Hardware-Software Codesign

ICT 41205 Digital Control Systems

Nimal Skandhakumar

Faculty of Technology
University of Sri Jayewardenepura

Microcontrollers

- A microcontroller is a compact integrated circuit
 - Designed to govern a specific operation in an embedded system
- A typical microcontroller includes:
 - Processor (8-bit, 16-bit, 32-bit)
 - Memory (limited)
 - Input/output (I/O) peripherals
- Generally no operating system
 - Programs written in high-level language and converted to machine code
- https://www.youtube.com/watch?v=jKT4H0bstH8

Applications of Microcontrollers

- Day to Day Life Devices:
 - Household electronics like mobile phones, camera and washing machine
 - Light sensing & control
 - Temperature sensing & control
 - Fire detection & safety devices
 - Automobiles
- Industrial Control Devices:
 - Industrial instrumentation devices
 - Process control devices

- Metering & Measurement Devices:
 - Volt Meter
 - Measuring revolving objects
 - Current meter
 - Hand-held metering systems

2018/10/22 ICT 41205

- Classification According to Number of Bits
 - 8-bit microcontrollers
 - Intel 8031/8051, PIC1x and Motorola MC68HC11 families

- 16-bit microcontrollers
 - Performs greater precision and performance as compared to 8-bit
- 32-bit microcontrollers
 - Used in automatically controlled devices including implantable medical devices, engine control systems, office machines, appliances and other types of embedded systems

- Classification According to Memory Devices
 - Embedded memory microcontroller
 - Microcontroller unit has all the functional blocks such as program & data memory, I/O ports, serial communication, counters and timers and interrupts on the chip is an embedded microcontroller.
 - External Memory Microcontroller
 - Microcontroller unit does not have all the functional blocks available on a chip.

- Classification According to Memory Architecture
 - Harvard Memory Architecture Microcontroller
 - Microcontroller unit has a dissimilar memory address space for the program and data memory.
 - Princeton Memory Architecture Microcontroller
 - Microcontroller unit has a common memory address for the program memory and data memory.

- Classification According to Instruction
 Set
 - Complex Instruction Set Computer (CISC)
 - It allows the programmer to use one instruction in place of many simpler instructions.
 - Reduced Instruction set Computer (RISC)
 - It allows each instruction to operate on any register or use any addressing mode and simultaneous access of program and data.

CISC (complex instruction set computer)

- Computers designed with a full set of computer instructions
 - intended to provide needed capabilities in the most efficient way
- Designed to make programming easier
 - either for assembly programmer or compiler programmer
- One instruction = multiple operations = multiple cycles
- Issues:
 - most programs use only small % of available instructions
 - instruction set & chip hardware become more complex with each generation
- https://www.youtube.com/watch?v=BJpMmq9gQE8

RISC (reduced instruction set computer)

- Designed to perform a smaller number of types of computer instructions so that it can operate at a higher speed
- Majority of low end and mobile systems use RISC architecture
 - ARM architecture dominates mobile/embedded systems markets

https://www.youtube.com/watch?v= EKgwOAAWZA

Programming microcontrollers

- Typical steps to programming microcontrollers:
 - 1. write program code on computer
 - 2. compile the code with a compiler for the microcontroller
 - 3. upload the compiled version of the program to the microcontroller

Assembly language

- Machine code is the lowest level of programming
 - too obscure and complex for software development

- Assembly language is low-level programming
 - designed for a specific family of processors
 - represents various instructions in symbolic code
 - more understandable form
 - converted by assembler to machine code
- https://www.youtube.com/watch?v=wA2oMRmbrfo

```
DATA SEGMENT
MESSAGE DB "HELLO WORLD!!!$"

ENDS

CODE SEGMENT
ASSUME DS:DATA CS:CODE
START:
MOU AX,DATA
MOU DS,AX
LEA DX,MESSAGE
MOU AH,9
INT 21H
MOU AH,4CH
INT 21H
ENDS
END START
```

High-level language (HLL)

- High-level language is closer to "human readable"
 - independent of a particular type of computer
 - easier to program for different target systems
 - easier to read, write, and maintain
 - compiler or interpreter converts it for use on a specific device

https://www.youtube.com/watch?v=HtUQzhTt3gE

Types of Microcontrollers

8051 Microcontroller

• Developed by Intel in 1980 for use in embedded systems. It has CISC instruction architecture and Harvard memory architecture.

PIC Microcontroller

PIC is a microcontroller, developed by General Instrument's Microelectronics.
 It has a RISC instruction architecture. Because of it's low cost and high availability, it's widely used globally.

AVR Microcontroller

 Developed by Alf-Egil Bogen and Vegard Wollan from Atmel Corporation. It has modified Harvard RISC architecture. The speed of AVR is high when compared to 8051 and PIC.

ATmega328 Microcontroller

- Features of ATmega328:
 - 28-pin AVR microcontroller
 - Flash program memory of 32kbytes
 - EEPROM data memory of 1kbytes
 - SRAM data memory of 2kbytes
 - I/O pins are 23
 - Two 8-bit timers
 - A/D converter
 - Six channel PWM
 - In built USART
 - External Oscillator: up to 20MHz

Arduino Platform

- Open Source electronic prototyping platform
- Based on flexible easy to use hardware and software
 - Arduino boards
 - Arduino programming language
 - Arduino Software (IDE)
- Inexpensive microcontroller platform for beginners

https://www.youtube.com/watch?v=CqrQmQqpHXc

Arduino Boards

	Name	Processor	Operating/I nput Voltage	CPU Spee d	Analog In/Out	Digital IO/PW M	EEPR OM [kB]	SRAM [kB]	Flash [kB]	USB	UAR T
	Micro	ATmega32U4	5 V / 7-12 V	16 MHz	12/0	20/7	1	2.5	32	Micro	1
	<u>Uno</u>	ATmega328P	5 V / 7-12 V	16 MHz	6/0	14/6	1	2	32	Regular	1
	<u>Leonardo</u>	ATmega32U4	5 V / 7-12 V	16 MHz	12/0	20/7	1	2.5	32	Micro	1
	Mega ADK	ATmega2560	5 V / 7-12 V	16 MHz	16/0	54/15	4	8	256	Regular	4
==0	<u>Mini</u>	ATmega328P	5 V / 7-9 V	16 MHz	8/0	14/6	1	2	32	-	-
	<u>Nano</u>	ATmega168 ATmega328P	5 V / 7-9 V	16 MHz	8/0	14/6	0.512 1	1 2	16 32	Mini	1

Arduino Uno – Board Components

- **USB** connection
- Power supply barrel jack
- 3. GND (ground) pins
- 4. 5V pin supplies
- 5. 3.3V pin supplies
- 6. Analog In pins
- Digital pins (in/out) 7.
- ~ Pulse-Width Modulation (PWM) pins 8.
- **AREF Analog Reference** 9.
- reset button 10.

- Power LED Indicator
- TX (transmit) RX (receive) LEDs
- Main Integrated Circuit 13.
- Voltage Regulator

ver 3 rev 0

Arduino IDE

Arduino Uno on /dev/tty.usbmodemfa131

Learning Arduino

- Arduino Getting Started
 - https://www.arduino.cc/en/Guide/HomePage
- Arduino Tutorials
 - https://www.arduino.cc/en/Tutorial/HomePage
- Arduino Starter Kit Video Tutorials
 - https://www.youtube.com/playlist?list=PLT6rF I5kknPf2qlVFlvH47qHvqvzkknd
- Arduino in 15 minutes
 - https://www.youtube.com/watch?v=nL34zDTPkcs