Mydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej nformatyka, rok II Zespół numer 3 Piotr Kucharski Dominik Zabłotny	
Sprawozdanie z ćwiczenia nr 0 Nyznaczanie przyspieszenia ziemskiego za pomocą wahadła matematycznego.	

1 Wstęp

1.1 Cele ćwiczenia

Celem wykonywanego ćwiczenia jest zapoznanie się z typowymi metodami opracowywania danych pomiarowych oraz szacowaniem niepewności w pomiarach na przykładzie doświadczenia z wahadłem prostym.

1.2 Wprowadzenie teoretyczne

1.2.1 Niepewność pomiaru

Niepewność pomiaru to parametr związany z wartościami pomiaru, które można w uzasadniony sposób przypisać wartości mierzonej, charakteryzujący szerokość przedziału rozrzutu wartości, w którym można z zadawalającym prawdopodobieństwem usytuować wartość wielkości mierzonej. Niepewność pomiaru nie wynika wyłącznie z czynnika ludzkiego bądź niedoskonałości przyrządów pomiarowych, ale jest nieodłączną cechą każdej operacji. Będziemy analizować niepewność typu A będąca niepewnością przy niemożności idealnego pomiaru czasu trwania wahania; niepewność typu B, którą wykorzystujemy przy jednokrotnym pomierze przyrządami pomiarowymi. Na całość wyniku zaważa niepewność złożona - wnikowa operacji na wielu wynikach obarczonych błędami, które sumarycznie tworzą nową wartość niepewności. Wzory dla tych typów niepewności zostaną podane i opisane w podrozdziale 3.3 - Analiza niepewności.

1.2.2 Wahadło matematyczne

Wahadło matematyczne (wahadło proste) to ciało o masie punktowej zawieszone na nieważkiej i nierozciągliwej nici. W przypadku wychylenia z położenia równowagi, zaczyna się wahać w płaszczyźnie pionowej pod wpływem siły ciężkości. Wprowadzone jest wtedy w tzw. ruch drgający prosty, którego wzór na okres (słuszny dla jak najmniejszego wychylenia z punktu równowagi) jest określony jako funkcja długości wahadła l oraz przyspieszenia ziemskiego g:

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{1}$$

1.3 Układ pomiarowy

Zestaw wahadła prostego składający się z metalowego ciężarku (w kształcie walca) zamocowanego na nici, przywiązanej do stabilnego statywu (rys. 1) oraz przymiar milimetrowy (linijka) i sekundomierz (stoper).

Rysunek 1: Schemat wahadła matematycznego

źródło: Pracownia Fizyczna WFiIS AGH - "Ćwiczenie nr 0: Opracowanie danych pomiarowych"

2 Wykonanie ćwiczenia

Ćwiczenie składa się z dwóch części - pomiarów dla zmiennej oraz niezmiennej długości nici. Wykonujemy te dwa kroki aby w lepszym stopniu oszacować wartość przyspieszenia ziemskiego oraz pokazać, że (w dopuszczalnym stopniu) wartość przyspieszenia ziemskiego nie zależy od długości wahadła.

2.1 Pomiary okresu wahadła dla ustalonej długości nici

- Pomiar długości wahadła od miejsca zaczepienia nici do środka ciężarka za pomocą przymiaru milimetrowego.
- Wprowadzenie wahadła w ruch drgający, przy możliwie najmniejszej amplitudzie kątowej z punktu równowagi, w sposób nie wywołujący niechcianego eliptycznego toru ruchu ciężarka.
- Wykonanie 10-krotnego pomiaru czasu 20 okresów za pomocą sekundomierza.
- Zapisanie wyników do tabeli.

2.2 Pomiary okresu wahadła dla zmiennej długości nici

- Pomiar długości wahadła od miejsca zaczepienia nici do środka ciężarka za pomocą przymiaru milimetrowego.
- Wprowadzenie wahadła w ruch drgający, przy możliwie najmniejszej amplitudzie kątowej z punktu równowagi, w sposób nie wywołujący niechcianego eliptycznego toru ruchu ciężarka.
- Wykonanie 15-krotnego pomiaru czasu 20 okresów wahadła ze zmienną długością nici za pomocą sekundomierza.
- Zapisanie wyników do tabeli.

3 Opracowanie danych pomiarowych

3.1 Przyspieszenie grawitacyjne dla stałej długości nici wahadła

Zmierzone wielkości zapisano w tabeli 1, gdzie uwzględniono czas wykonania k okresów w czasie t oraz wyliczono odpowiednią wartość okresu T dla danej próby.

Lp.	Liczba okresów k	czas t dla k okresów [s]	okres $T_i = t/k$ [s]
1	20	24.8	1.240
2	40	49.82	1.246
3	60	75.14	1.252
4	80	100.11	1.251
5	100	125.07	1.251
6	20	24.83	1.242
7	40	49.89	1.247
8	60	74.92	1.249
9	20	25.2	1.260
10	40	50.23	1.256

Tabela 1: Pomiar okresu drgań przy ustalonej długości wahadła $l=396~{
m mm}~\pm~1~{
m mm}.$

Z uzyskanych wyników obliczamy wartość średnią:

$$T_{\mathsf{Sr}} = \frac{1}{n} \sum_{i=1}^{n} T_i \approx 1.249 \,\mathsf{s}$$
 (2)

Po podstawieniu uzyskanej wartości do wzoru na przyspieszenie grawitacyjne uzyskujemy:

$$g = \frac{4\pi^2 l}{T_{\rm \acute{e}r}^2} = \frac{4 \cdot (3.141)^2 \cdot 0.396 \text{ m}}{(1.249 \text{ s})^2} \approx \frac{15.628 \text{ m}}{1.561 \text{ s}^2} \approx 10.013 \frac{\text{m}}{\text{s}^2} \tag{3}$$

3.2 Przyspieszenie grawitacyjne dla zmiennej długości nici wahadła

Zbadany okres drgań w zależności od długości wahadła przedstawiono w tabeli 2.

Aby obliczyć przyspieszenie ziemskie posłużymy się krzywą regresji, dlatego przekształcamy wzór (1) podnosząc obie strony do kwadratu:

$$T^2 = \frac{4\pi^2}{g}l\tag{4}$$

w ten sposób uzyskaliśmy wzór funkcji liniowej postaci y=ax+b, gdzie:

$$a = \frac{4\pi^2}{g} \; , \; b = 0$$
 (5)

Możemy teraz stowrzyć wykres $T^2(l)$ oraz za pomocą programu LibreOffice Calc możemy wyznaczyć wzór regresji liniowej przedstawiony na rysunku 3.

Lp.	<i>l</i> [mm]	k	t [s]	$T\left[\mathbf{s}\right]$	T^2 [s 2]
1	369	20	24.8	1.240	1.538
2	163	20	16.31	0.816	0.665
3	201	20	18.06	0.903	0.815
4	241	10	10.1	1.010	1.020
5	241	20	19.91	0.996	0.991
6	281	30	31.97	1.066	1.136
7	281	20	21.38	1.069	1.143
8	321	20	22.75	1.138	1.294
9	357	10	12.09	1.209	1.462
10	394	10	12.54	1.254	1.573
11	106	10	6.63	0.663	0.440
12	146	10	7.82	0.782	0.612
13	195	10	8.94	0.894	0.799
14	240	10	9.85	0.985	0.970
15	279	10	10.69	1.069	1.143

Tabela 2: Pomiar zależności okresu drgań od długości wahadła \boldsymbol{l}

Rysunek 2: Wykres przedstawiający zależność T(l)

Rysunek 3: Wykres $T^2(l)$ wraz z zaznaczoną regresją liniową

Podstawiając obliczone przez program a=4.083 do wzoru funkcji jesteśmy w stanie obliczyć przyspieszenie ziemskie

$$g = \frac{4\pi^2}{a} \approx 9.665 \, \frac{\mathsf{m}}{\mathsf{s}^2} \tag{6}$$

3.3 Analiza niepewności

3.3.1 Niepewność pomiaru długości wahadła

Mamy tutaj do czynienia z niepewnością typu B, ponieważ pomiar był wykonywany tylko raz. Znana jest dokładność przymiaru milimetrowego równa działce elementarnej, stąd wnioskujemy że dokładność pomiarów jest równa jej wartości, dlatego:

$$u(l)={
m działka~elementarna}=0.001~{
m m}$$

3.3.2 Niepewność pomiaru okresu drgań

Z racji, że nie jesteśmy w stanie idealnie zmierzyć czasu trwania jednego okresu drgania przy stałej długości wahadła (czynnik refleksu ludzkiego) zastosujemy tutaj niepewność pomiarową typu A obliczając

estymator odchylenia standardowego od średniego okresu

$$u(T) = \sqrt{\frac{\sum_{i=1}^{n} (T_i - T_{\dot{\mathsf{S}}\mathsf{r}})^2}{n(n-1)}} \approx 0.00604 \,\mathsf{s} \tag{8}$$

3.3.3 Niepewność złożona wyznaczania przyspieszenia ziemskiego - stała długość

Ponieważ nasz pomiar jest złożony z wielu pomiarów obarczonych błędami stosujemy prawo przenoszenia niepewności:

$$u_c(g) = \sqrt{\left(\frac{\delta g}{\delta T}\right)^2 u(T)^2 + \left(\frac{\delta g}{\delta l}\right)^2 u(l)^2} \approx 0.1001 \frac{\mathsf{m}}{\mathsf{s}^2} \tag{9}$$

Niepewność należy pomożyć razy 2 aby uzyskać niepewność na długość przedziału:

$$U_c(g) = 2 \cdot u_c(g) \approx 0.2002 \, \frac{\mathsf{m}}{\mathsf{s}^2}$$
 (10)

Co wnioskuje wynikiem przyspieszenia ziemskiego dla stałej długości wahadła równą:

$$g = (10.013 \pm 0.2002) \frac{\mathsf{m}}{\mathsf{s}^2}$$

Wartość tablicowa przyspieszenia ziemskiego wynosi $g=9.811~{
m \frac{m}{S^2}}$ i nieznacznie nie mieści się w przedziale naszego wyniku.

3.3.4 Niepewność złożona wyznaczania przyspieszenia ziemskiego - zmienna długość

Aby oszacować niepewność złożoną pomiaru przyspieszenia ziemskiego dla wahadła o zmiennej długości zastosujemy prawo przenoszenia niepewności dla jednej zmiennej:

$$|u(g)| = \left| \frac{\delta g}{\delta a} u(a) \right| \approx 0.028 \, \frac{\mathsf{m}}{\mathsf{s}^2}$$
 (11)

Dostosowanie do przedziału:

$$U_c(g) = 2 \cdot u_c(g) \approx 0.056 \, \frac{\mathsf{m}}{\mathsf{s}^2}$$
 (12)

Zatem przyspieszenie ziemskie wynosi:

$$g = (9.665 \pm 0.056) \frac{\mathsf{m}}{\mathsf{s}^2}$$

4 Podsumowanie

Przyspieszenie ziemskie dla stałej długości wahadła:

$$g = (10.013 \pm 0.199) \frac{\mathsf{m}}{\mathsf{s}^2}$$

Przyspieszenie ziemskie dla zmiennej długości wahadła:

$$g = (9.665 \pm 0.056) \; \frac{\mathsf{m}}{\mathsf{s}^2}$$

Przyspieszenie ziemskie z tablic fizycznych:

$$g = 9.811 \frac{\text{m}}{\text{s}^2}$$

Wartość przyspieszenia ziemskiego nie zależy od długości wahadła.

5 Wnioski

Przeprowadzenie ćwiczenia w laboratorium pozwoliło nam zmierzyć wartosć przyspieszenia ziemskiego oraz zapoznać się z typowymi metodami opracowywania danych pomiarowych oraz szacowaniem niepewności na podstawie zgromadzonych danych. Analizując tabele pomiarów okresów wahadła dostrzegamy rozrzut wartości. Wynika on z samego pojęcia niepewności pomiaru, w tym czynnika ludzkiego. Końcowy wynik nie pokrywa się w stu procentach z wynikiem tablicowym, jednak mieści się w zadawalającym przedziale. Powodem mogłyby być błędy wykonywane w trakcie używania sekundomierza, ponieważ precyzyjny pomiar wymaga dokładniejszej aparatury oraz wprawy osoby jego wykonującej. Długość nici, okres wahań oraz eliptyczny tor ruchu ciężarka, utrudniał wykonanie precyzyjnych pomiarów.

$$u(p) = \sqrt{\left(\frac{\delta\rho}{\delta m}u(m)\right)^2 + \left(\frac{\delta\rho}{\delta l}u(l)\right)^2 + \left(\frac{\delta\rho}{\delta R}u(R)\right)^2 + \left(\frac{\delta\rho}{\delta r}u(r)\right)^2} \tag{13}$$