

RI指令用户手册 V1.0.2

北京联盛德微电子有限责任公司 (winner micro)

地址: 北京市海淀区上园村 3 号交大知行大厦七层

电话: +86-10-62161900

公司网址: www.winnermicro.com

文档历史

版本	完成日期	修订记录	作者	审核	批准
V1. 0. 0	2015-7-15	创建	张朋飞		
V1. 0. 1	2015-10-12	增加 0x08、0x25、0x4D 指令定义	张朋飞		
V1. 0. 2	2015-11-02	增加 0x2E、修改 0x02 指令定义	张朋飞		
V1. 0. 3	2016-12-12	删减指令代码	崔艳昌		
			XX		
		<			
			51		
		N. C.			

目录

1	引言			2
	1.1	概	述	2
2	SPI ‡	妾口		2
	2.1	SP	I接口概述	2
	2.2	CM	MD 命令域	3
		2.2.1	CMD 命令域操作寄存器	3
		2.2.2	CMD 寄存器操作时序	
	2.3		ATA 数据域	
	2.4	SP	T中断时序	8
	2.5	SP	T接口工作流程	9
		2.5.1	SPI 下行命令流程	9
		2.5.2	SPI 上行命令(数据)流程	11
		2.5.3	SPI 下行数据流程	13
3	精简	指令协证	议 tulte A th 20	14
	3.1	控制	制指令协议	15
		3.1.1	命令代码	15
		3.1.2	事件代码	17
		3.1.3	错误代码	18
		3.1.4	指令定义	18
		X		

1 引言

1.1 概述

本手册介绍联盛德嵌入式 WIFI 芯片的 RI 指令通讯协议, RI 指令采用一套基于 HEX 编码的指令集,通过 SPI 接口与 WIFI 芯片进行通讯。

2 SPI 接口

2.1 SPI 接口概述

- 主从设置: Slave
- 硬件时序: CPOL=0, CPHA=0 (Motorola)
- 传输方式: 半双工, 按帧传输。帧格式包括命令域和数据域两部分, 如下图所示:

CMD: 命令域,固定长度为8bit,命令域的低7bit为地址信息,最高bit为读写标志位(0表示读数据,1表示写数据)。

DATA: 数据域,长度为32bit(4字节)的整数倍。

2.2 CMD 命令域

2.2.1 CMD 命令域操作寄存器

偏移量	名称	位宽	属	描述	默认值
			性		
0x02	RX_DAT_LEN	[15:0]	RO	spi主机只读寄存器,在上	16'h0000
				传数据时,主要用来获知	
				从device端读取多少数据。	
				但在本模块中,上传长度都是	
				字的整数倍,如果此上传长度	
				值不为整字,则主机读数时向	
				上取整,即多读部分冗余字节	
0x03	TX_BUFF_AVAIL	[15:2]	RQ	RSV	0
		[1]	RO	tx_cmdbuff_avail	1'b0
				标志发送 cmd 的 buff 是否可	
				用,如果可用,则主机可以下	
				发 cmd。	
		,		0: 发送 buff 不可用	
				1:发送 buff 可用	
		[0]	RO	tx_buff_avail	1'b0
	72-			标志发送 buff 是否可用,如果	
	5P			可用,则主机可以下发数据。	
				0: 发送 buff 不可用	
				1:发送 buff 可用	
0x04	LOW_PWR_STTS	[15:1]	RO	RSV	0
		[0]	RO	wlan_low_pwr_stts	1'b0
				网卡当前的低功耗状态	
				1: spi 网卡处于 active 状态	
				0: spi网卡处于sleep状态	

					 1
		[0]	RW	IntMaskup_dat_cmd_rdy	1'b1
				中断屏蔽	
				1:中断被屏蔽	
				0:中断没有被屏蔽,可以	
				产生中断	
0x06	SPI_INT_HOST_STTS	[15:1]	RO	RSV	0
		[0]	RO	up_dat_cmd_rdy	1'b0
				向SPI主机产生中断的状态寄	
				存器	
				0: 数据或命令没有准备好	
				1:数据或命令已经准备好	
			X	读可清	
0x07	wake_wlan	[14:0]	RO	RSV	0
		[15]	RW	wlan_wake_en	1'b0
				当wlan处于sleep状态时,主机	
		7		可以通过该寄存器,主动唤醒	
				wlan。	
				1: 唤醒	
				0: 无意义	
				硬件自动清零	
0x00	DAT_PORT0		RW	SPI 主机通过该寄存器端口和	
				device 进行数据传输,向该寄存器	
				写数,即可下发数据,从该寄存器	
				读数,即可上传数据。如果正在传	
				输的帧需要通过多次传输才能完	
				成,则最后一次传输采用寄存器端	
				口 DAT_PORT1,其它的采用	
				DAT_PORT0。	

0x10	DAT_PORT1		RW	SPI 主机通过该寄存器端口和
				device 进行数据传输,向该寄存器
				写数,即可下发数据,从该寄存器
				读数,即可上传数据。如果正在传
				输的帧需要通过多次传输才能完
				成,则最后一次传输采用寄存器端
				口 DAT_PORT1,其它的采用
				DAT_PORT0.
0x01	DN_CMD_PORT0		WO	SPI 主机通过该寄存器端口和
				device 进行命令交互,向该寄存器
				写数,即可下发命令。如果正在传
			X	输的命令需要通过多次传输才能
			jΚ	完成,则最后一次传输采用寄存器
		XX.	>	端口 DN_CMD_PORT1,其它
	lu			的采用 DN_CMD_PORT0。
	X			注:此窗口只用来下发驱动和
		·		固件协商的命令。
0x11	DN_CMD_PORT1		WO	SPI 主机通过该寄存器端口和
				device 进行命令交互,向该寄存器
	7			写数,即可下发命令。如果正在传
				输的命令需要通过多次传输才能
1				完成,则最后一次传输采用寄存器
				端口 DN_CMD_PORT1,其它
				的采用 DN_CMD_PORT0。
				注:此窗口只用来下发驱动和
				固件协商的命令。

2.2.2 CMD 寄存器操作时序

图 2-2-1 配置寄存器读操作(小端模式)

图 2-2-2 配置寄存器写操作(小端模式

范例: 获取 spi 中断状态,返回值 1 表示数据或命令已经准备好。

```
BYTE spi_int_host_stts(void)
{

BYTE buff[2];

SCS = 0;

SPI_WRITE(0x06);

buf[0] = SPI_READ();

buf[1] = SPI_READ();

SCS = 1;

return (buf[0]&0x01);
}
```


2.3 DATA 数据域

图 2-3-1 H-SPI DATA 域数据格式

■ SYN: 同步字节, 固定取值为0xAA。

■ TYPE:数据类型,定义如下:

值	含义
0x00	用户数据(注:在H-SPI模式下,需要使用SPI接口的数
OXOO	据端口传输)
0x01	精简指令数据(注:在 H-SPI 模式下,需要使用 SPI 接口
UXU1	的命令端口传输)
002	AT+指令数据(注:在 H-SPI 模式下,需要使用 SPI 接口
0x02	的命令端口传输)
//	

- LENGTH: 负载数据长度(PAYLOAD域,不含PADDING),字节序为大端(**注:后续** 所有长度在16bit以上字段的字节序均为大端)
 - SN: 帧序号。
 - FLG: 标识域, 定义如下:

	值	含义
FLG_PAYLOAD_CHK	Bit0	PAYLOAD 域是否包含校验字段

	Bit1-7	保留	

■ DA:用户数据帧地址,(注:仅适用于类型为用户数据帧,其它类型帧此字段填0), 定义如下:

	值	含义
DA_TCPSOCKET	Bit0~5	TCP 连接 Socket 号(仅当 DA_TYPE=0 时)
DA_TYPE		0x0: TCP 连接
	Bit6~7	0x1: UDP 连接
		0x2: WEB 服务器(XML-RPC)
		0x3: 保留

■ CHK: 校验和, 帧头校验和的计算范围包括TYPE DA之间所有字段, 帧体校验和的计算范围为PAYLOAD域。校验和为Byte累加和。

■ EXTADDR:负载数据地址信息,为可选字段,仅当UDP用户数据帧(TYPE=0,DA_TYPE=1)时有效,其中:

值	含义
REMOTE IP	对端 IP 地址
REMOTE PORT	对端端口号
LOCAL PORT	本端端口号

■ PAYLOAD: 负载数据,根据TYPE字段设置,可以为用户数据、精简指令协议数据数据PADDING: 填充字段,保证整个帧的长度数据长度为4的整数倍。

2.4 SPI 中断时序

无线模块需要上传一帧数据时会产生一个中断。只有当前需要上传的帧传输完成后, 如果还有帧需要上传,此时,才会产生新的中断。时序如下图所示。

图 2-5-1 H-SPI 下行命令流程

范例:


```
// 查询下行 buff 是否可用
BYTE spi_get_buff_stts(void)
{
   BYTE buff[2];
   SCS = 0;
   SPI_WRITE(0x03);
   buf[0] = SPI\_READ();
   buf[1] = SPI_READ();
   SCS = 1;
   return (buf[0]&0x03);
}
//根据 DATA 域数据格式整理获取 MAC 地址的命令到 buff,数据必须 4Byte 对齐。
int spi_tx_cmd(char *buff, int len)
{
   BYTE Status;
   Status = spi_get_buff_stts();
   If(Status & 0x02) //下行命令可用
       SCS = 0;
       SPI_WRITE(0x91);
       SPI_WRITE_BUFF(buff, len);
       SCS = 1;
   }
   else
```



```
return -1;
}
return 0;
}
```

2.5.2 SPI 上行命令(数据)流程

范例:

```
int spi_rx_cmd(char *buff)
{
    BYTE Status;
    int Len;

Status = spi_int_host_stts ();
```



```
If(Status) //有数据或命令上传
   {
       Len = spi_rx_data_len(); // 参考 spi_int_host_stts()实现
       If(Len % 4) // 长度 4Byte 对齐
       {
           Len = (\text{Len} / 4 + 1) * 4;
       }
       SCS = 0;
       SPI_WRITE(0x10);
       SPI_READ _BUFF(buff, len);
       SCS = 1;
   }
   else
   {
       return 0;
   }
   return Len;
}
```


else

2.5.3 SPI 下行数据流程

图 2-5-3 H-SPI 下行数据流程


```
return -1;
}
return 0;
}
```

以上命令和数据之间可以没有等待时间,即传输命令字段后,可以紧接着数据传输, 不需要多余空闲时钟或者空闲时间。有时间延迟也可以,但不能出现空闲时钟。

3 精简指令协议

本协议采用一套基于 HEX 编码的指令集,下面对其语法格式和处理流程进行描述。

■ 格式说明

本协议包括三种不同类型的消息,即命《CMD》、响应和事件,采用统一的帧格式,定义如下所示:

其中,

MT: 消息类型、定义如下,

7	值	含义
	0x00	事件消息,在本系统中用户仅接收事件
	0x01	命令消息,在本系统中用户仅发送命令
4	0x02	响应消息,在本系统中用户仅接收响应

CODE: 消息代码,根据不同的类型,其中命令和响应消息采用指令代码

,事件消息采用事件代码。

ERR: 在响应消息中表示命令返回的错误代码,其它消息未定义。

EXT: 扩展标识,定义如下,

标识位	含义
Bit0	是否携带后续参数,0-否,1-是(下同)

Bit1	是否将参数保存至 Flash (仅适用于参数设置
	类命令)
Bit2~7	保留

PARA:参数字段。

3.1 控制指令协议

3.1.1 命令代码

本部分内容为用户命令,用于实现产品的参数配置及联网传输等功能,命令列表如下:

	HEX	功能				
1.	0x00	空指令				
2.	0x01	复位指令				
3.	0x02	系统睡眠指令				
4.	0x03	恢复出厂设置				
5.	0x04	将内存中所有参数更新到 Flash				
6. —	0x05	GPIO 控制				
7.	0x06	查询物理地址				
8.	0x07	查询版本信息				
9.	0x08	查询物理地址2,apsta模式才有效				
10.	0x20	加入/创建无线网络				
11.	0x21	断开/停止无线网络				
12.	0x22	扫描网络				
13.	0x23	查询网络连接状态				
14	0x24	启动 WPS				
15.	0x25	查询网络连接状态2,apsta模式才有效				
16.	0x28	创建 Socket 连接				
17.	0x29	查询 Socket 连接状态				
18.	0x2A	关闭 Socket 连接				
19.	0x2B	设置默认发送 Socket 连接				
20.	0x2C	打开关闭一键配置功能				
21.	0x2D	http post get数据功能				
22.	0x40	设置无线网络类型 (STA、AP、Adhoc)				
23.	0x41	设置无线网络名称				

_		
24.	0x42	设置无线网络密钥
25.	0x43	设置无线网络安全模式(AP、Adhoc)
26.	0x44	设置指定无线网络的 bssid 地址
27.	0x45	设置软 AP 模式下的 SSID 广播
28.	0x46	设置指定无线信道方式
29.	0x47	设置无线管制国家区域
30.	0x48	设置无线网络 BG 模式和最大发射速率
31.	0x49	设置自动创建 Adhoc 网络
32.	0x4A	设置 STA 节能模式
33.	0x4B	设置 STA 无线漫游
34.	0x4C	设置 WPS (关闭/使能、PIN 码)
35.	0x4D	设置无线网络名称2,apsta模式才有效
36.	0x60	设置本机地址(IP、GW、MASK、DNS)
37.	0x61	设置模块自动运行模式
38.	0x62	设置默认 socket 连接信息
39. -	0x63	设置 Always-online 模式/NULL
40.	0x64	设置模块接口模式(HSPI、HUART、LUART)
41.	0x65	设置串口数据格式(波特率等)
42.	0x66	设置串口自动组帧数据长度(透明传输模式)
43.	0x67	设置本机域名
44.	0x68	设置 DDNS 关闭/使能、用户名、密码
45.	0x69	设置 upnp (关闭/使能)
46.	0x6A	设置设备名称

本部分内容作为系统保留命令,仅供厂商用于实现产品的维护与测试功能,命令列表如下:

精简指令	功能				
0xF0	设置系统调试模式				
0xF1 读取寄存器或内部 RAM 空间					
0xF2	修改寄存器或内部 RAM 空间				
0xF3	读取 RF 寄存器空间				
0xF4	修改 RF 寄存器空间				
0xF5	读取 SPI Flash 地址空间				
0xF6	修改 SPI Flash 地址空间				
0xF7	设置用户接口(UART/SPI)的固件升级模式				

0xF8 发送固件升级数据

3.1.2 事件代码

本系统支持的事件定义如下:

14 H1 44 L1	足义如下:					
HEX	功能					
0xE0	启动完成,满足下列条件之一时发出:					
	◇ 软件复位,初始化完成后					
0xE1	传输帧 CRC 错误,满足下列条件之一时发出:					
	◆ 检测到传输 CRC 错误					
0xE2	无线网络扫描结果,满足下列条件之一时发出:					
	◆ 用户扫描网络命令完成后					
0xE3	无线网络联网结果,满足下列条件之一时发出:					
	◆ Infra 网络,本端为 STA,加入 AP 成功					
	◆ Infra 网络,本端为 STA,加入 AP 失败					
0xE4	无线网络节点已连接,满足下列条件之一时发出:					
	◆ Infra 网络,本端为 AP,当有 STA 成功加入B					
	◆ Adhoc 网络,当有其它 STA 加入时					
0xE5	无线网络节点已离开,满足下列条件之一时发					
	出:					
	◆ Infra 网络,本端为 AP,当有 STA 离开时					
	◆ Adhoc 网络,当前已连接的 STA 离开时					
0xE6	网络层已就绪,满足下列条件之一时发出:					
	◇ 设置完成静态 IP 地址					
	♦ Infra 网络,本端为 STA, DHCP 成功获取并					
0xE7	网络层已断开,满足下列条件之一时发出:					
	◆ Infra 网络,本端为 STA, DHCP 获取 IP 地址失败					
	◆Infra 网络,本端为 STA,无线网络被动断开					

0xE8	TCP 已连接,满足下列条件之一时发出:				
	本端为 TCP Client,连接 Server 成功时				
0xE9	TCP 客户端已加入,满足下列条件之一时发出:				
	本端为 TCP Server, 当有 Client 加入时				
0xEA	TCP 连接已断开,满足下列条件之一时发出:				
	当前 TCP 连接被动断开时				
0xEB	数据发送失败,满足下列条件之一时发出:				
	当前为 TCP 连接,数据发送失败时				

3.1.3 错误代码

本系统支持的错误代码定义如下,用于精简指令协议中的响应消息:

	HEX	含义				
	0x00	成功				
	0x01	无效的命令格式				
	0x02	命令不支持				
	0x03	无效的操作符				
	0x04	无效的参数				
	0x05	操作不允许				
	0x06	内存不足				
	0x07	FLASH 错误				
7	0x0A	加入网络失败				
	0x0B	无可用 socket				
	0x0C	无效的 socket				
	0x0D	Socket 连接失败				
	0x64	未定义错误				

3.1.4 指令定义

3.1.4.1 0x00

功能:

空操作,可用于检测程序是否正常响应。

格式 (HEX):

01	00	00	00

02	00	00	00

参数:

无

3.1.4.2 0x01

功能:

复位系统。

格式 (HEX):

01	01	00	00

02	01	00	00

参数:

无

3.1.4.3 0x02

功能:

设置系统进入节能模式(睡眠/待机状态)。

格式 (HEX):

				1 Byte	1 Byte	2Bytes	2Bytes
01	02	00	01	ps_type	wake_type	delay_time	wake_time

02	02	XX	00
----	----	----	----

参数:

ps_type: 节能模式

值	含义
0	Wi-Fi On/Off
1	Standby
2	Sleep

wake_type: Sleep 模式/Standby 唤醒模式

值	Sleep 模式	Standby 唤醒模式
0	退出 Sleep	GPIO 方式
1	进入 Sleep	Timer 方式

delay_time: 进入 Standby 模式的延时时间,单位 10ms,有效值 100 ~10000ms wake_time: 在 Standby 模式下的唤醒时间,仅当 timerO 唤醒时有效,单位ms,

 $1000 \sim 65535 \text{ms}$

3.1.4.4 0x03

功能:

恢复 FLASH 中的出厂设置。恢复后的设置需系统重启后才能生效。

格式(HEX):

	X		
01	03	00	00
	. 1		
02	03	XX	00
	72-	,	

参数:

无

3.1.4.5 0x04

功能:

将保存在内存中的参数全部更新至 FLASH。

格式 (HEX):

01	04	00	00
----	----	----	----

|--|

参数:

无

3.1.4.6 0x05 (obsolete)

功能:

GPIO 输入/输出控制。当 GPIO 设置为输入模式时,允许读取 IO 状态,当 GPIO设置 为输出模式时,允许设置 IO 状态。

格式 (HEX):

1 Byte 1 Byte 1 Byte

01	05	00	01	gpionum	inout	status
			/	1 K		
02	05	XX	00			

参数:

gpionum: IO 编号

inout: IO 方向

	1 - 12			
	值		含义	
1	0	输入		
	1	输出		

status: 10 状态

值	含义
0	低电平
1	高电平

3.1.4.7 0x06

功能:

获取模块的物理地址。

格式 (HEX):

6 Bytes

参数:

mac address: 物理地址,返回格式如下,

	含义
HEX 格式命令	长度为 6 的十六进制数,格式为 0x00 0x1E 0xE3
	0xA3 0x44 0x55

3.1.4.8 0x07

功能:

获取系统版本信息,包括硬件版本和固件版本。

格式 (HEX):

01	07	00	00	1	

02	07	00	01	hard	firm
				6 Bytes	4 Bytes

参数:

硬件版本信息,两种格式的表示含义如下所示

格式	含义
HEX	0x48 0x01 0x00 0x00 0x10 0x29

firm: 固件版本信息

格式	含义
HEX	0x46 0x06 0x10 0x11 (注: 不含编译时
I IEA	间信息)

3.1.4.9 0x08

功能:

获取模块在apsta模式下创建的软ap的的物理地址。

格式 (HEX):

01 08	00	00
-------	----	----

02	08	00	01	mac address	

参数:

mac address: 物理地址,返回格式如下,

	含义
HEX 格式命令	长度为 6 的十六进制数,格式为 0x00 0x1E 0xE3
nex 俗以即令	0xA3 0x44 0x55

3.1.4.10 0x20

功能:

根据设置的网络类型的不同,加入\创建指定网络。如果当前网络类型为Infra 且模块作为 STA 时,本指令功能为连接 AP。如果当前网络类型为 Infra且模块作为软 AP 时,本指令功能为创建 AP。如果当前网络类型为 Adhoc,本指令功能为连接指定 Adhoc 网络,并可根据设置参数选择是否在未检测到指定 SSID的网络,则自动创建该网络。

如果当前网络已经处于联网或已创建状态,则直接返回网络连接信息。

对于 HEX 格式,系统在处理指令后立即返回响应消息,如果当前网络已经处于连接状态则直接返回当前网络信息,否则网络连接的结果信息由后续的事件(0xE3)通知上位机。

格式 (HEX):

01	20	00	00

02	20	00	XX	bssid	type	channe1	encry	ssid_len	ssid	rssi
				6 Bytes	1 Byte	1 Byte	1 Byte	1 Byte	ssid_len	1 Byte

参数:

bssid: 网络 BSSID,长度为 6的十六进制数,格式为: 0x00 0x1E 0xE3 0xA3 0x44 0x55

type: 网络类型

值	含义
0	infra 网络(STA)
1	adhoc 网络
2	infra 网络 (AP)

channel: 信道号

encry: 加密模式

值	含义
0	OPEN
1	WEP64
2	WEP128
3	WPA-PSK(TKIP)
4	WPA-PSK (CCMP/AES)
5	WPA2-PSK(TKIP)
6	WPA2-PSK(CCMP/AES)

ssid_len: 网络名称长度

ssid: 无线网络名称,长度为ssid_len的十六进制数

rssi: 网络信号强度,不含负号,单位 Db,即 50 表示信号强度为-50Db

3.1.4.11 0x21

功能:

根据设置的网络类型的不同,断开\停止指定当前无线网络。

格式 (HEX):

|--|

02	21	00	00
----	----	----	----

参数:

无

3.1.4.12 0x22

功能:

扫描无线网络,系统在处理指令后立即返回响应消息,网络扫描的结果由后续的事件通知上位机。

格式 (HEX):

01	22	00	00
----	----	----	----

02	22	XX	01	num	bssid	type	channel	encry	ssid_len	ssid	rssi
				1 Byte	6 Bytes	1 Byte	1 Byte	1 Byte	l Byte	ssid_len	1 Byte

参数:

num: 网络个数

同 0x20

3.1.4.13 0x23

功能:

查询本端网络连接状态。

格式 (HEX):

02	23	00	01	status	ip	netmask	gateway	dns1	dns2
				1 Byte	4 Bytes				

参数:

status: 连接状态

值	含义	
0	断开	
1	连接	

ip: ip 地址,数据格式为"0xC0 0xA8 0x01 0x16"

netmask: 子网掩码,数据格式同 ip 地址

gateway: 网关地址,数据格式同 ip 地址

dns1: DNS 地址,数据格式同 ip 地址

dns2: DNS 地址,数据格式同 ip 地址

3.1.4.14 0x24 (obsolete, 这个功能无法启动和停止 WPS 功能)

功能:

启动/停止 WPS 功能,此命令执行成功后会修改 Flash 中的如下配置参数,包括 ssid 和密钥。

格式 (HEX):

02	24	XX	00
----	----	----	----

参数:

无

3.1.4.15 0x25

功能:

查询模块在apsta模式下创建的软ap的网络连接状态。

格式 (HEX):

01 25 00 00

02	25	00	01	status	ip	netmask	gateway	dns1	dns2
				1 Byte	4 Bytes				

参数:

status: 连接状态

值		含义	
0	断开		
1	连接		

ip: ip 地址,数据格式为"0xC0 0xA8 0x01 0x16"

netmask: 子网掩码,数据格式同 ip 地址

gateway: 网关地址,数据格式同 ip 地址

dns1: DNS 地址,数据格式同 ip 地址

dns2: DNS 地址,数据格式同 ip 地址

3.1.4.16 0x28

功能:

建立 socket。在 server 模式下, 创建完成后直接返回。

在 tcp client 模式下,系统在处理指令后立即返回响应消息,网络连接的结果由后续的事件通知上位机。

格式 (HEX):

1 Byte 1 Byte 1 Byte host_len 2Bytes

01 28 00 01 protocol cs host_len host/timeout port

02 28 XX XX socket

1 Byte

参数:

protocol: 协议类型

值		含义
0	TCP	
1	UDP	

cs: C/S 模式

值	含义
0	Client
1	Server

host_len: 目的服务器名称名称长度,当 host_timeout字段输入为域名时,表示域名长度,其它情况下固定等于 4

host/timeout: 根据 protocol 及 cs, 其含义分别如下

CS	protocol	含义			
0	X	目的服务器名称/地址,支持域名或 ip 地址,			
		如"192.168.1.100"或 <u>www.sina.com.cn</u>			
1	0	TCP 连接超时时间,即连接到本服务器的客户			
		端超过本时间不发送任何数据后即被自动踢			
		掉,有效取值范围 1~10000000,单位: 秒,0			
		表示永远不,缺省 120 秒			
1	1	无意义			

port: 端口号

socket: socket 号

3.1.4.17 0x29

功能:

获取指定的 socket 状态,返回值的第一方表示的是用户指定的 socket 的状态信息,如果该 socket 类型为 TCP 服务器,那么从下一行开始每一行表示一个接入的 client 的 socket 状态。

格式 (HEX):

			. 13/) IBjic
01	29	00	01	socket

02	29	XX	01	num	socket	status	host	port	localport
- 				1 Byte	1 Byte	1 Byte	4 Bytes	2 Bytes	2 Bytes

参数:

num: socket 个数

socket: socket 号

status: socket 状态

值	含义
0	断开
1	监听

2 连接

host: 对端 ip 地址

port: 对端端口号

localport: 本端端口号

3.1.4.18 0x2A

功能:

关闭指定的 socket。

格式 (HEX):

1 Byte

01	2A	00	01	socket
----	----	----	----	--------

02 2A XX 00

参数:

socket: socket 号

3.1.4.19 0x2B

功能:

设置系统默认发送的 socket。当用户需要在命令模式下进入透明传输模式时,使用本命令可以指定将串口的透明数据发送的目的地。

格式 (HEX):

1 Byte

01	2B	00	01	socket

XX

00

参数:

02

socket: socket 号

2B

3.1.4.20 0x2C

功能:

打开或者关闭一键配置功能。

格式 (HEX):

1 Byte

01 2C 00 01 status

02 2C XX 00

参数:

status: 状态号

值	含义
0	关闭
1	打开

3.1.4.21 0x2D

功能:

http客户端post get功能。

式 (HEX):

1 Byte 1Byte 2Byte

01 2D 00 01 verb url_len data_len url d

02	2D	XX	00
----	----	----	----

参数:

verb:

值	含义
0	http get

1	
2	http post
3	http put

url len:远程 http 服务器端地址长度

data len:verb 为 2、3 时使用,为 http 上传数据长度

url: 远程 http 服务器端地址

data: verb 为 2、3 时使用,为 http 上传数据

3.1.4.22 0x2E

功能:

通过网络升级固件。

式(HEX):

1 Byt

01	2E	00	01	url_len	ur1

OZ ZE AA OO	02	2E	XX	00
-------------	----	----	----	----

参数:

url_len:远程的tp服务器端地址长度,不超过128bytes

url: 远程http服务器端地址,例如:

http://www.winnermicro.com:80/fw/wm_sdk.image

http://192.168.1.100:80/fw/wm_sdk.image

注意: 域名或者IP后面必须有端口号

3.1.4.23 0x40

功能:

设置/查询无线网络类型。

格式(HEX):

01	40	00	XX
----	----	----	----

type

02 40 XX XX

1 Byte

参数:

type: 无线网络类型

值	含义
0	infra 网络(模块作为 STA)
1	adhoc 网络
2	infra 网络(模块作为 AP)
3	infra 网络(模块作为 APSTA)

3.1.4.24 0x41

功能:

设置/查询无线网络名称,即 ssid。

格式 (HEX):

01	41	00	XX		
			X	ssid_len	ssid
02	41	XX	XX	1 Byte	ssid_len

参数:

ssid_len: 网络名称长度

ssid: 无线网络名称,长度为ssid_len 的16进制字符

3.1.4.25 0x42

功能:

设置/查询网络密钥。

格式 (HEX):

01	42	00	XX

02	19	vv	VV
02	42	ΛΛ	$\Lambda\Lambda$

format	index	key_len	key
1 Byte	1 Byte	1 Byte	key_len

参数:

format: 密钥格式

值	含义
0	HEX 字符
1	ASCII 字符

index: 密钥索引号, 1~4 用于 WEP 加密密钥, 其它加密方式固定为 0

key len: 密钥长度

key:密钥,根据不同的安全模式,密钥使用的长度与格式要求定义如下,

安全模式	密钥格式		
女主侯八	НЕХ	ASCII	
WEP64	10 个 16 进制字符 (注1)	5个ASCII/字符 (注2)	
WEP128	26 个 16 进制字符	13个 ASCII 字符	
WPA-PSK(TKIP)	64 个 16 进制字符	8 [*] 63 个 ASCII 字符	
WPA-PSK (CCMP/AES)	64 个 16 进制字符	8 [~] 63 个 ASCII 字符	
WPA2-PSK(TKIP)	64 个 16 进制字符	8 [~] 63 个 ASCII 字符	
WPA2-PSK (CCMP/AES)	64 个 16 进制字符	8 [~] 63 个 ASCII 字符	

注 1: 16 进制字符指 0~9、a f(不区分大小写),如"11223344dd"

注 2: ASCII 字符指国际标准化组织(ISO)规定的标准 ASCII 字符集(可见的)

3.1.4.26 0x43

功能:

设置/查询无线网络安全模式。需要特别说明的是除了 OPEN 模式以外,其它安全模式都需要配合 0x42 指令设置正确的网络密钥。

格式 (HEX):

01	43	00	XX	
				encry mode
02	43	XX	XX	1 Byte

参数:

encry mode: 安全模式

0	OPEN
1	WEP64
2	WEP128
3	WPA-PSK(TKIP)
4	WPA-PSK (CCMP/AES)
5	WPA2-PSK(TKIP)
6	WPA2-PSK(CCMP/AES)

3.1.4.27 0x44

功能:

设置/查询指定 AP 的 bssid 地址。仅在模块作为 STA 时有效。

格式 (HEX):

01	44	00	XX		
				enable	bssid

02	44	XX	XX
----	----	----	----

参数:

enable: 是否使能指定 BSSID 模式

值		含义
0	关闭	
1	使能	

6Bytes

bssid: 网络 BSSID, 输入格式如下

	含义		
HEX 格式命令	长度为 6 的十六进制数,格式为 0x00 0x1E 0xE3		
	0xA3 0x44 0x55		

3.1.4.28 0x45

功能:

使能/禁止 AP SSID 广播,仅在模块作为 AP 时有效。

格式 (HEX):

01	45	00	XX
----	----	----	----

enable

02 | 45 | XX | XX

1 Byte

参数:

enable: 是否使能 SSID 广播

值	含义	
0	禁止 AP SSID 广播	
1	使能 AP SSID 广播	

3.1.4.29 0x46

功能:

设置/查询指定无线信道方式。

格式(HEX):

02 46 XX XX

enable channel

参数:

enable: 是否使能指定信道模式

channel: 无线信道号,有效范围 1~14

3.1.4.30 0x47 (obsolete, 暂时没有设置国家码操作)

功能:

设置/查询无线信道的国家区域。

格式 (HEX):

	XX	00	47	01
region				
2Bytes	XX	XX	47	02

参数:

region: 国家区域码

3.1.4.31 0x48

功能:

设置/查询无线网络 BG 模式及最高发射速率。

格式 (HEX):

|--|

02 48 XX XX

参数:

bg_mode: BG 模式

值	含义
0	B/G 混合
1	В

max_rate: 最高发送速率,在 B 模式下,仅 0~3 有效。

值	含义
0	1 Mbps
1	2 Mbps
2	5.5 Mbps
3	11 Mbps
4	6 Mbps
5	9 Mbps
6	12 Mbps
7	18 Mbps
8	24 Mbps
9	36 Mbps
10	48 Mbps
11	54 Mbps
	0 1 2 3 4 5 6 7 8 9

3.1.4.32 0x49(需要配合 adhoc 网络的库才有可能使用)

功能:

设置/查询是否使能自动创建 adhoc 网络功能。本设置仅在无线网络类型设置为 adhoc 时有效,表示当加入网络失败时是否自动创建同名的 adhoc 网络。

格式 (HEX):

功能:

设置/查询自动节能模式。

格式 (HEX):

参数:

enable: 是否使能节能模式

3.1.4.34 0x4B《自动联网即可实现漫游功能》

功能:

设置/查询是否使能无线网络漫游功能,仅在模块作为 STA 时有效。

格式 (HEX):

01	4B	00	XX	
				enable
02	4B	XX	XX	1 Byte

参数:

enable: 使能标志

3.1.4.35 0x4C

功能:

设置/查询 WPS 功能。

格式 (HEX):

02 4C XX XX

参数:

mode: WPS 功能选择

值	含义
0	Button 方式
1	PIN 方式

pin_len: PIN 码长度

pin: 无线路由器的 PIN 码二十六进制数格式

3.1.4.36 0x4D

功能:

设置/查询模块在apsta模式下创建的软ap的无线网络名称,即 ssid。

格式 (HEX):

01	4D	00	XX		
				ssid_len	ssid
02	4D	XX	XX	1 Byte	ssid_len

参数:

ssid_len: 网络名称长度

ssid: 无线网络名称,长度为ssid_len 的16进制字符

3.1.4.37 0x60

功能:

当模块作为 STA 时,该指令用于设置/查询本端 ip 地址。

注意: 当使用 DHCP自动分配IP地址 时,用户无法使用本命令来查询模块的 IP 地址信息,此时可以使用0x29命令查询。

当模块作为 AP 时,仅本端的 ip 地址和子网掩码有效,其它字段值无意义。

格式 (HEX):

01 60	00	XX
-------	----	----

02	60	YY	YY
02	00	$\Lambda\Lambda$	$\Lambda\Lambda$

		,	7	
type	ip	netmask	gateway	dns
1 Byte	4Bytes	4Bytes	4Bytes	4Bytes

参数:

type: 地址类型

值	含义
0	使用 DHCP 动态分配
1	使用静态 IP 地址

ip: ip 地址,数据格式为"0xC0 0xA8 0x01 0x16",不含引号

netmask: 子网掩码,数据格式同 ip 地址

gateway: 网关地址,数据格式同 ip 地址号

dns: DNS 地址,数据格式同 ip 地址

3.1.4.38 0x61

功能:

设置/查询模块工作模式。

格式 (HEX):

01	61	00	XX		
					mode
02	61	XX	XX	_	1 Byte

参数:

mode: 工作模式

值	含义
0	自动工作模式
1	命令工作模式

3.1.4.39 0x62

功能:

设置/查询自动工作模式下模块自动创建的 socket 连接信息。

格式 (HEX):

01	62	00	XX
----	----	----	----

02	62	XX	XX

protocol cs host_len host/timeout port 1 Byte 1 Byte host_len 2 Bytes

参数:

同 0x28

3.1.4.40 0x63 (obsolete, 目前没有 always-online 模式)

功能:

设置/查询模块的 always-online 模式(注,此模式仅在模块在自动工作模式且网络类型为 STA 的情况下有效)。

格式 (HEX):

02	63	XX	XX

enabl	.e	ssid_l	len	S	sid	encry	1	key
1 Byte		1 Byte	SS	sid_len	1 E	Byte	8Bytes	3

参数:

enable: 是否使能 always-online 模式

ssid_len: 网络名称长度

ssid: 无线网络名称,长度为ssid_len 的16进制字符

encry: 安全模式

值	含义
0	开放
1	加密(WPA2-PSK、CCMP/AES)

key: 密钥, 长度固定为 8 个Byte的16进制字符

3.1.4.41 0x64

功能:

设置/查询模块的接口模式。

格式 (HEX):

01 64 00 XX

02	64	XX	XX

mode

1 Byte

参数:

mode: 接口模式

值	含义
0	低速 UART
1	高速 UART
2	H-SPI

3.1.4.42 0x65

功能:

设置/查询 uart 接口数据格式。

格式 (HEX):

01	65	00	XX
----	----	----	----

02	65	XX	XX

baudrate	databit	stopbit	parity	flowcontrol
3 Bytes	1 Byte	1 Byte	1 Byte	1Byte

参数:

baudrate: 波特率,有效值范围 1200~2000000bps

databit: 数据位

值	含义
0	8 位
1	不支持

stopbit: 停止位

值	含义	
0	1 位	
1	不支持	
2	2 位	_

parity: 校验

值	含义
0	无校验
1	奇校验
2	偶校验

flowcontrol: 流控位

值	含义
0	关闭
1	硬件 RTS/CTS 流控
1	

3.1.4.43 0x66(obsolet, 仅针对 A 版本有效, 当前版本不支持

功能:

设置人查询数据自动组帧数据长度。本参数仅在串口透明传输模式下有效。

格式(HEX):

参数:

length: 自动组帧长度, 32~1024, 单位字节

3.1.4.44 0x67

功能:

设置/查询网卡模块域名,该设置仅在模块作为 AP 时有效。

格式 (HEX):

02	67	XX	XX

dns_len dnsname

1 Byte dns_len

参数:

dns len: 域名长度

dnsname: 网卡模块域名,长度为dns_len的16进制字符

3.1.4.45 0x68 (obsolete, 没有此功能)

功能:

设置/查询花生壳动态域名用户信息

格式 (HEX):

01	68	00	XX			
X						
02	68	XX	XX			
, XX						

enable	user_len	user	pass_len	pass
1 Byte	1 Byte	user_len	1 Byte	pass_len

参数:

enable: 是否使能 ddns 功能

user len: 用户名长度

user: 用户名,长度为user_len的16进制字符,仅当 ddns 功能使能时有效

pass len: 密码长度

pass: 密码,长度为pass_len的16进制字符,仅当 ddns 功能使能时有效

3.1.4.46 0x69(obsolete, 没有实现此功能)

功能:

设置/查询 UPNP 功能。

格式 (HEX):

参数:

enable: 是否使能 UPNP 功能

值		含义	
0	关闭		
1	使能		

3.1.4.47 0x6A

功能:

设置/查询设备名称。

格式 (HEX):

参数:

name_len:名称长度

devicename: 设备名称,长度为name_len的16进制字符

3.1.4.48 0xF0 (obsolete, 当前版本不支持, 否则代码量太大) 功能:

设置系统调试模式。

格式 (HEX):

01	F0	00	XX
----	----	----	----

bit_enable

02 F0 XX XX

4Bytes

参数:

bit_enable: 十六进制表示,每一位对应一种调试功能,0 - disable, 1 -enable

3.1.4.49 0xF1

功能:

读取寄存器或内存空间,单位为 32bit 字,最多支持 8 个字。

格式 (HEX):

参数:

address: 寄存器基地址

num: 寄存器个数,缺省为

value: 寄存器值

3.1.4.50 0xF2

功能:

修改寄存器或内存空间,单位为 32bit 字,最多支持 8 个字。

格式 (HEX):

(01	F2	00	01	address	num	value1	value2
· <u> </u>	4Bytes		4Bytes	1Byte	4Bytes	4Bytes		

02 F2 XX 00

参数:

address: 寄存器地址

num: 寄存器个数

value: 寄存器值

3.1.4.51 0xF3

功能:

读取 RF 寄存器空间,单位为 16bit 字,最多支持 8 个字。

格式 (HEX):

				2Bytes	1Byte
01	F3	00	01	address	num

02 F3 XX 01 value1 value2

2Bytes 2Bytes

参数:

address: 寄存器基地址

num: 寄存器个数, 缺省为 1

value: 寄存器值

3.1.4.52 0xF4

功能:

修改 RF 寄存器空间,单位为 16bit 字,最多支持 8 个字。

格式(HEX):

01	F4	00	01	address	num	value1	value2
				2Bytes	1Byte	2Bytes	2Bytes

02	F4	XX	00
----	----	----	----

参数:

address: 寄存器地址

num: 寄存器个数

4Bytes

value: 寄存器值

3.1.4.53 0xF5

功能:

读取 SPI Flash 空间,单位为 32bit 字,最多支持 8 个字。

格式 (HEX):

4Bytes

参数:

address: 寄存器基地址

num: 寄存器个数, 缺省为 1

value: 寄存器值

3.1.4.54 0xF6

功能:

修改 SPI Flash 空间,单位为 32bit 字,最多支持 8 个字。

格式 (HEX):

				4Bytes	1Byte	4Bytes	4Bytes
01	F6	00	01	address	num	value1	value2

参数:

address: 寄存器基地址

num: 寄存器个数, 缺省为 1

value: 寄存器值

3.1.4.55 0xF7

功能:

设置通过用户接口(UART/SPI)的固件升级模式。

格式 (HEX):

02	F8	XX	00
----	----	----	----

参数:

size: 数据长度

data stream: 升级数据