polynômes minimaux

Exercice 1:

Les affirmations suivantes sont-elles vraies?

1. Soient k un corps, A un anneau contenant k et $a \in A$. Soit $P \in k[X]$ le polynôme minimal de a. On a

$$\forall Q \in k[X], \quad (Q(a) = 0 \iff P|Q)$$

- 2. Soient k un corps, A un anneau contenant k et $a \in A$. Soit $P \in k[X] \setminus \{0\}$, P est le polynôme minimal de a sur k si et seulement si P(a) = 0 et P est irréductible dans k[X].
- 3. L'extension de corps $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2})$ a pour polynôme minimal X^2-2 .
- 4. Soient P et Q deux polynômes irréductibles de k[X]. Si les corps k[X]/(P) et k[X]/(Q) sont isomorphes alors les polynômes P et Q sont associés dans k[X].
- 5. Soit A_2 l'anneau des endomorphismes de \mathbb{Q}^2 . L'anneau A_2 contient un sous-anneau isomorphe au corps $\mathbb{Q}[X]/(X^2-2)$.
- 6. Soit A_3 l'anneau des endomorphismes de \mathbb{Q}^3 . L'anneau A_3 contient un sous-anneau isomorphe au corps $\mathbb{Q}[X]/(X^2-2)$.
- 7. Soit A_4 l'anneau des endomorphismes de \mathbb{Q}^4 . L'anneau A_4 contient un sous-anneau isomorphe au corps $\mathbb{Q}[X]/(X^2-2)$.
- 8. $[\mathbb{Q}(\sqrt{3}, \sqrt{2}) : \mathbb{Q}] = 4$
- 9. $[\mathbb{Q}(\sqrt[3]{2}, \sqrt{2}) : \mathbb{Q}] = 6$
- 10. Soit $k \subset K$ une extension de corps et a un élément du corps K qui n'appartient pas à k. Si [k(a):k] est un entier impair alors $k(a)=k(a^2)$.
- 11. Le polynôme minimal de $\sqrt{3} + \sqrt{2}$ sur \mathbb{Q} est $X^4 10X^2 + 1$.
- 12. Soit $k \subset K$ une extension de corps et a et b des éléments du corps K. Si $k(a) \neq k(b)$ alors le polynôme minimal de b sur k est irréductible sur k(a).
- 13. Soit $k \subset K$ une extension de corps de degré m et S un polynôme de k[X] de degré n. Si les entiers n et m sont premiers entre eux et S est irréductible sur k alors S est irréductible sur K.
- 14. Soit $k \subset K \subset L$ une extension de corps et $a \in L$. Si K est une extension algébrique de k et a est algébrique sur K alors a est algébrique sur k.
- 15. Soit E un espace vectoriel de dimension finie n sur un corps k et f un endomorphisme de E. Si l'un des facteurs irréductibles du polynôme minimal u_f de f est de degré m alors E possède un sous-espace vectoriel stable par f de dimension m.
- 16. Soit E un espace vectoriel de dimension finie n sur un corps k et f un endomorphisme de E. Tout sous-espace vectoriel de E stable par f admet un sous-espace vectoriel supplémentaire stable par f.

- 17. Soit E un espace vectoriel de dimension finie n sur un corps k et f un endomorphisme de E. Soit $a \in k$. Si a est une racine du polynôme caractéristique de f alors a est également une racine du polynôme minimal de f.
- 18. Soit E un espace vectoriel de dimension finie n sur un corps k et f un endomorphisme de E. Soit F un sous-espace vectoriel de E stable par f. Si f est diagonalisable alors la restriction de f à F l'est également.
- 19. Soit E un espace vectoriel de dimension finie n sur un corps k et f un endomorphisme de E. Si le polynôme minimal μ_f de f est irréductible sur k alors E admet une structure de $k[X]/(\mu_f)$ espace vectoriel.
- 20. Soit E un espace vectoriel de dimension finie n sur un corps k et f un endomorphisme de E. Si le polynôme minimal μ_f de f est irréductible sur k alors tout sous-espace vectoriel de E stable par f admet un sous-espace vectoriel supplémentaire stable par f.

Exercice 2:

Soit $P = X^3 + 2X + 2$ et a une racine de P dans \mathbb{C} .

- 1. Que vaut $[\mathbb{Q}(a):\mathbb{Q}]$?
- 2. Exprimer $u=\frac{1}{a},\,v=a^6+3a^4+2a^3+a$, $w=(a^2+a+1)^{-1}$ en fonction de 1, a et a^2 .
- 3. Quel est le polynôme minimal de v sur \mathbb{Q} ?

Exercice 3:

- 1. Quel est le polynôme minimal de $e^{i\frac{\pi}{4}}$ sur \mathbb{Q} ?
- 2. Soit k un corps et P un polynôme de degré non nul n. Montrer que P est irréductible dans k[X] si et seulement si P ne possède aucune racine dans les extensions L de k dont le degré est inférieur ou égal à $\frac{n}{2}$.
- 3. (application) Montrer que pour tout entier p premier impair le polynôme X^4+1 admet une racine dans \mathbb{F}_{p^2} . En déduire que le polynôme X^4+1 n'est irréductible dans aucun des anneaux $\mathbb{F}_p[X]$ pour p entier premier.

Exercice 4:

Soit p un entier premier et K un corps fini de cardinal $q = p^n$.

- 1. Montrer que K contient un élément a tel que $K = \mathbb{F}_p[a]$.
- 2. Montrer que le polynôme minimal P de a sur \mathbb{F}_p divise $X^{q-1}-1$ dans $\mathbb{F}_p[X]$.
- 3. En déduire que tout corps L de cardinal q est isomorphe à K.

Exercice 5:

Soit p un entier premier, n et d deux entiers. Soit Q un polynôme de degré d irréductible dans $\mathbb{F}_p[X]$ qui divise $X^{p^n} - X$ dans $\mathbb{F}_p[X]$.

- 1. Soit L un corps de décomposition de $X^{p^n} X$ qui contient \mathbb{F}_p . Montrer que L possède un sous-corps isomorphe à $\mathbb{F}_p[X]/(Q)$.
- 2. En déduire que d divise n.

Exercice 6:

Soit p un entier premier, K un corps fini de cardinal $q = p^n$ et L une extension de K de degré s. On note F l'automorphisme de L défini par $F(x) = x^q$ (automorphisme de Frobenius). On note Gal(L|K) le groupe des automorphismes de L qui fixent tous les éléments de K. On veut montrer que Gal(L|K) est cyclique engendré par F.

- 1. Montrer que F est un élément de Gal(L|K) d'ordre s.
- 2. Montrer que L contient un élément a tel que L = K[a].
- 3. Soit P le polynôme minimal de a sur K. Montrer que pour tout élément f de Gal(L|K), f(a) est une racine de P.
- 4. En déduire que Gal(L|K) contient au plus s éléments.
- 5. Conclure que $Gal(L|K) = \langle F \rangle$

Exercice 7:

Pour tout entier non nul n, on note $\mu_n = \{x \in \mathbb{C} | x^n = 1\}$ et μ_n^* l'ensemble des générateurs du groupe cyclique μ_n . Dans $\mathbb{C}[X]$, on définit le polynôme cyclotomique Φ_n par

$$\Phi_n = \prod_{\alpha \in \mu_n^*} (X - \alpha)$$

- 1. Soit $\omega \in \mu_n^*$, montrer que pour tout $\omega' \in \mu_n^*$, on a $\mathbb{Q}(\omega) = \mathbb{Q}(\omega')$.
- 2. Montrer que $\mathbb{Q}(\omega)$ est le corps de décomposition de X^n-1 sur \mathbb{Q}
- 3. Quel est le degré de l'extension $[\mathbb{Q}(\omega):\mathbb{Q}]$?
- 4. On note $Gal(\mathbb{Q}(\omega)|\mathbb{Q})$ le groupe des automorphismes du corps $\mathbb{Q}(\omega)$ qui fixent \mathbb{Q} . On veut montrer que $Gal(\mathbb{Q}(\omega)|\mathbb{Q})$ est isomorphe à $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
 - (a) Soit $\omega \in \mu_n^*$, montrer que l'image de ω par un élément g de $Gal(\mathbb{Q}(\omega)|\mathbb{Q})$ est un élément de μ_n^* . En déduire une application $f: Gal(\mathbb{Q}(\omega)|\mathbb{Q}) \to \mu_n^*$.
 - (b) Montrer que l'application f est injective.
 - (c) Montrer que l'application f est surjective.
 - (d) En déduire une bijection h de $Gal(\mathbb{Q}(\omega)|\mathbb{Q})$ sur $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
 - (e) Montrer que h est un morphisme de groupes.