TP2

TP-2: Droite de Marchés des Capitaux

Paul Nantas Paul Poupard Thibault Spriet Théophile Ung

Février-Mars 2021

Données

Séries de rendement quatidien pour 11 valeurs:

```
daily.ret.file <- file.path(get.data.folder(), "daily.ret.rda")
load(daily.ret.file)
kable(table.Stats(daily.ret), "latex", booktabs=T) %>% kable_styling(latex_options="scale_down")
```

	AAPL	AMZN	MSFT	F	SPY	000	XOM	MMM	HD	PG	КО
	AAPL	AMZIN	MSF I	г	SFI	QQQ	AOM	IVIIVIIVI	пр	PG	KO
Observations	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000
NAs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Minimum	-0.1792	-0.1278	-0.1171	-0.2500	-0.0984	-0.0896	-0.1395	-0.1295	-0.0822	-0.0790	-0.0867
Quartile 1	-0.0077	-0.0094	-0.0073	-0.0103	-0.0038	-0.0047	-0.0068	-0.0055	-0.0067	-0.0046	-0.0047
Median	0.0010	0.0008	0.0005	0.0000	0.0006	0.0010	0.0001	0.0008	0.0006	0.0004	0.0007
Arithmetic Mean	0.0012	0.0015	0.0008	0.0005	0.0004	0.0006	0.0001	0.0004	0.0008	0.0004	0.0005
Geometric Mean	0.0010	0.0012	0.0006	0.0001	0.0003	0.0005	0.0000	0.0003	0.0006	0.0003	0.0004
Quartile 3	0.0112	0.0123	0.0088	0.0106	0.0056	0.0070	0.0073	0.0070	0.0082	0.0055	0.0059
Maximum	0.1390	0.2695	0.1860	0.2952	0.1452	0.1216	0.1719	0.0988	0.1407	0.1021	0.1388
SE Mean	0.0003	0.0004	0.0003	0.0005	0.0002	0.0002	0.0003	0.0002	0.0003	0.0002	0.0002
LCL Mean (0.95)	0.0005	0.0006	0.0002	-0.0005	0.0000	0.0002	-0.0004	-0.0001	0.0002	0.0000	0.0001
UCL Mean (0.95)	0.0019	0.0023	0.0013	0.0014	0.0008	0.0011	0.0006	0.0009	0.0013	0.0007	0.0009
Variance	0.0004	0.0006	0.0003	0.0007	0.0001	0.0002	0.0002	0.0002	0.0003	0.0001	0.0001
Stdev	0.0196	0.0243	0.0170	0.0266	0.0121	0.0130	0.0150	0.0140	0.0162	0.0109	0.0113
Skewness	-0.2151	1.4889	0.4319	0.7627	0.1379	-0.0084	0.4199	-0.3815	0.5114	0.0555	0.5004
Kurtosis	6.2706	16.8872	10.2176	20.9458	15.2824	7.3976	15.4203	7.3856	6.4641	8.1017	14.3236

Rendement annuel moyen:

Matrice de corrélation des rendements:

```
correl <- cor(daily.ret)
correl[lower.tri(correl)] <- NA
options(knitr.kable.NA = '')
kable(correl, "latex", booktabs=T, digits=2, caption="Corrélation des rendements quotidiens") %>%
kable_styling(latex_options="scale_down")
```

Table 1: Rendement annuel moyen

	Rendement $(\%)$
AAPL	30.2
AMZN	37.2
MSFT	19.0
\mathbf{F}	11.4
SPY	9.9
QQQ	15.3
XOM	3.5
MMM	9.9
$_{ m HD}$	19.2
PG	9.3
КО	12.5

Table 2: Corrélation des rendements quotidiens

	AAPL	AMZN	MSFT	F	SPY	QQQ	XOM	MMM	HD	PG	KO
AAPL	1	0.46	0.49	0.37	0.61	0.75	0.40	0.45	0.42	0.32	0.32
AMZN		1.00	0.50	0.33	0.56	0.66	0.39	0.41	0.44	0.27	0.30
MSFT			1.00	0.39	0.71	0.76	0.53	0.53	0.49	0.44	0.46
\mathbf{F}				1.00	0.56	0.53	0.37	0.44	0.46	0.30	0.31
SPY					1.00	0.92	0.77	0.75	0.71	0.62	0.60
QQQ						1.00	0.64	0.69	0.66	0.52	0.52
XOM							1.00	0.60	0.47	0.52	0.49
MMM								1.00	0.55	0.50	0.47
$_{ m HD}$									1.00	0.45	0.44
PG										1.00	0.57
КО											1.00

Table 3: Allocations du portefeuille risqué de varaince minimale avec les poids positifs

	Allocations
AAPL	0.05284
AMZN	0.94716
MSFT	0.00000
F	0.00000
SPY	0.00000
QQQ	0.00000
XOM	0.00000
MMM	0.00000
HD	0.00000
PG	0.00000
KO	0.00000

Droite de Marché des Capitaux (Capital Market Line)

• A partir des calculs présentés en cours, mettre en oeuvre une méthode numérique pour déterminer le portefeuille tangent quand les poids des actifs risqués sont contraints à être positifs: $w_i >= 0$.

```
tickers <- c("AAPL", "AMZN", "MSFT", "F", "SPY", "QQQ", "XOM", "MMM", "HD", "PG", "KO")
# covariance matrix
ret<- daily.ret
Sigma <- cov(ret) * 252
# expected return
mu <- colMeans(ret) * 252</pre>
```

Portefeuille à Variance Minimale

```
A.mat <- matrix(rep(1,length(mu)), ncol=1)
b <- 1
qp <- solve.QP(2*Sigma, mu*0, A.mat, b, meq=1)
w <- qp$solution
names(w) <- names(ret)
w <- data.frame(w)
names(w) = "allocation"
min.ret <- sum(qp$solution * mu)</pre>
```

Calcul de la Frontière avec w_i>=0

Ajout d'un actif sans risque

• Même calcul en ajoutant des contraintes supplémentaires qui vous semblent pertinentes (ex: pas plus de 20% de l'actif risqué alloué à un seul titre, etc.)

Portefeuille à Variance Minimale avec $W_i>=0$ et $W_i<=20\%$

\begin{table}

\caption{Allocations du portefeuille risqué de varaince minimale avec les poids positifs et inferieurs à 20%}

	Allocations
AAPL	0.00000
AMZN	0.00000
MSFT	0.00000
F	0.00000
SPY	0.14010
QQQ	0.18803
XOM	0.06583
MMM	0.16134
HD	0.04470
PG	0.20000
КО	0.20000

 $\ensuremath{\mbox{end}\{\ensuremath{\mbox{table}}\}}$

Calcul de la Frontière avec W_i>=0 et W_i<= 20%

On introduit un nouveau paramètre : lim. Il va nous permettre d'imposer une valeur maximal au w_i.

```
mu.star <- seq(from=min.ret+abs(min(mu))/100, to=max(mu)-abs(max(mu))/100, length.out=200)
mu.free <- 0.03
# constraints: maximum limit of w_i
lim = 1
sol <- NULL
for(mu.s in mu.star) {
# constraints: 2 equality
A.sum <- matrix(rep(1,length(mu)), ncol=1)
A.mat <- cbind(A.sum, mu, diag(length(mu)),-1*diag(length(mu)))
b <- c(1, mu.s, rep(0, length(mu)), rep(-lim, length(mu)))
qp <- solve.QP(2*Sigma, rep(0,length(mu)), A.mat, b, meq=2)
sharpe <- (mu.s - mu.free) / sqrt(qp$value)</pre>
  tmp <- matrix(c(mu.s, sqrt(qp$value), sharpe, qp$solution), nrow=1)</pre>
if(is.null(sol)) {
  sol <- tmp
} else {
  sol <- rbind(sol, tmp)</pre>
}
}
```

