COMP9020

Practice Questions 3

2019 Term 3

Logic

Problem 1

Let F be the set of well-formed formulas with propositional variables from Prop. Define a relation, $R \subset F \times F$ by $(\varphi, \psi) \in R$ if $\varphi \models \psi$. Prove or give a counter-example to disprove: $R \subseteq F \times F$ by $(\varphi, \psi) \in R$ if $\varphi \models \psi$. Prove or give a counter-example to disprove: (a) R is an equivalence relation. Suppose $(a,b) \in R \cap R^{\leftarrow}$ is an equivalence relation. Suppose $(a,b) \in R \cap R^{\leftarrow}$ is an equivalence relation.

Problem 2

Prove that $\neg N$ follows logically from $H \land \neg R$ and $(H \land N) \rightarrow R$.

Problem 3

Consider the formulae $\phi_1=(r\to p)$ and $\phi_2=(p\to (q\vee \neg r))$. Transform the formula $\phi=(\neg q\to (\phi_1\wedge\phi_2))$ into

- (a) DNF, and
- (b) CNF.

Simplify the result as much as possible.

Problem 4

Let $(T, \land, \lor, ', 0, 1)$ be a Boolean Algebra. Define $\oplus : T \times T \to T$ as follows:

$$x \oplus y = (x \wedge y') \vee (x' \wedge y)$$

- (a) Prove using the laws of Boolean Algebra that for all $x \in T$, $x \oplus 1 = x'$.
- (b) Prove using the laws of Boolean Algebra that $x \wedge (y \oplus z) = (x \wedge y) \oplus (x \wedge z)$.
- (c) Find a Boolean Algebra (and x, y, z) which demonstrates that $x \oplus (y \land z) \neq (x \oplus y) \land (x \oplus z)$

Problem 5

- (a) How many well-formed formulas can be constructed from one ∨; one ∧; two parenthesis pairs (,); and the three literals p, $\neg p$, and q?
- (b) Under the equivalence relation defined by logical equivalence, how many equivalence classes do the formulas in part (a) form?