

UNIVERSIDADE ESTADUAL PAULISTA "JULIO DE MESQUITA FILHO"

Bacharelado em Ciência da Computação

Equipe 10

Plano de Projeto P3

Presidente Prudente 2013

Denilson Grosa

Allan Albuquerque

PLANO DO PROJETO

Plano de Projeto apresentado pelo grupo 2 equipe 3 na disciplina de Engenharia de Software II, do Curso Bacharelado em Ciência da Computação da Universidade Estadual Paulista Júlio de Mesquita Filho", ministrada pelo professor Dr. Rogério Eduardo Garcia.

Sumário

1	Introdução	4
1.1	Escopo e propósito do documento	4
1.2	Objetivos do Projeto	4
1.2.1	Objetivos	4
1.2.2	Punções principais	4
1.2.3	3 Questões de desempenho	4
1.2.4	Restrições Técnicas e Administrativas	4
1.3	Metodologia de desenvolvimento	4
2	Estimativas de Projeto	6
2.1	Dados históricos usados nas estimativas	6
2.2	Técnicas de estimativas	6
2.2.1	Métrica Orientada ao Tamanho	6
2.2.2	Métrica por Pontos de Função	7
2.3	Conclusão	8
3	Riscos do Projeto	9
3.1	Identificação dos riscos	9
3.2	Análise dos riscos	10
3.3	Administração dos riscos	10
3.3.1	Estratégias	10
4	Cronograma	14
4.1	Rede de Tarefas	14
4.2	Gráfico de Gantt	15
5	Recursos do Projeto	16
5.1	Recursos Humanos do Projeto	16
5.2	Recursos Tecnológicos do Projeto: Hardware e Software	16
6	Referências	17

1 Introdução

1.1 Escopo e propósito do documento

O plano do projeto Administração de Recursos apresenta as atividades de gerência desenvolvidas para construção de um sistema de gestão de recursos de uso compartilhado. Proporcionando uma visão geral do projeto, para que seus objetivos sejam atingidos.

1.2 Objetivos do Projeto

1.2.1 Objetivos

O sistema a ser desenvolvido tem por objetivo prover apoio às atividades envolvidas na gestão de recursos, que podem ser compartilhados por diversos usuários, devendo-se estabelecer reservas para o uso efetivo. Tais recursos consistem de salas, computadores e projetores.

1.2.2 Funções principais

Armazenar dados dos recursos, de solicitação de reservas, efetuar exclusão de recursos, cancelamento de reservas, remover dados de reservas, consultar a disponibilidade de recursos, realizar backup e gerar relatório de utilização.

1.2.3 Questões de desempenho

O sistema deve responder ao usuário em, no máximo, 5 segundos. Para casos em que isso não seja possível, o usuário deve ser avisado.

1.2.4 Restrições Técnicas e Administrativas

Não há

1.3 Metodologia de desenvolvimento

O sistema de Administração de Recursos foi desenvolvido utilizando o método Larman.

A realização do projeto foi dividida em três etapas:

1ª Etapa –Produção, revisão e correção dos seguintes artefatos: Documentos de Casos de Uso (Alto Nível e Expandido), Diagrama de Casos de Uso, Modelo Conceitual, Diagrama de Sequencia do Sistema, Diagrama de Colaboração e Diagrama de Classe.

2ª Etapa – Foram refinados, revisados e alterados os seguintes artefatos: Modelo Conceitual; Diagrama de Sequencia do Sistema; Diagrama de Colaboração; Digrama de Classe.

3ª Etapa – Produção, revisão e correção do código fonte do sistema.

2 Estimativas de Projeto

2.1 Dados históricos usados nas estimativas

Não há

2.2 Técnicas de estimativas

Para as estimativas foram utilizados os seguintes métodos:

- Métricas orientadas ao tamanho
 - Modelo Walston-Felix (modelo estático de variável simples)
 - Modelo Boehm simples
 - o Modelo Bailey-Basili
 - o Modelo COCOMO
- Métricas orientadas a função
 - o Modelo estático de variável simples
 - Modelo Albrecht e Gaffney
 - o Modelo Kemerer
 - o Modelo de Regressão de pequeno projeto

2.2.1 Métrica Orientada ao Tamanho

TABELA DE ESTIMATIVA - LOC			
Funções	Esperado		
Cadastrar usuário	228,08		
Cadastrar/Alterar recursos	297,50		
Reservar recursos/Cancelar reserva	138,83		
Consultar Disponibilidade de recurso	89,25		
Efetuar backup	109,08		
Excluir dados de reservas	138,83		
Gerar relatório de utilização	104,13		
LOC Estimado	1105,71		

Modelo Walston-Felix

Modelo Walston-Felix				
Esforço	5,70	pessoas-mês		
Duração do projeto	4,25	meses		
Tamanho da equipe	0,60	pessoas		
Linhas de documentação	54,23			

Modelo Boehm Simples

Modelo Boehm simples			
Esforço	3,56		
Tempo	0,59		

Modelo Bailey-Basili

Modelo Bailey-Basili		
Esforço	6,32	
Tempo	1,05	

Modelo COCOMO

СОСОМО			
Esforço	2,67	pessoas-mês	
Tempo de Desenvolvimento (Básico)	3,63	meses	
Tamanho da equipe	0,73	pessoa(s)	

2.2.2 Métrica por Pontos de Função

Tabela dos pontos esperados

TABELA DE ESTIMATIVA - PF			
Funções	Esperado		
Cadastrar usuário	9,52		
Cadastrar/Alterar recursos	12,38		
Reservar recursos/Cancelar reserva	5,71		
Efetuar backup	4,76		
Excluir dados de reservas	5,71		
Gerar relatório de utilização	3,81		
PF Estimado	41,89		

Modelo estático de variável simples

Modelo Estático de Variável Simples		
Produtividade Média: PF/Pessoas-mês	16	
Esforço: PF estimado/Produt. Média	2,61	

Modelo Albrecht e Gaffney

Modelo Albrecht e Gaffney			
Esforço	-76,52		
Tempo	-12,75		

Modelo Kemerer

Modelo Kemerer		
Esforço	3,56	
Tempo	0,53	

Modelo de Regressão de pequeno projeto

Estimativas		
Esforço	4,08	
Tempo	0,68	

2.3 Conclusão

As estimativas por LOC (Linha de Código), apresentaram resultados mais próximos da realidade, apontando resultados de esforço e tempo, bem próximos do praticado, já as estimativas de PF(Pontos por Função), somente através da regressão de pequeno projeto chegou próximo a realidade do esforço despendido no projeto, tendo todas as outras estimativas fugido da realidade.

Dentre as estimativas utilizadas no projeto, no assunto Esforço necessário, a abordagem que mais se aproximou da realidade do projeto, foi por LOC(Linha de Código) com o modelo de Walston-Felix com resultado de 5,70 pessoas/mês, já em relação ao tempo a melhor estimativa também foi por LOC, com o modelo COCOMO que obteve a duração de 3,63 meses.

3 Riscos do Projeto

3.1 Identificação dos riscos

O projeto está sujeito aos Riscos de Projeto e Risco Técnico.

Para o Risco de Projeto encontramos problemas referentes a recursos humanos sendo eles:

- Recurso desistente;
- Recurso com indisponibilidade de tempo;
- Recurso desmotivado.

O Risco Técnico apresenta problemas como:

- Utilização de método diferente do estipulado;
- Falta de conhecimento técnico

Os riscos encontrados no projeto estão representados abaixo no Diagrama de Ishikawa.

O Diagrama apresenta o tipo de risco aos quais o projeto esta sujeito, e os motivos que levam a eles.

3.2 Análise dos riscos

Matriz de GUT

A matriz de GUT lista em ordem decrescente de Prioridade, os riscos dos quais o projeto está sujeito.

A matriz aponta a Gravidade (impacto do risco caso ele venha acontecer), a Urgência (prazo necessário para lidar com o risco caso com o mesmo ocorra) e a Tendência (potencial de crescimento do problema com o passar do tempo) dos riscos em questão.

Risco	Gravidade	Urgência	Tendência	Prioridade
Recurso desistente	5	5	5	125
Recurso com indisponibilidade de tempo	4	5	5	100
Falta de conhecimento técnico	4	5	4	80
Utilização de método diferente do estipulado	5	3	4	60
Recurso desmotivado	3	4	4	48

3.3 Administração dos riscos

3.3.1 Estratégias

Risco	Categoria	Impacto	RMMM	
Recurso desistente	QPE	Catastrófico	Mitigação/Monitoração 1. Verificar periodicamente com o recurso o andamento do projeto a qual gerencia. 2. Verificar periodicamente a evolução do recurso na disciplina;	
			Gerenciamento/plano de contingência/disparo Caso o desistente for apenas um integrante da equipe, verificar com o não desistente a possibilidade de continuar o projeto sozinho. Na impossibilidade, verificar com as equipes restantes, a possibilidade de redistribuição das tarefas. Não sendo possível a reorganização entre as equipes, o gerente deverá assumir a parte faltante.	

Recurso com	QPE	Crítico	Mitigação e Monitoração
indisponibilidade	\ \times =		Verificar os dias e horário da
de tempo			semana que podem ser
· · · · ·			usados para o projeto.
			2. Verificar datas de avaliações
			e trabalhos.
			3. Verificar viagens
			agendadas.
			4. Projetar os dias
			indisponíveis no cronograma
			e analisar o impacto no
			projeto.
			Gerenciamento/plano de
			contingência/disparo
			No caso de um integrante da
			equipe estar com indisponibilidade
			de tempo, o outro deverá assumir a
			tarefa sozinho.
			No caso da equipe inteira estar
			indisponível, causando impacto no
			projeto, as atividades no
			cronograma, deverão ser
			reorganizadas de modo que o
Calta da	ODE	Crítico	prazo seja cumprido.
Falta de conhecimento	QPE	Crítico	Mitigação e Monitoração 1. Informar às equipes no
técnico			1. Informar às equipes no início do projeto, quais
tecino			conhecimentos necessários
			(linguagens, métodos e
			ferramentas).
			2. Verificar periodicamente
			com os recursos, a
			aquisição do conhecimento
			necessário, caso não o
			tenha.
			Gerenciamento/plano de
			contingência/disparo
			Realocação do recurso com
			conhecimento, para orientação do
			recurso prejudicado. Na falta de
			um orientador, solicitar ao recurso
			que obtenha o conhecimento
	005		necessário o mais breve possível.
Utilização de	QPE	Marginal	Mitigação e Monitoração
método			1. Informar às equipes no
diferente do			início do projeto, quais os
estipulado			métodos serão utilizados.
Ť	1	I	2. Verificar se os recursos

			detém o conhecimento necessário.
			Gerenciamento/plano de contingência/disparo Solicitar a equipe que refaça a atividade utilizando o método estipulado. Caso haja necessidade de alguma atividade ser refeita, analisar se isso impactará no cronograma, e redefinir o prazo de cada atividade.
Recurso desmotivado	QPE	Marginal	 Mitigação e Monitoração 1. Verificar constantemente a evolução do recurso na disciplina. 2. Apresentar a vantagem de continuar no projeto mesmo, que a nota da primeira prova tenha sido ruim.
			Gerenciamento/plano de contingência/disparo Verificar o motivo da desmotivação, e auxiliar o recurso caso necessário. Se necessário verificar com o outro recurso da equipe, a possibilidade de se sobrecarregar um pouco, com as tarefas, para que o recurso desmotivado tenha tempo para recuperação de conteúdo caso necessário.

Categorias:

- Tamanho do produto (TP) riscos associados ao tamanho geral do software a ser criado ou modificado.
- Impacto de negócio (IN) riscos associados a restrições impostas pela gerência ou pelo mercado.
- Características do cliente (CC) são riscos associados à sofisticação dos clientes e à habilidade do desenvolvedor em se comunicar com os interessados a tempo.
- Definição do processo (DP) riscos associados ao grau em que a gestão de qualidade foi definida e é seguida pela organização de desenvolvimento.

- Ambiente de desenvolvimento (AD) riscos associados à disponibilidade e qualidade das ferramentas a ser usadas para criar o produto.
- Tecnologia a ser criada (TC) riscos associados à complexidade do sistema a ser criado e com a "novidade" da tecnologia que está embutida no sistema.
- Quantidade de pessoas e experiência (QPE) riscos associados à experiência técnica em geral e de projeto dos engenheiros de software que farão o trabalho.

Impacto:

- Catastrófico
- Crítico
- Marginal
- Negligenciável

4 Cronograma

4.1 Rede de Tarefas

1	Α	Casos de Uso de Alto Nivel	1 dia
2	В	Casos de Uso Expandido	2 dias
3	С	Diagramas de Caso de Uso	1 dia
4	D	Modelo Conceitual	2 dias
5	Е	Revisão dos Casos de Uso e Diagrama	2 dias
6	F	Correção dos Casos de Uso e do Diagrama	2 dias
7	G	Revisão do Modelo Conceitual	2 dias
8	Н	Checkpoint	1 dia
9	Ι	Correção do Modelo Conceitual	2 dias
10	J	Diagramas de Sequencia do Sistema	3 dias
11	K	Diagramas de Colaboração	2 dias
12	L	Revisão do Diagrama de Sequencia do Sistema	2 dias
13	М	Checkpoint	1 dia
14	Ν	Correção do Diagrama de Sequencia do Sistema	2 dias
15	0	Revisão do Diagrama de Colaboração	4 dias
16	Р	Correção do Diagrama de Colaboração	2 dias
17	Q	Checkpoint	1 dia
18	R	Diagramas de Classe	3 dias
19	S	Checkpoint	1 dia
20	Т	Revisão do Diagrama de Classe	7 dias
21	U	Checkpoint	1 dia
22	W	Correção do Diagrama de Classe	2 dias
23	٧	Revisão do Documento de Requisito	1 dia
24	Χ	Checkpoint	1 dia
25	Υ	Revisão do Modelo Conceitual e DSS	2 dias
26	Z	Revisão do Diagrama de Colaboração e de Classe	2 dias
27	AA	Codificação e Teste de Usuário	11 dias
28	AB	Checkpoint	1 dia
29	AC	Revisão do Código Fonte	6 dias
30	AD	Checkpoint	
31	ΑE	Correção do código fonte	
32	AF	Finalização do Projeto	2 dias

4.2 Gráfico de Gantt

Abaixo um esboço do Gráfico de Gantt baseado no cronograma do projeto, uma melhor visualização pode ser obtida no arquivo "Cronograma ES-II - P3 1.3", localizado no repositório projetoP3 através do endereço:

 $\frac{https://github.com/fernandogrosa/projetoP3/blob/master/cronograma/Cronograma%20ES-II%20-%20P3%201.3.mpp$

5 Recursos do Projeto

5.1 Recursos Humanos do Projeto

O projeto conta com um total de 8 pessoas, sendo 4 equipes de duas pessoas, conforme abaixo:

Equipe 1 – Gerentes

- Denilson Grosa
- Allan Albuquerque

Equipe 2 – Analisras/Projetistas

- Leonardo T. Nozawa
- Fábio Portela

Equipe 3 - SQA

- Gabriel Ozaki
- Igor Fernandes

Equipe 4 – Codificadores

- Douglas Panacho
- Guilherme H. L. dos Santos

5.2 Recursos Tecnológicos do Projeto: Hardware e Software

Para as atividades de Análise e Projeto, serão utilizados o Office 2010 e Astah. Referente às atividades de desenvolvimento, será utilizado o QT para a codificação na linguagem C++.

Para as atividades de gerência, será utilizado Microsoft Project (Cronograma, Gráfico de Gantt) e o Power Point (Rede de Tarefas). Para controle das versões o GitHub, sendo que os arquivos serão armazenados no endereço: https://github.com/fernandogrosa/projetoP3

6 Referências

Pressman, Roger S., Engenharia de Software, 7ª edição, Porto Alegre: AMGH, 2011.