Tutorat 0

Organisatorisches und Grundlagenwissen

Gruppe 9

Präsentator:
Jürgen Mattheis
(juergmatth@gmail.com)

Vorlesung von: Prof. Dr. Scholl

Übungsgruppenbetreuung: Tobias Seufert

28. April 2023

Universität Freiburg, Lehrstuhl für Rechnerarchitektur

Gliederung

Organisatorisches

Bonus

Literatur

Studienleistung

- Anmeldung zur Übung in unserem Übungsportal
- Anmeldung zur Studienleistung im HislnOne
- Zu erbringende Leistungen:
 - Mindestens 75% der Aufgaben in den Übungsblättern müssen sinnvoll bearbeitet werden.
 - Das Bearbeiten einer Teilaufgabe einer Aufgabe zählt bereits als sinnvolles Bearbeiten der gesamten Aufgabe.
 - Die Aufgabe muss nicht korrekt gelöst sein, es muss nur sichtbar sein, dass versucht wurde diese Aufgabe zu lösen.
 - Eine Aufgabe aus den Übungen muss im Tutorat vorgerechnet werden.
 - Regelmäßige, aktive Teilnahme an den Übungsgruppen .

Infos zum Tutorat

- Tutorat wird aufgezeichnet: https://www.youtube.com/playlist?list=PLmsC317bB1bOT198lvGTddbqThQ6gDDG2
- ▶ BITTE gebt RETI-Code getippt ab und nicht handschrifftlich.

Kritik am Tutorat: https://forms.gle/gLJHVMZhQWcSK2N18

Hilfsmittel

- Mindmap zum Vorlesungsstoff: https://github.com/matthejue/Mindmaps/releases/download/main/Technische_Informatik.pdf
- ▶ zum Überprüfen der RETI-Abgaben: https://github.com/matthejue/PicoC-Compiler/releases
 - Dokumentation: https://github.com/matthejue/Bachelorarbeit_Dokumentation_out/blob/main/Dokumentation.pdf
 - ► Einführung: https://github.com/matthejue/PicoC-Compiler/blob/master/doc/getting_started.md
 - ▶ Bugs melden: https://github.com/matthejue/PicoC-Compiler/issues

Gruppenbildung

- Wer würde sich gerne mit einer anderen Person aus dem Tutorat (Tutor ausgenommen) zu einer Gruppe zusammenschließen?
- Die Studenten freuen sich wegen Arbeitsteilung über weniger Tipparbeit. Der Tutor freut sich auch über weniger Korrekturen.

Anzahl Formeln

- ► Anzahl Zeilen in Wahrheitstabelle: 2^{# Variablen}
- Anzahl Aussagenlogische Formeln: $2^{\#\text{Zeilen}} = 2^{\left(2^{\#\text{Variablen}}\right)}$
 - bei 3 Aussagenlogischen Variablen gibt es 2³ = 8 Zeilen in der Wahrheitstabelle und damit 2(2³) = 256 verschiedenen Aussagenlogische Formeln, da man diese 2³ Zeilen auch nochmal auf exponentiell 2#Zeilen viele verschiedene Arten belegen kann

a	b	$a \cdot b$	$\overline{a \cdot b}$	a+b	$\overline{a+b}$	\overline{a}	\bar{b}	$\overline{a} + \overline{b}$	$\overline{a} \cdot \overline{b}$
0	0	0	1	0	1	1	1	1	1
0	1	0	1	1	0	1	0	1	0
1	0	0	1	1	0	0	1	1	0
1	1	1	0	1	0	0	0	0	0

Minterme und Maxterme

▶ 16 mögliche Logikfunktionen für 2 Aussagenlosche Variablen

a	b	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

- ▶ f1, f2, f4 und f8 sind Minterme (für genau eine Variation der Eingabewerte den Wert 1)
- ▶ f7, f11, f13 und f14 sind Maxterme (für genau eine Variation der Eingabewerte den Wert 0)

Minterme und Maxterme

- die 4 Minterme können als Konjunktionen dargestellt werden: $m_0(a,b) = \bar{a} \cdot \bar{b}, m_1(a,b) = \bar{a} \cdot b, m_2(a,b) = a \cdot \bar{b}, m_3(a,b) = a \cdot b$
- die 4 Maxterme können als Disjunktionen dargestellt werden: $M_0(a,b) = \bar{a} + \bar{b}, M_1(a,b) = \bar{a} + b, M_2(a,b) = a + \bar{b}, M_3(a,b) = a + b$
- ► Vergleich:

а	Ь	$\neg a \cdot b$	$a + \neg b$
0	0	0	1
0	1	1	0
1	0	0	1
1	1	0	1

 $\neg (\neg a \land b) = a \lor \neg b$: "alles außer" $\neg a \land b$ ist $1 \rightarrow (a = 0, b = 1)$ ist als einziges 0

Konjunktive und Disjunktive Normalform

- aus drei Basistypen (Disjunktion, Konjunktion oder Negation) lassen sich alle anderen Logikfunktion erzeugen
- Jede Logikfunktion $f: \mathbb{B}^2 \to \mathbb{B}$ lässt sich in Disjunktiver Normalform (DNF): $f(a,b) = f(0,0) \cdot \bar{a} \cdot \bar{b} + f(0,1) \cdot \bar{a} \cdot b + f(1,0) \cdot a \cdot \bar{b} + f(1,1) \cdot a \cdot b$
- als auch in konjunktiver Normalform (KNF) darstellen: $f(a,b) = (f(0,0) + a + b) \cdot (f(0,1) + a + \bar{b}) \cdot (f(1,0) + \bar{a} + b) \cdot (f(1,1) + \bar{a} + \bar{b})$
- ▶ man möchte Logische Funktion (Wertetabelle) mit möglichst wenig Schaltelementen realisieren → schauen, ob DNF oder KNF kürzer ist, je nachdem, ob die Logische Funktion (Menge an Formeln) mehr oder weniger Modelle besitzt, also mehr oder weniger Variationen aus Aussagenlogischen Variablen besitzt, die 1 ergeben

Konjunktive und Disjunktive Normalform

Abbildung 1: Disjunktive und Konjunktive Normalform [1]

Konjunktive und Disjunktive Normalform

- ▶ Beispiel: "höchstens 2 wahre aussagenlogische Variablen"
 - DNF:

$$(\neg a \cdot \neg b \cdot \neg c) + (\neg a \cdot \neg b \cdot c) + (\neg a \cdot b \cdot \neg c) + (\neg a \cdot b \cdot \neg c) + (a \cdot \neg b \cdot \neg c) + (a \cdot \neg b \cdot \neg c) + (a \cdot b \cdot \neg c)$$

 \triangleright KNF: $(\neg a + \neg b + \neg c)$

Literatur

Online

[2] File:Handshake icon black circle.svg - Wikipedia. 21. Mai 2020. URL: https://commons.wikimedia.org/wiki/File: Handshake_icon_black_circle.svg (besucht am 27.04.2023).

Sonstiges

[1] Disjunktive Normalform. In: Wikipedia. Page Version ID: 230680696. 8. Feb. 2023. URL: https://de.wikipedia.org/w/index.php?title=Disjunktive_Normalform&oldid=230680696 (besucht am 27.04.2023).