Théorie des langages & Automates

Université de Tours - Département informatique de Blois

TD1 - Automates à états finis

* *

Problème 1

Soit \mathbb{D} , le langage des nombres décimaux (ex. 3.14, 0.0123, -42). Déterminer un AFD reconnaissant \mathbb{D} . On interdira les mots dotés de symboles inutiles tels que que -0, 02, 1.0, etc.

Problème 2

Soient $A, B \in \mathbf{Reg}$. Démontrer que $AB = \{xy | x \in A, y \in B\} \in \mathbf{Reg}$.

Problème 3

Soit l'automate N ci-dessous.

- 1. Dresser la table de transition de N.
- 2. Dessiner l'arbre de calcul des mots 00 et 100. Sont-il acceptés par N ?
- 3. Dessiner M, l'automate déterministe telle que M = L(N).
- 4. Calculer M_{\min} , l'automate minimal de M.
- 5. Donner une expression mathématique correspondant au langage reconnu par l'automate.

Problème 4

- 1. Dessiner un AFD pour les langages suivants sur $\Sigma = \{0, 1\}$:
 - (a) L'ensembles des mots qui finissent en 00.

- (b) L'ensemble des mots avec trois 0 consécutifs.
- (c) L'ensemble des mots qui contiennent un nombre pair de sous-mots 01.
- 2. Dessiner un AFND ε pour les langages suivants :
 - (a) L'ensemble des mots sur {0, ..., 9} tel que le dernier chiffre soit un chiffre qui a déjà apparu dans une position précédente du mot.
 - (b) L'ensemble des mots sur $\{a\}$ tel que les mots possèdent une longueur qui est un multiple de 3 ou de 5 (ex. aaa, aaaaa, aaaaaa)
 - (c) L'ensembles des adresses électroniques des étudiants ou personnel de l'université de Tours sous forme prenom.nom@[etu.]univ-tours.fr.

Problème 5

On considère l'automate décrit par la table de transition suivante :

	0	1
$\rightarrow q_0$	$\{q_0, q_1\}$	$\{q_1\}$
q_1	$\{q_2\}$	$\{q_2\}$
*q ₂	Ø	Ø

- 1. Dessiner l'automate N correspondant.
- 2. Construire l'automate déterministe minimal reconnaissant L(N).
- 3. Soit le langage $L = \{x \in \{0, 1\}^* | \text{le } n \text{ symbole à droite de } x \text{ est un } 1\}.$
 - (a) Donner la description formelle d'un ANFD reconnaissant L.
 - (b) Démontrer que l'automate déterministe correspondant comporte 2^n états.

Problème 6

Soit un automate fini $M = (Q, \Sigma, S, F, \delta)$. On rappelle que l'automate transposé M^{\top} est obtenu en échangeant états finaux et initiaux et le sens de toutes les transitions.

- 1. Soit $x \in \Sigma^*$, on considère l'opérateur miroir $mir : \Sigma^* \to \Sigma^*$ permettant de renverser un mot tel que pour $x = x_1...x_n$, alors $mir(x) = x_n...x_1$. Donner la définition inductive de mir.
- 2. Démontrer que $L(M^{\top}) = \{mir(x) | x \in L(M)\}$
- 3. On rappelle que la transformation de Brzozowski d'un automate M quelconque est définie telle que $\mathcal{B}(M) = \det(\det(M^\top)^\top)$. Démontrer que $L(\mathcal{B}(M)) = L(M)$.