GPET Versuch 5 — Hochspannung mit Stanley and Tesla

Gruppe: Dienstag14

Tim Luchterhand, Paul Nykiel tim.luchterhand@uni-ulm.de, paul.nykiel@uni-ulm.de

13. Mai 2017

5.1 Spannungsübersetzung beim unbelasteten Transformator

Aufgabe In diesem ersten Versuchsteil sollen verschiedene Übersetzungsverhältnisse des unbelasteten Transformators betrachtet werden. Bauen Sie dazu die Schaltung mit $R_V = 100\Omega$ nach Abbildung 5.13 auf. Erzeugen Sie ein Sinuseingangssignal U_{Ein} mit Hilfe des Signalgenerators des Oszilloskops, f = 500Hz, U = 1V $_{pp}$.

Messen Sie jeweils für die verschiedenen Windungsverhältnisse gemäß Tabelle 5.1 die Primärspannung U_1 , die Sekundärspannung U_2 mit den beiden Kanälen des Oszilloskops und berechnen Sie das Verhältnis $\frac{U_2}{U_1}$. Übernehmen Sie Tabelle 5.1 in Ihr Protokoll und ergänzen Sie die zu ermittelnden Größen. Diskutieren Sie Ihre Ergebnisse.

Abbildung 5.13: Versuchsaufbau des ersten Teilversuchs: unbelasteter Transformator

Protokoll

N_1	N_2	U_1 V	U_2 V	$\frac{U_2}{U_1}$
250	500	0	0	0
500	500	0	0	0
1000	500	0	0	0
1000	250	0	0	0

Tabelle 5.1: Messtabelle zu Versuch 5.1

5.2 Der belastete Transformator

Aufgabe In diesem Versuchteil soll der Einfluss verschiedener Lastwiderstände auf die Spannungstransformation bei zwei unterschiedlichen Windungsverhältnissen untersucht werden. Bauen Sie dazu die Schaltung mit $R_V = 100\Omega$ nach Abbildung 5.14 auf. Als Last R_L verwenden Sie ein Potentiometer $(0...1000\Omega)$ dem Sie zusätzlich einen 100Ω Widerstand in Reihe schalten. Als Eingangssignal U_{Ein} stellen Sie am Signalgenerator des Oszilloskops ein Sinussignal der Spannung $1V_{pp}$ und der Frequenz f = 500Hz ein.

Messen Sie für die Windungsverhältnisse $N_1: N_2 = 500: 500$ und $N_1: N_2 = 250: 500$ die Primärspannung U_1 sowie die Sekundärspannung U_2 für verschiedene Lastwiderstände $(100...1000\Omega)$ gemäß Tabelle 5.2 und berechnen Sie zudem das Verhältnis $\frac{U_2}{U_1}$. Übernehmen Sie Tabelle 5.2 in ihr Protokoll und ergänzen Sie die zu ermittelnden Größen

Abbildung 5.14: Versuchsaufbau des zweiten Teilversuchs: belasteter Transformator

Tragen Sie für die beiden Windungsverhältnisse $N_1:N_2=500:500$ und $N_1:N_2=250:500$ das Spannungsübersetzungsverhältnis U_2/U_1 über den Lastwiderstand R_L auf und diskutieren Sie ihre Ergebnisse.

Protokoll

		500:500		250:500		
$R_L \ \Omega$	U_1	U_2 V	U_2/U_1	U_1	U_2	U_2/U_1
100			0			0
150	0	0	0	0	0	0
250	0	0	0	0	0	0
300	0	0	0	0	0	0
350	0	0	0	0	0	0
400	0	0	0	0	0	0
600	0	0	0	0	0	0
800	0	0	0	0	0	0
1000	0	0	0	0	0	0

Tabelle 5.2: Messtabelle zu Versuch 5.2

5.3 Kopplungsgrad

Aufgabe In diesem Versuchsteil soll der Kopplungsgrad k des Transformators $(N_1:N_2=500:500)$ bei den Frequenzen $f_1=500$ Hz und $f_2=5000$ Hz mit Hilfe der in Abschnitt 4.1 bestimmten Ausdrücke für $L_1,\,L_2$ und M bestimmt werden. (Falls Sie diese Vorbereitungsaufgabe nicht lösen konnten, sprechen Sie mit Ihrem Tutor). Zur Berechnung von L_1 und M verwenden Sie den Aufbau nach 5.15 um die Größen U_1 und I_1 zu ermitteln. Als Eingangssignal erzeugen Sie wieder einen Sinus mit U=1V $_{pp}$ mit Hilfe des Signalgenerators des Oszilloskops. ($R_V=100\Omega$)

Abbildung 5.15: Aufbau zur Ermittlung des Kopplungsgrades

Für die Berechnung von L_2 muss der Primärstrom I_1 , sowie der Kurzschlussstrom I_2 ermittelt werden. Bauen Sie hierzu die Schaltung nach 5.16 auf. Geben Sie hier einen Sinus der Spannung $U=2V_{pp}$ auf die Schaltung und messen Sie die beiden Ströme I_1 und I_2 mit Hilfe der schwarzen VOLTCRAFT-Multimeter (Messbereich mA, Wechselstrom) für die beiden Frequenzen f_1 und f_2 . Beachten Sie, dass das Multimeter beim Messen von Wechselgrößen den Effektivwert liefert!

Abbildung 5.16: Versuchsaufbau für die Kurzschlussmessungen zur Bestimmung des Kopplungsgrades

Nachdem Sie die Größen L_1 , L_2 und M ermittelt haben, berechnen Sie den Kopplungsgrad k für die Frequenzen f_1 und f_2 und diskutieren Sie Ihre Ergebnisse.

Protokoll

5.4 Frequenzabhängiges Übertragungsverhalten und Phasenschiebung unter Last

Aufgabe

Abbildung 5.17: Versuchsaufbau zur Messung des Übertragungsverhalten bei verschiedenen Frequenzen.

In diesem letzten Aufgabenteil soll das frequenz- und lastabhängige Übertragungsverhalten des Transformators untersucht werden.

Messen Sie hierzu mit dem in 5.17 gezeigten Versuchsaufbau (Transformator mit $N_1=N_2=500$ Windungen) die Spannungen U ein und U_L mit Hilfe der beiden Eingangskanäle des Oszilloskops als Funktion der Frequenz für die drei Lastwiderstandswerte $R_L=\{100\Omega,680\Omega,1\mathrm{k}\Omega\}$. Verwenden Sie hierfür die Sweep-Funktion der MATLAB GUI. Setzen Sie die Quellenspannung U_Q mit Hilfe der MATLAB GUI auf 1V (Z LOAD = high-Z). Nehmen Sie den Betrag und die Phase des Frequenzgangs der Übertragungsfunktion $U_2/U_1(\omega)$ für Frequenzen zwischen 100Hz und 100kHz (logarithmisch verteilt mit 100 Frequenzpunkten) für die drei oben genannten Lastwiderstandswerte auf (Hinweis: Ermitteln Sie zunächst den Amplitudengang mit der Funktion "Sweep — Frequency" und anschließend den Phasengang mit der Funktion "Sweep — Phase". Verwenden Sie bei der Ermittlung des Phasengangs zur Verbesserung der Qualität der Phasenmessung 4 Mittelungen).

Tragen Sie Betrag und Phase von $U_2/U_1(\omega)$ für die drei Lastwiderstandswerte in einem Bode-Diagramm auf. Diskutieren Sie Ihre Messwerte mit Hilfe Ihrer Ergebnisse aus Abschnitt 4.2.

Protokoll