DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR ET DES ŒUVRES UNIVERSITAIRES (**DGES**)

Tet

DIRECTION DE l'ORIENTATION ET DES EXAMENS (DOREX)

Concours CAE session 2013

Composition : <u>Mathématiques 2</u> (statistiques, probabilités)

Durée : 2 Heures

Exercice 1

L'étude statistique des ventes de télévisions d'un grand magasin montre que :

- Le nombre de récepteurs vendus en une semaine est une variable aléatoire $X \sim \wp(\lambda)$ avec $\lambda = 12$
- La probabilité pour qu'un client achetant un téléviseur prenne récepteur couleur est $\frac{1}{4}$
- 1. Déterminer les probabilités des événements suivants
 - a. $(X \ge 15)$ ou $(X \le 6)$
 - b. $(X \ge 16)$ sachant que $(X \ge 8)$
- 2. Soit Y le nombre de récepteurs couleurs vendus en une semaine. Quelle est la loi de la variable aléatoire Y sous l'hypothèse (X = x) que nous noterons Y / x?
- 3. Déterminer les probabilités des événements suivants :
 - a. [(Y = 3) / (X = 12)]
 - b. [(Y > 1) / (X = 10)]
- 4. Déterminer la loi de la variable aléatoire *Y* seule. On montrera que *Y* suit une loi de Poisson dont on précisera le paramètre.

Exercice 2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique positive vérifiant l'équation de récurrence linéaire :

$$3u_{n+2} - 4u_{n+1} + u_n = 0 (E)$$

1.

- a. Résoudre l'équation (E)
- b. Calculer la somme puis la limite qui suivent :

$$S_n = \sum_{k=0}^n u_k \ et \ \lim_{n \to +\infty} S_n$$

- 2. Soit X la variable aléatoire discrète de référentiel $\Re_X = \mathbb{N}$ dont la fonction densité de probabilité (en abrégé fdp) notée $f_X(x)$ satisfait l'équation (E) ci-dessus.
 - a. Déterminer les constantes réelles A et B telles que : $\forall x \in \mathbb{N}$, $f_X(x) = A\lambda_1^x + B\lambda_2^x$ soit une densité de probabilité $(\lambda_1 < \lambda_2)$. Que représentent les réels λ_1 et λ_2 ?
 - b. On suppose que E(X) et var(Y) existent. Calculer

$$E(X) = \sum_{x \in \Re_X} x f_X(x) \text{ et } \text{var} X = E(X^2) - (E(X))^2$$

3. On pose Y = X - 1 si $X \ge 1$ et Y = 0 si X = 0. Calculer E(Y) et var(Y)

Exercice 3

- 1. On donne deux événements A et B tels que : P(A) = 0.5; P(B) = 0.4 et $P(B/\bar{A}) = 0.6$
 - a. Calculer $P(A \cup B)$?
 - b. Calculer $P(A/\bar{B})$?
- 2. Si A et B sont indépendants, si A et C sont indépendants est-il de même de
 - a. A et $(B \cap C)$?
 - b. *A* et (*BUC*)?

Exercice 4

On considère une variable aléatoire X dont la loi est donnée par

$$P(X = -1) = \frac{1}{3}$$

$$P(X = 0) = \frac{1}{3}$$

$$P(X = 1) = \frac{1}{3}$$

- 1. On pose $Y = X^2$. Quelle est la loi de Y?
- 2.
- a. Montrer que cov(X, Y) = 0<u>Rappel</u>: cov(X, Y) = E(XY) - E(X). E(Y)
- b. Monter que les variables aléatoires X et Y ne sont pas indépendantes

Exercice 5

Soit X et Y deux variables aléatoires indépendantes définies sur un espace probabilisé $(\Omega, \wp(\Omega), P)$ et suivant une loi uniforme sur l'ensemble $\{1,2,3\}$. On appelle $U = \max(X,Y)$ et $V = \min(X,Y)$

- 1. Donner le tableau de la loi conjointe
- 2. Donner la loi marginale de *U* puis celle de *V*
- 3. Les variables aléatoires U et V sont-elles indépendantes ?