End My Exam

46:28:56 Ø

Unit 4 Unsupervised Learning (2

Course > weeks)

> Homework 5 > 2. Maximum Likelihood Estimation

2. Maximum Likelihood Estimation

Extension Note: Homework 5 due date has been extended by 1 day to August 17 23:59UTC.

Consider a general multinomial distribution with parameters θ . Recall that the likelihood of a dataset \mathcal{D} is given by:

$$P\left(\mathcal{D}; heta
ight)=\prod_{i=1}^{| heta|} heta_{i}^{c_{i}}$$

where c_i is the occurrence count of the i-th event.

The MLE of θ is the setting of θ that maximizes $P(\mathcal{D};\theta)$. In lecture we derived this to be

End My Exam

46:28:56 Ø

Unigram Model

4/4 points (graded) Consider the sequence:

ABABBCABAABCAC

A unigram model considers just one character at a time and calculates p(w) for $w \in \{A, B, C\}$.

What is the MLE estimate of θ ? Give your result to three decimal places.

 θ^* 0.42857142857142855

✓ Answer: 0.4285714286

 θ_B^* 0.35714285714285715

✓ Answer: 0.3571428571

 θ_C^* 0.21428571428571427

✓ Answer: 0.2142857143

Using the MLE estimate of θ on \mathcal{D} , which of the following sequences is most likely?

End My Exam

46:28:56 Ø

ABB

AAC

Solution:

We calculate the MLE as $rac{\mathrm{count}(w)}{N}$ where N=14 and the counts are 6, 5, and 3.

For comparing probabilities in part two, we simply multiply. We only need to compare the numerators: $6 \times 5 \times 3$, 5^3 , 6×5^2 , and $6^2 imes 3$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Bigram Model 1

End My Exam

46:28:56 Ø

$$p\left(oldsymbol{
u},oldsymbol{v}
ight) = \prod_{w_1,w_2 \in \mathcal{D}} p\left(w_2 \mid w_1
ight)$$

where w_2 is a word that follows w_1 in the corpus.

This is also a multinomial model. Assume the vocab size is N. How many parameters are there?

Grading note: The formula above contains an error: the probability $p(\mathcal{D}; \theta)$ in a bigram model is generally:

$$p\left(\mathcal{D}; heta
ight)=p\left(w_{0}
ight)\prod_{w_{1},w_{2}\in\mathcal{D}}p\left(w_{2}|w_{1}
ight)$$

where w_0 is the first word, and (w_1,w_2) is a pair of consecutive words in the document. In this case, the number of parameters is $(N-1)+(N^2-N)=N^2-1$. However, with the model as written above, there are only parameters $N^2 - N$.

The grader is now fixed to accept both as correct and regrading is happening.

N^2-1

✓ Answer: N^2 - 1

STANDARD NOTATION

End My Exam

46:28:56 Ø

$$p\left(\mathcal{D}; heta
ight)=p\left(w_{0}
ight)\prod_{w_{1},w_{2}\in\mathcal{D}}p\left(w_{2}|w_{1}
ight)$$

where w_0 is the first word, and (w_1, w_2) is a pair of consecutive words in the document. Denote the set of all N words by V. The set of parameters is

$$\{p\left(w_{0}
ight):w_{0}\in V\}\;\;\cup\;\;\{p\left(w_{1}|w_{2}
ight):w_{1}\in V,w_{2}\in V\}$$

and the only constraints on these parameters are

$$egin{array}{lcl} \sum_{w_{0}\in V}p\left(w_{0}
ight)&=&1\ &\sum_{w_{1}\in V}p\left(w_{1}|w_{2}
ight)&=&1 & ext{for all }w_{2}\in V. \end{array}$$

Hence, the number of parameters is $(N-1)+(N^2-N)=N^2-1$. (Note that this is also the number of parameters $p\left(w_{1},w_{2}
ight)$ where $w_{1}\in V,w_{2}\in V$, which determine the joint distribution.

Solution to the problem as written:

The likelihood of D in bigram model was given as

End My Exam

46:28:56 Ø

without taking into account the likelihood $p(w_0)$ of the first word. In this case, the parameters are

$$\left\{ p\left(w_{1}|w_{2}
ight):w_{1}\in V,w_{2}\in V
ight\}$$

where $\sum_{w_1 \in V} p\left(w_1|w_2
ight) = 1$ for all $w_2 \in V$. Hence, the number of parameters is $N^2 - N$.

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Bigram Model 2

1/1 point (graded)

Which of the following represents the MLE for the **conditional probability** $p(w_2 \mid w_1)$?

- $\frac{\operatorname{count}(w_1, w_2)}{\sum_{w_1', w_2' \in \mathcal{D}} \operatorname{count}(w_1', w_2')}$
- $\frac{\operatorname{count}(w_1, w_2)}{\sum_{w_1', w_2 \in \mathcal{D}} \operatorname{count}(w_1', w_2)}$

End My Exam

46:28:56 Ø

$$\frac{-\frac{w_1, w_2}{\sum_{w_1, w_2' \in \mathcal{D}} \operatorname{count}(w_1, w_2')}}{\sum_{w_1, w_2' \in \mathcal{D}} \operatorname{count}(w_1, w_2')}$$

Solution:

This is a simple application of Bayes Rule:

$$p\left(w_{2}|w_{1}
ight)=rac{p\left(w_{1},w_{2}
ight)}{p\left(w_{1}
ight)}$$

To compute $p(w_1)$, we marginalize out w_2 .

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Bigram Model 3

1/1 point (graded)

End My Exam You are taking "Final Exam" as a timed exam. The timer on the right shows the time remaining in the 46:28:56 Ø exam. To receive credit for problems, you must select "Submit" for each problem before you select "End My Exam". Show Less If you estimate θ on this, what probability will be assigned to the following test sequence? Assume the starting probabilities of all characters p(w|null) is uniform. Give your answer to three decimal places. AABCBAB 0 You have used 1 of 3 attempts Submit Discussion **Hide Discussion** Topic: Unit 4 Unsupervised Learning (2 weeks): Homework 5 / 2. Maximum Likelihood Estimation

Add a Post

Show all posts ▼

Precent activity ▼

Precent activity ▼

Precent activity ▼

Precent activity ▼

En

\checkmark	Bigram Model 2. Bayes rule or conditional probability? Hi. Is it a Bayes Rule or simple application of cond. probability? Thanks in advance.	2
Q	Bigram Model I - Clarification for the students	13
∀	[Staff] Bigram Model 1	3
2	[STAFF] I disagree with Q1 answer	4
?	[Staff] Bigram Model 1: there maybe a Solution smaller than standard $ \underline{p(w \ i w \ j) = p(w \ i, w \ j) / p(w \ j) \leq br/> p(b \ i, w \ j) / p(w \ i, w \ j) / p(w \ i, w \ j) / p(w \ i, w \ j) / so we o} $	1
?	[Staff] Please check my answer for Bigram Please check my answer to bigram 3. It says to give answer to 3 decimal places but the grader mark me wrong, thanks	1
2	Bigram Model 1 - Hints for those trying I will try to give some hints on the Bigram Model 1 question since many seem to have been confused with this problem. In case I am saying too	6
\(\right\)	[STAFF] Bigram model 1 - not clear at all	20
?	Bigram - what is the assumption about p(null w) Dear Staff, I see we are considering p(w null). How about p(null w)? I do not see it mentioned any where in the bigram questions. Should we add	5
2	Yes it is a Markov chainalso, that's not the issue for the number of parameters Community TA	1

End My Exam

46:28:56 Ø