03.11.2019

Obliczenia Naukowe

Lista Nr 2(Laboratorium)

Piotr Popis

• Zadanie 1

1. Opis problemu.

Celem jest ponowne eksperymentalne zbadanie problemu różności rozwiązań iloczynu skalarnego dwóch wektorów. Tym razem usuwamy osatnie znaczące cyfry współrzędnych x_4 oraz x_5 odpowiednio 9 i 7. Problem należy sprawdzić dla pojedynczej i podwójnej precyzji.

```
@Zadanie 5 Lista 1
x=[2.718281828, (-3.141592654), 1.414213562,0.5772156649,0.3010299957]
y=[1486.2497,878366.9879, (-22.37492),4773714.647,0.000185049]
```

```
@Zadanie 1 Lista 2
a=[2.718281828, (-3.141592654), 1.414213562,0.577215664,0.301029995]
b=[1486.2497,878366.9879, (-22.37492),4773714.647,0.000185049]
```

2. Rozwiązanie problemu.

Ponowne przepuszczenie zmienionych danych przez algorytmy:

- (a) "w przód"
- (b) "w tył"
- (c) od największego do najmniejszego (dodaj dodatnie liczby w porządku od największegodo najmniejszego, dodaj ujemne liczby w porządku od najmniejszego do największego, a następnie daj do siebie obliczone sumy częściowe)
- (d) od najmniejszego do największego (przeciwnie do metody (c))

zaimplementowane w zadaniu nr 5 listy nr 1 oraz porównanie i analiza otrzymanych wyników.

3. Wyniki

@Zadanie 5 Lista 1

Algorytm	a	b	С	d
Float32	-0.4999443	-0.4543457	-0.5	-0.5
Float64	1.0251881368296 672e-10	- 1.5643308870494 366e-10	0.0	0.0

@Zadanie 1 Lista 2

Algorytm	a	b	С	d
Float32	-0.4999443	-0.4543457	-0.5	-0.5
Float64	-	-	-	-
	0.0042963427398	0.0042963429987	0.0042963428422	0.0042963428422
	91585	13953	80865	80865

4. Wnioski.

- Jaki wpływ na wyniki mają niewielkie zmiany danych?

W przypadku precyzji **Float32** wyniki nie zmieniły się. Dzieję się tak z przyczny zbyt słabej precyzji(rząd 10⁻⁷) arytmetyki względem precyzji zapisu liczby(rząd 10⁻⁹).

W przypadku precyzji **Float64** zauważalna jest ogromna różnica między wynikami poprzednimi, (przed ucięciem), a nowymi, (po ucięciu). Możemy śmiało stwierdzić, że jest to przykład zadania **źle uwarunkowanego.** Minimalna zmiana danych wejściowych powoduje ogromne zmiany wyjściowego wyniku.

• Zadanie 2

1. Opis problemu.

Celem jest narysowanie wykresu funkcji f(x) w co najmniej dwóch dowolnych programach do wizualizacji. Oraz policzenie limes f(x) dla $x \to \infty$, gdzie

$$f(x) = e^x \ln(1 + e^{-x})$$

Porównać otrzymany wynik limes z wykresami oraz wyjaśnić zjawisko.

2. Rozwiązanie problemu.

W celu obliczenia wyznaczenia granicy wykorzystuję SymPy oraz jego podrzędna funkcję limit(func,arg,aim). Do narysowania wykresu wykorzstuję Plots- biblioteka

do tworzenia wykresów , Desmos – dostępny w każdej nowoczesnej przeglądarce, Geogebra oraz Footplot.

3. Wyniki.

Szukana granica funkcji $f(x) = e^x \ln(1 + e^{-x})$ wynosi 1.

Plots – Julia Library

Osie są przesunięte ze względu na komendę RANGE()

Geogebra

Jak widzimy po przejśćiu przez x=32 otrzymujemy bardzo dużą wartość e^{32} , która jest przemnażana przez liczbę bardzo małą $\ln(1+e^x)$. Przez co otrzymujemy wyniki oscylujące na przemian powyżej i poniżej wyliczonej granicy. Otrzymane wyniki są oczywiście błędne. Następnie dla x=37 funkcja osiąga wartość 0 ze względu na fakt, iż wartość $\ln(1+e^x)$ jest już tak mała, że zostaje przybliżona do 0. Więc przemnożona z pozostałym członem zawsze daje zero. W niektórych programach dla dostatecznie dużych x program jest na tyle inteligentny, że wylicza granicę podanej funkcji i od tego miejsca podaje jej wartość zamiast błędnych wyników.

• Zadanie 3

1. Opis problemu.

Głównym problemem jest rozwiązanie układu równań liniowych

$$Ax=b$$

zadana jest macierz współczynników A i wektor prawych stron b. Macierz generujemy na dwa sposoby. Pierwszy to wykorzystanie macierzy Hilbera stopnia n. Druga natomiast jest macierzą losową stopnia n z zadanym wskaźnikiem uwarunkowania **c**.

Wektor **b** jest zadany jako **Ax**, gdzie a to wygenerowana przez nas macierz, a $\mathbf{x} = (1,...,1)^{T}$

Rozwiązać zadane równanie na dwa sposoby, przy użyciu eliminacji Gausa i inversji. Eksperymenty wykonać dla rosnącego n>1 w przypadku macierzy Hilberta, dla n=5,10,20 z rosnącym c=1,10,10³,10¹,10¹²,10¹6. Policzyć błędy względne.

2. Rozwiązanie problemu.

Do rozwiązania wykorzystamy pakiet LinearAlgebra w celu pobrania cond() oraz rank() odpowiednio wskaźnik uwarunkowania wygenerowanej macierzy oraz rząd macierzy. Zostały zaimplementowane metody do generowania macirzy hilberta oraz losowej z zadanym wskaźnikiem c oraz metoda obliczająca błąd względny wykorzystujący funkcję norm(). Następnie zostały przeprowadzone eksperymenty a ich wyniki możemy sprawdzić w sekcji wyniki.

3. Wyniki.

Macierz Hilberta M _n							
cond()	Rozmiar	rank()	Błąd względny eliminacji Gausaa	Błąd względny inwersji			
19.28147006790397	2	2	5.661048867003676e-16	1.4043333874306803e-15			
524.0567775860644	3	3	8.022593772267726e-15	0.0			
15513.73873892924	4	4	4.137409622430382e-14	0.0			
476607.25024259434	5	5	1.6828426299227195e-12	3.3544360584359632e-12			
1.4951058642254665e7	6	6	2.618913302311624e-10	2.0163759404347654e-10			
4.75367356583129e8	7	7	1.2606867224171548e-8	4.713280397232037e-9			
1.5257575538060041e10	8	8	6.124089555723088e-8	3.07748390309622e-7			
4.931537564468762e11	9	9	3.8751634185032475e-6	4.541268303176643e-6			
1.6024416992541715e13	10	10	8.67039023709691e-5	0.0002501493411824886			
5.222677939280335e14	11	10	0.00015827808158590435	0.007618304284315809			
1.7514731907091464e16	12	11	0.13396208372085344	0.258994120804705			
3.344143497338461e18	13	11	0.11039701117868264	5.331275639426837			
6.200786263161444e17	14	11	1.4554087127659643	8.71499275104814			
3.674392953467974e17	15	12	4.696668350857427	7.344641453111494			
7.865467778431645e17	16	12	54.15518954564602	29.84884207073541			
1.263684342666052e18	17	12	13.707236683836307	10.516942378369349			
2.2446309929189128e18	18	12	9.134134521198485	7.575475905055309			
6.471953976541591e18	19	13	9.720589712655698	12.233761393757726			

1.3553657908688225e18	20	13	7.549915039472976	22.062697257870493

Macierz Losowa R _n							
cond()	Rozmiar	Rozmiar rank() Błąd względny eliminacji Gausaa		Błąd względny inwersji			
1.0	5	5	1.5700924586837752e-16	1.4043333874306804e-16			
10.0	5	5	1.719950113979703e-16	1.719950113979703e-16			
1000.0	5	5	1.4148266844381742e-15	9.79415571016078e-15			
1.0e7	5	5	3.6204531690624907e-10	3.1588048560580086e-10			
1.0e12	5	5	1.6541515455114935e-5	1.619562508800795e-5			
1.0e16	5	4	0.11443581117792277	0.0739509972887452			
1.0	10	10	2.1642230995786354e-16	1.9229626863835638e-16			
10.0	10	10	1.2658490090568384e-16	2.016820280180126e-16			
1000.0	10	10	2.920810890748086e-14	3.0974784661609553e-14			
1.0e7	10	10	1.711913162282261e-10	1.7144107812809687e-10			
1.0e12	10	10	1.423255114178321e-6	3.428588488053808e-6			
1.0e16	10	9	0.032216726513605014	0.04332240822816178			
1.0	20	20	5.23691153334427e-16	5.09978018830275e-16			
10.0	20	20	3.7485443673843946e-16	4.37799666588975e-16			
1000.0	20	20	8.177680028281057e-15	5.9090571005317786e-15			
1.0e7	20	20	3.2123824321972287e-10	3.55640107589538e-10			
1.0e12	20	20	3.1645714988939825e-5	3.2600983724545365e-5			
1.0e16	20	19	0.14898201945476774	0.1196613874909112			

Dla macierzy Hilberta wraz ze wzrostem rozmiaru macierzy błąd względny obu metod oraz wskaźnik uwaronkowania cond() również rośnie. Wskaźnik cond() osiąga wartość rzędu 10^7 już dla $\rm H_6$. Zadanie rozwiązania równania $\rm Ax=b$ dla macierzy Hilberta jest przykładem zadania bardzo Źle uwarunkowanego.

Dla macierzy Losowej przy zwiększeniu stopnia macierzy zauważalny jest wzrost błędów względnych obu metod. Jednak w tym przypadku rosnący błąd powiązany jest również z wskaźnikiem uwarunkowania cond() danej macierzy.

Metoda inwersji jest w tym przypadku widocznie bardziej precyzyjna niż metoda Eliminacji Gauss'a.

Zwłaszcza dla macierzy losowej zauważalne jest, że większy wpływ ma cond() niż sam rozmiar, co dla macierzy Hilberta nie jest tak widoczne. Jednak nie zmienia to faktu, iż tym większa macierz tym większy błąd. Błędy dla macierzy losowej rosną jednakże dużo wolniej niż dla macierzy Hilbera.

Na podstawie wyników eksperymentu dla macierzy Hilberta zadanie jest bardzo **źle uwarunkowane.** Kolejna inkrementacja stopnia powoduje gwałtowny wzrost jej wskaźnika uwarunkowania cond(), a za tym wzrost błędu. W praktyce jednak błąd rzędu 10⁻¹⁵ jest zadawalający.

• Zadanie 4

1. Opis problemu.

Celem zadania jest znalezienie 20 miejsc zerowych wielomianu P o zadanych współczynnikach:

```
p = [1, -210.0, 20615.0, -1256850.0, \\ 53327946.0, -1672280820.0, 40171771630.0, -756111184500.0, \\ 11310276995381.0, -135585182899530.0, \\ 1307535010540395.0, -10142299865511450.0, \\ 63030812099294896.0, -311333643161390640.0, \\ 1206647803780373360.0, -3599979517947607200.0, \\ 8037811822645051776.0, -12870931245150988800.0, \\ 13803759753640704000.0, -8752948036761600000.0, \\ 2432902008176640000.0]
```

Wielomian skonstruowany z powyższych współczynników jest postacią naturalna wielomianu Wilkinsona p

$$p(x) = (x-20)(x-19)(x-18)(x-17)(x-16)(x-15)(x-14)(x-13)(x-12)(x-11)$$
$$(x-10)(x-9)(x-8)(x-7)(x-6)(x-5)(x-4)(x-3)(x-2)(x-1)$$

W następnym etapie zadania należy koniecznie sprawdzić wszystkie pierwiastki obliczająć $|P(z_k)|$, $|p(z_k)|$ oraz $|z_k-k|$ i wyjaśnić rozbieżności. Sprawdzić eksperyment Wilkinsona.

2. Rozwiązanie problemu.

W pierwszej części zadania skorzystamy z funkcji roots z pakietu Polynomails do obliczenia szukanych miejsc. **Poly** do utworzenia wielomianu z tablicy zaiwerającej współczynniki. Natomiast **poly** do tworzenia wielomianu z tablicy zawierającej miejsca zerowe. Kolejno **polyval(P,x)** do obliczenia wartości wielomianu P w x z wykorzystaniem metody Hornera.

W drugiej części przeprowadzamy eksepryment Wilkinsona tzn, zamieniamy współczynnik przy -210 na -210 -2²³.

3. Wyniki.

3.1.a

,			ID ()	
k	$\mathbf{Z}_{\mathbf{k}}$	z _k - k	$ P(z_k) $	$ p(z_k) $
1	0.999999999996989	3.0109248427834245e-13	36352.0	38400.0
2	2.0000000000283182	2.8318236644508943e-11	181760.0	198144.0
3	2.9999999995920965	4.0790348876384996e-10	209408.0	301568.0
4	3.9999999837375317	1.626246826091915e-8	3.106816e6	2.844672e6
5	5.000000665769791	6.657697912970661e-7	2.4114688e7	2.3346688e7
6	5.999989245824773	1.0754175226779239e-5	1.20152064e8	1.1882496e8
7	7.000102002793008	0.00010200279300764947	4.80398336e8	4.78290944e8
8	7.999355829607762	0.0006441703922384079	1.682691072e9	1.67849728e9
9	9.002915294362053	0.002915294362052734	4.465326592e9	4.457859584e9
10	9.990413042481725	0.009586957518274986	1.2707126784e10	1.2696907264e10
11	11.025022932909318	0.025022932909317674	3.5759895552e10	3.5743469056e10
12	11.953283253846857	0.04671674615314281	7.216771584e10	7.2146650624e10
13	13.07431403244734	0.07431403244734014	2.15723629056e11	2.15696330752e11
14	13.914755591802127	0.08524440819787316	3.65383250944e11	3.653447936e11
15	15.075493799699476	0.07549379969947623	6.13987753472e11	6.13938415616e11
16	15.946286716607972	0.05371328339202819	1.555027751936e12	1.554961097216e1 2
17	17.025427146237412	0.025427146237412046	3.777623778304e12	3.777532946944e1 2
18	17.99092135271648	0.009078647283519814	7.199554861056e12	7.1994474752e12
19	19.00190981829944	0.0019098182994383706	1.0278376162816e13	1.0278235656704e 13
20	19.999809291236637 0	.00019070876336257925 2.	7462952745472e13	2.7462788907008e

13

3.1.b Eksperyment Wilkinsona

k	$\mathbf{Z}_{\mathbf{k}}$	z _k - k	$ P(z_k) $	$ p(z_k) $
1	0.9999999999998357 + 0.0im	1.6431300764452317e-13	20992.0	22016.0
2	2.0000000000550373 + 0.0im	5.503730804434781e-11	349184.0	365568.0
3	2.99999999660342 + 0.0im	3.3965799062229962e-9	2.221568e6	2.295296e6
4	4.000000089724362 + 0.0im	8.972436216225788e-8	1.046784e7	1.0729984e7
5	4.99999857388791 + 0.0im	1.4261120897529622e-6	3.9463936e7	4.3303936e7
6	6.000020476673031 + 0.0im	2.0476673030955794e-5	1.29148416e8	2.06120448e8
7	6.99960207042242 + 0.0im	0.00039792957757978087	3.88123136e8	1.757670912e9
8	8.007772029099446 + 0.0im	0.007772029099445632	1.072547328e9	1.8525486592e10
9	8.915816367932559 + 0.0im	0.0841836320674414	3.065575424e9	1.37174317056e11
10	10.095455630535774 - 0.6449328236240688im	0.6519586830380406	7.143113638035824 e9	1.491263381675401 9e12
11	10.095455630535774 + 0.6449328236240688im	1.1109180272716561	7.143113638035824 e9	1.491263381675401 9e12
12	11.793890586174369 - 1.6524771364075785im	1.665281290598479	3.357756113171857 e10	3.296021414130166 4e13
13	11.793890586174369 + 1.6524771364075785im	2.045820276678428	3.357756113171857 e10	3.296021414130166 4e13
14	13.992406684487216 - 2.5188244257108443im	2.5188358711909045	1.061206453308197 6e11	9.545941595183662 e14
15	13.992406684487216 + 2.5188244257108443im	2.7128805312847097	1.061206453308197 6e11	9.545941595183662 e14
16	16.73074487979267 - 2.812624896721978im	2.9060018735375106	3.315103475981763 e11	2.742089401676406 4e16
17	16.73074487979267 + 2.812624896721978im	2.825483521349608	3.315103475981763 e11	2.742089401676406 4e16

18	19.5024423688181 - 1.940331978642903im	2.454021446312976	9.539424609817828 e12	4.252502487993469 4e17
19	19.5024423688181 + 1.940331978642903im	2.004329444309949	9.539424609817828 e12	4.252502487993469 4e17
20	20.84691021519479 + 0.0im	0.8469102151947894	1.114453504512e13	1.374373319724971 3e18

4.1.a

Wilkinson swoje odkrycie uznał za najbardziej traumatyczne w całej jego karierze naukowej. Zauważmy, że stosunkowe małe błędy przybliżenia powstałe podczas obliczania pierwiastków przyczyniają się do otrzymania wyników odlegle błędnych. Zadanie obliczenia pierwiastków z_k wielomianu Wilkinsona jest zadaniem skrajnie źle uwarunkowanym. Powodem tych sprzecznych wyników są prawdopodbnie duże wartości współczynników, błąd zatem jest powielany. Drugą sprawą jest rozwikłanie zadanej wskazówki. Język Julia (float64) ma od 15 do 17 cyfr znaczących, więc nie wszystkie współczynniki wielomianu są dokładnie rezprezentowane. Ostatecznie zadanie wyznaczenia pierwiastków wielomianu jest źle uwarunkowane ze względu na zaburzenia współczynników.

4.1.b Eksperyment Wilkinsona (- 2⁻²³)

Dla zoobrazowania różnicy:

-210

Po odjęciu względnie małej liczby 2^{23} pierwiastki przyjmują zwyczajowo wartości większe niż prawidłowe dla x=20 otrzymujemy 20,8. Pojawiają się pierwiastki zespolone. Niewielka zmiana współczynnika doprowadza do znacznie innego rozmieszczenia miejsc zerowych. Trzeba zauważyć, że w wejściowym stanie pierwiastki rozłożone są równomiernie. Wilkinson wykazał, iż zachowanie to wynika ze względu na to, że niektóre pierwiastki $\bf a$ będą miały wiele bliskich pierwiastków $\bf b$

takich, że |**a-b**| jest mniejszy od **a**² (np. 15). Powyższy eksperyment arguemtnuje, iż zadanie jest zadaniem skrajnie źle uwarunkowanym. Warto dodać, że dla tak małego zaburzenia pojawiają się zera zespolone.

- Zadanie 5
- 1. Opis problemu.

Rozważanym problem jest model logistyczny, model wzrostu populacji Ver-huste

$$p_{n+1}=p_n+r p_n(1-p_n)$$

gdzie r jest zadaną stałą, $r(1-p_n)$ jest czynnikiem wzrostu populacji natomiast p_0 jest wielkością poppulacji stanowiącą procent maksymalenj wielkości populacji dla danego stanu środowiska.

W zadaniu mamy zmierzyć się z dwoma eksperymentami. Dla narzuconego p=0.01 oraz 3=3 przeprowadzić 40 iteracji wyrażenia w arytmetyce Float32 z zaburzeniem tzn ucięciem do 3 cyfr po przecinku dla wartości w 10 iteracji . Następnie to samo doświadczenie wykonać bez zbaurzenia dla arytmetki Floaat64.

2. Rozwiązanie problemu.

Zaimplementowanie algorytmu iterującego 40 razy dla aż trzech wartości p,p2 oraz p3 jest słusznym podejściem. Wykonanie zadanego działania 40 razy dla p oraz p3 natomiast z zatrzymaniem w 10 iteracji dla p2. Zapisanie otrzymanych wyników

kolejnych kolumnach w celu ułatwienia interpretacji otrzymanych wartości dla kolejnych problemów.

3. Wyniki.

	vv ymrki.		
i	Float32	Float32 z ucięciem	Float64
1	0.0397	0.0397	0.0397
2	0.15407173	0.15407173	0.15407173000000002
3	0.5450726	0.5450726	0.5450726260444213
4	1.2889781	1.2889781	1.2889780011888006
5	0.1715188	0.1715188	0.17151914210917552
6	0.5978191	0.5978191	0.5978201201070994
7	1.3191134	1.3191134	1.3191137924137974
8	0.056273222	0.056273222	0.056271577646256565
9	0.21559286	0.21559286	0.21558683923263022
10	0.7229306	0.722	0.722914301179573
11	1.3238364	1.3241479	1.3238419441684408
12	0.037716985	0.036488414	0.03769529725473175
13	0.14660022	0.14195944	0.14651838271355924
14	0.521926	0.50738037	0.521670621435246
15	1.2704837	1.2572169	1.2702617739350768
16	0.2395482	0.28708452	0.24035217277824272
17	0.7860428	0.9010855	0.7881011902353041
18	1.2905813	1.1684768	1.2890943027903075
19	0.16552472	0.577893	0.17108484670194324
20	0.5799036	1.3096911	0.5965293124946907
21	1.3107498	0.09289217	1.3185755879825978
22	0.088804245	0.34568182	0.058377608259430724
23	0.3315584	1.0242395	0.22328659759944824
24	0.9964407	0.94975823	0.7435756763951792
25	1.0070806	1.0929108	1.315588346001072
26	0.9856885	0.7882812	0.07003529560277899
27	1.0280086	1.2889631	0.26542635452061003
28	0.9416294	0.17157483	0.8503519690601384
29	1.1065198	0.59798557	1.2321124623871897
30	0.7529209	1.3191822	0.37414648963928676
31	1.3110139	0.05600393	1.0766291714289444
32	0.0877831	0.21460639	0.8291255674004515

33	0.3280148	0.7202578	1.2541546500504441
34	0.9892781	1.3247173	0.29790694147232066
35	1.021099	0.034241438	0.9253821285571046
36	0.95646656	0.13344833	1.1325322626697856
37	1.0813814	0.48036796	0.6822410727153098
38	0.81736827	1.2292118	1.3326056469620293
39	1.2652004	0.3839622	0.0029091569028512065
40	0.25860548	1.093568	0.011611238029748606

Pozornie drobne, niewielkie zmiany w danych takie jak obcięcie kilku miejsc po przecinku doprowadza wyniki końcowe do dużych błędów. Takie ucięcie może być np. spowodowane ograniczeniami ze strony bazy danych.

Zauważalne jest, że różnice są coraz większe w kolejnych iteracjach.

Zadanie jest zadaniem źle uwarunkowanym. Zwiększenie precyzji dla małych n może przynić się do zbliżenia do bardziej poprawnych wyników. Proces numeryczny można także uznać za niestabilny. Dodatkowo można wywnioskować, iż błąd możemy zmniejszyć zwiekszając precyzję.

Zadanie 6

1. Opis problemu.

Rozważanym problemem jest równanie rekurencyjne postaci:

$$x_{n+1} = x_n^2 + c dla n = 0,1...$$

Celem jest przeprowadzenie eksperymentów dla danych:

2. Rozwiązanie problemu.

W celu rozwiązania problemu wykonujemy 40 iretacji wyżej podanego wyrażenia. Konluzję i wnioski wyciągniemy z iteracji graficznej zadanego równania.

3. Wyniki.

	3. VV y111K1.								
i	$\begin{vmatrix} C = -2 \\ x_0 = 1 \end{vmatrix}$	C = -2 $x_0 = 2$	$C= -2$ $x_0=1.99999999$ 9999999	$\begin{vmatrix} C = -1 \\ x_0 = 1 \end{vmatrix}$	C = -1 $x_0 = 2$	$C= -1$ $x_0=0.75$	C = -1 $x_0 = 0.25$		
1	-1.0	2.0	1.999999999999999	0.0	0.0	-0.4375	-0.9375		
2	-1.0	2.0	1.999999999998 401	-1.0	-1.0	-0.80859375	-0.12109375		
3	-1.0	2.0	1.99999999999 605	0.0	0.0	-0.346176147460 9375	-0.985336303710937 5		
4	-1.0	2.0	1.999999999974 42	-1.0	-1.0	-0.880162074929 1033	-0.029112368589267 135		
5	-1.0	2.0	1.9999999999897 682	0.0	0.0	-0.225314721856 4956	-0.999152469995122 6		
6	-1.0	2.0	1.999999999590 727	-1.0	-1.0	-0.949233276114 7301	-0.001694341702645 5965		
7	-1.0	2.0	1.999999998362 91	0.0	0.0	-0.098956187516 4966	-0.999997129206194 7		
8	-1.0	2.0	1.999999993451 638	-1.0	-1.0	-0.990207672952 1999	-5.741579369278327 e-6		
9	-1.0	2.0	1.999999973806 553	0.0	0.0	-0.019488764426 58909	-0.99999999967034 3		
10	-1.0	2.0	1.999999895226 21	-1.0	-1.0	-0.999620188061 125	-6.593148249578462 e-11		
11	-1.0	2.0	1.999999580904 841	0.0	0.0	-0.000759479620 6411569	-1.0		
12	-1.0	2.0	1.9999998323619 383	-1.0	-1.0	-0.999999423190 7058	0.0		
13	-1.0	2.0	1.9999993294477 814	0.0	0.0	-1.153618255700 3727e-6	-1.0		
14	-1.0	2.0	1.9999973177915 749	-1.0	-1.0	-0.99999999998 6692	0.0		
15	-1.0	2.0	1.9999892711734 937	0.0	0.0	-2.661648679236 3503e-12	-1.0		
16	-1.0	2.0	1.9999570848090	-1.0	-1.0	-1.0	0.0		

			826				
17	-1.0	2.0	1.9998283410780 44	0.0	0.0	0.0	-1.0
18	-1.0	2.0	1.9993133937789 613	-1.0	-1.0	-1.0	0.0
19	-1.0	2.0	1.9972540465439 481	0.0	0.0	0.0	-1.0
20	-1.0	2.0	1.9890237264361 752	-1.0	-1.0	-1.0	0.0
21	-1.0	2.0	1.9562153843260 486	0.0	0.0	0.0	-1.0
22	-1.0	2.0	1.8267786298739 1	-1.0	-1.0	-1.0	0.0
23	-1.0	2.0	1.3371201625639 997	0.0	0.0	0.0	-1.0
24	-1.0	2.0	-0.212109670864 82313	-1.0	-1.0	-1.0	0.0
25	-1.0	2.0	-1.955009487525 6163	0.0	0.0	0.0	-1.0
26	-1.0	2.0	1.8220620963151 73	-1.0	-1.0	-1.0	0.0
27	-1.0	2.0	1.3199102828284 43	0.0	0.0	0.0	-1.0
28	-1.0	2.0	-0.257836845283 7396	-1.0	-1.0	-1.0	0.0
29	-1.0	2.0	-1.933520161214 1288	0.0	0.0	0.0	-1.0
30	-1.0	2.0	1.7385002138215 109	-1.0	-1.0	-1.0	0.0
31	-1.0	2.0	1.0223829934574 389	0.0	0.0	0.0	-1.0
32	-1.0	2.0	-0.954733014689 0065	-1.0	-1.0	-1.0	0.0
33	-1.0	2.0	-1.088484870662 8412	0.0	0.0	0.0	-1.0
34	-1.0	2.0	-0.815200686338 0978	-1.0	-1.0	-1.0	0.0
35	-1.0	2.0	-1.335447840993 8944	0.0	0.0	0.0	-1.0
36	-1.0	2.0	-0.216579063984 74625	-1.0	-1.0	-1.0	0.0
37	-1.0	2.0	-1.953093509043 491	0.0	0.0	0.0	-1.0
38	-1.0	2.0	1.8145742550678 174	-1.0	-1.0	-1.0	0.0
39	-1.0	2.0	1.2926797271549	0.0	0.0	0.0	-1.0

			244				
40	-1.0	2.0	-0.328979123002 6702	-1.0	-1.0	-1.0	0.0

$$X_0 = 1 c = -2$$

$$x_0 = 2 c = -2$$

$$c = -1 x_0 = -1$$

$$x_0 = 1 c = -1$$

$$c = -1 x_0 = 0.75$$

$$c = -1 x_0 = 0.25$$

Dla pierwszych 4 wykresów wyniki są dość przewidywalne, zgodne. W kolejnym przykładzie tj. dla x_o =1. 999999999999999999 zauważalny jest fakt, iż z kolejną iteracją wyniki są coraz bardziej rozrzucone, niezgodne. Intuicja podpowiada, że x_0 zostanie zaokrąglony do 2 i otrzymamy rezultaty zbliżone to [2.0, 2.0, ..., 2.0]. Dla x_o =0.75 v x_o =0.25 wartości po pewnej iteracji stabilizują się i oscylują po wartościach 0 oraz – 1.0 .

Sprawcą chaosu potencjalnie jest podnoszenie do kwadratu, ponieważ w wyniku np. błędu przybliżenia w pewnej iteracji w kolejnych błąd będzie wielokrotnie powtarzany. Jednak nasza analiza dowodzi, że wyniki są bezpośrednio i w dużym stopniu zależne od danych wejściowych \mathbf{x}_0 i \mathbf{c} . Jest to również zadanie źle uwarunkowane, ponieważ dorbna zmiana może doprowadzić do otrzymania skrajnie błędnych wyników.