Assignment 3 Report

Saurabh Daptardar, Srikanth Kuthuru

October 1, 2017

1 Problem 1:

• Evaluating policies π_0, π_1, π_2 and optimal values V^* for $\gamma = 1$

	1	2	3	4	5
V^{π_0}	20	20	20	20	20
V^{π_1}	50	40	30	20	20
V^{π_2}	60	50	40	30	20
V^*	60	50	40	30	20

Table 1: Policy evaluation and optimal value function

- Yes, for $\gamma < 0.5$, π_0 is better than π_1 and π_2 . For π_0 to be better we need to have $10 + \gamma 20 < 20$ i.e. $\gamma < 0.5$
- No. For π_1 to be better than π_0 , we need to have $10 + \gamma 20 > 20$ and for it to be better than π_2 we must satisfy $10 + \gamma 20 < 20$, which is contradictory.
- Yes, for $\gamma > 0.5$, π_2 is better than π_0 and π_1 . For π_0 to be better we need to have $10 + \gamma 20 > 20$ i.e. $\gamma > 0.5$

2 Problem 2:

MDP with 3 states that have rewards of -1,-2,0 is considered.

- Optimal policy at *state* 1 is action b, because even if it tries to go to *state* 2, that state has the same transition probabilities as state 1, but more negative reward. So, going to *state* 2 is not useful.
 - Optimal policy at state 2 is action a. Staying at state 2 and trying to reach goal state might result in lot of negative points (-2 reward). Going to state 1 first and then trying for goal state might be more fruitful.
- Given, initial policy for both states is action b. Initialize, Value function vector (V) to [0,0].

Apply Policy evaluation step:

For state 1:

$$V_1 = 0.1(0+0) + 0.9(-1+V_1)$$
$$V_1 = -9$$

Similarly for state 2:

$$V_2 = 0.1(0+0) + 0.9(-2+V_2)$$

 $V_2 = -18$

Next, do policy update:

$$\pi(s) = \underset{a \in Actions(s)}{\arg \max} Q(s, a)$$

$$Q(1, a) = 0.8(-2 + V_2) + 0.2(-1 + V_1) = -18$$

$$Q(1, b) = 0.9(-1 + V_1) + 0.1(0 + 0) = -9$$

Therefore, action b should be preferred for state 1. Similarly, for state 2:

$$Q(2, a) = 0.8(-1 + V_1) + 0.2(-2 + V_2) = -12$$

 $Q(2, b) = 0.9(-2 + V_2) + 0.1(0 + 0) = -18$

Therefore, action a should be preferred for state 2.

New policy: $\{1: b, 2: a\}$

Applying policy evaluation and policy iteration steps again, results in the same policy (as shown below).

Apply Policy evaluation step:

For state 1:

$$V_1 = 0.1(0+0) + 0.9(-1+V_1)$$
$$V_1 = -9$$

Similarly, for state 2:

$$V_2 = 0.8(-1 + V_1) + 0.2(-2 + V_2)$$

 $V_2 = -10.5$

Next, do policy update:

$$\pi(s) = \underset{a \in Actions(s)}{\arg \max} Q(s, a)$$

$$Q(1, a) = 0.8(-2 + V_2) + 0.2(-1 + V_1) = -12$$

$$Q(1, b) = 0.9(-1 + V_1) + 0.1(0 + 0) = -9$$

Therefore, action b should be preferred for state 1. Similarly, for state 2:

$$Q(2, a) = 0.8(-1 + V_1) + 0.2(-2 + V_2) = -10.5$$

 $Q(2, b) = 0.9(-2 + V_2) + 0.1(0 + 0) = -11.25$

Therefore, action a should be preferred for state 2. Therefore, this policy: $\{1:b,2:a\}$ is optimal.

• If the initial policy for both states is action a, then policy evaluation step doesn't converge, or in other words, value function vector doesn't have a finite solution. Policy evaluation step gives the following equations:

For state 1:

$$V_1 = 0.8(-2 + V_2) + 0.2(-1 + V_1)$$

 $0.8V_1 - 0.8V_2 = -1.8$

For state 2:

$$V_2 = 0.8(-1 + V_1) + 0.2(-2 + V_2)$$

 $0.8V_1 - 0.8V_2 = 1.2$

There is no finite solution for those linear equations.

• Including a discount factor $\gamma < 1$ works. Policy evaluation yields equations

$$V_1 = 0.8(-2 + \gamma V_2) + 0.2(-1 + \gamma V_1)$$

$$V_2 = 0.8(-1 + \gamma V_1) + 0.2(-2 + \gamma V_2)$$

To evaluate policy we need to solve for V_1 and V_2 :

$$(1 - 0.2\gamma)V_1 - 0.8\gamma V_2 = -1.8$$

$$(1 - 0.2\gamma)V_2 - 0.8\gamma V_1 = -1.2$$

For $\gamma = 0.9$, $V_1 = -15.2$ and $V_2 = -14.8$ and the new policy: $\{1:b,2:b\}$ For $\gamma = 0.1$, $V_1 = -1.95$ and $V_2 = -1.38$ and the new policy: $\{1:b,2:a\}$ (which happens to be the optimal policy)

3 Problem 3:

For subpart 3.1.6, there is a counter example provided in the code. Please evaluate that.

4 Problem 4:

The program to do value iteration is in file prob4.py. It does value iteration with convergence criteria as when policy stabilizes i.e. $\pi_{t+1} = \pi_t$ and prints out the result $V_t(s) \forall t \geq 0$ for each state for the given discount factors of 1,0.75,0.5,0.1. To get the output in text file run python prob4.py >> output.txt

The input MDP problem is specified in input.txt which has transition probabilities and rewards

• For discount = 1, the optimal policy is $\pi = \{1 : R, 2 : R, 3 : R\}$ and the result of value iteration is tabulated below

	1	2	3
$V_0(s)$	0.0	0.0	0.0
$V_1(s)$	8.0	16.0	7.0
$V_2(s)$	17.75	29.9375	17.875
$V_3(s)$	29.6640625	43.421875	30.90625

Table 2: For discount = 1

• For discount = 0.75, the optimal policy is $\pi = \{1 : C, 2 : R, 3 : R\}$ and the result of value iteration is tabulated below

	1	2	3
$V_0(s)$	0.0	0.0	0.0
$V_1(s)$	8.0	16.0	7.0
$V_2(s)$	15.3125	26.203125	14.40625

Table 3: For discount = 0.75

• For discount = 0.5, the optimal policy is $\pi = \{1 : C, 2 : R, 3 : C\}$ and the result of value iteration is tabulated below

	1	2	3
$V_0(s)$	0.0	0.0	0.0
$V_1(s)$	8.0	16.0	7.0
$V_2(s)$	12.875	22.46875	11.75

Table 4: For discount = 0.5

• For discount = 0.1, the optimal policy is $\pi = \{1 : C, 2 : C, 3 : C\}$ and the result of value iteration is tabulated below

	1	2	3
$V_0(s)$	0.0	0.0	0.0
$V_1(s)$	8.0	16.0	7.0

Table 5: For discount = 0.1