CSE 1204: Digital Logic Design Laboratory

Experiment: Sequential Logic Design and Testing

Design Problems

The following problems require the design of a Mealy sequential circuit of the form shown in Figure 16-27. For purposes of testing, the input *X* will come from a toggle switch, and the clock pulse will be supplied manually from a push button or switch.

FIGURE 16-27

© Cengage Learning 2014

16.1 Design a Mealy sequential circuit (Figure 16-27) which investigates an input sequence X and will produce an output of Z = 1 for any input sequence ending in 0010 or 100.

Example:

$$X = 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$$

$$Z = 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0$$

Notice that the circuit does not reset to the start state when an output of Z=1 occurs. However, your circuit should have a start state and should be provided with a method for manually resetting the flip-flops to the start state. A minimum solution requires six states. Design your circuit using NAND gates, NOR gates, and three D flip-flops. Any solution which is minimal for your state assignment and uses 10 or fewer gates and inverters is acceptable. (Assign 000 to the start state.)

Test Procedure: First, check out your state table by starting in each state and making sure that the present output and next state are correct for each input. Then,

starting in the proper initial state, determine the output sequence for each of the following input sequences:

16.2 Design a Mealy sequential circuit (Figure 16-27) which investigates an input sequence X and will produce an output of Z = 1 for any input sequence ending in 1101 or 011.

Example:

Notice that the circuit does not reset to the start state when an output of Z=1 occurs. However, your circuit should have a start state and should be provided with a method for manually resetting the flip-flops to the start state. A minimum solution requires six states. Design your circuit using NAND gates, NOR gates, and three D flip-flops. Any solution which is minimal for your state assignment and uses nine or fewer gates and inverters is acceptable. (Assign 000 to the start state.)

Test Procedure: First, check out your state table by starting in each state and making sure that the present output and next state are correct for each input. Then, starting in the proper initial state, determine the output sequence for each of the following input sequences:

(1)	1	1	0	0	1	0	1	1	0	1	0	1	0	1	1	1	0	1	1	0	1	1	0	1
(2)	0	0	1	1	0	0	1	1	0	1	0	1	0	1	1	0	1	0	1	0	1	1	0	1