7.A Self-Adjoint and Normal Operators

Friday 26 July 2024 15:57

Comment: Reisz Vepresentation theorem \Rightarrow \exists unique y s.t. $\phi(y) = \langle v, u \rangle$ Siven w, let $\phi(v) = \langle T_{V}, w \rangle$ then T_{w}^{*} is such unique $u \Rightarrow \phi(v) = \langle v, T_{w}^{*} \rangle + v$

proposition:
$$T^{*}$$
 is a linear map.

 $T \in \mathcal{L}(V, W) \Rightarrow T^{*} \in \mathcal{L}(W, V)$

proof: let $v \in V$, $(w, w_{2}) \in W^{2}$, $\lambda \in F$
 $\Rightarrow \langle v, T^{*}(w, +w_{2}) \rangle = \langle Tv, w, +w_{2} \rangle$
 $= \langle Tv, w_{1} \rangle + \langle Tv, w_{2} \rangle$
 $= \langle V, T^{*}w_{1} \rangle + \langle V, T^{*}w_{2} \rangle$
 $= \langle V, T^{*}w_{1} \rangle + \langle V, T^{*}w_{2} \rangle$
 $= \langle V, T^{*}w_{1} \rangle + \langle V, T^{*}w_{2} \rangle$
 $= \langle V, T^{*}w_{1} \rangle + \langle V, T^{*}w_{2} \rangle$
 $= \langle V, T^{*}w_{1} \rangle + \langle V, T^{*}w_{2} \rangle$
 $= \langle V, T^{*}w_{1} \rangle + \langle V, T^{*}w_{2} \rangle$
 $= \langle V, T^{*}w_{1} \rangle + \langle V, T^{*}w_{2} \rangle$
 $= \langle V, T^{*}w_{2} \rangle + \langle V, T^{*}w_{3} \rangle$
 $= \langle V, T^{*}w_{4} \rangle + \langle V, T^{*}w_{4} \rangle$
 $= \langle V, T^{*}w_{4} \rangle + \langle V, T^{*}w_{4} \rangle$
 $= \langle V, T^{*}w_{4} \rangle + \langle V, T^{*}w_{4} \rangle$
 $= \langle V, T^{*}w_{4} \rangle + \langle V, T^{*}w_{4} \rangle$
 $= \langle V, T^{*}w_{4} \rangle + \langle V, T^{*}w_{4} \rangle + \langle V, T^{*}w_{4} \rangle$
 $= \langle V, T^{*}w_{4} \rangle + \langle V, T^{*}w_{4} \rangle + \langle V, T^{*}w_{4} \rangle$
 $= \langle V, T^{*}w_{4} \rangle + \langle V, T^$

properties of adjoint

(a)
$$(S+T)^* = S^* + T^*$$

(b) $(\lambda T)^* = \overline{\lambda} T^*$ ($\lambda \in \mathbb{F}$, $T \in \Sigma(V)$)

(1) $(T^*)^* = T$

(e)
$$(ST)^* = T^*S^*$$
 where $S \in L(V, W)$, $T \in L(W, U)$

proof: (w) Let
$$S,T \in L(V,W)$$

 $\langle v,(S+T)^*w \rangle = \langle (S+T)v,w \rangle$
 $= \langle Sv,w \rangle + \langle Tv,w \rangle$
 $= \langle v,S^*w \rangle + \langle v,T^*w \rangle$
 $= \langle v,(S^*+T^*)w \rangle$

(b)
$$\langle v, (\lambda T)^* \omega \rangle = \langle \lambda T_{v}, \omega \rangle = \lambda \langle T_{v}, \omega \rangle$$

= $\lambda \langle v, T^* \omega \rangle = \langle v, T^* \omega \rangle_{\mathcal{B}}$

(c)
$$\langle v, (T^*)^k w \rangle = \langle T^* v, w \rangle = \langle w, T^* v \rangle$$

$$= \langle Tw, v \rangle = \langle v, Tw \rangle$$
($\lambda_1 \langle v, T^* w \rangle = \langle T_v, w \rangle = \langle v, w \rangle = \langle v, T_v \rangle$

(e)
$$\langle V, (ST)^* w \rangle = \langle STv, w \rangle = \langle Tv, S^*w \rangle = \langle v, T^*S^*w \rangle_{\mathbf{w}}$$

```
Rank, Nullity of adjoint
 (n) \ker(T^*) = (\operatorname{im}(T))^{\perp}
 (b) im (T*) = (her(T)) L
  (c) \ker(T) = (\inf(T^*))^{\perp}
  (A) im(T) = (low(T*))
  proof: (a) let Te L (V,W), weW
             W & ker(T*) <=> T*w = 0 <=> < V, T*w> = < tv, w> = 0 + ve V
              (im(T))+
            (a) <=> (d)
              T->T* => (6) (5) (6)
 definition: conjugate transpose of Mij is Miji
 theorem ; let Te L (V, W), Eeilie Ei, n]} and ff, lje Ei, m]}
                 one, orthonormal basis sets of V and W
                M(T^*, f_i, e_i) = (M(T, e_i, f_i))^{\dagger}
  proof; kin column of M(T) is M(T). = M(Tex) = Ajk fj
               orthonormality \Rightarrow \langle f_i, f_j \rangle = \delta_{ij} \Rightarrow \langle T_{e_k}, f_j \rangle = A_{ik} \langle f_i, f_j \rangle = A_{ik} \langle f_i, f_j \rangle
                                                           = Aik Si; = Ajk
               \Rightarrow M(T). k = \langle Tek, f_j \rangle f_j \Rightarrow M(T)_{jk} = \langle Tek, f_j \rangle
                 T>T*, ei+f;
                  \mathcal{M}(T^{k})_{ik} = \langle T^{k} f_{k}, e_{i} \rangle = \langle f_{k}, Te_{i} \rangle = \overline{\langle Te_{i}, f_{k} \rangle} = \overline{\mathcal{M}(T)}_{ki}
lemma; given V(I), Te L(V)
           if <Tv, v>=0 + v eV, then T=0
proof (4<Tu, w> = <Tcu+w), u+w> - <Tcu-w, u-w>
                       +i( <T(u+iw), u+iw>-<T(u-iw),u-iw>)
           Y (u,w) e V2
             RNS is of the form <Tv, v>
           => if < Tv, v> + ve V, thon
          (Tu, w>=0 + (n, w) ∈ V2
           => for w=Tu; <Tu, w>=<Tu, Tu> + ueV
```

=> || Tu|| = 0 +u = / => T=0

lemma: let VCF), TEL(V)

```
\langle T_{V}, v \rangle \in \mathbb{R} + v \in V \iff | = 1

\langle T_{V}, v \rangle = \langle T_{V}, v
```

[emma, given
$$V(F)$$
, $T \in L(V)$.

If $T = T^*$ and $\langle Tv, v \rangle = 0 + V \in V$

Hen $T = 0$

proof: $F = C$ is proven. \Rightarrow assume $F = R$
 $\langle T(u+v), u+w \rangle - \langle T(u-w), u-w \rangle$
 $\Rightarrow \langle T(u, u+w) + \langle Tu, u+w \rangle - \langle Tu, u-w \rangle + \langle Tw, u-w \rangle$
 $\Rightarrow \langle Tu, w \rangle + 2 \langle Tw, u \rangle + \langle Tu, u \rangle = \langle u, Tw \rangle = \langle Tw, u \rangle$
 $\Rightarrow \langle Tu, w \rangle = 0 + \langle Tu, w \rangle \in V^2$. take $w = Tu \Rightarrow T = 0$

definition. TeL(V) is normal if [T,T*]=0

theorem: $T \in \mathcal{L}(V)$ is normal \iff $\|T_v\| = \|T^*v\| + v \in V$ PVOOF: $[T, T^*] = 0 \iff \langle [T^*, T]_{V, V} \rangle = 0 + v \in V$ $\iff \langle T^*T_{V, V} \rangle - \langle TT^*_{V, V} \rangle = 0 + v \in V$ $\iff \langle T_{V}, T_{V} \rangle - \langle T^*_{V, V} \rangle = 0 + v \in V$

Cordary: given normal $T \in \mathcal{L}(V)$ if $T_v = \lambda v$ then $T^*_v = \overline{\lambda} v$ $P^{roof}: [T, T^*] = 0 \Rightarrow [T - \lambda I, T^* - \overline{\lambda} I^*] = [T, T^* - \overline{\lambda} I^*] = [T, T^*] = 0 \Rightarrow T - \lambda I$ is normal

 $J = \langle || (T - 1) \rangle || = || ($

if V is eigenvector with λ : LHS=0 V is also eigenvector of T^* with e-value $\overline{\lambda}$

theorem; let $T \in L(V)$ is normal than e-vectors of T with distint e-vectors are orthogonal Proof; $(M,V) \in V^2$, $(X,B) \in F^2$ s.t. $T_U = X_U$, $T_V = B_V$

 $\begin{bmatrix} T, T^* \end{bmatrix} = D \Rightarrow T^*_{V} = \beta_{V}$

=> if x-B to then <u,v>=0