Inferência Estatística II

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Programa de Pós-Graduação em Estatística Aplicada e Biometria Universidade Federal de Viçosa Campus UFV - Viçosa

Sumário

Teoremas Sobre Convergência

Punção Geradora de Momentos

Se $X_n \stackrel{P}{\to} X$, então $X_n \stackrel{D}{\to} X$.

Se $X_n \stackrel{P}{\to} X$, então $X_n \stackrel{D}{\to} X$.

Demonstração do Teorema 1

Seja x um ponto de continuidade de $F_X(x)$, a função de distribuição acumulada (FDA) de X. Queremos mostrar que $F_{X_n}(x) \to F_X(x)$ à medida que $n \to \infty$, onde $F_{X_n}(x)$ é a FDA de X_n . Para isso, partimos da definição de $F_{X_n}(x) = P(X_n \le x)$. Usaremos uma técnica dividindo a probabilidade em dois pedaços.

Dividimos o evento $\{X_n \leq x\}$ em dois subconjuntos: um onde $|X_n - X| < \varepsilon$ e outro onde $|X_n - X| \geq \varepsilon$. Assim, podemos reescrever:

$$F_{X_n}(x) = P(X_n \le x)$$

$$= P(\{X_n \le x\} \cap \{|X_n - X| < \varepsilon\})$$

$$+ P(\{X_n \le x\} \cap \{|X_n - X| \ge \varepsilon\})$$

$$\le P(X \le x + \varepsilon) + P(|X_n - X| \ge \varepsilon)$$

Essa é uma decomposição da probabilidade em duas partes: uma onde X_n está "perto" de X (a diferença é menor que ε) e outra onde X_n está "longe" de X (a diferença é maior ou igual a ε).

A probabilidade $P(\{X_n \le x\} \cap \{|X_n - X| < \varepsilon\})$ pode ser estimada por $P(X \le x + \varepsilon)$.

$$P({X_n \le x} \cap {|X_n - X| < \varepsilon}) \le P(X \le x + \varepsilon)$$

Isso porque, quando $|X_n - X| < \varepsilon$, sabemos que X_n está perto de X, então $X_n \le x$ implica que $X \le x + \varepsilon$.

O segundo termo, $P(\{X_n \leq x\} \cap \{|X_n - X| \geq \varepsilon\})$, é menor ou igual a $P(|X_n - X| \geq \varepsilon)$, que é simplesmente a probabilidade de X_n estar longe de X. Essa probabilidade tende a 0 quando $X_n \to X$ em probabilidade, mas por enquanto, deixamos essa expressão como está:

$$P(\{X_n \le x\} \cap \{|X_n - X| \ge \varepsilon\}) \le P(|X_n - X| \ge \varepsilon)$$

Juntando as duas estimativas, temos:

$$F_{X_n}(x) \le P(X \le x + \varepsilon) + P(|X_n - X| \ge \varepsilon)$$

Esta é a estimativa superior para $F_{X_n}(x)$.

• O primeiro termo, $P(X \le x + \varepsilon)$, representa o evento de que X está um pouco acima de x. Isso é um "ajuste", pois estamos lidando com X_n próximo de X.

Juntando as duas estimativas, temos:

$$F_{X_n}(x) \le P(X \le x + \varepsilon) + P(|X_n - X| \ge \varepsilon)$$

Esta é a estimativa superior para $F_{X_n}(x)$.

- O primeiro termo, $P(X \le x + \varepsilon)$, representa o evento de que X está um pouco acima de x. Isso é um "ajuste", pois estamos lidando com X_n próximo de X.
- O segundo termo, $P(|X_n X| \ge \varepsilon)$, é a probabilidade de que X_n esteja muito distante de X, ou seja, mais de ε de diferença.

Quando $X_n \to X$ em probabilidade, sabemos que $P(|X_n - X| \ge \varepsilon) \to 0$ conforme $n \to \infty$. Portanto, com base nessa desigualdade, podemos concluir:

$$\lim_{n\to\infty} F_{X_n}(x) \le F_X(x+\varepsilon)$$

Isso nos dá a estimativa superior (upper bound) da função de distribuição acumulada de X_n .

Agora, para obter a **estimativa inferior**, começamos reescrevendo $P(X_n \le x)$ utilizando o complemento:

$$P(X_n \le x) = 1 - P(X_n > x)$$

Dividimos a probabilidade $P(X_n > x)$ em dois pedaços:

$$P(X_n > x) = P(\{X_n > x\} \cap \{|X_n - X| < \varepsilon\}) + P(\{X_n > x\} \cap \{|X_n - X| \ge \varepsilon\})$$

• A primeira parte $P(\{X_n > x\} \cap \{|X_n - X| < \varepsilon\})$ considera os casos em que X_n está próximo de X (a diferença é menor que ε) e, ao mesmo tempo, $X_n > x$.

- A primeira parte $P(\{X_n > x\} \cap \{|X_n X| < \varepsilon\})$ considera os casos em que X_n está próximo de X (a diferença é menor que ε) e, ao mesmo tempo, $X_n > x$.
- A segunda parte $P(\{X_n > x\} \cap \{|X_n X| \ge \varepsilon\})$ considera os casos em que X_n e X estão distantes mais de ε .

Como $P(\{X_n > x\} \cap \{|X_n - X| < \varepsilon\})$ é menor que $P(X > x - \varepsilon)$, podemos usar a seguinte desigualdade:

$$P(X_n > x) \le P(X \ge x - \varepsilon) + P(|X_n - X| \ge \varepsilon)$$

- O primeiro termo, $P(X \ge x - \varepsilon)$, é a probabilidade de X ser maior ou igual a $x - \varepsilon$. Isso é uma aproximação para lidar com o fato de que X_n está próximo de X. - O segundo termo, $P(|X_n - X| \ge \varepsilon)$, representa a probabilidade de X_n estar distante de X (mais de ε).

Assim, podemos expressar $P(X_n \le x)$ como:

$$P(X_n \le x) = 1 - P(X_n > x)$$

Substituímos o limite que encontramos para $P(X_n > x)$:

$$P(X_n \le x) \ge 1 - P(X \ge x - \varepsilon) - P(|X_n - X| \ge \varepsilon)$$

Ou, de forma mais compacta:

$$F_{X_n}(x) \ge F_X(x - \varepsilon) - P(|X_n - X| \ge \varepsilon)$$

Sabemos que, como $X_n \to X$ em probabilidade, temos $P(|X_n - X| \ge \varepsilon) \to 0$ conforme $n \to \infty$. Assim, no limite:

$$\lim_{n\to\infty} F_{X_n}(x) \ge F_X(x-\varepsilon)$$

Agora, combinamos as duas estimativas (superior e inferior) que obtivemos:

$$F_X(x-\varepsilon) \le \lim_{n\to\infty} F_{X_n}(x) \le F_X(x+\varepsilon)$$

Finalmente, fazendo $\varepsilon \to 0$, chegamos à conclusão desejada:

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x)$$

Se $X_n \stackrel{D}{\rightarrow} a$, então $X_n \stackrel{P}{\rightarrow} a$, a constante.

Se $X_n \stackrel{D}{\to} X$ e $Y_n \stackrel{P}{\to} 0$ então $X_n + Y_n \stackrel{D}{\to} X$.

Se $X_n \stackrel{D}{\to} X$ e g é uma função contínua no suporte de X, então

$$g(X_n) \stackrel{D}{\to} g(X).$$

Teorema de Slutsky

Teorema 5

Sejam X_n , A_n e B_n , variáveis aleatórias com $X_n \stackrel{D}{\rightarrow} X$, $A_n \stackrel{P}{\rightarrow}$ a e $B_n \stackrel{P}{\rightarrow}$ b, a, b constantes reais. Então,

$$A_nX_n+B_n\stackrel{D}{\to} aX+b.$$

Para 🗥

Exercícios 5.2.2, 5.2.3, 5.2.6, 5.2.12, 5.2.15, 5.2.17, 5.2.19 e 5.2.20

Função Geradora de Momentos

Definição 1

A função geradora de momentos de uma variável aleatória X é definida por $M_X(t)=E(e^{tX}),\ t\in\mathbb{R}$

Seja $\{X_n\}_{n\geq 1}$ uma sequência de variáveis aleatórias com fgm $M_{X_n}(t)$ que existe para |t| < h para todo n. Seja X uma variável aleatória com fgm $M_X(t)$, que existe para $|t| \leq h_1 \leq h$. Se $\lim_{n\to\infty} M_{X_n}(t) = M_X(t)$ para $|t| \leq h_1$, então $X_n \overset{D}{\to} X$.

Seja $\{X_n\}_{n\geq 1}$ uma sequência de variáveis aleatórias com fgm $M_{X_n}(t)$ que existe para |t|< h para todo n. Seja X uma variável aleatória com fgm $M_X(t)$, que existe para $|t|\leq h_1\leq h$. Se $\lim_{n\to\infty}M_{X_n}(t)=M_X(t)$ para $|t|\leq h_1$, então $X_n\stackrel{D}{\to} X$.

Observação importante na resolução de exercícios:

Se
$$\lim_{n \to \infty} \left(1 + \frac{b}{n} + \frac{\psi(n)}{n}\right)^{cn}$$
, em que b e c não dependem de n e, em que, $\lim_{n \to \infty} \psi(n) = 0$. Então, $\lim_{n \to \infty} \left(1 + \frac{b}{n} + \frac{\psi(n)}{cn}\right) = \lim_{n \to \infty} \left(1 + \frac{b}{n}\right)^{cn} = e^{bc}$.

Exemplo 1

$$\begin{split} &\lim_{n\to\infty}\left(1-\frac{t^2}{n}+\frac{t^2}{n^{3/2}}\right)^{-n/2}=\lim_{n\to\infty}\left(1-\frac{t^2}{n}+\frac{t^2/\sqrt{n}}{n}\right)^{-n/2}.\\ &\text{Aqui, }b=-t^2,\ c=-\frac{1}{2}\ \text{e}\ \psi(n)=\frac{t^2}{\sqrt{n}}.\ \text{Consequentemente, para cada}\\ &\text{valor fixo de t, o limite \'e $e^{t^2/2}$}. \end{split}$$

Exemplo 2

Considere $X_n \sim Binomial(n,p_n)$ e suponha $\lim_{n \to \infty} np_n = \lambda > 0$ (por exemplo, $p_n = \frac{1}{n+1}$, $\lim_{n \to \infty} np_n = 1$). Então, $X_n \stackrel{D}{\to} X$, em que $X \sim \text{Poisson}(\lambda)$.

Exemplo 2

Considere $X_n \sim Binomial(n,p_n)$ e suponha $\lim_{n \to \infty} np_n = \lambda > 0$ (por exemplo, $p_n = \frac{1}{n+1}$, $\lim_{n \to \infty} np_n = 1$). Então, $X_n \stackrel{D}{\to} X$, em que $X \sim \mathsf{Poisson}(\lambda)$.

Demonstração

Temos que,

$$egin{aligned} M_{X_n}(t) &= E(e^{tX_n}) = \sum_{k=0}^n e^{tk} inom{n}{k} p_n^k (1-p_n)^{n-k} \ &= \left(1-p_n+p_n e^t
ight)^n = \left(1+rac{np_n}{n}(e^t-1)
ight)^n \ \end{aligned}$$
 (para n grande) $= \left(1+rac{\lambda}{n}(e^t-1)
ight)^n \xrightarrow[n o\infty]{} \exp\left\{\lambda(e^t-1)
ight\}$

Logo, $X_n \stackrel{D}{\to} X \sim \text{Poisson}(\lambda)$.

Quando a quantidade np_n se estabiliza em um valor $\lambda>0$, estamos essencialmente controlando a média da binomial. À medida que $n\to\infty$ e p_n diminui de forma controlada, mantemos np_n constante, aproximando o comportamento da binomial ao de uma distribuição Poisson com parâmetro λ . A essência é que estamos explorando o comportamento assintótico da binomial, com p_n diminuindo à medida que n cresce, mas de modo que np_n permaneça fixo e igual a λ . Isso faz com que a média e variância da binomial "convirjam" para os parâmetros de uma Poisson.

Referências I

HOGG, RV; MCKEAN, J; CRAIG, AT. Introduction to Mathematical Statistics. Eighth Edition. [S.l.]: Pearson, 2019.