КОМП'ЮТЕРНА ОБРОБКА ЗОБРАЖЕНЬ

Digital Image Processing - DIP

2021 / 2022 навчальний рік

Лек. 07 2022 ІПЗ-18

МОДУЛЬ 3. Фільтрація зображень

- 3.1. Загальні відомості з цифрової фільтрації двовимірних сигналів. Базові маніпуляції
- 3.2. Лінійні фільтри. Фільтр Гауса.
- 3.3. Нелінійні фільтри
- 3.4. Морфологічні перетворення

3.2. Лінійні фільтри

Лінійний фільтр

Лінійні фільтри - фільтри, вихід Y яких формується перемноженням (лінійною комбінацією) вагових множників F з елементами зображення I.

Фільтри розмивання (згладжування) — фільтри для усунення деталей (зазвичай малорозмірних), що заважають сприйняттю корисних об'єктів на зображеннях (так звана генералізація зображення).

Найпростіший фільтр розмивання (box filter) \rightarrow лінійний фільтр усереднення значень пікселів \rightarrow згортка по константній функції. Наприклад, для вікна 3*3 (K=L=1)

$$F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Тобто: $f_{k,l} = 1$, $N_w = K*L = 9$ — загальна кількість пікселів вікна

Загальне співвідношення для обчислення лінійного фільтру усереднення:

$$\hat{I}(i,j) = \frac{1}{N_w} \sum_{l=-L}^{L} \sum_{k=-K}^{K} I(i-l,j-k)$$

$$i = 2, j = 1: \hat{I}(2, 1) = 198$$

$$i = 2, j = 2: \hat{I}(2, 2) = 141$$

$$j = 0, 1, 2, ...$$

$$i = 0, 1, 2, ...$$

$$i$$

Результат

Лінійний середньоарифметичний фільтр Зменшення шуму

Лінійний середньоарифметичний фільтр Інші варіанти:

1. Вікно **5*5** (*K=L=2*);
$$N_w = 25$$

2. Зважене середнє. Вікно **3*3** (*K=L=1*)

$$F = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$N_w = 16$$

Фільтр Гауса для розмивання:

Лінійний зважений фільтр

$$\hat{I}(i,j) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{l=-L}^{L} \sum_{k=-K}^{K} I(i-l,j-k) e^{-\frac{d^2}{2\sigma^2}}$$

σ – радіус розмивання,

$$d = \sqrt{l^2 + k^2}$$

Пів розміру маски фільтру приблизно 3σ Мод.3.3.

Фільтр Гауса для розмивання:

$$\sigma = 1$$

	0.003	0.013	0.022	0.013	0.003
	0.013	0.059	0.097	0.059	0.013
F=	0.022	0.097	0.159	0.097	0.022
	0.013	0.059	0.097	0.059	0.013
	0.003	0.013	0.022	0.013	0.003

$$\sigma = .8$$

	0.000789	0.006581	0.013347	0.006581	0.000789
	0.006581	0.05491	0.111345	0.05491	0.006581
F=	0.013347	0.111345	0.225821	0.111345	0.013347
	0.006581	0.05491	0.111345	0.05491	0.006581
	0.000789	0.006581	0.013347	0.006581	0.000789

Мод.3.3.

Фільтр Гауса для розмивання:

Мод.3.3.

Мод.3.3.

Фільтр усереднення. Приклад

Мод.3.2.

17

Фільтр Гауса. Приклад

Фільтр: розмивання

Лінійні фільтри

Застосовується для вирішення наступних завдань:

- зменшення шуму, який утворюється через різкі перепади значень яскравості;
- зменшення деталей, які не несуть смислового навантаження, розміри яких малі в порівнянні з розмірами маски фільтра;
- згладжування помилкових контурів, що виникають через дискретизацію або перетворень з використанням недостатню кількість рівнів яскравості (похибки квантизації).

Мінуси: розмиття корисних контурів, які також мають різкі перепади значень яскравості.

Застосування фільтру на практиці часто обумовлено його прийнятним згладжуванням шуму нутрощі зображень за умови його дуже високої обчислювальної ефективністі.

Рекомендована ЛІТЕРАТУРА

- Вовк С.М., Гнатушенко В.В., Бондаренко М.В. Методи обробки зображень та комп'ютерний зір: навчальний посібник. Д.: Ліра, 2016 148 с.
- **Красильников Н.Н.** Цифровая обработка 2D- и 3D-изображений: учеб.пособие.- СПб.: БХВ-Петербург, 2011.- 608 с.: ил.
- Гонсалес Р.С., Вудс Р.Э. Цифровая обработка изображений. М.: Техносфера, 2005. -1070 с.
- Визильтер Ю.В., Желтов С.Ю. и др. Обработка и анализ зображений в задачах машинного зрения.-М.: Физматкнига, 2010.-672 с.

Рекомендована ЛІТЕРАТУРА

- Ватолин Д., Ратушняк А., Смирнов М., Юкин В. Методы сжатия данных. Устройство архиваторов, сжатие изображений и видео. М.: ДИАЛОГ-МИФИ, 2002. 384 с.
- **Творошенко І.С.** Конспект лекцій з дисципліни «Цифрова обробка зображень» / І.С.Творошенко : І.С. Творошенко ; Харків. нац. ун-т міськ. госп-ва ім. О. М. Бекетова. Харків : ХНУМГ ім. О. М. Бекетова, 2017. 75 с.
- Методи компьютерной обработки изображений: Учебное пособие для ВУЗов/ Под ред.: Сойфер В.А.. 2-е изд., испр. М.: Физматлит, 2003. 780 с.
- Фисенко В.Т., Фисенко Т.Ю. Компьютерная обработка и распознавание изображений: учеб. пособие. СПб: СПбГУ ИТМО, 2008. 192 с.

Додаткова ЛІТЕРАТУРА

- **Грузман И.С.**, Киричук В.С. Цифровая обработка зображений в информационных системах. Новосибирск: Изд-во НГУ, 2002. 352 с.: ил.
- Solomon C., Breckon T. Fundamentals of Digital Image Processing. Willey-Blackwell, 2011 344 p.
- Павлидис Т. Алгоритмы машинной графики и обработки изображений: Пер. с англ. М.: Радио и связь, 1986. 400 с.
- **Яншин В. В.**, Калинин Г. А. Обработка изображений на языке Си для IBM РС: Алгоритмы и программы. М.: Мир, 1994. 240 с.

Інформаційні ресурси

- Компьютерная обработка изображений. Конспект лекций. http://aco.ifmo.ru/el_books/image_processing/
- Цифрова обробка зображень [Електронний ресурс]: методичні рекомендації до виконання лабораторних робіт / НТУУ «КПІ»; уклад.: В. С. Лазебний, П. В. Попович. Електронні текстові дані (1 файл: 1,41 Мбайт). Київ: НТУУ «КПІ», 2016. 73 с. https://ela.kpi.ua/handle/123456789/21035
- https://www.youtube.com/watch?v=CZ99Q0DQq3Y
- https://www.youtube.com/watch?v=FKTLW8GAdu4

The END Modulo 3. Topic 2