СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1 ОБЗОР ИСТОЧНИКОВ	6
1.1 Теоретические сведения	6
2 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ	8
2.1 Общая структура устройства	8
2.2 Описание модулей проекта	8
3 РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ	9
3.1 Блок USB-MIDI	9
3.2 Блок управления приводами	9
3.3 Блок музыкального ввода	
3.3 Блок интерфейсов питания и коммуникаций	9
4 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ	10
4.1 Блок USB-MIDI	10
4.2 Блок управления приводами	14
4.3 Блок музыкального ввода	
4.4 Блок интерфейсов питания и коммуникаций	
5 РАЗРАБОТКА ПЕЧАТНОЙ ПЛАТЫ	17
5.1 Блок управления приводами и блок USB-MIDI	17
5.1 Блок музыкального ввода	17
5.1 Блок интерфейсов питания и коммуникаций	19
6 ОПИСАНИЕ РАБОТЫ УСТРОЙСТВА	21
ЗАКЛЮЧЕНИЕ	22
СПИСОК ЛИТЕРАТУРЫ	23
ПРИЛОЖЕНИЕ А	24
ПРИЛОЖЕНИЕ Б	25
ПРИЛОЖЕНИЕ В	26
ПРИЛОЖЕНИЕ Г	27

ВВЕДЕНИЕ

Floppy привод — или дисковод - устройство компьютера, позволяющее осуществить чтение и запись информации на накопители на гибких магнитных дисках — дискетах (или FDD). Данный способ хранения информации был массово распространен с начала 1980-х и до конца 1990-х годов, а в некоторых областях используется и до сих пор. Но в массовом сегменте на смену дискетам пришли сначала более емкие CD-R, CD-RW, DVD-R, DVD-RW диски, а затем и достаточно дешевые (при расчете на единицу объема) и надежные флэш-накопители. К достоинствам последних, по сравнению с дискетами, относится и их полная бесшумность и отсутствие движущихся частей.

С выходом дискет из массового использования перестали быть необходимы и приводы для их чтения. К тому же, данные приводы имеют 2 интересных свойства, связанных с их работой. Для правильного считывания данных с дискеты необходимо точное позиционирование по дорожкам оной. Для этого используются шаговые двигатели. Для примера, в самых распространенных дисководах на 3.5 дюйма, данные двигатели рассчитаны на 80 дискретных шагов. При этом, во время передвижения каретки, двигатели издают специфические звуки.

Следующее свойство дисководов — довольно простой интерфейс управления механической частью привода. Контакты, необходимые для контроля шагового двигателя, выедены на стандартный разъем подключения. При обычном использовании задумывалось, что шаговым двигателем будет управлять непосредственно компьютер, а не встроенный в дисковод контроллер.

Используя эти 2 особенности, некоторые пользователи исполняют музыкальные мелодии, благодаря лишь шаговыми двигателями приводов.

Целью данного курсового проекта и стоит реализовать USB-MIDI контроллер floppy дисководов для воспроизведения мелодий.

1 ОБЗОР ИСТОЧНИКОВ

1.1 Теоретические сведения

устройства подключения разрабатываемого К воспроизведения был выбран наиболее распространенный на сегодняшний день интерфейс внешней периферии – USB (англ. Universal Serial Bus). При устройство распознается как обычное MIDI аудиоустройство, реализующее все характерные для него по стандарту USB свойства, характерные для устройств данного класса. Это, в свою очередь, означает, устройства что ДЛЯ использования данного совместно специализированным ПО никаких дополнительных действий со стороны пользователя не требуется. В свою очередь, необходимо также описать, что представляет из себя формат MIDI.

МІDІ (англ. Musical Instrument Digital Interface — цифровой интерфейс музыкальных инструментов) — стандарт цифровой звукозаписи на формат обмена данными между электронными музыкальными инструментами. Интерфейс позволяет единообразно кодировать в цифровой форме такие данные как нажатие клавиш, настройку громкости и других акустических параметров, выбор тембра, темпа, тональности и др., с точной привязкой во времени. В системе кодировок присутствует множество свободных команд, которые производители, программисты и пользователи могут использовать по своему усмотрению. Поэтому интерфейс МІDІ позволяет, помимо исполнения музыки, синхронизировать управление другим оборудованием, например, осветительным, пиротехническим и т. п.

При обычном использовании, для подключения дисковода гибких дисков используется специальный 34-пиновый разъем. Все нечетные контакт этого разъема соединены с землей. Назначение четных контактов показано на рисунке 1.1 [1]. В рамках разработки контроллера для нас будут интересны только контакты, необходимые для управления шаговым двигателем привода. Их функции следующие: контакт 10 — отвечает за выбор FDD (т.к при обычном использовании к одному разъему 34 ріп могут подключаться 2 диска одновременно), контакт 18 — выбор направления движения шагового двигателя, контакт 20 — пин шага двигателя.

Floppy drive connector (CN12)

Pin	Signal	Pin	Signal	
1	GND	2	DENSITY SELECT	
3 5	GND	4	N/C	
5	GND	6	N/C	
7	GND	8	INDEX*	
9	GND	10	MOTOR 0*	
11	GND	12	DRIVE SELECT 1*	
13	GND	14	DRIVE SELECT 0*	
15	GND	16	MOTOR 1*	
17	GND	18	DIRECTION*	
19	GND	20	STEP*	
21	GND	22	WRITE DATA*	
23	GND	24	WRITE GATE*	
25	GND	26	TRACK 0*	
27	GND	28	WRITE PROTECT*	
29	GND	30	READ DATA*	
31	GND	32	HEAD SELECT*	
33	GND	34	DISK CHANGE*	

* low active

Рисунок 1.1 — назначение контактов разъема FCC 34-pin

Для взаимодействия между блоками устройства также используется стандартный для MIDI интерфейса разъем DIN-5. Распайка кабеля на основе данного разъема приведена на рисунке 1.2 [2]

Рисунок 1.2 — распайка кабеля на основе разъемов DIN-5

2 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ

2.1 Общая структура устройства

Разрабатываемое устройство можно разделить на следующие блоки:

- блок USB-MIDI контроллера;
- блок управления приводами;
- блок музыкального ввода;
- блок интерфейсов питания и коммуникаций.

2.2 Описание модулей проекта

Блок USB-MIDI — блок, отвечающий за подключение устройства к источнику воспроизведения (ПК) через интерфейс USB и посылку команд блоку управления приводами по протоколу MIDI.

Блок управления приводами — главный блок устройства, отвечающий за управление дисководами гибких магнитных дисков для воспроизведения ими определённых частот.

Блок ввода — блок, предназначенный для подачи команд от пользователя к блоку управления. Выполняется в виде клавиатуры с кнопками, обозначающими различные полутона нот.

Блок интерфейсов питания и коммуникаций — блок, непосредственно отвечающий за сопряжение устройства с источником питания, а также за сопряжение отдельных блоков устройства друг с другом.

Структурная схема разрабатываемого устройства представлена в Приложении A.

3 РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ

3.1 Блок USB-MIDI

Блок состоит из микроконтроллера Atmel ATmega8A и необходимой для интерфейса USB обвзяки. Так как аппаратной поддержки интерфейса USB в микроконтроллере не предусмотрено, будет использована программная реализация поддержка данного интерфейса, а именно библиотека V-USB [3], позволяющая получить поддержку интерфейса USB на микроконтроллерах AVR. Связь с блоком управления приводами происходит по последовательному интерфейсу UART. Питание блока будет осуществляться по интерфейсу USB.

3.2 Блок управления приводами

Блок управления приводами основан на отладочной плате Arduino Mega, выполненной на базе микроконтроллера ATmega2560. Он сделан в форме shield, которая предусматривает подсоединение к отладочной плате без пайки. К блоку подключаются 15 дисководов FDD, разбитых при этом на группы по 3 штуки. Данное разбиение было выполнено опытным путем на основе определенных диапазонов частот, характерных для каждой группы приводов. Команды от блоков ввода и USB-MIDI поступают по последовательному интерфейсу UART. Питание блока будет осуществляться с блока интерфейсов питания и коммуникаций.

3.3 Блок музыкального ввода

Блок ввода состоит из 36 кнопок пользовательского ввода нот. Данные ноты передаются для проигрывания блоком управления. Блок ввода выполнен на базе отладочной плат с контроллером Arduino Pro Mini. Связь с блоком управления приводами происходит по последовательному интерфейсу UART. Питание блока будет осуществляться с блока интерфейсов питания и коммуникаций.

3.3 Блок интерфейсов питания и коммуникаций

Данный блок отвечает за соединение отдельных вышеназванных блоков устройства, а также выполняет функцию управления питанием и его распределения.

Функциональная схема разрабатываемого устройства представлена в Приложении Б.

4 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ

4.1 Блок USB-MIDI

В основе данного блока лежит 8-битный микроконтроллер ATmega8A. Он является крайне распространенным микроконтроллером на AVR RISC архитектуре. За один такт выполняется одна инструкция, тем самым достигается производительность в 1MIPS на МГц. Некоторые характеристики [4] данного микроконтроллера приведены в таблице 1.

Напряжение питания, В	2.7 - 5.5
Тактовая частота, МГц	0 - 16
	Также имеется внутренний RC
	генератор;
Программная флэш-память, Кб	8
Память EEPROM, байт	512
Внутренняя SRAM, Кб	1
Внутренние таймеры	Два 8-ми разрядных
	таймера/счетчика с раздельным
	предделителем, режим сравнения,
	режим захвата;
	Таймер реального времени с
	независимым генератором;
	Сторожевой таймер с независимым
	генератором;
	3 Канала ШИМ
Характеристики АЦП	6-канальный АЦП, разрешение
	каждого канала – 10 бит. Напряжение
	питания АЦП и опорное напряжение
	АЦП могут задаваться извне
Основные интерфейсы для внешнего	Последовательный двухпроводной
взаимодействия	интерфейс TWI;
	Последовательный интерфейс
	USART;
	Последовательный интерфейс SPI на
	частоте до 16 МГц;
Другие особенности	Имеется аналоговый компаратор;
	Присутствует механизм обработки
	внешних (2) и внутренних
	прерываний;
	Имеется механизм определения
	просадки (Brown-out) питающего
	напряжения;

Таблица 4.1 – Основные характеристики микроконтроллера ATmega8A

В свою очередь, данный контроллер выпускается в двух вариантах корпусов: DIP-28 и TQFP-32. При работе над устройством был выбран первый вариант за его доступность и простоту монтажа на печатную плату. Распиновка согласно заводскому datasheet [4] представлена на рисунке 4.2

DDID

PDIP					
I		_			
(RESET) PC6 □	1	28	PC5 (ADC5/SCL)		
(RXD) PD0 □	2		PC4 (ADC4/SDA)		
(TXD) PD1 □	3	26	PC3 (ADC3)		
(INT0) PD2 □	4	25	PC2 (ADC2)		
(INT1) PD3 □	5	24 🗆 1	PC1 (ADC1)		
(XCK/T0) PD4 □	6	23	PC0 (ADC0)		
VCC	7	22	GND		
GND □	8	21	AREF		
(XTAL1/TOSC1) PB6 □	9	20	AVCC		
(XTAL2/TOSC2) PB7 □	10	19 🗆 🛭	PB5 (SCK)		
(T1) PD5 □	11	18	PB4 (MISO)		
(AIN0) PD6 □	12	17 🗀 1	PB3 (MOSI/OC2)		
(AIN1) PD7 □	13	16 🗆 1	PB2 (SS/OC1B)		
(ICP1) PB0 □	14	15 🗆 1	PB1 (OC1A)		

Рисунок 4.2 – Распиновка микроконтроллера ATmega8A в корпусе DIP-28

При этом, в ходе работы над устройством, программирование микроконтроллера осуществлялось по протоколу ISP (In System Programming) с помощью широко распространенного программатора USBasp. Схема подключения программатора [5] представлена на рисунке 4.3.

Рисунок 4.3 – Подключение программатора USBasp к микроконтроллерам AVR на примере ATmega8

конденсаторов C1 и C2 выбран равным $22\pi\Phi$, по рекомендации datasheet для типового включения [7].

Также, для правильной и стабильной работы микроконтроллера немаловажным является использование блокировочного конденсатора С4 емкостью 0.1 мкФ совместно с конденсатором большей емкости (В данном случае – конденсатор С3 на 10 мкФ) [14]

При использовании библиотеки, к микроконтроллеру предъявляются некоторые требования по ресурсам: как минимум 2 Кб памяти программ (<u>flash</u>) и 128 байт ОЗУ, а также одно свободное аппаратное прерывание. Используемый микроконтроллер полностью соответствует этим требования.

По стандарту USB, максимальное напряжение на линиях D+ и D- при логической единице составляет 3.3В. Поэтому прямое подключение данных линий к микроконтроллеру, питающемуся от 5В, небезопасно. Для выхода их данной ситуации можно применить 2 решения: согласовать уровни напряжений или понизить напряжение питания микроконтроллера.

Рассмотрим второй вариант. Для его выполнения необходимо запитать микроконтроллер от 3.3В. Это можно осуществить либо применение линейного регулятора с малым падением напряжения (LDO) на 3.3В, типовым примером которого является AMS1117, либо включением в цепь питания двух диодов типа 1N4148 [8] с падением напряжения на p-n переходе около 1В, которые понизят напряжение с 5В до 3В. Пример такого включения представлен на рисунке 4.5 (диоды D1 и D2).

Рисунок 4.6 – Применение диодов для понижения питающего напряжения

Но в данном устройстве подход с понижением питающего напряжения не работает. Это происходит из-за того, что при таком низком напряжении микроконтроллер не может стабильно работать на тактируемой частоте в 16МГц (согласно datasheet, в этом случае максимальная частота – 12 МГц). Поэтому используется первый вариант.

Данный подход состоит в том, чтобы согласовать уровни напряжений с помощью стабилитронов на 3.6В. Напряжение в 3.6В было выбрано по рекомендации авторов библиотеки, хотя применение стабилитронов на 3.3В также допустимо. Типичная схема включения стабилитрона [9] представлена на рисунке 4.6. При этом резисторы R1 и R2 номиналами 68Ом, совместно со

стабилитронами, выполняют функции делителей напряжения. При этом они ограничивают максимальный ток через стабилитрон. Номиналы R1 и R2 можно выбрать в пределах 50...200 Ом

Рисунок 4.6 – Включение стабилитрона

Немаловажным является резистор R3 на 2.2 кОм. Данный резистор производит подтяжку линии D- к питанию, обеспечивая тем самым в первоначальный момент времени состояние логической единицы. Это необходимо, т.к хост (ПК) определяет наличие подключенного устройства как раз по этой подтяжке. Номинал резистора можно выбирать в довольно широких пределах, от одного до сотен килоом.

Получив MIDI данные от источника воспроизведения, данный блок передает их в блок управления приводами с помощью последовательного интерфейса UART. Связь происходит на скорости в 200000 бод/с. Данная скорость была выбрана экспериментально, т.к на большей происходили искажения полученных данных.

Физически данный блок совмещен с блоком управления приводами.

4.2 Блок управления приводами

Этот блок отвечает непосредственно за воспроизведение различных звуков с помощью FDD приводов. Как упоминалось ранее, управление шаговым двигателем дисковода осуществляется двумя входами: step и dir. Они отвечают за движение шагового двигателя и выбор направления шага. Управление частотой шагания двигателя позволяет использовать дисковод как музыкальный инструмент и воспроизводить различные диапазоны нот. Таблица соответствия диапазонов нот частоте шагания была взята из проекта с открытым исходным кодом МорруClassic [12].

При этом 5 стоек с дисководами подключены к 30 цифровым выходам блока. Интерфейсы hardware serial3 и hardware serial2 контроллера используются для подсоединения блока соответственно к блокам ввода и USB-MIDI.

Программирование блока происходит обычными средствами: так же, как и программирование отладочной платы Arduino Mega.

Принципиальная схема блоков USB-MIDI и блока управления приводами приведена в Приложении В.

4.3 Блок музыкального ввода

Блок ввода состоит из матрицы кнопок размером 6x6 и управляющего микроконтроллера. Всего он содержит 36 кнопок. Схема подключения одной кнопки представлена на рисунке 4.7

Рисунок 4.7 - Схема подключения кнопки в матрице

Данный вариант реализации матричной клавиатуры предусматривает распознавание любого числа отдельно нажатых клавиш с их идентификацией. При этом резисторы выполняют роль подтягивающих к питанию, их номиналы могут быть выбраны в довольно широких пределах.

Питание блока производится от 5В через разъем MIDI DIN-5. Для этого задействованы неиспользуемые по умолчанию контакты 1 и 3.

За непосредственное считывание и коммуникацию отвечает отладочная плата на базе микроконтроллера Arduino Pro Mini. Она циклично производит опрос кнопок с распознанием их состояния. Затем эти данные сопоставляются с присвоенными кнопкам нотами и отправляются в МІDІ формате в устройство управления приводами. Связь между данными блоками происходит по последовательному интерфейсу UART на скорости 31250 бод/с. Данная скорость выбрана как наиболее популярная скорость при использовании контроллеров ATmega в качестве МІDІ устройств со стандартной библиотекой МІDІ.h [10]

4.4 Блок интерфейсов питания и коммуникаций

Этот блок отвечает непосредственно за подключение всего устройства к источнику питания, а также за связь и коммуникацию блоков ввода и управления приводами. Схема блока представлена на рисунке 4.8. К блоку подключается источник питания через входной разъем. Затем напряжение расходится на все остальные блоки через соответствующие разъемы. Также

данный блок отвечает за соединение блока управления приводами с блоком ввода пользователя, а также за питание последнего.

Рисунок 4.8 – Схема блока

Для питания устройства можно использовать любой источник питания номинальным напряжением 5В. При этом запас по выдаваемому им току должен быть не меньше 5 ампер.

Потребление блоков устройства при питании от 5В представлено в таблипе 4.9

1 -	
Блок управление приводами, мА	400
Блок USB-MIDI, мА	100, но питается от устройства
	воспроизведения
Блок ввода, мА	150
Стойки с приводами, среднее	800 * 5
потребление на стойку * количество	
стоек, мА	

Таблица 4.9 – потребление блоков устройства

Для питания идеально использовать компьютерный блок питания формата ATX. Это и было сделано, с внесением в блок питания минимальных модификаций, не влияющих на его работоспособность. (В частности, оставлено подключение только к линии 5В и выведена кнопка включения блока питания).