分类与回归树

赵海涛

haitaozhao@ecust.edu.cn

Josh Gordon

random-forests

Unfollow

Git is complicated _(ツ)_ʃ

NYC

☼ twitter.com/random_forests

Block or report user

Organizations

Training Data

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon

Training Data

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon

A categorical attribute

Training Data

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon

A numeric attribute

Possible questions

Is the color green?

Is the diameter >=3?
Is the color yellow?

TRUE

Green 3 Apple

FALSE

Yellow 3 Apple

Yellow 3 Lemon

Green 3 Apple

Yellow 3 Apple

Yellow 3 Lemon

Possible questions

Is the color green?

Is the diameter >=3?

Is the color yellow?

TRUE

FALSE

信息增益(Information Gain)

$$g(D,A) = H(D) - H(D|A)$$

- (Information gain)表示得知特征X的信息而使得类Y的信息的不确定性减少的程度。
- --般地,熵<math>H(Y)与条件熵H(Y|X)之差称为互信息(mutual information)
- 决策树学习中的信息增益等价于训练数据集中类与特征的互信息。

信息增益(Information Gain)

- 输入: 训练数据集D和特征A;
- 输出:特征A对训练数据集D的信息增益g(D,A)
 - 1、计算数据集D的经验熵H(D)

$$H(D) = -\sum_{k=1}^{K} \frac{|C_k|}{|D|} \log_2 \frac{|C_k|}{|D|}$$

2、计算特征A对数据集D的经验条件熵H(D|A)

$$H(D|A) = \sum_{i=1}^{n} \frac{|D_i|}{|D|} H(D_i) = -\sum_{i=1}^{n} \frac{|D_i|}{|D|} \sum_{k=1}^{K} \frac{|D_{ik}|}{|D_i|} \log_2 \frac{|D_{ik}|}{|D_i|}$$

3、计算信息增益

$$g(D,A) = H(D) - H(D|A)$$

信息增益(Information Gain)

- 输入: 父节点数据集 D_p 和对其的划分得到的两个子数据集 D_{left} , D_{right} ;
- 输出:信息增益 $IG(D_p)$

计算信息增益

$$IG(D_p) = I(D_p) - rac{N_{left}}{N_p} I(D_{left}) - rac{N_{right}}{N_p} I(D_{right})$$

- 可能的不纯度指数
 - **1** Entropy: $\sum_{j=1}^{K} p_j \ln \frac{1}{p_j}$.
 - **2** Misclassification rate: $1 \max_j p_j$.
 - **3** Gini index: $\sum_{j=1}^{K} p_j (1-p_j) = 1 \sum_{j=1}^{K} p_j^2$.

不纯度指数(Impurity Index)

- **1** Entropy: $\sum_{j=1}^{K} p_j \ln \frac{1}{p_j}$.
- Misclassification rate: 1- max_j p_j.
 Gini index: $\sum_{j=1}^{K} p_j (1-p_j) = 1 \sum_{j=1}^{K} p_j^2.$

不纯度指数(Impurity Index)

- Entropy: $\sum_{j=1}^{K} p_j \ln \frac{1}{p_i}$.
- Misclassification rate: $1 \max_j p_j$.
 Gini index: $\sum_{j=1}^K p_j (1-p_j) = 1 \sum_{j=1}^K p_j^2$.

Information Gain = 0.64 - 0.5 = 0.14

Information Gain

Question	Gain
Color == Green	n? 0.14
Diameter >= 3	? 0.37
Color == Yello	w? 0.17
Color == Red?	0.37
Diameter >=1?	0

Here there is a tie. We'll pick the first.

谢谢各位同学!