CE19BOSS Keshar Kr. Choudhary.

1. The 4 eters in the transport model area) True Generation: The city is divided into different 30ms and number of trips produced and attracted by the a zone is calculated based on different factors like people's income buch, occupation, brand mude and habits, etc. The productions and allractions is listed in a PA matrix. Multiple linear regression model can be used for trip generation. The data required as input will be different independent factors with Some num trical value associated to them which influence number of trips. Assumption for this model is that number of trips will be linearly dependant on the different factors that we choose. The choice of factors is also an absumption.

6) Trip distribution: 1 The PA matrix obtained from trip generation is used, along with the cost per on impedance for different links, to get an origindestination (00) matrin. It to give us the number of brips between a given origin and dustination. Gravity model is used for this purpose. The assumption is Hot, number of trops between 3 one i & i is directly proportional to Pib Aj.

Tij = P; (A; Cij

Z (ALCIA)

C) Modal Delet: Currently, we have the meaning of prople who bravel between any two sous. In this step, we find the mode of transport that they'll was for commute. Multinomial boost Model is used for this purpose. Utility for dispurent modes to calculated that the purpose. Utility for dispurent modes to calculated using utility function. A purpose chooses the mode with maximum utility. Utility dispures upon the work model and individual characteristics. Done randomness is also associated. MNL calculates protability of choosing mode I among alternatives: P(i)= ellipropersing mode I among alternatives: P(i)= ellipropersing bus over can will increase is half of the base buses are painted risk, and the other half the base buses are painted risk, and the other half blue, which is obviously wrong. A rested model can work botter in such cases.

d) Trip Assignment: After getting the number of vibides traulling from given origin to destination, we find the path that the vibide will follow. Accordingly, we get a tend array which shows the number of vibides on each link. One of the model used for this purpose is all or nothing assignment; where it is assumed that all the vibides will choose the link which has minimum cost or impedance, and we assign all the braffer for the link limitation is that it doesn't account for the danger in cost according to conjection so,

	HHVEHCNT	HHFAMINC	NUMADLT	DRVRCNT	HOMETYPE	HHSIZE	HH_0TO4	TELNUMCT	HHTRIPS
HHVEHCNT	1								
HHFAMINC	0.07600530564	1							
NUMADLT	0.3285512096	0.4964102985	1						
DRVRCNT	0.7128599441	0.02167108705	0.5843047258	1	1				
HOMETYPE	-0.2660662432	-0.1654954555	-0.1662094184	-0.4535394202	1				
HHSIZE	0.3693627814	0.09187701085	0.2714767782	0.3653383417	-0.3770801266	1			
HH_0TO4	0.1917529849	-0.1868117995	-0.06112274566	0.09656090992	-0.2022599587	0.5121933768	1		
TELNUMCT	0.2148678752	0.1894006287	0.2562500454	0.3180732126	0.2422718559	-0.07612991842	-0.1088931013	1	
HHTRIPS	0.3881717843	0.5491785454	0.4921935726	0.2279057911	-0.274571317	0.05398235417	0.1514584997	0.1209470955	
SUMMARY OUT	PUT								
egression Statistic	cs				Other variables	are ignored due to	o lower covarianc	e	
	0.7239187545								
Multiple R			HHTRIPS = 0.89	45352374 + 0 40	3501985*HHVF	HCNT + 0 003532	790098*HHFAMI	INC + 0 5905178	399*NIIMAD
	0.7239187545 0.5240583631			945352374 + 0.40 DRVRCNT + -0.1			2790098*HHFAMI	INC + 0.5905178	399*NUMAD
Multiple R R Square	0.7239187545 0.5240583631						2790098*HHFAMI	INC + 0.5905178	399*NUMAD
Multiple R R Square Adjusted R Squa	0.7239187545 0.5240583631 0.3988105639						2790098*HHFAMI	INC + 0.5905178	399*NUMADI
Multiple R R Square Adjusted R Squa Standard Error	0.7239187545 0.5240583631 0.3988105639 0.4630596422						2790098*HHFAMI	INC + 0.5905178	399*NUMAD
Multiple R R Square Adjusted R Squa Standard Error Observations	0.7239187545 0.5240583631 0.3988105639 0.4630596422	SS					2790098*HHFAMI	INC + 0.5905178	399*NUMAD
Multiple R R Square Adjusted R Squa Standard Error Observations	0.7239187545 0.5240583631 0.3988105639 0.4630596422 25	SS 4.485939588	-0.5507585354*[DRVRCNT + -0.1	442691947*HON	ETYPE	2790098*HHFAMI	INC + 0.5905178	399*NUMAD
Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA	0.7239187545 0.5240583631 0.3988105639 0.4630596422 25		-0.5507585354*[MS	DRVRCNT + -0.1	442691947*HON	ETYPE	2790098*HHFAMI	INC + 0.5905178	399*NUMADI
Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual	0.7239187545 0.5240583631 0.3988105639 0.4630596422 25 df	4.485939588	-0.5507585354*[MS 0.8971879176	DRVRCNT + -0.1	442691947*HON	ETYPE	2790098*HHFAMI	INC + 0.5905178	399*NUMAD
Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual	0.7239187545 0.5240583631 0.3988105639 0.4630596422 25 df 5	4.485939588 4.074060412	-0.5507585354*[MS 0.8971879176	DRVRCNT + -0.1	442691947*HON	ETYPE	2790098*HHFAMI	INC + 0.5905178	399*NUMAD
Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression	0.7239187545 0.5240583631 0.3988105639 0.4630596422 25 df 5 19 24	4.485939588 4.074060412 8.56	MS 0.8971879176 0.2144242322 t Stat	F 4.184172229	442691947*HON Significance F 0.009860325147	ETYPE	2790098*HHFAMI	INC + 0.5905178	399*NUMAD
Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total	0.7239187545 0.5240583631 0.3988105639 0.4630596422 25 df 5 19 24 Coefficients	4.485939588 4.074060412 8.56 Standard Error	MS 0.8971879176 0.2144242322 t Stat 1.811077485	F 4.184172229 P-value	Significance F 0.009860325147 Lower 95% -0.1392602546	Upper 95%	2790098*HHFAMI	INC + 0.5905178	399*NUMAD
Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1	0.7239187545 0.5240583631 0.3988105639 0.4630596422 25 df 5 19 24 Coefficients 0.8945352374 0.403501985	4.485939588 4.074060412 8.56 Standard Error 0.4939243321	MS 0.8971879176 0.2144242322 t Stat 1.811077485 2.292315197	F 4.184172229 P-value 0.08596989849 0.03347532031	Significance F 0.009860325147 Lower 95% -0.1392602546	Upper 95% 1.928330729 0.7719239839	2790098*HHFAMI	INC + 0.5905178	399*NUMAD
Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1	0.7239187545 0.5240583631 0.3988105639 0.4630596422 25 df 5 19 24 Coefficients 0.8945352374 0.403501985	4.485939588 4.074060412 8.56 Standard Error 0.4939243321 0.1760237795	MS 0.8971879176 0.2144242322 t Stat 1.811077485 2.292315197 1.074813576	F 4.184172229 P-value 0.08596989849 0.03347532031	Significance F 0.009860325147 Lower 95% -0.1392602546 0.03507998599 -0.00334674204	Upper 95% 1.928330729 0.7719239839	2790098*HHFAMI	INC + 0.5905178	399*NUMAD
Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total Intercept X Variable 1 X Variable 2	0.7239187545 0.5240583631 0.3988105639 0.4630596422 25 df 5 19 24 Coefficients 0.8945352374 0.403501985 0.003532790098	4.485939588 4.074060412 8.56 Standard Error 0.4939243321 0.1760237795 0.003286886374	MS 0.8971879176 0.2144242322 t Stat 1.811077485 2.292315197 1.074813576	F 4.184172229 P-value 0.08596989849 0.03347532031 0.295918584	Significance F 0.009860325147 Lower 95% -0.1392602546 0.03507998599 -0.00334674204	Upper 95% 1.928330729 0.7719239839 0.01041232224	2790098*HHFAMI	INC + 0.5905178	399*NUMAD

beller alternative is incremental assignment. Cii is assumed to be s, because crizogives so paths. 2. b) For the given PA matrix, Tij is calculated Using gravity model and 10 iterations are performed by applying Adw-column factor milhod to balance out trips. Cij matrin is used \$ to get impedance values c) Apter the adolption of new links, the Cij motion will change For the new impedances, again 0-0 matrin is calculated (10 Herations) shortest pather, using Dijkstra's algorithm (10) (9) (11) 6 (13) 1-3-5 (-3)-5 (4) (5) 2-14-5 2-04-06 2-14-06 2-11-3 (10) 7 (7) 2 (9) 3-05-6 3-05-57 3-15-14 3-5 (9) (12) 8d 4-6 4-6-7 4-6-7 4-6-1 4-5 S (8) 8 (9) 9 (1) (3) (5) 5-17-8 5-7-9 506 5-7 (7) (8) (2) 6-7-18 6-7-39 6-7 (2) (5) (6) 7-9 7-18 (3) (4) 8-19 (3)

2 b) First Iteration for Tij:

Tij		1	2	3	4	5	6	7	8	9	Sum
	1	4819.298963	6425.73195	4091.102758	2295.642994	2029.410931	1362.741885	646.1734136	169.5167107	160.3803947	22000
	2	2150.341869	2867.122492	391.0364543	3822.829989	2521.457948	1407.731235	587.5632079	135.1215858	116.7952185	14000
	3	3674.232643	1049.442392	1335.872844	604.3866185	586.1923602	421.7866899	210.995804	58.83221888	58.25842891	8000
	4	79.18882615	394.0575326	23.21390123	525.4100434	3745.367173	903.1916573	255.4622337	42.99526393	31.1133685	6000
	5	52.69425546	195.6411021	16.94755952	2819.214507	617.9482662	3171.616321	519.3305037	65.2137007	41.39378456	7500
	6	55.42728378	171.0979606	19.10190142	1064.952786	4968.180418	784.0682206	338.8673015	57.03265352	41.27147512	7500
	7	135.6064184	368.4689082	49.3036096	1554.169244	4197.413118	1748.440399	1510.829236	1450.091179	485.6778887	11500
	8	110.9829059	264.3524882	42.88767865	816.0272075	1644.330619	918.0306084	4523.845095	623.2501724	2056.293225	11000
	9	181.793383	395.6097178	73.52910824	1022.384533	1807.043684	1150.1826	2623.275874	3560.149726	1686.031374	12500
Sum		11259.56655	12131.52454	6042.995815	14525.01792	22117.34452	11867.78962	11216.34267	6162.20321	4677.215158	

10th iteration for Tij

1	0-4	.03	*
_	UET	-03	-

3.8598	6.5671	3.3683	2.8279	2.0033	2.3584	0.6897	0.1162	0.1840
1.5588	2.6521	0.2914	4.2623	2.2527	2.2050	0.5676	0.0839	0.1213
3.1343	1.1423	1.1715	0.7930	0.6163	0.7775	0.2399	0.0430	0.0712
0.0566	0.3592	0.0170	0.5773	3.2975	1.3942	0.2432	0.0263	0.0318
0.0302	0.1432	0.0100	2.4876	0.4369	3.9317	0.3970	0.0320	0.0340
0.0404	0.1589	0.0143	1.1925	4.4577	1.2334	0.3288	0.0355	0.0430
0.0978	0.3393	0.0366	1.7248	3.7328	2.7261	1.4527	0.8957	0.5020
0.0801	0.2433	0.0318	0.9053	1.4618	1.4309	4.3485	0.3849	2.1247
0.1421	0.3946	0.0591	1.2292	1.7410	1.9428	2.7327	2.3825	1.8880

2 c) 1st iteration for Tij with new cost matrix

-	0.1		Α.	_	4
ь.	U	=+	U,	3	•

4.2842	5.7123	3.6369	2.0408	3.1163	1.9156	0.8523	0.2089	0.2327
2.0702	2.7602	0.3765	3.6803	2.4274	1.6951	0.6779	0.1498	0.1626
1.6722	0.4776	0.6080	1.0266	2.4319	1.1549	0.4378	0.0922	0.0990
0.0693	0.3447	0.0758	0.4596	3.2760	1.3646	0.3160	0.0470	0.0470
0.0887	0.1906	0.1505	2.7468	0.6021	3.0902	0.5060	0.0635	0.0616
0.0594	0.1450	0.0779	1.2464	3.3662	0.5313	1.8514	0.1181	0.1044
0.0912	0.2002	0.1019	0.9961	1.9025	6.3904	0.6848	0.6573	0.4756
0.1274	0.2521	0.1223	0.8455	1.3621	2.3233	3.7475	0.5163	1.7034
0.1777	0.3425	0.1643	1.0574	1.6532	2.5702	3.3936	2.1316	1.0095

10th iteration for Tij with new cost matrix

1.0e+03 *

4.3976	6.4781	3.3628	2.2026	2.9100	1.5047	0.6949	0.1912	0.2740
2.1174	3.1192	0.3469	3.9581	2.2588	1.3268	0.5508	0.1366	0.1908
1.7922	0.5656	0.5870	1.1569	2.3712	0.9472	0.3727	0.0881	0.1217
0.0773	0.4252	0.0762	0.5396	3.3278	1.1660	0.2802	0.0468	0.0602
0.0983	0.2334	0.1503	3.2015	0.6071	2.6212	0.4455	0.0628	0.0784
0.0658	0.1776	0.0777	1.4526	3.3944	0.4506	1.6300	0.1167	0.1327
0.1075	0.2608	0.1082	1.2350	2.0409	5.7664	0.6414	0.6912	0.6433
0.1428	0.3120	0.1234	0.9959	1.3882	1.9916	3.3345	0.5158	2.1888
0.2010	0.4282	0.1675	1.2579	1.7017	2.2253	3.0499	2.1508	1.3102

Use of Dijasktra's algorithm:

Matlab code used to calculate Tij in b and c part:

```
%% Calculating Ki
 K = zeros(9, 1);
for i = 1:9
    for k = 1:9
         K(i) = K(i) + A(k)/(C(i, k)^1.9);
     end
-end
 %% Calculating Tij for first time using Gravity model
 T = zeros(9, 2, 10);
\exists for i = 1:9
    for j = 1:9
         T(i, j, 1) = P(i)*A(j)/(K(i)*C(i, j)^1.9);
     end
∟end
 %% 10 iterations to compute Tij
 rf = ones(9,1); cf = ones(9,1); %row and column factors
\exists for k = 2:10
     if mod(k, 2) == 0 % Using row and column factor for
    for i = 1:9 % odd and even iterations respectively
         cf(i) = A(i)/sum(T(:, i, k-1));
         T(:, i, k) = cf(i)*T(:, i, k-1);
     end
     else
    for i = 1:9
         rf(i) = P(i)/sum(T(i, :, k-1));
         T(i, :, k) = rf(i) *T(i, :, k-1);
     end
     end
 end
```

Do, by all on nothing assignment, traffic on differ who links 18:

16-2 8596 + 912 + 2280 +

26-4 4383+ 2492+ 1564+ 812+449+619+2280

16-3 5155+912+3008+1571+802+334+475

36-5 1233+2522+1625+481+212+289+3008+1571+802+334+475

46-6 1534+6529+24924

46-6 1504+812+449+619+2619+1515+1642+1318

86-6 1625+6016

56-7 812+449+619+1515+1043+1451+1780

66-37 812+449+619+1515+1043+1318+7397+2108+2358

76-8 334+449+12+1643+149+2108+4026

76-9 475+619+289+1318+1780+2358+3693

86-9 4340,

1-2	11788	4-6	9878
1-3	12257	5-6	7041
2-4	12539	5-7	8310
3-5	11952	6-7	17619
4-5	10254	7-8	9623
7-9	10532	8-9	4340