NAME: NERELLA VENKATA RADHAKRISHNA

ID: 190031187

PRACTICAL: 5

```
In [2]: ▶
```

import pandas as pd
import numpy as np

In [4]:

df = pd.read_csv('kerala.csv')
df

Out[4]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ
0	KERALA	1901	28.7	44.7	51.6	160.0	174.7	824.6	743.0	357.5	197.7	266.9
1	KERALA	1902	6.7	2.6	57.3	83.9	134.5	390.9	1205.0	315.8	491.6	358.4
2	KERALA	1903	3.2	18.6	3.1	83.6	249.7	558.6	1022.5	420.2	341.8	354.1
3	KERALA	1904	23.7	3.0	32.2	71.5	235.7	1098.2	725.5	351.8	222.7	328.1
4	KERALA	1905	1.2	22.3	9.4	105.9	263.3	850.2	520.5	293.6	217.2	383.5
113	KERALA	2014	4.6	10.3	17.9	95.7	251.0	454.4	677.8	733.9	298.8	355.5
114	KERALA	2015	3.1	5.8	50.1	214.1	201.8	563.6	406.0	252.2	292.9	308.1
115	KERALA	2016	2.4	3.8	35.9	143.0	186.4	522.2	412.3	325.5	173.2	225.9
116	KERALA	2017	1.9	6.8	8.9	43.6	173.5	498.5	319.6	531.8	209.5	192.4
117	KERALA	2018	29.1	52.1	48.6	116.4	183.8	625.4	1048.5	1398.9	423.6	356.1

118 rows × 16 columns

```
In [5]:
```

```
df["FLOODS"]=df["FLOODS"].map({"YES":1,"NO":0})
```

In [7]: ▶

```
df["JUN_GT_500"]=(df["JUN"]>500).astype('int')
df["JUL_GT_500"]=(df["JUL"]>500).astype('int')
df_small=df.loc[:,{"YEAR","JUN_GT_500","JUL_GT_500","FLOODS"}]
df_small["COUNT"]=1
df_small.head()
```

Out[7]:

	YEAR	FLOODS	JUN_GT_500	JUL_GT_500	COUNT
0	1901	1	1	1	1
1	1902	1	0	1	1
2	1903	1	1	1	1
3	1904	1	1	1	1
4	1905	0	1	1	1

```
In [9]:

df_small.shape
```

Out[9]:

(118, 5)

```
In [11]:
```

```
pd.crosstab(df_small["FLOODS"],df_small["JUN_GT_500"])
```

Out[11]:

```
JUN_GT_500 0 1
FLOODS
0 19 39
1 6 54
```

```
In [16]:
P_F = (6 + 54)/(6 + 54 + 19 + 39)
P_J = (39 + 54)/(6 + 54 + 19 + 39)
P_F_{intersect_J} = 54/(6 + 54 + 19 + 39)
print(f"P(F) : {P_F}")
print(f"P(J) : {P_J}")
print(f"P(F AND J) : {P_F_intersect_J}")
P(F): 0.5084745762711864
P(J): 0.788135593220339
P(F AND J) : 0.4576271186440678
                                                                                          M
In [17]:
# probability of flood given it rained more than 500 mm in June
P_F_J = P_F_intersect_J/P_J
print(f"P(F|J) : {P_F_J}")
P(F|J): 0.5806451612903226
In [19]:
                                                                                          M
#Probability of rain more than 500 mm in June given it flooded that year
# P_J_F = P_F_intersect_J/P_F
P_JF = P_FJ * P_J / P_F
print(f"P(J|F) : {P_J_F}")
P(J|F): 0.9000000000000001
In [13]:
pd.crosstab(df_small["FLOODS"],df_small["JUL_GT_500"])
Out[13]:
JUL_GT_500
    FLOODS
         0 19 39
         1
            3 57
```

```
P_FLOODS = (3 + 57)/(19 + 39 + 3 + 57)
P_{JUL} = (39 + 57)/(19 + 39 + 3 + 57)
P_F_{intersect_JUL} = 57/(19 + 39 + 3 + 57)
print(f"P(F) : {P_FLOODS}")
print(f"P(JULY) : {P_JUL}")
print(f"P(F AND JULY) : {P_F_intersect_JUL}")
P(F): 0.5084745762711864
P(JULY): 0.8135593220338984
P(F AND JULY) : 0.4830508474576271
                                                                                           M
In [21]:
# probability of flood given it rained more than 500 mm in July
P_F_JUL = P_F_intersect_JUL / P_JUL
print(f"P(F|J) : {P_F_JUL}")
P(F|J) : 0.59375
In [23]:
                                                                                           H
#Probability of rain more than 500 mm in July given it flooded that year
# P_JUL_F = P_F_intersect_JUL / P_FLOODS
P_JUL_F = P_F_JUL * P_JUL / P_FLOODS
print(f"P(J|F) : {P_JUL_F}")
```

P(J|F): 0.95000000000000002

In [15]: