

Cynthia Liu

July 24, 2024

1 Revision History

Date	Version	Notes
Mar. 8, 2024	0	Initial Release
March 18, 2024	0.1	Edit according to feedback from peer review
April 5, 2024	1	Edit according to feedback from Dr. Smith
July 3, 2024	1.1	Add modules for chloride on deck
July 24, 2024	1.2	Match the function name to the actual one

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at SRS.

[Also add any additional symbols, abbreviations or acronyms —SS]

Contents

1	Rev	ision l	History				
2	Symbols, Abbreviations and Acronyms						
3	Introduction						
4	Notation						
5	Mo	dule D	Decomposition				
6	MIS	S of Co	ontrol Module				
	6.1	Modu	ıle				
	6.2						
	6.3		X				
		6.3.1	Exported Constants				
		6.3.2	Exported Access Programs				
	6.4	Semar	$rac{1}{ ext{ntics}}$				
		6.4.1	State Variables				
		6.4.2	Environment Variables				
		6.4.3	Assumptions				
		6.4.4	Access Routine Semantics				
		6.4.5	Local Functions				
7	MIS	S of In	aput Module				
	7.1	Modu	<u>lle </u>				
	7.2	Uses					
	7.3	Syntax	x				
		7.3.1	Exported Constants				
		7.3.2	Exported Access Programs				
	7.4	Semar	ntics				
		7.4.1	State Variables				
		7.4.2	Environment Variables				
		7.4.3	Assumptions				
		7.4.4	Access Routine Semantics				
		7.4.5	Local Functions				
3	MIS	S of Da	ata Searching Module				
	8.1	Modu	<u>lle </u>				
	8.2	Uses					
	8.3	Syntax	x				
		8.3.1	Exported Constants				
		8.3.2	Exported Access Programs				

	8.4	Seman	ntics	. 7
		8.4.1	State Variables	. 7
		8.4.2	Environment Variables	. 7
		8.4.3	Assumptions	. 7
		8.4.4	Access Routine Semantics	. 8
		8.4.5	Local Functions	. 8
9	MIS	of Ou	utput Visualization Module	9
	9.1	Modul	le	. 9
	9.2			
	9.3	Syntax	x	. 9
		9.3.1	Exported Constants	. 9
		9.3.2	Exported Access Programs	. 9
	9.4	Seman	ntics	
		9.4.1	State Variables	
		9.4.2	Environment Variables	. 9
		9.4.3	Assumptions	. 9
		9.4.4	Access Routine Semantics	
		9.4.5	Local Functions	
1 0	MIS	t of Da	ata Model Reading Module	11
10			le	
			X	
	10.0		Exported Constants	
			Exported Access Programs	
	10.4		ntics	
	10.4		State Variables	
			Environment Variables	
			Assumptions	
			Access Routine Semantics	
			Local Functions	
		10.4.0	Local Functions	. 12
11			onstant Module	13
			le	
	11.2	Uses		. 13
	11.3	Syntax	x	. 13
			Exported Constants	
		11.3.2	Exported Access Programs	. 13
	11.4	Seman	ntics	. 13
		11.4.1	State Variables	. 13
		11.4.2	Environment Variables	. 13
		11 / 9	Assumptions	1.4

	11.4.4 Access Routine Semantics	14
	11.4.5 Local Functions	14
19 MTS	of Deicing Salts Calculation Module	15
		15 15
	Module	
	Uses	15
12.3	Syntax	15
	12.3.1 Exported Constants	15
10.4	12.3.2 Exported Access Programs	15
12.4	Semantics	15
	12.4.1 State Variables	15
	12.4.2 Environment Variables	15
	12.4.3 Assumptions	15
	12.4.4 Access Routine Semantics	15
	12.4.5 Local Functions	16
13 MIS	of Melted Water Thickness Module	17
	Module	17
	Uses	17
	Syntax	17
10.0	13.3.1 Exported Constants	17
	13.3.2 Exported Access Programs	17
19 /	Semantics	17
15.4	13.4.1 State Variables	$\frac{17}{17}$
	13.4.2 Environment Variables	$\frac{17}{17}$
	13.4.3 Assumptions	17
	13.4.4 Access Routine Semantics	17
	13.4.5 Local Functions	18
14 MIS	of Single Water SAS Calculation Module	19
14.1	Module	19
14.2	Uses	19
14.3	Syntax	19
	14.3.1 Exported Constants	19
	14.3.2 Exported Access Programs	19
14.4	Semantics	19
	14.4.1 State Variables	19
	14.4.2 Environment Variables	19
	14.4.3 Assumptions	19
	14.4.4 Access Routine Semantics	19
	14.4.5 Local Functions	20
	14.4.6 Local Functions	20
	TIME DOOM I UIIOUOIID	4

15	MIS of Single Chloride Ions SAS Calculation Module	21
	15.1 Module	2
	15.2 Uses	2
	15.3 Syntax	2
	15.3.1 Exported Constants	2
	15.3.2 Exported Access Programs	2
	15.4 Semantics	2
	15.4.1 State Variables	2
	15.4.2 Environment Variables	2
	15.4.3 Assumptions	2
	15.4.4 Access Routine Semantics	22
	15.4.5 Local Functions	22
16	MIS of All Chloride Ions SAS Calculation Module	23
	16.1 Module	23
	16.2 Uses	23
	16.3 Syntax	23
	16.3.1 Exported Constants	2
	16.3.2 Exported Access Programs	23
	16.4 Semantics	23
	16.4.1 State Variables	23
	16.4.2 Environment Variables	23
	16.4.3 Assumptions	23
	16.4.4 Access Routine Semantics	2^{2}
	16.4.5 Local Functions	2
17	MIS of Chloride on Pier Calculation Module	25
	17.1 Module	2!
	17.2 Uses	25
	17.3 Syntax	2!
	17.3.1 Exported Constants	25
	17.3.2 Exported Access Programs	25
	17.4 Semantics	25
	17.4.1 State Variables	25
	17.4.2 Environment Variables	2!
	17.4.3 Assumptions	25
	17.4.4 Access Routine Semantics	25
	17.4.5 Local Functions	26
18	MIS of Chloride on Deck Calculation Module	27
	18.1 Module	2'
	18.2 Uses	2'
	18.3 Syntax	2

		18.3.1	Exported Constants	27
		18.3.2	Exported Access Programs	27
	18.4	Seman	tics	27
		18.4.1	State Variables	27
		18.4.2	Environment Variables	27
		18.4.3	Assumptions	27
		18.4.4	Access Routine Semantics	27
		18.4.5	Local Functions	28
19	MIS	of Ch	loride Exposure Database Generation Module	29
			e	29
			·	29
			[29
		•	Exported Constants	29
			Exported Access Programs	29
	19.4		tics	29
			State Variables	29
			Environment Variables	29
			Assumptions	30
			Access Routine Semantics	30
			Local Functions	30

3 Introduction

The following document details the Module Interface Specifications for Bridge Corrosion which investigate how climate, traffic might impact corrosion-induced damage for reinforced concrete bridges by influencing the chloride exposure.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at here.

4 Notation

The structure of the MIS for modules comes from [HoffmanAndStrooper1995], with the addition that template modules have been adapted from [GhezziEtAl2003]. The mathematical notation comes from Chapter 3 of [HoffmanAndStrooper1995]. For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by BC.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$
empty	Ø	when the input is empty or the variable does not exist
GeoDataFrame	GeoDataFrame	pandas dataFrame object with geometry column

The specification of BC uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, BC uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
Behaviour-Hiding Module	Input Module Control Module Data Searching Module Output Visualization Module Data Model Reading Module Constant Module Deicing Salts Calculation Module Melted Water Thickness Calculation Module Single Water SAS Calculation Module Single Chloride Ions SAS Calculation Module All Chloride Ions SAS Calculation Module Chloride on Pier Calculation Module Chloride on Deck Calculation Module Chloride Exposure Database Generation Module
Software Decision Module	File I/O Module Plotting Module

Table 1: Module Hierarchy

6 MIS of Control Module

This module provides the main program and the GUI of the software.

6.1 Module

app

6.2 Uses

- Input Module (Section 7)
- Data Searching Module (Section 8)
- Output Visualization Module (Section 9)

6.3 Syntax

6.3.1 Exported Constants

None

6.3.2 Exported Access Programs

Name	In	Out	Exceptions
main	=	-	-

6.4 Semantics

6.4.1 State Variables

None

6.4.2 Environment Variables

None

6.4.3 Assumptions

6.4.4 Access Routine Semantics

app():

- transition: Control and execute the other modules as follow:
 - Get and verify the input from user. (Section 7)
 - Search the corresponding data in Data Searching Module if the input is valid. (Section 8)
 - Visualize the resulting data by using Output Visualization Module. (Section 9)
- \bullet output: out := None
- exception: exc := None

6.4.5 Local Functions

7 MIS of Input Module

This module get the input from user and verify if it is within the physical and software constraints.

7.1 Module

CoordinateChecker

7.2 Uses

None

7.3 Syntax

7.3.1 Exported Constants

None

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
convertLongitude	long: String	long: \mathbb{R}	ValueError
$convert \\ Latitude$	lat: String	lat: \mathbb{R}	ValueError
${\it check Coordinate}$	long: \mathbb{R} , lat: \mathbb{R}	Boolean	InputOut of Ontario Error

7.4 Semantics

7.4.1 State Variables

- \bullet lon: $\mathbb R$ # longitude get from user.
- lat: \mathbb{R} # latitude get from user.
- isWithinOntario: Boolean # if the point is within Ontario
- \bullet selected Option: String # the component that user wants to investigate
- \bullet rate Option: String # the salt application rate that user wants to investigate

7.4.2 Environment Variables

- Keyboard: takes input from the keyboard by typing.
- File: the geojson file that contains the shape of Ontario.

7.4.3 Assumptions

This module use the open source geojson file that contain the Ontario boundary, by drawing polygons with the vertex coordinate. The coordinates for those vertexes are assumed to be reliable.

7.4.4 Access Routine Semantics

convertLongitude(long):

- output: out := long: \mathbb{R}
- exception: exc := ValueError: isNaN(parseFloat(long))

convertLatitude(lat):

- output: out := lat: \mathbb{R}
- exception: exc := ValueError: isNaN(parseFloat(lat))

$\mathbf{checkCoordinate}(long, lat)$:

- output: out := isWithinOntario: Boolean
- exception: exc := InputOutofOntarioError: $\neg((long, lat) \in Ontario)$

7.4.5 Local Functions

isNaN(e):

• output: out := Boolean # check if the input e is NaN

parseFloat(s):

• output: out := s: \mathbb{R} # convert the input s from type string to float, if it is not number and can not be converted, it would return NaN

InputOutofOntarioError:

• output: out := Exception # raise this exception if the input is out of Ontario

8 MIS of Data Searching Module

This module finds the data needed in the database.

8.1 Module

DataSearching

8.2 Uses

Input Module (Section 7), Chloride Exposure Database Generation Module (Section 19)

8.3 Syntax

8.3.1 Exported Constants

None

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
loadData	dataOption: String,	filePath: String	-
	rateOption: String		
$\operatorname{findClosest}$	long: \mathbb{R} , lat: \mathbb{R}	index: \mathbb{N}	-
searchData	long: \mathbb{R} , lat: \mathbb{R}	data: sequence of \mathbb{R}	-

8.4 Semantics

8.4.1 State Variables

ullet data: sequence of $\mathbb R$ # the sequence of predicted chloride exposure data that the user want

8.4.2 Environment Variables

• File: the database file that contain the yearly chloride exposure data within Ontario.

8.4.3 Assumptions

All locations within Ontario, if it is not on water, must contain valid data.

8.4.4 Access Routine Semantics

loadData(dataOption, rateOption):

- output: out := filePath # filePath for the data that user want
- \bullet exception: exc := FileNotFoundError = \nexists filename

findClosest(long, lat): If the input coordinate is not the exact one in database, find the grid that it belongs to and return the index of center coordinate.

• output: out := index: \mathbb{N}

searchData(long, lat):

- output: out := data = search(findClosest(long, lat)) # sequence of \mathbb{R} , the chloride exposure result
- exception: exc := None

8.4.5 Local Functions

9 MIS of Output Visualization Module

This module provides the visualization of the resulting chloride exposure trend.

9.1 Module

dataVisualization

9.2 Uses

Data Searching Module (Section 8)

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
generateChartData	data: sequence of \mathbb{R}	-	-
downloadData	-	-	-
downloadJPG	-	-	-

9.4 Semantics

9.4.1 State Variables

None

9.4.2 Environment Variables

- Screen: The graphs are displayed on the screen.
- File: The files that could be downloaded to the local machine

9.4.3 Assumptions

9.4.4 Access Routine Semantics

generateChartData(data):

- transition: display the graphs using the result data from Data Searching Module.
- output: out := None
- exception: exc := None

downloadData():

- transition: download the data to the local machine
- output: out := None
- exception: exc := None

downloadJPG():

- transition: download the visualization to the local machine
- output: out := None
- \bullet exception: exc := None

9.4.5 Local Functions

10 MIS of Data Model Reading Module

This module loads the climate and traffic data from the external file and store it in the data format that could be used for calculation.

10.1 Module

calculation_loadT

10.2 Uses

None

10.3 Syntax

10.3.1 Exported Constants

None

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
new calculation_load	filename: String	$calculation_loadT$	FileNotFoundError

10.4 Semantics

A data structure designed to store the data from climate and traffic model.

10.4.1 State Variables

- long: sequence of \mathbb{R} # longitude get from climate and traffic model
- lat: sequence of \mathbb{R} # latitude get from climate and traffic model
- AADT: sequence of \mathbb{R} # annual average daily traffic per lane
- \bullet AADTT: sequence of $\mathbb R$ # annual average daily truck traffic per lane
- t1: sequence of \mathbb{R} # number of days with snowfall
- \bullet h_total: sequence of $\mathbb R$ # the total snowfall during a winter season
- t2: sequence of \mathbb{R} # number of days with snow melting

10.4.2 Environment Variables

File: the file with all climate model data and traffic model data

10.4.3 Assumptions

None

10.4.4 Access Routine Semantics

$calculation_load:$

• transition: Read and store the data from the climate model and traffic model file

 \bullet output: out := self

 \bullet exception: exc := FileNotFoundError = \nexists filename

10.4.5 Local Functions

11 MIS of Constant Module

This module stores the constants used for calculation.

11.1 Module

constantT

11.2 Uses

None

11.3 Syntax

11.3.1 Exported Constants

Name	Value	Note
salt_application_rate	0.07	salt application rate
W_{-lane}	3.75	lane width
V_speed	100	heavy vehicle speed
b	0.56	tire width
K	0.75	ratio of the tire width that is not a groove to the tire width
h_film	0.0001	depth of the water film picked up in each rotation
$water_density$	997	density of water
V	62.1371	truck speed
$chloride_ratio$	0.61	molar mass ratio of chloride ions over deicing salts
d	3.5	distance between road edge and nearby bridge structure
ldv_ratio	6	ratio of chloride ions sprayed and splashed by trucks over
		light-duty vehicles

11.3.2 Exported Access Programs

None

11.4 Semantics

11.4.1 State Variables

None

11.4.2 Environment Variables

11.4.3 Assumptions

None

11.4.4 Access Routine Semantics

None

11.4.5 Local Functions

12 MIS of Deicing Salts Calculation Module

This module provides the calculation for the quantity of deicing salts applied per day with snowfall

12.1 Module

deicing_salts_cal

12.2 Uses

Constant Module (Section 11), Data Model Reading Module (Section 10)

12.3 Syntax

12.3.1 Exported Constants

None

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
deicing_salts_cal	h_{total} : sequence of \mathbb{R} ,	M_{-app} : sequence of \mathbb{R}	_
	t1: sequence of \mathbb{R}		

12.4 Semantics

12.4.1 State Variables

None

12.4.2 Environment Variables

None

12.4.3 Assumptions

None

12.4.4 Access Routine Semantics

 $deicing_salts_cal(h_total, t1)$:

• transition: None

- output: out := $\frac{salt_application_rate*h_total}{(W_lane*t1)}$, where salt_application_rate and W_lane are constant value get from Constant Module, h_total and t1 are read from Data Model Reading Module
- \bullet exception: exc := None

12.4.5 Local Functions

13 MIS of Melted Water Thickness Module

This module provides the calculation for the daily water film thickness on the road

13.1 Module

 $melted_water_thickness$

13.2 Uses

Data Model Reading Module (Section 10)

13.3 Syntax

13.3.1 Exported Constants

None

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
melted_water_thickness	h_total: sequence of \mathbb{R} ,	h_app: sequence of \mathbb{R}	-
	t2: sequence of \mathbb{R}		

13.4 Semantics

13.4.1 State Variables

None

13.4.2 Environment Variables

None

13.4.3 Assumptions

None

13.4.4 Access Routine Semantics

 $melted_water_thickness(h_total, t2)$:

- transition: None
- output: out := $\frac{h_total}{t2}$, where h_total and t1 are read from Data Model Reading Module
- \bullet exception: exc := None

13.4.5 Local Functions

14 MIS of Single Water SAS Calculation Module

This module determine water sprayed and splashed by one truck using a (CFD)-based analytical model, taking into account of the four primary mechanisms of vehicle spray and splash: capillary adhesion, tread pickup, bow wave, and side wave.

14.1 Module

 $single_water_SAS_cal$

14.2 Uses

Constant Module (Section 11), Melted Water Thickness Module (Section 13)

14.3 Syntax

14.3.1 Exported Constants

None

14.3.2 Exported Access Programs

Name	In	Out	Exceptions
single_water_SAS_cal	h_app: sequence of \mathbb{R}	SD_total: sequence of \mathbb{R}	-

14.4 Semantics

14.4.1 State Variables

None

14.4.2 Environment Variables

None

14.4.3 Assumptions

None

14.4.4 Access Routine Semantics

 $single_water_SAS_cal(h_app)$:

• transition: None

- output: out := $SD_{CA} + SD_{TP} + SD_{BW} + SD_{SW} \#$ the mass of water per unit air volume kicked up by each passing truck is the sum of the four mechanisms, calculated by the local functions below.
- \bullet exception: exc := None

14.4.5 Local Functions

 V_{speed} , b, K, h_{film} , ρ_{water} , V' are constants read from Constant Module. **mass_flow_rate**(h_app):

- transition: None
- output: out :=

$$\begin{cases} MR_{CA} = V_{speed} \times b \times K \times h_{film} \times \rho_{water} & \text{for } CA \\ MR_{TP} = V_{speed} \times b \times (1 - K) \times h_{app} \times \rho_{water} & \text{for } TP \\ MR_{BW} = MR_{SW} = 0.5 \times V_{speed} \times b \times \\ (h_{app} - K \times h_{film} - (1 - K) \times h_{app}) \times \rho_{water} & \text{for } BW \text{ } and \text{ } SW \end{cases}$$

• exception: exc := None

 $\mathbf{spray_density}(\mathit{MR}_{\mathit{CA}}, \mathit{MR}_{\mathit{TP}}, \mathit{MR}_{\mathit{BW}}, \mathit{MR}_{\mathit{SW}})$:

- transition: None
- output: out :=

$$\begin{cases} SD_{CA} = (-2.69 \times 10^{-5} \times V' + 2.43 \times 10^{-3}) \times MR_{CA} & \text{for } CA \\ SD_{TP} = (1.16 \times 10^{-5} \times V' - 5.25 \times 10^{-5}) \times MR_{TP} & \text{for } TP \\ SD_{BW} = (2.67 \times 10^{-5} \times V' - 4.71 \times 10^{-4}) \times MR_{BW} & \text{for } BW \\ SD_{SW} = (1.65 \times 10^{-5} \times V' - 3.99 \times 10^{-4}) \times MR_{SW} & \text{for } SW \end{cases}$$

• exception: exc := None

14.4.6 Local Functions

15 MIS of Single Chloride Ions SAS Calculation Module

This module determines the chloride ions sprayed and splashed by one truck.

15.1 Module

single_Cl_SAS_cal

15.2 Uses

Deicing Salts Calculation Module (Section 12), Single Water SAS Calculation Module (Section 14)

15.3 Syntax

15.3.1 Exported Constants

None

15.3.2 Exported Access Programs

Name	In				Out	Exceptions
single_Cl_SAS_cal	M_app:	sequence	of	\mathbb{R} ,	SD_totalCl: sequence of \mathbb{R}	
	h_app:	sequence	of	$\mathbb{R},$		
	SD_tota	l: sequence	e of	\mathbb{R}		

15.4 Semantics

15.4.1 State Variables

None

15.4.2 Environment Variables

None

15.4.3 Assumptions

15.4.4 Access Routine Semantics

$single_Cl_SAS_cal(M_app, h_app, SD_total)$:

- transition: None
- output: out := $SD_total * salt_water_ratio(M_app, h_app) * chloride_ratio,$ where chloride_ratio is a constant read from Constant Module.
- exception: exc := None

15.4.5 Local Functions

$salt_water_ratio(M_app, h_app)$:

- transition: None
- output: out := $\frac{M_app}{h_app*water_density}$ where water_density is a constant read from Constant Module.
- exception: exc := None

16 MIS of All Chloride Ions SAS Calculation Module

This module determines chloride ions sprayed and splashed by all vehicles in one winter season

16.1 Module

all_Cl_SAS_cal

16.2 Uses

Constant Module (Section 11), Data Model Reading Module (Section 10), Single Water SAS Calculation Module (Section 14)

16.3 Syntax

16.3.1 Exported Constants

None

16.3.2 Exported Access Programs

Name	In	Out	Exceptions
all_Cl_SAS_cal	SD_totalCl: sequence of	C_s_air: sequence of \mathbb{R}	-
	\mathbb{R} , t2: sequence of \mathbb{R} ,		
	AADT: sequence of \mathbb{R} ,		
	AADTT: sequence of \mathbb{R}		
updateAADT	AADT: sequence of \mathbb{R}	AADT: sequence of \mathbb{R}	-
updateAADTT	AADTT: sequence of \mathbb{R}	AADTT: sequence of \mathbb{R}	-

16.4 Semantics

16.4.1 State Variables

None

16.4.2 Environment Variables

None

16.4.3 Assumptions

The AADT and AADTT are assumed to have 2% increase rate every year

16.4.4 Access Routine Semantics

$all_Cl_SAS_cal(M_app, h_app, SD_total, t2, AADT, AADTT)$:

- transition: None
- output: out := $(\frac{SD_totalCl}{ldv_ratio} * (updateAADT(AADT) updateAADTT(AADTT)) + SD_totalCl * AADTT) * t2$, where ldv_ratio is a constant read from Constant Module.
- exception: exc := None

updateAADT(AADT):

- transition: None
- \bullet output: out := AADT # calculate the AADT for future year, assuming a 2% annual increase rate
- exception: exc := None

updateAADTT(AADTT):

- transition: None
- $\bullet\,$ output: out := AADTT # calculate the AADTT for future year, assuming a 2% annual increase rate
- exception: exc := None

16.4.5 Local Functions

17 MIS of Chloride on Pier Calculation Module

This module determine the deposition of chloride ions on the pier of the bridge substructure

17.1 Module

 $chloride_on_pier$

17.2 Uses

Constant Module (Section 11), All Chloride Ions SAS Calculation Module (Section 16)

17.3 Syntax

17.3.1 Exported Constants

None

17.3.2 Exported Access Programs

Name	In	Out	Exceptions
chloride_on_pier	C_s_air: sequence of \mathbb{R}	results: sequence of $\mathbb R$	-

17.4 Semantics

17.4.1 State Variables

None

17.4.2 Environment Variables

None

17.4.3 Assumptions

None

17.4.4 Access Routine Semantics

chloride_on_pier(C_s_air):

- transition: None
- output: out := $C_sair * 0.015 * e^{-0.05*d} + C_sair * 0.985 * e^{-0.5*d}$, where d is a constant read from Constant Module, 0.015 and 0.985 being the coefficient of the formula.
- \bullet exception: exc := None

17.4.5 Local Functions

18 MIS of Chloride on Deck Calculation Module

This module determine the deposition of chloride ions on the deck of the bridge substructure

18.1 Module

 $chloride_on_deck$

18.2 Uses

Data Model Reading Module (Section 10)

18.3 Syntax

18.3.1 Exported Constants

None

18.3.2 Exported Access Programs

Name	In	Out	Exceptions
chloride_on_deck	h_{-} total: sequence of \mathbb{R} ,	results: sequence of $\mathbb R$	-
	AADT: sequence of \mathbb{R}		

18.4 Semantics

18.4.1 State Variables

None

18.4.2 Environment Variables

None

18.4.3 Assumptions

None

18.4.4 Access Routine Semantics

chloride_on_deck(h_total, AADT):

- transition: None
- output: out := $0.11 * h_total 0.000189 * AADT + 3.349$. This is a linear regression model.

• exception: exc := None

18.4.5 Local Functions

19 MIS of Chloride Exposure Database Generation Module

This module performs the calculation process to generate the database, it is related to the R2, R3 in SRS.

19.1 Module

calculate

19.2 Uses

Data Model Reading Module (Section 10), Constant Module (Section 11), Deicing Salts Calculation Module (Section 12), Melted Water Thickness Module (Section 13), Single Water SAS Calculation Module (Section 14), Single Chloride Ions SAS Calculation Module (Section 15), All Chloride Ions SAS Calculation Module (Section 16), Chloride on Pier Calculation Module (Section 17), Chloride on Deck Calculation Module (Section 18)

19.3 Syntax

19.3.1 Exported Constants

None

19.3.2 Exported Access Programs

Name	In	Out	Exceptions
calculate	AADT: sequence of \mathbb{R} ,	result: sequence of \mathbb{R}	DataMissingError,
	AADTT: sequence of \mathbb{R} ,		${\bf Data Invalid Error}$
	t1: sequence of \mathbb{R} , h_{total} :		
	sequence of \mathbb{R} , t2: se-		
	quence of \mathbb{R}		
savefile	long: sequence of \mathbb{R} , lat:	file: String	-
	sequence of \mathbb{R} , results:		
	sequence of \mathbb{R}		

19.4 Semantics

19.4.1 State Variables

None

19.4.2 Environment Variables

File: the result of calculation will be stored in an output csv file.

19.4.3 Assumptions

The map of Ontario is divided into multiple 25km * 25km grid (as mentioned in SRS) and the coordinates are the center of those grids. The locations inside each grid are consider to have same chloride exposure rate.

19.4.4 Access Routine Semantics

calculate($AADT, AADTT, t1, h_{total}, t2$):

- transition: use all the formulas from calculate_step1 to calculate_step6, conclude the final result
- output: out := result # Sequence of \mathbb{R}
- exception: exc:=

Expression	Exception
$\exists e \in [AADT, AADTT, h_{total}, t1, t2], e = \varnothing$	DataMissingError
$(\exists i \in [0 AADT - 1], AADTT[i] > AADT[i]) \lor (\neg(t1, t2 \in (0, 365)))$	DataInvalidError

savefile(long, lat, results):

- transition: Save the longitude, latitude and the corresponding results for each grid to a csv file, which is the prediction of chloride exposure rate. The file has a row label as coordinate and a column label as year.
- output: out := file
- exception: exc := None

19.4.5 Local Functions