$11a_2 \ (K11a_2)$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -5.43741 \times 10^{171} u^{78} - 5.11274 \times 10^{171} u^{77} + \dots + 1.98334 \times 10^{172} b - 2.82335 \times 10^{173}, \\ &- 1.22224 \times 10^{171} u^{78} + 1.44341 \times 10^{172} u^{77} + \dots + 1.58667 \times 10^{173} a + 1.86038 \times 10^{174}, \\ &u^{79} + 2u^{78} + \dots + 224u + 64 \rangle \\ I_2^u &= \langle u^2 + b, \ u^4 - 2u^3 - u^2 + a + 3u + 1, \ u^5 - u^4 - 2u^3 + u^2 + u + 1 \rangle \\ I_1^v &= \langle a, \ -18v^5 - 63v^4 - 193v^3 - 63v^2 + 55b + 27v + 12, \ v^6 + 2v^5 + 7v^4 - 8v^3 + 7v^2 - 3v + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 90 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -5.44 \times 10^{171} u^{78} - 5.11 \times 10^{171} u^{77} + \dots + 1.98 \times 10^{172} b - 2.82 \times 10^{173}, \ -1.22 \times 10^{171} u^{78} + 1.44 \times 10^{172} u^{77} + \dots + 1.59 \times 10^{173} a + 1.86 \times 10^{174}, \ u^{79} + 2u^{78} + \dots + 224u + 64 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.00770315u^{78} - 0.0909705u^{77} + \cdots - 27.2773u - 11.7250 \\ 0.274154u^{78} + 0.257784u^{77} + \cdots + 36.6907u + 14.2353 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0515299u^{78} - 0.0134218u^{77} + \cdots - 14.2684u - 3.89351 \\ -0.204276u^{78} - 0.212923u^{77} + \cdots - 35.5855u - 11.5905 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0432551u^{78} - 0.0953382u^{77} + \cdots - 17.7659u - 9.19854 \\ 0.0600517u^{78} + 0.0392781u^{77} + \cdots + 5.74611u - 3.52633 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0400019u^{78} - 0.0348387u^{77} + \cdots + 8.25015u - 4.59071 \\ 0.0633049u^{78} + 0.0997776u^{77} + \cdots + 15.2619u + 1.08150 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.102479u^{78} - 0.00813482u^{77} + \cdots + 13.9221u - 4.29785 \\ 0.401016u^{78} + 0.368694u^{77} + \cdots + 54.5295u + 21.0651 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.103307u^{78} - 0.134616u^{77} + \cdots - 23.5120u - 5.67221 \\ -0.0633049u^{78} - 0.0997776u^{77} + \cdots - 15.2619u - 1.08150 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.140138u^{78} + 0.241968u^{77} + \cdots + 33.5462u + 15.5291 \\ 0.278386u^{78} + 0.429982u^{77} + \cdots + 64.6729u + 27.3218 \end{pmatrix}$$

$$\begin{pmatrix} 0.140138u^{78} + 0.241968u^{77} + \cdots + 33.5462u + 15.5291 \\ 0.278386u^{78} + 0.429982u^{77} + \cdots + 64.6729u + 27.3218 \end{pmatrix}$$

$$\begin{pmatrix} 0.140138u^{78} + 0.241968u^{77} + \cdots + 33.5462u + 15.5291 \\ 0.278386u^{78} + 0.429982u^{77} + \cdots + 64.6729u + 27.3218 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.0683647u^{78} + 0.114454u^{77} + \cdots 17.3139u 1.86024$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{79} + 5u^{78} + \dots + 12u + 1$
c_2	$u^{79} + 39u^{78} + \dots + 42u - 1$
c_3, c_7	$u^{79} + 2u^{78} + \dots + 224u + 64$
<i>C</i> ₅	$u^{79} - 5u^{78} + \dots + 14176u + 3137$
c_{6}, c_{9}	$u^{79} - 3u^{78} + \dots - 192u + 32$
c_8, c_{10}	$u^{79} - 8u^{78} + \dots - 5u + 1$
c_{11}	$u^{79} + 38u^{78} + \dots - 137u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{79} + 39y^{78} + \dots + 42y - 1$
c_2	$y^{79} + 7y^{78} + \dots + 2238y - 1$
c_3, c_7	$y^{79} - 40y^{78} + \dots + 91136y - 4096$
<i>C</i> ₅	$y^{79} - 25y^{78} + \dots + 636907866y - 9840769$
c_{6}, c_{9}	$y^{79} + 39y^{78} + \dots - 15872y - 1024$
c_{8}, c_{10}	$y^{79} - 38y^{78} + \dots - 137y - 1$
c_{11}	$y^{79} + 14y^{78} + \dots + 11687y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.853592 + 0.508882I		
a = -0.055782 + 1.086980I	2.66697 - 2.36282I	-4.65001 + 1.65972I
b = 0.385053 - 0.112918I		
u = -0.853592 - 0.508882I		
a = -0.055782 - 1.086980I	2.66697 + 2.36282I	-4.65001 - 1.65972I
b = 0.385053 + 0.112918I		
u = -0.440363 + 0.912546I		
a = 0.724174 + 0.449379I	-0.27585 + 2.15811I	-7.00000 - 4.29711I
b = -0.699520 - 0.426408I		
u = -0.440363 - 0.912546I		
a = 0.724174 - 0.449379I	-0.27585 - 2.15811I	-7.00000 + 4.29711I
b = -0.699520 + 0.426408I		
u = 0.320495 + 0.912395I		
a = 0.249632 - 0.939746I	-2.34704 + 4.31468I	-10.21762 - 4.57210I
b = 1.37567 + 0.42738I		
u = 0.320495 - 0.912395I		
a = 0.249632 + 0.939746I	-2.34704 - 4.31468I	-10.21762 + 4.57210I
b = 1.37567 - 0.42738I		
u = 0.567410 + 0.878865I		
a = 0.595821 - 0.532012I	3.87103 - 0.09665I	0
b = -0.237797 + 0.089887I		
u = 0.567410 - 0.878865I		
a = 0.595821 + 0.532012I	3.87103 + 0.09665I	0
b = -0.237797 - 0.089887I		
u = -0.890520 + 0.328701I		
a = 0.424564 + 0.261362I	-1.024930 + 0.378054I	-6.69847 + 0.35322I
b = 0.946519 + 0.465471I		
u = -0.890520 - 0.328701I		
a = 0.424564 - 0.261362I	-1.024930 - 0.378054I	-6.69847 - 0.35322I
b = 0.946519 - 0.465471I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.913716 + 0.570561I		
a = -0.226843 - 0.736350I	3.68282 - 2.87436I	0
b = 0.189637 + 0.143627I		
u = 0.913716 - 0.570561I		
a = -0.226843 + 0.736350I	3.68282 + 2.87436I	0
b = 0.189637 - 0.143627I		
u = -1.045420 + 0.303052I		
a = 2.58858 + 0.40116I	1.18747 + 2.48169I	0
b = 1.81492 - 0.66339I		
u = -1.045420 - 0.303052I		
a = 2.58858 - 0.40116I	1.18747 - 2.48169I	0
b = 1.81492 + 0.66339I		
u = -0.809973 + 0.391729I		
a = 0.515617 + 0.419812I	2.91495 + 6.10945I	-7.82272 - 8.97445I
b = -0.258885 + 0.774414I		
u = -0.809973 - 0.391729I		
a = 0.515617 - 0.419812I	2.91495 - 6.10945I	-7.82272 + 8.97445I
b = -0.258885 - 0.774414I		
u = 0.404716 + 1.023830I		
a = 0.584705 + 0.288653I	2.22736 + 5.03014I	0
b = -1.81023 + 0.83355I		
u = 0.404716 - 1.023830I		
a = 0.584705 - 0.288653I	2.22736 - 5.03014I	0
b = -1.81023 - 0.83355I		
u = 0.653865 + 0.591272I		
a = 0.546637 - 0.447428I	4.46313 - 1.71758I	-1.99294 + 3.91162I
b = -0.313726 - 0.436492I		
u = 0.653865 - 0.591272I		
a = 0.546637 + 0.447428I	4.46313 + 1.71758I	-1.99294 - 3.91162I
b = -0.313726 + 0.436492I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.543636 + 0.978739I		
a = 0.595952 + 0.594331I	1.84084 - 4.64712I	0
b = -0.143500 - 0.270257I		
u = -0.543636 - 0.978739I		
a = 0.595952 - 0.594331I	1.84084 + 4.64712I	0
b = -0.143500 + 0.270257I		
u = 1.136340 + 0.085967I		
a = 0.279099 - 0.088232I	-4.51217 + 2.77386I	0
b = 0.651828 - 0.756122I		
u = 1.136340 - 0.085967I		
a = 0.279099 + 0.088232I	-4.51217 - 2.77386I	0
b = 0.651828 + 0.756122I		
u = 1.067750 + 0.420888I		
a = -1.87786 + 0.34577I	-3.40761 - 2.20375I	0
b = -0.83129 - 1.54411I		
u = 1.067750 - 0.420888I		
a = -1.87786 - 0.34577I	-3.40761 + 2.20375I	0
b = -0.83129 + 1.54411I		
u = -0.125465 + 0.835214I		
a = -0.10435 - 1.59020I	-2.81805 - 2.16506I	-9.87540 + 5.61737I
b = 0.862564 + 0.893320I		
u = -0.125465 - 0.835214I		
a = -0.10435 + 1.59020I	-2.81805 + 2.16506I	-9.87540 - 5.61737I
b = 0.862564 - 0.893320I		
u = 1.074320 + 0.446434I		
a = 2.33317 - 0.78177I	1.85989 - 8.01595I	0
b = 1.90096 + 0.89090I		
u = 1.074320 - 0.446434I		
a = 2.33317 + 0.78177I	1.85989 + 8.01595I	0
b = 1.90096 - 0.89090I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.725121 + 0.392006I		
a = -1.90522 - 2.47065I	-0.64046 + 2.98061I	-8.98738 - 7.04047I
b = -1.210690 - 0.210584I		
u = -0.725121 - 0.392006I		
a = -1.90522 + 2.47065I	-0.64046 - 2.98061I	-8.98738 + 7.04047I
b = -1.210690 + 0.210584I		
u = 1.104970 + 0.414939I		
a = 0.283959 - 0.271043I	-3.45530 - 4.80167I	0
b = 1.069610 - 0.727261I		
u = 1.104970 - 0.414939I		
a = 0.283959 + 0.271043I	-3.45530 + 4.80167I	0
b = 1.069610 + 0.727261I		
u = -0.170048 + 1.184850I		
a = 0.627452 - 0.278541I	-1.69051 - 1.86503I	0
b = -1.99843 - 0.37107I		
u = -0.170048 - 1.184850I		
a = 0.627452 + 0.278541I	-1.69051 + 1.86503I	0
b = -1.99843 + 0.37107I		
u = -0.441408 + 0.647966I		
a = 0.543640 + 0.757595I	-0.501227 - 0.231040I	-6.51195 + 0.36059I
b = 1.160190 - 0.111260I		
u = -0.441408 - 0.647966I		
a = 0.543640 - 0.757595I	-0.501227 + 0.231040I	-6.51195 - 0.36059I
b = 1.160190 + 0.111260I		
u = -1.101140 + 0.524739I		
a = -1.31740 - 1.35522I	-2.56199 + 4.84000I	0
b = -1.76932 - 0.29287I		
u = -1.101140 - 0.524739I		
a = -1.31740 + 1.35522I	-2.56199 - 4.84000I	0
b = -1.76932 + 0.29287I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.743273 + 0.192362I		
a = 0.523153 - 0.357954I	2.43852 - 0.18703I	-11.37446 - 3.74898I
b = -0.778082 - 1.165960I		
u = -0.743273 - 0.192362I		
a = 0.523153 + 0.357954I	2.43852 + 0.18703I	-11.37446 + 3.74898I
b = -0.778082 + 1.165960I		
u = -1.214390 + 0.237157I		
a = -1.81606 + 0.08423I	-7.51790 - 0.99407I	0
b = -1.24455 + 1.45461I		
u = -1.214390 - 0.237157I		
a = -1.81606 - 0.08423I	-7.51790 + 0.99407I	0
b = -1.24455 - 1.45461I		
u = -1.148700 + 0.510777I		
a = -0.065466 + 0.259649I	-2.69356 + 2.85282I	0
b = 0.003288 - 0.501341I		
u = -1.148700 - 0.510777I		
a = -0.065466 - 0.259649I	-2.69356 - 2.85282I	0
b = 0.003288 + 0.501341I		
u = 1.208390 + 0.353192I		
a = -1.51238 + 1.05060I	-7.01716 - 1.79468I	0
b = -1.79615 + 0.61356I		
u = 1.208390 - 0.353192I		
a = -1.51238 - 1.05060I	-7.01716 + 1.79468I	0
b = -1.79615 - 0.61356I		
u = -0.484551 + 1.171980I		
a = 0.580134 - 0.265852I	-0.30685 - 9.73004I	0
b = -2.07365 - 0.94054I		
u = -0.484551 - 1.171980I		
a = 0.580134 + 0.265852I	-0.30685 + 9.73004I	0
b = -2.07365 + 0.94054I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.516322 + 0.514627I		
a = 0.550028 + 0.336051I	3.64506 + 4.10175I	-3.50068 + 0.16550I
b = -1.15619 + 1.03408I		
u = 0.516322 - 0.514627I		
a = 0.550028 - 0.336051I	3.64506 - 4.10175I	-3.50068 - 0.16550I
b = -1.15619 - 1.03408I		
u = 1.098620 + 0.654049I		
a = -0.259825 - 0.296004I	2.17633 - 5.60365I	0
b = -0.127365 + 0.305299I		
u = 1.098620 - 0.654049I		
a = -0.259825 + 0.296004I	2.17633 + 5.60365I	0
b = -0.127365 - 0.305299I		
u = -1.187720 + 0.505810I		
a = -1.63010 - 0.30290I	-5.97333 + 6.98094I	0
b = -0.89789 + 1.80532I		
u = -1.187720 - 0.505810I		
a = -1.63010 + 0.30290I	-5.97333 - 6.98094I	0
b = -0.89789 - 1.80532I		
u = 1.192530 + 0.590288I		
a = -1.17833 + 1.23110I	-5.05086 - 9.82294I	0
b = -1.94360 + 0.25893I		
u = 1.192530 - 0.590288I		
a = -1.17833 - 1.23110I	-5.05086 + 9.82294I	0
b = -1.94360 - 0.25893I		
u = 0.453727 + 0.479176I		
a = -1.88077 + 2.61755I	-1.61075 - 1.37550I	1.06828 + 3.88421I
b = 0.031595 - 0.872947I		
u = 0.453727 - 0.479176I		
a = -1.88077 - 2.61755I	-1.61075 + 1.37550I	1.06828 - 3.88421I
b = 0.031595 + 0.872947I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.160930 + 0.693518I		
a = -0.270422 + 0.204754I	-0.15331 + 10.78920I	0
b = -0.238385 - 0.350820I		
u = -1.160930 - 0.693518I		
a = -0.270422 - 0.204754I	-0.15331 - 10.78920I	0
b = -0.238385 + 0.350820I		
u = 1.218660 + 0.679170I		
a = 1.73476 - 0.94207I	-0.31155 - 11.22020I	0
b = 2.16330 + 1.28301I		
u = 1.218660 - 0.679170I		
a = 1.73476 + 0.94207I	-0.31155 + 11.22020I	0
b = 2.16330 - 1.28301I		
u = -1.387240 + 0.184587I		
a = 1.57267 + 0.32546I	-4.07832 - 1.19726I	0
b = 2.17449 - 0.52478I		
u = -1.387240 - 0.184587I		
a = 1.57267 - 0.32546I	-4.07832 + 1.19726I	0
b = 2.17449 + 0.52478I		
u = -0.195618 + 0.552066I		
a = 1.178600 + 0.372591I	-0.36323 + 1.66196I	-2.66065 - 3.49504I
b = -0.235368 - 0.239587I		
u = -0.195618 - 0.552066I		
a = 1.178600 - 0.372591I	-0.36323 - 1.66196I	-2.66065 + 3.49504I
b = -0.235368 + 0.239587I		
u = -1.32645 + 0.58089I		
a = 1.73200 + 0.69897I	-5.48277 + 8.06356I	0
b = 2.36240 - 1.10492I		
u = -1.32645 - 0.58089I		
a = 1.73200 - 0.69897I	-5.48277 - 8.06356I	0
b = 2.36240 + 1.10492I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.25392 + 0.74743I		
a = 1.60645 + 0.95537I	-2.7949 + 16.5881I	0
b = 2.22097 - 1.40824I		
u = -1.25392 - 0.74743I		
a = 1.60645 - 0.95537I	-2.7949 - 16.5881I	0
b = 2.22097 + 1.40824I		
u = 0.491993 + 0.193491I		
a = -4.49599 + 4.27455I	-1.20246 + 1.70054I	-18.7053 + 3.5277I
b = -0.856146 + 0.213716I		
u = 0.491993 - 0.193491I		
a = -4.49599 - 4.27455I	-1.20246 - 1.70054I	-18.7053 - 3.5277I
b = -0.856146 - 0.213716I		
u = 1.51845 + 0.02075I		
a = 1.58759 - 0.09676I	-8.17783 + 5.50134I	0
b = 2.61113 + 0.21884I		
u = 1.51845 - 0.02075I		
a = 1.58759 + 0.09676I	-8.17783 - 5.50134I	0
b = 2.61113 - 0.21884I		
u = 1.49958 + 0.33987I		
a = 1.39029 - 0.29970I	-7.50417 - 3.65998I	0
b = 2.31492 + 1.03303I		
u = 1.49958 - 0.33987I		
a = 1.39029 + 0.29970I	-7.50417 + 3.65998I	0
b = 2.31492 - 1.03303I		
u = -0.384773		
a = 0.996229	-0.986513	-9.91200
b = 0.763429		

II. $I_2^u = \langle u^2 + b, u^4 - 2u^3 - u^2 + a + 3u + 1, u^5 - u^4 - 2u^3 + u^2 + u + 1 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} + 2u^{3} + u^{2} - 3u - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4} + 2u^{3} + u^{2} - 3u \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{4} + 2u^{3} + u^{2} - 3u \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4} + 2u^{3} + u^{2} - 3u \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4} - u^{3} + 2u \\ -u^{4} - u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4} - u^{3} + 2u \\ -u^{4} - u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^4 + 7u^3 + 7u^2 13u 18$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^5 - u^4 + 2u^3 - u^2 + u - 1$
c_2	$u^5 + 3u^4 + 4u^3 + u^2 - u - 1$
<i>C</i> ₃	$u^5 + u^4 - 2u^3 - u^2 + u - 1$
C_4	$u^5 + u^4 + 2u^3 + u^2 + u + 1$
c_5, c_7	$u^5 - u^4 - 2u^3 + u^2 + u + 1$
c_{6}, c_{9}	u^5
<i>c</i> ₈	$(u-1)^5$
c_{10}, c_{11}	$(u+1)^5$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$
c_2	$y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1$
c_3, c_5, c_7	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$
c_{6}, c_{9}	y^5
c_8, c_{10}, c_{11}	$(y-1)^5$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.21774		
a = -1.67436	-4.04602	-8.82740
b = -1.48288		
u = -0.309916 + 0.549911I		
a = 0.29977 - 2.14694I	-1.97403 + 1.53058I	-13.5086 - 9.8710I
b = 0.206354 + 0.340852I		
u = -0.309916 - 0.549911I		
a = 0.29977 + 2.14694I	-1.97403 - 1.53058I	-13.5086 + 9.8710I
b = 0.206354 - 0.340852I		
u = 1.41878 + 0.21917I		
a = -1.46259 + 0.14641I	-7.51750 - 4.40083I	-11.07763 + 5.80708I
b = -1.96491 - 0.62190I		
u = 1.41878 - 0.21917I		
a = -1.46259 - 0.14641I	-7.51750 + 4.40083I	-11.07763 - 5.80708I
b = -1.96491 + 0.62190I		

$$III. \ I_1^v = \langle a, \ -18v^5 - 63v^4 + \cdots + 55b + 12, \ v^6 + 2v^5 + 7v^4 - 8v^3 + 7v^2 - 3v + 1
angle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.327273v^{5} + 1.14545v^{4} + \dots - 0.490909v - 0.218182 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.581818v^{5} - 2.03636v^{4} + \dots + 0.872727v - 0.945455 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.581818v^{5} + 2.03636v^{4} + \dots - 0.872727v + 1.94545 \\ 0.254545v^{5} + 0.890909v^{4} + \dots - 0.381818v + 2.16364 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.654545v^{5} + 2.29091v^{4} + \dots + 0.0181818v + 1.56364 \\ 0.254545v^{5} + 0.890909v^{4} + \dots - 0.381818v + 2.16364 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.327273v^{5} + 1.14545v^{4} + \dots - 0.490909v - 0.218182 \\ 0.327273v^{5} + 1.14545v^{4} + \dots - 0.490909v - 0.218182 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.581818v^{5} - 2.03636v^{4} + \dots + 0.872727v - 1.94545 \\ -0.254545v^{5} - 0.890909v^{4} + \dots + 0.381818v - 2.16364 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.74545v^{5} - 4.10909v^{4} + \dots + 0.38182v + 1.16364 \\ -1.25455v^{5} - 2.89091v^{4} + \dots - 6.61818v + 0.836364 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.74545v^{5} - 4.10909v^{4} + \dots - 5.38182v + 1.16364 \\ -1.25455v^{5} - 2.89091v^{4} + \dots - 6.61818v + 0.836364 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{153}{55}v^5 - \frac{453}{55}v^4 - \frac{1393}{55}v^3 + \frac{262}{55}v^2 + \frac{37}{55}v - \frac{448}{55}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2+u+1)^3$
c_3, c_7	u^6
<i>C</i> ₄	$(u^2 - u + 1)^3$
<i>c</i> ₆	$(u^3 - u^2 + 2u - 1)^2$
c ₈	$(u^3 + u^2 - 1)^2$
c_9, c_{11}	$(u^3 + u^2 + 2u + 1)^2$
c_{10}	$(u^3 - u^2 + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$(y^2 + y + 1)^3$
c_3, c_7	y^6
c_6, c_9, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$
c_8,c_{10}	$(y^3 - y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.111778 + 0.558770I		
a = 0	3.02413 - 4.85801I	-7.63258 + 5.38377I
b = -0.877439 - 0.744862I		
v = 0.111778 - 0.558770I		
a = 0	3.02413 + 4.85801I	-7.63258 - 5.38377I
b = -0.877439 + 0.744862I		
v = 0.428020 + 0.376187I		
a = 0	3.02413 + 0.79824I	-4.05323 - 2.24743I
b = -0.877439 + 0.744862I		
v = 0.428020 - 0.376187I		
a = 0	3.02413 - 0.79824I	-4.05323 + 2.24743I
b = -0.877439 - 0.744862I		
v = -1.53980 + 2.66701I		
a = 0	-1.11345 + 2.02988I	-15.8142 - 11.5861I
b = 0.754878		
v = -1.53980 - 2.66701I		
a = 0	-1.11345 - 2.02988I	-15.8142 + 11.5861I
b = 0.754878		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^{2} + u + 1)^{3})(u^{5} - u^{4} + \dots + u - 1)(u^{79} + 5u^{78} + \dots + 12u + 1)$
c_2	$((u^{2}+u+1)^{3})(u^{5}+3u^{4}+\cdots-u-1)(u^{79}+39u^{78}+\cdots+42u-1)$
<i>C</i> 3	$u^{6}(u^{5} + u^{4} + \dots + u - 1)(u^{79} + 2u^{78} + \dots + 224u + 64)$
C4	$((u^{2}-u+1)^{3})(u^{5}+u^{4}+\cdots+u+1)(u^{79}+5u^{78}+\cdots+12u+1)$
<i>C</i> 5	$(u^{2} + u + 1)^{3}(u^{5} - u^{4} - 2u^{3} + u^{2} + u + 1)$ $\cdot (u^{79} - 5u^{78} + \dots + 14176u + 3137)$
<i>C</i> ₆	$u^{5}(u^{3} - u^{2} + 2u - 1)^{2}(u^{79} - 3u^{78} + \dots - 192u + 32)$
<i>C</i> ₇	$u^{6}(u^{5} - u^{4} + \dots + u + 1)(u^{79} + 2u^{78} + \dots + 224u + 64)$
c_8	$((u-1)^5)(u^3+u^2-1)^2(u^{79}-8u^{78}+\cdots-5u+1)$
<i>c</i> ₉	$u^{5}(u^{3} + u^{2} + 2u + 1)^{2}(u^{79} - 3u^{78} + \dots - 192u + 32)$
c_{10}	$((u+1)^5)(u^3-u^2+1)^2(u^{79}-8u^{78}+\cdots-5u+1)$
c_{11}	$((u+1)^5)(u^3+u^2+2u+1)^2(u^{79}+38u^{78}+\cdots-137u+1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2 + y + 1)^3)(y^5 + 3y^4 + \dots - y - 1)(y^{79} + 39y^{78} + \dots + 42y - 1)$
c_2	$(y^{2} + y + 1)^{3}(y^{5} - y^{4} + 8y^{3} - 3y^{2} + 3y - 1)$ $\cdot (y^{79} + 7y^{78} + \dots + 2238y - 1)$
c_3, c_7	$y^{6}(y^{5} - 5y^{4} + \dots - y - 1)(y^{79} - 40y^{78} + \dots + 91136y - 4096)$
<i>C</i> 5	$(y^{2} + y + 1)^{3}(y^{5} - 5y^{4} + 8y^{3} - 3y^{2} - y - 1)$ $\cdot (y^{79} - 25y^{78} + \dots + 636907866y - 9840769)$
c_6, c_9	$y^{5}(y^{3} + 3y^{2} + 2y - 1)^{2}(y^{79} + 39y^{78} + \dots - 15872y - 1024)$
c_8, c_{10}	$((y-1)^5)(y^3-y^2+2y-1)^2(y^{79}-38y^{78}+\cdots-137y-1)$
c_{11}	$((y-1)^5)(y^3+3y^2+2y-1)^2(y^{79}+14y^{78}+\cdots+11687y-1)$