Układy asynchroniczne

Model układu sekwenewienego asynchronicznego (synchronicznego)

Najprostszy układ asynchroniczny

Przerzutnik SR

Q Q=
$$q\overline{R}+S = \overline{q}\overline{R}+\overline{S} = \overline{q}\overline{R}\cdot\overline{S}$$

Przykład

Zaprojektować układ asynchroniczny o dwóch wejściach binarnych x_1 , x_2 i jednym wyjściu y, który ma sygnalizować jedynką pojawienie się na wejściu sekwencji wektorów wejściowych ..., 00, 01, 11. Należy założyć, że jednoczesna zmiana dwóch

sygnałów wejściowych jest niemożliwa. X_1X_2 5/0

Redukcja stanów

...jest prosta

a kodowanie . . .

Kodowanie stanów

Analiza działania układu asynchronicznego (1)

Analiza działania układu asynchronicznego (2)

Kodowanie stanów

Aby uniknąć wyścigów krytycznych należy kodowanie przeprowadzić tak, aby kody stanów, pomiędzy którymi jest przejście, różniły się tylko na jednej pozycji.

Np.: $000 \Rightarrow 001$; $011 \Rightarrow 010$; $111 \Rightarrow 101$ itp..

Takie kodowanie zapewnia "rozpięcie" grafu stanów automatu na kwadracie lub sześcianie kodowym.

Kodowanie stanów

asynchronicznych.

Tablice przejść

X ₁ X ₂ Q1Q2	00	01	11	10		
00	00	00	01	10		
01		11	01	10		
11		10	-	10		
10	00	10	10	10		
	Q1'Q2'					

Dlaczego dodano dodatkową pętlę – składnik Q_1x_1 ?

Y = Q2

Zjawisko hazardu

Zjawisko hazardu

Przy $Q_1 = 1$, $x_1 = 1$, a przy zmianie x_2 : $1 \rightarrow 0$ na wyjściu Z powinna być stała 1

Na skutek opóźnienia sygnału \bar{x}_2 w sygnale Z pojawia się krótki impuls o wartości 0.

Jest to hazard statyczny
- szkodliwy w układach asynchronicznych!

Zjawisko hazardu

W układach asynchronicznych funkcje wzbudzeń muszą być realizowane w taki sposób, aby nie występował hazard statyczny.

Wyrażenia boolowskie należy uzupełnić o składnik (nadmiarowy), odpowiadający pętli na tablicy Karnaugha, w taki sposób, aby każde dwie sąsiednie jedynki były objęte wspólną pętlą.

Realizacja układu

T P W

Jak jest zbudowany przerzutnik synchroniczny? (1)

Jest to synchronizacja "szerokością impulsu" – latch (zatrzask)

Stan Q przerzutnika zmienia się dwukrotnie w czasie trwania okresu przebiegu zegarowego!

Problem synchronizacji

Przerzutniki tego typu mają prostą budowę, ale mogą służyć tylko do przechowywania (zatrzaskiwania) informacji. Nie mogą służyć do budowy układów sekwencyjnych.

Prawidłowa synchronizacja powinna działać tak, aby w czasie trwania okresu przebiegu zegarowego sygnał wejściowy przerzutnika był odczytywany jeden raz, a stan przerzutnika zmieniał się także jeden raz – niezależnie od zmiany sygnałów wejściowych.

Jak jest zbudowany przerzutnik synchroniczny? (2)

Przykład

Synchroniczny przerzutnik typu D synchronizowany zboczem dodatnim

Przykład c.d.

Automat sterujący wytwarza na wyjściach Y1 lub Y2 sygnał 0 (włączający lub wyłączający przerzutnik \overline{S} \overline{R}) tylko wówczas, gdy w sygnale Clk pojawi się zbocze synchronizujące, to jest zmiana Clk 0 \rightarrow 1.

Jeśli w tym momencie na wejściu D jest 1, to 0 pojawi się na wyjściu Y1 (\overline{S}) – przerzutnik \overline{S} \overline{R} zostanie włączony.

Jeśli na wejściu D jest 0, to 0 pojawi się na wyjściu Y2 (R) – przerzutnik zostanie wyłączony

11

Przykład c.d.

Tablica przejść-wyjść

D,clk	00	01	11	10	Y1Y2
1	1	3	2	1	11
2	1	2	2	1	01
3	1	3	3	1	10

Zakodowana tablica p-w (kody stanów takie same, jak wyjścia Y1, Y2)

Przykład c.d.

ZPT

$$Q2' = \overline{c} + Q_2D + \overline{Q}_1 = \overline{\overline{c} + Q_2D + \overline{Q}_1} = \overline{c \cdot \overline{Q}_2D \cdot Q_1}$$

Zadanie

Zaprojektować asynchroniczny układ o wejściach x_1 i x_2 wyjściu y pracujący w następujący sposób: y=1 gdy $x_1=x_2=1$ i przedostatnia zmiana sygnału wejściowego była zmianą na wejściu x_1 . W pozostałych przypadkach y=0.

Zmiana przedostatnia

T P W

ZPT

Minimalizacja

1,6

₹5,7

Automat

S	00	01	11	10	У
1	ı	2	1	6	0
2	5	2	3	ı	0
3	١	2	3	6	1
4	5	ı	3	4	0
5	5	7	_	4	0
6	5	_	1	6	0
7	5	7	1	_	0

2	00	01	11	10	y
	5	2	1	6	0
	5	2	3	4	0
	ı	2	3	6	1
	5	7	1	4	0

_minimalny

Α	1,6	D	В	(A) (A	0
В	2,4	D	В	С	B	0
С	С	1	В	C	Α	1
D	5,7	(D)	\bigcirc	Α	В	0

Kodowanie

Synteza kombinacyjna

$$y = \overline{Q}_1 Q_2$$

Q1Q2	00	01	11	10
00	0	1	0	0
01	_	1	1	0
11	0	1	1	1
10	0	0	0	1
001 0 =			O 1/2	

Kodowanie metodą "n-1"

Liczba stanów automatu wynosi n.

Długość wektora kodowego ustalamy na n-1.

Jeden stan kodujemy wektorem złożonym z samych zer.

Pozostałe stany kodujemy wektorami z jedną jedynką.

Między każde dwa stany S, T kodowane wektorami

z jedną jedynką wstawiamy stan niestabilny R

o wektorze kodowym R = S ⊕ T

A: 000 C: 100, B: 010, D: 001

Kodowanie "n – 1"

Kodowanie "n – 1"

Zakodowana tablica p-w

	Q1Q2Q3	00	01	11	10	У
Α	000	001	010	000	000	0
D	001	001	001	000	011	0
F	011	001	_	_	010	_
В	010	011	010	110	010	0
Ε	110	-	010	100	-	
(-)	111	_	_	_	_	_
(-)	101	_	_	_	_	_
С	100	1	110	100	000	1
		Q1' Q2'Q3' $Y = 0$				= Q

Kodowanie "n – 1"

X ₁ X ₂ Q1Q2Q3	00	01	11	10	
000	0	0	0	0	
001	0	0	0	0	
011	0	_		0	
010	0	0	1	0	
110	1	0	1	_	
111	1		J	_	
101	1		1	_	
100	1	1	1	0	
	$Q1' = Q_1 \overline{Q}_2 X_2 + Q_2 X_1 X_2$				