Informatica Teorica

Cardinalità transfinite

Pidgeonhole principle

teorema:

dati due insiemi A e B tali che

$$0 < |\mathbf{B}| < |\mathbf{A}| < \infty$$

non esiste una funzione f: A→B che sia totale e iniettiva

dimostrazione:

basata sulla cardinalità di B e per induzione

Pidgeonhole principle

Pidgeonhole principle

Dimostrazione (pidgeonhole principle)

- dimostrazione per induzione
 - passo base: |B|=1
 - passo induttivo: |B|>1

passo base (|B|=1)
B={b}, |A|>1, es. A={a₁,a₂}
se f è totale, allora f(a₁)=b e f(a₂)=b
allora f non è iniettiva perché |f⁻¹(b)|>1

Dimostrazione (pidgeonhole principle)

• passo induttivo: |B|>1 supponiamo sia vero per |B| = n ed $|A| \ge n+1$ dimostriamo che è vero per |B| = n+1 e $|A| \ge n+2$ ipotizziamo per assurdo che esista una funzione totale iniettiva f e scegliamo un qualunque elemento b di B se $|f^{-1}(b)| \ge 2 \Rightarrow$ contraddizione \Rightarrow teorema dimostrato se $|f^{-1}(b)| \le 1$ consideriamo $A'=A-\{f^{-1}(b)\}\ e\ B'=B-\{b\}$ $|A'| \ge n+1 > |B'| = n$ applichiamo l'ipotesi induttiva ⇒ contraddizione

Considerazioni sul pidgeonhole principle

- il pidgeonhole principle mette in relazione la numerosità degli insiemi con le proprietà delle funzioni che hanno gli insiemi come domini o codomini
- in particolare se esiste una funzione biettiva
 f: A→B
 - esiste una funzione totale ed iniettiva f: $A \rightarrow B$
 - esiste una funzione totale ed iniettiva f^{-1} : $B \rightarrow A$
 - per il pidgeonhole principle non può essere |B| > |A|
 né |A| > |B|

Cardinalità di insiemi infiniti

- due insiemi sono *equinumerosi* se esiste una biiezione tra essi
- la relazione di equinumerosità è una relazione di equivalenza
- possiamo ora dare una definizione rigorosa di cardinalità di un insieme finito A:

$$|A|=0$$
 se $A=\emptyset$
 $|A|=n$ se A è equinumeroso a $\{0, 1, ..., n-1\}$

Numerabilità

- insiemi numerabili
 - un insieme è *numerabile* se è equinumeroso a N
 - un insieme ha cardinalità *aleph zero* (\aleph_0) se è equinumeroso a N, cioè se è numerabile
- insiemi contabili
 - un insieme è *contabile* se è finito o numerabile
 - sottoinsiemi di insiemi contabili sono contabili

Numerabilità:
$$\aleph_0 + k = \aleph_0$$

teorema:

per ogni intero k, l'insieme N_k degli interi maggiori o uguali a k è numerabile

dimostrazione:

biiezione con N

$$N_k$$
: k+0 k+1 k+2 k+3 k+4 ...

Numerabilità degli interi relativi

teorema:

l'insieme Z degli interi relativi è numerabile dimostrazione:

bijezione con N

Z: 0 1 -1 2 -2 3 -3 4 -4 ...

N: 0 1 2 3 4 5 6 7 8 ...

Numerabilità dei numeri pari $(\aleph_0 + \aleph_0 = \aleph_0)$

teorema:

l'insieme P dei numeri pari è numerabile dimostrazione:

biiezione con N

P: 0 2 4 6 8 10 12 14 16 ...

N: 0 1 2 3 4 5 6 7 8 ...

Numerabilità: $\aleph_0 \times \aleph_0 = \aleph_0$

teorema:

l'insieme N² delle coppie di naturali è numerabile dimostrazione:

tecnica usata da Cantor per mostrare la numerabilità di Q

0	1	2	3	4
0.0	1	3	6	10
1.2	4	7	11	
2,5	8	12		osservazione:
3,9	13			per ogni n∈N, se A è numerabile,
4 14				anche A ⁿ è numerabile

per dimostrare la non numerabilità di un insieme si usa la *tecnica di diagonalizzazione* di Cantor

teorema: R non è numerabile

dimostrazione:

- 1. dimostriamo che R è equinumeroso a (0,1)
- 2. dimostriamo che (0,1) non è numerabile

(0,1) e R sono equinumerosi: una biiezione è data, per esempio, dalla funzione $y = \frac{1}{(2^{x}+1)}$

- Supponiamo per assurdo che una enumerazione di (0,1) esista, denotiamo con Φ_i l'iesimo elemento di (0,1)
- consideriamo r∈(0,1) che ha come i-esima cifra della mantissa (i=1, 2, ...) un valore diverso da 0, da 9, e dal valore della i-esima cifra di Φ_i

cifre delle mantisse di Φ_i :

r, detto *elemento diagonale*, non fa parte della enumerazione, in quanto differisce da ogni elemento della enumerazione in almeno una cifra, e ciò è assurdo

Nota sulla scelta delle cifre di r

- le cifre dell'elemento diagonale **r** sono scelte in modo da essere diverse da 0 e da 9
 - non si può generare la mantissa 0000... che non appartiene all'insieme
 - non si possono generare numeri terminanti con 9 periodico che corrispondono ad una seconda rappresentazione di un numero non-periodico
 - 0.999... coincide con 1
 - 0.123999... coincide con 0.124

teorema: P(N) non è numerabile

dimostrazione:

supponiamo per assurdo che lo sia $sia\ P_1,\ P_2,\ \ldots,\ P_i,\ \ldots$ una sua enumerazione a ciascun P_i associamo la sequenza $b_{i0},\ b_{i1},\ b_{i2},\ \ldots,\ dove$

$$b_{ij}=0 \text{ se } j \notin P_i$$

 $b_{ij}=1 \text{ se } j \in P_i$

costruiamo ora l'insieme \mathbf{P} (diagonale) con sequenza $p_0, p_1, ..., p_k,...$ dove

$$p_k = 1 - b_{kk}$$

P differisce da ogni P_i, in quanto

$$i \in P \Leftrightarrow i \notin P_i$$

osservazione: la non numerabilità di P(N) vale anche per l'insieme delle parti di ogni insieme di cardinalità \aleph_0

Cardinalità transfinite

teorema: R è equinumeroso a P(N) ed è quindi continuo

dimostrazione:

è sufficiente mostrare che la proprietà vale per i reali in (0,1), vista la biiezione tra R e (0,1) uso della rappresentazione binaria della mantissa e del concetto di funzione caratteristica

Cardinalità transfinite – notazione aleph

- se un insieme finito ha cardinalità n, il suo insieme delle parti ha cardinalità 2^n
- analogamente, se un insieme infinito ha cardinalità κ_0 denotiamo con 2^{κ_0} la cardinalità del suo insieme delle parti
- gli insiemi con cardinalità 2^{\aleph_0} sono detti continui
- Cantor ha dimostrato che esistono infiniti cardinali transfiniti (\aleph_0 , 2^{\aleph_0} , $2^{2\aleph_0}$, ...)

Conseguenze della teoria

- vedremo come considerazioni relative alla cardinalità di insiemi infiniti daranno interessanti spunti sull'idea di calcolabilità
- per il momento ci limitiamo alla seguente riflessione
 - un linguaggio è un sottoinsieme di Σ^*
 - qual è la cardinalità di Σ^* ?
 - qual è la cardinalità di $P(\Sigma^*)$?
 - quanti linguaggi esistono?
 - un programma in un linguaggio di programmazione qualsiasi può essere considerato come una sequenza finita di caratteri
 - quanti sono i possibili programmi che possiamo scrivere?