Лекиия 3. ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ, НЕПРЕРЫВНЫЕ НА МНОЖЕСТВАХ

- 1. Непрерывность функции на компактах.
- 2. Функции, непрерывные на линейно связных множествах.
- 3. Равномерная непрерывность функций. Теорема Кантора.

1. Непрерывность функции на компактах.

Определение 1. Функция u = f(x), $x = (x_1, x_2, ..., x_n)$, называется непрерывной на множестве С, если в каждой предельной точке множества x_0 , $x_0 = (x_1^0; x_2^0; ...; x_n^0)$. выполнено условие

$$\lim_{\substack{x \to x_0 \\ x \in G}} f(x) = f(x_0).$$

Другими словами, функция u = f(x) называется **непрерывной** *на множестве* G, если она непрерывна в каждой точке этого множества.

Теорема 1 (Вейерштрасса). Функция $u = f(x_1, x_2, ..., x_n)$, непрерывная на компакте $G \in \mathbf{R}^n$ ограничена и принимает на этом компакте свои наибольшее и наименьшее значения:

$$f(x_1) = \sup_{x \in G} f(x), \ f(x_2) = \inf_{x \in G} f(x).$$

▶ Пусть $G \in \mathbb{R}^n$ компакт, т.е. ограниченное и замкнутое множество. И пусть функция u = f(x) непрерывна на G и $M = \sup_{x \in G} f(x)$. Выберем числовую последовательность $(y_m)_{m=1}^{\infty}$ такую, что $\lim_{m \to \infty} y_m = M$ и $y_m < M$, $m = 1, 2, \dots$

По определению верхней грани существуют такие точки $x_m = (x_1^m; x_2^m; ...; x_n^m) \in G, m = 1, 2, ...,$

$$y_m < f(x_m) \le M$$

 $y_m < f \big(x_m \big) {\leq} \, M \; .$ Поэтому $\lim_{m \to \infty} f \big(x_m \big) {=} \, M$

Поскольку G компакт, то из последовательности точек $(x_m)_{m=1}^\infty$ можно выделить сходящуюся к некоторой точке $x_0 \in G$

подпоследовательность $(x_{m_k})_{k=1}^{\infty}$ такую, что $\lim_{k\to\infty} x_{m_k} = x_0$. В силу непрерывности функции u = f(x) в точке x_0 , имеем:

$$\lim_{k\to\infty} f(x_{m_k}) = f(x_0).$$

Однако $\lim_{k\to\infty} f(x_{m_k}) = M$.

Таким образом, $f(x_0) = M$. Это означает, что $M < +\infty$, т.е. функция u = f(x), $x = (x_1, x_2, ..., x_n)$, ограничена сверху и принимает наибольшее значение на множестве G .

Аналогично доказывается ограниченность функция u = f(x)снизу и достижение ее нижней грани.

Примеры.

1. Рассмотрим функцию $z = \frac{1}{x^2 + v^2}$, область определения которой есть

$$D(f) = \{(x, y) \mid (0 < x \le 1) \cap (0 < y \le 1)\}.$$

Множество D(f) ограничено, но не замкнуто. Если $x \to 0$ и $y \to 0$ одновременно, то $z \to \infty$, т.е. функция $f(x,y) = \frac{1}{x^2 + y^2}$ не ограничена:

$$\forall A \exists M(x;y): |f(M)| > A.$$

2. Рассмотрим функцию $z = \frac{1}{e^{x^2+y^2}}$.

Область определения этой функции $D(f) = \mathbb{R}^2$. Очевидно, что $\sup z = 1$, $\inf z = 0$, причем точная верхняя грань достигается в точке M(0;0), а точная нижняя грань не достигается ввиду неограниченности множества D(f)

2. Функции, непрерывные на связных множествах.

В случае функций многих переменных аналогом того, что всякая непрерывная на некотором промежутке функция, принимая какие-либо значения, принимает и любое промежуточное, является следующая теорема.

Теорема 2. Функция, непрерывная на линейно связном множестве, принимая какие-либо два значения, принимает и любое промежуточное между ними.

▶ Пусть G — линейно связное множество, $G \in \mathbf{R}^n$, функция $u = f(x_1, x_2, ..., x_n)$ непрерывна на G . И пусть $M_1 = (x_1^1; x_2^1; ...; x_n^1)$, $M_1 = (x_1^2; x_2^2; ...; x_n^{21}) \in G$ и $f(M_1) = a$, $f(M_2) = b$. В силу связности множества G существует такая кривая

$$\Gamma = \{x_1 = x_1(t); x_2 = x_2(t); ...; x_n = x_n(t), \alpha \le t \le \beta \},$$

лежащая в G, что M_1 является ее началом, M_2 – ее концом.

Функция $u = f(x_1(t), x_2(t), ..., x_n(t)) = f(t)$, непрерывна на отрезке $[\alpha; \beta]$ как сложная функция непрерывных функций f(M) и $x_1(t), x_2(t), ..., x_n(t)$. Кроме того,

$$f(\alpha) = f(x_1(\alpha), x_2(\alpha), ..., x_n(\alpha)) = a,$$

$$f(\beta) = f(x_1(\beta), x_2(\beta), ..., x_n(\beta)) = b.$$

Поэтому, в силу теоремы о промежуточных значениях непрерывных на отрезке функций, существует такое $t_0 \in [\alpha; \beta]$, что $f(t_0) = f(x_1(t_0), x_2(t_0), ..., x_n(t_0)) = c$.

Полагая
$$M_0(x_1(t_0), x_2(t_0), ..., x_n(t_0))$$
, получим $f(M_0) = c$.

Следствие. Функция, непрерывная на замыкании линейно связного множества, принимая какие-либо два значения, принимает и любое промежуточное между ними.

Без доказательства.

Из теоремы 2, в частности, следует, что если M_1 и M_2 — точки множества G и $f(M_1) < 0$, а $f(M_2) > 0$, то на множестве G существует по крайней мере одна точка M_0 , такая, что $f(M_0) = 0$.

3. Равномерная непрерывность функций. Теорема Кантора.

Определение 2. Функция $u=f(x), \ x=(x_1,x_2,...,x_n),$ называется *равномерно-непрерывной* на множестве $G,\ G\in \pmb{R}^n$, если для любого $\varepsilon>0$ существует $\delta(\varepsilon)>0$, такое, что для любых двух точек $x'=(x_1';x_2';...;x_n')$ и $x''=(x_1';x_2';...;x_n'')$ множества

G , находящихся на расстоянии, меньшем δ , выполняется неравенство $\left|f\!\left(x^{'}\right)\!-f\!\left(x^{''}\right)\!\right|\!<\!\varepsilon$:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \ \forall x', x'' \in G \ \rho(x', x'') < \delta \ | f(x') - f(x'') < \varepsilon.$$

Замечание. Функция, непрерывная на множестве, не обязательно будет равномерно непрерывной на этом множестве.

Построим отрицание: функция u = f(x), $x = (x_1, x_2, ..., x_n)$, не является равномерно-непрерывной на множестве G, если $\exists \varepsilon_0 > 0$ такое, что $\forall \delta > 0$ существуют элементы $x' = (x_1'; x_2'; ...; x_n')$ и $x'' = (x_1'; x_2''; ...; x_n'')$ множества G такие, что $\rho(x', x'') < \delta$, но $|f(x') - f(x'')| \ge \varepsilon$.

Пример. Показать, что функция $y = x^2$ не является равномерно непрерывной на интервале $(0;+\infty)$.

Решение. Пусть $\varepsilon_0 = 1$.

Для любого
$$\delta > 0$$
 возьмем $M_1 = \frac{1}{\delta}$ и $M_2 = \frac{1}{\delta} + \frac{\delta}{2}$.

Тогда
$$\rho(M_1, M_2) = \left| \frac{1}{\delta} - \left(\frac{1}{\delta} + \frac{\delta}{2} \right) \right| = \frac{\delta}{2} < \delta$$
.

При этом

$$\begin{split} & \left| f(M_1) - f(M_2) \right| = \left| \left(\frac{1}{\delta} \right)^2 - \left(\frac{1}{\delta} + \frac{\delta}{2} \right)^2 \right| = \left| \left(\frac{1}{\delta} + \frac{1}{\delta} + \frac{\delta}{2} \right) \cdot \left(\frac{1}{\delta} - \frac{1}{\delta} - \frac{\delta}{2} \right) \right| = \\ & = \frac{\delta}{2} \left(\frac{1}{\delta} + \frac{1}{\delta} + \frac{\delta}{2} \right) \ge 1 \; . \end{split}$$

Значит, функция $y = x^2$ не является равномерно непрерывной.

Теорема 3 (Кантора). Функция u = f(x), $x = (x_1, x_2, ..., x_n)$, непрерывная на компакте G, $G \in \mathbf{R}^n$, равномерно-непрерывна на этом компакте.

▶ Доказываем методом от противного.

Пусть функция u = f(x), $x = (x_1, x_2, ..., x_n)$, непрерывна на компакте G, но не равномерно непрерывна на этом компакте.

Рассмотрим последовательность точек $(x_m)_{m=1}^{\infty}$, $x_m = (x_1^m; x_2^m; ...; x_n^m) \in G$. Тогда $\exists \, \varepsilon_0 > 0$ такое, что $\forall \, \delta > 0$ найдутся точки x_m и $x_l \in A$ такие, что $\rho(x_m, x_l) < \frac{1}{m}$, но $|f(x_m) - f(x_l)| \ge \varepsilon_0$.

Так как G — компакт, то из последовательности $(x_m)_{m=1}^{\infty}$ можно выделить подпоследовательность $(x_{m_k})_{k=1}^{\infty}$, сходящуюся к некоторой точке $x_0 \in G$, $x_0 = (x_1^0; x_2^0; ...; x_n^0)$.

Используя неравенство треугольника, получаем

$$0 \le \rho(x_{m_k}, x_0) \le \rho(x_{m_k}, x_{m_k}) + \rho(x_{m_k}, x_0) < \frac{1}{m_k} + \rho(x_{m_k}, x_0) \to 0$$

при $k \to \infty$.

Следовательно, $\lim_{k\to\infty} f(x_{m_k}) = x_0$.

Поскольку функция u=f(x) непрерывна в точке x_0 , то $\lim_{k\to\infty} f(x_{m_k}) = \lim_{k\to\infty} f(x_{l_k}) = x_0$.

Полагая $m = m_k$, получаем $|f(x_{m_k}) - f(x_l)| \ge \varepsilon_0$.

Переходя в неравенстве к пределу при $k \to \infty$, получаем противоречие:

$$0 = |f(M_0) - f(M_0)| \ge \varepsilon_0 > 0.$$

Полученное противоречие доказывает, что функция u = f(x), $x = (x_1, x_2, ..., x_n)$, должна быть равномерно непрерывной на множестве G.

Определение 3. Колебанием $\omega(f;G)$ функции u = f(x), $x = (x_1, x_2, ..., x_n) \in G$, называется верхняя грань всевозможных разностей значений функции f:

$$\omega(f;G) = \sup_{x, x \in G} |f(x') - f(x)|,$$

где
$$x' = (x_1, x_2, ..., x_n) \in G$$
.

Определение 4. *Диаметром* множества G называется верхняя грань расстояний между точками множества $G \in \mathbf{R}^n$.

Обозначается: diam
$$G = \sup_{x,x' \in G} \rho(x';x)$$
 или $d(G) = \sup_{x,x' \in G} \rho(x';x)$.

Равномерная непрерывность функции u=f(x), $x=(x_1,x_2,...,x_n)$, на множестве $G\in {\it I\!\!R}^n$ означает, что колебание функции на любом множестве достаточного малого диаметра сколь угодно мало.

Вопросы для самоконтроля

- 1. Сформулируйте определение непрерывности функции на компактах.
- 2. Какие функции непрерывны на линейно связных множествах.
- 3. Сформулируйте определение равномерной непрерывности функции. В чем суть теоремы Кантора?