SVT4 δU_{μ} Covariant Comment

From (2.5) and (2.6) in RW_k_Ein_SVT4_v4_Matthew we have the perturbed EM tensor:

$$\delta T_{\mu\nu} = \delta p \tilde{g}_{\mu\nu} \Omega^2 + \delta p U_{\mu} U_{\nu} \Omega^2 + \delta \rho U_{\mu} U_{\nu} \Omega^2 - 2 \tilde{g}_{\mu\nu} p \chi \Omega^2 + 2 p \Omega^2 \tilde{\nabla}_{\mu} \tilde{\nabla}_{\nu} F + \delta U_{\nu} p U_{\mu} \Omega^2 + \delta U_{\mu} p U_{\nu} \Omega^2 + \delta U_{\nu} U_{\nu} \rho \Omega^2 + p \Omega^2 \tilde{\nabla}_{\mu} F_{\nu} + p \Omega^2 \tilde{\nabla}_{\nu} F_{\mu} + 2 F_{\mu\nu} p \Omega^2$$

$$(0.1)$$

$$g^{\mu\nu}\delta T_{\mu\nu} = 3\delta p - \delta\rho - 6p\chi + 2\rho\chi + 2p\tilde{\nabla}_{\alpha}\tilde{\nabla}^{\alpha}F + 2pU^{\alpha}U^{\beta}\tilde{\nabla}_{\beta}\tilde{\nabla}_{\alpha}F + 2U^{\alpha}U^{\beta}\rho\tilde{\nabla}_{\beta}\tilde{\nabla}_{\alpha}F + 2pU^{\alpha}U^{\beta}\tilde{\nabla}_{\beta}F_{\alpha} + 2U^{\alpha}U^{\beta}\rho\tilde{\nabla}_{\beta}F_{\alpha} + 2F_{\alpha\beta}pU^{\alpha}U^{\beta} + 2F_{\alpha\beta}U^{\alpha}U^{\beta}\rho.$$

$$(0.2)$$

The perturbed four-velocity obeys the kinematic relation,

$$U^{\mu}\delta U_{\mu} = \frac{1}{2}U^{\mu}U^{\nu}f_{\mu\nu} \tag{0.3}$$

resulting from $\delta(\tilde{g}^{\mu\nu}U_{\mu}U_{\nu}) = 0$.

When forming the trace $g^{\mu\nu}\delta T_{\mu\nu}$ we get terms that go as $\delta U_{\alpha}U^{\alpha}$ - a form that is readily available to implement (0.3). As a result, we were able to bring $g^{\mu\nu}\Delta_{\mu\nu}$ into an entirely covariant gauge invariant form.

However, within $\delta T_{\mu\nu}$ itself, we have terms of the form

$$\Omega^2(\rho + p)(\delta U_{\mu}U_{\nu} + U_{\mu}\delta U_{\nu}). \tag{0.4}$$

For $\mu\nu = (0,0)$ this becomes $-2\Omega^2(\rho+p)\delta U_0$, for $\mu\nu = (0,i)$ this becomes $-\Omega^2(\rho+p)\delta U_i$, while for $\mu\nu = (i,j)$ it vanishes. Hence, for an explicit choice of components, we need to substitute a kinematic relation for δU_0 , while for others we seek to express δU_i as $V_i + \tilde{\nabla}_i V$.

Is it possible to incorporate the kinematic identity while retaining full covariance?