### **ZLB** Imposed



| iter | f(x)     | step size | convergence<br>statistic | linearity<br>statistic |
|------|----------|-----------|--------------------------|------------------------|
| 0    | 60.56087 |           |                          |                        |
| 1    | 60.45977 | 0.250000  | 0.001669                 | -1.030333              |
| 2    | 60.45461 | 1.000000  | 8.53E-05                 | 1.191617               |
| 3    | 60.45429 | 0.500000  | 5.24E-06                 | -2.216615              |

unconstrained optimization (EViews) optimization type = committment simulation period: 2012Q3 - 2028Q2 loss evalation period: 2012Q3 - 2032q2 instrument setting period: 2012Q3 - 2027q2 max number of optimization iterations = 15 max number of line search steps per iteration = 20 convergence criteria = 1e-05 output control parameter = 3 compute instrument derivs? = yes instrument perturbation factor = 0.01 At iteration 4, convergence unconstrained optimization (EViews) optimization type = committment simulation period: 2012Q3 - 2028Q2 loss evalation period: 2012Q3 - 2032q2 instrument setting period: 2012Q3 - 2027q2 max number of optimization iterations = 15 max number of line search steps per iteration = 20 convergence criteria = 1e-05 output control parameter = 3 compute instrument derivs? = yes instrument perturbation factor = 0.01 At iteration 3, convergence

| iter | f(x)     | step size | convergence<br>statistic | linearity<br>statistic |
|------|----------|-----------|--------------------------|------------------------|
| 0    | 69.76543 |           |                          |                        |
| 1    | 60.82530 | 1.000000  | 0.128146                 | 0.038080               |
| 2    | 60.67617 | 1.000000  | 0.002452                 | 0.706729               |
| 3    | 60.67268 | 0.500000  | 5.76E-05                 | -27.52223              |
| 4    | 60.67268 | 0.001953  | 2.33E-08                 | -1.626453              |

unconstrained optimization (EViews) optimization type = committment simulation period: 2012Q3 - 2028Q2 loss evalation period: 2012Q3 - 2032q2 instrument setting period: 2012Q3 - 2027q2 max number of optimization iterations = 15 max number of line search steps per iteration = 20 convergence criteria = 1e-05 output control parameter = 3 compute instrument derivs? = yes instrument perturbation factor = 0.01 At iteration 4, convergence

### **ZLB** Imposed



| iter | f(x)     | step size | convergence<br>statistic | linearity<br>statistic |
|------|----------|-----------|--------------------------|------------------------|
| 0    | 131.5969 |           |                          |                        |
| 1    | 125.0799 | 1.000000  | 0.049523                 | 0.681988               |
| 2    | 121.2225 | 1.000000  | 0.030839                 | 0.043325               |
| 3    | 121.1749 | 1.000000  | 0.000392                 | 1.317159               |
| 4    | 121.1706 | 0.500000  | 3.60E-05                 | -1.846215              |
| 5    | 121.1679 | 1.000000  | 2.17E-05                 | 0.639983               |
| 6    | 121.1679 | 0.001953  | 1.73E-07                 | -1.156172              |

unconstrained optimization (EViews) optimization type = committment simulation period: 2012Q1 - 2027Q4 loss evalation period: 2012Q1 - 2031q4 instrument setting period: 2012Q1 - 2026q4 max number of optimization iterations = 15 max number of line search steps per iteration = 20 convergence criteria = 1e-05 output control parameter = 3 compute instrument derivs? = yes instrument perturbation factor = 0.01 At iteration 6, convergence

| iter | f(x)     | step size | convergence<br>statistic | linearity<br>statistic |
|------|----------|-----------|--------------------------|------------------------|
| 0    | 120.8633 |           |                          |                        |
| 1    | 120.6672 | 0.250000  | 0.001622                 | -1.062370              |
| 2    | 120.6485 | 1.000000  | 0.000155                 | 0.614020               |
| 3    | 120.6462 | 0.500000  | 1.89E-05                 | -1.744704              |
| 4    | 120.6382 | 1.000000  | 6.61E-05                 | -0.864682              |
| 5    | 120.6293 | 1.000000  | 7.39E-05                 | -0.683508              |
| Ğ    | 120.6291 | 0.000977  | 2.31E-06                 | -1.193168              |

unconstrained optimization (EViews) optimization type = committment simulation period: 2012Q1 - 2027Q4 loss evalation period: 2012Q1 - 2031q4 instrument setting period: 2012Q1 - 2026q4 max number of optimization iterations = 15 max number of line search steps per iteration = 20 convergence criteria = 1e-05 output control parameter = 3 compute instrument derivs? = yes instrument perturbation factor = 0.01 At iteration 6, convergence unconstrained optimization (EViews) optimization type = committment simulation period: 2012Q1 - 2027Q4 loss evalation period: 2012Q1 - 2027Q4 loss evalation period: 2012Q1 - 2031q4 instrument setting period: 2012Q1 - 2026q4 max number of optimization iterations = 15 max number of line search steps per iteration = 20 convergence criteria = 1e-05 output control parameter = 3 compute instrument derivs? = yes instrument perturbation factor = 0.01 At iteration 6, convergence

### Vector Autoregression Estimates

Vector Autoregression Estimates

Date: 06/26/20 Time: 15:34

Sample (adjusted): 1977Q4 2012Q1

Included observations: 138 after adjustments

Standard errors in ( ) & t-statistics in [ ]

|           | LUR        | PIECI      | PIC4       | RFF        | EPOP       | RGDPCI    |
|-----------|------------|------------|------------|------------|------------|-----------|
| LUR(-1)   | 1.294200   | -0.823522  | -0.714499  | -0.734297  | -0.002826  | -1.39593  |
|           | (0.13156)  | (0.61596)  | (0.29037)  | (0.52296)  | (0.00120)  | (0.48394  |
|           | [ 9.83725] | [-1.33697] | [-2.46063] | [-1.40411] | [-2.35627] | [-2.8845  |
| LUR(-2)   | -0.386857  | 0.630514   | 0.540309   | 0.810052   | 0.002989   | 1.60897   |
|           | (0.12582)  | (0.58909)  | (0.27771)  | (0.50015)  | (0.00115)  | (0.4628   |
|           | [-3.07463] | [ 1.07032] | [ 1.94562] | [ 1.61962] | [ 2.60574] | [ 3.4763  |
| PIECI(-1) | -0.006570  | 0.348732   | 0.082684   | 0.154852   | 0.000236   | 0.21312   |
|           | (0.01888)  | (0.08841)  | (0.04168)  | (0.07507)  | (0.00017)  | (0.0694   |
|           | [-0.34793] | [ 3.94432] | [ 1.98381] | [ 2.06290] | [ 1.36947] | [ 3.06806 |
| PIECI(-2) | -0.037765  | 0.189609   | 0.077046   | 0.055392   | -0.000156  | 0.14539   |
|           | (0.01961)  | (0.09183)  | (0.04329)  | (0.07796)  | (0.00018)  | (0.0721   |
|           | [-1.92553] | [ 2.06487] | [ 1.77985] | [ 0.71050] | [-0.87080] | [ 2.0152  |
| PIC4(-1)  | -0.013365  | 0.374868   | 1.149839   | 0.018779   | 0.000159   | -0.31493  |
|           | (0.03953)  | (0.18507)  | (0.08724)  | (0.15713)  | (0.00036)  | (0.1454   |
|           | [-0.33810] | [ 2.02557] | [ 13.1797] | [ 0.11952] | [ 0.44065] | [-2.1659  |
| PIC4(-2)  | 0.039456   | -0.094402  | -0.376336  | 0.068231   | -0.000265  | -0.03344  |
|           | (0.04114)  | (0.19263)  | (0.09081)  | (0.16354)  | (0.00038)  | (0.1513   |
|           | [ 0.95902] | [-0.49008] | [-4.14434] | [ 0.41720] | [-0.70682] | [-0.2210  |
| RFF(-1)   | 0.037479   | 0.363607   | 0.030496   | 0.867444   | -9.30E-06  | 0.05860   |
|           | (0.02489)  | (0.11652)  | (0.05493)  | (0.09893)  | (0.00023)  | (0.0915   |
|           | [ 1.50596] | [ 3.12052] | [ 0.55519] | [ 8.76838] | [-0.04100] | [ 0.64020 |
| RFF(-2)   | -0.016582  | -0.308698  | -0.015740  | -0.029065  | 9.76E-06   | -0.06825  |
|           | (0.02410)  | (0.11281)  | (0.05318)  | (0.09578)  | (0.00022)  | (0.0886   |
|           | [-0.68820] | [-2.73636] | [-0.29597] | [-0.30345] | [ 0.04444] | [-0.7700  |

# Vector Autoregression Estimates

| EPOP(-1)                   | -30.31577  | -115.0199  | -22.33454  | 116.3693   | 1.138767   | 65.71108   |
|----------------------------|------------|------------|------------|------------|------------|------------|
|                            | (13.8633)  | (64.9073)  | (30.5981)  | (55.1076)  | (0.12640)  | (50.9958)  |
|                            | [-2.18676] | [-1.77207] | [-0.72993] | [ 2.11168] | [ 9.00888] | [ 1.28856] |
|                            |            |            |            |            |            |            |
| EPOP(-2)                   | 25.89335   | 101.3975   | 5.197218   | -105.4061  | -0.154519  | -54.65254  |
|                            | (13.7092)  | (64.1855)  | (30.2579)  | (54.4948)  | (0.12500)  | (50.4287)  |
|                            | [ 1.88876] | [ 1.57976] | [ 0.17176] | [-1.93424] | [-1.23616] | [-1.08376] |
|                            |            |            |            |            |            |            |
| RGDPCH(-1)                 | -0.049126  | 0.087703   | -0.064762  | -0.194337  | 0.000393   | 0.775941   |
|                            | (0.02649)  | (0.12403)  | (0.05847)  | (0.10530)  | (0.00024)  | (0.09745)  |
|                            | [-1.85443] | [ 0.70711] | [-1.10763] | [-1.84550] | [ 1.62648] | [ 7.96277] |
|                            |            |            |            |            |            |            |
| RGDPCH(-2)                 | 0.019366   | -0.086549  | -0.006706  | 0.095680   | -6.24E-05  | -0.175304  |
|                            | (0.02203)  | (0.10314)  | (0.04862)  | (0.08757)  | (0.00020)  | (0.08104)  |
|                            | [ 0.87907] | [-0.83912] | [-0.13791] | [ 1.09260] | [-0.31072] | [-2.16326] |
|                            |            |            |            |            |            |            |
| С                          | 3.383660   | 10.32109   | 11.82503   | -7.260960  | 0.007799   | -7.403471  |
|                            | (2.39363)  | (11.2068)  | (5.28304)  | (9.51480)  | (0.02182)  | (8.80486)  |
|                            | [ 1.41361] | [ 0.92097] | [ 2.23830] | [-0.76312] | [ 0.35735] | [-0.84084] |
| R-squared                  | 0.984026   | 0.823807   | 0.962504   | 0.955436   | 0.989757   | 0.866175   |
| Adj. R-squared             | 0.982492   | 0.806893   | 0.958904   | 0.951158   | 0.988774   | 0.853328   |
| Sum sq. resids             | 5.986799   | 131.2339   | 29.16414   | 94.59797   | 0.000498   | 81.00793   |
| S.E. equation              | 0.218848   | 1.024632   | 0.483025   | 0.869933   | 0.001995   | 0.805024   |
| F-statistic                | 641.6748   | 48.70420   | 267.3905   | 223.3310   | 1006.539   | 67.42118   |
| Log likelihood             | 20.68756   | -192.3447  | -88.56588  | -169.7579  | 668.9443   | -159.0568  |
| Akaike AIC                 | -0.111414  | 2.976011   | 1.471969   | 2.648665   | -9.506439  | 2.493576   |
| Schwarz SC                 | 0.164342   | 3.251767   | 1.747725   | 2.924421   | -9.230683  | 2.769332   |
| Mean dependent             | 6.455818   | 4.330702   | 3.396180   | 5.859617   | 0.614652   | 2.702255   |
| S.D. dependent             | 1.653967   | 2.331679   | 2.382713   | 3.936315   | 0.018833   | 2.102009   |
|                            |            |            |            |            |            |            |
| Determinant resid covaria  |            | 5.30E-09   |            |            |            |            |
| Determinant resid covaria  | ance       | 2.93E-09   |            |            |            |            |
| Log likelihood             |            | 180.8672   |            |            |            |            |
| Akaike information criteri | on         | -1.490828  |            |            |            |            |
| Schwarz criterion          |            | 0.163706   |            |            |            |            |
| Number of coefficients     |            | 78         |            |            |            |            |

Forecast Evaluation Date: 06/26/20 Time: 15:37 Sample: 2012Q3 2125Q4 Included observations: 454

| Variable | Inc. obs. | RMSE     | MAE      | MAPE     | Theil    |
|----------|-----------|----------|----------|----------|----------|
| EPOP     | 454       | 0.004191 | 0.003683 | 0.609321 | 0.003467 |
| LUR      | 454       | 2.259297 | 2.219402 | 34.82790 | 0.213862 |
| PIC4     | 454       | 1.207287 | 1.097640 | 34.93385 | 0.239403 |
| PIECI    | 454       | 0.835141 | 0.679659 | 16.57626 | 0.114123 |
| RFF      | 71        | 2.683382 | 2.594165 | 52.34249 | 0.362176 |
| RGDPCH   | 454       | 0.852552 | 0.838776 | 30.83099 | 0.184688 |

RMSE: Root Mean Square Error MAE: Mean Absolute Error MAPE: Mean Absolute Percentage Error Theil: Theil inequality coefficient















### Response to Cholesky One S.D. (d.f. adjusted) Innovations



## **VAR Residuals**











