

Aluno(a)	:	

Segunda avaliação (Valor: 10,0)

- 1. [Valor: 2,0] Marque (V)erdadeiro ou (F)also¹.
 - (a) \square V \square F O problema de verificar se um número representado em binário é par está em P .
 - (b) \square V \square F Se P \neq NP então nenhum problema NP pode ser resolvido em tempo polinomial.
 - (c) \square V \square F Se P \neq NP então nenhum problema NP-Completo pode ser resolvido em tempo polinomial.
 - (d) \square V \square F Se $X \in NP$ e existe um algoritmo polinomial que resolve X, então P = NP.
 - (e) \square V \square F Se P=NP, então nenhum problema demanda tempo exponencial para ser resolvido.
 - (f) \square V \square F É correto afirmar que 2-SAT pertence às classes P e NP.
 - (g) \square V \square F Se há um algoritmo que resolve 3-SAT com complexidade $O(n^k)$, onde n é o número de literais e k é uma constante, então P = NP.
 - (h) \square V \square F Se um problema X é NP-Completo, então existe um algoritmo de tempo polinomial não-determinístico que resolve X.
 - (i) \square V \square F Suponha que X é NP-Completo e existe um algoritmo de tempo polinomial que resolve Y. Se $P \neq NP$, então é possível efetuarmos a redução $X \leq_p Y$, mas não a redução $Y \leq_p X$.
 - (j) \square V \square F Suponha que X é NP-Completo e existe um algoritmo de tempo polinomial que resolve Y. Se $P \neq NP$, então é possível efetuarmos tanto a redução $X \leq_p Y$, quanto a redução $Y \leq_p X$.
- 2. [Valor: 2,0] Explique o que é redução em tempo polinomial. Apresente um exemplo de como podemos usá-la para mostrar que um problema X é NP-Completo (preferencialmente use o exemplo do seu trabalho).
- 3. [Valor: 3,5] Considere o seguinte problema de seleção de atividades. "Dado um conjunto de n atividades $S = \{a_1, \ldots, a_n\}$ que requerem o uso de um recurso comum e, os tempos de início e término de cada atividade $[s_i, f_i)$, selecionar o maior conjunto possível de atividades mutuamente compatíveis, isto é, atividades a_i e a_j tais que $s_i \geq f_j$ ou $s_j \geq f_i$."
 - (a) [Valor: 1,0] Seja S_{ij} o conjunto de atividades que começam após o término da atividade a_i e terminam antes do início da atividade a_j . Denote por A_{ij} um conjunto máximo de atividades mutuamente compatíveis em S_{ij} que contém alguma atividade a_k . Mostre que esta formulação para o problema apresenta subestrutura ótima
 - (b) [Valor: 0,8] Seja $|A_{ij}|$ o tamanho de uma solução ótima para o conjunto S_{ij} . Considerando a recorrência a seguir, apresente um algoritmo que faz uso da técnica de programação dinâmica para resolver este problema.

$$|A_{ij}| = \begin{cases} 0 & \text{se } S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} (|A_{ik}| + |A_{kj}| + 1) & \text{se } S_{ij} \neq \emptyset \end{cases}$$

- (c) [Valor: 0,7] Analise a complexidade do algoritmo desenvolvido no item anterior no pior caso.
- (d) [Valor: 1,0] O algoritmo a seguir resolve o problema corretamente? Justifique.

Repita enquanto $S \neq \emptyset$

Selecione a_k cujo intervalo sobrepõe menos as demais atividades Adicione a_k no conjunto S^\prime

Remova todos as atividades de S que sobrepõe a_k

4. [Valor: 1,5] Considere o problema de Soma de Subconjuntos descrito a seguir: "Dado uma coleção de números naturais $S = \{a_1, \ldots, a_n\}$ e um valor s, existe um subconjunto S' de S tal que $\sum_{x \in S'} x = s$?" Apresente um algoritmo guloso para este problema. Mostre que ele está correto ou apresente uma instância em que ele falha.

Boa Prova!!!

 $^{^{1}}$ Quando não estiver explicitamente especificado em qual máquina, considere máquina determinística.

Aluno(a):					
A limo(a).	A 1 (.) .				
	A lilino(a):	•			