HMIN112M : Modélisation conceptuelle UML

I.Mougenot

UM

2020

Notion de modèle

Modèle : abstraction d'une réalité pour répondre à un besoin

- différents modèles
- 2 modèle statique ou contemplatif : cherche à modéliser les entités du domaine d'intérêt
- modèle dynamique ou numérique : cherche à modéliser les processus qui s'appliquent aux entités du domaine d'intérêt

Un modèle est une simplification : les modèles sont utiles, à défaut d'être exacts

Modèle statique

La description de la structure des entités et de leurs relations est centrale dans le modèle

- modèle dit aussi structurel ou conceptuel
- plusieurs approches sous-tendent la modélisation : modèle Entité-Association (1976) et méthode Merise, notation objet UML (années 1990, issue du génie logiciel)
- les approches privilégient une représentation graphique / visuelle des mondes considérés

Différents modèles

Figure: Une approche s'appuyant sur trois types de modélisation

Notation UML

Différents diagrammes sont proposés pour traiter des aspects fonctionnels, structurels et statiques d'un système, parmi lesquels (non exhaustif) :

- aspect fonctionnel : cas d'utilisation
- aspect structurel : diagrammes de classes, diagrammes d'objets
- aspect dynamique (ou comportemental) : diagramme de séquences, diagramme d'états-transitions, diagramme d'activités
- aspect implantation : diagramme de composants

Outils d'aide à la conception

Un large éventail de logiciels gratuits ou payants pour faciliter les activités de modélisation

- ArgoUML
- Dia
- Umbrello
- PowerAMC
- Rational Rose
- 6 . . .

Définitions classe et objet

Ces définitions sont générales au paradigme objet (langages de programmation en particulier

- objet = un identifiant (donné par le système) + un état (ensemble d'attributs valués) + un comportement (ensemble d'opérations qui s'appliquent à l'objet)
- classe = moule à objets : la classe regroupe les objets qui partagent les mêmes types d'états et les mêmes types de comportement
- Par exemple, la classe Etudiant regroupe tous les objets qui ont des propriétés comme un numéro INE.
- le terme objet possède des termes équivalents comme instance ou individu

Notions centrales

Types d'association prédéfinis Autres éléments de modélisation

Université: monde modélisé

Figure: image extraite d'un article du journal Libération

Notions centrales

Types d'association prédéfinis Autres éléments de modélisation

Notion de classe dans UML

notion de portée (principe d'encapsulation) :

privée (-) : accessible uniquement au niveau d'un objet de la classe

publique (-): accessible par tout objet

protégée (#) : accessible uniquement au niveau d'un objet de la classe

ou d'une classe dérivée

Figure: Représentation de la classe Etudiant

Notion d'objet dans UML

objet ou individu ou instance de classe

e1:Etudiant numINE = "202032456" nom = "Dubois" prénom = "Jasmine" genre = "femme"

dateNaissance = "12/10/97" nationalité = "française"

Figure: Représentation d'un objet de la classe Etudiant

Notion d'association

Les associations posées entre les classes permettent d'exprimer les inter-relations des objets de ces classes

- les associations possèdent un nom (souvent un verbe qui désigne une action) et un sens de lecture
- les extrémités des associations sont enrichies de multiplicités qui indiquent le nombre de rôles min et max joués par un objet dans une association
- la signification de l'association et des objets qui y sont impliqués, peut être étendue par des rôles

Notions centrales

Types d'association prédéfinis Autres éléments de modélisation

Notion d'association dans UML

Figure: Représentation de l'association inscrit_dans (à l'instant présent)

Notions centrales

Types d'association prédéfinis Autres éléments de modélisation

Des précisions

à l'instant présent, une formation a au moins 5 étudiants inscrits et au plus n étudiants inscrits

à l'instant présent, un étudiant est inscrit dans au moins une formation et au plus 2 formations

nombre de rôles min et max joué par un objet étudiant dans l'association inscrit dans

multiplicités

* ou 0..* de 0 à plusieurs 1..* de 1 à plusieurs 1 ou 1 1 de 1 à 1 n m de n à m

Diagramme d'objets conforme au diagramme de classes

Figure: Exemple diagramme de classes / diagramme d'objets

Notion de classe association

Une association munie d'une ou de plusieurs propriétés :

- prend un statut particulier :
 - elle est élevée au rang de classe, elle est dite "chosifiée ou réifiée"
 - elle reste toutefois également une association

Classe association en UML

Traduire la temporalité : les multiplicités sont également modifiées dans le diagramme

Figure: Une classe association pour exprimer les inscriptions dans le temps

Diagramme de classes enrichi

Figure: Plusieurs associations peuvent être définies entre deux classes

Diagramme de classes enrichi

Figure: Des rôles aux extrémités des relations viennent préciser la sémantique de la fonction jouée par l'objet

Même diagramme dans le temps

Figure: Plusieurs classes associations avec des attributs temporels

Notion d'arité d'une association

Une association peut être munie de 2 ou plus extrémités

- arité d'une association = nombre d'extrémité de l'association
- le plus souvent, l'association a deux extrémités, elle est dite binaire ou d'arité 2
- il peut arriver, lorsque plus de deux objets sont engagés dans la même association en simultané, de devoir définir des associations d'arité > 2, dites alors n-aires
- le nom, le sens de lecture et les multiplicités de l'association ne sont alors pas mentionnés

Notion de relation n-aire

Figure: L'association possède trois extrémités

Réduire la complexité du modèle

Figure: Traduire la relation n-aire en relations binaires

Réduire la complexité du modèle

Figure: Traduire la relation n-aire avec une classe association

Aspects structurels : association réflexive

Figure: Une association dont les deux extrémités pointent sur la même classe

Association réflexive

Figure: Exemple de diagramme objet pour deux objets impliqués dans une association réflexive

Associations spécifiques

Traduire la partonomie et l'héritage au travers d'associations dédiées

- agrégation : relation tout/partie
- composition : même sémantique que l'agrégation mais avec une dépendance existentielle supplémentaire
- héritage : généralisation / spécialisation

Agrégation (à l'instant t)

Relation d'agrégation : traduire la notion de tout/partie

Un étudiant fait partie d'une à deux formations. Une formation est un tout et a pour sous-parties au moins 5 étudiants voire plus.

Agrégation et classe association (dans le temps)

Relation d'agrégation : éventualité de classe association

Dans le temps, un étudiant fait partie de 1 à plusieurs touts (formations)

Composition

Relation de composition : tout/partie avec dépendance forte

Un cours est une partie inhérente du module. Sans le module, le cours n'a pas de raison d'exister

Composition

Relation de composition : tout/partie avec dépendance forte

Un cours est une partie inhérente du module. Sans le module, le cours n'a pas de raison d'exister II en va de même pour l'examen

Héritage

Relation d'héritage : généralisation / spécialisation

Un cours magistral est une spécialisation de cours. C'est un cours mais il peut avoir ses propres spécificités II en va de même pour un TD ou un TP

Figure: Un CM est aussi un cours à un niveau plus général

Aspects structurels : héritage

Relation d'héritage : généralisation / spécialisation

c1 est une instance à la fois de Cours et de CM

Figure: Une objet de la classe CM est aussi un objet de cours

Partition

Notion de partition : quand les classes filles sont disjoints et sont toutes connues

les intersections entre classes filles sont vides : $TD \cap TP = \emptyset$ et $TD \cap CM = \emptyset$ et $CM \cap TP = \emptyset$ les unions entre les classes filles correspondent à la classe mère : $TP \cup TD \cup CM = Cours$

Autre exemple d'héritage (sans partition)

Une personne peut être tout à la fois un étudiant et un enseignant (chevauchant) Une personne peut n'être ni un étudiant, ni un enseignant (incomplet)

Exemple d'objet peuplant plusieurs classes

Les contraintes s'appliquant à un diagramme de classes

Stéréotypes

Stéréotype : étendre le pouvoir d'expression d'UML

Personne

numSecu String {unique]

nom : String prénom : String

dateNaissance : Date

genre : Genre

<<Enumeration>>
Genre

femme homme

Figure: Arborescence de classes chevauchantes

Attributs et associations dérivées

attributs et associations dérivées Formation Etudiant numINE : String {unique} codeF : String {unique} nom : String inscrit dans -> libellé : String 5..* prénom : String niveau : String genre : String 1..2 dateNaissance : Date nationalité : String 1 * /åge : String /comptabilisé dans -> Département Enseignement nomD : String {unique} nomComposante: String

Figure: Calculées à partir d'autres attributs ou associations

