

Lab Manual

Department of Electrical and Computer Engineering School of Engineering and Physical Sciences North South University, Bashundhara, Dhaka-1229, Bangladesh

Experiment No: 2

Experiment Name: Design of a 4-bit Arithmetic unit.

Introduction:

In this experiment you will construct a 4-bit arithmetic unit which is a part of an ALU. The arithmetic unit will be used to add and subtract two variables 4-bit inputs, A and B, as well as increment, decrement or transfer any of the inputs.

Arithmetic Operations:

<u>Add</u>- Each bit of input A is added with the corresponding bit of input B and the sum appears at the output of each full adder along with any carry out.

<u>Add with carry</u>- Each bit of input A and B are added with the input carry and the sum appears at the output of each full adder along with any carry out.

<u>Subtract</u>- Each bit of input B is subtracted from the corresponding bit of input A and the difference appears at the output of each full adder along with any borrow out.

<u>Subtract with borrow</u>- Each bit of input B is subtracted from A with borrow. The difference and the borrow out appear at the output.

<u>Increment</u> A- Each bit of A is increased by 1 and the result appears at the output of each full adder.

<u>Decrement A</u>- Each bit of A is decreased by 1 and the result appears at the output of each full adder.

<u>Transfer A-</u> Each bit of A appears at the output of each full adder, unmodified.

	Select		Input	Output	Microoperation		
S_1	S ₀	C_{in}	Y	$D = A + Y + C_{\rm in}$			
0	0	0	В	D = A + B	Add		
0	0	1	В	D=A+B+1	Add with carry		
0	1	0	\overline{B}	$D = A + \overline{B}$	Subtract with borrow		
0	1	1	\overline{B}	$D=A+\overline{B}+1$	Subtract		
1	0	0	0	D = A	Transfer A		
1	0	1	0	D = A + 1	Increment A		
1	1	0	1	D = A - 1	Decrement A		
1	1	1	1	D = A	Transfer A		

Equipment List:

- > Trainer board
- > IC 7404, 7483 or 74283,74LS153
- > Wires for connection.

Function Table:

Complete the function table according to your theoretical knowledge.

S1	S0	Cin	A3	A2	A1	A0	В3	B2	B1	B 0	Cout	D3	D2	D 1	D0	Microoperation
0	0	0	0	0	0	1	0	0	0	1						Add
0	0	1	0	0	1	1	0	1	0	0						Add with Carry
0	1	0	0	0	1	0	1	1	0	0						Subtract with Borrow
0	1	1	0	1	1	1	0	1	0	0						Subtract
1	0	0	1	0	1	1	0	1	0	0						Transfer A
1	0	1	0	1	0	0	0	0	0	0						Increment A
1	1	0	1	0	1	0	1	0	0	0						Decrement A
1	1	1	1	0	0	1	0	1	1	1						Transfer A

Logic Circuit Diagram:

Fig: 4-bit Arithmetic unit Logic Circuit Diagram

Procedure:

- 1) Place the ICs on the trainer board.
- 2) Connect V_{cc} and ground to the respective pins of IC.
- 3) Connect the inputs with the switches and the outputs with LEDs.
- 4) Apply various combinations of inputs and observe the outputs.
- 5) Verify the experimental outputs with the Function Table.

Assignment:

- 1) Prepare the lab report.
- 2) Implement the circuit in Logisim. Take a screenshot along with table in Logisim and include it in your lab report.

Pin configuration of ICs:

EEE336/CSE232 LAB Dual 4x1 Multiplexer 74F153 Data Sheet

PIN CONFIGURATION

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS .	DESCRIPTION					
10a – 13a	Port A data inputs	,				
10b – 13b	Port B data inputs					
S0, S1	Common Select inputs					
Ea	Port A Enable input (active Low)					
Eb	Port B Enable input (active Low)					
Ya, Yb	Port A, B data outputs					