How to Kill Epsilons with a Dagger

A Coalgebraic Take on Systems with Algebraic Label Structure

Filippo Bonchi, Stefan Milius, Alexandra Silva and Fabio Zanasi

CMCS 2014

Outline

Motivation

Coalgebraic trace semantics for systems with internal (unobservable) behavior is often problematic:

- automata with ε-transitions;
- weak bisimilarity;
- logic programming;
- 0 ...

In this work

Abstract framework where:

- coalgebras (possibly with internal moves) are modeled as systems of mutually recursive equations;
- trace semantics and a sound ε-elimination procedure are defined as (different) ways of solving systems of equations, using the theory of Elgot Monads.

Trace semantics of NDAs

[Hasuo, Jacobs & Sokolova, LMCS'07]

$$\begin{array}{ccc} H \colon & \mathcal{K}\ell(\mathcal{P}) & \to \mathcal{K}\ell(\mathcal{P}) \\ & X & \mapsto (A \times X) + 1 \end{array}$$

A coalgebra $e: X \to H(X)$ is a function $X \to \mathcal{P}((A \times X) + 1)$

$$(A \times X) + 1 \xrightarrow{\langle \cdot \rangle_e} (A \times A^*) + 1$$

NDAs with ε-transitions

$$Id + H: \quad \mathcal{K}\ell(\mathcal{P}) \rightarrow \mathcal{K}\ell(\mathcal{P})$$
$$X \qquad \mapsto X + (A \times X) + 1$$

$$e(x) = \{y\}$$
 $\langle x \rangle_e = \varepsilon a^*$
 $e(y) = \{z\}$ $\langle y \rangle_e = \varepsilon a^*$

 $e(z) = \{(a,z), \checkmark\} \qquad \langle z \rangle_e = a^*$

internal transitions are visible!

Algebraic perspective

- labels of transitions form a monoid and the ε-transition are those labeled with the unit of the monoid.
- the traditional coalgebraic approach fails because it does not take into account the algebraic structure on the labels.

Word automata

$$\langle 1 \rangle_e = \{ [a, b, c] \} \quad \neq \quad \langle 4 \rangle_e = \{ [\varepsilon, ab, c] \}$$

NDA (with or without ε-transitions) can be interpreted as word automata.

Elgot monads

$$(T, \eta, \mu, (\cdot)^{\dagger}) \qquad \qquad \frac{e : X \to T(X+Y)}{e^{\dagger} : X \to T(Y)}$$

Intuitively:

- X is a set of variables;
- Y is a set of parameters;
- \circ $e: X \to T(X+Y)$ is a system of (mutually recursive equations);
- $\circ e^{\dagger} : X \to T(Y)$ is a substitution solving the system e.

$$(T, \eta, \mu, (\cdot)^{\dagger})$$
 $\underline{e: X \rightarrow T(X+Y)}$ $\underline{e^{\dagger}: X \rightarrow T(Y)}$

C a **Cppo**-enriched category. $T: C \rightarrow C$ locally continuous.

$$X - - - - \frac{\langle \cdot \rangle_{e}}{|} - - - \rightarrow I_{Y} - - - - - \frac{!}{-} - - \rightarrow TY$$

$$\downarrow \qquad \qquad \qquad \uparrow \mu_{Y}^{T}$$

$$\downarrow \qquad \qquad \uparrow \chi^{T} \qquad \qquad \downarrow \chi$$

$$(T, \eta, \mu, (\cdot)^{\dagger}) \qquad \qquad \underbrace{e \colon X \to T(X+Y)}_{e^{\dagger} \coloneqq (! \circ \langle \cdot \rangle_{e}) \colon X \to T(Y)}$$

C a **Cppo**-enriched category. $T: C \rightarrow C$ locally continuous.

$$X - - - - \frac{\langle \cdot \rangle_{e}}{|} - - - \rightarrow I_{Y} - - - - - \frac{!}{-} - - \rightarrow TY$$

$$\downarrow \qquad \qquad \qquad \uparrow \mu_{Y}^{T}$$

$$\downarrow \qquad \qquad \uparrow \chi^{T} \qquad \qquad \downarrow \chi$$

$$T: \quad \mathcal{K}\ell(\mathcal{P}) \rightarrow \mathcal{K}\ell(\mathcal{P}) \qquad \qquad \underbrace{e: X \rightarrow T(X+Y)}_{e^{\dagger} := (! \circ \langle \cdot \rangle_e): X \rightarrow T(Y)}$$

C a **Cppo**-enriched category. $T: C \rightarrow C$ locally continuous.

$$\begin{array}{c|c} X - - - & \xrightarrow{\langle \cdot \rangle_e} & - & \rightarrow I_Y - - & - & \stackrel{!}{-} & - & \rightarrow TY \\ \downarrow & & \downarrow & & \uparrow^{-1} \left(\stackrel{\cong}{\cong} \right) \iota_Y & & TTY \\ \uparrow & & \uparrow^T [TY, \eta_Y^T] \\ T(X + Y) & \xrightarrow{T(\langle \cdot \rangle_e + Y)} & T(I_Y + Y) & \xrightarrow{T(! + Y)} & T(TY + Y) \end{array}$$

$$T: \quad \mathcal{K}\ell(\mathcal{P}) \rightarrow \mathcal{K}\ell(\mathcal{P}) \qquad \qquad \underbrace{e: X \rightarrow T(X + \mathbf{0})}_{e^{\dagger} := (! \circ \langle \cdot \rangle_e) : X \rightarrow T(\mathbf{0})}$$

C a **Cppo**-enriched category. $T: C \rightarrow C$ locally continuous.

Set parameter Y = 0.

$$X - - - - \xrightarrow{\langle \cdot \rangle_{e}} - - - \rightarrow I_{0} - - - - \stackrel{!}{-} - - \rightarrow T_{0}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow \mu_{0}^{T}$$

$$\uparrow \mu_{0}^{T} \qquad \qquad \uparrow T_{0}$$

$$\uparrow T[T0, \eta_{0}^{T}]$$

$$T(X + \mathbf{0}) \xrightarrow{T(\langle \cdot \rangle_{e} + 0)} T(I_{0} + \mathbf{0}) \xrightarrow{T(! + 0)} T(T^{0} + \mathbf{0})$$

$$T: \quad \mathcal{K}\ell(\mathcal{P}) \rightarrow \mathcal{K}\ell(\mathcal{P}) \qquad \qquad \underbrace{e: X \rightarrow T(X+0)}_{e^{\dagger} := (! \circ \langle \cdot \rangle_e): X \rightarrow T(0)}$$

C a **Cppo**-enriched category. $T: C \rightarrow C$ locally continuous.

Set parameter Y = 0.

Trace semantics of word automata

$$\begin{array}{ccc} T \colon & \mathcal{K}\!\ell(\mathcal{P}) & \to \mathcal{K}\!\ell(\mathcal{P}) \\ & X & \mapsto (A^* \times X) + A^* \end{array}$$

The framework

Uniform trace semantics (using \dagger of the monad T)

○ For $e: X \rightarrow TX$ a word automaton:

$$[\![\cdot]\!]_e := e^{\dagger} : X \to A^*.$$

○ For $e: X \rightarrow HX$ an NDA:

$$\llbracket \cdot \rrbracket_e \coloneqq (\kappa_X \circ e)^{\dagger} \colon X \to A^*.$$

where κ : $H \Rightarrow T$ is the universal map of the free monad T on H.

∘ For $e: X \to X + HX$ an NDA with ε -transitions:

$$[\![\cdot]\!]_e := ([\eta_X, \kappa_X] \circ e)^{\dagger} \colon X \to A^*$$

The framework

Uniform trace semantics (using \dagger of the monad T)

• For $e: X \to TX$ a word automaton:

$$[\![\cdot]\!]_e := e^{\dagger} : X \to A^*.$$

 \circ For $e: X \to HX$ an NDA:

$$\llbracket \cdot \rrbracket_e := (\kappa_X \circ e)^{\dagger} : X \to A^*.$$

where κ : $H \Rightarrow T$ is the universal map of the free monad T on H.

∘ For $e: X \rightarrow X + HX$ an NDA with ϵ -transitions:

$$[\cdot]_e := ([\eta_X, \kappa_X] \circ e)^{\dagger} : X \to A^*$$

ε -elimination (using † of the exception monad Id + HX)

$$(e: X \to X + HX) \mapsto (e \setminus \varepsilon: X \to HX)$$

ε-elimination

$$\begin{array}{ccc} \textit{Id} + \textit{HX} \colon & \mathcal{K}\ell(\mathcal{P}) & \rightarrow \mathcal{K}\ell(\mathcal{P}) & & \frac{e \colon X \to X + Y + HX}{e^{\dagger} \coloneqq (! \circ \langle \cdot \rangle_e) \colon X \to Y + HX} \end{array}$$

ε-elimination

$$\begin{array}{ccc} \textit{Id} + \textit{HX} \colon & \mathcal{K}\ell(\mathcal{P}) & \rightarrow \mathcal{K}\ell(\mathcal{P}) & & \frac{e \colon X \to X + HX}{e^{\dagger} \coloneqq (! \circ \langle \cdot \rangle_e) \colon X \to HX} \end{array}$$

Set parameter Y = 0:

$$\begin{array}{c} X - - - - \stackrel{\langle \cdot \rangle_e}{-} - - \to \mathbb{N} \times HX - - - \stackrel{!}{-} - - \to HX \\ e \downarrow & \uparrow \cong \downarrow & \uparrow \mu_0 = \mathbb{V} \\ X + HX \xrightarrow{\langle \cdot \rangle_e + HX} & (\mathbb{N} \times HX) + HX \xrightarrow{! + HX} & HX + HX \end{array}$$

ε-elimination

$$\begin{array}{ccc} \textit{Id} + \textit{HX} \colon & \mathcal{K}\ell(\mathcal{P}) & \rightarrow \mathcal{K}\ell(\mathcal{P}) & & \frac{e \colon X \to X + HX}{e^{\dagger} \coloneqq (! \circ \langle \cdot \rangle_e) \colon X \to HX} \end{array}$$

Set parameter Y = 0:

$$\begin{array}{c} X - - - - \stackrel{\langle \cdot \rangle_e}{-} - - \to \mathbb{N} \times HX - - - \stackrel{!}{-} - - - \to HX \\ e \downarrow \qquad \qquad \stackrel{\uparrow}{\cong} \downarrow \qquad \qquad \uparrow \mu_0 = \nabla \\ X + HX \xrightarrow{\langle \cdot \rangle_e + HX} \to (\mathbb{N} \times HX) + HX \xrightarrow{! + HX} \to HX + HX \end{array}$$

$$\langle x \rangle_e = \{(2,a,z),(2,\checkmark)\}$$

$$\langle y \rangle_e = \{(1,a,z),(1,\checkmark)\}$$

$$\langle z \rangle_e = \{(0,a,z),(0,\checkmark)\}$$

The framework

Uniform trace semantics (using \dagger of the monad T)

• For $e: X \to TX$ a word automaton:

$$[\![\cdot]\!]_e := e^{\dagger} : X \to A^*.$$

 \circ For $e: X \to HX$ an NDA:

$$[\![\cdot]\!]_e := (\kappa_X \circ e)^{\dagger} : X \to A^*.$$

where κ : $H \Rightarrow T$ is the universal map of the free monad T on H.

∘ For $e: X \rightarrow X + HX$ an NDA with ϵ -transitions:

$$[\![\cdot]\!]_e := ([\eta_X, \kappa_X] \circ e)^{\dagger} \colon X \to A^*$$

ε -elimination (using † of the exception monad Id + HX)

$$(e: X \to X + HX) \mapsto (e \setminus \varepsilon: X \to HX)$$

The framework

Uniform trace semantics (using \dagger of the monad T)

○ For $e: X \to TX$ a word automaton:

$$[\![\cdot]\!]_e := e^{\dagger} : X \to A^*.$$

 \circ For $e: X \to HX$ an NDA:

$$\llbracket \cdot \rrbracket_e := (\kappa_X \circ e)^{\dagger} : X \to A^*.$$

where κ : $H \Rightarrow T$ is the universal map of the free monad T on H.

∘ For $e: X \rightarrow X + HX$ an NDA with ϵ -transitions:

$$[\![\cdot]\!]_e := ([\eta_X, \kappa_X] \circ e)^{\dagger} \colon X \to A^*$$

ϵ -elimination (using \dagger of the exception monad Id + HX)

$$(e: X \to X + HX) \mapsto (e \setminus \varepsilon: X \to HX)$$

Soundness of ε-elimination

$$[\cdot]_e = [\cdot]_{e \setminus E}$$

Discussion

- In a sense, our framework encompasses [Hasuo, Jacobs & Sokolova, LMCS'07]. We have slightly more restrictive assumptions: local continuity in place of local monotonicity.
- ε-elimination is like in [Silva & Westerbaan, CALCO'13], but in a more abstract setting with more instances.
- Other features of our framework: the algebra of labels does not need to be free - e.g. Mazurkiewicz traces (in the paper).
- Open question:
 - assumptions of the framework: initial algebra-final coalgebra coincidence and an equational property (the double dagger law) of †. How to formulate it without any Cppo-enrichment?