

Классификация изображений бинарными нейронными сетями с расширенной информацией

Чанчиков Антон Юрьевич. Бакалавриат, 4 курс, группа 19122

Научные руководители:

- Тарков Михаил Сергеевич. Профессор кафедры Вычислительных систем ММФ НГУ, к.т.н., доцент
- Городничев Максим Александрович. Старший преподаватель кафедры Вычислительных систем ММФ НГУ

Содержание

- Введение
- 2 Цель и задачи
- Обзор
- Исследовательская основа
- ⑤ Методы оптимизации
- Повет предостивной пре
- Эксперименты

Введение

Сверточные нейронные сет

Задача классификации изображений

Постановка задачи: определить, к какому классу наиболее вероятно принадлежит входное изображение.

(a) CIFAR-10. Трехканальные цветные изображения, разрешение 32×32

Бинарные нейронные сети

Идея:

$$b_w=\mathsf{sign}(w)=egin{cases} +1 ext{, если }w\geq 0\ -1 ext{, иначе} \end{cases}, \quad b_{\mathsf{x}}=\mathsf{sign}(\mathsf{x})=egin{cases} +1 ext{, если }x\geq 0\ -1 ext{, иначе} \end{cases}$$

где w и x - веса и активации полноточной нейронной сети, b_w и b_x - бинарной нейронной сети.

Тогда выход сети представляет из себя побитово примененные операции XNOR и POPCOUNT к множествам $B_{\rm w}$ и $B_{\rm x}$

$$Y = (B_w \oplus B_x) \cdot \alpha$$

Бинарные нейронные сети

Преимущества

- Уменьшение нагрзуки на вычисления
- Снижение веса модели

Недостатки

 Большие потери информации при бинаризации

Цель и задачи

Цель и задачи

Цель - разработка и сравнительное исследование методов оптимизации бинарных нейронных сетей с расширенной информацией.

Для достижения указанной цели были поставлены следующие задачи:

- Выбрать архитектуры сверточных нейронных сетей для классификации изображений.
- Провести их бинаризацию и улучшение.
- Оценить качество, время работы и количество выполняемых операций в процессе классификации изображений новыми бинарными сетями.
- Сравнить полученные результаты для разных сверточных сетей.

Обзор

Таприла Связанные работы

С 2016 по сентябрь 2022 г. - не менее 239 фундаментальных разработок в теме бинарных нейронных сетей.

ReActNet предлагает для бинаризации использовать функции с обучаемыми порогами по входным каналам, что позволяет подавать на вход сети подавать больше различной информации для анализа.

$$extit{RSign}(x^i) = egin{cases} +1, \ ext{если} \ x^i \geq eta^i \ -1, \ ext{если} \ x^i < eta^i \end{cases}$$

• IR-Net перед бинаризацией весов предлагает их сбалансировать и стандартизовать для уменьшения эффекта потери информации.

$$w_{std} = \frac{\widehat{w}}{\sigma(\widehat{w})}, \ \widehat{w} = w - \bar{w}$$

БНС с улучшенной информацией

Использование К функций RSign

$$b_{\mathbf{x}}^{i,k} = R Sign^k(\mathbf{x}^i) = egin{cases} +1 , \ ext{если } \mathbf{x}^i \geq eta^{i,k} \ -1 , \ ext{если } \mathbf{x}^i < eta^{i,k} \end{cases}$$

• Для обработки пакетов вводится обобщенная двочиная свертка

$$Y^k = BConv(B_w, B_x^k) = (B_w \oplus B_x^k) \cdot \alpha$$

Стандартизация весов, как в IR-Net, и использование особой функции IEE для бинаризации весов. Особенность в том, что она постепенно в процессе обучения аппроксимирует функцию знака, придавая градиентам весов ненулевые значения

10

патемнік БНС c улучшенной информацией

Структура БНС с улучшенной информацией

Исследовательская основа

Выбранные архитектурь

ResNet

- Высокая точность обработки изобрежний
- Требует больших вычислительных мощностей
- Глубокая сеть с большим количеством параметров

MobileNetV2

- Высокая точность обработки изобрежний
- Эффективное потребление вычислительных ресурсов
- Малый вес

Методы оптимизации

mathematics Методы оптимизации

- Регуляризация методика ограничения модели для улучшения ее обобщающей способности
- Аугментация расширение исходного набора данных, путем применения к изображению некоторых операций, таких как поворот, сдвиг, инвертация каналов и другие
- Дистилляция тактика обучения небольшой модели используя знания другой, более масштабной сети
- Обрезание удаление незначимых весов сети для облегчения ее веса при небольших потерях точности

Разработка фреймворка

Для реализации большого количества экспериментов с использованием различных моделей и методов было принято решение создать исследовательский фреймворк для более легкой, гибкой и быстрой работы.

Он включает в себя:

- Реализацию всех методов, вариантов моделей и других опциональных вещей, описанных ранее
- Возможность менять гиперпараметры, модели и наборы данных для исследований
- Возможность запускать несколько экспериментов разом из некоторого фиксированного пространства методов для мгновенного сравнения результатов

Эксперименты

Результаты ResNet18

Значение К	Точность	Время обучения c/эпоха (min, max)
Небинарная	0.89	25.9; 28.4
1	0.5958	37.9; 40.67
2	0.736	61.6; 65.1
3	0.757	83.2; 90.9
4	0.7292	105; 123.7
5	0.744	104.3; 107.4
6	0.737	122.2; 128.4

Тип сети	FLOPS	GPU Memory usage	Bec
Небинарная	$2.7 \cdot 10^9$	6.1Gb	42.26Mb
Бинарная ($K=3$)	2.43 · 10 ⁸	4.8Gb	4.64Mb

Тип сети	W/o	+WD	+LS	+RA	-LS	+LS+DP
Небинарная	0.89	0.8573	0.8503	0.9201	0.9115	0.9150
Бинарная	0.757	0.7737	0.7641	0.8488	0.8566	0.8511

Результаты MobileNetV

Значение К	Точность	Время обучения c/эпоха (min, max)		
Небинарная 0.8211		49.53; 52.18		
1	0.2915	85.57; 89.15		
2	0.4684	99.76; 105.0		
3	0.4571	117.36; 124.01		
4	0.4603	141.5; 148.91		
5	0.4725	178.34; 185.28		
6	0.4518	194.57; 199.13		

Тип сети	FLOPS	GPU Memory usage	Bec
Небинарная	$3 \cdot 10^{9}$	3.2Gb	6.53Mb
Бинарная $(K=2)$	$1.9 \cdot 10^{8}$	2.6Gb	0.87Mb

Модель	W/o	+WD	+LS	+RA	-LS	+LS+DP
MobNetV2	0.8124	0.8289	0.8275	0.9031	0.9043	0.905

Перенос знаний

Модель	W/o	+WD	+LS	+RA	-LS	+LS+DP
Бинарная (К=3)	0.8105	0.8356	0.8491	0.89	0.8747	0.8944

Таблица: Дистилляция знаний полноточной ResNet18 на бинарный аналог

mathematics & mechanics

- Сильное расширение информации не всегда способно повысить качество модели, то есть из увеличения гиперпараметра К не следует рост точности.
- Показано, что применение методов регуляризации в основном улучшает точность сетей, однако для каждой нужно искать индивидуальный путь их применения.
- Для бинарных моделей крайне эффективно работает тактика обучения учитель-ученик, стратегия обучения способствует повышению качества ученика.
- Теоретические ожидания не всегда оправдываются на практике, что связано с эффективностью программной реализации.

- Разработан план экспериментального исследования с целью повышения точности бинарных нейронных сетей с расширенной информацией, предложены методы оптимизации сетей: поиск оптимального количества информации для расширения, комбинация методов регуляризации, которую нужно подбирать вручную для разных архитектур, перенос знаний, который показал себя перспективно для практического применения.
- Разработана схема автоматизации исследования и реализован программный фреймворк для ее выполнения.
- Проведены эксперименты по изучению поставленных вопросов и показано, что применение некоторых из предложенных методов позволяет повысить точность модели, например, расширение информации, методы регуляризации и расширение датасета для бинарной ResNet18.

Q&A