109. (Practice Midterm 2 - Chifan) Let $f_n \in H(\Omega)$ where Ω is a region. Assume f_n has no zeros in Ω and f_n converges uniformly to f on compact subsets of Ω . Prove that either f has no zeros or f(z) = 0 for all $z \in \Omega$.

Assume $f \neq 0$. As f is holomorphic, its zeros are isolated. So let g be a closed confour about a zero g of g such that no other zeros of g lie on g g. By the argument principle,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} = 1 \qquad (f : s holomorphic and has no poles)$$

and

desired.

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f_n'(z)}{f_n(z)} = 0 \quad (f_n \text{ has no zeros or poles})$$

Because we have vaiform convergence, $\lim_{n\to\infty} \left| \frac{f_n(z)}{f_n(z)} \right| = \int_{\gamma} \frac{f'(z)}{f(z)}$ and we have a contradiction. Thus either $f \equiv 0$ (to avoid a β in the First place) or f has no zeros (to avoid a β in the second place), as