HETERO-INTERFACES FOR EXTREME ELECTRONIC ENVIRONMENTS

Alp Sehirlioglu --- FA9550-11-1-0022

- Quasi-two-dimensional electron gas in oxide based hetero-interfaces:
 - \rightarrow Recently discovered (2004) \rightarrow Tunability (2006)
- Investigated for nano-device applications (i.e, non-volatile memory)
- Extreme environment applications are possible
 - ➤ Incorporation of ultra-thin high-K dielectric (dielectric constant, K=25) film that eliminates the need for a gate dielectric.
 - > Insulating film and the substrate increases radiation hardening
- The science behind Q-2D-EG and its tunability is still not clear.
 - 1- Polar catastrophe at the polar LAO/non-polar STO interface, 2- structural distortions at the interface, 3- oxygen vacancies introduced into the LAO/STO hetero-structure during the growth of LAO, 4- preferential cationic intermixing at the interface.
- A large number of parameters can effect both the existence and the magnitude of the interface conductivity.
 - Substrate quality
 - > Film composition
 - Defects
 - > Strain development
 - > Film thickness
 - > Electrode materials
 - > Film surface conditions
 - > In plane anisotropy.

All have different dependence on temperature. Therefore any extreme environment application requires quantitative analysis of these parameters.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE SEP 2012		2. REPORT TYPE			3. DATES COVERED 00-00-2012 to 00-00-2012		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER						
Hetero-Interfaces for Extreme Electronic Environments					5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
Case Western Rese	ZATION NAME(S) AND AD erve University,Depa Building, 10900 Eu	8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
	OTES 112 AFOSR Space P S. Government or Fe	_	_	w held 10-13	September in		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF: 17. LIN				18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 4	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Substrates

Commercial finishing with etch pits

Our finishing with etch pits at pH = 5.7

Etch pit free surfaces at pH =5.7

Profile showing the flat terraces

- > The curvature is due to the mis-cut angle Larger the mis-cut angle, narrower the terraces (AFM)
- > ~4Å steps = unit cell size (Ti-terminated)
- > Commercially prepared surfaces show etching pits.
- ➤ We showed that at pH=6 we can get etch pit free surfaces

4Å steps = unit cell size (Ti-terminated)

Reciprocal space mapping

Relaxed

Out-of-plane

mismatch

Partially relaxed

Fully strained film

Substrate

In-plane mismatch

Bulk LAO: 0.3791 nm Bulk STO: 0.3905 nm In-plane direction:

- LaAlO₃ films are under tensile strain.
- As thickness increases: Stress ↑, Lattice constant ↓, Mismatch ↑,
 Strain ↓
- Partial relaxation in LaAlO₃ films with increasing film thickness.
- Above 80nm film thickness: Plastic deformation due to large strain. Residual film remains highly strained.

Out-of-plane direction:

- LaAlO₃ films are tetragonally distorted.
- Degree of tetragonality is decreased as thickness ↑ (relaxation ↑).
- Residual film above 80nm is still tetragonally distorted.

Wei Wei and Alp Sehirlioglu, Appl. Phys. Lett., 100, 071901 (2012)

Wer Wer and 7th Serimogra, 7th Pri. 1 11/3. Lett., 130, 07 1301 (1011)									
Laser pulse	Thickness (nm)	f _{pp}	f _{pl}	ε _{pp}	ε _{pl}	a _{pp (nm)}	a _{pl (nm)}	Relaxation rate	a _{pp} /a _{pl}
100	4.9	- 0.03958		- 0.00913		0.375045			
200	7.9	- 0.03522	- 0.00056	- 0.00437	0.03139	0.376750	0.390280	1.83%	0.965332
500	18.3	- 0.03358	- 0.00076	- 0.00268	0.03119	0.377390	0.390202	2.48%	0.967165
1000	38.4	- 0.03326	- 0.00100	- 0.00261	0.03067	0.377513	0.390109	3.26%	0.967711
1500	65.4	- 0.02987	- 0.00117	- 0.00321	0.03050	0.377284	0.390041	3.83%	0.967293
2000	84	- 0.03322	- 0.00052	- 0.00257	0.03117	0.377529	0.390298	1.68%	0.967283

Composition

- The composition of target and the film can be different when multiple single-site cations exist.
- ➤ The composition of the film can be different for targets of same composition but different source.

Sample	0	La	Nd	Al	(La + Nd)/Al	Nd/La
LAO-CWRU	66.13	20.25	0	13.62	1.48	0
LAO-Kurt Lesker	62.85	25.93	0	11.22	2.31	0
LAO-10NAO	67.03	18.88	0.69	13.39	1.46	0.036
LAO-30NAO	67.38	18.13	5.14	9.35	2.48	0.28
LAO-50NAO	65.93	15.54	8.97	9.56	2.56	0.57

Film lattice parameters and composition do not follow that of target.