

Figure 1: Our ongoing work on learning w_{max} when a sharp bound is unknown. This is a preliminary result of the convergence of \hat{w}_{max} estimated by our new algorithm, which tries to resolve the requirement of knowing a sharp bound of w_{max} . Experiment setting: consider a linear autonomous systems $x_{t+1} = Ax_t + w_t$, where $A \in \mathbb{R}^{10 \times 10}$, its each entry is generated i.i.d. from Unif[0, 1], then rescale A to make it stable. The norm of A used for this figure is $||A||_2 = 0.83$. The disturbances w_t are generated i.i.d from $N(0, I_{10})$ truncated to $[-3, 3]^{10}$. Algorithm: Given data $\{x_0\}_{t=1}^T$, compute the Chebyshev estimate (Cramer, 1964; Rider, 1957) of A by: $\hat{A}_{\text{cheb}} = \arg\min_A \max_{0 \le t \le T-1} ||x_{t+1} - Ax_t||_{\infty}$. Then, estimate w_{max} by the $\hat{A}_{\text{cheb}} = \max_{0 \le t \le T-1} ||x_{t+1} - Ax_t||_{\infty}$. Observation: The estimation error of w_{max} quickly decreases to close to 0. This is promising since we can apply the estimated \hat{w}_{max} to SM. With proper two-time-scale updates and analysis, we expect that SM is able to converge even without knowing a sharp bound w_{max} . The non-asymptotic analysis is heavily based on the novel proof techniques developed in Appendix D.3. However, the two-time-scale updates involves more complicated analysis, which is our ongoing work.