

Mathematical modelling simulation of nanotheranostics induced hyperthermia and heat diffusion simulation in water medium.

Final Project Report.

Mentor, Prof.Dr.Dmitry Ivanov.

By,
Kalith M Ismail,
Graduate Student,
Biomedical Nanotechnology
PhysBio_MEPhI_NRNU,
Moscow_Russian_Federation.

Aim:

Mathematical modelling simulation of nanotheranostics induced hyperthermia and heat diffusion simulation in water medium.

Theory:

- Local surface plasmon resonance [LSPR] effect is induced by stimulating the nanoparticle with laser light irradiation.
- Mie scattering theory helps to mathematically analyze the absorbtion cross section of the nanoparticle.
- FDTD theory derives the absorbed power of laser irradiation into the nanoparticle.
- Heat diffusion is devised based on fourier heat diffusion algorithm with a boundary condition of constant temperature to emulate the human body temperature in macroscopic scale.

Mathatical derivations are described in detail on the attachement named as Algorithm_derivation.

Objective:

- Create crystal structure of nanoparticle with experimentally defined lattice structure.
- Prepare the codes based on the algorithm derived for LSPR and analyze the result with nanoparicles of different nature.
- Prepare the codes for Heat diffusion based on Derived algorithm and run the simulation.
- Analyze the Results of respective experiments.

Softwares Required:

- Charmm GUI.
- Jupyter Notebook and python.
- Tecplot_360.
- Spyder_GUI.

Sample Nanoparticle used on study:

Material: Gold Nanoparticle.

Size: 2nm, 5nm, 10nm, 15nm, 20nm.

Medium: Water.

Results:

Crystal Generation:

Lattice Structure of Au Nanoparticle: Wulff Construction. [100-110-111]

Lattice Structure of complete system: [Water molecules (Tip3) and Au Nps]

Lattice Structure of complete system: [Placement Au Nps in water medium]

[Nanoparticle- Yellow Colour; Water medium – Violet Colour]

Specification of crystal used for final study:

• Size of Nanoparticle : 4nm

• Size of complete crystal: 14nm

Note : Nanoparticle is placed in the middle of the crystal [5nm from

the edge of the crystal]

Size Variants:

Dependance of size with temperature change:

Material: Gold Nanoparticle.

Size: 2nm, 5nm, 10nm, 15nm, 20nm.

Boundary Condition:

To emulate a human body temperature in macroscopic scale the boundary condition is set at 310.15 K.

$$T|_{X=L} = T_f$$

 $T_f = 310.15 \text{ K}$

Heating Of Nanoparticle by laser irradiation:

Heat Diffusion:

Thermal Diffusion Calucluation.

Air medium:

$$\alpha$$
 = 1.9494 * 10⁻³ A²/as

Water medium:

$$\alpha$$
 = 1.4555 * 10⁻⁵ A²/as

Gold medium:

$$\alpha$$
 = 1.26 * 10⁻² A²/as

[Calculations of thermal diffusion coefficients attached in the name of "Calculations"]

Specification:

 $\dot{n}x = ny = nz = 140 + 2[boundary]$ Angstroms

dx = dy = dz = 1 Angstrom

dt = 1as

T = 1000000as

[Timescaled view of heat diffusion in water medium id attached in video form]

Observation:

- Comparative study of size variants reveals the gradual reduction in tempereature change.
- The timestep is practiced at attosecond scale to satisfy the 'Neumann stability condition'.
- The diffusion is acheived maximum at 1000000as step beyond which the temperature change is neglible to acheive hyperthermia in the surrounding medium.
- The test used 4nm NP to optimize the test by not including large atom clusters from large nanoparticle size.

References:

- Gold nanocrystals with variable index facets as highly effective cathode catalysts for lithium-oxygen batteries.-Dawei Su, Shixue Dou and Guoxiu Wang.
- FDTD simulation of the optical properties for gold nanoparticles.-Lin Cheng, Guixian Zhu, Gannan Liu and Lianging Zhu.
- Molecular Dynamics Simulation of Heat Transfer from a Gold Nanoparticle to a Water Pool Xiaoling Chen, Antonio Munjiza, Kai Zhang, and Dongsheng Wen.
- Exploring the Structure–Activity Relationship on Platinum Nanoparticles.-<u>Laura Braunwarth</u>, <u>Christoph Jung & Timo Jacob</u>