Pendahuluan Penggunaan Gnuplot

Laboratorium Fisika Lanjutan

Data

- Data terbagi atas kolom-kolom yang dipisahkan oleh spasi atau tab
- Data dapat dibuat menggunakan Notepad, dengan ekstensi file .dat, .txt ataupun .in
- Komentar dapat ditambahkan ke dalam file data dengan menggunakan #

file ekstensi untuk data dapat berupa
.txt; .dat ataupun .in

Membuat Grafik

Change Directory menuju tempat file data disimpan

```
Ketikplot '[namadata]' using 1:2
```

Tekan Enter dan Voila!

Dapat menggunakan tombol ChDir untuk mengubah direktori

Setting Awal Grafik

```
# otomatis mengatur kedua sumbu
- set autoscale
- set title
                     # memberi judul grafik
                     # mengatur ukuran grafik
- set size
- set xlabel
                     # memberi nama pada sumbu-x
                     # memberi nama pada sumbu-y
- set ylabel

    set xrange/yrange # set rentang nilai pada sumbu x/y

    set xtics/ytics # jarak antar tiap titik pada sumbu

- set mxtics/mytics # set minor tics pada
                     # posisi legenda pada grafik
set key
```


Setting awal yang digunakan

Grafik yang diperoleh

Setting Awal Grafik

> Digunakan pada command plot

```
    using 1:2 → menggunakan data pada kolom
    yang ditunjuk
```

- with line → grafik berupa titik-titik data / garis
- − title "Data" → memberi nama data pada legenda
- pointtype (pt) → mengubah bentuk titik
- dashtype (dt) → mengubah bentuk garis
- linecolor (lc) → mengubah warna grafik

Membuat Grafik

— Membuat beberapa plot dalam satu grafik plot 'data.txt' using 1:2 title 'Eksp. Pertama', 'data.txt' using 1:3 title 'Eksp. Kedua'

 Perintah-perintah gnuplot dapat ditulis dalam bentuk txt/gnu yang kemudian di load ke dalam program gnuplot untuk dijalankan menggunakan perintah load 'command.txt'

Simbol dalam Gnuplot

- Menggunakan {/Symbol}, contoh {/Symbol a} $\rightarrow \alpha$

Alphabet	Symbol	Alphabet	Symbol
A (Alpha)	Αα	N (Nu)	Νν
B (Beta)	Вβ	O (Omicron)	Оо
C (Chi)	Χχ	P (Pi)	Пπ
D (Delta)	Δδ	Q (Theta)	Θθ
E (Epsilon)	Εε	R (Rho)	Ρρ
F (Phi)	Φφ	S (Sigma)	Σσ
G (Gamma)	Γγ	T (Tau)	Ττ
H (Eta)	Нη	U (Upsilon)	Υυ
I (Iota)	Ιι	W (Omega)	Ω ω
K (Kappa)	Κκ	X (Xi)	Ξξ
L (Lambda)	Λλ	Y (Psi)	Ψψ
M (Mu)	Μμ	Z (Zeta)	Ζζ

Italic, Bold, Subscript, Superscript

- Subscript ditulis menggunakan _{subscript}
 - Contoh : $V_{awal} \rightarrow V_{awal}$
- Superscript ditulis menggunakan ^{superscript}
 - Contoh: $10^{-23} \rightarrow 10^{-23}$
- Italic ditulis menggunakan {/Times-Italic text here}
 - Contoh : {/Times-Italic Miring} → Miring
- Bold ditulis menggunakan {/Times-Bold text here}
 - Contoh : {/Times-Bold Penting} → Penting
 - /Times dapat diganti menjadi font lain seperti /Arial

Fitting menggunakan Gnuplot

- Tentukan bentuk fungsi yang ingin diplot dalam kasus least-square maka f(x) = mx + a
- Deklarasi fungsi tersebut ke dalam gnuplot
- Ketik

```
fit f(x) 'data.txt' using 1:2 via m,a
```

- Tekan Enter dan akan didapatkan hasil fitting
- Plot grafik dan hasil fitting secara bersamaan
 plot f(x) notitle, 'data.txt' using 1:2 title 'Data'

Export Hasil Gnuplot

Menggunakan tombol *export* untuk mendapatkan grafik hasil plot dengan mudah

