

AD-A149 084

A METAL-CATALYZED REARRANGEMENT OF ALKENE-ALKYNES AND  
THE STEREOCHEMISTRY. (U) COLUMBIA UNIV NEW YORK DEPT OF  
CHEMISTRY T J KATZ ET AL. 27 DEC 84 TR-8

1/1

UNCLASSIFIED

N80014-79-C-0683

F/G 7/4

NL

END  
FILED  
DTIC



MICROCOPY RESOLUTION TEST CHART  
NATIONAL BUREAU OF STANDARDS-1963-A

FILE COPY

AD-A149 084

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

11

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | READ INSTRUCTIONS BEFORE COMPLETING FORM                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------|
| 1. REPORT NUMBER<br>Technical Report No. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER                                             |
| 4. TITLE (and Subtitle)<br>A METAL-CATALYZED REARRANGEMENT OF ALKENE-ALKYNES AND THE STEREOCHEMISTRY OF METALLACYCLOBUTENE RING OPENING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | 5. TYPE OF REPORT & PERIOD COVERED<br>Technical Report                    |
| AUTHOR(s)<br>Thomas J. Katz and Timothy M. Sivavec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 6. PERFORMING ORG. REPORT NUMBER                                          |
| PERFORMING ORGANIZATION NAME AND ADDRESS<br>Thomas J. Katz<br>Columbia University Chemistry Department<br>New York, NY 10027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br>NR 356-726 |
| CONTROLLING OFFICE NAME AND ADDRESS<br>Office of Naval Research - Chemistry<br>Arlington, VA 22217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 12. REPORT DATE<br>December 27, 1984                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | 13. NUMBER OF PAGES<br>14                                                 |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 15. SECURITY CLASS. (of this report)                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | 16a. DECLASSIFICATION/DOWNGRADING SCHEDULE                                |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br>This document has been approved for public release and sale; its distribution is unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                                                           |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)<br><br>S E L F I C T<br>JAN 9 1985<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                           |
| 18. SUPPLEMENTARY NOTES<br><br>To be published in the <u>Journal of the American Chemical Society</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                                                           |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br><br>Polyacetylene                                  Mechanism                                  Catalysis<br>Acetylene                                      Molecular Rearrangement                      Metal-carbene<br>Olefin Metathesis                            Stereochemistry                              Initiation<br>Polymerization                                Metallacyclobutene                                                                                                                                                                                                                                |                       |                                                                           |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br><br>A molecular rearrangement is described that demonstrates how alkyl-metal-carbenes are generated when metal derivatives combine with acetylenes and olefins and shows that tungsten-carbenes not stabilized by heteroatoms insert into acetylenes. It reveals that this insertion can be remarkably stereo-selective. With catalytic amounts of carbene-tungsten carbonyls, biphenyls substituted at the 2 and 2' positions by vinyl and acetylene groups yield isomeric 9-vinylphenanthrenes. With stoichiometric amounts, they yield 9-vinylphenanthrenes whose structures contain the carbene moiety of the metal-carbene. |                       |                                                                           |

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE  
S/N 0102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

OFFICE OF NAVAL RESEARCH

Contract N00014-79-C-0683

Task No. NR 356-726

TECHNICAL REPORT NO. 8

A Metal-Catalyzed Rearrangement of Alkene-Alkynes  
and the Stereochemistry of Metallacyclobutene Ring Opening  
by  
Thomas J. Katz and Timothy M. Sivavec  
Prepared for Publication  
in the  
Journal of the American Chemical Society

Columbia University  
Department of Chemistry  
New York, New York

December 27, 1984

A-1

Reproduction in whole or in part is permitted for  
any purpose of the United States Government

This document has been approved for public release  
and sale; its distribution is unlimited



84 12 31 066

A Metal-Catalyzed Rearrangement of Alkene-Alkynes  
and the Stereochemistry of Metallacyclobutene Ring Opening

Thomas J. Katz\* and Timothy M. Sivavec

Department of Chemistry

Columbia University

New York, New York 10027

Abstract. A new molecular rearrangement is described that demonstrates how alkyl-metal-carbenes are generated when metal derivatives (here stabilized carbene-tungsten carbonyls) combine with acetylenes and olefins and shows that tungsten-carbenes not stabilized by heteroatoms insert into acetylenes. It reveals that this insertion can be remarkably stereo-selective.

With catalytic amounts of carbene-tungsten carbonyls, biphenyls substituted at the 2 and 2' positions by vinyl and acetylene groups yield isomeric 9-vinylphenanthrenes. With stoichiometric amounts, they yield 9-vinylphenanthrenes whose structures contain the carbene moiety of the metal-carbene.

We are reporting a new molecular rearrangement, outlined in general form as equation 1 and illustrated by a specific example in equation 2, a hybrid of the metal-catalyzed acetylene polymerization<sup>1</sup> and olefin metathesis<sup>2</sup> reactions. It demonstrates how alkyl-metal-carbenes are generated when metal derivatives (here stabilized carbene-tungsten carbonyls)<sup>3</sup> combine with acetylenes and olefins,<sup>1d,4,5</sup> and it shows that tungsten-carbenes not stabilized by heteroatoms insert into acetylenes, the essential postulate underlying the proposition that the acetylene polymerization is an olefin metathesis.<sup>1b-d,4,5</sup> It reveals that this insertion can be remarkably stereoselective in the sense indicated in equation 3.<sup>6</sup>



The rearrangement is presumed to follow the pathways in Scheme I after an initiation involving similar steps, summarized as equation 4.<sup>11</sup> Table I

Scheme I



records the yields obtained (and where relevant the stereochemistries) with various molecules 1<sup>21,29</sup> and initiators 2. That equation 4 does accurately depict the initiation, and consequently that Scheme I probably does indicate how the reaction works, is demonstrated by the experiments summarized in



Table II, which show that examples of molecules 1 combine with stoichiometric amounts of metal-carbenes 2 to give the products 3 of equation 4.

The experiments define for the first time what the stereochemistry is of the pericyclic transformation of a metallacyclobutene to a metallabutadiene when there are no stabilizing heteroatoms.<sup>6</sup> This stereochemistry should be embodied in the structures of acetylene polymers formed by metathesis reactions, but except for that of polyacetylene itself,<sup>38</sup> whose formation may not involve the steps in equation 3,<sup>39</sup> the structures of these polymers have not been positively defined.<sup>40</sup> The high stereoselectivity recorded in Table I [95 % at 50 °C when the initiator is pentacarbonyl(diphenyl-methylene)tungsten] implies that when the cyclobutene in equation 3 opens, the methyl prefers to rotate toward the metal. Possibly its C-H is attracted to the coordinatively unsaturated center.<sup>44</sup>

Acknowledgment. We are grateful to the National Science Foundation (grant CHE 81-08998) and the U.S. Navy, Office of Naval Research, for supporting this work.

References and Notes

- (1) (a) Simionescu, C. I.; Percec, V. Prog. Polym. Sci. 1982, 8, 133.  
(b) Masuda, T.; Higashimura, T. Acc. Chem. Res. 1984, 17, 51. (c) Katz, T. J.; Lee, S. J. J. Am. Chem. Soc. 1980, 102, 422. (d) Katz, T. J.; Lee, S. J.; Shippey, M. A. J. Mol. Cat. 1980, 219. (e) Chauser, M. G.; Rodionov, Yu. M.; Misin, V. M.; Cherkashin, M. I. Russ. Chem. Rev. 1976, 45, 348.
- (2) (a) Grubbs, R. H. In "Comprehensive Organometallic Chemistry"; Wilkinson, G., Ed.; Pergamon Press: Oxford, 1982; Vol. 8, p. 499. (b) Ivin, K. J. "Olefin Metathesis"; Academic Press: London, 1983.
- (3) Fischer, H. in "The Chemistry of the Metal-Carbon Bond," Hartley, F. R. and Patai, S., Eds.; Wiley: New York, 1982; Vol. 1, pp. 181-231.
- (4) (a) Katz, T. J.; Lee, S. J.; Nair, M.; Savage, E. B. J. Am. Chem. Soc. 1980, 102, 7940. (b) Katz, T. J.; Han, C-C. Organometallics 1982, 1, 1093.
- (5) (a) Katz, T. J.; Savage, E. B.; Lee, S. J.; Nair, M. J. Am. Chem. Soc. 1980, 102, 7942. (b) Han, C-C.; Katz, T. J. J. Am. Chem. Soc., submitted for publication.
- (6) Pentacarbonylchromium- and tungsten-carbenes carrying as stabilizers on the carbene carbon an alkoxy or two aryls insert into ynamines much as in equation 3<sup>7</sup> (the stereochemistry of some of these insertions have been analyzed<sup>8</sup>) and react with carbon-substituted alkynes to give phenols, indenes, furans, and cyclohexenones.<sup>7,9</sup> The only metal-monoalkylcarbene to have been added to an acetylene is a tantalum neopentylidene, but the stereochemistry of the single reported adduct is unknown.<sup>10</sup>
- (7) Dötz, K. H. Pure Appl. Chem. 1983, 55, 1689.

(8) (a) Dötz, K. H. Chem. Ber. 1977, 110, 78. (b) Dötz, K. H.; Pruskil, I. ibid. 1978, 111, 2059.

(9) Foley, H. C.; Strubinger, L. M.; Targos, T. S.; Geoffroy, G. L. J. Am. Chem. Soc. 1983, 105, 3064.

(10) Wood, C. D.; McLain, S. J.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 3210.

(11) This formulation derives from previous studies showing that metal-carbenes induce acetylenes to polymerize,<sup>1c</sup> that acetylenes induce metal derivatives, including metal-carbenes, to metathesize olefins,<sup>4</sup> that stabilized metal-carbenes add faster to acetylenes than to olefins,<sup>5</sup> that the carbons of metal-carbenes bond preferentially to the less substituted ends of acetylenes<sup>12</sup> (as also olefins<sup>13</sup>), and that olefinic metal-carbenes give cycloolefins.<sup>14,15</sup> An alternative is possible, in which after the initiation external metal carbenes attack the olefin and internal metal carbenes attack the acetylene, but the regiospecificity of the first of these steps would be peculiar for the substrate 1, R = R' = CH<sub>3</sub>.<sup>17</sup>

(12) Wulff, W. D.; Tang, P-C.; McCallum, J. S. J. Am. Chem. Soc. 1981, 103, 7677.

(13) (a) McGinnis, J.; Katz, T. J.; Hurwitz, S. J. Am. Chem. Soc. 1976, 98, 2605. (b) Katz, T. J. Adv. Organometal. Chem. 1977, 16, 283. (c) Casev, C. P.; Tunistra, H. E.; Saeman, M. J. Am. Chem. Soc. 1976, 98, 608.

(14) (a) Reference 2b, Chapter 11. (b) Katz, T. J.; Rothchild, R. J. Am. Chem. Soc. 1976, 98, 2519. (c) Grubbs, R. H.; Carr, D. D.; Hoppin, C.; Burk, P. L. ibid. 1976, 98, 3478.

(15) Related metal-carbenes that are stabilized by heteroatoms chelate to pendant olefins and yield cyclopropanes.<sup>16</sup>

(16) (a) Casey, C. P.; Vollendorf, N. W.; Haller, K. J. J. Am. Chem. Soc. 1984, 106, 3754. (b) Casey, C. P.; Shusterman, A. J.; Vollendorf, N. W.; Haller, K. J. ibid. 1982, 104, 2417. (c) Casey, C. P.; Shusterman, A. J. J. Mol. Catal. 1980, 8, 1. (d) Toledano, C. A.; Rudler, H.; Daran, J-C.; Jeannin, Y. J. Chem. Soc., Chem. Commun., 1984, 574. (e) Toledano, C. A.; Levisalles, J.; Rudler, M.; Rudler, H.; Daran, J-C.; Jeannin, Y. J. Organomet. Chem. 1982, 228, C7.

(17) The translationally invariant structures of the polymers of 1-methylcyclobutene<sup>18</sup> and trans-1-methyl-cyclooctene<sup>19</sup> and the specific union of the less-substituted with the more-substituted moieties when 2-methyl-1-pentene metathesizes with 2-methyl-2-butene<sup>20</sup> imply that the carbon end of a metal-carbene (disubstituted, not monosubstituted as in the alternative considered here) bonds preferentially to the less-substituted end of a trisubstituted double bond.

(18) Katz, T. J.; McGinnis, J.; Altus, C. J. Am. Chem. Soc. 1976, 98, 606.

(19) Lee, S. J.; McGinnis, J.; Katz, T. J. J. Am. Chem. Soc. 1976, 98, 7818.

(20) McGinnis, J., Dissertation, Columbia University, New York, NY, 1976, p. 78.

(21) Enynes I were prepared from  $(C_6H_5)_3PCHRR'$ <sup>+</sup> Br<sup>-</sup>/NaNH<sub>2</sub><sup>23</sup> and monoacetals made from [1,1'-biphenyl]-2,2'-dicarboxaldehyde<sup>24</sup> and 0.8 equiv ethylene glycol or 2,2-dimethyl-1,3-propanediol (p-TsOH, C<sub>6</sub>H<sub>6</sub>). Hydrolysis (5% aq HCl/THF) and then LiCl<sub>2</sub>CPO(OEt)<sub>2</sub>/n-BuLi<sup>25</sup> (2.2 equiv) or  $((C_6H_5)_3PCH_2Br)$ <sup>+</sup> Br<sup>-</sup>/t-BuOK<sup>26</sup> (2 equiv) gave I.

(22) Authentic samples were prepared from phenanthrene-9-carboxaldehyde.<sup>23,27</sup> The 9-(1-propenyl)phenanthrenes were 86 % one isomer, presumably cis.<sup>23</sup> The olefin-olefin proton couplings (cis, J = 11.2 Hz, and trans, J = 15.4 Hz) support this assignment.<sup>28</sup>

(23) Schlosser, M.; Schaub, B. Chimia 1982, 36, 396.

(24) Bailey, P. S.; Erikson, R. E. "Organic Syntheses"; Wiley: New York, 1973; Collect. Vol. V, p. 489.

(25) Villieras, J.; Perriot, P.; Normant, J. F. Synthesis 1975, 458.

(26) Matsumoto, M.; Kuroda, K. Tetrahedron Lett. 1980, 4021.

(27) The <sup>1</sup>H NMR spectra of 9-(2-methyl-1-propenyl)phenanthrene, 9-ethenylphenanthrene, and trans-9-(1-propenyl)phenanthrene match those published: Matsumoto, M.; Dobashi, S.; Kondo, K. Bull. Chem. Soc. Jpn. 1978, 51, 185.

(28) Jackman, L. M.; Sternhell, S. "Applications of NMR Spectroscopy in Organic Chemistry," 2nd ed.; Pergamon Press: Oxford, 1969, pp. 301-302.

(29) The aliphatic enynes 7-non-en-1-yne and 6-octen-1-yne when combined with 0.01 equiv  $(CO)_5W=C(C_6H_5)(OCH_3)$  under similar conditions and at even higher dilution ( $1.2 \times 10^{-3}$  M) gave no vinyl cyclohexene (GLC comparison), but > 90 % yield of oligomers including benzenoid trimers ( $\delta$  6.80). No high molecular weight polymers were recognized by gel-permeation chromatography.

(30) When R" = C<sub>6</sub>H<sub>5</sub>, the crude reaction mixture (<sup>1</sup>H NMR analysis) contained the enol ethers (1.0 : 1.8 mixture of E : Z)<sup>32</sup> and only traces of the ketone 9-phenanthryl-CH<sub>2</sub>COC<sub>6</sub>H<sub>5</sub> ( $\delta$  4.78).<sup>31</sup> When R" = CH<sub>3</sub> it contained the corresponding ketone [ $\delta$  2.14 (s, 2 H), 4.15 (s, 2 H), 4.15 (s, 2 H), 7.6 - 8.8 (m, 9 H)] and no enol ether.<sup>32</sup>

(31) The  $^1\text{H}$  NMR spectrum ( $\text{CDCl}_3$ ) of the Z-isomer<sup>32</sup> includes  $\delta$  3.58 (s, 3 H), 6.74 (s, 1 H), 6.8 - 8.8 (m, 14 H). Resonances exhibited by the mixture at 3.99 (s, 3 H), 6.22 (s, 1 H), 6.8 - 8.8 (m, 14 H) are assigned to the E-isomer.

(32) Authentic samples of 9-vinylphenanthrenes 3 were prepared as follows: 3 ( $\text{R}'' = \text{CH}_3$ ,  $\text{X} = \text{OCH}_3$ ) from phenanthrene-9-carboxaldehyde and  $(\text{C}_6\text{H}_5)_3\text{P}^+\text{CHCH}_3(\text{OCH}_3)\text{Cl}^-/\underline{\text{t-BuOK}}^{33}$ ; Z-3 ( $\text{R}'' = \text{C}_6\text{H}_5$ ,  $\text{X} = \text{OCH}_3$ ) from 9-bromophenanthrene and n-BuLi, then styrene oxide<sup>34</sup>, oxidization with  $\text{Pyr}\cdot\text{HCl}\cdot\text{CrO}_3$ ,<sup>35</sup> and stereospecific O-methylation using t-BuOK/HMPA/dimethyl sulfate;<sup>36</sup> 3 ( $\text{R}'' = \text{X} = \text{C}_6\text{H}_5$ ) from phenanthrene-9-carboxaldehyde and  $(\text{C}_6\text{H}_5)_3\text{PCH}(\text{C}_6\text{H}_5)_2^+\text{Br}^{-37}/\text{NaNH}_2$ . All were characterized satisfactorily by  $^1\text{H}$  NMR.

(33) Coulson, D. R. Tetrahedron Lett. 1964, 3323.

(34) Cristol, S. J.; Douglass, J. R.; Meek, J. S. J. Am. Chem. Soc. 1951, 73, 816.

(35) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647.

(36) Krow, G. R.; Michener, E. Synthesis 1974, 572.

(37) Horner, L.; Lingnau, E. Justus Liebigs Ann. Chem. 1955, 591, 135.

(38) (a) Shirakawa, H.; Ikeda, S. Polym. J. 1971, 2, 231.  
(b) Shirakawa, H.; Ito, T.; Ikeda, S. ibid. 1973, 4, 460. (c) Maricq, M. M.; Waugh, J. S.; MacDiarmid, A. G.; Shirakawa, H.; Heeger, A. J. J. Am. Chem. Soc. 1978, 100, 7729. (d) Bernier, P.; Schue, F.; Sledz, J.; Rolland, M.; Giral, L. Chem. Scr. 1981, 17, 151.

(39) Clarke, T. C.; Yannoni, C. S.; Katz, T. J. J. Am. Chem. Soc. 1983, 105, 7787.

(40) IR<sup>41</sup> and  $^1\text{H}$  NMR<sup>41a,42</sup> spectra have been used to assign stereochemistries to poly(phenylacetylene)s and  $^{13}\text{C}$  NMR spectra to

poly(t-butylacetylene)s,<sup>43</sup> but the basis for the assignments is not rigorous.

- (41) (a) Simionescu, C. I.; Percec, V.; Dumitrescu, S. J. Polym. Sci., Polym. Chem. Ed. 1977, 15, 2497. (b) Masuda, T.; Sasaki, N.; Higashimura, T. Macromolecules 1975, 8, 717.
- (42) (a) Simionescu, C. I.; Percec, V. J. Polym. Sci., Polym. Lett. Ed. 1979, 17, 421. (b) Simionescu, C. I.; Percec, V. J. Polym. Sci., Polym. Chem. Ed. 1980, 18, 147.
- (43) (a) Masuda, T.; Okano, Y.; Kuwane, Y.; Higashimura, T. Polym. J. 1980, 12, 907. (b) Okano, Y.; Masuda, T.; Higashimura, T. Polym. J. 1982, 14, 477.
- (44) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395.

Table I. Yields and Stereochemistries of 9-Vinylphenanthrenes Obtained According to Equation 1 from Enynes 1<sup>21</sup> and Catalytic Amounts of Metal-Carbenes 2 in which R'' = C<sub>6</sub>H<sub>5</sub>.<sup>a</sup>

| <u>1</u>                         |                     | X                             | yield            | product                   |
|----------------------------------|---------------------|-------------------------------|------------------|---------------------------|
| R                                | R'                  | in <u>2</u>                   | (%) <sup>b</sup> | % <u>cis</u> <sup>c</sup> |
| H                                | H                   | OCH <sub>3</sub>              | 31               |                           |
| H                                | H                   | C <sub>6</sub> H <sub>5</sub> | 18               |                           |
| CH <sub>3</sub> (H) <sup>d</sup> | H(CH <sub>3</sub> ) | OCH <sub>3</sub>              | 26               | 78                        |
| CH <sub>3</sub> (H)              | H(CH <sub>3</sub> ) | C <sub>6</sub> H <sub>5</sub> | 19               | 95                        |
| CH <sub>3</sub>                  | CH <sub>3</sub>     | OCH <sub>3</sub>              | 24               |                           |
| CH <sub>3</sub>                  | CH <sub>3</sub>     | C <sub>6</sub> H <sub>5</sub> | 24               |                           |

<sup>a</sup>Enynes 1 (1 equiv) and n-nonane (0.5 - 1.0 equiv, internal standard for GLC analysis) were diluted to 0.10 M with toluene, added to metal-carbenes 2 (0.01 equiv), degassed, and sealed in a vacuum. When X was OCH<sub>3</sub>, reactions were run for 18 h at 75 °C, and when C<sub>6</sub>H<sub>5</sub>, for 16 h at 50 °C. The products were identified by comparing GLC retention times (30 m x 0.316 mm capillary column coated with 0.25 µm Carbowax 20 M) and <sup>1</sup>H NMR spectra with those of authentic samples (see note 22). <sup>b</sup>Yields were determined by GLC. <sup>c</sup>Stereochemistries were analyzed by <sup>1</sup>H NMR [CH<sub>3</sub> resonances in 9-(1-propenyl)phenanthrene (see note 22) in CDCl<sub>3</sub>: cis, δ 1.83 (dd, 7.0 and 1.8 Hz); trans, δ 2.04 (dd, 6.6 and 1.7 Hz)]. <sup>d</sup>Initially 56 % cis.

Table II. Yields of 9-Vinylphenanthrenes 3 from Reactions of Molecules 1 with Stoichiometric Amounts of Metal-Carbenes 2 (Equation 4).<sup>a</sup>

| <u>1</u>                         |                     | <u>2</u>                      |                               | yield            |
|----------------------------------|---------------------|-------------------------------|-------------------------------|------------------|
| R                                | R'                  | R''                           | X                             | (%) <sup>b</sup> |
| H                                | H                   | C <sub>6</sub> H <sub>5</sub> | OCH <sub>3</sub>              | 50               |
| H                                | H                   | CH <sub>3</sub>               | OCH <sub>3</sub>              | 42               |
| H                                | H                   | C <sub>6</sub> H <sub>5</sub> | C <sub>6</sub> H <sub>5</sub> | 51               |
| CH <sub>3</sub> (H) <sup>c</sup> | H(CH <sub>3</sub> ) | C <sub>6</sub> H <sub>5</sub> | OCH <sub>3</sub>              | 41               |
| CH <sub>3</sub> (H)              | H(CH <sub>3</sub> ) | CH <sub>3</sub>               | OCH <sub>3</sub>              | 40               |
| CH <sub>3</sub> (H)              | H(CH <sub>3</sub> ) | C <sub>6</sub> H <sub>5</sub> | C <sub>6</sub> H <sub>5</sub> | 40               |

<sup>a</sup>Degassed 0.05 M solutions of 1 (1 equiv) and metal-carbenes 2 (1 equiv) in toluene were heated in an evacuated ampoule. When X was C<sub>6</sub>H<sub>5</sub>, reactions were run at 50 °C for 16 h, and when OCH<sub>3</sub>, at 75 °C for 24 h, except that for the next-to-last entry the time was 18 h. Evaporation of solvent and chromatography on Florisil with pentane-methylene chloride gave 3 when R'' = X = C<sub>6</sub>H<sub>5</sub>, and the ketones 9-phenanthryl-CH<sub>2</sub>COR'' corresponding to enol ethers 3 when R'' = C<sub>6</sub>H<sub>5</sub> or CH<sub>3</sub> and X = OCH<sub>3</sub> (see note 30). Products were identified by comparing <sup>1</sup>H NMR spectra with those of authentic samples (see note 32). <sup>b</sup>Yields of isolated products.

<sup>c</sup>Initially 56 % cis.

DL/413/83/01  
GEN/413-2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

|                                                                                                                              | <u>No.<br/>Copies</u> |                                                                                                                | <u>No.<br/>Copies</u> |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|
| Office of Naval Research<br>Attn: Code 413<br>800 N. Quincy Street<br>Arlington, Virginia 22217                              | 2                     | Dr. David Young<br>Code 334<br>NORDA<br>NSTL, Mississippi 39529                                                | 1                     |
| Dr. Bernard Douda<br>Naval Weapons Support Center<br>Code 5042<br>Crane, Indiana 47522                                       | 1                     | Naval Weapons Center<br>Attn: Dr. A. B. Amster<br>Chemistry Division<br>China Lake, California 93555           | 1                     |
| Commander, Naval Air Systems<br>Command<br>Attn: Code 310C (H. Rosenwasser)<br>Washington, D.C. 20360                        | 1                     | Scientific Advisor<br>Commandant of the Marine Corps<br>Code RD-1<br>Washington, D.C. 20380                    | 1                     |
| Naval Civil Engineering Laboratory<br>Attn: Dr. R. W. Drisko<br>Port Hueneme, California 93401                               | 1                     | U.S. Army Research Office<br>Attn: CRD-AA-IP<br>P.O. Box 12211<br>Research Triangle Park, NC 27709             | 1                     |
| Defense Technical Information Center<br>Building 5, Cameron Station<br>Alexandria, Virginia 22314                            | 12                    | Mr. John Boyle<br>Materials Branch<br>Naval Ship Engineering Center<br>Philadelphia, Pennsylvania 19112        | 1                     |
| DTNSRDC<br>Attn: Dr. G. Bosmajian<br>Applied Chemistry Division<br>Annapolis, Maryland 21401                                 | 1                     | Naval Ocean Systems Center<br>Attn: Dr. S. Yamamoto<br>Marine Sciences Division<br>San Diego, California 91232 | 1                     |
| Dr. William Tolles<br>Superintendent<br>Chemistry Division, Code 6100<br>Naval Research Laboratory<br>Washington, D.C. 20375 | 1                     |                                                                                                                |                       |

ABSTRACTS DISTRIBUTION LIST, 3568

Professor A. G. MacDiarmid  
Department of Chemistry  
University of Pennsylvania  
Philadelphia, Pennsylvania 19174

Dr. E. Fischer, Code 2853  
Naval Ship Research and  
Development Center  
Annapolis, Maryland 21402

Professor H. Allcock  
Department of Chemistry  
Pennsylvania State University  
University Park, Pennsylvania 16802

Professor R. Lenz  
Department of Chemistry  
University of Massachusetts  
Amherst, Massachusetts 01002

Professor M. David Curtis  
Department of Chemistry  
University of Michigan  
Ann Arbor, Michigan 48105

Dr. J. Griffith  
Naval Research Laboratory  
Chemistry Section, Code 6120  
Washington, D.C. 20375

Professor G. Wnek  
Department of Materials Science  
and Engineering  
Massachusetts Institute of Technology  
Cambridge, Massachusetts 02139

Mr. Samson Jennekke  
Honeywell Corporate Technology Center  
10701 Lyndale Avenue South  
Bloomington, Minnesota 55420

Dr. Richard M. Laine  
SRI International  
333 Ravenswood Avenue  
Menlo Park, California 94025

Dr. James McGrath  
Department of Chemistry  
Virginia Polytechnic Institute  
Blacksburg, Virginia 24061

Dr. Adolf Amster  
Chemistry Division  
Naval Weapons Center  
China Lake, California 93555

Professor C. Allen  
Department of Chemistry  
University of Vermont  
Burlington, Vermont 05401

Dr. William Tolles  
Code 6100  
Naval Research Laboratory  
Washington, D.C. 20375

Professor T. Katz  
Department of Chemistry  
Columbia University  
New York, New York 10027

Professor J. Salamone  
Department of Chemistry  
University of Lowell  
Lowell, Massachusetts 01854

Professor J. Chien  
Department of Chemistry  
University of Massachusetts  
Amherst, Massachusetts 01854

Professor William R. Krigbaum  
Department of Chemistry  
Duke University  
Durham, North Carolina 27706

Dr. R. Miller  
IBM Research Laboratory K42/282  
5600 Cottle Road  
San Jose, California 95193

DL/413/83/01  
356B/413-2

ABSTRACTS DISTRIBUTION LIST, 356B

Professor T. Marks  
Department of Chemistry  
Northwestern University  
Evanston, Illinois 60201

Professor Malcolm B. Polk  
Department of Chemistry  
Atlanta University  
Atlanta, Georgia 30314

Dr. Kurt Baum  
Fluorochem, Inc.  
680 S. Ayon Avenue  
Azusa, California 91702

Professor H. Ishida  
Department of Macromolecular Science  
Case Western University  
Cleveland, Ohio 44106

Professor Stephen Wellinghoff  
Department of Chemical Engineering  
University of Minnesota  
Minneapolis, Minnesota 55455

Professor G. Whitesides  
Department of Chemistry  
Harvard University  
Cambridge, Massachusetts 02138

Dr. K. Paciorek  
Ultrasystems, Inc.  
P.O. Box 19605  
Irvine, California 92715

Professor H. Hall  
Department of Chemistry  
University of Arizona  
Tucson, Arizona 85721

Professor D. Seydel  
Department of Chemistry  
Massachusetts Institute of Technology  
Cambridge, Massachusetts 02139

**END**

**FILMED**

**2-85**

**DTIC**