

Session 4 - Quality assessment and read preprocessing

Sarai Varona

BU-ISCIII

<u>Unidades Comunes Científico Técnicas - SGSAFI-ISCIII</u>

13 Junio – 17 Junio 2022, 9ª Edición Programa Formación Continua, ISCIII

Step in the process

15/06/2021 Curso iniciación NGS 2

Raw output files format

.fastq

454

.sff

.qual

Nanopore FAST5

PacBio RSII Bax.h5 fasta

FASTQ format

- Is a FASTA file with quality information
- Within HTS, FASTA contain genomes y FASTQ reads

Quality: must be 1 bit

FASTQ format

- Each base has an assigned quality score
 - Sequencing quality scores measure the probability that a base is called incorrectly
- How is it calculated?

Phred transforming

| '''*((((****+))%%++)(%%%).1***-+*''))**55CCF>>>>>CCCCCCC65

- Light intensity is used to calculate the error probabilities
- Convert error probability into Phred score quality -Ewing B, Green P. (1998)

 Phred originated as an algorithmic approach that considered Sanger sequencing metrics, such as peak

resolution and shape

- Convert error probability into Phred score quality in real time on Illumina platforms
- Q scores are defined as a property that is logarithmically related to the base calling error probabilities (P)
- Phred quality range between 0-40 for Sanger and Illumina
 1.8+

 $Q = -10 \log_{10} P$

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%

 Convert Phred quality score into ASCII, a compact form, which uses only 1 byte per quality value

ASC	II BASE=3	3 Illumina	, Io	n Torrent	, PacBio	and S	anger				
Q	Perror	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59 ;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

 Phred+33 (Sanger and current Illumina). 0 Phred quality correspond to decimal 33, which is the symbol!

Q	P_error	ASCII									
0	1.00000	64 @	11	0.07943	75 K	22	0.00631	86 V	33	0.00050	97 a
1	0.79433	65 A	12	0.06310	76 L	23	0.00501	87 W	34	0.00040	98 b
2	0.63096	66 B	13	0.05012	77 M	24	0.00398	88 X	35	0.00032	99 c
3	0.50119	67 C	14	0.03981	78 N	25	0.00316	89 Y	36	0.00025	100 d
4	0.39811	68 D	15	0.03162	79 0	26	0.00251	90 Z	37	0.00020	101 e
5	0.31623	69 E	16	0.02512	80 P	27	0.00200	91 [38	0.00016	102 f
6	0.25119	70 F	17	0.01995	81 Q	28	0.00158	92 \	39	0.00013	103 g
7	0.19953	71 G	18	0.01585	82 R	29	0.00126	93]	40	0.00010	104 h
8	0.15849	72 H	19	0.01259	83 S	30	0.00100	94 ^	41	0.00008	105 i
9	0.12589	73 I	20	0.01000	84 T	31	0.00079	95	42	0.00006	106 j
LO	0.10000	74 J	21	0.00794	85 U	32	0.00063	96 -			

 Phred+64 (Solexa and Illumina 1.3-1.5)

Phred 33 example

```
@HWI-ST731_6:1:1101:1322:1938#1@0/1
NTGACAAAGGGCTAATATCCAGAATCTACAAAGAACTTAAACAAATGTATAAGAATAAAAGTATAGTGCTAACAAT
+
#1:BDDADFDFDD@F>BGFIIIB@CFHIHICAGBC9CBCBGGIGCFF??>GGHFHIGGEGI<FECGDE=FHCHEG=
```

P=0.001 Q=-10*
$$log10(0.001)=30$$
 ASCIII 33+30 = 63

FASTQ format

Illumina read header

@HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	the unique instrument name				
6	flowcell lane				
73	tile number within the flowcell lane				
941	'x'-coordinate of the cluster within the tile				
1973	'y'-coordinate of the cluster within the tile				
#0	index number for a multiplexed sample (0 for no indexing)				
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)				

@HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:2458:1027 1:N:0:ACAGTG AGAAAAAACCTTGGANGGAAAAAATCAGACATTTTCTAGAGGTGGAAGGCAAACTGAACAAAGAAATAATTCACA DGGGEDHHHHGGGFE#CBACBCA<?HHHHBHHHHHHHHHHHHHEHEFEGGGGGG/GGDDDGHFHGFCHFHHEHEH8 HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3082:1029 1:N:0:ACAGTG GGTAATACAGACTGANATGATCAAAGGCATGCTGGAAACAAACCTATTAAAGATAAGCTTGGATCAAGCTTTCAT B:B:?BB/:=55177#55877<775EDD>E=B?BBBBGGGDDAG@G>GGGGGG@)EEEEBEG>GGGGGGAAA?<D @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3185:1033 1:N:0:ACAGTG CTGGGACATTGCTCNTGGCTGGGAGTCACCTGTCTGGGACATTGCTCAGGGCTGGGAGACACGTGTTGGAGGGA BC??A66;)74781<#7??;452.27'64(8,851DDG8GB?####################### @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3268:1033 1:N:0:ACAGTG ATTCAAATTAGAAGANAGTTGATCGTTCTTCATGATGCCCAAAAATTTCACTGAGAAAACCCTTTTTTAAGCCCA(IIIIIIIIIIFFFFE#ABACFEEFFIIGIIIFIHE@BIIIIIIIIHHIIFIIF>HHIHIFGDIIIIIIGFHIEGH HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3400:1035 1:N:0:ACAGTG rcctgctttaggagantcctcatgctctgacaggatgctctctatgtgagttgagctggtcttctcacttttatag IIIIIHIHIIGGEGG#AACA@?=?BHHIIIIIHHIHIIXTHIHHGIHIHGHGIGIHGEGGGGHG@EFGGCEFAB @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3962:1033 1:N:0:ACAGTG CACCAACACAGTCTNCACCTTCTGTTGCTGGTGATAGATTTTTGCACCTTTCCATCCTCCAGGTTTCAAAATAGC HHFHHDHDHH>C?CA#EEEE>?A?>HHDGHEGBGBCEEEEGHHF8HEHEEHECH,=>>==EAEE>BEBBAEAACAE @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:4491:1028 1:N:0:ACAGTG AGAGAGAGAGAGAGANAGAGGACTCTGGAGATGCCGAAGCACAAGCCTGCAAGAGTCCCAGCAAAGAAAATAAAAA GADGGEGGEGBBB?B#@=@@72:64GGGFGB>GGGBDG<DBGB<DA??/?###############################

ASCII-coded (0-40):

- "!"#\$%" lowest quality
- "FGHI" highest quality

Sequencing quality assessment

- To asses quality, software uses Phred per-base quality score is used
- Is the **first quality control step** after sequencing. There should be one after every step of the analysis
- After quality assessment user can know how reliable are their datasets
- QC will determine the next filtering step
- Filtering decisions will impact directly in further analysis
- Many other steps also use this quality as variable in their algorithms

Sequencing quality assessment: Artifacts

HTS methods are bounded by their technical and theoretical limitations and sequencing errors cannot be completely eliminated (Hadigol M, Khiabanian H. 2018)

- Artifacts in library preparation
 - Remaining adapters
 - High rate of duplicates
 - GC regions bias
 - Polymerase error rate
 - DNA damage during breakdown
- Artifacts during secuencing
 - Low quality in sequence ends(Phasing: cluster loose sync)
 - Complication in certain regions:
 - Repetitions
 - Homopolymers
 - High CG content

Sequencing quality assessment

FastQC, fastx-toolkit, sfftools, NGSQCToolkit, etc...

Sequencing quality assessment: FastQC

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Sequencing quality assessment: fastp

Fastp fastp report

General	
fastp version:	0.20.1 (https://github.com/OpenGene/fastp)
sequencing:	paired end (149 cycles + 149 cycles)
mean length before filtering:	116bp, 116bp
mean length after filtering:	117bp, 117bp
duplication rate:	1.704150%
Insert size peak:	95
Detected read1 adapter:	CACCTAAGTTGGCGTATACGCGTAATATATCTGGGTTTTCTACAAAATCATACCAGTCCT
Detected read2 adapter:	CACCTAAGTTGGCGTATACGCGTAATATATCTGGGTTTTCTACAAAATCATACCAGTCCT
Before filtering	
total reads:	1.296756 M
total bases:	151.424921 M
Q20 bases:	143.112834 M (94.510754%)
Q30 bases:	137.905419 M (91.071812%)
GC content:	40.410939%
After filtering	
total reads:	854.250000 K
total bases:	100.537720 M
Q20 bases:	99.598139 M (99.065444%)
Q30 bases:	97.968091 M (97.444115%)
GC content:	39.665634%
Filtering result	
reads passed filters:	854.250000 K (65.875924%)
reads with low quality:	352.272000 K (27.165635%)
reads with too many N:	84 (0.906478%)
reads too short:	90.150000 K (6.951963%)

FastQC: Per base sequence quality

- Overview of the range of quality values across all bases at each position in the FastQ file
- Median, inter-quartile range (25-75%), 10-90% points, mean quality

Per base sequence quality

Position in read (bp)

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

FastQC: Per sequence quality score

Number of sequences with the same mean quality

Quality score distribution over all sequences Average Quality per read 40000 40000 10000

Mean Sequence Quality (Phred Score)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Per sequence quality scores

FastQC: Nucleotide related errors

- How expected nucleotide distribution deviates from expected
 - Per base sequence content
 - Per base GC content
 - Per sequence GC content
 - Per base N content

Sequence content across all bases Sequence content across all bases 90 90 70 60 50 40 10 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

FastQC: Sequence related errors

- How expected nucleotide distribution deviates from expected
 - Sequence Length Distribution Fragments
 - Sequence Duplication Levels
 - Overrepresented sequences
 - Adapter Content

21

FastQC: Per base sequence quality

Miseq assymetry

FastQC: Per base sequence quality

SMRT PacBio

Sequence Length Distribution

Sequence filtering

- Remove residual adapters
 - Depending on used library
- Filtering parameters
 - Quality filtering
 - Overall mean quality
 - Local mean quality
 - Sequence end
 - Sliding window
 - Size filtering
 - Overall sequence size
 - Remaining sequence size after filtering

Sequence filtering

Example of quality filtering

Sequence filtering: stats with MultiQC

Sequence filtering: stats with MultiQC

Trimmomatic

Trimmomatic is a flexible read trimming tool for Illumina NGS data.

Questions?