FGI-2 – Formale Grundlagen der Informatik II

Modellierung und Analyse von Informatiksystemen Aufgabenblatt 2: Büchi-Automaten, ω -reguläre Sprachen Präsenzteil am 21./22. 10. – Abgabe am 28./29. 10. 2013

Präsenzaufgabe 2.1: Betrachten Sie den Büchi-Automaten A aus Beispiel 1.11 im Skript.

- 1. Erläutern Sie, warum $L^{\omega}(A)$ so aussieht, wie es im Skript angegeben ist.
- 2. Betrachten Sie A als NFA. Bestimmen Sie L(A).
- 3. Angenommen z_2 sei nicht mehr Endzustand und sei A' der resultierende Automat. Bestimmen Sie dann die resultierende Sprache $L^{\omega}(A')$.

Präsenzaufgabe 2.2: Zeigen Sie die erste Teilaussage von Lemma 1.15: "Die Vereinigung zweier ω -regulärer Mengen $U \cup V$ ist immer eine ω -reguläre Menge."

- 1. Geben Sie ein Verfahren an, welches $U \cup V$ konstruktiv aus U und V ermittelt.
- 2. Wenden Sie Ihr Verfahren auf die Sprachen $L_{2,2,1} = \{bad\}^{\omega}$ und $L_{2,2,2} = (\{ac\} \cdot \{d\}^* \cdot \{c\})^{\omega}$ an.
- 3. Begründen Sie Korrektheit und Termination Ihres Verfahrens.
- 4. Vergleichen Sie die Sprache $L_{2,2,1} \cup L_{2,2,2}$ mit der Sprache $L^{\omega}(A)$ aus Präsenzaufgabe 2.1.

Übungsaufgabe 2.3: Gegeben der NFA $A_{2,3}$:

 von 6

- 1. Geben Sie explizit die Sprache $L(A_{2.3})$ sowie die Sprachen $L^{\omega}(A_{2.3})$ und $(L(A_{2.3}))^{\omega}$ als regulären bzw. ω -regulären Ausdruck an.
- 2. Diskutieren Sie den Unterschied zwischen $L^{\omega}(A_{2.3})$ und $(L(A_{2.3}))^{\omega}$. Benennen Sie zwei konkrete ω -Wörter aus jeder Sprache (Sie können die Wörter als ω -reguläre Ausdrücke ohne die Operatoren +, ()⁺ und ()* beschreiben).
- 3. Zeichnen Sie das Zustandsdiagramm eines Büchi-Automaten, der $(L(A_{2.3}))^{\omega}$ akzeptiert. Begründen Sie die Korrektheit des Automaten.

Übungsaufgabe 2.4: Zeigen Sie die zweite Teilaussage von Lemma 1.15: "Der ω -Abschluss U^{ω} einer regulären Menge U ist immer eine ω -reguläre Menge."

von 6

Führen Sie einen konstruktiven Beweis durch. *Hinweis:* Der kurze Lösungsweg über reguläre Ausdrücke bringt maximal die halbe Punktzahl. Volle Punktzahl gibt es nur für die Konstruktion eines Büchi-Automaten.

- 1. Benennen Sie die Arbeitsschritte, die für einen konstruktiven Beweis des Lemmas notwendig sind.
- 2. Entwickeln Sie ein geeignetes Konstruktionsverfahren.
- 3. Weisen Sie die Qualität Ihres Verfahrens entsprechend Teilaufgabe 1 nach.
- 4. Wenden Sie das Verfahren aus Ihrem Beweis auf die reguläre Sprache an, die von NFA $A_{2.3}$ akzeptiert wird.

Bisher erreichbare Punktzahl: 24