In [1]:

```
#Importing our required packages Packages
   import numpy as np
 3 import pandas as pd
 4 import keras
 5 from keras.models import Sequential
 6 | from keras.layers import Dense,Flatten,Conv2D,MaxPool2D,Dropout
 7 import matplotlib.pyplot as plt
 8 import seaborn as sns
   from tensorflow.keras.preprocessing.image import ImageDataGenerator
 9
10
```

In [2]:

```
1 #Loading our datasets,
2 train_df=pd.read_csv('datasets/sign_mnist_train.csv')
3 test_df=pd.read_csv('datasets/sign_mnist_test.csv')
```

In [5]:

```
1 #Looking at the basic statistics of our dataset.
 train_df.describe()
```

Out[5]:

	label	pixel1	pixel2	pixel3	pixel4	pixel5
count	27455.000000	27455.000000	27455.000000	27455.000000	27455.000000	27455.000000
mean	12.318813	145.419377	148.500273	151.247714	153.546531	156.210891
std	7.287552	41.358555	39.942152	39.056286	38.595247	37.111165
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	6.000000	121.000000	126.000000	130.000000	133.000000	137.000000
50%	13.000000	150.000000	153.000000	156.000000	158.000000	160.000000
75%	19.000000	174.000000	176.000000	178.000000	179.000000	181.000000
max	24.000000	255.000000	255.000000	255.000000	255.000000	255.000000

8 rows × 785 columns

In [25]:

```
1 #taking a look at our data
2 train_df.head()
```

Out[25]:

	label	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	 pixel775	pixel77
0	3	107	118	127	134	139	143	146	150	153	 207	20
1	6	155	157	156	156	156	157	156	158	158	 69	14!
2	2	187	188	188	187	187	186	187	188	187	 202	20 ⁻
3	2	211	211	212	212	211	210	211	210	210	 235	،23
4	13	164	167	170	172	176	179	180	184	185	 92	10

5 rows × 785 columns

In [9]:

```
1 | train_label=train_df['label']
```

2 train_label.head()

3 trainset=train_df.drop(['label'],axis=1)

4 trainset.head()

Out[9]:

	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	pixel10	 pixel775	pixel
0	107	118	127	134	139	143	146	150	153	156	 207	:
1	155	157	156	156	156	157	156	158	158	157	 69	•
2	187	188	188	187	187	186	187	188	187	186	 202	:
3	211	211	212	212	211	210	211	210	210	211	 235	:
4	164	167	170	172	176	179	180	184	185	186	 92	•

5 rows × 784 columns

In [10]:

```
1 X_train = trainset.values
2 X_train = trainset.values.reshape(-1,28,28,1)
3 print(X_train.shape)
```

(27455, 28, 28, 1)

In [11]:

```
1 test_label=test_df['label']
2 X_test=test_df.drop(['label'],axis=1)
3 print(X_test.shape)
4 X_test.head()
```

(7172, 784)

Out[11]:

	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	pixel10	 pixel775	pixel
0	149	149	150	150	150	151	151	150	151	152	 138	
1	126	128	131	132	133	134	135	135	136	138	 47	•
2	85	88	92	96	105	123	135	143	147	152	 68	
3	203	205	207	206	207	209	210	209	210	209	 154	:
4	188	191	193	195	199	201	202	203	203	203	 26	

5 rows × 784 columns

•

In [12]:

- #Converting our integers to binary form. With the help of LabelBinarizer
- 2 from sklearn.preprocessing import LabelBinarizer
- 3 | lb=LabelBinarizer()
- y_train=lb.fit_transform(train_label)
- y_test=lb.fit_transform(test_label)

In [13]:

```
1 | y_train
```

Out[13]:

```
array([[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, \ldots, 0, 0, 0],
        [0, 0, 1, \ldots, 0, 0, 0],
        [0, 0, 0, \ldots, 0, 0, 0],
        [0, 0, 0, \ldots, 0, 0, 0],
        [0, 0, 0, \ldots, 0, 1, 0]])
```

In [14]:

```
1 X_test=X_test.values.reshape(-1,28,28,1)
```

In [15]:

```
1 print(X_train.shape,y_train.shape,X_test.shape,y_test.shape)
```

```
(27455, 28, 28, 1) (27455, 24) (7172, 28, 28, 1) (7172, 24)
```

In [16]:

```
1
 2
   Augmenting the image dataset to generate new data
 4
   ImageDataGenerator package from keras.preprocessing.image allows to add different d
 5
 6
   Here is the package details https://keras.io/preprocessing/image/
 7
   The image dataset in also normalised here using the rescale parameter which divides
 8
 9
10
   train_datagen = ImageDataGenerator(rescale = 1./255,
11
12
                                       rotation_range = 0,
13
                                      height_shift_range=0.2,
14
                                      width_shift_range=0.2,
                                      shear_range=0,
15
16
                                      zoom_range=0.2,
                                      horizontal_flip=True,
17
18
                                      fill_mode='nearest')
19
20
   X_test=X_test/255
```

In [17]:

```
1
   Visualization of the Dataset
 2
 3
   Preview of the images in the training dataset
 4
 5
   fig,axe=plt.subplots(2,2)
   fig.suptitle('Preview of dataset')
   axe[0,0].imshow(X_train[0].reshape(28,28),cmap='gray')
 7
   axe[0,0].set_title('label: 3 letter: C')
 9
   axe[0,1].imshow(X_train[1].reshape(28,28),cmap='gray')
   axe[0,1].set_title('label: 6 letter: F')
11
   axe[1,0].imshow(X_train[2].reshape(28,28),cmap='gray')
   axe[1,0].set_title('label: 2 letter: B')
   axe[1,1].imshow(X_train[4].reshape(28,28),cmap='gray')
13
   axe[1,1].set_title('label: 13 letter: M')
```

Out[17]:

Text(0.5, 1.0, 'label: 13 letter: M')

In [19]:

```
. . .
 1
   Building our CNN Model
 2
   This model consist of-
 5
   1. Three convolution layer which uses MaxPooling for better feature capture.
   2. A dense layer with 512 units
   3. The output layer consist of 24 units for 24 different classes
 7
 8
 9
10
   Some information about the Convolution layers
11
12
   The activation fucntion which we have used is ReLu.
13
14 Conv layer 1 -- UNITS - 128 KERNEL SIZE - 5 * 5 STRIDE LENGTH - 1 ACTIVATION - ReLu
15 Conv layer 2 -- UNITS - 64 KERNEL SIZE - 3 * 3 STRIDE LENGTH - 1 ACTIVATION - ReLu
16
   Conv layer 3 -- UNITS - 32 KERNEL SIZE - 2 * 2 STRIDE LENGTH - 1 ACTIVATION - ReLu
17
18 MaxPool layer 1 -- MAX POOL WINDOW - 3 * 3 STRIDE - 2
   MaxPool layer 2 -- MAX POOL WINDOW - 2 * 2 STRIDE - 2
19
   MaxPool layer 3 -- MAX POOL WINDOW - 2 * 2 STRIDE - 2
20
21
22
23
   model=Sequential()
24
   model.add(Conv2D(128,kernel_size=(5,5),
25
                     strides=1,padding='same',activation='relu',input_shape=(28,28,1)))
   model.add(MaxPool2D(pool_size=(3,3),strides=2,padding='same'))
26
27
   model.add(Conv2D(64,kernel_size=(2,2),
28
                    strides=1,activation='relu',padding='same'))
   model.add(MaxPool2D((2,2),2,padding='same'))
29
30
   model.add(Conv2D(32,kernel_size=(2,2),
31
                    strides=1,activation='relu',padding='same'))
   model.add(MaxPool2D((2,2),2,padding='same'))
32
33
   model.add(Flatten())
34
```

In [20]:

```
#Dense and output layers
model.add(Dense(units=512,activation='relu'))
model.add(Dropout(rate=0.25))
model.add(Dense(units=24,activation='softmax'))
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	 (None, 28, 28, 128)	3328
Conved (Conved)	(None, 20, 20, 120)	3320
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 14, 14, 128)	0
conv2d_1 (Conv2D)	(None, 14, 14, 64)	32832
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 7, 7, 64)	0
conv2d_2 (Conv2D)	(None, 7, 7, 32)	8224
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 4, 4, 32)	0
flatten (Flatten)	(None, 512)	0
dense (Dense)	(None, 512)	262656
dropout (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 24)	12312
=======================================		=======
Total params: 319,352		
Trainable params: 319,352		

In [21]:

Non-trainable params: 0

model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy']

In [22]:

```
1 #Training the model
2 model.fit(train_datagen.flow(X_train,y_train,batch_size=200),
           epochs = 35,
            validation_data=(X_test,y_test),
4
5
            shuffle=1
6
```

```
Epoch 1/35
138/138 [================ ] - 89s 620ms/step - loss: 2.992
8 - accuracy: 0.1007 - val_loss: 2.3336 - val_accuracy: 0.2716
2 - accuracy: 0.2861 - val_loss: 1.5806 - val_accuracy: 0.4558
Epoch 3/35
138/138 [================ ] - 97s 702ms/step - loss: 1.660
4 - accuracy: 0.4520 - val_loss: 1.1958 - val_accuracy: 0.5471
Epoch 4/35
77 - accuracy: 0.5664 - val_loss: 0.9396 - val_accuracy: 0.6528
Epoch 5/35
20 - accuracy: 0.6426 - val_loss: 0.7139 - val_accuracy: 0.7400
Epoch 6/35
63 - accuracy: 0.6988 - val_loss: 0.5081 - val_accuracy: 0.8260
Epoch 7/35
138/138 [=============== ] - 98s 711ms/step - loss: 0.766
9 - accuracy: 0.7396 - val_loss: 0.4069 - val_accuracy: 0.8639
Epoch 8/35
12 - accuracy: 0.7803 - val_loss: 0.3731 - val_accuracy: 0.8681
Epoch 9/35
92 - accuracy: 0.8017 - val_loss: 0.2901 - val_accuracy: 0.9091
Epoch 10/35
138/138 [================ ] - 112s 811ms/step - loss: 0.50
62 - accuracy: 0.8271 - val_loss: 0.2422 - val_accuracy: 0.9285
Epoch 11/35
52 - accuracy: 0.8467 - val_loss: 0.1882 - val_accuracy: 0.9472
Epoch 12/35
73 - accuracy: 0.8578 - val_loss: 0.1622 - val_accuracy: 0.9505
Epoch 13/35
06 - accuracy: 0.8715 - val_loss: 0.1261 - val_accuracy: 0.9672
Epoch 14/35
138/138 [============= ] - 111s 803ms/step - loss: 0.34
53 - accuracy: 0.8836 - val_loss: 0.1193 - val_accuracy: 0.9670
Epoch 15/35
59 - accuracy: 0.8937 - val_loss: 0.0935 - val_accuracy: 0.9742
138/138 [=============== ] - 107s 774ms/step - loss: 0.31
54 - accuracy: 0.8920 - val_loss: 0.1538 - val_accuracy: 0.9543
Epoch 17/35
14 - accuracy: 0.9061 - val_loss: 0.0865 - val_accuracy: 0.9785
```

```
Epoch 18/35
138/138 [=============== ] - 111s 805ms/step - loss: 0.26
05 - accuracy: 0.9114 - val loss: 0.0787 - val accuracy: 0.9763
Epoch 19/35
138/138 [=============== - - 112s 807ms/step - loss: 0.24
16 - accuracy: 0.9185 - val_loss: 0.0570 - val_accuracy: 0.9831
Epoch 20/35
36 - accuracy: 0.9219 - val loss: 0.0634 - val accuracy: 0.9826
Epoch 21/35
138/138 [=============== ] - 78s 559ms/step - loss: 0.206
8 - accuracy: 0.9286 - val_loss: 0.0500 - val_accuracy: 0.9894
Epoch 22/35
138/138 [============= ] - 76s 549ms/step - loss: 0.201
9 - accuracy: 0.9301 - val_loss: 0.0622 - val_accuracy: 0.9808
Epoch 23/35
138/138 [=============== ] - 76s 552ms/step - loss: 0.198
4 - accuracy: 0.9346 - val_loss: 0.0323 - val_accuracy: 0.9948
Epoch 24/35
138/138 [================ ] - 78s 562ms/step - loss: 0.190
8 - accuracy: 0.9363 - val_loss: 0.0232 - val_accuracy: 0.9967
Epoch 25/35
138/138 [============= ] - 76s 550ms/step - loss: 0.193
7 - accuracy: 0.9348 - val_loss: 0.0653 - val_accuracy: 0.9802
Epoch 26/35
138/138 [============== ] - 76s 548ms/step - loss: 0.173
8 - accuracy: 0.9415 - val loss: 0.0278 - val accuracy: 0.9957
Epoch 27/35
8 - accuracy: 0.9485 - val_loss: 0.0217 - val_accuracy: 0.9974
Epoch 28/35
138/138 [============== ] - 76s 552ms/step - loss: 0.162
4 - accuracy: 0.9456 - val_loss: 0.0291 - val_accuracy: 0.9915
Epoch 29/35
138/138 [============= ] - 77s 555ms/step - loss: 0.153
5 - accuracy: 0.9490 - val_loss: 0.0246 - val_accuracy: 0.9927
Epoch 30/35
4 - accuracy: 0.9488 - val_loss: 0.0221 - val_accuracy: 0.9932
0 - accuracy: 0.9484 - val_loss: 0.0375 - val_accuracy: 0.9880
Epoch 32/35
138/138 [============= ] - 76s 553ms/step - loss: 0.137
4 - accuracy: 0.9546 - val loss: 0.0314 - val accuracy: 0.9883
Epoch 33/35
1 - accuracy: 0.9565 - val_loss: 0.0443 - val_accuracy: 0.9861
Epoch 34/35
5 - accuracy: 0.9567 - val_loss: 0.0226 - val_accuracy: 0.9886
Epoch 35/35
8 - accuracy: 0.9585 - val_loss: 0.0217 - val_accuracy: 0.9954
```

Out[22]:

<keras.callbacks.History at 0x21c4fb80550>

```
In [23]:
```

```
1 #Evaluating the model
  (ls,acc)=model.evaluate(x=X_test,y=y_test)
3
```

```
ccuracy: 0.9954
```

In [24]:

```
print('Model Accuracy is {}%'.format(acc*100))
```

Model Accuracy is 99.5398759841919%

In []:

1