Computabilità ed Algoritmi Esempio di Esame di Algoritmi 25 Maggio 2018

Tempo a disposizione: 1 h 30 min

- 1. Considerate il problema descritto nel seguito. Trasformate l'input in un grafo e applicate uno degli algoritmi visti a lezione per risolverlo. Fornite le seguenti informazioni:
 - Quali sono i vertici? Cosa rappresenta ciascun vertice?
 - Quali sono gli archi? Sono orientati o non orientati?
 - Se i vertici e/o gli archi hanno dei valori associati, quali sono questi valori?
 - Quale problema si deve risolvere sul grafo?
 - Quale algoritmo si sta usando per risolvere il problema?
 - Qual è il tempo di esecuzione dell'intero algoritmo, incluso il tempo di creazione del grafo, in funzione dei parametri di input originali?

 $Scale\ e\ Serpenti\ è$ un gioco da tavolo tradizionale, nato in India e diffuso soprattutto nei paesi di lingua inglese (il nome originale è "snakes and ladders"). Si gioca su una scacchiera quadrata di dimensione $n\times n$ con le celle numerate consecutivamente da 1 a n^2 , iniziando dalla cella in basso a sinistra e proseguendo riga per riga dal basso verso l'altro, alternando la numerazione delle righe verso sinistra e verso destra. Alcune coppie di celle, poste su righe diverse, sono collegate da "serpenti" che portano verso il basso, o da "scale" che portano verso l'alto, come nell'esempio sottostante. $Ogni\ casella\ può\ essere\ l'estremo\ di\ al\ massimo\ un\ serpente\ o\ una\ scala.$

100	99	98	97	96	95	94	93	92	91
81	82	83	84	85	86	87	88	89	90
80	79	78	77	76	7 5	74	73	72	71
61	62	63	64	65	66	67	68	69	70
60	59	58	57	56	55	54	53	52	51
41	42	43	44	45	46	47	48	49	50
40	39	38	37	36	35	34	33	32	31
21	22	23	24	25	26	27	28	29	30
20	19	18	17	16	15	14	13	12	11
1	2	3	4	5	6	7	8	9	10

Il gioco inizia posizionando una pedina nella cella 1. Ad ogni mossa, la pedina può avanzare di un numero di celle fino ad un massimo di k (tipicamente 6). Se al termine della mossa la pedina si trova nella cella superiore di un serpente, allora è obbligata a scivolare giù lungo il serpente fino alla cella inferiore. Se invece si trova nella cella inferiore di una scala, allora può arrampicarsi verso l'alto fino a raggiungere la cella superiore.

Descrivere ed analizzare un algoritmo efficiente per calcolare il numero minimo di mosse necessarie per raggiungere la cella finale.

2. Un albero ad anello è un grafo orientato e pesato costruito aggiungendo ad ogni foglia di un albero binario un arco che porta alla radice. Tutti gli archi hanno peso non negativo.

Un esempio di albero ad anello.

- (a) Quanto tempo impiega l'algoritmo di Dijkstra per calcolare il percorso più breve da un vertice u ad un vertice v in un albero ad anello con n nodi?
- (b) Descrivere e analizzare un algoritmo più veloce.

- 3. Dimostrare che un problema X è NP-hard richiede diversi passaggi:
 - Scegli un problema Y che sai essere NP-hard (perché l'hai visto a lezione).
 - Descrivi un algoritmo per risolvere Y usando un algoritmo per X come subroutine. Tipicamente questo algoritmo ha la seguente forma: data un'istanza di Y, trasformala in un'istanza di X, quindi chiama l'algoritmo magico black-box per X.
 - Dimostra che l'algoritmo è corretto. Ciò richiede sempre due passaggi separati, che di solito hanno la seguente forma:
 - Dimostra che il tuo algoritmo trasforma istanze "buone" di Y in istanze "buone" di X.
 - Dimostra che il tuo algoritmo trasforma istanze "cattive" di Y in istanze "cattive" di X. Equivalentemente: Dimostra che se la tua trasformazione produce un'istanza "buona" di X, allora era partita da un'istanza "buona" di Y.
 - Mostra che il tuo algoritmo per Y funziona in tempo polinomiale, a meno della chiamata (o delle chiamate) all'algoritmo magico black-box per X. (Questo di solito è banale.)

Un circuito Hamiltoniano in un grafo G è un ciclo che attraversa ogni vertice di G esattamente una volta. Stabilire se un grafo arbitrario contiene un circuito Hamiltoniano è un problema NP-hard.

Un circuito toniano in un grafo G è un ciclo che attraversa almeno la metà dei vertici di G esattamente una volta. Dimostrare che stabilire se un grafo contiene un circuito toniano è un problema NP-hard.