CSE 330: Spring 2025

Assignment-4

Total Marks: 20

- 1. Consider a function $f(x) = x^3 + x^2 4x 4$.
 - a. (2 marks) State the exact roots of f(x) and construct two different fixed point functions g(x) such that f(x) = 0.
 - b. (3 marks) Compute the convergence rate of each fixed point function g(x) obtained in the previous part, and state which root it is converging to or diverging from.
- 2. Consider the following function: $f(x) = xe^x 1$.
 - a. (2.5 marks) Find solution of f(x) = 0 up to 5 iterations using Newton's method starting with x0 = 1.5. Keep up to four significant figures.
 - b. (2.5 marks) Consider the fixed point function, $g(x) = \frac{2x+1}{\sqrt{x+1}}$. Show that to be super linearly convergent x^* has to be $\frac{-3}{2}$. (Here g(x) and x^* are arbitrarily taken Just prove that for the value -3/2 g'(x) will 0)
- 3. In the interval [-4, 4], the function, $f(x) = x^3 x^2 3x + 2$, has three roots at 2.000, 0.6180 and -1.618; and two turning points at x = -0.721 and x = 1.387.
 - (2.5 marks) Write down the correct intervals, including the root it contains, such that the problem of turning points in Newton Raphson's method can be avoided.
 - b. (2.5 marks) Except for the work around from answer (a) can this be solved using the Quasi Newton method?