Shared Memory switches

Masoud Sabaei

Associate professor

Department of Computer Engineering, Amirkabir University of Technology

Shared Memory Switches

Introduction

- A common shared memory for all inputs and outputs
- Every time slot:
 - Input ports store incoming cells
 - Output ports retrieve outgoing cells
- Work as output buffered switch
 - Optimal throughput
 - Optimal delay performance
- A shared buffer → Centralized memory management → Switch size limitation:

Shared-Memory Switches

For instance, with a

cell time slot of 2.83 µs,

(53-byte cells at the line rate of 149.76 Mbit/s, or 155.52 Mbit/s \times 26/27)

and with a

memory cycle time of 10 ns,

the switch size is limited to 141

Logical queues in a shared-memory switches

Basic structure of a linked-list-based shared-memory switches

Linked list structure

Cell Buffer Memory

Insertion/Deletion

Two different ways:

(a) Original logical queue

Access TP to get A k

HP: Head Pointer

TP: Tail Pointer

NP: Next Pointer

- 2. Store the arrived cell at A_k
- 3. Access IAF to get A₁
- Update NP pointed by TP with A_I
- 5. Update TP with A

(b) Add a cell to the logical queue in (a)

- Access HP to get A i
- Read cell at A i
- 3. Store A_i to IAF
- Access NP pointed by HP to get A j
- 5. Update HP with A j

(c) Delete HOL cell from the logical queue in (b)

(a) Original logical queue

1. Access TP to get A k

HP: Head Pointer

TP: Tail Pointer

NP: Next Pointer

- 2. Access IAF to get A,
- 3. Store the arrived cell at A
- Update NP of cell at TP=A_k with A_l
- Update TP with A_l
- (b) Add a cell to the logical queue in (a)

- 1. Access HP to get A $_i$
- 2. Read cell at A i
- 3. Store A_i to IAF
- Access NP pointed by HP to get A_j
- 5. Update HP with A j
- (c) Delete HOL cell from the logical queue in (b)

Example: a 4*4 switch

Using Dedicated FIFOs

Mux: Multiplexer

Demux: Demultiplexer IAF: Idle address FIFO

- Using CAM
 - RAM stores the cell
 - CAM stores a tag
- Unique tag for each cell: (i,s)
 - i: output port number
 - s: sequence number
- The switch architecture:

 $Tag: (output \ address, \ sequence \ number), \ e.g., \ (i,s)$

MCI: Multicast connection identifier

For a write:

- 1. Read the write sequence number WS[i] from the write sequence RAM (WSRAM) (corresponding to the destination port i), and use this value (s) for the cell's tag {i, s}.
- 2. Search the tag CAM for the first empty location, emp.
- 3. Write the cell into the buffer B[emp]=cell, and {i, s} into the associated tag.
- 4. Increment the sequence number s by one, and update WS[i] with s+1.

For a read:

- 1. Read the read sequence number RS[j] from the read sequence RAM (RSRAM) (corresponding to the destination port j), say t.
- 2. Search for the tag with the value $\{j, t\}$.
- 3. Read the cell in the buffer associated with the tag with the value $\{j, t\}$.
- 4. Increment the sequence number t by one and and update RS[i] with t+1.

Comparison with linked list

Bits	Linked List	CAM Access
Cell storage (decode/encode)	RAM (decode) 256 × 424 = 108,544	CAM/RAM (neither) $256 \times 424 = 108,544$
lookup	Link: RAM $256 \times 8 = 2048$	Tag:CAM $256 \times (4 + 7) = 2816$
Write and read reference (queue length checking)	Address registers (additional counters) $2 \times 16 \times 8 = 256$	Sequence number registers (compare W and R numbers) $2 \times 16 \times 7 = 224$
Idle address storage (additional overhead)	IAF (pointer maintenance, extra memory block) $256 \times 8 = 2048$	CAM valid bit (none) $256 \times 1 = 256$
Total	112,896	$\frac{236 \times 1 = 236}{111,840}$

Space-time-space approach

- Space-time-space approach
 - Shared memory is partitioned into separate memories (SBMs)
 - Two crosspoint space division switches used to distribute access to SBMs
 - Crosspoint switching instead of time division MUX → Speedup

Space-time-space approach

- No blocking at inputs while SBMs are not full
- Blocking at outputs:

- Small shared memory modules +
- Multistage network
- Examples
 - Washington university gigabit switch (WUGS) [16]
 - Concentrator based growable switch [4]
 - Multinet switch [8]
 - Siemens switch [5]
 - Alcatel switch [2]

- Washington university gigabit switch (WUGS)
 - Consists of 3 parts
 - Input port processors (IPP)
 - Central switching network
 - Output port processors (OPP)
 - IPP tasks
 - Buffering input cells
 - Virtual-path-circuit translation
 - OPP tasks
 - Resequencing cells
 - Recycling multicast cells to corresponding IPP
 - Central switching network
 - Benes topology
 - Good scalability due to recursive expansion
 - Good load balancing

- Concentrator based growable switch
- From left to right:
 - Front-end broadcast network
 - Address filters
 - N*8 concentrators
 - 8*8 shared memory ATM swithes

- Multicast shared memory switches
 - 3 methods
 - Multicast logical queue
 - Cell copy
 - Address copy

Multicast logical queue

- An additional logical queue for multicast cells
- Advantages
 - Simplicity
 - Minimized queue update operations per time slot
- Service policy
 - Strict priority for multicast cells
 - Round robin
 - Weighted round robin
- Disadvantage
 - HOL blocking for multicast cells when strict priority is not used

- Cell copy method
 - Multicast cells are replicated
 - Disadvantages
 - Replication storage of O(N²)
 - Need for cell copy circuit

21

- Address copy method
 - Address in SBM is replicated instead of the cell itself
 - Less memory usage than cell copy method
 - The need for multicast cell counters (MCC)

22

