1

QUESTION

Student Name: Avijit Roy Roll Number: 18111404 Date: November 11, 2018

1 Eigenchangers!

X is an $N \times D$ matrix over \mathbb{R} . An Singular Value Decomposition(SVD) of X is $X = U \Sigma V^T$, where1. The columns of U and V are orthonormal.

2. if $\Sigma = (\sigma_{ij})$ then $\sigma_{ij} = 0$ for $i \neq 0$ and $\sigma_{11} \geq \sigma_{22} \geq ... \geq 0$. Let $\sigma_{ii} = \sigma_i$ are called singular values of X.

Theorem: Let $X = U\Sigma V^T$ be an SVD of A. Then,

- 1. σ_i 's are the square roots of the eigenvalues of X^TX (As well as XX^T).
- 2. The columns of V are the eigenvectors of X^TX .
- 3. The columns of U are the eigenvectors of XX^T

Proof:

Columns of V are $(v_1, ..., v_n)$

Columns of U are $(u_1, ..., u_n)$

$$X^{T}Xv_{i} = (U\Sigma V^{T})^{T}U\Sigma V^{T}v_{i}$$

$$= (V^{T})^{T}\Sigma^{T}U^{T}U\Sigma V^{T}v_{i}$$

$$= V\Sigma^{T}\Sigma V^{T}v_{i} = V\Sigma^{T}\Sigma e_{i}$$

$$= V\Sigma_{i}^{2}e_{i} = \sigma_{i}^{2}v_{i}$$

Here, We get the value of $\Sigma^T \Sigma$ as-

$$\Sigma^{T}\Sigma = \begin{bmatrix} \sigma_{1} & 0 & 0 & \dots & 0 \\ 0 & \sigma_{2} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \sigma_{r} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sigma_{1} & 0 & 0 & \dots & 0 \\ 0 & \sigma_{2} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} e_{i}$$

$$= \begin{bmatrix} \sigma_{1}^{2} & 0 & 0 & \dots & 0 \\ 0 & \sigma_{2}^{2} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \sigma_{r}^{2} & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}_{i} = \sigma_{i}^{2} \times e_{i}$$

 \therefore v_i is an eigenvector of X^TX with eigenvalue σ_i^2

The diagonal entries of Σ are the roots of the eigenvalues of X^TX .

Same argument shows that u_i 's are the eigenvectors of X^TX with eigenvalues σ_i^2 .

All the columns of U and V are linearly independent (as they are orthogonal). So, U and V invertible.

$$XV = U\Sigma \qquad \quad [V^T = V^{-1}]$$

$$= (u_1, ..., u_m) \Sigma$$

$$= (\sigma u_1, \sigma u_2, ..., \sigma_m u_m)$$

$$\therefore X v_i = \sigma_i u_i$$

$$u_i = \frac{X v_i}{\sigma_i}$$

Advantage: Determining the eigenvalue of $XX^T(N\times N)$ will take $O(N^3)$ and for $X^TX(D\times D)$ it will take $O(D^3)$. As $N\leq D$, the time complexity will be less for XX^T case.

Student Name: Avijit Roy Roll Number: 18111404 Date: November 11, 2018

QUESTION

2

2 A General Activation Function

1. $\beta = kx$ where $k \to \infty$ will approximate the Identity function.

2. $\beta \to \infty$ then h(x) will approximate ReLU.

Student Name: Avijit Roy Roll Number: 18111404 Date: November 11, 2018

My solution to problem 3

QUESTION

3

Student Name: Avijit Roy Roll Number: 18111404 Date: November 11, 2018 **QUESTION**

4

My solution to problem 4

Student Name: Avijit Roy Roll Number: 18111404 Date: November 11, 2018 **QUESTION**

5

My solution to problem 5

Student Name: Avijit Roy Roll Number: 18111404 Date: November 11, 2018 QUESTION

6

My solution to problem 6