Vivek L. Kale

phone: +01 1-217-369-7996 . e-mail: vivek.lkale@gmail.com . web: http://vivek112.googlepages.com U.S. Citizen

Education

Bachelor of Science, Computer Science: University of Illinois at Urbana-Champaign, 2007

Doctor of Philosophy, Computer Science: University of Illinois at Urbana-Champaign, 2015 *Advisor*: William D. Gropp

Honors

- SC 2017 Early Career Program Invitee and Participant
- 2015 Heidelberg Laureate Forum Invitee and Participant.
- Fellow at Lawrence Livermore National Laboratory through Lawrence Scholar Program.

Technical Skills

Languages: C, C++, python, Fortran, bash, csh, CUDA **Tools**: LaTeX, gnuplot, emacs, autoconf, cmake, svn

Libraries for Parallelism: POSIX threads (Pthreads), MPI (mpich3), OpenMP (gomp, llvm),

OpenACC (pgi)

Performance Profiling Tools and Libraries: hpcToolkit, PAPI, nvprof, gprof

Experience

Charmworks, Inc. Software Developer Jun '18 - present

- Integrating a shared memory library for sophisticated loop scheduling strategies, with some strategies being based on strategies I've developed for my dissertation, into the current version of Charm++.
- Comparing performance of a loop scheduling strategy available in the integrated shared memory library with the performance of the corresponding loop scheduling strategy available in LLVM's OpenMP library.
- Providing feedback for tutorials on Charm++ to improve them.

University of Southern California Computer Scientist Dec. '16 - Jun '18

- Working with postdoc from LLNL on a proposal to study techniques that combine loop scheduling and load balancing to improve performance of scientific applications.
- Working with OpenMP Language Committee to support https://sites.google.com/site/userdefschedopenmpuser-defined schedules in OpenMP.
- Translating an x-ray tomography code written in Matlab code to C code and then parallelizing it to run on a supercomputer having nodes with GPGPUs.
- Working on modifications to LLVM compiler to support new OpenMP loop schedules.
- Worked on ensuring external network infrastructure to support transfer of application code's input data files were adequate for an application code's efficient execution using the Globus Toolkit.
- Working in team to manage computational performance aspects of running an application program involving Fast Fourier Transformation and image reconstruction algorithms.

Charmworks, Inc. Developer Jan. '16 - Nov. '16

- Implemented mixed static/dynamic loop scheduling strategies within Charm++'s thread scheduling library.
- Helped to improve portability of Charm++ to a variety of platforms.
- Assisted with business aspects of a high-tech startup.

University of Illinois Postdoctoral Associate Jul. '15 – Dec. '15

- Developed library that allows application programmers to use strategies from dissertation.
- Adapted a plasma physics application code to work on a GPGPU processor and Intel Xeon Phi.
- Incorporated over-decomposition and locality-aware scheduling into strategies from dissertation.

Lawrence Livermore Nat'l Lab Lawrence Scholar Feb. '12 – Jun. '15

- Measured MPI communication delays for micro-benchmarks codes run on supercomputers and worked to find tools to measure dequeue overheads of OpenMP loop schedulers.
- Created a software system for automated performance optimization and application programmer usability of low-overhead hybrid scheduling strategies.
- Developed a ROSE-based custom compiler for automatically transforming MPI+OpenMP applications
 to use low-overhead scheduling techniques and runtime.
- Assessed further opportunities for performance improvement of low-overhead schedulers, including improvement of spatial locality of low-overhead schedulers.

Lawrence Livermore and Berkeley Nat'l Lab Scholar Jun. '10 - Sep. '10 / Jun. '11 - Sep. '11

- Experimented with different OpenMP parameters of implemented MPI+OpenMP application code to understand performance optimizations on LLNL supercomputers.
- Analyzed results for the performance tests developed on NERSC machines, and compared with collectives in reference to MPI (mpich2) runtime system.
- Modified OpenMP gomp runtime system in order to integrate low-overhead schedulers within it.

Goldman-Sachs Summer Analyst Jun. '09 – Sep. '09

- Wrote code for testing trading system infrastructure functions under extreme market conditions.
- Analyzed performance bottlenecks of system infrastructure functions.

Research Overview

My work focuses on improving performance of scientific codes run on supercomputers with multicore nodes, in particular on developing strategies to efficiently schedule iterations of a computational loop of an application code on cores of a multi-core node, which was the focus of my PhD work.

Prior to my PhD work, I was involved in the effort on Our Parallel Patterns developed by University of California at Berkeley at University of Illinois at Urbana-Champaign, resulting in publications 13-14 and, later, 15-16. I also was involved in work on the MPI shared memory extensions model for MPI-3, also known as the MPI+MPI model, resulting in publication 11. Additionally, I worked on performance optimizations a code involving a Lattice-Boltzmann computation that simulated blood flow of a human's heart run on a cluster of multi-core nodes, resulting in publication 12. My dissertation work was studying and developing lightweight loop scheduling strategies to improve the scalability of bulk-synchronous MPI+OpenMP application codes run on supercomputers with multi-core nodes. The work resulted in publications 1-10 and 16. The scheduling strategies developed can be beneficial to mitigate the amplification problem, a problem shown to cause serious performance bottlenecks for bulk-synchronous and loosely synchronous MPI applications running on next-generation supercomputers having on the order of 1,000,000 nodes, as discussed in publications 7 and 10. The strategies have been applied to Communication-Avoiding dense matrix factorization codes, studied in publications 5 and 8, regular mesh computations, studied in publication 10, and

n-body simulations, studied in publications 4 and 6. Additionally, a general development methodology for the strategies was designed for use in a variety of real-world numerical simulations. The effort to do so was a study of composing different types of low-overhead loop scheduling strategies to form new loop scheduling strategies and resulted in publication 4.

My current work involves performance optimizations that include techniques of auto-tuning and loop scheduling of ptychography solvers intended to run on supercomputers having nodes with GPUs and/or MICs. I'm working towards a publication that describes performance optimizations done to the application code. I'm involved in the development of user-defined loop schedules for OpenMP, resulting in publication 2. Additionally, I've done research on a technique that combines OpenMP-style loop scheduling and Charm++ load balancing, resulting in publication 1.

List of Publications

- 1. Vivek Kale and Martin Kong. Enhancing Support in OpenMP to Improve Data Locality in Application Programs Using Task Scheduling. OpenMPCon 2018. September 2018. Barcelona, Spain.
- 2. Vivek Kale, Harshitha Menon and Karthik Senthil. Adaptive Loop Scheduling with Charm++ to Improve Performance of Scientific Applications. SC '17. November 2017. Denver, USA. (Selected as a Candidate for Best Poster)
- 3. Vivek Kale and William D. Gropp. *A User-defined Schedule for OpenMP*. Extended Abstract. OpenMPCon 2017. September 2017. New York, USA.
- 4. Vivek Kale, Harshitha Menon and Karthik Senthil. Adaptive Loop Scheduling with Charm++ to Improve Performance of Scientific Applications. Technical Report. University of Southern California. May 2017.
- 5. Vivek Kale and William D. Gropp. Composing Low-Overhead Scheduling Strategies for Improving Performance of Scientific Applications. IWOMP 2015. October 2015. Aachen, Germany.
- 6. Vivek Kale, Simplice Donfack, Laura Grigori and William D. Gropp. *Balancing the Trade-off Between Load Balancing and Locality to Improve Performance of Scientific Applications*. SC '14. November 2014. New Orleans, USA.
- 7. Vivek Kale, Amanda Randles and William D. Gropp. *Locality-Optimized Mixed Static/Dynamic Scheduling for Load Balancing on SMPs*. EuroMPI/ASIA 2014. September 2014. Kyoto, Japan.
- 8. Vivek Kale, Todd Gamblin, Torsten Hoefler, Bronis R. de Supinski and William D. Gropp. Slack-conscious Lightweight Loop Scheduling for Scaling Past the Noise Amplification Problem. SC '12. November 2012. Salt Lake City, USA.
- Simplice Donfack, Vivek Kale, Laura Grigori and William D. Gropp. Hybrid Static/Dynamic Scheduling for Already Optimized Dense Matrix Factorizations. IPDPS 2012. May 2012. Shanghai, China.
- Vivek Kale, Abhinav Bhatele and William D. Gropp. Weighted Locality-sensitive Scheduling for Noise Mitigation on Multicore Clusters. HiPC 2011. December 2011. Bangalore, India.
- 11. Vivek Kale and William D. Gropp. Load Balancing for Regular Meshes on a Cluster of SMPs with MPI. EuroMPI 2010. September 2010. Stuttgart, Germany. (Selected as a Best Paper)
- 12. Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji, Brian Barrett, Ron Brightwell, William Gropp, Vivek Kale and Rajeev Thakur. *MPI+MPI: A New Hybrid Approach to Parallel Programming with MPI Plus Shared Memory*. EuroMPI 2012. September 2012. Madrid, Spain.

- 13. Amanda Randles, Vivek Kale, Jeff Hammond, William D. Gropp and Efthimios Kaxiras. *Performance Analysis of the Lattice Boltzmann Model Beyond Navier-Stokes*. IPDPS 2013. May 2013. Boston, USA.
- 14. Vivek Kale. Towards Using and Improving the NAS Parallel Benchmarks: A Parallel Patterns Approach. ParaPLoP 2010. April 2010. Carefree, USA.
- 15. Vivek Kale and Edgar Solomonik. *Parallel Sorting Pattern*. ParaPLoP 2010. April 2010. Carefree, USA.
- 16. Vivek Kale. The Correlation between Parallel Patterns and the NAS Parallel Benchmarks. ICSE 2010. May 2010. Johannesberg, South Africa.
- 17. Vivek Kale. *A Pattern Language for Dynamic Scheduling*. ParaPLoP 2011. May 2011. Carefree, USA.

Membership of Organizations

- Society for Industrial and Applied Mathematics
- Association for Computing Machinery
- Institute of Electrical and Electronics Engineers
- Association for Computing Machinery's SIGHPC

Teaching Experience

Services

- Reviewer for 2017 Elsevier Parallel Computing Journal
- Member of Organization Committee for SC 2018's Early Career Program
- Member of Selection Committee for SC 2018's Experiencing HPC for Undergraduates Program