Confidence-aware motion prediction for real-time collision avoidance

Andrea Bajcsy

Long-term Human Motion Prediction Workshop ICRA 2019

Work with Sylvia Herbert, Jaime Fisac, David Fridovich-Keil, Steven Wang, Sampada Deglurkar, Claire Tomlin and Anca Dragan

When robots observe behavior that is not well explained by their predictive models, how do they produce safe but efficient motions?

Connections to reachability analysis

Scaling up to multi-robot, multi-human scenarios

Confidence-aware prediction & planning

Scaling up to multi-robot, multi-human scenarios

Noisily-Rational Human Motion Prediction

[Schultz et al., ICRA 2017]

[Pfeiffer et al., IROS 2016]

[Finn et al., ICML 2016]

[Herman et al., ICRA 2015]

[Ziebart et al., AAAI 2008]

[Ramachandran et al., IJCAI 2007]

[Baker et al., 2007]

[Lygeros, 2005]

[Mitchell, 2005]

[Lygeros, 2005]

[Mitchell, 2005]

[Lygeros, 2005]

[Mitchell, 2005]

[Fisac, 2018]

[Lygeros, 2005]

[Mitchell, 2005]

[Fisac, 2018]

[Lygeros, 2005]

[Mitchell, 2005]

[Fisac, 2018]

[Lygeros, 2005]

[Mitchell, 2008]

What if the predictive model is wrong?

Modeled human goal

Robot goal

$$\left(P(u_H \mid x_H; \theta, \underline{\beta}) \propto e^{\underline{\beta}Q(x_H, u_H; \theta)} \right)$$

Fixed confidence $\overline{\beta}$

Bayesian confidence $b^t(\beta)$

Robust motion planning

Connections to reachability analysis

Scaling up to multi-robot, multi-human scenarios

Robust motion planning

Connections to reachability analysis

Scaling up to multi-robot, multi-human scenarios

$$\dot{h}_x = v_H \cos(u_H)$$
$$\dot{h}_y = v_H \sin(u_H)$$

 β -Bayes State Distribution

Robust motion planning

Connections between predictions and FRS

Confidently determining subsets of the FRS to avoid

Scaling up to multi-robot, multi-human scenarios

Robust motion planning

Connections between predictions and FRS

Determining subsets of the FRS to avoid

Scaling up to multi-robot, multi-human scenarios

Robust motion planning

Connections between predictions and FRS

Determining subsets of the FRS to avoid

Confidence-aware predictions offer promising directions for scaling

Robust motion planning

Connections between predictions and FRS

Determining subsets of the FRS to avoid

Confidence-aware predictions offer promising directions for scaling

Papers

Fisac*, Bajcsy*, Herbert, Fridovich-Keil, Wang, Tomlin, and Dragan. "Probabilistically Safe Robot Planning with Confidence-Based Human Predictions." RSS, 2018.

Fridovich-Keil*, Bajcsy*, Fisac, Herbert, Wang, Dragan, and Tomlin. "Confidence-Aware Motion Prediction for Real-Time Collision Avoidance." IJRR, 2019

Bajcsy*, Herbert*, Fridovich-Keil, Fisac, Deglurkar, Dragan, and Tomlin, "A Scalable Framework for Real-Time Multi-Robot, Multi-Human Collision Avoidance." ICRA, 2019.

Herbert*, Chen*, Han, Bansal, Fisac, Tomlin. "FaSTrack: a Modular Framework for Fast and Guaranteed Safe Motion Planning." CDC, 2017.

Code

Multi-robot, multi-human planning: https://github.com/HJReachability/faSTPeople

Fast and safe robot tracking: https://github.com/HJReachability/fastrack

Pedestrian prediction: https://github.com/shwang/pedestrian_prediction

ROS wrapper for pedestrian prediction: https://github.com/abajcsy/crazyflie_human