Causal Inference

a summary

Contents

1	General	3	3	Longitudinal Data	5
2	Models	4			

1 General

Causal Roadmap (Petersen and van der Laan, 2014) systematic approach linking causality to statistical procedures

- 1. Specifying Knowledge. structural causal model (unifying counterfactual language, structural equations, & causal graphs): a set of possible data-generating processes, expresses background knowledge and its limits
- 2. Linking Data. specifying measured variables and sampling specifics (latter can be incorporated into the model)
- 3. Specifying Target. define hypothetical experiment: decide
 - 1. variables to intervene on: one (point treatment), multiple (longitudinal, censoring/missing, (in)direct effects)
 - 2. intervention scheme: static, dynamic, stochastic
 - 3. counterfactual summary of interest: absolute or relative, marginal structural models, interaction, effect modification
 - 4. population of interest: whole, subset, different population
- **4. Assessing Identifiability.** are knowledge and data sufficient to derive estimand and if not, what else is needed?
- **5. Select Estimand.** current best answer: knowledge-based assumptions + which minimal convenience-based asspumptions (transparency) gets as close as possible
- 6. Estimate. choose estimator by statistical properties, nothing causal here
- **7. Interpret.** hierarchy: statistical, counterfactual, feasible intervention, randomized trial

Notation chapter 1.1

average causal effect $\,$ chapter 1.2 and 1.3 and 1.4 and 1.5

randomized experiments (target trial) 2.1 and 2.2; 3.6

Standardization plug-in (or parametric) g-formula

$$\mathrm{E}\left[Y|A=a\right] = \int \mathrm{E}\left[Y|L=l, A=a\right] dF_L\left[l\right]$$

weighted average of stratum-specific risks; unknowns can be estimated non-parametrically or modeled

no need to estimate $f_L[l]$ as empirical distribution can be used: estimate outcome model \rightarrow predict counterfactuals \rightarrow average the results (\rightarrow CI by bootstrapping)

for discrete $L \to [Y|A=a] = \sum_l \to [Y|L=l, A=a] \Pr[L=l]$

 $\ \ \, \textbf{IP Weighting} \quad \text{adjust for (surrogate) confounders } L \\$

$$\mathrm{E}\left[Y|A=a\right]=\mathrm{E}\left[\frac{I(A=a)Y}{f\left[A|L\right]}\right];W^{A}=\frac{1}{f\left[A|L\right]};SW^{A}=\frac{f(A)}{f\left[A|L\right]}$$

unknowns can be estimated non-parametrically or modeled **pseudo-population:** everyone is treated & untreated $(L \not\rightarrow A)$ **FRCISTG** (fully randomized causally interpreted structured graph): probability tree for $L \rightarrow A \rightarrow Y$, can be used to calculate/visualize simulation of values for A

for discrete A, L $f[a|l] = \Pr[A = a, L = l]$ estimators: Horvitz-Thompson; Hajek (modified version) stabilized weights SW^A should have an average of 1 (check!) \rightarrow pseudo-population same size \rightarrow CI width \downarrow

Standardization and IP Weighting are equivalent,

 ${\it but}$ if modeled, different "no misspecification" assumptions: standardization: outcome model

IP weighting: treatment model

doubly robust estimators: reduce model misspecification bias, consistent if either model is correct; e.g.:

nsistent if either model is correct; e.g.:

1. fit outcome regression with variable $R = \begin{cases} +W^A & \text{if } A=1 \\ -W^A & \text{if } A=0 \end{cases}$

 ${\bf identifiability} \ {\bf conditions} \quad {\bf most} \ {\bf of} \ 3$

positivity: p. 155, p. 162 additional conditions: chapter 13.5 exchangeability: p 172f

effect modification chapter 4

interaction chapter 5

causal diagrams chapter 6, include swigs from 7.5 and that one technical point

confounding chapter 7

selection bias chapter 8

measurement bias chapter 9

random variabilty chapter 10

2 Models

Modeling data are a sample from the target population

e. g. E[Y|A = a]estimand: quantity of interest, e. g. $\widehat{E}[Y|A=a]$ estimator: function to use, estimate: apply function to data,

model: a priori restriction of joint distribution/dose-response curve; assumption: no model misspecification (usually wrong) **non-parametric estimator:** no restriction (saturated model) = Fisher consistent estimator (entire population data \rightarrow true value) parsimonious model: few parameters estimate many quantities bias-variance trade-off:

wiggliness $\uparrow \rightarrow$ misspecification bias \downarrow , CI width \uparrow

Marginal Structural Models association is causation in the IP weighted pseudo-population

associational model $E[Y|A] = \text{causal model } E[Y^a]$ step 1: estimate/model f[A|L] (and f[A]) \rightarrow get $(S)W^A$ step~2: estimate regression parameters for pseudo-population effect modification variables V can be included (e.g. $\beta_0 + \beta_1 a + \beta_2 V a + \beta_3 V$; technically not marginal anymore), $SW^A(V) = \frac{f[A|V]}{f[A|L]}$ more efficient than SW^A

Censoring measuring joint effect of A and C

$$E[Y^{a,c=0}]$$
 is of interest

standardization $E[Y|A=a] = \int E[Y|L=l, A=a, C=0] dF_L[l]$

IP weights
$$W^{A,C} = W^A \times W^C$$
 (uses n) or $SW^{A,C} = SW^A \times SW^C$ (uses $n^{c=0}$)

g-estimation can only adjust for confounding, not selection bias → use IP weights

G-Methods generalized treatment contrasts: adjust for (surrogate) confounders L

- standardization
- IP weighting
- g-estimation: not needed unless longitudinal

G-Estimation (additive) structural nested models

logit Pr
$$\left[A = 1 | H(\psi^{\dagger}), L\right] = \alpha_0 + \alpha_1 H(\psi^{\dagger}) + \alpha_2 L$$

 $H(\psi^{\dagger}) = Y - \psi_{\dagger} A$

find ψ^{\dagger} which renders $\alpha_1 = 0$; 95 %-CI: all ψ^{\dagger} for which p > 0.05closed-form solution for linear models

derivation: $H(\psi^{\dagger}) = Y^{a=0}$

logit Pr
$$[A = 1|Y^{a=0}, L] = \alpha_0 + \alpha_1 Y^{a=0} + \alpha_2 L$$

 $Y^{a=0}$ unknown, but because of exchangeability α_1 should be zero

$$Y^{a=0} = Y^a - \psi_1 a$$

equivalent to $Y^{a=0} = Y^{a=1} - \psi_1$, but using no counterfactuals structural nested mean model

additive:
$$E[Y^a - Y^{a=0}|A = a, L] = \beta_1 a (+\beta_2 a L)$$

$$\begin{array}{ll} \text{multiplicative:} & \log \left(\frac{\operatorname{E}\left[Y^a \middle| A=a,L\right]}{\operatorname{E}\left[Y^{a=0}\middle| A=a,L\right]} \right) & = \beta_1 a \left(+\beta_2 aL \right) \\ \text{multiplicative is preferred if } Y \text{ always positive, but does not} \end{array}$$

extend to longitudinal case

semi-parametric: agnostic about β_0 and effect of $L \to \text{robust} \uparrow$ no time-varying: no nesting; model equals marginal structural models with missing β_0,β_3 (unspecified "no treatment") sensitivity analysis: unmeasured confounding $(\alpha_1 \neq 0)$ can be examined: do procedure for different values of $\alpha_1 \to \text{plot } \alpha_1 \text{ vs.}$ $\psi^{\dagger} \rightarrow \text{how sensitive is estimate to unmeasured confounding?}$ **effect modification:** add V in both g-estimation equations doubly robust estimators exist

Outcome regression chapter 15

instrumental variable estimation chapter 16

causal survival analysis chapter 17

Variable Selection can induce bias if L includes:

(decendant of) collider: selection bias under the null noncollider effect of A: selection bias under the alternative mediator: overadiustment for mediators temporal ordering is not enough to conclude anything

bias amplification: e.g. by adjusting for an instrument Z (can also reduce bias)

Machine Learning L is high-dimensional

use lasso or ML for IP weighting/standardization

but: ML does not guarantee elimination of confounding and has largely unknown statistical properties

 \rightarrow doubly robust estimator: consistent if bias $<\frac{1}{\sqrt{n}}$ sample splitting: train estimators on training sample, use resulting estimators for doubly robust method on estimation sample (CIs on estimation sample are valid, but n halved) cross-fitting: do again the other way round, average the two estimates, get CI via bootstrapping

problems: unclear choice of algorithm, is bias small enough?

3 Longitudinal Data

Time-Varying Treatments compare 2 treatments

treatment history up to k: $\bar{A}_k = (A_0, A_1, ..., A_k)$ shorthand: always (payer) treated $\bar{A} = \bar{1}$ ($\bar{0}$)

shorthand: always (never) treated $\bar{A} = \bar{1}$ ($\bar{0}$) static strategy: $g = [g_0(\bar{a}_{-1}), ..., g_K(\bar{a}_{K-1})]$

dynamic strategy: $g = \left[g_0(\bar{l}_0), ..., g_K(\bar{l}_K)\right]$ stochastic strategy: non-deterministic g

optimal strategy is where $\mathrm{E}\left[Y^g\right]$ is maximized (if high is good)

 ${\bf identifiability} \quad {\rm middle\ chapter\ 19}$

treatment-confounder feedback end chapter 19 and chapter

g-formula chapter 21.1

IP weighting chapter 21.2

 ${\bf doubly\ robust\ estimators}\quad {\bf chapter\ 21.3}$

g-estimation chapter 21.4

censoring chapter 21.5

target trial chapter 22 (does that even really fit in here, maybe push to 3rd paragraph in without models)

References

If no citation is given, the source is (Hernán and Robins, 2023)

Hernán, M. A. and Robins, J. M. (2023). Causal inference: what if. Boca Raton: Chapman & Hall/CRC.

Petersen, M. L. and van der Laan, M. J. (2014). Causal models and learning from data: integrating causal modeling and statistical estimation. *Epidemiology (Cambridge, Mass.)*, 25(3):418–426.

