- 1. Un mol de gas ideal ($c_V = 3R/2$) se enfría a presión constante de 1660 hPa, desde 400 K hasta 300 K. Luego se expande isotérmicamente hasta duplicar su volumen.
 - a. Dibuje las evoluciones en un diagrama p-V y calcule la variación de la energía interna en cada una de ellas.
 - b. Calcule el trabajo en cada evolución

$$(R = 8, 3 \frac{J}{mol.K}$$
 ; $1l = 10^{-3} m^3$; $1hPa = 100 \frac{N}{m^2}$)

- 2. El acero empleado para la construcción de una vía de ferrocarril tiene un coeficiente de dilatación lineal $\alpha=1,1.10^{-5}{}^{\circ}C^{-1}$. Se desea emplear tramos de 25 metros de longitud. ¿Cuánto debe valer la separación mínima entre tramos consecutivos para permitir una variación de temperatura de 40 °C sin que se empujen entre sí?
- 3. Un alambre recto infinitamente largo se encuentra en el vacío y tiene una carga distribuida uniformemente con una densidad $\lambda = 50$ nC / m. (1 nC = 10^{-9} C)
 - a. Halle la expresión del campo eléctrico en las proximidades del alambre.
 - b. Calcule la diferencia de potencial entre dos puntos A y B situados a 0,5 m y 2 m del alambre, respectivamente.
- 4. Dos cargas puntuales q₁ y q₂ se encuentran infinitamente alejadas una de otra.
 - a. Calcule el trabajo eléctrico que haría el campo de la carga q₁ al traer a q₂ desde el infinito hasta la distancia "a" de q₁.
 - b. En estas condiciones ¿cuánta energía potencial electrostática adquiere una tercera carga puntual q3 ubicada como se muestra en la figura (2)?

- Datos: $q_1 = 4 \text{ nC}$; $q_2 = -2 \text{ nC}$; $q_3 = 8 \text{ nC}$; a = 30 cm.
- Para el tramo de circuito representado en el diagrama, calcule:
 a. La intensidad de la corriente
 en cada resistencia.
 - b. La diferencia de potencial entre los puntos A y B.

Respuestas:

1)

a)

 $\Delta U_{AB} = -1245 J$ $\Delta U_{BC} = 0$

b)
$$W_{AB} = -830 \text{ J}$$
; $W_{BC} = 1726 \text{ J}$

2) 0,011 m

3)

a)
$$E = \frac{1}{4\pi\varepsilon_0} \frac{2\lambda}{r}$$

b)
$$V_A - V_B = 1,25 \text{ kV}$$

4)

a)
$$W = 2,4.10^{-7} J$$

b)
$$U = 0$$

5)

a) En la rama inferior i =0,5 A; en la superior 1,5 A.

b)
$$V_A - V_B = 150 \text{ V}$$