10.00; Ki = 10.00; Kd = 10.00
alphaP = 26.00; alphaI = 0.10; alphaD = 0.33
SumError[n] = {261.0000, 4.4996, 1.7303, 0.0713, -0.9875, -0.0247, -0.0067, -0.0003, -0.0001, -0.0000
fpulse[n] = {50.0000, 130.5000, 2.2498, 0.8651, 0.0356, -0.4937, -0.0124, -0.0034, -0.0002, -0.0000}
N pwm[n] = {50.0000, 130.5000, 2.2498, 0.8651, 0.0356, -0.4937, -0.0124, -0.0034, -0.0002, -0.0000}
Ang[n] = {0.0463, 29.4088, 29.9150, 30.1097, 30.1177, 30.0066, 30.0038, 30.0030, 30.0030, 30.0030}
disVe[n] = {0.0463, 0.9802, 0.9971, 1.0036, 1.0038, 1.0001, 1.0000, 1.0000, 1.0000, 1.0000}
Error[n+1] = {0.0198, 0.0029, -0.0036, -0.0038, -0.0001, -0.0000, -0.0000, -0.0000, -0.0000, NULL}
```

funa@funa-VirtualBox:~/Documents/CMPE242/LAB2/HW3/hw3\_ver\_ubuntu/pid\_controller\$



|    | A           | В      | C       | D       | E       | F       | G       | Н       |         | J       | K       |
|----|-------------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 1  | n (Time)    | 0      | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       |
| 2  | x(n)        | 1      | 1       | 1       | 1       | 1       | 1       | 1       | 1       | 1       | 1       |
| 3  | Contl(n)    | 0      | 0.9802  | 0.9971  | 1.0036  | 1.0038  | 1.0001  | 1       | 1       | 1       | 1       |
| 4  | Error(n)    | 1      | 0.0198  | 0.0029  | -0.0036 | -0.0038 | -0.0001 | 0       | 0       | 0       | 0       |
| 5  | К_р         | 10     | 10      | 10      | 10      | 10      | 10      | 10      | 10      | 10      | 10      |
| 6  | cDError[n]  | 0      | -0.5    | -0.0099 | -0.0015 | 0.0018  | 0.0019  | 0.0001  | 0       | 0       | 0       |
| 7  | K_d         | 10     | 10      | 10      | 10      | 10      | 10      | 10      | 10      | 10      | 10      |
| 8  | K_i         | 10     | 10      | 10      | 10      | 10      | 10      | 10      | 10      | 10      | 10      |
| 9  | IError[n]   | 1      | 1.0004  | 1.0004  | 1.0004  | 1.0004  | 0       | 0       | 0       | 0       | 0       |
| 10 | alpha_p     | 26     | 26      | 26      | 26      | 26      | 26      | 26      | 26      | 26      | 26      |
| 11 | alpha_i     | 0.1    | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     |
| 12 | alpha_d     | 0.33   | 0.33    | 0.33    | 0.33    | 0.33    | 0.33    | 0.33    | 0.33    | 0.33    | 0.33    |
| 13 | SumError[n] | 261    | 4.4996  | 1.7303  | 0.0713  | -0.9875 | -0.0247 | -0.0067 | -0.0003 | -0.0001 | 0       |
| 14 | Fpwm(Hz)    | 50     | 130.5   | 2.2383  | 0.8647  | 0.0355  | -0.4938 | -0.0123 | -0.0034 | -0.0002 | 0       |
| 15 | N_pwm[n]    | 50     | 130.5   | 2.2383  | 0.8647  | 0.0355  | -0.4938 | -0.0123 | -0.0034 | -0.0002 | 0       |
| 16 | Ang(n)      | 0.0463 | 29.4088 | 29.9124 | 30.107  | 30.115  | 30.0039 | 30.0011 | 30.0003 | 30.0003 | 30.0003 |
| 17 | SpeedVe[n]  | 1.389  | 29.4088 | 14.9562 | 10.0357 | 7.5287  | 6.0008  | 5.0002  | 4.2858  | 3.75    | 3.3334  |
| 18 | disVe(n)    | 0.0463 | 0.9803  | 0.9971  | 1.0036  | 1.0038  | 1.0001  | 1       | 1       | 1       | 1       |
| 19 | e[n+1]      | 0.0198 | 0.0029  | -0.0036 | -0.0038 | -0.0001 | 0       | 0       | 0       | 0       | NULL    |