- 1. The pair of linear equations 2x = 5y + 6 and 15y = 6x 18 represents two lines which are:
 - (a) intersecting
 - (b) parallel
 - (c) coincident
 - (d) either intersecting or parallel
- 2. In the given figure, TA is a tangent to the circle with center O such that OT = 4 cm, $\angle OTA = 30^{\circ}$, then the length of TA is:
 - (a) $2 \times \sqrt{3}$ cm
 - (b) 2 cm
 - (c) $2 \times \sqrt{2}$ cm
 - (d) $\sqrt{3}$ cm

Figure 1: image1

- 3. The ratio of HCF to LCM of the least composite number and the least prime number is:
 - (a) 1;2
 - (b) 2:1
 - (c) 1:1
 - (d) 1:3

- 4. If a pole 6 m high casts a shadow $2 \times \sqrt{3}$ m long on the ground, then sun's elevation is:
 - (a) 60°
 - (b) 45°
 - (c) 30°
 - (d) 90°
- 5. In the given figure, $\triangle ABC\sim\triangle QPR,$ If AC = 6 cm, BC = 5 cm,QR = 3 cm and PR = x; then the value of x is:
 - (a) 3.6 cm
 - (b) 2.5 cm
 - (c) 10 cm
 - (d) 3.2 cm

Figure 2: image2

- 6. The distance of the point (-6,8) from origin is:
 - (a) 6
 - (b) -6
 - (c) 8
 - (d) 10
- 7. The next term of the A.P,: $\sqrt{70}$, $\sqrt{28}$, $\sqrt{63}$ is:
 - (a) $\sqrt{70}$
 - (b) $\sqrt{80}$
 - (c) $\sqrt{97}$
 - (d) $\sqrt{112}$

8.	$(\sec^2 \theta - 1)(\csc^2 \theta - 1)$ is equal to:
	 (a) -1 (b) 1 (c) 0 (d) 2
9.	Two dice are thrown together. The probability of getting the difference of numbers on their upper faces equal to 3 is:
	(a) $\frac{1}{9}$ (b) $\frac{2}{9}$ (c) $\frac{1}{6}$ (d) $\frac{1}{12}$
10.	A Card is drawn at random from a well-shuffled paack of 52 cards. The probability that the card drawn is not an ace is:
	(a) $\frac{1}{13}$ (b) $\frac{9}{13}$ (c) $\frac{4}{13}$ (d) $\frac{12}{13}$
11.	The roots of the equation $x^2 + 3x - 10 = 0$ are:
	 (a) 2, -5 (b) -2, 5 (c) 2, 5 (d) -2, -5
12.	If α, β are zeroes of the polynomial $x^2 - 1$, then the value of $(\alpha + \beta)$ is:

(a) 2(b) 1(c) -1(d) 0

- 13. If α, β are the zeroes of the polynomial $p(x) = 4x^2 3x 7$, then $\left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$ is equal to:
 - (a) $\frac{7}{3}$
 - (b) $-\frac{7}{3}$
 - (c) $\frac{3}{7}$
 - (d) $-\frac{3}{7}$
- 14. What is the area of a semi-circle of diameter d?
 - (a) $\frac{1}{16} \times \pi \times d^2$ (b) $\frac{1}{4} \times \pi \times d^2$

 - (c) $\frac{1}{8} \times \pi \times d^2$ (d) $\frac{1}{2} \times \pi \times d^2$
- 15. For the following distribution:

Marks Below	10	20	30	40	50	60
Number of Students	3	12	27	57	75	80

The modal class is:

- (a) 10-20
- (b) 20-30
- (c) 30-40
- (d) 50-60

16. In the given figure, PT is a tangent at T to the circle with centre O. If $\angle TPO=25^\circ$, then x is equal to:

Figure 3: image3

- (a) 25°
- (b) 65°
- (c) 90°
- (d) 115°

17. In the given figure, $PQ \parallel AC$. If $BP=4\,\mathrm{cm},\ AP=2.4\,\mathrm{cm},$ and $BQ=5\,\mathrm{cm},$ then the length of BC is:

Figure 4: image4

- (a) 8 cm
- (b) 3 cm
- (c) 0.3 cm
- (d) $\frac{25}{3}$ cm
- 18. The points (-4,0), (4,0), and (0,3) are the vertices of a:
 - (a) right triangle
 - (b) isosceles triangle
 - (c) equilateral triangle
 - (d) scalene triangle

19. DIRECTIONS: In questions number 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option out of the following: Assertion (A): The probability that a leap year has 53 Sundays is $\frac{2}{7}$.

Reason (R): The probability that a non-leap year has 53 Sundays is $\frac{5}{7}$.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true but Reason (R) is false.
- (d) Assertion (A) is false but Reason (R) is true.