Example: Suppose $F(A,B,C) = \sum (2,3,5,7)$, Give the truth table and the canonical SOA expression.

		TRUE	
Row	ABC	Munterm	F
Đ	000		0
1	001		0
2	010	ĀBĒ	1
3	011	ÂBC	l
A	001		0
5	(0)	ABC	1
6	110		٥
7	1 1	ABC	1

Flage) = ABC + ABC + ABC + ABC

Products of sums form

A product of sums (POS) form contains the ANDing of one or more sum terms-

Eig.,
$$A+B$$
 (a single sum term)
$$(A+C)(\tilde{B}+\tilde{D})$$

$$A(\tilde{B}+\tilde{c})$$

— disqualifies from

Canonical Pos forms

A special case where each sum is a maxterm.

E.g., for a 3-vasiable system

 $F = (A+B+2)(\hat{R}+\hat{B}+c)(A+\hat{B}+c)$ all are maxterns

F= (A+B) = « neither sum term is a maxterm

Maxterms and the truth table, Back to our XOR.

		FALSE				
Rav	A B	Maxterm	۲			
0	0 0	A4B	0			
Ţ	0 1	A 4 B	(
2	1 0	$\overline{A} + B$	(
3	1 [Ä+B	0			
		Ŷ	·			
			list the	maxterm	that	evaluates
			_		-	Designated
			Mo M			7
			0, (1	-1 -	•	

The canonical PDS expression is by gathering maxterms on each row where F: O.

which we abbreviate as F= MoM3

Axioms of theorems of Boolean algebra

Bookean algebra is based on 5 simple axioms:

	Axion	Dual	Name
Al	B=0 if B = 1	AI' B=1 if B≠0	Binary field
A2	0 = 1	A2' [=0	Not
A 3	0.0=0	A3' 1+ (= 1	AND/OR
A4	1-1=	A4' 0+0=0	AND /OR
A5	1.0 = 0.1 =0	A5' 1+0 = 0+1 = 1	AND OR
		Axioms and	theorems obey
		duality. I	Intercharge Os and 15;
			i' and it
		J	

Theorems of one variable

	Theorem		Dual	Name
Tl	B-1 = B	π΄	B+0 = B	Identity
T2	B.0 = 0	T2	B+(= 1	Null element
73	B.B = B	73′	B+B= B	Idempotency
T4	B = B			Involution
T5	B. B = 0	TS	B+ 8 = 1	Complements

Multivariable Heorems

	Theorem		<u>Dual</u>	Name
76	B.C = C.B	T6	B+(= C+ B	Commutativity
T7	(B.c).D = B.(C.D)	77'	(B9C)+D = B+(C+D)	Commutativity Associativity

Boolean algebra is also distributive

TB B. (C+D) = BC + BD "MULTIPLYING OUT"

However, we also get ...

TB' $B + (c \cdot D) = (B + c) \cdot (B + D)$ "ADDING OUT"

More ...

Theorem		Dual	<u>Name</u>	
79	B. (B+c) = B	79	B+ (B·c) = B	Covering
TIO	$(8.c) + (B.\bar{c}) = B$	710	(Btc)·(B+E) = B	Combining

79 and 710 are very important for simplifying expressions. Two ways to prove Tio

1. Perfect induction	BC	(B.c)	(8.8)	(B.c)+(B.E)
	DO	D	0	ΘŢ
(i.e., proof by using	01	0	0	0 \ 8
(i.e., proof by using a truth table)	10	0	1	
	1.1	1	0	