Guillaume Guénard

Québec 20 Septembre 2016

CONTENT

- Introduction
 - Background
 - Objective: develop statistical models to forecast water supply from an area

- 2 Methods
 - Autoregressive modelling
 - Artificial Neural Network (ANN) models
 - Building the models
- Results
 - Auxiliary models
 - Water supply models
 - Forecasting power
- 4 Conclusion

CONTENT

- Introduction
 - Background
 - Objective: develop statistical models to forecast water supply from an area
- 2 Methods
 - Autoregressive modelling
 - Artificial Neural Network (ANN) models
 - Building the models
- Results
 - Auxiliary models
 - Water supply models
 - Forecasting power
- 4 Conclusion

- The net amount of water reaching a waterbody or a stream
- Supply = Precip evap \pm storage¹
- Value: a head start for decision-making, for instance,

- The net amount of water reaching a waterbody or a stream
- $Supply = Precip evap \pm storage^1$
- Value: a head start for decision-making, for instance,
 - know whether and when to use or store water
 - foresee public safety issues (flooding risk)

- The net amount of water reaching a waterbody or a stream
- $Supply = Precip evap \pm storage^1$
- Value: a head start for decision-making, for instance,
 - know whether and when to use or store water
 - ② foresee public safety issues (flooding risk)

- The net amount of water reaching a waterbody or a stream
- $Supply = Precip evap \pm storage^1$
- Value: a head start for decision-making, for instance,
 - know whether and when to use or store water
 - foresee public safety issues (flooding risk)

- The net amount of water reaching a waterbody or a stream
- $Supply = Precip evap \pm storage^1$
- Value: a head start for decision-making, for instance,
 - know whether and when to use or store water
 - 2 foresee public safety issues (flooding risk)

- Atmospheric circulation (global and local)
- Topography:
- Temperature:

- Atmospheric circulation (global and local)
- Topography:
- Temperature:

- Atmospheric circulation (global and local)
- Topography:
 - surface area of the watershed
- Temperature:

- Atmospheric circulation (global and local)
- Topography:
 - surface area of the watershed
 - vegetation cover
- Temperature:

- Atmospheric circulation (global and local)
- Topography:
 - surface area of the watershed
 - vegetation cover
 - ground material and thickness
- Temperature:

- Atmospheric circulation (global and local)
- Topography:
 - surface area of the watershed
 - vegetation cover
 - ground material and thickness
- Temperature:
 - evaporation

- Atmospheric circulation (global and local)
- Topography:
 - surface area of the watershed
 - vegetation cover
 - ground material and thickness
- Temperature:
 - evaporation

- Atmospheric circulation (global and local)
- Topography:
 - surface area of the watershed
 - vegetation cover
 - ground material and thickness
- Temperature:
 - evaporation
 - ice formation and meltdown

CONTENT

- Introduction
 - Background
 - Objective: develop statistical models to forecast water supply from an area
- 2 Methods
 - Autoregressive modelling
 - Artificial Neural Network (ANN) models
 - Building the models
- Results
 - Auxiliary models
 - Water supply models
 - Forecasting power
- 4 Conclusion

Question

Is it possible to estimate the water supply of a given water body in the future using information from different sources (predictors)?

- Predictors may be taken in

Question

Is it possible to estimate the water supply of a given water body in the future using information from different sources (predictors)?

- Predictors may be taken in
 - the past (historical records),
 - the present (automated sampling), and
 - the future (predictable)

Challenge

Question

Is it possible to estimate the water supply of a given water body in the future using information from different sources (predictors)?

- Predictors may be taken in
 - the past (historical records),
 - the present (automated sampling), and
 - the future (predictable)

Challenge

Question

Is it possible to estimate the water supply of a given water body in the future using information from different sources (predictors)?

- Predictors may be taken in
 - the past (historical records),
 - the present (automated sampling), and
 - the future (predictable)

Challenge

Question

Is it possible to estimate the water supply of a given water body in the future using information from different sources (predictors)?

- Predictors may be taken in
 - the past (historical records),
 - the present (automated sampling), and
 - the future (predictable)

Challenge

Question

Is it possible to estimate the water supply of a given water body in the future using information from different sources (predictors)?

- Predictors may be taken in
 - the past (historical records),
 - the present (automated sampling), and
 - the future (predictable)

Challenge

CONTENT

- Introduction
 - Background
 - Objective: develop statistical models to forecast water supply from an area
- 2 Methods
 - Autoregressive modelling
 - Artificial Neural Network (ANN) models
 - Building the models
- Results
 - Auxiliary models
 - Water supply models
 - Forecasting power
- 4 Conclusion

- Autocorrelation: the correlation of a series with a version of itself having an offset
- Cross-correlation: the correlation of two series, with one of them having an offset
- By analogy:
 - autoregression (AR): a model predicting values of a variable from its previous values, and
 - cross-regression: a model prediction values of a variable from values of another variable taken at previous time in the past
- The two type of descriptors (auto- and cross-regressive) can be used simultaneously and with other type of descriptors

- Autocorrelation: the correlation of a series with a version of itself having an offset
- Cross-correlation: the correlation of two series, with one of them having an offset
- By analogy:
 - autoregression (AR): a model predicting values of a variable from its previous values, and
 - cross-regression: a model prediction values of a variable from values of another variable taken at previous time in the past
- The two type of descriptors (auto- and cross-regressive) can be used simultaneously and with other type of descriptors

- Autocorrelation: the correlation of a series with a version of itself having an offset
- Cross-correlation: the correlation of two series, with one of them having an offset
- By analogy:
 - autoregression (AR): a model predicting values of a variable from its previous values, and
 - cross-regression: a model prediction values of a variable from values of another variable taken at previous time in the past
- The two type of descriptors (auto- and cross-regressive) can be used simultaneously and with other type of descriptors

- Autocorrelation: the correlation of a series with a version of itself having an offset
- Cross-correlation: the correlation of two series, with one of them having an offset
- By analogy:
 - autoregression (AR): a model predicting values of a variable from its previous values, and
 - cross-regression: a model prediction values of a variable from values of another variable taken at previous time in the past
- The two type of descriptors (auto- and cross-regressive) can be used simultaneously and with other type of descriptors

Introduction

Autocorrelation: the correlation of a series with a version of

- itself having an offset
 Cross-correlation: the correlation of two series, with one of
- them having an offset
- By analogy:
 - autoregression (AR): a model predicting values of a variable from its previous values, and
 - cross-regression: a model prediction values of a variable from values of another variable taken at previous time in the past
- The two type of descriptors (auto- and cross-regressive) can be used simultaneously and with other type of descriptors

- Autocorrelation: the correlation of a series with a version of itself having an offset
- Cross-correlation: the correlation of two series, with one of them having an offset
- By analogy:
 - autoregression (AR): a model predicting values of a variable from its previous values, and
 - cross-regression: a model prediction values of a variable from values of another variable taken at previous time in the past
- The two type of descriptors (auto- and cross-regressive) can be used simultaneously and with other type of descriptors

- Hopefully, autoregressive descriptors are collinear as this is a corellary for auto-regression
- Problem: descriptors are numerous and of uneven relevance
 - a single descriptor from the recent past is more relevant that for the more distant past,
 - information from closeby descriptors is redundant
- It would be best to use fewer descriptors for the past than for the present
- The few descriptors would best integrate longer and longer time periods as we go back in time

- Hopefully, autoregressive descriptors are collinear as this is a corellary for auto-regression
- Problem: descriptors are numerous and of uneven relevance
 - a single descriptor from the recent past is more relevant that

- information from closeby descriptors is redundant
- It would be best to use fewer descriptors for the past than for
- The few descriptors would best integrate longer and longer

Introduction

- Hopefully, autoregressive descriptors are collinear as this is a corellary for auto-regression
- Problem: descriptors are numerous and of uneven relevance
 - a single descriptor from the recent past is more relevant that for the more distant past,

- information from closeby descriptors is redundant
- It would be best to use fewer descriptors for the past than for
- The few descriptors would best integrate longer and longer

Introduction

- Hopefully, autoregressive descriptors are collinear as this is a corellary for auto-regression
- Problem: descriptors are numerous and of uneven relevance
 - a single descriptor from the recent past is more relevant that for the more distant past,

- information from closeby descriptors is redundant
- It would be best to use fewer descriptors for the past than for
- The few descriptors would best integrate longer and longer

- Hopefully, autoregressive descriptors are collinear as this is a corellary for auto-regression
- Problem: descriptors are numerous and of uneven relevance
 - a single descriptor from the recent past is more relevant that for the more distant past,

- information from closeby descriptors is redundant
- It would be best to use fewer descriptors for the past than for the present
- The few descriptors would best integrate longer and longer

- Hopefully, autoregressive descriptors are collinear as this is a corellary for auto-regression
- Problem: descriptors are numerous and of uneven relevance
 - a single descriptor from the recent past is more relevant that for the more distant past,

- information from closeby descriptors is redundant
- It would be best to use fewer descriptors for the past than for the present
- The few descriptors would best integrate longer and longer time periods as we go back in time

SOLUTION

Multi-Resolution Impulse (MRI) Filter

Apply a low-pass filter whose bandwidth shrink as we proceed back in time. Sub-sample the resulting signal in steps of increasing size.

- Initial bandwidth: infinite (no filtering at all)
- Final bandwidth: 0 (only a constant "bias"; or mean value)

SOLUTION

Multi-Resolution Impulse (MRI) Filter

Apply a low-pass filter whose bandwidth shrink as we proceed back in time. Sub-sample the resulting signal in steps of increasing size.

- Initial bandwidth: infinite (no filtering at all)
- Final bandwidth: 0 (only a constant "bias"; or mean value)

SOLUTION

Multi-Resolution Impulse (MRI) Filter

Apply a low-pass filter whose bandwidth shrink as we proceed back in time. Sub-sample the resulting signal in steps of increasing size.

- Initial bandwidth: infinite (no filtering at all)
- Final bandwidth: 0 (only a constant "bias"; or mean value)

- Take a record of observations of a given duration (aperture: width; most recent first, most ancient last)
- Decompose that record using Discrete Wavelets Transforms (DWT)
- Keep only the first (or first few) Wavelet coefficient for each resolution level
- Reconstruct the MRI-filtered signal with the remaining Wavelet coefficients
- Sample the filtered signal in dyadic (power of two) steps: $2^0, 2^1, 2^2, ..., 2^n$, where $n = \lfloor \log_2 width \rfloor$ (the mean can be used as well)

• Take a record of observations of a given duration (aperture: width; most recent first, most ancient last)

- Decompose that record using Discrete Wavelets Transforms (DWT)
- Keep only the first (or first few) Wavelet coefficient for each
- Reconstruct the MRI-filtered signal with the remaining
- Sample the filtered signal in dyadic (power of two) steps:

• Take a record of observations of a given duration (aperture: width; most recent first, most ancient last)

- Decompose that record using Discrete Wavelets Transforms (DWT)
- Keep only the first (or first few) Wavelet coefficient for each resolution level
- Reconstruct the MRI-filtered signal with the remaining
- Sample the filtered signal in dyadic (power of two) steps:

 Take a record of observations of a given duration (aperture: width; most recent first, most ancient last)

- Decompose that record using Discrete Wavelets Transforms (DWT)
- Keep only the first (or first few) Wavelet coefficient for each resolution level
- Reconstruct the MRI-filtered signal with the remaining Wavelet coefficients
- Sample the filtered signal in dyadic (power of two) steps:

• Take a record of observations of a given duration (aperture: width; most recent first, most ancient last)

- Decompose that record using Discrete Wavelets Transforms (DWT)
- Keep only the first (or first few) Wavelet coefficient for each resolution level
- Reconstruct the MRI-filtered signal with the remaining Wavelet coefficients
- Sample the filtered signal in dyadic (power of two) steps: $2^0, 2^1, 2^2, ..., 2^n$, where $n = \lfloor \log_2 width \rfloor$ (the mean can be used as well)

Figure: Time series (temperature in International Falls airport, MN, USA) with unfiltered past record of width = 64 observations (in red).

Figure: Filtered time series: half of the (Haar) wavelet coefficients (or at least one) were kept for each level of resolution.

Figure: Filtered time series: a quarter of the wavelet coefficients (or at least one) were kept for each level of resolution.

Figure: Filtered time series: an eighth of the wavelet coefficients (or at least one) were kept for each level of resolution.

Figure: Filtered time series: an 16^{th} of the wavelet coefficients (or at least one) were kept for each level of resolution.

Figure: Filtered time series: a 32^{th} of the wavelet coefficients (or at least one) were kept for each level of resolution.

SEASONAL FORCING

Figure: Models were also given a pair of variables with a one-year period and offset by 0.25 y to inform them about the time of the year and help them model seasonal variation (it is highly predictable indeed).

CONTENT

- Introduction
 - Background
 - Objective: develop statistical models to forecast water supply from an area
- 2 Methods
 - Autoregressive modelling
 - Artificial Neural Network (ANN) models
 - Building the models
- Results
 - Auxiliary models
 - Water supply models
 - Forecasting power
- 4 Conclusion

Figure: An ANN model involves a stack of multi-descriptor and multi-response regression models connected together with non-linear transformation functions (the link function) at the hidden layer.

- We used a single-hidden-layer perceptron
- Single input, hidden, and output layers
- Involves two regression models:
 - Input to hidden.
 - hidden to output
- The hidden layer has logistic links to the second regression
- The output layer has no link function to the data

Introduction

- We used a single-hidden-layer perceptron
- Single input, hidden, and output layers
- Involves two regression models:
- The hidden layer has logistic links to the second regression

Results

The output layer has no link function to the data

- We used a single-hidden-layer perceptron
- Single input, hidden, and output layers
- Involves two regression models:
 - Input to hidden,
 - hidden to output
- The hidden layer has logistic links to the second regression

Results

The output layer has no link function to the data

Results

ANN MODELS

- We used a single-hidden-layer perceptron
- Single input, hidden, and output layers
- Involves two regression models:
 - Input to hidden,
 - a hidden to output
- The hidden layer has logistic links to the second regression
- The output layer has no link function to the data

- We used a single-hidden-layer perceptron
- Single input, hidden, and output layers
- Involves two regression models:
 - Input to hidden,
 - a hidden to output
- The hidden layer has logistic links to the second regression
- The output layer has no link function to the data

CONTENT

- Introduction
 - Background
 - Objective: develop statistical models to forecast water supply from an area
- 2 Methods
 - Autoregressive modelling
 - Artificial Neural Network (ANN) models
 - Building the models
- Results
 - Auxiliary models
 - Water supply models
 - Forecasting power
- 4 Conclusion

- Atmospheric (MRI-filtered AR descriptors):

- Seasonal forcing
- MRI-filtered AR descriptors from the water supply time series

- Atmospheric (MRI-filtered AR descriptors):
 - median daily air temperature at International Falls airport (IFL, 48.5614, -93.3981; local)
 - 2 North-Atlantic Oscillation (NAO; global)
- Seasonal forcing
- MRI-filtered AR descriptors from the water supply time series

- Atmospheric (MRI-filtered AR descriptors):
 - median daily air temperature at International Falls airport (IFL, 48.5614, -93.3981; local)
 - North-Atlantic Oscillation (NAO; global)
- Seasonal forcing
- MRI-filtered AR descriptors from the water supply time series

- Atmospheric (MRI-filtered AR descriptors):
 - median daily air temperature at International Falls airport (IFL, 48.5614, -93.3981; local)
 - 2 North-Atlantic Oscillation (NAO; global)
- Seasonal forcing
- MRI-filtered AR descriptors from the water supply time series

- Atmospheric (MRI-filtered AR descriptors):
 - median daily air temperature at International Falls airport (IFL, 48.5614, -93.3981; local)
 - 2 North-Atlantic Oscillation (NAO; global)
- Seasonal forcing
- MRI-filtered AR descriptors from the water supply time series

• Different number of hidden nodes were tried:

- Air temperature and NAO from 1 to 10 nodes
- Water supply from 1 to 6 nodes
- A single value of (L_2) regularisation parameters was applied to each type of descriptors
- Optimal number of nodes and values of weight regularisation estimated by Differential Evolution (DE) using 12-month cross-validation sub-samples²):
 - Air temperature and NAO 20 individuals and 100 generations.
 - Water supply 40 individuals and 100 generations

- Different number of hidden nodes were tried:
 - Air temperature and NAO from 1 to 10 nodes
 - Water supply from 1 to 6 nodes
- A single value of (L_2) regularisation parameters was applied to each type of descriptors
- Optimal number of nodes and values of weight regularisation estimated by Differential Evolution (DE) using 12-month cross-validation sub-samples²):
 - Air temperature and NAO 20 individuals and 100 generations.
 - Water supply 40 individuals and 100 generations

- Different number of hidden nodes were tried:
 - Air temperature and NAO from 1 to 10 nodes
 - Water supply from 1 to 6 nodes
- A single value of (L_2) regularisation parameters was applied to each type of descriptors
- Optimal number of nodes and values of weight regularisation estimated by Differential Evolution (DE) using 12-month cross-validation sub-samples²):
 - Air temperature and NAO 20 individuals and 100 generations.
 - Water supply 40 individuals and 100 generations

²Takes 2 − 3d to compute on a 16 core Intel® Xeon® E5-2650 @ 2GHz
nachine running parallel code

- Different number of hidden nodes were tried:
 - Air temperature and NAO from 1 to 10 nodes
 - Water supply from 1 to 6 nodes
- A single value of (L_2) regularisation parameters was applied to each type of descriptors
- Optimal number of nodes and values of weight regularisation estimated by Differential Evolution (DE) using 12-month cross-validation sub-samples²):
 - Air temperature and NAO 20 individuals and 100 generations,
 - Water supply 40 individuals and 100 generations

²Takes 2−3d to compute on a 16 core Intel® Xeon® E5-2650 @ 2GHz machine running parallel code

- Different number of hidden nodes were tried:
 - Air temperature and NAO from 1 to 10 nodes
 - Water supply from 1 to 6 nodes
- ullet A single value of (L_2) regularisation parameters was applied to each type of descriptors
- Optimal number of nodes and values of weight regularisation estimated by Differential Evolution (DE) using 12-month cross-validation sub-samples²):
 - Air temperature and NAO 20 individuals and 100 generations.
 - 2 Water supply 40 individuals and 100 generations

²Takes 2 − 3d to compute on a 16 core Intel® Xeon® E5-2650 @ 2GHz machine running parallel code

- Different number of hidden nodes were tried:
 - Air temperature and NAO from 1 to 10 nodes
 - Water supply from 1 to 6 nodes
- A single value of (L_2) regularisation parameters was applied to each type of descriptors
- Optimal number of nodes and values of weight regularisation estimated by Differential Evolution (DE) using 12-month cross-validation sub-samples²):
 - Air temperature and NAO 20 individuals and 100 generations,
 - Water supply 40 individuals and 100 generations

²Takes 2 − 3d to compute on a 16 core Intel® Xeon® E5-2650 @ 2GHz machine running parallel code

- Different number of hidden nodes were tried:
 - Air temperature and NAO from 1 to 10 nodes
 - Water supply from 1 to 6 nodes
- ullet A single value of (L_2) regularisation parameters was applied to each type of descriptors
- Optimal number of nodes and values of weight regularisation estimated by Differential Evolution (DE) using 12-month cross-validation sub-samples²):
 - ◆ Air temperature and NAO 20 individuals and 100 generations,
 - 2 Water supply 40 individuals and 100 generations

²Takes 2 − 3d to compute on a 16 core Intel® Xeon® E5-2650 @ 2GHz machine running parallel code

AIR TEMPERATURE

- Needed to forecast water supply (short term precipitation) patterns and meltdown)
- Descriptors:

AIR TEMPERATURE

- Needed to forecast water supply (short term precipitation) patterns and meltdown)
- Descriptors:
 - Seasonal forcing
 - MRI-filtered AR descriptors for monthly air temperature time series (width = 64; 7 descriptors)

Introduction

- Needed to forecast water supply (long term precipitation patterns)
- Descriptors:

Introduction

- Needed to forecast water supply (long term precipitation patterns)
- Descriptors:
 - Seasonal forcing
 - ② MRI-filtered AR descriptors for the monthly NAO time series (width = 64; 7 descriptors)

- Goal of the present study
- Descriptors
 - Seasonal forcing
 - The first four MRI-filtered AR descriptors for air temperature (times 1.2, 4, 8: from present to 7 months in the past)
 - The last four MRI-filtered AR descriptors for the NAO (times 8.16.32.64: from 7 months to 5 v and 4 months in the past
 - The MRI-filtered AR descriptors for the monthly water supply time series (present to 5 y and 4 months in the past; 7 descriptors)

- Goal of the present study
- Descriptors:
 - Seasonal forcing
 - 2 The first four MRI-filtered AR descriptors for air temperature (times 1,2,4,8: from present to 7 months in the past)

- 3 The last four MRI-filtered AR descriptors for the NAO (times 8.16, 32, 64: from 7 months to 5 y and 4 months in the past
- The MRI-filtered AR descriptors for the monthly water supply time series (present to 5 y and 4 months in the past; 7 descriptors)

- Goal of the present study
- Descriptors:
 - Seasonal forcing
 - 2 The first four MRI-filtered AR descriptors for air temperature (times 1,2,4,8: from present to 7 months in the past)

- The last four MRI-filtered AR descriptors for the NAO (times 8,16,32,64: from 7 months to 5 y and 4 months in the past)
- The MRI-filtered AR descriptors for the monthly water supply time series (present to 5 y and 4 months in the past; 7 descriptors)

- Goal of the present study
- Descriptors:
 - Seasonal forcing
 - 2 The first four MRI-filtered AR descriptors for air temperature (times 1,2,4,8: from present to 7 months in the past)
 - 3 The last four MRI-filtered AR descriptors for the NAO (times 8,16,32,64: from 7 months to 5 y and 4 months in the past)
 - The MRI-filtered AR descriptors for the monthly water supply time series (present to 5 y and 4 months in the past; 7 descriptors)

- Goal of the present study
- Descriptors:
 - Seasonal forcing
 - 2 The first four MRI-filtered AR descriptors for air temperature (times 1, 2, 4, 8: from present to 7 months in the past)

- 3 The last four MRI-filtered AR descriptors for the NAO (times 8, 16, 32, 64: from 7 months to 5 y and 4 months in the past)

Introduction

- Goal of the present study
- Descriptors:
 - Seasonal forcing
 - 2 The first four MRI-filtered AR descriptors for air temperature (times 1, 2, 4, 8: from present to 7 months in the past)
 - 3 The last four MRI-filtered AR descriptors for the NAO (times 8,16,32,64: from 7 months to 5 y and 4 months in the past)
 - The MRI-filtered AR descriptors for the monthly water supply time series (present to 5 y and 4 months in the past; 7 descriptors)

CONTENT

- - Background
 - Objective: develop statistical models to forecast water supply
- - Autoregressive modelling
 - Artificial Neural Network (ANN) models
 - Building the models
- Results
 - Auxiliary models
 - Water supply models
 - Forecasting power

AUXILIARY MODELS

Table: Hyper-parameters of the auxiliary models

Results

000000000000000

series	nodes	S Forcing	AR	RMS Error
Air temp	4	6.96e-4	8.41e+3	2.63°C
NAO ³	8	2.43e + 1	1.73e + 4	1.71 kPa

Table: Hyper-parameters of the water supply models

series	nodes	L_2 regularisation parameters				RMS Error
		S Forcing	Air temp	NAO	AR	(m^3s^{-1})
Namakan	2	1.02e - 1	6.75e + 1	3.00e + 2	4.21e + 2	77.40
Rainy (net)	6	2.25e - 1	2.20	6.96e + 3	8.48e + 3	81.81
Rainy (tot)	2	2.27e - 4	4.27e - 1	7.24e + 3	3.04e - 2	151.0

- Introduction
 - Background
 - Objective: develop statistical models to forecast water supply from an area
- 2 Methods
 - Autoregressive modelling
 - Artificial Neural Network (ANN) models
 - Building the models
- Results
 - Auxiliary models
 - Water supply models
 - Forecasting power
- 4 Conclusion

NAMAKAN LAKE

Figure: Observed water supply in Namakan Lake between 1948 and 1982 (black line) with forecasts made from different months in the past (red: 1, yellow: 2, green: 3, blue: 6, and purple: 12). Vertical lines mark the mid-March (dashed), mid-June (dotted), and mid-August (dot-dash).

NAMAKAN LAKE

Figure: Observed water supply in Namakan Lake between 1982 and 2016 (black line) with forecasts made from different months in the past (red: 1, yellow: 2, green: 3, blue: 6, and purple: 12). Vertical lines mark the mid-March (dashed), mid-June (dotted), and mid-August (dot-dash).

RAINY LAKE (NET)

Figure: Observed net water supply in Rainy Lake between 1948 and 1982 (black line) with forecasts made from different months in the past (red: 1, yellow: 2, green: 3, blue: 6, and purple: 12). Vertical lines mark the mid-March (dashed), mid-June (dotted), and mid-August (dot-dash).

RAINY LAKE (NET)

Figure: Observed net water supply in Rainy Lake between 1982 and 2016 (black line) with forecasts made from different months in the past (red: 1, yellow: 2, green: 3, blue: 6, and purple: 12). Vertical lines mark the mid-March (dashed), mid-June (dotted), and mid-August (dot-dash).

RAINY LAKE (TOTAL)

Figure: Observed total water supply in Rainy Lake between 1948 and 1982 (black line) with forecasts made from different months in the past (red: 1, yellow: 2, green: 3, blue: 6, and purple: 12). Vertical lines mark the mid-March (dashed), mid-June (dotted), and mid-August (dot-dash).

RAINY LAKE (TOTAL)

Figure: Observed total water supply in Rainy Lake between 1982 and 2016 (black line) with forecasts made from different months in the past (red: 1, yellow: 2, green: 3, blue: 6, and purple: 12). Vertical lines mark the mid-March (dashed), mid-June (dotted), and mid-August (dot-dash).

RAINY + NAMAKAN

Figure: Observed total water supply in Rainy Lake between 1948 and 1982 (black line) with the sum of the forecasts for the two lakes (Namakan + net Rainy) made from different months in the past (red: 1, yellow: 2, green: 3, blue: 6, and purple: 12). Vertical lines mark the mid-March (dashed), mid-June (dotted), and mid-August (dot-dash).

RAINY + NAMAKAN

Figure: Observed total water supply in Rainy Lake between 1982 and 2016 (black line) with the sum of the forecasts for the two lakes (Namakan + net Rainy) made from different months in the past (red: 1, yellow: 2, green: 3, blue: 6, and purple: 12). Vertical lines mark the mid-March (dashed), mid-June (dotted), and mid-August (dot-dash).

CONTENT

- - Background
 - Objective: develop statistical models to forecast water supply
- - Autoregressive modelling
 - Artificial Neural Network (ANN) models
 - Building the models
- Results
 - Auxiliary models
 - Water supply models
 - Forecasting power

Table: Root Mean Square Error and R^2 (in parenthesis) associated with forecasts performed from 1 to 12 months in the future for Namakan Lake and Rainy Lake.

	Namakan	Rainy (net)	Rainy (total)	Rainy+Namakan
1	65 (0.76)	69 (0.70)	100 (0.81)	141 (0.61)
2	82 (0.62)	91 (0.48)	148 (0.57)	158 (0.52)
3	96 (0.48)	94 (0.45)	173 (0.42)	171 (0.44)
4	95 (0.49)	94 (0.44)	175 (0.41)	171 (0.43)
5	94 (0.50)	95 (0.44)	176 (0.41)	171 (0.44)
6	94 (0.50)	95 (0.44)	176 (0.41)	172 (0.43)
7	94 (0.50)	95 (0.44)	175 (0.41)	172 (0.43)
8	94 (0.51)	95 (0.44)	175 (0.41)	172 (0.43)
9	94 (0.51)	95 (0.44)	176 (0.41)	172 (0.43)
10	94 (0.51)	95 (0.44)	175 (0.41)	172 (0.43)
11	94 (0.51)	95 (0.44)	175 (0.41)	172 (0.43)
_12	94 (0.51)	95 (0.44)	175 (0.41)	172 (0.44)

SEASONAL PREDICTIONS: SPRING FLOOD

Figure: Average water supply observed and forecast during the spring flood (March–June) with their prediction coefficients.

SEASONAL PREDICTIONS: LOW WATERS

Figure: Average water supply observed and forecast during the low waters (July–February) with their prediction coefficients.

CONCLUSION

Answer

Water supply model can be developed to predict water supply to water bodies

- Forecasting power degrades after 2 months, when the model
- Much more capable at predicting the short-terms spring high
- Way of improvement

CONCLUSION

Answer

Water supply model can be developed to predict water supply to water bodies

- Forecasting power degrades after 2 months, when the model starts to predict average yearly fluctuations
- Much more capable at predicting the short-terms spring high
- Way of improvement

Answer

Water supply model can be developed to predict water supply to water bodies

- Forecasting power degrades after 2 months, when the model starts to predict average yearly fluctuations
- Much more capable at predicting the short-terms spring high waters than the low waters
- Way of improvement
 - \bigcirc Using a deep neural network (one with > 1 hidden layer)
 - Using El-Niño Southern Oscillation (ENSO) rather than NAO

Answer

Water supply model can be developed to predict water supply to water bodies

- Forecasting power degrades after 2 months, when the model starts to predict average yearly fluctuations
- Much more capable at predicting the short-terms spring high waters than the low waters
- Way of improvement
 - Using a deep neural network (one with > 1 hidden layer)
 - 2 Using El-Niño Southern Oscillation (ENSO) rather than NAO