Advanced Microeconomics (QEM) - Problem set 1

Due date: classes on October 16th

Problem 1 (2p) Consider the following utility function:

$$u(x) = \sum_{i=1}^{2} \alpha_i \log(x_i)$$
, where $\alpha_1 = 1/3, \alpha_2 = 2/3$.

Let w = 5, p = (1, 1). Assume prices have changed to p' = (1, 2).

- 1. Compute income and substitution effect of a price change on demand of good 2 (use Hicksian decomposition).
- 2. Compute income and substitution effect of a price change on demand of good 2 (use Slutzky decomposition).

Problem 2 (5.5p) Consider the following utility function, called CES (constant elasticity of substitution function):

$$u(x_1, x_2) = (x_1^{\rho} + x_2^{\rho})^{1/\rho}$$
, where $0 \neq \rho < 1$.

This function is obviously strictly increasing. For the above CES function:

- 1. Show that u is strictly quasiconcave.
- 2. Formulate the Utility Maximization Problem and solve it to derive demand $d_1(p, w)$ and $d_2(p, w)$ [You may assume interior solution and Walras law which follows from strict monotonicity of $u(\cdot)$].
- 3. Form the indirect utility function v(p, w).
- 4. Show that the indirect utility function is:
 - (a) homogeneous of degree zero in (p, w),
 - (b) increasing in w and decreasing in p.
- 5. Verify the Roy's identity.
- 6. Formulate the Expenditure Minimization Problem and solve it to derive Hicksian demand $h(p,\underline{u})$ [You may assume interior solution and no excess utility which follows from continuity of $u(\cdot)$]
- 7. Form the expenditure function $e(p, \underline{u})$.
- 8. Verify that the expenditure function is concave in p.
- 9. Verify the Shephard's lemma.

Problem 3 (2.5p) Let $(-\infty, \infty) \times \mathbf{R}^L + be$ the consumption set. The consumer has strictly convex preferences which are represented by a utility function $u(x) = x_1 + \phi(x_2, x_3, \dots, x_L)$. We assume p >> 0 and we normalize $p_1 = 1$.

- 1. Try to show that the demand for commodities $\{2, 3, ..., L\}$ must be independent of wealth. How does demand for commodity 1 react to changes in wealth w?
- 2. Using your previous result, define the indirect utility function. Show that v is linear in wealth, i.e. $v(p, w) = w + \xi(p)$ for some function ξ . You do not need to find this function.
- 3. Now let L=2 and $\phi(x_2)=\alpha \ln(x_2)$. Solve the UMP as a function of p,w. Recall that we allow demand for commodity 1 to be negative.