

Open Data Tourisme en train

> Comment faciliter et encourager le tourisme en train en France?

Réalisé par:

Elsa Catteau

Safia Zarri Jabri

Charlotte Prouzet

1) Liste-des-gares.csv

• Code_uic

- Rg_troncon
- IdGaia

• C_GEO

• Libelle

• Pk

• X_L93

• Geo_Point

Fret

Commune

• Y_L93

Geo_Shape

- Voyageurs
- Département
- X_WGS84

- Code_ligne
- IdRéseau

• Y_WGS84

- > Format csv
- > 3884 lignes (gares étudiées)
- > 18 colonnes (features)
- > Types de données : variables numériques catégorielles binaires identifiants géométriques

- Code_uic
- Libelle
- Fret
- Voyageurs
- Code_ligne

- Rg_troncon
- Pk
- Commune
- Département
- IdRéseau

- IdGaia
- X_L93
- Y_L93
- X_WGS84
- seau Y_WGS84

- C_GEO
- Geo_Point
- Geo_Shape

- > Format csv
- > 3884 lignes (gares étudiées)
- > 18 colonnes (features)
- > Types de données : variables numériques catégorielles binaires identifiants géométriques

- Code_uic
- Libelle
- Fret
- Voyageurs
- Code_ligne

- Rg_troncon
- Pk
- Commune
- Département
- gne IdRéseau

- IdGaia
- X_L93
- Y_L93
- X_WGS84
- Y_WGS84

- C_GEO
- Geo_Point
- Geo_Shape

- > Format csv
- > 3884 lignes (gares étudiées)
- > 18 colonnes (features)
- > Types de données : variables numériques catégorielles binaires identifiants géométriques

- Code_uic
- Libelle
- Fret
- Voyageurs
- Code_ligne

- Rg_troncon
- Pk
- Commune
- Département
- IdRéseau

- IdGaia
- X_L93
- Y_L93
- X_WGS84
- Y_WGS84

- C_GEO
- Geo_Point
- Geo_Shape

- > Format csv
- > 3884 lignes (gares étudiées)
- > 18 colonnes (features)
- > Types de données : variables numériques catégorielles binaires identifiants géométriques

- Code_uic
- Libelle
- Fret
- Voyageurs
- Code_ligne

- Rg_troncon
- Pk
- Commune
- Département
- IdRéseau

- IdGaia
- X_L93
- Y_L93
- X_WGS84
- Y_WGS84

- C_GEO
- Geo_Point
- Geo_Shape

- > Format csv
- > 3884 lignes (gares étudiées)
- > 18 colonnes (features)
- > Types de données : variables numériques catégorielles binaires identifiants géométriques

- Code_uic
- Libelle
- Fret
- Voyageurs
- Code_ligne

- Rg_troncon
- Pk
- Commune
- Département
- IdRéseau

- IdGaia
- X_L93
- Y_L93
- X_WGS84
- Y_WGS84

- C_GEO
- Geo_Point
- Geo_Shape

- > Format csv
- > 3884 lignes (gares étudiées)
- > 18 colonnes (features)
- > Types de données : variables numériques catégorielles binaires identifiants géométriques

1) Liste-des-gares.csv

```
Code_uic
Rg_troncon
IdGaia
C_GEO
Libelle
Pk
X_L93
Geo_Point
Y_L93
Geo_Shape
Voyageurs
Département
X_WGS84
Code_ligne
IdRéseau
Y_WGS84
```

- > Format csv
- > 3884 lignes (gares étudiées)
- > 18 colonnes (features)
- > Types de données : variables numériques catégorielles binaires identifiants géométriques

FILTRAGE: 1. Sélection des features

1) Liste-des-gares.csv

```
Code_uic
Rg_troncon
Libelle
Pk
X_L93
Geo_Point
Y_L93
Geo_Shape
Voyageurs
Département
X_WGS84
Code_ligne
IdRéseau
Y_WGS84
```

- > Format csv
- > 3884 lignes (gares étudiées)
- > 18 colonnes (features)
- > Types de données : variables numériques catégorielles binaires identifiants géométriques

FILTRAGE: 1. Sélection des features

2. Suppression des doublons

```
Code_uic
Rg_troncon
IdGaia
C_GEO
Libelle
Pk
X_L93
Geo_Point
Y_L93
Geo_Shape
Voyageurs
Département
X_WGS84
Code_ligne
IdRéseau
Y_WGS84
```

- > Format csv
- > 3884 lignes (gares étudiées)
- > 18 colonnes (features)
- > Types de données : variables numériques catégorielles binaires identifiants géométriques
 - FILTRAGE: 1. Sélection des features
 - 2. Suppression des doublons
 - 3. Filtre sur "Libelle": (suppression des tirets, accents et changement de "Charles" par "CDG")

2) Tgvmax.csv

• Date

• Destination_IATA

• Train_no

• Origine

• Entity

Destination

Axe

- Heure_depart
- Origine_IATA
- Heure_arrivee

- > Format csv
- > 377621 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables temporelles catégorielles binaires identifiants

2) Tgvmax.csv

- Date
- Destination_IATA • Origine
- Train_no

 Entity Axe

- Destination
- Origine_IATA
- Heure_arrivee

• Heure_depart

- > Format csv
- > 377621 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables temporelles catégorielles binaires identifiants

2) Tgvmax.csv

- Date
- Train_no
- Entity
- Axe

- Destination_IATA
- Origine
- Destination
- Heure_depart
- Origine_IATA • Heure_arrivee

- > Format csv
- > 377621 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables temporelles catégorielles binaires identifiants

2) Tgvmax.csv

- Date
- Train_no
- Entity
- Axe
- Origine_IATA

- Destination_IATA
- Origine
- Destination
- Heure_depart
- Heure_arrivee
- > Format csv
- > 377621 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables temporelles binaires catégorielles identifiants

2) Tgvmax.csv

- Date
- Train_no
- Entity
- Axe
- Origine_IATA

- Destination_IATA
- Origine
- Destination
- Heure_depart
- Heure_arrivee

- > Format csv
- > 377621 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables temporelles binaires catégorielles identifiants

2) Tgvmax.csv

- Date
- Train_no
- Entity
- Axe

- Destination_IATA
- Origine
- Destination
- Heure_depart
- Origine_IATA • Heure_arrivee
- > Format csv
- > 377621 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables temporelles binaires catégorielles identifiants

FILTRAGE: 1. Suppression des trajets internationaux

2) Tgvmax.csv

• Date

- Destination_IATA
- Disponibilité de places MAX JEUNE et MAX SENIOR

- Train_no
 - Origine
- Entity

Destination

- AxeHeure_depart
- Origine_IATA Heure_arrivee

- > Format csv
- > 377621 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables temporelles catégorielles binaires identifiants
 - 1. Suppression des trajets internationaux **FILTRAGE:**
 - 2. Sélection des features

2) Tgvmax.csv

• Date

- Destination_IATA

- Train_no
- Origine
- Entity

Destination

- AxeHeure_depart
- Origine_IATA Heure_arrivee

- > Format csv
- > 377621 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables temporelles binaires catégorielles identifiants
 - **FILTRAGE:**
- 1. Suppression des trajets internationaux
- 2. Sélection des features
- 3. Filtre sur Origine : (suppression des parenthèses, tirets et accents)
 - > exemple: "Paris (intramuros)" devient "Paris"

- Transporteur
- Origine
- Origine_uic
- Destination
- Destination_uic

- Distance entre les gares
- Train Empreinte carbone (kgCO2e)
- Autocar longue distance Empreinte carbone (kgCO2e)
- Avion Empreinte carbone (kgCO2e)
- Voiture électrique (2,2 pers.) Empreinte carbone (kgCO2e)
- Voiture thermique (2,2 pers.) Empreinte carbone (kgCO2e)

- > Format csv
- > 119 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables numériques catégorielles identifiants

- Transporteur
- Origine
- Origine_uic
- Destination
- Destination_uic

- Distance entre les gares
- Train Empreinte carbone (kgCO2e)
- Autocar longue distance Empreinte carbone (kgCO2e)
- Avion Empreinte carbone (kgCO2e)
- Voiture électrique (2,2 pers.) Empreinte carbone (kgCO2e)
- Voiture thermique (2,2 pers.) Empreinte carbone (kgCO2e)

- > Format csv
- > 119 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables numériques catégorielles identifiants

- Transporteur
- Origine
- Origine_uic
- Destination
- Destination_uic

- Distance entre les gares
- Train Empreinte carbone (kgCO2e)
- Autocar longue distance Empreinte carbone (kgCO2e)
- Avion Empreinte carbone (kgCO2e)
- Voiture électrique (2,2 pers.) Empreinte carbone (kgCO2e)
- Voiture thermique (2,2 pers.) Empreinte carbone (kgCO2e)

- > Format csv
- > 119 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables numériques catégorielles identifiants

- Transporteur
- Origine
- Origine_uic
- Destination
- Destination_uic

- Distance entre les gares
- Train Empreinte carbone (kgCO2e)
- Autocar longue distance Empreinte carbone (kgCO2e)
- Avion Empreinte carbone (kgCO2e)
- Voiture électrique (2,2 pers.) Empreinte carbone (kgCO2e)
- Voiture thermique (2,2 pers.) Empreinte carbone (kgCO2e)

- > Format csv
- > 119 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables numériques catégorielles identifiants

- 3) emission-co2-perimetre-complet.csv
 - Transporteur
 - Origine
 - Origine_uic
 - Destination
 - Destination_uic

- Distance entre les gares
- Train Empreinte carbone (kgCO2e)
- Autocar longue distance Empreinte carbone (kgCO2e)
- Avion Empreinte carbone (kgCO2e)
- Voiture électrique (2,2 pers.) Empreinte carbone (kgCO2e)
- Voiture thermique (2,2 pers.) Empreinte carbone (kgCO2e)

- > Format csv
- > 119 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables numériques catégorielles identifiants

FILTRAGE: 1. Suppression des transporteurs différents de "TGV"

- Origine
- Destination

- Transporteur Distance entre les gares
 - Train Empreinte carbone (kgCO2e)
- Origine_uic Autocar longue distance Empreinte carbone (kgCO2e)
 - Avion Empreinte carbone (kgCO2e)
- Destination_uic Voiture électrique (2,2 pers.) Empreinte carbone (kgCO2e)
 - Voiture thermique (2,2 pers.) Empreinte carbone (kgCO2e)

- > Format csv
- > 119 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables numériques catégorielles identifiants
 - FILTRAGE: 1. Suppression des transporteurs différents de "TGV"
 - 2. Sélection des features

- Origine
- Destination

- Transporteur Distance entre les gares
 - Train Empreinte carbone (kgCO2e)
- Origine_uic Autocar longue distance Empreinte carbone (kgCO2e)
 - Avion Empreinte carbone (kgCO2e)
- Destination_uic Voiture électrique (2,2 pers.) Empreinte carbone (kgCO2e)
 - Voiture thermique (2,2 pers.) Empreinte carbone (kgCO2e)

- > Format csv
- > 119 lignes (trajets étudiées)
- > 11 colonnes (features)
- > Types de données : variables numériques catégorielles identifiants
 - FILTRAGE: 1. Suppression des transporteurs différents de "TGV"
 - 2. Sélection des features
 - 3. Filtre sur "Origine": (suppression des tirets, accents et changement de "Charles" par "CDG")

II. Fusion de nos dataset filtrés

FILTRAGE: Sélection des features et suppression des doublons

>> fusion_avec_emission.csv

Origine	longitude_origine	latitude_origine	Destination	longitude_destination	latitude_destination	Heure_depart	Heure_arrivee	Distance entre les gares	Train - Empreinte carbone (kgCC	Autocar longue distance	Avior	Voiture thermique (2,2
PARIS	2.2806439225378	48.8530378277834	REIMS	4.022706051740367	49.23341625486098	18:28	19:14	146.156	0.4238523999999999	5.2025		15.631
PARIS	2.2806439225378	48.8530378277834	CHAMBERY	5.919644744721905	45.57190136351876	20:37	23:33	531.951	1.5426579	19.6995		61.5538
PARIS	2.2806439225378	48.8530378277834	ANNECY	6.121832970715078	45.90221094284461	20:37	00:26	545.0	1.5805	19.32		60.368
PARIS	2.2806439225378	48.8530378277834	NANCY	6.174101796891322	48.68970240439984	16:07	17:44	367.0	1.0643	13.317		41.6108
PARIS	2.2806439225378	48.8530378277834	CHAMPAGNE	3.993655995605394	49.21455924201552	07:58	08:38	175.0	0.5075	5.106		15.9544
PARIS	2.2806439225378	48.8530378277834	LENS	2.792160590965308	50.43781911422396	16:45	18:02	198.0	0.574199999999999	7.383		23.0692
PARIS	2.2806439225378	48.8530378277834	ANGOULEME	0.16414524722233	45.65364279345685	16:06	18:05	428.0	1.2412	15.525		48.51
PARIS	2.2806439225378	48.8530378277834	BREST	-4.479243011743669	48.3879297952412	10:57	14:50	613.0	1.7777	20.424	72.07	63.8176
PARIS	2.2806439225378	48.8530378277834	POITIERS	0.332786866293225	46.58236426463122	06:52	08:11	320.0	0.928	11.7645		36.7598
PARIS	2.2806439225378	48.8530378277834	RENNES	-1.691801073204263	48.11826355636143	10:57	12:25	363.952	1.0554608	20.2515	71.36	63.2786
PARIS	2.2806439225378	48.8530378277834	STRASBOUR	7.731594953278417	48.58287025491014	07:18	09:02	450.58	1.306682	16.836		52.6064
PARIS	2.2806439225378	48.8530378277834	GRENOBLE	5.714516819858535	45.19083025228243	07:13	10:13	556.09	1.612661	19.872		62.0928
PARIS	2.2806439225378	48.8530378277834	LE MANS	0.194090806361883	47.99501903643902	07:44	08:38	202.0	0.5858	7.2105		22.5302
PARIS	2.2806439225378	48.8530378277834	BELFORT MO	6.898445295065638	47.58602332147397	20:20	22:53	449.0	1.302099999999998	17.112		53.4688
PARIS	2.2806439225378	48.8530378277834	TOULON	5.929717733657508	43.12858683541123	08:21	12:10	812.0	2.3548	28.9455	181.1	90.4442
MARNE LA VAL	2.7826949499979	48.8700341139662	AVIGNON TO	4.785988680479314	43.92185220386844	08:44	11:52	646.0	1.8734	24.1845		75.5678
PARIS	2.2806439225378	48.8530378277834	NANTES	-1.544230274778459	47.21645350148569	17:59	22:19	385.841	1.118938899999998	13.317	48.86	41.6108
PARIS	2.2806439225378	48.8530378277834	MACON LOC	4.778443228894927	46.282781818898	20:59	22:40	369.0	1.070099999999998	13.9035		43.4434
MARNE LA VAL	2.7826949499979	48.8700341139662	AIX EN PROV	5.317306755615249	43.45523657055668	16:49	19:58	720.0	2.088	26.565		83.006
PARIS	2.2806439225378	48.8530378277834	VANNES	-2.752403881216251	47.66520979265519	16:57	19:25	489.0	1.4181	16.008		50.0192
PARIS	2.2806439225378	48.8530378277834	TOULOUSE N	1.454396139877268	43.61069941718024	18:11	22:47	793.993	2.3025797000000003	23.4255	84.40	73.1961999999999
CDG	2.5700355070970	49.0085079715308	RENNES	-1.691801073204263	48.11826355636143	12:13	14:47	421.0	1.2209	13.179	47.14	41.1796
PARIS	2.2806439225378	48.8530378277834	BIARRITZ	-1.546701196505992	43.45903906706433	16:11	20:16	744.496	2.1590384	27.0135	95.86	84.4074
PARIS	2.2806439225378	48.8530378277834	BAYONNE	-1.47066304089878	43.49694782534664	16:11	20:03	734.758	2.1307982	26.565		83.006
PARIS	2.2806439225378	48.8530378277834	DUNKERQUE	2.369189693600089	51.02926760373617	18:51	21:04	305.0	0.8845	10.3845		32.4478
PARIS	2.2806439225378	48.8530378277834	ARRAS	2.781877763520992	50.28670060943111	12:25	13:13	179.0	0.5191	6.555		20.482
PARIS	2.2806439225378	48.8530378277834	ARCACHON	-1.165311959015783	44.65884069382592	18:47	21:37	595.0	1.7255	19.5		70.07
PARIS	2.2806439225378	48.8530378277834	DOUAI	3.090430914770062	50.37158212907979	17:45	18:55	204.0	0.5916	6.831		21.3444
PARIS	2.2806439225378	48.8530378277834	VALENCIENN	3.518515366298679	50.3659654003862	10:46	12:35	237.0	0.687299999999999	7.314		22.8536
STRASBOURG	7.7315949532784	48.5828702549101	NANTES	-1.544230274778459	47.21645350148569	17:01	22:23	834.0	2.4186	29.8425	184.8	93.247
PARIS	2.2806439225378	48.8530378277834	CALAIS VILLI	1.850475991847154	50.95341588718877	20:18	22:24	335.0	0.9715	10.2465		32.0166

II.\Création d'une carte interactive

Utilisation de la librairie folium de python

Création de 2 cartes :

• Avec prise en compte de l'empreinte carbone :

Point de départ : Paris

file:///C:/Users/elsac/Downloads/carte_emission.html

• Sans prise en compte de l'empreinte carbone :

Point de départ multiple, ici on a choisi Nice:

file:///C:/Users/elsac/Downloads/carte_sans_emission.html

Comparaison des émissions par rapport au mode de transport

En moyenne, le Train est 38.4 fois moins polluant que la Voiture, il émet 97.4% de CO2 de moins

En moyenne, le Train est **53.1 fois** moins polluant que l'Avion, il émet émet **97.9**% de CO2 de moins

En moyenne, le Train est 12.2 fois moins polluant que l'Autocar, il émet 91.7% de CO2 de moins

Comparaison des émissions carbone par mode de transport

Comparaison des émissions carbone en fonction de la distance

Conclusion

- Sensibiliser les voyageurs à l'impact écologique de leurs choix de transport.
- Encourager des déplacements touristiques plus respectueux du climat, surtout pour les trajets nationaux.

Merci pour votre attention!