Scilab Textbook Companion for Microwave Engineering by G. S. N. Raju¹

Created by
Pushkar Raj
B.TECH
Electronics Engineering
A.B.E.S ENGINEERING COLLEGE, U.P.T.U
College Teacher
None
Cross-Checked by
K. V. P. Pradeep

June 3, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Microwave Engineering

Author: G. S. N. Raju

Publisher: I.K. International, New Delhi

Edition: 1

Year: 2011

ISBN: 9788189866792

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes		
1	INTRODUCTION TO MICROWAVE AND THEIR APPLICATIONS	5	
2	MICROWAVE TUBES FOR MICROWAVE SIGNAL GENERATION	13	
3	MICROWAVE SEMICONDUCTOR DEVICES	17	
4	SCATTERING MATRIX PARAMETERS	20	
5	MICROWAVE PASSIVE COMPONENTS	22	
6	MICROWAVE TRANSMISSION LINE	28	
7	MICROWAVE INTEGRATED CIRCUITS	39	
8	MICROWAVE ANTENNAS	46	

List of Scilab Codes

Exa 1.1	electric field its magnitude and direction	5
Exa 1.2	electric field at a point	6
Exa 1.3	TOTAL FIELD AT A POINT P DUE TO ALL THE	
	THREE CHARGES	6
Exa 1.4	charge Q at the point 2 0 0	7
Exa 1.5	electric field at Q1	7
Exa 1.6	electric field at location of 3 coulombs	8
Exa 1.7	magnetic field at distance of 2m in free space	8
Exa 1.10	direction of power flow of microwave	9
Exa 1.11	pointing vector and direction of power flow of microwave	9
Exa 1.12	frequency of the wave	10
Exa 1.13	velocity of propogation of microwave	10
Exa 1.14	wavelength of microwave frequency	11
Exa 1.15	phase shift of the wave	11
Exa 2.1	maximum power for given beam current	13
Exa 2.2	gain parameter output power and Be	13
Exa 2.3	angular frequency and the cutoff voltage	14
Exa 2.4	electron velocity transit angle and beam coupling coef-	
	ficent	15
Exa 2.5	efficency of kylstron	15
Exa 3.1	frequency of IMPATT diode	17
Exa 3.2	frequency of IMPATT diode	17
Exa 3.3	avalanche zone velocity of TRAPATT diode	18
Exa 3.4	frequency of gunn diode oscillator	18
Exa 3.5	minimum voltage to operate	19
Exa 4.3	voltage standing wave ratio	20
Exa 4.4	scattering matrix of inductor	20
Eva 4.5	wave guide length	21

Exa 5.1	Zo of a two wire transmission line
Exa 5.2	Zo of a transmission line
Exa 5.3	wavelength in coaxial line
Exa 5.4	frequency of air dielectric and highest frequency 23
Exa 5.5	Zo of the coaxial cable
Exa 5.6	output power of cable
Exa 5.7	percentage of reflected power
Exa 5.8	voltage standing wave ratio
Exa 5.9	VSWR FOR LOAD impedence
Exa 5.10	voltage standing wave ratio
Exa 5.11	magnitude of the reflection coefficent
Exa 6.1	determine Z0 for given transmission line
Exa 6.2	characteristic impedence
Exa 6.3	input impedance
Exa 6.4	input of lossless transmission line
Exa 6.5	input impedance of a lossless transmission
Exa 6.6	time required for wave to travell
Exa 6.7	characteristic impedance
Exa 6.8	reflected voltage
Exa 6.9	percenage of reflected voltage
Exa 6.10	voltage standing wave ratio
Exa 6.11	maximum impedance of the line
Exa 6.12	voltage standing wave ratio
Exa 6.13	input impedance
Exa 6.14	length and characteristic impedance of transformer 33
Exa 6.15	characteristic impedance
Exa 6.16	reflection coefficient
Exa 6.17	input impedance of the shorted line
Exa 6.18	characteristic impedance of the line for air dielectric 35
Exa 6.19	time delay propogaion velocity propagation delay 35
Exa 6.20	radius of the outer conductor
Exa 6.21	resonant frequency
Exa 6.22	resonant frequency and quality cycle
Exa 6.23	resonant frequency of TE101 and its quality factor 38
Exa 7.1	resistance of a planar resistor
Exa 7.2	inductance for given dimensions
Exa 7.3	resistance
Exa. 7.4	resistance 40

Exa 7.5	resistance
Exa 7.6	inductance
Exa 7.7	inductance
Exa 7.8	resistance of a planer resistor
Exa 7.9	resistance per square
Exa 7.10	resistance per square
Exa 7.11	resistance per square
Exa 7.12	resistance per square
Exa 7.13	resistance per square
Exa 7.14	inductance of circular spiral
Exa 8.1	half power beam width 46
Exa 8.2	gain of paraboloid
Exa 8.3	half power radiation pattern and beamwidth between
	first null
Exa 8.4	gain of paraboloid
Exa 8.5	half power beam width the gain power 48
Exa 8.6	beamwidth directivity and capture area 49
Exa 8.7	minimum distance between two antennas 49
Exa 8.8	mouth diameter and the beamwidth of antenna 50
Exa 8.9	beamwidth directivity and capture area 50
Exa 8.10	half power radiation pattern and beamwidth between
	first null
Exa 8.11	half power radiation pattern and beamwidth between
	first null
Exa 8.12	mouth diameter and capture area
Exa 8.13	mouth diameter and power gain
Exa 8.14	null to null beamwidth and the gain power 53
Exa 8.15	power gain of paraboloid reflector
Exa 8.16	HPBW NNBW directivity
Exa 8.17	beamwidth power gain and directivity
Exa 8.18	power gain of square horn antenna
Exa 8.19	power gain and directivity of a horn
Exa 8.20	complementary slot impedence
Exa 8.21	radiation resistance of hertzian dipole
Exa 8.22	directivity of half wave dipole
Exa 8.23	radiated power of an antenna
Exa 8.24	effective area of a half wave dipole
Exa 8.25	effective area of hertzian dipole

Chapter 1

INTRODUCTION TO MICROWAVE AND THEIR APPLICATIONS

Scilab code Exa 1.1 electric field its magnitude and direction

```
1 //calculate the electric field, its magnitude and
      direction.
2 //given
3 F = [2 1 1] // force vector in newton
4 Q=1//charge in columbs
5 E=F/Q//the electric field
6 //the magnitude of this field is given by:
7 e = norm(E)
8 //THE direction of the electric field is given by:
9 \text{ aE=E/e}
10 e=round(e*1000)/1000//rounding off decimals
11 aE=round(aE*1000)/1000//rounding off decimals
12 disp(E, 'the electric field is given by: ') //N/C
13 disp(e, 'the magnitude of the electric field E:')/V/
14 disp(aE, 'THE direction of the electric field in x,y,
     z axis respectively: ')
```

Scilab code Exa 1.2 electric field at a point

```
1 //determine the electric field at a point;
2 //given
3 clc
4 Qf = 2d - 6
5 Qt = 1d - 6
6 rf=[1 0 0]//this can also be written as ax
7 rt=[0 \ 1 \ 0]/this can also be written as ay
8 rtf=rt-rf
9 Rtf=norm(rtf)//this is the magnitude of the vector
10 atf=rtf/Rtf//the unit vector across the two points
     p1 and p2
11 //the electric field at the point p2 is given by:
12 epsilon0=8.85D-12//value may differ, as i have not
     used the estimated value
13 E=((Qf*Qt)/(4*\%pi*epsilon0*(Rtf)^2))*atf//electric
      field calculation
14 E=round(E*1d+6)/1d+6///rounding off decimals
15 disp(E*1d+3, 'the electric field of p2 is:')/\frac{mN}{C}
```

Scilab code Exa 1.3 TOTAL FIELD AT A POINT P DUE TO ALL THE THREE CHARGES

```
7 //total field at p due to all these three charges is
        given by:
8 E=E1+E2+E3//resultant of all the three charges
9 disp(E,'the fiel at point p due to all the charges')
        //N/C
```

Scilab code Exa 1.4 charge Q at the point 2 0 0

```
1 //determine the charge Q at the point (2,0,0).
2 //given
3 clc
4 Q1=-10D-9//coulombs
5 epsilon0=8.85d-12//permitivity of free space
6 \text{ r1} = [3 \ 1 \ 1] - [0 \ 0 \ 0]
7 	ext{ } r2 = [3 	ext{ } 1 	ext{ } 1] - [2 	ext{ } 0 	ext{ } 0]
8 R1=norm(r1)//magnitude of the given vector r1
9 R2=norm(r2)//magnitude of vector r2
10 ar1=r1/R1//unit vector
11 ar2=r2/R2//unit vector
12 deff (" [Qt] = e l e c t r i c f i e l d (E)", "Qt = ((E - ((Q1/(4*\%pi*
      epsilon0*R1^2))*ar1(1,1)))/ar2(1,1))*(4*%pi*
      epsilon0*R2^2)")
13 Qt=electricfield(0)//in coulombs
14 Qt=round(Qt*1d+11)/1d+11//rounding off decimals
15 disp(Qt/1d-9, 'the electrical field at the point
      [2,0,0] in nC')/nC
```

Scilab code Exa 1.5 electric field at Q1

```
1 //the electric field at Q1 needed to be determined. 2 //given 3 clc 4 Q1=1d-9//at (-1,1,-3)
```

```
5 Q2=5d-9//at (3,1,0)
6 epsilon0=8.85D-12//the values may differ as i have
        used the exact value of permitivity
7 R=[-1 1 -3]-[3 1 0]//
8 r=norm(R)//magnitude of the vector r
9 ar=R/r//unit vector
10 E=(Q1/(4*%pi*epsilon0*(r^2)))*ar
11 E=round(E*10000)/10000///rounding off decimals
12 disp(E, 'THE electric field at Q1 is given as:')//
        both vectors are in ax and az directions
        respectively
13 //ERROR in the book
```

Scilab code Exa 1.6 electric field at location of 3 coulombs

Scilab code Exa 1.7 magnetic field at distance of 2m in free space

Scilab code Exa 1.10 direction of power flow of microwave

```
1 //FIND THE DIRECTION OF POWER FLOW OF MICROWAVE
2 //given
3 clc
4 function w=cross_prod(E,F)//function to determine
      the cross product of two vectors
5 D=[E(:),F(:)]
6 \text{ w}(1) = \det([[1;0;0],D])
7 w(2) = det([[0;1;0],D])
8 \text{ w}(3) = \text{det}([[0;0;1],D])
9 endfunction
10 E = [0 1 0]
11 F=[1 0 0]
12 q=cross_prod(E,F)
13 disp(q', 'the cross product of the given fields')//
      towards az
14 //ERROR in book as cross product of two
      perpendicular vector gives the third
```

Scilab code Exa 1.11 pointing vector and direction of power flow of microwave

```
//find pointing vector and direction of power flow
   of microwave
//given
clc
function w=cross_prod(E,H)//function to determine
        the cross product of two vector
D=[E(:),H(:)]
w(1)=det([[1;0;0],D])
```

Scilab code Exa 1.12 frequency of the wave

```
1 //find the frequency of the wave
2 //given
3 clc
4 t1=100d-12
5 t2=500d-12
6 t3=1d-9
7 f1=t1^-1
8 f2=t2^-1
9 f3=t3^-1
10 disp(f3*1D-9,f2*1D-9,f1*1D-9,'the frequencies respectively')//in GHz
```

Scilab code Exa 1.13 velocity of propogation of microwave

```
//determine the velocity of propogation of microwave
//given
clc
ur=1//permeability in H/m
psilonr=4//permittivity in F/m
k=3d+8//the speed of light in vaccum
v=k/((ur*epsilonr)^1/2)//velocity of microwave
```

```
8 disp(v,'the velocity of propogation of microwave in m/s:')//velocity in m/s
```

Scilab code Exa 1.14 wavelength of microwave frequency

```
1 //find the wavelength of microwave frequency
2 //given
3 clc
4 v0=3d+8//velocity in m/s
5 function[lem] = wavelength(v0,fr)
6 lem=v0/fr//calculating wavelength
7 endfunction
8 fr=1d+6//frequency in MHz
9 [lem1] = wavelength(v0,fr)
10 fr=1d+7//frequency in MHz
11 [lem2] = wavelength(v0,fr)
12 fr=1d+8//frequency in MHz
13 [lem3] = wavelength(v0,fr)
14 \text{ fr=1d+9//frequency} in MHz
15 [lem4] = wavelength (v0,fr)
16 fr=1d+10//frequency in MHz
17 [lem5] = wavelength(v0,fr)
18 disp(lem5,lem4,lem3,lem2,lem1, 'the wavelength
      given values of frequency in meter')//wavelength
     in meter
```

Scilab code Exa 1.15 phase shift of the wave

```
1 //find the phase shift of the wave
2 //given
3 f=1d+9//Hz
4 v0=3d+8//m/s
5 lem=v0/f//calculating wavelength
```

```
6 b=2*%pi/lem//calculating phase shift
7 b=round(b*100)/100///rounding off decimals
8 disp(b,lem,'the wavelength and phase shift respectively')//in rad/m and m
```

Chapter 2

MICROWAVE TUBES FOR MICROWAVE SIGNAL GENERATION

Scilab code Exa 2.1 maximum power for given beam current

```
1 //maximum power
2 //GIVEN
3 I1=20D-3//current in ampere
4 Va=300//VOLTAGE of the beam in volts
5 n=1//given mode value
6 Prf=0.39861*I1*Va/(n+0.75)//the maximum output power
7 Prf=round(Prf*1000)/1000///rounding off decimals
8 disp(Prf, 'the maximum r-f power when given beam current is 20mA in watts:')
```

Scilab code Exa 2.2 gain parameter output power and Be

```
1 //gain parameter ,output power and Be 2 //given
```

```
3 clc
4 Vdc=2.5d+3//votage in volts
5 Idc=25d-3//current in ampere
6 Z0=10//resistance in ohm
7 L=40 //CIRCUIT LENGTH
8 f = 9.5d + 9 / / in Hz
9 G=((Idc*Z0)/(4*Vdc))^(1/3)/the gain parameter
10 Ap = -9.54 + 47.3 * L * G / / OUTPUT power in dB
11 \ w = 2 * \%pi * f
12 Ve=0.593d+6*sqrt(Vdc)
13 Be=w/Ve//in rad/m
14 Be=round(Be/10)*10///rounding off decimals
15 Ap=round(Ap*10)/10///rounding off decimals
16 G=round(G*10000)/10000///rounding off decimals
17 disp(Be, Ap, G, 'the Be, the output power and the gain
      parameter')//dB,Rad/m
```

Scilab code Exa 2.3 angular frequency and the cutoff voltage

```
//angular frequency and the cutoff voltage
//given
clc
Bm=0.4//magnetic flux in tesla
beym=1.759d+11//electron to mass ratio
a=0.04//radius of cathode in meter
b=0.1//radius of vane edge from centre in meter
Wc=ebym*Bm//angular frequency in rad
Vc=((ebym/8)*(Bm^2)*((b/10)^2)*((1-((a/b)^2))^2))//ERROR cut off voltage in volts
disp(Vc,Wc,'THE the angular frequency and Cutoff voltage in radians and volts is given by:')//rad, volts
//EERROR in cutoff voltage as value of ((1-((a/b)^2))^2)=0.7056 instead of ((1-((a/b)^2))^2)=0.36
```

Scilab code Exa 2.4 electron velocity transit angle and beam coupling coefficent

```
1 //electron velocity, transit angle and beam coupling
      coefficent
2 //given
3 \text{ Va=900// in volts}
4 Rb=30d+3//in ohm
5 Ib=20d-3//in ampere
6 f=3.2d+9//in hertz
7 d=1d-3//meter
8 Ve=0.593d+6*sqrt(Va)//m/s
9 w = 2 * \%pi * f
10 Qt=w*d/Ve//radians
11 Bc = (sin(Qt/2))/(Qt/2)
12 Qt=round(Qt*100)/100///rounding off decimals
13 Bc=round(Bc*1000)/1000///rounding off decimals
14 disp(Bc,Qt,Ve, 'THE electron eloccity , transit angle
      and beam coupling coefficient in m/s, radians')/m
      /s, radians.
```

Scilab code Exa 2.5 efficency of kylstron

```
1 //efficency of kylstron
2 //given
3 clc
4 I2=28d-3//ampere
5 V2=850//volts
6 Bc=0.496//beam coupling coefficent
7 Vd=900//volts
8 Ib=26d-3//ampere
9 n=(Bc*I2*V2)/(2*Ib*Vd)
```

- 10 disp(n*100, 'the beam efficiency of kylstron in the percentage format')
- 11 //ERROR in calcultion of the book the value of Bc is different in question

Chapter 3

MICROWAVE SEMICONDUCTOR DEVICES

Scilab code Exa 3.1 frequency of IMPATT diode

```
//frequency of IMPATT diode
//given
clc
Vd=2.2d+5//m/s
1=5d-6//meter
f=Vd/(2*1)//hertz
disp(f*1d-9, 'THE required frequiency in GHz')//Ghz
```

Scilab code Exa 3.2 frequency of IMPATT diode

```
1 //frequency of IMPATT diode
2 //given
3 clc
4 Vd=3d+5//m/s
```

```
5 l=7d-6//meter
6 f=Vd/(2*1)//hertz
7 f=round(f*1d-8)/1d-8///rounding off decimals
8 disp(f*1d-9,'the required frequency of IMPATT diode in GHz')//GHz
```

Scilab code Exa 3.3 avalanche zone velocity of TRAPATT diode

```
//avalanche zone velocity of TRAPATT diode
//given
clc
Na=1.8d+15//per cm3//doping concentration
j=25d+3//A/cm2//current density
q=1.6d-19//couloms
Vaz=j/(q*Na)//cms//avalanche zone velocity
Vaz=round(Vaz/1d+5)*1d+5///rounding off decimals
disp(Vaz/100, 'the avalanche zone velocity of TRAPATT in m/s')//m/s
```

Scilab code Exa 3.4 frequency of gunn diode oscillator

```
//frequency of gunn diode oscillator
//given
clc
Vd=2d+8//m/s
1=12d-6//meter
f=Vd/1//hertz
disp(f*1d-9,'the required frequency in GHz')
//ERROR in the book
```

Scilab code Exa 3.5 minimum voltage to operate

```
//minimum voltage to operate
//given
clc
Vs=3.3d+3//VOLTS//the minimum voltage gradient
required to start the diode
1=2.5d-6//meter//the drift length
Vmin=Vs*1//the minimum voltage required to operate
disp(Vmin*1000, 'the minimum voltage required to operate in m/V')//mV// millivolts
```

Chapter 4

SCATTERING MATRIX PARAMETERS

Scilab code Exa 4.3 voltage standing wave ratio

```
//voltage standing wave ratio
//given
clc
LEMg=4.82//cm
d1_d2=0.7//cm
VSWR=LEMg/(%pi*d1_d2)//VSWR
VSWR=round(VSWR*1000)/1000///rounding off decimals
disp(VSWR, 'the voltage standing wave ratio:')
```

Scilab code Exa 4.4 scattering matrix of inductor

```
1 //scattering matrix of inductor
2 //given
3 clc
4 IL=0.3//db//insertion loss
5 I=40//db//isolation
```

```
6  s21=(10^(-0.3/20))//-20log|s21|
7  s12=(10^(-40/20))//-20log|s12|
8  s11=0//FOR SCATTER MATRIX
9  s22=0//FOR SCATTER MATRIX
10  S=[s11,s12;s21,s22]
11  S=round(S*1000)/1000///rounding off decimals
12  disp(S,'THE matrix is S-matrix:')//all points are well matched
```

Scilab code Exa 4.5 wave guide length

```
//wave guide length
//given
clc
dl_d2=0.4//distance measured between twice minima
VSWR=2.5//voltage standing wave ratio
LEMg=VSWR*%pi*dl_d2//wave guide length
LEMg=round(LEMg*100)/100///rounding off decimals
disp(LEMg,'the wave guide length for given VSWR IN cm:')//cm
```

Chapter 5

MICROWAVE PASSIVE COMPONENTS

Scilab code Exa 5.1 Zo of a two wire transmission line

```
1 //Zo of a two wire transmission line
2 //given
3 clc
4 L=1D-3//H/Km
5 C=0.25D-6//F/Km
6 Zo=sqrt(L/C)//ohm
7 Zo=round(Zo*100)/100///rounding off decimalssc
8 disp(Zo, 'the Zo for two wire transmission line in ohm: ')//ohm
```

Scilab code Exa 5.2 Zo of a transmission line

```
1 //Zo of a transmission line
2 //given
3 clc
4 epsilon_r=1//assume as 1 according to question
```

```
5 s=0.49//cm
6 d=0.1//cm
7 Zo=(276/sqrt(epsilon_r))*log10((2*s)/d)
8 Zo=round(Zo*100)/100///rounding off decimals
9 disp(Zo, 'the Zo of a transmission line is given in ohm as follows:')//ohm
```

Scilab code Exa 5.3 wavelength in coaxial line

```
//wavelength in coaxial line
//given
clc
V0=3D+8//m/s
f=8D+9//hertz
epsilon_r=2.25
lem=V0/((sqrt(epsilon_r))*f)//meter
disp(lem, 'the wave length for the operating frequency of 8GHz in meter:')
//error in the form of miscalculation
```

Scilab code Exa 5.4 frequency of air dielectric and highest frequency

```
//frequency of air dielectric and highest frequency
//given
clc
n=1//lowest mode
d=2.6//mm
D=0.8//mm
P=0.8//mm
No=3d+11//mm/s//ERROR
lem_c=(%pi/(2*n))*(d+D)
fc=V0/lem_c//hertz//ERROR
disp(fc,'the frequency is as follows:')//Hz
```

```
11 //ERROR in the calculation in the book as value of V0=3d+10
```

Scilab code Exa 5.5 Zo of the coaxial cable

```
1 //Zo of the coaxial cable
2 //given
3 clc
4 epsilon_r=2.25
5 Dbyd=2.25
6 Zo=(138/sqrt(epsilon_r))*log10(Dbyd)//ohm
7 Zo=round(Zo*1000)/1000///rounding off decimals
8 disp(Zo, 'the Zo for the given coaxial cable is :')//ohm
```

Scilab code Exa 5.6 output power of cable

```
//output power of cable
//given
clc
alpha=0.28//db/m//attenuation
alpha_50m=0.28*50//db//attenutaion of 50 m cable
pi=0.4//watt//input power//ERROR
po=pi/(10^((alpha_50m)/10))//watt//output power
disp(po*1000, 'the output power of 50m in mW ')//mW
//ERROR in calculation of the book as pi=0.04
```

Scilab code Exa 5.7 percentage of reflected power

```
1 //percentage of reflected power
```

```
//given
Vi=20//volts//incident voltage
Vr=12.5//volts//reflected voltage
row=Vr/Vi//reflected voltage coefficent
row2=row^2//reflected_power/incident_power
pi=1//watt
pr=0.391*1
%pr=pr*100//percentage power
disp(%pr,'the percentage of reflected power is:')
```

Scilab code Exa 5.8 voltage standing wave ratio

```
//voltage standing wave ratio
//given
clc
Vmax=5//volts
Vmin=3//volts
VSWR=Vmax/Vmin//voltage standing wave ratio
VSWR_S=20*log10(VSWR)//VSWR IN db
VSWR_S=round(VSWR_S*100)/100///rounding off decimals
disp(VSWR_S, 'THE voltage standing wave ratio in db:')//decibles
```

Scilab code Exa 5.9 VSWR FOR LOAD impedence

```
1  //VSWR FOR LOAD impedence
2  //given
3  clc
4  Zo=100
5  Zl1=50
6  Zl2=125
7  VSWR=Zo/Zl1//for Zo>Zl
8  VSWR_1=Zl2/Zo//for Zo<Zl</pre>
```

Scilab code Exa 5.10 voltage standing wave ratio

```
//voltage standing wave ratio
//given
clc
clear
format
Vr=0.37//volts
Vi=1//volts
row=Vr/Vi
f(row>=0)
VSWR=(1+row)/(1-row)
VSWR=round(VSWR*10)/10///rounding off decimals
disp(VSWR, 'THE voltage standing wave ratio is:')
else
disp('not possible')
end
```

Scilab code Exa 5.11 magnitude of the reflection coefficent

```
1 //magnitude of the reflection coefficent
2 //given
3 clc
4 zl=10*%i//ohm
5 z0=100//ohm
6 row=(zl-z0)/(zl+z0)//reflection coefficent
7 mag_row=norm(row)//magnitude of reflection coefficent
8 disp(mag_row, 'the magnitude of the reflection coefficent:')
```

Chapter 6

MICROWAVE TRANSMISSION LINE

Scilab code Exa 6.1 determine Z0 for given transmission line

```
//determine Z0 for given transmission line
//given
clc
function[Zo]=zed(L,C)
Zo=sqrt(L/C)//impedence function
endfunction
L=110D-9
C=20D-12
[Zo1]=zed(L,C)
L=110D-9
C=20D-12
[Zo2]=zed(L,C)
Zo2=round(Zo2*100)/100///rounding off decimals
Zo1=round(Zo1*100)/100///rounding off decimals
disp(Zo1,Zo2,'the Zo is determined in ohm:')
```

Scilab code Exa 6.2 characteristic impedence

```
// characteristic impedence
// given
clc
s=300//mm//
r=3/2//mm
Zo=276*log10(s/r)
Zo=round(Zo)///rounding off decimals
disp(Zo, 'the characteristic impedence in ohm')
```

Scilab code Exa 6.3 input impedance

```
//input impedance
//given
clc
Zl=0//ohm
Zo=50//ohm
Bl=2*%pi*0.1//((2*pi/lem)*lem)
Zi=Zo*(Zl+%i*Zo*tan(Bl))/(Zo+%i*Zl*tan(Bl))//the input impedence in ohm
Zi=round(Zi*100)/100///rounding off decimals
disp(Zi,'the input impedance of 50ohm loss less transmission line')
```

Scilab code Exa 6.4 input of lossless transmission line

```
//input of lossless transmission line
//given
clc
Zo=50//ohms
Zl=%inf//defined as infinity
Bl=2*%pi*0.1
```

```
7 Zi=(Zo*(1+%i*(Zo/Zl)*tan(Bl))/(Zo/Zl+%i*tan(Bl)))//
    taking Zl common from numerrator and denominator
8 Zi=round(Zi*100)/100///rounding off decimals
9 disp(Zi, 'the input of 50ohm lossless transmission line')//ohm
```

Scilab code Exa 6.5 input impedance of a lossless transmission

```
//input impedance of a lossless transmission
//given
clc
Zo=100//ohm
Bl=(2*%pi)/3//ERROR
Zl=150+%i*60
Zi=Zo*(Zl+%i*Zo*tan(Bl))/(Zo+%i*Zl*tan(Bl))//the
    input impedence in ohm
disp(Zi, 'the input impedance of lossless
    transmission line in ohm:')
//ERROR in the calculation of the book as value of
Bl=120*pi
```

Scilab code Exa 6.6 time required for wave to travell

```
//time required for wave to travell
//given
clc
L=1.2d-6//H/m
C=12.5d-12//F/m
leng_line=2//length of the line in meter
t=sqrt(L*C)*leng_line//time required for the wave to travell in seconds
t=round(t*1d+12)/1d+12///rounding off decimals
```

```
9 disp(t*1d+9,'the time required for wave to travell in nanoseconds')//nsec
```

Scilab code Exa 6.7 characteristic impedance

```
// characteristic impedance
// given
clc
L=1.5d-6//H/m
C=10d-12//F
Zo=sqrt(L/C)
Zo=round(Zo)///rounding off decimals
disp(Zo, 'the characteristic impedence in ohm')//ohm
```

Scilab code Exa 6.8 reflected voltage

```
1 //reflected voltage
2 //given
3 clc
4 Vi=50//volts
5 row=0.25//reflection coefficent
6 Vr=Vi*row//the reflected voltage
7 disp(Vr, 'the reflected voltage for given reflection coefficent in volts')
```

Scilab code Exa 6.9 percenage of reflected voltage

```
1 //percentage of reflected voltage
2 //given
3 clc
```

```
4 Vi=50//volts
5 Vr=25//volts
6 row=Vr/Vi//reflection coefficent
7 per_ref_volt=row*100//percentage of reflected
    voltage
8 disp(per_ref_volt, 'the percentage of reflected
    voltage')
```

Scilab code Exa 6.10 voltage standing wave ratio

```
//voltage standing wave ratio
//given
clc
Vmax=50//volts
Vmin=35//volts
VSWR=Vmax/Vmin
VSWR_db=20*log10(VSWR)//db
VSWR_db=round(VSWR_db*1000)/1000///rounding off decimals
disp(VSWR_db, 'the voltage standing wave ratio in decibles')//db
```

Scilab code Exa 6.11 maximum impedance of the line

```
//maximum impedance of the line
//given
clc
Zo=75//ohm
VSWR=3//voltage standing wave ratio
Zmax=VSWR*Zo//ohm
disp(Zmax,'the maximum impedance of the line for the given VSWR IN ohm')//ohm
```

Scilab code Exa 6.12 voltage standing wave ratio

```
//EXAMPLE-6.12;PAGE-201
//voltage standin wave ratio
//given
clc
row=0.4
VSWR=(1+row)/(1-row)//voltage standing wave ratio
VSWR=round(VSWR*100)/100///rounding off decimals
disp(VSWR, 'the voltage standing wave ratio')
```

Scilab code Exa 6.13 input impedance

```
1 //input impedance
2 //given
3 clc
4 Zl=0//ohm
5 Bl=2*%pi/8//rad
6 Zo=75//ohm
7 Zi=Zo*(Zl+%i*Zo*tan(Bl))/(Zo+%i*Zl*tan(Bl))
8 disp(Zi, 'the input impedance at point')//ohm
```

Scilab code Exa 6.14 length and characteristic impedance of transformer

```
1 //length and characteristic impedance of transformer 2 //given 3 Zo=50//ohm 4 Z1=200//ohm 5 f=300d+6//MHz
```

```
6 Vo=3d+8//velocity of wave
7 lem=Vo/f
8 leng_trans=lem/4//meter//the length of transformer
    is 1/4 of wavelength
9 Zt=sqrt(Zo*Z1)//ohm
10 disp(Zt,leng_trans,'the length and characteristic impedance in meter and ohm respectively')
```

Scilab code Exa 6.15 characteristic impedance

```
1 // characteristic impedance
2 // given
3 clc
4 Zl=300//ohm
5 Zo=75//ohm//of the line
6 SWR=1//the source impedence is equal to characteristic impedance of the line
7 Zt=sqrt(Zl*Zo)
8 disp(Zt,'the characteristic impedance in ohm')
```

Scilab code Exa 6.16 reflection coefficent

```
1 //reflection coefficent
2 //given
3 clc
4 S=2//voltage standing wave ratio(VSWR)
5 Zo=50//ohm
6 row=((S-1)/(S+1))
7 row=round(row*1000)/1000///rounding off decimals
8 disp(row, 'the value of reflection coefficent as modulus row')
```

Scilab code Exa 6.17 input impedance of the shorted line

```
//input impedance of the shorted line
//given
clc
Zn=50//ohm
f=500//Mhz
Bl=0.2*%pi//B=2*pi/lemda
Zi=%i*Zn*tan(Bl)//input impedance
Zi=round(Zi*100)/100//rounding off decimals
disp(Zi, 'the input impedance of the shorted line in ohm')
```

Scilab code Exa 6.18 characteristic impedance of the line for air dielectric

```
// characteristc impedance of the line for air
dielectric
//given
clc
b=30-2*2//mm//diameter of the outside conductor
a=10-2*1//mm//diameter of the inner conductor
Co=138*log10(b/a)//characteristic impedance
Co=round(Zo*100)/100///rounding off decimals
disp(Zo, 'the characteristic impedance of the line for air dielectric in ohm')
// error in the value of b
```

Scilab code Exa 6.19 time delay propogaion velocity propagation delay

```
1 //time delay ,propogaion velocity ,propagation delay
2 //given
3 clc
4 L=500D-9//H/m
5 C = 30D - 12 / F/m
6 td=sqrt(L*C)//time delay for 1 m long cable
7 vp = 1/3.87d - 9/m/s
8 C1=C*10//capacitance of 10 m cable
9 L1=L*10//inductance of 10 m cable
10 Ld=sqrt(L1*C1)//time delay for 10 m long cable
11 Ld=round(Ld*1d+10)/1d+10///rounding off decimals
12 \text{ td} = \text{round}(\text{td} * 1\text{d} + 11) / 1\text{d} + 11 / / / \text{rounding off decimals}
13 disp(Ld*1d+9, vp, td*1d+9, 'the time delay in
      nanoseconds, propogaion velocity in meter/second,
      propogation delay over a cable length in
      nanoseconds')
```

Scilab code Exa 6.20 radius of the outer conductor

```
//radius of the outer conductor
//given
clc
C=70D-12//F/m
Zo=75//ohm
L=Zo^2*C//inductance
epsilon_r=2.3
a=0.292//mm//radius of inner conductor
b=a*10^(Zo*sqrt(epsilon_r)/138)//Zo=(138/sqrt(epsilon_r))*log(b/a)
b=round(b*1d+4)/1d+4///rounding off decimals
disp(b,'the radius of the outer conductor')
```

Scilab code Exa 6.21 resonant frequency

```
1 //resonant frequency
2 //given
3 clc
4 a=0.03//m
5 b=0.01//m
6 c=0.04//m
7 v=3d+8//speed of wave
8 fr=(v/2)*(sqrt((1/a^2)+(1/b^2)+(1/c^2)))//hertz
9 disp(fr*1d-9, 'resonant frequency for TM110 mode in Ghz')//Ghz
```

Scilab code Exa 6.22 resonant frequency and quality cycle

```
1 //resonant frequency and quality cycle
2 //given
3 clc
4 a=0.03/m
5 b=0.01/m
6 c = 0.04 / m
7 1 = 0.04 / m
8 v=3d+8//\text{speed} of wave in m/s in mho/m
9 uo = 4 * \%pi * 10^-7
10 con_d=5.8d+7//conductivity of copper
11 fr=(v/2)*(sqrt((1/a^2)+(1/b^2)))//hertz
12 fr1=(v/2)*(sqrt((1/a^2)+(1/1^2)))//hertz
13 del=1/sqrt(%pi*fr1*uo*con_d)
Q = ((a^2+c^2)*a*b*c)/(del*(((a^3+c^3)*2*b)+a*c*(a^2+c^2))
15 fr=round(fr*1d-8)/1d-8///rounding off decimals
16 Q=round(Q)//rounding off decimals
17 disp(Q,fr1*1d-9,fr*1d-9,'resonant frequency of
     dominant mode TM110, dominant mode TE101 in Ghz
     and the quality factor')/GHz
```

Scilab code Exa 6.23 resonant frequency of TE101 and its quality factor

```
1 //resonant frequency of TE101 and its quality factor
2 //given
3 clc
4 \text{ con_d=5.8d+7//mho/m}
5 a=0.05/m
6 \, b = 0.04 / m
7 c = 0.1 / m
8 v = 3d + 8 / /m / s
9 epsilon_r=4//dielectric
10 uo = 4 * \%pi * 10^-7
11 fr=(v/(2*sqrt(epsilon_r)))*(sqrt((1/a^2)+(1/c^2)))//
12 del=1/sqrt(%pi*fr*uo*con_d)//ERROR
13 Q=((a^2+c^2)*a*b*c)/(del*(((a^3+c^3)*2*b)+a*c*(a^2+c^2))
      ^2)))//quality factor
14 disp(Q,fr*1d-9, 'resonant frequency in dominant mode
      TE101 in Ghz and the quality factor')/GHz
15 //ERROR in the calculation of the book as value of
      del=32.275d-7 in the book.
```

Chapter 7

MICROWAVE INTEGRATED CIRCUITS

Scilab code Exa 7.1 resistance of a planar resistor

```
//resistance of a planar resistor
//given
clc
con_d=4.1d+7//mho/m
l=10d-3//m
w=5d-3//m
d=0.2d-6//m
Rp=1/(w*d*con_d)//resistance
Rp=round(Rp*1000)/1000///rounding off decimals
disp(Rp, 'resistance of a aluminum planar resistor')
//ohm
```

Scilab code Exa 7.2 inductance for given dimensions

```
1 //inductance for given dimensions 2 //given
```

```
3 clc
4 l=100//mils
5 d=10//mils
6 Lw=5.08*1*(log(1/d)+0.386)//PH/mil
7 Lw=round(Lw)///rounding off decimals
8 disp(Lw*1d-3, 'the inductance in nH/mil')//nH/mil
```

Scilab code Exa 7.3 resistance

```
//resistance
//given
clc
1=11d-3//meter
d=0.2d-6//meter
w=8d-3//meter
delta_s=3.82d+7//mho/m
Rp=1/(w*d*delta_s)//resistance
Rp=round(Rp*100)/100///rounding off decimals
disp(Rp, 'the resistance for the given parameter in ohm')//ohm
```

Scilab code Exa 7.4 resistance

```
1 //resistance
2 //given
3 clc
4 l=11d-3
5 d=0.2d-6
6 w=8d-3
7 delta_s=4.10d+7
8 Rp=1/(w*d*delta_s)//resistance
9 Rp=round(Rp*1000)/1000///rounding off decimals
```

10 disp(Rp,'the resistance for the given parameter in ohm')//ohm

Scilab code Exa 7.5 resistance

```
//resistance
//given
clc
1=11d-3
d=0.2d-6
w=8d-3
delta_s=6.17d+7
Rp=1/(w*d*delta_s)//resistance
Rp=round(Rp*1000)/1000///rounding off decimals
disp(Rp, 'the resistance for the given parameter in ohm')//ohm
```

Scilab code Exa 7.6 inductance

```
1 //inductance
2 //given
3 clc
4 A=0.04//cm^2
5 N=4//no. of turns
6 Lss=8.5*(A^(0.5))*(N^(5/3))*1d+3//PH
7 Lss=round(Lss/10)*10///rounding off decimals
8 disp(Lss*1d-3, 'the inductance for the given parameter in nH')//nH
```

Scilab code Exa 7.7 inductance

```
1 //inductance
2 //given
3 clc
4 l=10//mils
5 t=0.2//mils
6 w=8//mils
7 Lt=5.08*1*(log(1/(w+t))+0.222*((w+t)/1)+1.19)//PH/mil
8 Lt=round(Lt*10)/10///rounding off decimals
9 disp(Lt,'the inductance for the given parameters')
```

Scilab code Exa 7.8 resistance of a planer resistor

```
//resistance of a planer resistor
//given
clc
1=8d-3//metre
t=0.1d-6//metre
w=8d-3//metre
delta_s=1/0.262d-7//mho/m
Rp=1/(w*t*delta_s)//resistance in ohm
disp(Rp, 'the resistance for the given parameter in ohm')//ohm
```

Scilab code Exa 7.9 resistance per square

```
1 //resistance per square
2 //given
3 clc
4 l=15d-3//metre
5 t=0.1d-6//metre
6 w=15d-3//metre
7 delta_s=6.17d+7//mho/m
```

```
8 Rp=1/(w*t*delta_s)//resistance in ohm
9 Rp=round(Rp*1000)/1000///rounding off decimals
10 disp(Rp, 'the resistance for the given parameter in ohm/square')//ohm/square
11 //ERROR IN THE PRINTING OF THE BOOK
```

Scilab code Exa 7.10 resistance per square

```
//resistance per square
//given
clc
1=12d-3//metre
t=0.12d-6//metre
w=10d-3//metre
delta_s=4.10d+7//mho/m
Rp=1/(w*t*delta_s)//resistance in ohm
Rp=round(Rp*10000)/10000///rounding off decimals
disp(Rp, 'the resistance for the given parameter in ohm')//ohm
```

Scilab code Exa 7.11 resistance per square

```
//resistance per square
//given
clc
1=20d-3//metre
t=15d-6//metre
w=10d-3//metre
delta_s=5.8d+7//mho/m
Rp=1/(w*t*delta_s)//resistance in ohm
disp(Rp, 'the resistance for the given parameter in ohm/square')//ohm/square
//ERROR IN THE BOOK CALCULATION
```

Scilab code Exa 7.12 resistance per square

```
//resistance per square
//given
clc
1=30d-3//metre
t=0.1d-6//metre
kp=0.3//ohm
delta_s=4.1d+7//mho/m
w=1/(kp*t*delta_s)//metre
w=round(w*1000)/1000///rounding off decimals
disp(t*1d+6, w*1000,1*1d+3, 'the design parameter of planer resistor are in mm and um')//millimetre
```

Scilab code Exa 7.13 resistance per square

```
//resistance per square
//given
clc
w=10d-3//metre
t=0.08d-6//metre
Rp=0.15//ohm
delta_s=6.17d+7//mho/m
l=w*(Rp*t*delta_s)//metre
disp(1*1000, 'the resistance for the given parameter in mm')//millimetre
```

Scilab code Exa 7.14 inductance of circular spiral

```
//inductance of circular spiral
//given
clc
N=10//number of turns
w=50//mils//sepration
s=20//mils//film width
d=2.5*N*(w+s)//
L=31.25*(N^2)*d//PH/mil
L=round(L*1D-3)/1d-3///rounding off decimals
disp(L*1d-3, 'the resistance for the given parameter in nH/mil')//nH/mil(the value is different on book)
```

Chapter 8

MICROWAVE ANTENNAS

Scilab code Exa 8.1 half power beam width

```
1 //given
2 clc
3 Da=2.5//metre
4 f=5d+9//hertz
5 v=3d+8
6 lemda=v/f//metre
7 NNBW=140*(lemda/Da)//degree//beamwidth between first null
8 HPBW=70*(lemda/Da)//degree//half power beamwidth
9 disp(HPBW,NNBW, 'the beamwidth between first null and the value of half power beamwidth in degree')// degrees
```

Scilab code Exa 8.2 gain of paraboloid

```
1 //gain of paraboloid
2 //given
3 clc
```

```
4 Da=2.5//metre
5 f=5d+9//hertz
6 v=3d+8//m/s
7 lemda=v/f
8 gp=6.4*(Da/lemda)^2
9 gp_decibles=10*log10(gp)//changing to decibles
10 gp_decibles=round(gp_decibles*100)/100///rounding
        off decimals
11 disp(gp_decibles, 'the gain of paraboloid in decibles
        ')//db
```

Scilab code Exa 8.3 half power radiation pattern and beamwidth between first null

```
1 //half power radiation pattern and beamwidth between
       first null
2 //given
3 clc
4 Da=0.15//metre
5 f = 9d + 9 / hertz
6 \text{ v} = 3d + 8 / /m / s
7 lemda=v/f//metre
8 NNBW=140*(lemda/Da)//degree
9 HPBW=70*(lemda/Da)//degree
10 gp=6.4*(Da/lemda)^2//gain pattern
11 gp_decibles=10*log10(gp)//changing to db
12 gp_decibles=round(gp_decibles*100)/100///rounding
      off decimals
13 HPBW=round(HPBW*100)/100///rounding off decimals
14 NNBW=round(NNBW*100)/100///rounding off decimals
15 disp(gp_decibles, HPBW, NNBW, 'the half power beamwidth
       and beamwidth between first null and the gain
      pattern in degrees and decibles')//degree,db
```

Scilab code Exa 8.4 gain of paraboloid

```
//gain of paraboloid
//given
clc
Da=2//metre
f=2d+9//hertz
v=3d+8//m/s
lemda=v/f
gp=6.4*(Da/lemda)^2
gp_decibles=10*log10(gp)//changing to decibles
disp(gp_decibles, 'the gain of paraboloid in decibles ')//db
//ERROR in the printing of the book
```

Scilab code Exa 8.5 half power beam width the gain power

```
// half power beam width the gain power
// given
clc
NNBW=5//degree//null to null beamwidth
f=6d+9//hertz
v=3d+8
lemda=v/f//metre
Da=140*(lemda/NNBW)//degree//beamwidth between first null
HPBW=70*(lemda/Da)//degree//half power beamwidth
gp=6.4*(Da/lemda)^2
gp_decibles=10*log10(gp)//changing to decibles
disp(gp_decibles, HPBW, Da, 'the beamwidth between first null and the value of half power beamwidth in degree')//degrees
```

Scilab code Exa 8.6 beamwidth directivity and capture area

```
1 //beamwidth, directivity and capture area
2 //given
3 clc
4 Da=5//metre
5 f = 9d + 9//hertz
6 \text{ v} = 3d + 8 / /m / s
7 lemda=v/f//metre
8 A=\%pi*(Da^2)/4//actual area
9 Ac=0.65*A//capture area
10 NNBW=140*(lemda/Da)//degree
11 HPBW=70*(lemda/Da)//degree
12 D=6.4*(Da/lemda)^2//directivity
13 D_{\text{decibles}}=10*\log 10(D)/\cosh g to db
14 NNBW=round(NNBW*1D+4)/1D+4///rounding off decimals
15 HPBW=round(HPBW*1D+3)/1D+3///rounding off decimals
16 Ac=round(Ac*100)/100///rounding off decimals
17 D_decibles=round(D_decibles*100)/100///rounding off
      decimals
18 disp(D_decibles, Ac, HPBW, NNBW, 'the half power
      beamwidth and beamwidth between first null and
      the gain pattern in degrees and decibles')//
      degree, m<sup>2</sup>, db
```

Scilab code Exa 8.7 minimum distance between two antennas

```
1 //minimum distance between two antennas
2 //given
3 clc
4 Da=5//metre
```

```
5 f=5d+9//hertz
6 v=3d+8//m/s
7 lemda=v/f//metre
8 r=2*(Da^2)/lemda//metre
9 r=round(r*100)/100///rounding off decimals
10 disp(r, 'the minimum distance required between two antennas in metre')//metre
```

Scilab code Exa 8.8 mouth diameter and the beamwidth of antenna

```
1 //mouth diameter and the beamwidth of antenna
2 //given
3 clc
4 Da=0.15//metre
5 f = 4d + 9 / hertz
6 \text{ gp} = 500 / /
7 v = 3d + 8 / /m / s
8 lemda=v/f//metre
9 Da=lemda*sqrt(gp/6.4)//diameter
10 NNBW=140*(lemda/Da)//degree
11 HPBW=70*(lemda/Da)//degree
12 Da=round(Da*1000)/1000///rounding off decimals
13 HPBW=round(HPBW*100)/100///rounding off decimals
14 NNBW=round(NNBW*100)/100///rounding off decimals
15 disp(NNBW, HPBW, Da, 'the mouth diameter and the
      beamwidth of antenna in metre and degrees')//
      metre, degree
```

Scilab code Exa 8.9 beamwidth directivity and capture area

```
1 //beamwidth, directivity and capture area
2 //given
3 clc
```

```
4 f=9d+9//hertz
5 v=3d+8//m/s
6 gp_decibles=100//db
7 lemda=v/f//metre
8 gp=10^(gp_decibles/10)//
9 Da=lemda*sqrt(gp/6.4)//metre
10 A=%pi*(Da^2)/4//actual area
11 Ac=0.65*A//capture area
12 NNBW=140*(lemda/Da)//degree
13 HPBW=70*(lemda/Da)//degree
14 HPBW=round(HPBW*1D+5)/1D+5///rounding off decimals
15 NNBW=round(NNBW*1D+4)/1D+4///rounding off decimals
16 disp(HPBW,NNBW,Ac,'the half power beamwidth and beamwidth between first null and the gain pattern in degrees and decibles')//degree,m^2,db
```

Scilab code Exa 8.10 half power radiation pattern and beamwidth between first null

```
1 //half power radiation pattern and beamwidth between
       first null
2 //given
3 clc
4 Da=5//metre
5 f = 10d + 9 / / hertz
6 \text{ v} = 3d + 8 / /m / s
7 lemda=v/f//metre
8 NNBW=140*(lemda/Da)//degree
9 HPBW=70*(lemda/Da)//degree
10 gp=6.4*(Da/lemda)^2/gain pattern
11 gp_decibles=10*log10(gp)//changing to db
12 gp_decibles=round(gp_decibles*1000)/1000///rounding
      off decimals
13 disp(NNBW, HPBW, gp_decibles, 'the half power beamwidth
       and beamwidth between first null and the gain
```

Scilab code Exa 8.11 half power radiation pattern and beamwidth between first null

Scilab code Exa 8.12 mouth diameter and capture area

```
//mouth diameter and capture area
//given
clc
f=4d+9//hertz
v=3d+8//m/s
NNBW=8//degree
lemda=v/f//metre
Da=140*(lemda/NNBW)//degree
A=%pi*(Da^2)/4//actual area
Ac=0.65*A//capture area
```

```
11 Ac=round(Ac*1000)/1000///rounding off decimals
12 disp(Ac,Da,'the mouth diameter and capture area in
    metre and metersquare')//m,m^2
```

Scilab code Exa 8.13 mouth diameter and power gain

```
//mouth diameter and power gain
//given
clc
NNBW=2//degree//null to null beamwidth
f=4d+9//hertz
v=3d+8//m/s
lemda=v/f//metre//
Da=140*(lemda/NNBW)//degree//beamwidth between first null
gp=6.4*(Da/lemda)^2
gp_decibles=10*log10(gp)//changing to decibles
gp_decibles=round(gp_decibles*100)/100///rounding off decimals
disp(gp_decibles,Da,'the beamwidth between first null and the value of half power beamwidth in decibles and degree')//decibles,degrees
```

Scilab code Exa 8.14 null to null beamwidth and the gain power

```
1 //null to null beamwidth and the gain power
2 //given
3 clc
4 HPBW=6//degree//half power beamwidth
5 f=6d+9//hertz
6 v=3d+8
7 NNBW=2*HPBW//degree//null to null beamwidth
8 lemda=v/f//metre
```

```
9 Da=70*(lemda/HPBW)//degree//half power beamwidth
10 gp=6.4*(Da/lemda)^2
11 gp_decibles=10*log10(gp)//changing to decibles
12 gp_decibles=round(gp_decibles*100)/100///rounding
    off decimals
13 disp(gp_decibles, NNBW, 'the beamwidth between first
    null and gain power in degree and decibles')//
    degrees, decibles
```

Scilab code Exa 8.15 power gain of paraboloid reflector

Scilab code Exa 8.16 HPBW NNBW directivity

```
5 for(lemda!= 0)
6 Da=7*lemda//aperture diameter
7 NNBW=140*(lemda/Da)//degree
8 HPBW=70*(lemda/Da)//degree
9 D=6.4*(Da/lemda)^2//directivity
10 end
11 disp(D,NNBW,HPBW,'the half power beamwidth and beamwidth between first null and the directivity in degrees and decibles')//degree,db
```

Scilab code Exa 8.17 beamwidth power gain and directivity

```
1 //beamwidth power gain and directivity
2 //given
3 clc
4 f = 8d + 9 / hertz
5 v = 3d + 8 / /m / s
6 d=0.09//m//aperture dimentions
7 W=0.04//m//aperture dimentions
8 lemda=v/f//metre
9 QE=56*lemda/d//
10 QH=67*lemda/W//
11 gp=4.5*W*d/lemda^2
12 gp_decibles=10*log10(gp)//changing to decibles
13 D=7.5*W*d/lemda^2//directivity
14 gp_decibles=round(gp_decibles*100)/100///rounding
      off decimals
15 QH=round(QH*100)/100///rounding off decimals
16 QE=round(QE*100)/100///rounding off decimals
17 disp(D,gp_decibles,QH,QE, 'the beamwidth power gain
     and directivity in degrees, decibles')//degrees,
      decibles
```

Scilab code Exa 8.18 power gain of square horn antenna

```
1 //power gain of square horn antenna
2 //given
3 clc
4 lemda=1//as value of lemda do not affect the
      expression
5 \text{ for}(lemda!=0)
       d=10*lemda // dimentions
6
       W=10*lemda//dimentions
7
8 gp=4.5*W*d/lemda^2//power gain
9 gp_decibles=10*log10(gp)//changing to decibles
10 \text{ end}
11 gp_decibles=round(gp_decibles*1000)/1000///rounding
      off decimals
12 disp(gp_decibles, 'the power gain in decibles')//
      decibles
```

Scilab code Exa 8.19 power gain and directivity of a horn

decimals

15 disp(D_decibles,gp_decibles, 'the beamwidth power gain and directivity in decibles')//decibles

Scilab code Exa 8.20 complementary slot impedence

```
1 //complementary slot impedence
2 //given
3 clc
4 function [Zs] = slot_imp(Zd)
5 no = 377
6 Rd=real(Zd)
7 Xd=imag(Zd)
8 Zs=(no^2/(4*(Rd^2+Xd^2)))*(Rd-\%i*Xd)//slot impedance
9 Zs=round(Zs*100)/100///rounding off decimals
10 endfunction
11 Zd = 73 + \%i * 50 / / ohm
12 \quad [Zs1] = slot_imp(Zd)
13 \text{ Zd} = 70 //\text{ohm}
14 [Zs2] = slot_imp(Zd)
15 \text{ Zd} = 800 / / \text{ohm}
16 \quad [Zs3] = slot_imp(Zd)
17 \text{ Zd} = 400 / \text{ohm}
18 \quad [Zs4] = slot_imp(Zd)
19 Zd=50+\%i*10//ohm
20 [Zs5] = slot_imp(Zd)
21 \text{ Zd} = 50 - \%i * 30 / / ohm
22 [Zs6] = slot_imp(Zd)
23 \text{ Zd} = 350 / / \text{ohm}
24 [Zs7] = slot_imp(Zd)
25 disp(Zs7, Zs6, Zs5, Zs4, Zs3, Zs2, Zs1, 'the complementry
       slot impedence in ohms')//ohm
```

Scilab code Exa 8.21 radiation resistance of hertzian dipole

```
1 //radiation resistance of hertzian dipole
2 //given
3 clc
4 lemda=1//as the radiation resistance is independent
       of lemda
5 function[Rr]=rad_resistance(dl)
   for (lemda!=0)
        Rr = 80 * %pi ^2 * (dl / lemda) ^2
        Rr=round(Rr*1000)/1000///rounding off decimals
8
9
10
    endfunction
11 dl=lemda/20
12 [Rr1] = rad_resistance(dl)
13 dl=lemda/30
14 [Rr2]=rad_resistance(dl)
15 dl = lemda/40
16 [Rr3]=rad_resistance(dl)
17 disp(Rr3, Rr2, Rr1, 'the radiation resistance of
      hertzian dipole')
```

Scilab code Exa 8.22 directivity of half wave dipole

```
//directivity of half wave dipole
//given
clc
Pr=1//watts
r=1//as value of "r" do not effect the expression
n0=120*%pi
for(r!=0)
I=sqrt(Pr/73)
Emax=60*I/r
gdmax=4*%pi*(si)/Pr
```

```
12 gdmax=round(gdmax*1000)/1000///rounding off decimals
13 end
14 disp(gdmax, 'the directivity expression for half wave dipole')
```

Scilab code Exa 8.23 radiated power of an antenna

```
//radiated power of an antenna
//given
clc
I=2//amperes
Rr=300//ohms
Pr=I^2*Rr//radiated power
disp(Pr,'the radiated power of anantenna in watts'
)
```

Scilab code Exa 8.24 effective area of a half wave dipole

```
// effective area of a half wave dipole
// given
clc
f=0.6d+9//hertz
Vo=3d+8//m/s
gd=1.644//directivity of half wave dipole
lemda=Vo/f
Ae=(lemda^2/(4*%pi))*gd//metre^2
Ae=round(Ae*1d+4)/1d+4///rounding off decimals
disp(Ae, 'the effective area of a half wave dipole in metre^2')//m^2
```

Scilab code Exa 8.25 effective area of hertzian dipole

```
// effective area of hertzian dipole
// given
clc
f=0.2d+9//hertz
Vo=3d+8//m/s
lemda=Vo/f
Ae=(lemda^2/(4*%pi))//metre^2//ERROR
Ae=round(Ae*1000)/1000///rounding off decimals
disp(Ae,'the effective area of a half wave dipole in metre^2')//m^2
//ERROR in the calculation of the book as effective area includes lemda square not cube.
```