

AVANCE 1

Grupo 3 Rodolfo Huacasai Leonardo Sandoval Daniel Zavaleta

INTRODUCCIÓN

- El Patrón Alternante Cíclico (CAP) es una onda EEG relacionada con la actividad del sueño NREM (sueño sin movimientos oculares rápidos) que indica la inestabilidad del sueño.
- Esta relacionado con aspectos de la memoria y el ratio de aprendizaje [1].
- Conocerla permitiria también la detección de anomalias espontaneas como el complejo K recientemente asociado con el Alzheimer y epilepia.[2]

[1]R. Ferri, R. Huber, D. Aricò, V. Drago, F. Rundo, M. F. Ghilardi, M. Massimini y G. Tononi, "The slow-wave components of the cyclic alternating pattern (CAP) have a role in sleep-related learning processes," Neuroscience Letters, vol. 432, no. 3, pp. 228-231, 2008. DOI: 10.1016/j.neulet.2007.12.025. [2]M.H. Gandhi y P.D. Emmady, "Physiology, K Complex," StatPearls, Actualizado el 1 de mayo de 2023. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK557469/#. Accedido el 3 de abril de 2024.

PROBLEMÁTICA

Detección deficiente e imprecisa de patologías del sueño debido a las limitaciones en los métodos actuales de análisis de los patrones de sueño, específicamente del Patrón Alternante Cíclico (CAP)

De forma tradicional:

Evaluación de CAP (indicador de la estabilidad del sueño vinculado a múltiples trastornos)

Requiere un análisis visual detallado y laborioso por parte de especialistas entrenados

- Susceptible a errores humanos
- Proceso extenso y costoso en términos de tiempo y recursos

Restringe su aplicabilidad en diagnósticos rápidos y accesibles

Además:

Complejidad de la señales EEG

 Su interpretación se torna desafiante y propensa a imprecisiones, si no se tiene las herramientas adecuadas

Entonces:

Solución:

Desarrollar un modelo de aprendizaje automático que permita la detección de patologías del sueño haciendo uso de la CAP Sleep Database

BASE DE DATOS

- Colección de 108 grabaciones polisomnográficas
- Tipos de señales (contenidas en esta BD como archivos .edf) : EEG (3 canales), EOG (2 canales), EMG mentoniana y tibial, señales de respiración (flujo aéreo, esfuerzo abdominal y torácico y SaO2) y EKG.
- Cuenta con: Anotaciones de referencia de las fases del sueño y de CAP
- Sujetos del estudio:
 - 16 sujetos sanos (sin trastorno neurológico y libres de fármacos que afectaran al sistema nervioso central)
 - 92 sujetos con alguna patología del sueño

CAP Sleep Database

n1-n16 Sin patología (controles)

brux1-brux2 Bruxismo
ins1-ins9 Insomnio
narco1-narco5 Narcolepsia
nfle1-nfle40 Epilepsia nocturna del lóbulo frontal
plm1-plm10 Movimientos periódicos de las piernas
rbd1-rbd22 Trastorno del comportamiento REM
sdb1-sdb4 Trastornos respiratorios del sueño

ANÁLISIS DESCRIPTIVO DE LAS VARIABLES

Sleep stage

(W=wake, S1-S4=sleep stages, R=REM, MT=body movements)

Body position

(Left, Right, Prone, or Supine; not recorded in some subjects)

Time of day

[hh:mm:ss]

Event

(either a sleep stage (SLEEP-SO..S4, REM, MT), or a phase A of CAP)

Duration

(in seconds)

Location

(the signal(s) in which the event can be observed)

Waveform data

ANALISIS EXPLORATORIO

- El target es el Sleep Stage.
- Los Features son Position,
 Time, Duration, Location.
- Datos de tipo nominal por lo que requiere un encode.
- Ausencia de Nulls en el dataset.
- Existe presencia de Outliers.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1266 entries, 0 to 1265
Data columns (total 6 columns):
                     Non-Null Count Dtype
    Column
                                    object
    Sleep Stage
                     1266 non-null
    Position
                                    object
                    1266 non-null
                                    object
    Time [hh:mm:ss] 1266 non-null
                                    object
                    1266 non-null
    Event
    Duration[s] 1266 non-null
                                    object
    Location
                     1266 non-null
                                    object
dtypes: object(6)
memory usage: 59.5+ KB
```

Figura 1. Tipo y conteo de los datos de las columnas previo a su preprocesamiento

Sleep Stage	932
Position	932
Time [hh:mm:ss]	932
Event	932
Duration[s]	932
Location	932
dtype: int64	

Figura 2. Tipo y conteo de los datos de las columnas despues de su preprocesamiento

HISTOGRAMA Y DIAGRAMAS DE LOS DATOS

Figura 3. Histograma y diagrama de cajas y bigotes de los features y target posterior al encode de los valores nominales.

HISTOGRAMA Y DIAGRAMAS DE LOS DATOS

Figura 4. Histograma y diagrama de cajas y bigotes de los features y target posterior al encode de los valores nominales.

DESARROLLO DE MODELO DE MODELO DE ML

Primero, se optó por predecir el sleep_stage y se obtuvieron los siguientes resultados:

Reporte de clasificación

_	precision	recall	f1-score	support
0	1.00	0.50	0.67	4
1	1.00	1.00	1.00	41
2	1.00	0.83	0.91	6
3	0.87	1.00	0.93	104
4	1.00	0.50	0.67	24
5	1.00	1.00	1.00	32
6	1.00	1.00	1.00	43
accuracy			0.94	254
macro avg	0.98	0.83	0.88	254
weighted avg	0.95	0.94	0.93	254

DESARROLLO DE MODELO DE MODELO DE ML

Luego, se optó por usar una CNN para clasificar el Cyclic Alternating Pattern (CAP) entre A1, A2, A3 y B.

Score per fold

> Fold 1 - Loss: 0.4453337788581848 - Accuracy: 80.05372881889343%

> Fold 2 - Loss: 0.4193240702152252 - Accuracy: 81.1282753944397%

> Fold 3 - Loss: 0.4307926893234253 - Accuracy: 80.32236695289612%

> Fold 4 - Loss: 0.43138083815574646 - Accuracy: 79.6507716178894%

> Fold 5 - Loss: 0.4337482154369354 - Accuracy: 80.30914068222046%

Average scores for all folds:

> Accuracy: 80.29285669326782 (+- 0.4834285499044847)

> Loss: 0.4321159183979034

Output Shape Layer (type) Param # conv1d_16 (Conv1D) (None, 1024, 32) 256 conv1d_17 (Conv1D) (None, 1024, 8) 776 max_pooling1d_8 (MaxPoolin (None, 64, 8) 0 g1D) conv1d_18 (Conv1D) (None, 64, 16) 272 dropout_4 (Dropout) (None, 64, 16) 0 conv1d_19 (Conv1D) (None, 64, 8) 264 max_pooling1d_9 (MaxPoolin (None, 16, 8) q1D) flatten_4 (Flatten) (None, 128) dense_8 (Dense) (None, 16) 2064 dense_9 (Dense) (None, 1) 17 Total params: 3649 (14.25 KB) Trainable params: 3649 (14.25 KB) Non-trainable params: 0 (0.00 Byte)

Model: "sequential_4"

DESARROLLO DE MODELO DE MODELO DE ML

Luego, se usó una DNN con LSTM:

Model: "sequential_2"

Layer (type)	Output Shape	 Param #
lstm_2 (LSTM)	(None, 32)	4352
dense_4 (Dense)	(None, 16)	528
dense_5 (Dense)	(None, 2)	34

Total params: 4914 (19.20 KB)
Trainable params: 4914 (19.20 KB)
Non-trainable params: 0 (0.00 Byte)

Test Loss: 0.5561022162437439

Test Accuracy: 0.7346938848495483

GRACIAS