

BSTA 670:

Bayesian Computation: MCMC Sampling, Integration, and Approximate Inference

Arman Oganisian aoganisi@upenn.edu April 23, 2019

Overview of Bayesian Inference

- Parameter vector $\theta \in \mathbb{R}^p$ and data D.
- $\mathcal{L}(\theta|D) = p(D|\theta)$ with prior $p(\theta)$ over parameters space.

$$p(heta|D) = C \cdot p(D| heta)p(heta) \ \propto p(D| heta)p(heta)$$

- Inference engines:
 - \circ Frequentist: **optimization methods** for maximizing $p(D|\theta)$.
 - \circ Bayesian: sampling methods for drawing from $p(\theta|D)$.
 - Difficult since C unknown.

Gibbs Sampler for Linear Regression

- Data $D=(y_i,x_i)_{1:n}$ and $\theta=(\beta,\phi)$, where $x_i,\beta\in\mathbb{R}^{p+1}$.
- $ullet p(D| heta) = \prod_i p(y_i|x_i, heta) \stackrel{d}{=} \prod_i N(y_i \ ; \ x_i'eta,\phi).$
- If we use joint prior $p(\theta) = p(\beta)p(\phi) = N_{p+1}(0,I)IG(\alpha,\lambda)$, then

$$\circ \ p(eta|\phi,D) = N_{p+1}\Big((I + rac{1}{\phi}X'X)^{-1}(rac{1}{\phi}X'y), (I + rac{1}{\phi}X'X)^{-1}\Big).$$

$$\circ \ p(\phi|eta,D) = IG(lpha+n/2,\lambda+rac{1}{2}(y-Xeta)'(y-Xeta))$$

• Gibbs Sampling: sample from these two conditionals in alternating fashion

$$egin{align} \circ \; eta^{(t)} | \phi^{(t-1)} &\sim N_{p+1} \Big((I + rac{1}{\phi^{(t-1)}} X' X)^{-1} (rac{1}{\phi^{(t-1)}} X' y), (I + rac{1}{\phi^{(t-1)}} X' X)^{-1} \Big) \ &\cdot \ &\circ \; \phi^{(t)} | eta^{(t)} &\sim IG(lpha + n/2, \lambda + rac{1}{2} (y - X eta^{(t)})' (y - X eta^{(t)})). \ \end{pmatrix}$$

• Claim: The samples $\{\beta^{(t)}, \phi^{(t)}\}_{1:T}$ converge to draws from the posterior $p(\beta, \phi|D)$.

Gibbs Sampling

```
for( i in 2:iter) {
   post_cov <- solve(Imat + (1/phi[i-1]) * xtx)
   post_mean <- post_cov %*% ((1/phi[i-1]) * t(X) %*% y)
   beta[, i] <- MASS::mvrnorm(1, post_mean , post_cov )

   post_rate <- 100 + .5*sum((y - X %*% beta[, i, drop=F])^2)
   post_shape <- 5 + n/2
   phi[i] <- invgamma::rinvgamma(1, post_shape, rate = post_rate)
}</pre>
```

- We can plot the sequences or "chains": $\{\beta^{(t)}\}_{1:T}$ and $\{\phi^{(t)}\}_{1:T}$.
- These are the Monte Carlo Markov Chains.
 - Monte Carlo: each element of the chain is randomly drawn/simulated.
 - Markov: $\theta^{(t)}$ only depends on the previous element $\theta^{(t-1)}$.

Gibbs Sampling

MCMC - Checks and Limitations of Gibbs

- After sampling, must conduct visual and formal checks for
 - Convergence.
 - Autocorrelation.
 - Sensitivity to initial values.
- Gibbs requires known conditional posteriors: $p(\beta|\phi, D)$, $p(\phi|\beta, D)$.
- In models without conjugacy, these are unknown all we know is the form of $p(\theta|D)$ up to a proportionality constant.

Sampling for a Logistic Regression

• Data $D=(y_i,x_i)_{1:n}$, where $x_i\in\mathbb{R}^{p+1}$ and $y_i\in\{0,1\}$.

$$p(D| heta) \stackrel{d}{=} \prod_{i} Berig(\ y_i \ ; \ expit(x_i' heta)ig)$$

$$p(heta) \stackrel{d}{=} N_{p+1}(0,I)$$

• Posterior is unknown:

$$p(heta|D) \propto N_{p+1}(0,I) \prod_i Berig(\ y_i \ ; \ expit(x_i' heta)ig)$$

• Gibbs can't be used here.

The Metropolis-Hastings Sampler

Along with initial value, $\theta^{(0)}$, MH algorithm requires two inputs:

• Unnormalized target density, $\tilde{p}(\theta|D)$:

$$p(heta|D) = C \cdot ilde{p}(heta|D) = C \cdot Berig(expit(x_i' heta)ig)N_{p+1}(0,I)$$

• Jumping Distribution:

$$egin{aligned} Q(heta^*| heta) &= N_{p+1}(heta, au) \ & ext{for } t = 1 \ to \ T \ ext{do} \ & heta^* \sim N(heta^{(t-1)}, au) \ & lpha &= rac{ ilde{p}(heta^*|D)}{ ilde{p}(heta^{(t-1)}|D)} \ & U \sim Ber(p = min(1,lpha)) \ & ext{if } U == 1 \ ext{then} \ & heta^{(t)} \leftarrow heta^* \ & ext{else} \ & heta^{(t)} \leftarrow heta^{(t-1)} \ & ext{end} \ & ext{end} \end{aligned}$$

MH for Univariate Logit Model

```
# target log density
p tilde <- function(y, x, theta){</pre>
  p <- invlogit( x %*% theta)
  lik <- sum(dbinom(y, 1, p, log = T))
  pr <- sum(dnorm(theta, 0, 100, log = T))
  eval <- lik + pr
  return(eval)
iter <- 1000 # number of iterations
tau <- .1 # proposal sd
theta <- matrix(NA, nrow = 2, ncol = iter) # for storing draws
theta[,1] \leftarrow c(0,0) \# initialize
for(i in 2:iter){
  # propose theta
  theta star \leftarrow MASS::mvrnorm(1, theta[,i-1], tau*diag(2))
  # accept/reject
  prop eval <- p tilde(y, x, theta star)</pre>
  curr eval <- p tilde(y, x, theta[,i-1, drop=F])
  ratio <- exp( prop eval - curr eval )
  U \leftarrow rbinom(n = 1, size = 1, prob = min(c(1, ratio)))
  theta[, i] <- U*theta star + (1-U)*theta[, i-1]
```

MH for Univariate Logit Model

Extensions

- Proposal distributions for constrained variables.
 - Using non-Gaussian proposals or *log*() transform.
- Sensitivity to proposal variance τ .
 - Adaptive Metropolis-Hastings.
 - \circ Tunes τ periodically to target a desired acceptance rate.
- MH often fails in high-dimensions.
 - \circ **Hamiltonian Monte Carlo**: leverages the gradient of \tilde{p} .
- Other MCMC algorithms (all similar to MH):
 - Reversible Jump MCMC for model selection.
 - Split-Merge MCMC for clustering analysis.
 - Data Augmentation for missing data problems.

Monte Carlo Integration

- We covered methods for obtaining draws $\{\theta^{(t)}\}_{1:T}$ from $p(\theta|D)$
 - Often we need summary quantities:

$$egin{aligned} E[heta|D] &= \int_{\Theta} heta p(heta|D) d heta \ V[heta|D] &= \int_{\Theta} (heta - E[heta|D])^2 p(heta|D) d heta \ E[ilde{y}| ilde{x},D] &= \int_{\Theta} E[ilde{y}| ilde{x}, heta] p(heta|D) d heta \end{aligned}$$

 \circ Computing useful quantities requires integration - hard if $dim(\theta)$ is big.

Monte Carlo Integration

Recall Monte Carlo (MC) integration. Given i.i.d samples $\{\theta^{(t)}\}_{1:T} \sim p(\theta|D)$,

$$E[g(heta)|D] = \int_{\Theta} g(heta)p(heta|D)d heta pprox rac{1}{T} \sum_{t=1}^T g(heta^{(t)})$$

- For posterior expectation: $g(\theta^{(t)}) = 1$
- For posterior variance: $g(\theta^{(t)}) = (\theta^{(t)} \frac{1}{T} \sum_t \theta^{(t)})^2$
- For posterior prediction: $g(\theta^{(t)}) = E[\tilde{y}|\tilde{x},\theta^{(t)}]$

Some properties:

- Convergence rate, \sqrt{T} , independent of $dim(\theta)$.
- Converges to posterior mean exactly based on LLN.
- We have $\{\theta^{(t)}\}_{1:T}$ from MCMC, but they are not exactly i.i.d.
 - \circ Effective number of draws is less than T.

Variable Transformation

Earlier we used MH to get $\{\theta_1^{(t)}\}_{1:T} \sim p(\theta|D)$ from model

$$y_i \sim Ber \Big(p_i = expit(heta_0 + heta_1 x_i) \Big)$$

Suppose we want estimate $\hat{OR} = E[exp(\theta)|D]$

$$E[exp(heta)|D] = \int_{\Theta} e^{ heta} \ p(heta|D) d heta pprox rac{1}{T} \sum_{t=1}^{T} expig(heta^{(t)}ig)$$

Bayesian Prediction

Suppose we sample parameters of this model with some prior

$$y_i|x_i, heta_0, heta_1,\phi\sim N(| heta_0+ heta_1x_i,|\phi)$$

And get posterior draws $\{\theta_0^{(t)}, \theta_1^{(t)}, \phi^{(t)}\}_{1:T}$. Given new \tilde{x}_i , form out-of-sample prediction

$$egin{aligned} E[ilde{y} | ilde{x}, D] &= \int_{\Theta} E[ilde{y} \mid ilde{x}, heta_0, heta_1, \phi] \cdot p(heta_0, heta_1, \phi | D) \ &pprox rac{1}{T} \sum_{i=1}^T E[ilde{y} \mid ilde{x}, heta_0^{(t)}, heta_1^{(t)}, \phi^{(t)}] = rac{1}{T} \sum_{i=1}^T heta_0^{(t)} + heta_1^{(t)} ilde{x}_i \end{aligned}$$

Approximation Methods

Upside of MCMC

- Asymptotically exacty: chains guaranteed to converge to exact posterior.
- Can bound errors: easy to measure autocorrelation in chains and error in integration.

Downside of MCMC:

• Slow: in complicated samplers, may take an hour to get a single draw!

Motivates the need for approximation methods: find some $q(\theta)$ such that

Variational Bayes

Find approximation $q^*(\theta)$ to $p(\theta|D)$ such that Kullback–Leibler divergence is minimized:

$$egin{aligned} q* &= rgmin_q KL(q||p) \ &= rgmin_q - \int_{\Theta} q(heta) \ log \Big[rac{p(heta|D)}{q(heta)}\Big] d heta \end{aligned}$$

This is too hard of a search problem - space of $q(\theta)$ is too large.

Restrict $q(\theta)$ to the "mean-field family",

$$q(heta) = \prod_{i=1}^p q_i(heta_i)$$

Mean-Field Variational Bayes

Then the solution for each $q_j(\theta_j)$ is

$$\log q_j^*(heta_j) \propto E_{\, heta_{-j} \sim q_{-j}(heta_{-j})} igg[\log p(D| heta) p(heta) igg]$$

These updating equations define a **Coordinate Ascent** algorithm:

- Initialize: $q_j(\theta_j)^{(0)} = q_j^{(0)}$ for $j=1,\ldots,p$.
- **Update**: for t = 1, ..., T.
 - $\circ \ q_1^{(t)}$ conditional on $q_2^{(t-1)}, \ldots, q_p^{(t-1)}$.
 - $\circ \ q_2^{(t)}$ conditional on $q_1^{(t)}, q_3^{(t-1)}, \dots, q_p^{(t-1)}$
 - $\circ \ q_3^{(t)}$ conditional on $q_1^{(t)}, q_2^{(t)}, q_4^{(t-1)}, \ldots, q_p^{(t-1)}$
 - o ...
 - $\circ \ q_p^{(t)}$ conditional on $q_1^{(t)}, q_2^{(t)}, q_3^{(t)}, \ldots, q_p-1^{(t-1)}$

Regression with Variational Bayes

Consider model for $D=(y_i,x_{0i},x_{1i})_{1:n}$ with known ϕ

$$y_i| heta \sim Nig(x_{0i} heta_0 + x_{1i} heta_1,\phiig)$$

With prior $p(\theta_0)p(\theta_1) = N(0,\tau)N(0,\tau)$,

$$\log p(D| heta)p(heta) \propto \log \Big[\prod_{n=1}^N N(y_i; x_0 heta_0 + x_1 heta_1, \phi)\Big] + \log N(heta_0; 0, au) + \log N(heta_1; 0, au)$$

Regression with Variational Bayes

We assume mean-field family $q(\theta) = q_0(\theta_0)q_1(\theta_1)$.

Using the solution expression for $\log q_i^*$,

$$egin{split} \log q_0^*(heta_0) &\propto E_{\, heta_1 \sim q_1} \Big[\log p(D| heta) p(heta) \Big] \ &\propto -rac{1}{2(rac{\phi}{\sum_i x_{0i}^2 + rac{\phi}{ au}})} \Big\{ heta_0^2 - 2 heta_0 \Big[rac{\sum_i x_{0i} y_i - E_{ heta_1 \sim q_1}[heta_1] \sum_i x_{0i} x_{1i}}{\sum_i x_{0i}^2 + rac{\phi}{ au}} \, \Big] \Big\} \ &\Rightarrow q_0^*(heta_0) \stackrel{d}{=} N(\mu_0, \lambda_0) \end{split}$$

Where
$$\mu_0 = rac{\sum_i x_{0i} y_i - E_{ heta_1 \sim q_1}[heta_1] \sum_i x_{0i} x_{1i}}{\sum_i x_{0i}^2 - rac{ au}{2}}$$
 and $\lambda_0 = rac{\phi}{\sum_i x_{0i}^2 - rac{ au}{2}}$.

- Note dependence on $E_{ heta_1 \sim q_1}[heta_1]$
- Math is same for $q_1^*(\theta_1) \stackrel{d}{=} N(\mu_1, \lambda_1)$, with

$$\circ \; \mu_1 = rac{\sum_i x_{1i} y_i - E_{ heta_0 \sim q_0}[heta_0] \sum_i x_{0i} x_{1i}}{\sum_i x_{1i}^2 + rac{\phi}{ au}} \; ext{and} \; \lambda_1 = rac{\phi}{\sum_i x_{1i}^2 + rac{\phi}{ au}}$$

Coordinate Ascent for VB

Note λ_1, λ_0 are known. They don't need to be updated.

Coordinate ascent with updating equations:

• Initialize
$$\mu_0^{(0)}, \mu_1^{(0)}$$

$$egin{aligned} ullet & ext{ for } t=1,\ldots,T, \ & \circ \ \mu_0^{(t)} = rac{\sum_i x_{0i} y_i - \mu_1^{(t-1)} \sum_i x_{0i} x_{1i}}{\sum_i x_{0i}^2 + rac{\phi}{ au}} \ & \circ \ \mu_1^{(t)} = rac{\sum_i x_{1i} y_i - \mu_0^{(t)} \sum_i x_{0i} x_{1i}}{\sum_i x_{1i}^2 + rac{\phi}{ au}} \end{aligned}$$

$$p(heta|D)pprox q(heta_0)q(heta_1)=N\Big\{egin{bmatrix} \mu_0^{(T)} \ \mu_1^{(T)} \end{bmatrix},egin{bmatrix} \lambda_0 & 0 \ 0 & \lambda_1 \end{bmatrix}\Big\}$$

Coordinate Ascent for VB

Summary

- MCMC Sampling
 - Gibbs Sampling
 - Metropolis-Hastings
- Monte Carlo Integration
 - Computing posterior summaries
- Posterior Approximation with VB