

IPv4 adresace, výpočty rozsahu a adres sítě

Ing. Petr Orvoš

SOŠ a SOU NERATOVICE

IPv4 adresa

Adresa IPv4 je 32bitová hierarchická adresa, která se skládá ze síťové části a hostitelské části. Při určování síťové části a hostitelské části se musíte podívat na 32bitový datový proud, jak je znázorněno na obrázku.

Bity v síťové části adresy musí být stejné pro všechna zařízení, která jsou umístěna ve stejné síti.

VIDEO vše vysvětlí (klikni na ikonu, IPv4 sleduj pouze **do 04:30 min,** pak následují IPv6)

IPv4 adresa

IP adresa je logická adresa zařízení v síti IP.

- IPv4 se skládá se ze 4 částí zvaných octety, každá část je veliká 8 bitů, a zapisuje se oddělená tečkou.
- adresa se většinou zapisuje v dekadické formě.
- pojem octet nebo oktet 8 bitů. Termín je často používán u počítačových sítí, když termín byte může být dvojznačný. U běžných počítačových systému jde o synonyma.
- Minimální teoreticky použitelná adresa je 0.0.0.0
- Maximální teoreticky použitelná adresa je 255.255.255.255

Zapište následující IP adresy v binární podobě:

192.168.1.56, 252.168.25.123, 127.135.222.169, 212.151.32.2

Podsíť - subnet

Síť dělíme na síťové vrstvě na podsítě - subnets - subnetworks.

- subnety slouží k logickému dělení sítě do menších hierarchických částí
- příklad: velký ISP má určitý síťový rozsah (subnet), ten dělí na části, které přiděluje firmám a ve firmě se ještě dělí na menší části.

Ke spojování jednotlivých subnetů slouží routery.

Dělení sítě na subnety je důležité nejen proto, že naši síť oddělíme od jiných sítí, ale také z výkonových důvodů.

Řada informací se v rámci subnetu šíří pomocí broadcastů, tedy vysílání všem zařízením, což je značná zátěž pro síť i zařízení.

Maska podsítě (subnet mask)

Všimněte si, že maska podsítě je postupná sekvence 1 (bitů) následovaná postupnou sekvencí 0 bitů.

Maska podsítě (subnet mask) je číslo, které určuje, jaká část IP adresy označuje síť a jaká část označuje zařízení (hosta) v této síti.

- používá se k rozdělení IP adresního prostoru na menší podsítě
- pomáhá směrovačům rozhodnout, zda je zařízení ve stejné síti, nebo je třeba poslat data jinam

Maska podsítě

- zápis je stejný jako u IP adresy, ale platné hodnoty jsou pouze ty, které mají v binárním tvaru zleva jedničky a zprava nuly (pokud se zleva na některé pozici objeví nula, dále již musí následovat pouze nuly)
- jedničky v masce jsou tzv. network ID a je to část, která je pro daný subnet stále stejná
- nuly jsou tzv. host ID a tedy část, která je proměnná a určuje adresu hosta v daném subnetu.

Možné kombinace v octetu:

binárně	dekadicky
0000000	0
10000000	128
11000000	192
11100000	224
11110000	240
11111000	248
11111100	252
11111110	254
11111111	255

VIDEO vše vysvětlí (klikni na ikonu)

Zkrácený zápis masky podsítě - CIDR

Subnet maska se může zapisovat také ve zkrácené formě, které se říká **CIDR notace** (Classless Inter-Domain Routing).

Ta se zapisuje jako IP adresa následovaná lomítkem (/) a číslem, které reprezentuje počet jedničkových bitů v masce podsítě v binární formě. Protože celkový počet bitů v masce je 32, tak počet nul je 32 - počet jedniček.

Příklad CIDR notace je 10.0.5.2/20 a tedy maska je 255.255.240.0.

dekadicky	255.	255 .	240 .	0	
binárně	111111111	וווווווו	11110000	00000000	
počet jedniček	8	8	4	0	= 20

Délka předpony (CIDR) je počet bitů nastavených v masce podsítě na hodnotu 1.

Zkrácený zápis masky podsítě - CIDR

Maska podsítě	32bitová adresa	Délka předpony
255.0.0.0	11111111.00000000.00000000.00000000	/8
255.255.0.0	11111111.11111111.00000000.00000000	/16
255.255.255.0	11111111.111111111111111111111111111111	/24
255.255.255.128	11111111.111111111111111111111111111111	/25
255.255.255.192	11111111.11111111.11111111.11000000	/26
255.255.255.224	11111111.11111111.11111111.11100000	/27
255.255.255.240	11111111.11111111.11111111.11110000	/28
255.255.255.248	11111111.11111111.11111111.11111000	/29
255.255.255.252	11111111.11111111.11111111.11111100	/30

Inverzní maska (Wildcard mask)

Wildcard mask nebo také inverzní maska je speciální zápis síťové masky, který používá například Cisco u Access listů.

Jedná se o opak ke klasické masce, počítají se zde nuly

místo jedniček.

Takže například ke klasické masce <mark>255.255.255.240</mark> je inverzní maska <mark>0.0.0.15</mark>.

Inverzní masku dostaneme tak, že normální masku zobrazíme binárně, provedeme inverzi a převedeme na dekadickou hodnotu. Nebo jednodušeji stačí, u každého octetu spočítat 255 - hodnota. Tedy v našem příkladě 255-255=0, 255-240=15.

255.255.255.240

V binárním zápisu:

1111111.11111111.11111111.11110000

Inverzní maska (wildcard mask)

0.0.0.15

V binárním zápisu:

0000000.00000000.00000000.00001111

Variable Lenght Subnet Mask

VLSM (Variable Length Subnet Mask) je technika, která umožňuje **přidělovat podsítě** s různě dlouhou maskou podle potřeby – tedy efektivněji využívat IP adresy.

<u>Jak VLSM funguje – jednoduše:</u>

- 1. zvolíš základní síť (např. 192.168.1.0/24)
- 2. zanalyzuješ, kolik zařízení potřebuješ v jednotlivých podsítích
- **3. začneš největší potřebnou sítí** a přidělíš jí nejmenší možnou masku, která ji pokryje
- **4. zbytek sítě** rozdělíš na další menší podsítě s vhodnými maskami
- 5. **opakuješ**, dokud nepokryješ všechny potřeby.

Příklad:

Máš síť **192.168.1.0/24** a potřebuješ:

- 1 síť pro 50 zařízení
- 1 síť pro 20 zařízení
- 1 síť pro 10 zařízení
- 1 síť pro 2 zařízení

- **126** → 64 adres (pro 50 zařízení)
- /27 → 32 adres (pro 20 zařízení)
- **16** adres (pro 10 zařízení)
- /30 → 4 adresy (pro 2 zařízení)

Variable Lenght Subnet Mask

Název sítě	Požadovaných hostů	Přidělená podsíť	Maska	Inverzní maska	Rozsah IP (host)	Broadcast	Počet použitelných IP
Sít' A	50	192.168.1.0/26	255.255.255.192	0.0.0.63	192.168.1.1 - 192.168.1.62	192.168.1.63	62
Sít' B	20	192.168.1.128/27	255.255.255.224	0.0.0.31	192.168.1.129 - 192.168.1.158	192.168.1.159	30
Sít' C	10	192.168.1.192/28	255.255.255.240	0.0.0.15	192.168.1.193 - 192.168.1.206	192.168.1.207	14
Sít' D	2	192.168.1.224/30	255.255.255.252	0.0.0.3	192.168.1.225 - 192.168.1.226	192.168.1.227	2

Třídy IP adres – Classfull addressing

V roce 1981 byly IPv4 adresy přidělovány pomocí classful addressing. Zákazníkům byla přidělena síťová adresa na základě jedné ze tří tříd, A, B nebo C. RFC rozdělilo rozsahy unicast vysílání do konkrétních tříd následovně:

Třída	začátek (bin)	1. bajt	standardní maska	CIDR	bitů stanice	stanic v každé síti
Α	0	0–127	255.0.0.0	/8	24	2 ²⁴ –2 = 16 777 214
В	10	128–191	255.255.0.0	/16	16	2 ¹⁶ –2 = 65 534
С	110	192–223	255.255.255.0	/24	8	2 ⁸ -2 = 254
D	1110	224–239		m	nulticast	
E	1111	240–255		vyhrazer	no jako rezerva	

Dnes se prakticky nepoužívá.

Třídy IP adres – Classless network

Od classfull network se již před dlouhou dobou ustoupilo a začalo se používat adresování CIDR, které je více flexibilní při dělení sítě na podsítě.

V komunikaci používáme vždy IP adresu spolu s maskou.

I když se opustily classful network, tak se v praxi běžně setkáme s označováním subnetů jako třída C apod., myslí se tím však typ masky (červeně v předchozí tabulce).

U Cisco switchů a routerů se používá příkaz pro použití classless network, který je defaultně zapnutý.

VIDEO vše vysvětlí (klikni na ikonu)

Neveřejné síťové rozsahy a speciální

Některé síťové rozsahy mají speciální vlastnosti, tou hlavní je, že se neroutují, tzn. neprochází do dalšího subnetu. To se využívá u privátních subnetů, které neprochází do internetu. V praxi je využívá většina firem v lokální síti a do internetu přistupují přes veřejnou adresu za pomoci **NAT** (budeme brát později podrobněji).

třída	síť	adresa sítě	broadcast adresa	adresy hostů							
Α	10.0.0.0/8	10.0.0.0	10.255.255.255	10.0.0.1 - 10.255.255.254							
В	172.16.0.0/12	172.16.0.0	172.31.255.255	172.16.0.1 - 172.31.255.254							
С	192.168.0.0/16	192.168.0.0	192.168.255.255	192.168.0.1 - 192.168.255.254							

A ještě speciální adresy:

síť	adresa sítě	broadcast adresa	označení
127.0.0.0/8	127.0.0.0	127.255.255.255	Localhost Loopback Addresses
169.254.0.0 /16	169.254.0.0	169.254.255.255	Zeroconf Address

Localhost Loopback Address

Dalšími speciálními subnety jsou:

Localhost je speciální název, který v operačních systémech (Windows, Linux, macOS) odkazuje na lokální počítač – tedy zařízení, na kterém uživatel pracuje.

Loopback adresa je IP adresa, která také odkazuje zpět na lokální zařízení.

IP adresy loopback rozhraní:

- nejznámější: 127.0.0.1 (v IPv4), celý rozsah: 127.0.0.0/8, tedy od 127.0.0.1 do 127.255.255.254
- V IPv6: ::1 je ekvivalent 127.0.0.1

Využití:

- 1. testování síťových aplikací (např. webový server běžící na http://127.0.0.1:8000 ti umožní přístup k lokální aplikaci v prohlížeči)
- 2. diagnostika sítě (příkaz ping 127.0.0.1 testuje, zda funguje TCP/IP stack na zařízení)
- **3. bezpečnost a sandboxing** (omezení přístupu pouze na lokální zařízení například databáze PostgreSQL může přijímat připojení pouze z 127.0.0.1, aby k ní nemohl nikdo z internetu.
- **4. vývoj webových stránek** (frameworky např. Node.js, Flask, Django standardně běží na localhost, dokud není aplikace připravena k nasazení do produkce).

Zeroconf Address

Zeroconf (Zero Configuration Networking) je technologie, která umožňuje zařízení v počítačové síti komunikovat bez potřeby ruční konfigurace (*např. bez DHCP serveru nebo ručního nastavení IP adres*).

Je to užitečné např. v domácnostech nebo malých sítích, kde:

- není žádný DHCP server
- chceme, aby zařízení "samo fungovalo"

Rozsah IP: 169.254.0.0/16 (nejčastější adresa, kterou zařízení získá: 169.254.x.x)

Tento blok je rezervován pro Automatic Private IP Addressing (APIPA)

Využití:

- 1. automatické přiřazení IP adresy (zkontroluje, zda adresa není v konfliktu (pomocí ARP), pokud není, použije ji
- 2. komunikace bez routeru (např. pro přímé spojení dvou počítačů kabelem, tiskáren, kamer nebo IoT zařízení
- 3. podpora v operačních systémech

Omezení:

- funguje pouze v rámci jedné broadcast domény
- nepracuje přes routery tedy žádný přístup na internet

Směrování neveřejných adres do internetu

Většina interních sítí, od velkých podniků až po domácí sítě, používá privátní IPv4 adresy pro adresování všech interních zařízení (intranet) včetně hostitelů a routerů.

Soukromé adresy nejsou globálně směrovatelné!

DMZ (demilitarizovaná zóna)

DMZ je **část sítě, která je oddělená od vnitřní (důvěryhodné) sítě**, ale zároveň přístupná z internetu. Používá se hlavně pro **zvýšení bezpečnosti**.

Router na obrázku provádí nejen směrování, ale také provádí NAT a funguje jako firewall pro zabezpečení.

Přiřazení IPv4 adres?

Veřejné IPv4 adresy musí být jedinečné.

Přiřazení IPv4 adres

Adresy IPv4 i IPv6 jsou spravovány úřadem IANA (Internet Assigned Numbers Authority). IANA spravuje a přiděluje bloky IP adres regionálním internetovým registrům (RIR).

Určení sítě – logické AND

Logický operátor AND je jednou ze tří booleovských operací používaných v booleovské nebo digitální logice. Další dvě jsou OR a NOT.

Operace AND se používá k určení síťové adresy, OR k určení broadcast.

Aby bylo možné identifikovat síťovou adresu hostitele IPv4, je adresa IPv4 logicky ANDována, bit po bitu, pomocí masky podsítě. **ANDing mezi adresou a maskou podsítě poskytuje síťovou adresu.**

Určení adresy sítě (network ID)

Pro ilustraci toho, jak se operátor AND používá ke zjištění síťové adresy, zvažte hostitele s adresou IPv4 192.168.10.10 a maskou podsítě 255.255.255.0:

Výsledkem operace AND mezi adresou hostitele IPv4 (192.168.10.10) a maskou podsítě (255.255.255.0) je síťová adresa IPv4 (192.168.10.0) pro tohoto hostitele.

Jedná se o důležitou operaci IPv4, protože hostiteli říká, do jaké sítě patří.

Ostatní důležité adresy

Na základě předchozího výpočtu můžeme dále určit:

- adresu prvního a posledního hosta v síti
- a ve finále i adresu broadcastového vysílání (bude ukázáno dále)

Network Address	First Usable Host	Last Usable Host	Broadcast Address					
192.168.10.0	192.168.10.1	192.168.10.254	192.168.10.255					

192.168.10.10

(falls within the range of usable host addresses)

Nalezení Network ID – jiný příklad

Nalezení první adresy podsítě se může zdát jednoduché, ale někdy to na první pohled vidět není. Pak musíme použít logiku nebo matematiku.

Network ID se dá vypočítat z binárního zápisu adresy a masky, kdy se provede bitový logický součin AND.

Příklad pro adresu 10.217.123.7/20:

IP binárně	00001010.11011001.01111011.00000111
maska binárně	11111111111111111110000.00000000
operace AND	00001010.11011001.01110000.00000000
dekadicky	10.217.112.0

Určení Broadcast sítě

Broadcastovou adresu subnetu nalezneme podobně jako network ID.

Matematicky můžeme použít bitový logický součet **OR** mezi IP adresou a negovanou maskou.

Příklad pro adresu 10.217.123.7/20:

IP binárně	00001010.11011001.01111011.00000111
maska binárně	11111111111111111110000.00000000
negace masky	0000000.00000000.00001111.11111111
operace OR	00001010.11011001.01111111111111111
dekadicky	10.217.127.255

Výpočet počtu subnetů a hostů

Při výpočtu postupujeme tak, že vezmeme octet masky, v kterém je přechod mezi jedničkami a nulami.

Podle počtu jedniček v tomto octetu a celkového počtu nul spočítáme počet podsítí (z jedniček) a počet hostů (z nul).

2^{počet jedniček} = počet subnetů

2^{počet nul} - 2 = počet hostů

Postup výpočtů parametrů sítě

- 1. Zapiš si IP adresu a CIDR např. 192.168.1.18 /17
- 2. Urči síťovou masku z CIDR /17 znamená 17 bitů pro masku → 255.255.128.0
- 3. Spočítej binární zápis IP adresy a masky, vypočítej adresu sítě (AND IP & maska) provádíme "AND-ing")

```
IP: 192.168.1.18 \rightarrow 11000000.10101000.0000001.00010010
```

4. Vypočítej broadcast adresu (OR IP & inversní maska - provádíme "OR-ing")

```
IP: 192.168.1.18 \rightarrow 11000000.10101000.00000001.00010010
```

 \rightarrow 11000000.10101000.01111111111111111 \rightarrow 192.168.127.255

- 5. Urči první host adresu: adresa sítě + 1 \rightarrow 192.168.0.1
- 6. Urči poslední host adresu: broadcast 1 → 192.168.127.254
- 7. Spočítej počet hostů: vzorec: $2^{(32 CIDR)} 2 \rightarrow pro /17: 2^{15} 2 = 32 766 hostů$

Příklad 1

Máme adresu 192.168.1.25/24

Spočítejte adresu sítě a její broadcast adresu

192.168.1.25	11000000	10101000	0000001	00011001
255.255.255.0	1111111	11111111	1111111	0000000
192.168.1.0	11000000	10101000	0000001	00000000
192.168.1.255	11000000	10101000	0000001	1111111

Závěr:

Adresa sítě – 192.168.1.0

Netmask - 255.255.255.0

Broadcast adresa – 192.168.1.255

Příklad 2

Máme adresu 192.168.1.2

Netmask: 255.255.254

Napište adresu sítě včetně CIDR a její broadcast adresu

192.168.1.2		1 1	L	0	0	0	0	0	0	1	0	1	0	1	. 0	C	0	0	0	0	0	0	0	0	1	0	C	0 (0	0	0	1	0
255.255.255.224	ļ <u>'</u>	1 1	L	1	1	1	1	1	1	1	1	1	1	. 1	_ 1	1	. 1	1	1	1	1	1	1	1	1	1	. 1	. 1	0	0	0	0	0
192.168.1.0		1 1	L	0	0	0	0	0	0	1	0	1	0	1	L 0	C	0	0	0	0	0	0	0	0	1	0	C	0 (0	0	0	0	0
192.168.1.31		1 1	L	0	0	0	0	0	0	1	0	1	0	1	. 0	C	0	0	0	0	0	0	0	0	1	0	C	0 (1	1	1	1	1

Závěr:

Adresa sítě – 192.168.1.0/27

Broadcast adresa – 192.168.1.31

Dodatečný závěr: V této síti je použitelných 30 IP adres pro hosty (25 - 2)

Příklad 3

Máme adresu 10.1.5.20

Netmask: 255.255.250.240

Napište adresu sítě včetně CIDR, její broadcast adresu, počet host adres, rozsah host adres.

10.1.5.20	()	0	0	0	1	. () 1	LC)	0	0	0	0	() ()	0	1	C	C	C	C	() (1 ()	1	0	C) () :	1	0	1	0	0
255.255.255.240	1 -	L	1	1	1	1	. 1	L 1	L 1	•	1	1	1	1	. 1	1 :	1	1	1	1	. 1	. 1	. 1	. 1	L í	1 1	1	1	1	1		L	1	0	0	0	0
10.1.5.16	()	0	0	0	1	. () 1	L C)	0	0	0	0) () ()	0	1	C	C	C	C	() (1 ()	1	0	C) () :	1	0	0	0	0
10.1.5.31	()	0	0	0	1	. () [L C)	0	0	0	0) () ()	0	1	C	C	C	C	() (1 ()	1	0	C) () :	1	1	1	1	1

Závěr:

Adresa sítě – 10.1.5.16/28 Broadcast adresa – 10.1.5.31

Rozsah host adres: 10.1.5.17 - 10.1.5.30 - celkem 14 adres

Příklad – určení adres v síti 1

Ze zadané IP adresy vypočtěte IP adresu sítě včetně CIDR označení masky a ostatní požadované adresy uvedené v tabulce (broadcast adresa, nejnižší host adresa, nejvyšší host adresa, počet host adres.

Zadaná IP adresa:	170.61.212.110
CIDR:	/24
Prefix převeden o oktetového zápisu:	
Vypočtená adresa sítě včetně prefixu:	
Nejnižší host adresa:	
Vypočtená broadcast adresa:	
Nejvyšší host adresa:	
Počet host adres:	

Řešíme postupně na tabuli a studenti si píší poznámky:

Příklad – určení adres v síti 2

Ze zadané IP adresy vypočtěte IP adresu sítě včetně CIDR označení masky a ostatní požadované adresy uvedené v tabulce (broadcast adresa, nejnižší host adresa, nejvyšší host adresa, počet host adres.

Zadaná IP adresa:	170.61.212.110
Prefix:	/22
Vypočtená adresa sítě včetně prefixu:	
Prefix převeden o oktetového zápisu:	
Nejnižší host adresa:	
Nejvyšší host adresa:	
Vypočtená broadcast adresa:	
Počet host adres:	

Řešíme postupně na tabuli a studenti si píší poznámky:

Síťové, hostitelské a vysílací adresy

Zařízení patří do stejné sítě, pokud splňuje tři kritéria:

- má stejnou masku podsítě jako síťová adresa;
- má stejné síťové bity jako síťová adresa, jak je uvedeno v masce podsítě;
- je umístěna ve stejné vysílací doméně jako ostatní hostitelé se stejnou síťovou adresou.

Síťová adresa nemůže být přiřazena zařízení!

Adresa všesměrového vysílání - broadcast

Broadcast adresa v síti IPv4 slouží k odeslání dat *všem zařízením* (hostům) v dané podsíti najednou.

- broadcast adresa je poslední adresa v rozsahu dané podsítě
- když zařízení odešle paket na tuto adresu, dorazí ke všem aktivním zařízením v síti (např. všem počítačům)

Používá se například při:

- vyhledávání jiných zařízení (např. ARP dotazy)
- zasílání informací bez znalosti konkrétní IP adresy cíle

Vysílání v IPv4 – unicast a broadcast

Zdroj: 172.16.4.1/24 Určení: 172.16.4.253/24 172.16.4.1/24

Source: 172.16.4.1/24

Destination: 255.255.255

172.16.4.1/24

172.16.4.2/24

172.16.4.3/24

Limited Broadcast

Broadcast paket má cílovou IP adresu se všemi jedničkami (např. 172.16.4.255), nebo 32 jednorázovými (1) bity (na obrázku).

ALE, POZOR

Vysílání v IPv4 – multicast

Přenos multicastového vysílání snižuje provoz tím, že umožňuje hostiteli odeslat jeden paket vybrané sadě hostitelů, kteří se přihlásí k odběru skupiny multicastového vysílání.

Paket multicastového vysílání je paket s cílovou adresou IP, která je adresou multicastového vysílání. Protokol IPv4 vyhradil adresy 224.0.0.0 až 239.255.255 jako rozsah multicastového vysílání.

Komu to půjde?

Zdroje

- Cisco: výukový portál Netacad.com
- Jiří Peterka <u>www.e-archiv.cz</u> (sborník přednášek Počítačové sítě II)
- Adresování v IP sítích | SAMURAJ-cz.com dostupné na: https://www.samuraj-cz.com/clanek/adresovani-v-ip-sitich/
- přednáška Ing. V. Bohaty (SPŠMB)

"Části této prezentace byly vytvořeny s využitím generativní umělé inteligence (OpenAI - ChatGPT 4.0, verze z roku 2025) jako podpůrného nástroje pro získávání informací a formulaci textu. Výsledky byly následně editovány a ověřeny autorem."