Discrete Optimization

Local Search: Part VII

Goal of the Lecture

- Local search
 - more systematic presentation
 - beyond neighborhood
 - heuristics versus meta-heuristics
 - heuristics

- States
 - -either solutions or configurations

- States
 - either solutions or configurations
- Moving from state s to one of its neighbors
 - -N(s): neighborhood of s

- States
 - either solutions or configurations
- Moving from state s to one of its neighbors
 - -N(s): neighborhood of s
- Some neighbors are legal; others are not
 - -L(N(s),s): set of legal neighbors

- States
 - -either solutions or configurations
- Moving from state s to one of its neighbors
 - -N(s): neighborhood of s
- Some neighbors are legal; others are not
 - L(N(s),s): set of legal neighbors
- Select one of the legal neighbors
 - -S(L(N(s),s),s); selection function

- States
 - -either solutions or configurations
- Moving from state s to one of its neighbors
 - -N(s): neighborhood of s
- Some neighbors are legal; others are not
 - L(N(s),s): set of legal neighbors
- Select one of the legal neighbors
 - -S(L(N(s),s),s); selection function
- Objective function
 - -minimizing f(s)

```
function LocalSearch(f, N, L, S) {
        s := GENERATEINITIALSOLUTION();
2.
3.
        s^* := s;
4.
       for k := 1 to MaxTrials do
            if satisfiable(s) \land f(s) < f(s^*) then
5.
               s^* := s;
6.
            s := S(L(N(s), s), s);
7.
8.
        return s^*;
9.
```


A Example of Local Search

Legal moves: local improvements

```
-L(N,s) = \{ n in N | f(n) < f(s) \}
```

A Example of Local Search

Legal moves: local improvements

$$-L(N,s) = \{ n in N | f(n) < f(s) \}$$

- Selection function: greedy selection
 - -S(L,s) = arg-min(n in L) f(n)

Heuristics and Metaheuristics

- ► Heuristics
 - -choose the next neighbor
 - -use local information:
 - the state s and its neighborhood
 - drive the search towards a local minimum

Heuristics and Metaheuristics

► Heuristics

- -choose the next neighbor
- -use local information:
 - the state s and its neighborhood
- drive the search towards a local minimum

Metaheuristics

- -aim at escaping local minima
- drive the search towards a global minimum
- -typically include some memory or learning

- Legal neighbors
 - Conditions on the value of the objective function

- Legal neighbors
 - Conditions on the value of the objective function
- Local improvement

```
-L(N,s) = \{ n in N | f(n) < f(s) \}
```

- Legal neighbors
 - Conditions on the value of the objective function
- Local improvement

```
-L(N,s) = \{ n in N | f(n) < f(s) \}
```

No degradation

```
-L(N,s) = \{ n in N | f(n) \le f(s) \}
```

- Legal neighbors
 - Conditions on the value of the objective function
- Local improvement
 - $-L(N,s) = \{ n in N | f(n) < f(s) \}$
- No degradation
 - $-L(N,s) = \{ n in N | f(n) \le f(s) \}$
- Potential degradation
 - -L(N,s) = N

- How to select the neighbor?
 - -exploring the whole or part of the neighborhood

- How to select the neighbor?
 - -exploring the whole or part of the neighborhood
- Best neighbor
 - select "the" best neighbor in the neighborhood

- ► How to select the neighbor?
 - -exploring the whole or part of the neighborhood
- Best neighbor
 - select "the" best neighbor in the neighborhood
- First neighbor
 - select the first "legal" neighbor in the neighborhood

- How to select the neighbor?
 - -exploring the whole or part of the neighborhood
- Best neighbor
 - select "the" best neighbor in the neighborhood
- First neighbor
 - select the first "legal" neighbor in the neighborhood
- Multi-stage selection
 - -first select one "part" of neighbor
 - -second select the remaining "part" of the neighbor

- Randomization is often important in local search
 - -more on this soon

- Randomization is often important in local search
 - -more on this soon
- Best neighbor

```
1. function S-BEST(N,S)

2. N^* := \{ n \in N \mid f(n) = \min_{s \in N} f(s) \};

3. return n \in N^* with probability 1/\#N^*;
```

- Randomization is often important in local search
 - -more on this soon
- Best neighbor

```
1. function S-BEST(N,S)

2. N^* := \{ n \in N \mid f(n) = \min_{s \in N} f(s) \};

3. return n \in N^* with probability 1/\#N^*;
```

Best improvement

- 1. **function** BestImprovement(s)
- 2. return LocalSearch(f,N,L-Improvement,S-Best);

First Neighbor

First Neighbor

- First neighbor (in some lexicographic order)
 - -avoid scanning the entire neighborhood

First Neighbor

- First neighbor (in some lexicographic order)
 - -avoid scanning the entire neighborhood
- First neighbor
 - 1. **function** S-First(N,s)
 - 2. **return** $n \in N$ minimizing lex(n);

First Neighbor

- First neighbor (in some lexicographic order)
 - -avoid scanning the entire neighborhood
- First neighbor
 - 1. **function** S-First(N,s)
 - 2. **return** $n \in N$ minimizing lex(n);
- First improvement
 - 1. **function** FirstImprovement(s)
 - 2. return LocalSearch(f,N,L-Improvement,S-First);

Motivation

- -avoid scanning the entire neighborhood
- -still keep a greedy flavor

Motivation

- -avoid scanning the entire neighborhood
- -still keep a greedy flavor

- Max/Min-Confict
 - select the variable with the most violations
 - first stage: greedy
 - -select the value with the fewest resulting violations
 - second stage: greedy

Max/Min-Confict

- select the variable with the most violations
 - first stage: greedy
- select the value with the fewest resulting violations
 - second stage: greedy
- Min-conflict heuristic
 - randomly select a variable with some violations
 - first-stage: randomized
 - -select the value with the fewest resulting violations
 - second stage: greedy

- What was the alternative?
 - -N(s): { $s[q \leftarrow v] \mid q \text{ in Queens & v in Rows }$
 - s[q ←v] is the solution s where queens q is assigned to v;

- What was the alternative?
 - -N(s): { $s[q \leftarrow v] \mid q \text{ in Queens & v in Rows }$
 - s[q ←v] is the solution s where queens q is assigned to v;
- Complexity
 - -quadratic: all pairs (c,r) where c is a column and r is a row
 - -O(n²) where n is the number of queens

- What was the alternative?
 - -N(s): { $s[q \leftarrow v] \mid q \text{ in Queens & v in Rows }$
 - s[q ←v] is the solution s where queens q is assigned to v;
- Complexity
 - -quadratic: all pairs (c,r) where c is a column and r is a row
 - -O(n²) where n is the number of queens
- Complexity of min-conflict
 - -O(n) where n is the number of queens

Multi-Stage in Car Sequencing

Slots	1	2	3	4	5	6	7	8	9	10	Demand
Class 1											1
Class 2											1
Class 3											2
Class 4											2
Class 5											2
Class 6											2

Options	1	2	3	4	5	Demand
Class 1	yes		yes	yes		1
Class 2				yes		1
Class 3		yes			yes	2
Class 4		yes		yes		2
Class 5	yes		yes			2
Class 6	yes	yes				2
Capacity	1/2	2/3	1/3	2/5	1/5	

Setup	1	2	3	4	5	6	7	8	9	10	Capacity
Option 1											1/2
Option 2											2/3
Option 3											1/3
Option 4											2/5
Option 5											1/5

Multi-Stage in Car Sequencing

Options	1	2	3	4	5	Demand
Class 1	yes		yes	yes		1
Class 2				yes		1
Class 3		yes			yes	2
Class 4		yes		yes		2
Class 5	yes		yes			2
Class 6	yes	yes				2
Capacity	1/2	2/3	1/3	2/5	1/5	

Setup	1	2	3	4	5	6	7	8	9	10	Capacity
Option 1											1/2
Option 2											2/3
Option 3											1/3
Option 4											2/5
Option 5											1/5

- Quadratic neighborhood
 - -consider all possible swaps
 - -quadratic in the size of the assembly line

- Quadratic neighborhood
 - -consider all possible swaps
 - -quadratic in the size of the assembly line
- Multi-stage neighborhood
 - select a slot s whose car induces some violations
 - -swap slot s with all other slots
 - linear in the size of the assembly line

- Randomization
 - select a neighbor at random

- Randomization
 - select a neighbor at random
- Decide whether to accept it
 - -random improvement
 - Metropolis algorithm

- Randomization
 - select a neighbor at random
- Random improvement

Random improvement search

- Randomization
 - select a neighbor at random
- Random improvement

```
1. function S-RANDOMIMPROVEMENT(N,s)

2. select n \in N with probability 1/\#N;

3. if f(n) < f(s) then

4. return n;

5. else

6. return s;
```

Random improvement search

- Randomization
 - select a neighbor at random
- Random improvement

```
1. function S-RANDOMIMPROVEMENT(N,s)

2. select n \in N with probability 1/\#N;

3. if f(n) < f(s) then

4. return n;

5. else

6. return s;
```

Random improvement search

```
1. function RandomImprovement(s)
2. return LocalSearch(f,N,L-All,S-RandomImprovement);
```

The Traveling Tournament

T-R	1	2	3	4	5	6	7	8	9	10
1	6	@2	4	3	@5	@4	@3	5	2	@6
2	5	1	@3	@6	4	3	6	@4	@1	@5
3	@4	5	2	@1	6	@2	1	@6	@5	4
4	3	6	@1	@5	@2	1	5	2	@6	@3
5	@2	@3	6	4	1	@6	@4	@1	3	2
6	@1	@4	@5	2	@3	5	@2	3	4	1

The Traveling Tournament

T-R	1	2	3	4	5	6	7	8	9	10
1	6	@2	4	3	@5	@4	@3	5	2	@6
2	5	1	@3	@6	4	3	6	@4	@1	@5
3	@4	5	2	@1	6	@2	1	@6	@5	4
4	3	6	@1	@5	@2	1	5	2	@6	@3
5	@2	@3	6	4	1	@6	@4	@1	3	2
6	@1	@4	@5	2	@3	5	@2	3	4	1

$$d_{12} + d_{21} + d_{15} + d_{54} + d_{43} + d_{31} + d_{16} + d_{61} + \dots + \\ d_{61} + d_{14} + d_{45} + d_{56} + d_{63} + d_{36} + d_{62} + d_{26}$$

The Neighborhood

A number of moves

- -swap homes
- -swap rounds
- -swap teams
- -partial swap rounds
- -partial swap teams

T-R	1	2	3	4	5	6	7	8	9	10
1	6	@2	4	3	@5	@4	@3	5	2	@6
2	5	1	@3	@6	4	3	6	@4	@1	@5
3	@4	5	2	@1	6	@2	1	@6	@5	4
4	3	6	@1	@5	@2	1	5	2	@6	@3
5	@2	@3	6	4	1	@6	@4	@1	3	2
6	@1	@4	@5	2	@3	5	@2	3	4	1

T-R	1	2	3	4	5	6	7	8	9	10
1	6	@2	4	3	@5	@4	@3	5	2	@6
2	5	@3	6	4	1	@6	@4	@1	3	@5
3	@4	5	2	@1	6	@2	1	@6	@5	4
4	3	6	@1	@5	2	1	5	@2	@6	@3
5	@2	1	@3	@6	4	3	6	@4	@1	2
6	@1	@4	@5	2	@3	5	@2	3	4	1

T-R	1	2	3	4	5	6	7	8	9	10
1	6	@2	4	3	@5	@4	@3	5	2	@6
2	5	@3	6	4	1	@6	@4	@1	3	@5
3	@4	5	2	@1	6	@2	1	@6	@5	4
4	3	6	@1	@5	2	1	5	@2	@6	@3
5	@2	1	@3	@6	4	3	6	@4	@1	2
6	@1	@4	@5	2	@3	5	@2	3	4	1

T-R	1	2	3	4	5	6	7	8	9	10
1	6	@2	4	3	@5	@4	@3	5	2	@6
2	5	@3	6	4	1	@6	@4	@1	3	@5
3	@4	5	2	@1	6	@2	1	@6	@5	4
4	3	6	@1	@5	2	1	5	@2	@6	@3
5	@2	1	@3	@6	4	3	6	@4	@1	2
6	@1	@4	@5	2	@3	5	@2	3	4	1

T-R		2	3	4	5	6	7	8	9	10
	6	→ @2	4	3	3 @5	@4	@3	7 5	→ 2	@6
2	5	@3	6	4	1	@6	@4	@1	3	@5
3	@4	5	~ 2	@1	6	2	1	@6	→ @5	4
4	3	6	@1	* @5	* 2	1	> 5	2 @2	@6	@3
5	@2	1	@3	@6	4	(3	6	@4	@1	2
6	@1	@4	2 @5	> 2	@3	* 5	→ @2	3	4	1

T-R	1	2	3	4	5	6	7	8	9	10
1	6	→ @2	4	3	3 @5	@4	@3	5	→ 2	@6
2	5	@3	6	4	1	@6	@4	@1	3	@5
3	@4	5	~ 2	@	6	2	1	6 (3)	→ @5	4
4	3	6	@1	@ 5	* 2	1	5	2	@6	@3
5	@2	1	@3	@6	4	3	6	@4	@1	2
6	@1	@4	@ 5	> 2	@3	5	→ @2	3	4	1
77 Garage	5/2 (C)0 (C)						7775		77 (3)	W (500)
T-R	1	2	3	4	5	6	7	8	9	10
T-R 1	1 6	2 @5	3 4	4 3		6 @4	7 @3		9 5	10 @6
	1 6 5		4	ANTAIT KEISA		DETAIL RESIDE	7 @3 @4			
1		@5	4	3	@2	@4	_	2	5	@6
1 2	5	@5@32	4	3	@21	@4 @6	_	2 @ 1	5	@6 @5
1 2 3	5 @4	@5@32	4 6 5	3 4 @1	@216@5	@4 @6	@4 1	2 @1 @6	5 3 @2	@6@54

Until Next Time