Dropout-Aware Weighted Non-negative Matrix Factorization on Single-Cell RNA Sequencing Data

Jiaqi Zhang

@CSCI 2952Q

Nov. 2022

Non-negative Matrix Factorization Helps Interpreting Complicated Systems

• Non-negative matrix factorization (NMF): decompose a matrix into two factor matrices w/ non-neg. values

• NMF is commonly used in various applications, including

recommender system

• NMF provides interpretation for relations between sample/features and latent factors

NMF Uncovers Knowledge from Bulk RNA-seq Data

- NMF is also popular in genomic data analyses
- NMF on bulk RNA sequencing (RNA-seq) data

• NMF naturally fits RNA-seq data and has shown superior performances on:

gene interaction network

Rapid Developments of Single-Cell RNA Sequencing Data Enables Finer Level of Analysis

• Development of single cell RNA sequencing (scRNA-seq) technique brings about single-cell level gene profiles

• scRNA-seq can provide data with $10 \text{K} \sim 100 \text{K}$ cells

factorization is unsupervised and data-driven more cells offer more information of gene expression should be helpful to understanding biological systems

(Angerer, Philipp, et al. "Single cells make big data: New challenges and opportunities in transcriptomics." Current Opinion in Systems Biology 4 (2017): 85-91.)

Rapid Developments of Single-Cell RNA Sequencing Data Enables Finer Level of Analysis, But Also Bring Challenges

- scRNA-seq data properties pose challenges to the analysis
- High sparsity in scRNA-seq data

Dataset	Protocol	Sparsity (% of non-zeros)	
Mouse Cortex	Smart Seq2	20.48%	
Mouse Cortex	10x Genomics	7.58%	
Human PBMC	Drop Seq	2.19%	
Human PBMC	inDrops	1.92%	

• Multiple sources of dropouts (i.e., zero values)

Rapid Developments of Single-Cell RNA Sequencing Data Enables Finer Level of Analysis, But Also Bring Challenges (cont.)

- Previous studies proposed several NMF variations, but they didn't treat dropouts properly
 - o L1-regularized NMF: $\|\mathbf{W}\|_1 + \|\mathbf{H}\|_1$ obtain unique factorizations with the sparsity constraint
 - \circ Graph-regularized NMF: $tr(\mathbf{H}^{\top}\mathbf{L}\mathbf{H})$ consider geometric structure of genes

L is the Laplacian matrix of the gene neighbor graph

o Bayesian NMF: $\mathbf{X} \sim \mathcal{D}_x(\mathbf{\Theta})$ with $\mathbf{\Theta} = f(\mathbf{W}, \mathbf{H})$ assume more realistic distributions e.g., negative binomial (NB) distribution

• These NMF models break down for sparse scRNA-seq data, because they ignore missing values

Rapid Developments of Single-Cell RNA Sequencing Data Enables Finer Level of Analysis, But Also Bring Challenges (cont.)

- Validation: test NMF methods on simulated data
 - \circ Gamma-Poisson distribution \leftrightarrow negative binomial distribution

(5 cell clusters and 4 gene clusters)

 \circ Metric: adjusted rand index (ARI) \uparrow on KMeans cell/gene clustering results ARI $\in [0, 1]$, with 1 denoting perfect clustering and 0 indicating random labeling

Rapid Developments of Single-Cell RNA Sequencing Data Enables Finer Level of Analysis, But Also Bring Challenges (cont.)

• Fail when data is too sparse, not applicable for scRNA-seq

Weighted NMF is a Potential Solution Dealing with Sparsity

- Weighted NMF is proposed to deal with missing values
 - \circ Idea similar to weighted matrix completion $\operatorname{argmin}_{\mathbf{M}} \parallel \mathbf{W} \circ (\mathbf{X} \mathbf{M}) \parallel_{\mathrm{F}}^2$ (o: element-wise multiply)
 - \circ weighted NMF $\operatorname{argmin}_{\mathbf{W},\mathbf{H}} \parallel \mathbf{W} \circ (\mathbf{X} \mathbf{W}\mathbf{H}) \parallel_{\mathrm{F}}^{2}$
 - \circ weight construction: **binary weight** $W_{ij} = \begin{cases} 1, \ X_{ij} \neq 0 \\ 0, \ X_{ij} = 0 \end{cases}$

let the method only focus on observations (i.e., $W_{ij}=1$)

Weighted NMF is a Potential Solution Dealing with Sparsity (cont.)

• Weighted NMF outperforms other methods on simulated data

Proposed: Dropout-Aware Weighted NMF for scRNA-seq Data

- Dropouts in scRNA-seq contains technical miss and biological zeros
- Estimate a weight matrix that gives zero to technical miss and non-zero to biological zero
- For each gene j, assume its normalized expression follows a Gamma-Normal mixture distribution with density

$$f_j(x) = \lambda_j \operatorname{Gamma}(x; \ \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(x; \ \mu_j, \sigma_j)$$

technical fail actual expression

• Estimate parameters with expectation-maximization (EM) algorithm with log-likelihood

$$\sum_{j=1}^{n} f_j(x; \lambda_j, \alpha_j, \beta_j, \mu_j, \sigma_j)$$

• Estimate drop-out rate and construct dropout-aware weight matrix

$$d_{ij} = 1 - \underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \mu_j, \sigma_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \alpha_j, \beta_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \alpha_j, \beta_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \alpha_j, \beta_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \alpha_j, \beta_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \alpha_j, \beta_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \alpha_j, \beta_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \alpha_j, \beta_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \alpha_j, \beta_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \alpha_j, \beta_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j) + (1 - \lambda_j) \operatorname{Normal}(X_{ij}; \alpha_j, \beta_j)}{\underset{\lambda_j \operatorname{Gamma}(X_{ij}; \alpha_j, \beta_j)$$

high value indicates it is true expression with high confidence low value indicates it is more likely to be a technical miss

Dropout-Aware Weighted NMF Outperforms Baselines on Cell Clustering

• Experimental data: for each dataset, take top 500 highly variable genes

Dataset	Protocol	# of Cells	Sparsity (% of non-zeros)	# of Cell Clusters	
Mouse Cortex	Smart Seq2	643	21.55%	7	
Human PBMC	Drop Seq	6438	3.50%	9	
Quake Lung	Smart Seq2	1676	7.32%	11	

• Use weighted NMF + dropout-aware weight improve model performance

Dataset	Cell Clustering ARI ↑ (best, second best)					
	NMF	L1 NMF	Graph NMF	m pCMF	Weight NMF (binary)	Weight NMF (dropout-aware)
Mouse Cortex	0.40	0.38	0.27	0.16	0.43	0.51

Dropout-Aware Weighted NMF Outperforms Baselines on Cell Clustering, But only for Less Sparse Data

• But the weighted NMF still fails on very-sparse data

Dataset	Protocol	# of Cells	Sparsity (% of non-zeros)	# of Cell Clusters
Mouse Cortex	Smart Seq2	643	21.55%	7
Human PBMC	Drop Seq	6438	3.50%	9
Quake Lung	Smart Seq2	1676	7.32%	11

	Cell Clustering ARI ↑ (best, second best)					
Dataset	NMF	L1 NMF	Graph NMF	m pCMF	Weight NMF (binary)	Weight NMF (dropout-aware)
Mouse Cortex	0.40	0.38	0.27	0.16	$\underline{0.43}$	0.51
Human PBMC	0.06	0.01	0.06	0.08	0.11	0.10
Quake Lung	0.10	0.07	0.04	0.02	$\underline{0.18}$	0.19

Discussion & Summary

- The proposed dropout-aware weight extends NMF to single-cell analysis by considering special data properties
- Dropout-aware weighted NMF is still applicable in some cases
 - o Some sequencing protocols provide less sparse data
 - o Quality control in pre-processing can remove lowly-expressed cells/genes and reduce sparsity
- Better dropout rate estimation is required:
 - o Gamma-Normal mixture: $f_j(x) = \lambda_j \text{Gamma}(x; \alpha_j, \beta_j) + (1 \lambda_j) \text{Normal}(x; \mu_j, \sigma_j)$
 - o Zero-inflated negative binomial: $Pr(x=0) = \lambda + (1-\lambda)NB(x=0;r,p)$

Thanks!