<110> UEMURA, Hidetoshi
 OKUI, Akira
 KOMINAMI, Katsuya
 YAMAGUCHI, Nozomi
 MITSUI, Shinichi

<120> NOVEL SERINE PROTEASE BSSP2

<130> UEMURA=7

<140> 09/856,371

<141> 2001-05-21

<150> JP 10/347785

<151> 1998-11-20

<150> PCT/JP99/06475

<151> 1999-11-19

<160> 44

<170> PatentIn version 3.1

<210>

<211> 717

<212> DNA

<213> Mus sp.

<220>

<221> CDS

<222> (1)..(717)

<223>

<400> 1

ata Ile	gtt Val	ggc Gly	ggc Gly	caa Gln	gct Ala	gtg Val	gct Ala	tct Ser	ggg Gly	cgc Arg	tgg Trp	cca Pro	tgg Trp	caa Gln	gct Ala	48
1				5					10	_	_		_	15		

agc gtg atg ctt ggc tcc cgg cac acg tgt ggg gcc tct gtg ttg gca 96 Ser Val Met Leu Gly Ser Arg His Thr Cys Gly Ala Ser Val Leu Ala 20 25 30

cca cac tgg gta gtg act gct gcc cac tgc atg tac agt ttc agg ctg
Pro His Trp Val Val Thr Ala Ala His Cys Met Tyr Ser Phe Arg Leu
35 40 45

tcc cgc cta tcc agc tgg cgg gtt cat gca ggg ctg gtc agc cat ggt

Ser Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val Ser His Gly

50

60

gct gtc cga caa cac cag gga act atg gtg gag aag atc att cct cat
Ala Val Arg Gln His Gln Gly Thr Met Val Glu Lys Ile Ile Pro His
65 70 75 80

cct ttg tac agt gcc cag aac cat gac tat gat gtg gct ctg ctg cag
Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp Val Ala Leu Leu Gln
85 90 95

ctc cgg aca cca atc aac ttc tca gac acc gtg gac gct gtg tgc ttg
Leu Arg Thr Pro Ile Asn Phe Ser Asp Thr Val Asp Ala Val Cys Leu

100		105	110	
ccg gcc aag gag Pro Ala Lys Glu 115	cag tac ttt Gln Tyr Phe	cca tgg ggg tcg Pro Trp Gly Ser 120	g cag tgc tgg r Gln Cys Trp 125	gtg tct 384 Val Ser
ggc tgg ggc cac Gly Trp Gly His 130	acc gac ccc Thr Asp Pro 135	agc cat act cat Ser His Thr His	agc tca gat s Ser Ser Asp 140	aca ctg 432 Thr Leu
cag gac aca atg Gln Asp Thr Met 145	gta ccc ctg Val Pro Leu 150	ctc agc acc cac Leu Ser Thr His 15	s Leu Cys Asn	agc tca 480 Ser Ser 160
tgc atg tac agt Cys Met Tyr Ser	ggg gca ctt Gly Ala Leu 165	aca cac cgc ato Thr His Arg Med 170	g ttg tgt gct t Leu Cys Ala	ggc tac 528 Gly Tyr 175
ctg gat gga agg Leu Asp Gly Arg 180	gca gac gca Ala Asp Ala	tgc cag gga gad Cys Gln Gly Asp 185	c agc ggg gga o Ser Gly Gly 190	ccc ctg 576 Pro Leu
gta tgt ccc agt Val Cys Pro Ser 195	ggt gac acg Gly Asp Thr	tgg cac ctt gta Trp His Leu Va 200	a ggg gtg gtc l Gly Val Val 205	agc tgg 624 Ser Trp
ggt cgt ggc tgt Gly Arg Gly Cys 210	gca gag ccc Ala Glu Pro 215	aat cgc cca gg Asn Arg Pro Gl	t gtc tat gcc y Val Tyr Ala 220	aag gta 672 Lys Val
gca gag ttc ctg Ala Glu Phe Leu 225	gac tgg atc Asp Trp Ile 230	cat gac act gto His Asp Thr Va. 23	l Gln Val Arg	tag 717
<210> 2 <211> 238 <212> PRT <213> Mus sp.				
<400> 2				
Ile Val Gly Gly 1	Gln Ala Val	Ala Ser Gly Ar	g Trp Pro Trp	Gln Ala 15
Ser Val Met Leu 20	Gly Ser Arg	His Thr Cys Gl 25	y Ala Ser Val 30	Leu Ala
Pro His Trp Val 35	Val Thr Ala	Ala His Cys Me 40	t Tyr Ser Phe 45	Arg Leu
Ser Arg Leu Ser	Ser Trp Arg 55	Val His Ala Gl	y Leu Val Ser 60	His Gly
Ala Val Arg Gln 65		Thr Met Val Gl 75		Pro His 80

	85	90		95
Leu Arg Thr Pro	Ile Asn Phe	Ser Asp Thr 105	Val Asp Ala	Val Cys Leu 110
Pro Ala Lys Glu 115	Gln Tyr Phe	Pro Trp Gly 120	Ser Gln Cys 125	Trp Val Ser
Gly Trp Gly His 130	Thr Asp Pro 135	Ser His Thr	His Ser Ser 140	Asp Thr Leu
Gln Asp Thr Met 145	Val Pro Leu 150	Leu Ser Thr	His Leu Cys 155	Asn Ser Ser 160
Cys Met Tyr Ser	Gly Ala Leu 165	Thr His Arg 170	_	Ala Gly Tyr 175
Leu Asp Gly Arg 180	Ala Asp Ala	Cys Gln Gly 185	Asp Ser Gly	Gly Pro Leu 190
Val Cys Pro Ser 195	Gly Asp Thr	Trp His Leu 200	Val Gly Val 205	Val Ser Trp
Gly Arg Gly Cys 210	Ala Glu Pro 215	Asn Arg Pro	Gly Val Tyr 220	Ala Lys Val
Ala Glu Phe Leu 225	Asp Trp Ile 230	His Asp Thr	Val Gln Val 235	Arg
<210> 3 <211> 1685 <212> DNA <213> Mus sp.				
<220> <221> CDS <222> (247)(3 <223>	LO65)			
<220> <221> mat_pepti <222> (352)() <223>	ide			
<400> 3 ctcacatgta tcttt	cagaa taaatq	ggaga ggatct	tctg cttcaagt	ac aagtaagagc
teggecagae tgget	cctgg tatgco	catga gggccg	gagc ccagccct	gg gcatgcacat

ctgcaagagt cttgggcata tcaggcttac tcaacacaag gccgtgaatc tgtctgacat

60

120

180

caagetcaac agateccagg agtttgetca actetetget agacegggag geettgtaga 240 ggagge atg gaa gee eag gta ggg ett etg tgg gtt age get aac tgt 288 Met Glu Ala Gln Val Gly Leu Leu Trp Val Ser Ala Asn Cys cct tct ggc cga att gtt tct ctc aaa tgt tct gag tgt ggg gca agg 336 Pro Ser Gly Arg Ile Val Ser Leu Lys Cys Ser Glu Cys Gly Ala Arg cet etg get tet ega ata gtt gge gge caa get gtg get tet ggg ege 384 Pro Leu Ala Ser Arg Ile Val Gly Gly Gln Ala Val Ala Ser Gly Arg -1 1 tgg cca tgg caa gct agc gtg atg ctt ggc tcc cgg cac acg tgt ggg 432 Trp Pro Trp Gln Ala Ser Val Met Leu Gly Ser Arg His Thr Cys Gly 1.5 20 gcc tct gtg ttg gca cca cac tgg gta gtg act gct gcc cac tgc atg 480 Ala Ser Val Leu Ala Pro His Trp Val Val Thr Ala Ala His Cys Met tac agt ttc agg ctg tcc cgc cta tcc agc tgg cgg gtt cat gca ggg 528 Tyr Ser Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg Val His Ala Gly 45 50 55 ctg gtc agc cat ggt gct gtc cga caa cac cag gga act atg gtg gag 576 Leu Val Ser His Gly Ala Val Arg Gln His Gln Gly Thr Met Val Glu aag atc att cct cat cct ttg tac agt gcc cag aac cat gac tat gat 624 Lys Ile Ile Pro His Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp 85 gtg get etg etg eag ete egg aca eca ate aac tte tea gae ace gtg 672 Val Ala Leu Leu Gln Leu Arg Thr Pro Ile Asn Phe Ser Asp Thr Val 100 gac gct gtg tgc ttg ccg gcc aag gag cag tac ttt cca tgg ggg tcg 720 Asp Ala Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe Pro Trp Gly Ser 115 cag tgc tgg gtg tct ggc tgg ggc cac acc gac ccc agc cat act cat 768 Gln Cys Trp Val Ser Gly Trp Gly His Thr Asp Pro Ser His Thr His 130 135 age tea gat aca etg cag gae aca atg gta eee etg ete age ace eae 816 Ser Ser Asp Thr Leu Gln Asp Thr Met Val Pro Leu Leu Ser Thr His 145 ctc tgc aac agc tca tgc atg tac agt ggg gca ctt aca cac cgc atg 864 Leu Cys Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu Thr His Arg Met 165 170 ttg tgt gct ggc tac ctg gat gga agg gca gac gca tgc cag gga gac 912 Leu Cys Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp 180 age ggg gga eee etg gta tgt eee agt ggt gae aeg tgg eae ett gta 960 Ser Gly Gly Pro Leu Val Cys Pro Ser Gly Asp Thr Trp His Leu Val 195 200 ggg gtg gtc agc tgg ggt cgt ggc tgt gca gag ccc aat cgc cca ggt 1008

D'

Gly Val Val Ser Trp Gly Arg Gly Cys Ala Glu Pro Asn Arg Pro Gly 205 210 215	
gtc tat gcc aag gta gca gag ttc ctg gac tgg atc cat gac act gtg Val Tyr Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr Val 220 225 230 235	1056
cag gtc cgc tagccgaaga agcagcagca gccacctgtg acgccgagct Gln Val Arg	1105
gtggatcgcc catggatcac cccagtctgg gggccagcat ctgggtcact gggcctctcc	1165
ccaaaggctc tgacttcgag ttcatctttc tcatctgaga acctccacaa caggaaaagg	1225
agtctgcggc tagattggga atgatggtga gaggaaggga taggaggaca gaagagacag	1285
cagaggette tggaageate tgggagaetg eteetetget eeceecacae eecaegtgea	1345
tccactgggg gatgctggag atgcccaatc cttgtttctt gtggggccac tggaaggcta	1405
agtccaactt tagaggatgc cctgtctcga gagttactag gcagataagg ttaaggttgg	1465
acaageteag gtaaaggeae ggaagteaag ateceetete eecegtgegg teetgttetg	1525
aggtaagcta atagccccgc accaggcaga ggtctacagg gtaagaagga tgcagttggg	1585
ctacacgacg ctatttttca aatgatgttt ctgtaaattg gttgagagag ttttgttatt	1645
aaacagaaat tatgtataaa aaaaaaaaaa aaaaaaaaaa	1685
<210> 4 <211> 273 <212> PRT <213> Mus sp. <400> 4	
Met Glu Ala Gln Val Gly Leu Leu Trp Val Ser Ala Asn Cys Pro Ser	
-35 -30 -25 -20	
Gly Arg Ile Val Ser Leu Lys Cys Ser Glu Cys Gly Ala Arg Pro Leu -15 -10 -5	
Ala Ser Arg Ile Val Gly Gly Gln Ala Val Ala Ser Gly Arg Trp Pro -1 1 5 10	
Trp Gln Ala Ser Val Met Leu Gly Ser Arg His Thr Cys Gly Ala Ser 15 20 25	

D

55

Val Leu Ala Pro His Trp Val Val Thr Ala Ala His Cys Met Tyr Ser

Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val

35

50

Ser His Gly Ala Val Arg Gln His Gln Gly Thr Met Val Glu Lys Ile Ile Pro His Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp Val Ala Leu Leu Gln Leu Arg Thr Pro Ile Asn Phe Ser Asp Thr Val Asp Ala 105 Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe Pro Trp Gly Ser Gln Cys Trp Val Ser Gly Trp Gly His Thr Asp Pro Ser His Thr His Ser Ser 135 Asp Thr Leu Gln Asp Thr Met Val Pro Leu Leu Ser Thr His Leu Cys Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu Thr His Arg Met Leu Cys 165 160 Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Pro Ser Gly Asp Thr Trp His Leu Val Gly Val 195 190 Val Ser Trp Gly Arg Gly Cys Ala Glu Pro Asn Arg Pro Gly Val Tyr 210 215 Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr Val Gln Val 230 Arg

<210> 5 <211> 2068 <212> DNA <213> Mus sp. <220> <221> CDS <222> (516)..(1448) <220> <221> mat_peptide <222> (735)..() <223>

220

<400> 5 ctggctgggc tgttgaatca atcccqacat gaggacagga gcctcaccct gcccaqcaga 60 acttactgcc ttatatcagt gcagctgact catatgagtc caacactgga tgaccaaagc 120 180 ccaatggaga ttcggtgcac ggaagagggt gctgggcctg ggatcttcag aatggagttg ggagaccaga ggcaatccat ttctcagtcc caacgctggt gctgcctgca acgtggctgt 240 gtaatactgg gcgtcctggg gctgctggct ggagcaggca ttgcttcatg gctcttagtg 300 ttgtatctat ggccggctgc ctctccatcc atctctggga cgttgcagga ggaggagatg 360 actttgaact gtccaggagt gagctgtgag gaagagctcc ttccatctct tcccaaaaca 420 gaataaatgg aggggatett etgetteaag tacaagtaag ageteggeea gaetggetee 480 tggtctgcca tgagggctgg agccccgccc tgggc atg cac atc tgc aag agt 533 Met His Ile Cys Lys Ser ctt ggg cat atc agg ctt act caa cac aag gcc gtg aat ctg tct gac 581 Leu Gly His Ile Arg Leu Thr Gln His Lys Ala Val Asn Leu Ser Asp -65 -60 atc aag ctc aac aga tcc cag gag ttt gct caa ctc tct gct aga ccg 629 Ile Lys Leu Asn Arg Ser Gln Glu Phe Ala Gln Leu Ser Ala Arg Pro -50-45677 gga ggc ctt gta gag gag gca tgg aag ccc agc gct aac tgt cct tct Gly Gly Leu Val Glu Glu Ala Trp Lys Pro Ser Ala Asn Cys Pro Ser -35-30 -25 ggc cga att gtt tct ctc aaa tgt tct gag tgt ggg gca agg cct ctg 725 Gly Arg Ile Val Ser Leu Lys Cys Ser Glu Cys Gly Ala Arg Pro Leu -10773 get tet ega ata gtt gge gge caa get gtg get tet ggg ege tgg eea Ala Ser Arg Ile Val Gly Gly Gln Ala Val Ala Ser Gly Arg Trp Pro -1 1 10 821 tgg caa gct agc gtg atg ctt ggc tcc cgg cac acg tgt ggg gcc tct Trp Gln Ala Ser Val Met Leu Gly Ser Arg His Thr Cys Gly Ala Ser 15 25 gtg ttg gca cca cac tgg gta gtg act gct gcc cac tgc atg tac agt 869 Val Leu Ala Pro His Trp Val Val Thr Ala Ala His Cys Met Tyr Ser 30 35 40 ttc agg ctg tcc cgc cta tcc agc tgg cgg gtt cat gca ggg ctg gtc 917 Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val 50 agc cat ggt gct gtc cga caa cac cag gga act atg gtg gag aag atc 965 Ser His Gly Ala Val Arg Gln His Gln Gly Thr Met Val Glu Lys Ile 70 att cct cat cct ttg tac agt gcc cag aac cat gac tat gat gtg gct 1013 Ile Pro His Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp Val Ala 85 90

D'

I	ctg Leu	ctg Leu 95	cag Gln	ctc Leu	cgg Arg	aca Thr	cca Pro 100	atc Ile	aac Asn	ttc Phe	tca Ser	gac Asp 105	acc Thr	gtg Val	gac Asp	gct Ala	1061
7	gtg /al l10	tgc Cys	ttg Leu	ccg Pro	gcc Ala	aag Lys 115	gag Glu	cag Gln	tac Tyr	ttt Phe	cca Pro 120	tgg Trp	ggg Gly	tcg Ser	cag Gln	tgc Cys 125	1109
t	gg Trp	gtg Val	tct Ser	ggc Gly	tgg Trp 130	ggc Gly	cac His	acc Thr	gac Asp	ccc Pro 135	agc Ser	cat His	act Thr	cat His	agc Ser 140	tca Ser	1157
Ï	gat Asp	aca Thr	ctg Leu	cag Gln 145	gac Asp	aca Thr	atg Met	gta Val	ccc Pro 150	ctg Leu	ctc Leu	agc Ser	acc Thr	cac His 155	ctc Leu	tgc Cys	1205
									gca Ala								1253
į	gct Ala	ggc Gly 175	tac Tyr	ctg Leu	gat Asp	gga Gly	agg Arg 180	gca Ala	gac Asp	gca Ala	tgc Cys	cag Gln 185	gga Gly	gac Asp	agc Ser	Gly ggg	1301
Ċ	gga Gly 190	ccc Pro	ctg Leu	gta Val	tgt Cys	ccc Pro 195	agt Ser	ggt Gly	gac Asp	acg Thr	tgg Trp 200	cac His	ctt Leu	gta Val	ggg Gly	gtg Val 205	1349
7	gtc Val	agc Ser	tgg Trp	ggt Gly	cgt Arg 210	ggc Gly	tgt Cys	gca Ala	gag Glu	ccc Pro 215	aat Asn	cgc Arg	cca Pro	ggt Gly	gtc Vál 220	tat Tyr	1397
Ā	gcc Ala	aag Lys	gta Val	gca Ala 225	gag Glu	ttc Phe	ctg Leu	gac Asp	tgg Trp 230	atc Ile	cat His	gac Asp	act Thr	gtg Val 235	cag Gln	gtc Val	1445
	ege Arg	tago	ccgaa	aga a	agca	gcago	ca go	ccaco	ctgtg	g aco	gccga	agct	gtg	gatc	gcc		1498
(cato	ggat	cac (cca	gtct	gg gg	ggcca	agcat	t ctç	gggt	cact	ggg	cctc	tcc (ccaa	aggctc	1558
1	tgad	cttc	gag t	tca	tctti	tc to	catc	gaga	a aco	ctcca	acaa	cag	gaaa	agg (agtc	tgcggc	1618
1	taga	attg	gga a	atgai	tggt	ga ga	aggaa	aggga	a tag	ggag	gada	gaaq	gaga	cag	caga	ggcttc	1678
1	tgga	aagc	atc 1	ggga	agact	tg ct	cct	ctgct	t cc	ccca	acac	ccca	acgt	gca ·	tcca	ctgggg	1738
Ç	gato	gctg	gag a	atgc	ccaat	tc c1	tgti	tctt	t gto	gggg	ccac	tgga	aagg	cta :	agtc	caactt	1798
1	taga	aggat	tgc (cctg	tctc	ga ga	agtta	acta	g gca	agata	aagg	ttaa	aggt	tgg .	acaa	gctcag	1858
(gtaa	aagg	cac (ggaa	gtca	ag at	ccc	ctct	c cc	ccgt	gcgg	tcc	tgtt	ctg .	aggt	aagcta	1918
ć	ataç	gccc	cgc a	acca	ggca	ga go	gtcta	acag	g gta	aagaa	agga	tgc	agtt	ggg	ctac	acgacg	1978
(ctat	tttt	tca a	aatga	atgti	tt c	tgta	aatt	g gtt	tgaga	agag	ttt	tgtt	att .	aaac	agaaat	2038
1	tato	gtata	aaa a	aaaa	aaaa	aa aa	aaaa	aaaa	a								2068

<210> 6 <211> 311 <212> PRT <213> Mus sp.

<400> 6

Met His Ile Cys Lys Ser Leu Gly His Ile Arg Leu Thr Gln His Lys
-70 -65 -60

Ala Val Asn Leu Ser Asp Ile Lys Leu Asn Arg Ser Gln Glu Phe Ala -55 -50 -45

Gln Leu Ser Ala Arg Pro Gly Gly Leu Val Glu Glu Ala Trp Lys Pro
-40 -35 -30

Ser Ala Asn Cys Pro Ser Gly Arg Ile Val Ser Leu Lys Cys Ser Glu -25 -15 -10

Cys Gly Ala Arg Pro Leu Ala Ser Arg Ile Val Gly Gly Gln Ala Val $-5 \hspace{1cm} -1 \hspace{1cm} 1 \hspace{1cm} 5$

Ala Ser Gly Arg Trp Pro Trp Gln Ala Ser Val Met Leu Gly Ser Arg 10 15 20

His Thr Cys Gly Ala Ser Val Leu Ala Pro His Trp Val Val Thr Ala 25 30 35

Ala His Cys Met Tyr Ser Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg 40 45 50 55

Val His Ala Gly Leu Val Ser His Gly Ala Val Arg Gln His Gln Gly 60 65 70

Thr Met Val Glu Lys Ile Ile Pro His Pro Leu Tyr Ser Ala Gln Asn 7580 85

His Asp Tyr Asp Val Ala Leu Leu Gln Leu Arg Thr Pro Ile Asn Phe 90 95 100

Ser Asp Thr Val Asp Ala Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe 105 110 115

Pro Trp Gly Ser Gln Cys Trp Val Ser Gly Trp Gly His Thr Asp Pro 120 125 130 : 135

Ser His Thr His Ser Ser Asp Thr Leu Gln Asp Thr Met Val Pro Leu 140 145 150

Leu Ser Thr His Leu Cys Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu 155 160 165

Thr His Arg Met Leu Cys Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Pro Ser Gly Asp Thr 190 Trp His Leu Val Gly Val Val Ser Trp Gly Arg Gly Cys Ala Glu Pro 210 200 205 Asn Arg Pro Gly Val Tyr Ala Lys Val Ala Glu Phe Leu Asp Trp Ile 220 225 230 His Asp Thr Val Gln Val Arg 235 <210> 7 <211> 2070 <212> DNA <213> Mus sp. <220> <221> CDS <222> (116)..(1450) <223> <220> <221> mat peptide <222> (737)..()<223> <400> 7 cccagcagaa cttactgcct tatatcagtg cagctgactc atatgccctg gtgtggggct 60 gctggatctt caaccactat ttctccagag tccaacactg gatgaccaaa gccca atg 118 gag att $\,$ cgg tgc acg gaa gag $\,$ ggt gct ggg cct ggg $\,$ atc ttc aga $\,$ Glu $\,$ Ile $\,$ Arg $\,$ Cys $\,$ Thr $\,$ Glu $\,$ Gly $\,$ Ala $\,$ Gly $\,$ Pro $\,$ Gly $\,$ Ile $\,$ Phe $\,$ Arg 163 -205 -200atg gag ttg gga gac cag agg caa tcc att tct cag tcc caa cgc Met Glu Leu Gly Asp Gln Arg Gln Ser Ile Ser Gln Ser Gln Arg 208 -190 -180tgg tgc tgc ctg caa cgt ggc tgt gta ata ctg ggc gtc ctg ggg Trp Cys Cys Leu Gln Arg Gly Cys Val Ile Leu Gly Val Leu Gly 253 ctg ctg gct gga gca ggc att gct tca tgg ctc tta gtg ttg tat Leu Leu Ala Gly Ala Gly Ile Ala Ser Trp Leu Leu Val Leu Tyr 298 -155 343 cta tgg cca gct gcc tct cca tcc atc tct ggg acg ttg cag gag

Leu	Trp		Ala	Ala	Ser	Pro -14	Se	r Il	e Se	r Gl	y Th:	r L	eu G	ln G	lu	
	-145 gag Glu	atα	act Thr	ttg Leu	aac Asn	tat	cc	a gg o Gl	a gt y Va	g ag l Se	c tg r Cy	t g s G	ag g	aa g lu G	ag lu	388
ctc Leu	-130 ctt Leu	cca	tct Ser	ctt Leu	ccc Pro	Lys	ac Th	a gt r Va	a to	t tt	e Ar	a a g I	ta a le A	at g sn G	ga ly	433
	-115 gat Asp -100	ctt Leu	ctg Leu	ctt Leu	caa Gln	-11 gta Val -95	caa Gln	gta Val	aga Arg	gct Ala	-1 cgg Arg	cca Pro	gac Asp	tgg Trp	ctc Leu	481
ctg Leu -85	gtc Val	tac	cat His	gag Glu	ggc Gly -80	t.aa	agc	ccc Pro	gcc Ala	ctg Leu -75	ggc Gly	atg Met	cac His	a,tc Ile	tgc Cys -70	529
aag Lys	agt Ser	ctt Leu	ggg ggg	cat His -65	atc Ile	agg Arg	ctt Leu	act Thr	caa Gln -60	cac His	aag Lys	gcc Ala	gtg Val	aat Asn -55	ctg Leu	577
tct Ser	gac Asp	atc Ile	aag Lys -50	ctc Leu	aac Asn	aga Arg	tcc Ser	cag Gln -45	gag Glu	ttt Phe	gct Ala	caa Gln	ctc Leu -40	tct Ser	gct Ala	625
aga Arg	ccg Pro	gga Gly -35	ggc Gly	ctt Leu	gta Val	gag Glu	gag Glu -30	gca Ala	tgg Trp	aag Lys	ccc Pro	agc Ser -25	gct Ala	aac Asn	tgt Cys	673
cct Pro	tct Ser -20	ggc Gly	cga Arg	att Ile	gtt Val	tct Ser -15	ctc Leu	aaa Lys	tgt Cys	tct Ser	gag Glu -10	tgt Cys	ggg Gly	gca Ala	agg Arg	721
cct Pro -5	ctg Leu	gct Ala	tct Ser	cga Arg -1	ata Ile 1	gtt Val	ggc Gly	ggc Gly	caa Gln 5	gct Ala	gtg Val	gct Ala	tct Ser	ggg Gly 10	cgc Arg	769
tgg Trp	cca Pro	tgg Trp	caa Gln 15	gct Ala	agc Ser	gtg Val	atg Met	ctt Leu 20	ggc Gly	tcc Ser	cgg Arg	cac His	acg Thr 25	tgt Cys	ggg Gly	817
gcc Ala	tct Ser	gtg Val 30	ttg Leu	gca Ala	cca Pro	cac His	tgg Trp 35	gta Val	gtg Val	act Thr	gct Ala	gcc Ala 40	cac His	tgc Cys	atg Met	865
tac Tyr	agt Ser 45	ttc Phe	agg Arg	ctg Leu	tcc Ser	cgc Arg 50	cta Leu	tcc Ser	agc Ser	tgg Trp	cgg Arg 55	gtt Val	cat His	gca Ala	ggg Gly	913
cto Lei 60	gtc Val	agc Ser	cat His	ggt Gly	gct Ala 65	gtc Val	cga Arg	caa Gln	cac His	cag Gln 70	gga Gly	act Thr	atg Met	gtg Val	gag Glu 75	961
aaq Lys	g atc s Ile	att Ile	cct Pro	cat His 80	cct Pro	ttg Leu	tac Tyr	agt Ser	gcc Ala 85	cag Gln	aac Asn	cat His	gac Asp	tat Tyr 90	gat Asp	1009
gto Val	g gct L Ala	ctg Leu	ctg Leu 95	cag Gln	ctc Leu	cgg Arg	aca Thr	cca Pro	Ile	aac Asn	ttc Phe	tca Ser	gac Asp 105	acc Thr	gtg Val	1057

ent.

gac gct gtg tg Asp Ala Val Cy 110						05
cag tgc tgg gt Gln Cys Trp Va 125	al Ser Gly T					53
agc tca gat ac Ser Ser Asp Th 140						01
ctc tgc aac ag Leu Cys Asn Se						49
ttg tgt gct gg Leu Cys Ala Gl 17						97
agc ggg gga co Ser Gly Gly Pr 190	cc ctg gta t ro Leu Val C	gt ccc agt ys Pro Ser 195	ggt gac Gly Asp	acg tgg cac Thr Trp His 200	ctt gta 13 Leu Val	45
ggg gtg gtc ag Gly Val Val Se 205	er Trp Gly A					93
gtc tat gcc aa Val Tyr Ala Ly 220						41
cag gtc cgc ta Gln Val Arg	agccgaaga ag	cagcagca g	ccacctgtg	acgccgagct	14	90
gtggatcgcc cat	tggatcac ccc	agtctgg gg	gccagcat	ctgggtcact o	gggcctctcc 15	50
ccaaaggctc tga	acttcgag ttc	atctttc tc	atctgaga	acctccacaa d	caggaaaagg 16	10
agtctgcggc tag	gattggga atg	atggtga ga	ggaaggga	taggaggaca (gaagagacag 16	70
cagaggette tgg	gaagcatc tgg	gagactg ct	cctctgct	cccccacac (eccacgtgca 17	30
tccactgggg gat	tgctggag atg	cccaatc ct	tgtttctt	gtggggccac t	tggaaggcta 17	90
agtccaactt tag	gaggatgc cct	gtctcga ga	gttactag	gcagataagg t	ttaaggttgg 18	50
acaagctcag gta	aaaggcac gga	agtcaag at	cccctctc	ccccgtgcgg t	cctgttctg 19	10
aggtaagcta ata	agccccgc acc	aggcaga gg	tctacagg	gtaagaagga t	gcagttggg 19	70
ctacacgacg cta	atttttca aat	gatgttt ct	gtaaattg	gttgagagag t		
aaacagaaat tat	tgtataaa aaa	aaaaaaa aa	aaaaaaa		20	70

<210> 8 <211> 445 <212> PRT <213> Mus sp.

<400> 8

Met Glu Ile Arg Cys Thr Glu Glu Gly Ala Gly Pro Gly Ile Phe -205 -200 -195

Arg Met Glu Leu Gly Asp Gln Arg Gln Ser Ile Ser Gln Ser Gln -190 -185

Arg Trp Cys Cys Leu Gln Arg Gly Cys Val Ile Leu Gly Val Leu
-175 -170 -165

Gly Leu Leu Ala Gly Ala Gly Ile Ala Ser Trp Leu Leu Val Leu
-160 -155 -150

Tyr Leu Trp Pro Ala Ala Ser Pro Ser Ile Ser Gly Thr Leu Gln -145 -140 -135

Glu Glu Glu Met Thr Leu Asn Cys Pro Gly Val Ser Cys Glu Glu
-130 -125 -120

Glu Leu Leu Pro Ser Leu Pro Lys Thr Val Ser Phe Arg Ile Asn
-115 -110 -105

Gly Glu Asp Leu Leu Gln Val Gln Val Arg Ala Arg Pro Asp Trp
-100 -95 -90

Leu Leu Val Cys His Glu Gly Trp Ser Pro Ala Leu Gly Met His Ile -85 -80 -75

Cys Lys Ser Leu Gly His Ile Arg Leu Thr Gln His Lys Ala Val Asn
-70 -65 -60 -55

Leu Ser Asp Ile Lys Leu Asn Arg Ser Gln Glu Phe Ala Gln Leu Ser -50 -45 -40

Ala Arg Pro Gly Gly Leu Val Glu Glu Ala Trp Lys Pro Ser Ala Asn -35 -30 -25

Cys Pro Ser Gly Arg Ile Val Ser Leu Lys Cys Ser Glu Cys Gly Ala -20 -15 -10

Arg Pro Leu Ala Ser Arg Ile Val Gly Gly Gln Ala Val Ala Ser Gly -5 -1 1 5 10

Arg Trp Pro Trp Gln Ala Ser Val Met Leu Gly Ser Arg His Thr Cys
15 20 25

Gly Ala Ser Val Leu Ala Pro His Trp Val Val Thr Ala Ala His Cys $30 \hspace{1cm} 35 \hspace{1cm} 40$

D'A.

Met Tyr Ser Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg Val His Ala 45 50 55

Gly Leu Val Ser His Gly Ala Val Arg Gln His Gln Gly Thr Met Val 60 65 70

Glu Lys Ile Ile Pro His Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr 75 80 85 90

Asp Val Ala Leu Leu Gln Leu Arg Thr Pro Ile Asn Phe Ser Asp Thr 95 100 105

Val Asp Ala Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe Pro Trp Gly 110 115 120

Ser Gln Cys Trp Val Ser Gly Trp Gly His Thr Asp Pro Ser His Thr 125 130 135

His Ser Ser Asp Thr Leu Gln Asp Thr Met Val Pro Leu Leu Ser Thr 140 145 150

His Leu Cys Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu Thr His Arg 155 160 165 170

Met Leu Cys Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly 175 180 185

Asp Ser Gly Gly Pro Leu Val Cys Pro Ser Gly Asp Thr Trp His Leu 190 195 200

Val Gly Val Val Ser Trp Gly Arg Gly Cys Ala Glu Pro Asn Arg Pro 205 215

Gly Val Tyr Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr 220 225 230

Val Gln Val Arg 235

<210> 9

<211> 2265

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (156)..(1526)

<223>

<220> <221> mat peptide <222> (807)..()<223> <400> acgcgggata cagggaggg ccatgtgcga accagggaga cctcatcttc caaccaagct 120 tgctgggctt gcatttaatc aatgcatggc cagagaacag gagcggaaca ttgcctagta gaccctgagg ctttacaaca gtgctactga cccct atg agc ctg $\,$ atg ctg gat $\,$ Met Ser Leu $\,$ Met Leu Asp 173 -215gac caa ccc cct atg gag gcc cag tat gca gag gag ggc cca gga 218 Asp Gln Pro Pro Met Glu Ala Gln Tyr Ala Glu Glu Gly Pro Gly -210 cct ggg atc ttc aga gca gag cct gga gac cag cag cat ccc att 263 Pro Gly Ile Phe Arg Ala Glu Pro Gly Asp Gln Gln His Pro Ile -190 tct cag gcg gtg tgc tgg cgt tcc atg cga cgt ggc tgt gca gtg Ser Gln Ala Val Cys Trp Arg Ser Met Arg Arg Gly Cys Ala Val 308 -175 -180ctg gga gcc ctg ggg ctg ctg gcc ggt gca ggt gtt ggc tca tgg 353 Leu Gly Ala Leu Gly Leu Leu Ala Gly Ala Gly Val Gly Ser Trp -165-160ctc cta gtg ctg tat ctg tgt cct gct gcc tct cag ccc att tcc Leu Leu Val Leu Tyr Leu Cys Pro Ala Ala Ser Gln Pro Ile Ser 398 -145 ggg acc ttg cag gat gag gag ata act ttg agc tgc tca gag gcc Gly Thr Leu Gln Asp Glu Glu Ile Thr Leu Ser Cys Ser Glu Ala 443 -135-130-125488 age get gag gaa get etg ete eet gea ete eee aaa aca gta tet Ser Ala Glu Glu Ala Leu Leu Pro Ala Leu Pro Lys Thr Val Ser -120-115-110ttc aga $\,$ ata aac agc gaa gac $\,$ ttc ttg ctg gaa gcg caa gtg agg gat $\,$ Phe $\,$ Arg $\,$ Ile $\,$ Asn $\,$ Ser $\,$ Glu $\,$ Asp $\,$ Phe $\,$ Leu $\,$ Glu $\,$ Ala $\,$ Gln $\,$ Val $\,$ Arg $\,$ Asp 536 -105 -100 584 cag cca cgc tgg ctc ctg gtc tgc cat gag ggc tgg agc ccc gcc ctg Gln Pro Arg Trp Leu Leu Val Cys His Glu Gly Trp Ser Pro Ala Leu -85 -80632 ggg ctg cag atc tgc tgg agc ctt ggg cat ctc aga ctc act cac cac Gly Leu Gln Ile Cys Trp Ser Leu Gly His Leu Arg Leu Thr His His -70-65aag gga gta aac ctc act gac atc aaa ctc aac agt tcc cag gag ttt 680 Lys Gly Val Asn Leu Thr Asp Ile Lys Leu Asn Ser Ser Gln Glu Phe -55-50 gct cag ctc tct cct aga ctg gga ggc ttc ctg gag gag gcg tgg cag 728 Ala Gln Leu Ser Pro Arg Leu Gly Gly Phe Leu Glu Glu Ala Trp Gln

l Kw

		-40					-35					-30				
														tgc Cys		776
gag Glu -10	tgt Cys	gga Gly	gcg Ala	agg Arg	ccc Pro -5	ctg Leu	gct Ala	tcc Ser	cgg Arg -1	ata Ile 1	gtt Val	ggt Gly	Gly	cag Gln 5	tct Ser	824
														ggc Gly		872
cgg Arg	cac His	acg Thr 25	tgt Cys	ggg Gly	ggc Gly	tct Ser	gtg Val 30	cta Leu	gcg Ala	cca Pro	cgc Arg	tgg Trp 35	gtg Val	gtg Val	act Thr	920
gct Ala	gca Ala 40	cat His	tgt Cys	atg Met	cac His	agt Ser 45	ttc Phe	agg Arg	ctg Leu	gcc Ala	cgc Arg 50	ctg Leu	tcc Ser	agc Ser	tgg Trp	968
cgg Arg 55	gtt Val	cat His	gcg Ala	GJ À ādā	ctg Leu 60	gtc Val	agc Ser	cac His	agt Ser	gcc Ala 65	gtc Val	agg Arg	ccc Pro	cac His	caa Gln 70	1016
														gcc Ala 85		1064
aat Asn	cat His	gac Asp	tac Tyr 90	gac Asp	gtc Val	gcc Ala	ctc Leu	ctg Leu 95	agg Arg	ctc Leu	cag Gln	acc Thr	gct Ala 100	ctc Leu	aac Asn	1112
														cag Gln		1160
														acc Thr		1208
														gtg Val		1256
														gga Gly 165		1304
														gct Ala		1352
gca Ala	tgc Cys	cag Gln 185	gga Gly	gat Asp	agc Ser	ggg Gly	ggc Gly 190	ccc Pro	cta Leu	gtg Val	tgc Cys	cca Pro 195	gat Asp	Gly	gac Asp	1400
														gca Ala		1448
ccc	aat	cac	cca	ggt	gtc	tac	gcc	aag	gta	gct	gag	ttt	ctg	gac	tgg	1496

kn)

Pro Asn His Pro Gly Val Tyr Ala Lys Val Ala Glu Phe Leu Asp Trp 1546 atc cat gac act gct cag gac tcc ctc ctc tgagtcctgc tgtttcctcc Ile His Asp Thr Ala Gln Asp Ser Leu Leu agtotoactg cacaccactg cotoatgott cotggggcot coagcageto cactaatgga 1606 ggagaggcag tagcctccga cacagaacgc atggacctcc tactactgtg tgtgaggaac 1666 agtcactacc cactggccag ccacccagcc aacaggtctc tcctcttggg ccctgatttc 1726 agagtoctot ttotcactag agactoaatg acagaagaga ggotgggact tggttgggca 1786 tgctgtggtt gctgagggat gagggggagg agagaggtag gagctggaga tgaagagact 1846 gctagaagca gcaggaagcc tgcccttctg ccctctcccc tccctgcccc tgtgtgagtc 1906 ttttagggag ggtgactggg aggtgccccc cgtcccacct ttttcctgtg ctctaggtgg 1966 2026 gctaagtgcc tccctagagg actccatggc tgagaggctc ctgggcagat ggggtcaagg ctgggccagt cccagatgaa gcctatggga gtcaggaccc tctccactct ccctctccac 2086 2146 teceetteet gtteteacet ggetgtgget ggeeetgtgt ggggtgggta eactggaaaa caagaaggtt ggagttggtc taggacattg gttttaaatg acagttctgt gaactggtcc 2206 2265 <210> 10 457 <211> PRT <212> Homo sapiens <213> <400> 10 Met Ser Leu Met Leu Asp Asp Gln Pro Pro Met Glu Ala Gln Tyr -210-215Ala Glu Glu Gly Pro Gly Pro Gly Ile Phe Arg Ala Glu Pro Gly -190-195Asp Gln Gln His Pro Ile Ser Gln Ala Val Cys Trp Arg Ser Met -175-185-180

Arg Arg Gly Cys Ala Val Leu Gly Ala Leu Gly Leu Leu Ala Gly
-170 -165 -160

Ala Gly Val Gly Ser Trp Leu Leu Val Leu Tyr Leu Cys Pro Ala
-155 -150 -145

Ala Ser Gln Pro Ile Ser Gly Thr Leu Gln Asp Glu Glu Ile Thr
-140 -135 -130

٠, ،

Leu Pro Lys Thr Val Ser Phe Arg Ile Asn Ser Glu Asp Phe Leu -110 -105 -100

Leu Glu Ala Gln Val Arg Asp Gln Pro Arg Trp Leu Leu Val Cys His
-95 -90 -85

Glu Gly Trp Ser Pro Ala Leu Gly Leu Gln Ile Cys Trp Ser Leu Gly
-80 -75 -70

His Leu Arg Leu Thr His His Lys Gly Val Asn Leu Thr Asp Ile Lys -65 -55 -50

Leu Asn Ser Ser Gln Glu Phe Ala Gln Leu Ser Pro Arg Leu Gly Gly
-45 -40 -35

Phe Leu Glu Glu Ala Trp Gln Pro Arg Asn Asn Cys Thr Ser Gly Gln -30 -25 -20

Val Val Ser Leu Arg Cys Ser Glu Cys Gly Ala Arg Pro Leu Ala Ser -15 -10 -5

Arg Ile Val Gly Gly Gln Ser Val Ala Pro Gly Arg Trp Pro Trp Gln -1 1 5 10 15

Ala Ser Val Ala Leu Gly Phe Arg His Thr Cys Gly Gly Ser Val Leu 20 25 30

Ala Pro Arg Trp Val Val Thr Ala Ala His Cys Met His Ser Phe Arg 35 40 45

Leu Ala Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val Ser His 50 55 60

Ser Ala Val Arg Pro His Gln Gly Ala Leu Val Glu Arg Ile Ile Pro 65 70 75

His Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp Val Ala Leu Leu 80 85 90 95

Arg Leu Gln Thr Ala Leu Asn Phe Ser Asp Thr Val Gly Ala Val Cys $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Leu Pro Ala Lys Glu Gln His Phe Pro Lys Gly Ser Arg Cys Trp Val 115 120 125

Ser Gl	7 Trp 130	Gly	His	Thr	His	Pro 135	Ser	His	Thr	Tyr	Ser 140	Ser	Asp	Met	
Leu Gl		Thr	Val	Val	Pro 150	Leu	Phe	Ser	Thr	Gln 155	Leu	Cys	Asn	Ser	
Ser Cy 160	s Val	Tyr	Ser	Gly 165	Ala	Leu	Thr	Pro	Arg 170	Met	Leu	Cys	Ala	Gly 175	
Tyr Le	u Asp	Gly	Arg 180	Ala	Asp	Ala	Cys	Gln 185	Gly	Asp	Ser	Gly	Gly 190	Pro	
Leu Va	l Cys	Pro 195		Gly	Asp	Thr	Trp 200	Arg	Leu	Val	Gly	Val 205	Val	Ser	
Trp Gl	y Arg 210		Cys	Ala	Glu	Pro 215	Asn ·	His	Pro	Gly	Val 220	Tyr	Ala	Lys	
Val Al 22		ı Phe	. Leu	Asp	Trp 230	Ile	His	Asp	Thr	Ala 235	Gln	Asp	Ser	Leu	
Leu 240															
<210><211><211><212><213>	11 99 DNA Art	ific	ial S	Seque	ence										
<220> <223>	Syn	thet:	ic												
<220> <221> <223>	mis Des	c_fea	ature d ol:	e igoni	ıcle	otide	e to	cons	struo	ct pl	lasm	id p	SecT	rypHis	
	tggct										cttt	gttg	ctg	ctgctgt	60 99
tgctg	cccc	ttt	gacg	acg (atga	caag	ga t	ccga	atto						
<210><211><211><212><213>	99 DNA	ific	ial	Sequ	ence										
<220> <223>		nthet	ic												
<220> <221>		sc_fe	eatur	e igon	ucle	otic	le to	con	stru	ıct p	lasm	nid p	SecT	'rypHis	

_	12 ggat cettgteate gtegteaaag ggggeageaa cageageage aacaaaggta 60 agga gtagatteat ggtgttgeta geeaagett 99
<210> <211> <212> <213>	13 15 DNA Artificial Sequence
<220> <223>	Synthetic
<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer t amplify neurosin-encoding seque nce</pre>
<400> ttggtg	13 catg gcgga 15
<210><211><211><212><213>	14 27 DNA Artificial Sequence
<220> <223>	Synthetic
<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer to amplify neurosin-encoding sequence</pre>
<400> tcctcg	14 agac ttggcctgaa tggtttt 27
<210><211><212><212><213>	15 35 DNA Artificial Sequence
<220> <223>	Synthetic
<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer to amplify a portion of plasmid p SecTrypHis/Neurosin .</pre>
<400> gcgcta	15 gcag atctccatga atctactcct gatcc 35

<210> 16

Uemura7.ST25.txt

```
<211>
      29
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
       misc_feature
<221>
<223>
       Designed oligonucleotide primer to amplify a portion of plasmid p
       SecTrypHis/Neurosin
<400> 16
                                                                       29
tgaagcttgc catggaccaa cttgtcatc
<210>
       17
<211>
       26
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223> Synthetic
<220>
<221>
      misc feature
<223> Designed oligonucleotide primer to amplify a portion of plasmid p
       TrypHis
<400> 17
                                                                       26
ccaagcttca ccatcaccat caccat
<210>
      18
<211>
       17
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221>
      misc feature
<223>
      Designed oligonucleotide primer to amplify a portion of plasmid p
       TrypSigTag
<400> 18
                                                                       17
gcacagtcga ggctgat
<210> 19
<211>
      17
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
      Synthetic
<220>
<221> misc_feature
```



```
<223> Designed oligonucleotide primer to amplify a portion of plasmid p
       FBTrypSigTag
<400> 19
                                                                     17
caaatgtggt atggctg
<210>
      20
<211>
      20
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc feature
<223> Designed oligonucleotide primer to amplify conserved region of se
      rin proteases-encoding sequence
<220>
<221> misc_feature
<222> (9)..(9)
<223> n is a, c, g or t.
<220>
<221> misc_feature
<222> (12)..(12)
<223> n is a, c, g or t.
<400> 20
                                                                     20
gtgctcacng cngcbcaytg
<210>
      21
<211>
      20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc feature
<223> Designed oligonucleotide primer to amplify conserved region of se
      rin proteases-encoding sequence
<220>
<221> misc_feature
<222> (12)...(12)
<223> n is a, c, g or t.
<220>
<221> misc_feature
```


.

<222> (15)..(15)

<223> n is a, c, g or t.

20

20

<210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <220> <221> misc_feature Designed oligonucleotide primer designated as mBSSP2.0 for RACE f or mBSSP2 (forward) <400> 22 21 atggtggaga agatcattcc t <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <220> misc_feature <221> <223> Designed oligonucleotide primer designated as mBSSP2.1 for RACE f or mBSSP2 (forward) <400> 23 19 tacagtgccc agaaccatg <210> 24 <211> <212> DNA <213> Artificial Sequence <220> <223> Synthetic <220> <221> misc_feature Designed oligonucleotide primer designated as mBSSPF4 for RACE fo r mBSSP2 (forward)

<400> 21

<400> 24

<210> 25 <211> 20 <212> DNA

ctcaactctc tgctagaccg

<213> Artificial Sequence

ccvctrwsdc cnccnggcga

```
<220>
<223>
      Synthetic
<220>
      misc feature
<221>
      Designed oligonucleotide primer designated as mBSSP2F5 toamplify
<223>
       mature mBSSP2-encoding region (forward)
<400> 25
                                                                         20
atagttggcg gccaagctgt
<210>
       26
<211>
      20
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
      Synthetic
<220>
<221>
       misc feature
       Designed oligonucleotide primer designated as mBSSP2.2 for RACE f
<223>
       or mBSSP2 (reverse)
<400> 26
                                                                         20
cccagcagaa cttactgcct
<210>
       27
<211>
       20
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
      Synthetic
<220>
<221>
      misc feature
      Designed oligonucleotide primer designated as mBSSP2E2 for RACE f
<223>
       or mBSSP2 (reverse)
<400> 27
                                                                         20
tgttgcagag gtgggtgctg
<210>
       28
<211>
       21
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
       Synthetic
<220>
<221>
       misc_feature
       \overline{\text{Designed}} oligonucleotide primer designated as mBSSP2R2 for RACE f
<223>
       or mBSSP2 (reverse)
```


42 41 4

<400> taccat	28 tgtg tcctgcagtg t	21
<210> <211> <212> <213>	DNA	
<220> <223>	Synthetic	
<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer designated as fy full-length mBSSP2-encoding mRNA (reverse)</pre>	mBSSP2R5/E to ampli
<400> tgaatt	29 ctgc tgcttcttcg gctagcg	27
<210><211><211><212><213>	30 18 DNA Artificial Sequence	
<220> <223>	Synthetic	
<220> <221> <223>		BSSP2SPF to amplify
<400> actgct	30 gccc actgcatg	18
<210><211><211><212><213>	21	
<220> <223>	Synthetic	
<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer designated as a portion of hBSSP2 (reverse)</pre>	BSSP2SPR to amplify
<400> cagggg	31 tece eegetgtete e	21
<210><211><211><212><213>	32 20 DNA Artificial Seguence	

20

20

20

```
<220>
<223>
      Synthetic
<220>
<221> misc feature
<223> Designed oligonucleotide primer designated as hBSSP2F11 for RACE
       for hBSSP2 (forward)
<400> 32
gctctcaact tctcagacac
      33
<210>
<211>
      20
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Synthetic
<220>
<221>
      misc_feature
<223> Designed oligonucleotide primer designated as hBSSP2R12 for RACE
       for hBSSP2 (reverse)
<400> 33
actcagctac cttggcgtag
<210>
      34
<211>
      20
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
      misc feature
<221>
<223>
      Designed oligonucleotide primer designated as hBSSP2R11 for RACE
       for hBSSP2 (reverse)
<400> 34
cctggagcat atccgagctg
<210> 35
<211>
       18
<212>
       DNA
<213>
      Artificial Sequence
<220>
```


<220>

<221> misc_feature

<223> Designed oligonucleotide primer designated as hBSSP2F12 to amplif y full length hBSSP2 (forward)

. .

<400> gctttac	35 caac agtgctac . 18
<210><211><211><212><213>	36 28 DNA Artificial Sequence
<220> <223>	Synthetic
<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer designated as hBSSP2R13/E to ampl ify full length hBSSP2 (reverse)</pre>
<400> tggaatt	36 toga ggaaacagca ggactcag 28
<210><211><211><212><213>	37 19 DNA Artificial Sequence
<220> <223>	Synthetic
<220> <221> <223>	
<400> tactag	37 tcga cgcgtggcc 19
<210><211><211><212><213>	DNA
<220> <223>	Synthetic
<220> <221> <223>	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<400> actgct	38 gccc actgcatg 18
<210><211><211><212><213>	DNA

6 m 6 4

Asp Asp Asp Lys

```
<220>
<223> Synthetic
<220>
<221>
      misc feature
<223> Designed oligonucleotide primer designated as FBTrpsigtagF5 to de
       tect hBSSP2
<400> 39
                                                                      35
qcqctaqcaq atctccatqa atctactcct gatcc
<210> 40
<211>
      117
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221>
      misc feature
<223> Designed oligonucleotide to construct plasmid pTrypHis
<400> 40
aagcttggct agcaacacca tgaatctact cctgatcctt acctttgttg ctgctgctgt
                                                                     60
                                                                     117
tgctgccccc tttcaccatc accatcacca tgacgacgat gacaaggatc cgaattc
<210>
      41
<211>
       117
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<223> Designed oligonucleotide to construct plasmid pTrypHis
<400> 41
gaattcggat ccttgtcatc gtcgtcatgg tgatggtgat ggtgaaaggg ggcagcaaca
                                                                      60
gcagcagcaa caaaggtaag gatcaggagt agattcatgg tgttgctagc caagctt
                                                                     117
<210> 42
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 42
```

D.

5 x 10 x

```
<210> 43
 <211> 4
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Synthetic
 <400> 43
 Leu Val His Gly
 <210> 44
 <211> 37
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic
 <400> 44
 ggccacgcgt cgactagtac ttttttttt tttttt
```

37