

इसिट IRISET

टी.सी.टी. 5 एस.डी.एच. प्रिंसिपल्स्

भारतीय रेल सिगनल इंजीनियरी और दूरसंचार संस्थान सिकंदराबाद-500017

टी.सी.टी. 5

एस.डी.एच. प्रिंसिपल्स्

दर्शन: इरिसेट को अंतर्राष्ट्रीय प्रसिद्धि का संस्थान बनाना, जो कि अपने

मानक व निर्देशचिह्न स्वयं तय करे.

लक्ष्य : प्रशिक्षण के माध्यम से सिगनल एवं दूरसंचार कर्मियों की

गुणवत्ता में सुधार तथा उनकी उत्पादक क्षमता में वृद्धि लाना.

इस इरिसेट नोट्स में उपलब्ध की गई सामग्री केवल मार्गदर्शन के लिए प्रस्तुत की गयी है. इस नियमावली या रेलवे बोर्ड के अनुदेशों में निहित प्रावधानों को निकालना या परिवर्तित करना मना है.

भारतीय रेल सिगनल इंजीनियरी और दूरसंचार संस्थान सिकंदराबाद - 500 017

टी.सी.टी. 5 एस.डी.एच. प्रिंसिपल्स्

विषय - सूची

अनु. क्र.	अध्याय का नाम	पृष्ठ संख्या
1.	सिंक्रोनस डिज़ीटल हेयरार्की (एस.डी.एच.)	1
2.	एस.डी.एच. मल्टीप्लेक्सिंग संरचना	10
3.	एस.डी.एच सिंक्रोनस फ्रेम संरचना	15
4.	पॉइंटर	28
5.	नेटवर्क टोपोलॉजी	43
6.	उपलब्धता और सरवाईबिलिटी	46
7.	नेटवर्क मैनेजमेंट सिस्टम	55
8.	सिंक्रनाइज़ेशन	61
9.	एस.डी.एच के आई.टि.यु (टी) सिफारिशें	68
10.	एस.डी.एच. सिस्टम में जिटर और वैंडर एवं एस.डी.एच नेटवर्कों की जांच	74
11.	एस.डी.एच पर इथरनेट GFP, VCAT और LCAS	87

- 1. पृष्ठों की संख्या 50
- 2. जारी करने की तारीख मई 2015
- 3. हिंदी और अंग्रेजी संस्करण में कोई विसंगति/विरोधाभास होने पर अंग्रेजी संस्करण ही मान्य होगा.

© IRISET

"यह केवल भारतीय रेलों के प्रयोगार्थ बौद्धिक संपत्ति है. इस प्रकाशन के किसी भी भाग को इरिसेट, सिकंदराबाद, भारत के पूर्व करार और लिखित अनुमित के बिना न केवल फोटो कॉपी, फोटो ग्रॉफ, मेग्नेटिक, ऑप्टिकल या अन्य रिकार्ड तक सीमित नहीं, बल्कि पुन: प्राप्त की जाने वाली प्रणाली में संग्रहित, प्रसारित या प्रतिकृति तैयार नहीं किया जाए."

http://www.iriset.indianrailways.gov.in

अध्याय 1

सिंक्रोनस डिज़ीटल हेयरार्की (एस.डी.एच.)

1.1 परिचय: ट्रांसिमशन सिस्टम, आज के आधुनिक समाज का 'सेंट्रलाइज़्ड नर्वस सिस्टम' है. डिज़ीटल ट्रांसिमशन के माध्यम से दुनिया भर के लोगों में उत्साह का, पूरे विश्व पर प्रभाव पड़ा है. किसी अन्य टेक्नॉलॉज़ी की तुलना में, एस.डी.एच. व्दारा स्पीच, वीडियो, डॉटा आदि आसानी से एक स्थान से दूसरे स्थान पर भेजा जाता है.

दुनिया भर में ट्रांसिमशन का उद्देश्य, विश्व के सभी समुदायों के बीच, सूचनाओं के मुक्त आदान-प्रदान की व्यवस्था करना है. उत्तरी-अमेरिका, यूरोप, जापान और भारत आदि सभी देशों की विभिन्न कम्यूनिकेशन-स्टैंडर्ड और हेयराकीं हैं. इन देशों के डिज़ीटल नेटवर्क को सीधे तौर पर नहीं जोड़ा जा सकता है क्योंिक, इन देशों की टेक्नॉलॉज़ी, एक दूसरे से भिन्न हैं. इस कारण, यह ना केवल विभिन्न देशों के बीच कम्यूनिकेशन में बाधा उत्पन्न करता है बल्कि विकास की दर को भी धीमा कर देता है.

लंबी दूरी के नेटवर्क को, ध्यान से देखें तो पता चलता है कि, वर्तमान सिस्टमों में प्रत्येक 'पॉइंट-टु-पॉइंट' ट्रांसिमशन के लिए, उचित 'नेटवर्क मैनेजमेंट कैपबिलिटी' (NMS) और 'नेटवर्क कॉन्फिगरेशन' पर 'ऑन-लाइन' कंट्रोल आवश्यक है ताकि, ट्रांसपोर्ट-लेयर को मजबूती प्रदान की जा सके और आने वाले भविष्य में, उपभोक्ताओं तथा सर्विस-ऑपरेटरों की आवश्यकताओं को पूरा किया जा सके. यह तथ्य इस बात से सच हो जाता है कि आज, 'मल्टी-मीडिया' पूरी तरह से, 'मेगा-बैंड-विड्थ' सर्विसेस देने के लिए तैयार हैं जैसा की 'वीडियो-ऑन-डिमांड' सेवा आदि.

मल्टी-मीडिया सेवा, अपने विशेष गुण, 'इंटिग्रेटेड कंप्यूटर कंट्रोल्ड' के आधार पर, टेक्स्ट, डॉटा ग्राफिक, वॉइस, इमेज़ और सजीव चल-चित्रों (मूविंग-इमेज़) आदि का जनरेशन, प्रोसेसिंग, डिस्प्ले, स्टोरेज़ और ट्रांसिमेशन करती है. और यह मानना पड़ेगा कि टेलीकॉम सेक्टर, उन्नित की ओर बढ़ रहा है लेकिन इसके कारण ज्यादा ट्रांसिमेशन-कैपबिलिटी की आवश्यकता बढ़ेगी, विभिन्न तथा ज्यादा बेहतर डॉटा-रेट के साथ उचित मात्रा में 'बैंड-विड्थ' की उपलब्धता आदि की आवश्यकता भी बढ़ेगी. इसका उपाय, 'सिंक्रोनस डिज़ीटल हेयराकीं' के सिद्धांत से पाया जा सकता है. जिसे हम, 'ब्रॉड-बैंड' युग की 'ट्रांसपोर्ट बैक-बोन' के रूप में जानते हैं.

'नोड नेटवर्क इंटरफेस', आई.टी.यू.(टी)/CCIR व्दारा सिफारिश किया गया, एस.डी.एच.के सिद्धांत पर कार्य करता है और हाई-स्पीड डिज़ीटल ट्रांसिमशन के लिए अंतर्राष्ट्रीय स्टैंडर्ड और स्पष्ट समाधान प्रदान कराता है.

एक 'इंटरनेशनल-नेटवर्क' के स्टैंडर्ड के रूप में, एस.डी.एच.का एक महत्वपूर्ण स्वरूप यह है कि इसके व्दारा 'वॉइड-बैंड' सिगनलों को, प्लॅसियो-क्रोनस (10⁻¹¹ फ्रीक्वेंसी ऑफ़-सेट) वातावरण में भी बिना किसी डॉटा-लॉस के तथा 'सिंक्रोनस फ़्रेम स्ट्रक्चर' लाभ के साथ ट्रांसपोर्ट किया जा सकता है जो कि, ड्रॉप-इंसर्ट तथा क्रॉस-कनेक्ट फंक्शनों को बेहद सरल बना देता है.

नोट: एस.डी.एच.सिस्टम, 64 केबीपीएस सिगनलों की मल्टी-प्लेक्सिंग नहीं करता है. एस.डी.एच. केवल 'बाइट' 'स्ट्रक्चर्ड फर्स्ट लेवल' के पी.डी.एच. की 'मैपिंग' निश्चित करता है, जो कि 64 केबीपीएस पी.डी.एच. मल्टी-प्लेक्सिंग विधि की विशेषताओं को नहीं बदलता है.

सिंक्रोनस डिज़ीटल हेयरार्की (एस.डी.एच.)

1.2 विकास : मौजूदा पब्लिक टेली-कम्यूनिकेशन नेटवर्क, लंबे समय से चली आ रही, आई.टि.यु (टी) की प्लॅसिओ-क्रोनस डिज़ीटल हेयरार्की (पी.डी.एच) पर आधारित ट्रांसिमशन है जो अच्छी तरह से उन्नत सिगनल प्रोसेसिंग और कंट्रोल तकनीक के लिए उपयुक्त नहीं है और तेजी से ट्रांसिमशन व्दारा की गई मांग को पूरा नहीं कर पाती है.

एस.डी.एच को पी.डी.एच की लिमिटेशन को पार करने के लिए ही बनाया गया है |

आई.टी.यू.(टी) व्दारा, सन् 1988 में, एस.डी.एच. को अपनाया गया. इसके मूल संस्करण को 'सोनेट' (SONET-सिंक्रोनस ऑप्टिकल नेटवर्क) के रूप में जाना जाता था जो कि आई.टी.यू.(टी) के अपनाने के लगभग दो-तीन वर्षों के पहले तक उत्तरी-अमेरिका में उपयोग किया जाता था और इसका नाम बदल कर 'एस.डी.एच.' किया गया.

- सन् 1984: T1X1 अमेरिकी स्टैंडर्डाईज्ड एजेंसी, ऑपरेटरों के बीच उच्च बिट रेट मे एक दूसरे से संबंध के लिए ऑप्टिकल लाइनों के इंटरफेस को परिभाषित करने के लिए जिम्मेदार बनाया गया था.
- सन् 1985 : फ़रवरी सन् 1985, मे Bell core ने सोनेट (सिंक्रोनस ऑप्टिकल नेटवर्क) की कनसेप्ट शुरू की यह भी एक मल्टीप्लेक्सिंग सिस्टम है जो निचले स्तर के ट्रिब्यूटरी को सीधी एकसेस प्रदान करति है. सोनेट 3 भागों मे बांटा गया फ्रेम फर्मैट, ऑप्टिकल इंटरफ़ेस और मेजरमेन्ट सामिल है.
- सन् 1988: फ़रवरी सन् 1988 मे आई.टि.यु (टी) के G.707, G.708, G.709 एस.डी.एच के रेकमेन्डेसन को अनुमोदित किया गया था. एस.डी.एच की बेसिक फ्रेम के बिट रेट 155.520 एमबीपीएस को स्टैंडर्डाईज्ड किया गया था.
- सन् 1989: आई.टि.यु (टी) वार्क ग्रुप XVIII की रेकमेन्डेसन ब्लू बुक सन् 1989 में प्रकाशित किए गए थे.
- सन् 1990: रेकमेन्डेसन G.707 का नया संस्करण, G.708, G.709 आधारित अनुमोदित किया गया था. यूरोपीय टेलिकम्यूनिकेशन स्टैंडर्ड संस्थान (ETSI) के निर्णय पर मल्टीप्लेक्सिंग संरचना को स्टैंडर्डाईज्ड किया गया था. बाकि रेकमेन्डेसन जैसे मल्टीप्लेक्सिंग उपकरणों, ऑप्टिकल इंटरफेस, सब्सक्राइबर लूप इंटरफेस, नेटवर्क मेजरमेन्ट आदि को अनुमोदित किया गया.

पी.डी.एच मे मैक्स बिट रेट 565 एम.बी.पी.एस है तथा स्पीच चैनलों की संख्या 7680 है यह किसी भी हालत मे आगे की मांग को पूरा नहीं कर पाता था.

पी.डी.एच मे मल्टीप्लेक्सिंग और डीमल्टीप्लेक्सिंग हायर ओडर मे उच्च लागत और अधिक मैन्टेनेन्स लगते है. जब कि एस.डी.एच सिस्टम में सारा काम एक ही स्टेज मल्टीप्लेक्सर व्दारा किया जाता है तो लागत, जगह और मैन्टेनेन्स कम लगता है.

पी.डी.एच में बिट इंटरिलविंग मल्टीप्लेक्सिंग सिस्टम अपनाया जाता है यहां हर लेबेल पर बिट्स स्कैटर होता है इसिलए प्रत्येक बिट के पोजिसन की पहचान तथा मूल आकार में वापस लाने के लिए बहुत मुश्किल होता है और पी.डी.एच में डीमल्टीप्लेक्सिंग के स्टेजों कि नंबर ज्यादा है .

सिंक्रोनस डिज़ीटल हेयराकीं (एस.डी.एच.)

मल्टीप्लेक्सिंग के हर स्टेजों पर जस्टीफ़िकेसन बिट्स पहले से ही स्कैटर हुए बिट्स के स्थान की पहचान को पेचीदा बना देती है. वर्तमान चुनौती यह है कि पी.डी.एच को एस.डी.एच मे चेन्ज करना और नेटवर्क की लागत को कम करना है.

भविष्य में एस.डी.एच की सफलता, निम्न कारणों से संभव हो सकती है:

- फाइबर ऑप्टिक्स की बैंड-विड्थ बढ़ाई जा सकती है और इसके लिए कोई सीमा नहीं है.
- माइक्रो-वेव सिस्टम, Gbps की रेंज में बिट-रेट के साथ डिज़ीटल सिगनल ट्रांसमिट कर सकती है क्योंकि, 256 QAM, स्टेप-स्क्वायर QAM जैसी नई-नई मॉड्यूलेशन तकनीक उपलब्ध हैं.
- वी.एल.एस.आई. तकनीक की बढ़ती क्षमताओं के उपयोग से अधिक फंक्शनल इंटिग्रेशन पाने के लिए जो कि अधिक खर्चीली होती है.
- सस्ती मेमोरी की उपलब्धता नई संभावनाओं के लिए रास्ता बनाती है.
- उपभोक्ता-सेवाओं की आवश्यकता को अतिरिक्त उपकरणों के बिना, आसानी से पूरा किया जा सकता है.
- ऑब्जेक्ट मूलक सॉफ्टवेयर के विकास के साथ वितरित प्रोसेसिंग पर निर्भरता बढ़ गई है.

1.3 लंबी दूरी नेटवर्क के लिए आवश्यकताएं : ब्रॉड-बैंड सेवाओं के साथ मल्टी-मीडिया के उद्गम के कारण, अधिक बैंड-विड्थ हैंडलिंग केपेसिटी की आवश्यकता है. वॉइस और डॉटा ट्रांसिमशन के विलय की वजह से बेहतर बिट-एरर रेट संभव हुए। सिगन्ल के विभिन्न प्रकार को समायोजित करने के लिए उच्च उपलब्धता तथा लचीलापन बढ़ाया गया.

1.4 एस.डी.एच के उद्देश्य :

- 140 एम.बी.पी.एस से ऊपर बिट रेट के लिए एक विश्व स्तर का निर्माण करना है .
- उच्च क्रम मे सिंक्रोनस डिज़ीटल मल्टीप्लेक्सिंग को सक्षम बनाना है
- ऑक्ज़ीलरी डॉटा को सामान्य बनाना (ओवरहेड).
- नेटवर्किंग मे अधिक लचीलापन लाना .
- ट्रिब्यूटरी को डाइरेक्ट एक्सेस करना
- अमेरिकी (टी) और यूरोपीय (ई) पी.डी.एच. दोनों ट्रिब्यूटरी को ट्रांसपोर्ट करना.

आई.टि.यु (टी) नोड नेटवर्क इंटरफेस (NNI), नेटवर्क आर्किटेक्चर ,मल्टीप्लेक्सिंग उपकरण, लाइन उपकरण आदि एस.डी.एच से संबंधित रेकमेन्डेसन को स्टैंडर्डाईज्ड किया गया और एस.डी.एच ट्रांसिमशन टेक्नॉलॉज़ी एक विश्व व्यापी स्टैंडर्ड बना.

1.5 एस.डी.एच के फायदे: स्टैंडर्ड बिट रेट: यह एक इंटरनेशनल हेयराकी है जो दुनिया भर में 140 एम.बी.पी.एस के ऊपर स्टैंडर्ड रेट को बनाया है |

सिंक्रोनस क्लॉक: एस.डी.एच सिस्टम में एक सिंक्रोनस क्लॉक रहता है. सिस्टम में सभी क्लॉक प्रायमरी रेट क्लॉक जो एक सेन्ट्रालाईज क्लॉक है उसके साथ सिंक्रनाइज़ होता है. उदाहरण के लिए, वी.एस.एन.एल के मुख्यालय वर्ली, मुंबई में प्रायमरी रेट क्लॉक है | बीएसएनएल में सारे एस.डी.एच सिस्टमों को इस क्लॉक के साथ सिंक्रनाइज़ किया जाता है | इस सुविधा की वजह से सारे क्लॉक को एरर से बचया जा सकता है. इस तरह पोसिटिभ जस्टीफ़िकेसन, निगेटिभ जस्टीफ़िकेसन कन्ट्रोल बिट्स, के रूप में प्रत्येक स्तर पर जस्टीफ़िकेसन बिट्स जोड़ने कि जरूरत नहीं है.

सिंक्रोनस डिज़ीटल हेयराकीं (एस.डी.एच.)

बाइट इंटरिलविंग मल्टीप्लेक्सिंगः एस.डी.एच सिस्टम में मल्टीप्लेक्सिंग बाइट इंटरिलविंग के रूप में किया जाता है बिल्क पी.डी.एच प्रणालियों मे बिट इंटरिलविंग के रूप में होती है | यह बिट धारा की पारदर्शिता को बनाए रखता है और किसी भी बिट धारा एस.डी.एच के किसी भी स्तर से छोड़ा या जोड़ा जा सकता है | उदाहरण के लिए एक 2 एम.बी.पी.एस ट्रिब्यूटरी अन्य ट्रिब्यूटरी को परेशान न करते हुए प्रत्यक्ष एस.टी.एम 64 से छोड़ा या जोड़ा जा सकता है |

चित्र 1.1 बिट इंटरलिविंग मल्टीप्लेक्सिंग

चित्र 1.2 बाइट इंटरितविंग मल्टीप्लेक्सिंग

लो स्पीड ट्रिब्यूटरी तक डायरेक्ट एक्सेस : एक पी.डी.एच के E- 5 (565 एम.बी.पी.एस) में से एक 2 एम.बी.पी.एस ड्रॉप करने के लिए डीमल्टीप्लेक्सिंग चार चरणों में करना आवश्यक है जैसे 565 से 140 एम.बी.पी.एस , 140 से -34 एम.बी.पी.एस, 34 से -8 एम.बी.पी.एस फ़िर 8 से -2 एम.बी.पी.एस. फिर इस 2 एम.बी.पी.एस को 565 एम.बी.पी.एस में मल्टीप्लेक्सिंग करने के लिए फिर से 4 चरणों में करना आवश्यक है. उदाहरण के लिए एस.डी.एच में किसी भी ट्रिब्यूटरी एक E1 (2 एम.बी.पी.एस) धारा किसी भी स्तर से छोड़ा या जोडा जा सकता है, यहां तक कि एस.टी.एम. 64 से भी किसी स्तर पर डीमल्टीप्लेक्सिंग या मल्टीप्लेक्सिंग में कोई भी परेशानि नहीं होती है.

चित्र 1.3 एस.डी.एच एड & ड्रॉप मक्स

चित्र 1.4 एस.डी.एच एड & ड्रॉप मक्स

ड्रॉप और इन्सर्ट मक्स : किसी भी बैंडविड्थ / ट्रिब्यूटरी एक E1 (2 एम.बी.पी.एस) धारा किसी भी स्तर से छोड़ा या जोडा जा सकता है, यहां तक कि एस.टी.एम. 64 से भी किसी स्तर पर डीमल्टीप्लेक्सिंग या मल्टीप्लेक्सिंग किया जा सकता है.

वर्ल्ड वाइड कंपैटिबिलिटी: एस.डी.एच में कोई अतिरिक्त इंटरफेसींग उपकरण का उपयोग के बिना दोनों ई और टी ट्रिब्यूटरी ट्रांसिमशन कर सकता है .

ई सिस्टम या टी सिस्टम के किसी भी ट्रिब्यूटरी एस.डी.एच सिस्टम के किसी भी फेज में प्रबेश कर सकता है. एस.डी.एच आई.टि.यु (टी) व्दारा स्टैंडर्डाईज्ड ट्रिब्यूटरी E1 (2 एम.बी.पी.एस), E3 (34 एम.बी.पी.एस), E4 (140 एम.बी.पी.एस), T1 (1.544 एम.बी.पी.एस), T 2 (6.312 एम.बी.पी.एस), T3 (45 एम.बी.पी.एस) को ट्रांसमिट कर सकता है.

टेबल 1.1 में स्टैंडर्ड ट्रांसिमशन रेट एक प्लॅसिओ-क्रोनस डिज़ीटल हेयरार्की (पी.डी.एच) में संयुक्त राज्य अमेरिका, कनाडा, यूरोप / भारत, जापान में उपयोग बिटरेट इस प्रकार है .

हेयरार्की	USA/Ca	nada	Japan		Europe/ India	
हेथराका लेबेल	बिट रेट एम.बी.पी.एस	चैनेल	बिट रेट एम.बी.पी.एस	चैनेल	बिट रेट एम.बी.पी.एस	चैनेल
1	1.544	24	1.544	24	2.048	30
2	3.152	48	6.312	96	8.448	120
3	6.312	96	32.064	480	34.368	480
4	44.736	672	97.728	1440	139.264	1920
5	91.053	1344	396.200	5760	564.992	7680
6	274.175	4032	810.000	11520	2400.000	30720
7	405	6048				
8	565	8064				

टेबल 1.1 प्लॅसिओ-क्रोनस डिज़ीटल हेयराकी ई और टी मे

स्टैंडर्डाईजेसन : एस.डी.एच आई.टि.य् (टी) व्दारा ओपन सिस्टम इंटरफेस के रूप में एक अत्यधिक

सिंक्रोनस डिज़ीटल हेयरार्की (एस.डी.एच.)

स्टैंडर्डाईज्ड सिस्टम है जैसे ऑप्टिकल इंटरफ़ेस का स्टैंडर्डाईज्ड, फ्रेम फरमैट का स्टैंडर्डाईज्ड, आक्सिलरि चैनलों और कंट्रोल बिट्स का स्टैंडर्डाईज्ड, मल्टीप्लेक्सिंग का स्टैंडर्डाईज्ड, लैन नेटवर्क का एक हिस्सा हो कि लचीला सेक्सन के साथ स्टैंडर्डाईज्ड के रूप में आई.टि.यु (टी) व्दारा ओपन सिस्टम इंटरफेस के रूप में एक अत्यधिक स्टैंडर्डाईज्ड सिस्टम है, वान, ब्रॉड बैंड आईएसडीएन, पी.डी.एच जैसा ही अन्य प्रायमरी स्तर तक स्टैंडर्डाईज्ड है आज के प्रतिस्पर्धी माहौल में तेजी से आवश्यक ओपेन नेटवर्क संरचना का निर्माण कर सकते हैं।

परफॉर्मेंस मॉनिटिरिंग: एस.डी.एच मे फाल्ट का पता लगाना सहज है. एस.डी.एच सिस्टम के हर स्तर पर कुछ ओबर हेड बाइट्स जोड़कर सिस्टम में भेजा जाता है यह सतत एरर और गुणवत्ता विश्लेषण की मॉनिटिरिंग और एरर की पहचान करता तथा उन्हें दूर करता है . पैरीटी चेकों व्दारा हर विशिष्ट सेक्सन पर और हेयरार्की के सभी स्तरों पर एरर का जाच करति है तो इस फाल्ट से उत्पन्न फेलिओर को कम करता है, तो यह कहना है कि एस.डी.एच लगभग एक फेलिओर मृक्त ट्रांसिमिशन सिस्टम है |

पाथ-ओवर हेड (POH): पाथ-ओवर हेड(POH), VC स्तर पर जुड़ता है और उसके फ्लो प्रत्येक ट्रिब्यूटरी को पारदर्शी बनाता है तथा किसी भी ट्रिब्यूटरी को आवश्यक डॉटा प्रदान करती है. POH में कुल 9 बाइट्स होते हैं. पहली बाइट, पाथ-ट्रेस होता है जो पाथ का शुरूआती पॉइंट का पता लगा कर अपने ट्रिब्यूटरी का विवरण देता है तथा ट्रांसमीटर को निरंतर जांच करने के लिए रिसीव टर्मिनल को सक्षम बनाता है. दूसरी बाइट, एरर के परफॉर्मेंस मॉनिटरिंग (बिट इंटरलिविंग पैरिटी चेक विधि) के लिए होती है. अन्य सात बाइटों के विभिन्न कार्य आगे विर्णित हैं.

पॉइंटर टेक्नॉलॉज़ी: एस.डी.एच. में पॉइंटर तकनीक का उपयोग, प्रत्येक ट्रिब्यूटरी के वास्तविक स्टार्टबाइट की पहचान करने के लिए किया जाता है तथा चैनल को आसानी से 'ड्राप' करने की सुविधा प्रदान
कराती है. एक ट्रिब्यूटरी जब बड़ी ट्रिब्यूटरी में मिल्टिप्लेक्स होती है, तब बाइट्स में फेज ऑफ-सेट को
बड़ी ट्रिब्यूटरी में परस्पर रेफेरेंस-पॉइंट के व्दारा पहचाना जा सकता है. यह एक सिस्टम भी है, जहाँ
सिंक्रनाइज़ेशन का लॉस या कम क्षमता वाली ट्रिब्यूटरी, ज्यादा क्षमता वाली ट्रिब्यूटरी की अपेक्षा थोड़ी
धीमी या तेजी से चल रही हो तो, इस पॉइंटर का मान बढ़ने या घटने को अनुमत करती है. प्रत्येक छोटी
ट्रिब्यूटरी का अपना स्वयं का पॉइंटर होता है, जो स्वसिस्ट्म रूप से बदलता है. जबिक इन पॉइंटर्स का
उपयोग, कुछ इन-पुट बफ़र को आवश्यक बना देता है, जो कि आवश्यकता- अनुरूप बहुत ही छोटे होते है.
यदि बड़ी ट्रिब्यूटरी में स्थित छोटी ट्रिब्यूटरी के फेज़ में बदलाव के लिए कोई मैक्निज्म ना हो तो
अत्यधिक 'डिले' का होना एक समस्या बन जाती है. वैसे तो, एस.डी.एच में, बहुतायत ट्रिब्यूटरी, चाह
छोटी या बड़ी, सभी एक-दूसरे से सिंक्रोनाइज़्ड होती हैं, परंतु इनमें से कुछ ट्रिब्यूटरी, सिंक्रोनाइज़्ड नहीं
होती हैं और हर बार उनके सिंक्रोनाइज़ेशन का दबाव बना रहता है और अन्य सिंक्रोनाइज़्ड ट्रिब्यूटरी के
परस्पर, एक बाइट-साइज़्ड-स्लिप के व्दारा इसे दूर किया जा सकता है. जब कभी भी कोई 'स्लिप' पैदा
होती है तब उस ट्रिब्यूटरी से संबंधित पॉइंटर की पुनर्गणना (री-कैल्क्यूलेट) की जाती है.

'पॉइंटर-मैक्निज़म', एस.डी.एच. स्टैंडर्ड का हृदय होता है. यह मैक्निज़म, हमें, ऐसे नेटवर्क बनाने में सक्षम करता है जो कि लगभग सिंक्रोनाइज्ड होते है, पर पूरी तरह से सिंक्रोनाइज़्ड नहीं होते हैं फिर भी हमें, प्रत्येक चैनल को आसानी से स्थापित करने साथ-साथ, उस चैनल की संलग्न मैनेजमेंट और कंट्रोल इन्फर्मेशन को, किन्तु 'ट्रांसिमशन डिले' में आने वाली अधिक भरपाई के बिना अनुमत करते हैं.

सिंक्रोनस डिज़ीटल हेयरार्की (एस.डी.एच.)

एस.डी.एच. नेटवर्क, वास्तिवक रूप में बिल्कुल भी सिंक्रोनाइज्ड नहीं होते बिल्क बहुत ही 'टाइटली कंट्रोल्ड असिंक्रोनस नेटवर्क' होते हैं. इसका तथ्य यह है कि हमनें, इस असिंक्रोनिज्म की वजह से 'स्लिप' को 'क्वांटाइज़्ड' कर दिया है. इसका अर्थ यह है कि, एस.डी.एच. नेटवर्क में, किसी भी ट्राफ़िक-पाथ को स्थापित करना और रूट करना संभव है. यह तकनीक, नेटवर्क मैनेजमेंट सॉफ्टवेयर के साथ मिलकर, ट्राफिक-रूटिंग में लचीलापन(फ्लेक्ज़िबिलिटी) प्रदान करती है जो कि पी.डी.एच. तकनीक में प्राप्त कर पाना कठिन था.

फ्रेम संरचना : 125 माइक्रो-सेकंड ट्रांसिमशन की एस.डी.एच. फ्रेम स्ट्रक्चर में, 270 कॉलम और 9 पंक्तियां होती हैं जो कि एडिंग और ड्रॉपिंग के उद्देश्य को पूरा करने के लिए, ट्रिब्यूटरी को आसानी से पहचानने में मदद करती है.

सेक्सन ओवर हैड (एस.ओ.एच) : प्रत्येक फ्रेम में पर्याप्त खाली स्थानों को भविष्य की जरूरतों और विस्तार के लिए तथा एरर आदि सुधार के लिए रखा जाता है . रिजेनेरेटर से मल्टीप्लेक्सर के बीच ट्रांसिमशन के लिए कुछ ओबर हेड बाइट्स है जिसमें 9 रो और 9 कोलम एस.ओ.एच है.

ऑटोमैटिक प्रोटेकशन सिस्टम: एस.ओ.एच में K1 और K2 बाइट्स है जो मीडिया, नेटवर्क या सिस्टम टूटने के बावजूद निर्बाध ट्रांसिमशन सुनिश्चित करने के लिए स्विचिंग बाइट्स हैं | यह ऑटोमैटिक ट्राफिक रिरुटींग एक उच्च विश्वसनीयता के साथ प्रदान करता है.

माध्यम के रूप में ऑप्टिकल फाइबर: एस.डी.एच का एक और लाभ यह वियुत चुम्बकीय नोइज को प्रतिरोधक करता है और माध्यम के रूप में ऑप्टिकल फाइबर का उपयोग करता है.

डायनामिकाल नेटवर्क मैनेजमेंट की क्षमता: यह सिस्टम ट्राफिक आवश्यकताओं में परिवर्तन को अपनाने के लिए होता है. यह डायनामिकालि उपयोगकर्ताओं के लिए बैंडविड्थ ओन डिमान्ड आवंटित कर सकता है.

नेटवर्क मैनेजमेंट सिस्टम : नेटवर्क मैनेजमेंट सिस्टम ट्रांसिमशन नेटवर्क मे ओ.एन.एम तथा नेटवर्क मैनेजमेंट जैसी सुविधाओं को प्रदान करता है. यह एक ऑटोमैटिक और सेन्ट्रालाइज एन.एम.एस. व्दारा सब्सक्राइबरों के लिए विभिन्न बैंड-विड्थ सेवाओं का कनेक्शन और मैनेजमेंट करने के लिए है. यह उपकरणों की उच्च ट्रांसिमशन गुणवता के परीक्षण के साथ इच्छित ट्रांसिमशन क्षमता के लिए, कंप्यूटर नियंत्रित प्रणाली है. एन.एम.एस., पूरी तरह से सॉफ्टवेयर कंट्रोल्ड सिस्टम है. इसका सबसे पहला और महत्वपूर्ण लाभ यह है कि, इसके व्दारा, लाइन नेटवर्क मैनेजमेंट, ट्रैफिक मैनेजमेंट आदि कार्य करने की क्षमता है. यह इसलिए संभव है, क्योंकि SDH में ओवर-हेड कंट्रोल बिट्स पर्याप्त संख्या में है. ओवर-हेड बिट्स की पर्याप्त संख्या होने से यह परफॉर्मेंस मॉनिटरिंग, कॉन्फिगरेशन मैनेजमेंट, रिसोर्स ऑप्टिमाईजेसन, नेटवर्क प्रोटेकशन, रिमोट प्रोविजनिंग और सेंट्रलाइज्ड मॉनिटरिंग आदि नेटवर्क मैनेजमेंट जैसे कार्यों को कर सकते हैं. इसलिए SDH, अत्यधिक शिक्तशाली और उपरोक्त सुविधाओं के साथ, अच्छे भविष्य की ओर अग्रणी रहने की संभावनाएं हैं.

परफॉर्मेंस मॉनिटरिंग, निम्नलिखित तीन स्तरों में से किसी भी स्तर पर की जा सकती है.

सिंक्रोनस डिज़ीटल हेयराकीं (एस.डी.एच.)

- 1. एंड-ट्-एंड स्तर पर
- 2. मल्टिप्लेक्स सेक्शन पर
- 3. री-जनरेटर सेक्शन पर

सिंक्रोनस मल्टीप्लेक्सिंग स्ट्रक्चर: यह स्ट्रक्चर निम्नलिखित लाभ प्रदान करता है जैसे, टर्मिनलों और मिल्टिप्लेक्सरों के बीच परस्पर कम्यूनिकेशन करना, नये-नये मिल्टिप्लेक्सरों(ADM's) का विकास करना, डिजीटल क्रॉस-कनेक्ट(DXC's) की सुविधा, अप-ग्रेडिंग और नेटवर्किंग में लचीलापन, हाइयर बिट-रेट में आसानी से बढ़त, 10 Gbps तक नेटवर्क के विस्तार की सुविधा, नॉन-स्टैंडर्ड ट्रिब्यूटरी के साथ-साथ ए.टी.एम. बिट-रेट की परिवहन-क्षमता, कम पॉवर खपत, कम उपस्करों का उपयोग, कम खर्चीला तथा कम अनुरक्षण, एंड-टु-एंड उपभोक्ताओं के लिए, सर्विसों की मांग पूरी करना आदि.

नेटवर्क सरलीकरण: SDH में ऐड-ड्रॉप मल्टीप्लेक्सिंग की अवधारणा से काफी कम फाल्ट तथा ऑपरेटिंग और मैन्टेनेन्स मे खर्चों कि कम होती है, जिसके परिणामस्वरूप नेटवर्क तत्वों में कमी आती है, जबिक PDH मक्स मे काफी नेटवर्क तत्वों का इस्तेमाल होता है और साथ साथ SDH नेटवर्क द्वारा चैनलों को अधिक कुशलता से ऐड-ड्रॉप कर पाते है और यह एक मजबूत नेटवर्क मैनेजमेंट क्षमता वाले ब्रॉडबैंड सेवाओं एवं भैरियेबेल बैंडविड्थ को बेहतर प्रोविजनिंग करने के लिए सक्षम है.

सर्वेड्डिलिटी: SDH नेटवर्क तत्वों के नेटवर्कींग में ऑप्टिकल फाइबर की मौजूदगी से एंड से एंड तक निगरानी और मैन्टेनेन्स संभव हैं. सिंक्रोनस नेटवर्क का मैनेजमेंट क्षमता लिंक या नोड्स का फेलिओर को तत्काल पहचानता है. सेल्फ हिलिंग रिंग आर्किटेक्चर होने से नेटवर्क ऑटोमैटिक रूप से फाल्टपूर्ण सेक्सन को रि कॉन्फ्रिगर कर ट्रैफ़िक तुरन्त चालु कर देता है .इसके परिणाम स्बरूप फेलिओर होने पर नेटवर्क ऑपरेटरों कि सेवा के आंकड़ों अत्यंत उच्च उपलब्धता तथा नेटवर्क के प्रदर्शन मे उच्च स्तर की गारंटी होती है।

सिंक्रोनस डिज़ीटल हेयराकीं (एस.डी.एच.)

- 1. SDH को PDH की सीमा कि पार करने के लिए बनाया गया है. T/F
- 2. सिंक्रोनस शब्द का मतलब सभी मल्टीप्लेक्स स्तर में एक ही घड़ी होना अनिवार्य है T/F
- 3. SDH डेटा ट्रांसिमशन प्रणाली में अलग रेटों का सिगन्ल मल्टीप्लेक्सिंग/डी-मल्टीप्लेक्सिंग आपरेशन के बिना ड्राप, इनसर्ट नहीं किया जा सकता है.
- 4. एक ही नेटवर्क पर विभिन्न निर्माताओं के सिंक्रोनस डिजिटल ट्रांसिमशन उपकरण काम कर सकते हैं T/F
- 5. अपने शक्तिशाली नेटवर्क मैनेजमेंट प्रणाली के साथ कुशलता से चैनलों को ड्रॉप और इन्सर्ट करने के लिए SDH नेटवर्क सक्षम है

 T/F
- 6. नेटवर्क मैनेजमेंट से चैनलों का प्रोविजन, परफॉर्मेंस मॉनिटरिंग, कॉन्फ़िगरेशन मैनेजमेंट, रिसोर्स मैनेजमेंट और नेटवर्क प्रोटेक्शन की जाति है

 T/F
- 7. SDH भविष्य मे ब्रॉडबैंड ISDN के रूप में नई सेवाओं को समर्थन नहीं करता है T/F
- 8. SDH मानकों फिजिकल स्तर पर फाइबर-टू-फाइबर इंटरफेस को परिभाषित करता है T/F
- 9. SDH प्रणाली में मल्टीप्लेक्सिंग बाईट इंटर लिभिंग से किया जाता है T/F

सही उत्तर चुनें:

- 1. SDH प्रणाली में मल्टीप्लेक्सिंग द्वारा एक किया जाता है
 - क) बिट इंटरलिविंग
- ख) बाइट इंटरलिविंग
- एक सिंगल सिंक्रोनस मल्टीप्लेक्सिंग कार्य कर सकते हैं
 क)पूरे प्लॅसिओ-क्रोनस डिज़ीटल हेयरार्की पर्वत।
 ख)विशिष्ट प्लॅसिओ-क्रोनस डिज़ीटल हेयरार्की पर्वत।
- 3. विभिन्न उत्पादकों के सिंक्रोनस डिजिटल ट्रांसिमशन उपकरणों
 - क) एक ही लाइन पर इंटर काम नहीं कर सकता ख) एक ही लाइन पर कर सकते हैं
- 4. SDH डेटा पारेषण प्रणाली में अलग रेट के संकेत
 - क) प्रत्येक की दर के लिए मल्टीप्लेक्सिंग/डी-मल्टीप्लेक्सिंग आपरेशन से बाहर ले जाने के लिए बिना बरामद या इनसर्ट नहीं किया जा सकता है।
 - ख) प्रत्येक की दर के लिए बहुसंकेतन / डीमल्टीप्लेक्सिंग आपरेशन से बाहर ले जाने के लिए बिना बरामद या ड्राप जा सकता है।
- 1. SDH का उद्देश्य क्या हैं ?
- 2. भविष्य में SDH की सफलता किस पर निर्भर करता है ?
- 3. PDH प्रणाली का हानि क्या हैं और यही कारण है कि यह वर्तमान परिदृश्य में उपयुक्त नहीं है?
- 4. लंबी दूरी के नेटवर्क कि आवश्यकताएं क्या हैं?
- 5. SDH सिस्टम से लाभ क्या है.?
- 6. क्या बाइट इंटरलिविंग मल्टीप्लेक्सिंग है और बिट इंटरलिविंग मल्टीप्लेक्सिंग के साथ तुलना मे कौन फायदेमंद है और कैसे?
- 7. यदि आप SDH में कम गति ट्रिबुटारि में डाइरेक्ट एक्सेस से क्या समझते हैं और यही कारण है कि यह PDH में संभव नहीं है?
- 8. वर्ल्ड वाइड कंपैटिबिलिटी , PDH में यह उपलब्ध नहीं है, जो SDH की एक विशेषता है यह क्या है?
- 9. पॉइंटर क्या हैं और यह SDH में कैसे उपयोगी होता है?
- 10. SDH में इस्तेमाल किया नेटवर्क प्रबंधन प्रणाली के लाभ क्या हैं ?

अध्याय 2 एस.डी.एच. मल्टीप्लेक्सिंग संरचना

उद्देश्य: इस अध्याय के माध्यम से प्रशिक्ष् यह समझ सकते है

- 1. आईटीयू-टी की Rec G.707 के अन्सार SDH बिट रेट
- 2. सिंक्रोनस ट्रांसपोर्ट मॉड्यूल का अर्थ
- 3. आईटीयू के अनुसार एसटीएम एन मल्टीप्लेक्सिंग संरचना आईटीयू-टी की Rec G.709
- 4. SDH मल्टीप्लेक्सिंग संरचना के विभिन्न चरणों के कार्य
- 5. SDH मल्टीप्लेक्सिंग सिद्धांत

2.1 आई.टि.य् -टी की Rec G.707 के अन्सार SDH बिट रेट :

सीरीयल	SDH	बिट रे	स्पिच चैनेल	
नम्बर	लेबेल			
1.	STM 1	155.520 mbps	-	1890
2.	STM 4	622.080 mbps	-	7560
3.	STM 16	2488.320 mbps	2.5 Gbps	30,240
4.	STM 64	9953.280 mbps	10.0 Gbps	1,20,960

2.1 टेबेल : SDH बिट रेट

- 2.2 सिंक्रोनस ट्रांसपोर्ट मॉड्यूल (एस.टी.एम.): एस.टी.एम इन्फ़रमेशन संरचना है। यह इन्फ़रमेशन पेलोड और ओबर हेड बिट्स हर 125 ms में दोहराता है, जो ब्लॉक फ्रेम संरचना हैं। इन्फ़रमेशन उपयुक्त रूप से प्रसारण के लिए नेटवर्क से सिंक्रनाइज़ होते है जो एक चयनित मीडिया पर सिरियल ट्रांसिमसन है.
- STM मे एक नंबर होते है जो इसिक लेबेल को ईंगित करता है .
- STM1, SDH बिट रेट का पहला लेबेल है .
- उच्च SDH बिट रेट अंक ग्णक होते है.
- उच्च SDH बिट रेट पहला लेबेल के अंक गुणक होते है .
- 155.520 mbps, STM 1 का बेसिक रेट होता है. STM4 मे 4 STM1 होते है और हरएक STM 1 सिंभ मामले मे स्बिसिस्ट्म होते है. इसितरह STM 16 का मतलब 16 गो, STM 1 और STM 64 का मतलब 64, STM 1.
- STM 4 = $155.520 \times 4 = 622.080 \text{ mbps}$
- PDH मे जस्टीिफकेशन बिट जोड्ने कि जरुरत नहीं होती है.

2.3 एस.डी.एच मल्टीप्लेक्सिंग संरचना :

इरिसेट

आई.टी.यू (टी) की सिफारिश G.709 के अनुसार (चित्र 2.1) एस.डी.एच में पी.डी.एच धाराएं E1, E3, E4, E हेयराकीं और T1, T2 और T3. T हेयराकीं को स्टैंडर्डाईज्ड किया गया है. चित्र 2.1 में एस.डी.एच के मल्टीप्लेक्सिंग संरचना को ब्लॉक आरेख मे दिखाया गया है.

2.3.1 कंटेनर सी: कंटेनर सी, पी.डी.एच सिगन्ल के प्रवेश बिंदु है. यह एक प्लीजिओक्रोनस सिगन्ल का ट्रिब्यूटरी युनिट या चैनल का बेसिक पैकिंग यूनिट है. इस पैकिंग प्रक्रिया को मैपिंग कहा जाता है जस्टीफ़िकेसन सुविधाओं होने से प्लीजिओक्रोनस ट्रिब्यूटरी को सिंक्रोनस नेटवर्क क्लॉक अनुकूलित करने के लिए प्रदान की जाती हैं. प्रत्येक कंटेनर में यह सिंक्रोनस फ्रेम रहते है. निश्चित स्टफ़ींग बिट्स, सिंक्रोनस ट्रिब्यूटरी में डाला जाता है। सिगन्ल अगले फेज यिन वर्चुअल कंटेनर में प्रवेश करने के लिये तैयार होता है कंटेनरों में बेसिक कंटेनर और उच्च क्रम के कंटेनर होते हैं. आई.टी.यू (टी) सिफारिश G.709 के अनुसार, C-11, C -12, C -2, C -3 और C -4 यथाक्रम 1.544 एम.बी.पी.एस, 2.048 एम.बी.पी.एस, 6.312 एम.बी.पी.एस, 34 एम.बी.पी.एस या 45 एम.बी.पी.एस और 140 एम.बी.पी.एस के पी.डी.एच बिट रेट के लिए कंटेनर हैं .

चित्र 2.1 एस.डी.एच मल्टीप्लेक्सिंग संरचना

वर्चुअल कंटेनर (VC = C + POH): प्रत्येक कंटेनर मे पाथ ओवर-हेड में कंट्रोल इनफरमेसन के साथ जोड़ा जाता है. जो एंड टु एंड पाथ मॉनिटरिंग करने के लिए मदद करता है. कंटेनर और पाथ ओबर हेड एक साथ वर्चुअल कंटेनर (VC) के रूप में जाना जाता है. पाथ ओबर हेड मे 1 कॉलम X 9 रों होते है. वर्चुअल कंटेनर (VC) में POH क्षेत्रों एक ब्लॉक फ्रेम संरचना में रहता है इसकि टाईम पिरियड 125 माईक्रोसेकेंड या 500 माईक्रोसेकेंड हैं. POH में प्रत्येक बाइट के कार्यों आंकड़ा 2.2 में दिखाया गया है.

वर्चुअल कंटेनर (VC) दो प्रकार होते है.

- बेसिक वर्चुअल कंटेनर :VC11, VC12उच्च ओरडर वर्चुअल कंटेनर :VC3, VC4
- 2.3.3 ट्रिब्यूटरी यूनिट (TU = VC + पॉइंटर): यह एक इनफरमेसन स्ट्राक्चर है, यह युनिट के निचले क्रम के पाथ लेयर और उच्च क्रम के पाथ लेयर के बीच अनुकूलन प्रदान करता है, इसमे वर्चुअल कंटेनर की इनफरमेसन पेलोड और ट्रिब्यूटरी यूनिट पॉइंटर होते हैं. जिसमे TU -2 VC -2 तथा TU -3 VC -3 आदि होते है.
- 2.3.4 ट्रिब्यूटरी यूनिट ग्रुप: (TUG) यहां एक या अधिक ट्रिब्यूटरी यूनिट का मल्टीप्लेक्सिंग होता है इरिसेट

एस.डी.एच. मल्टीप्लेक्सिंग संरचना

बाइट इंटरिलविंग मल्टीप्लेक्सिंग के द्वारा उच्च बिट रेट प्राप्त होता है. जिसमे Tug-2 या 3 TU 12 या 4 TU11 या TU2 का एक समूह होता है. इसमे एक Tug-3 या सात Tug-2 या 3 TU, होमोजेनस असेंबली होते हैं.

2.3.5 पॉइंटर : यह एक इन्डिकेटर बाइट है पॉइंटर वैल्यु वर्चुअल कंटेनर कि फ्रेम ओफ़्सेट के रेफेरेंस में है यह फ्रेम के रेफेरेंस को परिभाषित करता है. जिससे अगले उच्च स्तर VC की POH के संबंध में वर्चुअल कंटेनर (VC-n) के फेज एलाईन्मेन्ट को इंगित करता है. ट्रिब्यूटरी यूनिट पॉइंटर उच्च स्तर POH के स्थान के रेफेरेंस में तय कि जाति है. एस.डी.एच. में पॉइंटर तकनीक का उपयोग, प्रत्येक ट्रिब्यूटरी के वास्तविक स्टार्ट-बाइट की पहचान करने के लिए किया जाता है तथा चैनल को आसानी से 'ड्राप' करने की सुविधा प्रदान कराती है. एक ट्रिब्यूटरी जब बड़ी ट्रिब्यूटरी में मिल्टिप्लेक्स होती है, तब बाइट्स में फेज ऑफ-सेट को बड़ी ट्रिब्यूटरी में परस्पर रेफेरेंस-पॉइंट के व्दारा पहचाना जा सकता है.

2.3.6 एड्मिनिस्ट्रेटिभ यूनिट: यह एक संरचना है जो उच्च क्रम के पाथ लेयर और मल्टीप्लेक्स सेक्सन लेयर के बीच अनुकूलन प्रदान करता है. इसमें इनफरमेसन पेलोड और ए.यू. पॉइंटर होते हैं जो पेलोड फ्रेम तथा मल्टीप्लेक्स सेक्सन फ्रेम की ओफ़सेट को इंगित करता है. ए.यू. का स्थान एस.टी.एम. फ्रेम का साथ निश्चित होता है.

2.3.7 एड्मिनिस्ट्रेटिभ यूनिट ग्र्प : यह Au-3 या Au.-4 का एक होमोजेनस असेंबली हैं.

एस.डी.एच के मल्टीप्लेक्सिंग सिद्धांतों : 1.5 एम.बी.पी.एस, 2.048 एम.बी.पी.एस, 6.312 एम.बी.पी.एस उनके संबंधित कंटेनरों C-11, C-12 और C-2 मे भजा जाता है. इन सिगन्ल को उनके संबंधित VC में और ट्रिब्यूटरी यूनिट पॉइंटर मे डाला जाता है. TUG-2 मे TU-12 या एक VC -2 TU-2 के साथ साथ TU-11 या तीन VC- 12 के साथ या तो चार C-11 हो सकता है. C-3 कंटेनर मे इनपुट 34 एम.बी.पी.एस या 44.7 एम.बी.पी.एस हो सकता है. AU-3 के साथ VC-3 कंटेनर सीधे AUG तथा एस.टी.एम. फ्रेम मे प्रबेश कर सकता है. इसी प्रकार सात TUG-2 एक TUG-3 में मैप किया जा सकता है, अन्यथा एक TU-3 के साथ एक VC -3 एक TUG-3 में मैप किया जा सकता है. तीन TUG-3 VC-4 में मैप किया जा सकता है फ़िर VC-4 AU-4 के साथ AUG मे एस.टी.एम. फ्रेम बनाता है. तिन AU- 3 भी एस.टी.एम. फ्रेम बनने के लिए AUG मे प्रबेश कर सकते हैं |

मल्टीप्लेक्सिंग सिद्धांतों के लाभ :

- ऑप्टिकल लाइन इंटरफ़ेस का स्टैंडर्डाईजेसन.
- फ्रेम फरमैट का स्टैंडर्डाईजेसन .
- आक्सिलरि चैनलों और कंट्रोल बिट्स का स्टैंडर्डाईजेसन.
- नया नेटवर्क के लिये संरचना को लचीला बनाना और इसे सिस्टम के साथ कार्यान्वयन करना (लैन, वैन, बी आईएसडीएन).
- उपकरण कि लागत में कमी लाना , इसे लागत प्रभावी बनाना, ताकि कम मैन्टेनेन्स लगे.

निम्न उपायों से सिंक्रोनस फ्रेम संरचना मे लागत कम आ सकति है.

एस.डी.एच. मल्टीप्लेक्सिंग संरचना

- 1. ट्रांसिमशन नेटवर्क को ऑटोमैटिक और सेन्ट्रालाइज मैनेजमेंट करना होगा.
- 2 नए नेटवर्क टोपोलॉजी को आपनाना होगा.
- 3. टर्मिनल और मल्टीप्लेक्सर मे एकीकरण करना होगा.
- 4 ए डी एम मल्टीप्लेक्सर की नई जेनेरेशन लाना होगा.
- 5. डिज़ीटल क्रॉस कनेक्ट्स DXCs का उपयोग करना होगा.
- 6. उपकरणों मे कम इलेक्ट्रीकल की खपत कम करना होगा.
- 7. अस्टैंडर्ड ट्रिब्यूटरी के ट्रांसिमशन के लिए अधिक से अधिक लचीलापन देना होगा.
- 8. डीमल्टीप्लेक्सिंग और मल्टीप्लेक्सिंग के बिना कम गति ट्रिब्यूटरी मे सीधी पहुंच करना होगा .
- 9. मौजूदा पी.डी.एच सिगन्ल को ले जाने , तथा पी.डी.एच के साथ संगत सिस्टम करना होगा.
- 10. भविष्य ब्रॉडबैंड एटीएम बिट रेट ले जाने में सक्षम करना होगा.
- 11. 2.5 Gbps करने के लिए आसान नेटवर्क का विस्तार करना होगा.
- 12. उच्च विश्वसनीयता के साथ स्वयं हिलींग , स्वतः ट्राफिक रीरूटिंग ,बिना किसी रुकावट के सेवा प्रदान करना होगा.
- 13. मांग करने पर सर्विस , मांग पर पोईन्ट से पोईन्ट सेवा प्रदान करना होगा.
- 14. ग्राहक परिसर तक लचीला सेबा, तथा विभिन्न तय बैंडविड्थ सेवाओं का लचीला मैनेजमेंट प्रदान करना होगा.
- 15. ओपेन नेटवर्क संरचनाओं का निर्माण जो आज के प्रतिस्पर्धी माहौल में आवश्यक है इसे आपनाना होगा.
- 16. ग्राहकों को एस.डी.एच कनेक्शन के लिए उन्नत मैनेजमेंट प्रदान करना होगा.
- 17. आसान नेटवर्क मैनेजमेंट, नेटवर्किंग और उन्नयन लिए और अधिक लचीलापन प्रदान करना होगा.
- 18. एस.डी.एच आपरेशन, मैनेजमेंट और मैन्टेनेन्स प्रदान करना होगा.
- 19. चरणों में उच्च बिट में आसान वृद्धि प्रदान करना होगा.

- 1. एसटीएम में इन्फरमेशन-पेलोड और ब्लॉक फ्रेम संरचना ओवरहेड बिट्स के रुप में रहते हैं. T / F
- 2. SDH फ्रेम के कंटेनर और पथ ओवरहेड एक साथ , वर्च्अल कंटेनर के रूप में रहते हैं. T / F
- 3. ITU(T) मानकीकृत E1 रेट SDH फ्रेम संरचना की C12 कंटेनर में मैप किया जाता है.T / F
- 4. STM1फ्रेमPOH में J1 बाइट रिसीवर ट्रांसमीटर के साथ पथ के कनेक्शन पृष्टि करता है. T / F
- 5. TUG 3 एक मल्टीप्लेक्सर है जिसमे 3 TUG 3 या 7 TUG 2, मल्टीप्लेक्स होता है। T / F

सही उत्तर चुने-

- 1. एसटीएम फ्रेम में इन्फरमेशन- पेलोड और ओवरहेड बिट होते हैं
 - क) गैर-ब्लॉक फ्रेम संरचना में ख) ब्लॉक फ्रेम संरचना में
- 2. ITUT के मानकीकृत E1 के रेट को मैप किया जाता है -
 - क) SDH फ्रेम संरचना के C12 कंटेनर ख) SDH फ्रेम संरचना के C11 कंटेनर
- 3. एसटीएम -4 के डाटा रेट
 - क) 622.080 Mbits/एस ख) 2.488 Mbits/एस ग) 155.52 बिट्स/एस
- 4. SDH के पथ ओवरहेड बाइट्स -
 - क) एसटीएम -1 फ्रेम के संबंध में VC की श्रुआत की स्थिति दर्शाता है.
 - ख) नेटवर्क ऑपरेटर फाल्ट निगरानी के रूप में अंत से अंत तक .
- 5. AU एक इन्फरमेशन युनिट है .
 - क) हायर ओडर पथ लेयर और मल्टीप्लेक्स पथ लेयर के बीच एडाप्टेशन प्रदान करता है.
 - ख) लो ओडर पथ लेयर और उच्च आदेश पथ परत के बीच एडाप्टेशन प्रदान करता है.
- 6. TUG-3 एक मल्टीप्लेक्सर है जो मल्टीप्लेक्स है.
 - क) 7 नंबर TUG-2 ख) 3 नंबर TU-12.

सब्जेकटीब :

- 1. SDH पदानुक्रम में इस्तेमाल बिट रेट क्या है ?
- 2. एक चित्र के साथ SDH मल्टीप्लेक्सींग संरचना समझाइये ?
- 3. एस.टी.एम के लिए मानकीकृत इनपुट क्या हैं? एसटीएम एन, में एन क्या इंगित करता है?
- 4. आप कंटेनर से समझते है ? C11, C12, C 2, C 3 और C 4 क्या है ?
- 5. POH और उसके 9 बाइट्स संरचना के बारे में बताएं ?
- 6. पोइन्टर का क्या उपयोग है ?
- 7. SDH की मल्टीप्लेक्सींग सिद्धांतों लिखें ?
- 8. Tug- 3 ,C12 से कैसे बना है ,एक ब्लॉक आरेख के साथ दिखाएँ.?
- 9. TU, TUG, AU और AUG के बारे में संक्षिप्त व्याख्या दें?

अध्याय 3 एस.डी.एच सिंक्रोनस फ्रेम संरचना

3.1 बेसिक फ्रेम संरचना : एस.टी.एम.1 की बेसिक फ्रेम चित्र 3.1 में दिखाया गया है, यह 125 माइक्रो सेकंड की अविध में 270 कॉलम और 9 रो है. यह तीन मुख्य क्षेत्रों में विभाजित है.

सेक्सन ओवर हेड (एस.ओ.एच.) : एस.ओ.एच. मे 9 कॉलम X 9 रो होते है .इसमे रिजनरेटर सेक्सन ओवरहेड (RSOH) 9 कॉलम X 3 रो ,AU पॉइंटर - 9 कॉलम X 1 रो, और मल्टीप्लेक्सर सेक्सन ओबर हेड (MSOH) 9 कॉलम X 5 रो के होते हैं.

पाथ ओवर हेड (POH): 1 कॉलम X 9 रो.

पे लोड : 260 कॉलम X 9 रो.

चित्र 3.1 एस.टी.एम. फ्रेम ओवर हेड और पे लोड के साथ

फ्रेम और बिट रेट में बाइट्स का विवरण पैरा 3.2 में दिखाया गया है

3.2 फ़्रेम मे बाइट और बिट रेट:

फ्रेम के अवधि = 125 Micro seconds

फ्रेम के की लंबाई = 270 X 9 = 2430 बाइट = 155.520 एम.बी.पी.एस

पे लोड = 260 X 9 = 2340 बाइट = 49.760 एम.बी.पी.एस

POH = 1 X 9 = 9 बाइट = 0.576 एम.बी.पी.एस

AU पॉइंटर = 9 X 1 = 9 बाइट = 0.576 एम.बी.पी.एस

RSOH = 9 X 3 = 27 बाइट = 1.728 एम.बी.पी.एस

MSOH = 9 X 5 = 45 बाइट = 2.880 एम.बी.पी.एस

3.3 सेक्सन ओवर हेड (एस.ओ.एच.) (SOH = RSOH + MSOH): AU पॉइंटर छोड़कर SOH के बाइट्स. OA&M सिगन्ल तथा फ्रेम एलाइनमेंट, नेटवर्क मैनेजमेंट, परफॉर्मेंस मॉनिटिरंग, प्रोटेकशन स्विचिंग, और ओडर वायर तैयार करने के कार्यों करता है | एस.टी.एम - एन मल्टीप्लेक्सिंग एक सरल बाइट इंटरिलविंग योजना का उपयोग करता है.

चित्र 3.2 सेक्सन- ओवर- हेड

3.3.1 रीजेनरेटर सेक्सन ओवर हेड (अर.एस.ओ.एच)(RSOH): अर.एस.ओ.एच बाइट्स चित्र 3.3 में वर्णित हैं.

JO: रीजेनरेटरों के बीच रास्ते का पता लगाता है. एक रिसीवर और ट्रांसमीटर को इसके निरंतर कनेक्शन की पृष्टि कर सकते हैं.

B1: BIP8. बिट इंटरिलविंग पेरीटी (इभेन पेरीटी) चेक यह रीजेनरेटरो के बीच एरर की मॉनिटिरिंग के लिए इस्तेमाल किया जाता है. एक बाइट प्रत्येक एस.टी.एम - 1 के लिए प्रदान की जाती है इस बाइट रिजनरेटर सेक्सन के बिट एरर कि मॉनिटिरेंग कार्य करता है. इस बाइट मोनिटोर और हर रिजनरेटर पर पुनः रिजनरेटींग होता है.

E1: EOW चैनल ट्रांसिमशन के उपयोग के लिए एक चैनल है.

F1: उपयोगकर्ता का विशेष चैनल मैन्टेनेन्स प्रयोजनों के लिए या नेटवर्क ऑपरेटरों के उपयोग के लिए यह चैनल है.

C1: इस बाइट किसी विशेष एस.टी.एम. की स्टेटस को जानने के लिए प्रयोग किया जाता है.

D1, D2, D3: यह डॉटा ट्रांसिमशन चैनल रीजेनरेटरो के बीच मैन्टेनेन्स प्रयोजन के लिए प्रयोग किया जाता है.

चित्र 3.3 MSOH & RSOH बाइट के उपयोग

चित्र 3.4

- 3.3.2 मल्टीप्लेक्सर सेक्सन ओवर हेड (एम.एस.ओ.एच) (MSOH): एम.एस.ओ.एच AUG को इकट्ठे करता हैं. MSOH रीजेनरेटर के माध्यम से पारदर्शी होकर ग्जरता है. MSOH के बाइट्स इस प्रकार है.
- **B2**: BIP-24 बिटइंटरिलविंग पेरीटी (इभन पेरीटी) चेक यह मल्टीप्लेक्सर के बीच एरर की मॉनिटिरंग के लिए इस्तेमाल किया जाता है .
- K1, K2: ऑटोमैटिक प्रोटेक्टिव स्विचिंग (APS) और फार एंड अलार्म है.
- **D4 To D12:** डॉटा ट्रांसिमशन चैनल मल्टीप्लेक्सर के बीच मैन्टेनेन्स उद्देश्य के लिए. यह RSOH और MSOH दोनों में डॉटा ट्रांसिमशन बाइट्स नेटवर्क मैनेजमेंट सिस्टम (एन.एम.एस) और एंबेडेड ट्रांसिमशन चैनल (इ.सी.सी) के लिए उपयोग किया जाता है.
- S1: सिंक्रोनस स्टेटस मैसेज. यह बाइट प्रत्येक नेटवर्क तत्व पर सिंक्रनाइज़ेशन के रेफेरेंस इंगित करने के लिए प्रयोग किया जाता है.
- Z1, Z2: यह रिजर्व बाइट्स है.

इरिसेट

- E2: इ.ओ.डब्ल्यू. स्पीच चैनल, मल्टीप्लेक्सिरो के बीच उपयोगकर्ता चैनल है.
- M1: रेमोट उपकरणों के लिए B2 के व्दारा पाया एरर की संख्या की इनफरमेसन पहुंचाता है.
- NU: स्थानीय या राष्ट्रीय उपयोग के लिए आरक्षित बाइट्स
- :. भविष्य में उपयोग के लिए आरक्षित बाइट्स / वर्तमान में उपयोग नहीं किया गया है |

3.3.3 एडिमिनिस्ट्रेशनिसट्रेटिव यूनिट (AU) पॉइंटर : एक VC-4 या 3 VC-3 का सिगन्ल एस.टी.एम.-1 फ्रेम के संबंध में. AU-4, VC-4 + पॉइंटर हि है जो एस.टी.एम -1 के सीमा के भीतर है और VC-4 पॉइंटर की शुरुआत को इंगित करता है. यदि किसी मामले में अलग अलग क्लॉक के बीच गित भिन्न हो तो, VC-4 और एस.टी.एम.-1 के बिच तो पॉइंटर उस समस्या का समाधान या मैनेजमेंट करने के लिए जिम्मेदार है. पॉइंटर सिंक्रनाइज़ेशन के लिए पॉजिटिव / नील / नेगेटीभ जस्टीफ़िकेसन प्रक्रिया अनुकूलन करता है. जस्टीफ़िकेसन पॉइंटर बिट्स के साथ बड़ती है या कम होता है.

पॉजिटिव जस्टीफ़िकेसन : जब VC-4 , एस.टी.एम.-1 पेलोड की तुलना में धीमी है तब जस्टीफ़िकेसन बाइट्स VC-4 की इंफॉ**र्मेश**न बिट्स ले जाने के लिए उपयोग किया जाता है.

जस्टीफ़िकेसन : जस्टीफ़िकेसन बाइट्स स्ट्फ़ींग बिट्स हैं इसमे कोइ इंफॉर्मेशन बिट्स निह होती है.

नेगेटीभ जस्टीफ़िकेसन: जब VC -4 पेलोड एस.टी.एम. -1 की तुलना में तेजी है तब जस्टीफ़िकेसन बाइट्स VC -4 की इंफॉर्मेशन बिट्स और अतिरिक्त बाइट्स ले जाने के लिए उपयोग किया जाता है.

3.4 पाथ ओवर हेड (POH): VC-4 = C-4 + POH पाथ ओवर हेड एस.टी.एम. -1 फ्रेम की 10 वीं कॉलम में स्थित है. यह एस.टी.एम -1 के संबंध में अन्य विवरण के अलावा पाथ का पता लगाने, परफॉर्मेंस की मॉनिटरिंग आदि प्रदान करता है.POH के कार्यों अध्याय 1, पैरा 2.3 में चर्चा कि गई हैं.

J1	J1: पाथ का पता लगाने का काम करता है तथा यह रिसीवर को धारा फ्लो के विवरण की पहचान कराता है और रिसीवर ट्रांसमीटर के साथ पाथ के संबंध की पुष्टि करता है.
В3	B3: BIP-8 बिट इंटरिलविंग पैरिटी चेक. यह पाथ पर मॉनिटरिंग तथा एरर का इनफरमेसन करता है और पाथ की गुणवत्ता बनाए रखता है.
C2	C2: ट्रिब्यूटरी के बनाने का सिगन्ल का इनफरमेसन देता है.
G1	G1: यह पाथ एरर तथा यह दूरदराज के उपकरण के पाथ एरर के बारे में पता लगाता है.
F2	F2: नेटवर्क ऑपरेटर के उपयोग के लिए है.
H4	H4: पेलोड के किसी विशेष प्रकार के बारे में बताता है.
Z3, Z4	Z3, Z4: स्पेयर बाइट है.
Z 5	Z5 : निम्न स्तर के नेटवर्क की मॉनिटरिंग करता है.

चित्र. 3.5 पाथ ओवर हेड

- 3.5 पे लोड: यह एक डॉटा क्षेत्र है. ट्रिब्यूटरी से डॉटा युक्त बाइट्स बफरिंग के बिना पे लोड क्षेत्र मे जाता है और एस.टी.एम- एन फ्रेम के साथ संबंध बनता है. इन ट्रिब्यूटरी हेयरार्की, E1, T1, T2, T3, E3, और E4 के सभी स्तरों से आतें हैं.
- 3.5.1 पेलोड मेकअप: यह कम रेट प्लीजिओक्रोनस सिगन्ल के एक निम्न स्तर लो लेबेल मल्टीप्लेक्सिंग है, जहां उन्हें सिंक्रोनस फ्रेम के व्दारा डालने या उनके संपर्क में लया जाता है जो इनपुट सिगन्ल के फ्लो रेट के अनुसार बदलता रहता है. VC में उनमें से आवश्यक रेट को प्लीजिओक्रोनस सिगन्ल के फ्लो की रेट अनुकूलन करने के लिए, कुछ अतिरिक्त बिट्स जस्टीफ़िकेसन की प्रक्रिया के अनुसार पॉइंटर के रूप में जुड़ जाते हैं. कंटेनर प्लीजिओक्रोनस ट्रिब्यूटरी के प्रवेश बिंदु होते है .निम्नलिखित पैराग्राफ में कंटेनरों में ट्रिब्यूटरी की प्रविष्टि वर्णित है.

3.6 कंटेनर C4 (चित्र. 3.6): कंटेनर C4 के लिए इनपुट E4 -139.264 एम.बी.पी.एस है. क्लाक रिकोवरी और ट्रिब्यूटरी के रिजेनेरेसन के बाद, डॉटा कंटेनर में रखा जाता है .

चित्र 3.6 C4 कंटेनर

कंटेनर 125 माईक्रोसेकेंड समय अवधि और 20 ब्लॉकों X 9 रो के फ्रेम संरचना है.

फ़्रेम : 20 ब्लॉक (एक रो) X 9 रो = 180 ब्लॉक.

रो : 20 ब्लॉक.

बाल्क : 13 बाइट - इंफॉर्मेशन बाइट 12 और ओवर हेड बाइट 1.

फ़्रेम मे बाइटों कि संख्या : 13 X 20 X 9 = 2340.

फ्रेम कि समय अवधि : 125 माईक्रोसेकेंड

बिट रेट : 2340 X 8 X 8000 = 149.760 एम.बी.पी.एस.

बिट रेट 149.760 एम.बी.पी.एस है जो इनपुट E-4 यिन 139.264 एम.बी.पी.एस से अधिक है . इसिलए सभी बिट्स इंफॉर्मेशन बिट्स नहीं हैं, कुछ अतिरिक्त बिट्स जस्टीफ़िकेसन और अन्य उद्देश्यों के लिए जोड़े जातें हैं.

जस्टीफ़िकेसन: यह एक ऑपरेशन है जहा एक निश्चित रेट फ्रेम में एक भेरियेबेल रेट सिगन्ल फिट कि जाति है.

मान लीजिए एक ट्रिब्यूटरी की सामान्य रेट = X बिट्स / sec

रेटों में परिवर्तन $= \pm \Delta$ बिट्स / sec

ट्रांसिमट करने के लिए ट्रिब्यूटरी S फ्रेम में साथ है, यह उच्चतम संभव आवश्यक बिट रेट है .

S = X <u>+</u> ∆ बिट्स / sec.

E4 = 139.264 एम.बी.पी.एस <u>+</u> 15 ppm = 139264 <u>+</u> 2.088 केबीपीएस.

1 जस्टीफ़िकेसन बिट Z बाइट के रुप में एक पंक्ति में जोड़ा जाता है.

3.6.1 कंटेनर C-4 की मैपिंग: (प्रत्येक पंक्ति में)

चित्र: 3.7 कंटेनर C4 की मैपिंग

W = IIIIIII X = CRRRRROO Y = RRRRRRR Z = IIIIIISR

I = इंफॉर्मेशन बिट 140 एम.बी.पी.एस O = सर्विस तत्व बिट भविष्य की जरूरतों के लिए आरक्षित

R = + ट्फ़ींग बिट S = जस्टीफ़िकेसन बिट(1 में प्रति पंक्ति पर <math>Z)

C = जस्टीफ़िकेसन ईन्डीकेटर बिट्स

C = 0000 S = इंफॉर्मेशनबिट <math>C = 11111 S = स्ट्फ़ींग बिट

टोटल इंफॉर्मेशन बिट्स = $[(12 \times 8 \times 20) + (1 \times 8) + (1 \times 6)] \times 9 \times 8000 = 139.248$ एम.बी.पी.एस. यह बिट रेट E-4 जो C-4 139.264 एम.बी.पी.एस से कम है. कुछ अधिक इंफॉर्मेशन बिट्स जोड़ने के लिए, Z बाइट में S बिट इंफॉर्मेशन बिट के रूप में प्रयोग किया जाता है| जो अधिकतम बिट रेट 139.320 एम.बी.पी.एस देता है.

कंटेनर के मैपिंग करने पर, 9 बाइट्स की POH VC4 तथा 9 बाइट्स की पॉइंटर AU4 में जोड़ा जाता है और AUG में भेजा जाता है.

चित्र 3.8(A) C-4 के साथ POH और पॉइंटर

3.7 कंटेनर C-3: C-3 इनपुट 34.368 एम.बी.पी.एस के होते है. C3 मे 9 रो है और प्रत्येक पंक्ति में 84 बाइट्स और कुल में 756 बाइट्स होते हैं.

चित्र: 3.8(B) C-3 कंटेनर

C-3, 3 ब्लॉक मे T1, T2, T3 बटा है हर एक ब्लॉक 84 बाइट एक रो मे होते है और ईसमे 3 रो है . ब्लॉक 84 x 3 = 252 बाइट हर एक ब्लॉक मे जो चित्र मे दिखाया गया है.

चित्र: 3.9 कंटेनर C3 की मैपिंग

ब्लॉक T1 में इंफॉर्मेशन बाइट = 178, स्ट्फ़ींग बाइट = 67, C बाइट = 5, A और B में टोटल बाइट = 252 बाइटस. बिट रेट = 252 X 8X 8000 = 16.128 एम.बी.पी.एस.

इंफॉर्मेंशन बिट्स की संख्या T1 = $178 \times 8 + 7$ बिट्स of S = 1431 बिट्स इंफॉर्मेंशन बिट्स की संख्या C-3 मे = $1431 \times 3 = 4293$ बिट्स. इंफॉर्मेंशन बिट रेट = $4293 \times 8000 = 34.344$ एम.बी.पी.एस

एस.डी.एच सिंक्रोनस फ्रेम संरचना

टोटल बिट्स T1 मे = $252 \times 8 = 2016$ बिट्स C-3 मे = $2016 \times 3 = 6048$ बिट्स.

फ्रेम की समय अवधि C-3 = 125 माईक्रोसेकेंड.

बिट रेट of C3 = 6048 x 8000 = 48,384 एम.बी.पी.एस

यहा पर C-3 = 48.384 एम.बी.पी.एस की कुल बिट रेट E-3 = 34.344 एम.बी.पी.एस की इंफॉर्मेशन बिट रेट से अधिक है. इसलिए सभी बिट्स इनफरमेसन बिट्स नहीं हैं. कुछ अतिरिक्त बिट्स जस्टीफ़िकेसन और अन्य उद्देश्यों के लिए जोड़ा गया है.

3.7.1 TU3/TUG3 के उत्पादन: TU-3 with 9 X (84 कॉलम पे लोड + 1 कॉलम पॉइंटर + 1 कॉलम POH = 86 कॉलम) जो चित्र 3.8 में दिखाया गया है.

TU3 पूरी VC3 + एक पॉइंटर से बना है जो TUG3 VC4 में TU3s के स्थानों को परिभाषित करता है TU3 पॉइंटर बाइट्स H1, H2 और H3 हैं. इन रों के अन्य 6 बाइट्स स्ट्फ़ींग हैं.

चित्र 3.10 ट्रिब्यूटरी यूनिट (TU-3) POH और पॉइंटर के साथ

3.7.2 VC-4 से 3 TUG-3s के उत्पादन: (चित्र 3.11 & 12): तिन C-3, VC-4 के लिए पे-लोड को समकक्ष बनाता है. प्रत्येक VC-3 अपने पाथ का पता लगाने और परफॉर्मेंस की मॉनिटिरिंग आदि के लिए अपनी अलग POH साथ जोड़ा जाता है तथा एक अलग पॉइंटर भि जोड़ा जाता है इसके VC-4 में ऑफसेट को समायोजित करने के लिए.

चित्र 3.11 VC4 मे तिन C-3 के साथ POH और पॉइंटर

चित्र 3.12 VC-4 के उत्पादन तिन TU-3/TUG-3 ट्रिब्यूटरी से

VC-4 मे POH और स्ट्फ़ींग बाइट्स के साथ दो कॉलम जोड़ने के बाद, तिन TUG-3 ए, बी, और सी का कॉलम ईन्टर्लेसिंग व्दारा मल्टीप्लेक्सिंग होता है.

कंटेनर C-12 और मैपिंग: C -12 का इनपुट 2.048 एम.बी.पी.एस है जो. अव्यवस्थित - एसिंक्रोनस (G.703) या व्यवस्थित - सिंक्रोनस (G.704) हो सकता है.

चित्र: 3.13 कंटेनर C-12

R = स्ट्फ़ींग बिट्स I = इंफॉर्मेशन बिट्स S1, S2 = जस्टीफ़िकेसन ओपर्चुनेटी बिट्स एसिंक्रोनस इनपुट में बिट्स, सी 12 में डाला जाता हैं और जब वे रिसीवर को पहुंचें, तब जस्टीफ़िकेसन C-12 के भीतर बिट स्तर पर होता है.

4 X E1 ट्रिब्यूटरी के लिए संयुक्त फ्रेम की अवधि 500 माईक्रोसेकेंड है |

चित्र 3.14 VC-12

चित्र 3.15 TU-12

एसिंक्रोनस C -12 अविध 500 माईक्रोसेकेंड के चित्र. 3.11 में दिखाया गया है. एक C-12 ओवरहेड्स को कम करने के लिए, 3 और C-12s के साथ 4 x 125 = 500 माईक्रोसेकेंड में फैला हुआ है.

इंफॉर्मेशन बिट्स : (3 X32 X 8) + (1 X 31 X 8) = 1023

इंफॉर्मेशन रेट C-12 : 1023 X 2000 = 2.046 एम.बी.पी.एस.

C-12 के इन्पुट : 2.048 एम.बी.पी.एस

इनपुट रेट कंटेनर रेट से अधिक है इसलिए नेगेटीभ जस्टीफ़िकेसन है.

V1और V2 = VC-12 पॉइंटर.

V3 नेगेटीभ जस्टीफ़िकेसन ओपर्चुनेटी बिट्स

V4 वर्तमान में उपयोग नहीं किया जाता है।

Vi & V2 : के शुरू होने के स्थान की पहचान VC-12 i.e. V5

3.9 AUG के जेनेरेशन: AUG एक AU-4 से उत्पन्न होता है. AU4 मे एस.टी.एम. -1 का एक पॉइंटर

है और AUG AU.-4 + VC-4 पेलोड का एक युनिट है. AUG SOH के साथ एस.टी.एम. -1 में डाला जाता है.

उच्च ओडर एस.टी.एम. एन: उच्च ओडर एस.टी.एम.-4, एस.टी.एम.-16 और एस.टी.एम.-64 हैं . N संख्या के प्रत्येक 155.520 एम.बी.पी.एस, एस.टी.एम. -1 फ्रेम एस.टी.एम. एन देने के लिए बाइट इंटरलिविंग व्दारा मिल्टिप्लेक्स होता हैं.

चित्र 3.16 उच्च ओडर एस.टी.एम. एन मे मल्टीप्लेक्सिंग

एस.टी.एम.-एन फ्रेम में सबसे छोटी तत्व प्रत्येक व्यक्ति के चैनल यानि एक 64 केबीपीएस चैनल के सीधी पहुँच सुनिश्चित करता है जो एक वर्ग / एक बाइट है. फ्रेम के ट्रांसिमशन बाएं से दाएं और ऊपर से नीचे है.

एस.टी.एम.-एन 270 कॉलम X 9 रो मे है . एन एस.डी.एच के हेयरार्की स्तर है. एन= 1, 4, 16 या 64 के बराबर हो सकते है जो चित्र 3.15 के रूप में दिखाया गया है.

चित्र 3.17 एस.टी.एम. एन फ्रेम

एस.डी.एच सिंक्रोनस फ्रेम संरचना

12 nos. of A1 bytes		12 nos. of A2 bytes		4 N	los. of J0 bytes	8 Nos. of X bytes		
B1		E1			F1 11 Nos. of X bytes			
D1	Bytes not used	D2	Bytes use		D3	Bytes not used		
	AU Pointer						9	
12 nos. of B2 bytes		K1			K2			
D4		D5	Bytes not used		D6			
D7	Bytes not	D8			D9		Bytes not used	
D10	used	D11			D12			
S1	11 Z1 bytes		Z2 ytes	M1	E2		11 Nos. of X bytes	

◆ 36 Columns →

चित्र 3.18. एस.टी.एम. 4 फ्रेम की SOH

एस.टी.एम. 4 की SOH चित्र 3.16. में दिखाया गया है.

 A1 बाइट 3 एस.टी.एम.-1 X4 = 12
 A2 बाइट : 3 एस.टी.एम.-1 X4 = 12

 B2 बाइट 3 एस.टी.एम.-1 X4 = 12
 J0 बाइट : 1 एस.टी.एम.-1 X4 = 4

 Z1 बाइट 3 एस.टी.एम.-1 X4 -1= 11
 Z2 बाइट : 3 एस.टी.एम.-1 X4-1=11

AU पॉइंटर एस.टी.एम.-1 X 4 = 36 बाइट

X बाइट्स नेशनल उपयोग (NU) के लिए आरक्षित हैं . और अन्य सभी बाइट्स उपयोग में वर्तमान में नहीं हैं.

सबजेक्टीब प्रश्न:

- 1. एसटीएम -1 के बेसिक फ्रेम संरचना क्या है ?
- 2. RSOH का किया कार्य क्या हैं ?
- 3. MSOH का कार्य क्या हैं?
- 4. AU प्वाइंटर और POH का कार्य क्या हैं जो VC -4 पेलोड में जुड़ा है ?
- 5. 155.520 एमबीपीएस से एस.टी.एम फ्रेम के उत्पादन के बारे में बताएं ?
- 6. SOH में बीप-8 और बीप-24 के क्या कार्य हैं ?
- 7. एंबेडेड कम्युनिकेशन चैनल के कार्यों के बारे में बताएं ?
- 8. C4 के उत्पादन के बारे में बताएं ?
- 9. C3 के उत्पादन के बारे में बताएं?
- 10. C4 की मैपिंग के बारे में बताएं?
- 11. C -3 s से VC -4 के उत्पादन के बारे में बताएं?
- 12. C -12S से VC -4 के उत्पादन के बारे में बताएं?

ओब्जेकटीब :

1.	एसटीएम -1 के बेसिक फ्रेम में 270 कॉलम और 9 पंक्तियाँ हैं जिसकी अवधि 125µs है।	T/F
2.	STM- 1 एक सेकेन्ड में 8000 फ्रेम प्रेषित कर सकते हैं	T/F
3.	एक एसटीएम -1 फ्रेम की धारा ओवरहेड 9 कॉलम और 9 पंक्तियाँ हैं।	T/F
4.	एक एसटीएम 1 फ्रेम के MSOH के D4 से D 12 बाइट्स दो मल्टीप्लेक्सि सेक्सन के बीच	र डाट
	संचार के लिए हैं.	T/F
5.	MSOH में K1 और K2 बाइट्स स्वचालित प्रोटेकसन स्विचिंग के लिए हैं.	T/F
6.	MSOH के डाटा संचार चैनल की बिट रेट 576Kbps है.	T/F
7.	पोइन्टर की संख्या VC4 और STM1 के बीच बिट रेट के अंतर के साथ संबंधित है।	T/F
8.	पोजेटिब ज्स्टीफिकेशन जब VC4 की रेट STM1 का पेलोड की तुलना में कम है	T/F
9.	एसटीएम में C 4 कंटेनर की प्रत्येक पंक्ति 125µ के फ्रेम में 20 ब्लॉकों के होते हैं	T/F
10.	VC- 3 फ्रेम 125µs में 85 कॉलम और 9 पंक्तियों के होते हैं	T/F
12.	C-12 के फ्रेम अविध 500µs है.	T/F

अध्याय 4

पॉइंटर

Objectives: By going through this chapter, the trainee must be in a position to understand

- 1. The meaning, purpose and functioning of pointer
- 4.1 AU-n पॉइंटर: AU-n पॉइंटर VC-n, सीमा के भीतर लचीला और डायनेमिक एलाईन्मेन्ट (लचीला और डायनेमिक एलाईन्मेन्ट) की अनुमित के लिए एक तरीका प्रदान करता है. इसका मतलब है कि गितिशील एलाइनमेंट डायनेमिक एलाईन्मेन्ट VC-n जो AU-n सीमा के भीतर " फ्लोटिंग " की अनुमित देती है | इस प्रकार, पॉइंटर VC-n और SOH के फेज तथा फ्रेम रेट सेट करने में सक्षम होता है.
- **4.2 AU-n पॉइंटर लोकेशन :** AU-4 पॉइंटर बाइट्स H1, H2 और H3 में निहित है जो चित्र.4.1 रूप में दिखाया गया है.

Y 1001SS11 (S bits are unspecified)

चित्र 4.1 AU-4 पॉइंटर ओफ़सेट नंबरिंग

चित्र 4.2 AU-3 पॉइंटर ओफ़सेट नंबरिंग

NOTE - The pointer is set to all "1"s when AIS occurs.

चित्र 4.3 AU-n/TU-3 पॉइंटर (H1, H2, H3) कोडींग

4.3 AU-n पॉइंटर भैल्यु: पॉइंटर H1 और H2 बाइट्स में निहित है जो VC-n शुरू होने का का स्थान बताता है पॉइंटर फ़ांसन के लिए आवंटित दो बाइट्स एक शब्द के रूप में देखा जा सकता है जो चित्र 4.3.के रूप में दिखाया गया है. पॉइंटर शब्द का पिछले दस बिट्स (बिट्स 7-16) पॉइंटर भेल्यु मान लिया जाता है | जो चित्र 4.3 में दिखाया गया है, AU-4 पॉइंटर भेल्यु एक बाइनरी संख्या है जिसकि सीमा 0-782 है और यह ऑफसेट को इंगित करता है तीन बाइट increment वृद्धि में पॉइंटर और VC-4 की पहली बाइट के बीच (चित्र 4.1) . चित्र 4.3 भी एक अतिरिक्त भैलिड पॉइंटर, जो कनकैटीनेशन को इंगित करता है | कनकैटीनेशन बिट्स 1-4 में "1001" के रुप मे तथा बिट्स 5-6 अनस्पेसिफाइड है, और इसमे 10 "1"s है जिसे बिट्स संख्या 7-16 दिखाया जाता है.AU -4 पॉइंटर AU-4 कनकैटीनेशन के लिए कनकैटीनेशन सिगन्ल करता है चित्र 4.8 देखे

चित्र: 4.3 में के रूप में, AU -3 पॉइंटर भेल्यु 0-782 की एक सीमा के साथ एक बाइनरी संख्या है. AUG में तीन AU -3 s हैं, और प्रत्येक AU -3 अपनी ही H1, H2 और H3 बाइट्स से जुड़े है. जो चित्र 4.2 में दिखाया गया है .जहा पहले H1, H2, H3 पहली AU -3, और इस तरह दूसरा AU -3 को दूसरे सेट को इंगित करता है. प्रत्येक पॉइंटर AU 3 के लिए स्वसिस्ट्म रूप से संचालित होता है.

चित्र: 4.4 AU-4 पॉइंटर एडजस्टमेंट ऑपरेशन - पॉजिटिव जस्टीफ़िकेसन

4.4 फ़्रीकोएन्सि जस्टीफ़िकेसन : VC-एन के फ्रेम AUG के रेट और उस के बीच ऑफसेट कि एक फ्रीक्वेंसी है, जो पॉइंटर भेल्यु को बड़ाया या जरूरत के रूप में घटाया जाता है . इसी के पॉजिटिव या

नेगेटीभ जस्टीफ़िकेसन बाइट या बाइटों के मदद से लगातार पॉइंटर आपरेशन में कम से कम तीन फ़्रेम तक अलग किया जाता है, जिसमें पॉइंटर भेल्यु कोन्स्टैन्ट बना रहता है. यदि VC एन के फ्रेम रेट AUG के संबंध में बहुत धीमी है, तो VC एन के एलाइनमेंट समय में वापस स्लीप होना चाहिए और पॉइंटर मूल्य एक एक करके वृद्धि किया जाना चाहिए. इस आपरेशन के रिसीवर में 5 बिट पोलिंग से पॉइंटर शब्द 7, 9, 11, 13 और 15 बिट्स इनभरसन का सिगन्ल देता है. जिसे चित्र: 4.4 में दिखाया गया है. AU-3 फ्रेम के लिए, एक पॉजिटिव जस्टीफ़िकेसन बाइट बाइट AU -3 फ्रेम का H3 बाइट के बाद तुरंत दिखाई देता है. जिसे चित्र 4.5 में दिखाया गया है.

चित्र 4.5 AU-3 पॉइंटर एडजस्टमेंट ऑपरेशन - पॉजिटिव जस्टीफ़िकेसन

यदि VC-एन के फ्रेम रेट AUG से तेजी है, तो VC-एन के एलाईन्मेन्ट समय समय पर एडवांस्ड किया जाता है और पॉइंटर भेल्यु एक से घटाव किया जाता है. इस आपरेशन मे रिसीवर के 5 बिट पोलिंग की अनुमित देता है तथा पॉइंटर शब्द के बिट्स 8, 10, 12, 14 और 16 (डी बिट्स) को इनभरसन का सिगन्ल देता है. तीन नेगेटीभ जस्टीफ़िकेसन बाइट्स इन्भर्ट डी बिट्स युक्त ए.यू. -4 फ्रेम में H3 बाइट्स में दिखाई देते हैं. जो चित्र 4.6 में दिखाया गया है.

AU-3 फ्रेम के लिए, एक नेगेटीभ जस्टीफ़िकेसन बाइट इन्भर्ट D बिट्स युक्त AU-3 फ्रेम में H3 बाइट में दिखाई देता है. इसके बाद नए पॉइंटर ऑफसेट जुड़्ते है . जो चित्र 4.7 में दिखाया गया है.

चित्र: 4.6 AU-4 पॉइंटर एडजस्टमेंट ऑपरेशन - नेगेटीभ जस्टीफ़िकेसन

4.5 नई डॉटा फ्लेग (एन.डी.एफ): अगर पॉइंटर भेल्यु मनमाने ढंग से परिवर्तन या पेलोड में परिवर्तन के कारण पॉइंटर शब्द के 1-4 बिट्स (N-बिट्स) में एन.डी.एफ है उसमें परिवर्तन होता है. तथा फ्लेग का चार बिट एरर सुधार के लिए चिह्नित किए गया है. सामान्य ऑपरेशन एन बिट्स में "0110" कोड के द्वरा सिगन्ल दिया जाता है तथा एनडीएफ "1001" एन बिट्स को इनभर्ट करके सिगन्ल दिया जाता है. जब एन.डी.एफ के तीन या चार बिट्स पैटर्न "1001" से मेल हो तो एन.डी.एफ एनेबेल किया जाता है, और जब एनडीएफ के तीन या चार बिट्स पैटर्न "0110" से मेल हो तो एन.डी.एफ डिसेबेल किया जाता है | शेष भेल्यु (यानी "0000", "0011", "0101", "1010", "1100" और "1111") अमान्य है .

4.6 पॉइंटर के उत्पन्न: निम्नलिखित AU-n सिगन्ल AU-n पॉइंटर पैदा करने के लिए नियम इस प्रकार है.

सामान्य ऑपरेशन के दौरान AU-n पॉइंटर सीमा के भीतर VC n के शुरू को पोइन्ट करता है . जिसमे एनडीएफ "0110" के लिए निर्धारित है. तथा पॉइंटर भेल्यु 3, 4 या 5 आपरेशन से बदला जा सकता है. यदि पॉजिटिव जस्टीफ़िकेसन की आवश्यकता है तो वर्तमान पॉइंटर मान वर्तमान पॉइंटर भेल्यु I- बिट्स इन्भर्ट भेजा जाता है बाद में पॉजिटिव जस्टीफ़िकेसन ओपर्चुनेटी मे डिम इंफॉर्मेशन बिट्स भेजा जाता है और बाद में पिछले पॉइंटर मान के तुलना मे पॉइंटर भेल्यु एक एक करके बड़ता है .यदि पिछले पॉइंटर भेल्यु अधिकतम मूल्य पर है, तो बाद में पॉइंटर भेल्यु शून्य पर सेट होता है.बाद में पॉइंटर भेल्यु में वृद्धि या कमी कम से कम तीन फ्रेम ऑपरेशन के बाद होति है.

टी.सी. टी - 5 एस.डी.एच. प्रिंसिपल्स्

चित्र: 4.7 AU-3 पॉइंटर एडजस्टमेंट ऑपरेशन - नेगेटीभ जस्टीफ़िकेसन

यदि नेगेटीभ जस्टीफ़िकेसन की आवश्यकता है तो वर्तमान पॉइंटर भेल्यु उल्टे D बिट्स और बाद में नेगेटीभ जस्टीफ़िकेसन ओपर्चुनेटी वास्तविक डॉटा के साथ ओवरराइट होता है. बाद के पॉइंटर भेल्यु एक से घटाकर पिछले पॉइंटर भेल्यु होते हैं. यदि पिछले पॉइंटर भेल्यु शून्य है, तो बाद में पॉइंटर इसकी अधिकतम भेल्यु तय होति है. बाद में कोई भी वृद्धि या कमी कम से कम तीन फ्रेम के ऑपरेशन के बाद होति है.

4.7 पॉइंटर इंटरप्रिटेशन: निम्नलिखित AU-n पॉइंटर की व्याख्या इस प्रकार है.

- सामान्य ऑपरेशन के दौरान AU-n पॉइंटर सीमा के भीतर VC-n के शुरू को इंगित करता है.
- यदि एक सुसंगत नई मूल्य तीन बार लगातार प्राप्त होता है या यह किसी भी लगातार नए मूल्य तीन बार लगातार ओवरराइड प्राप्त होति है.
- पॉइंटर शब्द मे I- बिट्स इनभर्ट है , तो एक पॉजिटिव जस्टीफ़िकेसन आपरेशन का सिगन्ल होता है. बाद में पॉइंटर भेल्य एक एक करके बड़ाया जाता है.
- पॉइंटर शब्द का D- बिट्स इनभर्ट है, तो एक नेगेटीभ जस्टीफ़िकेसन आपरेशन का सिगन्ल होता है. बाद में पॉइंटर भेल्य एक एक करके घटाया जाता है.
- यदि NDF एनेबेल है तो पॉइंटर भेल्यु रिसीवर मे पॉइंटर का पॉइंटर भेल्यु ,पॉइंटर ओफ़सेट की जगह होगी.

- 4.8 AU-4 कनकैटीनेशन: ए4-.यू.s एक ए-4-.यू.Xc के साथ कनकैटीनेटेड किया जा सकता है (X कनकैटीनेटेड AU-4s) जो एक कंटेनर 4 क्षमता से अधिक क्षमता की पेलोड को ट्रांसिमशन कर सकता है.
- **4.9 AU-4 के कनकैटीनेशन:** कनकैटीनेशन दिखाने के लिए VC- $4 \times c$ में मल्टी कंटेनर-4 पे लोड एक साथ रखा जाता है जो AU-4 पॉइंटर में निहित है. मैपिंग के लिए उपलब्ध क्षमता, मल्टी कंटेनर 4, कंटेनर-4 के X times का क्षमता होता है. (e.g. 599. 040 Mbit/s for X = 4 और 2 396 .160 Mbit/s, X = 16 के लिए) VC 4-Xc की X कॉलम 2 में निर्दिष्ट किआ जाता है. VC-4 Xc के पहले रो POH के लिए प्रयोग किया जाता है.POH VC -4-Xc को सैपा जाता है (e.g. BIP-8 मे 261×60 X कॉलम VC-4-Xc है). VC -4-Xc चित्र 4.8 में दिखाया गया है.

पहले AU -4 मे एक AU 4-Xc का पॉइंटर भेल्यु की एक सामान्य भेल्यु होगा. बाद मे AU-4-Xc के भीतर सभी AU-4 बिट्स उनके पॉइंटर भेल्यु "1001" कनकैटीनेशन करने के लिए इस्तेमाल होगा.

चित्र 4.8 Vc-4-Xc के संरचना

- 4.10 AU-4 में वर्चुअल कनकैटीनेशन : ए.यू.-4 के विवरण और विस्तारशीलता वर्चुअल कनकैटीनेशन अध्ययन के तहत है.
- 4.11 TU-3 पॉइंटर: TU-3 पॉइंटर, TU-3 सीमा के भीतर VC-3 को लचीला और डायनेमिक एलाईन्मेन्ट प्रदान करता है.

4.12 TU-3 पॉइंटर लोकेशन: तीन TU-3 पॉइंटर तीन अलग H1, H2 और H3 बाइट्स में निहित हैं जो चित्र 4.9 में दिखाया गया है.

4.13 TU-3 के पॉइंटर भेल्यु: TU-3 पॉइंटर भेल्यु मे H1 और H2 बाइट के स्थान निर्दिष्ट होता है वहा से VC -3 शुरू होता है. पॉइंटर के लिए आवंटित दो बाइट्स एक शब्द के रूप में देखा जा सकता है जो चित्र 4.3 में दिखाया गया है. पॉइंटर शब्द का पिछले दस बिट्स (बिट्स 7-16) पॉइंटर भेल्यु को दिखाता है. TU 3 पॉइंटर भेल्यु 0-764 की एक सीमा के साथ एक बाइनरी संख्या है जो पॉइंटर और VC-3 की पहली बाइट के बीच ऑफसेट जो इंगित करता है जो चित्र 4.9 में दिखाया गया है.

चित्र 4.9 TU-3 पॉइंटर ओफ़सेट नंबरिंग

4.14 फ्रीक्वेंसी जस्टीफ़िकेसन: VC 3- के TU 3 फ्रेम रेट और उस के बीच फ्रीक्वेंसी ऑफसेट हो, तो पॉइंटर भेल्यु इन्क्रिमेन्ट या डिक्रिमेंट की जाति है पॉजिटिव या नेगेटीभ जस्टीफ़िकेसन बाइट के साथ. पॉइंटर ऑपरेशन मे लगातार तीन फ्रम तक पॉइंटर कोन्स्टैन्ट रहता है.

यदि VC3 के फ्रेम रेट TU-3 के संबंध में बहुत धीमी है, तो VC 3 के एलाईन्मेन्ट समय-समय पर स्लीप होता है और पॉइंटर भेल्यु एक एक करके बड़ाया जाता है . इस आपरेशन के लिए रिसीवर में 5 बिट पोलिंग के लिए है जो पॉइंटर शब्द के 7, 9, 11, 13 और 15 (I- बिट्स) इन्भर्ट करने के लिए सिगन्ल देता है. तीन पॉजिटिव जस्टीफ़िकेसन बाइट साथ में इन्भर्ट -I- बिट्स युक्त TU-3 फ्रेम में पिछले H3 बाइट के बाद जुड़ जाता है, एक नई पॉइंटर ऑफसेट जुड़ेंगे.

यदि VC -3 के फ्रेम रेट TU-3 फ्रेम रेट से तेज है, तो VC -3 के एलाईन्मेन्ट समय-समय पर इन्क्रिमेन्ट किया जाना चाहिए और प्वाइंटर एक करके डिक्रिमेंट किया जाना चाहिए। इस आपरेशन में रिसीवर में 5 बिट बहुमत पोलिंग करके प्वाइंटर शब्द 8, 10, 12, 14 और 16 (D- बिट) invert करने का संकेत दिया जाता है। निगेटिव जस्टीफ़िकेसन बाइट उल्टे डी-बिट्स युक्त TU 3 फ्रेम में अलग-अलग H3 बाइट में दिखाई देता है. इसके बाद टीयू-3 में नए प्वाइंटर ऑफसेट जुड़ते है.

4.15 नई डाटा फ्लैंग (NDF): प्वाइंटर शब्द के 1-4 बिट्स (N-bits) जो NDF है वह VC -3 में बदलाव के कारण प्वाइंटर के मूल्य में मनमाने ढंग से परिवर्तन होता है तो उसे मैनेज करता है. यहि चार बिट फ्लैंग एरर सुधार करता है .सामान्य ऑपरेशन में N बिट्स में "0110" कोड होता है. मगर NDF के लिए N बिट्स "1001" के उलटा द्वारा संकेत देता है. चार बिट्स के तीन या अधिक पैटर्न "1001" से मेल खाते हैं तो NDF एनेबल है, पर यदि चार बिट्स के तीन या अधिक पैटर्न "0110" से मेल खाते हैं तो NDF डिसेबेल माना जाता है. शेष मूल्यों (यानी "0000", "0011", "0101", "1010", "1100" और "1111") इनभेलिड के रूप में माना जाता है. नई एलाईन्मेन्ट NDF के साथ प्वाइंटर मान के साथ ऑफसेट पर दिखता है.

4.16 प्वाइंटर जेनेरेशन: निम्नलिखित टीयू-3 प्वाइंटर पैदा करने के लिए नियम है:

- सामान्य ऑपरेशन के दौरान, प्वाइंटर TU-3-सीमा के भीतर VC -3 के शुरू को रेखांकित करता है। जहां NDF "0110" है.
- प्वाइंटर भेल्य् आपरेशन 3, 4 या 5 में बदला जा सकता है.
- यदि पॉजिटिव जस्टीफ़िकेसन आवश्यक है, वर्तमान प्वाइंटर भेल्यु उल्टे I- बिट्स और बाद में पॉजिटिव जस्टीफ़िकेसन अवसर के साथ डमी जानकारी से भरा बिट्स भेजा जाता है। इसके बाद प्वाइंटर एक एक करके प्वाइंटर भेल्यु इन्क्रिमेन्ट होते हैं. यदि पिछले प्वाइंटर अधिकतम भेल्यु से कम हो तो बाद में प्वाइंटर शून्य सेट हो जाता है। पॉइंटर भेल्यु इन्क्रिमेन्ट या डिक्रिमेंट लगातार तीन फ्रम तक नहीं की जाती है.
- यदि नेगेटिव जस्टीफ़िकेसन आवश्यक है, वर्तमान प्वाइंटर भेल्यु उल्टे D- बिट्स और बाद में नेगेटिव जस्टीफ़िकेसन अवसर के साथ इन्फारमेशन बिट्स भेजा जाता है। इसके बाद प्वाइंटर एक एक करके प्वाइंटर भेल्यु डिक्रीमेन्ट होते हैं. यदि पिछले प्वाइंटर अधिकतम भेल्यु शून्य हो तो बाद में प्वाइंटर मयाक्सिम्म भेल्यु में सेट हो जाता है। पॉइंटर भेल्यु इन्क्रिमेन्ट या डिक्रिमेंट लगातार तीन फ़म तक नहीं की जाती है.
- नियम 3 या 4 के अलावा अन्य किसी भी कारण से VC-3 एलाईन्मेन्ट परिवर्तन होता तो, नई प्वाइंटर भेल्यु "1001" NDF के साथ भेजी जाती है. NDF केवल पहले फ्रेम में दिखाई देता है .पॉइंटर भेल्यु इन्क्रिमेन्ट या डिक्रिमेंट लगातार तीन फ्रम तक नहीं की जाती है.

4.17 पॉइंटर व्याख्या :

निम्नलिखित TU-3 पॉइंटर की व्याख्या के लिए नियम :

- सामान्य ऑपरेशन के दौरान TU-3-प्वाइंटर VC -3 के शुरू होने को रेखांकित करता है .
- वर्तमान पॉइंटर मान से कोई बदलाव नहीं होता है यदि लगातार नया मान तीन बार प्राप्त होता है या यह नियम 3, 4 या 5 होता है, यदि किसी भी टाइम लगातार तीन बार नए मूल्य प्राप्त होता है तो नियम 3 या 4 ओवरराइड (यानी अधिक प्राथमिकता लेता है) करता है .
- यदि पॉइंटर शब्द के मेजोरिटी मे I -बिट इन्भर्टेड है तो पॉजिटिव जस्टीफ़िकेसन इन्डिकेट करता है और प्वाइंटर भेल्य एक बड़ जाता है .
- यदि पॉइंटर शब्द के मेजोरिटी मे D -बिट इन्भर्टेंड है तो नेगेटिव जस्टीफ़िकेसन इन्डिकेट करता है और प्वाइंटर भेल्य एक घट जाता है .
- यदि NDF एनेबेल है तो करेन्ट पॉइंटर भेल्यु ओफ्सेट को इन्डिकेट करता है और जब तक नई बेल्यु न आए तब तक रिसिबर में लोस ओफ पॉइंटर आ सकता है.

- 4.18 TU-2/TU-1 पॉइंटर : TU -1 और TU -2 पॉइंटर VC 2/VC 1 की स्वसिस्ट्म TU -1 और TU -2 मल्टी फ्रेम के भीतर VC 2/VC -1 को लचीला और डायनेमिक एलाईन्मेन्ट की प्रदान करती है.
- **4.19 TU-2 / TU-1 पॉइंटर लोकेशन** : TU 2 / TU -1 पॉइंटर V1 और V2 बाइट्स में रहते हैं, जिसे चित्र 4.10 में दिखाया गया है.
- 4.20 TU-2 / TU-1 पॉइंटर भेल्यु: ट्रिब्यूटरी यूनिट पॉइंटर शब्द जिसे चित्र 4.11 में दिखाया गया है दो एस बिट्स (बिट्स 5 और 6) ट्रिब्यूटरी यूनिट का प्रकार को दिखाता है. पॉइंटर भेल्यु बिट्स -7से VC 2 VC 1- की पहली बाइट ऑफसेट को इंगित करता है जो एक बाइनरी संख्या है .ऑफसेट की सीमा ट्रिब्यूटरी यूनिट का आकार अनुसार प्रत्येक के लिए अलग अलग है जो चित्र 4.12 में दिखाया गया है | पॉइंटर बाइट ऑफसेट गणना में नहीं गिने जाते हैं.

TU Tributary unit

VC Virtual container

V1 VC Pointer 1 V2 VC Pointer 2

V3 VC Pointer 3 (action)

V4 Reserved

NOTE $\,-\,$ V1, V2, V3 and V4 bytes are part of the TU-n and are terminated at the pointer processor.

चित्र 4.10 वर्चुअल कंटेनर की मैपिंग मल्टी फ्रेम ट्रिब्यूटरी यूनिट में

T1518250-95

- N New Data Flag

New Data Flag

- Enabled when at least 3 out of 4 bits match "1001"
- Disabled when at least 3 out of 4 bits match "0110"
- Invalid with other codes

Negative justification Positive justification - Invert 5 D-bits - Invert 5 I-bits

- Accept majority vote - Accept majority vote

Pointer value Normal range is:

– for TU-2: 0-427 decimal Concatenation indication

- for TU-12: 0-139 decimal - 1001SS11111111 (SS bits are unspecified)

- for TU-11: 0-103 decimal

चित्र 4.11 TU-2/TU-1 पॉइंटर कोडींग

4.21 TU-2 / TU-1 फ्रीक्वेंसी जस्टीफ़िकेसन : जिस तरह TU 2/TU -1 पॉइंटर का फ्रीक्वेंसी जस्टीफाइ किया जाता है VC-2 / VC-1 में ठीक उसी तरह TU पॉइंटर का फ्रीक्वेंसी जस्टीफाइ के लिए VC -3 का इस्तेमाल किया जाता है . एक पॉजिटिव जस्टीफ़िकेसन ओपर्च्नेटी बाइट साथ हि साथ V3 बाइट को अनुसरन करता है . साथ ही, V3 एक नेगेटीभ जस्टीफ़िकेसन ओपर्चुनेटी बाइट है जो अवसर के रूप में कार्य करता है तथा , V3 डॉटा ओवरराइट करता है. जिसे चित्र 4.12 में दिखाया गया है . चाहे या नहीं एक जस्टीफ़िकेसन ओपर्च्नेटी का वर्तमान ट्रिब्यूटरी यूनिट के मल्टी फ्रेम में पॉइंटर के -I- और D बिट्स व्दारा प्रदान की जाती है .

जब V3 का भेल्य निर्धारित नहीं है तब उसे नेगेटीभ जस्टीफ़िकेसन के लिए इस्तेमाल नहीं किया जाता है | रिसीवर तब नेगेटीभ जस्टीफ़िकेसन को अनदेखी करता है और V3 का भेल्य् आवश्यक नहीं है.

4.22 नई डॉटा फ्लेग (NDF): अगर पॉइंटर भेल्यु के मनमाने ढंग से परिवर्तन या पेलोड में परिवर्तन के कारण पॉइंटर शब्द के 1-4 बिट्स (N- बिट्स) में एनडीएफ है उस्में परिवर्तन होता है। तथा फ्लेग का चार बिट एरर सुधार के लिए चिह्नित किए गया हैं. सामान्य ऑपरेशन एन बिट्स में "0110" कोड के द्वरा सिगन्ल दिया जाता है तथा एनडीएफ "1001" एन बिट्स को उलटा बानाके सिगन्ल दिया जाता है। जब एनडीएफ के तीन या चार बिट्स पैटर्न "1001" से मेल हो तो एनडीएफ ईनेबेल है , और जब एनडीएफ के तीन या चार बिट्स पैटर्न ""0110" से मेल हो तो एनडीएफ डिसेबेल है । शेष भेल्यु (यानी "0000", "0011", "0101", "1010", "1100" और "1111") अमान्य है .

4.23 TU-2/TU-1 पॉइंटर जेनेरेशन और इंटरप्रिटेशन :

- V1 PTR1
- V2 PTR2
- V3 PTR3 (action)
- V4 Reserved

चित्र 4.12 TU-2/TU-1 पॉइंटर के ओफ़सेट

VC -2 / VC -1 के लिए TU2 / TU -1 पॉइंटर पैदा करने और व्याख्या के लिए नियमों में चित्र 4.16 और 4.17 में विस्तार किया है, और निम्नलिखित संशोधनों TU-3 पॉइंटर के लिए दिया गया TU-3 को बदल दिया किजिये TU-2/TU-1 से और VC-3 को बदल दिया करे VC-2/VC-1 से .

- 4.24 TU-2 कनकैटीनेशन: कंटेनर -2 ,TU-2 से अधिक की आवश्यक है, यह एक मल्टी कंटेनर -2 पेलोड है जो एक VC-2-mc में किया जाता है TU-2s कनकैटीनेशन का नियम दो श्रेणियों में विभाजित हैं:
- TU-2s उच्च क्रम VC-3 के कनकैटीनेशन
- TU-2s उच्च क्रम VC-4 के वर्च्अल कनकैटीनेशन

4.25 उच्च क्रम VC-3 में TU-2s की कनटीगुयास कनकैटीनेशन: TU 2 उच्च क्रम VC -3 में समय में सिन्निहित हैं पहले TU -2 मे एक TU 2 एम सी के पॉइंटर भेल्यु एक सामान्य श्रेणी होगा, और बाद मे TU 2 सभी TU 2 mc के भीतर कनकैटीनेशन करने के लिए अपने पॉइंटर सेट होगा ("1001" in बिट्स 1-4, बिट्स 5-6 आल 1 बिट्स 7-16 of the TU-2 पॉइंटर). कनकैटीनेशन TU 2 mc में पहले TU -2 पॉइंटर व्दारा सिगन्ल के रूप में TU -2 पॉइंटर प्रोसेसर द्वरा होता है कनकैटीनेशन के इस प्रकार के साथ VC-2- mc में VC 2 तथा VC-2- mc में प्रकट होता है जो एक वर्चुअल कंटेनर POH मे शामिल हैं.

भराई बाइट्स क्षमता में पोईन्टर को समायोजित करने के लिए सन्निहित कनकैटीनेशन पर आधारित VC-2-एम सी पेलोड में डाला जाना चाहिए.

4.26 उच्च क्रम VC -4 में TU-2 की वर्षुअल कनकैटीनेशन : कनकैटीनेशन का यह तरीका भी VC-2-mc जहा m × TU -2 पॉइंटर बाइट्स में कनकैटीनेशन इन्डीकेशन के बिना ट्रांसिमिशन के लिए अनुमित देता है. इस विधि में केवल कनकैटीनेशन कार्यक्षमता प्रदान करने के लिए पाथ टरिमनेटिंग उपकरणों की आवश्यकता है. वर्षुअल कनकैटीनेशन में एक ही पॉइंटर भेल्यु के साथ शुरू होने की पाथ में कनकैटीनेटेड ट्रिब्यूटरी यूनिट सिगन्ल की आवश्यकता है.प्रत्येक इंटरफेस में ट्रिब्यूटरी इकाइयों एक भी उच्च क्रम VC-4 में रखा जाता है . जब उच्च क्रम VC -4 को टरिमनेट किया जाता है, तो इकाइयों में लागू होने वाले प्रतिबंधों एक इंटरफेस के कनकैटीनेटेड ट्रिब्यूटरी दुसरे इकाइयों के कनकैटीनेटेड ट्रिब्यूटरी में समय क्रमबद्ध को बदला नहीं जाता है. डिले में अंतर VC -2 सिगन्ल मध्यवर्ती उपकरण पर पॉइंटर प्रसंस्करण पॉइंटर प्रोसेसिंग के कारण उत्पन्न हो सकती है. किसी भी इंटरफेस में एक कनकैटीनेटेड समूह के भीतर पॉइंटर मूल्य में अधिकतम पोईन्टर आगे के अध्ययन के लिए है.पाथ समाप्ति पर VC-2- mc एलाईन्मेन्ट के लिए पॉइंटर मूल्यों का उपयोग करके पुनर्निर्माण किया जा सकता है | VC-2- mc पाथ समाप्ति पर, व्यक्ति BIP-2s एक एकल BIP में एकत्रित होता हैं.

4.27 TU-2 / TU-1 के आकार: बिट्स 5 और 6 TU -2 / TU -1 के पॉइंटर पॉइंटर TU nके आकार का सिगन्ल मिलता है. वर्तमान में तीन आकारों में प्रदान की जाती हैं; वे टेबल 4.1 में परिभाषित हैं.

साइज़	पद	TU-n पॉइंटर रेज (in 500 µs)		
00	TU-2	0-427		
10	TU-12	0-139		
11	11 TU-11 0-103			
OTE - This technique is only used at the TU-2/TU-1 levels.				

टेबेल 4.1 TU-2/TU-1 साइज़

चित्र 4.13 TU-1/2 500 µs मल्टी फ्रेम सिगन्ल का प्रयोग H4 बाइट मे

4.28 TU-2/TU-1 मल्टी फ्रेम सिगन्ल बाइट:

		Н	4	बिट्र	प्त				
1	2	3	4	5	6	7	8 फ्रेम	N° Time	
X	Χ	X	X	X	X	0	00	0	X - अपरिभाषित
Χ	Χ	Χ	Χ	Χ	Χ	0	11		
Χ	Χ	Χ	Χ	Χ	Χ	1	02		
Χ	Χ	Χ	Χ	Χ	X	1	13	500 μs	TU-n मल्टी फ्रेम
			_		_	_	_		

चित्र 4.14 ट्रिब्यूटरी यूनिट मल्टी फ्रेम ईन्डीकेटर बाइट (H4) कोडींग

VC -4 / VC -3 POH से रिड किआ H 4 बाइट का मूल्य, अगले VC 4 / VC -3 पेलोड के फ्रेम फेज की जानकारि देता है | जो चित्र 4.13 में दिखाया गया है और चित्र 4.14 मे H 4 बाइट की कोडिंग दिखाया गया है.

ओब्जेक्टीब:

1.	एसटीएम -1 फ्रेम तीन बाइट्स में एक address होता है.	T/F
2.	एसटीएम -1 फ्रेम में VC4 की एक पंक्ति में 86 address होता है .	T/F
3.	एसटीएम -1 फ्रेम में VC4 सभी 9 लाइनों 783 address होता है.	T/F
4.	पहला बाइट्स H 1 और AU4 के पहला H 2 पोइन्टर address उत्पन्न करने के लिए इ	स्तेमाल
	होता हैं.	T/F
5.	AU4 सभी H3 बाइट्स नेगेटीब जस्टीफीकेशन के लिए उपयोग किया जाता है	T/F
6.	एक AU4 के NDF पोइन्टर के मूल्य का आर्बिटारी संशोधन की अनुमति देता है	T/F
7.	सामान्य ऑपरेशन में एक AU4 की NDF के मूल्य 1001 है	T/F
8.	पोजेटीब जस्टीफीकेशन में AU4 पोइन्टर पिछले address की स्थिति से एक	address
	incremented होता है।	T/F
9.	नेगेटिब जस्टीफीकेशन में AU4 पोइन्टर पिछले address की स्थिति से एक	address
	decremented होता है।	T/F
10.	G.709 मानक के अनुसार, पोइन्टर के मूल्य में कम से कम लगातार तीन फ्रेम के लि	भेए निरंतर
	बनी हुई होती है.	T/F
11.	H1 और H2 में निहित TU3 पोइन्टर मान VC3 शुरू होता है जहां बाइट का स्थान नि	र्दिष्ट करता
	· 青l	T/F

सबजेक्टीब :

- 1. प्वाइंटर के अर्थ और उद्देश्य की व्याख्या करे ?
- 2. आप नेगेटिब और पोजेटीब जस्टीफीकेशन से क्या समझते हैं ?
- 3. AU-4 प्वाइंटर और AU 3 प्वाइंटर में H1, H2 और H3 बाइट्स का उपयोग की व्याख्या करे यह किस प्रकार ऑफसेट नंबिरंग के लिए उपयोगी है ?

12. TU12 में V1, V2, V3 और V4 के पोइन्टर बाइट्स 500µs में उपयोग किया जाता है

- 4. प्वाइंटर 16 बिट के होते है इसमे increment और decrement कैसे होति है ,इन प्वाइंटर बिट्स संकेत के लिए उपयोग कैसे किया जाता है ?
- 5. टीयू-3 प्वाइंटर के उत्पादन के लिए क्या नियम हैं ?
- 6. व्याख्या करें TU -2 , TU12 प्वाइंटर ?

T/F

अध्याय 5 नेटवर्क टोपोलॉजी

5.1 टोपोलॉजी: टोपोलॉजी शब्द मूल रूप से एक नेटवर्क का आकार से मतलब है, कि कैसे नोड्स एक नेटवर्क टोपोलॉजी के साथ जुड़े हुए हैं . नेटवर्क में कई अलग अलग टोपोलोजी हो सकता है, और आप एक नेटवर्क की योजना और एक टोपोलॉजी का चुनाव अक्सर यह एक महत्वपूर्ण निर्णय होता है. टोपोलोजी अलग अलग लागत , प्रदर्शन की स्तर, और विश्वसनीयता के स्तर पर आधारित होता है.

5.2 नेटवर्क टोपोलॉजी के प्रकार: नेटवर्क टोपोलॉजी मुख्य रूप में चार प्रकार में विभाजित किया जाता है

- स्ट्रिंग या बस
- रिंग या लूप
- स्टार
- मेश
- 5.2.1 स्ट्रिंग नेटवर्क: एक स्ट्रिंग नेटवर्क में, ट्रैफ़िक एक दूसरे रिलेटेड नोड्स के एक स्ट्रिंग से लिया जाता है. अलग अलग सेवाओं जैसे वॉयस, डॉटा, वीडियो स्ट्रींग में किसी भी नोड पर एड या ड्रोप कर सकता है .दो पोईन्ट नोड्स को टर्मिनल नोड्स कहा जाता है ,इसे टर्मिनल मल्टीप्लेक्सर या लाइन टर्मिनल कहा जाता है .मध्यवर्ती नोड्स रीजेनरेटर या, ए डी एम (एड /ड्राप मल्टीप्लेक्सर) या रीजेनरेटर नोड्स कहा जाता है. स्ट्रींग नेटवर्क अक्सर जैसे रेलवे, राजरुट और पाइप लाइन लिनियर नेटवर्क के रूप में उपयोग होता है.

TE: Terminal Multiplexer ADM: Add & Drop Multiplexer

चित्र: 5.1 स्ट्रिंग नेटवर्क

- 5.2.2 रिंग नेटवर्क: एक रिंग नेटवर्क एक स्ट्रिंग नेटवर्क ही है, जिसमे कोई टर्मिनल नोड्स निह होते हैं. यहा केवल ए.डी.एमों नोड्स का लुप रहता है. जब इस प्रकार के नेटवर्क कभी किसी वजह से तुट्ता है, इलेक्ट्रीकल, ओफ़्फ़, या किसि तरह फाल्ट के कारण बाधित होता है तो बहुत ही उच्च गित (<50 मिलीसेकंड) पर नेटवर्क के सिस्टम इसे फिर से रेस्टोर करता है, यह इस सिस्टम का एक महत्वपूर्ण भूमिका है. रिंग नेटवर्क लैन (लोकल एरिया नेटवर्क), वैन (वाइड एरिया नेटवर्क) और राष्ट्रीय नेटवर्क के लिए विशेष रूप से उपयोगी है.
- 5.2.3 स्टार नेटवर्क: एक स्टार नेटवर्क, सभी ट्राफिक आम तौर पर एक क्रॉस कनेक्ट उपकरण के माध्यम से गुजरता है जिसे एक केंद्रीय नोड या हब कहते है | स्टार टोपोलॉजी के मुख्य नुकसान नेटवर्क की कमजोरी है. हब विफल रहने पर कोई ट्राफिक स्टार की विभिन्न शाखाओं (या लिंक) के बीच निह जा सकता है. टोपोलॉजी का इस प्रकार आमतौर पर ग्राहक का उपयोग नेटवर्क में इस्तेमाल किया जाता है |

चित्र 5.2 रिंग नेटवर्क

चित्र 5.3 स्टार नेटवर्क

5.2.4 मेस नेटवर्क :

चित्र 5.4 मेस नेटवर्क

एक मेस नेटवर्क में प्रत्येक नोड एक या अधिक लिंक से या कम से कम दो अन्य नोड्स को परस्पर जुड़ते है. मेस नेटवर्क के नोड्स मुख्य रूप से एक क्रास क्नेक्ट उपकरण होतें हैं .मेस नेटवर्क में रिफ्लेक्स प्रकार सिस्ट्म होति है जो, क्रास क्नेक्ट < 200मि.से (नेटवर्क मैनेजर के सहायता से) फिर से माध्यम को उपकरण से या नेटवर्क से फिर जोड़ देता है. यह एस.डी.एच में बहुत उपयोगी होते हैं .मेस नेटवर्क मुख्य रूप से राष्ट्रीय नेटवर्क के लिए इस्तेमाल होता हैं.

5.3 नेटवर्क नोड इंटरफेस (NNI): नोड को आपस में जोड़ने के लिए यह एक इंटरफेस है. NNI एक सबसे महत्वपूर्ण नेटवर्क इंटरफ़ेस है. इस इंटरफ़ेस को आई.टि.यु (टी) के Rec.G.708 में परिभाषित किया गया है.यह केबुल या रेडियो लिंक के जरिए नेटवर्क कम्पोनेन्ट (जैसे, नेटवर्क नोड्स और मल्टीप्लेक्स सिस्टम) को एक दूसरे से जुडता है. यह आई.टि.यु (टी) के सिफारिश G.708 इंटरफ़ेस का लोजिकल विशेषताओं को वर्णन करता है. दोनों इलेक्ट्रीकल और ऑप्टिकल इंटरफेस एस.टी.एम. -1 स्तर के लिए निर्दिष्ट हैं (155.52 एम.बी.पी.एस).

इलेक्ट्रीकल इंटरफेस CMI कोडींग आई.टि.यु (टी) G.703 में वर्णित 139.264 एम.बी.पी.एस इंटरफेस के जैसे कोडिंग का उपयोग करते हैं. एस.डी.एच के उच्च स्तर के लिए (जैसे, 622.080 और 2,488.320 एम.बी.पी.एस) केवल ऑप्टिकल इंटरफेस को निर्दिष्ट किया गया हैं.

ओबजेक्टीब :

1.	वॉयस, डाटा और वीडियो बस नेटवर्क की किसी भी नोड में जोड़ा जा सकता है।	T/F
2.	मध्यवर्ती नोड्स को बस टोपोलॉजी में एड/ ड्राप नोड्स कहा जाता है	T/F
3.	मध्यवर्ती नोड्स एक बस टोपोलॉजी में एक multiplexer या तो regenerative किया जा	सकता है
		T/F
4.	एक रिंग नेटवर्क नोड्स के एक स्ट्रिंग है जो वापस लुप हैं।	T/F
5.	एक रिंग नेटवर्क केवल ए.डी.एम नोड्स है	T/F
6.	सेल्फ हिलिंग की क्षमता रिंग नेटवर्क में कम से क्म 50ms हो सकते हैं।	T/F
7.	रिंग नेटवर्क से भी कम 50ms में विफल रही सर्किट बहाल नहीं हो सकते है ।	T/F
8.	केंद्रीय नोड हब को एक स्टार नेटवर्क कहा जाता है	T/F
9.	स्टार टोपोलॉजी आमतौर पर ग्राहक का उपयोग नेटवर्क में प्रयोग किया जाता है	T/F
10.	meshed नेटवर्क मुख्य रूप से राष्ट्रीय नेटवर्क के लिए प्रयोग किया जाता है।	T/F

सबजेक्टीब :

- SDH में इस्तेमाल हुए विभिन्न प्रकारों के नेटवर्क टोपोलॉजी के बारे में बताएं ?
 NNI के बारे में संक्षेप में लिखें ?

अध्याय 6 उपलब्धता और सरवाईबिलिटी

परिचय: आप्टिक फाइबर केबुल के जाल बिछाने से तथा एस.डी.एच मल्टीप्लेक्सर के उपयोग से एंड टु एंड मोनिटरींग तथा मैन्टेनेन्स समध्ब हो सका है. मैनेजमेन्ट सेबा से नोड या लिंक फेलिउर होने पर ट्राफिक को रिरुटींग कर सकतें हैं. सेल्फ हिलिंग रिंग के वजह से यह पुन: नोड या लिंक फेलिउर होने पर ट्राफिक को रिरुटींग करता है जब तक वह एफेकटेड रुट ठिक न हो जाए और उच्च सेबा का गारंटी प्रदान करति है.

- **6.1 नेटवर्क की उपलब्धता एन्हांसमेंट तकनीक:** आई.टि.यु (टी) सिफारिश G.803 के अनुसार जो एक ट्रांसिमशन नेटवर्क की उपलब्धता बढ़ाने के लिए इस्तेमाल करते है. इस उपलब्ध्ता वृद्धि निम्नलिखित दो मुख्य सिस्ट्म के माध्यम से किया जाता है.
- नेटवर्क प्रोटेकश और सब नेटवर्क प्रोटेकशन
- ट्राफिक री-रूटिंग के माध्यम से नेटवर्क प्न: रेस्टोरेशन.

6.2 आई.टि.यु (टी) सिफारिश G.803 में परिभाषित प्रोटेकशन स्कीम :

- > एस.डी.एच मल्टीप्लेक्स सेक्शन 1 + 1 प्रोटेकशन
- > एस.डी.एच मल्टीप्लेक्स सेक्शन N +1 प्रोटेकशन
- 🕨 एस.डी.एच मल्टीप्लेक्स सेक्शन के लिये शेयरड प्रोटेकशन रिंग
- > एस.डी.एच मल्टीप्लेक्स सेक्शन के लिये डेडिकेटेड शेयरड प्रोटेकशन रिंग

6.3 एस.डी.एच सब नेटवर्क कनेक्शन प्रोटेकशन उदाहरण:

- एस.डी.एच हायर ओडर प्रोटेकशन
- एस.डी.एच लोअर ओडर प्रोटेकशन.
- 6.4 प्रोटेकशन और एप्लिकेशन के प्रकार: फेलिओर के कई प्रकार होते है और इसकी होने की संभावना अलग अलग एक साथ उपस्थित होता है, जो नेटवर्क में देखि जा सकती है. उदाहरण के लिए उपकरण फेलिओर, लिंक या स्टेशन फेलिओर की त्लना में अधिक आम होती है (Table.6.1) को देखें.

उपकरण प्रोटेकशन स्विचिंग (ईपीएस) कम ट्राफिक के साथ गैर आवश्यक नेटवर्क के लिए, ड्रुप्लीकेट उपकरण से प्रोटेकशन दिया जा सकता है जो 1+1या N +1 हो सकता है . चित्र.6.1 (b) को देखें.

ऑटोमैटिक प्रोटेकशन स्विचिंग (ए पी एस) कुछ सिस्टम्स में मीडिया (1+1 या N+1) के साथ-साथ सिकट-बोर्ड में खराबी के लिये भी प्रोटेकशन प्रदान की गई है और यह भी सुरक्षित किया जाता है कि अगर सुरक्षित लिंक एवं उपकरण खराब होते हैं तो उसे भी लिंक प्रोटेकशन के व्दारा सुरक्षित कर लिया जाए चित्र.6.1 (a)को देखे.

पाथ प्रोटेकशन स्विचिंग (पीपीएस): चित्र.6.1 (ग): जो नेटवर्क अत्याधिक ट्राफिक वहन करती है तो उपकरण कि प्रोटेकशन पर्याप्त नहीं माना जाता है. यदि यांत्रिक क्षति जैसे फावड़ा व्दारा क्षति, या तोड़फोड़ या मानव एरर के कारण लिंक टूटता है तो पाथ प्रोटेकशन स्विचिंग प्रोटेकशन की जरूरत होति है.

उपलब्धता और सरवाईबिलिटी

इस तरह के प्रोटेकशन के लिए दो अलग अलग मार्गों (1 + 1 ए पी एस) पर लिंक डुप्लिकेटिंग व्दारा या रिंग या मेश नेटवर्क व्दारा प्रदान की जाती है. इससे इंटर नोड लिंक पर फेलिओर होने से भी, ट्राफिक बाधित नहीं होति है.

6.5 प्रोटेकशन और एप्लिकेशन के प्रकार :

फेलिओर		प्रोटेक्शन		
	रीड्न्डेन्सी	नाम	प्रकार	
कंपोनेंट	बोर्ड	*EPS (उपकरण प्रोटेक्शन	EPS N+1	
		स्विचिंग) चित्र6.1(b)	EPS 1+1	
	बोर्ड &	*APS (ऑटोमैटिक प्रोटेक्शन	APS N+1	
	केबल	स्विचिंग - एक ही डक्ट में केबल)	APS 1+1	
		चित्र6.1(a)	APS N:1	
			APS 1:1	
लिंक कारण: खुदाई	रूट	दो अलग-अलग मार्गी रिंग, जाल के	APS 1+1	
का कार्य सबोटेज		साथ केबल प्रोटेकशन चित्र6.1(c)	APS 1:1	
नोड का कारण:	स्टेशन	नोड का प्रोटेक्शन चित्र 6.1(d)	रिंग और मेष	
फायर, इंटरप्ट				

टेबेल .6.1 ऑटोमैटिक प्रोटेकशन सिस्टम

नोड प्रोटेकशन: चित्र. 6.1 (डी) जो नेटवर्क भारी ट्राफिक वहन करती है तो उपकरण प्रोटेकशन मे यांत्रिक क्षति इसके लिए उपकरण प्रोटेकशन की जरूरत होति है

47

इरिसेट

- 6.6 एस.डी.एच के सेल्फ-हीलिंग सिस्ट्म: एस.डी.एच नेटवर्क प्रोटेकशन और रेस्टोरेशन एक पूरी तरह से परिपक्व सिस्टम है जो लंबी दूरी की मीडिया के लिए एक उच्च उपलब्धता और तेजी से पुन: रेस्टोरेशन प्रदान करता है एक फेलिओर की स्टेटस में, यह प्रोटेकशन स्विच अतिरिक्त क्षमता के माध्यम से रुट मे फेलिओर को दुर करता है ओर ट्राफिक संचालित करता है. सेल्फ हीलिंग सिस्ट्म मे अदला बदली पर निम्न तीन मापदंडों होते हैं.
- आवश्यक इनफरमेसन और प्रोसेसिंग के मामले में निर्धारित "जटिलता".
- योजना के लिए रिङ्न्डेन्ट सुविधा से निर्धारित. "लागत"
- टूटने के बाद फिर से एक नेटवर्क रेस्टोर होने के लिए "प्रतिक्रिया समय" जिसे मिलीसेकेंड में मापा जाता है.

नेटवर्क रेस्टोरेशन करने के लिए, हम या तो सेक्सन रेस्टोरेशन या सिस्ट्म का रुट रेस्टोरेशन कर सकते हैं. जहां रुट रेस्टोरेशन सेक्सन रेस्टोरेशन से ज्यदा उपयुक्त है मगर रेस्टोरेशन धिमी गति से होती है. यहां कहने की जरूरत नहीं कि सेल्फ हीलिंग सिस्ट्म मे लचीलापन अधिक से अधिक एल्गोरिदम और नेटवर्क ओप्टिमाइजेशन में जटिलता के कारण होता है.

a) मल्टीप्लेक्सिंग सेक्सन प्रोटेकशन: K 1और K 2 बाइट्स जो SOH की MSOH में दिखाया गया है, वे मल्टीप्लेक्सिंग सेक्सन के प्रोटेकशन के लिए हैं .ये आई.टि.यु (टी)व्दारा सिफारिश G. 783 a में चर्चा किया गया है. वे सेक्सन के दोनों एंड पर स्विचिंग समन्वय करने के लिए उपयोग किया जाता है.

चित्र. 6.2 मल्टीप्लेक्सिंग सेक्सन प्रोटेकशन (1+1)

चित्र. 6.3 मल्टीप्लेक्सिंग सेक्सन प्रोटेकशन (1:1)

a) पाथ प्रोटेक्शन: एस.डी.एच नेटवर्क में पाथ के रिलायेबिलिटी अत्यधिक विश्वसनीय है . इसका मतलब शृंखला में उच्च फांस्न्ल इन्टीग्रेशन एबं कम स्विसिस्ट्म है, इसके सीधा परिणाम फाल्ट होने का खतरा कम हो जाता है . फेलिओर होने से, एस.डी.एच स्वत: प्रोटेक्शन पर आधारित ट्रांसिमिशन नेटवर्क के उच्च उपलब्धता प्रदान करता है जो क्रॉस कनेक्शन का उपयोग कर पुन: व्यवस्थित किया जा सकता है. उच्चतम पाथ उपलब्धता पूरी पाथ का पोईन्ट से पोईन्ट तक दोहराया जाता है | पाथ प्रोटेक्शन के लाभ बहुत ही कम समय के भीतर एक असफल पाथ की जगह जो एक सरल, मजबूत पाथ की स्थापना प्रोटोकॉल, के व्दारा प्राप्त किया जा सकता है. 1+ 1 प्रोटेक्शन जो चित्र 6.4 में दिखाया गया है , तथा 1: 1 प्रोटेक्शन योजना चित्र 6.5 में दिखाया गया है.

चित्र. 6.4, 1 + 1 पाथ प्रोटेक्शन

चित्र. 6.5, 1 : 1 पाथ प्रोटेक्शन

जब 1 + 1 कॉन्फ़िगरेशन के मामले में मुख्य रुट काम करने की हालत में होता है यदि मुख्य रुट फेल होता है तो स्टैंडबाय रुट लोड ले लेता है. जब 1:1 कॉन्फ़िगरेशन के मामले में, स्टैंडबाय रुट मुख्य रुट से कम महत्व की ट्राफिक वहन करती है जहां मुख्य रुट में अधिक महत्व की ट्राफिक वहन करती है जब मुख्य विफल रहता है, स्टैंडबाय उच्च महत्व की ट्राफिक वहन करती है और कम महत्व की ट्राफिक को निलंबित रखा जाता है.

6.7 रिंग नेटवर्क प्रोटेक्शन: यह एक BSHR (बाइ डायरेक्शनल सेल्फ हीलिंग रिंग) या USHR (यूनिडायरेक्शनल सेल्फ हीलिंग रिंग) है या नहीं पर निर्भर करता है, यहां एक रिंग डबल फाल्ट भी सहन कर सकता है.

एक रिंग पर भी डबल फाल्ट सहन कर सकता है, पर यह निर्भर करता है कि एक रिंग BSHR (बाइ डायरेक्शनल सेल्फ हीलिंग रिंग) या USHR (यूनिडायरेक्शनल सेल्फ हीलिंग रिंग) है .सेल्फ हीलिंग रिंग (SHR) कि आर्किटेक्चर की मदद से एक नेटवर्क ऑटोमैटिक रूप से फाल्टपूर्ण उपकरण की मरम्मत होने पर तुरंत फिर से पुन: विन्यस्त हो जाता है.

चित्र. 6.6 सेल्फ हीलिंग रिंग प्रोटेक्शन

एस.डी.एच रिंग लिंक और नोड के फेलिओर में ट्रांसिमशन मीडिया के स्तर पर पाथ प्रोटेक्शन और मल्टीप्लेक्स सेक्सन (एम.एस) प्रोटेक्शन प्रदान करने के लिए इस्तेमाल किया जा सकता है.

- **6.7.1 डेडिकेटेड प्रोटेक्शन रिंग (DPRINGS)**: जहां पाथ प्रोटेक्शन विकल्प का उपयोग करता है तथा प्रोटेक्शन फाइबर का इस्तेमाल किया जाता है, लेकिन इसमे रुट अलग नहीं होते है |
- 6.7.2 **डेडिकेटेड रुट प्रोटेक्शन** (DRP): एक अलग प्रोटेक्शन रुट का प्रयोग किया जाता है जहां ट्राफिक कि मांग बहुत अधिक है जैसे एस.टी.एम.-16, और दूरी अपेक्षाकृत कम है.
- 6.7.3 एम.एस स्विचड प्रोटेक्शन: जो प्रोटेकशन क्षमता सभी तरह रिंग मे आरक्षित है और इसे चारों ओर से रिलेट किया जाता है. एक फेलिओर की स्टेटस में, प्रोटेक्शन स्विच अतिरिक्त क्षमता के माध्यम से रुट के लिए फेलिओर के दोनों ओर ट्राफिक को संचालित करता है.
- **6.8 सिंगल रिंग नेटवर्क**: रिंग नेटवर्क आर्थिक प्रतिस्पर्धा के साथ नेटवर्क विश्वसनीयता प्रदान कि जाती है, सेल्फ हीलिंग के रिंग मे दो श्रेणियां हैं.
- **6.8.1 यूनिडायरेक्शनल रिंग:** यह दो फाइबर के होते हैं और सेक्सन प्रोटेक्शन या पाथ प्रोटेक्शन प्रदान कर सकते हैं. ईसमे ट्रांसिमशन और रिसेप्सन प्रयोग मे आने वाला फाइबर पर, रिंग के चारों ओर एक ही दिशा में यात्रा करता है. प्रोटेक्शन फाइबर या तो ट्राफिक के दोहराव के लिए या एक खाली एस.टी.एम. ले जाने के लिए इस्तेमाल किया जा सकता है जो चित्र 6.7में दिखाया गया है.

बाइडायरेक्शनल रींग: यह केवल सेक्सन प्रोटेक्शन का समर्थन करता है. इसलिए ट्रांसिमशन और रिसेप्सन ट्राफिक रिंग के चारों ओर विपरीत दिशाओं में यात्रा करित है और दोनों फाइबरो का उपयोग करता है. तो बैंडविड्थ का आधा रिंग के दूसरे हिस्से में फेलिओर की स्टेटस में ट्राफिक रुट पुनः बाहालि के लिए आरक्षित किया जाता है दो फाइबर के बारे में .जो चित्र 6.8 में दिखाया गया है.

जिसमें चार फाइबर बाइडायरेक्शनल रिंग है उसमे की एक जोड़ी फाइबर प्रोटेक्शन के लिए आरक्षित है, यह जोडी आसन्न नोड़स के बीच (1 : 1 ए .पी. एस प्रोटेक्शन) के लिए कम प्राथमिकता ट्राफिक के लिए इस्तेमाल किया जा सकता है.

6.9 रिंग प्रोटेकशन सिस्ट्म: रिंग प्रोटेकशन सिस्ट्म दो प्रकार के होते हैं.

चित्र. 6.9(a) यूनिडायरेक्शनल रिंग सेक्सन प्रोटेक्शन के साथ - सामान्य ऑपरेशन

चित्र.6.9 (b) यूनिडायरेक्शनल रिंग सेक्सन प्रोटेक्शन के साथ - असफ़ल स्टेटस

उपलब्धता और सरवाईबिलिटी

- मल्टीप्लेक्स सेक्सन प्रोटेकशन
- पाथ प्रोटेकशन
- 6.9.1 मल्टीप्लेक्स सेक्सन प्रोटेकशन: मल्टीप्लेक्स सेक्सन प्रोटेकशन फेलिओर के दोनों एंड पर स्थित दोनों ए डी एम व्दारा, मल्टीप्लेक्स सेक्सन स्तर पर फेलिओर का पता लगाने के लिए है. यदि एक असफलता एक सेक्सन में होती है, तो एस.टी.एम. एन सिगन्ल पूरी तरह से प्रोटेकशन फाइबर पर स्विच होता है भले ही फेलिओर फ्रेम में केवल एक कंटेनरों की वजह से हो.
- 6.9.2 पाथ प्रोटेक्शन: प्रोटेक्शन के इस प्रकार, आमतौर पर पाथ प्रोटेक्शन की तुलना में एक छोटे से धीमी है क्योंकि पड़ोसी ए डी एम के बीच कुछ ट्रांसिमशन प्रोटेक्शन स्विचिंग आरंभ करने के लिए आवश्यक होता है जो चित्र 6.9 (a) 6.9 (b) .में दिखाया गया है.

चित्र. 6.10 USHR के साथ पाथ प्रोटेक्शन

6.10 सब नेटवर्क कनेक्शन प्रोटेक्शन (SNCP): सब नेटवर्क कनेक्शन प्रोटेक्शन (SNCP) एक सिस्ट्म है जो पाथ प्रोटेक्शन के जैसा एक और पाथ प्रोटेक्शन है जो पाईन्ट से पाईन्ट तक एस.डी.एच नेटवर्क के लिए प्रोटेक्शन प्रदान करता है. डॉटा सिगन्ल दो अलग रास्तों के माध्यम से एक रिंग संरचना में फैल जाता है और यह लाइन या रिंग संरचनाओं में लागू किया जा सकता है. इसमे प्रोटेक्शन प्रोटोकॉल की आवश्यकता नहीं है. SNCP एक 1 + 1 प्रोटेक्शन योजना (एक कार्यरत और एक प्रोटेक्शन ट्रांसिमशन इकाई) है. इनपुट ट्राफिक दो मार्गों (एक सामान्य काम रुट और दूसरे प्रोटेक्शन रुट) में प्रसारित किया जाता है. SNCP पाथ प्रोटेक्शन स्विचिंग है जो पाथ समाप्त उपकरणों में स्थित है. SNCP में प्रोटेक्शन रास्ते में एक फेलिओर होने पर शुरू होती है. यह प्रत्येक सर्किट के लिए दो रास्ते प्रदान करता है, एक काम है और एक प्रोटेक्शन बनाने के लिए आवश्यक है. गंतव्य नेटवर्क तत्व काम कर रहे या प्रोटेक्शन रास्तों से सिगन्ल का सबसे अच्छा चयन करता है जबिक स्रोत नेटवर्क तत्व में ट्रैफिक कार्यरत रूट और प्रोटेक्शन दोनों रास्तों प्रोटेक्शन रूट पर ब्रीज होता है. SNCP एक डेडिकेटेड प्रोटेक्शन सिस्ट्म है. SNCP रिंग कनेक्शन के मामले में एक नोड बाइडायरेक्शनल होते है,जिसमे प्रवेश और निकास नोड दोनों हो सकता है. SNCP आर्किटेक्चर का आपरेशन सरल है. इसमे कोई अतिरिक्त सिगन्ल प्रोटोकॉल की जरूरत नहीं होती है प्रोटेक्शन स्विचिंग सिस्ट्म हमेशा बेहतर गुणवता के साथ सिगन्ल के चयन तथा प्रत्येक नोड स्वचिलित रूप से काम करता है.

इस सिस्टम मे मुख्य नुकसान प्रोटेक्शन ट्रैफ़िक के लिए आवश्यक बैंडविड्थ और किसी के लिए उपयोग नहीं किया जा सकता है इसलिए नेटवर्क के बेसिक ढांचे की लागत बढ़ जाती है.

6.11 मल्टीपल रिंग नेटवर्क: एक लिंक टूटने पर स्वयं हील होता है रिंग मे यह रिंग की गुण है रिंग की संख्या वृद्धि के साथ साथ नेटवर्क की विश्वसनीयता बढ़ जाती है.

रिंग और उनके इसी नोड्स की संख्या के चुनाव आदि टोपोलॉजी, ट्राफिक मैट्रिक्स के रूप में कई मानदंडों पर आधारित है. इस प्रकार इंटरफेस की संख्या और नेटवर्क की लागत प्रभाव , नोड का कॉन्फ़िगरेशन के ऊपर निर्भर करता है.

6.12 एसिंक्रोनस ट्रान्स्पोर्ट मोड (एटीएम): एस.डी.एच और एटीएम बी आईएसडीएन के लिए कोर ट्रांसिमशन और स्विचिंग टेक्नॉलॉज़ी हैं .इस तरह के नेटवर्क आर्किटेक्चर और सेवा परिनियोजन रणनीति में टेक्नॉलॉज़ी के क्षेत्र में कई मुद्दों को जन्म देते है. एस.डी.एच टीडीएम का उपयोग करता है और नेटवर्क इस कारण स्टैटिस्टिकल मल्टीप्लेक्सिंग का पूरा लाभ नहीं ले सकते. एटीएम सोनेट / एस.डी.एच के पेलोड को व्यवस्थित करने के लिए प्रस्तावित किया गया है | एटीएम में सभी इनफरमेसन नेटवर्क में स्विच ले जाया जाता है और तय लंबाई पैकेट में आयोजित किया जाता है उसे कोशिका / सेल कहते है .सेल मे दो भाग है शीर्षक और पेलोड. हैडर 5 बाइट्स लंबा है और पेलोड 48 बाइट्स की है. हेडर के भीतर रूटिंग, एक्सेस कंट्रोल और अन्य कार्यों के करने के लिए कई क्षेत्रों हैं. ए.टी.एम में एस.डी.एच का एस.टी.एम. -1 और एस.टी.एम. -4 का फ्रेम लिया जाता है. एटीएम सर्किट और पैकेट स्विचिंग टेक्नॉलॉज़ी का मेल करता है . ए.टी.एम मांग पर बिट रेट आवंटन की सुविधा प्रदन करती है. 155 एम.बी.पी.एस रेट उपस्थित लगभग सभी सेवाओं को पूरा करता है जिसमे आवाज, डॉटा, फैक्स, सीएडी फ़ाइल स्थानांतरण, टेक्स्ट और वीडियो फोन आदि है .

एटीएम ट्रांसिमशन के रूप में पोईन्ट रराष्ट्रीय स्तर पर उभरा है और यह क्षेत्र में सार्वभौमिक है और अधिकतम अनुकूलन क्षमता की पेशकश के रूप में पसंद की गई है . दिसंबर 1990 में, आई.टि.यु टी अध्ययन समूह XVIII एटीएम के बेसिक रेकमेन्डेसन पर सहमति व्यक्त की है . ए.टी.एम आमतौर पर एस.डी.एच ट्रांसिमशन संरचना के शीर्ष पर बनाया गया है.

6.13 एस.डी.एच सिस्टम के साथ माइक्रोवेव लिंक:

वर्तमान ट्रांसिमिशन में बेसिक ढांचे जैसे ऑप्टिकल फाइबर, उपग्रह और मोबाइल सिस्टम के नए प्रकार का उपयोग हो रहा है. एक ही समय में कई अलग अलग एमप्लीट्युड और फेज की पेशकश के व्दारा एमप्लीट्युड और फेज मॉड्युलेशन संयोजन में अत्यधिक लाभप्रद मॉड्युलेशन तकनीक के साथ माइक्रोवेव लिंक मे भी एस.डी.एच ट्रांसिमिशन के लिए प्रयोग किया जाता है. वीएलएसआई का उपयोग करके, एक डिज़ीटल सिग्नल बैंड के लिए आवश्यक बैंडविड्थ काफी कम किया जा सकता है. कुछ नए सिस्टम 256 QAM, 513 QAM और 1024 QAM का उपयोग भी करते हैं जिसमे 3 X एस.टी.एम. - 4 या 5 गीगा फ्रीक्वेंसी बैंड 1.8 Gbps मे काम कर सकते हैं. एस.डी.एच रेडियो फाइबर सिस्टम के पूरक हो सकते हैं.

रिभिउ प्रश्न:

- 1. SDH उपकरण पर्याप्त रूप से सर्किट बोर्ड दोहराव द्वारा 1+1 या 1+एन संरक्षित किया जा सकता है
 T/F
- 2. विभिन्न मार्गों पर लिंक दोहराव एक SDH नेटवर्क का स्वत: पथ स्रक्षा प्रदान करता है T/F
- 3. एक ए .पी नेटवर्क के अंतर नोड लिंक में से एक फेलिउर होने पर यातायात बाधित होता है T/F
- 4. एक SDH नेटवर्क की फेलिउर की स्थिति में प्रोटेकसन स्विच अतिरिक्त क्षमता के माध्यम से रूट करते हैं। T/F
- 5. एक SDH नेटवर्क का मल्टीप्लेक्सिंग खंड 16 बिट्स MSOH से स्रक्षित है T/F
- 6. 1 + 1 के विन्यास के मामले में जब मुख्य SDH नेटवर्क का मार्ग बेकार होता है तो स्टैंड बाइ आइडील रुट मे ट्राफिक जाता है। T/F
- 7. 1: 1 विन्यास के मामले में मुख्य मार्ग में अधिक महत्व के यातायात का परिवहन जहां स्टैंड बाइ में कम महत्व की यातायात वहन करती है। T/F
- 8. द्विपक्षीय दिशात्मक SDH अंगूठी केवल अन्भाग संरक्षण का समर्थन करता है। T/F
- 9. SDH की द्वि-दिशात्मक रिंग में आधा बैंडविड्थ रिंग के दूसरे हिस्से में फेलिउर की स्थिति में यातायात rerouting के लिए संरक्षण किया जाता है । T/F
- 10. नेटवर्क विश्वसनीयता रिंग की संख्या के साथ बढ़ जाती है । T/F

सब्जेक्टिब :

- 1. आईटीयू-टी G.803 द्वारा परिभाषित प्रोटेक्शन श्रेणियों क्या- क्या है.?
- 2. प्रोटेक्शन और उनके अनुप्रयोगों के प्रकार के बारे में बताएं ?
- 3. एन :1 और एन +1 सिस्टम के बीच क्या अंतर है ?
- 4. आप सेल्फ हिलिंग से क्या समझते हैं ?
- 5. सेक्सन प्रोटेक्शन और पथ प्रोटेक्शन व्याख्या करें ?
- 6. रिंग प्रोटेक्शन व्याख्या करें ?
- 7. आप USHR और BSHR के बारे में क्या समझते है व्याख्या करें ?
- 8. आप DPRING, DRP, SPRING का व्याख्या करें ?
- 9. SNCP क्या है व्याख्या करें और SNCP अन्प्रयोगों का व्याख्या करें ?

अध्याय 7 नेटवर्क मैनेजमेंट सिस्टम

7.1 नेटवर्क मैनेजमेंट सिस्टम (एन.एम.एस) : एन.एम.एस रिमोट एंड से एक नेटवर्क के संचालन और मॉनिटरिंग को सुनिश्चित करने के लिए है. यह एस.डी.एच मल्टीप्लेक्सर और नेटवर्क एलिमेंट को मैनेज करने के लिए है. एन.एम.एस हार्डवेयर और सॉफ्टवेयर का एक मिलन है. एन.एम.एस व्दारा मैनेज नेटवर्क तत्वों को मैनेजड़ डिभाईस कहतें हैं.

एक नेटवर्क मैनेजमेंट सिस्टम व्दारा निष्पादित कार्यों पांच व्यापक श्रेणियों में विभाजित किया जाता है.

- फाल्ट मैनेजमेंट : फ़ाल्ट का पता लगाने और उसका स्थान का भी पता लगाना शामिल है.
- परफॉर्मेंस मैनेजमेंट अलार्म का रूपांतरण, एरर डॉटा आदि शामिल है .
- कॉन्फ़िगरेशन मैनेजमेंट इनफरमेसन डॉटा को रूपांतरण करता है.
- रिशोर्स मैनेजमेंट
- नेटवर्क सिक्युरिटी

मैनेजमेंट कार्य, नेटवर्क इन्भेन्ट्री की खोज ,िडवाइस का हेल्त और स्टेटस की मॉनिटिरिंग , अलर्ट , सिस्टम के परफॉर्मेंस, और, फाल्ट के स्रोत का पहचान और समाधान उपलब्ध कराने मे काम करता है .एन.एम.एस इन कार्यों को पूरा करने के लिए विभिन्न प्रोटोकॉल का प्रयोग करता है .उदाहरण के लिए, SNMP प्रोटोकॉल नेटवर्क हेयरार्की में उपकरणों से इनफरमेसन इकट्ठा करने के लिए इस्तेमाल किया जा सकता है | एन.एम.एस व्दारा र्राष्ट्रीय ट्रांसिमिशन मैनेजमेंट नेटवर्क (TMN) आई.िट.यु (टी) के मानकों का पालन करना चाहिए और भविष्य के विस्तार को पूरा करने के लिए साहायक होना चाहिए .

चित्र. 7.1 नेटवर्क मैनेजमेंट सिस्टम

नेटवर्क मैनेजमेंट सिस्टम

7.1.1 क्राफ्ट टर्मिनल (सीटी): क्राफ्ट टर्मिनल (सीटी) एस.डी.एच/ऑप्टिकल नेटवर्क या ट्रांसिमशन नेटवर्क तत्वों की निरंतर क्षेत्र मैन्टेनेन्स के लिए स्थानीय या रिमोट एंड स्थापना के लिए सुविधाओं के साथ नेटवर्क ऑपरेटरों प्रदान करता है. यह मूल रूप से लॉगिंग और मैनेजमैंट उद्देश्यों के लिए क्रम जारी करने के लिए एक लैपटॉप पर चल रहे एक मूक टर्मिनल या टर्मिनल इम्यूलेशन प्रोग्राम है. क्राफ्ट टर्मिनल एक सीरियल इंटरफ़ेस के माध्यम से एक नेटवर्क तत्व का मैनेजमैंट कार्ड में डाउनलोड OAM & P सॉफ्टवेयर है. सीटी स्थानीय स्तर पर और रिमोट एंड स्थान से उपयोग किया जाता है तब उसे स्थानीय क्राफ्ट टर्मिनल या रिमोट एंड क्राफ्ट टर्मिनल कहा जाता है। इस इंटरफेस भी दूरदराज के मैनेजमेंट की अनुमित के लिए एक सेन्ट्रालाइज डॉटाबेस (कंसोल) सर्वर से जुड़ा जा सकता है. इसे तब एक्सटेंडेड क्राफ्ट टर्मिनल कहा जाता है.

7.1.2 एलीमेन्ट मैनेजमेंट सिस्टम (ई.एम.एस): इ.एम.एस, एस.डी.एच प्रोडक्ट और नेटवर्क तत्वों से मिलकर मल्टी डोमेन नेटवर्क के मैनेजमेंट के लिए एक व्यापक सब नेटवर्क मैनेजमेंट सिस्टम है. इ.एम.एस नेटवर्क की फ़्लेकसिबिलिटि पर आधारित एक्सेस कंट्रोल सिस्टम है जिसमे मल्टी एरिआ के नेटवर्क के मैनेजमेंट की सुविधा है. यह नेटवर्क को स्वत खोज, अलार्म मॉनिटरिंग, नोड वृद्धि और होटस्टैंडबाय तथा एडवांस्ड सर्किट मैनेजमेंट सिहत अत्याधुनिक सुविधाओं के साथ लैस है.इसलिए इ.एम.एस कम लागत में एक छोटा एन.एम.एस कहा जाता है जिसमे कॉन्फ़िगरेशन मैनेजमेंट अनिवार्य है.

7.2 एस.डी.एच में ट्रांसिमशन मैनेजमेंट नेटवर्क (TMN): ट्रांसिमशन मैनेजमेंट नेटवर्क (TMN) टैक्नोलॉजी के सिद्धांत सिफारिश M.3010 की CCITT (अब आई.टि.यु टी) व्दारा प्रकाशन के साथ 1989 में स्थापित किया गया था.

TMN "ऑपरेशन, एडमिनिस्ट्रेशन, मैन्टेनेन्स और प्रोविजनिंग" में कार्य़ करता है (OAM एंड पी). यह नेटवर्क के परफॉर्मेंस और एरर संदेशों की चेकिंग \ मॉनिटरिंग करता है . इन कार्यों को प्रदान करने के लिए, TMN OSI रेफेरेंस मॉडल पर आधारित ऑब्जेक्ट ओरिएंटेड तकनीक का उपयोग करता है. TMN मॉडल मे कई एजेंटों से निपटने के एक मैनेजर शामिल होता हैं. एजेंट कई मैनेज ओबजेक्ट (एम.ओ) को संभालता है.

Q इंटरफ़ेसs: X.25, ISDN, LAN

मैनेजर में एक ऑपरेटिंग सिस्टम (ओएस) है जो पूरी रूप से नेटवर्क या मैनेज ऑब्जेक्ट (MO) का कंट्रोल केंद्र है. एक मैनेज ऑब्जेक्ट (MO) एक भरचुय्ल युनिट हो सकता है (उदाहरण के लिए एक प्लगइन कार्ड, मल्टीप्लेक्स सेक्सन, आदि) पर भी एक लॉजिकल तत्व (जैसे एक वर्चुअल कनेक्शन) के रूप में हो सकता है. TMN भी लॉजिकल मैनेजमैंट यूनिट है उदाहरण के लिए, एक मैनेजमैंट यूनिट NE को निपटने नेटवर्क स्तर पर चल रही हो एक अन्य मैनेजमैंट यूनिट सर्विस स्तर पर मॉनिटिरिंग / बिलिंग के लिए उपयोग हो सकता है. इन कार्यों को कोमन मैनेजमेंट इंफॉर्मेशन प्रोटोकॉल (CMIP) का उपयोग करके आधुनिक ट्रांसिमशन नेटवर्क में परफॉर्मेंस देखा जाता है. एक सिम्पल नेटवर्क मैनेजमैंट प्रोटोकॉल (SNMP) अक्सर इस रेफेरेंस में बताया गया है, यह मूल रूप से CMIP का सरलीकृत रूप है. हालांकि SNMP मुख्य रूप से डॉटा ट्रांसिमशन में इस्तेमाल किया जाता है जबिक बड़ी ट्रांसिमशन

नेटवर्क मैनेजमेंट सिस्टम

नेटवर्क की आवश्यकताओं के साथ यह सामना नहीं कर सकता है . आम तौर पर TMN में इनफरमेसन का आदान प्रदान करने के लिए डॉटा की बड़ी मात्रा आवश्यक नहीं हैं एस.डी.एच नेटवर्क के प्रबंध मे एम्बेडेड ट्रांसिमिशन चैनल (इ.सी.सी) या डॉटा ट्रांसिमिशन चैनल की क्षमता (डी.सी.सी) पर्याप्त है. चैनल डी 1 से डी 3 192 kbit / s (DCCR) की क्षमता के साथ एस.डी.एच NE मैनेजमैंट के लिए उपयोग किया जाता है. चैनल D4 से D12 , 576 kbit / s (DCCM) की क्षमता के साथ को गैर एस.डी.एच विशेष प्रयोजनों के लिए इस्तेमाल किया जा सकता है. सेक्सन ओवरहेड में क्यू इंटरफ़ेस मे QECC प्रोटोकॉल प्रयोग किया जाता है | संक्षेप में एस.डी.एच मैनेजमैंट नेटवर्क (SMN) जो मैनेजमेंट के लिए म्ख्य रूप से जिम्मेदार हैं |

चित्र सः 7.1 मे एस.डी.एच मैनेजमेंट प्रोटोकॉल के विभिन्न इंटरफेस को दिखाया गया है

चित्र. 7.1 ट्रांसिमशन मैनेजमैंट नेटवर्क

7.3 औटर इंटरफेस: एस.डी.एच मैनेजमेंट सिस्टम 4 प्रकार के इंटरफेस के माध्यम से किया जा सकता है

- एफ इंटरफ़ेस: एक कंपनी Proprietary एप्लीकेशन सॉफ्टवेयर के साथ भरी हुई एक पीसी है जो एक क्राफ़्ट टर्मिनल है. यह एफ इंटरफ़ेस एक सीरियल इंटरफ़ेस है जो एक समय में केवल एक स्टेशन या नेटवर्क तत्व तक पहुँचा जा सकता है.
- इथरनेट (लोकल एरिया नेटवर्क लैन) : यह एक पैरेलाल इंटरफ़ेस है. एक समय में कई स्टेशनों या नेटवर्क तत्वों पहुँचा जा सकता है.

Layers	QB2	QB3	QECC
Application	Info Model CMSE ISO9595, ISO 9596, ROSE X.219, X.229 ACSE X.217,X.227	Info Model CMSE ISO9595, ISO 9596, ROSE X.219, X.229, ACSE X.217,X.227	Info Model CMSE ISO9595, ISO 9596, ROSE X.219, X.229, ACSE X.217,X.227
Presentation	X.216, X.226, ASN 1,X 209	X.216, X.226, ASN 1, X 209	X.216, X.226, ASN 1, X 209
Presentation	X.215, X.225	X.215, X.225	X.215, X.225
Transport	ISO 8073-8073 AD2	ISO 8073-8073 AD2	ISO 8073-8073 AD2
Network	ISO 8473 - X.25 L3	ISO 8473	ISO 8473
Data Link	ISO 8802.3, ISO 8802.2	LLCMAC, LAP D – Q.921	LAP D – Q.921
Physical	ITU (T) V.11/V.35 Or V.28/V.24 X.21,X.21bis,X.27	ISO 8802.3 / IEEE 802.3	D1 - D3 or D4 - D12 SDH - DCC

टेबल 7.1 आई.टि.य् (टी) नेटवर्क मैनेजमेंट प्रोटोकॉल

- एंबेडेड ट्रांसिमशन चैनल (इ.सी.सी): DCCR डॉटा बाइट्स डी 1, डी 2, डी 3 RSOH के और DCCM डॉटा- बाइट्स MSOH का D12 को D4 बाइट्स उपयोग किया जाता है.
- QD2 इंटरफ़ेस: स्थानीय और दूरदराज के उपयोग के लिए सुपरवाइजरी और सूचना सिस्टम (SISA)
 के अनुसार QD2 इंटरफेस के माध्यम से डॉटा एक्सचेंज करता है .

आई.टि.यु (टी) एस.डी.एच सिस्टम के काम करने का अलग अलग क्षेत्रों के लिए अलग अलग प्रोटोकॉल की सिफारिश की है. नेटवर्क और ट्रांसिमशन मैनेजमेंट के लिए इस्तेमाल किया Q क्यू इंटरफेस के G.773 आई.टि.यु (टी) के अनुसार है.

- QB2: एन.एम.एस QB2 इंटरफेस के माध्यम से **X.**25 लाइनों का उपयोग कर विभिन्न फार एंड एस.डी.एच उपकरण को जोड्ने के लिए है.
- QB3: इथरनेट (लोकल एरिया नेटवर्क लैन)
- QECC: एन.एम.एस ब्रिज नेटवर्क और एम्बेडेड ट्रांसिमशन चैनल का उपयोग फार एंड तत्वों का नेटवर्क मैनेजमेंट के लिए है. ISO के OSI 7 लेयर मॉडल को लागू करके एस.डी.एच नेटवर्क मैनेजमेंट प्रोटोकॉल का इस्तेमाल किया गया है जो टेबल 7.1 में दिया गया है.

7.4 इन्टरनल मैनेजमैंट इंटरफेस : एस.टी.एम.1 / एस.टी.एम.4 सिस्टम एडीएम / टीएम मॉड्यूल पर एक मास्टर नियंत्रक और ट्रीब मॉड्यूल पर स्लेव क्न्ट्रोल के माध्यम से प्रबंधित किया जाता है | मास्टर नियंत्रक नेटवर्क तत्व के अनुप्रयोग सॉफ्टवेयर के लिए एक नोन वोलाटाइल मेमोरी में रहता है.

मॉड्यूल के बीच इन्टरनल मैनेजमेंट ट्रांसिमशन C बस के माध्यम से होता है, Qecb चैनल जो इलेक्ट्रीकल की आपूर्ति मॉड्यूल है पी एस के माध्यम से नियंत्रित किया जाता है. चित्र. 7.2 में इन्टरनल मैनेजमेंट सिस्टम दिखाता है.

चित्र. 7.2 इन्टरनल मैनेजमैंट

7.5 इन्टरनल मैनेजमैंट इंटरफेस के कार्य:

- तकनीकी मैनेजमेंट प्रदान करना है
- ऑपरेटर को नेटवर्क स्टेटस की इनफरमेसन प्रदान करना है
- मल्टीप्लेक्सर और लाइन कॉन्फ़िगरेशन सिगन्ल को स्विच करने के लिए मैनेजमेंट का कार्य करना.

7.6 एप्लिकेशन:

क) फाल्ट मैनेजमेंट: उपकरण - परीक्षण, डायगोन्स्टीक , अलार्म एन.एम.एस से पता लगाने, पहचान और फाल्ट का सुधार करता है.

नेटवर्क - एक फाल्टी इकाई को लोकेट करना.

ख) परफॉर्मेंस मैनेजमेंट: रिसोर्स व्यवहार और दक्षता की मूल्यांकन

साधन - फेलिओर की रेट की मूल्यांकन

नेटवर्क - डॉटा नेटवर्क की उपलब्धता के लिए गुणवत्ता रेटिंग

ग) प्रोटेकशन मैनेजमेंट: अनिधकृत ऑपरेटरों को नियंत्रित करने का उपयोग

साधन - उपयोग को नियंत्रित करना

नेटवर्क - उपयोग का कंट्रोल

घ) कॉन्फ़िगरेशन मैनेजमेंट: संचालन मानकों के संशोधन.

साधन - सॉफ्टवेयर प्रोग्राम और विस्तार के अनुसार हार्डवेयर का उपयोग

नेटवर्क - मौजूदा नेटवर्क और उपकरणों के अनुसार सिस्टम की संरचना की फेलिओर के मामले में संशोधन तथा रेस्टोरेशन करने के लिए उपयोग होता है .

ओबजेक्टीब :

1. F - इंटरफ़ेस जो एक सीरियल इंटरफ़ेस है, उसे क्राफ्ट टर्मिनल से SDH में नोड्स को एड/ड्रॉप	किय
जा सकता है	T/F
2. SDH में F- इंटरफ़ेस के माध्यम से केवल एक नोड एक समय में पहुँचा जा सकता है	T/F
3. SDH में F- इंटरफ़ेस के माध्यम से केवल कई नोड्स नोडस एक समय में पहुँचा जा सकता है	T/F
4. एनएमएस SDH में इथरनेट पोर्ट से कनेक्टेड है वे कई नेटवर्क तत्वों तक पहुँचा जा सकता है	T/F
5. एनएमएस QB2 इंटरफेस के माध्यम से रिमोट SDH तत्वों तक पहुँचा जा सकता है	T/F
6. QB3 एक इथरनेट पोर्ट है ,SDH नेटवर्क के तत्व का	T/F
7. C-बस केबल - SDH के एडीएम और ट्रीब्युटारी मॉड्यूल के बीच आंतरिक प्रबंधन संचार क	रता है
	T/F
8. Qecb के माध्यम से बिजली की आपूर्ति SDH नोड्स के नियंत्रित होती है	T/F

सबजेक्टीब :

- 1. F- इंटरफेस, इथरनेट, एंबेडेड संचार चैनल के बारे में बताएं ?
- 2. आप अलग अलग नेटवर्क प्रबंधन प्रोटोकॉल के बारे में बताएं ?
- 3. NMS के आंतरिक प्रबंधन के बारे में बताएं ?
- 4. एनएमएस के अनुप्रयोगों के बारे में बताएं ?
- 5. SOH में D1 से D12 बाइट्स का क्या उपयोग है ?

अध्याय 8 सिंक्रनाइजेशन

8.1 परिचय: एस.डी.एच एक सिंक्रनाइज़ नेटवर्क के रूप में बताया गया है. एस.डी.एच के इनपुट पी.डी.एच ट्रिब्यूटरी है. पी.डी.एच एसिंक्रोनस सिगन्ल सीधे एस.डी.एच सिस्टम के किसी भी स्तर पर डाला / गिरा सकते हैं. ये एसिंक्रोनस इन्पुट आम तौर पर फिसल जाता है और डॉटा.

N=20 Maximum N=10 With maximum restriction That total SECs in a Trail = Maximum 60

- वॉइस: कम इनप्ट, सामयिक क्लिक ध्वनि
- फैक्स: लाइनों स्कैन की हानि
- एनालॉग डॉटा: कई सेकंड ड्रॉपऔट
- डिज़ीटल डॉटा: एरर से भरा
- डिज़ीटल वीडियो: कई सेकंड के लिए फ्रीज फ्रेम.

स्लिप्स के कारण यह एसिंक्रोनस सिगनल एस.डी.एच इनप्ट स्तर पर सिंक्रनाइज़ किया जाता है . एस.डी.एच उपकरण को पी.डी.एच इनप्ट सिगन्ल के बीच फेज और फ्रीक्वेंसी में अंतर क्षतिपूर्ति करने के लिए, एक पॉइंटर एड्ज्समेन्ट सिस्ट्म का प्रयोग किया जाता है .सिगन्ल के इस तरह के एड्ज्सट्मेन्ट कम फ्रीक्वेंसी जिटर को सीमित करता है . सिगन्ल के इस तरह के एड्ज्सट्मेन्ट एस.डी.एच सिस्टम में सभी क्लॉक को मास्टर क्लॉक के साथ सिंक्रनाइज करता है. सिंक्रनाइज़ेशन की इस तरह की सिस्टम को 8.1 चित्र में दिखाया गया है. आई.टि.य् (टी) की रेकमेन्डेसन G.811, G.812, G.813 सिंक्रनाइजेशन सिस्टम को परिभाषित करता है. प्रायमरी रेफेरेंस क्लॉक (पीआरसी) G.811 के अन्सार मास्टर क्लॉक है. सिंक्रनाइज़ेशन चेन में व्यवस्थित संचित नोइस को फिल्टर औट करने के लिए G.812 (SSU) सिंक्रनाइज़ेशन उपकरण युनिट को उपलब्ध कराया जाता है. SSU 20 या 20 से कम लगातार नेटवर्क तत्वों (NEs) या एस.डी.एच उपकरण क्लॉक(SSUs) के बाद प्रदान की जानी चाहिए.यदि पीआरसी के कनेक्शन विफल रहता है तब SSU मिडिल ओडर मास्टर क्लॉक के रूप में प्रयोग मे आता है.

चित्र. 8.1.

सिंक्रनाडजेशन

एरर पैदा कर सकता है जिसे स्लिप्स कहते है . आई.टि.यु (टी) G.803 के अनुसार ,10 से अधिक SSU नहीं होना चाहिए ,एक पीआरसी के एक स्ट्रींग में तथा एक स्ट्रींग में अधिक से अधिक 20 NES तक होना चाहिए . एक NE का मतलब है 1 टर्मिनल उपकरण या 1 एड और ड्रॉप मक्स या एक रीजेनरेटर. कुल एक स्ट्रींग में एक पीआरसी से जुड़े 60 से अधिक NE नहीं होनी चाहिए.

यह भी आवश्यक है कि एक SSU दो या अधिक सिंक्रनाइज़ेशन ट्रेल्स या स्रोतों के साथ जुड़ा हुआ हो जैसे ग्लोबल पोजिशनिंग सिस्टम (जीपीएस) रिसीवर या आई.टि.यु (टी) के G.811 पी.आर.सी सिंक्रनाइज़ेशनों की उपलब्धता बढ़ाने के लिए कनेक्ट करना चाहिए जो चित्र 8.2. में दिखाया गया है.

चित्र. 8.2 सिंक्रनाइज़ेशन नेटवर्क आर्किटेक्चर

8.2 सिंक्रनाइज़ेशन: आई.टि.यु (टी) की सिफारिश G.782 किसी भी NE में सिंक्रनाइज़ेशन की विभिन्न संभावनाएं प्रदान करता है. सिंक्रोनस गुणवता मार्कर (MSOH की S1 बाइट) के साथ सिंक्रनाइज़ेशन के कारण पॉइंटर मुभमेंट कम होती है | सिंक्रनाइज़ेशन फंक्शन तीन प्रकार संचालित होते है. एक रेफेरेंस स्रोतों की उपलब्धता, गुणवता और प्राथमिकता के आधार पर चयन किया जाता है.

8.3 सिंक्रनाइज़ेशन के मोड:

1 ट्रैकिंग मोड (लाक मोड) T0 चयनित बाहरी समय स्रोत से फेज लाक किया गया है.

सिंक्रनाइज़ेशन

T1: एस.डी.एच इंटरफ़ेस से क्लॉक : सिंक्रोनस क्लॉक (T0) दो एस.टी.एम. एन से ली गई जो सीघे एस.डी.एच ट्रिब्यूटरी / एग्रीगेट से ली गई है. जहां क्लॉक उपकरण क्लॉक के बिना सिंक्रनाइज़ेशन होता है. इस मामले में, यह है कि MSOH की S1 बाइट, सिंक्रनाइज़ेशन स्टेटस मैसेज (एसएसएम) एस.टी.एम. एन एग्रीगेट / ट्रिब्यूटरी में इस इनपुट की वापसी दिशा को छोड़कर S1 बाइट में सभी एस.टी.एम. एन आउटपुट होता है जहां एक अलग संदेश "सिंक्रनाइज़ेशन के लिए उपयोग न करें" S1 बाइट में डाला जाता है. यह वही सिंक्रनाइज़ स्टेशन या sec पर समय लुप से बचने के लिए है.

चित्र: 8.3 क्लॉक सिंक्रनाइज़ेशन के प्रकार

एसएसएम MSOH की S1 बाइट में संचारित गुणवता के स्तर है. एसएसएम के अलग गुणवता स्तर मूल्यों को टेबल 8.1 में दिखाया गया है |

गुणवत्ता के स्तर (उपयोगकर्ता प्रोग्राम)	5 - 8 बिट्स S1 (MSOH) के	विवरण
High 1	0010	G.811
2	0000	अज्ञात (पी.डी.एच सिंक्रनाइज़ेशन)
3	0100	G.812 ट्रान्जीट
4	1000	G.812 लोकल
5	1011	इन्टरनल G.812 क्लाक
Low 6	1111	सिंक्रनाइज़ेशन के लिए इस्तेमाल न करें (AIS)

टेबल 8.1 एसएसएम गुणवता के स्तर

अन्य स्रोतों T 2 और T 3 को उपयोगकर्ता परिभाषित गुणवत्ता के स्तर के लिए प्रयोग किया जाता है.

- T 2: पी.डी.एच इंटरफ़ेस से क्लॉक आंतरिक. सिंक्रनाइज़ेशन क्लॉक किसी भी दो स्वसिस्ट्म रूप से चयन पी.डी.एच ट्रिबुटरी इनपुट से ली गई है |
- T 3: पी.डी.एच इंटरफ़ेस से क्लॉक बाहरी. सिंक्रनाइज़ेशन क्लॉक किसी भी दो बाहरी पी.डी.एच समय स्रोतों या ट्रिब्टरी से प्राप्त होता है |

सिंक्रनाइज़ेशन

2. होल्ड ओभर मोड: एक होल्ड ओभर मूल्य सिस्टम फ्रीक्वेंसी और आंतरिक रेफेरेंस के बीच पोईन्ट र पर आधारित गणना है जो स्मृति में संग्रहीत किया जाता है. जब सभी सिंक्रनाइज़ेशन इनपुट T1, T2 और T3 खो रहे हो तो, सिस्टम होल्ड ओभर मोड में प्रवेश करती है. ऊपर वर्णित स्मृति में संग्रहीत मूल्य पर यह लाक मोड में बनाए रखने के लिए प्रयोग किया जाता है. होल्ड ओभर के लिए एक कॉन्फ़िगरेशन योग्य गुणवत्ता के स्तर एस.टी.एम. आउटपुट पर S1 बाइट में डाला जाता है |

फ्री रिनंग मोड: जब सभी सिंक्रनाइज़ेशन इनपुट T 1, T 2 और T 3 खो रहे हो और मूल्य से अधिक होल्ड ओभर मूल्य स्मृति में संग्रहीत नहीं किया जा सकता है, तो क्लॉक सिंक्रनाइज़ेशन फ़ंक्शन फ्री रिनंग मोड में प्रवेश करता है और सिस्टम क्लॉक के रूप में स्थानीय क्लॉक को अपनाते है |

8.4 टी -4 सिंक्रनाइज़ेशन के मोड: टी -4 का सिंक्रनाइज़ेशन 2 मोड में संचालित होता है |

- लाक मोड : चयनित स्रोत को फ़ेज लाक किया जाता है.
- अनलॉक मोड: T0 की सभी चयनित स्तर खो जाने या कॉन्फ़िगर squelch सीमा या गुणवता के स्तर से नीचे होने पर | यदि T0 स्रोत के रूप में नहीं चुना गया, तो आउटप्ट squelch होता है.
- 8.5 सिंक्रनाइज़ेशन क्लॉक चयन प्राथमिकता : क्लॉक सिंक्रनाइज़ेशन का चयन प्राथमिकता को इस रूप में परिभाषित किया गया है -

लाक मोड (ट्रैकिंग)

1. उच्च प्राथमिकता (PH), 2. मध्यम प्राथमिकता (PM) & 3. निचला प्राथमिकता (PB)

सिंक्रनाइज़ेशन क्लॉक के किसी भी हानि से नीचे अगली प्राथमिकता मे तत्काल बदलाव होता है चित्र 8.4, में दिखाया गया है . सिस्टम को फिर से उच्च प्राथमिकता का सिंक्रनाइज़ेशन क्लॉक जोड पाने के लिए यह 60 सेकंड के भीतर लगभग वापस विश्लेषण और संतुष्टि के लिए रिटर्न होता है |

चित्र. 8.4 क्लॉक सिंक्रनाइज़ेशन का चयन प्राथमिकताएं

8.6 सिंक्रनाइज़ेशन रिड्न्डेन्सी:

चित्र. 8.5 (A) सिंक्रनाइज़ेशन रिड्न्डेन्सी

सिंक्रनाइज़ेशन का पाथ कनेक्शन काट या किसी भी अन्य फेलिओर के मामले में रुकावट से बचने के लिए अतिरेक रिड्न्डेन्सी प्रदान की जाती है. चित्र. 8.5 ए और बी सिंक्रनाइज़ेशन अतिरेक का पता चलता है. काले लाइन पाथ को इंगित करता है और रेखा रिड्न्डेन्सी पाथ को इंगित करता है.

चित्र. 8.5 (B) सिंक्रनाइज़ेशन रिड्न्डेन्सी

8.7 सिंक्रनाइज़ेशन के लिए आई.टि.यु (टी) की सिफारिश:

G.803: SSU के बाद चेन में नेटवर्क तत्वों की कुल संख्या कम से कम 20 हो चित्र 8.1 के अनुसार .और SSUs की संख्या कम से कम की संख्या 10 तक सीमित हो और पीआरसी से आखरी NE तक NE कि संख्या अधिकतम 60 हो.

G.811: एक पीआरसी के लिए न्यूनतम फ्रीक्वेंसी सटीकता 10⁻¹¹ है .इसलिए दो पीआरसी के बीच अधिकतम स्लिप रेट सिगन्ल 8K फ्रेम प्रति सेकंड के लिए 2.4 महीने में 1 स्लिप है. उदाहरण के लिए 64 केबीपीएस और 2 एम.बी.पी.एस सिगन्ल.

G.812: ट्रांज़िट नोड क्लॉक के लिए होल्ड ओभर मोड में प्रवेश करने कि अधिकतम फ्रीक्वेंसी ऑफसेट $5X10^{-10}$ है और होल्ड ओभर मोड में रहते ह्ए अधिकतम फ्रीक्वेंसी ड्रिफ्ट 10^{-9} प्रति 24 घंटा मे है.

सिंक्रनाइज़ेशन

G.822: ट्रैफ़िक परफॉर्मेंस के लिए अधिकतम स्लिप रेट 24 घंटे में प्रति दिन 5 है 98.9% के लिए. प्रत्येक पीआरसी नोड क्लॉक ऊपर प्रदर्शत उपलब्धि को पूरा करने के लिए लिंक > 0.989 होना चाहिए.

G.823: नेटवर्क के जिटर और वाडांर आई.टि.यु टी सिफारिश G.823 के अनुसार सीमित किया जाता है. एक सापेक्ष वाडांर स्तर एक नेटवर्क में कम से कम 18 माइक्रो सेकंड तक सीमित किया जाता है.

8.8 नेटवर्क डिजाइन के आवश्यकताओं: सिंगल फेलिओर के विरुद्ध सिंक्रनाइज़ेशन नेटवर्क की रक्षा करने के लिए निम्न रिड्न्डेन्सी जरूरी है.

पीआरसी आंतरिक या बाह्य यानी 1 + 1 या 1 +2 संरक्षित किया जाता है |

- नोड की क्लॉकको आंतरिक 1 + 1 से संरक्षित किया जाता है.
- नोड क्लॉक(SSU) मे पीआरसी के लिए दो या दो से अधिक विविध कनेक्शन किया जाता है.
- आउटपुट की विश्वसनीयता सुनिश्चित करने के लिए इनपुट पीआरसी क्लॉक की फेलिओर के दौरान जीपीएस पीआरसी भी SSU के इनप्ट क्लॉक के रूप में जोड़ा जा सकता है |
- ट्रांसिमशन प्रणालियों मे दो या अधिक नोड क्लॉक से कनेक्शन होता है |
- सिंक्रनाइज़ेशन नेटवर्क में प्रोटेक्शन स्विचिंग विशेष रूप से सेवाओं की गुणवता अवक्रमित होगा यदि टाईमींग लुप नेटवर्क सिंक्रनाइज़ेशन समस्याओं का कारण नहीं होना चाहिए. इस तरह के लुप को तोड़ना बह्त मुश्किल है और S1 बाइट का उपयोग में काफ़ी कार्यान्वयन में एहतियात बरती जाती है.
- यदि एक सेन्ट्रालाइज मास्टर क्लॉक सिंक्रनाइज़ेशन नेटवर्क में वैन्डर का स्तर 18 माइक्रो सेकंड से अधिक है, तो यह कई सेन्ट्रालाइज मास्टर क्लॉक सिंक्रनाइज़ेशन उप नेटवर्क में विभाजन करने के लिए आवश्यक होगा .
- यह सुनिश्चित किया जाए कि कम स्ट्रेटम समय उच्च स्ट्रेटम स्टेटस को सिंक्रनाइज नहीं किया जाए.
- एस.डी.एच एनईएस की लंबी श्रृंखला में नोइस / वैन्डर संचय सीमित करने के लिए, और नेटवर्क में व्यवधान के दौरान होल्ड ओभर से बचने के लिए, SSUs उपयुक्त तैनात किया जाए.
- (NEs) की कैस्केडिंग कम से कम किया जाना चाहिए एक स्ट्रिंग में 20 NEs हो सकता है और SSU की संख्या कम से कम 10 तक सीमित हो और पीआरसी से आखरी NE तक NE कि संख्या अधिकतम 60 हो.
- SSU के कई आउटपुट होते है जो 2 एम.बी.पी.एस / 2048 मेगाहर्ट्ज. जो एस.डी.एच चेन, पी.डी.एच नेटवर्क, एकसेस नेटवर्क का उपयोग या अन्य नेटवर्क के लिए इस्तेमाल किया जा सकता है.
- SSU संभवतः एस.डी.एच रिंग के इन्टर- सेकस्न पाइंट पर रखा जा सकता है .
- क्लॉक उपलब्धता सुनिश्चित करने के लिए, जीपीआरएस (ग्लोबल पोजिशनिंग रिसीवर सिस्टम) हर SSU स्थान पर तैनात किया जा सकता है.
- नेटवर्क के जिटर और वाडांर (वैन्डर) आई.टि.यु टी सिफारिश G.823 के अनुसार सीमित किया जाता है |

प्रमुख केन्द्रों मे उच्चतम गुणवता SSU (G.812 अनुसार ट्रांजिट नोड क्लॉक) होना चाहिए. स्थानीय नोड्स, **G.**813 के अनुसार स्थानीय क्लॉक स्तर यानी कम गुणवत्ता SSU हो सकता है.

सिंक्रनाइज़ेशन

ओब्जेक्टीब :

1. पोइन्टर के लगातार एड्ज्स्ट्मेंट से कम फ्रिक्योन्सि जिटर पैदा होता है. T/F 2. पोइन्टर एड्ज्स्ट्मेंट की संख्या को कम करने के लिए SDH प्रणाली में सभी घड़ियों एक मास्टर घड़ी के साथ सिंक्रनाइज़ किया जाता है T/F 3. सिंक्रनाइज़ेशन में व्यवस्थित ढंग से संचित नोइस को फिल्टर करने के लिए stand-alone सिंक्रनाइज़ेशन य्निट (SSU) ट्रेल में प्रदान की जाती है T/F 4. SSU लगातार 20 या 20 से कम नेटवर्क तत्वों के बाद हि प्रदान की जानी चाहिए T/F 5. SSU पीआरसी क्लाक के रूप में प्रयोग किया जाता या पीआरसी विफल रहने पर T/F 6. अधिकतम 60 NES एक ट्रेल में पीआरसी से जुड़ा जा सकता है। T/F 7. SEC सिस्टम घड़ी (T0), उत्पन्न करता है जो SDH का आंतरिक संसाधन है सिंक्रनाइज़ेशन के लिए. T/F 8. टाइमिंग ल्प SOH के S बाइट पर मैसेज भेजकर बचा जा सकता है. T/F 9. S बाइट के 5 से 8 बिट्स जब मूल्य 1111 लेते हैं, यह क्लाक को सिंक्रनाइज़ेशन के लिए नहीं लेने को कहता है T/F 10. एक पीआरसी के लिए कम से कम आवृत्ति सटीकता 10 -¹¹ है. T/F 11. ट्राफीक पफर्मेन्स के लिए, अधिकतम अन्मति स्लीप दर 24 घंटे से के लिए प्रति दिन 5 होता है तो यह 98.9% है. T/F

सबजेक्टीब :

1. सिंक्रोनस नेटवर्क ट्रेल क्या है इसे व्याख्या करें ?

12. एक एडीएम/टीएम 21 E1 का समर्थन करता है

- 2. पीआरसी, SSU और SEC के बीच क्या भेद है ?
- 3. आप आईटीयू-टी के Rec.G.81s के बारे में क्या जानते हैं ?
- 4. सिंक्रोनस नेटवर्क आर्किटेक्चर के बारे में बताएं ?
- 5. एस.एस.एम (SSM) क्या है और यह कैसे सिंक्रनाइज़ेशन के साथ संबंधित है?
- 6. सिंक्रनाइज़ेशन के विभिन्न तरीकों के बारे में बताएं ?
- 7. आप TO के लाकींग मोड से क्या समझते हैं ?
- 8. आप होल्ड ओबर मोड से क्या समझते हैं ?
- 9. क्या आप फ्री -रनिंग मोड से क्या समझते हैं ?
- 10. आप T -4 सिंक्रनाइज़ेशन से क्या समझते हैं ?
- 11. घडी चयन प्राथमिकताओं के बारे में बताएं ?
- 12. क्या आप सिंक्रनाइज़ेशन रिडंन्डेन्सी के बारे में क्या समझते हैं ?

T/F

अध्याय 9 एस.डी.एच के आई.टि.यु (टी) सिफारिशें

9.1 परिचय: एस.डी.एच हेयराकीं आई.टि.यु व्दारा 1988 में अपनाया गया था आई.टि.यु टी की सिफारिशें समय के समय में टेबल 9.1 में दिखाया गया है |

9.2 आई.टि.यु (टी) एस.डी.एच के लिए की रेकमेन्डेसन:

G.702	_	पी.डी.एच बिट रेट
G.703	_	प्लीजिओक्रोनस इंटरफ़ेस
G.707	_	एस.डी.एच फ्लो रेट
G.708	-	नेटवर्क नोड इंटरफ़ेस एस.डी.एच
G.709	-	एस.डी.एच मल्टीप्लेक्सिंग संरचना
G.773	_	Q इंटरफ़ेस नेटवर्क और ट्रांसिमशन मैनेजमेंट
G.781	_	संरचना के विषय में एस.डी.एच मल्टीप्लेक्सिंग_उपकरण की सिफारिशें
G.782	-	एस.डी.एच मल्टीप्लेक्सिंग की सामान्य विशेषताएँ
G.783	-	एस.डी.एच मल्टीप्लेक्सिंग कार्यात्मक की विशेषताओं
G.784	-	एस.डी.एच मैनेजमेंट
G.sdxc1	-	संरचना के विषय में सिफारिशें एस.डी.एच क्रास कनेक्ट पैनलों
G.sdxc2	-	General characteristics of एस.डी.एच क्रास कनेक्ट पैनलों
G.sdxc3	-	Characteristics of functional ब्लॉक of एस.डी.एच क्रास कनेक्ट पैनलों
G.802	-	एसिंक्रोनस डिज़ीटल हेयरार्की और भाषण एन्कोडिंग कानूनों.
G.803	-	ट्राफिक नेटवर्क के आर्किटेक्चर पर आधारित एस.डी.एच
G.821	-	पे लोड में परफॉर्मेंस के विकास
G.825	-	Control of जिटर and वैन्डर एस.डी.एच डिज़ीटल नेटवर्क.
G.957	-	Optical इंटरफ़ेस for एस.डी.एच सिस्टम and equipment
G.958	-	एस.डी.एच digital line सिस्टम on optical fibre cables
G.tna1	-	एस.डी.एच network
G.sna1	-	Architecture of एस.डी.एच networks
G.sna2	-	Performance data of एस.डी.एच networks
G.81s	-	एस.डी.एच सिंक्रनाइज़ेशन and clocks
G.652,	-	Classification of Optical इंटरफ़ेसs
G.653,	-	и
G.654	-	ű
M.30	-	ट्रांसिमशन मैनेजमेंट Network (TMN)

टेबल 9.1 एस.डी.एच के लिए आई.टि.यु (टी) की रेकमेन्डेसन

एस.डी.एच के आई.टि.यु (टी) सिफारिशें

G.702 & G.703: यह मुख्य रूप से पी.डी.एच रेकमेन्डेसन है जहां पी.डी.एच डिज़ीटल हेयरार्की बिट रेट 1544 और 2048 केबीपीएस पर आधारित डिज़ीटल नेटवर्क है.

G.70x: G.707, G.708 और G.709 एस.डी.एच और NNI के लिए डिज़ीटल नेटवर्क है |

- 1. एस.डी.एच के पहले के स्तर 155.520 एम.बी.पी.एस होगी.
- 2. उच्च एस.डी.एच बिट रेट पूर्णांक गुणकों के रूप में प्राप्त किया जाएगा.
- 3. उच्च रेट के स्तर को पहले के स्तर के गुणा कारक से चिह्नित किया जाना चाहिए.

G.707: सिंक्रोनस डिज़ीटल मल्टीप्लेक्सिंग विधि व्दारा एस.डी.एच बिट रेट की स्टैंडर्डाईज्ड स्तर को परिभाषित करता है, एस.डी.एच बिट रेट निर्दिष्ट करता है. G.707 व्दारा निर्दिष्ट के रूप में एस.डी.एच की बिट रेट टेबल 9.2 में दिखाया गया है |

एस.डी.एच की बिट रेट:

एस.डी.एच Level	बिट रेट s
1	155.520 एम.बी.पी.एस
4	622.080 एम.बी.पी.एस
16	2488.320 एम.बी.पी.एस
64	9953.280 एम.बी.पी.एस

Table 9.2 एस.डी.एच की बिट रेट आई.टि.यु (टी) की रेकमेन्डेसन G.707

G.708: इस में एस.डी.एच के लिए NNI का सिगन्ल संरचना और मूल फ्रेम संरचना को निर्दिष्ट करने के सिद्धांतों को शामिल किया गया. एस.डी.एच एक लचीला ब्रॉडबैंड नेटवर्क है जिसमे कुशल संचालन, एडिमिनिस्ट्रेशन और मैन्टेनेन्स की सुविधा है | एस.डी.एच मानकों एक आम पी.डी.एच नेटवर्क की विशेषता, यानी 125 माइक्रो सेकंड की अविध, ऑडियो सिगन्ल का sampling rate के समान है. फ्रेम संरचना एस.टी.एम. स्तर के आधार पर 9 पंक्तियों और कॉलम के संख्या शामिल हैं. एस.टी.एम. -1 में 9 रो और 270 स्तंभ हैं. पहले 9 पंक्तियों और 9 कॉलम सेक्सन ओवरहेड (एसओएच) को समायोजित और 9 रो और 261 कॉलम इनफरमेसन पेलोड को समायोजित करता है.

तो स्पीड अर्थात् 270 x 9 x 8 x 8000 बिट / sec = 155.520 एम.बी.पी.एस के बराबर है.

एस.डी.एच के मूल फ्रेम संरचना

- 1. समग्र फ्रेम का आकार योंपंक्ति 9xकॉलम 270 है .
- 2. सेक्सन ओवर हेड की परिभाषा और इसके बाइट आवंटन.
- 3. एस.टी.एम. 1-s की पोईन्ट रराष्ट्रीय सिंक्रोनस इंटर कनेक्शन के लिए व्यवस्था
- 4. एस.डी.एच के डिज़ीटल सिगन्ल सिहत पेलोड के ट्रांसिमशन के लिए सिंक्रोनस डिज़ीटल नेटवर्क तत्वों के इंटर कनेक्शन को सक्षम बनाता है.

G.709: एक दूसरे के साथ बेसिक ढांचा और बेसिक फ्रेम के भीतर मल्टीप्लेक्सिंग संरचना को निर्दिष्ट करता है| NNI पर एस.टी.एम.-1 में मल्टीप्लेक्सिंग तत्वों की मैपिंग और एस.टी.एम. -1 को मल्टीप्लेक्सिंग की विधि के फरमैट को इस सिफारिश में वर्णित किया जाता है | यह एक सिंक्रोनस बेसिक मल्टीप्लेक्सिंग संरचना है |

एस.डी.एच के आई.टि.य् (टी) सिफारिशें

G.773: मुख्य रूप से नेटवर्क और ट्रांसिमशन मैनेजमैंट प्रणालियों को शामिल किया गया है और मैनेजमैंट के लिए Q इंटरफेस को परिभाषित करता है.

G.781, G.782, G.783 & G.784: एस.डी.एच मल्टीप्लेक्सिंग उपकरणों की विशेषताओं को शामिल किया गया है | G.781 सिंक्रोनस मल्टीप्लेक्सिंग उपकरण से संबंधित रेकमेन्डेसन की संरचना प्रस्तुत करता है और वहाँ विभिन्न विकल्पों के बारे में इनफरमेसन देता है | G.782 सिंक्रोनस मल्टीप्लेक्सिंग उपकरणों की सामान्य विशेषताएँ निर्दिष्ट करता है | G.783 मल्टीप्लेक्सिंग उपकरणों की कार्यात्मक ब्लॉक की विशेषताओं निर्दिष्ट करता है. G.784 मैनेजमैंट कार्यों को शामिल किया गया है |

G.802 & G.803: G.802 एसिंक्रोनस डिज़ीटल हेयरार्की और speech एन्कोडिंग कानूनों पर आधारित नेटवर्क के बीच काम करता है और G.803 एक ट्रांसिमशन नेटवर्क और प्रोटेक्शन श्रेणी की उपलब्धता बढ़ाने के लिए इस्तेमाल किया जा सकता है |

G.957 & G.958: यह ऑप्टिकल इंटरफेस, केबल्स के संबंध में सिफारिश है | G.957 ऑप्टिकल इंटरफेस की विशेषताओं एस.डी.एच के रेफेरेंस में इस्तेमाल मे शामिल किया गया है |

G.sdxc1, G.sdxc2, G.sdxc3: यहां मुख्य रूप से वर्चुअल कंटेनरों और क्रॉस कनेक्ट की इनफरमेसन दी गई है |

G.sna1 & G.sna2: ट्रांसिमशन नेटवर्क के सिद्धांतों और एस.डी.एच के अनुप्रयोगों की कार्यक्षमता और आर्किटेक्चर के विवरण शामिल हैं | G.sna1 का उपयोग नेटवर्क नोड्स आर्किटेक्चर access points, G.sna2 नेटवर्क परफॉर्मेंस performance शामिल किया गया है |

चित्र 9.1 . एस.डी.एच ट्रांसिमशन नेटवर्क का लेयर मॉडल

सर्किट लेयर नेटवर्क: उपयोगकर्ताओं सर्किट स्विच और लीज्ड लाइन सेवाएं प्रदान करता है. पाथ लेयर नेटवर्क: सर्किट लेयर नेटवर्क के विभिन्न प्रकार का समर्थन करता है.

ट्रांसिमशन मीडिया के लेयर नेटवर्क: विभिन्न फिजिकल इंटरफेस है.

एस.डी.एच के आई.टि.यु (टी) सिफारिशें

G. tna1: ट्रांसपोर्ट नेटवर्क के लिए जनरल फंसनल आर्किटेक्चर .

G.81s: क्लॉक और एस.डी.एच सिस्टम के विभिन्न स्तरों पर इस्तेमाल किया क्लॉक के सिंक्रनाइज़ेशन के तरीकों का उल्लेख करता है. G.811 प्रायमरी रेफेरेंस क्लॉक (पी.आर.सी), एक या दो ऐसी क्लॉक केवल पुरे देश में प्रदान की जाती है. G.812 पीआरसी या किसी अन्य SSU से सिंक्रनाइज़ किया जाता है. G.812 एस.डी.एच सिस्टम उपकरण में स्थित एक क्लॉक है जो नेटवर्क तत्व क्लॉक को सिंक्रनाइज़ेशन करता है.

G.821: पे लोड का परफॉर्मेंस.

G.825: एस.डी.एच नेटवर्क में जिटर और वैन्डर के कंट्रोल की पद्धित को निर्दिष्ट करता है.

M.30: ट्रांसिमशन मैनेजमेंट नेटवर्क (TMN) सिद्धांतों को निर्दिष्ट करता है.

G.65s: अनुप्रयोग के आधार पर ऑप्टिकल इंटरफेस को वर्गीकृत करना और अनुप्रयोग कोड दिखाने का काम करता है.

आई.टि.यु टी तीन अनुप्रयोग श्रेणियों पहचानता है:

इंट्रा कार्यालय (I): दूरियाँ > 2 कि.मी.

इंटर कार्यालय लघ् Haul (S): 15 कि.मी. लगभग

इंटर कार्यालय लंबी Haul (L): 40 कि.मी. लगभग 1310 एनएम विंडो और 1550 एनएम विंडो के साथ 60 कि.मी.

टेबल 9.3 ऑप्टिकल इंटरफेस की वर्गीकरण

र्ण	एप्लिकेसन इन्ट्रा		इंटर - ओफिस				
		ओफिस	Short	- haul	ı	₋ong - hau	I
सोर्स बेब लें	न्त (nm)	1310	1310	1550	1310	15	50
Type of fil	bre	Rec. G.652	Rec. G.652	Rec. G.652	Rec. G.652	Rec. G.652 Rec. G.654	Rec. G.653
Distance (Km)	< 2	15			40	60
	एस.टी.एम1	1-1	S-1.1	S-1.2	L-1.1	L-1.2	L-1.3
एस.टी.एम.	एस.टी.एम4	1-4	S-4.1	S-4.2	L-4.1	L-4.2	L-4.3
Level	एस.टी.एम16	1-16	S-16.1	S-16.2	L-16.1	L-16.2	L-16.3

G.65s टेबल 9.3 में वर्णित हैं.

इरिसेट

कुछ एस.डी.एच संबंधित रेकमेन्डेसन का ब्यौरा टेबल 9.4 में दिए गए हैं.

एस.डी.एच के आई.टि.यु (टी) सिफारिशें

9.3 आई.टि.यु (टी) के एस.डी.एच संबंधित अनुशंसाएँ:

आइटेम	रेकमेन्डेसन	साल
Network Architecture	G.tna, G.sna1,G.sna2,	1992
Network नोड इंटरफ़ेस (functions)	G.707,G.708,G.709	1990
Physical	G.957,G.703	1990
Multiplex Equipment	G.781.G.782,G.783.	1990
Line Equipment	G.958.	1990
Cross connect equipment	G.sdc x1,G.sdc x2,G.sdc x3	1992
Element मैनेजमेंट	G.784	1990
Equipment clock	G.81s	1992

टेबल 9.4 आई.टि.यु (टी) के एस.डी.एच संबंधित सिफारिशें

ओबजेक्टीब :

- 1. SDH के लिए ITUT- G708 की सिफारिश SDH मल्टीप्लेक्सिंग संरचना को परिभाषित करता है T/F
- 2. SDH के लिए ITUT- G709 की सिफारिश SDH मल्टीप्लेक्सिंग संरचना को परिभाषित करता है. T/F
- SDH के लिए ITUT- G708 की सिफारिश SDH के लिए नेटवर्क नोड इंटरफ़ेस पिरभाषित करता है.
- 4. SDH के लिए ITUT- G781 की सिफारिश SDH मल्टीप्लेक्सिंग संरचना से संबंधित सिफारिशों की संरचना को परिभाषित करता है। T/F
- 5. SDH के लिए ITUT Gsdxc1 की सिफारिश SDH क्रास-कनेक्ट संरचना संबंधित सिफारिशों की को परिभाषित करता है.
- 6. SDH के लिए ITUT- G 802 की सिफारिश विभिन्न सिंक्रोनस डिजिटल क्रम और स्पिच एन्कोडिंग ला को परिभाषित करता है। T/F
- 7. SDH के लिए ITUT G.957 की सिफारिश SDH प्रणालियों और उपकरणों के लिए ऑप्टिकल इंटरफेस को परिभाषित करता है। T/F
- 8. SDH के लिए ITUT G.958 की सिफारिश ऑप्टिकल फाइबर केबल पर SDH डिजिटल सिस्टम को परिभाषित करता है.
- 9. SDH के लिए ITUT- G 81s की सिफारिश SDH सिंक्रोनस क्लाक को परिभाषित करता है. T/F
- 10 SDH के लिए ITUT G784 की सिफारिश SDH मैनेज्मेन्ट को परिभाषित करता है T/F

सबजेक्टीब :

- 1. आईटीयू-टी की Rec G.707 के अनुसार SDH बिट रेट क्या है ?
- 2. आप आईटीयू-टी Rec.G.708 के अनुसार NNI के बारे में क्या समझते हैं ?
- 3. SDH के बेसिक फ्रेम संरचना के बारे में बताएं ?
- 4. आईटीयू-टी G.709Rec का उद्देश्य क्या है ?
- 5. ट्रान्सपोर्ट नेटवर्क की स्तरित मॉडल के बारे में बताये ?
- 6. ऑप्टिकल इंटरफेस के वर्गीकरण क्या क्या है ?

अध्याय 10

एस.डी.एच. सिस्टम में जिटर और वैंडर एवं एस.डी.एच नेटवर्कों की जांच

10.1 परिचय: किन्हीं विशिष्ट परिस्थितियों में, डिज़ीटल सिगनलों की स्वयं की 'आइडल' स्थिति के अलावा, छोटी अविध या लंबी अविध के बदलावों को 'जिटर' और 'वैंडर' से परिभाषित किया जाता है. यह दोनों परस्पर संबंधी शब्द हैं, जिनका उल्लेख एक 'रेफेरेंस क्लॉक' के संबंध में किया जाता है, और एक 'आइडल-क्लॉक' सोर्स के संदर्भ में, अपनी स्थिति को समयानुसार ('जिटर' और 'वैंडर') बैक-वर्ड या फॉरवर्ड दिशा में बदलती रहती है. किसी नेटवर्क में, प्रयुक्त किए गये उपस्करों के 'निर्मित' और 'ट्रांसफर' गुणों के कारण, 'जिटर' और 'वैंडर' एकत्रित होते हैं, परिणाम स्वरूप सिगनल्स, 'बिट-एरर' और अनियंत्रित 'स्लिप' से प्रभावित हो सकते हैं. इसलिए यह आवश्यक है कि, एस.डी.एच. नेटवर्क इंटरफेस के लिए, 'जिटर' और 'वैंडर' को नियंत्रित किया जाए. 'जिटर' जो कि एक अधिकतम 'फेज़-एम्प्लीट्यूड' के रूप में विस्तृत किया गया है और पीक-टु-पीक' में परिमाणित(क्वांटिफाइड) किया गया है, यह 'पीक-जिटर' है जो बिट-एरर पैदा करता है. जिटर को 'यूनिट-इंटरवल' में मापा जाता है. एक डॉटा बिट-विड्थ का एक यूनिट-इंटरवल.

वैन्डर की माप किसी भी प्रायमरी रेफेरेंस क्लॉक (पीआरसी) या जो किसी भी अन्य रेफेरेंस क्लॉक जो वैन्डर से मुक्त है .इसमें, लंबी अविध के साथ लो-फ्रीक्वेंसियां शामिल है और फ़ेज इनफरमेसन घंटो तक हो सकते हैं. 'हाइ टेम्पोरल रेजोल्यूशन' 'फ़ेज ट्रांज़िएंट' को मापने की जरूरत है.

10.2 सिंक्रनाइज़ेशन क्वालिटी पैरामीटर मापने और परफॉर्मेंस कि सीमा निर्दिष्ट करना:

टाइम इंटरभल एरर (TIE): यह नैनो सेकंड में सिग्नल और रेफेरेंस क्लॉक, के बीच फेज अंतर है. यह टाइम के शुरू में शून्य और बाद में फेज अंतर में परिवर्तन की इनफरमेसन प्रदान करता है.

मैक्सिमम टाइम इंटरभल एरर (MTIE): यह एक निर्दिष्ट इंटरभल के भीतर पीक टु पीक TIE के फ्रीक्वेंसी ओफ़सेट और फ़ेज transient के रूप में परिभाषित करता है .यह एक निर्दिष्ट टाइम इंटरभल के बिच TIE और MTIE के बिच पीक भेल्यु है.

टाइम डेंभियेशन (T Dev): यह फ़िल्टर्ड TIE के आर.एम.एस भेल्यु और इसके स्पेक्ट्राल को परिभाषित करता है .बैंड पास फिल्टर, 0.42 / t की एक फ्रीक्वेंसी पर केंद्रित किया जाता है जहां t ओबस्रभेशन इंटरभल है | T Dev की गणना में कम से कम 12 T सांख्यिकीय औसत आवश्यक है सही मूल्य के लिए. सामान्य व्यवहार में T dev की गणना 3T तक लिए जाते है.

- 10.3 नेटवर्क सिंक्रनाइज़ेशन : इन्पुट में विभिन्न ट्रिब्यूटरी के क्रॉस कनेक्ट से आउट्पुट में नई एगरीगेट सिगन्ल उत्पन्न होता है जो चित्र 10.1. में दिखाया गया है. आउटपुट सिगन्ल के टाइमींग सिंक्रोनस क्लॉक फ़ंक्शन से निर्धारित होता है क्योंकि इनपुट सिगन्ल की फेज , आउटपुट सिगन्ल के मुकाबले धिमी हो सकता है. इसमे दो सिगन्ल एक ही क्लॉक फ़ंक्शन से पैदा होता है खालि इनपुट और आउटपुट के क्लॉक फ़ंक्शन को अलग करके . इसके कारण नीचे दिए गए हैं.
- तापमान में परिवर्तन की वजह से केबुल में डले .
- डीसी ओफ़ सेट के वजह पीएलएल सिंक्रोनस क्लॉक में परिवर्तन होने पर फ़्रिक्वेंसी में ड्रिफ्ट.
- प्रोटेकशन स्विचिंग के कारण रेंडम फेज में परिवर्तन.

सिंक्रनाइज़ेशन क्लॉक फ़ंक्शन

चित्र. 10.1 एस.डी.एच पाथ सिंक्रनाइज़ेशन

इनपुट और आउटपुट में फ़ेज भेरिएशन डॉटा की इन्टिग्रीटि को बनाए रखने के लिए हटाया जाता है. जब कि एस.टि.एम फ्रेम मे पे लोड को आगे या पीछे करके, यह पॉइंटर जस्टीफ़िकेसन प्रक्रिया व्दारा हासिल की जाती है. रिसिभ में जब पे लोड को डी-मैप करने पर पे लोड जिटर पैदा हो सकता है और इसे लिमिट के भीतर होना चाहिए.

10.4 ट्रांसिमशन नेटवर्क का परीक्षण: यह परीक्षण गतिविधि इस प्रकर है.

- डिजाइन के भेरिफिकेशन और फील्ड परीक्षण
- स्थापना और कमीशनिंग
- ओपरेसन और मैन्टेनेन्स

एस.डी.एच नेटवर्क के ओपरेसन और मैन्टेनेन्स के लिए नेटवर्क मैनेजमेंट सिस्टम है. नेटवर्क ऑपरेटरों को और अपने ग्राहकों को वादा किया परिचालन लाभ प्रदान सुनिश्चित करना होता है तो एस.डी.एच नेटवर्क तत्वों आई.टि.यु टी मानकों के अनुसार बाहरी एस.डी.एच टेस्ट सेट का उपयोग करना है.

- 10.5 परीक्षण के उद्देश्य: एस.डी.एच कार्यक्षमता सॉफ्टवेयर पर अधिक निर्भर है उसे परीक्षण के उद्देश्य से चार व्यापक श्रेणियों को शामिल किया गया है.
- ट्रांसपोर्ट क्षमता टेस्ट
- पेलोड पॉइंटर टेस्ट
- लाइन इंटरफेस टेस्ट
- एंबेडेड ओवरहेड टेस्ट
- 10.5.1 ट्रांसपोर्ट क्षमता टेस्ट: ट्रांसपोर्ट क्षमता परीक्षण जो मैपिंग/डी मैपिंग परीक्षण है उसमे BER शामिल है. एक एस.डी.एच नेटवर्क मे 2 एम.बी.पी.एस, 34 एम.बी.पी.एस या 140 एम.बी.पी.एस का पेलोड को गंतव्य तक सही ढंग से पहुँचने का पृष्टि करना पड़ता है.
- 10.5.2 पेलोड पॉइंटर टेस्ट: पेलोड पॉइंटर टेस्ट जो समय ऑफसेट और ट्रिब्यूटरी आउटपुट जिटर टेस्ट है. यह एस.डी.एच नेटवर्क उपकरण में अन्य गैर एस.डी.एच नेटवर्क तत्वों के साथ काम करने को पुष्टि करता है.
- 10.5.3 **लाइन इंटरफेस टेस्ट** : लाइन इंटरफेस टेस्ट एक एस.डी.एच इंटरफेस का ऑप्टिकल और इलेक्ट्रिकल कार्यात्मक क्षमताओं की पृष्टि करने का पैरामीट्रिक टेस्ट है.
- 10.5.4 एंबेडेड ओवरहेड टेस्ट : एंबेडेड ओवरहेड टेस्ट मे अलार्म और परफॉर्मेंस की मॉनिटरिंग, नेटवर्क मैनेजमेंट प्रोटोकॉल टेस्ट और एस.डी.एच नेटवर्क तत्वों मे तनाव शर्त के म्ताबिक विशेष टेस्ट शामिल है.

- **10.6 टेस्ट के जनरल पहलुओं:** एस.डी.एच नेटवर्क का टेस्ट करते समय सामान्य पहलुओं पर विचार किया जाना चाहिए .जो नीचे है.
- 10.6.1 बेसिक इंस्टोलेशन के समापन: टेस्ट से पहले बेसिक इंस्टोलेशन के पूरा होने के बाद यह सुनिश्चित करने के लिए आवश्यक है.
- प्रत्येक नेटवर्क तत्वों में सारे कार्डों को एक साथ इंस्टोल करे.
- डिज़ीटल वितरण फ्रेम (DDF) और एन.इ ट्रिब्यूटरी पोर्ट के बीच केबलींग करे.
- एनई को कंप्यूटर से कंट्रोल करे.
- NE के ऑपरेटिंग विशेषताओं को कॉन्फ्रिगरेशन करे.
- 10.6.2 रिसीवर को ऑप्टिकल ओवरलोड से बचना: NE टेस्ट मे रिसीवर के ओवरलोड से बचाने के लिए एटिनुएटर का उपयोग करनी चाहिए.
- 10.6.3 सिंक्रनाइज़ेशन: यह सेट अप सिंक्रनाइज़ करने के लिए आवश्यक है जिसमे टेस्ट के दौरान अनियंत्रित पॉइंटर एडज्स्टमेंट होता है.
- 10.7 फांसनल टेस्ट: टेस्ट के रूप में इंस्टोलेशन निम्नलिखित फांसनल भेरिफिकेशन टेस्ट के लिए चित्र.10.2 में दिखाया गया है.
- 10.7.1 सही यांत्रिक स्थापना का भेरिफिकेशन : इस परीक्षा में एक एस.डी.एच नेटवर्क तत्व का सही यांत्रिक स्थापना की जाँच के लिए है जो एड / ड्रॉप मल्टीप्लेक्सर (ए.डी.एम), लाईन टर्मिनल मल्टीप्लेक्सर (LTM) या डिज़ीटल क्रास कनेक्ट (DXC). चित्र 10.2 में माना जाता है कि यह एन.ई एक ए.डी.एम है.

एन.ई से प्रत्येक वर्चुअल कंटेनर पाथ (वी.सी-एन) पर एक BER टेस्ट परफॉर्मेंस, निम्नलिखित जाँच करता है.

- DDF और ट्रिब्यूटरी पोर्ट के बीच सही केबल कनेक्शन.
- ऑप्टिक्स सहित नेटवर्क तत्व के इलेक्ट्रॉनिक्स की बेसिक परफॉर्मेंस.

एरर या अलार्म न रहने पर भेरिफिकेशन सही है.

चित्र. 10.2 एस.डी.एच फांसनल टेस्ट

- 10.7.2 पी.डी.एच ट्रिब्यूटरी पोर्ट के लिए रूटिंग पाथ कि पृष्टि: इस टेस्ट में एक ए.डी.एम या DXC के माध्यम से पाथ रुट की पृष्टि कि जाती है . यह मैप किया पेलोड VC n को एक पी.डी.एच ट्रिब्यूटरी पोर्ट में ड्राप किया जा रहा है.
- 10.7.3 एस.डी.एच ट्रिब्यूटरी पोर्ट के लिए रूटिंग पाथ कि पृष्टि: इस टेस्ट में एस.डी.एच ट्रिब्यूटरी पोर्ट के लिए रुट के VC -4 पाथ भेरिफिकेशन कि पृष्टि कि जाती है. चित्र 10.2. में टेस्ट सेट अप बिंदीदार रेखा में दिखाया गया है.
- 10.7.4 ट्रेल ट्रेस आइडेंटिफ़ायर कॉन्फ़िगरेशन का भेरिफिकेशन: यह टेस्ट एक एंड पाथ के लिए ट्रेल ट्रेस आइडेंटिफ़ायर का सही कॉन्फ़िगरेशन की पुष्टि करता है . इसके अलावा, यह मैनेजमेंट सिस्टम से जुड़े ट्रेस आइडेंटिफ़ायर मिसमैच अलार्म का स्वत: रिपोर्टिंग की पुष्टि करता है.
- 10.7.5 क्लाक सिंक्रनाइज़ेशन का भेरिफिकेशन: एस.डी.एच नेटवर्क में नेटवर्क सिंक्रनाइज़ेशन का परफॉर्मेंस बहुत महत्वपूर्ण मुद्दा है. सटीक और विश्वसनीय एस.डी.एच नेटवर्क सिंक्रनाइज़ेशन के लिए दो प्रमुख तत्व निम्न है.
- एक सठीक पी.आर.सी (प्रायमरी रेफेरेंस क्लॉक)
- नेटवर्क में सभी नोड्स के लिए सही पीआरसी का टाइमींग इनफरमेसन.

निम्नलिखित तीन अलग टेस्ट व्दारा जाँच की जा सकती.

- लाइन फ्रीक्वेंसी कि माप
- पॉइंटर गतिविधि की मॉनिटरिंग
- सिंक्रनाइज़ेशन स्टेटस बाइट के सिगन्ल (S1) निरीक्षण

यदि एन.ई को खराब पी.आर.सी वितरित होता है तो यह जिटर में वृद्धि का कारण बनता है, जिसके परिणामस्वरूप पॉइंटर गतिविधि में वृद्धि होती है, इस गतिविधि से पेलोड डॉटा का भी नुकसान होता है.

लॉक सिंक्रनाइज़ेशन टेस्ट एन.ई में क्लॉक सिंक्रनाइज़ेशन हेयरार्की का सही कॉन्फ़िगरेशन की पुष्टि करता है. तीन वैकल्पिक क्लॉक का उल्लेख नीचे हैं.

- प्रायमरी : बाहरी 2 मेगाहर्ट्ज क्लॉक, (एस.डी.एच टेस्ट सेट के सिंक के लिए प्रयुक्त)
- सेकेडंरी : रिसिभ एस.टी.एम- एन लाइन सिगन्ल
- ट्रसिय़री : एन.इ की अपनी इंट्रन्ल क्लॉक.

10.8 मैपिंग और डी मैपिंग टेस्ट:

चित्र. . 10.3 मैपिंग और डी मैपिंग टेस्ट:

मैपिंग और डी मैपिंग टेस्ट के लिए टेस्ट चित्र. .10.3 में दिखाया गया है.

- 10.8.1 मैपिंग टेस्ट: मैपिंग वर्चुअल कंटेनर में पे-लोड जोड़ने की प्रक्रिया है. इस टेस्ट में मैपिंग प्रक्रिया का सिंक्रनाइज़ेशन क्षमताओं ट्रिब्यूटरी टेस्ट सिगन्ल की बिट रेट ओफ़सेट व्दारा टेस्ट कि जाति है तथा पे-लोड मैपिंग प्रक्रिया में परफॉर्मेंस टेस्ट भी की जाती है और उनकी बैन्डबित क्रमशः 2 एम.बी.पी.एस, 34 एम.बी.पी.एस, 140 एम.बी.पी.एस मे 50 पीपीएम, 20 पीपीएम, 15 पीपीएम होनी चाहिए.
- 10.8.2 डी-मैपिंग टेस्ट: डी मैपिंग, मैपिंग की रिवर्स प्रक्रिया है. इस प्रक्रिया में वर्चुअल कंटेनर से ट्रिब्यूटरी सिगन्ल निकाल नें की प्रक्रिया है. यह टेस्ट, वर्चुअल कंटेनर के रेफेरेंस में मैप किया गया पी.डी.एच सिगन्ल की फ्रीक्वेंसी ओफसेट को एस.डी.एच सिगन्ल के पेलोड के साथ भैरिफाइ करता है.

10.9 जिटर टेस्ट: एस.डी.एच नेटवर्क में निम्नलिखित जिटर टेस्ट किया जाता है.

- एस.टी.एम- एन ऑप्टिकल जिटर टोलारेन्श
- एस.टी.एम- एन ऑप्टिकल आउटप्ट जिटर
- पी.डी.एच ट्रिब्यूटरी जिटर
- पॉइंटर एड्ज्सटमेंट जिटर (कोम्बाइन्ड जिटर)
- डी-मैपिंग जिटर

'जिटर', किन्हीं विशिष्ट परिस्थितियों में, डिज़ीटल सिगनलों की स्वयं की 'आइडल' स्थिति के अलावा, छोटी अविध के बदलावों को 'जिटर' से परिभाषित किया जाता है. इसे डिजिटल सिगन्ल क्लाक का स्पुरियस फेज मोडुलेशन भी कहते है. 'जिटर' कि मापन क्लाक सिगन्ल के लिए आबश्यक है. इसे यूनिट इन्टर्भ्ल (UI) में कहा जाता है. यह बिट रेट पर डिपेन्ड निह करता है. इसे इस प्रकार निकाला जाता है. जिटर फ्रीक्वेंसी अक्सर सिनुसोडियल निह होते है, मगर टेस्ट में सिनुसोडियल इस्तेमाल किया जाता है, उदाहरण के लिए,

एक 2.048 mbps डाटा के लिए, UI = 0.488 ns, यदि जिटर फांसन (एम्प्लीट्यूड) 2.44, जिटर पिक टु पीक होता है = 2.44/0.488 = 5 UI

इसीलिए , M = 3.14 x 5 = 15.70

यदि जिटर फ्रीक्वेंसी 100 Hz होता है , पीक डेभिएशन के बिट रेट = $100 \times 15.70 = 1570 \text{ Hz}$ इस लिए बिट रेट $2048000 \pm 1570 \text{ Hz}$ भैरि करता है 100 टाइम पर सेकेंड.

जिटर का प्रायमरी स्रोत नेटवर्क तत्वों स्वयं हैं. जिटर के प्रकार और संभावित कारणों नीचे दिए गए हैं.

• मैपिंग - डी मैपिंग जिटर: मैपिंग और डी-मैपिंग जिटर फ़ेज स्मूथिंग, इलास्टिक स्टोर के रिड/राइट फ़ेज स्मूथिंग के कारण होता है. बिट स्ट्फ़ींग / डी-स्ट्फ़ींग मैपिंग साथ जुड़े यह ट्रिब्यूटरी सिगन्ल की फ्रीक्वेंसी भेरियेशन को क्मपैनसेट करने के लिए इस्तेमाल किया जाता है .

• **पॉइंटर जिटर**: पॉइंटर जिटर अत्यधिक पॉइंटर हिलने के कारण होता है यह मुभमेन्ट फ्रीक्वेंसी ओफ्सेटौर नोइस हे कारण भि बनता है .

चित्र.10.4 एस.टी.एम.-N ऑपटिकल आउट्पुट जिटर टोलारेन्स :

चित्र. 10.5 एस.डी.एच - जिटर - टोलारेन्स मास्क (आई.टि.यु -टी G.825)

सिस्टमैटिक जिटर: सिस्टमैटिक जिटर ओफ़सेट मिस एलाइन टाइम रिकवरी सर्किट के सीमित पल्स विड्थ के कारण होता है.

10.9.1 एस.डी.एच मे जिटर टोलारेन्स मापना: चित्र 10.4 में दिखाया गया है. इस टेस्ट से कोइ भी NE आई.टि.यु -टी के जिटर स्पेसिफिकेसन के अनुरूप परिभाषित मास्क के परिणामों के मूल्यांकन की आवश्यकता के अनुरूप है या नहीं इसिक पृष्टि करता है, और चित्र 10.5.में दिखाया गया.

10.9.2 एस.डी.एच ऑप्टिकल आउटपुट के जिटर मापन : इस टेस्ट में NE के ऑप्टिकल आउट्पुट में आई.टि.यु- टी स्पेसिफिकेसन G.958 के अनुसार अधिकतम स्वीकार्य जिटर को पृष्टि करता है जो टेस्ट के रूप चित्र 10.6. में दिखाया गया है.

चित्र. 10.6 एस.टी.एम. एन ऑप्टिकल आउटपुट के जिटर

10.9.4 पॉइंटर जिटर: (कम्बाइंड जिटर): एस.डी.एच नेटवर्क में पॉइंटर का मुभमेन्ट ट्रिब्यूटरी पोर्ट पर जिटर की बड़ी राशि तैयार करित है ,जो पी.डी.एच नेटवर्क में जिटर स्पाइक उत्पादन करता है, और इसिक डिजाइअन इसे सपोर्ट नहीं करता है . इसिलए यह सुनिश्चित करन बहुत जरूरी है ,िक इस कि प्रभाव कम से कम हो कि एरर और डॉटा की हानि नहीं हो.

चित्र. 10.7 पी.डी.एच पॉइंटर एड्ज्सट्मेन्ट जिटर

इस टेस्ट के लिए, सेट अप के रूप चित्र 10.8 में दिखाया गया है. एस.डी.एच टेस्ट सेट पी.डी.एच ओफ़- सेट और पॉइंटर-सिकुएन्स उत्पन्न करने में सक्षम है और इसिक क्न्ट्रोल स्बय्म ले लेता है.

टेबल 10.1 में दी गई आई.टि.य् टी स्टैंडर्ड G.783 के अनुसार सेटींग किया जाता है.

पे-लोड	पॉइंटर	सिकुएन्स	मापन बैंडविड्थ	जिटर (UI PK-Pk)
 २ एम.बी.पी.एस	TU-12	A,B,C,	0.02 - 100 KHz *	0.4
८ एम.बा.पा.एस	10-12	A,B,C	18 - 100 KHz **	0.075
		A,B,C,	0.1 - 800 KHz *	0.4
34एम.बी.पी.एस	TU-3	D,	0.1 - 800 KHz **	0.75
		A,B,C,D	10 - 800 KHz **	0.075
		A,B,C,	0.02 - 3500 KHz *	0.4
140एम.बी.पी.एस	TU-4	D,	0.02 -3500 KHz *	0.75
		A,B,C,D	10 - 3500 KHz **	0.075
* = Equivalent t	o Measure	ement Filter "	' LP + HP1"	

^{** =} Equivalent to Measurement Filter " LP + HP2"

Table 10.1 पॉइंटर एड्ज्सट्मेन्ट जिटर (ITU-T G.783 पॉइंटर जिटर Specification)

वर्तमान आई.टि.यु-टी/ETSI मानकों NE के इस टेस्ट के दौरान इस्तेमाल के लिए चार पॉइंटर सिकुएन्स को पिरभाषित करता है . पॉइंटर जिटर टेस्ट ट्रिब्यूटरी जिटर मापने मे नेटवर्क तत्व को पॉइंटर सिकुएन्स के साथ स्ट्रेस दिया जाता है जो चित्र. 10.9 में दिखाया गया है. आई.टि.यु-टी स्टैंडर्ड G.783 ,में 34 एम.बी.पी.एस (TU 3 पॉइंटर) और 140 एम.बी.पी.एस (एयू -4 पॉइंटर) के लिए पिरभाषित किया गया है

चित्र.10.8 पॉइंटर जिटर टेस्ट

2 एम.बी.पी.एस का टेस्ट करते हुए पॉइंटर सिकुएन्स निम्नलिखित पॉइंटर के साथ टेस्ट के तहत 2 एम.बी.पी.एस ट्रिब्यूटरी के साथ जुड़े TU -12 पॉइंटर उत्पन्न करते हैं.

- सिक्एन्स D मान्य नहीं है.
- टाइम सिकुएन्स, सिकुएन्स B और C में सिकुएन्स एड्ज्सट्मेन्ट 750 ms से अधिक हो (न कि 34 ms).
- सिकुएन्स B में डबल पॉइंटर एड्ज्सट्मेन्ट अलग समय 2 ms (0.5 ms नहीं) है.

आई.टि.यु टी स्टैंडर्ड G.783 अनुसार एस.डी.एच एन.इ पर पी.डी.एच आउट्पुट ट्रिब्यूटरी पर पॉइंटर एड्ज्सट्मेन्ट (एड्ज्सट्मेन्ट सिक्एन्स) जिटर की अधिकतम स्वीकार्य लेबेल टेबल 10 2. में दी गई है.

ITU-T G.783 Pointer Sequences (AU-4 & TU-3)

चित्र. . 10.9 पॉइंटर जिटर सिक्एन्स

	SDH Tx	Settings	PDH Rx	Settings	
Pay Load	Pointer Sequence	PDH Service Off Set	Measurement Filters	Measurement Period (Second)	Max. Jitter (UI PK-PK)
	A BC	<u>+</u> 50 ppm.	LP+HP1 LP+HP1	20 S 30 S	0.4 0.4
2 mbps	A BC	Any value in range.	LP+HP2 LP+HP2	20 S 30 S	0.075 0.075
34 mbps	AD BC AD BC	±20 ppm. Any value in range.	LP+HP1 LP+HP1 LP+HP2 LP+HP2	20 S 30 S 20 S 30 S	0.4(A) 0.75(D) 0.4 0.075 0.075
140 mbps	AD BC AD BC	±15 ppm. Any value in range.	LP+HP1 LP+HP1 LP+HP2 LP+HP2	20 S 30 S 20 S 30 S	0.4(A) 0.75(D) 0.4 0.075 0.075

Table 10. 2 पॉइंटर जिटर मेजमेंट सेटींग

अधिकतम जिटर भेरियेशन निम्नलिखित पर निर्भर करता है.

- पॉइंटर सिक्एन्स जो N.E को तनाव देकर डीसिंक्रनाइज़ेशन के लिए इस्तेमाल किया जाए
- जिटर बैंडविड्थ मापन

10.9.5 डी-मैपिंग जिटर: डी मैपिंग जिटर विशेषता चित्र 10.10 में दिखाया गया है और यह पॉइंटर जिटर से कम गंभीर है. डी मैपिंग जिटर की विशेषताओं नीचे दिए गए हैं.

- कम एम्प्लीट्यूड
- अपेक्षाकृत उच्च फ्रीक्वेंसी होने से एस.डी.एच- NE में डी- सिंक्रनाइज़र के मदद से दबाया जा सकता है.

पीक डी मैपिंग जिटर OPPM (VC एन को पी.डी.एच ट्रिब्यूटरी सापेक्ष) से एक छोटे ओफ़सेट पर होता है. आई.टि.यु टी G.783 आरईसी के अनुसार सीमा. टेबल 10.3 में नीचे दिए गए हैं.

पे-लोड	ओफ़-सेट रेंज	सिकुएन्स	मापन बैंडविड्थ
2 एम.बी.पी.एस	<u>+</u> 50	18 - 100 KHz*	0.075
34 एम.बी.पी.एस	<u>+</u> 20	10 - 800 KHz*	0.075
140एम.बी.पी.एस	<u>+</u> 15	10 - 3500 KHz*	0.075
* = Equivalent to	neasuremen	t Filter "LP + HP2"	

Table 10.3 डी-मैपिंग जिटर टेस्ट

चित्र. . 10. 10 डी-मैपिंग जिटर बिशेषता

डी मैपिंग जिटर टेस्ट का उद्देश्य पीक टो पीक जिटर को नापने के लिए इस्तेमाल किया जाता है ओफ़ सेट कि वजह से. सेट अप टेस्ट चित्र 10.11. में दिखाया गया है.

चित्र. . 10.11 डी-मैपिंग जिटर टेस्ट

इधर, एस.डी.एच टेस्ट सेट मे NE को उसी क्लॉक, साथ सिंक्रनाइज़ किया जाना चाहिए कोई अप्रत्याशित पॉइंटर एडज्सट्मेन्ट टेस्ट के दौरान न हो और केवल डी मैपिंग जिटर मापा जाता हो .

10.10 एस.डी.एच एनई की "Built-In" क्षमता के टेस्ट और ओवरहेड्स का उपयोग : नेटवर्क मैनेजमेंट, फाल्ट की मॉनिटरिंग , प्रोटेक्शन स्विचिंग, अलार्म सिमुलेशन और अविध का स्थान एस.डी.एच एनई में संभव होते हैं .एस.डी.एच एनालाइज़र (TEC Spec के अनुसार. NO.G / एसडीए-02/01 Feb.97) भी उन परीक्षणों परफॉर्मेंस कर सकते हैं.

10.11 नेटवर्क मैनेजमेंट के साथ टेस्ट: एस.डी.एच एनई नेटवर्क मैनेजमेंट का समर्थन करता है. ईसकी कार्यों नीचे संक्षेप मे ईस प्रकार है.

- फाल्ट मैनेजमेंट जो फाल्ट और स्थान का पता लगाता है |
- परफॉर्मेंस मैनेजमेंट जो अलार्म, एरर आदि शामिल है |
- कॉन्फ़िगरेशन मैनेजमेंट जो डॉटा के रूपांतरण मे आक्सिलरि है |
- सॉफ्टवेयर को डाउनलोड करें.
- ट्रांसिमशन मैनेजमेंट नेटवर्क (TMN) इंटरफेस (Q3 इंटरफेस).

10.11.1 परफॉर्मेंस की मॉनिटिरिंग: एस.डी.एच के भीतर सिस्ट्म एरर परफॉर्मेंस, कम इन्ट्रप्शन के मापदंडों अनएभिबिलिटी पैरिमिटर एरर ब्लॉक पर आधारित है. और BIP-n फ्रेम से फ्रेम बेसिस पर प्रयोग किया जाता है और BIP चेक ओवरहेड्स में डाला जाता है जो इन पाथ का मैन्टेनेन्स करता है. HO और LO रास्तों मे BIP s में पाया गया एररयाँ FEBE सिगन्ल द्वरा धाराओं मे भेजा जाता है.

परफॉर्मेंस की मॉनिटरिंग मानकों निम्नलिखित इस प्रकार है. पी.डी.एच धाराओं का विश्लेषण: : ES, SES, UAS, EFS, DM

एस.डी.एच धाराओं का विश्लेषण: Error ब्लॉक, ESR, SESR, BBER, US etc B1 ,RS में , B2, BIP2 और TU में FEBE.

10.11.2 अलार्म सिमुलेशन और डिटेक्शन: ज्यादा तर अलार्म सिगन्ल ओवरहेड्स बाइट्स के कारण होता है .लॉस आफ सिगन्ल (LOS), लॉस आफ फ्रेम (LOF) और लॉस आफ पॉइंटर (LOP) , अलर्म इन्डीकेशन Signal (AIS) उत्पन्न होता है जो डाउन स्ट्रीम धारा से प्रसारित होता है. ए.आई.एस (AIS) सिगन्ल के जवाब में, फार एंड रिमोट फ़ेलिऊर (FERF) और रिमोट अलर्म इन्डीकेशन (RAI) के रूप में अलर्म देने के लिए, अप स्ट्रीम मे भेजा जाता है.

10.11.3 एस.टी.एम. -1 में अलार्म :

- 1. LOS
- 3. AULOP (Auxiliary यूनिट LOP)
- 5. MSFERF
- 7. पाथ FERF
- 9. TUAIS

- 2. LOF
- 4. MSAIS (Multiplex सेक्सन AIS)
- 6. पाथ AIS
- 8. TULOP (ट्रिब्यूटरी युनिट LOP)
- 10. TULOM (ट्रिब्यूटरी यूनिट Loss of Multiफ्रेम)

10.11.4 एस.टी.एम. - 4/16 में अलार्म:

1. LOS

2. OOF (Out of फ्रेम),

3. LOF

4. MSAIS

5. MSRAI.

10.11.5 प्रोटेक्शन स्विचिंग : प्रोटेक्शन स्विचिंग निम्नलिखित के लिए टेस्ट किया जा सकता है.

- उपकरण प्रोटेक्शन
- मल्टीप्लेक्स सेक्सन प्रोटेक्शन (एमएसपी)
- VC पाथ प्रोटेक्शन

ईन सभी में ओवरहेड बाइट्स प्रोटेक्शन स्विचिंग के लिए उपयोग किया जाता है.

ओबजेक्टीब :

- 1. डिजिटल सिग्नल के महत्वपूर्ण instants कि उनके आदर्श स्थिति से छोटी अविध के भिन्नता को जिटर कहा जाता है।
- 2. डिजिटल सिग्नल के महत्वपूर्ण instants कि उनके आदर्श स्थिति से लंबी अविध के भिन्नता को वैन्डर कहा जाता है।
- 3. एक यू.आई एक डेटा चौड़ाई की है। T/F
- 4. परिवहन क्षमता परीक्षण संख्या और मैपिंग / डी मैपिंग परीक्षण आयोजित की जाती है. T/F
- 5. पे-लोड पोइन्टर परीक्षण के परीक्षण के लिए, समय ऑफसेट और ट्रीब्युटारि उत्पादन जिटर परीक्षण की जाती है
- 6. घड़ी सिंक्रनाइज़ेशन परीक्षण लाइन आवृत्ति, पोइन्टर गतिविधि और सिंक स्थिति बाइट पुष्टि करने के लिए किया जाता है.
- 7. जिटर परीक्षण ऑप्टिकल जिटर टोलारेंस, ऑप्टिकल औट्पुट जिटर, PDH ट्रीब्युटारि जिटर, पोइन्टर समायोजन जिटर और डी मैपिंग जिटर शामिल है.
- 8. नेटवर्क मैनेजमेन्ट मे फाल्ट मैनेजमेन्ट, प्रदर्शन मैनेजमेन्ट, विन्यास मैनेजमेन्ट, और सॉफ्टवेयर डाउनलोड करने और टेलीकॉम मैनेजमैंट नेटवर्क आदि शामिल है.

सबजेक्टीब:

- 1. आप SDH में जिटर और वैन्डर के बारे में क्या जानते हैं ?
- 2. सिंक्रनाइज़ेशन ग्णवता को मापने के मापदंडों क्या हैं ?
- 3. पथ सिंक्रनाइज़ेशन क्या है ?
- 4. जिटर और वैन्डर टेस्ट का उद्देश्य क्या हैं ?
- 5. SDH फंसन्ल टेस्ट के बारे में बताएं ?
- 6. घड़ी सिंक्रनाइज़ेशन को भेरिफाइ कैसे करते है ?
- 7. मैपिंग और डे-मैपिंग टेस्ट के बारे में बताएं ?
- 8. आप जिटर टेस्ट के बारे में बताएं ?

अध्याय 11

एस.डी.एच पर इथरनेट GFP, VCAT और LCAS

- 11.1 परिचय: इंटरनेट बाजार अधिक रेट से बढ़ रहा है. इथरनेट क्षेत्र का विस्तार एक बेसिक मुद्दा है. प्रयोग की आने वाली मौजूदा ट्रांसिमशन संसाधन क्या हैं ? सबसे अच्छा ट्रांसिमशन संसाधनों में से दुनिया में एस.डी.एच या WDM है. एस.डी.एच और संबंधित WDM (तरंगदैर्घ्य डिवीजन मल्टीप्लेक्स) ऑप्टिकल ट्रांसिमशन नेटवर्क भौतिक ब्रॉडबैंड IP की लेयर और बी ISDN के लिए नींव माना जाता है. एस.डी.एच हाल ही में दस वर्षों में दुनिया भर में लगाए गए हैं. एस.डी.एच या WDM के ऊपर (इथरनेट, फास्ट इथरनेट और Gigabit इथरनेट) इथरनेट फ्रेम एक निजी और सार्वजनिक नेटवर्क के भीतर LANs कनेक्ट करने के लिए एक सरल और सस्ती तकनीक है.
- 11.2 इथरनेट सेवाएं : इथरनेट लैन में कंप्यूटर नेटवर्किंग एक देशव्यापी ट्रांसिमशन है. सभी उद्ययोगों में डॉटा ट्राफिक इथरनेट के रूप में शुरू होता है और समाप्त भी होता है. यह अन्य नेटवर्क इंटरफेस की तुलना में आम तौर पर सस्ती और लागत प्रभावी इंटरफेस है. एक प्रसारण उन्मुख माध्यम के रूप में, इथरनेट IP के लिए अच्छा मेल खाते है . ईसकी बैंडविड्थ की 10 एम.बी.पी.एस से 10/ जीबी पी एस के पैमाने पर हो सकते हैं .इसके अलावा यह भौगोलिक रूप से स्वतंत्र है. इथरनेट सेवा प्रदाता नए डॉटा सेवाओं का विकास करने के लिए पोर्टफोलियों का विकास का आधार हो सकता है जैसे कि:
- 1. लैन इंटरकनेक्ट या ट्रान्सप्ररेंट लैन सेवा (टीएलएस)
- 2. इंटरनेट एक्सेस
- 3. इथरनेट निजी लाइन
- 4. आभासी निजी लैन सेवा वर्चुअल प्राइभेट LAN सेबा (VPLS).

ये प्रायमरी डॉटा सेवाओं स्टोरेज या प्रोटेकशन के लिए अन्य अधिक उच्च श्रेणी का IP प्रबंधित सेवाओं मैनेज सेबायें को जन्म दे सकते हैं .

11.3 एस.डी.एच पर इथरनेट सेबा (EOS) : सोनेट / एस.डी.एच वर्तमान में सबसे अधिक प्रचलित बेसिक ट्रांसिमशन सुविधा है.इथरनेट अब तक के सबसे लोकप्रिय उपयोगकर्ता डॉटा इंटरफेस है .इसलिए हम एस.डी.एच पर इथरनेट ले जाने के लिए कारगर तरीकें जरूरत है.

इथरनेट जैसे कि:

- √ बर्स्ट "फ्रेम (पैकेट) में आता है "
- √ 10, 100,1000एम.बी.पी.एस जैसी बनियादी रेट का उपयोग करता है.

जबिक एस.डी.एच में,

- √ स्थिर बिट रेट है
- ✓ विभिन्न रेट जैसे 1.6,2.176,6.748 एम.बी.पी.एस आदि के लिये डिजाइन किया गया है .

एस.डी.एच पर इथरनेट

जिन मानकों का हम प्रयोग करेंगे वे इस प्रकार हैं:

IEEE 802.3 : इथरनेट ISO 3309 : HDLC

RFC1661 : PPP (ex 1548)

RFC1662 : PPP in HDLC फ्रेमिंग (ex 1549)

RFC2615 : PoS (ex 1619)

G.707 : एस.डी.एच (नई सेक्सन 11 - VCAT)

G.709 : OTN **G.7041** : GFP

G.7042 : LCAS एस.डी.एच **G.7043** : VCAT for पी.डी.एच

X.85 : IP ओभर एस.डी.एच LAPS का उपयोग

X.86 : इथरनेट ओभर एस.डी.एच LAPS का उपयोग

अब हम एस.डी.एच पर इथरनेट (EOS)की आवश्यकता पर चर्चा करेंगे.

एस.डी.एच पर इथरनेट (EOS) आधारित सेवाओं ग्राहकों के लिए एक सरल, लचीला और लागत प्रभावी समाधान प्रदान करने के लिए मुख्य रूप से विकसित किया गया था. एक EOS ट्रांसिमशन बेसिकली निम्नलिखित महत्वपूर्ण मुद्दों के समाधान हेत् कार्य करता है.

ऑटो निगोसिएशन (AN): यह निगोसिएशन दो लिंक भागीदारों के बीच एक आम गति और ट्रांसिमशन के साधन का चयन करने के लिए है.

जेनेरिक फ़्रेमिंग प्रोसीजर (GFP): यह एस.डी.एच पे-लोड उत्पन्न करने के लिए इथरनेट फ्रेम को इनकॅप्स्यूलेट करने के लिए फ़्रेमिंग प्रोटोकॉल है.

वर्चुअल कॉनकॅटिनेशन (VCAT): यह बैंडविड्थ प्रावधान योजना है. यहां उच्च क्रम या निम्न क्रम क्रम के वर्च्अल कंटेनर को एस.डी.एच पेलोड मे बैंडविड्थ मैपिंग करने का प्रावधान है .

लिंक कॅपिसटी एडज्स्टमेंट स्कीम (LCAS): यह लिंक क्षमता के हिट लेस बैंडविड्थ एड्ज्सट्मेन्ट (एंड और डीलिट) के लिए एक योजना है .

लिंक इंटिग्रेटी (L.I): यह ट्रांसिमशन पॉइन्ट से पॉइन्ट के लिए है यह लाइब सुविधा पॉइन्ट से पॉइन्ट तक (क्लाइंट से क्लाइंट तक) लिंक की इंटिग्रेटी जाँच करता है और यदि इंटिग्रेटी का उल्लंघन कहीं भी लिंक में हो तो जबरदस्ती क्लाइंट को बैठा देता है .

फ्लो कंट्रोल : यह पैकेट द्राप से बचने के लिए रेट सेप करने का एक सिस्ट्म है.

ऑटो नेगोसियेशन: ऑटो नेगोसियेशन लिंक पार्टनरो कि क्षमताओं का पता लगाने का एक सुविधा है. यह एक लिंक सेक्सन के दोनों सिरों पर उपकरणों कि क्षमता, प्राप्ति स्वीकार और दोनों उपकरणों के कोमन मोड को समझने के लिए है.

11.4 इथरनेट फ्रेम फरमैट

7 बाइट	1 बाइट	6 बाइट	6 बाइट	2 बाइट					4 बाइट
	स्टार्ट फ़्रेम	डेस्टिने शन	सोर्स		Data / Pad				
प्रिएम्बेल	डिलि मिटर	MAC Add	MAC Add	તેં થ	DSAP	SSSP	CTRL	NLI	FCS

प्रिएम्बेल: यह ट्रांसमीटर और रिसीवर के बिच सिंक्रनाइज़ करने के लिए बिट्स की एक धारा है. प्रिएम्बेल बाइनरी 56 बिट्स से बना है जिसमे एक और शून्य की एक अल्टरनेट पैटर्न है.

स्टार्ट फ्रेम डिलिमिटर : इसका पैटर्न हमेशा 10101011 होता है और फ्रेम की शुरुआत में प्रयोग किया जाता है.

डेस्टिनेशन MAC: यह मशीन का MAC डॉटा का पता है. नेटवर्क इंटरफेस कार्ड (NIC) को अपनी MAC पते के लिए इस क्षेत्र की जाँच करता है.

सोर्स MAC: यह मशीन का ट्रान्समिटेड डॉटा का MAC की जाँच करता है .

इथरनेट फ़्रेम की लेंथ: इस बाइट्स में पूरी इथरनेट फ्रेम की लंबाई होती है. इस क्षेत्र में 0 से 65,535 के बीच कोई भी मूल्य हो सकता है, आम तौर पर सभी से सीरियल कनेक्शन के लिए अधिकतम ट्रांसिमशन फ्रेम आकार में होते हैं लेकिन अलग-अलग इथरनेट कार्ड के लिए यह मूल्य 1500, 9216 या 9600 हो सकता है. इथरनेट नेटवर्क इंटरनेट का उपयोग करने के लिए सीरियल उपकरणों का उपयोग होते हैं.

डॉटा: यहाँ डॉटा डाला जाता है. आप यदि इथरनेट पर आई.पी. चल रहे हैं तो आइ.पी. हेडर और डॉटा रखा जाता है. यह एक IEEE 802.3 फ्रेम के डॉटा/पैडिंग सेक्सन के भीतर चार विशिष्ट क्षेत्रों में निहित है.

DSAP - डेस्टिनेशन सर्विस एक्सेस प्वाइंट, SSAP - सोर्स सर्विस एक्सेस प्वाइंट

CTRL - इथरनेट ट्रांसिमशन के लिए कंट्रोल बिट्स, NLI - नेटवर्क लेयर इंटरफ़ेस

एफ.सी.एस.: यह फ्रेम चेक सिकुएन्स (एफ.सी.एस) है. यहाँ एक साइक्लिक रिडेंडेन्सी चेक (सी.आर.सी) का उपयोग करके गणना की जाती है. एफसीएस ईथरनेट फ्रेम में एरर का पता लगाता है तथा इसे क्षितिग्रस्त होने पर फ्रेम को अस्वीकार करने की अनुमित देता है.

11.5 इनकैप्सुलेशन तकनीक: यह एक एडाप्टेसन सिस्ट्म है जिसमे (एस.डी.एच पर ईथरनेट) EOS के मामले में ईथरनेट सेवा डॉटा, ट्रांसिमशन के लिए आवश्यक है.

आमतौर पर इस्तेमाल किया जा रहा इनकैप्सुलेशन तकनीक इस प्राकर है.

1 X.86-LAPS लिंक एक्सेस प्रोसिडियोर - एस.डी.एच लिंक का उपयोग प्रक्रिया - एस.डी.एच में इसे आई.टि.य्- टी सिफारिश X.86 में परिभाषित किया गया है.

2 GFP (जेनेरिक फ़्रेमिंग प्रोसिडियोर) इसे G.7041 में परिभाषित किया गया है .

एस.डी.एच पर इथरनेट

GFP कैसे LAPS से अलग है ?

यह ए.टी.एम के समान सेल डिलिनियेशन स्कीम का उपयोग करता है जबकी HDLC में फ्लैग्स का उपयोग होता है. भले ही फ्रेम के आकार छोटी बडी कयो न हो यह एक निश्चित ओवरहेड वहन करती है . ट्रांसिमिशन क्रम में पहले MSB है.

जेनेरिक फ़्रेमिंग प्रोटोकॉल (GFP): GFP एक टैक्नोलॉजी है जहां VC-n फ्रेम में ईथरनेट को मैप किया जाता है. यह एस.डी.एच में लेयर 2 मे एस.डी.एच/सिनेट के लिए सिगन्ल का एक स्टैंडर्ड मैपिंग/फ़्रेमिंग तकनीक प्रदान करता है.

जेनेरिक फ्रेमिंग प्रोटोकॉल के फायदे :

यह एंड से एंड तक एस.डी.एच पाथ के बीच इंटर नेटवर्किंग संबंध बनाने में मदद करता है. यह HDLC (हाइ लेबेल डॉटा लिंक कंट्रोल) के तुलना में अत्यंत कुशल प्रोटोकॉल है और यह एक निश्चित ओवरहेड बनाए रखता है .इसमे ट्राफिक मैनेजमेंट और QoS कंट्रोल काफी आसान हैं. यह HDLC से अधिक मजबूत और एररों की संभावनयें कम है, और एस.डी.एच के अलावा WDM, OTN (ऑप्टिकल ट्रांसिमिशन नेटवर्क) इंटरफेस के साथ संगत है.

जेनेरिक फ्रेमिंग प्रोटोकॉल के प्रकार:

जेनेरिक फ़्रेमिंग प्रोटोकॉल - एफ फ्रेम मोड - यह HDLC के लिए प्रत्यक्ष रिप्लेसमेंट है एक GFP एफ फ्रेम में पूरे क्लाइंट फ्रेम को मैप किया जा सकता है ,यह वैरिएबल लम्बाई के पैकेट होते है जो 10/100 एम.बी.पी.एस से 10 Gbps इथरनेट को समर्थन करता है.

जेनेरिक फ्रेमिंग प्रोटोकॉल -टी ट्रान्सपरेंट मोड - GFP- टी में डीलेता (latency) को कम कर देता है यह एक निश्चित लंबाई के पैकेट होते है, और पूरा ईथरनेट फ्रेम को मैप करना जरूरी नहीं होती है.यह 8 बी/ 10 बी ब्लॉक कोडित ग्राहकों का समर्थन करता है. यह एक ऑप्टिकल फाइबर में हाल्फ-डुप्लेक्स, सीरियल इंटरफ़ेस है, इसमे ईथरनेट, फाइबर चैनल, FICON (फाइबर कनेक्शन) और ESCON (एंटरप्राइज सिस्टम्स कनेक्शन) जो आईबीएम के व्दारा बनाई गई एक डेटा कनेक्शन है और आमतौर पर ऐसी डिस्क स्टोरेज और टेप ड्राइव के रूप में पेरिफेरल उपकरणों के लिए और उनके मेनफ्रेम कंप्यूटर से कनेक्ट करने के लिए प्रयोग किया जाता है. यह मूल रूप मे 10 एम.बी.पी.एस मे ओप्रेट होने के बाद, उसे 17 एम.बी.पी.एस में बढ़ा दिया गया है, वर्तमान में अधिकतम दूरी 43 किलोमीटर है.

जेनेरिक फ्रेमिंग प्रोटोकॉल फ्रेम फरमैट:

इथरनेट	IP/PPP	POS	RPR	FC	FICON	ESCON	बाकि क्लायेन्ट के सिगन्ल
फ्रेम मैप	r GFP			Specific ependent		ट्रान्सप	गरेंट मैप GFP
	GFP	Commo	n Aspec	t	(Client li	ndependent	:)
सो	नेट / एस.डी	.एच पाथ				OTN पाथ	

मैक्सिकम ट्रांसिमशन युनिट (MTU): ऑकटेट में GFP पे-लोड क्षेत्र का अधिकतम आकार 65535 बाइट्स है.

GFP फ्रेम के लिए दक्षता एफ़िसिऐंसी कैलकुलेशन:

GFP फ़्रेम की एफ़िसिऐंसी (η) = (इथर्नेट फ़्रेम में बाइट्स की संख्या)/ (इथरनेट फ़्रेम में बाइट्स की संख्या+GFPफ़्रेमिंग ओवर-हेड बाइट्स) जहाँ η (ईटा) = एफ़िसिऐंसी फ़ेक्टर

एंड से एंड तक डॉटा-रेट की कैलक्लेशन

एंड से एंड तक डॉटा-रेट = प्रदान की गई बैंड-विड्थ x (η) GFP फ़्रेम की एफ़िसिऐंसी

उदाहरण:

अगर 46 बाइट्स के डॉटा के लिए, ओवरहेड सूचना 18 बाइट्स को जोड़कर एक 64 बाइट्स की ईथरनेट फ्रेम बनाई जाती है. अब इस ईथरनेट फ्रेम में GFP हेडर 12 बाइट्स और जोड़े जायें तो GFP फ़्रेम की दक्षता का कॅलक्लेशन करें.

GFP फ़्रेम की एफ़िसिऐंसी (η) = (इथरनेट फ़्रेम में बाइट्स की संख्या/(इथरनेट फ़्रेम में बाइट्स की संख्या+ GFP फ़्रेमिंग ओवर-हेड बाइट्स)

इसिलिये GFP फ़्रेम की एफ़िसिऐंसी % (η) का प्रतिशत $\frac{(64) \times 100\%}{(64+12)}$ = 84.2%

एंड से एंड तक डॉटा-रेट कॅलकुलेशन :

एंड से एंड डॉटा-रेट = प्रदान की गई बैंड-विड्थ x (η) GFP फ्रेम की एफ़िसिऐंसी

एक 10 एम.बी.पी.एस इथरनेट डॉटा बनाने के लिये पाँच VC-12 प्रदान किये जाते हैं.

इसिलिये प्रदत्त बैंड-विड्थ = 5 x 2.176 एम.बी.पी.एस = 10.88एम.बी.पी.एस

84.2 % की GFP फ़्रेम की एफ़िसिऐंसी (η) के लिये छोर से छोर डॉटा-रेट = 10.88 एम.बी.पी.एस x 84.2% = 9.16 एम.बी.पी.एस

नोट: VC-12 में 34 बाइट्स शामिल हैं, इसिलिऐ 34 x 8000 फ़्रेम/s x 8 बिट्स या एक बाइट्स व्दारा VC-12 का डॉटा-रेट 2.176 एम.बी.पी.एस होता है.

एस.डी.एच पर इथरनेट

वर्च्युअल कॉनकॅटिनेशन (VCAT)

वर्च्युअल कॉनकॅटिनेशन एक विपरीत क्रम में मल्टीप्लेक्सिंग तकनीक (बाइट slicing भी कहते है) यह एस.डी.एच बैंड-विड्थ को ट्रांसमीटर छोर में लोजीक्ल ग्रुप मे बाटँता है जो स्वतंत्र रूप से पहुँचाया या रूट किया जा सके, और रिसीवर छोर पर कनटीगुयास एस.डी.एच बैंड-विड्थ में पुनर्संयोजन (मल्टीप्लेक्सिंग) किया जा सके.

वर्च्युअल कॉनकॅटिनेशन कनटीगुयास सिगन्ल को ब्रेक करता है और बैंड-विड्थ को टुकडा कर VCs, में ट्रांसिमशन करता है, ट्रांसिमशन के पोईन्ट बिंदु में यह VC रिकोम्बाइन होकर कनटीगुयास बैंडविड्थ बनता है.

वर्च्युअल कॉनकॅटिनेशन में ग्रेनुलारिटि (granularity) के फायदे :

एस.डी.एच बैंडविड्थ सही आकार के समूहों में विभाजन

Where to go with 10 MBit Ethernet?						
VC-Type	VC बैंडविड्थ	VC-पे लोड				
VC - 11	1664 kbit/s	1600 kbit/s				
VC - 12	2240 kbit/s	2176 kbit/s				
VC - 2	6848 kbit/s	6784 kbit/s				
VC - 3	48 960 kbit/s	48 384 kbit/s				
VC - 4	150 336 kbit/s	149 760 kbit/s				
VC - 4 - 4c	601 344 kbit/s	599 040 kbit/s				
VC - 4 - 16c	2 405 376 kbit/s	599 040 kbit/s				
VC - 4 - 64c	9 621 504 kbit/s	9 584 640 kbit/s				
VC - 4 - 256c	38 486 016 kbit/s	38 338 560 kbit/s				

चित्र. : वर्च्अल कॉनकॅटिनेशन - ग्रेन्लारिटि के फायदे

VCAT- के हायर ओडर और लोयर ओडर

हायर ओडर - VC-3 (48.384 एम.बी.पी.एस) या VC-4 (149.760एम.बी.पी.एस) Gigabit इथरनेट (1000 एम.बी.पी.एस).

लोयर ओडर - VC-12 (2.176 एम.बी.पी.एस) Fast इथरनेट (10/100 एम.बी.पी.एस)

वर्च्अल कॉनकॅटिनेशन के फायदे:

स्केलेबिलिटी (Scalability): वांछित डॉटा रेट और बैंडविड्थ अपव्यय से बचने के लिए छोटी छोटी टुकड़ों में वृद्धि किया जा सकता है. पारंपरिक कनटीगुयास कॉनकॅटिनेशन कड़ी में बड़ी आकार में वृद्धि होती है.

एफ़िसिएंसी: रूटींग और अधिक आसानी से एक नेटवर्क से दुसरे नेटवर्क में किया जा सकता है, मानक बैंडविड्थ से हटके मौजूदा नेटवर्क को अधिक उपयुक्त बनाता है.

अनुकूलता Compatibility: नेटवर्क का एंड नोड्स को कंटेनरों के बारे में पता कराने की आवश्यकता है जाहां पर कॉनकॅटिनेशन होता है और कोर नेटवर्क तत्वों ट्रांसपारेंट होता है.

रिसायलेंसी: इसमे लगभग सारे कॉनकॅटिनेशन ग्रुप के सदस्यों को एक नेटवर्क पर यथासंभव diversely रूटिंग कराइ जाती है. यदि ग्रुप का एक सदस्य खो जाता है तो कम बैंडविड्थ पर परिचालन चालू हो जाता है.

To cater for 10 Mbps Ethernet data 5 VC-12s are provisioned on a VCG

Differential Delay

Differential Delay Compensation

डीफ़्रेन्सीयल डीले : डीफ़्रेन्सीयल डीले बिभिन्न चैनलों के बीच समय के अंतर को मापता है जो एक सिगन्ल के लिए अधिकतम डीफ़्रेन्सीयल डीले के संबंध में अपने गंतव्य पर पहुंचने के लिए है .(Differential delay measures the difference in time among the channels of a multi channel with respect to the maximum differential delay allowed for a signal to arrive at its destination.) VCAT में रिसीवर के लिए स्टैंडर्ड डीले, 256 ms डीफ़्रेन्सीयल डीले है. अभ्यास में, डीफ़्रेन्सीयल डीले की अधिकतम राशि कार्यान्वयन विशिष्ट होती है.

एस.डी.एच पर इथरनेट

यदि डीफ़्रेन्सीयल डीले अधिक है, तो हम उस दिशा में डेटा की हानि होति है

उदाहरण: तेजस सिस्टम्स में:

TP01 कार्ड पर अधिकतम डीफ़्रेन्सीयल डीले 64 ms है

TR01 कार्ड पर अधिकतम डीफ़्रेन्सीयल डीले 50 ms है

LQ02 कार्ड पर अधिकतम डीफ़्रेन्सीयल डीले 48 to 56 ms है

LCAS (Link Capacity Adjustment Scheme) लिंक केपासिटी एडजस्टमेंट स्कीम:

LCAS एक **लिंक केपासिटी एडजस्टमेंट स्कीम है**. यह VCAT में बैंडविड्थ की कमी या वृद्धि को हिट-लेस कंट्रोल के व्दारा कंट्रोल करता है. LCAS एस.डी.एच-ट्रांसिमशन पाइप पर डेटा ट्रांसिमशन करने के लिए एक प्रोटोकॉल है. यह डिएनिमिकाली (VC-12/3/4) LCAS में एक VC ग्रुप में कंटेनर को जोड़ने या एक कंटेनर को हटाने से ट्राफिक प्रभावित नहीं होते है .

नोट: LCAS को काम करने के लिए VCAT आवश्यक है, लेकिन इसके ठीक विपरीत सच नहीं है.

सामान्य परिदृश्य: 10 एम.बी.पी.एस ईथरनेट डेटा को पूरा करने के लिए 5 VC-12 एक VCG पर प्रोभिजन किया जाता है.

एक VC -12 को हटाए जाने का परिदृश्य

लिंक केपासिटी एडजस्टमेंट स्कीम में प्रोटेकशन स्विधा:

इस 10 एमबीपीएस में ट्रैफ़िक 6 एमबीपीएस (3 VC- 12) ऊपरी रुट, और 4 एमबीपीएस (2 VC- 12) नीचे रुट इनग्रेस और इग्रेस नोड के बीच . फाल्ट की स्थिति में जो चित्र में दिखाया गया है, बैंडविड्थ 4 एमबीपीएस तक नीचे आ जाएगा ट्रैफ़िक बंद हुए बिना.

यह फाइबर कट होने पर कम से कम 4 एमबीपीएस तक सुरक्षा प्रदान करेगा पूरी सुरक्षा की तुलना में, और इसलिए यह एक सस्ता समाधान है असुरक्षित कनेक्शन की तुलना में.

फ्लो क्न्ट्रोल - "लीकी बकेट कंसेप्ट "

यदि VCG BW क्लायंट डाटा से कम है तो पाज्स फ्रेम 802.3x के मुताबिक पैदा होगा और सारे ट्रैफ़िक चोक हो जाता है . पाज्स फ्रेम के खतम होने के बाद ट्रैफ़िक पुन: शुरू हो जाता है .

लिंक इन्टीग्रीटी:

यह एंड टु एंड इथरनेट ट्रान्सपोर्ट कनेक्शन में फाल्ट को डिटेक्ट करता है. लिंक इन्टीग्रीटी इथरनेट पोर्ट को शक्ति से बंद कर देता है यदि निम्न दोष पता चलता है.

- नियर एंड इथरनेट लिंक फेलिउर
- SDH लिंक फेलिउर
- CSF/फार- एंड इथरनेट लिंक फेलिउर