Package 'clinPK'

February 24, 2024

Type Package

Title Clinical Pharmacokinetics Toolkit

Version 0.13.0

Date 2024-02-22

Description Provides equations commonly used in clinical pharmacokinetics and clinical pharmacology, such as equations for dose individualization, compartmental pharmacokinetics, drug exposure, anthropomorphic calculations, clinical chemistry, and conversion of common clinical parameters. Where possible and relevant, it provides multiple published and peer-reviewed equations within the respective R function.

```
URL https://github.com/InsightRX/clinPK,
    https://insightrx.github.io/clinPK/
```

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Ron Keizer [aut, cre], Jasmine Hughes [aut], Dominic Tong [aut], Kara Woo [aut], InsightRX [cph, fnd]

Maintainer Ron Keizer < ron@insight - rx.com>

Repository CRAN

Date/Publication 2024-02-23 23:30:08 UTC

R topics documented:

absolute2relative_bsa	3
accumulation_ratio	4
add_ruv	5
auc2dose	5
calc_abw	6
calc_aki_stage	6
calc_amts_for_conc	8
calc_baseline_scr	9
calc_bmi	10
calc_bsa	10
	11
<u>*</u>	12
	12
	13
	14
•	17
- C	17
-	19
	20
	21
& _	22
	23
	24
calc_t12	
check_covs_available	
em2inch	
conc2mol	
convert_albumin_unit	
convert_bilirubin_unit	
convert_creat_assay	
convert_creat_unit	
convert_flow_unit	
lose2auc	
egfr_cov_reqs	
find_nearest_dose	
find_nearest_interval	
fraction of ss	
	33
	33
	34
	34
	35
	35
	33 37
e	37 37
•	38
ροι_1101g11ι_101_αξο	50

absolute2relative_bsa 3

pct_weight_for_age	39
pk_1cmt_bolus	39
pk_1cmt_bolus_cmax_ss	40
pk_1cmt_bolus_cmin_ss	41
pk_1cmt_bolus_dose_from_cmax	41
pk_1cmt_bolus_dose_from_cmin	42
pk_1cmt_bolus_ss	43
pk_1cmt_inf	43
pk_1cmt_inf_cmax_ss	44
pk_1cmt_inf_cmin_ss	45
pk_1cmt_inf_dose_for_range	46
pk_1cmt_inf_dose_from_cmax	46
pk_1cmt_inf_dose_from_cmin	47
pk_1cmt_inf_ss	48
pk_1cmt_oral	49
pk_1cmt_t12	50
pk_2cmt_bolus	50
pk_2cmt_bolus_cmax_ss	51
pk_2cmt_bolus_cmin_ss	52
pk_2cmt_bolus_dose_from_cmax	52
pk_2cmt_bolus_dose_from_cmin	53
pk_2cmt_bolus_ss	54
pk_2cmt_inf	55
pk_2cmt_inf_cmax_ss	56
pk_2cmt_inf_cmin_ss	57
pk_2cmt_inf_dose_from_cmax	58
pk_2cmt_inf_dose_from_cmin	59
pk_2cmt_inf_ss	60
pk_2cmt_t12	61
pk_2cmt_t12_interval	61
read_who_table	62
relative2absolute_bsa	62
time_to_ss	63
valid_units	63
weight2kg	64
Index	65

Description

Often used for eGFR estimates

4 accumulation_ratio

Usage

```
absolute2relative_bsa(quantity, bsa = NULL, ...)
```

Arguments

quantity quantity expressed in absolute units

bsa ideal body weight in kg

... arguments passed on to 'calc_bsa', if bsa is NULL

Value

quantity expressed relative to /1.73m2

Examples

```
absolute2relative_bsa(quantity = 60, bsa = 1.6)
absolute2relative_bsa(quantity = 60, weight = 14, height = 90, method = "dubois")
```

accumulation_ratio

Calculate accumulation ratio This is the ratio of drug concentration or AUC at steady state over concentrations after single dose

Description

Calculate accumulation ratio This is the ratio of drug concentration or AUC at steady state over concentrations after single dose

Usage

```
accumulation_ratio(kel = NULL, halflife = NULL, tau = 24)
```

Arguments

kel drug elimination rate

halflife halflife. Either 'kel' or 'halflife' is required.

tau dosing interval

```
accumulation_ratio(halflife = 24, tau = 24)
accumulation_ratio(kel = 0.08, tau = 12)
```

add_ruv 5

add_ruv

Add residual variability to data

Description

Add residual variability to data

Usage

```
add_ruv(x, ruv = list())
```

Arguments

x data

ruv list with arguments prop, add, exp

Examples

```
y <- pk_1cmt_inf()$y
y + add_ruv(y, list(prop = 0.1, add = 0.05))</pre>
```

auc2dose

Convert AUCtau or AUCt to dose (for 1-compartment linear PK model)

Description

Convert AUCtau or AUCt to dose (for 1-compartment linear PK model)

Usage

```
auc2dose(auc, CL, V, t_auc = NA)
```

Arguments

auc AUCtau CL Clearance

V Volume of distribution

t_auc if AUCtau is not known but only AUCt, 't_auc' specifies time until which

AUC_t is calculated to be able to calculate dose

```
auc2dose(450, CL = 5, V = 50)
```

6 calc_aki_stage

-			
cal	\sim	2	hw
сат	C	а	υw

Calculate adjusted body weight (ABW)

Description

Often used for chemotherapy calculations when actual weight > 120 Adjusted body weight is returned in units of kg.

Usage

```
calc_abw(weight = NULL, ibw = NULL, factor = 0.4, verbose = TRUE, ...)
```

Arguments

weight actual body weight in kg
ibw ideal body weight in kg

factor weighting factor, commonly 0.4 or 0.3

verbose show output?

... parameters passed to ibw function (if 'ibw' not specified)

Value

adjusted body weight in kg

Examples

```
calc_abw(weight = 80, ibw = 60)
calc_abw(weight = 80, height = 160, sex = "male", age = 60)
```

calc_aki_stage

Calculate AKI stage

Description

Calculate AKI class based on serum creatinine values over time, using various methods for children (pRIFLE) and adults (RIFLE, kDIGO)

calc_aki_stage 7

Usage

```
calc_aki_stage(
   scr = NULL,
   times = NULL,
   method = "kdigo",
   baseline_scr = "median",
   baseline_egfr = NULL,
   first_dose_time = NULL,
   age = NULL,
   egfr = NULL,
   egfr_method = NULL,
   force_numeric = FALSE,
   override_prifle_baseline = FALSE,
   verbose = TRUE,
   return_object = TRUE,
   ...
)
```

Arguments

scr serum creatinine in mg/dL. Use 'convert_creat()' to convert from mmol/L. Val-

ues below the detection limit ("<0.2") will be converted to numeric (0.2)

times creatinine sample times in hours

method classification method, one of 'KDIGO', 'RIFLE', 'pRIFLE' (case insensitive)

baseline_scr baseline serum creatinine, required for 'RIFLE' classifation. Will use value

if numeric. If 'character', can be either 'median', 'median_before_treatment',

'lowest', or 'first'.

baseline_egfr baseline eGFR, required for 'RIFLE' classifations. Will take median of 'egfr'

values if 'NULL'.

first_dose_time

time in hours of first dose relative to sCr value, used for calculate baseline serum

creatinine in 'median_before_treatment' approach.

age age in years, needed when eGFR is used in the classification method

egfr eGFR in ml/min/1.73m^2. Optional, can also be calcualted if 'age', 'weight',

'height', 'sex', 'egfr_method' are specified as arguments.

egfr_method eGFR calculation method, used by 'calc_egfr()'. If NULL, will pick default

based on classification system ('cockroft_gault' for RIFLE / kDIGO, 'revised_schwartz'

for pRIFLE).

force_numeric keep stage numeric (1, 2, or 3), instead of e.g. "R", "I", "F" as in RIFLE. Default

'FALSE'.

override_prifle_baseline

by default, 'pRIFLE' compares eGFR to 120 ml/min. Override by setting to

TRUE.

verbose verbose ('TRUE' or 'FALSE')

return_object return object with detailed data (default 'TRUE'). If 'FALSE', will just return

maximum stage.

8 calc_amts_for_conc

... arguments passed on to 'calc_egfr()'

References

- pRIFLE: Ackan-Arikan et al. "Modified RIFLE criteria in critically ill children with acute kidney injury." Kidney Int. (2007)
- RIFLE: Bellomo et al. "Acute renal failure definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group." Critical Care. (2004)
- KDIGO: Khwaja. "KDIGO clinical practice guidelines for acute kidney injury." Nephron Clinical Practice. (2012)
- pRIFLE baseline eGFR: Soler et al. "pRIFLE (Pediatric Risk, Injury, Failure, Loss, End Stage Renal Disease) score identifies Acute Kidney Injury and predicts mortality in critically ill children: a prospective study." Pediatric Critical Care Medicine. (2014)

Examples

```
calc_aki_stage(
  scr = c(0.7, 0.9, 1.8, 1.5),
  t = c(0, 40, 100, 130),
  age = 50, weight = 60,
  height = 170, sex = "female")
```

calc_amts_for_conc

Calculate the amounts in all compartments in a compartmental PK system based on a given concentration in the central compartment, and assuming steady state.

Description

Calculate the amounts in all compartments in a compartmental PK system based on a given concentration in the central compartment, and assuming steady state.

Usage

```
calc_amts_for_conc(conc = 10, parameters = NULL, n_cmt = 1)
```

Arguments

conc concentration in central compartment

parameters for PK model

n_cmt number of compartments

calc_baseline_scr 9

Examples

```
calc_amts_for_conc(conc = 10, parameters = list(CL = 5, V = 50), n_cmt = 1)
calc_amts_for_conc(
   conc = 10,
   parameters = list(CL = 5, V = 50, Q = 20, V2 = 100),
   n_cmt = 2)
calc_amts_for_conc(
   conc = 10,
   parameters = list(CL = 5, V = 50, Q = 20, V2 = 100, Q2 = 30, V3 = 200),
   n_cmt = 3)
```

calc_baseline_scr

Calculate baseline sCr

Description

Calculate baseline sCr

Usage

```
calc_baseline_scr(
  baseline_scr,
  scr,
  times,
  method,
  first_dose_time = NULL,
  verbose
)
```

Arguments

baseline_scr baseline serum creatinine method (character). See calc_aki_stage() for avail-

abloptions.

scr serum creatinine in mg/dL. Use 'convert_creat()' to convert from mmol/L. Val-

ues below the detection limit ("<0.2") will be converted to numeric (0.2)

times creatinine sample times in hours

method classification method, one of 'KDIGO', 'RIFLE', 'pRIFLE' (case insensitive)

first_dose_time

time in hours of first dose relative to sCr value, used for calculate baseline serum

creatinine in 'median_before_treatment' approach.

verbose ('TRUE' or 'FALSE')

10 calc_bsa

calc_bmi

Calculate BMI

Description

Calculate BMI

Usage

```
calc_bmi(weight, height)
```

Arguments

weight weight in kg height height in cm

Value

value of BMI in kg/m2

Examples

```
calc_bmi(weight = 70, height = 160)
```

calc_bsa

Calculate body surface area

Description

Get an estimate of body-surface area (in m2) based on weight and height

Usage

```
calc_bsa(
  weight = NULL,
  height = NULL,
  method = c("dubois", "mosteller", "haycock", "gehan_george", "boyd")
)
```

Arguments

weight weight height height

method estimation method, choose from 'dubois', 'mosteller', 'haycock', 'gehan_george',

'boyd'

calc_carboplatin_calvert

Value

Returns a list of the following elements:

value Body Surface Area (BSA) in units of m2
unit Unit describing BSA, (m2)

Examples

```
calc_bsa(weight = 70, height = 170)
calc_bsa(weight = 70, height = 170, method = "gehan_george")
```

calc_carboplatin_calvert

Calvert equation for carboplatin

Description

The Calvert equation calculates a dose expected to bring the patient to the target AUC given their glomerular filtration rate (GFR). The original equation was developed on a data set of 18 individuals with GFR of 33-136 ml/min.

Usage

```
calc_carboplatin_calvert(target_auc, gfr = NULL, ...)
```

Arguments

target_auc target AUC, in mg/ml-min, typically between 2-8 mg/ml-min gfr glomerular filtration rate, in ml/min. See also 'clinPK::calc_egfr'.
... arguments passed on to 'calc_egfr' if gfr is not supplied

References

Calvert et al., Journal of Clinical Oncology (1976)

```
calc_carboplatin_calvert(5, 100)
calc_carboplatin_calvert(4, 30)
calc_carboplatin_calvert(2, sex = "male", age = 50, scr = 1.1, weight = 70)
```

12 calc_creat_neo

calc_creat

Estimate serum creatinine

Description

Calculate an estimated serum creatinine. Function takes vectorized input as well.

Usage

```
calc_creat(sex = NULL, age = NULL, digits = 1)
```

Arguments

sex sex, either 'male' or 'female'

age age in years

digits number of digits to round to

Details

Uses equations described in Ceriotti et al. Clin Chem. 2008, and Junge W et al. Clin Chim Acta. 2004. For age 15-18, a linear interpolation is used between equations for <15 and >18 years as described in Johanssen A et al. Ther Drug Monit 2011.

Examples

```
calc_creat(sex = "male", age = 40)
calc_creat(sex = "male", age = c(10, 17, 60))
```

calc_creat_neo

Estimate serum creatinine in neonates

Description

Calculate an estimated serum creatinine. Function takes vectorized input as well.

Usage

```
calc_creat_neo(pma = NULL, digits = 1)
```

Arguments

pma post-natal age in weeks
digits number of digits to round to

calc_dosing_weight 13

Details

Uses equations described in Germovsek E et al. (http://www.ncbi.nlm.nih.gov/pubmed/27270281) based on data from Cuzzolin et al. (http://www.ncbi.nlm.nih.gov/pubmed/16773403) and Rudd et al. (http://www.ncbi.nlm.nih.gov/pubmed/6838252)

Examples

```
cr <- calc_creat_neo(pma = 36)
convert_creat_unit(cr$value, unit_in = cr$unit, unit_out = "mg/dL")</pre>
```

calc_dosing_weight

Calculate commonly used "dosing weight"

Description

Dosing weight is determined based on total (TBW), ideal (IBW), or adjusted (ABW) body weight in kg.

Usage

```
calc_dosing_weight(weight, height, age, sex, verbose = TRUE, ...)
```

Arguments

```
weight weight height age age sex sex
```

verbose verbosity ('TRUE' or 'FALSE')
... pased to 'calc_abw()' function

Details

This is derived using following: - In principle, use IBW - If total body weight (TBW) > 1.2*IBW, then use ABW - If TBW < IBW, use TBW

Value

Returns a list of the following elements:

```
value Dosing weight, in units of kg unit Units of dosing weight (kg)
```

type Type of dosing weight selected, e.g., total body weight, ideal body weight.

```
calc_dosing_weight(weight = 50, height = 170, sex = "female", age = 50)
```

14 calc_egfr

calc_egfr

Calculate eGFR

Description

Calculate the estimated glomerular filtration rate (an indicator of renal function) based on measured serum creatinine using one of the following approaches:

- Cockcroft-Gault (using weight, ideal body weight, or adjusted body weight)
- C-G spinal cord injury (using correction factor of 0.7, representing median correction point reported in the original publication (parapalegic patients: 0.8; tetrapalegic patients: 0.6))
- Revised Lund-Malmo
- Modification of Diet in Renal Disease study (MDRD; with or without consideration of race, using either the original equation (published 2001) or the equation updated to reflect serum creatinine assay standardization (2006))
- CKD-EPI (with or without consideration of race, or 2021 re-fit without race)
- Schwartz
- · Schwartz revised / bedside
- Jelliffe
- Jelliffe for unstable renal function. Note that the 15 P_adj recommended for hemodialysis patients is not included in this implementation.
- Wright equation for eGFR in cancer patients, with creatinine measured using the Jaffe assay.

Equations for estimation of eGFR from Cystatin C concentrations are available from the 'calc_egfr_cystatin()' function.

Usage

```
calc_egfr(
  method = "cockcroft_gault",
  sex = NULL,
  age = NULL,
  scr = NULL,
  scr_unit = NULL,
  race = "other",
  weight = NULL,
  height = NULL,
  bsa = NULL,
  preterm = FALSE,
  ckd = FALSE,
  times = NULL,
  bsa_method = "dubois",
  relative = NULL,
  unit_out = "mL/min",
  verbose = TRUE,
```

calc_egfr 15

```
min_value = NULL,
max_value = NULL,
fail = TRUE,
...
)
```

Arguments

method eGFR estimation method, choose from 'cockcroft_gault', 'cockcroft_gault_ideal',

'cockcroft_gault_adjusted', 'cockcroft_gault_adaptive', 'mdrd', 'mdrd_ignore_race', 'mdrd_original', 'mdrd_original_ignore_race', 'ckd_epi', 'ckd_epi_ignore_race', 'ckd_epi_as_2021', 'malmo_lund_revised', 'schwartz', 'jelliffe', 'jellife_unstable',

'wright'.

sex sex

age age, in years

scr serum creatinine (mg/dL)

scr_unit, 'mg/dL' or 'micromol/L' (=='umol/L')

race 'black' or 'other', Required for CKD-EPI and MDRD methods for estimating

GFR. To use these methods without race, use 'method = "ckd_epi_ignore_race", 'method = "ckd_epi_as_2021", 'method = "mdrd_ignore_race" or 'method = "mdrd_original_ignore_race". See Note section below for important consider-

ations when using race as a predictive factor in eGFR.

weight weight, in 'kg'

height height, in 'cm', used for converting to/from BSA-normalized units.

bsa body surface area

preterm is patient preterm? Used for Schwartz method.

ckd chronic kidney disease? Used for Schwartz method.

times vector of sampling times (in days!) for creatinine (only used in Jelliffe equation

for unstable patients)

bsa_method BSA estimation method, see 'calc_bsa()' for details

relative 'TRUE'/'FALSE'. Report eGFR as per 1.73 m2? Requires BSA if re-calculation

required. If 'NULL' (=default), will choose value typical for 'method'.

unit_out 'ml/min' (default), 'L/hr', or 'mL/hr'

verbose verbosity, show guidance and warnings. 'TRUE' by default

min_value minimum value ('NULL' by default). The cap is applied in the same unit as the

'unit_out'.

max_value maximum value ('NULL' by default). The cap is applied in the same unit as the

'unit_out'.

fail invoke 'stop()' if not all covariates available?

... arguments passed on to 'calc_abw' or 'calc_dosing_weight'

16 calc_egfr

Note

The MDRD and CKD-EPI equations use race as a factor in estimation of GFR. Racism has historically been and continues to be a problem in medicine, with racialized patients experiencing poorer outcomes. Given this context, the use of race in clinical algorithms should be considered carefully (Vyas et al., NEJM (2020)). Provided here are versions of the CKD-EPI and MDRD equations that do not consider the race of the patient. Removing race from GFR estimation may lead to worse outcomes for Black patients in some contexts (Casal et al., The Lancet (2021)). On the other hand, including race in GFR estimation may also prevent Black patients from obtaining procedures like kidney transplants (Zelnick, et al. JAMA Netw Open. (2021)). In 2021, the NKF/ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Diseases published revised versions of the CKD-EPI equations refit on the original data but with race excluded, which may produce less biased estimates (Inker, et al., NEJM (2021)).

References

- Cockcroft-Gault: Cockcroft & Gault, Nephron (1976)
- Cockcroft-Gault for spinal cord injury: Mirahmadi et al., Paraplegia (1983)
- Revised Lund-Malmo: Nyman et al., Clinical Chemistry and Laboratory Medicine (2014)
- MDRD: Manjunath et al., Curr. Opin. Nephrol. Hypertens. (2001) and Levey et al., Clinical Chemistry (2007). (See Note.)
- CKD-EPI: Levey et al., Annals of Internal Medicine (2009). (See Note.)
- CKD-EPI (2021): Inker, et al., NEJM (2021).
- Schwartz: Schwartz et al., Pediatrics (1976)
- Schwartz revised / bedside: Schwartz et al., Journal of the American Society of Nephrology (2009)
- Jelliffe: Jelliffe, Annals of Internal Medicine (1973)
- Jelliffe for unstable renal function: Jelliffe, American Journal of Nephrology (2002)
- Wright: Wright et al., British Journal of Cancer (2001)

```
calc_egfr(sex = "male", age = 50, scr = 1.1, weight = 70)
calc_egfr(sex = "male", age = 50, scr = 1.1, weight = 70, unit_out = "L/hr")
calc_egfr(sex = "male", age = 50, scr = 1.1, weight = 70, bsa = 1.8, method = "ckd_epi")
calc_egfr(sex = "male", age = 50, scr = c(1.1, 0.8),
    weight = 70, height = 170, method = "jelliffe")
calc_egfr(sex = "male", age = 50, scr = c(1.1, 0.8),
    weight = 70, height = 170, method = "jelliffe_unstable")
calc_egfr(sex = "male", age = 50, scr = 1.1,
    weight = 70, bsa = 1.6, method = "malmo_lund_revised", relative = FALSE)
```

calc_egfr_cystatin 17

calc_egfr_cystatin

Calculate eGFR based on Cystatin C measurements

Description

Calculate eGFR based on Cystatin C measurements

Usage

```
calc_egfr_cystatin(
  cystatin = NULL,
  cystatin_unit = "mg/L",
  method = c("grubb", "larsson", "hoek"),
  unit_out = c("ml/min", "ml/hr", "l/min", "l/hr", "ml/min/1.73m2")
)
```

Arguments

Examples

```
calc_egfr_cystatin(1.0)
calc_egfr_cystatin(1.0, method = "larsson")
calc_egfr_cystatin(1.0, unit_out = "l/hr")
```

calc_ffm

Calculate fat-free mass

Description

Get an estimate of fat-free mass (FFM, in kg) based on weight, height, and sex (and age for Storset equation).

18 calc_ffm

Usage

Arguments

weight total body weight in kg

bmi BMI, only used in 'green' method. If 'weight' and 'height' are both specified,

'bmi' will be calculated on-the-fly.

sex sex, either 'male' of 'female'

height height in cm, only required for 'holford' method, can be used instead of 'bmi'

for 'green' method

age age, only used for Storset equation

method estimation method, one of 'janmahasatian' (default), 'green', 'al-sallami', 'storset',

'bucaloiu', 'hume', 'james', or 'garrow_webster'.

digits round to number of digits

Details

References: 'janmahasatian', 'green': Janmahasatian et al. Clin Pharmacokinet. 2005;44(10):1051-65) 'al-sallami': Al-Sallami et al. Clin Pharmacokinet 2015 'storset': Storset E et al. TDM 2016 'bucaloiu': Bucaloiu ID et al. Int J of Nephrol Renovascular Dis. 2011 (Morbidly obese females) 'hume': Hume R. J Clin Pathol 1966 'james': James WPT et al. Research on obesity: a report of the DHSS/MRC Group 1976 'garrow_webster': Garrow JS, Webster J. Quetelet's index (W/H2) as a measure of fatness. Int J Obesity 1984

Overview: - Sinha J, Duffull1 SB, Al-Sallami HS. Clin Pharmacokinet 2018. https://doi.org/10.1007/s40262-017-0622-5

Value

Returns a list of the following elements:

value Fat-free Mass (FFM) in units of kg

unit Unit describing FFM, (kg)
method Method used to calculate FFF

19 calc_ibw

Examples

```
calc_ffm(weight = 70, bmi = 25, sex = "male")
calc_ffm(weight = 70, height = 180, age = 40, sex = "female", method = "storset")
```

calc_ibw

Calculate ideal body weight in kg for children and adults

Description

Get an estimate of ideal body weight. This function allows several commonly used equations

Usage

```
calc_ibw(
 weight = NULL,
 height = NULL,
  age = NULL,
  sex = "male",
 method_children = "standard",
 method_adults = "devine"
)
ibw_standard(age, height = NULL, sex = NULL)
ibw_devine(age, height = NULL, sex = NULL)
```

Arguments

weight weight in kg height height in cm age in years age sex sex method_children

method to use for children >1 and <18 years. Currently "standard" is the only

method that is supported.

method to use for >=18 years. Currently "devine" is the only method that is method_adults supported (Devine BJ. Drug Intell Clin Pharm. 1974;8:650-655).

Details

Equations:

<1yo Use actual body weight

1-17 years old ('standard'): if height < 5ft: IBW= (height in cm2 x 1.65)/1000 if height > 5ft: IBW (male) = 39 + (2.27 x height in inches over 5 feet) IBW (female) = 42.2 + (2.27 x height in inches)over 5 feet)

20 calc_kel_double_tdm

Methods not implemented yet: McLaren: IBW = - step1: x = 50th percentile height for given age - step2: IBW = 50th percentile weight for x on weight-for-height scale Moore: IBW = weight at percentile x for given age, where x is percentile of height for given age BMI: IBW = 50th percentile of BMI for given age x (height in m)^2 ADA: IBW = 50th percentile of WT for given age

>= 18 years old (Devine equation) IBW (male) = 50 + (2.3 x height in inches over 5 feet) IBW (female) = 45.5 + (2.3 x height in inches over 5 feet)

Examples

```
calc_ibw(weight = 70, height = 170, age = 40, sex = "female")
calc_ibw(weight = 30, height = 140, age = 10, sex = "female")
```

calc_kel_double_tdm

Calculate elimination rate when given two TDM samples

Description

Calculate elimination rate when given two TDM samples

Usage

```
calc_kel_double_tdm(
  dose = 1000,
  t = c(2, 11.5),
  dv = c(30, 10),
  tau = 12,
  t_inf = 1,
  V = NULL,
  steady_state = TRUE,
  return_parameters = FALSE
)
```

Arguments

	dose	dose amount	
	t	time or time after dose, vector of size 2	
	dv	observed value, vector of size 2	
	tau	dosing interval	
	t_inf	infusion time	
	V	if specified, use that (empiric) value and don't estimate from data. Default 'NULL'.	
	steady_state	samples taken at steady state? Only influences AUCtau.	
return_parameters			
		return all parameters instead of only kel?	

calc_kel_single_tdm 21

Examples

```
calc_kel_double_tdm(dose = 1000, t = c(3, 18), dv = c(30, 10))
```

calc_kel_single_tdm

Calculate elimination rate when given a single TDM sample

Description

Using iterative k_el calculation, and based on given Volume

Usage

```
calc_kel_single_tdm(
  dose = 1000,
  V = 50,
  t = 10,
  dv = 10,
  tau = 12,
  t_inf = 1,
  kel_init = 0.1,
  n_iter = 25,
  learn_rate = 0.2
)
```

Arguments

dose	dose amount
V	volume of distribution
t	time or time after dose
dv	observed value
tau	dosing interval
t_inf	infusion time
kel_init	estimate of elimination rate
n_iter	number of iterations to improve estimate of elimination rate
learn_rate	default is 0.2

```
calc_kel_single_tdm(dose = 1000, t = 18)
```

22 calc_kgfr

calc_kgfr

Calculate kinetic GFR

Description

Calculate the kinetic GFR based on a patients first two serum creatinine measurements. Kinetic GFR may be more predictive of future AKI for patients whose serum creatinine is changing quickly. Briefly, an increase in SCr over the course of a day indicates an effective GFR lower than the most recent SCr measurement may indicate if steadystate is assumed, while a decrease in SCr over a short time indicates a higher effective GFR than the most recent SCr would indicate. There are several ways of approximating maximum theoretical creatinine accumulation rate; here the method used by Pianta et al., (PLoS ONE, 2015) has been implemented.

Usage

```
calc_kgfr(
   scr1 = NULL,
   scr2 = NULL,
   scr_unit = "mg/dl",
   time_delay = NULL,
   weight = NULL,
   vd = NULL,
   egfr = NULL,
   egfr_method = NULL,
   sex = NULL,
   age = NULL,
   height = NULL,
   ...
)
```

baseline scr

Arguments

scr1

scr2	second scr measurement
scr_unit	scr unit, defaults to mg/dl
time_delay	time between scr1 and scr2 in hours
weight	patient weight in kg
vd	volume of distribution in L, defaults to 0.6 * weight
egfr	eGFR in ml/min at the time of scr1, or leave blank to call calc_egfr
egfr_method	string, only necessary if egfr is not specified.
sex	string (male or female), only necessary if egfr is not specified.
age	age in years, only necessary if egfr is not specified.
height	in m, necessary only for some egfr calculation methods.
	further arguments (optional) to be passed to calc_egfr.

calc_lbw 23

Value

kGFR, in ml/min

References

```
Pianta et al., PLoS ONE (2015)
```

Examples

calc_lbw

Calculate lean body weight

Description

Get an estimate of lean body weight (LBW, in kg) based on weight, height, and sex.

Usage

```
calc_lbw(
  weight = NULL,
  bmi = NULL,
  sex = NULL,
  height = NULL,
  method = "green",
  digits = 1
)
```

Arguments

```
weight total body weight in kg
bmi bmi
sex sex, either 'male' of 'female'
height height in cm
method estimation method, either 'green' (default), 'boer', 'james', 'hume'
digits round to number of digits
```

Details

Note: technically not the same as fat-free mass, although difference is small.

References: 'green': Green and Duffull. Clin Pharmacol Ther 2002; 'james': Absalom AR et al. Br J Anaesth 2009; 103:26-37. James W. Research on obesity. London: Her Majesty's Stationary Office, 1976. 'hume': Hume R et al. J Clin Pathol. 1966 Jul; 19(4):389-91. 'boer': Boer P et al. Am J Physiol 1984; 247: F632-5

Value

Returns a list of the following elements:

```
value Lean Body Weight (LBW) in units of kg
unit Unit describing LBW, (kg)
```

Examples

```
calc_lbw(weight = 80, height = 170, sex = "male")
calc_lbw(weight = 80, height = 170, sex = "male", method = "james")
```

calc_neutropenia_grade

Calculate neutropenia grade from ANC

Description

Assigns neutropenia grade based on the National Cancer Institute system. Note that while this system assigns a grade of 1 to an ANC between 1500-2000, the term neutropenia is usually reserved for a grade of 2 or higher (an ANC of <1500)

Usage

```
calc_neutropenia_grade(anc)
```

Arguments

anc

absolute neutrophil count (ANC), in number per microliter

References

• Neutropenia: US National Cancer Institute's Common Toxicity Criteria

```
calc_neutropenia_grade(
  anc = c(500, 1501)
)
```

calc_t12 25

calc_t12

Calculate half-life based on two points

Description

based on two sampling points (in same interval)

Usage

```
calc_t12(t1, t2, y1, y2)
```

Arguments

t1 first sampling timepoint
t2 second sampling timepoint
y1 first sample value
y2 second sample value

Examples

```
calc_t12(3, 24, 30, 10)
```

check_covs_available

Checks whether required covariates for eGFR calculations are present

Description

returns true if all patient covs specified in required covs are non-null, non-NA and not a 0-character string. See 'is.nil' for missing data types checked. Returns TRUE if no covariates are required.

Usage

```
check_covs_available(
  cov_reqs = NULL,
  patient_covs = NULL,
  verbose = TRUE,
  fail = TRUE
)
```

Arguments

cov_reqs vector of covariates required for calculating derived covariatiate

patient_covs named list of covariates

verbose stop and describe missing covariate(s)?
fail invoke 'stop()' if not all covariates available?

26 conc2mol

Examples

```
check_covs_available(
  egfr_cov_reqs('cockcroft_gault_ideal')[[1]],
  list(creat = 1, weight = 100, height = 160, sex = 'female', age = 90))
```

cm2inch

Convert cm to inch

Description

Convert cm to inch

Usage

cm2inch(cm)

Arguments

cm

Examples

cm2inch(2.54)

conc2mol

Convert concentration to molar

Description

Convert concentration to molar

Usage

```
conc2mol(conc = NULL, unit_conc = NULL, mol_weight = NULL, unit_mol = NULL)
```

Arguments

```
conc concentration in e.g. g/L
```

vector

unit_conc, one of 'g/l', 'mg/l', 'microg/l', 'mcg/l", 'mg/l', 'mg/ml', 'microg/ml', 'mcg/ml',

'ng/ml'

mol_weight concentration in g/mol

unit_mol one of 'mol/L', 'mmol/mL', 'mmol/L'

```
conc2mol(100, unit_conc = "g/l", mol_weight = 180.15588)
```

convert_albumin_unit 27

```
convert_albumin_unit Convert albumin from / to units
```

Description

Accepted units are "g_l", "g_dl", or "micromol_l". Arguments supplied to 'value' and 'unit_in' units must be of the same length. "To" unit must be of length 1. #'

Usage

```
convert_albumin_unit(
  value,
  unit_in = valid_units("serum_albumin"),
  unit_out = valid_units("serum_albumin"))
```

Arguments

```
value albumin measurements unit_in from unit, e.g. '"g_l"'. unit_out to flow unit, e.g. '"g_dl"'
```

Examples

```
## single values
convert_albumin_unit(0.6, "g_dl", "g_l")
## vectorized
convert_albumin_unit(
   c(0.4, 2, 0.3),
   unit_in = c("g_dl", "g_l", "g_dl"),
   unit_out = c("g_l")
)
```

convert_bilirubin_unit

Convert bilirubin from / to units

Description

Accepted units are "mg_dl" and "micromol_l". Arguments supplied to 'value' and 'unit_in' units must be of the same length. "To" unit must be of length 1. #'

28 convert_creat_assay

Usage

```
convert_bilirubin_unit(
  value,
  unit_in = valid_units("bilirubin"),
  unit_out = valid_units("bilirubin")
)
```

Arguments

```
value bilirubin measurements
unit_in from unit, e.g. '"g_l"'.
unit_out to flow unit, e.g. '"g_dl"'
```

Examples

```
## single values
convert_bilirubin_unit(1, "mg_dl", "micromol_l")
## vectorized
convert_bilirubin_unit(
   c(1, 1.1, 1.2),
   unit_in = "mg_dl",
   unit_out = "micromol_l"
)
```

convert_creat_assay Convert ser

Convert serum creatinine from various assays to Jaffe

Description

Based on equations as reported in Srivastava et al. 2009 (Pediatr Res. 2009 Jan;65(1):113-6. doi: 10.1203/PDR.0b013e318189a6e8)

Usage

```
convert_creat_assay(scr, from = "idms", to = "jaffe")
```

Arguments

```
scr vector of serum creatinine values
from assay type, either 'jaffe', 'enzymatic' or 'idms'
to assay type, either 'jaffe', 'enzymatic' or 'idms'
```

```
convert\_creat\_assay(scr = c(1.1, \ 0.8, \ 0.7), \ from = "enzymatic", \ to = "jaffe")
```

convert_creat_unit 29

convert_creat_unit

Convert creatinine to different unit

Description

Convert creatinine to different unit

Usage

```
convert_creat_unit(
  value,
  unit_in = valid_units("scr"),
  unit_out = valid_units("scr")
)
```

Arguments

Examples

```
convert_creat_unit(1, "mg/dL", "micromol/l")
convert_creat_unit(88.42, "micromol/l", "mg/dL")
```

convert_flow_unit

Convert flow (e.g. clearance) from / to units

Description

Flow units are expected to be specified as a combination of volume per time units, potentially specified per kg body weight, e.g. "mL/min", or "L/hr/kg".

Usage

```
convert_flow_unit(value = NULL, from = "1", to = "m1", weight = NULL)
```

Arguments

value flow value from from flow unit, e.g. 'L/hr'. to to flow unit, e.g. 'mL/min'

weight for performing per weight (kg) conversion

30 dose2auc

Details

Accepted volume units are "L", "dL", and "mL". Accepted time units are "min", "hr", and "day". The only accepted weight unit is "kg".

The function is not case-sensitive.

Examples

```
## single values
convert_flow_unit(60, "L/hr", "ml/min")
convert_flow_unit(1, "L/hr/kg", "ml/min", weight = 80)

## vectorized
convert_flow_unit(
    c(10, 20, 30),
    from = c("L/hr", "mL/min", "L/hr"),
    to = c("ml/min/kg", "L/hr", "L/hr/kg"),
    weight = c(70, 80, 90))
```

dose2auc

Convert dose to expected AUCinf or AUCt for 1 compartment linear PK model

Description

Convert dose to expected AUCinf or AUCt for 1 compartment linear PK model

Usage

```
dose2auc(dose, CL, V, t_auc = NULL)
```

Arguments

dose dose amount CL Clearance

V Volume of distribution

t_auc if AUC_t is desired, 't_auc' specifies time until which AUC_t is calculated

```
dose2auc(dose = 1000, CL = 5, V = 50)
dose2auc(dose = 1000, CL = 5, V = 50, t_auc = c(12, 24, 48, 72))
```

egfr_cov_reqs 31

egfr_cov_reqs	Returns parameters	needed to	calculate	eGFR	according	to	the
	method specified.						

Description

returns a named list, with the name being the eGFR method after being checked for certain typos or misspecifications, and the values being the required covariates.

Usage

```
egfr_cov_reqs(method, relative = NULL)
```

Arguments

method egfr calculation method

relative if egfr calculations should be relative or not

Examples

```
egfr_cov_reqs('schwartz_revised')
```

find_nearest_dose

Generic function to calculate the dose nearest to a specific dose unit increment

Description

Generic function to calculate the dose nearest to a specific dose unit increment

Usage

```
find_nearest_dose(dose = NULL, increment = 250, type = "round")
```

Arguments

dose dose value

increment available increments of dose

type how to round, one of 'round', 'floor', or 'ceiling'

```
find_nearest_dose(573)
find_nearest_dose(573, increment = 50)
```

fraction_of_ss

 $\begin{tabular}{ll} find_nearest_interval & \textit{Generic function to calculate the interval nearest to a possible dosing} \\ & \textit{interval} \\ \end{tabular}$

Description

Generic function to calculate the interval nearest to a possible dosing interval

Usage

```
find_nearest_interval(
  interval = NULL,
  possible = c(4, 6, 8, 12, 24, 36, 48),
  type = "absolute"
)
```

Arguments

interval dose value

possible available increments of dose

type pick either 'nearest' absolute interval, or nearest 'lower', or nearest 'higher'

interval.

Examples

```
find_nearest_interval(19.7)
find_nearest_interval(19.7, c(6, 8, 12))
```

 ${\tt fraction_of_ss}$

Calculate fraction of steady state at particular time after start of dosing

Description

Calculate fraction of steady state at particular time after start of dosing

Usage

```
fraction_of_ss(kel = NULL, halflife = NULL, t = NULL, n = NULL, tau = NULL)
```

inch2cm 33

Arguments

kel drug elimination rate

halflife halflife. Either 'kel' or 'halflife' is required.

t time at which to calculate fraction of steady state

n number of dosing intervals after which to calculate fraction of steady state. Re-

quires 'tau' as well, cannot be used together with 't' argument.

tau dosing interval

Examples

```
fraction_of_ss(halflife = 24, t = 72)
fraction_of_ss(halflife = 36, n = 3, tau = 24)
```

inch2cm

Convert inch to cm

Description

Convert inch to cm

Usage

inch2cm(inch)

Arguments

inch

vector

Examples

inch2cm(1)

kg2lbs

Convert kg to lbs

Description

Convert kg to lbs

Usage

kg2lbs(kg)

34 lbs2kg

Arguments

kg vector

Examples

kg2lbs(1)

kg2oz

Convert kg to oz

Description

Convert kg to oz

Usage

kg2oz(kg)

Arguments

kg

vector

Examples

kg2oz(1)

lbs2kg

Convert lbs to kg

Description

Convert lbs to kg

Usage

lbs2kg(lbs)

Arguments

lbs

vector

Examples

lbs2kg(2.20462)

mol2conc 35

mol2conc

Convert molar to concentration

Description

Convert molar to concentration

Usage

```
mol2conc(mol = NULL, unit_mol = NULL, unit_conc = NULL, mol_weight = NULL)
```

Arguments

```
mol concentration in molars
unit_mol unit of input concentration (molar), one of 'mol/L', 'mmol/mL', 'mmol/L'
unit_conc, output unit, one of 'g/l', 'mg/l', 'microg/l', 'mcg/l", 'ng/ml', 'mcg/ml', 'mg/ml'
mol_weight concentration in g/mol
```

Examples

```
mol2conc(1, unit_mol = "mmol/l", mol_weight = 180)
```

nca

Perform an NCA based on a NONMEM-style dataset

Description

Perform an NCA based on a NONMEM-style dataset

Usage

```
nca(
  data = NULL,
  dose = 100,
  tau = 24,
  method = c("log_linear", "log_log", "linear"),
  scale = list(auc = 1, conc = 1),
  dv_min = 0.001,
  t_inf = NULL,
  fit_samples = NULL,
  weights = NULL,
  extend = TRUE,
  has_baseline = TRUE,
  route = c("iv", "oral", "im", "sc")
)
```

36 nca

Arguments

data data.frame with time and dv columns

dose dose amount

tau dosing frequency, default is 24.

method 'linear', 'log_linear' (default), or 'log_log'

scale list with scaling for auc and concentration ('conc')

dv_min minimum concentrations, lower observations will be set to this value

t_inf infusion time, defaults to 0

fit_samples vector of sample indexes used in fit to calculate elimination rate, e.g. 'c(3,4,5)'.

If not specified (default), it will evaluate which of the last n samples shows the largest adjusted R^2 when log-transformed data is fitted using linear regression,

and use those samples in the estimation of the elimination rate.

weights vector of weights to be used in linear regression (same size as specified concen-

tration data), or function with concentration as argument.

extend perform an 'extended' NCA, i.e. for the calculation of the AUCs, back-extend

to the expected true Cmax to also include that area.

has_baseline does the included data include a baseline? If 'FALSE', baseline is set to zero.

route administration route, 'iv' (intravenous, default), 'oral', 'sc' (sub-cutaneous), or

'im' (intra-muscular).

Value

Returns a list of three lists:

pk Lists pk parameters.

- kel: elimination constant
- t_12: half-life
- v: distribution volume
- cl: clearance

descriptive Lists exposure parameters.

- cav_t: the average concentration between the first observation and the last observation without extrapolating to tau
- cav_tau: the average concentration from 0 to tau
- cmin: the extrapolated concentration at time = tau
- c_max_true: only available if extend = TRUE, the extrapolated peak concentration
- c_max: only available if extend = FALSE, the observed maximum concentration
- auc_inf: the extrapolated AUC as time goes to infinity
- auc_24: the extrapolated AUC after 24 hours, provided no further doses are administered
- auc_tau: the extrapolated AUC at the end of the dosing interval
- auc_t: the AUC at the time of the last observation

settings Lists dosing information.

- · dose: dose quantity
- · tau: dosing interval

oz2kg 37

Examples

```
data <- data.frame(time = c(0, 2, 4, 6, 8, 12, 16),

dv = c(0, 10, 14, 11, 9, 5, 1.5))

nca(data, t_inf = 2)
```

oz2kg

Convert oz to kg

Description

Convert oz to kg

Usage

```
oz2kg(oz)
```

Arguments

oz

vector

Examples

```
oz2kg(2.20462)
```

pct_bmi_for_age

Percentile BMI for age for children

Description

Based on tables from WHO: http://www.who.int/growthref/who2007_bmi_for_age/en/

```
pct_bmi_for_age(
   age = NULL,
   bmi = NULL,
   sex = NULL,
   height = NULL,
   return_median = FALSE,
   ...
)
```

38 pct_height_for_age

Arguments

age in years

bmi Optional, if specified, will calculate closest percentile and return in list as

'percentile'

sex either 'male' or 'female'

height height

return_median just return the median expected value
... parameters passed to 'read_who_table()'

Examples

```
pct_bmi_for_age(age = 8, sex = "male")
pct_bmi_for_age(age = 8, bmi = 15, sex = "male")
```

pct_height_for_age

Percentile height for age for children

Description

Based on tables from WHO: http://www.who.int/childgrowth/standards/height_for_age/en/

Usage

```
pct_height_for_age(
  age = NULL,
  height = NULL,
  sex = NULL,
  return_median = FALSE,
  ...
)
```

Arguments

age age in years

height height in kg. Optional, if specified, will calculate closest percentile and return

in list as 'percentile'

sex either 'male' or 'female'

return_median just return the median expected value
... parameters passed to 'read_who_table()'

```
pct_height_for_age(age = 5, sex = "female")
pct_height_for_age(age = 5, height = 112, sex = "female")
```

pct_weight_for_age 39

pct_weight_for_age

Percentile weight for age for children

Description

Based on tables from WHO: http://www.who.int/childgrowth/standards/weight_for_age/en/

Usage

```
pct_weight_for_age(
  age = NULL,
  weight = NULL,
  sex = NULL,
  return_median = FALSE,
  ...
)
```

Arguments

age age in years

weight weight in kg. Optional, if specified, will calculate closest percentile and return

in list as 'percentile'

sex either 'male' or 'female'

return_median just return the median expected value
... parameters passed to 'read_who_table()'

Examples

```
pct_weight_for_age(age = 5, sex = "female")
pct_weight_for_age(age = 5, weight = 20, sex = "female")
```

pk_1cmt_bolus

Concentration predictions for 1-compartmental PK model after single or multiple bolus doses

Description

Concentration predictions for 1-compartmental PK model after single or multiple bolus doses

```
pk_1cmt_bolus(t = c(0:24), dose = 100, tau = 12, CL = 3, V = 30, ruv = NULL)
```

Arguments

t	vector of tin	ne

dose dose

tau dosing interval CL clearance

V volume of distribution ruv residual error (list)

Examples

```
pk_1cmt_bolus(dose = 500, tau = 12, CL = 5, V = 50)
pk_1cmt_bolus(dose = 500, tau = 12, CL = 5, V = 50, t = 24)
pk_1cmt_bolus(
   dose = 500, tau = 12, CL = 5, V = 50,
   ruv = list(prop = 0.1, add = 0.1))
```

Description

Takes single values for dose or model parameters, or vector of either dose or parameters (but not both).

Usage

```
pk_1cmt_bolus_cmax_ss(dose = 100, tau = 12, CL = 3, V = 30, ruv = NULL)
```

Arguments

dose dose

tau dosing interval CL clearance

V volume of distrubition

ruv residual variability, specified as list with optional arguments for proportional,

additive, or exponential components, e.g. 'list(prop=0.1, add=1, exp=0)'

```
pk_1cmt_bolus_cmax_ss(
  dose = 500, tau = 12, CL = 5, V = 50)
```

Description

Takes single values for dose or model parameters, or vector of either dose or parameters (but not both).

Usage

```
pk_1cmt_bolus_cmin_ss(dose = 100, tau = 12, CL = 3, V = 30, ruv = NULL)
```

Arguments

dose	dose
tau	dosing interval

CL clearance

V volume of distrubition

ruv residual variability, specified as list with optional arguments for proportional,

additive, or exponential components, e.g. 'list(prop=0.1, add=1, exp=0)'

Examples

```
pk_1cmt_bolus_cmin_ss(
  dose = 500, tau = 12, CL = 5, V = 50)
```

```
pk_1cmt_bolus_dose_from_cmax
```

Calculate dose to achieve steady state Cmax for 1-compartmental PK model bolus dosing at steady state

Description

Calculate dose to achieve steady state Cmax for 1-compartmental PK model bolus dosing at steady state

```
pk_1cmt_bolus_dose_from_cmax(cmax = 1, tau = 12, CL = 3, V = 30)
```

Arguments

cmax desired trough concentration

tau dosing interval

CL clearance

V volume of distribution

Examples

```
dos <- pk_1cmt_bolus_dose_from_cmax(
  cmax = 10, tau = 12, CL = 5, V = 50)
find_nearest_dose(dos, 100)</pre>
```

```
pk_1cmt_bolus_dose_from_cmin
```

Calculate dose to achieve steady state trough for 1-compartmental PK model bolus dosing at steady state

Description

Calculate dose to achieve steady state trough for 1-compartmental PK model bolus dosing at steady state

Usage

```
pk_1cmt_bolus_dose_from_cmin(cmin = 1, tau = 12, CL = 3, V = 30)
```

Arguments

cmin desired trough concentration

tau dosing interval

CL clearance

V volume of distribution

```
dos <- pk_1cmt_bolus_dose_from_cmin(
  cmin = 5, tau = 12, CL = 5, V = 50)
find_nearest_dose(dos, 100)</pre>
```

pk_1cmt_bolus_ss 43

pk_1cmt_bolus_ss	Concentration predictions for 1-compartmental PK model with bolus dosing at steady state

Description

Concentration predictions for 1-compartmental PK model with bolus dosing at steady state

Usage

```
pk_1cmt_bolus_ss(t = c(0:24), dose = 100, tau = 12, CL = 3, V = 30, ruv = NULL)
```

Arguments

t	vector of time
dose	dose
tau	dosing interval
CL	clearance
٧	volume of distribution
ruv	residual variability, specified as list with optional arguments for proportional, additive, or exponential components, e.g. 'list(prop=0.1, add=1, exp=0)'

Examples

```
pk_1cmt_bolus_ss(dose = 500, tau = 12, CL = 5, V = 50)
pk_1cmt_bolus_ss(
   dose = 500, tau = 12, CL = 5, V = 50,
   ruv = list(prop = 0.1, add = 0.1))
```

pk_1cmt_inf	Concentration predictions for 1-compartmental PK model after single
	or multiple bolus doses

Description

Concentration predictions for 1-compartmental PK model after single or multiple bolus doses

Usage

```
pk_1cmt_inf(
    t = c(0:24),
    dose = 100,
    tau = 12,
    t_inf = 2,
    CL = 3,
    V = 30,
    ruv = NULL
)
```

Arguments

t vector of time

dose dose

tau dosing interval

t_inf infusion time

CL clearance

V volume of distribution

ruv residual error (list)

Examples

```
pk_1cmt_inf(dose = 500, tau = 12, t_inf = 2, CL = 5, V = 50)
pk_1cmt_inf(
  dose = 500, tau = 12, t_inf = 2, CL = 5, V = 50,
  ruv = list(prop = 0.1, add = 0.1))
```

 ${\tt pk_1cmt_inf_cmax_ss} \qquad \textit{Cmax for linear 1-compartment PK model at steady state}$

Description

Takes single values for dose or model parameters, or vector of either dose or parameters (but not both).

```
pk_1cmt_inf_cmax_ss(dose, tau, CL, V, t_inf, ruv = NULL)
```

pk_1cmt_inf_cmin_ss 45

Arguments

dose dose

tau dosing interval CL clearance

V volume of distrubition

t_inf infusion time

ruv residual variability, specified as list with optional arguments for proportional,

additive, or exponential components, e.g. 'list(prop=0.1, add=1, exp=0)'

Examples

```
pk_1cmt_inf_cmax_ss(dose = 500, tau = 12, t_inf = 2, CL = 5, V = 50)
```

pk_1cmt_inf_cmin_ss

Cmin (trough) for linear 1-compartment PK model at steady state

Description

Takes single values for dose or model parameters, or vector of either dose or parameters (but not both).

Usage

```
pk_1cmt_inf_cmin_ss(
  dose = 100,
  tau = 12,
  CL = 3,
  V = 30,
  t_inf = 2,
  ruv = NULL
)
```

Arguments

dose dose

tau dosing interval CL clearance

V volume of distrubition

t_inf infusion time

ruv residual variability, specified as list with optional arguments for proportional,

additive, or exponential components, e.g. 'list(prop=0.1, add=1, exp=0)'

```
pk_1cmt_inf_cmin_ss(dose = 500, tau = 12, t_inf = 2, CL = 5, V = 50)
```

```
pk_1cmt_inf_dose_for_range
```

Calculate dose based on a given AUC24, Cmax, and Cmin, assuming 1-compartment model

Description

Calculate dose based on a given AUC24, Cmax, and Cmin, assuming 1-compartment model

Usage

```
pk_1cmt_inf_dose_for_range(
   target = 500,
   type = "auc",
   conc_range = c(10, 40),
   parameters = list(),
   interval = 24,
   t_inf = 1,
   optimize_interval = TRUE,
   round_interval = TRUE
```

Arguments

```
target numeric value of target

type target type, one of 'auc', 'auc24', 'ctrough', 'cmin'

conc_range concentration range to stay within, vector of length 2

parameters list of 'CL' and 'V', or 'KEL' and 'CL'

interval dosing interval

t_inf infusion time

optimize_interval

find optimal interval (to stay within 'conc_range'?

round_interval round interval to nearest nominal interval?
```

```
pk_1cmt_inf_dose_from_cmax
```

Calculate dose to achieve steady state Cmax for 1-compartmental PK model with infusion dosing at steady state

Description

Calculate dose to achieve steady state Cmax for 1-compartmental PK model with infusion dosing at steady state

Usage

```
pk_1cmt_inf_dose_from_cmax(cmax = 1, tau = 12, t_inf = 1, CL = 3, V = 30)
```

Arguments

cmax desired trough concentration

tau dosing interval t_inf infusion time CL clearance

V volume of distribution

Examples

```
pk_1cmt_inf_dose_from_cmax(cmax = 20, tau = 12, t_inf = 2, CL = 5, V = 50)
```

```
pk_1cmt_inf_dose_from_cmin
```

Calculate dose to achieve steady state trough for 1-compartmental PK model with infusion dosing at steady state

Description

Calculate dose to achieve steady state trough for 1-compartmental PK model with infusion dosing at steady state

Usage

```
pk_1cmt_inf_dose_from_cmin(cmin = 1, tau = 12, t_inf = 1, CL = 3, V = 30)
```

Arguments

cmin desired trough concentration

tau dosing interval t_inf infusion time CL clearance

V volume of distribution

```
dos <- pk_1cmt_inf_dose_from_cmin(
  cmin = 20, tau = 12, t_inf = 2,
  CL = 5, V = 50)
find_nearest_dose(dos, 100)</pre>
```

pk_1cmt_inf_ss

pk_1cmt_inf_ss	Concentration predictions for 2-compartmental PK model with infusion dosing at steady state

Description

Concentration predictions for 2-compartmental PK model with infusion dosing at steady state

Usage

```
pk_1cmt_inf_ss(
    t = c(0:24),
    dose = 100,
    t_inf = 1,
    tau = 12,
    CL = 3,
    V = 30,
    ruv = NULL
)
```

Arguments

t	vector of time
dose	dose
t_inf	infusion time
tau	dosing interval
CL	clearance
V	volume of distribution
ruv	residual variability, specified as list with optional arguments for proportional, additive, or exponential components, e.g. 'list(prop=0.1, add=1, exp=0)'

```
pk_1cmt_inf_ss(dose = 500, tau = 12, t_inf = 2, CL = 5, V = 50)
pk_1cmt_inf_ss(
  dose = 500, tau = 12, t_inf = 2, CL = 5, V = 50,
  ruv = list(prop = 0.1, add = 0.1))
```

pk_1cmt_oral 49

pk_1cmt_oral	Concentration predictions for 1-compartmental oral PK model after single or multiple bolus doses
	single or multiple bolus doses

Description

Concentration predictions for 1-compartmental oral PK model after single or multiple bolus doses

Usage

```
pk_1cmt_oral(
    t = c(0:24),
    dose = 100,
    tau = 12,
    KA = 1,
    CL = 3,
    V = 30,
    F = 1,
    ruv = NULL
)
```

Arguments

t	vector of time
dose	dose
tau	dosing interval
KA	absorption rate
CL	clearance
V	volume of distribution
F	bioavailability, commonly between 0 an 1.
ruv	residual error (list)

References

Garrett ER. The Bateman function revisited: a critical reevaluation of the quantitative expressions to characterize concentrations in the one compartment body model as a function of time with first-order invasion and first-order elimination. J Pharmacokinet Biopharm (1994) 22(2):103-128.

Bialer M. A simple method for determining whether absorption and elimination rate constants are equal in the one-compartment open model with first-order processes. J Pharmacokinet Biopharm (1980) 8(1):111-113

Nielsen JC, Hutmacher MM et al. J Pharmacokinet Pharmacodyn. 2012 Dec;39(6):619-34. doi: 10.1007/s10928-012-9274-0. Epub 2012 Sep 23.

https://static-content.springer.com/esm/art

50 pk_2cmt_bolus

Examples

```
pk_1cmt_oral(dose = 500, tau = 12, CL = 5, V = 50, KA = 1)
```

pk_1cmt_t12

Calculate terminal half-life for 1-compartment model

Description

Calculate terminal half-life for 1-compartment model

Usage

```
pk_1cmt_t12(CL = 3, V = 30)
```

Arguments

CL clearance

V volume of central compartment

Examples

```
pk_1cmt_t12(CL = 5, V = 50)
```

pk_2cmt_bolus

Concentration predictions for 2-compartmental PK model, single or multiple bolus doses

Description

Concentration predictions for 2-compartmental PK model, single or multiple bolus doses

```
pk_2cmt_bolus(
    t = c(0:24),
    dose = 100,
    tau = 12,
    CL = 3,
    V = 30,
    Q = 2,
    V2 = 20,
    ruv = NULL
)
```

Arguments

t	vector of time
dose	dose
tau	dosing interval
CL	clearance
٧	volume of central compartment
Q	inter-compartimental clearance
V2	volume of peripheral compartment
ruv	residual error (list)

Examples

```
pk_2cmt_bolus(dose = 1000, tau = 24, CL = 5, V = 50, Q = 15, V2 = 200)
```

Description

Cmax for 2-compartmental PK model, bolus dosing at steady state

Usage

```
pk_2cmt_bolus_cmax_ss(
  dose = 100,
  tau = 12,
  CL = 3,
  V = 30,
  Q = 2,
  V2 = 20,
  ruv = NULL
)
```

Arguments dose

tau	dosing interval
CL	clearance
V	volume of central compartment
Q	inter-compartimental clearance
V2	volume of peripheral compartment
ruv	residual error (list)

dose

```
pk_2cmt_bolus_cmax_ss(dose = 1000, tau = 12, CL = 5, V = 50, Q = 20, V2 = 200)
```

Description

Cmin (trough) for 2-compartmental PK model, bolus dosing at steady state

Usage

```
pk_2cmt_bolus_cmin_ss(
    dose = 100,
    tau = 12,
    CL = 3,
    V = 30,
    Q = 2,
    V2 = 20,
    ruv = NULL
)
```

Arguments dose

dose	dose
tau	dosing interval
CL	clearance
V	volume of central compartment
Q	inter-compartimental clearance
V2	volume of peripheral compartment
ruv	residual error (list)

dose

Examples

```
pk_2cmt_bolus_cmin_ss(dose = 1000, tau = 12, CL = 5, V = 50, Q = 20, V2 = 200)
```

```
pk_2cmt_bolus_dose_from_cmax
```

Calculate dose to achieve steady state Cmax for 2-compartmental PK model bolus dosing at steady state

Description

Calculate dose to achieve steady state Cmax for 2-compartmental PK model bolus dosing at steady state

Usage

```
pk_2cmt_bolus_dose_from_cmax(
   cmax = 1,
   tau = 12,
   CL = 3,
   V = 30,
   Q = 2,
   V2 = 20
)
```

Arguments

cmax	desired trough concentration
tau	dosing interval
CL	clearance
V	volume of distribution
Q	inter-compartimental clearance
V2	volume of peripheral compartment

Examples

```
dos <- pk_2cmt_bolus_dose_from_cmax(
   cmax = 10, tau = 12,
   CL = 5, V = 50, Q = 20, V2 = 200)
find_nearest_dose(dos, 100)</pre>
```

```
pk_2cmt_bolus_dose_from_cmin
```

Calculate dose to achieve steady state trough for 2-compartmental PK model bolus dosing at steady state

Description

Calculate dose to achieve steady state trough for 2-compartmental PK model bolus dosing at steady state

```
pk_2cmt_bolus_dose_from_cmin(
    cmin = 1,
    tau = 12,
    CL = 3,
    V = 30,
    Q = 2,
    V2 = 20
)
```

54 pk_2cmt_bolus_ss

Arguments

desired trough concentration
dosing interval
clearance
volume of distribution
inter-compartimental clearance
volume of peripheral compartment

Examples

```
dos <- pk_2cmt_bolus_dose_from_cmin(
   cmin = 5, tau = 12,
   CL = 5, V = 50, Q = 20, V2 = 200)
find_nearest_dose(dos, 100)</pre>
```

pk_2cmt_bolus_ss

Concentration predictions for 2-compartmental PK model, bolus dosing at steady state

Description

Concentration predictions for 2-compartmental PK model, bolus dosing at steady state

Usage

```
pk_2cmt_bolus_ss(
    t = c(0:24),
    dose = 100,
    tau = 12,
    CL = 3,
    V = 30,
    Q = 2,
    V2 = 20,
    ruv = NULL
)
```

Arguments

t

dose	dose
tau	dosing interval
CL	clearance
٧	volume of central compartment
Q	inter-compartimental clearance
V2	volume of peripheral compartment
ruv	residual error (list)

vector of time

pk_2cmt_inf 55

Examples

```
pk_2cmt_bolus_ss(dose = 1000, tau = 12, CL = 5, V = 50, Q = 20, V2 = 200)
```

pk_2cmt_inf

Concentration predictions for 2-compartmental PK model, single or multiple infusions

Description

Concentration predictions for 2-compartmental PK model, single or multiple infusions

Usage

```
pk_2cmt_inf(
    t = c(0:24),
    dose = 100,
    tau = 12,
    t_inf = 1,
    CL = 3,
    V = 30,
    Q = 2,
    V2 = 20,
    ruv = NULL
)
```

Arguments

t	vector of time
dose	dose
tau	dosing interval
t_inf	infusion time
CL	clearance
V	volume of central compartment
Q	inter-compartimental clearance
V2	volume of peripheral compartment
ruv	residual error (list)

```
\begin{tabular}{ll} pk\_2cmt\_inf\_cmax\_ss & Cmax (trough) for 2-compartmental PK model, bolus dosing at steady \\ & state \end{tabular}
```

Description

Cmax (trough) for 2-compartmental PK model, bolus dosing at steady state

Usage

```
pk_2cmt_inf_cmax_ss(
  dose = 100,
  tau = 12,
  t_inf = 1,
  CL = 3,
  V = 30,
  Q = 2,
  V2 = 20,
  ruv = NULL
)
```

Arguments

dose	dose
tau	dosing interval
t_inf	infusion time
CL	clearance
٧	volume of central compartment
Q	inter-compartimental clearance
V2	volume of peripheral compartment
ruv	residual error (list)

```
pk_2cmt_inf_cmax_ss(
dose = 1000, tau = 12, t_inf = 2,
CL = 5, V = 50, Q = 20, V2 = 200)
```

pk_2cmt_inf_cmin_ss

Description

Cmin (trough) for 2-compartmental PK model, bolus dosing at steady state

Usage

```
pk_2cmt_inf_cmin_ss(
  dose = 100,
  tau = 12,
  t_inf = 1,
  CL = 3,
  V = 30,
  Q = 2,
  V2 = 20,
  ruv = NULL
)
```

Arguments

dose	dose
tau	dosing interval
t_inf	infusion time
CL	clearance
V	volume of central compartment
Q	inter-compartimental clearance
V2	volume of peripheral compartment
ruv	residual error (list)

```
pk_2cmt_inf_cmin_ss(
dose = 1000, tau = 12, t_inf = 2,
CL = 5, V = 50, Q = 20, V2 = 200)
```

```
pk\_2cmt\_inf\_dose\_from\_cmax
```

Calculate dose to achieve steady state Cmax for 2-compartmental PK model with infusion dosing at steady state

Description

Calculate dose to achieve steady state Cmax for 2-compartmental PK model with infusion dosing at steady state

Usage

```
pk_2cmt_inf_dose_from_cmax(
   cmax = 1,
   tau = 12,
   t_inf = 1,
   CL = 3,
   V = 30,
   Q = 2,
   V2 = 20
)
```

Arguments

cmax	desired trough concentration
tau	dosing interval
t_inf	infusion time
CL	clearance
V	volume of distribution
Q	inter-compartimental clearance
V2	volume of peripheral compartment

```
dos <- pk_2cmt_inf_dose_from_cmax(
   cmax = 25, tau = 12, t_inf = 2,
   CL = 5, V = 50, Q = 20, V2 = 200)
find_nearest_dose(dos, 100)</pre>
```

```
pk\_2cmt\_inf\_dose\_from\_cmin
```

Calculate dose to achieve steady state trough for 2-compartmental PK model with infusion dosing at steady state

Description

Calculate dose to achieve steady state trough for 2-compartmental PK model with infusion dosing at steady state

Usage

```
pk_2cmt_inf_dose_from_cmin(
    cmin = 1,
    tau = 12,
    t_inf = 1,
    CL = 3,
    V = 30,
    Q = 2,
    V2 = 20
)
```

Arguments

cmin	desired trough concentration
tau	dosing interval
t_inf	infusion time
CL	clearance
V	volume of distribution
Q	inter-compartimental clearance
V2	volume of peripheral compartment

```
dos <- pk_2cmt_inf_dose_from_cmin(
   cmin = 10, tau = 12, t_inf = 2,
   CL = 5, V = 50, Q = 20, V2 = 200)
find_nearest_dose(dos, 100)</pre>
```

pk_2cmt_inf_ss

pk_2cmt_inf_ss	Concentration predictions for 2-compartmental PK model with infusion dosing at steady state

Description

Concentration predictions for 2-compartmental PK model with infusion dosing at steady state

Usage

```
pk_2cmt_inf_ss(
    t = c(0:24),
    dose = 100,
    t_inf = 1,
    tau = 12,
    CL = 3,
    V = 30,
    Q = 2,
    V2 = 20,
    ruv = NULL
)
```

Arguments

t	vector of time
dose	dose
t_inf	infusion time
tau	dosing interval
CL	clearance
V	volume of distribution
Q	inter-compartimental clearance
V2	volume of peripheral compartment
ruv	residual variability, specified as list with optional arguments for proportional, additive, or exponential components, e.g. 'list(prop=0.1, add=1, exp=0)'

```
pk_2cmt_inf_ss(
dose = 1000, tau = 12, t_inf = 2,
CL = 5, V = 50, Q = 20, V2 = 200)
```

*pk*_2*cmt*_*t*12 61

nk i	$2cmt_{-}$	† 12

Calculate half-life(s) for 2-compartment model

Description

Calculate half-life(s) for 2-compartment model

Usage

```
pk_2cmt_t12(CL = 3, V = 30, Q = 2, V2 = 20, phase = c("both", "alpha", "beta"))
```

Arguments

CL	clearance
V	volume of central compartment
Q	inter-compartimental clearance
V2	volume of peripheral compartment
phase	'alpha', 'beta' (default) or 'both' to indicate initial (distribution) or terminal (elimination) phase.

Examples

```
pk_2cmt_t12(CL = 5, V = 50, Q = 20, V2 = 200)
```

Description

Calculate average half-life for 2-compartment model during a specific interval

Usage

```
pk_2cmt_t12_interval(CL = 3, V = 30, Q = 2, V2 = 20, tau = 12, t_inf = NULL)
```

Arguments

CL	clearance
V	volume of central compartment
Q	inter-compartimental clearance
V2	volume of peripheral compartment
tau	interval (hours)
t_inf	infusion time (hours)

62 relative2absolute_bsa

Examples

```
pk_2cmt_t12_interval(CL = 5, V = 50, Q = 20, V2 = 200, tau = 12, t_inf = 2)
```

read_who_table

Read WHO growth tables

Description

Provides a data frame of the WHO growth table for a given age, sex, and type of measurement.

Usage

```
read_who_table(sex = NULL, age = NULL, type = "wfa")
```

Arguments

sex, either male or female

age age in years

type table type, choose from wfa (weight for age), 1hfa (length for age)

Details

This function uses files included in system.file(package = "clinPK"). Previously this function also gave the option to download the tables from WHO, but the original URL ("http://www.who.int/entity/childgrowth/standar no longer exists as of 2021-05-19.

relative2absolute_bsa Convert quantity expressed relative to BSA to absolute units

Description

Often used for eGFR estimates

Usage

```
relative2absolute_bsa(quantity, bsa = NULL, ...)
```

Arguments

quantity quantity expressed in units /1.73m2

bsa ideal body weight in kg

... arguments passed on to 'calc_bsa', if bsa is NULL

time_to_ss 63

Value

quantity expressed in absolute units

Examples

```
relative2absolute_bsa(quantity = 60, bsa = 1.6)
relative2absolute_bsa(quantity = 60, weight = 14, height = 90, method = "dubois")
```

time_to_ss

Time to steady state In either time units or number of doses

Description

Time to steady state In either time units or number of doses

Usage

```
time_to_ss(kel = NULL, halflife = NULL, ss = 0.9, in_doses = FALSE, tau = NULL)
```

Arguments

kel drug elimination rate

halflife halflife. Either 'kel' or 'halflife' is required.

ss level considered "steady state", e.g. '0.9' is 90% of true steady state.

in_doses return the number of doses instead of time unit? Default 'FALSE'. Requires

'tau' as well.

tau dosing interval

Examples

```
time_to_ss(halflife = 12, ss = 0.9)

time_to_ss(halflife = 16, ss = 0.95, in_doses = TRUE, tau = 12)
```

valid_units

Valid units

Description

Return recognized units for height, weight, age, scr, serum_albumin.

```
valid_units(
  covariate = c("height", "weight", "age", "scr", "serum_albumin", "bilirubin")
)
```

64 weight2kg

Arguments

```
covariate Covariate (one of "height", "weight", "age", "scr", "bilirubin", "serum_albumin")
```

Value

Vector of valid units for the given covariate

Examples

```
valid_units("height")
valid_units("weight")
```

weight2kg

Convert any weight unit to kg

Description

Convert any weight unit to kg

Usage

```
weight2kg(value = NULL, unit = NULL)
```

Arguments

```
value weight in any allowed unit
```

unit unit of weight, one of "lb", "lbs", "pound", "pounds", "oz", "ounce", "ounces",

"g", "gram", "grams"

```
weight2kg(250, unit = "oz")
weight2kg(250, unit = "pounds")
weight2kg(250, unit = "lbs")
```

Index

absolute2relative_bsa, 3	fraction_of_ss,32
accumulation_ratio, 4	ibw_devine(calc_ibw), 19
add_ruv, 5 auc2dose, 5	ibw_standard (calc_ibw), 19
auczuose, 3	inch2cm, 33
calc_abw, 6	L-21b - 22
calc_aki_stage, 6	kg2lbs, 33
<pre>calc_amts_for_conc, 8</pre>	kg2oz, 34
<pre>calc_baseline_scr, 9</pre>	lbs2kg, 34
calc_bmi, 10	1052kg, 34
calc_bsa, 10	mol2conc, 35
calc_carboplatin_calvert, 11	111012Corre, 33
calc_creat, 12	nca, 35
calc_creat_neo, 12	,
<pre>calc_dosing_weight, 13</pre>	oz2kg, 37
calc_egfr, 14	
calc_egfr_cystatin, 17	<pre>pct_bmi_for_age, 37</pre>
calc_ffm, 17	<pre>pct_height_for_age, 38</pre>
calc_ibw, 19	<pre>pct_weight_for_age, 39</pre>
<pre>calc_kel_double_tdm, 20</pre>	pk_1cmt_bolus, 39
<pre>calc_kel_single_tdm, 21</pre>	pk_1cmt_bolus_cmax_ss,40
calc_kgfr, 22	<pre>pk_1cmt_bolus_cmin_ss, 41</pre>
calc_lbw, 23	<pre>pk_1cmt_bolus_dose_from_cmax, 41</pre>
calc_neutropenia_grade, 24	pk_1cmt_bolus_dose_from_cmin, 42
calc_t12, 25	pk_1cmt_bolus_ss, 43
check_covs_available, 25	pk_1cmt_inf, 43
cm2inch, 26	<pre>pk_1cmt_inf_cmax_ss, 44</pre>
conc2mo1, 26	<pre>pk_1cmt_inf_cmin_ss, 45</pre>
convert_albumin_unit, 27	<pre>pk_1cmt_inf_dose_for_range, 46</pre>
convert_bilirubin_unit, 27	<pre>pk_1cmt_inf_dose_from_cmax, 46</pre>
convert_creat_assay, 28	<pre>pk_1cmt_inf_dose_from_cmin, 47</pre>
convert_creat_unit, 29	pk_1cmt_inf_ss,48
convert_flow_unit, 29	pk_1cmt_oral,49
, , , , , , , , , , , , , , , , , , ,	pk_1cmt_t12, 50
dose2auc, 30	pk_2cmt_bolus, 50
	<pre>pk_2cmt_bolus_cmax_ss, 51</pre>
egfr_cov_reqs, 31	<pre>pk_2cmt_bolus_cmin_ss, 52</pre>
-	pk_2cmt_bolus_dose_from_cmax, 52
<pre>find_nearest_dose, 31</pre>	pk_2cmt_bolus_dose_from_cmin, 53
<pre>find_nearest_interval, 32</pre>	pk_2cmt_bolus_ss, 54

INDEX

```
pk_2cmt_inf, 55
pk_2cmt_inf_cmax_ss, 56
pk_2cmt_inf_cmin_ss, 57
pk_2cmt_inf_dose_from_cmax, 58
pk_2cmt_inf_dose_from_cmin, 59
pk_2cmt_inf_ss, 60
pk_2cmt_t12, 61
pk_2cmt_t12_interval, 61
read_who_table, 62
relative2absolute_bsa, 62
time_to_ss, 63
valid_units, 63
weight2kg, 64
```