Міністерство освіти та науки України Київський національний університет імені Тараса Шевченка

Звіт

До лабораторної роботи №2
«Розв'язок граничної задачі для звичайного
диференціального рівняння другого порядку методом
Скінченних елементів на базі методу Бубнова-Гальоркіна
та інтегро-інтерполяційним методом»

Студента 4 курсу Факультету кібернетики Групи ОМ-4 Кравця Олексія

1. Постановка Задачі

Методом Скінченних елементів і Інтегро-інтерполяційним методом розв'язати граничну задачу для звичайного диференціального рівняння другого порядку, та порівняти результат з вже отриманим результатом роботи методу Бубнова-Гальоркіна.

$$\begin{cases}
-\frac{d}{dx}(p(x)\frac{du}{dx}) + a(x)\frac{du}{dx} + q(x)u = f(x) \\
h_1y(0) - h_2y'(0) = 0 \\
H_1y(1) - H_2y'(1) = 0 \\
0 < x < 1
\end{cases} \tag{1}$$

$$p(x) = 2 - \sin(\pi x) \tag{2}$$

$$a(x) = \sin(\pi x) \tag{3}$$

$$q(x) = 5 (4)$$

$$f(x) = 2x^2 + \sin(2x) \tag{5}$$

$$h_1 = 0, h_2 = 1 \tag{6}$$

$$H_1 = 1, H_2 = 4 (7)$$

Розв'язати задачу при N=50,100 двома методами та порівняти результати з попередньою лабораторною роботою.

2. Теоретичні відомості

2.1. Метод Скінченних різниць

Розглянемо систему 1, помножимо диференціальне рівняння на v(x) та проінтегруємо.

$$\int_0^1 \left[-(pu')' + au' + qu \right] v dx = \int_0^1 f v dx \tag{8}$$

Проінтегруємо ліву частину 16 за частинами.

$$\int_0^1 \left[pu'v' + au'v + quv \right] dx - pu'v \Big|_0^1 = \int_0^1 fv dx \tag{9}$$

$$\int_0^1 \left[pu'v' + au'v + quv \right] dx - pu'v \Big|_0^1 = \int_0^1 fv dx \tag{10}$$

Hexaй $h_2 \neq 0, H_2 \neq 0$

$$\int_0^1 \left[pu'v' + au'v + quv \right] dx + p(1)u(1)v(1)\frac{H_1}{H_2} + p(0)u(0)v(0)\frac{h_1}{h_2} = \int_0^1 fv dx \quad (11)$$

Виберемо ϕ_i -базисні функції. Побудуємо їх.

Розділимо відрізок [0,1] на N частин. Отримаємо послідовність $\{x_i\}_{i=0}^N$. Де

$$x_i = ih, i = \overline{0, N} \tag{12}$$

$$h = \frac{1}{N} \tag{13}$$

Тепер побудуємо функції ϕ_i

$$\phi_{i} = \begin{cases} \frac{x - x_{i-1}}{h}, x \in [x_{i-1}, x] \\ \frac{x_{i+1} - x}{h}, x \in [x_{i}, x_{i+1}] \\ 0, x \notin [x_{i-1}, x_{i+1}] \end{cases}$$
(14)

$$\phi_0 = \begin{cases} 0, x \ge x_1 \\ \frac{x_i - x}{h}, 0 \le x < x_1 \end{cases}$$
 (15)

Розв'язок задачі 1 буде мати вигляд:

$$u \approx u_N = \sum_{i=0}^{N} c_i \phi_i \tag{16}$$

Запишемо задачу у операторному вигляді.

$$(Lu, v) = (f, v) \tag{17}$$

$$u \approx u_N = \sum_{i=1}^{N} (c_i \phi_i) \tag{18}$$

Отже

$$\left(L\sum_{i=1}^{N} (c_i\phi_i), \phi_j\right) = (f, \phi_j), \forall j = \overline{1, N}$$
(19)

$$\sum_{i=1}^{N} c_i \left(L\phi_i, \phi_j \right) = \left(f, \phi_j \right), \forall j = \overline{1, N}$$
(20)

Отримали систему лінійних алгебраїчних рівнянь Ac=F, де $A=[a_{ji}]=[(L\phi_i,\phi_j)]$, $F_j=(f,\phi_j)$, $i,j=\overline{1,N}$ Треба задовольнити головним умовам, в

нашому випадку це умови першого типу. Відповідно покладемо $c_0, c_N = 0$, якщо це необхідно.

Помітимо

$$\int_{0}^{1} p(x)\phi_{i}'(x)\phi_{j}'(x) \neq 0$$
 (21)

лише коли $\begin{cases} i = j + 1 \\ i = j \end{cases}$

Тому можемо рахувати інтеграли такого вигляду.

$$\int_{x_{i-1}}^{x_{i+1}} p(x)\phi_i'(x)\phi_{i\pm 1}'(x) \tag{22}$$

Також можна помітити, що отримана в результаті матриця буде тридіагональною.

2.2. Інтегро-інтерполяційний метод

Розподілимо [0,1] на N частин з рівномірним кроком $h=\frac{1}{N},$ де $x_0=0,$ $x_N=1.$

Для використання методу перетворимо систему 1 у таку форму:

$$\begin{cases}
-(ku')' + qu = f, & 0 < x < 1 \\
-ku' + \alpha_1 u = \mu_1, & x = 0 \\
ku' + \alpha_2 u = \mu_2, & x = 1
\end{cases}$$
(23)

Для цього скористаємося формулами:

$$k(x) = p(x)e^{\int \frac{a(x)}{p(x)}dx}$$
(24)

$$q(x) = q(x)e^{\int \frac{a(x)}{p(x)}dx}$$
(25)

$$f(x) = f(x)e^{\int \frac{a(x)}{p(x)}dx}$$
(26)

$$\alpha_1 = p(0)\frac{h1}{h2}, \qquad h2 \neq 0$$
 (27)

$$\alpha_2 = p(1)\frac{H1}{H2}, \qquad h2 \neq 0$$
 (28)

Виходячи з інтегрального рівняння збереження тепла, запишемо:

$$w_{i-\frac{1}{2}} + \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x)dx = \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} q^2(x)u(x)dx = w_{i+\frac{1}{2}}$$
(29)

$$-w_{i+\frac{1}{2}} + w_{i-\frac{1}{2}} - \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} q^2(x)u(x)dx = -\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x)dx$$
 (30)

Де w - потік тепла. Препишемо (30) для зручності.

$$w_{i+\frac{1}{2}} - w_{i-\frac{1}{2}} + \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} q^2(x)u(x)dx = \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x)dx$$
 (31)

$$w(x) = ku' (32)$$

$$u' = -\frac{w(x)}{k(x)} \tag{33}$$

Проінтегруємо (33) по проміжку x_{i-1}, x_i :

$$u_i - u_{i-1} = -\int_{x_{i-1}}^{x_i} \frac{w(x)}{k(x)} dx = -w(\xi) \int_{x_{i-1}}^{x_i} \frac{1}{k(x)} dx \approx -w_{x_{i-\frac{1}{2}}} \int_{x_{i-1}}^{x_i} \frac{1}{k(x)} dx \quad (34)$$

$$w_{x_{i-\frac{1}{\alpha}}} \approx a_i u_{\overline{x}} \tag{35}$$

$$a_i = \left(\frac{1}{h} \int_{x_{i-1}}^{x_i} \frac{1}{k(x)} dx\right)^{-1} \tag{36}$$

$$\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} q^2(x)u(x)dx \approx u_i h d_i$$
 (37)

$$d_{i} = \frac{1}{h} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} q(x) dx \tag{38}$$

$$\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x)dx = h\phi_i \tag{39}$$

$$\phi_i = \frac{1}{h} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x) dx \tag{40}$$

Підставивши ці вирази в (31) і поділивши весь вираз на h отримаємо різницеву схему.

$$-(ay_{\overline{x}})_{x,i} + d_i y_i = \phi_i, \qquad x \in w_h \tag{41}$$

Де w_h - внутрішні вузли сітки, коеф. різницевої схеми визначаються формулами (36, 38, 40)

Розглянемо випадок, з крайовими умовами 3 роду.

$$-ku' + \alpha_1 = \mu_1, \qquad x = 0 \tag{42}$$

$$ku' + \alpha_2 = \mu_2, \qquad x = 1 \tag{43}$$

Розглянемо (42), розглядаємо проміжок $[x_0, x_{\frac{1}{2}}]$:

$$w_{\frac{1}{2}} - w_0 + \int_{x_0}^{x_{\frac{1}{2}}} qu dx = \int_{x_i}^{x_{\frac{1}{2}}} f dx \tag{44}$$

З формули (35) маємо

$$w_{\frac{1}{2}} \approx -a_1 u_{\overline{x},1} \tag{45}$$

3 (42):

$$W_0 = \mu_1 - \alpha_1 u_0 \tag{46}$$

$$\int_{x_0}^{x_{\frac{1}{2}}} q(x)u(x)dx \approx u_i \frac{h}{2} d_0$$
 (47)

$$d_0 \approx \frac{2}{h} \int_{x_0}^{x_{\frac{1}{2}}} q(x) dx \tag{48}$$

$$\int_{x_0}^{x_{\frac{1}{2}}} f(x)dx \approx \frac{h}{2}\phi_0 \tag{49}$$

$$\phi_0 \approx \frac{2}{h} \int_{x_0}^{x_{\frac{1}{2}}} f(x) dx \tag{50}$$

Підставляючи вирази (45, 46, 47, 49) в (44) отримаємо

$$-a_1 y_{x,0} + \alpha_1 y_0 + \mu_1 + \frac{h}{2} d_0 y_0 = \frac{h}{2} \phi_0$$
 (51)

$$-a_0 y_{x,0} + \overline{\alpha_1} y_0 = \overline{\mu_1} \tag{52}$$

Отримали фароксимацію (52) де коеф. визначаються

$$\overline{\alpha_1} = \alpha_1 + \frac{h}{2}d_0 \tag{53}$$

$$\overline{\mu_1} = \mu_1 + \frac{h}{2}\phi_0 \tag{54}$$

Різницева апроксимація для граничних умов (43) рахується аналогічно:

$$a_N y_{\overline{x},N} + \overline{\alpha_2} y_N = \overline{\mu_2} \tag{55}$$

$$\overline{\alpha_2} = \alpha_2 + \frac{h}{2} d_N \tag{56}$$

$$\overline{\mu_2} = \mu_2 + \frac{h}{2}\phi_N \tag{57}$$

Отримаємо систему лінійних алгебраїчних рівнянь, з тридіагональноюю матрицею. Після розв'язання системи отримаємо значення розвязку системи (1) в точках $x_i, i = \overline{0, N}$.

3. Практична частина

3.1. Метод Скінченних різниць

Побудуємо функції для N=50, N=100 та порівняємо з результатом метода Гальоркіна при N=10:

Рис. 1. N = 50

Рис. 2. N = 100

Порівняємо графіки результатів метода Скінченних різниць при N=50, N=100.

Подивимося на різницю між результатами при N=50, N=100:

Рис. 3. N = 50, N = 100

x	$ u_{50}(x) - u_{100}(x) $
0.00	0.000002
0.10	0.000000
0.20	0.000002
0.30	0.000003
0.40	0.000004
0.50	0.000002
0.60	0.000001
0.70	0.000003
0.80	0.000002
0.90	0.000000
1.00	0.000002

3.2. Інтегро-інтерполяційний метод

Побудуємо функції для N=50, N=100 та порівняємо з результатом метода Гальоркіна при N=10:

Порівняємо графіки результатів метода Скінченних різниць при N=50, N=100.

Подивимося на різницю між результатами при N=50, N=100:

Рис. 4. N = 50

Рис. 5. N = 100

Рис. 6. N = 50, N = 100

x	$ u_{50}(x) - u_{100}(x) $
0.00	0.000001
0.10	0.000001
0.20	0.000002
0.30	0.000002
0.40	0.000001
0.50	0.000000
0.60	0.000002
0.70	0.000002
0.80	0.000003
0.90	0.000002
1.00	0.000002

3.3. Порівняння 3 методів

Розглянемо різницю результатів методу Гальоркіна при N=10, Методу скінченних різниць N=100, Ітегро-інтерполяційним метод при N=100

x	u_0	u_1	u_2	$\delta_{0,1}$	$\delta_{0,2}$	$\delta_{1,2}$
0.00	0.171333	0.171336	0.171335	0.000003	0.000002	0.000001
0.10	0.173543	0.173545	0.173542	0.000001	0.000001	0.000003
0.20	0.180465	0.180468	0.180464	0.000004	0.000000	0.000004
0.30	0.192504	0.192508	0.192503	0.000004	0.000001	0.000005
0.40	0.209514	0.209518	0.209514	0.000003	0.000000	0.000003
0.50	0.229962	0.229961	0.229962	0.000001	0.000000	0.000001
0.60	0.250552	0.250548	0.250553	0.000004	0.000001	0.000005
0.70	0.267425	0.267419	0.267426	0.000006	0.000001	0.000007
0.80	0.277967	0.277962	0.277967	0.000005	0.000001	0.000006
0.90	0.281329	0.281326	0.281330	0.000003	0.000001	0.000004
1.00	0.277719	0.277717	0.277719	0.000002	0.000001	0.000001

Де u_0 - результат методу Гальоркіна, u_1 -результат методу Скінченних різниць, u_2 - результат Інтегро-інтерполяційного методу, $\delta_{0,1}$ різниця між $u_0,u_1,$ $\delta_{0,2}$ різниця між $u_0,u_2,$ $\delta_{1,2}$ різниця між u_1,u_2