Stance detection on Twitter

Lixing Zhu

Introduction

to be about 400k.

C 52,2K 941 PM - Feo 19, 2019

C 6,460 people are taking about this

■ Stance detection aims at classifying users' stances towards topics

Wide range of applications

Introduction

Dynamic Stance Prediction: To predict a user's stance label of the next tweet within a short period of time.

- Users are influenced by others.
- Users pay more attention to their interested topics.
- Users opinions are changing dynamically.

Tweet Datasets

WARWICK THE UNIVERSITY OF WARWICK

Brexit

- Tweets were crawled in June 2016 using hashtags: #EURef, #EU, #Referendum, #Brexit, #VoteRemain, #VoteLeave, etc.
- Tweets are split into epochs every other day, which resulted in a total of 9 epochs with each epoch consisting of 40,440 tweets on average

US General Election 2016

- Tweets were crawled in November 2016 using keywords: Trump, Clinton and Hillary, etc.
- A total of 452,128 tweets split into 11 count-based epochs with the epoch size set to 40,000 and on average 16,019 users per epoch

Tweet Datasets

- The Brexit dataset has on average 10,802 users per epoch. Election dataset has 16,019 users in each epoch.
- In the Brexit dataset, each user on average posted 3.7 tweets. In the Election dataset the number is 2.5.

Tweet Datasets

>>>>>>

its fantastic , at last people ignoring their party lovalties : it kill the traitorous scots ! just kidding ? <hashtag> brexit </hash cracking work mr carswell that is bloody great ! you shared our se <hashtag> eu ref </hashtag> watch bbc2 britain europe the immigrat well done the <hashtag> rmt </hashtag> union recommending <hashtag eu remainie has informed me we can control our borders we know but +0000 2016-06-14 20:15:40

<hashtag> brexit </hashtag> save the uk . the dawn o / t revival or <u>i hope and pray t</u>hat the people of the <hashtag> uk </hashtag> wil lord bamford ' s voting leave eu . he runs a global business knows bigot with no respect for the dead / family or indeed integrity <h still too close to call , all to play for ! <hashtag> brexit </has <hashtag> brexit </hashtag> is necessary to protect <hashtag> nhs

this is the reason our pm has cut our military to pieces . he was sorry but fullfact had to acknowledge eu makes over <percent> of ι an open letter on why we should vote leave on <date> full zero w <hashtag> remain </hashtag> what ' s with the xenophobic comments looking ahead to <hashtag> eu ref </hashtag> night : where are the vote leave : iankatz1000 : watch senior erdogan advisor ilnur chev

Each line consists of serial of user's tweets.

+0000 2016-06-20 20:56:47

Each user's tweet comprises neighbors.

+0000 2016-06-21 22:59:54

Neural Opinion Dynamics (NOD) model

- NOD leverages content and context information for the tracking of user-level stance dynamics over time
- We assume tweets arrived in a temporal order and can be split into epochs
- In each epoch, a user posted a sequence of tweets
 - Each tweet has a representation derived from its content and the associated topic embedding
 - In addition, we assume that when user posts a tweet at epoch e, their opinion is also influenced by the most recent N tweets posted by their neighbours in their social network

Problem Setup

Model Architecture

- Topic embeddings have already been discovered by an independent topic model.
- Tweet representation is a vector pooled over an LSTM.

- Users sequential behaviors are modelled by a GRU.
- The GRU state are initialized by the last GRU state from the previous epoch.

Features are extracted from the user's tweet, neighbors' tweets and tweet-associated topics.

10

Topic embedding

- Extract hierarchical topics from tweets using Hierarchical Latent Dirichllet Allocation (HLDA)
- Convert each topic into topic embeddings
- Context attention when a user posts a tweet, they would pay more attention to their neighbours' tweets carrying topics of their interests
 - For each tweet, its final representation is generated by combining its content representation with its corresponding topic embedding by:

$$g_{t,n}^{e,u} = \frac{\alpha_1 z_{t,n}^{e,u} \oplus \alpha_2 c_{t,n}^{e,u}}{\alpha_1 + \alpha_2}$$

• Use β_n to measure the degree of influence from the nth neighbourhood tweet and β_0 is the attention signal on the user's current tweet

$$d_t^{e,u} = \sum_{n=0}^{N} \beta_n g_{t,n}^{e,u}$$
$$\beta_n = \frac{\exp(\mathbf{v}^{\mathrm{T}} u_{t,n}^{e,u})}{\sum_{n=0}^{N} \exp(\mathbf{v}^{\mathrm{T}} u_{t,n}^{e,u})}$$
$$u_{t,n}^{e,u} = \tanh(\mathbf{W} g_{t,n}^{e,u} + \mathbf{b})$$

• Self attention – The weight of g_n , that is β_n , is determined by g_n themselves

$$\mathbf{d} = \operatorname{softmax} \left(\mathbf{v}^{T} \tanh(\mathbf{W}) \right)^{T},$$
where $G = [g_{1}, g_{2}, ..., g_{N}]$

• Compared to Query-Key-Value Attention $\mathbf{d} = \operatorname{softmax} \left(\frac{\mathbf{W}_{\mathbf{Q}} \mathbf{Q}}{\mathbf{V}_{\mathbf{Q}}} \operatorname{tanh}(\mathbf{W}_{\mathbf{K}} \mathbf{K}) \right) \frac{\mathbf{W}_{\mathbf{V}}}{\mathbf{V}^{\mathbf{T}}} \mathbf{V}^{\mathbf{T}}$

$$\mathbf{d} = \operatorname{softmax} \left(\tanh(\mathbf{v}^{\mathrm{T}}) \right)^{\mathrm{T}}$$

or
$$\mathbf{d} = \operatorname{softmax} \left(\mathbf{v}^{\mathrm{T}} \operatorname{tanh}(\mathbf{W}) \right)^{\mathrm{T}}$$

User-Level Topic-Stance Prediction

The integrated representations of user u's post sequence in epoch e is fed to a GRU layer for user-level topic-stance prediction, output is a $C = K \times S$ vector $y^{e,u}$

 Objective function is to minimise the KL divergence between the predicted distribution over topic-stance categories and the ground truth distribution over topic-stance categories

$$\mathcal{L} = \sum_{u=1}^{U} \sum_{i=1}^{C} \mathbf{KL}(y_i^{e,u} || \mathbf{g}_i^{e,u})$$

- Alternatively, we can perform coarse-level stance classfication in which the output is a three-class stance label ('oppose', 'neutral' or 'support') with topics ignored
 - Use cross-entropy loss instead
 - Output is an S dimensional vector, ground truth is a label

Experimental Setup

 Ground truth stance label acquisition – trained supervised classifier with distant supervision

- Brexit collect over 4 million tweets between May 16th and June 2nd 2016 with hashtags clearly indicating stances as training data
- Election collect over 17 million tweets in the first week of November 2016 with stance-indicative hashtags
- Results on manually annotated 1,000 tweets:

Table 3: Accuracy of the ground truth acquisition methods.

	Brexit	ELECTION
DataStories	0.906	0.895
Sentiment140Lex	0.579	0.562
Vader	0.538	0.481

Experimental Setup

- Obtain the user-level topic-stance distributions
 - For each user, calculate the number of tweets under each topic with different stance labels and normalize the counts to obtain the topic-stance distributions

Update the model with the data in the current epoch and use the trained model to predict the stance labels in the next epoch

Baselines

• dJST (He et al., 2013) – weakly-supervised LDA-based generative model for dynamic sentiment-topic detection.

- SLANT (De et al., 2016) a supervised probabilistic generative model which models each user's latent opinions over time as a multidimensional stochastic process.
- CSIM-W (Chen et al., 2018) used an attention layer to weigh the importance of a given user's previously published tweets, their current tweet and their neighbors' tweets and employed an LSTM layer to capture the influence in the previous epochs.
- SNVDM (Thonet et al., 2017) an unsupervised LDA-based generative model where the sender/receiver information is regarded as observed variables, which is generated by a hidden viewpoint variable
- CbNNM (Ren et al., 2016) the contextual information of a tweet (i.e., the neighbours' tweets sharing the same hashtag) serve as features for tweet-level stance classification.
- DataStories (Baziotis et al., 2017) the state-of-art method in tweet-level stance classification.

Experiment Results – Brexit

Experiment Results – US Election

Experiment Results – Topical Stance

Figure 6: Global topic-stance and user-level topic-stance on Brexit.

Conclusion

Neural Opinion Dynamics (NOD) model for user-level topic-stance prediction

take into account tweet content, topical and neighborhood context

Future work:

- The neighborhood information was derived from the following-follower relations. It
 is also possible to construct the social networks using the re-tweeting or mentioning
 relations.
- Consider each neighbour's social influence score that opinions from more influential users should carry higher weight.
- Investigate a unified model for joint topic-stance detection over streaming data.