

---- North America 2023

Cloud Native Storage: Storage TAG Intro, Projects, Landscape & Technology

Alex Chircop, Akamai Xing Yang, VMware Raffaele Spazzoli, Red Hat

Agenda

- Overview of the TAG

 - How to join and how to help
 Overview of storage projects in the CNCF
- What is Cloud Native Storage
 Why it is important
 What's New
- Overview of the CNCF Storage Landscape document
 Overview of Data on Kubernetes document
- Overview of the Performance and Benchmarking document Overview of the Cloud Native DR document
- Community

Meetings

CNCF SIGs were renamed TAGs (Technical Advisory Groups)

Meetings are on the 2nd and 4th Wednesday of every month at 8AM PT (USA Pacific)

Home: https://github.com/cncf/tag-storage

Conf call: http://bit.ly/cncf-storage-tag-call

• Agenda: http://bit.ly/cncf-storage-tag-minutes

Mail list: https://lists.cncf.io/g/cncf-tag-storage

Our calls and membership are open!

Who we are

- We are a diverse set of users & developers of Cloud Native technologies with a storage focus
- We are leaders & early adopters

Co-Chairs

- ■Alex Chircop
- Xing Yang
- ■Raffaele Spazzoli

Tech Leads

- ■Luis Pabón
- ■Sheng Yang
- **■**Nick Connolly

TOC Liaisons

- ■Nikhita
 Raghunat
- ■Matt Farina

Questions? Reach out and feel free to connect on our mailing list, and CNCF Slack!

What we do

"Scale contributions by the CNCF technical and user community, while retaining integrity and increasing quality in support of the CNCF <u>mission</u> (to make cloud native computing ubiquitous)."

What we do

"Scale contributions by the CNCF technical and user community, while retaining integrity and increasing quality in support of the CNCF <u>mission</u> (to make cloud native computing ubiquitous)."

...this means we

What we do

"Scale contributions by the CNCF technical and user community, while retaining integrity and increasing quality in support of the CNCF <u>mission</u> (to make cloud native computing ubiquitous)."

...this means we

- Educate
- Review Projects
- Engage with the user community
- Provide subject matter expertise

CNCF Storage Projects

CNCF Projects: https://www.cncf.io/projects/

Sandbox Projects: https://www.cncf.io/sandbox-projects/

CNCF Storage Projects

https://www.cncf.io/projects/

Sandbox

- **■**Experiments
- ■IP Policy
- ■Build Community

Incubation

- Used successfully in production
- Healthy number of committers
- ■Project metrics

Graduation

- ■Mainstream production use
- ■Security audits
- ■Committers from multiple organisations

Cloud Native Storage

Why should you think about this?

Cloud Native Storage

Why should you think about this?

Cloud Native Storage

Why should you think about this?

There is no such thing as a stateless application ...

... all applications store state somewhere!

Cloud Native Storage is Here!

Move Stateful Workloads to K8s

- Automation
- Scale
- Performance
- Failover

⇒ Broad ecosystem and CSI support

→ Operators for databases, message queues, and many more!

CNCF Storage Whitepaper

Whitepaper: https://bit.ly/cncf-storage-whitepaperV2

- 1. Definition of the attributes of a storage system
- 2. Definition of the layers in a storage solution with a focus on terminology and how they impact the attributes
- 3. Definition of the data access interfaces in terms of volumes and application APIs
- 4. Definition of the management interfaces

Storage Attributes

Availability	Scalability	Performance	Consistency	Durability
Failover	Clients	Latency	Delay to access correct data	Data protection
Moving access between nodes	Operations	Operations	after a commit	Redundancy
	Throughput	Throughput	Delay between	Bit-Rot
Redundancy			commit and data	
	Components		being committed	
Data Protection			to non-volatile	
			store	

Storage Layers

Orchestrator, Host and Operating System

Storage Topology

(centralized, distributed, sharded, hyperconverged)

Data Protection

(RAID, Erasure coding, Replicas)

Data Services

(Replication, Snapshots, Clones, etc.)

Physical, Non-Volatile Layer

Let's take a look at a couple of different use cases and deployments:

- Hyperconverged
- Block Volumes
- Shared Filesystems
- Object Stores

Let's take a look at a couple of different use cases and deployments:

- Hyperconverged
 - availability: converged fault and change management domains
 - performance: shared network and compute

Let's take a look at a couple of different use cases and deployments:

Block Volumes

- useful to disaggregate compute and storage
- availability: ability to move volumes between nodes
- performance: typically lower latency, but needs good connectivity between compute and storage nodes

Let's take a look at a couple of different use cases and deployments:

Shared Filesystems

- can be used by multiple nodes at the same time
- consistency: distributed locks, cache coherency is hard
- layers: could be built on block, object stores etc ... and that determines many attributes

Let's take a look at a couple of different use cases and deployments:

Object Stores

- scale: almost infinite for capacity, and throughput
- latency: higher than data on a volume
- performance: RPS is often the determining factor

Data Workloads on Kubernetes

North America 2023

Volumes Objects

Files

Data on Kubernetes Whitepaper

https://bit.ly/cncf-storage-dok-whitepaper

- Describe patterns of running data on Kubernetes
- Collaborating with Data on Kubernetes Community (DoKC)
- Focusing on databases in v1
- Paper layout
 - Attributes of a storage system and how they affect running data in Kubernetes
 - Running data inside vs outside of Kubernetes
 - Common Kubernetes patterns and features used when running data on Kubernetes
 - Observability
 - Security
 - Day 2 operations

Storage Attributes and Running Data in K8s

— North America 2023

- Storage System Attributes
 - Attributes
 - Availability
 - Consistency
 - Durability
 - Scalability
 - Performance
 - Observability
 - Elasticity
 - Storage Stacks
 - Stacks/Layers
 - Disaster Recovery

Running Data inside vs outside of K8s

- Managed database services, provided by most cloud providers
- Running data inside K8s with operators
 - Declarative approach
 - Automate "Day 2 Operations"
 - Externalize database functionalities such as monitoring, cert management to third parties

Kubernetes Operators

North America 2023

Kubernetes Operators (cont.)

Data on Kubernetes Community 2022 Survey

- https://operatorhub.io/
 - 331 operators
 - 47 database operators, including etcd and Vitess
 - 9 PostgreSQL
 operators, including
 CloudNativePG
- Other operators not listed in operatorhub
- https://github.com/dokc/op erator-feature-matrix

Common K8s Patterns and Features

- **Kubernetes Operators**
- **Container Storage Interface (CSI)**
- **Kubernetes Workload APIs**
- **Topology Aware Scheduling**
- **Pod Disruption Budget**
- **Resource Management**
- **Separation of Control Plane and Data Plane**
- **Default Secure**

Performance Whitepaper

Whitepaper:

https://bit.ly/cncf-tag-storage-performance-benchmarking

- Definition of common concepts for measuring performance and benchmarking for volumes and databases
- Definition of common pitfalls and considerations
 - Operations vs Throughput
 - Topology, Data Protection, Data Reduction, Encryption matters ...
 - But Latency often matters more ...
 - Concurrency for queues, clients and backends
 - Caching happens at multiple layers
 - Be critical and beware of results that are too good to be true!

Performance Whitepaper

Whitepaper:

https://bit.ly/cncf-tag-storage-performance-benchmarking

TL;DR - important takeaway:

published results are not useful for making comparisons - it is hard to compare published results without a deep understanding of the test conditions, so it is always important to run your own test, on your own environment with your own applications

High-level DR Approaches

Failure Domain is either a data center or a cloud region

Capabilities and Products

North America 2023

Backup & Restore

Volume Replication

Primary/ Secondary enabled middleware

portworx

by Pure Storage

Distributed middleware

Azure SQL

Red Hat

OpenShift

Data Foundation

Cloud Native Disaster Recovery

Whitepaper: http://bit.ly/cncf-cloud-native-DR

Concern	Traditional DR	Cloud Native DR	
Type of deployment	active/passive, rarely active/active	Active / active	
Disaster Detection and Recovery Trigger	Human	Autonomous	
Disaster Recovery Procedure execution	Mix of manual and automated tasks	Automated	
Recovery Time Objective (RTO)	From close to zero to hours	Close to zero	
Recovery Point Objective (RPO)	From zero to hours	Exactly zero for strongly consistent deployments. Theoretically unbounded, practically close to zero for eventual consistent deployments.	
DR Process Owner	Often the Storage Team	Application Team	
Capabilities needed for DR	From storage (backup/restore, volume replication)	From networking (east-west communication, global load balancer)	

Anatomy of a Distributed Stateful Workload

CAP Theorem

API Layer

Coordination
Layer

Storage Layer

Stateful Workload Logical Tiers

Replicas & Partitions

Examples of Consensus Protocol choices

Product	Replica consensus protocol	Shard consensus protocol	
Etcd	Raft	N/A (no support for shards)	
Consul	Raft	N/A (no support for shards)	
Zookeeper	Atomic Broadcast (a derivative of Paxos)	N/A (no support for shards)	
ElasticSearch	Paxos	N/A (No support for transactions)	
Cassandra	Paxos	Supported, but details are not available.	
MongoDB	Paxos	Homegrown protocol.	
CockroachDB	Raft	2PC	
YugabyteDB	Raft	2PC	
TiKV	Raft	Percolator	
Spanner	Raft	2PC+high-precision time service	
Kafka	A custom derivative of PacificA	Custom Implementation of 2PC	

CNDR -- Strong Consistency - Kubernetes Reference Architecture

- North America 2023

Community

- How you can get involved?
 - Join our meeting
 - 2nd & 4th Wednesday each month
 - Submit and help review projects for consideration

- Consider a role in the TAG!
- Contribute to TAG projects and help the community!

