2023010747 海一次 计32.

线性代数.

1. 若A不幂零. 则由凯莱-哈密尔顿定理知. □附代數重數 < Ŋ 因此何 N(A^~!) = N(A^^) ⇒ c(A^~!) = C(A^^)

若VEN(Aⁿ) Λ C(Aⁿ), 引 J w彼 V=Aⁿw. AⁿV=0 ⇒ A²ⁿW=0 ⇒ WEN(A²ⁿ)=N(Aⁿ)
:.V=0 ⇒ N(Aⁿ) Λ C(Aⁿ) = {0}. ⇒ KeV(Tⁿ⁺) Λ I M(Tⁿ⁺) = {0}.

Z dim Cⁿ = dim(KeV(Tⁿ⁺)) + dim(Im(Tⁿ⁺))

国此 Cⁿ = KeV(Tⁿ⁺) ⊕ Im(Tⁿ⁺)

- 2.由于I_T+I_T 且 c(A5) ⊆ c(A4), 敌 v(A5) < v(A4) 因此 N(A4) ⊊ N(A5) . ①的代數重數 > 5. 敌 0 的代數重數 为 5 . ∴ A5=0. T是幂重复换.
- 3. C(A^{mt1}) = C(A^m)
 国知 *(A^{mt1}) = *(A^m) 国家可 c(A^{mt1}) = C(A^m).

 -**(A^{mt1}) = *(A^m) 台 c(A^{mt1}) = C(A^m).

 マャ(A^{mt1}) = *(A^m) 台 N(A^{mt1}) = N(A^m)

 協 Kev(T^m) = *Ker(T^{mt}) 台 1m(T^m) = Im(T^{mt1})

5. A⁵+2A⁴-7A³-6A²+SA+4I=0 I+2A⁻¹-7A⁻²-6A⁻³+5A⁻⁴+4A⁻⁵=0 版A⁻¹ 附议寥易项式为 4×⁵+5×⁴-6×³-7×²+2×+1

6. A=PTP"

$$J = \begin{bmatrix} 0 & -1 & 0 \\ 1 & -2 & 0 \\ -1 & 1 & 1 \end{bmatrix} \qquad J = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$J = \begin{bmatrix} 1 & 0 & -1 & \frac{1}{3} \\ 1 & -1 & -1 & \frac{1}{3} \\ 0 & 0 & 1 & \frac{3}{3} \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

7. +(A)=1. 2/ A=WT. ++(A)=VTu

若tv(A)=0.到 |M-A|= 1 → A 厚思. 反之.若A暴思.则特征通均为0、tv(A)=0 v(A)=1⇒dim(MA))=n-1.有n-1子循环子定词。A=0

所以・・・「京山・・・」では、中国の中国のは、 AX= スコン X= マンカロ・・・ 「京山・・・」では、 中国のは、 AX= スコン X=マンカのよい、 ストーカル(A) - 個基、