Class 15: E&M Problem Solving AP Physics

Dr. Timothy Leung

Olympiads School

March 2018

Files for You to Download

Download from the school website:

- 1. 15-problemSolving.pdf—This presentation. The slides only contain the problems that we are solving in class, but you will have to follow (and write) the solution yourself.
- 2. 15-Homework.pdf—Homework assignment for Classes 14 and 15.

Electric Field ¹

Example 1: A spherical shell of radius $R=3\,\mathrm{m}$ has its center at the origin and carries a surface charge density $\sigma=3\,\mathrm{nC/m^2}$. A point charge $q=250\,\mathrm{nC}$ is on the y axis at $y=2\,\mathrm{m}$. Find the electric field on the x axis at:

- 1. $x = 2 \, \text{m}$
- 2. $x = 4 \, \text{m}$

Electric Potential²

Example 2: A ring of radius $4 \, \text{cm}$ carries a uniform charge of $8 \, \text{nC}$. A small particle of mass $m = 6 \, \text{mg}$ and charge of $q_0 = 5 \, \text{nC}$ is placed at $x = 3 \, \text{cm}$ and released. Find the speed when the charge is at a great distance from the ring.

Electric Potential³

Example 3: A hollow spherical conductor that is uncharged has inner radius a and outer radius b. A positive charge +q is in the cavity at the center of the sphere. Find the potential V(r) everywhere, assuming that $V(\infty) = 0$.

Multi-Loop Circuits 4

Example 4: Find the current in each of the part of the circuit.

Circuit Analysis 5

Example 5: In the circuit below, the reading of the ammeter is the same with both switches open and both closed. Find the resistance R.

Magnetic Force ⁶

Example 6: A point charge q_1 is at the point $\mathbf{R} = x\mathbf{i} + y\mathbf{j}$ and is moving parallel to the x axis with velocity $\mathbf{v}_1 = v_1\mathbf{i}$. A second point charge q_2 is at the origin and moving along the x axis with velocity $\mathbf{v}_2 = v_2\mathbf{i}$. Find the magnetic force exerted by each charge on the other.

⁶Paul A. Tipler, pages 814–815

Magnetic Field from a Current Loop ⁷

Example 7: A circular loop of radius $5.0 \, \mathrm{cm}$ has $12 \, \mathrm{turns}$ and lies in the xy plane. It carries a current of $4 \, \mathrm{A}$ in the direction such that the magnetic moment of the loop is along the x axis. Find the magnetic field on the x axis at

- 1. $x = 15 \, \text{cm}$
- 2. $x = 3 \, \text{m}$

Magnetic Field from a Current-Carrying Wire 8

Example 8: An infinitely-long wire carrying current of $4.5 \, \text{A}$ is bent as shown in the figure. Find the magnetic field at the point $x = 3 \, \text{cm}$, $y = 2 \, \text{cm}$.

