

STATISTICS FOR DATA SCIENCE HYPOTHESIS and INFERENCE

Dr. Deepa Nair

Department of Science and Humanities

UNIT-4 HYPOTHESIS and INFERENCE

Session-7

Large - Sample tests for Difference between two means

Dr. Deepa Nair

Department of Science and Humanities

Large - Sample tests for Difference between two means

Example

Tennis Elbow

To operate or not to operate?

Mean % of the people cured by Surgery

$$\mu_X = 72$$
, $\sigma_X = 8$, $n_X = 32$

Mean % of the people cured by Physiotherapy

$$\mu_Y = 75$$
, $\sigma_Y = 6$, $n_Y = 36$

Large - Sample tests for Difference between two means

Example:

Can we conduct a Hypothesis test?

Can we say that Surgery is better than Physiotherapy?

Large - Sample tests for Difference between two means

- To determine whether the means of two populations are equal.
- The data will consist of two samples, one from each population.
- Let $X_1, ... X_{n_X}$ and $Y_1, Y_{n_Y} (n_X > 30, n_Y > 30)$ be large sample from a population with means $\mu_X and \ \mu_Y$, and standard deviations σ_X and σ_Y .

Large - Sample tests for Difference between two means

We will compute the difference of the sample means.

$$H_0$$
: $\mu_X - \mu_Y = \Delta_0$,

$$H_0$$
: $\mu_X - \mu_Y > \Delta_0$,

$$H_0$$
: $\mu_X - \mu_Y < \Delta_0$

Large - Sample tests for Difference between two means

Compute the z-score,

$$z = \frac{(\overline{X} - \overline{Y}) - \Delta_0}{\sqrt{\sigma^2 X/n_X + \sigma^2 Y/n_Y}}$$

$$\cdot \overline{X} - \overline{Y} \sim N(\Delta_0, \frac{\sigma^2 X/n_X + \sigma^2 Y/n_Y}{\sqrt{N_X + \sigma^2 Y/n_Y}})$$

Type equation here.

•
$$\overline{X} - \overline{Y} \sim N(\Delta_0, \frac{\sigma^2 X}{n_X} + \frac{\sigma^2 Y}{n_Y})$$

• If σ_X and σ_Y are unknown they may be approximated with s_X and s_Y respectively.

Large - Sample tests for Difference between two means

- Compute the P-value
- The *P*-value is an area under the normal curve, which depends on the alternate hypothesis as shown in the table:

Large - Sample tests for Difference between two means

Alternate Hypothesis	<i>P</i> -value
H_1 : $\mu_X - \mu_Y > \Delta_0$	Area to the right of z
H_1 : $\mu_X - \mu_Y < \Delta_0$	Area to the left of z
H_1 : $\mu_X - \mu_Y \neq \Delta_0$	Sum of the areas in the tails cut off by z and — z

Large - Sample tests for Difference between two means

Example:

The article "Effect of Welding Procedure on Flux Cored Steel Wire Deposits" (N. Ramini de Rissone, I. de S. Bott, et al., Science and Technology of Welding and Joining, 2003:113–122) compares properties of welds made using carbon dioxide as a shielding gas with those of welds made using a mixture of argon and carbon dioxide.

Large - Sample tests for Difference between two means

PES UNIVERSITY ONLINE

Example:

- One property studied was the diameter of inclusions, which are particles embedded in the weld.
- A sample of 544 inclusions in welds made using argon shielding averaged 0.37 μ m in diameter, with a standard deviation of 0.25 μ m.
- A sample of 581 inclusions in welds made using carbon dioxide shielding averaged 0.40 μ m in diameter, with a standard deviation of 0.26 μ m. (Standard deviations were estimated from a graph.)
- Can you conclude that the mean diameters of inclusions differ between the two shielding gases?

Large - Sample tests for Difference between two means

PES UNIVERSITY ONLINE

$$H_0$$
: $\mu_X - \mu_Y = 0$

$$H_1$$
: $\mu_X - \mu_Y \neq 0$

$$\overline{X}=\mathbf{0.37}$$
 , $\overline{Y}=\mathbf{0.40}$

$$s_X = 0.25, S_Y = 0.26, n_X = 544, n_Y = 581$$

$$\overline{X} - \overline{Y} \sim N(0.0.01521^2)$$

Large - Sample tests for Difference between two means

$$z = \frac{(\overline{X} - \overline{Y}) - \Delta_0}{\sqrt{\sigma^2 X/n_X + \sigma^2 Y/n_Y}} = -1.97$$

Large - Sample tests for Difference between two means

PES UNIVERSITY ONLINE

- This is a two-tailed test, and the *P*-value is 0.0488.
- A follower of the 5% rule would reject the null hypothesis.
- It is certainly reasonable to be skeptical about the truth of \boldsymbol{H}_0

Large - Sample tests for Difference between two means

Example:

- In a random sample of 100 tube lights produced by company A, the mean lifetime (mlt) of tube light is 1190 hours with standard deviation of 90 hours.
- Also in a random sample of 75 tube lights from company B the mean lifetime is 1230 hours with standard deviation of 120 hours.
- Is there a difference between the mean lifetime of the two brands of tube lights at a significance level of 0.05?

Large - Sample tests for Difference between two means

PES UNIVERSITY ONLINE

- Let X_A , X_B denote the lifetime(in hours) of tube lights produced by company A and B respectively.
- It is given that the mean lifetime of tube lights of company A is $\overline{X_A}$ =1190, standard deviation for tube lights of A is $s_A=90$.
- Similarly $\overline{X_B}$ =1230, s_B = 120, n_A = sample size of tube lights from A= 100, n_B = sample size from B = 75

Large - Sample tests for Difference between two means

PES UNIVERSITY ONLINE

Solution:

 H_0 : $\mu_A - \mu_B = 0$ i.e., no difference.

Alternate hypothesis: H_1 : $\mu_A - \mu_B \neq 0$ i.e., there is difference.

$$\mu_{\overline{X}_A - \overline{X}_B = \Delta_0 = 0}$$

$$\sigma_{\overline{X}_A - \overline{X}_B = \sqrt{\sigma_{\overline{X}_A}^2 + \sigma_{\overline{X}_B}^2} = \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}$$

$$= \sqrt{\frac{(90)^2}{100} + \frac{(120)^2}{75}} = 16.5227$$

Large - Sample tests for Difference between two means

Solution:

Test statistic:

$$z = \frac{(\overline{X}_A - \overline{X}_B) - \Delta_0}{\sqrt{\frac{{S_A}^2}{n_A} + \frac{{S_B}^2}{n_B}}} = \frac{1190 - 1230}{16.5227} = -2.421$$

For $\alpha = 0.05$.

Reject N.H. since P - Value 0.0156 < 0.05

i.e., yes, there is difference between the mean lifetimes of the tube lights produced by

 \boldsymbol{A} and \boldsymbol{B} .

Large - Sample tests for Difference between two means

PES UNIVERSITY ONLINE

Solution:

For lpha=0.01 Accept N.H. since Reject N.H. since P - Value0.0156>0.05 So there is no difference between \overline{X}_A and \overline{X}_B .

Large - Sample tests for Difference between two means

Example:

- To test the effects a new pesticide on rice production, a farm land was divided into 60 units of equal areas, all portions having identical qualities as to soil, exposure to sunlight etc.
- The new pesticide is applied to 30 units while old pesticide to the remaining 30.
- Is there reason to believe that the new pesticide is better than the old pesticide if the mean number of kg. of rice harvested/unit using new pesticide (N.P)is 496.31with s.d of 17.18 kgs while for old pesticide (O.P) is 485.41kgs and 14.73kgs.Test at a level of significance (a) $\alpha=0.005$

Large - Sample tests for Difference between two means

Example:

$$H_0$$
: $\mu_X - \mu_Y \leq 0$

 H_1 : $\mu_X - \mu_Y > 0$ i.e., new pesticide is superior to (better than) old pesticide.

$$\overline{X} = 496.31, \overline{Y} = 485.41, s_X = 17.18, s_Y = 14.73, n_X = 30, n_Y = 30$$

Test statistic is

$$Z = \frac{(\overline{X} - \overline{Y}) - \Delta_0}{\sqrt{\sigma^2 X / n_X + \sigma^2 Y / n_{\overline{Y}}}} = \frac{(496.31 - 485.41) - 0}{\sqrt{\frac{(17.18)^2}{30} + \frac{(14.73)^2}{30}}} = 2.63814$$

Large - Sample tests for Difference between two means

PES UNIVERSITY ONLINE

Example:

Decision

 $\alpha = 0.05$

Reject N.H. since P-Value0.041 < 0.05 i.e., accept A.H. or new pesticide is superior to old pesticide.

Dr. Deepa Nair

Department of Science and Humanities

deepanair@pes.edu