'SHOW ME THE MONEY'

PREDICTING INCOME VIA SUPPORT VECTOR MACHINE

Motivation

□ Binary Classification using Machine Learning

- The aim of this project is to tackle a binary classification problem, using a machine learning approach (to approach an old problem with a new technique if you will).
- Through using a supervised learning model; a Support Vector Machine (SVM), which 'learns' from the data shall be fitted and it's performance assessed.

Overview

□ Data

■ The data used is extracted from the US Census, and contains demographic values on circa 30,000 respondents.

□ Research Question

"Based on a respondent's demographics, do they earn (i) less than or equal to \$50k per annum, or (ii) in excess of \$50k per annum".

Approach (I of II)

- □ Support Vector Machine (SVM)
 - SVM is a supervised learning classification algorithm
- □ How does it work?
 - Uses a separating hyperplane to separate the classes
 - Classes: {≤ \$50k, > \$50k}
 - Model learns from <u>training</u> data (70%) and is <u>tested</u> on unseen data (30%)

Approach (II of II)

□ Non-Linear Separable Case

- For non-linearly separable data, a kernel function is applied to the data
 - This maps the data to a higher dimensional space
 - The data is now separable
- □ Simplistic example illustrated below: Fig 1.1 → Kernel
 → Fig 1.2

Fig 1.1: Linearly Inseparable

Fig 1.2: Linearly Separable

Model Validation

- Model Validation is comprised of the following:
- □ Approach 1
 - K-Folds Cross Validation
- □ Approach 2
 - Confusion Matrices
- □ Approach 3
 - Receiver-Operator Characteristic (ROC) Curve

Model Validation, Approach1(I of III)

- □ K-Folds Cross Validation (K=10)
- How does it work?
 - Data is divided into 10 Folds
 - One is Test Data, 9 are Train Data
 - Replicate 10 times
- Why this approach?
 - All observations are used for both training and validation

Model Validation, Approach1(II of III)

□ K-Folds Cross Validation (K=10) Overview

Iteration	← Training Data: 10 Folds (K = 10) →									
K = 1	Test	Train								
K = 2	Train	Test	Train							
K = 3	Train	Train	Test	Train						
K = 4	Train	Train	Train	Test	Train	Train	Train	Train	Train	Train
K = 5	Train	Train	Train	Train	Test	Train	Train	Train	Train	Train
K = 6	Train	Train	Train	Train	Train	Test	Train	Train	Train	Train
K = 7	Train	Train	Train	Train	Train	Train	Test	Train	Train	Train
K = 8	Train	Train	Train	Train	Train	Train	Train	Test	Train	Train
K = 9	Train	Train	Train	Train	Train	Train	Train	Train	Test	Train
K = 10	Train	Train	Train	Train	Train	Train	Train	Train	Train	Test

Model Validation, Approach1(III of III)

- □ SVM Model Parameters
- © Cost (C)
 - Penalises the misclassification cost
 - A small C corresponds to a lower misclassficiation Cost
- Gamma (γ)
 - Relates to the Kernel applied
 - A small γ results in low bias and high variance

Optimal parameters found using the sym.tune() function

$$C = 1.1$$
 $y = 0.3$

10-Fold Cross-Validation Error Rate = 16.5%

Model Validation, Approach 2 (I of II)

□ Confusion Matrix

- A table of Actual vs. Predicted Classification for the data.
- Computed for both the Train and Test data

Why this approach?

A variety of performance metrics can be derived from these tables such as Error Rates, Sensitivity and Specificity etc.

Model Validation, Approach 2 (II of II)

□ Confusion Matrices

Model Validation, Approach 3 (I of II)

□ Receiver-Operator-Characteristic (ROC) Curve

- A visual tool used to ascertain the discriminatory ability of a classification model
- Displays the trade-off between the sensitivity and specificity of a model

Why this approach?

- Visual approach
- Easy to interpret
- Accompanied by metric for interpretation/comparison:
 Area under the Curve (AUC)

Model Validation, Approach 3 (II of II)

□ ROC Curve Interpretation

- Curve indicates a model with good discriminatory ability
- AUC = 0.87 (Perfect model AUC = 1.00)

Conclusions

□ SVM Model Findings

- The SVM model produced showed itself to be a good classifying tool, as evidenced by the model validation metrics:
 - Training Error Rate: 15.02%
 - 10-Fold Cross-Validation Error Rate: 16.5%
 - Test Error Rate: 16.68%
 - **AUC: 0.87**
- A feature in this model; the sym.tune() command, helps ensure badly chosen parameters are not an issue when developing this model.