

EXPERIMENTAL DESIGNAND PANDAS

Sri Kanajan

EXPERIMENTAL DESIGN AND PANDAS

LEARNING OBJECTIVES

- Apply the data science workflow in the pandas context
- Create an iPython Notebook to import, format, and clean using the Pandas library

COURSE

PRE-WORK

PRE-WORK REVIEW

- Create and open an iPython Notebook
- Complete the Python pre-work

INTRODUCTION

DATA SCIENCE MORKFLOW: ACQUIRE & PARSE

OVERVIEW OF THE DATA SCIENCE WORKFLOW

The steps:

- 1. Identify the problem
- 2. Acquire the data
- 3. Parse the data
- 4. Mine the data
- 5. Refine the data
- 6. Build a data model
- 7. Present the results

DATA SCIENCE WORKFLOW

DATA SCIENCE WORKFLOW: ACQUIRE & PARSE

- We'll talk about steps 2 & 3 of the data science workflow: acquire and parse
- We'll be using iPython Notebook
- First a demo, then a codealong
- Finally, some hands on practice in a lab

MALKTHROUGH ACQUIRE & PARSES MITH PANDAS

ACQUIRE

- Where we determine if we have the "right" dataset for our problem
- Questions to ask:
 - What type of data is it, cross-sectional or longitudinal? (time dependent vs. snapshot)
 - How well was the data collected?
 - Is there much missing data?
 - Was the data collection instrument validated and reliable?
 - Is the dataset aggregated?
 - Do we need pre-aggregated data?

LOGISTICS OF ACQUIRING YOUR DATA

- Data can be acquired through a variety of sources
- Web (Google Analytics, HTML, XML)
- File (CSV, XML, TXT, JSON)
- Databases (SQL, NOSQL, etc)
- Today, we'll use a CSV (comma separated file)

PARSE: UNDERSTANDING YOUR DATA

- You need to understand what you're working with.
- To better understand your data
 - Create or review the data dictionary
 - Perform exploratory surface analysis
 - Describe data structure and information being collected
 - Explore variables and data types

INTRO TO DATA DICTIONARIES AND DOCUMENTATION

- Data dictionaries help judge the quality of the data.
- They also help understand how it's coded.
 - Does gender = 1 mean female or male?
 - Is the currency dollars or euros?
- Data dictionaries help identify any requirements, assumptions, and constraints of the data.
- They make it easier to share data.

DATA DICTIONARY EXAMPLE: KAGGLE TITANIC DATA

https://www.kaggle.com/c/titanic/data

```
VARIABLE DESCRIPTIONS:
survival
                Survival
                (0 = No; 1 = Yes)
pclass
                Passenger Class
                (1 = 1st; 2 = 2nd; 3 = 3rd)
name
                Name
sex
                Sex
                Age
age
sibsp
                Number of Siblings/Spouses Aboard
                Number of Parents/Children Aboard
parch
ticket
                Ticket Number
fare
                Passenger Fare
cabin
                Cabin
embarked
                Port of Embarkation
                (C = Cherbourg; Q = Queenstown; S = Southampton)
SPECIAL NOTES:
Pclass is a proxy for socio-economic status (SES)
1st ~ Upper; 2nd ~ Middle; 3rd ~ Lower
Age is in Years; Fractional if Age less than One (1)
If the Age is Estimated, it is in the form xx.5
With respect to the family relation variables (i.e. sibsp and parch)
some relations were ignored. The following are the definitions used
for sibsp and parch.
         Brother, Sister, Stepbrother, or Stepsister of Passenger Aboard
Sibling:
Titanic
         Husband or Wife of Passenger Aboard Titanic (Mistresses and Fiances
Spouse:
Ignored)
         Mother or Father of Passenger Aboard Titanic
Parent:
Child:
          Son, Daughter, Stepson, or Stepdaughter of Passenger Aboard Titanic
Other family relatives excluded from this study include cousins,
nephews/nieces, aunts/uncles, and in-laws. Some children travelled
only with a nanny, therefore parch=0 for them. As well, some
travelled with very close friends or neighbors in a village, however,
the definitions do not support such relations.
```

- What are Numpy and Pandas? Python packages
- Pands is built on Numpy.
- Numpy uses arrays (lists) to do basic math and slice and index data.
- Pandas uses a data structure called a Dataframe.
- Dataframes are similar to Excel tables; they contain rows and columns.

	A	В	С	D
2014-01-01	0.731803	2.318341	-0.126191	-0.903675
2014-01-02	0.161877	-0.892566	0.967681	-1.514520
2014-01-03	0.776626	1.797420	0.916972	0.634322
2014-01-04	2.020242	-0.763612	1.239145	-0.919727
2014-01-05	0.772058	0.417369	-0.957359	-0.916665
2014-01-06	-1.670217	-3.249906	2.017370	1.674340

6 rows × 4 columns

- With these packages, you can select pieces of data, do basic operations, calculate summary statistics.
- Follow along and code along as we learn about Numpy and Pandas.

• We often have to merge data together, correct missing data, and plot our findings.

Once again, follow and code along.

LAB WALKTHROUGH

LESSON 2 LAB WALKTHROUGH

- In this lab, you will merge two datasets: ozone and data.
- By the end of the lab, you will:
 - Merge datasets
 - Check basic features of the data
 - Find and drop missing values
 - Find basic stats like mean and max

CONCLUSION

TOPIC REVIEW

LESSON

Q&A

LESSON

EXITTICKET

DON'T FORGET TO FILL OUT YOUR EXIT TICKET

REVIEW

- Let's go through the lab. Any questions?
- Today, we've talked about
 - Defining a problem
 - Types of data
 - Acquiring and parsing data
 - Using Pandas