LAU10-By-Shantal-Cruz.R

cs

2023-09-24

```
library(readr)
data <- readr::read_csv("4063Midterm.csv")</pre>
## Rows: 1000 Columns: 13
## -- Column specification ----
## Delimiter: ","
## chr (4): Fname, Lname, gender, City
## dbl (9): ID, FamilyIncome, EdYears, FamilySize, Grocery, Cosmatics, MF, Boug...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
# City Toronto only
myCity <- data[data$City == "Toronto", c("EdYears", "Cosmatics")]</pre>
# View(myCity)
# 1) Use a function such as factoextra::fviz_nbclust with silhouette method to identify the optimum num
# install.packages("factoextra")
library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(cluster)
# silhouette method
hc_s <- factoextra::fviz_nbclust(myCity, FUNcluster = hcut, method = "silhouette")
print(hc_s)
```

Optimal number of clusters 0.04 0.0 1 2 3 4 5 6 7 8 9 10 Number of clusters k

```
hc_optimal_k <- 2
# 2) Use a function such as stats::hclust to build your hierarchical cluster model and use factoextra::
# Hierarchical Clustering
hc <- stats::hclust(dist(myCity))</pre>
##
## Call:
## stats::hclust(d = dist(myCity))
## Cluster method
         : complete
## Distance
          : euclidean
## Number of objects: 255
cut_tree <- cutree(hc, k = hc_optimal_k)</pre>
cut_tree
##
  ## [223] 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 1 1 1 1 1 2 2 1 2 2 2
```

```
# Visualize the dendrogram
dend <- as.dendrogram(hc)
dend</pre>
```

 $\mbox{\tt \#\#}$ 'dendrogram' with 2 branches and 255 members total, at height 488.1168

```
# Create a clustering object using cut_tree
hc_cluster <- factoextra::fviz_cluster(list(data = myCity, cluster = cut_tree))
hc_cluster</pre>
```

Cluster plot

Plot the clustering object
print(hc_cluster)

Cluster plot 101 246 1159 103 65 48 2527448 2527448 2527448 21346154148 252748 252748 252748 252748 252748 252748 252748 252748 252748 252748 252748 252748 252748 25

EdYears

3) Use a function such as factoextra::fviz_nbclust with silhouette method to identify the optimum nu
silhouette method
km_s <- factoextra::fviz_nbclust(myCity, FUNcluster = kmeans, method = "silhouette")
print(km_s)</pre>

Optimal number of clusters 0.4 0.0 1 2 3 4 5 6 7 8 9 10 Number of clusters k

```
km optimal k <- 2
# 4) Use a function such as stats::Kmeans to build your Kmeans cluster model and use factoextra::fviz_c
# K-Means Clustering
km <- stats::kmeans(myCity, centers = km_optimal_k)</pre>
## K-means clustering with 2 clusters of sizes 156, 99
## Cluster means:
   EdYears Cosmatics
## 1 13.48718 413.6987
## 2 17.39394 536.4444
##
## Clustering vector:
   [75] 2 2 2 1 1 1 2 1 1 1 1 2 1 2 2 1 1 1 2 2 1 1 1 2 2 1 2 2 2 1 2 1 2 1 1 1 1
## [223] 2 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 2 2 2 2 2 2 2 2 2 1 1
## Within cluster sum of squares by cluster:
## [1] 259771.8 264838.1
```

```
(between_SS / total_SS = 63.5 %)
##
## Available components:
##
## [1] "cluster"
                                                                     "tot.withinss"
                       "centers"
                                      "totss"
                                                      "withinss"
## [6] "betweenss"
                       "size"
                                      "iter"
                                                     "ifault"
# Visualize the clustering object
km_cluster <- factoextra::fviz_cluster(list(data = myCity, cluster = km$cluster))</pre>
km_cluster
```

Cluster plot

Plot the clustering object
print(km_cluster)

5) Compare and contrast the visualizations of the clusters detected by two Machine Learning models. W
put the two plots side by side
library(gridExtra)
grid.arrange(hc_cluster, km_cluster, ncol = 2, nrow = 1, top = "Hierarchical Clustering vs. K-Means Clu

print("To determine what clustering is better will depend on many factors. We can quantitatively use di

[1] "To determine what clustering is better will depend on many factors. We can quantitatively use d