

Lógica de Programação

Relações de

Implicação e Equivalência

Proposições Independentes

Duas preposições são ditas *independentes* quando, em suas tabelas-verdade ocorrem as quatro alternativas possíveis.

p	q
0	0
0	1
1	0
1	1

Proposições Dependentes

Dizemos que duas proposições são dependentes quando, em suas tabelas-verdade, uma ou mais alternativas não ocorrem.

p	q	$q \rightarrow p$
0	0	1
0	1	0
1	0	1 /
1	1	1

Não ocorre a alternativa (1,0) entre $p \in q \rightarrow p$.

Relação de Implicação

Diz-se que uma proposição **p** *implica* uma proposição **q** quando, em suas tabelas-verdade, **não** ocorre (1,0) (nesta ordem!).

Notação: p ⇒ q

Obs: Não confundir os símbolos \rightarrow e \Rightarrow

- → Condicional (Operação Lógica)
- ⇒ Relação de implicação entre duas proposições.

Exemplo: Verificar se $p \Rightarrow q \rightarrow p$

Leitura: Verificar se p implica em q condicional p, ou então, verificar se p implica em se q então p.

p	q	$q \rightarrow p$
0	0	1
0	1	0
1	0	1
1	1	1

Comparando as tabelas-verdade $p \in q \rightarrow p$, verificamos que **não ocorre** (1,0) (nessa ordem!) numa mesma linha.

Portanto: $p \Rightarrow q \rightarrow p$

Relação de Equivalência

Diz-se que uma proposição **p** é equivalente a uma proposição **q** quando, em suas tabelas-verdade, **não** ocorrem (1,0) nem (0,1).

Notação: *p* ⇔ *q*

Obs: Não confundir os símbolos \leftrightarrow e \Leftrightarrow

→ Bicondicional (Operação Lógica)

⇔ Relação de equivalência.

Exemplo: Verificar se $p \cdot q \Leftrightarrow (p' + q')'$

Leitura: Verificar se p e q equivalem a falsidade de não p ou não q.

р	q	p.q	p'	q'	p'+q'	(p'+q')'
0	0	0	1	1	1	0
0	1	0	1	0	1	0
1	0	0	0	1	1	0
1	1	1	0	0	0	1

Comparando as tabelas verdade de *p* . *q* e (*p'* + *q'*)', verificamos que *não* ocorre (1,0) nem (0,1) numa mesma linha.

Portanto:

$$p \cdot q \Leftrightarrow (p' + q')'$$

Equivalências Notáveis

Dupla Negação

$$(p')' \Leftrightarrow p$$

р	p'	(p')'
0	1	0
1	0	1

Leis Idempotentes

$$p + p \Leftrightarrow p$$

 $p \cdot p \Leftrightarrow p$

р	p + p	p.p
0	0	0
1	1	1

Leis Comutativas

$$p + q \Leftrightarrow q + p$$

$$p.q \Leftrightarrow q.p$$

р	q	p + q	q + p	p.q	q.p
0	0	0	0	0	0
0	1	1	1	0	0
1	0	1	1	0	0
1	1	1	1	1	1

Leis Associativas

$$p + (q + r) \Leftrightarrow (p + q) + r$$

 $p \cdot (q \cdot r) \Leftrightarrow (p \cdot q) \cdot r$

Faça esta no seu caderno!

p	q	۲	q+r	p + (q + r)	p + q	(p+q)+r
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Leis De Morgan

$$(p \cdot q)' \Leftrightarrow p' + q'$$

 $(p + q)' \Leftrightarrow p' \cdot q'$

Faça esta no seu caderno!

р	q	p.q	(p.q)'	p'	q'	p' + q'
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Leis Distributivas

$$p \cdot (q + r) \Leftrightarrow (p \cdot q) + (p \cdot r)$$

 $p + (q \cdot r) \Leftrightarrow (p + q) \cdot (p + r)$

Faça esta no seu caderno!

р	q	r	q + r	p.(q+r)	p.q	p.r	(p.q)+(p.r)
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Bicondicional

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \cdot (q \rightarrow p)$$

р	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \cdot (q \rightarrow p)$
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	1	1	1	1

Condicionais

$$\begin{array}{l} p \rightarrow q \Leftrightarrow q' \rightarrow p' \\ q \rightarrow p \Leftrightarrow p' \rightarrow q' \end{array}$$

þ	q	p'	q'	$p \rightarrow q$	$q' \rightarrow p'$	$q \rightarrow p$	$p' \rightarrow q'$
0	0	1	1	1	1	1	1
0	1	1	0	1	1	0	0
1	0	0	1	0	0	1	1
1	1	0	0	1	1	1	1

Dúvidas?

Bibliografia

Lógica e Álgebra de Boole Jacob Daghlian Ed. Atlas