Market research for poultry export projects

Hani Cherid

> CONTENTS

- 1 Data Collection and Cleaning
- **2** Classification of Countries by Hierarchical Clustering
- **3 Statistical Tests**
- 4 Conclusion

CONTENTS

- 1 Data Collection and Cleaning
- 2 Classification of Countries by Hierarchical Clustering
- **3 Statistical Tests**
- 4 Conclusion

Data Collection

Collected 4 kinds of data in each country:

1. Poultry demand and supply

- Import (kg/capita year)
- Production (kg/capita year)
- Food intake (kcal/capita day)
- Protein intake (g/capita day)
- Fat intake (g/capita day)

3. Population

Growth rate between 2016 and 2018 (%)

2. Diet conditions (Calories and animal proteins)

- Total food intake (kcal/capita day)
- Total protein intake (g/capita day)
- Proportion of animal proteins to the total(%)

4. Number of KFC restaurants

- Numbers (/ capita)
- Growth rate between 2016 and 2018 (%)

^{* 1-3} are available from FAO Stat

> Data Cleaning - Data from FAO Stat

Data from FAO stat

1. Poultry demand and supply

D	Code Code	Domain	Code (FAO)	Area	Element Code	Element	Code	Item	Year Code	Year	Unit	Value	Flag	Flag Description
0	FBS	Food Balances (2010-)	2	Afghanistan	5511	Production	2734	Poultry Meat	2018	2018	1000 tonnes	29.00	lm	FAO data based on imputation methodology
1	FBS	Food Balances (2010-)	2	Afghanistan	5611	Import Quantity	2734	Poultry Meat	2018	2018	1000 tonnes	25.00	lm	FAO data based on imputation methodology

2. Diet conditions

	Domain Code	Domain	Code (FAO)	Area	Element Code	Element	Item Code	Item	Year Code	Year	Unit	Value	Flag	Flag Description
0	FBS	Food Balances (2010-)	2	Afghanistan	664	Food supply (kcal/capita/day)	2901	Grand Total	2018	2018	kcal/capita/day	2270.00	Fc	Calculated data
1	FBS	Food Balances (2010-)	2	Afghanistan	674	Protein supply quantity (g/capita/day)	2901	Grand Total	2018	2018	g/capita/day	57.62	Fc	Calculated data

3. Population

	Domain Code	Domain	Area Code (FAO)	Area	Element Code	Element	Item Code	Item	Year Code	Year	Unit	Value	Flag	Flag Description
0	FBS	Food Balances (2010-)	2	Afghanistan	511	Total Population - Both sexes	2501	Population	2016	2016	1000 persons	35383.0		Unofficial figure
1	FBS	Food Balances (2010-)	2	Afghanistan	511	Total Population - Both sexes	2501	Population	2018	2018	1000 persons	37172.0		Unofficial figure

- Pivot
- Join
- Null Imputations

area_code	area	fat_gcapitaday	food_kcalcapitaday	import	production	protein_gcapitaday	country_code	total_food_kcalca	}	Y	animal_prot_rate	pop_2018	pop_growth_rate
1	Armenia	3.12	50.0	33.0	12.0	5.01	051)	49.034709	2952000.0	0.544959
2	Afghanistan	0.31	5.0	25.0	29.0	0.51	004		'	0	18.552586	37172000.0	5.056100
3	Albania	3.83	50.0	12.0	16.0	3.52	008		h_1	0	53.910887	2883000.0	-0.103950
4	Algeria	1.59	23.0	0.0	286.0	2.08	012		2.	0	26.913279	42228000.0	4.135533
7	Angola	2.58	41.0	335.0	41.0	4.16	024		1.	0	30.985130	30810000.0	6.823383
]	'animal_prote	ein_gcapitaday'] /[ˈtoʲ	tal_	protein_gcapita	aday']*100	
									(['po	op_	2018'] - ['pop_2	2016']) / ['po	op_2016'] *100

Data Cleaning - KFC

4. Number of KFC restaurants

	Country	Company	Franchise & License	Total
0	Albania	0	2	2
1	Angola	0	9	9
2	Antigua	0	3	3
3	Argentina	0	6	6
4	Armenia	0	7	7

	Country	Company	Franchise & License	Total
0	Albania	0	2	2
1	Algeria	0	0	0
2	Andorra	0	0	0
3	Angola	0	9	9
4	Antigua	0	2	2

- Join
- Null Imputations

> Data Cleaning - final step

1-3

area_code	area	fat_gcapitaday	food_kcalcapitaday	import	production	protein_gcapitaday	country_code	total_food_kcalcapitaday
1	Armenia	3.12	50.0	33.0	12.0	5.01	051	3074.0
2	Afghanistan	0.31	5.0	25.0	29.0	0.51	004	2270.0
3	Albania	3.83	50.0	12.0	16.0	3.52	800	3296.0
4	Algeria	1.59	23.0	0.0	286.0	2.08	012	3382.0
7	Angola	2.58	41.0	335.0	41.0	4.16	024	2451.0

area	kfc_2016	kfc_2018	kfc_growth_rate	country_code
Albania	2	2	0.0	008
Algeria	0	0	0.0	012
Andorra	0	0	0.0	020
Angola	9	9	0.0	024
Antigua	3	2	-33.333333	028

- Join
- Null Imputations

	mport_kgcapita	production_kgcapita	food_kcalcapitaday	protein_gcapita	 _growth_rate	kfc_2018_capita	kfc_growth_rate
area							
Armenia	11.178862	4.065041	50.0	5	0.544959	3.048780e-06	28.571429
Afghanistan	0.672549	0.780157	5.0		5.056100	0.000000e+00	0.000000
Albania	4.162331	5.549775	50.0		-0.103950	6.937218e-07	0.000000
Algeria	0.000000	6.772757	23.0		4.135533	0.000000e+00	0.000000
Angola	10.873093	1.330737	41.0		6.823383	2.921130e-07	0.000000
		 			\ 	Ţ.	

Converted to per capita values

Converted to per capita values

21100	· · · · · · · · · · · · · · · · · ·						
Date	.columns (total 11 columns):					
#	Column	Non-Null Count	Dtype				
0	import_kgcapita	179 non-null	float64				
1	production_kgcapita	179 non-null	float64				
2	food_kcalcapitaday	179 non-null	float64				
3	protein_gcapitaday	179 non-null	float64				
4	fat_gcapitaday	179 non-null	float64				
5	total_food_kcalcapitaday	179 non-null	float64				
6	total_protein_gcapitaday	179 non-null	float64				
7	animal_prot_rate	179 non-null	float64				
8	pop_growth_rate	179 non-null	float64				
9	kfc_2018_capita	179 non-null	float64				

11 variables, 179 countries

> CONTENTS

- 1 Data Collection and Cleaning
- **2** Classification of Countries
- **3 Statistical Tests**
- 4 Conclusion

Hierarchical Clustering

Cleaned data

- Exclude qualitative variables
- Scaling


```
# Import the hierarchical clustering algorithm
from sklearn.cluster import AgglomerativeClustering

# Create a hierarchical clustering mode!
hiercluster = AgglomerativeClustering(affinity='euclidean', linkage='ward',
hiercluster.set_params(n_clusters=5)
clusters = hiercluster.fit_predict(X_scaled)
```

Dendrogram – Definition of countries clusters

PC1(46.7%) and PC2(14.6%) explain about 60% of the total data.

- Group 0 is prominently higher in PC1
- Group 2 and Group 3 do not differ in PC1 but are opposite in PC2
- Group 4 is high in PC1 but low in PC2
- Group 1 is located around the center of both PC1 and PC2 axes and appears less distinctive

> Parallel Coordinates Plot

Which group can we expect as our targets?:

Group 0 (2 countries): Extremely high scores of KFC per capita and its growth

Group 4 (12 countries): High levels of poultry meat intake but low domestic production, dependent on imports

> Comparison between Hierarchical- and K-Means Clustering

Hierarchical

K-Means

Partitions of clusters are very similar to each other

> Comparison between Hierarchical- and K-Means Clustering

Hierarchical

K-Means

Also looks similar

Compare using set()

- Group 0 countries in Hierarchical = Group 3 countries in K-means
- Group 4 countries in Hierarchical = Group 2 countries +4 more in K-means
- -> The results of hierarchical and K-means clustering are consistent

> Conclusions

Country list of Group 0 and 4:

Group	Country	Poultry import (kg/capita)	Poultry production (kg/capita)	Poblication	Pop_growth (%)	KFC_growth (%)
0	Turkey	0.1	27.1	82,340,000	3.1	1,675
0	North Macedonia	19.2	0.5	2,083,000	0.1	807
	United Arab Emirates	63.2	4.9	9,630,960	2.9	7
	Hong Kong	111.4	3.4	7,372,000	1.8	11
	Suriname	38.2	19.1	576,000	1.9	50
	Bahamas	67.4	18.1	386,000	2.1	8
	French Polynesia	57.6	3.6	278,000	1.1	0
	Samoa	91.8	0.0	196,000	0.5	0
4	Saint Lucia	54.9	11.0	182,000	1.1	0
	Grenada	63.1	9.0	111,000	0.9	0
	Saint Vincent and the Grenadines	72.7	0.0	110,000	0.9	0
	Antigua and Barbuda	72.9	0.0	96,000	1.1	-33
	Dominica	55.6	0.0	72,000	1.4	0
	Saint Kitts and Nevis	57.7	0.0	52,000	0.0	0

Target areas:

Group 0: Turkey and North Macedonia

> CONTENTS

- 1 Data Collection and Cleaning Steps
- 2 Classification of Countries by Hierarchical Clustering
- **3 Statistical Tests**
- 4 Conclusion

> Kaiser-Meyer-Olkin (KMO) Test

Validate sample size by the Kaiser-Meyer-Olkin (KMO) Test

```
from factor_analyzer.factor_analyzer import calculate_kmo

kmo_all, kmo_model = calculate_kmo(X)
print(kmo_all, kmo_model)

[0.72845188 0.78681264 0.62399797 0.62857465 0.60528642 0.74971941
0.7501516 0.86196514 0.87453552 0.5827879 0.53659464] 0.6969610497399634
```

Value of overall dataset: 0.70

-> Sample size is adequate

- •0.00 to 0.49 unacceptable.
- •0.50 to 0.59 miserable.
- •0.60 to 0.69 mediocre.
- •0.70 to 0.79 middling.
- •0.80 to 0.89 meritorious.
- •0.90 to 1.00 marvelous.

Normality Test (Kolmogorov-Smirnov test)

total_food_kcalcapitaday

H0: Null hypothesis, the variable follows a normal distribution

H1: Alternative, the variable does not follow a normal distribution

If p value is < .05 REJECT the Null hypothesis.

KstestResult(statistic=0.056383272781445615, pvalue=0.5995940995280229)

p value = 0.6 : CANNOT reject the null hypothesis-> The variable is normally distributed

Comparison test of two populations (t-test)

Cluster	Avg of 'total_food_Kcalcapi taday'
Group 0	1.15911546
Group 4	-0.149666229

HO: Null hypothesis

No significant difference in average of 2 groups

H1: Alternative

There is a significant difference in average of 2 groups

If p value is < .05 REJECT the Null hypothesis.

Ttest_indResult(statistic=2.775538078535637, pvalue=0.01678868248048485)

p value = 0.02: CAN reject the null hypothesis

-> The difference of 2 groups is statistically significant

CONTENTS

- 1 Data Collection and Cleaning
- 2 Classification of Countries by Hierarchical Clustering
- **3 Statistical Tests**
- 4 Conclusion

> Conclusion

- Divided the country list into 5 groups by the hierarchical clustering, resulting in the selection of a target countries:
 - Turkey and North Macedonia (high scores of KFC per capita and its growth)
- Results of K-means clustering were confirmed to be consistent with the above results.
- KMO test confirmed the validity of the sample size.
- ◆ Normality tests confirmed that one variable 'total_food_kcalcapitaday' (represents total calorie intake (kcal/capitaday)) in the sample was normally distributed.
- ◆ T-test proved that there is a significant difference between the two selected groups of total calories intake.