Relaxation: A effective way to solve BVP

Lecturer: Guanfu Liu(刘观福)

School of Physics and Astronmy Sun Yat-Sen University

November 30, 2021

Overview

Backgroud

Derivation

A simple example

Two ways to solve boundary value problem (BVP). BVP is everywhere in the research fields of astronomy.

- ► Shooting method
- Relaxation method

A visual interpretation about relaxation

In numerical mathematics, relaxation methods are iterative methods for solving systems of equations, including nonlinear systems [1].

Just imagine a half-circle rubber band whose two ends were fixed at two certain points. The half-circle rubber band is tight initially. Then, it will relax to the relaxation state.

It should be noted that the initial condition is not that important for the rubber band will relax to the relaxation state sooner or later, which is the same as the condition in numerical practice.

Replace ordinary differential equations(ODEs) with finite-difference equations(PDEs).

$$\frac{dy}{dx} = g(x, y) \tag{1}$$

$$y_k - y_{k-1} - (x_k - x_{k-1})g[\frac{1}{2}(x_k + x_{k-1}), \frac{1}{2}(y_k + y_{k-1})] = 0$$
 (2)

Define:

$$E_k = y_k - y_{k-1} - (x_k - x_{k-1})g[\frac{1}{2}(x_k + x_{k-1}), \frac{1}{2}(y_k + y_{k-1})]$$
 (3)

If we have N varibles to solve in M points:

$$\vec{E}_k = \vec{y}_k - \vec{y}_{k-1} - (x_k - x_{k-1})\vec{g}(x_k, x_{k-1}, \vec{y}_k, \vec{y}_{k-1}) \qquad \text{k=2,3,4...M} \tag{4}$$

There are (M-1)N equations.

References

First boundary:

$$0 = \vec{E}_1 \equiv \vec{B}(x_1, \vec{y}_1) \tag{5}$$

 $ec{E}_1$ has n_1 components. There are n_1 equations at the first boundary. Second boundary:

$$0 = \vec{E}_{M+1} \equiv \vec{B}(x_M, \vec{y}_1)$$
 (6)

 $ec{E}_{M+1}$ has $N-n_1$ components. There are $N-n_1$ equations at the second boundary.

The initial guess for $y_{j,k}$ is not that important. It is the increments $\Delta y_{j,k}$ matters. At interior points:

$$\vec{E}_{k}(\vec{y}_{k} + \Delta \vec{y}_{k}, \vec{y}_{k-1} + \Delta \vec{y}_{k-1}) \approx \vec{E}_{k}(\vec{y}_{k}, \vec{y}_{k-1}) + \sum_{n=1}^{N} \frac{\partial \vec{E}_{k}}{\partial y_{n,k-1}} \Delta y_{n,k-1} + \sum_{n=1}^{N} \frac{\partial \vec{E}_{k}}{\partial y_{n,k}} \Delta y_{n,k}$$
(7)

We expected the updated values $\vec{E}_k(\vec{y}_k + \Delta \vec{y}_k, \vec{y}_{k-1} + \Delta \vec{y}_{k-1})$ to be **zero**. Then, we can get:

$$\sum_{n=1}^{N} S_{j,n} \Delta y_{n,k-1} + \sum_{n=N+1}^{2N} S_{j,n} \Delta y_{n-N,k} = -E_{j,k} \qquad j = 1, 2, \dots, N$$
 (8)

where

$$S_{j,n} = \frac{\partial E_{j,k}}{\partial y_{n,k-1}}, S_{j,n+N} = \frac{\partial E_{j,k}}{\partial y_{n,k}}, \qquad n = 1, 2, \dots, N$$
(9)

At the first boundary:

$$\sum_{n=1}^{N} S_{j,n} \Delta y_{n,1} = -E_{j,1}, \qquad j = N - n_1 + 1, N - n_1 + 2, \cdots, N$$
 (10)

where

$$S_{j,n} = \frac{\partial E_{j,1}}{\partial y_{n,1}} \qquad n = 1, 2, \cdots, N$$
(11)

At the second boundary:

$$\sum_{n=1}^{N} S_{j,n} \Delta y_{n,M} = -E_{j,M+1}, \qquad j = 1, 2, \dots, n_1$$
 (12)

where

$$S_{j,n} = \frac{\partial E_{j,M+1}}{\partial u_{n,M}} \qquad n = 1, 2, \cdots, N$$
(13)

The dimension of S is $\mathbf{MN}\times\mathbf{MN},$ with at most $MN\times N\times 2-2N=2MN^2-2N$ non-zero elements (Sparse matrix!). About convergence:

$$err = \frac{1}{MN} \sum_{k=1}^{M} \sum_{j=1}^{N} \frac{|\Delta y(j,k)|}{\operatorname{scalv}(j)}$$
 (14)

We need to supply to an array **scalv** which measures **typical size** of each varible.

If err is large, it perhaps means the corrections generated from a first-order Taylor series are inaccurate. Under this circumstances, we apply only a fraction of the corrections. (Why?)

$$\vec{E}_{k}(\vec{y}_{k} + \Delta \vec{y}_{k}, \vec{y}_{k-1} + \Delta \vec{y}_{k-1}) \approx \vec{E}_{k}(\vec{y}_{k}, \vec{y}_{k-1}) + \sum_{n=1}^{N} \frac{\partial \vec{E}_{k}}{\partial y_{n,k-1}} \Delta y_{n,k-1} + \sum_{n=1}^{N} \frac{\partial \vec{E}_{k}}{\partial y_{n,k}} \Delta y_{n,k}$$
(15)

$$y_{j,k} \to y_{j,k} + \frac{\text{slowc}}{\max(\text{slowc}, \text{err})} \Delta y_{j,k}$$
 (16)

A simple example

$$\psi'' + k^2 \psi = 0 \tag{17}$$

$$\psi(0) = \psi(1) = 0 \tag{18}$$

$$y_1 = \psi \tag{19}$$

$$y_2 = \psi' \tag{20}$$

$$y_3 = k^2 \tag{21}$$

$$E_{1,k} = y_{1,k} - y_{1,k-1} - \frac{h}{2}(y_{2,k} + y_{2,k-1})$$
(22)

$$E_{2,k} = y_{2,k} - y_{2,k-1} + \frac{1}{4}h(y_{3,k} + y_{3,k-1})(y_{1,k} + y_{1,k-1})$$
 (23)

$$E_{3,k} = y_{3,k} - y_{3,k-1} (24)$$

Here, k=2,3,4...M

$$h = x_k - x_{k-1} = constant (25)$$

At interior points:

$$\begin{cases}
S_{1,1} = -1, & S_{1,2} = -\frac{1}{2}h, & S_{1,3} = 0 \\
S_{1,4} = 1, & S_{1,5} = -\frac{1}{2}h, & S_{1,6} = 0
\end{cases}$$
(26)

$$\begin{cases}
S_{2,1} = \frac{h}{4}(y_{3,k} + y_{3,k-1}), & S_{2,2} = -1, & S_{2,3} = \frac{h}{4}(y_{1,k} + y_{1,k-1}) \\
S_{2,4} = \frac{h}{4}(y_{3,k} + y_{3,k-1}), & S_{2,5} = 1, & S_{2,6} = \frac{h}{4}(y_{1,k} + y_{1,k-1})
\end{cases}$$

$$\begin{cases}
S_{3,1} = 0, & S_{3,2} = 0, & S_{3,3} = -1 \\
S_{3,4} = 0, & S_{3,5} = 0, & S_{3,6} = 1
\end{cases}$$
(28)

At the first boundary:

$$x = -1: \begin{cases} E_{3,1} = y_{1,1} \\ S_{3,4} = 1, & S_{2,5} = 0, S_{2,6} = 0 \end{cases}$$
 (29)

A simple example 0000

At the second boundary:

$$x = 1: \begin{cases} E_{1,M+1} = y_{1,M+1} - 0 \\ S_{1,4} = 1, \end{cases} S_{1,5} = 0, S_{1,6} = 0$$
 (30)

$$x = 1: \begin{cases} E_{2,M+1} = y_{2,M+1} - 5 \\ S_{2,4} = 0, & S_{2,5} = 1, S_{1,6} = 0 \end{cases}$$
(31)

Here, we add another boundary conditions at the second boundary: $\psi'(1)=5$

3 equations, 4 mesh points.

$$\begin{bmatrix} \mathbf{X} & \mathbf{0} \\ \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{0} \\ \mathbf{0} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{0} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{0} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{0} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{0} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{0} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{0} & \mathbf{X} & \mathbf{X}$$

Here \boldsymbol{X} is the non-zero elements, $\boldsymbol{0}$ is the elements that are zero in this certain example but can be non-zero in another example.

[1] Wikipedia contributors. Relaxation (iterative method) — Wikipedia, the free encyclopedia, 2021. [Online; accessed 1-December-2021].