近世代数 (H) 第十二周作业

涂嘉乐 PB23151786

2025年5月16日

Exercise 1 $G^{\curvearrowright}X$ 给出群同态 $\rho: G \to S(X)$, 证明 $\operatorname{Ker} \rho = \bigcap_{x \in X} G_x$

Proof

$$g \in \operatorname{Ker} \rho \iff \rho(g) = \operatorname{Id}_X$$
 $\iff \forall x \in X, \rho(g)(x) = x$
 $\iff \forall x \in X, g.x = x$
 $\iff \forall x \in X, g \in G_x$
 $\iff g \in \bigcap_{x \in X} G_x$

Exercise 2 证明 $Z(G) = \bigcap_{x \in G} Z(x)$

Proof 因为共轭作用给出群同态

$$\rho: G \longrightarrow G$$
$$g \longmapsto \rho(g): a \mapsto gag^{-1}$$

又因为

$$\operatorname{Ker} \rho = \{g | \rho(g) = \operatorname{Id}_G\} = \{g | \rho(g)(a) = a, \forall a \in G\}$$
$$= \{g | gag^{-1} = a, \forall a \in G\} = \{g | ag = ga, \forall a \in G\}$$
$$= Z(G)$$

且 $G_x = Z(x)$, 由 Ex1 即证

Exercise 3 设 G 是 p^2 阶群,p 是素数, $H=(g),g\in Z(G),\operatorname{Ord}(g)=p$, 取 $g_1\in G\backslash H$, s.t. $\operatorname{Ord}(g_1)=p$, 记 $K=(g_1)$, 验证

$$\Phi: H \times K \longrightarrow G$$
$$(h, k) \longmapsto hk$$

是群同态

Proof 首先 H,K 中元素可写为 g^m,g_1^n 的形式, 且 $g\in Z(G)$, 故 $gg_1=g_1g$

$$\begin{split} \Phi \big((g^{m_1}, g_1^{n_1}) \big) \Phi \big((g^{m_2}, g_1^{n_2}) \big) &= g^{m_1} g_1^{n_1} g^{m_2} g_1^{n_2} \\ &= g^{m_1 + m_2} g_1^{n_1 + n_2} \\ &= \Phi (g^{m_1 + m_2} g_1^{n_1 + n_2}) \end{split}$$

所以 ◆ 是群同态

Exercise 4 考虑共轭作用

$$S_4^{\hat{}}X = \{(12)(34), (13)(24), (14)(23)\}, \quad g.x = gxg^{-1}$$

则有群同态 $S_4 \stackrel{\rho}{\to} S(X) \simeq S_3$, 计算 $\operatorname{Ker} \rho$

Proof 记 $X = \{(12)(34), (13)(24), (14)(23)\} = \{A, B, C\},$ 因为

$$\operatorname{Ker}\rho = \{\sigma \in S_4 | \sigma x \sigma^{-1} = x, \forall x \in X\} = \bigcap_{x \in X} Z(x) = Z(A) \cap Z(B) \cap Z(C)$$

考虑 A = (12)(34), 设 $\sigma \in S_4$, 解如下方程

$$\sigma(12)(34)\sigma^{1} = (\sigma(12)\sigma^{-1})(\sigma(34)\sigma^{-1}) = (\sigma(1)\sigma(2))(\sigma(3)\sigma(4)) = (12)(34)\sigma^{-1}$$

即有如下八种情况

$$\begin{cases} \sigma(1) = 1 \\ \sigma(2) = 2 \\ \sigma(3) = 3 \end{cases}, \begin{cases} \sigma(1) = 2 \\ \sigma(2) = 1 \\ \sigma(3) = 3 \end{cases}, \begin{cases} \sigma(1) = 1 \\ \sigma(2) = 2 \\ \sigma(3) = 4 \end{cases}, \begin{cases} \sigma(1) = 2 \\ \sigma(2) = 2 \\ \sigma(3) = 4 \end{cases}, \begin{cases} \sigma(3) = 4 \\ \sigma(4) = 3 \end{cases}$$

$$\begin{cases} \sigma(1) = 3 \\ \sigma(2) = 4 \\ \sigma(3) = 1 \end{cases}, \begin{cases} \sigma(1) = 3 \\ \sigma(2) = 4 \\ \sigma(3) = 2 \end{cases}, \begin{cases} \sigma(1) = 4 \\ \sigma(2) = 3 \\ \sigma(3) = 1 \\ \sigma(4) = 2 \end{cases}, \begin{cases} \sigma(1) = 4 \\ \sigma(2) = 3 \\ \sigma(3) = 1 \\ \sigma(4) = 2 \end{cases}, \begin{cases} \sigma(1) = 4 \\ \sigma(2) = 3 \\ \sigma(3) = 2 \\ \sigma(4) = 1 \end{cases}$$

即 $Z(A) = \{ \mathrm{Id}, (12), (34), (12)(34), (13)(24), (1324), (1423), (14)(23) \}$,同理可以解得

$$\begin{cases} Z(B) = \{ \mathrm{Id}, (13), (24), (13)(24), (12)(34), (14)(23), (1234), (1423) \} \\ Z(C) = \{ \mathrm{Id}, (14), (23), (14)(23), (12)(34), (13)(24), (1243), (1342) \} \end{cases}$$

观察可得

$$\operatorname{Ker} \rho = Z(A) \cap Z(B) \cap Z(C)$$

= $\{ \operatorname{Id}, (12)(34), (13)(24), (14)(23) \} = K_4$

Exercise 5 补充证明 35 阶群是循环群的细节. 根据 Sylow 定理, 设 P,Q 是 G 的唯一的 5,7 阶子群,则有群同态

$$\phi: P \times Q \longrightarrow G$$
$$(q, h) \longmapsto qh$$

且 $P \cap Q = \{1_G\}$, 因此 35 阶群是循环群

Proof 因为 P,Q 是唯一的 5,7 阶子群, 所以 $P \triangleleft G, Q \triangleleft G$, 且素数阶群是循环群, 即 $\exists p \in P, q \in Q$, s.t. P = (p), Q = (q)

首先证明 $P \cap Q = \{1_G\}$, 假设 $\exists a \in (P \cap Q) \setminus \{1_G\}$, 则 $1 < \operatorname{Ord}(a) \mid 5, 1 < \operatorname{Ord}(a) \mid 7$, 但显然不存在这样的 $\operatorname{Ord}(a)$, 因此 $P \cap Q = \{1_G\}$

设 $a \in P, b \in Q$, 则 $b^{-1}ab \in b^{-1}Pb = P, aba^{-1} \in aQa^{-1} = Q$

$$\begin{cases} b^{-1}aba^{-1} = (b^{-1}ab)a^{-1} \in P \\ b^{-1}aba^{-1} = b^{-1}(aba^{-1}) \in Q \end{cases} \implies b^{-1}aba^{-1} \in P \cap Q = \{1_G\}$$

进而 $ab = ba, \forall a \in P, b \in Q$

所以

$$\phi((g_1, h_1))\phi((g_2h_2)) = g_1h_1g_2h_2 = g_1g_2h_1h_2$$
$$= \phi((g_1g_2))\phi((h_1, h_2))$$

故 ϕ 是群同态, 若 $g \in P, h \in Q, gh = 1_G$, 则 $h = g^{-1} \in P$, 所以 $h \in P \cap Q = \{1_G\}$, 故 $g = h = 1_G$, 即 $\mathrm{Ker}(\phi) = \{(1_G, 1_G)\}$, 所以 ϕ 是单射, 且 $|P \times Q| = |G| = 35$, 所以 ϕ 是满射, 故是群同构

又因为
$$P \times Q = ((p,q))$$
 为循环群, 所以 G 是 35 阶循环群

Exercise 6 设 $|G| = p_1^{s_1} \cdots p_t^{s_t}$, 其中 p_i 为两两不同的素数, 若 G 是 Abel 群, 则存在唯一 Sylow p_i -子群 P_i , 证明存在群同构

$$\phi: P_1 \times P_2 \times \cdots \times P_t \xrightarrow{\sim} G$$
$$(a_1, a_2, \cdots, a_t) \longmapsto a_1 a_2 \cdots a_t$$

Proof 因为

$$\phi((a_1, a_2, \dots, a_t))\phi((b_1, b_2, \dots, b_t)) = (a_1a_2 \dots a_t)(b_1b_2 \dots b_t) = (a_1b_1)(a_2b_2) \dots (a_tb_t)$$
$$= \phi((a_1b_1, a_2b_2, \dots, a_tb_t))$$

因此 φ 确实是群同态

下证 $P_1 \cap P_2 P_3 \cdots P_t = \{1_G\}$, 先证 $P_2 P_3 \cdots P_t \leq G$ 对 $\forall a_2 \cdots a_t, b_2 \cdots b_t \in P_2 \cdots P_t$, 因为

$$(a_2 \cdots a_t)(b_2 \cdots b_t)^{-1} = (a_2 b_2^{-1}) \cdots (a_t b_t^{-1}) \in P_2 \cdots P_t$$

所以 $P_2 \cdots P_t \leq G$

假设 $\exists a \in (P_1 \cap P_2 P_3 \cdots P_t) \setminus \{1_G\}$, 则

$$\begin{cases} 1 < \operatorname{Ord}(a) \mid |P_1| = p_1^{s_1} \\ 1 < \operatorname{Ord}(a) \mid |P_2 \cdots P_t| = p_2^{s_2} \cdots p_t^{s^t} \end{cases} \implies \operatorname{Ord}(a) \mid \gcd(p_1^{s_1}, p_2^{s_2} \cdots p_t^{s^t}) = 1$$

这与 Ord(a) > 1 矛盾.

所以若 $(a_1, \dots, a_t) \in \operatorname{Ker} \phi$, 即 $a_1 \dots a_t = 1_G \Longrightarrow a_1^{-1} = a_2 \dots a_t \in P_1 \cap P_2 \dots P_t$, 所以 $a_1^{-1} = 1_G$, 即 $a_1 = 1_G$, 同理可证 $a_2 = \cdots = a_t = 1_G$, 即 $Ker \phi = \{(1, \cdots, 1)\}$, 故 ϕ 是单射 又因为 $|P_1 \times \cdots \times P_t| = p_1^{s_1} \cdots p_t^{s_t} = |G|$, 所以为满射, 进而 ϕ 是群同构

Exercise 7 设 $G \in \mathbb{R}$ 所 \mathbb{R} 所 \mathbb{R} \mathbb{R} \mathbb{R} 的一个素因子, 证明 \mathbb{R} \mathbb{R} 1 在 \mathbb{R} 中解的个数是 \mathbb{R} 的倍数

Proof 由 Sylow 定理, |G| 的 p 阶子群个数为 pk+1, 对任意 p 阶子群 P, 它是循环群, 故 ∃a ∈ $G, \mathrm{s.t.}\ (a) = P,$ 且 $\mathrm{Ord}(a^k) = \frac{\mathrm{Ord}(a)}{\gcd(k,p)} = p,$ 因此 $\forall b \in (a) \setminus \{1_G\}, \mathrm{Ord}(b) = p,$ 此时 b 也是生成元,即任 意两个 p 阶子群, 若相交则相等. 此外 1_G 也是 $x^p-1=0$ 的根, 故

$$\text{Root}_G(x^p - 1) = (p - 1) \cdot (pk + 1) + 1 = p(pk + 1 - k)$$

Exercise 8 证明 200 阶群必有正规的 Sylow 子群

Proof 因为 $200 = 2^35^2$, 所以

$$|Sylow 5$$
-子群 $|=\left\{egin{array}{c} 8$ 的因子 $5k+1 \end{array}
ight. = 1$

因此 200 阶群 G 只有 1 个 Sylow 5-子群 P, 即它是正规子群, 由 25 阶子群的唯一性知 $\forall g \in P$ $G, gPg^{-1} = P$

Exercise 9 设 N 是有限群 G 的一个正规子群, 如果 p 和 |G/N| 互素, 则 N 包含 G 的所有 Sylowp-子群

Proof 由拉格朗日定理 $|G|=|N|\cdot |G/N|$,且 $\gcd(p,|G/N|)=1$,设 $|G|=p^rm$,则 $\frac{m}{|G/N|}\in\mathbb{Z}$,所以 $|N|=rac{p^rm}{|G/N|}=p^r\cdotrac{m}{|G/N|}$, 设 $P\leq G$ 为 G 的 Sylow p-子群, Q 为 N 的 Sylow p-子群, 则 $Q\leq N\leq G$, 故 Q 也是 G 的一个 Sylow p-子群, 由 Sylow 定理, $\exists g \in G$, s.t. $P = gQg^{-1} \leq gNg^{-1} = N$, 即 P 也 是 N 的 Sylow p-子群

Exercise 10 设 G 是有限群, $N \triangleleft G,P$ 是 G 的 Sylow p-子群, 证明

- 1. $N \cap P \neq N$ 的 Sylow p-子群
- 2. PN/N 是 G/N 的 Sylow p-子群
- 3. $(N_G(P)N)/N \simeq N_{G/N}(PN/N)$

Proof (1). 设 $|G| = p^r m, p \nmid m, M |P| = p^r$, 由第二群同构定理

$$(N \cap P) \triangleleft P$$
, $N \triangleleft NP \leq G$, $NP/N \simeq P/(P \cap N)$

所以 $|N \cap P| \mid |P| = p^r$, 可设 $|N \cap P| = p^s$, $1 \le s \le r$, 又因为 $P \le NP \le G$, 所以 $p^r \mid |NP|$, 设 $|NP| = p^r v$, $|N| = p^t u$, 由第三式得

$$[P:P\cap N]=[NP:N]\Longrightarrow \frac{p^r}{p^s}=\frac{p^rv}{p^tu}\Longrightarrow v=u,t=s$$

所以 $|N| = p^s u, N \cap P = p^s$, 故 $N \cap P \neq N$ 的 Sylow p-子群

- (2). 由 $N \triangleleft G$ 知 NP = PN, 由第一问知 $|PN/N| = p^{r-s}$, 且 $|G/N| = \frac{p^r m}{p^s u} = p^{r-s} \frac{m}{u}$, 且由子群对应关系知 $PN/N \leq G/N$, 故 PN/N 是 G/N 的 Sylow p-子群
 - (3). 一方面对 $\forall g \in N_G(P), n \in N, (gn)^{-1}P(gn) = n^{-1}(g^{-1}Pg)n = n^{-1}Pn$, 且 gnN = gN, 所以

$$(gnN)^{-1}(PN/N)(gnN) = g^{-1}N(PN/N)gN$$

下证 $g^{-1}N(PN/N)gN = PN/N$, 其中 $g \in N_G(P)$

首先对 $\forall pnN = pN \in PN/N, (g^{-1}N)(pN)(gN) = (g^{-1}pg)N,$ 因为 $g \in N_G(P)$, 所以 $gPg^{-1} = P$, 故 $\exists p' \in P, \text{s.t. } gpg^{-1} = p',$ 故 $(g^{-1}pg)N = p'N \in PN/N$, 即 $LHS \subset RHS$

其次对 $\forall pnN = pN \in PN/N$, 由 $g \in N_G(P)$ 知 $\exists p' \in P, \text{s.t.} \ p' = g^{-1}p'g$, 所以 $pN = (g^{-1}N)(p'N)(gN) \in g^{-1}N(PN/N)gN$, 即 $RHS \subset LHS$

因此 $(gnN)^{-1}(PN/N)(gnN) = g^{-1}N(PN/N)gN = PN/N$, 即 $(N_G(P)N)/N \subseteq N_{G/N}(PN/N)$ 另一方面,对 $\forall gN \in N_{G/N}(PN/N)$,有 $(gN)^{-1}(PN/N)(gN) = PN/N$,即 $\forall p \in P, g^{-1}pgN \in PN/N$,即 $g^{-1}pg \in PN$,进而

$$g^{-1}Pg \subset PN$$

故 $g^{-1}Pg, P$ 均为 PN = NP 的 Sylow p-子群, 由 Sylow 定理知它们共轭, 即 $\exists p_2 \in P, n \in N, \text{s.t.}$

$$(np_2)^{-1}g^{-1}Pg(np_2) = P \Longrightarrow p_2^{-1}(gn)^{-1}P(gn)p_2 = P \Longrightarrow (gn)^{-1}P(gn) = P$$

即 $gn \in N_G(P)$,所以 $gN = gnN \in (N_G(P)N)/N$,即 $N_{G/N}(PN/N) \subseteq (N_G(P)N)/N$ 综上有 $(N_G(P)N)/N = N_{G/N}(PN/N)$,所以它们同构

Exercise 11 设 $P \neq G$ 的 Sylow p-子群, 且 $N_G(P) \triangleleft G$, 证明 $P \triangleleft G$

Proof 设 $G = p^r m, p \nmid m, p \mid P| = p^r$, 且显然有 $P \leq N_G(P) \leq G$, 设 $N_G(P) = p^r n$, 则 $n \mid m$, 所以

$$|G/N_G(P)| = \frac{p^r m}{p^r n} = \frac{m}{n} \nmid p$$

故 $\gcd(p,|G/N_G(P)|)=1$,由练习 9 知 $N_G(P)$ 包含了 G 的所有 Sylow p-子群,且所有 Sylow p-子 群相互共轭,由 $N_G(P)$ 的定义知, $\forall g \in N_G(P)$, $g^{-1}Pg=P$,故只有 P 这一个 Sylow p-子群,因此 $P \lhd G$

Exercise 12 登证
$$|GL_n(\mathbb{F}_p)| = \prod_{k=1}^n (p^n - p^{k-1})$$

Proof 对 $\forall A \in \mathrm{GL}_n(\mathbb{F}_p)$, A 与它的线性无关的行向量组 $\{e_1, \cdots, e_n\}$ 一一对应,因此讨论在 \mathbb{F}_p^n 中,能有多少种线性无关的行向量组.

首先 e_1 共有 p^n-1 种选择, 排除的那一种为 $(0,\dots,0)$

对于 e_2 , 它不能与 e_1 线性相关, 即它不等于 $e_1, 2e_1, \cdots, (p-1)e_1, pe_1 = \mathbf{0}$, 共有 $p^n - p$ 种选择对于 e_3 , 它不能与 e_1, e_2 线性相关, 因为线性子空间 $< e_1, e_2 >= \{xe_1 + ye_2 | 0 \le x, y \le p - 1\}$, 共有 p^2 个元素, 因此 e_3 共有 $p^n - p^2$ 种选择

依此类推,故
$$|\operatorname{GL}_n(\mathbb{F}_p)| = \prod_{k=1}^n (p^n - p^{k-1})$$

Exercise 13 设 $H \leq K, U \leq K$ 是 K 的 $Sylow\ p$ -子群, 则 $\exists g \in K, \text{s.t.}\ H \cap gUg^{-1}$ 为 H 的 $Sylow\ p$ -子群

Proof 考虑左诱导作用 $H^{\alpha}(K/U)$

$$H \times K/U \longrightarrow K/U$$

 $(h, kU) \longmapsto hkU$

设 $|K|=p^rm,p\nmid m,$ 因为 U 是 Sylow p-子群, 所以 $p\nmid |K/U|=\frac{|K|}{|U|}=m,$ 故

$$p \nmid |K/U|, \quad K/U = \bigsqcup_{k \in K} |\mathcal{O}_{kU}|$$

因此一定存在 $gU \in K/U$, s.t. $p \nmid |\mathcal{O}_{gU}|$, 由轨道-稳定化子公式知

$$|H| = |\mathcal{O}_{qU}| \cdot |H_{qU}|$$

其中 H_{qU} 为 U 的稳定化子, 则 $|H_{qU}|$, |H| 中 p 的幂次相等, 故 H_{qU} 即为 H 的 Sylow p-子群, 且

$$H_{gU} = \{h \in H | hgU = gU\} = \{h \in H | g^{-1}hg \in U\} = \{h \in H | h \in gUg^{-1}\} = H \cap gUg^{-1}\}$$

Exercise 14 任意字可以化为唯一的即约字

Proof 对字中元素的个数 n 使用数学归纳法

当 n=1 时, 显然是即约, 且表达唯一

当 n=k-1 时命题成立, 下面证明 n=k 时. 首先证明可以化为即约的字: 设 $\omega=x_1\cdots x_{k-1}x_k$, 由数学归纳法, $x_1\cdots x_{k-1}$ 可以化为唯一的即约字, 设为 $\omega_1=y_1\cdots y_j, 1\leq j\leq k-1$

Case 1. 若 j < k-1, 则 $\omega = \omega_1 x_k = y_1 \cdots y_j x_k$, 由数学归纳法知它可以化为即约的字

其次证明表达唯一, 假设 $\omega = x_1 \cdots x_m = y_1 \cdots y_n$ 为两个即约字, 则

$$y_n^{-1} \cdots y_1^{-1} x_1 \cdots x_m = 1$$

考虑 x_1 , 因为 $x_1 \cdots x_m$ 是即约的, 所以 $x_2 \neq x_1^{-1}$, 但是上式最终要化为 1, 一定只能是 $y_1^{-1} = x_1^{-1}$, 即 $y_1 = x_1$. 同理可以说明 $x_j = y_j$, 进而 m = n, 故表达唯一

Exercise 15 证明 $N(r_1, \dots, r_m) = (\omega r_j \omega^{-1} \mid 1 \le j \le m, \omega \in F(x_1, \dots, x_n))$

Proof 一方面,对 $\forall \omega \in F(x_1, \dots, x_n)$,由 $N(r_1, \dots, r_m)$ 为正规子群知 $\omega N(r_1, \dots, r_m)\omega^{-1} = N(r_1, \dots, r_m)$,所以 $\exists y_i \in N(r_1, \dots, r_m)$,s.t. $y_i = \omega r_i \omega^{-1}$,即 $RHS \subset LHS$

另一方面, 要证 $LHS \subset RHS$, 只需证明 RHS 是正规子群, 且包含 r_1, \dots, r_m , 再由最小性即得证, 因为对 $\forall y \in F(x_1, \dots, x_n), \omega r_i \omega^{-1} \in RHS$, 有

$$y(r\omega r_j^{-1})y^{-1} = (yr)\omega(yr)^{-1} \in RHS$$

因此 $RHS \triangleleft F(x_1, \dots, x_n)$

综上
$$N(r_1, \dots, r_m) = (\omega r_j \omega^{-1} \mid 1 \le j \le m, \omega \in F(x_1, \dots, x_n))$$

Exercise 16 证明 $G = \langle s, t \mid s^2, t^2, (st)^6 \rangle \simeq D_6$

Proof 考虑满同态

$$f: G \longrightarrow D_6$$

 $st \longmapsto a$
 $s \longmapsto b$

因为 $f(t) = f(s^2t) = f(s)f(st) = ba$, 故 $f(t^2) = (ba)^2 = 1$

Claim: $G = \{(st)^i s^j | 0 \le i \le 5, 0 \le j \le 1\}$

因为 $s^2 = t^2 = 1$, 所以 G 中元素一定形如 $ststststs\cdots$ 或 $tstststst\cdots$.

若为前者, 则结合 $(st)^6 = 1$ 知它一定形如 $(st)^i$ s 或 $(st)^i$, 其中 0 < i < 5

若为后者, 因为 $(st)^6=1$, 所以 $t(st)^6t=t^2=1$, 即 $(ts)^6=1$, 因此它一定可化为 $(ts)^i t$ 或 $(ts)^i$, 其中 $0 \le i \le 5$, 又因为 $(st)^6=1$, 所以

$$(ststst)(ststst) = 1 \Longrightarrow ststst = tststs$$

因此 $(ts)^4 = (ts)^3(ts) = (st)^3(st) = (st)^2$,同理 $(ts)^5 = st$, $(ts)^2 = (st)^4$, $ts = (st)^5$,所以 $(ts)^i$ 均可化 为 $(st)^{6-i}$,对于 $(ts)^i t = (st)^{6-i} t = (st)^{5-i} (st) t = (st)^{5-i} s$,再说明 $\{(st)^i s^j | 0 \le i \le 5, 0 \le j \le 1\}$ 没有重复的元素,假设 $0 \le i, m \le 5, 0 \le j \le 1$,且

$$(st)^i s^j = (st)^m s^n \Longrightarrow s^j = (st)^{6+m-i} s^n$$

若 j=0,则 $1=(st)^{6+m-i}s^n$,故 6+m-i=6, n=0,所以 i=m, j=n; 若 j=1,两边同时右乘 s,则 $1=(st)^{6+m-i}s^{n+1}$,所以 6+m-i=6, n+1=2,即 m=i, n=j=1,因此表达唯一,即断言得证

所以 $|G| \le 12$, 且由满射知, |G| = 12 且 f 是双射, 所以 f 是群同构, 即 $G \simeq D_6$