

"脉动微光"

——AI增强的SNSPD漫相关光谱血流仪

南京大学电子科学与工程学院 光子先锋团队

指导老师: 赵清源 宣讲人: 杨浩然

团队成员:

22本 杨浩然

22本 徐乐怀

22本 张王泽

23本 邱尚俊

目录

01

项目背景与意义

02

技术路线与创新

03

市场分析及展望

脑血管疾病是一大健康杀手

对于脑血管的有效实时监测

是老年人脑血管疾病治疗的重中之重

超声多普勒

空间分辨率低 穿透能力弱

CT血管造影

辐射副作用有风险 无法长时间监测

MRA磁共振成像 金属植入物风险 价格昂贵

传统监测手段存在诸多痛点 漫射光谱监测将其一网打尽

 \oplus

硬件-算法两手抓突破瓶颈 打造血流动态监测 "智能眼"

亚微秒级精度 实时动态分析 无创血流监测 深层组织感知

打破传统监测方式局限 构建实时-精准-无创血流动态信息体系

SPAD

量子效率约50%探测波长不高于1100nm数据拟合散射信号弱光纤传输损耗大

SNSPD

接近100% 1310nm 散射系数低,相关性高 信噪比高,探测深度深

时间抖动低, 暗计数率低

光子能量小, 无灼热感

计算自相关函数精确度高

光纤通信主力波段

创新性结合世界前沿科技设备

大幅提升监测与传输能力

2. 技术路线与创新

"辨得准"达到算法精度的极致

过程复杂 ≥ 计算缓慢 ≥ 精度有限 ≥

核心指标	最小二乘法	LSTM神经网络
均方根误差	≥7%	≤3%
计算时间*	≥2000ms	≤50ms

(*指BFI采样点数为4200点时)

深度学习算法赋能 打造未来智能血流管家

3. 市场分析及展望

进军富有潜力和竞争的市场。寻求立足和突破

3. 市场分析及展望

立足DCS血流监测技术 构建快速-准确-便捷的血流监测模式

