Ordinary Differential Equations and Dynamical Systems

Part I

Modeling

Fundamentals

Formally, an ordinary differential equation is an equation, in which a function and its derivates and the independent variable appear.

An (implicit) ordinary differential equation of order n is an equation of the form

$$F(x, y, y', y'', ..., y^{(n)}) = 0. (1$$

An example of an explicit ODE of order n is of the form

$$y^{n} = G(x, y, y', y'', ..., y^{n-1}).$$
(2)

Classification

Differential equations can be classified according to various criteria. Besides the order of an ODE we are also interested in whether an ODE is linear, homogeneous, has constant coefficient, is separable or autonomous.

Linearity

An *n-th* order ODE is *linear*, if it is of the form:

$$a_n(x) \cdot y^{(n)} + \dots + a_1(x) \cdot y' + a_0(x) \cdot y = g(x)$$
 (3)

where $a_n(x),...,a_1(x),a_0(x)$ are g(x) fixed functions. Or in other words: A differential equation is linear if the dependant variable and all of its derivatives appear in a linear fashion (i.e., they are not multiplied together or squared for example or they are not part of transcendental functions such as sins, cosines, exponentials, etc.)

Homogenity

A lienar ODE is homogeneous, if g(x) = 0 for all x; otherwise the ODE is inhomogeneous, and g(x) is the inhomogeneity or source term.

Constant coefficient

A linear ODE has constant coefficients, if it is of the form

$$a_n \cdot y^{(n)} + \dots + a_1 \cdot y' + a_0 \cdot y = g(x),$$
 (4)

with $a_n \neq 0$ (the source term g(x) does not have to be constant).

Separability

The ODE is *separable*, if F(x,y) can be written as a product of a x- and y-dependent term, i.e. if the ODE is of the form

$$y' = g(x) \cdot h(y) \tag{5}$$

Autonomity

The ODE (1.28) is autonomous, if F(x,y) only depends on y, i.e. if the ODE is of the form

$$y' = h(y) \tag{6}$$

Every autonomous ODE is separable with g(x) = 1.

Examples

y' = f(x)	Inhomogeneous linear ODE for $y(x)$ with
	source term $f(x)$
$m \cdot \dot{v} = m \cdot g - k \cdot v^2$	Nonlinear ODE for $v(t)$
$l \cdot \ddot{\Phi} + g \cdot \sin(\Phi) = 0$	Nonlinear ODE for $\Phi(t)$
$l \cdot \ddot{\Phi} + g \cdot \phi$	Homogeneous linear ODE for $\Phi(t)$
$l \cdot \ddot{\Phi} + g \cdot \phi = \sin(\omega t)$	Inhomogeneous linear ODE for $\Phi(t)$ with
	source term $sin(\omega t)$
$i'' + \frac{R}{L}i' + \frac{1}{LC}i = 0$	Homogeneous linear ODE for $i(t)$

Systems of differential equations

If several systems are coupled with each other and mutually influence each other, one often obtains a system of ODE's.

A system of differential equations of first oder is a system

$$y'_{1} = f_{1}(x, y_{1}, ..., y_{n})$$

$$\vdots \qquad \vdots$$

$$y'_{n} = f_{n}(x, y_{1}, ..., y_{n})$$

$$(7)$$

of ODE's for unknown functions $y_1(x), ..., y_n(x)$. Using the vectorial notation

$$\mathbf{y}' = \mathbf{f}(x, \mathbf{y}) \tag{8}$$

An ODE of n-th order is equivalent to a system of first-order ODE's.

$$y'_{1} = y_{2}$$

 $y'_{2} = y_{3}$
 \vdots \vdots
 $y'_{n} = f(x, y_{1}, ..., y_{n})$ (9)

Example: 2nd-order ODE to system of first-order ODE's

We want to rewrite the following 2nd order ODE into a system of first-order ODE's.

$$\ddot{x}(t) + 2\delta\dot{x}(t) + \omega_0^2 x(t) = f(t) \tag{10}$$

If we introduce the vector-valued function

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x \\ \dot{x} \end{pmatrix} \quad \Rightarrow \quad \dot{\mathbf{y}} = \begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} \dot{x} \\ \ddot{x} \end{pmatrix} \tag{11}$$

rewriting:

$$\dot{\mathbf{y}} = \begin{pmatrix} \dot{x} \\ \ddot{x} \end{pmatrix} = \begin{pmatrix} \dot{x} \\ -2\delta\dot{x}(t) - \omega_0^2 x(t) + f(t) \end{pmatrix}$$

$$\dot{\mathbf{y}} = \begin{pmatrix} \dot{x} \\ \ddot{x} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\omega_0^2 & -2\delta \end{pmatrix} \begin{pmatrix} x \\ \dot{x} \end{pmatrix} + \begin{pmatrix} 0 \\ f(t) \end{pmatrix}$$

$$\dot{\mathbf{y}} = \Delta \mathbf{y} + \mathbf{b}$$
(12)

Slope field

Slope fields are often loead to a good qualitative understanding of the situation described by the ODE under consideration. Slope field can be understood in the following way: To each point (x,y) in the region B under consideration, F(x,y) is a value which discribes the slope of the solution curve passing through the point (x,y).

Example with calculator

We want to plot the slope field of the following ODE

$$y' = x - y \tag{13}$$

Select: Menu, 3: Graph Entry/Edit, 8: Diff Eq.

Write down the ODE

Solvability

Two solution curves of an ODE cannot cross.

Part II

Ordinary Differential Equations

Analytical methods for first-order ODE's

Overview

Separable ODE's Linear ODE's Exact ODE's

Separable ODE's

Example

We compute the general solution of the ODE

$$y' = -\frac{x}{y} \tag{14}$$

- We write the eqution as

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{y} \tag{15}$$

-We bring all x-dependent terms to the left hand side and all y-dependent terms on the right hand side:

$$y \, \mathrm{d}y = -x \, \mathrm{d}x \tag{16}$$

-We integrate on both sides and get

$$\int y \, \mathrm{d}y = -\int x \, \mathrm{d}x \Rightarrow \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C, \quad C \in \mathbb{R}$$
 (17)

- We solve for y and get

$$y = \pm \sqrt{K - x^2}, \quad K \in \mathbb{R} \quad \text{(where } K = 2C\text{)}$$
 (18)

Example of substitution

We consider the ODE

$$y' = (x+y)^2 \tag{19}$$

Exact ODE's

Analytical methods for linear ODE's

Overview

We differentiate bewteen first-order linear ODE's and higher-oder ODE's as well as between homogeneous and inhomogeneous ODE's.

The general solution of the inhomogeneous ODE is the sum

$$y = y_h + y_s, (20)$$

where y_h is the general solution of the homogeneous ODE and y_s any special solution of the inhomogeneous ODE.

First-order linear ODE's

To solve a first-order linear ODE we thus have to find y_h and y_s $\mathbf{y_h}$: a homogeneous first-order ODE is separable and can therefore be solved by the standard procedure for separable ODE's described above. $\mathbf{y_s}$: To find a special solution of and ODE, there are several possibilities. In the case of an ODE with constant coefficients, it usually suffices to choose for y_s an ansatz of the form of the source term g(x). In the case of non-constant coefficients, the method variation of constants usually works better.

Example using the ansatz

We solve the ODE

$$y' + ay = b (21)$$

- To determine y_h , we integrate the homogeneous ODE

$$y' + ay = 0 (22)$$

by separation of variables we obtain the solution

$$y_h = C \cdot e^{-ax}, \ C \in \mathbb{R}.$$
 (23)

- For finding y_s we choose the ansatz in the form of the source term. In this case the source term is constant, g(x) = b. Therefore we assume that the special solution y_s is constant as well, i.e. we make an ansatz $y_s = c$. We plug this ansatz into the inhomogeneous ODE and obtain the special solution y_s .

$$y_s' + ay_s = b \quad \Rightarrow \quad y_s = \frac{a}{b} \tag{24}$$

The general solution therefore is

$$y = C \cdot e^{-ax} + \frac{a}{b}, \quad C \in \mathbb{R}$$
 (25)

Ansatz functions for the solution of the inhomogeneous first-order ${\bf ODE}$

Source term
$$g(x)$$
 $g(x) = b_0$ $y_s = c_0$ $g(x) = b_1x + b_0$ $y_s = c_1x + c_0$ $g(x) = b_2x^2 + b_1x + b_0$ $y_s = c_2x^2 + c_1x + c_0$ $g(x) = \sum_{i=0}^n b_i x^i$ $y_s = \sum_{i=0}^n c_i x^i$ $y_s = C_1 \sin(\omega x) + C_2 \cos(\omega x)$ $g(x) = A \sin(\omega x) + B \cos(\omega x)$ $g(x) = A e^{bx}$ $y_s = \left\{\frac{A}{b+a}e^{bx} \text{ for } b \neq -a \\ Axe^{-ax} \text{ for } b = -a\right\}$

In addition, the following rules must be followed:

Linearity If g(x) is a linear combination of several source terms, one has to assume as ansatz for $y_s(x)$ a corresponding linear combination of several ansatz terms.

Resonance If the source term g(x) is itself already a solution of the homogeneous ODE, the correponding ansatz for y_s has to be multiplied with x. So if for example $y_h = Ce^x$, and $g(x) = e^x$, the ansatz $y_s = \mathbf{x} \cdot e^x$ is choosen.

Example using Variation of constants

The idea behind the variation of constants is to start from the solution $y=K\cdot e^{-F(x)}$ of the homogeneous ODE and plug the ansatz

$$y = K(x) \cdot e^{-F(x)} \tag{26}$$

into the inhomogeneous ODE.

As an example we want to solve the inhomogeneous linear ODE

$$3y' + 5y = 7e^{\frac{1}{3}x}. (27)$$

- We first find the homogeneous solution y_h by separation of variables.

$$\frac{1}{y} dy = -\frac{5}{3} x dx \quad \Rightarrow \quad y_h = e^{\frac{5}{3} x} \cdot K \tag{28}$$

- Next we calculate the ansatz and its derivative

$$y_s = e^{-\frac{5}{3}x} \cdot K(x)$$

$$y'_s = K(x)'e^{-\frac{5}{3}x} + K(x) \cdot -\frac{5}{3}e^{-\frac{5}{3}x}$$
(29)

- The ansatz is then pluged into the inhomogeneous ODE

$$3\left(K(x)'e^{-\frac{5}{3}x} + K(x) \cdot -\frac{5}{3}e^{-\frac{5}{3}x}\right) + 5\left(e^{-\frac{5}{3}x} \cdot K(x)\right) = 7e^{\frac{1}{3}x} \quad (30)$$

- We solve for $K(x)^\prime$ (K(x) usually dissapears)

$$3 \cdot K(x)' e^{-\frac{5}{3}x} = 7e^{\frac{1}{3}x} \implies K(x)' = \frac{7}{3}e^{\frac{1}{3}x + \frac{5}{3}x} = \frac{7}{3}e^{2x}$$
 (31)

- We integrate and find K(x)

$$K(x) = \frac{7}{6}e^{2x} \tag{32}$$

- Plugin K(x) into the ansatz we get the special solution y_s

$$y_s = e^{-\frac{5}{3}x} \cdot \frac{7}{6}e^{2x} = \frac{7}{6}e^{\frac{1}{3}x} \tag{33}$$

- The solution $y_h + y_s$ is then

$$y = K \cdot e^{-\frac{5}{3}x} + \frac{7}{6}e^{\frac{1}{3}x} \tag{34}$$

If the problem is an initial value problem; plug in values for x and y and solve for K.

Higher-order linear ODE's

The fact that the solution of an inhomogeneous ODE is the sum of the solution of the homogeneous ODE and the special solution (equation 20) still holds true for higher-order linear ODE's

The homogeneous case

The function $y=e^{\lambda x}$ is a solution of the homogeneous ODE if and only if λ is a root of the characteristic polynomial, i.e. if

$$P(\lambda) = 0 \tag{35}$$

We now have to distinguish between real and complex and between single and multiple roots of the characteristic polynomial.

Real Roots If λ is a real root of $P(\lambda)$ of multiplicity m, then the functions

$$y_1 = e^{\lambda x}, \ y_2 = xe^{\lambda x}, ..., \ y_m = x^{m-1}e^{\lambda x}$$
 (36)

are distinct linearly independent solutions. i.e. if m=1 and λ is a simple root the $y=C_1$ $e^{\lambda x}$ is the solution. Example: The homogeneous ODE

$$y''' - 2y'' - 4y' = 0 (37)$$

has the characteristic polynomial $\,$

$$P(\lambda) = \lambda^3 - 3\lambda^2 - 4\lambda. \tag{38}$$

The roots of this polynomial are $\lambda_1=0, \lambda_2=4, \lambda_3=-1,$ hence the general solution of the ODE is

$$y = C_1 + C_2 e^{4x} + C_3 e^{-x} (39)$$

Complex Roots If $\lambda=\alpha\pm j\beta$ are two complex roots of $P(\lambda)$ of multiplicity m then

$$\begin{array}{ll} y_1 = e^{\alpha x} cos(\beta x) & y_2 = e^{\alpha x} sin(\beta x) \\ y_3 = x e^{\alpha x} cos(\beta x) & y_4 = x e^{\alpha x} sin(\beta x) \\ \vdots & \vdots & \vdots \\ y_{2m-a} = x^{m-1} e^{\alpha x} cos(\beta x) & y_{2m} = x^{m-1} e^{\alpha x} sin(\beta x) \end{array}$$

are m linearly independent solutions.

If m=1 and $\lambda_{1,2}=\alpha\pm\beta$ then $y_1=C_1e^{ax}cos(\beta x)$ and $y_2=C_2e^{ax}sin(\beta x)$ are two linearly independent solutions.

Example: The homogeneous ODE

$$y'' + y = 0 \tag{40}$$

has the characteristic polynomial

$$P(\lambda) = \lambda^2 + 1. \tag{41}$$

The roots of this polynomial are $\lambda_1=j, \lambda_2=-j,$ hence the general solution of the ODE is

$$y = C_1 cos(x) + C_2 sin(x)$$

$$\tag{42}$$