660 <u>NSCC</u>, CLIQUE

# 5.41 atmost\_nvalue

DESCRIPTION LINKS GRAPH

Origin [62]

Constraint atmost\_nvalue(NVAL, VARIABLES)

Synonyms soft\_alldiff\_max\_var, soft\_alldifferent\_max\_var,

soft\_alldistinct\_max\_var.

Arguments NVAL : dvar

VARIABLES : collection(var-dvar)

**Restrictions**  $NVAL \ge min(1, |VARIABLES|)$ 

 ${\tt required}({\tt VARIABLES}, {\tt var})$ 

The number of distinct values taken by the variables of the collection VARIABLES is less than or equal to NVAL.

The first atmost\_nvalue constraint holds since the collection (3, 1, 3, 1, 6) involves at most 4 distinct values (i.e., in fact 3 distinct values).

Typical NVAL > 1

 $\begin{array}{l} {\tt NVAL} < |{\tt VARIABLES}| \\ |{\tt VARIABLES}| > 1 \end{array}$ 

Symmetries

**Purpose** 

- NVAL can be increased.
- Items of VARIABLES are permutable.
- All occurrences of two distinct values of VARIABLES.var can be swapped; all
  occurrences of a value of VARIABLES.var can be renamed to any unused value.
- An occurrence of a value of VARIABLES.var can be replaced by any value of VARIABLES.var.

Arg. properties

Contractible wrt. VARIABLES.

Remark

This constraint was introduced together with the <a href="atleast\_nvalue">atleast\_nvalue</a> constraint by C. Bessière *et al.* in an article [62] providing filtering algorithms for the <a href="nvalue">nvalue</a> constraint.

It was shown in [69] that, finding out whether a atmost\_nvalue constraint has a solution or not is NP-hard. This was achieved by reduction from 3-SAT.

# Algorithm

[27] provides an algorithm that achieves bound consistency. [40] provides two filtering algorithms, while [62] provides a greedy algorithm and a graph invariant for evaluating the minimum number of distinct values. [62] also gives a linear relaxation for approximating the minimum number of distinct values.

# Counting

| Solutions   12   108   1280 | 18750 | 326592 | 6588344 | 150994944 |
|-----------------------------|-------|--------|---------|-----------|

Number of solutions for atmost\_nvalue: domains 0..n

# Solution density for atmost\_nvalue



662 <u>NSCC</u>, CLIQUE

Solution density for atmost\_nvalue



| Length (n)         |   | 2  | 3   | 4    | 5     | 6      | 7       | 8         |
|--------------------|---|----|-----|------|-------|--------|---------|-----------|
| Total              |   | 12 | 108 | 1280 | 18750 | 326592 | 6588344 | 150994944 |
| Parameter<br>value | 1 | 3  | 4   | 5    | 6     | 7      | 8       | 9         |
|                    | 2 | 9  | 40  | 145  | 456   | 1309   | 3536    | 9153      |
|                    | 3 | -  | 64  | 505  | 3456  | 20209  | 104672  | 496017    |
|                    | 4 | -  | -   | 625  | 7056  | 74809  | 692672  | 5639841   |
|                    | 5 | -  | -   | -    | 7776  | 112609 | 1633472 | 21515841  |
|                    | 6 | -  | -   | -    | -     | 117649 | 2056832 | 37603521  |
|                    | 7 | -  | -   | -    | -     | -      | 2097152 | 42683841  |
|                    | 8 | -  | -   | -    | -     | -      | -       | 43046721  |

Solution count for atmost\_nvalue: domains 0..n

# Solution density for $atmost\_nvalue$



Parameter value as fraction of length

# Solution density for atmost\_nvalue



Parameter value as fraction of length

Systems at Most NValue in Choco.

See also comparison swapped: atleast\_nvalue.

MSCC, CLIQUE

implied by: nvalue ( $\leq$  NVAL replaced by = NVAL).

related: soft\_all\_equal\_max\_var, soft\_all\_equal\_min\_ctr,
soft\_all\_equal\_min\_var, soft\_alldifferent\_ctr, soft\_alldifferent\_var.

**Keywords complexity:** 3-SAT.

constraint type: counting constraint, value partitioning constraint.

filtering: bound-consistency.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values.

20050618 665

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

 $\begin{aligned} & \textbf{Graph property(ies)} & & \textbf{NSCC} \leq \texttt{NVAL} \\ & \textbf{Graph class} & & \textbf{EQUIVALENCE} \end{aligned}$ 

#### Graph model

Parts (A) and (B) of Figure 5.95 respectively show the initial and final graph associated with the first example of the **Example** slot. Since we use the **NSCC** graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to a specific value that is assigned to some variables of the VARIABLES collection. The 3 following values 1, 3 and 6 are used by the variables of the VARIABLES collection.

666 <u>NSCC</u>, CLIQUE



Figure 5.95: Initial and final graph of the atmost\_nvalue constraint

20050618 667