Equazioni Differenziali Ordinarie	Primo appello	17 luglio 2008
Cognome	Nome	Firma
Proff. Furioli, Rossi, Vegni	Matricola	Sezione INF

[©] I seguenti quesiti e il relativo svolgimento sono coperti da diritto d'autore; pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale. Ogni abuso sarà perseguito a termini di legge dal titolare del diritto

Esercizio 1. È data l'equazione alle differenze

$$\begin{cases} x_{n+1} = \frac{x_n + x_n^3}{1 + x_n^4}, & n \ge 0 \\ x_0 \in \mathbb{R}. \end{cases}$$

- a. Trovarne i punti di equilibrio, dopo aver disegnato il grafico di f.
- b. Disegnare con un diagramma a gradino le orbite relative ai dati iniziali $x_0=-2,\ x_0=\frac{1}{2},\ x_0=2.$
- c. Determinare la natura dei punti di equilibrio ed il loro eventuale bacino di attrazione.

Equazioni Differenziali Ordinarie	Primo appello	17 luglio 2008
Cognome	Nome	Firma
Proff. Furioli, Rossi, Vegni	Matricola	Sezione INF

[©] I seguenti quesiti e il relativo svolgimento sono coperti da diritto d'autore; pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale. Ogni abuso sarà perseguito a termini di legge dal titolare del diritto

Esercizio 2. Sia data l'equazione differenziale

$$y' + xy + x\sqrt{y} = 0.$$

- (1) Si dica, in base alla teoria, dove è possibile garantire esistenza ed unicità della soluzione locale.
- (2) Si precisi se è possibile applicare un teorema di prolungamento. Possono esistere soluzioni definite su \mathbb{R} ?
- (3) Risolvere il problema di Cauchy y(0) = 1 associato all'equazione assegnata.
- (4) Discutere il problema di Cauchy y(0) = 0.

Equazioni Differenziali Ordinarie	Primo appello	17 luglio 2008
Cognome	Nome	Firma
Proff. Furioli, Rossi, Vegni	Matricola	Sezione INF

[©] I seguenti quesiti e il relativo svolgimento sono coperti da diritto d'autore; pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale. Ogni abuso sarà perseguito a termini di legge dal titolare del diritto

Esercizio 3. Sia dato il sistema non lineare

$$\begin{cases} \dot{x} = x(x-1) \\ \dot{y} = xy(2-y) \end{cases}$$

- (1) Trovarne i punti critici.
- (2) Linearizzare il sistema nell'intorno dei punti critici, dove possibile, e determinare la natura dei punti critici del sistema linearizzato.
- (3) Dedurre, se possibile, la natura dei punti critici del sistema non lineare.
- (4) Determinare le isocline orizzontali, verticali ed il verso di percorrenza delle orbite.
- (5) Determinare un integrale primo del sistema ed esplicitare le traiettorie come funzioni y = y(x) oppure x = x(y).

Equazioni Differenziali Ordinarie	Primo appello	17 luglio 2008
Cognome	Nome	Firma
Proff. Furioli, Rossi, Vegni	Matricola	Sezione INF

© I seguenti quesiti e il relativo svolgimento sono coperti da diritto d'autore; pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale. Ogni abuso sarà perseguito a termini di legge dal titolare del diritto

Esercizio 4. Sia

$$A = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array} \right].$$

- (1) Trovare gli autovalori di A e gli autovettori relativi.
- (2) Determinare la matrice e^A .
- (3) Scrivere l'integrale generale del sistema autonomo $\dot{\mathbf{y}} = A\mathbf{y}$.
- (4) Determinare la soluzione del sistema $\dot{\mathbf{y}} = A\mathbf{y}$ che risolve il problema di Cauchy $\mathbf{y}(1) = (0, -1, -2)^T$.