Exercise 4

1 Stable and recursively feasible MPC

Recall the following definitions

$$X\oplus Y:=\{x+y|x\in X,y\in Y\}$$
 Minkowski sum of X and Y ,
$$\alpha X:=\{\alpha x|x\in X\} \quad \text{scaling of a set,}$$
 if X is convex: $x_1,\,x_2\in X\to \alpha x_1+(1-\alpha)x_2\in X,\, \forall \alpha\in [0,1] \quad \text{convex set.}$

- 1. Let X_1 and X_2 be convex invariant sets for the system $x_{k+1} = Ax_k$. Show that $\alpha X_1 \oplus (1-\alpha)X_2$ is also an invariant set for any $\alpha \in [0, 1]$.
- 2. Let $X_1 \subseteq \mathbb{X}$ and $X_2 \subseteq \mathbb{X}$, where X_1 , X_2 and \mathbb{X} are convex sets. Show that $\alpha X_1 \oplus (1-\alpha)X_2 \subseteq \mathbb{X}$ for any $\alpha \in [0,1]$.
- 3. Let $V_i(x) := x^\top P_i x$ be a Lyapunov function for the system $x_{k+1} = A x_k$ for i = 1, 2, with a rate of decrease of $x^\top \Gamma x$, i.e.: $V_i(x_{k+1}) V_i(x_k) \le -x^\top \Gamma x$. Show that $V(x) = \alpha V_1(x) + (1 \alpha)V_2(x)$ is also a Lyapunov function with a rate of decrease of $x^\top \Gamma x$ for any $\alpha \in [0, 1]$.
- 4. Let K be a stabilizing controller for the system $x_{k+1} = Ax_k + Bu_k$, and $X_i \subset \mathbb{X}$ be a convex invariant set for the system $x_{k+1} = (A+BK)x_k$, with $KX_i \subset \mathbb{U}$ for each i=1,2. $V_i(x) = x^\top P_i x$ are Lyapunov functions for the system $x_{k+1} = (A+BK)x_k$ with a rate of decrease of $Q+K^\top RK$, for some $Q=Q^\top \succ 0$ and $R=R^\top \succ 0$.

$$J^{*}(x(t)) = \min_{u} \sum_{k=0}^{N-1} x_{i}^{\top} Q x_{i} + u_{i}^{\top} R u_{i} + \alpha V_{1}(x_{N}) + (1 - \alpha) V_{2}(x_{N}),$$
s.t. $x_{k+1} = A x_{k} + B u_{k}, \forall k = 0, ..., N - 1,$
 $x_{k} \in \mathbb{X}, \forall k = 1, ..., N,$
 $u_{k} \in \mathbb{U}, \forall k = 0, ..., N - 1,$
 $x_{N} \in \alpha X_{1} \oplus (1 - \alpha) X_{2},$
 $x_{0} = x(t).$

Prove that this MPC controller is stabilizing and recursively feasible for any $\alpha \in [0, 1]$ by listing sufficient conditions for stability and proving them. You can use the result of the previous three questions.

Exercise 4

1 Stable and recursively feasible MPC

Recall the following definitions

```
X\oplus Y:=\{x+y|x\in X,y\in Y\}\quad \text{Minkowski sum of }X\text{ and }Y, \alpha X:=\{\alpha x|x\in X\}\quad \text{scaling of a set,} if X is convex: x_1,\,x_2\in X\to \alpha x_1+(1-\alpha)x_2\in X,\,\forall \alpha\in[0,1]\quad \text{convex set.}
```

1. Let X_1 and X_2 be convex invariant sets for the system $x_{k+1} = Ax_k$. Show that $\alpha X_1 \oplus (1 - \alpha)X_2$ is also an invariant set for any $\alpha \in [0, 1]$.

We want to show that if $x_k \in \alpha X_1 \oplus (1-\alpha)X_2$, $x_{k+1} \in \alpha X_1 \oplus (1-\alpha)X_2$. Suppose that $x_k \in \alpha X_1 \oplus (1-\alpha)X_2$, which means that $\exists x_1 \in X_1, x_2 \in X_2$. such that $x_k = \alpha x_1 + (1-\alpha)x_2$. $x_{k+1} = Ax_k = \alpha Ax_1 + (1-\alpha)Ax_2$. Since X_1, X_2 are invariant sets. $Ax_1 \in X_1, Ax_2 \in X_2$. That means $x_{k+1} \in \alpha X_1 \oplus (1-\alpha)X_2$.

2. Let $X_1 \subseteq \mathbb{X}$ and $X_2 \subseteq \mathbb{X}$, where X_1 , X_2 and \mathbb{X} are convex sets. Show that $\alpha X_1 \oplus (1-\alpha)X_2 \subseteq \mathbb{X}$ for any $\alpha \in [0,1]$.

If $x \in \alpha X_1 \oplus (1-\alpha)X_2$, $\exists x_1 \in X_1, x_2 \in X_2$ such that $x = \alpha x_1 + (1-\alpha)x_2$. Since both $x_1, x_2 \in \mathbb{X}$ and \mathbb{X} is a convex set. By convexity, we conclude $x \in \mathbb{X}$.

3. Let $V_i(x) := x^\top P_i x$ be a Lyapunov function for the system $x_{k+1} = A x_k$ for i=1,2, with a rate of decrease of $x^\top \Gamma x$, i.e.: $V_i(x_{k+1}) - V_i(x_k) \le -x^\top \Gamma x$. Show that $V(x) = \alpha V_1(x) + (1-\alpha)V_2(x)$ is also a Lyapunov function with a rate of decrease of $x^\top \Gamma x$ for any $\alpha \in [0,1]$.

To show V(x) is a Lyapunov function with the same decreasing rate, we need to show that $V(x_{k+1}) - V(x_k) \le -x^\top \Gamma x$. $V(x_{k+1}) = \alpha V_1(x_{k+1}) + (1-\alpha)V_2(x_{k+1}) = \alpha x_k^\top A^\top P_1 A x_k + (1-\alpha)x_k^\top A^\top P_2 A x_k$. $V(x_{k+1}) - V(x_k) = \alpha x_k^\top (A^\top P_1 A - P_1)x_k + (1-\alpha)x_k^\top (A^\top P_2 A - P_2)x_k \le -\alpha x_k^\top \Gamma x_k - (1-\alpha)x_k^\top \Gamma x_k = -x_k^\top \Gamma x_k$.

4. Let K be a stabilizing controller for the system $x_{k+1} = Ax_k + Bu_k$, and $X_i \subset \mathbb{X}$ be a convex invariant set for the system $x_{k+1} = (A+BK)x_k$, with $KX_i \subset \mathbb{U}$ for each i=1,2. $V_i(x) = x^\top P_i x$ are Lyapunov functions for the system $x_{k+1} = (A+BK)x_k$ with a rate of decrease of $Q+K^\top RK$, for some $Q=Q^\top \succ 0$ and $R=R^\top \succ 0$.

$$J^{*}(x(t)) = \min_{u} \sum_{k=0}^{N-1} x_{i}^{\top} Q x_{i} + u_{i}^{\top} R u_{i} + \alpha V_{1}(x_{N}) + (1 - \alpha) V_{2}(x_{N}),$$
s.t. $x_{k+1} = A x_{k} + B u_{k}, \forall k = 0, ..., N - 1,$
 $x_{k} \in \mathbb{X}, \forall k = 1, ..., N,$
 $u_{k} \in \mathbb{U}, \forall k = 0, ..., N - 1,$
 $x_{N} \in \alpha X_{1} \oplus (1 - \alpha) X_{2},$
 $x_{0} = x(t).$

Prove that this MPC controller is stabilizing and recursively feasible for any $\alpha \in [0, 1]$ by listing sufficient conditions for stability and proving them. You can use the result of the previous three questions.

Sufficient conditions:

- stage cost is positive definite,
- the terminal set is invariant under the local control law (proved by question 1.1),
- all state and input constraints are satisfied in the terminal set (proved by question 1.2),
- the terminal cost is a Lyapunov function in the terminal set (proved by question 1.3).

The original terminal set $Hx \le h$ is an invariant set for the closed-loop system $x_{k+1} = (A - BK)x_k$. The terminal control law for both the original system and the delta formulation is the same. Hence, it is also an invariant set for $\Delta x_{k+1} = (A - BK)\Delta x_k$. The second choice is larger. Since it is the maximum control invariant set with the terminal control law K and the new constraints. The first choice is just an invariant set. If the assumptions are not met, it will even be rescaled to a smaller set.

4. Let $\mathcal{X}_s := \{x | H' \Delta x_N \leq h'\}$. An unknown constant disturbance d perturbs the LTI system, which makes the system $x_{k+1} = Ax_k + Bu_k + d$. Assume your state estimator returns a disturbance estimation \hat{d} and state estimation $\hat{x}(0)$. Write down the delta formulation that tracks x_{ref} while accounting for such a disturbance. Will \hat{d} appear in your problem formulation?

$$\min_{u} \sum_{k=0}^{N-1} \Delta x_{k}^{\top} Q \Delta x_{k} + \Delta u_{k}^{\top} R \Delta u_{k} + \Delta x_{N}^{\top} P \Delta x_{N},$$
s.t.
$$\Delta x_{k+1} = A \Delta x_{k} + B \Delta u_{k}, \quad \forall k \in [N],$$

$$F \Delta x_{k} \leq f - F x_{s}, \quad \forall k \in [N-1],$$

$$G \Delta u_{k} \leq g - G u_{s}, \quad \forall k \in [N-1],$$

$$H' \Delta x_{N} \leq h',$$

$$\Delta x_{0} = \hat{x}(0) - x_{s}.$$

No, \hat{d} will not appear in the problem formulation. The disturbance estimate cancels out in the delta formulation since at each time step, the reference is calculated via $x_s = Ax_s + Bu_s + \hat{d}$.