Hoja de problemas 5

10/10/2023

Curvas algebraicas

1. (a) Demonstrar que la parametrización

$$\mathbb{P}^1 \to V(Y^2Z - X^3), \qquad (t_0:t_1) \to (t_0^2t_1:t_0^3:t_1^3)$$

es biyectiva.

(b) Demonstrar la parametrización

$$\mathbb{P}^1 \to V(Y^2Z - X^3 - X^2Z), \qquad (t_0:t_1) \to (t_0^2t_1 - t_1^3:t_0^3 - t_0t_1^2:t_1^3)$$

es casi biyectiva.

- (c) Dibujar las dos curvas en la carta afín $Z \neq 0$.
- 2. Suponemos que char $(k) \neq 2$. Sea $F \in k[X_0, X_1, X_2]$ un polinomio de grado 2.
 - (a) Demonstrar que existe una mátriz simétrica

$$U = \begin{pmatrix} u_{00} & u_{01} & u_{02} \\ u_{10} & u_{11} & u_{12} \\ u_{20} & u_{21} & u_{22} \end{pmatrix}, \quad \forall i, j : u_{ij} = u_{ji},$$

tal que

$$F(X_0, X_1, X_2) = \begin{pmatrix} X_0 & X_1 & X_2 \end{pmatrix} \cdot U \cdot \begin{pmatrix} X_0 \\ X_1 \\ X_2 \end{pmatrix}$$

(b) Si $C = V(F) \subset \mathbb{P}^2$, demonstrar que hay nuevas coordinadas Y_0, Y_1, Y_2 tal que C es una de las siguentes curvas

$$V(Y_1^2), \qquad V(Y_0^2 + Y_1^2), \qquad V(Y_0^2 + Y_1^2 + Y_2^2).$$

Nuevas coordinadas Y_0,Y_1,Y_2 significa aquí que existe un mátrice invertible $P\in \mathrm{GL}(k,3)$ tal que

$$\begin{pmatrix} X_0 \\ X_1 \\ X_2 \end{pmatrix} = P \cdot \begin{pmatrix} Y_0 \\ Y_1 \\ Y_2 \end{pmatrix}.$$

3. Demonstrar

$$V(XY - Z^2) = \left\{ (t_0^2 : t_1^2 : t_0 t_1) \in \mathbb{P}^2 \mid (t_0 : t_1) \in \mathbb{P}^1 \right\}.$$

4. Sea $d \in \mathbb{Z}_{>1}$, y suponemos que char $(k) \nmid d$. Demonstrar que, existe un polinomio homogéneo $\Delta_d \in k[A_0, A_1, \ldots, A_d]$ en d+1 variables tal que si $F \in k[T_0, T_1]$ es un polinomio homogéneo de grado d en dos variables,

$$F(T_0, T_1) = a_0 T_0^d + a_1 T_0^{d-1} T_1 + \dots + a_d T_1^d,$$

entonces F tiene d raízes distintas si y solo si $(a_0:a_1:\cdots:a_d)\notin V(\Delta_d)$.