The psychomechanics of simulated sound sources: Material properties of impacted plates Supplementary Online Materials

Stephen McAdams McGill University

Antoine Chaigne ENSTA-UME

Vincent Roussarie PSA Peugeot-Citroën

Bruno L. Giordano McGill University

Correspondence concerning this article should be addressed to Stephen McAdams, Schulich School of Music, McGill University, 555 Sherbrooke Street West, H3A 1E3, Montréal, Québec, Canada. E-mail: smc@music.mcgill.ca.

Table S1

Sound synthesis variables and related acoustical descriptors for the experimental stimulus sets. W = simulated wood mallet (upper part); R = simulated rubber mallet (lower part); ERBr = ERB-rate. The principal-component-based acoustical descriptors are described in Section VI.

PC of	**************************************	PC of		Mallet
acoustic orrelation	-1.20 -0.20 0.80 0.20 0.50 1.00 -0.10 0.40 0.10 0.70 0.00 0.90 0.30 0.30 0.30	of acoustical Correlation	-0.20 -0.20 0.80 0.20 0.50 0.50 1.00 -0.10 0.40 0.70 0.00 0.30 0.30 0.30 0.30	Н
al descriptors with PC	1.51 1.52 1.53 1.54 1.54 1.56 1.57 1.59 1.60 1.61 1.62 1.63 1.64 1.63	l descriptors with PC	1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66	c (km/s)
$^{\mathrm{PC}_{H}}_{-0.96}$	-37.25 -87.15 -43.23 -70.36 -69.05 -46.74 -78.47 -76.46 -47.33 -70.59 -30.91 -65.53 -51.86 -29.82 -92.74	PC _H -0.92	-166.62 -239.14 -183.76 -206.64 -207.67 -197.67 -197.75 -192.73 -192.7	α ₁ (dB/s)
PC ₂₂ 1.00	-7.53 -7.59 -7.664 -6.664 -9.68 -9.68 -9.69 -6.99 -6.99 -6.99 -6.99 -6.99 -6.99 -6.99 -6.99 -6.90 -6.9	PC ₂₂ 1.00	-8.43 -7.94 -9.15 -5.80 -6.28 -11.15 -11.15 -11.15 -1.16 -6.42 -5.19 -5.19 -6.42 -5.19 -6.42 -5.19 -6.42 -5.19 -5.80 -5.80 -5.80	α ₂ (dB/s)
PC _H -0.99	303.15 60.09 130.68 73.13 102.81 1224.35 62.36 85.51 66.73 66.73 125.35 76.05 170.50 82.49 106.89 264.38	PC _H -0.93	38.19 31.79 31.79 32.453 33.885 34.885 34.88	ED_{3dB} (ms)
PC _H -0.99	1136.24 5211.75 5211.75 5211.75 5211.79 299.52 370.05 370.	PC _H -0.95	261.97 65.49 160.68 95.24 129.32 299.89 83.51 1121.27 1102.63 211.45 96.55 309.93 3132.65 1168.71 415.49	ED_{10dB} (ms)
PC ₆ 0.89	114 117 120 123 123 129 129 132 132 133 144 145 145 146 147 151 151	PC _c 0.89	114 117 117 118 119 119 119 119 119 119 119 119 119	f ₁ (Hz)
PC _H 0.99	54.40 97.36 61.98 85.83 69.98 55.73 97.48 55.73 97.42 86.76 64.36 64.36 64.36 64.38	PC _H 0.96	54.40 97.36 61.98 85.83 69.98 55.73 97.48 78.42 86.46 64.38 84.50 64.38 84.54 64.38	$\begin{pmatrix} p_a \\ s^{-1} \end{pmatrix}$
$^{\mathrm{PC}_{H}}_{-0.90}$	103.97 80.39 97.76 79.88 79.88 102.71 77.01 85.29 90.33 76.69 88.22 78.42 88.23 88.23 88.23 88.23	$^{\mathrm{PC}_{H}}_{-0.88}$	103.97 80.39 97.76 79.88 79.88 79.88 70.27 71.01 77.01 77.01 85.29 90.33 76.63 88.22 88.22 88.23 88.23	$s^{-2} \times 10^6$
PC _c -0.90	8509 9289 8884 8304 8308 8308 8308 8319 8544 8611 8611 8778 8779 8779 8778 8486	$\frac{PC_c}{-0.83}$	8509 9289 8586 8304 8304 8308 8319 8319 86114 8778 8779 8779 8778 8778 8778 8778 877	f_c (Hz)
PC _H 1.00	0.18 0.40 0.91 0.65 0.23 0.23 1.22 0.74 1.00 0.49 0.33 0.84 0.59	PC _H 0.99	0.29 1.83 0.60 1.34 1.11 1.17 1.17 1.17 1.17 1.15 0.26 0.26 0.26	$\tan \frac{\phi_{aud}}{\times 10^3}$
$PC_K \\ -0.89$	77.85 77.85 77.85 77.85 77.85 77.85 77.85 86	РС _К -0.81	7.50 7.49 7.49 7.49 7.48 7.48 7.34 7.34 7.37 7.47 7.51 7.53	Lou _{att} (p.s.)
PC _H -0.46	22222222222222222222222222222222222222	PC _H 0.93	1.96 2.236 2.209 2.200 2.000 2	Lou _{mea} (p.s.)
$^{\mathrm{PC}_{H}}_{-0.99}$	-5.74 -42.37 -11.82 -31.99 -19.28 -6.75 -42.45 -2.5.23 -36.41 -14.22 -36.50 -8.14 -25.82 -4.97 -4.97	PC _H -0.96	-34.68 -82.24 -44.83 -77.73 -61.82 -35.45 -99.54 -66.95 -66.95 -78.76 -47.81 -96.72 -41.33 -80.95 -66.95	Lou_{sl1} (p.s./s)
$^{\mathrm{PC}_{H}}_{-0.99}$	$\begin{array}{c} -0.92 \\ -3.07 \\ -1.13 \\ -2.13 \\ -2.13 \\ -1.59 \\ -0.87 \\ -0.87 \\ -1.75 \\ -1.75 \\ -1.75 \\ -1.75 \\ -1.75 \\ -1.75 \\ -1.75 \\ -1.75 \\ -1.75 \\ -1.75 \\ -1.39 \\ -1.33 \\ -1.45 \\$	PC _H -0.99	-0.75 -5.80 -1.69 -4.10 -2.10 -1.01	Lou _{sl2} (p.s./s)
PC_K -0.91	20.86 20.880 20.887 20.83 20.83 20.86 20.86 20.80 20.81 20.82 20.84 20.85	$^{\mathrm{PC}_{K}}_{-0.84}$	225.125 225 225 225 225 225 225 225 225 225	SCG _{att} (ERBr)
$^{\mathrm{PC}_{H}}_{-0.86}$	18.37 16.82 17.13 16.72 17.14 18.40 16.96 17.06 17.06 17.09 17.89 16.70 17.89 16.80 17.89 16.80 17.89	PC _H 0.56	20.16 20.61 20.43 20.42 20.12 20.13 20.13 20.13 20.17 20.14 20.21 20.21 20.21 20.21 20.21 20.33	SCG _{mea} (ERBr)
$\begin{array}{c} \mathrm{PC}_{H} \\ -1.00 \end{array}$	-1.01 -10.06 -2.43 -6.85 -6.85 -6.96 -9.71 -5.11 -6.96 -3.11 -8.11 -8.11 -8.11 -8.11 -8.11 -8.11 -8.11 -8.11 -8.13 -1.37 -1.37	PC _H -0.99	-2.10 -2.201 -5.57 -15.22 -10.26 -2.04 -2.02 -12.15 -16.58 -16.58 -16.07 -17.46 -3.65 -17.46 -7.15 -7.15	S CG _{slo} (ERBr/s)
PC _H -1.00	2.50 0.60 1.17 0.89 1.19 2.50 0.61 1.04 1.04 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	PC _H -0.99	1.95 0.31 0.43 0.56 0.56 0.56 0.56 0.57 0.37 0.37 0.37 0.48 0.48 0.48	Dur (s)

-0.44 -0.49 -0.09 0.51 -0.61 0.20 0.51

0.93 0.11 -0.86 0.80 -0.73 -0.73 -0.78 0.85 0.90 0.90

-0.93 0.49 0.96* 0.36 -0.93* -0.98* -0.98*

-0.29 -0.88* 0.29 0.81* 0.93* 0.89* 0.38 -0.21 0.87*

-0.45 0.91* -0.95* -0.99* -0.36 0.49 -0.99*

-0.95 -0.94 -0.21 -0.58 -0.94

0.19 -0.89 0.76 -0.78 -0.95 0.51

-0.93*

0.98 0.89 -0.60 -0.98 0.42 0.43

-0.98* 0.89* -0.59* -1.00* 0.40 0.45 0.99* 0.99* 1.00*

1.00* 0.23 -0.39 -0.63* 0.10 -0.56* -0.09 -0.05

-0.09

Lou_{sl1}
Lou_{sl2}
SCG_{att}
SCG_{mea}
SCG_{slo}

0.89 0.21 -0.87

0.90* 0.10 -0.87*

0.94* 0.20 -0.66*

 $-0.58* \\ -0.63* \\ 0.00$

0.05

-0.94* 0.19 -0.83*

0.31 -0.29 0.87

-0.52* -0.45 0.87*

-0.10 -0.49*

I = I

I = I = I

Lou_{att} Lou_{mea} $\tan \phi_{aud}$

 $egin{array}{l} lpha_1 & lpha_2 \\ ED_{3dB} & ED_{10dB} \\ f_1 & f_1 \\ p_a & p_b \\ p_b & \end{array}$ Table S2 Spearman rank correlations between acoustical features for the wood-mallet and rubber-mallet sound sets (lower and upper triangular matrices, respectively; df = 14). The rows and columns marked H and C show the correlation between these sound synthesis parameters and the acoustical features within each set (df = 14). The last row shows the correlation between the mallet-related parameter H and the acoustical descriptors in both the wood- and rubber-mallet sets (df = 30). *: D-value D 20.5. $\begin{array}{c} -0.46 \\ 0.97_* \\ 0.94_* \\ -0.7_* \\ -0.79_* \\ -0.83_* \\ -0.87_* \\ -0.87_* \\ 0.000 \\ 0.000 \\ 0.88_* \end{array}$ α_1 α_2 0.97^* -0.31 ED_{3dB} ED_{10dB} 0.95 -0.33 0.98 f_1 p_a p_b $\tan \phi_{aud}$ -0.97* 0.32 -0.99* -0.99* -0.10 0.10 0.98* 0.58* Louatt Lou_{mea} Lou_{sl1} 0.97* -0.32 0.99* 0.99* -0.08 -0.97* -0.89* Lou_{sl2} 0.94 0.37 0.97 0.98 0.09 SCG_{att} SCG_{mea} SCG_{slo} 0.95* -0.36 0.98* -0.91* -0.91* -0.90* 0.90* 0.90* 0.90* 0.41 0.45 0.99* 0.99* 0.99* Dur0.97*
-0.32*
0.99*
0.99*
0.89**
-0.58**
-0.58**
-1.00**
0.94*
0.41*
0.41*
0.41*
0.46*
0.98**
0.98**
1.00** Н

Table S3

Participant—specific perceptual weighting of acoustical information across variations in task and sound set. For both the dissimilarity-rating and identification tasks, perceptual weights are given Participant—specific perceptual weighting of acoustical information across variations in task and sound set. For both the dissimilarity-rating task, alternative perceptual weights by the partial R^2 (R_p^2) for each of the principal components (PC) of clustered acoustical descriptors (PC $_{02}$, PC $_{H}$, PC $_{K}$, PC $_{C}$). For the dissimilarity-rating task, alternative perceptual weights are also given by the latent-class-specific range of the dimensions of the MDS₃ for the first two dimensions of the perceptual spaces for both sound sets and MDS₃ for the third dimension of the wood-mallet space). The last two rows report the across-participant average R_p^2 and the number of participants out of 20 with a significant effect, respectively, * = p-value \le 0.05.

Mean \mathbb{R}_p^2 N significant	20 20 20 20 20 20 20 20 20 20 20 20 20 2	Participant		
	0.96 0.069 0	MDS_H	Wood-mallet Rubber-mallet	Dissimilarity ratings
	0.31 0.88 0.88 0.88 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	MDS_c		
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	MDS_3		
0.28 19	0.24* 0.32* 0.023* 0.040* 0.10* 0.507* 0.27* 0.27* 0.27* 0.20* 0.08* 0.10* 0.40* 0.0	PC_H		
0.16 18	0.24* 0.12* 0.02* 0.01 0.16* 0.00 0.30* 0.30* 0.14* 0.31* 0.31* 0.31* 0.31* 0.31* 0.31* 0.31* 0.31* 0.31* 0.31* 0.31* 0.31*	PC_c		
0.01	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	PC_{α_2}		
0.01	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	PC_K		
	0.73 0.91 0.91 0.91 0.91 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73	MDS_H		
	0.40 11.20 11.20 0.40 11.20 0.40 11.20 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0	MDS_c		
0.26 18	0.33* 0.20* 0.20* 0.20* 0.03* 0.047* 0.047* 0.046* 0.16* 0.10* 0.1	PC_H		
0.22 18	0.36 0.03 0.12 0.29 0.20 0.24 0.16 0.15 0.25 0.26 0.27 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	PC_c		
0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	PC_{α_2}		
0.03	0.07* 0.02 0.00 0.03 0.03 0.01 0.01 0.00 0.01 0.01	PC_K		
0.88	0.95 0.85 0.93 0.94 0.94 0.95 0.96 0.96 0.96 0.83 0.96 0.83 0.96 0.83 0.96 0.83 0.96 0.96 0.96 0.96 0.96 0.96	PC_H	Wood-mallet	Identification
0.05	$\begin{array}{c} -0.16 \\ 0.02 \\ 0.40 \\ 0.00 \\ 0.04 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.04 \\ 0.01 \\ 0$	PC_c		
0.30	0.05 0.23 0.064 0.64* 0.60* 0.60* 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.49* 0.49* 0.49* 0.49* 0.49* 0.49* 0.49* 0.49* 0.68	PC_{α_2}		
-0.05 1	$\begin{array}{c} -0.17 \\ 0.31 \\ 0.02 \\ 0.00 \\ -0.19 \\ 0.06 \\ -0.01 \\ 0.01 \\ -0.01 \\ 0.00 \\ -0.01 \\ 0.00 \\ -0.01 \\ 0.00 \\ -0.051 \\ -0.24 \\ -0.51 \\ -0.52 \\ -0.53 \\ -0.05 $	PC_K		
0.91	0.93 0.88** 0.92** 0.94** 0.91** 0.94** 0.94** 0.94** 0.94** 0.94** 0.94** 0.98** 0.98**	PC_H	Rubber-mallet	
0.16	$\begin{array}{c} -0.03 \\ 0.17 \\ 0.24 \\ 0.01 \\ 0.015 \\ 0.72^* \\ 0.42 \\ 0.42 \\ 0.15 \\ 0.047 \\ -0.02 \\ 0.00 \\ 0.0$	PC_c		
0.22 10	-0.03 0.35 0.035 0.704 0.70 0.41* 0.075 0.077 0.17* 0.17* 0.19* 0.19* 0.19* 0.19* 0.19* 0.10* 0.10* 0.11* 0.00* 0.	PC_{α_2}		
-0.03 0	0.16 0.19 0.28 0.36 0.13 0.12 -0.13 -0.10 0.26 0.26 -0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05	PC_K		