Devoir surveillé n°2

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $n \in \mathbb{N}$. En utilisant la fonction $f: x \mapsto (1+x)^n$, calculer les quantités suivantes.

1)
$$\sum_{k=0}^{n} \binom{n}{k}$$

$$2) \sum_{k=1}^{n} k \binom{n}{k}$$

$$3) \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}$$

II. Suite de Sylvester.

On définit la suite de Sylvester par :

$$s_0 = 2, \quad \forall n \in \mathbb{N}, \ s_{n+1} = 1 + \prod_{k=0}^{n} s_k.$$

- 1) Calculer s_1 , s_2 , s_3 et s_4 .
- 2) Montrer que, pour tout entier naturel n, s_n est un entier supérieur ou égal à n+2.
- 3) Que peut-on en déduire quant à la limite de la suite $(s_n)_{n\in\mathbb{N}}$?
- 4) Déterminer le sens de variations de la suite $(s_n)_{n\in\mathbb{N}}$.
- 5) a) Montrer que pour tout entier naturel $n: s_{n+1} = s_n^2 s_n + 1$.
 - **b)** Simplifier pour tout $n \in \mathbb{N}$ la quantité $\frac{1}{s_n 1} \frac{1}{s_{n+1} 1}$.
 - c) En déduire l'existence et la valeur de la limite de $\sum_{n=0}^{N} \frac{1}{s_n}$ lorsque N tend vers $+\infty$.
- **6)** On pose pour tout $n \in \mathbb{N}$: $u_n = \frac{\ln(s_n)}{2^{n+1}}$.
 - a) Montrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
 - b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge.
- 7) On note dorénavant ℓ la limite de $(u_n)_{n\in\mathbb{N}}$ et l'on pose $r=\sqrt[3]{2}$.
 - a) Montrer que $\left(1 + \frac{5}{16}\right)^3 \geqslant 2$. Que peut-on en déduire quant à r?
 - **b)** Montrer que $s_0 s_1 s_2 \geqslant r^{16}$.
 - c) Montrer que pour tout $n \in \mathbb{N}$ supérieur ou égal à $3: s_n \geqslant r^{2^{n+1}}$.

 Indication: on pourra procéder par récurrence.
 - d) Que peut-on en déduire quant à ℓ et r?
 - e) Proposer (en le justifiant) une majoration de ℓ .

III. Suites récurrentes triples.

On se propose d'étudier de deux manières différentes les suites (u_n) vérifiant la relation de récurrence suivante :

$$\forall n \in \mathbb{N}, u_{n+3} = 6u_{n+2} - 11u_{n+1} + 6u_n. \tag{\mathscr{R}}$$

- 1) Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites vérifiant (\mathscr{R}) . Montrer que si $u_0=v_0,\ u_1=v_1$ et $u_2=v_2,$ alors, pour tout $n\in\mathbb{N},\ u_n=v_n.$
- 2) Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites vérifiant (\mathscr{R}) . Montrer que, pour tout $\lambda, \mu \in \mathbb{C}$, $(\lambda u_n + \mu v_n)_{n\in\mathbb{N}}$ est solution de (\mathscr{R}) .
- 3) Soit $r \in \mathbb{C}$. Montrer que $r^3 6r^2 + 11r 6 = 0$ si et seulement si $(r^n)_{n \in \mathbb{N}}$ vérifie (\mathscr{R}) .
- 4) En déduire qu'il existe uniquement trois réels $r_1 < r_2 < r_3$, que l'on calculera, tels que, pour tout $i \in \{1, 2, 3\}$, la suite géométrique $(r_i^n)_{n \in \mathbb{N}}$ vérifie (\mathcal{R}) .
- **5)** Application. soit $(u_n)_{n\in\mathbb{N}}$ vérifiant (\mathcal{R}) telle que $u_0=2,\ u_1=-1$ et $u_2=4$. Déterminer $x,y,z\in\mathbb{R}$ tels que :

$$\begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix} = x \begin{pmatrix} 1 \\ r_1 \\ r_1^2 \end{pmatrix} + y \begin{pmatrix} 1 \\ r_2 \\ r_2^2 \end{pmatrix} + z \begin{pmatrix} 1 \\ r_3 \\ r_3^2 \end{pmatrix}$$

et en déduire l'expression du terme général de la suite $(u_n)_{n\in\mathbb{N}}$.

6) Soit $(u_n)_{n\in\mathbb{N}}$ une suite vérifiant (\mathcal{R}) . Pour chaque $n\in\mathbb{N}$, on définit

$$X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}.$$

Montrer qu'il existe une matrice A, que l'on explicitera, telle que

$$\forall n \in \mathbb{N}, \ X_{n+1} = AX_n.$$

- 7) Montrer que $\forall n \in \mathbb{N}, X_n = A^n X_0$.
- 8) Soit $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$. Soit $a, b, c \in \mathbb{R}$. Résoudre le système d'inconnues x, y, z:

$$P \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

- 9) En déduire que P est inversible et expliciter P^{-1} .
- **10)** Calculer $D = P^{-1}AP$.
- 11) Montrer que $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$.
- 12) En déduire l'expression du terme général de $(u_n)_{n\in\mathbb{N}}$. Vérifier que l'on retrouve bien le résultat trouvé à la question 5).

— FIN —