Evaluating Workload and Machine Heterogeneity in Distributed Computing Systems

A. M. Al-Qawasmeh, A. A. Maciejewski, H. J. Siegel, J. Smith, and J. Potter Colorado State University Fort Collins, Colorado, USA Abdulla.Al-Qawasmeh@ColoState.edu

Outline

- Distributed Heterogeneous Computing Systems
- Statistical Measures for Evaluating Heterogeneity
- Simulation Results
- Conclusions

Distributed Heterogeneous Computing System

- cluster of different types of machines
 - 5 varied computational capabilities among the system machines
- workload
 - 5 tasks with different computational requirements
- each task may perform differently on each machine
 - 5 furthermore: machine A can be better than machine B for task 1 but not for task 2
- resource allocation: assign tasks to machines to optimize some performance measure
 - 5 NP-complete (cannot find optimal in reasonable time)
 - 5 use heuristics to find near-optimal allocation

Estimated Time to Compute (ETC) Matrix

ETC obtained from real world systems and benchmark data

		machines		
		m1	m2	
	t1	3	5	
tasks	t2	7	4	
	t3	20	18	
	estima	ated tim	e to comp	и
	task 1	on mad	chine 1	
,	ETC(1	(,1) = 3		

Machine Heterogeneity vs. Task Heterogeneity

- task vs. machine heterogeneity
 - 5 task heterogeneity: variation along a column

	m1	m2
t1	3	5
t2	7	4
t3	20	18

Machine Heterogeneity vs. Task Heterogeneity

- task vs. machine heterogeneity
 - 5 task heterogeneity: variation along a column
 - 5 machine heterogeneity: variation along a row

	m1	m2
t1	3	5
t2	7	4
t3	20	18

Outline

- Heterogeneous Computing Systems
- Statistical Measures for Quantifying Heterogeneity
- Simulation Results
- Conclusions

Measures of Heterogeneity

- goal: select heuristic that is best for an environment with a given heterogeneity
 - 5 existing heterogeneity measures not enough
 - 5 more measures correlated with heuristic performance
- studied measures of task and machine heterogeneities
 - 1. coefficient of variation
 - 2. skewness (third central moment)
 - 3. kurtosis (fourth central moment)

Statistical Measures - COV

- coefficient of variation (COV):
 - 5 let μ be the mean of a set of values
 - 5 and σ the standard deviation of a set of values
 - 5 the COV, V, is given by

$$V = \phi/i$$

Statistical Measures - Average Task COV

- $\bigvee_{j}^{(m)}$ is the tasks COV for machine j5 $\acute{\mathbf{O}}_{j}^{(m)}$ task standard deviation for machine j
 - 5 $\hat{\mathbf{i}}_{j}^{(m)}$ task mean for machine j

$$V_j^{(m)} = \frac{\acute{O}_j^{(m)}}{\grave{I}_j^{(m)}}$$

Statistical Measures – Average Task COV

- $\bigvee_{j}^{(m)}$ is the tasks COV for machine j5 $\acute{\mathbf{O}}_{j}^{(m)}$ task standard deviation for machine j
 - 5 $\hat{\mathbf{i}}_{j}^{(m)}$ task mean for machine j

$$V_j^{(m)} = \frac{\acute{O}_j^{(m)}}{\grave{I}_j^{(m)}}$$

- task heterogeneity as measured by the Average Task COV (ATC)
 - 5 M: number of machines

$$ATC = \left[\sum_{j=1}^{M} V_{j}^{(m)}\right]/M$$

Statistical Measures – Average Machine COV

- - $\hat{\mathbf{i}}_{i}^{(t)}$ machine mean for task *i*

$$V_i^{(t)} = \frac{\acute{O}_i^{(t)}}{\grave{I}_i^{(t)}}$$

Statistical Measures – Average Machine COV

- $V_i^{(t)}$ is the machine COV for task *i* $O_i^{(t)}$ machine standard deviation for task *i*
 - 5 ì (t) machine mean for task i

$$V_{i}^{(t)} = \frac{\acute{O}_{i}^{(t)}}{\grave{I}_{i}^{(t)}}$$

- task heterogeneity as measured by the Average Machine COV (AMC)
 - 5 T: number of tasks

$$AMC = \left[\sum_{i=1}^{T} V_i^{(t)}\right]/T$$

Statistical Measures - Skewness (Third Central Moment)

- positive skewness
 - 5 more values less than mean
- negative skewness
 - 5 more values greater than mean

Statistical Measures – Average Task Skewness

 $S_j^{(m)}$ tasks skewness for machine j

$$S_{j}^{(m)} = \left[\frac{1}{T} \sum_{i=1}^{T} (ETC(i, j) - i _{j}^{(m)})^{3}\right] / (\acute{o}_{j}^{(m)})^{3}$$

Statistical Measures – Average Task Skewness

 $S_j^{(m)}$ tasks skewness for machine j

$$S_{j}^{(m)} = \left[\frac{1}{T} \sum_{i=1}^{T} (ETC(i, j) - i _{j}^{(m)})^{3}\right] / (\acute{o}_{j}^{(m)})^{3}$$

task heterogeneity as measured by the Average Task Skewness (ATS)

$$ATS = [\sum_{j=1}^{M} S_{j}^{(m)}]/M$$

Statistical Measures – Average Machine Skewness

 $\mathbf{v} \mathbf{S}_{i}^{(t)}$ machines skewness for task *i*

$$S_i^{(t)} = \left[\frac{1}{M} \sum_{j=1}^{M} (ETC(i, j) - i_i^{(t)})^3 \right] / (o_i^{(t)})^3$$

Statistical Measures – Average Machine Skewness

 \mathbf{v} $\mathbf{S}_{i}^{(t)}$ machines skewness for task *i*

$$S_i^{(t)} = \left[\frac{1}{M} \sum_{j=1}^{M} (ETC(i, j) - i_i^{(t)})^3 \right] / (o_i^{(t)})^3$$

machine heterogeneity as measured by the Average Machine Skewness (AMS)

$$AMS = \left[\sum_{i=1}^{T} S_i^{(t)}\right]/T$$

Statistical Measures – Kurtosis (Fourth Central Moment)

- high kurtosis
 - 5 small number of values having extreme deviations
- low kurtosis
 - 5 large number of values having modestly-sized deviations

Statistical Measures – Average Task Kurtosis

K_i^(m) tasks kurtosis for machine j

$$K_j^{(m)} = \left[\left(\frac{1}{T} \sum_{i=1}^{T} (\text{ETC}(i, j) - i _j^{(m)})^4 \right) / (\delta_j^{(m)})^4 \right] - 3$$

Statistical Measures – Average Task Kurtosis

K_j (m) tasks kurtosis for machine j

$$K_j^{(m)} = \left[\left(\frac{1}{T} \sum_{i=1}^{T} (\text{ETC}(i, j) - i _j^{(m)})^4 \right) / (\delta_j^{(m)})^4 \right] - 3$$

task heterogeneity as measured by the Average Task Kurtosis (ATK)

$$ATK = \left[\frac{1}{M} \sum_{j=1}^{M} K_j^{(m)}\right]$$

Statistical Measures – Average Machine Kurtosis

K_i^(t) machines skewness for task i

$$K_i^{(t)} = \left[\left(\frac{1}{M} \sum_{j=1}^{M} (\text{ETC}(i,j) - i_i^{(t)})^4 \right) / (\delta_i^{(t)})^4 \right] - 3$$

Statistical Measures - Average Machine Kurtosis

K_i^(t) machines skewness for task i

$$K_i^{(t)} = \left[\left(\frac{1}{M} \sum_{j=1}^{M} (\text{ETC}(i,j) - i_i^{(t)})^4 \right) / (o_i^{(t)})^4 \right] - 3$$

machine heterogeneity as measured by the Average Machine Kurtosis (AMK)

$$AMK = \left[\frac{1}{T}\sum_{i=1}^{T}K_{i}^{(t)}\right]$$

Simulation Results

- ETC size
 - 5 8 machines
 - 5 128 tasks
- static mapping
 - 5 all tasks available for execution
 - 5 mapping done offline
- studied heuristics
 - 5 Max-Min and Min-Min
- makespan
 - 5 time when all tasks finish
 - 5 lower is better
- normalized makespan
 - 5 makespan of Min-Min divided by Max-Min

Simulation Results – Effect of ATS

Max-Min outperforms Min-Min for ATS of 1.4 and higher

Simulation Results – Effect of AMC

Min-Min outperforms Max-Min for AMC of 0.5 and higher

Conclusions

- currently used statistical measures (COV) not sufficient
- need to use additional measures
 - 5 skewness (third central moment)
 - 5 kurtosis (fourth central moment)
- skewness and kurtosis impact the performance of heuristics
- ignoring skewness and kurtosis may lead to wrong use of a heuristic

