CS836 Rough Sets and Applications Assignment 3

Available on February 16, 2018 Due date: March 8, 2018

- 1. Consider a finite set U. Give a definition of an equivalence on U. Give a definition of a partition of U. Show that there exists a one-to-one correspondence between the set of all equivalence classes on U and the set of all partitions of U.
- 2. Give a definition of the refinement-coarsening relation on the set of all partitions on a set U.
- 3. Give a definition of a consistent and an inconsistent decision table by using the refinement-coarsening relation in the last question.
- 4. Give a definition of structured rough set approximations. Explain why the structured approximations are useful for rule mining.
- 5. Discuss three types of rules induced by three regions in rough set theory.
- 6. Give a definition of the following concepts: superfluous attributes, core attributes.
- 7. Give a definition of a reduct of an information table.

8. Consider the following information table:

OB	c_1	c_2	c_3	c_4	c_5	c_6
x_1	1	1	1	1	1	1
x_2	1	0	1	0	1	1
x_3	0	1	1	1	0	0
x_4	1	1	1	0	0	1
x_5	0	0	1	1	0	1
x_6	1	0	1	0	1	1
x_7	0	0	0	1	1	0
x_8	1	0	1	0	1	1
x_9	0	0	1	1	0	1

- (a) Find the set of all superfluous attributes.
- (b) Find the set of all core attributes.
- (c) Find the set of all reducts of the table.
- 9. Give a definition of a reduct of a decision table.
- 10. Consider the following decision table:

OB	c_1	c_2	c_3	c_4	c_5	c_6	d
$\overline{x_1}$	1	1	1	1	1	1	1
x_2	1	0	1	0	1	1	1
x_3	0	1	1	1	0	0	2
x_4	1	1	1	0	0	1	2
x_5	0	0	1	1	0	1	2
x_6	1	0	1	0	1	1	3
x_7	0	0	0	1	1	0	3
x_8	1	0	1	0	1	1	3
x_9	0	0	1	1	0	1	3

- (a) Find the set of all superfluous attributes with respect to $D=\{d\}.$
- (b) Find the set of all core attributes with respect to $D=\{d\}$.
- (c) Find the set of all reducts of the decision table.