

Natural Language Processing with Disaster Tweets

Case Study 6 Text Mining

Group 1:

Hutari Andini 2206820680

Galank Zamer 2206051393

Rachelle Melody d'Lyra Soentara 2206051456

Kartika Rizkia Zuhrah 2206027993

Luthfi Athallah 2206826980

Context of the Case Study

Background Pre-Processing

Data Preprocessing

Preparing data to make it ready to analyze

Some highlight in Data Preprocessing

Tokenization, Cleaning, and Vectorizing

Sneak peaks clean_text!

text target clean_text

O 1 Our Deeds are the Reason of this #earthquake M... 1 deeds reason earthquake may allah forgive us

1 4 Forest fire near La Ronge Sask. Canada 1 forest fire near la ronge sask canada

Background

Pre-Processing

EDA

Modelling

Conclusion

Statistical Description of Target Variable

Distribution of Target Variable

- Jumlah tweets di non disaster lebih banyak daripada tweets disaster
- Jumlah unique < count artinya ada beberapa repetisi di text dari tweets
- Kosong di 'top' pada disaster artinya kemungkinan tidak ada single phrase yang dominan

Characters di tweets 2

- Distribusi dari jumlah Characters Disaster dan non Disaster tweets mirip
- Secara keseluruhan, **non Disaster** memiliki character lebih banyak
- Nilai terbanyaknya berpusat di approximately 40-70 characters

Words di tweets

- Distribusi dari jumlah words Disaster secara kasar mendekati normal
- Sedangkan non Disaster tweets memiliki frekuensi ekstrim di sekitar 7-9 words
- Secara general, jumlah words non Disaster lebih banyak daripada Disaster

Background **EDA** Pre-Processing Modelling Conclusion

Most Common Words

Disaster tweets:

- fire
- disaster
- news
- california
- suicide

Non Disaster tweets:

- body
- people
- love
- know
- day

Most Common Words

Background

Pre-Processing

EDA

Modelling

Conclusion

Top 10 Locations Mentioned in Disaster Tweets

Pada bagian ini data akan dilatih dan selanjutnya diuji. Pertama-tama, data dibagi menjaden data train dan data test. Kemudian akan dilakukan pemodelan, sebagai berikut:

Random Forest

	Precision	Recall	F1-Score	Support
0	78%	84%	81%	874
1	76%	68%	72 %	649
Accuracy			77 %	1523
Macro Avg	77%	76%	76%	1523
Weighted Avg	77%	77%	77 %	1523

Pada bagian ini data akan dilatih dan selanjutnya diuji. Pertama-tama, data dibagi menjadi data train dan data test. Kemudian akan dilakukan pemodelan, sebagai berikut:

Support Vector Machine (SVM)

	Precision	Recall	F1-Score	Support
0	79%	91%	84%	874
1	84%	67%	74%	649
Accuracy			80%	1523
Macro Avg	81%	79%	79%	1523
Weighted Avg	81%	80%	80%	1523

Pada bagian ini data akan dilatih dan selanjutnya diuji. Pertama-tama, data dibagi menjadi data train dan data test. Kemudian akan dilakukan pemodelan, sebagai berikut:

Logistic Regression

	Precision	Recall	F1-Score	Support
0	80%	86%	83%	874
1	79%	72%	7 5%	649
Accuracy			80%	1523
Macro Avg	80%	79%	79%	1523
Weighted Avg	80%	80%	80%	1523

Pada bagian ini data akan dilatih dan selanjutnya diuji. Pertama-tama, data dibagi menjadi data train dan data test. Kemudian akan dilakukan pemodelan, sebagai berikut:

Gradient Boosting Classifier

	Precision	Recall	F1-Score	Support
0	71%	93%	81%	874
1	84%	50%	63%	649
Accuracy			7 5%	1523
Macro Avg	78%	71%	72%	1523
Weighted Avg	77%	75%	7 3%	1523

Pada bagian ini data akan dilatih dan selanjutnya diuji. Pertama-tama, data dibagi menjadi data train dan data test. Kemudian akan dilakukan pemodelan, sebagai berikut:

XGBoost

	Precision	Recall	F1-Score	Support
0	76%	90%	82%	874
1	82%	61%	70%	649
Accuracy			78%	1523
Macro Avg	79%	76%	76%	1523
Weighted Avg	79%	78%	77 %	1523

Pada bagian ini data akan dilatih dan selanjutnya diuji. Pertama-tama, data dibagi menjadi data train dan data test. Kemudian akan dilakukan pemodelan, sebagai berikut:

Naive Bayes

	Precision	Recall	F1-Score	Support
0	80%	83%	82%	874
1	76%	72%	74 %	649
Accuracy			78%	1523
Macro Avg	78%	78%	78%	1523
Weighted Avg	78%	78%	78%	1523

Pada bagian ini data akan dilatih dan selanjutnya diuji. Pertama-tama, data dibagi menjadi data train dan data test. Kemudian akan dilakukan pemodelan, sebagai berikut:

K Nearest Neighbor (KKN)

	Precision	Recall	F1-Score	Support
0	68%	66%	67%	874
1	56%	59%	57%	649
Accuracy			63%	1523
Macro Avg	62%	62%	62%	1523
Weighted Avg	63%	63%	63%	1523

Pada bagian ini data akan dilatih dan selanjutnya diuji. Pertama-tama, data dibagi menjadi data train dan data test. Kemudian akan dilakukan pemodelan, sebagai berikut:

Decision Tree

	Precision	Recall	F1-Score	Support
0	76%	81%	78%	874
1	72%	66%	69%	649
Accuracy			74%	1523
Macro Avg	74%	73%	74%	1523
Weighted Avg	74%	74%	74 %	1523

Model Evaluation

Tabel Nilai Akurasi Model Awal, Model dengan Cross-Validation, dan Model dengan Hyperparameter Tuning

Nama Model	Model Awal	Model dengan Cross-Validation (k-fold=5)	Model dengan Hyperparameter Tuning
Support Vector Machine (SVM)	80.5%	79.5%	80.5%
Logistic Regression	79.8%	78.8%	79.8%
Naive Bayes	78.5%	78.9%	78.5%
XGBoost	78.0%	77.4%	78.0%
Random Forest	77.2%	77.6%	77.2%
Gradient Boosting	74.7%	73.7%	74.7%
Decision Tree	74.4%	72.9%	74.4%
K-Nearest Neighbor	62.7%	60.4%	62.7%

Background

Pre-Processing

EDA

Modelling

Conclusion

Model Evaluation

Grafik Perbandingan Nilai Akurasi Model Awal, Model dengan Cross-Validation, dan Model dengan Hyperparameter Tuning

Sebagian besar model (kecuali Naive Bayes dan Random Forest) memiliki nilai akurasi model dengan Hyperparameter Tuning yang lebih besar dibandingkan model dengan Cross-Validation (k-fold=5).

Background

Pre-Processing

EDA

Modelling

Conclusion

Model Evaluation

Interpretasi Perbandingan Nilai Akurasi Model Awal, Model dengan Cross-Validation, dan Model dengan Hyperparameter Tuning

Dapat dilihat bahwa nilai akurasi model **Support Vector Machine (SVM)** menjadi yang tertinggi untuk semua evaluasi.

Artinya, model SVM dapat **memprediksi label dengan benar sebanyak 80.5%** dari sampel.

Ensemble Model


```
# Membuat Voting Classifier (menggunakan hard voting, di mana model memilih kelas mayoritas)
ensemble_model = VotingClassifier(
    estimators=[('sym', sym_model), ('logreg', logreg_model), ('nb', nb_model)],
    voting='hard' # Bisa menggunakan 'soft' untuk probabilistic voting jika model mendukung
# Melatib ensemble model
ensemble_model.fit(x_train, y_train)
# Prediksi dengan ensemble model
y pred ensemble = ensemble model.predict(X test)
# Menghitung akurasi
accuracy = accuracy_score(y_test, y_pred_ensemble)
# Menampilkan hasil evaluasi
print(f"Ensemble Model Accuracy: {accuracy}")
Ensemble Model Accuracy: 0.8030203545633617
```

Ensemble ketiga

model terbaik,
nyatanya tidak
memberikan nilai
akurasi yang lebih
baik dari model
SVM dengan
hyperparameter
tuning.

Prediction

Kita memprediksi data test dengan model terbaik yaitu model Support Vector Machine (SVM) dengan optimalisasi hyperparameter

```
[4] # Menggunakan model SVM terbaik setelah hyperparameter tuning
    optimal_svm_model = grid_search_svm.best_estimator_

# Melakukan prediksi pada df_test
    df_test['target'] = optimal_svm_model.predict(df_test)

# Menyimpan hasil prediksi dalam format yang sesuai untuk Kaggle
    Submission1 = df_test[['id', 'target']]

# Menyimpan ke file CSV
Submission1.to_csv('Submission1.csv', index=False)
```


Thank You

By Group 1