Formální a atributovaný překlad řízený LR amalyzátorem.

Formalm prihlad:

- prilladovi gramatiky manne i výskupní symboly
- uslupni a výrhupní gramalihy (spoličně vyhvori přehladovou gramalihu)

Postfirma pulladora gramalila PG = (N,T,D,R,S)

À → aB de (NUT)*, BED*

- wysłupni rymboly jsou viedy na konci pravidla (posledni)
- mirlo pravilo rozhladu muirame rovnou pahlo'dak

druha moznost -> habullea pealuliem peaville -> vystup (substituce)

LR(k) juhladovi gramatily

- nozsinemi na vydup i pri premuu

A → dxaB x ∈ D*, a ∈ T, d, B ∈ (NUTOD)*

R - brandation gramatika - D jou nu hour nebo viely time pred T

+ rainoveri neubsahuji përhludonj kontlikl

=> $[A \rightarrow \alpha \alpha \beta, \times, u^{\dagger}]$ without $x \neq y$ a $FIRST_k$ $(\alpha \beta u) \cap FIRST_k$ $(b\delta v) \neq 0$ përhludoni puhrëhy

juhu murriny $[B \rightarrow r.b\delta, y, v]$

- mure nastak poure u panunu, u redutue jsou praviella jastia

(No se slave policid a = b e T - bj ma shijing T main na vysluju kurene D)

Prahladow gramatily & LR(k) whym gramatikou

- morime se gramatiku bususformovak na LR(k) prikladovori
- gramatity jour divivalentus, johnd Z(PG.) = Z(PG2) (4 T= I2 a D= D2)
- justifice charakteristiche gramatiky G_1 a G_2 grow elvicalentri a $T_1 = T_2$, $D_4 = D_2$, lak gramatily Z(P61) a Z(P62) just lake elinialentri

nillere hanstormace: phlani dua · A - da@B => A - a @aB ° A → aBor => A → aAr A' -> B& · A - aBr => A -> aA'r politica repeara o A → a ⊗Br => A -> aAr ploreni E- pravilla A - OB o A -> XOr A - xAr - jedno re poure o poblem hale B ji provedno - ushupul gramatika wi numusi by' LR(k) (poure labo bransformace) - musilla s levou rehence jour problematicha (vie pour pro millioni quantita) A - yAby A - A'Aby - luto ale meni LR(k) per raidne le => A'-> y A - ax B = 5, | 52 | - 15n => A - aAB O retrasami A -> exBB 1 A - xo, xoz | xon - Mixo'so'm' ale nebude ma puedeluri pri pad babé fungoval - mehoneënë ne racyhli' sebrasami tunguji powe pokud vydupni gramatika nema symbol prid levi

rekurrivarm symbolem

me usuhny gramatity be beans formoval

majo. postizioni pagis na pretie nelo intie nem morny

LR-abibulovani gramaliky - umočninji i rdiolini abiibuly abiibulovani LR(k) pločka pro ATG = (TG, A, V, F) $[A \rightarrow 2.\beta, \times, d, w]$ pravidlo pall. gramaliky $v \in T^{*k}$ syklad delky k mandiika pro požkomi dieličných abribuli $v \in D^{*}$ - svýrlupní nymboly

- paraing bable puté obsaluij mavie à renn praviella

maine pureus num previole.

poleud $d_1 + d_2 \wedge \beta_1 \delta \in (NuTuD)^* \cup \{\mathcal{E}\}$ mbo $x_1 + x_2 \wedge \delta$ FIRST_L (Bu) \cap FIRST_L (δv) $\neq \emptyset$ new one ever postab ma vijolen (joho prahladový boedlikh)

ravin' na abibulech jolombii

S - abubulovani grumalihy

- włujem ji jostfixani gramatika

- neterminatin' symboly maj poure symbolizovani abilbuly
- décliène nijsou pourily o rémandidifels pravidlech

rapin na padails a pourozimiel plavo

modifihare LR- parseur:

- oslupní symbol je uložen na sosobník sretné svých symbolizovaných abeibadů
- pa redukci ne vypotkou dielične abilbuly výrhupuich nymboli re pravé strany pravidla
 - i ne nujmi obribuly jnou predány ma výsky
- mo sportkuji se synt. abibuty N ma levi stranie a ulozi na rasobnik

albunakivné: abiibuk přáktěního symb. S zi vejenněný abiibuk

-> vejeledlem zi hodnosa vejenačného abiibuku o koření sbromu

pilled:
$$E \rightarrow \oplus EE +$$

$$E \rightarrow \otimes EE *$$

$$E \rightarrow a \otimes \longrightarrow E$$

$$\# \qquad a \qquad a \qquad b \qquad b$$

$$A \qquad a \qquad b \qquad b$$

	a	+	*	٤
#	sh		,	
â	R(3)	R(3)	P(3)	R(3)
+	R(1)	R(I)	R(1)	2(1)
*	R (2)	5(5)	R(2)	R(2)
E,	sh			Åcc
Ez	sh	sh	sh	
0				

$$\mathbb{R}_{z^{2}} \quad E^{\circ} \rightarrow E^{'}E^{2} \times \\ E^{\circ}_{p} \Rightarrow f_{3} \left(\bigoplus_{i} E_{2,p}^{'}, E^{2}_{-p} \right)$$

E'p = f3 (0, E.p, E'p)

$$R_3 = E^0 \rightarrow \alpha$$

 $E^0 P = (0)$
 $(\#, \alpha\alpha + \alpha *, \epsilon) + (\#\alpha, \alpha + \alpha *, \epsilon) \xrightarrow{R_3} (\#E_1(\alpha), \alpha + \alpha *, \epsilon)$

 $\begin{array}{l} + \left(\# E_{1}(\alpha) \alpha_{1} + \alpha *_{1} \epsilon \right) \stackrel{\mathbb{R}_{3}}{\leftarrow} \left(\# E_{1}(\alpha) E_{2}(\alpha)_{1} + \alpha *_{1} \epsilon \right) + \left(\# E_{1}(\alpha) E_{2}(\alpha) +_{1} \alpha *_{1} \epsilon \right) \stackrel{\mathbb{R}_{3}}{\leftarrow} \left(\# E_{1}(+\alpha \alpha)_{1} \alpha *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha) E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha \alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right) + \left(\# E_{1}(+\alpha)_{1} E_{2}(\alpha)_{1} *_{1} \epsilon \right$

1.
$$E \rightarrow \oplus EE + E.p = f_3(\oplus, E.p, E_2.p)$$
2. $E \rightarrow \oplus EE \times E^{\oplus}.p = f_3(\oplus, E.p, E_2.p)$
3. $E \rightarrow a \otimes E^{\oplus}.p = a \otimes E$