Mid Term Exam (Group MT-09) Machine Learning - 1 [CS/DS 864]

Darshan Bhat - MT2015038 Keerthan Pai K - MT2015053

October 19, 2016

Note: We have discussed with Group MT-03(Freeze Francis and Mohammed Haroon), but the representaions are different.

Q.1

The given description of H_i 's follows the structure of a feed-forward neural network with one hidden layer and one node in the output layer.

For given n input points, each H_i hypothesis class can produce $G_{H_i}(n)$ labellings. In the extreme case, the labellings produced are all distinct at the output of hidden layer. Now if H_1 can produce $G_{H_1}(n)$ different labellings of n input points, and H_2 can produce $G_{H_2}(n)$ different labellings independent of H_1 class ,then together we have $G_{H_1}(n) \times G_{H_2}(n)$ different possible labellings of n points at maximum.

With k hypothesis classes at the hidden layer, total number of distinct labellings is upper bounded by $\prod_{i=1}^k G_{H_i}(n)$. Now these labellings are fed to the output layer with H_0 hypothesis class. Each input can now be labelled with one of the $G_{H_0}(n)$ labellings. This implies a total of $G_{H_0}(n) \times \prod_{i=0}^k G_{H_i}(n)$ labellings are possible at the output layer.

That is,

$$G_H(n) \le \prod_{i=0}^k G_{H_i}(n)$$

We need to prove

$$d_H \leq 2D \log_2 D$$

given that,

$$D > e \log_2 D$$

Proof:

$$2^{d_H} \le \prod_{i=0}^k \left(\frac{ed_H}{d_{H_i}}\right)^{d_{H_i}}$$

$$\le \prod_{i=0}^k \left(\frac{ed_H}{2}\right)^{d_{H_i}}$$

$$\le \left(\frac{ed_H}{2}\right)^{\sum_{i=0}^k d_{H_i}}$$

$$2^{d_H} \le \left(\frac{ed_H}{2}\right)^D$$

$$d_H \le D\log_2\left(\frac{ed_H}{2}\right)$$

This holds for all valid d_H values. We will prove our claim by contradiction.

Let $d_H > 2D \log_2 D$ i.e. $d_H = 2D \log_2 D + 1$, and we know that $D > e \log_2 D$

$$\begin{split} \therefore 2D \log_2 D + 1 &\leq D \log_2 \left(\frac{e2D \log_2 D + e}{2}\right) \\ &\leq D \log_2 \left(\frac{2eD \log_2 D + 2eD \log_2 D}{2}\right) \\ &\leq D \log_2 \left(\frac{4eD \log_2 D}{2}\right) \\ &\leq D \log_2 \left(2eD \log_2 D\right) \\ &\Rightarrow 2D \log_2 D < D \log_2 \left(2eD \log_2 D\right) \\ &\geq 2\log_2 D < \log_2 2 + \log_2 e + \log_2 D + \log_2 (\log_2 D) \\ &\log_2 D < \log_2 2 + \log_2 e + \log_2 (\log_2 D) \\ &\Rightarrow \log_2 D \leq \log_2 (e \log_2 D) \\ &\Rightarrow D \leq e \log_2 D \end{split}$$

This contradicts with the given $D > e \log_2 D$.

Hence,

$$d_H \le 2D \log_2 D$$

2.a)We can prove that H matrix is idempotent.

$$H = X (X^T X)^{-1} X^T$$

$$H^2 = X (X^T X)^{-1} X^T X (X^T X)^{-1} X^T$$

$$H^2 = X (X^T X)^{-1} (X^T X) (X^T X)^{-1} X^T$$

$$H^2 = X (X^T X)^{-1} X^T$$

$$H^2 = H$$

Now consider,

$$Hx = \lambda x$$

$$H^{2}x = \lambda x$$

$$HHx = \lambda x$$

$$H\lambda x = \lambda x$$

$$\lambda Hx = \lambda x$$

$$\lambda^{2}x = \lambda x$$

$$(\lambda^{2} - \lambda)x = 0$$

Solving for λ gives $\lambda = 0$ and $\lambda = 1$.

2.b)

The proof is by induction on the size n of the matrix A. The result is trivial for n = 1. Now let n > 1 and assume the result is true for any matrix of size n - 1.

Let λ be the eigenvalue of A, that is, $det(\lambda I - A) = 0$, then $\lambda I - A$ must be non-invertible. This means that there exist a non-zero real vector u such that $Au = \lambda u$. We can always normalize u so that $u^T u = 1$. Thus, $\lambda = u^T A u$ is real. That is, the eigenvalues of a symmetric matrix are always real.

Now consider the eigenvalue λ_1 and an associated eigenvector u_1 . Using the Gram-Schmidt orthogonalization procedure, we can compute a $n \times (n-1)$ matrix V_1 such that $[u_1, V_1]$ is orthogonal. By induction, we can write the $(n-1) \times (n-1)$ symmetric matrix $V_1^T A V_1$ as $Q_1 \Lambda_1 Q_1^T$, where Q_1 is a $(n-1) \times (n-1)$ matrix of eigenvectors, and $\Lambda_1 = \operatorname{diag}(\lambda_2, \ldots, \lambda_n)$ are the n-1 eigenvalues of $V_1^T A V_1$. Finally, we define the $n \times (n-1)$ matrix $U_1 := V_1 Q_1$. By construction the matrix $U := [u_1, U_1]$ is orthogonal.

We have

$$U^TAU = \left(\begin{array}{c} u_1^T \\ U_1^T \end{array}\right) A \left(\begin{array}{cc} u_1 & U_1 \end{array}\right) = \left(\begin{array}{cc} u_1^TAu_1 & u_1^TAU_1 \\ U_1^TAu_1 & U_1^TAU_1 \end{array}\right) = \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \Lambda_1 \end{array}\right),$$

where we have exploited the fact that $U_1^T A u_1 = \lambda_1 U_1^T u_1 = 0$, and $U_1^T A U_1 = \lambda_1$.

We have exhibited an orthogonal $n \times n$ matrix U such that U^TAU is diagonal. This proves the theorem.

2.c)

The trace of a matrix is the sum of its diagonal entries. This has the property that Tr(AB) = Tr(BA) for any two matrices of same size. X^TX is a $(p+1)\times(p+1)$ matrix.

Now consider,

$$\operatorname{Tr}(H) = \operatorname{Tr}(X(X^T X)^{-1} X^T)$$

$$= \operatorname{Tr}((X^T X)^{-1} X^T X)$$

$$= \operatorname{Tr}(I_{p+1})$$

$$= p+1$$

$$\operatorname{Tr}(H) = \lambda_1 + \lambda_2 + \dots + \lambda_{p+1}$$

Since $\lambda \in 0,1$, we can conclude that number of eigen values which are 1's is p+1.

To show that X^tX is positive definite. Consider,

$$v^t X^t X v = (Xv)^t (Xv) \tag{1}$$

Let Xv = z with the dimension $n \times 1$.

$$(1) \Rightarrow z^t z = ||z||^2 > 0$$

So, $X^tX > 0$ and thus it is positive semi definite.

We can model linear regression as as a system of linear equations. The vector equation is equivalent to a matrix equation of the form

$$X\mathbf{w} = y$$

where X is an $n \times p$ matrix, w is a column vector with p entries, and y is a column vector with n entries.

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Solution for such a system exist only if \mathbf{y} is in the column space of \mathbf{X} . It may happend that there exist no solution. In such case we can find the best \mathbf{w} such that $\mathbf{X}\mathbf{w}$ is closest to \mathbf{b} by using least squares approximation.

We know that Xw is in the column space of X and y is not in the plane of Xw. This can be achieved only when Xw is the projection of y

Figure 1:

$$\therefore \mathbf{X}\mathbf{w} \perp (y - \mathbf{X}\mathbf{w})$$

$$(\mathbf{X}\mathbf{w})^t \quad (y - \mathbf{X}\mathbf{w}) = 0$$

$$\mathbf{w}^t \mathbf{X}^t \quad (y - \mathbf{X}\mathbf{w}) = 0$$

$$\mathbf{w}^t \mathbf{X}^t y - \mathbf{w}^t \mathbf{X}^t \mathbf{X} \mathbf{w} = 0$$

$$\mathbf{w}^t \mathbf{X}^t y = \mathbf{w}^t \mathbf{X}^t \mathbf{X} \mathbf{w}$$

$$\mathbf{X}^t y = \mathbf{X}^t \mathbf{X} \mathbf{w}$$

$$\mathbf{w} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t y$$

Alternatively, the closed form solution can be derived using the positive semidefinite property of the matrix X^TX . Consider the loss function,

$$S(w) = \|\mathbf{y} - \mathbf{X}w\|^{2}$$

$$= (\mathbf{y} - \mathbf{X}w)^{\mathrm{T}}(\mathbf{y} - \mathbf{X}w)$$

$$= \mathbf{y}^{\mathrm{T}}\mathbf{y} - w^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{y} - \mathbf{y}^{\mathrm{T}}\mathbf{X}w + w^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{X}w$$

When $\mathbf{X}^{\mathrm{T}}\mathbf{X}$ is positive definite, the quantity

$$S(\boldsymbol{w}) = \mathbf{v}^{\mathrm{T}}\mathbf{v} - 2\boldsymbol{w}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{v} + \boldsymbol{w}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{X}\boldsymbol{w}$$

can be written as

$$\langle \boldsymbol{w}, \boldsymbol{w} \rangle - 2 \langle \boldsymbol{w}, (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y} \rangle + \langle (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}, (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y} \rangle + C,$$

where C depends only on y and X, and $\langle \cdot, \cdot \rangle$ is the inner product defined by

$$\langle x, y \rangle = x^{\mathrm{T}}(\mathbf{X}^{\mathrm{T}}\mathbf{X})y.$$

It follows that $S(\boldsymbol{w})$ is equal to

$$\langle \boldsymbol{w} - (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}, \boldsymbol{w} - (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y} \rangle + C$$

and therefore minimized exactly when

$$\boldsymbol{w} - (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y} = 0.$$

Hence the the best value of w is,

$$\boldsymbol{w} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

4.a) y is of the form $y = g(x) + \epsilon_x$.

Let
$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

So,
$$Y = g + \epsilon$$
 (1)

$$\text{where} \quad \mathbf{g} = \begin{bmatrix} g(x_1) \\ g(x_2) \\ \vdots \\ g(x_n) \end{bmatrix}, \quad \epsilon = \begin{bmatrix} \epsilon_{x_1} \\ \epsilon_{x_2} \\ \vdots \\ \epsilon_{x_n} \end{bmatrix}$$

$$E = (Y^T - w^T X^T)(Y - Xw)$$

= $Y^T Y - Y^T Xw - w^T X^T Y + w^T X^T Xw$

To get optimal weights \hat{w} , $\frac{\delta E}{\delta w} = 0$

$$i.e. - X^T Y - X^T Y + 2X^T X \hat{w} = 0$$
$$X^T X \hat{w} = X^T Y$$
$$\therefore \hat{w} = (X^T X)^{-1} X^T Y$$

From equation (1),

$$\hat{w} = (X^T X)^{-1} X^T (g + \epsilon)$$

Estimated output $\hat{y} = X\hat{w}$

$$\hat{y} = X(X^T X)^{-1} X^T g + X(X^T X)^{-1} X^T \epsilon$$

From the given data, $g = Xw^*$ So,

$$\hat{Y} = X(X^T X)^{-1} X^T (X w^*) + X(X^T X)^{-1} X^T \epsilon$$

$$\hat{Y} = X w * + \hat{H} \epsilon$$
(2)

From the given data,

$$y = x^T w^* + \epsilon$$

From (2) \hat{y} at a given point x will be

$$\hat{y} = x^T w^* + x^T (X^T X)^{-1} X^T \epsilon$$

$$y - \hat{y} = \epsilon - x^T (X^T X)^{-1} X^T \epsilon$$

4.b)Let

$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

We have,

$$x^{T}Ax = \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{bmatrix} \begin{bmatrix} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} \\ \vdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{nn}x_{n} \end{bmatrix}$$

$$= \frac{a_{11}x_{1}^{2} + a_{12}x_{1}x_{2} + \cdots + a_{1n}x_{1}x_{n} + a_{21}x_{2}x_{1} + a_{22}x_{2}^{2} + \cdots + a_{2n}x_{2}x_{n}}{+ \cdots + a_{n1}x_{n}x_{1} + \cdots + a_{nn}x_{n}^{2}}$$

$$(1)$$

Also,

$$xx^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{bmatrix} = \begin{bmatrix} x_{1}^{2} & x_{1}x_{2} & \cdots & x_{1}x_{n} \\ x_{2}x_{1} & x_{2}^{2} & \cdots & x_{2}x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}x_{1} & x_{n}x_{2} & \cdots & x_{n}^{2} \end{bmatrix}$$

$$xx^{T}A = \begin{bmatrix} x_{1}^{2} & x_{1}x_{2} & \cdots & x_{1}x_{n} \\ x_{2}x_{1} & x_{2}^{2} & \cdots & x_{2}x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}x_{1} & x_{n}x_{2} & \cdots & x_{n}^{2} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$a_{11}x_{1}^{2} + a_{21}x_{1}x_{2} + \cdots + a_{n1}x_{1}x_{n} + a_{12}x_{2}x_{1} + a_{22}x_{2}^{2} + \cdots + a_{nn}x_{n}^{2}x_{n} + a_{nn}x_{n}^{2}x_{n}^{2} + \cdots + a_{nn}x_{n}^{2}x_{n}^{2}x_{n}^{2} + \cdots + a_{nn}x_{n}^{2}x_{n}^{2} + \cdots + a_{nn}x_{n}^{2}x_{n}^{2}x_{n}^{2} + \cdots + a_{nn}x_{n}^{2}x_{n}^{2} + \cdots + a_{nn}x_{n}^{2}x_{n}^{2}x_{n}^{2} + \cdots + a_{nn}x_{n}^{2}x_{n}^{2} + \cdots + a_{nn}x_{n}^{2$$

$$trace(xx^{T}A) = \begin{cases} a_{11}x_{1}^{2} + a_{21}x_{1}x_{2} + \dots + a_{n1}x_{1}x_{n} + a_{12}x_{2}x_{1} + a_{22}x_{2}^{2} + \dots + a_{n2}x_{2}x_{n} \\ + \dots + a_{1n}x_{n}x_{1} + \dots + a_{nn}x_{n}^{2} \end{cases}$$
(2)

Since A is symmetric, $a_{ij} = a_{ji}$

So, (1) = (2) that is,

$$x^T A x = tr(x x^T A)$$

Since Expectation E(.) and trace tr(.) both are linear operators,

$$tr[E[M]] = \sum_{i} E[M_{ii}]$$
$$= E[\sum_{i} M_{ii}]$$
$$= E[tr[M]]$$

4.c) x is a d-dimensional vector in R^d . We need to estimate the covariance matrix $E_D[xx^T]$ where expectation is over all possible datasets which is simply the expectation of xx^T in the domain of x. The matrix xx^T will be of the order $d \times d$.

$$xx^{T} = \begin{bmatrix} x_{1}^{2} & x_{1}x_{2} & \cdots & x_{1}x_{d} \\ x_{2}x_{1} & x_{2}^{2} & \cdots & x_{2}x_{d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d}x_{1} & x_{p}x_{2} & \cdots & x_{d}^{2} \end{bmatrix}$$

$$E[xx^{T}] = \begin{bmatrix} E[x_{1}^{2}] & E[x_{1}x_{2}] & \cdots & E[x_{1}x_{d}] \\ E[x_{2}x_{1}] & E[x_{2}^{2}] & \cdots & E[x_{2}x_{d}] \\ \vdots & \vdots & \ddots & \vdots \\ E[x_{d}x_{1}] & E[x_{p}x_{2}] & \cdots & E[x_{d}^{2}] \end{bmatrix}$$

This matrix can be estimated by X^TX , where X is the $n \times d$ matrix. Each row of X is one sampled d-dimensional vector x_i . So we have n x_i samples arranged row wise in X. So,

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix}$$
$$X^{T} = \begin{bmatrix} x_{11} & x_{21} & \cdots & x_{n1} \\ x_{12} & x_{22} & \cdots & x_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn2} \end{bmatrix}$$

$$X^{T}X_{d\times d} = \begin{bmatrix} (x_{11}^{2} + x_{21}^{2} + x_{31}^{2} + \cdots) & (x_{11}x_{12} + x_{21}x_{22} + \cdots) & \cdots \\ (x_{12}x_{11} + x_{22}^{2} + x_{32}x_{31} + \cdots) (& x_{12}^{2} + x_{22}^{2} + x_{32}^{2} + \cdots) & \cdots \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

The i, j^{th} entry in X^TX will be

$$[X^T X]_{ij} = \sum_{k=1}^n x_{ki} x_{kj}$$

We see here that the i, j^{th} entry in X^TX is filled with i, j^{th} entry in $[x_ix_j^T]$ matrix fori = 1...n i.e. we sample independent points from R^d space with some probability distribution (iid points). we calculate the underlying xx^T matrix for each of these points. Then we add every i, j^{th} from n xx^T matrices and copy to $[X^TX]_{ij}$ entry. Since the points are iid, clearly we are taking an average of $[xx^T]_{ij}$ with these samples.

$$\begin{bmatrix} i & i & i & i & i & i \\ a_{ij}^1 & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{ij}^2 & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \qquad \begin{bmatrix} i & i & i & i \\ a_{ij}^n & \vdots & \vdots & \vdots & \vdots \\ a_{ij}^n & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \qquad \begin{bmatrix} X^T X \end{bmatrix} \qquad = \sum_{k=1}^n a_{ij}^k$$

from the law of large numbers $[X^TX]$ should converge to $nE_D[xx^T]$. From this we get the bound,

$$nE_D[xx^T] = (1 + O(\sqrt[2]{n}))X^T X$$

 $\implies nE_D[xx^T] \cdot (X^T X)^{-1} = (1 + O(\sqrt[2]{n}))I$

4.d) The true risk of linear regression with square error loss function is given by,

$$E_{D,\epsilon} \left[\left\| y - \hat{y} \right\|^2 \right]$$

Consider

$$E_{D} \left[\| y - \hat{y} \|^{2} \right] = E_{D} \left[(y - \hat{y})^{T} (y - \hat{y}) \right]$$

$$= E_{D} \left[(e - x^{T} (X^{T} X)^{-1} X^{T} \epsilon)^{T} (e - x^{T} (X^{T} X)^{-1} X^{T} \epsilon) \right]$$

$$= E_{D} \left[(e^{T} - \epsilon^{T} X (X^{T} X)^{-1} x) (e - x^{T} (X^{T} X)^{-1} X^{T} \epsilon) \right]$$

$$= E_{D} \left[e^{T} e - e^{T} x^{T} (X^{T} X)^{-1} X^{T} \epsilon - \epsilon^{T} X (X^{T} X)^{-1} x e + \epsilon^{T} X (X^{T} X)^{-1} x x^{T} (X^{T} X)^{-1} X^{T} \epsilon \right]$$

$$= E_{D} \left[tr \begin{bmatrix} e^{T} e - e^{T} x^{T} (X^{T} X)^{-1} X^{T} \epsilon - \epsilon^{T} X (X^{T} X)^{-1} x e \\ + \epsilon^{T} X (X^{T} X)^{-1} x x^{T} (X^{T} X)^{-1} X^{T} \epsilon \end{bmatrix} \right]$$

$$(1)$$

Consider,

$$tr\left[E_{D}\left[e^{T}x^{T}(X^{T}X)^{-1}X^{T}\epsilon\right]\right] = tr\left[E_{D}\left[e^{T}x^{T}\right](X^{T}X)^{-1}X^{T}\epsilon\right]$$

$$= tr\left[E_{D}\left[e^{T}\right]E_{D}\left[x^{T}\right](X^{T}X)^{-1}X^{T}\epsilon\right]$$

$$= tr\left[0\right] \qquad (\because E_{D}\left[e^{T}\right] = 0)$$

$$= 0$$

Similarly,

$$tr\left[E_D\left[\epsilon^T X(X^T X)^{-1} x e\right]\right] = tr\left[\epsilon^T X(X^T X)^{-1} E_D\left[x\right] E_D\left[e\right]\right]$$
$$= 0$$

Therefore,

$$(1) = E_D \left[tr \left[e^T e + \epsilon^T X (X^T X)^{-1} x x^T (X^T X)^{-1} X^T \epsilon \right] \right]$$

$$= \sigma^2 + E_D \left[tr \left[\underbrace{\epsilon^T X (X^T X)^{-1}}_{} x x^T (X^T X)^{-1} X^T \epsilon \right] \right]$$

$$= \sigma^2 + E_D \left[tr \left[x x^T (X^T X)^{-1} X^T \epsilon \epsilon^T X (X^T X)^{-1} \right] \right]$$

$$= \sigma^2 + tr \left[E_D \left[x x^T \right] (X^T X)^{-1} X^T \epsilon \epsilon^T X (X^T X)^{-1} \right]$$

Now,

$$E_{\epsilon} \left[E_{D} \left[\| y - \hat{y} \|^{2} \right] \right] = \sigma^{2} + E_{\epsilon} \left[tr \left[E_{D} \left[xx^{T} \right] (X^{T}X)^{-1} X^{T} \epsilon \epsilon^{T} X (X^{T}X)^{-1} \right] \right]$$

$$= \sigma^{2} + tr \left[E_{D} \left[xx^{T} \right] (X^{T}X)^{-1} X^{T} E_{\epsilon} \left[\epsilon \epsilon^{T} \right] X (X^{T}X)^{-1} \right]$$

$$= \sigma^{2} + tr \left[E_{D} \left[xx^{T} \right] (X^{T}X)^{-1} X^{T} (\sigma^{2}I) X (X^{T}X)^{-1} \right]$$

$$= \sigma^{2} + \frac{\sigma^{2}}{n} tr \left[nE_{D} \left[xx^{T} \right] (X^{T}X)^{-1} X^{T} X (X^{T}X)^{-1} \right]$$

$$= \sigma^{2} + \frac{\sigma^{2}}{n} tr \left[nE_{D} \left[xx^{T} \right] (X^{T}X)^{-1} \right]$$

$$= \sigma^{2} + \frac{\sigma^{2}}{n} \left[tr \left(1 + o \left(\sqrt{n} \right) (d + 1) \right) \right]$$

$$= \sigma^{2} + \frac{\sigma^{2}}{n} \left(d + 1 + o \left(\sqrt{n} \right) (d + 1) \right)$$

$$= \sigma^{2} \left(1 + \frac{d+1}{n} + o \left(\frac{d+1}{\sqrt{n}} \right) \right)$$

Bounding $R(\hat{h})$ under $R_v(\hat{h})$ and intern $R(\hat{h_l})$:

We are selecting \hat{h} from the set $H = \{\hat{h_1}, \hat{h_2}, \dots, \hat{h_l}, \dots, \hat{h_k}\}$ for which $R_v(\hat{h_i})$ is the minimum. This is same as ERM principle for which the VC theorem bound holds.

So,

$$P\left(|R(\hat{h}) - R_v(\hat{h})| \ge \epsilon\right) \le 4G_H(2n)e^{-2\epsilon^2(1-\alpha)n}$$

 $G_H(2n)$ is bounded by |H| = k.

$$P\left(|R(\hat{h}) - R_v(\hat{h})| \ge \epsilon\right) \le 4ke^{-2\epsilon^2(1-\alpha)n}$$

Let $4ke^{-2\epsilon^2(1-\alpha)n} = \frac{\delta}{2}$.

With probability of atleast $1 - \frac{\delta}{2}$,

$$R(\hat{h}) \le R_v(\hat{h}) + \epsilon$$

Since $R_v(\hat{h}_l) \leq R_v(\hat{h})$,

$$R(\hat{h}) \le R_v(\hat{h_l}) + \epsilon \tag{1}$$

Bounding $R_v(\hat{h_l})$ in terms of $R(\hat{h_l})$:

Since ERM principle holds for this case also,

$$P\left(|R_v(\hat{h_l}) - R(\hat{h_l})| \ge \epsilon\right) \le 4ke^{-2\epsilon^2(1-\alpha)n}$$

So with the probability of atleast $1 - \frac{\delta}{2}$,

$$R_v(\hat{h_l}) \le R(\hat{h_l}) + \epsilon \tag{2}$$

Bounding $R(\hat{h_l})$ in terms of $R_T(\hat{h_l})$ in turn by $R_T(\hat{h^*})$:

We selected \hat{h}_l from H_l class by ERM principle with training set risk as empherical risk. Here $G_{H_l}(2n)$ is bounded by c_l ,

$$\Rightarrow P\left(|R(\hat{h_l}) - R_T(\hat{h_l})| \ge \epsilon'\right) \le 4c_l e^{-2(\epsilon')^2 \alpha n}$$

Let $4c_l e^{-2(\epsilon')^2(\alpha)n}$ be $\frac{\delta}{2}$.

Then with probability of atleast $\frac{\delta}{2}$,

$$R(\hat{h_l}) \le R_T(\hat{h_l}) + \epsilon'$$

Since
$$R_T(\hat{h}_l) \le R_T(h^*)$$
,

$$R(\hat{h}_l) \le R_T(h^*) + \epsilon' \tag{3}$$

Bounding $R_T(h^*)$ using $R(h^*)$:

Again with V.C, theorem,

$$P(|R(h^*) - R_T(h^*)| \ge \epsilon') \le 4c_l e^{-2(\epsilon')^2 \alpha n}$$

Then with probability of atleast $\frac{\delta}{2}$,

$$R_T(h^*) \le R(h^*) + \epsilon' \tag{4}$$

From (1),(2),(3) and (4)

$$R(\hat{h}) \le R(h^*) + 2\epsilon + 2\epsilon' \tag{5}$$

To calculate ϵ *and* ϵ' :

$$\frac{\delta}{2} = 4ke^{-2\epsilon^2(1-\alpha)n}$$

$$\epsilon = \sqrt{\frac{1}{2(1-\alpha)n}.ln\frac{8k}{\delta}}$$

$$\frac{\delta}{2} = 4c_l e^{-2(\epsilon')^2(\alpha)n}$$

$$\epsilon' = \sqrt{\frac{1}{2(1-\alpha)n}.ln\frac{8c_l}{\delta}}$$
(6)

$$\epsilon' = \sqrt{\frac{1}{2(\alpha)n} . \ln \frac{8c_l}{\delta}} \tag{7}$$

Substituting (6) and (7) in (5),

$$R(\hat{h}) \le R(\hat{h^*}) + 2\sqrt{\frac{1}{2(1-\alpha)n} . ln\frac{8k}{\delta}} + 2\sqrt{\frac{1}{2(\alpha)n} . ln\frac{8c_l}{\delta}}$$
(8)

Both validation set equations $\{(1),(2)\}$ and training set equations $\{(3),(4)\}$ together hold with probability

$$(1 - \frac{\delta}{2}) \cdot (1 - \frac{\delta}{2}) = (1 - \frac{\delta}{2})^2 = 1 + \frac{\delta^2}{4} - 2\frac{\delta}{2} \ge (1 - \delta)$$

With probability at least $(1 - \delta)$ equation (8) holds.