## 1

## NCERT 11.9.1.13Q

## EE23BTECH11015 - DHANUSH V NAYAK\*

**Question:** Write the first five terms of each of the sequences in Exercises 11 to 13 and obtain the corresponding series:

$$a_1 = a_2 = 2$$
,  $a_n = a_{n-1} - 1$ ,  $n > 2$  **Solution:**

| Parameter    | Description           | Value                                                                           |
|--------------|-----------------------|---------------------------------------------------------------------------------|
| x (0)        | First term            | 2                                                                               |
| <i>x</i> (1) | Second term           | 2                                                                               |
| ROC          | Region of convergence | $\left\{z: \left \sum_{n=-\infty}^{\infty} x(n) z^{-n}\right  < \infty\right\}$ |
| x(n)         | General term          | $x(n) = \begin{cases} ? & ; n \ge 0 \\ 0 & ; n < 0 \end{cases}$                 |

TABLE 1
PARAMETER TABLE



Fig. 1. Comparison of Theory and Simulated Values

From the figureFig. 1 we can see that the theoretical and simulated values overlap.

$$x(n) - x(n-1) = 2u(n) - 2u(n-1) - u(n-2)$$

$$X(z) - z^{-1}X(z) = \frac{2}{(1 - z^{-1})} - \frac{z^{-2}}{(1 - z^{-1})} - \frac{2z^{-1}}{(1 - z^{-1})}$$

$$(2)$$

$$X(z) = \frac{2 - 2z^{-1} - z^{-2}}{(1 - z^{-1})^2}, |z| > 1$$

$$(3)$$

Using partial fractions

$$X(z) = \frac{2z^{-1}}{(1-z^{-1})} - \frac{z^{-2}}{(1-z^{-1})^2} + 2 \tag{4}$$

Taking inverse Z-transform by result of equation (??) in equation (4):

$$x(n) = 2u(n) + (1 - n)u(n - 1)$$
 (5)