A Comparison of Layer 2 Techniques for Scaling Blockchains

Adrià Torralba-Agell^{1, 2} atorralbaag@uoc.edu

Cristina Pérez-Solà^{1, 2} cperezsola@uoc.edu

¹Universitat Oberta de Catalunya - KISON Research Group

²Cybercat - Center for Cybersecurity Research of Catalonia

July 5, 2022

- Introduction
- Scalability Problem in Blockchain
- Scalability solutions
- 4 Comparison
- Conclusion and Future Work

- Introduction
 - Goals for this talk
- 2 Scalability Problem in Blockchain
- Scalability solutions
- 4 Comparisor
- 5 Conclusion and Future Work

Goals for this talk

- 1 Introduce the blockchain scalability problem.
- Introduce existing scalability solutions.
- 3 Show major differences among them.

- Introduction
- Scalability Problem in Blockchain
 - Why is this happening?
 - Blockchain Trilemma
 - Performance Metrics
- Scalability solutions
- 4 Comparisor
- 5 Conclusion and Future Work

Why is this happening?

- Rise in popularity of blockchain techlonology.
 - dAPPS,
 - DeFi,
 - NFTs,
 - Blockchain games,
 - etc.
- Heavy congestion
 - Poor performance,
 - High transaction fees.

Blockchain Trilemma

- 3 desirables properties
 - Scalability,
 - Security,
 - Decentralization.
- Vitalik (and others) believe that all 3 are incompatible at the same time.
 - Blockchain Trilemma.

Figure: Diagram of the Blockchain Trilemma.

Performance Metrics

- Transaction throughput (Transactions per Second, TPS).
- Latency.
- Bootstrap time.
- Cost per confirmed transaction, in terms of computation, network and storage resources.
- Cost to maintain a full node also in terms of computation, network and storage.
- ...

- Introduction
- Scalability Problem in Blockchain
- Scalability solutions
 - Layer 1 scaling
 - Layer 2 scaling
- 4 Comparisor
- 5 Conclusion and Future Work

Layer 1 scaling (aka on-chain solutions)

Focused on improvements in

- Consensus algorithm,
- Network,
- Data Structure of the Blockchain.

For instance

- Changes to the size of the block,
- Implement techniques to split the work of building a block across many participants (sharding).

Layer 2 scaling (aka off-chain solutions)

- Withdraw computation from the main network (Layer 1) and perform this work off-chain (Layer 2).
- We consider here three different approaches
 - Payment Channel Networks,
 - Sidechains,
 - Rollups.

Payment Channel Networks

- A Peer-to-Peer network on top of the main blockchain.
- Can perform many transactions without the restrictions imposed by the main network.
- Come with the **cost** of security and reliability.
- Examples
 - Lightning Network for Bitcoin Blockchain,
 - Raiden Network for Ethereum Blockchain.

Sidechains

- A whole new blockchain in parallel of the main blockchain.
- Tokens can flow between main network and sidechain.
- Have to deal with
 - Consensus mechanism,
 - ► Tokens,
 - Security.

Rollups

- Group a batch of transactions, "roll-up" them and publish to Blockchain, providing a proof for its correctness.
- There are two main flavours for this technique
 - zkRollups based on validity proofs.
 - Optimistic Rollups based on fraud proofs.

- Introduction
- 2 Scalability Problem in Blockchair
- Scalability solutions
- 4 Comparison
 - Considered technologies
 - Usability
 - Security
 - Cost
- 5 Conclusion and Future Work

Considered technologies

- Payment Channels
 - ► Lightning Network,
 - Raiden Network.
- Rollups
 - Zero-Knowledge Rollups
 - ★ zkSync,
 - **★** Loopring,
 - * StarkNet.
 - Optimistic Rollups
 - * Arbitrum,
 - Optimism.

Usability

		Usability				
Scalability Solution Type	Technology Name	General-purpose Script /	Supported	Native proprietary token?		
	reciniology runne	Turing Complete Machine	tokens			
Payment Channels	Lightning Network	No	Bitcoin (BTC)	No		
	Raiden Network	Yes, native	ERC20	Yes,		
				Raiden Network Token (RDN)		
Zero-Knowledge Rollups	zkSync 2.0	Yes, in Zinc	Ether (ETH), ERC20	No		
	Loopring 3.8	No	Ether (ETH), ERC20	Yes, Loopring (LRC)		
	Starknet	Yes, implemented	Ether (ETH), ERC20,	No		
		using Cairo	ERC721			
Optimistic Rollups	Arbitrum	Yes, through ArbOS	EDC00 EDC701	No		
		(EVM compatible)	ERC20, ERC721			
	Optimism	Yes, supports	ERC20, ERC721	Yes, Optimism (OP)		
		Solidity and Vyper	ENCZU, ERC/21			

Security

curity		Security					
Scalability Solution Type	Technology Name	Security Model	Cryptographic primitives	Zero-Knowledge technique	Post-quantum resistant	Type of network	
Payment Channels	Lightning Network	Inherited from L1 + node always online + censorship resistant within time t	Hash functions, digital signature	NA	No	Peer-to-Pee	
	Raiden Network	Inherited from L1 + node always online + censorship resistant within time t	Hash functions, digital signature	NA	No	Peer-to-Pee	
Zero-Knowledge Rollups	zkSync 2.0	Inherited from L1 + CRS always hidden + censorship resistant within time t	Pairings, KoE, minimal trusted setup	PLONK	No	Centralised	
	Loopring 3.8	Inherited from L1 + CRS always hidden + censorship resistant within time t	Pairings and trusted setup	zkSNARK	No	Centralised	
	Starknet	Inherited from L1 $+$ censorship resistant within time t	Hash functions	zkSTARK	Yes	Centralised	
Optimistic Rollups	Arbitrum	Inherited from L1 + Based on Game Theory + censorship resistant within time t	Fraud proofs (Merkle Trees or ZKP)	NA	No	Centralised	
	Optimism	Inherited from L1 + Based on Game Theory + censorship resistant within time t	Fraud proofs (Merkle Trees or ZKP)	NA	No	Centralised	

Cost

		Cost				
Scalability solution type	Technology name	Fees	Processing time	Withdrawal time		
Payment Channels	Lightning Network	Funding transaction +				
		(possible hops +)	Near instant	1 hour to several days		
		closing transaction				
	Raiden Network	Similar to Lightning Network fee system	Near instant	Up to 3 hours		
Zero-Knowledge Rollups	zkSync	≈100 times cheaper for ERC20	Near instant	10 minutes to 7 hours		
		pprox 30 times cheaper for ETH	ivear mistant	10 minutes to 7 nours		
	Loopring 3.8	30 to 100 times cheaper for ERC20 and ETH	Near instant	6 minutes to 2 hours		
	Starknet	L1 Fees	Near instant	Not specified		
		(in the future also L2 fees)	ivear mistant			
Optimistic Rollups	Arbitrum	Up to 10 times cheaper	Near instant	Around 7 days		
	Optimism	L2 execution fee + L1 security fee	Near instant	Around 7 days		

- Introduction
- 2 Scalability Problem in Blockchain
- Scalability solutions
- 4 Comparisor
- 5 Conclusion and Future Work

Conclusions

- Wide variety of Layer 2 scalability solutions.
- Currently does not seem to be a perfect solution for this problem.
- Addition of security assumptions.
- Solutions are still in young age. Constantly evolving.
- Concerns about centralised approaches?

Future Work

- Work in progress.
- Extension of this article.
 - Usability
 - Capabilities of smarts contracts.
 - * Rate ease of use.
 - Security
 - ★ Review Zero-Knowledge requirements.
 - Cost
 - Perform experiments deploying the solutions to benchmark different properties (fees, processing time, withdrawal time, computational resources...)

Thank you for your attention! Questions?

