

# 13 Weitere Regressionsarten

Dominic Schmitz & Janina Esser

| Regression             | abhängige Variable            | Beispiel                |
|------------------------|-------------------------------|-------------------------|
| Lineare                | numerisch                     | Reaktionszeiten, Dauern |
| Logistische/Binominale | binär kategorisch             | richtig/falsch          |
| Ordinale               | geordnet kategorisch          | Likert-Skala            |
| Multinominale          | kategorisch                   | Wortarten               |
| Quantil                | numerisch mit Autokorrelation | Mouse-Tracking-Daten    |
| Poisson                | integer                       | Zähldaten               |
| Polynomielle           |                               |                         |
| Ridge                  |                               |                         |
| Lasso                  |                               |                         |
|                        |                               |                         |

| Regression             | abhängige Variable            | Beispiel                |
|------------------------|-------------------------------|-------------------------|
| Lineare                | numerisch                     | Reaktionszeiten, Dauern |
| Logistische/Binominale | binär kategorisch             | richtig/falsch          |
| Ordinale               | geordnet kategorisch          | Likert-Skala            |
| Multinominale          | kategorisch                   | Wortarten               |
| Quantil                | numerisch mit Autokorrelation | Mouse-Tracking-Daten    |
| Poisson                | integer                       | Zähldaten               |
| Polynomielle           |                               |                         |
| Ridge                  |                               |                         |
| Lasso                  |                               |                         |
|                        |                               |                         |

| Regression             | abhängige Variable            | Beispiel                |
|------------------------|-------------------------------|-------------------------|
| Lineare                | numerisch                     | Reaktionszeiten, Dauern |
| Logistische/Binominale | binär kategorisch             | richtig/falsch          |
| Ordinale               | geordnet kategorisch          | Likert-Skala            |
| Multinominale          | kategorisch                   | Wortarten               |
| Quantil                | numerisch mit Autokorrelation | Mouse-Tracking-Daten    |
| Poisson                | integer                       | Zähldaten               |
| Polynomielle           |                               |                         |
| Ridge                  |                               |                         |
| Lasso                  |                               |                         |
|                        |                               |                         |

| Regression             | abhängige Variable            | Beispiel                |
|------------------------|-------------------------------|-------------------------|
| Lineare                | numerisch                     | Reaktionszeiten, Dauern |
| Logistische/Binominale | binär kategorisch             | richtig/falsch          |
| Ordinale               | geordnet kategorisch          | Likert-Skala            |
| Multinominale          | kategorisch                   | Wortarten               |
| Quantil                | numerisch mit Autokorrelation | Mouse-Tracking-Daten    |
| Poisson                | integer                       | Zähldaten               |
| Polynomielle           |                               |                         |
| Ridge                  |                               |                         |
| Lasso                  |                               |                         |
|                        |                               |                         |

- Modellierung von Zusammenhängen zwischen einer binären abhängigen
   Variablen und einer oder mehreren unabhängigen Variablen
- Schätzt die Wahrscheinlichkeit oder die Odds Ratio für das Eintreten des Ereignisses als Funktion der unabhängigen Variablen
- Basiert auf der logistischen Verteilungsfunktion, die eine S-förmige Kurve bildet und die Wahrscheinlichkeit für das Eintreten eines Ereignisses im Bereich von 0 bis 1 abbildet

#### **Beispiel: Same-Different Task**

| korrekt | Differenz | Wortart | Komplexität | Wortlänge | VP  |
|---------|-----------|---------|-------------|-----------|-----|
| 0       | 5         | Nomen   | simplex     | 9         | VP1 |
| 0       | 5         | Verb    | komplex     | 21        | VP1 |
| 0       | 25        | Nomen   | simplex     | 13        | VP1 |
| 1       | 25        | Verb    | komplex     | 12        | VP1 |
| 1       | 45        | Nomen   | simplex     | 4         | VP1 |
| 1       | 45        | Verb    | komplex     | 25        | VP1 |
|         |           |         |             |           |     |

#### **Beispiel: Same-Different Task**

```
korrekt ~

Differenz +

Wortart +

Komplexität +

Wortlänge +

(1 | Versuchsperson)
```

#### **Beispiel: Same-Different Task**

|             | Chisq  | Df | p-Value   |
|-------------|--------|----|-----------|
| Differenz   | 173.04 | 2  | 0.000 *** |
| Wortart     | 0.35   | 1  | 0.553     |
| Komplexität | 0.02   | 1  | 0.880     |
| Wortlänge   | 0.74   | 1  | 0.391     |

#### **Beispiel: Same-Different Task**

|                     | Estimate Std. | Error | z-value | p-value   |
|---------------------|---------------|-------|---------|-----------|
| Intercept           | -3.246        | 0.532 | -6.096  | 0.000 *** |
| Differenz_25        | 2.355         | 0.343 | 6.864   | 0.000 *** |
| Differenz_45        | 5.604         | 0.432 | 12.985  | 0.000 *** |
| Wortart_Verb        | 0.161         | 0.271 | 0.593   | 0.553     |
| Komplexität_komplex | 0.039         | 0.261 | 0.150   | 0.880     |
| Wortlänge           | 0.018         | 0.021 | 0.858   | 0.391     |

| Regression             | abhängige Variable            | Beispiel                |
|------------------------|-------------------------------|-------------------------|
| Lineare                | numerisch                     | Reaktionszeiten, Dauern |
| Logistische/Binominale | binär kategorisch             | richtig/falsch          |
| Ordinale               | geordnet kategorisch          | Likert-Skala            |
| Multinominale          | kategorisch                   | Wortarten               |
| Quantil                | numerisch mit Autokorrelation | Mouse-Tracking-Daten    |
| Poisson                | integer                       | Zähldaten               |
| Polynomielle           |                               |                         |
| Ridge                  |                               |                         |
| Lasso                  |                               |                         |
|                        |                               |                         |

- Modellierung von Zusammenhängen zwischen einer ordinalen abhängigen
   Variablen und einer oder mehreren unabhängigen Variablen
- Schätzt (ähnlich der logistischen Regression) die Wahrscheinlichkeit oder die Odds Ratio für das Eintreten des Ereignisses als Funktion der unabhängigen Variablen
- Es wird angenommen, dass die Kategorien der abhängigen Variablen in einer bestimmten Reihenfolge angeordnet sind, wobei der Abstand zwischen den Kategorien gleichmäßig ist

#### **Beispiel: Likert-Skala**

| Größe | Vokal | Onset1 | Onset2 | Alter |
|-------|-------|--------|--------|-------|
| 5     | а     | k      | d      | 19    |
| 3     | е     | f      | j      | 19    |
| 4     | 0     | r      | f      | 19    |
| 1     | i     | j      | r      | 37    |
| 2     | u     | d      | k      | 37    |
| •••   |       | •••    | •••    | •••   |

#### **Beispiel: Likert-Skala**

```
Größe ~
Vokal +
Onset1 +
Onset2 +
Alter
```

#### **Beispiel: Likert-Skala**

|             | Chisq  | Df | p-Value   |
|-------------|--------|----|-----------|
| Differenz   | 689.11 | 7  | 0.000 *** |
| Wortart     | 74.49  | 4  | 0.000 *** |
| Komplexität | 70.14  | 4  | 0.000 *** |
| Wortlänge   | 3.49   | 1  | 0.062     |

#### **Beispiel: Likert-Skala**

|          | Estimate Std. | Error | z-value | p-value   |
|----------|---------------|-------|---------|-----------|
| Vokal_A  | -0.561        | 0.066 | -8.464  | 0.000 *** |
| voka1_e  | -0.622        | 0.067 | -9.332  | 0.000 *** |
| Vokal_i  | -1.637        | 0.069 | -23.601 | 0.000 *** |
|          |               |       |         |           |
| Onset1_f | -0.105        | 0.066 | -1.575  | 0.115     |
|          |               |       |         |           |
| Onset2_f | 0.016         | 0.066 | 0.248   | 0.804     |
|          |               |       |         |           |
| Alter    | -0.002        | 0.001 | -1.869  | 0.062     |

| Regression             | abhängige Variable            | Beispiel                |
|------------------------|-------------------------------|-------------------------|
| Lineare                | numerisch                     | Reaktionszeiten, Dauern |
| Logistische/Binominale | binär kategorisch             | richtig/falsch          |
| Ordinale               | geordnet kategorisch          | Likert-Skala            |
| Multinominale          | kategorisch                   | Wortarten               |
| Quantil                | numerisch mit Autokorrelation | Mouse-Tracking-Daten    |
| Poisson                | integer                       | Zähldaten               |
| Polynomielle           |                               |                         |
| Ridge                  |                               |                         |
| Lasso                  |                               |                         |
|                        |                               |                         |

- Modellierung von Zusammenhängen zwischen einer nominalen abhängigen
   Variablen und einer oder mehreren unabhängigen Variablen
- Schätzt (ähnlich der logistischen Regression) die Wahrscheinlichkeit oder die Odds Ratio für das Eintreten des Ereignisses als Funktion der unabhängigen Variablen
- Es wird angenommen, dass die Kategorien der abhängigen Variablen in keiner bestimmten Reihenfolge angeordnet sind

#### Beispiel: Generische Maskulina vs. Spezifische Maskulina & Feminina

| Form | Stereotyp-<br>wertung | Verständnis-<br>qualität | Nachbarschafts-<br>dichte | Aktivierungs-<br>vielfalt |
|------|-----------------------|--------------------------|---------------------------|---------------------------|
| GM   | 74.87                 | 0.811                    | 0.918                     | 5.041                     |
| SM   | 74.87                 | 0.809                    | 0.917                     | 5.042                     |
| SF   | 74.87                 | 0.980                    | 0.991                     | 8.310                     |
| GM   | 24.01                 | 0.901                    | 0.681                     | 4.312                     |
| SM   | 24.01                 | 0.923                    | 0.682                     | 4.313                     |
| •••  | •••                   | •••                      | •••                       | •••                       |

#### Beispiel: Generische Maskulina vs. Spezifische Maskulina & Feminina

```
Form ~

Stereotypwertung +

Verständnisqualität +

Nachbarschaftsdichte +

Aktivierungsvielfalt
```

#### Beispiel: Generische Maskulina vs. Spezifische Maskulina & Feminina

|                      | Chisq  | Df | p-Value   |
|----------------------|--------|----|-----------|
| Stereotypwertung     | 3.734  | 2  | 0.155     |
| Verständnisqualität  | 42.669 | 2  | 0.000 *** |
| Nachbarschaftsdichte | 38.951 | 2  | 0.000 *** |
| Aktivierungsvielfalt | 10.128 | 2  | 0.006 **  |

#### Beispiel: Generische Maskulina vs. Spezifische Maskulina & Feminina

|                      | Estimate Std. | Error | z-value | p-value   |
|----------------------|---------------|-------|---------|-----------|
| (Intercept)          | 49.923        | 3.761 | 13.275  | 0.000 *** |
| Stereotypwertung     | 0.019         | 0.011 | 1.754   | 0.079     |
| Verständnisqualität  | 36.542        | 5.756 | 6.349   | 0.000 *** |
| Nachbarschaftsdichte | -81.108       | 4.123 | -19.674 | 0.000 *** |
| Aktivierungsvielfalt | -1.037        | 0.335 | -3.092  | 0.002 **  |

| Regression             | abhängige Variable            | Beispiel                |
|------------------------|-------------------------------|-------------------------|
| Lineare                | numerisch                     | Reaktionszeiten, Dauern |
| Logistische/Binominale | binär kategorisch             | richtig/falsch          |
| Ordinale               | geordnet kategorisch          | Likert-Skala            |
| Multinominale          | kategorisch                   | Wortarten               |
| Quantil                | numerisch mit Autokorrelation | Mouse-Tracking-Daten    |
| Poisson                | integer                       | Zähldaten               |
| Polynomielle           |                               |                         |
| Ridge                  |                               |                         |
| Lasso                  |                               |                         |
|                        |                               |                         |

- Modellierung von Zusammenhängen zwischen einer numerischen abhängigen Variablen und einer oder mehreren unabhängigen Variablen
- Funktioniert prinzipiell wie lineare Regression, nutzt aber die Daten spezifizierter konditionaler Quantile (statt aller Daten)
- Bietet eine robuste Schätzung der Bedingungswahrscheinlichkeiten, insbesondere wenn die Daten nicht normal verteilt, heteroskedastisch und/oder autokorreliert sind

Achtung: Bei Quantiel-Regression befinden wir uns im Reich der nichtlinearen Regression – Effekte können also nicht-linearer Natur sein!

#### **Beispiel: Compensatory Vowel Shortening in German**

Stressed Vowels sind kürzer je nachdem wie viele Konsonanten ihnen folgen



#### **Beispiel: Compensatory Vowel Shortening in German**

Stressed Vowels sind kürzer je nachdem wie viele Konsonanten ihnen folgen

```
Dauer ~
   Sprechgeschwindigkeit +
   Silbenstruktur +
   Vokal +
    (1 | Wort) +
    (1 | VP),
    qu = c(0.3, 0.6)
```

#### **Beispiel: Compensatory Vowel Shortening in German**

Stressed Vowels sind kürzer je nachdem wie viele Konsonanten ihnen folgen

|                 | 0.3      | Quantil   | 0.6      | Quantil   |
|-----------------|----------|-----------|----------|-----------|
|                 | Estimate | p-value   | Estimate | p-value   |
| (Intercept)     | 0.157    | 0.000 *** | 0.172    | 0.000 *** |
| voka1_e         | -0.025   | 0.000 *** | -0.025   | 0.000 *** |
| Vokal_i         | -0.038   | 0.000 *** | -0.037   | 0.000 *** |
| Vokal_o         | -0.023   | 0.000 *** | -0.021   | 0.000 *** |
| Vokal_u         | -0.041   | 0.000 *** | -0.038   | 0.000 *** |
| Struktur_open   | 0.060    | 0.000 *** | 0.075    | 0.000 *** |
| Struktur_single | 0.016    | 0.000 *** | 0.017    | 0.000 *** |
|                 | edf      | p-value   | edf      | p-value   |
| Geschwindigkeit | 1.001    | 0.038 *   | 1.052    | 0.636     |
| Wort            | 4.141    | 0.057     | 3.031    | 0.044 *   |
| VP              | 8.922    | 0.000 *** | 8.907    | 0.000 *** |

| Regression             | abhängige Variable            | Beispiel                |
|------------------------|-------------------------------|-------------------------|
| Lineare                | numerisch                     | Reaktionszeiten, Dauern |
| Logistische/Binominale | binär kategorisch             | richtig/falsch          |
| Ordinale               | geordnet kategorisch          | Likert-Skala            |
| Multinominale          | kategorisch                   | Wortarten               |
| Quantil                | numerisch mit Autokorrelation | Mouse-Tracking-Daten    |
| Poisson                | integer                       | Zähldaten               |
| Polynomielle           |                               |                         |
| Ridge                  |                               |                         |
| Lasso                  |                               |                         |
|                        |                               |                         |

- Modellierung von Zusammenhängen zwischen einer integeren abhängigen
   Variablen und einer oder mehreren unabhängigen Variablen
- Basiert auf der Poisson-Verteilung, die zur Modellierung von diskreten
   Zählvariablen verwendet wird
- Nützliches Werkzeug zur Modellierung von Zählvariablen zur Identifikation der Faktoren, die die Häufigkeit von Ereignissen beeinflussen

#### Beispiel: Auszeichnungen an High Schools

Anhand des Kurrikulums und der Mathenoten soll die Menge der Auszeichnungen modelliert werden

| Auszeichnungen | Kurrikulum | Mathenote |
|----------------|------------|-----------|
| 0              | allgemein  | 41        |
| 0              | allgemein  | 42        |
| 0              | Ausbildung | 47        |
| 1              | allgemein  | 53        |
| 2              | akademisch | 67        |
| •••            | •••        | •••       |

#### Beispiel: Auszeichnungen an High Schools

Anhand des Kurrikulums und der Mathenoten soll die Menge der

Auszeichnungen modelliert werden

Auszeichnungen ~

Kurrikulum +

Mathenote

#### Beispiel: Auszeichnungen an High Schools

Anhand des Kurrikulums und der Mathenoten soll die Menge der

Auszeichnungen modelliert werden

|            | Chisq  | Df | p-Value   |
|------------|--------|----|-----------|
| Kurrikulum | 14.572 | 2  | 0.000 *** |
| Mathenote  | 45.010 | 1  | 0.000 *** |

#### Beispiel: Auszeichnungen an High Schools

Anhand des Kurrikulums und der Mathenoten soll die Menge der

Auszeichnungen modelliert werden

|                | Estimate Std. | Error | z-value | p-value   |
|----------------|---------------|-------|---------|-----------|
| (Intercept)    | -5.247        | 0.658 | -7.969  | 0.000 *** |
| Kurrikulum_aka | 1.084         | 0.358 | 3.025   | 0.002 **  |
| Kurrikulum_aus | 0.370         | 0.441 | 0.838   | 0.402     |
| Mathenote      | 0.070         | 0.011 | 6.619   | 0.000 *** |

| Regression             | abhängige Variable            | Beispiel                |
|------------------------|-------------------------------|-------------------------|
| Lineare                | numerisch                     | Reaktionszeiten, Dauern |
| Logistische/Binominale | binär kategorisch             | richtig/falsch          |
| Ordinale               | geordnet kategorisch          | Likert-Skala            |
| Multinominale          | kategorisch                   | Wortarten               |
| Quantil                | numerisch mit Autokorrelation | Mouse-Tracking-Daten    |
| Poisson                | integer                       | Zähldaten               |
| Polynomielle           |                               |                         |
| Ridge                  |                               |                         |
| Lasso                  |                               |                         |
|                        |                               |                         |