C++ Primer Plus

Dealing with Data

- Naming rules
 - Letters, numbers, underscore (_)
 - Can't start with number
 - Case sensitive
 - No C++ keywords
 - Main can be used as name of the variable
 - Names beginning with 2 underscore characters or with an underscore character followed with capital letter
 - Reserved for compiler
 - __number, _Number
 - Doesn't produce a compiler error
 - Leads to undefined behavior non predictable results
 - Names beginning with single underscore character
 - Reserved for global identifiers
 - _number
 - · No length limit, all characters are significant
 - C just first 63 characters are significant
- Integer types
 - Short (at least 16 bits)
 - int (at least as big as short)
 - Most natural type computer hands it most efficiently
 - long (at least 32 bits wide and at least as big as int)
 - Choose width according to the computer design

- · sizeof operator
- sizeof operator
 - · Maximum and minimum value of type
- #include <climits> header
 - It defines INT_MAX, INT_MIN, ...
- If you don't define variable
 - · Value is undefined
 - The value is whatever was in the memory location prior the creation
- unsigned = unsigned int
- #define ZERO 0
 - Makes ZERO symbol for 0 value
- C99 added new types to the C++ Standard
 - (unsigned) long long at least 64 bits and at least as big as (unsigned) long
- C++ lets you write integers in 3 number bases
 - 10 (public)
 - 8 (old Unix) first two digits 0, 032
 - 16 (hardware) first two ox or oX, ox42
 - Cout display all in decimal form
- Cout display in octal and hexadecimal formats
 - You can also do std::hex if you omit using namespace std
- Suffixes
 - L or l
 - type long constant
 - U or u
 - Unsigned int constant
 - ul (any order of letters and cases)

- Unsigned long constant
- Char
 - Char ch = 'M'
 - cout.put(ch) displays it
 - Integer type stores characters, letters, digits
 - · Is not signed by default, nor unsigned
 - Specify only if you use char to store numbers
 - Most systems support fewer than 256 characters (ASCII, IBM mainframe, EBCDIC)
 - wchar_t
 - Character that needs more than 8 bits (Japanese)
 - Wide character typed
- You type letter M -> cin converts M to 77 -> program stores it as 77 -> cout converts 77 to M -> prints M
- If you want to find out ASCII value for M
 - Int value = m
- Member function
 - Belongs to a class and describes a method for manipulation class data
 - cout.put()
 - You can use member function only with a particular object of that class (cout object)
- Escape sequence
 - Special notations for special characters
 - \n ... new line
 - Numeric escape sequence
 - Tied to a particular code (\0x8)
 - Symbolic escape sequence

- Works with all codes (\b)
- Universal character names
 - C++ implementations support a basic source character set and basic execution character set
 - Set of character you can write code with and characters can be produced by the execution of a program
 - Using universal character names is similar to using escape sequences
 - Your implementation has to support it
- Unicode
 - ASCII is subset of Unicode
 - More than 96000 symbols, 49 scripts
- Boolean type
 - In the past C and C++ didn't have boolean
 - bool test = true;
- Const quantifier
 - const int HOURS = 24;
 - · Provide a value when you declare constant
 - Otherwise it ends up with an specifics value that you can't modify
 - · You can also use #define
 - Scope difference
 - In C++, not C, you can use a const value to declare the size of an array
- Floating point numbers
 - Greater range in values
 - You can represent numbers like that 3.24e3 = 3.24*1000
 - 3.24 mantissa, 3 exponent
 - Can't have spaces (3e 2)

- Types
 - Float at least 32 bits
 - double at least 48 bits and no smaller than float
 - long double at least as big as double
- Range of exponents for all 3 types is at least -37 to +37
- Cout
 - drops 0 after decimal point
 - cout.setf() overrides that behavior, it will display 6 decimal places
- If you want a constant to be a type float, use F or f suffix
- C++ guarantees 6 significant figures for float and 13 for double
- Arithmetic operators
 - /, *, +, -, %
 - Two values = operands
 - Module can't be used with floating point values -> compile time error
- Operator precedence and associativity
 - Arithmetic operators follow algebraic precedence
 - Use parentheses to enforce your own priorities
 - Associativity if two operators share the same operand: 120 / 4 * 5
 - Multiplication and division left to right
 - Division if both operands are integers, fractional part of the result is discarded
- Type conversion
 - C++ converts value when
 - You assign a value of one arithmetic type to a variable of another arithmetic type
 - You combine mixed types in expressions
 - You pass argument to functions
 - If you convert bigger type to smaller type behavior is undefined by C++

- Truncation discarding the fractional part (not rounding)
- · Integral promotions
 - When C++ evaluates expressions, it converts bool, char, unsigned char and short to int
 - Chicken and duck are converted to int -> sum -> convert result to int
- Conversions in passing arguments
 - It is possible to waive prototype control for argument passing
 - In that case C++ applies the integral promotion to the char, short and float
- Type cast
 - forms
 - (long) thorn C
 - long (thorn) C++
 - static_cast<long> (thorn)
 - · First it cast value then it performs operations