

曜凌光電股份有限公司

住址: 42878 台中市大雅区科雅路 25 號 5F WEB: http://www.Raystar-Optronics.com
5F., No.25, Keya Rd., Daya Dist., Taichung E-mail: sales@raystar-optronics.com
City 428, Taiwan Tel:886-4-2565-0761 Fax:
886-4-2565-0760

RFC35C1-GIW-D-000

SPECIFICATION

CUSTOMER:

APPROVED BY	
PCB VERSION	
DATE	

FOR CUSTOMER USE ONLY

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY

ISSUED DATE:

Contents

		Page
1.	Revision History	3
2.	General Specification	4
3.	Module Coding System	5
4.	Interface Pin Function	6
5.	Outline dimension & Block Diagram	7
6.	Display Control Instruction	9
7.	Optical Characteristics	10
8.	Absolute Maximum Ratings	13
9.	Electrical Characteristics	13
10.	Backlight Information	20
11.	Touch panel Information	21
12.	Reliability	22
13.	Quality assurance	29

1. Revision History

DATE	VERSION	REVISED PAGE NO.	Note
2009/08/07 2012/09/13	1 2		First issue Change version

2. General Specification

This product is composed of a TFT LCD panel, driver ICs, FPC, Control Board and a backlight unit. The following table described the features of RFC35C1-GIW-D-000.

■ Dot Matrix: 320 x RGB x240

■ Module dimension: 93.5 x 66.44 x 9.06 (max.) mm³

■ View area: 73.1x55.6 mm²

Active area: 70.08 x 52.56 mm²

■ Dot size: 0.073 x 0.219 mm²

■ LCD type: TFT, Negative, Transmissive

■ View direction: 12 o'clock

■ Gray Scale Inversion Direction: 6 o'clock

■ Backlight Type: LED, Normally White

■ Controller IC: SSD1963

Driving IC package: COG

^{*}Color tone slight changed by temperature and driving voltage.

^{*}Expose the IC number blaze (Luminosity over than 1 cd) when using the LCM may cause IC operating failure.

3. Module Coding System

R	F	С	35	C1	-	G	I	W	-	D	-	000
1	2	3	4	5	-	6	7	8	-	9	-	10

Item		Description	on						
1	R : Raystar Opt	R : Raystar Optronics Inc.							
2	Display Type: TFT Type								
3	Solution: A: 128x160 B:320x234 C:320x240 D:480x234								
4	Display Size: 3.5" TFT								
5	Version Code.								
6	Model serials no	- I							
		A: Reflective, N.T, 6:00		K: Transflective, W.T,12:00					
	5	D: Reflective, N.T, 12:00		1 : Transflective, U.T,6:00					
	Polarizer Type,	G: Reflective, W. T, 6:00	G: Reflective, W. T, 6:00						
	Type,	J: Reflective, W. T, 12:00		C: Transmissive, N.T,6:00					
7	Temperature 0 : Reflective, U. T, 6:00 F : Transmissive, N.T,1								
	range,	3 : Reflective, U. T, 12:00		I : Transmissive, W. T, 6:00					
	View direction	B: Transflective, N.T,6:00		L: Transmissive, W.T,12:00					
		E: Transflective, N.T.12:0	0	2: Transmissive, U. T, 6:00					
		H: Transflective, W.T,6:00)	5 : Transmissive, U.T,12:00					
		N: Without backlight	Υ:	LED, Yellow Green					
		P: EL, Blue green	A :	LED, Amber					
8	Backlight	T : EL, Green	W :	LED, White					
		D: EL, White	0:	LED, Orange					
		F : CCFL, White	G:	LED, Green					
9	Driver Method	D: Digital A: Analog							
10	Serial No.	000: Sales code(Add TS)							

4. Interface Pin Function

Pins Connection to Control Board

T _	T
GND	Ground
	Power supply for Logic
BL_E	Backlight control (H: On \ L: Off)
RS	Command/Data select
WR	8080 family MPU interface : Write signal
RD	8080 family MPU interface: Read signal
DB0	Data bus
DB1	
DB2	
DB3	
DB4	
DB5	
DB6	
DB7	
CS	Chip select
RES	REST
NC	No connection
FGND	Frame Gnd
NC	No connection
NC	No connection
	A Y
	VCC BL_E RS WR RD DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 CS RES NC FGND NC

5. Outline Dimension & Block Diagram

6.1 Data transfer order Setting

Pixel Data Format

Both 6800 and 8080 support 8-bit, 9-bit, 16-bit, 18-bit and 24-bit data bus. Depending on the width of the

data bus, the display data are packed into the data bus in different ways.

Cycle | D[23] | D[22] | D[21] | D[20] | D[19] | D[18] | D[17] D[16] D[15] D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] Interface G1 4 G0 + В7 B6 ∢ B4 4 RO 1st ∢ 18 bits 1st R5 R4 -R3 R1 RO G5 G4 format) R3 G5 G3 R7 R5 4 R3 R2 R1 -R0 + G7 G6 -G5 G4 -G3 -G0 lő bits 2nd В7 В6 B5 € B4 • В3 B2 B1 B0 ∢ 3rdG7 G5 + G4 -G3 G2 G1 G0 -В7 В4 В3 В0 G7 12 bits 2nd G1 G0 ∢ RS. R4 R3 R2 R1 RO G5 G3 1st 9 bits G2 В4 В3 во R7 R5 R4 R3 R2 RØ 1st R6 G7 G5 G4 G2 G6 G3 G0

Table 6-1: Pixel Data Format

6.2 Register Depiction

Please consult the spec of SSD1963 Version 1.2

7. Optical Characteristics

Ta=25±2°C, ILED=20mA

								· · · · · · · · · · · · · · · · · · ·
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response time		Tr	<i>θ</i> =0° 、 Φ=0°	-	10		ms	Note 3,5
rtesponse tink		Tf		-	15		ms	14016 0,0
Contrast ratio		CR	At optimized viewing angle	300	400	-	-	Note 4,5
	White	Wx	θ=0°、Φ=0	(0.26)	(0.31)	(0.36)		Note 2,6,7
	VVIIILE	Wy	υ-υ - φ-υ	(0.28)	(0.33)	(0.38)		
	Red	Rx	θ=0°、Φ=0					
Color Chromaticity		Ry						
	Green	Gx	<i>θ</i> =0° 、 Φ=0					
		Gy						
	Blue	Bx	θ=0°、Φ=0					
	Diue	Ву	υ-υ : φ-υ					
	Hor.	⊝R		(50)	(60)			
Viewing angle	HOI.	ΘL	CR≧ 10	(50)	(60)		Deg.	Note 1
viewing angle	Ver.	ΦТ	ON≦ IO	(40)	(50)		Deg.	14016-1
	vei.	ΦВ		(45)	(55)			
Brightness		-	-	200	250	-	cd/m ²	Center of display

Ta=25±2°C, I_L=20mA

Note 1: Definition of viewing angle range

Fig. 8-1 Definition of viewing angle

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7 luminance meter 1.0° field of view at a distance of 50cm and normal direction.

Fig. 8-2 Optical measurement system setup

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90% to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10% to 90%.

Note 4: Definition of contrast ratio:

The contrast ratio is defined as the following expression.

Note 5: White $Vi = Vi50 \pm 1.5V$

Black $Vi = Vi50 \pm 2.0V$

"±" means that the analog input signal swings in phase with VCOM signal.

"±" means that the analog input signal swings out of phase with VCOM signal.

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 6: Definition of color chromaticity (CIE 1931)

Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Note 8 : Uniformity (U) =
$$\frac{\text{Brightness (min)}}{\text{Brightness (max)}} \times 100\%$$

8. Absolute Maximum Ratings

Item	Symbol	Condition	Min	Max	Unit	Remark
Power Voltage	DVDD,AVDD	GND=0	-0.3	5.0	V	
Input Signal Voltage	Vin	GND=0	-0.3	VDD+0.3	V	Note
Logic Output Voltage	VOUT	GND=0	-0.3	VDD+0.3	V	Note

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

9. Electrical Characteristics

Operating conditions:

p			A		
Item	Symbol	Condition Min	Тур	Max	Unit
Supply Voltage For Logic	VCC	3.0	3.3	3.6	V
Supply Current	I _{cc}	V _{CC} =3	213		mA

Conditions:

Voltage referenced to VSS VDDD, VDDPLL = 1.2V VDDIO, VDDLCD = 3.3V TA = 25°C

DC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
PSTY	Quiescent			300		uW
	Power					
IIZ	Input leakage		-1		1	uΑ
	current			Allen		
IOZ	Output leakage		-1		1	uA
	current					
VOH	Output high		0.8VDDIO		P	V
	voltage				į.	
VOL	Output low				0.2VDDIO	V
	voltage					
VIH	Input high		0.8VDDIO	<i>y</i>	VDDIO +	V
	voltage				0.5	
VIL	Input low				0.2VDDIO	V
	voltage				0.20010	

■ AC Characteristics

Conditions:

Voltage referenced to Vss

 V_{DDD} , $V_{DDPLL} = 1.2V$

 V_{DDIO} , $V_{DDLCD} = 3.3V$

 $T_A = 25$ C

C_L = 50pF (Bus/CPU Interface)

CL = 0pF (LCD Panel Interface)

9.1Clock Timing

Table 9-1:Clock Input Requirements for CLK (PLL-bypass)

Symbol	Parameter	Min	Max	Units
FCLK	Input Clock Frequency		110	MHz
	(CLK)			
TCLK	Input Clock period (CLK)	1/fCLK		ns

Table 9-2:Clock Input Requirements for CLK

Symbol	Parameter	Min	Max	Units
FCLK	Input Clock Frequency	2.5	50	MHz
	(CLK)		J.	
TCLK	Input Clock period (CLK)	1/fCLK		ns

Table 9-3:Clock Input Requirements for crystal oscillator XTAL

Symbol	Parameter	Min	Max	Units
FXTAL	Input Clock Frequency	2.5	10	MHz
TXTAL	Input Clock period	1/fXTAL		ns

9.2 MCU Interface Timing

9.2.1 Parallel 6800-series Interface Timing

Table 9-4: Parallel 6800-series Interface Timing Characteristics (Use CS# as clock)

Symbol	Parameter			Тур	Max	Unit
fMCLK	System Clock Frequency	uency*	1	-	110	MHz
tMCLK	System Clock Perio	od*	1/ fMCLK	-	ı	ns
tPWCSH	Control Pulse	Write	13	1.5* tMCLK		no A
IFWCSH	High Width	Read	30	3.5* tMCLK	•	ns
	Control Pulse	Write (next write cycle)	13	1.5* tMCLK	B	
tPWCSL	Low Width	Write (next read cycle)	80	9* tMCLK 9*	-	ns
		Read	80	tMCLK		
tAS	Address Setup Time	2	- /	-	ns	
tAH	Address Hold Time		2	-	-	ns
tDSW	Data Setup Time		4	-	-	ns
tDHW	Data Hold Time		1	-	_	ns
tPLW	Write Low Time		14	-	-	ns
tPHW	Write High Time		14	-	ı	ns
tPLWR	Read Low Time	38		ı	ns	
tACC	Data Access Time	32	-	ı	ns	
tDHR	Output Hold time	1	_	-	ns	
tR	Rise Time) -	_	0.5	ns	
tF	Fall Time		-	-	0.5	ns

^{*} System Clock denotes external input clock (PLL-bypass) or internal generated clock (PLL-enabled)

Figure 9-1: Parallel 6800-series Interface Timing Diagram (Use CS# as Clock)

Table 9-5: Parallel 6800-series Interface Timing Characteristics (Use E as clock)

Symbol	Parameter	Min	Тур	Max	Unit	
fMCLK	System Clock Freq	1	-	110	MHz	
tMCLK	System Clock Perio	od*	1/ fMCLK	-	-	ns
tPWCSH	Control Pulse Low Width	Write (next write cycle) Write (next read cycle) Read	13 80 80	1.5* tMCLK 9* tMCLK 9* tMCLK	ı	ns
tPWCSL	Control Pulse High Width	Write Read	13 30	1.5* tMCLK 3.5* tMCLK	-	ns
tAS	Address Setup Tim	2	-	-	ns	
tAH	Address Hold Time		2	-	1	ns
tDSW	Data Setup Time	4	-	1	ns	
tDHW	Data Hold Time		1	-	-	ns
tPLW	Write Low Time		14	<i>_</i>	-	ns
tPHW	Write High Time		14	-) ⁷ -	ns
tPLWR	Read Low Time	38	7	-	ns	
tACC	Data Access Time	32		-	ns	
tDHR	Output Hold time	1	-		ns	
tR	Rise Time	-	7 _	0.5	ns	
tF	Fall Time		-	-	0.5	ns

^{*} System Clock denotes external input clock (PLL-bypass) or internal generated clock (PLL-enabled)

Figure 9-2: Parallel 6800-series Interface Timing Diagram (Use E as Clock)

9.2.2 Parallel 8080-series Interface Timing

Table9-6: Parallel 8080-series Interface

Symbol	Parameter			Тур	Max	Unit
fMCLK	System Clock Frequency*			-	110	MHz
tMCLK	System Clock Perio	d*	1/ fMCLK	-	-	ns
tPWCS	Control Pulse High	Write	13	1.5* tMCLK	_	ns
L	Width	Read	30	3.5* tMCLK	- 1	113
tPWCS	Control Pulse Low	Write (next write	13	1.5* tMCLK		2006
H	Width	cycle) Write (next read	80	9* tMCLK	4	ns
	cycle) Read		80	9* tMCLK		
tAS	Address Setup Time	1	-	<u>-</u>	ns	
tAH	Address Hold Time		2	_	-	ns
tDSW	Write Data Setup Ti	me	4	-	-	ns
tDHW	Write Data Hold Tim	ie	1	-	-	ns
tPWLW	Write Low Time		12	-	_	ns
tDHR	Read Data Hold Tim	ne	1,		-	ns
tACC	Access Time		32	-	-	ns
tPWLR	Read Low Time	36	-	-	ns	
tR	Rise Time	-	-	0.5	ns	
tF	Fall Time	_	-	0.5	ns	
tCS	Chip select setup tir	2	_	_	ns	
tCSH	Chip select hold time	e to read signal	3	_	-	ns

^{*} System Clock denotes external input clock (PLL-bypass) or internal generated clock (PLL-enabled)

Figure 9-3: Parallel 8080-series Interface Timing Diagram (Write Cycle)

CS#

V_H

V_I

V

Figure 9-4: Parallel 8080-series Interface Timing Diagram (Read Cycle)

10. Backlight Information

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED current		-	20	-	mA	
Power Consumption		-	400	420	mW	
LED voltage	VBL+	18.6	19.8	21	V	Note 1
LED Life Time	-		(50,000)-	-	Hr	Note 2,3

Note 1: There are 1 Groups LED

Note 2 : Ta = 25 _

Note 3: Brightness to be decreased to 50% of the initial value

11. Touch panel Information

Non-Proper Ways to handle the touch screen

- 1. Do not pull or crease the tail of the touch screen.
- 2. Tails, unless the drawing calls out for a bend, are to be free of permanent creases in the polyester, slight crease lines in the adhesive tail cover are allowed

12.Reliability

WIDE TEMPERATURE RELIABILITY TEST

N O	ITEM	CONDITION			STANDARD	NOTE
1	High Temp. Storage	80℃	240 Hrs		Appearance without defect	
2	Low Temp. Storage	-30℃	240 Hrs		Appearance without defect	
3	High Temp. & High Humi. Storage	60 ℃ 90%RH	240 Hrs		Appearance without defect	
4	High Temp. Operating Display	70 ℃	240 Hrs		Appearance without defect	
5	Low Temp. Operating Display	-20 ℃	240 Hrs		Appearance without defect	
6	Thermal Shock	-20 °C, 30mi L	n. → 70°C, 30i (lcycle)	min.	Appearance without defect	10 cycles

Inspection Provision

1.Purpose

The RAYSTAR inspection provision provides outgoing inspection provision and its expected quality level based on our outgoing inspection of RAYSTAR LCD produces.

2. Applicable Scope

The RAYSTAR inspection provision is applicable to the arrangement in regard to outgoing inspection and quality assurance after outgoing.

- 3.Technical Terms
- 3-1 RAYSTAR Technical Terms

- 4. Outgoing Inspection
- 4-1 Inspection Method

4-2 Inspection Standard

		Item	AQL(%)	Remarks
Major		Opens	0.4	Faults which
Defect	Dots	Shorts		substantially
		Erroneous operation		lower the
	Solder	Shorts		practicality and
	appearance	Loose		the initial purpose
	Cracks	Display surface cracks		difficult to achieve

Sho	Dimensions	External from Dimensions	0.4	
Minor Defect	Inside the glass	Black spots	0.65	Faults which appear to pose
	Polarizing plate	Scratches, foreign Matter, air bubbles, and peeling		almost no obstacle to the practicality,
	Dots	Pinhole, deformation		effective use, and operation
	Color tone	Color unevenness		
	Solder appearance	Cold solder Solder projections		

4-3 Inspection Provisions

*Viewing Area Definition

Fig. 1

A: Zone Viewing Area

B: Zone Glass Plate Outline

*Inspection place to be 500 to 1000 lux illuminance uniformly without glaring.

The distance between luminous source(daylight fluorescent lamp and cool white fluorescent lamp)

and sample to be 30 cm to 50 cm.

*Test and measurement are performed under the following conditions, unless otherwise specified.

Temperature 20 ± 15°C

Humidity $65 \pm 20\%$ R.H.

Pressure 860~1060hPa(mmbar)

In case of doubtful judgment, it is performed under the following conditions.

Temperature 20 ± 2°C

Humidity $65 \pm 5\%$ R.H.

Pressure 860~1060hPa(mmbar)

5. Specification for quality check

5-1-1 Electrical characteristics:

NO.	Item	Criterion
1	Non operational	Fail
2	Miss operating	Fail
3	Contrast irregular	Fail
4	Response time	Within Specified value

5-1-2 Components soldering:

Should be no defective soldering such as shorting, loose terminal cold solder, peeling of printed circuit board pattern, improper mounting position, etc.

5-2 Inspection Standard for TFT panel

5-2-1 The environmental condition of inspection:

The environmental condition and visual inspection shall be conducted as below.

(1) Ambient temperature : 25±5°C

(2) Humidity: 25~75% RH

- (3) External appearance inspection shall be conducted by using a single 20W fluorescent lamp or equivalent illumination.
- (4) Visual inspection on the operation condition for cosmetic shall be conducted at the distance 30cm or more between the LCD panels and eyes of inspector. The viewing angle shall be 90 degree to the front surface of display panel.
- (5) Ambient Illumination: 300~500 Lux for external appearance inspection.
- (6) Ambient Illumination: 100~200 Lux for light on inspection.

5-2-2 Inspection Criteria

- (1) Definition of dot defect induced from the panel inside
- a) The definition of dot: The size of a defective dot over 1/2 of whole dot is regarded as one defective dot
- b) Bright dot: Dots appear bright and unchanged in size in which LCD panel is displaying under black pattern.
- c) Dark dot: Dots appear dark and unchanged in size in which LCD panel is displaying under pure red, green, blue pattern.
- d) 2 dot adjacent = 1 pair = 2 dots

Picture:

(2) Display Inspection

NO.		Item	Acceptable Count		
		Bright Dot	Random	N ≦ 2	
		Bright Dot	2 dots adjacent	N ≦ 0	
	Dot defect	Dark Dot	Random	N ≤ 3	
1	4	Dark Dot	Dark Dot	2 dots adjacent	N ≦ 1
'		Total bright and dark dot		N ≦ 4	
	Functional fa	Functional failure (V-line/ H-line/Cross line etc.)		Not allowable	
	Mura	It's OK if mur	igh 6% ND filter.		
(Judged by limit sample if it is necessary)			essary)		
Newton Orbicular of interference fringes is not allo					
2	ring (touch	optimum con	optimum contrast within the active area under viewing		
	panel)	angle.			

(3) Appearance inspection

NO.	Item	Standards
1	Panel Crack	Not allow. It is shown in Fig.1.
2	Broken CF Non -lead Side of TFT	The broken in the area of W > 2mm is ignored, L is ignored. It is shown in Fig.2.
3	Broken Lead Side of TFT	FPC lead, electrical line or alignment mark can't be damaged. It is shown in Fig.3.
4	Broken Corner of TFT at Lead Side	FPC lead. electrical line or alignment mark can't be damaged. It is shown in Fig.4.
5	Burr of TFT / CF Edge	The distance of burr from the edge of TFT / CF, W \leq 0.3mm. It is shown in Fig.5.
6	Foreign Black / White/Bright Spot	(1) 0.15 < D \leq 0.5 mm, N \leq 4 ; (2) D \leq 0.15mm, Ignore. It is shown in Fig.6.
	Foreign Block /	(1) 0.05 <w≦ 0.1="" 0.3<l≦2="" 4.<="" mm,="" n≦="" td=""></w≦>
7	Foreign Black / White/Bright Line	(2) W \leq 0.05mm and L \leq 0.3mm Ignore.
	willerbright Line	It is shown in Fig.7.
8	Color irregular	Not remarkable color irregular.

NOTICE:

- SAFETY
- 1. If the LCD panel breaks, be careful not to get the liquid crystal to touch your skin.
- 2. If the liquid crystal touches your skin or clothes, please wash it off immediately by using soap and water.
- HANDLING
- 1. Avoid static electricity which can damage the CMOS LSI.
- 2. Do not remove the panel or frame from the module.
- 3. The polarizing plate of the display is very fragile. So, please handle it very carefully.
- 4. Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the surface of plate.
- 5. Do not use ketonics solvent & Aromatic solvent. Use a soft cloth soaked with a cleaning naphtha solvent.
- STORAGE
- 1. Store the panel or module in a dark place where the temperature is 25±5℃ and the humidity is below 65% RH.
- 2. Do not place the module near organics solvents or corrosive gases.
- 3. Do not crush, shake, or jolt the module.
- TERMS OF WARRANT
- 1. Acceptance inspection period

The period is within one month after the arrival of contracted commodity at the buyer's factory site.

2. Applicable warrant period

The period is within twelve months since the date of shipping out under normal using and storage conditions.

13. QUALITY ASSURANCE

No.	Test Items	Test Condition	REMARK
1	High Temperature Storage Test	Ta=80°C Dry 240h	
2	Low Temperature Storage Test	Ta=-30°C Dry 240h	
3	High Temperature Operation Test	Ta=70°C Dry 240h	
4	Low Temperature Operation Test	Ta=-20°C Dry 240h	
5	High Temperature and High Humidity Operation Test	Ta=60°C 90%RH 240h	
6	Electro Static Discharge Test	Panel surface / top case. Contact / Air: ±6KV / ±8KV 150pF , 330Ω	Non-operating Note1
7	Shock Test (non-operating)	Shock level: 100G Waveform: half sinusoidal wave Shock Time:6ms Number of shocks:3 Times for each ±X, ±Y,±Z direction.	
8	Vibration Test (non-operating)	Frequency range: 10 Hz ~550 Hz Stoke: 1.3 mm Sweep: 1.5G, 33.3~400Hz Vibration: Sinusoidal Wave, 1Hrsfor X,YZ direction.	
9	Thermal Shock Test	-20 °C (0.5h) ~ 70°C (0.5h) / 100 cycles	

Note1: You need to connect copper wire between steel screw hole and earth.

Page: 1

LCM Sample Estimate Feedback Sheet						
Module Number:						
1 · Panel Specification :						
1. Panel Type :	□ Pass	□ NG ,				
2. View Direction:	□ Pass	□ NG ,				
3. Numbers of Dots:	□ Pass	□ NG ,				
4. View Area:	□ Pass	□ NG ,				
5. Active Area:	□ Pass	□ NG ,				
6.Operating	□ Pass	□ NG ,				
Temperature :						
7.Storage Temperature:	□ Pass	□ NG ,				
8.Others:						
2 · Mechanical Specification	<u>n</u> :					
1. PCB Size:	□ Pass	□ NG ,				
2.Frame Size :	□ Pass	□ NG ,				
3.Materal of Frame:	□ Pass	□ NG ,				
4.Connector Position:	□ Pass	□ NG ,				
5.Fix Hole Position:	□ Pass	□ NG ,				
6.Backlight Position:	□ Pass	□ NG ,				
7. Thickness of PCB:	□ Pass	□ NG ,				
8. Height of Frame to	□ Pass	□ NG ,				
PCB:						
9.Height of Module:	□ Pass	□ NG ,				
10.Others:	□ Pass	□ NG ,				
3 · Relative Hole Size :						
1.Pitch of Connector	□ Pass	□ NG ,				
2.Hole size of	□ Pass	□ NG ,				
Connector:						
3.Mounting Hole size:	□ Pass	□ NG ,				
4.Mounting Hole Type:	□ Pass	□ NG ,				
5.Others:	□ Pass	□ NG ,				
4 · Backlight Specification						
1.B/L Type:	□ Pass	□ NG ,				
2.B/L Color:	□ Pass	□ NG ,				
		ED Type):□ Pass □ NG ,				
4.B/L Driving Current:	□ Pass	□ NG ,				
5.Brightness of B/L:	□ Pass	□ NG ,				
6.B/L Solder Method:	□ Pass	□ NG ,				
7.Others:	□ Pass	□ NG ,				

>> Go to page 2 <<

Page: 2

Module Number :								
5 · Electronic Characteristics of Module								
1.Input Voltage :	□ Pass	□ NG ,						
2.Supply Current:	□ Pass	□ NG ,						
3.Driving Voltage for LCD:	□ Pass	□ NG ,						
4.Contrast for LCD:	□ Pass	□ NG ,						
5.B/L Driving Method:	□ Pass	□ NG ,						
6.Negative Voltage	□ Pass	□ NG ,						
Output:								
7.Interface Function:	□ Pass	□ NG ,						
8.LCD Uniformity:	□ Pass	□ NG ,						
9.ESD test:	□ Pass	□ NG ,						
10.Others:	□ Pass	□ NG ,						
10.Others:								
Sales signature : Customer Signature	:	 						