1. Hafta: Giriş — İstatistiğin Anlamı ve Önemi; GitHub, R ve RStudio'a Giriş

Hakan Mehmetcik

2025-10-09

Öğrenme Çıktıları

$<\!<\!< {\rm HEAD}$

- İstatistiğin ne olduğunu, neden önemli olduğunu ve nerelerde kullanıldığını açıklar.
- Veriden anlam çıkarmanın temel adımlarını örneklerle ifade eder.
- R ve RStudio'nun temel bileşenlerini tanımlar; konsol ve script farkını kavrar.
- R'da temel aritmetik, karşılaştırma ve mantıksal işlemleri uygular.

.

Git ve GitHub'ın versiyon kontrolü ve işbirliği için nasıl kullanıldığını ana hatlarıyla açıklar.

- İstatistiğin ne olduğunu, neden önemli olduğunu ve nerelerde kullanıldığını açıklar.
- Veriden anlam çıkarmanın temel adımlarını örneklerle ifade eder.
- R ve RStudio'nun temel bileşenlerini tanımlar; konsol ve script farkını kavrar.
- R'da temel aritmetik, karşılaştırma ve mantıksal işlemleri uygular.
- Git ve GitHub'ın versiyon kontrolü ve işbirliği için nasıl kullanıldığını ana hatlarıyla açıklar.

Ders Akışı (öneri)

- 1. İstatistiğe ısınma ve önyargıları kırma (mini vaka + sınıf içi mini anket)
- 2. İstatistiğin alanları ve karar destek rolü
- 3. R / RStudio hızlı başlangıç: ilk komutlar
- 4. Hata mesajlarını okuma, yardım alma yolları
- 5. Git/GitHub'a giriş ve basit akış

 $\rangle \rangle \rangle > d9bc8ff35ee06ae1e77cd33bd1304126b2d6d908$

1. İstatistiğin Anlamı ve Önemi

1.1 İstatistik Nedir?

İstatistik, **verilerden anlam çıkarma sanatıdır**. Sayılardan ibaret değildir; sayıların arkasındaki hikâyeyi keşfetmeye çalışır. İstatistik, karmaşık veri yığınlarını **düzenlememizi**, **özetlememizi ve yorumlamamızı** sağlar.

::: callout-tip **Kısa tanım:** İstatistik, belirsizlik altında veriye dayanarak **çıkarım** yapma ve **karar** alma sürecidir. :::

1.2 Neden İstatistik?

Günlük hayatta sürekli veriyle karşılaşıyoruz: - Sosyal medyada hangi içeriğin daha çok etkileşim aldığı, - Spor müsabakalarında oyuncu/maç performansı, - Seçim dönemlerinde kamuoyu anketleri, - Sağlıkta bir tedavinin etkisini ölçen klinik araştırmalar.

Bu örneklerin tümü istatistiğin farklı uygulama alanlarını gösterir. İstatistik olmadan güvenilir karar vermek çoğu zaman mümkün değildir.

1.3 İstatistiğin Kullanım Alanları

«««< HEAD - Bilimsel araştırmalarda: hipotez testleri, deney/araştırma sonuçlarının değerlendirilmesi. - Ekonomi ve siyasette: büyüme, enflasyon, işsizlik verileri; seçim tahminleri. - Sağlıkta: ilaç etkinliği, salgın yayılımının izlenmesi. ====== - Bilimsel araştırmalarda: hipotez testleri, deney/araştırma sonuçlarının değerlendirilmesi.

- Ekonomi ve siyasette: büyüme, enflasyon, işsizlik verileri; seçim tahminleri.
- Sağlıkta: ilaç etkinliği, salgın yayılımının izlenmesi.
- $\rangle\rangle\rangle$ d
9bc8ff35ee06ae1e77cd33bd1304126b2d6d908 **Günlük yaşamda:** reklam etkinliği, müşteri tercihleri, trafik yoğunluğu.

1.4 İstatistik Ne İşe Yarar?

İstatistik: - Özetler: Büyük veri kümelerini birkaç sayı (ortalama, medyan, sapma) ya da grafik ile anlaşılır kılar. - Karşılaştırır: Gruplar arasındaki benzerlik/farklılıkları ortaya çıkarır. - Tahmin eder: Eğilimleri ve olası gelecek değerlerini öngörür. - Karar destekler: Politika, iş dünyası ve bireysel seçimlerde daha bilinçli karar almamıza hizmet eder. ## 1.5 Neden İstatistik Okumalıyız?

İstatistik, yalnızca teknik bir araç değil, **eleştirel düşünme** becerisidir. Bir grafiğe ya da rakama bakınca şu soruları sorabilmeliyiz: - Bu sayı **ne anlama** geliyor? - Doğru ve **bağlamında** mı sunulmuş? - **Alternatif** yorumlar mümkün mü?

Bu sorgulama, çağımızda **veri okuryazarlığı**nın temelidir.

1.6 Önyargıları Kırmak «««< HEAD

Birçok öğrenci için istatistik "sıkıcı, ezbere dayalı, zor matematik" gibi görünebilir. Oysa doğru bağlamda: - Gerçek hayatla **doğrudan bağlantılıdır**, - Problemleri anlamaya ve çözmeye **yardımcı olur**, - **Merak uyandıran** sorulara cevap aramamızı sağlar.

======

Birçok öğrenci için istatistik "sıkıcı, ezbere dayalı, zor matematik" gibi görünebilir. Oysa doğru bağlamda: - Gerçek hayatla **doğrudan bağlantılıdır**, - Problemleri anlamaya ve çözmeye **yardımcı olur**, - **Merak uyandıran** sorulara cevap aramamızı sağlar. ::: callout-note **Sınıf içi mini etkinlik** (5 dk):

Favori içecek / sosyal medya platformu gibi bir soru belirleyin. Eller kaldırılarak frekans sayın; sonra R'da hızlı bir tablo/grafik ile görselleştirin. ::: ""> "> > \ d9bc8ff35ee06ae1e77cd33bd1304126b2d6d908

1.7 Yanıltıcı İstatistik ve Görselleştirme

Aynı veriyi farklı eksen ölçekleriyle ya da eksik bağlamla sunmak, **yanıltıcı** sonuçlara yol açabilir. Bu nedenle grafik okuryazarlığı kritik önemdedir. - Eksen kırpma (y eksenine 0'dan başlamamak), - Veri seçmeciliği (cherry-picking), - Oran yerine ham sayı kullanmak vb.

2. R ve RStudio'a Hızlı Giriş

2.1 Neden R? (Python ile Kısa Karşılaştırma)

- R: İstatistik ve görselleştirmede güçlü; akademide çok yaygın; zengin paket ekosistemi (örn. tidyverse, ggplot2, dplyr).
- Python: Genel amaçlı dil; makine öğrenmesi ve üretim ortamlarında güçlü.
- Not: Birini bilmek diğerini öğrenmeyi kolaylaştırır, birbirini tamamlar.

2.2 RStudio Arayüzü

RStudio, R ile çalışmayı kolaylaştıran bir IDE'dir. Temel paneller: - **Source (Script):** Kalıcı kod dosyaları. - **Console:** Anlık komut çalıştırma. - **Environment/History:** Nesneler ve komut geçmişi. - **Plots/Files/Packages/Help:** Grafikler, dosyalar, paketler, yardım.

Important

Konsol vs Script: Konsol anlık denemeler içindir; script ise tekrar çalıştırılabilir analizlerinizi kalıcı hale getirir.

2.3 İlk Komutlar

```
2 + 2

[1] 4

mean(c(1, 2, 3, 4, 5))

[1] 3
```

Örnek veri kümeleriyle çalışmak:

```
head(iris)
```

```
Warning: 'xfun::attr()' is deprecated.
Use 'xfun::attr2()' instead.
See help("Deprecated")
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

```
mean(iris$Sepal.Length)
```

[1] 5.843333

2.4 Temel Aritmetik Operasyonlar

```
# Toplama, çıkarma, çarpma, bölme
toplam <- 5 + 3
cikarma <- 5 - 3</pre>
```

```
carpma <- 5 * 3
           <- 5 / 3
  bolme
  # Üs alma, modülüs, tam bölme
           <- 2^3
  us_alma
  modulus <- 5 %% 3
  tam_bolme <- 5 \%/\% 3
  list(toplam = toplam, cikarma = cikarma, carpma = carpma, bolme = bolme,
       us_alma = us_alma, modulus = modulus, tam_bolme = tam_bolme)
$toplam
[1] 8
$cikarma
[1] 2
$carpma
[1] 15
$bolme
[1] 1.666667
$us_alma
[1] 8
$modulus
[1] 2
$tam_bolme
[1] 1
2.5 Karşılaştırma ve Mantıksal Operatörler
  # Karşılaştırmalar
  c(5 == 3, 5 == 5)
```

[1] FALSE TRUE

```
c(5 != 3, 5 != 5)
[1] TRUE FALSE
c(5 > 3, 3 > 5)
[1] TRUE FALSE
 c(5 < 3, 3 < 5)
[1] FALSE TRUE
 c(5 >= 3, 5 >= 5, 3 >= 5)
[1] TRUE TRUE FALSE
 c(5 <= 3, 5 <= 5, 3 <= 5)
[1] FALSE TRUE TRUE
  # Mantıksal operatörler
 c(TRUE & TRUE, TRUE & FALSE)
[1] TRUE FALSE
 c(TRUE && TRUE, TRUE && FALSE) # yalnızca ilk elemanları karşılaştırır
[1] TRUE FALSE
 c(TRUE | TRUE, TRUE | FALSE, FALSE | FALSE)
```

[1] TRUE TRUE FALSE

```
c(TRUE || TRUE, TRUE || FALSE, FALSE || FALSE)
[1] TRUE TRUE FALSE
  c(!TRUE, !FALSE)
[1] FALSE TRUE
2.6 Diğer Yaygın Operatörler
  # Kolon operatörü
  sequence <- 1:10
  sequence
 [1] 1 2 3 4 5 6 7 8 9 10
  # Atama operatörleri
  x <- 10
  y = 20
  c(x, y)
[1] 10 20
  # Üye olma operatörü
  vec <- c(1, 2, 3, 4, 5)
  c("3 in vec?" = \frac{3}{\text{min}} vec, "6 in vec?" = \frac{6}{\text{min}} vec)
3 in vec? 6 in vec?
     TRUE
           FALSE
  # Dizi (seq) ve tekrar (rep)
  seq(1, 10, by = 2)
[1] 1 3 5 7 9
```

```
rep(1:3, times = 3)
[1] 1 2 3 1 2 3 1 2 3
```

3. R'da Hata Mesajları ve Yardım Alma

3.1 Hataları Okumak

Yanlış operatör kullanımı örneği:

```
# 3 x 5 # Bu satır hata üretir: "unexpected symbol"
3 * 5 # Doğrusu
```

[1] 15

- Semboller doğru mu? + * / ^ %% %/%
- Büyük/küçük harf duyarlılığına dikkat edin.
- Hata mesajını tam okuyun; çoğu zaman çözüm ipucu içerir.

3.2 Yardım Alma Yolları

```
?mean

httpd yardım sunucusu başlatılıyor ... tamamlandı

help(mean)
  example(mean)

mean> x <- c(0:10, 50)

mean> xm <- mean(x)

mean> c(xm, mean(x, trim = 0.10))
[1] 8.75 5.50
```

Paket belgeleri (CRAN), RStudio **Help** paneli ve topluluk kaynakları (örn. StackOverflow) değerlidir.

4. Git ve GitHub'a Giriş (Kısa Rehber)

4.1 Git Nedir? GitHub Nedir?

- Git: Dosyalarınızda yapılan değişiklikleri izleyen versiyon kontrol sistemidir.
- GitHub: Git depolarını bulutta barındıran ve işbirliği sağlayan platformdur.

4.2 Temel Akış

- 1. Yerel klasörde proje başlatma,
- 2. Değişiklikleri kaydetme (commit),
- 3. GitHub'a gönderme (push).

```
# Proje klasörünüzde
git init
git add .
git commit -m "ilk kayıt"
git branch -M main
git remote add origin https://github.com/kullanici/proje-adi.git
git push -u origin main
```

Note

 \mathbf{i} pucu: R \mathbf{S} tudio içinde \mathbf{Git} sekmesi ile bu işlemler grafik arayüz üzerinden de yapılabilir.

4.3 Önerilen Sınıf İçi Uygulama

- Hazırlanmış örnek bir GitHub deposundan bir .R dosyası indirin.
- RStudio'da çalıştırın ve küçük bir değişiklik yapıp commit/push deneyin.
- Böylece "GitHub yalnızca yazılımcılar için değil" mesajı pekişir.

5. Küçük Alıştırmalar (Ödev/Alıştırma)

- 1. iris veri setinin ilk 10 satırını görüntüleyin ve Sepal.Length değişkeninin ortalamasını hesaplayın.
- 2. 1:20 aralığından yalnızca çift sayıları üreten bir vektör oluşturun.
- 3. rep() ve seq() kullanarak 5'ten 25'e 5'er artan değerleri üç kez arka arkaya tekrar eden bir vektör oluşturun.
- 4. RStudio'da bir script dosyası oluşturup bu alıştırmaların çözümlerini kaydedin.
- 5. (İsteğe bağlı) Yerelde Git ile bir depo başlatın ve script dosyanızı en az bir kez commit edin.

6. Sık Sorulan Sorular

S: R mi Python mu?

C: İkisi de güçlü araçlardır; R istatistik/görselleştirmede, Python genel amaçlı ve üretim uygulamalarında öne çıkar. Birini bilmek diğerini öğrenmeyi kolaylaştırır.

S: R zor mu?

C: Temel sözdizimi kısa sürede öğrenilir. RStudio arayüzü ve hazır paketler öğrenme eğrisini yumuşatır.

S: LaTeX gerekiyor mu (PDF için)?

C: Quarto'da PDF üretmek için sisteminizde TeX dağıtımı gerekebilir. HTML formatı ise ek kurulum gerektirmez.