Machine Learning Machine Learning Model

Mostafa S. Ibrahim Teaching, Training and Coaching for more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

Algorithm vs Model

- **ML algorithm** is the procedure we use to learn from data (code/steps)
- ML model is the learned output (file = ~program) we use for applying ML
- Assume we have dataset of: 50 cat images and 70 dog images
- Goal: a classifier that differentiate between cat and dog images
- Neural network is an algorithm that can learn from this data
- We can use it with different configuration that express how strong will be the algorithm
- Each configuration generates a different output model!
 - Hence different performance in practice

Algorithm, Model, Configuration and Training

Evaluation and Inference

- How good is our model? We need a measure to evaluate our model
 - E.g. accuracy metric: How many classifications are correct?
 - We do that on a separate dataset (called evaluation dataset)
- Once it is good. We deploy it to do inference
 - Inference means apply the model and get the output for our clients

Training vs Inference

Question!

- Assume we trained a model on 5 classes: dog, cat, person, car, bicycle
- The model computed these probabilities for 4 test examples
- How many examples are correctly judged?
- What is the accuracy?

	Dog	Cat	Person	Car	Bicycle	Ground Truth
Example1	0.2	0.7	0.0	0.1	0.0	Cat
Example2	0.0	1.0	0.0	0.0	0.0	Dog
Example3	0.5	0.4	0.0	0.05	0.05	Cat
Example4	0.0	0.0	0.0	0.2	0.8	Bicycle

Code Flow

```
train input, train output = load train data()
val input, val output = load validation data()
test input = load test data() # not labeled
config = load configuration()
model, train acc, val acc = train nn(train input, train output,
                                     val input, val output,
                                     config)
# test input is 10 animal images
results = inference(model, test input)
# results: category of each image
```

Question!

- Your team has a task to model solution for the fraud detection
 - Fraud detection saves millions of dollars!
- So far, you presented around 20 possible ways to solve the problem
- Each time your manager finds some scenarios where the idea will fail
- The manager rejects the idea and ask you to find another perfect solution
- What is wrong?!

All models are wrong

- All models are approximations
- Assumptions, whether implied or clearly stated, are never exactly true
- All models are wrong, but some models are useful
- So the question you need to ask is not "Is the model true?" (it never is)
 but "Is the model good enough for this particular application?"
 - o For example we can build these models:
 - A translation model that can translate good between English and top 10 other languages, but it fails in other languages. This can be good for most of the people!
 - Our object detector in an autonomous driving car can find all people except children as they
 are too small. This car will kill the kids!!!
- Relevant [future reading]: No Free Lunch theorem in Machine Learning
 - No universal algorithm works well on every problem, including deep learning

Question!

- A popular dataset has 100k images for one of the real-world challenging problems.
- There is a yearly a challenge with \$5000 prize for the winner to encourage finding better solutions
- The performance of the last year is 99.3%. One of the professors comments, that this problem is now solved
- What do you think?

Summary

- Training means learning the model from the given dataset of examples
 - o In supervised learning, a model defines the relationship between input and label
 - ML algorithm is the procedure we use during this training/learning
- Inference means applying the trained model to unlabeled examples

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."