Machine learning for vision and multimedia

(01URPOV)

Lab 04 - Advanced Pytorch Francesco Manigrasso

2025 - 2026

Learning objectives

Learn how to train more complex and effective models by exploiting

- Transfer learning
- Data augmentation
- Non-sequential models

TRANSFER LEARNING

Transfer learning

- Transfer learning is an enabler in computer vision as it allows to reuse knowledge on different tasks
- Formally, a task $T = \{Y, f\}$ is defined as (learning a) mapping function f between an input space \mathcal{X} and a label space \mathcal{Y}
- In a fully supervised setting, the task is learnt from a series of labelled examples (X, Y)
- Labels may come in several forms, e.g.:
 - ◆ class labels (e.g. "cat", "dog", "house") → classification task
 - ◆ object bounding boxes → object detection task
 - pixel-wise class label → image segmentation task
 - ◆ depth map → depth estimation task, etc....

Transfer learning

- When does transfer learning make sense?
- Transfer from Task A to Task B if
 - ◆ Task A and B have the same type of input (e.g., images)
 - You have a lot more data for Task A than Task B
 - Low level features from Task A could be helpful for learning Task B
- Question
 - Good examples of Task A in computer vision?

Transfer learning

- When transfer learning makes sense?
- Transfer from Task A to Task B if
 - Task A and B have the same type of input (e.g., images)
 - You have a lot more data for Task A than Task B
 - Low level features from Task A could be helpful for learning Task B

Scenario 1: Transfer across classification tasks

- Different labels
- Different input distribution

Scenario 2: Transfer across different types of tasks, e.g. from classification to object detection

Feature transferability

ImageNet split into two groups (A and B)

 $\begin{array}{ccc}
B3B & B \rightarrow B \\
B3B^{+} & (control)
\end{array}$

and

A → B (transfer learning)

[Yosinski, How transferable are features in deep neural networks?, 2016]

Feature transferability

ImageNet split into two groups (A and B)

[Yosinski, How transferable are features in deep neural networks?, 2016]

Feature transferability

Transfer strategies

- There are two fundamental transfer strategies:
- Strategy A: Use the pre-trained network as fixed feature extraction, and train a classifier on those features (not necessarily a neural network)
- Strategy B: Finetune the network trained on the source task by replacing the final layers and selectively retrain some (all) of the previous layers
- The optimal strategy depends on:
 - the amount of labelled samples
 - the similarities between the source and target task

Base model

Transfer learning strategy A

Small - medium dataset Similar to original data Input size unchanged

Transfer learning strategy A

Convolutional Layers (Representation)

Non-neural classifier (linear, SVM, random forest)

Freeze layers

Train on new dataset

Small data Similar to original data Input size can change

Transfer learning strategy B

Convolutional Layers (Representation)

Freeze layers

Small - medium dataset Similar to original data Input size can change Dense Softmax (classification) (N)

Replace layers
Randomly initialize +
Train on new dataset

Transfer learning strategy B

Convolutional Layers (Representation)

Fine-tune layers

Small - medium dataset Different from original data Input size can change Dense Softmax (classification) (N)

Replace layers
Randomly initialize +
Train on new dataset

Transfer learning in Pytorch

- Transfer learning in Pytorch can be implemented in two steps
 - Create the new model by detaching the old classification head and attaching the new head
 - Selectively "freeze" and "unfreeze" layers in order to use them as fixed feature extractors or finetuning them
- Each parameter has a requires_grade property: when set to False, gradients are not computed
- To freeze all layers:

```
for param in model.parameters():
    param.requires_grad = False
```

 The summary() method prints whether a layer is trainable or not

Modifying an existing model

- To change an existing model
 - Define a new model that uses parts of the old model, or..
 - Import the model and then change some of the layers, e.g., the last layer

```
import torchvision
from torchvision import datasets, models, transforms
model_ft = models.vgg16(weights='IMAGENET1K_V1')
num_ftrs = model_ft.classifier[6].in_features
Model_ft.classifier[6] = nn.Linear(num_ftrs,
num_classes)
```

from torchsummary import summary
model_ft = models.vgg16(weights='IMAGENET1K_V1')
summary(model_ft, input_size=(3,224,224))

Output Shape Layer (type) Param # -----Conv2d-1 [-1, 64, 224, 224] 1,792 ReLU-2 [-1, 64, 224, 224] 0 Conv2d-3 [-1, 64, 224, 224] 36,928 ReLU-4 [-1, 64, 224, 224] MaxPool2d-5 [-1, 64, 112, 112] 0 Conv2d-6 [-1, 128, 112, 112] 73,856 ReLU-7 [-1, 128, 112, 112] Conv2d-8 [-1, 128, 112, 112] 147,584 ReLU-9 [-1, 128, 112, 112] MaxPool2d-10 0 [-1, 128, 56, 56] Conv2d-11 [-1, 256, 56, 56] 295,168 ReLU-12 [-1, 256, 56, 56] Conv2d-13 [-1, 256, 56, 56] 590,080 ReLU-14 [-1, 256, 56, 56] Conv2d-15 [-1, 256, 56, 56] 590,080 ReLU-16 [-1, 256, 56, 56] MaxPool2d-17 [-1, 256, 28, 28] Conv2d-18 [-1, 512, 28, 28]1,180,160 ReLU-19 [-1, 512, 28, 28]Conv2d-20 [-1, 512, 28, 28] 2,359,808 ReLU-21 [-1, 512, 28, 28]Conv2d-22 [-1, 512, 28, 28] 2,359,808 ReLU-23 [-1, 512, 28, 28] MaxPool2d-24 [-1, 512, 14, 14]0 Conv2d-25 [-1, 512, 14, 14] 2,359,808 ReLU-26 [-1, 512, 14, 14] Conv2d-27 [-1, 512, 14, 14] 2,359,808 ReLU-28 [-1, 512, 14, 14] Conv2d-29 [-1, 512, 14, 14]2,359,808 ReLU-30 [-1, 512, 14, 14]MaxPool2d-31 0 [-1, 512, 7, 7]AdaptiveAvgPool2d-32 [-1, 512, 7, 7]Linear-33 [-1, 4096] 102,764,544 ReLU-34 [-1, 4096] Dropout-35 [-1, 4096] Linear-36 [-1, 4096] 16,781,312 ReLU-37 [-1, 4096] 0 Dropout-38 [-1, 4096] Linear-39 [-1, 1000] 4,097,000

Total params: 138,357,544 Trainable params: 138,357,544 Non-trainable params: 0

Input size (MB): 0.57

Forward/backward pass size (MB): 218.78

Params size (MB): 527.79

Estimated Total Size (MB): 747.15

Modifying an existing model (II)

```
import torchvision
from torchvision import datasets, models,
transforms
model ft =
models.vgg16(weights='IMAGENET1K V1')
num ftrs =
model ft.classifier[6].in features
model ft.classifier[6] =
nn.Linear(num ftrs, num classes)
```

```
from torchsummary import summary
model ft = models.vgg16(weights='IMAGENET1K V1')
summary(model ft, input size=(3,224,224))
                                  Output Shape
        Layer (type)
                                                      Param #
_____
            Conv2d-1
                             [-1, 64, 224, 224]
                                                        1,792
              ReLU-2
                             [-1, 64, 224, 224]
                                                            0
            Conv2d-3
                             [-1, 64, 224, 224]
                                                       36,928
              ReLU-4
                             [-1, 64, 224, 224]
         MaxPool2d-5
                            [-1, 64, 112, 112]
                                                            0
           Conv2d-6
                            [-1, 128, 112, 112]
                                                       73,856
              ReLU-7
                           [-1, 128, 112, 112]
            Conv2d-8
                                                      147,584
                           [-1, 128, 112, 112]
              ReLU-9
                           [-1, 128, 112, 112]
       MaxPool2d-10
                                                            0
                             [-1, 128, 56, 56]
           Conv2d-11
                             [-1, 256, 56, 56]
                                                      295,168
            ReLU-12
                             [-1, 256, 56, 56]
                                                      590,080
           Conv2d-13
                             [-1, 256, 56, 56]
            ReLU-14
                             [-1, 256, 56, 56]
           Conv2d-15
                             [-1, 256, 56, 56]
                                                      590,080
            ReLU-16
                             [-1, 256, 56, 56]
       MaxPool2d-17
                             [-1, 256, 28, 28]
           Conv2d-18
                             [-1, 512, 28, 28]
                                                    1,180,160
            ReLU-19
                             [-1, 512, 28, 28]
           Conv2d-20
                             [-1, 512, 28, 28]
                                                    2,359,808
            ReLU-21
                             [-1, 512, 28, 28]
           Conv2d-22
                             [-1, 512, 28, 28]
                                                    2,359,808
            ReLU-23
                             [-1, 512, 28, 28]
       MaxPool2d-24
                             [-1, 512, 14, 14]
                                                            0
           Conv2d-25
                             [-1, 512, 14, 14]
                                                    2,359,808
            ReLU-26
                             [-1, 512, 14, 14]
           Conv2d-27
                             [-1, 512, 14, 14]
                                                    2,359,808
            ReLU-28
                             [-1, 512, 14, 14]
           Conv2d-29
                             [-1, 512, 14, 14]
                                                    2,359,808
            ReLU-30
                             [-1, 512, 14, 14]
        MaxPool2d-31
                                                            0
                               [-1, 512, 7, 7]
AdaptiveAvgPool2d-32
                               [-1, 512, 7, 7]
          Linear-33
                                    [-1, 4096]
                                                   102,764,544
            ReLU-34
                                    [-1, 4096]
          Dropout-35
                                    [-1, 4096]
          Linear-36
                                    [-1, 4096]
                                                   16,781,312
            ReLU-37
                                    [-1, 4096]
          Dropout-38
                                    [-1, 4096]
           Linear-39
                                    [-1, 1000]
                                                    4,097,000
______
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
Input size (MB): 0.57
Forward/backward pass size (MB): 218.78
Params size (MB): 527.79
Estimated Total Size (MB): 747.15
```

```
num classes = 6
num ftrs = model ft.classifier[6].in features
model ft.classifier[6] = nn.Linear(num ftrs, num classes)
summary(model ft, input size=(3,224,224))
```

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 64, 224, 224]	1,792
ReLU-2	[-1, 64, 224, 224]	0
Conv2d-3	[-1, 64, 224, 224]	36,928
ReLU-4	[-1, 64, 224, 224]	0
MaxPool2d-5	[-1, 64, 112, 112]	0
Conv2d-6	[-1, 128, 112, 112]	73,856
ReLU-7	[-1, 128, 112, 112]	0
Conv2d-8	[-1, 128, 112, 112]	147,584
ReLU-9	[-1, 128, 112, 112]	0
MaxPool2d-10	[-1, 128, 56, 56]	0
Conv2d-11	[-1, 256, 56, 56]	295,168
ReLU-12	[-1, 256, 56, 56]	0
Conv2d-13	[-1, 256, 56, 56]	590,080
ReLU-14	[-1, 256, 56, 56]	0
Conv2d-15	[-1, 256, 56, 56]	590,080
ReLU-16	[-1, 256, 56, 56]	0
MaxPool2d-17	[-1, 256, 28, 28]	0
Conv2d-18	[-1, 512, 28, 28]	1,180,160
ReLU-19	[-1, 512, 28, 28]	0
Conv2d-20	[-1, 512, 28, 28]	2,359,808
ReLU-21	[-1, 512, 28, 28]	0
Conv2d-22	[-1, 512, 28, 28]	2,359,808
ReLU-23	[-1, 512, 28, 28]	0
MaxPool2d-24	[-1, 512, 14, 14]	0
Conv2d-25	[-1, 512, 14, 14]	2,359,808
ReLU-26	[-1, 512, 14, 14]	0
Conv2d-27	[-1, 512, 14, 14]	2,359,808
ReLU-28	[-1, 512, 14, 14]	0
Conv2d-29	[-1, 512, 14, 14]	2,359,808
ReLU-30	[-1, 512, 14, 14]	0
MaxPool2d-31	[-1, 512, 7, 7]	0
daptiveAvgPool2d-32	[-1, 512, 7, 7]	0
Linear-33	[-1, 4096]	102,764,544
ReLU-34	[-1, 4096]	0
Dropout-35	[-1, 4096]	0
Linear-36	[-1, 4096]	16,781,312
ReLU-37	[-1, 4096]	0
Dropout-38	[-1, 4096]	0
Linear-39	[-1, 6]	24,582
		========
Fortal params: 134,285,126	126	
Trainable params: 134,285,	120	

Input size (MB): 0.57 Forward/backward pass size (MB): 218.77

Params size (MB): 512.26

Estimated Total Size (MB): 731.60

```
num ftrs = model ft.classifier[6].in features
model ft.classifier[6] = nn.Linear(num ftrs, num classes)
summary(model ft, input size=(3,224,224))
        Laver (type)
                                  Output Shape
                                                        Param #
_____
           Conv2d-1
                             [-1, 64, 224, 224]
                                                          1,792
             ReLU-2
                             [-1, 64, 224, 224]
           Conv2d-3
                             [-1, 64, 224, 224]
                                                        36,928
             ReLU-4
                             [-1, 64, 224, 224]
                                                             0
        MaxPool2d-5
                            [-1, 64, 112, 112]
                                                             0
           Conv2d-6
                            [-1, 128, 112, 112]
                                                        73,856
             ReLU-7
                            [-1, 128, 112, 112]
                                                             0
           Conv2d-8
                            [-1, 128, 112, 112]
                                                        147,584
             ReLU-9
                            [-1, 128, 112, 112]
       MaxPool2d-10
                              [-1, 128, 56, 56]
                                                              0
           Conv2d-11
                             [-1, 256, 56, 56]
                                                        295,168
            ReLU-12
                              [-1, 256, 56, 56]
                                                             0
          Conv2d-13
                              [-1, 256, 56, 56]
                                                        590,080
            ReLU-14
                              [-1, 256, 56, 56]
          Conv2d-15
                              [-1, 256, 56, 56]
                                                        590,080
            ReLU-16
                              [-1, 256, 56, 56]
       MaxPool2d-17
                              [-1, 256, 28, 28]
                                                              0
           Conv2d-18
                              [-1, 512, 28, 28]
                                                     1,180,160
            ReLU-19
                              [-1, 512, 28, 28]
          Conv2d-20
                                                     2,359,808
                             [-1, 512, 28, 28]
            ReLU-21
                              [-1, 512, 28, 28]
                                                              0
          Conv2d-22
                              [-1, 512, 28, 28]
                                                     2,359,808
            ReLU-23
                              [-1, 512, 28, 28]
                                                              0
       MaxPool2d-24
                              [-1, 512, 14, 14]
           Conv2d-25
                              [-1, 512, 14, 14]
                                                     2,359,808
            ReLU-26
                              [-1, 512, 14, 14]
          Conv2d-27
                              [-1, 512, 14, 14]
                                                     2,359,808
            ReLU-28
                              [-1, 512, 14, 14]
           Conv2d-29
                             [-1, 512, 14, 14]
                                                     2,359,808
            ReLU-30
                              [-1, 512, 14, 14]
       MaxPool2d-31
                                                              0
                               [-1, 512, 7, 7]
AdaptiveAvgPool2d-32
                               [-1, 512, 7, 7]
          Linear-33
                                    [-1, 4096]
                                                    102,764,544
            ReLU-34
                                    [-1, 4096]
         Dropout-35
                                    [-1, 4096]
                                                             0
                                                    16,781,312
          Linear-36
                                    [-1, 4096]
            ReLU-37
                                    [-1, 4096]
                                                             a
         Dropout-38
                                    [-1, 4096]
                                                              0
          Linear-39
Total params: 134,285,126
```

num classes = 6

```
for i in model_ft.features.parameters():
    i.requires_grad = False
summary(model_ft, (3,224,224))

Layer (type) Output Shape Param #
```

```
[-1, 64, 224, 224]
            Conv2d-1
              ReLU-2
                              [-1, 64, 224, 224]
            Conv2d-3
                              [-1, 64, 224, 224]
                                                           36,928
              ReLU-4
                              [-1, 64, 224, 224]
                                                                0
         MaxPool2d-5
                              [-1, 64, 112, 112]
                                                                0
            Conv2d-6
                             [-1, 128, 112, 112]
                                                           73,856
              ReLU-7
                             [-1, 128, 112, 112]
            Conv2d-8
                                                          147,584
                             [-1, 128, 112, 112]
              ReLU-9
                             [-1, 128, 112, 112]
        MaxPool2d-10
                               [-1, 128, 56, 56]
           Conv2d-11
                               [-1, 256, 56, 56]
                                                          295,168
             ReLU-12
                               [-1, 256, 56, 56]
           Conv2d-13
                               [-1, 256, 56, 56]
                                                          590,080
             ReLU-14
                               [-1, 256, 56, 56]
           Conv2d-15
                                                          590,080
                               [-1, 256, 56, 56]
             ReLU-16
                               [-1, 256, 56, 56]
        MaxPool2d-17
                               [-1, 256, 28, 28]
                                                        1,180,160
           Conv2d-18
                               [-1, 512, 28, 28]
             ReLU-19
                               [-1, 512, 28, 28]
           Conv2d-20
                               [-1, 512, 28, 28]
                                                        2,359,808
             ReLU-21
                               [-1, 512, 28, 28]
           Conv2d-22
                                                        2,359,808
                               [-1, 512, 28, 28]
             ReLU-23
                               [-1, 512, 28, 28]
        MaxPool2d-24
                               [-1, 512, 14, 14]
           Conv2d-25
                               [-1, 512, 14, 14]
                                                        2,359,808
             ReLU-26
                               [-1, 512, 14, 14]
           Conv2d-27
                               [-1, 512, 14, 14]
                                                        2,359,808
             ReLU-28
                               [-1, 512, 14, 14]
           Conv2d-29
                               [-1, 512, 14, 14]
                                                        2,359,808
             ReLU-30
                               [-1, 512, 14, 14]
        MaxPool2d-31
                                 [-1, 512, 7, 7]
AdaptiveAvgPool2d-32
                                [-1, 512, 7, 7]
           Linear-33
                                      [-1, 4096]
                                                      102,764,544
             ReLU-34
                                      [-1, 4096]
                                      [-1, 4096]
          Dropout-35
           Linear-36
                                      [-1, 4096]
                                                       16,781,312
             ReLU-37
                                      [-1, 4096]
                                      [-1, 4096]
          Dropout-38
           Linear-39
                                         [-1, 6]
```

```
Total params: 134,285,126
Trainable params: 119,570,438
Non-trainable params: 14,714,688
Input size (MB): 0.57
Forward/backward pass size (MB): 218.77
```

Params size (MB): 512.26

Estimated Total Size (MB): 731.60

Batch normalization

 Batch normalization behaves differently from most other layers due to an additional option specifying whether the layer should operate in training or inference mode

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}
```

Batch normalization

 Batch normalization behaves differently from most other layers because it has an additional options specifying whether the layer should operate in training or inference mode

- In **training** mode, the layer uses the mean and variance of the current batch
- In inference mode, the layer uses the accumulated mean and variance learnt during training
- These are not counted as trainable parameters

Batch normalization

 Batch normalization behaves differently from most other layers because it has an additional options specifying whether the layer should operate in training or inference mode

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}
```

Scale and shift are standard trainable parameters: freezing is controlled by the requires grad property

Evaluation mode

- model.eval() sets the entire model in evaluation mode
 - Must be done before inference!
- model.train() sets the entire model in trainig
 mode
 - Must be done before training!
- Layers that are affected by the mode are:
 - BatchNorm
 - Dropout (regularization layer)

Where to find pre-trained models

- Pre-defined neural networks for addressing different tasks are available
- https://pytorch.org/vision/stable/models.html

DATA AUGMENTATION

Data augmentation

- CNNs, by constructions, are only invariant to translation
- We would like our networks to be invariant to rotation, scale, stretching, mirroring, illumination, contrast, noise, etc.
- Acts as a regularizer by applying random realistic transformations that should not affect the class or

label


```
import os
import pandas as pd
from torchvision.io import read_image
class CustomImageDataset(Dataset):
    def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
        self.img_labels = pd.read_csv(annotations_file)
        self.img dir = img dir
        self.transform = transform
        self.target_transform = target_transform
    def len (self):
        return len(self.img_labels)
    def __getitem__(self, idx):
        img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
        image = read_image(img_path)
        label = self.img_labels.iloc[idx, 1]
        if self.transform:
            image = self.transform(image)
        if self.target transform:
            label = self.target_transform(label)
        return image, label
```

```
import os
import pandas as pd
from torchvision.io import read image
class CustomImageDataset(Dataset):
   def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
       self.img_labels = pd.read_csv(annotations_file)
       self.img_dir = img_dir
                                                    Assuming labels are stored in a
       self.transform = transform
                                                    CSV
       self.target_transform = target_transform
                                                               tshirt1.jpg, 0
                                                               tshirt2.jpg, 0
   def len (self):
       return len(self.img labels)
                                                               ankleboot999.jpg, 9
   def __getitem__(self, idx):
       img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
       image = read_image(img_path)
       label = self.img labels.iloc[idx, 1]
       if self.transform:
           image = self.transform(image)
       if self.target transform:
           label = self.target_transform(label)
       return image, label
```

```
import os
import pandas as pd
from torchvision.io import read_image
class CustomImageDataset(Dataset):
   def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
       self.img_labels = pd.read_csv(annotations_file)
       self.img dir = img dir
                                                Transformations that should be
       self.transform = transform
       self.target transform = target transform
                                                applied to the input and target
   def __len__(self):
       return len(self.img_labels)
   def __getitem__(self, idx):
       img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
       image = read_image(img_path)
       label = self.img_labels.iloc[idx, 1]
       if self.transform:
           image = self.transform(image)
       if self.target transform:
           label = self.target transform(label)
       return image, label
```

```
import os
import pandas as pd
from torchvision.io import read_image
class CustomImageDataset(Dataset):
   def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
       self.img_labels = pd.read_csv(annotations_file)
       self.img dir = img dir
       self.transform = transform
       self.target_transform = target_transform
                                             Return the number of samples in
   def __len__(self):
       return len(self.img_labels)
                                            the dataset
   def __getitem__(self, idx):
       img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
       image = read_image(img_path)
       label = self.img_labels.iloc[idx, 1]
       if self.transform:
           image = self.transform(image)
       if self.target transform:
           label = self.target transform(label)
       return image, label
```

How to define a dataset

```
import os
import pandas as pd
from torchvision.io import read_image
class CustomImageDataset(Dataset):
   def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
       self.img_labels = pd.read_csv(annotations_file)
       self.img dir = img dir
       self.transform = transform
       self.target transform = target transform
   def __len__(self):
       return len(self.img_labels)
   def __getitem__(self, idx):
       img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
       image = read_image(img_path)
                                                   Loads and returns a
       label = self.img_labels.iloc[idx, 1]
       if self.transform:
                                                   sample from the dataset at
           image = self.transform(image)
                                                   the given index idx
       if self.target transform:
           label = self.target_transform(label)
       return image, label
```

How to define a dataset

```
import os
import pandas as pd
from torchvision.io import read_image
class CustomImageDataset(Dataset):
    def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
       self.img_labels = pd.read_csv(annotations_file)
       self.img dir = img dir
       self.transform = transform
       self.target transform = target transform
   def len (self):
       return len(self.img_labels)
    def __getitem__(self, idx):
       img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
       image = read_image(img_path)
       label = self.img_labels.iloc[idx, 1]
       if self.transform:
                                                         Preprocessing and data
           image = self.transform(image)
       if self.target transform:
                                                         augmentation can be
           label = self.target transform(label)
                                                         performed here
       return image, label
```

Data augmentation

- Torchvision supports common computer vision transformations
 - modules: torchvision.transforms and torchvision.transforms.v2
 - can be used to transform or augment data for training or inference of different tasks (image classification, detection, segmentation, video classification)
- Transformations includes
 - Preprocessing and normalization
 - Data augmentation
- Transformations can be composed

Example

```
# Data augmentation and normalization for training
# Just normalization for validation
data transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    1),
```

Statistics calculated on the ImageNet dataset (by default, Pytorch converts images between 0 and 1)

Beyond classification

https://github.com/aleju/imgaug

Offline data augmentation

https://microsoft.github.io/AirSim/

https://github.com/facebookresearch/House3D

Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that is left of the big sphere?

Q: There is a **sphere** with the **same size as** the **metal cube**; is it **made of the same material as** the **small red sphere**?

Q: How many objects are either small cylinders or red things?

https://cs.stanford.edu/people/jcjohns/clevr/

https://research.nvidia.com/publication/2018-06_Falling-Things

References

- https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
- https://pytorch.org/vision/main/transforms.
 html

NON-SEQUENTIAL MODELS

Non sequential architectures

- Residual or parallel blocks
 - Residual networks
 - Inception Layers
 - Multiple branches
- Multiple Inputs Outputs
- Parameter sharing
 - Since a layer is a function, it can be re-used, with the same parameters, in different parts of the network
 - If multiple path flow through the same layer, the gradients will accumulate updating the same weights
- Extraction of subnetworks from existing models
 - Model "surgery"

Residual Networks

 We can define functions and modules to implement re-usable blocks

```
output =
residual block(x)
```

 These blocks can be used to compose other networks as if they were layer

Residual block

```
class ResidualBlock(nn.Module):
def init (self, in channels, out channels):
    super(ResidualBlock, self). init ()
    self.conv1 = nn.Sequential(
             nn.Conv2d(in channels, out channels,
             kernel size = 3, padding = 1),
              nn.ReLU())
    self.conv2 = nn.Conv2d(out channels, out channels,
        kernel size = 3, stride = 1, padding = 1)
    self.relu = nn.ReLU()
    self.out channels = out channels
def forward(self, x):
    residual = x
    out = self.conv1(x)
    out = self.conv2(out)
    out += residual
    out = self.relu(out)
    return out
```

Multiple inputs – outputs

 A Model object can take an array of tensors as either inputs or outputs

```
def forward(self, x):
    # forward pass
    x1 = ...
    x2 = ...
    return x1, x2
```

Multiple inputs – outputs

A Model object can take an array of tensors as either

inputs or outputs

Age? 50 Gender? M

Loss = α MSE(age) + β CE(gender)

Multiple inputs – outputs

A Model object can take an array of tensors as either

inputs or outputs

 Since gradient descent requires to minimize a scalar, the loss is calculated as the (weighted) sum of the loss for each output

```
out1, out2 = model(data)
loss1 = mse(out1, target1)
loss2 = ce(out2, target2)
loss = alfa*loss1 + beta*loss2
loss.backward()
```


Age? 50 Gender? M Loss = α MSE(age) + β CE(gender)