

TMA4230 Functional

Analysis

Spring 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 5

1 Let X and Y be Banach spaces and $(T_n)_{n\in\mathbb{N}}$ a sequence of bounded linear operators between X and Y.

Then $(T_n x)_{n \in \mathbb{N}}$ converges for all $x \in X$ if and only if the following two conditions hold:

- a) $(T_n x)_{n \in \mathbb{N}}$ converges for every $x \in S$, where S is a dense subset of X.
- **b)** $\sup_{n\in\mathbb{N}} ||T_n|| < \infty.$

Solution. Assume first that $(T_n x)_{n \in \mathbb{N}}$ converges for all $x \in X$. Then **a** holds trivially, and **b** holds by the uniform boundedness theorem. To be more precise, $(T_n x)_{n \in \mathbb{N}}$ must be bounded for all $x \in X$, since any convergent sequence is bounded. Hence there must exist $C_x > 0$ for every $x \in X$ such that $||T_n x||_Y \leq C_x$ for all $n \in \mathbb{N}$. Now the uniform boundedness theorem gives a C > 0 such that $||T_n x||_Y \leq C$, hence $\sup_{n \in \mathbb{N}} ||T_n|| < \infty$.

Now assume that **a** and **b** hold, and let $x \in X$. We want to prove that $T_n x$ converges, or equivalently that it is Cauchy. Let $\epsilon > 0$, and pick $s \in S$ such that $||x - s||_X < \epsilon$. Now consider $||T_n x - T_m x||_Y$, which we want to be able to make small by picking n and m large. By the triangle inequality,

$$||T_n x - T_m x||_Y \le ||T_n x - T_n s||_Y + ||T_n s - T_m s||_Y + ||T_m s - T_m x||_Y.$$

Let $\sup_{n\in\mathbb{N}} ||T_n|| = C < \infty$. Since $(T_n s)_{n\in\mathbb{N}}$ is assumed to converge, it is in particular Cauchy. Hence we can find $N \in \mathbb{N}$ such that $||T_n x - T_n s||_Y < \epsilon$ for $m, n \geq N$. If we consider $m, n \geq N$, we find that

$$||T_n x - T_m x||_Y \le ||T_n x - T_n s||_Y + ||T_n s - T_m s||_Y + ||T_m s - T_m x||_Y$$

$$\le C||x - s||_X + \epsilon + C||x - s||_X$$

$$< \epsilon (2C + 1),$$

which proves that the sequence is Cauchy.

Show that the limit operator in the theorem of Banach-Steinhaus is not necessarily bounded for a sequence of bounded linear mappings $(S_n)_{n\in\mathbb{N}}$ on a normed space X. Take X to be the space of real-valued sequences of finite support with the supremums norm. Consider the partial sum operator $S_n x = \sum_{k=1}^n x_k$ where $x = (x_k)_{k\in\mathbb{N}}$ on this space.

Solution. The limit operator is defined by $Sx = \lim_{n \to \infty} S_n x$. To show that this is not bounded, it is sufficient to consider the elements $x_N \in X$ for $N \in \mathbb{N}$, such that the first N components of x_N are 1 and the rest are zero. In other words, $x_N = (1, 1, ...1, 0, 0, 0....)$ where the last 1 appears in the N'th position. Clearly $||x_N||_X = 1$ for every N, but

$$Sx_N = \lim_{n \to \infty} S_n x_N$$
$$= \lim_{n \to \infty} \sum_{k=1}^n (x_N)k$$
$$= N.$$

Hence we have elements x_N of norm 1 such that $|Sx_N|_X = N$, and therefore S cannot be bounded.

One can also check that the operators $(S_n)_{n\in\mathbb{N}}$ satisfy the condition for Banach Steinhaus (except that X is not complete, of course!), namely that $\lim_{n\to\infty} S_n x$ exists for any $x\in X$. This is trivially true since x is assumed to have finite support.

3 Let \mathcal{H} be a real Hilbert space and let $B: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ be a bilinear form on \mathcal{H} : $B(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1 B(x_1, y) + \alpha_2 B(x_2, y) \text{ and } B(x, \beta_1 y_1 + \beta_2 y_2) = \beta_1 B(x, y_1 y) + \beta_2 B(x, y_2)$ for all $x_1, x_2, x, y_1, y_2, y \in \mathcal{H}$ and for all $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$.

Show that if $B(\cdot, y)$ is continuous for every $y \in \mathcal{H}$ and $B(x, \cdot)$ is continuous for every $x \in \mathcal{H}$. Then B is bounded.

Hint: Banach-Steinhaus

Solution. Define T_y by $T_y(x) = \frac{B(x,y)}{\|y\|}$ for $y \neq 0$. We want to show that $(T_y)_{y \in \mathcal{H}}$ is pointwise bounded, and thus uniformly bounded by the uniform boundedness theorem. For $x \in \mathcal{H}$,

$$|T_y(x)| = \frac{1}{\|y\|} |B(x,y)|.$$

Since we assume that $B(x,\cdot)$ is bounded for any $x \in \mathcal{H}$, there must exist a constant $C_x < \infty$ such that $|B(x,y)| \leq C_x ||y||$. Inserting this into our calculation, we get

$$|T_y(x)| \leq C_x$$

hence the family $(T_y)_{y\in\mathcal{H}}$ is pointwise bounded. By the uniform boundedness theorem, there must exist a $C_1 < \infty$ such $||T_y|| < C_1$ for any $y \in \mathcal{H}$, i.e. $|B(x,y)| \leq C_1 ||y||$ for any $x, y \in \mathcal{H}$.

By exactly the same argument, we find a constant C_2 such that $|B(x,y)| \leq C_2 ||x||$ for any $x, y \in \mathcal{H}$. If $C = \max\{C_1, C_2\}$, then we have that

$$|B(x,y)| \le C||x||$$
 $|B(x,y)| \le C||y||$.

By adding these two equations, we find that

$$|B(x,y)| \le \frac{C}{2}(||x|| + ||y||),$$

so B is bounded.