$CSE\ 271-Fall\ 2011$

Evam 2

Name: PSU ID:

				\mathbf{S}	\mathbf{R}	Q+	J	K	Q+
D	Q+	\mathbf{T}	Q+	0	0	Q	0	0	Q
0	0	0	Q	0	1	0	0	1	0
1	1	1	Q'	1	0	1	1	0	1
-	···		•	1	1	X	1	1	Q'

- 1. (1 pt.) Assuming a word size of 5 bits, interpret 11010 as a 2's complement number.
 - a) -24
- b) -12
- c) -6
- d) -2
- e) None of the above.
- 2. (1 pt.) Assuming a word size of 4 bits, determine the 2's complement representation of -5.
 - a) 1011
- b) 1101
- c) 1100
- d) 1001
- e) None of the above.
- 3. (1 pt.) How many AND gates are in a 4:16 decoder?
 - a) 4
- b) 8
- c) 16
- d) 32
- e) None of the above.
- 4. (1 pt.) How many inputs do the AND gates in a 16:1 mux have?
 - a) 2
- b) 4
- c) 8
- d) 16
- e) None of the above.
- 5. (1 pt.) How many 2:1 muxes are needed to construct a 8-bit wide 4:1 mux?
 - a) 8
- b) 12
- c) 18
- d) 24
- e) None of the above.
- 6. (1 pt.) How many 2:1 muxes are in an 8-bit register?
 - a) 2
- b) 3
- c) 4
- d) 8
- e) 64

Questions 7-9 concern the construction of a bit-slice of a comparator. The questions will ask you to complete the entries in the truth table below denoted by $a,\,b,\,$ and c.

G_{in}	L_{in}	E_{in}	\boldsymbol{x}	y	G_{out}	L_{out}	E_{out}
0	0	0	1	0	a		
0	0	1	1	0		b	
1	0	1	1	0			c

- 7. (1 pt.)What is the value of a?
 - a) 0
- b) 1
- c) x
- 8. (1 pt.)What is the value of b?
 - a) 0
- b) 1
- c) x
- 9. (1 pt.) What is the value of c?
 - a) 0
- b) 1
- c) x

For questions 10-13 use the following figure

- 10. (1 pt.) What is the value of Q1 at time 45
 - a) 0
- b) 1
- c) toggling
- 11. (1 pt.) What is the value of Q1 at time 65
 - a) 0
- b) 1
- c) toggling
- 12. (1 pt.) What is the value of Q2 at time 25
 - a) 0
- b) 1
- c) toggling
- 13. (1 pt.) What is the value of Q2 at time 75
 - a) 0
- b) 1
- c) toggling

You have a digital design which calls for a circuit which performs the following task (written as a C if/then statement). You have decided on the architecture. Its your job to design to complete the truth table for the the glue-logic box (only an arbitrary portion of the complete truth table is shown). I would recommend drawing a number line and putting the values of L6, L12, and L18 on it.

L6	L12	L18	select
0	0	0	a
0	1	1	b
1	0	1	c

- 14. (1 pt.) What is the (decimal) value of a in the truth table?
 - a) 0
- b) 1
- c) 2
- d) 3
- e) x
- 15. (1 pt.) What is the (decimal) value of b in the truth table?
 - a) 0
- b) 1
- c) 2
- d) 3
- e) x
- 16. (1 pt.) What is the (decimal) value of c in the truth table?
 - a) 0
- b) 1
- c) 2
- d) 3
- e) x

For questions 17,18 assume that a 4-bit (circular) shift register has the following truth table. Complete the timing diagram below.

clk	C_1C_0	D	Q^+
$0,1,\downarrow$	XX	X	Q
\uparrow	00	X	Q
\uparrow	01	X	Q >> 1 (CSR)
\uparrow	10	X	$Q \ll 1 \text{ (CSL)}$
\uparrow	11	D	D
			•

- 17. (1 pt.) What is the value of Q at time 55?
 - a) 0110
- b) 0010
- c) 0100
- d) 1110

d) 1110

- e) none of the above
- 18. (1 pt.) What is the value of Q at time 90?
 - a) 0001
- b) 1100
- c) 0100
- е
 - e) none of the above
- 19. (1 pt.) You have a digital design which calls for a circuit which performs the following task. You have decided on the architecture shown to the right. Its your job to design the contents of the glue-logic box. Note, a register holds its value when the control input is 0 and loads its input when the control input is 1.

while (sum > 6) sum -= 6;

- a) c=0
- b) c=1
- c) c=G
- d) c=G'
- e) none of the above.

For problems 20-24 use the following figure and timing diagram. You should assume that all the devices process 5-bits data values.

- 20. (2 pt.) What is the value of P at time 15?
 - a) 0
- b) 3
- c) 4
- d) 6
- e) 11
- 21. (2 pt.) What is the value of A_0 at time 25?
 - a) 3
- b) 5
- c) 7
- d) 8
- e) 10
- 22. (2 pt.) What is the value of A_1 at time 35?
 - a) 8
- b) 11
- c) 14
-
- e) 18
- 23. (2 pt.) What is the value of Q at time 45?
 - a) 5
- b) 7
- c) 11
- d) 13
- e) 14
- 24. (2 pt.) What is the value of M at time 55?
 - a) 2
- b) 5
- c) 7
- d) 8
- e) 9