Problem 1: shift cipher SEOYKSOES == our ciprestext 184424091469 ex(x)=x+k mod N) encyption function brute lorce attack One approach: we only have 26 possible keys - test all of them eventually get to k=22 -> decrypt with dx(y)=y-k mod N then plaintext reads WISCONSIN See Matlab/Python script

Problem 2

Proving a function is injective.

in a general case, a function F is injective (one-to-one) if: $\forall x.u \in A$, F(x) = F(u) (or equivalently: x = u)

Infor all

For a shift cipher: $e(k,x) = x + k \mod 26$ (fixed choice for x) Our claim: e(k,x) is injective with sespect to k Proof: Fix any x in \mathbb{Z}_{26} s.t. $e(k,x) = e(k_2,x)$ i.e. x = 5 $5 + k_1 = 5 + k_2 \implies k_1 = k_2$

Proving a function is NOT injective: (general case) show two elements $x, u \in A$ s.t. $F(x) = F(u), x \neq u$

For the quiz question, you were asked what would happen if the shift cipher were not injective. Three laws were given:

- √ × 8 / = ×
- 2 x80= x
- 3) $\times \Theta \times = 0$ we claim $e(k_1 \times x)$ is not injective w.1.t. k, implying $k_1 \neq k_2$. Let's say: $e(k_1, x) = e(k_2, x)$, but $k_1 \neq k_2$, i.e. $k_1 \neq k_2$; $k_2 \neq k_3$. $k_1 \neq k_2 \neq k_3$ and so $k_1 \neq k_2 \neq k_3$ we cannot fix $k_2 \neq k_3 \neq k_4$.

 This violates 3

Hoblem 3

PACKERS

15021041718

UBHFNAD

201751303

de(y) = a' y + b' to satisfy de(ex(e)) = x: a'a=(b'=-a'.b

3(a') mod 26 = 1 -> find multiplicative inverse we know $27 \mod 26 = 1$ -> a' = 9

b' = -9.1 = -9

de(4)=94-9

Roblem 4:

BC -> DD

ex(x): ax+b

0= 0+6

3=2a+b

Solve for ex(x) as system

a=3

0=3+6->b=-3

(or in Z26: 23)

eu(x)=3x+23

Koden 5: Q(x)=3x+1 f(g(x)) is just another affine cipher not really a benefit... Q(x)=5x+2 f(g(x))=3(5x+2)+1 =15x+6+1=15x+7

ZN = { 1,3,5,7,9,11,15,17,19,21,23,25} note: integers in ZN are relatively prime to N for N= 26, multiples of 2 and 13 are excluded

multiplication w integers in ZN always yields an integer in ZN