Prüfungsrelevante Verfahren, Sätze und Rechenregeln

1 Lineare Algebra

1.1 Komplexe Zahlen

- $z = a + bi \in \mathbb{C}$ (arithmetische Darstellung)
- $(\mathbb{C}, +, \cdot)$ ist Körper der komplexen Zahlen (+ hat neutrales Element 0 und inverses Element -z; · hat neutrales Element 1 und inverses Element z^{-1} ; beide assoziativ und kommutativ; · distributiv über +)
- $\frac{z_2}{z} = \frac{z_2}{z} \cdot \frac{\overline{z}}{\overline{z}} = \frac{z_2 \cdot \overline{z}}{a^2 + b^2}$, $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$, $\overline{z} = a bi$, $r[\cos(\varphi) + i \cdot \sin(\varphi)] = re^{i\varphi}$
- $r = \sqrt{a^2 + b^2}$, $\sin(\varphi) = \frac{a}{r}$, $\cos(\varphi) = \frac{b}{r}$; ob arccos oder arcsin zur Bestimmung von φ zu verwenden ist wird aus Vorzeichen von $\frac{a}{r}$ bzw. $\frac{b}{r}$ klar
- trigonometrische und eulersche Darstellung erfolgt geometrisch in Polarkoordinaten $z=(r,\varphi)$

für komplexe Zahlen sind auch einfache Beweise prüfungsrelevant, rechnen mit euler/trig jedoch nicht

1.2 Rechnen mit Matrizen

- Matrizen sind Abbildungen die einem Paar (i,j) ein Körperelement a_{ij} zuordnen
- Matrix $A = (a_{ij}) = (a_{ij})_{m \times n}$, es gibt i horizontale Zeilen und j vertikale Spalten; Hauptdiagonale von links oben nach rechts unten
- spezielle Matrizen: Einheitsmatrix, Nullmatrix, quadratische Matrix (auch "n-reihig") und Diagonalmatrix (quadratisch und $a_{ij} = 0$ für $i \neq j$)
- Matrix multiplikation: $(a_{ij})_{m \times n} \cdot (b_{ij})_{n \times p} = (\sum_{k=1}^{n} a_{ik} \cdot b_{kj})_{m \times p}$
- A^T : Zeilen und Spalten vertauschen
- + kommutativ mit neutralem Element Nullmatrix; assoziativ mit neutralem Element Einheitsmatrix und Nullmatrix absorbiert; distributiv über +
- $(A+B)^T = A^T + B^T$, $(kA)^T = kA^T$, $(A^T)^T = A$, $(A \cdot B)^T$) = $B^T \cdot A^T$ (Reihenfolge !!)
- A^{-1} ist zu ermitteln durch $(A \mid E_n) \leadsto (A \text{ in ZSF} \mid E'_n) \leadsto (E_n \mid A^{-1})$ mit elementaren Zeilenumformungen A in ZSF hat keine Nullzeile $\Leftrightarrow \operatorname{rg}(A) = n \Leftrightarrow \dim \operatorname{Ker}(A) = 0 \Leftrightarrow \det(A) \neq 0 \Leftrightarrow \exists A^{-1}$
- $A \in \mathbb{R}^{2 \times 2} \Rightarrow A^{-1} = \det(A)^{-1} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

1.3 LGS und Gauß-Jordan

- GF2= $\{0,1\}$, + und · für GF2 wie in $\mathbb{R} \mod 2 \ (\Rightarrow -a=a)$
- homogenes LGS: alle unveränderlichen sind 0, Nulltupel ist immer eine Lösung; inhomogenes LGS: mindestens eine unveränderliche ist verscheiden von 0, Nulltupel keine Lösung
- Matrixschreibweise für LGS: $\overrightarrow{Ax} = \overrightarrow{b}$, Kurzform: Koeffizientenmatrix $(A \mid b)$
- für LGS in **ZSF** (ZSF ist am besten am Beispiel zu verstehen, siehe Folie 3.7) gilt: $L = \emptyset \Leftrightarrow \exists b$ in einer Nullzeile das verschieden von 0 ist; umgekehrt für $L \neq \emptyset$

- aus reduzierter ZSF (siehe Folie 3.9) kann man Lösung direkt ablesen; um (reduzierte) ZSF zu erhalten nutzt man elementare Zeilenumformungen: Zeilen vertauschen, Zeile mit $k \in K \setminus \{0\}$ multiplizieren, k-faches einer Zeile zu anderer addieren
- Gauss: LGS in ZSF, Lösbarkeitsentscheidung; Jordan: LGS in reduzierte ZSF
- Nullzeilen dürfen weggelassen werden, Spalten dürfen vertauscht werden (Variablennamen dranschreiben!)
- notieren der Lösungsmenge z.B. als $L = \{(2, 3t, 1, 5k) \mid t, k \in K\}$ oder als Menge von (hier 3) Vektoren, evtl. auch als Spanraum; so oder so Probe nicht vergessen!
- GF2 LGS mit
n Parametern in der Lösungsmenge hat 2^n konkrete Lösungen (\mathbb{C}/\mathbb{R} LGS un
endlich viele)

1.4 Vektorräume (VR)

- K-VR= algebraische Struktur $(V; \oplus, \underbrace{(k \mid k \in K)}_{\text{Skalarmultiplikation}})$ (beachte wo ; und wo , steht), muss VR-Axiome erfüllen
- zu Unterscheiden sind 0_v und 0_k , beide eindeutig bestimmt
- $kv = 0_v \Leftrightarrow k = 0_k \lor v = 0_v$, $(-k)v = \ominus kv$, $(-1)v = \ominus v$ (nach V5 ist $\ominus v$ Inverses von v)
- U heißt **Untervektorraum** (UVR) von V wenn:
 - 1. $0_v \in U$
 - 2. $a,b \in U \Rightarrow a \oplus b \in U$ für alle $a,b \in U$ (abgeschlossen bzgl. \oplus)
 - 3. $a \in U, k \in K \Rightarrow ka \in U$ für alle $a \in U, k \in K$ (abgeschlossen bzgl. \odot)
 - 4. $(U \subseteq V, \text{ immer zuerst prüfen!})$
- U_1, U_2 UVR von $V \Rightarrow U_1 \cap U_2$ UVR von V

VR Axiome nachweisen nicht prüfungsrelevant

1.5 Spanräume und Basen

- für $T \subseteq V$ ist $\mathrm{Span}(T) = \langle T \rangle$ der kleinste UVR der T enthält
- Berechnung: Span $(\{v_1,\ldots,v_n\}) = \{k_1v_1 \oplus \ldots \oplus k_nv_n \mid k_1,\ldots,k_n \in K\}$
- $\langle V \rangle = V$, $\langle \emptyset \rangle = \{0_v\}$, für $T \subseteq V, V = \operatorname{Span}(T)$ ist T **Erzeugendensystem** von V
- Möglichkeiten zum Prüfen ob $T=\{v_1,\ldots,v_n\}$ z.B. Erzeugendensystem des \mathbb{R}^3 ist:
 - 1. gibt es überhaupt $\dim(\mathbb{R}^3) = 3$ lin. u. Vektoren in T?

2. ist LGS
$$\begin{pmatrix} v_1 \dots v_n \mid b \\ c \end{pmatrix}$$
 lösbar?

- für eine **Basis** B von V gilt: B ist lin. u. und $V = \operatorname{Span}(B)$; alternativ kann geprüft werden:
 - 1. B ist Erzeugendensystem von V, jede echte Teilmenge von B ist kein Erzeugendensystem von V
 - 2. B ist lin. u., $B \cup \{v\} (v \in V, v \notin B)$ ist lin. a.
 - 3. für V mit $\dim(V)=n$ genügt es zu Prüfen, ob (B Erzeugendensystem mit |B|=n) oder (B lin. u. und |B|=n)
- $\bullet\,$ zwei Basen von V haben immer die gleiche Mächtigkeit $n=:\dim(V);$ Basis vom Nullraum ist \emptyset
- ist $B = (b_1, \ldots, b_n)$ angeordnete Basis von V, so lässt sich $v \in V$ als $v = k_1 b_1 \oplus \ldots \oplus k_n b_n$ darstellen und $v_B = \begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix}$ heißt **Koordinatenvektor** von v bzgl. B

1.6 Lineare Unabhängigkeit (lin. u. - keine offizielle Abkürzung)

- $\{v_1,\ldots,v_n\}$ ist lin. u. wenn gilt: $k_1v_1\oplus\ldots\oplus k_nv_n=0_v\Rightarrow k_1=\ldots=k_n=0_k$
- in einer Menge lin. a. Vektoren kann *mindestens ein* Vektor als LK der anderen dargestellt werden, es können aber i.A. *nicht alle* Vektoren der Menge als LK der jeweils anderen dargestellt werden!
- einige Möglichkeiten um $M = \{v_1, \dots, v_n\}$ auf lin. u. zu prüfen:
 - 1. einfach LGS aufstellen (anders formuliert gilt also $Ker[(v_1 \dots v_n)] = \{0_v\} \Rightarrow lin .u.)$
 - 2. es liegen in allen Vektoren in immer verschiedenen Komponenten Nullen vor \Rightarrow lin. u. (z.B. $\{(0,1,0,4)^T,(0,0,3,0)^T,(2,0,0,0)\}$ lin. u.)
 - 3. $0_v \in M \Rightarrow lin. a.$
 - 4. $\dim(V) = n \Rightarrow \text{mehr als } n \text{ Vektoren sind immer } lin. a.$
 - 5. $\operatorname{rg}[(v_1 \dots v_n)] = n \text{ bzw. } \dim(\operatorname{Ker}[(v_1 \dots v_n)]) = 0 \text{ bzw. } \det[(v_1 \dots v_n)] \neq 0 \Rightarrow \lim u.$
 - 6. v_1, \ldots, v_n sind paarweise orthogonal \Rightarrow lin. u.

einfache Beweise sind prüfungsrelevant

1.7 Eigenschaften von Matrizen und LGS

- **Kern** einer Matrix Ker(A) ist Lösungsmenge von $(A \mid \overrightarrow{0})$ (dem zugehörigen homogenen LGS), Ker(A) ist ein VR
- Lösungsmengen inhomogener LGS sind keine VR; je zwei Lösungen des inhomogenen LGS unterscheiden sich um eine Lösung des homogenen LGS (=Kern der Koeffizientematrix)
- für $A = (s_1 ... s_n)$ ist der **Spaltenraum** $Col(A) = Span(\{s_1, ..., s_n\})$, dim(Col(A)) heißt Spaltenrang (entspricht maximaler Menge lin. u. Spaltenvektoren von A); ganz analog für **Zeilenraum** Row(A)
- Es gilt $\dim(\operatorname{Col}(A)) = \dim(\operatorname{Row}(A)) =: \operatorname{rg}(A)$ (Rang von A); Berechnung: $\operatorname{rg}(A) = \#$ nicht-Nullzeilen in ZSF
- **Dimensionsformel:** $A \in K^{m \times n} \Rightarrow \operatorname{rg}(A) + \operatorname{dim}(\operatorname{Ker}(A)) = n$; Lösbarkeitskriterium: Ax = b lösbar $\Leftrightarrow \operatorname{rg}(A) = \operatorname{rg}(A \mid b)$

 \approx Ende LA 110.1

1.8 Lineare Abbildungen

- sind $(V; \oplus_V, (k \mid k \in K)), (W; \oplus_W, (k \mid k \in K))$ VR über dem selben Körper, so ist $f: V \to W$ eine lineare Abbildung wenn:
 - 1. $f(a \oplus_V b) = f(a) \oplus_V f(b)$
 - $2. \ f(ka) = kf(a)$
- Sei $\{b_1, \ldots, b_n\}$ Basis von V. **f injektiv** $\Leftrightarrow \{f(b_1), \ldots, f(b_n)\}$ lin. u. $\Leftrightarrow \operatorname{Ker}(f) = \{0_v\}$
- f surjektiv \Leftrightarrow Span($\{f(b_1), \ldots, f(b_n)\}$) = W
- **f bijektiv** \Leftrightarrow $\{f(b_1), \dots, f(b_n)\}$ ist Basis von W Für Beweise bzgl. dieser 3 Eigenschaften bieten sich oft Gegenbeispiele an!
- Ker $(f) = \{v \mid v \in V, f(v) = 0_W\}$, enthält stets 0_V ; Im $(f) = \{f(v) \mid v \in V\}$, enthält stets 0_W ; beide bilden UVR von V bzw. W
- Dimensionsformel für lineare Abbildungen: $\dim(V) = n \Rightarrow \dim \operatorname{Im}(f) + \dim \operatorname{Ker}(f) = n$
- $f(v) = f(k_1b_1 + \ldots + k_nb_n) = k_1f(b_1) + \ldots + k_nf(b_n)$ (f durch Bilder der Basisvektoren eindeutig bestimmt)
- $\{e_1, \dots, e_n\}, f: K^n \to K^m \Rightarrow f(v) =$

einfache Beweise sind prüfungsrelevant