# Application of graph matching in Computer Vision Master Seminar

#### Ekaterina Tikhoncheva

University of Heidelberg
Faculty of Mathematics and Computer Science
Computer Vision group
at
Heidelberg Collaboratory for Image Processing

November 2015

## Agenda

- Graph matching
- 2 2LevelGM
- 3 Evaluation

#### Attributed undirected graph I

Attributed undirected graph G = (V,

• set of nodes  $V = \{v_i\}_{i=1}^n$ 



#### Attributed undirected graph II

Attributed undirected graph G = (V, E,

- set of nodes  $V = \{v_i\}_{i=1}^n$
- set of edges  $E \subseteq \{\{u, v\} | u, v \in V\}$



#### Attributed undirected graph

Attributed undirected graph G = (V, E, D)

- set of nodes  $V = \{v_i\}_{i=1}^n$
- set of edges  $E \subseteq \{\{u, v\} | u, v \in V\}$
- node attributes  $D = \{d_i\}_{i=1}^n$



Let us consider two undirected attributed graphs  $G^I = (V^I, E^I, D^I)$  and  $G^J = (V^J, E^J, D^J)$ :







A matching function between  $G^I$  and  $G^J$  is a mapping  $m:V^I\to V^J$ 



A matching function between  $G^I$  and  $G^J$  is a mapping  $m: V^I \to V^J$  not unique!



A matching function between  $G^I$  and  $G^J$  is a mapping  $m: V^I \to V^J$ 

Define a function  $S(G^I, G^J, m)$  to measure the quality of matching m that fulfills some conditions

 $\Rightarrow$  Graph matching problem between  $G^I$  and  $G^J$ 

$$m = \operatorname*{argmax}_{\hat{m}} S(G^I, G^J, \hat{m})$$

#### Graph matching in computer vision



- image matching
- shape matching
- object detection
- object tracking
- . . .

## Exact graph matching I

Edge preserving mapping  $m: \{v_i, v_{i'}\} \in E^I \Rightarrow \{m(v), m(v_{i'})\} \in E^J$ 

• mapping m is bijective  $\rightarrow$  graph isomorphism (GI)

 $\triangleleft \boxtimes$ 

 mapping m is injective → graph monomorphism

• mapping m is total  $\rightarrow$  graph homomorphism



NP complete (except GI) [9]

## Exact graph matching II

#### Exact graph matching:

- too strict
- time/memory consuming
- cannot handle object deformation



## Inexact graph matching I

$$m = \operatorname*{argmax}_{\hat{m}} S(G^I, G^J, \hat{m})$$

- second-order (edge) similarity  $s_E(e_{ii'}, e_{jj'}), e_{ii'} \in E^I, e_{ii'} \in E^J$
- first-order (node) similarity  $s_V(v_i, v_j)$ ,  $v_i \in V^I$ ,  $v_i \in V^J$

$$S(G^{I}, G^{J}, m) = \sum_{\substack{m(v_{i}) = v_{j} \\ m(v'_{i}) = v'_{i}}} s_{E}(e_{ii'}, e_{jj'}) + \sum_{m(v_{i}) = v_{j}} s_{V}(v_{i}, v_{j})$$

• Assignment matrix  $x \in \{0,1\}^{n_1 \times n_2}, \ x_{ij} = 1 \iff m(v_i) = v_j$ 

#### Inexact graph matching II

The most common problem formulation:

#### Quadratic Assignment Problem (NP complete) [3]

$$egin{aligned} x^* &= rg \max \sum_{\substack{x_{ij} = 1 \ x_{i'j'} = 1}} s_E(e_{ii'}, e_{jj'}) + \sum_{x_{ij} = 1} s_V(v_i, v_j) \ &s.t. egin{cases} x \in \{0, 1\}^{n_1 n_2} \ \sum_{i=1}^{n_1} x_{ij} \leq 1 \ \sum_{j=1}^{n_2} x_{ij} \leq 1 \end{cases} \end{aligned}$$

Using matrix notation :  $arg max_x x^T Sx$ , S—similarity (or affinity) matrix

## Inexact graph matching III

#### Solution techniques [8]

- discrete optimization
  - tree search [2, 21, 22, 25]
  - simulated annealing [11]
- continuous optimization
  - constraint relaxation [10, 14, 15, 24, 26]
  - spectral methods [13, 23]
  - probabilistic frameworks [1, 12, 16, 20]
  - clustering [4, 6, 19, 17]

## Drawback of the existing algorithms

- ullet most of them were developed for matching relative small graphs ( $\sim 100$  nodes)
- scale badly due to the polynomial increase of time and storage demand
- algorithms for the big graphs use another formulation of the graph matching optimization problem

$$P = \operatorname{argmin}_{\hat{P} \in \Pi_n} \|A^I - \hat{P}A^J \hat{P}^T\|^2 + \|D^I - \hat{P}D^J\|_2^2$$

#### Complexity reduction

$$x^* = \arg \max x^T S x$$

$$s.t. \begin{cases} x \in \{0, 1\}^{n_1 n_2} \\ \sum_{i=1}^{n_1} x_{ij} \le 1 \\ \sum_{j=1}^{n_2} x_{ij} \le 1 \end{cases}$$

- set of candidate correspondences
- sparse affinity matrix
- subdivide problem into a set of smaller subproblems

#### Complexity reduction

$$x^* = \arg \max x^T S x$$

$$s.t. \begin{cases} x \in \{0, 1\}^{n_1 n_2} \\ \sum_{j=1}^{q_1} x_{ij} \le 1 \\ \sum_{j=1}^{q_2} x_{ij} \le 1 \end{cases}$$

- set of candidate correspondences
- sparse affinity matrix
- subdivide problem into a set of smaller subproblems



## Complexity reduction

$$x^* = \arg \max x^T S x$$
s.t. 
$$\begin{cases} x \in \{0, 1\}^{n_1 n_2} \\ \sum_{j=1}^{n_1} x_{ij} \le 1 \\ \sum_{j=1}^{j=1} x_{ij} \le 1 \end{cases}$$

- set of candidate correspondences
- sparse affinity matrix
- subdivide problem into a set of smaller subproblems 
   Similar works:
  - semisupervised case [17]
  - another objective function [4, 19]
  - special kind of subproblem [19, 18]



#### Two level graph matching framework

Lower level: initial graphs  $G^I$ ,  $G^J$ 

Higher level: simplified graphs (anchor graphs  $A^{I}$ ,  $A^{J}$ )



## Anchor graph construction

Goal: 
$$G^I = (V^I, E^I, D^I) \rightarrow A^I = (V^{Ia}, E^{Ia}, U^{Ia})$$
  
Equivalent: partitioning of  $G^I \supset (G_1^I \cup \cdots \cup G_{|V^{Ia}|}^I)$   
Done by:

- grid with r rows and c columns
- graph coarsening algorithms: Heavy Edge Matching (HEM) and Light Edge Matching (LEM)

## Anchor graph and subgraph matching

Find correspondences between two anchor graphs  $A^{I} = (V^{Ia}, E^{Ia}, U^{Ia})$  and  $A^{J} = (V^{Ja}, E^{Ja}, U^{Ja})$ 

- edge similarity: compare length of the edges beween anchors
- node similarity:
  - score of the matching of  $G_k^I$  and  $G_p^J$
  - define anchor attributes based on the  $D^I, D^J$  and/or on the geometry of  $G^I, G^J$

Match anchor graphs and subgraph using some existing algorithm (e.g. RRWM [7])

#### Graph partition update

- estimate an affine transformation between matched subgraphs based on the provided local correspondences (point set registration problem)
- 2 let nodes "vote" to which subgraphs they should belong to



Graph matching 2LevelGM Evaluation References

## Complexity

- size of the anchor graphs and subgraphs
- number of iterations

#### The end

Thank you for your attention!

Graph matching 2LevelGM Evaluation References



#### References I

- [1] Ayser Armiti and Michael Gertz. Geometric graph matching and similarity: A probabilistic approach. In *Proceedings of the 26th International Conference on Scientific and Statistical Database Management*, SSDBM '14, pages 27:1–27:12, New York, NY, USA, 2014. ACM.
- [2] H Bunke and G Allermann. Inexact graph matching for structural pattern recognition. *Pattern Recognition Letters*, 1(4):245–253, 1983.
- [3] R. E. Burkard, E. Çela, P. M. Pardalos, and L. Pitsoulis. The quadratic assignment problem. In P. M. Pardalos and D.-Z Du, editors, *Handbook of Combinatorial Optimization*, pages 241–338. Kluwer Academic Publisher, 1998.

#### References II

- [4] Marco Carcassoni and Edwin R. Hancock. Correspondence matching with modal clusters. *IEEE Trans. Pattern Anal. Mach. Intell.*, 25(12):1609–1615, 2003.
- [5] Minsu Cho, Karteek Alahari, and Jean Ponce. Learning Graphs to Match. In *Proceedings of the IEEE International Conference on Computer Vision*, 2013.
- [6] Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Feature Correspondence and Deformable Object Matching via Agglomerative Correspondence Clustering. In *The IEEE International Conference on Computer Vision (ICCV)*, 2009.
- [7] Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted Random Walks for Graph Matching. *ECCV*, 2010.

#### References III

- [8] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty Years of Graph Matching in Pattern Recognition. *International Journal of Pattern Recognition and Artificial Intelligence*, 18(03):265–298, 2004.
- [9] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.
- [10] S. Gold and Anand Rangarajan. A Graduated assignment algorithm for graph matching. In *IEEE Transactions on* Pattern Analysis and Machine Intelligence, volume 18, pages 377–388, 1996.

#### References IV

- [11] L. H'erault, R. Horaud, F. Veillon, and J. Niez. Symbolic image matching by simulated annealing. In *Proceedings of the British Machine Vision Conference*, pages 319–324, 1990.
- [12] J. Kittler and E. R. Hancock. International journal of pattern recognition and artificial intelligence. *IEEE Trans. Pattern Anal. Mach. Intell.*, 3(1):29–51, 1989.
- [13] Marius Leordeanu and Martial Hebert. A spectral technique for correspondence problems using pairwise constraints. In *ICCV*, 2005.
- [14] Marius Leordeanu, Martial Hebert, Rahul Sukthankar, and Martial Herbert. An Integer Projected Fixed Point Method for Graph Matching and MAP Inference. In NIPS, 2009.

#### References V

- [15] Yao Lu, Kaizhu Huang, and Cheng-Lin Liu. A fast projected fixed-point algorithm for large graph matching, 2012. Available at http://arxiv.org/abs/1207.1114v3, last access on 17/10/2015.
- [16] Bin Luo and Edwin R. Hancock. Structural graph matching using the EM algorithm and singular value decomposition. *IEEE Trans. Pattern Anal. Mach. Intell.*, 23(10):1120–1136, 2001.
- [17] Vince Lyzinski, Daniel L Sussman, Donniell E Fishkind, Henry Pao, Li Chen, Joshua T Vogelstein, Youngser Park, and Carey E Priebe. Spectral Clustering for Divide-and-Conquer Graph Matching. 2011/14. Available at http://arxiv.org/abs/1310.1297v5, last access on 17/10/2015.

#### References VI

- [18] Wei-Zhi Nie, An-An Liu, Zan Gao, and Yu-Ting Su. Clique-graph Matching by Preserving Global & Local Structure. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
- [19] Huaijun Qiu and Edwin R. Hancock. Graph matching and clustering using spectral partitions. *Pattern Recognition*, 39(1):22–34, 2006.
- [20] Gerard Sanromà, René Alquézar, and Francesc Serratosa. A new graph matching method for point-set correspondence using the EM algorithm and Softassign. *Computer Vision and Image Understanding*, 116:292–304, 2012.

#### References VII

- [21] L G Shapiro and R M Haralick. Structural descriptions and inexact matching. *IEEE transactions on pattern analysis and machine intelligence*, 3(5):504–519, 1981.
- [22] Wen-Hsiang Tsai and King-Sun Fu. Error-Correcting Isomorphisms of Attributed Relational Graphs for Pattern Analysis. *IEEE Transactions on Systems, Man, and Cybernetics*, 9(12):757–768, 1979.
- [23] Shinji Umeyam. An Eigendecomposition Approach to Weighted Graph Matching Problems. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 10, 1988.

#### References VIII

- [24] J. T. Vogelstein, J. M. Conroy, L. J. Podrazik, S. G Kratzer, E. T. Harley, D. E. Fishkind, R. J. Vogelstein, and C. E. Priebe. Large (Brain) Graph Matching via Fast Approximate Quadratic Programming, 2011/14. Available at http://arxiv.org/abs/1112.5507v5, last access on 17/10/2015.
- [25] Jason T.L. Wang, Kaizhong Zhang, and Gung-Wei Chirn. Algorithms for approximate graph matching. *Information Sciences*, 82(1-2):45–74, 1995.
- [26] Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. A Path Following Algorithm for the Graph Matching Problem. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(12):2227–2242, 2009.