MATHS Max.Marks:80

SECTION-1 (SINGLE CORRECT CHOICE TYPE)

Section-I (Single Correct Answer Type, Total Marks: 24) contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct. For each question you will be awarded 3 marks if you darken ONLY the bubble corresponding to the correct answer and zero marks if no bubble is darkened. In all other cases, minus one (-1) mark will be awarded.

41. Let P be the inflection point of the curve $y = x^3 + 3ax^2 + 4a^3$ (a > 0)

Let y = f(x) be the equation of the locus of P as the value of 'a'changes. The equation to the tangent to the curve y = f(x) at x = -1 is

A) 18x + y + 12 = 0

B) x + 18y + 12 = 0

C) 12x + y + 18 = 0

- D) x-18y+12=0
- 42. Number of points of inflection for the function $f(x) = \left(\frac{\pi}{3}\right)^{x^3-8}$ is
 - A)0
- B) 2
- C) 1
- D) 4
- 43. In the xy-plane, the curve $y = x^3$ intersects with the line y = 3x + a in three points A, B and C. If the point D is given by (a, 4a), the maximum value of the product DA.DB.DC is
 - A) $\frac{16}{\sqrt{3}}$
- B) $\frac{160}{3\sqrt{3}}$
- C) $\frac{160\sqrt{10}}{3\sqrt{3}}$
- $D) \frac{16\sqrt{10}}{\sqrt{3}}$

Sr. IPLCO_P2_Advanced

space for rough work

- 44. Three real numbers b, c and d are given. Then the set of all values of 'a' such that the tangents drawn to the curve $y = \sin x$ at the points $(a, \sin a), (b, \sin b), (c, \sin c), (d, \sin d)$ form a rectangle is
 - $A\big)\{n\pi:n\in\mathbb{Z}\}$

B) $\left\{\frac{n\pi}{2}: n \in \mathbb{Z}\right\}$

 $C)\bigg\{(2n+1)\frac{\pi}{2}:n\in\mathbb{Z}\bigg\}$

- $D\big)\,\,\big\{(2n+1)\pi\,;n\in\mathbb{Z}\big\}$
- 45. Let the functions f(x) x and $f(x) x^3$ are monotonically increasing functions on
 - R. Then the function $f(x) \frac{\sqrt{3}}{2}x^2$ is
 - A) increasing on $R^+ \cup \{0\}$ only
 - B) decreasing on R
 - C) increasing on R
 - D) decreasing on R⁻∪{0} only
- 46. In the parabola $x^2 = 4ay$, a > 0, consider a chord whose length is double that of the latusrectum. The angle at which the chord is inclined to the positive x-axis so that its mid point is at a minimum height from x-axis is given by
 - A) $\frac{\pi}{3}$
- B) $\frac{\pi}{4}$
- C) $\frac{\pi}{6}$
- D) π

- Let $f(x) = \frac{x^2 + ax + b}{x^2 + 1}$ for some real numbers a & b. If $|f(x)| \le 2, \forall x$, then the locus of 47. the point (a,b) describes a region. Maximum distance between any two points in the region is
 - A) $2\sqrt{3}$
- B) $4\sqrt{3}$
- C) $\sqrt{3}$
- D) $6\sqrt{3}$
- Which of the following statements is false about any differentiable monotonic 48. function $f: \mathbb{R} \to \mathbb{R}$ that satisfies the equation f(xf(y) + x) = 2f(x) + xy - 1, $\forall x, y \in \mathbb{R}$?
 - A) y = f(x) has constant derivative in \mathbb{R}
 - B) There are only two functions which satisfy the above conditions
 - C) y = f(x) is surjective
 - D) y = f(x) has one point of inflection

SECTION-2 (MORE THAN ONE TYPE)

Section - II (Multiple Correct Answers Type, Total Marks: 16) contains 4 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE may be correct. For each question you will be awarded 4 marks if you darken ALL the bubble(s) corresponding to the correct answer(s) ONLY and zero marks otherwise. There are no negative marks in this section.

- P(x) is a monic polynomial with real coefficients satisfying the equation 49. $P(\sqrt{2}x) = P(x + \sqrt{1 - x^2})$ for all $|x| \le 1$. Given that P(0) = 0, which of the following conclusion(s) hold?
 - A) P'(0) = 0

- B) P(x) represents an even function
- C) $x^2 + y^2 = 2$ whenever P(x) = P(y) D) P(1) = 0

Sr. IPLCO P2 Advanced

space for rough work

- 50. Let f(x) be a function defined on $(0,\infty)$ as $f(x) = x + \frac{1}{x}$. Let h(x) is a function defined for all $x \in (0,1)$ as $h(x) = \frac{x^4}{(1-x)^6}$. Suppose g(x) = f(h(x)) for all $x \in (0,1)$. Then which of the following statements is/are false?
 - A) It is not possible to find some $a \in (0,1)$ such that g(x) strictly decreasing in (0,a) and strictly increasing in (a,1)
 - B) If the option A is false, then there exists 'a' such that $\frac{1}{2} < a < 1$
 - C) f(x) is decreasing in its domain
 - D) h(x) is increasing in its domain
- 51. If $f(x) = 3x^4 4(a+7)x^3 + 6(7a+10)x^2 120ax + 2$ defined on the interval $[4,\infty)$, then which of the following statements is/are true about f(x) and 'a'? (We write $f(x) \uparrow if f(x)$ increases and $f(x) \downarrow if f(x)$ decreases)
 - A) when a > 5, $f(x) \uparrow in (5,a)$ and $f(x) \downarrow in (a,\infty)$
 - B) when $a \in (2,4]$, then $f(x) \uparrow for (5,\infty)$ and $f(x) \downarrow for (4,5)$
 - C) when a < 3, then $f(x) \downarrow in (5, \infty)$ and $f(x) \downarrow for (4,5)$
 - D) when a < 1, $f(x) \uparrow for (5, \infty)$ and $f(x) \downarrow for (4,5)$

Sri Cho	aitany	ı IIT A	Academy
---------	--------	---------	---------

20-09-15_Sr. IPLCO_Jee-Adv_(2011_P2)_Q'Paper

- 52. Suppose that f(x) is a differentiable function such that $f'(x) \ge 3$ for all real numbers and f(0) = -4. Then which of the following cannot be a value for for f(3)?
 - A) 8
- B) 2
- C) 4
- D) 6

SECTION-3 [INTEGER TYPE]

Section-III (Integer Answer Type, Total Marks: 24) contains 6 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9. The bubble corresponding to the correct answer is to be darkened in the ORS. For each question you will be awarded 4 marks if you darken ONLY the bubble corresponding to the correct answer and zero marks otherwise. There are no negative marks in this section.

- 53. Number of non-zero integer values for K, so that the equation $x^4 4x^3 + 2x^2 + 4x + K = 0$ has four distinct real roots is
- 54. Smallest positive integer value for K so that the function $f(x) = \sin^3 x + K \sin^2 x$, fails to have exactly one minimum and exactly one maximum in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is
- 55. If K is the minimum value of the expression |x-a|+|x-15|+|x-a-15| for $x \in [a,15]$ and $a \in (0,15)$. Then $\frac{K}{3} =$
- 56. Given that a function f(x) satisfies the relation for $f\left(\frac{x-3}{x+1}\right) + f\left(\frac{3+x}{1-x}\right) = x$ all real numbers x such that $|x| \neq 1$. Number of points on y=f(x) tangent at which is parallel to the line 7x-2y=15 is

Sr. IPLCO_P2_Advanced

space for rough work

Sri Chaitanya IIT Academy

20-09-15_Sr. IPLCO_Jee-Adv_(2011_P2)_Q'Paper

- 57. The parametric equations of the function y = f(x) are given by $x = t^5 + 5t^3 20t + 4$, $y = 6t^3 21t^2 + 12t + 5$ then the point of minimum for the curve occurs at t =____
- 58. Consider the real valued functions f, g, h given by $g(x) = (f(x)+1)x + 4 = [h(x)]^2 \text{ where } f(x) = x^3 f''(1)x^2 [f''(1)+f'(2)]x + 3f'(2). \text{ If } K \text{ is minimum value of } h(x), \text{ then } 4K =$

SECTION-4 [Matrix Matching Type]

Section-IV (Matrix-Match Type, Total Marks: 16) contains 2 questions. Each question has four statements (A, B, C and D) given in Column I and five statements (p, q, r, s and t) in Column II. Any given statement in Column I can have correct matching with ONE or MORE statement(s) given in Column II. For example, if for a given question, statement B matches with the statements given in q and r, then for the particular question, against statement B, darken the bubbles corresponding to q and r in the ORS. For each question you will be awarded 2 marks for each row in which you have darkened ALL the bubble(s) corresponding to the correct answer(s) ONLY and zero marks otherwise. Thus, each question in this section carries a maximum of 8 marks. There are no negative marks in this section.

59.

1	Column I (Function)		Column II
A)	$f(x) = x^2 - \frac{1}{2} \ln x $	P)	strictly increasing in $\left(0, \frac{\pi}{4}\right)$
B)	$f(x) = 2x + e^{-x}$	Q)	strictly decreasing in $\left(-2\pi, \frac{-3\pi}{2}\right)$
C)	$f(x) = \cos x + e^{x}$	R)	strictly increasing in (e,∞)
D)	$f(x) = e^{\cos x} - e^{-\cos x}$	S)	strictly decreasing in $(-\infty, e)$

Sr. IPLCO_P2_Advanced

space for rough work

Sri Chaitanya IIT Academy

20-09-15_Sr. IPLCO_Jee-Adv_(2011_P2)_Q'Paper

60.

	Column I		Column II
A)	The tangent at any point P on the curve $x = at^3$, $y = at^4$ meets X, Y axes respectively at A and B so that $\frac{PA}{PB}$ is m:n, then $n + m$ is equal to (m and n are co-prime)	P)	0
B)	If the area of the triangle formed by normal at the point(1,0) on the curve $x = e^{\sin y}$ with co-ordinate axes is Δ then the value of 2Δ is	Q)	1
C)	If the angle between the curves $x^2y = 1$ and $y = e^{2(1-x)}$ at the point $(1,1)$ is θ , then $\tan \theta$ is equal to	R)	7
D)	The length of the subtangent at any point on the curve $y = be^{x/3}$ is equal to	S)	3

Sr. IPLCO_P2_Advanced

space for rough work