

GIFT OF Pacific Coast

BIOLOGY LIBRARY

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

DIETETICS FOR NURSES

ВV

JULIUS FRIEDENWALD, M.D.

CLINICAL PROFESSOR OF DISEASES OF THE STOMACH IN THE COLLEGE
OF PHYSICIANS AND SURGEONS, BALTIMORE

AND

JOHN RUHRÄH, M.D.

CLINICAL FROFESSOR OF DISEASES OF CHILDREN IN THE COLLEGE
OF PHYSICIANS AND SURGEONS, BALTIMORE

PHILADELPHIA AND LONDON

W. B. SAUNDERS AND COMPANY

1905

BIOLÓGY LIBRARY D

COPYRIGHT, 1905, BY

W. B. SAUNDERS & COMPANY

310LOGY

TO

MISS ADELAIDE NUTTING.

SUPERINTENDENT OF THE JOHNS HOPKINS TRAINING SCHOOL.

DEAR MISS NUTTING:-

We take great pleasure in inscribing this little book to you in appreciation of the splendid work you are doing in maintaining a high standard for the nursing profession.

Very sincerely,

JULIUS FRIEDENWALD, JOHN RUHRÄH.

PREFACE.

This little book has been prepared to meet a need in the training-school and as a handbook for nurses and laymen who are interested in the subject of feeding the sick.

At present the nurse must rely upon a knowledge of dietetics gleaned either from her text-book on invalid cookery or from one of the larger reference works upon the subject. The former contains too little, and the latter is much too large and too technical to be of great service to the busy nurse.

The aim of this book is to give the essentials of dietetics. The physiology of digestion has been briefly reviewed. The various classes of foods and the part they play in nutrition have been considered. The subjects of infant feeding and the feeding of the sick have been fully discussed, and a brief outline has been given of the principles involved in the nourishment of patients suffering with the various diseases in which diet plays an important part in the management. Rectal alimentation and the feeding of operative cases have been fully described. Diet lists and instructions have been added which should enable the nurse to comprehend and to intelligently carry out the orders of the physician. A

large number of recipes for the invalid's dietary have been added.

Should the reader desire further information on any of the subjects mentioned or concerning other dietetic topics he should consult our larger work, "Diet in Health and Disease."

APRIL 15, 1905.

CONTENTS.

CHAPTER 4.	
THE CHEMISTRY AND PHYSIOLOGY OF DIGESTION	PAGE II
CHAPTER H. CLASSES OF FOODS	32
CHAPTER III. VARIOUS FACTORS IN THEIR BEARING ON DIET	80
CHAPTER IV. FEEDING OF INFANTS AND CHILDREN Milk-modification—Feeding during the Second Vear—Diet of School Children—Feeding in Infant Asylums.	95
CHAPTER V.	
The Feeding of Sick Infants Stationary Weight; Loss of Weight—Colic—Vomiting—Gavage —Nasal Feeding—Feeding in Influmnations of the Mouth— Diseases of the Stomach—Diarrhea—Chronic Intestinal Indigestion—Constipation—Wasting Diseases—Rickets.	1 2.4

CONTENTS.

CHAPTER VI.
DIET FOR THE AGED
CHAPTER VII.
DIET DURING PREGNANCY AND THE PUERPERIUM
CHAPTER VIII. Rectal Feeding
CHAPTER IX.
GENERAL RULES FOR FEEDING THE SICK
CHAPTER X.
Feeding in the Infectious Diseases
CHAPTER XI.
DIET IN DISEASES OF THE STOMACH
CHAPTER XII.
DIET IN INTESTINAL DISEASES

CHAPTER XIII. PAGE CHAPTER XIV. Pleurisy—Empyema—Laryngitis—Asthma—Chronic Lung Discase—Pneumonia CHAPTER XV. Diet in Diseases of the Lieart—General Directions—Oertel Treatment-Aneurism; Dilatation of the Blood-vessels-Angina Pectoris-Anemia. CHAPTER XVI Urine and Food-Acute Inflammation of the Kidney; Nephritis -Chronic Inflammation of the Kidney-Movable and Floating Kidney-Calculous Affections-Surgical Diseases of the Genitourinary Tract. CHAPTER XVII Neuralgia—Insomnia and Disturbed Sleep—Epilepsy—Chorea— Apoplexy-Alcoholism-Rest Cure-Diet for the Insane. CHAPTER XVIII. Diabetes Mellitus—Gout and Goutiness—Arthritis Deformans— Scurvy—Obesity—Leanness—Diet in Skin Diseases. CHAPTER XIX. CHAPTER XX. Anesthesia and Diet—Diet after Operation—Operations about the Head—Hare-lip and Cleft Palate Operation—Esophageal or Larvngeal Operations—Diet and Laparotomies—Nausea and

Vomiting—Thirst—Care of the Bowels—Dietetic Management of Shock—Diet after Operations on the Various Organs—Feeding

through Gastric and Intestinal Fistulas.

CONTENTS.

•	CHAPTER XXI.
Hospital Diet	PAGI
C	CHAPTER XXII.
Beverages—Cereals an Soups without Meat—I	nd Cereal Gruels—Bread—Vegetables— Milk Preparations—Eggs—Meats—Soups ng Raw Beef—Panopepton—Meat Jellies ds for Diabetics.
C	CHAPTER XXIII.
Cuts of Meat	
WEIGHTS AND MEASURES	
_	-

DIETETICS FOR NURSES.

CHAPTER I

THE CHEMISTRY AND PHYSIOLOGY OF DIGESTION.

Food is the matter taken into the body to supply heat and energy, to build up the body, and repair tissue waste.

Every movement we make uses up a certain amount of energy: this and all the heat that is dissipated from our bodies must be supplied by the food. The energy in the food is present in a resting or latent form in the power which binds atoms together in molecules and the molecules together into a mass. When the complex food forms are broken up into simpler compounds this energy is set free and is used by the body as energy or converted into heat. The excess is stored up in the body, usually as fat, in the subcutaneous tissue, or as glycogen in the liver and muscles. This energy is liberated by a series of changes which may be compared to the burning of coal or wood in a furnace, the difference being that the chemic changes are much more complicated, and the body is a much more perfect furnace than any which man has devised, as it can utilize a greater proportion of energy with much less waste.

The structures of the body—bones, muscles, nerves, etc.—are built up after birth by material which is taken into the body as food. The wear and tear of the body

necessitates continual repair of these tissues, and the material used for this also comes from the food.

Food, as it is taken into the body, differs very much in composition from the material that can be utilized by the tissues in growth and the repair of waste. The processes which prepare it for the use of the body are spoken of as digestion.

The chemic elements contained in the body are also found in the food. Some fifteen elements are present in the body, the principal ones being oxygen, hydrogen, carbon, nitrogen, calcium, phosphorus, and sulphur. The compound substances which these make are classified under the headings, protein, fats, carbohydrates, mineral matter or salts, and water.

Water.—Water enters into the composition of every tissue in the body and forms over 60 per cent, of the entire body-weight. It is not burnt up, however, and so does not supply any energy.

Salts.—These form about 6 per cent. of the weight of an adult man. They are present in the bones, teeth, and other tissues. The principal salts of the body are calcium phosphate and the various compounds of potassium, sodium, magnesium, and iron. The mineral salts are very necessary to life and health.

Protein.—Under this heading are included most of the food-stuffs containing the element nitrogen. Protein is found in both animal and vegetable food, familiar examples of it being the lean and gristle of meat, the white of egg, the gluten of wheat, and the curd of milk. The word "proteid" is used by some writers to describe these. The proteins are often subdivided into *albuminoids*, as the white of egg and the curd of milk; *gelatinoids*, as gelatin; and extractives, such as the aromatic substances in beef-tea.

The proteins are necessary for life. They are the only form of food which can build up and repair the body, if we except the fatty tissues, which may be replaced by protein, carbohydrate or fat. They also supply energy and heat. If they are not supplied in sufficient quantity the body will waste and a condition of malnutrition come on.

Carbohydrates contain no nitrogen. They are composed of carbon, hydrogen, and oxygen, the last two in the proportion to form water, hence the name carbohydrate. They include starch, sugar, and the vegetable fiber or cellulose. Carbohydrates are burnt up in the body and are the most important source of heat and energy. Excesses taken are converted into fat and stored up in the body. The superficial fat of the body protects it from cold and acts as a storehouse for the fat. which can be converted into heat and energy.

Fat, or hydrocarbon, is an important element of food, serving the same purpose as the carbohydrates. Fat supplies more heat and energy, weight for weight, than carbohydrates, but is neither so easily digested nor so available. Fat is found in animal and vegetable food, as in the fat part of meat, butter, olive oil, and is present in large quantities in the yolk of egg.

Atwater gives the following table to illustrate the uses of the different food elements:

Uses of Nutrients in the Body.

Protein—forms tissues—c. g., white (albumin) of eggs curd (casein) of milk, lean meat, gluten of wheat, etc. Fats—are stored as fat—c. g., fat of meat, butter, olive oil, oils of corn, wheat, etc.

Carbohydrates—are transformed into fat—e. g., sugars, starches, etc.

Mineral matters (ash)—share in forming bone, assist in digestion—ε. g., phosphates of lime, etc., potash, soda, etc.

All serve as fuel to yield energy in the forms of heat and muscular power.

The changes which take place in the body in "burning up" the food material are designated by the name metabolism.

The heat value of the various foods may be determined by the use of an instrument known as a bomb calorimeter, the result being expressed in *calories*. A calorie is the amount of heat that is necessary to raise the temperature of one kilogram of water 1° C. It is nearly the same as the amount required to raise one pound of water 4° F. This expressed in the mechanical force, that is, the amount of work it would do, means that a calorie would raise a ton about 1.54 feet, or that it is equal to 1.54 foot tons. Some authors use *gram* calories, and their figures are 1000 times greater than those in most general use.

According to Atwater, the fuel-value of the various classes of food as ordinarily supplied is as follows:

These figures are somewhat lower than the figures given by older estimations, and are based upon the most recent experiments. The fuel-values formerly given were: protein and carbohydrates, 4.1 calories per gram; fat, 9.3 calories per gram. It will be observed that fat has a

very high food-value, which doubtless explains why it is stored up as a reserve fuel.

The amount of energy used in mental work has never been determined. In an experimental chamber, where as slight an exertion as turning over in bed will be registered by the thermometric scale, no change was produced by the inmate working out the most difficult mathematic problems.

DIGESTION AND ABSORPTION.

The digestion of food takes place through a number of changes brought about by the action of a number of ferments or, as they are often called, enzymes. The food is so changed that the useful part can be absorbed and used by the body, while the remainder is passed off as refuse

Enzymes are supplied by a number of glands, as ptyalin in the saliva, pepsin in the gastric juice, and trypsin There are enzymes which change starch in the intestine. into sugar, some which change protein into soluble substances, others which break up fats, still others acting on sugars, etc. The chemistry of these changes is usually that the enzyme causes the food substance to unite with water and separate into two simpler compounds.

On being taken into the mouth the food is broken up by chewing and mixed with the salivary juice, which acts on the starches and changes them into sugar. chemic reaction of the saliva is alkaline. The food then passes into the stomach. The chemic reaction of the stomach or gastric juice is acid, and the action of the salivary juice is soon stopped. In the stomach the food is liquified and the proteins changed into peptones by the action of the pepsin. Milk is curdled by the action of

another enzyme—rennin. After from one to several hours, according to the quality and quantity of food taken, the liquid mixture in the stomach is passed into the intestines. Here the reaction is alkaline. A number of different juices act on the food at the same time. The liver supplies bile, the pancreatic gland a juice, the intestinal glands a secretion.

The pancreatic juice contains several enzymes: trypsin, which acts like pepsin; anylopsin, which acts like pepsin; anylopsin, which acts like ptyalin, so that the digestion commenced in the mouth and stomach is completed. It also contains steapsin, which acts on the fats, emulsifying them, that is, dividing them into little droplets like cream or a cod-liver oil emulsion, and also splitting the fats into glycerin and fatty acids. The bile from the liver assists in emulsifying fat and exerts an influence over the food, hindering putrefaction. The intestinal juices aid in emulsifying fats, and act upon the starches and sugars.

Absorption.—This occurs in two ways: either by the material absorbed entering directly into the blood through the capillaries in the intestines, and passing thence through the portal veins, or it is absorbed by little vessels in the lining of the intestine called lacteals, and from these it passes through the thoracic duct, a long tube connecting them with the veins (left jugular and subclavian), returning the blood from the upper part of the body. The food material in the second case enters directly into the blood-current. Little or no absorption takes place in the stomach. The food enters the small intestine in a liquid condition and remains from 5 to 20 hours, and is then passed into the large intestine, where the excess of water is absorbed and the refuse or feces passed off in a more or less solid form.

Almost all the absorption of food takes place in the small intestine. The large intestine may absorb food under certain conditions, as when it is injected into the bowel (see Rectal enemata).

The liver plays an important part in nutrition. It supplies bile, but that is a small matter compared to what is called its glycogenic function. The carbohydrate food, on reaching the liver, is changed to glycogen or animal starch. This glycogen is stored up in the liver and also in the muscles, and is burnt up in muscular action. The liver also takes care of the waste formed by the changes taking place in the body. These waste products are brought to the liver by the blood and changed into compounds which can be passed off from the body. There are a number of waste products, most important of which is urea, which may also be formed in the muscles. This urea enters the blood-stream and is passed off by the kidneys.

The Digestion of Infants.—The salivary digestion is very feeble in early life. The salivary glands are fairly active by the fourth month, and begin to play a more important rôle in the digestion about the eighth or ninth month. The stomach digestion is of less importance in infancy. One of the principal changes is the coagulation of the casein (curd) of milk.

THE RELATION OF FOOD TO VARIOUS CONDITIONS.

Heredity.—Certain diseases or conditions which are affected by diet are apt to run in families, the most important of these are obesity, gout, diabetes, and alcoholism. Food idiosyncrasies may be often inherited, as the urticaria (hives) caused by eating strawberries or shell-fish

Sex.—Women, as a rule, require about four-fifths as much food as men, this may partly be due to the sedentary life led.

Age.—Children require proportionately more food than adults. Atwater gives the following table of food requirements:

Boy of 15-16	years requ	ires 0.9 tl	ne food	l of a man at	moderate work.
Girl of 15-16	**	0.8	+ 4	66	64
Boy of 13-14	6.	0.8	44	4.6	"
Girl of 13-14	**	0.7	44	44	44
Boy of 12	4+	0.7	4.6	44	66
Girl of 10-12	44	0.6	44	44	66
Boy of 10-11	44	0.6	44	44	44
Child of 6-9	44	0.5	66	"	**
Child of 2-5	44	0.4	64	44	44
Child under 2	44	0.3	+6	46	66

Old people require less than vigorous adults.

Race and Climate.—Various races use different diets, depending much on the climate they live in. Climate affects the diet largely by the supply it affords. More fat is required in cold climates and during cold weather than in warm. The well clad require less food than those exposed to cold.

Size and Weight.—Other things being equal, the larger the body the more food is needed.

Rest and Exercise.—Much less food is required during rest than during exercise. In exercise the muscular activity increases oxidation and tissue waste, and this waste must be counterbalanced by an increased comsumption of food.

Individual tendencies have some effect on the amount of food required. Some persons are obese and eat but little, and vice versa.

THE INFLUENCE OF VARIOUS FACTORS UPON THE DIGESTION.

Apart from the selection of a proper diet, important factors that especially affect the digestion are the following: 1. The hours, order, and frequency of meals. Variety in diet. 3. The appetite. 4. The temperature of food. 5. Rest and exercise before and after meals 6. Emotion

 Order and Frequency of Meals.—It is usually customary to fix certain hours for taking of meals; these hours vary with the occupation of the individual. In large cities, where the noon hour is taken up largely with active business pursuits, evening is selected as the most convenient hour for dinner. Sir Henry Thompson states that three general systems are in use, according to which two, three, or four meals are taken daily. The first system, which consists of two meals a day, is followed in France and other countries on the continent of Europe. A substantial meal, consisting of fish or meat and other courses of solid food, is eaten about noon: no food is taken before the noon meal, except on arising, when a cup of coffee or chocolate and a small quantity of bread and butter are taken. The second meal, which is dinner, is eaten between 6 and 7 o'clock in the evening. This meal is the largest meal of the day, and consists of soup, fish, meat, vegetables, salads, dessert, and black coffee. The second system, commonly in vogue in England, consists of four meals daily. The first meal, or breakfast, is taken at about 8 A. M., and consists of cocoa, tea or coffee, bread, butter, bacon, fish, or eggs; dinner is eaten between I and 2 P. M. and consists of soup, meat, fish, vegetables, and pudding; tea is taken at 5 P.M., and supper is served at 8 P. M., and consists of meat, fish, vegetables, and stewed fruits. Dinner is taken in the evening by the well-to-do classes, and a substantial lunch is usually taken at noon. The third system, practised in this country, consists in taking three meals daily. In many towns it is customary to dine at noon; in others, in the evening. The usual breakfast, taken between 7 and 8 A. M., consists of fruits, breakfast food or cereals, eggs, bacon or salt fish, tea, cocoa or coffee, and bread and butter. Luncheon, eaten between 12.30 and 2 o'clock, consists of cold meat or a chop, vegetables, salads, and dessert. Dinner, eaten between 6.30 and 8 P. M., is the heaviest meal of the day, and consists of soup, fish, meats, vegetables, salads, and fruit.

The frequency of meals must be regulated according to individual conditions. Patients suffering from digestive disturbances and those who take very small quantities of food at a time require nourishment at frequent and regular intervals; whereas, those whose digestion is feeble, should allow six or seven hours to elapse between meals; ordinarily the intervals between meals should be about four or five hours, this being about the time necessary for complete digestion of a mixed meal in the stomach. The habit of habitually omitting the noon luncheon, so commonly practised by busy Americans, should be discouraged.

2. Variety of Diet.—In order thoroughly to satisfy the needs of the body the diet must be varied. Although a diet restricted to but a few articles of food may contain a sufficient quantity of the alimentary principles to sustain the body nutrition, yet the monotony of such a diet becomes so objectionable that it cannot be digested thoroughly. With a mixed diet the same person will digest a larger proportion of nutrients than with a diet

composed of a single food material. Certain races restrict the variety of food from religious motives, such as the lewish restriction of ham, pork, and oysters,

- 3. Appetite.—Appetite is the desire for food, and is dependent upon various conditions. It is controlled by the sensation of hunger, and is often induced by the sight, smell, and taste of food. Simple bitters or some form of alcoholic drink will at times induce this sensation. The appearance of badly prepared or improperly served food will often dispel the appetite. In children the appetite is usually good, whereas in the aged it is lessened. Some persons have voracious appetites and abnormal craving for food. This is often the case in diabetic and other conditions, when, at times, the appetite cannot be satisfied
- 4. Temperature of Food.—The temperature of food when taken is of considerable importance. The ideal temperature is that of the body, from 98° to 100° F. (Uffelman). The limits of safety being between 45° and 130° F. According to Hutchison, extremes of temperature of food are apt to give rise to gastric disturbances. such as gastric catarrh. Uffelmann states that a drink at a temperature of 122° F. increases the body-temperature 0.1 to 0.3° C. It is believed by many that ulcer of the stomach, so common in cooks, is often due to the taking of too hot foods.
- 5. Rest and Exercise Before and After Meals.— It is often advisable to rest, but not to sleep, after meals, The larger part of the work of the stomach should be completed before retiring at night, otherwise the sleep is apt to be disturbed. About one to two hours should be allowed to elapse between a light evening meal and bedtime, and three to four hours between a heavy meal

and sleep. From personal observations the authors have concluded that digestion is improved by rest after meals, but impaired by sleep. In many instances a period of rest before eating meals is a valuable aid to digestion. Violent exercise immediately after meals inhibits digestion, whereas moderate exercise one or two hours after meals materially aids this process.

6. **Food and Emotion.**—Severe mental strain and strong emotion disturb the digestion, and for this reason food should not be taken until a period of rest and composure has intervened. On the other hand, pleasurable sensations aid the digestion, and pleasant conversation at the table is, therefore, to be recommended.

ABSORPTION OF FOODS.

Food absorption takes place chiefly in the small intestine; in the stomach and in the large intestine it takes place only to a limited degree. In determining the degree of absorbability of food, the amount of the elementary food principles ingested must first be ascertained, and the proportion that has not been absorbed determined from the feces. The degree of absorbability of a food indicates, in a measure, its nutritive value. According to Atwater, from an ordinary mixed meal an average of 92 per cent. of protein, 95 per cent. of fats, and 97 per cent. of carbohydrates is absorbed in the body. "The proportion of the several nutrients which the body retains for its use are commonly called percentages or coefficients of digestibility." The following table, taken from Atwater, gives these coefficients of digestibility:

¹ Principles of Nutrition and Nutritive Value of Food, Farmers' Bulletin No. 142, United States Department of Agriculture.

Coefficients of Disestibility and Fuel-value per Pound of Nutrients in Different Groups of Food-materials.

	Pro	tein.	Fa	it.	Carboh	ydrates.
Kind of food.	Digesti- bility.	Fuel- value per pound.	Digesti- bility.	Fuel- value per pound.	Digesti- bility.	Fuel- value per pound.
	Per ct.	Calor-	Per ct.	Calor-	Per ct.	Calor- ies.
Meats and fish	97	1940	95	4040	98	1730
Eggs	97	1980	95	4090	98	1730
Dairy products Animal food (of mixed	97	1940	95	3990	98	1730
diet)	97	1949	95	4050	98	1730
Cereals	85	1750	90	3800	98	1860
Legumes (dried)	78	1570	90	3800	97	1840
Sugars					98	1750
Starches					98	1860
Vegetables	83	1410	90	3S00	95	1800
Fruits	85	1520	90	3890	90	1630
Vegetable foods (of mixed diet)	٥.	1810	00	2800	07	1820
Total food (of mixed diet)	84 92	184∋ 1820	90 9 5	3S00 40 5 0	97 9 7	1820

Absorption of Protein.—Eighty per cent. of proteins are absorbed in the small intestine, and 14 per cent. in the large intestine. The proteins of animal food are much more completely absorbed than are those of vegetable origin.

Absorption of Fats.—Fats, like proteins, are absorbed mainly in the small intestine. This absorption of fat is very complete.

Absorption of Carbohydrates.—Carbohydrates are absorbed more completely than either the fats or the proteins; consequently, these foods leave but a small residue in the intestine

As Rubner, Atwater, and others have pointed out, foods taken in combination are absorbed more completely than when taken alone. Atwater has shown that the

following proportions of the alimentary principles are absorbed when the individual takes a mixed diet:

	Protein.	Fat.	Carbohydrates.
Animal foods	. 98 per cent.	97 per cent.	100 per cent.
Cereals and sugars	. 85 ''	96 "	98 ''
Vegetables and fruits	. 80 "	90 ''	95 ''

Food that leaves a small quantity of unabsorbed residue in the intestine is not undesirable, in that this residue stimulates peristalsis and thus regulates the condition of the bowels.

Absorption of Meat.—Meat leaves a very small residue in the intestines—about 3 per cent. of that ingested is not absorbed. On this account meat is a most valuable article of food.

Absorption of Fish.—Fish is very completely absorbed in the intestines. According to Langworthy, 95 per cent. of total solids, 97 per cent. of protein and 90 per cent. of fat are absorbed.

Absorption of Milk.—When milk is taken alone, only 90 per cent. of the constituents are absorbed; if two liters of milk are taken daily, the loss of dry substance, according to Rubner, is 5.7 to 7.8 per cent.; if three liters, the loss is 10.2 to 11.6 per cent. When taken with other foods, however, milk is much more completely absorbed.

Infants and children absorb milk much more completely than do adults. In childhood milk leaves a residue of 4 per per cent., whereas in adults 10 per cent is not absorbed.

Absorption of Eggs.—Eggs are very thoroughly absorbed in the intestine. Rubner states that hard-boiled eggs are absorbed almost as completely as meat, only 5 per cent. being lost.

Absorption of Vegetable Foods.—Vegetables are

more or less completely absorbed in the intestine. the bulk of the vegetables is not too great and the amount of cellulose is not too large, they will be almost entirely absorbed. On account of their bulk and the large proportions of cellulose which they contain most vegetables are, however, imcompletely absorbed. The protein is here the element that is not absorbed completely, the carbohydrates and fats undergoing complete absorption.

Absorption of Cereals.—Such cereals as rice are very completely absorbed; the starch is entirely absorbed, and 10 per cent. of the protein is lost.

Absorption of Legumes.—The legumes, such as peas and beans, if given in a finely divided state, are very completely absorbed. Rubner finds that even when given in amounts of 600 grams daily the loss is but slight. If, however, these substances are not given in a finely divided state, the loss in proteins is very great—according to Rubner, as high as 40 per cent.

Absorption of Roots and Tubers.—The absorption of roots and tubers, such as carrots, potatoes, etc., depends upon the quantity of cellulose they contain. Inasmuch as the potato contains but little cellulose, it is very completely absorbed.

Absorption of Green Vegetables.-Most green vegetables are very incompletely absorbed in the intestine. They leave a large residue, which acts as a stimulant to intestinal peristalsis.

Absorption of Fruits.—Fruits, like green vegetables, are usually incompletely absorbed; according to Hutchinson, 80 per cent. of the protein, 90 per cent. of the fat, and 95 per cent, of the carbohydrates are ordinarily absorbed.

QUANTITY OF FOOD REQUIRED.

This varies necessarily under special conditions. The adult requires more food than does the child; a man at work more than one at rest; an emaciated individual less than when he was in robust condition. The selection of a proper diet is dependent upon a knowledge of the amount of the three alimentary substances—proteins, carbohydrates, and fats—necessary to maintain the nutritive equilibrium and consequently the body-weight.

Dietaries are formulated by computing the quantities of the alimentary principles required under special conditions

Protein.—The quantity of protein disintegrated daily by a fasting healthy individual weighing 70 kilograms is 60 grams; it is obvious, therefore, that at least this amount should always be present in every computed dietary. Ordinarily from 100 to 125 grams of protein are consumed daily. As has been stated elsewhere, I gram of fat can replace 2.4 grams of protein or carbohydrates and the protein can replace and be partly replaced by the carbohydrates and fats. Fats and carbohydrates are, therefore, protein economizers. That part of the protein, however, required for organization of the body cannot be replaced by the carbohydrates or fats.

Carbohydrates and Fats.—Carbohydrates diminish nitrogenous waste and are also sparers of the fats, 240 grams of carbohydrates being equal to 100 grams of fat. If 100 grams of protein are taken and absorbed with 600 grams of carbohydrates, the amount of fat can be completely protected. Fat alone, however, cannot check the waste of the nitrogenous tissues. The ingestion of large quantities of fat increases the accumulation

of fat in the body, and this continues until the quantity administered reaches 300 grams, when no more can be digested. Gelatin is a valuable protector of protein, 100 grams of gelatin being equivalent to about 35 grams of protein or 200 grams of carbohydrates; it does not, however, protect against fat loss so well as do carbohydrates or fat, 100 grams of gelatin being equivalent to about 25 grams of fat. Ordinarily about 500 grams of carbohydrates and 50 grams of fat are consumed daily.

Protein, Carbohydrates, and Fats in Combination.—If fat is combined with the protein, less than half the quantity of protein is required to maintain the nitrogenous equilibrium. If more protein, fat, or carbohydrate be supplied under these conditions, fat will be deposited in the tissues. Inasmuch as food contains a variable proportion of proteins, carbohydrates, and fats combined, the food-value must be determined from the standpoint of the combined effect of the three alimentary principles contained therein.

In order to supply the requirements of the organism a certain amount of potential energy is needed to overbalance the amount dissipated in waste and in the production of body-heat. More potential energy is consumed during work than when the individual is at rest. The following table, computed by Rubner, shows the daily heat consumption, in units of heat (calories), in an adult, weighing 65 kilograms:

During rest in bed			18 0 0	calories	or	28	calories	per	kilo.
In repose								6.6	6.6
In light work						33	66	6.6	6.6
In moderate work						40	66	66	
In hard work			2100		66	48	4.4	66	6.6

From Rubner's investigations we learn that 1-

```
1 gm. of protein = 4.1 calories.
1 gm. of fat = 9.3 "
1 gm. of carbohydrates = 4.1 "
```

It has also been determined that I gram of alcohol equals 7 calories. In other words, the number of grams of proteins, fats, and carbohydrates required daily can be converted into their calorimetric equivalents, and inasmuch as we have already seen that the alimentary principles can in a degree be substituted for one another (law of isodynamics), the daily food requirements can be easily estimated in calories of heat. Thus, in order to calculate the caloric value of any food in preparing a dietary, the number of grams of proteins contained are multiplied by 4.1; the number of grams of fat by 9.3; and the number of grams of carbohydrates by 4.1; the total is then ascertained by adding. Bearing the weight of the individual in mind, a dietary can easily be constructed according to the following method:

The quantity of protein consumed daily is 100 gm.
$$\times$$
 4.1 = 410 " " carbohydrates " " 500 " \times 4.1 = 2050 " fats " " 50 " \times 9.3 = 465 2925

The average number of calories required daily in an individual, according to this calculation, is therefore 3000.

While diet-lists are easily prepared according to the method just outlined, it must always be remembered that the digestibility and absorbability of food play a most important rôle and are not to be neglected in formulating the dietary; for while a certain food may contain a great

¹ Compare Atwater's determinations on p. 1.4. Dietary computations differ slightly, owing to the fact that some use Rubner's standards and some Atwater's.

many more calories than an equal weight of another food, yet its relative indigestibility makes it less available as an article of diet. For example, while 4 ounces of sausage produce 510 heat calories, 4 ounces of cheese 520, and 4 ounces of beef only 280, yet the beef is far more digestible than either the sausage or cheese, and thus more valuable as an article of food. As has been aptly said, "We live not upon what we eat, but upon what we digest." Therefore, a diet-list giving quantities of food principles or calories is useful only as it suggests general principles that may be modified to meet individual conditions in health and in disease.

The following table, taken from Mrs. E. H. Richards, gives an ideal ration of solid food. For a further consideration for the method of computing dictaries the reader is referred to Mrs. Richards' admirable little work, entitled *The Dictary Computer*:

An Ideal Ration of Solid Food.—(Mrs. E. H. Richards.)

Material.	Amo	unts.	Prot	ein,	Fa	t.	Car		Calor- ies.	
	Gm.	Oz.	Gm.	Oz.	Gm.	Oz.	Gm.	Oz.		
Bread	453.6	16	31.75	1.12	2.26	0.08	257.28	4.04	1206.82	
Meat	226.8	8	34 02	1.20	11.34	0.40	1		243.72	
Oysters	226.8	8	12.42	0.44	2.04	0.07			70.01	
Breakfast cocoa	28.3	1	6.60	0.23	7.50	0.26	9.60	0.34	135.42	
Milk	113.4	4	3 63.	0.13	4.42	0.16	4.88	0.17	75.59	
Broth	453.6	16	18.14	0.64	18.14	0.64	90.72	3.20	613.21	
Sugar	28.3	1					27.36	0.96	112.17	
Butter	14.17	1/2	0.14		12.27				118.62	
Total			106.85		57-97		389 80		2574.60	

The following table was prepared by the nurses in the class in dietetics at the Johns Hopkins Training School. It shows the method used in determining the fuel-value of the food per capita:

Table Showing the Method of Computing the Full Value of Foods in a Given Diet Vist

Materials.	Weight, grams.	Protein grams.	Fat grams.	Carbo- hydrate grams.	Protein calories.	Fat calories.	Carbo- hydrate calories.	Total calories.
Oranges	1 -	186	31.0	2,646	765	289	10,848	406,11
Wheatena	2,547 (5 lbs. 10 oz.)	282	43.0	1,922	1,159	402	7,884	9,445
Remiller	_ ,	1,309	0.8+6		5,367	8,818	:	14,185
Chickens reseting	-	920	+30	93	3,920	404	326	1,681
Butter	33,900 (75 tos.)	0,554	5535.0	:	26,872	57,480	:	78,352
Gravy:		0	577.0	:	27	5,309	:	5,390
Butter	453	4	384.0		87	2.570		2.507
Flour		30	3.0	212	125	000	860	1.002
Potatoes, mashed	19,026 (¾ bushel) .	344	18.0	2,801	1,412	175	11,485	13,073
Milk	2,718	06	108.0	136	369	1,009	200	1,037
Dutter 3 1 1 1		678	577.0		27	5,369		5,396
Putter	3,171 (7 quarts)	573	47.0	2,089	2,353	442	8,567	11,363
Dutter	453	+	384.0	:	81	3,579		3,597
ruit jelly	4,530	41	0.4	181	168	41	778	886
Gelatine	268	226	60		100			0
Sugar	2,716			2.716	/=6		11.128	11.138
Lemons		13	0.0	115		. 8	473	919
Oranges	4,983 (2 doz.)	30.	0.4	424	ISI	40	1.730	1.802
Bananas	_	212	10.0	380	80	100	1.550	1.740
Strawberries	905 (2 lbs.)	00	0.5	63	34,	50	259	343
Milk	6.330	200	263.0	316	o o		000	
Eggs	1,132	177	100.0		80	10101	66-4-	1,040
Sugar	905			905			3.712	3.712
Sponge cake:								
Sugar	2,264			2,264		:	9,282	9,282
Tags	3,390	432	327.0		1,767	3,030		4.797
Seef with moont cold		245	25.0	969'1	1,004	232	6,955	8,193
igg salad:	9,000 (20 lbs.)	1,539	2408.0	:	3,812	22,402	:	126,211
Eggs	9,966 (175 eggs)	1,30)	948.0	:	5,267	8,818		14.185
rettace	2,264	22	0.4	26	92	42	229	363

1,344	1,290	†9†	862'1	7,220	10,259	64,864	39.781	52,939	3,250	32,252	41.733	517.427
:	371	464		5,458	6,300		39.781	43,116	982	9,232	31,592	215,121
829	673		1.789	1,00,1	3,332	64,532	:	2,210	1,706	16,834	5,181	223,302
515	245		6	701	628	332		7,613	263	6,126	4.958	79,004
:	06	113		1,331	1,536	:	9,702	915.01	239	2,264	7,705	:
0.68	72.0		192.0	0.411	358.0	6937.0		238.0	183.0	0.1181	557.0	
125	29		61	171	153	81		1,857	137	1,494	1,209	
849	1,811	113	226	19,017 (42 lhs.)		8,154 (18 lbs.)		19,932 (50 loaves)	634 (TB, 6 oz.) .	45,280 (121/2 gallons)	13,590 (20 doz. rolls)	
Boiled dressing:	Milk	Sugar	Butter	Strawberries	Macaroons	Butter	Sugar	Bread	Cocoa	Milk	Rolls	Totals

Summary of the Different Nutritive Constituents per Capita.

Proteid grams.	Fat grams.	Carbo- hydrate grams.	Protein calories.	Fat calories.	Carbo- hydrate calories.	Total calories per capita.
28	091	350	525	1,488	1,435	3,440

Fuel-value per person, 3449 calories. Nutritive ratio (ratio of proteins to fats and carbohydrates), 1:5.5.

Standard Amounts of the Different Nutritive Constituents Required Daily, According to the Following Authorities.

Total calories,	3520.0 3027.5 3520.0 3000.0
Carbo- hydrate calories.	1845 2050 1845 1722
Fat calories.	1162.5 465.0 1162.5 837.0
Protein calories.	512.5 512.5 512.5 451.0
Carbo- hydrate grams.	500 005 005 005 005 005 005 005 005 005
Eat grams,	125 50 90
Protein grams.	125 125 110
	Atwater Hutchison Mrs. Richards Maximum

Standard nutritive ratio: Atwater, 1: 5.5; Hutchison, 1: 5.3.

Authorities referred to for food composition: The Chemical Computition of American Food Materials, W. O. Atwater; Distary Computer, The above results were obtained by the students of the Class in Dietetics. The near was the one used in the Narses' Home, May 1, 1944.

CHAPTER II.

CLASSES OF FOODS.

ANIMAL FOODS.

Animal foods contain much digestible matter, chiefly proteins, a considerable quantity of fat, in some foods carbohydrates, and, in addition, water and mineral salts. Being thoroughly digested, they leave but little residue in the intestine. The various forms of animal foods—milk, meat, fish, and gelatin—will now be described.

MILK AND MILK PRODUCTS.

Milk, the most important of animal foods, contains all the elements necessary for the maintenance of life and constitutes a complete food.

Composition.—Milk contains varying proportions of each of the four classes of food principles—proteins, fats, carbohydrates, and mineral salts. Unadulterated, it contains from 84 to 90 per cent. of water, varying with the quality of the milk. It forms the exclusive diet for infants.

The principal nitrogenous compound of milk is casein. Milk contains, beside casein, lactalbumin, which is similar to the serum-albumin of the blood. The total proteins average about 3.3 per cent. of the bulk of the milk, or about 25 per cent. of the total solids. The fats of milk consist of the glycerids of palmitic, stearic, and oleic acid. In addition to these, milk also contains several

other fats in smaller proportions, to which the flavor of butter is due. The fat is suspended in the milk in the form of minute globules, which gives the milk its white color and opacity. Fat averages about 4 per cent. of the milk or about 31 per cent. of the total solids. The chief carbohydrate of milk is lactose, or milk-sugar. Milk-sugar is not nearly so sweet as ordinary sugar, and is less soluble in water. In the presence of the lactic acid bacillus it is converted into lactic acid, which causes the milk to turn sour. Lactose forms about 38 per cent, of the total solids. Milk contains about 0.7 per cent. of salts.

Variations in Milk.—There are wide variations in the composition of the milk of different animals. While human milk contains more sugar and less protein than cow's milk, the fuel value is about the same. Dog's milk seems to be the richest; whereas that which comes from the horse is exceeding poor, as may be seen from the following table:

Comparative Composition of Various Kinds of Milk.1

Kind of milk.			Total solids,								
	Water.	Total solids.		Protein	١,		Carbo-	Mineral	Fuel- value		
			Ca- sein,	Albu- min.	Total pro- tein,	Fat.	hydrates (milk- sugar).	matters (ash).	per pound.		
	Per ct.	P.r.ct.	Pr ct.	Pr ct.	Pr ct.	Pr ct.	Per ct.	Perct.	Calor-		
Woman	87.4	126	1.0	13	2.3	3.8	6.2	0.3	319		
Cow	87.2	12.8	30	0.5	3.5	3-7	4.9	0.7	313		
Dog	75-4	24.6	6 t	5.I	11.2	9.6	3.1	0.7	671		
Ewe	80.8	19.2	5.0	1.5	6.5	6.9	4.9	0.9	503		
Buffalo	81.4	18 6	5 8	0.3	6.1	7 5	4.1	0.9	506		
Cat	82.1	17.9	3.1	60	9.1	3.3	4.9	0.6	400		
Goat	85.7	14.3	3 2	1.1	4.3	4.8	4.4	0.8	365		
Llama	86.5	13.5	3.0	0.9	3.9	3.2	5.6	0.8	312		
Ass	89.6	10.4	0.7	1.6	2.3	1.6	6.0	0.5	222		
Mare	91.5	8.5	1.2	0.1	1.3	1.2	5.7	0.3	180		

¹ König, Chemie der menschlichen Nährungs- und Genussmittel, 3d ed., vol. i., pp. 267–362.

Not only is there a wide variation in the milk of different animals, but cow's milk itself is subject to great changes in the percentage composition of its ingredients. These may be attributed to many causes, the breed and condition of the animals, and the food and the care they receive being responsible in a great degree for these changes. As a rule, a young cow gives better milk than an old one, and a well-fed animal yields richer milk than one that is poorly fed.

Adulteration.—Milk is often adulterated by unscrupulous dairymen by the addition of water. This is the common method of adulteration, and if the water used for this purpose is pure, produces no ill effect other than to dilute the milk and thereby lessen the percentage of its ingredients. Unfortunately, however, water used for this purpose is not always pure and is frequently a source of contamination. Other methods of altering the quality of milk consists in the removal of the fats; the increase in the specific gravity which is produced thereby is counteracted by the further addition of water and in the addition of preservatives. The latter method, while it does not detract from the nutritive value of the milk, may, if the milk be used regularly, produce deleterious results.

Digestion of Milk.—When milk enters the stomach it is coagulated by the hydrochloric acid and the rennin of the gastric juice. These curds, or coagula, consist of precipitated casein and a portion of the fat that has become entangled in the curd. They vary in size and consistence according to the amount and the dilution of the milk taken. The curd that has not been acted upon by the gastric juice, together with the water, salts, and carbohydrates that remain, also pass into the intestine, where their digestion is completed. Boiling increases the diges-

tibility of milk, the precipitate being deposited in a more flocculent form. If the milk is previously diluted with lime-water, barley-water, or one of the aërated waters, such as Vichy, the curds formed are smaller and softer, and the milk often rendered more palatable. Bread or crackers added to milk make a good mechanic diluent by mingling with it and maintaining a soft condition of the curds.

Cream.—When milk is allowed to stand for some hours the globules of fat rise to the top, and, together with considerable milk, are removed as cream. This product contains about 18 per cent. of fat, and some protein and carbohydrates from the milk mixed with it.

Skimmed Milk.—The residue remaining after the removal of cream from ordinary milk is called skimmed milk. The amount of fat has been greatly reduced by creaming, but the percentage of protein remains almost the same. It is more easily digested than whole milk, inasmuch as the fat has been removed.

Butter.—Butter is made from the cream of milk by the process of churning, which causes the fat-globules that hang suspended in the milk to coalesce, thus forming a solid mass. A varying proportion of common salt is always added to it to enhance its palatableness and its keeping qualities. The flavor of butter is due to the growth of micro-organisms. Pure cultures of certain organisms are now utilized to ripen butter and so impart a constant flavor.

On account of the ease with which it is digested, butter, when fresh, is one of the most valuable fatty foods. The rancidity which occurs when butter is kept too long seems to be due to the casein, which, on undergoing fermentation, liberates fatty acids. Butter is best preserved by

keeping it at a low temperature, and good results are also obtained by salting.

Buttermilk.—Buttermilk, which is formed during the manufacture of butter, is another milk derivative of no little importance. It is used extensively as a beverage, and is highly nutritious and easily digested. It contains the case of the milk in a finely coagulated form.

Curd and Whey.—Curd is the coagulated casein of milk. This coagulation may be brought about by rennin, a ferment found in the gastric juice, or by such acid substances as lemon-juice, white vinegar, etc. Whey is the fluid portion of the milk remaining upon the coagulation and removal of the casein. Whey is an excellent drink and food in those cases in which milk is not well borne.

Cheese.—Cheese is made up of curd and a certain proportion of the fat of milk. Cheeses vary in composition and consistence according to their preparation. Some cheeses are soft, while others are hardened into cakes by pressure. The flavor of cheese is due to the growth of certain micro-organisms during the ripening process. The harder cheeses keep much longer than the softer ones.

Cheese is a nutritious and agreeable food, but it is often difficult of digestion. The harder cheeses are much more indigestible than those of soft consistence. Like milk, cheese may contain certain poisonous substances, due to organisms that enter the milk; of these, one of the most common is tyrotoxicon. Poisoning may follow the cating of such cheese.

Kumiss, Kefir, and Matzoon.—Kumiss is a fermented drink prepared both by lactic acid and alcoholic fermentation. For many centuries it has been made from

mares' milk by the natives living near the shores of the Caspian Sea.

Kumiss is an acid, effervescing drink, and contains a very small proportion of alcohol. It is very easily digested, being much more digestible than milk.

Kefir resembles kumiss and is often used as a substitute for it. It was originally made in the Caucasus from cows' milk fermented.

In matzoon lactic acid is produced by fermentation with a ferment obtained from Syria. It is thicker than kumiss and does not contain alcohol.

Kumiss, kefir, and matzoon are agreeable forms of milk foods, are very easily digestible, and are especially useful in those cases in which milk can not be taken or is not well borne.

Modification and Preservation of Milk.—Contamination of Milk.—An important source of contamination of milk is through disease of the udder of the cow or carelessness in handling this organ. Cows are too often kept in filthy stables, from which dust and excrementitious matter find their way into the milk-pail. The germs of disease that do not get into the milk in the stable frequently do so through the agency of the bottles or cans in which the milk is shipped, and which are often unclean or cleansed with polluted water.

Cows should not be allowed to eat the dry leaves on which they are mostly bedded, lest their color, odor, or even poisonous properties be imparted to the milk. Sour milk and milk from poor cows is unfit for food and should not be used.

At times tuberculosis or inflammatory conditions due to micro-organisms may exist either in the udder of the cow or in some distant organ, and may be so slight as not to attract the attention of the milker. Among the pathogenic germs that may thus gain access into the milk are the bacilli of typhoid fever, tuberculosis, diphtheria, and cholera. On entering the milk these organisms continue to grow, and in a short time multiply enormously. In addition to pathogenic organisms, other micro-organisms which produce souring, but are otherwise harmless, may gain access to the milk.

At Burnside Farm, Green Spring Valley, Md., the farm of Mr. Samuel Schoemaker, from which the Walker-Gordon milk sold in Baltimore is obtained, the following precautions to prevent contamination are taken: The dairy is managed by trained persons, and is being constantly inspected by experts in their respective departments. The number of bacteria in the milk is recorded daily at the laboratory. The cows are tested for tuberculosis at frequent intervals. The stables are kept in a thoroughly hygienic condition, the floor and walls being cemented and well scrubbed each day. The milker is required to scrub his hands thoroughly before milking and to clothe himself in a white sterilized suit. are thoroughly groomed one hour before milking. The cows are milked into special milk-pails, so arranged as to prevent the dust from entering. The first milk drawn. which usually contains any germs that may have entered the milk-ducts, is discarded. The pails, bottles, and other apparatus are sterilized at a temperature of 212° F. The milk is passed from the pail into cans and is then taken to the milk-house, where it is strained through sterile cotton into a sterilized cooling-tank, after which it is bottled, corked and sealed. A guarantee as to the purityof the milk goes with each bottle.

Modified Milk .- Modified milk is prepared from the care-

fully selected cows set aside for producing milk that is to be separated and recombined according to the prescription of the physician. The separation of the milk and cream is accomplished by means of the centrifugal machine. The separated milk and cream, as well as the whole milk, which has been cooled at a temperature of 40° F. or below, are then sent to the city laboratory,

where the definite percentages of cream and modified milk are recombined.

Sterilization and Pasteurization of Milk.—Milk is sterilized by boiling; sterilization destroys all micro-organisms. The disadvantages of sterilization are in a measure overcome by Pasteurization. By this process the milk is kept at a temperature of 70° C. (158° F.) for from twenty to thirty minutes; thus most micro-organisms are killed, the spores, however, not being destroyed, al-

Fig. 1.—Arnold sterilizer.

though their growth is inhibited. The taste of the milk is not so markedly altered as in sterilized milk, and it is said to be more easily digestible for patients suffering from gastro-intestinal disturbances. It does not, however, keep so long, and sours in one or two days. While bacteria are destroyed by sterilization, their spores, which are also present, are not killed, and if kept at ordinary temperature they continue to increase largely in number and thus render the milk unfit for use. The disadvantages that accrue from sterilizing milk are manifest in the constipating effect and in its altered taste. As the result of steril-

ization various chemic changes take place: the lactalbumin is somewhat coagulated, the casein is so changed that it is less easily acted upon by the rennin, and part of the lactose is changed into caramel; some of the soluble salts are converted into insoluble ones. A large proportion of these changes are not yet thoroughly understood. According to Holt, the greatest objection to sterilizing milk lies in the fact that many infants fed upon it for long periods of time are apt to suffer from scurvy: he reports that at least a dozen of such cases have come under his notice. By Pasteurization all these difficulties are overcome, and from 98 to 99 per cent. of all microorganisms, including the bacillus of typhoid and of tuberculosis, are destroyed, although the spores are not killed. Special care must be exercised in Pasteurizing milk, and as soon as it is Pasteurized it should be placed on ice.

Process of Sterilization.—By means of the Arnold sterilizer milk can easily be sterilized in small bottles in quantities just sufficient for each feeding. Sterilization may also be effected simply by exposing the bottles in a vessel that is tightly covered and opened at the bottom, and allowing the steam from boiling water to enter from below. The milk is then kept at a temperature of 212° F, for one hour.

An excellent apparatus for Pasteurizing milk is that devised by Freeman. "This apparatus consists of two parts, a pail for the water and receptacle for the bottles of milk. The pail is a simple pail with a cover; there is a groove extending around the pail to indicate the level to which it is to be filled with water, and supports inside for the receptacle for the bottles of milk to rest on. The receptacle for the bottles of milk consists of a series of hollow zinc cylinders fastened together; this fits into

the pail, so that the lower inch of the cylinders is immersed in the water. This receptacle has two sets of horizontal supports, the upper set continuous around the receptacle, for use while the milk is being heated; the lower interrupted set is used for raising the receptacle during cooling. Such receptacles are made for ten six-ounce bottles, seven eight-ounce, three pint and one half-pint bottles, and two quart bottles. There is also a large apparatus for the use of hospitals or public institutions

Fig. 2.-Freeman's Pastenrizer.

which has a receptacle for forty-three six-ounce or eightounce bottles."

Since heating does not destroy the spores of bacteria nor the toxins in milk, it is essential that the milk be as fresh and as free from disease germs as possible before sterilization is undertaken. A question frequently asked is whether all milk should be sterilized before using. The milk usually sold in large cities is, as a rule, transported from considerable distances, and is often not consumed for from twenty-four to forty-eight hours; it is thus apt, especially in hot weather, to be contaminated with microorganisms. Boiling is the only safe method of destroying such organisms. In the past few years there has been a growing tendency, especially in large cities, toward

the establishment of dairies, such as the Walker-Gordon laboratories, from which perfectly pure milk may be obtained, thus obviating the necessity for sterilization.

Predigestion of Milk .- Milk may be partly or wholly predigested in order to render it more easily digestible for individuals suffering from gastro-intestinal disorders. This process is readily accomplished by adding an active preparation of pepsin to acidulated milk and allowing the fermentation to proceed under the influence of heat at the body temperature by immersion in hot water. During this fermentation the casein is partly or completely converted into albumoses. If the process is allowed to continue too long the milk becomes bitter. For this reason it is ordinarily removed from the hot water after a few minutes and is placed upon ice, which prevents further fermentation. In order to predigest milk in alkaline solution pancreatin is substituted for pepsin; pancreatization of milk has now largely replaced peptonization. In order to effect pancreatization of milk, Fairchild's peptonizing tubes are ordinarily employed. Where the taste of pancreatized milk proves objectionable, the addition of carbonated waters or of small quantities of coffee may render it more palatable.

The digestibility of milk may be increased by the addition of hot or cold water, carbonated waters, such as Vichy or Apollinaris, lime-water, oatmeal, or barleywater, or farinaceous foods, such as arrowroot or flour; occasionally small quantities of salt or sodium bicarbonate are helpful.

Humanized Milk.—By the term "humanized milk" is meant cows' milk that has been so modified as to approach human milk as nearly as possible. This is accomplished by decreasing the casein and increasing the fats and sugars.

Condensed Milk.—Condensed milk is manufactured by evaporating cows' milk in a vacuum until it becomes thickened and jelly-like. It is used largely among the poorer classes for infant-feeding. Although they appear to fatten and thrive on it, infants fed on this form of milk are often poorly developed and are liable to develop rickets. The two principal forms of condensed milk are those containing comparatively little sugar and those to which cane-sugar has been added. The first form contains from 15 to 18 per cent. of milk-sugar; the latter from 15 to 18 per cent. of milk-sugar and from 36 to 40 per cent. of cane-sugar. Condensed milk is most easily digested, but is apt to contain too little fat; the unsweetened condensed milks are the most satisfactory forms for infant-feeding.

EGGS.

Eggs, like milk, form a complete food—that is, they contain a proportion of each of the fundamental food elements necessary for the preservation of life. Eggs and milk are the only complete food products furnished by the animal kingdom.

The eggs of the hen are consumed in largest numbers, but those of the duck, turkey, guinea-hen, and of some wild fowl are also eaten. The eggs of the domestic fowls vary in size and appearance, but their composition is about the same.

The shell of a hen's egg constitutes 11 parts, the white 57 parts, and the yolk 32 parts of the entire weight of the egg. The table on page 48 shows the composition of hens' eggs, cooked and raw.

As may be seen from that table, the egg contains mainly protein and fats, in addition to water and mineral

matter. The white and the yolk differ in composition, the white containing more protein and water than the yolk, and scarcely any fat and ash; whereas the yolk contains considerable fat and ash. The white is said to be pure protein.

The flavor of the egg is dependent in a large measure upon the food eaten by the laying hen. Fresh eggs, as is well known, have the finest flavor.

If thoroughly macerated, hard-boiled eggs are as digestible as soft-boiled ones. With some persons eggs in any form are indigestible, and produce unpleasant eructations, nausea and headache.

Raw eggs are best taken directly from the shell, or they may be combined with milk broths or with coffee. In various diseases accompanied by loss of flesh and strength raw eggs in large numbers are prescribed, as many as 24 eggs being given in twenty-four hours.

Egg-albumin is best absorbed when eaten raw and properly diluted. Its palatability may be increased by flavoring it with sherry wine, orange-, lemon-, or grape-juice, or by serving it in cream, cocoa or coffee.

Egg-nog is prepared from milk and eggs, flavored with some alcoholic drink, and sweetened with sugar.

MEATS AND MEAT PREPARATIONS.

Meat forms the flesh or muscular parts of the body. It is one of the most important articles of food and is the chief source of man's protein supply. Meat may be eaten raw or cooked. Raw meat, when well ground up, is very easily digested.

Meat is composed of muscle-fibers held together by connective-tissue bands; between the muscle-fibers are bits of fat. As ordinarily seen meat contains muscletissue, connective tissues, blood-vessels, nerves, and lymphatics, together with a varying amount of fat. The more fat there is in meat the less water and nitrogenous matter does it contain, and vice versa. Cooking has the effect of rendering the connective tissues soluble, thereby causing a separation of the muscular fibers, allowing the digestive secretion to mingle more thoroughly with them. Cooking also enhances the flavor and appearance of the meat, but, on the other hand, causes a loss in fat and extractives. Cooking likewise destroys the microorganisms that may be present in the meat and thus renders it more wholesome.

Digestibility of Meats.—The digestibility of meat is governed by many conditions: The age at which the animals eaten were killed, the length of time the meat is kept before eating, the care bestowed upon the animals during life, and the methods of preparing the meats for the table. Meats are most easily digested when stewed; frying renders them most indigestible.

Beef.—The composition of beef varies greatly, especially in regard to the amount of fat and water it contains. An ox from three to five years old supplies the best beef. The meat of a very lean animal will contain about 75 per cent. of water and about 2 per cent. of fat.

Meat Preparations.—Numerous meat preparations, both solids and liquid, are now on the market, the aim being to produce a concentrated food that will be readily digested. The different beef-juices have but slight nutritive value, most of them containing only 4 or 5 per cent. of protein; their chief value lies in the fact that they stimulate the appetite.

Bouillons.—Bouillons are prepared by cutting meat into small bits, heating slowly in water for a time, and

then boiling it quickly. The fluid thus produced has a very agreeable flavor, but its nutrient value is exceedingly small.

Beef-extracts.—Beef-extracts are concentrated bouillons that are to be diluted at the time they are taken. Their nutritive value is about the same as that of bouillon.

Beef-juice.—To produce a nutritious liquid-beef preparation, the meat should be broiled slightly and then cut into small pieces and pressed through a lemon-squeezer or a meat-press. In this way considerable quantities of protein, in addition to the salts and extractives, are obtained. The beef-juices sold on the market, such as Valentine's, are prepared by subjecting the meat to a strong pressure. These preparations contain from 5 to 10 per cent. of protein.

Meat Powders.—The nutritive value of these preparations varies greatly. Those most frequently used are a number of peptones, Somatose, and the Mosquera "Beef Meal"

Meat-jellies.—Meat-jellies are frequently given to invalids and are an agreeable means of administering protein food. Although they do not entirely replace the protein in the tissues, they produce a considerable quantity of energy.

Vea1.—Veal is tough and indigestible, especially when obtained from the animals that are killed too young. It differs considerably in flavor from beef. As in many persons veal has a tendency to produce indigestion, it is to be avoided in all cases of digestive debility.

Mutton.—Mutton is considered more digestible than beef by English writers, probably because in England the average mutton is more tender than that obtained in the United States; the beef, however, is inferior to that raised in this country.

Lamb.—Lamb, when of the right age and tenderness, is as digestible as beef or mutton.

Venison.—Unless obtained from young animals, when it is tender, highly-flavored and short-fibered, venison is apt to be difficult of digestion.

Pork.—Pork is the most indigestible of all meats, on account of the large percentage of fat that it contains.

Ham and Bacon.—Ham and bacon are both more digestible than pork. In some parts of Germany ham plays quite an important part in invalid dietaries. Bacon is used largely as an army ration. When cooked crisp, thin slices of bacon are easily digested.

Rabbit.—When young, rabbit meat is quite digestible, but it is usually omitted from diet-lists.

Fow1.—Chicken is one of the most digestible and agreeable varieties of meats. The meat of young pigeons also is especially digestible; that of ducks and geese contains too much fat.

The flesh of game is easily digested, the meat of the breast being best adapted for invalid use.

FISH.

The different kinds of fish vary widely in their nutritive and digestive qualities. For example, the flounder and the oyster are much easier of digestion than those that contain a large amount of fat, like the salmon and the herring. Eels contain the greatest proportion of fat, which may reach 28 per cent. White-fleshed fish, as a rule, contain little fat.

The table, compiled from Atwater and Langworthy, gives the chemical composition of some animal foods:

Composition of animal foods.	Refuse.	Water.	Protein.	Fat.	Carbo- hydrates.	Ash.	Fuel value per pound.
E_{SSS} , hen.	Per et.	Per et.	Per ct.	Per ct.	Per et.	Per et.	Calories.
Whole egg as purchased	11.2		11.9			0.9	635
Whole egg, edible portion White		73 7 86 2	13.4	0.2		0.6	720 25)
Volk		49.5	15.7	33-3		1.1	1705
Whole egg boiled, edible portion		73.3	13.2	12.0		0.8	765
White-shelled eggs as purchased Brown-shelled eggs as purchased	10.7	65.6	11.0	11.2		0.7	675 695
Beef, fresh.	1						, ,
Chuck ribs	16.3	52.6	15.5	15.0		0.8	910
Flank	10.2	54:0	17.0	19.0		0.7	1105
Porterhouse steak	12.7	52 4 54.0	19.1	17.9		0.9	975
Ribs	20.8	43.8	13.9	21.2		0.7	1135
Round	7.2	60.7	19.0	12.8		I.O	890
Rump	36.0	45.0 42.0	13.8	20.2 7·3		0.7	1090 545
Shoulder and clod	16.4	56 8	16.4	9.8		0.9	715
Forequarter	18.7	49.1	14.5	17.5		0.7	995
Beef, corned, canned, pickled, and dried.							
Corned beef	8 4	49.2	14.3	23.8		4.6	1245
Tongue, pickled	6.0	58.9	119 264	19.2 6.0	: :	4-3 8.9	700
Dried, salted, and smoked Canned corned beef	4 /	53.7	26.3	18.7	1 : :	4.0	1270
Veal.		-	-	·			
Breast ,	21.3	52.0	15.4	11.0		0.8	745
Leg	14.3	60.1	15.5	7.9		0.9	625
	3-4	68.3	20.1	7 5		1.0	695
Mutton.			0	,		,	
Flank	9.9	39.0	13.8	36 9 14.7		0.6	1770 8go
Loin chops	16.0	42.0	13 5	28.3		0.7	1415
Lamb.							
Breast	19.1	45-5	15.4	19.1		0.8	1075
Leg, hind	17.4	52 9	15.9	13.6		0.9	860
Pork, fresh.							
Ham	10.7	48.0	13.5	25.9		0.8	1320
Loin chops	19.7	41.8	13.4	24.2		0.8	1245
Pork, salted, cured, and pickled.							
Ham, smoked	13 6	34.8	14.2	33.4 86.2	: :	3.9	1635 3555
Salt pork	7.7	17.4	9.1	62.2	111	4.1	2715
Sausage, bologna	3.3	55 2	18.2	19.7		38	1155
Soups.							
Beef		92.9 84.5	4.4	0.4 4.3	1.1	1.2	120 365
Poultry		04.5	4.0	4 3	2.3	4	303
Chicken, broilers	11.6	43.7	12.8	1.4		0.7	305
Fowls	25-0	47.1	13.7	12.3	: :	0.7	765
Fowls	17.6	38.5	13.4	29.8		0.7	1475
тигксу	22.7	42.4	16.1	10.4		, 0.0	1000

Composition of animal foods.	Refuse.	Water.	Protein.	Fat.	Carbo- hydrates.	Ash.	Fuel value per pound.
Fresh fish.	Per ct	Per ct.	Per et	Per et.	Per ct.	Per ct.	Calorie
Bass, large-mouthed black, dressed	46.7	41.9	10.3	0.5		0.6	215
Bass, small-mouthed black, dressed	46.4		11.5	0.2		0.7	270
Bass, sea, dressed	48.6	42.2	9.8	0.6	1 .	0.7	195 205
Butterfish, dressed	34.6	45.8	11.7	7.2		0.7	520
`arp (Enropean analysis)	37.1	48.4	12.9	0.7		0.9	270
od, dressed	29.9	58.5	10.6	0.2		0.8	205
Flounder, common, dressed	57.0	35.8	6.3	0.3		0.6	130
Haddock, dressed	51.0	40.0	8.2	0.2		0.6	160
Halibut, dressed	17.7 46.0	61.9 37.3	15.1	5-9	: :	0.9	465 435
Mackerel dressed	40.7	43.7	11.4	3.5		0.7	360
Mackerel, dressed	34.6	44.5	13.7	6.2	1	1.0	515
Perch, white, dressed	54.6	34-4	8.7	1.8		0.5	235
Pickerel dressed	35.9	51.1	11.9	0.2		0.9	230
Pike, dressed	30.5	55-4	13.0	0.4		0.7	260
Pompano, dressed	45.5	39.5	10.2	4.3		0.5	370
Salmon, Camornia (sections)	5.2 23.8	51.2	16.5	9.5	1.1	0.0	675
Shad, dressed	43.9	39.6	10.3	5.4		0.8	420
Shad roe	43.9	71.2	23.4	3.8		1.6	595
Shad, roe	14.4	67.4	15.4	1.6		1.2	355
Tront, brook, dressed	37-9	48.4	11.7	1.3		0.7	273
Turbot, dressed	39.5	43.1	7.9	8.7		0.8	515
General average of fresh fish as sold	42.0	44.0	10.5	2.5		1,0	300
Preserved fish.			1				
Mackerel, "No. 1," salted	33.3	28.1	14 7	15.1		1.7	910
Cod, salted and dried	24.9	40.3	16.0	0.4		1.2	31
Caviare Herring, salted, smoked, and dried		38.1	30.0	19.7	7.6	4.6	153
Herring, salted, smoked, and dried	44.4	19.2	20.2	8.8	1 : :	5.3	95
Sardines, canned	3.9	59.3	19.3	15 3		1.2	100
Mackerel canned	3.9	68.2	19.9	8.7	1	1 3	73
Salmon, canned		68.7	21.8	2.3		1.6	50
Mollusks.							
Oysters, solid		88.3	6.1	. 1.4	3.3	0.9	23
Scallops		80.3	147	0,2	3.4	1.4	34
Long clams, in shell	43.6	48.4	4.8	0.6	1.1	1.5	13
Round clams, in shell	68.3	27.3	2 1	0.1	2.1	0.9	14
Round clams, in shell	49.3	42.7	4.4	0.5	2.1	1.0	
sive of canned)	60 2	34.0	3 2	0.4	1.3	0.9	10
Crustaceans.	1						
Lobster, in shell	62.1	31.1	5.5	0.7		0.6	13
Crawfish, in shell	87.7	10.0	2.0	0.1	O I	0.1	4
Crawfish, in shell	55.8	34.1	7.3	0.9	0.5	1.4	18
General average of crustaceans (ex-						0.5	10
clusive of canned)	73.7	20.9	4-3	0.4	0.2	0.5	1
Terrapin, turtle, etc.							
Terrapin, in shell	79.0	15.6	4.5			0.2	11
Green turtle, in shell	76.0		4.5			0.3	10
Average of turtle and terrapin	77.5					0.7	21
Frogs' legs	32.0	57.0	10.2	0.1		0.7	
crustaceans, etc	44.0	42.5	10.0	2.5	0.1	0.0	20

All fish are best in scason; out of season they lose their flavor and have a diminished nutritive value, and in some cases develop an offensive odor.

On account of the rapid changes they undergo by way of decomposition, fish should always be eaten in as fresh a condition as possible. Various methods have been resorted to with a view to preventing these changes. There are many modern contrivances for preserving fish, and drying, smoking, pickling, salting and canning are practised on a large scale.

Crustaceans.—The most popular of the crustaceans are the crab and the lobster. They are highly nutritive, but at the same time highly indigestible. In some persons the crab and the lobster are especially apt to bring on nausea, vomiting, and other and more distressing conditions.

Shell-fish.—Oysters, clams and mussels are the forms of shell-fish chiefly eaten. Oysters, when eaten fresh and raw, constitute the most digestible animal food, but when cooked their digestive value is much lowered. The soft part is proportionately larger and more nutritious than the corresponding portion of the clam. The hard or muscular portion is tough and rather indigestible, and is best omitted from invalid dietaries. Oysters should never be fried for the sick. Oysters have in many cases been the carriers of typhoid fever, and many persons have been infected in this way.

Clams are a popular article of diet and are as agreeable to most palates as oysters. Mussels are consumed chiefly by the poorer classes in the scaport towns of England.

VEGETABLE FOODS.

Vegetable foods differ from animal foods especially in that they contain a large proportion of starch and sugar and comparatively a small amount of protein.

Vegetables do, however, contain a certain amount of proteins and fats.

Carbohydrates of Vegetables.—These are starches and sugars. Starch is found in all plants, and is converted into dextrin by means of dry heat or by cooking. The starch-granules in vegetables are held together by a cellulose framework. Cellulose is a carbohydrate, but is very insoluble; it can be utilized as a food only when young; when old, it is resistant and cannot be digested and hinders the digestion of the starches enveloped by it.

Protein in Vegetables.—These proteins belong mainly to the globulins.

Extractives in Vegetables.—There is a considerable amount of extractive matter in certain vegetables, such as asparagus, which is not utilized in the body.

Fats in Vegetables.—The fats in vegetables are chiefly in the form of oils. In addition, vegetables contain a considerable amount of water and salt. The amount of water varies between 70 and 90 per cent. The main mineral constituents are the salts of potash and soda united with organic acids.

Digestibility of Vegetables.—The digestion of vegetables takes place mainly in the intestines. Owing to the greater bulk of vegetable food and to the cellulose that surrounds vegetable cells and thus prevents the ready access of the digestive juices, vegetable food is not so easily digested as animal food. For convenience of

description the following classification of vegetable foods has been adopted:

1. Cereals.	Fruits.
2. Legumes.	6. Nuts.
3. Roots and tubers.	7. Fungi.
4. Green vegetables.	Lichens.

CEREALS.

Cereals are the most important food-products derived from the vegetable kingdom. Of this class of foods those in commonest use are wheat, corn, rye, oats, barley, rice and buckwheat. The cereals are eaten chiefly after having been ground into flour or meal. Flour is most commonly made from wheat and rye; whereas corn and oats are the chief sources of meal.

Wheat is the most important source of flour, owing to the fact that it can be raised in any temperate climate and yields the best flour at the least expense. It is rich in solids and contains little water.

Flour is made by grinding the grain of the various cereals. Although flour is made chiefly from wheat and rye, barley, oats, maize, etc., are also manufactured into flour.

Bread is made by adding to flour a definite proportion of water, a little salt, and the leavening agent. The mixture or dough is then kneaded, either with the hands or, better, with a spoon. In the large modern bakeries the kneading is done entirely by machinery. After this the dough is set aside for a number of hours, during which time fermentation takes place. It is then molded into loaves and baked. The leavening is dependent upon the action of the yeast on the starch, some of which it

converts into sugar, and then into alcohol and carbon dioxid gas. The gas causes bubbles to appear throughout the dough and renders it light and spongy. During the baking process the yeast germs are killed and the alcohol and carbonic-acid gas are driven off. Hot or fresh bread, when masticated, forms a tenacious, doughy mass, and hence is not so digestible as stale bread.

Biscuits, pastries, and puddings are made by adding to the flour varying quantities of eggs, sugar, milk, butter, fruit, flavoring extracts, etc.

Rice constitutes the staple food of many of the peoples of the Orient. It is grown chiefly in Asia, but is also raised in some parts of Europe. In this country rice culture is confined chiefly to South Carolina. Rice contains a large proportion of starch in very digestible form, but is comparatively poor in other constituents.

Oatmeal is used to the best advantage in making porridge; owing to its lack of gluten it makes only the poorest kind of bread. What is known as Scotch groats is prepared by freeing the grain from its outer husk.

LEGUMES.

Of the legumes, the pea and the bean are the most important food-products.

The legumes contain a liberal proportion of protein (legumen), carbohydrates, and a little fat, besides a large amount of water. Although legumes contain a proportion of protein in excess of that of meat, a large amount of fat, and considerable starch, they are less easily digested than animal foods. They contain much indigestible fiber (cellulose), and are also very liable to produce fermentation, and in this way occasion flatulence and gastro-intestinal distress. The digestibility of the legumes

depends largely upon the manner in which they are prepared and the amount that is eaten. A large portion of the legumes ordinarily eaten is imperfectly absorbed by the intestine.

Beans form one of the oldest forms of vegetable foods, having been cultivated by the ancient Greeks, Romans, and Egyptians. The numerous varieties used for food have all been improved by cultural methods.

There are several varieties of peas, the most important being the field- and the garden-pea. The former is generally used for fodder; but one variety, the Canadian field-pea, is grown for table use. There are many varieties of the garden-pea.

The lentil is but little used in this country. The chief supply of lentils comes from Egypt, very few being grown in Europe. They form a highly nutritious food.

ROOTS AND TUBERS.

Roots and tubers constitute another class of vegetable foods that are of great importance. They contain both starch and sugar, and to these constituents is due their chief value as a food. On account of the small proportion of protein and the large amount of water they contain, they are inferior in nutritive value to both legumes and cereals.

The **potato** is, for several reasons, the most important member of the group. It is a tuber or thickened underground stem of the Solanum tuberosum. It grows equally well in a variety of soils, and when properly cooked is easily digested.

The **sweet potato** contains more water and sugar but less starch than the white potato. When boiled, it usually becomes mealy, but is often converted into a stringy, sodden mass that is difficult of digestion.

The **beet** contains a very large percentage of starch and sugar. It is raised extensively for the sugar industry, and is also largely employed for making salads to lend variety to the diet.

Carrots, when young and tender, form a very nutritious food and are greatly relished by many persons. They contain from 85 to 90 per cent. of water.

Parsnips, when boiled long enough, form a good food; like carrots, they contain a large proportion of water and a considerable amount of sugar.

GREEN VEGETABLES.

The green vegetables are valuable not only on account of the amount of nutriment present in them, but for the variety and relish they give to the diet. They contain a large amount of salts and have valuable antiscorbutic properties.

Cabbages contain a considerable quantity of sulphur, and on this account are apt to cause flatulence; where digestion is good, however, they are considered a wholesome form of food.

Cauliflower is the most digestible member of the cabbage family. It may be eaten either as a salad or boiled and served with a milk-sauce.

Spinach is a popular form of vegetable and is used to a great extent. It is valuable chiefly for its laxative effect.

Lettuce is the most important representative of a group of vegetables usually eaten raw. It is made into salad and dressed with vinegar. The various cresses also belong to this class.

Celery, which is usually eaten raw, is stringy and has scarcely any nutritive value. Cooked in milk it forms a wholesome and digestible article of food.

Tomatoes are eaten both raw and cooked, and are refreshing, generally liked, and easily digested. They are used to flavor broths and are valuable for canning purposes, inasmuch as they retain their flavor better than most vegetables.

Asparagus is highly esteemed for its delicate flavor. It is easily digested, even by invalids. It has a slightly diuretic action, and imparts a most offensive odor to the urine, which persists for from twelve to twenty-four hours.

Vegetarianism.—It will not be out of place here to point out the disadvantages of an exclusive vegetable diet. Vegetarians are those who subsist almost entirely upon vegetables, cereals, fruits, and nuts; exceptionally milk and eggs are added to their diet-list. It is quite possible, by the eating of vegetables alone, to supply all the food constituents—carbohydrates, fats, and proteins that are required by the body. Proteins are obtained partly from vegetables, milk, and eggs; those derived from vegetables, however, are digested with much more difficulty and absorbed to a much slighter degree than those derived from animal food. Persons subsisting on a purely vegetable diet for any great length of time are apt to lose strength, as well as physical and mental vigor and endurance. Laborers are unable to perform the same amount of work they could accomplish on a diet containing animal food. While vegetables contain large proportions of proteins, in order to supply them in sufficient amount very large quantities must be eaten. overfeeding is apt in many instances to produce digestive disturbances, particularly in those suffering from gastrointestinal disorders. A purely vegetable diet, if persisted in, is also said to lessen the power of resisting disease.

FRUITS.

Fruits are of little value as nutriment, and are useful mainly to give variety to the diet. They are used extensively as flavoring agents. The chief nutritive constituent of fruits is sugar, and they also contain a small amount of nitrogenous matters, cellulose, starches, organic acids, and a vegetable jelly called pectin, which causes fruit to gelatinize when boiled. The sugar present in fruit is mainly fruit-sugar, or levulose, but some fruits contain, in addition, considerable cane-sugar. In general, fruits contain a large amount of water. The mineral elements of fruit consist of potash, united with tartaric, citric, and malic acids. The flavor and odor of fruits are due to the presence of essential oils and compound ethers.

The digestibility of fruits varies with the kind of fruit eaten and its mode of preparation; stewed fruits are more easily digestible than raw fruits. Among the more easily digestible fruits are oranges, lemons, grapes and peaches; raw apples, pears and bananas are somewhat less digestible.

Oranges and lemons are used in invalid dietaries, their juice allaying thirst very effectively.

Apples are wholesome, digestible and slightly laxative.

Pears are, as a rule, more easily digestible than apples. Peaches are wholesome and digestible. They contain less sugar than most fruits.

Bananas are the most nutritious of the raw fruits.

Grapes contain a large amount of water and consid-

erable sugar. When thoroughly ripe they are very digestible.

Raisins are prepared by drying grapes, the white ones being those most used.

Plums and green gages are quite digestible when fully ripe.

Prunes are dried plums. They contain much sugar and are markedly laxative in their effect.

Olives have a bitter taste and are eaten chiefly as a relish with salads. Their nutritive value is due to the oil they contain.

Strawberries are very wholesome unless taken in excess.

Currants, gooseberries, raspberries, huckleberries, mulberries, and a few other berries a contain considerable amount of free acids. They have slightly laxative properties.

Melons contain over 95 per cent. of water and about 5 per cent. of other constituents; they are considered indigestible.

Figs and dates contain large quantities of sugar. The value of the date as a food to the Arab is well known.

NUTS.

Nuts contain a large quantity of fat and a somewhat larger proportion of protein. They have but little food value and are eaten mainly as a dessert. The average composition of nuts is:

Water .									I- 4	per cent.
Protein .									6-15	46
Fats									40-50	44
Carbohyd	ra	tes							6-10	"

Owing to the large amount of cellulose as well as the large proportion of fat they contain, nuts are not easily digested. The dense cellulose framework which makes nuts so indigestible can be destroyed by grinding, and thus the nut made more easily digestible; such preparations as Nuttolene, Bromose, and Nutmeal, of the Battle Creek Sanitarium Company, are prepared in this way.

Almonds contain much fat, but no starch and very little sugar.

Chestnuts contain a small amount of oil and a large amount of carbohydrates.

Walnuts contain a large proportion of protein and fat, but are quite indigestible.

The cocoanut contains a large amount of fat and carbohydrates.

FUNGI, ALGAE, AND LICHENS.

Fungi.—The three varieties of fungi usually eaten are the mushroom, truffle, and morel.

Mushrooms are prized chiefly for their agreeable taste. They possess some nutritive value.

The truffle grows underground and is especially sought for on account of its delicate flavor; the black variety is considered the finest.

The **morel** is usually obtained from France. It is sold in the dried state and is utilized chiefly for seasoning purposes.

Many fungi are poisonous, and these are usually distinguished by a disagreeable odor and taste, and other peculiarities in structure, etc.

Algæ.—The only one of this group that is utilized as food is **Irish moss**.

Lichens.—The only important lichen used as a food is Iceland moss

The following table, taken from Atwater, gives the chemic composition of the most common cereals:

	1	D		Carboh			
Cereals.	Water	Pro- tein.	Fat.	Starch,	Crude fiber,	Ash.	
	Per ct.	Per ct.	Per ct.	Per ct.	Per ct.	Per ct.	
Barley	. 10.9	12.4	1.8	69.8	2.7	2.4	
Buckwheat	. 12,6	10.0	2.2	64.5	8.7	2.0	
Corn (maize)	. 9.3	9.9	2.8	74.9	1.4	1.5	
Kafir corn	. 16.8	6.6	3.8	69.5	I.I	2.2	
Oats	. 11.0	11.8	5.0	59.7	9.5	3.0	
Rice	. 12.4	7.4	0.4	79.2	0.2	0.4	
Rye	. 11.6	10.6	1.7	72.0	1.7	1.9	
Wheat;			ŀ		i		
Spring varieties		12.5	2.2	71.2	1.8	1.9	
Winter varieties	. 10.5	11.8	2. I	72.0	1.8	1.8	

The following table, taken from Hutchison, gives the chemic composition of some fruits:

Fruits.	Water.	Pro- teid.	Ether extract.	Carbo- hydrates.	Ash.	Cellu- lose.	Acids.
	Per ct.	Per ct.	Per ct.	Per ct.	Per ct.	Per ct.	Per ct
Apples	82.50	0.40	0.5	12.5	0.4	2.7	1,0
Pears	83.90	0.40	0.6	11.5	0.4	3.1	0.1
Apricots	85.00	1.10	0.6	12.4	0.5	3.1	1.0
Peaches	88.80	0.50	0.2	5.8	0.6	3.4	07
Green gages	80.80	0.40	0.2	13.4	0.3	4.1	1.0
Plums	78.40	1,00	0.2	14.8	0.5	4.3	1.0
Cherries	84.00	0.80	0.8	10.0	0.6	3.8	1.0
Currants	85.20	0.40	0.8	7.9	0.5	4.6	1.4
Strawberries	89.10	1.00	0.5	6.3	0.7	2.2	1.0
Blackberries	88.90	0.90	2.1	2.3	0.6	5.2	1.6
Raspberries	84.40	1.00	2.I	5.2	0.6	7.4	1.4
Cranberries	86.50	0.50	0.7	3.9	0.2	6.2	2.2
Grapes	79.00	1.00	1.0	15.5	0.5	2.5	0.5
Watermelons	92.90	0.30	O. I	6.5	0.2	1.0	0.5
Bananas	74.00	1.50	0.7	22.9	0.9	0.2	0.5
Orang e s	86.70	0.90	0.6	8.7	0.6	1.5	1.8
Lemons	8.93	1.00	0.9	8.3	0.5	1.5	1.8
Pineapples	8.93	0.04	0.3	9.7	0.3	1.5	7.0
Dates, dried	2.08	4.40	2.1	65.7	1.5	5.5	7.0
Figs, dried	2.00	5.50	0.9	62.8	2.3	7.3	1.2
Prunes, dried	2.64	2.40	0.8	66.2	1.5	7.3	2.7
Raisins	1.40	2.50	4.7	74.7	4.1	1.7	2.7

The following table, compiled from Atwater, Abel, and Hutchison, gives the chemic composition of some vegetables:

Vegetables.	Water.	Pro- tein.	Fat.	Carbo- hydrates.	Ash.	Fuel value per
Fresh legumes :	Per ct.	Per ct.	Per et.	Per ct.	Per ct.	Calor ies.
String-beans	89.2	2.30	0.3	7.4	0.8	195
Sugar peas or string-peas	81.8	3.40	0.4	13.7	0.7	335
Shelled kidney beans.	58.9	9.40	0.6	29.1	2.0	740
Shelled Lima beans	68.5	7.10	0.7	22.0	1.7	570
411 11 1	74.6	7.00	0.5	16.9	1.0	46
Canned string-beans	93.7	1.10	0.1	3.8	1.3	9
	79.5	4.00	0.3	14.6	1.6	360
Canned Lima beans Canned kidney beans	72.7	7.00	0,2	18.5	1.6	480
a , '	85.3	3.60	0.2	9.8	1.1	25
Canned peas	03.3	3.00	0.2)		J.
Lima beans	10.4	18.10	1.5	65.9	4.1	1620
3.7 1	12.6	22.50	1.8	59.6	3.5	160
v (1)	8.4	25.70	1.0	59.2	5.7	162
* 1 1	9.5	24.60	1.0	62.0	2.9	165
Peanuts	9.3	25.80	38.6	24.4	2.0	256
St. John's bread (carob	9.2	23.00	30.0	-4.4		,
bean)	15.0	5.90	1.3	75-3	2 5	156
Potatoes	62.6	1.80	0.1	14.7	0.8	29
Sweet potatoes	55.2	1.40	0.6	21,0	0.9	44
to a	70.0	1.30	0.1	7.7	0.9	10
Parsnips	66.4	1.30	0.4	10.8	1.1	23
Turnips	62.7	0.90	0.1	5.7	0.6	12
Cabbage	89.6	1.80	0.4	5.8	1.3	16
Cauliflower	90.7	2,20	0.4	4.7	0.8	17
Sea-kale	93.3	1.40	0.4	3.8	0.6	17
Spinach	90.6	2.50	0.5	3.8	1.7	12
Vegetable marrow	94.8	0.06	0.2	2.6	0.5	12
Brussels sprouts	93.7	1.50	0.1	3.4	1.3	9
Tomatoes	91.9	1.30	0.2	5.0	0.7	10
Greens	82.9	3.80	0.0	8.9	3.5	27
Lettuce	94. I	1.40	0.4	2,6	10	10
Celery	93.4	1.40	O. I	3.3	0.9	- 8
Rhubarb	94.6	0.70	0.7	2.3	0.6	10
Water-cress	93.1	0.70	0.5	3.7	1.3	11
Cucumber	95.9	0.80	O. I	2.I	0.4	7
Asparagus	91.7	2.20	0.2	2.9	0.9	11
Sanerkraut	0.10	1.40	0.7	2.9	1.7	11

SUGARS.

Sugars are carbohydrates that contain hydrogen and oxygen in a proportion to form water. Sugar is one of the most valuable and popular forms of food. This popularity is due not only to its nutritive value, but also to its pleasant taste. According to Abel, 86 pounds of sugar per capita were consumed in England in 1895 and 64 pounds in the United States in the same year. From 7,000,000 to 8,000,000 tons are consumed annually in the different countries of the world. The principal variety of sugar in use is cane-sugar; besides this, grape-sugar, fruit-sugar, and milk-sugar also enter into the composition of our foods. Sugar is obtained in a fluid state, as in honey, as well as in crystalline form.

Sugar is very fattening and at the same time is also a great source of muscular energy. Most of the ill effects attributed to the use of sugar are due to the fact that more than one-quarter of a pound is consumed daily (Hutchison); this amount may be taken with impunity by the healthy adult, but if more be taken, it will be excreted rapidly by the kidneys, giving rise to a condition known as temporary or alimentary glycosuria.

Sugar can be absorbed only as dextrose and as levulose, all varieties of sugar being converted into these forms before they are absorbed. In strong solution sugar irritates the mucous membrane of the stomach and is apt to undergo fermentation, and thus produce gastro-intestinal distress.

Cane-sugar is the most common and most extensively used form of sugar. It is made chiefly from sugar-cane and from the sugar-beet. When pure, it consists of a mass of white crystals.

Candy contains a large amount of sugar, besides butter and other fats, starch, nuts, flavoring extracts, etc. The chief varieties of candy are made up largely of glucose and starch, colored with anilin dyes.

Molasses, Treacle, and Syrup.—Molasses and treacle are by-products formed in the manufacture of cane-sugar. Molasses forms a highly nutritious food. On account of the impurities it contains, molasses has a more pronounced aperient effect than refined syrup.

Glucose, or grape-sugar, is chiefly made from starch by inversion or hydrolysis. It is not nearly so sweet as cane-sugar and crystallizes with difficulty. It is present in small quantities, in combination with other varieties of sugar, in most fruits.

Lactose, or sugar of milk, is the natural carbohydrate for the young, growing infant. It is less abundant in cows' milk than in human milk.

Honey is sugar in a concentrated solution. It is made by bees from the nectar gathered from various flowers. It contains a crystallizable sugar resembling glucose, and a non-crystallizable form.

Saccharin is used largely as a substitute for sugar in cases of rheumatism and diabetes.

Levulose, or fruit-sugar, is also utilized as a form of sugar in certain cases of diabetes.

SPICES AND CONDIMENTS.

Spices and condiments play an important rôle in increasing the appetite and aiding the digestive functions; they have practically no nutritive value. By the action of these substances on the organ of taste as well as on the mucous membrane of the stomach, the appetite is stimulated and the secretion of gastric juice increased.

In certain gastric disturbances as well as in diseases of the kidneys they act as irritants and should be avoided.

The **peppers** are among the favorite spices; there are two varieties, the white and the black.

Mustard.—Mustard is used chiefly in salads or with other foods, and has a marked tendency to increase the appetite. In large quantities and diluted with water mustard acts as an irritant to the stomach, producing nausea and vomiting.

Vinegar is produced from various alcoholic drinks and from fruits. It contains 5 per cent. of acetic acid.

Horseradish is a condiment that is much used with various foods.

Sauces, such as tomato, catsup, Worcestershire, and the like, increase the appetite and give a relish to certain foods.

Spices act merely by adding a flavor to foods, in this way increasing the appetite for foods that would otherwise be insipid. Those most in use are ginger, cinnamon, nutmeg, and cloves.

FATS AND OILS.

One-fifth of the body-weight consists of fat. This is obtained in part from fatty food and in part from the carbohydrates and the proteins. Most of the heat energy furnished the body is supplied by fat; it oxidizes very rapidly, and in this way spares the protein elements that would otherwise be required to furnish energy. Fats are digested in the intestine, where they are emulsified previous to being absorbed. The most useful forms of fat are cream and butter; other forms are bacon and cod-liver oil. When eaten too liberally, fats are liable to

cause indigestion, and when this exists they should be taken only in very restricted quantities.

Foods fried in fats are indigestible, and hot fats are more indigestible than cold. Fats and oils have a tendency to relieve constipation, but are contra-indicated in diarrhea.

The most important animal fats are butter, cream, lard, suct, oleomargarin, cottolene, butterine, cod-liver oil, and bone-marrow. Of the vegetable fats, those most commonly employed are olive oil, cottonseed oil, linseed oil, cocoa-butter, and the oils obtained from nuts, such as cocoanut oil, peanut oil, and almond oil. Fatty foods are indicated especially in wasting disorders and in convalescence from certain acute diseases.

There are many proprietary fatty foods on the market, some of which are worthy of mention. In most of these the fats, usually cod-liver oil, have been emulsified; this emulsification aims to make the oil less objectionable to the taste and also to render it more easily digestible.

Butterine is a fat prepared from beef and hog fats, and is frequently used in this country instead of butter; oleomargarin is a similar preparation made from beef fat. Both butterine and oleomargarin are wholesome fatty foods, the only objection raised against them being that they are often sold fraudulently for butter.

Bone-marrow is a fat obtained from the large bones of the ox. It is used in the treatment of tuberculosis and in the various forms of anemia.

SALTS.

The various salts that enter into the composition of the tissues of the body are absolutely necessary for the maintenance of life. The most important, and by far that most universally found, is sodium chlorid, or common table salt. It enters into the formation of all the tissues and secretions of the body with the exception of the enamel of the teeth. It forms about 60 per cent. of the salts of the blood. When taken in insufficient quantities or omitted entirely marked symptoms of malnutrition soon appear.

Potassium chlorid ranks next in importance to sodium chlorid. It is widely distributed in the body, but occurs in much smaller amounts.

Calcium salts are important chiefly on account of the extent to which they enter into the composition of the bones and the teeth.

Phosphorus occurs in the muscles, bones, and blood. It is found as phosphate in both animal and vegetable food.

The **sulphur** of the body is derived from egg albumin, milk, and certain vegetables, in which it occurs as sulphates.

Iron is an important constituent of the hemoglobin of the blood, and is found also in muscle-fibers.

BEVERAGES AND STIMULANTS.

WATER.

WATER is the chief constituent of all beverages, and also enters largely into the composition of solid food. The human body itself is composed of about 60 per cent, of water. While man can live for weeks without

food, he can abstain from water for but a few days. Water is absolutely necessary as a solvent, and as it is constantly being eliminated by the skin, lungs, and kidneys, this loss must be replaced by some means in order to maintain the functions of the body. This is most conveniently done through the agency of the various beverages. The best method, however, of replenishing the water-supply is that of drinking the water in its pure state, when it retains all its solvent properties. Some waters are taken for their laxative or purgative action, and others for the salts which they contain.

The amount of water consumed daily by the average person is from six to eight glasses. This varies, however, with the amount and variety of food and exercise taken. The age, sex, and size of the individual and the season of the year also influence the total daily consumption of water. In very warm weather, for example, and under severe physical strain, much water that would not be lost in the cold season of the year is eliminated in the form of perspiration and must be compensated for.

Water is absorbed chiefly in the intestine; a small amount is absorbed in the stomach, and but a very trifling amount, if any, in the mouth. The water absorbed in the intestine is passed into the lymphatics and carried on into the circulation, whence it is eliminated.

As previously stated, water is eliminated through the skin, kidneys, lungs, and feces. The amount of water excreted daily varies greatly under special conditions. In cold weather the skin is inactive and the kidneys excrete a markedly greater amount of water than in hot weather, when the sweat-glands functionate more actively. When there is a tendency toward liquid movements from the bowel, the elimination by the kidneys is lessened.

In warm weather elimination by the lungs is stimulated.

According to the amount of mineral water they contain, waters are classed as hard or soft. Rain-water is soft, and is the purest form of natural water. The hardness of water is due to earthy carbonates; by boiling, the carbonic acid gas is driven off and the carbonates are precipitated, and the water thus rendered more suitable as a beverage. Boiling has the additional advantage that it destroys most of the micro-organisms that may be present in the water.

Water often contains impurities, such as lime, magnesia, iron, and other salts, and micro-organisms, and it often becomes necessary to purify it for drinking purposes. Typhoid fever and cholera are communicated chiefly through the agency of polluted drinking-water. The best method of purification is by distillation, by which means both organic and inorganic impurities can be removed or rendered innocuous. This method is now used largely on shipboard. When distilled and aërated, sea-water makes a most pleasant beverage. Water may also be purified by means of filtration, charcoal and sand being used extensively for this purpose. Porcelain cylinders are also in common use. Whatever the filtering agent employed, unless it be kept clean it is liable to become a source of contamination rather than of purification. Owing to the fact that soluble impurities often pass through the filter, filtered water is not nearly so reliable as distilled water.

Mineral Waters.—Mineral waters are frequently taken as substitutes for ordinary water; at times they produce a most marked stimulating effect on various

organs. Their efficiency is greatly enhanced when a "drinking cure" is combined with proper dietetic regulations. Mineral waters differ from ordinary waters in the greater amount of gaseous and solid matters they contain. The gaseous constituents of mineral waters are mainly carbon dioxid and sulphuretted hydrogen. The solid constituents are salts of sodium, potassium, magnesium, aluminium and calcium, iron, iodin, bromin, chlorin and sulphur. Taken before meals, waters containing carbonic acid have a soothing effect on an irritated stomach. Taken in excess, all carbonated waters are apt to produce indigestion.

Some waters have a purgative effect, others a laxative, and still others a diuretic. **Thermal waters** issue hot from their springs, their virtue being said to be due to their heat. Some mineral waters have no medicinal virtue whatever, and are utilized merely as drinking-water.

The following classification of mineral waters is taken from Cohen's *Physiologic Therapeutics*, Vol. IX.:

Simple acidulous contains large amounts of carbon dioxid; example, Apollinaris.

Alkaline acidulous contains large amounts of carbon dioxid and also sodium carbonate; example, Saratoga Vichy.

Alkaline muriated acidulous contains carbon dioxid, sodium carbonate, and sodium chlorid; example, Seltzer.

Alkaline saline acidulous contains sulphate of soda in addition to bicarbonate and chlorid of soda, as Carlsbad water.

Simple sodium chlorid contains sodium chlorid and carbon dioxid, as Saratoga Congress.

Sodium chlorid with iodin and bromin contains iodin and bromin in addition to sodium chlorid, as Saratoga Kissingen.

 Alkaline mineral waters.

II. Sodium chlorid waters.

- III. Bitter waters contain a large proportion of sodium sulphate and magnesia sulphate, as Bedford Magnesia water.
- Sulphurous waters contain hydrogen sulphid or some other sulphur compound, as French Lick Spring.
 - Carbonated iron-waters contain larger quantities of carbonic acid, as Cresson Spring water.
- V. Iron-waters. Sulphated iron-waters contain ferrous sulphate in addition to sodium magnesia, and calcium sulphate, as Sharon Chalybeate Spring.
- Iron-and-arsenic-water contains arsenic and iron,
 as Harbin Hot Sulphur Spring.
 VI. Earthy mineral waters contain large amounts of calcium and mag-
- VI. Earthy mineral waters contain large amounts of calcium and magnesium salts, as Mount Clemens Mineral Springs.
- VII. Acratothermal waters do not contain any active mineral ingredients, but are obtained at a temperature of 85° F. or over.

TEA.

Tea is a preparation made from the leaves of an evergreen plant known as thea. It is grown in China, Japan, India, Ceylon, and in North Carolina. There are two great classes of tea, the green and the black.

The chief difference between the black and the green tea lies in the fact that black tea is fermented, while green is not. As in the process of fermentation the tannic acid becomes less soluble, black tea contains much less tannic acid than green tea.

Tea has practically no nutrient ingredients. Its principal constituents are caffein and tannic acid, and its special aroma is due to a volatile oil. It owes its stimulating effect to the presence of caffein. As the action of tannic acid is detrimental to the process of digestion, tea should be so prepared as to contain as large a proportion of caffein as possible and the smallest possible amount of tannic acid.

When the leaves are placed in boiling water, caffein is extracted very rapidly. Tannic acid, however, is much

less soluble; it follows, therefore, that in order to have as little tannic acid in the tea as possible, the leaves should be boiled in water for as short a time as practicable. To prepare the infusion, pour boiling water on the tea-leaves and allow the mixture to stand where it will keep hot, though not boil, for from three to five minutes. The water used in preparing tea should not be hard or stale.

COFFEE.

Coffee was introduced into Europe in the same century as tea, and only a few years later. It is prepared from the seeds of Coffea arabica, which was originally grown in Arabia. The aroma of coffee is due to the presence of caffeol, an oil liberated in roasting. Coffee is often adulterated, chicory, acorns, and other substances being added for this purpose. The adulteration may not be injurious in its effect, but alters sometimes, even agreeably, the flavor of the coffee.

Preparation of Coffee.—In order to obtain coffee of the finest flavor, the beans should be roasted and ground shortly before they are to be used, as the flavor is impaired by exposure to the air after grinding. The water should have reached the boiling-point before it is poured over the coffee. The pot should then be placed for a few moments in a hot place, but boiling must not be allowed to continue, or the aroma will be lost and the coffee contain too large a percentage of tannic acid.

The **effect of coffee** on the system is that of a stimulant, due to the caffein present; it acts directly on the brain centers, stimulates the heart, and deepens the respirations. It is an excitant of the nervous system, and in some persons produces nervousness, excitability, and insomnia; in others it acts as an agreeable stimulant.

COCOA.

Cocoa was introduced into Europe long before either coffee or tea. It is prepared from the seeds of the cacao tree. The seeds are contained in a pulpy fruit, somewhat resembling a cucumber, from which they are extracted. Cocoa, as ordinarily prepared, is made by grinding the seeds into a paste, to which sugar or starch is added; if starch is used, the cocoa is boiled for a few minutes, but if sugar is added, the cocoa only requires the addition of boiling water or milk.

Cocoa, while a stimulant, is less apt to induce nervous symptoms, such as sleeplessness and palpitation, than either tea or coffee. By reason of the large proportion of sugar and fat contained in it, however, when used in excess, cocoa is likely to produce indigestion. When not too rich, it forms a nutritious drink especially useful for children and for convalescents.

Chocolate is prepared by adding starch, sugar, and such flavoring substance as vanilla to cocoa. In addition to their stimulant effect, cocoa and chocolate possess a marked nutrient value not possessed by either tea or coffee.

ALCOHOL.

Alcohol is produced by the fermentation of sugars with yeast. The principal constituent in all alcoholic beverages is ethyl alcohol. The glucose contained in fruits is fermented directly into alcohol; whereas the starches in such substances as potatoes, grains, etc., are converted into dextrin and maltose, and then, by the aid of diastatic ferments, before the alcoholic fermentation can take place, they are converted into glucose.

The food value of alcohol has been a subject for discussion for many years. Although all admit that

alcohol taken in excess is a poison and is detrimental to health, yet opinions differ widely as to the food value of alcohol taken in moderate quantities. There are those who maintain that alcohol, even in small quantities, is detrimental to health and acts as a poison; whereas others believe that, on the contrary, when taken in small quantities it possesses a considerable nutrient value and is to be recommended as a valuable food. The most recent as well as the most exhaustive work bearing on this subject has been done by Atwater, in his experiments on "The Nutritive Value of Alcohol." in The Physiologic Aspects of the Liquor Question, 1903. According to the writer the effect of alcohol in small quantities is slightly to increase the digestibility of protein, but not to alter the digestibility of other nutrients-that is, carbohydrates and fats; that at least 98 per cent. of the alcohol ingested is oxidized in the body, whereas ordinarily 98 per cent. of the carbohydrates, 95 per cent. of the fats, and 93 per cent. of the protein are oxidized; the alcohol is therefore oxidized more completely than are the nutrients of ordinary foods.

The conclusion reached by Atwater, based on direct experiments, is that the fat protection following the use of alcohol is very slightly different from that following the taking of ordinary food, and that alcohol protects the body-fat quite as effectively as do the fats and carbohydrates of the food for which it is substituted. The power of alcohol to protect the protein of food or bodytissue, or both, from consumption is clearly demonstrated.

Alcohol, carbohydrates, and fats replace one another as sources of energy, so that as one is oxidized the other is correspondingly spared.

Atwater found that in most of the experiments "alco-

hol was certainly a source of heat for the body" and contributed its share of energy for muscular work.

Atwater gives the following proportions as to the availability and fuel value of alcohol in nutrition as compared with carbohydrates and fats: I gm. of alcohol, I³ gm. of carbohydrate, and ³ gm. of fat yield the same amount of energy to the body. Inasmuch as alcohol contains no nitrogenous constituents, it can not be looked upon as a food tending to repair tissue, but merely as a fuel that, on oxidizing, forms animal heat.

Alcohol is easily digested and readily absorbed in the alimentary tract; as a food, however, it is costly, and the danger of addiction and excess in its use is great. The habitual use of alcohol even in considerable quantities does not tend to produce injurious effects in many persons; whereas in others changes, especially of a cirrhotic nature, in the tissues, blood-vessels, liver, kidneys, etc., are liable to occur. In certain diseases, especially those accompanied by malnutrition, extreme feebleness, and exhaustion, alcohol acts as a food and serves an excellent purpose in restoring strength to a weak and enfeebled body.

Alcoholic beverages are divided into several classes, ϵ . g., spirits, liqueurs, and bitters, malt liquors, wines, etc-

SPIRITS.

Spirits are produced by fermenting saccharine substances and obtaining the alcohol by distillation. Of the substances, corn, rice, barley, molasses, and potatoes are those most commonly utilized for this purpose. In addition to the alcohol, by-products are formed, and it is to these that spirits owe their characteristic flavor and odor. The by-products contain the higher alcohols, such

as propyl, butyl, and amyl alcohol, a mixture of these forming what is known as fusel oil.

Whisky.—The United States Pharmacopeia defines whisky as "an alcoholic liquid obtained by distillation of the mash of fermented grain (usually of mixtures of corn, wheat, and rye), and at least two years old." Whisky possesses an alcoholic strength of from 50 to 58 per cent. by volume. It should be free from disagreeable odor. The ether and aldehyds contained in whisky become altered in character as it ages, and the flavor is thus rendered more agreeable.

Brandy.—In the United States Pharmacopeia brandy is defined as an "alcoholic liquid obtained by distillation of the fermented unmodified juice of fresh grapes, and at least four years old." Brandy contains from 46 to 55 per cent, by volume of alcohol. The quality of brandy depends upon the variety of grapes used and upon the length of time the brandy is allowed to stand: the older the brandy the better the quality. With brandy, just as with whisky, on standing ethers and aldehyds are produced, to which the special flavor of the brandy is due. The color of brandy is due to the tannic acid extracted from the oak casks in which the brandy on the market, some being merely alcohol colored and flavored with various essences.

Rum.—Rum is the product of the distillation of fermented molasses, its flavor being due to certain by-products.

Gin.—Gin is produced by the distillation of rye and malt mash, its flavor being due to juniper berries which are added during fermentation.

Liqueurs or cordials and bitters contain a large

proportion of alcohol and a high percentage of sugar and essential oils.

Malt Liquors.—Under the heading of malt liquors are included beer or ale and stout or porter. These beverages are made by fermenting malt and hops. The mild or bitter beers are distinguished by the relative proportion of hops contained in them; the milder forms contain considerable quantities of hops, whereas the bitter ones contain but small amounts.

Porter and Stout.—Porter and stout are made by fermenting malt, the latter, however, being roasted, during which process a certain amount of caramel is produced. It is to this substance that the dark color is due. Beer as well as stout contains from 3 to 8 per cent. of alcohol, from 2 to 5 per cent. of dextrin, and from 0.5 to 1 per cent. of sugar.

WINE.

Wine is produced by the fermentation of grape-juice, the juice being first pressed from the grape by crushing. There are a number of factors, such as the character of the grape utilized, its cultivation, and the method of manufacturing, that enter into the production of a good wine.

Of the important ingredients of wine may be mentioned water, acids, alcohol, sugar, ethers, glycerin, and extractives.

Acids.—The most important acids contained in wine are tartaric, malic, and tannic; others of less importance are acetic and succinic. The total amount of acids in wine varies, but rarely exceeds 0.5 per cent.

Alcohol.—There are several alcohols present in wine; ethyl alcohol occurs in largest quantity; amyl, propyl,

and butyl alcohol are also present in varying amounts; natural wine never contains more than 16 per cent. of alcohol; if it contains more than this amount it has been "fortified." This is often done, especially when the wine is to be shipped from warm countries to foreign districts, to prevent it souring.

Sugar.—Sour wines contain about 1 per cent. and sweet wines about 4 per cent. of sugar; it is evident, therefore, that sugar is present in too small a quantity to be of any food value.

Ethers.—Many varieties of ethers are present in wine; they are produced by the action of the alcohols and acids upon each other. It is to the character and quantity of the ethers contained in them that the flavor of various kinds of wines is largely due.

Glycerin.—Glycerin is present in wine in about one-fourteenth of the volume of the alcohol.

Extractives.—A large part of the solid material of the wine is made up of extractives.

Varieties of Wines.—From a dietetic standpoint the classification of Chambers is probably the most practical; according to this author, wines are divided into seven classes: 1. Strong dry wines. 2. Strong sweet wines. 3. Aromatic wines. 4. Acid wines. 5. Sparkling wines. 6. Perfect wines. 7. Rough or astringent wines.

I. Strong Dry Wines.—These are wines that contain a large percentage of alcohol, to which, as a rule, additional alcohol has been added in their production; in other words, they are "fortified." Examples of this class of wines are port, sherry, and Madeira. Port contains from 15 to 20 per cent. of alcohol and considerable

tannic acid. Sherry is a fortified wine; it contains from 15 to 22 per cent. of alcohol.

- 2. Strong Sweet Wines.—These wines contain fruitsugar in quantities sufficient to act as a preservative and prevent further fermentation. Under this head may be mentioned Tokay, Malaga, and sweet champagne. They contain from 18 to 22 per cent. of alcohol and from 3 to 5 per cent. of sugar. Owing to their sweetness they are taken in small quantities.
- 3. Aromatic Wines.—Aromatic wines possess a superior flavor and contain essential oils and considerable alcohol; examples of this class of wines are Moselle, Capri, and some of the Rhine wines.
- 4. Acid Wines.—The distinguishing feature of this class of wines is the large quantity of acid they contain.
- 5. Sparkling Wines.—Sparkling wines contain considerable quantities of carbonic acid gas, to which their exhilarating effect is due. The chief variety of this class of wines is champagne. The dryness or sweetness of champagne depends upon the proportion of cane-sugar and cognac added during the process of manufacture. In the manufacture of dry champagne 8 per cent. of sugar is added, while the sweet brands contain as much as 16 per cent.
- 6. **Perfect Wines.**—Perfect wines are defined by Chambers as those containing alcohol, water, sugar, ethereal flavors, fruity extractives, and acids. Under this head come Burgundy and Bordeaux.
- 7. Rough Wines.—Rough wines contain considerable quantities of tannic acid, to which they owe their astringent effect. They contain little alcohol and are of slight value for medicinal purposes.

ACTION AND USE OF MALT LIQUORS AND WINES.

Malt liquors, when taken in moderate quantities, seem to aid digestion, increase the appetite, and stimulate gastric secretion. Occasionally, especially in those who lead a sedentary life, they give rise to indigestion and gastric acidity. On account of the large quantities of carbohydrates they contain, they have considerable food value. The use of malt liquors is contra-indicated especially in such conditions as gout, obesity, diabetes, and diseases of the urinary tract.

Wines appear to exert a depressing effect on the gastric secretion. Taken in moderate quantities, however, by increasing the appetite and the motor function of the stomach, this depressing effect is not only overcome, but the digestion is also greatly improved.

Cider is a beverage prepared from the fermented juice of ripe apples. The amount of alcohol contained in this beverage varies between 3 and 8 per cent. by volume. It also contains malic acid, salts, sugar, albuminoids, and extractives.

CHAPTER III.

VARIOUS FACTORS IN THEIR BEARING ON DIET.

CONCENTRATION OF FOOD.

Concentrated foods are those from which the larger portion of the water present has been abstracted, and thus the weight and the bulk of the food diminished. There are many patented concentrated foods on the market. They find their chief use in the treatment of patients who take too little of the usual forms of food to maintain strength, and, second, in cases where it is important that a large quantity of nourishment be taken.

Food can be concentrated to various degrees. Desiccated meat is the most concentrated form of protein; sugar the most concentrated form of carbohydrate; and olive oil the most concentrated form of fat.

- I. **Concentrated Proteins.**—These foods are prepared from milk, meat, eggs, and vegetables. Meat is concentrated by drying, and in this form it is generally indigestible, which can, however, be overcome by predigestion or powdering.
- 2. **Concentrated Vegetables.**—Many vegetables, such as potatoes, carrots, cabbage, and the like, are concentrated by drying. They are utilized only in those instances in which it is impossible to secure fresh vegetables.

Bread is frequently dried and eaten in the form of "hardtack," when it is impossible, as during sea-voyages, to obtain fresh bread.

PRESERVATION OF FOOD.

By preservation of food is meant the process by which the food is so changed that it can be kept for a longer or shorter period of time without undergoing putrefaction. The process of fermentation is induced by micro-organisms present in the atmosphere coming into contact with the food and contaminating it. Since putrefactive germs require a certain amount of moisture and heat for their growth, such foods as contain little water and that are not kept too warm are not so likely to undergo decomposition; on the other hand, foods containing much water undergo fermentation very rapidly. To prevent this process, four methods of preservation are, according to Yeo, available:

- 1. Drying.
- 2. Exclusion of air.
- 3. Exposure to cold.
- 4. Treatment with antiseptic chemic agents.
- 1. **Drying.**—By this process a large proportion of the water is abstracted. Vegetables, such as carrots, peas, potatoes, etc., are preserved by drying. Milk, in the form of nutrose, eggs, as egg-powder, and fruits are often preserved in this manner.
- 2. Exclusion of Air.—Air may be prevented from coming into contact with food in a number of ways: by immersing the food in oil or fat; by heating the food, so as to evaporate the external layers; by coating with some impermeable substance, as oil, salt, sawdust, varnish, or paraffin. Fish are frequently preserved by immersion in oil or by smoking. Ham and bacon are preserved by smoking, by which process the outer surface becomes coagulated and impermeable. Eggs are pre-

served by covering the fresh eggs with some impermeable substance, such as oil, fat, beeswax, or sawdust. In order properly to preserve food by exclusion of air, it is highly important that the food be perfectly fresh, and that any air that may be present be expelled.

In canning, the food to be preserved is heated in tin cans until steamed, when, all the air having been expelled, the can is soldered and rendered air-tight.

- 3. Exposure to Cold.—Food can be preserved indefinitely by ice. Meat and fish, which are often preserved by this means, should be cooked at once after thawing. Frozen meat loses about 10 per cent, more of its nutritive value in cooking than fresh meat. Frequently food is not kept directly on ice, but in refrigerating chambers
- 4. Treatment with Antiseptic Chemic Agents.—
 1. Salting.—The salting of food is a method that has
- 1. Salting.—The salting of food is a method that has been practised for many centuries. In this way meat and fish are easily preserved. The pale color of the meat produced by salting is overcome by adding a little saltpeter in addition to common salt. After the salting has been accomplished, it is often followed by smoking.
- 2. Sugar in strong solution acts as an antiseptic, and fruits are thus often preserved in concentrated syrups.
- 3. Vinegar acts as an antiseptic in preserving cucumbers, pickles, oysters, etc.
- 4. Other Antiseptics for Preserving Foods.—Among these substances are sulphur vapor; weak carbolic acid; strong acetic acid; injections of alum and aluminium chlorid into the blood-vessels; boric acid; borax; salicylic acid; formaldehyd.

The use of antiseptics to preserve foods is usually condemned, and laws have been enacted to prevent the adulteration of such foods as milk, beer, etc., with antiseptics, as salicylic acid, formaldehyd, etc. While small quantities of these substances, even taken for a considerable length of time, may not prove injurious, in large quantities they are dangerous.

ARTIFICIAL FOOD PREPARATIONS.

To this class of foods belong those preparations that are so concentrated as to furnish a large amount of food in small bulk; being of small bulk, they can be added to liquid foods, and thus the nutritive value of the latter increased without increasing the total quantity of liquid taken. A number of these preparations have been mentioned under the head of beef-juices and meat-powders. The various casein preparations, among which may be mentioned nutrose, eucasein, sanose, and plasmon, are artificial foods.

Among other artificial food preparations may be mentioned: 1. Pemmican. 2. Peptone products. 3. Mosquera "Beef Meal." 4. Somatose. 5. Legumin. 6. Aleuronat.

- r. Pemmican is prepared by cutting meat into thin slices and allowing them to dry; sugar and dried fruits are added, the nutritive value of the meat being thereby increased.
- 2. **Peptone products** are predigested protein foods. When given in large quantities they tend to produce diarrhea, and are objectionable to many patients on account of their disagreeable taste. Among the principal peptone products manufactured may be mentioned Kemmerich's, Koch's, Benger's, Savory & Moore's, Carnrick's, Armour's Wine of Beef Peptone, and Panopeptone.
- 3. Mosquera Beef Meal is prepared by partially digesting meat by means of a ferment obtained from

pineapple juice. According to Chittenden, this product contains 90 per cent. of nutritive matter (13 per cent. of fat and 77 per cent. of protein).

- 4. **Somatose** is a predigested meat consisting of albumoses. It is a yellowish powder, tasteless, odorless, and highly nutritious, and is usually well borne even in gastric disturbances.
- 5. **Legumin** consists of the casein of the legumes, and is a highly nutritious protein food.
- 6. **Aleuronat** is a brownish powder, chiefly utilized as a food for diabetics. It contains 80 per cent. of protein.
- 7. **Tropon** is prepared mainly from fish and vegetables, and as sold on the market appears as a brownish, tasteless powder. It is eaten mixed with broths or gruels.

Artificial Proprietary Foods.—A large number of proprietary foods designed as substitutes for milk for infants and invalids are on the market. Infants fed upon such foods alone are apt to become rachitic. Some of these foods have little food value; especially the amylaceous foods in which the starch has not been predigested. Many of these preparations contain too little fat and far too great a proportion of carbohydrates. According to Holt, "when children are fed upon foods lacking in fat the teeth come late, the bones are soft, the muscles flabby," while "children fed upon foods containing too much sugar are frequently very fat, but their flesh is very soft; they walk late and they perspire readily about the head and neck."

Hutchinson divides proprietary foods into three classes:

1. Foods Prepared from Cows' Milk with Various Additions or Alterations, and Requiring only the Addition of Water to Fit Them for Immediate Use.—To this class

belong Malted Milk, Nestle's Food, Lactated Food, Carnrick's Food, Cereal Milk, Wyeth's Prepared Food, and Wampole's Milk Food. These foods are prepared from flour baked and mixed with milk or cream and then dried. By means of the malt which is added the starches are converted into dextrin and maltose.

- 2. Farinaceous Foods Prepared from Cereals of which the Starch has been Partly or Wholly Converted into Dextrin or Sugar, and which Require the Addition of Milk to Fit Them for Use.—To this class belong Mellin's Food. Savory & Moore's Infant Food, and Benger's Food. These foods are prepared by mixing equal parts of wheat flour and barley malt with bran and potassium bicarbonate. The mixture is made into a paste with water, and kept at a warm temperature until the starch is converted into dextrin and maltose. As these foods are poor in fat, protein, and mineral matters, they are added to milk in order to render them more nutritious.
- 3. Farinaceous Foods in which the Starch has not been Predigested.—To this class belong Ridge's Food, Neave's Food, Imperial Granum, and Robinson's Patent Barley. These foods are poor in fat, protein, and mineral matters.

Other Proprietary Poods.—Crackers are prepared from flour, water or milk, and are baked into various forms. Baking-powder and soda, and frequently milk, butter, sugar, and flavoring extracts are added. Crackers are, as a rule, easily digested.

Malt Extracts.—Malt extracts are manufactured by heating a solution of malted barley at a moderate temperature *in vacuo*. Malt extracts are especially useful as beverages for those weakened by chronic disease, as tuberculosis or anemia, and in the convalescence from

acute diseases, as after typhoid fever or pneumonia. Among the various malt preparations may be mentioned Maltine, Kepler's Extract of Malt, and Hoff's Malt Extract.

COOKING OF FOODS.

The cooking of food is an art practised by all races. savage as well as civilized. Food is cooked to improve its flavor, to soften it so that it can be masticated and more easily digested, and finally to destroy all parasites and disease germs that may be present in the raw food. By cooking certain flavors are developed, which by their savoriness increase the appetite and the taste for the food. Cooking, moreover, destroys the tough fibrous envelopes that surround many foods, thus permitting the food to be more easily acted upon by the various digestive fluids. Various parasitic organisms present in many foods are destroyed by cooking, and the food thus freed from one of its most dangerous elements. On cooking, the protein in food coagulates: under the influence of dry heat the starches are gradually converted into dextrin; whereas, under the influence of moist heat the granules gradually swell until they rupture their envelopes. Sugars, by boiling, are changed gradually into caramel, which is the source of the odor frequently given off in the cooking of food. When fats are heated they undergo a change, with the production of free fatty acids which are often responsible for the odors that exist in the kitchen

Cooking of Meat.—Boiling.—In boiling meats the temperature of the water should not exceed the temperature necessary for the coagulation of the proteins. In order that the meat may retain as much of its flavor as possible, it should be immersed in boiling water for a few

moments; in this way the protein on the surface immediately coagulates, thus preventing the escape of the constituents and so retaining all the nutritive elements in the meat. After this has been accomplished, the temperature of the water may be lowered and the process of cooking continued. The broth which is so produced is thin and poor. If a rich, nutritious broth is desired, the meat should be cut into small pieces and placed in cold water, and the temperature gradually increased to 150° F. In this way the nutritious elements of the meat pass out into the broth.

Roasting.—In roasting, the meat is first exposed to a high temperature and afterward cooked slowly; thus, the outer layers coagulate at once, preventing escape of the juices. Roasting not only prevents evaporation of the flavors of meats, but by its effect on the extractives develops savory odors and flavors.

Baking.—Baking much resembles roasting, except that by the latter process the heat is applied all around the meat instead of only to one side.

Stewing.—For this purpose meat is cut into small pieces and placed in a small quantity of water. The water is heated slowly, but not allowed to boil; a certain amount of the nutritious substances thus passes into the water, which then becomes rich, and to which flavoring substances and vegetables are added. Inasmuch as the juice is eaten with the meat, none of the nutritious ingredients is lost.

Braising.—In this process the meat is placed in a small vessel and covered with a strong liquor of vegetable and animal juices: it is then heated, but not boiled. The tough fibers of the meat are thus loosened and made tender; the meat also becomes impregnated with vegeta-

bles and spices present in the juices, which enhance its flavor.

Broiling.—Broiling and roasting are similar processes, except that in the former smaller portions are utilized; the process is thus more rapid, a large surface being exposed to the direct action of the heat.

Frying.—In this process the meat is put into boiling fat, with which it becomes saturated; fatty acids are thus produced, which have a tendency to irritate the stomach and cause indigestion.

Cooking of Fish.—Fish may be boiled, broiled, baked, and fried. Boiled fish is most easily digested. Inasmuch as the flavoring substances are more easily dissolved out into the water and lost, less time should be consumed in boiling fish than in boiling meat. Sir Henry Thompson has shown that even with careful boiling 5 per cent. of the solid matter of fish is apt to be lost; for this reason steaming is often preferable.

Effect of Cooking.—The effect of cooking on meat is to diminish its watery constituents, thus concentrating and rendering it more nutritious; by this process also the extractives as well as some of the fats are partly removed.

Effect of Cooking on Vegetables.—The important object in the cooking of vegetables is to rupture the cellulose envelope and so to soften the contained starch granules. Under the influence of heat and moisture the starch swells and bursts its envelope, forming a paste; this paste, in its turn, expands and ruptures the cellulose envelope; cooking, therefore, renders vegetable foods more easily digestible.

As has been pointed out, in the cooking of meats a certain proportion of the ingredients is lost. Unlike meats, however, vegetables become more watery in cook-

ing. In this condition they are more easily acted upon by the gastric secretion; on the other hand, the addition of water in cooking so increases their bulk that the motor function of the stomach is apt to be overtaxed.

When food is cooked rapidly there is a tendency to overcook the outer layers and to leave the inner underdone. The better plan, therefore, is to cook food slowly for a longer period of time at a lower temperature. Various appliances are on the market which have for their object the production of a continuous action of a moderate heat at the expense of as little fuel as possible. The "Aladdin Oven" of Dr. Edward Atkinson is an apparatus of this kind.

DISEASES CAUSED BY ERRORS IN DIET AND BY VARIOUS FOOD POISONS.

Disease may be caused by taking too little or too much food, and also by a diet that is not well balanced—that is, does not contain the combination of food elements in the correct proportions—and by other dietetic influences, the precise nature of which is as yet obscure. It may also be caused by certain poisons or disease germs or parasites taken into the body with food and drink.

The diseases due to insufficient food are starvation, malnutrition, marasmus, and some forms of anemia. Chlorosis is liable to occur in underfed girls.

Overeating probably causes as much disease as overdrinking. Among the most striking of these are gout and obesity. Diseases of the skin, kidneys, liver, and other organs may also be due to this cause.

Lack of fresh food may produce scurvy and an improperly balanced diet may cause rickets.

The abuse of various beverages deserves mention.

The effects of the abuse of alcohol and the nervousness resulting from the excessive use of tea and coffee are well known.

Acute food-poisoning is usually due to the action of ptomains, and this is called ptomain-poisoning. Ptomains or toxins are poisonous substances caused by the action of bacteria, and may be generated in nitrogenous foods or in the alimentary tract. They resemble alkaloids, and when absorbed are partially destroyed by the liver. The symptoms vary, but nausea, vomiting, purging, pain in the abdomen, and collapse are the most frequent. Various names are applied according to the food which causes the trouble, as milk-poisoning (galactotoxismus); cheese-poisoning (tyrotoxismus); musselpoisoning (mytilotoxismus); fish-poisoning (ichthyotoxismus); meat-poisoning (kreotoxismus). Faultily cured sausage sometimes causes poisoning (botulismus), and epidemics of pneumonia have resulted from eating infected bacon, infected ham, or other spoiled meat. The poison may be present without producing any change in the appearance of the meat.

Other forms of food-poisoning are as follows:

Mushroom-poisoning.—Poisonous fungi are frequently mistaken for edible mushrooms and lead to poisonous symptoms. The active principle in these fungi is called muscarin. If there is a ring about the stalk, the mushroom peels easily and has pink gills, it is said to be non-poisonous. This is not a safe rule, as some of the most poisonous varieties answer to this description.

Grain-poisoning.—There are three forms of grain-poisoning—ergotism, pellagra, and lathyrism. Most cases and epidemics have occurred among the poverty-stricken European peasants.

Ergotism (sitotoxismus) is due to eating spurred rye, from which the drug ergot is obtained. Lathyrism (lupinosis) is caused by eating the chick-pea. Pellagra (maidismus) is caused by eating fermented maise. It is frequently seen in Italy.

Beriberi is a disease attributed to the use of an excess of carbohydrate food or to spoiled rice. It is thought that it may be of bacterial origin.

Actinomycosis or lumpy-jaw, a disease of cattle, is sometimes transmitted to man. In some of the cases the patients were in the habit of chewing raw grain.

Foot-and-mouth disease is another disease of cattle which may be transmitted by the use of milk from cows suffering with it. Such milk should not be used. If the disease is suspected the milk should be boiled.

Hydatid Disease.—Cysts of a peculiar character sometimes occur in man by taking the eggs of a dog tapeworm (Tænia echinococcus) into the body with the food. Green salads are the most frequent source of infection. The disease is almost unknown in America.

Idiosyncrasies.—Curious food idiosyncrasies exist and must be borne in mind. They are more often fancied than real. Urticaria (hives) may be caused in some people by eating crabs, oysters, strawberries, and other articles of food. Gastric pain, vomiting, diarrhea, and other symptoms may be produced by such foods in some persons, while others eat them with impunity.

Parasites.—Certain parasites may be taken in with food or drink. Many of these are rare, and seldom if ever seen in America. Among them may be mentioned the following: **Amœba coli**, taken in with drinking-water, is the cause of one form of dysentery.

Several species of tapeworm (Tænia solium in pork,

T. mediocanellata in beef, etc.), of which the beef tapeworm is the common variety in the United States, may be met with.

The pin-worm (Oxyuris vermicularis) and the round-worm (Ascaris lumbricoides), the eggs of which are supposed to be taken in water or raw food. The hook-worm (Strongylus duodenale), which causes a severe anemia, is taken in drinking-water. The trichina is taken in with raw pork, and the filaria is taken in with drinking-water.

Infected Milk.—Certain diseases may sometimes be transmitted by infected milk. Among these are diarrheal diseases, diphtheria, scarlet fever, typhoid fever, and Asiatic cholera. The last two are usually carried by infected water.

FOOD ADULTERATION.

Food adulteration is of two kinds: that which is injurious and that which is non-injurious. The latter is practised where there are no fixed standards, or, where such do exist, in debasements from these fixed standards. Adulterations may be classified as follows:

- I. **Conventional**—to suit the taste and demands of the public. Such adulterations are usually effected by means of coloring-matters, many of which are harmful, and by bleaching certain products.
- 2. Accidental or incidental—arising from environment, carelessness, or incompetency on the part of the producer, manufacturer, or his agents. This usually consists in an admixture of some foreign substance, such as husks, stems, leaves, etc.
- 3. **Arbitrary**—to comply with or take advantage of certain fixed arbitrary standards.
 - 4. Intentional—for purposes of gain and competition.

A Table of the Various Adulterations.1

Articles.	Deleterious adulterants.	Fraudulent adulterants.	Accidental adulterants.		
Arrowroot.		Other starches which are substituted in whole or in part for the genuine article.			
Brandy. Bread.	Sulphate of alum.	Water, burnt sugar. Flours other than wheat, inferior flour, potatoes.	Ashes from oven grit from mill		
Butter.	Copper.	Water, other fats, excess of salts, starch.	stones. Curd.		
Canned vegeta- bles and meat.	Salts of copper, lead.	Excess of water.	Meat damaged in the process of canning.		
Cheese.	Salts of mercury in the rind,	Oleomargarin.	canning.		
Candy and con- fectionery.	Poisonous colors, ar- tificial essences.	Grape-sugar.	Flour.		
Coffee,	theat eschees.	Chicory, peas, rye, beans, acorns, chebus-nuts, almond or other rut- shells, burnt sugar, low-			
Cocoa and chocolate,	Oxid of iron and other coloring-	grade coffees. Animal fats, starch, flour, and sugar.			
Cayenne pepper.	matters. Red lead.	Ground rice-flour, salt, ship-bread, Indian meal.	Oxid of iron.		
Flour. Ginger.	Alum.	Ground rice. Turmeric, Cayenne pep- per, mustard, inferior varieties of ginger.	Grit and sand.		
Gin.	Alum salt, spirit of turpentine.	Water, sugar.			
Honey.		Glucose, cane-sugar.	Pollen of various plants and in- sects.		
Isinglass. Lard.	Caustic lime, alum.	Gelatin. Starch, stearin, salt.			
Mustard.	Chromate of lead, sulphate of lime.	Yellow lakes, flour, tur- meric, Cayenne pepper.			
Milk. Meat.	Water. Infested with para- sites.	Burnt sugar, annatto.	Sand, dirt. Tainted,		
Horseradish. Fruit-jellics.	Anilin colors, arti- ficial essences.	Turnip. Gelatin, apple-jelly.			
Oatmeal, Pickles.	Salts of copper, alum.	A11	Old and wormy.		
Preserves. Pepper.	Anilin colors.	Apples, pumpkins, mo- lasses. Flour, ship-bread, linseed	Sand.		
Sago.		meal. Potato-starch.			
Rum.	Cayenne pepper, ar- tificial essences.	Water.	Burnt sugar.		
Sugar.	Salts of tin and lead, gypsum.	Rice-flour.	Sand and dirt, in- sects dead and alive.		

 $^{^1\,\}mathrm{From}$ Bulletin No. 25, Division of Chemistry, United States Department of Agriculture.

\$ ₁₀ *** 1*-	per en esper accurtoscarres	Francuen admergine	Forterental acquirerants.
that the state of		Four starting transfer than the start transfer the start of the start	i errigious cari.
		humeagn pun nedgo foressan bine, nua an sizipature port- sun.	
Afric grac	THE PART OF STREET		
p. Tit.	but it ore more	V atem	buinate o' lottes siun.

When I also about a sometimes used to adultimate along their theoretics. Theoretic extracts or drugs. It may be associated the sources of upon.

Ixac and digited or white salts may obtain that it is vay into particular. This may be used intentions and Ixac may dome from so der chopped in the mat or firm using due in terms or mediagour for the mass. In the implicit should be reminded.

Preservatives.—Varyous chemicals are mixed with forces to preserve them. It some continues the use of improvement as a formal and subsystem is a polar to be update of socious are the most frequent. They are all injurious and if taken mix the body months of the product disturbances of digistron bower the notifiers and may base disease of the koditeys. Formaldebyid is frequently used and it general it may be stated that its use is undestrable and dangerous.

CHAPTER IV.

THE FEEDING OF INFANTS AND CHILDREN.

There are four methods of feeding infants: (a) Breast-or maternal feeding. (b) Wet-nursing. (c) Mixed feeding—i. c., breast-feeding supplemented by bottle-feeding. (d) Bottle- or artificial feeding.

(a) **Breast-feeding.**—This is the natural and best way to feed a baby, and every mother, if she is capable, should be instructed about nursing her infant. The mental attitude of the mother has much to do with the secretion of milk, and the nurse should never discuss the mother's probable incompetency with her. All conversation should be hopeful and encouraging. If the baby is not gaining properly, tell the physician and not the mother.

During the later months of pregnancy the breasts should be examined, and if the nipples are short they should be gradually lengthened by gentle traction several times a day. If they are inverted, a breast-pump may be needed to draw them out at first. During the entire nursing-period the breasts should be washed after each nursing, preferably with a boric acid solution. This does much toward preventing ulcers, fissures, and inflammations.

During the first forty-eight hours the child receives practically no nourishment from the breast, the only fluid secreted during this time being a yellowish creamy substance known as colostrum. This has a laxative effect upon the child's bowels. The child should,

however, be put to the breast at regular intervals to stimulate the secretion of milk, which becomes free on the beginning of the third day, although it may be delayed a day or two longer. During the first two days the nursing child does not require anything except what it gets from the breast. It may, however, be given a teaspoonful or two of warm boiled water or of a 5 per cent. solution of milk-sugar. If the free flow of milk is delayed beyond forty-eight hours the child must be given nourishment, but should nevertheless be put to the breast at regular intervals, to help establish the milk secretion. Neglect of this important point often causes a failure in the secretion.

If necessary the mother may be instructed as to the manner in which to give the child the breast. The child should lie on the right or left arm, according to whether the child is nursed at the right or left breast. If the mother is in a sitting posture her body should be inclined slightly forward. With her free hand she should grasp the breast near the nipple, between the first two fingers. If, owing to the too free flow of milk, the child takes the milk too rapidly, this may be checked by slight pressure of the fingers. The child should nurse until satisfied. The contents of one breast are generally sufficient for one nursing, and the breasts should be used alternately. When satisfied the child will usually fall asleep at the breast. Under ordinary conditions nursing should last from about ten to twenty minutes. If the milk is taken too rapidly, vomiting may ensue during or immediately after feeding. If too much is taken, it is regurgitated almost immediately. If the infant consumes more than half an hour in nursing, the breast and the milk should be examined. As the infant grows it

requires and takes more food, and consequently nurses somewhat longer than in its earlier days.

Good nursing habits should be insisted upon, as many attacks of indigestion, colic, and diarrhea may be traced to improper nursing. When good habits are established there is generally but very little trouble, the success of the training depending largely upon how it is done. Regular hours for feeding should be fixed and adhered to; if the child is asleep at the nursing hour it may be aroused, for it will almost invariably go to sleep after nursing. After the last feeding, which should be at 9 or 10 o'clock, the child should be quieted and allowed to sleep as long as it chooses. During the first month or two the infant will, as a rule, awaken between I or 2 o'clock and again at 4 or 5 o'clock. After two or three months it will require but one night feeding, and after five months of age the average infant will sleep all night without nursing.

When the change is being made and the child awakens for its accustomed nursing, it should be given a little warm water from a bottle and quieted but not taken up.

The following table from Holt may be used as a guide in breast-feeding:

Age.	Number in twenty-four hours.	Intervals during the day.	Night nursing between 9 P. M. and 7 A. M.
Ist day	4	6	ı
2d day	6	4	1
3d to 28th day	10	2	2
4th to 13th week	8	21/2	I
3d to 5th month	7	3	I
5th to 12th month	6	3	0

If the child is small or ill it will run somewhat behind the above schedule, and if it is large and robust somewhat ahead of it. It is a good general rule to feed the child according to the age to which the child's weight corresponds. The child's weight is the best index to its nutrition. During the first few months it should be weighed twice a week, then once a week, and during the second six months twice a month.

If the mother's milk is unsuited to the child it is fretful, the weight remains stationary or the child loses, and there may be bowel disturbances. In such cases the physician frequently examines the breast-milk to determine its quality, and he may either decide to wean the child or to take certain measures to improve the breastmilk. The following are the most frequent means of modifying the mother's milk:

- I. If the milk is too rich the diet should be limited, especially as to the amount of meat taken. All alcoholic and malted drinks should be prohibited. With plenty of fresh air and exercise, such as walking, the desired effect will generally be brought about. The exercise should be carried to the point of fatigue.
- 2. When the milk is good but deficient in quantity, the supply may be increased by massage of the breasts three times a day and from five to ten minutes. A good malt extract should be given with the meals, plenty of milk should be given, and exercise and fresh air looked after.
- 3. When the milk is deficient both in quality and quantity the above means should be used, and the physician generally prescribes iron in addition, and special orders about the diet.
- 4. When the quantity is normal but the quality poor the same means should be tried, but these cases are practically hopeless, and the physician usually decides to wean the child.

Contra-indications to Maternal Nursing.—While it is desirable that the mother should nurse her child if possible, certain things do not permit it in the best interests of both mother and child. It is strictly the physician's province to decide this question, but it is well for the nurse to know that the following are the contra-indica-

tions: I. If the mother has tuberculosis in any form. 2. If the mother has had any serious complications, either with pregnancy or parturition, nephritis, convulsions, hemorrhage or infection. 3. If the mother has chorea or epilepsy. 4. If the mother has shown in two previous pregnancies that she is totally unable to nourish her child. 5. When no milk is secreted nursing is impossible, but bear in mind that the milk-supply may be deficient because no care is taken to establish it.

(b) **Wet-Nursing.**—With the advent of better methods of artificial nursing the wet-nurse is disappearing, at least in the United States. Some infants will not thrive on any but human milk, and sometimes wet-nurses are

Fig. 3.—A hygienic nursing bottle (De Lee).

still employed. Their choice should always be supervised by a physician.

(c) **Mixed Feeding.**—The physician may decide to give the child one or more bottles a day, while the milk is being established, if it is delayed beyond forty-eight hours, during illness of the mother, during weaning, and often one bottle a day is allowed to permit the

mother to attend to necessary household or social duties.

(d) Artificial Feeding.—When it becomes necessary for the child to be fed on the bottle, the milk-mixture to be used should be prescribed by the physician, and the nurse instructed by him in its preparation. It happens very often that many details are left to the nurse, and frequently even the entire matter. The following short account will help her understand what is expected. (Full details will be found in our larger book, "Diet in Health and Disease.")

The average infant will not thrive on plain cows' milk. To render it more fit for digestion it is diluted with water, lime-water, cereal gruels, and other articles of diet. The necessity for this will be seen on considering the differences between cows' and mother's milk.

Proteins.—These differ in amount and character. Mother's milk contains 1.5 to 2 per cent. of protein, on an average. Of this two-thirds are lactalbumin and one-third casein, the latter being much more digestible than the former. In cows' milk there is about 3.5 per cent. protein, of which five-sixths are casein and one-sixth lactalbumin. The casein of mother's milk is coagulated in the stomach in small flocculent masses. Cows' milk is coagulated in large curds. The proteins of cows' milk may be prevented from forming large curds by the addition of lime-water, barley-water, and gruels.

Sugar.—Milk-sugar is present in mother's milk in a very constant proportion of 6 to 7 per cent. In cows' milk it averages 4.5 per cent. Milk-sugar must be added to the milk to bring up the amount, or sometimes canesugar is added. Owing to its excessive sweetness, canesugar is used in just half the quantity of milk-sugar.

Fat.—The fat in human milk averages 4 per cent.; that of cows' milk is the same. When the cows' milk has been diluted, the quantity of fat must be made up by adding cream or using the upper part of the milk after the cream has risen, as explained below in the "Top-Milk Method."

Salts.—The inorganic salts in the milks vary in about the same proportion as the proteins. They need not be considered in modifying milk for babies.

Reaction.-Mother's milk is always alkaline, while cows' milk is acid or neutral. This acidity must be corrected by adding 5 per cent. of lime-water. If the milk is to be sterilized at boiling-point, the lime-water should be added afterward, or else sodium bicarbonate added in the proportion of I grain to the ounce. Coit uses potassium bicarbonate.

MILK MODIFICATION.

There are a number of methods of modifying milk for infants, if it is necessary to do more than to make a milk approximate in character that of human milk. A young and feeble child requires small percentages of all ingredients, which may be increased gradually as the child's digestive powers increase. Rotch gives a table (p. 102) based on the experience of the Walker-Gordon Laboratory.

Where the proteins are split, the result is obtained by using mixtures of whey and cream or milk. The whey is obtained by coagulating the casein with rennin or essence of pepsin (Fairchild's).

Laboratory Method.—In certain cities there are milk laboratories, known as the Walker-Gordon laboratories, where physicians may send prescriptions for milkmixtures, which are made at the laboratory and sent to the home of the infant. The only procedure is to remove the cotton stopper from the bottle and replace it with a nipple and warm the milk. The Walker-Gordon Company also supply an ideally clean milk for infants' use.

Theoretic Basis for Feeding a Healthy Infant.—Rotch.

				Proteins	s if split.	each oz.	between g in hrs.	feed- hrs
Age.	Fat.	Sugar.	Proteins.	Whey pro-	Casein.	Amount at feeding in	Interval beta feeding in	Number of ings in 24
Premature {	1.00	4.00	0.25	0.25	0.25	1/8-3/4	1-11/2	24-18
At term	2.00	5.00	0.50	0.50	0.25	, I	2	10
End of 2d week .	2.50	5.50	0.50	0.50	0.25	11/2	2	10
End of 3d week .	3.00	6.00	0.75	0.75	0.25	2	2	9
End of 4th week .	5.50	6.50	1.00	0.75	0.50	21/2	2	9 8
End of 6th week .	4.00	7.00	1.00	0.90	0.60	3	21/2	7
End of 8th week .	4.00	7.00	1.25	0 90	0.75	31/2	21/2	7
End of 12th week	4.00	7.00	1 50	0.90	1.00	4	21/2	6
End of 4th month	4.00	7.00	1.50	0.75	1.25	4½ 5½	21/2	6
End of 5th month	4.00	7.00	1.75			51/2	3	6
End of 6th month	4.00	7 00	2.00			6	3	6
End of 8th month	4.00	7.00	2.50			7	3 3 3	6
End of 9th month	4.00	7.00	3.00			8	3	0
End of roth month	4.00	6.00	3.00			8		6
End of 11th month	4 00	5.00	3.00			10	3	7 7 6 6 6 6 6 6 6 6 6 6 5 5 5 5
End of 12th month	4.00	4.75	3.50			10	3	5

Top-milk Method.—One of the most frequently used methods is that of Holt, known as the top-milk method. The milk is received in bottles and allowed to stand until the cream has separated. The mixtures are made up by using either the upper third, upper half, or the whole milk. To remove the top milk, the first ounce is taken off with a spoon and the remainder taken out with a Chapin milk-dipper, poured off, or a siphon used to remove the milk from underneath it. Lime-water, sugar, and the required quantity of water are added. The following formulas are taken from Holt's book:

FIRST SERIES OF FORMULAS—FAT TO PROTEIDS, 3:1.

Primary Formula.—Ten per cent. milk—fat, 10 per cent.; sugar, 4.3 per cent.; proteids, 3.3 per cent. Obtained—(1) as upper one-third of bottled milk or (2) equal parts of milk and 16 per cent. cream.

Derived formulas, giving quantities for 20-ounce mixtures:

1. {	Lime-	water .	I oz.]	with.	2 oz.	10 p.c.	milk	Fat, per cent.	Sugar, per cent. 5.50	Pro- teids, per ct. O. 33
2.	44	**	44	64	3 oz.	66	66	1.50	5.50	0.50
3.	44	66	**	64	4 oz.	44	66	2.00	6.00	0,66
4.		* *	66	6.	5 oz.	66	64	2.50	6,00	0.83
5.	44	44	44	66	6 oz.	66	46	3.00	6.00	1.00
6.	46	**	46	**	7 oz.	66	**	3.50	6.50	1.16

Table Giving in a Condensed Form the Quantities Usually Required for Obtaining the Different Fat-percentages.

	A	В	C	D	\mathbf{E}	F	G	Н	1	J	K	L	M	N	0
To obtain fat,	0.50	1.0	1.5	2.0	2.0	2.5	2.5	2.75	3.0	3.0	3.0	3.25	3.5	3.7	4.0
ounces	0.20	20.0	20.0	20.0	25.0	28.0	28.0	28.00	30.0	33.0	36.0	36.00	37.0	38.0	40.0
Take 10 per ct. milk, ounces	0.10	2.0	2.0	4.0	5.0	7.0	8.0	8.00	9.0	10.0	11.0	11 00	13.0	14.0	16.0

Proteids: The percentage in each case will be one-third fat.

Sugar: I ounce in 20, or I tablespoonful in 8 ounces, gives 5.5 per cent. for the lower and 6.5 for the higher formulas.

Lime-water: I part to 20 of the food, the average required.

Water: Sufficient to be added to the foregoing ingredients to bring the total to the number of ounces specified; in part of this water the milksugar is dissolved. Barley-water or any other diluent may be added in the same manner.

SECOND SERIES OF FORMULAS—FAT TO PROTEIDS, 2: 1.

Primary Formula.—Seven per cent. milk—fat, 7 per cent.; sugar, 4.4 per cent.; proteids, 3.5 per cent. Obtained—(1) as upper one-half of bottled milk, or (2) by using 3 parts of milk and 1 part 16 per cent. cream.

Derived Formulas, giving quantities for 20-ounce mixtures:

	Milk-sı		. 1 oz.)					Fat, per cent.	Sugar, per cent.	Pro- teids, per ct.
1. {			. I oz. }	with	3 oz. 7	p.c.	milk	. 1.00	5.50	0.50
(Water,	q.s. a	l. 20 oz. J							
2.	64	66	**	44	4 OZ.	4.4	66	1.40	5.75	0.70
3.	66	66	44	44	5 oz.	++	4.6	1.75	6.00	0.87
	66	66	66	44	6 oz.	* *	6.6	2.10	6.00	1.05
Š.	46	66	66	4.6	7 oz.	4.6	44	2.50	6.50	1.25
4. 5. 6.	66	44	44	4.6	8 oz.	66	6.6	2.80	6.50	1.40
	66	6.6	66	44	g oz.	44	6.6	3.15	7.00	1.55
7· 8.	66	66	66	66	10 oz.	44	66	3.50	7.00	1.75
9.	Milk-s Lime-v Water,	water	$\left\{\begin{array}{cc} \frac{3}{4} \text{ oz.} \\ \text{I oz.} \\ \text{d. 20 oz.} \end{array}\right\}$. "	I 2 OZ.	• •	"	4.00	7.00	2,00

Table Giving in a Condensed Form the Quantities Usually Required for Obtaining the Different Fat-percentages.

A B C D E F G H 1 J K L M
To obtain fat per cent. 7.0 1.0 1.4 1.8 2.0 2.33 2.75 2.75 2.1 3.1 3.5 3.5 4.0 4.0
For total food, ounces 20.0 30.0 33.0 33.0 35.0 36.0 36.0 40.0 40.0 40.0 40.0 44.0 48.0 48.0
Take 7 per ct. milk.,
3.0 40 60 8.0 10.0 12.00 14.00 16.00 18.0 20.0 22.0 25.0 28.0
ounces

To obtain the exact fat-percentage, take one-third the number of ounces of top-milk in a 20-ounce mixture and add 0.15 to the result. In practice this slight error may be disregarded.

Proteids: The percentage in each case will equal one-half of the fat.

Sugar: I ounce in 20, or I even tablespoonful in 8 ounces, until the food becomes half milk; after that I ounce in 25, or I even tablespoonful to each IO ounces of the food, will give the proper amount.

Lime-water: Usually in the proportion of I part to 20 of the total food.

Water or other diluent: Sufficient to be added to the foregoing ingredients to make the total number of ounces specified; in part of this the sugar is dissolved.

THIRD SERIES OF FORMULAS—FAT TO PROTEIDS, 8:7.

Primary Formula.—Plain milk—fat, 5 per cent.; sugar, 4.5 per cent.; proteids, 3.5 per cent.

Derived formulas, giving quantities for 20-ounce mixtures:

ares.							Pro-
					Fat,	Sugar, per cent.	teids, per ct-
(Milk-sugar .	I oz.				per cent.	•	
Milk-sugar . Lime-water .	I oz. } with	5 oz.	plain	milk	. 1.00	6.00	0.87
(Water, q.s. ad.	20 oz.)						
2. " "		6 oz.	6.6		1.20	6.00	I.00
3. " "	66 66	8 oz.	6.6	4.6	1.60	6.50	1.40
4. " "		IO OZ.			2.00	7.00	1.75
Milk-sugar . 5. Lime-water .	$\frac{1}{2}$ oz. $\left\{\begin{array}{c} \frac{1}{2} \text{ oz.} \\ \frac{1}{2} \text{ oz.} \end{array}\right\}$ "	12 oz.	66	4.6	2.40	5.00	2.10
(Water, q.s. ad.	2 0 oz. J						
6. " "	**	I4 oz.		64	2.80	5.50	2.50
7. " "	"	16 oz.	"	66	3.20	5.50	2.80

Table Giving Quantities of 16 per cent. Milk Required for Obtaining Formulas with High Fat and Low Proteids.

	A	В	C	D	E	F	G	Н	I	J	K
To obtain fat, per cent											
For total food, ounces	. 20.0	30.0	30.0	32.0	32.0	37 0	42.0	36.0	40.0	40.0	44 0
Take 16 per cent. milk, ounces	. 2.0	3.0	4.0	5.0	6.0	7.0	8.0	8.0	9.0	10.0	11.0

Proteids in all cases will be one-fifth the fat.

Sugar: I even tablespoonful for each 8 ounces will give 5.5 per cent. for the lower formulas (A, B, C, etc.) and 6 per cent. for the higher formulas (G, H, I, etc.).

Lime-water: I ounce to 20 ounces of the food will give 5 per cent.

Materna Graduate Method.—Where a nurse is thrown on her own responsibility, the Estraus Materna Graduate is of great service. With it six modifications can be made, which are sufficient for the average child. Sometimes, of course, a child will be found whose digestive powers do not correspond with the few formulas furnished.

The apparatus consists of a glass jar with a lip and seven panels, and a capacity of 16 ounces. One of the panels exhibits an ordinary ounce graduation; the other six panels present six different formulas for the modification of cows' milk, each formula being so arranged as to keep pace with the infant's growth, viz.:

FORMULA:

Fat . . . 2 per ct. $2\frac{1}{2}$ per cent. 3 per cent. $3\frac{1}{2}$ per cent. 4 per cent. $3\frac{1}{2}$ per ct. Sugar . 6 " 6 " 7 " 7 " $3\frac{1}{2}$ " Protein o.6 " o.8 " 1 " $1\frac{1}{2}$ " 2 " $2\frac{1}{2}$ "

For Formula 6 see special instructions below.

	3d to 14th day.	2d to 6th week,	6th to 11th week.	11th week to 5th month.	5th to 9th month.		9th to 12th month.
Milk parts Cream	11/4	15%	2	412	6	Milk parts	934
Lime-water "	1	1	3/4	3/4	34	Barley-gruel . "	51/4
Water	121/2	1134	111/4	83/4	71/2	Granulated sugar,	1/4

Fig. 4.—The "Materna" graduate (De Lee).

Having decided which formula is to be used, the panel containing that formula is the only one to be followed. The quantity desired for twenty-four hours is next to be considered, and the apparatus filled—once, if 16 ounces or less are required for the twenty-four hours; twice, if from 16 to 32 ounces are required for the twenty-four hours; three times, if from 32 to 48 ounces are required for the twenty-four hours.

Baner's Method.—If the percentages have been given, the quantities of milk, cream, sugar and water needed may be determined by the following formulas:

Quantity desired (in ounces) =
$$Q$$
.
Desired percentage of fat = E .
Desired percentage of sugar = S .
Desired percentage of protein = P .

To find in ounces:

Cream (16 per cent.)
$$= \frac{Q}{12} \times (F - P).$$
Milk
$$= \frac{Q \times P}{4} - C.$$
Water
$$= Q \cdot (C + M).$$
Dry milk-sugar
$$= \frac{S - P \times Q}{100}.$$

Example.—Suppose it is desired to make 40 ounces of a 4 per cent. fat, 7 per cent. sugar, 2 per cent. protein mixture. By substituting the figures in the equations above we have—

Cream
$$= \frac{40}{12} \times 2 = 6\frac{2}{3}$$
 ounces.
Milk $= \frac{40 \times 2}{4} = 6\frac{2}{3} = 13\frac{1}{3}$ ounces.
Water $= 40 - 20 = 20$ ounces.
Sugar $= \frac{5 \times 40}{100} = 2$ ounces.

Malted gruels, various diastase preparations, such as diastoid, maltine and diazyme, as well as the malted foods, such as Mellin's, are sometimes used to prepare the infant's milk, especially if there is constipation. Bar-

ley-, oatmeal-, and rice-water are sometimes used to dilute the milk to break up the curd. Barley- or rice-water is preferred when there is a tendency to loose bowels, and oatmeal-water when there is constipation. Cereal gruels are probably best not begun before the eighth or ninth month, unless there be some special indication for so doing.

Beginning Bottle - feeding. — The percentages should be low at first, far below what would be given the child if it were accustomed to cows' milk. As soon as the infant's stomach is accustomed to the milk, it should be rapidly increased in strength until the proper mixture for the child in question is reached.

Technic of Modifying Milk at Home.—Great care and cleanliness should be used. The vessels and instruments used should, if possible, be kept solely for the use of the infant. All bottles, pitchers, and other utensils should be thoroughly boiled or scalded before using. The nursing-bottles should have rounded bottoms, to facilitate cleansing. It is a good plan to keep the bottles sweet by filling them with a solution either of boric acid or sodium bicarbonate, a teaspoonful of either drug to a pint of water. The nipple should be ordinary short black rubber ones and white rubber, and all nipples with tubes or complicated structure avoided, as they are hard to clean and are liable to lead to bowel troubles. It is a good plan to have several nipples on hand, and to boil them when first bought, and once a day afterward. They should be thoroughly washed after each using turning them inside out for that purpose, and kept in a solution of boric acid or sodium bicarbonate. The milk should drop rapidly when the bottle is held upside down. If it does not run fast enough, the

holes in the nipple should be enlarged by using a redhot darning-needle. If the flow is too free it may cause vomiting, and such nipples should be rejected.

It is best to prepare the entire quantity for the twentyfour hours at one time. If the weather is warm the milk should be either sterilized or Pasteurized, unless an exceptionally pure milk is being used. If neither can be done, the feedings may be prepared one at a time as needed.

The sugar, either milk or cane, is dissolved in hot water. If the solution is not perfectly clear, it should be filtered. This is poured into a pitcher with the limewater or the soda, and the milk or milk and cream and other ingredients, if any have been ordered, should be added. After mixing, the nursing-bottles are filled with the proper quantity for each feeding, and the bottles stoppered with sterile raw cotton. The bottles are then sterilized or Pasteurized as directed, and then, after rapid cooling, are placed in the refrigerator. At the feeding-hour the bottle is heated and a nipple substituted for the cotton stopper.

FEEDING DURING THE SECOND YEAR.

During the second year of life as much care is required in feeding as during the first. The fear of the second summer would largely be overcome if the child were not allowed to eat food unsuited to its digestion. The fact that some children thrive on almost any kind of food is no excuse for permitting a child to have the same food as its elders, as is so often done. Most of the illness and many of the deaths of childhood are traceable to improper diet.

During the second year milk should form the basis of the diet. In cities or where the milk-supply is not above suspicion, it is best to Pasteurize the milk until the second summer has been passed, or even longer if circumstances warrant. As a rule, the milk requires but little modification, and after the eighteenth month, and often before, may generally be taken unmodified. As the child is now able to digest starchy food, milk-sugar may be omitted. In cases where the milk is not thoroughly digested, as is evidenced by curds in the stools, limewater may be used, and may be added in quantities of from 5 to 10 per cent., or even more if necessary. If the milk is very rich, it should be diluted either with limewater or usually with plain sterile water-three parts of milk to one of water. If the milk is poor or if milk that is not rich does not agree with the child, it may be prepared as follows: Fill a glass three-quarters full of milk, add one or two tablespoonfuls of cream, and fill to the top with plain water. If this does not answer, add a tablespoonful of lime-water. During illness, and often under other circumstances, the alkaline carbonated waters will be found useful for diluting the milk. If the milk is poor, another plan is to use the upper two-thirds of the milk.

Starchy food may be given in the form of gruel, either alone or, what is better, mixed with the milk. Barley-gruel or, if there is a tendency to constipation, oatmeal-gruel is added, one-fifth or one-fourth part of gruel being added to each feeding. The gruel should be freshly prepared and mixed immediately with the milk. A pinch of salt and a very small quantity of cane-sugar may be added to render it more palatable. It may then be Pasteurized like ordinary milk.

During the second year five meals at about four-hour intervals should be given. The bottle should be dis-

pensed with and the food be taken from a cup or spoon. If the bottle is not taken from the child early, it may be difficult to break it of the bottle habit. The following diet-lists for different ages will be found useful:

Twelve to Fifteen Months .- Milk, barley-, oatmeal-, wheat-flour-, farina-, or arrowroot-gruel; barley- or oatmeal-jelly: lightly boiled volk of egg, given with stale bread-crumbs.

Beef-, mutton-, or chicken-broth, chicken-jelly, beefjuice.

Orange-juice or the juice of other ripe fruit, as of peaches.

First Meal.—On waking, the child should receive a cupful of warm milk, modified as previously suggested. If the child is accustomed to waking very early, more milk may be given at about 7 A.M.; otherwise this last may be regarded as the first meal.

Second Meal, 10.30 A.M.—Eight ounces of warm milk and barley-gruel.

Third Meal, 2 P.M.—One of the following:

- (a) Eight ounces (a cupful) of beef-broth.
- (6) " yeal-broth.
- (c) " " mutton-broth.
- " chicken-broth.
- (e) Yolk of a lightly boiled egg with stale bread-crumbs.

Fourth Meal, 5 P. M.—Eight ounces of milk and barleygruel.

Fifth Meal, 10 P.M. (if required).—Eight ounces of milk.

Orange-juice, one or two tablespoonfuls at a time, may be given for one hour before the 10.30 A. M. feeding. If there is a tendency to loose bowels this should be omitted.

If the child's appetite is very good a small piece of zwieback may be given with either the second or the fourth meal. This should not be soaked in the milk, but the child should be allowed to nibble at it dry.

Fifteen to Eighteen Months.—Same as above, together with zwieback, stale bread (oven-dried), whole eggs very soft boiled; strained oatmeal, barley, or wheat-porridge; bread and milk, thin biscuit (crackers), junket, scraped raw beef or mutton in very small quantities.

A Sample Dict for a Child of Fifteen to Eighteen Months.—Breakfast, 7 A. M.—Either (a) two tablespoonfuls of a cereal jelly (oatmeal or other grain as desired), with salt and two tablespoonfuls of cream, and eight ounces of milk to drink; or (b) a bowl of bread and milk containing eight ounces of milk and a slice of stale bread.

Second Meal, 10.30 A. M.—Milk, with a cracker or thin slice of stale bread or a piece of zwieback.

Third Meal, 2 P. M.—One of the following: (a) Very soft-boiled egg with stale bread-crumbs. (b) Eight ounces of broth (beef, veal, mutton, or chicken) with stale bread-crumbs or a little barley added to it. (c) A tablespoonful of mashed baked potato with meat-broth or gravy (one to two ounces), or with two tablespoonfuls of cream. Milk to drink. (d) Scraped raw beef or mutton, two or three tablespoonfuls on a "banquet wafer," with a cup of milk. A tablespoonful of junket may be added to any of these.

Supper, 5.30 or 6 P. M.—Eight ounces of milk with a piece of zwieback, a slice of stale bread, or a cracker or two. Fifth Meal, 10 P. M. (if needed).—Cup of milk.

Fruit-juice may be given, as previously directed. Eggs should not be given oftener than twice a week, as children tire of them easily.

Eighteen Months to Two and One-Half Years .- Milk is to be regarded as the chief article of diet. Many children have no desire for other foods until the second or third year. These children will generally be found to thrive on milk alone or with slight additions to the diet. As the child's digestive power increases, the following articles may, however, be added one at a time:

Fruit.—Iuice of ripe fresh fruit, that of oranges and peaches being best. Ripe fresh grapes skinned and seeded. Baked apple—pulp only, the skin and seeds to be carefully removed. Stewed prunes, the skins to be removed by passing through a sieve.

Meats.—Scraped raw beef or mutton; rare roast beef or mutton pounded to a pulp. Chicken or turkey, the lean white meat minced to a pulp.

Vegetables.-- Mashed baked potato with cream or covered with gravy from roast meats. If the latter is very fat, the fat should be removed by skimming or by means of a piece of blotting-paper. Very well-cooked spinach, celery, and cauliflower tops.

Cercals.—Well-boiled rice and other well-cooked cereals already mentioned.

Desserts.—Boiled custard, milk- and rice-puddings, junket.

Four meals will generally suffice after the eighteenth month. The following dietary will serve as a suggestion:

If the child wakes early, a cupful of warm milk (six ounces).

Breakfast, 7 A. M.—(a) Four tablespoonfuls of oatmealporridge or other cereal with salt and two tablespoonfuls of cream; milk to drink. (b) Yolk of a lightly boiled egg with salt and bread broken into it; milk to drink.

Second Meal, 10.30 A. M.—Cup of milk with two soda biscuits (crackers), slice of bread, or a piece of zwieback.

Dinner, 2 P. M.—One of the following: (a) A bowl (eight ounces) of meat-broth with rice, barley, or bread-crumbs added to it. Slice of stale bread; junket or rice- or milk-pudding. (b) Tablespoonful of white meat of chicken or of rare beef or mutton, either scraped or pounded to a pulp. Slice of stale bread thinly buttered, junket, rice- or milk-pudding, or a boiled custard. (c) Perfectly fresh boiled fish (the white meat) with a tablespoonful of mashed baked potato moistened with cream. Dessert as in preceding.

Supper, 5.30 er 6 P. M.—A bowl of bread and milk or a cup of milk and a slice of bread or a piece of zwieback. A cup of milk may be given at about 10 P. M. if necessary.

From two and one-half years up to the sixth year the diet of the child may gradually be increased. Milk should still, however, be taken in large quantities—about a quart daily—as well as some form of cereal for breakfast, with or without an egg, or fresh fruit if there is a tendency to constipation. Meat prepared as above should be given once a day, and preferably at the midday meal, together with potato and some green vegetable, as spinach, asparagus, or cauliflower tops. The evening meal should be light, and consist of bread and milk

The Diet from Two and One-half to Six Years.—Milk may be allowed with every meal (may be omitted from dinner if desired). The average child should take a quart a day, plain or, when plain milk is not thoroughly digested, modified as for twelve to fifteen months.

Cream.—Two to eight ounces a day mixed with the milk, taken as a beverage, with cereals, etc.

Bread and biscuit may be allowed with every meal—stale bread, dried bread; the so-called "pulled bread," zwieback, and the various forms of biscuits or crackers.

Cereals.—Almost any kind of cereal for breakfast; oatmeal and wheaten grits are the best. Rice and hominy for dinner. Barley is useful in soups.

Vegetables may be allowed for dinner—potatoes in some form or a cereal with one green vegetable; spinach, cauliflower tops, and the like are the best.

Eggs are very good, but children are apt to tire of them easily. They should be given for breakfast, as a rule, but never day after day.

Meat.—Allowed once a day for dinner, and in older children for breakfast occasionally. Boiled or broiled fish may be given for breakfast or dinner.

Broths and *soups* of simple composition may be eaten. Meat-broths with cream and cereals are especially nutritious.

Desserts.—Once a day, with dinner. Plain custard, milk- and rice-pudding, bread- and custard-pudding, and junket are the best; ice cream once a week. Fruit should be given once daily, and only ripe fresh fruit, in season, should be used. The best are oranges, baked apples, and stewed prunes. Ripe peaches, pears, grapes without skins or seeds, may also be given. Fresh juice of berries in small quantity, strawberries in perfect condition sparingly. Ripe cantaloupe and watermelon in moderate quantities may also be allowed. Great care should be used in choosing and giving fruit to children. It is a very important article of diet, but if stale, spoiled or unripe, is capable of doing much harm. Too much should not be given in hot weather. Lemonade is useful during very hot weather.

According to Meals.—*Breakfast*.—Every day, milk to drink. A well-cooked cereal with salt and cream, but little or no sugar. Bread and butter.

In addition to the above, one of the following every day: Eggs lightly boiled, poached, and for older children scrambled or made into a plain omelet. Boiled or broiled fish. For older children a very little finely chopped beef, mutton chop, or beefsteak. For younger children meat at breakfast is not, as a rule, necessary. Fruit may be given before or after breakfast, during the latter part of the morning, or at about noon-one variety daily; and if there is a special tendency to constipation, stewed prunes or baked apples may be allowed with the dinner, but not on the days on which they have been used earlier. Oranges, baked apples, stewed prunes, peaches, pears, grapes without seeds or skins; ripe apples (the softer varieties may be given; those known by the dealers as "hard" apples are not suitable unless cooked) are the most suitable.

Dinner.—Bread and butter as desired every day not to be eaten to the exclusion of other foods, however.

One soup each day. Bouillon, beef, veal, mutton, chicken, or oyster-broth, which may be thickened with barley or other cereals (either grain or flour). Milk and cream may be added where desirable.

One meat daily—roasted or broiled. Beefsteak, beef, lamb or mutton chop, rare roast beef or mutton, chicken (white meat) or roast turkey.

Two vegetables daily—one green vegetable and one other dish, usually potato in some form, should be given. Potatoes, baked or mashed, cauliflower tops, asparagus tips, stewed celery, spinach, hominy, plain macaroni,

mashed peas, young string-beans, and almost any green vegetable in season.

Dessert.—Junket is the best and may be given most frequently, but rice- and milk-pudding, plain custard and plain tapioca-pudding may also be used in small quantities. Ice cream once a week. Fruit in some cases may be used.

Supper.—Very light simple suppers should be given every day, Milk, milk-toast, bread and butter, and, for older children, a little stewed fruit or baked apple without too much sugar.

ARTICLES FORBIDDEN (after Holt).—The following articles should not be allowed children under four years of age, and with few exceptions they may be withheld with advantage up to the seventh year.

Meats.—Ham, sausage, pork in all forms, salted fish. corned beef, dried beef, goose, game, kidney, liver, bacon, meat-stews, and dressing from roasted meats.

Vegetables.—Fried vegetables of all varieties, cabbage, potatoes (except when boiled or roasted), raw or fried onions, raw celery, radishes, lettuce, cucumbers, tomatoes (raw or cooked), beets, egg-plant, and green corn.

Bread and Cake.—All hot bread and rolls; buckwheat and all other griddle cakes; all sweet cakes, particularly those containing dried fruits and those heavily frosted.

Desserts.—All nuts, candies, pies, tarts, and pastry of every description; also salads, jellies, syrups, and preserves.

Drinks.—Tea, coffee, wine, beer, and cider.

Fruits.—All dried, canned, and preserved fruits; bananas; all fruits out of season and stale fruits, particularly in summer.

The meals should be given at fixed hours, which prac-

tice should be strictly adhered to. Feeding between meals, even when consisting of the most trifling things, should be avoided. If the child cannot go from one meal to another without discomfort, the intervals should be shortened. In certain cases it may be advisable to give a small cup of milk or broth and a cracker between the meals, at stated intervals, as in feeding younger children.

Candies, cake, and the like should be kept from young children. In well-regulated homes, if he once learns that he can not have them, the child will soon cease to demand sweets. The frequent indulgence in sweets of various kinds creates a desire for them to the exclusion of other food. This craving is analogous to that for alcohol in adults. Overindulgence in sweets causes indigestion, headache, and the like, ailments that may easily be prevented.

The child should be taught to eat slowly and to chew the food well. To this end, some older individual should always be present at meal-time to see that sufficient time be taken for the meal, and that the food be finely divided, as young children do not, as a rule, chew very well. The quantity given to a healthy child should depend on his appetite. In sick children this is not a reliable guide, and where possible fixed amounts may be given. The child should not be forced to eat, nor should he be given special articles to tempt the appetite. If the food offered is not taken, it is well to wait until the next meal, when it will generally be found that the appetite has returned. Loss of appetite is often merely an indication that the digestive organs require a slight rest.

During the heated portions of the year the child will require less solid and more liquid food. The same is true during sickness. Many of the gastro-intestinal disturbances attributed to teething are the result of improper feeding.

DIET OF SCHOOL CHILDREN.

The period usually spoken of as "school days" is an extremely active one physically. The vast number of metabolic changes going on and the growth of the body demand a plentiful and a suitable diet. Both in and out of school and in seminaries careful attention should be given to food, fresh air, and exercise. In other words, the physical development should receive as much attention as the mental growth. In boarding-schools especially the diet should be the subject of careful study, the aim being to avoid monotony and to provide a sufficient and satisfying diet. In many schools the dietary is left to the discretion of the cook. In considering school dietaries several points are worthy of consideration.

Milk, being easily digested in most cases, is of great value, especially for children whose nutrition is below normal. It should be furnished as a beverage daily for breakfast and supper, and is advisable even with dinner. It may also be used in the preparation of puddings and soups. Cream is very valuable, and whenever possible should be supplied in sufficient quantities. A cup of warm milk with bread or crackers is helpful during the middle of the morning and as a substitute for tea in the afternoon. Delicate children and others may with advantage take a glass of warm milk a short time before going to bed. If the rising hour is some time before that set for breakfast, a cup of milk or of bread and milk should be given on rising.

Eggs may be used alone or in the preparation of various dishes. They may be used in almost any way except

fried. Fried eggs are apt to be very indigestible. They are often prepared in this way in order to disguise the stale taste of an egg that has been in storage for some time.

Meat is a very important part of the diet, as it contains a larger quantity of protein, from which the tissues are built up, and in a more available form, than in any other form of food. Milk and eggs are also valuable sources of protein. Meat should be provided, therefore, in sufficient quantities, a half-pound a day being, perhaps, a good average allowance for a growing boy, the larger and more robust taking that quantity or more, the smaller and more delicate children taking somewhat less. Steak. chops, and roasts of beef, mutton, lamb, fowl, and bacon are the most suitable meats, although pork, together with meat-stews, meat-puddings, sausage, and hashes, may be allowed in smaller quantities. These last, while generally relished, are not so digestible nor such good sources of nutriment as those first named. With care and proper preparation many of their ill effects can be obviated. More meat is required in winter than in summer, and more in cold climates than in warm. Yeo states that too much meat may give rise to eczema.

Meat may be given twice a day, and eggs or fresh fish may be substituted for it about three times a week. When these do not satisfy the appetite, meat may be added. For this purpose cold sliced meat is useful.

Bread and butter should be given with each meal. Bread made from the whole-wheat flour may be used in the largest quantity, but it is well to supply various kinds of bread, to avoid monotony. "Brown bread" given continuously becomes very tiresome. Rye-bread may be given occasionally, and bread made from mixtures of

wheat and rye is very palatable. Rusk, biscuit, and crackers may also be supplied. Corn-bread, when properly made, may be given once a week or oftener, and griddle cakes of buckwheat, corn, or wheat flour two or three times a week. These last may be served with syrup or fruit-juices.

Cereal porridges of all kinds may be given for breakfast, oatmeal being probably the most desirable.

Vegetables of almost all varieties may be used. For dinner two varieties should be given, one green vegetable and potatoes. Salads made of the green vegetables, with the very simplest dressings, are useful additions to the diet.

Fruit should invariably be given once a day.

Sugar should be provided for in the dietary. Candies and many of the sweets given to children are harmful and cause indigestion and dyspepsia. If proper sweets were provided there would be slighter tendency to indulge in the less desirable forms whenever opportunity offered. With the meals, and when the appetite demands satisfying between meals, they may be given with or without a glass of milk. Regularity should, however, be observed, and they should not be given immediately before or after a meal. Fruit-syrups, sugar-syrups, honey, preserved fruits, and jam may be eaten with bread. Caramels, chocolate, maple-sugar, and plain sugar-taffies are the best of the other forms of sweets.

Simple desserts, such as custards, milk-pudding with rice, tapioca and the like, bread-pudding, plain cakes, and properly prepared pastry may be used.

The beverages should be water and milk. Weak cocoa or chocolate may be given after the seventh year. Tea and coffee should not be given before the thirteenth year,

and may be withheld advantageously still longer. Alcohol is not to be used except by a physician's direction.

Especial care should be taken to avoid a monotonous diet, for there are many instances where the constant repetition of a certain form of food has created a dislike for it that has persisted throughout life or been overcome only with difficulty.

A second point to be remembered is that the food should be well prepared and attractively served. This has more to do with influencing the appetite of delicate, nervous children than is generally supposed, and can not be insisted upon too strongly.

Overeating should be avoided, and to this end an older person should always be present when practicable; in school, this should be insisted upon. On the other hand, a child should not, through caprice or habit, be allowed to eat too little. By exercising a little tact, most of the dislikes which are not deeply rooted, but which may become so if persisted in, may generally be overcome. These dislikes are often the result of imitation.

Sufficient time should be allowed not only for the meal, but for the performance of whatever small duties may be required of the child. A time should be set for one or two regular daily visits to the water-closet. Hurrying to school should be avoided. Reading and studying immediately before and after meals should be prohibited, as should bathing or any very active exercise. Some light form of recreation may, however, be indulged in. The hours of meals should be so arranged that the child may have freshly prepared meals, and not cold luncheons or warmed-over dinners. Lastly, nibbling and eating between meals, except under the conditions previously described, should be strictly prohibited. In spite

of stringent rules, however, many infringements will occur.

It is by neglect of the diet, fresh air, and exercise that many cases of tuberculosis gain headway; anemia may result from such neglect, and a delicate, nervous child be the outcome of one that should, by right, be healthy.

FEEDING IN INFANT ASYLUMS.

The feeding of infants in overcrowded infant asylums, with their lack of fresh air and paucity of attendants, is a matter of great difficulty. Any attempt at scientific feeding under such circumstances will ultimately lead to failure, the method in these cases being held to blame. The primary cause of malnutrition and marasmus in institutions is the lack of fresh air and individual care, and until these are obtainable it is useless to attempt to accomplish anything by special feeding methods. In the smaller institutions the use of the Materna graduate will be found satisfactory.

In the larger asylums it is well to have two or three general working formulas, such as fat 3 per cent., sugar 6 per cent., protein 1 per cent.; and fat 4 per cent., sugar 7 per cent., protein 2 per cent. These may be varied by adding more or less water to them to adapt them more closely to special needs. The younger infants may, when possible, receive special mixtures. For substitute feeding, condensed milk, barley- and egg-water will be found most useful.

The allowance of a few cents a day generally made for an infant's entire care is entirely inadequate to accomplish any good.

CHAPTER V.

THE FEEDING OF SICK INFANTS.

Stationary Weight; Loss of Weight.—The best index of nutrition is the weight of the child. If there is a stationary weight or the child loses weight the physician should be informed at once, as it may mean serious trouble. If neglected it may change an easily managed condition into an irremediable one. Panopeptone or Liquid Beef Peptonoids or similar preparations are frequently ordered for such children, and changes of various kinds made in the feeding.

Colic.—This is more frequent in breast-fed than in artificially fed children, and is most liable to occur during the first three months. In breast-fed children it may sometimes be due to the mother's milk being too rich, and measures are frequently prescribed to relieve this. The nursing intervals may be lengthened, and a little warm water given before each feeding to dilute the milk. In bottle-fed babies colic is most frequently due to the milk containing too much protein. It may also be caused by giving the milk too cold. Colic may be due to cold feet, chilling of the abdomen, and numerous other causes which have no relation to the diet.

Vomiting.—Vomiting occurring immediately after feeding is usually due to the child's taking too much food or the taking it too rapidly. Vomiting may be caused at any time by the abdominal binder being too tight, from shaking the infant or holding with the head

over the nurse's shoulder, or from patting on the back. Vomiting may occur at any time when the milk is too rich in proteins. It may be caused by coughing, and it is also a frequent symptom of many diseases. Vomiting one or two hours after feeding is usually due to the milk containing either too much fat or too much sugar, or both

Gavage.—Gavage, or feeding by means of a stomachtube, is a method used in various diseases and conditions of infancy and childhood. In cases where the child is not able to take nourishment, or only in insufficient amount, and in cases of uncontrollable vomiting, this method may be resorted to. It is used in the feeding of premature infants, whether in an incubator or not, and in cases of small, weak, marantic infants who, owing to weakness or lack of appetite, do not take sufficient nourishment. It is also employed after surgical operations about the head or neck where swallowing is interfered with, and in acute diseases, such as pneumonia, in fevers, and in delirium or coma.

The results that follow this method of feeding are surprising, especially in cases where there is constant vomiting or where the stomach has a very small capacity. In the former case, the vomiting may cease and the food be retained; in the latter, the capacity of a stomach that previously held only an ounce or two may rapidly be increased until an average-sized feeding is retained with case.

The technic of the method is simple and the procedure conducted without difficulty in children under two years of age; above that age it may be difficult, and a mouthgag may be required; in some cases nasal feeding must be substituted. The apparatus employed is the same

that is used for washing out the stomach; and since it is frequently desirable to wash out the stomach before introducing the meal, the same tubing may serve for both purposes. It consists of a soft-rubber catheter, connected by means of a piece of glass tubing to a piece of rubber tubing, to the other end of which a funnel is attached. The nurse holds the child in her lap, with the head held straight and not inclined in either direction. The catheter is moistened with warm water and held several inches from the end, so as to allow enough of it to pass into the esophagus with the first attempt at introduction. The mouth is opened, if necessary, and the catheter passed rapidly into the pharynx; there is usually a swallowing movement, and the tube is readily passed into the stomach. If the procedure is carried on too slowly the tongue may interfere; or if the catheter is held too near the end, it may cause gagging. Before introducing the food it is well to wash out the stomach with normal salt solution. As soon as all the food has entered the stomach, the catheter is pinched and rapidly withdrawn. If it is withdrawn slowly the food may come up with the tube. If the catheter is left open as it is withdrawn, the dripping into the pharynx may cause vomiting. If the child is young, it is a good plan to keep the finger between the jaws for a few moments, to prevent gagging. If the food comes up the feeding must be repeated.

Nasal Feeding.—For this purpose a catheter in proportion to the size of the child should be used. The procedure is the same as that for adults.

Feeding in Inflammations of the Mouth.—The food should be liquid or semisolid, and as bland and

unirritating as possible. If it is not taken readily it should be given cold.

Diseases of the Stomach.—Where there is marked vomiting and evidence of disease of the stomach milk should be withheld, and the patient given plain boiled water or albumin water in small quantities until the physician gives his orders concerning the feeding.

Diarrhea in Infancy and Childhood.—In a child under two and, indeed, even in older children, one can never say at the outset whether a diarrhea will be mild or severe. It is therefore well to diet all cases as if they were of a virulent type. By so doing many lives will be saved and much suffering avoided. About 97 per cent. of the deaths from diarrhea occur in bottle-fed babies, and the majority of these in the hot weather.

In breast-fed children a diarrhea in winter is usually a mild one, and merely lengthening the nursing periods to six hours and giving barley, rice, or albumin water in the intervals at the feeding times is all that is needed. After a day or two of this, together with the proper medical treatment, the child can generally resume its customary schedule.

In summer, however, a diarrhea, especially if severe, should arouse suspicion, and for twenty-four hours, or until the child's condition warrants, milk should be withheld. The breasts should be pumped out carefully at regular intervals, to prevent distress or a possible cessation of the secretion. The child should be given plain boiled water, or some of the articles previously mentioned, at frequent intervals and in small doses. If there is great thirst, one or two teaspoonfuls should be given every fifteen or thirty minutes. If fluid is well retained, several ounces may be given at a time, at intervals of

two or three hours. Stimulants are often ordered, or small doses of the liquid beef preparations may be tried, such as Panopeptone, Liquid Beef Peptonoids, tonic beef and similar preparations, diluted and given cold. Small doses should be given, and if these foods are diluted sufficiently the laxative action they are supposed to exert will not be obtained. If by the second day vomiting has ceased and the child seems better, it may be put to the breast for a few minutes and the effect noted. If the milk is well borne the child may be given the breast every six hours, shortening the interval from time to time until the child has returned to its regular schedule. It is well to make a gradual return, and if the milk aggravates the diarrhea or gives rise to other symptoms, it should again be discontinued. When the breast milk is of good quality there is rarely any difficulty with these cases.

In bottle-fed babies every diarrhea, especially during warm weather, should be treated as serious, and certain precautions be taken. For the first twenty-four hours it is a good plan to withhold all food and give plain water, as previously suggested. Milk is absolutely contra-indicated, and must not be given until recovery is complete. Under this plan, if the diarrhea is a simple one, recovery is rapid. The child's appetite and condition must govern the increase in diet. Albumin water, rice or barley water, and whey are excellent foods to begin with. If these are well borne, malted milk may be given, followed, if all goes well, by cows' milk. good plan, if the child is old enough to digest it, to mix equal parts of barley water and milk together and boil them for a few minutes. This is usually well borne, and may be the first step in the return to the customary diet.

In the infectious forms, so long as the disease is in its active stage, milk, since it furnishes an excellent culture ground for the pathogenic bacteria, acts as a poison. In these severe cases no food should be given for twenty-four hours. Plain boiled water or very weak albumin water may be given in small doses at frequent intervals. Stimulants are frequently ordered at this time. Washing out the stomach and giving it absolute rest will frequently check the vomiting. A common mistake is that of putting too many drugs and foods into an irritable, nauscated stomach. Absolute rest several hours will frequently allay this irritability.

If the diarrhea continues while the stomach is at rest, there is liable to be great thirst. This may in a measure be allayed by small bits of ice chipped off with a needle and placed in the child's mouth, or the mouth may be sponged out with water to which a little lemon juice has been added.

If the amount of fluid extracted from the body renders collapse probable, or if the child seems greatly weakened, the subcutaneous infusion of normal salt solution is often used. This should, of course, be given under aseptic precautions. One or more ounces may be given at a time, eight ounces being the average amount for twenty-four hours. It is astonishing how rapidly this mixture is absorbed.

When the vomiting ceases and the child becomes more comfortable, food will usually be retained. Albumin water, Panopeptone and water, whey, rice water, and barley water are the most suitable foods. The cereal waters agree admirably with some children but not with others. If the child does not take them plain they may be sweetened.

The return to milk should be made very gradually. In the severe cases cows' milk should be withheld for a week, when, if the child's condition permits, it may be tried in one small feeding. If it causes no trouble, it may gradually be added until the usual diet is resumed. The return is best made by allowing the articles previously suggested. Then malted milk, or one of the dry foods that is to be mixed with water, may be given, followed by partially or wholly peptonized milk or the barley water and milk mixture previously described. Plain well-skimmed meat broths, such as veal broth, may be used. Care must be taken to remove all the fat, as this is a frequent source of trouble. The milk should not at first contain too great a percentage of fat. This bold starvation plan, as it is sometimes called, succeeds better than any other. Later, however, care must be taken that the periods of underfeeding be not too protracted, for while it is desirable to "starve out the diarrhea," the child must not be starved to death during the process. A day or two of absolute abstinence from food does no harm, as in the severe cases food is not retained, or if retained is not assimilated: on the other hand, a reduced diet continued for weeks and months, as is not infrequently done, is apt to prove disastrous. It is a good plan to keep an accurate record of all the food taken while the child is on a restricted diet. The amounts taken during each twentyfour hours may be added together, and from these it may readily be seen whether or not the child is getting sufficient nourishment

Diarrhea in Older Children.—When diarrhea occurs in older children, the early dietetic treatment is similar to that recommended for infants. As the child recovers a return to the ordinary diet may be made,

meat, eggs, and broths of various kinds being given at first, followed by boiled milk and toast or dry bread. Vegetables and fruits should be given only after recovery is complete, and their effect should carefully be watched. Cereals may also cause a recurrence of the trouble, and should be most thoroughly cooked and given in small quantities at first.

Chronic Intestinal Indigestion.—The diet in this disease will always be carefully outlined by the physician, and it is of the greatest importance to see that the directions are carried out. The disease is often protracted, and requires months or even a year or two of careful dieting to relieve the condition. The carbohydrate foods are usually reduced to a minimum and easily digestible proteins given. Slight indiscretions in diet frequently lead to relapses in which all the ground gained in several months is lost by a single improper meal.

Constipation.—This is frequently difficult to overcome. Fruit juice given on an empty stomach an hour before a milk-feeding is of service, as are olive oil and cream. These latter must not be used indiscriminately, as they may give rise to other bowel trouble if given in too large quantities. The malted foods, such as Mellin's, are useful; mixed with milk or oatmeal gruel well sweetened they may relieve it. In older children figs and prunes stewed together are of value; oatmeal and bread from unbolted flour may be used. A glassful of water given on rising is sometimes of assistance.

Wasting Disease.—The diet is of primary importance, but fresh air and exercise and warmth must not be overlooked. The infant should in all cases be fed in the nurse's arms and never in its crib. The diet is prescribed by the physician.

Rickets or Rachitis.—This is due to a diet containing too little fat and protein and too much carbohydrate. The normal diet should be given, and cream, olive oil or cod-liver oil added to the dietary.

CHAPTER VI.

DIET FOR THE AGED.

When a man has passed his fiftieth year his diet should be guarded. Dietary indiscretions or a too plentiful diet will result either in the putting on of flesh, and the consequent discomforts of obesity, or in the development of gout or allied affections. In considering the diet of the aged the old dictum, that a man is as old as his arteries, applies. Age can not always be counted by years. the aged there is a lessening of all physical activities. The old man takes less exercise, has diminished powers of digestion, and is less able to absorb the nutriment he has digested. His circulation is poor and his bowels are constipated. Degenerative processes have taken place in his organs, and he is more apt to feel the effects of indiscretions in diet For these reasons the diet should be lighter than in his younger years, and the amount of food eaten should vary with the needs of the individual. The food should be of an easily digestible variety; it should be given in smaller quantities at a time and the intervals between meals should be shortened. If there is a tendency to obesity, food that is liable to be converted into fat should be given in diminished amounts. The proteins should be somewhat lessened from time to time. The practice of eating heavy suppers late at night and of eating between meals should be discontinued. The person should learn what particular articles of food disagree with him, and refrain from eating foods that tend to cause flatulence. Yeo suggests that in the case of cooked fruits a small quantity (about a teaspoonful to the pound of fruit) of sodium bicarbonate be stewed with them, to correct the acidity that causes flatulence.

In the aged, food bears a close relation to sleep. A cupful of hot milk, hot toddy, or some hot liquid food taken at bedtime will often overcome troublesome sleep-lessness. A few sips of milk or a mild stimulant taken during the early morning hours, when the aged are apt to awaken, will frequently insure sleep again.

Food Suitable for the Aged (Yeo).—Young and tender chicken and game and other tender meats; potted chicken, game, and other potted meats; sweetbreads; white fish, as sole, whiting, smelts, flounder, etc., best when boiled; bacon grilled; eggs lightly cooked, or beaten up with milk, etc.; nutritious soups, such as chicken or fish purées, beef tea, mutton and chicken broths; milk in all forms when easily digested. When it is not well borne, the addition of an equal quantity of warm Vichy or of warm water will often prove helpful. Beef tea and milk supply the needed mineral substance, and the former is an excellent stimulant.

The following foods are all suitable: Bread-and-milk with the crumbs of stale bread and without lumps; porridge and oatmeal gruel; puddings of ground rice, tapioca, arrowroot, sago, macaroni, with milk or eggs, and flavored with spices or served with fruit juice or jelly; bread and butter, the bread to be at least a day old; rusk, to be soaked in tea or milk and water. Prepared foods, consisting of predigested starches; at this age the digestive ferments are provided scantily by the digestive organs, and soluble carbohydrates are valuable for maintaining the body heat. All farinaceous foods should be

subjected to a high temperature for some time during the cooking process so as to render the starch granules more digestible.

Vegetable purées of all kinds may be taken in moderation—e. g., potatoes, carrots, spinach, and other succulent vegetables. Potatoes and fresh vegetables are a necessity; if omitted a scorbutic state may be engendered. Stewed celery and stewed Spanish or Portugal onions lend variety to the diet. Stewed or baked fruits, fruit jellies, and the pulp of perfectly ripe raw fruits in small quantity may be taken.

CHAPTER VII.

DIET DURING PREGNANCY AND THE PUER-PERIUM.

During Pregnancy.—The diet should be that to which the patient has been accustomed. There is often craving for unusual articles of diet, and these cravings should not be gratified. Sometimes a diet somewhat deficient in carbohydrates and fluids is advised with the idea of producing a small child, a thing desirable when there are contractions of the pelvis and a difficult labor is expected.

Diet During the Puerperium.—Formerly great restrictions were placed on the diet of a recently delivered woman, thus accounting, in part, for the loss of weight that has been noted. If there is no nausea and the patient desires it, a cupful of tea or a glassful of warm milk may be given soon after delivery.

The appetite is generally poor for a few days after delivery, but food should be given at regular intervals not too widely separated. The first day milk, milk toast, or if desired, dry or buttered toast, with coffee, tea, or cocoa, according to the taste of the patient, may be given. Water may be allowed as desired. On the second and third days simple soups or any of the following may be added to the dietary: Meat broths, beef tea, soft-boiled or poached eggs, raw or stewed oysters, and some simple dessert, such as wine jelly, boiled custard,

or junket. During the next few days chicken, scraped beef or mutton in small quantities, baked potato, rice, and cereals may be given, and by the end of the week a gradual return to the ordinary diet may be made.

Diet in the Diseases of Pregnancy.—Special diets are sometimes ordered the pregnant woman on account of diseases connected with her pregnancy. Sometimes a milk diet or a diet similar to that used in inflammation of the kidneys is used. When salivation occurs a milk diet is used. Rectal feeding is used when there is uncontrollable vomiting.

CHAPTER VIII.

RECTAL FEEDING.

When the patient cannot take food by the mouth, or when it is not desirable to feed him in that way, rectal feeding is resorted to. All the various classes of foods may be used for this purpose. Proteins are supplied in the form of predigested meat or egg albumin to which salt has been added. Nutrose and peptones are also used. Grape sugar and starch are sometimes employed. Fat is given in the form of the yolk of egg or cream. Milk is also much used. Where the patient is to be fed by the rectum for any length of time, combinations of these are used as suggested in the formulas given below. From four to seven weeks is the average time by which the patient can be kept alive by this method of feeding, but a patient has been kept alive for ten months by exclusive rectal feeding.

The success of rectal feeding depends on the proper technic. With poor technic the rectum soon becomes irritable

Procedure.—The rectum should be cleansed thoroughly by administering a high injection of normal salt solution one hour before the enema is to be given. This cleansing should be practised at least once a day, and if much mucus is present it may be well to precede each feeding by a cleansing enema. If the rectum is inflamed a solution of boric acid may be used instead of the salt

solution; or if there is much mucus a solution of sodium bicarbonate may be employed, a teaspoonful of either to the pint of water being sufficient. For the first one or two cleansing enemata the bowel should be flushed by the ordinary method; later, a return-flow catheter may be used; with this several quarts of solution may be used; without it one-half to a pint will be sufficient in most cases.

The temperature of the cleansing enemata should be between 95° and 99° F.; that of the enemata which are to be retained between 90° and 95° F. Solutions that are too hot or too cold will promptly be rejected.

The position of the patient is very important. He should lie on his side, with the hips well elevated. On account of disease this position may be impracticable. In this case the foot of the bed may be raised and pillows placed under the hips, to make as much elevation as possible. A rectal tube or a large catheter should be used. This should not, however, be too large; a tube 1 cm. (about $\frac{1}{2}$ inch or less) being the proper size for an adult. For children the tube should be proportionately smaller. It should be lubricated thoroughly, but glycerin should not be used for this purpose.

In introducing the tube it should be twisted slightly, which lessens the liability of its becoming impacted in the rectal folds. If it is not passed easily a small quantity of fluid should be allowed to flow in, which will serve to balloon out the rectum, after which the tube may usually be passed with ease for 8 or 10 inches or more. The tube should in all cases be introduced as high up as possible, as the enema is thus more likely to be retained and absorbed.

The fluid should be allowed to flow in slowly from a funnel or a fountain-syringe. In some instances, where very small injections are being used, a small hard-rubber syringe may be attached to the tube. Care should be taken to avoid injecting air with the fluid. The method of administering nutrient enemata by means of the old-fashioned short hard-rubber nozzle of either a piston or a Davidson syringe can not be too strongly condemned. In the hands of the unskilful it may cause injury to the rectum, and even if used by a trained nurse, only succeeds in placing the fluid in the lower part of the rectum, where it is liable to be expelled.

After the injection the patient should lie as quietly as possible for at least an hour, and be instructed to try to retain the contents of the bowel. A pad of gauze or a towel should be pressed over the anus for twenty minutes or half an hour, and the mind should, if possible, be diverted from the subject. After a few days the bowel often acquires a tolerance for the injections and they may be retained without difficulty.

If the rectum is irritable and the fluid rejected, the physician may order the nurse to precede the nutrient enemata by a small suppository containing opium, or, what is better, a small rectal injection of the tincture of opium may be given. This may be mixed with a little starch water, but the whole should be as small as possible. The opium should not be used unless necessary, and the dose should be just sufficient to quiet the bowel. The opium may be added directly to the enema.

If there are hemorrhoids, rectal feeding will be greatly interfered with. Before each injection they may be painted with a 2 per cent. cocain solution, and between the feedings a soothing ointment should be applied.

The amount to be given at each injection is an important factor. As a rule, it should not exceed 4 liter

 $(\frac{1}{2}$ pint). If this be not well borne the amount may be reduced to from 30 to 100 c.c. (1-3 oz.).

The number of enemata to be used will depend somewhat upon the patient's constitution; as a general rule, five, or better six, hours should be allowed to elapse between each feeding.

It is well to remember that packing in the vagina and other gynecologic dressings may interfere materially with the injection of fluid in the bowel.

Recipes for Nutrient Enemata.—Dujardin-Beaumetz's Nutrient Enema.—

- 1 cupful of milk;
- 2 or 3 tablespoonfuls of liquid or 2 or 3 teaspoonfuls of dry peptone;
- I yolk of egg;
- 5 drops of laudanum;
- 7 gr. of sodium bicarbonate if the peptone is acid.

Von Leube's Milk-peptone Enema.

```
250 c.c. (8 oz.) milk . . . 170 calories;
60 gm. (2 oz.) peptone . . 100 "
270 calories.
```

In place of the peptone a 30 to 50 per cent, solution of soluble protein may be used.

Egg-and-milk Enema.—

```
250 c.c. (8 oz.) milk . . . 170 calories;
3 eggs . . . . . . . . . 200 "
3 gm. of salt.
```

Starch-and-milk Enema.—

Sugar-and-milk Enema.—

Pancreas Enema .-

50–100 gm.
$$(1\frac{2}{3}-3 \text{ oz.})$$
 pan-
creas substance, average 300 calories;
150–300 gm. $(5-8 \text{ oz.})$ meat 30–45 gm. $(1-1\frac{1}{2} \text{ oz.})$ fat $\frac{350 \text{ calories}}{650 \text{ calories}}$

Singer's Enema.—

```
125 gm. (4 oz.) milk;
125 gm. (4 oz.) wine;
1 or 2 yolks of eggs;
Salt:
```

I teaspoonful of Witte's peptone.

May be given three, or possibly four, times a day and is well borne.

Riegel's Enema .-

```
250 c.c. (8 oz.) milk;
2 or 3 eggs;
Salt;
```

I or 2 teaspoonfuls of red wine.

Riegel does not use peptone, as he fears that it might irritate the rectum and cause diarrhea.

Ewald's Nutrient Enema.—

```
2 or 3 eggs;
```

I tablespoonful of water.

A small amount of flour is boiled in half a cupful of 20 per cent, solution of dextrose and a wineglassful of red wine added. The egg solution is stirred in, care being taken not to have the solution too hot, lest the albumin be coagulated. Entire amount, 250 c.c. (8 oz.).

A Frequent Army and Hospital Formula .-

3 to 5 eggs;

150 to 250 c.c. (5-8 oz.) 15 to 20 per cent. solution of dextrose

Add a little starch solution or mucilage to make it more viscid, and a few drops of tincture of opium.

Boas's Formula.-

230 c.c. (8 oz.) milk;

2 yolks of eggs;

A small quantity of salt;

I tablespoonful of red wine;

I tablespoonful of "Kraftmehl" (Health Flour).

Jaccoud's Recipe.-

250 c.c. bouillon;

120 c.c. wine;

2 yolks of eggs;

4-20 gm. (1-5 dr.) dry peptone.

OTHER METHODS OF NOURISHING THE BODY.

Food suppositories are sometimes used, but are usually unsatisfactory. Nutrient inunctions, especially with oils, are useful in cases of great emaciation. Cocoa butter, cocoanut oil, olive or cod-liver oil are the most frequently used. It is questionable if any of the oil is really absorbed, but the rubbing improves the nutrition. Subcutaneous feeding by injections of sterile oil is sometimes used. Sesame oil is most frequently used.

Saline Injections and Infusions.—Solutions of salt, usually about a teaspoonful to the pint, or special

formulas ordered by the physician are used either by injecting them into the rectum or by introducing them beneath the skin. Such procedures are useful to combat shock, and where large quantities of fluid have been rapidly lost from the body, as in hemorrhage or diarrhea.

CHAPTER IX.

GENERAL RULES FOR FEEDING THE SICK.

THE nurse should understand the importance of the proper feeding of the patient. Definite directions as to how much food, its form, its preparation, and how often it is to be given should be written out by the physician. In all acute serious conditions, as in pneumonia or in typhoid fever, a record of these details should be kept, together with the record of the quantity of fluid taken, the medicine given, etc.

There is usually a tendency to err in either extreme—that of giving either too much or too little food. Care should be taken that the patient's wishes are, wherever practicable, carried into effect. The nurse should carefully observe the patient's likes and dislikes, and also note his idiosyncrasics. A tactful, observing nurse is of inestimable value, but a careless or stupid one is an ever-present source of danger.

The training of nurses in regard to feeding is often faulty. Every nurse should be instructed in the subject of practical dietetics, and should know how much food is required by the different types of patients.

The food should be given at regular intervals. In unconscious or semi-conscious patients this is of great importance; but it is just as important in the conscious, as the appetite usually comes on at certain times, and if the meal is not forthcoming may disappear.

The appetite of the conscious patient and of the con-

10

valescent should be fostered, and nothing done that may in any way disturb it. Patients vary much in this particular, but, as a rule, individuals who are not overfastidious when they are well become so when weakened by disease.

The sick-room should be orderly, and no dishes, utensils, or food be allowed to stand about the room either before or after using. All food and drink should be offered from scrupulously clean glasses or dishes. These should be as dainty as possible, and the food must be made attractive in appearance; when the dish permits, it may be garnished with a sprig of green. The napkins and linen should be spotless. The exterior surface of glasses and cups should be wiped dry before they are offered to the patient.

Food that is stale or that has acquired an unpleasant taste from standing in a refrigerator together with other things should not be given. A strong egg in an egg-nog may be the means of turning a patient forever against this form of nourishment. The food should be tasted by the nurse, but never, when possible, in the patient's presence or with the same spoon. If there is anything wrong with a dish, this should be discovered and remedied before it is brought to the patient.

A nurse should always remember the eternal fitness of things. Utensils and dishes should be used only for the purpose for which they are intended and not as makeshifts for other articles. After caring for the patient or removing evacuations sufficient time should be allowed to elapse before feeding is begun. The patient should be made to feel that the utmost cleanliness and care have been observed. The hands and face of the patient

should be wiped with a moist cloth and then dried before food is given, and the lips cleansed after the meal is completed.

The position of the patient should be as comfortable a one as possible, and one in which he will not tire before the meal is ended. If the patient is weak, the food should be given in such form that he may take enough of it without inducing fatigue; otherwise he may become tired of masticating and swallowing and take an insufficient amount. Patients who can sit up in bed should be provided with a bed-tray on which to place the food. The legs of the tray should be placed high enough for the patient to cat comfortably from it.

If the patient is helpless, care should be exercised in giving food, so that it will not be drawn into the lungs during inspiration or coughing. This may be avoided by giving the food slowly and by seeing that each mouthful is swallowed before another is given. These patients may be fed in various ways. The food may be given from a spoon, or, what is usually preferred, from a drinking-cup with a spout, or by using a tube and allowing the patient to take the food from a glass. When the patient is taking bread and similar solids great care should be exercised not to allow the crumbs to fall into the bed.

In most severe illnesses it is necessary to awaken the patient during the night to administer food. This is a point that requires special judgment. Often the patient is more in need of sleep than of food. If the patient does not drop off to sleep very soon after taking food, it may be better to wait until he awakens before giving it. As a rule, however, in severe illness the sleep is disturbed for but a few minutes by taking food. A

cupful of warm milk or similar food may often induce sleep.

The patient's mouth should always be kept clean. If dry and parched, it should be rinsed before and after taking food. Alkaline mouth-washes may be used; boric acid and water also make an efficient wash. If the mouth is dry, it should be moistened from time to time, and for this purpose a little glycerin water and lemon juice will be found useful. If the patient is helpless the mouth may be swabbed out with cotton fastened to the end of a stout probe or wound about the finger. This should be moistened with some antiseptic solution.

In all cases where the illness is likely to be protracted, arrangements should be made to care for and prepare the food with as little discomfort to the household as possible. For this purpose a diet kitchen may be improvised, preferably in a room adjoining the patient's. If the patient's means allow, a small sick-room refrigerator should be provided, and a tin receptacle for storing foods that do not need to be kept on ice. A gas or alcohol lamp will serve for heating food. A thermometer a graduate, a funnel, and filter papers are needed, and a meat-mincing machine will be found a useful addition. Saucepans, a dishpan, and a supply of tea towels should also be provided. Boric acid or borax and sodium bicarbonate will help to keep things fresh and clean. In cases of infectious and communicable diseases a covered boiler for disinfecting all dishes and utensils should be added. The dishes should be boiled in water to which 2 or 3 per cent. of sodium bicarbonate has been added, and the boiling should be allowed to continue for fully twenty minutes after the water has begun to boil. If this duty is delegated to someone else and the instructions are likely to be carelessly followed out, it is best to direct that the dishes be boiled for an hour. Feeding Unconscious and Refractory Patients.

—Unconscious patients may often easily be fed by means of a teaspoon. Each spoonful should be swallowed before a second is given. In the case of comatose children, the nourishment may be poured into the nostril instead of into the mouth. The fluid thus given is swal-

lowed, and any excess returned by the other nostril. any difficulty is experienced in swallowing, it is best to resort either to the stomach or the nasal tube. This is usually done by the physician himself. With a little practice most patients can be fed with the tube more easily than in any other way. A mouth-gag should be introduced, or a roller bandage may be placed between the teeth and held in place by an assistant. In infants who have no teeth this precaution is unnecessary, as the finger answers the purpose perfectly. The tube, previously moistened, is passed into the pharynx and rapidly into the stomach. If the tube is not passed rapidly through the pharynx, contraction may follow and the tube be prevented from entering the esophagus. order to pass the tube into the esophagus, it is necessary to hold it sufficiently well back from the end.

If nasal feeding is to be used, a nasal tube, or in case of infants a catheter, is well oiled and gently passed through the nose into the esophagus and then into the stomach. Care should be taken not to pass the tube into the larvnx. This accident can always be avoided by waiting a moment before pouring in the food. Either stomach or nasal tube should be provided with a funnel, and as soon as the tube has been satisfactorily introduced, the nourishment-milk, milk and egg, or whatever liquid food is desired—may be poured slowly into it.

In order to prevent air from entering in advance of the food, a small quantity of the food may be poured down the side of the funnel until the tube is full. In many cases it may be desirable to wash out the stomach before introducing the food. The tube should be withdrawn rapidly, so as not to excite vomiting. Food so introduced may be retained when it would otherwise be vomited. This is true both of infants and adults.

Forced Feeding.—In case of refractory patients—the insane, the hysteric, and others who refuse to eat—forced feeding becomes necessary. In this case enough attendants should be present to control the patient. He should be held firmly and the nasal or stomach tube may be introduced. In order to prevent regurgitation of the food, which some patients manage to do quite skilfully while it is being introduced, the ribs may be tickled. This prevents fixation of the diaphragm, without which the food can not be ejected. This should be done only when occasion demands.

FEEDING IN FEVER.

In fever the changes taking place in the body are increased, while the amount of food assimilated is decreased. For this reason, even if the patient is well fed, a certain amount of the body substance is burnt up. If the patient is poorly fed or the fever protracted the emaciation may be extreme. The appetite is diminished or lost entirely, and it may require great tact on the part of the nurse to see that the patient takes sufficient food. The thirst is increased.

Foods appropriate for healthy individuals are not, as

a rule, suited for fever patients, and solid foods usually cause vomiting or severe indigestion. In order properly to nourish a fever patient, it is necessary that the food be easy to take, easy to digest, and easy to assimilate. Any food that does not possess these three qualities is not suitable for a fever patient. When the disease runs its course rapidly, the diet is of no great importance, for even if the patient take but little food, the period of comparative fasting is a brief one and any loss is easily made up while recovery is in progress. In protracted diseases, on the other hand, such as typhoid fever, and in chronic fevers, the diet is of primary importance. In chronic diseases and in those fevers where remissions occur, the periods when digestion is comparatively good should be taken advantage of and the patient nourished and strengthened as much as possible.

In fevers the mouth requires especial care; the bowels likewise should be regulated and constipation avoided.

Suitable beverages should be given to allay thirst, and if the patient is not getting sufficient liquid with his food he should be offered water or some other drink every three or four hours. This should be done whether or not the patient is conscious, for a patient seemingly conscious is often in an apathetic condition. The water is required not only to quench thirst, but to aid in the elimination of waste products, which, owing to the increased metabolism, are augmented. The most suitable of all drinks is plain water. When this does not agree, or to meet special indications, mineral waters are often of great use. The natural waters, since they do not contain such large amounts of carbon dioxid, are best. If the artificial waters are used—and this is generally the case—they should be allowed partially to effervesce

before being given to the patient, lest the gas in the stomach cause unpleasant symptoms. The "Imperial Drink" (see Recipes) is very useful and is generally taken with a relish. To this may be added the white of an egg, beaten up and strained, if the patient is not taking much food. Both lemonade and orangeade are useful, and the former is particularly valuable. Since the hydrochloric acid of the stomach is deficient during fevers, water acidulated with hydrochloric or phosphoric acid is of service, as it increases the powers of digestion. Barley water, oatmeal water, toast water, and albumin water are all of service, containing, as they do, nourishment with drink. Albumin water is made by beating up the white of a fresh egg, straining it through a cloth, and then adding six or eight ounces of water. This may be flavored with lemon, orange, sherry, or cognac. Wine whey is also of value, and under certain circumstances, as in affections of the bladder, flaxseed tea or gum water may be given. Rarely, beer or some other beverage is permissible. To those accustomed to taking large quantities of beer daily this may be the only means of getting the patient to take nourishment.

The food for fever cases should always be liquid. Milk, as it contains various food elements in a suitable combination, is the best of this class of foods, and if properly administered agrees with most patients and is easily digested. It should, as a rule, be diluted, and a small quantity of lime water or sodium bicarbonate should be added to it. Lime water may be added in amounts varying from 5 to 50 per cent., according to circumstances. Vichy or Seltzer water, or even ordinary water, may be used, and may be flavored if the patient prefers. Barley water or oatmeal water may be mixed

with it, or, what is sometimes of great service, equal parts of a cereal water and milk may be boiled together. If the mixtures mentioned do not agree the milk should be peptonized. Milk should not, however, be peptonized if the patient can take and digest it without peptonization. Buttermilk, kumiss, or whey may also be used. Buttermilk, however, contains less nourishment than milk; kumiss may not be relished at first, but many patients soon learn to like it. Lastly, infants' and invalids' food may be given. Malted milk may be enjoyed by the patient, and is useful in those cases in which there is diarrhea.

Eggs may be given raw or in the form of albumin water, and an excellent mode of administration, especially if the patient requires a stimulant at the same time, is to give the time-honored Stokes' brandy-and-egg mixture. Given in this form the egg generally agrees. It may be well to make up the mixture with one-quarter or one-half the amount of brandy.

Meat juices and broths, for which recipes will be given further on, may be used. The meat extracts are best given well diluted. The variety of broth should be changed each day, using beef, veal, mutton, and chicken in turn, to avoid monotony in the diet. The various predigested beef preparations and beef juices sold in the shops may be used at times, and are often of great value, especially when the patient can not retain other forms of food. Strained vegetable broths are useful occasionally in long-continued fevers, and gelatin preparations, such as calves'-foot jelly, wine jelly, or fruit jelly made with gelatin, may also be employed. Fruit juices, especially lemon, orange, and raspberry juices, are generally relished. These should be diluted, and are

best given cold or with cracked ice. Solutions of grape sugar alone or drink sweetened with grape sugar are to be recommended. Granulated extract of malt dissolved in water or milk is relished by some patients.

The question as to the value of alcohol in fevers is one that has been widely discussed. While alcohol has doubtless been greatly abused, it is of value both as a food and as a stimulant. The quantity to be given and the question whether it is to be given or not are to be decided only by the physician. Both questions depend upon circumstances, and the age, condition, habits, and tolerance of the patient all play an important part in deciding this question. It is usually prescribed in small doses at regular intervals, and should, if the stronger forms are used, be sufficiently diluted with water.

CHAPTER X.

FEEDING IN THE INFECTIOUS DISEASES.

TYPHOID FEVER.

THE management of the diet in typhoid fever is one of the most important things for a nurse to know. The diet to be followed is ordered by the physician, but it will depend upon the nurse to see that his orders in this respect are carried out in an exact and intelligent manner. Whether the patient will get sufficient food or not frequently depends on the tact and attention of the nurse.

In this disease there is a diminution of the digestive and absorptive powers. The digestive juices are less active and the functions of the liver more or less disturbed. In addition there are ulcerations in the intestine, which may go on to perforation. During fever the metabolism is increased, and unless sufficient food is taken and assimilated the body protein will be used up and emaciation result. This always occurs to some extent in all cases, no matter what the food, and severe emaciation may also occur in well-fed cases from other causes. It should be borne in mind that a mild case of typhoid fever should be dieted with the same care as a severe one.

Food and drink should be given at regular intervals, both by night and by day; the appetite of the patient should not be consulted, for these patients are often apathetic or have no desire for food. The food should be given at intervals of from two to four hours, according to the condition of the patient and the quantity taken at a time. Those who are strong and in comparatively good condition may take their nourishment at four-hour intervals during the night, even if it is given at more frequent intervals during the day.

The question of drink is also of great importance in these cases, for in some patients severe thirst is a very disagreeable symptom to combat. Pure water, given with or without ice, is to be depended upon, but if there are no contra-indications this may be varied in many The natural spring waters, or if these can not be obtained the artificial ones, are often useful. The artificial waters contain large quantities of carbon dioxid, and to avoid trouble they should always be allowed partially to effervesce before they are given to the patient. If there is no marked bowel disturbance, fruit juice may be added to the water. Lemonade, orangeade, raspberry juice, and raspberry vinegar and water are often welcome changes. Weak tea, especially if a little red wine is added to it, is an admirable thirst quencher. Cold weak coffee is relished by some. Red wine and water, white wines, or even sherry or brandy and water may be given to some patients, especially if plain water causes unpleasant symptoms. When there is irritability of the intestine or severe diarrhea, red wine and weak tea are to be preferred. Albumin water, since it combines food and drink, is most useful. It may be flavored with lemon or orange juice, or may be shaken up with a little sherry or brandy and ice. (The egg, which should always be perfectly fresh, should be beaten and then strained through a cloth.) The various mucilaginous drinks may be used, but are not generally relished. Gum-arabic

water, arrowroot water, bread water, barley water, oatmeal water, and similar beverages have their place in the physician's list of possibilities.

Milk.—The food par excellence in this disease is milk. There is no one food that meets so many indications. It possesses great nutritive value, is easily procured, as a rule, and is generally easily administered. It must be borne in mind, however, that there are some patients with whom milk disagrees, and many who do not like it. Milk, however, disagrees less commonly than is generally imagined. The amount to be given daily varies between one and three quarts, according to the patient, There are not many patients who can take three quarts of plain milk, and it is generally a good plan to vary its form of administration, and occasionally to substitute for it other articles, which will be mentioned further on. so that the patient may continue to take milk during the entire course of the disease. If milk is given plain, it is only a question of time when it will disagree with any patient. Children are more apt to take it over long periods of time than are adults. At the Garrett Hospital for Children in Baltimore the authors seldom use anything besides milk for typhoid cases, and do not find it necessary to make changes in it. For older children or adults it should always be modified. When milk forms the diet, the mouth requires particular care, as the little milk that remains in the mouth often turns the patient against the next feeding.

There are many ways of *modifying milk* and rendering it more agreeable and more digestible to the patient. The simplest method is to add from one to three ounces of lime water to each glass of milk, or plain water or a mineral water may be used instead. If milk is well borne

and it is desired to increase the amount of nutriment, cream may be added to it. If this causes unpleasant symptoms it should be discontinued at once. Buttermilk may be given occasionally, but is far inferior in nutritive value to plain milk. Kumiss or kefir may be used, and while they may not be relished at first, most patients learn to enjoy them. A pinch of salt may render milk more palatable to some persons, and the addition of a spoonful of brandy may be relished by others. The milk may be given cold, be flavored with fruit juices, vanilla, or nutmeg, or it may be given in the form of ice cream. When milk is not well borne, it is a good plan to prepare barley water and add to it an equal quantity of milk, boiling them together for a few minutes. Plain boiled milk may also be used with benefit.

Among the disagreeable symptoms to which milk gives rise may be mentioned a bad taste in the mouth, which, however, is apt to be present in any case; a sense of fulness or pressure in the abdomen; eructation; or even pyrosis. When the milk is not well digested it may cause diarrhea, with colicky pains, and the undigested curds will be found in the stools. To obviate these symptoms the measures previously suggested may be tried (see also Milk Cures). Malted milk may be used, or the milk may be mixed with some of the invalid foods, or it may be partially or completely peptonized. For the last purpose the peptogenic milk powder will be found useful.

When milk is found to disagree, other forms of nutriment must be given. If care is taken to supplement its use by other foods from the beginning, the milk will be less apt to cause disturbance.

The carbohydrates are valuable foods in typhoid

and may be used in many different forms. Of these, the various gruels are the most easily digested, and may be given plain or mixed with milk or bouillon. Oatmeal, thoroughly cooked (three hours' boiling at least) and strained, is best, but may not agree with the patient. Barley water (Robinson's barley flour is an excellent preparation for making barley water), arrowroot, sago, tapioca, and the prepared foods may all be used. In Germany aleuronaut flour is added to bouillon or soups.

Of the **proteins** and allied substances there are a number that may be used. Meat is to be forbidden so long as fever occurs. Fat must be skimmed from soups, broths, and bouillon, as it is apt to disturb the patient's digestion. Beef juice made according to any of the recipes given in the Appendix may be used, or beef juice expressed from very slightly broiled beef or skimmed dish gravy may be used. This may be served in a green glass if the color of the juice is objectionable. Bottle bouillon may be employed, as may also the various liquid beef preparations and meat juices now on the market. Mosquera Meat Jelly and Valentine's Beef Juice are useful but expensive. Beef extracts are more stimulating than nutritious.

Senator recommends gelatinous substances, such as gelatin, calves'-foot jelly, bottle bouillon, and the like. Oysters may be served with gelatin. The gelatin jellies may be flavored with fruit juices or with wine.

Eggs should be used sparingly. Egg water, however, when properly prepared, rarely causes distress. Raw eggs may occasionally be given, or the yolk of an egg in bouillon or broth. Eggs and milk together may cause indigestion; but if the patient is in need of a stimulant as well as a food, Stokes' brandy-and-egg

mixture may be used, and in moderate quantities rarely disagrees.

Somatose, eucasin, nutrose, and similar preparations may be mixed with bouillon or other foods.

Alcohol holds an important place as a food as well as a stimulant in long-continued fevers. The tendency today is to prescribe it in smaller quantities than formerly, and many have abandoned its use altogether. It is, nevertheless, a valuable ally in fighting typhoid, and should not be discarded. It is not given to children as a routine treatment, but even in young patients it is often of the greatest service. When given to adults, it is well to begin with very small doses and to increase these as the patient grows weaker or as the fever continues to progress. Too much should not, however, be given; and if the dosage has been too large at first, it can not be increased as needed later on. In habitués, alcohol will be needed from the outset.

The form of alcohol to be used is largely dependent on the patient's taste. As a rule, good old whisky, properly diluted, is best. Old brandy is good, but much of the brandy sold is of very inferior quality. The red wines are useful, especially when there is diarrhea, and the old white wines are excellent if the patient cares for them. The brandy-and-egg mixture previously mentioned is very useful.

Care of the Mouth.—This is of primary importance. If begun early and persisted in, many undesirable mouth conditions can be avoided. If the mouth is in good condition the patient can, as a rule, take his food easily; if it is not, the greatest difficulty may be experienced. After each feeding the mouth should be cleansed carefully, a proceeding that should never be neglected. If

the patient is strong enough he may rinse the mouth with a mild antiseptic solution. Boric acid solutions to which a little glycerin and lemon juice have been added, or one of the prepared mouth washes diluted with water, may be used; diluted oxygen peroxid is also serviceable. If the patient is too weak to do this, the nurse should swab the mouth.

Diet in Digestive Disturbances.—In cases where the food is rejected or badly borne it is necessary to give the stomach absolute rest for several hours or more. Then very small quantities of egg water, barley water and lemon juice, or similar preparations may be given. Panopeptone and the liquid beef preparations are useful in this condition, and may be served with cracked ice or diluted with water. Weak tea or red wine and water in small doses are useful, especially if there is diarrhea

For the diarrhea an ice-bag to the abdomen has been highly recommended, but is seldom well borne. Instead, cloths moistened with cold water may be used.

For the painful and troublesome accumulation of gas in the intestine, either the ice-bag or the cold applications may prove beneficial. The authors have obtained excellent results from the use of turpentine stupes. When the meteorism is due to the imperfect digestion of starch, the carbohydrates should be reduced or withdrawn; when it is due to milk, the form in which this is given should be changed or it should be withdrawn altogether for a time.

Hemorrhage.—When hemorrhage from the bowel occurs the intestinal tract should be given absolute rest for a number of hours. An ice-bag, cold applications, or a cold-water coil should be placed upon the abdomen.

To relieve the thirst the patient may be allowed to suck small bits of ice, or ice-cold water or cold tea may be given in spoonful doses. After some hours the patient may be given a teaspoonful of cold milk, and this may be repeated every two or three hours. Beyond this, if the bleeding is severe, the intestinal tract should be given complete rest for twenty-four hours or longer. In addition the physician may order opium or morphin. The return to the regular fever diet should be made gradually and with caution.

Perforation.—When perforation of the bowel occurs all food should be discontinued. The patients are usually operated upon as soon as possible or the patient is given anodynes. Following operation, the diet will be that of any bowel perforation that has been operated upon. If the patient rallies without surgical intervention, or when this has been found impracticable, food may be given after an interval of twenty-four hours, but only in very small quantities at sufficiently wide intervals. It is best to begin with teaspoonful doses every three hours, and if the food is retained this may gradually be increased. Usually food is rejected, and when this is the case the stomach should be given complete rest, for feeding only tends to aggravate the condition.

Convalescence.—The diet during the first weeks of convalescence requires as much care and attention as it received throughout the febrile period; in fact, since these patients often develop a ravenous appetite, born of several weeks' milk diet and fever, even greater care is necessary. The patient's wishes should in nowise govern his diet, and relatives and friends should be cautioned against giving the patient anything not ordered by the physician. Many a relapse and death has been caused

by the misguided kindness of friends and relatives in this respect.

When there has been severe bowel disturbance, the patient is to be kept on a liquid diet until the ninth or tenth day of the afebrile period. After mild cases, where there has been but little bowel disturbance, changes may be made in the diet after the fifth or sixth afebrile day. In these mild cases the greatest caution is required, as they are often quite as apt to do badly as are the severe ones, and the attendants are much more likely to be careless in carrying out instructions.

The first addition to the dietary should be made by giving a piece of zwieback over which hot milk or cream has been poured. If desired, milk toast, milk and crackers, or junket may be substituted for this. If this is well borne, other articles, such as soft-boiled eggs, or the soft part of oysters, if they are in season and can be obtained fresh, may be added from day to day. Thickened meat broths containing well-boiled rice or vermicelli may be given. Finely scraped raw beef, reduced to a pulp in the manner suggested for tuberculosis patients, also lends variety.

Tender meats, vegetables, and breadstuffs in increasing quantities may be allowed. Roast chicken, squab, or partridge, boiled (white) fish, such as trout; of the vegetables, spinach, cauliflower tops, asparagus tips, purées of peas, carrots, or tender string-beans or artichokes, well-cooked rice, and baked potato mashed and served with cream or dish gravy; toast, zwieback, crackers, and the crust of bread may all be permitted. If the condition of the bowel permits, fruit juices may be allowed, as well as a baked apple, apple sauce, or junket flavored with fruit. Other sick-room delicacies may be ordered

at the discretion of the physician. Chops, tender steak, and roast beef may generally be given in the third afebrile week (very finely divided meat may be allowed much earlier), and the diet gradually changed until the ordinary diet is resumed. For some time after an attack of typhoid fever the patient should be instructed to exercise care in the selection of his diet, and especially to avoid all food, such as green fruit, green corn, crabs, and the like, that is likely to cause diarrhea.

The following menu for the first week of convalescence may serve as a guide and may be altered to suit the individual case. It may be begun about the fifth or sixth afebrile day in mild cases, and about the ninth or tenth in severe cases. Milk should form the bulk of the diet at this period.

First Day.—Milk toast, or zwieback covered with hot milk or cream, or crackers and milk; beef juice.

Second Day.—Chicken broth thickened with rice or vermicelli (the rice should be boiled thoroughly); soft parts of several oysters, or a very lightly boiled egg.

Third Day.—Junket; a meat broth thickened with well-cooked barley (boiled at least three hours), with barley flour, or with stale bread crumbs; wine jelly; scraped raw beef.

Fourth Day.—Lightly boiled or poached egg; arrowroot, barley gruel, or milk toast; chicken jelly.

Fifth Day.—Junket; a little well-boiled rice with a small amount of finely divided roast chicken, squab, or partridge, preferably the white meat; apple sauce if bowels permit.

Sixth Day.—Scraped beef; poached egg; calves'-foot jelly; baked custard; piece of toast or zwieback.

Seventh Day.—A small piece of finely divided broiled chop or steak; baked potato; baked apple; well-boiled rice and cream for breakfast; junket for supper.

Atypical and Complicated Typhoid.—In these forms the physician often departs from the usual course of diet and orders a diet to meet the special indications.

TYPHUS FEVER.

The diet is that of all fevers and requires no especial precautions. Milk is the main stay, and a quart of milk and a pint of broth may be regarded as a fair daily allowance. Eggs are better borne than in typhoid and may be allowed. Rolls, zwieback, and chopped meat are allowed by some physicians even while there is fever. Black coffee is useful if there is stupor. Water should be given freely.

SMALL-POX.

The usual fever diet is used. Owing to the great drains on the patient's system when the stage of suppuration is going on, it is desirable that the patient be fed up as much as possible during the stage of remission of the fever. If there is much pain on swallowing, and there often is, the food may be given cold.

SCARLET FEVER,

One of the chief dangers of scarlet fever is inflammation of the kidneys. The diet should be bland and unirritating to the kidneys. Milk diet should be continued for a month, and with this diet nephritis is uncommon. The diet need not be strictly milk. The various modifications of milk may be used; kumiss and buttermilk are also useful; oyster or clam broth from which the shell-fish have been removed may be given.

For the thirst, which is generally great, plain or carbonated waters, barley water, orangeade, or lemonade may be given freely. A level teaspoonful of cream of tartar stirred into a glass of lemonade is a useful diuretic drink if albuminuria is present.

Plain vanilla ice cream or plain lemon juice may be given in small quantities. Finely shaved ice, also in very small quantities and flavored with a little lemon or orange juice, often makes a most grateful addition if angina is marked.

In all cases the diet should be gradually increased from day to day during convalescence. The following may serve as a guide to the order in which this increase may be made: Milk toast, junket, custard, farina pudding, oranges, rice pudding, baked apple, bread and milk, sago or tapioca pudding with or without apple, corn-starch pudding, boiled custard.

The return to meat is best made by allowing a small quantity of boiled or baked fish, the soft parts of oysters, very soft-boiled eggs first, and then the lightest and most easily digested meats, chicken, raw or very rare beef in minute quantities, and the like.

During the height of the disease and throughout convalescence meat extracts should be avoided, as they contain large quantities of meat extractives, which are liable to irritate the kidneys.

MEASLES.

The diet is that of any fever. No especial precautions need be observed.

MUMPS.

Liquid diet should be given while the fever and swelling exist. Acids and astringents should be avoided on account of the intense pain they are liable to cause.

WHOOPING-COUGH.

The diet requires close attention, especially if the case is severe. Mild cases should be given a light general diet. If the case is severe a liquid diet should be given, and this should consist largely of milk. The great difficulty is that the food is liable to be vomited at the close of the paroxysms. This may occur so frequently that the child has difficulty in retaining sufficient food to nourish it. A good plan is to give another meal in place of the one which has been vomited, as soon as the child is able to take it.

DIPHTHERIA.

Egg-nog and milk punch are sometimes useful, although, as a rule, stimulants are best given alone and not combined with the food.

If the patient can not swallow, nutrient enemata may be resorted to; a nasal or a stomach tube may be employed. If the latter mode of feeding is adopted, care should be taken to avoid struggles with patients whose hearts are weak.

In all cases, if there is any fever, the food should be liquid and should be given in small quantities at regular intervals. The most useful of the liquid foods are milk, plain, with lime water or a carbonated water, or peptonized albumin water; some form of predigested beef, liquid beef peptonoids or panopeptone; soups and gruels, and the various prepared foods, of which malted milk, Eskay's or Mellin's foods are examples.

Occasionally semi-solids are swallowed with greater case than liquids; in this case any of the foods just mentioned may be thickened with well-cooked cereals or gelatin, or custards or junket may be given. Ice cream, if plain, may be allowed in moderate quantities.

Intubation.—After intubation has been done there may or may not be some difficulty in swallowing. As a rule, when the child swallows for the first time there may be a slight cough or some hesitation; in the majority of cases, however, this disappears as the apprehension of the child is allayed. There may be a little difficulty for the first day, but this passes off gradually as the muscles become accustomed to work under the new conditions.

If the child is old enough he should be instructed to take the food as rapidly as possible and then to cough afterward, instead of after each act of deglutition, as he is apt to do. In some children there may be a slight regurgitation through the nose. Taken all in all, the difficulty experienced in feeding these cases is small compared to the enormous benefit the child derives from the operation.

If there is difficulty in swallowing liquids, solid or semi-solid food may be given instead. The child may be placed with his head lower than his body. In this position swallowing becomes easy. The child may also lie across the nurse's lap, with his head thrown well back and down. It should always be remembered that food may be refused because of nausea, or because the child has no desire to take anything, as well as owing to any actual difficulty in swallowing.

The diet should be the same as in non-operative cases, and if semi-solids or solids are required, soft-boiled eggs,

milk toast, custards, bread and milk, oatmeal porridge, and similar foods may be given.

If swallowing becomes impossible, an event that occurs very rarely, the child may be fed with the stomach or nasal tube or by means of nutrient enemata.

No especial dictetic rules are necessary for feeding tracheotomy cases.

Postdiphtheric Paralysis.—In paralysis of the muscles of deglutition which may occur after diphtheria, most of the food may return through the nose; or if the muscles of the tongue as well as the soft palate are invoved, deglutition becomes impossible. When this occurs, the child must be fed with the stomach or nasal tube or by the rectum.

RHEUMATISM.

The diet in this disease is still a matter of dispute. During the acute stage it is best to give milk or a milk and farinaceous diet. Buttermilk, gruels, and the like are useful. A gradual return is made to the customary diet

YELLOW FEVER.

Food is usually withheld during the first stage of the disease, as it is almost certain to be vomited if given and only aggravates the condition. Stimulants and saline solution and even food may be given by rectal injections. Milk and lime water or albumin water are given during the third day and the diet gradually increased as the physician sees fit. If the patient grows worse everything is vomited.

TETANUS.

Liquid nourishment is given, when possible, between the teeth; if the teeth fit too closely together it is sometimes customary to remove one. A nasal-tube can be used in some cases and a rectal tube in others. When the disease is so severe that the slightest movements about the patient produce convulsions, feeding becomes impossible except while he is under the influence of an anesthetic.

RABIES.

Only those who have seen this terrible disease appreciate the difficulties in feeding these patients. Liquid nourishment may be given so long as the patient can swallow if he desires food. Even the slightest movements near the patient produce spasms, and, as the result is uniformly fatal, it is not necessary to add to the patient's sufferings by trying to feed him.

TUBERCULOSIS.

Diet in tuberculosis is of primary importance. We shall consider only pulmonary tuberculosis, for the same rules apply to all forms.

The weight of the patient is a fair guide as to the state of his nutrition. To maintain this rest is essential, and in addition to the full night's rest the patient should lie down at least half an hour after meals.

The food is to be chosen from the articles mentioned below, although other things may be given. The food should be made as attractive as possible. Detweiler was fond of saying, "My kitchen is my pharmacy."

Milk.—This is one of the most important articles of diet for the tuberculous patient. Unless some special reason exists, milk should always form a part of the diet. It may be taken with the meals or be given between the intervals of feeding. It is of the utmost importance that the milk be sipped slowly and not swallowed quickly in large quantities. The milk may be taken plain or

may be modified in various ways. Lime water may be added, with or without the addition of cream; carbonated water may be mixed with it or the milk may be peptonized. Buttermilk or kumiss may be taken if desired.

Eggs, when they can be taken in sufficient quantities, are also of the greatest value. In certain cases, however, they may not be well borne. If the entire egg can not be taken, the whites alone may be given. Egg albumin often renders most efficient service in helping to nourish these patients. The whites of from six to twenty-four eggs beaten up lightly and strained through a cloth may be taken daily. A very small pinch of salt and a little lemon juice or other flavoring substance may be added. Given in this way a large number of eggs can easily be taken and are almost invariably well borne. If the patient can digest the eggs entire they may be wery lightly boiled, or, as a change, they may be made into a light omelet or poached. Hard-boiled and fried eggs should not be eaten.

Meat.—Meat of all kinds, if properly prepared, may be eaten; but "high" game, highly seasoned dishes, and twice-cooked meats should be avoided. Beef and mutton are the most suitable varieties. Raw meats, especially raw beef, is given in the form of a finely divided pulp. This is prepared by scraping the meat with a knife, which will result in a mass of shredded meat fiber. This is placed in a mortar and pounded and rubbed with a pestle until quite smooth. It is then pressed gently through a sieve to remove any larger particles. This raw meat pulp is very easily digested and highly nutritious. It may be given in various ways, as spread on sandwiches or given in milk or in warm

bouillon. It may be mixed with purées of various kinds or with vegetables, or, in case of children, with small quantities of preserves. It may be rolled into balls and, so, easily swallowed; or it may be served with an egg, with anchovies, or with pickled herring.

Meat juice is also of great value. This may be prepared according to any of the recipes given in the Appendix, or the juice may be expressed from beef by means of a meat press. Good round-steak should be very slightly broiled, cut into small cubes, and the juice pressed out. With a good press about eight ounces of juice can be extracted from a pound of meat. This should be seasoned, and heated by placing the vessel containing it in warm water. Care should be taken not to heat it too thoroughly, or the albumin will coagulate and the juice be spoiled. Freshly prepared beef juice is always preferable, but when this can not be obtained, liquid beef peptonoids, predigested beef, or Mosquera Beef Meal may be employed.

For patients who can not or will not take raw beef, very rare steak, roast beef, or beef soup should be substituted.

Fish.—Fresh fish, boiled, broiled, or baked, may be allowed. Both oysters and clams from which the hard portion has been removed may be eaten, preferably raw, but they may also be given stewed, roasted, or broiled.

Cereals.—Where these can be digested they are of value. In the early stages of the disease they serve not only as nutriment, but also aid in regulating the bowels, and are usually easily digested. If there is constipation they are of especial value. Oatmeal, wheaten grits, commeal mush, and rice and milk are the most suitable forms.

Vegetables.—Any of the easily digested vegetables may be allowed. They should be steamed or cooked with as little water as possible, to avoid dissolving out the salts, which, together with much nutriment, are thrown away with the water.

Wheat.—Wheat or rye bread or a mixture of both may be used. Zwieback is of great value. All hot breads, pastry, and cakes should be avoided.

Fruit.—All fresh and, preferably, ripe fruit may be allowed in moderation. It should be taken the first thing in the morning or as a dessert. Oranges and baked apples are well borne and useful, and grapes, peaches, pears, and other fruit in season may be allowed.

Fats.—In tuberculosis, when fats and oils can be taken and absorbed, the prognosis is always much better than when these can not be tolerated. While they are of the greatest value in treatment, care should be taken not to disturb the patient's digestion by forcing more fatty foods into the dietary than the stomach will tolerate. Most patients, however, soon acquire a dislike for fats of all kinds. They are best given in the form of cream and butter; the volks of eggs, crisp fat bacon, and olive oil are also useful. Cod-liver oil is really as much a food as a medicine. Either the plain oil or an emulsion may be used, and the doses should be small to begin with and gradually be increased. A common mistake is to administer the oil in excessive quantities. Only perfectly sweet fresh oil is to be used, as rancid or stale oil may disturb the digestion. Its use should be discontinued from time to time. Children bear oil better than adults. If there is a tendency to diarrhea, fats and oils must be used with caution.

Alcohol.—Concerning the use of alcohol in the treat-

ment of tuberculosis, it may be said that, except in the last stages of the disease, it is best avoided.

Patients who are gaining in weight or who are in good condition are better off without alcohol. Those who are going down hill may often take light wine, beer, or well-diluted spirits with advantage. Of the last, well-matured whisky is the best.

Patients with high fever who are in an exhausted condition may be given alcohol freely, following the same rules as were laid down in the general consideration of fevers. In these cases alcohol is given as a food, and is, as a rule, well borne. In these advanced cases pure whisky well diluted is perhaps the best form of alcoholic stimulant, but the patient's taste may be consulted in this respect.

Other Beverages.—The usual beverages may be given in moderation. In chronic tuberculosis cocoa may be taken night and morning with good effect. Tea or coffee may be allowed in small quantities unless they produce unfavorable symptoms. Milk and milk punch, buttermilk, lemonade, or orangeade may be used, and malt extracts are often of benefit.

Number of Meals.—Food may be given from three to six times daily. On rising milk may be taken, or if desired a cup of bouillon instead. This may be followed by breakfast, and about the middle of the morning a glassful of milk, egg albumin, beef juice, or broth may be given with a cracker or a piece of toast.

A midday dinner should be the rule, and during the middle of the afternoon a light lunch of scraped beef, milk, or some similar food may be given.

Supper may be taken at a convenient evening hour, and before going to bed a glassful of milk may be drunk. If desired or if deemed necessary a small amount of

liquid nourishment may be taken during the night if the patient awakens. As a rule, however, it is well to give the stomach a full night's rest. In severe cases, where only small quantities of liquid or semi-solid food are taken, the intervals should be shortened to every two or three hours.

Feeding Advanced Cases.—In advanced cases patients may generally be permitted to select their diet. These patients can often eat hearty meals with a relish and apparently digest them without difficulty. As a rule, they must be light, liquid or semi-solid. The same principles may be applied here as in feeding fever cases, with the exception that the patient's desires should, so far as possible, be gratified.

Gastric Irritability.—This is very troublesome in some cases. The patient should be instructed not to swallow his sputum. If the attack is severe, easily digested liquid food should be given. Peptonized milk, kumiss, and the predigested beef preparations are of value. If there be continued irritability and the patient becomes unable to retain his meals, marked relief is frequently afforded by feeding with a stomach tube.

Fever.—Tuberculosis patients with fever should be fed much according to the general rules given for fevers in general. If the digestion is not disturbed and the appetite is good easily digested solid food may be allowed. If the solid food does not agree the patient should be placed upon a liquid diet.

Forced Feeding (Suralimentation). — Débove discovered that food introduced by means of a stomach tube was often retained when it would otherwise be rejected. This method is used in gastric irritability and also where the patient is unable to take sufficient food owing to loss of appetite and disgust for food.

CHAPTER XI.

DIET IN DISEASES OF THE STOMACH.

In diseases of the stomach the selection of a proper diet is often of more importance than the choice of drugs. No absolute dietetic regulations can be formulated in this class of diseases, but it is important to regulate the food in conformity with the particular disease with which the patient is affected, and also to consider the individual tastes and peculiarities of the patient; even in the regulation of a diet in any special disease of the stomach, changes are often rendered necessary; these must be made gradually and according to the patient's power to digest the food.

Food is said to be easily digestible when it produces no gastro-intestinal discomfort, is passed from the stomach into the intestine at a normal rate of speed, and is easily absorbed. Under normal conditions the digestibility of foods is easily ascertained, for the functions of the stomach being normal, the effect of the food upon the functions can readily be determined; in the various gastric disturbances, however, this problem is more difficult. In determining the diet for a special gastric disturbance two points must be borne in mind: first, the power to increase the nutrition of the patient; and secondly, the necessity of giving food in a digestible form, so as to lessen the work of the stomach. Leube has devised a scale of the various articles of food, given in the order of their digest-

ibility. This scale forms the basis of the well-known Leube "ulcer diet."

Leube's Diet Scale.—Diet I.—If the digestion is very much reduced the following articles of food are most easily digestible: bouillon, meat solution, milk, raw or soft-boiled eggs.

Diet II.—Somewhat less digestible than Diet I. are the following articles of food: boiled calf's brain, boiled thymus, boiled chicken and pigeon. The different forms of meat are enumerated in the order of their digestibility. Gruels, and in the evening milk mushes made with tapioca and white of egg, may also be placed in this list. The majority of patients can digest boiled calves' feet in addition to the various meat foods already enumerated.

Dut III.—If Diet II. is well borne, Diet III. may be given. This consists in adding cooked or raw beef to Diet II. Leube gives the following method of preparing beefsteak, and believes that beef cooked in this way is very easily digested: The meat should be kept for some time and is then scraped with a dull spoon; in this way a pulp is obtained, consisting only of the delicate parts of the muscle, and not containing any of the tough, hard, and sinewy portion. This pulp is roasted in fresh butter. Raw ham is also to be recommended. In addition to meat a small quantity of mashed potatoes may be given, some stale wheat bread, and small amounts of coffee or tea with milk (cautiously).

Diet IV.—This list is so arranged that if the patient can digest the articles of food mentioned under this head for some time he can then begin with his usually accustomed diet: Roast chicken, roast pigeon, venison, partridge, roast beef, medium to raw (particularly cold); veal (from the leg), pickerel, boiled shad (trout, even when

young, is very difficult to digest), macaroni, bouillon with rice. Small quantities of wine may be taken one to two hours before eating; gravies are contra-indicated. Young and finely chopped spinach is allowable; other vegetables, such as asparagus, may be tried cautiously, although Leube considers this a risky procedure. After this fourth diet the patients are allowed to take a more liberal diet, but the increase should be gradual. They should refrain from eating vegetables, salads, preserves, and fruits for some time; and when they are resumed a baked apple is the first of these articles to be eaten.

Penzoldt has devised the following table giving the digestibility of food. He experimented on normal cases, achieving his results by means of the stomach tube, by determining the progress of digestion and the exact time at which the stomach was entirely empty after eating a certain quantity of a special food. The table shows the period of time it takes a given quantity of food to leave the stomach:

One to two hours :

100-200 gm. pure water.

220 gm. carbonated water.

200 gm. tea, alone.

200 gm. coffee, alone.

200 gm. cocoa, alone,

200 gm. beer.

200 gm. light wines.

100-200 gm. boiled milk.

200 gm, meat broth, alone.

100 gm. eggs, soft.

Two to three hours :

200 gm, coffee with cream.

200 gm. cocoa with milk.

200 gm. Malaga wine.

200 gm. "Ofner" wine.

300-500 gm. water.

300-500 gm. beer.

Three to four hours:

230 gm. young chicken, boiled. 230 gm. partridge, boiled.

220-260 gm. pigeon, boiled.

195 gm. pigeon, fried. 250 gm. beef, raw, boiled, lean.

250 gm. calves' feet, boiled.

160 gm. ham, boiled.

160 gm. ham, raw.

100 gm. veal, warm and cold,

100 gm. beefsteak, broiled, cold or warm.

100 gm, beefsteak, raw, scraped.

100 gm. tenderloin.

200 gm. Rhine salmon, boiled.

75 gm. caviare, salted.

200 gm. sardines in vinegar,

kippered herring.

Penzoldt digestibility table (continued).

```
Troo to three hours:
                                           Three to four hours:
300-500 gm. boiled milk.
                                           150 gm, blackbread.
                                          150 gm, barley bread.
    100 gm. eggs, raw and scrambled,
                                          150 gm, wheat bread.
            hard-boiled or as omelet.
    100 gm, beef sausage, raw.
                                     100-150 gm. Albert biscuits.
    250 gm. calves' brains, boiled.
                                          150 gm, potato, as vegetable.
    250 gm. calves' thymus, boiled.
                                          150 gm, rice, boiled.
                                          150 gm, kohlrabi, boiled.
     72 gm. oysters, raw.
    200 gm. carp, boiled.
                                          150 gm. carrots, boiled.
    200 gm. pike, boiled.
                                          150 gm. spinach, boiled.
    200 gm. shellfish, boiled.
                                          150 gm. cucumber salad.
                                          150 gm, radishes, raw.
    200 gm. cod, boiled.
    150 gm. cauliflower, boiled.
                                          150 gm. apples.
    150 gm. cauliflower, as salad.
                                            Four to five hours.
    150 gm. asparagus, boiled.
    150 gm. potatoes, boiled in salt
                                          210 gm. pigeon, broiled.
             water.
                                          250 gm. fillet of beef, broiled.
    150 gm, mashed potatoes.
                                          250 gm. beefsteak, broiled.
    150 gm. stewed cherries.
                                          250 gm, beef tongue, smoked.
    150 gm. raw cherries.
                                          100 gm. smoked beef in slices.
     70 gm. white bread, old or fresh,
                                          250 gm. hare, broiled.
             dry or with tea.
                                          250 gm. partridge, broiled.
     70 gm. pretzels.
                                          250 gm. goose, broiled.
     70 gm. zwieback, fresh or stale,
                                          280 gm, duck, broiled.
            dry or with tea.
                                          200 gm. herring, salted.
     50 gm. Albert biscuits.
                                          150 gm, lentils, mashed.
                                          200 gm. peas as purée.
                                          150 gm. string-beans.
```

Penzoldt has also constructed a series of four diet lists based on the length of time at which various foods leave the stomach, depending upon their mode of preparation and on other qualities of the food. They agree in the main with Leube's diet lists, but are more complete and exact.

These diet lists are utilized in the treatment of diseases of the stomach requiring a gradual change from the most digestible form of liquid food to solid foods more difficult of digestion. Ulcer of the stomach may be cited as an example. The first list is followed for ten days; the second, for the succeeding ten days; the third, for the following eight days, and the fourth, for fourteen days.

Beginning with broth, milk, and eggs in the first days, the patient is given such food as roast beef, fish, and asparagus at the end of one month.

PENZOLDT'S DIET LISTS.

Diet I. (about Ten Days).

Food or drink	Largest quantity to be taken at one time	Method of preparation.	Special require- ments.	How to be eaten.
Meat broth.	250 gm.	From beef.	Without fat, or not salted.	Slowly.
Cows' milk	250 gm.	Well boiled or sterilized.	Entire milk (or lime water, 1/3; milk, 2/4).	If desired, with a little tea.
Eggs.	I OF 2	Very soft, just heated or raw.	Fresh.	If taken raw, should be stirred into the warm, not boiling, meat broth.
Meat solution (Leube-Ros- enthal)	30-40 gm.		Should have only a slight meat- broth odor.	In teaspoonful doses, stirred in meat broth.
Cakes (Albert biscuits),	6		Without sugar.	
Water.	⅓ liter.		Ordinary water or natural carbonated water with a small percentage of CO ₂ (Seltzer).	Not too cold.

Diet II. (about Ten Days).

Calves' brains	100 gm.	Boiled.	Freed from all membranes.	Best taken in meat broth
Thymus (calf).	100 gm.	Boiled.	Freed from all	Best taken in meat
			membranes	broth,
Pigeon.	1	Boiled.	without skin,	Best taken in meat broth.
			tendons, and the like.	
Chicken.	As large as a pigeon.	Boiled.	As above (no fat- tened chicken).	Best taken in meat broth.
Raw beef.	100 gm.	Chopped fine or scraped, with a	From the tender-	
		little salt.		
Raw beef sau- sage.	100 gm.	Without any ad- ditions.	Smoked a little.	To be eaten with cakes.
Tapioca,	30 gm.	Boiled with milk to make gruel.		canes.

Diet III. (about Eight Days).

	211	111. (avem 23.	sat Days).	
Food or drink	Largest quantity to be taken at one time.		Special require- ments,	How to be eaten.
Pigeon.	1	Broiled with fresh butter.		Without gravy.
Chicken.	ı	Broiled with fresh butter.	skin, etc. Only young bird, skin, etc.	Without gravy.
Beefsteak.	100 gm.	With fresh butter half-rare (Eng- lish).		Without gravy.
Ham.	100 gm.	Raw, scraped fine.	Smoked a little, without the bone,	With white bread
Milk bread, zwieback or Frieberger pretzels.	50 gm.	Crisped, baked.	Stale (so-called rolls, etc.).	To be carefully masticated and well salivated.
Potatoes.	50 gm.	(a) Mashed, (b) boiled in salt water and mashed.	The potatoes should be mealy and crumble on crushing.	
Cauliflower.	50 gm.	As a vegetable, boiled in salt water.	Use only the flowers.	
	Diet IV.	(about Eight to	Fourteen Days).
Venison.	100 gm.	Roasted.	From the back, should hang for a time.	
Partridge.	I	Roasted without bacon.	Voung birds, with- out skins, ten- dons, legs, etc. should hang for	
Roast beef.	100 gm.	Medium to rare.	From good, fatted cattle: beaten.	Warm or cold.
Fillet of beef.	too gm.	Medium to rare.	From good, fatted cattle; beaten.	Warm or cold.
Veal.		Roasted.	Back or leg.	Warm or cold.
Pike Shad Carp Trout	100 gm.	Boiled in salt water without any additions.	All fish bones should be care- fully removed.	In the fish gravy
Caviare,	50 gm.	Raw.	Slightly salt, Rus- sian caviare.	
Rice.	50 gm.	Mashed, pushed through a sieve.	sian caviare.	
Asparagus.	50 gm.	Boiled.	Soft, without any of the hard parts.	With a little melt ed butter.
Scramb'd eggs.	. 2	With a little fresh butter and salt.		
Omelet (soufflé) 2	With about 20 gm. of sugar,	Must have risen well.	To be eaten a
	50 gm.	From fresh boiled		
Fruit sauce.	J. 8	fruit, to be strained through a sieve		

182

These tables of Penzoldt are valuable as a basis for the selection of food in gastric disturbances. In these cases it is important that the food be quickly dissolved in the gastric secretion, that it be readily absorbed, that it be neither fermented nor decomposed while being digested or absorbed, and that the entire process be inattended with discomfort. It must be borne in mind that the digestibility of food varies widely with the individual taste, for no matter how digestible a food may be, if it is unpalatable it will not be digested properly. In general it may be said: First, that in acute conditions the food should be of such a character that the stomach should be spared as much work as possible; second, in chronic disturbances it is important to supply sufficient quantities of nourishment in an easily digestible form, so as to maintain the body weight so far as possible. In determining the quantity of food that is necessary during twenty-four hours, the amount is estimated in calories of heat. As is well known, a human being at rest requires 35 calories per kilo of weight; whereas while he is performing light work he requires 40 calories. In order, therefore, to determine the exact amount of nourishment. it is only necessary to know the weight of the individual. Inasmuch as the proteins can be replaced in a measure by the carbohydrates and fats, an interchange of any of these three food elements can be made according to the patient's condition. When the weight of the person is known, it is an easy matter to determine whether the amount of nourishment given is sufficient to maintain the body weight.

It is well also to weigh every patient suffering with a stomach disorder when treatment is first inaugurated, and to repeat this from time to time, in order to determine whether the patient is gaining or losing flesh.

The diet must be considered from the standpoint of the gastric secretion; there may exist, on the one hand, the condition of oversecretion of acid; on the other, lessened secretion or absence of acid.

In cases of oversecretion an abundant protein diet is indicated, inasmuch as the excess of hydrochloric acid is neutralized by this class of foods. Ordinarily, the proteins that are best adapted for patients suffering from oversecretion of acid are the red meats and eggs, whereas the carbohydrates must be given in the most easily digestible form.

In cases in which there is a diminution of the gastric secretion the protein foods are digested with difficulty, whereas the carbohydrates are more easily digested. In this condition, therefore, only very tender meats, preferably scraped, are to be given; whereas such easily digestible vegetables as spinach, asparagus, mashed potatoes, and farinaceous foods may be eaten in quite large quantities. In both conditions of increased and diminished secretion of acid a reasonable amount of fat must be eaten, preferably in the form of good butter.

The diet in muscular disturbances of the stomach depends greatly upon whether an excess or a deficiency of gastric juice is secreted; if there is an increase, an excess in protein food gives the best results; if, on the other hand, there is a diminution of this secretion, protein food must be given the patient in the most easily digestible form. The carbohydrates and the lighter vegetables may be given in somewhat larger proportion. In both conditions the ingestion of fluids should be reduced so far as possible.

Normally, the appetite is a fair indication of the number of calories of heat that may be required; in conditions of gastric disorder, however, this is not the case; these patients lose their appetite, and consequently often take insufficient nutrition. In those instances in which the gastric disorder is somewhat protracted and accompanied by great loss of weight and in which the patient takes insufficient nourishment, it need only be borne in mind that such a patient, resting quietly in bed, requires only about one-sixth of the number of calories necessary for a patient who is not resting. This plan may therefore be used with advantage in the treatment of many patients suffering from disorders of the stomach.

Liquid Foods in Gastric Disorders.—In these cases, in which it is necessary to spare the stomach as much work as possible, milk is the food that is usually most easily borne. In order to supply a sufficient number of calories it must be taken in large quantities, frequently diluted with lime water or barley water in order to add to its digestibility, or flavored with coffee, tea, or cocoa to lend variety and add to its palatability. In those cases in which milk is not well borne, buttermilk, whey, kumiss, and kefir may serve as substitutes. Among the other forms of fluids that may be given are broths (chicken, beef, mutton), bouillon, beef tea, and meat juice. Of these, meat juice is most nutritious.

Gelatinous Forms of Food.—Gelatinous articles of food, as gelatin, calves' feet, etc., are easily digested and readily absorbed.

Meats.—The digestibility of meat can be increased by chopping, beating, grinding, scraping, etc.

Eggs.—The digestibility of eggs depends upon their

mode of preparation; raw and soft-boiled eggs are usually the most easily digestible forms.

Fish.—In regard to fish, those containing but little fat are to be recommended for patients suffering from gastric disturbances, such as shellfish, pike, trout, carp, and halibut.

Carbohydrates.—The number of vegetables from which selection may be made is large. The secretion from the mouth and intestines play an important rôle in the digestion of these substances. They should be masticated thoroughly. In those cases in which there is danger of fermentation they should be given with caution. The best form in which to give amylaceous food is in the form of zwieback, toast, stale wheat bread, tapioca flour, oatmeal, etc.

Leguminous foods contain a considerable amount of protein, much of which, however, is not absorbed. They are apt to give rise to considerable fermentation. Potatoes are best given mashed or baked. Cabbage contains much cellulose and should be omitted from the diet of all patients suffering from stomach disorders.

Fruits are of slight nutritive value, but give a relish to other foods and increase intestinal peristalsis.

Fat is to be recommended because of its tendency to increase the weight of the patient, and also because of its high caloric value. Some observers claim, however, that it acts as an irritant to the stomach. It is true that many patients find that fat meat, greasy gravies, etc., give rise to indigestion, and often to nausea and vomiting. Much depends, however, on the mode of preparation. A considerable amount of fat may be given in the forms of fresh butter spread on wheat bread or toast. Certain forms of chocolate contain quite a large percentage of

fat, and on this account are very nutritious. Of these, Mehring's Vigor Chocolate is to be especially recommended. Olive oil has recently been recommended in the treatment of certain gastric disorders.

Special Factors Bearing on the Diet in Patients Suffering from Gastric Disturbances.—1. Von Noorden demonstrated the fact that the intestine will vicariously perform the work of the stomach in conditions in which the secretion of the latter is lost. The point to be borne in mind is that even in cases in which the secretion of the stomach is lost entirely, the intestine may assume this function of the stomach.

- 2. In those cases in which it is necessary to spare the stomach, as when food can not be digested or is vomited, either predigested foods may be utilized or foods may be administered through channels other than the stomach. Among the artificial predigested preparations are the albumoses and peptones, Denayer's Albumose-peptone, Somatose, Nutrose, and Mosquera Beef Meal. For the various methods of feeding, the reader is referred to the sections on Rectal Feeding, Subcutaneous Feeding, etc.
- 3. The following rules for eating should be carried out:
- (a) Food should be thoroughly masticated; this is especially important in those cases in which there are marked gastric disturbances.
- (b) The meals should be taken at regular intervals and in moderate quantities, according to the nature of the gastric disease.
- (c) The temperature of the food is also an important factor in the treatment of gastric disturbances; as Uffelmann has pointed out, the food should be taken at a temperature between 98° and 100° F. The ingestion of very

hot food is believed to be a frequent cause of ulcer of the stomach. On the other hand, Wegele attributes the dyspepsia of many Americans to the taking of ice-cold water and other drinks.

(d) The question of rest or exercise after eating is one that is of considerable importance to those suffering from gastric disturbances. It is generally admitted that violent exercise should not be indulged in after eating.

From the authors' observations, it appears that in conditions of gastric disturbances accompanied by increased or decreased acidity and in muscular disturbances of the stomach, the gastric digestion is improved during rest, but impaired by sleep, after meals.

Special Cures in the Treatment of the Diseases of the Stomach.—Among the special forms of treatment recommended in gastric disturbances may be mentioned the rest cure, the milk cure, the grape cure, and forced feeding or gavage.

The rest cure, first devised by Weir Mitchell, plays an important rôle in the treatment of stomach disorders. This treatment is especially useful in cases of nervous stomach disorders. It is also useful in the treatment of ulcer, gastritis, and other conditions. The rest treatment in gastric disorders should be carried out for from six to eight weeks. The results that follow this plan of treatment are often marvellous. For a further consideration of the method and plan of conducting the rest treatment systematically, the reader is referred to the section dealing with that subject.

Milk Cure.—The underlying principle of the milk cure consists in the ingestion of large quantities of milk, either alone or together with other foods. Under normal con-

ditions, when taken alone in large quantities—say three liters a day-milk does not suffice as a food; in certain digestive disturbances, however, milk given alone for a time forms a useful food and allows the stomach to regain its normal tone and functions. Milk is especially useful in the treatment of ulcer of the stomach and in certain forms of chronic gastritis; it is particularly useful in the secondary forms of gastritis, as those depending upon tuberculosis, anemia, etc. In some cases of nervous dyspepsia milk cures sometimes effect remarkable results; whereas in others milk disagrees and, as a consequence, the milk cure can not be undertaken. When there is a diminution or an absence of acid in the stomach, milk is usually not well borne. It is also contra-indicated in severe cases of muscular relaxation of the stomach and in intestinal conditions accompanied by extreme flatulence and chronic diarrheas.

When milk is given in large quantities in addition to other foods, it is more frequently better borne and is less apt to disagree. One of the disadvantages of the milk cure is the obstinate constipation the milk is apt to induce. Milk can often be rendered more digestible by the addition of barley water, lime water, milk of magnesia, and the like, or small quantities of coffee, tea, or whisky may be added to it. When milk disagrees, cream, buttermilk, kefir, kumiss, or matzoon may be given as a substitute for it. (See Milk Cure.)

Forced Feeding or Gavage.—This method consists in introducing milk, eggs, and meat extracts into the stomach by means of the stomach tube.

Grape Cure.—In this form of treatment the patient lives exclusively upon grapes; it is especially useful in obese individuals, in whom it is important to diminish

the weight; in anemia, girls suffering with dyspepsia, and in certain cases of nervous dyspepsia.

DIET IN DYSPHAGIA (DIFFICULTY IN SWALLOWING).

Dysphagia may be due to any obstruction in the mouth, pharynx, or esophagus. The difficulty and pain induced by swallowing must be obviated by lessening as much as possible the efforts at swallowing; for this reason food must be given in a concentrated form, and only in a liquid or semi-solid state; milk, egg albumin, and the concentrated liquid beef preparations are especially useful in this condition. In those cases in which food can not be swallowed in sufficient quantities the patient must be fed through the stomach tube. In this way broths, gruel, milk, and the like can be passed into the stomach.

DIFT IN ACUTE GASTRITIS.

Oser has said that "every case of acute catarrh of the stomach has a natural tendency to heal of its own accord unless a chronic form is produced by a mistaken diet or wrong medication." It is a generally admitted fact that in the treatment of this condition the diet plays the leading rôle. The first step in the treatment consists of securing absolute rest for the stomach and a total abstinence from food for at least twenty-four hours. This procedure is sometimes very difficult to carry out, for many patients believe that food is necessary for them, and that they can secure relief more quickly by taking nourishment. The nausea and vomiting which are present in more or less degree in this condition, and which are aggravated by the taking of food, will soon convince the patient of the necessity of abstaining from food. The

thirst is, however, so severe in these cases that patients may be allowed to rinse the mouth with water frequently, to retain tiny bits of ice in the mouth, or even to drink very small quantities of carbonated waters. With this plan of treatment recovery generally follows in two or three days. After the first twenty-four hours feeding may be begun by giving cautiously small quantities of milk diluted with lime water, broths, and egg albumin; these can gradually be increased in quantity, and during the next day or two boiled chicken, sweetbreads, scraped beef, in addition to toast, may be added.

The authors are accustomed to prescribe the following diet about the second or third day after an attack of acute gastritis:

Ca	lories.
7 A. M.: 150 gm. milk with lime water	101
9 A. M.: 100 gm. egg albumin flavored with orange or lemon juice,	53
II A. M.: I50 gm. broth with egg	53 84
I P. M.: 150 gm. milk with lime water	IOI
3 P. M.: 5 gm. Armour's soluble beef in water	10
5 P. M.: 100 gm. egg albumin flavored with orange or lemon juice,	53
7 P. M.: 150 gm. milk with lime water	IOI
	503

After the third day the diet is increased as follows:

•	
	Calories.
7 A. M.: 150 gm. milk (101) with 70 gm. toast (182)	. 283
9 A. M.: 2 very soft-boiled eggs	. 160
II A. M.: 200 gm. bouillon with I egg	
1 P. M.: 100 gm. rice cooked in milk	. 177
70 gm. toast	
3 P. M.: 100 gm. egg albumin (53) with 50 gm. trackers (187)	
5 P. M.: 150 gm. milk with 70 gm. toast	
7 P. M.: 100 gm. egg albumin flavored with orange or lemon juice	53
	1463

¹ In comparing these diet lists slight discrepancies in the calorie values of the foods will be noted. These differences have arisen from some authors using the calorie values of raw foods, while others have computed the values of cooked foods. In the diet list sgiven by the authors, calorie value of foods as prepared for the table are given.

DIET IN CHRONIC GASTRITIS.

The dietetic treatment of chronic gastritis is of far greater importance than the treatment of this disease by the use of drugs. The diet must be varied according to the stage of the disease. The most easily borne forms of food are liquids, such as broths; unfortunately, these foods do not furnish sufficient nutriment to sustain the patient. Their nutritive value may be increased by the addition of beef extracts, eggs, barley and rice, peptones, somatose, etc.

The diet should vary according to the character of the gastritis; in those cases in which the gastric secretion has entirely or almost entirely disappeared, protein food is digested with great difficulty; it must therefore be given in the most digestible form; of these foods, scraped beef, stewed beef, stewed chicken, broiled steak, and boiled sweetbreads are especially to be recommended. Vegetables should also be given in the most digestible form, best as a mush. Milk is useful in most cases: occasionally, however, it is not well borne; when this is the case, it can be made more agreeable by adding small quantities of rice, potatoes, or cocoa to it, or kefir, kumiss, or matzoon may be substituted for it. In those conditions in which considerable acid still remains in the stomach, meats in various forms are very acceptable; to this list may be added fish and eggs; vegetables, such as mashed potatoes, spinach, mashed carrots, especially in the form of purées, are to be recommended. In all instances fat should be given in an easily digestible formas good butter, cocoanut butter, or Mehring's Vigor Chocolate. It is impossible to formulate exact rules as to the number of meals that should be eaten and the quantity that should be taken at each meal; in a general way, small frequent meals are best borne.

Water should be taken in small quantities between meals. Alcoholic stimulants or any strong stimulants should, as a rule, be omitted; when utilized, they should be given in small quantities and best diluted with mineral waters. Salt and spices may be allowed occasionally in small quantities.

The authors have found the following diet list useful in cases of chronic gastritis:

			Calories.
60	o gm. milk flavored with tea) .	. 480
IO A. M.: 100	soft-boiled egg	ead	
	toast (154)		. 273
II A. M. : Bou	illon with egg		. 84
	o gm, chicken		. 106
100	gm. spinach		. 166
100	gm. mashed potatoes		. 127
IOC	gm. stewed apples		· 53
	gm, toast		
	gm. milk with tea		
30	ogm. crackers		. 102
	gm. stale bread (154) with 40 gm. butter (326		
200	ogm. milk		. 135
			2456

DIET IN DILATION OF THE STOMACH.

Dilation of the stomach may be either acute or chronic. The acute form is but rarely seen. Chronic dilation results either from a narrowing of the pylorus or from weakness of the muscular walls of the stomach. This latter form may be seen in diabetes, the insane, and in beer drinkers, as well as under many other conditions.

In the dietetic treatment of dilation of the stomach, it must be remembered that fluids are badly borne, and must, therefore, be given only in very small quantities not over I to 11 liters a day. The fluids that are permissible are milk, cream, coffee, tea, and bouillon, all in small quantities. The thirst that accompanies this discase may be relieved by allowing the patient to suck bits of ice or by giving rectal injections of water or normal salt solution. Since nutrition is usually very faulty in this disease, nutrient enemata must frequently be employed. When milk is administered, such substances as tapioca and rice should be added. Egg or concentrated meat extracts should be added to bouillon to increase its nutritive value. Meats should be given only in the most digestible forms; of these, stewed chicken, boiled sweetbreads, calves' brains, and scraped beef are to be preferred. Vegetables, such as carrots, spinach, peas, potatoes, should be administered in the form of purées. Bread should be eaten stale: wheat bread or toast is best. Stewed fruits, such as stewed prunes, and baked apples are also permissible. Since fats are apt to cause fermentation, butter should be allowed only in quite small quantities. Alcohol is not to be recommended in this condition; if it must be used, it is best given in the form of some light wine. Strong spices should always be avoided.

The special feature of the treatment consists in giving frequent concentrated meals. Patients with dilation of the stomach should be cautioned against visiting wateringplaces for the purpose of drinking the waters.

The diet list given on the following page is the one used by the authors in dilation of the stomach.

																				(Cal	ories
8 A. M.:	100	gm.	milk	wi	th te	a																67
	50	gm.	stale	: wl	heat	bre	rad															130
		gm.																				80
		egg																				80
IO A. M.:																						118
		${\rm gm.}$																				130
		gm.																				So
		c.c.																				60
12 M.:	150		150												•	•	•	•	•	•	•	315
	*	gm.																				127
																						166
	100	gm.										•				,	•	٠	٠	•	•	100
		or	100	gm.	. asp	ara	ıgu	5 (ič	5	١,				1 /		0					
		or	100	gm.	. per	ıs,	ma	SII	ea	aı	10	St	rai	ne	11 (31	0)	,				
			100																			
4 P. M. :																						214
		gm.																				130
		gm.																				80
7 P. M.:																						80
		gm.																				130
	10	gm.	butte	er				٠					٠	٠	٠	٠	٠	٠	٠	٠	٠	80
																					_	2067

DIET IN ATONIC DYSPEPSIA.

Since atonic dyspepsia is frequently caused by injudicious and too rapid eating, persons with feeble digestive powers should exercise especial caution to eat slowly, masticate thoroughly, and avoid indigestible food. Persons suffering from atonic dyspepsia should eat small quantities of food at frequent intervals. Since water is not absorbed in the stomach to any extent, it is advisable that the quantity of fluids taken should not exceed 1½ liters a day; this amount should include all fluids—coffee, tea, soups, etc. If the thirst is very great, enemata of water or nutrient enemata may be administered.

The use of milk in large quantities, as has been recommended, is not generally to be advised when the patient is able to go about, since the weight of large quantities of milk may overdistend the stomach; when, however, a rest cure is instituted, milk is commonly well borne, even in very large quantities. The diet in atonic dyspepsia

varies according to the nature of the gastric secretion. In cases in which there is an excess of acid a liberal meat diet, consisting especially of chicken, beef, mutton, or ham, is to be recommended; fish, eggs, hard- and soft-boiled, are also permissible; the vegetables should be selected with care; carrots, peas, beans, and cauliflower may be given, but must be mashed and strained so as to rid them of cellulose; potatoes, rice, and grits may also be allowed. Butter is the form of fat best suited to this condition. Alcoholic stimulants are, as a rule, not well borne, and their use should be prohibited; in a limited number of cases alcohol in the form of a light wine acts as a stomachic and may be prescribed.

In those cases in which there is an absence or a diminution of acid in the gastric secretion, the lighter forms of meat, such as the white meat of chicken or fish, sweetbreads, stewed chicken, or raw scraped beef, should be allowed; vegetables, on the other hand, must be given in somewhat larger quantities.

The treatment of the chronic constipation accompanying atonic dyspepsia, since it is one of the most constant symptoms, requires special mention. In the treatment of this condition the main reliance must be placed on the diet. Such forms of foods should be given as will, in the course of digestion, produce substances that excite intestinal peristalsis; among these foods may be mentioned Graham bread, certain vegetables, such as carrots, beans, tomatoes, peas, and turnips, macaroni, stewed and raw fruits, buttermilk, honey, and cider. This form of diet will often overcome the constipation without the aid of drugs. (For a more extensive consideration of the dietetic treatment of chronic constipation, the reader is referred to the section dealing with that subject.)

The following list has been used by the authors in the treatment of atonic dyspepsia:

																	(Calories
7 A.	M.:	40	gm.	orange	e ju	iice												88
8 A.	м.:	200	gm.	milk														135
		1	soft-	boiled	eo.	or .					Ĺ		Ī			Ċ	Ĺ	80
		60	gm.	toast							ì						Ĺ	154
		40	gm.	butter	r.				•	Ċ		Ċ		i	Ċ			325
10.4	м.	100	gm.	raw se	cra	ned	i.e	ef.		•	•	•	•	•		•	٠	118
10 11.		60	σm	stale v	vhe	at h	re:	ad	•			•	•	•	•	Ċ		151
1.2	M -			broile														
12		100		100 g										•	•	•		209
				100 g														
		200																25
		200		aspara								•	٠			•	•	31
				100 g														
				100 g														
				mashe														
				apple														
				bread														
3 P.	м.:	200	gm.	milk														135
		t o	gm.	wheat	t br	ead												154
		40	gm.	butter				,										325
7 P.	м.:	100	gm,	boiled	ro	ck-	fish	ı										80
•		100	gm.	milk														67
				bread														
				butter														
		4.0	5						•									2850
																	-	2050

DIET IN ULCER OF THE STOMACH.

Much can be done by a carefully selected diet to prevent the onset of an ulcer of the stomach. As soon as the very first symptoms become manifest, the patient should be placed upon an absolute milk diet. The temperature of the food should be regulated, so that it be not given too hot nor too cold.

Boas divides the treatment of ulcers of the stomach into several stages:

Stage of Hemorrhage.—In this stage Boas advises absolute rest in bed; the patient not even being allowed to arise for purposes of defecation or urination. No nourishment whatever should be given by the mouth. In robust individuals even nutrient enemata may be

omitted. If the patient is weak or in feeble condition, feeding by the rectum may be instituted. (See the section on Nutrient Enemata for the method of preparation and utilization of this mode of feeding.) Only two or three nutrient enemata are to be given daily. Boas carries out this plan for three or four days. After this he gradually begins mouth-feeding, the nourishment consisting exclusively of fluids given at a temperature of 98° to 100° F. He prefers milk diluted with lime water, with tea, or with coffee. In addition he permits beef tea, freshly expressed or artificial beef juice, and egg albumin. The carbonated waters, such as Vichy, are also useful.

After the first week Boas begins the regular Leube and v. Ziemssen ulcer treatment, which he conducts as follows: The patient is given a one-fourth liter of Carlsbad water, which he drinks in bed morning and evening. Hot-water applications are placed on the abdomen. The diet during this stage consists mainly of milk in addition to other fluids. If the patient is very weak, nutrient enemata may occasionally be given.

In the treatment, beginning with the third and continuing during the fourth week, Boas permits the patient to recline on a couch and continues the use of the Carlsbad water, which should be given for four weeks from the time it is first taken; he advises that the diet still consist mainly of milk, although he now permits the addition of soaked zwieback, scalded crackers, and soft rolls. Meats (sweetbreads, brains, meat balls), fish (perch, oysters in small quantities), in addition to the light red wine and carbonated waters, are also allowed.

After the fourth week, if the patient is doing well, Boas adds from 50 to 200 gm. of mashed potatoes,

stewed fruits, and vegetables, such as spinach, carrots, peas, and turnips, in the form of purées, to the diet previously given. The meats (broiled steak, chops, and roast beef), if well cooked, can finally be given more liberally. According to Boas, the patient should avoid raw fruit, acid and highly seasoned foods, and also very hot and very cold drinks for many years. Even in those cases in which there has been no hemorrhage, Boas nevertheless advises the rest treatment. It is generally admitted that the rest cure is the only satisfactory plan for treating cases of ulcer of the stomach. Leube and Penzoldt have devised dietaries for these cases; these have been given elsewhere (see p. 180). The first dietary should be followed for ten days; the second, for the succeeding ten days; the third, for about eight days. The severity of the condition in each case must, of course, determine the length of time during which each dietary must be continued. In all instances milk seems to be the most useful form of food during the first weeks of this rest treatment. Occasionally milk does not agree, and substitutes must be given in its stead. Of these, buttermilk, kefir, matzoon, and kumiss are especially to be recommended

HEMORRHAGE FROM THE STOMACH.

As soon as hemorrhage from the stomach occurs the patient should be put to bed and not allowed to rise. A light ice-bag should be placed over the region of the stomach, and no food or drink whatever should be allowed; in order to quench the thirst, small quantities of ice may be given the patient to suck. Nourishment must be entirely by the rectum; but even this is usually unnecessary for the first few days. In order to combat the

weakness following great loss of blood, salt solutions may be injected into the rectum, or if the patient is very weak, coffee, meat juice, or whisky may be added to the enema. In very grave cases salt infusions must be resorted to.

DIET IN CARCINOMA OF THE STOMACH.

In the dietetic treatment of cancer of the stomach milk forms the most important article of diet. The more easily digestible forms of meat, such as sweetbreads, scraped beef, calves' brains, and stewed chicken, are permissible. In this disease there is usually a distaste for meat, and fish may be substituted for it; of these, boiled mackerel, rock, haddock, or trout are to be recommended. Of the vegetables, mashed potatoes, spinach, carrots, peas, beans, cauliflower, if mashed and strained so as to rid them of cellulose, are admissible; rice, farina, and corn starch with milk are also valuable forms of food. Milk with tea, coffee, or cocoa, or wine or whisky may be given for the thirst. Fluids should, however, be taken in small quantities at a time. In order to supply the necessary quantity of fat, butter or Mehring's Vigor Chocolate is to be recommended. In these cases it is often important to promote the general nutrition by means of rectal alimentation. In cases of cancer of the stomach too abundant a diet should not be insisted upon, as at best but little can be gained by this method of treatment. When the growth is at or near the cardiac portion of the stomach, the diet should be such as will prevent so far as possible any irritation of the diseased esophagus and stomach. Solids should therefore be avoided. Milk is the food that is usually best borne in this condition.

The authors have found the diet list given on the following page useful in many cases of cancer of the stomach:

		Calories.
8 а. м.:	150 gm. milk with tea	. 100.0
	50 gm. toast	. I 30.0
IO A. M.:	100 gm. baked frout	106.0
	100 gm. milk or 30 gm. Panopeptone (57.5) .	. 67.0
	Io gm. butter	. Si.o
	50 gm. toast	
	50 gm, sherry	
I2 M.:	Bouillon with 5 gm. somatose	
	100 gm. chicken	
	or 100 gm. calves' sweetbreads (90),	
	or 100 gm. calves' brains (140),	
	or 100 gm. squab (100).	
	60 gm. macaroni	2120
	100 gm. mashed potatoes	127.0
	or 100 gm, spinach (166),	. 12/.0
	or 100 gm, asparagus (18).	
	25 gm. stale wheat bread	6= 0
4 B M :	23 gm. state wheat meat , , ,	. 05.0
4 F. M.;	50 gm. toast	. 130.0
	20 gm. butter	
	40 gm. caviare	, 52.0
7 P. M.;	150 gm. milk (100) with 5 gm. somatose (16)	. 116.0
	100 gm, rice cooked in milk	. 177.0
	50 gm. wheat bread	. 130.0
9 P. M.;	30 gm. Panopeptone	 57.5
		2024.5

DIET IN NERVOUS GASTRIC DISORDERS.

Nervous Vomiting.—This is often overcome merely by isolation and change of scene. In severe cases patients should be placed in bed; they are best fed on semi-solid or liquid food, since the latter is more easily retained than solid food. It should be given in very small quantities; scraped beef, eggs, rice, and toast are especially useful. Cracked ice will often afford relief. The most indigestible forms of food are frequently well borne when the most digestible are speedily vomited. In severe cases the patient should be fed for some days exclusively by rectal alimentation.

Diet in Nervous Dyspepsia.—In this condition the diet should not be too restricted. Strengthening food, without any attempt at a too rigorous diet, should be

prescribed. In those cases in which milk is well tolerated, it should be given in large quantities; when it is not well borne, buttermilk, kefir, or kumiss may be substituted for it. The patient's appetite should be humored, and he should be allowed to eat any food he can digest. Alcoholic stimulants should be prohibited, or given only in very small quantities. In severe cases a well-conducted rest cure will produce the best results.

CHAPTER XII.

DIET IN INTESTINAL DISEASES.

The diet plays quite as important a rôle in the treatment of diseases of the intestine as it does in the treatment of gastric disorders. In many intestinal disturbances, such as acute intestinal catarrh, diarrhea, etc., cures often can be effected by diet alone, when without this mode of treatment the disease might become intractable. The diet in intestinal diseases, as in gastric disorders, must be such as will produce no annoying symptoms. The process of digestion in the intestine is exceedingly complicated, and therefore the digestibility of foods in this part of the alimentary tract is most difficult to determine.

It has been shown that certain forms of food contain very large proportions of protein matter, but that their absorbability is so slight that their nutritive value is far lower than that of foods containing less protein. Thus, while peas contain considerably more protein (7 per cent.) than does milk (3.7 per cent.), a much smaller proportion of protein is absorbed in the case of the former than in that of the latter; on the other hand, the absorbability depends greatly on the mode of preparation of the food; when vegetables are mashed and then strained, so as to rid them of their cellulose envelopes, they are much more readily absorbed than when eaten with the cellulose. The digestibility of certain foods in the intestine varies

greatly with different individuals. For this reason exact rules can not be formulated in any case, but the diet must be varied according to individual peculiarities. Boas has expressed his opinion on this subject as follows:

- "I. In a number of intestinal diseases a change of diet is unnecessary or may even be harmful.
- "2. In some cases special dietetic restrictions are directly indicated, but these should be as few as possible.
- "3. In another series of cases an abundant, heavy, not easily digestible or absorbable diet is indicated.
- "4. The general aim of our treatment should always be to so manage the case before us that digestion of a normal diet will always occur in the alimentary canal without any subjective or objective disturbances. Under these circumstances only can the case be considered cured."

According to their effect on intestinal movements, foods may be divided into three classes; those producing constipation; those producing a laxative effect, and those exerting no especial effect in either direction. In the first class are those foods containing an astringent, such as tannin; among these may be mentioned certain red wines, cocoa, and tea. Rice, tapioca, barley, sago, macaroni, and potatoes have a tendency to produce constipation in many individuals. Among the laxative foods may be mentioned fruits and certain vegetables, as cucumbers, tomatoes, and cabbage; cider, buttermilk, beer, and the carbonated waters also exert a laxative effect.

In the third class, foods that have no especial effect on the intestinal movements, may be placed meats, fish, eggs, toasted bread, and zwieback. It must be remembered, however, that certain foods that prove laxative in one individual may be constipating in another, so that no precise rules can be formulated; in each case individual tendencies must be consulted.

In severe forms of intestinal disturbances rectal alimentation must often be resorted to. For a further consideration of the technic and forms of food to be utilized in this method of feeding the reader is referred to the section on Rectal Feeding. In those cases in which food can not be given either by the mouth or by the rectum, subcutaneous feeding becomes necessary; for this purpose olive oil may be used; one ounce may be injected twice daily under the skin, best in the region of the thigh; in some cases normal salt infusions are indicated.

The management of the diet in intestinal disorders is often difficult. It requires great experience and judgment to determine what particular foods should be given the patient and also to know how long they should be continued. It frequently requires great tact and patience on the part of the nurse to see that the directions of the physician are carried out.

DIET IN INTESTINAL DYSPEPSIA.

In intestinal dyspepsia food should be given frequently and in very small quantities. At first only the liquid forms should be used, such as weak tea, peptonized milk, malted milk, bouillon, and egg albumin; after a few days the patient may gradually be placed on the following diet: calves' brains, sweetbreads, broiled steak or lamb chops, soft-boiled eggs, boiled fish, such as mackerel or rock; baked potatoes, spinach, asparagus, and stewed fruits.

The list on the opposite page gives the general plan of a diet used by the authors in this condition:

Cal	ories.
8 A. M.: 150 gm. milk with tea 1 soft-boiled egg 60 gm. toasted wheat bread (155) with 20 gm. butter	101 80
(163)	218
10 A. M.: Scraped-Leef sandwich (100 gm. scraped beef (118)) 50 gm. wheat bread (178)	296
12 M.: Bouillon with 5 gm. Armour's Soluble Beef	10
100 gm. broiled chicken	105
or 100 gm. broiled steak (209),	
or 100 gm. lamb chop (220).	
50 gm. mashed potatoes or 100 gm. spinach (166)	64
100 gm, apple sauce	- 88
50 gm. wheat bread, stale or as toast	130
3 P. M.: 200 gm, milk	135
7 P. M.: 200 gm, milk with rice	253
I soft-boiled egg	So
100 gm. wheat bread and 50 gm. butter	666
	2227

DIET IN ACUTE INTESTINAL CATARRH.

As in acute gastric catarrh, so also in acute intestinal catarrh the regulation of the diet is probably the most important factor in the treatment of the disease. The patient should be kept in bed; after the bowel has been thoroughly emptied by a cathartic, liquid foods, such as clear broths-at first without and then with eggs-thin gruels, light tea, cocoa cooked in water, and egg albumin, should be given exclusively for several days. this condition milk should not, as a rule, be given. When there is extreme thirst the carbonated waters may be allowed, but only in small quantities. The thirst is best relieved by placing bits of crushed ice in the patient's mouth. After the pain and discomfort have disappeared, toast, crackers, stewed chicken, soft-boiled eggs, mashed potatoes, and boiled rice may be added to the diet; indigestible foods, such as raw fruits, heavy vegetables, and fatty and acid foods, should be avoided for a considerable period of time after the catarrh has disappeared.

DIET IN CHRONIC INTESTINAL CATARRH.

The dietetic treatment in chronic intestinal catarrh depends upon the condition of the fecal movements; these are, in a measure, an index as to the portion of the bowel involved. Cases of chronic intestinal catarrh may be divided into those cases associated with chronic constipation, those associated with chronic diarrhea, and those in which diarrhea alternates with constipation.

Diet in Chronic Intestinal Catarrh Associated with Chronic Constipation.—In this condition a mixed diet containing, so far as possible, those substances that stimulate the intestinal peristalsis should be prescribed. Astringents and anything that tends to produce constipation, such as cocoa, chocolate, tea, red wines, rice, farina, etc., should be avoided.

The following foods should be prescribed in cases of chronic constipation: Graham and rye breads with butter, fruit, buttermilk, kefir, cider, beer, fresh vegetables, as cabbage; sour krout, and salads. Fats are especially to be recommended, and honey is also useful. Salts stimulate the intestinal movements, therefore foods containing salts are indicated in this condition; among this class may be mentioned herring and caviare. Sugar, especially milk sugar, has a marked tendency to increase intestinal movements. Water taken cold or on an empty stomach will also stimulate intestinal movements.

Diet in Chronic Intestinal Catarrh Associated with Chronic Diarrhea.—When severe symptoms, such as intense diarrhea and pain, present themselves the patient must be put to bed and kept on a very rigorous diet; the period of rest may be lengthened or shortened according to the severity of the disease. In

moderately severe cases several weeks will usually suffice. Nourishment should be taken in small quantities every few hours; sufficient must, however, be given to maintain the body weight. All cold drinks or carbonated waters, fruits, cabbage, and salads are to be avoided. The most suitable foods in this disorder are broths containing barley, rice, and farina; soft-boiled eggs, sweetbreads, stewed chicken, broiled steak, boiled fish, toast, crackers, baked potatoes, tea, milk (boiled), and cocoa; in many cases port wine is quite useful, as it contains tannin, which acts as an astringent to the bowels. In this condition milk, even when boiled, is often not well borne, and must then be avoided.

In conditions of chronic intestinal catarrh in which diarrhea alternates with constipation, the same plan of treatment may be followed as has been described for those cases accompanied by constipation or diarrhea; it is especially important to treat by diet the more prominent symptoms, whether it be diarrhea or constipation. Mineral waters are frequently utilized in cases of chronic intestinal catarrh. For cases accompanied by constipation the waters of Marienbad and of Saratoga (Congress and Hathorn Springs) are most beneficial. Where diarrhea is the prominent symptom, Carlsbad and Vichy are to be recommended.

DIET IN DYSENTERY.

The diet in **acute dysentery** is similar to that prescribed in acute intestinal catarrh. The patient is put to bed and only liquid foods are administered. Of these the most suitable are bouillon, broth, egg albumin, and tea; gradually, as the condition improves, semi-solids, such as milk toast, rice cooked in milk or broth, gruels

of tapioca, etc., may be prescribed. Solid food should be abstained from until a few days after the disorder has abated.

In **chronic dysentery** the food should be given in small quantities at frequent intervals. All coarse, indigestible food should be avoided. In other respects the diet is similar to that already given under Chronic Intestinal Catarrh.

DIET IN ULCER OF THE INTESTINE.

The diet in ulcer of the intestine is the same as that for ulcer of the stomach, and the reader is referred for the details to the section dealing with that subject. In cases accompanied by hemorrhage absolute rest in bed must be insisted upon, and rectal alimentation administered if necessary. In any form of ulcer the diet should be non-irritating and easily digestible. Among those foods that may be given are milk, eggs, rice, farina, sago, all forms of broth, especially chicken and mutton broths; sweetbreads, stewed chicken, baked potatoes, mashed potatoes, tea, cocoa, crackers, and toast.

DIET IN MALIGNANT GROWTHS OF THE INTESTINE.

The medical treatment in malignant growths of the intestine is only an adjunct to the surgical treatment always indicated, and consists solely in treating the symptoms as they arise. The diet should be highly nutritious and at the same time easily digestible; small quantities of food should be given at frequent intervals. Milk, broths, soft-boiled eggs, raw scraped beef, sweetbreads, baked and mashed potatoes, vegetables, such as carrots and peas, that have been finely divided and strained, stewed fruits, toast, and crackers are permissible.

DIET IN ACUTE INTESTINAL OBSTRUCTION.

The treatment of acute intestinal obstruction, except when due to the impaction of a foreign body, when it may possibly be passed through the bowel, is purely surgical. Previous to operation the following dietetic regulations should be carried out: The patient should be kept in bed, and in the acute attacks all food should be withheld. Thirst may be quenched by small bits of ice kept in the mouth or a few drops of hot water may be given at frequent intervals. If the disease extends over a period of several days, rectal alimentation or the administration of salt solutions must be resorted to.

DIET IN CHRONIC INTESTINAL OBSTRUCTION.

In this condition the diet should chiefly be liquid or semi-solid. All indigestible food should be avoided, especially those forms that are apt to leave a large amount of residue in the bowel. The foods to be avoided are salads, heavy vegetables, and fruits. Milk broths, eggs, broiled meats, chicken, sweetbreads, boiled fish, rice, farina, toast, crackers, and butter are permissible. In advanced cases rectal feeding must be carried out

DIET IN APPENDICITIS.

The dietetic treatment in this disease must be governed by the symptoms, for surgical treatment is usually indicated. The patient should be put to bed and under no condition be allowed to rise until recovery is complete. During the first days Sahli and Penzoldt recommend that all food be withheld; liquids, such as egg albumin, weak tea, thin broth, barley or rice water, or milk diluted with lime water, may be given in small quantities when deemed necessary. When the acute symptoms have subsided

this diet can be increased somewhat; the milk may be taken undiluted and eggs may be added to the broth. When the pain and fever have disappeared entirely, gruels made of rice or barley, soft-boiled egg, scraped beef, stewed chicken, toast, and crackers may be added to the list; still later mashed potatoes and vegetables—finely divided and strained—may be allowed, and finally, when the patient is well, the usual diet may be resumed.

Ochsner advises the following plan of treatment in all cases of appendicitis in which operation is to be performed, believing that it reduces the mortality and changes the class of cases in which the mortality is greatest into another class in which the mortality is very small after operation:

"In every case of acute appendicitis all food by mouth and all cathartics are prohibited. In case the patient suffers from nausea or vomiting, gastric lavage is at once employed. In the milder cases the patient is permitted to rinse the mouth with cold water and to drink small sips of very hot water at short intervals. In the severer cases the patient is permitted to rinse the mouth with cold water, but is not permitted to drink either hot or cold water for the first few days until the acute attack has subsided, when the use of small sips of hot water is begun. If the nausea persists, gastric lavage is repeated once or twice at intervals of two to four hours, in order to remove any substance which had regurgitated into the stomach from the small intestine.

"The patient is supported by nutrient enemata, consisting of an ounce of one of the concentrated predigested liquid foods in the market, dissolved in 3 oz. of warm normal salt solution, introduced through a catheter which is inserted a distance of $2\frac{1}{2}$ to 3 inches. In case

this gives rise to pain or irritation or nausea, it is interrupted for twelve to twenty-four hours at a time. In cases in which no water is given by mouth, an enema of 8 oz. of normal salt solution is given four to six times a day in addition to the nutrient enemata. In cases operated during the acute attack this treatment is continued for several days after the operation.

"After the patient has been free from pain and otherwise practically normal for four days he is first given from 1 to 4 oz. of weak beef tea, preferably prepared from commercial beef extract, every two hours. In a few days one of the commercial predigested foods, dissolved in water, is substituted; still later, equal parts of milk and lime water; then general liquids, then light diet; and finally, after the patient has fully recovered, full diet is given."

DIETETIC TREATMENT OF NERVOUS CONDITIONS OF THE INTESTINE.

This condition resembles nervous dyspepsia. At times the most indigestible food is well borne, whereas the digestible forms create discomfort; in each case it is important that the diet be regulated according to the patient's digestive powers. Generally a liberal diet is indicated in these cases; in many instances a systematic rest cure is needed to bring about relief.

Flatulence.—This condition is characterized by an excessive accumulation of gas in the intestine. In the dietetic treatment, therefore, foods that tend to produce large quantities of gas, such as beer, cider, carbonated waters, fruit, cabbage, rye and Graham breads, and potatoes, should be avoided. The disorder is often of purely nervous origin, and when this is the case unre-

stricted diet is to be recommended—one that will tone up the patient's system and thus cause the flatulence to disappear.

DIETETIC TREATMENT FOR HEMORRHOIDS.

Since constipation is often a frequent cause and accompaniment of hemorrhoids, it is important that this condition be corrected. As has been pointed out elsewhere, proper diet plays an important rôle in the prevention of chronic constipation. Patients afflicted with hemorrhoids should eat in moderation, but should avoid all excesses of food and drink. An abundance of outdoor exercise. consisting of walking and simple gymnastics, should be indulged in; violent gymnastics and horseback-riding should be avoided. A daily evacuation of the bowels should be secured. Patients with hemorrhoids should avoid alcoholic beverages, spiced foods, strong coffee and tea, cheese, cabbage, and beans. The foods most suited to this condition are potatoes, carrots, spinach, asparagus, and even salads, since they stimulate intestinal peristalsis and thus help to keep the stools soft. Stewed and raw fruits, including grapes, oranges, pears, and apples, are also beneficial. Water is the best beverage in this condition. The waters of Carlsbad, Kissingen, and Saratoga are most beneficial; they act best when taken at the springs.

DIETETIC TREATMENT OF DIARRHEA.

The dietetic treatment of diarrhea must vary according to the type of the disorder. In the nervous variety the patient should be instructed to restrain his bowel movements except at a certain hour in the morning. Under all conditions it is important to exclude from the

diet all foods that have a tendency to stimulate the intestines. Coarse, indigestible foods, especially those containing a large percentage of cellulose, must be avoided: in this class are especially to be mentioned cabbage, pickles, salads, turnips, carrots, all cold drinks. carbonated waters, and beverages (including champagne and beer). Among the foods to be recommended are broths, tea, red wines, farina, rice, and barley gruels. Raw milk usually has a laxative effect, but when boiled or diluted with lime water or brandy it is constipating, although in a certain number of cases it must be entirely excluded, as it increases the number of movements. a number of cases of chronic diarrhea milk cures have been given with good results. The authors have succeeded in relieving cases of chronic diarrhea by systematic rest cure

DIET IN CHRONIC DIARRHEA.

The Authors' Diet List for Moderate Cases of Chronic Diarrhea.

			Calories.
8 A. M.:	200 gm. of cocoa (cooked in water)		45.0
	2 soft-boiled eggs		160.0
	50 gm. toast		130.0
IO A. M.:	250 gm, broth with 1 egg		
	30 gm. Panopeptone		
12 M.:	250 gm. broiled chicken		
	30 gm. toast		
	200 gm. mashed potatoes		
4 P. M.:			
	I soft-boiled egg		8o.o
	200 gm. cocoa (cooked in water)		
	50 gm. toast		
	100 gm. rice cooked in bouillon		
	200 gm, sweetbread		
	50 gm. wheat bread		
9 P. M.:	100 gm. raw scraped beef		
	50 gm. Panopeptone		57.5
	50 gm. toast		130.0
			2021.5

DIET IN HABITUAL CONSTIPATION.

In the dietetic treatment of habitual constipation it is essential that the food that is ingested should be such as will increase the intestinal movements. Those foods that leave a large bulk of fecal matter are useful for this purpose. Those that leave a small residue are most apt to produce chronic constipation. A diet consisting principally of eggs and milk with only a small quantity of vegetables and water is one that is constipating.

A glassful of cold water taken before breakfast will often regulate the bowels; occasionally, according to Penzoldt, a pinch of salt added to the water will increase its efficacy; raw or cooked fruit, taken on an empty stomach morning or evening, occasionally gives good results. It is a well-known fact that the smoking of a cigar in the morning will often stimulate intestinal movements. The patient should recognize the importance of having an evacuation of the bowels at the same time each day.

Chronic constipation is a frequent accompaniment of dyspeptic disorders, and may be relieved by appropriate treatment of the gastric disorder. It should not be forgotten that habitual constipation is frequently induced by the persistent use of cathartics, and the use of drugs should be avoided as much as possible in the treatment of this disorder. Sedentary habits are often the cause of constipation, and for this reason proper exercise should always be prescribed along with the dietetic treatment. The vegetables that are especially useful in the treatment of chronic constipation are spinach, peas, cauliflower, cabbage, asparagus, salads, onions, celery, and tomatoes. The cereals that stimulate the intestinal

movements are oatmeal and cornneal. Graham, rye, corn, whole wheat, and bran breads are also useful. Other foods classed as laxatives are honey, cider, molasses, and acid fruits, such as apples, pears, peaches, cherries, and oranges. On account of the acids and seeds they contain, berries are effective laxatives. Prunes, dates, and figs are also to be recommended.

Habitual constipation is often due to the fact that water is taken in insufficient quantities; therefore, in the treatment of the disorder, an abundance of water must be prescribed. The foods to be avoided are tea, claret, cocoa, chocolate, rice, barley, and farina gruels, and huckleberries. In some cases milk acts as a laxative, whereas in others it has the opposite effect. For this reason its effect should be tested in every case. Boiled milk usually constipates. Buttermilk is preferable to sweet milk as a laxative. Most cases of habitual constipation can be relieved or cured by the dietetic treatment here laid down.

Boas¹ has recently called attention to the fact that in a certain class of cases of chronic constipation, excellent results are obtained by the rest cure. The patient is isolated for fourteen days and is not allowed to leave his bed. The nourishment of the patient is regulated for each day, and for each meal. No effort is made to increase the patient's weight, although great importance is attached to giving food regularly. The treatment is continued for from four to six weeks.

It is not within the province of this book to discuss the value of massage and electricity; suffice it to say that they are reliable adjuvants to the treatment of constipation.

¹ Boas, International Clinics, vol. iii., 14th Series, 1904.

The authors frequently prescribe the following diet in cases of chronic constipation:

														dories.
6 A. M.:	40 gm.	orange j	uice											88
8 A. M.: 30	90 gm.	milk wi	th co	lict										192
	2 soft-	-botled e	ggs .											160
1	50 gm.	Graham	brea	d										375
4	40 gm.	butter .												326
10 A. M. : 40	00 gm.	cider .												280
I2 M.; 20	oo gm.	broth, w	ith I	eg	Œ									8.1
10	oo gm,	steak .			,									214
10	00 gm.	carrots.						Ċ			Ċ	Ċ	Ċ	41
10	oo gm.	beans .									Ċ	Ċ	Ċ	103
1	50 gm.	Graham	brea	d						ì	i	Ċ	Ċ	375
20	00 gm.	stewed a	pples								i			106
4 P. M.: 49	00 gm.	buttermi	İk .			Ċ	ì	Ċ						166
7 P. M.: 10	00 gm.	scraped	beef									i	Ċ	118
1	50 gm.	Graham	brea	d							Ċ	Ĭ	Ċ	375
20	00 gm,	stewed	prun	es		Ċ		Ċ		Ċ	Ċ	Ċ	Ċ	176
36	00 gm,	cider .					Ċ			Ċ	Ċ		Ċ	210
9 P. M. : .	40 gm.	figs (or	400	em.	. I	mt	lei	m	iik	ì	Ċ	÷	Ċ	46
,		0 (100	8				•••		,	•	•	-	
													- 3	3525

DIET IN PERITONITIS.

Acute Peritonitis.—The diet in acute peritonitis is purely of secondary importance and requires consideration only until operative procedure can be undertaken. No food whatever should be given by the mouth; if necessary, rectal alimentation should be resorted to. If operation is not undertaken and vomiting has ceased, fluids may be given in a few days. Foods that may be prescribed are milk and lime water, diluted broths, and egg albumin with or without brandy or sherry; only very small quantities should be taken at a time, but at frequent intervals; gradually plain milk, broth, and gruels may be added to the list; solid food should not be allowed for several weeks. When stimulants are required they should be given in the form of whisky, brandy, or champagne.

Chronic Peritonitis.—The diet in chronic peritonitis should consist of boiled meats, eggs, milk, stale bread, toast or crackers, and vegetables, only, however, in the form of purées; carbohydrates should be eaten sparingly on account of their tendency to ferment. Food should be eaten in small quantities at regular but frequent intervals.

CHAPTER XIII.

DIET IN DISEASES OF THE LIVER.

CERTAIN general principles of dietetics apply to all diseases of the liver. The condition usually called "biliousness" is a cry of the liver for relief from overwork. The administration of calomel or a saline laxative followed by a few days of restricted diet is all that is necessary in most cases. In general it may be stated that in diseases of the liver the food should be easily digested and consist of a mixture of proteins, carbohydrates, and fats. In many cases it is desirable to limit or even to avoid altogether both fats and carbohydrates.

Certain articles of diet are known, while others are believed, to be injurious in diseased conditions of the liver. Overeating is injurious; first, on account of the overwork it necessitates; and secondly, because the superfluous food is apt to undergo putrefaction. The resulting bacterial products are believed to act on the liver in much the same manner as does alcohol. The excessive use of alcohol produces marked changes in the liver in certain individuals.

In all liver diseases alcohol should be avoided unless specially indicated as a tonic or stimulant. In any case it should be given well diluted. A well-matured pure whisky well diluted with water is to be preferred, and this is only in the smallest possible amount.

Certain foods have been regarded as "stimulating" or

"irritating" to the liver. Among these are peppers of various kinds, spices, mustards, concentrated meat extracts and meat broths, and the substances formed in roasted and baked meats. To be proscribed are peppers, radishes, horseradish, onions, watercress, and celery. Salt in too large quantities is also to be condemned. Strong coffee and tea are harmful, but weak tea seems to be well borne in many cases.

In severe diseases of the liver the diet must usually be restricted to milk, diluted or peptonized; gruels, albumin water, kumiss, buttermilk, and bland broths, such as oyster broth. Orange juice as well as lemonade may generally be allowed.

In the milder diseases and during convalescence the diet need not be so rigid, and lean meat, curd, junket, bread, toast, zwieback, fresh fruit, or stewed fruit with little or no sugar, may be allowed. In the chronic cases and lighter forms the following articles may help to make up the dietary: Milk, variously diluted and prepared; buttermilk, curd, kumiss, custard, junket, eggs, lean meat—if beef or mutton, preferably rare—sweetbreads, chicken, squab, liver, the soft part of oysters and the more digestible forms of fish. Fresh green vegetables and green salads without oil are permissible. Small quantities of well-baked or boiled mealy potato may be allowed once a day, for many persons do not relish a meal that does not contain potato in some form. The starchy foods should be partaken of somewhat sparingly; bread, toast, zwieback, pulled bread, and biscuits (crackers) may be permitted. Small quantities of cereal foods may be taken; rice, sago, and tapioca, when sufficiently well cooked, may be allowed. Fresh fruit is a valuable adjunct to the diet. Oranges, grape-fruit, ripe peaches or pears, strawberries, ripe plums of the most tender varieties, may all be taken. Stewed fruits only slightly sweetened and baked apples may be allowed with advantage. If there is constipation, stewed prunes are useful. Lemonade may be taken as a beverage.

Mineral waters may be drunk freely if dropsy is not present, and are best taken on rising and between meals. Hot water is a valuable substitute for the mineral waters. It is especially useful in allaying thirst when there is dropsy.

The food should be taken slowly, well masticated, and never in too large quantities. If necessary, more milk may be given, so as to make large amounts of other food unnecessary. The patient should lie down directly before and after meals. In no case should the patient eat immediately after taking active exercise.

In certain chronic conditions, such as hyperemia, fatty degeneration, and chronic hepatitis, exercise is to be taken at proper times.

In summer and in warm climates more vegetables are to be allowed and less meat. If putrefactive changes take place in the intestine, a diet consisting of white of egg and water should be maintained until this condition is overcome. When the putrefaction is caused by torpidity of the liver, it may sometimes be prevented by increasing the amount of vegetables and by the use of laxatives.

Diet in Gall-stone Disease.—The meals should be taken at regular intervals and not too widely separated. Prolonged fasting should not be permitted. A substantial breakfast should be taken when not otherwise contra-indicated, and not the simple "continental" breakfast of coffee and a roll. A late supper is of value, and it may be advisable in some instances to give the patient nourishment at night. Fat should be reduced to a minimum or avoided entirely, and the starches and sugars limited in amount.

CHAPTER XIV.

DIET IN DISEASE OF THE RESPIRATORY ORGANS.

Pleurisy.—Two plans of dietetic treatment may be followed. The first is to place the patient on a milk diet. The second is to place the patient on a "dry diet." This consists of the ordinary diet with the fluids limited in amount. No soups, but little tea or coffee, are allowed, and but small amounts of water. The milk diet is preferred where there is fever or complicating heart or kidney disease.

Empyema (*Pus in the Pleural Cavity*).—As nourishing a diet as is possible should be used according to the general principles of feeding fever patients.

Laryngitis.—In chronic disease of the larynx there may be great pain on swallowing. All hard and highly seasoned foods are to be avoided. Only semi-solid and liquid foods should be given. The physician sometimes prescribes drugs to allay the irritation in the throat at meal time.

Difficulty in swallowing may sometimes be overcome by the following two methods: By allowing the patient to lie flat on a lounge with his face over the edge. Food is to be sucked through a tube from a vessel placed immediately below. The second method consists in directing the patient to lean forward while eating.

Asthma.—Certain forms of asthma may be brought on by errors in diet leading to attacks of indigestion.

Patients suffering from this should partake only of easily digested food and should lead regular lives. The meals should be taken at regular intervals. Dinner should be eaten in the middle of the day and the supper should be light. Late suppers should not be taken, and eating between meals should not be allowed.

Diet in Chronic Lung Disease.—In all chronic diseases of the lungs the diet should be as easy of digestion and especially a diet which will not cause flatulence, as this pushes up the diaphragm and interferes with breathing. (See Diet in Diseases of the Heart.)

Pneumonia.—The diet in pneumonia is of the greatest importance. The patient's recovery often depends upon the matter of his being well nourished.

The same general principles of feeding should be followed as are indicated in all acute fevers. During the course of the disease the patient should receive an abundance of water in addition to the liquid food supplied. Plain water or any carbonated water that the patient may desire should be given. Milk and seltzer may be allowed freely. Lemonade or orangeade, or water flavored with tamarinds, may serve to lend variety. The "Imperial drink" (the recipe for which appears at the end of this book) may also be given.

During the height of the disease milk should form the basis of the diet. This may be peptonized or diluted with lime water. Albumin water, wine whey, malted milk, beef juice, Eskay's food, and similar preparations may be employed when milk is not well borne. Predigested liquid beef preparations may be used both for their stimulating effects and as a food. They should always be diluted freely with water unless, because of vomiting, a concentrated food is indicated.

Food should be given at regular intervals of from two to four hours, according to the patient's condition and the amount he is able to take at one time.

Constipation, flatulence, and vomiting are to be avoided whenever possible. If they do occur, efforts should at once be made to relieve the condition.

In most cases starches and sugars are best omitted from the diet. Fruit may be allowed at any time during the disease, and is of special benefit during convalescence. Most grateful during the severe stage are orange juice, lemonade, grape-fruit, and grapes. During convalescence ripe peaches or pears in season may be added to the diet. The return to a general diet should be made gradually, and no solid food should be allowed until the fever has subsided. Then the general dietetic rules for convalescents may be followed.

Alcohol is given only according to the directions of the physician.

CHAPTER XV.

DIET IN DISEASES OF THE CIRCULATORY SYSTEM.

DIET IN DISEASES OF THE HEART.

General Directions for Diet.—The diet for patients with heart disease usually requires considerable attention. In general there are two stages of heart disease. The first is called "the stage of compensation," when the heart, although diseased, is still able to pump the blood through the body. The second stage, or "stage of broken compensation," is when the heart, no longer able to cope with its work, is unable to force the blood through the vessels as it should and there is a certain amount of damming back of the blood. This causes numerous unpleasant symptoms, such as edema, difficulty of breathing, and irritability.

During the first stage the diet requires comparatively little attention beyond the observance of certain general rules. When the second stage is approaching the diet should be carefully supervised, for the patient may be spared much suffering, and often the time of the broken compensation postponed.

The meals should be small; more should never be given than the patient can easily digest. If the stomach is overloaded the diaphragm is pushed up and displaces the heart, and this may occasion palpitation and dyspnea. If the meals are too large the residue of any digested food in the intestine may undergo fermentation and

15

cause flatulence, with its attendant disagreeable symptoms.

The meals should be simple and well cooked. Improperly prepared food is a cause of indigestion, and may produce flatulence or discomfort. The food chosen should be of a kind that is easy of digestion. A sufficiently long interval should be allowed to elapse between meals, and eating between meals should be strictly prohibited, as even small portions of food taken when digestion is in progress may give rise to flatulence in these patients.

The meals should all be of equal size; while the evening meal may be a little smaller and lighter than the others, and the principal meal should be taken at midday, there should, as has been said, be but comparatively little difference in their size, and the patient should be instructed carefully in this regard.

The amount of fluid taken should not be too large, nor, on the other hand, should it be too small. When compensation has been lost, the question as to the amount of fluid to be taken becomes of much importance. At no time should it be forgotten that fluids distend the vessels, raise arterial tension, and increase the work of the heart. If the quantity of fluids given be too small, elimination is delayed and the irritative effect of the retained impurities in the blood proves harmful. Fluids should be taken between meals and are best sipped slowly. Weak tea and coffee may be allowed in small quantities between meals; if they do not cause flatulence, however, they may be allowed at meal times, but always in great moderation.

Alcohol is best avoided. If, owing to the general weakness of the patient, its use is indicated, it should be

given in small quantities, and in the form of pure whisky or brandy well diluted. Wine and beer are contraindicated.

In general it may be said that a diet of plainly prepared food, unencumbered by too many restrictions, is best in these cases.

All highly seasoned food and the condiments in general should be omitted from the diet, as they tend to stimulate the appetite of the patient and may cause him to take more food than is necessary or desirable.

Stews and fancy dishes should also be omitted, as should the foods usually classed as difficult of digestion, such as fried foods and the like.

Starches, sugars, and fats should, as a rule, be reduced; this restriction, however, should be enforced strictly only when made necessary by complicating stomach disorders coming on as compensation ruptures, when they are apt to cause fermentation and flatulence.

Broadbent dwells on the necessity for giving a diet containing about the usual proportion of food constituents. Starches and vegetables are useful additions to the diet, as they help to keep it from being too largely nitrogenous. If too much protein material is taken it is imperfectly oxidized, and the waste accumulating in the blood increases the work of the heart, just as when too much food is taken.

The diet should consist largely of milk and of dishes made from this food; eggs, rare meats, especially mutton and beef; poultry, fish, and oysters. Well-baked bread, rolls, or biscuits, which are never to be eaten warm, and cereals in moderate quantities may be allowed. Well-cooked potatoes, spinach, asparagus tips, cauliflower tops,

and other similar vegetables may be taken, all stalks being avoided.

The diet list should be simple and such as will not require complicated directions.

As compensation becomes impaired, numerous disorders of digestion occur and require care and attention. The patient with heart disease may develop a distaste for food, and this will often tax the ingenuity of the physician.

As blood-stasis sets in, constipation is apt to occur. Hypostatic congestion of the liver comes on, causing lessened metabolism, and consequently interfering greatly with the general nutrition. The stomach and intestine are affected and a chronic catarrhal condition of both is generally present.

The quantity of fluid given should now be regulated carefully, neither too much nor too little being given. A glassful of Vichy half an hour before eating will help to prepare the stomach for a meal, and will, as a rule, be excreted promptly. Fluid is absolutely necessary for metabolic changes, and may be taken in the form of the "Imperial drink," elsewhere described, between meals. A glassful of hot water flushes out the body, and as it is rapidly excreted does not add materially to the amount of fluid present.

In the **Oertel treatment** of heart disease the fluids are allowed only in a very limited degree. If the patient is on a milk diet, other fluids besides milk should be given in comparatively small quantities.

If **edema** is severe the food may be given in as concentrated a form as possible.

If **flatulence** is troublesome, fats, starches, and sugars, as well as beer, pastry, and stews, are to be avoided. No solid food should be taken between meals. Coffee or tea

taken with the meals may give rise to flatulence. They may, however, in some cases be taken during the day, at a time when the stomach is empty; they should be freshly prepared and should never be strong. Only such quantities of food as the patient can digest should be allowed, and if necessary digestion may be aided by giving essence of pepsin or other digestives. In some cases a milk diet may become necessary.

Sudden dilatation of the heart occurring during or following any acute disease requires rest and a milk diet.

Palpitation and dyspnea are often caused by the ingestion of too abundant meals; if persistent the food should be given in smaller quantities and at shorter intervals. Four or five small instead of three large meals may be taken at regular intervals, or a milk diet may be ordered for a time. The general management may be such as has been suggested for flatulence. Tea, coffee, and tobacco should be avoided, and effervescing drinks may also be omitted. If there is constipation, stewed fruits, especially prunes or figs, are useful.

Gastric disturbances are best met by rest and a milk diet for a time, with a gradual return to the ordinary diet or a diet such as is advised for cases of gastric catarrh. Much relief frequently follows the drinking of a glassful of hot water or of Vichy half an hour before a meal.

As ruptured compensation is accompanied by effusion, something must be said with special reference to the removal of fluids from the body. Here, indeed, feeding is a difficult task, for the patient usually has a disgust for food. If the patient is very ill, nourishment may be administered every three hours. If he is able to be about, it will often be well to allow him to take his meals with the family at the regular meal time. He may be given

chicken, tender meats, fish, oysters, and other forms of light food. When but little is taken at the regular meal time, food may be given between the meals at regular periods, time being allowed for complete digestion to take place. Milk, albumin water, egg and milk, soup, or beef tea in small quantities are useful for this purpose. Broadbent recommends meat or chicken jelly or meat extracts for their stimulating effect on the heart. Pottedmeat sandwiches or meat pulp, prepared as directed for tuberculosis patients, may be given.

Fluids other than milk and soups should be taken in as small quantities as possible. "Imperial drink" or hot water, as previously suggested, may be given to quench the thirst.

Stimulants are usually needed, but should be given only under the supervision of the physician, as there is a tendency to take too much to relieve faintness or other symptoms. In non-alcoholics, from ½ to 2 oz. of whisky a day may be allowed at the beginning, the amount being increased as occasion demands. Stimulating drugs have largely superseded the use of alcohol in these cases.

Aneurism; Dilatation of the Blood-vessels.—Special diets are sometimes prescribed for these patients. Tuffinel's diet, which restricts the foods to a very small quantity and enforces absolute rest, is the best known. Whether or not such diets should be used is a matter to be decided only by the most expert knowledge.

Angina Pectoris.—Small easily digested meals are to be given according to the general rules for dieting heart disease.

Anemia.—There are a number of different kinds of anemia, and the diet depends somewhat upon the form present. That following the loss of blood is usually

rapidly recovered from. In this form infusions of salt solution are sometimes given.

In general it may be stated that anemic persons require fresh air and sunshine and good food. Fresh food, milk, eggs, meats, green vegetables, and fresh fruits are the most important articles of diet. The meals should be given at regular intervals and not too widely separated, usually about three hours apart. The meals should be small. Eating between meals should be absolutely prohibited, and this may require some watching, as the patient frequently has a very capricious appetite, eating all sorts of indigestible articles between meals and leaving the regular food untouched. The breakfast should be a good, nutritious one and consist of meat or eggs in addition to other articles of food. Milk is valuable, but should not be given to the exclusion of other food. It is a good plan to have it taken toward the close of the meal, as otherwise the patient may spoil his appetite by drinking a glassful of milk at the beginning of the meal. Rest before and after meals is desirable.

CHAPTER XVI.

DIET IN DISEASES OF THE GENITO-URINARY SYSTEM.

Urine and Food.—The urine bears a direct relation to the quality and quantity of food ingested, as well as to the quantity of fluid taken and the amount of work done by the individual. Many variations occur in the urine that are due to food or drink and that are normal. When the kidneys are diseased improper food may bring on dangerous or even fatal complications.

One of the first principles of dicting persons with diseases of the kidneys is to avoid giving them food which is irritating to the kidneys. Among these may be mentioned the browned outer surfaces of grills and roasts, strong sauces, spices, pastry, very acid foods, strong alcoholic drinks, and strong tea and coffee. Green vegetables are to be avoided in acute diseases of the kidneys, as well as cranberries and fruits which contain kernels. As regards meats in the acute conditions, they are to be avoided until ordered by the physician. There is a popular idea that the light meats are less injurious than the dark ones; this has no foundation. Glands, such as liver, sweetbreads, kidneys, and spleen, should be avoided. Strong meat broths are also injurious.

Alcohol is to be avoided in all cases except when prescribed by the attending physician. All alcoholic beverages are irritating to the diseased kidneys, and if

anything they are more injurious in the chronic cases than in the acute.

Water may be given freely in all cases where the urine is increased with the increase in the amount of water taken. It aids in the climination of waste products. When, however, the amount of urine is greatly diminished or none at all is passed, the physician should regulate the amount of fluid that is given the patient, as there may be danger in giving too much.

Acute Inflammation of the Kidney; Nephritis.

—During the first stage of the acute condition in the severer cases food is given in very small quantities, a pint of milk a day. To relieve the thirst, tablespoonful doses of water may be given or pieces of ice may be placed in the mouth. In this stage the physician frequently prescribes some form of alcoholic stimulant.

In the less severe cases a strict milk diet is followed. or, what is generally preferred, 1½ quarts of milk is given with about ½ pint of cream. Rice, groats, commeal porridge, crackers, and zwieback may be added if the patient has any appetite, and butter, sugar, and grape juice or other fruit juices may be given. Plain or carbonated waters, the "Imperial drink," weak lemonade, buttermilk, and similar drinks may be given. As convalescence advances calves'-foot jelly and similar preparations are allowable. Light vegetables may be added to the diet; spinach is perhaps the best, but cauliflower tops, young peas, or young string-beans may be used. In acute cases and their convalescence the patient's appetite is a fairly good guide as to the amount of food to be taken. Meat and eggs are to be added to the dietary last of all. For a long time after an attack of inflammation

of the kidneys the patient should avoid the articles of food which are irritating to the kidneys.

Chronic Inflammation of the Kidneys.-In this disease the diet should be very much like that suggested for old people. (See Diet for the Aged.) Alcohol is to be avoided, as are tea and coffee and all the foods set down as irritating to the kidneys. The amount of fluid taken should not be excessive. There is a popular idea that in this disease the more fluid one takes the better; this is not true, and in some cases excessive amounts of fluids are distinctly injurious. An occasional drinkingday or drinking-week is sometimes allowed, during which the patient drinks large quantities of water to flush out the system. This is frequently accomplished by an occasional visit to a watering-place, where the change of scene is often of as much value as the waters. Exercise, fresh air, freedom from care and worry, suitable occupation, and pleasant surroundings are all important. A change of air to a dry, warm climate is often of great benefit.

Another point to remember is that many drugs are injurious to the kidneys, and the taking of indiscriminate headache powders and other things without a knowledge of what they do or of what they contain is a habit which, if for no other reason than protecting the kidneys, is to be most highly condemned.

Movable and Floating Kidney.—This trouble is sometimes seen after rapid loss of flesh from any cause. A rest or careful feeding to regain the original weight is in many cases of great service.

Calculous Affections.—The tendency to stone formation, as in the kidney or bladder, and the much-talked-of condition usually called the uric acid diathesis, may be considered together.

In many instances, but by no means all, too rich food, too large meals, and too little exercise are at the bottom of the trouble

The following suggestions regarding the diet will be found useful: Avoid strong drinks, and all alcohol if possible; much meat, and especially the nuclein-containing meats, as thymus, spleen, liver, brain, caviare, etc., smoked, pickled and spiced meats, and rich foods in general. The fats and sugars as well as the cereals should be restricted. The diet should be made up of the plainer, well-prepared foods, and so far as possible a vegetable diet should be prescribed. Water, especially the alkaline mineral waters, may be allowed in abundance. A sojourn at Carlsbad may be recommended for certain obese patients.

Mineral waters must be used with extreme caution, for if too much alkaline water be taken it may increase the deposit of certain earthy salts. The physician should direct the kind and amount of such waters as are to be taken.

SURGICAL DISEASES OF THE GENITO-URINARY TRACT.

The directions for diet are very simple. All irritating foods and drinks should be avoided, as should all indigestible articles. The diet should consist of plain and wholesome food. Where it is possible, skim-milk should form the basis of the diet. Too much meat should not be taken, and twice-cooked meats and fried and very greasy foods avoided so far as possible. Carbohydrates, as breadstuffs, cereals, and the non-acid vegetables, may be allowed. Care should be taken to avoid all complicated and highly seasoned foods, all pepper, spices,

and salad dressing. In a word, everything previously mentioned as irritating to the genito-urinary tract should be avoided. Acid fruits, asparagus, and tomatoes are also to be forbidden. Tea and coffee should be prohibited or given very weak and well diluted with milk or cream. All alcoholic drinks should be forbidden.

CHAPTER XVII.

DIET IN DISEASES OF THE NERVOUS SYSTEM.

The necessity for the correct management of the diet in nervous diseases is becoming appreciated more and more every year. As a general rule, it may be stated that all functional diseases attended with emaciation are greatly benefited, if not entirely relieved, by merely increasing the patient's weight by such methods as are suggested under the heading of Rest Cure. with chronic lesions will, as a rule, be made more comfortable if the following two points are borne in mind: First, to overcome, so far as possible, emaciation and anemia where the nutrition has a tendency to be below normal; and secondly, and of no less importance, to prevent undue obesity in those so inclined, particularly where there is disturbance of locomotion. may be condemned to remain in bed or in a chair on account of the excessive weight which his inactivity has fostered.

Most patients regard diet as a very unimportant part of the treatment; this is especially true of those cases that most need careful feeding. The necessity for careful dietary should be impressed upon these patients, and a faith in its efficacy engendered where the disease is of a functional nature.

The diet suitable in nervous diseases has been the

subject of many diverse opinions, particularly in the minds of the laity. Fish has been vaunted as a "brain food," and various fats or cereals have been suggested for nervous conditions. At the present time, it may be stated, there is no specific "nerve food." The nutrition of the nervous system will be good when the patient's general nutrition is good, and vice versā. Both in functional disorders of the nervous system and in the psychoses dependent upon exhaustion the improvement of the general condition should be the first care.

The basis of the diet is usually milk. Care should be taken to see that the patient gets sufficient fluid, and where no tendency to obesity exists water should be taken with each meal, and usually at bedtime and on rising. It may also be taken between meals if desired. When there is disturbance of digestion, it is a good plan to prepare the stomach for the meal by sipping a glassful of hot water on rising and an hour or less before each meal. The mineral waters may be used when desired; the alkaline ones are apt to be of most value. Carbonated waters should be used with care, lest the flatulence they may cause give rise to symptoms the importance of which may be greatly exaggerated by the patient.

A question of great importance is whether or not alcohol should be used. As a general rule, it should not be allowed. In cases with chronic lesions, where the patient has been accustomed to the use of alcohol all his life, it may be allowed if not otherwise contra-indicated, as in a tendency to cerebral hemorrhage, arteriosclerosis, chronic interstitial nephritis, and the like. The use of alcohol in the functional disorders is usually contra-indicated. Its value as a food and as a stimulant to nutrition should not be overlooked, and it may be used

with great benefit in the psychoses accompanied by exhaustive conditions.

NEURALGIA.

Some cases of neuralgia are directly caused by indiscretions in diet; other cases depend on a lowered state of nutrition, while still others may be due to plethoric states. Neuralgia is also caused by many factors not related to the diet of the patient. To decide this question requires great experience and judgment on the part of a skilled physician.

As a general rule, plain, wholesome food should be ordered at regular intervals. The patient should not be allowed to eat between meals. All rich, complex, and highly seasoned foods should be forbidden, as should all fried foods, pastry, and anything known to disagree with the patient. Care should, however, be taken that the diet be not restricted, for the patient's ability to take different articles is often purely imaginary. True idiosyncrasies for different articles of food are not very common. The excessive use of tobacco may be the cause of neuralgia.

INSOMNIA AND DISTURBED SLEEP.

When not dependent upon other conditions, these are apt to be due either to eating at night or to a depressed state of the nutrition. For the first there is nothing to do but to discontinue the habit of eating at night. There are but few persons who reach middle age and can eat late at night with impunity, and sooner or later the individual learns that he must give up the habit. There are some, however, with whom the practice seems to agree.

When the trouble is caused by malnutrition or anemia, the general condition of the patient must be treated. Good food, regular hours, milk or some light food between meals, and on going to bed a cupful of hot milk, cocoa, or, if preferred, beef tea, malted milk or similar preparation may be ordered.

In many cases where the nutrition is fairly good one of the hot drinks just mentioned taken at bedtime may be all that is necessary. This is especially true of the insomnia and disturbed sleep that follow the doing of mental work at night. The effect is to dilate the abdominal vessels and to restore the equilibrium of the circulation. A brisk walk in the open air or five minutes' exercise will often accomplish similar results.

EPILEPSY.

Epilepsy bears an important relation to diet. There is no specific "anti-epilepsy" diet, and there is no form of food that can be assigned as a cause of epilepsy; it is, however, a fact that where the diet is carefully regulated, the number of attacks are usually lessened. This is particularly true of children. The principle involved is to give only as much food as the patient can easily digest and assimilate, and to allow sufficient time to elapse between feedings for him to utilize and excrete the endproducts of what he does assimilate. When this is not done, attacks may be provoked by irritating substances in the bowel, by the absorption of toxic substances from the intestinal tract, or by the accumulation of the products of metabolism in the body. In the epileptic colonies no especial diet is used, but the amount and the variety of food are so regulated as to secure the best results.

In children a diet composed largely of milk, with the addition of cereals and fruit, is most useful. In older persons this diet is not feasible except occasionally as a temporary measure. For these latter meat should be allowed only once a day, unless on account of excessive manual labor or because of a weakened condition of nutrition the patient especially demands it. Milk, cereals, bread, vegetables, and fruit should make up the rest of the dietary. Each patient should be instructed to take only digestible food, to take his meals regularly, and not to eat too much. They should also be taught to eat slowly and masticate the food well. The avoidance of constipation is of primary importance, and this can usually be secured by the proper use of fruits and the coarser forms of cereals.

Quiet, open-air life, pleasant occupation of a nonstrenuous kind, an absence of worry, and agreeable forms of recreation are just as important as the diet in these cases.

CHOREA.

In chorea the diet is often of the greatest importance; this is especially true when it occurs in anemic or debilitated children. Rest and an easily assimilable diet are the indications. The authors are of the opinion that absolute rest in bed, if possible isolated from the remainder of the family and under the care of a trained nurse, who should be a stranger, combined with a milk diet or a diet composed largely of milk, will give better and more lasting results than any other form of treatment. If the patient is anemic, beef juice made from fresh beef may be used to advantage, as well as raw scraped beef and similar foods.

APOPLEXY.

Comatose Stage.—During the early stage of the comatose condition—i. c., for the first day or two—there is, as a rule, no necessity for giving the patient any food. As the disease is most likely to occur in obese, overfed individuals, the abstinence from food is often beneficial. The intestinal tract should be flushed out as soon after the patient is seen as is practicable. Those about the patient should be instructed carefully as to the dangers of attempting to feed the patient if he is unable to swallow, for he may, on the one hand, choke, and, on the other, he may draw food or drink into his lungs during inspiration, and so set up a pneumonia.

If the patient is in need of nourishment or of fluid, it may be given by the rectum. Normal salt solution may be given by the rectum to supply the body with fluid, but it should not be given in too large quantities. (See Rectal Feeding.)

Later Stages.—As soon as the patient recovers sufficiently to be able to swallow without danger of inspiring the food he may be fed by the mouth. The food should be liquid or semi-solid, and of a bland, unstimulating character. The quantity should not be too large. Milk, milk and eggs beaten together in the form of a milk punch, without, however, the addition of a stimulant; broths, soft eggs, and milk thickened with cereals, or the purées of vegetables may be used. As the patient improves other food may be added, but the diet should be light, easily digestible, and as non-stimulating as possible. The patient should be warned against overeating and also against drinking. Alcohol is allowable only in the case of habitués who are threatened with collapse

unless it is used, or in the same class where food is not assimilated without it. It should always be given in moderate amounts, and the dosage arranged by the physician, and never left to the nurse, the patient or the family.

On account of the lack of exercise the diet should contain but little meat, but cereals, vegetables, and fruit should be given in small quantities at a time, and as evenly distributed throughout the day as possible, to avoid overfilling of the vessels.

The greatest danger, from a dietary standpoint, is in those patients who recover sufficiently to return to their ordinary modes of living. They should be very carefully instructed neither to drink to excess nor to overeat. A full meal and several drinks may be the cause of a second or of a fatal attack.

ALCOHOLISM.

The mild forms of alcoholism are usually easily managed. So long as the stomach is irritable it should be given absolute rest. If possible, alcohol should be withheld entirely. As soon as the stomach will retain fluid a saline mineral water or a saline purge should be given. Milk or bouillon is next to be prescribed, and as the desire for food returns a light diet of soft-boiled eggs, milk toast and the like should be allowed. After recovery all rich and highly seasoned food should be avoided, particularly the spices and peppers, which are commonly used to excess.

In the severe forms the diet should be that recommended for chronic gastritis. Some confirmed alcoholics can retain nothing in the stomach until they have had their morning drink. When nutrition is threatened this may be allowed, but it is apt to lead to excesses later in the day.

In the very severe forms, as in delirium tremens or in cases approaching it, the patient should take as much fluid as possible to flush out the system, and the intestinal tract should be thoroughly purged. The food should be given in a predigested or in a partially predigested form and at frequent intervals. In this way the craving for drink is somewhat alleviated. Bouillon or beef tea to which considerable amounts of black pepper or even Cayenne pepper have been added is useful in this condition, although their use would be contra-indicated for any but an alcohol-saturated person. Rest and suralimentation as soon as food can be borne constitute the best method of managing these cases. Strychnin may be used as a stimulant.

Illness or Injury in Alcoholics.—When a man who has been accustomed to taking several glasses of spirits every day for years is suddenly stricken ill or injured, delirium will often develop if the stimulant is rapidly withdrawn. In all such cases the accustomed amount of alcohol should be given, care being taken, however, to prevent overindulgence.

In alcoholics affected with pneumonia alcohol is necessary to sustain life. When delirium occurs in the course of pneumonia alcohol should be ordered, although in ordinary, uncomplicated cases of delirium tremens due to extreme overindulgence it should be withheld.

REST CURE.

The technic of the treatment is explained in a most interesting way by Mitchell, in his book "Fat and Blood,"

The more nearly perfect the technic and the more closely it is adhered to, the more likely is cure to follow. The cases are of various grades of severity, and the treatment is modified to suit the individual. Isolation is necessary, and the patient should be removed to a hospital or a sanitarium, away from familiar scenes. Home treatment does not succeed well. If circumstances compel the patient to remain at home, her room should be changed. In severe cases with emotional manifestations visiting is forbidden, but it may be allowed to a "certain extent when the patient is anemic owing to a distinct cause, as overwork, blood-losses, dyspepsia, low fevers, or nursing." The nurse should be a stranger to the patient.

Communication with friends and family should, as a rule, be cut off entirely, and not even the reading of letters should be allowed. After several weeks, if the patient is improving, she may be allowed to read the newspaper each day.

Rest is a most important feature, and, as a rule, the patient should be put to bed for six weeks or two months.

In other cases, especially where the patient is not able to undergo regular treatment, as in dispensary cases, a modified rest cure may be tried. The following is Mitchell's schedule for such cases; this may be modified according to circumstances:

"7.30 A.M.: Cocoa, coffee, hot milk, beef extract, or hot water. Bath (temperature stated). Rough rub with towel or flesh-brush. Bathing and rubbing may be done by attendant. Lie down a few minutes after finishing.

"8.30 A.M.: Breakfast in bed. (Detail as to diet. Tonic, aperient, malt extract as ordered.) May read letters, papers, etc., if eyes are good.

"10 to 11 A.M.: Massage, if required, is usually ordered one hour after breakfast, or Swedish movements are given at that time. An hour's rest follows massage. Less rest is needed after the movements. (Milk or broth after massage.)

"12 M.: Rise and dress slowly. If the gymnastics or massage are not ordered, may rise earlier. May see visitors, attend to household affairs, or walk out.

"1.30 P. M.: Luncheon. (Malt, tonic, etc., as ordered.) In invalids this should be the chief meal of the day. Rest, lying down, not in bed, for an hour after.

"3 P. M.: Drive (use street cars or walk) one to two and one-half hours. (Milk or soup on return.)

"7 P. M.: Supper. (Malt, tonic, etc., as ordered; detail of diet.)

" 10 P. M.: Hot milk or other food at bedtime."

In extreme cases the patient is made to rest absolutely. No exertion of any kind is to be allowed. The bed-pan is to be used with the patient in the recumbent position. She should be removed to a couch for an hour, both morning and evening, while the bed is being freshened, The patient should be fed, and later, when allowed to feed herself, the meat should be cut up for her. A spongebath should be given daily, but if it causes depression it may be given less frequently. After two weeks, if the physician thinks it desirable, the patient may be read to for one to three hours. The monotony of the treatment is not so trying as would be imagined, for the routine of the day occupies most of the time. The nurse and masseuse should not talk about or listen to the patient's ills, and the latter should be taught that she must speak of them only to the physician.

Massage and electricity are resorted to in order to

maintain nutrition and circulation while at rest. Mitchell gives minute instructions regarding both. General massage of the whole body is to be given, care being taken not to excite pain by manipulating tender areas. The tapping movements, slapping, and the like are not to be used in nervous patients. Care should be exercised to avoid producing sexual excitement; this may be aroused in both sane and insane patients from friction near the genitals or over the back or buttocks. If it does occur, the operator should avoid the sensitive areas. In the average case massage should be given for an hour daily for about six weeks, and then on each alternate day. The time chosen for this should be about midway between meals. Care should be taken to keep the parts warmed by the massage well covered.

The same precautions should be taken in using electricity as when giving massage. The induced current should be used, and it is well to employ a battery in which the breaks are very slow—from two to five seconds. The more rapid interruptions are useful, however, but in the hands of an unskilled operator may excite pain and apprehension in the patient. The poles may be placed 4 or 5 in apart on the muscle, and the whole body should be gone over.

In thin, anemic, exhausted women, who are the ones usually treated, the diet is as follows: The patient is put to bed and the diet generally changed from the ordinary to a milk diet. This is done by giving from 3 to 4 oz. of milk every two hours, after the Karell method. Then the patient is given 2 quarts of milk in each twenty-four hours. The amount is divided and a portion given at three-hour intervals. At the end of the first week a pound of beef is administered in the form of a raw soup.

This is given three times a day, a pound of beef being used each day. If desired, this may be replaced by peptonized food. (See formulas in the Appendix.)

After ten days three meals a day are given. These are led up to gradually, and the patient is kept on the milk diet until the stomach feels comfortable. Then, usually within from four days to a week, a light breakfast is allowed, and in a few days more a chop is given at the midday meal. After a short time the patient is given three full meals, together with 3 or 4 pints of milk instead of water, either with or after the meals.

After about ten days of this treatment, from 2 to 4 oz. of good fluid extract of malt are given before each meal. "As to meals, I leave them to the patient's caprice, unless this is too unreasonable; but I like to give butter largely, and have little trouble in having this most wholesome of fats taken in large amounts. A cup of cocoa or of coffee and milk on waking in the morning is a good prescription for the fatigue of the toilet."

In some of the difficult cases $\frac{1}{2}$ oz. of cod-liver oil is given half an hour after each meal. If it causes nausea or interferes with the appetite, it is given as a rectal injection. This is of particular service where the bowels are sluggish. It may also be given in the form of an emulsion with pancreas extract. In some it acts admirably; in others it may cause tenesmus.

SCHEDULE FOR A COMPLETE REST CURE.

Until otherwise ordered, absolute rest in bed. No visitors, no reading, and no conversation with nurse on the subject of disease or treatment.

First Day.—One quart of milk in divided doses every

two hours. 8 A. M.: Cold bath followed by a brisk rub. If patient does not react well, a warm bath may be used for several days and then the cold bath tried again. 11 A. M.: Twenty minutes' massage. 2.30 P. M.: Room darkened far a nap. 4 P. M.: Twenty minutes' electricity. 9 P. M.: Brisk rub over the entire body.

Second Day.—Same as first. Milk $1\frac{1}{2}$ quarts; massage and electricity increased to forty minutes.

Third Day.—Two quarts of milk in divided doses at three-hour intervals; massage and electricity one hour each.

Fourth Day.—Same, with addition of white of a raw egg with each glassful of milk; cupful of cocoa on awakening.

Fifth Day.—Same, with addition of raw-beef soup or broth, I pint in two portions; a slice of toast.

Ninth Day.—Same, with soft-boiled eggs and toast for breakfast.

Tenth Day.—Cocoa on awakening. 7.30 A.M.: Bath and brisk rub. 8.30 A.M.: Breakfast, including cereal, chop or eggs, bread and butter, and 2 glassfuls of milk with the whites of 2 eggs. 10 to 11 A.M.: Massage. 11.30 A.M.: Half-pint of milk, whites of 1 or 2 eggs. 2 P.M.: Full dinner, including 2 glassfuls of milk and whites of 2 eggs. 3.30 to 4 P.M.: Electricity. 5 P.M.: Glassful of milk with whites of 2 eggs. 7.30 P.M.: Supper including milk and eggs. 9.30 P.M.: Brisk rub and a glassful of milk.

Schedule as above until desired effect is obtained. This to be modified to suit the individual case. On twelfth day 2 oz. of malt extract with a teaspoonful of solution of peptonate of iron and manganese, or a table-spoonful of Gude's Peptomangan is usually ordered.

Bowels to be kept open. Use butter in as large quantities as possible.

The patient is allowed to undertake movements for herself very gradually, being allowed to move about in bed by herself and then sit up, and later on to sit outdoors and then to walk a few steps, to take a drive, etc. If this is not done gradually the moving about may be attended by dizziness, vertigo, or unpleasant exhaustion, which may be avoided entirely by gradually increasing the patient's efforts for herself.

DIET FOR THE INSANE.

Feeding constitutes a very important part of the treatment of the insane. All insane persons who are below the standard of nutrition should be built up and an earnest effort made to increase the weight of the patient. One of the English alienists was wont to talk of the "gospel of fatness." This is best accomplished by a system of feeding somewhat similar to that outlined in the rest treatment, the rest being prescribed or omitted as the case demands. It should always be remembered that an insane person may contract other diseases besides his mental disorder; this is true especially of stomach and intestinal disorders, which may give rise to delusions regarding the taking of food.

When the patient refuses food, the question as to the advisability of feeding him by force arises. Everything considered, it is well to begin the forced feeding early, before the patient has time to suffer from his fasting. It should be accomplished by means of the stomach tube or the nasal tube, and about a liter (1 quart) of food should be introduced. The food may be given thus twice daily, and in the case of weak patients three or four

times a day. Milk, milk and eggs, and broths may be used for this purpose. A sufficient number of attendants should be at hand to control the patient if he becomes unruly and resists feeding. After a patient has been fed with the tube several times he will often prefer to take his nourishment in the usual manner.

Whether the esophageal or the nasal tube is to be used will depend on the preference of the physician. Each has its advantages. The nasal tube is generally preferred, since it is easier to introduce, can not be bitten by the patient, and does not cause the patient to struggle as much as the stomach tube; it may, however, be passed into the larynx, and in this way liquid might be introduced into the trachea. This danger is more fancied than real, and can be avoided if the patient is allowed to breathe before the fluid is poured into the tube. While he is breathing the tube should be pinched, and if it is in the larvnx this fact will be noticed at once. Ordinarily, but not always, coughing ensues; it does not follow when the pharynx is anesthetic, as it occasionally is in the insane or hysteric. The stomach tube does not allow * the food to be regurgitated so easily as the nasal tube, but for this method of feeding a mouth-gag is required, which may injure the mouth or teeth, or it may slip, permitting the patient to bite the tube. If the patient has acquired the knack of regurgitating the food, this may be prevented by tickling the ribs while the fluid is being introduced. This prevents the fixing of the diaphragm, and is successful in most cases.

Tact and experience in handling the insane are of the greatest value. Some nurses or attendants have little difficulty in getting patients to eat, whereas others seem never to learn how to manage them. It must be remem-

bered than an insane patient may not eat for reasons that are often easily overcome. He may prefer to take his food alone, because he does not think himself worthy of eating at the same table with other people. He may fear that his food has been poisoned, and he should be convinced of the fallacy of this by the nurse, who should eat a portion before him or allow him to see the food prepared, or he may be given food that can not easily be poisoned, such as eggs, whole vegetables, and fruit. When the patient's confidence is gained the battle is generally won. In some cases the delusion persists for a long time and can not be dispelled.

Food should always be served daintily. An insane person who may be very much unbalanced may still notice the slightest variations in the way of serving food. Attendants are apt to be negligent in this respect. For all patients who have a suicidal tendency the food should be served on dishes that can not be broken. No knives should be allowed, and the food should be served so as to require no cutting. An attendant should watch those who are apt to bolt their food and see that it is cut into small pieces before serving it. Cases of sudden death have followed the drawing of a piece of meat into the larynx while eating too rapidly.

CHAPTER XVIII.

DISEASES IN WHICH DIET IS A PRIMARY FACTOR.

DIABETES MELLITUS.

This is one of the diseases in which the diet is of primary importance and, in fact, the principal part of the treatment. No one but a skilled physician should ever attempt to regulate the feeding of a diabetic patient, as the well-being, and usually even life itself, are directly dependent upon the diet. The outlook in the disease is in many cases gloomy enough with the greatest possible care, whereas in poorly managed cases it is made much more so. Many complications, causing great suffering on the part of the patient, are the direct result of errors in diet.

In order to carry out intelligently the physician's orders, the nurse should understand the principles of the diet to be followed. Diabetes is a disease in which the capacity to burn up sugar as food is depressed. The sugar taken is to a great extent passed off from the body in the urine. Not every person who has sugar in the urine is a diabetic.

The chief indications in the management of diabetes are to maintain the patient's strength, to increase the sugar-destroying power of the body, and to avoid complications. These results are best accomplished by supplying a sufficient amount of food in such a form that

it may be utilized by the patient, and by avoiding carbohydrates.

The sugar which is passed in the urine has not been used as food, and this amount must be taken up in the other food elements or the patient will lose weight. If too much carbohydrate food is taken continuously, the patients nearly always do badly and develop complications.

The physician in prescribing the diet has in mind three things: the amount of sugar that the patient is excreting daily, the gain or loss of weight, and the general condition of the patient. There are other factors which may influence his choice of diet, but these are very technical matters.

From time to time the physician may desire to see how much sugar the patient passes when taking a diet free from carbohydrates. For this purpose the patient is ordered a diet somewhat like the following:

Von Noorden's Carbohydrate-free Diet.—*Break-fast:* 5 gm. of tea steeped in 200 c.c. of water; 150 gm. of ham; 1 egg.

Luncheon: 200 gm. cold roast beef; 60 gm. fresh cucumbers with 5 gm. vinegar; 10 gm. olive oil, and salt and pepper to taste; 20 c.c. brandy with 400 c.c. Apollinaris water; 60 c.c. coffee without milk or sugar.

Dinner: 200 c.c. clear bouillon; 250 gm. beef (weighed raw) basted with 10 gm. butter; 80 gm. green salad with 10 gm. vinegar and 20 gm. olive oil, or 3 tablespoonfuls of some well-cooked green vegetable; 3 sardines in oil; 20 c.c. cognac with 400 c.c. Apollinaris water.

Supper: 2 eggs (raw or cooked); 400 c.c. seltzer water. The patient is not put upon this diet suddenly, but the carbohydrates are reduced gradually. This diet is gen-

erally used for five days, during which time the condition of the patient's urine is investigated by the physician.

Prophylactic Diet.—Diabetes sometimes occurs in certain families, and members of such families are frequently ordered to limit the amount of carbohydrate food, especially about the age at which they have a tendency to take on flesh.

Dietetic Treatment.—Mild cases in old people are generally given a diet restricted in a more or less general way. Foods consisting entirely or nearly so of sugar are forbidden, as well as dishes made largely from flour. Bread and potatoes are allowed according to the desire of the patient, and also any vegetables that may be served. When this form of diet is not sufficient the physician may order more restrictions. If the patient is thin the nurse must see to it that he takes the amount of food prescribed. In young persons even mild cases require close attention, and sugar may be withdrawn altogether and the food sweetened with certain drugs, as saccharin, saxin, garantose, dulcin, and the like. These are usually ordered in the form of tablets, each one representing the sweetening power of an ordinary piece of cut lump sugar. The patient is limited as to the amount of starchy food that is permitted, and is urged to take milk, cream, and fatty foods

Severe cases require most careful attention. The diet is very strict, and for certain periods each year the patient is put upon a carbohydrate-free diet. It is difficult to get the patient to take sufficient nourishment, and the nurse must prepare as palatable dishes as possible from the list of permitted foods. (A number of recipes will be found in the Appendix.) The patient has a great craving for sweets and bread, coupled with an enormous appetite

and great thirst, and considerable vigilance is often required to see that he does not partake of forbidden food.

Certain diabetic "cures" are sometimes prescribed as a diet composed largely of oatmeal or of potatoes or of rice. In certain cases a diet largely restricted to one or other of these foods may raise the patient's capability to burn up other forms of carbohydrate.

Diabetic Coma.—The patient may become drowsy, complain of feeling numb, and then pass into a condition of unconsciousness. This is a very dangerous condition, and usually the patient dies. Certain changes in the urine may warn the physician that there is danger of coma, and when these changes are noted a more liberal diet is allowed. This extra diet increases the amount of urine passed and may flush out with it the poisonous materials from the blood. When coma occurs alcohol is given, and salt solution and sometimes solutions of grape sugar are given subcutaneously to increase the flow of urine.

Diabetes is frequently complicated with other diseases, as obesity, gout, or disease of the kidneys, which render the problem of the diet extremely difficult.

Substitutes for Bread.—"Torrified Bread."—Thin slices of bread are toasted until very dark brown or almost black. It is supposed that the starch and gluten are partially decomposed by the heat. This will almost certainly not be eaten to excess by the patient, and Williamson states that this is probably its only advantage.

Gluten bread, introduced over fifty years ago by Bouchardat, has always been popular in France. This bread is made from gluten flour from which the starch has been washed out. The gluten flours on the market differ very much in the amount of starch which they contain.

Directions for making gluten bread accompany the packages of flour.

Bran bread, made from bran flour, is also to be recommended. The bran must be ground quite fine or it will not be digested.

Soya biscuits or bread are made from Soya bean, a Japanese product. Soya bread was suggested for diabetics by Dujardin-Beaumetz, in 1890.

Almond cakes and cocoanut cakes are of considerable value as bread substitutes.

Aleuronat is a vegetable albumin flour made by Dr. Hundhausen from wheat. It is a light-yellowish powder, and contains from 80 to 90 per cent. of albumin and only 7 per cent. of carbohydrate. It was recommended in diabetes by Ebstein, who suggests that it be mixed with wheat flour. His formula contains considerable starch—i. c., about one-half the amount of ordinary bread—and most patients prefer to have half the quantity of wheat bread to a double allowance of aleuronat bread.

The nurse may find it both interesting and instructive to study the tables given below, and the diet for such cases as the physician leaves with general orders may be arranged from them. Under no other circumstances should a nurse or other unqualified person attempt to manage the diet of a diabetic, and the physician should always keep in close touch with the case. The nurse will be in a position to sympathize with the patient and to take extra pains with the details of carrying out whatever may be ordered if she will try living on a carbohydrate free diet for a few days. She will learn many things in that way which may not otherwise occur to her.

The following four tables are taken from von Noorden's article in *The Twentieth Century Practice of Medicine*:

TABLE I.

First Group.—Unconditionally Allowable Foods.

Fresh meat: All the muscular parts of the ox, calf, sheep, pig, horse, deer, wild and domestic birds—roasted or boiled, warm or cold, in their own gravy or with mayonnaise sauce.

Internal parts of animals: Tongue, heart, brain, sweetbreads, kidneys, marrow-bones—served with non-farinaceous sauces.

Preserved meats: Dried or smoked meat, smoked or salted tongue, ham, smoked breast of goose, American canned meats, Australian corned beef.

Fresh fish: All kinds of fresh fish, boiled or broiled, prepared without bread crumbs or cracker meal, and served with any kind of non-farinaceous sauce, preferably melted butter.

Preserved fish: Dried fish, salted or smoked fish, such as codfish, haddock, herring, mackerel, flounder, salmon, sardellen, sprats, eels, lampreys, etc.; tinned fish, such as sardines in oil, anchovies, etc.

Fish derivatives: Caviare, cod-liver oil.

Shell-fish: Oysters, mussels, and other bivalves, lobster, crawfish, crabs, shrimps, turtle.

Meat extracts: Meat peptones of all kinds.

 E_{SSS} : Raw or cooked in any way, but without any admixture of flour. Fats of all kinds, animal or vegetable.

Fresh vegetables: Green lettuce, endive, cress, spinach, cucumbers, onion, leek, asparagus, cauliflower, red and white cabbage, sorrel, French beans. The vegetables, so far as they are suited to this mode of preparation, are best cooked with meat broth or a solution of Liebig's extract and salt, and covered plentifully with butter, lard, suet, or goose fat. The addition of flour is not permissible.

Preserved vegetables: Tinned asparagus, French beans, pickled cucumbers in brine or vinegar, mixed pickles, sauer kraut, olives.

Spices: Salt, white or black pepper, Cayenne pepper, curry, cinnamon, cloves, nutmeg, English mustard, anise seed, caraway seed, parsley, dill, borage, pimpernel, laurel, capers, chives, garlic, etc. Many of these spices contain, indeed, a rather large percentage of carbohydrates, but they are added to the food in such small quantities that this may be disregarded.

Soups: Clear soups and broths, with or without eggs, marrow, fresh or dried vegetables (Julienne), clear turtle soup, etc.

Cheese. Stracchino, Neufchâtel, old Camembert, Gorgonzola, and all other fatty or so-called cream cheeses.

Beverages: All kinds of natural or artificial carbonated waters, either clear or with lemon juice and saccharin or glycerin, or with rum, cognac, whisky, arrack, cherry brandy, plum brandy, Nordhäuser, rye whisky, etc. Light Moselle or Rhine wines, claret, or Burgundy in amounts prescribed by the physician. Coffee, black or with cream, without sugar, but sweetened with saccharin if desired. Tea, clear or with cream or rum.

TABLE II.

Second Group.—Foods Permissible in Moderate Quantities.

These contain carbohydrates, but in so little amounts that they need not be considered, and demand no compensation by a reduction in the allowance of bread. Some of the articles contain a rather large percentage of carbohydrates, but the absolute quantity in which they are consumed is small.

The amounts here given have been fixed by practical experience, and it will seldom be found necessary to increase them. Of the dishes here given, when they are allowed at all, only a few—from two to four—are to be selected each day. It is possible in this way to secure a great variety in the patient's dietary.

Internal parts of animals: Calves' liver, giblets-up to 100 gm.

Sausage: Liver sausage, preferably the fatty kinds, liver sausage with truffles, black pudding—90 gm. Meat sausage—80 gm. German sausage, Frankfurter sausage, and the like, brawn, head-cheese, sausage-meatballs—100 gm.

Patties: Pâté-de-foie gras, potted beef, ham, tongue, salmon, lobster, anchovies, etc.—\(\frac{1}{3}\) to I tablespoonful.

English sauces, such as Worcestershire, Harvey, beefsteak, anchovy, lobster, shrimp, India soy, China soy—1 teaspoonful.

Cream, from 4 to 6 tablespoonfuls a day.

Cocoa, prepared without sugar-25 gm.

Cheese: Emmenthal, Romadur—60 gm.; Gervis, Stilton, Brie, Holland, Gruyère—50 gm.; Edam, Cheddar, Gloucester, Roquefort, Parmesan—30 gm.; Cheshire, 25 gm.

Vegetables (prepared without flour or sugar): 5 Teltower turnips; salsify, turnip-rooted celery, turnip, cabbage, pumpkin—2 tablespoonfuls; green peas, beans, carrots, Brussels sprouts—1 tablespoonful; 1½ artichokes; 1 truffle; 5 medium-sized mushrooms; 1 tablespoonful of morels or other edible mushrooms.

Raw vegetables: 8 radishes; 2 sticks of celery; 2 medium-sized tomatoes.

Nuts: 2 walnuts; 6 hazelnuts; 3 almonds; a thin slice of cocoanut; 8 Brazil nuts.

Fresh fruits: I thin slice of melon; I small tart apple; I or I_2^1 peaches; I spoonful of raspberries or strawberries; 4 spoonfuls of currants; 6 green gages; 12 cherries; $\frac{1}{2}$ of a medium-sized pear; corresponding amounts of other fresh fruits.

TABLE III.

Third Group.—Conditionally Allowable Foods.

The conditions under which dishes from the following table are permitted is that an equivalent shall be deducted from the allowance of bread. The amounts given below are the equivalents of 50 gm. of white bread, containing about 30 gm. of starch. Advantage is taken of the fact that larger amounts of certain carbohydrates (cane sugar, milk sugar, fruit sugar, etc.) may be allowed than of starch. Some of the dishes given in the preceding table appear again here because, if they are eaten in large quantities, an account must be taken of the carbohydrates which they contain:

- 1 liter of milk (sweet, sour, or buttermilk).
- 11 liters of kumiss, prepared in the Russian way.
- I to I 1/2 liters of kefir, fermented for at least two days and prepared without the addition of sugar.
- I liter of cream.
- 60 gm. of rve bread, Graham bread, or Hamburg pumpernickel.
- 65 gm. of Westphalian pumpernickel.
- 100 gm. of aleuronat bread, prepared after Ebstein's formula (containing 27.5 per cent. of carbohydrates and 32 per cent. of vegetable albumin; the aleuronat breads are very variably compounded).
 - 35 gm. of zwieback and simple coffee cakes, made without sugar.
 - 30 gm. of English cakes of various sorts,
 - 30 gm. of "Eichel-cacao" (Stollwerck's).
 - 50 gm. of chocolate (Stollwerck's).
 - 40 gm. of chocolate (French make).
 - 40 gm. of chestnuts shelled or 60 gm. unshelled.
 - 35 gm. of cane sugar, brown sugar, or rock-candy.
 - 35 gm. of sweet preserves.
 - 40 gm. of fruit sugar.
 - 40 gm. of milk sugar.

50 gm. of fruit jam.

40 gm. of honey.

40 gm. of flour—wheat, rye, barley, buckwheat, millet, or oatmeal or commeal.

45 gm. of bean, pea, or lentil flour.

35 gm. of starch preparations, potato, wheat, or rice, starch, tapioca, sago, maizene, mondamin, etc.

35 gm. of rice.

35 gm. of farinaceous preparations — noodle, macaroni, oatmeal, grits, barley.

50 gm. of lentils, peas, beans (weighed dry).

100 gm. of green peas.

180 gm. of new potatoes.

140 gm. of winter potatoes.

120 gm. of apples, pears, green gages, plums, damsons, mirabelles, apricots, cherries, grapes.

200 gm. of strawberries, raspberries, gooseberries, mulberries, currants, blackberries, whortleberries, blueberries.

3 beaches.

40 gm. of figs.

3 bananas.

A handful of walnuts, hazelnuts, almonds, or Brazil nuts,

2 liter of beer of any sort.

liter of sweet wine.

TABLE IV.

Fourth Group.—Especially Valuable Foods.

The great value of the articles contained in the list on the following page, of which, however, there is but a small choice, is due in part to the high percentage of protein and in part to that of fat. The proportion of albumin and fat is given for each 100 gm. of the food substance. Some contain carbohydrates also, the percentage of which is given for the sake of completeness, but its nutritive value is not counted.

1∞ Gm.	Protein.	Fat.	Carbo- hydrate.	Calorie value.
Vegetable oil		100		930
Butter		85	0.5	830
Bacon (salt or smoked)	IO	76		748
Devonshire cream	2	57	2	538
Cream cheese (Gervais, Neufch	ıâtel,			
Stilton, Stracchino, etc.) .	19	4 I	I	45 I
German sausage (Cervelatwurs	t) . 18	40		446
Ham		36		437
Cheddar cheese	28	33	2	422
Fat Pork	14	37		400
Smoked ox-tongue	24	32		396
Fatty cheese (average)	25	30	1.5	381
Yolk of egg	16	31	0.5	354
Fat goose		30		345
Fat beef and mutton		29		337
Brie cheese	19	26	I	320
Fresh water eel	13	28		312
Smoked mackerel	19	22		382
Caviare	3I	16		276
Cream	4	23	4	230
Fat salmon (fresh or smoked)	22	13		210
Hens' eggs (weighed with the sl	nells)12	10	0.5	142

GOUT AND GOUTINESS.

Sydenham said: "Great eaters are liable to gout, and of these the costive more especially. Eating as they are used to eat when in full exercise, their digestion is naturally impaired. Even in these cases simple gluttony and the free use of food, although common incentives, by no means as frequently pave the way for gout as reckless, inordinate drinking." This statement is as near the truth as anything that has been said since.

The causes of gout are alcoholism, overeating, heredity, indigestion, constipation, and it is also sometimes seen in leadworkers.

In the acute attacks the diet should be liquid or semisolid. Milk, bread and milk, and farinaceous gruels are usually prescribed. After several days the light meat of boiled or baked fish is allowed or a little easily digestible meat. The increase in the diet is always ordered by the physician.

Chronic Gout.—The diet here is also to be made up of simple plainly cooked food, all rich and indigestible dishes being prohibited. There is often a peculiar personal idiosyncrasy in regard to certain articles of diet, and this will largely influence their use. As a rule, however, the following outline will suffice for the guidance of the patient:

Soups of the plainest sorts may be taken, especially those consisting largely of vegetables. Yeo has suggested the use of vegetable purées to which beef extract has been added to give them a flavor of meat. Milk is valuable in all cases, and where it disagrees it may be skimmed, peptonized, or diluted with a carbonated water. Bicarbonate of soda may be added when it is desired to make the milk alkaline: I to 5 gr. to the ounce should be used according to requirements.

Meat and fish may be taken daily, preferably not at the same meal. Fresh beef, mutton, and the like are the most suitable meats, and poultry may be allowed for the sake of variety. Eggs may be taken in moderation.

Twice-cooked meats should be avoided, as should dried, smoked, or pickled meats, as well as pork and veal. Garrod allows bacon at breakfast, but fats are, as a rule, to be avoided. Under special conditions, when the patient's nutrition is poor, they may be given if tolerated

Only the lighter varieties of fish should be given, boiled being preferred to fried fish. Oysters and clams may be taken, the hard portion being discarded. Salt fish, as well as mackerel, salmon, eels, and all other heavy fish, should be prohibited. Crabs, lobster, shrimp, and the like, as well as sauces, are usually to be avoided.

Vegetables, when they are easily digested, may be permitted. Peas, beans, potatoes, artichokes, salsify, onions, turnips, greens, cauliflower, and cabbage are all allowable, as are likewise celery, lettuce, and similar green vegetables. Carrots and beets, because of the sugar they contain, and asparagus, tomatoes, rhubarb, and sorrel, on account of their acid, are best avoided. All preserved and pickled vegetables, as well as the coarse and fibrous portions of all vegetables, are to be omitted from the dietary.

Fruit is best taken in the morning or during the interval between meals. It should, as a rule, be avoided during the latter part of the day, after full meals or with wine. Among the most suitable fruits for the gouty are oranges and grapes. Baked apples or stewed fruit may be taken. The sweet juice of the latter is, however, best avoided. Garrod advises the avoidance of all stone fruits, but allows baked apples and pears and strawberries sparingly. Fothergill suggested that bicarbonate of soda be taken with stewed fruit to correct the acidity. Opinions differ regarding the use of fruit by the gouty. If any particular fruit disagrees with a patient it should, of course, be avoided. Patients often manifest idiosyncrasies respecting fruits, and these furnish a guide to their suitability.

When gout is complicated with obesity, diseases of the kidneys, diseases of the stomach or any other disease, special diets are ordered.

Arthritis Deformans.—In this disease there are deformities of the bones which are sometimes confounded with gout. The diet probably has no influence whatever

over this disease. Instead of restricting the diet, it should be as nourishing as possible.

Scurvy or Scorbutus.—This disease occurs in adults where there is a deficiency of fresh food. It is the scourge of armies, and formerly was frequent among sailors. To prevent it fresh food should be given. Canned food, while not an ideal preventive, is useful. Lemon or lime juice, vinegar, and onions are especially valuable as preventatives. The treatment of the disease, when it occurs, is chiefly dietetic, and consists in giving a good, nutritious diet with fresh fruits and vegetables, fresh meats and the like. The above-mentioned preventatives may be used where the other fresh foods are not available.

Infantile Scurvy (Barlow's Disease).—Scurvy is frequently seen in infants, especially between the sixth and the fifteenth month. In almost every case improper feeding is the cause. It has even occurred where the child was breast-fed, but more often from the following feeding, in the order of their frequency: the proprietary infant foods, sterilized milk, condensed milk, and Pasteurized milk. The treatment is very satisfactory, and consists in placing the child upon a proper diet and giving in addition fresh orange juice, from ½ to 3 or 4 oz. daily. The juice of any fresh ripe fruit, as of peaches or grapes, may be used instead.

OBESITY.

There is probably no condition that has been more widely discussed by laymen of both ancient and modern times than obesity, for no disease is more thoroughly associated in the lay mind with its proper causes and its relations to diet than this "oily dropsy", as Bryon calls it.

The accumulation of fat is associated with increasing years, but it is by no means confined either to old or middle age, as is exemplified in the fat children familiar to all; obesity may be a plague even of infants.

The causes of obesity are so well known as to require only passing mention. About 50 per cent. of cases owe their primary origin to hereditary causes. Women are more frequently affected than men. With the advance of years, in some there is a tendency to accumulate fat. Overeating and overdrinking have been named as causative factors, especially when combined with a quiet, sedentary life.

The fats and the carbohydrates are the principal elements in the diet that are apt to be converted into fat; but proteins also, if the supply exceeds the demand and assimilation is active, will be converted into body-fat and stored up in the subcutaneous tissues. The liver and the heart are also converted into storehouses for fat, and later there may be a fatty degeneration of both organs, as well as of the coats of the arteries.

The dangers accompanying the excessive accumulation of fat are manifold, and include a large number of diseases that may be influenced by it either directly or indirectly. These will be discussed when the indications for reducing the weight of patients are considered. Weak heart, anemia, gout, and diabetes are among the most frequent diseases with obesity.

Reduction cures of many kinds are vaunted by their respective originators. Ebstein has summed up the whole matter in the following sentence: "Corpulence can only be permanently cured by a permanent change of life and diet regulated by physiologic principles."

Reduction of weight is in many cases contra-indicated,

and a reduction cure should never be undertaken without the advice of a physician. In women especially reduction may be a cause of hernia, of dislocation of the kidney, or of the uterus, and may also bring on gall-stone colic in those who have gall-stone disease. In old people reduction cures are not, as a rule, advised. In many slight cases all that is needed is a regulation of the diet and life so as to prevent any further increase. Reduction may be of especial benefit in stout individuals with heart disease, and a method known as "Oertel's method," which combines diet and exercise, is usually followed. Reduction is also useful in some cases of respiratory disease in very stout persons. Bronchitis and asthma may be mentioned in this connection. Where the patient has any disease interfering with locomotion, the diet should be so arranged that there will be no excessive accumulation of fat, as the added weight may be the cause of making the patient helpless.

A much discussed point is whether it is possible to reduce any special part of the body more rapidly than the remaining parts. This is a method often sought by women who have borne several children and who have large deposits of fat in the abdominal walls, causing an unsightly prominence of the abdomen. If the fat is reduced slowly, every part of the body, including usually the abdomen as well, will be reduced simultaneously. If it is reduced rapidly, it seems to be removed principally from certain parts of the body, as the neck, breasts, arms, and calves of the legs. Certain advocates of massage claim that the massage of the parts will cause a more rapid reduction. Von Noorden had one arm of an obese patient massaged for six weeks. At the end of that time the arm that had been massaged had increased $1\frac{1}{2}$ cm. in

circumference, whereas the arm that had not been massaged remained the same.

Massage of the abdomen during a reduction cure may exert a beneficial effect by relieving the constipation, which is apt to be troublesome. Exercise is still more potent, particularly for reducing the abdomen. This is accomplished by standing erect and then bending forward in an effort to touch the toes with the tips of the fingers. Too much should not be expected from this, even when persisted in faithfully.

Prophylaxis of Obesity.—Where a tendency to obesity exists the fat-forming foods should be partaken of but sparingly, and sufficient outdoor exercise taken to keep the weight within reasonable limits. The fat-forming foods are fatty foods of all kinds, the sugars and starches.

Dietetic Treatment of Obesity.—There are numerous methods of diet. The method to be used in any given case is to be determined by the physician. These reduction cures are frequently referred to as Banting cures. The Banting method was that used in the case of a Mr. Banting, by his physician, Dr. Harvey. It was in great vogue some years ago, and the name became erroneously applied to many other methods. It is too severe for the average patient.

Banting Diet for Obesity (Yeo).—"Breakfast, 9 A. M.: 5 to 6 oz. of animal food-meat or boiled fish (except pork or yeal); a little biscuit or 1 oz. of dry toast—6 to 7 oz. of solids in all. A large cupful of tea or coffee (without milk or sugar)—9 oz. of liquid.

"Dinner, 2 P. M.: Fish or meat (avoiding salmon, eels, herring, pork, and veal), 5 to 6 oz.; any kind of poultry or game. Any vegetables except potato, parsnips, beet

root, turnips, or carrots. Dry toast, 1 oz. Cooked fruit, unsweetened. Good claret, sherry, or Madeira, 10 oz. Total of solids, 10 to 12 oz.

" Tea, 6 P. M.: Cooked fruit, 2 to 3 oz.; a rusk or two—2 to 4 oz. of solids; 9 oz. of tea (without milk or sugar).

"Supper, 9 P. M.: Meat or fish, as at dinner, 3 to 4 oz. Claret or sherry and water, 7 oz.

"This allowed only from 21 to 27 oz. of solids per diem, of which 13 to 16 oz. consisted of animal food and only 2 oz. of bread; the rest consisted of fruit and fresh vegetables. There was the strictest possible exclusion of starches and sugar.

"The total fluid was limited to 35 oz."

Oertel's method is a combination of diet and exercise, and is especially applicable to patients with disturbances of the circulation. The quality and quantity of food and the amount of fluid are carefully regulated by the medical attendant according to the patient's condition.

Ebstein's method consists in giving a diet in which the carbohydrates are reduced, but in which considerable amounts of fats are allowed. The custom of giving fatty food in such cases is as old as Hippocrates, for he says, "The food shall be fat in order to satiate quickly." This method is, however, based on an erroneous opinion.

In general it may be stated that the diet should be limited in amount, the starches and sugars reduced to a minimum, fats reduced or omitted altogether, and the amount of fluid cut down to a very small amount. The food given consists of meat, eggs, fish, fruits, and green vegetables. Sufficient exercise is taken to keep the weight down to the required number of pounds.

When obesity is complicated with any other disease, the diet may be a point of considerable difficulty.

DIET FOR LEANNESS.

In a general way the indications for fattening thin people is the reverse for the diet used in obesity. Many individuals are thin as a matter of constitution, and such as these can not be fattened by any means. There may be some special cause for the leanness, and when the physician can discover this and remove or relieve it, the patient may be increased in weight. Patients emaciated from acute illness are readily fattened.

The patient should lead a quiet outdoor existence, free from care or excitement, and should get sufficient sleep. The meals should be ample, and as much carbohydrate and fatty food taken as possible. Cream, milk and cream, butter, cocoa, chocolate, bread, cereals (well cooked), farinaceous puddings, potatoes, legumes, and sweet fruits should all be partaken of in abundance. All sweets—honey, syrups, cakes, and the like—may be taken if they agree with the digestion. Beer, especially the darker varieties, porter and brown stout are useful. Sweet wines are sometimes ordered, and malt extracts where it is not desirable to use alcoholic beverages. Strong alcoholic drinks, acids, spices, and many green vegetables are forbidden.

DIET IN SKIN DISEASES.

Certain skin affections are caused directly or indirectly by dictary errors; others are prolonged or intensified by an improper diet, and still others are connected in some way with diseases of the alimentary tract or with disturbed metabolism.

Eczema.—All food which is known to cause erythema or urticaria in the individual should be avoided, as should all food which is liable to undergo fermentation in the intestinal tract or which will produce indigestion. Irritating spices and alcoholic beverages are usually omitted from the dietary. The meals should not be too large, should be taken at regular intervals, and a simple varied dietary should be followed. Gouty and obese patients are usually ordered diets suitable for their disease. A milk diet is frequently used in persistent cases.

In infants it is important to have the digestion in perfect order.

Urticaria (*Hives*).—Many articles of diet cause hives in certain individuals. Among the most frequent causes are strawberries, oysters, crabs and other shellfish. Partially spoiled or stale articles may also be a cause.

Acne.—All indigestible articles of food are to be avoided, and the diet should consist of easily digested fresh food. Excessive quantities of fat should be avoided.

CHAPTER XIX.

SPECIAL DIET CURES.

The Milk Cure.—Milk is used extensively as a food during illness, and it has also been warmly advocated as a curative agent, especially by Karell, of St. Petersburg, and Weir Mitchell.

Physicians may prescribe an exclusive milk diet in a large number of diseases, chief among which are diseases of the kidneys, liver, heart, and intestines. It is also at the outset of the rest cure.

Method of Administration.-Well-skimmed milk from the country, as fresh as can be procured, is used. Later on the unskimmed milk is often ordered. Karell begins with from 3 to 6 oz. three or four times a day, and increases the amount gradually. The milk is to be taken slowly, at regular intervals, allowing it to mix with the saliva. In winter it is warmed, and in summer given at the room temperature. After a week, if the stools remain solid, the quantity is increased, 2 liters (quarts) a day being given during the second week in favorable cases. The regular hours are to be insisted upon. If the milk causes diarrhea it is boiled. Constipation is regarded as a sign that the milk is agreeing, and the bowels may be moved if necessary by laxatives or enemata. Small quantities of coffee mixed with the morning's milk, or stewed prunes or baked apples in the afternoon, are useful in relieving constipation.

If there is a flatulence, it usually means that too much

milk is being given or that it is not properly skimmed. If there is thirst, plain water or a carbonated water may be given. Lime water or one of the infant foods may be mixed with the milk to render it more digestible.

During the second or third week, if there is an irresistible desire for food, a little salt herring or a bit of stale bread with salt may be given. Once a day milk soup thickened with a cereal may be given. After five or six weeks the ordinary diet is gradually resumed, but large quantities of milk are still taken.

During the first week the milk causes slight drowsiness, a coated tongue, and a peculiar taste in the mouth. The stools are light yellow and resemble the milk stools of infancy. The urine is increased in quantity. There is a slight initial loss of weight, but an increase later on in the cure.

Other Diet Cures.—Many other cures are used in various parts of the world. Almost every article of diet has at one time or another been vaunted as a "cure." Whey, to which alkaline mineral waters have been added, is sometimes prescribed with plenty of fruit and vegetables and little meat. Kumiss is used in Russia. Grapes, apples, and other fruits are used in certain countries. A "dry" cure, where the amount of liquid is greatly reduced, is sometimes prescribed, especially for aneurism. A meatand-hot-water cure is used for stomach disorders. The Kneipp cure consisted chiefly of a diet of fruit, bread and milk, with small quantities of meat and vegetables. The cure also directs that the patient walk barefooted in the grass while the dew is still on it.

CHAPTER XX.

DIETETIC MANAGEMENT OF SURGICAL CASES.

Surgical operations that must be performed immediately, of course, admit of no preparation. Most operations, however, may be postponed for several days or longer, thus enabling the patient to be put in good condition by rest, preferably in bed, and a nourishing, easily digested diet. The value of the rest in bed is greatly augmented by massage, electricity, and baths where the condition of the patient admits of their use; by tonics; and by laxatives to correct the tendency to constipation that usually exists.

Anesthesia and Diet.—When an anesthetic is to be administered a routine somewhat as follows should be carried out whenever the circumstances allow: The day preceding the operation the patient should be kept quiet; the bowels should be thoroughly emptied by means of a saline purge, and the diet should be light and easily digested. The supper should be a light one, and the breakfast the day of the operation should consist of a glassful of milk, a cup of cocoa, or a cup of beef tea. If there is great hunger a cracker or a piece of toast may be added. This should be at least two or three hours or even longer before the operation. When the surgeon operates early in the morning, the patient is not allowed to have any breakfast whatever. If the patient is weak and in need of a stimulant, an ounce or two of

brandy or whisky may be given, diluted with a small quantity of plain or carbonated water, half an hour before the anesthetic is administered. At the time of anesthesia the stomach should be empty. This is important, as it lessens the nausea experienced by many patients after anesthesia, and also lessens the danger of vomiting food during an operation, an accident which may cause severe coughing if the food is drawn into the larynx, or may cause pneumonia if it is drawn into the lungs. The coughing and vomiting may interfere seriously with the operator.

If it is necessary to administer an anesthetic after a full meal and circumstances permit, an emetic may be given to empty the stomach before the operation is begun, or it may be better to wash out the stomach.

Nausea is liable to follow after anesthesia, particularly after the administration of ether; this is discussed below. If nausea does not occur, a cupful of weak tea or of diluted milk may be given two or three hours after the operation, and if that is retained, milk may be given as often as every three hours if desired. For supper, bread and milk or cocoa or a slice of toast and a cupful of weak tea may be allowed. It is well, however, to wait until the following day before giving anything more. On the following day, if there is nausea or other untoward symptoms, a light breakfast may be given, and after that as rapid return to an ordinary diet as circumstances permit may be made.

If there is nausea, or after laparotomies, operations about the head, and other operations as outlined below, especial care must be taken with the diet of the patient.

Diet after Operation.—The diet following operations should be supervised by the surgeon himself or by

an assistant especially trained for the purpose. In operations about the mouth, as for hare-lip, and on the alimentary tract, the management of the diet is as of much importance as the operation itself. In order to avoid the interference of well-intentioned but misguided friends, many surgeons refuse to operate except in a hospital unless the patient is in a condition which does not permit of his being moved.

It should be remembered that confinement to bed for weeks after an operation greatly impairs nutrition, and every effort should therefore be made to get the patient in the open air, either on his bed or in a wheel-chair. Massage and electricity are employed in suitable cases to maintain the nutrition.

In patients who are up and about no especial diet is, as a rule, necessary, except after operations about the mouth, larynx, or alimentary tract. The diet should be as simple and as nutritious as possible, usually that of the ordinary individual. Patients suffering from diabetes, gout, dyspepsia, as well as vegetarians, require especial care, and the physician will in such cases give explicit directions concerning the diet.

Children should be fed according to the usual rules for them, but it is a good plan to have the children, and especially infants, in the hospital a few days, so as to get them accustomed to the diet on which they will have 'to live.

Those habituated to the daily use of alcohol for years should receive a moderate average amount, lest nutrition be interfered with or delirium develop. The physician will regulate the dosage in these cases.

Diet After Operations About the Head.—For the first few days the diet should be light—usually liquid

—especially if the brain has been affected, and as nutritious and as easy of digestion as it is possible to make it. The bowels should be kept open. No alcohol is allowed except in cases of habitués or on the surgeon's direction. If the patient is unconscious, it may be necessary to feed him with a nasal or stomach tube. In some cases rectal feeding is used.

After brain operations, where there are no unusual symptoms, the diet may be made semi-solid, or even an easily digested solid diet may be allowed after two or three days. Milk toast, junket, bouillon and egg, softboiled or poached eggs, squab, chicken, and the like are allowable. The diet should be light, but sufficient in quantity, until the patient is up and about, when it may be increased to nearly the normal diet.

In operations of a plastic nature about the face, where the taking of food or vomiting is liable to open the wound, the food should be given by the rectum until all danger of the vomiting is past and until the patient can masticate and swallow without fear of injuring the part.

Diet After Hare-lip and Cleft Palate Operations.—Following these operations especial attention to the diet is necessary. The child should be taught to take food from a spoon or large medicine-dropper before operation. If the breast milk is used, it should be drawn from the breast by means of a pump and given with a spoon or dropper. Cold sterilized milk or modified milk should be used in these cases until the patient is able to take other food. Nasal or rectal feeding may be necessary in some cases.

Diet After Esophageal or Laryngeal Operations.—The diet in these cases is of the utmost importance and depends very much on the operator and the operation done. The surgeon's directions will always be explicit in such cases.

Diet and Laparotomies.—One or two days before the operation the bowels should be cleansed thoroughly by a saline or other purge, and in the case of an abdominal or pelvic operation an enema or two is ordered in addition, not only to secure cleanliness, but to obtain rest for the bowels. The washing out of the bowel should be performed early on the morning of the operation, at six or seven o'clock, or at least three hours before the operation. No food should be given for at least four hours previous to the operation. Many surgeons operate early in the morning, before the patient has broken his fast. Others operate later in the day, and allow the patient a glassful of milk or some such light nourishment on awakening.

As a rule, nothing should be given by the mouth for twenty-four hours. Some operators allow very small quantities of carbonated water or iced water or very hot water, or if the patient is very weak and in need of nourishment, teaspoonful doses of milk may be ordered with or without lime water or a carbonated water. Hot weak tea, or if a stimulant is needed, hot black coffee, may be administered or alcoholic stimulants may be used. these cases as in all others the nurse acts only under the direct orders of the surgeons. Interference or injudicious feeding may prove fatal. From 5 to 10 oz. of liquid food are generally allowed on the second day, and from 10 to 15 oz. on the third day. On the fourth day, if there are no outward symptoms, a soft diet may be ordered, and after a week or ten days a gradual return to an ordinary diet may be made. This varies, of

course, with the operation done and the progress of the patient.

Nausea and Vomiting.—Many operators wash out the stomach after the operation and before the patients recovers from the effects of the anesthetic. This often prevents nausea, especially if ether has been given. The vomiting and nausea may be transitory, or it may last for days or a week or more and even threaten the patient's life.

While the vomiting is active no food should be given by the mouth. If it persists and the patient is weak, rectal feeding is usually resorted to if the operation permits of it. Various drugs are used to relieve the vomiting, and sometimes a glassful of hot water is given or the stomach is washed out. As a rule, total abstinence from all food and drink by the stomach is the best way to manage these cases.

Thirst.—This may be almost intolerable. The patient may drink the water from hot-water bottles if not watched. High rectal enemata of hot water are sometimes used while the patient is still on the operating-table, and do much toward relieving the thirst of the patient. If allowable, rectal injections of normal salt solution may relieve thirst. Sips of hot water or of hot weak tea are frequently given by the mouth. Carbonated water is sometimes used, but care should always be taken to allow it to effervesce partially before giving it, lest the gas accumulate in the stomach.

Care of the Bowels.—The bowels are usually moved about the third day after an operation. Sometimes it is desirable to have them moved before; sometimes to allow them to remain quiet for several more

days. The surgeon should always be consulted about this if specific orders have not been given.

Dietetic Management of Shock.—The patient will, as a rule, be less shocked if in good condition than if unprepared for the operation as outlined above. After the operation, in addition to the usual means of external heat and the like, stimulating or nutrient enemata may be given. The first enema is sometimes given while the patient is still on the table. A stimulating enema for an adult may contain 2 oz. of brandy, 20 gr. of carbonate of ammonium, with sufficient water or beef tea at 100° F. to make 8 oz. Another stimulating enema consists of 1 oz. of brandy, the white of an egg, 3 oz. of milk, and a pinch of salt.

Diet After Operations on the Various Organs.— After operations on the liver the diet consists largely of protein and carbohydrate food. Fats are, as a rule, not well borne, and are limited in amount or not given at all.

After operations on the pancreas the amount of fat is limited or omitted altogether from the dietary. The use of artificially pancreatized food has been suggested.

After operations about the kidney the diet should be bland and unirritating, such as has been suggested in chronic or even in acute nephritis (inflammation of the kidney). All foods known to be irritating to the kidney should be withheld. (See Nephritis.)

Diet After Operations on the Stomach.—The stomach and the upper part of the small intestine may be rendered sterile or nearly so, and this fact is taken advantage of by many operators in surgical procedures about the stomach. Finney uses the following diet: For several days prior to the operation the stomach is washed out twice daily with sterile water, the patient is given sterile

liquid food served in sterile dishes. Before taking food the mouth is thoroughly cleansed with a 1 per cent. solution of carbolic acid. The food is usually given every two hours.

For four or five days after the operation rectal feeding is employed. Normal salt solution enemata are alternated with nutrient enemata every four hours. On the fifth or sixth day egg albumin is given in teaspoonful doses, gradually increased to $\frac{1}{2}$ oz. every two hours if it is well borne, and finally to 1 oz. every two hours on the sixth day, 2 oz. on the seventh day, and 4 oz. every three hours on the tenth day. On the twelfth or thirteenth day the patient is given a soft-boiled egg, and the following day soft food, and on the eighteenth day light solid food.

Operators vary a great deal regarding the feeding of their stomach cases. Some allow eight days to elapse before beginning mouth-feeding, while others begin a day or two after the operation.

Diet After Operations on the Intestines.—After operations on the upper part of the intestine the feeding is the same as after stomach operations. The food should be such that but little residue will be left in the intestine.

After ordinary appendix operations the patient may be given liquid diet the second day after the operation; on the third day a soft diet may be allowed, and solid food given on the sixth day. On the other hand, if the operation has been a serious one and a large pus cavity has been evacuated, rectal feeding may be necessary for five or six days, and the return to a solid diet may require weeks.

After operations on the rectum the patient is generally given a liquid diet for four or five days, after that a soft

diet, and finally in seven days or longer solid food may be prescribed.

Feeding Through Gastric or Intestinal Fistulas.—After gastric or intestinal fistulas have been made the patient may, if necessary, be fed through these openings as early as a few hours after the operation. At first only very small quantities of liquid food are given at frequent intervals. Kehr advises alternately, every two hours, ½ cupful of tea with cognac, milk and egg, and on the second day wine with peptone. He adds bouillon with egg on the third day, and begins a "mushy" food, such as potato soup, flour soups with egg, beef tea, and minced breast of chicken, on the eighth day. After three weeks the patient may be allowed to masticate his food, and then, by means of a rubber tube, pass it into the stomach or intestine through the fistula.

CHAPTER XXI.

HOSPITAL DIET.

THERE are wide variations in the diets used in hospitals, and also in the names applied to them. In the average American hospital the classification is as follows:

Ward Diet.—This is also known as "full" or "house diet." It is the ordinary diet of all patients for whom special diet orders have not been given.

Light diet, also known as convalescent diet, is that used for convalescent patients generally and for others for whom it is suitable. It consists of milk, broths, eggs, and such other foods as are easily digestible yet nutritious.

Special Diets.—Under this heading are included dietary formulas suitable for those diseases in which diet plays an important part in the treatment. It includes such diets as have been recommended in certain diseases and which bear the name of the inventor, as Tuffnell's diet for aneurism, Banting's diet for obesity, and such general diets as the following:

Milk Diet.—This is composed entirely of milk, 2 to 3 quarts usually being allowed daily.

Meat Diet.—This consists chiefly of nitrogenous animal foods, with a minimum of sugars and starches. It is useful in certain diseases of the stomach where there is acid fermentation. It closely resembles the diabetic diet.

Farinaceous Diet.—This is made up of milk, butter,

and carbohydrates. It is prescribed for convalescents and in chronic nephritis, etc.

Special or extra special articles of diet, as they are often termed, include all articles not on the regular diet list for the day, and for which special orders are generally given.

CHAPTER XXII.

RECIPES.

BEVERAGES.

Lime Water.—Into an earthen jar containing hot water stir a handful of fresh unslaked lime. Allow it to settle; then decant the clear fluid and bottle it. Water may again be added to the lime, and the mixture covered and allowed to stand to be decanted as needed.

Almond Milk.—Blanch one pound of sweet and two of bitter almonds that have been soaked in cold water for twenty-four hours. This is done by pouring boiling water over the almonds, when, after a few minutes, they can easily be pressed out of their hulls. Grind the almonds in a mill or pound them in a mortar; mix with a half-pint of warm milk or water, and allow the mixture to stand two hours, after which strain through a cloth, pressing the juice out well. Thirty grams of almonds yield 200 calories of heat; 250 grams of milk yield 1700 calories.—(Wegele.)

Brandy-and-egg Mixture.—Rub the yolks of two eggs with half an ounce of white sugar; add 4 ounces of cinnamon water and then 4 ounces of brandy. Dose: One or two teaspoonfuls every two hours, according to age.—(Stokes.)

Brandy-and-egg Mixture for Infants.—Beat up well the yolk of a raw egg; ten drops of brandy; one teaspoonful of cinnamon water; one coffeespoonful of white sugar.—(*Louis Starr.*)

Cold Egg-nog.—Beat up an egg; add to it two teaspoonfuls of sugar, a glassful of milk, and a tablespoonful of brandy or good whisky; mix thoroughly.

Hot Egg-nog.—Beat up the yolk of one egg; add a teaspoonful or two of sugar and a glassful of hot milk; strain, and add a tablespoonful of brandy or old whisky, or flavor with nutmeg or wine.

Egg Broth.—Beat up an egg, and add to it half a teaspoonful of sugar and a pinch of salt; over this pour a glass of hot milk and serve immediately. Hot water, broth, soup, or tea may be used in place of milk.— (*Drexel Institute.*)

Egg Cordial.—Beat up the white of an egg until light; add a tablespoonful of cream and beat up together, then add two teaspoonfuls of sugar and a tablespoonful of brandy.

Caudle.—Beat up an egg to a froth; add a wine-glassful of sherry wine, and sweeten with a teaspoonful of sugar; if desired, flavor with lemon peel. Stir this mixture into a half-pint of gruel; over this grate a little nutmeg and serve with hot toast.

Albumin Water.—Beat the white of one egg until very light and strain through a clean napkin. Add six ounces of water. If intended for an infant a pinch of salt may be added. A teaspoonful or more of sugar and a teaspoonful or more of lemon juice, orange juice, or sherry wine may be added to enhance its palatableness. This drink may also conveniently be made by placing all the ingredients in a lemonade-shaker, shaking until thoroughly mixed, and then straining. Serve cold.

Apple Water.—Pour a cupful of boiling water over two mashed baked apples; cool, strain, and sweeten. Serve with shaved ice if desired.

Tamarind Water.—Pour a cupful of boiling water over a tablespoonful of preserved tamarinds; allow this to stand until cool, then strain, and serve with shaved icc.

Currant Juice.—Take an ounce of currant juice or a tablespoonful of currant jelly. Over this pour a cupful of boiling water—use cold water with the juice—and sweeten to taste.

Lemonade No. 1.—Take the juice of one lemon or three tablespoonfuls of lemon juice; add from one to three tablespoonfuls of sugar and a cupful (6 ounces) of cold water. Serve with cracked or shaved ice if desired.

Lemonade No. 2.—Pare the rind from one lemon, cut the lemon into slices, and place both in a pitcher with an ounce of sugar. Over this pour a pint of boiling water and let it stand until cold. Strain and serve with cracked ice.—(*Pavy*.)

Effervescing Lemonade.—This may be made by using a carbonated water or by adding half a teaspoonful of bicarbonate of soda or potash to a glassful of either of the foregoing lemonades.

Albuminized Lemonade.—Shake together a cupful of water, two teaspoonfuls of lemon juice, two teaspoonfuls of sugar, and the white of one egg. Serve at once.

Orangeade.—Cut the rind from one orange; over the rind pour a cupful of boiling water; then add the juice of the orange and a tablespoonful of sugar; cool, strain, and serve with shaved ice if desired. If this is too sweet, a teaspoonful of lemon juice may be added.

Imperial Drink.—Add a teaspoonful of cream of tartar to a pint of boiling water; into this squeeze the juice of half a lemon, or more if desired; sweeten to taste and serve cold. This drink is most useful in fevers and in nephritis,

Flaxseed Tea.—Add six tablespoonfuls of flaxseed to a quart of water; boil for half an hour; cool, strain, sweeten, and if desired flavor with a little lemon juice.

Linseed Tea.—To a pint of water add two table-spoonfuls of linseed, the juice of half a lemon, $\frac{1}{4}$ ounce of bruised licorice root (or a piece of licorice the size of a filbert), and rock-candy to taste. Boil for one and one-half hours and strain.—(Yeo.)

Orgeat.—Blanch two ounces of sweet almonds and four bitter almond seeds. Add a little orange-flower water and pound into a paste; rub this with a pint of milk diluted with a pint of water until it forms an emulsion. Strain and sweeten with sugar. (A demulcent and nutritive drink).—(*Parv.*)

Mulled Wine.—One-fourth of a cupful of hot water, one-half inch of stick cinnamon, two cloves, a tiny bit of nutmeg, one-half cupful of port (heated), two table-spoonfuls of sugar. Boil all the ingredients except the wine and sugar for ten minutes; then add the wine and sugar, strain, and serve very hot.—(*Drexel Institute*.)

Grape Juice.—Pluck Concord grapes from the stem. Wash and heat them, stirring constantly. When the skins have been broken, pour the fruit into a jelly bag and press slightly. Measure the juice and add one-quarter the quantity of sugar. Boil the juice and sugar together and then pour into hot bottles; cork and seal with paraffin or equal parts of shoemaker's wax and resin melted together. Less sugar may be uesd.—(Drexet Institute.)

Oatmeal, Barley, or Rice Water.—From the grain: Use two tablespoonfuls of grain to a quart of water. The grain should have been previously soaked overnight or at least for a few hours. When required for

RECIPES. 289

an emergency, the soaking may be dispensed with and the grain boiled for five minutes instead. The water in which the grain was soaked should be poured off and fresh water added before cooking. The grain should be boiled for several hours, water being added from time to time to keep the quantity up to a quart. Strain. This makes a somewhat thin, watery gruei.

From prepared flours: Various brands of prepared grain flours are on the market, such, for example, as Robinson's Barley Flour. These are all somewhat similar in preparation. From two rounded teaspoonfuls to a tablespoonful of the prepared flour is added to a pint of boiling water, and this is boiled for from fifteen to thirty minutes and then strained. No previous soaking is required.

CEREALS AND CEREAL GRUELS.

Either the grain itself or the specially prepared flour may be used. When the grains are used they should be spread on a clean table and all foreign substances removed. If the whole grains be used, it is well to wash them, after picking them over, with two or three changes of cold water.

Cereals are best cooked in a double boiler. The lower part should be filled about one-third full of water, and, if more is added during the cooking, it should always be boiling hot. The cereal should be cooked over the fire for ten or fifteen minutes. The water should be boiled first and then salted. The cereal is added gradually and the whole stirred to prevent it from burning. It should then be placed in the double boiler and steamed until thoroughly cooked. Cereals, like other starchy foods, require thorough cooking. Most recipes allow too short a time. Oatmeal especially should be mentioned. It

develops a better flavor if cooked for three hours or more, and is better when it is prepared the day before and reheated when used. It should be just thin enough to pour when taken out of the boiler, and when cooled should form a thin jelly.

Any cereal mush may be thinned with water, milk or cream and made into a gruel, or the gruel may be made directly from the grain or flour. Gruels should be thin, not too sweet nor too highly flavored, and served very hot. Milk gruels should be made in a double boiler. Gruels may be made more nutritious by the addition of whipped egg, either the white or yolk or both, and the various concentrated food products.

When cereal flours are used, the flour should be rubbed to a smooth paste with a little cold water and added slowly to boiling water, stirring constantly until it is thoroughly mixed.

LENGTH OF TIME TO COOK CEREALS.

Cornmeal mush: Boil 10 minutes, then steam for 3 hours or more. Oatmeal: " " " 1½" " 8 " 66 46 46 46 66 Irish oatmeal: " 11/2 " Wheatena: " 30 Gluten mush: 44 Steamed rice: Steam for one hour. Boiled rice: Boil for twenty minutes or until soft.

Arrowroot Gruel.—Dissolve half a teaspoonful of sugar and a quarter of a teaspoonful of salt in a cupful of water, and heat. Mix half a tablespoonful of arrowroot flour with a little water and add to the heated water. Boil for twenty minutes, stirring constantly; then add a cupful of milk, bring to a boil, strain, and serve hot.

Barley Gruel.—Proceed as above, using a tablespoonful of Robinson's Barley Flour instead of arrowroot.

Oatmeal Gruel.—As above, but use oatmeal, and boil for half an hour or longer before adding the milk.

Flour Gruel.—Proceed as in making arrowroot gruel, using instead a tablespoonful of wheat flour. Flavor with lemon juice, cinnamon, nutmeg or vanilla.

Farina Gruel.—Proceed as in making arrowroot gruel, using instead a tablespoonful of farina, and boil but ten minutes before adding the milk.

Imperial Granum Gruel.—As in the preceding, but use imperial granum instead of farina.

Cracker Gruel No. 1.—Use two tablespoonfuls of cracker crumbs and proceed as above. Cook only two or three minutes and do not strain.

Cracker Gruel No. 2.—Brown the crackers, and reduce to a powder by means of a rolling-pin. Add three tablespoonfuls of the powdered crackers to half a cupful of milk and half a cupful of boiling water; cook for ten minutes; then add one-fourth of a teaspoonful of salt and serve.—(*Drexel Institute*.)

Racahout des Arabes.—This is a French preparation with a chocolate flavor which makes a most delicious gruel. Follow the directions given for farina gruel.

Flour Ball.—Tie half a pint of flour in a square of fine cheese cloth, making a very tight ball. Place this in a pot of boiling water and cook for four or five hours. After taking out of the cloth, peel off the outside and grate the hard ball. Dry in the oven and keep in a covered jar. This is useful for making gruels for diluting milk for infants.

Flour-ball Gruel.—Proceed as for arrowroot gruel, using two teaspoonfuls of the above grated flour rubbed up in cold water, and stir into a pint of boiling water. Cook this for ten minutes.

Cornmeal Gruel No. 1.—Use two tablespoonfuls of cornmeal and one of flour, a teaspoonful each of sugar and salt, one quart of hot water and a cupful of milk. Proceed as in making arrowroot gruel, boiling in a double boiler for three hours.

Cornmeal Gruel No. 2.—Take a tablespoonful of cornmeal and moisten with a little cold water. Stir this into a pint of boiling water to which a pinch of salt has been added. Cook for three hours in a double boiler, or for thirty minutes directly over the fire. In the latter case it must be stirred constantly.

Gluten Grue1.—Mix a tablespoonful of gluten flour with one-fourth of a cupful of cold water and stir this into one cupful of boiling salted water. Cook directly over the fire for fifteen minutes; then add one clove and cook over boiling water for a half-hour.—(*Drexel Institute.*)

Barley or Oatmeal Jelly.—From the grain: Prepare the grain as directed for barley water. Use from four to six tablespoonfuls of grain to the quart of water. Boil thoroughly for several hours until the grain is thoroughly cooked. Strain and cool. The jelly when hot should be just thick enough to pour.

From the prepared flours: Use two tablespoonfuls of the flour to a pint of water. Boil from fifteen to thirty minutes and strain.

Partially Digested Cereals Prepared at the Table.—To a sauce of well-cooked oatmeal, wheaten grits, or rice, at the customary temperature, add one or two teaspoonfuls of Fairchild's Diastasic Essence of Pancreas, or fifteen grains of Fairchild's Dry Extract of Pancreas. Stir for a few minutes before eating. When the

ferments are added to very hot foods their power becomes impaired.

Tapioca Jelly.—Soak a cupful of tapioca of the best quality in a pint of cold water for two hours; when soft, place in a saucepan with sugar, the rind and juice of one lemon, a pinch of salt, and another pint of water; stir the mixture until it boils; turn into a mold and set away to cool; if desired, a glassful of wine may be added.—(Bartholow.)

Tapioca Soup.—Boil a pint of meat broth or stock, and, while stirring constantly, sprinkle in $\frac{3}{4}$ ounce of previously washed tapioca. Cover the saucepan, and let it stand until the tapioca is quite soft. Skim and serve.— (Yco.)

Chestnut Puree.—One pound of chestnuts are peeled, and boiled in water until the second (inside) skin comes off easily. The chestnuts are placed in a sieve until all the water drains off. They are then washed in a dish and afterward pressed through a sieve. Melt three ounces of butter in a stewpan on the fire, add a little salt and sugar—enough to cover the point of a knife—and then the chestnuts. Stew them for half an hour, stirring frequently; pour in enough bouillon so that the mush does not get too thick.—(Wegele.)

BREAD.

Drexel Institute Bread Recipe.—For two loaves take two cupfuls of warm milk or water, two teaspoonfuls of salt and two of sugar, a tablespoonful of lard or butter, one-half cake of compressed yeast, and about four pounds of flour. Put the water or milk, salt, sugar, and fat into a bowl. Dissolve the yeast in warm water; add it and the flour gradually; when stiff enough to handle,

turn the dough on a floured board and knead until soft and elastic. Put it back into the bowl, and let it rise in a warm place until it is double its bulk. Then divide into loaves or shape into biscuits. Allow these to rise in the pan in which they are to be baked. Cover the bread and again allow it to double its bulk. Bake loaves one hour in a hot oven. The large amount of yeast allows the bread to be made and baked in three hours.

Brown Bread.—Take one-half cupful scalded milk, one-half cupful water, one teaspoonful salt, one-half tablespoonful butter, one-half tablespoonful lard, two tablespoonfuls of molasses, one-half cupful white flour, sufficient Graham flour to knead, and three-quarters of a yeast cake dissolved in one-quarter of a cupful of lukewarm water. Prepare the same as white bread. Instead of Graham flour, equal parts of Graham flour and white flour may be used in kneading.

Nut-brown Bread.—The same as preceding, with one cupful of nuts chopped and added.

Whole-wheat Bread.—Dissolve a quarter of a yeast cake in a tablespoonful of lukewarm water. Pour half a cupful of hot water over half a cupful of milk, and when lukewarm add the yeast and half a teaspoonful of salt. To this add a cupful of whole-wheat flour and beat for five minutes. Cover and allow this to stand in a warm place for two hours and a half. Then add whole-wheat flour gradually, mixing the mass until it can be kneaded. Knead until elastic; shape and place into baking-pans. Cover and allow to stand in a warm place until it doubles its bulk. Prick the top with a fork and bake for one hour. The oven should not be hot as for white bread.

Pulled Bread.—Use bread made with water. Make

into long loaves, and as soon as baked take off the crust. Pull into stick-shaped pieces and brown slightly in a slow oven.

VEGETABLES.

TIME-TABLE FOR COOKING VEGETABLES IN WATER. (DREXEL INSTITUTE.)

Potatoes 25-30 min.	Spinach 30-45 min.
Carrots 35-45 "	Celery 20–30 "
Turnips 45 "	Parsnips 30-45 "
Beets (young) 45 "	Green peas 30-40 "
Beets (old) 3-4 hrs.	String-beans , , 1-3 hrs.
Tomatoes 1-3 "	Lima beans I hr. or more.
Onions 45-60 min.	Green corn , 12-20 min.
Cabbage 45-60 "	Rice 20-45 "
Cauliflower 20-30 "	Macaroni 45-60 "
Asparagus 20-20 "	

GENERAL RULES FOR COOKING VEGETABLES.

Wash thoroughly; pare or scrape if skins must be removed. Stand in cold water until cooked, to keep them crisp and prevent their being discolored. Cook in boiling water; the water must be kept at the boiling-point. Use two teaspoonfuls of salt with two quarts of water; put the salt into the water when the vegetables are partially cooked. The water in which vegetables are cooked is called vegetable stock.

Fresh green vegetables require less water than others. Cabbage, cauliflower, onions, and turnips should be cooked uncovered in a large amount of water.

All vegetables must be drained as soon as tender. Season with salt and pepper and serve hot with butter or sauce.

The color may be kept in green vegetables, such as spinach, by pouring cold water through them after draining.

Cold vegetables may be used for salads or may be

placed in a baking-dish with one-half the quantity of sauce (2 cupfuls vegetables and 1 cupful sauce), covered with buttered crumbs, and browned in a hot oven.

Sauce for Vegetables:

3 tablespoonfuls of butter.
3 tablespoonfuls of flour.
1 teaspoonful of salt.
1 topful of stock.

SOUPS WITHOUT MEAT.

(DREXEL INSTITUTE.)

These soups are thickened by using butter and flour; this prevents a separation of the thicker and thinner parts of the soup. The butter should be heated until it bubbles, the flour and seasoning added, and enough of the hot liquid to make a smooth sauce thin enough to pour easily; this should be poured into the rest of the hot liquid and cooked in a double boiler until the soup is of the proper consistence.

In soups made of dried peas and beans soda is used to soften the casein; it is also used in tomatoes to neutralize the acid. These soups must be served in hot dishes as soon as ready. Crisp crackers, croutons, or soup sticks may be served with them.

Crisp Crackers:

Split and butter thick crackers and brown in a hot oven.

Cream-of-Tomato Soup:

I can tomatoes, \$\frac{1}{3}\$ cupful of flour,
\$\frac{1}{4}\$ teaspoonful soda,
\$\frac{3}{3}\$ teaspoonful so fsalt,
\$\frac{1}{3}\$ cupful of butter,

I quart of milk.

Stew the tomatoes slowly one-half to one hour, strain, and add soda while hot; make a white sauce and add the tomato juice. Serve immediately.

Cream-of-Celery Soup:

 1½ cupfuls of celery.
 2 tablespoonfuls of butter.

 1 pint of water.
 ½ cupful of flour.

 1 cupful of milk.
 ½ teaspoonful of salt.

I cupful of cream.

\[\frac{1}{8} \text{ teaspoonful of white pepper.} \]

Cook the celery in the boiling water until very soft; strain and add the hot liquid; make a white sauce and cook until it is thick cream.

Cream-of-Potato Soup:

3 potatoes. Yolks of 2 eggs, 2 cupfuls of milk. I teaspoonful of salt.

½ cupful of cream. Pepper.

½ teaspoonful of onion juice.

Cook the potatoes until soft, drain, mash, add the hot liquid, and strain; add the beaten yolks and seasoning. Cook in a double boiler until the egg thickens, stirring constantly. Serve immediately.

Oyster Stew:

I cupful of milk.
 ¹/₄ teaspoonful of salt.
 I pint of oysters.
 I tablespoonful of butter.

Pepper.

Heat the milk. Cook and strain the oyster juice. Add the oysters, which have been rinsed, and cook until the edges curl. Add seasoning, butter, and hot milk. Serve at once. This soup may be thickened with a tablespoonful of flour cooked in the butter as for white sauce.

MILK PREPARATIONS.

Partially Peptonized Milk.—Into a clean granite-ware or porcelain-lined saucepan place one pint of milk, four ounces of water, and the contents of one of Fair-child's peptonizing tubes, or five grains of pancreas extract and fifteen grains of bicarbonate of soda. Heat gradually until it boils, stirring constantly. Boil gently for ten minutes, strain into a clean bottle, cork, and keep in a cool place. Before using shake the bottle well; serve hot or cold. Prepared in this way it will not become bitter.

Peptonized Milk.—Cold Process.—Mix milk, water, and peptonizing agents as directed in the preceding recipe, and immediately place the bottle on ice. Use when ordinary milk is required. This is particularly suited for dyspeptics and individuals with whom milk does not, as a rule, agree. The flavor of the milk remains unchanged.

Peptonized Milk.—Warm Process.—Put in a glass jar one pint of milk and four ounces of cold water; add five grains of extract of pancreas and fifteen grains of bicarbonate of soda. After mixing thoroughly, place the jar in water as hot as can be borne by the hand (about 115° F.). This should be heated for from six to twenty minutes. At the end of this time it may be placed upon ice until required. The contents of one of Fairchild's peptonizing tubes may be used in place of the pancreas extract. If the milk is to be kept for any length of time, it should be brought to a boil, to prevent the formation of too much peptone, which renders the milk bitter.

Hot Peptonized Milk.—Mix together the usual peptonizing ingredients and add a pint of fresh cold milk; after thoroughly shaking the bottle, place it on ice. When needed pour out the required amount, heat it, and drink it as hot as it can agreeably be taken. If required for immediate use, the ingredients may be mixed together in a saucepan and slowly heated to the proper temperature.

Effervescent Peptonized Milk.—Put some finely cracked ice in a glass; fill it half-full of Apollinaris, Vichy, or siphon water, and immediately add the peptonized milk. Drink while effervescing. Brandy may be added if desired.

Specially Peptonized Milk.—This is to be used in

the preparation of jellies, punches, and all recipes where the milk is to be mixed with fruit juices or acids. Prepare according to the hot process; keep the milk at a temperature of 115° F. for one hour; pour into a saucepan and bring to a boil. If required hot, this may be used immediately, or it may be set aside on ice, to be used later. If not heated for an hour, the milk will curdle on being mixed with an acid. If not boiled, the peptonizing ferment will digest gelatin and prevent the formation of jelly.

Peptonized Milk Jelly.—Soak well half a box of Cox's gelatin in four ounces of water. Take one pint of hot *specially* peptonized milk and add four ounces of sugar. Put in the gelatin and stir until it is dissolved. Pare one fresh lemon and one orange, and add the rinds to the mixture. Squeeze the lemon and the orange juice into a glass, strain, and mix with two or three tablespoonfuls of St. Croix rum, or brandy, if preferred. Add the juices to the milk, stirring constantly. Strain, and allow it to cool to the consistence of syrup; when almost ready to set, pour into cups and set in a cold place. Do not pour the milk into molds until the mixture is nearly ready to set, otherwise it will separate in setting.

Peptonized Milk Punch.—In the usual milk punch recipes the *specially* peptonized milk may be used in place of ordinary milk. Take a goblet one-third full of finely crushed ice; pour on it a tablespoonful of rum and a dash of Curacao, or any other liquor agreeable to the taste. Fill the glass with peptonized milk; stir well, sweeten to taste, and grate a little nutmeg on top.

Peptonized Milk Lemonade.—Take a glass onethird full of cracked ice; squeeze into this the juice of a lemon, and add two or three teaspoonfuls of sugar dissolved in water. Fill the glass with fresh *specially* peptonized milk and stir well. If preferred, equal parts of milk and of an effervescent mineral water may be used. Pour the water on the lemon juice and ice, and immediately fill the glass with milk.

Peptonized Milk Gruel.—Mix with a teaspoonful of wheat flour, arrowroot flour, or Robinson's Barley Flour with half a pint of cold water. Boil for five minutes, stirring constantly. Add one pint of cold milk and strain into a jar; add the usual peptonizing ingredients; place in warm water (115° F.) for twenty minutes, and then upon ice.

Junket, or Curds and Whey.—Take a half-pint of fresh milk; add one teaspoonful of Fairchild's Essence of Pepsin and stir just sufficiently to mix. Pour into custard cups, and let it stand until firmly curdled. It may be served plain or with sugar and grated nutmeg. It may be flavored with wine, which should be added before curdling takes place.

Junket with Egg.—Beat one egg to a froth, and sweeten with two teaspoonfuls of white sugar; add this to a half-pint of warm milk; and then add one teaspoonful of essence of pepsin and let it stand until curdled.

Cocoa Junket.—Put an even tablespoonful of any good cocoa and two teaspoonfuls of sugar into a saucepan; scald with two tablespoonfuls of boiling water and rub into a smooth paste; then stir in thoroughly one-half pint of fresh, cool milk; heat this mixture until it is lukewarm—not over 100° F.—then add one teaspoonful of Fairchild's Essence of Pepsin and stir just enough to mix; pour quickly into small cups or glasses, and let it stand until firmly curdled, when the junket is ready for

use. It may be placed on ice and eaten cold; as a dessert it may be served with whipped cream.—(Fair-child.)

Coffee Junket.—Dissolve two teaspoonfuls of sugar in two tablespoonfuls of clear, strong coffee; mix this thoroughly with one-half pint of fresh, cool milk; add a teaspoonful of Fairchild's Essence of Pepsin as directed above, and serve in the same way.

Vanilla, Bitter Almond, or Strawberry Junket.—Add the flavoring extract to the cold milk and then prepare in the usual way. A half a teaspoonful of vanilla or bitter-almond extract or a tablespoonful of pure concentrated strawberry syrup should be allowed to a half-pint of milk.

Milk Lemonade.—Take two ounces of sugar, five ounces of boiled milk, one-half lemon, or two ounces of white wine, five ounces of boiling water, and the rind of half a lemon. Pour the boiling water over the peel and the sugar; allow it to cool, add the milk, and then the lemon juice or wine. Strain after ten minutes.

Milk Punch.—Shake together in a lemonade-shaker a glass of milk, a tablespoonful of rum, brandy, or good old whisky, and two teaspoonfuls of sugar. After it has been poured into a glass a little nutmeg may be grated over the top.

Milk Porridge.—Mix a tablespoonful of flour with one-fourth cupful of cold milk and stir into one-fourth cupful of hot milk; if desired, add two raisins cut into quarters. Cook over boiling water for one hour, and add one-quarter teaspoonful of salt just before serving.—(Drexel Institute.)

Whey.—Take a half-pint of fresh milk heated lukewarm (115° F.), add one tablespoonful of essence of

pepsin, and stir just enough to mix. When this is firmly coagulated, beat up with a fork until the curd is finely divided and then strain. For flavoring purposes lemon juice or sherry wine may be added.

Cream-of-tartar Whey.—Add a heaping teaspoonful of cream of tartar to a pint of boiling water. Strain, sweeten to taste, and serve cold.—(*Pavy.*)

Wine Whey.—Cook together a cupful of milk and half a cupful of sherry wine. As soon as the curd separates, strain and sweeten. This may be eaten hot or cold.

Lemon Whey.—This is made in the same way as the foregoing recipe, using three tablespoonfuls of lemon juice instead of the wine.

Kumiss No. 1.—Take a quart of skim milk, one-fifth of a cake of yeast, and two tablespoonfuls of sugar. Heat the milk. Dissolve the yeast in a little water and mix it with the sugar and lukewarm milk. Pour the mixture into strong bottles, stopper them tightly with new corks, and tie down the corks with stout twine. Shake the bottles well and place in a refrigerator; this will allow the mixture to ferment slowly. After three days lay the bottles on their sides, turning them occasionally. Five days are required to complete the fermentation; the kumiss is then at its best.—(Drexel Institute.)

Kumiss No. 2.—Pour into wired bottles one quart of fresh milk, half an ounce of sugar, a piece of fresh yeast cake half an inch square, and keep at a temperature between 60° and 70° F. for one week, shaking five or six times a day; then put upon ice.—(*Holt.*)

Milk Mixture.—This is made of cream, two parts; milk, one part; lime water, two parts; sugar water,

three parts (seventeen and three-fourths drams of milk sugar to a pint of water).—(A. V. Meigs.)

Milk-and-cinnamon Drink.—Add a small amount of cinnamon to the desired quantity of milk and boil it. Sweeten with sugar and add brandy if desired.—(*Ringer.*)

Albuminized Milk.—Shake in a covered jar or lemonade-shaker a cupful of milk, a tablespoonful of lime water, and the white of an egg. Sweeten, flavor as desired, and serve at once.

Milk-and-cereal Waters.—A most valuable method of preparing milk for invalids with whom it disagrees is to mix equal parts of milk and thoroughly cooked barley, rice, oatmeal or arrowroot water and boil them together for ten minutes. This may be served plain, or flavored by cooking with it a cut-up raisin, a sprig of mace, or a piece of stick cinnamon, which should be strained out before serving.

Irish Moss and Milk.—Soak about two tablespoonfuls of Irish moss for five minutes and wash thoroughly in cold water. Add to a cupful of milk and soak for half an hour; then heat slowly, stirring constantly, and then boil for ten minutes, preferably in a double boiler; strain, and pour into cups and cool. This may be served while hot, and may be rendered more nutritious by the addition of the white of an egg stirred into it just before serving.

Milk with Other Diluents.—Milk may be diluted with advantage in many cases by adding lime water, or Vichy, Apollinaris or some other sparkling table water. From one-half to one-eighth the total volume may be added.

EGGS.

Eggs are exceedingly valuable as food for invalids. They should always be fresh. When received they should be washed and then placed in a cool place. They should not be kept with any article of food having an odor, as they absorb such odors and the taste is thereby impaired. Stale eggs will not sink, and if held to a bright light they show a dark spot. The yolk of an egg that has been broken may be kept fresh by placing it (unbroken) in a cupful of cold water. This should be set in a cool place. This will keep it fresh for twenty-four hours or more.

Eggs and all other albuminous food should be cooked at as low temperatures as possible, in order to avoid rendering them tough.

Eggs are best cooked in the shell as follows:

Soft-cooked Eggs.—Place in a pint of boiling water, remove from the fire, and allow to stand for eight or ten minutes. If the egg is very cold to start with, it will take a little longer.

Hard-cooked Eggs.—Place in water, bring to a boil, and then set on the back part of the stove for twenty minutes

Eggs should be served as soon as cooked, and the dishes should be warmed and ready.

EGGS AND MILK.

Rules for Custards.—The eggs should be thoroughly mixed but not beaten light, the sugar and salt added to these, and the *hot* milk added slowly. Custards must be cooked over moderate heat; if a custard curdles, put it in a pan of cold water and beat until smooth. Custards should always be strained.—(*Drexel Institute.*)

RECIPES. 305

Soft Custard.—Take a pint of milk, the yolks of two eggs, two tablespoonfuls of sugar, and a pinch of salt. Mix all except the milk in a bowl. Heat the milk to the boiling-point and add, stirring constantly. As soon as mixed, pour into the saucepan in which the milk has been heated and cook from three to five minutes, stirring constantly until it thickens. Strain, and pour into a cold bowl, and flavor with from half to one teaspoonful of vanilla, a teaspoonful or more of sherry, or other flavoring material as desired. Custards may be cooked to advantage in a double boiler.

Chocolate Custard.—Melt half an ounce of Baker's chocolate and add to the milk, and proceed as above.

Steamed Custard.—Mix the above, using the whole eggs instead of the yolks. Strain, pour into cups, and steam over boiling water until firm.

Baked Custard.—Proceed as above, but pour the custard into baking-cups. Place the cups in a deep baking-pan and fill the pan nearly as high as the cups with boiling water. Place in the oven and bake twenty minutes or longer, according to the size of the cup. When done a clean knife thrust into the custard comes out clean; if it is not done, it comes out covered with milk.

MEATS.

General Rules for Preparing Meat.—Meat must be weighed, trimmed, and wiped with a damp cloth. It should be removed immediately from the paper in which it was wrapped and placed in a cool place. Only tender cuts of meat should be broiled, pan-broiled, or roasted. When meat is to be cooked by any of these methods, it should first be seared, and then the temperature slightly lowered; by searing, the albumin on the outer surface of

the meat is hardened and the meat is thus cooked in its own juices.

Tough meat should be cooked in water; boiling water hardens the albumin on the outer surface of the meat and prevents the juices from escaping. Meat should be put in boiling water and the water allowed to boil for ten or fifteen minutes; then the cooking should be allowed to proceed at a low temperature until the meat is tender. If the water bubbles, it is too hot. Cooked in this way tough meat will become tender. The time required for roasting or cooking in water varies with the weight and quality of the meat.

For roasts weighing less than 8 pounds allow ten minutes to the pound and ten minutes extra; for those weighing from 8 to 12 pounds, allow twelve minutes to the pound and twelve minutes extra; for those weighing over 12 pounds, allow fifteen minutes to the pound and fifteen minutes extra. For meat weighing less than 10 pounds, to be cooked in water, allow twenty minutes to the pound and twenty minutes extra.

The time required for broiling meat varies with the thickness of the meat.

Stock and broth are prepared by prolonged soaking of the meat in cold water and then cooking it at a low temperature for several hours, allowing it to cool uncovered. The meat that remains after straining may be utilized in various ways, adding a little fresh meat to give it flavor.

The fat must not be removed from stock or broth, for it excludes the air and prevents decomposition. It must, however, be entirely removed before the stock or broth is used; this fat may be used in place of drippings. The trimmings of fat from meat should be clarified. Small

globules of fat may be removed from cold broth with a cloth that has been dipped in boiling water and then wrung dry. Fat may be removed from hot broth by means of tissue-paper or a slice of bread.

Cooking Tender Meats.—Roasting.—Skewer the meat into shape. Place it on a rack in a meat pan, into the bottom of which pieces of fat from the meat have been placed. Put in a hot oven on the grate for ten minutes, to sear the meat. If desired it may be seasoned with salt and pepper. Then remove to the floor of the oven and baste every ten minutes, until it is done.

Broiling.—Remove extra fat from the meat and grease the broiler with a part of the fat. Broil over a clear fire; sear, and then turn every ten seconds. Chops one inch thick should be cooked for five minutes. A steak two inches thick should be cooked for ten minutes. Season and serve on a hot platter.

Pan-broiling.—Remove all the fat from the meat. Heat a frying-pan very hot, but use no fat. Sear the meat on both sides, and then cook more slowly until it is done. Stand chops up on their edges to brown. Keep the pan free from fat. The time required for pan-broiling is the same as that required for broiling.—(Drexel Institute.)

GENERAL RULES FOR SOUPS.

Both meats and vegetables should be cut into small pieces. The soup should be started with cold water poured over the meats and the heat applied gradually and the soup allowed to simmer, in order to dissolve as much of the nutriment as possible. If heated rapidly the albumin in the meat coagulates, and little but the extractives passes into the soup. The vegetables are added when the soup is nearly done.

Remove the fat by skimming, by using blotting-paper, by straining through a cloth wet in cold water, or, best of all, by cooling the soup when all the fat rises to the top, when it can be easily removed.

Clear soups may be rendered more nutritious by the addition of sago or of some cereal, as barley or rice. These may also be added with advantage to many thick soups.

Soups should always be served hot. Soup jellies are served cold, and in hot weather may be substituted for warm soups.

Soups may also be made from soup stocks, which may be prepared in any quantity and kept for several days. Stocks may be made from any meat. Those made from chicken or veal are light in color, and those from beef and mutton somewhat darker. Stocks may also be made by using the bones from any kind of meats.

Soup Stock.—To make stock, use a chicken or several pounds of bones with some meat attached, or a pound of lean meat and one quart of water. Cut-up vegetables may be added as desired. For flavoring add a sprig of parsley and of celery, a peppercorn, a small onion, and a scant teaspoonful of salt. Any of the flavoring vegetables may be omitted as desired or others added. The meat should simmer for several hours, until but half the quantity of water remains. Then add the other ingredients, simmer half an hour longer, strain and cool. Remove the fat.

Soup Stock from Beef Extract.—Cook the other ingredients, except the salt, as given above, for half an hour, using a quart of water. Then add a teaspoonful of beef extract and a quarter of a teaspoonful of salt.

Soup from Stock .- Rice, tapioca, or whatever is de-

sired is cooked and the stock added, with additional seasoning as thought necessary. Cream, yolks of eggs, Irish moss, cornstarch or arrowroot may be added to render the soup more nutritious.

Chicken Broth.—Take one pound of chicken and a pint of cold water. Clean the fowl, cut it into pieces, and remove the skin. Separate the meat from the bone and chop the meat very fine. Place with the bones—if large, they should be broken—in the water and soak for an hour. Cook over hot water for four or five hours at a temperature of 190° F. Strain and add salt. Water must be added from time to time to keep the quantity up to a pint. Remove the fat. If the broth is to be reheated use a double boiler.

Sweetbread Soup.—The sweetbread is soaked in cold water for one hour, the water being renewed frequently during this time. It is then boiled for one hour in slightly salted water or beef broth, to which one may add one teaspoonful of julienne to improve the taste. After it is soft the sweetbread is taken out of the beef broth and all blood-vessels and skin are removed. It may now be cut into pieces the size of a walnut and put on a plate, over which the beef broth is poured, or the sweetbread may be forced through a sieve, beef broth poured over this, and the whole put on the fire again until it boils, after which the soup may be served. This latter process is to be recommended in the case of dyspeptics. One hundred grams of raw sweetbread generate about 90 calories of heat.—(Wegele.)

Meat Broth (Beef, Veal, Mutton, or Chicken).— Cover one pound of chopped lean meat with one pint of water and allow it to stand for from four to six hours. Then cook over a slow fire for an hour until reduced to half the quantity. Cool, skim, pour into jar and strain.

Veal Broth.—Pour a pint of water on a half-pound of finely chopped lean veal and allow it to stand for three hours. Boil for a few minutes, strain, and season with salt

Clam or Oyster Juice.—Cut the clams or oysters into pieces and heat for a few minutes in their juice. Strain through muslin and serve while hot. In straining great care must be taken that sand does not pass through the muslin. The juices should be diluted and may be frozen.—(*Drexel Institute.*)

Clam Broth.—Wash three large clams very thoroughly, using a brush for the purpose. Place in a kettle with half a cupful of cold water. Heat over the fire; as soon as the shells open the broth is done. Strain through muslin, season, and serve.—(Drexel Institute.)

Mutton Broth with Vegetables.—Allow one pound of neck of mutton to each pint of water; add carrots, turnips, onions, and barley; let all simmer together for three hours.

Mutton Broth without Meat.—Cook two "shank-ends" in a pint of cold water, and vegetables as directed in the foregoing recipe; simmer for three hours and strain.

Beef Tea No. 1.—Cut up a pound of lean beef into pieces the size of dice; put it into a covered jar with two pints of cold water and a pinch of salt. Let it warm gradually and simmer for two hours, care being taken that it does not at any time reach the boiling-point.—(Yvo.)

Beef Tea No. 2.—Put a pound of finely mixed beef with a pint of cold water into a suitable vessel. Let it

stand for an hour, stirring occasionally. Put the vessel containing the beef into a saucepan of water, place it over the fire, and allow the water to boil gently for an hour (or the vessel containing the beef tea may be put into an ordinary oven for an hour). Pass the beef tea through a strainer. A fine sediment appears in the fluid, and this should be drunk with the liquid. Flavor with salt. At no time should the beef extract be exposed to a temperature of more than 170° F.—(Pavy.)

Beef Tea No. 3.—Chop fine a pound of beef free from fat, tendons, etc., and digest with a pint of cold water for two hours. Let it simmer on the stove for three hours at a temperature never above 160° F. Replace the water lost by evaporation by adding cold water, so that a pint of beef tea shall represent a pound of beef. Strain and carefully express all fluid from the beef.—(Bartholow.)

Beef Tea with Oatmeal.—Mix thoroughly one tablespoonful of groats with two of cold water; add to this a pint of boiling beef tea. Boil for ten minutes, stirring constantly, and strain through a coarse sieve.— (*Yeo.*)

Beef Tea, Flavored.—Beef tea may be flavored agreeably by boiling in it a pinch of mixed herbs, a bayleaf, or a bit of onion, carrot, turnip, or celery and a few peppercorns. The roots should either be chopped small or be scraped to a pulp before being added to the broth. —(Yvo.)

Beef Juice.—Broil quickly pieces of the round or sirloin of a size to fit the opening in a lemon squeezer. Both sides of the beef should be scorched quickly to prevent the escape of the juices, but the interior should not be fully cooked. As soon as they are ready the

pieces of meat should be squeezed in a lemon squeezer previously heated by being dipped in hot water. As it drips the juice should be received into a hot wineglass; it should be seasoned to the taste with salt and a little Cayenne pepper, and taken while hot.—(Barthelow.)

Cold Beef Juice.—Cover one pound of finely chopped lean beef with eight ounces of cold water and allow it to stand for eight or ten hours. Squeeze out the juice by means of a muslin bag; season with salt or sherry wine and drink cold or slightly warmed. It may be added to milk, care being taken that the milk be not too hot before the juice is added.

Iced Meat Extract.—Cut into pieces the size of a hand one kilo of fresh beef; wrap in a coarse, lattice-like linen bag, put under a lever press, and press slowly. The juice should be caught in a porcelain dish. This is done best by a druggist. By this method about 500 gm. of juice are obtained. The juice is mixed with 250 gm. of sugar, 200 gm. of freshly expressed lemon juice (this last is best omitted in the case of dyspeptics), and 20 gm. of cognac containing vanilla extract; stir in well the yolks of three eggs; the entire mixture is then placed in a freezer.—(v. Ziemssen.)

Raw-meat Juice.—Add to finely minced rump steak cold water, in the proportion of one part of water to four parts of meat. Stir well together, and allow it to stand for half an hour. Forcibly express the juice through muslin, twisting it to get the best results.—(*Cheadle*.)

Succus Carnis (Meat Juice).—Cut up the meat into small bits, arrange in layers separated from one another by coarse linen, and then place in a powerful press. From each kilogram of meat about 230 gm. of a blood-red juice are obtained. This contains about 6 per cent, of

albuminates. Its taste is similar to that of raw meat; its flavor may be improved by the addition of salt and beef tea not hot enough to coagulate the albumin.— (Pettenkoffer and Voit.)

Beef Essence.—Chop up very fine a pound of lean beef free from fat and skin; add a little salt, and put into an earthen jar with a lid; fasten up the edges with a thick paste, such as is used for roasting venison in, and place the jar in the oven for three or four hours. Strain through a coarse sieve, and give the patient two or three table-spoonfuls at a time.—(Yeo.)

American Bouillon (American Broth).—Place in a tin vessel that can be sealed hermetically alternate layers of finely minced meat and vegetables. Seal it, and keep it heated in a water bath (bain marie) for six or seven hours, and then express the broth.—(Yvo.)

Bottle Bouillon.—Cut beef, free from fat, into squares. Place these in a stoppered bottle, put the bottle in a basin of warm water, heat slowly, and boil for twenty minutes. There will be about an ounce of yellowish or brownish fluid for each three-quarters of a pound of meat used. The flavor is that of concentrated bouillon.—(Uffelmann.)

Peptonized Oysters.—To half a dozen oysters with their juice add half a pint of water and boil for a few minutes. Pour off the broth and set it aside. Mince the oysters, and with the aid of a potato-masher reduce to the consistence of a paste. Place this with the broth in a glass jar and add fifteen grains each of extract of pancreas and of bicarbonate of soda and mix. Allow this to stand in hot water (115° F.) for one and one-half hours. Pour into a saucepan and add half a pint of milk; heat over a slow fire to boiling-point. Flavor with salt

and pepper and serve hot. Let the heating be done gradually, and be careful to bring the mixture to a boil before taking it from the fire.—(Fairchild.)

Peptonized Beef.—Cover one-fourth of a pound of finely minced lean beef (or beef and chicken mixed) with half a pint of cold water. Cook over a slow fire until it has boiled for a few minutes, stirring constantly. Pour off the broth and rub or pound the meat to a paste. Put meat and broth and half a pint of cold water in a glass jar, and add twenty grains of extract of pancreas and fifteen grains of bicarbonate of soda. Mix well and keep in a warm place—at about 110°-115° F.—or place it in warm water and allow it to stand three hours, stirring or shaking occasionally. Boil quickly; strain or clarify with the white of an egg and season with salt and pepper. If desired, it need not be strained, as the small particles of meat are usually easily digested. Cereals may be added, boiling with half the amount of water previously directed, and mixing all together before peptonizing. At the end of three hours the mixture must be boiled or it will spoil.—(Fairchild.)

METHODS OF PREPARING RAW BEEF.

Meat given raw should always be perfectly fresh and very finely divided. Scrape the meat with a sharp knife, which will separate the coarser fibers. If the resulting mass is stringy, pass through a fine sieve. This may be seasoned with salt and pepper, and served on toast, crackers, or bread and butter. It may be rolled into small balls and swallowed. These may be flavored as desired. They may also be slightly browned by rolling about rapidly in a hot saucepan, care being taken not to change any but the outside of the ball, and that but

slightly. Scraped beef may be served as a liquid or semi-solid food. Mix it with an equal quantity of cold water until it is quite smooth. Place in a double boiler and cook until thoroughly heated, stirring constantly. Add a little salt and pepper and serve at once. This may be made thicker by adding less water.

Raw Meat with Milk and Sugar.—Scrape half a pound of rump steak with a knife until all the pulp is removed; sweeten with sugar, breaking the lumps of sugar with the meat in a basin with a small wooden spoon. Add slowly as much milk as will make it about the thickness of arrowroot; flavor with brandy. If any fiber of the meat remains, strain through a gravy strainer. The mixture should be perfectly smooth.—(Ringer.)

Raw-beef Soup.—This is made by chopping up one pound of raw beef and placing it in a bottle with one pint of water and five drops of strong hydrochloric acid. This mixture is allowed to stand on the ice overnight, and in the morning the bottle is placed in a pan of water at 110° F., and kept at about this temperature for two hours. It is then placed in a stout cloth and strained until the mass that remains is almost dry. The filtrate is given in three portions daily. If the taste of the raw meat is objectionable, the meat may quickly be roasted on one side and the process completed in the manner previously described.—(Weir Mitchell.)

PANOPEPTON.

Iced Panopepton.—To a small glass half full of clean crushed ice add one tablespoonful of *Panopepton*; let this stand for a minute and then sip slowly.

Panopepton Jelly.—This is made of one ounce of fresh celery cut into small pieces, one-half of a small box

of the best gelatin, one-fourth of a teaspoonful of salt, two dashes of pepper, six tablespoonfuls of *Panopepton*, and two cupfuls of cold water. Soak the gelatin in half a cupful of cold water for one hour; put the water and celery in a double boiler on the fire and simmer for one-half hour; add the salt, pepper, and soaked gelatin and stir until it is dissolved; remove from the fire and add the *Panopepton*; stir and strain through linen into a jelly bag and set near ice. Serve in small quantities.

Panopepton Jelly with Orange.—The articles required are one-half of a small box of the best gelatin, one tablespoonful of sugar, six tablespoonfuls of *Panopepton*, the juice and rind of one orange, and one pint of cold water. Put the gelatin, orange peel (cut in small pieces), orange juice, and cold water in a dish and let it stand for one hour, then put in a double boiler over the fire, add the sugar, and stir until it is dissolved; now strain through linen, add the *Panopepton*, and stir well. Pour into a jelly jar and set near the ice. Serve in small quantities.

Panopepton Hot.—To a small teacup two-thirds full of boiling water add one tablespoonful of *Panopepton* and one teaspoonful of *fresh* lemon juice; a little sugar may be added if desired. Stir and drink immediately, sipping slowly.

Panopepton Bouillon Hot.—Put one tablespoonful of *Panopepton* in a small teacup; fill the cup nearly full of boiling water, and flavor to taste with celery salt or plain salt and pepper; stir and sip slowly.

Panopepton Cordial.—Put into a cordial glass or any small glass two teaspoonfuls of clean crushed ice; add one teaspoonful of Fairchild's Essence of Pepsin and three teaspoonfuls of *Panopepton*. Sip slowly. This is

a good after-dinner cordial for those who suffer discomfort after eating.

Panopepton with Whey.—Put into a small teacup one or two teaspoonfuls of clean crushed ice; add one tablespoonful of *Panopepton*, stir, and then fill the cup with whey. Drink slowly.

Egg Gruel.—Take one cupful of hot beef broth made with "Soluble Beef," one egg, and one-half teaspoonful of salt. Beat the white and the yolk of the egg separately; add the hot beef broth gradually to the yolk, stirring continually. Whip the white to a stiff, dry froth with the salt, and beat it into the hot broth. Return to the double boiler and reheat. Serve very hot.

Barley Gruel with Beef Extract.—One-half teaspoonful of "Soluble Beef," two cupfuls of hot water, one tablespoonful of barley flour, one saltspoonful of salt. Dissolve the beef in the hot water, and mix the flour and salt together with a little cold water. Pour the boiling stock on the flour and cook for ten minutes. Strain and serve very hot.

Beef Broth with Poached Egg.—Prepare the broth in the proportion of half a teaspoonful of "Soluble Beef" to one cupful of hot water and add a poached egg.

A Nutritive Drink for Delicate Women and Children.—This is made by mixing one-fourth to one-half teaspoonful of "Soluble Beef," five ounces of boiling water, and one-half ounce of cream; season with salt and pepper to suit the taste.

Beef Broth with Grain.—Take one teaspoonful of "Soluble Beef," one quart of water, one tablespoonful of rice, and salt to taste. Dissolve the "Soluble Beef" in the hot water, and add the well-washed rice. Simmer

slowly until dissolved and absorbed by the rice, adding more beef broth if too much boils away. If not entirely dissolved, the broth should be strained before using.

Beef-tea Egg-nog.—This requires one-eighth teaspoonful of "Soluble Beef," one-half cupful of hot water, one tablespoonful of brandy, and a pinch of salt. Beat the egg slightly, and add the salt and sugar. Dissolve the "Soluble Beef" in the hot water, add to the egg, and strain. Mix thoroughly, adding wine, and serve.

MEAT JELLIES WITHOUT GELATIN.

Chicken Jelly.—Half a grown chicken should be well pounded, and boiled in one quart of water for two hours until only a pint remains; season and strain. Serve hot or place on ice, where it will "jel."

Veal-bone Jelly.—Place ten pounds of veal bones and ten quarts of water or weak bouillon over the fire and bring to just a boil. Skim and add two pounds of barley and a little salt. Simmer for five or six hours and then strain. If too thick, dilute, before serving, with bouillon. Stir in the yolk of an egg in a cup and serve.

Meat Jelly.—This is made by cooking good boneless, lean beef on a water bath with a little water for sixteen hours or until it becomes gelatinized. Of the artificial preparations on the market for making bouillon, the most reliable is Liebig's Extract of Meat (10:250 gm.) or Cibil's Bouillon (1 teaspoonful to 250 gm.). Inaglio's bouillon capsules are also very convenient. If it is desired to make the bouillon more nutritious, one teaspoonful of meat peptone may be added.—(*Hepp.*)

Jelly for Dyspeptics.—Remove the skin and meat from one calf's foot; wash the bones and place in cold water on the stove; when it begins to foam, skim off the refuse which gathers on top. After rinsing off the scum with cold water, put the bones into a pot with one-quarter kilo of beef or half an old hen, one-quarter liter of water, and 5 gm. of salt, and boil slowly for from four to five hours. Pour the jelly thus formed through a fine sieve. and place overnight in a cellar. Next morning remove the fat, and clarify the cold jelly by adding one egg with its shell mashed, beating and stirring steadily. Then, with the addition of a little cornstarch, subject the whole to a temperature not over 60° R., or the white of the egg will curdle. Constantly beat and stir. If the jelly begins to get grainy, cover and let it cool until the white of the egg becomes flaky and separates. Then strain again several times until it becomes perfectly clear; add 5 gm. of extract of meat, pour the jelly into a mold, and let it cool again. The gravy from a roast may be utilized and is very palatable. It must be stirred in while the mass is still warm and liquid. This jelly is usually relished with cold fowl, but spoils easily in summer; it must therefore be kept on ice.—(IVcil.)

Dishes Made with Gelatin.—Gelatin should be soaked in cold water for about half an hour to soften it. It may then be easily dissolved by adding boiling water. If it is desired to soften gelatin quickly, it should be placed in cold water and gradually heated over boiling water until it dissolves. If a jelly is to be strained, a wet cloth should be used for the purpose. Jelly molds should be wet with cold water before being filled. When granulated gelatin is used, much smaller amounts are required than when the ordinary form is used.

Wine Jelly.—Soak a teaspoonful of granulated gelatin in two tablespoonfuls of cold water and half a cupful of hot water. Add two tablespoonfuls of sugar and half a

teaspoonful of lemon juice, and when cooling add two tablespoonfuls of wine.—(Drexel Institute.)

Lemon jelly is made in the same manner as the wine jelly just described, using a tablespoonful of lemon juice in place of the quantity directed.

Orange jelly is made in a similar manner, using two teaspoonfuls of lemon juice, four tablespoonfuls of orange juice, and three tablespoonfuls of sugar, but a little less of the boiling water.

Coffee jelly is also made similarly, adding an ounce or two of coffee.

Milk Jelly.—Take two quarts of milk and add half a pound of sugar. Boil for five or ten minutes. Cool, and add an ounce of gelatin dissolved in a cupful of cold water. Flavor with the juice of two or three lemons and three glasses of good Bordeaux wine.—(Schlesinger.)

Irish-moss Blanc-mange.—Wash a tablespoonful of Irish moss in several changes of water and pick it over carefully. Place it in a double boiler together with half a cupful of milk. Cook until it thickens when dropped on a cold plate. Add salt, strain, and flavor. Pour into a custard cup that has first been rinsed in cold water.—(Drexel Institute.)

Meat Jellies with Gelatin.—Use any kind of meat broth desired, but always one with an appetizing flavor. Add a teaspoonful of granulated gelatin to enough broth to cover it, and allow the gelatin to soak for a few minutes. Then add the remainder of a cupful of the broth very hot and stir until the gelatin is dissolved. Strain, and pour into molds to cool.

Meat Jellies with Tapioca.—Mix a cupful of broth as above with four level tablespoonfuls of powdered tapioca. Heat until quite clear, stirring constantly. Add salt and season as desired. Pour into molds and cool.

Meat Jellies with Irish Moss.—Wash two tablespoonfuls of Irish moss thoroughly. Add this to a cupful of hot broth and allow it to stand for half an hour; then heat slowly, stirring constantly, and boil for ten minutes, preferably in a double boiler. Strain, and pour into molds and cool.

Albuminized Jelly.—Any of the above meat jellies may be rendered more nutritious by the addition of the white of an egg. The egg should be well beaten and stirred into the jelly just after it has been taken off the fire.

RECIPES FOR FOODS FOR DIABETICS.

Gluten Bread.—Mix one pound of gluten flour with three-fourths of a pint or one pint of water at 85° F. (With some of the prepared flours—Bishop's, for example—no yeast is required.) As soon as the dough is mixed put it into tins and place them immediately in the oven, which should be at a temperature of about 430° F. Or the dough may be made into small dinner rolls and baked on flat tins. The loaves take about one and one-half hours to bake, and the rolls three-fourths of an hour. Either are easily made. The addition of a little salt improves the bread.

When any special brand of flour is used, the directions that accompany it should be followed closely.

Gluten Pudding.—A batter of eggs, cream, and gluten flour is prepared. This is flavored with lemon or other essences and baked.

Gluten Pancakes.—Add gluten flour to one or two eggs and beat into a batter. The pancakes may be

sweetened with a little saccharin or eaten with glycerin. (Williamson.)

Jeffries' Gluten Biscuit.—Mix thoroughly gluten flour, one cupful; best bran, previously scalded, one cupful; baking-powder, one teaspoonful; salt to taste; two eggs; milk or water, one cupful.

Diabetic Bread.—Take one quart of set milk or milk and water, one heaping teaspoonful of good butter, one-fifth of a cake of compressed yeast beaten up with a little water, and two well-beaten eggs. Stir in gluten flour until a soft dough is formed; knead as in making ordinary bread; place in pans to raise, and when light bake in a hot oven.—(James Stewart.)

Camplin's Bran Cakes .- Take a sufficient quantity-say a quart-of wheat bran, boil it in two successive waters for a quarter of an hour, each time straining it through a sieve; then wash it well with cold water (on the sieve) until the water runs off perfectly clear; squeeze the bran through a cloth as dry as possible, and then spread it thinly on a dish; place it in a slow oven; if put in at night, let it remain until the morning, when, if perfectly dry and crisp, it will be ready for grinding. The bran thus prepared must be ground in a mill, and sifted through a wire sieve that has so fine a mesh that a brush must be used to pass it through; that which remains in the sieve must be reground until it becomes quite soft and fine. Take of this bran powder three ounces (some patients use four ounces); the other ingredients are as follows: three new-laid eggs; one and one-half or, if desired, two ounces of butter; about half a pint of milk. Mix the eggs with a little of the milk, and warm the butter with the remainder; then stir the whole well together, adding a little nutmeg or ginger or

any other agreeable spice. Bake in small tins (patty pans), which must be well buttered, in a somewhat quick oven for about half an hour. When baked, the cakes should be a little thicker than a captain's biscuit; they may be eaten with meat or cheese for breakfast, dinner, or supper. At tea they require a somewhat liberal allowance of butter, or they may be eaten with curd or with any soft cheese. It is important that the flour be prepared as directed above. If the cakes do not keep well or if they have not been well prepared, place them before the fire for ten minutes every day.

Almond Pudding.—Take two eggs, one-quarter of a pound of almond flour, one-quarter of a pound of butter, and three tabloids of saccharin dissolved in a table-spoonful of brandy. Warm the butter, beat in the almond flour and the yolks of the eggs, and add the dissolved saccharin. Whip the whites into a stiff froth, and beat all together. Put into dariole molds and bake in a quick oven; serve with a little hot sauce made with dry sherry and saccharin.—(*Mrs. Hart.*)

Almond Biscuit.—To each ounce of almond flour add the whites of two eggs and salt to taste. Whip the whites to a stiff froth, add the almond flour, and beat well together. Put in buttered patty pans and bake in a moderately quick oven for from fifteen to twenty minutes. The whole must be done quickly, and baked as soon as the ingredients are mixed. This biscuit is a useful substitute for bread.—(*Mrs. Hart.*)

Almond Cakes No. 1.—Take one pound of ground almonds, four eggs, two tablespoonfuls of milk, a pinch of salt. Beat up the eggs, and stir in the almond flour; place in twelve flat tins and bake in a moderate oven for about fifteen minutes.—(Saundby.)

Almond Cakes No. 2.—Break up about one-quarter of a pound of sweet almonds in a stone mortar (or almond flour may be used). Put the flour into a linen bag, which should then be immersed for one-quarter of an hour in boiling water, acidulated with a little vinegar to remove the small amount of sugar from the almonds. Mix well with three ounces of butter and two eggs. Then the yolks of three eggs and a little salt are added, and the whole stirred briskly for some time. Beat the whites of three eggs to a fine froth and add to the mixture. The paste is then made into biscuits, smeared with butter, and baked with a gentle fire.—(Svegen.)

Aleuronat Bread.—Take about six or seven ounces of ordinary wheat flour and the same quantity of aleuronat powder; five ounces of the best butter; one teaspoonful of salt; three-quarters of an ounce of baking-powder. The flour and the aleuronat are mixed in a warm dish, and the melted butter and milk (made lukewarm) are added gradually, followed by the salt, and finally by the baking-powder (one part of sodium carbonate and two parts of cream of tartar). The dough is well mixed, then molded into two loaves, and baked at a good heat.—(Ebstein.)

Aleuronat and Almond Cakes.—Three ounces of aleuronat; three ounces of almond flour; beat up one egg, and add about two teaspoonfuls of cream and a little water. Moisten the aleuronat with a little water containing saccharin and let it stand for a few minutes; then add the almond flour, the egg, the cream, and the water just as required to make a light paste. Spread on a tin. Cut into squares, and bake in a moderate oven for twenty minutes.—(Williamson.)

Aleuronat Pancakes.-Take one egg and beat it

up in a little water and cream; take two teaspoonfuls of aleuronat powder and half a teaspoonful of baking-powder and a little salt. Mix well, and then add gradually to the egg and cream and beat into a batter; allow it to stand for five minutes. If it is too thick, add a little more cream and water. Fry in an ordinary frying-pan greased with a little lard. At the end of about eight minutes, when the under surface is browned, turn it over and continue to bake it for five minutes longer.—(Williamson.)

Aleuronat and Suet Pudding.—This is a palatable and cheap dish. To make it take two ounces of aleuronat flour and two ounces of suet, one egg, a pinch of salt, and half a teaspoonful of baking-powder. Sprinkle a little aleuronat flour on a chopping-board and chop the suct on this part of the board. Then mix the remaining aleuronat with the suet in a dishpan. Add the salt and the baking-powder. Beat up the egg in about three tablespoonfuls of water to which a little saccharin has been added. Add the egg gradually to this mixture, rubbing the whole mass well into a pasté. It may be necessary to add a little more water. Drop into a tin pudding mold smeared with butter or lard, float it in a pan of water, and boil for two hours, taking care that the boiling water does not get into the mold; or, better still, the pudding may be baked in the oven. Its taste is improved by the addition of half an ounce of almonds. A small quantity of red wine may serve as a sauce.—(Williamson.)

Cocoanut Pancakes.—Beat up one egg in two tablespoonfuls of milk, or, better, in a little cream and water, and add a pinch of salt. Then add two tablespoonfuls of cocoanut powder (freed from sugar). Allow this to stand for from five to ten minutes. Add a little more cream and water. Mix well until it is a little thicker than ordinary pancake batter. Put a little lard in the fryingpan and heat until the lard is just melted; then drop in half of the mixture. Allow this to remain over a moderate fire for a few minutes—about five—until the under surface is brown; then turn the cake over and heat for another five minutes. The other half of the mixture may be used for the second pancake.—(Williamson.)

Cocoanut Cakes.—Mix three tablespoonfuls of cocoanut powder into a paste with a little German yeast and water. The mixture should be allowed to remain by the fire or in a warm place for about twenty minutes, or until fermentation occurs and it becomes "puffy." Then add a small quantity of a watery solution of saccharin. Beat up one egg, and add this with two teaspoonfuls of cream and a little water to the cocoanut paste. The whole should be well mixed, dropped into small tins, and baked in an oven for about thirty minutes.—(Williamson.)

Cocoanut and Almond Cakes.—To make these, the following ingredients are required: Three-quarters of a pound of the finest cocoanut powder, one-quarter of a pound of ground almonds, six eggs, and half a cupful of milk. Beat up the eggs and stir in the cocoanut and almond flour. Divide into sixteen flat tins, and bake for twenty-five minutes in a moderate oven.—(Sanudby.)

Cocoanut Pudding.—Take three tablespoonfuls of cocoanut powder, mix with a little water and German yeast, and keep for twenty minutes in a warm place, so as to allow the small quantity of sugar present to decompose; add four tablespoonfuls of cream, one egg, a little

salt, and half a pint of water sweetened with saccharin. Mix into a paste. Place in a dish greased with butter. Cook like rice pudding, in a slow oven for thirty minutes.—(Williamson.)

Light Custard.—Beat up well one egg; make a mixture of cream and water and boil; gradually add the boiled cream and water, while hot, to the egg, stirring with a spoon. Then place the mixture in a pan over the fire, and stir constantly until it becomes thick; then pour into a glass. It is important that the mixture should not be heated too much—i. c., that it be not boiled—as the albumin would be coagulated. Flavor with cinnamon and sweeten with saxin or saccharin if desired.

Cheese Cakes.—Take one pint of milk, half a table-spoonful of rennet, one ounce of butter, two eggs, one tablespoonful of brandy, one-quarter of an ounce of almonds, and a little saccharin. Curdle the milk, and let it stand in a warm place until thoroughly set; tie a piece of muslin over a bowl and pour the milk over the muslin; let it stand until all the whey has been strained off. Beat the curd smooth, and add the butter and egg, well beaten, with the brandy, almonds, and saccharin. When well mixed pour into patty pans and bake for fifteen or twenty minutes.—(Mrs. Hart.)

Stewed Lettuce.—A well-grown head of lettuce should be selected. Boil this in plenty of water, taking care not to let it fall to pieces. When nearly done take it out of the water, drain, and place in a stewpan with a little rich brown gravy and allow it to simmer for twenty minutes.

Inulin Biscuit.—Put 50 gm. (1½ oz.) of inulin in a large porcelain basin, place this over a hot-water bath, and with 30 c.c. (1 oz.) of milk and as much hot water

as may be necessary, rub up into a smooth dough, into which the yolks of four eggs and a little salt have been mixed. To this add the whites of the four eggs, having first beaten them to a foam, and working them in carefully. Bake in tin molds smeared with butter. The taste of the biscuit may be improved by adding vanilla or other flavoring extract. Inulin is too expensive to be used by the average patient.

Peanut Flour.—This contains about 25 per cent. of carbohydrates. The peanut kernels should be boiled in water for half an hour to extract a portion of the oil which they contain. They should then be dried, and rolled into fine particles with a rolling-pin. Place the kernels in boiling water acidulated with tartaric acid or vinegar, in order (1) to extract saccharin elements; (2) overcome the taste and odor of the peanut; (3) to prevent emulsification of the remaining oil. When they have been thoroughly boiled in acidulated water, the ground kernels should be subjected to dry heat and then rolled into a fine flour. This flour may be made into a form of porridge with milk; bread and biscuits may also be baked from it; and it may be made into the form of a German pancake.—(Stern.)

Home-made Substitute for Bread.—Beat up thoroughly six eggs; add a teaspoonful of baking-powder or its chemical equivalent, and one-quarter of a teaspoonful of salt, and beat again. Pour this mixture into hot waffle-irons smeared with butter, and bake in a very hot oven. By way of variety almonds (powdered) may be added. These biscuits may be eaten hot with butter and cheese.

Sugar-free Milk for Diabetic Feeding.—Take I liter of skim milk, heat to a temperature of 30° C., and

add 10 c.c. of glacial acetic acid, diluted with 100 c.c. of water. Mix, and allow the mixture to stand for about fifteen minutes. Collect the separated casein, and let it drain on very fine muslin, using no pressure. Remove the casein to a mortar, rub into a smooth paste, add ½ liter of distilled water, and strain as before. Repeat this washing of the casein twice. Transfer to a mortar, rub until quite smooth, and add $2\frac{1}{2}$ gm. of potassium hydrate dissolved in 100 c.c. of water (or as much of the potassium hydrate as is necessary to make the product just alkaline to phenolphthalein). Add 100 gm. of ordinary Devonshire clotted cream, 5 gm. of gelatin, previously dissolved, 0.06 gm. (1 gr.) of saccharin, and water, at about 38° C., up to 1 liter. Lastly, strain through fine muslin.—(Hutchison.)

CHAPTER XXIII.

CUTS OF MEAT.

THE methods of cutting sides of beef, veal, mutton, and pork into parts, and the terms used for the different "cuts," as these parts are commonly called, vary in

Fig. 5.—Diagrams of cuts of beef: 1, Neck; 2, chuck; 3, ribs; 4, shoulder-clod; 5, fore-shank; 6, brisket; 7, cross-ribs; 8, plate; 9, navel; 10, loin; 11, flank; 12, rump: 13, round; 14, second-cut round; 15, hind-shank.—(Atwater and Bryant, Bulletin No. 25, Office of Experiment Stations, United States Department of Agriculture.)

different localities. The analyses here reported apply to cuts as indicated by the following diagrams. These show the positions of the different cuts, both in the live animal

¹This section is quoted from Atwater and Bryant, Bulletin No. 28, Office of Experiment Stations, United States Department of Agriculture.

and in the dressed carcass as found in the markets. The lines of division between the different cuts will vary slightly, according to the usage of the local market, even where the general method of cutting is as here

indicated. The names of the same cuts likewise vary in different parts of the country.

Cuts of Beef .- The general method of cutting up a side of beef is illustrated in Fig. 5, which shows the relative position of the cuts in the animal and in a dressed side The neck piece is frequently cut so as to include more of the chuck than is represented by the diagrams. The shoulder-clod is usually cut without bone, while the shoulder (not included in diagram) would include more or less of the shoulder blade and of the upper end of the fore-shank. Shoulder steak is cut from the chuck. In many localities the plate is made to include all the parts of the fore-

quarter designated on the diagrams as brisket, crossribs, plate, and navel, and different portions of the plate, as thus cut, are spoken of as the "brisket end of plate" and "navel end of plate." This part of the animal is largely used for corning. The ribs are frequently divided into first, second, and third cuts, the latter lying nearest the chuck and being slightly less desirable than the former. The chuck is sometimes subdivided in a similar manner, the third cut of the chuck being nearest the neck. The names applied to different portions of the loin vary considerably in different locali-The part nearest the ribs is frequently called "small end of loin" or "short steak." The other end of the loin is called "hip sirloin" or "sirloin." Between the short steak and the sirloin is a portion quite generally called the "tenderloin," for the reason that the real tenderloin, the very tender strip of meat lying inside the loin, is found most fully developed in this cut. Porterhouse steak is a term most frequently applied either to the short steak or the tenderloin. It is not uncommon to find the flank cut so as to include more of the loin than is indicated in the figures, in which case the upper portion is called "flank steak." The larger part of the flank is, however, very frequently corned, as is also the case with the rump. In some markets the rump is cut so as to include a portion of the loin, which is then sold as "rump steak." The portion of the round on the inside of the leg is regarded as more tender than that on the outside, and is frequently preferred to the latter. As the leg lies upon the butcher's table, this inside of the round is usually on the upper or top side, and is therefore called "top round." Occasionally the plate is called the "rattle."

Cuts of Veal.—The method of cutting up a side of veal differs considerably from that employed with beef. This is illustrated by Fig. 6, which shows the relative position of the cuts in the animal and a dressed side. The chuck is much smaller in proportion, and frequently no distinction is made between the chuck and the neck.

The chuck is often cut so as to include considerable of the portion here designated as shoulder, following more nearly the method adopted for subdividing beef. The shoulder of veal as here indicated includes, besides the portion corresponding to the shoulder in beef, the

larger part of what is here classed as chuck in the adult animal. The under part of the fore-quarter, corresponding to the plate in the beef, is often designated as breast in the veal. The part

Fig. 6.—Diagrams of cuts of yeal: 1, Neck; 2, chuck; 3, shoulder; 4, fore-shank; 5, breast; 6, ribs; 7, loin; 8, flank; 9, leg; 10, hind-shank.—(Atwater and Bryant, Bulletin No. 28, Office of Experiment Stations, United States Department of Agriculture.)

of the veal corresponding to the rump of beef is here included with the loin, but is often cut to form part of the leg. In many localities the fore- and hind-shanks of veal are called the "knuckles."

Cuts of Lamb and Mutton.—Fig. 7 shows the relative position of the cuts in a dressed side of mutton or lamb and in a live animal. The cuts in a side of lamb and mutton number but six, three in each quarter. The

chuck includes the ribs as far as the end of the shoulder blades, beyond which comes the loin. The flank is made to include all the under side of the animal. Some

Fig. 7.—Diagrams of cuts of lamb and mutton: 1, Neck; 2, chuck; 3, shoulder; 4, flank; 5, loin; 6, leg.—(Atwater and Bryant, Bulletin No. 28, Office of Experiment Stations, United States Department of Agriculture.)

ribs, chuck or shoulder, which are either cut or "chopped" by the butcher into pieces suitable for frying or boiling. The chuck and ribs are sometimes called the "rack."

Cuts of Pork.—The method of cutting up a side of pork differs considerably from that employed with other meats. A large portion of the carcass of a dressed pig consists of almost clear fat. This furnishes

the cuts which are used for "salt pork" and bacon. Fig. 8 illustrates a common method of cutting up pork, show-

Fig. 8.—Diagrams of cuts of pork: 1, Head; 2, shoulder; 3, back; 4, middle cits, belly; 6, ham; 7, ribs; 8, loin.—(Awater and Bryant, Bulletin No. 28, Office of Experiment Stations, United States Department of Agriculture.)

ing the relative position of the cuts in the animal and in the dressed side. The cut designated as "back cut" is

almost clear fat, and is used for salting and pickling. The "middle cut" is the portion quite generally used for bacon and for "lean ends," of salt pork. The belly is salted or pickled or may be made into sausages.

Beneath the "back cut" are the ribs and loin, from which are obtained "spare ribs," "chops," and roasting-pieces, here designated by dotted lines. The hams and shoulders are more frequently cured, but are also sold as fresh pork "steak." The tenderloin proper is a comparatively lean and very small strip of meat lying under the bones of the loin and usually weighing a fraction of a pound. Some fat is

usually trimmed off from the hams and shoulders, which is called "ham and shoulder fat," and is often used for sausages, etc. What is called "leaf lard," at least in some localities, comes from the inside of the back. It is the kidney fat.

As stated above, cuts as shown in the diagrams herewith correspond to those of which analyses are reported in the tables beyond, but do not attempt to show the different methods of cutting followed in markets in different parts of the United States.

WEIGHTS AND MEASURES.

Relative Values of Apothecaries' and Metric Fluid Measures.

Minims. Cubic centi- meters.	Minims.	Cubic centi- meters.	Fluid- ounces	Cubic centi- meters.	Fluid- ounces.	Cubic centi- meters.
1 = 0.06 2 = 0.12 3 = 0.18 4 = 0.24 5 = 0.30 6 = 0.36 7 = 0.42 8 = 0.50 10 = 0.60 11 = 0.68 12 = 0.74 13 0.80 14 0.85 15 = 0.92 10 = 1.00 17 = 1.05 18 = 1.12 19 = 1.17 20 = 1.25 25 = 1.54	$ \begin{array}{cccc} & 1 & 1 & 2 & = \\ & 1 & 3 & 4 & = \\ & 2 & = & & \\ & 3 & = & & \\ & 4 & = & & \\ & 5 & = & & \\ & 6 & = & & \\ \end{array} $		5 = 6 = 7 = 8 = 9 = 10 = 12 = 13 = 14 = 15 = 16 = 17 = 18 =	30.00 59.20 89.00 118.40 118.00 207.00 236.00 236.00 235.00 385.00 414.00 444.00 443.11 505.20 5	64 = 72 - 80 96 112 -=	887.25

Relative Values of Metric Fluid and Apothecaries' Measures.

Cubic Fluid- centi- meters.		Cubic Fluid- centi- drams.	Cubic centi- Minims. meters.
1000 = 33.81	400 = 13.53	25 = 6.76	4 = 64.80
900 = 30.43	300 = 10.14	10 = 2.7I	3 = 48.60
8co 27.05	200 = 6.76	9 = 2.43	2 = 32.40
700 = 23.67	100 = 3.38	8 = 2.16	1 = 16.23
6c0 = 20.29	75 = 2.53	7 189	0.50 = 8.11
500 = 16.90		6 = 1.62	0.25 = 4.06
473 = 16.00	30 1.01	5 -= 1.35	0.00 = 0.00

337

Relative Values of Avoirdupois and Metric Weights.

Avoir. Grams.	Avoir. ounces.	Grams.	Avoir, ounces,	Grams.	Avoi: poun		Grams
$J_{\sigma} = 1.772$	5 -	141 75	13	368 54	3	4.00	1360 78
16 = 1.772 18 = 3.544 14 - 7.688	6 =	170.10	14 :	306.90	4	=	1814.37
7.088	7	198.45	15	425 -5	5	4.00	2267.55
12 = 14 175	8 =	220.8u	Avoir.		6		2721.55
1 28.350	9 = :	255.15	pounds		7		3175.14
2 - 56.700	10	284.50	10 -	453 60	8		3628 74
3 - 85 050	I1	11 84	20-	907.18	0		4082.33
4 - 113-400	12 =			1000.00	10		4535 92

Relative Values of Metric and Avoirdupois Weights.

inces. Gr.	Gm. Ou	Gr.	inces.	an. Ot	Gr.	ices	Oun	Gm.	Gr.	ces.	Опп	Gm
21 + 72 22 + 405				125 =			I					26 35
24 + 303 26 + 198	700 = 750 =	24	7 +	200	1 >>		= I	40	25			30 00
28 + 96 29 + 429	850 =	152	12 +	300 350	205	+	- 2	70	87	+		33 0 1
31 + 320 $33 + 222$ $35 + 120$	950 ==	279		400 -: 500 -: 550 - *			- 2 - 3 - 3	85	118	+	1	35 00 30 00 37 00
	1.100	175	19 +	550	230	+	- 3	100	133	+	1	37 👓

Relative Values of Apothecaries' and Metric Weights,

Grains	š.	Grams.	Grains.		Grams.	Dran	15.	Grams
ı	.00	0.0625	2.1		1.55	I	==	3.90
2		0.1300	25		1.62	2		7.80
3		0.1950	26	:==	1.70	3		11.65
4		0.2000	27		1.75	4	40.0	15.50
5		0.3240	28		1.82	5	=	19.40
6		0.4000	30		1.95	6		23.30
7		0.4600	32		2.10	7		27.20
3		0.5200	33		2.16	Ounces	s.	
9		c o o0.0	34		2.20	1		31.10
10		0.6500	35		2.25	2	-	62.20
II		0.7150	36		2.30	3		93.30
12		0.7800	38		2.47	4		124.40
1.4		0.9070	39		2.55	. 5		155.50
15		0.9720	40		2.73	6		186,60
15.5		1.0000	44		2.86	7		217.70
16		1.0400	48		3.00	8		248.80
18		1.1600	50		3.25	9		280.00
20		1 3000	5.2		3.40	10		311.00
21		1.3600	56		3.65	48		1492.80
22		1.4250	58		3.75	100		3110.40

Relative Values of Metric and Apothecaries' Weights.

Grams.		Grains.	Grams.		Grains.
I	-	15.43	9		138.90
2		30.86	10	=	154.32
.3		46.30	100		1543.23
4		61.73	125		1929.04
5		77.16	150	-	2374 85
6		92.60	175		2700.65
7	=	98.02	1000		15432.35
8		123 46			

INDEX.

Absorption, 16	Age, food and, relation, 18
of beans, 25	Aged, diet for, 133, 134
of carbohydrates, 23	Air-exclusion in preserving food, 81
of cereals, 25	Albumin water, 286
of eggs, 24	Albuminized jelly, 321
of fats, 23	lemonade, 287
of fish, 24	milk, 303
of foods, 22	Albuminoids, 12
of fruits, 25	Alcohol, 72
of green vegetables, 25	digestibility of, 74
of legumes, 25	food value of, 72
of meat, 24	fuel value, 74
of milk, 24	in genito-urinary diseases, 232
of peas, 25	in injury to alcoholics, 244
of protein, 23	in tuberculosis, 173
of rice, 25	in typhoid fever, 160
of roots, 25	in urine, 76
of tubers, 25	wood, as adulterant, 94
of vegetables, 24	Alcoholics, illness in, alcohol and,
green, 25	244
Acid wines, 78	Alcoholism, diet in, 243
Acids in urine, 76	Ale, 76
Acne, diet in, 271	Aleuronat, 84
Acratothermal waters, 70	and almond cakes, 324
Actinomycosis, 91	and suet pudding, 325
Adulteration, food, 92	bread, 324
accidental, 92	in diabetes mellitus, 257
arbitrary, 92	pancakes, 324
conventional, 92	Algæ, 59
incidental, 92	Alkaline mineral waters, 69
intentional, 92	Almond and cocoanut cakes, 326
preservatives in, 94	biscuit, 323
table of, 93	bitter, junket, 301
of milk, 34	eakes, 323, 324

311

ages, 18

Atwater's table of fuel value of foods, Almond cakes and aleuronat, 324 in diabetes mellitus, 257 14, 23 of nutritive ingredients of food, milk, 285 pudding, 323 Avoirdupois and metric weights, rela-Almonds, 59 American bouillon, 313 tive values, 338 broth, 313 Amœba coli in water, 91 BACON, 47 Amylopsin, 16 composition, 48 Anemia, diet in, 230 Baking meat, 87 Anesthesia, diet and, 274 Bananas, 57 Aneurism, diet in, 230 Baner's method of milk modification. Angina pectoris, dict in, 230 Animal foods, 32 Banting diet for obesity, 268 table of compositions, 48 Barley gruel, 200 Antiseptics to preserve food, 82 with beef extract, 317 Apoplexy, diet in, 242 jelly, 292 Apothecaries' and metric fluid measwater, 288 ures, relative values, 337 Barlow's disease, diet in, 265 and metric weights, relative values, Beans, 53, 54 absorption of, 25 Appendicitis, diet in, 209 Beef, 45 Appetite, digestion and, influence on. broth, 309 with grain, 317 Apple water, 286 with poached egg, 317 Apples, 57 composition, 48 Army enema, 143 cuts of, 331 Arnold sterilizer, 39 essence, 313 Aromatic wines, 78 extracts, 46 Arrowroot gruel, 290 barley gruel with, 317 Arthritis deformans, diet in, 264 soup stock from, 308 Artificial feeding of child, 100 juice, 45, 46, 311 foods, 83 cold, 312 proprietary foods, 84, 85 meal, 46 Ascaris lumbricoides in food, 92 mosquera, 83 Asparagus, 56 peptonized, 314 Ass's milk, composition, 33 raw, preparing, 314 Asthma, diet in, 222 soup from, 315 Asylums, infant, feeding in, 123 tea, 310 Atonic dyspepsia, diet in, 194 egg-nog, 318 Atwater's table of coefficients of flavored, 311 digestibility, 23 with oatmeal, 311 Beer, 71 of food requirements at different

Beet, 55

Beriberi, 91	Bread, substitute for, home-made, 328
Berries, 58	in diabetes mellitus, 256
Beverages, 66, 285	Soya, in diabetes mellitus, 256
Biliousness, diet in, 218	torrified, in diabetes mellitus, 256
Biscuit, almond, 323	whole-wheat, 294
inulin, 327	Breast-feeding, 95
Jeffries' gluten, 322	contra-indications, 99
Bitter almond junket, 301	frequency, 97
waters, 70	Breasts, care of, 95
Bitters, 75	Brisket end of plate, 331
Bladder, stone in, diet in, 234	Broiling meat, 88, 307
Blanc-mange, Irish-moss, 320	pan, 307
Blood-vessels, dilation of, diet in, 230	Broth, American, 313
Boas' enema, 143	beef, 309
Boiling meat, 86	with grain, 317
Bomb calorimeter, 14	with poached egg, 317
Bone-marrow, 65	chicken, 309
Bottle bouillon, 313	clam, 310
Bottle-feeding, beginning, 108	egg, 286
Botulismus, 90	meat, 309
Bouillon, 45	mutton, 309
American, 313	without meat, 310
bottle, 313	with vegetables, 310
panopepton, hot, 316	veal, 310
Bovine tuberculosis, milk contamina-	Brown bread, 294
tion in, 37	Buccal digestion, 15
Bowels, care of, after operations, 279	Buffalo's milk, composition, 33
Brain operations, diet after, 277	Butter, 35
Braising meat, 87	Butterine, 65
Bran bread in diabetes mellitus, 257	Buttermilk, 36
cakes, Camplin's, 322	, ,
Brandy, 75	CABBAGES, 55
Brandy-and-egg mixture, 285	Calcium salts, 66
for infants, 285	Calculous affections, diet in, 234
Bread, 52, 293	Calorie, definition, 14
aleuronat, 324	gram, 14
bran, in diabetes mellitus, 287	Calorimeter, bomb, 14
brown, 294	Camplin's bran cakes, 322
diabetic, 322	Candy, 63
Drexel Institute recipe, 293	Cane-sugar, 62
gluten, in diabetes mellitus, 256	Canning food, 82
recipe for, 321	Carbohydrate-free diet in diabetes
	mellitus, von Noorden's, 254
nut-brown, 294	Carbohydrates, 13
pulled, 294	Carbonydrates, 13

Carbohydrates, absorption of, 23	Children, feeding of, 95
fuel value of, 14	Chocolate, 72
in stomach diseases, 185	Cholelithiasis, diet in, 220
in typhoid fever, 158	Chops, mutton, 334
of vegetables, 51	pork, 335
proteins, and fats in combination,	Chorea, diet in, 241
quantity required, 27	Cider, 79
quantity required, 26	Cinnamon, 64
uses of, 14	Cinnamon-and-milk drink, 303
Carcinoma of stomach, diet in, 199	Circulatory diseases, diet in, 225
Carrots, 55	Clam broth, 310
Catarrh, intestinal, acute, diet in, 205	juice, 310
chronic, diet in, 206	Clams, 50
with constipation, diet in, 206	composition, 49
with diarrhea, diet in, 206	Cleft palate operation, diet after, 277
Cat's milk, composition, 33	Climate, food and relation, 18
Catsup, 64	Cloves, 64
Caudle, 286	Cocoa, 72
Celery, 56	junket, 300
soup, cream of, 297	Cocoanut, 59
Cereal-and-milk waters, 303	and almond cakes, 326
Cereals, 52, 289	cakes, 326
absorption of, 25	in diabetes mellitus, 257
composition of, 60	pancakes, 325
cooking, 289	pudding, 326
length of time, 290	Cod-liver oil, 65
foods from, with starch not predi-	Coefficients of digestibility of foods,
gested, 85	22, 23
gruels from, 289	Coffee, 71
in tuberculosis, 172	effect, 171
partially digested, prepared at ta-	jelly, 320
ble, 292	junket, 301
Cheese, 36	preparation, 71
eakes, 327	Cold egg-nog, 286
Cheese-poisoning, 90	in preserving food, 82
Chemicals in preserving food, 82	Colic, 124
Chemistry of digestion, 11	Colostrum, 95
Chestnut purée, 293	Coma, diabetic, 256
Chestnuts, 59	Concentrated food, 80
Chickens, 47	Condensed milk, 43
composition, 48	Condiments, 63
broth, 309	Constipation, chronic, dietetic treat-
jelly, 318	ment, 212, 214
Chick-pea, poisoning from, 91	in atonic dyspepsia, diet in, 195

Constipation in children, diet in, 131	Cuts of mutton, 333
with chronic intestinal catarrh, diet	of pork, 334
m, 206	of veal, 332
Convalescent diet, 283	
Cooking, effect of, 88	Dates, 58
of fish, 88	Diabetes mellitus, aleuronat in, 257
of foods, 86	almond cakes in, 257
rapid, 89	bran bread in, 257
of meat, 86	bread in, diabetic, 322
effect of, 88	substitutes for, 256
of vegetables, effect of, 88	cocoanut cakes in, 257
Copper as adulterant, 94	coma in, 256
Cordial, 75	diabetic bread in, 322
egg, 286	diet in, 253
	earbohydrate-free, 254
panopepton, 316	prophylactic, 255
Cornmeal gruel, 292	in treatment, 255
Cauliflower, 55	von Noorden's, 254
Cow, tuberculous, milk from, 37	foods allowed, 258
Cows' milk, composition, 33, 34	
foods prepared from, 84	conditionally, 260
Crab, 50	moderately, 259
composition, 49	especially valuable, 261, 262
Cracker gruel, 291	gluten bread in, 256
Crackers, crisp, 296	recipes for foods in, 321
Cream, 35	Soya bread in, 257
Cream-of-celery soup, 297	sugar-free milk for, 328
Cream-of-potato soup, 297	torrified bread in, 256
Cream-of-tartar whey, 302	Diabetic bread, 322
Cream-of-tomato soup, 296	coma, 256
Crisp crackers, 296	Diarrhea, dietetic treatment, 212, 213
Crustaceans, 50	in childhood, 127
composition, 49	diet in, 128, 129
Curds, 36, 300	in older children, 130
Currant juice, 287	with chronic intestinal catarrh, diet
Currants, 58	in, 206
Custards, baked, 305	Diet after cleft palate operations, 277
chocolate, 305	after esophageal operations, 277
light, 327	after hare-lip operation, 277
rules for, 304	after laryngeal operations, 277
soft, 305	after operations, 275
steamed, 305	about face, 277
Cuts of beef, 331	about head, 276
of lamb, 333	eleft palate, 277
of meat, 330	esophageal, 277

INDEX.

Diet after operations, hare-lip, 277	Diet in appendicitis, 209
laryngeal, 277	in arthritis deformans, 264
nausea and, 279	in asthma, 222
on brain, 277	in Barlow's disease, 265
on intestines, 281	in biliousness, 218
on kidney, 280	in calculous affections, 234
on pancreas, 280	in carcinoma of stomach, 199
on rectum, 281	in cholelithiasis, 220
on stomach, 280	in chorea, 241
on various organs, 280	in circulatory diseases, 225
plastic, 277	in constipation, 212
thirst and, 279	chronic, 212, 214
vomiting and, 279	in atonic dyspepsia, 194
anesthesia and, 274	in atome dyspepsia, 194
convalescent, 283	
, 5	in diabetes mellitus, 253
cures, 272	carbohydrate-free, 254
diseases from errors in, 89	foods allowed, 258
dry, 222	conditionally, 260
during pregnancy, 136	moderately, 259
puerperium, 136	especially valuable, 261, 262
second year, 109	prophylactic, 255
factors bearing on, 80	treatment by, 255
farinaceous, 283	von Noorden's 254
for aged, 133	in diarrhea, 212, 213
for child eighteen months to two	in childhood, 128, 129
and one-half years, 113	in older children, 130
fifteen to eighteen months old,	
112	in dilation of blood-vessels, 230
twelve to fifteen months old, III	of heart, sudden, 229
two and one-half to six years of	of stomach, 192
age, 114	in diphtheria, 167
for children, 95	in disease, general rules, 145
for infants, 95	in diseases of pregnancy, 137
for school children, 119	of stomach in infants, 127
for sick infants, 124	in disturbed sleep, 239
full, 283	in dysentery, 207
hospital, 283	in dyspepsia, atonic, 194
house, 283	intestinal, 204
in acne, 271	nervous, 200
in alcoholism, 243	in dysphagia, 189
in anemia, 230	in dyspnea, in heart diseases, 229
in aneurism, 230	in eczema, 270
in angina pectoris, 230	in empyema, 222
in apoplexy, 242	in epilepsy, 240

IND	24.
Diet in fever, 150	Diet in nervous conditions of inter
in flatulence, 211	tine, 211
in floating kidney, 234	in nervous diseases, 237
in gall-stone disease, 220	gastric disorders, 200
in gastritis, acute, 189	in neuralgia, 239
chronic, 191	in neurasthenia, intestinal, 211
in genito-urinary diseases, 232	in obesity, 265
alcohol in, 232	Banting, 268
surgical, 235	Ebstein's, 269
water in, 233	Oertel's, 269
in gout, 262	treatment by, 268
in heart diseases, 225. See also	in palpitation of heart, 229
Heart diseases.	in paralysis after diphtheria, 119
in hemorrhage in ulcer of stomach,	in peritonitis, 216, 217
196	in pleurisy, 222
of stomach, 198	in pneumonia, 223
in hemorrhoids, 212	in postdiphtheric paralysis, 169
in hives, 271	in pus in pleural cavity, 222
in infantile scurvy, 265	in rabies, 170
in infectious diseases, 155	in rachitis, 132
in inflammation of kidney, 280	in renal calculi, 234
acute, 233	in respiratory diseases, 222
chronic, 234	in rest cure, 245, 247
of mouth in infants, 126	schedule, 248
in insanity, 250	in rheumatism, 169
in insomnia, 239	in rickets, 132
in intestinal catarrh, acute, 205	in scarlet fever, 165
chronic, 206	in scorbutus, 265
with constipation, 206	in scurvy, 265
with diarrhea, 206	in shock after operation, 280
diseases, 202	in skin diseases, 270
indigestion, chronic, in children,	in small-pox, 165
131	in stomach diseases, 171
obstruction, 209	carbohydrates in, 185
in laryngitis, 222	eggs in, 184
in leanness, 270	fats in, 185
in liver diseases, 218	fish in, 185
in lung diseases, chronic, 223	fruits in, 185
in malignant growths of intestine,	gelatinous, 184
208	leguminous, 185
in measles, 166	Leube's scale, 177
in movable kidney, 234	liquid, 184
in mumps, 167	meats in, 184
in nephritis, 233, 234, 280	Penzoldt's, 180

Diet lists, Leube's, 177
Penzoldt's, 180
solid food, 29
meat, 283
milk, 283
scale, Leube's, 177
special, 283
urine and, relations of, 232
variation in, 20
ward, 283
Digestibility of foods, coefficients of,
22, 23
Digestion, 15
appetite and, influence on, 21
buccal, 15
chemistry of, 11
diet and, influence of, 20
emotion and, influence of, 22
exercise after meals and, 21
before meals and, 21
gastrie, 15
influence of various factors on, 19
intestinal, 16
meals and, influence of frequency
of, 19
influence of order of, 19
of infants, 17
of milk, 34
physiology of, 11
rest after meals and, 21
before meals and, 21
salivary, 15
temperature of food and, influence
on, 21
Digestive disturbances in typhoid
fever, diet in, 161
Dilation of blood-vessels, diet in, 230
of heart, sudden, diet in, 229
of stomach, diet in, 192
Diphtheria, diet in, 167
after intubation, 168
in paralysis after, 169
Diseases from errors in diet, 89
from food poisons, 89

Dog's milk, composition, 33 Eggs in tuberculosis, 171 Drink, imperial, 287 in typhoid fever, 150 in tuberculosis, 173, 174 junket with, 200 in typhoid fever, 156 poached, beef broth with, 317 nutritive, for delicate women, 317 raw. . 1.1 Dry cure, 273 soft-cooked, 304 diet. 222 Electricity in rest cure, 247 wines, strong, 77 Emotion, digestion and, influence of, Drying food to preserve, 81 Ducks, 17 Empyema, diet in, 222 Dujardin-Beaumetz's nutrient enema, Enemata, nutrient, 1.11. See also Nutrient enemata. Dysentery, diet in, 207 England, meals in, 10 from amœba coli, or Enzymes, 15 Dyspensia, atonic, diet in, 101 Epilepsy, diet in, 240 intestinal, diet in, 201 Ergotism, 91 nervous, diet in, 200 Esophageal operations, diet after, 277 Dyspeptics, jelly for, 318 Estraus materna graduate, 105, 106 Dysphagia, diet in, 189 Ethers in wine, 77 Dyspnea in heart diseases, diet in, Europe, meals in, 19 Ewald's enema, 142 220 Ewe's milk, composition, 33 EARTHY mineral waters, 70 Exercise after meals, digestion and, Ebstein's diet for obesity, 260 Echinococcus disease, q1 before meals, digestion and, 21 food and, relation, 18 Eczema, diet in, 270 Edema in heart disease, diet in, 228 Extractives in vegetables, 51 in wine, 77 Effervescent peptonized milk, 298 Effervescing lemonade, 287 FACE, operations about, diet after, Egg-albumin, 44 Egg-and-brandy mixture, 285 277 for infants, 285 Farina gruel, 291 Egg-and-milk enema, 141 Farinaceous diet. 283 foods with starch not predigested, Egg-nog, 44, 286 beef-tea, 318 with starch predigested, 85 Eggs, 43, 304 Fat, 13, 64 absorption of, 24 absorption of, 23 and milk, 304 fuel value of, 14 broth, 286 composition, 48 ham, 336

> in human milk, 101 in vegetables, 51

in tuberculosis, 173

in stomach diseases, 185

cordial, 286

in stomach diseases, 184

gruel, 317 hard-boiled, 44, 304

Fat, proteins, and carbohydrates in	Fish in tuberculosis, 172
combination, quantity required,	Fish-poisoning, 90
27	Fistulas, gastric, feeding through, 282
quantity required, 26	intestinal, feeding through, 282
shoulder, 336	Flank steak, 332
uses of, 14	Flatulence, dictetic treatment, 211
Feeding. See also Diet.	in heart disease, diet in, 228
abnormal methods, 143	Flaxseed tea, 288
artificial, of child, 100	Floating kidney, diet in, 234
breast, 95	Flour, 52
contra-indications, 99	ball, 291
frequency, 97	gruel, 291
bottle, beginning, 108	peanut, 328
by stomach-tube, infant, 125	Flour-ball gruel, 291
during second year, 109	Food, absorption of, 16, 22. See
forced, 150	also Absorption.
in stomach diseases, 188	adulteration of, 92. See also Adul-
in tuberculosis, 175	teration.
maternal, 95	age and, relation, 18
contra-indications, 99	animal, 32
frequency, 97	table of compositions, 48
mixed, 99	artificial preparations, 83
nasal, 149	ascaris lumbricoides in, 92
in infants, 126	canning of, 82
of children, 95	classes, 32
of infants, 95. See also Infant	climate and, relation, 18
feeding.	coefficiency of digestibility, 22, 23
rectal, 138	concentrated, 80
procedure, 138	cooking, 86
refractory patients, 149	rapid, 89
sick, general rules, 145	digestion of, 15. See also Diges-
infants, 124	tion
through gastric fistulas, 282	exercise and, relation, 18
intestinal fistulas, 282	farinaceous, with starch not predi-
unconscious patients, 149	gested, 85
Fever, diet in, 150	with starch predigested, 85
in tuberculosis, diet in, 175	
Figs, 58	for aged, 134 fuel value of classes, 14, 23
Filaria in water, 92	heredity and, relation, 17
Fish, 47	
absorption of, 24	idiosyncrasies, 91 nutritive ingredients of, 13
composition, 49	values, table for computing, 30
cooking, 88	oxyuris vermicularis in, 92
in stomach diseases, 185	parasites taken with, 91
stomach diseases, 105	parasites taken with, gr

Food, pin-worms in, 92	GALACTOTOXISMUS, 90
poisons, diseases from, 89	Gall-stone disease, dict in, 220
prepared from cows' milk, 84	Game, 47
preservation of, 81. See also Pre-	Gastric digestion, 15
servation of food.	fistulas, feeding through, 282
proprietary, artificial, 84, 85	irritability in tuberculosis, diet in,
quantity required, 26	175
race and, relation, 18	juice, action of, 15
relation of, to various conditions,	Gastritis, acute, diet in, 189
17	chronic, diet in, 191
rest and, relation, 18	Gavage in infants, 125
round-worms in, 92	in stomach diseases, 188
sex and, relation, 18	Geese, 47
size of person and, relation, 18	composition, 48
tænia in, 91	Gelatin, dishes made with, 319
tape-worms in, 91	meat jellies with, 320
temperature of, influence on diges-	meat jellies without, 318
tion, 21	Gelatinoids, 12
trichina in, 92	Gelatinous diet in stomach diseases,
values, table for computing, 30	18.4
vegetable, 51. See also l'egetables.	in typhoid fever, 159
weight of person and, relation, 18	Genito-urinary diseases, alcohol in,
Food-poisoning, acute, 90	232
Foot-and-mouth disease, 91	diet in, 232
Forced feeding, 150	surgical, diet in, 235
in stomach diseases, 188	water in, 233
in tuberculosis, 175	Gin, 75
Fortified wines, 77	Ginger, 64
Fowl, 47	Glucose, 63
composition, 48	Gluten bread in diabetes mellitus, 256
France, meals in, 19	recipe for, 321
Freeman's pasteurizer, 40, 41	biscuit, Jeffries', 322
Fruits, 57	gruel, 292
absorption of, 25	pancakes, recipe, 321
composition, 60	pudding, recipe, 321
digestibility of, 57	Glycerin in wine, 77
in stomach diseases, 185	
in tuberculosis, 173	Glycogen, 17
	Glycogenic function of liver, 17
Fruit-sugar, 63	Goat's milk, composition, 33
Frying meat, 88	Gooseberries, 58
Fuel value of food-materials, 14, 23	Gout, diet in, 262
Full diet, 283	Grain, beef broth with, 317
Fungi, 59	Grain-poisoning, 90
Fusel oil, 75	Gram calories, 14

352	ULA.
Grape cure in stomach diseases, 188	Hemorrhage in typhoid fever, diet in,
juice, 288	161
Grapes, 57	of stomach, diet in, 196, 198
Grape-sugar, 63	Hemorrhoids, dietetic treatment, 212
Granum gruel, imperial, 291	Hen's eggs, 43
Green vegetables, 55	composition, 48
Gruel, arrowroot, 299	Heredity, food and, relation, 17
barley, 290	Hip sirloin, 332
with beef extract, 317	Hives, 91
cereal, 289	diet in, 271
cornmeal, 292	Holt's method of milk modification,
eracker, 291	102
egg, 317	Honey, 63
farina, 291	Hook-worms in water, 92
flour, 291	Horseradish, 64
flour-ball, 291	Hospital diet, 283
gluten, 292	enema, 143
imperial granum, 291	Hot egg-nog, 236
milk, peptonized, 300	peptonized milk, 298
ontmeal, 291	House diet, 283
	Huckleberries, 58
HAM, 47	Human milk. See Milk, human.
composition, 48	Humanized milk, 42
fat, 336	Hydatid disease, 91
Hard water, 68	Hydrocarbons, 13
Hard-cooked eggs, 14, 304	
Hardtack, 80	ICED meat extract, 312
Hare-lip operation, diet after, 277	panopepton, 315
Head, operations about, diet after	r, Iceland moss, 59
276	Ichthyotoxismus, 90
Heart, dilatation of, sudden, diet, 2:	1mperial drink, 287
diseases, dict in, 225	granum gruel, 291
general directions, 225	Indigestion, chronic intestinal, in
dyspnea in, diet in, 229	children, diet in, 131
edema in, diet in, 228	Infantile scurvy, diet in, 265
flatulence in, diet in, 228	Infants, brandy-and-egg mixture for,
Oertel treatment, 228	285
ruptured compensation in, di	
iu, 229	digestion of, 17
stomach disturbances in, diet i	
229	artificial, 100
palpitation of, diet in, 229	bottle, beginning, 108
Heat consumption, Rubner's tabl	
27	contra-indications, 99

Infants, feeding, breast, frequency, 97	Intestine, obstruction of, diet in, 209
by stomach-tube, 125	operations on, diet after, 281
during second year, 109	ulcer of, diet in, 208
during sickness, 124	Intubation in diphtheria, dietafter, 168
from eighteenth month to two	Inulin biscuit, 327
and one-half years, 113	Irish moss, 59
from fifteenth to eighteenth	and milk, 303
months, 112	meat jellies with, 321
from twelfth to fifteenth months,	Irish-moss blanc-mange, 320
III	Iron, 66
from two and one-half to six	waters, 70
years, 114	
in asylums, 123	Jaccoud's enema, 143
in inflammations of mouth, 126	Jeffries' gluten biscuit, 322
in stomach diseases, 127	Jelly, albuminized, 321
maternal, 95	barley, 292
contra-indications, 99	chicken, 318
frequency, 97	coffee, 320
mixed, 99	for dyspeptics, 318
nasal, 126	lemon, 320
theoretic basis of, 102	meat, 318
wet-nursing, 99	with gelatin, 320
vomiting, 124	with Irish moss, 321
Infectious diseases, diet in, 155	with tapioca, 320
Inflammations of mouth, infant feed-	without gelatin, 318
ing in, 126	milk, 320
Infusions, saline, 143	peptonized, 299
Injections, saline, 143	oatmeal, 292
Insane, diet for, 250	orange, 320
Insomnia, diet in, 239	panopepton, 315
Intestinal catarrh, acute, diet in, 205	with orange, 316
chronic, diet in, 206	tapioca, 293
with constipation, diet in, 206	veal-bone, 318
with diarrhea, diet in, 206	wine, 319
digestion, 16	Junket, 300
diseases, diet in, 202	almond, bitter, 301
dyspepsia, diet in, 204	cocoa, 300
fistulas, feeding through, 282	coffee, 301
indigestion, chronic, in children,	strawberry, 301
diet in, 131	vanilla, 301
Intestine, malignant growths of, diet	with eggs, 300
in, 208	
nervous conditions of, dietetic	KEFIR, 36
treatment, 211	Kidney, calculi in, diet in, 234

35+	JEA.
Kidney, floating, diet in, 234	Lime water, 285
inflammation of, acute, diet in, 233	Linseed tea, 288
chronic, diet in, 234	Liqueurs, 75
diet in, 233, 234, 280	Liquors, malt, 76
movable, diet in, 234	action of, 79
operations on, diet after, 280	uses of, 79
Kneipp cure, 273	Liver diseases, diet in, 218
	glycogenic function of, 17
Knuckles, 333	
Kreotoxismus, 90	in absorption, 17 Llama's milk, composition, 33
Kumiss, 36, 302	
T	Lobster, 50
Lacteals, 16	composition, 49
Lactose, 63	Loin, small end of, 332
Lamb, 47	Lumpy-jaw, 91
composition, 48	Lung diseases, chronic, diet in, 223
cuts of, 333	Lupinosis, 91
Laparotomy, diet and, 278	
Lard, leaf, 336	Maidismus, 91
Laryngeal operations, diet after, 277	Maise, fermented, poisoning from, 91
Laryngitis, diet in, 222	Malt extracts, 85
Lathyrism, 91	liquors, 76
Lead as adulterant, 94	action of, 79
Leaf lard, 336	uses of, 79
Leanness, diet in, 270	Mare's milk, composition, 33
Legumes, 53	Massage in rest cure, 246
absorption of, 25	Materna graduate, 105, 106
in stomach diseases, 185	method of milk modification,
Legumin, 84	105
Lemon jelly, 320	Maternal feeding, 95
whey, 302	contra-indications, 99
Lemonade, 287	frequency, 97
albuminized, 287	Matzoon, 36
effervescing, 287	Meals, exercise after, digestion and,
milk, 301	21
peptonized, 299	before, digestion and, 21
Lemons, 57	frequency of, influence on diges-
Lentils, 54	tion, 19
Lettuce, 55	in England, 19
stewed, 327	in Europe, 19
Leube's diet lists, 177	in France, 19
Levulose, 63	in tuberculosis, number, 174
Lichens, 59	order of, influence on digestion,
Light custard, 327	19
diet, 283	rest after, digestion and, 21
. 3	

Meals, rest before, digestion and, 21	Metric fluid and apothecaries' meas-
sleep after, 21	ures, relative values, 337
Measles, diet in, 166	Milk, 32
Measures, 337	absorption of, 24
Meat, 44, 305	adulteration of, 34
absorption of, 24	albuminized, 303
baking, 87	almond, 285
boiling, 86	and eggs, 304
braising, 87	and sugar, raw meat with, 315
broiling, 88, 307	butter-, 36
broth, 309	eomposition, 32
cooking, 86, 307	of various kinds, 33
effect of, 88	condensed, 43
cuts of, 330	contamination of, 37
diet of, 283	precautions, 38
in tuberculosis, 171	cows', composition, 33, 34
digestibility of, 45	foods prepared from, 84
extract of, iced, 312	cream of, 35
frying, 88	curd, 36
in stomach diseases, 184	cure, 272
jelly, 318	in stomach diseases, 187
with gelatin, 320	diet, 283
with Irish moss, 321	in tuberculosis, 170
with tapioca, 320	digestibility of, increasing, 42
without gelatin, 318	digestion of, 34
juice, 312	from tuberculous cows, 37
in tuberculosis, 172	gruel, peptonized, 300
raw, 312	human, fat in, 101
mutton broth without, 31	salts in, 101
pan-broiling, 307	milk-sugar in, 100
powders, 46	modification of, 98
preparations, 44, 45	proteins in, 100
preparing, 305	reaction, 101
raw, with milk and sugar, 315	sugar in, 100
roasting, 87, 307	humanized, 42
soups without, 296	infected, 92
stewing, 87	in typhoid fever, 157
Meat-poisoning, 90	modified, 157
Melons, 58	Irish moss and, 303
Metabolism, 14	jelly, 320
Metric and apothecaries' weights,	peptonized, 299
relative values, 339	lemonade, 301
and avoirdupois weights, relative	peptonized, 299
values, 338	mixture, 302

10 10 min - 10 min	Mineral waters, alkaline, 69
Milk modification, 37, 101	bitter, 70
at home, technic, 108	earthy, 70
Baner's method, 107	iron, 70
Holt's method, 102	
laboratory method, 101	sodium chlorid, 69
materna graduate method, 105	sulphurous, 70 uses of, in body, 14
top-milk method, 102	
modified, 38	Modified milk, 38
in typhoid fever, 157	in typhoid fever, 157
mother's. See Milk, human.	Molasses, 63
Pasteurization of, 39	Mollusks, 50
peptonized, 298	composition, 49
cold process, 298	Morels, 59
effervescent, 298	Mosquera beef meal, 46, 83
hot, 298	Moss, Iceland, 59
partially, 297	Irish, 59
specially, 298	and milk, 303
warm process, 298	meat jellies with, 321
porridge, 301	Mother's milk. See Milk, human.
predigestion of, 42	Mouth in typhoid fever, care of, 160
preparations, 297	inflammations of, infant feeding in,
preservation of, 37	126
products, 32	Movable kidney, diet in, 234
puneh, 301	Mulberries, 58
peptonized, 299	Mulled wine, 288
skimmed, 35	Mumps, diet in, 167
sterilization of, 39	Muscarin, 90
process, 40	Mush, cereal, 289
sugar-free for diabetics, 328	Mushroom-poisoning, 90
variations in, 33	Mushrooms, 59
with other diluents, 303	Mussel-poisoning, 90
with sparkling waters, 303	Mustard, 64
woman's, composition, 33	Mutton, 46
Milk-and-cereal waters, 303	broth, 309
Milk-and-cinnamon drink, 303	with vegetables, 310
Milk-and-egg enema, 141	without meat, 310
Milk-and-starch enema, 141	composition, 48
Milk-and-sugar enema, 142	cuts of, 333
Milk pepton enema, von Leube's,	Mytilotoxismus, 90
141	
Milk-poisoning, 90 Milk-sugar, 63	NASAL feeding, 149
5 . 5	in infants, 126
in human milk, 100	Nausea after operations, 279
Mineral waters, 68	Navel end of plate, 331

Obesity, prophylaxis in, 268

of obesity, 269

cod-liver, 65

Oils, 64

Oertel's treatment of heart disease,

Nephritis, diet in, 233, 234, 280

gastric disorders, diet in, 200

Nervous diseases, diet in, 237

rest cure in. 214

dyspepsia, diet in, 200

vomiting, diet in, 211

vonnung, uiet in, 211	cod-liver, og
Neuralgia, diet in, 239	Oleomargarin, 65
Neurasthenia, intestinal, diet in, 211	Olives, 58
Nursing bottle, hygenic, 99	Operation's about face, diet after, 277
child, 95. See also Infant feeding.	about head, diet after, 276
wet, 99	bowels after, 279
Nut-brown bread, 294	brain, diet after, 277
Nutmeg, 64	eleft palate, diet after, 277
Nutrient enemata, 141	diet after, 275
army, 143	dietetic management, 274
Boas', 143	esophageal, diet after, 277
Dujardin-Beaumetz's, 141	hare-lip, diet after/277
egg-and-milk, 141	laparotomy, diet after, 278
Ewald's, 142	laryngeal, diet after, 277
hospital, 143	nausea-after, 279
Jaccoud's, 143	on intestines, diet after, 281
milk-and-egg, 141	on kidney, diet after, 280
milk-and-starch, 141	on pancreas, diet after, 280
milk-and-sugar, 142	on rectum, diet after, 281
milk-pepton, von Leube's, 141	on stomach, diet after, 280
pancreas, 142	on various organs, diet after, 280
Riegel's, 142	plastic, diet after, 277
Singer's, 142	shock after, diet and, 280
starch-and-milk, 141	thirst after, 279
sugar-and-milk, 142	vomiting after, 279
von Leube's milk-pepton, 141	Orange jelly, 320
Nutrients, uses of, 14	with panopepton jelly, 316
Nuts, 58	Orangeade, 287
	Oranges, 57
Oatmeal, 53	Orgent, 288
beef tea with, 311	Oxyuris vermicularis in food, 91
gruel, 291	Oyster, 50
jelly, 292	composition, 49
water, 288	juice, 310
Obesity, diet in, 265	peptonized, 33
Banting's, 268	stew, 297
Ebstein's, 269	
Oertel's, 269	PALATE, cleft, operation for, diet
treatment by, 268	after, 279

33	
Palpitation of heart, diet in, 229	Pin-worms, 92
Pan-broiling meats, 307	Plastic operations, diet after, 277
Pancakes, aleuronat, 324	Pleural cavity, pus in, diet in, 222
cocoanut, 325	Pleurisy, diet in, 222
gluten, recipe, 321	Plums, 58
Pancreas enema, 142	Pneumonia, diet in, 223
operations on, diet after, 280	from spoiled meat, 90
Pancreatic juice, 16	Poached egg, beef broth with, 317
Panopepton, 315	Poisoning, cheese-, 90
bouillon, hot, 316	fish, 90
cordial, 316	food, acute, 90
hot, 316	diseases from, 89
iced, 315	from chick-pea, 91
jelly, 315	from fermented maise, 91
with orange, 316	from spurred rye, 91
with whey, 316	grain, 90
Paralysis after diphtheria, diet in, 169	meat, 90
Parasites taken with food, 91	milk, 90
Parsnips, 55	mushrooms, 90
Pasteurization of milk, 39	mussel, 90
Pastcurizer, Freeman's, 40, 41	ptomain, 90
Peaches, 57	sausage, 90
Peanut flour, 328	Pork, 47
Pears, 57	composition, 48
Peas, 53, 54	cuts of, 334
absorption of, 25	Porridge, milk, 301
Pellagra, 91	Porter, 76
Pemmican, 83	Postdiphtheric paralysis, diet in, 169
Penzoldt's diet lists, 180	Potassium chlorid, 66
table of food digestibility, 178	Potato, 54
Peppers, 64	soup, cream of, 297
Pepsin, 15	sweet, 54
Pepton products, 83	Poultry, 47
Peptonized beef, 314	composition, 48
milk, 207. See also Milk, pep-	Predigestion of milk, 42
tonised.	Pregnancy, diet during, 136
oysters, 313	diseases of, diet in, 137
Perfect wines, 78	Preservation of food, 81
Perforation in typhoid fever, diet in,	by antiseptic chemicals, 82
162	by antiseptics, 82
Peritonitis, diet in, 216, 217	by canning, 82
Phosphorus, 66	by cold, 82
Physiology of digestion, 11	by drying, 81
Pigeons, 47	by excluding air, 81

Preservation of food by other anti-	Raw meat with milk and sugar, 315
septics, 82	Raw-meat juice, 312
by salting, 82	Recipes, 285
by sugar solution, 82	for diabetics, 321
by vinegar, 82	Rectal feeding, 138
Preservatives, 94	procedure, 138
Proprietary foods, artificial, 84, 85	Rectum, operations on, diet after, 281
Proteids, 12	Renal calculi, diet in, 234
Proteins, 12	Rennin, 16
absorption of, 23	Respiratory diseases, diet in, 222
carbohydrates, and fats in combina-	Rest after meals, digestion and, 21
tion, quantity required, 27	before meals, digestion and, 21
concentrated, 80	cure, 244
fuel value of, 14	diet in, 245, 247
in human milk, 100	schedule, 248
in stomach diseases, 183	electricity in, 247
in typhoid fever, 159	in stomach diseases, 187
in vegetables, 51	massage in, 246
quantity required, 26	schedule for, 248
uses of, 14	food and, relation, 18
Prunes, 58	Rheumatism, diet in, 169
Ptomain-poisoning, 90	Rice, 53
Ptomains, 90	absorption of, 25
Pudding, almond, 323	water, 288
cocoanut, 326	Richard's ideal ration of solid food,
gluten, recipe for, 321	29
suet, aleuronat and, 325	Rickets, diet in, 132
Puerperium, diet during, 136	Riegel's enema, 142
Pulled bread, 294	Roasting meat, 87, 307
Punch, milk, 301	Roots, 54
peptonized, 299	absorption of, 25
Purée, chestnut, 293	Rough wines, 78
Pus in pleural cavity, diet in, 222	Round, top, 332
	Round-worms in food, 92
Rabbit, 47	Rubner's tables of heat consumption,
Rabies, diet in, 170	27
Racahout des Arabes, 291	Rum, 75
Race, food and, relation, 18	Rump steak, 332
Rachitis, diet in, 132	Ruptured compensation, diet in, 229
Raisins, 58	Rye, spurred, poisoning from, 91
Raspberries, 58	
Raw beef, preparing, 314	SACCHARIN, 63
soup, 315	Saline infusions, 143
eggs, 44	injections, 143

Salivary digestion, 15	Soups, preparing, 307
Salting of food to preserve, 82	raw beef, 315
Salts, 66	stock, 308
in body, 12	from beef extract, 308
in human milk, 101	sweetbread, 309
Sauces, 64	tapioca, 293
for vegetables, 296	tomato, cream of, 296
Sausage-poisoning, 90	without meat, 296
Scarlet fever, diet in, 165	Soya biscuits in diabetes mellitus,
School ehildren, diet for, 119	257
Scorbutus, diet in, 265	Spare ribs, 335
Scurvy, diet in, 265	Sparkling waters, milk with, 303
Second year, feeding during, 108	wines, 78
Sex, food and, relation, 18	Spiees, 63
Shell-fish, 50	Spinaeh, 55
composition, 49	Spirits, 74
Shock after operation, diet and, 280	Spurred rye, poisoning from, 91
Short steak, 332	Stage of broken compensation, 225
Shoulder fat, 336	of compensation, 225
Sick, feeding of, general rules, 145	Starch in vegetables, 51
infants, feeding of, 124	Starch-and-milk enema, 141
Singer's enema, 142	Steak, flank, 332
Sirloin, 332	rump, 332
Sitotoxismus, 91	short, 332
Size of person, food and, relation, 18	Steapsin, 16
Skimmed milk, 35	Sterilization of milk, 39
Skin diseases, diet in, 270	process, 40
Sleep after meals, 21	Sterilizer, Arnold, 39
disturbed, diet in, 239	Stew, oyster, 290
Small-pox, diet in, 165	Stewed lettuce, 327
Sodium chlorid, 66	Stewing meat, 87
waters, 69	Stimulants, 66
Soft water, 68	Stomach, carcinoma of, diet in, 199
Soft-cooked eggs, 304	digestion, 15
Somatose, 46, 84	dilation of, diet in, 192
Soups, beef, raw, 315	diseases, diet in, 176
celery, cream of, 297	earbohydrates in, 185
chestnut, 293	eggs in, 184
composition, 48	fats in, 185
cream-of-eelery, 297	fish in, 185
cream-of-potato, 297	fruits in, 185
eream-of-tomato, 296	gelatinous, 184
from stock, 308	leguminous, 185
potato, cream of, 297	liquid, 184

	9
Stomach diseases, diet in, meats in,	Swallowing, difficult, diet in, 189
18.4	Sweet potato, 54
special factors, 186	wines, strong, 78
forced feeding in, 188	Sweetbread soup, 309
gavage in, 188	Syrup, 63
grape cure in, 188	
ın infants, diet in, 183	TÆNIA, 91
Leube's diet scale in, 177	eehinococcus, disease from, 91
milk cure, 189	Tamarind water, 287
Penzoldt's diet lists, 180	Tapeworms, 91
rest cure, 187	Tapioca soup, 293
rules for eating in, 186	jelly, 293
treatment, special, 187	meat jellies with, 320
Weir Mitchell cure, 187	Tea, 70
disturbances in heart disease, diet	beef, 310
in, 229	egg-nog, 318
hemorrhage of, diet in, 198	flavored, 311
in ulcer of stomach, diet in, 196	with oatmeal, 311
nervous disorders of, diet in, 200	flaxseed, 288
operations on, diet after, 280	linseed, 288
ulcer of, diet in, 196	Terrapin, composition, 49
Stomach-tube in infant feeding, 125	Tetanus, diet in, 169
Stout, 76	Thermal waters, 69
Strawberries, 58	Thirst after operations, 279
Strawberry junket, 301	Thoracic duct, 16
Strongylus duodenale in water, 92	Tomato sauce, 64
Succus carnis, 312	soup, cream of, 296
Suet pudding, aleuronat and, 325	Tomatoes, 56
Sugar, 62	Top-milk method of milk modifica-
and milk, raw meat with, 315	tion, 102
cane-, 62	Top round, 332
fruit-, 63	Torrified bread in diabetes mellitus,
grape-, 63	256
in human milk, 100	Toxins, 90
in vegetables, 51	Treacle, 63
in wine, 77	Trichina in food, 92
milk-, 63	Truffles, 59
solution in preserving food, 82	Trypsin, 16
Sugar-and-milk enema, 142	Tuberculosis, beverages in, 174
Sugar-free milk for diabetics, 328	bovine, milk contamination in, 37
Sulphur, 66	diet in, 170
Sulphurous waters, 70	advanced eases, 175
Suralimentation in tuberculosis, 175	alcohol in, 173
Surgical cases, diet in, 274	cereals in, 172

Tuberculosis, diet in, eggs in, 171	VANILLA junket, 301
fats in, 173; fruit in, 173	Variola, diet in, 165
fever and, 175	Veal, 46
fish in, 172	broth, 309, 310
forced, 175	composition, 48
in gastric irritability, 175	cuts of, 332
meat in, 171	Veal-bone jelly, 318
juice in, 172	Vegetables, 51, 295
milk in, 170	absorption of, 24
number of meals, 174	carbohydrates of, 51
vegetables in, 173	composition, 61
wheat in, 173	concentrated, 80
suralimentation in, 175	cooking. 295
Tubers, 54	effect of, 88
absorption of, 25	time for, 295
Turkey, composition, 48	digestibility of, 51
Turtle, composition, 49	extractives in, 51
Typhoid fever, alcohol in, 160	fats in, 51
atypical, diet in, 165	green, 55
carbohydrates in, 158	absorption of, 25
complicated, diet in, 165	in tuberculosis, 173
convalescence, diet in, 162	mutton broth with, 310
diet in, 155	protein in, 51
in digestive disturbances, 161	sauce 296
drink in, 156	starch in, 51
eggs in, 159	sugar in, 51
gelatinous substances in, 159	Vegetarianism, 56
hemorrhage in, diet in, 161	Venison, 47
milk in, 157	Vinegar, 64
modified, 157	in preserving food, 82
mouth in, care of, 160	Vomiting after operations, 279
perforation in, diet in, 162	infant, 124
proteins in, 159	nervous, diet in, 200
Typhus fever, diet in, 165	von Leube's milk-pepton enema, 141
Tyrotoxismus, 90	von Noorden's carbohydrate-free
	diet in diabetes mellitus, 254
ULCER of intestine, diet in, 208	

INDEX.

ULCER of intestine, diet in, 208
of stomach, diet in, 196
Urea. 17
Uric-acid diathesis, diet in. 233
Urine and food, relations of, 232
Urticaria, 61
Urticaria, 67
diet in, 271

Waturd, 59
WALNUTS, 59
Ward diet, 283
Wasting diseases in children, diet in, 131
Water, 66
acratothermal, 70
alkaline, 69

Water, amœba coli in, qı	Whey, wine, 302
amount consumed, 67	with panopepton, 316
bitter, 70	Whisky, 75
earthy, 70	Whole-wheat bread, 204
elimination of, 67	Whooping-cough, diet in, 167
filaria in, 92	Wine, 76
hard, 68	acid, 78
hook-worms in, 92	aeids in, 76
impurities in, 68	action of, 79
in body tissues, 12	alcohol in, 76
in genito-urinary diseases, 233	aromatic, 78
iron, 70	dry, strong, 77
mineral, 68	ethers in, 77
purification of, 68	extractives in, 77
sodium chlorid, 69	fortified, 77
soft, 68	glycerin in, 77
strongylus duodenale in, 92	jelly, 319
sulphurous, 70	mulled, 288
thermal, 69	perfect, 78
Weight of infant, 124	rough, 78
of person, food and, relation, 18	sparkling, 78
Weights, 337	sugar in, 77
Weir Mitchell cure for stomach dis-	sweet, strong, 78
eases, 187	uses of, 79
rest eure, 245. See also Rest	varieties, 77
cure.	whey, 302
Wet-nursing, 99	Woman's milk, composition, 33
Wheat, 52	Women, delicate, nutritive drink for,
bread, whole, 294	317
in tuberculosis, 173	Wood alcohol as adulterant, 94
Whey, 36, 300, 301	Woreestershire sauce, 64
eream-of-tartar, 302	
lemon, 302	YELLOW fever, diet in, 169

SAUNDERS' BOOKS

for

NURSES

Books Sent, Carriage Paid, upon Receipt of Price
PAGE
Abbott's Hygiene of Transmissible Diseases 8
Barton and Wells' Medical Thesaurus 8
Beck's Reference Handbook for Nurses 4
Bergey's Hygiene
Davis' Obstetric and Gynecologic Nursing 5
DeLee's Obstetrics for Nurses
Dorland's American Illustrated Dictionary 8
Dorland's American Pocket Medical Dictionary 6
Fowler's Operating Room and Patient
Friedenwald and Ruhrah on Diet 6
Grafstrom's Mechanotherapy (Massage) 6
Griffith's Care of the Baby
Lewis' Anatomy and Physiology for Nurses
Martin's Minor Surgery, Venereal Diseases, and Bandaging 4
Morris' Essentials of Materia Medica
Morrow's Immediate Care of the Injured
Nancrede's Essentials of Anatomy
Paul's Nursing in the Acute Infectious Fevers 5
Pyle's Personal Hygiene
Stevens' Practice of Medicine
Stoney's Bacteriology and Surgical Technic
Stoney's Materia Medica for Nurses
Stoney's Nursing
Williams' Essentials of Practice

W. B. SAUNDERS COMPANY

925 Walnut Street

Philadelphia

London: 9, Henrietta Street, Covent Garden

In this excellent volume the author explains the entire range of *private* nursing as distinguished from *hospital* nursing; and the nurse is given definite directions how best to meet the various emergencies. The American Journal of Nursing says it "is the fullest and most complete" and "may well be recommended as being of great general usefulness. The best chapter is the one on observation of symptoms which is very thorough." There are directions how to *improvise* everything ordinarily needed in the sick room.

Practical Points in Nursing. By EMILY M. A. STONEY, Superintendent of the Training School for Nurses in the Carney Hospital, South Boston, Mass. 12mo, 466 pages, illustrated. Cloth, \$1.75 net.

Stoney's Materia Medica

JUST ISSUED NEW (3d) EDITION

Stoney's Materia Medica was written by a head nurse who knows just what the nurse needs. *American Medicine* says it contains "all the information in regards to drugs that a nurse should possess. * * * The treatment of poisoning is stated in a manner that will permit of its being carried out thoroughly and intelligently."

Materia Medica for Nurses. By EMILY M. A. STONEY, Superintendent of the Training School for Nurses in the Carney Hospital, South Boston, Mass. 12mo volume of 300 pages. Cloth, \$1.50 net.

Stoney's Surgical Technic

RECENTLY ISSUED NEW (2d) EDITION

The first part of the book is devoted to Bacteriology and Antiseptics; the second part to Surgical Technic, Signs of Death, Autopsies, Bandaging and Dressings, Obstetric Nursing, Care of Infants, etc., Hygiene and Personal Conduct of the Nurse, etc. The New York Medical Record says it "is a very practical book which presents the subjects stated in its title in a concise manner."

Bacteriology and Surgical Technic for Nurses. By EMILY M. A. STONEY. Revised by FREDERIC R. GRIFFITH, M. D., New York, 12mo volume of 278 pages, fully illustrated. Cloth, \$1.50 net

Lewis' Anatomy and Physiology

JUST ISSUED

This book is the outcome of a wide demand for such a work—one that would treat anatomy and physiology from the nurse's point of view. Dr. Lewis has based the plan and scope of his work on the methods employed by him in teaching these subjects to nurses. The Nurses Journal of the Pacific Coast says "it is not in any sense rudimentary, but comprehensive in its treatment of the subjects in hand." The application of the knowledge of anatomy and physiology in the care of the patient is emphasized. The text is made more clear by the practical illustrations, a number in colors.

Anatomy and Physiology for Nurses. By LEROY LEWIS, M. D., Lecturer on Anatomy and Physiology for Nurses, Lewis Hospital, Bay City, Mich. 12mo of 317 pages, 146 illustrations. Cloth, \$1.75 net.

Morrow's Immediate Care of Injured

JUST ISSUED

There has long been a demand for a modern work on first aid that would tell the nurse *just what to do* in any emergency. Dr. Morrow's book is just such a work. There are chapters on bandaging, practical remedies, accidents and emergencies, hemorrhages, burns and scalds, sprains, poisons and their antidotes, etc.

Immediate Care of the Injured. By ALBERT S. MOPROW, M. D., Attending Surgeon to the New York City Home for the Aged and Infirm. Octavo of 340 pages, with 238 illustrations. Cloth, \$2.50 net.

Nancrede's Anatomy

NEW (7th) EDITION

In this revision the entire book has been carefully gone over and the section on the Nervous System completely rewritten. The American Journal of the Medical Sciences says "it is one of the best of all the question compends and will no doubt continue to enjoy its deserved success."

Essentials of Anatomy. CHARLES B. G. DENANCREDE, M. D., Professor of Surgery and Clinical Surgery in the University of Michigan, Ann Arbor. 12mo, 400 pages, 180 illustrations. Cloth, \$1.00 net.

Fowler's Operating Room

JUST ISSUED

Dr. Fowler's work contains all information of a surgical nature that a nurse must know in order to attain the highest efficiency. Canadian Journal of Medicine and Surgery says; "We find compactly and clearly stated just those thousand and one things which are scattered in journals, and which when required are so hard to locate. No proceeding is advised which has not been amply tested."

> The Operating Room and the Patient. By RUSSELL S. FOWLER, M. D., Surgeon to the German Hospital, Brooklyn, New York, Octavo volume of 172 pages, with original illustrations. Cloth, \$2.00 net.

Martin's Minor Surgery NEW (2d) EDITION

Nurses will find this book of much value. Full directions for applying the many kinds of bandages are given and clearly illustrated; and all the technic of minor surgery that a nurse must know is plainly presented. The New York Medical Record says: "This is one of the most practical books that one can desire. The illustrations are neat and clear."

> Essentials of Minor Surgery, Bandaging and Venereal Diseases. By EDWARD MARTIN, M. D., Professor of Clinical Surgery, University of Pennsylvania, 12mo, 166 pages, illustrated. Cloth, \$1.00 net.

Reck's Reference Handbook

JUST ISSUED

This little book contains all the information that a nurse requires to carry out any directions given by the physician. The Montreal Medical Journal says it is "cleverly systematized and shows close observation of the sickroom and hospital regime. The book can be recommended."

> A Reference Handbook for Nurses. By AMANDA K. BECK, Graduate of the Illinois Training School for Nurses, Chicago, Ill. 32mo volume of 177 pages. Bound in flexible morocco, \$1.25 net.

DeLee's Obstetrics for Nurses

JUST ISSUED-NEW (2d) EDITION

Dr. DeLee treats obstetrics from the nurse's point of view. The book really considers two subjects—obstetrics for nurses and the actual obstetric nursing. Trained Nurse and Hospital Review says the "book abounds with practical suggestions, and they are given with such clearness that they cannot fail to leave their impress upon the mind of the reader." The practical illustrations are nearly all original, having been made specially for this work.

Obstetrics for Nurses. By JOSEPH B. DELEE, M. D., Professor of Obstetrics at the Northwestern University Medical School, Chicago. 12mo volume of 460 pages, fully illustrated. Cloth, \$2,50 net.

Davis' Obstetric & Gynecologic Nursing

RECENTLY ISSUED-NEW (2d) EDITION

Obstetric nursing demands some knowledge of natural pregnancy and of the signs of accidents and diseases which may occur during pregnancy and labor. The Trained Nurse and Hospital Review says; "This is one of the most practical and useful books ever presented to the nursing profession." Gynecologic nursing is really a branch of surgical nursing, and as such requires special instruction and training.

Obstetric and Gynecologic Nursing. By Edward P. Davis, M. D., Professor of Obstetrics in the Jefferson Medical College, Philadelphia. 12mo volume of 402 pages, illustrated. Buckram, \$1.75 net.

Paul's Fever Nursing

JUST ISSUED

Dr. Paul has laid great stress upon the care and management of each disease, as this relates directly to the duties of the nurse. The *London Lancet* thinks "the book is an excellent one and will be of value to those for whom it is intended. The text is clear and full, and the illustrations are good."

Nursing in the Acute Infectious Fevers. By GEORGE P. PAUL, M. D., Assistant Visiting Physician and Adjunct Radiographer to the Samaritan Hospital, Troy. 12mo of 200 pages. Cloth, \$1.00 net.

Friedenwald and Ruhrah's Dietetics for Nurses

This work has been prepared to meet the needs of the nurse, both in the training school and after graduation. It aims to give the essentials of dietetics, considering briefly the physiology of digestion and the various classes of foods. American Journal of Nursing says it "is exactly the book for which nurses and others have long and vainly sought. A simple manual of dietetics, which does not turn into a cook-book at the end of the first or second chapter."

Dieteties for Nurses. By Julius Friedenwald, M. D., Clinical Professor of Diseases of the Stomach, and John Ruhrah, M. D., Clinical Professor of Diseases of Children, College of Physicians and Surgeons, Baltimore. 12mo volume of 365 pages. Cloth, \$1,50 net.

American Pocket Dictionary

This is the ideal pocket lexicon. It contains a complete vocabulary, defining all the terms of modern medicine. The Trained Nurse and Hospital Review says: "We have had many occasions to refer to this dictionary, and in every instance we have found the desired information." The work also contains a wealth of anatomic tables of value to nurses

Dorland's Pocket Medical Dictionary. Edited by W. A. NEWMAN DORLAND, M. D., of the University of Pennsylvania. rlexible leather, with gold edges, \$1.00 net; with patent thumb index, \$1.25 net.

Grafstrom's Mechano-therapy NEW (2d) EDITION

The Boston Medical and Surgical Journal says: "It states in concise language the various methods which by long experience have been found useful in treament by mechanical means."

Mechano-Therapy (Massage and Medical Gymnastics). By AXEL V. GRAFSTROM, B. Sc., M. D., Attending Physician, Gustavus Adolphus Orphanage, Jamestown, N. Y. 12mo, 200 pages. Cloth, \$1.25 net.

Friedenwald & Ruhrah on Diet JUST ISSUED (2d) EDITION

Diet in Health and Disease. By JULIUS FRIEDENWALD, M. D., Clinical Professor of Diseases of the Stomach, and JOHN RUHRAH, M. D., Clinical Professor of Diseases of Children, College of Physicians and Surgeons, Baltimore. Octavo volume of 728 pages. Cloth, \$4.00 net.

During his absence the physician depends entirely upon the knowledge and watchfulness of the nurse to report to him any changes that may have occurred in the patient's condition. Of this work the *Buffalo Medical Journal* says; "Its arrangement is excellent, being such as to facilitate ready reference to its multifarious subjects." Dr. Stevens has brought within a comparatively small compass a complete outline of the practice of medicine.

Practice of Medicine. By A. A. STEVENS, M. D., Professor of Materia Medica, Therapeutics, and Clinical Medicine, Woman's Medical College. 12mo volume of 556 pages. Flexible leather, \$2.50 net.

Williams' Practice

JUST ISSUED

Throughout this book special stress has been laid on differential diagnosis, symptomatology, and treatment. The New York *Medical News* says "the symptoms are particularly well abstracted, and give the book real value."

Essentials of the Practice of Medicine. By WILLIAM R. WILLIAMS M. D., formerly Instructor in Medicine and Lecturer in Hygiene, Cornell University. 12mo, 461 pages. Double number. Cloth, \$1.75 net.

Morris' Materia Medica

NEW (7th) EDITION

The Trained Nurse and Hospital Review says: "The work is thoroughly up to date, well arranged, compact, and yet contains a very large amount of matter."

Essentials of Materia Medica, Therapeutics, and Prescription Writing, By HENPY MORRIS, M. D. Revisad by W. A. BASTEDO, M. D., Instructor in Materia Medica and Pharmacology at the Columbia University, New York. 12mo of 300 pages. Cloth: \$1.00 net,

Griffith's Care of the Baby NEW (3d) EDITION

The New York Medical Journal says: "We are confident if this little work could find its way into the hands of every trained nurse, infant mortality would be lessened by at least fifty per cent.

The Care of the Baby, By J. P. CROZER GRIFFITH, M. D., Clinical Professor of Diseases of Children, University of Pennsylvania. 12m0 of 436 pages, illustrated, including 5 plates. Cloth, \$1.50 net

Dorland's Illustrated Dictionary

JUST ISSUED-NEW (4th) EDITION-2000 NEW TERMS

This edition contains over 200 new terms. Dr. Howard A. Kelly says: "Dr. Dorland's Dictionary is admirable. It is so well gotten up and of such convenient size. No errors have been found in my use of it."

The American Illustrated Medical Dictionary. A Dictionary of the terms used in Medicine, Surgery, Dentistry, Pharmacy, Chemistry, and kindred branches; with 100 new and elaborate tables By W. A. N. DORLAND, M. D. Large octavo of 826 pages, 93 illustrations, 1119 in colors. Flexible leather, \$4.50 net: thumb index, \$5.00 net.

Bergey's Hygiene

NEW (2d) EDITION

The American Journal of the Medical Sciences says this work "presents in compact form a very clear exposition of the general principles of hygiene," and "especially to be commended is the chapter on vital causes of disease."

The Principles of Hygiene. By D. H. BERGEY, A. M., M. D., Assistant Professor of Bacteriology in the University of Pennsylvania.

Octavo volume of 536 pages, fully illustrated. Cloth, \$3.00 net.

Abbott's Transmissible Diseases (2d) EDITION

In speaking of Dr. Abbott's book the *Johns Hopkins Hospital Bulletin* says: "The book is well calculated to meet a want which has long been felt by physicians and nurses."

The Hygiene of Transmissible Diseases. Their Causation, Modes of Dissemination, and Methods of Prevention. By A. C. Abbott, M.D., Professor of Hygiene and Bacteriology, University of Pennsylvania, Octavo volume of 31r pages, fully illustrated. Cloth, \$2,50 net.

Pyle's Personal Hygiene

NEW (2d) EDITION

A Manual of Personal Hygiene. Proper Living upon a Physiologic Basis. Edited by WALTER L. PVLE, A. M., M. D., Assistant Surgeon to Wills' Eye Hospital, Philadelphia. Octavo, 350 pages. Illustrated. \$1.50 net.

Barton and Wells' Thesaurus UNIQUE WORK

A Thesaurus of Medical Words and Phrases. By WILFRED M. BARTON, M. D., and WALTER A. WELLS. M. D., of Georgetown University, Washington, D. C. 12mo of 534 pages. Flexible leather \$2.50 net; with thumb index, \$3.00 net.

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO SO CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

Biology Library

FEB ≈ 1934 APR 8 1937 MAR 15 1938 MAK 22 1943

JADER 195356

BIOLOGY LIBEARY

