106

Local frames

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

Expanding vectors and vector fields

Given a basis $w_1, ..., w_n$ for a tangent space $T_x \mathcal{M}$, for all $v \in T_x \mathcal{M}$, $v = a_1 w_1 + \cdots + a_n w_n$

with unique real coefficients a_1, \dots, a_n .

If we have a vector field V, then we can expand V(x) in that basis.

Given a basis for *each* tangent space $T_y\mathcal{M}$, we can expand *each* V(y). It is convenient if these expansions are somehow related... On occasions, for theory, we resort to the following:

Smoothly varying bases of tangent spaces

Def.: A (smooth) local frame around x on a manifold \mathcal{M} of dimension n is a collection of smooth vector fields $W_1, ..., W_n$ defined on a ngbhd $\mathcal{U} \subseteq \mathcal{M}$ of x such that, for all $y \in \mathcal{U}$, $W_1(y), ..., W_n(y)$ form a basis of $T_v \mathcal{M}$.

Claim: There exists a local frame around each x on a manifold \mathcal{M} .

Claim: If \mathcal{M} is Riemannian, we can make the bases orthonormal.

We can use local frames to check that a vector field *V* is smooth:

Say $W_1, ..., W_n$ form a local frame on $\mathcal{U} \subseteq \mathcal{M}$.

If *V* is a vector field on \mathcal{M} , then for each $x \in \mathcal{U}$ we have:

$$V(x) = f_1(x)W_1(x) + \dots + f_n(x)W_n(x)$$

for some unique real numbers $f_1(x), ..., f_n(x)$.

Claim: *V* is smooth on \mathcal{U} if and only if $f_1, ..., f_n : \mathcal{U} \to \mathbf{R}$ are smooth.

Why not *global* frames?

The Hairy Ball Theorem implies that, if W is a smooth vector field on the sphere S^2 , then W(x) = 0 for some x.

Now imagine that we have a global frame on S^2 , that is, smooth vector fields W_1, W_2 on S^2 such that $W_1(x), W_2(x)$ are linearly independent for all x. That can't be!

Manifolds which admit global frames are called parallelizable. Examples: \mathbf{R}^d , S^1 .

