1.)-X2 and X6 are independent

From the graph Xa is closed. Thus X2 connot get to X6

- It X7, X1, 4 moun,

New path: $X_2 \rightarrow X_3 \rightarrow X_9 \rightarrow X_5 \rightarrow X_8 \rightarrow X_9 \rightarrow X_{10} \rightarrow X_{11}$ $X_1 \leftarrow X_9 \leftarrow X_{10}$

Thus, it is now an open path. Then form, X2 and X6 are dependent.

2.) state no of the	. //
4	Parameter (Before) A (Alter)
- 1 (Beton)	4 (4+ur)
\times , -1 ₂ = 2	20
$X_2 \rightarrow X_3 = 2$	10
x3 ->)(4 = 2	12
X4 -) X5 = Z	20
- X1 = 1	4
115-117 = 2	20
x5-> X6-2	20
X6, X7, 118-119= 8	250
Xq -> X10 = 2	
X1, -> X, = 2	20
total = 26 tre parum	342

Befor = 26 the parameter,

Atter = 392 the parameter,

$$P(X_{7}; 1) = 0.3$$

$$P(X_{7}; 1) = 0.3$$

$$P(X_{1}; 1) = 0.1 \times 0.3 + 0.5 \times 0.7 = 0.38$$

$$P(X_{1}; 1) = 0.1 \times 0.3 + 0.5 \times 0.7 = 0.38$$

$$P(X_{1}; 1) = 0.1 \times 0.3 + 0.5 \times 0.7 = 0.38$$

$$P(X_{1}; 1) = 0.1$$

$$P(X_{1}; 1) \times P(X_{1}; 1) \times P(X_{1}; 1) = 0.1$$

$$P(X_{1}; 1) \times P(X_{1}; 1) \times P(X_{1}; 1) = 0.1$$

$$P(X_{1}; 1) \times P(X_{1}; 1) \times P(X_{1}; 1) = 0.1$$

$$P(X_{1}; 1) \times P(X_{1}; 1) \times P(X_{1}; 1) = 0.1$$

$$P(X_{1}; 1) \times P(X_{1}; 1) \times P(X_{1}; 1) = 0.1$$

$$P(X_{1}; 1) \times P(X_{1}; 1) \times$$