Anchor-free Vs anchor-based

RetinaNet、RepPoints、ATSS对比

RetinaNet、RepPoints、ATSS对比

- 即代表了anchor-based、anchor-free、从based到free的弥补手段和各种消融对比实验
- 对比表格链接:
- 论文对比总结\RetinaNet、ATSS、RepPoints对比分析.html

Adaptive Training Sample Selection (ATSS)

Adaptive Training Sample Selection (ATSS)

- Bridging the Gap Between Anchor-based and Anchorfree Detection via Adaptive Training Sample Selection CVPR.2019
- 通过消融实验发现anchor-free(ATSS)的比anchor-based(Retinanet)的性能提升的根本原因是正负样本选择策略不同(RetinaNet通过anchor box与gt的IOU定义正负样本,FCOS通过location的中心是否在gt中心定义正负样本)。
- 并由此提出自适应样本选择算法(ATSS),根据目标的统计特征自动 选择正负样本。

传统方法的不足

- 因为对anchor设置正负标签与IOU阈值有关。
- 即使anchor的中心点在目标内部,但是如果anchor设置的不好,也不容易得到比较好的正样本。
- 因为高质量的anchor需要高IoU阈值,即 anchor设置得好,就需要高一点的iou去筛选样本;anchor初始状态不佳,就需要低iou去筛选样本,所以需要动态调整IoU阈值,ATSS主要就做了这个事情。

实验1

• 数据集: coco

RetinaNet加上FCOS的tricks,可以将RetinaNet从AP 32.5%提升至37.0%,vs (FCOS) 37.8%。说明剩下的0.8%的差距则来自于分类和回归。

Inconsistency	FCOS	RetinaNet (#A=1)					79CEG
GroupNorm	✓		\checkmark	V	V	√	√
GIoU Loss	√			\checkmark	✓	\checkmark	✓
In GT Box	✓				/	\checkmark	\checkmark
Centerness	✓					\checkmark	\checkmark
Scalar	✓						\
AP (%)	37.8	32.5	33.4	34.9	35.3	36.8	37.0

实验2

- 1. 先设定RetinaNet的anchor个数为1,然后将RetinaNet改成了通过 FCOS的正负例定义方式,而FCOS改成了通过IOU的正负例定义方式。
- 2.看表格发现RetinaNet性能提升到37.8%,发现FOCS性能从37.8%降为36.9%。说明了定义方式是如此重要。
- 3. 横着看表格,性能没有多大改变,可见回归方式没有太重要。

Classification	Box	Point
Intersection over Union	37.0	36.9
Spatial and Scale Constraint	37.8	37.8

启发性或普适性

- 1.设置恰当的IoU阈值,从而能筛选出高质量有效的正 样本,对于后面的学习非常有帮助。
- 2. 通过消融实验证明增加anchors的数目对性能的提升 是没有用的。

Method	#sc	#ar	AP	AP ₅₀	AP75	AP_S	AP_M	AP_L
RetinaNet (#A=9)	3	3	36.3	55.2	38.8	19.8	39.8	48.8
+Imprs.	3	3	38.4	56.2	41.6	22.2	42.4	50.1
+Imprs.+ATSS	3	3	39.2	57.6	42.7	23.8	42.8	50.9
+Imprs.+ATSS	3	1	39.3	57.7	42.6	23.8	43.5	51.2
+Imprs.+ATSS	1	3	39.2	57.1	42.5	23.2	43.1	50.3
+Imprs.+ATSS	1	1	39.3	57.5	42.8	24.3	43.3	51.3

总结

- ATSS=自适应样本选择(计算所有的IOU的mean (mg)和 std dev (vg),根据自适应阈值tg = mg + vg,并增加条件:center在物体内部,对anchors进行筛选)
- 非常好的对比实验+行文思路清晰

我的观点

- 1.指出了anchor-based检测与anchor-free检测的本质区别。
- 2.提出了一种自适应训练样本选择(ATSS),根据目标的统计特征自动选择正负样本。
- 3.讨论了在图像上每个位置平铺多个anchor点来检测目标的必要性。

 RepPoints: Point Set Representation for r Object Detection CVPR.2019

RepPoints

- RepPoints: 替代边界框, RepPoints: 替代边界框, 基于点集的更细粒度的目标表示新方法RepPoints。
- 通过一组点集提供更细粒度的位置表示和便于分类的信息。

• 作者不使用bbox,使用object周围的9个key points用于更好的定位和更好的对象特征提取。

传统方法的不足

- 4-d的bounding box是目标位置的粗糙表达,边界框只考虑目标的矩形空间范围,不考虑形状、姿态和语义上重要的局部区域的位置(导致当proposal和GT之间所需的细化很小时,它在实践中表现得很好,但它们之间的距离较大时,效果则不好。)。
- 而本文的RepPoints是物体一组自适应的特征点集,反映了更精确的语义定位,可用于更好的定位和更好的对象特征提取。

实验

- 1.与anchor-based相比, RepPoints使用 ResNet-50 作为主干网络时提升 2.1 mAP, 使用 ResNet-101 时提升了 2.0 mAP。
- 2. 没有 multi-scale 训练和测试的情况下,使用 ResNet-101-DCN 主干 网络实现了 42.8 AP,性能优于现有的所有不采用 anchor 的检测器。此外,RPDet 获得了 65.0 的 AP。。,大大超过了所有基线。
- 3. 在train和test都采用multi-scale策略, RPDet可达到46.5mAP。

实验结果

	Backbone	Anchor-Free	$AP AP_{50} AP_{75}$	$AP_S AP_M AP_L$
Faster R-CNN w. FPN [24]	ResNet-101		36.2 59.1 39.0	18.2 39.0 48.2
RefineDet [46]	ResNet-101		36.4 57.5 39.5	16.6 39.9 51.4
RetinaNet [25]	ResNet-101		39.1 59.1 42.3	21.8 42.7 50.2
Deep Regionlets [44]	ResNet-101		39.3 59.8 -	21.7 43.7 50.9
Mask R-CNN [13]	ResNeXt-101		39.8 62.3 43.4	22.1 43.2 51.2
FSAF [50]	ResNet-101		40.9 61.5 44.0	24.0 44.2 51.3
Cascade R-CNN [2]	ResNet-101		42.8 62.1 46.3	23.7 45.5 55.2
CornerNet [21]	Hourglass-104	√	40.5 56.5 43.1	19.4 42.7 53.9
ExtremeNet [48]	Hourglass-104	✓	40.1 55.3 43.2	20.3 43.2 53.1
RPDet	ResNet-101	√	41.0 62.9 44.3	23.6 44.1 51.7
RPDet	ResNet-101-DCN	✓	42.8 65.0 46.3	24.9 46.2 54.7
RPDet (ms train)	ResNet-101-DCN	✓	45.0 66.1 49.0	26.6 48.6 57.5
RPDet (ms train & ms test)	ResNet-101-DCN	√	46.5 67.4 50.9	30.3 49.7 57.1

普适性或启发性

• 1.学习像 RepPoints 这样更丰富、更自然的物体表示方法反映了更精确的语义定位,在目标的定位和对象提取上更有优势。

总结

• RepPoints = RepPoints + RepPoints regression + RPDet

我的观点

RepPoints通过引入key points的方法有利于更好提取更精确的语义信息, RepPoints最出色的地方在于增加了对于可形变卷积的监督。

因为可形变卷积有很强的表达能力,很好的性能,因此尝试加强对于可形变卷积的监督,可增加可形变卷积的监督,可增加可形变卷积的特征点和目标检测中物体的联系。

Representation	Supervision		AP	AP_{50}	AP_{75}
	loc.	rec.	ΛI	A1 50	711 75
bounding box	√		36.2	57.3	39.8
	√	√	36.2	57.5	39.8
RepPoints		✓	33.8	54.3	35.8
	√		37.6	59.4	40.4
	√	✓	38.3	60.0	41.1

Outline

存在问题

- 1.RepPoints点的初始化是如何被初始化的?
- 2. SNIP、TridenNet中的valid the area of an Rol range与ATSS的做法有点相似,这里前者是对三个scale设置valid loU range,后者是根据统计特征一个是自适应loU阈值(tg = mg + vg),不知道这两种策略的单独对比的实验效果。

RepPoints

RepPoints点的初始化是如何被初始化的?

To overcome the above limitations, *RepPoints* instead models a set of adaptive sample points:

$$\mathcal{R} = \{(x_k, y_k)\}_{k=1}^n, \tag{4}$$

where n is the total number of sample points used in the representation. In our work, n is set to 9 by default.

RepPoints refinement Progressively refining the bounding box localization and feature extraction is important for the success of multi-stage object detection methods. For RepPoints, the refinement can be expressed simply as

$$\mathcal{R}_r = \{ (x_k + \Delta x_k, y_k + \Delta y_k) \}_{k=1}^n,$$
 (5)

Center point based initial object representation. While predefined anchors dominate the representation of objects in the initial stage of object detection, we follow YOLO [31] and DenseBox [17] by using center points as the initial representation of objects, which leads to an anchor-free object detector.

SNIP与TridenNet中的valid the area of an Rol range

这里的range没有给出确切的计算公式, 查看源码后发现是直接给出的,不清楚这 样的range可信度

snip中的range valid_ranges = [(0, 80), (32, 160), (120,)]

tridentnet的range valid_ranges = [(0, 90), (30, 160), (90, -1)] 此range的范围与ATSS的做法有点相似,不过一个是自适应IoU阈值,这里是对三个scale设置valid IoU range,这两种方法的对比效果。

我需要做的

- 1.试着跑一个anchor-free的代码,如RepPoints;去深入理解 anchor free方法的一些不懂的细节
- 2.几个比较具有代表性的论文还没有看完,接下来把它们了解清楚
- Trident: 三叉戟网络
- DenseBox: RepPoints中说用到DenseBox和yolo的方法来初始化 RepPoints,需要结合RepPoints的代码来把RepPoints Generate、RepPoints Learning看明白。