Feb. 1	Announcements	Feb. 1	4.6 Mean Time Spent in Transient States
 No new reading for Friday; make sure you've re 4.8 (both editions) 	ead through Section	Suppose you have either go broke o	ve \$2 and you bet on fair games of chance until you r have \$5.
 HW #3 is due Wednesday, Feb. 8 		 What is the e 	expected number of time steps that you have \$2?
 No class one week from Friday. 		 How long will 	Il this experiment last, on average?
		What is the probability that you will at some point have \$1? Notes: We saw questions one and three we saw on Monday; I added the middle question as an extra.	
Feb. 1 4.6 Mean Time Spent in	Transient States	Feb. 1	4.6 Mean Time Spent in Transient States
 For transient states i and j, let s_{ij} equal the exp time steps spent in j, given X₀ = i. 	pected number of	In our example,	
• Let $S = (s_i j)$ be the matrix of s_{ij} values.		$\begin{bmatrix} 0 & \frac{1}{2} & 0 \end{bmatrix}$	0] [8 6 4 2]
• Last time, we showed that $S = I + P_T S$.		$P_{-} = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$	0 and so $S = (I - P_{\tau})^{-1} - \frac{1}{2} \begin{bmatrix} 6 & 12 & 8 & 4 \end{bmatrix}$
• Therefore, $S = (I = P_T)^{-1}$.		$\begin{bmatrix} 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \text{and so} S = (I - P_T)^{-1} = \frac{1}{5} \begin{bmatrix} 8 & 6 & 4 & 2 \\ 6 & 12 & 8 & 4 \\ 4 & 8 & 12 & 6 \\ 2 & 4 & 6 & 8 \end{bmatrix}.$
Notes: This is review from Monday's class.		problem at hand Important note: I that all of the tran 4 × 4 submatrix i	theory developed so far is applied to the specific (i.e., gambler's ruin with $N=5$, $i=2$, and $p=1/2$). did not reorder the states, as is done in Section 4.6, so asient ones come first. Instead, this P_T matrix is the n the middle of the 6 × 6 full P matrix, since the 4 are all except for the first state (zero) and the last state

Feb. 1	4.6 Mean	Time Spent in Transient States	Feb. 1	4.6 Mean Time Spent in Transient States
In our example, $S = \frac{1}{5} \begin{bmatrix} 8 & 6 & 1 \\ 6 & 1 \\ 4 & 4 & 2 \end{bmatrix}$	6 4 2 2 8 4 8 12 6 4 6 8	Starting with \$2 • Mean # of steps with \$2: $\frac{12}{5}$ • Mean # of steps before end: 6	,	7
		ead directly from the S matrix. For the im the entire second row because	E(# steps in j	$\mid X_0 = i, X_t = j \text{ for some } t > 0) = \begin{cases} s_{jj} + 1 & \text{if } i = j \\ s_{jj} & \text{if } i \neq j \end{cases}$
E(time spent in	all transient sta	$ates) = \sum_{i \text{ transient}} E(time \text{ spent in state } i).$	and	(4 · #: :
			E(# steps in j	$ X_0 = i, X_t \text{ is never } j \text{ for any } t > 0) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$
				$[\mathbf{s}_{ij}+I\{i=j\}]f_{ij}+I\{i=j\}(1-f_{ij})$ using conditioning, g gives $f_{ij}=[\mathbf{s}_{ij}-I\{i=j\}]/\mathbf{s}_{jj}$.
Feb. 1	4.6 Mean	Time Spent in Transient States	Feb. 1	4.7 Branching Processes

