

4차 산업혁명 신산업 기술 이해

4차산업혁명과 로봇

- 로봇의 개요
- 로봇의 기술
- 산업용로봇 구성요소
- 산업용로봇 유지보수

🔷 학습목표 🕶

- 로봇의 개요를 이해하고 설명 할 수 있다.
- 로봇의 기술을 이해하고 설명할 수 있다.
- 로봇의 구성요소에 대해 이해하고 설명 할 수 있다.
- ▶ 산업용로봇의 구조를 알고 유지보수 할 수 있다.

😱 로봇의 개요

1. 로봇이란?

- 외부환경을 스스로 인식하고 상황을 판단하여 자율적으로 동작하는 기계장치
- 감각, 지능, 근육이 어느 정도 구비된 기계/전자/전산의 복합시스템

1) 로봇공학의 3원칙(미국의 작가 아이작 아시모프)

- ① 제 0원칙: 로봇은 인류에게 해를 가하거나, 행동을 하지 않음으로써 인류에게 해가 가도록 해서는 안 된다.
- ② 제 1원칙:로봇은 인간을 해치면 안될 뿐더러, 다치게 방치해서도 안 된다.
- ③ 제 2원칙: 제 1원칙에 위배되지 않는 한, 주인의 명령에 따라야 하다.
- ④ 제 3원칙: 제 1원칙과 제 2원칙에 위배되지 않는 한, 로봇 자신을 보호해야 한다.

2) 로봇의 기본적인 특징

- ① 힘 센서나 비전 센서 등으로부터 외계나 자신의 상황을 인식
- ② 센서 정보로부터 얻어진 정보를 분석하고 분석한 결과에 따라 움직임
- ③ 가상의 서버를 두어 실시간으로 언제 어디서든 정보를 저장하고 분석하여 다양한 문제 해결을 할 수 있는 클라우드형 로봇 유형으로 진화

😱 로봇의 개요

1. 로봇이란?

3) 로봇의 역사

20세기초

포드 자동차 T모델 대량생산라인에 자동화 시스템 도입

제조현장에 로봇 개발 시작

1980년대 제조업 로봇이 자동차 공장을 중심으로 보급이

확사 1990년대

■ 혼다의 휴머노이드 로봇 아시모의 개발

사람과 같은 동작을 하는 로봇이 주목 받음

2000년대 일반 가정에 개인 서비스용 로봇인 청소로봇이 보급

2010년 ■ 전문서비스용 로봇인 의료, 군수용 로봇이 개발

정교하고 정확한 로봇의 기술이 필요

혀재 인공지능 기술과 융합하여 사람과 협업을 하는 협업로봇 출시

> 대형 IT기업들이 인공지능 로봇에 대한 관심을 갖게 되고 관련 기술들이 급속히 발전

4) 지능형로봇의 분류

 의료・복지, 재난구조, 유지 보수, 생활 지원, 서비스 로봇 엔터테인먼트 등 다양한 용도로 활용 개인용 로봇, 전문서비스 로봇, 극한작업 로봇 ■ 공장의 생산재로 사용 산업용 로봇 제조업용, 비제조업용

\Omega 로봇의 개요

2. 로봇 산업의 현황

1) 분야별 로봇 활용

2) 최근 개발 및 주요국 동향

4차 산업혁명 대표 기술의 집약체인 스마트 공장 산업용로봇 확산에 따른 첨단 제조로봇으로 개발 및 상용화

서비스로봇

무인이송, 소셜, 의료, 안전 분야 등 서비스용 로봇의 개발 및 상용화

미국	일본	EU	중국
첨단제조 파트너십 일환으로 국가 로봇 계획	범정부 차원의 로봇 신 전략	SPARC	중국제조 2025 핵심 산업 분야에 로봇을 선정하여 추진 중

😲 로봇의 기술

1. 로봇의 다양한 기술분야

1) 로봇 관련되는 분야

구분	주요 분야 (9개)	주요 기술 (18개)
로봇의 구조 이해	기구학	• 링크가구 • 기어가구
	재료역학 기계역학	• 로봇의 강도 • 로봇의 진동
	전자공학	• 신호의 증폭/연산 • 아날로그/디지털
	전기공학	모터스위치배전
지능, 프로그래밍 등 명령	수학	• 라플라스 변환 • 미분방정식/선형대수
	제어공학	• 피드백 제어 • 시퀀스 제어
	계측공학	센서 공학신호 처리
	컴퓨터/정보공학	신호처리/프로그램A/D변환, D/A변환
	운동학·동역학	• 로봇/암운동

😱 로봇의 기술

2. 로봇의 기능과 성능

환경대응 능력

• 주어진 환경에서 성공적으로 목표적에 도달하기 위해서는 그만큼 높은 지능으로 환경대응이 이루어져야 함

작업수행 능력

• 반복적이지 않은 작업을 수행하기 위해서 높은 지능에 의한 판단력을 가져야 함

상호작용 능력

• 인간과의 만남이 증가하기 때문에 인간을 상대하는 능력을 가져야 함

3. 로봇 관련 기술과 제조사

1) 로봇 관련 기술

- ① 센서기술, 지능제어 기술, 구동기술
- ② 각각의 기술을 통합하여 제조업용 로봇과 서비스용 로봇 기술에 활용

2) 대표적인 로봇 제조사

제조사 화낙(FANUC), YASKAWA, 가와사키, 혼다, ABB, 토요타 등

산업용로봇 구성요소

1. 사람과 로봇

2. 종류

- ① 원통로봇
- ② 직교좌표로봇
- ③ 수평다관절로봇
- ④ 수직다관절로봇
- ⑤ 극좌표로봇
- ⑥ 병렬로봇

😲 산업용로봇 구성요소

3. 구성요소

1) 관절과 링크 구조

	관절	회전 관절	경첩(Hinge)를 이루며 두 링크(Link) 사이의 상대적 회전 허용
	(Joint)	직선 관절	두 링크(Link) 사이의 상대적 직선운동 허용
링크 (Link)		두 관결 것	절 사이를 일정한 형태를 가지고 이어주는

😱 산업용로봇 구성요소

3. 구성요소

2) 센서

- ① 모든 정보 및 에너지의 검출 장치
- ② 검출량을 전기적인 신호로 변환하는 장치
- ③ 온도, 압력, 유량 등과 같은 물리량이나 Ph와 같은 화학량의 절대값이나 변화량 또는 소리, 빛, 전파의 강도를 검지하여 유용한 신호로 변환(Convert)하는 장치
- ④ 내계 센서와 외계 센서로 구분

내계 센서

- 로봇 자체의 동작을 위해 필요한 센서
 - 퍼텐쇼미터, 인코더 : 로봇 팔의 각도를 측정
 - 힘센서: 물체를 잡거나 접촉한 경우의 힘을 측정
 - 계측용 속도 발전기:로봇 팔의 속도를 측정

외계 센서

- 환경을 인식하기 위한 센서
 - CCD 카메라 : 작업 대상물 또는 놓인 환경을 인식
 - 초음파 센서 : 장애물이나 대상물까지의 거리를 측정
 - 터치 센서 : 대상물에 접촉했는가를 판단

😱 산업용로봇 구성요소

3. 구성요소

3) 액추에이터

- 로봇을 구동하기 위한 구성요소
 - 인코더: 모터 회전각이나 회전수를 측정하는 센서
 - 속도 계측용 발전기
 - 태코미터 제너레이터 : 모터의 회전 속도를 검출하는 센서
 - 감속기 부착, 기어 부착 모터 : 크기가 다른 기어를 맞물려 회전수를 떨어뜨리는 기어
 - 하모닉 드라이브: 1개의 축 주위를 회전하면서 회전 속도를 떨어뜨리는 드라이브

🛂 산업용로봇 구성요소

3. 구성요소

4) 산업용로봇의 용어

- ① 작업공간
 - 말단장치의 지나간 자국이 만드는 전체 부피

도달가능 작업공간 (Reachable Workspace)	머니퓰레이터가 도달할 수 있는 모든 점의 집합
: 자유자재 작업공간	머니퓰레이터의 말단장치가 임의의
(Dexterous	방향을 가지면서 도달할 수 있는
Workspace)	점들로 구성된 것

② 정밀도

- 공간상의 주어진 목표점에 얼마나 가깝게 갈 수 있느냐를 반복 측정한 평균값
- 반복 정밀도: 한번 교시(Teaching)하여 갔던 위치를 다시 가면 얼마나 정확히 그 위치에 도달하는가를 반복 측정한 값

③ 분해능(Resolution)

- 엔코더축이 1회전할 때 나오는 펄스 수
- 엔코더에서 나온 펄스수를 얼마만큼 정밀하게 쪼개서 제어할 것인지 결정할 때 사용
- 얼마만큼 로봇을 위치시킬 것인지의 최소단위

🛂 산업용로봇 구성요소

3. 구성요소

4) 산업용로봇의 용어

④ 가반하중

- 산업용로봇의 말단장치와 작업물을 이송 시킬 수 있는 하중
- 엔드 이펙트의 하중이 포함

⑤ 로봇의 최대속도(Max Speed)

- 엔드 이펙트가 구현할 수 있는 최대 합성속도
- 로봇의 작업 Tact Time 결정에 영향을 미침
- 최대속도가 빠르다고 좋다고는 할 수 없지만 대상 작업에서 요구하는 최대속도보다는 빠른 최대속도를 갖는 로봇이 필요

🛂 산업용로봇 구성요소

3. 구성요소

4) 산업용로봇의 용어

- ⑥ 스트로크:산업용 로봇에서 유효 작업 공간
- ⑦ 리치:설치 공간 및 안전 구역을 판단하는데 필요

4. 시스템의 구성요소

1) 구성도

😲 산업용로봇 구성요소

4. 시스템의 구성요소

2) 제어 시스템

■ 로봇 팔을 움직이는 구동 모터 제어 기술

5. 주요 기술

\Omega 산업용로봇 유지보수

1. 유지보수 핵심능력 3가지

1) 지능형 로봇의 유지보수에 필요한 능력 3가지

산업용로봇 유지보수

2. 유지보수 주요 기술

1) 로봇 고장 주요 내역

💟 산업용로봇 유지보수

3. 유지보수 주의사항

1) 분해

- ① 기계 구조에 대한 이해 후, 분해 순서를 정확히 지킬 것
- ② 무리한 힘을 가하거나 맞지 않는 공구를 사용하여 부품을 손상하거나 파손하는 일이 없도록 할 것
- ③ 이상 상황이 있는 부분은 관계 위치에 기록할 것
 - 분해 중 이상은 없는지 점검할 것
 - 이상을 확인하면 관계 위치 상태, 정도, 재질 기타 등을 명확히 기록할 것
 - 표면이 손상되지 않도록 주의할 것
 - 특히 부착물 등을 파악하고 확인할 것
 - 마킹(MARKING)은 필히 할 것
- ④ 사상 또는 습동부에 분해 부품의 흠집 방지
- ⑤ 분해 부품의 보관 철저
 - 특히 작은 부품이 분실되지 않도록 상자자 통에 보관할 것
 - 계기 종류는 조심하여 취급할 것
 - 부품은 순서대로 안전하게 정돈할 것
 - 파이프류는 양단에 깨끗한 걸레나 비닐 등으로 막아 둘 것
 - 큰 중량 물이나 큰 기계는 부속품의 재 분해를 고려하여 재작업 위치의 변경을 하지 않도록 주의할 것
 - 중량 및 긴 물건은 굽힘을 고려하여 고임목을 사용할 것
- ⑥ 불안전한 줄 걸이는 하지 말 것
 - 하물의 중량 중심에 와이어 로프를 몇 번 반복해서 감아 올릴 것
 - 아이 볼틀 및 새클을 확실하게 죌 것

\Omega 산업용로봇 유지보수

3. 유지보수 주의사항

1) 분해

- ⑦ 분해 부품의 분실에 주의할 것
- ⑧ 접합부의 틈, 마모 정도를 점검할 것
 - 마모 부식 상황을 검사 측정하여 기록할 것
 - 키 고정부의 클리어런스 측정
 - 균열의 유무 등 체크, 미심쩍은 개소는 필히 칼라 체크 등을 실시할 것
- ⑨ 부자연한 물질이 내부에 존재하는지를 체크할 것
 - 분해 시 케이싱 혹은 박스 내에 탈락 부품의 여부를 확인할 것
 - 윤활유조 내에 이물의 혼입이나 필터의 이물 부착 여부를 확인할 것
 - 불량 원인 및 개소를 점검할 것

2) 조립

- ① 무리한 조립은 하지 말 것
 - 각 부품이 정상인가 또는 도면과 같이 조합되어 있는가를 검토·확인
 - 재고 부품이 있으면 그 방법을 비교하여 체크
- ② 마킹은 틀리지 않게 정확히 할 것
- ③ 청소를 깨끗이 한 후 조립할 것
 - 베어링 부는 윤이 나도록 문질러 닦고 녹 발생이 없도록 할 것
 - 정밀 기계일 때는 맨손으로 작업할 것
- ④ 접합면에 이물이 들어가지 않도록 할 것

\Omega 산업용로봇 유지보수

3. 유지보수 주의사항

2) 조립

- ⑤ 부품의 틈새 조정 및 탈락 여부 정확하게 확인할 것
 - 라이너의 틈새 조정은 정확하게 할 것
 - 조립할 때에 내부의 부품이 빠졌나 확인할 것
 - 메탈 등 회전 방지 로크(Lock)는 철저히 확인할 것
 - 스러스트 링 또는 칼라 등의 분실 되지 않도록 할 것
 - 패킹류 및 라이너는 정규 부품인가 확인할 것
- ⑥ 회전 로크 장치는 안전하게 할 것
- ⑦ 불량품을 사용하지 말 것
- ⑧ 적정 체결력(조임)에 주의하고, 볼트와 너트를 조일 때는 균일하게 조일 것
- ⑨ 불확실 부품은 반드시 측정 및 검사를 실시할 것
- ⑩ 박스 내부와 케이싱에 스패너, 줄, 볼트, 너트 및 라이너 등 공구를 떨어뜨린 상태로 조립하는 사례가 없도록 할 것
 - 걸레나 비닐로 봉한 상태로 조립하지 말고 그리스에 모래, 스케일 등이 혼합되지 않도록 할 것
- ① 이물질이 혼합되거나 이물질을 넣은 채로 조립하지 말 것

1. 로봇의 개요

1) 로봇이란?

 외부환경을 스스로 인식하고 상황을 판단하여 자율적으로 동작하는 기계장치

2) 로봇의 기본적인 특징

- ① 힘 센서나 비전 센서 등으로부터 외계나 자신의 상황을 인식
- ② 센서 정보로부터 얻어진 정보를 분석하고 분석한 결과에 따라 움직임
- ③ 가상의 서버를 두어 실시간으로 언제 어디서든 정보를 저장하고 분석하여 다양한 문제 해결을 할 수 있는 **클라우드형 로봇** 유형으로 진화

3) 지능형로봇의 분류

서비스 로봇	 의료・복지, 재난구조, 유지 보수, 생활 지원, 엔터테인먼트 등 다양한 용도로 활용 개인용 로봇, 전문서비스 로봇, 극한작업 로봇
산업용 로봇	공장의 생산재로 사용제조업용, 비제조업용

2. 로봇의 기술

1) 로봇의 다양한 기술분야

주요 분야 (9개)	주요 기술 (18개)
기구학	링크가구, 기어가구
재료역학/기계역학	로봇의 강도, 로봇의 진동
전자공학	신호의 증폭/연산, 아날로그/디지털
전기공학	모터, 스위치, 배전
수학	라플라스 변환, 미분방정식/선형대수
제어공학	피드백 제어, 시퀀스 제어
계측공학	센서 공학, 신호 처리
컴퓨터/정보공학	신호처리/프로그램, A/D변환, D/A변환
운동학·동역학	로봇/암운동

2) 로봇의 기능과 성능

- ① 환경대응 능력: 주어진 환경에서 성공적으로 목표점에 도달하기 위해서 그만큼 높은 지능으로 환경대응이 이루어져야 함
- ② 작업수행 능력: 반복적이지 않은 작업을 수행하기 위해서 높은 지능에 의한 판단력을 가져야 함
- ③ 상호작용 능력 : 인간과의 만남이 증가하기 때문에 인간을 상대하는 능력을 가져야 함

3) 로봇 관련 기술과 제조사

- ① 로봇 관련 기술은 크게 센서기술, 지능제어 기술, 구동기술로 나뉨
- ② 제조사: FANUC(화낙), YASKAWA,가와사키, 혼다, ABB, 토요타 등

3. 산업용로봇 구성요소

1) 구성요소

- 외부환경을 인식하는 센서, 제어컴퓨터, 통신장치,
- 구동을 위한 액추에이터
- 작업을 수행하는 엔드이펙터
- 모든 구성요소를 지지하고 보호하고 연결해 주는 머니 플레이터
- ① 머니플레이터: 관절과 두 관절 사이를 일정한 형태를 가지고 이어주는 링크로 구성되어 있으며, 회전관절과 직선관절로 구분
- ② 센서 : 모든 정보 및 에너지의 검출장치이며, 그 검출량을 전기적인 신호로 변환하는 장치
- ③ 액추에이터 : 로봇을 구동하기 위한 구성요소

4. 산업용로봇 유지보수

1) 유지보수 핵심 능력

① 분석 : 문제점을 찾는 능력으로 현재 주어져 있는 정보를 바탕으로 도면, 분야별 기능 등 분석

② 수리 : 분해>수리교체>조립 등의 능력으로 전기·전자 · 통신·기계 분야의 요소를 점검하고 교체할 수 있는 능력

③ 진단: 성능유지를 위한 예방 기술로 주기·정기·분기 등 항목별 검사 및 진단할 수 있는 능력