Лекция 8

§8. Теорема на Нютон-Лайбниц

1. Свойства на интеграла. Повечето свойства на интеграла се получават почти непосредствено от съотношението

$$\int_{a}^{b} f(x)dx = \lim_{d(\tau) \to 0} r(f, \tau),$$

което е валидно за всяка интегруема функция f(x) (и при нас е доказано строго за случая на непрекъсната или монотонна функция). По нататък, когато се налага, за интегралните суми ще използваме означенията $s(f,\tau;[a,b])$, $S(f,\tau;[a,b])$ и $r(f,\tau;[a,b])$ за да поясним за кой интервал се отнася интегралното деление.

Свойство 1. Нека функцията f(x) е интегруема в интервала [a,b]. Тогава f(x) е интегруема във всеки подинтервал $[a_1,b_1]\subseteq [a,b]$.

Доказателство. Нека $\varepsilon > 0$ и τ_1 е такова деление на интервала [a,b], за което $S(f,\tau_1;[a,b]) - s(f,\tau_1;[a,b]) < \varepsilon$. Да положим $\tau = \tau_1 \cup \{a_1,b_1\}$. Тогава

$$S(f, \tau; [a,b]) - s(f, \tau; [a,b]) = [S(f, \tau; [a,a_1]) - s(f, \tau; [a,a_1])] +$$

$$+[S(f, \tau; [a_1,b_1]) - s(f, \tau; [a_1,b_1])] +$$

$$+S(f, \tau; [b_1,b]) - s(f, \tau; [b_1,b])$$

следователно $S\!\left(f, \tau; \left[a_{\!\scriptscriptstyle 1}, b_{\!\scriptscriptstyle 1}\right]\right) - s\!\left(f, \tau; \left[a_{\!\scriptscriptstyle 1}, b_{\!\scriptscriptstyle 1}\right]\right) \! < \varepsilon$, понеже

$$S(f, \tau; [a, a_1]) - s(f, \tau; [a, a_1]) \ge 0$$
 и $S(f, \tau; [b_1, b]) - s(f, \tau; [b_1, b]) \ge 0$.

Свойство 2 (*адитивност на интеграла*). Нека a < c < b и функцията f(x) е интегруема в интервалите [a,c] и [c,b]. Тогава f(x) е интегруема в интервала [a,b], при което

(8.1)
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Доказателство. Нека $\varepsilon > 0$. Функцията f(x) е интегруема в [a,c] следователно съществува деление τ_1 на интервала [a,c] и деление τ_2 на интервала [c,b], за които

$$S\!\left(f,\tau_1;\!\left[a,c\right]\!\right) - s\!\left(f,\tau_1;\!\left[a,c\right]\!\right) < \frac{\varepsilon}{2} \text{ M } S\!\left(f,\tau_2;\!\left[c,b\right]\!\right) - s\!\left(f,\tau_2;\!\left[c,b\right]\!\right) < \frac{\varepsilon}{2} \,.$$

Да положим $\tau = \tau_1 \cup \tau_2$. Тогава τ се явява деление на интервала [a,b], за което

$$S(f, \tau; [a,b]) - s(f, \tau; [a,b]) =$$

$$=S(f,\tau;[a,c])-s(f,\tau;[a,c])+S(f,\tau;[c,b])-s(f,\tau;[c,b])<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

което доказва, че f(x) е интегруема в интервала [a,b]. По-нататък в това доказателство ще разглеждаме само деления на интервала [a,b], които съдържат точката c. Това не се явява ограничение за следващото разсъждение, понеже ще правим интегрален граничен преход по $d(\tau) \to 0$, а добавянето на нова точка към делението не увеличава неговия диаметър. Имаме

$$r(f,\tau;[a,b]) = r(f,\tau;[a,c]) + r(f,\tau;[c,b]),$$

откъдето след интегрален граничен преход (граничен преход при $d(\tau) \to 0$) получаваме равенството (8.1), понеже всяка от сумите в последното равенство след граничния преход преминава в съответния интеграл. \blacksquare

1

Непосредствено се вижда, че адитивното свойство може да бъде обобщено за случая на повече междинни точки. Например, ако a < c < d < b, то

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{d} f(x) dx + \int_{d}^{b} f(x) dx$$
 и т.н.

Свойство 3. Нека f(x) е интегруема в интервала [a,b] и λ е константа. Тогава функцията $\lambda f(x)$ също е интегруема в [a,b], при което

(8.2)
$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx.$$

Доказателство. Да разгледаме случая $\lambda > 0$. Нека $\varepsilon > 0$. От интегруемостта на f(x) следва, че съществува деление τ на интервала [a,b], за което $S(f,\tau) - s(f,\tau) < \frac{\varepsilon}{\lambda}$. От друга страна лесно се установява, че $S(\lambda f,\tau) = \lambda S(f,\tau)$ и $s(\lambda f,\tau) = \lambda s(f,\tau)$. Тогава

$$S(\lambda f, \tau) - s(\lambda f, \tau) = \lambda S(f, \tau) - \lambda s(f, \tau) = \lambda [S(f, \tau) - s(f, \tau)] < \lambda \frac{\varepsilon}{\lambda} = \varepsilon$$

което показва, че функцията $\lambda f(x)$ е интегруема в интервала [a,b]. Сега от равенството $r(\lambda f,\tau)=\lambda r(f,\tau)$ след интегрален граничен преход получаваме формулата (8.2), понеже

$$\lim_{d(\tau)\to 0} r(\lambda f, \tau) = \int_a^b \lambda f(x) dx$$
 и
$$\lim_{d(\tau)\to 0} r(f, \tau) = \int_a^b f(x) dx.$$

Ако $\lambda < 0$, $S(\lambda f, \tau) = \lambda s(f, \tau)$ и $s(\lambda f, \tau) = \lambda S(f, \tau)$. В този случай, за да докажем интегруемостта на функцията $\lambda f(x)$, избираме деление τ , за което $S(f, \tau) - s(f, \tau) < \frac{\varepsilon}{|\lambda|}$, след което разсъждението продължава по същия начин.

Свойство 4. Нека функциите f(x) и g(x) са интегруеми в интервала [a,b]. Тогава функцията f(x)+g(x) също е интегруема в интервала [a,b], при което

(8.3)
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx .$$

Доказателство. Да изберем $\varepsilon > 0$. Понеже f(x) и g(x) са интегруеми, съществуват деления τ_1 и τ_2 на интервала [a,b] такива, че $S(f,\tau_1)-s(f,\tau_1)<\frac{\varepsilon}{2}$ и $S(g,\tau_2)-s(g,\tau_2)<\frac{\varepsilon}{2}$. Да положим $\tau=\tau_1\cup\tau_2$. Тогава

$$S(f,\tau)-s(f,\tau) \le S(f,\tau_1)-s(f,\tau_1) < \frac{\varepsilon}{2}$$

$$S(g,\tau)-s(g,\tau) \le S(g,\tau_2)-s(g,\tau_2) < \frac{\varepsilon}{2}$$
.

От друга страна може да се докаже, че за всяко множество Δ , където f(x) е определена и ограничена са в сила неравенствата

$$\sup_{\substack{x \in \Lambda \\ \text{inf}[f(x)+g(x)] \le \sup_{x \in \Lambda} f(x) + \sup_{x \in \Lambda} g(x),} g(x) + \sup_{\substack{x \in \Lambda \\ \text{inf} x \in \Lambda}} g(x) = \sup_{x \in \Lambda} f(x) + \sup_{\substack{x \in \Lambda \\ \text{inf} x \in \Lambda}} g(x),$$

което позволява да направим оценката

$$S(f+g,\tau) - s(f+g,\tau) = \sum_{k=1}^{n} [M_{k}(f+g) - m_{k}(f+g)] \Delta x_{k} \le$$

$$\le \sum_{k=1}^{n} [M_{k}(f) + M_{k}(g) - m_{k}(f) - m_{k}(g)] \Delta x_{k} =$$

$$= \sum_{k=1}^{n} [M_{k}(f) - m_{k}(f)] \Delta x_{k} + \sum_{k=1}^{n} [M_{k}(g) - m_{k}(g)] \Delta x_{k} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

което показва, че сумата f(x)+g(x) е интегруема в интервала [a,b]. За да докажем равенството (8.3) е достатъчно да забележим, че за сумите на Риман е изпълнно

$$r(f+g,\tau)=r(f,\tau)+r(g,\tau)$$

и да направим интегрален граничен преход.

Свойства 3 и 4 образуват заедно *линейното свойство* на интеграла, което гласи, че интеграл от линейна комбинация е равен на линейна комбинация от интеграли,

$$\int_{a}^{b} \left[\lambda_1 f_1(x) + \lambda_2 f_2(x) + \dots + \lambda_p f_p(x) \right] dx = \lambda_1 \int_{a}^{b} f_1(x) dx + \lambda_2 \int_{a}^{b} f_2(x) dx + \dots + \lambda_p \int_{a}^{b} f_p(x) dx ,$$

когато функциите $f_1(x)$, $f_2(x)$, ..., $f_p(x)$ са интегруеми в интервала [a,b].

Свойство 5 (*оценка на интеграла*). Нека m , M и C са константи, за които $m \le f(x) \le M$ и $|f(x)| \le C$, когато $x \in [a,b]$. Тогава са изпълнени неравенствата

$$(8.4) m(b-a) \le \int_a^b f(x) dx \le M(b-a),$$

(8.5)
$$\left| \int_{a}^{b} f(x) dx \right| \leq C(b-a).$$

 \mathcal{L} оказателство. За всяка риманова сума $r(f, \tau)$ е изпълнено двойното неравенство

$$m(b-a) \le r(f,\tau) \le M(b-a),$$

откъдето след интегрален граничен преход се получава (8.4). За да докажем (8.5) изхождаме от неравенството

$$\left| r(f,\tau) \right| = \left| \sum_{k=1}^{n} f(\xi_k) \Delta x_k \right| \le \sum_{k=1}^{n} \left| f(\xi_k) \right| \Delta x_k \le C \sum_{k=1}^{n} \Delta x_k = C(b-a)$$

и отново прилагаме граничен преход.

Свойство 6 (позитивност на интеграла). Нека f(x) е интегруема в [a,b] и нека $f(x) \ge 0$ за $x \in [a,b]$. Тогава

$$(8.6) \quad \int_a^b f(x) dx \ge 0.$$

В частност, интегралът запазва неравенствата, което означава, че ако f(x) и g(x) са две интегруеми функции в интервала [a,b] и $f(x) \ge g(x)$ за $x \in [a,b]$, то

(8.7)
$$\int_a^b f(x)dx \ge \int_a^b g(x)dx.$$

Освен това, ако f(x) е непрекъсната в [a,b] и съществува точка $x_0 \in [a,b]$, за която $f(x_0) > 0$, то

$$(8.8) \quad \int_a^b f(x) dx > 0.$$

Доказателство. От условието следва, че за всяка риманова сума е изпълнено

$$r(f,\tau) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k \ge 0,$$

откъдето след интегрален граничен преход получаваме формулата (8.6). Неравенството (8.7) се получава като приложим (8.6) за неотрицателната функция f(x)-g(x). За простота да предположим, че x_0 е вътрешна за интервала [a,b]. Тогава може да се намери околност $(x_0-\delta,x_0+\delta)\subset [a,b]$ с достатъчно малко $\delta>0$ такава, че $f(x)\geq \varepsilon>0$ за $x\in [x_0-\delta,x_0+\delta]$. Сега от адитивното свойство на интеграла имаме

$$\int_{a}^{b} f(x)dx = \int_{a}^{x_{0}-\delta} f(x)dx + \int_{x_{0}-\delta}^{x_{0}+\delta} f(x)dx + \int_{x_{0}+\delta}^{b} f(x)dx \ge \int_{x_{0}-\delta}^{x_{0}+\delta} f(x)dx \ge 2\varepsilon\delta > 0,$$

което доказва строгото неравенство (8.8).

Свойство 7 (*абсолютна интегруемост*). Нека функцията f(x) е интегруема в интервала [a,b]. Тогава функцията |f(x)| също е интегруема, при което

(8.9)
$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

Доказателство. За да докажем интегруемостта на |f(x)| е достатъчно да отбележим, че $S(|f|,\tau)-s(|f|,\tau) \le S(f,\tau)-s(f,\tau)$, а за неравенството (8.9) да отбележим, че $|r(f,\tau)| \le r(|f|,\tau)$ и да направим интегрален граничен преход. ■

Когато f(x) е непрекъсната, от оценката (8.9) следва, че

$$\left| \int_{a}^{b} f(x) dx \right| \le (b - a) \max_{a \le x \le b} |f(x)|,$$

понеже

$$\int_{a}^{b} |f(x)| dx \le \max_{a \le x \le b} |f(x)| \int_{a}^{b} dx = \max_{a \le x \le b} |f(x)| (b-a).$$

Свойство 8. Нека f(x) и g(x) са интегруеми в интервала [a,b]. Тогава произведението f(x)g(x) също е интегруема в [a,b].

Теорема 8.1 (*теорема за средните стойности*). Нека f(x) и g(x) са интегруеми в [a,b], при което $m \le f(x) \le M$, $x \in [a,b]$, за някои константи m и M, и освен това функцията g(x) не си сменя знака в интервала [a,b] ($g(x) \ge 0$, за всяко $x \in [a,b]$, или $g(x) \le 0$, за всяко $x \in [a,b]$). Тогава съществува константа μ , $m \le \mu \le M$, такава, че

(8.10)
$$\int_{a}^{b} f(x)g(x)dx = \mu \int_{a}^{b} g(x)dx.$$

Ако f(x) е непрекъсната, то съществува $\xi \in [a,b]$, за което

(8.11)
$$\int_{a}^{b} f(x)g(x)dx = f(\xi)\int_{a}^{b} g(x)dx.$$

В частност, когато $g(x) \equiv 1$, съществува $\xi \in [a,b]$, за което

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a).$$

Доказателство. За определеност да предположим, че $g(x) \ge 0$, $x \in [a,b]$. Имаме $m \le f(x) \le M$, което след умножаване с g(x) приема вида $mg(x) \le f(x)g(x) \le Mg(x)$, $x \in [a,b]$, което след интегриране в интервала [a,b] води до

(8.12)
$$m \int_{a}^{b} g(x) dx \le \int_{a}^{b} f(x)g(x) dx \le M \int_{a}^{b} g(x) dx$$

 $(8.12) \quad m \int\limits_a^b g(x) dx \leq \int\limits_a^b f(x) g(x) dx \leq M \int\limits_a^b g(x) dx \, .$ От предположението следва, че $\int\limits_a^b g(x) dx \geq 0$. Ако $\int\limits_a^b g(x) dx = 0$, то можем да изберем μ

произволно. Нека $\int\limits_a^b g(x)dx>0$. Тогава (8.12) можем да запишем във вида

(8.13)
$$m \le \frac{\int_{a}^{b} f(x)g(x)dx}{\int_{a}^{b} g(x)dx} \le M ,$$

откъдето следва, че за и трябва да положим

(8.14)
$$\mu = \frac{\int_{a}^{b} f(x)g(x)dx}{\int_{a}^{b} g(x)dx},$$

при който избор се удовлетворява (8.10). Да предположим, че f(x) е непрекъсната. Тогава f(x) достига най-голяма и най-малка стойност. Да положим

$$m = \min_{a \le x \le b} f(x)$$
 и $M = \max_{a \le x \le b} f(x)$.

Според (8.13) имаме $m \le \mu \le M$, където μ е определено от (8.14). От теоремата за междинните стойности следва, че съществува някакво $\xi \in [a,b]$, за което $\mu = f(\xi)$, което доказва твърдението в този случай.

2. Интеграл с произволни граници. Досега предполагахме, че за границите на интеграла

$$\int_{a}^{b} f(x) dx$$

е изпълнено a < b и това предположение има съществена роля при формулировката на някои от свойствата на интеграла. Тук ще допълним дефиницията за определен интеграл по следния начин. Определение

$$\int_{a}^{a} f(x)dx = 0$$

и ако a > b определяме

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx,$$

като в този случай предполагаме, че функцията f(x) е интегруема в интервала [b,a]. Тези определения са целесъобразни и се съгласуват с основните свойства на интеграла. Свойството *пинейност* остава непроменено. Може да се провери непосредствено след изследване на няколко възможни случая, че свойството *адитивност* също се запазва, при това в много по-обща форма. Формулите

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \text{ и } \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{d} f(x)dx + \int_{d}^{b} f(x)dx \text{ и т.н.}$$

остават валидни, винаги когато употребените интеграли съществуват. Свойството **позитивност** търпи очевидна промяна. Ако a > b и f(x) е интегруема в [b,a] и $f(x) \ge 0$ за $x \in [a,b]$, то (8.6) приема вида

$$(8.6') \quad \int_a^b f(x) dx \le 0.$$

В този случай интегралът обръща неравенствата, което означава, че ако f(x) и g(x) са две интегруеми в интервала [b,a] (a>b) и $f(x) \ge g(x)$ за $x \in [b,a]$, то (8.7) приема вида

(8.7')
$$\int_a^b f(x)dx \le \int_a^b g(x)dx.$$

Формулите за оценка на интеграла се видоизменят по следния начин:

(8.5')
$$\left| \int_{a}^{b} f(x) dx \right| \leq C |b - a|,$$

(8.9')
$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{b}^{a} |f(x)| dx, (a > b),$$

и ако f(x) е непрекъсната в интервал с краища a и b, то

$$\left| \int_{a}^{b} f(x) dx \right| \le |b - a| \max_{a \le x \le b} |f(x)|.$$

3. Интегралът като функция на горната си граница. В този раздел ще разглеждаме функция f(x), която предполагаме определена и ограничена в отворения интервал Δ , $|f(x)| \le C$, $x \in \Delta$. Освен това ще предполагаме, че f(x) е интегруема във всеки интервал $[\alpha,\beta] \subseteq \Delta$. Нека $a \in \Delta$ е избрано по произволен начин. Тогава функцията

$$\varphi(x) = \int_{a}^{x} f(t)dt$$

е определена в целия интервал Δ и има няколко важни свойства.

Твърдение 8.1. Функцията $\varphi(x)$ е непрекъсната в интервала Δ .

Доказателство. Нека $x \in \Delta$ и Δx е избрано достатъчно малко, че $x + \Delta x \in \Delta$. Да разгледаме разликата $\varphi(x + \Delta x) - \varphi(x)$. От адитивното свойство на интеграла имаме

$$(8.15) \quad \varphi(x+\Delta x) - \varphi(x) = \int_{a}^{x+\Delta x} f(t)dt - \int_{a}^{x} f(t)dt = \int_{a}^{x} f(t)dt + \int_{x}^{x+\Delta x} f(t)dt - \int_{x}^{x} f(t)dt = \int_{x}^{x+\Delta x} f(t)dt = \int_{x}$$

следователно можем да направим оценката

$$\left| \varphi(x + \Delta x) - \varphi(x) \right| \le \left| \int_{x}^{x + \Delta x} f(t) dt \right| \le C |\Delta x|,$$

откъдето непрекъснатостта на $\varphi(x)$ следва непосредствено.

Най-важното свойство на $\varphi(x)$ е нейната диференцируемост.

Теорема 8.2. (*теорема на Нютон-Лайбниц*) Нека f(x) е непрекъсната в интервала Δ . Тогава функцията $\varphi(x)$ е диференцируема в Δ , при което $\varphi'(x) = f(x)$.

Доказателство. От (8.15) и от теоремата за средните стойности имаме

$$\varphi(x+\Delta x)-\varphi(x)=\int_{x}^{x+\Delta x}f(t)dt=f(\xi)\Delta x,$$

където ξ е число от интервала с краища x и $x+\Delta x$, следователно, ако Δx клони към нула, то ξ ще клони към x и понеже f(x) е непрекъсната

$$\lim_{\Delta x \to 0} f(\xi) = f(x).$$

От тук получаваме

$$\lim_{\Delta x \to 0} \frac{\varphi(x + \Delta x) - \varphi(x)}{\Delta x} = \lim_{\Delta x \to 0} f(\xi) = f(x),$$

което по определение означава, че функцията $\varphi(x)$ има производна и $\varphi'(x) = f(x)$.

Ако разгледаме интеграла като функция на долната си граница, то за производната имаме

$$\frac{d}{dx}\left(\int_{x}^{b} f(t)dt\right) = -\frac{d}{dx}\left(\int_{b}^{x} f(t)dt\right) = -f(x).$$

Ако горната граница от своя страна е функция, то за да намерим производната ще приложим правилото за диференциране на съставни функции

$$\frac{d}{dx} \left(\int_{a}^{\beta(x)} f(t) dt \right) = f(\beta(x)) \beta'(x),$$

аналогично

$$\frac{d}{dx} \left(\int_{\alpha(x)}^{b} f(t) dt \right) = -f(\alpha(x)) \alpha'(x).$$

Ако и двете граници са функции, то правилото за диференциране е

$$\frac{d}{dx}\left(\int_{\alpha(x)}^{\beta(x)} f(t)dt\right) = \frac{d}{dx}\left(\int_{a}^{\beta(x)} f(t)dt - \int_{a}^{\alpha(x)} f(t)dt\right) = f(\beta(x))\beta'(x) - f(\alpha(x))\alpha'(x).$$

От теорема 8.2 следва съществуването на примитивна за функция, определена и непрекъсната в отворен интервал.

Твърдение 8.2. Нека f(x) е непрекъсната в отворения интервал Δ . Тогава f(x) има поне една примитивна F(x) в Δ и всяка друга примитивна се получава от нея след добавяне на константа.

Доказателство. Една примитивна ще получим като положим $F(x) = \varphi(x)$, понеже F'(x) = f(x), съгласно твърдение 8.2. Нека $F_1(x)$ е друга примитивна на f(x) в интервала Δ . Да положим $g(x) = F_1(x) - F(x)$. Тогава функцията g(x) е диференцируема в Δ , при което $g'(x) = F_1'(x) - F'(x) = f(x) - f(x) = 0$, за всяко $x \in \Delta$, откъдето следва, че $g(x) \equiv C = const$, т.е. $F_1(x) = F(x) + C$.

Твърдение 8.2 оправдава записа на неопределения интеграл във вида (8.16) $\int f(x)dx = F(x) + C$,

където F(x) е една (коя да е) примитивна. Формулата (8.16) дава неопределения интеграл (съвкупността от всичките примитивни) за функция f(x), която е непрекъсната в даден отворен интервал Δ .

4. Формула на Нютон-Лайбниц. Това е най-важната формула от интегралното смятане. Тя дава връзката между определения и неопределения интеграл.

Теорема 8.3 (формула на Нютон-Лайбниц). Нека f(x) е непрекъсната в отворения интервал Δ и нека $a,b\in\Delta$. Тогава

(8.17)
$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)|_{a}^{b},$$

където F(x) е една (коя да е) примитивна на f(x) в интервала Δ .

Доказателство. Вече знаем, че f(x) има примитивни в Δ . Нека F(x) е една примитивна и да положим $g(x) = \int_a^x f(t)dt - F(x)$. Имаме g'(x) = f(x) - f(x) = 0, за всяко $x \in \Delta$, следователно $g(x) \equiv C = const$, в частност g(a) = g(b). Имаме

$$g(a) = \int_{a}^{a} f(t)dt - F(a) = \int_{a}^{b} f(t)dt - F(b) = g(b),$$

което ни дава формулата (8.17), във вида

(8.18)
$$\int_{a}^{b} f(t)dt = F(b) - F(a),$$

понеже

$$\int_{a}^{a} f(t)dt = 0.$$

Формулите (8.17) и (8.18) фактически не се различават, тъй като променливата на определения интеграл е свързана и може да бъде заменяна с всеки друг символ, стига това да не доведе до объркване. ■

Например, една примитивна на функцията $f(x) = \cos x$ е $F(x) = \sin x$, следователно по формулата на Нютон-Лайбниц имаме

$$\int_{0}^{\frac{\pi}{2}} \cos x dx = \sin \frac{\pi}{2} - \sin 0 = 1.$$

5. Интегриране по части при определен интеграл. Формулата за интегриране по части предлага значителни удобства в пресмятането на определения интеграл.

Твърдение 8.3. Нека функциите f(x) и g(x) имат непрекъснати производни в отворения интервал Δ и $a,b \in \Delta$. Тогава е валидна формулата

$$\int_{a}^{b} f(x)dg(x) = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} g(x)df(x).$$

Доказателство. Преди всичко да отбележим, че

$$\int_{a}^{b} f(x)dg(x) = \int_{a}^{b} f(x)g'(x)dx, \int_{a}^{b} g(x)df(x) = \int_{a}^{b} g(x)f'(x)dx$$

и $f(x)g(x)_a^b = f(b)g(b) - f(a)g(a)$. Да положим

$$\omega(x) = \int_{a}^{x} f(t)g'(t)dt + \int_{a}^{x} g(t)f'(t)dt - f(t)g(t)\Big|_{a}^{x}, \ x \in \Delta.$$

Пресмятаме

$$\omega'(x) = f(x)g'(x) + g(x)f'(x) - [f(x)g(x)]' = 0$$

за всяко $x \in \Delta$, следователно $\omega(x) \equiv C = const$, в частност $\omega(a) = \omega(b)$. От друга страна $\omega(a) = 0$, следователно $\omega(b) = 0$, което означава

$$\int_{a}^{b} f(t)g'(t)dt + \int_{a}^{b} g(t)f'(t)dt - f(t)g(t)\Big|_{a}^{b} = 0. \blacksquare$$

Например да пресметнем интеграла

$$I = \int_{1}^{3} x \ln x dx.$$

Внасяме х зад знака на диференциала и получаваме

$$I = \int_{1}^{3} \ln x d \, \frac{x^2}{2} \, .$$

Прилагаме формулата за интегриране по части,

$$I = \int_{1}^{3} \ln x d \frac{x^{2}}{2} = \frac{x^{2}}{2} \ln x \Big|_{1}^{3} - \int_{1}^{3} \frac{x^{2}}{2} d \ln x = \left[\frac{9}{2} \ln 3 - \frac{1}{2} \ln 1 \right] - \int_{1}^{3} \frac{x^{2}}{2} d \ln x.$$

Изнасяме $\ln x$ пред знака на диференциала и получаваме

$$I = \frac{9}{2} \ln 3 - \int_{1}^{3} \frac{x^{2}}{2} \frac{1}{x} dx,$$

$$I = \frac{9}{2} \ln 3 - \int_{1}^{3} \frac{x}{2} dx = \frac{9}{2} \ln 3 - \frac{x^{2}}{4} \Big|_{1}^{3},$$

$$I = \frac{9}{2} \ln 3 - \left[\frac{9}{4} - \frac{1}{4} \right] = \frac{9}{2} \ln 3 - 2.$$

Посочените в горния пример три стъпки са характерни във всеки случай на прилагане техниката на интегриране по части.

6. Смяна на променливата. Смяната на променливата при определен интеграл предлага удобно средство за неговото пресмятане. Новото тук в сравнение с неопределения интеграл е отчитане смяната на границите.

Твърдение 8.4. Нека функцията f(x) е непрекъсната в отворения интервал Δ_x и $a,b\in\Delta_x$. Нека освен това, функцията $\varphi(t)$ има непрекъсната производна в отворения интервал Δ_t , $\alpha,\beta\in\Delta_t$, при което $\varphi(\Delta_t)\subset\Delta_x$ и $\varphi(\alpha)=a$, $\varphi(\beta)=b$. Тогава

(8.19)
$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))d\varphi(t).$$

Доказателство. Първо да отбележим, че

$$\int_{\alpha}^{\beta} f(\varphi(t))d\varphi(t) = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Да положим

$$g(t) = \int_{a}^{\varphi(t)} f(x) dx - \int_{a}^{t} f(\varphi(\tau)) \varphi'(\tau) d\tau.$$

Функцията $\,g(t)\,$ е определена в целия интервал $\,\Delta_{_t}\,$, при което

$$g'(t) = f(\varphi(t))\varphi'(t) - f(\varphi(t))\varphi'(t) = 0$$
,

за всяко $t \in \Delta_t$, следователно $g(t) \equiv C = const$, в частност $\varphi(\alpha) = \varphi(\beta)$. От друга страна

$$g(\alpha) = \int_{-\pi}^{\varphi(\alpha)} f(x) dx - \int_{-\pi}^{\alpha} f(\varphi(\tau)) \varphi'(\tau) d\tau = 0 - 0 = 0,$$

понеже $\varphi(\alpha) = a$, следователно $\varphi(\beta) = 0$, което дава

$$\int_{a}^{b} f(x)dx - \int_{\alpha}^{\beta} f(\varphi(\tau))\varphi'(\tau)d\tau = 0.$$

С това формулата (8.19) е доказана. ■

Например да пресметнем интеграла

$$I = \int_{4}^{9} \frac{1}{1+\sqrt{x}} dx.$$

Полагаме $\sqrt{x}=t$, което дава $x=t^2$ и $dx=dt^2=2tdt$. Тук a=4 и b=9 , което дава $\alpha=\sqrt{4}=2$ и $\beta=\sqrt{9}=3$. Сега прилагаме формулата (8.19) и получаваме

$$I = \int_{2}^{3} \frac{2t}{1+t} dt = 2 \int_{2}^{3} \frac{t}{1+t} dt = 2 \int_{2}^{3} \frac{1+t-1}{1+t} dt = 2 \int_{2}^{3} dt - 2 \int_{2}^{3} \frac{dt}{1+t},$$

$$I = 2t \Big|_{2}^{3} - 2 \ln(1+t) \Big|_{2}^{3} = 2(3-2) - 2(\ln 4 - \ln 3).$$

При определяне на границите, за прегледност, можем да си послужим със следната таблица