9. Aufgabenblatt zur Vorlesung

Grundlagen der theoretischen Informatik

SoSe 2020

Wolfgang Mulzer

Abgabe bis zum 29. Juni 2020, 10 Uhr, im Whiteboard

Bitte erläutern und begründen Sie alle Ihre Antworten.

Aufgabe 1 Grammatiken I

2+2+3+3 Punkte

Geben Sie kontextfreie Grammatiken für die folgenden Sprachen an. Begründen Sie jeweils die Korrektheit Ihrer Grammatik.

- (a) Die Menge aller Palindrome über dem Alphabet $\{0, 1\}$.
- (b) Die Sprache $\{0^n 10^n \mid n \in \mathbb{N}\}$ über dem Alphabet $\Sigma = \{0, 1\}$.
- (c) Die Sprache $L = \{a^n b^m \mid n \neq m\}$ über dem Alphabet $\Sigma = \{a, b\}$.
- (d) Die Menge aller Wörter, die doppelt so viele 1'en wie 0'en enthalten, über dem Alphabet $\Sigma = \{0, 1\}.$

Aufgabe 2 Grammatiken II

10 Punkte

Zeigen Sie, dass die Grammatik G mit den Regeln $S \to aS \mid SS \mid aSbS \mid \varepsilon$ genau die Wörter über $\Sigma = \{a,b\}$ erzeugt, in denen jeder Präfix mindestens so viele a's wie b's enthält.

Aufgabe 3 Typ-3 und reguläre Sprachen

4+5+1 Punkte

- (a) Sei $M = (\Sigma, Q, q_0, F, \delta)$ ein deterministischer endlicher Automat, so dass $\varepsilon \notin L(M)$ ist. Geben Sie eine Grammatik G vom Typ 3 an, so dass L(G) = L(M) ist. Begründen Sie die Korrektheit!
 - Hinweis: Wählen Sie V=Q und $S=q_0$. Wie müssen die Produktionen aussehen?
- (b) Sei $G = (\Sigma, V, S, P)$ eine Grammatik vom Typ 3, so dass $\varepsilon \notin L(G)$ ist. Geben Sie einen nichtdeterministischen endlichen Automaten M an, so dass L(G) = L(M) ist. Begründen Sie die Korrektheit!
 - *Hinweis*: Wählen Sie $Q = V \cup \{X\}$, wobei X ein neuer Zustand ist, der nicht in V vorkommt, und setzen Sie $F = \{X\}$. Wie muss man die Übergänge und den Startzustand wählen?
- (c) Folgern Sie, dass die Typ-3-Sprachen genau die regulären Sprachen sind.