DEPARTAMENT DE MATEMÀTICA APLICADA (ETSINF)

QÜESTIONARI DE LA SISENA PRÀCTICA

	QUESTIONARI DE LA SISENA FRACTICA
1.	Defineix en <i>Mathematica</i> , utilitzant If, la succesió definida per la recurrència
	$\begin{cases} a_1 & = 7 \\ a_{n+1} & = 1 + \frac{1}{3a_n}, & n \ge 1 \end{cases}$
	Comprova amb que $a(1)=7$ i $a(2)=1+\frac{1}{3\cdot 7}=$. El terme a_{10} de la successió, amb nou decimals, és $a_{10}\approx$.
	És convegent la successió? (Utilitza Table i/o DiscretePlot) En cas afirmatiu, quin és el valor aproximat del límit?
	Per calcular el valor exacte del límit: substitueix en la recurrència a_n i a_{n+1} per x i resolution de l'equació corresponent (per què?):
	i, a partir dels valors obtinguts amb Table, intenta concloure si x_1 ó x_2 és el límit de la successió:
2.	$\label{eq:lim} \lim a_n =$ Defineix, utilitzant If , la successió definida per
	$\begin{cases} a_1 & = 2 \\ a_{n+1} & = \sqrt{5+4a_n} , n \ge 1 \end{cases}$
	Comprova que $a(1)=2$ i $a(2)=\sqrt{5+4\cdot 2}=$. El valor de a_{15} , amb vint decimals, és
	Creus que es tracta d'una successió convergent?
3.	El problema de las torres de Hanoi es formula amb la següent recurrència:
	$\begin{cases} a_1 = 1 \\ a_{n+1} = 2a_n + 1, & n \ge 2 \end{cases}$
	Troba la forma explícita de la successió. utilitzant la instrucció RSolve.

4. Defineix (amb If) la successió $a_2=-3,\ a_{n+1}=\frac{a_n}{5}+n^2-1.$ Calcula $a_{12}\approx$ $a_{100}\approx$

Utilitza RSolve per a deduir la seua forma explícita, $a_n =$

5. Considera la successió de Fibonacci definida amb la recurrència

$$a_{n+2} = a_n + a_{n+1}$$
 , $a_1 = a_2 = 1$

Determina de forma explícita el seu terme general (prova primer a utilitzar Rsolve).

6. Troba, amb RSolve, la forma explícita de la successió definida per:

$$a_{n+2} = 6a_{n+1} - 9a_n + 5n$$
, $a_0 = 3$, $a_1 = -2$

_		
$a_n =$		

7. Troba, amb RSolve, la solució general de la recurrencia $a_{n+3}-3a_{n+2}-a_{n+1}+3a_n=2^n$.

$a_n =$
