Projeto e Análise de Algoritmos

Prof. Dr. Ednaldo B. Pizzolato

BIG O

Teoria

Seja T(n) o tempo de execução de um programa, medido em função do tamanho do conjunto de entrada n.

- → n é um valor não negativo
- → T(n) é um valor não negativo p/ qquer n Seja f(n) outra função também definida no_conjunto dos inteiros não negativos. Se T(n) é no máximo uma constante vezes f(n) – <u>excetuando-se,</u> <u>possivelmente, alguns valores pequenos de n</u> – pode-se dizer que T(n) é O(f(n)).

Teoria

Definição formal

□ T(n) é O(f(n)) se existe um inteiro n_0 e uma constante c (c > 0) | \forall n > $n_0 \rightarrow$ T(n) ≤ c. f(n)

Suponha que tenhamos um programa que tenha os seguintes tempos de execução:

$$T(0) = 1;$$
 $T(1) = 4;$ $T(2) = 9$
em geral podemos resumir em $T(n)=(n+1)^2$

Assim, teríamos que T(n) é O(n²)

Prova: Pela definição tem-se que se escolhermos uma constante c e um valor n_0 tais que $T(n) \le c \cdot n^2$, então T(n) será $O(n^2)$.

Para $c = 4 e n_0 > 1 temos esta relação.$

$$n^2 + 2.n + 1 \le n^2 + 2.n^2 + n^2$$

$$\leq 4 \cdot n^2$$

Constantes não são importantes
 Se T(n) é O(d .T(n)) para qualquer d > 0
 e se

$$n_0 = 0 e c \ge 1/d$$

Então

$$T(n) \le c \cdot (d \cdot T(n))$$

 $\le c \cdot d \cdot T(n)$
 $\le 1 \cdot T(n)$

2. Termos de ordem menor não são importantes.

Seja T(n) um polinômio da forma:

$$a_k.n^k + a_{k-1}.n^{k-1} + ... + a_1.n + a_0 \quad (a_k > 0)$$

Seja $n_0 = 1$ e c = $\sum a_i$ se $a_i > 0$
 \Rightarrow T(n) não é superior a c.T(n)
Exemplo: $2 \cdot n^3$ é O (0.001 · n^3)
Seja $n_0 = 0$ e c = $2 / 0.001$ (2000)
 $2.n^3 \le 2000 \cdot (0.001 \cdot n^3)$
 $\le 2 \cdot n^3$

Outro exemplo:

$$T(n) = 3 \cdot n^5 + 10 \cdot n^4 - 4 \cdot n^3 + n + 1$$

 $3 \cdot n^5 + 10 \cdot n^4 - 4 \cdot n^3 + n + 1 \le 3 \cdot n^5 + 10 \cdot n^5 + n^5 + n^5$
 $\le 15 \cdot n^5$

Constatando através das proporções...

$$3 n^2 + 10 n + 10 \text{ é O}(n^2)$$

p/ n = 10 \rightarrow 73.2%; 24.4% e 2.4%
p/ n = 100 \rightarrow 96.7%; 3.2%; ...

A eliminação de elementos de menor ordem é consequência do fato de que o que é realmente importante é a taxa de crescimento e não o valor exato de T(n).

Desta forma, $T(n) = 2^n + n^3$ tem como resultado a avaliação de que $T(n) = O(2^n)$ pois $n^3/2^n$ tende a zero à medida que n cresce.

Agenda

- Revisão
- Big O
- Usando limites para comparar crescimento
- Outras medidas
- Analisando tempo de execução
- Classificação

USANDO LIMITES PARA COMPARAR ORDEM DE CRESCIMENTO

Limite

$$\lim_{n\to\infty}\frac{t(n)}{g(n)}= \begin{cases} 0 \text{ implica que t(n) < g(n)} \\ c \text{ implica que t(n) \approx g(n)} \\ \infty \text{ implica que t(n) > g(n)} \end{cases}$$

Compare a ordem de crescimento $\frac{1}{2}n(n-1)$ com n^2

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2}\lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2}\lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}$$

têm a mesma ordem de crescimento.

- Compare a ordem de crescimento n! com 2ⁿ
- → Lembrando da fórmula de Stirling n! $\approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

$$\lim_{n\to\infty} \frac{n!}{2^n} = \lim_{n\to\infty} \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{2^n} = \lim_{n\to\infty} \sqrt{2\pi n} \frac{n^n}{2^n e^n} = \lim_{n\to\infty} \sqrt{2\pi n} \left(\frac{n}{2e}\right)^n = \infty$$

n! cresce bem mais rápido que 2ⁿ.

 $T(n) = 2^n + n^3$ tem como resultado a avaliação de que $T(n) = O(2^n)$

Prova: Seja n_0 =10 e c = 2. Deve-se provar que para $n \ge 10$ tem-se que $2^n + n^3 \le 2$. 2^n

Subtraindo-se 2ⁿ de ambos os lados temos: n³ ≤ 2ⁿ (2 – 1)

Para n = 10 tem-se que

 $2^{10} = 1024$

 $10^3 = 1000$

Tabela

O(1) Constante

O(log n) Logarítmica

O(n) Linear

 $O(n \log n)$ $n \log n$

O(n²) Quadrática

O(n³) Cúbica

O(2ⁿ) Exponencial

A relação de big-oh (O) é importante para se estabelecer a relação de \leq entre as funções. Existem outras definições dentro da análise de algoritmos que apresentam outras relações: big Ω e big Θ .

Agenda

- Big O
- Usando limites para comparar crescimento
- Outras medidas
- Analisando tempo de execução
- Classificação

BIG Ω

Big Ω

Definição: Uma função t(n) é considerada $\Omega(g(n))$ e denotada por $t(n) \in \Omega(g(n))$ se g(n) é um limite inferior de t(n) tendo como diferença uma constante positiva c:

$$t(n) \ge c.g(n)$$

Relembrando o big O...

BIG O

Big O

Definição: Uma função t(n) é considerada $\Theta(g(n))$ e denotada por $t(n) \in \Theta(g(n))$ se g(n) é um limite inferior e também superior de t(n) tendo como diferença as constantes positivas c_1 e c_2 :

$$c_2.g(n) \le t(n) \le c_1.g(n)$$
 para todos $n \ge n_0$

Provar que
$$\frac{1}{2}n(n-1) \in \Theta(n^2)$$

$$c_2.g(n) \le t(n) \le c_1.g(n)$$
 para todos $n \ge n_0$

Inequação lado direito:
$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$$

Portanto, para o lado direito, temos que $c_1 = \frac{1}{2}$ e $n_0 = 0$

Provar que
$$\frac{1}{2}n(n-1) \in \Theta(n^2)$$

$$c_2.g(n) \le t(n) \le c_1.g(n)$$
 para todos $n \ge n_0$

Inequação lado esquerdo:

$$\frac{1}{2}n(n-1) \ge c_2 n^2$$

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n$$

$$\frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n$$

$$\frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{4}n^2$$

$$\frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{4}n^2 \qquad \text{Para todo n} \ge 2$$

Provar que

Agenda

- Revisão
- Big O
- Usando limites para comparar crescimento
- Outras medidas
- Analisando tempo de execução
- Classificação

Comandos simples

```
→ atribuição, leitura, escrita... O(1) 
Exemplo:
```

a ← 1

leia (x)

escreva (z)

Repetições

→ Os limites superiores (loops determinados) indicam o limite superior do número de vezes que os comandos dentro do loop serão repetidos.

Repetições (while e repeat)

→ Não têm limite superior (indeterminado). Deve-se detectar um limite superior (pior caso).

```
Exemplo 1: i ← 1
Enquanto i <> a[i] faça
i ← i + 1
```

O(n)

Comandos condicionais

→ Normalmente o comando condicional é O(1) – a menos que tenha uma chamada de função ou o cálculo de um número complicado. Assim, as partes então e senão do comando devem ser analisadas individualmente e uma estimativa deve ser atribuída ao conjunto.

```
Exemplo 1: Se a[1][1] = 0 então

Para i ← 1 até n faça

Para j ← 1 até n faça

a[i][j] ← i*j

senão

Para j ← 1 até n faça

a[i][j] ← 10
```

Quando não se tem ideia do que acontecerá -> assumir pior caso

Procedimentos

Se todos os procedimentos são não recursivos, pode-se começar a computar o tempo de todo o programa à partir dos procedimentos que não chamam outros. Parte-se, então, para aqueles que utilizam os procedimentos cujos valores já foram calculados... E assim por diante...

Procedimentos Recursivos

```
Análise um pouco mais difícil.
função fatorial (n)
   se n ≤ 1 então
                                      O(1)
         fatorial ← 1
   senão
         fatorial ← n . fatorial (n-1)
```

Indução
$$T(n) = O(1) + T(n-1)$$

Caso base :
$$T(1) = O(1) = a$$

Indução:
$$T(n) = b + T(n-1)$$

 $T(2) = b + T(1) = b + a$
 $T(3) = b + T(2) = b + b + a = 2.b + a$
 $T(4) = b + T(3) = b + 2.b + a = 3.b + a$

$$T(n) = (n-1).b + a$$

Substituição repetida

$$T(m) = b + T(m-1) m > 1$$

$$T(n) = b + T(n-1)$$

 $T(n-1) = b + T(n-2)$

- - -

$$T(2) = b + T(1)$$

 $T(1) = a$

Substituição repetida
$$T(n) = b + b + T(n-2)$$

$$T(n) = b + b + b + T(n-3)$$

$$T(n) = b + b + b + b + T(n-4)$$

$$T(n) = 3.b + T(n-3) \text{ ou } 4.b + T(n-4)$$

- - -

$$T(n) = (n-1).b + T(n-(n-1)) = (n-1).b + a$$

THE END