Kuznetsov components, Stability, and Moduli Spaces

Xiaolong Liu

October 14, 2023

Contents

1	Derived Category and Kuznetsov Components	7
	1.1 Basic Definitions	7 7
	1.1.1 Exceptional Sequences and S.O.Ds	7
	1.1.2 Example I – Projective Bundles	8
	1.1.3 Example II – Blow-Ups	10
	1.2 Kuznetsov Components	14
2	Examples of Fano Manifolds of Calabi-Yau Type	15
3	Examples of Derived Equivalences of Kuznetsov Components with K	3s 17
4	Stability Conditions on K3 Categories	19
5	Applications: Mukai's program	21
6	Application to Cubic Fourfolds and Gushel-Mukai Manifolds	23
In	ndex	25
B	ibliography	27

4 CONTENTS

Preface

[1][2]

6 CONTENTS

Derived Category and Kuznetsov Components

1.1 Basic Definitions

Here we follows some definitions and results in [3]. Note that when I working in the derived category, we will omit the \mathbf{R} or \mathbf{L} of the derived functors.

1.1.1 Exceptional Sequences and S.O.Ds

Definition 1.1.1. A full triangulated subcategory $\mathscr{D}' \subset \mathscr{D}$ is called admissible if the inclusion has a right adjoint $\pi : \mathscr{D} \to \mathscr{D}'$

The orthogonal complement of a(an admissible) subcategory $\mathscr{D}' \subset \mathscr{D}$ is the full subcategory \mathscr{D}'^{\perp} of all objects $C \in \mathscr{D}$ such that $\operatorname{Hom}(B,C) = 0$ for all $B \in \mathscr{D}'$.

Definition 1.1.2. An object $E \in \mathcal{D}$ in a k-linear triangulated category \mathcal{D} is called exceptional if

$$\operatorname{Hom}(E, E[\ell]) = \begin{cases} k, & \text{if } \ell = 0, \\ 0, & \text{if } \ell \neq 0. \end{cases}$$

An exceptional sequence is a sequence $E_1, ..., E_n$ of exceptional objects such that $\operatorname{Hom}(E_i, E_j[\ell]) = 0$ for all i > j and all ℓ .

An exceptional sequence is full if \mathcal{D} is generated by $\{E_i\}$.

An exceptional collection $E_1, ..., E_n$ is strong if in addition $\operatorname{Hom}(E_i, E_j[\ell]) = 0$ for all i, j and all $\ell \neq 0$.

Definition 1.1.3. A sequence of full admissible triangulated subcategories $\mathscr{D}_1, ..., \mathscr{D}_n \subset \mathscr{D}$ is semi-orthogonal if for all i > j we have $\mathscr{D}_j \subset \mathscr{D}_i^{\perp}$. Such a sequence defines a semi-orthogonal decomposition (S.O.D.) of \mathscr{D} if \mathscr{D} is generated by the \mathscr{D}_i .

Remark 1.1.4. Some remarks:

- (a) If $E \in \mathcal{D}$ is exceptional, then the objects $\bigoplus_i E[i]^{\oplus j_i}$ form an admissible triangulated subcategory $\langle E \rangle \subset \mathcal{D}$.
- (b) Let $E_1, ..., E_n$ be an exceptional sequence in \mathscr{D} . Then the admissible triangulated subcategories $\langle E_1 \rangle, ..., \langle E_n \rangle$ form a semi-orthogonal sequence. If this sequence is a full exceptional sequence, then this forms an S.O.D. of \mathscr{D} .
- (c) Any semi-orthogonal sequence of full admissible triangulated subcategories $\mathcal{D}_1, ..., \mathcal{D}_n \subset \mathcal{D}$ defines an S.O.D. of \mathcal{D} , if and only if any object $A \in \mathcal{D}$ with $A \in \mathcal{D}_i^{\perp}$ for all i = 1, ..., n is trivial. See Lemma 1.61 in [3].
- (d) If $\mathscr{D}_1,...,\mathscr{D}_n \subset \mathscr{D}$ is an S.O.D., then $D_1 \subset \langle \mathscr{D}_2,...,\mathscr{D}_n \rangle^{\perp}$ is an equivalence. See Exercise 1.62 in [3].

1.1.2 Example I – Projective Bundles

Proposition 1.1.5. For a smooth projective variety Y we consider the projective bundle $\pi : \mathbb{P}(\mathscr{E}) \to Y$ of locally free sheaf \mathscr{E} of rank r on Y, in the sense of Grothendieck. Then for any $a \in \mathbb{Z}$ we claim that $\pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(a), ..., \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(a+r-1)$ is an S.O.D. of $\mathbf{D}^b(\mathbb{P}(\mathscr{E}))$.

This combined by the following two things:

Step 1. For any $E \in \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(m)$, $F \in \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(n)$, we have $\mathrm{Hom}(E,F) = 0$ for any $r-1 \geq m-n > 0$.

Indeed, we can let m=0 and hence $-r+1 \le n < 0$. Let $E=\pi^*E'$ and $F=\pi^*F'\otimes \mathcal{O}(n)$, hence

$$\operatorname{Hom}(E,F) = \operatorname{Hom}(E', \pi_*(\pi^*F' \otimes \mathscr{O}(n))) = \operatorname{Hom}(E', F' \otimes \pi_*\mathscr{O}(n)).$$

$$\text{It's well-known that } \mathbf{R}^i \pi_* \mathscr{O}(n) = \begin{cases} \operatorname{Sym}^n \mathscr{E}, \text{for } i = 0, \\ 0, \text{for } 0 < i < r - 1, \text{ Well done.} \\ \operatorname{Sym}^{-n-r} \mathscr{E}^\vee, \text{for } i = r - 1. \end{cases}$$

Step 2. Categories $\pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(a),..., \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(a+r-1)$ generates $\mathbf{D}^b(\mathbb{P}(\mathscr{E}))$. Here we generalize the proof for \mathbb{P}^n in [3] Corollary 8.29. Consider

then by the canonical identification

$$H^{0}(\mathbb{P}(\mathscr{E}) \times_{Y} \mathbb{P}(\mathscr{E}), \mathscr{O}(1) \boxtimes \mathscr{Q}^{\vee})$$

$$= H^{0}(\mathbb{P}(\mathscr{E}), \mathscr{O}(1) \otimes p_{*}q^{*}\mathscr{Q}^{\vee})$$

$$= H^{0}(\mathbb{P}(\mathscr{E}), \mathscr{O}(1) \otimes \pi_{1}^{*}\pi_{2,*}\mathscr{Q}^{\vee})$$

$$= H^{0}(Y, \pi_{1,*}\mathscr{O}(1) \otimes \pi_{2,*}\mathscr{Q}^{\vee})$$

$$= H^{0}(Y, \mathscr{E} \otimes \mathscr{E}^{\vee})$$

where $0 \to \mathcal{Q} \to \pi^* \mathcal{E} \to \mathcal{O}(1) \to 0$ is the universal exact sequence. Let s correspond to the $\mathrm{id}_{\mathcal{E}}$, then $Z(s) = \Delta \subset \mathbb{P}(\mathcal{E}) \times_Y \mathbb{P}(\mathcal{E})$. By the Koszul resolution of \mathcal{O}_{Δ} respect to the s, we have an exact sequence:

$$0 \to \bigwedge^{r-1} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to \bigwedge^{r-2} (\mathscr{O}(-1) \boxtimes \mathscr{Q})$$
$$\to \cdots \to \mathscr{O}(-1) \boxtimes \mathscr{Q} \to \mathscr{O} \boxtimes \mathscr{O} \to \mathscr{O}_{\Delta} \to 0.$$

(you can also use the Euler exact sequence instead of the universal exact sequence, just as in [3] Corollary 8.29)

Now there is to way to slove this.

The First Way: for any coherent sheaf $\mathscr{F} \in \operatorname{Coh}(\mathbb{P}(\mathscr{E}))$, tensoring $q^*\mathscr{F}$ we have

$$0 \to \mathscr{O}(-r+1) \boxtimes \bigwedge^{r-1} \mathscr{Q} \otimes \mathscr{F} \to \mathscr{O}(-r+2) \boxtimes \bigwedge^{r-2} \mathscr{Q} \otimes \mathscr{F}$$
$$\to \cdots \to \mathscr{O}(-1) \boxtimes (\mathscr{Q} \otimes \mathscr{F}) \to \mathscr{O} \boxtimes \mathscr{F} \to q^* \mathscr{F}|_{\Delta} \to 0.$$

Consider a spectral sequence

$$E_1^{ij} = \mathbf{R}^i p_* (\mathscr{O}(j) \boxtimes \bigwedge^{-j} \mathscr{Q} \otimes \mathscr{F}) = \mathscr{O}(j) \otimes \mathbf{R}^i p_* q^* \bigwedge^{-j} \mathscr{Q} \otimes \mathscr{F}$$
$$= \mathscr{O}(j) \otimes \pi_1^* \mathbf{R}^i \pi_{2,*} \bigwedge^{-j} \mathscr{Q} \otimes \mathscr{F} \Rightarrow \mathbf{R}^{i+j} p_* q^* \mathscr{F}|_{\Delta}.$$

We know that $\mathbf{R}^{i+j}p_*q^*\mathscr{F}|_{\Delta}=0$ if $i+j\neq 0$ and $\mathbf{R}^{i+j}p_*q^*\mathscr{F}|_{\Delta}=\mathscr{F}$ if i+j=0. Since any E_1^{ij} contained in

$$\left\langle \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(-r+1), ..., \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(0) \right\rangle$$

so is \mathscr{F} . Hence well done (if you use the Euler exact sequence instead of the universal exact sequence, the similar spectral sequence called the generalized Beilinson spectral sequence as Proposition 8.28 in [3]).

The Second Way: Consider again the Koszul resolution

$$0 \to \bigwedge^{r-1} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to \bigwedge^{r-2} (\mathscr{O}(-1) \boxtimes \mathscr{Q})$$
$$\to \cdots \to \mathscr{O}(-1) \boxtimes \mathscr{Q} \to \mathscr{O} \boxtimes \mathscr{O} \to \mathscr{O}_{\Delta} \to 0.$$

Split it into short exact sequences

$$0 \to \bigwedge^{r-1} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to \bigwedge^{r-2} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to M_{r-2} \to 0,$$

$$0 \to M_{r-2} \to \bigwedge^{r-3} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to M_{r-3} \to 0,$$

$$\cdots,$$

$$0 \to M_1 \to \mathscr{O} \boxtimes \mathscr{O} \to \mathscr{O}_{\Lambda} \to 0.$$

Tensor product with q^*F and direct image under the first projection p yields distinguished triangles of Fourier-Mukai transforms:

$$\Phi_{M_{i+1}}(\mathscr{F}) \to \Phi_{\Lambda^{i}(\mathscr{O}(-1)\boxtimes\mathscr{Q})}(\mathscr{F}) \to \Phi_{M_{i}}(\mathscr{F}) \to \Phi_{M_{i+1}}(\mathscr{F})[1].$$

Easy to see that

$$\Phi_{\bigwedge^{i}(\mathscr{O}(-1)\boxtimes\mathscr{Q})}(\mathscr{F}) \in \left\langle \pi^{*}\mathbf{D}^{b}(Y) \otimes \mathscr{O}(-i) \right\rangle.$$

By induction we get $F = \Phi_{\mathscr{O}_{\Delta}} F \in \langle \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(-r+1), ..., \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O} \rangle$. Well done.

Fully Exceptional Sequence. By the discussed above, we know that pick any fully exceptional sequence $E_1, ..., E_n$ of Y, the set

$$\{\pi^*E_1\otimes\mathscr{O}(a),...,\pi^*E_n\otimes\mathscr{O}(a),...,\pi^*E_1\otimes\mathscr{O}(a+r-1),...,\pi^*E_n\otimes\mathscr{O}(a+r-1)\}$$

is a fully exceptional sequence of $\mathbb{P}(\mathscr{E})$ for any $a \in \mathbb{Z}$.

Example 1.1.1. More general case, such as Grassmann bundle and even the flag bundle has the similar things. We refer [4].

1.1.3 Example II – Blow-Ups

Here we follows section 11.1 in [3]. First we need some results about closed immersions.

Lemma 1.1.6. Suppose $j: Y \hookrightarrow X$ of codimension C with normal bundle \mathcal{N} is the zero locus of a regular section of a locally free sheaf \mathcal{E} of rank c. Then for any $F \in \mathbf{D}^b(Y)$

there exists the following canonical isomorphisms:

$$(i)j^*j_*\mathcal{O}_Y \simeq \bigoplus \bigwedge^k \mathcal{N}^{\vee}[k],$$

$$(ii)j_*j^*j_*F \simeq j_*\mathcal{O}_Y \otimes j_*F \simeq j_* \left(\bigoplus \bigwedge^k \mathcal{N}^{\vee}[k] \otimes F \right),$$

$$(iii)\mathcal{H}om_X(j_*\mathcal{O}_Y, j_*F) \simeq j_* \left(\bigoplus \bigwedge^k \mathcal{N}[-k] \otimes F \right).$$

In particular, we have

$$\mathcal{H}^{\ell}(j^*j_*F) \simeq \bigoplus_{s-r=\ell} \bigwedge^r \mathcal{N}^{\vee} \otimes \mathcal{H}^s(F)$$

$$\mathscr{E}xt_X^{\ell}(j_*\mathscr{O}_Y, j_*F) \simeq j_* \left(\bigoplus_{r+s=\ell} \bigwedge^r \mathcal{N} \otimes \mathcal{H}^s(F)\right).$$

Proof. For (i), by Koszul resolution we get $j^*j_*\mathscr{O}_Y \simeq \bigwedge^*\mathscr{E}^\vee|_Y$. As the differentials in the Koszul complex $\bigwedge^*\mathscr{E}^\vee$ are given by contraction with the defining section, they become trivial on Y. Hence $j^*j_*\mathscr{O}_Y \simeq \bigoplus \bigwedge^k \mathscr{E}^\vee[k]|_Y$. As $\mathscr{E}|_Y \cong \mathscr{N}$, well done.

For (ii), we split the Koszul resolution into the following short exact sequences:

Again all these morphisms vanish on Y, we have

$$M_i \otimes j_*F \simeq \left(\bigwedge^i \mathscr{E}^{\vee} \otimes j_*F\right) \oplus \left(M_{i+1}[1] \otimes j_*F\right).$$

Putting these togetherand we get the result.

For (iii), as we have $\mathscr{H}om_X(j_*\mathscr{O}_Y,j_*F)\simeq \left(\bigwedge^i\mathscr{E}^\vee\right)^\vee\otimes j_*F$, then by the similar argument of (ii) we get the result.

The final part follows from (ii)(iii) and the fact that j_* is exact and tensor product with the locally free sheaf commutes with taking cohomology.

Corollary 1.1.7. Let $j: Y \hookrightarrow X$ be a smooth hypersurface. Then for any $F \in \mathbf{D}^b(Y)$ there exists the following distinguished triangle

$$F \otimes \mathscr{O}_Y(-Y)[1] \to j^*j_*F \to F \to .$$

Proof. We omit it and refer [3] Corollary 11.4.

Lemma 1.1.8. Let $j: Y \hookrightarrow X$ be an arbitrary closed embedding of smooth varieties. Then there exist isomorphisms

$$\mathcal{H}^{i}(j^{*}j_{*}\mathscr{O}_{Y}) \simeq \bigwedge^{-i} \mathscr{N}_{Y/X}^{\vee}, \quad \mathscr{E}xt_{X}^{i}(j_{*}\mathscr{O}_{Y}, j_{*}\mathscr{O}_{Y}) \simeq \bigwedge^{i} \mathscr{N}_{Y/X}.$$

Proof. Here we just give an idea, the detail we refer Proposition 11.8 in [3]. Here we first pick a global resolution of locally free sheaves $\mathscr{G}^* \to \mathscr{O}_Y$ and get the free resolution $\mathscr{G}_y^* \to \mathscr{O}_{Y,y}$. Also we can let Y defined by a section of a vector bundle near y, hence we get a local Koszul resolution. Hence at the point y we can get the result from before. Easy to see that this is independent of any choice, we get the result.

Proposition 1.1.9. Let $q: \widetilde{X} \to X$ be the blow-up along a smooth subvariety $Y \subset X$. Then for the structure sheaf \mathcal{O}_Z of a subvariety $Z \subset Y$ considered as an object in $\mathbf{D}^b(X)$ one has

$$\mathcal{H}^k(q^*\mathscr{O}_Z) \simeq (\omega_\pi^{\otimes -k} \otimes \mathscr{O}_\pi(-k))|_{\pi^{-1}(Z)}$$

where $\pi: \mathbb{P}(\mathcal{N}_{Y/X}) \to Y$ is the contraction of the exceptional divisor.

Proof. We will only show the case that $Y \subset X$ is given as the zero set of a regular section $s \in H^0(X, \mathcal{E})$ of a locally free sheaf \mathcal{E} of rank c. The general case follows from this and the similar argument of Lemma 1.1.8, we refer [3] Proposition 11.12 for details.

Consider $g: \mathbb{P}(\mathscr{E}) \to X$ and consider the Euler sequence

$$0 \to \mathscr{O}_g(-1) \to g^*\mathscr{E} \xrightarrow{\phi} \mathscr{T}_g \otimes \mathscr{O}_g(-1) \to 0.$$

Let $t := \phi(g^*(s)) \in H^0(\mathbb{P}(\mathscr{E}), \mathscr{T}_g \otimes \mathscr{O}_g(-1))$ and consider the zero scheme $Z(t) \subset \mathbb{P}(\mathscr{E})$. BLABLABLA

Hence g induced $Z(t) \to X$ can be identified with the blow-up $q: \widetilde{X} \to X$. Pick the Koszul resolution $\bigwedge^*(\mathscr{O}_g(1) \otimes \Omega_g) \to \mathscr{O}_{\widetilde{X}} \to 0$ of $\mathscr{O}_{\mathbb{P}(\mathscr{E})}$ -modules, hence

$$\iota_*(\mathcal{H}^k(q^*\mathscr{O}_Z)) \simeq \iota_*(\mathcal{H}^k(\iota^*g^*\mathscr{O}_Z)) \simeq \mathcal{H}^k(\iota_*\iota^*g^*\mathscr{O}_Z)$$
$$\simeq \mathcal{H}^k(g^*\mathscr{O}_Z \otimes \mathscr{O}_{\widetilde{X}}) \simeq \mathcal{H}^k(\bigwedge^*(\mathscr{O}_g(1) \otimes \Omega_g)|_{g^{-1}(Z)})$$

where $\iota:\widetilde{X}=Z(t)\hookrightarrow \mathbb{P}(\mathscr{E})$. If Z is contained in Y , the differentials, which are given by contraction with the section t, vanish and, therefore

$$\mathcal{H}^k(q^*\mathscr{O}_Z) \simeq (\omega_g^{\otimes -k} \otimes \mathscr{O}_g(-k))|_{g^{-1}(Z)}.$$

Well done. \Box

Lemma 1.1.10. Suppose $f: S \to T$ is a projective morphism of smooth projective varieties such that $f_*: \mathbf{D}^b(S) \to \mathbf{D}^b(T)$ sends \mathscr{O}_S to \mathscr{O}_T . Then $f^*: \mathbf{D}^b(T) \to \mathbf{D}^b(S)$ is fully faithful and thus describes an equivalence of $\mathbf{D}^b(T)$ with an admissible triangulated subcategory of $\mathbf{D}^b(S)$.

Proof. Trivial by the projection formula and $f^* \dashv f_*$, which shows directly id $\simeq f_* f^*$, hence fully faithful.

Lemma 1.1.11. Let the smooth varieties $Y \subset X$ of codimension c > 1, and let $q : \widetilde{X} \to X$ be the blow-up with exceptional divisor $i : E \hookrightarrow \widetilde{X}$ and $\pi : E = \mathbb{P}(\mathscr{N}_{Y/X}) \to Y$ is the contraction of the exceptional divisor. Then the functor

$$\Phi_k = i_*(\mathscr{O}_E(kE) \otimes \pi^*(-)) : \mathbf{D}^b(Y) \to \mathbf{D}^b(\widetilde{X})$$

is fully faithful for any k. Moreover, Φ_k admits a right adjoint functor.

Proof. The functor Φ_k is a Fourier-Mukai transform with kernel $\mathcal{O}_E(kE)$ considered as on object in $\mathbf{D}^b(Y \times \widetilde{X})$. As such, Φ_k admits in particular right and left adjoint. Now we will use a result due to Bondal-Orlov (Proposition 7.1 in [3]):

• Consider the Fourier-Mukai transform $\Phi_{\mathscr{P}}: \mathbf{D}^b(X) \to \mathbf{D}^b(Y)$ between the derived categories of two smooth projective varieties X and Y given by an object $\mathscr{P} \in \mathbf{D}^b(X \times Y)$. Then the functor $\Phi_{\mathscr{P}}$ is fully faithful if and only if for any two closed points $x, y \in X$ one has

$$\operatorname{Hom}(\Phi_{\mathscr{P}}(\kappa(x)), \Phi_{\mathscr{P}}(\kappa(y))[i]) = \begin{cases} k, & \text{if } x = y \text{ and } i = 0; \\ 0, & \text{if } x \neq y \text{ or } i < 0 \text{ or } i > \dim(X). \end{cases}$$

For any j and $x \neq y$, this follows from the fact that the result objects have disjoint supports.

Now we let $x=y\in Y$. We need to show that $\operatorname{Ext}^i_{\widetilde{X}}(\mathscr{O}_{E_x},\mathscr{O}_{E_x})$ is trivial for $i\notin [0,d=\dim Y]$ and of dimension one for i=0. By Lemma 1.1.8 we get the spectral sequence

$$E_2^{p,q} = H^p(\widetilde{X}, \mathscr{E}xt_{\widetilde{X}}^q(\mathscr{O}_{E_x}, \mathscr{O}_{E_x})) = H^p\left(E_x, \bigwedge^q \mathscr{N}_{E_x/\widetilde{X}}\right)$$

$$\Rightarrow \operatorname{Ext}_{\widetilde{X}}^{p+q}(\mathscr{O}_{E_x}, \mathscr{O}_{E_x}).$$

Hence we need to determine $\mathscr{N}_{E_x/\widetilde{X}}$. Consider the exact sequence

$$0 \to \mathscr{N}_{E_x/E} \to \mathscr{N}_{E_x/\widetilde{X}} \to \mathscr{N}_{E/\widetilde{X}}|_{E_x} \to 0,$$

as $\mathscr{N}_{E/\widetilde{X}}=\mathscr{O}_E(E)$ and $\mathscr{N}_{E_x/E}=\mathscr{O}_{E_x}^{\oplus d}$ and since $E_x\cong \mathbb{P}^{c-1}$ one get

$$\mathscr{N}_{E_x/\widetilde{X}} \cong \mathscr{O}_{E_x}(-1) \oplus \mathscr{O}_{E_x}^{\oplus d}$$

by computing the Ext¹. Hence we can directly get the result.

Proposition 1.1.12. Let the smooth varieties $Y \subset X$ of codimension c > 1, and let q: $\widetilde{X} \to X$ be the blow-up with exceptional divisor $i: E \hookrightarrow \widetilde{X}$ and $\pi: E = \mathbb{P}(\mathscr{N}_{Y/X}) \to Y$ is the contraction of the exceptional divisor. Define

$$\mathscr{D}_k := \operatorname{Im}(\Phi_{-k} : \mathbf{D}^b(Y) \to \mathbf{D}^b(\widetilde{X}))$$

for
$$k = -c + 1, ..., -1$$
 and $\mathcal{D}_0 := q^* \mathbf{D}^b(X)$.
Then $\mathcal{D}_{-c+1}, ..., \mathcal{D}_{-1}, \mathcal{D}_0$ forms an S.O.D of $\mathbf{D}^b(\widetilde{X})$.

Proof.

Kuznetsov Components

Examples of Fano Manifolds of Calabi-Yau Type

Examples of Derived
Equivalences of Kuznetsov
Components with K3s

18CHAPTER 3. EXAMPLES OF DERIVED EQUIVALENCES OF KUZNETSOV COMPONENTS WITH

Stability Conditions on K3 Categories

Applications: Mukai's program

Application to Cubic Fourfolds and Gushel-Mukai Manifolds

24CHAPTER 6. APPLICATION TO CUBIC FOURFOLDS AND GUSHEL-MUKAI MANIFOLDS

Index

admissible, 7
exceptional element, 7
exceptional sequence, 7

orthogonal complement, 7 semi-orthogonal, 7 semi-orthogonal decomposition, 7

Bibliography

- [1] Tom Bridgeland. Stability conditions on triangulated categories. *Ann. Math.*, 166(2):317–345, 2007.
- [2] Tom Bridgeland. Stability conditions on k3 surfaces. Duke Math. J., 166(2):241–291, 2008.
- [3] D. Huybrechts. Fourier-Mukai Transforms in Algebraic Geometry. Oxford University Press, 2006.
- [4] Dmitri Orlov. Projective bundles, monoidal transformations, and derived categories of coherent sheaves. *Izvestiya Mathematics*, 41(1):133–141, 1993.