

第八章 方差分析与回归分析

§ 8.1 方差分析

1. 单因子方差分析

(1) 问题与数据

设某因子有r个水平,记为 A_1 , A_2 ,…, A_r ,在每一水平下各做m次独立重复试验,若记第i个水平下第j次重复的试验结果为 y_{ij} ,所有试验的结果可列表如下:

因子水平		试验	数据		和	平均
A_1	y 11	y_{12}		y_{1m}	$T_{_1}$	\overline{y}_1
A_2	y ₂₁	y_{22}	•••	y_{2m}	T_2	\overline{y}_2
i i	:	÷		÷	:	:
A_r	y_{r1}	y_{r2}		\mathcal{Y}_{rm}	T_r	\overline{y}_r
					T	\overline{y}

对这个试验要研究的问题是:r个水平 A_1,A_2,\cdots,A_r 间有无显著差异.

(2) 基本假定

A1:第 i 个水平下的数据 y_{i1} , y_{i2} , \cdots , y_{im} 是来自正态总体 $N(\mu_i, \sigma_i^2)$ 的一个样本, $i=1,2,\cdots,r$;

A2:r 个方差相同,即 $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_r^2 = \sigma^2$;

A3:诸数据 y_{ii} 都相互独立.

在这三个基本假定下,要检验的假设是

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_r$ vs $H_1: \mu_1, \mu_2, \cdots, \mu_r$ 不全相等.

方差分析就是在方差相等的条件下,对若干个正态均值是否相等的假设 检验.

(3) 平方和分解式

$$S_T = S_A + S_e$$
, $f_T = f_A + f_e$,

若记 $\bar{y}_{i.} = \frac{1}{m} \sum_{j=1}^{m} y_{ij}, \bar{y} = \frac{1}{rm} \sum_{i=1}^{r} \sum_{j=1}^{m} y_{ij} = \frac{1}{r} \sum_{i=1}^{r} \bar{y}_{i}$.上述诸平方和分别为

- $S_T = \sum_{i=1}^r \sum_{j=1}^m (y_{ij} \bar{y})^2$ 称为总平方和,其自由度 $f_T = n 1$.
- $S_A = m \sum_{i=1}^r (\bar{y}_{i.} \bar{y})^2$ 称为组间平方和或因子 A 的平方和,其自由度 $f_A = r 1$.
- $S_e = \sum_{i=1}^r \sum_{j=1}^m (y_{ij} \bar{y}_{i.})^2$ 称为组内平方和或误差平方和,其自由度 $f_e = n r$.

注:数据 y_{ij} 的平移 $y' = y_{ij} - a$ 不会改变其平方和的值.用此性质可简化计算.

(4) 方差分析表

来源	平方和	自由度	均方	F 比
因子	$S_A = \frac{1}{m} \sum_{i=1}^{r} T_i^2 - \frac{T^2}{rm}$	$f_A = r - 1$	$MS_A = S_A/f_A$	$F = MS_A/MS_e$
误差	$S_e = S_T - S_A$	$f_e = r(m-1)$	$MS_e = S_e / f_e$	
总和	$S_T = \sum_{i=1}^r \sum_{j=1}^m y_{ij}^2 - \frac{T^2}{rm}$	$f_T = rm - 1$		

(5) 判断

在 H_0 成立下, $F = MS_A/MS_e \sim F(f_A, f_e)$,对给定的显著性水平 $\alpha(0 < \alpha < 1)$, 其拒绝域为 $W = \{F \ge F_{1-\alpha}(f_A, f_e)\}$,其中 $F_{1-\alpha}(f_A, f_e)$ 可从附表 5 中查得.

- 若 $F \ge F_{1-\alpha}(f_A, f_e)$,则认为因子 A 显著,即诸正态均值间有显著差异.
- 若 $F < F_{1-\alpha}(f_A, f_e)$,则说明因子 A 不显著,即接受原假设 H_0 . 给出检验的 p 值是更常用的,若以 X 记服从 $F(f_A, f_E)$ 的随机变量,F 为统计量, $F = MS_A/MS_e$ 的观测值为 F_0 ,则 $p = P(X \ge F_0)$,可用软件计算,如在 Matlab 中使用如下命令:p = 1—fcdf(F_0, f_A, f_E).

2. 数据结构式及其参数估计

(1) 数据结构式

$$y_{ij} = \mu + a_i + \varepsilon_{ij}$$
, $i = 1, 2, \dots, r, j = 1, 2, \dots, m$,

其中 μ 为总均值, a_i 为第i个水平的效应,且 $\sum_{i=1}^{r} a_i = 0$, ε_{ij} 为试验误差,所有 ε_{ij} 可作为来自 $N(0,\sigma^2)$ 的一个样本,在上述数据结构式下, $y_{ij} \sim N(\mu + a_i, \sigma^2)$.要检验的假设可改写为

$$H_0: a_1 = a_2 = \dots = a_r = 0$$
 vs $H_1: a_1, a_2, \dots, a_r$ 不全为 0.

(2) 点估计

- 总均值 μ 的估计 $\hat{\mu} = \bar{y}$.
- 水平均值 μ_i 的估计 $\hat{\mu}_i = \bar{y}_{i.}$, $i = 1, 2, \dots, r$.
- 主效应 a_i 的估计 $\hat{a}_i = \overline{y}_i \cdot -\overline{y}, i = 1, 2, \dots, r$.
- 误差方差 σ^2 的估计 $\hat{\sigma}^2 = MS_e = S_e/f_e$.
- (3) 1-α 置信区间(0<α<1)
- μ_i 的 $1-\alpha$ 置信区间为 $[\bar{y}_i, \pm \hat{\sigma} t_{1-\alpha/2}(f_e)/\sqrt{m}]$.
- 3. 单因子试验的统计分析可得如下三个结果
- 因子 A 是否显著.
- 试验误差方差 σ^2 的估计.
- 诸水平均值 μ_i 的点估计与区间估计(此项在因子A不显著时无需进行).

4. 重复数不等情形下的方差分析

(1) 数据略有不同

设因子 A 有 r 个水平 A_1 , A_2 , \cdots , A_r , 并且第 i 个水平 A_i 下重复进行 m_i 次试验, 获得如下数据:

水平	重复数	数 据	和	平 均
A_{1}	m_1	$y_{11}, y_{12}, \cdots, y_{1m_1}$	$T_{_1}$	\overline{y}_1 .
A_2	m_2	$y_{21}, y_{22}, \cdots, y_{2m_2}$	T_2	\overline{y}_2 .
:	:	ŧ	÷	:
A_r	$m_{_{\scriptscriptstyle T}}$	$y_{r1}, y_{r2}, \cdots, y_{rm_r}$	T_{r}	\overline{y}_r .
合计	n	T	T	\overline{y}

(2) 基本假定、平方和分解、方差分析及判断准则都和前面一样,只是因子 A 的平方和 S_A 的计算公式略有不同:记 $n = \sum_{i=1}^r m_i$,则

$$S_A = \frac{T_1^2}{m_1} + \frac{T_2^2}{m_2} + \dots + \frac{T_r^2}{m_r} - \frac{T^2}{n}.$$

- (3) 数据结构式及其参数估计基本同前,但要注意以下两点:
- 总均值 $\mu = \frac{1}{n} \sum_{i=1}^{r} m_i \mu_i$.
- 主效应的约束条件为 $\sum_{i=1}^{r} m_i a_i = 0$.

§ 8.2 多重比较

1. 问题 在单因子方差分析中,当因子 A 显著时,就要继续研究如下问题:在多个水平均值中同时比较任意两个水平间有无明显差异的问题,这个问题的检验法则称**多重比较**.

若因子 A 有 r 个水平,则同时检验 r(r-1)/2 个假设

$$H_0^{ij}: \mu_i = \mu_i, \quad 1 \leq i < j \leq r,$$

其拒绝域 $W = \bigcup_{1 \le i < j \le r} \{ | \overline{y}_i . - \overline{y}_j . | \ge c_{ij} \}$. 对给定的显著性水平 $\alpha(0 < \alpha < 1)$,诸临界值 c_{ii} 由 $P(W) = \alpha$ 决定.

2. 重复数相等场合的 T 法 在各水平试验次数相同时,其诸临界值 c_{ij} 也相同,具体为

$$c = q_{1-\alpha}(r, f_e) \hat{\sigma} / \sqrt{m}$$
,

其中 $\hat{\sigma} = \sqrt{MS_e}$, $q_{1-\alpha}(r,f_e)$ 是分布 $q(r,f_e)$ 的 $1-\alpha$ 分位数,可从附表 8 中 查得.

3. 重复数不等场合的 S 法 在各水平试验次数不同时,其诸临界值 c_{ij} 也不同,具体为

$$c_{ij} = \sqrt{(r-1) F_{1-\alpha}(r-1, f_e) \left(\frac{1}{m_i} + \frac{1}{m_j}\right) \hat{\sigma}^2},$$

其中 $F_{1-\alpha}(r-1,f_e)$ 是相应的 F 分布的 $1-\alpha$ 分位数.

§ 8.3 方差齐性检验

1. 问题 方差齐性即诸方差相等,是方差分析的基本假定之一,方差 齐性检验就是检验这个假定是否成立.该检验问题的一对假设为

$$H_0: \sigma_1^2 = \sigma_2^2 = \cdots = \sigma_r^2$$
 vs $H_1:$ 诸 σ_1^2 不全相等.

2. 哈特利检验(在重复数相等场合使用) 在重复次数均为 m 时,采用哈特利检验,检验统计量是

$$H = \frac{\max\{s_1^2, s_2^2, \cdots, s_r^2\}}{\min\{s_1^2, s_2^2, \cdots, s_r^2\}},$$

其中 s_i^2 是第i个水平 A_i 下重复试验数据的样本方差.拒绝域为

$$W = \{H > H_{1-\alpha}(r, f)\},$$

其中 α 为显著性水平 f=m-1 $H_{1-\alpha}(r,f)$ 是统计量 H 的分布的 $1-\alpha$ 分位数,它的值可查附表 10.

3. 巴特利特检验(可在重复数不等场合使用,但样本量不得低于 5) 在重复次数不等且每个水平下试验次数均不低于 5 时,可采用巴特利特检验,检验统计量为

$$B = \frac{1}{C} \left[f_e \ln MS_e - \sum_{i=1}^r f_i \ln s_i^2 \right],$$

其中诸 s_i^2 同上, $f_i = m_i - 1$ 为 s_i^2 的自由度, $MS_e = \frac{1}{f_e} \sum_{i=1}^r f_i s_i^2$, $f_e = \sum_{i=1}^r f_i$ 为误差方

差的自由度.
$$C = 1 + \frac{1}{3(r-1)} \left(\sum_{i=1}^{r} \frac{1}{f_i} - \frac{1}{f_e} \right)$$
,拒绝域为

$$W = \{B > \chi^2_{_{1-a}}(r-1)\}$$
,

其中 $\chi^2_{1-\alpha}(r-1)$ 是自由度为 r-1 的 χ^2 分布的 $1-\alpha$ 分位数.

4. 修正的巴特利特检验(在样本量相等或不等,样本量较小或较大场合均可使用) 一般场合,可采用修正的巴特利特检验,检验统计量是

$$B' = \frac{f_2 BC}{f_1(A - BC)},$$

其中
$$B$$
 与 C 同前 $f_1 = r-1$ $f_2 = \frac{r+1}{(C-1)^2}$ $A = \frac{f_2}{2-C+2/f_2}$, 拒绝域为
$$W = \{B' > F_{1-\alpha}(f_1, f_2)\},$$

其中 $F_{1-\alpha}(f_1,f_2)$ 是相应 F 分布的 $1-\alpha$ 分位数 f_2 的值可能不是整数 ,这时可通过对 F 分布的分位数表施行线性内插法获得.

§ 8.4 一元线性回归

1. 问题 考察两个变量 x 与 y 之间是否存在线性相关关系,其中 x 是一般(可控)变量,y 是随机变量,其线性相关关系可表示如下(可用散点图显示):

$$y = \beta_0 + \beta_1 x + \varepsilon$$
,

其中 β_0 为截距, β_1 为斜率, ε 为随机误差,常假设 $\varepsilon \sim N(0,\sigma^2)$.这里 β_0 , β_1 , σ^2 是三个待估参数.上式表明, γ 与 γ 之间有线性关系,但受到随机误差的干扰.

2. 数据 对 x 与 y 通过试验或观察可得 n 对数据(注:数据是成对的,不允许错位).在 y 与 x 之间存在线性关系的假设下,有如下统计模型:

$$\begin{cases} y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i = 1, 2, \dots, n, \\ & \delta \varepsilon_i$$
独立同分布,其分布为 $N(0, \sigma^2)$.

利用成对数据可获得 β_0 与 β_1 的估计,设估计分别为 $\hat{\beta}_0$ 与 $\hat{\beta}_1$,则称 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ 为回归方程,其图形称为回归直线.

3. 参数估计 用最小二乘法可得 β_0 与 β_1 的无偏估计

$$\begin{cases} \hat{\boldsymbol{\beta}}_{1} = l_{xy} / l_{xx}, \\ \hat{\boldsymbol{\beta}}_{0} = \overline{y} - \hat{\boldsymbol{\beta}}_{1} \overline{x}, \end{cases}$$

其中 $\bar{x} = \frac{1}{n} \sum x_i, \bar{y} = \frac{1}{n} \sum y_i$ (此处 \sum 表示 $\sum_{i=1}^n$,下同),

$$l_{xy} = \sum (x_i - \overline{x}) (y_i - \overline{y}) = \sum x_i y_i - n \ \overline{x} \cdot \overline{y} = \sum x_i y_i - \frac{1}{n} \sum x_i \sum y_i,$$

$$l_{xx} = \sum (x_i - \overline{x})^2 = \sum x_i^2 - n \ \overline{x}^2 = \sum x_i^2 - \frac{1}{n} \left(\sum x_i\right)^2,$$
$$l_{yy} = \sum (y_i - \overline{y})^2 = \sum y_i^2 - n \ \overline{y}^2 = \sum y_i^2 - \frac{1}{n} \left(\sum y_i\right)^2.$$

4. 回归方程的显著性检验 回归方程的显著性检验就是要对如下一对假设作出判断:

$$H_0: \beta_1 = 0$$
 vs $H_1: \beta_1 \neq 0$.

对此可采用如下两种等价的检验方法.

(1) F 检验

如下的平方和分解式是非常重要的,它在许多统计领域得到应用:

$$S_{T} = S_{R} + S_{e}$$
, $f_{T} = f_{R} + f_{e}$,

其中

$$S_T = \sum (y_i - \bar{y})^2 = \sum y_i^2 - \frac{1}{n} (\sum y_i)^2 = l_{yy}$$
是总平方和,其自由度 $f_T = n - 1$,

 $S_R = \sum (\hat{y}_i - \bar{y})^2 = \sum (\hat{\beta}_0 + \hat{\beta}_1 x_i - \bar{y})^2 = \hat{\beta}_1 l_{xy} = \hat{\beta}_1^2 l_{xx}$ 是回归平方和,其自由度 $f_R = 1$,

在原假设 H_0 成立的条件下,检验统计量 $F = \frac{S_R}{S_e/(n-2)} \sim F(1,n-2)$,拒绝域为

$$W = \{ F \geqslant F_{1-\alpha}(1, n-2) \}.$$

上述检验过程一般用如下方差分析表列出:

来源	平方和	自由度	均方	F 比
回归	S_R	$f_R = 1$	$MS_R = S_R$	$F = \frac{MS_R}{MS_e}$
残差	S_e	$f_e = n-2$	$MS_e = \frac{S_e}{n-2}$	
总计	S_{T}	$f_T = n - 1$		

(2) t 检验

检验统计量为 $t = \frac{\hat{\beta}_1}{\hat{\sigma}/\sqrt{l_{xx}}}$,其中 $\hat{\sigma} = \sqrt{S_e/(n-2)}$,在原假设成立下, $t \sim$

t(n-2),因此拒绝域为

$$W = \{ |t| > t_{1-\alpha/2} (n-2) \}.$$

注意到 $t^2 = F$,因此 t 检验与 F 检验是等价的,选其中之一使用即可.

5. 相关系数及其检验

(1) 相关系数

对容量为n的二维样本 $\{(x_i,y_i),i=1,2,\cdots,n\}$ 的线性相关程度可用如下(样本)相关系数度量

$$r = \frac{\sum (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} = \frac{l_{xy}}{\sqrt{l_{xx}l_{yy}}}.$$

- r=±1,n 个点完全在一条直线上,此时两者之间可能是确定性关系.
- r>0,当 x 增加时, y 有线性增加趋势,此时称正相关.
- r<0,当 x 增加时, y 反而有线性减少趋势,此时称负相关.
- *r*=0,*n* 个点可能毫无规律,也可能呈某种曲线趋势,此时称不(线性)相关.

(2) 相关系数的检验

<math>ilappi 为二维总体的相关系数,于是可建立如下假设:

$$H_0: \rho = 0 \text{ vs } H_1: \rho \neq 0.$$

对此,采用检验统计量 $r = \frac{l_{xy}}{\sqrt{l_{xx}l_{yy}}}$,拒绝域为

$$W = \{ |r| > r_{1-\alpha}(n-2) \},$$

其中 $r_{1-\alpha}(n-1)$ 是 |r| 分布的 $1-\alpha$ 分位数,可查附表 9.

(3) 检验统计量 r 与 F 统计量之间关系

$$r^2 = \frac{F}{F + (n-2)},$$

这表明|r|是 F 的严格增函数,所以相关系数检验与前面的 F 检验也是等价的.

6. 估计与预测——回归方程的应用

- 当 $x = x_0$ 时 $,\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ 是 $E(y_0) = \beta_0 + \beta_1 x_0$ 的点估计.
- 当 $x = x_0$ 时 $E(y_0) = \beta_0 + \beta_1 x_0$ 的置信水平为 1α 的置信区间是[$\hat{y}_0 \beta_0 = \beta_0 + \beta_1 x_0 = \beta_0 + \beta_1 x_0 = \beta_0 + \beta_0 = \beta_0 = \beta_0 + \beta_0 = \beta_0 + \beta_0 = \beta$

$$\delta_{0}\,,\hat{y}_{0}+\delta_{0}\,]\,,\sharp +\delta_{0}=t_{1-\alpha/2}(\,n-2\,)\,\hat{\sigma}\,\sqrt{\frac{1}{n}+\frac{(\,x_{0}-\overline{x}\,)^{\,2}}{l_{xx}}}\,,\quad \hat{\sigma}=\sqrt{MS_{e}}\,.$$

• 当 $x = x_0$ 时 $, y_0 = \beta_0 + \beta_1 x_0 + \varepsilon_0$ 的 $1 - \alpha$ 预测区间是 $[\hat{y}_0 - \delta, \hat{y}_0 + \delta]$,其中

$$\delta = \delta(x_0) = t_{1-\alpha/2}(n-2)\hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}}.$$

注: $E(y_0)$ 是未知参数,而 y_0 是随机变量.对 $E(y_0)$ 谈论的是置信区间,对 y_0 谈论的是预测区间,两者是不同的,显然,预测区间要比置信区间宽很多.

要提高预测区间(置信区间也一样)的精度,即要使 δ (或 δ_0)较小,这要求:(1)增大样本量 n;(2)增大 l_{xx} ,即要求 x_1, x_2, \cdots, x_n 较为分散;(3)使 x_0 靠近 \bar{x} .

§ 8.5 一元非线性回归

1. 非线性函数形式 根据二维样本的散点图确定可能的非线性函数形式,部分常见的非线性函数及其图形如下表.注意:若有两个或两个以上非线性函数可用,可对它们分别拟合非线性回归并根据后面提及的一些准则进行选择.

函数名称	函数表达式	图像	线性化变换
双曲线函数	$\frac{1}{y} = a + \frac{b}{x}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v = \frac{1}{y}$ $u = \frac{1}{x}$

续表

函数名称	函数表达式	图像	线性化变换
幂函数	$y = ax^b$	b>1 $0 0 1 x 0 1 x 0 1 x$	$v = \ln y$ $u = \ln x$
指数	$y = a e^{bx}$	b>0 x $b<0$ x	$v = \ln y$ $u = x$
函数	$y = ae^{b/x}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v = \ln y$ $u = \frac{1}{x}$
对数函数	$y = a + b \ln x$	b>0	$v = y$ $u = \ln x$
S 型曲线	$y = \frac{1}{a + be^{-x}}$		$v = \frac{1}{y}$ $u = e^{-x}$

2. 参数估计 通过适当变换,把非线性函数转化为线性函数形式,然后对未知参数寻求最小二乘估计.譬如由 $\frac{1}{y} = a + \frac{b}{x}$ 可转化为 v = a + bu 只要令 $\frac{1}{y} = v, \frac{1}{x} = u$ 即可.

3. 评价标准 常用的曲线回归方程好坏的评价标准有两个:

- (1) 决定系数 $R^2 = 1 \frac{\sum (y_i \hat{y}_i)^2}{\sum (y_i \bar{y}_i)^2}$,愈大愈好; (2) 剩余标准差 $s = \sqrt{\frac{\sum (y_i \hat{y}_i)^2}{n-2}}$ 愈小愈好.

这两个评价标准是一致的,只是从两个侧面作出评价.