281 Live Session

Week 4 - 2023/2/1

Agenda

Final Project Overview

Intro to Feature Vectors & Convolution

Overview of Assignment 3

Final Project

Group project (three groups of 3, one group of 4)

Goal – build a custom image **classifier** using tools from this class

Step 1 – Choose an image dataset & classification problem

- Example topics: medicine, agriculture, architecture, satellite, etc
- Project proposal must be approved by instructors

Step 2 – Create feature vectors using filtering and decomposition methods

Step 3 – Build classifiers using multiple different techniques from class

Final Project Timeline

Feb 13 - submit ideas (video, link to dataset, etc) to pitch list

Feb 27 - team formation deadline (choose a dataset by this date)

March 13 - proposals due

 $Idea\ List: \ \underline{\text{https://docs.google.com/spreadsheets/d/1wf-CSfX9zH0zHyINAmA-QgtC-7FHin0w6FH61V6-rOk/edit\#gid=0}}$

Feature Vectors

- What is a feature vector?
- Why do we hand-design feature vectors instead of learning them?
 - -- efficiency of computation and memory
 - -- explainability
 - -- much less training data required
- How does convolution relate to feature extraction?

[N x 1] vector of values

Source: Mathias Erhart, Flickr.com

Convolution

Applying a filter to an image

Each pixel in the output image is a linear combination of pixels in the input image

The filter/weights determine the purpose/outcome

Types of Filters

-1	-2	-1	
0	0	0	
1	2	1	

Г	_		_
	-1	0	1
	-2	0	2
	-1	0	1
1			

Name	Kernel	Image Result
Identity	0 0 0 0 1 0 0 0 0	
Sharpen	0 -1 0 -1 5 -1 0 -1 0	
Mean Blur	1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9	
Laplacian	0 1 0 1 -4 1 0 1 0	
Gaussian Blur	1/16 2/16 1/16 2/16 4/16 2/16 1/16 2/16 1/16	

Types of Filters

Sources: Yang, Zhuoqian, Tingting Dan, and Yang Yang. "Multi-temporal remote sensing image registration using deep convolutional features." Ieee Access 6 (2018): 38544-38555.

Garg, Isha, Priyadarshini Panda, and Kaushik Roy. "A low effort approach to structured CNN design using PCA." IEEE Access 8 (2019): 1347-1360.

Convolution Padding

How do we get back an image of the same size as the original?

Source: medium.com

Assignment 3 – Convolution & Deconvolution

Deconvolution

Estimating the original image by reversing the kernel operation

$$y = Ax$$

Constructing the Deconvolution Matrix (A)


```
\begin{pmatrix} g[0] \\ g[1] \\ g[2] \\ \vdots \\ g[n-2] \\ g[n] \end{pmatrix} = \begin{pmatrix} h_0 & h_{-1} & 0 & 0 & \dots & 0 & 0 & 0 & h_1 \\ h_1 & h_0 & h_{-1} & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & h_1 & h_0 & h_{-1} & \dots & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & \ddots & & & \vdots \\ 0 & 0 & 0 & 0 & \dots & h_1 & h_0 & h_{-1} & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & h_1 & h_0 & h_{-1} \\ h_{-1} & 0 & 0 & 0 & \dots & 0 & 0 & h_1 & h_0 \end{pmatrix} \begin{pmatrix} f[0] \\ f[1] \\ f[2] \\ \vdots \\ f[n-2] \\ f[n-1] \\ f[n] \end{pmatrix}
\vec{g} = M\vec{f}
\vec{f} = M^{-1}\vec{g}
```

Upcoming ToDo's

Find a group and topic for Final Project

Finish Assignment 2 & start Assignment 3

Watch Async lectures for Unit 4