Agentes Adaptativos

Capítulo 6:

Costa, E. e Simões, A. (2015). Inteligência Artificial – Fundamentos e Aplicações, 3.ª edição, FCA.

AGENTES ADAPTATIVOS 1

Introdução

- Os seres vivos que não se adaptam ao seu ambiente têm maiores probabilidades de não sobreviver
- Pelo contrário, os mais aptos, os que evoluem, vivem mais e reproduzem-se em maior escala, passando para a descendência as suas boas qualidades

Introdução

- Estes princípios, primeiramente apresentados de forma sistemática por Darwin, são hoje aceites universalmente
- Por que não explorar agentes artificiais com capacidade de adaptação ?

AGENTES ADAPTATIVOS 3

Introdução

- Os algoritmos evolutivos são a versão computacional dos princípios da seleção natural e da genética mendeliana
- Existem 4 grandes famílias de algoritmos evolutivos:
 - Algoritmos Genéticos
 - Programação Genética
 - Estratégias Evolutivas
 - Programação Evolutiva

Introdução

 De todas as alternativas, os Algoritmos Genéticos foram os que adquiriram maior notoriedade

AGENTES ADAPTATIVOS 5

Generalidades

- Os Algoritmos Genéticos (AG) são técnicas de otimização estocásticas
- Foram propostos por John Holland e inspirados no processo de evolução através de seleção natural sugerida por Charles Darwin e complementada pelos princípios da genética inicialmente propostos por G. Mendel

Generalidades

- Inicialmente, os AG foram propostos como uma ferramenta para estudar o fenómeno da adaptação dos seres vivos, tal como ocorre na natureza
- Posteriormente, os AG encontraram um grande potencial na área de resolução de problemas

AGENTES ADAPTATIVOS 7

Generalidades

- Os AG utilizam normalmente uma população de soluções candidatas para um dado problema
- Os indivíduos (ou cromossomas) dessa população são selecionados para reprodução, de acordo com a sua qualidade

Generalidades

- O processo de reprodução consiste na troca de informação entre os progenitores e é designado por recombinação
- Os novos indivíduos assim gerados podem ser alterados de forma localizada através dos efeitos de outro operador, conhecido por mutação

AGENTES ADAPTATIVOS 9

Generalidades

 Qualquer tarefa de otimização pode ser vista como um problema que se pretende solucionar, podendo ser descrito como uma procura através de um espaço de soluções possíveis

Generalidades

- Quando o espaço de procura é grande, não é possível proceder a uma procura exaustiva (cega), recorrendo-se a técnicas de inteligência artificial, como por exemplo os algoritmos heurísticos estudados anteriormente
- Os AG enquadram-se nestas técnicas inteligentes, diferindo essencialmente no facto de trabalharem em simultâneo várias soluções alternativas

AGENTES ADAPTATIVOS 11

Generalidades

- Os AG provaram ser ferramentas poderosas quando aplicados à classe de problemas referidos
- Como exemplos, temos problemas de
 - Escalonamento
 - Controlo Adaptativo
 - Jogos
 - Otimização de Funções Matemáticas
 - Otimização Combinatória
 - **—** ...

Os AG e a Biologia

- A ideia subjacente aos AG é "imitar" aquilo que a natureza faz
- Assim, através de um processo iterativo, ao longo de várias gerações, o algoritmo faz evoluir uma população de soluções candidatas para um dado problema
- A população inicial consiste, em geral, num conjunto de soluções potenciais distribuídas aleatoriamente no espaço de procura

AGENTES ADAPTATIVOS 13

Os AG e a Biologia

- Através dos operadores de seleção, recombinação e mutação, os indivíduos vão sendo alterados, evoluindo para zonas mais promissoras do espaço de procura até, espera-se, à solução ótima
- Tal como nos processos biológicos reais, os indivíduos de cada geração são obtidos por recombinação do material genético dos seus progenitores e podem ser também sujeitos a mutações

Os AG e a Biologia

 Estes 2 operadores genéticos (recombinação e mutação) permitem manter a diversidade da população e evitar que o AG convirja prematuramente para um máximo local

AGENTES ADAPTATIVOS 15

Os AG e a Biologia

- Se o problema for codificado corretamente, a população evoluirá em gerações sucessivas de tal forma que a qualidade do melhor indivíduo e a qualidade média da população em cada geração (em cada iteração) aumentarão em direção a um máximo
- Esta conclusão é fundamentada no denominado "Teorema do Esquema" - estudo matemático desenvolvido por John Holland

 Os AG utilizam uma terminologia biológica que agora se descreve

- Biologia -

- Todos os organismos vivos são constituídos por células que contêm o mesmo conjunto de um ou mais cromossomas
- Os cromossomas consistem em cadeias de ADN constituídas por genes que codificam determinadas características dos indivíduos

AGENTES ADAPTATIVOS 17

- Os diferentes valores que cada gene pode tomar designam-se por alelos
- A posição de um gene na cadeia de ADN chama-se locus
- A todo o conjunto de material genético de um organismo chama-se genoma
- O conjunto particular de genes contido no genoma designa-se por genótipo
- O genótipo codifica o fenótipo de um indivíduo, isto é, o conjunto das suas características visíveis

- Uma célula diz-se diplóide se os seus cromossomas se encontram aos pares (pares de cromossomas homólogos) – é o caso do Homem
- Caso contrário, a célula diz-se haplóide
- Os organismos diplóides utilizam a reprodução sexuada e os haplóides a reprodução assexuada

AGENTES ADAPTATIVOS 19

- Reprodução sexuada: união de duas células sexuais (gâmetas) haplóides, provenientes de cada um dos progenitores. A fusão dos gâmetas forma uma nova célula diplóide que dará origem a um novo indivíduo
- Os organismos haplóides reproduzem-se através de fissão binária de uma célula-mãe que dará origem a duas células-filhas contendo o mesmo material genético da sua progenitora

 Em qualquer dos casos, a nova descendência gerada pode ser sujeita a mutações que provocam alterações no material genético e, consequentemente, no seu fenótipo

AGENTES ADAPTATIVOS 21

- O mérito ou a qualidade de um indivíduo é quantificado por uma função de avaliação e traduz a capacidade que ele tem em viver e produzir descendência
- Indivíduos de melhor qualidade terão mais oportunidades para se reproduzir e, portanto, de impor as suas características na população

- Algoritmos Genéticos -

- Nos AG não existe uma simulação exata dos fenómenos indicados
- Em vez disso, os AG inspiram-se nesses modelos biológicos utilizando operadores e representações que podemos encontrar na natureza

AGENTES ADAPTATIVOS 23

- Um AG trabalha sobre uma população de indivíduos cujo tamanho permanece, em geral, constante ao longo das gerações
- Estes indivíduos, designados cromossomas, representam as soluções candidatas para um dado problema
- Os cromossomas são constituídos por um conjunto de genes (por exemplo, uma sequência de bits), que podem tomar diferentes valores (0 ou 1, por exemplo)

© IPG-ESTG EI 2020-21 Inteligência Artificial

© IPG-ESTG EI 2020-21 Inteligência Artificial

Terminologia

 Aos diferentes valores que um gene pode tomar dá-se o nome de alelo

1 0 0 1 1 1 1

Cromossoma artificial. Cada célula representa um gene, os alelos são os valores 1 e 0

AGENTES ADAPTATIVOS 25

- O mecanismo de recombinação consiste na troca de material genético de 2 progenitores, selecionados de acordo com a sua função de avaliação
- Os novos indivíduos podem ser sujeitos a mutações que provocam trocas dos valores de um ou mais genes

- A grande maioria das aplicações de AG utiliza indivíduos haplóides (com um único cromossoma)
- O genótipo de um indivíduo num AG consiste na sequência de genes do(s) seu(s) cromossoma(s)

AGENTES ADAPTATIVOS 27

Funcionamento de um AG

- A população inicial é, normalmente, gerada aleatoriamente
- Como cada indivíduo da população representa uma solução candidata, teremos várias soluções possíveis geradas aleatoriamente que ficaram distribuídas no espaço de procura
- Esta população inicial evoluirá ao longo de um número de gerações através da atuação dos mecanismos de seleção, recombinação e mutação

Funcionamento de um AG

- Os melhores indivíduos da população são selecionados de acordo com a sua qualidade (medida pela função de avaliação) para que se possam reproduzir
- A reprodução consiste na troca de material genético entre os dois progenitores envolvidos (recombinação) e dará origem à nova descendência
- Estes novos indivíduos poderão ainda ser modificados através dos efeitos do operador de mutação

AGENTES ADAPTATIVOS 29

Funcionamento de um AG

- A forma como se define a nova população pode variar
- Se todos os indivíduos da população anterior forem substituídos por novas soluções, o processo designa-se por geracional ou técnica de sobreposição
- Se apenas um grupo de indivíduos for substituído (os piores), o processo designa-se por estado estável ou técnica de não sobreposição

Funcionamento de um AG

- Estes passos repetem-se até um dado critério de paragem ser atingido – por exemplo, um número predefinido de gerações
- Ao longo das gerações, a população sofrerá um processo evolutivo que, em princípio, conduzirá à solução ótima
- É essa solução que o algoritmo devolve

AGENTES ADAPTATIVOS 31

Funcionamento de um AG

Função AlgoritmoGenéticoClássico (problema): solução

- 1. Gera população inicial
- 2. Enquanto não_terminar Faz
 - 2.1. Avalia população
 - 2.2. Selecciona progenitores para reprodução de acordo com o seu mérito
 - 2.3. Gera descendência: aplicação do operador de recombinação
 - 2.4. Aplica operador de mutação
 - 2.5. Substitui população antiga pela descendência gerada

Fim de Enquanto

3. Devolve o melhor indivíduo da população final

Fim_de_Função

O algoritmo genético clássico

 Este algoritmo representa, de forma genérica, a estrutura e o funcionamento de um AG clássico

Funcionamento de um AG

- Existem vários tipos de seleção e diferentes operadores genéticos que são normalmente utilizados
- A escolha do operador de recombinação é bastante importante, visto que ele permite ao AG explorar globalmente o espaço de procura e encaminhar-se para regiões mais promissoras, aproximando-se assim da melhor solução
- Por outro lado, o operador de mutação altera aleatoriamente o valor de um ou mais genes do cromossoma, permitindo explorar localmente o espaço de procura e impede a convergência prematura do AG para máximos locais

AGENTES ADAPTATIVOS 33

Elementos Básicos de um AG

- Um AG permite a procura de espaços de procura complexos, normalmente intratáveis por métodos tradicionais
- Para que o algoritmo permita a resolução do problema em causa, é necessário que este codifique corretamente as especificações do problema a resolver

Elementos Básicos de um AG

- Assim, torna-se necessária a definição de alguns aspetos importantes:
 - Representação a utilizar pelos indivíduos da população;
 - Método de seleção utilizado;
 - Operadores a aplicar para a obtenção de novos indivíduos e quais as probabilidades com que estes atuarão;
 - Função de avaliação que permita medir o mérito de cada indivíduo;
 - Características da população: tamanho, geração da população inicial, etc.

AGENTES ADAPTATIVOS 35

Representação

- A escolha da representação mais adequada à tarefa que se pretende resolver é um aspeto muito importante, da qual dependerá o desempenho do AG
- No AG tradicional utiliza-se uma representação binária para codificar as soluções candidatas para o problema

- Na representação binária cada cromossoma é constituído por uma sequência de bits que tem, normalmente, tamanho fixo
- O que os bits codificam depende do problema a resolver

AGENTES ADAPTATIVOS 37

Representação Binária

 Exemplo: Suponhamos que se pretendia um AG para otimizar a seguinte função matemática unidimensional

$$f(x) = xsen(10\pi x) + 1.0$$

 Representação gráfica da função, para a variável x definida no intervalo [-1, 2]

Representação gráfica de uma função unidimensional

AGENTES ADAPTATIVOS 39

Representação Binária

- Um cromossoma pode codificar a variável x através de uma cadeia binária
- Vamos supor uma precisão de 6 casas decimais
- O domínio da variável x tem comprimento 3
- Intervalo [-1, 2] tem de ser dividido em pelo menos 3x10⁶ intervalos de igual dimensão
- Assim, são necessários 22 bits para codificar x:
 1 097 152 = 2²¹ < 3 000 000 < 2²² = 4 194 304

- O mapeamento de uma cadeia binária (b₂₁b₂₀...b₀) no seu correspondente real x é definido em 2 etapas:
- a) converter a cadeia binária da base 2 para a base 10

$$(\langle b_{21}b_{20}...b_0\rangle)_2 = \left(\sum_{i=0}^{21}b_i.2^i\right)_{10} = x'$$

Conversão de um número binário para o seu correspondente decimal

AGENTES ADAPTATIVOS 41

Representação Binária

 b) encontrar o número real x correspondente

$$x = Limite _Esq _Dom + x'. \frac{Tamanho _Dom}{2^{N^{\circ}_Bits} - 1}$$

Encontrar o correspondente real de um número binário

· Instanciando, vem

$$x = -1.0 + x'.\frac{3}{2^{22} - 1}$$

Ou seja, o cromossoma

1000101110110101000111

representa o número

0,637197

uma vez que

$$x' = (1000101110110101000111)_2 = 2288967$$

e $x = -1.0 + x' \cdot \frac{3}{2^{22} - 1}$

AGENTES ADAPTATIVOS 43

Representação Binária

Os cromossomas

e

representam os limites do domínio -1,0 e 2,0, respetivamente

Métodos de Seleção

- Quando se implementa um AG é necessário definir a forma como será realizada a seleção dos indivíduos que vão produzir a nova geração
- Tradicionalmente, o mecanismo de seleção deve possibilitar que os melhores indivíduos se reproduzam mais vezes, para que, desta forma, a população vá evoluindo até à convergência
- O método de seleção deve ser conjugado com os operadores de recombinação e de mutação para que o AG atinja a solução para o problema

AGENTES ADAPTATIVOS 45

Métodos de Seleção

- Uma seleção muito exigente levará a que a população seja dominada muito rapidamente pelos melhores indivíduos, o que pode levar à estagnação num máximo local
- Por outro lado, uma seleção pouco exigente poderá conduzir a um processo de evolução muito lento

 Este método de seleção baseia-se no valor atribuído a cada indivíduo pela função de avaliação e na qualidade de toda a população

AGENTES ADAPTATIVOS 47

Seleção através de Roleta

 De acordo com a qualidade de cada indivíduo, atribui-se uma porção de um círculo (roleta) a cada um deles

 A porção da roleta atribuída a cada indivíduo é calculada da seguinte forma:

$$Porção(x_i) = \frac{f(x_i)}{\sum_{i=1}^{n} f(x_i)}$$

Probabilidade de um indivíduo ser seleccionado

 Isto é, o tamanho da zona da roleta atribuída ao indivíduo x_i depende da sua qualidade (calculada por f(x_i)) e da qualidade de todos os indivíduos da população

AGENTES ADAPTATIVOS 49

Seleção através de Roleta

- A roleta é girada n vezes, tantas quantas o número de indivíduos da população, parando, de cada vez, numa porção correspondente a um dos indivíduos
- Ao fim de n experiências, estarão selecionados os progenitores que irão gerar a próxima geração

- Em termos práticos, a roleta pode ser vista como um segmento
- Os indivíduos da população são distribuídos em segmentos contíguos, sendo o tamanho de cada segmento calculado em função do mérito do indivíduo que lhe corresponde
- De seguida é gerado um número aleatório e o primeiro indivíduo cujo segmento ultrapassa o valor desse número é escolhido para a representação
- Este processo é repetido até se obter o número de progenitores desejado

AGENTES ADAPTATIVOS 51

Seleção através de Roleta

 Exemplo: A figura ilustra, para uma população de 10 indivíduos, o tamanho do segmento que vai ficar associado a cada indivíduo

NÚMERO do INDIVÍDUO	1	2	3	4	5	6	7	8	9	10
FUNÇÃO DE MÉRITO=F(X)	2.0	1.8	1.6	1.4	1.2	1.0	0.8	0.6	0.4	0.2
PROB. DE SELECÇÃO f(x _i)/∑f (x _i)	0.18	0.16	0.15	0.13	0.11	0.09	0.07	0.06	0.03	0.02

Método de selecção por roleta

- Suponhamos que se pretendem obter 6 progenitores
- Começamos por gerar 6 números aleatórios:

0,81 0,32 0,96 0,01 0,65 0,42

 Os indivíduos selecionados para gerar a descendência serão, respetivamente:

6, 2, 9, 1, 5 e 3

AGENTES ADAPTATIVOS 53

Outros Métodos de Seleção

- Método de Amostragem Universal Estocástica
- Seleção Baseada na Posição
- Seleção por Torneio
- Seleção Estado Estável
- Seleção por Truncatura
- Seleção Local
- Seleção Elitista

Seleção Elitista

- Este método de seleção serve de complemento a um dos outros métodos de seleção utilizados num AG
- Procura evitar que os indivíduos de melhor qualidade se percam, retendo um determinado número dos melhores indivíduos para a geração seguinte
- Os restantes indivíduos são obtidos utilizando um dos outros métodos de seleção atuando sobre toda a população inicial

AGENTES ADAPTATIVOS 55

Operadores de Recombinação

- O operador de recombinação utiliza dois progenitores selecionados por um dos métodos de seleção
- Estes indivíduos trocam o seu material genético com uma probabilidade que tipicamente varia entre 0,5 e 0,8, produzindo indivíduos com novas características

Operadores de Recombinação

- A forma como é trocado o material genético depende do tipo de recombinação utilizado
- Existem 3 tipos mais comuns
 - Recombinação com 1 ponto de corte
 - Recombinação com N (N>1) pontos de corte
 - Recombinação Uniforme

AGENTES ADAPTATIVOS 57

Operadores de Recombinação

 Apesar de, tradicionalmente, o AG utilizar o operador genético de recombinação com uma probabilidade fixa, pode-se mostrar que adaptando as probabilidades ao longo da simulação do AG, o desempenho do algoritmo para tarefas mais difíceis pode ser melhorado

Recombinação com 1 Ponto de Corte

- Gera-se aleatoriamente o locus que irá funcionar como ponto de corte
- De seguida, troca-se o material genético dos dois progenitores tendo em conta o ponto de corte selecionado

Funcionamento do operador de recombinação com 1 ponto de corte

AGENTES ADAPTATIVOS 59

Recombinação com N (N>1) Pontos de Corte

- Funciona de forma análoga ao caso anterior
- A troca de material genético será feita dependendo do número de pontos de corte utilizados

Recombinação com N (N>1) Pontos de Corte

 Exemplo: 2 pontos de corte gerados aleatoriamente

Funcionamento do operador de recombinação com 2 pontos de corte

 Neste caso o material genético contido entre os dois pontos de corte é trocado entre os 2 progenitores

AGENTES ADAPTATIVOS 61

Recombinação Uniforme

- Esta forma de recombinação pretende generalizar o método de N pontos de corte, fazendo com que cada locus do cromossoma seja um potencial ponto de corte
- Em muitos casos, este tipo de recombinação consegue melhores resultados do que os métodos anteriores

Recombinação Uniforme

- O funcionamento deste mecanismo baseia-se numa máscara gerada aleatoriamente e cujo tamanho coincide com o tamanho do cromossoma
- A paridade dos bits da máscara indicará qual dos progenitores irá fornecer o material genético que fará parte dos novos indivíduos

AGENTES ADAPTATIVOS 63

Recombinação Uniforme

- Para o primeiro filho:
 - um bit a 0 na máscara indica que o gene será do progenitor 1
 - um bit a 1 indica que o gene pertence ao outro progenitor
- Para o segundo filho: o processo é inverso
 - um bit a 0 indica que o gene provém do progenitor 2
 - um bit a 1 indica que o gene é fornecido pelo pai 1

Recombinação Uniforme

Exemplo:

Progenitores

Pai 1: 1°0 1 0 1 0 1 1 1 1 1 0 1 0 1
Pai 2: 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1
Máscara: 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0

Descendência

Funcionamento do operador de recombinação uniforme

AGENTES ADAPTATIVOS 65

Operador de Mutação

- O operador de recombinação é considerado o operador genético principal
- No entanto, depois de gerada a descendência, esta pode ser sujeita aos efeitos de outro operador genético: a mutação
- A mutação consiste na eventual alteração do valor de um ou mais genes de um cromossoma
- Este operador é, normalmente, utilizado com uma probabilidade muito baixa, tipicamente 0,001

Operador de Mutação

- A mutação opera em todos os genes de um cromossoma
- Ou seja, todos os genes têm uma determinada probabilidade de serem mutados

Funcionamento do operador de mutação

AGENTES ADAPTATIVOS 67

Operador de Mutação

- Apesar de ser considerado um operador secundário em relação ao operador de recombinação, a mutação desempenha um papel importante no funcionamento do AG
- Este operador evita que o algoritmo estagne num máximo local, "agitando-o" e fazendo com que explore outras regiões eventualmente mais promissoras
- Normalmente o AG é utilizado com uma probabilidade de mutação fixa ao longo de todas as gerações, mas podem ser utilizadas taxas variáveis

Função de Avaliação

- A função de avaliação fornece uma medida de qualidade das soluções codificadas pelo AG
- A escolha desta função de avaliação depende do problema a resolver. A escolha pode ser mais complicada nuns casos do que noutros
- Há problemas em que a criação de indivíduos inválidos obriga à utilização de uma penalização incluída na função de avaliação

AGENTES ADAPTATIVOS 69

Função de Avaliação

- No caso do problema de maximizar uma função matemática, a função de avaliação pode ser a própria função matemática
- Exemplo:

$$f(x) = xsen(10\pi x) + 1.0$$

Função de Avaliação

Os 3 indivíduos

 $X_1 = 1000101110110101000111$

 $X_2 = 000000111000000010000$

 $x_3 = 11100000001111111000101$

seriam avaliados utilizando a própria função f(x)

 $f(x_1) = 1,586345$

 $f(x_2) = 0.078878$

 $f(x_3) = 2,250650$

AGENTES ADAPTATIVOS 71

Função de Avaliação

 Neste caso, como se pretende encontrar o valor máximo da função, o indivíduo x₃ seria aquele que teria mais probabilidade de ser selecionado para reprodução

População

- O AG opera sobre uma população de soluções candidatas e seleciona as de melhor qualidade para se reproduzirem
- Há escolhas que têm de ser estabelecidas quanto à população
- É necessário definir o tamanho da população

AGENTES ADAPTATIVOS 73

População

- Populações maiores permitem uma maior diversidade de soluções, mas consomem mais tempo de avaliação
- Podem ser consideradas abordagens em que o tamanho da população é variável
- Outro aspeto importante refere-se à forma como, em cada geração, se define a nova população: substituída na totalidade ou utilização de técnicas de seleção elitistas

Um Exemplo

 Evolução de um AG ao longo de um conjunto de gerações para um exemplo simples de otimização de uma função matemática

AGENTES ADAPTATIVOS 75

O Problema

 Encontrar o valor máximo da função matemática bidimensional

$$f(x_1,x_2) = 21.5 + x_1 sen(4\pi x_1) + x_2 sen(20\pi x_2)$$

com

$$-3.0 \le x_1 \le 12.1$$
 e $4.1 \le x_2 \le 5.8$

© IPG-ESTG EI 2020-21 Inteligência Artificial

© IPG-ESTG EI 2020-21 Inteligência Artificial

O Problema

Representação gráfica

AGENTES ADAPTATIVOS 77

Representação

- A função f depende de 2 variáveis
- Se optarmos por uma representação binária, a cadeia de bits deve codificar a informação referente às duas variáveis
- Admitamos precisão de 4 casas decimais

Representação

 x₁ possui domínio de tamanho 15,1 pelo que terá de ser dividido em 15,1x10000 partes: são necessários 18 bits para codificar x₁

$$2^{17} \le 151\ 000 \le 2^{18}$$

AGENTES ADAPTATIVOS 79

Representação

 x₂ possui domínio de tamanho 1,7 pelo que uma precisão de 4 casas decimais implica a divisão do domínio em 1,7x10000 partes: são necessários 15 bits para codificar x₂

$$2^{14} \le 17\ 000 \le 2^{15}$$

Representação

 No total serão necessários 33 bits para codificar uma solução

AGENTES ADAPTATIVOS 81

Função de Avaliação

- Como são avaliados os indivíduos ?
- Consideremos o cromossoma representado por:

1111010010101111000001001011000000

Função de Avaliação

 Os primeiros 18 bits são utilizados para codificar a variável x₁, pelo que

$$x'_1$$
=decimal(1111010010101111000) = 250552

e

$$\mathbf{x_1} = -3.0 + 250552 * \frac{15.1}{2^{18} - 1} = 11,4323$$

AGENTES ADAPTATIVOS 83

Função de Avaliação

Os 15 bits restantes codificam a variável
 x₂, pelo que

$$x'_2$$
=decimal(001001011000000) = 4800

e

$$\mathbf{x}_2 = 4.1 + 4800 * \frac{1.7}{2^{15} - 1} = 4.3490$$

Função de Avaliação

 O cromossoma utilizado corresponde ao ponto de coordenadas

(11.4323, 4.3490)

 O valor da função de avaliação é dado por

f(11.4323, 4.3490) = 13.1733

AGENTES ADAPTATIVOS 85

Simulação do AG

- População de 20 indivíduos
- Método de seleção por roleta com elitismo – Os dois melhores indivíduos de cada geração são preservados
- Recombinação com 1 ponto de corte: aplicada com uma probabilidade de 65%
- Mutação: aplicada com uma probabilidade de 0,5% (para podermos ilustrar a aplicação deste operador)

População Inicial

População de cromossomas gerados aleatoriamente:

AGENTES ADAPTATIVOS 87

Avaliação dos Indivíduos

- A função utilizada para avaliar os indivíduos é a própria função matemática
- Cada indivíduo terá um valor, f(x), que indica a sua qualidade, uma probabilidade de ser selecionado, p(x), e ficará com um segmento da roleta de determinado tamanho, r(x) - r(x_{anterior})

© IPG-ESTG EI 2020-21 Inteligência Artificial

Avaliação dos Indivíduos

 O valor da probabilidade de cada indivíduo é calculado dividindo o valor do seu mérito pelo somatório do mérito de todos os indivíduos, F:

$$F = \sum_{j=1}^{20} f(i_j) = 437,53$$

AGENTES ADAPTATIVOS 89

Avaliação dos Indivíduos

Ινοινίουο ι	QUALIDADE F(X)	PROBABILIDADE P(X)	SEGMENTO DA ROLETA R(X)	
i ₁	$f(i_1) = 26.849$	$p(i_i) = 0.061$	$r(i_t) = 0.061$	
i ₂	$f(i_2) = 24.623$	$p(i_2) = 0.056$	$r(i_2) = 0.118$	
i ₃	$f(i_3) = 24.750$	$p(i_3) = 0.057$	$r(i_3) = 0.174$	
i 4	$f(i_4) = 24.347$	$p(i_4) = 0.056$	$r(i_4) = 0.230$	
i ₅	$f(i_5) = 25.677$	$p(i_5) = 0.059$	$r(i_5) = 0.289$	
i ₆	$f(i_6) = 21.028$	$p(i_6) = 0.048$	$r(i_6) = 0.337$	
İ ₇	$f(i_7) = 14.702$	$p(i_7) = 0.034$	$r(i_7) = 0.370$	
i8	$f(i_8) = 26.613$	$p(i_8) = 0.061$	$r(i_8) = 0.431$	
i g	$f(i_9) = 16.521$	$p(i_9) = 0.045$	$r(i_9) = 0.476$	
i ₁₀	$f(i_{10}) = 10.491$	$p(i_{10}) = 0.024$	$r(i_{10}) = 0.500$	
i ₁₁	$f(i_{11}) = 21.428$	$p(i_{11}) = 0.049$	$r(i_{11}) = 0.549$	
i ₁₂	$f(i_{12}) = 17.122$	$p(i_{12}) = 0.039$	$r(i_{12}) = 0.588$	
i ₁₃	$f(i_{13}) = 30.268$	$p(i_{13}) = 0.069$	$r(i_{13}) = 0.657$	
i ₁₄	$f(i_{14}) = 28.323$	$p(i_{14}) = 0.065$	$r(i_{14}) = 0.722$	
i ₁₅	$f(i_{15}) = 13.478$	$p(i_{15}) = 0.031$	$r(i_{15}) = 0.752$	
i ₁₆	$f(i_{16}) = 25.725$	$p(i_{16}) = 0.059$	$r(i_{16}) = 0.811$	
i ₁₇	$f(i_{17}) = 23.548$	$p(i_{17}) = 0.054$	$r(i_{17}) = 0.865$	
i ₁₈	$f(i_{18}) = 16.200$	$p(i_{18}) = 0.037$	$r(i_{18}) = 0.902$	
i ₁₉	$f(i_{19}) = 28.801$	$p(i_{19}) = 0.066$	$r(i_{19}) = 0.968$	
i ₂₀	$f(i_{20}) = 14.036$	$p(i_{20}) = 0.032$	$r(i_{20}) = 1.000$	

Seleção

- Preservar os 2 indivíduos de melhor qualidade (i₁₃ e i₁₉)
- Selecionar 9 pares para gerar os 18 novos indivíduos
- Os 9 pares foram selecionados através da roleta, girando um gerador de números aleatórios 18 vezes

AGENTES ADAPTATIVOS 91

Seleção

 Os valores e os indivíduos selecionados para acasalar

VALORES ALEATÓRIOS [0, 1]	Indivíduos seleccionados (pares)
0,79; 0,84	i ₁₆ , i ₁₇
0,84; 0,1	i ₁₇ , i ₂
0,91; 0,24	i ₁₉ , i ₅
0,5; 0,86	111, 117
0,03; 0,94	i ₁ , i ₁₉
0,67; 0,52	114, 111
0,47; 0,92	ig, i ₁₉
0,01; 0,39	11, 18
0,64; 0,55	<i>i</i> ₁₃ , <i>i</i> ₁₂

 O operador de recombinação foi aplicado com uma probabilidade de 65%: apenas alguns dos pares selecionados para reprodução serão efetivamente recombinados

AGENTES ADAPTATIVOS 93

Recombinação

- Os valores aleatórios gerados e os respetivos pontos de corte, gerados aleatoriamente também, estão indicados na tabela seguinte
- Valores aleatórios superiores a 0,65 indicam que não ocorre recombinação

VALORES ALEATÓRIOS [0, 1]	PONTO DE CORTE	PROGENITORES	FILHOS
0,18	24	i ₁₆ , i ₁₇	13, 1'4
0,76		117, 12	1'5, 1'6
0,34	24	i ₁₉ , i ₅	17, 18
0,07	9	i ₁₁ , i ₁₇	i'9, i'10
0,9		<i>i</i> ₁ , <i>i</i> ₁₉	i'11, i'12
0,45	16	<i>i</i> ₁₄ , <i>i</i> ₁₁	i'13, i'14
0,07	15	i9, i ₁₉	i'15, i'16
0,91		11, 18	i'17, i'18
0,42	30	i ₁₃ , i ₁₂	i'19, i'20

AGENTES ADAPTATIVOS 95

Recombinação

 Os 2 primeiros indivíduos da descendência correspondem à elite, isto é, aos melhores indivíduos da população anterior e que não são alterados

 Os filhos i'₃ e i'₄ são criados pela recombinação dos indivíduos i₁₆ e i₁₇ utilizando o ponto de corte 24

```
i_{16} = 001011110100000101100011.001100000
i_{17} = 000000100000000110100010.1111100101
i'_{3} = 001011110100000101100011.1111100101
i'_{4} = 000000100000000110100010.001100000
```

AGENTES ADAPTATIVOS 97

Recombinação

 Os progenitores i₁₇ e i₂ não sofrem recombinação, sendo a descendência cópias destes dois indivíduos

$$i_{5}^{\prime} = i_{17}$$
 $i_{6}^{\prime} = i_{2}$

 Os filhos i'₇ e i'₈ provêm do cruzamento dos indivíduos i₁₉ e i₅ no ponto de corte 24

AGENTES ADAPTATIVOS 99

Recombinação

 Os filhos i'₉ e i'₁₀ obtêm-se de modo semelhante

```
i_{11} = 000100101.111010101001100111011010
i_{17} = 0000000100.000000110100010111100101
i'_{9} = 000100101.0000000110100010111100101
i'_{10} = 000000100.111010101001100111011010
```


 O resultado final da aplicação do operador de recombinação fornece a seguinte população

AGENTES ADAPTATIVOS 101

Recombinação


```
0111100011100011111101010101011100
0111100111001111111011111011000001
0\,0\,1\,0\,1\,1\,1\,1\,0\,1\,0\,0\,0\,0\,0\,1\,0\,1\,1\,0\,0\,0\,1\,1\,1\,1\,1\,1\,1\,0\,0\,1\,0\,1
0\,0\,0\,0\,0\,0\,1\,0\,0\,0\,0\,0\,0\,0\,1\,1\,0\,1\,0\,0\,0\,1\,0\,0\,0\,1\,1\,0\,0\,0\,0\,0
0111100111001111111011111101100101
101111010001110101001101011000001
0\,0\,0\,0\,0\,0\,1\,0\,0\,1\,1\,1\,0\,1\,0\,1\,0\,1\,0\,0\,1\,1\,0\,0\,1\,1\,1\,0\,1\,1\,0\,1\,0
0111100111001111111011111011000001
0\,0\,0\,1\,0\,0\,1\,0\,1\,1\,1\,1\,0\,1\,0\,1\,1\,1\,0\,1\,1\,0\,0\,0\,0\,1\,1\,0\,0\,1\,1\,1\,1
100010000010101111011111011000001
  1110011100111100111011110001101
1100010111111101111000111111101111
1\,0\,1\,0\,0\,1\,0\,1\,1\,1\,0\,1\,0\,1\,1\,0\,0\,1\,0\,0\,0\,1\,0\,0\,0\,1\,0\,0\,1\,1\,0\,0
```

Operador de Mutação

- O operador de mutação foi aplicado com uma probabilidade de 0,5% por gene
- Resultaram apenas 3 mutações localizadas nos seguintes elementos da população (resultado aleatório):

Filho i'_3 – gene 15 Filho i'_6 – gene 17 Filho i'_{12} – gene 8

 Daqui resulta a nova população que será novamente avaliada

AGENTES ADAPTATIVOS 103

Operador de Mutação

Operador de Mutação

- Neste ponto conclui-se uma iteração do AG
- O processo é agora repetido ao longo de várias gerações

AGENTES ADAPTATIVOS 105

Operador de Mutação

Se corrêssemos o AG durante 100 gerações:

GERAÇÃO	QUALIDADE DO MELHOR INDIVÍDUO	
1	30,2680	
2	30,2680	
3	33,4468	
4	33,4468	
5	33,4468	
6	33,4468	
7	33,8733	
8	34,1697	
9	34,1697	
10	34,1697	
11	35,4115	
100	37,1530	

© IPG-ESTG EI 2020-21 Inteligência Artificial

Operador de Mutação

 O AG vai evoluindo para valores mais altos, como é desejado

AGENTES ADAPTATIVOS 107

Trabalho Prático n.º 2

 Encontrar o valor máximo da função matemática

$$f(x) = (x - 15)^2$$

com

$$1 \le x \le 25$$