Report for statisticians

Becky Yuen

Introduction

This is the overall report for the analysis on the European Value Study (EVS) from 2017 which is a survey research program on how Europeans think about family, work, religion, politics, and society. We are mainly interested in Europeans thoughts on two questions:

- 1. When a mother works for pay, do Europeans think the children suffer?
- 2. When jobs are scarce, do Europeans think employers should give priority to local people over immigrants?

```
library(haven)
EVS = read_sav("../data/EVS_data_cleaned.sav")
```

Descriptives of variables

In the following table, the variables are:

- 1. v72 represents the first question of interest (1-strongly agree, 2-agree, 3-disagree, or 4-strongly disagree)
- 2. v80 represents the second question of interest (1-strongly agree, 2-agree, 3-neither agree nor disagree, 4-disagree, or 5-strongly disagree)
- 3. sex (1-male or 2-female)
- 4. age (years)
- 5. education (1-lower, 2-medium, or 3-higher)

Table 1: Descriptive table for continuous variables

v72	v80	age
Min. :1.000	Min. :1.000	Min. :18.00
1st Qu.:2.000	1st Qu.:1.000	1st Qu.:35.00
Median $:3.000$	Median $:2.000$	Median: 50.00
Mean $:2.713$	Mean $:2.313$	Mean $:49.57$
3rd Qu.:3.000	3rd Qu.:3.000	3rd Qu.:64.00
Max. :4.000	Max. :5.000	Max. :82.00

Table 2: Descriptive table for categorical variables

Education	Sex	Freq
Lower	${\bf M}$	4727.00
Medium	\mathbf{M}	11992.00
Higher	\mathbf{M}	8351.00
Lower	\mathbf{F}	6802.00
Medium	\mathbf{F}	13835.00
Higher	\mathbf{F}	11048.00

Graphs

```
library(ggplot2)

ggplot(EVS, aes(as.factor(v72), age)) +
   geom_boxplot() +
   labs(x = "When a mother works for pay, the children suffer", y = "Age (Years)") +
   scale_x_discrete(labels = c("strongly agree", "agree", "disagree", "strongly disagree"))
```


Figure 1: Boxplot for first question of interest (v72)

We can see that the distributions of age among categories of opinion are quite similar.

Figure 2: Boxplot for second question of interest (v80)

Same as the previous plot, we can see that the distributions of age among categories of opinion are quite similar.

Regression Analysis

Model: $v72 \sim age + \sqrt{age} + sex + education$

```
EVS$sex = factor(EVS$sex, levels=c(1,2), labels=c("-male","-female"))
EVS$education = factor(EVS$education, levels=c(1,2,3), labels=c("-lower","-medium","-higher"))
model_v72 = lm(v72 ~ age + sqrt(age) + sex + education, data = EVS)
pander(summary(model_v72))
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	2.728	0.09723	28.06	4.655e-172
\mathbf{age}	-0.004774	0.002203	-2.167	0.03023
$\operatorname{sqrt}(\operatorname{age})$	-0.001149	0.02976	-0.03861	0.9692
\mathbf{sex} -female	0.06448	0.007257	8.886	6.537e-19
${f education}$ -medium	0.1233	0.009852	12.51	7.325e-36
education-higher	0.4012	0.01046	38.36	7.574e-318

Table 4: Fitting linear model: v72 \sim age + sqrt(age) + sex + education

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
56755	0.8576	0.04769	0.04761

The coefficient estimate for sex is 0.0644834 which means that the effect of a female respondent compared to a male is positive. The corresponding p-value is $6.5368574 \times 10^{-19}$ which is smaller than 0.05. Thus, sex is significant in the model.

Model: $v80 \sim age + \sqrt{age} + sex + education$

```
model_v80 = lm(v80 ~ age + sqrt(age) + sex + education, data = EVS)
pander(summary(model_v80))
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	2.344	0.1427	16.43	1.646e-60
\mathbf{age}	-0.003823	0.003232	-1.183	0.2369
$\operatorname{sqrt}(\operatorname{age})$	0.006788	0.04367	0.1554	0.8765
\mathbf{sex} -female	-0.03151	0.01065	-2.959	0.003084
${f education}$ -medium	-0.03504	0.01446	-2.424	0.01536
education-higher	0.4238	0.01535	27.61	9.812e-167

Table 6: Fitting linear model: $v80 \sim age + sqrt(age) + sex + education$

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
56755	1.258	0.03124	0.03115

The coefficient estimate for sex is -0.0315131 which means that the effect of a female respondent compared to a male is negative. The corresponding p-value is 0.003084 which is smaller than 0.05. Thus, sex is significant in the model.