Class 17b: From Prediction to Action

Professor Blake McShane

MKTG 482: Customer Analytics Kellogg School of Management

We used the predictive analytics churn model in the S-Mobile case in different ways

USES OF PREDICTIVE CHURN MODEL

Use predictions to classify or select consumers

"Identify consumers with high churn probabilities"

Use churn drivers to generate ideas to improve the outcome

- "Lets try to reduce dropped calls"
- "Lets market more to high credit rating customers"
- "Lets offer incentives to keep phones up-to-date"

Predict how the outcome would change if you implemented an action

"What is the likely effect of eliminating dropped calls?"

Predictions based on *naturally-occurring* variable values, *don't* require a *causal relationship* between these variables and the outcome for the prediction to be *valid*

In S-Mobile, dropped calls predict churn probabilities

STATEMENT OF FACT

If a consumer has experienced more dropped calls, s/he is more likely to churn

WHY?

- Consumers leave because of dropped calls
- Areas with strong competition experience airwave congestions, leading to many dropped calls

Independently, competition makes consumers more likely to churn

Dropped calls are causal

Dropped calls are not causal

Causation is irrelevant for prediction

Predictions based on *actual* individual-level variables, <u>don't</u> require a *causal relationship* between these variables and the outcome for the prediction to be *valid*

Predictions based on *actual* individual-level variables,

<u>don't</u> require a *causal relationship* between these

variables and the outcome for the prediction to be *valid*

("what if")

Predictions based on *counterfactual* individual-level variables, *do* require a *causal relationship* between these variables and the outcome for the prediction to be *valid*

In S-Mobile, dropped calls predict churn probabilities ...

STATEMENT OF FACT

If a consumer has experienced more dropped calls, s/he is more likely to churn

What if ... we eliminated dropped calls?
Would churn for affected customers decrease by 0.8%?

In S-Mobile, dropped calls predict churn probabilities ...

Churn

STATEMENT OF FACT

If a consumer has experienced more dropped calls, s/he is more likely to churn

WHY?

- Consumers leave because of dropped calls
- Areas with strong competition experience airwave congestions, leading to many dropped calls

Independently, competition makes consumers more likely to churn

Dropped calls are causal

Dropped calls are not causal

What if ... we eliminated dropped calls?
Would churn for affected customers decrease by 0.8%?

In S-Mobile, dropped calls predict churn probabilities ...

STATEMENT OF FACT

If a consumer has experienced more dropped calls, s/he is more likely to churn

WHY?

- Consumers leave because of dropped calls
- Areas with strong competition experience airwave congestions, leading to many dropped calls

Independently, competition makes consumers more likely to churn

Dropped calls are causal

Dropped calls are not causal

What if ... we eliminated dropped calls?

Would churn for affected customers decrease by 0.8%?

In S-Mobile, dropped calls predict churn probabilities ...

STATEMENT OF FACT

If a consumer has experienced more dropped calls, s/he is more likely to churn

WHY?

- Consumers leave because of dropped calls
- Areas with strong competition experience airwave congestions, leading to many dropped calls

Independently, competition makes consumers more likely to churn

Dropped calls are causal

Dropped calls are not causal

What if ... we eliminated dropped calls?

Would churn for affected customers decrease by 0.8%?

... but if the relationship is not causal, they won't correctly predict the effect of "what-ifs"

STATEMENT OF FACT

If a consumer has experienced more dropped calls, s/he is more likely to churn

WHY?

- Consumers leave because of dropped calls
- Areas with strong competition experience airwave congestions, leading to many dropped calls

Independently, competition makes consumers more likely to churn

Dropped calls are causal

Dropped calls are not causal

What if ... we eliminated dropped calls?
Would churn for affected customers decrease by 0.8%?

Predictions based on *naturally-occurring* variable values, <u>don't</u> require a *causal relationship* between these variables and the outcome for the prediction to be *valid*

Predictions based on "what if" variable values,

<u>do</u> require a causal relationship between these

variables and the outcome for the prediction to be valid

Predictive analytics: Anticipating Outcomes

Using data that you have to predict an outcome you don't yet know, using statistical or machine learning approaches.

Examples: Sales probabilities, inventory levels, customer churn rates, part failures, credit risk ...

Causal analytics: Changing Outcomes

Using data that you **have** or **newly create** (e.g. by experimenting) to determine **how** an action *causes a change* in the outcome you are predicting.

Examples: How a maintenance call improves uptime, impact of a sales call on conversion, proactive churn interventions, ...

We used the predictive analytics model in different ways

USES OF PREDICTIVE CHURN MODEL

Use predictions to classify or select consumers

"Identify consumers with high churn probabilities"

Use churn drivers to generate ideas to improve the outcome

- "Lets try to reduce dropped calls"
- "Lets market more to high credit rating customers"
- "Lets offer incentives to keep phones up-to-date"

Predict how the outcome would change if you implemented an action

"What is the likely effect of eliminating dropped calls?"

We used the predictive analytics model in different ways

USES OF PREDICTIVE CHURN MODEL

Use predictions to classify or select consumers

"Identify consumers with high churn probabilities"

Use churn drivers to generate ideas to improve the outcome

- "Lets try to reduce dropped calls"
- "Lets market more to high credit rating customers"
- "Lets offer incentives to keep phones up-to-date"

Predict how the outcome would change if you implemented an action

"What is the likely effect of eliminating dropped calls?"

Causal analytics Changing Outcomes

Causation is key

Predictive analyticsAnticipating Outcomes

Causation is irrelevant

When can predictive analytics models cross over into causal analytics?

USES OF PREDICTIVE CHURN MODEL

Use predictions to classify or select consumers

"Identify consumers with high churn probabilities" Use churn drivers to generate ideas to improve the outcome

- "Lets try to reduce dropped calls"
- "Lets market more to high credit rating customers"
- "Lets offer incentives to keep phones up-to-date"

Predict how the outcome would change if you implemented an action

"What is the likely effect of eliminating dropped calls?"

Causal analytics
Changing Outcomes

Causation is key

Predictive analyticsAnticipating Outcomes

Causation is irrelevant

When can predictive analytics models cross over into causal analytics?

Proving a causal relationship in a predictive model:

- 1. Has this action been previously tried?
- 2. Does the effect of this action on the outcome pass the causality checklist?
- Does the predictive model account for confounds? (matching, diff-in-diff, regression adjustment)

Proving a causal relationship in a predictive model:

- 1. Has this action been previously tried?
- 2. Does the effect of this action on the outcome pass the causality checklist?
- 3. Does the predictive model account for confounds?

 (matching, diff-in-diff, regression adjustment)

What does the S-Mobile data tell us about the effect of "surprise and delight" retention measures?

EXAMPLES

- Box of chocolates
- Free premium feature
- 1 month of discounted service

- ...

What if ... we *gave 1 month of discounted service?*By *how much* would churn decrease?

Proving a causal relationship in a predictive model:

- 1. Has this action been previously tried?
- 2. Does the effect of this action on the outcome pass the causality checklist?
- 3. Does the predictive model account for confounds?

 (matching, diff-in-diff, regression adjustment)

Proving a causal relationship in a predictive model:

- 1. Has this action been previously tried?
- 2. Does the effect of this action on the outcome pass the causality checklist?
- 3. Does the predictive model account for confounds?

(matching, diff-in-diff, regression adjustment)

The causality checklist helps you uncover bad analytics

In S-Mobile, dropped calls predict churn probabilities

STATEMENT OF FACT

If a consumers has experience more dropped calls, s/he is more likely to churn

In S-Mobile, dropped calls predict churn probabilities

Churn

STATEMENT OF FACT

If a consumers has experience more dropped calls, s/he is more likely to churn

- Consumers leave because of dropped calls.
- Areas with strong competition experience airwave congestions, leading to many dropped calls

Independently, competition makes consumers more likely to churn

CHECK FOR CONFOUNDS CHECK FOR PROBABILISTIC IDENTIFY GROUP DRIVERS CHECK FOR REVERSE CAUSALITY In S-Mobile, dropped ca For each driver. - Could outcome – Did units get randomly What drivers do you think - Could the driver affect the differences have directly assigned to the groups I influenced what groups outcome independently of caused variation in the units ended up in? the group units ended up in? factor of interest? Churn 4% 3% 2% Competition is Competition is 1% possible driver possible confound 0% Dropped No

What if ... we eliminated dropped calls?

Would churn for affected customers decrease by 0.8%?

When can predictive analytics models cross over into prescriptive analytics?

- 1. Has this action been previously tried?
- 2. Does the effect of this action on the outcome pass the causality checklist?
- Does the predictive model account for confounds? (matching, regression with controls)

Predictive analyticsAnticipating Outcomes

Prescriptive analyticsChanging Outcomes

In S-Mobile, dropped

Churn

Competition is possible **driver**

Competition is possible **confound**

If you look at regions with weak vs. strong competition

and find this pattern, what do you conclude?

If you look at regions with weak vs. strong competition

and find this pattern, what do you conclude?

Dropped calls are more likely to be causal

If you look at regions with weak vs. strong competition

and find this pattern, what do you conclude?

If you look at regions with weak vs. strong competition

and find this pattern, what do you conclude?

To control for a potential confound, we need to include the potential confound in the predictive model

S-MOBILE VARIABLES

Description

Age in days of current equipment

Age in days of current equipment

If the effect of dropped calls persists, competition <u>is not</u> a confound; if the effect goes away, competition <u>is</u> a confound

Monthly overage minutes of use	
Monthly minutes of use	
Monthly revenue	
% Change in minutes of use (1st to 2nd month)	
% Change in revenues (1st to 2nd month)	
Initial Signup In-Store	
Monthly Visits to S-Mobile Web Site	
Auto-Renewal	
Family Plan: # of Associated S-Mobile Accounts	

-Number of calls previously made to retention team	
Monthly overage minutes of use	
Monthly minutes of use	
Monthly revenue	
% Change in minutes of use (1st to 2nd month)	
% Change in revenues (1st to 2nd month)	
Initial Signup In-Store	
Monthly Visits to S-Mobile Web Site	
Auto-Renewal	
Family Plan: # of Associated S-Mobile Accounts	

Competition

- 1. Has this action been previously tried?
- 2. Does the effect of this action on the outcome pass the causality checklist?
- 3. Does the predictive model account for confounds?

 (matching, diff-in-diff, regression adjustment)

When can predictive analytics models cross over into causal analytics?

Predictive analytics:Anticipating Outcomes

- 1. Has this action been previously tried?
- 2. Does the effect of this action on the outcome pass the causality checklist?
- Does the predictive model account for confounds? (matching, diff-in-diff, regression adjustment)

Causal analytics Changing Outcomes

You must consider 3 things to bridge predictive and causal analytics

Edmunds.com uses web-site behavior to predict lead generation

STATEMENT OF FACT

If a consumers visits the pricing page he/she is more likely to submit a lead

Instead, suppose some consumers had randomly been exposed to pricing on the car's homepage

You must consider 3 things to bridge predictive and causal analytics

We identified variables related to customer churn

RESULTS FROM PREDICTIVE MODEL

											Typical
Variable Type	Variable		Dummy	Z	p-value	Mean	Min	Max	OR Importance	+/-	Difference
Customer action	retcalls	Number of calls previously made to retention team	0	9.5	0.000	0.04	0	4	1.30	+	0.2
Customer action	custcare	Mean number of customer care calls	0	-1.92	0.055	1.8	0	366	1.07	-	6.0
Customer characteristic	creditaa	High credit rating - aa (as opposed to medium or low)	1	-8.24	0.000	12%	0	1	1.41	-	0 to 1
Customer characteristic	occret	Occupation - retired (as opposed to other occupations)	1	-2.29	0.022	1.4%	0	1	1.28	-	0 to 1
Customer characteristic	occcrft	Occupation - crafts (as opposed to other occupations)	1	-2.37	0.018	3%	0	1	1.20	-	0 to 1
Customer characteristic	occprof	Occupation - professional (as opposed to other occupations)	1	-3.45	0.001	17%	0	1	1.13	-	0 to 1
Customer usage	months	# of months the customer has had service	0	-9.71	0.000	19	6	61	1.45	-	10
Customer usage	mou	Mean monthly minutes of use	0	-6.83	0.000	515	0	7668	1.40	-	525
Customer usage	phones	# Handsets Issued	0	5.49	0.000	1.8	1	20	1.22	+	1.3
Customer usage	overage	Mean monthly overage minutes of use	0	3.74	0.000	41	0	4321	1.17	+	100
Customer usage	roam	Mean number of roaming calls	0	3.69	0.000	1.2	0	692	1.11	+	7.3
Customer usage	uniqsubs	Number of individuals listed with the account	0	3.78	0.000	1.5	1	18	1.10	+	0.9
Customer usage	threeway	Mean number of threeway calls	0	-2.37	0.018	0.3	0	56	1.08	-	1.1
Equipment characteristic	eqpdays	Number of days of the current equipment	0	16.32	0.000	391	-5	1823	1.87	+	254
Equipment characteristic	refurb	Handset is refurbished (as opposed to new)	1	5.91	0.000	14%	0	1	1.25	+	0 to 1
Equipment characteristic	webcap	Hanset is web capable	1	-2.39	0.017	90%	0	1	1.12	-	0 to 1
Quality	unansvce	Mean number of unanswered voice calls	0	2.04	0.041	28	0	849	1.08	+	38
Quality	dropvce	Mean number of dropped voice calls	0	2.1	0.036	5.9	0	133	1.07	+	9
Quality	blckvce	Mean number of blocked voice calls	0	1.7	0.090	4.1	0	311	1.04	+	11
Usage trends	changem	% Change in minutes of use (over 4 month period)	0	-6.74	0.000	-16.3	-2868	5192	1.28	-	259
Usage trends	changer	% Change in revenues (over 4 month period)	0	6.09	0.000	-1.1	-571	2483	1.24	+	40

Next, we used *analytics-inspired creativity* to come up with churn management ideas

CHURN MANAGEMENT IDEAS

- **Reduce equipment age** by offering incentives to upgrade
- Offer discounted service to consumers with overages
- Offer special acquisition programs for high credit customers

•••

But ... do these ideas reduce churn and if so, by how much?

Some of these ideas don't cross over into prescriptive analytics

Predictive analytics: **Anticipating Outcomes**

Causal analytics **Changing Outcomes**

1. Has this action been previously tried?

Good results require a combination of analytics, creativity, and managerial judgement

confounds?

(matching, diff-in-diff, regression adjustment)

actual individual-level variables

Customer Analytics Course Structure

Customer Centric Marketing

Customer Analytics and Al Overview (Class 1)
Al and Analytics,
Why Customer Analytics and Al Needs Customer Centricity

Getting Ready for Analytics

Using R for Customer Analytics and Al (Class 2)
Statistics Review (Class 3)

- Targeting Customers for Acquisition and Development

 Predicting Response with RFM analysis (Class 4)

 Case Analysis: "Tuango: RFM Analysis for Mobile App Push Messaging" (Class 5)
 Lift and Gains

 Predicting Response with Logistic Regression (Class 6)

 Predicting Response with Neural Networks (Class 7)
 Using Neural Networks for Customer Analytics and AI (Class 8)
 Training Machine Learning Models

 Case Analysis: Intuit QuickBooks Upgrade: Moving to the Cloud (Class 9)

 Predicting Response with Tree Methods (Class 10)

- Predicting Response with Tree Methods (Class 10)

- Targeting based on Incrementality
 From Propensity to Uplift (Class 11)
 The Causality Checklist (Class 12)
 Case Analysis: Creative Gaming Uplift Modeling (Class 13)
 Hyper-Personalization: Next-Product-to-Buy Models (Class 14)

- Retaining Customers

 Predicting Attrition (Class 15)

 Linking Analytics with a Business Outcomes Model (Class 16)
- Case Analysis: "S-Mobile: Churn Management" (Class 17) From Prediction to Action

- Design of Experiments / Multivariate Testing (Class 18)

 Case Analysis: "Capital One: Information-Based Credit Card Design" (Class 19)

Scaling Analytics

Scaling Analytics in Practice (Class 20) Course Wrap-up