

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

دورة: 2020

اختبار في مادة: التكنولوجيا (هندسة مدنية)

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع الأول على (03) صفحات (من الصفحة 1 من 7 إلى الصفحة 3 من 7)

الميكانيك التطبيقية: (12 نقطة)

النشاط الأول: تجربة الشد البسيط (06 نقاط)

أُجريت تجربة الشد البسيط بآلة التجارب العالمية على مخبرة معدنية أسطوانية أبعادها كالآتي: مساحة مقطعها

.L= 30 mm وطولها S= 28.27 mm²

فكانت النتائج حسب الجدول الآتي:

F(KN)	0	1.34848	2.82418	5.0886	7.12404	8.15985	10.10992	9.04979
ΔL (mm)	0	0.0159	0.0334	0.0602	0.0840	0.167	0.234	0.300
σ (daN/cm ²)								
ε (%)								

العمل المطلوب:

- 1) انقل الجدول أعلاه على ورقة الإجابة ثم املأ الخانات الفارغة (تُكتب قيم ٤ بثلاثة أرقام بعد الفاصلة).
- ارسم المنحنى البياني للإجهادات (σ) بدلالة التشوهات النسبية (ϵ) أي: (ϵ) على ورقة ميليمترية بالسلم (2

1 cm → 200 daN/ cm² :(σ) الإجهادات

1 cm → 0.04%

التشوهات (ع):

- (3) استخرج من المنحنى البياني إجهاد حدّ المرونة (σ_{e}) وإجهاد الانكسار
- 4) احسب معامل المرونة الطولي (E) واستنتج نوع المادة المستعملة في التجربة مستعينا بالجدول الآتي:

معامل المرونة الطولي E (daN/cm ²)	المادة
690 000	الألومينيوم
900 000	النحاس
2 100 000	الفولاذ
1 960 000	الحديد

النشاط الثاني: دراسة رافدة (06 نقاط)

رافدة معدنية موثوقة في A ممثّلة في الشكل (01)، مقطعها العرضي مجنب من نوع IPE.

العمل المطلوب:

- 1) احسب ردود الأفعال عند الوثاقة A.
- الرافدة. $M_{f}\left(x\right)$ كتب معادلات الجهد القاطع T(x) وعزم الانحناء (2)
- $M_{f\,max}$ ارسم المنحنيين البيانيين لـ T(x) و $M_{f\,(x)}$ واستنتج القيمة القصوى لعزم الانحناء $M_{f\,max}$
- $M_{f\,max}=37.04~{
 m KN.m}$ استخرج من الجدول أدناه المجنب الكافي الذي يحقّق المقاومة علما أنّ: $\sigma=160{
 m MPa}$
 - جدول خصائص المجنب IPE:

		عاد	مقياس المقاومة	المقطع		
IPE	h (mm)	b (mm)	a (mm)	e (mm)	W/xx' (cm ³)	S(cm ²)
160	160	82	5	7,4	108.7	20,1
180	180	91	5.3	8	146.3	23.9
200	200	100	5.6	8.5	194.3	28.5
220	220	110	5.9	9.2	252	33.4
240	240	120	6.2	9.8	324.3	39.12
270	270	135	6,6	10,2	428,9	45,94
300	300	150	7,1	10,7	557,1	53,81
330	330	160	7,5	11,5	713,1	62,61

اختبار في مادة: التكنولوجيا (هندسة مدنية) \الشعبة: تقني رياضي \بكالوريا 2020

البناء: (88 نقاط)

النشاط الأول: دراسة طبوغرافية (05 نقاط)

قطعة أرض على شكل مضلع ABCDE كما هو موضّح في الشكل (02)، تُعطى الإحداثيات القطبية حسب الجدول التالى:

L (m)	G (gr)
$L_{AB} = 64$	$G_{AB} = 74.08$
$L_{AC} = 70.90$	$G_{AC} = 97.50$
$L_{AD} = 68.15$	$G_{AD} = 117.91$
$L_{AE} = 26.59$	$G_{AE} = 150.41$

العمل المطلوب:

الشكل (02)

- 1) احسب مساحة القطعة ABCDE باستعمال الإحداثيات القطبية.
 - 2) احسب الإحداثيات القائمة (X; Y) للنقاط O، C و E.
- $.Y_{A} = 134.22 \text{ m}$; $X_{A} = 225.43 \text{ m}$: A علما أنّ إحداثيات النقطة
 - 3) أراد مالك القطعة الأرضية استغلال الجزء ACDE:
 - احسب المساحة SACDE باستعمال الإحداثيات القائمة.

النشاط الثاني: المنشأ العلوي (03 نقاط)

تعتبر الأرضيات من مكونات المنشأ العلوي.

العمل المطلوب:

- 1) صنّف الأرضيات حسب طريقة الإنجاز. (بدون شرح)
 - 2) سمّ العناصر المرقمة في الشكل (03).

انتهى الموضوع الأول

اختبار في مادة: التكنولوجيا (هندسة مدنية) \الشعبة: تقني رياضي \بكالوريا 2020

الموضوع الثاني

يحتوي الموضوع الثاني على (04) صفحات (من الصفحة 4 من 7 إلى الصفحة 7 من 7)

الميكانيك التطبيقية: (12 نقطة)

النشاط الأول: دراسة نظام مثلثى (06 نقاط)

نظام مثلثي محدّد سكونيا يتكون من قضبان معدنية مقطعها العرضي عبارة عن مجنبات زاوية مزدوجة (الـ)

ومُحمّل كما في الشكل(01):

يُعطى:

 $\begin{cases} \cos \alpha = 0.894 \\ \sin \alpha = 0.447 \end{cases}$ $\begin{cases} \cos \beta = 0.707 \\ \sin \beta = 0.707 \end{cases}$ $\begin{cases} \cos \theta = 0.625 \end{cases}$

 $\sin \theta = 0.781$

العمل المطلوب:

- ${f B}$ احسب ردود الأفعال عند المسندين ${f A}$ و ${f B}$
- 2) احسب الجهود الداخلية للقضبان التالية: AD ،AC ،GF ،GE ،BG ،BE ،HG ،HB مبيّنا طبيعتها مع تدوين النتائج في جدول.

- (3) استخرج من الجدول المرفق نوع المجنب اللازم والكافي للمقاومة إذا علمت أنّ: $\sigma = 160 \text{MPa}$ والإجهاد المسموح به $N_{\text{max}} = 150 \text{ KN}$
- علما أنّ: (02) علما أنّ: $\frac{1}{\tau} = 1000 \, \text{daN} / \text{cm}^2$ حسب الشكل $\frac{1}{\tau} = 1000 \, \text{daN} / \text{cm}^2$ عدد براغى التثبيت $\frac{1}{\tau} = 1000 \, \text{daN} / \text{cm}^2$
- تُعطى بعض الأقطار النظامية للبراغى: 22mm 18mm 16mm 14mm 12mm
 - جدول خصائص مجنب الزاوية:

التسمية	عرض الجناح	سمك الجناح	مساحة المقطع	عزم العطالة	مقياس المقاومة
L (a×a×e)	a (mm)	e (mm)	$A (cm^2)$	$I/_{xx}$, (cm ⁴)	$W/_{xx}$, (cm ³)
$(35 \times 35 \times 3.5)$	35	3.5	2.35	2.66	1.06
$(40 \times 40 \times 4)$	40	4	3.08	4.47	1.55
$(50 \times 50 \times 5)$	50	5	4.80	10.96	3.05
(60×60×6)	60	6	6.91	22.79	5.29
$(70\times70\times7)$	70	7	9.40	42.30	8.41

النشاط الثاني: دراسة رافدة (06 نقاط)

لتكن رافدة معدنية مقطعها العرضي IPN 160 ترتكز على مسندين A (بسيط) و B (مضاعف) ومُحمَّلة كما هو موضّع في الشكل (03).

العمل المطلوب:

- 1) احسب ردود الأفعال في المسندين A و B.
- اكتب معادلات الجهد القاطع T(x) وعزم الانحناء $M_{\rm f}(x)$ على طول الرافدة.
 - $M_{\rm f}\left(x\right)$ و T(x) ارسم المنحنيين البيانيين لـ (3
- $M_{fmax}=16.04~{
 m KN.m}$ و $W_{/XX^{'}}=117~{
 m cm}^3$ و $W_{/XX^{'}}=117~{
 m cm}^3$ تحقّق من مقاومة مقطع الرافدة علما أنّ: مقياس المقاومة $\overline{\sigma}=1600{
 m daN/cm}^2$ و الإجهاد المسموح به للفولاذ:

البناء: (88 نقاط)

النشاط الأول: المنشأ العلوي (03 نقاط).

يمثّل الشكل (04) جزء من مقطع عمودي تفصيلي لسطح أفقي لبناية.

- 1) اذكر أنواع السطوح الأفقية المستعملة في البنايات.
 - 2) سمّ كل من العنصرين 1 و2.

النشاط الثاني: الطرق (05 نقاط).

يمثّل الشكل (05) مخطط التوقيع لجزء من طريق يمتد من المظهر P1 إلى المظهر P7.

الشكل (05)

المعطيات:

- lpha=15 و $^{\circ}$ $R=130~\mathrm{m}$ و الطريق من المظهر P4 إلى المظهر P5 منعرج حسب المواصفات التالية:
 - ارتفاعات خط المشروع: P5=106 m; P1=106.50 m
 - يصعد خط المشروع من P5 إلى P7 بميل مقداره 4.62 %.

المطلوب:

- ارسم المظهر الطولي لهذا الجزء من الطريق على الوثيقة المرفقة (الصفحة 7/7) مع إكمال جميع البيانات.

اختبار في مادة: التكنولوجيا (هندسة مدنية) \الشعبة: تقني رياضي \بكالوريا 2020

التراصفات والمنعرجات	الميـــول	المسافات المتراكمة	المسافات الجزئية	مناسيب خط المشروع	مناسيب خط الأرض الطبيعية	أرقام المظاهر العرضية	+ 103.00	→1/1000	1/100
		0.00							

انتهى الموضوع الثاني

ملاحظة: تعاد هذه الوثيقة مع أوراق الاجابة

رمة	العلا	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		ميكانيك تطبيقية: النشاط الأول: 1 - ملء الجدول:
	0.125×	σ(daN/cm²) 0 477 999 1800 2520 2886.4 3576.20 3201.20
	8	ε% 0 0.053 0.111 0.200 0.280 0.556 0.780 1.000
	0.125× 8	2 - رسم المنحنى البياني:
		σ(daN/cm²)
		σ _r = 3576.2daN/cm ²
		σ _e =2520 daN/cm ²
	1.50	
		$\epsilon_{\rm e} = 0.28\%$ $\epsilon_{\rm r} = 0.78\%$
		3 – من المنحنى نستنتج أنّ:
	0.50	$\sigma_e = 2520 daN / cm^2$ إجهاد حد المرونة: $-$
	0.50	$\sigma_r = 3576.20 daN/cm^2$: إجهاد حد الإنكسار -
4		4 - حساب معامل المرونة الطولي:
	01	$\sigma_e = E \times \varepsilon_e \Rightarrow E = \frac{\sigma_e}{\varepsilon_e} \Rightarrow E = \frac{2520}{0.28 \times 10^{-2}}$
	0.70	$E = 900000 daN / cm^2$
0.5	0.50	استنتاج المادة المعدنية المستعملة: من الجدول نختار النحاس (Cuivre)
06		

_	T	
	0.25	$M_{f{ m max}}=37.04 KN.m$: استنتاج عزم الانحناء الأعظمي $ -$ استخراج المجنب المناسب
		شرط المقاومة:
		$\sigma_{\max} \leq \overline{\sigma} \to \frac{M_{f \max}}{W_{xx'}} \leq \overline{\sigma}$
	0.25	$W_{xx'} \ge \frac{M_{f \max}}{\overline{\sigma}} \Rightarrow W_{xx'} \ge \frac{37.04 \times 10^4}{160 \times 10}$
		$\Rightarrow W_{xx'} \ge 231.5cm^3$
	0.25	$ m W_{/xx'}=252~cm^3$ من الجدول نختار :
	0.25	و منه المجنب المناسب: IPE220
06		
		البناء:
		النشاط الأول:
		1 – حساب مساحة ABCDE:
	0.25	$S_{ABCDE} = \frac{1}{2} \sum L_n \times L_{n+1} \times \sin(G_{n+1} - G_n)$
	0.75	$S_{ABCDE} = \frac{1}{2} \left[L_{AB} \times L_{AC} \times \sin(G_{AC} - G_{AB}) + L_{AC} \times L_{AD} \times \sin(G_{AD} - G_{AC}) + L_{AD} \times L_{AE} \times \sin(G_{AE} - G_{AD}) \right]$
	0.75	$S_{ABCDE} = \frac{1}{2} \left[64 \times 70.9 \times \sin(97.5 - 74.08) + 70.9 \times 68.15 \times \sin(117.91 - 97.5) + 68.15 \times 26.59 \times \sin(150.41 - 117.91) \right]$
	0.25	$S_{ABCDE} = 2020m^2$
		2 - حساب الاحداثيات القائمة للنقاط: E ، D ، C:
		- النقطة C:
		$\Delta x_{AC} = x_C - x_A = L_{AC} \times \sin G_{AC} \to x_C = x_A + L_{AC} \times \sin G_{AC}$
	0.25	$x_C = 225.43 + 70.9 \times \sin 97.5 \rightarrow \boxed{x_C = 296.28m}$
		$\Delta y_{AC} = y_C - y_A = L_{AC} \times \cos G_{AC} \rightarrow y_C = y_A + L_{AC} \times \cos G_{AC}$
	0.25	$y_C = 134.22 + 70.9 \times \cos 97.5 \rightarrow y_C = 137m$
		— النقطة D:
		$\Delta x_{AD} = x_D - x_A = L_{AD} \times \sin G_{AD} \rightarrow x_D = x_A + L_{AD} \times \sin G_{AD}$
	0.25	$x_D = 225.43 + 68.15 \times \sin 117.91 \rightarrow x_D = 290.90m$
		$\Delta y_{AD} = y_D - y_A = L_{AD} \times \cos G_{AD} \rightarrow y_D = y_A + L_{AD} \times \cos G_{AD}$
	0.25	$y_D = 134.22 + 68.15 \times \cos 117.91 \rightarrow y_D = 115.30m$
	<u> </u>	

		- النقطة E:
	0.25	$\Delta x_{AE} = x_E - x_A = L_{AE} \times \sin G_{AE} \to x_E = x_A + L_{AE} \times \sin G_{AE}$ $x_E = 225.43 + 26.59 \times \sin 150.41 \to \boxed{x_E = 244.11m}$
	0.20	$\Delta y_{AE} = y_E - y_A = L_{AE} \times \cos G_{AE} \rightarrow y_E = y_A + L_{AE} \times \cos G_{AE}$
	0.25	$y_E = 134.22 + 26.59 \times \cos 150.41 \rightarrow y_E = 115.30m$
		3 – حساب مساحة المضلع ACDE:
	0.25	$S_{ACDE} = \frac{1}{2} \sum X_n \times (Y_{n-1} - Y_{n+1})$
	0.50	$S_{ACDE} = \frac{1}{2} \left[X_A \times (Y_E - Y_C) + X_C \times (Y_A - Y_D) + X_D \times (Y_C - Y_E) + X_E \times (Y_D - Y_A) \right]$
	0.50	$S_{ACDE} = \frac{1}{2} \begin{bmatrix} 225.43 \times (115.3 - 137) + 296.28 \times (134.22 - 115.3) + \\ 290.9 \times (137 - 115.3) + 244.11 \times (115.3 - 134.22) \end{bmatrix}$
	0.25	$S_{ACDE} = 1203.88m^2$
05		النشاط الثاني:
		1- نوع الأرضيات حسب الإنجاز:
	0.5×2	 الارضيات المصبوبة في عين المكان (بأجسام مجوفة أو ببلاطات مملوءة)
	0.5/\2	 الأرضيات الجاهزة (ببلاطات مملوءة)
		2 – تسمية العناصر:
	0.5×4	- العنصر رقم 10: رفيدة
		- العنصر رقم 02: جسم مجوف العنصر رقم 02: جسم مجوف
		- العنصر رقم 03: شبكة ملحمة المنابعة عند منابعة المعادد المنابعة الم
		 العنصر رقم 04: طاولة الانضغاط (خرسانة)
03		
20		

(مة	العلا	, man
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
		النشاط الأول: F ₂ =100KN F ₂ =100KN F ₂ =100KN F ₃ =100KN F ₄ =100KN F ₂ =100KN F ₃ =100KN F ₄ =100KN F ₄ =100KN F ₄ =100KN F ₅ =100KN F ₄ =100KN F ₅ =100KN F ₆ =100KN F ₇ =100KN F ₈ =100KN F
	0.25	\mathbf{V}^{B} :حساب ردود الأفعال \mathbf{V}^{B} : \mathbf{V}^{B}
		$\sum F / yy' = 0 \Rightarrow V_A + V_B = 300KN$
	0.25	$\sum M/A = 0 \Rightarrow V_B = 290 KN$
	0.25	$\sum_{A} M / B = 0 \Rightarrow V_A = 10KN$
		2- حساب الجهود الداخلية للقضبان:
		■ عزل العقدة H:
	0.5	$\sum F_{/yy'} = 0 \Rightarrow -N_{HB} \times \sin \theta - 100 = 0 \Rightarrow N_{HB} = -128.04 KN(C)$
	0.5	$\sum F_{/xx'} = 0 \Rightarrow -N_{HG} - N_{HB} \times \cos \theta = 0 \Rightarrow N_{HG} = 80KN(T)$ NHB
	0.5 0.5	N_{BE} N_{BG} N_{HB} N

تابع للإجابة النموذجية لموضوع اختبار مادة: التكنولوجيا-هندسة مدنية/ الشعب(ة): تقنى رياضي/ بكالوريا 2020

النشاط الثاني:

1 - حساب ردود الأفعال:

0.25
$$\sum F_{/xx} \cdot = 0 \Rightarrow H_B = 0$$

$$\sum F_{/yy} \cdot = 0 \Rightarrow V_A + V_B = 78$$
0.25
$$\sum M_{F/B} = 0 \Rightarrow V_A = 27KN$$

$$\sum M_{F/A} = 0 \Rightarrow V_B = 51KN$$

2 - معادلات الجهد القاطع وعزم الانحناء:

 $0 \le x \le 2$: 1 - 1 المقطع T(x) = 7

 $M_f(x) = 7x$

х	0	2	
T(x)	7		
M(x)	0	14	

$$2 \le x \le 4.5$$
 :2 - 2 المقطع

0.25
0.25
$$T(x) = -12x + 31$$

 $M_f(x) = -6x^2 + 31x - 24$

X	2	4.5
T(x)	7 > 0	-23 < 0
M(x)	14	-6

- حساب الذروة:

$$T(x) = 0 \rightarrow -12x + 31 = 0 \rightarrow x = 2.58m$$

 $M_f(2.58) = 16.04KN.m$

0.25

0.25

	1	
		البناء:
		النشاط الأول:
		1- أنواع السطوح الأفقية المستعملة في البنايات هي:
	0.75	• السطوح المستغلة
	0.75	• السطوح غير المستغلة
		2- تسمية العناصر:
	0.75	 العنصر رقم 01: جدار حافة السطح (جدار الإحاطة)
	0.75	 العنصر رقم 02: الحماية الثقيلة (طبقة الحصى)
03		النشاط الثاني:
		1) ملء جدول البيانات:
	0.25	✓ أرقام المظاهر العرضية.
	0.25	✓ مناسب خط الأرض الطبيعية.
	0.25×5	√ مناسيب خط المشروع.
	0.25	✓ المسافات الجزئية.
	0.25	✓ المسافات المتراكمة.
	0.25×2	✓ الميول.
	0.25×2	✓ التراصف والمنعرجات.
		2) الرسم:
	0.75	✓ تمثيل خط الأرض الطبيعية.
	0.75	√ تمثيل خط المشروع.
	0.25	√ تعيين موقع المظهر الوهمي.
05		
20		

تابع للإجابة النموذجية لموضوع اختبار مادة: التكنولوجيا-هندسة مدنية/ الشعب(ة): تقني رياضي/ بكالوريا 2020

