3D Point Cloud Registration using Gaussian Mixture Models

Somanshu Agarwal, Srinath Rajagopalan, Dhruv Karthik

Introduction

Clustering: 2-D Gaussian Mixture Models

Clustering: 2-D Gaussian Mixture Models

Clustering: 3-D Gaussian Mixture

Clustering: 3-D Gaussian Mixture

100 GMM Components

800 GMM Components

Point Cloud Registration

Naive Solution: Iterative Closest Point

Overview:

- POINT TO POINT Approach
- Align each source point with its nearest neighbour target point
- Prioritizes aligning centroids/center of masses of point clouds.

Naive Solution: Iterative Closest Point

Aligned Center of Masses

Better Solution: Use Gaussian Clustering

Main Idea:

- Instead of POINT to POINT, do CLUSTER to CLUSTER
- Use Gaussian Mixture Model
 Clustering to identify clusters
- Each cluster is **geometrically** similar

Better Solution: Use Gaussian Clustering

Main Idea:

- Instead of POINT to POINT, do CLUSTER to CLUSTER
- Use Gaussian Mixture Model
 Clustering to identify clusters
- Each cluster is **geometrically** similar

Match ears to ears instead of points to points

Our Implementation vs Sklearn (Popular Library)

Use Cases

Use Case: Unsupervised Point Cloud Segmentation

Mixture Models on Waymo Dataset

Use Case: Real-Time Localization

Localization on Waymo Dataset

Performance Analysis

Performance Analysis: CPU vs GPU

Smaller is faster

Performance Analysis: CPU vs GPU

Smaller is faster

Current Issues:

- Point cloud registration using HGMM not working as expected.
- GMM sensitive to hyperparameters: # of components vs # of points
- GMM sensitive to initial conditions

Future RoadMap

- 1. Work Done So Far:
 - a. GMM (different configurations) on GPU
 - b. Point Cloud Registration with GMM
 - c. 3D GMM Visualization on Live Waymo Dataset
 - d. Real-Time Localization with GMM and H-GMM (CPU)
- 2. Milestone 4 (12/09):
 - a. Integrate Localization with GMM GPU
 - b. Improve GPU speed with concurrency
 - c. Complete HGMM on GPU
 - d. Stretch Goal Generate meshes on 3D Clouds with GMM