ECE380 Digital Logic

Flip-Flops, Registers and Counters:
Registers and Counters

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 26-1

Registers

- A flip-flop stores one bit of information
- When a set of n flip-flops is used to store n bits of data, we refer to these flip-flops as a register
 - Common register usages include
 - Holding a data value output from an arithmetic circuit
 - Holding a count value in a counter circuit
- A common clock signal is typically used for each flip-flop in a register

Electrical & Computer Engineering

Shift register

- A register that provides the ability to shift its contents by a single bit
 - May be to the right or left (or possibly both)

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 26-3

Shift right register

- Data is shifted to the right in a serial fashion using the *In* input
- Positive edge triggered
 - Contents of each flip-flop are transferred to the next flip-flop at each positive edge of the clock
- Level sensitive devices would not be appropriate for this circuit

	In	Q_1	Q_2	Q_3	Q_4
t_0	1	0	0	0	0
t_1	0	1	0	0	0
t_2	1	0	1	0	0
t_3	1	1	0	1	0
t_4	1	1	1	0	1
t_5	0	1	1	1	0
t_6	0	0	1	1	1
t_7	0	0	0	1	1

Electrical & Computer Engineering

Parallel-access shift register

- Data transfer in computer systems is a common function
 - If the transfer is *n*-bits at a time, the transfer is said to be in *parallel*
 - If the transfer is 1-bit at a time, the transfer is said to be serial
- To transfer data serially, data is loaded into a register in parallel (in one clock cycle) and then shifted out one bit at a time
 - Parallel-to-serial data conversion
- If bits are received serially, after *n* clock cycles the contents of a register can be accessed in parallel as an *n*-bit item
 - Serial-to-parallel conversion

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 26-5

Parallel-access shift register

Electrical & Computer Engineering

Counters

- Special purpose arithmetic circuits used for the purpose of counting
 - Design circuits that can increment or decrement a count by 1
- Counter circuits server many purposes
 - Count occurrences of certain events
 - Generate timing intervals for controlling various tasks in a digital system
 - Track elapsed time between events
- Often (but not always) built with T flip-flops because the toggle feature is naturally suited for implementing the counting operation

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 26-7

Up-counter with T flip-flops Clock Q0 Q1 Q2 Clock Q0 Q1 Q2 Count 0 1 2 3 4 5 6 7 0 Electrical & Computer Engineering Dr. D. J. Jackson Lecture 26-8

Asynchronous counters

- The previous counters are examples of asynchronous counters. Also called ripple counters.
 - Input clock is only connected to one flip-flop
 - Clocks for other flip-flops are (or are derived from) the outputs of the previous flip-flops
- This form of counter is slow because the cascaded clocking scheme
 - The clock source ripples from stage-to-stage
 - The ripple effect is similar to that of a ripple carry adder circuit

Electrical & Computer Engineering

Synchronous counters

- Synchronous counters are built by clocking all the flip-flops at the same time (with a single clocking source)
 - Faster response than asynchronous counters
- Synchronous counters with T flip-flops
 - Least significant bit, Q₀, changes every clock cycle
 - Bit one, Q_1 , only changes when $Q_0=1$
 - Bit two, Q₂, only changes when Q₀=Q₁=1

	Q_2	Q_1	Q_0	_
0	0	0	0	
1	0	0	1	Q ₁ changes
2	0	1	0	•
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	-
7	1	1	1	
8	0	0	0	
				Q ₂ changes

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 26-11

T flip-flop synchronous counter

4-bit synchronous up counter

Electrical & Computer Engineering

Enable and clear capability

- It may be desirable to disable counting or clear the counter
 - Include an **enable** control signal
 - Use a flip-flop with asynchronous clear capability

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 26-13

D flip-flop synchronous counter

- A 4-bit up counter counts in the sequence 0,1,2,...,15,0,1...
- \bullet The count is given by the flip-flop outputs $Q_3Q_2Q_1Q_0$
- The D inputs are given by:

 $D_0 = Q_0 \oplus Enable$

 $D_1 = Q_1 \oplus Q_0 \cdot Enable$

 $D_2 = Q_2 \oplus Q_1 \cdot Q_0 \cdot Enable$

 $D_3 = Q_3 \oplus Q_2 \cdot Q_1 \cdot Q_0 \cdot Enable$

Electrical & Computer Engineering

Counters with parallel load

- It is common for counters to begin a count with a zero value
 - An asynchronous *clear* input can be used for his purpose
- It may be desirable for a counter to begin with a non-zero value
- Adding circuitry to provide parallel load capability is necessary
- A control input, *load*, is used to select a mode of operation
 - Load=0, circuit counts
 - Load=1, parallel load a new value into the counter

Electrical & Computer Engineering

