Complementos de Análise Matemática MIETI, MIEMAT, MIETEX 2016/2017

Folha de Exercícios 1 Introdução às equações diferenciais

Classificação de equações diferenciais

1. Classifique cada uma das seguintes equações diferenciais ordinárias quanto à ordem e (eventual) linearidade, e indique qual é a variável independente.

a)
$$y\frac{d^2x}{du^2} = y^2 + 1$$

a)
$$y\frac{d^2x}{dy^2} = y^2 + 1$$
 b) $\frac{d^4y}{dx^4} + 3\frac{dy}{dx} + 5y = \cos x$

c)
$$\frac{ds}{dt} + t^2s = te^t$$
 d) $\frac{du}{dv} + v^2 = u$

$$d) \quad \frac{du}{dv} + v^2 = u$$

$$e)$$
 $\frac{dv}{dt} + v^2 = i$

(e)
$$\frac{dv}{dt} + v^2 = t$$
 f) $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + y = xe^x$

g)
$$y \left(\frac{dy}{dx}\right)^2 = y^2 + 1$$
 h) $\frac{dy}{dt} + t\sin y = 0$

$$h) \quad \frac{dy}{dt} + t\sin y = 0$$

Soluções explícitas de equações diferenciais

2. Diga quais das seguintes funções são soluções, em \mathbb{R} , de $\frac{d^2y}{dr^2} - y = 0$:

a)
$$u = e^x$$

$$b$$
) $u = \sin x$

a)
$$y = e^x$$
 b) $y = \sin x$ c) $y = 4e^{-x}$

$$d$$
) $y = 0$

d)
$$y = 0$$
 e) $y = 1 + \frac{x^2}{2}$ f) $y = 5\cos x$

$$f$$
) $y = 5\cos x$

3. Verifique se as seguintes funções são solução, no intervalo considerado, das equações diferenciais dadas.

(a)
$$f(x) = x \ln x$$
, em $]0, +\infty]$, de $\frac{dy}{dx} - \frac{1}{x}y = 1$.

(b)
$$g(x) = \sqrt{1 - x^2}$$
, em]-1,1[, de $y \frac{dy}{dx} + x = 0$.

(c)
$$h(x) = x^3 e^{-3x}$$
, em \mathbb{R} , de $\frac{dy}{dx} + 3y = xe^{-3x}$.

(d)
$$m(x) = k_1 e^x - k_2 e^{-x}$$
, em \mathbb{R} , de $\frac{d^2y}{dx^2} - y = 0$, onde k_1 e k_2 são constantes arbitrárias.

4. Em que intervalo da recta real a função $f(x)=\frac{x^2}{2}$ é uma solução da equação diferencial $\frac{1}{x}\frac{dy}{dx} = 1$?

1

- 5. Mostre que a função g(x)=xlnx é uma solução da equação diferencial $\frac{dy}{dx} - \frac{1}{x}y = 1$ em $]0, +\infty]$ mas não o é no intervalo]-1, 1[.
- 6. Mostre que a função $h(x) = \frac{1}{x^2 1}$ é uma solução da equação diferencial $\frac{dy}{dx}+2xy^2=0$ em I=]-1,1[mas não o é em nenhum outro intervalo de maior amplitude contendo I.
- 7. Determine o valor da constante β de modo que a função $\varphi(x)=x^{\beta}$ seja solução da equação $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 4y = 0$ no intervalo $I =]0, +\infty[$.

Soluções implícitas de equações diferenciais

- 8. Mostre que a relação $x^2 + 2xy = 0$ é uma solução implícita da equação differencial $x \frac{dy}{dx} + x + y = 0$ em $\mathbb{R} \setminus \{0\}$.
- 9. Mostre que a relação $s^2t^2+s^2-9=0$ é uma solução implícita da equação diferencial $ts\frac{dt}{ds} + t^2 + 1 = 0$ no intervalo]-3,3[\{0\}.
- 10. Mostre que $y^2 + x = 1$ não é uma solução implícita da equação diferencial $y\frac{dy}{dx}=-rac{1}{2}$,
no intervalo]0,2[, apesar de a verificar formalmente. Indique em que intervalo real é solução implítica.

Problemas de valores iniciais

11. Determine se cada uma das seguintes funções é solução do problema de valores iniciais

$$\begin{cases} \frac{d^2y}{dx^2} + 4y = 0, \\ y(0) = 0, \\ y'(0) = 1. \end{cases}$$

$$a) \quad y = \sin 2x \qquad b) \quad y = x \qquad c) \quad y = \frac{1}{2}\sin 2x$$

$$a) \quad y = \sin 2x \qquad b) \quad y = x \qquad c)$$

12. Sabendo que toda a solução da equação diferencial $\frac{d^2y}{dx^2} - y = 0$ pode ser escrita na forma $f(x) = c_1 e^x + c_2 e^{-x}$, onde $c_1 e^x = c_2$ são constantes arbitrárias, determine qual deverá ser o valor de c_1 e c_2 por forma a que f(x) seja uma solução do problema de valores iniciais

$$\begin{cases} \frac{d^2y}{dx^2} - y = 0, \\ y(0) = 1, \\ y'(0) = 2. \end{cases}$$

Problemas de valores de fronteira

13. Mostre que $y=2xe^{x-1}$ é uma solução do problema de valores de fronteira

$$\begin{cases} \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0, \\ y(0) = 1, \\ y(1) = 2. \end{cases}$$

14. Encontre uma solução do problema de valores de fronteira

$$\begin{cases} \frac{d^2y}{dx^2} + 4y = 0, \\ y\left(\frac{\pi}{8}\right) = 0, \\ y\left(\frac{\pi}{6}\right) = 1, \end{cases}$$

se a solução geral da equação diferencial é $y(x) = k_1 \sin 2x + k_2 \cos 2x$.

15. Sabendo que toda a solução da equação diferencial $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} = 0$ pode ser escrita na forma $y = c_1 + c_2 x^2$, onde c_1 e c_2 são constantes arbitrárias, mostre que o problema de valores de fronteira

$$x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} = 0, \quad y(1) = 1, \quad y(-1) = 1,$$

não tem solução única.

16. Sabendo que toda a solução da equação diferencial $\frac{d^2y}{dx^2} + y = 0$ pode ser escrita na forma $y = c_1 cosx + c_2 senx$, onde c_1 e c_2 são constantes arbitrárias, mostre que o problema de valores de fronteira

$$\frac{d^2y}{dx^2} + y = 0, \quad y(0) = 1, \quad y(\pi) = 5,$$

não tem solução.

Soluções da folha de exercícios 1

- 1. (a) equação diferencial de 2ª ordem, linear, e y é a variável independente
 - (b) equação diferencial de 4ª ordem, linear, e x é a variável independente
 - (c) equação diferencial de 1ª ordem, linear, e t é a variável independente
 - (d) equação diferencial de 1ª ordem, linear, e v é a variável independente
 - (e) equação diferencial de $1^{\rm a}$ ordem, não-linear, e t é a variável independente
 - (f) equação diferencial de $2^{\rm a}$ ordem, não-linear, e x é a variável independente
 - (g) equação diferencial de 1ª ordem, não-linear, e x é a variável independente
 - (h) equação diferencial de $1^{\rm a}$ ordem, não-linear, e t é a variável independente
- (2. a),c) e d)
- 3. (a) é solução; (b) é solução; (c) não é solução; (d) é solução
- 4. $I = \mathbb{R} \setminus \{0\}$
- 7. $\beta = 1$ ou $\beta = 4$
- 10. $I =]-\infty, 1[$
- 11. (a) não é solução; (b) não é solução; (c) é solução
- 14. $y(x) = \frac{2}{\sqrt{3}-1} (\sin 2x \cos 2x)$