Finite Group Theory

IKHAN CHOI

Contents

1.	Special groups	1
1.1.	. Abelian groups	1
1.2.	Symmetric groups	1
1.3.	. Coxeter groups	1
1.4.	. Linear groups	1
2.	Sylow theory	1
3.	Extensions	3

1. Special groups

- 1.1. Abelian groups.
- 1.2. Symmetric groups.
- 1.3. Coxeter groups.
- 1.4. Linear groups.

2. Sylow theory

Definition 2.1 (Sylow *p*-subgroup). Let G be a finite group of order $n = p^a m$ for a prime $p \nmid m$. A $Sylow \ p$ -subgroup is a subgroup of order p^a . We are going to denote the set of Sylow p-subgroups by $Syl_p(G)$ and the number of Sylow p-subgroups by $n_p(G)$.

Theorem 2.1 (The Sylow theorem). Let G be a finite group of order $n = p^a m$ for a prime $p \nmid m$. Then,

$$p \mid n_p - 1, \qquad n_p \mid m$$

for some $k \in \mathbb{N}$.

Proof. Step 1: Sylow p-subgroups exist. We apply mathematical induction. The base step is trivial. Suppose every finite group of order less than n possesses a Sylow p-subgroup.

By applying the orbit-stabilizer theorem for the action $G \curvearrowright G$ by conjugation, build the class equation

$$|G| = |Z(G)| + \sum_{i} |G : C_G(g_i)|.$$

First Written: November 16, 2019. Last Updated: November 16, 2019. IKHAN CHOI

There are two cases: $p \mid |Z(G)|$ or $p \nmid |Z(G)|$.

2

Case 1: $p \mid |Z(G)|$. The group G has a normal subgroup of order p by applying Cauchy's theorem for abelian groups on the center. Then, the inverse image of a Sylow p-subgroup of the quotient group is also a Sylow p-subgroup of G.

Case 2: $p \nmid |Z(G)|$. Since $p \mid n$, we have $p \nmid |G|$: $C_G(g)$ for some $g \in G$. Then, a Sylow p-subgroup of the centralizer is also a Sylow p-subgroup of G.

Therefore, we are done for Step 1.

- Step 2: Sylow p-subgroup that is normal is unique. Note that p does not divide the order of the quotient group. Every p-subgroup should be contained in the Sylow p-subgroup, the kernel of the quotient map. The Sylow p-subgroup is clearly unique.
- Step 3: Sylow p-subgroups get action by conjugation. Let P be a Sylow p-subgroup of G. We construct class equations via the orbit-stabilizer theorm for various actions to extract information on n_p . Note that stabilizers in any setwise conjugation action is exactly normalizers.
 - (1) The action $P \curvearrowright \operatorname{Syl}_p(G)$ gives

$$n_p = 1 + \sum_{i} |P : N_P(P_i)|$$

since $P = N_P(P_i)$ implies $P \leq N_G(P_i)$ and $P = P_i$.

(2) Suppose the action $G \curvearrowright \operatorname{Syl}_p(G)$ is not transitive. Take another Sylow p-subgroup P' is not conjugate with P in G. The two actions $P \curvearrowright \operatorname{Orb}_G(P)$ and $P' \curvearrowright \operatorname{Orb}_G(P)$ gives

$$|\operatorname{Orb}_G(P)| = 1 + \sum_i |P : N_P(P_i)| = \sum_i |P' : N_{P'}(P_i)|.$$

It deduces $|\operatorname{Orb}_G(P)| \equiv 0, 1 \pmod{p}$ simultaneously, which leas a contradiction.

(3) The action $G \curvearrowright \operatorname{Syl}_n(G)$ gives

$$n_p = |G: N_G(P_i)|$$

for all $P_i \in \text{Syl}_n(G)$ because the action is transitive.

Then, (1) proves $p \mid n_p - 1$, and (3) proves $n_p \mid m$.

Corollary 2.2. Let G be a finite group. Then,

- (1) every pair of two Sylow p-subgroup is conjugate.
- (2) every p-subgroup is contained in a Sylow p-subgroup.
- (3) a Sylow p-subgroup is normal if and only if $n_p = 1$.

Theorem 2.3. Alternative proof for existence of p-groups.

Proof. Let $|G| = p^{a+b}m$. Let \mathcal{P}_{p^a} be the set of all p^a -sets in G. Give $G \curvearrowright \mathcal{P}_{p^a}$ by left multiplication. Since $v_p(|\mathcal{P}_{p^a}|) = v_p(\binom{p^a(p^bm)}{p^a}) = b$, there is an orbit \mathcal{O} such that $v_p(|\mathcal{O}|) \leq b$. We have transitive action $G \curvearrowright \mathcal{O}$ and the stabilizer H satisfies $p^a \mid |G|/|\mathcal{O}| = |H|$. Since $H \curvearrowright \mathcal{O}$ trivially, $H \curvearrowright A$ for $A \in \mathcal{O} \subset \mathcal{P}_{p^a}$. It is only possible when $H \subset A$, hence $|H| = p^a$.

What we want to find is subgroup lattices. A subgroup lattice particularly contains data about orders and conjugacy classes of subgroups.

In order to show the existence of subgroups of paricular orders:

- (1) p-group theory, (including Cuachy and Sylow)
- (2) extension theory, (what can subgroups of subgroups do?)
- (3) normalizers,
- (4) kernel of permutation representation

In order to find the size of conjugacy classes:

- (1) measure the order of normalizers, (find some groups normalize a subgroup)
- (2) count elements,

3. Extensions

Proposition 3.1. Let N and H be groups. Then, the following objects have one-to-one correspondences among each other.

(1) isomorphic types of groups G such that a sequence

$$0 \to N \to G \to H \to 0$$

is exact and right split,

- (2) isomorphic types of groups G such that $N \subseteq G \supseteq H$ with G = NH and $N \cap H = 1$,
- (3) group actions $H \cap N$ preserving the group structure of N.

Definition 3.1. The group G in the previous proposition is called the *semidirect product* of N and H.

$$0 \longrightarrow F \longrightarrow E \longrightarrow G \longrightarrow 0.$$

Four data $G, F, \varphi : G \to \operatorname{Aut}(F), c : G \times G \to F$ completely determine the extension E.

Suppose we have an extension $F \to E \to G$. There is a set-theoretic section $s: G \to E$. The number of s is |G||F|.

Definition of $action \varphi$: For two sections s and s', s(g) and s'(g) acts on F equivalently. Thus, we can define a $group\ homomorphism\ \varphi: G \to \operatorname{Aut}(F)$ independently on sections.

Definition of 2-cocycle c: It is a set-theoretic function $c: G \times G \to F$ defined by $c(g,g') = s(g)s(g')s(gg')^{-1}$ for a section s. Actually, c depends on the section s, and c measures how much s fails to be a group homomorphism. It requires the cocycle condition for the associativity of group operation, i.e.

$$c(g,h)c(gh,k) = \varphi_q(c(h,k))c(g,hk)$$

should be satisfied. Conversely, a map $G \times G \to F$ satisfying the condition the cocycle condition gives a associative group operation on G.

If F is abelian, then the set of cocycles forms an abelian group, and is denoted by $\mathbb{Z}^2(G,F)$. The boundaries are also defined in abelian F case.

- (1) φ , c is trivial \Leftrightarrow direct product,
- (2) c is trivial $\Leftrightarrow s$ is a homomorphism \Leftrightarrow semidirect product,
- (3) φ is trivial \Leftrightarrow central extension.

4 IKHAN CHOI

Group cohomology is defined for a group G and G-module A (three data: G, A, φ . What is important is that the cohomology depends on the action of G on A.

If φ is trivial so that A is just an abelian group, then the universal coefficient theorem can be applied.