第五章 不定积分

一、单项选择题

1. 设 f(x) 是 g(x) 的原函数,则下列各式中正确的是 (

(A)
$$\int f(x) dx = g(x) + C;$$

(B)
$$\int g(x) dx = f(x) + C;$$

(C)
$$\int f'(x) dx = g(x) + C$$

$$(A) \int f(x) dx = g(x) + C;$$

$$(B) \int g(x) dx = f(x) + C;$$

$$(C) \int f'(x) dx = g(x) + C;$$

$$(D) \int g'(x) dx = f(x) + C.$$

2. 下列各式中等于 f(x) 的是 ().

(A)
$$\int df(x)$$
;

(B)
$$d \int f(x) dx$$

(C)
$$\int f'(x) dx$$

(B)
$$d \int f(x) dx$$
; (C) $\int f'(x) dx$; (D) $\left(\int f(x) dx \right)'$.

3. $\int f(x) dx = \sqrt{2x^2 + 1} + C$ 则 $\int x f(2x^2 + 1) dx = ($).

(A)
$$x\sqrt{2x^2+1}+C$$
;

(B)
$$\frac{1}{2}\sqrt{2x^2+1}+C$$
;

(C)
$$\frac{1}{4}\sqrt{2x^2+1}+C$$
;

(D)
$$\frac{1}{4}\sqrt{2(2x+1)^2+1}+C$$
.

4. 函数 $\cos \frac{\pi}{2} x$ 的一个原函数是 ().

(A)
$$\frac{2}{\pi}\sin\frac{\pi}{2}x$$
;

(B)
$$\frac{\pi}{2}\sin\frac{\pi}{2}x$$
;

(C)
$$-\frac{2}{\pi}\sin\frac{\pi}{2}x$$
;

(A)
$$\frac{2}{\pi}\sin\frac{\pi}{2}x$$
; (B) $\frac{\pi}{2}\sin\frac{\pi}{2}x$; (C) $-\frac{2}{\pi}\sin\frac{\pi}{2}x$; (D) $-\frac{\pi}{2}\sin\frac{\pi}{2}x$.

5. $\int 3^x e^x dx = ()$.

(A)
$$(3e)^x + C$$
;

(B)
$$\frac{1}{3}(3e)^x + C$$

(C)
$$3e^x + C$$
;

(A)
$$(3e)^x + C$$
; (B) $\frac{1}{3}(3e)^x + C$; (C) $3e^x + C$; (D) $\frac{(3e)^x}{1 + \ln 3} + C$.

 $\mathbf{6.} \int \frac{\mathrm{d}x}{\sqrt{1-2x}} = () .$

(A)
$$\sqrt{1-2x} + C$$
;

(B)
$$-\sqrt{1-2x} + C$$

(A)
$$\sqrt{1-2x} + C$$
; (B) $-\sqrt{1-2x} + C$; (C) $-\frac{1}{2}\sqrt{1-2x} + C$; (D) $-2\sqrt{1-2x} + C$.

(A)
$$\frac{1}{\ln(1+x)} + C$$
;

(B)
$$\frac{\ln(1+x)}{x} + C$$

(A)
$$\frac{1}{\ln(1+x)} + C$$
; (B) $\frac{\ln(1+x)}{x} + C$; (C) $\frac{x^2}{2} + \frac{x^3}{3} + C$; (D) $x + \frac{x^2}{2} + C$.

(D)
$$x + \frac{x^2}{2} + C$$

- 8. 不定积分 $\int \sin^2 \frac{x}{2} = ($).
 - (A) $2\cos^2\frac{x}{2} + C$;

(B) $x + \sin x + C$;

(C) $\frac{1}{2}(x-\sin x)+C$;

- (D) $1 2\sin^2\frac{x}{2} + C$.
- 9. $\int \frac{1}{(\arcsin x)^2 \sqrt{1-x^2}} dx = ().$
 - (A) $\frac{2}{3}(1-x^2)^{3/2}+C$;

(B) $-\frac{1}{\arcsin x} + C$;

(C) $\pm \frac{1}{\arcsin x} + C$;

(D) $-\frac{2}{3}(1-x^2)^{3/2}+C$.

- 10. $\int x^5 e^{x^3} dx = () .$
 - (A) $\frac{1}{2}e^{x}(x-1)+C$;

(B) $\frac{1}{2}e^{x^3}(x^3-1)+C$;

(C) $e^{x^3}(x^3-1)+C$;

- (D) $e^{x^3}(x^3+1)+C$.
- **11.** f(x)的一个原函数为 $\ln x$,则 f'(x) = ().
 - (A) 1/x;
- (B) $x \ln x x + C$; (C) $-1/x^2$:
- (D) e^x .

- **12.** $x^x(1+\ln x)$ 的原函数是 ().
 - (A) $\frac{1}{1+x}x^{x+1} + \ln x + C$;
- (B) $x^{x} + C$;

(C) $x \ln x + C$;

- (D) $\frac{1}{2}x^{x} \ln x + C$.
- **13.** $\stackrel{\triangle}{=} x < -1$ $\stackrel{\triangle}{=}$ $\frac{1}{x\sqrt{x^2-1}} dx = ($).

 - (A) $\frac{1}{2}\sqrt{x^2-1} + C$; (B) $\arcsin \frac{1}{x} + C$; (C) $-\arcsin \frac{1}{x} + C$; (D) $\pm \arcsin \frac{1}{x} + C$.
- **14.** $\int x^2 \sin 2x \, dx = ($).

 - (A) $\frac{x}{2} \left(\frac{x}{2} \cos x + \sin 2x \right) + C;$ (B) $\frac{1 2x^2}{4} \cos 2x + \frac{x}{2} \sin 2x + C;$

 - (C) $\frac{1-x^2}{4}(\cos 2x + \sin 2x) + C;$ (D) $\frac{1-x^2}{4}\cos 2x + \frac{x}{2}\sin 2x + C.$

15.
$$\int (\arcsin x)^2 dx = ($$
).

(A)
$$x(\arcsin x)^2 + C$$
;

(B)
$$x(\arcsin x)^2 + \frac{\arcsin x}{\sqrt{1-x^2}} + C$$
;

(C)
$$x(\arcsin x)^2 + 2\sqrt{1-x^2}\arcsin x - 2x + C$$
;

(D)
$$x(\arcsin x)^2 + \frac{2\arcsin x}{3(1-x^2)^3} + C$$
.

16.
$$\int \frac{1}{1 + \cos x} \, \mathrm{d}x = () .$$

(A)
$$\tan x - \sec x + C$$
;

(B)
$$\cot x - \csc x + C$$
;

(C)
$$\tan \frac{x}{2} + C$$
;

(D)
$$\tan\left(\frac{x}{2} - \frac{\pi}{4}\right) + C$$
.

17.
$$\int \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx = () .$$

(A)
$$\frac{1}{2}\arctan(\cos 2x) + C$$
;

(B)
$$-\frac{1}{2}\arctan(\cos 2x) + C$$
;

(C)
$$\arctan(-\cos 2x) + C$$
;

(D)
$$\frac{1}{2} \ln \left| \frac{\sin 2x - 1}{\sin 2x + 1} \right| + C.$$

18. 设
$$I = \int \frac{\mathrm{d}x}{1 + \sqrt{x}}$$
, 则 $I = ($).

(A)
$$-2\sqrt{x} + 2\ln(1+\sqrt{x}) + C$$
;

(B)
$$2\sqrt{x} + 2\ln(1+\sqrt{x}) + C$$
;

(C)
$$2\sqrt{x} - 2\ln(1+\sqrt{x}) + C$$
;

(D)
$$-2\sqrt{x} - 2\ln(1+\sqrt{x}) + C$$
.

19.
$$\int \sqrt{\frac{1+x}{1-x}} \, \mathrm{d}x = () .$$

(A)
$$x - \cos x - C$$
;

(B)
$$\arcsin x - \sqrt{1 - x^2} + C$$
;

(C)
$$\arcsin x + \sqrt{1 - x^2} + C$$
;

(D)
$$\arccos x - \sqrt{1-x^2} + C$$

20.
$$\int \frac{x \ln(x + \sqrt{1 + x^2})}{(1 + x^2)^2} dx = ().$$

(A)
$$\frac{1}{1+x^2}\ln(x+\sqrt{1+x^2})+C$$
;

(B)
$$\frac{\ln(x+\sqrt{1+x^2})}{4(1+x^2)^2}+C$$
;

(C)
$$-\frac{1}{2}\frac{1}{1+x^2}\ln(x+\sqrt{1+x^2})+C$$
;

(D)
$$\frac{x}{2\sqrt{1+x^2}} - \frac{1}{2(1+x^2)} \ln(x + \sqrt{1+x^2}) + C$$
.

21. 将 $\frac{x+1}{x^2(x^2+1)(x^2+x+1)}$ 分解为部分分式,下列做法中,正确的做法是设它为(

(A)
$$\frac{a}{x^2} + \frac{b}{1+x^2} + \frac{c}{x^2+x+1}$$
;

(B)
$$\frac{a}{x^2} + \frac{b}{1+x^2} + \frac{c_1x + c_2}{x^2 - x + 1}$$
;

(C)
$$\frac{a}{x} + \frac{b}{x^2} + \frac{c}{1+x^2} + \frac{d}{x^2+x+1}$$
;

(A)
$$\frac{a}{x^2} + \frac{b}{1+x^2} + \frac{c}{x^2+x+1}$$
; (B) $\frac{a}{x^2} + \frac{b}{1+x^2} + \frac{c_1x+c_2}{x^2-x+1}$; (C) $\frac{a}{x} + \frac{b}{x^2} + \frac{c}{1+x^2} + \frac{d}{x^2+x+1}$; (D) $\frac{a_1}{x} + \frac{a_2}{x^2} + \frac{b_1x+b_2}{1+x^2} + \frac{c_1x+c_2}{x^2+x+1}$

22.
$$\int \frac{\sin^2 x}{\sin^2 x + 1} = ($$
).

(A)
$$\ln |\sin^2 x + 1| + C$$
;

(B)
$$x - \frac{1}{\sqrt{2}}\arctan(\sqrt{2}\tan x) + C$$
;

(C)
$$x - \arctan(\sqrt{2}x) + C$$
;

(D)
$$x - \arctan\left(\frac{\tan x}{\sqrt{2}}\right) + C$$
.

23.
$$I = \int e^{2x} \sin 3x \, dx = ($$
).

(A)
$$\frac{e^{2x}}{13}(3\sin 3x - 2\cos 2x) + C;$$
 (B) $\frac{e^{2x}}{13}(3\sin 3x + 2\cos 2x) + C;$

(B)
$$\frac{e^{2x}}{13}$$
 (3 sin 3x + 2 cos 2x) + C

(C)
$$\frac{e^{2x}}{5}(2\sin 3x - 3\cos 3x) + C$$

(C)
$$\frac{e^{2x}}{5}(2\sin 3x - 3\cos 3x) + C;$$
 (D) $\frac{e^{2x}}{13}(2\sin 3x - 3\cos 3x) + C.$

24. 已知函数 F(x) 的导数为 $f(x) = \frac{1}{\sin^2 x + 2\cos^2 x}$, 且 $F(\frac{\pi}{4}) = 0$, 则 F(x) = ().

(A)
$$\ln \left| 1 + \cos^2 x \right| - \ln \frac{3}{2}$$
;

(B)
$$\frac{1}{\sqrt{2}} \arctan \frac{\tan x}{\sqrt{2}} - \frac{1}{\sqrt{2}} \arctan \frac{1}{\sqrt{2}}$$
;

(C)
$$\frac{1}{2\sqrt{2}} \ln \left| \frac{\sqrt{2} - \sin x}{\sqrt{2} + \sin x} \right|$$
;

(D)
$$\frac{1}{2\sqrt{2}} \ln \left| \frac{\sqrt{2} - \sin x}{\sqrt{2} + \sin x} \right| - \frac{1}{2\sqrt{2}} \ln \left| 3 - 2\sqrt{2} \right|.$$

25. 设 $f(x) \neq 0$, 且有连续的二阶导数, 则 $\left\{ \frac{f'(x)}{f(x)} - \frac{(f'(x))^2}{(f(x))^2} \right\} dx = ($).

(A)
$$\frac{f'(x)}{f(x)} + C;$$

(B)
$$\frac{f(x)}{f'(x)} + C$$

(A)
$$\frac{f'(x)}{f(x)} + C$$
; (B) $\frac{f(x)}{f'(x)} + C$; (C) $f(x)f'(x) + C$; (D) $[f'(x)]^2 + C$.

二、填空题

1. 设 f(x)dx = F(x) + C, 则 $\int \sin x f(\cos x) dx$ ______.

2. 设 $\int f(x) dx = F(x) + C$, 则 $\int f(\sin x) \cos x dx =$ ______

- **3.** 设 $\int f(x) dx = F(x) + C$, 则 $\int x f'(x) dx =$ ______.
- **4.** 如果等式 $\int f(x)e^{-\frac{1}{x}}dx = -e^{\frac{1}{x}} + C$ 成立, 则函数 f(x) =______.
- **5.** 设 $\int x f(x) dx = \arcsin x + C$, 则 $\int \frac{1}{f(x)} dx = \underline{\qquad}$
- 7. $\int \left(\sin \frac{x}{2} \cos \frac{x}{2}\right)^2 dx =$ _____.
- 8. 若 e^{-x} 是 f(x) 的一个原函数, 则 $\int x f(x) dx = _____.$
- 9. 若 $f(x) = e^{-x}$,则 $\int \frac{f'(\ln x)}{x} dx =$ ______.
- **10.** 若 $\int f(x) dx = x^2 + C$, 则 $\int x f(1-x^2) dx =$ ______.
- **11.** 如果 $\frac{2}{1+x^2}f(x) = \frac{d}{dx}[f(x)]^2$, 且 f(0) = 0, 则 $f(x) = \underline{\hspace{1cm}}$.
- 12. $\int x^2 \sqrt{1 + x^3} \, \mathrm{d}x = \underline{\hspace{1cm}}.$
- **13.** 若函数 $f(x^2-1) = \ln \frac{x^2}{x^2-2}$, 且 $f[\varphi(x)] = \ln x$, 则 $\int \varphi(x) dx = \underline{\hspace{1cm}}$.
- **14.** 设 $f'(\ln x) = 1 + x \ (x > 0)$, 则 f(x) =_____.
- **15.** $\int \frac{f(x) x f'(x)}{f^2(x)} dx = \underline{\qquad}.$
- **16.** $f'(\cos x + 2) = \sin^2 x + \tan^2 x$, $\bigcup f(x) = \underline{\hspace{1cm}}$
- **17.** 设 f(x) 连续可导,则 $\int f'(2x) dx =$ _____.

19. 己知
$$\frac{\cos x}{x}$$
 是 $f(x)$ 的一个原函数, 则 $\int f(x) \cdot \frac{\cos x}{x} dx =$ ______.

20. 已知曲线上任一点的二阶导数 y' = 6x, 且在曲线上 (0,-2) 处的切线为 2x-3y = 6, 则这条曲线方程为 ______.

三、计算题

$$1. \int \frac{\mathrm{d}x}{x^2 - x - 6}$$

$$2. \int \tan^{10} x \cdot \sec^2 x \, \mathrm{d}x$$

$$3. \int \sin^5 x \, \mathrm{d}x$$

$$4. \int \frac{\mathrm{d}x}{(\arcsin x)^2 \sqrt{1-x^2}}$$

$$\mathbf{5.} \int x \cdot \sqrt[4]{x+9} \, \mathrm{d}x$$

$$\mathbf{6.} \int \frac{\mathrm{d}x}{\sqrt{x^2 + 2x + 2}}$$

$$7. \int \sqrt{x^2 - a^2} \mathrm{d}x$$

8.
$$\int \frac{\mathrm{d}x}{\sqrt{1+\mathrm{e}^x}}$$

$$9. \int e^{\sqrt[3]{x}} dx$$

$$\mathbf{10.} \int \frac{x+2}{x^2+2x+2} dx$$

$$11. \int \left(x + \sqrt{x^2 - 1}\right) \mathrm{d}x$$

12.
$$\vec{x} \int \frac{3^x 5^x}{(25)^x - 9^x} dx$$

14.
$$\vec{x} \int \frac{x^{14}}{(x^5+1)^4} dx.$$

16. 计算积分
$$\int \frac{\sqrt{x^2+2x+2}}{(x+1)^2} dx$$

17. 计算积分
$$\int \frac{\sqrt{x(x+1)}}{\sqrt{x}+\sqrt{x+1}} dx.$$

18. 求不定积分
$$\int \frac{x \, \mathrm{d}x}{(x+2)\sqrt{x^2+4x-12}}.$$

19. 求不定积分
$$\int \frac{\mathrm{d}x}{a\sin x + b\cos x}.$$

20. 求不定积分
$$\int \frac{\mathrm{d}x}{\sin^3 x \cos x}$$

21. 求不定积分
$$\int \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1} dx$$

22. 求不定积分
$$\int \frac{\mathrm{d}x}{1+\tan x}.$$

23.
$$\Re \int \frac{x^2-1}{\sqrt{2x-1}} dx$$

四、综合与应用题

- **1.** 一质点作直线运动,已知其加速度为 $a = 12t^2 3\sin t$. 如果 v(0) = 5, s(0) = -3, 求:
 - (1) 速度 ν 与时间 t 的关系;
 - (2) 位移 s 与时间 t 的关系.

- 2. 一曲线通过点 (e²,3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.
- **3.** 导出计算积分 $I_n = \int \tan^n x \, dx$ 的递推公式, 其中 n 为自然数.

$$I_1 = \int \tan x \, dx = -\ln|\cos x| + C, \ I_0 = \int dx = x + C.$$

- **4.** 若 f(x) 的原函数为 $\frac{\ln x}{x}$,问 f(x) 与 $\frac{\ln x}{x}$ 间有什么关系? 并求 $\int x f'(x) dx$.
- **5.** 设 y = y(x) 是由方程 $y^2(x-y) = x^2$ 所确定的隐函数,试求 $\int \frac{dx}{y^2}$.
- **6.** 设 $f(\sin^2 x) = \frac{x}{\sin x}$, 求 $\int \frac{\sqrt{x}}{\sqrt{1-x}} f(x) dx$.
- 7. 设 $f(\ln x) = \frac{\ln(1+x)}{x}$, 计算 $\int f(x) dx$.
- 8. 设 $f(x^2-1) = \ln \frac{x^2}{x^2-2}$,且 $f[\varphi(x)] = \ln x$,求 $\int \varphi(x) dx$.
- 9. 设 $f(x) = \begin{cases} x^2, x \le 0 \\ \sin x, x > 0 \end{cases}$,求 f(x) 的不定积分.
- **10.** 在什么条件下,积分 $\int \frac{ax^2 + bx + c}{x^3(x-1)^2} dx$ 表示有理函数?
- **11.** 设 f(x) 是单调连续函数, $f^{-1}(x)$ 是它的反函数,且 $\int f(x) dx = F(x) + C$. 求 $\int f^{-1}(x) dx$.

五、分析与证明题

1. 设 F(x) 是 f(x) 的一个原函数,f(x) 可微且其反函数 $f^{-1}(x)$ 存在,则

$$\int f^{-1}(x) dx = x f^{-1}(x) - F[f^{-1}(x)] + C.$$

2. 证明函数
$$\frac{1}{2}e^{2x}$$
, $e^x \sinh x$ 和 $e^x \cosh x$ 都是 $\frac{e^x}{\cosh x - \sinh x}$ 的原函数.

3. 设
$$f(x) = \operatorname{sgn} x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \end{cases}$$
, 证明: $y = \frac{x^2}{2} \operatorname{sgn} x \neq y = |x|$ 的原函数. $-1 \quad x < 0$