Estipulando valores de funções

$$f(x) = \frac{x^2 - 1}{x - 1} = \frac{\left(x - 1\right)\left(x + 1\right)}{x - 1} = x + 1 = g(x) \quad \boxed{x \neq 1}$$

TABELA 2.2 Quanto mais x se aproxima de 1, mais perto $f(x) = (x^2 - 1)/(x - 1)$ parece se aproximar de 2

Valores de x abaixo e acima de 1	$f(x) = \frac{x^2 - 1}{x - 1} = x + 1, \qquad x \neq$	1
0,9	1,9	
1,1	2,1	
0,99	1,99	
1,01	2,01	
0,999	1,999	
1,001	2,001	
0,999999	1,999999	
1,000001	2,000001	

Se f(x) está arbitrariamente próxima a L (tão próxima de L quanto queiramos) para todo x próximo o suficiente de x_0 , dizemos que f se aproxima do **limite** L quando x se aproxima de x_0 , e escrevemos

$$\lim_{x \to x_0} f(x) = L,$$

que lemos como "o limite de f(x) quando x tende a x_0 é L".

$$E_x$$
: $f(6) \in \mathbb{R} \neq \lim_{x \to 6} f(x)$

A importância da definição de limite

$$y = x^{2} + 3$$

$$y = x^{2} + 3$$

$$y - 3 = x^{2}$$

$$x = \sqrt{y - 3}$$

$$x = \sqrt{y - 3}$$

$$\sqrt{y - 3}$$

Ex:

$$x^{2} + y^{2} = 1$$

$$y^{2} = 1 - x^{2}$$

$$y = +\sqrt{1 - x^{2}} \rightarrow x$$

$$dom(1/x) = \left\{x \in |R|, 1 - x^{2} \approx 0\right\}$$

$$-x^{2} \gg -1$$

$$x^{2} \leqslant 1 \rightarrow x \leqslant 1$$

$$x^{2} \leqslant 1 \rightarrow x \leqslant 1$$

$$x^{2} - 1 \leqslant 0$$

$$x \gg -1$$

$$\chi^2 - 1 = 0$$

x=1 e x--1

entre
$$x=1$$
 e $x=-1$

$$, \quad \chi^2 - 1 \leq 0$$

$$-1 \le x \le 1$$
 sotis force $x^2 - 1 \le 0$

$$x^{-1} \leq c$$

$$\exists x:$$
 $f(x) = \begin{cases} \chi^2, & x \in |R| \\ 4, & x = 1 \end{cases}$

$$\lim_{x \to 1} f(x) = 1$$

Se f é a **função identidade** f(x) = x, então, para qualquer valor de x_0 (Figura 2.9a),

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x = x_0.$$

(a) Função identidade

Ex: $\lim_{X \to 1/2} X = \sqrt{2}$

Lim X = TT X + ort Se f é a **função constante** f(x) = k (função com o valor k constante), então, para qualquer valor de x_0 (Figura 2.9b),

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} k = k.$$

$$f(\pi) = K$$

$$f(2) = K$$

$$f(0) = K$$

(b) Função constante

$$\lim_{X \to X_{\circ}} f(x) = K$$

Jim X = CX+C

furções constante.

V constante.

lim K = K
X > C

EXEMPLO

(a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3)$$

(a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3)$$
 (b) $\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5}$ (c) $\lim_{x \to -2} \sqrt{4x^2 - 3}$

(c)
$$\lim_{x \to -2} \sqrt{4x^2 - 3}$$

TEOREMA — Leis do limite Se L, M, c e k são números reais e

$$\lim_{x \to c} f(x) = L \qquad \text{e} \qquad \lim_{x \to c} g(x) = M, \quad \text{então}$$

1. Regra da soma:
$$\lim_{x \to c} (f(x) + g(x)) = L + M$$

2. Regra da diferença:
$$\lim_{x \to c} (f(x) - g(x)) = L - M$$

3. Regra da multiplicação
$$\lim_{x \to c} (k \cdot f(x)) = k \cdot L$$
por constante:

4. Regra do produto:
$$\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$$

5. Regra do quociente:
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$$

6. Regra da potenciação:
$$\lim_{x\to c} [f(x)]^n = L^n$$
, n é um número inteiro positivo

7. Regra da raiz:
$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{1/n}, n \text{ \'e um n\'umero}$$
 inteiro positivo

(Se *n* for um número par, suporemos que $\lim_{x\to c} f(x) = L > 0$.)