Systèmes de recommendation

Fournier Sébastien

Recommandation?

- Existe depuis la nuit des temps
 - Recommandation entre humains
 - Expertise humaine (bibliothécaire, libraire, disquaire, ...)
 - Basé sur le contenu
- Arrivé d'internet
 - Augmentation du nombre de produits disponibles
 - Mondialisation de l'achat de produits
 - Impossible de connaitre tous les produits pour les recommander

Besoin de système automatique de recommandation

Albert Einstein

Galileo Galilei

Stephen

Hawking

Johannes

Kepler

Gottfried

Wilhelm Leib..

Nicolaus

Copernicus

Comment jouer à Magic the Gathering - Magic #1 119 k vues • il y a 2 ans

LeStream Replay ②

Rediffusion de l'émission Magic du 14/02/2019 Comment jouer à Magic the Gathering - Magic #1 ABONNE TOI (Merci) .

MYTHOLOGICS #10 /// MAGIC THE GATHERING Feat Maxwell

340 k vues • il v a 2 mois

Heydihooooooh !!! Salut tout le monde, ça y est la voici ! La vidéo sur Magic est enfin là ! Pour cette vidéo j'ai eu une nouvelle fois ...

Comme à chaque sortie de nouvelle extension, l'expert du limité Leland nous offre une plongée dans ce nouveau format de draft .

Magic: The Gathering - Guide pour bien débuter ou reprendre!

101 k vues • il y a 3 ans

Magic C'est Chic!

Magic: The Gathering Arena

Jeu vidéo • Année de sortie : 2018

Disturb | First Look: Innistrad: Midnight Hunt | Magic: The...

Magic: The Gathering 14 k vues • il y a 1 jour

Coven | First Look: Innistrad: Midnight Hunt | Magic: The ...

Magic: The Gathering 26 k vues • il y a 1 jour

Cinématique officielle Innistrad : Chasse de Minuit - Magic: The ...

Magic: The Gathering 18 M de vues • il y a 5 jours

Weekly MTG | Innistrad: Midnight **Hunt Previews**

Magic: The Gathering 14 k vues • il v a 1 semaine

Jumpstart: Historic Horizons | Magic: The Gathering Arena

Magic: The Gathering 670 k vues • il y a 3 semaines

TOUT AFFICHER

Offres recommandées pour vous Voir toutes les offres

33.99 € 52.99€

24.99 € 29.90€

19.54 € - 20.39 €

11.04 € 12.99€

25.49 € 32.99€

54.17 € - 88.12 € Termine dans 05:48:08

Exemple système de recommendation

Impact des systèmes de recommandation

- 35% des achats sur Amazon sont le résultat de leur système de recommandation, selon McKinsey.
- Pendant le festival mondial du shopping chinois du 11 novembre 2016, Alibaba a obtenu une croissance allant jusqu'à 20 % de leur taux de conversion en utilisant des pages de destination personnalisées, selon Alizila.
- Les recommandations sont responsables de 70 % du temps que les gens passent à regarder des vidéos sur YouTube.
- 75 % de ce que les gens regardent sur Netflix provient de recommandations, selon McKinsey.

https://tryolabs.com/blog/introduction-to-recommender-systems/

https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/

Différent types de systèmes de recommandation

- Collaborative filtering
 - BOSÉ SI Quels sont les autres articles que les clients achètent après avoir regardé cet article?

Recharge Amazon.fr ** * 5 280 €2 000.00

Fire TV Stick 4K Ultra HD avec télécommande vocale Alexa nouvelle génération, Lecteur multimédia en streaming ** 15910 €39.99

Recevez-le vendredi 1

Livraison GRATUITE dès 25,00 € d'achats expédiés par Amazon

Crucial P2 CT1000P2SSD8 SSD Interne 1To, Vitesses atteignant 2400 Mo/s (3D NAND, NVMe.... *** 10046 €98.00

Recevez-le vendredi 1 Livraison GRATUITE dès 25,00 € d'achats expédiés

par Amazon

GIGA PACK XXL X10

Vaisselle Powerball All in One Max - 100 Tablettes Lave-Vaisselle * * * * 6543

Amazon Launchpad

€13.76 Recevez-le vendredi 1 octobre Livraison GRATUITE dès 25,00 € d'achats expédiés

par Amazon

HP Pavilion Gaming 15dk1003sf PC Portable Gaming 15.6" FHD IPS Noir (Intel Core i5, RAM 16 Go. SSD 512 Go.... **** 440 €949.00

Recevez-le samedi 2 octobre Livraison GRATUITE dès 25,00 € d'achats expédiés

Lenovo Legion 5 Ordinateur Portable 15.6" FHD (AMD Ryzen 7, RAM 16Go, SSD 512Go, NVIDIA.. ***** €1399.00

Recevez-le samedi 2 octobre Livraison GRATUITE dès 25,00 € d'achats expédiés

Page 1 sur 5

Crucial RAM CT8G4SFRA32A 8Go DDR4 3200 MHz CL22 Mémoire d'ordinateur Portable *** 57996

€39.59

Recevez-le vendredi 1 octobre Livraison GRATUITE dès 25,00 € d'achats expédiés par Amazon

Content-k

■ Basé si

HONOR MagicBook 15 2021 PC Portable, 15.6" 1080p FHD (Intel 11ème génération Core ..

★★★★☆ 221 829.99 € √prime

Dell Latitude 5320 Ordinateur Portable 13.3" Full HD Intel Core i5-1135G7, 8Go de R..

食食食食食1 1188.28 € √prime

HP Pavilion Gaming 17cd1001sf PC Portable Gaming 17.3" FHD IPS Noir (Intel Core i5...

****** 440 999.00 € vprime

HP 17-by2000sf PC Portable 17.3" HD+ Noir (Intel Core i3, RAM 4 Go, HDD 1 To, AZERT...

★★★★☆ 277 599.00 € vprime

HP OMEN 15-en1003sf PC Portable Gaming 15,6" FHD IPS 144Hz (AMD Ryzen 5, RAM 8... ★★★☆☆ 26

1199.00 € √prime

UX363JA-EM120T PC Portable 13.3" (i5-1035G4, RAM 8Go,... ***** 50 799.00 € vprime

Asus Zenbook Flip

HP Envy 14-eb0000sf PC Ultraportable 14" **WUXGA IPS Argent** naturel (Intel Core i7, R., **★★★★☆ 224** 1499.00 € √prime

Plan

- Collaborative filtering
- Content-based
- Knowledge-based
- Demographic
- Hybrid et ensemble
- Evaluation
 - Différentes mesures
- Problem
 - Cold start
 - Long tail
 - Sparseness
- Vie privée
- Sécurité et système de recommandation

Définitions

- Utilisateurs : individus cibles de la recommandation
- Items: ensemble des éléments possiblement recommandables aux utilisateurs

Matrices

utilisateur1

nom	score	
item1		4
Item2		3
item3		3
item4		5

Item1

Items*utilisateurs

	nom	utilisateur1	utilisateur2	utilisateur3
_	item1	4		
	Item2		1	2
	item3	3		4
	item4	5	5	
	item5		3	3

Collaborative filtering

Prédiction des ratings grace aux ratings existant

Collaborative filtering

- Plusieurs types de collaborative filtering
 - Memory-based methods
 - Premières méthodes des systèmes de recommandation
 - Basé sur le voisinage
 - User-based collaborative filtering
 - Détermine les utilisateurs similaires à l'utilisateur cible (voisin de)
 - Item-based collaborative filtering
 - Détermine les items similaires à l'item dont on cherche à prédire le rating
 - ► Facile à implémenter
 - Facile à interpréter
 - Ne fonctionne pas bien avec des « sparse matrix » (matrice peu remplie)
 - Model-based model
 - Modeles stochastiques basés sur l'apprentissage
 - Decision tree, bayesian models et latent factor model

Content Based

Modeles basés sur le contenu

Exemple issus du site onregardequoi.net

Dépend du rating de l'utilisateur

Knowledge based

- Basé uniquement sur les attributs des items
- Utilise des base de connaissances pour généraliser
- Très utile lorsque des items ont peu de ratings (similaire au cold start problem)

Résumé

Approches	But	entrées
collaborative	Recommandation basée sur les ratings et les actions des utilisateurs	Ratings de l'utilisateur Ratings de la communauté
Content	Recommandation basée sur le contenu que l'utilisateur apprécie par le passé	Ratings de l'utilisateur Attributs des items
Knowledge	Recommandation basée sur les spécifications explicites du contenu que l'utilisateur apprécie	Spécification de l'utilisateur Attributs des items Connaissances du domaine

Hybrid et ensemble

- Utilise plusieurs systèmes de recommandation
 - Mixte différents types de système de recommandation
 - Plusieurs manière d'agréger les résultats
 - Vote majoritaire
 - Probabilité la plus élevé
 - Meta-learning

Les problèmes les plus courants

- Cold start (démarage à froid)
- Long tail (longue traine)

Questions

- Dans quel cas les content-based systems vont moins bien fonctionner que le collaborative filtering.
- Dans quel cas la localisation pourrait avoir un apport majeur dans la recommandation
- Quel est la place de la subjectivité dans la recommandation ?
- Comment résoudre le problème du démarrage à froid ?
- Comment résoudre le problème de la longue traine ?

Les systèmes de recommandation basés sur le voisinage

User-based

Item-Id ⇒ User-Id ↓	1	2	3	4	5	6	Mean Rating	Cosine(i, 3) (user-user)	Pearson $(i, 3)$ (user-user)
1	7	6	7	4	5	4	5.5	0.956	0.894
2	6	7	?	4	3	4	4.8	0.981	0.939
3	?	3	3	1	1	?	2	1.0	1.0
4	1	2	2	3	3	4	2.5	0.789	-1.0
5	1	?	1	2	3	3	2	0.645	-0.817

Issu du livre recommender systems

Items-based

Item-Id ⇒ User-Id ↓	1	2	3	4	5	6	
1	1.5	0.5	1.5	-1.5	-0.5	-1.5	
2	1.2	2.2	?	-0.8	-1.8	-0.8	
3	?	1	1	-1	-1	?	
4	-1.5	-0.5	-0.5	0.5	0.5	1.5	
5	-1	?	-1	0	1	1	
Cosine(1, j)	1	0.735	0.912	-0.848	-0.813	-0.990	
(item-item)							
Cosine(6, j)	-0.990	-0.622	-0.912	0.829	0.730	1	
(item-item)							

Issu du livre recommender systems

Les systèmes de recommandation basés sur le voisinage : Pearson

u utilisateur

$$\mu_u = rac{\sum_{k \in I_u} r_{uk}}{|I_u|} \quad orall u \in \{1 \dots m\} \quad r_{uk} \quad ext{Rating de l'utilisateur u pour l'item k}$$

 I_u Indices des items de u avec un rating

 $I_u \cap I_v$ Intersection des indices des items de u et v posséd un rating

 μ_v Moyenne des ratings de v

$$Sim(u, v) = Pearson(u, v) = \frac{\sum_{k \in I_u \cap I_v} (r_{uk} - \mu_u) \cdot (r_{vk} - \mu_v)}{\sqrt{\sum_{k \in I_u \cap I_v} (r_{uk} - \mu_u)^2} \cdot \sqrt{\sum_{k \in I_u \cap I_v} (r_{vk} - \mu_v)^2}}$$

Les systèmes de recommandation basés sur le voisinage : Cosine

Cosine(u,v) =
$$\frac{\sum_{k \in I_u \cap I_v} r_u * r_v}{\sqrt{\sum_{k \in I_u \cap I_v} r_v^2} * \sqrt{\sum_{k \in I_u \cap I_v} r_u^2}}$$

Les systèmes de recommandation basés sur le voisinage : prédiction des ratings

$$\hat{r}_{uj} = \mu_u + \frac{\sum_{v \in P_u(j)} \text{Sim}(u, v) \cdot s_{vj}}{\sum_{v \in P_u(j)} |\text{Sim}(u, v)|} = \mu_u + \frac{\sum_{v \in P_u(j)} \text{Sim}(u, v) \cdot (r_{vj} - \mu_v)}{\sum_{v \in P_u(j)} |\text{Sim}(u, v)|}$$

 $s_{uj}=r_{uj}-\mu_u \quad \forall u \in \{1\dots m\}$ Normalisation des ratings Les utilisateurs peuvent avoir des ranges de ratings très différents

 $P_u(j)$ Ensemble des k plus proche utilisateurs de l'utilisateur u

Rappel formule

$$\mu_u = \frac{\sum_{k \in I_u} r_{uk}}{|I_u|} \quad \forall u \in \{1 \dots m\}$$

$$Sim(u, v) = Pearson(u, v) = \frac{\sum_{k \in I_u \cap I_v} (r_{uk} - \mu_u) \cdot (r_{vk} - \mu_v)}{\sqrt{\sum_{k \in I_u \cap I_v} (r_{uk} - \mu_u)^2} \cdot \sqrt{\sum_{k \in I_u \cap I_v} (r_{vk} - \mu_v)^2}}$$

$$\hat{r}_{uj} = \mu_u + \frac{\sum_{v \in P_u(j)} \text{Sim}(u, v) \cdot s_{vj}}{\sum_{v \in P_u(j)} |\text{Sim}(u, v)|} = \mu_u + \frac{\sum_{v \in P_u(j)} \text{Sim}(u, v) \cdot (r_{vj} - \mu_v)}{\sum_{v \in P_u(j)} |\text{Sim}(u, v)|}$$

$$s_{uj} = r_{uj} - \mu_u \quad \forall u \in \{1 \dots m\}$$

Exercices

- Calcul de pearson et cosinus
- Calcul des nouvelles valeurs manquantes
- Calcul avec les coefficients centrées

Items

	1	2	3	4	5
1	8	6	6	7	8
2	3	2	1 s		3
3	8 \$		4	55	
43		5	2	8	2
5	7 4	ś	Ś		5

Users