Mastering embedded systems online diploma

www.learn-in-depth.com

First term (Project 1)

Eng. Omar Mahmoud Elmasri

My profile:

learn-in-depth/OmarElmasri

Table of Contents

1 Brief intro 2 Case Study 3 Requirements Diagram 4 System Analysis 4.1 Use Case Diagram 4.2 Activity Diagram 4.3 Sequence Diagram	33445
5 System Design	
5.1 State machine	
6 Source Code	
Table of Figures Figure 1: Requirements diagram	
Figure 2: Use case diagram.	
Figure 3: Activity diagram	
Figure 4: Sequence diagram.	
Figure 5: System design using ttool	
Figure 6: Main Algorithm states	
Figure 7: Main Algorithm .c file	
Figure 8: Main Algorithm .h file	
Figure 9: pressure below threshold of 20, LED is off	
Figure 10: Pressure is 24 above threshold of 20, LED is on	
Figure 11: Pressure is below threshold, yet, LED is on due to delay	11

1 Brief intro

Pressure Alarm system, project 1. Learn in depth diploma.

2 Case Study

System shall read pressure sensor output.

System shall generate output signal to alarm actuator.

System shall maintain alarm signal for specified time.

3 Requirements Diagram

Figure 1: Requirements diagram

4 System Analysis

4.1 Use Case Diagram

Figure 2: Use case diagram

4.2 Activity Diagram

Figure 3: Activity diagram

4.3 Sequence Diagram

Figure 4: Sequence diagram

5 System Design

Figure 5: System design using ttool

5.1 State machine

Figure 6: Main Algorithm states

Also, follow the link for state machine simulation

since driver code was provided, hence, drivers state machine modules are irrelevant.

6 Source Code

```
lesson3 > STM32F103C8-BluePill > C mainAlg.c > ☆ init(void)
                                                                                                                                                                                                          mit(void)
22 int AlarmFlag = 0;
24 void (*state_ptr_main)(void);
                                                                                                                                                                                                          STATE(SafePressure)
                                                                                                                                                                                                          STATE(ReceivingPressureVal)
       void init(void) {
   GPIO INITIALIZATION();
             state_ptr_main = ReceivingPressureVal;
AlarmFlag = 0;
       /// represent state where pressure value is above or equal threshold \ensuremath{\mathsf{STATE}}(\ensuremath{\mathsf{HighPressure}}) {
              /// start alarm.
AlarmFlag = 0; /// reverse flag to match reverse polarity provided by the user.
Set_Alarm_actuator(AlarmFlag); /// using the driver provided.
              /// switch state
state_ptr_main = ReceivingPressureVal;
       /// represent state where pressure value is below threshold STATE(SafePressure) {
              /// stop alarm
AlarmFlag = 1; /// reverse flag to match reverse polarity provided by the user.
Set_Alarm_actuator(AlarmFlag); /// using the driver provided
              /// switch state
state_ptr_main = ReceivingPressureVal;
       ///up. receiving pressure state
/// represent state where pressure value is being measured
STATE(ReceivingPressureVal) {
              /// read pressure value
int pressure = PressureSensor_set_pressure();
Delay(PULL_TIME);
              /// switch state
state_ptr_main =
    (pressure >= PRESSURE_THRESHOLD) ? HighPressure : SafePressure;
```

Figure 7: Main Algorithm .c file

```
UnitA / Jesson > STMAIPTOIGN Blueful > C mainAlgh > ...

| # sinfulde MAINALD_H |
| # define MAINALD_H |
| # offile mainAlg.h |
| # offile mainAlg.h |
| # offile mainAlg.h |
| # oversion 0.1 |
| # anclude "driver provided.h" |
| # sinclude "driver provided.h" |
| # sinclude "driver provided.h" |
| # oversion 0.1 |
```

Figure 8: Main Algorithm .h file

7 Simulation

Figure 9: pressure below threshold of 20, LED is off

Figure 10: Pressure is 24 above threshold of 20, LED is on

Figure 11: Pressure is below threshold, yet, LED is on due to delay