HTWK

Prof. Dr. habil. H.-J. Dobner

§ 32. Eigenwerte

32.1 Eigenwerte von Matrizen

Wir beschäftigen uns in diesem Paragraphen nochmals mit Matrizen und chrakterisieren diese mittels weiterer Kenngrößen. Das führt zum Thema Eigenwerte.

=>> INFORMATIK

Computergraphik

Data Mining

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

Beispiel 1

$$A = \begin{pmatrix} -4 & 6 \\ -3 & 5 \end{pmatrix}$$

Gibt es Zahlen λ und Vektoren $\overset{\rightarrow}{\chi}$

mit der Eigenschaft $\overrightarrow{Ax} = \lambda \overrightarrow{x}$

Antwort: Ja, ist $\vec{x} = \vec{0}$ dann gilt für alle Zahlen λ

$$A\vec{0} = \lambda \vec{0}$$

 $\vec{x} = \vec{0}$ ist die triviale Lösung. Uninterressant.

Daher Forderung $\vec{x} \neq \vec{0}$

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

Definition 1

Ist **A** eine $n \times n$ Matrix. Eine Zahl λ , zu der ein Vektor

mit der Eigenschaft

$$\mathbf{A}\overset{
ightarrow}{X}=\lambda\overset{
ightarrow}{X}$$
 $\left(\lambda,\overset{
ightarrow}{X}
ight)$ Eigenpaar von \mathbf{A}

existiert, heißt Eigenwert der Matrix **A**. Der Vektor \vec{x} heißt der zum Eigenwert λ gehörige Eigenvektor. Das Spektrum spek(**A**) ist die Menge aller Eigenwerte von **A**. Der Spektralradius $\rho(\mathbf{A})$ ist der betragsgrößte Eigenwert von **A**.

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

Beispiel 2

Die $n \times n$ Einheitsmatrix **E** hat nur den Eigenwert $\lambda = 1$, und jeder Vektor $\vec{x} \neq \vec{0}$ ist Eigenvektor zum Eigenwert 1.

$$\vec{\mathbf{E}X} \neq \mathbf{1} \cdot \overset{
ightharpoonup}{X}$$

Der Spektralradius der Einheitsmatrix **E** ist demnach Eins.

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzi