# Polar Coordinates

As an alternative to Cartesian coordinates, polar coordinates provide another means of quantifying the position of a point using two numbers. Polar coordinates describe a point P's location using a pair of numbers  $(r,\theta)$  instead of (x,y). r denotes the "distance" of P from the origin, while  $\theta$  denotes the counterclockwise rotation from the positive x-axis required to aim at point P. Polar coordinates are illustrated by the image on the right.

- $\theta$  will always be measured in radians.
- The rotation  $\theta$  is always measured relative to the positive x-axis.
- A clockwise rotation corresponds to a negative value of  $\theta$ .

Despite r denoting the "distance" required to reach

point P, r can still be negative. Initially facing in the direction of the positive x-axis, coordinate  $\theta$  denotes the counterclockwise rotation required to lineup point P. r is positive if forwards movement is necessary to reach point P, while r is **negative** if **backwards** movement is required to reach point P.





Given polar coordinate  $(r, \theta)$ , for every integer  $k \in \mathbb{Z}$ , the polar coordinates  $(r, \theta + k \cdot 2\pi) = (r, \theta + 2k\pi)$  and  $(-r, \theta + \pi + k \cdot 2\pi) = (-r, \theta + (2k + 1)\pi)$  describe the same point  $(r, \theta)$ . Adding or subtracting full revolutions from  $\theta$  does not change the referenced point. In addition, adding or subtracting a half revolution followed by sign change of r does not change the referenced point.

In polar coordinates,

$$\cdots = (-r, \theta - 3\pi) = (r, \theta - 2\pi) = (-r, \theta - \pi) = (r, \theta) = (-r, \theta + \pi) = (r, \theta + 2\pi) = (-r, \theta + 3\pi) = \cdots$$

all denote the same point.



#### **Examples:**

• The polar coordinates  $(3, 3\pi/4)$ ,  $(3, 11\pi/4)$ ,  $(3, -5\pi/4)$ ,  $(-3, 7\pi/4)$ ,  $(-3, 15\pi/4)$ , and  $(-3, -\pi/4)$  all describe the same point.

## Polar coordinates and the trigonometric ratios

In the image below, the red unit circle, the green tangent line defined by x=1, and the blue tangent line defined by y=1 are shown. Starting from the positive x axis, rotate by a counterclockwise angle of  $\theta$ . A ray projected forwards corresponds to positive values of r. A ray projected backwards corresponds to negative values of r. The positive ray intersects the unit circle at the point with Cartesian coordinates  $(\cos \theta, \sin \theta)$ , which also has the polar coordinates  $(1, \theta)$ . The rays intersect the green tangent line at the point with Cartesian coordinates  $(1, \tan \theta)$ , which also has the polar coordinates  $(\sec \theta, \theta)$ . The rays intersect the blue tangent line at the point with Cartesian coordinates  $(\cot \theta, 1)$ , which also has the polar coordinates  $(\csc \theta, \theta)$ . These points are depicted in the image below for two different values of  $\theta$ , namely  $\theta_1$  and  $\theta_2$ .  $\theta_1$  is chosen from the interval  $(0, \pi/2)$  and generates the brown rays, while  $\theta_2$  is chosen from the interval  $(\pi/2, \pi)$  and generates the pink rays.



#### Polar to Cartesian conversion

Given an arbitrary polar coordinate  $(r, \theta)$ , there is only one Cartesian coordinate (x, y) for the point generated by  $(r, \theta)$ . Project the ray rotated a counterclockwise angle of  $\theta$  from the positive x-axis. This ray intersects the unit circle at a point with Cartesian coordinates  $(\cos \theta, \sin \theta)$  and polar coordinates  $(1, \theta)$ . Scaling every length uniformly by r changes the Cartesian coordinate to  $(r\cos \theta, r\sin \theta)$  and the polar coordinate to  $(r, \theta)$ . Therefore:

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

is how the polar coordinate  $(r, \theta)$  is converted to Cartesian coordinate (x, y).



## **Examples:**

- The polar coordinate  $(r, \theta) = (3, \pi/5)$  converted to a Cartesian coordinate is  $(x, y) = (3\cos(\pi/5), 3\sin(\pi/5)) \approx (2.42705, 1.76336)$
- The polar coordinate  $(r, \theta) = (7, 0.77\pi)$  converted to a Cartesian coordinate is  $(x, y) = (7\cos(0.77\pi), 7\sin(0.77\pi)) \approx (-5.25078, 4.62918)$
- The polar coordinate  $(r, \theta) = (2.6, -1.67\pi)$  converted to a Cartesian coordinate is  $(x, y) = (2.6\cos(-1.67\pi), 2.6\sin(-1.67\pi)) \approx (1.32351, 2.23793)$
- The polar coordinate  $(r,\theta)=(2.6,0.33\pi)$  converted to a Cartesian coordinate is  $(x,y)=(2.6\cos(0.33\pi),2.6\sin(0.33\pi))\approx(1.32351,2.23793)$
- The polar coordinate  $(r, \theta) = (-3, \pi/5)$  converted to a Cartesian coordinate is  $(x, y) = (-3\cos(\pi/5), -3\sin(\pi/5)) \approx (-2.42705, -1.76336)$

## Cartesian to polar conversion

Given an arbitrary Cartesian coordinate (x, y), a polar coordinate  $(r, \theta)$  that generates the same point as (x, y) is sought.

There are infinitely many choices of polar coordinate  $(r, \theta)$  for the given Cartesian coordinate (x, y). To limit our choices down to one alternative, the following restrictions will be placed on r and  $\theta$ :

$$\begin{cases} r \ge 0 \\ (r = 0) \Longrightarrow (\theta = 0) \\ -\pi < \theta \le \pi \end{cases}$$

• Since  $r \ge 0$ , only non-negative choices of r will be considered, so r is simply the distance that the point (x, y) is from the origin:  $r = \sqrt{x^2 + y^2}$ .

- The condition  $(r=0) \implies (\theta=0)$  means that  $\theta=0$  if r=0, which means that the  $\theta$  coordinate of the origin point, which could have been any value, is defaulted to  $\theta=0$ .
- The condition  $-\pi < \theta \le \pi$  means that a counterclockwise twist is used to reach points above the x-axis, and a clockwise twist is used to reach points beneath the x-axis. Moreover, a twist of  $\pi$  (which is counterclockwise) is used to reach the negative x-axis.

It is clear that r is simply the distance that the point (x, y) is from the origin:  $r = \sqrt{x^2 + y^2}$ . Computing  $\theta$  is a more difficult task.

To find  $\theta$ , consider the line segment that connects the origin to point (x,y). The counterclockwise angle that this line segment makes with the positive x-axis is  $\theta$ . Extrapolating this line segment to a line, this line will intersect the vertical line defined by x=1 at the Cartesian point (1,y/x). This is because the line segment has a slope of y/x, so the change in y over a unit change in x is y/x. Use the image below for illustration. Given a line that makes a counterclockwise angle of  $\theta$  with the x-axis, this line intersects the line x=1 at the Cartesian point  $(1, \tan \theta)$  (revisit the discussions related to the unit circle). Since (1, y/x) and  $(1, \tan \theta)$  are the same point,  $\tan \theta = y/x$ .

The fact that  $\tan \theta = y/x$  can also be established from  $x = r \cos \theta$  and  $y = r \sin \theta$ :

$$\frac{y}{x} = \frac{r\sin\theta}{r\cos\theta} = \frac{\sin\theta}{\cos\theta} = \tan\theta$$

In the image below, it can be seen that if x > 0, then  $\theta = \tan^{-1}(y/x)$ , whereas if x < 0, then a half rotation needs to be either added to or subtracted from  $\tan^{-1}(y/x)$  to get  $\theta$ .

In the case where x < 0,

- If  $y/x \leq 0$ , then the range of values of  $\tan^{-1}(y/x)$  is  $(-\pi/2, 0]$ , so a half rotation must be added to give values of  $\theta$  from the range  $(\pi/2, \pi]$  which is a valid subset of the target range  $(-\pi, \pi]$ . This can be seen with point  $(x_3, y_3)$  in the image, where a half rotation needs to be added to  $\tan^{-1}(y_3/x_3)$  to get  $\theta_3$ .
- If y/x > 0, then the range of values of  $\tan^{-1}(y/x)$  is  $(0, \pi/2)$ , so a half rotation must be subtracted to give values of  $\theta$  from the range  $(-\pi, -\pi/2)$  which is a valid subset of the target range  $(-\pi, \pi]$ . This can be seen with point  $(x_4, y_4)$  in the image, where a half rotation needs to be subtracted from  $\tan^{-1}(y_4/x_4)$  to get  $\theta_4$ .

In summary,

- If x > 0, then  $\theta = \tan^{-1}(y/x)$
- If x = 0, then
  - \* If y > 0, then  $\theta = \pi/2$
  - \* If y = 0, then  $\theta = 0$  (this is the origin point)
  - \* If y < 0, then  $\theta = -\pi/2$
- If x < 0, then
  - \* If  $y \ge 0$ , then  $\theta = \tan^{-1}(y/x) + \pi$
  - \* If y < 0, then  $\theta = \tan^{-1}(y/x) \pi$



## **Examples:**

- The Cartesian coordinate (x,y)=(1,2) converted to a polar coordinate gives  $r=\sqrt{1^2+2^2}\approx 2.23607$  and  $\theta=\tan^{-1}(2/1)\approx 1.10715$ . Hence  $(r,\theta)\approx (2.23607,1.10715)$  is one possible choice of polar coordinate.
- The Cartesian coordinate (x, y) = (4, -3) converted to a polar coordinate gives  $r = \sqrt{4^2 + (-3)^2} = 5$  and  $\theta = \tan^{-1}((-3)/4) \approx -0.643501$ . Hence  $(r, \theta) \approx (5, -0.643501)$  is one possible choice of polar coordinate.
- The Cartesian coordinate (x,y)=(0,6) converted to a polar coordinate gives  $r=\sqrt{0^2+6^2}=6$  and

 $\theta = \pi/2 \approx 1.57080$ . Hence  $(r, \theta) \approx (6, 1.57080)$  is one possible choice of polar coordinate.

- The Cartesian coordinate (x,y)=(0,0) converted to a polar coordinate gives  $r=\sqrt{0^2+0^2}=0$  and  $\theta=0$ . Hence  $(r,\theta)=(0,0)$  is one possible choice of polar coordinate.
- The Cartesian coordinate (x, y) = (0, -3) converted to a polar coordinate gives  $r = \sqrt{0^2 + (-3)^2} = 3$  and  $\theta = -\pi/2 \approx -1.57080$ . Hence  $(r, \theta) \approx (3, -1.57080)$  is one possible choice of polar coordinate.
- The Cartesian coordinate (x,y)=(-2,5) converted to a polar coordinate gives  $r=\sqrt{(-2)^2+5^2}\approx 5.38516$  and  $\theta=\tan^{-1}(5/(-2))+\pi\approx 1.95130$ . Hence  $(r,\theta)\approx (5.38516,1.95130)$  is one possible choice of polar coordinate.
- The Cartesian coordinate (x,y)=(-3,-1) converted to a polar coordinate gives  $r=\sqrt{(-3)^2+(-1)^2}\approx 3.16228$  and  $\theta=\tan^{-1}((-1)/(-3))-\pi\approx -2.81984$ . Hence  $(r,\theta)\approx (3.16228,-2.81984)$  is one possible choice of polar coordinate.