Ejercicio 3. Tarea 2: Consumo. Macroeconomía

Benjamín Elam Rodríguez Alcaraz

3/9/2022

Ejercicio 3. Estudie el consumo agregado en México siguiendo estos pasos: [3 horas, 0.5 puntos cada inciso]

a) Obtenga, del Inegi, datos de "C", el consumo agregado en México, de "Y", elproducto agregado, de "I", la inversión agregada, de "G", el gasto del gobierno y de , de "NX", las exportaciones netas, entre 1980 y el tercer trimestre de 2019,EN TÉRMINOS REALES

Se obtuvieron las siguientes series:

- Serie desestacionalizada: Indicador Mensual del Consumo Privado en el Mercado Interior (en adelante "C") de base 2013 ¹.
- Serie desestacionalizada: Producto Interno Bruto (en adelante "Y") a precios 2013.
- Serie desestacionalizada: Inversión Bruta Fija (en adelante "I") de base 2013.
- Serie desestacionalizada: Gasto programable (en adelante "G") a precios 2013 ².
- Serie desestacionalizada: Balanza comercial (en adelante "XN") a precios 2013 ³.

Ahora, para obtener las series en términos reales, las deflactamos con el INPC. Esto se hace solamente con las variables G y XN ya que éstas son variables en niveles. De aquí en adelante, las series se presentan en términos reales, desestacionalizadas y de base 2013.

Aprovecharemos, en este inciso, para mostrar el proceso por el cual se desestacionalizó la variable G así como XN. Lo primero es identificar que toda serie de tiempo tiene 4 componentes, a saber: ciclo, tendencia, estacionalidad e irregularidad. Se descompuso la serie en sus 4 componentes, que para el caso de G se observan a continuación:

De esta descomposición solamente obtenemos el componente de la tendencia para la variable G. Lo mismo sucede para la variable XN.

Las series que se trabajarán a lo largo de este ejercicio son las que siguen:

Nótese que las variables están suavizadas y normalizadas, así como están en términos reales a precios 2013. Notemos que la variación y la tendencia entre las variables Y_t , I_t y C_t es muy similar, lo que indica que hay un grado de asociación entre dichas variables muy importante. Notemos que esto puede tener alguna implicación en los resultados econométricos que se analizarán en el inciso f).

¹Vale la pena hacer la siguiente aclaración: la series disponibles en INEGI son del periodo 1993-2021. El ejercicio pide desde el año 1980, pero algunas series disponibles en la estadístia oficial datan de 1993 dado que, a partir de 1994 se homologaron metodologías estadísticas entre los países parte del *TMEC* y se ajustaron a base 2013=100, por lo que la búsqueda de datos anteriores a esta homologación podría resultar difícil para trabajar y significaría un trabajo estadístico de datos (para hacer las series comparables) que excede los propósitos de esta tarea, por lo que las series se tomaron para todo el periodo disponible, a reserva de que la tendencia, básicamente, se mantiene y las conclusiones que podemos sacar del análisis no variarían significativamente.

²Esta serie se desestacionalizó aparte, dado que fue descargada en niveles de Banxico. El Gasto se divide en gasto de capital y gasto corriente. Decidimos tomar el gasto programable ya que es el que se planea ejercer en el presupuesto de cada año, aunque, además, hay un gasto no programable, que es aquel que se ejerce y que no estaba presupuestado.

 $^{^3}$ Íbidem.

Decomposition of additive time series

Figure 1: Descomposición de la serie G

Figure 2: Variables macroeconómicas seleccionadas

- b) Grafique dichas serie de tiempo juntas para comparalas visualmente. (Compare la gráfica de las variables (de las que son siempre positivas) en dos versiones: a)su valor real original, y b) después de sacarles el logaritmo natural).
- **b.1)** Graficando en su valor original Para realizar este inciso tuvimos que normalizar las variables para hacerlas comparables, esto debido a que los valores máximos y mínimos de estas son muy disímiles. La normalización se dio a través de la siguiente fórmula:

$$Z_i = \frac{X_i - \mu}{\sigma}$$

Donde x_i es cada una de las observaciones de las series para cada t_i , con $t_i \in [1993I - 2021IV]$ lo que nos devolverá un nuevo valor z_i para $t_i \in [1993I - 2021IV]$, de esta forma no se pierde ninguna observación y sólo se modifica la escala, lo que nos permite hacer comparaciones entre las variables. En la siguiente gráfica se muestran las variables en niveles: C, Y, I y G.

Figure 3: Variables seleccionadas: 1993-2022

Nótese que estas variables tienen un comportamiento similar. En todo el periodo la tendencia es creciente, con una caída importante durante la pandemia y a partir del Gobierno de Andrés Manuel López Obrador. Nótese, además, que el G tuvo una caída menor, pues a partir de la crisis económica generada por la pandemia el gobierno en turno incentivó la economía a través de una política fiscal expansiva.

b.2) Graficando su ln Para realizar este inciso se tomaron los $ln(x_i)$ donde x_i es cada variable analizada. En este caso tenemos lo que sigue: ln(c), ln(Y), ln(I) y ln(G) ⁴.

 $^{^4}$ Nótese que, para el caso de la variable ln(G), al normalizarla, los valores para el logaritmo natural son negativos, por lo que no se alcanzan a ver en la gráfica. No es sino hasta el tercer trimestre de 2009 que los valores son positivos y pueden compararse.

Notamos que el comportamiento tendencial de las variables se mantiene: hay una tendencia creciente en el periodo con una variación negativa durante los últimos años del periodo debido a las razones que ya mencionamos.

Figure 4: Variables seleccionadas en logaritmo: 1993-2022

c) Grafique también la tasa de crecimiento de todas estas series

La tasa de crecimiento de cada una de las series está dada por la siguiente ecuación:

$$\Delta x_t = (X_t - X_{t-1}) / X_{t-1} \times 100$$

Donde cada Δx_t es un valor para el tiempo t que medirá la variación que tuvo cada observación respecto al tiempo t-1. Este valor está expresado en porcentaje.

En la siguiente gráfica observamos las variaciones de las variables seleccionadas.

Notemos que ΔC_t , ΔY_t y ΔI_t son muy similares, esto debido a la correlación que existe entre las variables. Por otro lado, ΔG_t y $\Delta X N_t$ tienen una dinámica distinta. Notemos, además, que $\Delta X N_t$ es una serie que decrece, pues México tiene una dinámica de déficit comercial, es decir, que en México para $t \in [2002-2021]$ se cumple que $X_t \leq M_t$, luego entonces, $X N_t \leq 0$. Véase también que, en el caso de ΔG_t las variaciones son muy altas, es decir, es más volatil. Esto se explica porque el gasto programable varía en función de los recursos disponibles del Gobierno en cada periodo t y, además, de las proyecciones que se tienen respecto al comportamiento de las variables clave que financian el G. Estas variables son $grosso\ modo$, el precio del petróleo y el índice de recaudación fiscal.

Figure 5: Variaciones porcentuales de variables seleccionadas: 1993-2022

d) Enfóquese ahora nada más al consumo y al producto agregado. Grafique la relación entre una serie y la otra, es decir, grafique los puntos $(\Delta Y_t, \Delta C_t)$ poniendo el consumo en las ordenadas

Esta variación conjunta entre ΔC_t y ΔY_t no es clara si graficamos como la gráfica que sigue, sin embargo, nótese que esta relación es positiva, es decir, intuitivamente podemos decir que las variaciones positivas de Y_t se relacionan con variaciones positivas de C_t .

Figure 6: Relación entre %Y y %C

Notemos que esta relación es difícil de ver, dado que las variaciones son muy disímiles. Hagamos ahora la comparación con las variables en logaritmos. En la siguiente gráfica se muestra esta relación.

Nótese que esta relación es positiva, es decir, la variación del consumo y del ingreso tiene un alto nivel de correlación. Esta relación nos indica que el consumo crece conforme crece el ingreso, es decir, guardan una relación directa ⁵.

e) Calcule la volatilidad de las dos series. ¿Qué es más volatil, el consumo o el ingreso?

Sabemos que la volatilidad de un conjunto de datos está dada por la raíz cuadrada de la varianza, es decir, por la siguiente ecuación:

$$S_n = \sqrt{\sigma^2}$$

⁵Notemos que esta es la relación que esperaríamos siguiendo la macroeconomía Keynesiana. Más adelante, estableceremos formal y econométricamente esta relación, buscando calcular la propensión marginal al consumo en el modelo 1 a estimar en el inciso f.

Figure 7: Relación entre $\ln(Y)$ y $\ln(C)$

A su vez, sabemos que la varianza σ^2 se define como sigue:

$$\sigma^2 = \frac{1}{n} \sum (x_i - \mu)^2$$

Donde la varianza de C_t está dada por lo siguiente:

Notemos entonces que los datos son los siguientes:

$$\begin{bmatrix} VarianzaC & VarianzaY \end{bmatrix}$$
(1)

$$[321.896 \quad 251.7195]$$
 (2)

Mientras que las desviaciones estándar están dadas por lo que sigue:

$$\begin{bmatrix} Desviaci\'onC & Desviaci\'onY \end{bmatrix} \tag{3}$$

$$[17.94 \ 15.86]$$
 (4)

Con esto podemos dar cuenta que es el consumo el que presenta una variación ligeramente mayor y, por ende, es más volátil. Ahora, esto puede deberse a que la variación en el ingreso está suavizada por las variaciones de los demás componentes, incluida la variación del consumo.

f) Estimar algunos modelos de regresión lineal:

Estimamos los siguientes modelos de regresión lineales:

- $C_t = a + bY_t + \epsilon_t$

- $\Delta_{C_t} = a + b\Delta_{Y_t} + \epsilon_t$ $\Delta_{C_t} = a + b\Delta_{Y_{t-1}} + \epsilon_t$ $ln(c_t) = a + bln(y_t) + \epsilon_t$
- 1. Los resultados para el primer modelo, $C_t = a + bY_t + \epsilon_t$, se muestran a continuación:

$$C_t = -000000.5 + 09.9Y_t$$

Es decir, que a cambios en Y_t el consumo responderá de forma directa en un 9.9, lo que viene dado por el coeficiente b = 09.9.

Notemos que el valor para el intercepto es muy cercano a 0, por lo que asumimos que a=0.

Esta regresión se grafica en la siguiente tabla. Nótese que la relación es directa y que el consumo está suficientemente explicado por el ingreso.

Notemos que la propensión marginal a consumir es igual a 0.9, es decir, que cambios en el ingreso se traducen casi proporcionalmente a cambios en el consumo, siendo la diferencia, es decir, 0.1, la propensión marginal a ahorrar.

Figure 8: Modelo de regresión 1

Figure 9: Errores: Modelo de regresión 1

Ahora notemos los errores. Eston están dados en la siguiente gráfica. Notemos que estos errores presentan un patrón, lo que indica que hay asociación lineal entre las variables. En el resumen de los estadísticos de la regresión notaremos esta salvedad de la regresión:

La siguiente tabla muestra los resultados:

Coef.	Estimado	Std. Error	T_value
intercepto	-5.510	00.1212	0.00
Y	09.915	00.1218	81.42
R^2	0.9831	Adjusted R^2	0.9829

Notemos que la R^2 ajustada es muy alta, es decir, que el consumo se explica completamente por el ingreso. Como ya mencionamos, este resultado indica que hay asociación lineal entre las variables pues la bondad de ajuste es cercana al 100%.

2. Ahora estimemos el segundo modelo de regresión lineal, de acuerdo con la ecuación que sigue:

$$\Delta_{C_T} = a + b\Delta_{Y_t} + \epsilon_t$$

Los resultados se muestran a continuación:

$$\Delta_C = 4.30 + 0.8\Delta_u$$

Esta regresión se grafica en la siguiente tabla. Nótese que la relación es directa y que las variaciones en el consumo están suficientemente explicadas por las variaciones en el ingreso.

Notemos que la propensión marginal a consumir es igual a 0.8, es decir, que cambios en el ingreso se traducen casi proporcionalmente a cambios en el consumo, siendo la diferencia, es decir, 0.2, la propensión marginal a ahorrar.

Ahora notemos los errores. Eston están dados en la siguiente gráfica. Notemos que estos errores no se distribuyen aleatoriamente, lo que indica que hay asociación lineal entre las variables. En el resumen de los estadísticos de la regresión notaremos esta salvedad de la regresión.

Figure 10: Modelo de regresión 2

A continuación se muestran estos estadísticos:

Coef.	Estimado	Std. Error	T_value
intercepto V	4.300e01 08.000	00.802 00.135	$0.536 \\ 0.70$
R^2	0.9882	00.200	0.70

Notemos que la R^2 ajustada es muy alta, es decir, las variaciones en el consumo se explican completamente por las variaciones en el ingreso. Como ya mencionamos, este resultado indica que hay asociación lineal entre las variables pues la bondad de ajuste es mayor al 90%.

3. Ahora estimemos el tercer modelo de regresión lineal el cual está dado por la ecuación que sigue:

$$\Delta_{C_t} = a + b\Delta_{Y_t - 1} + \epsilon_t$$

Este modelo nos presenta una variable rezagada, es decir, lo que buscamos analizar es si el ingreso afecta al consumo pero no en el mismo periodo, es decir, queremos ver cómo afectan las variaciones en el ingreso en t-1 al consumo en t.

Los resultados se muestran a continuación:

$$\Delta_{C_t} = +\Delta_{Y_t - 1}$$

Los estadísticos se muestran en la siguiente tabla:

Coef.	Estimado	Std. Error	T_value
intercepto Y	57.73 0.46927	1.0857 0.01262	48.57 37.20
R^2	0.937	Adjusted R ²	0.9556

Notemos que la R^2 ajustada es muy alta, es decir, las variaciones en el consumo se explican completamente por las variaciones en el ingreso. Como ya mencionamos, este resultado indica que hay asociación lineal entre las variables pues la bondad de ajuste es mayor al 90%.

4. Ahora estimemos el cuarto modelo de regresión lineal el cual está dado por la ecuación que sigue:

$$ln(c_t) = a + bln(y_t) + \epsilon_t$$

Los resultados se muestran en la ecuación que sigue:

$$ln(c_t) = -14.27 + 1.13ln(y_t) + \epsilon_t$$

Es decir, que a cambios en Y_t el consumo responderá de forma directa en un 1.13, lo que viene dado por el coeficiente b = 1.13.

Esta regresión se grafica en la siguiente tabla. Nótese que la relación es directa y que el logaritmo del consumo está suficientemente explicado por el logaritmo del ingreso.

Notemos que la propensión marginal a consumir es igual a 1.13, es decir, que cambios en el logaritmo del ingreso se traducen más que proporcionalmente a cambios en el logaritmo del consumo.

Ahora notemos los errores. Eston están dados en la siguiente gráfica. Notemos que estos errores presentan un patrón, lo que indica que hay asociación lineal entre las variables. En el resumen de los estadísticos de la regresión notaremos esta salvedad de la regresión:

La siguiente tabla muestra los resultados:

Coef.	Estimado	Std. Error	T_value
intercepto	-14.2753	0.2471	-57.77
Y	1.1381	0.0150	75.87
R^2	0.9806	Adjusted R^2	0.9804

Notemos que la R^2 ajustada es muy alta, es decir, que el logaritmo del consumo se explica completamente por el logaritmo del ingreso. Como ya mencionamos, este resultado indica que hay asociación lineal entre las variables pues la bondad de ajuste es cercana al 100%. Por tanto, los coeficientes calculados son no estadísticamente significativos.

g) Explique qué se podría concluir, si fuera el caso, acerca de la Hipótesis de Ingreso Permanente para México a partir de los coeficientes encontrados

A partir de todo el análisis hecho podemos concluir lo siguiente: i. Que la HIP no explica el comportamiento del consumo agregado en la economía mexicana para el periodo de observación. Este periodo abarca de 1993 a 2021, es decir, un periodo de 28 años. Esto implica que, a pesar de que el consumo tiene un comportamiento poco volatil y con aumentos muy cercanos a los aumentos del ingreso agregado, éste está determinado, empíricamente, por las variaciones en el ingreso. De hecho, podemos concluir que este efecto de sigue del efecto multiplicador Keynesiano debido a que el consumo depende del ingreso y éste último también del consumo, siendo el indicador importante la propensión marginal a consumir.

Figure 11: Modelo de regresión 4

Figure 12: Errores: Modelo de regresión 4

Esta propensión explica qué porcentajes de las variaciones en el ingreso se traducen como variaciones directas en el consumo, y este comportamiento se explica, esencialmente, por el modelo Keynesiano de consumo. ii. No es posible eliminar la correlación que existe entre las variables C_t y Y_t debido a la forma en la que se construyen. No obstante, los modelos econométricos estimados nos confirman la relación que teóricamente construimos entre las variables desde el modelo lineal de consumo de la macroeconomía Keynesiana. Un análisis econométrico más robusto excede el alcance de esta tarea, sin embargo, es un área de oportunidad a explorar debido a que podríamos estimar con mayor precisión cuál es la relación causal entre las variables y estimar si es que las variaciones del ingreso, por ejemplo, impactan pero no inmediatamente las variaciones en el consumo y hasta qué rezago se logra absorber ese efecto.

Como conclusión, no es difícil demostrar que la HIP no se sostiene para el caso de México, en el periodo observado, sin embargo, en línea con las implicaciones empíricas expuestas en Romer, un análisis más robusto implicaría identificar las variaciones del consumo que provienen de variaciones permanentes o transitivas en el ingreso, por lo que esta hipótesis no puede ser desechada completamente y más bien haría falta hacer un análisis econométrico enfocado en clasificar las variaciones transitivas y/o permanentes en el ingreso.