

IAP20 Reckitt Benckiser 18 APR 2006

## ISOPENTYLCARBOXANILIDE ZUR BEKÄMPFUNG VON UNTERWÜNSCHTEN MIKROORGANISMEN

Die vorliegende Erfindung betrifft neue Isopentylcarboxanilide, mehrere Verfahren zu deren Herstellung und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.

5

Es ist bereits bekannt, dass zahlreiche Carboxanilide fungizide Eigenschaften besitzen (vgl. z.B. WO 02/059086, WO 00/09482, EP-A 0 824 099, EP-A 0 755 927, EP-A 0 589 301, EP-A 0 545 099, JP 11-335364, JP 10-310577 und JP 10-251240). So sind beispielsweise 1-Methyl-N-[2-(3-methylbutyl)phenyl]-3-(trifluormethyl)-1H-pyrazol-4-carboxamid (aus EP-A 0 824 099) und 2,5-Dimethyl-N-[3-(3-methylbutyl)phenyl]-3-furamid (aus EP-A 0 755 927) bekannt. Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.

10

Es wurden nun neue Isopentylcarboxanilide der Formel (I)



15 gefunden, in welcher



wobei die mit \* markierte Bindung mit dem Amid verbunden ist, während die mit # markierte Bindung mit der Alkylseitenkette verknüpft ist,

R¹ für Wasserstoff, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>-Alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfonyl, Halogen-C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Halogen-cycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkyl)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl; Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

(C<sub>1</sub>-C<sub>8</sub>-Alkyl)carbonyl, (C<sub>1</sub>-C<sub>8</sub>-Alkoxy)carbonyl, (C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl)carbonyl; (C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl)carbonyl, (C<sub>1</sub>-C<sub>6</sub>-Halogenalkoxy)carbonyl, (Halogen-C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>8</sub>-Halogen-cycloalkyl)carbonyl mit jeweils

- 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder  $-C(=O)C(=O)R^4$ ,  $-CONR^5R^6$  oder  $-CH_2NR^7R^8$  steht,
- $R^2$  für Wasserstoff, Fluor, Chlor, Methyl oder Trifluormethyl steht,
- $R^3$  für Wasserstoff, Halogen,  $C_1$ - $C_8$ -Alkyl,  $C_1$ - $C_8$ -Halogenalkyl steht,
- 5  $R^4$  für Wasserstoff,  $C_1$ - $C_8$ -Alkyl,  $C_1$ - $C_8$ -Alkoxy,  $C_1$ - $C_4$ -Alkoxy- $C_1$ - $C_4$ -alkyl,  $C_3$ - $C_8$ -Cycloalkyl;  $C_1$ - $C_6$ -Halogenalkyl,  $C_1$ - $C_6$ -Halogenalkoxy, Halogen- $C_1$ - $C_4$ -alkoxy- $C_1$ - $C_4$ -alkyl,  $C_3$ - $C_8$ -Halogen-cycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,
- 10  $R^5$  und  $R^6$  unabhängig voneinander jeweils für Wasserstoff,  $C_1$ - $C_8$ -Alkyl,  $C_1$ - $C_4$ -Alkoxy- $C_1$ - $C_4$ -alkyl,  $C_3$ - $C_8$ -Cycloalkyl;  $C_1$ - $C_8$ -Halogenalkyl, Halogen- $C_1$ - $C_4$ -alkoxy- $C_1$ - $C_4$ -alkyl,  $C_3$ - $C_8$ -Halogen-cycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,
- 15  $R^5$  und  $R^6$  außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder  $C_1$ - $C_4$ -Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder  $NR^9$  enthalten kann,
- $R^7$  und  $R^8$  unabhängig voneinander für Wasserstoff,  $C_1$ - $C_8$ -Alkyl,  $C_3$ - $C_8$ -Cycloalkyl;  $C_1$ - $C_8$ -Halogenalkyl,  $C_3$ - $C_8$ -Halogen-cycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,
- 20  $R^7$  und  $R^8$  außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder  $C_1$ - $C_4$ -Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder  $NR^9$  enthalten kann,
- 25  $R^9$  für Wasserstoff oder  $C_1$ - $C_6$ -Alkyl steht,
- 25 A für den Rest der Formel (A1)
- 
- (A1) steht, in welcher
- 30  $R^{10}$  für Wasserstoff, Hydroxy, Formyl, Cyano, Halogen, Nitro,  $C_1$ - $C_4$ -Alkyl,  $C_1$ - $C_4$ -Alkoxy,  $C_1$ - $C_4$ -Alkylthio,  $C_3$ - $C_8$ -Cycloalkyl,  $C_1$ - $C_4$ -Halogenalkyl,  $C_1$ - $C_4$ -Halogenalkoxy oder  $C_1$ - $C_4$ -Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen, Aminocarbonyl oder Aminocarbonyl- $C_1$ - $C_4$ -alkyl steht,
- $R^{11}$  für Wasserstoff, Halogen, Cyano,  $C_1$ - $C_4$ -Alkyl,  $C_1$ - $C_4$ -Alkoxy,  $C_1$ - $C_4$ -Alkylthio,  $C_1$ - $C_4$ -Halogenalkyl oder  $C_1$ - $C_4$ -Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen, steht und

R<sup>12</sup> für Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl, Hydroxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkylthio-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl mit jeweils 1 bis 5 Halogenatomen, oder für Phenyl steht,

5 mit der Maßgabe, dass R<sup>10</sup> nicht für Iod steht, wenn R<sup>11</sup> für Wasserstoff steht, und mit der Maßgabe, dass R<sup>10</sup> nicht für Trifluormethyl oder Difluormethyl steht, wenn R<sup>3</sup> und R<sup>11</sup> für Wasserstoff und R<sup>12</sup> für Methyl stehen,

oder

A für den Rest der Formel (A2)



(A2) steht, in welcher

10

R<sup>13</sup> und R<sup>14</sup> unabhängig voneinander für Wasserstoff, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und

R<sup>15</sup> für Halogen, Cyano oder C<sub>1</sub>-C<sub>4</sub>-Alkyl, oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

15 oder

A für den Rest der Formel (A3)



(A3) steht, in welcher

R<sup>16</sup> und R<sup>17</sup> unabhängig voneinander für Wasserstoff, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und

20 R<sup>18</sup> für Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A4)



(A4) steht, in welcher

25

R<sup>19</sup> für Wasserstoff, Halogen, Hydroxy, Cyano, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A5)



(A5) steht, in welcher

R<sup>20</sup> für Halogen, Hydroxy, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht und

5 R<sup>21</sup> für Wasserstoff, Halogen, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinyl oder C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl steht,

oder

A für den Rest der Formel (A6)



(A6) steht,

10 oder

A für den Rest der Formel (A7)



(A7) steht, in welcher

R<sup>22</sup> für C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

15 A für den Rest der Formel (A8)



(A8) steht, in welcher

R<sup>23</sup> für C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A9)



(A9) steht, in welcher

20

R<sup>24</sup> und R<sup>25</sup> unabhängig voneinander für Wasserstoff, Halogen, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

25 R<sup>26</sup> für Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 to 5 Halogenatomen steht, mit der Maßgabe, dass R<sup>24</sup> und R<sup>26</sup> nicht gleichzeitig für Methyl stehen, wenn R<sup>25</sup> für Wasserstoff steht,

oder

A für den Rest der Formel (A10)



(A10) steht, in welcher

R<sup>27</sup> und R<sup>28</sup> unabhängig voneinander für Wasserstoff, Halogen, Amino, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und

R<sup>29</sup> für Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

5 oder

A für den Rest der Formel (A11)



(A11) steht, in welcher

R<sup>30</sup> für Wasserstoff, Halogen, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

10 R<sup>31</sup> für Halogen, Hydroxy, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht, mit der Maßgabe, dass R<sup>31</sup> nicht für Trifluormethyl, Difluormethyl oder Methyl steht, wenn R<sup>3</sup> für Wasserstoff und R<sup>30</sup> für Methyl stehen,

oder

15 A für den Rest der Formel (A12)



(A12) steht, in welcher

R<sup>32</sup> für Wasserstoff, Halogen, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

R<sup>33</sup> für Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

20 oder

A für den Rest der Formel (A13)



(A13) steht, in welcher

R<sup>34</sup> für Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl steht und

R<sup>35</sup> für Halogen oder C<sub>1</sub>-C<sub>4</sub>-Alkyl steht,

25 oder

A für den Rest der Formel (A14)



(A14) steht, in welcher

15      R<sup>36</sup>      für Wasserstoff, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

20      A      für den Rest der Formel (A15)



(A15) steht, in welcher

25      R<sup>37</sup>      für Halogen, Hydroxy, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylothio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

30      oder

A      für den Rest der Formel (A16)



(A16) steht, in welcher

35      R<sup>38</sup>      für Wasserstoff, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Hydroxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)aminosulfonyl, C<sub>1</sub>-C<sub>6</sub>-Alkylcarbonyl oder für jeweils gegebenenfalls substituiertes Phenylsulfonyl oder Benzoyl steht,

40      R<sup>39</sup>      für Wasserstoff, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

45      R<sup>40</sup>      für Wasserstoff, Halogen, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

50      R<sup>41</sup>      für Wasserstoff, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

mit der Maßgabe, dass R<sup>40</sup> nicht für Trifluormethyl steht,

oder

55      A      für den Rest der Formel (A17)



(A17) steht, in welcher

60      R<sup>42</sup>      für C<sub>1</sub>-C<sub>4</sub>-Alkyl steht.

Die erfindungsgemäßen Verbindungen können gegebenenfalls als Mischungen verschiedener möglicher isomerer Formen, insbesondere von Stereoisomeren, wie z. B. E- und Z-, threo- und erythro-, sowie optischen Isomeren, gegebenenfalls aber auch von Tautomeren vorliegen. Es werden sowohl die E- als auch die Z-Isomeren, wie auch die threo- und erythro-, sowie die optischen Isomeren, beliebige Mischungen dieser Isomeren, sowie die möglichen tautomeren Formen beansprucht.

Weiterhin wurde gefunden, dass man Isopentylcarboxanilide der Formel (I) erhält, indem man

a) Carbonsäure-Derivate der Formel (II)



in welcher

A die oben angegebenen Bedeutungen hat und

X<sup>1</sup> für Halogen oder Hydroxy steht,

mit einem Anilin-Derivat der Formel (III)



in welcher L, R<sup>1</sup> und R<sup>3</sup> die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Kondensationsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

oder

b) Isopentylcarboxanilide der Formel (I-a)



in welcher L, A und R<sup>3</sup> die oben angegebenen Bedeutungen haben

mit Halogeniden der Formel (IV)



in welcher

X<sup>2</sup> für Chlor, Brom oder Iod steht,

R<sup>1-A</sup> für C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>-Alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfonyl, Halogen-C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl,

5

$C_3$ - $C_8$ -Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl- $C_1$ - $C_3$ -alkyl, ( $C_1$ - $C_3$ -Alkyl)carbonyl- $C_1$ - $C_3$ -alkyl, ( $C_1$ - $C_3$ -Alkoxy)carbonyl- $C_1$ - $C_3$ -alkyl; Halogen-( $C_1$ - $C_3$ -alkyl)carbonyl- $C_1$ - $C_3$ -alkyl, Halogen-( $C_1$ - $C_3$ -alkoxy)carbonyl- $C_1$ - $C_3$ -alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

10

( $C_1$ - $C_8$ -Alkyl)carbonyl, ( $C_1$ - $C_8$ -Alkoxy)carbonyl, ( $C_1$ - $C_4$ -Alkoxy- $C_1$ - $C_4$ -alkyl)carbonyl, ( $C_3$ - $C_8$ -Cycloalkyl)carbonyl; ( $C_1$ - $C_6$ -Halogenalkyl)carbonyl, ( $C_1$ - $C_6$ -Halogenalkoxy)carbonyl, (Halogen- $C_1$ - $C_4$ -alkoxy- $C_1$ - $C_4$ -alkyl)carbonyl, ( $C_3$ - $C_8$ -Halogen-

cycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder

$-C(=O)C(=O)R^4$ ,  $CONR^5R^6$  oder  $-CH_2NR^7R^8$  steht,

wobei  $R^4$ ,  $R^5$ ,  $R^6$ ,  $R^7$  und  $R^8$  die oben angegebenen Bedeutungen haben;

in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt,

oder

c) Isopenton-Derivate der Formel (V)



15

in welcher  $R^1$ ,  $R^2$ ,  $R^3$  und A die oben angegebenen Bedeutungen haben,  
mit Hydrazin (oder Hydrazin-hydrat) in Gegenwart einer Base und gegebenenfalls in  
Gegenwart eines Verdünnungsmittels umsetzt,

oder

20 d) Isopenten-Derivate der Formel (VI)



in welcher  $R^1$ ,  $R^2$ ,  $R^3$  und A die oben angegebenen Bedeutungen haben,  
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart  
eines Katalysators hydriert,

25 oder

e) Isopentin-Derivate der Formel (VII)



in welcher R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und A die oben angegebenen Bedeutungen haben, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators hydriert.

5

Schließlich wurde gefunden, dass die neuen Isopentylcarboxanilide der Formel (I) sehr gute mikrobizide Eigenschaften besitzen und zur Bekämpfung unerwünschter Mikroorganismen sowohl im Pflanzenschutz als auch im Materialschutz verwendbar sind.

10 Die erfindungsgemäßen Isopentylcarboxanilide sind durch die Formel (I) allgemein definiert. Bevorzugte Restedefinitionen der vorstehenden und nachfolgend genannten Formeln sind im Folgenden angegeben. Diese Definitionen gelten für die Endprodukte der Formel (I) wie für alle Zwischenprodukte gleichermaßen.

15 L steht bevorzugt für L-1, wobei R<sup>2</sup> jeweils die allgemeinen, bevorzugten, besonders bevorzugten, ganz besonders bevorzugten oder insbesondere bevorzugten Bedeutungen haben kann.

L steht außerdem bevorzugt für L-2.

L steht außerdem bevorzugt für L-3.

20 L steht außerdem bevorzugt für L-4.

L steht besonders bevorzugt für L-1, wobei R<sup>2</sup> jeweils die allgemeinen, bevorzugten, besonders bevorzugten, ganz besonders bevorzugten oder insbesondere bevorzugten Bedeutungen haben kann.

L steht außerdem besonders bevorzugt für L-2.

25 L steht ganz besonders bevorzugt für L-1, wobei R<sup>2</sup> jeweils die allgemeinen, bevorzugten, besonders bevorzugten, ganz besonders bevorzugten oder insbesondere bevorzugten Bedeutungen haben kann.

R<sup>1</sup> steht bevorzugt für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, C<sub>1</sub>-C<sub>3</sub>-Alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfonyl, Halogen-C<sub>1</sub>-C<sub>3</sub>-alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Halogenycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkyl)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-

alkyl; Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen; (C<sub>1</sub>-C<sub>6</sub>-Alkyl)carbonyl, (C<sub>1</sub>-C<sub>4</sub>-Alkoxy)carbonyl, (C<sub>1</sub>-C<sub>3</sub>-Alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl)carbonyl; (C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl)carbonyl, (C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy)carbonyl, (Halogen-C<sub>1</sub>-C<sub>3</sub>-alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>6</sub>-Halogencycloalkyl)carbonyl mit jeweils 5 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R<sup>4</sup>, -CONR<sup>5</sup>R<sup>6</sup> oder -CH<sub>2</sub>NR<sup>7</sup>R<sup>8</sup>.

10 R<sup>1</sup> steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl, Pentyl oder Hexyl, Methylsulfinyl, Ethylsulfinyl, n- oder iso-Propylsulfinyl, n-, iso-, sec- oder tert-Butylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder iso-Propylsulfonyl, n-, iso-, sec- oder tert-Butylsulfonyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Trifluormethyl, Trichlormethyl, Trifluorethyl, Difluormethylthio, Difluorchloromethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Trifluormethoxymethyl; Formyl, -CH<sub>2</sub>-CHO, -(CH<sub>2</sub>)<sub>2</sub>-CHO, 15 -CH<sub>2</sub>-CO-CH<sub>3</sub>, -CH<sub>2</sub>-CO-CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>-CO-CH(CH<sub>3</sub>)<sub>2</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO-CH<sub>3</sub>, -CH<sub>2</sub>-CO-CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>-CO<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>, -CH<sub>2</sub>-CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>-CO-CF<sub>3</sub>, -CH<sub>2</sub>-CO-CCl<sub>3</sub>, -CH<sub>2</sub>-CO-CH<sub>2</sub>CF<sub>3</sub>, -CH<sub>2</sub>-CO-CH<sub>2</sub>CCl<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO-CH<sub>2</sub>CF<sub>3</sub>, 20 -(CH<sub>2</sub>)<sub>2</sub>-CO-CH<sub>2</sub>CCl<sub>3</sub>, -CH<sub>2</sub>-CO<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO<sub>2</sub>CF<sub>2</sub>CF<sub>3</sub>, -CH<sub>2</sub>-CO<sub>2</sub>CH<sub>2</sub>CCl<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO<sub>2</sub>CCl<sub>2</sub>CCl<sub>3</sub>; Methylearbonyl, Ethylcarbonyl, n-Propylcarbonyl, iso-Propylcarbonyl, tert-Butylcarbonyl, Methoxycarbonyl, Ethoxycarbonyl, tert-Butoxycarbonyl, Cyclopropylcarbonyl; Trifluormethylcarbonyl, Trifluormethoxycarbonyl, oder -C(=O)C(=O)R<sup>5</sup>, -CONR<sup>6</sup>R<sup>7</sup> oder -CH<sub>2</sub>NR<sup>8</sup>R<sup>9</sup>.

25 R<sup>1</sup> steht ganz besonders bevorzugt für Wasserstoff, Methyl, Methoxymethyl, Formyl, -CH<sub>2</sub>-CHO, -(CH<sub>2</sub>)<sub>2</sub>-CHO, -CH<sub>2</sub>-CO-CH<sub>3</sub>, -CH<sub>2</sub>-CO-CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>-CO-CH(CH<sub>3</sub>)<sub>2</sub>, -C(=O)CHO, -C(=O)C(=O)CH<sub>3</sub>, -C(=O)C(=O)CH<sub>2</sub>OCH<sub>3</sub>, -C(=O)CO<sub>2</sub>CH<sub>3</sub>, -C(=O)CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>.

30 R<sup>2</sup> steht bevorzugt für Wasserstoff.

R<sup>2</sup> steht außerdem bevorzugt für Fluor, wobei Fluor besonders bevorzugt in 4-, 5- oder 6-Position, ganz besonders bevorzugt in 4- oder 6-Position, insbesondere in 4-Position des Anilidrestes steht [vgl. oben Formel (I)].

35 R<sup>2</sup> steht außerdem bevorzugt für Chlor, wobei Chlor besonders bevorzugt in 5-Position des Anilidrestes steht [vgl. oben Formel (I)]. Chlor steht außerdem besonders bevorzugt in 4-Position des Anilidrestes.

R<sup>2</sup> steht außerdem bevorzugt für Methyl, wobei Methyl besonders bevorzugt in 3-Position des Anilidrestes steht [vgl. oben Formel (I)].

R<sup>2</sup> steht außerdem bevorzugt für Trifluormethyl, wobei Trifluormethyl besonders bevorzugt in 4- oder 5-Position des Anilidrestes steht [vgl. oben Formel (I)].

5

R<sup>3</sup> steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl mit 1 bis 13 Fluor-, Chlor- und/oder Bromatomen.

R<sup>3</sup> steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, n-, iso-Propyl, n-, iso-, sec-, tert-Butyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 9 Fluor-, Chlor- und/oder 10 Bromatomen.

R<sup>3</sup> steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Methyl, Ethyl oder Trifluormethyl.

R<sup>4</sup> steht bevorzugt für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>3</sub>-Alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-15 C<sub>6</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, Halogen-C<sub>1</sub>-C<sub>3</sub>-alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.

R<sup>4</sup> steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, tert-Butyl, Methoxy, Ethoxy, n- oder iso-Propoxy, tert-Butoxy, Cyclopropyl; Trifluormethyl, Trifluor-methoxy.

20

R<sup>5</sup> und R<sup>6</sup> stehen unabhängig voneinander bevorzugt für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>3</sub>-Alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, Halogen-C<sub>1</sub>-C<sub>3</sub>-alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.

R<sup>5</sup> und R<sup>6</sup> bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, bevorzugt 25 einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Halogen oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR<sup>9</sup> enthalten kann.

R<sup>5</sup> und R<sup>6</sup> stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n-30 oder iso-Propyl, n-, iso-, sec- oder tert-Butyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl; Trifluormethyl, Trichlormethyl, Trifluorethyl, Trifluormethoxymethyl.

R<sup>5</sup> und R<sup>6</sup> bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, besonders bevorzugt einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, 35 Chlor, Brom oder Methyl substituierten gesättigten Heterocyclus aus der Reihe Morpholin,

Thiomorpholin oder Piperazin, wobei das Piperazin am zweiten Stickstoffatom durch R<sup>9</sup> substituiert sein kann.

R<sup>7</sup> und R<sup>8</sup> stehen unabhängig voneinander bevorzugt für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl;

5 C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>3</sub>-C<sub>6</sub>-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.

10 R<sup>7</sup> und R<sup>8</sup> bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, bevorzugt einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR<sup>9</sup> enthalten kann.

15 R<sup>7</sup> und R<sup>8</sup> stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl; Trifluormethyl, Trichlormethyl, Trifluoreethyl, Trifluormethoxymethyl.

20 R<sup>7</sup> und R<sup>8</sup> bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, besonders bevorzugt einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, Brom oder Methyl substituierten gesättigten Heterocyclus aus der Reihe Morpholin, Thiomorpholin oder Piperazin, wobei das Piperazin am zweiten Stickstoffatom durch R<sup>9</sup> substituiert sein kann.

25 R<sup>9</sup> steht bevorzugt für Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl.

R<sup>9</sup> steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl.

30 A steht bevorzugt für einen der oben angegebenen Reste  
A1, A2, A3, A4, A5, A6, A9, A10, A11, A12, A13, A14, A15 oder A16.

A steht besonders bevorzugt für einen der oben angegebenen Reste  
A1, A2, A4, A5, A6, A9, A11, A12, A13, A14, A15 oder A16.

35 A steht ganz besonders bevorzugt für den Rest A1.

A steht außerdem ganz besonders bevorzugt für den Rest A2.

A steht außerdem ganz besonders bevorzugt für den Rest A4.

A steht außerdem ganz besonders bevorzugt für den Rest A5.

A steht außerdem ganz besonders bevorzugt für den Rest A6.

40 A steht außerdem ganz besonders bevorzugt für den Rest A9.

A steht außerdem ganz besonders bevorzugt für den Rest A11.

- A steht außerdem ganz besonders bevorzugt für den Rest A12.
- A steht außerdem ganz besonders bevorzugt für den Rest A13.
- A steht außerdem ganz besonders bevorzugt für den Rest A14.
- A steht außerdem ganz besonders bevorzugt für den Rest A16.

5

- R<sup>10</sup> steht bevorzugt für Wasserstoff, Hydroxy, Formyl, Cyano, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, iso-Propyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Cyclopropyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen, Trifluormethylthio, Difluormethylthio, Aminocarbonyl, Aminocarbonylmethyl oder Aminocarbonylethyl mit der Maßgabe, dass R<sup>10</sup> nicht für Iod steht, wenn R<sup>11</sup> für Wasserstoff steht, und mit der Maßgabe, dass R<sup>10</sup> nicht für Trifluormethyl oder Difluormethyl steht, wenn R<sup>3</sup> und R<sup>11</sup> für Wasserstoff und R<sup>12</sup> für Methyl stehen.
- R<sup>10</sup> steht besonders bevorzugt für Wasserstoff, Hydroxy, Formyl, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, iso-Propyl, Methoxy, Ethoxy, Monofluormethyl, Monofluorethyl, Difluormethyl, Trifluormethyl, Difluorchlormethyl, Trichlormethyl, Dichlormethyl, Pentafluorethyl, Cyclopropyl, Methoxy, Ethoxy, Trifluormethoxy, Difluormethoxy, Trichlormethoxy, Methylthio, Ethylthio, Trifluormethylthio oder Difluormethylthio, mit der Maßgabe, dass R<sup>10</sup> nicht für Iod steht, wenn R<sup>11</sup> für Wasserstoff steht, und mit der Maßgabe, dass R<sup>10</sup> nicht für Trifluormethyl oder Difluormethyl steht, wenn R<sup>3</sup> und R<sup>11</sup> für Wasserstoff und R<sup>12</sup> für Methyl stehen.
- R<sup>10</sup> steht ganz besonders bevorzugt für Wasserstoff, Hydroxy, Formyl, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, iso-Propyl, Methoxy, Cyclopropyl, Monofluormethyl, Monofluorethyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Difluorchlormethyl, Trichlormethyl, -CHFCH<sub>3</sub> oder Difluormethoxy, mit der Maßgabe, dass R<sup>10</sup> nicht für Iod steht, wenn R<sup>11</sup> für Wasserstoff steht, und mit der Maßgabe, dass R<sup>10</sup> nicht für Trifluormethyl oder Difluormethyl steht, wenn R<sup>3</sup> und R<sup>11</sup> für Wasserstoff und R<sup>12</sup> für Methyl stehen.
- R<sup>10</sup> steht insbesondere bevorzugt für Wasserstoff, Hydroxy, Formyl, Chlor, Methyl, Ethyl, Methoxy, Cyclopropyl, Monofluormethyl, Difluormethyl, Dichlormethyl, Trifluormethyl, -CHFCH<sub>3</sub> oder Difluormethoxy, mit der Maßgabe, dass R<sup>10</sup> nicht für Trifluormethyl oder Difluormethyl steht, wenn R<sup>3</sup> und R<sup>11</sup> für Wasserstoff und R<sup>12</sup> für Methyl stehen.
- R<sup>11</sup> steht bevorzugt für Wasserstoff, Chlor, Brom, Iod, Methyl, Ethyl, Methoxy, Ethoxy, Methylthio, Ethylthio, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen,
- R<sup>11</sup> steht besonders bevorzugt für Wasserstoff, Chlor, Brom, Iod, Methyl oder -CHFCH<sub>3</sub>.

R<sup>11</sup> steht ganz besonders bevorzugt für Wasserstoff, Chlor, Methyl oder -CHFCH<sub>3</sub>.

R<sup>12</sup> steht bevorzugt für Wasserstoff, Methyl, Ethyl, n-Propyl, iso-Propyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen, Hydroxymethyl, Hydroxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl.

R<sup>12</sup> steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, iso-Propyl, Trifluormethyl, Difluormethyl, Hydroxymethyl, Hydroxyethyl oder Phenyl.

R<sup>12</sup> steht ganz besonders bevorzugt für Wasserstoff, Methyl, Trifluormethyl oder Phenyl.

R<sup>12</sup> steht insbesondere bevorzugt für Methyl.

10

R<sup>13</sup> und R<sup>14</sup> stehen unabhängig voneinander bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R<sup>13</sup> und R<sup>14</sup> stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Difluormethyl, Trifluormethyl, Difluorchlormethyl oder Trichlormethyl.

15

R<sup>13</sup> und R<sup>14</sup> stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Difluormethyl, Trifluormethyl oder Trichlormethyl.

R<sup>13</sup> und R<sup>14</sup> stehen insbesondere bevorzugt jeweils für Wasserstoff.

20

R<sup>15</sup> steht bevorzugt für Fluor, Chlor, Brom, Iod, Cyano, Methyl, Ethyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R<sup>15</sup> steht besonders bevorzugt für Fluor, Chlor, Brom, Iod, Cyano, Methyl, Trifluormethyl, Trifluormethoxy, Difluormethoxy, Difluorchlormethoxy oder Trichlormethoxy.

R<sup>15</sup> steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Iod, Methyl, Trifluormethyl oder Trifluormethoxy.

25

R<sup>15</sup> steht insbesondere bevorzugt für Chlor oder Methyl.

R<sup>16</sup> und R<sup>17</sup> stehen unabhängig voneinander bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R<sup>16</sup> und R<sup>17</sup> stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Difluormethyl, Trifluormethyl, Difluorchlormethyl oder Trichlormethyl.

R<sup>16</sup> und R<sup>17</sup> stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom oder Methyl.

R<sup>16</sup> und R<sup>17</sup> stehen insbesondere bevorzugt jeweils für Wasserstoff.

35

R<sup>18</sup> steht bevorzugt für Wasserstoff, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R<sup>18</sup> steht besonders bevorzugt für Wasserstoff, Methyl oder Trifluormethyl.

R<sup>18</sup> steht ganz besonders bevorzugt für Methyl.

R<sup>19</sup> steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkylthio mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R<sup>19</sup> steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Difluormethyl, Trifluormethyl, Disfluorchlormethyl, Trichlormethyl, Trifluormethoxy, Disfluormethoxy, Difluorchlormethoxy, Trichlormethoxy, Trifluormethylthio, Difluormethylthio, Difluorchlor-methylthio oder Trichlormethylthio.

R<sup>19</sup> steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, Difluor-methyl, Trifluormethyl oder Trichlormethyl.

R<sup>19</sup> steht insbesondere bevorzugt für Iod, Methyl, Difluormethyl oder Trifluormethyl.

15

R<sup>20</sup> steht bevorzugt für Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Disfluormethylthio, Trifluormethylthio, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R<sup>20</sup> steht besonders bevorzugt für Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Disfluorchlormethyl, Trichlormethyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluor-methylthio, Trifluormethylthio, Trifluormethoxy, Disfluormethoxy, Difluorchlormethoxy oder Trichlormethoxy.

R<sup>20</sup> steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Iod, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.

R<sup>21</sup> steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen, C<sub>1</sub>-C<sub>2</sub>-Alkylsulfinyl oder C<sub>1</sub>-C<sub>2</sub>-Alkylsulfonyl.

30 R<sup>21</sup> steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl, Trichlormethyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Trifluormethoxy, Difluor-methoxy, Disfluorchlormethoxy, Trichlormethoxy, Methylsulfinyl oder Methylsulfonyl.

R<sup>21</sup> steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Trichlormethyl, Methylsulfinyl oder Methylsulfonyl.

R<sup>21</sup> steht insbesondere bevorzugt für Wasserstoff.

R<sup>22</sup> steht bevorzugt für Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

5 R<sup>22</sup> steht besonders bevorzugt für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlor-methyl oder Trichlormethyl.

R<sup>22</sup> steht ganz besonders bevorzugt für Methyl, Trifluormethyl, Difluormethyl oder Trichlor-methyl.

10 R<sup>23</sup> steht bevorzugt für Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R<sup>23</sup> steht besonders bevorzugt für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluor-chlormethyl oder Trichlormethyl.

15 R<sup>23</sup> steht ganz besonders bevorzugt für Methyl, Trifluormethyl, Difluormethyl oder Trichlor-methyl.

R<sup>24</sup> und R<sup>25</sup> stehen unabhängig voneinander bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

20 R<sup>24</sup> und R<sup>25</sup> stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlor-methyl.

R<sup>24</sup> und R<sup>25</sup> stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom oder Methyl.

R<sup>24</sup> und R<sup>25</sup> stehen insbesondere bevorzugt jeweils für Wasserstoff.

25 R<sup>26</sup> steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogen-alkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R<sup>26</sup> steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, Trifluor-methyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.

30 R<sup>26</sup> steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl oder Trifluor-methyl.

R<sup>26</sup> steht insbesondere bevorzugt für Methyl oder Trifluormethyl.

R<sup>27</sup> und R<sup>28</sup> stehen unabhängig voneinander bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Nitro, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R<sup>27</sup> und R<sup>28</sup> stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Nitro, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichloromethyl.

5 R<sup>27</sup> und R<sup>28</sup> stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichloromethyl.

R<sup>27</sup> und R<sup>28</sup> stehen insbesondere bevorzugt jeweils für Wasserstoff.

R<sup>29</sup> steht bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

10 R<sup>29</sup> steht besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichloromethyl.

R<sup>29</sup> steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichloromethyl.

R<sup>29</sup> steht insbesondere bevorzugt für Methyl.

15

R<sup>30</sup> steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, Cyano, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

20 R<sup>30</sup> steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Cyano, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichloromethyl.

R<sup>30</sup> steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Methyl, Trifluormethyl, Difluormethyl oder Trichloromethyl.

25 R<sup>30</sup> steht insbesondere bevorzugt für Amino, Methylamino, Dimethylamino, Methyl oder Trifluormethyl.

R<sup>31</sup> steht bevorzugt für Fluor, Chlor, Brom, Hydroxy, Methyl, Ethyl, Methoxy, Ethoxy, Cyclopropyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

30 R<sup>31</sup> steht besonders bevorzugt für Fluor, Chlor, Brom, Hydroxy, Methyl, Ethyl, Methoxy, Ethoxy, Cyclopropyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichloromethyl.

R<sup>31</sup> steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Hydroxy, Methyl, Methoxy, Cyclopropyl, Trifluormethyl, Difluormethyl oder Trichloromethyl.

R<sup>32</sup> steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, Cyano, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

5 R<sup>32</sup> steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Cyano, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.

R<sup>32</sup> steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.

10 R<sup>32</sup> steht insbesondere bevorzugt für Amino, Methylamino, Dimethylamino, Methyl oder Trifluormethyl.

R<sup>33</sup> steht bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

15 R<sup>33</sup> steht besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.

R<sup>33</sup> steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.

R<sup>33</sup> steht insbesondere bevorzugt für Methyl, Trifluormethyl oder Difluormethyl.

20 R<sup>34</sup> steht bevorzugt für Wasserstoff, Methyl oder Ethyl.

R<sup>34</sup> steht besonders bevorzugt für Methyl.

R<sup>35</sup> steht bevorzugt für Fluor, Chlor, Brom, Methyl oder Ethyl.

R<sup>35</sup> steht besonders bevorzugt für Fluor, Chlor oder Methyl.

25 R<sup>36</sup> steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R<sup>36</sup> steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl oder Trifluormethyl.

30 R<sup>37</sup> steht bevorzugt für Fluor, Chlor, Brom, Iod, Hydroxy, C<sub>1</sub>-C<sub>4</sub>-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.

35 R<sup>37</sup> steht besonders bevorzugt für Fluor, Chlor, Brom, Iod, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl, Trichlormethyl.

R<sup>37</sup> steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Iod, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.

5 R<sup>38</sup> steht bevorzugt für Wasserstoff, Methyl, Ethyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, C<sub>1</sub>-C<sub>2</sub>-Alkoxy-C<sub>1</sub>-C<sub>2</sub>-alkyl, Hydroxymethyl, Hydroxyethyl, Methylsulfonyl oder Dimethylaminosulfonyl.

R<sup>38</sup> steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Ethoxymethyl, Hydroxymethyl oder Hydroxyethyl.

10 R<sup>38</sup> steht ganz besonders bevorzugt für Methyl oder Methoxymethyl.

R<sup>39</sup> steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen.

R<sup>39</sup> steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.

15 R<sup>39</sup> steht ganz besonders bevorzugt für Wasserstoff oder Methyl.

R<sup>40</sup> steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, iso-Propyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen.

R<sup>40</sup> steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, iso-Propyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.

R<sup>40</sup> steht ganz besonders bevorzugt für Wasserstoff, Fluor, Methyl oder Trifluormethyl.

R<sup>41</sup> steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

25 R<sup>41</sup> steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl oder Trifluormethyl.

R<sup>41</sup> steht ganz besonders bevorzugt für Wasserstoff oder Trifluormethyl.

R<sup>42</sup> steht bevorzugt für Methyl, Ethyl, n-Propyl oder iso-Propyl.

30 R<sup>42</sup> steht besonders bevorzugt Methyl oder Ethyl.

Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R<sup>2</sup> die oben angegebenen allgemeinen Bedeutungen hat.

35 Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R<sup>2</sup> die oben angegebenen bevorzugten Bedeutungen hat.

Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R<sup>2</sup> die oben angegebenen besonders bevorzugten Bedeutungen hat.

Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R<sup>2</sup> die oben angegebenen ganz besonders bevorzugten Bedeutungen hat.

5 Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R<sup>2</sup> die oben angegebenen insbesondere bevorzugten Bedeutungen hat.

Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-2 steht.

Hervorgehoben sind Verbindungen der Formel (I), in welcher R<sup>1</sup> für Wasserstoff steht.

Hervorgehoben sind Verbindungen der Formel (I), in welcher R<sup>1</sup> für Formyl steht.

10 Hervorgehoben sind außerdem Verbindungen der Formel (I), in welcher R<sup>1</sup> für -C(=O)C(=O)R<sup>4</sup> steht, wobei R<sup>4</sup> die oben angegebenen Bedeutungen hat.

Hervorgehoben sind Verbindungen der Formel (I), in welcher A für A1 steht.

Hervorgehoben sind Verbindungen der Formel (I), in welcher R<sup>3</sup> für Wasserstoff steht.

Hervorgehoben sind Verbindungen der Formel (I), in welcher R<sup>3</sup> für Halogen, bevorzugt für Fluor,

15 Chlor, Brom oder Iod, besonders bevorzugt für Fluor, Chlor oder Brom, ganz besonders bevorzugt für Fluor oder Chlor steht.

Hervorgehoben sind Verbindungen der Formel (I), in welcher R<sup>3</sup> für C<sub>1</sub>-C<sub>8</sub>-Alkyl, bevorzugt für C<sub>1</sub>-C<sub>6</sub>-Alkyl, besonders bevorzugt für Methyl, Ethyl, n-, iso-Propyl, n-, iso-, sec- oder tert-Butyl, ganz besonders bevorzugt für Methyl oder Ethyl steht.

20 Hervorgehoben sind Verbindungen der Formel (I), in welcher R<sup>3</sup> für C<sub>1</sub>-C<sub>8</sub>-Halogenalkyl, bevorzugt für C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl mit 1 bis 13 Fluor-, Chlor- und/oder Bromatomen, besonders bevorzugt für C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 9 Fluor-, Chlor- und/oder Bromatomen, ganz besonders bevorzugt für Trifluormethyl steht.

25 Gesättigte oder ungesättigte Kohlenwasserstoffreste wie Alkyl oder Alkenyl können, auch in Verbindung mit Heteroatomen, wie z.B. in Alkoxy, soweit möglich, jeweils geradkettig oder verzweigt sein.

Gegebenenfalls substituierte Reste können einfach oder mehrfach substituiert sein, wobei bei Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können.

30

Durch Halogen substituierte Reste, wie z.B. Halogenalkyl, sind einfach oder mehrfach halogeniert. Bei mehrfacher Halogenierung können die Halogenatome gleich oder verschieden sein. Halogen steht dabei für Fluor, Chlor, Brom und Iod, insbesondere für Fluor, Chlor und Brom.

35

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können jedoch auch untereinander, also zwischen den jeweiligen Bereichen und

Vorzungsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.

Die genannten Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem  
5 können auch einzelne Definitionen entfallen.

Bevorzugt, besonders bevorzugt oder ganz besonders bevorzugt sind Verbindungen der Formel (I), welche jeweils die unter bevorzugt, besonders bevorzugt oder ganz besonders bevorzugt genannten Substituenten tragen.

10

**Beschreibung der erfundungsgemäßen Verfahren zum Herstellen der Isopentylcarboxanilide der Formel (I) sowie der Zwischenprodukte**

**Verfahren (a)**

15 Verwendet man 5-Fluor-1,3-dimethyl-1H-pyrazol-4-carbonyl-chlorid und [2-(3-Methylbutyl)phenyl]-amin als Ausgangsstoffe, so kann das erfundungsgemäße Verfahren (a) durch das folgende Formelschema veranschaulicht werden:



Die zur Durchführung des erfundungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten  
20 Carbonsäure-Derivate sind durch die Formel (II) allgemein definiert. In dieser Formel (II) hat A  
bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits  
im Zusammenhang mit der Beschreibung der erfundungsgemäßen Verbindungen der Formel (I) als  
bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für A angegeben wurden. X<sup>1</sup> steht be-  
vorzugt für Chlor, Brom oder Hydroxy.

25

Die Carbonsäure-Derivate der Formel (II) sind bekannt und/oder lassen sich nach bekannten  
Verfahren herstellen (vgl. WO 93/11117, EP-A 0 545 099, EP-A 0 589 301 und EP-A 0 589 313).

Die zur Durchführung des erfundungsgemäßen Verfahrens (a) als Ausgangsstoffe weiterhin benötig-  
30 ten Anilin-Derivate sind durch die Formel (III) allgemein definiert. In dieser Formel (III) haben L, R<sup>1</sup>  
und R<sup>3</sup> bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die  
bereits im Zusammenhang mit der Beschreibung der erfundungsgemäßen Verbindungen der Formel

(I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.

Die Anilin-Derivate der Formel (III), in denen L für L-1 steht, sind teilweise neu. Anilin-Derivate der 5 Formel (III), in denen L für L-1 steht, lassen sich herstellen, indem man,

f) Cyanoaniline der Formel (VIII)



in welcher R<sup>1</sup> und R<sup>2</sup> die oben angegebenen Bedeutungen haben,  
in einem ersten Schritt mit einem Grignard-Reagenz der Formel (IX)



10

in welcher  
R<sup>3</sup> die oben angegebenen Bedeutungen hat,  
X<sup>3</sup> für Chlor, Brom oder Iod steht,  
gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt und die so erhaltenen  
15 Alkanonaniline der Formel (X)



in welcher R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> die oben angegebenen Bedeutungen haben,  
in einem zweiten Schritt mit Hydrazin (oder Hydrazin-hydrat) in Gegenwart einer Base (z.B.  
Alkali- oder Erdalkalimetallhydroxide wie Natriumhydroxid oder Kaliumhydroxid) und ge-  
gebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.  
20

Die zur Durchführung des erfindungsgemäßen Verfahrens (f) als Ausgangsstoffe benötigten Cyanoaniline sind durch die Formel (VIII) allgemein definiert. In dieser Formel (VIII) haben R<sup>1</sup> und R<sup>2</sup> bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits 25 im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diese Reste angegeben wurden.

Die Cyanoaniline der Formel (VIII) sind bekannt und/oder lassen sich nach bekannten Verfahren herstellen. Cyanoaniline der Formel (VIII), in welcher R<sup>1</sup> nicht für Wasserstoff steht, können erhalten werden, indem man Cyanoaniline der Formel (V-a)



- 5    in welcher R<sup>2</sup> die oben angegebenen Bedeutungen hat,  
mit Halogeniden der Formel (IV)



- in welcher R<sup>1-A</sup> die oben angegebenen Bedeutungen hat,  
in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt. [Die Reaktions-  
10    bedingungen des Verfahrens (b) gelten entsprechend.]

Die zur Durchführung des erfindungsgemäßen Verfahrens (f) als Ausgangsstoffe weiterhin benötigten Grignard-Reagenzien sind durch die Formel (IX) allgemein definiert. In dieser Formel (IX) hat R<sup>3</sup> bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits 15    im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diesen Rest als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden. X<sup>3</sup> steht bevorzugt für Brom.

Die Grignard-Reagenzien der Formel (IX) sind bekannt oder können nach bekannten Verfahren 20    erhalten werden.

Die Alkanonaniline der Formel (X), die im erfindungsgemäßen Verfahren (f) als Zwischenprodukte durchlaufen werden sind neu und ebenfalls Gegenstand dieser Anmeldung. In der Formel (X) haben 25    die Reste R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.

Hydrazin (oder Hydrazin-hydrat), welches ebenfalls als Reagenz im erfindungsgemäßen Verfahren 30    (f) benötigt wird, ist eine bekannte Synthesekemikalie.

Das erfindungsgemäße Verfahren (f) kann in verschiedenen Varianten durchgeführt werden. So ist es möglich, zunächst Cyanoaniline der Formel (V-a) zu den entsprechenden Alkanonanilinen der Formel (VII-a)



in welcher R<sup>2</sup> und R<sup>3</sup> die oben angegebenen Bedeutungen haben,  
umzusetzen, welche dann gegebenenfalls mit Halogeniden der Formel (IV)



- 5 in welcher R<sup>1-A</sup> die oben angegebenen Bedeutungen hat,  
in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels zu den entsprechenden  
Alkanonaniline der Formel (X) umgesetzt werden. [Die Reaktionsbedingungen des Verfahrens (b)  
gelten entsprechend.]
- 10 Es ist jedoch auch möglich, die Alkanonaniline der Formel (VII-a) gemäß dem erfindungsgemäßen  
Verfahren (f) zu den entsprechenden Anilin-Derivaten der Formel (III-a)



in welcher R<sup>2</sup> und R<sup>3</sup> die oben angegebenen Bedeutungen haben,  
umzusetzen, welche dann gegebenenfalls mit Halogeniden der Formel (IV)



- in welcher R<sup>1-A</sup> die oben angegebenen Bedeutungen hat,  
in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels zu den entsprechenden Anilin-  
Derivaten der Formel (III) umgesetzt werden. [Die Reaktionsbedingungen des Verfahrens (b) gelten  
entsprechend.]

20

Anilin-Derivate der Formel (III-b)



in welcher

- a)  $R^{1-B}$  für  $C_1-C_8$ -Alkyl,  $C_1-C_6$ -Alkylsulfinyl,  $C_1-C_6$ -Alkylsulfonyl,  $C_1-C_4$ -Alkoxy- $C_1-C_4$ -alkyl,  $C_3-C_8$ -Cycloalkyl;  $C_1-C_6$ -Halogenalkyl,  $C_1-C_4$ -Halogenalkylthio,  $C_1-C_4$ -Halogenalkylsulfinyl,  $C_1-C_4$ -Halogenalkylsulfonyl, Halogen- $C_1-C_4$ -alkoxy- $C_1-C_4$ -alkyl,  $C_3-C_8$ -Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen;
- 5  $R^{3-B}$  für Wasserstoff, Halogen,  $C_1-C_8$ -Alkyl,  $C_1-C_8$ -Halogenalkyl steht,
- oder
- 10 b)  $R^{1-B}$  für Wasserstoff,  $C_1-C_8$ -Alkyl,  $C_1-C_6$ -Alkylsulfinyl,  $C_1-C_6$ -Alkylsulfonyl,  $C_1-C_4$ -Alkoxy- $C_1-C_4$ -alkyl,  $C_3-C_8$ -Cycloalkyl;  $C_1-C_6$ -Halogenalkyl,  $C_1-C_4$ -Halogenalkylthio,  $C_1-C_4$ -Halogenalkylsulfinyl,  $C_1-C_4$ -Halogenalkylsulfonyl, Halogen- $C_1-C_4$ -alkoxy- $C_1-C_4$ -alkyl,  $C_3-C_8$ -Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl- $C_1-C_3$ -alkyl, ( $C_1-C_3$ -Alkyl)carbonyl- $C_1-C_3$ -alkyl, ( $C_1-C_3$ -Alkoxy)carbonyl- $C_1-C_3$ -alkyl; Halogen-( $C_1-C_3$ -alkyl)carbonyl- $C_1-C_3$ -alkyl, Halogen-( $C_1-C_3$ -alkoxy)carbonyl- $C_1-C_3$ -alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen; ( $C_1-C_8$ -Alkyl)carbonyl, ( $C_1-C_8$ -Alkoxy)carbonyl, ( $C_1-C_4$ -Alkoxy- $C_1-C_4$ -alkyl)carbonyl, ( $C_3-C_8$ -Cycloalkyl)carbonyl; ( $C_1-C_6$ -Halogenalkyl)carbonyl, ( $C_1-C_6$ -Halogenalkoxy)carbonyl, ( $C_1-C_4$ -alkoxy- $C_1-C_4$ -alkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder  $-C(=O)C(=O)R^4$ ,  $CONR^5R^6$  oder  $-CH_2NR^7R^8$  steht, und
- 15  $R^{3-B}$  für Wasserstoff, Halogen,  $C_1-C_8$ -Alkyl,  $C_1-C_8$ -Halogenalkyl steht,
- oder
- 20 b)  $R^{1-B}$  für Wasserstoff,  $C_1-C_8$ -Alkyl,  $C_1-C_6$ -Alkylsulfinyl,  $C_1-C_6$ -Alkylsulfonyl,  $C_1-C_4$ -Alkoxy- $C_1-C_4$ -alkyl,  $C_3-C_8$ -Cycloalkyl;  $C_1-C_6$ -Halogenalkyl,  $C_1-C_4$ -Halogenalkylthio,  $C_1-C_4$ -Halogenalkylsulfinyl,  $C_1-C_4$ -Halogenalkylsulfonyl, Halogen- $C_1-C_4$ -alkoxy- $C_1-C_4$ -alkyl,  $C_3-C_8$ -Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl- $C_1-C_3$ -alkyl, ( $C_1-C_3$ -Alkyl)carbonyl- $C_1-C_3$ -alkyl, ( $C_1-C_3$ -Alkoxy)carbonyl- $C_1-C_3$ -alkyl; Halogen-( $C_1-C_3$ -alkyl)carbonyl- $C_1-C_3$ -alkyl, Halogen-( $C_1-C_3$ -alkoxy)carbonyl- $C_1-C_3$ -alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;
- 25  $R^{3-B}$  für Halogen,  $C_1-C_8$ -Alkyl,  $C_1-C_8$ -Halogenalkyl steht,
- und
- 30  $R^2, R^4, R^5, R^6, R^7$  und  $R^8$  jeweils die oben angegebenen Bedeutungen haben,  
sind neu und ebenfalls Gegenstand dieser Anmeldung.

Die bevorzugten, besonders bevorzugten bzw. ganz besonders bevorzugten Bedeutungen von  $R^1$  und  $R^3$  finden auf  $R^{1-B}$  und  $R^{3-B}$  entsprechend Anwendung, wobei im Fall a)  $R^{1-B}$  jeweils nicht für Wasserstoff steht und im Fall b)  $R^{3-B}$  nicht für Wasserstoff steht. Die bevorzugten, besonders bevorzugten

bzw. ganz besonders bevorzugten Bedeutungen von R<sup>2</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup> und R<sup>8</sup> gelten ebenfalls für die neuen Verbindungen der Formel (III-b).

5 Hervorgehoben sind Verbindungen der Formel (III-b), in welcher R<sup>1</sup> und R<sup>2</sup> jeweils für Wasserstoff und R<sup>3</sup> für Fluor, Chlor, Methyl, Ethyl, Trifluormethyl oder Pentafluorethyl steht.

Anilin-Derivate der Formel (III), in denen L für L-1 steht, werden außerdem erhalten, indem man

g) Anilinhalogenide der Formel (XI)



10 in welcher

R<sup>1-A</sup> und R<sup>2</sup> die oben angegebenen Bedeutungen haben und

X<sup>4</sup> für Halogen steht,

in einem ersten Schritt mit Alkinen der Formel (XII)



15 in welcher R<sup>3</sup> die oben angegebenen Bedeutungen hat,

in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart einer Base und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt und in einem zweiten Schritt die so erhaltenen Alkinaniline der Formel (XIII)



20 in welcher R<sup>1-A</sup>, R<sup>2</sup> und R<sup>3</sup> die oben angegebenen Bedeutungen haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators hydriert.

Die zur Durchführung des erfindungsgemäßen Verfahrens (g) als Ausgangsstoffe benötigten 25 Anilinhalogenide sind durch die Formel (XI) allgemein definiert. In dieser Formel (XI) hat R<sup>2</sup> bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diesen Rest angegeben wurden. R<sup>1-A</sup> hat bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die im Zu-

sammenhang mit der Beschreibung der Verbindungen der Formel (IV) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diesen Rest angegeben sind.

- Die Anilinhalogenide der Formel (XI) sind bekannt und/oder können nach bekannten Verfahren, z.B.  
5 aus den entsprechenden am Stickstoff unsubstituierten Derivaten durch Umsetzung mit den Halogeniden der Formel (IV), erhalten werden.

Die zur Durchführung des erfindungsgemäßen Verfahrens (g) als Ausgangsstoffe weiterhin benötigten Alkine sind durch die Formel (XII) allgemein definiert. In dieser Formel (XII) hat R<sup>3</sup> bevorzugt,  
10 besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diesen Rest angegeben wurden.

Die Alkine der Formel (XII) sind bekannt.

- 15 Die bei der Durchführung des erfindungsgemäßen Verfahrens (g) als Zwischenprodukte durchlaufenden Alkinaniline sind durch die Formel (XIII) allgemein definiert. In dieser Formel (XIII) haben R<sup>2</sup> und R<sup>3</sup> bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel  
20 (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diese Reste angegeben wurden. R<sup>1-A</sup> hat bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die im Zusammenhang mit der Beschreibung der Verbindungen der Formel (IV) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diesen Rest angegeben sind.
- 25 Die Alkinaniline der Formel (XIII) sind teilweise bekannt. Sie werden nach dem erfindungsgemäßen Verfahren (g) erhalten.

Sollen Anilin-Derivate der Formel (III), in welcher R<sup>1</sup> für Wasserstoff steht, erhalten werden, so wird R<sup>1-A</sup> entsprechend ausgewählt, um die Funktion einer Schutzgruppe zu erfüllen, welche im Anschluss  
30 an das erfindungsgemäße Verfahren (g) nach üblichen Methoden wieder entfernt werden kann.

Die Anilin-Derivate der Formel (III), in denen L für L-2, L-3 oder L-4 steht, sind bekannt und/oder können nach bekannten Verfahren erhalten werden (vgl. z.B. EP-A 1 036 793 und EP-A 0 737 682).

- 35 Anilin-Derivate der Formel (III), in denen L für L-2, L-3 oder L-4 steht und R<sup>1</sup> nicht für Wasserstoff steht, können erhalten werden, indem man Aniline der Formel (III-c)



in welcher

$\text{L}^1$  für L-2, L-3 oder L-4 steht und

L-2, L-3, L-4 und  $\text{R}^3$  die oben angegebenen Bedeutungen haben,

5 mit Halogeniden der Formel (IV)



in welcher  $\text{R}^{1-\text{A}}$  und  $\text{X}^2$  die oben angegebenen Bedeutungen hat,

in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt. [Die Reaktionsbedingungen des Verfahrens (b) gelten entsprechend.]

10

### Verfahren (b)

Verwendet man 5-Fluor-1,3-dimethyl-N-[2-(3-methylbutyl)phenyl]-1H-pyrazol-4-carboxamid und Ethyl-chlor(oxo)acetat als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (b) durch das folgende Formelschema veranschaulicht werden:



15

Die zur Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe benötigten Isopentylcarboxanilide sind durch die Formel (I-a) allgemein definiert. In dieser Formel (I-a) haben  $\text{R}^2$ ,  $\text{R}^3$  und A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diese Reste angegeben wurden.

20

Die Isopentylcarboxanilide der Formel (I-a) sind ebenfalls erfindungsgemäße Verbindungen und ebenfalls Gegenstand dieser Anmeldung. Sie können nach einem der erfindungsgemäßen Verfahren (a), (c), (d) oder (e) erhalten werden (mit  $\text{R}^1 =$  Wasserstoff).

Die zur Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe weiterhin benötigten Halogenide sind durch die Formel (IV) allgemein definiert.

30

$\text{R}^{1-\text{A}}$  steht bevorzugt für C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, C<sub>1</sub>-C<sub>3</sub>-Alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenal-

5           kylsulfinyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfonyl, Halogen-C<sub>1</sub>-C<sub>3</sub>-alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Halo-  
gencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C<sub>1</sub>-  
C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkyl)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl; Halogen-  
(C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl mit jeweils  
10          1 bis 13 Fluor-, Chlor- und/oder Bromatomen;  
(C<sub>1</sub>-C<sub>6</sub>-Alkyl)carbonyl, (C<sub>1</sub>-C<sub>4</sub>-Alkoxy)carbonyl, (C<sub>1</sub>-C<sub>3</sub>-Alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl, (C<sub>3</sub>-  
C<sub>6</sub>-Cycloalkyl)carbonyl; (C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl)carbonyl, (C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy)carbonyl,  
(Halogen-C<sub>1</sub>-C<sub>3</sub>-alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>6</sub>-Halogencycloalkyl)carbonyl mit jeweils  
15          1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R<sup>4</sup>, -CONR<sup>5</sup>R<sup>6</sup> oder  
-CH<sub>2</sub>NR<sup>7</sup>R<sup>8</sup>.

10          R<sup>1-A</sup> steht besonders bevorzugt für Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl,  
Pentyl oder Hexyl, Methylsulfinyl, Ethylsulfinyl, n- oder iso-Propylsulfinyl, n-, iso-, sec-  
oder tert-Butylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder iso-Propylsulfonyl, n-, iso-,  
sec- oder tert-Butylsulfonyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl,  
15          Cyclopropyl, Cyclopentyl, Cyclohexyl, Trifluormethyl, Trichlormethyl, Trifluorethyl,  
Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Tri-  
fluormethylsulfonyl, Trifluormethoxymethyl; Formyl, -CH<sub>2</sub>-CHO, -(CH<sub>2</sub>)<sub>2</sub>-CHO,  
-CH<sub>2</sub>-CO-CH<sub>3</sub>, -CH<sub>2</sub>-CO-CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>-CO-CH(CH<sub>3</sub>)<sub>2</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO-CH<sub>3</sub>,  
-(CH<sub>2</sub>)<sub>2</sub>-CO-CH<sub>2</sub>CH<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO-CH(CH<sub>3</sub>)<sub>2</sub>, -CH<sub>2</sub>-CO<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>-CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>,  
20          -CH<sub>2</sub>-CO<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO<sub>2</sub>CH<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>,  
-CH<sub>2</sub>-CO-CF<sub>3</sub>, -CH<sub>2</sub>-CO-CCl<sub>3</sub>, -CH<sub>2</sub>-CO-CH<sub>2</sub>CF<sub>3</sub>, -CH<sub>2</sub>-CO-CH<sub>2</sub>CCl<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO-CH<sub>2</sub>CF<sub>3</sub>,  
-(CH<sub>2</sub>)<sub>2</sub>-CO-CH<sub>2</sub>CCl<sub>3</sub>, -CH<sub>2</sub>-CO<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>, -CH<sub>2</sub>-CO<sub>2</sub>CF<sub>2</sub>CF<sub>3</sub>, -CH<sub>2</sub>-CO<sub>2</sub>CH<sub>2</sub>CCl<sub>3</sub>,  
-CH<sub>2</sub>-CO<sub>2</sub>CCl<sub>2</sub>CCl<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO<sub>2</sub>CF<sub>2</sub>CF<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>-CO<sub>2</sub>CH<sub>2</sub>CCl<sub>3</sub>,  
-(CH<sub>2</sub>)<sub>2</sub>-CO<sub>2</sub>CCl<sub>2</sub>CCl<sub>3</sub>;  
25          Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, iso-Propylcarbonyl, tert-Butylcarbonyl,  
Methoxycarbonyl, Ethoxycarbonyl, tert-Butoxycarbonyl, Cyclopropylcarbonyl; Trifluorme-  
thylcarbonyl, Trifluormethoxycarbonyl, oder -C(=O)C(=O)R<sup>5</sup>, -CONR<sup>6</sup>R<sup>7</sup> oder -CH<sub>2</sub>NR<sup>8</sup>R<sup>9</sup>.

30          R<sup>1-A</sup> steht ganz besonders bevorzugt für Methyl, Methoxymethyl, Formyl, -CH<sub>2</sub>-CHO,  
-(CH<sub>2</sub>)<sub>2</sub>-CHO, -CH<sub>2</sub>-CO-CH<sub>3</sub>, -CH<sub>2</sub>-CO-CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>-CO-CH(CH<sub>3</sub>)<sub>2</sub>, -C(=O)CHO,  
-C(=O)C(=O)CH<sub>3</sub>, -C(=O)C(=O)CH<sub>2</sub>OCH<sub>3</sub>, -C(=O)CO<sub>2</sub>CH<sub>3</sub>, -C(=O)CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>.

35          X<sup>2</sup> steht bevorzugt für Chlor oder Brom.

Halogenide der Formel (IV) sind bekannt.

**Verfahren (c)**

Verwendet man 2-Iod-N-[2-(3-methylbutanoyl)phenyl]benzamid als Ausgangsstoff, sowie Hydrazin und eine Base so kann der Verlauf des erfindungsgemäßen Verfahrens (c) durch das folgende Formelschema veranschaulicht werden:



5

Die zur Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangsstoffe benötigten Isopenton-Derivate sind durch die Formel (V) allgemein definiert. In dieser Formel (V) haben R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diese Reste angegeben wurden.

10

Die Isopenton-Derivate der Formel (V) sind neu. Sie werden erhalten, indem man

h) Carbonsäure-Derivate der Formel (II)



15

in welcher

A die oben angegebenen Bedeutungen hat und

X<sup>1</sup> für Halogen oder Hydroxy steht,

mit Alkanonanilinen der Formel (X)



20

in welcher R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Kondensationsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.

25

Die zur Durchführung des erfindungsgemäßen Verfahrens (h) als Ausgangsstoffe benötigten Carbonsäure-Derivate der Formel (II) wurden bereits im Zusammenhang mit dem erfindungsgemäßen Verfahren (a) beschrieben.

Die zur Durchführung des erfindungsgemäßen Verfahrens (h) weiterhin als Ausgangsstoffe benötigten Alkanonaniline der Formel (X) wurden bereits im Zusammenhang mit dem erfindungsgemäßen Verfahren (f) beschrieben.

5    **Verfahren (d)**

Verwendet man N-{2-[3,3-Dimethylbut-1-en-1-yl]phenyl}-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid als Ausgangsstoff, sowie Wasserstoff so kann der Verlauf des erfindungsgemäßen Verfahrens (d) durch das folgende Formelschema veranschaulicht werden:



- 10   Die zur Durchführung des erfindungsgemäßen Verfahrens (d) als Ausgangsstoffe benötigten Isopen-  
ten-Derivate sind durch die Formel (VI) allgemein definiert. In dieser Formel (VI) haben R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>  
und A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die  
bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel  
(I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diese Reste angegeben  
15   wurden.

Die Isopenten-Derivate der Formel (VI) sind neu. Sie werden erhalten, indem man

j)      Carboxamide der Formel (XIV)



- 20   in welcher  
R<sup>1</sup>, R<sup>2</sup> und A die oben angegebenen Bedeutungen haben und  
X<sup>5</sup>      für Chlor, Brom, Iod oder -OSO<sub>2</sub>CF<sub>3</sub> steht,  
mit Alkenen der Formel (XV)



- 25   in welcher R<sup>3</sup> die oben angegebenen Bedeutungen hat,  
in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart einer Base und gegebenen-  
falls in Gegenwart eines Verdünnungsmittels umsetzt.

Die zur Durchführung des erfindungsgemäßen Verfahrens (j) als Ausgangsstoffe benötigten Carboxamide sind durch die Formel (XIV) allgemein definiert. In dieser Formel (XIV) haben R<sup>1</sup>, R<sup>2</sup> und A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diese Reste angegeben wurden. X<sup>5</sup> steht bevorzugt für Brom oder -OSO<sub>2</sub>CF<sub>3</sub>.

10 Die Carboxamide der Formel (XIV) sind bekannt oder können nach bekannten Methoden erhalten werden (vgl. WO 02/08195 und WO 02/08197).

10

Die zur Durchführung des erfindungsgemäßen Verfahrens (j) als Ausgangsstoffe weiterhin benötigten Alkene sind durch die Formel (XV) allgemein definiert. In dieser Formel (XV) hat R<sup>3</sup> bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diesen Rest angegeben wurden.

15 Die Alkene der Formel (XV) sind bekannt.

#### Verfahren (e)

20 Verwendet man N-[2-(3,3-Dimethylbut-1-in-1-yl)phenyl]-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid als Ausgangsstoff, sowie Wasserstoff so kann der Verlauf des erfindungsgemäßen Verfahrens (e) durch das folgende Formelschema veranschaulicht werden:



25 Die zur Durchführung des erfindungsgemäßen Verfahrens (e) als Ausgangsstoffe benötigten Isopentin-Derivate sind durch die Formel (VII) allgemein definiert. In dieser Formel (VII) haben R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diese Reste angegeben wurden.

30

Die Isopentin-Derivate der Formel (VII), in welcher A nicht für A1 steht, sind neu. Die Isopentin-Derivate der Formel (VII) werden erhalten, indem man

## k) Carboxamide der Formel (XIV)



in welcher  
R<sup>1</sup>, R<sup>2</sup> und A die oben angegebenen Bedeutungen haben und  
5 X<sup>5</sup> für Chlor, Brom, Iod oder -OSO<sub>2</sub>CF<sub>3</sub> steht,  
mit Alkinen der Formel (XII)



in welcher R<sup>3</sup> die oben angegebenen Bedeutungen hat,  
in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart einer Base und gegebenen-  
10 falls in Gegenwart eines Verdünnungsmittels umsetzt.

Die zur Durchführung des erfindungsgemäßen Verfahrens (k) als Ausgangsstoffe benötigten Carboxamide der Formel (XIV) sind bereits im Zusammenhang mit dem erfindungsgemäßen Verfahren (j) beschrieben worden.

15 Die zur Durchführung des erfindungsgemäßen Verfahrens (k) als Ausgangsstoffe weiterhin benötigten Alkine der Formel (XII) sind bereits im Zusammenhang mit dem erfindungsgemäßen Verfahren (g) beschrieben worden.

## 20 Reaktionsbedingungen

Als Verdünnungsmittel zur Durchführung der erfindungsgemäßen Verfahren (a) und (h) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylool oder Decalin; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol oder Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid.

30 Die erfindungsgemäßen Verfahren (a) und (h) werden gegebenenfalls in Gegenwart eines geeigneten Säureakzeptors durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen

infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie beispielsweise Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat,

5 Kaliumcarbonat, Kaliumhydrogencarbonat, Natriumhydrogencarbonat oder Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethylbenzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

10 Die erfindungsgemäßen Verfahren (a) und (h) werden gegebenenfalls in Gegenwart eines geeigneten Kondensationsmittels durchgeführt. Als solche kommen alle üblicherweise für derartige Amidierungsreaktionen verwendbaren Kondensationsmittel infrage. Beispielhaft genannt seien Säurehalogenidbildner wie Phosgen, Phosphortribromid, Phosphortrichlorid, Phosphorpentachlorid, Phosphoroxychlorid oder Thionylchlorid; Anhydridbildner wie Chlorameisensäureethylester, Chlorameisen-15 säuremethylester, Chlorameisensäureisopropylester, Chlorameisensäureisobutylester oder Methansulfonylchlorid; Carbodiimide, wie N,N'-Dicyclohexylcarbodiimid (DCC) oder andere übliche Kondensationsmittel, wie Phosphorpentoxid, Polyphosphorsäure, N,N'-Carbonyldiimidazol, 2-Ethoxy-N-ethoxycarbonyl-1,2-dihydrochinolin (EEDQ), Triphenylphosphin/Tetrachlorkohlenstoff oder Brom-tritypyrrolidinophosphonium-hexafluorophosphat.

20 Die erfindungsgemäßen Verfahren (a) und (h) werden gegebenenfalls in Gegenwart eines Katalysators durchgeführt. Beispielsweise genannt seien 4-Dimethylaminopyridin, 1-Hydroxy-benzotriazol oder Dimethylformamid.

25 Die Reaktionstemperaturen können bei der Durchführung der erfindungsgemäßen Verfahren (a) und (h) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 0°C bis 80°C.

30 Zur Durchführung des erfindungsgemäßen Verfahrens (a) zur Herstellung der Verbindungen der Formel (I) setzt man pro mol des Carbonsäure-Derivates der Formel (II) im allgemeinen 0,2 bis 5 mol, vorzugsweise 0,5 bis 2 mol an Anilin-Derivat der Formel (III) ein.

35 Zur Durchführung des erfindungsgemäßen Verfahrens (h) zur Herstellung der Verbindungen der Formel (V) setzt man pro mol des Carbonsäure-Derivates der Formel (II) im allgemeinen 0,2 bis 5 mol, vorzugsweise 0,5 bis 2 mol an Alkanonanilin der Formel (X) ein.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (b) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol oder Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid.

10

Das erfindungsgemäße Verfahren (b) wird in Gegenwart einer Base durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie beispielsweise Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natrium-acetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kalium-hydrogencarbonat, Natriumhydrogencarbonat oder Caesiumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (b) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 20°C bis 110°C.

25

Zur Durchführung des erfindungsgemäßen Verfahrens (b) zur Herstellung der Verbindungen der Formel (I) setzt man pro Mol des Isopentylcarboxanilids der Formel (I-a) im allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 2 Mol an Halogenid der Formel (IV) ein.

30

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (c) sowie des zweiten Schrittes von Verfahren (f) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol oder Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid.

ethan, 1,2-Diethoxyethan oder Anisol; Ketone, wie Aceton, Butanon, Methyl-isobutylketon oder Cyclohexanon; Nitrile, wie Acetonitril; Propionitril, n- oder i-Butyronitril oder Benzonitril; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan;

5 Alkohole, wie Methanol, Ethanol, n- oder i-Propanol, n-, i-, sek- oder tert-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmonomethylether, Diethylenglykolmono-ethylether, Triethylenglykol, deren Gemische mit Wasser oder reines Wasser.

Das erfindungsgemäße Verfahren (c) sowie des zweiten Schrittes von Verfahren (f) wird in Gegenwart einer Base durchgeführt. Als solche kommen vorzugsweise Erdalkalimetall- oder Alkalimetallhydroxide, wie beispielsweise Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid in Frage.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (c) sowie des zweiten Schrittes von Verfahren (f) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 100°C bis 300°C, vorzugsweise bei Temperaturen von 150°C bis 250°C.

Zur Durchführung des erfindungsgemäßen Verfahrens (c) zur Herstellung der Verbindungen der Formel (I) setzt man pro Mol des Isopenton-Derivatives der Formel (V) im allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 3 Mol an Hydrazin (oder Hydrazin-hydrat) ein.

Zur Durchführung des zweiten Schrittes von Verfahren (f) zur Herstellung der Verbindungen der Anilin-Derivate der Formel (III) setzt man pro Mol des Alkanonanilines der Formel (X) im allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 3 Mol an Hydrazin (oder Hydrazin-hydrat) ein.

Als Verdünnungsmittel zur Durchführung der erfindungsgemäßen Verfahren (d) und (e) sowie des zweiten Schrittes von Verfahren (g) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische oder alicyclische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan oder Decalin; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan oder 1,2-Diethoxyethan; Alkohole, wie Methanol, Ethanol, n- oder iso-Propanol, n-, iso-, sec- oder tert-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmonomethylether, Diethylenglykolmonoethylether, deren Gemische mit Wasser oder reines Wasser.

35 Die erfindungsgemäßen Verfahren (d) und (e) sowie der zweite Schritt von Verfahren (g) werden in Gegenwart eines Katalysators durchgeführt. Als solche kommen alle Katalysatoren in Frage, die für

Hydrierungen üblicherweise verwendet werden. Beispielhaft seien genannt: Raney-Nickel, Palladium oder Platin, gegebenenfalls auf einem Trägermaterial, wie beispielsweise Aktivkohle.

Die Hydrierung in den erfindungsgemäßen Verfahren (d) und (e) sowie im zweiten Schritt von Verfahren (g) kann statt in Gegenwart von Wasserstoff in Kombination mit einem Katalysator auch in Anwesenheit von Triethylsilan durchgeführt werden.

Die Reaktionstemperaturen können bei der Durchführung der erfindungsgemäßen Verfahren (d) und (e) sowie des zweiten Schrittes von Verfahren (g) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 20°C bis 100°C.

Die erfindungsgemäßen Verfahren (d) und (e) sowie der zweite Schritt von Verfahren (g) werden unter einem Wasserstoffdruck zwischen 0,5 und 200 bar, bevorzugt zwischen 2 und 50 bar, besonders bevorzugt zwischen 3 und 10 bar durchgeführt.

Als Verdünnungsmittel zur Durchführung des ersten Schrittes von Verfahren (f) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische oder alicyclische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan oder Decalin; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan oder 1,2-Diethoxyethan.

Die Reaktionstemperaturen können bei der Durchführung des ersten Schrittes von Verfahren (f) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 200°C, vorzugsweise bei Temperaturen von 20°C bis 150°C.

Zur Durchführung des ersten Schrittes von Verfahren (f) zur Herstellung der Verbindungen der Alkanonaniline der Formel (X) setzt man pro Mol des Cyanoanilines der Formel (VIII) im allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 3 Mol an Grignard-Reagenz der Formel (IX) ein.

30

Als Verdünnungsmittel zur Durchführung des ersten Schrittes von Verfahren (g) und der erfindungsgemäßen Verfahren (j) und (k) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise Nitrile, wie Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitril oder Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Ether, wie Diethylether, Diisopropylether,

Methyl-t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan oder 1,2-Diethoxyethan.

Der erste Schritt von Verfahren (g) und die erfindungsgemäßen Verfahren (j) und (k) werden gegebenenfalls in Gegenwart eines geeigneten Säureakzeptors durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogen-carbonate, wie beispielsweise Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kalium-acetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Natriumhydrogencarbonat oder Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

Der erste Schritt von Verfahren (g) und die erfindungsgemäßen Verfahren (j) und (k) werden in Gegenwart eines oder mehrerer Katalysatoren durchgeführt.

Dazu eignen sich besonders Palladiumsalze oder -komplexe. Hierzu kommen vorzugsweise Palladiumchlorid, Palladiumacetat, Tetrakis-(triphenylphosphin)-Palladium oder Bis-(triphenylphosphin)-Palladiumdichlorid infrage. Es kann auch ein Palladiumkomplex in der Reaktionsmischung erzeugt werden, wenn man ein Palladiumsalz und ein Komplexligand getrennt zur Reaktion zugibt.

Als Liganden kommen vorzugsweise Organophosphorverbindungen infrage. Beispielhaft seien genannt: Triphenylphosphin, tri-o-Tolylphosphin, 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl, Di-cyclohexylphosphinebiphenyl, 1,4-Bis(diphenylphosphino)butan, Bisdiphenylphosphinoferrocen, Di(tert.-butylphosphino)biphenyl, Di(cyclohexylphosphino)biphenyl, 2-Dicyclohexylphosphino-2'-N,N-dimethylaminobiphenyl, Tricyclohexylphosphin, Tri-tert.-butylphosphin. Es kann aber auch auf Liganden verzichtet werden.

Der erste Schritt von Verfahren (g) und die erfindungsgemäßen Verfahren (j) und (k) werden ferner gegebenenfalls in Gegenwart eines weiteren Metallsalzes, wie Kupfersalzen, beispielsweise Kupfer(I)-iodid durchgeführt.

Die Reaktionstemperaturen können bei der Durchführung des ersten Schrittes von Verfahren (g) und der erfindungsgemäßen Verfahren (j) und (k) in einem größeren Bereich variiert werden. Im

Allgemeinen arbeitet man bei Temperaturen von 20°C bis 180°C, vorzugsweise bei Temperaturen von 50°C bis 150°C.

5 Zur Durchführung des ersten Schrittes von Verfahren (g) zur Herstellung der Anilin-Derivate der Formel (III) setzt man pro Mol des Anilinhalogenides der Formel (XI) im allgemeinen 1 bis 5 mol, vorzugsweise 1 bis 3 mol an Alkin der Formel (XII) ein.

10 Zur Durchführung des erfindungsgemäßen Verfahrens (j) zur Herstellung der Isopenten-Derivate der Formel (VI) setzt man pro Mol des Carboxamids der Formel (XIV) im allgemeinen 1 bis 5 mol, vorzugsweise 1 bis 3 mol an Alken der Formel (XV) ein.

Zur Durchführung des erfindungsgemäßen Verfahrens (k) zur Herstellung der Isopentin-Derivate der Formel (VII) setzt man pro Mol des Carboxamids der Formel (XIV) im allgemeinen 1 bis 5 mol, vorzugsweise 1 bis 3 mol an Alkin der Formel (XII) ein.

15 Wenn nicht anders angegeben, werden alle erfindungsgemäßen Verfahren im Allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder verminderter Druck – im Allgemeinen zwischen 0,1 bar und 10 bar – zu arbeiten.

20 Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.

Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, 25 Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.

Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.

30 Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;

Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;

Erwinia-Arten, wie beispielsweise Erwinia amylovora;

35 Pythium-Arten, wie beispielsweise Pythium ultimum;

Phytophthora-Arten, wie beispielsweise Phytophthora infestans;

- Pseudoperonospora-Arten, wie beispielsweise *Pseudoperonospora humuli* oder  
*Pseudoperonospora cubensis*;
- Plasmopara-Arten, wie beispielsweise *Plasmopara viticola*;
- Bremia-Arten, wie beispielsweise *Bremia lactucae*;
- 5 Peronospora-Arten, wie beispielsweise *Peronospora pisi* oder *P. brassicae*;
- Erysiphe-Arten, wie beispielsweise *Erysiphe graminis*;
- Sphaerotheca-Arten, wie beispielsweise *Sphaerotheca fuliginea*;
- Podosphaera-Arten, wie beispielsweise *Podosphaera leucotricha*;
- Venturia-Arten, wie beispielsweise *Venturia inaequalis*;
- 10 Pyrenophora-Arten, wie beispielsweise *Pyrenophora teres* oder *P. graminea*  
(Konidienform: *Drechslera*, Syn: *Helminthosporium*);
- Cochliobolus-Arten, wie beispielsweise *Cochliobolus sativus*  
(Konidienform: *Drechslera*, Syn: *Helminthosporium*);
- Uromyces-Arten, wie beispielsweise *Uromyces appendiculatus*;
- 15 Puccinia-Arten, wie beispielsweise *Puccinia recondita*;
- Sclerotinia-Arten, wie beispielsweise *Sclerotinia sclerotiorum*;
- Tilletia-Arten, wie beispielsweise *Tilletia caries*;
- Ustilago-Arten, wie beispielsweise *Ustilago nuda* oder *Ustilago avenae*;
- Pellicularia-Arten, wie beispielsweise *Pellicularia sasakii*;
- 20 Pyricularia-Arten, wie beispielsweise *Pyricularia oryzae*;
- Fusarium-Arten, wie beispielsweise *Fusarium culmorum*;
- Botrytis-Arten, wie beispielsweise *Botrytis cinerea*;
- Septoria-Arten, wie beispielsweise *Septoria nodorum*;
- Leptosphaeria-Arten, wie beispielsweise *Leptosphaeria nodorum*;
- 25 Cercospora-Arten, wie beispielsweise *Cercospora canescens*;
- Alternaria-Arten, wie beispielsweise *Alternaria brassicae*;
- Pseudocercosporella-Arten, wie beispielsweise *Pseudocercosporella herpotrichoides*,
- Rhizoctonia-Arten, wie beispielsweise *Rhizoctonia solani*.
- 30 Die erfundungsgemäßen Wirkstoffe weisen auch eine starke stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.
- Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen

weitgehende Resistenz gegen diese Mikroorganismen entfalten.

Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.

10 Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

15 Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie beispielsweise gegen Puccinia-Arten und von Krankheiten im Wein-, Obst- und Gemüseanbau, wie beispielsweise gegen Botrytis-, Venturia- oder Alternaria-Arten, einsetzen.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

20 Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbicide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.

25 Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, bei-

spielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen  
5 Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien  
10 gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können  
15 technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden  
20 Erfahrung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken  
25 können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.

30 Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:  
Alternaria, wie Alternaria tenuis,  
Aspergillus, wie Aspergillus niger,  
Chaetomium, wie Chaetomium globosum;  
Coniophora, wie Coniophora puetana,  
35 Lentinus, wie Lentinus tigrinus,  
Penicillium, wie Penicillium glaucum,

- Polyporus, wie Polyporus versicolor,
- Aureobasidium, wie Aureobasidium pullulans,
- Sclerophoma, wie Sclerophoma pityophila,
- Trichoderma, wie Trichoderma viride,
- 5 Escherichia, wie Escherichia coli,
- Pseudomonas, wie Pseudomonas aeruginosa,
- Staphylococcus, wie Staphylococcus aureus.

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/ oder chemischen  
10 Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen,  
Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren  
Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe  
15 mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder  
festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgier-  
mitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von  
Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet  
20 werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol  
oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlor-  
benzole, Chlorethylen oder Methylenechlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder  
Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Keto-  
ne, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel,  
25 wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streck-  
mitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und  
unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie  
Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen infrage: z.B. natürliche Ge-  
steinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diato-  
meenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate.  
30 Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Ge-  
steine wie Calcit, Bims, Marmor, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen  
und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnusschalen,  
Maiskolben und Tabakstängel. Als Emulgier und/oder schaumerzeugende Mittel kommen infrage: z.B.  
nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fett-  
35 alkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweiß-  
hydrolysate. Als Dispergiermittel kommen infrage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

5

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

- 10 Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden 15 verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

Als Mischpartner kommen zum Beispiel folgende Verbindungen infrage:

20 **Fungizide:**

2-Phenylphenol; 8-Hydroxychinolinsulfat; Acibenzolar-S-methyl; Aldimorph; Amidoflumet; Ampropylfos; Ampropylfos-potassium; Andoprim; Anilazine; Azaconazole; Azoxystrobin; Benalaxyl; Benodanil; Benomyl; Benthiavalicarb-isopropyl; Benzamacril; Benzamacril-isobutyl; Bilanafos; Binapacryl; Biphenyl; Bitertanol; Blasticidin-S; Brömuconazole; Bupirimate; Buthiobate; Butylamin; Calcium polysulfide; Capsimycin; Captafol; Captan; Carbendazim; Carboxin; Carpropamid; Carvone; Chinomethionat; Chlobenthiazole; Chlorfenazole; Chloroneb; Chlorothalonil; Chlozolinate; Clozylacon; Cyazofamid; Cyflufenamid; Cymoxanil; Cyproconazole; Cyprodinil; Cyprofuram; Dagger G; Debacarb; Dichlofuanid; Dichlone; Dichlorophen; Diclocymet; Diclomezine; Dicloran; Diethofencarb; Difenoconazole; Disflumetorim; Dimethirimol; Dimethomorph; Dimoxystrobin; Diniconazole; Diniconazole-M; Dinocap; Diphenylamine; Dipyridithione; Ditalimfos; Dithianon; Dodine; Drazoxolon; Edifenphos; Epoxiconazole; Ethaboxam; Ethirimol; Etridiazole; Famoxadone; Fenamidone; Fenapanil; Fenarimol; Fenbuconiazole; Fenfuram; Fenhexamid; Fenitropan; Fenoxanil; Fenpiclonil; Fenpropidin; Fenpropimorph; Ferbam; Fluazinam; Flubenzimine; Fludioxonil; Flumetover; Flumorph; Fluoromide; Fluoxastrobin; Fluquinconazole; Flurprimidol; Flusilazole; Flusulfamide; Flutolanil; Flutriafol; Folpet; Fosetyl-Al; Fosetyl-sodium; Fuberidazole; Furalaxyl; Furamétpyr; Furcarbanil; Furmecyclox; Guazatine; Hexachlorobenzene; Hexaconazole; Hymexazol; Imazalil; Imibenconazole; Iminoctadine triacetate;

Iminoctadine; tris(albesil); Iodocarb; Ipconazole; Iprobenfos; Iprodione; Iprovalicarb; Irumamycin; Isoprothiolane; Isovaledione; Kasugamycin; Kresoxim-methyl; Mancozeb; Maneb; Meferimzone; Mepanipyrim; Mepronil; Metalaxyl; Metalaxyl-M; Metconazole; Methasulfocarb; Methfuroxam; Metiram; Metominostrobin; Metsulfovax; Mildiomycin; Myclobutanil; Myclozolin; Natamycin; Nicobifen; Nitrothal-isopropyl; Noviflumuron; Nuarimol; Ofurace; Orysastrobin; Oxadixyl; Oxolinic acid; Oxoconazole; Oxycarboxin; Oxyfenthiin; Paclbutrazol; Pefurazoate; Penconazole; Pencycuron; Phosdiphen; Phthalide; Picoxystrobin; Piperalin; Polyoxins; Polyoxorim; Probenazole; Prochloraz; Procymidone; Propamocarb; Propanosine-sodium; Propiconazole; Propineb; Proquinazid; Prothioconazole; Pyraclostrobin; Pyrazophos; Pyrifenoxy; Pyrimethanil; Pyroquilon; Pyroxyfur; Pyrrolnitrine; Quinconazole; Quinoxyfen; Quintozene; Simeconazole; Spiroxamine; Sulfur; Tebuconazole; Tecloftalam; Tecnazene; Tetcyclacis; Tetraconazole; Thiabendazole; Thicyofen; Thifluzamide; Thiophanate-methyl; Thiram; Tioxymid; Tolclofos-methyl; Tolyfluanid; Triadimeson; Triadimenol; Triazbutil; Triazoxide; Tricyclamide; Tricyclazole; Tridemorph; Trifloxystrobin; Triflumizole; Triforine; Triticonazole; Umiconazole; Validamycin A; Vinclozolin; Zineb; Ziram; Zoxamide; (2S)-N-[2-[4-[[3-(4-Chlorphenyl)-2-propinyl]oxy]-3-methoxyphenyl]ethyl]-3-methyl-2-[(methylsulfonyl)amino]-butanamid; 1-(1-Naphthalenyl)-1H-pyrrol-2,5-dion; 2,3,5,6-Tetrachlor-4-(methylsulfonyl)-pyridin; 2-Amino-4-methyl-N-phenyl-5-thiazolcarboxamid; 2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamide; 3,4,5-Trichlor-2,6-pyridindicarbonitrile; Actinovate; cis-1-(4-Chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol; Methyl 1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat; Monokaliumcarbonat; N-(6-Methoxy-3-pyridinyl)-cyclopropancarboxamid; N-Butyl-8-(1,1-dimethylethyl)-1-oxaspiro[4.5]decan-3-amin; Natriumtetrathiocarbonat; sowie Kupfersalze und -zubereitungen, wie Bordeaux mixture; Kupferhydroxid; Kupfernaphthenat; Kupferoxychlorid; Kupfersulfat; Cufraneb; Kupferoxid; Mancopper; Oxine-copper.

25 **Bakterizide:**

Bronopol; Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

30 **Insektizide / Akarizide / Nematizide:**

Abamectin, ABG-9008, Acephate, Acequinocyl, Acetamiprid, Acetoprole, Acrinathrin, AKD-1022, AKD-3059, AKD-3088, Alanycarb, Aldicarb, Aldoxycarb, Allethrin, Allethrin 1R-isomers, Alpha-Cypermethrin (Alphamethrin), Amidoflumet, Aminocarb, Amitraz, Avermectin, AZ-60541, Azadirachtin, Azamethiphos, Azinphos-methyl, Azinphos-ethyl, Azocyclotin, Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, Bacillus thuringiensis strain EG-2348, Bacillus thuringiensis strain GC-91, Bacillus thuringiensis strain NCTC-11821, Baculoviren, Beauveria

bassiana, Beauveria tenella, Benclothiaz, Bendiocarb, Benfuracarb, Bensultap, Benzoximate, Beta-Cyfluthrin, Beta-Cypermethrin, Bifenazate, Bifenthrin, Binapacryl, Bioallethrin, Bioallethrin-S-cyclopentyl-isomer, Bioethanomethrin, Biopermethrin, Bioresmethrin, Bistrifluron, BPMC, Brofenprox, Bromophos-ethyl, Bromopropylate, Bromfenvinfos (-methyl), BTG-504, BTG-505, Bufencarb,  
5 Buprofezin, Butathiofos, Butocarboxim, Butoxycarboxim, Butylpyridaben, Cadusafos, Camphechlor, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA-50439, Chinomethionat, Chlordane, Chlordimeform, Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorobenzilate, Chloropicrin, Chlorproxyfen, Chlorpyrifos-methyl, Chlorpyrifos (-ethyl), Chlovaporthrin, Chromafenozide, Cis-Cypermethrin, Cis-Resmethrin, Cis-Permethrin,  
10 Clopythrin, Cloethocarb, Clofentezine, Clothianidin, Clothiazoben, Codlemone, Coumaphos, Cyanofenphos, Cyanophos, Cyclopene, Cycloprothrin, Cydia pomonella, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyphenothrin (1R-trans-isomer), Cyromazine, DDT, Deltamethrin, Demeton-S-methyl, Demeton-S-methylsulphon, Diafenthiuron, Dialifos, Diazinon, Dichlofenthion, Dichlorvos, Dicofol, Dicrotophos, Dicyclanil, Dislubenzuron, Dimefluthrin, Dimethoate, Dimethylvinphos, Dibuton, Dinocap, Dinotefuran, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn, DOWCO-439, Eflusilanate, Emamectin, Emamectin-benzoate, Empenthrin (1R-isomer), Endosulfan, Entomophthora spp., EPN, Esfenvalerate, Ethiofencarb, Ethiprole, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimsos, Famphur, Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenfluthrin, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxacrim, Fenoxy carb, Fenpropothrin, Fenpyrad, Fenpyrithrin, Fenpyroximate,  
15 Fensulfothion, Fenthion, Fentrifanil, Fenvalerate, Fipronil, Flonicamid, Fluacrypyrim, Fluazuron, Flubenzimine, Flubrocythrinate, Flucycluron, Flucythrinate, Flufennerim, Flufenoxuron, Flufenprox, Flumethrin, Flupyrazofos, Flutenzin (Flufenzine), Fluvalinate, Fonofos, Formetanate, Formothion, Fosmethilan, Fosthiazate, Fubfenprox (Fluproxyfen), Furathiocarb, Gamma-Cyhalothrin, Gamma-HCH, Gossypure, Grandlure, Granuloseviren, Halfenprox, Halofenozide, HCH, HCN-801, Heptenophos, Hexaflumuron, Hexythiazox, Hydramethylnone, Hydroprene, IKA-2002, Imidacloprid, Imiprothrin, Indoxacarb, Iodofenphos, Iprobenfos, Isazofos, Isofenphos, Isoprocarb, Isoxathion, Ivermectin, Japonilure, Kadethrin, Kernpolyederviren, Kinoprene, Lambda-Cyhalothrin, Lindane, Lufenuron, Malathion, Mecarbam, Mesulfenfos, Metaldehyd, Metam-sodium, Methacrifos, Methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, Methidathion, Methiocarb, Methomyl,  
20 Methoprene, Methoxychlor, Methoxyfenozide, Metofluthrin, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Milbemycin, MKI-245, MON-45700, Monocrotophos, Moxidectin, MTI-800, Naled, NC-104, NC-170, NC-184, NC-194, NC-196, Niclosamide, Nicotine, Nitenpyram, Nithiazine, NNI-0001, NNI-0101, NNI-0250, NNI-9768, Novaluron, Noviflumuron, OK-5101, OK-5201, OK-9601, OK-9602, OK-9701, OK-9802, Omethoate, Oxamyl, Oxydemeton-methyl, Paecilomyces fumosoroseus, Parathion-methyl, Parathion (-ethyl), Permethrin (cis-, trans-), Petroleum, PH-6045, Phenothrin (1R-trans isomer), Phentoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phospho-

- carb, Phoxim, Piperonyl butoxide, Pirimicarb, Pirimiphos-methyl, Pirimiphos-ethyl, Potassium oleate, Prallethrin, Profenofos, Profluthrin, Promecarb, Propaphos, Propargite, Propetamphos, Propoxur, Prothiofos, Prothoate, Protrifenbute, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridalyl, Pyridaphenthion, Pyridathion, Pyrimidifen, Pyriproxyfen, Quinalphos, Resmethrin, RH-5 5849, Ribavirin, RU-12457, RU-15525, S-421, S-1833, Salithion, Sebufos, SI-0009, Silafluofen, Spinosad, Spirodiclofen, Spiromesifen, Sulfluramid, Sulfotep, Sulprofos, SZI-121, Tau-Fluvalinate, Tebufenozone, Tebufenpyrad, Tebupirimfos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbam, Terbufos, Tetrachlorvinphos, Tetradifon, Tetramethrin, Tetramethrin (1R-isomer), Tetrasul, Theta-Cypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen 10 oxalate, Thiodicarb, Thiofanox, Thiometon, Thiosultap-sodium, Thuringiensin, Tolfenpyrad, Tralo-cythrin, Tralomethrin, Transfluthrin, Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon, Trichoderma atroviride, Triflumuron, Trimethacarb, Vamidothion, Vaniliprole, Verbutin, Verticillium lecanii, WL-108477, WL-40027, YI-5201, YI-5301, YI-5302, XMC, Xylylcarb, ZA-3274, Zeta-Cypermethrin, Zolaprofos, ZXI-8901, die Verbindung 3-Methyl-phenyl-propylcarbamat (Tsumacide Z), die Verbindung 3-(5-Chlor-3-pyridinyl)-8-(2,2,2-trifluorethyl)-8-aza-15 bicyclo[3.2.1]octan-3-carbonitril (CAS-Reg.-Nr. 185982-80-3) und das entsprechende 3-endo-Iso-mere (CAS-Reg.-Nr. 185984-60-5) (vgl. WO 96/37494, WO 98/25923), sowie Präparate, welche insektizid wirksame Pflanzenextrakte, Nematoden, Pilze oder Viren enthalten.
- 20 Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren, Safener bzw. Semiochemicals ist möglich.
- Darüber hinaus weisen die erfundungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.
- Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren aus-

zubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach  
5 Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von  
Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha,  
vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an  
Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen  
0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an  
10 Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.

Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden.  
In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle  
biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und  
15 Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden  
transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in  
Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und  
deren Teile behandelt. Der Begriff „Teile“ bzw. „Teile von Pflanzen“ oder „Pflanzenteile“ wurde  
oben erläutert.

20 Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in  
Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit  
neuen Eigenschaften („Traits“), die sowohl durch konventionelle Züchtung, durch Mutagenese oder  
durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und  
25 Genotypen sein.

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden,  
Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch über-  
additive („synergistische“) Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen  
30 und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der  
erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz  
gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen  
Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife,  
höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere  
35 Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu  
erwartenden Effekte hinausgehen.

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften („Traits“) verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Tabak, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften („Traits“) werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus *Bacillus thuringiensis* (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im Folgenden „Bt Pflanzen“). Als Eigenschaften („Traits“) werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften („Traits“) werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, z.B. Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften („Traits“) verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für „Bt Pflanzen“ seien Maissorten, Baumwollsorarten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorarten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt.

Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften („Traits“).

- 5 Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.

10

Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den folgenden Beispielen hervor.

HerstellungsbeispieleBeispiel 1

- 5 Zu einer Lösung bestehend aus 388.5 mg (2.2 mmol) 5-Fluor-1,3-dimethyl-1H-pyrazol-4-carbonylchlorid und 0.45 ml (3.2 mmol) Triethylamin in 20 ml Tetrahydrofuran werden 326.5 mg (2.0 mmol) [2-(3-Methylbutyl)phenyl]amin (III-1) gegeben. Die Reaktionslösung wird 90 min. bei 60°C gerührt, über Kieselgel filtriert und aufkonzentriert. Säulenchromatographie (Gradient Cyclohexan/Essigsäureethylester) liefert 592 mg (98 % der Theorie) an 5-Fluor-1,3-dimethyl-N-[2-(3-methylbutyl)phenyl]-1H-pyrazol-4-carboxamid mit dem logP (pH 2.3) = 3.12.

Analog Beispiel 1 sowie entsprechend den Angaben in den allgemeinen Verfahrensbeschreibungen, werden die in der nachstehenden Tabelle 1 genannten Verbindungen der Formel (I) erhalten.

15 Tabelle 1

| Bsp. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>  | A | logP |
|------|----------------|----------------|-----------------|---|------|
| 2    | H              | H              | CH <sub>3</sub> |   | 3.42 |
| 3    | H              | H              | CH <sub>3</sub> |   | 4.14 |
| 4    | H              | H              | H               |   | 3.90 |
| 5    | H              | H              | CH <sub>3</sub> |   | 4.13 |

| Bsp. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                | A | logP |
|------|----------------|----------------|-------------------------------|---|------|
| 6    | H              | H              | H                             |   | 3.87 |
| 7    | H              | H              | CH <sub>3</sub>               |   | 4.15 |
| 8    | H              | H              | H                             |   | 3.78 |
| 9    | H              | H              | H                             |   | 3.76 |
| 10   | H              | H              | H                             |   | 3.68 |
| 11   | H              | H              | CH <sub>3</sub>               |   | 3.28 |
| 12   | H              | H              | CH <sub>3</sub>               |   | 3.91 |
| 13   | H              | 4-Cl           | C <sub>2</sub> H <sub>5</sub> |   | 4.96 |
| 14   | H              | 4-Cl           | C <sub>2</sub> H <sub>5</sub> |   | 5.02 |
| 15   | H              | 4-Cl           | C <sub>2</sub> H <sub>5</sub> |   | 4.29 |
| 16   | H              | H              | CH <sub>3</sub>               |   | 4.54 |

| Bsp. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                | A | logP |
|------|----------------|----------------|-------------------------------|---|------|
| 17   | H              | H              | C <sub>2</sub> H <sub>5</sub> |   | 3.68 |
| 18   | H              | H              | C <sub>2</sub> H <sub>5</sub> |   | 3.59 |
| 19   | H              | 4-Cl           | C <sub>2</sub> H <sub>5</sub> |   | 4.10 |
| 20   | H              | 4-F            | CH <sub>3</sub>               |   | 3.34 |
| 21   | H              | 4-F            | CH <sub>3</sub>               |   | 4.14 |
| 22   | H              | 4-F            | CH <sub>3</sub>               |   | 3.34 |
| 23   | H              | 4-F            | CH <sub>3</sub>               |   | 3.57 |
| 24   | H              | 4-F            | CH <sub>3</sub>               |   | 4.05 |

### Herstellung von Ausgangsstoffen der Formel (III)

#### 5 Beispiel (III-1)



Eine Lösung bestehend aus 8.0 g (0.045 mol) 1-(2-Amino-phenyl)-3-methyl-butan-1-on (X-1), 6.8 g (0.135 mol) Hydrazin-hydrat und 7.6 g (0.135 mol) Kaliumhydroxid in 90 ml Triethylenglycol wird für 6 h auf 210°C erhitzt. Zur Aufarbeitung wird bei Raumtemperatur Wasser und Essigsäureethylester zugegeben. Die organische Phase wird erneut mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter verminderter Druck aufkonzentriert. Reinigung durch Säulenchromatographie (Cyclohexan/Essigsäureethylester 3:1) liefert 5.3 g (71.5 % der Theorie) an [2-(3-Methylbutyl)-phenyl]amin.

### Beispiel (III-2)



10

3.23 g (15 mmol) N-[2-(3,3-Dimethyl-but-1-inyl)-phenyl]-acetamid (XIII-1) wurden in 40 ml Methanol vorgelegt. Man gab 0.5 g Palladium-Kohle (5 %) zu und hydriert anschließend im Autoklaven 20 h bei 4 bar Wasserstoffdruck. Nach Abtrennung des Katalysators und Entfernung des Lösungsmittels erhielt man 3.1 g (94 % der Theorie) an N-[2-(3,3-Dimethyl-butyl)-phenyl]-acetamid mit dem logP (pH 2.3) = 2.69.

### Beispiel (III-3)



0.5 g (2.3 mmol) N-[2-(3,3-Dimethyl-butyl)-phenyl]-acetamid (III-2) wurden in 20 ml 2N Salzsäure 20 5 h bei 100°C gerührt. Nach dem Abkühlen wurde 3 mal mit je 20 ml Essigsäureethylester extrahiert. Die organische Phase wurde abgetrennt, über Natriumsulfat getrocknet und eingeengt. Man erhielt 390 mg (79 % der Theorie) an 2-(3,3-Dimethyl-butyl)-phenylamin-Hydrochlorid mit dem logP (pH 2.3) = 2.20.

Herstellung von Ausgangsstoffen der Formel (V)Beispiel (V-1)

- 5 Bei Raumtemperatur werden 355.0 mg (2.0 mmol) 1-(2-Amino-phenyl)-3-methyl-butan-1-on zu einer Lösung bestehend aus 388.5 mg (2.2 mmol) 5-Fluor-1,3-dimethyl-1H-pyrazol-4-carbonyl-chlorid und 0.45 ml (3.2 mmol) Triethylamin in 20 ml Tetrahydrofuran gegeben. Die Reaktionsmischung wird für 1.5 h bei 60°C gerührt, über Kieselgel filtriert und aufkonzentriert. Säulenchromatographie (Cyclohexan/Essigester : 3/1) liefert 577.7 mg (1.8 mmol, 88 % der Theorie) an 5-Fluor-1,3-dimethyl-1H-pyrazol-4-carbonsäure-[2-(3-methyl-butyryl)-phenyl]-amid mit dem logP (pH = 2.3) = 3.42.
- 10
- 15

Analog Beispiel (V-1) sowie entsprechend den Angaben in den allgemeinen Verfahrensbeschreibungen, werden die in der nachstehenden Tabelle 2 genannten Verbindungen der Formel (V) erhalten.

Tabelle 2

| Bsp. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | A | logP |
|------|----------------|----------------|----------------|---|------|
| V-2  | H              | H              | H              |   | 4.30 |
| V-3  | H              | H              | H              |   | 4.33 |
| V-4  | H              | H              | H              |   | 4.53 |

| Bsp. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | A | logP |
|------|----------------|----------------|----------------|---|------|
| V-5  | H              | H              | H              |   | 4.35 |
| V-6  | H              | H              | H              |   | 4.30 |
| V-7  | H              | H              | H              |   | 4.44 |

### Herstellung von Ausgangsstoffen der Formel (VII)

5    Beispiel (VII-1)



190 mg (1.0 mmol) 2-Trifluormethylbenzoësäure, 178 mg (0.83 mmol) 2-(3,3-Dimethyl-but-1-inyl)-phenylamin, 215 mg (1.67 mmol) N,N-Diisopropylethylamin und 583 mg (1.25 mmol) PyBrOP wurden in 8 ml Acetonitril 4 Tage bei Raumtemperatur gerührt. Das Gemisch wurde mit 10 ml Essigsäureethylester/Wasser 1:1 versetzt, die organische Phase abgetrennt und mit 10 ml gesättigter Ammoniumchlorid-Lösung und anschließend mit 10 ml Wasser gewaschen. Abtrennen, Einengen und Trocknen der organischen Phase lieferte 950 mg Rohprodukt. Nach säulenchromatographischer Reinigung über Kieselgel 60 (Petrolether/Essigsäureethylester 10:1 → Essigsäureethylester) wurden 110 mg N-[2-(3,3-Dimethyl-but-1-inyl)-phenyl]-2-trifluoromethyl-benzamid erhalten [logP (pH 2.3) = 4.55].

Analog Beispiel (VII-1) sowie entsprechend den Angaben in den allgemeinen Verfahrensbeschreibungen, werden die in der nachstehenden Tabelle 3 genannten Verbindungen der Formel (VII) erhalten.

Tabelle 3

| Bsp.  | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>  | A | logP |
|-------|----------------|----------------|-----------------|---|------|
| VII-2 | H              | H              | CH <sub>3</sub> |   | 4.73 |
| VII-3 | H              | H              | CH <sub>3</sub> |   | 3.75 |
| VII-4 | H              | H              | CH <sub>3</sub> |   | 4.52 |
| VII-5 | H              | H              | CH <sub>3</sub> |   | 4.17 |

### 5 Herstellung von Ausgangsstoffen der Formel (X)

#### Beispiel (X-1)



Eine Lösung aus 29.5 g (0.25 mol) Antranilsäurenitril in 150 ml Tetrahydrofuran wird bei Rückfluss zu einer Suspension bestehend aus 18.2 g (0.75 mol) Magnesium, 375 ml einer 2 M Lösung von Isobutylmagnesiumbromid in Tetrahydrofuran und 15 ml Diethylether getropft. Nach 5 h Erhitzen unter Rückfluss wird die Reaktionsmischung bei 0°C mit 100 ml Wasser versetzt, und der pH-Wert mit Salzsäure auf 6 eingestellt. Die organische Phase wird mit Wasser gewaschen und über Magnesiumsulfat getrocknet. Aufkonzentration im Vakuum und Reinigung an Kieselgel (Eluent:

Petrolether/Aceton 95:5) liefert 11.0 g (25 % der Theorie) an 1-(2-Amino-phenyl)-3-methyl-butan-1-on mit dem logP (pH 2.3) = 2.89.

## 5 Herstellung von Ausgangsstoffen der Formel (XIII)

### Beispiel (XIII-1)



25.7 g (120 mmol) ortho-Bromacetanilid, 5.05 g (7.2 mmol) Bis(triphenylphosphin)palladium(II)chlorid und 1.37 g (7.2 mmol) Kupfer(I)iodid wurden in 450 ml Triethylamin unter Argon vorgelegt. Anschließend wurde bei Raumtemperatur innerhalb von 10 min. 17.8 g (180 mmol) 3,3-Dimethyl-1-butin zugetropft und 5 h bei 50°C gerührt. Die Reaktionsmischung wurde auf 2 l Wasser gegossen, 3 mal mit je 250 ml Diethylether extrahiert, über Natriumsulfat getrocknet und eingeengt. Nach säulenchromatographischer Reinigung über Kieselgel 60 mit Methylenechlorid erhält man 25.9 g  
10 an N-[2-(3,3-Dimethyl-but-1-inyl)-phenyl]-acetamid mit dem logP (pH 2.3) = 3.03.  
15

Die Bestimmung der in den voranstehenden Tabellen und Herstellungsbeispielen angegebenen logP-Werte erfolgt gemäß EEC-Directive 79/831 Annex V.A8 durch HPLC (High Performance Liquid Chromatography) an einer Phasenumkehrsäule (C 18). Temperatur: 43°C.

- 20 Die Bestimmung erfolgt im sauren Bereich bei pH 2.3 mit 0,1 % wässriger Phosphorsäure und Acetonitril als Eluenten; linearer Gradient von 10 % Acetonitril bis 90 % Acetonitril.  
Die Eichung erfolgt mit unverzweigten Alkan-2-onen (mit 3 bis 16 Kohlenstoffatomen), deren logP-Werte bekannt sind (Bestimmung der logP-Werte anhand der Retentionszeiten durch lineare Interpolation zwischen zwei aufeinanderfolgenden Alkanonen).  
25 Die lambda-max-Werte wurden an Hand der UV-Spektren von 200 nm bis 400 nm in den Maxima der chromatographischen Signale ermittelt.

Anwendungsbeispiele:Beispiel A5    **Podosphaera-Test (Apfel) / protektiv**

Lösungsmittel:      24,5    Gewichtsteile Aceton

                        24,5    Gewichtsteile Dimethylacetamid

Emulgator :            1    Gewichtsteil Alkyl-Aryl-Polyglykolether

10

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15    Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension des Apfelmehltauerregers *Podosphaera leucotricha* inkuliert. Die Pflanzen werden dann im Gewächshaus bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70 % aufgestellt.

20

10 Tage nach der Inkulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Tabelle A

## Podosphaera-Test (Apfel) / protektiv

| Wirkstoff<br>Erfindungsgemäß                                                        | Aufwandmenge<br>an Wirkstoff in g/ha | Wirkungsgrad<br>in % |
|-------------------------------------------------------------------------------------|--------------------------------------|----------------------|
|    | 100                                  | 100                  |
|    | 100                                  | 100                  |
|   | 100                                  | 99                   |
|  | 100                                  | 97                   |
|  | 100                                  | 99                   |
|  | 100                                  | 100                  |

## Podosphaera-Test (Apfel) / protektiv

| Wirkstoff<br>Erfindungsgemäß | Aufwandmenge<br>an Wirkstoff in g/ha | Wirkungsgrad<br>in % |
|------------------------------|--------------------------------------|----------------------|
|------------------------------|--------------------------------------|----------------------|



100 100



100 100

Beispiel B**Venturia - Test (Apfel) / protektiv**

5    Lösungsmittel:      24,5    Gewichtsteile Aceton  
                              24,5    Gewichtsteile Dimethylacetamid  
Emulgator :                1      Gewichtsteil Alkyl-Aryl-Polyglykolether

10   Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15   Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension des Apfelschorferregers Venturia inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.

Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 90 % aufgestellt.

Tabelle B

Venturia - Test (Apfel) / protektiv

| Wirkstoff<br>Erfundungsgemäß | Aufwandmenge<br>an Wirkstoff in g/ha | Wirkungsgrad<br>in % |
|------------------------------|--------------------------------------|----------------------|
|                              | 100                                  | 96                   |
|                              | 100                                  | 100                  |
|                              | 100                                  | 99                   |
|                              | 100                                  | 97                   |
|                              | 100                                  | 100                  |
|                              | 100                                  | 100                  |

## Venturia - Test (Apfel) / protektiv

| Wirkstoff<br>Erfindungsgemäß | Aufwandmenge<br>an Wirkstoff in g/ha | Wirkungsgrad<br>in % |
|------------------------------|--------------------------------------|----------------------|
|------------------------------|--------------------------------------|----------------------|



100 100



100 100



100 100

Beispiel C**Botrytis - Test (Bohne) / protektiv**

5    Lösungsmittel:      24,5    Gewichtsteile Aceton  
                              24,5    Gewichtsteile Dimethylacetamid  
Emulgator :                1      Gewichtsteil Alkyl-Aryl-Polyglykolether

10   Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15   Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden auf jedes Blatt 2 kleine mit Botrytis cinerea bewachsene Agarstückchen aufgelegt. Die inkulierten Pflanzen werden in einer abgedunkelten Kammer bei ca. 20°C und 100 % relativer Luftfeuchtigkeit aufgestellt.

20   2 Tage nach der Inkulation wird die Größe der Befallsflecken auf den Blättern ausgewertet. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Tabelle C

## Botrytis - Test (Bohne) / protektiv

| Wirkstoff<br>Erfindungsgemäß                                                        | Aufwandmenge<br>an Wirkstoff in g/ha | Wirkungsgrad<br>in % |
|-------------------------------------------------------------------------------------|--------------------------------------|----------------------|
|    | 500                                  | 84                   |
|    | 500                                  | 100                  |
|   | 500                                  | 100                  |
|  | 500                                  | 87                   |
|  | 500                                  | 100                  |
|  | 500                                  | 100                  |

## Botrytis - Test (Bohne) / protektiv

| Wirkstoff<br>Erfindungsgemäß                                                      | Aufwandmenge<br>an Wirkstoff in g/ha | Wirkungsgrad<br>in % |
|-----------------------------------------------------------------------------------|--------------------------------------|----------------------|
|  | 500                                  | 100                  |
|  | 500                                  | 100                  |
|  | 500                                  | 100                  |

Beispiel D**Puccinia-Test (Weizen) / kurativ**

- 5    Lösungsmittel:        50    Gewichtsteile N,N-Dimethylacetamid  
Emulgator:                  1    Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser  
10   auf die gewünschte Konzentration.

Zur Prüfung auf kurative Wirksamkeit werden junge Pflanzen mit einer Konidiensuspension von Puccinia recondita besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine. Anschließend werden die Pflanzen mit der Wirkstoff-  
15   zubereitung in der angegebenen Aufwandmenge besprüht.

- Die Pflanzen werden dann in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von 80 % aufgestellt, um die Entwicklung von Rostpusteln zu begünstigen.  
20   8 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Tabelle D

Puccinia-Test (Weizen) / kurativ

| Wirkstoff<br>Erfindungsgemäß                                                        | Aufwandmenge<br>an Wirkstoff in g/ha | Wirkungsgrad<br>in % |
|-------------------------------------------------------------------------------------|--------------------------------------|----------------------|
|    | 500                                  | 100                  |
|    | 500                                  | 100                  |
|   | 500                                  | 100                  |
|  | 500                                  | 100                  |
|  | 500                                  | 100                  |
|  | 500                                  | 100                  |

## Puccinia-Test (Weizen) / kurativ

| Wirkstoff<br>Erfindungsgemäß | Aufwandmenge<br>an Wirkstoff in g/ha | Wirkungsgrad<br>in % |
|------------------------------|--------------------------------------|----------------------|
|------------------------------|--------------------------------------|----------------------|



500 100



500 100



500 100

Beispiel E**Sphaerotheca-Test (Gurke) / protektiv**

5 Lösungsmittel: 49 Gewichtsteile N, N-Dimethylformamid  
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser  
10 auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Gurkenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von *Sphaerotheca fuliginea* inkokuliert. Anschließend werden die Pflanzen in  
15 einem Gewächshaus bei 70 % relativer Luftfeuchtigkeit und einer Temperatur von 23°C aufgestellt.

7 Tage nach der Inkokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

20

Tabelle E

## Sphaerotheça-Test (Gurke) / protektiv

| Wirkstoff<br>Erfundungsgemäß | Aufwandmenge<br>an Wirkstoff in g/ha | Wirkungsgrad<br>in % |
|------------------------------|--------------------------------------|----------------------|
|------------------------------|--------------------------------------|----------------------|



750 100



750 100



750 100



750 100

Patentansprüche

## 1. Isopentylcarboxanilide der Formel (I)



5 in welcher



wobei die mit \* markierte Bindung mit dem Amid verbunden ist, während die mit # markierte Bindung mit der Alkylseitenkette verknüpft ist,

10 R<sup>1</sup> für Wasserstoff, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>-Alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfonyl, Halogen-C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkyl)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl; Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

15 (C<sub>1</sub>-C<sub>8</sub>-Alkyl)carbonyl, (C<sub>1</sub>-C<sub>8</sub>-Alkoxy)carbonyl, (C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl)carbonyl; (C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl)carbonyl, (C<sub>1</sub>-C<sub>6</sub>-Halogenalkoxy)carbonyl, (Halogen-C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>8</sub>-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R<sup>4</sup>, -CONR<sup>5</sup>R<sup>6</sup> oder -CH<sub>2</sub>NR<sup>7</sup>R<sup>8</sup> steht,

20 R<sup>2</sup> für Wasserstoff, Fluor, Chlor, Methyl oder Trifluormethyl steht,

R<sup>3</sup> für Wasserstoff, Halogen, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>8</sub>-Halogenalkyl steht,

25 R<sup>4</sup> für Wasserstoff, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>8</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>6</sub>-Halogenalkoxy, Halogen-C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,

R<sup>5</sup> und R<sup>6</sup> unabhängig voneinander jeweils für Wasserstoff, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>8</sub>-Halogenalkyl, Halogen-C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl steht,

alkyl, C<sub>3</sub>-C<sub>8</sub>-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,

R<sup>5</sup> und R<sup>6</sup> außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR<sup>9</sup> enthalten kann,

R<sup>7</sup> und R<sup>8</sup> unabhängig voneinander für Wasserstoff, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>8</sub>-Halogenalkyl, C<sub>3</sub>-C<sub>8</sub>-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,

R<sup>7</sup> und R<sup>8</sup> außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR<sup>9</sup> enthalten kann,

R<sup>9</sup> für Wasserstoff oder C<sub>1</sub>-C<sub>6</sub>-Alkyl steht,

A für den Rest der Formel (A1)



(A1) steht, in welcher

R<sup>10</sup> für Wasserstoff, Hydroxy, Formyl, Cyano, Halogen, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen, Aminocarbonyl oder Aminocarbonyl-C<sub>1</sub>-C<sub>4</sub>-alkyl steht,

R<sup>11</sup> für Wasserstoff, Halogen, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen, steht und

R<sup>12</sup> für Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl, Hydroxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkylthio-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl mit jeweils 1 bis 5 Halogenatomen, oder für Phenyl steht, mit der Maßgabe, dass R<sup>10</sup> nicht für Iod steht, wenn R<sup>11</sup> für Wasserstoff steht, und mit der Maßgabe, dass R<sup>10</sup> nicht für Trifluormethyl oder Difluormethyl steht, wenn R<sup>3</sup> und R<sup>11</sup> für Wasserstoff und R<sup>12</sup> für Methyl stehen,

oder

A für den Rest der Formel (A2)



(A2) steht, in welcher

R<sup>13</sup> und R<sup>14</sup> unabhängig voneinander für Wasserstoff, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder  
C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und

R<sup>15</sup> für Halogen, Cyano oder C<sub>1</sub>-C<sub>4</sub>-Alkyl, oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl oder C<sub>1</sub>-  
C<sub>4</sub>-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A3)



(A3) steht, in welcher

R<sup>16</sup> und R<sup>17</sup> unabhängig voneinander für Wasserstoff, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder  
C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und

R<sup>18</sup> für Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halo-  
genatomen steht,

oder

A für den Rest der Formel (A4)



(A4) steht, in welcher

R<sup>19</sup> für Wasserstoff, Halogen, Hydroxy, Cyano, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl,  
C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio mit jeweils 1 bis 5  
Halogenatomen steht,

oder

A für den Rest der Formel (A5)



(A5) steht, in welcher

R<sup>20</sup> für Halogen, Hydroxy, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkyl-  
thio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio oder C<sub>1</sub>-C<sub>4</sub>-Halogen-  
alkoxy mit jeweils 1 bis 5 Halogenatomen steht und

R<sup>21</sup> für Wasserstoff, Halogen, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-  
Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy mit jeweils 1 bis 5  
Halogenatomen, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinyl oder C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl steht,

oder

A für den Rest der Formel (A6)



(A6) steht,

oder

A für den Rest der Formel (A7)



(A7) steht, in welcher

5

R<sup>22</sup> für C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A8)



(A8) steht, in welcher

10

R<sup>23</sup> für C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A9)



(A9) steht, in welcher

R<sup>24</sup> und R<sup>25</sup> unabhängig voneinander für Wasserstoff, Halogen, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

15 R<sup>26</sup> für Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 to 5 Halogen-  
atomen steht,

mit der Maßgabe, dass R<sup>24</sup> und R<sup>26</sup> nicht gleichzeitig für Methyl stehen, wenn R<sup>25</sup>  
für Wasserstoff steht,

20

oder

A für den Rest der Formel (A10)



(A10) steht, in welcher

R<sup>27</sup> und R<sup>28</sup> unabhängig voneinander für Wasserstoff, Halogen, Amino, Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und

25 R<sup>29</sup> für Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A11)



(A11) steht, in welcher

R<sup>30</sup> für Wasserstoff, Halogen, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-amino, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

5

R<sup>31</sup> für Halogen, Hydroxy, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

10

mit der Maßgabe, dass R<sup>31</sup> nicht für Trifluormethyl, Difluormethyl oder Methyl steht, wenn R<sup>3</sup> für Wasserstoff und R<sup>30</sup> für Methyl stehen,

oder

A für den Rest der Formel (A12)



(A12) steht, in welcher

R<sup>32</sup> für Wasserstoff, Halogen, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-amino, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

15

R<sup>33</sup> für Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

20

A für den Rest der Formel (A13)



(A13) steht, in welcher

R<sup>34</sup> für Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl steht und

R<sup>35</sup> für Halogen oder C<sub>1</sub>-C<sub>4</sub>-Alkyl steht,

oder

25

A für den Rest der Formel (A14)



(A14) steht, in welcher

R<sup>36</sup> für Wasserstoff, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A15)



(A15) steht, in welcher

R<sup>37</sup> für Halogen, Hydroxy, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

5

oder

A für den Rest der Formel (A16)



(A16) steht, in welcher

R<sup>38</sup> für Wasserstoff, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Hydroxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)aminosulfonyl, C<sub>1</sub>-C<sub>6</sub>-Alkylcarbonyl oder für jeweils gegebenenfalls substituiertes Phenylsulfonyl oder Benzoyl steht,

10

R<sup>39</sup> für Wasserstoff, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

15

R<sup>40</sup> für Wasserstoff, Halogen, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R<sup>41</sup> für Wasserstoff, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

mit der Maßgabe, dass R<sup>40</sup> nicht für Trifluormethyl steht,

20

oder

A für den Rest der Formel (A17)



(A17) steht, in welcher

R<sup>42</sup> für C<sub>1</sub>-C<sub>4</sub>-Alkyl steht.

25 2. Isopentylcarboxanilide der Formel (I) gemäß Anspruch 1, in welcher



wobei die mit \* markierte Bindung mit dem Amid verbunden ist, während die mit # markierte Bindung mit der Alkylseitenkette verknüpft ist,

R<sup>1</sup> für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, C<sub>1</sub>-C<sub>3</sub>-Alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfonyl, Halogen-C<sub>1</sub>-C<sub>3</sub>-alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Halogenycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkyl)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl; Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

10 (C<sub>1</sub>-C<sub>6</sub>-Alkyl)carbonyl, (C<sub>1</sub>-C<sub>4</sub>-Alkoxy)carbonyl, (C<sub>1</sub>-C<sub>3</sub>-Alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl)carbonyl; (C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl)carbonyl, (C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy)carbonyl, (Halogen-C<sub>1</sub>-C<sub>3</sub>-alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>6</sub>-Halogenycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R<sup>4</sup>, -CONR<sup>5</sup>R<sup>6</sup> oder -CH<sub>2</sub>NR<sup>7</sup>R<sup>8</sup> steht,

R<sup>2</sup> für Wasserstoff, Fluor, Chlor, Methyl oder Trifluormethyl steht,

R<sup>3</sup> für Wasserstoff, Fluor, Chlor, Brom, Iod, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl mit 1 bis 13 Fluor-, Chlor- und/oder Bromatomen steht;

20 R<sup>4</sup> für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>3</sub>-Alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, Halogen-C<sub>1</sub>-C<sub>3</sub>-alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-Halogenycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,

25 R<sup>5</sup> und R<sup>6</sup> unabhängig voneinander jeweils für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>3</sub>-Alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, Halogen-C<sub>1</sub>-C<sub>3</sub>-alkoxy-C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-Halogenycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,

30 R<sup>5</sup> und R<sup>6</sup> außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Halogen oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR<sup>9</sup> enthalten kann,

R<sup>7</sup> und R<sup>8</sup> unabhängig voneinander für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>3</sub>-C<sub>6</sub>-Halogenycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen;

35 R<sup>7</sup> und R<sup>8</sup> außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen

oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR<sup>9</sup> enthalten kann,

R<sup>9</sup> für Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl steht,

5

A für den Rest der Formel (A1)



(A1) steht, in welcher

R<sup>10</sup> für Wasserstoff, Hydroxy, Formyl, Cyano, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, iso-Propyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Cyclopropyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen, Trifluormethylthio, Difluormethylthio, Aminocarbonyl, Aminocarbonylmethyl oder Aminocarbonylethyl steht,

R<sup>11</sup> für Wasserstoff, Chlor, Brom, Iod, Methyl, Ethyl, Methoxy, Ethoxy, Methylthio, Ethylthio, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen, steht und

R<sup>12</sup> für Wasserstoff, Methyl, Ethyl, n-Propyl, iso-Propyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen, Hydroxymethyl, Hydroxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl steht,

mit der Maßgabe, dass R<sup>10</sup> nicht für Iod steht, wenn R<sup>11</sup> für Wasserstoff steht, und

20 mit der Maßgabe, dass R<sup>10</sup> nicht für Trifluormethyl oder Difluormethyl steht, wenn R<sup>3</sup> und R<sup>11</sup> für Wasserstoff und R<sup>12</sup> für Methyl stehen,

oder

A für den Rest der Formel (A2)



(A2) steht, in welcher

25 R<sup>13</sup> und R<sup>14</sup> unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen stehen und

R<sup>15</sup> für Fluor, Chlor, Brom, Iod, Cyano, Methyl, Ethyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

30

oder

A für den Rest der Formel (A3)



(A3) steht, in welcher

R<sup>16</sup> und R<sup>17</sup> unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen stehen und

5 R<sup>18</sup> für Wasserstoff, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

A für den Rest der Formel (A4)



(A4) steht, in welcher

10 R<sup>19</sup> für Wasserstoff, Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkylthio mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

A für den Rest der Formel (A5)



(A5) steht, in welcher

15 R<sup>20</sup> für Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen steht und

20 R<sup>21</sup> für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, C<sub>1</sub>-C<sub>4</sub>-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen, C<sub>1</sub>-C<sub>2</sub>-Alkylsulfinyl oder C<sub>1</sub>-C<sub>2</sub>-Alkylsulfonyl steht,

oder

A für den Rest der Formel (A6)



(A6) steht,

oder

A für den Rest der Formel (A7)



(A7) steht, in welcher

R<sup>22</sup> für Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

5 A für den Rest der Formel (A8)



(A8) steht, in welcher

R<sup>23</sup> für Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

10 A für den Rest der Formel (A9)



(A9) steht, in welcher

R<sup>24</sup> und R<sup>25</sup> unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, Amino, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht und

15 R<sup>26</sup> für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen, mit der Maßgabe, dass R<sup>24</sup> und R<sup>26</sup> nicht gleichzeitig für Methyl stehen, wenn R<sup>25</sup> für Wasserstoff steht,

oder

20 A für den Rest der Formel (A10)



(A10) steht, in welcher

R<sup>27</sup> und R<sup>28</sup> unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, Amino, Nitro, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen stehen und

25 R<sup>29</sup> für Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

A für den Rest der Formel (A11)



(A11) steht, in welcher

R<sup>30</sup> für Wasserstoff, Fluor, Chlor, Brom, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, Cyano, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht und

5 R<sup>31</sup> für Fluor, Chlor, Brom, Hydroxy, Methyl, Ethyl, Methoxy, Ethoxy, Cyclopropyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

mit der Maßgabe, dass R<sup>31</sup> nicht für Trifluormethyl, Difluormethyl oder Methyl steht, wenn R<sup>3</sup> für Wasserstoff und R<sup>30</sup> für Methyl stehen,

10 oder

A für den Rest der Formel (A12)



(A12) steht, in welcher

R<sup>32</sup> für Wasserstoff, Fluor, Chlor, Brom, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, Cyano, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht und

15 R<sup>33</sup> für Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

A für den Rest der Formel (A13)



(A13) steht, in welcher

20 R<sup>34</sup> für Wasserstoff, Methyl oder Ethyl steht und

R<sup>35</sup> für Fluor, Chlor, Brom, Methyl oder Ethyl steht,

oder

A für den Rest der Formel (A14)



(A14) steht, in welcher

25 R<sup>36</sup> für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

A für den Rest der Formel (A15)



(A15) steht, in welcher

$R^{37}$  für Fluor, Chlor, Brom, Iod, Hydroxy, C<sub>1</sub>-C<sub>4</sub>-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder 5  
Bromatomen steht,

oder

A für den Rest der Formel (A16)



(A16) steht, in welcher

$R^{38}$  für Wasserstoff, Methyl, Ethyl, C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor-, 10  
Chlor- und/oder Bromatomen, C<sub>1</sub>-C<sub>2</sub>-Alkoxy-C<sub>1</sub>-C<sub>2</sub>-alkyl, Hydroxymethyl, Hydroxyethyl, methylsulfonyl oder Dimethylaminosulfonyl steht,

$R^{39}$  für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen steht,

$R^{40}$  für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, iso-Propyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen steht,

$R^{41}$  für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

mit der Maßgabe, dass  $R^{40}$  nicht für Trifluormethyl steht,

oder

A für den Rest der Formel (A17)



(A17) steht, in welcher

$R^{42}$  für Methyl, Ethyl, n-Propyl oder iso-Propyl steht.

3. Isopentylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher L für L-1 steht.
- 25 4. Isopentylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher L für L-2 steht.
5. Isopentylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher R<sup>1</sup> für Wasserstoff, Formyl oder -C(=O)C(=O)R<sup>4</sup> steht, wobei R<sup>4</sup> die in Anspruch 1 oder 2  
angegebenen Bedeutungen hat.
- 30

6. Isopentylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher A für A1 steht.
7. Isopentylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher R<sup>3</sup> für Wasserstoff steht.
- 5
8. Isopentylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher R<sup>3</sup> für Halogen, C<sub>1</sub>-C<sub>8</sub>-Alkyl oder C<sub>1</sub>-C<sub>8</sub>-Halogenalkyl steht.
9. Verfahren zum Herstellen der Verbindungen der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, dass man
- 10 a) Carbonsäure-Derivate der Formel (II)



in welcher

A die in Anspruch 1 angegebenen Bedeutungen hat und

15 X<sup>1</sup> für Halogen oder Hydroxy steht,

mit einem Anilin-Derivat der Formel (III)



in welcher L, R<sup>1</sup> und R<sup>3</sup> die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Kondensationsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

20

oder

b) Isopentylcarboxanilide der Formel (I-a)



25 in welcher

L, A und R<sup>3</sup> die in Anspruch 1 angegebenen Bedeutungen haben

mit Halogeniden der Formel (IV)



in welcher

$X^2$  für Chlor, Brom oder Iod steht,  
 $R^{1-A}$  für  $C_1-C_8$ -Alkyl,  $C_1-C_6$ -Alkylsulfinyl,  $C_1-C_6$ -Alkylsulfonyl,  $C_1-C_4$ -Alkoxy- $C_1-C_4$ -alkyl,  $C_3-C_8$ -Cycloalkyl;  $C_1-C_6$ -Halogenalkyl,  $C_1-C_4$ -Halogenalkylthio,  $C_1-C_4$ -Halogenalkylsulfinyl,  $C_1-C_4$ -Halogenalkylsulfonyl, Halogen- $C_1-C_4$ -alkoxy- $C_1-C_4$ -alkyl,  $C_3-C_8$ -Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl- $C_1-C_3$ -alkyl, ( $C_1-C_3$ -Alkyl)-carbonyl- $C_1-C_3$ -alkyl, ( $C_1-C_3$ -Alkoxy)carbonyl- $C_1-C_3$ -alkyl; Halogen-( $C_1-C_3$ -alkyl)carbonyl- $C_1-C_3$ -alkyl, Halogen-( $C_1-C_3$ -alkoxy)carbonyl- $C_1-C_3$ -alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen; ( $C_1-C_3$ -Alkyl)carbonyl, ( $C_1-C_3$ -Alkoxy)carbonyl, ( $C_1-C_4$ -Alkoxy- $C_1-C_4$ -alkyl)-carbonyl, ( $C_3-C_8$ -Cycloalkyl)carbonyl; ( $C_1-C_6$ -Halogenalkyl)carbonyl, ( $C_1-C_6$ -Halogenalkoxy)carbonyl, ( $Halogen-C_1-C_4$ -alkoxy- $C_1-C_4$ -alkyl)carbonyl, ( $C_3-C_8$ -Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder  $-C(=O)C(=O)R^4$ ,  $CONR^5R^6$  oder  $-CH_2NR^7R^8$  steht,  
wobei  $R^4$ ,  $R^5$ ,  $R^6$ ,  $R^7$  und  $R^8$  die in Anspruch 1 angegebenen Bedeutungen haben,  
in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt,

oder

c) Isopenton-Derivate der Formel (V)



in welcher

$R^1$ ,  $R^2$ ,  $R^3$  und A die in Anspruch 1 angegebenen Bedeutungen haben,  
mit Hydrazin (oder Hydrazin-hydrat) in Gegenwart einer Base und gegebenenfalls in  
Gegenwart eines Verdünnungsmittels umgesetzt,

oder

d) Isopenten-Derivate der Formel (VI)

in welcher  $R^1$ ,  $R^2$ ,  $R^3$  und A die in Anspruch 1 angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators hydriert,

oder

- e) Isopentin-Derivate der Formel (VII)



5

in welcher R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und A die in Anspruch 1 angegebenen Bedeutungen haben, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators hydriert.

10 10. Mittel zum Bekämpfen unerwünschter Mikroorganismen, gekennzeichnet durch einen Gehalt an mindestens einem Isopentylcarboxanilid der Formel (I) gemäß Anspruch 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.

11. Verwendung von Isopentylcarboxaniliden der Formel (I) gemäß Anspruch 1 zum Bekämpfen unerwünschter Mikroorganismen.

12. Verfahren zum Bekämpfen unerwünschter Mikroorganismen, dadurch gekennzeichnet, dass man Isopentylcarboxanilide der Formel (I) gemäß Anspruch 1 auf die Mikroorganismen und/oder deren Lebensraum aus bringt.

20 13. Verfahren zum Herstellen von Mitteln zum Bekämpfen unerwünschter Mikroorganismen, dadurch gekennzeichnet, dass man Isopentylcarboxanilide der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.

25 14. Anilin-Derivate der Formel (III-b)



in welcher

- 5            a)      R<sup>1-B</sup>      für C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>-Alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfonyl, Halogen-C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkyl)-carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl; Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;
- 10            (C<sub>1</sub>-C<sub>8</sub>-Alkyl)carbonyl, (C<sub>1</sub>-C<sub>8</sub>-Alkoxy)carbonyl, (C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl)carbonyl; (C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl)carbonyl, (C<sub>1</sub>-C<sub>6</sub>-Halogenalkoxy)carbonyl, (Halogen-C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>8</sub>-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R<sup>4</sup>, CONR<sup>5</sup>R<sup>6</sup> oder -CH<sub>2</sub>NR<sup>7</sup>R<sup>8</sup> steht, und
- 15            b)      R<sup>3-B</sup>      für Wasserstoff, Halogen, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>8</sub>-Halogenalkyl steht,
- oder
- 20            b)      R<sup>1-B</sup>      für Wasserstoff, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>-Alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl; C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfonyl, Halogen-C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkyl)-carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl; Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkyl)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl, Halogen-(C<sub>1</sub>-C<sub>3</sub>-alkoxy)carbonyl-C<sub>1</sub>-C<sub>3</sub>-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;
- 25            (C<sub>1</sub>-C<sub>8</sub>-Alkyl)carbonyl, (C<sub>1</sub>-C<sub>8</sub>-Alkoxy)carbonyl, (C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl)carbonyl; (C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl)carbonyl, (C<sub>1</sub>-C<sub>6</sub>-Halogenalkoxy)carbonyl, (Halogen-C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl)carbonyl, (C<sub>3</sub>-C<sub>8</sub>-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R<sup>4</sup>, CONR<sup>5</sup>R<sup>6</sup> oder -CH<sub>2</sub>NR<sup>7</sup>R<sup>8</sup> steht, und
- 30            R<sup>3-B</sup>      für Halogen, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>8</sub>-Halogenalkyl steht,
- und R<sup>2</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup> und R<sup>8</sup> jeweils die in Anspruch 1 angegebenen Bedeutungen haben.

## 15. Isopenton-Derivate der Formel (V)



in welcher R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und A die in Anspruch 1 angegebenen Bedeutungen haben.

## 5 16. Isopenten-Derivate der Formel (VI)



in welcher R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und A die in Anspruch 1 angegebenen Bedeutungen haben.

## 17. Isopentin-Derivate der Formel (VII)



10

in welcher

R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> die in Anspruch 1 angegebenen Bedeutungen haben,

A die in Anspruch 1 angegebenen Bedeutungen mit Ausnahme von A1 hat.

## 15 18. Alkanonaniline der Formel (X)



in welcher R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> die in Anspruch 1 angegebenen Bedeutungen haben.

## INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/011408

## A. CLASSIFICATION OF SUBJECT MATTER

|       |            |            |            |            |            |
|-------|------------|------------|------------|------------|------------|
| IPC 7 | C07D231/14 | C07D333/38 | C07C233/66 | C07D277/56 | C07C211/46 |
|       | C07D307/68 | C07D213/82 | A01N43/56  | A01N43/40  | A01N43/78  |
|       | A01N43/32  | A01N43/08  |            |            |            |

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D C07C A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, CHEM ABS Data, BEILSTEIN Data

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                            | Relevant to claim No. |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X        | WO 03/010149 A (MAULER-MACHNIK ASTRID ; DUNKEL RALF (DE); RIECK HEIKO (DE); BAYER AG () 6 February 2003 (2003-02-06)<br>page 62; examples I-53<br>abstract; claims; examples                                                                                  | 17                    |
| A        |                                                                                                                                                                                                                                                               | 1, 10-16,<br>18       |
| X, P     | DATABASE CAPLUS<br>CHEMICAL ABSTRACTS SERVICE, COLUMBUS,<br>OHIO, US; 8 January 2004 (2004-01-08),<br>XP002313917<br>retrieved from STN<br>Database accession no. 1958:113426<br>abstract<br>& WO 2004/002481 A (NOVO NORDISK)<br>8 January 2004 (2004-01-08) | 18                    |
|          | —/—                                                                                                                                                                                                                                                           |                       |

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

## Special categories of cited documents :

- \*A\* document defining the general state of the art which is not considered to be of particular relevance
- \*E\* earlier document but published on or after the international filing date
- \*L\* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \*O\* document referring to an oral disclosure, use, exhibition or other means
- \*P\* document published prior to the international filing date but later than the priority date claimed

- \*T\* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- \*X\* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- \*Y\* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- \*&\* document member of the same patent family

Date of the actual completion of the international search

27 January 2005

Date of mailing of the International search report

01/03/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2  
 NL - 2280 HV Rijswijk  
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.  
 Fax: (+31-70) 340-3016

Authorized officer

Stix-Malaun, E

BEST AVAILABLE COPY

## INTERNATIONAL SEARCH REPORT

International Application No  
PCT/EP2004/011408

## C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                      | Relevant to claim No. |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X,P      | KESSLER ET AL: "Indole synthesis by controlled carbolithiation of o-aminostyrenes"<br>J.ORG.CHEM,<br>vol. 69, no. 23, July 2004 (2004-07),<br>pages 7836-46, XP002313916<br>page 7839; examples 4a,4b; table 3                          | 14                    |
| X        | DATABASE CAPLUS<br>CHEMICAL ABSTRACTS SERVICE, COLUMBUS,<br>OHIO, US; 1958,<br>XP002313918<br>retrieved from STN<br>Database accession no. 2004:20494<br>abstract<br>& HARVEY ET AL: J.CHEM.SOC. ABSTRACTS,<br>1958, pages 2060-2062,   | 1,14                  |
| X        | DATABASE BEILSTEIN<br>BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY,<br>FRANKFURT-MAIN, DE; 1976,<br>XP002313919<br>Database accession no. BRN 2832215<br>abstract<br>& HANNIG ET AL: PHARMAZIE,<br>vol. 31, 1976, pages 535-536,           | 18                    |
| X        | DATABASE BEILSTEIN<br>BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY,<br>FRANKFURT-MAIN, DE; 2000,<br>XP002313920<br>Database accession no. BRN 8617070<br>abstract<br>& TABUCHI ET AL: CME.PHARM.BULL,<br>vol. 48, no. 1, 2000, pages 1-15, | 18                    |
| A        | WO 02/38542 A (WALTER HARALD ; SYNGENTA PARTICIPATIONS AG (CH))<br>16 May 2002 (2002-05-16)<br>abstract<br>examples<br>claims                                                                                                           | 1-18                  |
| A        | EP 0 824 099 A (MITSUI TOATSU CHEMICALS)<br>18 February 1998 (1998-02-18)<br>abstract<br>examples<br>claims                                                                                                                             | 1-18                  |

BEST AVAILABLE COPY

**INTERNATIONAL SEARCH REPORT**

International application No.

EP2004/011408

**Continuation of II.1**

Although claims 12 and 13 relate to a method for treatment of the human or animal body, the search was carried out on the basis of the alleged effects of the compound or composition.

Claims 15-17 were searched as amides rather than amines (structural component ACONR<sup>1</sup> rather than A-NR<sup>1</sup>), which is consistent with the examples and the overall thrust of the application.

**BEST AVAILABLE COPY**

**INTERNATIONAL SEARCH REPORT**

International application No.

**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

**SEE SEPARATE SHEET PCT/ISA/210**

2.  Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
  
3.  Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
  
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

**Remark on Protest**  

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

## INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/011408

| Patent document cited in search report |   | Publication date |                                                          | Patent family member(s)                                                                                                                    |  | Publication date                                                                                                                         |
|----------------------------------------|---|------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------|
| WO 03010149                            | A | 06-02-2003       | DE<br>BR<br>WO<br>EP<br>HU<br>US                         | 10136065 A1<br>0211482 A<br>03010149 A1<br>1414803 A1<br>0401478 A2<br>2004204470 A1                                                       |  | 13-02-2003<br>17-08-2004<br>06-02-2003<br>06-05-2004<br>29-11-2004<br>14-10-2004                                                         |
| WO 2004002481                          | A | 08-01-2004       | AU<br>WO<br>WO<br>EP<br>US<br>US                         | 2002349299 A1<br>03047626 A1<br>2004002481 A1<br>1453541 A1<br>2003138416 A1<br>2004122235 A1                                              |  | 17-06-2003<br>12-06-2003<br>08-01-2004<br>08-09-2004<br>24-07-2003<br>24-06-2004                                                         |
| WO 0238542                             | A | 16-05-2002       | AU<br>BR<br>CA<br>CN<br>EG<br>WO<br>EP<br>HU<br>JP<br>ZA | 2366802 A<br>0115200 A<br>2426033 A1<br>1484637 T<br>23122 A<br>0238542 A1<br>1341757 A1<br>0302471 A2<br>2004513163 T<br>200303012 A      |  | 21-05-2002<br>17-02-2004<br>16-05-2002<br>24-03-2004<br>28-04-2004<br>16-05-2002<br>10-09-2003<br>28-11-2003<br>30-04-2004<br>20-05-2004 |
| EP 0824099                             | A | 18-02-1998       | CA<br>CN<br>CN<br>DE<br>DE<br>EP<br>ES<br>JP<br>US<br>US | 2213111 A1<br>1338452 A<br>1178791 A , B<br>69708004 D1<br>69708004 T2<br>0824099 A1<br>2164972 T3<br>10310577 A<br>5965774 A<br>5914344 A |  | 15-02-1998<br>06-03-2002<br>15-04-1998<br>13-12-2001<br>18-04-2002<br>18-02-1998<br>01-03-2002<br>24-11-1998<br>12-10-1999<br>22-06-1999 |

BEST AVAILABLE COPY

## INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen  
PCT/EP2004/011408

|                                                              |
|--------------------------------------------------------------|
| A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES                 |
| IPK 7 C07D231/14 C07D333/38 C07C233/66 C07D277/56 C07C211/46 |
| C07D307/68 C07D213/82 A01N43/56 A01N43/40 A01N43/78          |
| A01N43/32 A01N43/08                                          |

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

## B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)  
IPK 7 C07D C07C A01N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, CHEM ABS Data, BEILSTEIN Data

## C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

| Kategorie* | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                                                                                                                | Betr. Anspruch Nr. |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| X          | WO 03/010149 A (MAULER-MACHNIK ASTRID ; DUNKEL RALF (DE); RIECK HEIKO (DE); BAYER AG () 6. Februar 2003 (2003-02-06)<br>Seite 62; Beispiele I-53                                                                                                                  | 17                 |
| A          | Zusammenfassung; Ansprüche; Beispiele                                                                                                                                                                                                                             | 1,10-16,<br>18     |
| X,P        | DATABASE CAPLUS<br>CHEMICAL ABSTRACTS SERVICE, COLUMBUS,<br>OHIO, US; 8. Januar 2004 (2004-01-08),<br>XP002313917<br>gefunden im STN<br>Database accession no. 1958:113426<br>Zusammenfassung<br>& WO 2004/002481 A (NOVO NORDISK)<br>8. Januar 2004 (2004-01-08) | 18                 |

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- \* Besondere Kategorien von angegebenen Veröffentlichungen :  
 \*A\* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist  
 \*E\* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist  
 \*L\* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)  
 \*O\* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht  
 \*P\* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- \*T\* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist  
 \*X\* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden  
 \*Y\* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist  
 \*&\* Veröffentlichung, die Mitglied derselben Patentfamilie ist

|                                                     |                                                     |
|-----------------------------------------------------|-----------------------------------------------------|
| Datum des Abschlusses der internationalen Recherche | Absendedatum des internationalen Recherchenberichts |
| 27. Januar 2005                                     | 01/03/2005                                          |

|                                                                                                                                                                                                                 |                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Name und Postanschrift der Internationalen Recherchenbehörde<br>Europäisches Patentamt, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016 | Bevollmächtigter Bediensteter<br>Stix-Malaun, E |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|

## INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen  
PCT/EP2004/011408

## C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

| Kategorie* | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                                                                                             | Beitr. Anspruch Nr. |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| X,P        | KESSLER ET AL: "Indole synthesis by controlled carbolithiation of o-aminostyrenes"<br>J.ORG.CHEM,<br>Bd. 69, Nr. 23, Juli 2004 (2004-07),<br>Seiten 7836-46, XP002313916<br>Seite 7839; Beispiele 4a,4b; Tabelle 3                             | 14                  |
| X          | DATABASE CAPLUS<br>CHEMICAL ABSTRACTS SERVICE, COLUMBUS,<br>OHIO, US; 1958,<br>XP002313918<br>gefunden im STN<br>Database accession no. 2004:20494<br>Zusammenfassung<br>& HARVEY ET AL: J.CHEM.SOC. ABSTRACTS,<br>1958, Seiten 2060-2062,     | 1,14                |
| X          | DATABASE BEILSTEIN<br>BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY,<br>FRANKFURT-MAIN, DE; 1976,<br>XP002313919<br>Database accession no. BRN 2832215<br>Zusammenfassung<br>& HANNIG ET AL: PHARMAZIE,<br>Bd. 31, 1976, Seiten 535-536,           | 18                  |
| X          | DATABASE BEILSTEIN<br>BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY,<br>FRANKFURT-MAIN, DE; 2000,<br>XP002313920<br>Database accession no. BRN 8617070<br>Zusammenfassung<br>& TABUCHI ET AL: CME.PHARM.BULL,<br>Bd. 48, Nr. 1, 2000, Seiten 1-15, | 18                  |
| A          | WO 02/38542 A (WALTER HARALD ; SYNGENTA PARTICIPATIONS AG (CH))<br>16. Mai 2002 (2002-05-16)<br>Zusammenfassung<br>Beispiele<br>Ansprüche                                                                                                      | 1-18                |
| A          | EP 0 824 099 A (MITSUI TOATSU CHEMICALS)<br>18. Februar 1998 (1998-02-18)<br>Zusammenfassung<br>Beispiele<br>Ansprüche                                                                                                                         | 1-18                |

BEST AVAILABLE COPY

**INTERNATIONALER RECHERCHENBERICHT**nationales Aktenzeichen  
PCT/EP2004/011408**Feld II Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)**

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1.  Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich  
siehe BEIBLATT PCT/ISA/210
2.  Ansprüche Nr. weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3.  Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

**Feld III Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)**

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

1.  Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2.  Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3.  Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4.  Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:

**Bemerkungen hinsichtlich eines Widerspruchs**

- Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.  
 Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld II.1

Obwohl die Ansprüche 12,13 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.

Die Ansprüche 15-17 wurden als Amide anstatt Amine recherchiert (Strukturteil ACONR1 anstatt A-NR1) was im Einklang mit den Beispielen und der Gesamtaussage der Anmeldung steht.

BEST AVAILABLE COPY

## INTERNATIONALES RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen  
PCT/EP2004/011408

| Im Recherchenbericht angeführtes Patentdokument |   | Datum der Veröffentlichung |    | Mitglied(er) der Patentfamilie |  | Datum der Veröffentlichung |
|-------------------------------------------------|---|----------------------------|----|--------------------------------|--|----------------------------|
| WO 03010149                                     | A | 06-02-2003                 | DE | 10136065 A1                    |  | 13-02-2003                 |
|                                                 |   |                            | BR | 0211482 A                      |  | 17-08-2004                 |
|                                                 |   |                            | WO | 03010149 A1                    |  | 06-02-2003                 |
|                                                 |   |                            | EP | 1414803 A1                     |  | 06-05-2004                 |
|                                                 |   |                            | HU | 0401478 A2                     |  | 29-11-2004                 |
|                                                 |   |                            | US | 2004204470 A1                  |  | 14-10-2004                 |
| WO 2004002481                                   | A | 08-01-2004                 | AU | 2002349299 A1                  |  | 17-06-2003                 |
|                                                 |   |                            | WO | 03047626 A1                    |  | 12-06-2003                 |
|                                                 |   |                            | WO | 2004002481 A1                  |  | 08-01-2004                 |
|                                                 |   |                            | EP | 1453541 A1                     |  | 08-09-2004                 |
|                                                 |   |                            | US | 2003138416 A1                  |  | 24-07-2003                 |
|                                                 |   |                            | US | 2004122235 A1                  |  | 24-06-2004                 |
| WO 0238542                                      | A | 16-05-2002                 | AU | 2366802 A                      |  | 21-05-2002                 |
|                                                 |   |                            | BR | 0115200 A                      |  | 17-02-2004                 |
|                                                 |   |                            | CA | 2426033 A1                     |  | 16-05-2002                 |
|                                                 |   |                            | CN | 1484637 T                      |  | 24-03-2004                 |
|                                                 |   |                            | EG | 23122 A                        |  | 28-04-2004                 |
|                                                 |   |                            | WO | 0238542 A1                     |  | 16-05-2002                 |
|                                                 |   |                            | EP | 1341757 A1                     |  | 10-09-2003                 |
|                                                 |   |                            | HU | 0302471 A2                     |  | 28-11-2003                 |
|                                                 |   |                            | JP | 2004513163 T                   |  | 30-04-2004                 |
|                                                 |   |                            | ZA | 200303012 A                    |  | 20-05-2004                 |
| EP 0824099                                      | A | 18-02-1998                 | CA | 2213111 A1                     |  | 15-02-1998                 |
|                                                 |   |                            | CN | 1338452 A                      |  | 06-03-2002                 |
|                                                 |   |                            | CN | 1178791 A ,B                   |  | 15-04-1998                 |
|                                                 |   |                            | DE | 69708004 D1                    |  | 13-12-2001                 |
|                                                 |   |                            | DE | 69708004 T2                    |  | 18-04-2002                 |
|                                                 |   |                            | EP | 0824099 A1                     |  | 18-02-1998                 |
|                                                 |   |                            | ES | 2164972 T3                     |  | 01-03-2002                 |
|                                                 |   |                            | JP | 10310577 A                     |  | 24-11-1998                 |
|                                                 |   |                            | US | 5965774 A                      |  | 12-10-1999                 |
|                                                 |   |                            | US | 5914344 A                      |  | 22-06-1999                 |

BEST AVAILABLE COPY