# CSCI 411 - Advanced Algorithms and Complexity Assignment 1

January 22, 2023

Solutions to the written portion of this assignment should be submitted via PDF to Blackboard. Make sure to justify your answers. C++ code should be submitted both on Canvas and on turnin. Both parts of the assignment are due before **February 5th at 11:59 pm**.

There may be time in class to discuss these problems in small groups and I highly encourage you to collaborate with one another outside of class. However, you must write up your own solutions **independently** of one another. Feel free to communicate via Discord and to post questions on the appropriate forum in Canvas. Do not post solutions. Also, please include a list of the people you work with at the top of your submission.

#### Written Problems

1. (10 pts) Sort the following functions in terms of asymptotic growth from smallest to largest. In particular, the resulting order  $f_1, \ldots, f_{12}$  should be such that  $f_1 = O(f_2)$ ,  $f_2 = O(f_3)$ , and so on. Identify any groups of functions that are  $\Theta$  of one another.

| n | $2^n$ | $n^3$ | $n \ln(n)$ | 2 | n! | $\log_2((4n)^n)$ | $\ln(n^2)$ | $\left(\frac{3}{2}\right)^n$ | $n^{1/5}$ | $\ln^2(n)$ | 52! |
|---|-------|-------|------------|---|----|------------------|------------|------------------------------|-----------|------------|-----|

- 2. Consider the following intuition for a sorting algorithm. Let A be a list of real numbers. If A is of size 0 or 1, return it since it is already sorted. Otherwise, pick the last element of A to be used as a pivot and call it p. For each element e of A except the last element, if  $e \leq p$ , place e in a list called L. On the other hand, if e > p, place e in another list called R. Repeat this procedure on L and R and call the resulting lists L' and R'. Make a new list by adding p between L' and R'. Return the result.
  - (a) (10 pts) Write pseudocode following the above intuition.
  - (b) (5 pts) Determine the **worst-case** asymptotic run time of this algorithm and explain why this is the worst case.
  - (c) (5 pts) Assume that the sizes of L and R are equal at each step of the algorithm. Find a recurrence relation describing the run time in this case.
  - (d) (10 pts) Given this recurrence relation, what is the asymptotic run time of the algorithm? Be sure to justify your answer using the master theorem.

- 3. Let G = (V, E) be a directed graph,  $s \in V$ , v.value be an integer attribute of each  $v \in V$ , and d(u, v) represent the shortest path distance between  $u, v \in V$ . If there is no path from u to v,  $d(u, v) = \infty$ . We say that G has property P with respect to s if, for  $u, v \in V$ , u.value < v.value when d(s, u) > d(s, v). Put another way, G has property P with respect to s if the value of nodes decreases as they get further from s.
  - (a) (10 pts) Describe an intuitive approach for determining whether or not G has property P with respect to s.
  - (b) (15 pts) Write pseudocode for a function hasP(G, s) which returns True if G has property P with respect to s and False otherwise.
  - (c) (5 pts) Analyze the asymptotic run time of your algorithm.
- 4. Let G = (V, E) be an undirected graph. We would like to partition the vertices of G into three groups, A, B, and C:

$$A = \{v | u, v \in V, (u \leadsto v) \implies (v \leadsto u), \exists w \in V \text{ s.t. } v \leadsto w \text{ and } w \not\leadsto v\}$$

$$B = \{v | u, v \in V, (v \leadsto u) \implies (u \leadsto v), \exists w \in V \text{ s.t. } w \leadsto v \text{ and } v \not\leadsto w\}$$

$$C = \{v | v \in V, v \not\in A \cup B\}$$

In words, A is the set of vertices v such that (1) if  $u \leadsto v$ , then  $v \leadsto u$  and (2) there is some vertex  $w \in V$  such that  $v \leadsto w$  but  $w \not\leadsto v$ . B is the set of vertices v such that (1) if  $v \leadsto u$ , then  $u \leadsto v$  and (2) there is some vertex  $w \in V$  such that  $w \leadsto v$  but  $v \not\leadsto w$ . And C is the set of all vertices not included in A or B. There are several specific examples of A, B, and C at the end of this document.

- (a) (10 pts) Describe an intuitive approach for determining the size of the sets A, B, and C.
- (b) (15 pts) Write pseudocode for a function getSetSizes(G) which returns (|A|, |B|, |C|), a triple with the sizes of each set.
- (c) (5 pts) Analyze the asymptotic run time of your algorithm.

## Coding Problem

(20 pts) Write a C++ implementation of the pseudocode you developed for problem (4b) and submit to Canvas and to turnin as assignment\_1.cpp. Some skeleton code that you might find useful is available on Canvas (assignment\_1\_skeleton.cpp).

- Input will come from cin
  - The first line will contain two integers, n and m, separated by a space.
  - -n is a number of vertices and m is a number of edges.
  - The next m lines will contain two integers, u and v, separated by a space.
  - Each of these pairs represents a directed edge (u, v).
- Print output to cout
  - On one line print the sizes of the three sets following the format "|A| = A size, |B| = B size, |C| = C size".

## Examples

In the following examples, green nodes belong to A, red nodes belong to B, and white nodes belong to C.

#### Example 1:



Input:

45

1 2

2 3

3 4

4 1

2 4

Expected output:

$$|A| = 0, |B| = 0, |C| = 4$$

### Example 2:



Input:

5 7

1 3

3 2

 $\frac{1}{2}$  1

1 4

3 5

 $\begin{array}{c} 4 \ 5 \\ 5 \ 4 \end{array}$ 

Expected output:

$$|A| = 3, |B| = 2, |C| = 0$$

## Example 3:



2 1

13

3 2

3 6 26

 $13\ 12$ 

 $12\ 14$ 

14 13

3 7

7 13

7 8

8 9

8 11

9 10

11 10

10 7

4 5

5 4

4 11

5 11  $10\ 15$ 

Expected output: 
$$|A| = 5$$
,  $|B| = 4$ ,  $|C| = 6$