

Logistic Regression: Hypothesis Set

Leandro L. Minku

Announcements

- Panopto recordings
- Canvas page
- MS Teams
- Final slides from previous lecture

Outline

- Definition of supervised learning
- Logistic regression hypothesis set
 - What kind of function can logistic regression model?
 - What parameters need to be learned?

Outline

- Definition of supervised learning
- Logistic regression hypothesis set
 - What kind of function can logistic regression model?
 - What parameters need to be learned?

From The Previous Lecture...

Supervised Learning:

Learns a mapping from inputs
$$\mathbf{x} = (x_1, ..., x_d)^T \in \mathcal{X}$$
 to outputs $y \in \mathcal{Y}$,

given a training set of input-output pairs
$$\mathcal{T} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \cdots, (\mathbf{x}^{(N)}, y^{(N)}) \}.$$

Components of the Supervised Learning Process

Components of the Supervised Learning Process

Unknown Target Function $f\colon \mathcal{X} \to \mathcal{Y}$

The learning algorithm will search for the hypothesis $g \in \mathcal{H}$ that it believes best approximates f given \mathcal{T} .

Training Examples

$$\mathcal{T} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$$

$$\mathcal{T} = \{(4,4), (0,2), (8,6), (2,3)\}$$

Final Hypothesis $g \approx f$

Hypothesis Set

$$h(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + b, \ \forall \mathbf{a} \in R^d, b \in R$$

Components of the Supervised Learning Process in View of Noise

Supervised Learning Problem

Given a set of training examples

$$\mathcal{T} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)}) \}$$

where $(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{X} \times \mathcal{Y}$ are drawn i.i.d. (independently and identically distributed) from a fixed albeit unknown joint probability distribution $p(\mathbf{x}, y) = p(y \mid \mathbf{x})p(\mathbf{x})$.

- Goal: to learn a function g able to generalise to unseen (test) examples of the same probability distribution $p(\mathbf{x}, y)$.
 - $g: \mathcal{X} \to \mathcal{Y}$, mapping input space to output space.
 - g as a probability distribution approximating $p(y \mid \mathbf{x})$.

Equivalent Terms

- x_i : input, input attribute, input feature, independent variable, input variable.
- y: output attribute, output variable, dependent variable, label (for classification).
- mapping: learned function, predictive model, classifier (for classification).
- Learning a function, learning a model, training a model, building a model.
- \mathcal{T} : set of training examples, training data.
- (x, y): example, observation, data point, instance (more frequently used for examples with unknown outputs).
- Different people and books will use different terms and notations!

Notation

- Scalar: lower case, e.g, b.
- Column Vector: lower case, bold, e.g., x.
- Vector element: lower case with subscript, e.g., x_i .
- Matrix: upper case, bold, e.g., X.
- Matrix element: upper case with subscripts, e.g., $X_{i,j}$.
- If enumerating these (e.g., having multiple vectors), superscript will be used to differentiate this from indices, e.g., $\mathbf{x}^{(i)}$.

Outline

- Definition of supervised learning
- Logistic regression hypothesis set
 - What kind of function can logistic regression model?
 - What parameters need to be learned?

General Idea

- Despite the name, Logistic Regression is an approach for classification problems.
- In Logistic Regression, we will model the probability (actually the log odds) of an instance to belong to a given class as a linear combination of the inputs.

Regression:

y = f(x)

Classification:

Focus

• We will focus on binary classification problems, i.e., problems where \mathcal{Y} is a set containing two possible categorical values (classes), e.g., $\mathcal{Y} = \{c_0, c_1\} = \{0,1\}.$

We assume numeric inputs

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} \in \mathbb{R}^d$$

Classification:

The Need for the Logit Function

• Consider that we wish to model $P(y = 1 | \mathbf{x}) = P(1 | \mathbf{x})$ as a function of the input variables:

$$p(1 \mid \mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_d x_d$$

$$p(1 \mid \mathbf{x}, \mathbf{w}) = w_0 x_0 + w_1 x_1 + \dots + w_d x_d, \text{ where } x_0 = 1$$

$$p(1 \mid \mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$$

$$p(1 \mid \mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$$

- If that was possible, we would be able to deal with this classification problem by learning the coefficients $\mathbf{w} \in \mathbb{R}^{d+1}$ and predicting class 1 if $p_1 \geq 0.5$ and 0 otherwise.
- However, $\mathbf{w}^T\mathbf{x}$ could assume any values in $[-\infty,\infty]$, whereas p_1 should be in [0,1].

The Need for the Logit Function

• To fix that, one might think of modelling $\ln(p_1)$ instead of p_1 : $\ln(p_1) = \mathbf{w}^T \mathbf{x}$

 However, logarithms are unbounded only from one direction and linear functions are not.

Again, we cannot use a linear combination to model $\ln(p_1)$.

The Need for the Logit Function

• A solution would be to create a model $logit(p_1) = \mathbf{w}^T \mathbf{x}$, where

$$logit(p_1) = ln\left(\frac{p_1}{1 - p_1}\right)$$

• Logit enables us to map from [0,1] to $[-\infty,\infty]$.

So, $logit(p_1)$ is in $[-\infty,\infty]$, and $\mathbf{w}^T \mathbf{x}$ is in $[-\infty,\infty]$.

So, we can model $logit(p_1) = \mathbf{w}^T \mathbf{x}$

The Odds

$$logit(p_1) = ln\left(\frac{p_1}{1 - p_1}\right) = \mathbf{w}^T \mathbf{x}$$

Odds: ratio of probabilities of two possible outcomes:

$$o_1 = \frac{p_1}{p_0} = \frac{p_1}{1 - p_1}$$

• For example,

If
$$p_1=0.7$$
 and $p_0=0.3$, $o_1\approx 2.33$ If $p_1=0.5$ and $p_0=0.5$, $o_1=1$ If $p_1=0.3$ and $p_0=0.7$, $o_1\approx 0.43$

- If $o_1 \ge 1$, predict class 1.
- If $o_1 < 1$, predict class 0.

Bernoulli distribution: a discrete probability distribution of a random variable that takes value 1 with probability p_1 and value 0 with probability $p_0 = 1 - p_1$.

Logit

Logit: logarithm of the odds.

$$logit(p_1) = ln\left(\frac{p_1}{1 - p_1}\right)$$

• For example,

If
$$p_1=0.7$$
 and $p_0=0.3$, $\operatorname{logit}(p_1)\approx 0.85$
If $p_1=0.5$ and $p_0=0.5$, $\operatorname{logit}(p_1)=0$
If $p_1=0.3$ and $p_0=0.7$, $\operatorname{logit}(p_1)\approx -0.85$

- If $logit(p_1) = \mathbf{w}^T \mathbf{x} \ge 0$, predict class 1.
- If $logit(p_1) = \mathbf{w}^T \mathbf{x} < 0$, predict class 0.

This is the key idea behind logistic regression!

Coefficients **w** are "parameters" of the function that we need to learn based on training examples.

A Linear Classifier

- The equation $\mathbf{w}^T \mathbf{x} = 0$ is the equation of a hyperplane in the input space.
- For example, for a 2-dimensional input space, this is the

equation of a line:

$$w_0 x_0 + w_1 x_1 + w_2 x_2 = 0$$

$$w_1 x_1 + w_2 x_2 = -w_0$$

$$w_0 x_0 + w_1 x_1 + w_2 x_2 \ge 0$$

$$w_0 x_0 + w_1 x_1 + w_2 x_2 < 0$$

 x_2

 $\left(0, \frac{-w_0}{w_2}\right)$

- If $logit(p_1) = \mathbf{w}^T \mathbf{x} \ge 0$, predict class 1.
- If $logit(p_1) = \mathbf{w}^T \mathbf{x} < 0$, predict class 0.

Decision

m / boundary, where ${f w}^T{f x}$ =0

Computing the Probabilities p_1 and p_0

•
$$logit(p_1) = \mathbf{w}^T \mathbf{x} < \mathbf{w}^T \mathbf{x} \ge 0 \rightarrow class 1$$

• $\mathbf{w}^T \mathbf{x} < 0 \rightarrow class 0$

• If we solve $logit(p_1) = \mathbf{w}^T \mathbf{x}$ for p_1 we get:

$$p_1 = \frac{e^{(\mathbf{w}^T \mathbf{x})}}{1 + e^{(\mathbf{w}^T \mathbf{x})}}$$

$$p_0 = 1 - p_1 = \frac{1}{1 + e^{(\mathbf{w}^T \mathbf{x})}}$$

$$p_1 \ge 0.5 \rightarrow \text{class } 1$$

Computing the Probabilities p_1 and p_0

•
$$logit(p_1) = \mathbf{w}^T \mathbf{x} < \mathbf{w}^T \mathbf{x} \ge 0 \to class 1$$

• $\mathbf{w}^T \mathbf{x} < 0 \to class 0$

• If we solve $logit(p_1) = \mathbf{w}^T \mathbf{x}$ for p_1 we get:

$$p_1 = \frac{e^{(\mathbf{w}^T \mathbf{x})}}{1 + e^{(\mathbf{w}^T \mathbf{x})}}$$

$$p_0 = 1 - p_1 = \frac{1}{1 + e^{(\mathbf{w}^T \mathbf{x})}}$$

$$p_1 \ge 0.5 \to \text{class } 1$$

$$p_1 < 0.5 \to \text{class } 0$$

The Relationship Between the Distance To The Decision Boundary and p_1

- The larger $|\mathbf{w}^T \mathbf{x}|$, the further away from the decision boundary the example \mathbf{x} is.
- The larger $\mathbf{w}^T \mathbf{x}$, the higher p_1 .
- The more negative $\mathbf{w}^T \mathbf{x}$, the smaller the p_1 (and the larger the p_0).

The Relationship Between the Distance To The Decision Boundary and p_1

- The larger $|\mathbf{w}^T \mathbf{x}|$, the further away from the decision boundary the example \mathbf{x} is.
- The larger $\mathbf{w}^T \mathbf{x}$, the higher p_1 .
- The more negative $\mathbf{w}^T \mathbf{x}$, the smaller the p_1 (and the larger the p_0).

Components of the Supervised Learning Process in View of Noise

Hypothesis Set

•
$$logit(p_1) = \mathbf{w}^T \mathbf{x} < \mathbf{w}^T \mathbf{x} \ge 0 \to class 1$$

• $\mathbf{w}^T \mathbf{x} < 0 \to class 0$

• If we solve $logit(p_1) = \mathbf{w}^T \mathbf{x}$ for p_1 we get:

$$p_1 = \frac{e^{(\mathbf{w}^T \mathbf{x})}}{1 + e^{(\mathbf{w}^T \mathbf{x})}}$$

$$p_0 = 1 - p_1 = \frac{1}{1 + e^{(\mathbf{w}^T \mathbf{x})}}$$

$$\begin{array}{c}
 p_1 \ge 0.5 \to \text{class 1} \\
 p_1 < 0.5 \to \text{class 0}
\end{array}$$

$$h(\mathbf{x}) = \begin{cases} 1 & \text{if } \log \operatorname{it}(p_1) \ge 0 \\ 0 & \text{otherwise} \end{cases}, \ \forall \mathbf{w} \in R^{d+1}$$

$$h(\mathbf{x}) = \begin{cases} 1 & \text{if } p_1 = p(1 \mid \mathbf{x}, \mathbf{w}) \ge 0.5 \\ 0 & \text{otherwise} \end{cases}, \ \forall \mathbf{w} \in \mathbb{R}^{d+1}$$

$$h(\mathbf{x}) = p_1 = p(1 \mid \mathbf{x}, \mathbf{w}), \quad \forall \mathbf{w} \in \mathbb{R}^{d+1}$$

Summary

- Supervised learning aims at learning a function g that generalises well to examples from the underlying $p(\mathbf{x}, y)$ of the problem.
- Logistic regression models $logit(p_1)$ as a linear combination of the input variables, $logit(p_1) = \mathbf{w}^T \mathbf{x}$.
- The probability p_1 is thus modelled by a sigmoid function $p_1 = \frac{e^{(\mathbf{w}^T \mathbf{x})}}{1 + e^{(\mathbf{w}^T \mathbf{x})}}$.
- The hypothesis set can be seen as $h(\mathbf{x}) = p_1 = p(1 \mid \mathbf{x}, \mathbf{w}), \ \forall \mathbf{w} \in \mathbb{R}^{d+1}$.
- The parameters to be learned are w.
- Next: How to learn w?

Further Reading

The reading materials can be found at the module's <u>resource list</u> and elsewhere on the web, except for Iain Style's notes, which can be found in the links provided below.

Essential reading: Abu-Mostafa et al.'s Learning from Data: A Short Course. Section 1.1.1 (Components of Learning), Section 1.4.2 (Noisy Targets), Section 3.3 (Logistic Regression) until page 90. ==> Note that the authors are using -1 and +1 to represent the different categories, instead of 0 and 1 like in this lecture.

Recommended reading: Iain Styles's Notes on Logistic Regression, Section 1 (Modelling the Logit):

https://canvas.bham.ac.uk/files/15585285/download?download_frd=1