Exercises in Basic Mathematics

Carlos Salinas

May 9, 2016

Contents

C	ontents	1
1	Basic Mathematics Exercises	2
2	Algebra Exercises	3
3	Algebraic Geometry Exercises 3.1 Elementary Algebraic Geometry	
1	Differential Geometry Exercises 4.1 The Matrix Exponential; Some Matrix Lie Groups	5

CHAPTER \(\big| \)

Basic Mathematics Exercises

CHAPTER 2

Algebra Exercises

CHAPTER 3

Algebraic Geometry Exercises

3.1 Elementary Algebraic Geometry

3.2 Affine Geometry (first level of abstraction), Zariski Topology

Definition 1. Given any ideal $\mathfrak{a} \subset k[X_1, \dots, X_q]$, define $V_k(\mathfrak{a})$ by

$$V_k(\mathfrak{a}) \coloneqq \{ \mathbf{x} \in \mathbf{A}^q : \text{for every } f \in \mathfrak{a}, f(\mathbf{x}) = 0 \}.$$

We call $V_k(\mathfrak{a})$ the set of Ω -points of the affine k-variety determined by \mathfrak{a} . With a slight abuse of language, we call $V_k(\mathfrak{a})$ the affine k-variety determined by \mathfrak{a} . Similarly, given by any ideal $\mathfrak{a} \subset \bar{k}[X_1,\ldots,X_q]$, defined by $V_{\bar{k}}(\mathfrak{a})$ by

$$V_{\bar{k}}(\mathfrak{a}) := \{ \mathbf{x} \in \mathbf{A}^q : \text{for every } f \in \mathfrak{a}, f(\mathbf{x}) = 0 \}.$$

We call $V_{\bar{k}}(\mathfrak{a})$ the set of Ω -points of the (geometric) affine \bar{k} -variety determined by \mathfrak{a} , or for short, the (geometric) affine variety determined by \mathfrak{a} .

To ease the notation, we usually drop the subscript k or \bar{k} and simply write V.

If A is a (commutative) ring (with unit 1), recall that the radical, $\sqrt{\mathfrak{b}}$, of an ideal, $\mathfrak{a} \subset A$, is defined by

$$\sqrt{\mathfrak{a}} := \{ a \in A : \text{there exists } n \ge 1, \, a^n \in \mathfrak{a} \}.$$

A radical ideal is an ideal, \mathfrak{a} , such that $\mathfrak{a} = \sqrt{\mathfrak{a}}$.

The following properties are easily verified. We state them for V_k , but they also hold for $V_{\bar{k}}$:

$$\begin{split} V(0) &= \mathbf{A}^n, \, V(A) = \emptyset \\ V(\mathfrak{a} \cap \mathfrak{b}) &= V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b}) \\ \mathfrak{a} &\subset \mathfrak{b} \text{ implies that } V(\mathfrak{b}) \subset V(\mathfrak{b}) \\ V\left(\sum_{\alpha} \mathfrak{a}_{\alpha}\right) &= \bigcap_{\alpha} V(\mathfrak{a}_{\alpha}) \\ V(\sqrt{\mathfrak{a}}) &= V(\mathfrak{a}) \end{split}$$

CHAPTER 4

Differential Geometry Exercises

4.1 The Matrix Exponential; Some Matrix Lie Groups
The Exponential Map