Chương 6. CÂY Cây - Cây khung

ThS. Nguyễn Chí Hiếu

2019

NỘI DUNG

- Định nghĩa và các tính chất cơ bản
 - Cây
 - Các tính chất của cây
- Các thuật toán duyệt cây
 - NLR
 - LNR
 - LRN
- Cây khung

Định nghĩa 1

Cây (tree) là đồ thị vô hướng liên thông và không có chu trình.

Ví dụ 1

Ví dụ 2

Cho 3 đồ thị G_1 , G_2 và G_3 gồm 4 đỉnh. Đồ thị nào là cây?

Hình 2: *G*2

Hình 3: *G*3

Ví dụ 2

Cho 3 đồ thị G_1 , G_2 và G_3 gồm 4 đỉnh. Đồ thị nào là cây?

Hình 3: G3

• G_1 liên thông và không có chu trình $\Rightarrow G_1$ là cây.

Ví du 2

Cho 3 đồ thị G_1 , G_2 và G_3 gồm 4 đỉnh. Đồ thị nào là cây?

- G_1 liên thông và không có chu trình $\Rightarrow G_1$ là cây.
- G_2 liên thông và $\frac{co}{chu}$ trình.

Ví du 2

Cho 3 đồ thị G_1 , G_2 và G_3 gồm 4 đỉnh. Đồ thị nào là cây?

- G_1 liên thông và không có chu trình $\Rightarrow G_1$ là cây.
- G₂ liên thông và có chu trình.
- G₃ không liên thông và không có chu trình.

Định nghĩa 2

Rừng (forest) là một đồ thị vô hướng mà mỗi thành phần liên thông của nó là một cây.

Ví du 3

Rừng gồm 3 đồ thị liên thông.

Cây

Định nghĩa 3

- Cây có gốc (rooted tree) là cây có duy nhất một đỉnh làm gốc và tất cả các đỉnh khác đều có đường đi đến gốc.
- Lá (leaf) là đỉnh có bậc 1 trong cây.
- Đỉnh có bậc lớn hơn 1 được gọi là đỉnh trong (internal node) hay nhánh (branch).

Ví du 4

Cây m-phân

Định nghĩa 4

Cho cây T, nếu *số con tối đa* của một đỉnh trong T là một cây *m-phân*.

Ví dụ 5

Hình 4: Cây nhị phân.

Hình 5: Cây tam phân.

Các tính chất của cây

Đinh lý 1

Cho T là một cây, giữa hai đỉnh bất kỳ luôn tồn tại duy nhất một đường nối chúng.

Chứng minh.

...

• • •

• • •

Các tính chất của cây

Định lý 2

Cây T có n đỉnh thì có n-1 cạnh.

Chứng minh.

- Bước cơ sở: với n = 1, cây T có n 1 = 0 cạnh (dung).
- Bước quy nạp: giả sử n=k, [định lý 2] đúng. Cần chứng minh [định lý 2] đúng với n=k+1, tức là chứng minh cây T có n-1=k cạnh.
 - ► Gọi *v* là đỉnh lá trong cây *T*.
 - Nếu loại bỏ đỉnh v thì cây có k-1 cạnh.

Định lý

Giả sử T là một đồ thị có n đỉnh, thì 6 mệnh đề sau đây tương đương:

- T là một cây (T liên thông và không có chu trình).
- to T không có chu trình và có n-1 cạnh.
- T liên thông và nếu hủy bất kỳ một cạnh nào của nó cũng làm mất tính liên thông.
- Giữa hai đỉnh bất kỳ của T luôn luôn tồn tại một đường duy nhất nối chúng.
- T không có chu trình và nếu thêm một cạnh mới nối hai đỉnh bất kỳ của T sẽ tạo ra chu trình.
- \bigcirc T liên thông và có n-1 cạnh.

Các thuật toán duyệt cây

Duyệt cây

- Duyệt cây là thuật toán liệt kê danh sách tất cả các đỉnh của một cây, mỗi đỉnh chỉ một lần.
- Mỗi thuật toán duyệt cây khác nhau ở thứ tự duyệt nút gốc của cây con đang xét.
- Ba phương pháp duyệt cây:
 - ► Tiền thứ tự (preorder) hay NLR (node-left-right).
 - ► Trung thứ tự (inoder) hay LNR (left-node-right).
 - Hậu thư tự (postorder) hay LRN (left-right-node).

Các thuật toán duyệt cây

Ví du 6

Duyệt cây T theo tiền thứ tự, trung thứ tự và hậu thứ tự.

Hình 6: Cây T gồm 6 đỉnh A, B, C, D, E, F.

Nguyễn Chí Hiếu Lý thuyết đồ thị

t đồ thị 13/24

Nguyễn Chí Hiếu

Lý thuyết đồ thị

13/24

Nguyễn Chí Hiếu

Lý thuyết đồ thị

Nguyễn Chí Hiếu

Lý thuyết đồ thị

15/24

Nguyễn Chí Hiếu

Lý thuyết đồ thị

15/24

Cây khung

Định nghĩa 5

Cho G=(V,E) là đồ thị vô hướng liên thông. Một cây T được gọi là **cây khung** (spanning tree) nếu T là đồ thị con chứa mọi đỉnh của G.

Ví du 7

Cho G là đồ thị vô hướng liên thông.

Hình 7: Đồ thị vô hướng G.

Cây khung

Hình 8: Cây khung T_1 của đồ thị G.

Hình 9: Cây khung T_2 của đồ thị G.

Ứng dụng của cây khung

• Truyền thông tin dựa trên địa chỉ IP (IP Multicasting): một gói tin có thể chia thành nhiều gói tin và gửi đến nhiều người nhận.

Hình 10: Cây khung trong truyền tin dạng multicast.

Ứng dụng của cây khung

 Xác định những đường nào cần rải nhựa sao cho giữa các căn nhà đều có đường đi.

Hình 11: Bản đồ của một vùng dân cư.

Tìm cây khung của những đồ thị sau đây bằng cách loại bỏ một số cạnh của các chu trình.

② Tìm tất cả cây khung của những đồ thị sau đây.

Áp dụng thuật toán tìm kiếm theo chiều sâu (DFS) vẽ cây khung của đồ thị. Chọn a là gốc của mỗi cây và các đỉnh xếp theo thứ tự alphabet.

Vẽ cây khung của đồ thị G. Chọn a là gốc của cây khung và các đỉnh xếp theo thứ tự alphabet.

Hình 12: Đồ thị G.

- Áp dụng thuật toán tìm kiếm theo chiều sâu (DFS).
- Áp dụng thuật toán tìm kiếm theo chiều rộng (BFS).

Tài liệu tham khảo

ADRIAN BONDY, U.S.R. MURTY, Graph Theory, Springer, 2008.

Kenneth H. Rosen, *Discrete Mathematics and its Applications, 7th Edidion*, McGraw-Hill, 2011.

NGUYỄN CAM, CHU ĐứC KHÁNH, *Lý thuyết đồ thị*, NXB Đại học Quốc gia Tp Hồ Chí Minh, 2008.

NGUYỄN ĐỰC NGHĨA, NGUYỄN TÔ THÀNH, *Toán rời rạc*, NXB Đại học Quốc gia Hà Nội, 2003.

REINHARD DIESTEL, Graph Theory, Springer, 2005.