Deep Learning

Parinya Sanguansat

Who is normal?

Similarity

Similarity

$$\begin{bmatrix} 192 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 176 \\ 240 \end{bmatrix}$$

Similarity

Iris dataset

Virginica Versicolor Setosa

Virginica Versicolor Setosa

Observation

• Extract information

Distance of image?

Distance of image?

- Image
- Audio
- Video
- Text
- etc.

Word Embedding

Language Model

Predict next token (word)

Encoder

- Transforms input data into a different (often lower-dimensional) representation.
 - This representation is called an embedding or a latent representation.
- Ex. Draw digit "1" in 10x10, 3x3, 3x1

Modality Representation

- Text:
 - Word embeddings (Word2Vec, GloVe, BERT), sentence embeddings.
- Images:
 - CNN features (ResNet, EfficientNet), Transformers (ViT).
- Audio:
 - Spectrograms, MFCCs, audio embeddings.
- Video:
 - 3D CNNs, temporal segment networks, video transformers.
- Sensor data:
 - time series representation.

Neural Network

Parinya Sanguansat

Timeline

Artificial Neural Networks (ANN)

A neural network is an interconnection of neurons.

How neural net work?

Perceptron

- Perceptron is the simplest algorithm of neural network
 - Supervised learning
 - Binary classifiers

$$\mathbf{O} = f\left(\mathbf{X}_{N \times D} \mathbf{W}_{D \times 1} + b\right)$$

How to find the optimal weights?

- If we can observe every points in the error function
 - We can find the minimum very easy

How to find the optimal weights?

• But we cannot observe that because we cannot collect all data

Mean Square Error (MSE)

Loss = how to measure the fitness

$$E(\mathbf{W}) = \frac{1}{N} \sum_{i=1}^{N} \left(o_i^{true} - o_i^{predict} \right)^2$$

Stochastic Gradient Descent (SGD)

- After we have somewhere to start we need the direction
- Optimizer = how to update weights
 - Update in the opposite direction to gradient
- 1 epoch = all training samples
 - Gradient Descent (GD) use all training samples for each update
 - GD update weight only once in an epoch
 - SGD use mini-batch of training samples for each update
 - SGD update weight many times (up to batch size) in an epoch

$$\mathbf{W}' = \mathbf{W} - \eta \nabla E(\mathbf{W})$$

Learning rate = how much to believe in this direction

How to find the optimal weights?

- But we need somewhere to start
 - Initial by random values

Comments on Perceptron

Cannot solve nonlinear problem

- Nonlinear problem
 - No line can separate all data correctly
 - Loss will not converge
 - Real-world problems are often nonlinear

Multi-Layer Perceptron (MLP)

Add hidden layers between input and output linear

Convolutional Neural Network

Parinya Sanguansat

LeNet5: The First CNN

VGG

- Deeper network: VGG16
 - Better performance
 - More memory required
 - Longer training time

2D Convolutional layer

tf.keras.layers.Conv2D(3, (3, 3), strides=(5, 5), padding='valid')

Padding = Valid

2D Convolutional layer

tf.keras.layers.Conv2D(3, (3, 3), strides=(5, 5), padding='same')

Padding = Same

2D Max Pooling layer

tf.keras.layers.MaxPool2D(pool_size=(3, 3), strides=None, padding='valid')

Convolutional vs Fully Connected

Semantic Segmentation

- Autoencoder with supervised learning
- SegNet

ResNet-34

U-Net

Concatenate encoder to decoder

Generative Adversarial Networks (GANs)

SRGAN

Figure 4: Architecture of Generator and Discriminator Network with corresponding kernel size (k), number of feature maps (n) and stride (s) indicated for each convolutional layer.

Generative Adversarial Networks (GANs)

Variational Autoencoders

Parinya Sanguansat

Autoencoder

Unsupervised: use only x not y !!!

Autoencoder

What does it mean?

Limitation of Autoencoder

VAE (Variational Autoencoder)

Mapping input into a distribution instead of mapping the it into a fixed vector

Loss = Reconstruction loss + KL Divergence

Binary cross entropy, MSE, ... force to normal distribution

Reparameterization trick

Backpropagation work with deterministic node, not for stochastic node

Kullback-Leibler (KL) divergence

How Q divergence from P

Want to know the difference

$$P(x) - Q(x)$$

Easier with log

$$logP(x) - logQ(x)$$

Many values

$$\mathbb{E}[logP(x) - logQ(x)] = \sum_{x \in X} P(x)[logP(x) - logQ(x)]$$

$$D_{KL}(P||Q) = \sum_{x \in \mathcal{X}} P(x) \left[log \frac{P(x)}{Q(x)} \right]$$

Continuous values

$$D_{KL}(p||q) = \int p(x) \left[log \frac{p(x)}{q(x)} \right] dx$$

Transformer

Parinya Sanguansat

Attention

- Original design for machine translation
- Google

The Transformer

- Original design for machine translation
- Google

Basic Retrieval Mechanism

- Components
 - Query
 - Key
 - Value

- Find a key that <u>matches</u> with query
- Return <u>only one</u> value of that key

Word Embedding

Basic usage in Embedding layer

I eat fish at school.

A school of fish.

Key	Value
fish	[0.71, 0.59, 0.40, 0.70, 0.62]
school	[0.60, 0.51, 0.39, 0.86, 0.61]
:	:
eat	[0.17, 0.58, 0.09, 0.54, 0.34]

Must unique

Attention

- Components
 - Query
 - Key
 - Value

Attention $(\mathbf{q}, \mathbf{k}, \mathbf{v}) = \sum_{i} f(\mathbf{q}, \mathbf{k}_{i}) \cdot \mathbf{v}_{i}$

Similarity function

- Find the <u>similarity</u> of keys and query
- Return the combination of values

Examples of Similarity functions

• Dot-product:

$$\mathbf{q}^T \mathbf{k}_i$$

Scaled Dot-Product:

$$\frac{\mathbf{q}^T \mathbf{k}_i}{\sqrt{d}}$$

General Dot-Product:

$$\mathbf{q}^T \mathbf{W} \mathbf{k}_i$$

Additive Similarity:

$$\mathbf{w}_q^T \mathbf{q} + \mathbf{w}_k^T \mathbf{k}_i$$

• Kernel:

$$Kernel(\mathbf{q}, \mathbf{k}_i)$$

Example

Query	$\frac{\mathbf{q}^T \mathbf{k}_i}{\sqrt{d}}$	Key	Value
[0.30, 0.29, 0.33]	0.154	[0.55, 0.24, 0.10]	[0.71, 0.59, 0.40, 0.70, 0.62]
	0.267	[0.87, 0.17, 0.46]	[0.60, 0.51, 0.39, 0.86, 0.61]
	0.288	[0.98, 0.01, 0.61]	[0.17, 0.58, 0.09, 0.54, 0.34]
	$\Sigma = 0.7$	' 1	

Example

Positional Encoding

- No sequential order in attention layer
- Adding the information about the position into embedding vector

Original one:

$$PE_{(pos,2i)} = \sin\left(pos/10000^{2i/d_{\text{model}}}\right)$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{\text{model}}})$$

Q, **K**, **V**

• We have only embedding vectors + PE

Self-Attention

• Self-attention (intra-attention) is an attention mechanism relating different positions of a single sequence in order to compute a representation of the sequence.

Multihead Self-Attention: MSA

MSA Block (original #head = 8)

Layer Normalization

Batch Normalization

Layer Normalization

AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Vision Transformer: ViT (2020)

Vision Transformer

- Naïve way is to use pixel unit but it is high computational cost
- ViT use patch (without overlapping): 16 x 16
- Use [class] token (similar to BERT)

ViT

ViT

ViT Performance

- Pretrained on
 - ImageNet (1.3 M):
 - ImageNet-22k (14 M):
 - JFT (300 M):

Google only

ViT is slightly worse than ResNet ViT is comparable to ResNet ViT is slightly better than ResNet

- Scaling Vision Transformers (2021 by Google) Improve ImageNet top-1 from 88.55% to 90.45% By using JFT 3B!!!
- Model soups (2022 by Google)
 Improve ImageNet top-1 from 90.45% to 90.94%
 By using JFT 3B and ensemble!!!

Vision-Language models

Parinya Sanguansat

CLIP

- Contrastive Language-Image Pre-training from OpenAl
 - Trained by 400 million image-text pairs from internet
- Contrastive Learning: Positive and Negative pairs
- Zero-shot Classification

$$\mathcal{L}_k = -\log \frac{e^{sim(I_k, T_k)/\tau}}{\sum_{j=0}^N e^{sim(I_k, T_j)/\tau}}$$

Lower τ : faster convergence but overfitting Higher τ : slower convergence but more generalize

Zero-shot classification

- Classify data into classes that it has never explicitly been trained on.
- Input: 1 image + n label text
- Dynamic Categories

BLIP

- CapFit: address the noisy internet data
 - captioner model to generate synthetic captions
 - Filter model to remove noisy image-text pairs
- Image captioning

BLIP 2

- Q-former: extract relevant visual information from a frozen image encoder and prepare it for a frozen LLM
- Better than BLIP

LLaVA

- Large Language and Vision Assistant
 - project the image into the same embedding space as the text embeddings of LLM
- Conversation about the image

BLIP 2 vs LLaVA

	BLIP 2	LLaVA
Input	Image (and optional text prompt)	Image and text prompt
LLM interactor	Q-former (Transformer)	Projection Layer (MLP)
Input to LLM	Fix tokens	Variable length
LLM training	Frozen	Trainable
Visual Question Answering (VQA)	** (pure)	** (conversational)
Image Captioning	**	*
Image-Text Retrieval	**	*
Interactive image-based chatbots	*	***
Zero-Shot Image-to-Text Generation	**	*
Changing the LLM	Train only Q-former	LLM need to be retrained

Diffusion Model

Parinya Sanguansat

Denoising Diffusion Probabilistic Models

The model is trained to predict stationary white noise, but the prediction itself is not stationary because it's conditioned on a specific image and timestep.

How to generate noisy image

$$x_t \sim \mathcal{N}(\sqrt{\alpha_t}x_{t-1}, (1-\alpha_t)\mathbf{I})$$

$$x_t = \sqrt{\alpha_t}x_{t-1} + \sqrt{1-\alpha_t}\epsilon_{t-1} \qquad \text{reparameterization trick}$$

$$x_{t-1} = \sqrt{\alpha_{t-1}}x_{t-2} + \sqrt{1-\alpha_{t-1}}\epsilon_{t-2}$$

$$x_t = \sqrt{\alpha_t}\left(\sqrt{\alpha_{t-1}}x_{t-2} + \sqrt{1-\alpha_{t-1}}\epsilon_{t-2}\right) + \sqrt{1-\alpha_t}\epsilon_{t-1}$$

$$x_t = \sqrt{\alpha_t}\sqrt{\alpha_{t-1}}x_{t-2} + \sqrt{\alpha_t(1-\alpha_{t-1})}\epsilon_{t-2} + \sqrt{1-\alpha_t}\epsilon_{t-1}$$

$$\epsilon_{t-1}, \epsilon_{t-2} \sim \mathcal{N}(0, \mathbf{I})$$

$$\text{Mean} = \sqrt{\alpha_t}\sqrt{\alpha_{t-1}}x_{t-2} + 0 \qquad \qquad = \sqrt{\alpha_t}\alpha_{t-1}x_{t-2}$$

$$\text{Var} = 0^2 \qquad \qquad + \sqrt{\alpha_t(1-\alpha_{t-1})}^2 \cdot 1^2 + \sqrt{1-\alpha_t}^2 \cdot 1^2 \qquad = 1-\alpha_t\alpha_{t-1}$$

$$\vdots$$

$$x_t = \sqrt{\overline{\alpha_t}}x_0 + \sqrt{1-\overline{\alpha_t}}\epsilon \qquad \overline{\alpha_t} = \alpha_t\alpha_{t-1} \dots \alpha_1$$

How to reverse diffusion

$$x_{t-1} \sim \mathcal{N} \big(\tilde{\mu}(x_t, t), \tilde{\beta}_t \mathbf{I} \big) \qquad \text{Bayes' rule} \\ \mathcal{N} \big(\tilde{\mu}(x_t, t), \tilde{\beta}_t \mathbf{I} \big) = q(x_{t-1} | x_t, x_0) = q(x_t | x_{t-1}, x_0) \frac{q(x_{t-1} | x_0)}{q(x_t | x_0)} = q(x_t | x_{t-1}) \frac{q(x_{t-1} | x_0)}{q(x_t | x_0)} \\ q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{\alpha_t} x_{t-1}, (1 - \alpha_t) \mathbf{I}) \qquad x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \epsilon_{t-1} \\ q(x_t | x_0) = \mathcal{N} \big(x_t; \sqrt{\overline{\alpha}_t} x_0, (1 - \overline{\alpha}_t) \mathbf{I} \big) \qquad x_t = \sqrt{\overline{\alpha}_t} x_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon_t \\ q(x_{t-1} | x_0) = \mathcal{N} \big(x_{t-1}; \sqrt{\overline{\alpha}_{t-1}} x_0, (1 - \overline{\alpha}_{t-1}) \mathbf{I} \big) \qquad x_{t-1} = \sqrt{\overline{\alpha}_{t-1}} x_0 + \sqrt{1 - \overline{\alpha}_{t-1}} \epsilon \\ \text{Gaussian} \\ q(x_t | x_{t-1}) \frac{q(x_{t-1} | x_0)}{q(x_t | x_0)} \propto exp \left(-\frac{1}{2} \left(\frac{\left(x_t - \sqrt{\alpha_t} x_{t-1} \right)^2 + \left(x_{t-1} - \sqrt{\overline{\alpha}_t} x_0 \right)^2}{1 - \overline{\alpha}_{t-1}} \right) \frac{\left(x_t - \sqrt{\overline{\alpha}_{t-1}} x_0 \right)^2}{1 - \overline{\alpha}_t} \right) \\ = exp \left(-\frac{1}{2} \left(\left(\frac{\alpha_t}{1 - \alpha_t} + \frac{1}{1 - \overline{\alpha}_{t-1}} \right) x_{t-1}^2 \right) - 2x_{t-1} \left(\frac{2\sqrt{\overline{\alpha}_t}}{1 - \alpha_t} x_t + \frac{2\sqrt{\overline{\alpha}_{t-1}}}{1 - \overline{\alpha}_{t-1}} x_0 \right) + C(x_t, x_0) \right) \\ & \text{completing the square} \quad \frac{(x - \mu)^2}{\sqrt{1 - \overline{\alpha}_t}} \\ \tilde{\mu}(x_t, t) = \frac{\sqrt{\overline{\alpha}_t} (1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_t} x_t + \frac{\sqrt{\overline{\alpha}_{t-1}}, (1 - \alpha_t)}{1 - \overline{\alpha}_t} x_0} \\ & \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha}_t}} \epsilon_t \right) \\ \tilde{\mu}(x_t, t) = \frac{\sqrt{\overline{\alpha}_t} (1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_t} x_t + \frac{\sqrt{\overline{\alpha}_{t-1}}, (1 - \alpha_t)}{1 - \overline{\alpha}_t} x_0} \\ & \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha}_t}} \epsilon_t \right) \\ \tilde{\mu}(x_t, t) = \frac{\sqrt{\overline{\alpha}_t} (1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_t} x_t + \frac{\sqrt{\overline{\alpha}_{t-1}}, (1 - \alpha_t)}{1 - \overline{\alpha}_t} x_0} \\ & \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha}_t}} \epsilon_t \right) \\ \tilde{\mu}(x_t, t) = \frac{\sqrt{\overline{\alpha}_t} (1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_t} x_t + \frac{\sqrt{\overline{\alpha}_{t-1}}, (1 - \alpha_t)}{1 - \overline{\alpha}_t} x_0} \\ & \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha}_t}} \epsilon_t \right) \\ \tilde{\mu}(x_t, t) = \frac{\sqrt{\overline{\alpha}_t} (1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_t} x_t + \frac{1}{\sqrt{\overline{\alpha}_t}} \frac{1 - \overline{\alpha}_t}{1 - \overline{\alpha}_t} x_0} \\ & \frac{1}{\sqrt{\overline{\alpha}_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha}_t}} \epsilon_t \right) \\ \tilde{\mu}(x_t, t) = \frac{1}{\sqrt{\overline{\alpha}_t}} \left(x_t - \frac{1}{\sqrt{\overline{\alpha}_t}} x_t + \frac{1}{\sqrt{\overline{\alpha}_t}} x_0 \right) \\ = \frac{1}{\sqrt{\overline{\alpha}_t}} \left(x_t - \frac{1}{\sqrt{\overline{\alpha}_t}} x_t + \frac{1}{$$

Training and Sampling

$$\tilde{\mu}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_t \right)$$

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right)$$

$$L_t^{simple} = MSE(\epsilon_t, \epsilon_\theta(x_t, t))$$

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return \mathbf{x}_0

Stable Diffusion

Cross Attention in Stable Diffusion

Self Attention

Cross Attention

Training Optimization

Parinya Sanguansat

Optimization Techniques

- Data Preprocessing and Augmentation
- Optimizer and Hyperparameter tuning
- Loss Functions
- Transfer Learning and Fine-tuning
- Distributed Training
- Optimization for heterogeneous Hardware

Image Data Augmentation

•Geometric Transformations:

- •Rotation: Rotating images by various angles.
- •Flipping: Mirroring images horizontally or vertically.
- •Scaling: Resizing images, zooming in or out.
- •Translation: Shifting images horizontally or vertically.
- •Cropping: Extracting random or central portions of images.
- •Shearing: Distorting the shape of images.

Color Space Transformations:

- •Brightness Adjustment: Altering the overall brightness of images.
- •Contrast Adjustment: Modifying the difference between light and dark areas.
- •Saturation Adjustment: Changing the intensity of colors.
- •Color Jittering: Randomly varying brightness, contrast, and saturation.

Noise Injection:

- •Gaussian Noise: Adding random noise with a Gaussian distribution.
- •Salt-and-Pepper Noise: Introducing random black and white pixels.

Kernel Filters:

•Applying blurring or sharpening filters.

•Random Erasing:

•Randomly masking out rectangular regions of images.

•Mixup and CutMix:

•Combining pixels from different images to create new samples.

Text Data Augmentation

•Synonym Replacement:

•Replacing words with their synonyms.

•Random Insertion/Deletion:

•Adding or removing words randomly.

•Word Shuffling:

•Rearranging the order of words in a sentence.

•Back Translation:

•Translating text to another language and back.

Text generation:

•Using models to create new sentences that have the same meaning.

Audio Data Augmentation

•Noise Injection:

Adding background noise or white noise.

•Time Stretching:

Speeding up or slowing down audio.

•Pitch Shifting:

•Changing the pitch of audio signals.

•Time Shifting:

•Shifting audio signals forward or backward in time.

Volume Adjustment:

•Increasing or decreasing the volume of audio.

Optimizers

Adagrad (2011)

$$\begin{aligned} \theta_{t+1} &= \theta_t - \frac{\eta}{\sqrt{v_{t+1}} + \epsilon} \nabla J(\theta_t) \\ v_{t+1} &= v_t + \left(\nabla J(\theta_t)\right)^2 \\ &\quad \text{accumulate} \end{aligned}$$

SGD (1950s)
$$\theta_{t+1} = \theta_t - \eta \nabla J(\theta_t)$$

Adadelta (Dec 2012)

$$\theta_{t+1} = \theta_t \left[-\frac{\sqrt{u_t + \epsilon}}{\sqrt{v_{t+1}} + \epsilon} \nabla J(\theta_t) \right]$$
$$u_{t+1} = \gamma u_t + (1 - \gamma)(\Delta \theta_t)^2$$

RMSprop (2012)

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{v_{t+1}} + \epsilon} \nabla J(\theta_t)$$

$$v_{t+1} = \beta v_t + (1 - \beta) (\nabla J(\theta_t))^2$$

Momentum (1980s)

$$\theta_{t+1} = \theta_t - \eta m_{t+1}$$

$$m_{t+1} = \alpha m_t + (1 - \alpha) \nabla J(\theta_t)$$

$$\hat{v}_{t+1} = \frac{v_{t+1}}{1 - \beta^{t+1}}$$

Bias correction

$$\widehat{m}_{t+1} = \frac{m_{t+1}}{1 - \alpha^{t+1}}$$

Adam (2014)
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_{t+1}} + \epsilon} \widehat{m}_{t+1} + \epsilon$$

Optimizers

Stochastic Gradient Descent (SGD):

- •A basic but widely used optimizer. It updates parameters based on the gradient of the loss function calculated on a single or small batch of training examples.
- •While simple, it can be prone to oscillations and slow convergence.

•Momentum:

•An extension of SGD that adds a "momentum" term to the parameter updates. This helps to accelerate convergence and reduce oscillations by incorporating information from previous updates.

Adagrad (Adaptive Gradient Algorithm):

•This algorithm adapts the learning rate to the parameters, performing larger updates for infrequent parameters, and smaller updates for frequent parameters.

RMSprop (Root Mean Square Propagation):

- •An adaptive learning rate optimizer that adjusts the learning rate for each parameter based on the magnitude of recent gradients.
- •It performs well in many scenarios, particularly when dealing with noisy or sparse gradients.

Adadelta (Adaptive Delta):

•An extension of Adagrad that seeks to reduce Adagrad's aggressively decreasing learning rates.

Adam (Adaptive Moment Estimation):

- •A popular and effective optimizer that combines the advantages of momentum and RMSprop.
- •It adapts the learning rate for each parameter and is generally robust and efficient.

Learning Rate:

- Effect:
 - Controls the step size during parameter updates.
 - A high learning rate can lead to rapid but unstable convergence, potentially overshooting the optimal solution.
 - A low learning rate can result in slow convergence, requiring more training time.
 - Finding the right balance is essential for efficient learning.
- Impact:
 - Directly affects how quickly and accurately the model learns.

Batch Size:

- Effect:
 - Determines the number of training examples used in each iteration.
 - Small batch sizes introduce more noise into the gradient estimation, which can help the model escape local minima but may also lead to instability.
 - Large batch sizes provide more stable gradients but may require more memory and can lead to slower convergence.
- Impact:
 - Influences training speed, memory usage, and model stability.

Number of Epochs:

• Effect:

- Specifies the number of times the entire training dataset is passed through the model.
- Too few epochs can result in underfitting, where the model fails to learn the underlying patterns.
- Too many epochs can lead to overfitting, where the model memorizes the training data and performs poorly on unseen data.

Impact:

Determines how well the model learns the training data and its ability to generalize.

Number of Hidden Units/Layers (Neural Networks):

- Effect:
 - Controls the complexity of the neural network.
 - More hidden units and layers allow the model to learn more complex patterns but increase the risk of overfitting.
 - Fewer hidden units and layers may limit the model's ability to capture complex relationships.
- Impact:
 - Affects the model's capacity to learn complex relationships.

Regularization Strength (e.g., L1, L2):

- Effect:
 - Helps prevent overfitting by adding a penalty term to the loss function.
 - Higher regularization strength reduces model complexity but can also lead to underfitting if it's too strong.
- Impact:
 - Controls the model's complexity and its ability to generalize.

Momentum:

- Effect:
 - Accelerates gradient descent by adding a momentum term that incorporates information from previous updates.
 - Helps the model overcome local minima and converge faster.
- Impact:
 - Improves convergence speed and stability.

