- **1.** Which ones of the usual symbols of addition, subtraction, multiplication and division define an operation (composition law) on the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ?
- **2.** What algebraic structures with one operation (groupoid, semigroup, monoid or group) are the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} together with addition or multiplication?
 - **3.** Give examples of:
 - (i) a groupoid which is not a semigroup.
 - (ii) a semigroup which is not a monoid.
 - (iii) a monoid which is not a group.
- **4.** Give example of a groupoid with identity element in which there exists an element having two different symmetric elements.
 - **5.** Let $A = \{a_1, a_2, a_3\}$ be a set. Determine the number of:
 - (i) operations on A;
 - (ii) commutative operations on A;
 - (iii) operations on A with identity element.

Generalization for a set A with n elements $(n \in \mathbb{N}^*)$.

6. Let "*" be the operation on \mathbb{R} defined by:

$$x * y = x + y + xy.$$

Show that:

- (i) $(\mathbb{R}, *)$ is a commutative monoid.
- (ii) The interval $[-1, \infty)$ is a stable subset of $(\mathbb{R}, *)$.
- **7.** Let "*" be the operation on \mathbb{N} defined by x * y = g.c.d.(x, y).
- (i) Prove that $(\mathbb{N}, *)$ is a commutative monoid.
- (ii) Show that $D_n = \{x \in \mathbb{N} \mid x/n\}$ $(n \in \mathbb{N}^*)$ is a stable subset of $(\mathbb{N}, *)$ and $(D_n, *)$ is a commutative monoid.
 - (iii) Fill in the table of the operation "*" on D_6 .
 - **8.** Determine the finite stable subsets of (\mathbb{Z},\cdot) .
- **9.** Let A be a set and let $\mathcal{P}(A)$ be the power set of A (that is, the set of all subsets of A). What algebraic structure with one operation (groupoid, semigroup, monoid or group) is $\mathcal{P}(A)$ together with the operation " \cup " or " \cap "?
- **10.** Let (A, \cdot) be a groupoid and $X, Y \subseteq A$. Let " \cdot " be the operation on the power set $\mathcal{P}(A)$ defined by:

$$X \cdot Y = \{x \cdot y \mid x \in X, y \in Y\}.$$

Show that:

- (i) If (A, \cdot) is commutative, then $(\mathcal{P}(A), \cdot)$ is commutative.
- (ii) If (A, \cdot) is a semigroup, then $(\mathcal{P}(A), \cdot)$ is a semigroup.
- (iii) If (A, \cdot) is a monoid, then $(\mathcal{P}(A), \cdot)$ is a monoid.
- (iv) If (A, \cdot) is a group, then in general $(\mathcal{P}(A), \cdot)$ is not a group (for $A \neq \emptyset$).

1. Let "*" be the operation on \mathbb{R} defined by:

$$x * y = xy - 5x - 5y + 30.$$

Is $(\mathbb{R}, *)$ a group? What about $(\mathbb{R} \setminus \{5\}, *)$?

2. Let $n \in \mathbb{N}$, $n \geq 2$. Show that the set

$$GL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det(A) \neq 0 \}$$

is a stable subset of the monoid $(M_n(\mathbb{R}),\cdot)$ and $(GL_n(\mathbb{R}),\cdot)$ is a group.

3. Let $n \in \mathbb{N}^*$. Show that the set

$$U_n = \{ z \in \mathbb{C} \mid z^n = 1 \}$$

is a stable subset of the group (\mathbb{C}^*,\cdot) , (U_n,\cdot) is an abelian group, and determine the elements of U_n .

4. Let $n \in \mathbb{N}$ and $\mathbb{Z}_n = \{\widehat{x} \mid x \in \mathbb{Z}\}$, where $\widehat{x} = x + n\mathbb{Z} = \{x + nk \mid k \in \mathbb{Z}\}$. Let "+" be the operation on \mathbb{Z}_n defined by:

$$\widehat{x} + \widehat{y} = \widehat{x + y}, \quad \forall \ \widehat{x}, \widehat{y} \in \mathbb{Z}_n.$$

Show that $(\mathbb{Z}_n, +)$ is an abelian group and determine its cardinal (discussion on n).

5. Let $M \neq \emptyset$ be a set and

$$S_M = \{f : M \to M \mid f \text{ bijective}\}.$$

- (i) Show that (S_M, \circ) is a group.
- (ii) If $|M| = n \in \mathbb{N}^*$, then we denote S_M by S_n . Determine the operation table for the group (S_3, \circ) .
- **6.** Determine the operation table for the dihedral group (D_3, \cdot) of rotations and symmetries of an equilateral triangle.
- 7. Determine the operation table for the dihedral group (D_4, \cdot) of rotations and symmetries of a square.
- **8.** Let (G, \cdot) and (G', \cdot) be groups with identity elements e and e' respectively. Let " \cdot " be the operation on $G \times G'$ defined by:

$$(g_1, g_1') \cdot (g_2, g_2') = (g_1 \cdot g_2, g_1' \cdot g_2'), \quad \forall (g_1, g_1'), (g_2, g_2') \in G \times G'.$$

Show that $(G \times G', \cdot)$ is a group, called the *direct product* of the groups G and G'.

- **9.** Determine the group of invertible elements of the monoids $(\mathbb{N}, +)$, (\mathbb{N}, \cdot) , (\mathbb{Z}, \cdot) , (\mathbb{Q}, \cdot) , (\mathbb{R}, \cdot) , (\mathbb{C}, \cdot) , $(M_n(\mathbb{R}), \cdot)$ $(n \in \mathbb{N}, n \ge 2)$ and (M^M, \circ) , where $M \ne \emptyset$ is a set and M^M denotes the set of all functions $f: M \to M$.
 - **10.** Let (G,\cdot) be a group. Show that:
 - (i) G is abelian $\iff \forall x, y \in G, (xy)^2 = x^2y^2.$
 - (ii) $\forall x \in G, x^2 = 1 \Longrightarrow G$ is abelian.

- **1.** Which ones of the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are subgroups of the groups $(\mathbb{C}, +)$ and (\mathbb{C}^*, \cdot) ?
 - **2.** Show that $H = \{z \in \mathbb{C} \mid |z| = 1\}$ is a subgroup of (\mathbb{C}^*, \cdot) , but not of $(\mathbb{C}, +)$.
 - **3.** Let $n \in \mathbb{N}$, $n \geq 2$. Show that:
 - (i) $GL_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \det(A) \neq 0\}$ is a stable subset of the monoid $(M_n(\mathbb{C}), \cdot)$.
 - (ii) $(GL_n(\mathbb{C}), \cdot)$ is a group.
 - (iii) $SL_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \det(A) = 1\}$ is a subgroup of the group $(GL_n(\mathbb{C}), \cdot)$.
 - **4.** Let $n \in \mathbb{N}^*$. Show that $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ is a subgroup of the group (\mathbb{C}^*, \cdot) .
- **5.** Consider the set $S(\mathbb{Z},+)=\{n\mathbb{Z}\mid n\in\mathbb{N}\}$ of subgroups of the the group $(\mathbb{Z},+)$ and $m,n\in\mathbb{N}$. Show that:
 - (i) $n\mathbb{Z} \subseteq m\mathbb{Z} \iff m|n$.
 - (ii) $m\mathbb{Z} \cap n\mathbb{Z} = [m, n]\mathbb{Z}$, where [m, n] denotes the least common multiple of m and n.
 - (iii) $m\mathbb{Z} + n\mathbb{Z} = (m, n)\mathbb{Z}$, where (m, n) denotes the greatest common divisor of m and n.
 - **6.** Let (G,\cdot) be a group and $H,K\leq G$. Show that:

$$H \cup K \leq G \iff H \subseteq K \text{ or } K \subseteq H$$
.

7. Let (G,\cdot) be a group and let $\emptyset \neq H \subseteq G$ be a finite set. Show that:

$$H \leq G \iff H$$
 is a stable subset of (G, \cdot) .

8. Let (G, \cdot) be a group. Prove that:

$$Z(G) = \{ x \in G \mid x \cdot q = q \cdot x, \forall q \in G \}$$

is a subgroup of G, called the center of G. When does the equality Z(G) = G hold?

9. Prove that:

$$Z(GL_2(\mathbb{R}), \cdot) = \{a \cdot I_2 \mid a \in \mathbb{R}^*\},\$$

where I_2 is the identity matrix. Generalization for $GL_n(\mathbb{R})$ with $n \in \mathbb{N}$, $n \geq 2$.

10. Prove that $Z(S_3, \circ) = \{e\}$, where e is the identity permutation. Generalization for S_n with $n \in \mathbb{N}$, $n \geq 3$.

- **1.** (i) Let $f: \mathbb{C}^* \to \mathbb{R}^*$ be defined by f(z) = |z|. Show that f is a group homomorphism between (\mathbb{C}^*, \cdot) and (\mathbb{R}^*, \cdot) .
- (ii) Let $n \in \mathbb{N}$ and $g : \mathbb{Z} \to \mathbb{Z}_n$ be defined by $g(x) = \widehat{x}$. Prove that g is a group homomorphism between $(\mathbb{Z}, +)$ and $(\mathbb{Z}_n, +)$.
- **2.** (i) Let $n \in \mathbb{N}$, $n \geq 2$ and let $\alpha : GL_n(\mathbb{R}) \to \mathbb{R}^*$ be defined by $\alpha(A) = \det(A)$. Show that α is a group homomorphism between $(GL_n(\mathbb{R}), \cdot)$ and (\mathbb{R}^*, \cdot) .
- (ii) Let $n \in \mathbb{N}$, $n \geq 2$ and $\beta : M_n(\mathbb{R}) \to \mathbb{R}$ be defined by $\beta(A) = \det(A)$. Show that β is not a group homomorphism between $(M_n(\mathbb{R}), +)$ and $(\mathbb{R}, +)$.
- **3.** For a group homomorphism $f: G \to G'$ between groups (G, \cdot) and (G', \cdot) the *kernel* of f is Ker $f = \{x \in G \mid f(x) = 1'\}$ and the *image* of f is Im $f = \{f(x) \mid x \in G\}$. Determine the kernel and the image of the group homomorphisms from Ex. **1.** and **2.**
- **4.** Let $f: \mathbb{C}^* \to GL_2(\mathbb{R})$ be defined by $f(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Show that f is a group homomorphism between (\mathbb{C}^*, \cdot) and $(GL_2(\mathbb{R}), \cdot)$.
- **5.** Let $a, b \in \mathbb{N}$ and $f : \mathbb{C}^* \to \mathbb{R}^*$ be defined by $f(z) = a \cdot |z| + b$. Determine a, b such that f is a group homomorphism between (\mathbb{C}^*, \cdot) and (\mathbb{R}^*, \cdot) .
- **6.** Let (G,\cdot) be a group and let $f:G\to G$ be defined by $f(x)=x^{-1}$. Show that $f\in \operatorname{End}(G) \iff G$ is abelian.
 - **7.** Show that the following groups are isomorphic: $(\mathbb{Z}_n, +)$ and (U_n, \cdot) $(n \in \mathbb{N}^*)$.
 - **8.** Show that the following groups are isomorphic: Klein's group (K,\cdot) and $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$.
 - **9.** Show that the following groups are isomorphic: $(\mathbb{R}, +)$ and (\mathbb{R}_+^*, \cdot) .
 - **10.** Let (G,\cdot) be a group with 3 elements. Determine $\operatorname{End}(G)$ and $\operatorname{Aut}(G)$.
 - 11. Determine $\operatorname{Aut}(U_4,\cdot)$.
 - **12.** (i) Let $f \in \text{End}(\mathbb{Z}, +)$. Show that $f(n) = f(1) \cdot n, \forall n \in \mathbb{Z}$.
 - (ii) $\forall a \in \mathbb{Z}$, let $t_a : \mathbb{Z} \to \mathbb{Z}$ be defined by $t_a(n) = a \cdot n$. Prove that:

$$\operatorname{End}(\mathbb{Z},+) = \{t_a \mid a \in \mathbb{Z}\}\$$

and determine $Aut(\mathbb{Z}, +)$.

- **1.** Determine the order of each element and all generators of the cyclic groups $(\mathbb{Z}_8,+)$ and (U_6,\cdot) .
- **2.** Let (G, \cdot) be a cyclic group, where $G = \langle x \rangle$ and $|G| = n \in \mathbb{N}^*$, and let $k \in \mathbb{N}^*$. Show that:

$$G = \langle x^k \rangle \iff (n, k) = 1$$
.

- **3.** Determine the order of each element of Klein's group (K, \cdot) , permutation group (S_3, \circ) and quaternion group (Q, \cdot) . Are they cyclic groups?
- **4.** (i) Consider the matrices $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$ in the group $(GL_2(\mathbb{R}), \cdot)$. Determine ord A, ord B, ord $(A \cdot B)$ and ord $(B \cdot A)$.
- (ii) Give an example of group in which there exist two elements of infinite order, whose product has finite order.
 - **5.** Let (G, \cdot) be a group and $x, y \in G$. Show that:

$$\operatorname{ord}(xy) = \operatorname{ord}(yx).$$

6. Let (G,\cdot) be an abelian group. Show that

$$t(G) = \{x \in G \mid \text{ord } x \text{ is finite}\}$$

is a subgroup of G. Is the property still true if G is not abelian?

- **7.** Let (G,\cdot) and (G',\cdot) be abelian groups. Show that if $G \simeq G'$, then $t(G) \simeq t(G')$.
- 8. Using 7. show that the following groups are not isomorphic:
- (i) $(\mathbb{Q}, +)$ and (\mathbb{Q}^*, \cdot) .
- (ii) $(\mathbb{R}, +)$ and (\mathbb{R}^*, \cdot) .
- **9.** Let $f:G\to G'$ be a group homomorphism and let $x\in G$ be an element of finite order. Prove that:
 - (i) ord f(x) is finite and ord f(x) ord x.
 - (ii) If f is injective, then ord $f(x) = \operatorname{ord} x$.
 - **10.** Using **9.** show that the groups $(\mathbb{Z}_4,+)$ and $(\mathbb{Z}_2 \times \mathbb{Z}_2,+)$ are not isomorphic.

1. Let $n \in \mathbb{N}$, $n \geq 2$ and

$$SL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det(A) = 1 \},$$

$$GL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det(A) \neq 0 \}.$$

Show that $SL_n(\mathbb{R})$ is a normal subgroup of the group $(GL_n(\mathbb{R}), \cdot)$.

- **2.** For $a \in \mathbb{R}$, let $t_a : \mathbb{R} \to \mathbb{R}$ be defined by $t_a(x) = a \cdot x$. Is the set $H = \{t_a \mid a \in \mathbb{R}^*\}$ a normal subgroup of the symmetric group $(S_{\mathbb{R}}, \circ)$?
 - 3. Show that the center

$$Z(G) = \{ x \in G \mid x \cdot g = g \cdot x, \forall g \in G \}$$

of a group (G, \cdot) is a normal subgroup.

- **4.** Determine the (normal) subgroups and the factor groups of the group $(\mathbb{Z}, +)$.
- **5.** Determine the (normal) subgroups and the factor groups of the group $(\mathbb{Z}_6, +)$. Fill in the operation table for one of the factor groups.
- **6.** Determine the (normal) subgroups and the factor groups of Klein's group (K, \cdot) . Fill in the operation table for one of the factor groups.
- 7. Determine the (normal) subgroups of the group (S_3, \circ) (compute S_3/r_H and S_3/r_H' for $H \leq S_3$). Determine the factor groups S_3/N , where N is a normal subgroup of S_3 , and fill in the operation table for one of them.
- **8.** Determine the (normal) subgroups of the quaternion group (Q, \cdot) . Determine the factor groups Q/N, where N is a normal subgroup of Q, and fill in the operation table for the group $(Q/N, \cdot)$, where $N = \{-1, 1\}$.

1. Let $n \in \mathbb{N}$, $n \geq 2$. Prove the group isomorphism

$$(GL_n(\mathbb{R})/SL_n(\mathbb{R}),\cdot)\simeq (\mathbb{R}^*,\cdot)$$

by using the first isomorphism theorem.

2. Prove the group isomorphism

$$(\mathbb{C}/\mathbb{R},+)\simeq (\mathbb{R},+)$$

by using the first isomorphism theorem.

3. Let $m, n \in \mathbb{N}$ be such that (m, n) = 1. Prove the group isomorphism

$$(\mathbb{Z}_{mn},+)\simeq (\mathbb{Z}_m\times\mathbb{Z}_n,+).$$

- **4.** Consider the group $(\mathbb{Z}_{24}, +)$ and its cyclic subgroups $H = < \widehat{4} >$ and $N = < \widehat{6} >$. Determine $H \cap N$, H + N and apply the second isomorphism theorem.
- **5.** Determine the (normal) subgroups and the factor groups of the group $(\mathbb{Z}_{12}, +)$ by using the third isomorphism theorem.
- **6.** Determine the subgroups of the groups $(\mathbb{Z}_n, +)$ for $n = 1, \ldots, 12$, and then draw the Hasse diagram of the subgroup lattice of each of them.
- 7. Determine the subgroups of the group $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$, and then draw the Hasse diagram of its subgroup lattice.
- **8.** Determine the subgroups of the quaternion group (Q, \cdot) , and then draw the Hasse diagram of its subgroup lattice.

1. Compute the composition (product) of the following permutations of 4 elements, and then determine the signature and the inverse of the result:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}.$$

2. Determine the orbits of each element of the set $\{1, 2, 3, 4, 5\}$ relative to the permutation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix}.$$

3. Decompose into products of disjoint cycles and into products of transpositions the following permutations:

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 6 & 1 & 5 & 7 & 3 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 4 & 7 & 2 & 5 & 1 & 8 & 9 & 3 \end{pmatrix}.$$

4. Write down all elements of the alternating groups A_3 and A_4 , and then decompose these elements into products of disjoint cycles.

5. Let
$$H = \{ \sigma \in S_5 \mid \sigma(1) = 1 \text{ or } \sigma(5) = 5 \}$$
. Is H a subgroup of the group (S_5, \circ) ?

- **6.** Show the isomorphism $(D_3, \cdot) \simeq (S_3, \circ)$, where D_3 is the 3-rd dihedral group.
- 7. Determine the order of each element and the cyclic subgroups of the group (S_3, \circ) .
- **8.** Determine the subgroups of the group (S_3, \circ) , and then draw the Hasse diagram of its subgroup lattice.

- 1. Show that the sets \mathbb{Z}_n (residue classes modulo n), $M_n(\mathbb{R})$ (matrices $n \times n$) and $\mathbb{R}[X]$ (polynomials) form rings together with the corresponding addition and multiplication. Are they commutative rings, integral domains, division rings or fields? Generalization.
- **2.** Show that the set $\mathbb{R}^{\mathbb{R}}$ of functions $f: \mathbb{R} \to \mathbb{R}$ forms a ring together with the addition and the multiplication defined by: $\forall f, g \in \mathbb{R}^{\mathbb{R}}$, (f+g)(x) = f(x) + g(x), $(f \cdot g)(x) = f(x) \cdot g(x)$, $\forall x \in \mathbb{R}$. Is it a commutative ring, integral domain, division ring or field? Generalization.
 - **3.** Let (G, +) be an abelian group. Show that $(\operatorname{End}(G), +, \circ)$ is a ring with identity.
- **4.** Let $(R, +, \cdot)$ be a ring. Consider on the set $\mathbb{Z} \times R$ the addition and the multiplication defined by:

$$(m, a) + (n, b) = (m + n, a + b),$$

 $(m, a) \cdot (n, b) = (mn, ab + na + mb),$

 $\forall (m, a), (n, b) \in \mathbb{Z} \times R$. Show that $(\mathbb{Z} \times R, +, \cdot)$ is a ring with identity.

5. Let $n \in \mathbb{N}$, $n \geq 2$ and $\widehat{0} \neq \widehat{a} \in \mathbb{Z}_n$. Prove that:

 \widehat{a} is invertible in the ring $(\mathbb{Z}_n, +, \cdot) \iff (a, n) = 1$.

When is $(\mathbb{Z}_n, +, \cdot)$ a field?

- **6.** Solve the following equations in the ring $(\mathbb{Z}_{12}, +, \cdot)$: $\widehat{4}x + \widehat{5} = \widehat{9}$ and $\widehat{5}x + \widehat{5} = \widehat{9}$.
- **7.** Solve the following system of equations in the ring $(\mathbb{Z}_{12}, +, \cdot)$:

$$\begin{cases} \widehat{3}x + \widehat{4}y = \widehat{11} \\ \widehat{4}x + \widehat{9}y = \widehat{10} \end{cases}.$$

- **8.** Solve the equation $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} X = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ in the ring $(M_2(\mathbb{C}), +, \cdot)$.
- **9.** Let $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} \middle| a, b \in \mathbb{Q} \right\}$. Show that \mathcal{M} is a stable subset of the ring $(M_2(\mathbb{Q}), +, \cdot)$ and $(\mathcal{M}, +, \cdot)$ is a field.
- **10.** Let $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R})$. Show that \mathcal{M} is a stable subset of the ring $(M_2(\mathbb{R}), +, \cdot)$ and $(\mathcal{M}, +, \cdot)$ is a field.

- **1.** Are the following sets subrings of the field \mathbb{C} :
- (i) $A = \{bi \mid b \in \mathbb{R}\};$
- (ii) $B = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\};$
- (iii) $C = \{z \in \mathbb{C} \mid |z| \le 1\}$?
- **2.** Show that the set $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ is a subring of the field \mathbb{C} , called the ring of Gauss integers. Determine its invertible elements.
 - **3.** Are the following sets subrings of the ring $M_2(\mathbb{R})$:

(i)
$$\mathcal{A} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\};$$

(ii)
$$\mathcal{B} = \left\{ \begin{pmatrix} a & a \\ 0 & b \end{pmatrix} \middle| a, b \in \mathbb{R} \right\};$$

(iii)
$$C = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$$
?

- **4.** Are the following sets subrings of the ring $\mathbb{R}[X]$:
- (i) $A = \{ f \in \mathbb{R}[X] \mid \text{the free term of } f \text{ is } 0 \};$
- (ii) $B = \{ f \in \mathbb{R}[X] \mid \text{the free term of } f \text{ is } 1 \};$
- (iii) $C = \{ f \in \mathbb{R}[X] \mid \text{the coefficient of the term of degree 1 of } f \text{ is 0} \}$?
- **5.** Give examples of:
- (i) subring without identity of a ring with identity.
- (ii) subring with identity of a ring with identity, which have different identities.
- (iii) non-commutative finite ring.
- **6.** Show that the set $\mathbb{Q}(\sqrt{2}) = \{a+b\sqrt{2} \mid a,b \in \mathbb{Q}\}$ is a subfield of the field \mathbb{R} . Generalization.
- 7. Is the set $A = \{a + b\sqrt[3]{2} \mid a, b \in \mathbb{Q}\}$ a subring of the field \mathbb{R} ?
- **8.** Let $m, n \in \mathbb{N}$. Show that $n\mathbb{Z}$ is a subring of the ring $m\mathbb{Z} \Leftrightarrow m|n$.
- **9.** Let $(R, +, \cdot)$ be a ring. Show that:

$$Z(R) = \{ a \in R \mid a \cdot r = r \cdot a, \forall r \in R \}$$

is a subring of R, called the center of R. When does the equality Z(R) = R hold?

10. Show that:

$$Z(M_2(\mathbb{R}), +, \cdot) = \{a \cdot I_2 \mid a \in \mathbb{R}\},\$$

where I_2 is the identity matrix. Generalization for $M_n(\mathbb{R})$ with $n \in \mathbb{N}$, $n \geq 2$.

- **1.** Let R be a ring. An element $a \in R$ is called idempotent if $a^2 = a$. Determine the idempotents of the ring \mathbb{Z}_{12} , and write down 4 idempotents of the ring $M_2(\mathbb{Z})$.
- **2.** Let R be a ring. An element $a \in R$ is called nilpotent if there exists $n \in \mathbb{N}$ such that $a^n = 0$.

Determine the nilpotent elements of the ring \mathbb{Z}_{12} , and write down 2 nilpotent elements of the ring $M_2(\mathbb{Z})$.

- **3.** Are the following functions ring homomorphism between the corresponding rings:
- (i) $f: \mathbb{Z} \to \mathbb{Z}_n$ defined by $f(x) = \hat{x}$;
- (ii) $f: \mathbb{R} \to M_2(\mathbb{R})$ defined by $f(x) = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$; (iii) $g: M_2(\mathbb{R}) \to \mathbb{R}$ defined by $g(A) = \det(A)$?
- **4.** Let $f: \mathbb{Z}_{12} \to \mathbb{Z}_4$ be defined by $f(\widehat{x}) = \overline{x}$. Prove that f is well defined (that is, f is a function) and f is a ring homomorphism.
- **5.** Consider the fields $(\mathcal{M}, +, \cdot)$ and $(\mathbb{Q}(\sqrt{2}), +, \cdot)$, where $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} \middle| a, b \in \mathbb{Q} \right\}$ and $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$ Show that the fields $(\mathcal{M}, +, \cdot)$ and $(\mathbb{Q}(\sqrt{2}), +, \cdot)$ are isomorphic.
- **6.** Consider the field $(\mathcal{M}, +, \cdot)$, where $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$. Show that the fields $(\mathcal{M}, +, \cdot)$ and $(\mathbb{C}, +, \cdot)$ are isomorphic.
- 7. For $a \in \mathbb{Z}$, let $t_a : \mathbb{Z} \to \mathbb{Z}$ be defined by $t_a(x) = ax$. Using the result $\operatorname{End}(\mathbb{Z}, +) = \{t_a \mid x \in \mathbb{Z} \mid x \in \mathbb{Z} \}$ $a \in \mathbb{Z}$, show that $\operatorname{End}(\mathbb{Z}, +, \cdot) = \{t_0, t_1\}$ and $\operatorname{Aut}(\mathbb{Z}, +, \cdot) = \{t_1\}$.
- **8.** Consider the field $(\mathbb{Q}(\sqrt{2}), +, \cdot)$, where $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$. Determine $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}),+,\cdot).$

1. Are the following sets (left, right, two-sided) ideals of the ring $M_2(\mathbb{R})$:

$$(i) \ \mathcal{A} = \left\{ \begin{pmatrix} a & a \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\};$$

$$(ii) \ \mathcal{B} = \left\{ \begin{pmatrix} a & a \\ 0 & b \end{pmatrix} \middle| a, b \in \mathbb{R} \right\};$$

$$(iii) \ \mathcal{C} = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}?$$

- 2. In an arbitrary ring, is the intersection of a left ideal and a right ideal a two-sided ideal?
- **3.** Are the following sets ideals of the ring $\mathbb{R}[X]$:
- (i) $A = \{ f \in \mathbb{R}[X] \mid \text{the free term of } f \text{ is } 0 \};$
- (ii) $B = \{ f \in \mathbb{R}[X] \mid \text{the free term of } f \text{ is } 1 \};$
- (iii) $C = \{ f \in \mathbb{R}[X] \mid \text{ the coefficient of the term of degree 1 of } f \text{ is 0} \}$?
- **4.** Let $R = \{ \frac{m}{n} \in \mathbb{Q} \mid n \text{ is odd} \}$ and $U = \{ \frac{m}{n} \in R \mid m \text{ is even} \}$. Show that R is a subring of the field \mathbb{Q} and U is an ideal of R.
- **5.** Let R be a ring and $a \in R$. Show that $Ra = \{ra \mid r \in R\}$ is a left ideal of R and $aR = \{ar \mid r \in R\}$ is a right ideal of R.
 - **6.** Let R be a ring and

$$Ann(R) = \{ a \in R \mid \forall x \in R, ax = 0 = xa \}.$$

Show that Ann(R) is an ideal of R, called the *annihilator* of R.

- 7. Determine the ideals of the ring \mathbb{Z}_8 , and draw the Hasse diagram of its ideal lattice.
- 8. Determine the ideals of the ring \mathbb{Z}_{12} and draw the Hasse diagram of its ideal lattice.

1. Let $n \in \mathbb{N}$, $n \geq 2$. Prove the ring isomorphism

$$\mathbb{Z}[X]/(n) \cong \mathbb{Z}_n[X]$$

by using the first isomorphism theorem.

2. Prove the ring isomorphism

$$\mathbb{Q}[X]/(X+1) \cong \mathbb{Q}$$

by using the first isomorphism theorem.

3. Prove the ring isomorphism

$$\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}$$

by using the first isomorphism theorem.

4. Let

$$R = \left\{ \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \middle| a, b \in \mathbb{Q} \right\}, \quad I = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{Q} \right\}.$$

Show that R is a subring of the ring $M_2(\mathbb{Q})$, I is an ideal of R and $R/I \cong \mathbb{Q}$.

- 5. Determine the factor rings of the ring \mathbb{Z}_{12} by using the third isomorphism theorem.
- **6.** Determine the characteristic of the ring $\mathbb{Z}_4 \times \mathbb{Z}_6$. Generalization for the ring $\mathbb{Z}_m \times \mathbb{Z}_n$ $(m, n \in \mathbb{N}, m, n \geq 2)$.
 - **7.** Give examples of:
 - (i) Infinite ring having finite characteristic.
 - (ii) Commutative ring with identity which is not a field but has a prime characteristic.
- **8.** Let R be a unitary commutative ring with $1 \neq 0$ and $\operatorname{char}(R) = p$ for some prime p. Prove that:

$$(a+b)^p = a^p + b^p, \quad \forall a, b \in R.$$