Demšar, Exploring geographical metadata by automatic and visual data mining, licenciate thesis, available for downloading at: <a href="http://www.infra.kth.se/~demsaru/publications/">http://www.infra.kth.se/~demsaru/publications/</a>

- chapter 1: Data mining

Kraak & Ormeling, Cartography – Visualization of Geospatial Data - chapter 12: Geovisualization

First attempt of visual analysis of spatial data:

Dr. Snow's map of cholera outburst in London, 1855







First attempt of visual analysis of spatial data:

Dr. Snow's map of cholera outburst in London, 1855

Infected pump

High density of cholera deaths

- Local (point)
- Focal (nearest neighbor)
- Regional (network)
- Profile data (2D, 2.5D, 3D, 3.5D, 4D)
- Time series

- Questions (queries)
- Measurements
- Transformations
- Descriptive methods
- Optimisation
- Hypothesis testing

# Exploratory data analysis then and now

### Then (before GIS):

tools to study and explore geospatial data = paper maps + statistics

**Exploratory** geovisualisation Now: data mining cartography algorithms database tools Geospatial data Knowledge graphic tools GIS interaction image analysis exploratory data analysis dynamics information visualisation

### Requirements for a geovisualisation system:

- basic display (map + pan, zoom, scale, transform, rotate)
- orientation & identification (where the map is located, what the symbols mean)
- query data (perform logical queries in the database)
- multi-scale tools (combining data in different scales from different sources)
- re-expression (have possibilities to manipulate the data or choose between different mapping methods)

## Database queries

- For spatial queries, we can also do other simple queries that used to require overlay analysis, which is even better in the object-oriented programs like ArcGIS
- Most of these searches must use some form of topology, logic, and advanced SQL (standard Query Language) to work
- Finally, have to know your dimensionality (0,1,2,3) for application, but most of these relate to the vector model
  - Equal are the geometries the same?
  - Disjoint do the geometries share a common point?
  - Intersects do the geometries intersect?
  - Touches do the geometries intersect at their boundaries?
  - Crosses do the geometries overlap?
  - Within is one geometry within another?
  - Contains does one geometry completely contain another?
  - Overlaps do the geometries overlap?
  - Relate are there intersections between the interior, boundary, or exterior of the geometries?

- multiple dynamically linked views (brushing and linking)
- animation (temporal or non-temporal changes in data)



(- exploratory tools) (data mining, computational and visual)

**DM** 

# Exploratory Data Analysis

# Data mining

#### **Data mining:**

Identifying or discovering interesting and as yet undiscovered knowledge from the real-world data.

### Part of Knowledge discovery process:

- 1. Data preparation and cleaning
- 2. Hypotheses generation
- 3. Interpretation and analysis of discovered knowledge

#### Difference from statistical analysis

DM works on observational data as opposed to experimental data and has no role in the strategy of data collection.

### **Data mining:**

Identifying or discovering interesting and as yet undiscovered knowledge from the real-world data.

Knowledge is in the form of (undiscovered) structure in the data.



dependency between attributes over a subset of the data (deductive or inductive)

### **Data mining classification**



principal component analysis (PCA)

**Data mining classification** 

Data type and mining environment

Database data mining
Web data mining
Text data mining
Distributed data mining
Ubiquitous data mining
Hypertext and hypermedia data mining
Visual data mining
Multimedia data mining
Spatial and geographical data mining
Time series and sequence data mining

Forward and backward driven data mining

Forward (or data) driven:

Backward (or goal) driven:

# Knowledge based or statistical data mining

# Knowledge based methods:

- Expert systems (rule based)
- Decision trees
- Supervised classification

### Statistical methods:

- Wavelet analysis (Fourier transformation)
- Principal Component Analysis
- Clustering
- Artificial Neural Networks
- Self Organising Maps (SOM)

### **Automatic (computational) data mining**

Automatic algorithms: look for structural patterns in data



instance-based representations

matching between a concept description and a data instance

### Groups of automatic DM methodologies:

- Expert system
- Decision trees
- Association rules
- Classification models
- PCA, SOM, Wavelet
- Clustering
- Bayesian (apriori known)
- Artificial neural networks
- Instance-based learning

- Sequential pattern mining
- Time series mining

No data mining algorithm is universally best across all datasets!

Choice of appropriate methodology is task-driven.

### **Common data mining algorithms**

#### Classification rules - Expert systems

Divide the dataset into prespecified classes, defined by the values of the attribute that is predicted.

IF .... THEN ....

Antecedent – a series of tests that compare an attribute value to a constant

Consequent -

determines the class of the processed data instance by assigning a value to the predicted attribute.

Example (forward driven expert ruling):

IF outlook="sunny" AND temp="warm" AND wind="no" THEN walk="yes".

IF outlook="rainy" AND temp="cold" AND wind="yes" THEN walk="no".

#### **Decision trees**

A decision tree = a tree that classifies each data instance by applying to it a test at each node:

- enter the data instance in the tree at the root,
- let it "fall" down according to the tests,
- the leaf nodes give the classificiation.



#### **Association rules**

#### Similar to classification rules, but:

- can predict any attribute (not just one),
- can predict a combination of attributes.

IF X THEN Y (s, c%).

#### X and Y - sets of predicates

c — confidence of the rule — the number of instances that it predicts correctly, expressed as a proportion of all instances it applies to

s - support of the rule - the number of instances for which it predicts correctly

#### Example:

IF temperature = "cool" THEN humidity = "normal".

c = the proportion of cool days that have normal humidity.

s = the number of days that are both cool and normally humid.

# Numerical prediction: linear models, support vector machines, regression and model trees

For numeric attributes.

Methods:

- linear regression:
  - predicted value = a linear combination of other attributes
- support vector machines:



- regression trees & model trees

store the average value for each class or a linear regression model for each class in each leaf.

#### **Instance-based learning**

Searching the most similar already known data instances.

#### Methods:

nearest neighbour.

find the nearest training instance I<sub>t</sub> to current data instance I and assign class of I<sub>t</sub> to I.

- k-nearest neighbours:

find the k nearest training instances and assign the class according to their classes.

# Principal Component Analysis

PCA is mathematically defined as an orthogonal linear transformation that transforms the data to a new coordinate system such that the greatest variance by any projection of the data comes to lie on the first coordinate (called the first principal component), the second greatest variance on the second coordinate, and so on.

PCA can be used for dimensionality reduction in a data set by retaining those characteristics of the data set that contribute most to its variance, by keeping lower-order principal components and ignoring higher-order ones. Such low-order components often contain the "most important" aspects of the data. But this is not necessarily the case, depending on the application.



# Wavelet analysis

The Niño3 SST index is defined as the seasonal SST averaged over the central Pacific (5°S–5°N, 90°– 150°W)

Interactive Wavelet analysis tool: <a href="http://ion.researchsystems.com/cgi-bin/ion-p">http://ion.researchsystems.com/cgi-bin/ion-p</a>



### Clustering

Unsupervised classification of data instances into groups/clusters according to similarity.



# Clustering - example africa veg

### Similarity measures: data type and mining task

- Euclidean distance
- Manhattan distance
- Mahalanobis distance
- count-based measures for nominal attributes
- syntactic measures for strings
- neighbourhood-measures

### Types of clustering:

- Hierarchical vs. partitional clustering
- Agglomerative vs. divisive clustering
- Hard vs. fuzzy clustering
- Deterministic vs. stochastic clustering

#### **Partitional clustering**

produces one partition only.



The set of elements is split into clusters only once.

#### **Hierarchical (iterative) clustering**

produces a nested structure of partitions – a hierarchy of clusters.

clusters divided in sub-clusters, similarly to a mathematical tree (a dendrogram)





a dendrogram of this clustering

- data elements
- clusters with >1 element

#### **Artificial neural networks - ANN**



### **Self-organising map - SOM**

#### Single-layer ANN – useful for spatial data

Non-linear projection of multidim. data on a 2-dim. lattice of neurons.

Neuron output = distance (similarity) from the neuron to the data input vector x<sub>i</sub>.

Network output = location of the neuron that is most similar to the data input vector x<sub>i</sub>.



Output cells = neurons in the SOM, distributed in the 2D space

Each neuron is connected to the neurons in its immediate neighbourhood — its output affects their weights.

Result: similar data vectors are mapped to similar locations.

#### Data mining of geospatial data

#### Problems and challenges

- Four dimensions of the information space provide the measurement framework for all other attributes.
- Spatial dependence Tobler's 1<sup>st</sup> law of geography:
- Everything is related to everything else, but nearby things are more related than distant things.
- Large amount of data in geospatial databases:
- georeferenced RS imagery, socio-economic and statistical data, physical data, environmental data, etc..
- Heterogeneous data:
- semi-structured, unstructured, complex objects

Tobler's 1st law of geography & spatial dependence

Assumptions of independence and random distribution of variables in classical data mining algorithms not valid!

Data mining for geospatial data

Automatic data mining

Visual data mining

Current methods: spatial

Combining visual and automatic mining

Current methods: spatial clustering, outlier analysis, spatial classification, spatial association rules.

# Visualisation and visual data mining

#### **Visualisation**

graphical communication of information

goal: present overview and summary of data, help to identify patterns and structures in the data



#### **Classification of visualisations**

### Visualisation type:

- Standard 1D/2D/3D displays
- Geometrically transformed displays
- Iconic displays
- Dense pixel displays
- Hierarchical displays



### Data type:

- 1-dim data
- 2-dim data
- multi-dim data
- text and hypertext
- hierarchies and graphs

### Interaction type:

- projection
- filtering
- zooming
- distortion
- brushing and linking

### **Examples of visualisations for Exploratory data analysis**

### Standard 1D,2D and 3D displays

### A pie chart



## A scatterplot



# Line graphs, surfaces



### A histogram/bar chart



### **Examples of visualisations for Exploratory data analysis**

#### **Geometrically transformed displays**

#### Parallel coordinates plot (PCP)



### A permutation matrix and a survey plot





#### A scatterplot matrix



**Iconic displays** 

#### Chernoff faces



#### Star icons





**Dense pixel displays** 



Recursive pattern

Circle segments



#### **Hierarchical visualisations**

Visualising the result of hierarchical clustering

A dendrogram



#### Structure-based brushes



The Magic Eye View





A treemap



H-BLOB



A sunburst

**SOM** visualisations

(c) Color coding (a) 2D projection (b) 3D projection

Visualisations based on dist.matrices

distance to neighbour units

similarity in input space

grey shade neuron size

2D/3D projections of data elements with colour coding from SOM



SOM lattice draped over 3D surface



**Component planes** – lattice from SOM and colours from different attributes

#### Exploratory Data Analysis - Interaction types

#### **Interaction types**

#### Projection:

- from multi-dim data to the 2D of the visualisation.

#### Filtering:

- select the data by using a filter or a query.

#### Zooming:

- get a closer/further away view of the data.

#### Distortion:

- transform the original data in order to display it in a better way.

#### Brushing and linking:

- interactive selection and linking.



#### Visual data mining:

a step in the knowledge discovery process that uses visualisation as a communication channel between the user and the computer in order to facilitate the knowledge discovery process.

#### Visual data mining process





#### Mainly used in explorative analysis:



#### **Combining Automatic and Visual data mining**

#### Automatic data mining:



 can deal with large amounts of data



user involvement minimal



 user needs to be familiar with complicated mathematics



- the domain knowledge of the user is not included in the exploration



#### Visual data mining:





difficult to present large amounts of data



difficult to include the multidimensionality of data



 human vision is too good a tool for pattern recognition: we may see patterns where there are none



Ordinary visualisations

 Visualisation(s) of the result of an automatic DM algorithm

#### Example - Drilled well water resources in Stockholm

#### Visual and automatic data mining for environmental data

Dataset with 4435 drilled wells from Stockholm county and 13 attributes:

- radon concentration in water
- elevation
- slope
- relative elevation
- soil (original)
- soil (reclassified)
- bedrock (original)
- bedrock (reclassified)
- distance to nearest fracture
- type of nearest fracture
- length of nearest fracture
- uranium concetration
- log Rn



Exploration goal: find relationships between radon concentration and other attributes and look for global structure in the dataset.

#### Example - Drilled well water resources in Stockholm



#### Example - Drilled well water resources in Stockholm

#### **Looking for bivariate relationships**



Used separately and in the multiform bivariate matrix







#### Global structure in the data

#### Clusters in the data





#### Spatio-visual data mining for fire&rescue incidents data







Exploration goal: discover connections between incidents' locations and other attributes



#### Visually estimating the strength of the bivariate relationships



Relatively smooth transition from white to black along the scanline stronger relationship

Not so smooth transition weaker relationship

## Visual data mining – an example of application

#### Task:

find data instances that are













## Primary islands built from accumulation of clastic sediments

**Island types** 

**Inverted channel island** 



## Primary islands built from accumulation of clastic sediments

**Island types** 

Scroll bar island



### Primary islands built from accumulation of clastic sediments

**Island types** 

**Anthill island** 



Evapotranspiration, salinity balance and island secondary growth



# Secondary islands grown from precipitation of chemical sediments Island types

#### Riparian forest island



Secondary islands grown from precipitation of chemical sediments Island types

Salt island



Exempel på
Transformation
raster till vektor



## Salt Balance: Coastline from Remote Sensing





Exempel på Hypotesprövning

Extraktion av längdaxel och beräkning av riktning

Exempel på mätning



|                        | A       | В    | С    | D        | E      | F     | G        | Н    |
|------------------------|---------|------|------|----------|--------|-------|----------|------|
| Roundness              | 0.49    | 0.91 | 0.51 | 0.48     | 0.36   | 0.47  | 0.58     | 0.92 |
| Regional salt position | distal* | na   | na   | proximal | distal | equal | proximal | na   |
| Channel salt position  | front   | na   | na   | back     | back   | back  | back*    | na   |

Öarnas
längdriktning i
relation till
Deltats riktning





Exempel på deskriptiv metod



Öarnas betydelse för uppdelningen av vattenföring och indelning i bassänger

Exempel på deskriptiv metod



Data sources

>NOAA AVHRR dekadal data (10day), 1982-2004



Average NDVI 1982-2004

|           | CMP 1    | CMP 2    | CMP 3    | CMP 4    | CMP 5    | CMP 6    |
|-----------|----------|----------|----------|----------|----------|----------|
| % Var     | 98.59048 | 1.035038 | 0.226096 | 0.085785 | 0.043496 | 0.006479 |
|           |          |          |          |          |          |          |
| Loadings: |          |          |          |          |          |          |
|           | CMP 1    | CMP 2    | CMP 3    | CMP 4    | CMP 5    | CMP 6    |
| 101       | 0.993337 | -0.09901 | 0.048344 | -0.0076  | 0.02786  | 0.007527 |
| 102       | 0.99266  | -0.10829 | 0.044178 | -0.01942 | 0.020256 | 0.000074 |
| 103       | 0.992226 | -0.11372 | 0.039275 | -0.02756 | 0.011667 | -0.00679 |
| 201       | 0.992021 | -0.11649 | 0.035049 | -0.03118 | 0.002331 | -0.01297 |
| 202       | 0.991694 | -0.12038 | 0.027372 | -0.03416 | -0.00525 | -0.01336 |
| 203       | 0.991518 | -0.12283 | 0.018812 | -0.03401 | -0.01377 | -0.01335 |
| 301       | 0.991634 | -0.12221 | 0.008742 | -0.02973 | -0.0214  | -0.00902 |
| 302       | 0.992108 | -0.12055 | -0.00472 | -0.02132 | -0.02721 | -0.00099 |
| 303       | 0.992466 | -0.11604 | -0.01933 | -0.01302 | -0.03123 | 0.004552 |
| 401       | 0.993106 | -0.10762 | -0.03479 | -0.00269 | -0.03169 | 0.011244 |
| 402       | 0.993708 | -0.09424 | -0.04771 | 0.007093 | -0.02751 | 0.014348 |
| 403       | 0.994404 | -0.07714 | -0.06425 | 0.019093 | -0.02276 | 0.014018 |
| 501       | 0.995024 | -0.0558  | -0.07645 | 0.028797 | -0.01345 | 0.007886 |
| 502       | 0.995332 | -0.03208 | -0.08377 | 0.033493 | -0.00391 | -0.00437 |
| 503       | 0.99563  | -0.00827 | -0.08646 | 0.031122 | 0.006785 | -0.00982 |
| 601       | 0.995698 | 0.016546 | -0.08375 | 0.021169 | 0.017201 | -0.01315 |
| 602       | 0.995626 | 0.040324 | -0.07756 | 0.005466 | 0.025648 | -0.00583 |
| 603       | 0.995134 | 0.064109 | -0.06652 | -0.00879 | 0.030934 | -0.00499 |
| 701       | 0.994307 | 0.08569  | -0.05291 | -0.02314 | 0.031373 | -0.00013 |
| 702       | 0.992826 | 0.106176 | -0.03746 | -0.03154 | 0.02496  | 0.000984 |
| 703       | 0.991037 | 0.12434  | -0.02106 | -0.03915 | 0.016261 | 0.004884 |
| 801       | 0.989031 | 0.140057 | -0.00475 | -0.04163 | 0.004773 | 0.006784 |
| 802       | 0.987292 | 0.151797 | 0.009599 | -0.03946 | -0.00671 | 0.007163 |
| 803       | 0.986033 | 0.159555 | 0.020642 | -0.03249 | -0.01608 | 0.005776 |
| 901       | 0.986257 | 0.159637 | 0.028572 | -0.02124 | -0.0218  | 0.002952 |
| 902       | 0.987354 | 0.153173 | 0.033837 | -0.0063  | -0.02389 | -0.00059 |
| 903       | 0.989098 | 0.14     | 0.037978 | 0.010968 | -0.02323 | -0.00404 |
| 1001      | 0.99124  | 0.11945  | 0.040607 | 0.028015 | -0.02033 | -0.00645 |
| 1002      | 0.993439 | 0.093659 | 0.042606 | 0.042171 | -0.01558 | -0.00733 |
| 1003      | 0.995419 | 0.064386 | 0.043987 | 0.051059 | -0.00903 | -0.00638 |
| 1101      | 0.996981 | 0.034115 | 0.044158 | 0.053318 | -0.00076 | -0.00367 |
| 1102      | 0.997644 | 0.0034   | 0.046174 | 0.049151 | 0.008654 | 0.000227 |
| 1103      | 0.997571 | -0.02502 | 0.047341 | 0.039986 | 0.017996 | 0.004493 |
| 1201      | 0.996764 | -0.0505  | 0.048067 | 0.027498 | 0.025797 | 0.00823  |
| 1202      | 0.995372 | -0.07213 | 0.048576 | 0.013617 | 0.030637 | 0.010698 |
| 1203      | 0.994232 | -0.08921 | 0.048688 | 0.000196 | 0.031375 | 0.011423 |
|           |          |          |          |          |          |          |

Loadings from a Principle Component Analysis representing an average annual vegetation cycle in Africa over 36 dekads.



PCA component 1 representing an average annual vegetation cycle in Africa over 36 dekads.
Component 1 show average vegetation.

As PCA 1 is almost exclusively portraying the average, and carries > 99 % of the variation. I choose to use normalized data.



PCA component 1 representing an average annual vegetation cycle in Africa over 36 dekads. Data normalised over total average per pixel. Component 1 carries 63 % of the variation and show seasonal behavior.



PCA component 2 representing an average annual vegetation cycle in Africa over 36 dekads. Component 2 carries 24 % of the variation and show seasonal behavior.



PCA component 3 representing an average annual vegetation cycle in Africa over 36 dekads. Component 3 carries 8.3 % of the variation and show clouds (low values) and vegetation zonation.



PCA component 4 representing an average annual vegetation cycle in Africa over 36 dekads. Component 4 carries 3.6 % of the variation.



PCA component 5 representing an average annual vegetation cycle in Africa over 36 dekads. Component 5 carries 0.7 % of the variation. I think it shows the drought prone areas (interpretation problem)



False color composite visualisation of the PCA timeseries data.

This is a color composite from the Normalised data

B = PCA 2

G = NDVI

R = PCA 1

## Unsupervised ISOCLASS classification

Iterative Self-Organising Data Analysis Technique

- Steps in the algorithm
- Initial state selected; i.e. no. and center of clusters
- Each point in FS labelled to closest center (decision rule of closest distance to center)
- Mean calculated for cluster center
- Relabel points using new means
- Iterate until acceptable percentage of pixels don't change between clusters

# Example - mapping african vegetation using PCA Unsupervised ISOCLASS classification

- Iterative process
- User defined variables
- Number of Classes this number specifies the exact number of thematic categories (classes) that will be produced
- Number Iterations this number will determine the maximum number of times the ISODATA process will be performed on a given data set.
- Convergence Threshold this setting will determine the percentage of pixels that must remain in a cluster from one iteration to the next in order to stop the ISODATA process.
- Classify Zeros this option specifies whether the classification will include pixels with a value of zero.
- Skip Factor this option will have the process skip the number of pixels for the 'X' and 'Y' set by the user. The higher the skip factors, the faster the process, but the lower the overall accuracy and the smaller the output thematic image.
- Initialize options; principal versus diagonal axis



False color composite visualisation of the PCA timeseries data.

This is a color composite from the original data

B = PCA 3

G = PCA 1

R = PCA 2



32 classes from unsupervised clustering of the normalised data.



16 classes from unsupervised isoclustering of NDVI PCA 1 PCA 2 from the normalised data.