Simulação de um pêndulo forçado amortecido

Carlos Eduardo Gonçalves de Oliveira, 201803300 Física Computacional I, Wesley Bueno Cardoso

INTRODUÇÃO

No presente trabalho, será tratada a simulação de um experimento físico envolvendo a dinâmica de um pêndulo forçado amortecido. As hipóteses que regem a simulação são, basicamente: a massa do pêndulo está concentrada tão somente no elemento oscilante; a haste (ou corda) do pêndulo é inextensível, inflexível e não possui massa; o movimento do pêndulo é restrito a um plano; há uma força de resistência ao movimento do pêndulo que é proporcional à sua velocidade e, por último, há uma força motriz de natureza periódica que impulsiona o elemento oscilante.

Resumidamente, os objetivos deste projeto são: resolver numericamente (usando a linguagem de programação Python) as equações diferenciais que descrevem a situação física discutida anteriormente e comparar as soluções obtidas através do método de Euler de primeira e segunda ordem, para diferentes valores de parâmetros da força motriz periódica. Por último, usando somente o método de Euler de segunda ordem, deseja-se explorar diferentes parâmetros da força motriz de modo a averiguar a existência de um padrão caótico no movimento do pêndulo.

MÉTODOS

Equação diferencial do sistema

A dinâmica do sistema é regida pela seguinte equação:

$$ma_t = f_q + f_m + f_r \tag{1}$$

onde a_t é a aceleração tangencial da massa que oscila; f_g é a componente tangencial da força gravitacional sobre a massa; f_m é a força motriz de natureza periódica que age sobre a massa; e f_r é a força de resistência ao movimento da massa.

Caracterizando cada uma dessas grandezas em coordenadas polares (supondo que o comprimento da haste do pêndulo seja l), tem-se:

$$\frac{d^2\theta}{dt^2} = -\frac{\kappa}{m}\frac{d\theta}{dt} - \frac{g}{l}\sin\theta + \frac{f_0}{ml}\cos\omega_0 t \tag{2}$$

Em particular, podemos ajustar essa equação diferencial de forma que ela se transforme em duas equações diferenciais de primeira ordem. Isso pode ser feito se fizermos $\frac{d\theta}{dt} = \phi$:

$$\frac{d\theta}{dt} = \phi \tag{3}$$

$$\frac{d\phi}{dt} = -\frac{\kappa}{m}\phi - \frac{g}{l}\sin\theta + \frac{f_0}{ml}\cos\omega_0 t \tag{4}$$

Assim, temos duas equações diferenciais de primeira ordem acopladas, que podem ser resolvidas facilmente pelo método de Euler. Porém, para o método de Euler de segunda ordem, é necessário a expressão para as derivadas segundas. Calculando-as a partir das equações 3 e 4, tem-se:

$$\frac{d^2\theta}{dt^2} = \frac{d\phi}{dt} \tag{5}$$

$$\frac{d^2\phi}{dt^2} = -\frac{\kappa}{m}\frac{d\phi}{dt} - \frac{g}{l}\phi\cos\theta - \frac{f_0w_0}{ml}\sin\omega_0t \tag{6}$$

Método de Euler

O método de Euler é diretamente análogo a uma série de Taylor, porém com truncamento em alguma das derivadas. A partir do método de Euler de primeira ordem (supondo uma discretização em t igual a h), pode-se calcular os valores de $\theta_{n+1} = \theta(t_n + h)$ e $\phi_{n+1} = \phi(t_n + h)$ da seguinte forma:

$$\theta_{n+1} = \theta_n + h \frac{d\theta}{dt} + O(h^2) \tag{7}$$

$$\phi_{n+1} = \phi_n + h \frac{d\phi}{dt} + O(h^2) \tag{8}$$

Note que, nesse caso, o erro de truncamento é da ordem de $O(h^2)$. Por outro lado, pelo método de Euler de segunda ordem o erro torna-se da ordem de $O(h^3)$, conforme as seguintes equações:

$$\theta_{n+1} = \theta_n + h \frac{d\theta}{dt} + \frac{h^2}{2} \frac{d^2\theta}{dt^2} + O(h^3)$$
 (9)

$$\phi_{n+1} = \phi_n + h \frac{\phi}{dt} + \frac{h^2}{2} \frac{d^2 \phi}{dt^2} + O(h^3)$$
 (10)

Comparação entre os diferentes métodos de Euler

Serão fixados a posição inicial e a velocidade inicial em 45 graus e $0\frac{m}{s}$, respectivamente. Em seguida, serão comparadas, por meio de um gráfico de v (velocidade do pêndulo) por θ (ângulo do pêndulo), as trajetórias obtidas por cada método. As diferenças absolutas ao longo do tempo entre as soluções serão calculadas e mostradas em um gráfico. Esse procedimento será repetido para os seguintes valores de (f_0, w_0) (em N e Hz): (0,0), (1,2), (2,2) e (5,2).

Averiguação do comportamento caótico do pêndulo

Serão tomados a posição inicial e a velocidade inicial em 45 graus e $0\frac{m}{s}$, respectivamente. Em seguida, serão comparadas, por meio de um gráfico de v (velocidade do pêndulo) por θ (ângulo do pêndulo), as trajetórias obtidas pelo método de Euler de segunda ordem para $\theta_0=45$ graus e $\theta_0=45.1$ graus. As diferenças absolutas ao longo do tempo entre as soluções serão calculadas e mostradas em um gráfico. Esse procedimento será repetido para os seguintes valores de (f_0,w_0) (em N e Hz): (0,0), (1,2), (2,2) e (5,2).

Parâmetros das simulações

A massa do elemento oscilante, a aceleração da gravidade, o comprimento da haste do pêndulo e a constante de proporcionalidade da força de resistência terão os seguintes valores, respectivamente: 500g, $9.80665\frac{m}{s^2}$, 30cm e $0.3\frac{Ns}{m}$. A discretização h para o tempo terá o valor de 0.001s, e o intervalo de tempo total da simulação será de 60s.

RESULTADOS E DISCUSSÃO

Comparação entre os diferentes métodos de Euler

Para $(f_0, w_0) = ...$

- (0,0): não há diferença considerável entre as duas soluções (Figura 1). A diferença absoluta máxima é da ordem de 10^{-2} para v e θ e decresce a medida que o pêndulo tende para $\theta=0$ graus e $v=0\frac{m}{s}$ (Figura 2);
- (1,2): não há diferença considerável entre as duas soluções (Figura 3). A diferença absoluta máxima é da ordem de 10^{-2} para $v \in \theta$ e estabiliza na ordem de 10^{-4} após t = 20s (Figura 4);
- (2,2): não há diferença considerável entre as duas soluções (Figura 5). A diferença absoluta máxima é da ordem de 10^{-2} para $v \in \theta$ e estabiliza na ordem de 10^{-3} após t = 15s (Figura 6);

• (5,2): há diferenças consideráveis entre as duas soluções, ambas com um padrão caótico (Figura 7). A diferença absoluta máxima é da ordem de 10^1 para $v \in \theta$ e estabiliza nessa mesma ordem após t = 5s (Figura 8);

Averiguação do comportamento caótico do pêndulo

Para $(f_0, w_0) = ...$

- (0,0): não há diferença considerável entre as duas soluções (Figura 9). A diferença absoluta máxima é da ordem de 10^{-3} para v e θ e decresce (Figura 10):
- (1,2): não há diferença considerável entre as duas soluções (Figura 11). não há diferença considerável entre as duas soluções. A diferença absoluta máxima é da ordem de 10⁻³ para v e θ e decresce (Figura 12);
- (2,2): não há diferença considerável entre as duas soluções (Figura 13). não há diferença considerável entre as duas soluções. A diferença absoluta máxima é da ordem de 10⁻³ para v e θ e decresce (Figura 14);
- (5,2): há diferenças consideráveis entre as duas soluções, ambas com um padrão caótico (Figura 15).
 Elas possuem aproximadamente o mesmo comportamento até t = 5s e depois divergem de modo não previsível (Figura 16);

CONCLUSÃO

Na comparação entre os dois métodos de Euler para a simulação do pêndulo forçado amortecido, é notável que ambos os métodos resultaram nas mesmas trajetórias para o pêndulo quando este não foi submetido a valores altos para f_0 (amplitude da força motriz de natureza periódica). No entanto, para valores altos de f_0 , há um padrão caótico para a trajetória do pêndulo, e isso é um fator que influencia nas soluções obtidas pelos dois métodos, assim como na sensibilidade a pequenas perturbações nas condiçoes iniciais, levando a uma maior divergência a medida que o tempo de simulação passa.

H. M. Nussenzveig. Física Básica, vol. 1. Edgard Blücher, São Paulo (2002).

^[2] J. H. Hubbard. The Forced Damped Pendulum: Chaos, Complication and Control, The American Mathematical Monthly Vol. 106, No. 8 (Oct., 1999), pp. 741-758