

GPTI: Gestión de Proyectos Basados en las Tecnologías de la Información

Práctica Guiada #2

Gestión del Valor Ganado (EVM)

Víctor Martínez Cagigal

victor.martinez.cagigal@uva.es

1

Análisis del estado de un proyecto

- En la gestión de costos, es necesario determinar si el proyecto se desarrolla según el plan previsto o si se está desviando
 - > ¿Se ha realizado el trabajo?
 - > ¿Se cumplen los plazos?
 - > ¿Se está gastando el dinero previsto?
- <u>Gestión del Valor Ganado (EVM)</u>: medida del progreso de un proyecto de forma cuantitativa. Nos permite averiguar:
 - > Si estamos gastando menos o más de lo previsto
 - ➤ Si vamos adelantados o atrasados en el cronograma
 - > Si estamos siendo eficientes o ineficientes
 - > Cuál será el costo total del proyecto en función del trabajo realizado hasta la fecha
 - > Cuánto trabajo falta por hacer y el dinero que nos queda

GPTI – Bloque I – Práctica Guiada #2: Gestión del Valor Ganado

,

Ejemplo práctico							
Deriva	amos el	PV y el A	.C a parti	r de los d	datos del	proyect	:0:
	Planificación del proyecto					TOTAL	
	Día 1	Día 2	Día 3	Día 4	Día 5		
Tarea	Actualizar PC1	Actualizar PC2	Actualizar PC ₃	Actualizar PC4	Actualizar PC5		
Duración	5 h	5 h	5 h	5 h	5 h	25 h	577
Coste/h	100€/h	100€/h	100€/h	100€/h	100€/h		257 1
PV	500€	500€	500€	500€	500€	2500€	AN 488.
				45	372	10000	
	Día 1	Día 2	Día 3	Día 4	Día 5	Total	27 0
Nº PCs actualizados	0	1	1			2	1
Horas de trabajo	7	6	5			18	165
Porcentaje de avance	о%	20%	20%			40%	
AC	700€	600€	500€			1800€	m 1022

Seguimiento del costo

• Variación del costo (CV, cost variance) CV = EV - AC> Si $CV > 0 \rightarrow$ el proyecto está por debajo de costes

> Si $CV < 0 \rightarrow$ el proyecto tiene sobrecostes

• Índice de desempeño del costo (CPI, cost performance index)

→ porcentaje de recuperación por cada € invertido CPI = EV/AC> Si $CPI > 1 \rightarrow$ tendemos a ahorrar costes

> Si $CPI < 1 \rightarrow$ tendemos a gastar más de lo debido

Lab2: EVM

Proyecciones sobre la finalización

- Calcular el ETC (Estimate to Complete), dos formas:
 - Con variaciones atípicas
 - ✓ Solo consideramos valores fijos, no comportamientos pasados
 - ✓ Es decir, consideramos las posibles variaciones pasadas como algo atípico que no se va a dar en nuestra estimación a futuro

$$ETC = BAC - EV$$

- > Con variaciones típicas
 - ✓ Considerando variaciones en el costo

$$ETC = \frac{BAC - EV}{CPI}$$
 \checkmark Considerando variaciones en el costo & cronograma

$$ETC = \frac{BAC - EV}{CPI \cdot SPI}$$

GPTI - Bloque I - Práctica Guiada #2: Gestión del Valor Ganado

17

Lab2: EVM

Proyecciones sobre la finalización

• Calcular la estimación a la conclusión o EAC (Estimate at Completion)

$$EAC = AC + ETC$$

- Índice del Desempeño del Trabajo por Completar o TCPI (To-Complete Performance Index)
 - > Interpretación del trabajo restante/presupuesto restante

$$TCPI_1 = \frac{BAC - EV}{BAC - AC}$$

> Cuando el BAC ya no se considera viable:

$$TCPI_2 = \frac{BAC - EV}{EAC - AC}$$

GPTI – Bloque I – Práctica Guiada #2: Gestión del Valor Ganado

