Домашнее задание 5

(1) Определение из учебника: все правила имеют вид: $A \to x | xD, A, D \in N, x \in T*$.

С семинара: $1)A \to x|xD, x \in T, D, A \in N2)$ если $S \to \epsilon$, то S не встречается больше в правилах с правой стороны.

Докажем, что эти определения эквивалентны: для этого докажем, что для любой грамитики в "широком"смысле можно построить праволинейную грамматику в "узком"смысле.

Рассмотрим грамматику, заданную определением в широком смысле:1) нет правила $S \to \epsilon$. Все правила имеют вид $A \to x | xD$, где x - непустая цепочка. Тогда построим автомат, принимающий этот язык. Каждое правило можно задать следующим образом:

Тогда грамматика в узком смысле: $G = \{\{S, A, A_1, ... A_n, D\}, \{x\}, A \to x[1]A_1, A_1 \to x[2]A_2, ..., A_{n-1} \to x[n]D\}, S\}$. Очевидно, что по таким правилам для любой грамматики в широком смысле можно построить грамматику в узком смысле.

2) Грамматика задана в широком смысле и есть правило $S \to \epsilon$. Тогда правила вида $A \to xD|x$, где $D \neq S$, будут задаваться так же, как в пункте 1). Так как $S \to \epsilon$, то стартовое состояние является также финальным. Правила вида $S \to xS, x \in T^*$ (из стартого по цепочке х автомат переходит в стартовое), можно задать следующим образом:

Тогда грамматика в узком смысле:

 $G = \{\{S, A, A_1, ... A_n\}, \{x\}, S \to x[1]A_1, A_1 \to x[2]A_2, ..., A_{n-1} \to x[n] | x[n]A_n, A_n \to x[1]A_1\}, S\}.$

Очевидно, что по таким правилам для любой грамматики в широком смысле можно построить грамматику в узком смысле.

(2) Вариант 13: Определим язык L над алфавитом $\{a,b\}$ индуктивными правилами: $1)\epsilon \in L$;

 $2) \forall x \in L \hookrightarrow xa \in L, xaa \in L, xabba \in L;$

3)никаких других слов в L нет.

В язык T над алфавитом $\{a,b\}$ входит ϵ и ВСЕ начинающиеся и заканчивающиеся буквой a слова, в которых над подслов aba и bbb. Докажите или опровергните, что T=L. Решение:

 $L \in T$, но $T \notin L : abbabba \in T$, но $abbabba \notin L$.

(3) Вариант 14: $L_1=(b|ab|aaa^*b)^*aaa^*; G(L_2)=L_2=\{\{X,Y,Z\},\{a,b\},X\to aY,Y\to a|aZ,Z\to a|b|aZ|bZ,\{X\}\}$, построить минимальный полный ДКА для языка $\overline{L_1}\cap L_2^R$.

Решение: $\overline{L_1}\cap L_2^R=\overline{L_1\cup\overline{L_2^R}}.$ Построим HKA, принимающий язык L_2 по грамматике:

Теперь, реверснув ребра и сделав стартовое состояние финальным, а финальное - стартовым, получим НКА, принимающий язык L_2^R .

	a	b
A 3	В	A
В 3,2	С	A
C 1,2,3	С	A

Теперь строим автомат, принимающий язык $\overline{L_2^R}$, делая все финальные состояния не финальными, а не финальные - финальными. Стартовое состояние остается тем же (A). Получаем автомат:

Создав начальное состояние 0, финальное состояние 8 и ϵ - переходы из 0 в начальные состояния автоматов, принимающих языки $\overline{L_2^R}$ и L_1 , из финальных в 8, получим автомат, принимающий язык $\overline{L_2^R} \cup L_1$:

Построим ДКА:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	a	b
A 0,1,2,9,8	В	A
B 4,6,10,3,8	С	A
C 5,7,11,8	С	A

В автомате получили, что все состояния являются финальными, следовательно, $\overline{\overline{L_2^R} \cup L_1}$ - пустой. Тогда автомат для пустого языка:

