TM (3), Decidability (4)

- (TM) $M=(Q,\sum\limits_{\text{input}}\subseteq\Gamma,\sum\limits_{\text{tape}},\delta,q_0,q_{\text{accept}},q_{\text{reject}})$, where $\sqcup\in\Gamma$ (blank), $\sqcup\not\in\Sigma,\ q_{\text{reject}}\not=q_{\text{accept}}$, and $\delta:Q\times\Gamma\longrightarrow Q\times\Gamma\times\{\mathrm{L},\mathrm{R}\}$
- (unrec.) $\overline{A_{TM}}$, $\overline{EQ_{\mathsf{TM}}}$, EQ_{CFG} , $\overline{HALT_{\mathsf{TM}}}$, REGULAR_{TM} = $\{M \text{ is a TM and } L(M) \text{ is regular}\}$, E_{TM} , $EQ_{\mathsf{TM}} = \{M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$
- (rec.) accepts if $w \in L$, rejects/loops if $w \notin L$.
 - · There exists some languages that are not rec.
 - (co-TR) if its complement is rec.
 - Every inf. rec. lang. has an inf. dec. subset.
 - (rec. but not undec) A_{TM} , $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on } w\}$,

 $D = \{p \mid p ext{ is an int. poly. with an int. root}\}, \, \overline{EQ_{\mathsf{CFG}}}, \, \overline{E_{\mathsf{TM}}}$

- (dec.) accepts if $w \in L$, rejects if $w \notin L$.
 - $A_{\rm DFA},\,A_{\rm NFA},\,A_{\rm REX},\,E_{\rm DFA},\,E_{\rm QDFA},\,A_{\rm CFG},\,E_{\rm CFG},$ every CFL, every finite lang., $A_{\rm LBA},\,ALL_{\rm DFA},\,A\varepsilon_{\rm CFG},$
- L is dec. \iff L is rec. $\land L$ is co-TR \iff \exists TM decides L.
- (decider) TM that halts on all inputs.
- (**Rice**) Let P be a lang. of TM desc., such that (i) P is nontrivial (not empty and not all TM desc.) and (ii) for each two TM M_1 and M_2 , we have

 $L(M_1)=L(M_2) \implies (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P).$ Then P is undecidable.

Reducibility (5)

• $f: \Sigma^* \to \Sigma^*$ is **computable** if there exists a TM M s.t. for every $w \in \Sigma^*$, M halts on w and outputs f(w) on its tape.

• A is **m. reducible** B (denoted by $A \leq_{\mathrm{m}} B$), if there is a comp. func. $f: \Sigma^* \to \Sigma^*$ s.t. for every w, we have

- $w \in A \iff f(w) \in B$. (Such f is called the **m. reduction** from A to B.)
- (5.22) If $A \leq_{\mathrm{m}} B$ and B is dec., then A is dec.
- (5.23) If $A \leq_{\mathrm{m}} B$ and A is undec., then B is undec.
- (5.28) If $A \leq_{\mathrm{m}} B$ and B is rec., then A is rec.
- (5.29) If $A \leq_{\mathrm{m}} B$ and A is not rec., then B is not rec.
- (e5.6) If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.

Complexity (7)

- ((Run. time) decider M is a f(n)-time TM.) $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the max. num. of steps that DTM (or NTM) M takes on any n-length input (and any branch of any n-length input. resp.).
- TIME $(t(n)) = \{L \mid L \text{ is dec. by an } O(t(n))\text{-time DTM}\}.$
- $\mathsf{NTIME}(t(n)) = \{L \mid L \text{ is dec. by an } O(t(n)) \text{-time NTM} \}.$
- $P = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k)$
- (verifier for L) TM V s.t. $L = \{w \mid \exists c : V(\langle w, c \rangle) = \mathsf{accept}\}.$
 - (certificate for $w \in L$) str. c s.t. $V(\langle w, c \rangle) = \mathsf{accept}.$
- ullet NP $=igcup_{k\in\mathbb{N}}$ NTIME (n^k) (i.e. lang. decidable by a PT NTM).
- NP = $\{L \mid L \text{ is decidable by a PT verifier}\}.$
- P ⊆ NP
- CLIQUE = $\{\langle G, k \rangle \mid G \text{ is an undir. g. with a } k\text{-clique}\}.$
- $\bullet \quad \text{SUBSET-SUM} = \{ \langle S, k \rangle \mid S \text{ is a m. set of int.} \land \exists \, T \subseteq S : \sum_{x \in T} x = k \}.$
- $f: \Sigma^* \to \Sigma^*$ is **PT computable** if there exists a PT TM M s.t. for

- every $w \in \Sigma^*$, M halts with f(w) on its tape.
- A is **PT (mapping) reducible** to B, denoted $A \leq_P B$, if there exists a PT computable func. $f: \Sigma^* \to \Sigma^*$ s.t. for every $w \in \Sigma^*$, $w \in A \iff f(w) \in B$. (in such case f is called the **PT reduction** of A to B).
 - If $A \leq_P B$ and $B \in P$, then $A \in P$.
 - If $A \leq_P B$ and $B \leq_P A$, then A and B are **PT equivalent**, denoted $A \equiv_P B$.
 - \equiv_P is an equivalence relation on NP.
 - $P \setminus \{\emptyset, \Sigma^*\}$ is an equivalence class of \equiv_P .
- *B* is **NP-complete** if $B \in NP$, and, $\forall A \in NP$, $A \leq_P B$.
 - (examples) CLIQUE, SUBSET-SUM, SAT, 3SAT, VERTEX-COVER, HAMPATH, UHAMATH.
- If $B \in NP$ -complete and $B \in P$, then P = NP.
- If $B \in \text{NP-complete}$ and $C \in \text{NP}$ s.t. $B \leq_P C$, then $C \in \text{NP-complete}$.
- $\quad \hbox{ If } P=NP, \hbox{ then } NP\hbox{-complete}=P=NP. \\$