Contrôle 1 Architecture des ordinateurs

Durée: 1 h 30

Exercice 1 (5 points)

Soit le nombre binaire sur 15 bits suivant : 100000110110₂.

- 1. Donnez sa représentation décimale s'il s'agit d'un entier non signé.
- 2. Donnez sa représentation décimale s'il s'agit d'un entier signé.
- 3. Donnez sa représentation hexadécimale s'il s'agit d'un entier non signé.

Soit un nombre sur **n** bits dont tous les bits sont à 1.

- 4. Donnez sa représentation décimale en fonction de n s'il s'agit d'un entier non signé.
- 5. Donnez sa représentation décimale s'il s'agit d'un entier signé.
- 6. Donnez la représentation binaire sur 10 bits signés du nombre -94₁₀.
- 7. Donnez, en puissance de deux, le nombre d'octets que contient la grandeur suivante : **64 Mib**.

Pour finir:

- 8. Combien faut-il de bits, au minimum, pour représenter en binaire non signé le nombre 2048.
- 9. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre 2048.
- 10. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre -2048.

Exercice 2 (6 points)

- 1. Convertissez, <u>en détaillant chaque étape</u>, les nombres ci-dessous dans le format flottant <u>simple précision</u>. Vous exprimerez le résultat final, sous forme binaire, <u>en précisant chacun des champs</u>.
 - 115,5
 - 0,4375
- 2. <u>En détaillant chaque étape</u>, donnez la représentation décimale des nombres codés en **double précision** suivants :
 - 2401 8000 0000 0000₁₆
 - 0006 C000 0000 0000₁₆
- 3. <u>En justifiant vos calculs</u>, démontrez que le plus petit flottant, en valeur absolue, du format simple précision à mantisse **dénormalisée**, peut s'écrire sous la forme : **2**ⁿ. Vous préciserez clairement la valeur numérique de **n**.
- 4. <u>En justifiant vos calculs</u>, démontrez que le plus grand flottant, du format simple précision à mantisse dénormalisée, peut s'écrire sous la forme : $(1 2^{n1}) \cdot 2^{n2}$. Vous préciserez clairement les valeurs numériques de n1 et de n2.

Contrôle 1

Exercice 3 (6 points)

On souhaite réaliser la séquence du tableau présent sur le <u>document réponse</u> à l'aide de bascules JK.

- 1. Remplissez le tableau présent sur le <u>document réponse</u>.
- 2. Donnez les équations des entrées J et K de chaque bascule <u>en détaillant vos calculs par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (ex : J0 = 1, $K1 = \overline{Q2}$).

Exercice 4 (3 points)

Soit les deux montages ci-dessous :

- 1. Remplissez les chronogrammes relatifs à la <u>figure 1</u> sur le <u>document réponse</u>.
- 2. Remplissez les chronogrammes relatifs à la <u>figure 2</u> sur le <u>document réponse</u>.

Contrôle 1 2/3

Nom: Classe:

DOCUMENT RÉPONSE À RENDRE AVEC LA COPIE

Exercice 3

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
0	0	0						
0	0	1						
0	1	0						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

Exercice 4

— Chronogrammes relatifs à la <u>figure 1</u> —

— Chronogrammes relatifs à la <u>figure 2</u> —