Weak convergence proof v.2 (neater) (in progress)

Suzie Brown

January 22, 2021

Bounds on sum-products

Lemma 1.

$$t^{l} - \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2}\right) \binom{l}{2} (t+1)^{l-2} \leq \sum_{s_{1} \neq \dots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) \leq t^{l} + c_{N}(\tau_{N}(t))(t+1)^{l}. \tag{1}$$

Proof. As pointed out in Koskela et al. (2018, Equation (8)),

$$\sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l c_N(s_j) \ge \left(\sum_{s=0}^{\tau_N(t)} c_N(s)\right)^l - \binom{l}{2} \left(\sum_{s=0}^{\tau_N(t)} c_N(s)^2\right) \left(\sum_{s=0}^{\tau_N(t)} c_N(s)\right)^{l-2}. \tag{2}$$

By definition of τ_N ,

$$t \le \sum_{s=0}^{\tau_N(t)} c_N(s) \le t + 1. \tag{3}$$

Substituting these bounds into the RHS of (2) yields the lower bound.

It is a true fact that

$$\sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l c_N(s_j) \le \left(\sum_{s=0}^{\tau_N(t)} c_N(s)\right)^l, \tag{4}$$

as can be seen by considering the multinomial expansion of the RHS. This is further bounded by

$$\left(\sum_{s=0}^{\tau_N(t)} c_N(s)\right)^l \le \left(\sum_{s=0}^{\tau_N(t)-1} c_N(s) + c_N(\tau_N(t))\right)^l \le \left[t + c_N(\tau_N(t))\right]^l,\tag{5}$$

again using the definition of τ_N . A binomial expansion yields

$$[t + c_N(\tau_N(t))]^l = t^l + \sum_{i=0}^{l-1} {l \choose i} t^i c_N(\tau_N(t))^{l-i} = t^l + c_N(\tau_N(t)) \sum_{i=0}^{l-1} {l \choose i} t^i c_N(\tau_N(t))^{l-1-i},$$
 (6)

then since $c_N(s) \leq 1$ for all s,

$$\sum_{i=0}^{l-1} {l \choose i} t^i c_N(\tau_N(t))^{l-1-i} \le \sum_{i=0}^{l-1} {l \choose i} t^i \le (t+1)^l.$$
 (7)

Putting this together yields the upper bound.

Lemma 2. Let B be a positive constant which may depend on n.

$$\sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l \left[c_N(s_j) + BD_N(s_j) \right] \le \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l c_N(s_j) + \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) (t+1)^{l-1} (1+B)^l. \tag{8}$$

Proof. We start with a binomial expansion:

$$\sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l \left[c_N(s_j) + BD_N(s_j) \right] = \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \sum_{\mathcal{I} \subseteq [l]} B^{l-|\mathcal{I}|} \left(\prod_{i \in \mathcal{I}} c_N(s_i) \right) \left(\prod_{j \notin \mathcal{I}} D_N(s_j) \right)$$

$$= \sum_{\mathcal{I} \subseteq [l]} B^{l-|\mathcal{I}|} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i \in \mathcal{I}} c_N(s_i) \right) \left(\prod_{j \notin \mathcal{I}} D_N(s_j) \right)$$

$$(9)$$

where $[l] := \{1, ..., l\}$. Since the sum is over all permutations of $r_1, ..., r_l$, we may arbitrarily choose an ordering for $\{1, ..., l\}$ such that $\mathcal{I} = \{1, ..., |\mathcal{I}|\}$:

$$\sum_{\mathcal{I}\subseteq[l]} B^{l-|\mathcal{I}|} \sum_{s_1 \neq \cdots \neq s_l}^{\tau_N(t)} \left(\prod_{i \in \mathcal{I}} c_N(s_i) \right) \left(\prod_{j \notin \mathcal{I}} D_N(s_j) \right) = \sum_{I=0}^l \binom{l}{I} B^{l-I} \sum_{s_1 \neq \cdots \neq s_l}^{\tau_N(t)} \left(\prod_{i=1}^I c_N(s_i) \right) \left(\prod_{j=I+1}^l D_N(s_j) \right). \tag{10}$$

Separating the term I = l,

$$\sum_{I=0}^{l} {l \choose I} B^{l-I} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i=1}^{I} c_N(s_i) \right) \left(\prod_{j=I+1}^{l} D_N(s_j) \right) = \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^{l} c_N(s_j) + \sum_{I=0}^{l-1} {l \choose I} B^{l-I} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i=1}^{I} c_N(s_i) \right) \left(\prod_{j=I+1}^{l} D_N(s_j) \right). \tag{11}$$

In the second line, there is always at least one D_N term, and $c_N(s) \leq D_N(s)$ for all s, so we can write

$$\sum_{I=0}^{l-1} {l \choose I} B^{l-I} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i=1}^{I} c_N(s_i) \right) \left(\prod_{j=I+1}^{l} D_N(s_j) \right) \leq \sum_{I=0}^{l-1} {l \choose I} B^{l-I} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i=1}^{l-1} c_N(s_i) \right) D_N(s_l)$$

$$\leq \sum_{I=0}^{l-1} {l \choose I} B^{l-I} \left(\sum_{s_1 \neq \dots \neq s_{l-1}}^{\tau_N(t)} \prod_{i=1}^{l-1} c_N(s_i) \right) \sum_{s_l=1}^{\tau_N(t)} D_N(s_l)$$

$$\leq \sum_{I=0}^{l-1} {l \choose I} B^{l-I} (t+1)^{l-1} \sum_{s=1}^{\tau_N(t)} D_N(s) \tag{12}$$

using (4) and (3). Finally, by the Binomial Theorem,

$$\sum_{I=0}^{l-1} {l \choose I} B^{l-I} (t+1)^{l-1} \sum_{s=1}^{\tau_N(t)} D_N(s) \le \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) (t+1)^{l-1} (1+B)^l, \tag{13}$$

which, together with (11), concludes the proof.

Lemma 3. Let B be a positive constant which may depend on n.

$$\sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l \left[c_N(s_j) - BD_N(s_j) \right] \ge \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l c_N(s_j) - \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) (t+1)^{l-1} (1+B)^l. \tag{14}$$

Proof. A binomial expansion and subsequent manipulation as in (9)–(11) gives

$$\sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) - BD_{N}(s_{j}) \right] = \sum_{\mathcal{I}\subseteq[l]} (-B)^{l-|\mathcal{I}|} \sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \left(\prod_{i\in\mathcal{I}} c_{N}(s_{i}) \right) \left(\prod_{j\notin\mathcal{I}} D_{N}(s_{j}) \right) \\
= \sum_{l=0}^{l} \binom{l}{l} (-B)^{l-l} \sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \left(\prod_{i=1}^{l} c_{N}(s_{i}) \right) \left(\prod_{j=l+1}^{l} D_{N}(s_{j}) \right) \\
= \sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) + \sum_{l=0}^{l-1} \binom{l}{l} (-B)^{l-l} \sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \left(\prod_{i=1}^{l} c_{N}(s_{i}) \right) \left(\prod_{j=l+1}^{l} D_{N}(s_{j}) \right) \\
\geq \sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) - \sum_{l=0}^{l-1} \binom{l}{l} B^{l-l} \sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \left(\prod_{i=1}^{l} c_{N}(s_{i}) \right) \left(\prod_{j=l+1}^{l} D_{N}(s_{j}) \right) \tag{15}$$

where the last inequality just multiplies some positive terms by -1. Then (12)–(13) can be applied directly (noting that an upper bound on negative terms gives a lower bound overall):

$$-\sum_{I=0}^{l-1} {l \choose I} B^{l-I} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i=1}^I c_N(s_i) \right) \left(\prod_{j=I+1}^l D_N(s_j) \right) \ge \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) (t+1)^{l-1} (1+B)^l$$
 (16)

which concludes the proof.

Main components of weak convergence

Lemma 4 (Basis step). For any $0 < t < \infty$,

$$\lim_{N \to \infty} \mathbb{E} \left[\prod_{r=1}^{\tau_N(t)} (1 - p_r) \right] = e^{-\alpha_n t}$$
 (17)

where $\alpha_n := n(n-1)/2$.

Proof. We start by showing that $\lim_{N\to\infty} \mathbb{E}\left[\prod_{r=1}^{\tau_N(t)} (1-p_r)\right] \leq e^{-\alpha_n t}$. From Koskela et al. (2018, Lemma 1 Case 1), taking $\xi = \Delta$, we have

$$1 - p_t = p_{\Delta\Delta}(t) \le 1 - \alpha_n (1 + O(N^{-1})) \left[c_N(t) - B_n' D_N(t) \right]$$
(18)

where the $O(N^{-1})$ term does not depend on t. Applying a multinomial expansion and then separating the positive and negative terms,

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \leq 1 + \sum_{l=1}^{\tau_{N}(t)} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) - B'_{n} D_{N}(s_{j}) \right]
= 1 + \sum_{\substack{l=2 \text{even} \\ \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) - B'_{n} D_{N}(s_{j}) \right]
- \sum_{\substack{l=1 \text{odd} \\ \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) - B'_{n} D_{N}(s_{j}) \right].$$
(19)

This is further bounded by applying Lemma 3 and then both bounds of Lemma 1:

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \leq 1 + \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) \\
- \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left\{ \sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) - \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) (t + 1)^{l-1} (1 + B_{n}')^{l} \right\} \\
\leq 1 + \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left\{ t^{l} + c_{N} (\tau_{N}(t)) (t + 1)^{l} \right\} \\
- \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left\{ t^{l} - \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \right) \binom{l}{2} (t + 1)^{l-2} - \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) (t + 1)^{l-1} (1 + B_{n}')^{l} \right\}. \tag{20}$$

A bit of tidying up and we have

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \leq \sum_{l=0}^{\tau_{N}(t)} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} t^{l} + c_{N}(\tau_{N}(t)) \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} (t+1)^{l} \\
+ \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \right) \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \binom{l}{2} (t+1)^{l-2} \\
+ \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} (t+1)^{l-1} (1 + B_{n}^{\prime})^{l} \\
\leq \sum_{l=0}^{\tau_{N}(t)} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} t^{l} + c_{N}(\tau_{N}(t)) \exp[\alpha_{n} (1 + O(N^{-1})) (t+1)] \\
+ \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \right) \frac{1}{2} \alpha_{n}^{2} \exp[\alpha_{n} (1 + O(N^{-1})) (t+1)] \\
+ \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) \exp[\alpha_{n} (1 + O(N^{-1})) (t+1) (1 + B_{n}^{\prime})]. \tag{21}$$

Now, taking the expectation and limit, and applying Brown et al. (2021, Equations (3.3)–(3.5)) and Lemma ?? (Lemma 2 in the messy weakconv note; not written up here yet),

$$\lim_{N \to \infty} \mathbb{E} \left[\prod_{r=1}^{\tau_N(t)} (1 - p_r) \right] \leq \sum_{l=0}^{\infty} (-\alpha_n)^l \frac{1}{l!} t^l \lim_{N \to \infty} \mathbb{P} \left[\tau_N(t) \geq l \right] + \lim_{N \to \infty} \mathbb{E} \left[c_N(\tau_N(t)) \right] \exp[\alpha_n(t+1)]$$

$$+ \lim_{N \to \infty} \mathbb{E} \left[\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right] \frac{1}{2} \alpha_n^2 \exp[\alpha_n(t+1)]$$

$$+ \lim_{N \to \infty} \mathbb{E} \left[\sum_{s=1}^{\tau_N(t)} D_N(s) \right] \exp[\alpha_n(t+1)(1 + B_n')]$$

$$= \sum_{l=0}^{\infty} (-\alpha_n)^l \frac{1}{l!} t^l = e^{-\alpha_n t}. \tag{22}$$

It remains to show that $\lim_{N\to\infty} \mathbb{E}\left[\prod_{r=1}^{\tau_N(t)} (1-p_r)\right] \geq e^{-\alpha_n t}$. From Brown et al. (2021, Equation (3.14)), taking $\xi = \Delta$, we have

$$1 - p_t = p_{\Delta\Delta}(t) \ge 1 - \alpha_n (1 + O(N^{-1})) \left[c_N(t) + B_n D_N(t) \right]$$
(23)

where $B_n > 0$ and the $O(N^{-1})$ term does not depend on t. In particular

$$1 - p_t = p_{\Delta\Delta}(t) \ge 1 - \frac{N^{n-2}}{(N-2)_{n-2}} \alpha_n c_N(t) - \frac{N^{n-3}}{(N-3)_{n-3}} B_n D_N(t).$$
 (24)

Since $D_N(s) \le c_N(s)$ for all s (Koskela et al., 2018, p.9), a sufficient condition for this bound to be non-negative is

$$E_r := \left\{ c_N(r) \le \frac{(N-3)_{n-3}}{N^{n-3}} \left(\alpha_n \left(1 + \frac{2}{N-2} \right) + B_n \right)^{-1} \right\},\tag{25}$$

and we define $E := \bigcap_{r=1}^{\tau_N(t)} E_r$. We now apply a multinomial expansion to the product, and split into positive and negative terms:

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \ge \left\{ 1 + \sum_{l=1}^{\tau_{N}(t)} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \ne \cdots \ne s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) + B_{n} D_{N}(s_{j}) \right] \right\} \mathbb{1}_{E}$$

$$= \left\{ 1 + \sum_{\substack{l=2 \text{even} \\ \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \ne \cdots \ne s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) + B_{n} D_{N}(s_{j}) \right] \right\}$$

$$- \sum_{\substack{l=1 \text{odd} \\ \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \ne \cdots \ne s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) + B_{n} D_{N}(s_{j}) \right] \right\} \mathbb{1}_{E}$$

$$(26)$$

This is further bounded by applying Lemma 2 and both bounds in Lemma 1:

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \ge \left\{ 1 + \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) \right. \\
\left. - \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left[\sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) + \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) (t + 1)^{l-1} (1 + B_{n})^{l} \right] \right\} \mathbb{1}_{E}$$

$$\ge \left\{ 1 + \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left[t^{l} - \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \right) \binom{l}{2} (t + 1)^{l-2} \right] \right.$$

$$- \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left[t^{l} + c_{N}(\tau_{N}(t)) (t + 1)^{l} + \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) (t + 1)^{l-1} (1 + B_{n})^{l} \right] \right\} \mathbb{1}_{E}. \tag{27}$$

Tidying things up,

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \geq \sum_{l=0}^{\tau_{N}(t)} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} t^{l} \mathbb{1}_{E} - \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \right) \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \binom{l}{2} (t+1)^{l-2}
- c_{N}(\tau_{N}(t)) \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} (t+1)^{l}
- \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} (t+1)^{l-1} (1 + B_{n})^{l}
\geq \sum_{l=0}^{\tau_{N}(t)} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} t^{l} \mathbb{1}_{E} - \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \right) \frac{1}{2} \alpha_{n}^{2} \exp[\alpha_{n} (1 + O(N^{-1})) (t+1)]
- c_{N}(\tau_{N}(t)) \exp[\alpha_{n} (1 + O(N^{-1})) (t+1)]
- \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) \exp[\alpha_{n} (1 + O(N^{-1})) (t+1) (1 + B_{n})].$$
(28)

Now, taking the expectation and limit, and applying Brown et al. (2021, Equations (3.3)–(3.5)) and Lemma ?? (Lemma 2 in the messy weakconv note; not written up here yet),

$$\lim_{N \to \infty} \mathbb{E} \left[\prod_{r=1}^{\tau_N(t)} (1 - p_r) \right] \ge \sum_{l=0}^{\infty} (-\alpha_n)^l (1 + O(N^{-1})) \frac{1}{l!} t^l \lim_{N \to \infty} \mathbb{P} \left[\left\{ \tau_N(t) \ge l \right\} \cap E \right]$$

$$- \lim_{N \to \infty} \mathbb{E} \left[\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right] \frac{1}{2} \alpha_n^2 \exp[\alpha_n(t+1)]$$

$$- \lim_{N \to \infty} \mathbb{E} \left[c_N(\tau_N(t)) \right] \exp[\alpha_n(t+1)]$$

$$- \lim_{N \to \infty} \mathbb{E} \left[\sum_{s=1}^{\tau_N(t)} D_N(s) \right] \exp[\alpha_n(t+1)(1 + B_n)]$$

$$= \sum_{l=0}^{\infty} (-\alpha_n)^l \frac{1}{l!} t^l = e^{-\alpha_n t}. \tag{29}$$

Combining the upper and lower bounds in (22) and (29) respectively concludes the proof.

I have proofs for the next three lemmata, I'm just working on a presentation that might be intelligible to someone other than myself.

Lemma 5 (Induction step upper bound). Fix $k \in \mathbb{N}$, $i_0 := 0$, $i_k := k$. For any sequence of times $0 = t_0 \le t_1 \le \cdots \le t_k \le t$,

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \notin \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \right) \right] \le \alpha_n^k \sum_{l=0}^{\infty} \frac{1}{l!} (-\alpha_n)^l t^l \sum_{\substack{i_1 \le \dots \le i_{k-1} \\ i_j \ge j \forall j}} \prod_{j=1}^k \frac{(t_j - t_{j-1})^{i_j - i_{j-1}}}{(i_j - i_{j-1})!}.$$
(30)

Lemma 6 (Induction step lower bound). Fix $k \in \mathbb{N}$, $i_0 := 0$, $i_k := k$. For any sequence of times $0 = t_0 \le t_1 \le \cdots \le t_k \le t$,

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \notin \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \right) \right] \ge \alpha_n^k \sum_{l=0}^{\infty} \frac{1}{l!} (-\alpha_n)^l t^l \sum_{\substack{i_1 \le \dots \le i_{k-1} \\ \in \{0, \dots, k\}: \\ i_j \ge j \forall j}} \prod_{j=1}^k \frac{(t_j - t_{j-1})^{i_j - i_{j-1}}}{(i_j - i_{j-1})!}.$$
(31)

Lemma 7. Fix $l, k \in \mathbb{N}$, $i_0 := 0$, $i_k := k$. Let E be any event independent of r_1, \ldots, r_k such that $\lim_{N \to \infty} \mathbb{P}[E] = 1$. Then for any sequence of times $0 = t_0 \le t_1 \le \cdots \le t_k \le t$,

$$\lim_{N \to \infty} \mathbb{E} \left[\mathbb{1}_{E} \sum_{\substack{r_{1} < \dots < r_{k}: \\ r_{i} \le \tau_{N}(t_{i}) \forall i}} \prod_{i=1}^{k} c_{N}(r_{i}) \right] = \sum_{\substack{i_{1} \le \dots \le i_{k-1} \\ i_{1} \ge j \forall j}} \prod_{j=1}^{k} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!}.$$
(32)

Indicators

Lemma 8. Let A, B be events. If $\lim \mathbb{P}[A] = 1$ and $\lim \mathbb{P}[B] = 1$ then $\lim \mathbb{P}[A \cap B] = 1$.

The above might be so obvious as to go unstated, but it is very important because it means we don't have to deal with intersections of dependent events! Here is a little proof just to be sure:

Proof.

$$\lim \mathbb{P}[A] = 1 \text{ and } \lim \mathbb{P}[B] = 1$$

$$\Leftrightarrow \lim \mathbb{P}[A^c] = 0 \text{ and } \lim \mathbb{P}[B^c] = 0$$

$$\Rightarrow \lim \{\mathbb{P}[A^c] + \mathbb{P}[B^c]\} = 0$$

$$\Rightarrow \lim \mathbb{P}[A^c \cup B^c] = 0$$

$$\Leftrightarrow \lim \mathbb{P}[A \cap B] = 1.$$
(33)

The only part of this argument that I find potentially controversial is going from the third to the fourth line, which is an application of the sandwich theorem (since $0 \le \mathbb{P}[A^c \cup B^c] \le \mathbb{P}[A^c] + \mathbb{P}[B^c]$).

Lemma 9. Let K be a constant which may depend on n, N but not on r, such that $K^{-2} = O(1)$ as $N \to \infty$. Define the events $E_r := \{c_N(r) < K\}$ and denote $E := \bigcap_{r=1}^{\tau_N(t)} E_r$. Then $\lim_{N \to \infty} \mathbb{P}[E] = 1$.

Proof.

$$\mathbb{P}[E] = 1 - \mathbb{P}[E^c] = 1 - \mathbb{P}\left[\bigcup_{r=1}^{\tau_N(t)} E_r^c\right] = 1 - \mathbb{E}\left[\mathbb{1}_{\bigcup E_r^c}\right] \ge 1 - \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} \mathbb{1}_{E_r^c}\right]$$

$$= 1 - \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} \mathbb{E}\left[\mathbb{1}_{E_r^c} \mid \mathcal{F}_{r-1}\right]\right] = 1 - \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} \mathbb{P}\left[E_r^c \mid \mathcal{F}_{r-1}\right]\right] \tag{34}$$

where for the second line we apply Lemma 13 with $f(r) = \mathbb{1}_{E_r^c}$. To see that this choice of f satisfies the conditions of Lemma 13, note that

$$\sum_{r=1}^{\tau_N(s)} \mathbb{1}_{\{c_N(r) \ge K\}} \le \sum_{r=1}^{\tau_N(s)} \frac{c_N(r)}{K} \le \frac{s+1}{K} < \infty. \tag{35}$$

By the generalised Markov inequality,

$$\mathbb{P}[E_r^c \mid \mathcal{F}_{r-1}] = \mathbb{P}[c_N(r) \ge K \mid \mathcal{F}_{r-1}] \le \mathbb{E}[c_N(r)^2 \mid \mathcal{F}_{r-1}]K^{-2}. \tag{36}$$

Substituting this into (34) and applying Lemma 13 again, this time with $f(r) = c_N(r)^2$,

$$\mathbb{P}[E] \ge 1 - K^{-2} \mathbb{E} \left[\sum_{r=1}^{\tau_N(t)} \mathbb{E}[c_N(r)^2 \mid \mathcal{F}_{r-1}] \right] = 1 - K^{-2} \mathbb{E} \left[\sum_{r=1}^{\tau_N(t)} c_N(r)^2 \right].$$
 (37)

Applying Brown et al. (2021, Equation (3.5)), the limit is

$$\lim_{N \to \infty} \mathbb{P}[E] = 1 - O(1) \times 0 = 1 \tag{38}$$

as required.

Lemma 10. Fix t > 0. For any $l \in \mathbb{R}$, $\lim_{N \to \infty} \mathbb{P}[\tau_N(t) \ge l] = 1$.

Proof.

$$\{\tau_N(t) \ge l\} = \left\{ \min \left\{ s \ge 1 : \sum_{r=1}^s c_N(r) \ge t \right\} \ge l \right\} = \left\{ \sum_{r=1}^{l-1} c_N(r) < t \right\} \supseteq \bigcap_{r=1}^{l-1} \left\{ c_N(r) < \frac{t}{l} \right\} \supseteq \bigcap_{r=1}^{\tau_N(t)} \left\{ c_N(r) < \frac{t}{l} \right\}. \tag{39}$$

Hence

$$\lim_{N \to \infty} \mathbb{P}[\tau_N(t) \ge l] \ge \lim_{N \to \infty} \mathbb{P}\left[\bigcap_{r=1}^{\tau_N(t)} \left\{ c_N(r) < \frac{t}{l} \right\}\right]$$
(40)

and the result follows by applying Lemma 9 with K = t/l.

Lemma 11. Define the event

$$E^* := \bigcap_{j=1}^k \left\{ \sum_{s=\tau_N(t_{j-1})+1}^{\tau_N(t_j)} c_N(s)^2 \le \frac{(t_j - t_{j-1})^{i_j - i_{j-1} - k + 1}}{(i_j - i_{j-1})!} \right\}. \tag{41}$$

Then $\lim_{N\to\infty} \mathbb{P}[E^{\star}] = 1$.

Proof.

$$E^{\star} \supseteq \left\{ \sum_{j=1}^{k} \sum_{s=\tau_{N}(t_{j-1})+1}^{\tau_{N}(t_{j})} c_{N}(s)^{2} \le \sum_{j=1}^{k} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1} - k + 1}}{(i_{j} - i_{j-1})!} \right\}$$

$$= \left\{ \sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \le \sum_{j=1}^{k} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1} - k + 1}}{(i_{j} - i_{j-1})!} \right\}$$

$$\supseteq \left\{ \sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \le \frac{1}{k!} \sum_{j=1}^{k} (t_{j} - t_{j-1})^{i_{j} - i_{j-1} - k + 1} \right\}. \tag{42}$$

To simplify the RHS further, consider the possible values of $(i_j - i_{j-1} - k + 1) \in \{-k+1, \dots, 1\}$: This simplification isn't necessary for the result, but it makes the expressions less cumbersome later on. Case $(i_j - i_{j-1} - k + 1) < 0$:

$$\sum_{j=1}^{k} (t_j - t_{j-1})^{i_j - i_{j-1} - k + 1} \ge \sum_{j=1}^{k} t^{i_j - i_{j-1} - k + 1} \ge \sum_{j=1}^{k} t^{-k+1} = kt^{-k+1}.$$

$$(43)$$

Case $(i_j - i_{j-1} - k + 1) = 0$:

$$\sum_{j=1}^{k} (t_j - t_{j-1})^{i_j - i_{j-1} - k + 1} = \sum_{j=1}^{k} 1 = k.$$
(44)

Case $(i_j - i_{j-1} - k + 1) = 1$:

$$\sum_{j=1}^{k} (t_j - t_{j-1})^{i_j - i_{j-1} - k + 1} = \sum_{j=1}^{k} (t_j - t_{j-1}) = t_k - t_0 = t.$$
(45)

Altogether

$$\sum_{i=1}^{k} (t_j - t_{j-1})^{i_j - i_{j-1} - k + 1} \ge \min\{kt^{-k+1}, k, t\} = \min\{kt^{-k+1}, t\} = t\min\{kt^{-k}, 1\},\tag{46}$$

so

$$E^* \supseteq \left\{ \sum_{s=1}^{\tau_N(t)} c_N(s)^2 < \frac{t}{k!} \min\{kt^{-k}, 1\} \right\}. \tag{47}$$

Using Markov's inequality,

$$\mathbb{P}[E^{\star}] \ge \mathbb{P}\left[\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} < \frac{t}{k!} \min\{kt^{-k}, 1\}\right] = 1 - \mathbb{P}\left[\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \ge \frac{t}{k!} \min\{kt^{-k}, 1\}\right] \\
\ge 1 - \frac{k!}{t} \max\{1, k^{-1}t^{k}\} \mathbb{E}\left[\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2}\right], \tag{48}$$

and by Brown et al. (2021, Equation (3.5))

$$\lim_{N \to \infty} \mathbb{P}[E^*] = 1 - O(1) \times 0 = 1 \tag{49}$$

as required.

Lemma 12. Let K be a constant not depending on N, r, but which may depend on n.

$$\lim_{N \to \infty} \mathbb{P} \left[\bigcap_{r=1}^{\tau_N(t)} \left\{ c_N(r) \ge K D_N(r) \right\} \right] = 1.$$
 (50)

9

Proof will be courtesy of Jere's note with a few edits and probably more explicit workings.

Proof.

$$\mathbb{P}\left[\bigcap_{r=1}^{\tau_{N}(t)} \left\{c_{N}(r) \geq KD_{N}(r)\right\}\right] \geq \mathbb{P}\left[\bigcap_{r=1}^{\tau_{N}(t)} \left\{c_{N}(r) > KD_{N}(r)\right\}\right] \\
= 1 - \mathbb{P}\left[\bigcup_{r=1}^{\tau_{N}(t)} \left\{c_{N}(r) \leq KD_{N}(r)\right\}\right] \\
= 1 - \mathbb{E}\left[\mathbb{1}_{\bigcup\{c_{N}(r) \leq KD_{N}(r)\}}\right] \\
\geq 1 - \mathbb{E}\left[\sum_{r=1}^{\tau_{N}(t)} \mathbb{1}_{\{c_{N}(r) \leq KD_{N}(r)\}}\right] \\
= 1 - \mathbb{E}\left[\sum_{r=1}^{\tau_{N}(t)} \mathbb{P}[c_{N}(r) \leq KD_{N}(r) \mid \mathcal{F}_{r-1}]\right] \tag{51}$$

where the final inequality is an application of Lemma 13 with $f(r) = \mathbb{1}_{\{c_N(r) \leq KD_N(r)\}}$.

Fix $0 < \varepsilon < (n-3)(n-4)$ and let $N > \max\{\varepsilon^{-1}, (\binom{n-2}{2} - 2\varepsilon)^{-1}\}$. For each r, i define the event $A_i(r) := \{\nu_r^{(i)} \le N\varepsilon\}$. Conditional on \mathcal{F}_{r-1} , we have

$$D_N(r) = \frac{1}{N(N)_2} \sum_{i=1}^{N} (\nu_r^{(j)})_2 \left[\nu_r^{(i)} + \frac{1}{N} \sum_{j \neq i} (\nu_r^{(i)})^2 \right] \mathbb{1}_{A_i(r)^c} + \frac{1}{N(N)_2} \sum_{i=1}^{N} (\nu_r^{(i)})_2 \left[\nu_r^{(i)} + \frac{1}{N} \sum_{j \neq i} (\nu_r^{(j)})^2 \right] \mathbb{1}_{A_i(r)}.$$
 (52)

For the first term,

$$\frac{1}{N(N)_2} \sum_{i=1}^{N} (\nu_r^{(i)})_2 \left[\nu_r^{(i)} + \frac{1}{N} \sum_{j \neq i} (\nu_r^{(j)})^2 \right] \mathbb{1}_{A_i(r)^c} \le \sum_{i=1}^{N} \mathbb{1}_{A_i(r)^c}.$$
 (53)

For the second term,

$$\frac{1}{N(N)_{2}} \sum_{i=1}^{N} (\nu_{r}^{(i)})_{2} \left[\nu_{r}^{(i)} + \frac{1}{N} \sum_{j \neq i} (\nu_{r}^{(j)})^{2} \right] \mathbb{1}_{A_{i}(r)} \leq \frac{1}{N(N)_{2}} \sum_{i=1}^{N} (\nu_{r}^{(i)})_{2} \nu_{r}^{(i)} \mathbb{1}_{A_{i}(r)} + \frac{1}{N^{2}(N)_{2}} \sum_{i=1}^{N} (\nu_{r}^{(i)})_{2} \sum_{j=1}^{N} (\nu_{r}^{(j)})^{2} \mathbb{1}_{A_{i}(r)} \\
\leq \frac{1}{N} c_{N}(r) N \varepsilon + \frac{1}{N^{2}(N)_{2}} \sum_{i=1}^{N} (\nu_{r}^{(i)})_{2} \sum_{j=1}^{N} (\nu_{r}^{(j)})_{2} \mathbb{1}_{A_{i}(r)} \\
+ \frac{1}{N^{2}(N)_{2}} \sum_{i=1}^{N} (\nu_{r}^{(i)})_{2} \sum_{j=1}^{N} (\nu_{r}^{(j)})_{2} \mathbb{1}_{A_{i}(r)} \\
\leq \varepsilon c_{N}(r) + \frac{1}{N^{2}} \sum_{i=1}^{N} \nu_{r}^{(i)} N \varepsilon c_{N}(r) + \frac{1}{N^{2}} c_{N}(r) N \\
= c_{N}(r) \left(2\varepsilon + \frac{1}{N} \right). \tag{54}$$

Hence, conditional on \mathcal{F}_{r-1} ,

$$\{c_N(r) \ge KD_N(r)\} \supseteq \left\{c_N(r) \le Kc_N(r)(2\varepsilon + N^{-1}) + K\sum_{i=1}^N \mathbb{1}_{A_i(r)^c}\right\}$$

$$= \left\{K^{-1} - 2\varepsilon - \frac{1}{N} \le \sum_{i=1}^N \mathbb{1}_{A_i(r)^c}c_N(r)^{-1}\right\}$$
(55)

where the ratio $\mathbb{1}_{A_i(r)^c}/c_N(r)$ is well-defined because

$$A_{i}(r)^{c} \Rightarrow c_{N}(r) := \frac{1}{(N)_{2}} \sum_{i=1}^{N} (\nu_{r}^{(j)})_{2} \ge \frac{1}{(N)_{2}} (\nu_{r}^{(j)})_{2} \ge \frac{\varepsilon(N\varepsilon - 1)}{N - 1} \ge \varepsilon \left(\varepsilon - \frac{1}{N}\right) > 0.$$
 (56)

... The rest of the proof follows the rest of Jere's note...

Other useful results

The following Lemma is taken from Koskela et al. (2018, Lemma 2), where the function is set to $f(t) = c_N(t)$, but the authors remark that the result holds for other choices of function.

Lemma 13. Let (\mathcal{F}_t) be the backwards-in-time filtration generated by the offspring counts $\nu_t^{(1:N)}$ at each generation t, and let f(t) be any deterministic function of $\nu_t^{(1:N)}$ that is non-negative and bounded. In particular, for all t there exists $B < \infty$ such that $0 \le f(t) \le B$. Then

$$\mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} f(r)\right] = \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}]\right]. \tag{57}$$

Proof. Define

$$M_s := \sum_{r=1}^{s} \{ f(r) - \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}] \}.$$
 (58)

It is easy to establish that (M_s) is a martingale with respect to (\mathcal{F}_s) , and $M_0 = 0$. Now fix $K \geq 1$ and note that $\tau_N(t) \wedge K$ is a bounded \mathcal{F}_t -stopping time. Hence we can apply the optional stopping theorem:

$$\mathbb{E}[M_{\tau_N(t)\wedge K}] = \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)\wedge K} \left\{ f(r) - \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}] \right\} \right] = \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)\wedge K} f(r)\right] - \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)\wedge K} \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}]\right] = 0. \quad (59)$$

Since this holds for all $K \geq 1$,

$$\lim_{K \to \infty} \mathbb{E}\left[\sum_{r=1}^{\tau_N(t) \wedge K} f(r)\right] = \lim_{K \to \infty} \mathbb{E}\left[\sum_{r=1}^{\tau_N(t) \wedge K} \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}]\right]. \tag{60}$$

The monotone convergence theorem allows the limit to pass inside the expectation on each side (since increasing K can only increase each sum, by possibly adding non-negative terms). Hence

$$\mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} f(r)\right] = \mathbb{E}\left[\lim_{K \to \infty} \sum_{r=1}^{\tau_N(t) \land K} f(r)\right] = \mathbb{E}\left[\lim_{K \to \infty} \sum_{r=1}^{\tau_N(t) \land K} \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}]\right] = \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}]\right]$$
(61)

which concludes the proof.

References

Brown, S., Jenkins, P. A., Johansen, A. M. and Koskela, J. (2021), 'Simple conditions for convergence of sequential Monte Carlo genealogies with applications', *Electronic Journal of Probability* **26**(1), 1–22.

Koskela, J., Jenkins, P. A., Johansen, A. M. and Spanò, D. (2018), Asymptotic genealogies of interacting particle systems with an application to sequential Monte Carlo, Mathematics e-print 1804.01811, ArXiv.