

Series: JBB/3

SET - 2

कोड नं.

Code No. 30/3/2

रोल नं. Roll No.

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

नोट **NOTE**

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित (I)पुष्ठ 15 हैं।
- (II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- (III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 40 प्रश्न हैं।
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले. प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका में कोई उत्तर नहीं लिखेंगे।

- (I) Please check that this question paper contains 15 printed pages.
- (II) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (III) Please check that this question paper contains 40 questions.
- (IV) Please write down the Serial Number of the question in the answer-book before attempting it.
- (V) 15 minute time has been allotted to read this question paper. question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answerbook during this period

गणित (मानक) 🔐

MATHEMATICS (STANDARD)

निर्धारित समय: 3 घण्टे अधिकतम अंक • ८०

Time allowed: 3 hours Maximum Marks: 80

30/3/2 106B 1 P.T.O.

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :

- (i) प्रश्न-पत्र **चार** खंडों में विभाजित किया गया है क, ख, ग एवं घ। इस प्रश्न-पत्र में कुल 40 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) **खंड-क** में प्रश्न संख्या 1 से 20 तक 20 प्रश्न हैं एवं प्रत्येक प्रश्न **एक** अंक का है।
- (iii) **खंड-ख** में प्रश्न संख्या 21 से 26 तक 6 प्रश्न हैं एवं प्रत्येक प्रश्न **दो** अंकों का है।
- (iv) **खंड-ग** में प्रश्न संख्या 27 से 34 तक 8 प्रश्न हैं एवं प्रत्येक प्रश्न **तीन** अंकों का है।
- (v) **खंड-घ** में प्रश्न संख्या 35 से 40 तक 6 प्रश्न हैं एवं प्रत्येक प्रश्न **चार** अंकों का है।
- (vi) प्रश्न-पत्र में समग्र पर कोई विकल्प नहीं है। तथापि एक-एक अंक वाले दो प्रश्नों में, दो-दो अंकों वाले दो प्रश्नों में, तीन-तीन अंकों वाले तीन प्रश्नों में, चार-चार अंकों वाले तीन प्रश्नों में आंतरिक विकल्प दिए गए हैं। ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर लिखिए।
- (vii) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक अनुभाग और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
- (viii) कैलकुलेटर के प्रयोग की अनुमति नहीं है।

खंड – क

प्रश्न संख्या $\mathbf{1} - \mathbf{10}$ तक बहुविकल्पी प्रश्न हैं जिनमें प्रत्येक का $\mathbf{1}$ अंक है। आपको सही विकल्प चुनना है।

1. आकृति 1 में बहुपद p(x) का आलेख दिया है । बहुपद के शून्यकों की संख्या है :

(a) 1

(b) 2

(c) 3

(d) 0

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises **four** sections A, B, C and D.

 This question paper carries 40 questions. **All** questions are compulsory.
- (ii) Section A Question no. 1 to 20 comprises of 20 questions of one mark each.
- (iii) Section B Question no. 21 to 26 comprises of 6 questions of two marks each.
- (iv) Section C Question no. 27 to 34 comprises of 8 questions of three marks each.
- (v) **Section D** Question no. **35** to **40** comprises of **6** questions of **four** marks each.
- (vi) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of one mark each, 2 questions of two marks each, 3 questions of three marks each and 3 questions of four marks each. You have to attempt only **one** of the choices in such questions.
- (vii) In addition to this, separate instructions are given with each section and question, wherever necessary.
- (viii) Use of calculators is not permitted.

Section - A

Question numbers 1 to 10 are multiple choice questions of 1 mark each. You have to select the correct choice:

1. In fig. 1, the graph of the polynomial p(x) is given. The number of zeroes of the polynomial is

(a) 1

(b) 2

(c) 3

(d) 0

2.	यदि बिंदुओं $A(10,-6)$ तथा $B(k,4)$ को मिलाने वाले रेखाखंड का मध्य-बिंदु (a,b) है, तर् $a-2b=18$ है, तो k का मान है								
	(a) 30	(b) 22	(c) 4	(d) 40					
3.	${\bf k}$ का वह मान जिसके लिए बिंदु ${\bf A}$ $(0,1),{\bf B}$ $(2,{\bf k})$ तथा ${\bf C}(4,-5)$ संरेख हैं, है								
	(a) 2	(b) -2	(c) 0	(d) 4					
4.		इस प्रकार है कि AB = 1	.2 सेमी तथा DE = 1.4	सेमी है, तो त्रिभुजों					
	ABC तथा DEF के क्षेत्रप			(3)					
	(a) 49:36	(b) 6:7	(c) 7:6	(d) 36:49					
5.	135 तथा 225 का म.स. ((HCF) है							
	(a) 15	(b) 75	(c) 45	(d) 5					
6.	144 के अभाज्य गुणनखंडन	ा में 2 की घात है :							
	(a) 2	(b) 4	(c) 1	(d) 6					
7.	उस समांतर श्रेढ़ी, जिसका nवाँ पद $\mathbf{a_n} = (3\mathbf{n} + 7)$ है, का सार्व अंतर है :								
	(a) 3	(b) 7	(c) 10	(d) 6					
8.	λ का वह मान जिसके लिए $(x^2+4x+\lambda)$ एक पूर्ण वर्ग है, है :								
	(a) 16	(b) 9	(c) 1	(d) 4					
9.	${f k}$ का वह मान जिनके लिए रैखिक समीकरण युग्म ${f k}x+{f y}={f k}^2$ तथा $x+{f k}y=1$ के अपरिमित रूप से अनेक हल हैं, है								
	(a) ± 1	(b) 1	(c) -1	(d) 2					
10.	${ m p}$ के किस मान के लिए $(2{ m p}+1),10$ तथा $(5{ m p}+5)$ एक समांतर श्रेढ़ी के तीन क्रमिक पद हैं, है :								
	(a) -1	(b) -2	(c) 1	(d) 2					
		अथवा							
	समांतर श्रेढ़ी 5, 9, 13,	, 185 में कितने पद है ?							
	(a) 31	(b) 51	(c) 41	(d) 40					

2.	If (a, b) is the mid-point of the line segment joining the points $A(10, -6)$ and $B(k, 4)$ and $a - 2b = 18$, the value of k is						
	(a) 30	(b) 22	(c) 4	(d) 40			
3.	The value of k for collinear is	which the points A	A (0, 1), B (2, k) as	nd C(4, -5) are			
	(a) 2	(b) -2	(c) 0	(d) 4			
4.	If \triangle ABC \sim \triangle DEF sareas of \triangle ABC and	such that AB = 1.2 cr l Δ DEF is	m and DE = 1.4 cm,	the ratio of the			
	(a) 49:36	(b) 6:7	(c) 7:6	(d) 36:49			
5.	The HCF of 135 an	d 225 is					
	(a) 15	(b) 75	(c) 45	(d) 5			
6.		n the prime factoriza		(1)			
	(a) 2	(b) 4	(c) 1	(d) 6			
7.	The common differen	ence of an AP, whose	n^{th} term is $a_n = (3n)$	1 + 7), is			
	(a) 3	(b) 7	(c) 10	(d) 6			
8.	The value of λ for v	which $(x^2 + 4x + \lambda)$ is a	a perfect square, is				
	(a) 16	(b) 9	(c) 1	(d) 4			
9.		r which the pair of nitely many solution		$x + y = k^2$ and			
	(a) ± 1	(b) 1	(c) -1	(d) 2			
10.	The value of p for terms of an AP is	which (2p + 1), 10 a	and (5p + 5) are th	ree consecutive			
	(a) -1	(b) −2	(c) 1	(d) 2			
	The number of t	OR	105;				
	(a) 31	ns of an AP 5, 9, 13, . (b) 51	185 is (c) 41	(d) 40			
0010	MOTOVETRIAD TOWN CONTROL OF THE CONT	_	(0) 11	_			
30/3	(17)	5		РТО			

SERVICE AND ALL CONTRACTOR CONTRACTOR OF THE PROPERTY OF THE P

प्रश्न संख्या 11 से 15 में रिक्त स्थानों की पूर्ति कीजिए । प्रत्येक प्रश्न 1 अंक का है ।

11.
$$\frac{3 \cot 40^{\circ}}{\tan 50^{\circ}} - \frac{1}{2} \left(\frac{\cos 35^{\circ}}{\sin 55^{\circ}} \right) = \underline{\hspace{1cm}}$$

12. आकृति 2 में, O केन्द्र वाले वृत्त की PA तथा PB दो स्पर्श रेखाएँ इस प्रकार की हैं कि $\angle APB = 50^\circ$ है, तो $\angle OAB$ की माप ______ है।

आकृति-2

अथवा

आकृति 3 में PQ एक वृत्त की एक जीवा है तथा PT, P पर स्पर्श रेखा ऐसी है कि $\angle QPT=60^\circ$ है, तो $\angle PRQ$ की माप ______ है ।

आकृति-3

- 13. 4 सेमी त्रिज्या वाले वृत्त की दो समांतर स्पर्श रेखाओं की बीच की दूरी ______ है।
- 14. बिंदुओं $\left(-rac{8}{5}\,,\,2
 ight)$ तथा $\left(rac{2}{5}\,,\,2
 ight)$ के बीच की दूरी ______ है।
- 15. यदि $\tan A = \cot B$ है, तो A + B =_____.

September 1997 in the commence of the commence

In Q. Nos. 11 to 15, fill in the blanks. Each question is of 1 mark:

11.
$$\frac{3 \cot 40^{\circ}}{\tan 50^{\circ}} - \frac{1}{2} \left(\frac{\cos 35^{\circ}}{\sin 55^{\circ}} \right) = \underline{\hspace{1cm}}$$

12. In Fig. 2, PA and PB are tangents to the circle with centre O such that $\angle APB = 50^{\circ}$, then the measure of $\angle OAB$ is _____.

Fig. 2 OR

In Fig. 3, PQ is a chord of a circle and PT is tangent at P such that $\angle QPT = 60^{\circ}$, then the measure of $\angle PRQ$ is _____.

Fig. 3

- 13. The distance between two parallel tangents of a circle of radius 4 cm is ______.
- 14. The distance between the points $\left(-\frac{8}{5},2\right)$ and $\left(\frac{2}{5},2\right)$ is ______.
- 15. If $\tan A = \cot B$, then $A + B = _____$.

प्रश्न संख्या 16 से 20 लघु-उत्तर प्रकार के प्रश्न हैं, जिनमें से प्रत्येक 1 अंक का है।

- 16. प्रथम n प्राकृत संख्याओं का माध्य क्या है ?
- 17. यदि कल वर्षा होने की प्रायिकता 0.85 है, तो कल वर्षा न होने की प्रायिकता क्या है ?
- 18. आनुभविक सूत्र का प्रयोग करके, उस बंटन का बहुलक ज्ञात कीजिए जिसका माध्य 8.32 तथा माध्यक 8.05 है।
- 19. दो लंब वृत्तीय शंकुओं की ऊँचाइयों में 1 : 3 का अनुपात है तथा उनकी त्रिज्याओं में 3 : 1 का अनुपात है, तो उनके आयतनों में क्या अनुपात है ?
- 20. यदि $x = a \sin \theta$ तथा $y = b \cos \theta$ है तो $(b^2 x^2 + a^2 y^2)$ का मान लिखिए।

प्रश्न संख्या 21 से 26 तक प्रत्येक प्रश्न के 2 अंक हैं।

21. निम्न अनुच्छेद को पढ़िए तथा अंत में दिए प्रश्नों के उत्तर दीजिए :

कक्षा XII के विद्यार्थियों ने अपने विद्यालय के लिए एक उपहार दिया जो कि एक बिजली का लैम्प है जिसका आधार शीशे का अर्ध गोला है जिसके ऊपर धातु का बेलनाकार ढक्कन है जिसकी आधार त्रिज्या 21 सेमी तथा ऊँचाई 3.5 सेमी है। ऊपरी भाग को सिलवर का पेंट तथा शीशे के भाग को लाल रंग से पेंट किया गया है।

- (i) ₹ 5 प्रति 100 cm² की दर से सिलवर पेंट का व्यय ज्ञात क्या है ?
- (ii) लाल रंग वाले शीशे के भाग का पृष्ठीय क्षेत्रफल क्या है ?
- 22. यदि $an \theta = rac{3}{4}$ है, तो $\left(rac{1-\cos^2 heta}{1+\cos^2 heta}
 ight)$ का मान ज्ञात कीजिए।

अथवा

यदि
$$\tan\theta=\sqrt{3}$$
 है, तो $\left(\frac{2\sec\theta}{1+\tan^2\theta}\right)$ का मान ज्ञात कीजिए।

Q. Nos. 16 to 20 are short answer type questions of 1 mark each.

16. What is the arithmetic mean of first n natural numbers?

17. The probability that it will rain tomorrow is 0.85. What is the probability that it will not rain tomorrow?

18. Using the empirical formula, find the mode of a distribution whose mean is 8.32 and the median is 8.05.

19. Two right circular cones have their heights in the ratio 1 : 3 and radii in the ratio 3 : 1, what is the ratio of their volumes?

20. If $x = a \sin \theta$ and $y = b \cos \theta$, write the value of $(b^2 x^2 + a^2 y^2)$.

Section - B

Q. Nos. 21 to 26 carry 2 marks each.

21. Read the following passage and answer the questions given at the end:

Students of Class XII presented a gift to their school in the form of an electric lamp in the shape of a glass hemispherical base surmounted by a metallic cylindrical top of same radius 21 cm and height 3.5 cm. The top was silver coated and the glass surface was painted red.

(i) What is the cost of silver coating the top at the rate of ₹ 5 per 100 cm²?

(ii) What is the surface area of glass to be painted red?

22. If
$$\tan \theta = \frac{3}{4}$$
, find the value of $\left(\frac{1 - \cos^2 \theta}{1 + \cos^2 \theta}\right)$

OR

If
$$\tan \theta = \sqrt{3}$$
, find the value of $\left(\frac{2 \sec \theta}{1 + \tan^2 \theta}\right)$

23. समांतर श्रेढ़ी $12,\,8,\,4,\,...,\,-84$ के अन्तिम पद से (प्रथम पद की ओर) 11वाँ पद ज्ञात कीजिए।

निम्न समीकरण को हल कीजिए:

$$1 + 5 + 9 + 13 + \dots + x = 1326$$

24. यदि निम्न बंटन का माध्य 7.5 है तो p का मान ज्ञात कीजिए :

वर्ग :	2-4	4-6	6-8	8-10	10-12	12-14
बारंबारता :	6	8	15	p	8	4

- 25. 3 बच्चों के एक परिवार में कम से कम एक लड़के के होने की प्रायिकता ज्ञात कीजिए।
- 26. आकृति 4 में, O केंद्र वाले वृत्त पर एक बाह्य बिंदु P से खींची गई स्पर्श रेखा PA है । यदि $\angle POB = 115^{\circ}$ है तो $\angle APO$ ज्ञात कीजिए ।

खंड – ग

प्रश्न संख्या 27 से 34 तक प्रत्येक प्रश्न के 3 अंक हैं।

- 27. 500 व्यक्ति एक 80 मी. लंबे तथा 50 मी. चौड़े एक घनाभाकार सरोवर में डुबकी लगाते हैं। यदि एक व्यक्ति द्वारा औसत 0.04 घन मी. पानी विस्थापित किया जाता है, तो सरोवर में पानी के तल में कितनी वृद्धि होती है?
- 28. यदि $\sin \theta + \cos \theta = p$ तथा $\sec \theta + \csc \theta = q$ है, तो दर्शाइए कि $q(p^2 1) = 2p$.
- 29. सिद्ध कीजिए कि वृत्त के किसी बिंदु पर स्पर्श रेखा स्पर्श बिंदु से जाने वाली त्रिज्या पर लंब होती है।

अथवा

सिद्ध कीजिए कि किसी बाह्य बिंदु से किसी वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण स्पर्श बिंदुओं को मिलाने वाले रेखाखण्ड द्वारा केंद्र पर अंतरित कोण का संपूरक होता है।

23. Find the 11th term from the last term (towards the first term) of the AP 12, 8, 4, ..., -84.

OR

Solve the equation:

$$1 + 5 + 9 + 13 + \dots + x = 1326$$

24. Find the value of p, if the mean of the following distribution is 7.5.

Classes	2-4	4-6	6-8	8-10	10-12	12-14
Frequency (fi)	6	8	15	p	8	4

- 25. In a family of 3 children, find the probability of having at least one boy.
- 26. In Fig. 4, PA is a tangent from an external point P to a circle with centre O. If $\angle POB = 115^{\circ}$, find $\angle APO$.

Fig. 4.

Section - C

- Q. Nos. 27 to 34 carry 3 marks each.
- 27. 500 persons are taking dip into a cuboidal pond which is 80 m long and 50 m broad. What is the rise of water level in the pond, if the average displacement of the water by a person is 0.04 m³?
- 28. If $\sin \theta + \cos \theta = p$ and $\sec \theta + \csc \theta = q$, show that $q(p^2 1) = 2p$.
- 29. Prove that, a tangent to a circle is perpendicular to the radius through the point of contact.

OR

Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.

30. बहुपद $x^3 - 3x^2 + x + 2$ को एक अन्य बहुपद g(x) से भाग करने पर भागफल तथा शेषफल क्रमशः x - 2 तथा -2x + 4 हैं । g(x) ज्ञात कीजिए ।

अथवा

यदि बहुपद $f(x) = x^2 - 8x + k$ के शून्यकों के वर्गों का योग 40 है, तो k का मान ज्ञात कीजिए।

31. यदि संख्याएँ a, 7, b, 23, c एक समांतर श्रेढ़ी में हैं, तो a, b तथा c के मान ज्ञात कीजिए।

अथवा

यदि एक समांतर श्रेढ़ी के mवें पद का m गुना, इसके nवें पद के n गुने के बराबर है, तो दर्शाइए कि इस श्रेढ़ी का (m+n)वाँ पद शून्य है ।

32. x के लिए हल कीजिए :

$$\frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}$$
; $x \neq -4$, 7.

- 33. दर्शाइए कि बिंदु A(-1, 1), B(5, 7) तथा C(8, 10) संरेख हैं।
- 34. यदि दो समरूप त्रिभुजों के क्षेत्रफल समान हैं, तो सिद्ध कीजिए कि त्रिभुजें सर्वांगसम हैं।

खंड – घ

प्रश्न संख्या 35 से 40 तक प्रत्येक प्रश्न के 4 अंक हैं।

35. यदि एक झील की सतह से 10 मी. की ऊँचाई पर स्थित एक बिंदु से एक बादल का उन्नयन कोण 30° है तथा बादल की झील में परछाई का उसी बिंदु से अवनमन कोण 60° है, तो बादल की झील की सतह से ऊँचाई ज्ञात कीजिए।

अथवा

20~H. ऊँची एक मीनार क्षैतिज तल पर खड़ी है जिसके ऊपर h मी. ऊँचा एक ध्वजदण्ड सीधा खड़ा है। तल के किसी बिंदु से ध्वजदण्ड के निचले तथा ऊपरी सिरों के उन्नयन कोण क्रमशः 45° तथा 60° हैं। h का मान ज्ञात कीजिए।

30. On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4 respectively. Find g(x).

OR

If the sum of the squares of zeros of the quadratic polynomial $f(x) = x^2 - 8x + k$ is 40, find the value of k.

31. Find a, b and c if it is given that the numbers a, 7, b, 23, c are in AP.

OR

If m times the m^{th} term of an AP is equal to n times its n^{th} term, show that the $(m + n)^{th}$ term of the AP is zero.

32. Solve for x:

$$\frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}$$
; $x \neq -4$, 7.

- 33. Show that the points A(-1, 1), B(5, 7) and C(8, 10) are collinear.
- 34. If the areas of two similar triangles are equal, then prove that the triangles are congruent.

Section - D

Q. Nos. 35 to 40 carry 4 marks each.

35. If the angle of elevation of a cloud from a point 10 metres above a lake is 30° and the angle of depression of its reflection in the lake is 60°, find the height of the cloud from the surface of lake.

OR

A vertical tower of height 20 m stands on a horizontal plane and is surmounted by a vertical flag – staff of height h. At a point on the plane, the angle of elevation of the bottom and top of the flag staff are 45° and 60° respectively. Find the value of h.

36. एक समबाहु त्रिभुज ABC में, D भुजा BC पर एक ऐसा बिंदु है कि BD = $\frac{1}{3}$ BC है । सिद्ध कीजिए कि $9 \text{ AD}^2 = 7 \text{ AB}^2$ ।

अथवा

सिद्ध कीजिए कि एक समचतुर्भुज की भुजाओं के वर्गों का योग उसके विकर्णों के वर्गों के योग के बराबर होता है।

37. दर्शाइए कि किसी प्राकृत संख्या n के लिए $(12)^n$, 0 अथवा 5 में समाप्त नहीं हो सकती । अथवा

सिद्ध कीजिए कि ($\sqrt{2}$ + $\sqrt{5}$) एक अपरिमेय संख्या है।

38. निम्न बारंबारता बंटन के लिए एक 'से अधिक प्रकार का' संचयी बारंबारता वक्र खींचिए। अतः बंटन का माध्यक मान ज्ञात कीजिए:

वर्ग	:	0-10	10-20	20-30	30-40	40-50	50-60	60-70
बारंबारता	:	5	15	20	23	17	11	9

- 39. एक भिन्न $\frac{1}{3}$ हो जाती है, जब उसके अंश से 1 घटाया जाता है और वह $\frac{1}{4}$ हो जाती है, जब हर में 8 जोड़ दिया जाता है। वह भिन्न ज्ञात कीजिए।
- 40. 2.4 सेमी ऊँचाई और 1.4 सेमी व्यास वाले एक ठोस बेलन में से उसी ऊँचाई और उसी व्यास का एक शंक्वाकार खोल काट लिया जाता है। शेष बचे ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।

$$\left[\pi = \frac{22}{7} \, \text{लीजिए}\right]$$

36. In an equilateral triangle ABC, D is a point on the side BC such that $BD = \frac{1}{3}$ BC. Prove that $9 AD^2 = 7 AB^2$.

OR

Prove that the sum of squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

37. Show that (12)ⁿ cannot end with digit 0 or 5 for any natural number n.

OR

Prove that $(\sqrt{2} + \sqrt{5})$ is irrational.

38. For the following frequency distribution, draw a cumulative frequency curve of 'more than' type and hence obtain the median value.

Classes	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	5	15	20	23	17	11	9

- 39. A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numerator and it becomes $\frac{1}{4}$ when 8 is added to its denominator. Find the fraction.
- 40. From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm, a conical cavity of same height and same diameter is hollowed out. Find the total surface area of the remaining solid. Use $\pi = \frac{22}{7}$

