# $\mathcal{S} = \iiint \left( \mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} + \frac{1}{2} \lambda (4 \, \partial_{\imath} \mathcal{A}^{\alpha\imath}_{\alpha} - 4 \, \mathcal{A}^{\theta}_{\alpha\theta} \, \partial_{\imath} f^{\alpha\imath} + 4 \, \mathcal{A}^{\theta}_{\imath\theta} \, \partial^{\imath} f^{\alpha}_{\alpha} - 2 \, \partial_{\imath} f^{\theta}_{\theta} \, \partial^{\imath} f^{\alpha}_{\alpha} \right)$ $4\ f^{\alpha_i}\ (\partial_i\mathcal{R}_{\alpha\ \theta}^{\ \theta}-\partial_\theta\mathcal{R}_{\alpha\ i}^{\ \theta})-4\ f^{\alpha}_{\ \alpha}\ \partial_\theta\mathcal{R}^{i\theta}_{\ i}-2\ \partial_i f^{\alpha_i}\ \partial_\theta f_{\alpha}^{\ \theta}+4\ \partial^i f^{\alpha}_{\ \alpha}\partial_\theta f_{i}^{\ \theta}+4\ \mathcal{R}_{\alpha\theta_i}\ \partial^\theta f^{\alpha_i} 2\,\partial_{\alpha}f_{_{I\theta}}\partial^{\theta}f^{\alpha_{I}}-\partial_{\alpha}f_{_{\theta_{I}}}\partial^{\theta}f^{\alpha_{I}}+\partial_{_{I}}f_{_{\alpha\theta}}\partial^{\theta}f^{\alpha_{I}}+\partial_{\theta}f_{_{\alpha_{I}}}\partial^{\theta}f^{\alpha_{I}}+\partial_{\theta}f_{_{I\alpha}}\partial^{\theta}f^{\alpha_{I}}))[t,\,x,\,y,\,z]\,dz\,dy\,dx\,dt\\$ **Wave operator**

## $0.7^{+}$ $\mathcal{H}^{\parallel}$ $0.7^{+}$ $f^{\parallel}$ $0.7^{+}$ $f^{\perp}$

**PSALTer results panel** 

 ${}^{0}\mathcal{A}^{\parallel}$ 



#### $0.^{+}\sigma^{\parallel} + 0 0$

 $0^+ \tau^{\parallel} + 0 - \frac{1}{2 k^2 \lambda} = 0$ 



| Spin-parity form                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Multiplicities |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 0· σ <sup>  </sup> == 0                           | $\epsilon \eta_{\alpha\beta\chi\delta}  \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1              |
| $0.^{+}\tau^{\perp} == 0$                         | $\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1              |
| $0.^+\sigma^{\parallel}=0$                        | $\partial_{\beta}\sigma_{\alpha}^{\alpha\beta} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
| 1: r == 0                                         | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                 | 3              |
| 1. τ   α == 0                                     | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                 | 3              |
| 1. σ <sup>1</sup> == 0                            | $\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} == 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3              |
| $\frac{1}{ \alpha ^{\alpha}} = 0$                 | $\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi}{}^{\delta} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\chi\alpha}{}_{\chi} == \partial_{\delta}\partial_{\chi}\sigma^{\chi\alpha\delta}$                                                                                                                                                                                                                                                                                                                                                                                                           | 3              |
| $1^+_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$ | $\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$                                                                                                                 | 3              |
| $1^+ \sigma^{\perp \alpha\beta} == 0$             | $\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$                                                                                                                                                                                                                                                                                                                                                                               | 3              |
| $1^+_{\cdot}\sigma^{\parallel^{\alpha\beta}}=0$   | $\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}$                                                                                                                                                                                                                                                                                                   | 3              |
| $2 \sigma^{\parallel \alpha \beta \chi} == 0$     | $3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{       $                                                                                                                                                                                                                                                                                                                                                                                            | 5              |
|                                                   | $4  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 3  \eta^{\beta \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{ \delta} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \beta \epsilon} + 3  \eta^{\beta \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \alpha}_{ \delta} = 0$ |                |
|                                                   | $3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}{}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} +$                                                                                                                                                                  |                |
|                                                   | $2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\alpha\beta\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\beta\alpha\chi} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} +$                                                                                                                                                                                                  |                |
|                                                   | $3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{\delta}{}^{\epsilon} + 3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\alpha\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\beta}_{\delta}$                                                                                                                                                                                                                              |                |
| $2^+_{\cdot}\sigma^{\parallel^{\alpha\beta}}=0$   | $3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\sigma^{\chi}_{\chi}^{\delta} = 2\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma^{\chi}_{\chi}^{\delta} + 3(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi})$                                                                                                  | 5              |
| Total expected gauge generators:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |

Multiplicities

# **Massive spectrum**

(No particles)

# **Massless spectrum**



### Pole residue: $\left| \frac{p^2}{\lambda} \right| > 0$

| Polarisations: | [2 |  |
|----------------|----|--|
| Polarisations: | 2  |  |

# $\lambda$ . > 0