- 7.5.1 Definition
- 7.5.2 Searching a binary search tree
- 7.5.3 Inserting into a binary search tree
- 7.5.4 Deletion from a binary search tree
- 7.5.5 Time complexity on a binary search tree

- 자료구조
 - Data를 효율적으로 관리하는 기법
 - _ 관리
 - 삽입, 삭제, **탐색**, Etc
 - 탐색 (search)
 - 임의의 원소 찾기
 - 가장 늦게/먼저 온 원소 찾기 (stack/queue)
 - 1등 찾기
 - "임의의 원소 찾기"의 요구 조건: set + key
 - 김서방 (key) 을 찾아라 (X)
 - 서울 (set) 에서 김서방 (key)을 찾아라 (O)

7.5 Binary search tree

• 탐색: 임의의 원소 찾기 VS 1등 찾기

- Recall "binary search"
 - select the middle of the array and divide the array by half (left & right)

7.5 Binary search tree

- Recall "binary search"
 - select the middle of the array and divide the array by half (left & right)

7.5 Binary search tree

- Recall "binary search"
 - select the middle of the array and divide the array by half (left & right)

- Recall "binary search"
 - select the middle of the array and divide the array by half (left & right)

- Recall "binary search"
 - select the middle of the array and divide the array by half (left & right)

- A structure that supports binary search
 - Recursive structure
 - structure →
 (left structure) + middle + (right structure)
 - tree ->
 (left subtree) + root node + (right subtree)
 - Comparison
 - all values in the left structure < middle
 - all values in the right structure > middle

- Binary search tree
 - A binary tree (may be empty)
 - Satisfies the following properties
 - (1) Each node has **exactly one key** and the keys in the tree are distinct
 - (2) The keys in the **left** subtree are **smaller** than the key in the root
 - (3) The keys in the right subtree are larger than the key in the root
 - (4) The left and right subtrees are also binary search tree

Data structures for efficient search

Data structure			Insert	Delete	Search	Get max (Pop)	Remove max (Top)
Array	Unsorted		O(1)	O(n)	O(n)	O(n)	O(n)
	Sorted		O(n)	O(n)	O(log n)	O(1)	O(n)
Linked list	Unsorted		O(n)	O(n)	O(n)	O(n)	O(n)
	Sorted		O(n)	O(n)	O(n)	O(1)/O(n)	O(1)/O(n)
Binary search tree WC							
		WC					
Неар							
Hash table							

7.5 Binary search tree

7.5 Binary search tree

Binary search trees (good and bad)

Best case: depth = log n

7.5 Binary search tree

Worst case: depth = n

```
element node::search (KEY key )
root->search (13);
     search (13)
 :13 < root -> key (14)
                                 14
 → search (left child)
                         12
```

 Given a binary search tree, find a node whose key is k

search (13)
:13 > root->key (12)
→ search (right child)

10

13

28

```
element node::search (KEY key )
```



```
element node::search (KEY key )
```


Recursive implementation

```
void node::search(int ndata)
         if (this->key == ndata) {
                  printf("found\n");
         else if (this->key < ndata) {</pre>
                  if (this->rchild != NULL)
                           this->rchild->search(ndata);
                  else
                           printf("Not found\n");
         else {
                  if (this->lchild != NULL)
                           this->lchild->search(ndata);
                  else
                           printf("Not found\n");
```

Time complexity

- Best case
 - A binary tree with n nodes has depth of log n.
 - At worst case, search ends at the leaf nodes.
 - So, the best case time complexity is O(log n).

Worst case

- A binary tree with n nodes has depth of n.
- At worst case, search ends at the leaf nodes.
- So, the best case time complexity is O(n).

- Inserting a new node to a binary search tree
 - A newly inserted node is a leaf node
 - From the root node of the binary search tree, the key of new node is compared to a leaf node
 - If new key > key of root, then go right
 - If new key < key of root, then go left

- Example
 - Insert <11>

- Example
 - Insert < 11>

- Example
 - Insert < 11>

- Example
 - Insert <11>

Recursive implementation

```
10
```

```
void node::insert(int ndata)
  degenerate case: root node에 삽입
   if (this->key == -1) {
       this->key = ndata;
       return;
// key와 같으면
   if ( this->key == ndata ) {
       printf("No duplicate data\n");
// key보다 크면
                                        Where to
   else if (this->key < ndata ) {</pre>
                                         insert?
       this->rchild->insert(ndata);
// key보다 작으면
                                        Where to
   else {
       this->lchild->insert(ndata);
                                         insert?
```


Recursive implementation

```
key보다 크면
if (this->key < ndata) {
    if (this->rchild != NULL)
        this->rchild->insert(ndata);
    else {
        this->rchild = (nptr)malloc(sizeof(node));
        this->rchild->key = ndata;
        this->rchild->lchild = this->rchild->rchild = NULL;
key보다 작으면
else {
    if (this->lchild != NULL)
        this->lchild->insert(ndata);
    else {
        this->lchild = (nptr)malloc(sizeof(node));
        this->lchild->key = ndata;
        this->lchild->lchild = this->lchild->rchild = NULL;
```


7.5 Binary search tree

Time complexity

- Best case
 - A binary tree with n nodes has depth of log n.
 - Insert ends at the leaf nodes.
 - So, the best case time complexity is O(log n).

Worst case

- A binary tree with n nodes has depth of n.
- Insert ends at the leaf nodes.
- So, the best case time complexity is O(n).

7.5.4 Delete

- Deleting a node from a binary search tree
 - Which node to delete?
 - Leaf node
 - Internal node with one child node
 - Internal node with two child nodes

7.5.4 Delete

- Deleting leaf nodes
 - → Delete the node

7.5.4 Delete

- Deleting leaf nodes
 - → Delete the node

- Deleting leaf nodes
 - → Delete the node

- Deleting leaf nodes
 - → Delete the node

- Deleting leaf nodes
 - → Delete the node

- Deleting internal nodes of one child
 - \rightarrow (1) Delete the node
 - (2) Make the child take place of the deleted node

- Deleting internal nodes of one child
 - \rightarrow (1) Delete the node
 - (2) Make the child take place of the deleted node

- Deleting internal nodes of one child
 - \rightarrow (1) Delete the node
 - (2) Make the child take place of the deleted node

- Deleting internal nodes of one child
 - \rightarrow (1) Delete the node
 - (2) Make the child take place of the deleted node

- Deleting internal nodes of one child
 - \rightarrow (1) Delete the node
 - (2) Make the child take place of the deleted node

- Deleting internal nodes of one child
 - \rightarrow (1) Delete the node
 - (2) Make the child take place of the deleted node

- Deleting internal nodes with two childs
 - \rightarrow (1) Delete the node
 - (2) Move the maximum of its left subtree (or the minimum of its right subtree) to the node

- Deleting internal nodes with two childs
 - \rightarrow (1) Delete the node
 - (2) Move the maximum of its left subtree (or the minimum of its right subtree) to the node

- Deleting internal nodes with two childs
 - \rightarrow (1) Delete the node
 - (2) Move the maximum of its left subtree (or the minimum of its right subtree) to the node

- Deleting internal nodes with two childs
 - \rightarrow (1) Delete the node
 - (2) Move the maximum of its left subtree (or the minimum of its right subtree) to the node

- Deleting internal nodes with two childs
 - \rightarrow (1) Delete the node
 - (2) Move the maximum of its left subtree (or the minimum of its right subtree) to the node


```
int node::remove(int ndata)
// key와 같으면
   if (this->key == ndata) {
       printf("Removing %d\n", ndata);
       // (1) 두 child가 다 NULL
       // (2) lchild만 NULL
       // (3) rchild만 NULL
       // (4) 둘 다 NULL이 아닌 경우
// key보다 크면
   else if (this->key < ndata) {</pre>
       this->rchild->remove(ndata);
// key보다 작으면
   else {
       this->lchild->remove(ndata);
```


7.5 Binary search tree

7.5 Binary search tree

```
// (2) left child만 NULL이면

if (this->lchild == NULL && this->rchild != NULL) {

    this->key = this->rchild->key;

    this->lchild = this->rchild->lchild;

    this->rchild = this->rchild->rchild;

    return 0;
}
```


7.5 Binary search tree

```
// (3) right child만 NULL이면

if (this->lchild != NULL && this->rchild == NULL) {

    this->key = this->lchild->key;

    this->rchild = this->lchild->rchild;

    this->lchild = this->lchild;

    return 0;
}
```

```
// (4) 두 child가 다 NULL이 아닌 경우
if (this->lchild != NULL && this->rchild != NULL) {
    this->key = this->lchild->get_max();
    this->lchild->remove(this->key );
    return 0;
}
```



```
// (4) 두 child가 다 NULL이 아닌 경우
if (this->lchild != NULL && this->rchild != NULL) {
    this->key = this->lchild->get_max();
    this->lchild->remove(this->key );
    return 0;
}
```



```
else if (this->key < ndata) {</pre>
    if (this->rchild != NULL) {
        if (this->rchild->remove(ndata))
                                                                                          28
             this->rchild = NULL;
                                                                    300
                                                                          data:
                                                                                 17
                                                                          Ichild: NULL
    else {
                                                                          rchild: 900
        printf("Not found %d in removing\n", ndata);
    return 0;
else {
    if (this->lchild != NULL) {
        if (this->lchild->remove(ndata))
             this->lchild = NULL;
                                                                    900
    else {
                                                                          data:
        printf("Not found %d in removing\n", ndata);
                                                                          Ichild: NULL
                                                                          rchild: NULL
    return 0;
```

7.5 Binary search tree

```
else if (this->key < ndata) {</pre>
    if (this->rchild != NULL) {
        if (this->rchild->remove(ndata))
             this->rchild = NULL;
                                                                     300
                                                                           data:
                                                                                  17
                                                                           Ichild: NULL
    else {
                                                                           rchild: NULL
        printf("Not found %d in removing\n", ndata);
    return 0;
else {
    if (this->lchild != NULL) {
        if (this->lchild->remove(ndata))
             this->lchild = NULL;
                                                                     900
    else {
                                                                          data:
        printf("Not found %d in removing\n", ndata);
                                                                          Ichild: NULL
                                                                          rchild: NULL
    return 0;
```

7.5 Binary search tree

Time complexity

- Best case
 - A binary tree with n nodes has depth of log n.
 - At worst case, delete ends at the leaf nodes.
 - So, the best case time complexity is O(log n).

Worst case

- A binary tree with n nodes has depth of n.
- At worst case, delete ends at the leaf nodes.
- So, the best case time complexity is O(n).

7.5.5 Time complexity

Balanced (best) VS Skewed (worst)

7.5.5 Time complexity

Data structures for efficient search

Data structure			Insert	Delete	Search	Get max (Pop)	Remove max (Top)
Array	Unsorted		O(1)	O(n)	O(n)	O(n)	O(n)
Array	Sorted		O(n)	O(n)	O(log n)	O(1)	O(n)
Linkad list	Unsorted		O(n)	O(n)	O(n)	O(n)	O(n)
Linked list	Sorted		O(n)	O(n)	O(n)	O(1)/O(n)	O(1)/O(n)
Binary search tree WC		O(log n)					
		WC	O(n)	O(n)	O(n)	O(n)	O(n)
Неар							
Hash table							

7.5.6 Advanced topics

- The key issue in BST
 - How to keep the balance?
 - -Ex) Insert 1, 2, 3, 4, 5, 6, 7, 8
 - -Ex) Insert 5, 3, 7, 2, 6, 1, 8, 4

7.5.6 Advanced topics

- The key issue in BST
 - Automatically balancing trees
 - AVL tree
 - 2-3 tree
 - Red-black tree
 - Spray tree
 - B or B+ tree
 - •

7.6 Heap (히입)

7.6.1 Priority Queue

7.6.2 Definition of a Heap

7.6.3 Insertion into a Heap

7.6.4 Deletion from a Heap

- Priority queue
 - The element to be deleted is the one with the highest (or lowest) priority
 - Example) Emergency room in hospital

- Operations of priority queue
 - Push
 - Add a new element to the queue
 - Determine the position according to its priority
 - Pop
 - Remove the element of highest priority from the queue
 - Top
 - Search the element of the highest priority from the queue (do not remove the element)

- Implementation of a priority queue using a sorted list
 - Push
 - Insert an element to a sorted list
 - Pop
 - Remove the first element from the list
 - Top
 - Return the first element of the list
 - -Ex) Insert 16, 10, 33, 4 to the queue

4	10	16	33			
4	10	16	33			

Implementation of a priority queue using a sorted array

- Push: O(n)

-Pop: O(n)

- Top: O(1)

- Can we improve this?
 - → use tree!! (heap)

7.6.2 Definition of a Heap

Heap

- A tree-based implementation of a priority queue
- A complete binary tree
- Max heap
 - The key value in each node is no smaller than the key values of its child nodes
- Min heap
 - The key value in each node is no *larger* than the key values of its child nodes

7.6.2 Definition of a Heap

- Max heap
 - A complete binary tree
 - The key value in each node is no
 smaller than the key values of its child nodes

7.6.2 Definition of a Heap

- Min heap
 - A complete binary tree
 - The key value in each node is no larger than the key values of its child nodes

- Implementation of a heap
 - Implementation of a complete binary tree
 - Pointer-based
 - Array-based

- Implementation of a heap
 - Index the nodes of a heap from top to down, from left to right
 - Index the elements of an array from 1

- Implementation of a heap
 - Parent of node k: k/2
 - Left child of node k: 2*k
 - Right child of node k: 2*k + 1

Implementation of a heap

```
int *heap;
int n;
int cnt;
```

```
cnt = 0;
n = 1000;
heap = (int *)calloc(n, sizeof(int));
```

- Heapify (k)
 - From node k, reorganize a tree to a heap
 - Topdown heapify ()
 - From root node to leaf node, build a heap
 - Bottomup heapify ()
 - From leaf node to root node, build a heap


```
void heapify_topdown(int idx)
    // leaf node에 도착하면 끝
    if (2 * idx >= cnt)
                            return;
    if (2 * idx == cnt) {
        if (heap[idx] < heap[2 * idx])</pre>
            swap(&heap[idx], &heap[2 * idx]);
        return;
    if (heap[2*idx] > heap[2*idx+1] && heap[2*idx] > heap[idx]) {
        swap(&heap[idx], &heap[2 * idx]);
        heapify_topdown(2 * idx);
    else if (\text{heap}[2*idx+1] > \text{heap}[2*idx] \&\& \text{heap}[2*idx+1] > \text{heap}[idx])
        swap(\&heap[idx], \&heap[2 * idx + 1]);
        heapify_topdown(2 * idx + 1);
```



```
void heapify_topdown(int idx)
    // leaf node에 도착하면 끝
    if (2 * idx >= cnt)
                            return;
    if (2 * idx == cnt) {
        if (heap[idx] < heap[2 * idx])</pre>
            swap(&heap[idx], &heap[2 * idx]);
        return;
    if (heap[2*idx] > heap[2*idx+1] && heap[2*idx] > heap[idx]) {
        swap(&heap[idx], &heap[2 * idx]);
        heapify_topdown(2 * idx);
    else if (\text{heap}[2*idx+1] > \text{heap}[2*idx] \&\& \text{heap}[2*idx+1] > \text{heap}[idx]) 
        swap(\&heap[idx], \&heap[2 * idx + 1]);
        heapify_topdown(2 * idx + 1);
```



```
void heapify_topdown(int idx) // recursive
   // leaf node에 도착하면 끝
   if (2 * idx >= cnt)
                          return;
   if (2 * idx == cnt) {
        if (heap[idx] < heap[2 * idx])</pre>
            swap(&heap[idx], &heap[2 * idx]);
        return;
   if (heap[2*idx] > heap[2*idx+1] && heap[2*idx] > heap[idx]) {
        swap(&heap[idx], &heap[2 * idx]);
       heapify_topdown(2 * idx);
    else if (heap[2*idx+1] > heap[2*idx] && heap[2*idx+1] > heap[idx]) {
        swap(\&heap[idx], \&heap[2 * idx + 1]);
       heapify_topdown(2 * idx + 1);
```



```
void heapify_topdown(int idx) // iterative
    while (2 * idx < cnt) {
        if (2 * idx == cnt) { // lchild만 있는 경우
            if (heap[idx] < heap[2 * idx])</pre>
                swap(&(heap[idx]), &(heap[2 * idx]));
            break;
        if (heap[2 * idx] > heap[2 * idx + 1] && heap[idx] < heap[2 * idx]) 
            swap(&(heap[idx]), &(heap[2 * idx]));
           idx = 2 * idx;
        else if (heap[2 * idx] < heap[2 * idx + 1] && heap[idx] < heap[2 * idx + 1]) {
            swap(&(heap[idx]), &(heap[2 * idx + 1]));
           idx = 2 * idx + 1;
        else
            break;
```

Bottomup heapify (k) → max heap

```
void heapify_bottomup(int idx) // recursive
{
    // root node에 도착하면 끝
    if (idx == 1)
        return;

    if (heap[idx / 2] < heap[idx]) {
        swap(&heap[idx / 2], &heap[idx]);
        heapify_bottomup(idx / 2);
    }
}
```

Bottomup heapify (k) → max heap

```
void heapify_bottomup(int idx) // iterative
{
    // root node에 도착하면 끝
    while (idx > 1) {
        if (heap[idx / 2] < heap[idx]) {
            swap(&heap[idx / 2], &heap[idx]);
            idx = (idx / 2);
        }
        else
            break;
    }
}
```

- Insert an element to a max heap
 - (1) Insert an element to the last position of the heap (no longer heap)
 - (2) Using heapify (), reorganize the newly inserted heap to a heap

Insert an element to a max heap

 (1) Insert an element to the last position of the heap (no longer heap)

 Insert an element to a max heap
 (2) Using heapify (), reorganize the newly inserted heap to a heap

 Insert an element to a max heap
 (2) Using heapify (), reorganize the newly inserted heap to a heap

Insert an element to a max heap

```
void insert(int ndata)
{
    cnt++;
    heap[cnt] = ndata;

    heapify_bottomup(cnt);
}
```

- Time complexity of push ()
 - Heap → complete binary tree of n nodes
 - Height of heap → log (n)
 - Time complexity for push ()
 - \rightarrow O(log (n))

- Exercise
 - Build a max heap by inserting the following values:

7, 16, 49, 82, 5, 31, 6, 2, 44

- Exercise
 - Build a min heap by inserting the following values:

7, 16, 49, 82, 5, 31, 6, 2, 44

- Delete from a max heap
 - (1) Remove the root of heap and return the element of the root node
 - (2) Move the element of the last node to the root node and remove the last node
 - (3) Apply Heapify () to maintain the heap

- Delete from a max heap
 - (1) Remove the root of heap and return the element of the root node

- Delete from a max heap
 - (2) Move the element of the last node to the root node and remove the last node

 Delete from a max heap
 (3) Apply heapify () to maintain the structure of max heap

 Delete from a max heap
 (3) Apply heapify () to maintain the structure of max heap

7.6 Heap

Delete from a max heap

```
int remove ()
{
   int temp = heap[1];
   heap[1] = heap[cnt - 1];
   cnt--;

   heapify_topdown(1);
   return temp;
}
```

- Time complexity of a pop ()
 - Heap → complete binary tree of n nodes
 - Height of heap → log (n)
 - Time complexity for pop ()
 - \rightarrow O(log (n))

7.6.5 Time complexity

Data structures for efficient search

Data structure			Insert	Delete	Search	Get max (Pop)	Remove max (Top)
Array	Unsorted		O(1)	O(n)	O(n)	O(n)	O(n)
	Sorted		O(n)	O(n)	O(log n)	O(1)	O(n)
Linked list	Unsorted		O(n)	O(n)	O(n)	O(n)	O(n)
	Sorted		O(n)	O(n)	O(n)	O(1)/O(n)	O(1)/O(n)
Binary search tree WC		O(log n)					
		WC	O(n)	O(n)	O(n)	O(n)	O(n)
Неар			O(log n)	O(log n)	O(n)	0(1)	O(log n)
Hash table			O(1)	O(1)	O(1)		

Contents

- 7.1 Introduction
- 7.2 Basic concepts
- 7.3 Binary tree
- 7.4 Basic operations
- 7.5 Binary search tree
- 7.6 Heap

Contents

- 1. Introduction
- 2. Analysis
- 3. Array
- 4. List
- 5. Stack/Queue
- 6. Sorting
- 7. Tree
- 8. Search
- 9. Graph
- 10. STL