

Self-Supervised Adaptation of High-Fidelity Face Models for Monocular Face Performance Tracking

Jae Shin Yoon¹, Takaaki Shiratori², Shoou-I Yu² and Hyun Soo Park¹ University of Minnesota ² Facebook Reality Labs, Pittsburgh

facebook Reality Labs

Motivation

Input: monocular video

Output: rendered high fidelity 3D face model

Challenge

Existing approaches [1] to learn high fidelity appearance model require dense multiview image streams under a controlled environment, which cannot be applied to a monocular video.

Challenge 1: modality mismatch

Appearance model reconstructed by multiview image stream [1]

Monocular image stream

Challenge 2: domain mismatch

Approach

To address two mismatches, we

- (1) design a new encoder that can take an monocular image to regress the latent code (z and h)
- (2) propose a new self-supervision approach to refine the encoder by adapting to the testing monocular video.

Monocular image encoder for modality mismatch

Self-supervised adaptation by tracking on texture/landmark/appearance for domain mismatch

Evaluation

Ablation study on monocular image encoder

Results

Facial performance tracking

Multiview rendering

Reference

- [1] Lombardi et al. "Deep Appearance Models for Face Rendering." SIGGRAPH 2018
- [2] Simonyan et al. "Very Deep Convolutional Networks for Large-scale Image Recognition." ICLR 2015.
- [3] Newell et al. "Stacked hourglass networks for human pose estimation." ECCV 2016
- [4] Zhu et al. "High-fidelity Pose and Expression Normalization for Face Recognition In The Wild." CVPR. 2015.
- [5] Zhu et al. "Face Alignment Across Large Poses: A 3D Solution." CVPR 2016.
- [6] Feng et al. "Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network." ECCV 2018.