Technische Universität Berlin Fakultät II – Institut für Mathematik Böse, Penn-Karras, Schneider

 $\begin{array}{c} {\rm WS} \ 11/12 \\ 22.02.2012 \end{array}$

Februar – Klausur Analysis II für Ingenieure

Name:	Forname:				
MatrNr.:	Studiengang:				
Die Lösungen sind in Reinschrift auf A4 Bl Klausuren können nicht gewertet werden. Bea suren ebenfalls nicht gewertet werden.	_			_	
Die Klausur besteht aus zwei Teilen, einem Rechen- und einem Verständnisteil. Geben Sie im Rechenteil immer den vollständigen Rechenweg und im Verständnisteil, wenn nichts anderes gesagt ist, immer eine kurze Begründung an.					
Die Bearbeitungszeit beträgt 90 Minuten.					
Die Gesamtklausur ist mit 30 von 60 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindestens 10 von 30 Punkten erreicht werden.					
Korrektur					
		1	2	3	\sum
		4	5	6	Σ

Rechenteil

1. Aufgabe 9 Punkte

Sei $M:=\{(x,y,z)\,|\,x^2+y^2+z^2\leq 1,z\geq 0\},\,S:=\partial M.$ Berechnen Sie $\int\int_S \vec{v}\cdot d\vec{O}$ mit Hilfe des Satzes von Gauß, wobei

$$\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3, \quad (x, y, z) \mapsto \begin{pmatrix} z^2 x \\ y \\ \frac{1}{2} x y z^2 \end{pmatrix}.$$

2. Aufgabe 12 Punkte

Geben Sie alle lokalen Extremalstellen von f an und untersuchen Sie diese auf die Art (lokales Minimum/Maximum)! Hierbei ist $f: \mathbb{R}^3 \to \mathbb{R}, \quad (x,y,z) \mapsto xy^2 + x^2 - 2xy - 3x + 4 + z^2$.

3. Aufgabe 9 Punkte

Berechnen Sie ein Potential von \vec{v} sowie das Wegintegral $\int_{\vec{\gamma}} \vec{v} \cdot \vec{ds}$, wobei

$$\vec{\gamma}: [0,\pi] \to \mathbb{R}^3, \quad t \mapsto \begin{pmatrix} \sqrt{3+\frac{5t}{\pi}} \\ \sin(2t) \\ \pi \sin\left(\frac{t}{2}\right) \end{pmatrix}, \quad \vec{v}: \mathbb{R}^3 \to \mathbb{R}^3, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 4(x^3+x) \\ \frac{zy}{y^2+1} \\ \frac{1}{2}\ln(y^2+1) - 2\cos z \sin z \end{pmatrix}.$$

Verständnisteil

4. Aufgabe 9 Punkte

Sei
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $(x,y) \mapsto \begin{cases} ye^x & \text{falls } x > 0 \\ 0 & \text{falls } x \le 0. \end{cases}$

Untersuchen Sie f auf partielle Differenzierbarkeit. Geben Sie die partiellen Ableitungen dort an, wo diese existieren.

5. Aufgabe 12 Punkte

Bestimmen Sie den maximalen Definitionsbereich $D \subset \mathbb{R}^2$ von $f(x,y) = (1-x^2)\ln(1-x^2)$. Bestimmen Sie den Rand ∂D von D. Ist D beschränkt? Bestimmen Sie eine stetige Funktion $g: D \cup \partial D \to \mathbb{R}$ so, dass g(x,y) = f(x,y) für alle $(x,y) \in D$.

6. Aufgabe 9 Punkte

Sei $S \subset \mathbb{R}^2$ die beschränkte Menge, die von $\{(t,0) \in \mathbb{R}^2 \mid t \in [0,2\pi]\}$ und der Kurve

$$\vec{\gamma}: [0, 2\pi] \to \mathbb{R}^2, \quad \vec{\gamma}(\varphi) = \begin{pmatrix} \varphi \cos \varphi \\ \varphi \sin \varphi \end{pmatrix}$$

berandet wird. Zeichnen Sie die Kurve $\vec{\gamma}$ und berechnen Sie den Flächeninhalt von S! Hinweis: Polarkoordinaten!