Oscilador Armónico Ejercicio 2 - Física Cuántica I

Lucas Pérez

Diciembre 2024

1. Enunciado

Considerad de nuevo el oscilador armónico. Sabiendo que $\hat{a} |0\rangle = 0$ (no hay estado más bajo que el fundamental) se pide:

■ Calculad la desviación estándar de la posición Δx y del momento Δp para el estado fundamental $|0\rangle$ del oscilador armónico usando:

$$(\Delta x)^{2} = \langle 0 | \hat{x}^{2} | 0 \rangle - (\langle 0 | \hat{x} | 0 \rangle)^{2}, (\Delta p)^{2} = \langle 0 | \hat{p}^{2} | 0 \rangle - (\langle 0 | \hat{p} | 0 \rangle)^{2}$$
 (1)

y re-expresando los operadores \hat{x} y \hat{p} en función de los operadores escalera \hat{a} y \hat{a}^{\dagger} . Nótese que con el formalismo de Dirac no es necesario integrar sobre las funciones de onda para obtener las magnitudes estadísticas anteriores.

- ¿Se cumple el principio de incertidumbre?
- Repetid el ejercicio para el primer y segundo estado excitado, es decir, para $|1\rangle$ y $|2\rangle$.

2. Desviación estándar

Para obtener la desviación estándar de los operadores \hat{x} y \hat{p} debemos expresarlos primero en función de los operadores escalera. Estos operadores se definen como:

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + i \frac{\hat{p}}{m\omega} \right)$$

$$\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - i \frac{\hat{p}}{m\omega} \right)$$
(2)

Si sumamos y restamos ambas expresiones y despejamos los operadores que queremos estudiar, llegamos a las siguientes ecuaciones:

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a} + \hat{a}^{\dagger} \right)$$

$$\hat{p} = \sqrt{\frac{\hbar m\omega}{2}} i \left(\hat{a}^{\dagger} - \hat{a} \right)$$
(3)

A continuación, calcularemos el cuadrado de ambos operadores para poder usarlos en las expresiones dadas:

$$\hat{x}^2 = \frac{\hbar}{2m\omega} \left(\hat{a}\hat{a} + \hat{a}^{\dagger}\hat{a}^{\dagger} + \hat{a}^{\dagger}\hat{a} + \hat{a}\hat{a}^{\dagger} \right)$$

$$\hat{p}^2 = \frac{\hbar m\omega}{2} \left(\hat{a}\hat{a} + \hat{a}^{\dagger}\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a} - \hat{a}\hat{a}^{\dagger} \right)$$
(4)

Aprovechándonos del conmutador de los operadores escalera($[\hat{a}, \hat{a}^{\dagger}] = \hat{a}\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a} = I$) podemos reescribir ambas expresiones:

$$\hat{x}^2 = \frac{\hbar}{2m\omega} \left(\hat{a}\hat{a} + \hat{a}^{\dagger}\hat{a}^{\dagger} + 2\hat{a}^{\dagger}\hat{a} + 1 \right)$$
$$\hat{p}^2 = \frac{\hbar m\omega}{2} \left(2\hat{a}^{\dagger}\hat{a} + 1 - \hat{a}\hat{a} - \hat{a}^{\dagger}\hat{a}^{\dagger} \right)$$

Finalmente, podemos calcular las desviaciones:

$$(\Delta x)^{2} = \frac{\hbar}{2m\omega} \left(\langle 0|\hat{a}\hat{a}|0\rangle + \langle 0|\hat{a}^{\dagger}\hat{a}^{\dagger}|0\rangle + 2\langle 0|\hat{a}^{\dagger}\hat{a}|0\rangle + \langle 0|0\rangle + \left(\langle 0|\hat{a}|0\rangle + \langle 0|\hat{a}^{\dagger}|0\rangle \right)^{2} \right)$$

$$(\Delta p)^{2} = \frac{\hbar m \omega}{2} \left(2 \langle 0 | \hat{a}^{\dagger} \hat{a} | 0 \rangle + \langle 0 | 0 \rangle - \langle 0 | \hat{a} \hat{a} | 0 \rangle - \langle 0 | \hat{a}^{\dagger} \hat{a}^{\dagger} | 0 \rangle - \left(\langle 0 | \hat{a} | 0 \rangle - \langle 0 | \hat{a}^{\dagger} | 0 \rangle \right)^{2} \right)$$

Observamos que solo van a sobrevivir los brakets que no están siendo afectados por ningún operador ya que si aplicamos la condición de ortonormalidad de los espacios de Hilbert, los vectores afectados por el operador \hat{a}^{\dagger} cambiarán su estado energético y serán ortogonales al vector $\langle 0|$. A su vez los brakets acompañados por los operadores \hat{a} y $\hat{a}^{\dagger}\hat{a}$ también se anularán, pues sus autovalores son 0.

$$(\Delta x)^2 = \frac{\hbar}{2m\omega} \langle 0|0\rangle = \frac{\hbar}{2m\omega}$$

$$(\Delta p)^2 = \frac{\hbar m\omega}{2} \langle 0|0\rangle = \frac{\hbar m\omega}{2}$$

3. Principio de Incertidumbre

El principio de incertidumbre de Heisenberg establece:

$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

Al calcular los observables \hat{x} y \hat{p} a la vez siempre habrá una incertidumbre de al menos $\frac{\hbar}{2}$. Podemos demostrar que se cumple para el sistema propuesto si multiplicamos las incertidumbres, que son la raíz cuadrada de las desviaciones calculadas anteriormente:

$$\Delta x \Delta p = \sqrt{\frac{\hbar}{2m\omega}} \sqrt{\frac{\hbar m\omega}{2}} = \frac{\hbar}{2}$$

Este valor coincide con la incertidumbre mínima que se puede medir en un sistema y por tanto, se cumple el principio.

4. Estados $|1\rangle$ y $|2\rangle$

4.1. Desviaciones Estándar

Ahora calcularemos las desviaciones estándar para los estados excitados $|1\rangle$ y $|2\rangle$:

$$(\Delta x_1)^2 = \frac{\hbar}{2m\omega} \left(\langle 1|\hat{a}\hat{a}|1\rangle + \langle 1|\hat{a}^{\dagger}\hat{a}^{\dagger}|1\rangle + 2\langle 1|\hat{a}^{\dagger}\hat{a}|1\rangle + \langle 1|1\rangle + \left(\langle 1|\hat{a}|1\rangle + \langle 1|\hat{a}^{\dagger}|1\rangle \right)^2 \right)$$

$$(\Delta p_1)^2 = \frac{\hbar m \omega}{2} \left(2 \langle 1| \hat{a}^{\dagger} \hat{a} | 1 \rangle + \langle 1| 1 \rangle - \langle 1| \hat{a} \hat{a} | 1 \rangle - \langle 1| \hat{a}^{\dagger} \hat{a}^{\dagger} | 1 \rangle - \left(\langle 1| \hat{a} | 1 \rangle - \langle 1| \hat{a}^{\dagger} | 1 \rangle \right)^2 \right)$$

$$(\Delta x_2)^2 = \frac{\hbar}{2m\omega} \left(\langle 2|\hat{a}\hat{a}|2\rangle + \langle 2|\hat{a}^{\dagger}\hat{a}^{\dagger}|2\rangle + 2\langle 2|\hat{a}^{\dagger}\hat{a}|2\rangle + \langle 2|2\rangle + \left(\langle 2|\hat{a}|2\rangle + \langle 2|\hat{a}^{\dagger}|2\rangle \right)^2 \right)$$

$$(\Delta p_2)^2 = \frac{\hbar m\omega}{2} \left(2 \langle 2| \hat{a}^{\dagger} \hat{a} | 2 \rangle + \langle 2| 2 \rangle - \langle 2| \hat{a} \hat{a} | 2 \rangle - \langle 2| \hat{a}^{\dagger} \hat{a}^{\dagger} | 2 \rangle - \left(\langle 2| \hat{a} | 2 \rangle - \langle 2| \hat{a}^{\dagger} | 2 \rangle \right)^2 \right)$$

De manera similar que en el estado $|0\rangle$, solo sobrevivirán los brakets afectados por el operador número $\hat{a}^{\dagger}\hat{a}$, cuyo autovalor será el estado n en el que estén, y en los que no haya operador, por la condición de ortonormalidad.

$$(\Delta x_1)^2 = \frac{3\hbar}{2m\omega}; (\Delta p_1)^2 = \frac{3\hbar m\omega}{2}$$

$$(\Delta x_2)^2 = \frac{5\hbar}{2m\omega}; (\Delta p_2)^2 = \frac{5\hbar m\omega}{2}$$

4.2. Principio de Incertidumbre

Es fácilmente demostrable que en ambos estados excitados se sigue cumpliendo el Principio de Incertidumbre:

$$\Delta x_1 \Delta p_1 = \sqrt{\frac{3\hbar}{2m\omega}} \sqrt{\frac{3\hbar m\omega}{2}} = \frac{3\hbar}{2}$$

$$\Delta x_2 \Delta p_2 = \sqrt{\frac{5\hbar}{2m\omega}} \sqrt{\frac{5\hbar m\omega}{2}} = \frac{5\hbar}{2}$$

Pues los valores obtenidos para las incertidumbres entran en el rango permitido para el Principio $\geq \frac{\hbar}{2}$