

Projet 3: Concevez une application au service de la santé publique

QUENTIN STEPNIEWSKI

Sommaire

- 1. Introduction Présentation de la problématique
- 2. Présentation de la base de données et de l'idée d'application
- 3. Nettoyage de la base de données
- 4. Analyse et exploitation
- 5. Conclusion et mise en perspective

1. Introduction

Problématique principale

 Répondre à l'appel à projets lancé par Santé publique France

Objectif de l'étude

- Trouver une idée innovante d'application en lien avec l'alimentation
- Exploitation du jeu de données disponible sur Open Food Fact

a. Présentation de la base de données :

Les champs sont séparés en quatre sections :

- Les informations générales sur la fiche du produit : nom, date de modification, etc.
- Un ensemble de tags : catégorie du produit, localisation, origine, etc.
- · Les ingrédients composant les produits et leurs additifs éventuels.
- Des informations nutritionnelles : quantité en grammes d'un nutriment pour 100 grammes du produit.

```
print('lignes: ',data.shape[0],'\n colonnes: ',data.shape[1])
lignes: 1383645
colonnes: 181
```

	code	url	creator	created_t	created_datetime	last_modified_t	last_modified_datetime	phylloqui	none_100g	beta- glucan_100g	inositol_100g	carnitine_100g
0	000000000017	http://world- en.openfoodfacts.org/product/0000	kiliweb	1529059080	2018-06- 15T10:38:00Z	1561463718	2019-06-25T11:55:18Z		NaN	NaN	NaN	NaN
1	000000000031	http://world- en.openfoodfacts.org/product/0000	isagoofy	1539464774	2018-10- 13T21:06:14Z	1539464817	2018-10-13T21:06:57Z		NaN	NaN	NaN	NaN
2	00000000003327986	http://world- en.openfoodfacts.org/product/0000	kiliweb	1574175736	2019-11- 19T15:02:16Z	1574175737	2019-11-19T15:02:17Z	()	NaN	NaN	NaN	NaN
3	000000000100	http://world- en.openfoodfacts.org/product/0000	del51	1444572561	2015-10- 11T14:09:21Z	1444659212	2015-10-12T14:13:32Z		NaN	NaN	NaN	NaN
4	00000000001111111111	http://world- en.openfoodfacts.org/product/0000	openfoodfacts- contributors	1560020173	2019-06- 08T18:56:13Z	1560020173	2019-06-08T18:56:13Z		NaN	NaN	NaN	NaN

b. Présentation de l'idée d'application :

Mettre en place un indicateur de qualité de produit alimentaire (nutriscore) pour un utilisateur n'ayant que quelques informations sur un produit

b. Présentation de l'idée d'application :

2 questions à se poser avant d'entrer dans la réalisation d'une proof of concept :

Q1. Comment calcule t-on le nutriscore de manière « exacte » ?

b. Présentation de l'idée d'application :

2 questions à se poser avant d'entrer dans la réalisation d'une proof of concept :

Q2. Notre jeu de données est-il suffisamment consistant pour réaliser cette application?

- Etude des individus ayant un nutriscore renseigné et un bon taux de remplissage général (ici arbitrairement moins de 80% de NaN)

- On obtient une base de données avec un niveau de remplissage très satisfaisant :

```
df=df[df['nutriscore_score'].notnull()]
df.shape[0]
```

567328

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 567328 entries, 3 to 1383639
Data columns (total 10 columns):
    Column
                        Non-Null Count
    nutriscore_score
                        567328 non-null float64
    energy 100g
                        565846 non-null float64
    fat 100g
                        565805 non-null float64
    saturated-fat 100g 565790 non-null float64
    carbohydrates 100g 565544 non-null
    sugars 100g
                        565796 non-null float64
    fiber 100g
                        353943 non-null float64
    proteins 100g
                        565808 non-null float64
    salt 100g
                        566208 non-null float64
    sodium 100g
                        566207 non-null float64
dtypes: float64(10)
memory usage: 47.6 MB
```

Séparation de notre base de données en 2 sets distincts :

- Un dataset "train" afin de pouvoir entrainer notre futur modèle de prédiction du nutriscore (70% des données)
- Un dataset "test" afin de tester le niveau de précision de notre modèle en " mise en production" (30% des données)

```
train, test = train_test_split(df, test_size=0.3)
train.shape[0]
```

397129

Liste des différentes étapes de cleaning :

1. Mise à NaN des valeurs < 0g et > 100g

^{*} Une partie de ces valeurs extrêmes devront être traitées via le cleaning d'outliers multivariés (partie 5)

Liste des différentes étapes de cleaning :

- 1. Mise à NaN des valeurs < 0g et > 100g
- 2. Mise à NaN des valeurs extrêmes pour l'énergie via la méthode des percentiles

Liste des différentes étapes de cleaning :

- 1. Mise à NaN des valeurs < 0g et > 100g
- 2. Mise à NaN des valeurs extrêmes pour l'énergie via la méthode des percentiles
- 3. Suppression des individus ayant plus de 2 NaN par ligne
- 4. Imputation des NaN restants via KNN Imputer
- 5. Suppression des valeurs aberrantes par somme (somme supérieure à 100g)
- 6. Suppression des outliers multivariés par distance euclidienne (KDTree)

Distribution for each feature of train dataset

Liste de

a. Analyse:

- Matrice de corrélation (coefficient de Pearson)
- Test de normalité (Kosmogorov-Smirnov)
- 3. Test ANOVA
- 4. ACP

On observe une assez forte corrélation pour les couples suivants:

- fat/ saturated-fat
- · carbohydrates/ sugars
- salt/sodium

a. Analyse:

- Matrice de corrélation (coefficient de Pearson)
- Test de normalité (Kosmogorov-Smirnov)
- 3. Test ANOVA
- 4. ACP

```
null hypothesis : studied feature follow a normal distribution.
D= 0.718031325990802
P-value= 0.0
P-value is lower than alpha (0.05) we can reject the null hypothesis
 => nutriscore score does not follow normal distribution
D= 0.9882169779727689
P-value= 0.0
P-value is lower than alpha (0.05) we can reject the null hypothesis
 => energy 100g does not follow normal distribution
D= 0.6546795418476797
P-value= 0.0
P-value is lower than alpha (0.05) we can reject the null hypothesis
 => fat 100g does not follow normal distribution
```

a. Analyse:

- Matrice de corrélation (coefficient de Pears
- 2. Test de normalité (Kosmogorov-Smirne
- 3. Test ANOVA

4. ACP

	г	P_value
energy_100g	48402.018888	0.0
fat_100g	29275.871175	0.0
saturated-fat_100g	47963.338632	0.0
carbohydrates_100g	6747.897986	0.0
sugars_100g	18350.684481	0.0
fiber_100g	3257.267355	0.0
proteins_100g	1461.444236	0.0
salt_100g	2663.101043	0.0
sodium_100g	2623.958628	0.0

P Value = 0 (on peut rejeter l'hypothèse H0 avec 0% de risque, les catégories ont donc une influence sur la distribution des variables étudiées)

*Résultat du test à relativiser, on ne respecte pas la condition normalité de nos données (nécessaire pour un test ANOVA)

P value

a. Analyse:

- Matrice de corrélation (coefficient de Pearson)
- Test de normalité (Kosmogorov-Smirnov)
- 3. Test ANOVA
- 4. ACP

D'après cette vue, on pourrait représenter ~95% de nos données uniquement avec 5 features.

Ici, notre nombre de features est déjà suffisamment petit.

a. Analyse:

- Matrice de corrélation (coefficient de Pearson)
- Test de normalité (Kosmogorov-Smirnov)
- 3. Test ANOVA
- 4. ACP

b. Exploitation:

Création d'une fonction de cleaning similaire au cleaning du train :

Liste des différentes étapes de cleaning :

- 1. Mise à NaN des valeurs < 0g et > 100g
- 2. Mise à NaN des valeurs extrêmes pour l'énergie via la méthode des percentiles
- 3. Suppression des individus ayant plus de 2 NaN par ligne
- 4. Imputation des NaN restants via KNN Imputer
- 5. Suppression des valeurs aberrantes par somme (somme supérieure à 100g)
- 6. Suppression des outliers multivariés par distance euclidienne (KDTree)

Fitté sur le train dataset

b. Exploitation:

Création d'une fonction de cleaning similaire au cleaning du train :

Lis	ste des diffé		
		Début de la phase de cleaning	
1.	Mise à Nal	Gestion des valeurs inférieures à 0g et supérieures à 100g: 138 valeurs aberrantes mises à NaN	
2.	Mise à Nal	Gestion des outliers pour la variable: energy_100g: 850 valeurs aberrantes mises à NaN	ercentiles
3.	Suppressic	Remplissage des NaNs via KNN Imputer (fitté sur le train) Les Nans du dataframe ont été imputés via KNNImputer	
4.	Imputatior	Suppression des lignes avec une somme des macronutriments supérieure à 100g: 11106 lignes supprimées	
5.	Suppressic	Suppression outliers multivariés avec KDTree: 2351 lignes supprimées	100g)
6.	Suppression	des outliers multivariés par distance euclidienne (KDTre	e)

Fitté sur le train dataset

b. Exploitation:

Prédiction via régression linéaire multiple :

Score de la prédiction (R²): 0,626

	prédiction	nutriscore
count	159037.000000	148610.000000
mean	9.220771	9.030186
std	7.111163	8.893977
min	-44.044231	-15.000000
25%	3.660006	1.000000
50%	7.293254	10.000000
75%	13.987662	16.000000
max	58.235002	36.000000

Poids de chaque variable dans la régression:

	Feature	Coef
0	energy_100g	3.099802
1	fat_100g	0.010714
2	saturated-fat_100g	2.877117
3	carbohydrates_100g	-0.724187
4	sugars_100g	3.840426
5	fiber_100g	-1.707929
6	proteins_100g	0.554542
7	salt_100g	2.751464
8	sodium_100g	-1.190483

b. Exploitation:

Prédiction via régression KNN Regressor:

Ici, l'optimisation a été plus poussée

1) Utilisation d'une cross validation via GridSearchCV (5 Split)

b. Exploitation:

Prédiction via régression KNN Regressor :

Ici, l'optimisation a été plus poussée

- 2) GridSearchCV va également nous permettre de chercher les paramètres optimum pour notre modèle (ici uniquement le nombre de voisins)
- 3) Etude des features "trop corrélées" (non-concluante)

```
for i in range(len(scoring)):
   grid= GridSearchCV(KNeighborsRegressor(),param_grid,cv=5,scoring=scoring[i])
   grid.fit(xtrain,ytrain)
   print('Methode de Scoring: ',scoring[i])
   print('Meilleur score :',grid.best score )
   print('Meilleurs Paramètres :',grid.best params ,'\n
    if i == 0 :
       model 1 = grid.best estimator
    elif i == 1 :
       model 2 = grid.best estimator
    else:
       model 3 = grid.best estimator
Methode de Scoring: r2
Meilleur score : 0.9485970162173958
Meilleurs Paramètres : {'n neighbors': 5}
Methode de Scoring: neg_mean_absolute_error
Meilleur score : -0.921002810035702
Meilleurs Paramètres : {'n neighbors': 1}
Methode de Scoring: neg_mean_squared_error
Meilleur score : -4.062249569922076
Meilleurs Paramètres : {'n neighbors': 5}
```

b. Exploitation:

Prédiction via régression KNN Regressor:

Ici, l'optimisation a été plus poussée

3) Etude des features "trop corrélées" (non-concluante):

Suppresion pas à pas des variables trop corrélées entre-elles

Rappel score avec toutes les variables

Methode de Scoring: r2

Meilleur score : 0.9485970162173958

Meilleurs Paramètres : {'n_neighbors': 5}

r2 neg mean absolute error neg mean squared error

	601		neg_mean_absolute_error	neg_mean_squared_enor
sans saturated fat	saturated-fat_100g	0.923408	-1.259147	-6.052823
sans sugars	sugars_100g	0.932598	-1.124096	-5.326558
sans sodium	sodium_100	0.946746	-0.957152	-4.208524
sans saturated fat & sugars	[saturated-fat_100g, sugars_100g]	0.897964	-1.509248	-8.063685
sans saturated fat & sodium	[saturated-fat_100g, sodium_100g]	0.9221	-1.277486	-6.156246
sans sugars et sodium	[sugars_100g, sodium_100g]	0.931532	-1.144292	-5.410799
sans saturates fat & sugars & sodium	[saturated-fat_100g, sugars_100g, sodium_100g]	0.89735	-1.519647	-8.112165

col

b. Exploitation:

Prédiction via regression KNN Regressor:

Ici, l'optimisation a été plus poussée

- Utilisation d'une cross validation via GridSearchCV (5 Split)
- •GridSearchCV va également nous permettre de chercher les paramètres optimum pour notre modèle (ici uniquement le nombre de voisins)
- •Etude des features "trop corrélées" (non-concluante)

Score final sur le test dataset (R2): 0,93

5		1	•	1	•		, •				,
J.	nutriscor	e_score	energy_100g	g fat_100g	saturated-fat_100g	carbohydrates_100c	j sugars_100g	fiber_100g	proteins_100g	salt_100g	sodium_100g
	0	-6.0	444.0	0.59	0.0	22.3	5 9.41	2.4	3.53	0.22	0.088
On a	1	-6.0	444.0	0.59	0.0	22.3	5 NaN	2.4	3.53	0.22	0.088
Olla	2	-6.0	444.0	0.59	NaN	Nat	N 9.41	2.4	3.53	0.22	0.088
• Alg	3	-6.0	444.0	0.59	0.0	Nat	N NaN	2.4	3.53	NaN	0.088
	4	-6.0	NaN	0.59	0.0	Nat	N 9.41	2.4	NaN	NaN	0.088
• Pré	5	-6.0	NaN	NaN	NaN	22.3	5 NaN	2.4	3.53	NaN	0.088
- Do	6	-6.0	NaN	NaN	NaN	22.3	5 9.41	2.4	NaN	NaN	NaN
	1	-6.0	NaN	NaN	NaN	Nat	N 9.41	NaN	NaN	NaN	0.088
proc	COLL										
II fau	nutriscore	_score	energy_100g	fat_100g	saturated- fat_100g	rbohydrates_100g su	gars_100g fibe	r_100g prote	ins_100g salt_10	0g sodium	_100g predict
poss	0	-6.0	444.000000	0.590000	0.000000e+00	22.350000	9.41	2.400	3.530000 0.2200	000	0.088 -6.0
	1	-6.0	444.000000	0.590000	0.000000e+00	22.350000	8.43	2.400	3.530000 0.2200	/00	0.088 -6.0
	2	-6.0	444.000000	0.590000	-8.881784e-16	22.350000	9.41	2.400	3.530000 0.2200	/00	0.088 -6.0
	3	-6.0	444.000000	0.590000	0.000000e+00	22.350000	8.43	2.400	3.530000 0.0000	100	0.088 -6.0
	4	-6.0	185.800000	0.590000	0.000000e+00	12.626667	9.41	2.400	1.546667 0.4834	83	0.088 -3.8
	6	-6.0	44.000000	0.590000	-8.881784e-16	22.350000	9.41	2.400	3.530000 0.0000	/00	0.000 -6.0
	7	A			4.504007 00	47.000000	0.44	0.000	F 2000000 0 247	122	0.088 3.8
	• Pos proc. Il fau poss	On a 1 2 3 4 Pré 5 6 7 processes 0 1 2 3 4 6	On a 1 -6.0 • Alg 3 -6.0 • Pré 5 -6.0 • Pos 7 -6.0 process I fat nutriscore_score nutriscore_score 1 -6.0 2 -6.0 1 -6.0 2 -6.0 4 -6.0 6 -6.0 1 -6.0 2 -6.0 4 -6.0 6 -6.0 1 -6.0 1 -6.0 1 -6.0 1 -6.0 1 -6.0 1 -6.0 1 -6.0 1 -6.0 1 -6.0 1 -6.0	0 -6.0 444.0 On a 1 -6.0 444.0 2 -6.0 444.0 • Alg 3 -6.0 444.0 • Pré 5 -6.0 NaN • Pré 5 -6.0 NaN • Pos 7 -6.0 NaN proc Il fat nutriscore_score energy_100g 0 -6.0 444.000000 1 -6.0 444.000000 2 -6.0 444.000000 3 -6.0 444.000000 4 -6.0 185.800000 6 -6.0 444.000000	On a 1	On a 1	0 -6.0 444.0 0.59 0.0 22.35 1 -6.0 444.0 0.59 0.0 22.35 2 -6.0 444.0 0.59 NaN NaN Alg 3 -6.0 444.0 0.59 0.0 NaN 4 -6.0 NaN 0.59 0.0 NaN Pré 5 -6.0 NaN NaN NaN NaN 22.35 6 -6.0 NaN NaN NaN NaN NaN 22.35 7 -6.0 NaN NaN NaN NaN NaN NaN NaN NaN 22.35 7 -6.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN 22.35 1 -6.0 444.00000 0.590000 0.000000e+00 22.350000 2 -6.0 444.00000 0.590000 0.000000e+00 22.350000 3 -6.0 444.00000 0.590000 0.000000e+00 22.350000 4 -6.0 185.800000 0.590000 0.000000e+00 22.350000 4 -6.0 185.800000 0.590000 0.000000e+00 12.626667 6 -6.0 444.000000 0.590000 0.000000e+00 12.626667	nutriscore_score	nutriscore_score	Nutriscore_score energy_100g fat_100g saturated.fat_100g carbohydrates_100g sugars_100g fiber_100g proteins_100g	Nutriscore_score energy_100g fat_100g saturated-fat_100g carbohydrates_100g sugars_100g fiber_100g proteins_100g satt_100g satt_10

Merci de votre attention

	col	r2	neg_mean_absolute_error	neg_mean_squared_error
sans saturated fat	saturated-fat_100g	0.923408	-1.259147	-6.052823
sans sugars	sugars_100g	0.932598	-1.124096	-5.326558
sans sodium	sodium_100g	0.946746	-0.957152	-4.208524
sans saturated fat & sugars	[saturated-fat_100g, sugars_100g]	0.897964	-1.509248	-8.063685
sans saturated fat & sodium	[saturated-fat_100g, sodium_100g]	0.9221	-1.277486	-6.156246
sans sugars et sodium	[sugars_100g, sodium_100g]	0.931532	-1.144292	-5.410799
sans saturates fat & sugars & sodium	[saturated-fat_100g, sugars_100g, sodium_100g]	0.89735	-1.519647	-8.112165

```
fig, axs = plt.subplots(matrix_features.shape[0],3,figsize=(15,15))
axs = axs.ravel()
counter = 0
for k in range(matrix_features.shape[0]):
    scaler = StandardScaler()
    print('Prediction: {}'.format(matrix_features.index[k]))
    train_used = train.drop(columns=matrix_features.col[k])
   xtrain = scaler.fit_transform(train_used.drop(columns=['nutriscore_score']))
   ytrain = train_used['nutriscore_score']
    param_grid = {'n_neighbors':np.arange(1,10)}
    scoring = ['r2', 'neg_mean_absolute_error', 'neg_mean_squared_error']
   for i in range(len(scoring)):
        grid= GridSearchCV(KNeighborsRegressor(),param_grid,cv=5,scoring=scoring[i])
       grid.fit(xtrain,ytrain)
         print('Methode de Scoring: ',scoring[i])
         print('Meilleur score :',grid.best_score_)
         print('Meilleurs Paramètres :',grid.best_params_,'\n_
        matrix_features.iloc[k,i+1]=grid.best_score_
        if i == 0 :
            model_1 = grid.best_estimator_
           result_1 = pd.DataFrame(grid.cv_results_)
            axs[counter].plot(result_1['param_n_neighbors'],result_1['mean_test_score'])
            counter+=1
        elif i == 1 :
            model_2 = grid.best_estimator_
           result_2 = pd.DataFrame(grid.cv_results_)
           axs[counter].set_title('Prédictions: {}'.format(matrix_features.index[k]),fontsize=15)
            axs[counter].plot(result_2['param_n_neighbors'],result_2['mean_test_score'])
           counter+=1
            model_3 = grid.best_estimator_
           result_3 = pd.DataFrame(grid.cv_results_)
           axs[counter].plot(result_3['param_n_neighbors'],result_3['mean_test_score'])
           counter+=1
   fig, axs = plt.subplots(3,figsize=(15,15))
matrix_features
```


Additional slide

	nutriscore_score	energy_100g	fat_100g	saturated-fat_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g	sodium_100g
0	-6.0	444.0	0.59	0.0	22.35	9.41	2.4	3.53	0.22	0.088
1	-6.0	444.0	0.59	0.0	22.35	NaN	2.4	3.53	0.22	0.088
2	-6.0	444.0	0.59	NaN	NaN	9.41	2.4	3.53	0.22	0.088
3	-6.0	444.0	0.59	0.0	NaN	NaN	2.4	3.53	NaN	0.088
4	-6.0	NaN	0.59	0.0	NaN	9.41	2.4	NaN	NaN	0.088
5	-6.0	NaN	NaN	NaN	22.35	NaN	2.4	3.53	NaN	0.088
6	-6.0	NaN	NaN	NaN	22.35	9.41	2.4	NaN	NaN	NaN
7	-6.0	NaN	NaN	NaN	NaN	9.41	NaN	NaN	NaN	0.088

	nutriscore_score	energy_100g	fat_100g	saturated- fat_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g	sodium_100g	predict
0	-6.0	444.000000	0.590000	0.000000e+00	22.350000	9.41	2.400	3.530000	0.220000	0.088	-6.0
1	-6.0	444.000000	0.590000	0.000000e+00	22.350000	8.43	2.400	3.530000	0.220000	0.088	-6.0
2	-6.0	444.000000	0.590000	-8.881784e-16	22.350000	9.41	2.400	3.530000	0.220000	0.088	-6.0
3	-6.0	444.000000	0.590000	0.000000e+00	22.350000	8.43	2.400	3.530000	0.000000	0.088	-6.0
4	-6.0	185.800000	0.590000	0.000000e+00	12.626667	9.41	2.400	1.548887	0.483483	0.088	-3.8
6	-6.0	444.000000	0.590000	-8.881784e-16	22.350000	9.41	2.400	3.530000	0.000000	0.000	-6.0
7	-6.0	638.666667	7.951667	4.581667e+00	17.390000	9.41	0.926	5.280000	0.217333	0.088	3.8