Q1.

Give the result (in binary) of Verilog expression A+(B|C) for the following inputs: A=4'b1100, B=3'b100 and C=3'b010. Assume A is a 4-bit wire and B and C are each 3-bit wires. Show your result using Verilog notation, such as 3'b101.

Solution

```
4'b0010
//| = Bitwise OR
//+ = Addition
```

02.

Give the result (in binary) of Verilog expression (A==B)?B:C for the following inputs: A=4'b1100, B=3'b100 and C=3'b010. Assume A is a 4-bit wire and B and C are each 3-bit wires. Show your result using Verilog notation, such as 3'b101.

Solution

```
3'b010 //Conditional Statement
```

Q3.

Give the result (in binary) of Verilog expression ~&A for the following input: A=4'b1100. Assume A is a 4-bit wire. Show your result using Verilog notation, such as 3'b101.

Solution

```
1'b1
//Reduction Operator ~&. Operates on all the bits within a word.
//Accepts a single word operand and produces a single bit as output.
```

Q4.

Write Verilog code that declares a 16-bit register, $R_{\rm H}1402$, and initially assigns it the hexadecimal value 1402.

Solution

```
reg [15:0] R_H1402;
initial R_H1402 = 16'h1402;
```

Q5.

What advantage is there to connecting ports by name, rather than position?

Solution

Many solutions accepted, but the primary reason is that it is more likely that wires will be connected to the correct port (i.e. it is harder to make a mistake).

Q6.

Write the hardware description of a 5-bit mod-22 counter. The suggested skeleton file has been written below:

```
module mod22Cntr (0, ck, rst);
  input ck, rst;
  output [4:0] 0;
  //WRITE YOUR CODE HERE
```

endmodule

Solution