

Design and Analysis of Algorithm (DAA)

Heap sort and Priority Queue

[Module 2]

Dr. Dayal Kumar Behera

School of Computer Engineering
KIIT Deemed to be University, Bhubaneswar, India

OSGN - OSPN

Special Types of Trees

 Full binary tree: a binary tree in which each node is either a leaf or has degree exactly 2.

 Complete binary tree: a binary tree in which all leaves are on the same level and all internal nodes have degree 2.

Complete binary tree

Definition

- Height of a node = the number of edges on the longest simple path from the node down to a leaf
- Level of a node = the length of a path from the root to the node
- Height of tree = height of root node

The depth of a node is its distance from the root. E.g. Level or depth of (10) = 2

Useful Properties

- There are at most 2^l nodes at level (or depth) l of a binary tree

- A binary tree with height d has at most $2^{d+1} 1$ nodes
- A binary tree with n nodes has height at least $\lfloor lgn \rfloor$

$$n \le \sum_{l=0}^{d} 2^l = \frac{2^{d+1} - 1}{2 - 1} = 2^{d+1} - 1$$
 Height of root = 3

Height of (2)= 1

Level of (10)= 2

Note# height and depth of tree are same, whereas for node it may differ.

The Heap Data Structure

- Definition: A heap is a nearly or almost complete binary tree with the following two properties:
 - Structural property: all levels are full, except possibly the last one, which is filled from left to right
 - Order (heap) property: for any node x $A[parent(x)] \ge A[x] \leftarrow Max-heap$

From the heap property, it follows that:

"The root is the maximum element of the heap!"

Heap

A heap is a binary tree that satisfies the heap properties.

Types of Binary Heap

- Two types: Max-heap and Min-heap
 - Max-heap (largest element at root): for every node, value of parent node is greater than or equals to the value of child nodes.
 - Max-heap property: for any node x $A[parent(x)] \ge A[x] \leftarrow Max-heap$

Types of Binary Heap

- Two types: Max-heap and Min-heap
 - Min-heap (Smallest element at root): for every node, value of parent node is less than or equals to the value of child nodes.
 - Min-heap property: for any node x $A[parent(x)] \leq A[x] \leftarrow Min-heap$

Array Representation of Binary Heap

For simplicity heap is represented as an array

Array Representation of Heaps


```
Parent of i \Rightarrow \lfloor i/2 \rfloor

Left of i \Rightarrow 2i

Right of i \Rightarrow 2i + 1

MAX-Heap

A(PARENT(i)) >= A(i)

MIN-Heap

A(PARENT(i)) <= A(i)
```

```
PARENT(i)
 return(i/2)
LEFT(i)
 return(2i)
RIGHT(i)
 return(2i+1)
```

Array Representation of Heaps

- A heap can be stored as an array A.
 - Root of tree is A[1]
 - Left child of A[i] = A[2*i]
 - Right child of A[i] = A[2*i + 1]
 - Parent of $A[i] = A[\lfloor i/2 \rfloor]$
 - length[A] ← no. of elements in the array
 - Heapsize[A] ← no. of elements in the heap stored within array A
 - Heapsize[A] ≤ length[A]
- The elements in the subarray $A[(\lfloor n/2 \rfloor + 1) ... n]$ are leaves

Adding/Deleting Nodes

- New nodes are always inserted at the bottom level (left to right)
- Nodes are removed from the bottom level (right to left)

Operations on Max-Heap

- Maintain/Restore the max-heap property
 - MAX-HEAPIFY
- Create a max-heap from an unordered array
 - BUILD-MAX-HEAP
- Sort an array in place
 - HEAPSORT
- Priority queues

Maintaining the Heap Property

- Suppose a node is smaller than a child
 - Left and Right subtrees of 'i' are max-heaps
- To eliminate the violation:
 - Exchange with larger child
 - Move down the tree
 - Continue until the heap property not maintained.

MAX-HEAPIFY(A, 2)

 $A[2] \leftrightarrow A[4]$

A[2] violates the heap property

A[4] violates the heap property

Heap property restored

Maintaining the Heap Property

Assumptions:

- Left and Right sub-trees of i are max-heaps
- A[i] may be smaller than its children

Algorithm: MAX-HEAPIFY(A, i)

- 1. $\downarrow \leftarrow LEFT(i)$
- 2. $r \leftarrow RIGHT(i)$
- 3. if $I \leq \text{Heap-Size}(A)$ and A[I] > A[i]
- 4. then largest \leftarrow l
- 5. else largest ←i
- 6. if $r \leq \text{Heap-Size}(A)$ and A[r] > A[largest]
- 7. then largest ←r
- 8. if largest ≠ i
- 9. **then** exchange $A[i] \leftrightarrow A[largest]$
- 10. MAX-HEAPIFY(A, largest)

MAX-HEAPIFY Running Time

Intuitively:

- It traces a path from the root to a leaf.
- At each level it makes exactly 2 comparisons.
- Total number of comparisons is 2h.
- Running time is O(h) or O(lg n).
- Running time of MAX-HEAPIFY is O(lgn)
- Can be written in terms of the height of the heap, as being O(h)
 - Since the height of the heap is Llgn.

Building a Heap

The last location who has a child is $\lfloor n/2 \rfloor$.

Building a Heap

- Convert an array A[1 ... n] into a max-heap (n = length[A])
- The elements in the subarray $A[(\lfloor n/2 \rfloor + 1) ... n]$ are leaves
- Apply MAX-HEAPIFY on elements between 1 and \[n/2 \]

Algorithm: BUILD-MAX-HEAP(A)

- 1. Heap-Size(A) = length[A]
- 2. **for** $i \leftarrow \lfloor length[A] / 2 \rfloor$ **downto**1
- 3. **do** MAX-HEAPIFY(A, i)

A: 4 1 3 2 16 9 10 14 8

Running Time of BUILD-MAX-HEAP

Algorithm: BUILD-MAX-HEAP(A)

- 1. Heap-Size(A) = length[A]
- 2. for $i \leftarrow \lfloor length[A] / 2 \rfloor downto 1$
- 3. do MAX-HEAPIFY(A, i)

$$O(|gn)$$
 $O(n)$

- \Rightarrow Running time: O(nlgn)
- This is not an asymptotically tight upper bound

Running Time of BUILD-MAX-HEAP

- build-max-heap algorithm executes bottom-to-top.
- Let the size of heap = n
- Max^m no. of elements with height h, = $\left[\frac{n}{2^{h+1}}\right]$
- When max-heapify is called to a node having height h, the cost is O(h)
- For all nodes of height h, the total cost = $\left[\frac{n}{2^{h+1}}\right] * O(h)$

Running Time of BUILD-MAX-HEAP

For all nodes with varying height, the time complexity T(n)

$$=\sum_{h=0}^{\lfloor \log n\rfloor} \left[\frac{n}{2^{h+1}}\right] * O(h)$$

$$= O\left(n\sum_{h=0}^{\lfloor \log n\rfloor} \left\lceil \frac{h}{2^h} \right\rceil\right)$$

$$\leq \left(n\sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$

$$= 0(n)$$

But
$$\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$$

Heap sort

- Goal:
 - Sort an array using heap representations

- Idea:
 - Build a max-heap from the array
 - Swap the root (the maximum element) with the last element in the array
 - "Discard" this last node by decreasing the heap size
 - Call MAX-HEAPIFY on the new root
 - Repeat this process until only one node remains

A=[7, 4, 3, 1, 2]

EXCHANGE A[1] \leftrightarrow A[2] MAX-HEAPIFY(A, 1)

2

EXCHANGE A[1] \leftrightarrow A[4] MAX-HEAPIFY(A, 1)

EXCHANGE A[1] \leftrightarrow A[3] MAX-HEAPIFY(A, 1)

3

HEAPSORT(A)

Algorithm: HEAPSORT(A)

- 1. BUILD-MAX-HEAP(A)
- 2. for $i \leftarrow length[A]$ downto 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. Heap-Size(A) = Heap-Size(A) -1
- 5. MAX-HEAPIFY(A, 1)

Running time: O(nlgn)

Priority Queues

A priority queue is a data structure for maintaining a set "S" where each element of S is associated with a key (priority).

Properties:

- Each element is associated with a value (priority).
- The key with the highest (or lowest) priority is extracted first.

Types of Priority Queue

There are two kinds of Priority Queue

- Max-Priority Queue based on max-heap
 - Application(s): Job Scheduling, Load Balancing, Real-Time Systems, ...

- Min-Priority Queue based on min-heap
 - Application(s): Event-driven simulator, Huffman code, Dijkstra Algorithm, Prim's Algorithm, Task Scheduling...

Operations on Max-Priority Queues

Max-Priority queue supports the following operations:

- INSERT(S, x): inserts element x into set S
- EXTRACT-MAX(S): <u>removes and returns</u> element of S with largest key
- MAXIMUM(S): <u>returns</u> element of S with largest key
- INCREASE-KEY(S, x, k): <u>increases</u> value of element x's key to k
 (Assume k ≥ x's current key value)

HEAP-MAXIMUM

Goal:

Return the largest element of the heap

Algorithm: HEAP-MAXIMUM(A)

Running time: O(1)

1. return A[1]

Heap-Maximum(A) returns 7

HEAP-EXTRACT-MAX

Goal:

Extract the largest element of the heap (i.e., return the max value and also remove that element from the heap

Idea:

- Exchange the root element with the last
- Decrease the size of the heap by 1 element
- Call MAX-HEAPIFY on the new root, on a heap of size n-1

Example: HEAP-EXTRACT-MAX

Heap size decreased with 1

Call MAX-HEAPIFY(A, 1)

HEAP-EXTRACT-MAX

Algorithm: HEAP-EXTRACT-MAX(A)

- 1. if heap-size[A] < 1
- 2. **then error** "heap underflow"
- 3. $\max \leftarrow A[1]$
- 4. $A[1] \leftarrow A[heap-size[A]]$
- 5. heap-size[A] \leftarrow heap-size[A] 1
- 6. MAX-HEAPIFY (A, 1) premakes heap
- 7. return max

Running time: O(Ign)

HEAP-INCREASE-KEY

- Goal:
 - Increases the key of an element i in the heap
- Idea:
 - Increment the key of A[i] to its new value
 - If the max-heap property does not hold anymore: traverse a path toward the root to find the proper place for the newly increased key

Example: HEAP-INCREASE-KEY

HEAP-INCREASE-KEY

Algorithm: HEAP-INCREASE-KEY(A, i, key)

- if key < A[i]
- 2. **then error** "new key is smaller than current key"
- 3. $A[i] \leftarrow \text{key}$
- 4. **while** i > 1 and A[PARENT(i)] < A[i]
- 5. **do** exchange $A[i] \leftrightarrow A[PARENT(i)]$
- 6. $i \leftarrow PARENT(i)$
- Running time: O(Iqn)

Key [i] \leftarrow 15

MAX-HEAP-INSERT

Goal:

 Inserts a new element into a maxheap

• Idea:

- Expand the max-heap with a new element whose key is -∞
- Calls HEAP-INCREASE-KEY to set the key of the new node to its correct value and maintain the max-heap property

Example: MAX-HEAP-INSERT

Insert value 15:

- Start by inserting -∞

Increase the key to 15
Call HEAP-INCREASE-KEY on A[11] = 15

The restored heap containing the newly added element

MAX-HEAP-INSERT

Algorithm: MAX-HEAP-INSERT(A, key)

- 1. heap-size[A] \leftarrow heap-size[A] + 1
- 2. $A[heap-size[A]] \leftarrow -\infty$

3. HEAP-INCREASE-KEY(A, heap-size[A], key)

Running time: O(Iqn)

Summary

We can perform the following operations on max-heaps:

– MAX-HEAPIFYO(Ign)

- BUILD-MAX-HEAP O(n)

HEAP-SORTO(nlgn)

- MAX-HEAP-INSERT O(lgn)

HEAP-EXTRACT-MAXO(Ign)

HEAP-INCREASE-KEYO(Ign)

- HEAP-MAXIMUM O(1)

Average O(Ign)

Home work

- Illustrate the operations of HEAP-EXTRACT-MAX on the heap A=<15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1>.
- Illustrate the functioning of the MAX-HEAP-INSERT(A, 10) operation subsequent to the execution of the HEAP-EXTRACT-MAX operation.
- Write pseudo code for the procedures HEAP-MINIMUM, HEAP-EXTRACT-MIN, HEAP-DECREASE-KEY, and MIN-HEAP-INSERT that implement a min-priority queue with a min-heap.

OSGN - OSPN

Each of your actions will have an impact on your future.

Once you know
who is walking
with you on your path.
you will never
be afraid.

Thank you

OSGN - OSPN