Theoretische Informatik – Übung 11

SS 2019 Jochen Schmidt

Folgende Aufgaben bitte vor der Übungsstunde zu Hause lösen:

Aufgabe 1

Zur Lösung eines Problems stehen ein Algorithmus A und ein Algorithmus B zur Verfügung. Die Ausführungszeiten sind $t_A = 2 \cdot n^2$ und $t_B = 8 \cdot n^{1.75}$. Hierbei ist n die Größe der Eingabedaten. Es ist vernünftig, in Abhängigkeit von n zwischen den Algorithmen zu wechseln. Beschreiben Sie die zugehörige Strategie und berechnen Sie das dabei auftretende kritische n.

Aufgabe 2

Ein Sortieralgorithmus braucht genau 1 ms um 1000 Datensätze zu sortieren. Die benötigte Zeit T(n) zum Sortieren von n Daten sei direkt proportional zu n log n, d.h. T(n) = c n log n. Die Zeit zum Sortieren von N Daten sei bekannt und durch T(N) gegeben.

- a) Geben Sie eine Formel für T(n) in Abhängigkeit von T(N) an.
- b) Berechnen Sie die benötigte Zeit zum Sortieren von 1.000.000 Datensätzen.

Aufgabe 3

- a) Ein quadratischer Algorithmus mit Komplexität O(n²) benötigt zur Verarbeitung von 100 Datensätzen 1ms. Wie lange braucht er für 5000 Datensätze?
- b) Ein Algorithmus benötigt zur Verarbeitung von 1000 Datensätzen 10s. Wie lange braucht er für 100.000 Datensätze, wenn die Komplexität O(n) ist? Wie lange bei Komplexität O(n³)?

Folgende Aufgaben werden in der Übungsstunde bearbeitet:

Aufgabe 4

Jeder der unten stehenden Ausdrücke gibt die Berechnungszeit für einen Algorithmus an, um ein Problem der Größe n zu lösen. Geben Sie jeweils den/die dominanten Term(e) (die mit dem größten Wachstum bzgl. n) sowie die kleinste Komplexitätsordnung in O-Notation an.

Ausdruck	dominante(r) Term(e)	O()
5 + 0,001n ³ + 0,025n	0,00113	N ³
100n + 20n ^{1,5} + 10n log ₁₀ n	20 ~1,5	NIS
$n^2 \log_2 n + n(\log_2 n)^2$	n2 leas u	12 (oc 1
100000n + 10n ²	MC leaz U	n ² ,
n log ₃ n + n log ₂ n	nlessy, ulogsy	ulesu
$0.03 \log_4 n + \log_2 \log_2 n$	0,03 (05, 1	loca

Aufgabe 5

Die unten stehende Tabelle enthält einige Aussagen über die O-Notation für die Funktionen $f \equiv f(n)$ und $g \equiv g(n)$. Geben Sie an, ob die jeweilige Aussage richtig oder falsch ist. Korrigieren Sie sie im letzteren Fall.

Aussage	richtig oder falsch?	wenn falsch, dann ist korrekt:
$O(f \cdot g) = O(f) \cdot O(g)$		
$3n + 8n^2 + 100n^3 = O(n^4)$	<	
$3n + 8n^2 + 100n^3 = O(n^2 \log n)$	X	√ 3