CLAIMS

1\A compound represented by formula II

wherein at least one of R^2 , R^3 or R^3 is H, R^{20} -(W)_x-CO-, R^{20} -(W)_x-CS- or R^{20} -(W)_x-PO(OH) -; and wherein at least one of R^2 , R^3 or R^5 is not H; wherein R^{20} is alkyl, H, alkanoyl, cycloalkyl, aryl, heterocyclic, $NR^{21}R^{22}$, alkenyl, or

alkynyl; or is alkyl, alkanoyl alkenyl or alkynyl substituted by halo, phenyl, cycloalkyl, NR²¹R²², hydroxy, alkoxy;

or is aryl substituted by phenyl halo, CN, NO₂, OH, R²⁸, O R²⁸, CF₃, SH SR²¹,SOR²¹,SO₂R²¹; NR²¹R²² CO₂H, CO₂ , OR²¹, O M⁺ or S M⁺;

wherein M⁺ is an alkali metal cation;

or R^{20} is- $-(CHR^{21})_e$ - $(CH_2)_f$ -CO- OR^{22} ,

25 $-(CHR^{21})_e-(CH_2)_r-OR^{22}$, or $-(CHR^{21})_e-(CH_2)_r-NR^{1}R^{22}$

W is O, NR²⁸ or S;

25

30

R²¹ is H, alkyl, alkanoyl or aryl or is alkyl, alkanoyl or aryl suabstituted by halo, phenyl, CN, NO₂ OH, CO₂H or alkoxy; and R²² is H, alkyl or aryl or is alkyl or aryl substituted by phenyl; halo, CN, NO₂, OH, CO₂H or alkoxy;

or R²¹ and R²² taken together with N and one of CHR²¹, NR²¹, O, S, SO or SO₂ form a five-, six- or seven- membered ring;

 R^{27} is H, OR^{21} , $NR^{21}R^{22}$, R^{20} - $(W)_x$ -CO-, R^{20} - $(W)_x$ -CS-, $(HO)_2$ PO- or R^{20} - $(W)_x$ -PO(OH) - or HO-SO₂-;

R²⁸ is H, alkanoyl, aryl, alkylor alkyl substituted by OH, halo or NR²¹R²²;

e= 0 to 6, f= 0 to 10, t = 0 to 100; s = 0 to 6000; r = 1 to 5000; and x = 0 or 1; or a pharmaceutically acceptable salt thereof.

- 2. A pharmaceutical composition of a compound of claim 1 or a pharmaceutically acceptable salt thereof together with a pharmaceutically acceptable carrier.
- 3. A method of using a compound represented by formula II of claim 1 for treating a susceptible viral infection, wherein the method comprises a therapeutically effective amount of a ribavirin derivative of formula II of claim 1 or a pharmaceutically acceptable salt thereof.
- 4. A method of using a compound represented by formula II of claim 1 in association with interferon alpha for treating a chronic hepatitis C infection, wherein the method comprises a therapeutically effective amount of a ribavirin derivative of formula II of claim 1 or a pharmaceutically acceptable salt thereof and a therapeutically effective amount of an interferon alpha.
- 5. The method of claim 4, wherein the interferon-alpha is selected from interferon alpha-2a, interferon alpha-2b, a consensus interferon, a purified interferon alpha product or a pegylated interferon-alpha-2a, pegylated interferon-alpha-2b, pegylated consensus interferon.

- 7. The method of claim 4, wherein the interferon-alpha administered is a pegylated interferon alpha-2a and the amount of pegylated interferon alpha-2a administered is from 20 to 250 micrograms per week on a weekly, TIW, QOD or daily basis.
 - 9 The compound of formula II of α aim 1, wherein $R^{2'} = R^{3'} = H$.
 - 10 The compound of formula II of claim 1 wherein $R^{2'} = R^{5'} = H$,
 - 11. The compound of formula II of claim $\sqrt{}$ wherein $R^{3'} = R^{5'} = H$.
 - 12. The compound of formula II of claim 1, wherein R5 is one of

10

5

wherein X is independently OH, alkanoyl, amino, alkylamino, dialkylamino, alkanoylamino, hydroxyalkyl, alkoxy, alkyl, CN, NO₂, halo, or alkyl substituted by OH, alkanoyl, amino, alkylamino, dialkylamino, alkanoylamino, hydroxyalkyl, alkoxy, CN, NO₂, or halo.

13 The compound of formula II of claim 1, wherein R^{5'} is

wherein X is OH, COCH₃, OCOCH₃, NO₂, NH₂, [CH₃]₂N, NHCOCH₃, CH₂OH, CH₃, OCH₃, F, Br or Cl.

14 The compound of claim 1, wherein R^{5'} is

$$H_3C$$
 or CH_3 or

15. A method of treating patients having chronic hepatitis C infection comprising administering a therapeutically effective amount of a ribavirin derivative of formula I and a therapeutically effective amount of interferon-alpha for a time period sufficient to eradicate detectable HCV-RNA at the end of said period of administering and to have no detectable HCV-RNA for at least 24 weeks after the end of said period of administrating, and wherein the ribavirin derivative is represented by formula I:

$$\begin{array}{c|c}
 & O \\
 & N \\$$

wherein at least one of R², R³ or R⁵ is H, R⁶-(W)_x-CO-, R⁶-(W)_x-CS-(HO)₂PO-, R⁶-(W)_x-

PO(OH)- or HO-SO₂- and wherein at least one of R², R³ or R⁵ is not H;

wherein R⁶ is H, alkyl, alkanoyl, cycloalkyl, heterocylic, aryl, NR^{7a}R^{7b}, alkenyl, or alkynyl;

or is alkyl, alkanoyl, alkenyl or alkyny substituted by halo, phenyl, cycloalkyl, NR^{7a}R^{7b},

hydroxy or alkoxy;

or R⁶ is aryl substituted by phenyl, halo, CN, NO₂, OH, R¹⁸, OR¹⁸, CF₃, SH

 SR^{7a} , SOR^{7a} , SO_2R^{7a} ; $NR^{7a}R^{7b}$ CO_2H , $CO_2^-M^{+-}$, $O^-M^+OR^{7a}$ or S^-M^+ ;

wherein M⁺ is an alkali metal cation;

or R^6 is - -(CHR^{7a})_e-(CH₂)_f-CO-OR^{7b},

 $-(CHR^{7a})_e-(CH_2)_f$ OR^{7b}, or $-(CHR^{7a})_e-(CH_2)_f$ NR^{7a}R^{7b}

W is O, NR¹⁸ or S;

R^{7a} is H, alkyl, alkanoyl, aryl or is alkyl, alkanoyl or aryl substituted by halo phenyl CN,

NO₂, OH, CO₂H or alkoxy; and R^{7b} is H, alkyl or aryl or is alkyl or aryl substituted by halo,

CN, NO₂, CO₂H, OH or alkoxy;

or R^{7a} and R^{7b} taken together with N and one of CHR^{7a}, NR^{7a}, O, S, SO or SO₂ form a

five-, six- or seven- membered ring;

 R^{17} is H, OR^{7a} , $NR^{7a}R^{7b}$, R^{6} -(W)_x-CO-, R^{6} -(W)_x-CS-, (HO)₂PO-,

 R^6 -(W)_x-PO(OH) - , or HO-SO₂-;

R¹⁸ is H, aryl, alkyl, or alkyl substituted by OH, halo, NR^{7a}R^{7b}, or alkanoyl;

e = 0 to 6, f = 0 to 10, and x = 0 or 1;

or a pharmaceutically acceptable salt thereof.

20

25

į

5

16. The method of claim 15 wherein \mathbb{R}^5 is $\mathbb{R}^6 CO$ wherein \mathbb{R}^6 is any substituted by phenyl, halo, CN, NO_2 , OH, R^{10} , OR^{10} , CF_3 , $SHSR^{70}$, SO_2R^{70} ; $NR^{70}R^{70}$ CO_2H , $CO_2^-M^{4-}$, $O^-M^+OR^{70}$ or S^-M^+ and wherein M^+ is an alkali metal cation.

17. The method of claim 15 wherein R^5 is R^6CO wherein R^6 is phenyl substituted by, halo, CN, NO₂, OH, R^{18} , OR¹⁸, CF₃, SHSR^{7a}, SO₂R^{7a}, NR^{7a}R^{7b} CO₂H, CO₂ M⁺, O·M⁺ OR^{7a} or S·M⁺. and wherein M⁺ is an alkali metal cation.

10