The midpoint between the two groups on the two derived variables is $\frac{1}{2}(\mu_{Yi} + \mu_{Yi})$ μ_{Y2}), where $\mu_{Yi} = I^{T}\mu_{i}$. To allocate an object with feature vector \mathbf{x}_{0} the first step is to compute $y_0 = I^T x_0$. The allocation rule is to assign the object with feature vector \mathbf{x}_0 to group c_1 if $\mathbf{y}_0 > \frac{1}{2}(\mu_{Y1} + \mu_{Y2})$, else to c_2 . If this rule is converted back to the original scale, it becomes: assign the object with feature vector x₀ to group

$$(\mu_1 - \mu_2)^T \Sigma^{-1} \mathbf{x}_0 > \frac{1}{2} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 + \mu_2)$$
 (7.26)

 c_i if