# Esercitazione di Laboratorio:

Circuiti con diodi

Coa Giulio Licastro Dario Montano Alessandra 6 dicembre 2019

## 1 Scopo dell'esperienza

Lo scopo di questa esercitazione è stato analizzare vari circuiti contenenti diodi, tramite l'esecuzione di una serie di misure in condizioni statiche al fine di determinare la caratteristica statica  $I_{\rm d}(V_{\rm d})$  dei suddetti diodi, e la successiva visualizzazione del loro comportamento con una tensione d'ingresso di tipo sinusoidale.

## 2 Strumentazione utilizzata

La strumentazione usata durante l'esercitazione è:

| Strumento             | Marca e Modello | Caratteristiche                                                                 |  |
|-----------------------|-----------------|---------------------------------------------------------------------------------|--|
| Multimetro            | Agilent 34401A  |                                                                                 |  |
| Oscilloscopio         | Rigol DS1054Z   | 4 canali,                                                                       |  |
|                       |                 | $B = 50 \mathrm{MHz},$                                                          |  |
|                       |                 | $f_{\rm c} = 1  {\rm G} \frac{{\rm Sa}}{s}$                                     |  |
|                       |                 | $R_{\rm i} = 1  \mathrm{M}\Omega,$                                              |  |
|                       |                 | $C_{\rm i} = 13  {\rm pF},$                                                     |  |
|                       |                 | 12 Mbps di profondità di memoria                                                |  |
| Generatore di segnali | Rigol DG1022    | 2 canali,                                                                       |  |
|                       |                 | $f_{\rm uscita} = 20  \mathrm{MHz},$                                            |  |
|                       |                 | $Z_{\mathrm{uscita}} = 50 \Omega$                                               |  |
| Alimentatore in DC    | Rigol DP832     | 2 canali,                                                                       |  |
|                       |                 | $f_{\rm uscita} = 20  \mathrm{MHz},$                                            |  |
|                       |                 | $Z_{\mathrm{uscita}} = 50 \Omega$                                               |  |
| Sonda                 | Rigol PVP215    | $B = 35 \mathrm{MHz},$                                                          |  |
|                       |                 | $V_{\text{nominale}} = 300 \text{V},$                                           |  |
|                       |                 | $L_{\rm cavo} = 1.2 \mathrm{m},$                                                |  |
|                       |                 | $R_{\rm s} = 1  {\rm M}\Omega,$                                                 |  |
|                       |                 | Intervallo di compensazione: $10 \div 25 \mathrm{pF}$                           |  |
| Cavi coassiali        |                 | Capacità dell'ordine dei $80 \div 100 \mathrm{p} \frac{\mathrm{F}}{\mathrm{m}}$ |  |
| Connettori            |                 | - 111                                                                           |  |
| Breadboard            |                 |                                                                                 |  |
| Resistenza            |                 | $R = 9.9 \mathrm{k}\Omega$                                                      |  |
| Diodo di Zener        | 1N5228          |                                                                                 |  |
| Diodo                 | 1N4148          |                                                                                 |  |
| Condensatori          |                 | $C_1 = 10  \text{nF},$                                                          |  |
|                       |                 | $C_2 = 100  \text{nF},$                                                         |  |
|                       |                 | $C_3 = 1 \mu\text{F}$                                                           |  |

## 3 Premesse teoriche

## 3.1 Incertezza sulla misura dell'oscilloscopio

La misura del valore di un segnale tramite l'oscilloscopio (sia esso l'ampiezza, la frequenza, il periodo, etc.) presenta un'incertezza che dipende, principalmente, da due fattori:

- l'incertezza strumentale introdotta dall'oscilloscopio (ricavabile dal manuale).
- l'incertezza di lettura dovuta all'errore del posizionamento dei cursori.

Quest'ultima incertezza deriva dal fatto che il segnale visualizzato non ha uno spessore nullo sullo schermo.

#### 3.2 Sonda

La sonda è un particolare cavo coassiale che presenta un'estremità capace di effettuare delle misurazioni.

Quando si usano dei classici cavi coassiali BNC-BNC al fine di collegare il circuito, su cui effettuare le misure, all'oscilloscopio, si sta inserendo in parallelo al circuito un condensatore di capacità  $(C_{\rm c})$  pari a quella del cavo.



Figura 1: Circuito analizzato collegato all'oscilloscopio tramite un cavo coassiale BNC-BNC.

In questo caso, l'oscilloscopio si comporta, in ingresso, come un filtro passa-basso con una frequenza di taglio  $(f = \frac{1}{2\pi R_i(C_s + C_i)})$ . L'uso di una sonda per misurare delle grandezze in un circuito, si può vedere come l'inserimento di un condensatore in serie al circuito.



Figura 2: Circuito analizzato collegato all'oscilloscopio tramite una sonda.

L'introduzione di questo condensatore comporta un calo della capacità equivalenti vista all'ingresso del circuito  $(\frac{C_s(C_c+C_i)}{C_s+C_c+C_i} \ll C_c+C_i)$ , ovvero una riduzione della frequenza del polo  $(f_{\text{polo}} = \frac{1}{2\pi R_i(C_s+C_i)})$ ; ciò porta ad una perdita d'informazioni in bassa frequenza. Al fine di evitare tale perdita d'informazioni, si pone, in parallelo al condensatore, una resistenza.



Figura 3: Circuito analizzato collegato all'oscilloscopio tramite una sonda.

Tale resistenza comporta la presenza di uno zero, oltre al polo precedentemente detto.



Figura 4: Diagramma di Bode della funzione di trasferimento del circuito.

A seconda dell'elevata o della bassa compensazione della sonda, il segnale sarà distorto verso l'alto o verso il basso.







(b) Sonda sovracompensata.

Figura 5: Visualizzazione del segnale al variare della compensazione della sonda.

La sonda risulta compensata quando la frequenza del polo coincide con la frequenza dello zero; ciò avviene quando  $R_{\rm s}C_{\rm s}=R_{\rm i}(C_{\rm c}+C_{\rm i})$ . La sonda presenta un opportuno trimmer che influenza il valore di  $R_{\rm s}$  e permette la compensazione. Al fine di verificare se la sonda è compensata si esegue un confronto con un segnale noto.



Figura 6: Sonda compensata.

#### 3.3 Diodo

Il diodo è un bipolo non lineare il cui comportamento è descritto dalle due seguenti espressioni analitiche equivalenti tra loro

$$i_{\rm D} = I_{\rm S} \cdot (e^{\frac{{\rm v}_{\rm D}}{\eta \cdot {\rm V}_{\rm T}}} - 1)$$

$$v_{\mathrm{D}} = \eta \cdot V_{\mathrm{T}} \cdot \ln(\frac{i_{\mathrm{D}}}{I_{\mathrm{S}}} + 1)$$

dove  $V_{\rm T}$  è la tensione termica del diodo  $(V_{\rm T} = \frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{q}})$ ,  $I_{\rm S}$  è la corrente di saturazione ed  $\eta$  è il fattore di non idealità.



Figura 7: Caratteristica statica di un diodo.

Si noti come, al crescere di  $v_{\rm D}$ , la corrente  $i_{\rm D}$ , ovvero la corrente che attaversa il diodo, aumenti (regione di polarizzazione); in particolare, dopo il raggiungimento della tensione di soglia  $V_{\gamma}$ , il diodo tende a comportarsi come un generatore ideale indipendente di tensione di valore pari a  $V_{\gamma}$ .

Al contrario, quando  $v_D$  è troppo bassa, la corrente  $i_D$  è pari a  $-I_S$ , ovvero circa nulla; ciò porta il diodo a comportarsi similmente ad un circuito aperto (regione di polarizzazione inversa). Questa condizione può dare luogo al fenomeno del breakdown, ovvero quando il diodo conduce in direzione opposta; tale fenomeno porta, solitamente, alla rottura del diodo.

#### 3.3.1 Diodo di Zener

Sono particolari tipi di diodi proggettati appositamente per lavorare anche in polarizzazione inversa; questi diodi non si rompono se si verifica il breakdown, anzi sono caratterizzati da una tensione di soglia negativa, detta, per l'appunto, tensione di breakdown.



Figura 8: Caratteristica statica di un diodo di Zener.

## 3.4 Raddrizzatore a semplice semionda

Circuito fondamentale che, data una tensione in input, caratterizzata da un valor medio non nullo, ne estrae la parte positiva; il segnale in uscita presenta valor medio nullo.

$$v_{\text{out}} = \begin{cases} v_{\text{in}} & v_{\text{in}} > 0 \\ 0 & v_{\text{in}} \le 0 \end{cases}$$



Figura 9: Circuito e transcaratteristica statica di un raddrizzatore a semplice semionda.

#### 3.5 Protezione ESD

Circuito usato come protezione da scariche elettrostatiche, caratterizzato dall'imposizione di una tensione massima e di una tensione minima.

$$v_{\mathrm{out}} = \begin{cases} -V_{\gamma} & v_{\mathrm{in}} < -V_{\gamma} \\ v_{\mathrm{in}} & -V_{\gamma} \leq v_{\mathrm{in}} \leq V_{\mathrm{DD}} + V_{\gamma} \\ V_{\mathrm{DD}} + V_{\gamma} & v_{\mathrm{in}} > V_{\mathrm{DD}} + V_{\gamma} \end{cases}$$



Figura 10: Circuito e transcaratteristica statica di una protezione ESD.

## 4 Esperienza in laboratorio

## 4.1 Caratteristiche statiche

Abbiamo montanto sulla breadboard la resistenza, il diodo D=1N4148 e l'elemento di collegamento seguendo lo schema in figura.

Successivamente, per mezzo del multimetro, abbiamo misurato la resistenza, verificando che tale valore rientri nel 5% di tolleranza dato dal costruttore. Abbiamo alimentato, collegando la breadboard all'alimentatore in DC per mezzo di due cavi a banana, il circuito, dopodichè abbiamo variato la tensione in ingresso secondo i valori fornitici, misurando, sempre tramite il multimetro, i valori di tensione ai capi della resistenza.



Figura 11: Circuito.

In seguito abbiamo connesso alla breadboard, al posto dell'alimentatore in DC, il generatore di segnali tramite un cavo coassiale BNC-banana, impostandolo per fornire un segnale d'ampiezza  $V_{\rm pp}=10\,{\rm V}$  e frequenza  $f=1\,{\rm kHz}$ , ed, al posto del multimetro, l'oscilloscopio tramite due sonde. Infine, abbiamo sostituito il diodo con il diodo di Zener D=1N5228 ed abbiamo ripetuto l'esperienza.

## 4.2 Raddrizzatore a semplice semionda

Abbiamo realizzato il circuito richiesto, collegando un condensatore in parallelo al circuito e sostituendo il diodo di Zener con il diodo usato precedentemente, ed abbiamo misurato l'ampiezza  $V_{\rm pp}$  del segnale al variare della capacità del condesatore.



Figura 12: Circuito.

In questo modo, abbiamo potuto apprezzare come la capacità del condensatore influenzi il segnale in uscita rendendolo più o meno (approssimato?). Infine, abbiamo sostituito il diodo con il diodo di Zener ed abbiamo ripetuto l'esperienza.

#### 4.3 Rivelatore di picco

.

#### 4.4 Circuito per la protezione da scariche elettrostatiche

## 5 Risultati

#### 5.1 Caratteristiche statiche

#### 5.1.1 Diodo

I risultati ottenuti al variare della tensione in ingresso, fornita con l'alimentatore, sono stati riportati nella seguente tabella.

| $V_{\rm e}$ [V] | $V_{ m u}$          | $I_{ m D}$     |
|-----------------|---------------------|----------------|
| -4              | $-0.046{ m mV}$     | $0\mathrm{mA}$ |
| -3.5            | $-0.043\mathrm{mV}$ | $0\mathrm{mA}$ |
| -3              | $-0.038\mathrm{mV}$ | $0\mathrm{mA}$ |
| -2              | $-0.032{\rm mV}$    | $0\mathrm{mA}$ |
| -1              | $-0.027{ m mV}$     | $0\mathrm{mA}$ |
| 0               | $0.001\mathrm{mV}$  | $0\mathrm{mA}$ |
| 0.2             | $2.067\mathrm{mV}$  | $0\mathrm{mA}$ |
| 0.4             | $45.306\mathrm{mV}$ | $0\mathrm{mA}$ |
| 0.6             | $0.177\mathrm{V}$   | $0\mathrm{mA}$ |
| 0.8             | $0.344{ m V}$       | $0\mathrm{mA}$ |
| 1               | $0.526\mathrm{V}$   | $0\mathrm{mA}$ |
| 1.5             | $0.997{ m V}$       | $0\mathrm{mA}$ |
| 2               | $1.477\mathrm{V}$   | $0\mathrm{mA}$ |

Si può notare che il diodo utilizzato non è adatto all'uso in polarizzazione inversa, infatti, per valori di  $V_{\rm e}$  negativi, otteniamo valori di  $V_{\rm u}$  molto bassi, che si mantengono intorno allo 0. Inoltre abbiamo toccato e superato la tensione di soglia (deve essere minore di 0 ?).

Dopo aver connesso generatore di segnali, sonda e oscilloscopio (GIULIO NON HO SPEI-FICATO COME ABBIAMO CONNESSO LE ROBE PERCHE' E' NELLA PARTE DELLE PREMESSE) abbiamo ottenuto le seguenti immagini, dove il segnale di input è rappresentato dalla linea blu e l'output da quella gialla. Si può notare come l'input sia un segnale sinusoidale standard, mentre l'output è distorto per effetto del cisrcuito, in particolare la parte negativa del segnale è stata portata a 0 (poichè le tensioni negative ricevute in input dal diodo diventano 0 in output), ed anche la curva sinusoidale risulta un po' schiacciata (perchè?).

In seguito, per misurare l'ampiezza di picco del segnale di output abbiamo posizionato i cursori come in figura ottenendo Vu(t)=4.440V

#### 5.1.2 Diodo di Zener

Abbiamo seguito la stessa procedura con il diodo di Zener, vanno sottilineati i valori ottenuti con tensioni negative in input, che sono coerenti con la definizione di diodo di Zener.

(Ricordiamo che stiamo di nuovo utilizzando l'alimentatore e che le misurazioni sono state effettuate con il multimetro)

La tensione di soglia è: La tensione di breakdown è:

Connettendo il generatore di segnali come al punto precedente, con la linea blu per l'input e quella gialla per l'output abbiamo ottenuto la seguente imagine

Qui, a differenza del diodo usato in precedenza, le tensioni tegative vengono rappresentate.

Anche in questo caso abbiamo misurato l'ampiezza di picco del segnale in output con i cursori, ottenendo  $\mathrm{Vp}=4.320$ 

## 5.2 Raddrizzatore a semplice semionda

#### 5.2.1 Diodo

Abbiamo inserito i vari condensatori ed ogni volta abbiamo misurato la tensione picco-picco con i cursori. per il condensatore da 10nF abbiamo una Vpp=4.48V: per il condensatore da 100nF abbiamo una Vpp=2.56V: per il condensatore da 10microF abbiamo una Vpp=480~mV:

Possiamo notare come, al decrescere della capacità del condensatore, il segnale in output abbia una Vpp sempre minore, cioè il segnae in input viene attenuato (?) sempre di più.

#### 5.2.2 Diodo di Zener

Abbiamo inserito i vari condensatori ed ogni volta abbiamo misurato la tensione picco-picco con i cursori. per il condensatore da 10nF abbiamo una Vpp = 7.2V: per il condensatore da 100nF abbiamo una Vpp = 6.88V : per il condensatore da 10microF abbiamo una Vpp = 5.52V : Lasciando il condensatore da 1 microF e connettendo il circuito con il generatore di segnali abbiamo impostato  $V_{\rm p}=5$  V e, al variare della frequenza, abbiamo ottenuto diversi valori per la tensione picco-picco, di seguito abbiamo riportato le immagini ottenute dall'oscilloscopio (in blu il segnale in input ed in giallo l'output). per f=1 kHz per f=500 Hz per f=100 Hz

Al decrescere della fequenza...

5.3 Rivelatore di picco

.

5.4 Circuito per la protezione da scariche elettrostatiche

.

#### 6 Conclusioni

6.1 Caratteristiche statiche

.

6.2 Raddrizzatore a semplice semionda

.

6.3 Rivelatore di picco

.

6.4 Circuito per la protezione da scariche elettrostatiche

.