CSP-J 模拟

题目名称	区间求和	比赛	加乘运算	课程安排
输入/输出文件名	sum.in/out	gaming.in/out	addmul.in/out	skip.in/out
测试点时限	1 s	1 s	1 s	1 s
内存限制	$256 \mathrm{MB}$	$256 \mathrm{MB}$	$256\mathrm{MB}$	$256 \mathrm{MB}$
分值	100	100	100	100
测试点/子任务个数	10	20	20	20
题目类型	传统型	传统型	传统型	传统型

注意事项

- 1. 需要建立子文件夹。
- 2. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 3. 结果比较方式为忽略行末空格、文末回车后的全文比较。
- 4. 程序可使用的栈空间大小与该题内存空间限制一致。
- 5. 编译选项: -o2 -std=c++14 -1m 。

1. 区间求和(sum.cpp)

描述

给定一个长度为 n 的**正整数**序列 a_1,a_2,\ldots,a_n ,和一个整数 m,求有多少个区间 [l,r],使区间 [l,r] 内 a_i 和为 m 。

格式

输入格式

第一行包含两个整数 n, m 。

第二行包含 n 个**正整数**,分别为 a_1, a_2, \ldots, a_n 。

输出格式

输出一行一个整数, 表示和为 m 的区间个数。

样例

输入样例1

6 5 1 3 1 2 2 3

输出样例1

3

输入样例2/输出样例2

见下发文件。

样例解释

满足条件的区间是 [1,3],[3,5],[5,6] 。

数据范围

对于 100% 的数据,保证: $1 \leq n \leq 10^5, 0 < a_i \leq 10^9, 1 \leq m \leq 10^{14}$ 。

测试点编号	数据范围
$1\sim 2$	$n \le 100$
$3\sim 4$	$n \leq 1000$
$5\sim 6$	$m \leq 100$
$7\sim 10$	无限制

2. 比赛 (gaming.cpp)

描述

又是一年一度的校园歌手大赛,今年一共有 2^n 个选手参与了比赛,分别编号为 $0\sim 2^n-1$,每个人的唱功可以用数字 a_i 来量化,保证 $a_0\sim a_{2^n-1}$ 互不相同。

今年赛事委员吸取了上一年的教训,采用了以下的赛制:

- 比赛共有 n 轮,在第 i 轮,编号在 $0\sim 2^i-1$ 内未淘汰的选手会分在第 1 组, $2^i\sim 2\times 2^i-1$ 内未淘汰的选手会分在第 2 组。依次类推。
- 每一组选手会通过一轮合唱决出组内的排名(即按 a_i 从大到小给选手排序),排名在第 k 名之后的选手淘汰(k 在最开始给定,若该组人数小于等于 k,则无人淘汰)。
- 记第 i 轮后未淘汰的总人数为 t, 则第 i 轮淘汰的所有选手的最终名次就是 t+1 。

n 轮之后会剩下一组未淘汰的选手,对于他们的,每一个选手的最终名次就是其在这个组内的排名。

小 C 对最终每个选手的名次很好奇, 你能帮帮他求出每个选手最终的名次吗。

格式

输入格式

第 1 行包含两个正整数 n, k。

第 2 行为 2^n 个互不相同的正整数,分别表示 $a_0, a_1, \sim a_{2^n-1}$ 。

输出格式

输出一行 2^n 个整数,第 i 个整数表示编号为 i-1 的选手的最终名次。

样例

输入样例1

3 2 1 7 3 2 8 5 6 4

输出样例1

5 2 3 5 1 5 3 5

输入样例2/输出样例2

见下发文件。

样例解释

第一轮之后: [1,7|3,2|8,5|6,4]

第二轮之后: $[\times, 7, 3, \times \mid 8, \times, 6, \times]$ (\times 表示淘汰)

第三轮之后: $[\times, 7, \times, \times, 8, \times, \times, \times]$

数据范围

对于所有数据 $1 \leq n \leq 20, 1 \leq k \leq 2^n, 1 \leq a_i \leq 10^9$,保证 $a_0, a_1, \ldots, a_{2^n-1}$ 互不相同。

测试点	$n \leq$	$k \le$
$1\sim 3$	n = 3	无限制
$4\sim7$	17	$k=2^n$
$8\sim 10$	17	1
$11\sim13$	17	2
$14\sim16$	17	无限制
$17\sim 20$	无限制	无限制

3. 加乘运算 (addmul.cpp)

描述

定义加乘运算 $a*^b c = (a+c) \times b$ 。

现在写了一个只包含**数字**和**加乘运算**的表达式。之后有 m 次修改表达式的操作,每次操作会修改某一个**数字**的值,并且想知道修改后的表达式的值为多少。

注意每次修改会保留下来。

为了化简对表达式的处理,我们有如下约定:

表达式将采用后缀表达式的方式输入。

后缀表达式的定义如下:

- 1. 如果 E 是一个数字,则 E 的后缀表达式是它本身。
- 2. 如果 E 是 E_1 * E_2 形式的表达式,其中 * 是加乘运算,则 E 的后缀式为 E_1' E_2' *,其中 E_1' 、 E_2' 分别为 E_1 、 E_2 的后缀式。
- $3.*^b$ 的系数 b 会在表达式后面给出。

格式

输入格式

一共一行两个整数 n, m ,分别表示表达式中变量的数量和修改的次数。

第二行为加乘运算的后缀表达式。

第三行一共 n-1 个数, b_1,b_2,\ldots,b_{n-1} ,分别表示第 i 个加乘运算的系数。

接下来一共m行,每行两个整数x,y,表示将表达式的第x个数字改成y。

输出格式

一共 m 行,每行一个整数,表示该询问下表达式的值。

样例

输入样例1

```
5 5
4 9 * 1 6 2 * * *
4 1 3 2
1 9
5 10
4 10
4 4
4 7
```

输出样例1

198	
246	
270	
234	
252	

输入样例2/输出样例2

见下发文件。

样例解释

第一次修改后的表达式为 $(9*^49)*^2(1*^3(6*^12))$,即 $((9+9)\times 4+(1+(6+2)\times 1)\times 3)\times 2=198$ 。

数据范围

对于所有数据 $1 \leq n, m \leq 10^5$,题中出现的数字均小于 10^9 ,**保证答案不超过** 10^{18} 。

测试点	数据范围	特殊性质
$1\sim 4$	$b_1=b_2=\ldots=b_{n-1}=1$	无
$5\sim 10$	$n,m \leq 10^3$	无
$11\sim14$	无限制	A
$15\sim 20$	无限制	无

A:小C给的表达式为随机生成。

4. 课程安排 (skip.cpp)

描述

小 A 的世界里,一天有 m 个小时。在接下来的 n 里,小 A 的课程安排可记为 $a_{i,j}$,表示第 i 天的第 j 小时有一门课(每门课均只有一个课时)。

对于第 i 天,记 a 为最小的 j 使 $a_{i,j}=1$,b 为最大的 j 使 $a_{i,j}=1$,则小 A 当天的学习时间为 b-a+1,其余时间为小 A 的休息时间。加入某一天里没有课,那么小 A 在这一天的学习时间为 0。

为了有更多的休息时间,小 A 决定退掉一些课程。但由于学分的需求,小 A 最多只能退掉 k 门课。

请你告诉小A,他在接下来的n天里,学习时间之和的最小值为多少。

格式

输入格式

第一行三个整数 n, m, k, 含义如题所述。

接下来 n 行,每行 m 个整数,表示 $a_{i,j}$ 。

输出格式

一行一个整数, 表示答案。

样例

输入样例1

```
4 4 3
1 0 0 0
1 0 0 1
1 1 0 1
0 0 0 1
```

输出样例1

4

输入样例2/输出样例2

见下发文件。

样例解释

小 A 可以选择退掉第 2 天的第 1 个小时的课,第 3 天的第 1 个小时的课和第 2 小时的课。

数据范围

对于所有数据 $1 \le n, m, k \le 500, 0 \le a_i \le 1$.

测试点	数据范围	特殊性质
$1\sim 3$	$n,m \leq 4$	无
$4\sim7$	m = 3	无
$8\sim11$	$m \leq 9$	无
$12\sim13$	$n,m \leq 50$	无
$14\sim16$	无限制	A
$17\sim 20$	无限制	无

A:保证每天小 A 最多只有 2 个小时有课。