

Ваљане формуле и њихова својства

Ваљане формуле су формуле које су тачне у сваком моделу одговарајућег језика.

Зато оне представљају основне законитости мишљења и закључивања.

Наводимо важније ваљане формуле:

- (1) $\neg(\forall x)A \Leftrightarrow (\exists x)\neg A$ Де Морганови закони
- (2) $\neg(\exists x)A \Leftrightarrow (\forall x)\neg A$ за квантификаторе
- (3) $(\forall x)(A \land B) \Leftrightarrow (\forall x)A \land (\forall x)B$
- (4) $(\exists x)(A \lor B) \Leftrightarrow (\exists x)A \lor (\exists x)B$
- (5) $(\forall x)A \lor (\forall x)B \Rightarrow (\forall x)(A \lor B)$ (али $(\forall x)(A \lor B) \Rightarrow (\forall x)A \lor (\forall x)B$ није ваљана, нпр. у интерпретацији $\mathcal{N}=(\mathbb{N},A^{\mathcal{N}},B^{\mathcal{N}})$, где је $A^{\mathcal{N}}(x)$ -" x је паран број", а $B^{\mathcal{N}}(x)$ -"x је непаран број", ова

формула није тачна.)

- (6) $(\exists x)(A \land B) \Rightarrow (\exists x)A \land (\exists x)B$ (али $(\exists x)A \land (\exists x)B \Rightarrow (\exists x)(A \land B)$ није ваљана)
- (7) $(\forall x)(\forall y)A \Leftrightarrow (\forall y)(\forall x)A$
- (8) $(\exists x)(\exists y)A \Leftrightarrow (\exists y)(\exists x)A$
- (9) $(\exists x)(\forall y)A\Rightarrow (\forall y)(\exists x)A$ (али $(\forall y)(\exists x)A\Rightarrow (\exists x)(\forall y)A$ није ваљана, контрамодел: из чињенице да сваки човек има оца не следи да постоји отац

свих људи). Ако x није слободна променљива формуле B онда су и следеће формуле ваљане:

- $(10) \quad (\forall x)(A \lor B) \Leftrightarrow (\forall x)A \lor B$
- $(11) \quad (\exists x)(A \land B) \Leftrightarrow (\exists x)A \land B$
- $(12) \quad (\forall x)(B \Rightarrow A) \Leftrightarrow (B \Rightarrow (\forall x)A)$

Наводимо нека својства ваљаних формула.

Теорема. Ако су A и $A\Rightarrow B$ ваљане формуле онда је и B ваљана формула. **Доказ.** Нека је:

- $\blacktriangleright \models A \models A \Rightarrow B$
- М произвољна интерпретација језика и
- $lacktriangleq \mu$ произвоља валуација домена M.

Тада

$$\models A, \qquad \models A \Rightarrow B$$
 $\rightarrow \mathcal{M} \models A[\mu]$ и $\mathcal{M} \models A \Rightarrow B[\mu]$ $\rightarrow \qquad \text{ако } \mathcal{M} \models A[\mu] \text{ онда } \mathcal{M} \models B[\mu]$ $\rightarrow \qquad \mathcal{M} \models B[\mu].$

Како су \mathcal{M} и μ произвољни, следи да је

$$\models B$$
. \square

Теорема. Формула A(x) је ваљана акко је формула $(\forall x)A(x)$ ваљана, тј.

$$\models A(x)$$
 акко $\models (\forall x)A(x)$.

Ова теорема нам омогућава да проучавање ваљаних формула сведемо на проучавање ваљаних реченица.

