

# **CSE 473/573-A**L12: RANSAC

Chen Wang
Spatial AI & Robotics Lab
Department of Computer Science and Engineering

University at Buffalo The State University of New York

#### Problem: Line Fitting

- Not all data may be representative
- There may be "outliers"
- If you use them, your result may not be accurate





#### Solutions?

- Least Squares Fit?
  - Closed for solution...
  - Sensitive to outliers

- Hypothesize and Test
  - Try out as many lines as we want
  - Keep the best lines
  - But which are the best?





#### RANSAC

- RANdom Sample Consensus
  - An iterative method for estimating a mathematical model from a data set that contains outliers.

 Motivation: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.

• Idea: if an outlier is chosen to compute the current model, then the model won't have much support from rest of the points.



#### RANSAC

#### RANSAC loop:

- Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation (model) from seed group
- 3. Find **inliers** to this transformation
- 4. If the number of inliers is sufficiently large, re-compute least-squares estimate on all inliers.
- Keep the model with the largest number of inliers.



Task:

Estimate best line





#### Sample two points





#### Fit Line





Total number of points within a threshold of line.





Repeat, until get a good result





Repeat, until get a good result





Repeat, until get a good result





#### How to choose parameters?

- Number of sampled points n: minimum points to fit a model.
- Inlier threshold  $\delta$ .
  - Choose  $\delta$  so that a good point with noise is likely within threshold.
- To determine the number of iterations K.
  - Desired probability of success (p): at least one useful result.
  - Let w be the probability of choosing an inlier when selecting a point.
    - w = number of inliers in data / number of points in data
  - n points selected independently for estimating a model.
  - $w^n$ : the probability that all n points are inliers.
  - $1 w^n$ : probability of at least one of the n points is an outlier.
  - $(1 w^n)^k$ : after k iterations, never select a set of n inlier points.

• 
$$1 - p = (1 - w^n)^K$$

• 
$$K = \frac{\log(1-p)}{\log(1-w^n)}$$

|   | p = 0.99, proportion of outliers $(1 - w)$ |     |     |            |            |     |      |  |
|---|--------------------------------------------|-----|-----|------------|------------|-----|------|--|
| n | 5%                                         | 10% | 20% | 25%        | 30%        | 40% | 50%  |  |
| 2 | 2                                          | 3   | 5   | 6          | 7          | 11  | 17   |  |
| 3 | 3                                          | 4   | 7   | 9          | 11         | 19  | 35   |  |
| 4 | 3                                          | 5   | 9   | 13         | 1 <i>7</i> | 34  | 72   |  |
| 5 | 4                                          | 6   | 12  | 1 <i>7</i> | 26         | 57  | 146  |  |
| 6 | 4                                          | 7   | 16  | 24         | 37         | 97  | 293  |  |
| 7 | 4                                          | 8   | 20  | 33         | 54         | 163 | 588  |  |
| 8 | 5                                          | 9   | 26  | 44         | 78         | 272 | 1177 |  |



















#### Summary

- Choose:
  - Inlier threshold
    - Related to the amount of noise we expect
  - Number of rounds
    - Related to the percentage of outliners we expect
    - Related to the probability of success we are hoping for.



#### RANSAC ALGORITHM

- Input:
  - Data: a set of observed data points
  - Model: a model to fit the data
  - Threshold: a threshold to determine inliers
- Output: BestModel: the model with the most inliers
- Repeat for a fixed number of iterations:
  - 1. Select a random subset of data
  - 2. Fit the model to the data points in the subset
  - 3. Determine the inliers by comparing the fitted model to data
  - 4. If the number of inliers exceeds the threshold
    - re-estimate the model using all the inliers
  - 5. Store the model if it has the most inliers seen so far
- Return BestModel



### RANSAC Algorithm

```
Given:
    data - A set of observations.
   model - A model to explain the observed data points.
    n - The minimum number of data points required to estimate the model parameters.
    k - The maximum number of iterations allowed in the algorithm.
   t - A threshold value to determine data points that are fit well by the model (inlier).
    d - The number of close data points (inliers) required to assert that the model fits well to the data.
Return:
    bestFit - The model parameters which may best fit the data (or null if no good model is found).
iterations = 0
bestFit = null
bestErr = something really large // This parameter is used to sharpen the model parameters to the best data
fitting as iterations goes on.
while iterations < k do
    maybeInliers := n randomly selected values from data
    maybeModel := model parameters fitted to maybeInliers
    confirmedInliers := empty set
    for every point in data do
        if point fits maybeModel with an error smaller than t then
             add point to confirmedInliers
        end if
   end for
    if the number of elements in confirmedInliers is > d then
        // This implies that we may have found a good model.
        // Now test how good it is.
        betterModel := model parameters fitted to all the points in confirmedInliers
        thisErr := a measure of how well betterModel fits these points
        if thisErr < bestErr then</pre>
            bestFit := betterModel
            bestErr := thisErr
        end if
    end if
    increment iterations
end while
```



21

#### RANSAC Properties

#### Good

- Robust to outliers
- Applicable for larger number of model parameters than Hough transform.
- Optimization parameters are easier to choose than Hough transform.
  - Lines with normal form works for Hough, but slope-intercept form not.

#### Bad

- Computational time grows quickly with outliers and parameters
  - While Hough transform grows quickly with number of parameters.
- Not good for getting multiple fits
  - Hough transform can fit multiple lines simultaneously.

#### More applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)



