

Middleware and Communication Protocols for Dependable Systems TI-MICO

The Communication Systems for advanced automotive control applications

Version: 18.11.2014

Abstract

The FlexRay protocol provides flexibility and determinism by combining a scalable static and dynamic message transmission, incorporating the advantages of familiar synchronous and asynchronous protocols

Sources:

"FlexRay Requirements Specification", Version 2.1, 19-dec-2005 (115 pages). "FlexRay Protocol Specification", Version 3.0.1, Oct. 2010 (341 pages).

Context

- Demand for a bus system with high data rate for automotive applications
- Deterministic and fault-tolerant bus system for advanced automotive control applications
- Support from the bus system for distributed control systems
- Support for both event and time-triggered communication
- Limited number of different communication systems within vehicles

FlexRay Consortium Goals

- Develop an advanced communication technology for high-speed control applications in vehicles
- Make the technology available in the market place for everyone
- Drive the technology as a defacto standard
- FlexRay standardized by ISO in 2013
 - ISO 17458: 2013 Road vehicles -- FlexRay communications system (part 1 – 5).

FlexRay Architecture Example

Example of a Backbone Architecture with FlexRay

FlexRay – Core Partners

The seven FlexRay Consortium Core Partners:

- BMW
- Daimler
- Volkswagen
- General Motors
- Bosch
- Freescale (Motorola)
- NXP (Philips) Semiconductors

Consortium time 2000-2010:

Goal: Development of FlexRay standards.

FlexRay History

Freescale's FlexRay Roadmap

FlexRay Roadmap

FlexRay News (2006)

TIAutomotive

Stronger involvement of TTAutomotive in FlexRay Consortium

TTAutomotive Gains Premium Associate Member Status in FlexRay Consortium

Vienna, Austria – October 12, 2006

TTAutomotive, TTTech's subsidiary for FlexRay[™] solutions, has become a premium associate member of the FlexRay consortium. As a premium associate member, TTAutomotive will play an active role in support of the development of FlexRay as the standard bus protocol for distributed automotive applications. TTAutomotive has in-depth know-how in the domain of time-triggered solutions and protocols.

The FlexRay consortium has seven core partners – BMW, Bosch, DaimlerChrysler, Freescale, General Motors, Philips and Volkswagen – as well as members from the automotive, semiconductor and electronic systems industries. The consortium drives the development of communication systems that support the needs of future in-car control applications.

FlexRay usage in Cars

- The first series production vehicle with FlexRay was at the end of 2006 in the <u>BMW X5</u>, enabling a new and fast adaptive damping system.
- Full use of FlexRay was introduced in 2008 in the new <u>BMW 7 Series (F01)</u>, the world's first production vehicle to fully use the FlexRay system.

General FlexRay Requirements

- One or two channel solutions must be supported
- An electrical and optical physical layer must be supported
- Redundant physical links is optional. A mix of nonredundant and redundant physical links must be supported
- Wake-up of nodes and stars via the communication system
- A baud-rate from 500 Kbit/s up to 10 Mbit/s

Basic Features

- Synchronous and asynchronous data transmission
- High net data rate of up to 10 Mbit/sec
- Deterministic data transmission, guaranteed message latency and message jitter
- Support of redundant transmission channels
- Fault tolerant and time triggered services implemented in hardware
- Fast error detection and signaling
- Support of a fault tolerant synchronized global time base
- Error containment on the physical layer through an independent "Bus Guardian"
- Support of optical and electrical physical layer
- Support for bus, star and multiple star topologies

FlexRay Node Architecture (1)

Figure 2: Architecture of a node (ECU).

FlexRay Node Architecture (2)

Use Cases for the FlexRay Communication System

Host Processor Interface

FlexRay Communication Controller

E-Ray - the FlexRay Communication Controller IP-Module

The E-Ray Module is the FlexRay Communication Controller IP-module from Bosch that can be integrated as stand-alone device or as part of an ASIC. It is described in VHDL on RTL level, prepared for synthesis. The E-Ray Module performs communication according to the FlexRay protocol specification v2.1. The bit rate can be programmed to values up to 10 MBit/s. For connection to the physical layer additional Bus Driver (BD) hardware is required.

Features

- → Conform with Protocol Specification v2.1
- → Data rates of up to 10 MBit/s on each channel
- → Configurable Message RAM supports
 - Up to 128 Message Buffers
 - Up to maximum payload of 254 Bytes
 - · Different payload lengths possible

http://www.semiconductors.bosch.de/pdf/bosch_product_info_E-Ray_ip_v11.pdf

E-Ray FlexRay Controller Block Diagram

PRT A: Protocol Communication Controller (Protocol Finit State Machine)

TBF A: Transient Buffer RAM

IBF: Input Buffer

OBF: Output Buffer

Source: www.bosch.de

18

State Model of a Communication Module

Notice: Relations to Use Case Diagram

Source: FlexRay Req. spec.

Topologies - Bus & Star

Bus

- passive medium
- no active components within the channel
- most automotive experience here
- automotive costs

Star

- best suited technology for high speed networks
- different degrees of intelligence possible
 - with/without protocol knowledge
 - can protect against concurrent media access
 - limits the error domain of not correctly working sub networks

Passive Bus Topology

Figure 1-1: Dual channel bus configuration.

Active Star Toplogy

Figure 1-2: Dual channel single star configuration.

Active Star Component

- A branch has to be deactivated if a faulty signal is detected
- A deactivated branch shall be fail-silent and should be reactivated if the fail condition is no longer available

Figure 16: Block chart of an electrical active star.

Hybrid Topology

Figure 1-5: Single channel hybrid example.

Static and Dynamic Segments

Static message segment

- state message semantic
- deterministic communication behavior
- periodic statically scheduled message transfer is a benefit for automotive applications, especially distributed control loops with replication
- required support for distributed control and closedloop control functions

Dynamic message segment

- spontaneous (event) message transfer e.g.
- for burst transmissions
- for diagnostic information
- for ad hoc messages in general

3 Possible FlexRay Configurations

Frame Transfer

Communication Cycle consisting of two possible segments

Static:

- Divided in timeslots (TDMA)
- The slot length is defined off-line and therefore fixed during runtime

Dynamic:

- Has a start delimiter: Start of cycle (SOC)
 - Used in pure dynamic cases
- Dynamic frame length
- Media is accessed via timers and priorities

FlexRay Communication Cycle

Inter frame gap

Communication Scheme (Bus Guardians)

Figure 6: Typical communication scheme of two FlexRay nodes.

Mixed Topology Example

Figure 3: Possible network configurations.

A node can either be connected to both channels (for redundancy) or only to one of the channels

Frame Transfer Example 1.

Communication cycle with both static and dynamic segments

Frame Transfer Example 2.

Communication cycle in a pure dynamic system

Static Part Characteristics (1)

Structure

- static part divided into static slots of equal duration
- slot duration defined on a per cluster basis
- Slot timing identical on both channels
- each slot identified by an unique slot ID
- slot start determined by global time

Configuration

- static bandwidth allocation
 - slot assigned statically on a per channel basis to a node for transmission
 - specific (time) slots reserved for each node
 - static configuration eliminates run-time contention
- up to 16 slots assignable per node

Static Part Characteristics (2)

- Transmission
 - frames transmitted in slots where frame ID matches slot ID
 - all frames have equal length
 - frame content may match or differ within one slot on different channels
 - "Data Update" Bit is set if data was updated since previous cycle
 - slot remains empty if no frame is configured for it
- Bus Guardian interaction
 - access enabled for transmission during assigned slots
 - access disabled for transmission during unassigned slots

Dynamic Part – Minislotting

Dynamic Part Characteristics (1)

Structure

- dynamic bandwidth allocation for each node
 FTDMA Flexible Time Division Media Access
- unique IDs matching the (mini-)slot number
 - ⇒ no collision, no concurrent transmission
- if available bandwidth is smaller than sum of all frames to be transmitted those with the higher IDs wait for the next communication cycle
 - start of dynamic part
 - in mixed configuration: based on the global time
 - pure dynamic mode: triggered by SOC

Dynamic Part Characteristics (2)

- Configuration
 - only 'new' data is transmitted
 - can be reconfigured during normal operation
 - channel sharing allowed for dual and single channel nodes
 - no sync frames allowed
 - to prevent interaction with static part frame IDs are larger than ID_{max,static}
- Transmission
 - can be different on both channels
 - determined by minislot counter derived from local clock
- Bus Guardian interaction
 - no protection within dynamic part
 - static part protected against dynamic part
 - BG treats dynamic part like one large static transmission slot

FlexRay Frame Format

Frame ID (11 bits): The frame ID defines the slot in which the frame should be transmitted. A frame ID is used no more than once on each channel in a communication cycle.

FlexRay Frame Format (2)

Network Management Vector

The message ID is an application determinable number that identifies the contents of the data segment

AUTOSAR

TTAutomotive Joins AUTOSAR, Vienna, Austria – November 29, 2005

AUTOSAR is the acronym for AUTomotive Open System ARchitecture.

TTAutomotive, TTTech's subsidiary for FlexRayTM solutions, has joined the AUTOSAR development partnership as a premium member.

TTAutomotive will focus on FlexRay software modules that comply with AUTOSAR specifications to advance FlexRay-based Time-Triggered Architecture (TTA) in the automotive industry.

The development partnership's mission is to establish an industrial standard for off-the-shelf software components, in order to provide cost-optimized, best-in-class solutions to the automotive industry.

The architecture is characterized by standardized, non-proprietary, and clearly defined interfaces.

AUTOSAR FlexRay Communication Stack

Task:

- Provide a uniform interface to the FlexRay network
- Hide protocol and message properties from the application

Summary

- FlexRay is "the de facto standard" for high performance bus systems for the automotive market
- FlexRay supports both static and dynamic communication
- Future for car makers:
 - the AUTOSAR initiative (supporting CAN, LIN, FlexRay)

References

[FlexRay2005]

"FlexRay Requirements Specification", Version 2.1, 19-dec.-2005

[FlexRay2010]

"FlexRay Communications System Protocol Specification" Version 3.0.1, October 2010

[FlexRay-tools]

http://www.ttautomotive.com/

[Autosar]

http://www.autosar.org

[ISO-Standard] ISO 17458: 2013 Road vehicles FlexRay communications system (part 1 – 5).

http://www.iso.org/iso/catalogue_detail.htm?csnumber=59804