

VT8231 South Bridge

PC99 COMPLIANT
INTEGRATED SUPER-I/O (FDC, LPT, COM, AND FIR),
INTEGRATED FAST ETHERNET, LPC, ISA / LPC BIOS ROM,
INTEGRATED SOUNDBLASTER PRO / MULTICHANNEL
DIRECTSOUND AC97 AUDIO AND MC97 MODEM INTERFACE,
ULTRADMA-33/66/100 MASTER MODE EIDE CONTROLLER,
4 PORT USB CONTROLLER, KEYBOARD CONTROLLER, RTC,
SERIAL IRQ, SMBUS, SERIAL EEPROM,
PLUG AND PLAY, ACPI, ENHANCED POWER MANAGEMENT,
TEMPERATURE, VOLTAGE, AND FAN-SPEED MONITORING

Preliminary Revision 0.8 October 29, 1999

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 1997, 1998, 1999 VIA Technologies Incorporated. Printed in the United States. All RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT8231 may only be used to identify products of VIA Technologies, Inc.

is a registered trademark of VIA Technologies, Incorporated.

PS/2[™] is a registered trademark of International Business Machines Corp.

Pentium[™], Pentium-Pro[™], Pentium-III[™], Pentium-III[™], Celeron[™], and GTL+[™] are registered trademarks of Intel Corp. Windows 95[™], Windows 98[™], Windows NT[™], and Plug and Play[™] are registered trademarks of Microsoft Corp.

PCI[™] is a registered trademark of the PCI Special Interest Group.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office: 1045 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300 Fax: (510) 683-3301 Taipei Office: 8th Floor, No. 533

Chung-Cheng Road, Hsin-Tien

Taipei, Taiwan ROC Tel: (886-2) 218-5452 Fax: (886-2) 218-5453

Online Services:

Home Page: http://www.via.com.tw -or- http://www.viatech.com

FTP Server: <u>ftp.via.com.tw</u>
BBS: <u>886-2-2185208</u>

REVISION HISTORY

Document Release	Date	Revision	Initials
Revision 0.4	9/17/99	Initial release based on 82C686A "Super South" Data Sheet revision 1.42	DH
		Updated feature bullets, document title, and block diagram	
		Replaced pinout diagram with blank BGA352 template	
		Added LAN, LPC, and EEPROM pin descriptions, removed signals as req'd	
		Updated Functions 5 and 6 per engineering input	
Revision 0.5	9/27/99	Added Preliminary Ballout & Mechanical Spec	DH
Revision 0.6	10/1/99	Updated pin descriptions and pin lists	DH
Revision 0.7	10/15/99	Updated pinouts to conform to engineering pinout revision 0.4 dated 10/6/99	DH
Revision 0.8	10/29/99	Updated feature bullets and performed partial edit of Overview text	DH
		Updated pinouts per engineering pinout rev 0.6 / pinlist rev 0.2 dated 10/20/99	
		Updated Electrical Specs and added "output drive" and "input voltage" tables	

TABLE OF CONTENTS

REVISION HISTORY]
TABLE OF CONTENTS	I
LIST OF FIGURES	IV
LIST OF TABLES	IV
OVERVIEW	5
PINOUTS	
PIN DIAGRAM	7
PIN LISTS	8
PIN DESCRIPTIONS	10
REGISTERS	29
REGISTER OVERVIEW	
REGISTER DESCRIPTIONS	
Legacy I/O Ports	
Keyboard Controller Registers	42
DMA Controller I/O Registers	
Interrupt Controller Registers	45
Timer / Counter Registers	
CMOS / RTC Registers	
Super-I/O Configuration Index / Data Registers	47
Super-I/O Configuration Registers	
Super-I/O I/O Ports	
Floppy Disk Controller Registers.	
Parallel Port Registers	
Serial Port 1 Registers	
Serial Port 2 Registers	
SoundBlaster Pro Port Registers	
FM Registers	
Mixer Registers	
Sound Processor Registers	
Game Port Registers	
PCI Configuration Space I/O	
Function 0 Registers - PCI to ISA Bridge	
PCI Configuration Space Header	
ISA Bus Control	
Plug and Play Control	
Distributed DMA / Serial IRQ Control	
Miscellaneous / General Purpose I/O	
Function 1 Registers - Enhanced IDE Controller	
PCI Configuration Space Header	
IDE-Controller-Specific Configuration Registers	
IDE I/O Registers	
Function 2 Registers - USB Controller Ports 0-1	
PCI Configuration Space Header	
USB-Specific Configuration Registers.	
USB I/O Registers	
Function 3 Registers - USB Controller Ports 2-3	
PCI Configuration Space Header	
USB-Specific Configuration Registers	
USB I/O Registers	

Function 4 Regs - Power Management, SMBus and HWM	83
PCI Configuration Space Header	
Power Management-Specific PCI Configuration Registers	
Hardware-Monitor-Specific Configuration Registers	91
System Management Bus-Specific Configuration Registers	91
Power Management I/O-Space Registers	92
System Management Bus I/O-Space Registers	101
Hardware Monitor I/O Space Registers	104
Function 5 & 6 Registers - AC97 Audio & Modem Codecs	108
PCI Configuration Space Header – Function 5 Audio	
PCI Configuration Space Header – Function 6 Modem	109
Function 5 & 6 Codec-Specific Configuration Registers	110
Function 5 I/O Base 0 Regs – DXSn Scatter/Gather DMA	112
Function 5 I/O Base 1 Registers -Audio FM NMI Status	117
Function 5 I/O Base 2 Registers –MIDI / Game Port	117
Function 6 I/O Base 0 Regs –Modem Scatter/Gather DMA	118
FUNCTIONAL DESCRIPTIONS	120
POWER MANAGEMENT	120
Power Management Subsystem Overview	120
Processor Bus States	120
General Purpose I/O Ports	121
Power Management Events	122
System and Processor Resume Events	122
Legacy Power Management Timers	123
System Primary and Secondary Events	
Peripheral Events	
POWER MANAGEMENT	
ABSOLUTE MAXIMUM RATINGS	124
DC CHARACTERISTICS	124
OUTPUT DRIVE	125
INPUT VOLTAGE	125
PACKAGE MECHANICAL SPECIFICATIONS	126

LIST OF FIGURES

FIGURE 1. PC SYSTEM CONFIGURATION USING THE VT8231	6
FIGURE 2. VT8231 BALL DIAGRAM (TOP VIEW)	7
FIGURE 3. VT8231 PIN LIST (NUMERICAL ORDER)	
FIGURE 4. VT8231 PIN LIST (ALPHABETICAL ORDER)	
FIGURE 5. STRAP OPTION CIRCUIT	
FIGURE 6. POWER MANAGEMENT SUBSYSTEM BLOCK DIAGRAM	
FIGURE 8. MECHANICAL SPECIFICATIONS – 376 PIN BALL GRID ARRAY PACKAGE	

LIST OF TABLES

TABLE 1.	PIN DESCRIPTIONS	10
TABLE 2.	SYSTEM I/O MAP	29
	REGISTERS	
	KEYBOARD CONTROLLER COMMAND CODES	
TABLE 5	CMOS REGISTER SUMMARY	46

VT8231 SOUTH BRIDGE

PC99 COMPLIANT
INTEGRATED SUPER-I/O (FDC, LPT, COM, AND FIR),
INTEGRATED FAST ETHERNET, LPC, ISA / LPC BIOS ROM,
INTEGRATED SOUNDBLASTER PRO / MULTICHANNEL
DIRECT SOUND AC97 AUDIO AND MC97 MODEM INTERFACE,
ULTRADMA-33/66/100 MASTER MODE EIDE CONTROLLER,
4 PORT USB CONTROLLER, KEYBOARD CONTROLLER, RTC,

SERIAL IRQ, SMBUS, SERIAL EEPROM, PLUG AND PLAY, ACPI, ENHANCED POWER MANAGEMENT, TEMPERATURE, VOLTAGE, AND FAN-SPEED MONITORING

• Inter-operable with VIA and other Host-to-PCI Bridges

- Combine with VT82C598 for a complete Super-7 (66 / 75 / 83 / 100MHz) AGP 2x system (Apollo MVP3)
- Combine with VT8501 for a complete Super-7 system with integrated 2D / 3D graphics (Apollo MVP4)
- Combine with VT82C694X for a complete 66 / 100 / 133 MHz Socket370 / Slot1 AGP 4x system (Apollo Pro133A)
- Combine with VT8601 for a complete 66 / 100 / 133 MHz Socket370 / Slot1 system with integrated 2D / 3D graphics (Apollo ProMedia)
- Inter-operable with Intel or other Host-to-PCI bridges for a complete PC99 compliant PCI / AGP / LPC system

Integrated Peripheral Controllers

- Integrated Fast Ethernet Controller with 1 / 10 / 100 Mbit capability
- Integrated USB Controller with two root hub and four function ports
- Dual channel UltraDMA-33 / 66 /100 master mode EIDE controller
- AC-link interface for AC-97 audio codec and modem codec
- HSP modem support
- Interface for optional external modem DSP
- Integrated SoundBlasterPro / DirectSound compatible digital audio controller
- LPC interface for Low Pin Count interface to Super-I/O or ROM

Integrated Legacy Functions

- Integrated Keyboard Controller with PS2 mouse support
- Integrated DS12885-style Real Time Clock with extended 256 byte CMOS RAM and Day/Month Alarm for ACPI
- Integrated Bus Controller including DMA, timer, and interrupt controller
- Serial IRQ for docking and non-docking applications
- Flash EPROM, 32Mbit (4Mbyte) EPROM and combined BIOS support
- Fast reset and Gate A20 operation

• Fast Ethernet Controller

- High performance PCI master interface with scatter / gather and bursting capability
- Standard MII interface to PHYceiver
- 1 / 10 / 100 MHz full and half duplex operation
- Transmit data buffer byte alignment for low CPU utilization
- Separate 2K byte FIFOs for receive and transmit of full Ethernet packets
- Flexible dynamically loadable EEPROM algorithm
- Physical, Broadcast, and Multicast address filtering using hashing function
- Flexible wakeup events: link status change, magic packet, unicast physical address match, predefined pattern match
- Software controllable power down

UltraDMA-33 / 66 / 100 Master Mode PCI EIDE Controller

- Dual channel master mode PCI supporting four Enhanced IDE devices
- Transfer rate up to 100MB/sec to cover up to PIO mode 4, multi-word DMA mode 2, and UltraDMA mode 5
- Thirty-two levels (doublewords) of prefetch and write buffers per channel
- Dual DMA engine for concurrent dual channel operation
- Bus master programming interface for SFF-8038i rev.1.0 and Windows-95 / 98 / 2000 compliant
- Full scatter gather capability
- Support ATAPI compliant devices including DVD devices
- Support PCI native and ATA compatibility modes
- Complete software driver support

• Integrated Super IO Controller

- Supports 2 serial ports, IR port, parallel port, and floppy disk controller functions
- Two UARTs for Complete Serial Ports

Programmable character lengths (5,6,7,8)

Even, odd, stick or no parity bit generation and detection

Programmable baud rate generator

High speed baud rate (230Kbps, 460Kbps) support

Independent transmit/receiver FIFOs

Modem Control

Plug and play with 96 base IO address and 12 IRQ options

Fast IR (FIR) port

IrDA 1.0 SIR and IrDA 1.1 FIR compliant

IR function through the second serial port

Infrared-IrDA (HPSIR) and ASK (Amplitude Shift Keyed) IR

Multi-mode parallel port

Standard mode, ECP and EPP support

Dynamic and static switch between parallel port pinout and FDC pinout

Plug and play with 192 base IO address, 12 IRQ and 4 DMA options

Floppy Disk Controller

16 bytes of FIFO

Data rates up to 1Mbps

Perpendicular recording driver support

Two FDDs with drive swap support

Plug and play with 48 base IO address, 12 IRQ and 4 DMA options

SoundBlaster Pro Hardware and Direct Sound Ready AC97 Digital Audio Controller

- Up to six concurrent AC97 output channels for six-speaker surround sound experience
- Multiple Direct Sound channels between system memory and AC97 link
 - 10 Direct Sound output channels
 - 4 Direct Sound input channels
 - 8-channel hardware sample-rate-converter / mixer
 - 1 Surround Sound channel of up to six data streams
- PCI bus master interface with scatter / gather and bursting capability
- 32 byte FIFO for each direct sound channel
- Host based wave table synthesis
- Standard v1.03 or v2.1 AC97 Codec interface with up to four AC97 codec's from multiple vendors
- Loopback capability for re-directing mixed audio streams into USB and 1394 speakers
- Hardware SoundBlaster Pro for legacy compatibility
- Plug and play with 4 IRQ, 4 DMA, and 4 I/O space options for SoundBlaster Pro and MIDI hardware
- Hardware assisted FM synthesis for legacy compatibility
- Direct two game ports and one MIDI port interface
- Complete software driver support for Windows-95 / 98 / 2000 and Windows-NT

MC97 HSP Modem Controller

- PCI bus master interface with scatter / gather and burst capability
- Standard AC97 codec interface for MC or AMC codec
- Wake on ring in APM or ACPI mode through AC97 link
- Supported by most HSP modem vendors

Universal Serial Bus Controller

- USB v.1.1 and Intel Universal HCI v.1.1 compatible
- Eighteen level (doublewords) data FIFO with full scatter and gather capability
- Root hub and four function ports
- Integrated physical layer transceivers with optional over-current detection status on USB inputs
- Legacy keyboard and PS/2 mouse support

System Management Bus Interface

- One master / slave SMBus and one slave-only SMBus
- Host interface for processor communications
- Slave interface for external SMBus masters

Voltage, Temperature, Fan Speed Monitor and Controller

- Five universal input channels for voltage or temperature sensing
- Two fan-speed monitoring channels
- Input channel for thermal diode in IntelTM high speed Pentium IIITM / Pentium IIITM CPUs
- Programmable control, status, monitor and alarm for flexible desktop management
- External thermister or internal bandgap temperature sensing
- Automatic clock throttling with integrated temperature sensing
- Internal core VCC voltage sensing
- Flexible external voltage sensing arrangement (any positive supply and battery)

Sophisticated PC99-Compatible Mobile Power Management

- Supports both ACPI (Advanced Configuration and Power Interface) and legacy (APM) power management
- ACPI v1.0 Compliant
- APM v1.2 Compliant
- CPU clock throttling and clock stop control for complete ACPI C0 to C3 state support
- PCI bus clock run, Power Management Enable (PME) control, and PCI/CPU clock generator stop control
- Supports multiple system suspend types: power-on suspends with flexible CPU/PCI bus reset options, suspend to DRAM, and suspend to disk (soft-off), all with hardware automatic wake-up
- Multiple suspend power plane controls and suspend status indicators
- One idle timer, one peripheral timer and one general purpose timer, plus 24/32-bit ACPI compliant timer
- Normal, doze, sleep, suspend and conserve modes
- Global and local device power control
- System event monitoring with two event classes
- Primary and secondary interrupt differentiation for individual channels
- Dedicated input pins for power and sleep buttons, external modem ring indicator, and notebook lid open/close for system wake-up
- Multiple internal and external SMI sources for flexible power management models
- One programmable chip select and one microcontroller chip select
- Enhanced integrated real time clock (RTC) with date alarm, month alarm, and century field
- Thermal alarm on either external or any combination of three internal temperature sensing circuits
- Hot docking support
- I/O pad leakage control

Plug and Play Controller

- PCI interrupts steerable to any interrupt channel
- Steerable interrupts for integrated peripheral controllers: USB, floppy, serial, parallel, audio, soundblaster, MIDI
- Steerable DMA channels for integrated floppy, parallel, and soundblaster pro controllers
- One additional steerable interrupt channel for on-board plug and play devices
- Microsoft Windows 2000TM, Windows 98SETM, Windows 98TM, Windows NTTM, Windows 95TM and plug and play BIOS compliant
- Built-in NAND-tree pin scan test capability
- 0.30um, 3.3V, low power CMOS process
- Single chip 27x27 mm, 376 pin BGA

OVERVIEW

The VT8231 South Bridge is a high integration, high performance, power-efficient, and high compatibility device that supports Intel, AMD, and VIA / Cyrix based processor to PCI bus bridge functionality to make a complete Microsoft PC99-compliant PCI / LPC system. The VT8231 includes standard intelligent peripheral controllers:

- a) Master mode enhanced IDE controller with dual channel DMA engine and interlaced dual channel commands. Dedicated FIFO coupled with scatter and gather master mode operation allows high performance transfers between PCI and IDE devices. In addition to standard PIO and DMA mode operation, the VT8231 also supports the UltraDMA-33, 66, and 100 standards to allow reliable data transfer rates up to 100 MB/sec throughput. The IDE controller is SFF-8038i v1.0 and Microsoft Windows-family compliant.
- b) Integrated LAN Fast Ethernet controller (MAC) with Media Independent Interface (MII) to external PHY. The LAN controller operates at 1 / 10 / 100 Mbit/sec transfer rates using either full and half duplex operation and has separate 2Kbyte FIFOs for receive and transmit of full ethernet packets. The internal high-performance PCI interface has scatter / gather and bursting capability and can align bytes in the transmit data buffer to reduce CPU utilization. The LAN interface can perform address filtering on physical, broadcast, and multicast packets. The interface can also be configured for system wake up on link status change, receipt of magic packet, unicast physical address match on incoming packets, and predefined pattern match in the incoming data.
- c) LPC (Low Pin Count) interface for BIOS ROM plus optional conventional BIOS ROM support
- d) Universal Serial Bus controller that is USB v1.1 and Universal HCI v1.1 compliant. The VT8231 includes the root hub with four function ports with integrated physical layer transceivers. The USB controller allows hot plug and play and isochronous peripherals to be inserted into the system with universal driver support. The controller also implements legacy keyboard and mouse support so that legacy software can run transparently in a non-USB-aware operating system environment.
- e) Keyboard controller with PS2 mouse support
- f) Real Time Clock with 256 byte extended CMOS. In addition to standard RTC functionality, the integrated RTC also includes the date alarm, century field, and other enhancements for compatibility with the ACPI standard.
- g) Notebook-class power management functionality compliant with ACPI and legacy APM requirements. Multiple sleep states (power-on suspend, suspend-to-DRAM, and suspend-to-Disk) are supported with hardware automatic wake-up. Additional functionality includes event monitoring, CPU clock throttling and stop (Intel processor protocol), PCI bus clock stop control, modular power, clock and leakage control, hardware-based and software-based event handling, general purpose I/O, chip select and external SMI.
- h) Hardware monitoring subsystem for managing system / motherboard voltage levels, temperatures, and fan speeds
- i) Full System Management Bus (SMBus) interface with one master / slave port and one slave-only port
- j) 16550-compatible serial I/O port with "Fast-IR" infrared communications port option.
- k) Integrated PCI-mastering dual full-duplex direct-sound AC97-link-compatible sound system. Hardware soundblaster-pro and hardware-assisted FM blocks are included for Windows DOS box and real-mode DOS compatibility. Loopback capability is also implemented for directing mixed audio streams into USB and 1394 speakers for high quality digital audio.
- 1) Game port and MIDI port
- m) Standard floppy disk drive interface
- n) ECP/EPP-capable parallel port with floppy disk controller pinout option
- o) Serial IRQ for docking and non-docking applications
- p) Plug and Play controller that allows complete steerability of all PCI interrupts and internal interrupts to any interrupt channel. One additional steerable interrupt channel is provided to allow plug and play and reconfigurability of on-board peripherals for Windows family compliance.

Figure 1. PC System Configuration Using the VT8231

PINOUTS

Pin Diagram

Figure 2. VT8231 Ball Diagram (Top View)

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	AD 30	AD 31	AD 26	AD 24	AD 21	AD 16	DEV SEL#	CBE 1#	AD 9	AD 5	STR#	PD 2	PD 6	BUSY	RTS#	DTR#	USB OC0#	USB P2-	USB P1-	USB P0-
В	PINT B#	PINT A#	AD 28	AD 25	AD 23	AD 18	T RDY#	AD 15	AD 10	AD 4	AD 1	P INIT#	PD 5	ACK#	TXD	CTS#	USB P3-	USB P2+	USB P1+	USB P0+
С	PREQ H#	PINT D#	PINT C#	AD 27	CBE 3#	AD 19	I RDY#	PAR	AD 12	AD 6	AD 0	PD 1	PD 4	PD 7	USB CLK	RI#	USB P3+	EE CS#	EE DI	EE DO
D	PGNT L#	PREQ L#	PGNT H#	AD 29	AD 20	CBE 2#	STOP #	AD 14	AD 7	AD 2	PD 0	SLCT IN#	PE	DSR#	GND USB	USB OC1#	MD CK	MD IO	MRX D3	MRX D2
E	RTC X2	RTC X1	PWR GD	PCI RST#	AD 22	AD 17	SERR #	AD 13	AD 8	AD 3	AUTO FD#	PD 3	SLCT	RXD	VCC USB	EE CK	MRX CLK	MRX D1	MRX D0	MRX DV
F	JB B1	V BAT	INTR UDR#	GPI 0	RSM RST#	FRM#	vcc	AD 11	VCC	CBE 0#	ERR#	vcc	VCC	DCD#	vcc	VCC MII	MTX CLK	MRX ERR	MTX ENA	MTX D0
G	AC SYNC	AC RST	JA B1	MSI I2S	JA X	vcc	GND	VCC	vcc	vcc	GND	VCC	GND RAM	GND	VCC RAM	M CRS	M COL	MTX D1	MTX D2	MTX D3
Н	AC SDIN0	AC SDIN1	AC SDO	JB B2	JA Y	vcc	Н7	8	9	10	11	12	13	H14	GND	TRK 00#	WRT PRT#	DSK CHG#	HD SEL#	R DATA#
J	PCS1# SDIN2	GPIO C	AC BCLK	MSO SPDIF	JB Y	vcc	J	GND	GND	GND	GND	GND	GND	J	vcc	MTR 1#	DS 0#	STEP#	W Data#	W GATE#
K	VREF	FAN 1	FAN2 SLPB#	JA B2	JB X	GND	K	GND	GND	GND	GND	GND	GND	K	vcc	VCC MII	DRV DEN1	MTR 0#	DS 1#	DIR#
L	UIC 5	DTD +	DTD -	UIC 4	GND HWM	vcc	L	GND	GND	GND	GND	GND	GND	L	GND	VCC PLL	DRV DEN0	PDCS 1#	PDCS 3#	IN DEX#
M	UIC 1	UIC 3	UIC 2	KB CK	VCC HWM	vcc	M	GND	GND	GND	GND	GND	GND	M	VCC	GND PLL	PCI CLK	PD A1	PD A0	PD A2
N	KB DT	MS CK	SUS C#	MS DT	SUS ST#	VCC	N7	8	9	10	11	12	13	N14	GND	PD D10	PD D5	PD IOR#	PD RDY	PD DACK#
P	SUSA #/strap	SUS B#	AOL GPI	SUS CLK	VCC SUS	VCC SUS	GND	VCC	vcc	GND	vcc	VCC	VCC	GND	VCC	PD D4	PD D11	PD D8	PD DRQ	PD IOW#
R	SMB CK2	SMB DT2	SMB CK1	GPO 0	CPU MISS	INTR	vcc	IR TX	VCC	VCC	SD 6	SD 0	vcc	VCC	VCC	PD D1	PD D14	PD D7	PD D9	PD D6
Т	SMB DT1	SMB ALRT#	BAT LOW#	EXT SMI#	NMI	IGN NE#	IO W#	IR RX2	ROM CS#	SD11 HG2#	SD 7	OSC	SA17 /strap	IRQ 14	SA8 SDD8	PD D0	PD D15	PD D13	PD D3	PD D12
U	PME#	PWR BTN#	RING #	CPU RST	FERR #	SLP#	IO R#	IR RX	SPKR	SD12 LR1#	SD 5	SD 4	SA 18	IRQ 15	SA7 SDD7	SA6 SDD6	SD DRQ	SDCS 1#	SDCS 3#	PD D2
v	PCK RUN#	GPIO A	GPI 1	WSC# ARQ#	INIT	STP CLK#	L AD3	L AD0	SER IRQ	SD15 LG2#	SD10 HR2#	SD 1	SA 19	SA5 SDD5	SA11 SDD11	SA2 SDD2	SA14 SDD14	SD A1	SD A0	SD A2
w	PCI STP#	CPU STP#	GPIO E	APIC D0	A20 M#	MCCS #/strap	L AD2	L FRM#	MEM R#	SD14 LR2#	SD9 HG1#	SD 2	LA 20	SA9 SDD9	SA4 SDD4	SA12 SDD12	SA1 SDD1	SA15 SDD15	SD IOR#	SD DACK#
Y	GPIO D	LID	APIC CLK	APIC D1	SMI#	PCS0# /strap	L AD1	L DRQ#	MEM W#	SD13 LG1#	SD8 HR1#	SD 3	LA 21	SA16 /strap	SA10 SDD10	SA3 SDD3	SA13 SDD13	SA0 SDD0	SD IOW#	SD RDY
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Note: Some of the pins above have alternate functions and alternate names. The table above contains only one name (usually the most often used function), but the pin lists and pin descriptions contain all names.

Pin Lists

Figure 3. VT8231 Pin List (Numerical Order)

Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name
A01	Ю	AD30	D12	Ю	SLCTIN#/STEP#	H03	О	ACSDOUT	P02	0	SUSB# / GPIO2	U13	Ю	SA18
A02	IO	AD31	D13	Ĩ	PE / WDATA#	H04	Ĭ	JBB2 / GAMED7	P03	I	AOLGPI/THRM/I17	U14	I	IRO15
A03	IO	AD26	D14	I	DSR#	H05	I	JAY / GAMED1	P04	O	SUSCLK / GPO4	U15	IO	SA07 / SDD07
A04 A05	IO IO	AD24 AD21	D15 D16	P I	GNDUSB USBOC1#	H06 H15	P P	VCC GND	P05 P06	P P	VCCSUS VCCSUS	U16 U17	IO I	SA06 / SDD06 SDDRO
A06	Ю	AD21 AD16	D10	O	MDCK	H16	I	TRK00#	P07	P	GND	U18	Ô	SDCS1#
A07	Ю	DEVSEL#	D18	IO	MDIO	H17	Ī	WRTPRT#	P08	P	VCC	U19	ŏ	SDCS3#
A08	Ю	CBE1#	D19	I	MRXD3	H18	I	DSKCHG#	P09	P	VCC	U20	Ю	PDD02
A09	Ю	AD09	D20	Ι	MRXD2	H19	OD	HDSEL#	P10	P	GND	V01	Ю	PCKRUN#
A10	IO	AD05	E01	Ó	RTCX2	H20	I	RDATA#	P11	P	VCC	V02	IO	GPIOA / GPIO24
A11	IO IO	STROBE# PD2 / WRTPRT#	E02 E03	I I	RTCX1 PWRGD	J01 J02	O IO	PCS1# / SDI2 / IO GPIOC/IO25/ATST	P12 P13	P P	VCC VCC	V03 V04	I I	GPI1 / IRO8# WSC#/ARO#/I24
A12 A13	Ю	PD6	E03	O	PCIRST#	J02 J03	I	ACBITCLK	P14	P	GND	V04 V05	OD	INIT
A14	Ĭ	BUSY / MTR1#	E05	IO	AD22	J04	Ô	MSO / SPDIF	P15	P	VCC	V06	OD	STPCLK#
A15	О	RTS#	E06	Ю	AD17	J05	I	JBY / GAMED3	P16	Ю	PDD04	V07	Ю	LAD3
A16	- 1	DTR#	E07	I	SERR#	J06	P	VCC	P17	Ю	PDD11	V08	Ю	LAD0
A17	I	USBOC0#	E08	IO	AD13	J15	P	VCC	P18	IO	PDD08	V09	I	SERIRQ#
A18	IO	USBP2- USBP1-	E09	IO	AD08	J16	OD	MTR1#	P19 P20	O	PDDRQ	V10 V11	O I	LGT2#/SD15/O11
A19 A20		USBP1- USBP0-	E10 E11	IO IO	AD03 AUTOFD#/DRV0	J17 J18	OD OD	DS0# STEP#	R01	Ю	PDIOW# SMBCK2 / GPIO27	V11	IO	HRQ2#/SD10/I11 SD01
B01	I	PINTB#	E12	IO	PD3 / RDATA#	J19	OD	WDATA#	R02	IO	SMBDT2 / GPIO26	V12	Ю	SA19
B02	Î	PINTA#	E13	Ĭ	SLCT/WGATE#	J20	OD	WGATE#	R03	IO	SMBCK1	V14	IO	SA05 / SDD05
B03	Ю	AD28	E14	I	RXD	K01	P	VREF	R04	О	SLOWCLK / O0	V15	Ю	SA11 / SDD11
B04	Ю	AD25	E15	P	VCCUSB	K02	I	FAN1	R05	I	CPUMISS / GPI16	V16	Ю	SA02 / SDD02
B05	IO	AD23	E16	Ō	EECK	K03	I	FAN2/SLPB#/IO18	R06	OD	INTR	V17	IO	SA14 / SDD14
B06	IO IO	AD18 TRDY#	E17	I	MRXCLK / AIRQ MRXD1	K04 K05	I	JAB2 / GAMED5	R07 R08	P	VCC IRTX / GPO14	V18 V19	0	SDA1 SDA0
B07 B08	Ю	AD15	E18 E19	I I	MRXD0 / AIRQ	K05	I P	JBX / GAMED2 GND	R09	O P	VCC	V19 V20	0	SDA0 SDA2
B09	Ю	AD10	E20	Ī	MRXDV / AIRO	K15	P	VCC	R10	P	VCC	W01	0	PCISTP# / GPO6
B10	Ю	AD04	F01	I	JBB1 / GAMED6	K16	P	VCCMII	R11	IO	SD06	W02	Ō	CPUSTP# / GPO5
B11	Ю	AD01	F02	P	VBAT	K17	OD	DRVDEN1	R12	IO	SD00	W03		GPIOE / GPIO31
B12	IO	PINIT# / DIR#	F03	I	INTRUDER#/GPI8	K18	OD	MTR0#	R13	P	VCC	W04	0	APD0/ACS#/IO28
B13 B14	IO I	PD5 ACK# / DS1#	F04 F05	I I	GPI0 RSMRST#	K19 K20	OD OD	DS1# DIR#	R14 R15	P P	VCC VCC	W05 W06	OD O	A20M# MCCS#/O17/strap
B15	o	TXD	F06	IO	FRAME#	L01	AI	UIC5	R16	IO	PDD01	W07	Ю	LAD2
B16	I	CTS#	F07	P	VCC	L02	AI	DTD+	R17	IO	PDD14	W08	Ö	LFRAME#
B17	Ю	USBP3-	F08	Ю	AD11	L03	ΑI	DTD-	R18	Ю	PDD07	W09	Ю	MEMR#
B18	Ю	USBP2+	F09	P	VCC	L04	ΑI	UIC4	R19	IO	PDD09	W10	I	LRQ2#/SD14/I13
B19	IO	USBP1+	F10	IO	CBE0#	L05	P	GNDHWM	R20	IO		W11	0	HGT1#/SD09/O8
B20 C01	O IO	USBP0+ PREOH#	F11 F12	I P	ERROR#/HDSEL# VCC	L06 L15	P P	VCC GND	T01 T02	IO	SMBDT1 SMBALRT# / GPI7	W12 W13	IO IO	SD02 LA20/OC2#/O20
C01		PINTD#	F13	P	VCC	L15	P	VCCPLL	T03	I	BATLOW# / GPI5	W13		SA09 / SDD09
C03	Ī	PINTC#	F14	Ī	DCD#	L17	OD	DRVDEN0			EXTSMI# / GPI2	W15		SA04 / SDD04
C04	Ю	AD27	F15	P	VCC	L18	О	PDCS1#	T05	OD	NMI	W16	Ю	SA12 / SDD12
C05	Ю	CBE3#	F16	I	MTXCLK / AIRO	L19	О	PDCS3#	T06	OD	IGNNE#	W17	Ю	SA01 / SDD01
C06	IO	AD19	F16	P	VCCMII	L20	I	INDEX#	T07	IO	IOW# / GPO23	W18		SA15 / SDD15
C07 C08		IRDY# PAR	F18 F19	I	MRXERR / AIRO MTXENA / AIRO	M01 M02	AI AI	UIC1 UIC3	T08 T09	O	IRRX2 / GPI ROMCS#/KBCS#	W19 W20	0	SDIOR# SDDACK#
C09		AD12	F20	0	MTXD0 / AIRO	M03	AI	UIC2	T10	o	HGNT2#/SD11/O9	Y01	Ю	IOD/30/SCO#/DT
C10		AD06	G01		ACSYNC	M04		KBCK / A20G	T11	IO	SD07	Y02	I	LID / GPI4
C11		AD00	G02		ACRST	M05	P	VCCHWM	T12	I		Y03	I	APICCLK / GPI9
C12		PD1 / TRK00#	G03	Ĩ		M06		VCC	T13		SA17 / strap	Y04	0	APD1/AK#/IO29
C13	IO	PD4 / DSKCHG#		I	MSI / I2S	M15		VCC	T14	I	IRQ14	Y05	OD	SMI#
C14 C15	IO I	PD7 USBCLK	G05 G06	I P	JAX / GAMED0 VCC	M16 M17		GNDPLL PCICLK	T15 T16	IO	SA08 / SDD08 PDD00	Y06 Y07	O IO	PCS0#/O16/strap LAD1
C16	Ī	RI#	G07	P	GND	M18	Ó	PDA1	T17		PDD15	Y08	I	LDRQ#/SIN3/I15
C17	Ю	USBP3+	G08	P	VCC	M19	ŏ	PDA0	T18		PDD13	Y09	Ю	MEMW#
C18	0	EECS#	G09	P	VCC	M20	0	PDA2	T19		PDD03	Y10	О	LG1#/ SD13/O10
C19		EEDI	G10	P	VCC	N01		KBDT / KBRC	T20	Ю		Y11	I	HRO1#/SD08/I10
C20		EEDO PONTE "	G11	P	GND	N02	IO	MSCK / IRO1	U01		PME# / GPI6	Y12	IO	SD03
D01		PGNTL#	G12	P P	VCC	N03	0	SUSC# / GPO	U02	I	PWRBTN#	Y13	IO	LA21/OC3#/O21
D02 D03	O I	PREQL# PGNTH#	G13 G14	P P	GNDRAM GND	N04 N05	IO O	MSDT / IRQ12 SUSST1# / GPO3	U03 U04	OD	RING# / GPI3 CPURST	Y14 Y15	IO IO	SA16 / strap SA10 / SDD10
D03	Ю	AD29	G14	P	VCCRAM	N05	P	VCC	U05	I	FERR#	Y16	Ю	SA03 / SDD03
D05		AD20	G16	Ī	MCRS / AIRQ	N15	P	GND	U06		SLP# / GPO7	Y17	Ю	SA13 / SDD13
D06		CBE2#	G17	I	MCOL / AIRO	N16	Ю	PDD10	U07		IOR# / GPO22	Y18	Ю	SA00 / SDD00
D07		STOP#	G18	0	MTXD1 / AIRQ	N17		PDD05	U08	I	IRRX / GPO15	Y19	О	SDIOW#
D08		AD14	G19	0	MTXD2 / AIRQ	N18	O	PDIOR#	U09	O	SPKR	Y20	I	SDRDY
D09		AD07	G20	O	MTXD3 / AIRO	N19		PDRDY	U10	I	LREO1#/SD12/I12			
D10		AD02 PD0 / INDEX#	H01	I	ACSDIN1			PDDACK# SUSA#/GPO1/strap	U11	IO	SD05			
D11	IU.	NID wine (2.4 min	H02		ACSDIN1				UIZ	LIU.	ISIJU4	<u> </u>		1

Center **GND** pins (24 pins): J8-J13, K8-K13, L8-L13, M8-M13

Figure 4. VT8231 Pin List (Alphabetical Order)

Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name
W05	OD	A20M#	F11	I	ERROR#/HDSEL#	D18	Ю	MDIO	C03	I	PINTC#	P01	О	SUSA# / GPO1
J03	I	ACBITCLK	T04	IOD	EXTSMI# / GPI2	W09		MEMR#	C02	I	PINTD#	P02	О	SUSB# / GPO2
B14	I	ACK# / DS1#	K02	I	FAN1	Y09		MEMW#	U01	I	PME# / GPI6	N03	О	SUSC#
G02	О	ACRST	K03	I	FAN2/SLPB#/IO18	E17		MRXCLK / AIRO	C01		PREOH#	P04		SUSCLK
H01	I	ACSDIN0	U05	I	FERR#	E19		MRXD0 / AIRO	D02		PREOL#	N05	0	SUSST1# / GPO3
H02	I	ACSDIN1	F06	IO	FRAME#	E18		MRXD1	U02	I	PWRBTN#	B07	IO	TRDY#
H03	0	ACSDOUT	G07	P	GND	D20	I	MRXD2	E03	I	PWRGD	H16 B15	I O	TRK00#
G01 C11	IO	ACSYNC AD00	G11 G14	P P	GND GND	D19 E20	I	MRXD3 MRXDV / AIRO	H20 C16	I	RDATA# RI#	M01	I	TXD UIC1
B11	IO	AD00 AD01	H15	P	GND	F18	Ī	MRXERR/AIRO	U03	Ī	RING# / GPI3	M03	Ì	UIC2
D10	Ю	AD02	K06	P	GND	N02	Ю	MSCK / IRQ1	T09	0	ROMCS#/KBCS#		I	UIC3
E10	Ю	AD03	L15	P	GND	N04		MSDT / IRQ12	F05	I	RSMRST#	L04	I	UIC4
B10	Ю	AD04	N15	P	GND	G04	I	MSI / I2S	E02	I	RTCX1	L01	I	UIC5
A10	Ю	AD05	P07	P	GND	J04	0	MSO / SPDIF	E01	0	RTCX2	C15	I	USBCLK
C10	Ю	AD06	P10	P	GND	K18		MTR0#	A15	O	RTS#	A17	I	USBOC0#
D09	IO	AD07	P14	P	GND	J16		MTR1#	E14	I	RXD	D16	I	USBOC1#
E09	IO	AD08	L05	P	GNDHWM	F16		MTXCLK/AIRO	Y18		SA00 / SDD00	A20	IO	USBP0-
A09	IO	AD09	M16		GNDPLL	F20		MTXD0/AIRO	W17		SA01 / SDD01	B20	IO	USBP0+
B09 F08	IO IO	AD10 AD11	G13 D15	P	GNDRAM GNDUSB	G18 G19		MTXD1/AIRO MTXD2/AIRQ	V16 Y16	IO	SA02 / SDD02 SA03 / SDD03	A19 B19	IO IO	USBP1- USBP1+
C09	IO	AD11 AD12	F04	I	GPI0	G20		MTXD3/AIRQ	W15	Ю	SA04 / SDD04	A18	Ю	USBP2-
E08	IO	AD12 AD13	V03	I	GPI1 / IRO8#	F19		MTXENA/AIRO	V14		SA04 / SDD04 SA05 / SDD05	B18	Ю	USBP2+
D08	IO	AD14	V02	Ю	GPIOA/24	T05		NMI	U16		SA06 / SDD06	B17	IO	USBP3-
B08	IO	AD15	J02	IO	GPIOC/25/ATST	T12	I	OSC	U15		SA07 / SDD07	C17		USBP3+
A06	Ю	AD16	Y01	Ю	GPIOD/30/SCIOU#	C08	Ю	PAR	T15	Ю	SA08 / SDD08	F02	P	VBAT
E06	Ю	AD17	W03	Ю	GPIOE	V01		PCKRUN#	W14		SA09 / SDD09	F07	P	VCC
B06	Ю	AD18	H19		HDSEL#	M17	I	PCICLK	Y15		SA10 / SDD10	F09	P	VCC
C06	IO	AD19	W11	0	HGNT1#/SD09/O8	E04	0	PCIRST#	V15		SA11 / SDD11	F12	P	VCC
D05	IO	AD20	T10	O	HGNT2#/SD11/O9	W01	0	PCISTP# / GPO6	W16	IO	SA12 / SDD12	F13	P	VCC
A05	IO	AD21	Y11	I	HREO1#/SD08/I10	Y06	0	PCS0#/O16/strap	Y17		SA13 / SDD13	F15	P	VCC
E05 B05	IO	AD22 AD23	V11 T06	I	HREQ2#/SD10/I11 IGNNE#	J01 D11		PCS1#/SIN2/IO19	V17 W18		SA14 / SDD14 SA15 / SDD15	G06 G08	P P	VCC VCC
A04	IO	AD23 AD24	L20	I	INDEX#	C12		PD0/INDEX# PD1/TRK00#	W 18 Y14	IO	SA15 / SDD15 SA16 / strap	G09	P	VCC
B04	IO	AD25	V05	_	INIT	A12		PD2/WRTPRT#	T13		SA10 / strap	G10	P	VCC
A03	IO	AD26	R06		INTR	E12		PD3/RDATA#	U13		SA18	G12	P	VCC
C04	Ю	AD27	F03	I	INTRUDER#/GPI8	C13	:	PD4/DSKCHG#	V13		SA19	H06	P	VCC
B03	Ю	AD28	U07	Ю	IOR# / GPO22	B13	Ю	PD5	R12	Ю	SD00	J06	P	VCC
D04	Ю	AD29	T07	IO	IOW# / GPO23	A13	Ю	PD6	V12	Ю	SD01	J15	P	VCC
A01	Ю	AD30	C07	Ю	IRDY#	C14	Ю	PD7	W12	IO	SD02	K15	P	VCC
A02	IO	AD31	T14	I	IRO14	M19	0	PDA0	Y12	IO	SD03	L06	P	VCC
P03	1	AOLGPI/THRM/I17	U14	Ţ	IRO15	M18		PDA1	U12	IO	SD04	M06	P	VCC
Y03	O	APICLK / GPI9	U08	I	IRRX / GPO15	M20		PDA2	U11	IO	SD05	M15	P	VCC
Y04 W04	I O	APICD1/AK#/IO29 APICD0/ACS#/IO28	T08 R08	O	IRRX2 / GPI IRTX / GPO14	L18 L19	0	PDCS1# PDCS3#	R11 T11	IO	SD06 SD07	N06 P08	P P	VCC VCC
E11	Ю	AUTOFD# / DRV0	G03	I	JAB1 / GAMED4	T16	Ю	PDD00	V19	0	SDA0	P09	P	VCC
T03	I	BATLOW# / GPI5	K04	Ī	JAB2 / GAMED5	R16	IO	PDD01	V19	ŏ	SDA0 SDA1	P11	P	VCC
A14	Ī	BUSY / MTR1#	G05	I	JAX / GAMED0	U20		PDD02	V20	ŏ	SDA1 SDA2	P12	P	VCC
F10	Ю	CBE0#	H05	Ī	JAY / GAMED1	T19	Ю	PDD03	U18	Ö	SDCS1#	P13	P	VCC
A08	IO	CBE1#	F01	Ī	JBB1 / GAMED6	P16		PDD04	U19	ŏ	SDCS3#	P15	P	VCC
D06	Ю	CBE2#	H04	I	JBB2 / GAMED7	N17		PDD05	W20		SDDACK#	R07	P	VCC
C05	10		K05	Ι				PDD06	U17	I	SDDRO	R09		VCC
R05	I	CPUMISS / GPI16	J05	I	JBY / GAMED3	R18		PDD07	W19		SDIOR#	R10		VCC
U04		CPURST	M04		KBCK / A20G	P18		PDD08	Y19	O	SDIOW#	R13		VCC
W02 B16	0	CTS#	N01 W13		KBDT / KBRC LA20/OC2#/O20	R19		PDD09	Y20 V09	I	SDRDY SERIBO#	R14		VCC
F14	I	CTS# DCD#	W13 Y13		LA20/OC2#/O20 LA21/OC3#/O21	N16 P17		PDD10 PDD11	E07	I	SERIRO# SERR#	R15 M05		VCC VCCHWM
A07	-	DEVSEL#	V08		LA21/OC3#/O21 LAD0	T20		PDD12	E13		SLCT/WGATE#	F16		VCCMII
K20		DIR#	Y07		LAD1	T18		PDD13	D12		SLCTIN#/STEP#	K16		VCCMII
L17		DRVDEN0	W07		LAD2	R17	•	PDD14	R04		SLOWCLK / O0	L16		VCCPLL
K17		DRVDEN1	V07	Ю	LAD3	T17		PDD15	U06	OD	SLP# / GPO7	G15	P	VCCRAM
J17		DS0#	Y08	I	LDRO#/SDIN3/I15	N20		PDDACK#	T02	I	SMBALRT# / I7	P05		VCCSUS
K19	:	DS1#	W08		LFRAME#	P19		PDDRO	R03		SMBCK1	P06		VCCSUS
H18	Ī	DSKCHG#	Y10		LGNT1#/SD13/O10			PDIOR#	R01		SMBCK2 / IO27			VCCUSB
D14	I	DSR#	V10		LGNT2#/SD15/O11			PDIOW#	T01		SMBDT1			VREF
L02		DTD+	Y02		LID / GPI4	N19		PDRDY	R02		SMBDT2 / IO26	J19		WDATA#
L03		DTD-	U10 W10		LREQ1#/SD12/I12	D13 D03		PE / WDATA#	Y05 U09		SMI#	J20 H17		WGATE#
A16 E16		DTR# EECK	W10 W06		LREQ2#/SD14/I13 MCCS#/O17/strap	D03 D01		PGNTH# PGNTL#	J18		SPKR STEP#	V04		WRTPRT# WSC#/ARO#/I14
C18	0	EECK EECS#	G17	I	MCOL / AIRO	B12		PINIT# / DIR#	D07		STOP#	v U4	1	113Cπ/ΔΚΟ#/114
C19	I	EECS# EEDI	G17	I	MCRS / AIRO	B02		PINTA#	V06		STPCLK#			
C20		EEDO	D17		MDCK	B01	Ī	PINTB#	A11		STROBE#			
													_	

Center **GND** pins (24 pins): J8-J13, K8-K13, L8-L13, M8-M13

-9-

Pin Descriptions

Table 1. Pin Descriptions

C/BE[3:0]# C5, D6, C5 C5, D6, A8, F10 C5, D6, A8, F10 C8, D6, C8, D6, C8, D7, D7, D8, D8, D8, D8, D8, D8, D8, D8, D8, D8				PCI Bus Interface
Isist FRAME# assertion and data is driven or received in following cycles: C/BE[3:0]# C5, D6, D8, F10 Command/Byte Enable. The command is driven with FRAME# assertion. By A8, F10 A8, F10 Chambad/Byte Enable. The command is driven with FRAME# assertion. By A8, F10 Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates the one more data transfer is desired by the cycle initiator. IRDY# C7 Io Initiator Ready. Asserted when the initiator is ready for data transfer.	Signal Name	Pin#	I/O	Signal Description
RAB, F10	AD[31:0]		Ю	Address/Data Bus. The standard PCI address and data lines. The address is driven with FRAME# assertion and data is driven or received in following cycles.
one more data transfer is desired by the cycle initiator. IRDY#	C/BE[3:0]#		IO	
TRDY# B7 IO Target Ready. Asserted when the target is ready for data transfer.	FRAME#	F6	IO	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
STOP# DP	IRDY#	C7	IO	Initiator Ready. Asserted when the initiator is ready for data transfer.
Device Select. The VT8231 asserts this signal to claim PCI transactions through positive or subtractive decoding. As an input, DEVSEL# indicates the response to a VT823 initiated transaction and is also sampled when decoding whether to subtractively decoding the cycle. PAR			1	
or subtractive decoding. As an input, DEVSEL# indicates the response to a VT823 initiated transaction and is also sampled when decoding whether to subtractively decode the cycle. PAR C8 IO Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0]#. SERR# E7 I System Error. SERR# can be pulsed active by any PCI device that detects a system cror condition. Upon sampling SERR# active, the VT8231 can be programmed by generate an NMI to the CPU. PINTA-D# B2, B1, C3, C2 PCI Interrupt Request. These pins are typically connected to the PCI bus INTA-INTD# pins as follows: PINTA# PINTB# PINTC# PINTD# PCI Slot 1 INTD# INTA# INTB# INTC# INTD# PCI Slot 2 INTB# INTC# INTD# INTA# INTB# INTC# INTD# PCI Slot 3 INTC# INTD# INTA# INTB# INTC# INTD# PCI Slot 4 INTD# INTA# INTB# INTC# INTD# PCI Slot 5 INTA# INTB# INTC# INTD# INTA# INTB# INTC# PCI Slot 5 INTA# INTB# INTC# INTD# PCI Grant. This signal goes to the North Bridge to request the PCI bus. PREQL# D2 O PCI Request. This signal goes to the North Bridge to grant PCI access to the VT8231. PREQL# D2 O PCI Request. This signal goes to the North Bridge to grant PCI access to the VT8231. PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT8231. PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT8231. PCI Grant. This signal goes to the North Bridge to grant PCI access to the VT8231 drives this signal low when the PCI clock running (default on reset) and releases it when it stops the PCI clock. External device may assert this signal low to request that the PCI clock be restarted or prevent it fro stopping. Connect this pin to ground using a 100 Ω resistor if the function is not use Refer to the "PCI Mobile Design Guide" and the VIA "Apollo MVP4 Design Guide" for more details. PCISTP# / GPO6 W1 O PCI Stop.				
Serr# E7	DEVSEL#	A7	IO	or subtractive decoding. As an input, DEVSEL# indicates the response to a VT8231-initiated transaction and is also sampled when decoding whether to subtractively decode
error condition. Upon sampling SERR# active, the VT8231 can be programmed to generate an NMI to the CPU. PINTA-D# B2, B1, C3, C2 PCI Interrupt Request. These pins are typically connected to the PCI bus INTA: INTD# pins as follows: PINTA# PINTB# PINTC# PINTD# PCI Slot 1 INTA# INTB# INTC# INTD# PCI Slot 2 INTB# INTC# INTD# INTA# PCI Slot 3 INTC# INTD# INTA# INTB# INTC# PCI Slot 4 INTD# INTA# INTB# INTC# INTD# PCI Slot 5 INTA# INTB# INTC# INTD# PCI Slot 5 INTA# INTB# INTC# INTD# PREQH# C1 O PCI Request. This signal goes to the North Bridge to request the PCI bus. PGNTH# D3 I PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT8231. PREQL# D2 O PCI Request. This signal is driven by the North Bridge to grant PCI access to the VT8231. PGNTL# D1 I PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT8231. PCICLK M17 I PCI Clock. PCLK provides timing for all transactions on the PCI Bus. PCKRUN# V1 IO PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stoppe (high) or running (low). The VT8231 drives this signal low when the PCI clock running (default on reset) and releases it when it stops the PCI clock. External device may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Connect this pin to ground using a 100 Ω resistor if the function is not use. Refer to the "PCI Mobile Design Guide" and the VIA "Apollo MVP4 Design Guide" for more details. PCIRST# E4 O PCI Reset. PCISTP# / GPO6 W1 O PCI Stop.	PAR	C8	IO	V V I
C3, C2 INTD# pins as follows: PINTA# PINTB# PINTC# PINTD# PCI Slot 1 INTA# INTB# INTC# INTD# INTA# INTD# PCI Slot 2 INTB# INTC# INTD# INTA# INTB# INTC# INTD# INTA# INTB# PCI Slot 3 INTC# INTD# INTA# INTB# INTC# INTD# INTA# INTB# PCI Slot 4 INTD# INTA# INTB# INTC# INTD# PCI Slot 5 INTA# INTB# INTC# INTD# PREQH# C1 O PCI Request. This signal goes to the North Bridge to request the PCI bus. PGNTH# D3 I PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT8231. PREQL# D2 O PCI Request. This signal goes to the North Bridge to request the PCI bus. PGNTL# D1 I PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT8231. PCICLK M17 I PCI Clock. PCLK provides timing for all transactions on the PCI Bus. PCKRUN# V1 IO PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped (high) or running (low). The VT8231 drives this signal low when the PCI clock running (default on reset) and releases it when it stops the PCI clock. External device may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Connect this pin to ground using a 100 Ω resistor if the function is not use Refer to the "PCI Mobile Design Guide" and the VIA "Apollo MVP4 Design Guide" for more details.	SERR#	E7	I	System Error. SERR# can be pulsed active by any PCI device that detects a system error condition. Upon sampling SERR# active, the VT8231 can be programmed to generate an NMI to the CPU.
PGNTH# D3 I PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT8231. PREQL# D2 O PCI Request. This signal goes to the North Bridge to request the PCI bus. PGNTL# D1 I PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT8231. PCICLK M17 I PCI Clock. PCLK provides timing for all transactions on the PCI Bus. PCKRUN# V1 IO PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped (high) or running (low). The VT8231 drives this signal low when the PCI clock running (default on reset) and releases it when it stops the PCI clock. External devict may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Connect this pin to ground using a 100 Ω resistor if the function is not used. Refer to the "PCI Mobile Design Guide" and the VIA "Apollo MVP4 Design Guide" for more details. PCIRST# E4 O PCI Reset. PCISTP#/GP06 W1 O PCI Stop.	PINTA-D#		I	INTD# pins as follows: PINTA# PINTB# PINTC# PINTD#
PGNTH# D3 I PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT8231. PREQL# D2 O PCI Request. This signal goes to the North Bridge to request the PCI bus. PGNTL# D1 I PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT8231. PCICLK M17 I PCI Clock. PCLK provides timing for all transactions on the PCI Bus. PCKRUN# V1 IO PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped (high) or running (low). The VT8231 drives this signal low when the PCI clock running (default on reset) and releases it when it stops the PCI clock. External devict may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Connect this pin to ground using a 100 Ω resistor if the function is not used. Refer to the "PCI Mobile Design Guide" and the VIA "Apollo MVP4 Design Guide" for more details. PCIRST# E4 O PCI Reset. PCISTP#/GP06 W1 O PCI Stop.	PREOH#	C1	0	
PGNTL# D1 I PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT8231. PCICLK M17 I PCI Clock. PCLK provides timing for all transactions on the PCI Bus. PCKRUN# V1 IO PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped (high) or running (low). The VT8231 drives this signal low when the PCI clock running (default on reset) and releases it when it stops the PCI clock. External devices may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Connect this pin to ground using a 100 Ω resistor if the function is not used. Refer to the "PCI Mobile Design Guide" and the VIA "Apollo MVP4 Design Guide" for more details. PCIRST# E4 O PCI Reset. PCISTP#/GPO6 W1 O PCI Stop.		1		PCI Grant. This signal is driven by the North Bridge to grant PCI access to the
VT8231. PCICLK M17 I PCI Clock. PCLK provides timing for all transactions on the PCI Bus. PCKRUN# V1 IO PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped (high) or running (low). The VT8231 drives this signal low when the PCI clock running (default on reset) and releases it when it stops the PCI clock. External devices may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Connect this pin to ground using a 100 Ω resistor if the function is not used Refer to the "PCI Mobile Design Guide" and the VIA "Apollo MVP4 Design Guide" for more details. PCIRST# E4 O PCI Reset. PCISTP#/GPO6 W1 O PCI Stop.	PREQL#	D2	О	PCI Request. This signal goes to the North Bridge to request the PCI bus.
 PCKRUN# V1 IO PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped (high) or running (low). The VT8231 drives this signal low when the PCI clock running (default on reset) and releases it when it stops the PCI clock. External devices may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Connect this pin to ground using a 100 Ω resistor if the function is not used Refer to the "PCI Mobile Design Guide" and the VIA "Apollo MVP4 Design Guide" from more details. PCIRST# E4 O PCI Reset. PCISTP# / GPO6 W1 O PCI Stop. 	PGNTL#	D1	I	PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT8231.
 (high) or running (low). The VT8231 drives this signal low when the PCI clock running (default on reset) and releases it when it stops the PCI clock. External device may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Connect this pin to ground using a 100 Ω resistor if the function is not used Refer to the "PCI Mobile Design Guide" and the VIA "Apollo MVP4 Design Guide" for more details. PCIRST# E4 O PCI Reset. PCISTP# / GPO6 W1 O PCI Stop. 	PCICLK	M17	I	PCI Clock. PCLK provides timing for all transactions on the PCI Bus.
PCIRST# E4 O PCI Reset. PCISTP# / GPO6 W1 O PCI Stop.	PCKRUN#	V1	IO	PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped (high) or running (low). The VT8231 drives this signal low when the PCI clock is running (default on reset) and releases it when it stops the PCI clock. External devices may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Connect this pin to ground using a $100~\Omega$ resistor if the function is not used. Refer to the "PCI Mobile Design Guide" and the VIA "Apollo MVP4 Design Guide" for more details.
PCISTP#/GPO6 W1 O PCI Stop.	PCIRST#	E4	О	
01 00 11 11	CPUSTP# / GPO5	W2	0	CPU Stop.

			CPU Interface
Signal Name	Pin#	I/O	Signal Description
CPURST	U4	OD	CPU Reset. The VT8231 asserts CPURST to reset the CPU during power-up.
INTR	R6	OD	CPU Interrupt. INTR is driven by the VT8231 to signal the CPU that an interrupt request is pending and needs service.
NMI	T5	OD	Non-Maskable Interrupt. NMI is used to force a non-maskable interrupt to the CPU. The VT8231 generates an NMI when either SERR# or IOCHK# is asserted.
INIT	V5	OD	Initialization. The VT8231 asserts INIT if it detects a shut-down special cycle on the PCI bus or if a soft reset is initiated by the register
STPCLK#	V6	OD	Stop Clock. STPCLK# is asserted by the VT8231 to the CPU to throttle the processor clock.
SMI#	Y5	OD	System Management Interrupt. SMI# is asserted by the VT8231 to the CPU in response to different Power-Management events.
FERR#	U5	I	Numerical Coprocessor Error. This signal is tied to the coprocessor error signal on the CPU. Internally generates interrupt 13 if active.
IGNNE#	Т6	OD	Ignore Numeric Error. This pin is connected to the "ignore error" pin on the CPU.
SLP# / GPO7	U6	OD	Sleep (Rx75[7] = 0). Used to put the CPU to sleep. Used with slot-1 CPUs only. Not currently used with socket-7 CPUs.
A20M#	W5	OD	A20 Mask. Connect to A20 mask input of the CPU to control address bit-20 generation. Logical combination of the A20GATE input (from internal or external keyboard controller) and Port 92 bit-1 (Fast_A20).
DTD+	L2	Analog I	CPU DTD (Thermal Diode) Channel Plus. Connect to cathode of first external temperature sensing diode.
DTD-	L3	Analog I	CPU DTD (Thermal Diode) Channel Minus. Connect to anode of first external temperature sensing diode.

Note: Connect each of the above signals to 4.7K Ω pullup resistors to VCC3.

	Strap Options										
Signal Name	Pin #	I/O	Signal Description								
Strap / SUSA#	P1	I/O	CPURST / INIT Polarity								
			H:								
			L:								
Strap / MCCS#	W6	I/O	CPU Frequency Strapping								
			H: Disable								
			L: Enable								
Strap / PCS0#	Y6	I/O	SD Bus Width								
			H: 16-Bit								
			L: 8-Bit								
Strap / SA16	Y14	I / IO	BIO ROM Interface								
_			H: LPC								
			L: Conventional								
Strap / SA17	T13	I / IO	Auto Reboot								
			H: Disable								
			L: Enable								
Strap / KBCS# / ROMCS#	T9	I/O/O	CPU Type								
_			4.7K to GND = Socket-7, 4.7K to VCC3 = Socket-370 / Slot-1								

Advanced	Advanced Programmable Interrupt Controller (APIC) Interface										
Signal Name	Pin#	I/O	Signal Description								
WSC# / APICREQ# / GPI14	V4	I/I/I	Internal APIC Write Snoop Complete. Asserted by the north bridge to indicate that all snoop activity on the CPU bus initiated by the last PCI-to-DRAM write is complete and that it is safe to perform an APIC interrupt. External APIC Request. Asserted by external APIC synchronous to PCICLK prior to sending an interrupt over the APIC serial bus. This signals the VT8231 to flush its internal buffers.								
APICD0 / APICCS# / GPIO28	W4	O/O/IO	Internal APIC Data 0. External APIC Chip Select. The VT8231 drives this signal active to select an external APIC (if used). This occurs if the external APIC is enabled and a PCI cycle is detected within the programmed APIC address range.								
APICD1 / APICACK# / GPIO29	Y4	O/O/IO	Internal APIC Data 1. External APIC Acknowledge. Asserted by the VT8231 to indicate that it internal buffers have been flushed (in response to APICREQ#). This indicates to the external APIC that the VT8231's internal buffers have been flushed and that it is OK for the APIC to send its interrupt.								
APICCLK / GPI9	Y3	I/I	APIC Clock.								
SCIOUT# / GPIOD / GPIO30 / DTEST	Y1	O / IO IO / O	SCI Out. Used to route internally generated SCI and SMBus interrupts to external APIC (if used). Defined as SCIOUT# if external APIC enabled (function 0 Rx74[7] = 1).								
AIRQ / MCOL	G17	O	APIC IRQ. Internal condition for connection to external APIC.								
AIRQ / MCRS	G16	О	APIC IRQ. Internal condition for connection to external APIC.								
AIRQ / MRXCLK	E17	O	APIC IRQ. Internal condition for connection to external APIC.								
AIRQ / MRXD0	E19	O	APIC IRQ. Internal condition for connection to external APIC.								
AIRQ / MRXDV	E20	O	APIC IRQ. Internal condition for connection to external APIC.								
AIRQ / MRXERR	F18	O	APIC IRQ. Internal condition for connection to external APIC.								
AIRQ / MTXCLK	F16	O	APIC IRQ. Internal condition for connection to external APIC.								
AIRQ / MTXD0	F20	О	APIC IRQ. Internal condition for connection to external APIC.								
AIRQ / MTXD1	G18	O	APIC IRQ. Internal condition for connection to external APIC.								
AIRQ / MTXD2	G19	O	APIC IRQ. Internal condition for connection to external APIC.								
AIRQ / MTXD3	G20	O	APIC IRQ. Internal condition for connection to external APIC.								
AIRQ / MTXENA	F19	O	APIC IRQ. Internal condition for connection to external APIC.								

Serial EEPROM Interface					
Signal Name	Pin#	I/O	Signal Description		
EECS#	C18	О	Serial EEPROM Chip Select.		
EECK	E16	O	Serial EEPROM Clock.		
EEDO	C20	O	Serial EEPROM Data Output.		
EEDI	C19	I	Serial EEPROM Data Input.		

Low Pin Count (LPC) Interface						
Signal Name	Pin #	I/O	Signal Description			
LFRAME#	W8	О	LPC Frame.			
LDRQ# / ACSDIN3 / GPI15	Y8	I/I/I	LPC Data Request.			
LAD[3-0]	V7, W7, Y7, V8	IO / IO	LPC Address / Data.			
HREQ1# / SD8 / GPI10	Y11	I / IO	High Priority Request 1.			
HGNT1# / SD9 / GPO8	W11	O / IO	High Priority Grant 1.			
HREQ2# / SD10 / GPI11	V11	I / IO	High Priority Request 2.			
HGNT2# / SD11 / GPO9	T10	O / IO	High Priority Grant 2.			
LREQ1# / SD12 / GPI12	U10	I / IO	Low Priority Request 1.			
LGNT1# / SD13 / GPO10	Y10	O / IO	Low Priority Grant 1.			
LREQ2# / SD14 / GPI13	W10	I / IO	Low Priority Request 2.			
LGNT2 # / SD15 / GPO11	V10	O / IO	Low Priority Grant 2.			

Note: Connect the LPC interface LPCRST# (LPC Reset) signal to PCIRST#

LAN Controller - Media Independent Interface (MII)							
Signal Name	Pin #	I/O	Signal Description				
MCOL / APICIRQ	G17	I/I	MII Collision Detect. From the external PHY.				
MCRS / APICIRQ	G16	I/I	MII Carrier Sense. Asserted by the external PHY when the media is active.				
MDCK	D17	О	MII Management Data Clock. Sent to the external PHY as a timing reference for MDIO				
MDIO	D18	IO	MII Management Data I/O. Read from the MDI bit or written to the MDO bit.				
MRXCLK / APICIRQ	E17	I/I	MII Receive Clock. 2.5 or 25 MHz clock recovered by the PHY.				
MRXD[3],	D19	I	MII Receive Data. Parallel receive data lines driven by the				
MRXD[2],	D20	I	external PHY synchronous with MRXCLK.				
MRXD[1],	E18	I					
MRXD[0] / APICIRQ	E19	I/I					
MRXDV / APICIRQ	E20	I/I	MII Receive Data Valid.				
MRXERR / APICIRQ	F18	I / I	MII Receive Error. Asserted by the PHY when it detects a data decoding error.				
MTXCLK / APICIRQ	F16	I/I	MII Transmit Clock. Always active 2.5 or 25 MHz clock supplied by the PHY.				
MTXD[3] / APICIRQ,	G20	O/I	MII Transmit Data. Parallel transmit data lines synchronized to				
MTXD[2] / APICIRQ,	G19	O/I	MTXCLK.				
MTXD[1] / APICIRQ,	G18	O/I					
MTXD[0] / APICIRQ	F20	O/I					
MTXENA / APICIRQ	F19	O/I	MII Transmit Enable. Indicates transmit active from the MII port to the PHY.				

Universal Serial Bus Interface				
Signal Name	Pin#	I/O	Signal Description	
USBP0+	B20	IO	USB Port 0 Data +	
USBP0-	A20	IO	USB Port 0 Data -	
USBP1+	B19	IO	USB Port 1 Data +	
USBP1-	A19	IO	USB Port 1 Data -	
USBP2+	B18	IO	USB Port 2 Data +	
USBP2-	A18	IO	USB Port 2 Data -	
USBP3+	C17	IO	USB Port 3 Data +	
USBP3-	B17	IO	USB Port 3 Data -	
USBCLK	C15	I	USB Clock. 48MHz clock input for the USB interface	
USBOC0#	A17	I	USB Port 0 Over Current Detect. Port 0 is disabled if this input is low.	
USBOC1#	D16	I	USB Port 1 Over Current Detect. Port 1 is disabled if this input is low	
USBOC2# / LA20 / GPO20	W13	I/IO/O	USB Port 2 Over Current Detect. Port 2 is disabled if this input is low.	
USBOC3# / LA21 / GPO21	Y13	I/IO/O	USB Port 3 Over Current Detect. Port 3 is disabled if this input is low.	

System Management Bus (SMB) Interface (I ² C Bus)				
Signal Name	Pin #	I/O	Signal Description	
SMBCK1	R3	IO	SMB / I ² C Channel 1 Clock.	
SMBCK2 / GPIO27	R1	IO / IO	SMB / I ² C Channel 2 Clock.	
SMBDT1	T1	IO	SMB / I ² C Channel 1 Data.	
SMBDT2 / GPIO26	R2	IO / IO	SMB / I ² C Channel 2 Data.	
SMBALRT# / GPI7	Т2	I/I	SMB Alert. (System Management Bus I/O space Rx08[3] = 1) When the chip is enabled to allow it, assertion generates an IRQ or SMI interrupt or a power management resume event. The same pin is used as General Purpose Input 6 whose value is reflected in Rx48[6] of function 4 I/O space	

	UltraDMA-33 / 66 Enhanced IDE Interface						
Signal Name	Pin #	I/O	Signal Description				
PDRDY / PDDMARDY / PDSTROBE	N19	I	EIDE Mode: Primary I/O Channel Ready. Device ready indicator UltraDMA Mode: Primary Device DMA Ready. Output flow control. The device may assert DDMARDY to pause output transfers Primary Device Strobe. Input data strobe (both edges). The device may stop DSTROBE to pause input data transfers				
SDRDY / SDDMARDY / SDSTROBE	Y20	I	EIDE Mode: Secondary I/O Channel Ready. Device ready indicator UltraDMA Mode: Secondary Device DMA Ready. Qutput flow control. The device may assert DDMARDY to pause output transfers Secondary Device Strobe. Input data strobe (both edges). The device may stop DSTROBE to pause input data transfers				
PDIOR# / PHDMARDY / PHSTROBE	N18	O	EIDE Mode: Primary Device I/O Read. Device read strobe UltraDMA Mode: Primary Host DMA Ready. Primary channel input flow control. The host may assert HDMARDY to pause input transfers Primary Host Strobe. Output data strobe (both edges). The host may stop HSTROBE to pause output data transfers				
SDIOR# / SHDMARDY / SHSTROBE	W19	O	EIDE Mode: Secondary Device I/O Read. Device read strobe UltraDMA Mode: Secondary Host DMA Ready. Input flow control. The host may assert HDMARDY to pause input transfers Host Strobe B. Output strobe (both edges). The host may stop HSTROBE to pause output data transfers				
PDIOW#/ PSTOP	P20	0	EIDE Mode: Primary Device I/O Write. Device write strobe UltraDMA Mode: Primary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.				
SDIOW# / SSTOP	Y19	O	EIDE Mode: Secondary Device I/O Write. Device write strobe UltraDMA Mode: Secondary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.				
PDDRQ	P19	I	Primary Device DMA Request. Primary channel DMA request				
SDDRQ	U17	I	Secondary Device DMA Request. Secondary channel DMA request				
PDDACK#	N20	0	Primary Device DMA Acknowledge. Primary channel DMA acknowledge				
SDDACK#	W20	0	Secondary Device DMA Acknowledge. Secondary channel DMA acknowledge				
IRQ14	T14	I	Primary Channel Interrupt Request.				
IRQ15	U14	I	Secondary Channel Interrupt Request.				

UltraDMA-33 / 66 Enhanced IDE Interface (continued)						
Signal Name	Pin #	I/O	Signal Description			
PDCS1#	L18	О	Primary Master Chip Select. This signal corresponds to CS1FX# on the primary IDE connector.			
PDCS3#	L19	О	Primary Slave Chip Select. This signal corresponds to CS3FX# on the primary IDE connector.			
SDCS1#	U18	О	Secondary Master Chip Select. This signal corresponds to CS17X# on the secondary IDE connector.			
SDCS3#	U19	О	Secondary Slave Chip Select. This signal corresponds to CS37X# on the secondary IDE connector.			
PDA[2-0]	M20, M18, M19	О	Primary Disk Address. PDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed.			
SDA[2-0]	V20, V18, V19	О	Secondary Disk Address. SDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed.			
PDD[15-0]	T17, R17, T18, T20, P17, N16, R19, P18, R18, R20, N17, P16, T19, U20, R16, T16	Ю	Primary Disk Data			
SDD[15-0] / SA[15-0]	W18, V17, Y17, W16, V15, Y15, W14, T15, U15, U16, V14, W15, Y16, V16, W17, Y18	Ю	Secondary Disk Data (SPKR strap 4.7K ohms low) or ISA Address (SPKR strap 4.7K ohms high)			

MIDI Interface						
Signal Name Pin # I/O Signal Description						
MSI / I2S	G4	I/I	MIDI Serial In			
MSO / SPDIF	J4	0/0	MIDI Serial Out			

Serial Digital Audio Interface					
Signal Name Pin # I/O Signal Description					
12S / MSI	G4	I / I	Serial Digital Audio In.		
SPDIF / MSO	J4	O / O	Serial Digital Audio Out.		

AC97 Audio / Modem Interface					
Signal Name	Pin#	I/O	Signal Description		
ACRST	G2	0	AC97 Reset		
ACSYNC	G1	0	AC97 Sync		
ACSDOUT	Н3	0	AC97 Serial Data Out		
ACSDIN0	H1	I	AC97 Serial Data In 0		
ACSDIN1	H2	I	AC97 Serial Data In 1		
ACSDIN2 / PCS1# / GPIO19	J1	I / O / IO	AC97 Serial Data In 2		
ACSDIN3 / LDRQ# / GPI5	Y8	I/I/I	AC97 Serial Data In 3		
ACBITCLK	Ј3	I	AC97 Bit Clock		

Game Port Interface					
Signal Name	Pin#	I/O	Signal Description		
JAX / GAMED0	G5	I	Joystick A X-axis		
JAY / GAMED1	H5	I	Joystick A Y-axis		
JBX / GAMED2	K5	I	Joystick B X-axis		
JBY / GAMED3	J5	I	Joystick B Y-axis		
JAB1 / GAMED4	G3	I	Joystick A Button 1		
JAB2 / GAMED5	K4	I	Joystick A Button 2		
JBB1 / GAMED6	F1	I	Joystick B Button 1		
JBB2 / GAMED7	H4	I	Joystick B Button 2		

See Function 0 Rx77[6]

Floppy Disk Interface				
Signal Name	Pin #	I/O	Signal Description	
DRVDEN0	L17	OD	Drive Density Select 0.	
DRVDEN1	K17	OD	Drive Density Select 1.	
MTR0#	K18	OD	Motor Control 0. Select motor on drive 0.	
MTR1#	J16	OD	Motor Control 1. Select motor on drive 1	
DS0#	J17	OD	Drive Select 0. Select drive 0.	
DS1#	K19	OD	Drive Select 1. Select drive 1	
DIR#	K20	OD	Direction. Direction of head movement $(0 = \text{inward motion}, 1 = \text{outward motion})$	
STEP#	J18	OD	Step. Low pulse for each track-to-track movement of the head.	
INDEX#	L20	I	Index. Sense to detect that the head is positioned over the beginning of a track	
HDSEL#	H19	OD	Head Select. Selects the side for R/W operations $(0 = \text{side } 1, 1 = \text{side } 0)$	
TRK00#	H16	I	Track 0. Sense to detect that the head is positioned over track 0.	
RDATA#	H20	I	Read Data. Raw serial bit stream from the drive for read operatrions.	
WDATA#	J19	OD	Write Data. Encoded data to the drive for write operations.	
WGATE#	J20	OD	Write Gate. Signal to the drive to enable current flow in the write head.	
DSKCHG#	H18	I	Disk Change. Sense that the drive door is open or the diskette has been changed	
			since the last drive selection.	
WRTPRT#	H17	Ι	Write Protect. Sense for detection that the diskette is write protected (causes write commands to be ignored)	

See also Parallel Port pin descriptions for optional Floppy Disk interface functionality

D II I D 4 T. 4					
			Parallel Port Interface		
Signal Name	Pin#	I/O	Signal Description		
PINIT# / DIR#	B12	IO/O	Initialize. Initialize printer. Output in standard mode, I/O in ECP/EPP mode.		
STROBE# / nc	A11	IO / -	Strobe. Output used to strobe data into the printer. I/O in ECP/EPP mode.		
AUTOFD# / DRVEN0	E11	IO/O	Auto Feed. Output used to cause the printer to automatically feed one line after		
			each line is printed. I/O pin in ECP/EPP mode.		
SLCTIN# / STEP#	D12	IO / O	Select In. Output used to select the printer. I/O pin in ECP/EPP mode.		
SLCT / WGATE#	E13	I/O	Select. Status output from the printer. High indicates that it is powered on.		
ACK # / DS1#	B14	I/O	Acknowledge. Status output from the printer. Low indicates that it has received		
			the data and is ready to accept new data		
ERROR# / HDSEL#	F11	I/O	Error. Status output from the printer. Low indicates an error condition in the		
			printer.		
BUSY / MTR1#	A14	I/O	Busy. Status output from the printer. High indicates not ready to accept data.		
PE / WDATA#	D13	I/O	Paper End. Status output from the printer. High indicates that it is out of paper.		
PD7 / nc,	C14	IO / -	Parallel Port Data.		
PD6 / nc,	A13	IO / -			
PD5 / nc,	B13	IO / -			
PD4 / DSKCHG#,	C13	IO / I			
PD3 / RDATA#,	E12	IO / I			
PD2 / WRTPRT#,	A12	IO / I			
PD1 / TRK00#,	C12	IO / I			
PD0 / INDEX#	D11	IO / I			

As shown by the alternate functions above, in mobile applications the parallel port pins can optionally be selected to function as a floppy disk interface for attachment of an external floppy drive using the parallel port connector (see Super I/O Configuration Index F6[5]).

Serial Port and Infrared Interface					
Signal Name	Pin #	I/O	Signal Description		
TXD	B15	О	Transmit Data. Serial port transmit data out.		
RXD	E14	I	Receive Data. Serial port receive data in.		
IRTX / GPO14	R8	O/O	Infrared Transmit. IR transmit data out $(Rx76[5] = 0)$ selectable from serial port 1, 2, or 3. General Purpose Output 14 if $Rx76[5] = 1$		
IRRX / GPO15	U8	I/O	Infrared Receive. IR receive data in $(Rx76[5] = 0)$ selectable to serial port 1, 2, or 3. General Purpose Output 15 if $Rx76[5] = 1$		
IRRX2 / GPI	Т8	I/I	Infrared Receive. IR receive data in $(Rx76[5] = 0)$		
RTS#	A15	О	Request To Send. Indicator that the serial output port is ready to transmit data. Typically used as hardware handshake with CTS# for low level flow control. Designed for direct input to external RS-232C driver.		
CTS#	B16	I	Clear To Send. Indicator to the serial port that an external communications device is ready to receive data. Typically used as hardware handshake with RTS# for low level flow control. Designed for input from external RS-232C receiver.		
DTR#	A16	О	Data Terminal Ready. Indicator that serial port is powered, initialized, and ready. Typically used as hardware handshake with DSR# for overall readiness to communicate. Designed for direct input to external RS-232C driver.		
DSR#	D14	I	Data Set Ready. Indicator to serial port that an external serial communications device is powered, initialized, and ready. Typically used as hardware handshake with DTR# for overall readiness to communicate. Designed for direct input from external RS-232C receiver.		
DCD#	F14	I	Data Carrier Detect. Indicator to serial port that an external modem is detecting a carrier signal (i.e., a communications channel is currently open). In direct connect environments, this input will typically be driven by DTR# as part of the DTR/DSR handshake. Designed for direct input from external RS-232C receiver.		
RI#	C16	I	Ring Indicator. Indicator to serial port that an external modem is detecting a ring condition. Used by software to initiate operations to answer and open the communications channel. Designed for direct input from external RS-232C receiver (whose input is typically not connected in direct connect environments).		

Conventional BIOS ROM / ISA Bus Interface							
Signal Name	Pin#	I/O	Signal Description				
LA21 / USBOC3# / GPO21	Y13	0	System Address Bus. Allows access to physical memory				
LA20 / USBOC2# / GPO20	W13		devices (e.g., BIOS ROMs) up to 4 Mbytes.				
SA[19:18],	V13, U13,	IO	System Address Bus. These address lines are used to				
SA17 / strap,	T13,		interface to BIOS ROMs but may also be used to				
SA16 / strap,	Y14,		implement a subset of the ISA bus if required. SA[19-16]				
SA[15:0] / SDD[15:0]	W18, V17, Y17, W16,		are connected to ISA bus SA[19-16] directly. SA[19-17]				
	V15, Y15, W14, T15,		are also connected to LA[19-17] of the ISA bus.				
	U15, U16, V14, W15,						
GD45 / LGNTC# / GDG4	Y16, V16, W17, Y18	10 /0 /0	G . D . GD[150]				
SD15 / LGNT2# / GPO11,	V10	IO / O / O	System Data. SD[15:0] provide the data path for BIOS				
SD14 / LREQ2# / GPI13,	W10	IO/I/I	ROMs and for devices residing on the ISA bus. SD0-7				
SD13 / LGNT1# / GPO10,	Y10	IO/O/O	also output general purpose output information when				
SD12 / LREQ1# / GPI12,	U10	IO/I/I	GPOWE# is active.				
SD11 / HGNT2# / GPO9,	T10	IO/O/O					
SD10 / HREQ2# / GPI11,	V11	IO/I/I					
SD9 / HGNT1# / GPO8,	W11	IO/O/O					
SD8 / HREQ1# / GPI10,	Y11	IO/I/I					
SD7,	T11 R11	IO					
SD6,	U11	IO					
SD5,	U12	IO IO					
SD4,	Y12	IO					
SD3,	W12	IO					
SD2,	V12 V12	IO					
SD1,	R12	IO					
SD0			TIO D. I. IODII i. d				
IOR# / GPO22	U7	IO	I/O Read. IOR# is the command to an ISA I/O slave				
TOTAL CROSS	77.7	10	device that the slave may drive data on to the ISA data bus.				
IOW# / GPO23	T7	IO	I/O Write. IOW# is the command to an ISA I/O slave				
		_	device that the slave may latch data from the ISA data bus.				
MEMR#	W9	IO	Memory Read. MEMR# is the command to a memory				
			slave that it may drive data onto the ISA data bus.				
MEMW#	Y9	IO	Memory Write. MEMW# is the command to a memory				
			slave that it may latch data from the ISA data bus.				
IRQ1 / MSCK	N2	I / IO	Interrupt 1 (optional external Keyboard Controller).				
IRQ8# / GPI1	V3	I/I	Interrupt 8 (optional external RTC).				
IRQ12 / MSDT	N4	I / IO	Interrupt 12 (optional external PS2 Mouse Controller).				
IRQ14	T14	I	Interrupt 14 (IDE Primary Channel).				
IRQ15	U14	I	Interrupt 15 (IDE Secondary Channel).				
SPKR	U9	О	Speaker Drive. Output of internal timer/counter 2.				

Serial IRQ						
Signal Name Pin # I/O Signal Description						
SERIRQ	V9	I	Serial IRQ (Rx68[3] = 1 and Rx74[6] = 0)			

Internal Keyboard Controller						
Signal Name	Pin#	I/O	Signal Description			
MSCK / IRQ1	N2	IO / I	MultiFunction Pin (Internal mouse controller enabled by Rx5A[1])			
			Rx5A[1]=1 Mouse Clock. From internal mouse controller. Rx5A[1]=0 Interrupt Request 1 . Interrupt 1 (external KBC).			
MSDT / IRQ12	N4	IO / I	MultiFunction Pin (Internal mouse controller enabled by Rx5A[1])			
			Rx5A[1]=1 Mouse Data. From internal mouse controller. Rx5A[1]=0 Interrupt Request 12 . Interrupt 12 (ext PS2 mouse ctlr).			
KBCK / A20GATE	M4	IO / I	MultiFunction Pin (Internal keyboard controller enabled by Rx5A[0])			
			Rx5A[0]=1 Keyboard Clock. From internal keyboard controller Rx5A[0]=0 Gate A20. Input from external keyboard controller.			
KBDT / KBRC	N1	IO / I	MultiFunction Pin (Internal keyboard controller enabled by Rx5A[0])			
			Rx5A[0]=1 Keyboard Data. From internal keyboard controller.			
			Rx5A[0]=0 Keyboard Reset. From external keyboard controller (KBC) for CPURST# generation			
KBCS# / ROMCS# / strap	Т9	O / O / I	Keyboard Chip Select (Rx5A[0]=0). To external keyboard controller chip.			

Chip Selects					
Signal Name	Pin#	I/O	Signal Description		
ROMCS# / KBCS# / strap	T9	O / O / I	ROM Chip Select (Rx5A[0]=1). Chip Select to the BIOS ROM.		
MCCS# / GPO17 / strap	W6	O / IO	Microcontroller Chip Select $(Rx76[3] = 1, Rx76[4] = 0, Rx77[0] = 1).$		
			Asserted during read or write accesses to I/O ports 62h or 66h.		
PCS0 # / GPO16 / strap	Y6	O / IO / IO	Programmable Chip Select 0. $(Rx76[1] = 1 \text{ and } Rx8B[0] = 1)$. Asserted		
			during I/O cycles to programmable read or write ISA I/O port ranges. See		
			also Rx59[3] and Rx77[2].		
PCS1# / ACSDIN2 / GPIO19	J1	O / I / IO	Programmable Chip Select 1.		

General Purpose Inputs					
Signal Name	Pin #	I/O	Signal Description		
GPI0	F4	I	General Purpose Input 0		
GPI1 / IRQ8#	V3	I / I	General Purpose Input 1 (Rx5A[2] = 1)		
GPI2 / EXTSMI#	T4	I / IO	General Purpose Input 2		
GPI3 / RING#	U3	I/I	General Purpose Input 3		
GPI4 / LID	Y2	I / I	General Purpose Input 4		
GPI5 / BATLOW#	T3	I / I	General Purpose Input 5		
GPI6 / PME#	U1	I / I	General Purpose Input 6		
GPI7 / SMBALRT#	T2	I / I	General Purpose Input 7		
GPI8 / INTRUDER#	F3	I / I	General Purpose Input 8		
GPI9 / APICCLK	Y3	I / I	General Purpose Input 9		
GPI10 / SD8 / HREQ1#	Y11	I / IO / I	General Purpose Input 10		
GPI11 / SD10 / HREQ2#	W11	I / IO / I	General Purpose Input 11		
GPI12 / SD12 / LREQ1#	U10	I / IO / I	General Purpose Input 12		
GPI13 / SD14 / LREQ2#	W10	I / IO / I	General Purpose Input 13		
GPI14 / WSC# / APICREQ#	V4	I/I/I	General Purpose Input 14		
GPI15 / LDRQ# / ACSDIN3	Y8	I/I/I	General Purpose Input 15		
GPI16 / CPUMISS	R5	I / I	General Purpose Input 16		
GPI17 / AOLGPI / THRM	P3	I/I/I	General Purpose Input 17		
GPI18 / GPO18 / FAN2 / SLPBTN#	K3	I / O / I / I	General Purpose Input 18		
GPI19 / GPO19 / ACSDIN2 / PCS1#	J1	I/O/I/O	General Purpose Input 19		
GPI20			General Purpose Input 20		
GPI21			General Purpose Input 21		
GPI22			General Purpose Input 22		
GPI23			General Purpose Input 23		
GPI24 / GPO24 / GPIOA	V2	I / O / IO	General Purpose Input 24		
GPI25 / GPO25 / GPIOC / ATEST	J2	I/O/IO/O	General Purpose Input 25		
GPI26 / GPO26 / SMBDT2	R2	I / O / IO	General Purpose Input 26		
GPI27 / GPO27 / SMBCK2	R1	I / O / IO	General Purpose Input 27		
GPI28 / GPO28 / APICD0 / APICCS#	W4	I/O/O/O	General Purpose Input 28		
GPI29 / GPO29 / APICD1 / APICACK#	Y4	I/O/O/O	General Purpose Input 29		
GPI30 / GPO30 / GPIOD / DTEST / SCIOUT#	Y1	I/O/IO/O/O	General Purpose Input 30		
GPI31 / GPO31 / GPIOE	W3	I / O / IO	General Purpose Input 31		

General Purpose Outputs				
Signal Name	Pin#	I/O	Signal Description	
GPO0 / SLOWCLK	R4	0/0	General Purpose Output 0. (Func 4 Rx54[1-0] =	
			00). Output value determined by PMU I/O Rx4C[0]	
GPO1 / SUSA#	P1	O / O	General Purpose Output 1.	
GPO2 / SUSB#	P2	O / O	General Purpose Output 2.	
GPO3 / SUSST1#	N5	O / O	General Purpose Output 3.	
GPO4 / SUSCLK	P4	O/O	General Purpose Output 4.	
GPO5 / CPUSTP#	W2	O / O	General Purpose Output 5.	
GPO6 / PCISTP#	W1	O / O	General Purpose Output 6.	
GPO7 / SLP#	U6	O / O	General Purpose Output 7.	
GPO8 / SD9 / HGNT1#	W11	O / IO / O	General Purpose Output 8.	
GPO9 / SD11 / HGNT2#	T10	O / IO / O	General Purpose Output 9.	
GPO10 / SD13 / LGNT1#	Y10	O / IO / O	General Purpose Output 10.	
GPO11 / SD15 / LGNT2#	V10	O / IO / O	General Purpose Output 11.	
GPO12			General Purpose Output 12.	
GPO13			General Purpose Output 13.	
GPO14 / IRTX	R8	O / O	General Purpose Output 14 (Rx76[5] = 1)	
GPO15 / IRRX	U8	O / I	General Purpose Output 15 (Rx76[5] = 1)	
GPO16 / PCS0#	Y6	O / O	General Purpose Output 16.	
GPO17 / MCCS#	W6	O / O	General Purpose Output 17.	
GPO18 / GPI18 / FAN2 / SLPBTN#	K3	O/I/I/I	General Purpose Output 18.	
GPO19 / GPI19 / PCS1# / ACSDIN2	J1	O/I/O/I	General Purpose Output 19.	
GPO20 / LA20 / USBOC2#	W13	O/IO/I	General Purpose Output 20.	
GPO21 / LA21 / USBOC3#	Y13	O / IO / I	General Purpose Output 21.	
GPO22 / IOR#	U7	0/0	General Purpose Output 22.	
GPO23 / IOW#	T7	0/0	General Purpose Output 23.	
GPO24 / GPI24 / GPIOA	V2	O / I / IO	General Purpose Output 24.	
GPO25 / GPI25 / GPIOC / ATEST	J2	O/I/IO/O	General Purpose Output 25.	
GPO26 / GPI26 / SMBDT2	R2	O / I / IO	General Purpose Output 26.	
GPO27 / GPI27 / SMBCK2	R1	O / I / IO	General Purpose Output 27.	
GPO28 / GPI28 / APICD0 / APICCS#	W4	O/I/O/O	General Purpose Output 28.	
GPO29 / GPI29 / APICD1 / APICACK#	Y4	O/I/O/O	General Purpose Output 29.	
GPO30 / GPI30 / GPIOD / DTEST / SCIOUT#	Y1	O/I/IO/O/O	General Purpose Output 30.	
GPO31 / GPI31 / GPIOE	W3	O / I / IO	General Purpose Output 31.	

h						
General Purpose I/Os						
Signal Name	Pin#	I/O	Signal Description			
GPIOA / GPI24 / GPO24	V2	IO / I / O	General Purpose I/O A / 24 (Rx76[0] = 0). GPOWE# if Rx76[0] = 1. See also Rx74[2]			
GPIOB			General Purpose I/O B			
GPIOC / GPI25 / GPO25 / ATEST	J2	IO/I/O/O	General Purpose I/O C / 25. $(Rx76[2] = 0)$. See also $Rx74[4]$			
GPIOD / GPI30 / GPO30 / DTEST	Y1	IO/I/O/O	General Purpose I/O D / 30. $(Rx76[3] = 0)$. See also $Rx74[5]$			
/ SCIOUT#		O				
GPIOE / GPI31 / GPO31	W3	IO	General Purpose I/O E / 31.			

Hardware Monitoring						
Signal Name	Pin#	I/O	Signal Description			
UIC1	M1	Analog I	Universal Input Channel. For temperature / voltage monitoring.			
UIC2	M3	Analog I	Universal Input Channel. For temperature / voltage monitoring.			
UIC3	M2	Analog I	Universal Input Channel. For temperature / voltage monitoring.			
UIC4	L4	Analog I	Universal Input Channel. For temperature / voltage monitoring.			
UIC5	L1	Analog I	Universal Input Channel. For temperature / voltage monitoring.			
DTD+	L2	Analog I	CPU DTD (Thermal Diode) Channel Plus.			
DTD-	L3	Analog I	CPU DTD (Thermal Diode)Channel Minus.			
VREF	K1	P	Voltage Reference for Thermal Sensing (5V ±5%)			
FAN1	K2	I	Fan Speed Monitor 1. (3.3V only)			
FAN2 / SLPBTN# / GPI18 / GPO18	K3	I/I/I/O	Fan Speed Monitor 2. (3.3V only)			
DTEST / GPIOD (30) / SCIOUT#	Y1	О	Hardware Monitor Digital Test Out			
ATEST / GPIOC (25)	J2	0	Hardware Monitor Analog Test Out			

Power Management and External State Monitoring					
Signal Name	Pin #	I/O	Signal Description		
PME# / GPI6	U1	I/I	Power Management Event. (Rx74[1]=0) (1K PU to VCCS if not used)		
EXTSMI# / GPI2	T4	IOD / I	External System Management Interrupt. When enabled to allow it, a falling edge on this input causes an SMI# to be generated to the CPU to enter SMI mode. (10K PU to VCCS if not used) (3.3V only)		
SMBALRT# / GPI7	T2	I/I	SMB Alert (System Management Bus I/O space Rx08[3] = 1). When the chip is enabled to allow it, assertion generates an IRQ or SMI or power management event. (10K PU to VCCS if not used)		
THRM / AOLGPI / GPI17	P3	I/I/I	Monitor Input - Thermal Alarm. (Rx74[1]=1) (1K PU to VCCS if not used)		
LID / GPI4	Y2	I/I	Monitor Input - Notebook Computer Display Lid Open / Closed. Used by the Power Management subsystem to monitor the opening and closing of the display lid of notebook computers. Can be used to detect either low-to-high and/or high-to-low transitions to generate an SMI#. The VT8231 performs a 200 usec debounce of this input if Function 4 Rx40[5] is set to 1. (10K PU to VCCS if not used)		
RING# / GPI3	U3	I/I	Monitor Input – Modem Ring. May be connected to external modem circuitry to allow the system to be re-activated by a received phone call. (10K PU to VCCS if not used)		
BATLOW# / GPI5	T3	I/I	Monitor Input - Battery Low. (10K PU to VCCS if not used)		
CPUMISS / GPI16	R5	I/I	Monitor Input - CPU Missing. Indicates whether the CPU is plugged in correctly.		
AOLGPI / GPI17 / THRM	P3	I/I/I	Monitor Input - Awake On LAN External Event.		
INTRUDER# / GPI8	F3	I/I	Monitor Input – Chassis Intrusion.		
RSMRST#	F5	I	Resume Reset. Resets the internal logic connected to the VCCS power plane and also resets portions of the internal RTC logic.		
SUSA# / GPO1 / strap	P1	O/O/I	Suspend Plane A Control (Rx74[7]=0 and Function 4 Rx54[2]=0). Asserted during power management POS, STR, and STD suspend states. Used to control the primary power plane. (10K PU to VCCS if not used)		
SUSB# / GPO2	P2	0/0	Suspend Plane B Control (Rx74[7]=0 and Function 4 Rx54[3]=0). Asserted during power management STR and STD suspend states. Used to control the secondary power plane. (10K PU to VCCS if not used)		
SUSC# / GPO	N3	O/O	Suspend Plane C Control. Asserted during power management STD suspend state. Used to control the tertiary power plane. Also connected to ATX power-on circuitry.		
SUSST1# / GPO3	N5	O/O	Suspend Status 1 (Func4 Rx54[4] = 1 for GPO3). Typically connected to the North Bridge to provide information on host clock status. Asserted when the system may stop the host clock, such as Stop Clock or during POS, STR, or STD suspend states. Connect 10K PU to VCCS.		
SUSCLK / GPO4	P4	O/O	Suspend Clock. 32.768 KHz output clock for use by the North Bridge (e.g., Apollo MVP3 or MVP4) for DRAM refresh purposes. Stopped during Suspend-to-Disk and Soft-Off modes. Connect 10K PU to VCCS.		

	Resets, Clocks, and Clock Control						
Signal Name	Pin #	I/O	Signal Description				
PWRGD	E3	I	Power Good. Connected to the PWRGOOD signal on the Power Supply.				
PWRBTN#	U2	I	Power Button. Used by the Power Management subsystem to monitor an external system on/off button or switch. The VT8231 performs a 200us debounce of this input if Function 4 Rx40[5] is set to 1. (3.3V only)				
SLPBTN# / FAN2 / GPIO18	K3	I/I /IO	Sleep Button. Used by the power management subsystem to monitor an external system sleep button or switch (Function $4 \text{ Rx} 40[6] = 1$). Connect to VCC if not used.				
PCIRST#	E4	О	PCI Reset. Active low reset signal for the PCI bus. The VT8231 will assert this pin during power-up or from the control register.				
RTCX1	E2	I	RTC Crystal Input : 32.768 KHz crystal or oscillator input. This input is used for the internal RTC and for power-well power management logic.				
RTCX2	E1	О	RTC Crystal Output: 32.768 KHz crystal output				
OSC	T12	I	Oscillator. 14.31818 MHz clock signal used by the internal Timer.				
SLOWCLK / GPO0	R4	О	Slow Clock. Frequency selectable if PMU function 4 Rx54[1-0] is nonzero (set to 01, 10, or 11).				
CPUSTP# / GPO5	W2	O / O	CPU Clock Stop (Rx75[4] = 0). Signals the system clock generator to disable the CPU clock outputs. Not connected if not used. See also PMU I/O $Rx2C[3]$.				
PCISTP# / GPO6	W1	0 / 0	PCI Clock Stop ($Rx75[5] = 0$). Signals the system clock generator to disable the PCI clock outputs. Not connected if not used.				

	Power and Ground				
Signal Name	Pin#	I/O	Signal Description		
VCC (27 Pins)	F7, F9, F12-F13, F15, G6, G8-G10, G12, H6, J6, J15, K15, L6, M6, M15, N6, P8-P9, P11-P13, P15, R7, R9-R10, R13-R15	Р	Core Power. 3.3V nominal (3.15V to 3.45V). This supply is turned on only when the mechanical switch on the power supply is turned on and the PWRON signal is conditioned high. These pins should be connected to the same voltage as the CPU I/O circuitry. Internally connected to hardware monitoring system voltage detection circuitry for 3.3V monitoring.		
GND (27 Pins)	G7, G11, G14, H15, J8-J13, K6, K8-K13, L8-L13, L15, M8-M13, N15, P7, P10, P14	Р	Ground. Connect to primary motherboard ground plane.		
VCCSUS	P5, P6	Р	supply is turned off. If the "soft-off" state is not implemented, then this pin can be connected to VCC. Signals powered by or referenced to this plane are: SMBCK1/DT1, KBCK/DT, MSCK/DT, PWRBTN#, SUSC#, GPO0 / SLOWCLK, GPO1 / SUSA#, GPO2 / SUSB#, GPO3 / SUSST1#, GPO4 / SUSCLK, GPI1 / IRQ8#, GPI2 / EXTSMI#, GPI3 / RING#, GPI4 / LID, GPI5 / BATLOW#, GPI6 / PME#, GPI7 / SMBALRT#, GPI16 / CPUMISS, GPI17 / AOLGPI / THRM, GPIO26 / SMBDT2, GPIO27 / SMBCK2 P RTC Battery. Battery input for internal RTC. Signals powered by or referenced to this plane are: RTCX1, RTCX2, PWRGD, RSMRST#, GPI0,		
VBAT	F2	P	RTC Battery. Battery input for internal RTC. Signals powered by or		
VREF	K1	P	Voltage Reference (5V \pm 5%). For thermal sensing and 5V input tolerance.		
VCCHWM	M5	P	Hardware Monitor Power. Power for hardware monitoring subsystem (voltage monitoring, temperature monitoring, and fan speed monitoring). Connect to VCC through a ferrite bead. Signals powered by or referenced to this plane are: UIC[5:1], DTD+/-, FAN1, FAN2 / SLPBTN# / GPIO18		
GNDHWM	L5	P	Hardware Monitor Ground. Connect to GND through a ferrite bead.		
VCCMII	F16, K16	P	LAN MII Power. Power for LAN Media Independent Interface (interface to external PHY). Connect to VCC through a ferrite bead. Signals powered by or referenced to this plane are: MCRS, MCOL, MDCK, MDIO, MTXD[3:0], MTXENA, MTXCLK, MRXERR, MRXCLK, MRXDV, and MRXD[3:0]		
VCCRAM	G15	P	LAN RAM Power. Power for LAN internal RAM. Connect to VCC through a ferrite bead.		
GNDRAM	G13	P	LAN RAM Ground. Connect to GND through a ferrite bead.		
VCCPLL	L16	P	PLL Power. Power for internal PLL. Connect to VCC through a ferrite bead.		
GNDPLL	M16	P	PLL Ground. Connect to GND through a ferrite bead.		
VCCUSB	E15	P	USB Differential Output Power. Power for USB differential outputs (USBP0+, P0-, P1+, P1-, P2+, P2-, P3+, P3-). Connect to VCC through a ferrite bead.		
GNDUSB	D15	P	USB Differential Output Ground. Connect to GND through a ferrite bead.		

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the VT8231. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions for details).

Detailed register descriptions are provided in the following section of this document. All offset and default values are shown in hexadecimal unless otherwise indicated

Table 2. System I/O Map

<u>Port</u>	Function	Actual Port Decoding
00-1F	Master DMA Controller	$0000\ 0000\ 000x\ nnnn$
20-3F	Master Interrupt Controller	$0000\ 0000\ 001x\ xxxn$
40-5F	Timer / Counter	$0000\ 0000\ 010x\ xxnn$
60-6F	Keyboard Controller	$0000\ 0000\ 0110\ xnxn$
(60h)	KBC Data	$0000\ 0000\ 0110\ x0x0$
(61h)	Misc Functions & Spkr Ctrl	0000 0000 0110 xxx1
(64h)	KBC Command / Status	$0000\ 0000\ 0110\ x1x0$
70-77	RTC/CMOS/NMI-Disable	$0000\ 0000\ 0111\ 0nnn$
78-7F	-available for system use-	$0000\ 0000\ 0111\ 1xxx$
80	-reserved- (debug port)	$0000\ 0000\ 1000\ 0000$
81-8F	DMA Page Registers	$0000\ 0000\ 1000\ nnnn$
90-91	-available for system use-	$0000\ 0000\ 1001\ 000x$
92	System Control	$0000\ 0000\ 1001\ 0010$
93-9F	-available for system use-	$0000\ 0000\ 1001\ nnnn$
A0-BF	Slave Interrupt Controller	$0000\ 0000\ 101x\ xxxn$
C0-DF	Slave DMA Controller	$0000\ 0000\ 110n\ nnnx$
E0-FF	-available for system use-	$0000\ 0000\ 111x\ xxxx$
100-CF7	-available for system use*	
CF8-CFB	PCI Configuration Address	0000 1100 1111 10xx
CFC-CFF	PCI Configuration Data	0000 1100 1111 11xx
D00-FFFF	-available for system use-	

* On-Chip Super-I/O Functions – PC-Standard Port Addresses

200-20F	Game Port
2E8-2EF	COM4
2F8-2FF	COM2
378-37F	Parallel Port (Standard & EPP)
3E8-3EF	COM3
3F0-3F1	Configuration Index / Data
3F0-3F7	Floppy Controller
3F8-3FF	COM1
400-402	Parallel Port (ECP Extensions)

Table 3. Registers

Legacy I/O Registers

<u>Port</u>	Master DMA Controller Registers	<u>Default</u>	Acc
00	Channel 0 Base & Current Address		RW
01	Channel 0 Base & Current Count		RW
02	Channel 1 Base & Current Address		RW
03	Channel 1 Base & Current Count		RW
04	Channel 2 Base & Current Address		RW
05	Channel 2 Base & Current Count		RW
06	Channel 3 Base & Current Address		RW
07	Channel 3 Base & Current Count		RW
08	Status / Command		RW
09	Write Request		WO
0A	Write Single Mask		WO
0B	Write Mode		WO
0C	Clear Byte Pointer FF		WO
0D	Master Clear		WO
0E	Clear Mask		WO
0F	Read / Write Mask		RW

Port	Master Interrupt Controller Regs	Default	Acc
20	Master Interrupt Control	_	*
21	Master Interrupt Mask	_	*
20	Master Interrupt Control Shadow	_	RW
21	Master Interrupt Mask Shadow		RW

^{*} RW if shadow registers are disabled

Port	Timer/Counter Registers	<u>Default</u>	Acc
40	Timer / Counter 0 Count		RW
41	Timer / Counter 1 Count		RW
42	Timer / Counter 2 Count		RW
43	Timer / Counter Control		WO

Port	Keyboard Controller Registers	Default	Acc
60	Keyboard Controller Data		RW
61	Misc Functions & Speaker Control		RW
64	Keyboard Ctrlr Command / Status		RW

Port	CMOS / RTC / NMI Registers	Default	Acc
70	CMOS Memory Address & NMI Disa		wo
71	CMOS Memory Data (128 bytes)		RW
72	CMOS Memory Address		RW
73	CMOS Memory Data (256 bytes)		RW
74	CMOS Memory Address		RW
75	CMOS Memory Data (256 bytes)		RW

NMI Disable is port 70h (CMOS Memory Address) bit-7. RTC control occurs via specific CMOS data locations (0-Dh). Ports 72-73 may be used to access all 256 locations of CMOS. Ports 74-75 may be used to access CMOS if the internal RTC is disabled.

Legacy I/O Registers (continued)

Port	DMA Page Registers	Default	<u>Acc</u>
87	DMA Page – DMA Channel 0		RW
83	DMA Page – DMA Channel 1		RW
81	DMA Page – DMA Channel 2		RW
82	DMA Page – DMA Channel 3		RW
8F	DMA Page – DMA Channel 4		RW
8B	DMA Page – DMA Channel 5		RW
89	DMA Page – DMA Channel 6		RW
8A	DMA Page – DMA Channel 7		RW

Port	System Control Registers	<u>Default</u>	<u>Acc</u>
92	System Control		RW

Port	Slave Interrupt Controller Regs	<u>Default</u>	<u>Acc</u>
A0	Slave Interrupt Control	_	*
A1	Slave Interrupt Mask	_	*
A0	Slave Interrupt Control Shadow	_	RW
A1	Slave Interrupt Mask Shadow	_	RW

^{*} RW accessible if shadow registers are disabled

Port	Slave DMA Controller Registers	Default	Acc
C0	Channel 0 Base & Current Address		RW
C2	Channel 0 Base & Current Count		RW
C4	Channel 1 Base & Current Address		RW
C6	Channel 1 Base & Current Count		RW
C8	Channel 2 Base & Current Address		RW
CA	Channel 2 Base & Current Count		RW
CC	Channel 3 Base & Current Address		RW
CE	Channel 3 Base & Current Count		RW
D0	Status / Command		RW
D2	Write Request		WO
D4	Write Single Mask		WO
D6	Write Mode		WO
D8	Clear Byte Pointer FF		WO
DA	Master Clear		WO
DC	Clear Mask		WO
DE	Read / Write Mask		RW

Super-I/O Configuration Registers (I/O Space)

F	<u>Port</u>	Super-I/O Configuration Registers	<u>Default</u>	Acc
3	3F0	Super-I/O Config Index (Rx85[1]=1)	00	RW
3	3F1	Super-I/O Config Data (Rx85[1]=1)	00	RW

Super-I/O Config Registers (Indexed via Port 3F0/1)

Offset	Super-I/O Control	Default	Acc
00-DF	-reserved-	00	RO
E0	Super-I/O Device ID	3C	RW
E1	Super-I/O Device Revision	00	RW
E2	Function Select	00	\mathbf{RW}
E3	Floppy Ctrlr Base Addr ($def = 3F0-7$)	FC	\mathbf{RW}
E4-E5	-reserved-	00	RO
E6	Parallel Port Base Addr (def = 378-F)	DE	RW
E7	Serial Port 1 Base Addr (def = 3F8-F)	FE	RW
E8	Serial Port 2 Base Addr (def = 2F8-F)	BE	RW
E9-ED	-reserved-	00	RO
EE	Serial Port Configuration	00	RW
EF	Power Down Control	00	RW
F0	Parallel Port Control	00	RW
F1	Serial Port Control	00	RW
F2	Test Mode (Do Not Program)	00	RW
F3	-reserved-	00	RO
F4	Test Mode (Do Not Program) 2	00	RW
F5	-reserved-	00	RO
F6	Floppy Controller Configuration	00	RW
F7	-reserved-	00	RO
F8	Floppy Controller Drive Select	00	RW
F9-FB	-reserved-	00	RO
FC	General Purpose I/O	00	RW
FD-FF	-reserved-	00	RO

Super-I/O I/O Ports

Offset	Floppy Disk Controller (3F0-3F7)	<u>Default</u>	<u>Acc</u>
00-01	-reserved-	00	
02	FDC Command		RW
03	-reserved-	00	
04	FDC Main Status		RO
04	FDC Data Rate Select	00	wo
05	FDC Data		RW
06	-reserved-	00	
07	Diskchange Status		RO
07	FDC Configuration Control	00	WO

Offset	Parallel Port (378-37F typical)	<u>Default</u>	Acc
00	Parallel Port Data	-	RW
01	Parallel Port Status		RO
02	Parallel Port Control	E0	RW
03	EPP Address		RW
04	EPP Data Port 0		RW
05	EPP Data Port 1		RW
06	EPP Data Port 2		RW
07	EPP Data Port 3		RW
400h	ECP Data / Configuration A		RW
401h	ECP Configuration B		RW
402h	ECP Extended Control		RW

Offset	Serial Port 1 (COM1=3F8, 3=3E8)	<u>Default</u>	Acc
0	Transmit (Wr) / Receive (Rd) Buffer		RW
1	Interrupt Enable		RW
2	FIFO Control		wo
2	Interrupt Status		RO
3	UART Control		RW
4	Handshake Control		RW
5	UART Status		RW
6	Handshake Status		RW
7	Scratchpad		RW
9-8	Baud Rate Generator Divisor		RW
A-F	-undefined-		

Offset	Serial Port 2 (COM2=2F8, 4=2E8)	Default	Acc
0	Transmit (Wr) / Receive (Rd) Buffer		RW
1	Interrupt Enable		RW
2	FIFO Control		WO
2	Interrupt Status		RO
3	UART Control		RW
4	Handshake Control		RW
5	UART Status		RW
6	Handshake Status		RW
7	Scratchpad		RW
9-8	Baud Rate Generator Divisor		RW
A-F	-undefined-		

PCI Function 0 Registers - PCI-to-ISA Bridge

Configuration Space PCI-to-ISA Bridge Header Registers

Offset	PCI Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	8231	RO
5-4	Command	0087	RW
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	01	RO
В	Base Class Code	06	RO
C	-reserved- (cache line size)	00	_
D	-reserved- (latency timer)	00	
Е	Header Type	80	RO
F	Built In Self Test (BIST)	00	RO
10-27	-reserved- (base address registers)	00	_
28-2B	-reserved- (unassigned)	00	_
2F-2C	Subsystem ID Read	00	RO
30-33	-reserved- (expan. ROM base addr)	00	_
34-3B	-reserved- (unassigned)	00	_
3C	-reserved- (interrupt line)	00	
3D	-reserved- (interrupt pin)	00	
3E	-reserved- (min gnt)	00	
3F	-reserved- (max lat)	00	_

Configuration Space PCI-to-ISA Bridge-Specific Registers

Offset	ISA Bus Control	<u>Default</u>	Acc
40	ISA Bus Control	00	RW
41	ISA Test Mode	00	RW
42	ISA Clock Control	00	RW
43	ROM Decode Control	00	RW
44	Keyboard Controller Control	00	RW
45	Type F DMA Control	00	RW
46	Miscellaneous Control 1	00	RW
47	Miscellaneous Control 2	00	RW
48	Miscellaneous Control 3	01	RW
49	-reserved-	00	
4A	IDE Interrupt Routing	04	RW
4B	-reserved-	00	
4C	DMA / Master Mem Access Control 1	00	RW
4D	DMA / Master Mem Access Control 2	00	RW
4F-4E	DMA / Master Mem Access Control 3	0300	RW

Offset	Plug and Play Control	Default	Acc
50	PnP DMA Request Control	2D	RW
51	PnP Routing for LPT / FDC IRQ	00	RW
52	PnP Routing for COM2 / COM1 IRQ	00	RW
53	-reserved-	00	_
54	PCI IRQ Edge / Level Select	00	RW
55	PnP Routing for PCI INTA	00	RW
56	PnP Routing for PCI INTB-C	00	RW
57	PnP Routing for PCI INTD	00	RW
58	-reserved-	00	_
59	-reserved-	04	_
5A	KBC / RTC Control	x4†	RW
5B	Internal RTC Test Mode	00	RW
5C	DMA Control	00	RW
5D-5E	-reserved-	00	
5F	-reserved- (do not program)	04	RW

† Bit 7-4 power-up default depends on external strapping

Offset	Distributed DMA	<u>Default</u>	Acc
61-60	Channel 0 Base Address / Enable	0000	RW
63-62	Channel 1 Base Address / Enable	0000	RW
65-64	Channel 2 Base Address / Enable	0000	RW
67-66	Channel 3 Base Address / Enable	0000	RW
69-68	Serial IRQ Control	0000	RW
6B-6A	Channel 5 Base Address / Enable	0000	RW
6D-6C	Channel 6 Base Address / Enable	0000	RW
6F-6E	Channel 7 Base Address / Enable	0000	RW

Offset	Miscellaneous	<u>Default</u>	<u>Acc</u>
70	Subsystem ID Write	00	WO
71-73	-reserved-	00	_
74	GPIO Control 1	00	RW
75	GPIO Control 2	00	RW
76	GPIO Control 3	00	RW
77	GPIO Control 4	00	RW
79-78	PCS0# I/O Port Address	0000 0000	RW
7B-7A	PCS1# I/O Port Address	0000 0000	RW
7D-7C	PCI DMA Channel Enable	0000	RW
7F-7E	32-Bit DMA Control	0000	RW
80	Programmable Chip Select Mask	00	RW
81	ISA Positive Decoding Control 1	00	RW
82	ISA Positive Decoding Control 2	00	RW
83	ISA Positive Decoding Control 3	00	RW
84	ISA Positive Decoding Control 4	00	RW
85	Extended Function Enable	00	RW
86-87	PnP IRQ/DRQ Test (do not program)	00	RW
88	PLL Test	00	RW
89	PLL Control	00	RW
8A	PCS2/3 I/O Port Address Mask	00	RW
8B	PCS Control	00	RW
8D-8C	PCS2# I/O Port Address	0000	RW
8F-8E	PCS3# I/O Port Address	0000	RW
90-FF	-reserved-	00	

PCI Function 1 Registers – IDE Controller

Configuration Space IDE Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0571	RO
5-4	Command	0080	RO
7-6	Status	0280	RW
8	Revision ID	nn	RO
9	Programming Interface	85	RW
A	Sub Class Code	01	RO
В	Base Class Code	01	RO
С	-reserved- (cache line size)	00	_
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Base Address – Pri Data / Command	000001F0	RO
17-14	Base Address – Pri Control / Status	000003F4	RO
1B-18	Base Address – Sec Data / Command	00000170	RO
1F-1C	Base Address – Sec Control / Status	00000374	RO
23-20	Base Address – Bus Master Control	0000CC01	RW
24-2F	-reserved- (unassigned)	00	_
30-33	-reserved- (expan ROM base addr)	00	_
34	Capability Pointer	C0	RO
35-3B	-reserved- (unassigned)	00	
3C	Interrupt Line	0E	RW
3D	Interrupt Pin	00	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space IDE-Specific Registers

Offset	Configuration Space IDE Registers	Default	Acc
40	IDE Chip Enable	08	RW
41	IDE Configuration	02	RW
42	-reserved- (do not program)	09	$\mathbf{R}\mathbf{W}$
43	IDE FIFO Configuration	3A	RW
44	IDE Miscellaneous Control 1	68	RW
45	IDE Miscellaneous Control 2	03	RW
46	IDE Miscellaneous Control 3	C0	RW
4B-48	IDE Drive Timing Control	A8A8A8A8	RW
4C	IDE Address Setup Time	FF	RW
4D	-reserved- (do not program)	00	RW
4E	Sec Non-1F0 IDE Port Access Timing	FF	RW
4F	Pri Non-1F0 IDE Port Access Timing	FF	RW

Configuration Space IDE-Specific Registers (continued)

Offset	Configuration Space IDE Registers	<u>Default</u>	Acc
53-50	UltraDMA Extended Timing Control	03030303	RW
54	UltraDMA FIFO Control	06	RW
55-5F	-reserved-	00	
61-60	IDE Primary Sector Size	0200	RW
62-67	-reserved-	00	
69-68	IDE Secondary Sector Size	0200	RW
69-6F	-reserved-	00	
70	IDE Primary Status	00	RW
71	IDE Primary Interrupt Control	00	RW
72-77	-reserved-	00	
78	IDE Secondary Status	00	RW
79	IDE Secondary Interrupt Control	00	RW
7A-7F	-reserved-	00	
83-80	IDE Primary S/G Descriptor Address	0000 0000	RW
84-87	-reserved-	00	l
8B-88	IDE Secondary S/G Descriptor Addr	0000 0000	RW
8C-BF	-reserved-	00	
C3-C0	PCI PM Block 1	0201	RO
C7-C4	PCI PM Block 2	0000	RW
C8-FF	-reserved-	00	_

<u>I/O Registers – IDE Controller (SFF 8038 v1.0 Compliant</u>

Offset	IDE I/O Registers	<u>Default</u>	Acc
0	Primary Channel Command	00	RW
1	-reserved-	00	_
2	Primary Channel Status	00	WC
3	-reserved-	00	_
4-7	Primary Channel PRD Table Addr	00	RW
8	Secondary Channel Command	00	RW
9	-reserved-	00	_
Α	Secondary Channel Status	00	WC
В	-reserved-	00	_
C-F	Secondary Channel PRD Table Addr	00	RW

PCI Function 2 Registers – USB Controller Ports 0-1

Configuration Space USB Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	\mathbf{RW}
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
C	Cache Line Size	00	RO
D	Latency Timer	16	RW
Е	Header Type	00	RO
F	BIST	00	RO
10-1F	-reserved-	00	_
23-20	USB I/O Register Base Address	00000301	RW
24-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	04	RO
3E-3F	-reserved-	00	

Configuration Space USB-Specific Registers

Offset	USB Control	Default	Acc
40	USB Miscellaneous Control 1	00	$\mathbf{R}\mathbf{W}$
41	USB Miscellaneous Control 2	10	RW
42	USB FIFO Control	00	\mathbf{RW}
43	-reserved-	00	RO
44-45	-reserved- (test, do not program)		$\mathbf{R}\mathbf{W}$
46-47	-reserved- (test)		RO
48-5F	-reserved-	00	_
60	USB Serial Bus Release Number	10	RO
61-7F	-reserved-	00	
83-80	PM Capability	0002 0001	RO
84	PM Capability Status	00	\mathbf{RW}
85-BF	-reserved-	00	
C1-C0	USB Legacy Support	2000	\mathbf{RW}
C2-FF	-reserved-	00	

<u>I/O Registers – USB Controller</u>

Offset	USB I/O Registers	<u>Default</u>	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
С	Start Of Frame Modify	40	RW
11-10	Port 0 Status / Control	0080	WC
13-12	Port 1 Status / Control	0080	WC
14-1F	-reserved-	00	

PCI Function 3 Registers – USB Controller Ports 2-3

Configuration Space USB Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	RW
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
С	Cache Line Size	00	RO
D	Latency Timer	16	RW
Е	Header Type	00	RO
F	BIST	00	RO
10-1F	-reserved-	00	_
23-20	USB I/O Register Base Address	00000301	RW
24-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	04	RO
3E-3F	-reserved-	00	_

Configuration Space USB-Specific Registers

Offset	USB Control	<u>Default</u>	Acc
40	USB Miscellaneous Control 1	00	RW
41	USB Miscellaneous Control 2	10	RW
42	USB FIFO Control	00	RW
43	-reserved-	00	RO
44-45	-reserved- (test only, do not program)		RW
46-47	-reserved- (test)		RO
48-5F	-reserved-	00	_
60	USB Serial Bus Release Number	10	RO
61-7F	-reserved-	00	
83-80	PM Capability	0002 0001	RO
84	PM Capability Status	00	RW
85-BF	-reserved-	00	
C1-C0	USB Legacy Support	2000	RW
C2-FF	-reserved-	00	_

I/O Registers - USB Controller

Offset	USB I/O Registers	<u>Default</u>	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
C	Start Of Frame Modify	40	RW
11-10	Port 2 Status / Control	0080	WC
13-12	Port 3 Status / Control	0080	WC
14-1F	-reserved-	00	_

Register Overview

-34-

PCI Function 4 Registers - Power Management

<u>Configuration Space Power Management Header</u> <u>Registers</u>

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3068	RO
5-4	Command	0000	RO
7-6	Status	0280	WC
8	Revision ID	nn	RO
9	Programming Interface	00‡	RO
Α	Sub Class Code	00‡	RO
В	Base Class Code	00‡	RO
C	Cache Line Size	00	RO
D	Latency Timer	00	RO
Е	Header Type	00	RO
F	BIST	00	RO
10-3F	-reserved-	00	_

[†] The default values for these registers may be changed by writing to offsets 61-63h (see below).

Configuration Space Power Management Registers

Offset	Power Management	<u>Default</u>	Acc
40	General Configuration 0	00	RW
41	General Configuration 1	00	RW
42	ACPI Interrupt Select	00	RW
43	Internal Timer Read Test		RO
45-44	Primary Interrupt Channel	0000	RW
47-46	Secondary Interrupt Channel	0000	RW
4B-48	Power Mgmt I/O Base (256 Bytes)	0000 0001	RW
4C	Host Bus Power Management Control	00	RW
4D	Throttle / Clock Stop Control	00	RW
4E-4F	-reserved-	00	_
53-50	GP Timer Control	0000 0000	RW
54	Power Well Control	00	RW
55	USB Wakeup Control	00	RW
56-57	-reserved-	00	_
58	GP2 / GP3 Timer Control	00	RW
59	GP2 Timer	00	RW
5A	GP3 Timer	00	RW
5B-60	-reserved-	00	_
61	Write value for Offset 9 (Prog Intfc)	00	WO
62	Write value for Offset A (Sub Class)	00	WO
63	Write value for Offset B (Base Class)	00	WO
64-7F	-reserved-	00	_

Configuration Space Hardware Monitor Registers

Offset	System Management Bus	<u>Default</u>	Acc
71-70	Hardware Mon IO Base (128 Bytes)	0001	RW
72-73	-reserved-	00	_
74	Hardware Monitor Control	00	RW
75-8F	-reserved-	00	_

Configuration Space SMBus Registers

Offset	System Management Bus	<u>Default</u>	Acc
93-90	SMBus I/O Base (16 Bytes)	0000 0001	RW
94-D1	-reserved-	00	_
D2	SMBus Host Configuration	00	RW
D3	SMBus Host Slave Command	00	RW
D4	SMBus Slave Address Shadow Port 1	00	RW
D5	SMBus Slave Address Shadow Port 2	00	RW
D6	SMBus Revision ID	nn	RO
D7-FF	-reserved-	00	_

I/O Space Power Management- Registers

Offset	Basic Control / Status Registers	Default	Acc
1-0	Power Management Status	0000	WC
3-2	Power Management Enable	0000	RW
5-4	Power Management Control	0000	RW
6-7	-reserved-	00	
B-8	Power Management Timer	0000 0000	RW
C-F	-reserved-	00	

Offset	Processor Registers	Default	Acc
13-10	Processor and PCI Bus Control	0000 0000	RW
14	Processor LVL2	00	RO
15	Processor LVL3	00	RO
16-1F	-reserved-	00	_

Offset	General Purpose Registers	<u>Default</u>	Acc
21-20	General Purpose Status	0000	WC
23-22	General Purpose SCI Enable	0000	RW
25-24	General Purpose SMI Enable	0000	RW
26-27	-reserved-	00	_

Offset	Generic Registers	<u>Default</u>	Acc
29-28	Global Status	0000	WC
2B-2A	Global Enable	0000	RW
2D-2C	Global Control	0010	RW
2E	-reserved-	00	
2F	SMI Command	00	RW
33-30	Primary Activity Detect Status	0000 0000	WC
37-34	Primary Activity Detect Enable	0000 0000	RW
3B-38	GP Timer Reload Enable	0000 0000	RW
3C-3F	-reserved-	00	_

Offset	General Purpose I/O Registers	<u>Default</u>	Acc
40	Extended I/O Trap Status	00	WC
41	-reserved-	00	
42	Extended I/O Trap Enable	00	RW
43	-reserved-	00	_
44	External SMI / GPI Input Value	input	RO
45	SMI / IRQ / Resume Status	00	RO
46-47	-reserved-	00	
4B-48	GPI Port Input Value	input	RO
4F-4C	GPO Port Output Value	03FF FFFF	RW
50-FF	-reserved-	00	_

I/O Space System Management Bus Registers

Offset	System Management Bus	<u>Default</u>	Acc
0	SMBus Host Status	00	WC
1	SMBus Slave Status	00	RW
2	SMBus Host Control	00	RW
3	SMBus Host Command	00	RW
4	SMBus Host Address	00	RW
5	SMBus Host Data 0	00	RW
6	SMBus Host Data 1	00	RW
7	SMBus Block Data	00	RW
8	SMBus Slave Control	00	RW
9	SMBus Shadow Command	00	RO
A-B	SMBus Slave Event	0000	RW
C-D	SMBus Slave Data	0000	RO
E-F	-reserved-	00	

I/O Space Hardware Monitor Registers

Offset	Hardware Monitor	Default	Acc
00-3F	Value RAM		
00-12	-reserved-	00	_
13	Analog Data 15-8	00	RW
14	Analog Data 7-0	00	RW
15	Digital Data 7-0	00	RW
16	Channel Counter	00	RW
17	Data Valid & Channel Indicators	00	RW
18-1C	-reserved-	00	_
1D	TSENS3 Hot Hi Limit	00	RW
1E	TSENS3 Hot Hysteresis Lo Lim	00	RW
1F	TSENS3 (Int) Temp Reading	00	RW
20	TSENS1 (W13) Temp Reading	00	RW
21	TSENS2 (Y13) Temp Reading	00	RW
22	VSENS1 (U13) Voltage Reading	00	RW
23	VSENS2 (V13) Voltage Reading	00	RW
24	Internal Core VCC Voltage Reading	00	RW
25	VSENS3 (W14) Voltage Reading	00	RW
26	VSENS4 (Y14) Voltage Reading	00	RW
27	-reserved- (-12V Voltage Reading)	00	_
28	-reserved- (-5V Voltage Reading)	00	_
29	FAN1 (T12) Count Reading	00	RW
2A	FAN2 (U12) Count Reading	00	RW
2B	VSENS1 (CPU) Voltage High Limit	00	RW
2C	VSENS1 (CPU) Voltage Low Limit	00	RW
2D	VSENS2 (NB) Voltage High Limit	00	RW
2E	VSENS2 (NB) Voltage Low Limit	00	RW
2F	Internal Core VCC High Limit	00	RW
30	Internal Core VCC Low Limit	00	RW
31	VSENS3 (5V) Voltage High Limit	00	RW
32	VSENS3 (5V) Voltage Low Limit	00	RW
33	VSENS4 (12V) Voltage High Limit	00	RW
34	VSENS4 (12V) Voltage Low Limit	00	RW
35	-reserved- (-12V Sense High Limit)	00	_
36	-reserved- (-12V Sense Low Limit)	00	_
37	-reserved- (-5V Sense High Limit)	00	_
38	-reserved- (-5V Sense Low Limit)	00	—
39	TSENS1 Hot High Limit	00	RW
3A	TSENS1 Hot Hysteresis Lo Lim	00	RW
3B	FAN1 Fan Count Limit	00	RW
3C	FAN2 Fan Count Limit	00	RW
3D	TSENS2 Hot High Limit	00	RW
3E	TSENS2 Hot Hysteresis Lo Lim	00	RW
3F	Stepping ID Number	00	RW

Offset	Hardware Monitor (continued)	<u>Default</u>	Acc
40	Hardware Monitor Configuration	08	RW
41	Hardware Monitor Interrupt Status 1	00	RO
42	Hardware Monitor Interrupt Status 2	00	RO
43	Hardware Monitor Interrupt Mask 1	00	RW
44	Hardware Monitor Interrupt Mask 2	00	RW
45-46	-reserved-	00	
47	Hardware Monitor Fan Configuration	50	RW
48	-reserved-	00	_
49	HW Mon Temp Value Lo-Order Bits	00	RW
4A	-reserved-	00	
4B	Temperature Interrupt Configuration	15	RW
4C-FF	-reserved-	00	_

PCI Function 5 & 6 Registers – AC97 / MC97 Codecs

Function 5 Configuration Space AC97 Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3058	RO
5-4	Command	0000	RW
7-6	Status	0210	WC
8	Revision ID	40	RO
9	Programming Interface	00	RO
A	Sub Class Code	01	RO
В	Base Class Code	04	RO
С	Cache Line Size	00	RO
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	BIST	00	RO
13-10	Base Address 0 - SGD Control/Status	0000 0001	RW
17-14	Base Address 1 - FM NMI Status	0000 0001	RW
1B-18	Base Address 2 - MIDI Port	0000 0331	RW
1F-1C	Base Address 3 (reserved)	0000 0000	
23-20	Base Address 4 (reserved)	0000 0000	_
27-24	Base Address 5 (reserved)	0000 0000	_
28-29	-reserved-	00	_
2F-2C	Subsystem ID / SubVendor ID	0000 0000	$\mathbf{R}\mathbf{W}$
33-30	Expansion ROM (reserved)	0000 0000	_
34	Capture Pointer	00	RW
35-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space Audio Codec-Specific Registers

Offset	Audio Codec Link Control	<u>Default</u>	Acc
40	AC-Link Interface Status	00	RO
41	AC-Link Interface Control	00	RW
42	Function Enable	00	RW
43	Plug and Play Control	1C	RW
44	MC97 Interface Control	00	RO
45-47	-reserved-	00	_
48	FM NMI Control	00	RW
49	-reserved-	00	_
4B-4A	Game Port Base Address	0000	RW
4C-FF	-reserved-	00	_

Function 6 Configuration Space MC97 Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3068	RO
5-4	Command	0000	RW
7-6	Status	0200	WC
8	Revision ID	40	RO
9	Programming Interface	00	RO
A	Sub Class Code	80	RO
В	Base Class Code	07	RO
С	Cache Line Size	00	RO
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	BIST	00	RO
13-10	Base Address 0 - SGD Control/Status	0000 0001	RW
17-14	Base Address 1 - (reserved)	0000 0000	RW
1B-18	Base Address 2 - (reserved)	0000 0000	RW
1F-1C	Base Address 3 – Codec Reg Shadow	0000 0001	_
23-20	Base Address 4 (reserved)	0000 0000	
27-24	Base Address 5 (reserved)	0000 0000	_
28-29	-reserved-	00	_
2F-2C	Subsystem ID / SubVendor ID	0000 0000	RW
33-30	Expansion ROM (reserved)	0000 0000	_
34	Capture Pointer	00	RW
35-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space Modem Codec-Specific Registers

Offset	Modem Codec Link Control	<u>Default</u>	Acc
40	AC-Link Interface Status	00	RO
41	AC-Link Interface Control	00	RW
42	Function Enable	00	RO
43	Plug and Play Control	1C	RO
44	MC97 Interface Control	00	RW
45-47	-reserved-	00	_
48	FM NMI Control	00	RO
49	-reserved-	00	
4B-4A	Game Port Base Address	0000	RO
4C-FF	-reserved-	00	_

Func 5 I/O Base 0 Regs - Audio Scatter-Gather DMA

Offset	SGD I/O Registers (DSXn: n=1-3)	<u>Default</u>	Acc
n0	SGD DXSn Read Channel Status	00	WC
n1	SGD DXSn Read Channel Control	00	RW
n2	SGD DXSn Read Chan Left Volume	00	RW
n3	SGD DXSn Read Chan Right Volume	00	RW
n7-n4	SGD DXSn Read Ch Table Ptr Base	0000 0000	WR
	SGD DXSn Read Ch Current Address		RD
nB-n8	SGD DXSn Read Channel Format	0000 0000	RO
nF-nC	SGD DXSn Read Chan Index / Count	0000 0000	RO
40	SGD 3D Channel Status 00		WC
41	SGD 3D Channel Control	00	RW
42	SGD 3D Channel Format	00	RW
43	SGD 3D Channel Scratch	00	RW
47-44	SGD 3D Channel Table Ptr Base	0000 0000	WR
	SGD 3D Channel Current Address		RD
4B-48	SGD 3D Channel Slot Select	0000 0000	RW
4F-4C	SGD 3D Channel Index / Count	0000 0000	RO
50	SGD FM Channel Status	00	WC
51	SGD FM Channel Control	00	RW
52	SGD FM Channel Type	00	RW
53	-reserved-	00	
57-54	SGD FM Channel Table Pointer Base	0000 0000	WR
	SGD FM Channel Current Address		RD
58-5B	-reserved-	00	_
5F-5C	SGD FM Channel Current Count	0000 0000	RO
60	SGD Write Channel 0 Status	00	WC
61	SGD Write Channel 0 Control	00	RW
62	SGD Write Channel 0 Format	00	RW
63	-reserved-	00	_
67-64	SGD Write Channel 0 Table Ptr Base	0000 0000	WR
	SGD Write Channel 0 Current Addr		RD
	-reserved-	00	_
6F-6C	SGD Write Channel 0 Current Count	0000 0000	RO
70	SGD Write Channel 1 Status	00	WC
71	SGD Write Channel 1 Control	00	RW
72	SGD Write Channel 1 Format	00	RW
73	-reserved-	00	_
77-74	SGD Write Channel 1 Table Ptr Base 0000 0000		WR
	SGD Write Channel 1 Current Addr		RD
78-7B	-reserved- 00		_
7F-7C	SGD Write Channel 1 Current Count	0000 0000	RO

Offset	AC97 Controller I/O Registers	<u>Default</u>	Acc
80-DF	-reserved-	00	_
E3-E0	AC97 Controller Command / Status	0000 0000	RW
E4-EF	-reserved-	00	
F3-F0	SGD Status Shadow	0000 0000	RO
F4-FF	-reserved-	00	

The above registers are accessable through $\underline{\text{function 5}}$ only.

Function 5 I/O Base 1 Registers – FM NMI Status

Offset	FM NMI Status Registers	<u>Default</u>	Acc
0	FM NMI Status	00	RO
1	FM NMI Data	00	RO
2	FM NMI Index	00	RO
3	Reserved	00	

The above registers are accessable through **function 5** only.

Function 5 I/O Base 2 Registers – MIDI / Game Port

Offset	FM NMI Status Registers	<u>Default</u>	Acc
1-0	MIDI Port Base	0330	RW
3-2	Game Port Base	0200	RW

The above registers are accessable through **function 5** only.

Func 6 I/O Base 0 Regs - Modem Scatter Gather DMA

Offset	MC97 SGD I/O Registers	<u>Default</u>	Acc
0	SGD Modem Read Channel Status	00	WC
1	SGD Modem Read Channel Control	00	RW
2	SGD Modem Read Channel Type	00	RW
3	-reserved-	00	_
7-4	SGD Modem Read Ch Table Ptr Base	0000 0000	WR
	SGD Modem Read Ch Current Addr		RD
8-B	-reserved-	00	_
F-C	SGD Modem Read Ch Current Count	0000 0000	RO
10	SGD Modem Write Channel Status	00	WC
11	SGD Modem Write Channel Control	00	RW
12	SGD Modem Write Channel Type	00	RW
13	-reserved-	00	_
17-14	SGD Modem Wr Ch Table Ptr Base	0000 0000	WR
	SGD Modem Wr Ch Current Address		RD
18-1B	-reserved-	00	
1F-1C	SGD Modem Write Ch Current Count	0000 0000	RO

Offset	Modem Codec I/O Registers	<u>Default</u>	Acc
23-20	Modem Codec Command / Status	0000 0000	RW
24-2F	-reserved-	00	_
33-30	Codec GPI Interrupt Status / GPIO	0000 0000	WC
37-34	Codec GPI Interrupt Enable	0000 0000	RW
38-FF	Reserved	00	

The above registers are accessable through **function 6** only.

I/O Registers - SoundBlaster Pro

Offset	SB Pro Registers (220 or 240h typ)	Default	Acc
0	FM Left Channel Index / Status		RW
1	FM Left Channel Data		WO
2	FM Right Channel Index / Status		RW
3	FM Right Channel Data		WO
4	Mixer Index		WO
5	Mixer Data		RW
6	Sound Processor Reset		wo
7	-reserved-	00	
8	FM Index / Status (Both Channels)		RW
9	FM Data (Both Channels)		wo
A	Sound Processor Data		RO
В	-reserved-	00	
С	Sound Processor Command / Data		WR
	Sound Processor Buffer Status		RD
D	-reserved-	00	
Е	Snd Processor Data Available Status		RO
F	-reserved-	00	

Port	SB Pro Regs (same as offsets 8 & 9)	<u>Default</u>	<u>Acc</u>
388h	FM Index / Status		RW
389h	FM Data		wo

The above group of registers emulates the "FM", "Mixer", and "Sound Processor" functions of the SoundBlaster Pro.

I/O Registers - Game Port

Offset	Game Port (200-20F typical)	<u>Default</u>	Acc
0	-reserved-	00	
1	Game Port Status		RO
1	Start One-Shot		wo
2-F	-reserved-	00	

Register Descriptions

Legacy I/O Ports

This group of registers includes the DMA Controllers, Interrupt Controllers, and Timer/Counters as well as a number of miscellaneous ports originally implemented using discrete logic on original PC/AT motherboards. All of the registers listed are integrated on-chip. These registers are implemented in a precise manner for backwards compatibility with previous generations of PC hardware. These registers are listed for information purposes only. Detailed descriptions of the actions and programming of these registers are included in numerous industry publications (duplication of that information here is beyond the scope of this document). All of these registers reside in I/O space.

Port 61	- Misc Functions & Speaker ControlRW
7	Reserved always reads 0
6	IOCHCK# ActiveRO
	This bit is set when the ISA bus IOCHCK# signal is
	asserted. Once set, this bit may be cleared by setting
	bit-3 of this register. Bit-3 should be cleared to
	enable recording of the next IOCHCK#. IOCHCK#
	generates NMI to the CPU if NMI is enabled.
5	Timer/Counter 2 OutputRO
	This bit reflects the output of Timer/Counter 2
	without any synchronization.
4	Refresh DetectedRO
	This bit toggles on every rising edge of the ISA bus
	REFRESH# signal.
3	IOCHCK# DisableRW
	0 Enable IOCHCK# assertions default
	1 Force IOCHCK# inactive and clear any
	"IOCHCK# Active" condition in bit-6
2	Reserved RW, default=0
1	Speaker EnableRW
	0 Disable default
	1 Enable Timer/Ctr 2 output to drive SPKR pin
0	Timer/Counter 2 EnableRW
	0 Disabledefault
	1 Enable Timer/Counter 2
D	N. G G I
	h - System ControlRW
7-6	1101
	0 Offdefault
	1-3 On
5-4	Reservedalways reads 0
3	Power-On Password Bytes Inaccessable default=0
2	Reservedalways reads 0
1	A20 Address Line Enable
	0 A20 disabled / forced 0 (real mode) default
0	1 A20 address line enabled
0	High Speed Reset
	0 Normal
	1 Briefly pulse system reset to switch from
	protected mode to real mode

Keyboard Controller Registers

The keyboard controller handles the keyboard and mouse interfaces. Two ports are used: port 60 and port 64. Reads from port 64 return a status byte. Writes to port 64h are command codes (see command code list following the register descriptions). Input and output data is transferred via port 60.

A "Control" register is also available. It is accessable by writing commands 20h / 60h to the command port (port 64h); The control byte is written by first sending 60h to the command port, then sending the control byte value. The control register may be read by sending a command of 20h to port 64h, waiting for "Output Buffer Full" status =1, then reading the control byte value from port 60h.

Traditional (non-integrated) keyboard controllers have an "Input Port" and an "Output Port" with specific pins dedicated to certain functions and other pins available for general purpose I/O. Specific commands are provided to set these pins high and low. All outputs are "open-collector" so to allow input on one of these pins, the output value for that pin would be set high (non-driving) and the desired input value read on the input port. These ports are defined as follows:

<u>Bit</u>	<u>Input Port</u>	Lo Code	Hi Code
0	P10 - Keyboard Data In	B0	B8
1	P11 - Mouse Data In	B1	B9
2	P12 - Turbo Pin (PS/2 mode only)	B2	BA
3	P13 - user-defined	B3	BB
4	P14 - user-defined	B6	BE
5	P15 - user-defined	B7	BF
6	P16 - user-defined	_	_
7	P17 - undefined	_	_
Bit	Output Port	Lo Code	Hi Code
0	P20 - SYSRST (1=execute reset)		
1	P21 - GATEA20 (1=A20 enabled)	_	_
2	P22 - Mouse Data Out	B4	BC
3	P23 - Mouse Clock Out	B5	BD
4	P24 - Keyboard OBF Interrupt (IR0	Q1) –	_
5	P25 - Mouse OBF Interrupt (IRQ 1	2) –	_
6	P26 - Keyboard Clock Out	_	_
7	P27 - Keyboard Data Out	-	_
Bit	Test Port	Lo Code	Hi Code
0	T0 - Keyboard Clock In	_	_
1	T1 - Mouse Clock In	_	_
Note:	Command code C0h transfers inp	ut port da	ita to the

Note: Command code C0h transfers input port data to the output buffer. Command code D0h copies output port values to the output buffer. Command code E0h transfers test input port data to the output buffer.

Port 60 - Keyboard Controller Input Buffer WO
Only write to port 60h if port 64h bit-1 = 0 (1=full).

Port 60 - Keyboard Controller Output BufferROOnly read from port 60h if port 64h bit-0 = 1 (0=empty).

IUIU	11cy bour a / 1/10abc blattas
7	Parity Error
	0 No parity error (odd parity received) default
	1 Even parity occurred on last byte received
	from keyboard / mouse
6	General Receive / Transmit Timeout
	0 No errordefault
	1 Error
5	Mouse Output Buffer Full
	0 Mouse output buffer emptydefault
	1 Mouse output buffer holds mouse data
4	Keylock Status
	0 Locked
	1 Free
3	Command / Data
_	0 Last write was data writedefault
	1 Last write was command write
2	System Flag
_	0 Power-On Default default
	1 Self Test Successful
1	Input Buffer Full
•	0 Input Buffer Emptydefault
	1 Input Buffer Full
0	Keyboard Output Buffer Full
v	0 Keyboard Output Buffer Emptydefault
	1 Keyboard Output Buffer Full
	1 Reyboard Output Burier I un
KBC (Control Register(R/W via Commands 20h/60h)
7	Reserved always reads 0
6	PC Compatibility
	0 Disable scan conversion
	1 Convert scan codes to PC format; convert 2-
	byte break sequences to 1-byte PC-compatible
	break codesdefault
5	Mouse Disable
	0 Enable Mouse Interface default
	1 Disable Mouse Interface
4	Keyboard Disable
	0 Enable Keyboard Interface default
	1 Disable Keyboard Interface
3	Keyboard Lock Disable
	0 Enable Keyboard Inhibit Function default
	1 Disable Keyboard Inhibit Function
2	System Flagdefault=0
	This bit may be read back as status register bit-2
1	Mouse Interrupt Enable
_	0 Disable mouse interrupts default
	1 Generate interrupt on IRQ12 when mouse data
	comes in output bufer
0	Keyboard Interrupt Enable
U	0 Disable Keyboard Interruptsdefault
	1 Generate interrupt on IRQ1 when output buffer
	has been written
	has been written.

Port 64 - Keyboard / Mouse StatusRO

Port 64 - Keyboard / Mouse Command...... WO

This port is used to send commands to the keyboard / mouse controller. The command codes recognized by the VT8231 are listed n the table below.

Note: The VT8231 Keyboard Controller is compatible with the VIA VT82C42 Industry-Standard Keyboard Controller except that due to its integrated nature, many of the input and output port pins are not available externally for use as general purpose I/O pins (even though P13-P16 are set on power-up as strapping options). In other words, many of the commands below are provided and "work", but otherwise perform no useful function (e.g., commands that set P12-P17 high or low). Also note that setting P10-11, P22-23, P26-27, and T0-1 high or low directly serves no useful purpose, since these bits are used to implement the keyboard and mouse ports and are directly controlled by keyboard controller logic.

Table 4. Keyboard Controller Command Codes

Code	Keyboard Command Code Description	Code	Keyboard Command Code Description
20h	Read Control Byte (next byte is Control Byte)	C0h	Read input port (read P10-17 input data to
21-3Fh	Read SRAM Data (next byte is Data Byte)		the output buffer)
60h	Write Control Byte (next byte is Control Byte)	C1h	Poll input port low (read input data on P11-13
61-7Fh	Write SRAM Data (next byte is Data Byte)		repeatably & put in bits 5-7 of status
0.1	W. 1. 1111 (11. 0.2) . P10 P12	C2h	Poll input port high (same except P15-17)
9xh	Write low nibble (bits 0-3) to P10-P13		
A1h	Output Keyboard Controller Version #	C8h	Unblock P22-23 (use before D1 to change
A4h	Test if Password is installed		active mode)
	(always returns F1h to indicate not installed)	C9h	Reblock P22-23 (protection mechanism for D1)
A7h	Disable Mouse Interface	CAL	Dead made (autom) VDC made info to ment (0)
A8h	Enable Mouse Interface	CAh	Read mode (output KBC mode info to port 60
A9h	Mouse Interface Test (puts test results in port 60h)		output buffer (bit-0=0 if ISA, 1 if PS/2)
	(value: 0=OK, 1=clk stuck low, 2=clk stuck high,	D0h	Read Output Port (copy P10-17 output port values
	3=data stuck lo, 4=data stuck hi, FF=general error)		to port 60)
AAh	KBC self test (returns 55h if OK, FCh if not)	D1h	Write Output Port (data byte following is written to
ABh	Keyboard Interface Test (see A9h Mouse Test)	2 111	keyboard output port as if it came from keyboard)
ADh	Disable Keyboard Interface	D2h	Write Keyboard Output Buffer & clear status bit-5
AEh	Enable Keyboard Interface	22	(write following byte to keyboard)
AFh	Return Version #	D3h	Write Mouse Output Buffer & set status bit-5 (write
B0h	Set P10 low	2311	following byte to mouse; put value in mouse input
B1h	Set P11 low		buffer so it appears to have come from the mouse)
B2h	Set P12 low	D4h	Write Mouse (write following byte to mouse)
B3h	Set F12 low Set P13 low	2 111	
B4h	Set P13 low Set P22 low	E0h	Read test inputs (T0-1 read to bits 0-1 of resp byte)
		Exh	Set P23-P21 per command bits 3-1
B5h	Set P23 low	Fxh	Pulse P23-P20 low for 6usec per command bits 3-0
B6h	Set P14 low	A 11	1 1
B7h	Set P15 low	All othe	r codes not listed are undefined.
B8h	Set P10 high		
B9h	Set P11 high		
BAh	Set P12 high		
BBh	Set P13 high		
BCh	Set P22 high		

Set P23 high

Set P14 high

Set P15 high

BDh BEh

BFh

DMA Controller I/O Registers

Ports 00-0F - Master DMA Controller

Channels 0-3 of the Master DMA Controller control System DMA Channels 0-3. There are 16 Master DMA Controller registers:

I/O Address Bits 15-0	Register Name	
0000 0000 000x 0000	Ch 0 Base / Current Address	\mathbf{RW}
0000 0000 000x 0001	Ch 0 Base / Current Count	\mathbf{RW}
0000 0000 000x 0010	Ch 1 Base / Current Address	\mathbf{RW}
0000 0000 000x 0011	Ch 1 Base / Current Count	\mathbf{RW}
0000 0000 000x 0100	Ch 2 Base / Current Address	\mathbf{RW}
0000 0000 000x 0101	Ch 2 Base / Current Count	\mathbf{RW}
0000 0000 000x 0110	Ch 3 Base / Current Address	\mathbf{RW}
0000 0000 000x 0111	Ch 3 Base / Current Count	\mathbf{RW}
0000 0000 000x 1000	Status / Command	\mathbf{RW}
0000 0000 000x 1001	Write Request	WO
0000 0000 000x 1010	Write Single Mask	WO
0000 0000 000x 1011	Write Mode	WO
0000 0000 000x 1100	Clear Byte Pointer F/F	WO
0000 0000 000x 1101	Master Clear	WO
0000 0000 000x 1110	Clear Mask	WO
0000 0000 000x 1111	R/W All Mask Bits	\mathbf{RW}

Ports C0-DF - Slave DMA Controller

Channels 0-3 of the Slave DMA Controller control System DMA Channels 4-7. There are 16 Slave DMA Controller registers:

I/O Address Bits 15-0	Register Name	
0000 0000 1100 000x	Ch 4 Base / Current Address	\mathbf{RW}
0000 0000 1100 001x	Ch 4 Base / Current Count	\mathbf{RW}
0000 0000 1100 010x	Ch 5 Base / Current Address	\mathbf{RW}
0000 0000 1100 011x	Ch 5 Base / Current Count	\mathbf{RW}
0000 0000 1100 100x	Ch 6 Base / Current Address	\mathbf{RW}
0000 0000 1100 101x	Ch 6 Base / Current Count	\mathbf{RW}
0000 0000 1100 110x	Ch 7 Base / Current Address	\mathbf{RW}
0000 0000 1100 111x	Ch 7 Base / Current Count	\mathbf{RW}
0000 0000 1101 000x	Status / Command	\mathbf{RW}
0000 0000 1101 001x	Write Request	WO
0000 0000 1101 010x	Write Single Mask	WO
0000 0000 1101 011x	Write Mode	WO
0000 0000 1101 100x	Clear Byte Pointer F/F	WO
0000 0000 1101 101x	Master Clear	WO
0000 0000 1101 110x	Clear Mask	WO
0000 0000 1101 111x	Read/Write All Mask Bits	WO

Note that not all bits of the address are decoded.

The Master and Slave DMA Controllers are compatible with the Intel 8237 DMA Controller chip. Detailed description of 8237 DMA controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports 80-8F - DMA Page Registers

There are eight DMA Page Registers, one for each DMA channel. These registers provide bits 16-23 of the 24-bit address for each DMA channel (bits 0-15 are stored in registers in the Master and Slave DMA Controllers). They are located at the following I/O Port addresses:

I/O Address Bits 15-0	Register Name
0000 0000 1000 0111	Channel 0 DMA Page (M-0)RW
0000 0000 1000 0011	Channel 1 DMA Page (M-1)RW
0000 0000 1000 0001	Channel 2 DMA Page (M-2)RW
0000 0000 1000 0010	Channel 3 DMA Page (M-3)RW
0000 0000 1000 1111	Channel 4 DMA Page (S-0)RW
0000 0000 1000 1011	Channel 5 DMA Page (S-1)RW
0000 0000 1000 1001	Channel 6 DMA Page (S-2)RW
0000 0000 1000 1010	Channel 7 DMA Page (S-3)RW

DMA Controller Shadow Registers

The DMA Controller shadow registers are enabled by setting function 0 Rx77 bit 0. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard DMA controller registers (writes are unchanged).

Port 0 - Channel 0 Base AddressRO
Port 1 - Channel 0 Byte CountRO
Port 2 - Channel 1 Base AddressRO
Port 3 - Channel 1 Byte CountRO
Port 4 – Channel 2 Base AddressRO
Port 5 - Channel 2 Byte CountRO
Port 6 - Channel 3 Base Address
Port 7 - Channel 3 Byte CountRO
Port 8 –1 st Read Channel 0-3 Command RegisterRO
Port 8 – 2 nd Read Channel 0-3 Request RegisterRO
Port 8 –3 rd Read Channel 0 Mode RegisterRO
Port 8 –4 th Read Channel 1 Mode RegisterRO
Port 8 –5 th Read Channel 2 Mode RegisterRO
Port 8 –6 th Read Channel 3 Mode RegisterRO
Port 8 – 0 Read Channel 5 Wode RegisterRO
Port F - Channel 0-3 Read All MaskRO
Port C4 – Channel 5 Base AddressRO
Port C6 - Channel 5 Byte Count RO
Port C8 - Channel 6 Base Address RO
Port CA - Channel 6 Byte CountRO
Port CC -Channel 7 Base AddressRO
Port CE -Channel 7 Byte CountRO
Port D0 –1 st Read Channel 4-7 Command Register RO
Port D0 – 2 nd Read Channel 4-7 Request Register
Port D0 – 3 rd Read Channel 4 Mode RegisterRO
Port D0 – 4 th Read Channel 5 Mode RegisterRO
Port D0 -4 Read Channel 5 Mode Register
Port D0 – 5 th Read Channel 6 Mode RegisterRO
Port D0 -6 th Read Channel 7 Mode RegisterRO
Port DE -Channel 4-7 Read All MaskRO

Interrupt Controller Registers

Ports 20-21 - Master Interrupt Controller

The Master Interrupt Controller controls system interrupt channels 0-7. Two registers control the Master Interrupt Controller. They are:

I/O Address Bits 15-0 Register Name

0000 0000 001x xxx0	Master Interrupt Control	RW
0000 0000 001x xxx1	Master Interrupt Mask	RW

Note that not all bits of the address are decoded.

The Master Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports A0-A1 - Slave Interrupt Controller

The Slave Interrupt Controller controls system interrupt channels 8-15. The slave system interrupt controller also occupies two register locations:

I/O Address Bits 15-0 Register Name

0000 0000 101x xxx0	Slave Interrupt Control	RW
0000 0000 101x xxx1	Slave Interrupt Mask	RW

Note that not all address bits are decoded.

The Slave Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Interrupt Controller Shadow Registers

The following shadow registers are enabled by setting function 0 Rx47[4]. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard interrupt controller registers (writes are unchanged).

Port 20 - Master Interrupt Control Shadow	RO
Port A0 - Slave Interrupt Control Shadow	RO

- 7 Reservedalways reads 0
- 6 OCW3 bit 2 (POLL)
- 5 OCW3 bit 0 (RIS)
- 4 **OCW3 bit 5 (SMM)**
- 3 OCW2 bit 7 (R)
- 2 ICW4 bit 4 (SFNM)
- 1 ICW4 bit 1 (AEOI)
- 0 ICW1 bit 3 (LTIM)

Port 21 - Master Interrupt Mask Shadov	<u>vRO</u>
Port A1 - Slave Interrupt Mask Shadow	RO

- **7-5 Reserved**always reads 0
- 4-0 T7-T3 of Interrupt Vector Address

Timer / Counter Registers

Ports 40-43 - Timer / Counter Registers

There are 4 Timer / Counter registers:

I/O Address Bits 15-0	Register Name	
0000 0000 010x xx00	Timer / Counter 0 Count	\mathbf{RW}
0000 0000 010x xx01	Timer / Counter 1 Count	\mathbf{RW}
0000 0000 010x xx10	Timer / Counter 2 Count	\mathbf{RW}
0000 0000 010x xx11	Timer / Counter Cmd Mode	WO

Note that not all bits of the address are decoded.

The Timer / Counters are compatible with the Intel 8254 Timer / Counter chip. Detailed descriptions of 8254 Timer / Counter operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Timer / Counter Shadow Registers

The following shadow registers are enabled for readback by setting function 0 Rx47[4]. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard timer / counter registers (writes are unchanged).

Port 40 – Counter 0 Base Count Value (LSB 1st MSB 2nd)RO Port 41 – Counter 1 Base Count Value (LSB 1st MSB 2nd)RO Port 42 – Counter 2 Base Count Value (LSB 1st MSB 2nd)RO

Binary Range BCD Range

CMOS / RTC Registers

Port 70	- CMOS AddressRW	00	Second		.=	00-3Bh	00-59h
7	NMI DisableRW	01		ls Alarm	1	00-3Bh	00-59h
,	0 Enable NMI Generation. NMI is asserted on	02	Minute		=	00-3Bh	00-59h
	encountering IOCHCK# on the ISA bus or	03		es Alarm	,	00-3Bh	00-59h
	SERR# on the PCI bus.	04	Hours			: 01-1Ch	01-12h
	1 Disable NMI Generationdefault	٠.	110415			: 81-8Ch	81-92h
6-0	CMOS Address (lower 128 bytes)RW					: 00-17h	00-23h
0-0	CMOS Address (lower 126 bytes)	05	Hours	Alarm		: 01-1Ch	01-12h
Port 71	- CMOS DataRW	••	220425			: 81-8Ch	81-92h
7-0	CMOS Data (128 bytes)					: 00-17h	00-23h
Motor		06	Day of	the Wee		: 01-07h	01-07h
Note:	Ports 70-71 may be accessed if Rx5A bit-2 is set to one to select the internal RTC. If Rx5A bit-2 is set to	07		the Moi		01-1Fh	01-31h
		08	Month			01-0Ch	01-12h
	zero, accesses to ports 70-71 will be directed to an	09	Year			00-63h	00-99h
	external RTC.	0,5	1001			00 0311	00))11
Port 72	- CMOS AddressRW	0A	Registe	er A			
7-0	CMOS Address (256 bytes)RW		7	UIP	Update !	In Progress	
, 0	250 o y (250 o y (250)		6-4	DV2-0		010=ena osc &	keep time)
<u>Port 73</u>	8 - CMOS DataRW		3-0	RS3-0	Rate Sel	ect for Period	ic Interrupt
7-0	CMOS Data (256 bytes)						
Note:	Ports 72-73 may be accessed if Rx5A bit-2 is set to	0B	Registe	er B			
Note.	one to select the internal RTC. If Rx5A bit-2 is set to		7	SET		Jpdate Transfe	
	zero, accesses to ports 72-73 will be directed to an		6	PIE		Interrupt Ena	
	external RTC.		5	AIE		nterrupt Enabl	
	CATCHIAI KTC.		4	UIE		Ended Interrup	
Port 74	- CMOS AddressRW		3 2	SQWE DM		tion (read/writ ode (0=BCD, 1	
7-0	CMOS Address (256 bytes)RW		1	24/12		yte Format (0:	
	·		0	DSE		t Savings Enab	
<u>Port 75</u>	5 - CMOS DataRW		v	202	,		
7-0	CMOS Data (256 bytes)	0C	Registe	er C			
Note:	Ports 74-75 may be accessed only if Function 0 Rx5B		7	IRQF	Interrup	t Request Flag	
	bit-1 is set to one to enable the internal RTC SRAM		6	PF	Periodic	Interrupt Flag	7
	and if Rx48 bit-3 (Port 74/75 Access Enable) is set to		5	\mathbf{AF}		nterrupt Flag	
	one to enable port 74/75 access.		4	UF		Ended Flag	
Notes	-		3-0	0	Unused	(always read ())
Note:	Ports 70-71 are compatible with PC industry-						
	standards and may be used to access the lower 128	$0\mathbf{D}$	Registe				
	bytes of the 256-byte on-chip CMOS RAM. Ports		7	VRT		if VBAT volt	
	72-73 may be used to access the full extended 256-		6-0	0	Unused	(always read ())
	byte space. Ports 74-75 may be used to access the	0T = C	G 0:	T	1.0	5	(111 5)
	full on-chip extended 256-byte space in cases where	0E-7C	Softwa	re-Defin	ied Stora	ge Registers	(III Bytes)
	the on-chip RTC is disabled.	Office	D-4 1	- 4 Tr	: '	D:	DCD P
Note:	The system Real Time Clock (RTC) is part of the			ed Funct	ions .	Binary Range	_
	"CMOS" block. The RTC control registers are	7D	Date A			01-1Fh	01-31h
	located at specific offsets in the CMOS data area (0-	7E		Alarm		01-0Ch	01-12h
	0Dh and 7D-7Fh). Detailed descriptions of CMOS /	7 F	Centur	y Field		13-14h	19-20h
	RTC operation and programming can be obtained	aa —	~ -		- ~		(100 D
	from the VIA VT82887 Data Book or numerous	80-FF	Softwa	re-Defin	ed Stora	ge Registers	(128 Bytes)

Offset Description

other industry publications.

summarized in the following table:

definition of the RTC register locations and bits are

Table 5. CMOS Register Summary

For reference, the

Super-I/O Configuration Index / Data Registers

Super-I/O configuration registers are accessed by performing I/O operations to / from an index / data pair of registers in system I/O space at port addresses 3F0h and 3F1h. The configuration registers accessed using this mechanism are used to configure the Super-I/O registers (parallel port, serial ports, IR port, and floppy controller).

Super I/O configuration is accomplished in three steps:

- 1) Enter configuration mode (set Function 0 Rx85[1] = 1)
- 2) Configure the chip
 - a) Write index to port 3F0
 - b) Read / write data from / to port 3F1
 - c) Repeat a and b for all desired registers
- 3) Exit configuration mode (set Function 0 Rx85[1] = 0)

Port 3F0h - Super-I/O Configuration Index.....RW

7-0 Index value

Function 0 PCI configuration space register Rx85[1] must be set to 1 to enable access to the Super-I/O configuration registers.

Port 3F1h - Super-I/O Configuration Data.....RW

7-0 Data value

This register shares a port with the Floppy Status Port (which is read only). This port is accessible only when Rx85[1] is set to 1 (the floppy status port is accessed if Rx85[1] = 0).

Super-I/O Configuration Registers

These registers are accessed via the port 3F0 / 3F1 index / data register pair using the indicated index values below

Index l	E0 – Super-I/O Device IDRO
7-0	Super-I/O IDdefault = 3Ch
Index l	E1 – Super-I/O Device RevisionRO
7-0	Super-I/O Revision Code default = 0
Index l	E2 – Super-I/O Function Select RW
7-5	Reservedalways reads 0
4	Floppy Controller Enable
•	0 Disabledefault
	1 Enable
3	Serial Port 2 Enable
·	0 Disable default
	1 Enable
2	Serial Port 1 Enable
	0 Disabledefault
	1 Enable
1-0	Parallel Port Mode / Enable
	00 Unidirectional modedefault
	01 ECP
	10 EPP
	11 Parallel Port Disabled
Index 1	E3 – Floppy Controller I/O Base Address RW
7-2	I/O Address 9-4 default = 0
1-0	Must be 0 default = 0
	E6 – Parallel Port I/O Base AddressRW
7-0	1, O Truct Copy 2
	is not enabled, the parallel port can be set to 192
	ns on 4-byte boundaries from 100h to 3FCh. If EPP is
	1, the parallel port can be set to 96 locations on 8-byte
bounda	ries from 100h to 3F8h.
Index l	E7 – Serial Port 1 I/O Base Address RW
7-1	
0	Must be 0 $\frac{1}{2}$ default = 0
v	ucrault – 0
Index 1	E8 – Serial Port 2 I/O Base AddressRW
7-1	1, 6 Hudi ess > 2
0	Must be 0 default = 0

Index 1	EE – Serial Port ConfigurationRW	Index	<u> FU – Parallel Port Control Rw</u>
7	Serial Port 2 High Speed Enable	7	PS2 Type BiDirectionl Parallel Port
	0 Disabledefault		0 Disabledefaul
	1 Enable		1 Enable
6	Serial Port 1 High Speed Enable	6	EPP Direction by Register not by IOW
	0 Disabledefault		0 Disabledefaul
	1 Enable		1 Enable
5-3	Serial Port 2 Mode	5	EPP+ECP
	000 Standard		0 Disabledefaul
	001 IrDA (HIPSIR)		1 Enable
	010 Amplitude shift keyed IR @ 500KHz	4	EPP Version
	011 -reserved-		0 Version 1.9defaul
	1xx -reserved-		1 Version 1.7
2	Serial Port 2 Half Duplex	3-0	Reservedalways reads (
	0 Disabledefault		
	1 Enable		
1	Serial Port 2 TX Output Inversion	T., J., 1	E1 Contain Day Contain
	0 Disabledefault		F1 – Serial Port ControlRW
	1 Enable	7-6	Reservedalways reads (
0	Serial Port 2 RX Input Inversion	5	IR Loop Back
	0 Disabledefault		0 Disabledefaul
	1 Enable		1 Enable
		4	Serial Port 2 Power-Down State
			0 Normal defaul
[] o]	TE Domes Domes Control DW		1 Tristate output in power down mode
	EF – Power Down ControlRW	3	Serial Port 1 Power-Down State
7-6	Reservedalways reads 0		0 Normal defaul
5	Clock Power Down		1 Tristate output in power down mode
	0 Normal operationdefault	2	IR Dedicated Pin (IRTX/IRRX) Select
	1 Power Down		0 IRTX / IRRX Output from Serial Port 2de
4	Parallel Port Power Down		1 Function $0 \text{ Rx76[5]} = 0$:
	0 Normal operationdefault		IRRX output from dedicated pin D12
_	1 Power Down		IRTX output from dedicated pin E12
3	Serial Port 2 Power Down	1-0	Reservedalways reads (
	0 Normal operationdefault		
_	1 Power Down		
2	Serial Port 1 Power Down	Index 1	F2 – Test Mode (Do Not Program)RW
	0 Normal operationdefault	писх	Test Mode (Bo Not 110g1dill)
_	1 Power Down	Index 1	F4 – Test Mode (Do Not Program)RW
1	FDC Power Down		
	0 Normal operationdefault		
_	1 Power Down		
0	All Power Down		
	0 Normal operationdefault		
	1 Power Down All		

<u>Index F6 – Floppy Controller Configuration.....RW</u>

- **7-6 Reserved** always reads 0
- 5 Floppy Drive On Parallel Port
 - 0 Parallel Port (SPP) Modedefault
 - 1 FDC Mode

This bit is used in notebook applications to allow attachment of an external floppy drive using the parallel port I/O connector:

SPP Mode	Pin Type	FDC Mode	Pin Type
STROBE#	I/O	-	n/a
PD0	I/O	INDEX#	I
PD1	I/O	TRK00#	I
PD2	I/O	WRTPRT#	I
PD3	I/O	RDATA#	I
PD4	I/O	DSKCHG#	I
PD5	I/O	-	n/a
PD6	I/O	-	n/a
PD7	I/O	-	n/a
ACK#	I	DS1#	O
BUSY	I	MTR1#	O
PE	I	WDATA#	O
SLCT	I	WGATE#	O
AUTOFD#	I/O	DRVEN0	O
ERROR#	I	HDSEL#	O
PINIT#	I/O	DIR#	O
SLCTIN#	I/O	STEP#	O

- 4 3-Mode FDD
 - 0 Disabledefault
 - 1 Enable
- 3 Reserved always reads 0
- **2** Four Floppy Drive Option
 - 0 Internal 2-Drive Decoderdefault
 - 1 External 4-Drive Decoder
- 1 FDC DMA Non-Burst
 - 0 Burstdefault
 - 1 Non-Burst
- 0 FDC Swap
 - 0 Disabledefault
 - 1 Enable

Index F8 - Floppy Drive ControlRW

- **7-6 Floppy Drive 3** (see table below)
- 5-4 Floppy Drive 2 (see table below)
- **3-2 Floppy Drive 1** (see table below)
- **-0 Floppy Drive 0** (see table below)

	DRVEN1	DRVEN0
00	DRATE0	DENSEL
01	DRATE0	DRATE1
10	DRATE0	DENSEL#
11	DRATE1	DRATE0

Super-I/O I/O Ports

Floppy Disk Controller Registers

These registers are located at I/O ports which are offsets from "FDCBase" (index C3h of the Super-I/O configuration registers). FDCBase is typically set to allow these ports to be accessed at the standard floppy disk controller address range of 3F0-3F7h.

Port FI	OCBas	e+2 - FDC CommandRW		
7	Moto	or 3 (unused in VT8231: no MTR3# pin)		
6	Motor 2 (unused in VT8231: no MTR2# pin)			
5	Motor 1			
	0	Motor Off		
	1	Motor On		
4	Moto	or 0		
	0	Motor Off		
	1	Motor On		
3	DMA	and IRQ Channels		
	0	Disabled		
	1	Enabled		
2	FDC	Reset		
	0	Execute FDC Reset		
	1	FDC Enabled		
1-0	Drive	Select		
	00	Select Drive 0		
	01	Select Drive 1		
	1x	-reserved-		
Port FI	OCBas	e+4 – FDC Main StatusRO		
7		Request		
	0	Data register not ready		
	1	Data register ready		
6	Data	Input / Output		
		CPU => FDC		
	1	$FDC \Rightarrow CPU$		
5	Non-	DMA Mode		
	0	FDC in DMA mode		
	1	FDC not in DMA mode		
4	FDC	Busy		
	0	FDC inactive		
	1	FDC active		
3-2	Reser	rved always reads 0		
1	Drive	e 1 Active		
	0	Drive inactive		
	1	Drive performing a positioning change		
0	Drive	e 0 Active		
	0	Drive inactive		
	1	Drive performing a positioning change		

Port FI	DCBas	e+4 – FDC Data Rate SelectWO
Port FI	DCBas	e+5 – FDC DataRW
Port FI		e+7 – FDC Disk Change StatusRO
7	Disk	Change
	0	Floppy not changed
	1	Floppy changed since last instruction
6-3	Unde	efinedalways read 1
2-1	Data	
		500 Kbit/sec (1.2MB 5" or 1.44 MB 3" drive)
		300 Kbit/sec (360KB 5" drive)
	10	250 Kbit/sec (720KB 3" drive)
	11	1 Mbit/sec
0	High	Density Rate
	0	500 Kbit/sec or 1 Mbit/sec selected
	1	250 Kbit/set or 300 Kbit/sec selected
Port FI	DCBas	e+7 – FDC Configuration ControlWO
7-2	Unde	efined always read 1
1-0	Data	
		500 Kbit/sec (1.2MB 5" or 1.44 MB 3" drive)
		300 Kbit/sec (360KB 5" drive)
	10	250 Kbit/sec (720KB 3" drive)
	11	1 Mbit/sec

Parallel Port Registers

These registers are located at I/O ports which are offsets from "LPTBase" (index C6h of the Super-I/O configuration registers). LPTBase is typically set to allow these ports to be accessed at the standard parallel port address range of 378-37Fh.

Port LI	PTBas	e+0 – Parallel Port DataRW		
7-0	Parallel Port Data			
Port LI	PTBas	e+1 – Parallel Port StatusRO		
7	BUS	Y#		
	0	Printer busy, offline, or error		
	1	Printer not busy		
6	ACK	:#		
	0	Data transfer to printer complete		
	1	Data transfer to printer in progress		
5	PE			
	0	Paper available		
	1	No paper available		
4	SLC	Γ		
	0	Printer offline		
	1	Printer online		
3	ERR	OR#		
	0	Printer error		
	1	Printer OK		
2-0	Rese	rvedalways read 1 bits		

<u>Port LPTBase+3 – Parallel Port EPP Address RW</u>
Port LPTBase+4 – Parallel Port EPP Data Port 0 RW
Port LPTBase+5 – Parallel Port EPP Data Port 1 RW
Port LPTBase+6 – Parallel Port EPP Data Port 2 RW
Port LPTBase+7 – Parallel Port EPP Data Port 3 RW
Port LPTBase+400h – Parallel Port ECP Data / Cfg A RW
Port LPTBase+401h – Parallel Port ECP Config B RW
Port LPTBase+401h – Parallel Port ECP Extd Ctrl RW

7-5	Unde	finedalways read back
4	Hard	ware Interrupt
	0	Disabledefaul
	1	Enable
3	Print	er Select
	0	Deselect printerdefault
	1	Select printer
2	Print	er Initialize
	0	Initialize Printerdefault
	1	Allow printer to operate normally
1	Auto	matic Line Feed
	0	Host handles line feedsdefault
	1	Printer does automatic line feeds
0	Strob	oe e
	0	No data transferdefault
	1	Transfer data to printer

Serial Port 1 Registers		Port C	<u>OM1Base+4 – Handshake Control RW</u>
These r	registers are located at I/O ports which are offsets from	7-5	Undefined always read (
"COM1Base" (index C7h of the Super-I/O configuration			Loopback Check
	rs). COM1Base is typically set to allow these ports to		0 Normal operation
	essed at the standard serial port 1 address range of 3F8-		1 Loopback enabled
3FFh.		3	General Purpose Output 2 (unused in VT8231)
01111		2	General Purpose Output 1 (unused in VT8231)
Port C	OM1Base+0 - Transmit / Receive BufferRW	1	Request To Send
7-0	Serial Data		0 Disabled
, ,	Serial Data		1 Enabled
Port C	OM1Base+1 – Interrupt EnableRW	0	Data Terminal Ready
7-4	Undefinedalways read 0	v	0 Disabled
3	Interrupt on Hnadshake Input State Change		1 Enabled
2	Intr on Parity, Overrun, Framing Error or Break		1 Endoled
1	Interrupt on Transmit Buffer Empty	Port C	OM1Base+5 – UART StatusRW
0	Interrupt on Receive Data Ready	7	Undefined always read (
U	interrupt on Receive Data Ready	6	Transmitter Empty
Port C	OM1Base+2 – Interrupt StatusRO	U	0 1 byte in transmit hold or transmit shift register
7-3	Undefinedalways read 0		
2-1	Interrupt ID (0=highest priority)	_	1 0 bytes transmit hold and transmit shift regs
2-1		5	Transmit Buffer Empty
	00 Priority 3 (Handshake Input Changed State)		0 1 byte in transmit hold register
	01 Priority 2 (Transmit Buffer Empty)		1 Transmit hold register empty
	10 Priority 1 (Data Received)	4	Break Detected
	11 Priority 0 (Serialization Error or Break)		0 No break detected
0	Interrupt Pending		1 Break detected
	0 Interrupt Pending	3	Framing Error Detected
	1 No Interrupt Pending		0 No error
D4 C	OM1D2 FIEO C41 WO		1 Error
Port C	OM1Base+2 – FIFO Control WO	2	Parity Error Detected
Dont C	OM1Degg 2 UADT Control DW		0 No error
	OM1Base+3 – UART ControlRW		1 Error
7	Divisor Latch Access	1	Overrun Error Detected
	0 Select transmit / receive registers		0 No error
	1 Select divisor latch		1 Error
6	Break	0	Received Data Ready
	0 Break condition off		0 No received data available
	1 Break condition on		1 Received data in receiver buffer register
5-3	Parity		1 1.0001/00 unim in 10001/01 ouiiioi 108ibioi
	000 None	Port C	<u>OM1Base+6 – Handshake Status RV</u>
	001 Odd	7	DCD Status (1=Active, 0=Inactive)
	011 Even	6	RI Status (1=Active, 0=Inactive)
	101 Mark	5	DSR Status (1=Active, 0=Inactive)
	111 Space	4	CTS Status (1=Active, 0=Inactive)
2	Stop Bits	3	DCD Changed (1=Changed Since Last Read)
	0 1	2	RI Changed (1=Changed Since Last Read)
	1 2	1	DSR Changed (1=Changed Since Last Read)
1-0	Data Bits		
1-0	00 5	0	CTS Changed (1=Changed Since Last Read)
	01 6	Port C	OM1Base+7 – ScratchpadRW
	10 7	7	Scratchpad Data
	11 8	Port C	OM1Base+9-8 – Baud Rate Generator Divisor RW
		15-0	Divisor Value for Basud Rate Generator
			Baud Rate = 115,200 / Divisor

(e.g., setting this register to 1 selects 115.2 Kbaud)

Serial Port 2 Registers		Port C	OM1Base+4 – Handshake ControlRW
These registers are located at I/O ports which are offsets from			Undefined always read 0
"COM2Base" (index C8h of the Super-I/O configuration		4	Loopback Check
	s). COM2Base is typically set to allow these ports to		0 Normal operation
	ssed at the standard serial port 2 address range of 2F8-		 Loopback enabled
2FFh.		3	General Purpose Output 2 (unused in VT8231)
		2	General Purpose Output 1 (unused in VT8231)
Port C	OM1Base+0 – Transmit / Receive BufferRW	1	Request To Send
7-0	Serial Data		0 Disabled
			1 Enabled
Port C	OM1Base+1 – Interrupt EnableRW	0	Data Terminal Ready
7-4	Undefinedalways read 0		0 Disabled
3	Interrupt on Hnadshake Input State Change		1 Enabled
2	Intr on Parity, Overrun, Framing Error or Break	~	
1	Interrupt on Transmit Buffer Empty	Port C	<u>OM1Base+5 – UART StatusRW</u>
0	Interrupt on Receive Data Ready	7	Undefined always read 0
Dord C	OM1Daga 2 Interment States DO	6	Transmitter Empty
	OM1Base+2 – Interrupt StatusRO		0 1 byte in transmit hold or transmit shift register
7-3	Undefinedalways read 0		1 0 bytes transmit hold and transmit shift regs
2-1	Interrupt ID (0=highest priority)	5	Transmit Buffer Empty
	00 Priority 3 (Handshake Input Changed State)		0 1 byte in transmit hold register
	01 Priority 2 (Transmit Buffer Empty)		1 Transmit hold register empty
	10 Priority 1 (Data Received)	4	Break Detected
	11 Priority 0 (Serialization Error or Break)		0 No break detected
0	Interrupt Pending		1 Break detected
	0 Interrupt Pending	3	Framing Error Detected
	1 No Interrupt Pending		0 No error
Dort C	OM1Page 2 FIEO Control WO		1 Error
Port C	OM1Base+2 – FIFO Control WO	2	Parity Error Detected
Port C	OM1Base+3 – UART ControlRW		0 No error
			1 Error
7	Divisor Latch Access	1	Overrun Error Detected
	Select transmit / receive registers Select divisor latch		0 No error
			1 Error
6	Break	0	Received Data Ready
	0 Break condition off		0 No received data available
<i>5</i> 2	1 Break condition on		1 Received data in receiver buffer register
5-3	Parity	D 4 C	
	000 None	Port C	OM1Base+6 – Handshake StatusRW
	001 Odd 011 Even	7	DCD Status (1=Active, 0=Inactive)
		6	RI Status (1=Active, 0=Inactive)
	101 Mark	5	DSR Status (1=Active, 0=Inactive)
2	111 Space	4	CTS Status (1=Active, 0=Inactive)
2	Stop Bits	3	DCD Changed (1=Changed Since Last Read)
	0 1	2	RI Changed (1=Changed Since Last Read)
1.0	1 2	1	DSR Changed (1=Changed Since Last Read)
1-0	Data Bits	0	CTS Changed (1=Changed Since Last Read)
	00 5	Port C	OM1Base+7 – ScratchpadRW
	01 6		
	10 7 11 8	7	Scratchpad Data
	11 8	Port C	OM1Base+9-8 – Baud Rate Generator Divisor RW
		15-0	Divisor Value for Basud Rate Generator
			Baud Rate = 115,200 / Divisor
			(e.g., setting this register to 1 selects 115.2 Kbaud)

SoundBlaster Pro Port Registers

These registers are located at offsets from "SBPBase" (defined in Rx43 of Audio Function 5 PCI configuration space). SBPBase is typically set to allow these ports to be accessed at the standard SoundBlaster Pro port address of 220h or 240h.

FM Registers

Port SI	BPBase+0 – FM Left Channel Index / StatusRW
7-0	FM Right Channel Index / Status
Port SI	BPBase+1 – FM Left Channel DataWO
7-0	Right Channel FM Data
	BPBase+2 – FM Right Channel Index / StatusRW FM Right Channel Index / Status
	BPBase+3 – FM Right Channel Data WO Right Channel FM Data

Port 388h or SBPBase+8 – FM Index / StatusRW

7-0 FM Index / Status (Both Channels)

Writing to this port programs both the left and right channels (the write programms port offsets 0 and 2 as well)

Port 389h or SBPBase+9 – FM Data WO

7-0 FM Data (Both Channels)

Writing to this port programs both the left and right channels (the write programms port offsets 1 and 3 as well)

Mixer Registers

7-0	Mixer Index
Port SI	BPBase+5 – Mixer DataRW
7-0	Mixer Data
Sound	Processor Registers

Port SBPBase+4 - Mixer Index...... WO

Sound Processor Registers

Port SE	<u> BPBase+6 – Sound Processor Reset W</u>	0
0	1 = Sound Processor Reset	

Port SBPBase+A - Sound Processor Read DataRO

7-0 Sound Processor Read Data

Port SBPBase+C - Sound Processor Command / Data WO

7-0 Sound Processor Command / Write Data

Port SBPBase+C - Sound Processor Buffer Status.....RO

7 1 = Sound Processor Command / Data Port Busy

Port SBPBase+E - Sound Processor Data Avail Status..RO

7 1 = Sound Processor Data Available

Register Summary - FM

T1	D:4 7	D:4 (D:4 5	D:4 4	D:4 2	D:4 2	D:4 1	D:4 A
<u>Index</u>	<u>Bit-7</u>	<u>BIL-0</u>	Bit-5	<u>BIL-4</u>	<u>BIL-3</u>	<u>BIL-2</u>	<u>BIL-1</u>	BIL-U
01				Te	est			
02			Fast	Count	er (80 u	sec)		
03			Slow	Counte	er (320	usec)		
04	IRQ	MFC	MSC				SSSC	SSFC
08	CSM	SEL						
20-35	AM	VIB	EGT	KSR		Mı	ulti	
40-55	K	SL		Τ	otal Le	vel (TI	رـ)	
60-75	A	ttack R	ate (AF	ate (AR) Decay Rate (DR)				
80-95	Sı	ıstain L	evel (S	L)	Re	elease I	Rate (R	R)
A0-A8				F-Nu	mber			
B0-B8			Key		Block		F-Nu	mber
BD	Int Al	M VIB	Ryth	Bass	Snare	Tom	Cym	HiHat
C0-C8					F	eedbac	k	FM
E0-F5							W	/S

MFC=Mask Fast Counter
MSC=Mask Slow Counter
SSFC=Start / Stop Fast Counter
SSSC=Start / Stop Slow Counter

Register Summary - Mixer

Index	<u>Bit-7</u>	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
00				Data	Reset			
02	SP	Volum	e L		SP	Volum	e R	
0A						Mic	Vol	
0C			Finp		TFIL	Sel	lect	
0E			Fout				ST	
22	Gene	eral Vo	lume		Gene	eral Vo	lume	
26	FM	Volum	ne L		FM	Volum	ne R	
28	CD	Volum	ne L		CD	Volum	ne R	
2E	Line	e Volun	ne L		Line	Volun	ne R	

Finp = Input Filter

Fout = Output Filter

TFIL = Input Filter Type

ST = Stereo / Mono Mode

Select = Input Choices (0=Microphone, 1=CD, 3=Line)

Command Summary - Sound Processor (see next page)

Command Summary - Sound Processor

<u>#</u>	Type	Command
10	Play	8 bits directly
14	Play	8 bits via DMA
91	Play	High-speed 8 bits via DMA
16	Play	2-bit compressed via DMA
17	Play	2-bit compressed via DMA with reference
74	Play	4-bit compressed via DMA
75	Play	4-bit compressed via DMA with reference
76	Play	2.6-bit compressed via DMA
77	Play	2.6-bit compressed via DMA with reference
	·	-
20	Record	Direct
24	Record	Via DMA
99	Record	High-speed 8 bits via DMA
D1	Speaker	Turn on speaker connection
D3	Speaker	Turn off speaker connection
D8	Speaker	Get speaker setting
40	Misc	Set sample rate
48	Misc	Set block length
80	Misc	Set silence block
D0	Misc	Stop DMA
	Misc	Continue DMA
E1	Misc	Get version
30	MIDI	Direct MIDI input
31	MIDI	MIDI input via interrupt
	MIDI	Direct MIDI input with time stamp
33	MIDI	MIDI input via interrupt with time stamp
34	MIDI	Direct MIDI UART mode
	MIDI	MIDI UART mode via interrupt
	MIDI	Direct MIDI UART mode with time stamp
37	MIDI	MIDI UART mode via interrupt with time stamp

Game Port Registers

These registers are fixed at the standard game port address of 201h.

I/O Port 201h - Game Port StatusRO

- 7 Joystick B Button 2 Status
- 6 Joystick B Button 1 Status
- 5 Joystick A Button 2 Status
- 4 Joystick A Button 1 Status
- 3 Joystick B One-Shot Status for Y-Potentiometer
- 2 Joystick B One-Shot Status for X-Potentiometer
- 1 Joystick A One-Shot Status for Y-Potentiometer
- 0 Joystick A One-Shot Status for X-Potentiometer

7-0 (Value Written is Ignored)

38 MIDI Send MIDI code

PCI Configuration Space I/O

PCI configuration space accesses for functions 0-6 use PCI configuration mechanism 1 (see PCI specification revision 2.2 for more details). The ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Port CFB-CF8 - Configuration AddressRW				
31	Configuration Space Enable			
	0 Disableddefault			
	1 Convert configuration data port writes to			
	configuration cycles on the PCI bus			
30-24	Reserved always reads 0			
23-16	PCI Bus Number			
	Used to choose a specific PCI bus in the system			
15-11	Device Number			
	Used to choose a specific device in the system			
10-8	Function Number			
	Used to choose a specific function if the selected			
	device supports multiple functions			
7-2	Register Number			
	Used to select a specific DWORD in the device's			
	configuration space			
1-0	Fixed always reads 0			

Port CFF-CFC - Configuration DataRW

There are 7 "functions" implemented in the VT8231:

Function #	Function
0	PCI to ISA Bridge
1	IDE Controller
2	USB Controller Ports 0-1
3	USB Controller Ports 2-3
4	Power Management, SMBus & Hardware Monitor
5	AC97 Audio Codec Controller
6	MC97 Modem Codec Controller

The following sections describe the registers and register bits of these functions.

Function 0 Registers - PCI to ISA Bridge

All registers are located in the function 0 PCI configuration space of the VT8231. These registers are accessed through PCI configuration mechanism #1 via I/O address CF8/CFC.

PCI Configuration Space Header

Offset 1	1-0 - Vendor ID = 1106hR	<u>o</u>
Offset 3	3-2 - Device ID = 8231hR	0
Offset 5	5-4 - CommandR	W
15-8	Reserved always reads	0
7	Address / Data Stepping	
	0 Disable	
	1 Enabledefau	ılt
6-4	Reserved always reads	0
3	Special Cycle Enable Normally RW†, default =	0
2	Bus Master always reads	1
1	Memory Space Normally RO†, reads as	1
0	I/O Space Normally RO†, reads as	1
† If the	test bit at offset 46 bit-4 is set, access to the above	ve
indicate	d bits is reversed: bit-3 above becomes read on	ly
	g back 1) and bits 0-1 above become read / write (wi	
a defaul	t of 1).	

Offset A	7-6 - Status	RWC
15	Detected Parity Error	write one to clear
14	Signalled System Error	always reads 0
13	Signalled Master Abort	write one to clear
12	Received Target Abort	write one to clear
11	Signalled Target Abort	write one to clear
10-9	DEVSEL# Timing	fixed at 01 (medium)
8	Data Parity Detected	always reads 0
7	Fast Back-to-Back	
6-0	Reserved	always reads 0
Offset 8	3 - Revision ID = nn	RO
7.0		
7-0	Revision ID	
. •	Revision ID - Program Interface = 00h	RO
Offset 9	110 (1510 11 12	_
Offset 9) - Program Interface = 00h	RO

Header Type Code 80h (Multifunction Device)

Offset F - BIST = 00h.....RO

Offset 2F-2C - Subsystem ID.....RO

ISA Bus Control

Offset	40 - ISA Bus ControlRW
7	ISA Command Delay
	0 Normal default
	1 Extra
6	Extended ISA Bus Ready
	0 Disable default
	1 Enable
5	ISA Slave Wait States
	0 4 Wait Statesdefault
	1 5 Wait States
4	Chipset I/O Wait States
	0 2 Wait Statesdefault
	1 4 Wait States
3	I/O Recovery Time
	0 Disabledefault
	1 Enable
2	Extend-ALE
	0 Disabledefault
	1 Enable
1	ROM Wait States
	0 1 Wait Statedefault
	1 0 Wait States
0	ROM Write
	0 Disable default
	1 Enable
Offset	41 - ISA Test ModeRW
7	Bus Refresh Arbitration (do not program) default=0
6	XRDY Test Mode (do not program)default=0
5	Port 92 Fast Reset
3	0 Disabledefault
	1 Enable
4	A20G Emulation (do not program)default=0
3	Double DMA Clock
3	0 Disable (DMA Clock = ½ ISA Clock) default
	1 Enable (DMA Clock = ISA Clock)
2	SHOLD Lock During INTA (do not program) def=0
1	Refresh Request Test Mode (do not program).def=0
0	ISA Refresh
v	0 Disable default
	1 Enable
	This hit should be set to 1 for ISA compatibility

Use offset 70-73 to change the value returned.

Offset 42 - ISA Clock ControlRW	Offset 43 - ROM Decode ControlRW
7 Latch IO16# 0 Enable (recommended setting)default	Setting these bits enables the indicated address range to be included in the ROMCS# decode:
1 Disable 6 MCS16# Output 0 Disabledefault 1 Enable	7 FFFE0000h-FFFEFFFFh default=0 6 FFF80000h-FFFDFFFFh default=0 5 FFF00000h-FFF7FFFFh default=0 4 000E0000h-000EFFFFh default=0
5 Master Request Test Mode (do not program) 0 Disabledefault 1 Enable	3 000D8000h-000DFFFFh default=0 2 000D0000h-000D7FFFh default=0
4 Reserved (Do Not Program) default = 0 3 ISA Clock (BCLK) Select Enable	0 000C0000h-000C7FFFhdefault=0
0 BCLK = PCICLK/4default 1 BCLK selected per bits 2-0 2-0 ISA Bus Clock Select (if bit-3 = 1) 000 BCLK = PCICLK/3default	7 KBC Timeout Test (do not program) default = 0 6-4 Reserved (do not program) default = 0
000 BCLK = PCICLK/3default 001 BCLK = PCICLK/2 010 BCLK = PCICLK/4 011 BCLK = PCICLK/6	 3 Mouse Lock Enable 0 Disabledefault 1 Enable 2-1 Reserved (do not program)default = 0
100 BCLK = PCICLK/5 101 BCLK = PCICLK/10 110 BCLK = PCICLK/12	0
111 BCLK = OSC Note: Procedure for ISA Clock switching: 1) Set bit 3 to 0; 2) Change value of bit 2-0; 3) Set bit 3 to 1	7 ISA Master / DMA to PCI Line Buffer 0 Disabledefault 1 Enable
, = , -, -, -, -, -, -, -, -, -, -, -, -, -	6 DMA true E Timing on Channel 7 default 0

nclude	d in the ROMCS# decode:
7	FFFE0000h-FFFEFFFFhdefault=0
6	FFF80000h-FFFDFFFFhdefault=0
5	FFF00000h-FFF7FFFFhdefault=0
4	000E0000h-000EFFFFhdefault=0
3	000D8000h-000DFFFFh default=0
2	000D0000h-000D7FFFh default=0
1	000C8000h-000CFFFFhdefault=0
0	000C0000h-000C7FFFh default=0
Offset 4	14 - Keyboard Controller ControlRW
7	KBC Timeout Test (do not program)default = 0
6-4	Reserved (do not program)default = 0
3	Mouse Lock Enable
	0 Disabledefault
	1 Enable
2-1	Reserved (do not program)default = 0
0	Reserved (no function)default = 0
Offset 4	45 - Type F DMA ControlRW
7	ISA Master / DMA to PCI Line Buffer
	0 Disabledefault
	1 Enable
6	DMA type F Timing on Channel 7 default=0
5	DMA type F Timing on Channel 6 default=0
4	DMA type F Timing on Channel 5 default=0
3	DMA type F Timing on Channel 3 default=0
2	DMA type F Timing on Channel 2default=0
1	DMA type F Timing on Channel 1default=0
0	DMA type F Timing on Channel 0 default=0

Offset	46 - Miscellaneous Control 1RW	Offset	47 - Miscellaneous Control 2RW
7	PCI Master Write Wait States	7	CPU Reset Source
	0 0 Wait Statesdefault		0 Use CPURST as CPU Resetdefault
	1 1 Wait State		1 Use INIT as CPU Reset
6	Gate INTR	6	PCI Delay Transaction Enable
	0 Disabledefault		0 Disabledefault
	1 Enable		1 Enable
5	Flush Line Buffer for Int or DMA IOR Cycle		The "Posted Memory Write" function is
	0 Disabledefault		automatically enabled when this bit is enabled,
	1 Enable		independent of the state of Rx46 bit-0.
4	Config Command Reg Rx04 Access (Test Only)	5	EISA 4D0/4D1 Port Enable
	0 Normal: Bits 0-1=RO, Bit 3=RWdefault		0 Disable (ignore ports 4D0-1)default
	1 Test Mode: Bits 0-1=RW, Bit-3=RO		1 Enable (ports 4D0-1 per EISA specification)
3	Reserved (do not program) default = 0	4	Interrupt Controller Shadow Register Enable
2	Reserved (no function)default = 0		0 Disabledefault
1	PCI Burst Read Interruptability		1 Enable (for test purposes, enable readback of
	0 Allow burst reads to be interrupted by ISA		interrupt controller internal functions on I/O
	master or DMAdefault		reads from ports 20-21, A0-A1, A8-A9, and
	1 Don't allow PCI burst reads to be interrupted		C8-C9) (Contact VIA Test Engineering
0	Posted Memory Write Enable		department)
	0 Disabledefault	3	Reserved (always program to 0) default = 0
	1 Enable		Note: Always mask this bit. This bit may read back
	The Posted Memory Write function is automatically		as either 0 or 1 but must always be
	enabled when Delay Transaction (see Rx47 bit-6) is		programmed with 0.
	enabled, independent of the state of this bit.	2	Write Delay Transaction Time-Out Timer
			0 Disabledefault
			1 Enable
		1	Read Delay Transaction Time-Out Timer
			0 Disabledefault
			1 Enable

Software PCI Reset write 1 to generate PCI reset

Offset 4	48 - Miscellaneous Control 3RW	<u> 4C - 18</u>	A DMA/Master Memory Access Control 1 RW
7-4	Reserved always reads 0	7-0	PCI Memory Hole Bottom Address
3	Extra RTC Port 74/75 Enable		These bits correspond to HA[23:16]default=0
	0 Disabledefault		
	1 Enable	<u>4D - IS</u>	A DMA/Master Memory Access Control 2 RW
2	Integrated USB Controller Disable	7-0	PCI Memory Hole Top Address (HA[23:16])
	0 Enabledefault		These bits correspond to HA[23:16]default=0
	1 Disable	Note:	Access to the memory defined in the PCI memory
1	Integrated IDE Controller Disable		hole will not be forwarded to PCI. This function is
	0 Enabledefault		disabled if the top address is less than or equal to the
	1 Disable		bottom address.
0	512K PCI Memory Decode		
	0 Use Rx4E[15-12] to select top of PCI memory	4F-4E	- ISA DMA/Master Memory Access Control 3 RW
	1 Use contents of Rx4E[15-12] plus 512K as top	15-12	Top of PCI Memory for ISA DMA/Master accesses
	of PCI memorydefault		0000 1Mdefault
O.CC 4	AA IDELA AD A' DIV		0001 2M
	4A - IDE Interrupt RoutingRW		
7	Wait for PGNT Before Grant to ISA Master /		1111 16M
	DMA	Note:	All ISA DMA / Masters that access addresses higher
	0 Disabledefault		than the top of PCI memory will not be directed to the
_	1 Enable		PCI bus.
6	Bus Select for Access to I/O Devices Below 100h	11	Forward E0000-EFFFF Accesses to PCIdef=0
	0 Access ports 00-FFh via XD busdefault	10	Forward A0000-BFFFF Accesses to PCIdef=0
	1 Access ports 00-FFh via SD bus (applies to	9	Forward 80000-9FFFF Accesses to PCIdef=1
	external devices only; internal devices such as	8	Forward 00000-7FFFF Accesses to PCIdef=1
	the mouse controller are not effected)	7	Forward DC000-DFFFF Accesses to PCIdef=0
5-4	Reserved (do not program) default = 0	6	Forward D8000-DBFFF Accesses to PCIdef=0
3-2	IDE Second Channel IRQ Routing	5	Forward D4000-D7FFF Accesses to PCIdef=0
	00 IRQ14	4	Forward D0000-D3FFF Accesses to PCIdef=0
	01 IRQ15default	3	Forward CC000-CFFFF Accesses to PCIdef=0
	10 IRQ10	2	Forward C8000-CBFFF Accesses to PCIdef=0
1.0	11 IRQ11	1	Forward C4000-C7FFF Accesses to PCIdef=0
1-0	IDE Primary Channel IRQ Routing	0	Forward C0000-C3FFF Accesses to PCIdef=0
	00 IRQ14default		
	01 IRQ15		
	10 IRQ10		
	11 IRQ11		

Plug and Play Control

<u>Offset</u>	50 – PNP DMA Request ControlRW
7-4	Reserved default = 0
3-2	PnP Routing for Parallel Port DRQ def = DRQ3
1-0	PnP Routing for Floppy DRQ def = DRQ2
DRQ M	Mapping: 00=DRQ0, 01=DRQ1, 10=DRQ2, 11=DRQ3
Offset	51 - PNP IRQ Routing 1RW
7-4	PnP Routing for Parallel Port IRQ (see PnP IRQ
	routing table)
3-0	PnP Routing for Floppy IRQ (see PnP IRQ routing
	table)
Offset	52 - PNP IRQ Routing 2RW
7-4	PnP Routing for Serial Port 2 IRQ (see PnP IRQ
, -	routing table)
3-0	PnP Routing for Serial Port 1 IRQ (see PnP IRQ
2 0	routing table)
Offcot	54 - PCI IRQ Edge / Level SelectRW
7-4	Reservedalways reads 0
/-4	The following bits all default to "level" triggered (0)
3	PIRQA# Invert (edge) / Non-invert (level)(1/0)
2	PIRQB# Invert (edge) / Non-invert (level)(1/0)
1	PIRQC# Invert (edge) / Non-invert (level)(1/0)
0	PIRQD# Invert (edge) / Non-invert (level)(1/0)
Note:	PIRQA-D# normally connect to PCI interrupt pins
	INTA-D# (see pin definitions for more information).
0.00	55. DVD 1D 0 D 1/1 1
	55 - PNP IRQ Routing 4RW
7-4	PIRQA# Routing (see PnP IRQ routing table)
3-0	Reserved always reads 0
Offset	56 - PNP IRQ Routing 5RW
7-4	PIRQC# Routing (see PnP IRQ routing table)
3-0	PIRQB# Routing (see PnP IRQ routing table)
Offset	57 - PNP IRQ Routing 6RW
7-4	PIRQD# Routing (see PnP IRQ routing table)
3-0	Reserved
J-U	incoci veuaiways leaus U

PnP IRQ Routing Table

0001 IRQ1
0010 Reserved
0011 IRQ3
0100 IRQ4
0101 IRQ5
0110 IRQ6
0111 IRQ7
1000 Reserved
1001 IRQ9
1010 IRQ10
1011 IRQ11
1100 IRQ12
1101 Reserved
1110 IRQ14
1111 IRQ15

0000 Disabled......default

7-4	Reserved always reads 0
3	PCS0# Pin Function (Pin T5)
	0 Pin is defined as PCS0#default
	1 Pin is defined as Internal Trap I/O
2-0	Reserved always reads 0
Offset :	5A - KBC / RTC ControlRW
	4 of this register are latched from pins SD7-4 at power-
	are read/write accessible so may be changed after
power-i	up to change the default strap setting:
7	Keyboard RP16 latched from SD7
6	Keyboard RP15 latched from SD6
5	Keyboard RP14 latched from SD5
4	Keyboard RP13 latched from SD4
3	Audio Function Enable
	RO, strapped from SPKR pin V5
	0 Disable (SDD pins function as SDD)
	1 Enable (SDD pins function as Audio / Game)
2	Internal RTC Enable
	0 Disable
	1 Enabledefault
1	Internal PS2 Mouse Enable
	0 Disabledefault
_	1 Enable
0	Internal KBC Enable
	0 Disabledefault
	1 Enable
Note:	External strap option values may be set by connecting
	the indicated external pin to a 4.7K ohm pullup (for
	1) or driving it low during reset with a 7407 TTL.

Note: External strap option values may be set by connecting the indicated external pin to a 4.7K ohm pullup (for 1) or driving it low during reset with a 7407 TTL open collector buffer (for 0) as shown in the suggested circuit below:

Figure 5. Strap Option Circuit

Offset :	5B - Internal RTC Test ModeRW
7-4	Reserved always reads 0
3	Map RTC Rx32 to Rx3F
	0 Disabledefault
	1 Enable
2	RTC Reset Enable (do not program)
	0 Disabledefault
	1 Enable
1	RTC SRAM Access Enable
	0 Disabledefault
	1 Enable
	This bit is set if the internal RTC is disabled but it is
	desired to still be able to access the internal RTC
	SRAM via ports 74-75. If the internal RTC is
	enabled, setting this bit does nothing (the internal
	RTC SRAM should be accessed at either ports 70/71
	or 72/73.
0	RTC Test Mode Enable (do not program) .default=0
Offset	5C - DMA ControlRW
7	PCS0# & PCS1# 16-Bit I/O
	0 Disable default
	1 Enable
6	Passive Release
	0 Disabledefault
	1 Enable
5	Internal Passive Release
	0 Disabledefault
	1 Enable
4	Dummy PREQ
	0 Disabledefault
	1 Enable
3	Reservedalways reads 0
2	APIC Connection
	0 APIC on SD Busdefault
	1 APIC on XD Bus
1	Reserved (Do Not Program) default = 0
0	DMA Line Buffer Disable
	0 DMA cycles can be to/from line buffer def
	1 Disable DMA Line Buffer

Distributed DMA / Serial IRQ Control

Offset (61-60 - Distributed DMA Ch 0 Base / EnableRW
15-4	Channel 0 Base Address Bits 15-4 default = 0
3	Channel 0 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0
Offset 6	63-62 - Distributed DMA Ch 1 Base / EnableRW
15-4	
3	Channel 1 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0
Offset (65-64 - Distributed DMA Ch 2 Base / EnableRW
15-4	Channel 2 Base Address Bits 15-4 default = 0
3	Channel 2 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0
Offset 6	67-66 - Distributed DMA Ch 3 Base / EnableRW
Offset 6	-
15-4	Channel 3 Base Address Bits 15-4 default = 0
15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable
15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable
15-4 3 2-0	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable default 1 Enable
15-4 3 2-0	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW
15-4 3 2-0 Offset 6	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0
15-4 3 2-0 Offset (15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW
15-4 3 2-0 Offset (15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable default 1 Enable always reads 0 Keserved RW Reserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4)
15-4 3 2-0 Offset (15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4) 0 0 Disable default
15-4 3 2-0 Offset 6 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4) 0 0 Disable default 1 Enable
15-4 3 2-0 Offset 6 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4) 0 0 Disable default 1 Enable Serial IRQ Mode
15-4 3 2-0 Offset 6 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 Feserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4) 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default
15-4 3 2-0 Offset (15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 Feserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4) 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default 1 Quiet Mode
15-4 3 2-0 Offset (15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable
15-4 3 2-0 Offset (15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable

The frame size is fixed at 21 PCI clocks.

Offset 6	6B-6A - Distributed DMA Ch 5 Base / Enable RW
15-4	Channel 5 Base Address Bits 15-4 default = 0
3	Channel 5 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0
Offset 6	D-6C - Distributed DMA Ch 6 Base / Enable RW
15-4	Channel 6 Base Address Bits 15-4 default = 0
3	Channel 6 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0
Offset 6	F-6E - Distributed DMA Ch 7 Base / Enable RW
15-4	Channel 7 Base Address Bits 15-4 default = 0
3	Channel 7 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0

Miscellaneous / General Purpose I/O

31-0	Subsystem ID / Vendor ID always re Contents may be read at offset 2C.	ads 0
Offset 7	- GPIO Control 1	.RW
7	APIC Enable	
	0 Disable (Pin U8 is GPIOD / MCCS#)de	efault
	1 Enable (Pin U8 is SCIOUT#)	
6	SERIRQ Pin	
	0 SERIRQ input from DRQ2 (Pin H3)de	efault
	1 SERIRQ input from DACK5# (Pin L4)	
5	GPIOD Direction (Pin U8)	
	0 Inputde	efault
	1 Output (GPO11)	
4	GPIOC Direction (Pin V14)	
	0 Inputde	efault
	1 Output	
3	GPIOB Direction (Pin U12)	
	0 Inputde	efault
	1 Output	
2	GPIOA Direction (Pin T14)	
	0 Inputde	efault
	1 Output	
1	THRM Enable (Pin T11)	
	0 PME# / GPI5 (see Func 4 Rx48[5])de	efault
	1 THRM	
0	GPI0 / IOCHCK# Select	
	0 GPI0de	efault
	1 IOCUCV#	

Offset 73-70 - Subsystem ID WO

Offset '	75 – G	PIO Control 2RW
7	GPO	7 Enable (Pin T7)
	0	Pin defined as SLP#default
	1	Pin defined as GPO7
6	Rese	rvedalways reads 0
5	GPO	5 Enable (Pin V12)
	0	Pin defined as PCISTP# default
	1	Pin defined as GPO5
4	GPO	4 Enable (Pin Y12)
	0	Pin defined as CPUSTP#default
	1	Pin defined as GPO4
3	FDC	External IRQ / DRQ Via DACK2# / DRQ2
	0	Pin G5 is FDCIRQ, pin H3 is FDCDRQ def
	1	Pin G5 is DACK2# or other alternate function
		Pin H3 is DRQ2 or other alternate function
2	GPO	25 Enable (Pin G5)
	0	Rx75[3]=0: Pin G5 defined as DACK2# def
	1	Pin G5 defined as GPO25
1	GPO	24 Enable (Pin H3)
	0	Rx75[3]=0: default
		Rx68[3]=0: Pin H3 defined as DRQ2
		Rx68[3]=1: Pin H3 defined as SERIRQ
	1	Pin H3 defined as GPO24
0	Posit	ive Decode
	0	Subtractive Decodedefault

Positive Decode

Offset	76 - GPIO Control 3RW	Offset	79-78 – PCS0# I/O Port AddressRW
7	Over-Current (OC) Input	15-0	PCS0# I/O Port Address [15-0]
	0 Disabledefault		
	1 Enable	<u>Offset</u>	7B-7A – PCS1# I/O Port Address RW
6	OC[3:0] From SD[3:0] By Scan	15-0	PCS1# I/O Port Address [15-0]
	0 Disabledefault		
	1 Enable		
5	GPO14 / GPO15 Enable (Pins E12 / D12)	Offcot	7D-7C – PCI DMA Channel EnableRW
	0 Pins used for IRTX and IRRXdefault	·	
	1 Pins used for GPO14 and GPO15		Reserved always reads 0
4	MCCS# Pin Select	8	PCI DMA Pair A
	0 MCCS# is on Pin U5default		0 Disabledefault
	1 MCCS# is on Pin U8	_	1 Enable
3	MCCS# Function	7	PCI DMA Channel 7
	0 Disable MCCS# function on U5/U8default		0 Disabledefault
	1 Enable MCCS# function on U5/U8		1 Enable
	(see bit-4 for select of U5 or U8 for MCCS#)	6	PCI DMA Channel 6
2	CHAS Enable (Pin V14)		0 Disabledefault
	0 Pin is defined as GPIOCdefault	_	1 Enable
	1 Pin is defined as CHAS	5	PCI DMA Channel 5
1	GPO12 Enable (Pin T5)		0 Disabledefault
	0 Pin is defined as XDIRdefault		1 Enable
	1 Pin is defined as GPO12	4	Reserved always reads 0
0	GPOWE# (GPO[23-16]) Enable (Pin T14)	3	PCI DMA Channel 3
•	0 Pin is defined as GPIOAdefault		0 Disabledefault
	1 Pin is defined as GPOWE# (Rx74[2] also must		1 Enable
	be set to 1)	2	PCI DMA Channel 2
	30 300 10 1)		0 Disabledefault
Offset	77 - GPIO Control 4 ControlRW		1 Enable
7	DRQ / DACK# Pins are GPI / GPO	1	PCI DMA Channel 1
	0 Disabledefault		0 Disable default
	1 Enable		1 Enable
6	Game Port XY Pins are GPI / GPO	0	PCI DMA Channel 0
Ü	0 Disabledefault		0 Disabledefault
	1 Enable		1 Enable
5-4	Reserved	0.00	
3	SERIRQ SMI Slot		7F-7E – 32-Bit DMA ControlRW
3	0 Disabledefault	15-3	32-Bit DMA High Page (A31-24) Registers IOBase
	1 Enable	2-1	Reserved always reads 0
2	RTC Rx32 Write Protect	0	32-Bit DMA
_	0 Disabledefault		0 Disable default
	1 Enable		1 Enable
1	RTC Rx0D Write Protect	O ee 4	00 D
1	0 Disabledefault		80 – Programmable Chip Select MaskRW
	1 Enable		PCS1# I/O Port Address Mask [3-0]
0	GPO13 Enable (Pin U5)	3-0	PCS0# I/O Port Address Mask [3-0]
U	0 Pin defined as SOE#default		
	1 Pin defined as GPO13		

_		Oliset		
7	On-Board I/O Port Positive Decoding	7	COM Port B Positive Decoding	
	0 Disabledefault		0 Disable	defaul
	1 Enable		1 Enable	
6	Microsoft-Sound System I/O Port Positive	6-4	COM-Port B Decode Range	
	Decoding		000 3F8h-3FFh (COM1)	defaul
	0 Disabledefault		001 2F8h-2FFh (COM2)	
	1 Enable		010 220h-227h	
5-4	Microsoft-Sound System I/O Decode Range		011 228h-22Fh	
	00 0530h-0537hdefault		100 238h-23Fh	
	01 0604h-060Bh		101 2E8h-2EFh (COM4)	
	10 0E80-0E87h		110 338h-33Fh	
	11 0F40h-0F47h		111 3E8h-3EFh (COM3)	
3	APIC Positive Decoding	3	COM Port A Positive Decoding	
3	0 Disabledefault	3	0 Disable	defaul
	1 Enable		1 Enable	deraur
2	BIOS ROM Positive Decoding	2-0	COM-Port A Decode Range	
2	0 Disabledefault	2-0	000 3F8h-3FFh (COM1)	dofoul
	1 Enable			deraur
1			001 2F8h-2FFh (COM2) 010 220h-227h	
1	Reserved always reads 0			
0	PCS0 Positive Decoding		011 228h-22Fh	
	0 Disabledefault		100 238h-23Fh	
	1 Enable		101 2E8h-2EFh (COM4)	
			110 338h-33Fh	
			111 3E8h-3EFh (COM3)	
Offer a 4				
Onsera	82 – ISA Positive Decoding Control 2RW			
	82 – ISA Positive Decoding Control 2RW			
7	FDC Positive Decoding	Offset	84 – ISA Positive Decoding Control 4.	RW
	FDC Positive Decoding 0 Disabledefault		84 – ISA Positive Decoding Control 4.	
7	FDC Positive Decoding 0 Disabledefault 1 Enable	7-4	Reserved	
	FDC Positive Decoding 0 Disabledefault 1 Enable LPT Positive Decoding		ReservedFDC Decoding Range	always reads (
7	FDC Positive Decoding 0 Disable	7-4	Reserved FDC Decoding Range 0 Primary	always reads (
7 6	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (
7	FDC Positive Decoding 0 Disable	7-4	Reserved FDC Decoding Range 0 Primary	always reads (
7 6	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (
7 6	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (
7 6	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul
7 6	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul
7 6 5-4	FDC Positive Decoding 0 Disable default 1 Enable LPT Positive Decoding 0 Disable default 1 Enable LPT Decode Range 00 3BCh-3BFh, 7BCh-7BEh default 01 378h-37Fh, 778h-77Ah 10 278h-27Fh, 678h-67Ah 11 -reserved- Game Port Positive Decoding 0 Disable default 1 Enable MIDI Positive Decoding	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul
7 6 5-4 3	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul
7 6 5-4 3	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul
7 6 5-4 3	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul
7 6 5-4 3	## Proceeding O Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (defaul defaul

Offset	85 – Extended Function EnableRW		
7-5	Reserved always reads 0		
4	Function 3 USB Ports 2-3		
	0 Enabledefault		
	1 Disable		
3	Function 6 Modem / Audio		
	0 Enabledefault		
	1 Disable		
2	Function 5 Audio		
	0 Enabledefault		
	1 Disable		
1	Super-I/O Configuration		
	0 Disabledefault		
	1 Enable		
0	Super-I/O		
	0 Disabledefault		
	1 Enable		

Offset 86 – PNP IRQ/DRQ Test 1 (Do Not Program) ... RW
Offset 87 – PNP IRQ/DRQ Test 2 (Do Not Program) ... RW

Offset a	88 – PLL TestRW
7	PCS0# Access Status
6	RTC Rx32 / Rx7F Write Protect
	0 Disabledefault
	1 Enable
5	MC IRQ Test (Do Not Program)
	0 Disabledefault
	1 Enable
4	PLL PU (Do Not Program)
	0 Disabledefault
	1 Enable
3	PLL Test Mode (Do Not Program)
	0 Disabledefault
	1 Enable
2-0	PLL Test Mode Select
Offcet !	89 – PLL ControlRW
7-4	Reserved always reads 0
	PLL PCLK Input Delay Select
1-0	PLL CLK66 Feedback Delay Select

3A – P	CS2/3 I/O Port Address MaskRW
PCS3	8# I/O Port Address Mask 3-0
PCS2	2# I/O Port Address Mask 3-0
	CS ControlRW
PCS3	3# For Internal I/O
0	Disabledefault
1	Enable
PCS2	2# For Internal I/O
0	Disabledefault
1	Enable
PCS1	1# For Internal I/O
0	Disabledefault
1	Enable
PCS()# For Internal I/O
0	Disabledefault
1	Enable
PCS3	3#
0	Disabledefault
1	Enable
PCS2	2#
0	Disabledefault
1	Enable
PCS1	1#
0	Disabledefault
1	Enable
PCS()#
0	Disabledefault
1	Enable
<u>8D-8C</u>	- PCS2# I/O Port AddressRW
PCS2	2# I/O Port Address
RF_RF	– PCS3# I/O Port AddressRW
	R# I/O Port Address
	PCS3 PCS3 PCS3 0 1 PCS3

Function 1 Registers - Enhanced IDE Controller

This Enhanced IDE controller interface is fully compatible with the SFF 8038i v.1.0 specification. There are two sets of software accessible registers -- PCI configuration registers and Bus Master IDE I/O registers. The PCI configuration registers are located in the function 1 PCI configuration space of the VT8231. The Bus Master IDE I/O registers are defined in the SFF8038i v1.0 specification.

PCI Configuration Space Header

Offset 1-0 - Vendor ID (1106h=VIA)RO		
Offset 3-2 - Device ID (0571h=IDE Controller)RO		
Offset 5	-4 - CommandRW	
15-10	Reserved always reads 0	
9	Fast Back to Back Cycles default = 0 (disabled)	
8	SERR# Enable default = 0 (disabled)	
7	Address Stepping fixed at 1 (enabled)	
	A value of 1 provides additional address decode time	
	to IDE devices.	
6	Parity Error Response default = 0 (disabled)	
5	VGA Palette Snoopfixed at 0 (disabled)	
4	Memory Write & Invalidatefixed at 0 (disabled)	
3	Special Cycles fixed at 0 (disabled)	
2	Bus Master default = 0 (disabled)	
	S/G operation can be issued only when the "Bus	
	Master" bit is enabled.	
1	Memory Spacefixed at 0 (disabled)	
0	I/O Space default = 0 (disabled)	
	When the "I/O Space" bit is disabled, the device will	
	not respond to any I/O addresses for both compatible	
	and native mode.	

Offset 7	7-6 - Status	RO
15	Detected Parity Error	fixed at 0
14	Signalled System Error	fixed at 0
13	Received Master Abort	fixed at 0
12	Received Target Abort	fixed at 0
11	Signalled Target Abort	fixed at 0
10-9	DEVSEL# Timing	default = 01 (medium)
8	Data Parity Detected	fixed at 0
7	Fast Back to Back	fixed at 1
6-0	Reserved	always reads 0
		•

Offset 8 - Revision ID (06)RO 0-7 Revision Code for IDE Controller Logic Block

Offset 9) - Programming Interfa	ace	RW
7	Master IDE Capability		
6-4	_ `	alw	
3	Programmable Indicat		
	Supports both modes (1	•	
	writing bit-2)	•	·
2	Reserved	alw	ays reads 0
1	Programmable Indicat	tor - Primary	fixed at 1
	Supports both modes (1	may be set to either	er mode by
	writing bit-0)		
0	Reserved	alw	ays reads 0
Compat	ibility Mode (fixed IRQs	and I/O addresses)	<u>:</u>
	Command Block	Control Block	
Chann	el Registers	Registers	<u>IRQ</u>
Pri	1F0-1F7	3F6	14
Sec	170-177	376	15
Native PCI Mode (registers are programmable in I/O space)			
	Command Block	Control Block	
Chann	el Registers	<u>Registers</u>	
Pri	BA @offset 10h	BA @offset 14h	
Sec	BA @offset 18h	BA @offset 1Ch	
	nd register blocks are 8 b registers are 4 bytes of I/		2 is used)
Offset A	A - Sub Class Code (01h	=IDE Controller)	RO
Offset 1	B - Base Class Code (01)	h=Mass Storage C	<u>(trlr)RO</u>
Offset (C – Cache Line Size (00	h)	RO
Offset 1	D - Latency Timer (Defa	ault=0)	RW
Offset 1	E - Header Type (00h)		RO

Offset F - BIST (00h).....RO

Offset 1	3-10 - Pri Data / Command Base AddressRW	
Specifie	s an 8 byte I/O address space.	
31-16 15-3 2-0	Reservedalways read 0Port Addressdefault=01F0hFixed at 001bfixed	
Offset 1	7-14 - Pri Control / Status Base AddressRW	
	s a 4 byte I/O address space of which only the third active (i.e., 3F6h for the default base address of 3F4h).	
31-16 15-2 1-0	Reservedalways read 0Port Addressdefault=03F4hFixed at 01bfixed	
Offset 1	B-18 - Sec Data / Command Base AddressRW	
Specifie	s an 8 byte I/O address space.	
31-16 15-3 2-0	Reservedalways read 0Port Addressdefault=0170hFixed at 001bfixed	
Offset 1	F-1C - Sec Control / Status Base AddressRW	
	s a 4 byte I/O address space of which only the third ctive (i.e., 376h for the default base address of 374h).	
	Reservedalways read 0Port Addressdefault=0374hFixed at 01bfixed	
Offset 23-20 - Bus Master Control Regs Base AddressRW		
	Specifies a 16 byte I/O address space compliant with the SFF-8038 i rev 1.0 specification.	
15-4	Reserved always read 0 Port Address default=CC0h Fixed at 0001h fixed	

Offset :	34 - Capability Pointer (C0h)	RC
Offset :	3C - Interrupt Line (0Eh)	RC
Offset :	3D - Interrupt Pin (00h)	RO
7-0	Interrupt Routing Mode 00h Legacy mode interrupt routing 01h Native mode interrupt routing	defaul
Offset :	3E - Min Gnt (00h)	RO
Offset .	3F - Max Latency (00h)	RC

IDE-Controller-Specific Configuration Registers

Offset 4	40 - Chip EnableRW
7-4	Reserved always reads 0
3-2	Reserved (Do Not Program) R/W , default = 0
1	Primary Channel Enable default = 0 (disabled)
0	Secondary Channel Enable default = 0 (disabled)
Offset 4	41 - IDE ConfigurationRW
7	Primary IDE Read Prefetch Buffer
	0 Disabledefault
	1 Enable
6	Primary IDE Post Write Buffer
	0 Disabledefault
	1 Enable
5	Secondary IDE Read Prefetch Buffer
	0 Disabledefault
	1 Enable
4	Secondary IDE Post Write Buffer
	0 Disabledefault
	1 Enable
3	Reserved always reads 0
2	Reserved (Do Not Change)default=1
1	Reserved (Do Not Change)default=1
0	Reserved always reads 0
O 88	
Offset 4	42 - Reserved (Do Not Program)RW

3-2	00 01 10		for Primary Channel
	01 10	1/4	
	10	-, -	
		1/2	
	4.4		default
	11	3/4	
1-0	Thres	shold	for Secondary Channel
	00		•
	01	1/4	
	10	1/2	default
	11	3/4	

Offset 4	44 - Miscellaneous Control 1RW		
7	Reserved always reads 0		
6	Master Read Cycle IRDY# Wait States		
	0 0 wait states		
	1 1 wait statedefault		
5	Master Write Cycle IRDY# Wait States		
	0 0 wait states		
	1 1 wait statedefault		
4	Reserved always reads 0		
3	Bus Master IDE Status Register Read Retry		
	Retry bus master IDE status register read when		
	master write operation for DMA read is not complete		
	0 Disabled		
	1 Enableddefault		
2-1	Reserved always reads 0		
0	UltraDMA Host Must Wait for First Strobe		
	Before Termination		
	0 Enableddefault		
	1 Disabled		
Offset 4	45 - Miscellaneous Control 2RW		
7	Reserved always reads 0		
6	Interrupt Steering Swap		
	0 Don't swap channel interruptsdefault		
	1 Swap interrupts between the two channels		
5-4	Reserved always reads 0		
3	Memory Read Multiple Command		
	0 Disabledefault		
	1 Enable		
2	Memory Read and Invalidate Command		
	0 Disabledefault		
	1 Enable		
1	Secondary Channel Threshold Enable		
	0 Disable (data transfer starts immediately if		
	FIFO is not empty)		
	1 Enable (data transfer will not start until the		
	FIFO is filled to the threshold set in bits 1-0 of		
	Rx43)default		
0	Primary Channel Threshold Enable		
	0 Disable (data transfer starts immediately if		
	FIFO is not empty)		
	1 Enable (data transfer will not start until the		
	FIFO is filled to the threshold set in bits 3-2 of		
	Rx43)default		

Offset 4	46 - Miscellaneous Control 3RW
7	Primary Channel Read DMA FIFO Flush
	1 = Enable FIFO flush for read DMA when interrupt
	asserts primary channeldefault=1 (enabled)
6	Secondary Channel Read DMA FIFO Flush
	1 = Enable FIFO flush for Read DMA when interrupt
	asserts secondary channelDefault=1 (enabled)
5	Primary Channel End-of-Sector FIFO Flush
	1 = Enable FIFO flush at the end of each sector for
	the primary channelDefault=0 (disabled)
4	Secondary Channel End-of-Sector FIFO Flush
	1 = Enable FIFO flush at the end of each sector for
	the secondary channel Default=0 (disabled)
3-2	Reserved always reads 0
1-0	Max DRDY Pulse Width
	Maximum DRDY# pulse width after the cycle count.
	Command will deassert in spite of DRDY# status to
	avoid system ready hang.
	00 No limitationdefault
	01 64 PCI clocks
	10 128 PCI clocks
	11 192 PCI clocks

Offset 4B-48 - Drive Timing Control	31 Pri Drive 0 UltraDMA-Mode Enable Method 0 Enable by using "Set Feature" command def 1 Enable by setting bit-30 of this register 30 Pri Drive 0 UltraDMA-Mode Enable 0 Disable
The actual value for each field is the encoded value in the field plus one and indicates the number of PCI clocks.	000 2T 001 3T
7-6 Primary Drive 0 Address Setup Time 5-4 Primary Drive 1 Address Setup Time 3-2 Secondary Drive 0 Address Setup Time 1-0 Secondary Drive 1 Address Setup Time	010 4T 011 5T 100 6T 101 7T 110 8T 111 9T
For each field above: 00 1T 01 2T 10 3T 11 4T	1) I'll clock bource
Offset 4E - Secondary Non-1F0 Port Access TimingRW	0 33 MHzdefault 1 66 MHz
7-4 DIOR#/DIOW# Active Pulse Width def=1111b 3-0 DIOR#/DIOW# Recovery Time def=1111b	18-16 Pri Drive 1 Cycle Time
The actual value for each field is the encoded value in the field plus one and indicates the number of PCI clocks.	14 C D-2 O III4 DN/A N/- J- E LI-
Offset 4F - Primary Non-1F0 Port Access Timing`RW	· · · · · · · · · · · · · · · · · · ·
 7-4 DIOR#/DIOW# Active Pulse Width def=1111b 3-0 DIOR#/DIOW# Recovery Time def=1111b The actual value for each field is the encoded value in the field plus one and indicates the number of PCI clocks. 	7 Sec Drive 1 UltraDMA-Mode Enable Method 6 Sec Drive 1 UltraDMA-Mode Enable 5 Sec Drive 1 Transfer Mode 4 Reserved
	2-0 Sec Drive 1 Cycle Time

Each byte defines UltraDMA operation for the indicated drive. The bit definitions are the same within each byte.

Offset 5	54 – UltraDMA FIFO ControlRW
7-5	Reserved always reads 0
4	One Frame For Each PCI Request For IDE PCI
	Master Cycles
	0 Disableddefault
	1 Enabled
3	Grant ISA While Sharing Bus with SA & IDE in
	IDLE State
	0 Enabledefault
	1 Disable
2	Change Drive to Clear All FIFO & Internal States
	0 Disabled
	1 Enableddefault
1	Add Dummy FIFO Push After End of Transfer
	0 Enabled
	1 Disableddefault
	This bit is normally set to 0 for effective handling of
	transfer lengths that are not doubleword multiples
0	Complete DMA Cycle with Transfer Size Less
	Than FIFO Size
	0 Enableddefault
	1 Disabled

Offset 6	1-60 - Primary Sector Size	RW
	Reserved Number of Bytes Per Sector	•
Offset 6	9-68 - Secondary Sector Size	RW

<u>Offset '</u>	<u> 70 – Primary IDE StatusRW</u>	Offset 78 – Secondary IDE StatusR
7	Interrupt Status	7 Interrupt Status
6	Prefetch Buffer Status	6 Prefetch Buffer Status
5	Post Write Buffer Status	5 Post Write Buffer Status
4	DMA Read Prefetch Status	4 DMA Read Prefetch Status
3	DMA Write Prefetch Status	3 DMA Write Prefetch Status
2	S/G Operation Complete	2 S/G Operation Complete
1-0	Reserved always reads 0	1-0 Reservedalways reads
Offset '	71 – Primary Interrupt ControlRW	Offset 79 - Secondary Interrupt ControlR
7-1	Reserved always reads 0	7-1 Reservedalways reads
0	Flush FIFO Before Generating IDE Interrupt	0 Flush FIFO Before Generating IDE Interrupt
	0 Disabledefault	0 Disabledefa
	1 Enable	1 Enable

Offset 8	<u> 83-80 – Prim</u>	ary S/G Descr	riptor AddressRW
Offset 8	<u> 8B-88 – Seco</u>	ndary S/G De	scriptor AddressRW
Offset (C3-C0 – PCI	PM Block 1	RO
31-0	PCI PM BI	ock 1	always reads 0201h
Offset (C 7-C4 – PCI	PM Block 2	RO
31-2	Reserved		always reads 0
1-0	Power Stat	•	
	00 On		default
	01 Off		
	1x -rese	rved-	

IDE I/O Registers

These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details.

I/O Offset 0 - Primary Channel Command

I/O Offset 2 - Primary Channel Status

I/O Offset 4-7 - Primary Channel PRD Table Address

I/O Offset 8 - Secondary Channel Command

I/O Offset A - Secondary Channel Status

I/O Offset C-F - Secondary Channel PRD Table Address

Function 2 Registers - USB Controller Ports 0-1

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the function 2 PCI configuration space of the VT8231. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 0-1 (see function 3 for ports 2-3).

PCI Configuration Space Header

Offset 1-0 - Vendor IDRO		
0-7	Vendor ID (1106h = VIA Technologies)	
Offset 3	3-2 - Device IDRO	
0-7	Device ID (3038h = VT8231 USB Controller)	
Offset 5	5-4 - CommandRW	
15-8	Reserved always reads 0	
7	Address Stepping default=0 (disabled)	
6	Reserved (parity error response)fixed at 0	
5	Reserved (VGA palette snoop)fixed at 0	
4	Memory Write and Invalidate . default=0 (disabled)	
3	Reserved (special cycle monitoring)fixed at 0	
2	Bus Master default=0 (disabled)	
1	Memory Space default=0 (disabled)	
0	I/O Spacedefault=0 (disabled)	
Offset 7	7-6 - StatusRWC	
15	Reserved (detected parity error) always reads 0	
14	Signalled System Errordefault=0	
13	Received Master Abortdefault=0	
12	Received Target Abort default=0	
11	Signalled Target Abort default=0	
10-9	DEVSEL# Timing	
	00 Fast	
	01 Mediumdefault (fixed)	
	10 Slow	
	11 Reserved	
8-0	Reserved always reads 0	

Offset 8	3 - Revision ID (nnh)RO
7-0	Silicon Revision Code (0 indicates first silicon)
	06h Corresponds to Chip Revision D
Offset 9	O - Programming Interface (00h)RO
Offset A	A - Sub Class Code (03h=USB Controller)RO
Offset I	3 - Base Class Code (0Ch=Serial Bus Controller)RO
Offset (C – Cache Line Size (00h)RO
Offset I	O - Latency TimerRW
7-0	Timer Valuedefault = 16h
Offset I	E - Header Type (00h)RO
Officer	2- Hedder Type (von)
Offset I	F - BIST (00h)RO
Offset 2	23-20 - USB I/O Register Base AddressRW
	Reservedalways reads 0
15-5	· · · · · · · · · · · · · · · · · · ·
	the base of the 32-byte USB I/O Register block,
	corresponding to AD[15:5]
4-0	00001b
	00001b BC - Interrupt Line (00h)RW
Offset 3	BC - Interrupt Line (00h)RW
Offset 3	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default
Offset 3	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 0000
Offset 3	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 0010 Reserved
Offset 3	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3
Offset 3	RC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4
Offset 3	RC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5
Offset 3	RC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6
Offset 3	RC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7
Offset 3	RC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6
Offset 3	RC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8
Offset 3	Reserved
Offset 3	Reserved
Offset 3	Reserved
Offset 3	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13
Offset 3	Reserved

USB-Specific Configuration Registers

Offset	40 - Miscellaneous Control 1RW	Offset 4	41 - Miscellaneous Control 2RW
7	PCI Memory Command Option	7	USB 1.1 Improvement for EOP
	0 Support Memory-Read-Line, Memory-Read-		0 USB Specification 1.1 Compliant default
	Multiple, & Memory-Write-&-Invalidate def		If a bit stuffing error occurs before EOP, the
	1 Only support Mem Read, Mem Write Cmds		receiver will accept the packet
6	Babble Option		1 USB Specification 1.0 Compliant
	O Automatically disable babbled port when EOF		If a bit stuffing error occurs before EOP, the
	babble occursdefault		receiver will ignore the packet
	1 Don't disable babbled port	6-5	Reserved (Do Not Program) default = 0
5	PCI Parity Check Option	4	Hold PCI Request for Successive Accesses
	O Disable PERR# generationdefault		0 Disable
	1 Enable parity check and PERR# generation		1 Enabledefault
4	Frame Interval Select		Setting this bit to "enable" causes the system to treat
	0 1 ms framedefault		the USB request as higher priority
	1 0.1 ms frame	3	Frame Counter Test Mode
3	USB Data Length Option		0 Disabledefault
	O Support TD length up to 1280default		1 Enable
	1 Support TD length up to 1023	2	Trap Option
2	USB Power Management		0 Set trap 60/64 status bits only when trap 60/64
	O Disable USB power managementdefault		enable bits are setdefault
	1 Enable USB power management		1 Set trap 60/64 status bits without checking
1	DMA Option		enable bits
	0 8 DW burst access with better FIFO latency def	1	A20gate Pass Through Option
	1 16 DW burst access (original performance)		0 Pass through A20GATE command sequence
0	PCI Wait States		defined in UHCIdefault
	0 Zero waitdefault		1 Don't pass through Write I/O port 64 (ff)
	1 One wait	0	USB IRQ Test Mode
			0 Normal Operation default

Generate USB IRQ

Offset 4	<u> 12 - FIFO ControlRW</u>
7-4	Reserved always reads 0
3-2	Reserved (Do Not Program) default = 0
1-0	Release Continuous REQ After "N" PCICLKs
	00 Do Not Release def
	01 N = 32 PCICLKs
	10 N = 64 PCICLKs
	11 N = 96 PCICLKs
Offset 6	60 - Serial Bus Release NumberRO
7-0	Release Number always reads 10h
7-0	Release Number always leads 1011
Offset 8	83-80 – PM CapabilityRO
31-0	PM Capability always reads 00020001h
Offset 8	84 – PM Capability StatusRW
7-0	PM Capability Status default = 00h
	Supports 00h (Off) and 11h (On) only
Office 4	C1 C0 Logory Support
-	C1-C0 - Legacy SupportRO
15-0	UHCI v1.1 Compliant always reads 2000h

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

I/O Offset 5-4 - USB Interrupt Enable

I/O Offset 7-6 - Frame Number

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Function 3 Registers - USB Controller Ports 2-3

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the function 3 PCI configuration space of the VT8231. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 2-3 (see function 2 for ports 0-1).

PCI Configuration Space Header

Offset 1	<u>1-0 - Vendor IDRO</u>
0-7	Vendor ID (1106h = VIA Technologies)
Offset 3	3-2 - Device IDRO
0-7	Device ID (3038h = VT8231 USB Controller)
Offset 5	5-4 - CommandRW
15-8	Reserved always reads 0
7	Address Stepping default=0 (disabled)
6	Reserved (parity error response)fixed at 0
5	Reserved (VGA palette snoop)fixed at 0
4	Memory Write and Invalidate . default=0 (disabled)
3	Reserved (special cycle monitoring)fixed at 0
2	Bus Masterdefault=0 (disabled)
1	Memory Space default=0 (disabled)
0	I/O Spacedefault=0 (disabled)
Offset 7	7-6 - StatusRWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Errordefault=0
13	Received Master Abortdefault=0
12	Received Target Abort default=0
11	Signalled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved always reads 0

Offset 8	3 - Revision ID (nnh)RO
7-0	Silicon Revision Code (0 indicates first silicon)
Offset 9	- Programming Interface (00h)RO
Offset A	A - Sub Class Code (03h=USB Controller)RO
Offset 1	3 - Base Class Code (0Ch=Serial Bus Controller)RO
Offset (C – Cache Line Size (00h)RO
Offset I	O - Latency TimerRW
7-0	Timer Value default = 16h
Offset 1	E - Header Type (00h)RO
Offset 1	F - BIST (00h)RO
	Reserved always reads 0 USB I/O Register Base Address. Port Address for the base of the 32-byte USB I/O Register block, corresponding to AD[15:5] 00001b
Offset 3	BC - Interrupt Line (00h)RW
7-4	Reserved always reads 0
3-0	USB Interrupt Routingdefault = 16h
	0000 Disabled default
	0001 IRQ1
	0010 Reserved
	0011 IRQ3
	0100 IRQ4
	0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	1000 IRQ8 1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1101 IRQ13
	1110 IRQ14
	1111 Disabled

Offset 3D - Interrupt Pin (04h).....RO

USB-Specific Configuration Registers

Offset	40 - Miscellaneous Control 1RW	Offset 4	41 - Miscellaneous Control 2RW
7	PCI Memory Command Option	7	USB 1.1 Improvement for EOP
	0 Support Memory-Read-Line, Memory-Read-		0 USB Specification 1.1 Compliant default
	Multiple, & Memory-Write-&-Invalidate def		If a bit stuffing error occurs before EOP, the
	1 Only support Mem Read, Mem Write Cmds		receiver will accept the packet
6	Babble Option		1 USB Specification 1.0 Compliant
	0 Automatically disable babbled port when EOF		If a bit stuffing error occurs before EOP, the
	babble occursdefault		receiver will ignore the packet
	 Don't disable babbled port 	6-5	Reserved (Do Not Program) default = 0
5	PCI Parity Check Option	4	Hold PCI Request for Successive Accesses
	O Disable PERR# generationdefault		0 Disable
	1 Enable parity check and PERR# generation		1 Enabledefault
4	Frame Interval Select		Setting this bit to "enable" causes the system to treat
	0 1 ms framedefault		the USB request as higher priority
	1 0.1 ms frame	3	Frame Counter Test Mode
3	USB Data Length Option		0 Disabledefault
	O Support TD length up to 1280default		1 Enable
	1 Support TD length up to 1023	2	Trap Option
2	USB Power Management		0 Set trap 60/64 status bits only when trap 60/64
	O Disable USB power managementdefault		enable bits are setdefault
	1 Enable USB power management		1 Set trap 60/64 status bits without checking
1	DMA Option		enable bits
	0 8 DW burst access with better FIFO latency def	1	A20gate Pass Through Option
	1 16 DW burst access (original performance)		0 Pass through A20GATE command sequence
0	PCI Wait States		defined in UHCIdefault
	0 Zero waitdefault		1 Don't pass through Write I/O port 64 (ff)
	1 One wait	0	USB IRQ Test Mode
			0 Normal Operation default

Generate USB IRQ

Offset 4	12 - FIFO ControlRW
7-4	Reserved always reads 0
3-2	Reserved (Do Not Program) default = 0
1-0	Release Continuous REQ After "N" PCICLKs
	00 Do Not Release def
	01 N = 32 PCICLKs
	10 N = 64 PCICLKs
	11 $N = 96$ PCICLKs
Offset 6	60 - Serial Bus Release NumberRO
7-0	Release Number always reads 10h
	·
Offcot 9	83-80 – PM CapabilityRO
31-0	PM Capability always reads 00020001h
Offset 8	84 – PM Capability StatusRW
7-0	PM Capability Statussupports 00h and 11h only
, 0	The Capability Statussupports oon and The only
	G1 G0 T
Offset (C1-C0 - Legacy SupportRO
15-0	UHCI v1.1 Compliant always reads 2000h

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

I/O Offset 5-4 - USB Interrupt Enable

I/O Offset 7-6 - Frame Number

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Function 4 Regs - Power Management, SMBus and HWM

This section describes the ACPI (Advanced Configuration and Power Interface) Power Management system of the VT8231 which includes a System Management Bus (SMBus) interface controller and Hardware Monitoring (HWM) subsystem. The power management system of the VT8231 supports both ACPI and legacy power management functions and is compatible with the APM v1.2 and ACPI v1.0 specifications.

PCI Configuration Space Header

Offset 1	<u>-0 - venaor 1DRC</u>
0-7	Vendor ID (1106h = VIA Technologies
Offset 3	3-2 - Device IDR(
0-7	Device ID (3057h = ACPI Power Mgmt
Offset 5	S-4 - CommandRV
15-8	Reserved always reads
7	Address Steppingfixed at
6	Reserved (parity error response)fixed at
5	Reserved (VGA palette snoop)fixed at
4	Memory Write and Invalidatefixed at
3	Reserved (special cycle monitoring)fixed at
2	Bus Masterfixed at
1	Memory Space fixed at
0	I/O Spacefixed at
Offset 7	7-6 - StatusRW0
15	Detected Parity Error always reads
14	Signalled System Error always reads
13	Received Master Abort always reads
12	Received Target Abort always reads
11	Signalled Target Abort always reads
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed
	10 Slow
	11 Reserved
8	Data Parity Detected always reads
7	Fast Back to Back Capable always reads
6-0	Reserved always reads

Offset 8 - Revision ID (nnh).....RO

7-0 Silicon Revision Code

Power Management-Specific PCI Configuration Registers

Offset	40 – General Configuration 0RW	Offset 4	41 - General Configuration 1RW
7	Thermal Alarm Source Select	7	I/O Enable for ACPI I/O Base
	0 From pin T11 (Function 0 Rx74[1] must be set		0 Disable access to ACPI I/O block default
	to define the pin as THRM#)default		1 Allow access to Power Management I/O
	1 From any of the three internal temperature		Register Block (see offset 4B-48 to set the
	sensing circuits (see Rx43 and Rx44 of		base address for this register block). The
	Hardware Monitoring configuration space)		definitions of the registers in the Power
6	Sleep Button		Management I/O Register Block are included
	0 Disabledefault		later in this document, following the Power
	1 Sleep Button is on IRQ6 pin (pin G1)		Management Subsystem overview.
5	Debounce LID and PWRBTN# Inputs for 200us	6	ACPI Timer Reset
	0 Disabledefault		0 Normal Timer Operationdefault
	1 Enable		1 Reset Timer
4	Reserved always reads 0	5-4	PMU Timer Test Mode (Do Not Program) def = 0
3	Microsoft Sound Monitor in Audio Access	3	ACPI Timer Count Select
	0 Disabledefault		0 24-bit Timerdefault
	1 Enable		1 32-bit Timer
2	Game Port Monitor in Audio Access	2	RTC Enable Signal Gated with PSON (SUSC#) in
	0 Disabledefault		Soft-Off Mode
	1 Enable		0 Disabledefault
1	SoundBlaster Monitor in Audio Access		1 Enable
	0 Disabledefault	1	Clock Throttling Clock Selection
	1 Enable		0 32 usec (512 usec cycle time) default
0	MIDI Monitor in Audio Access		1 1 msec (16 msec cycle time)
	0 Disabledefault	0	DEVSEL# Test Mode (Do Not Program)def = 0
	1 Enable		

Offset 4	42 - ACPI Interrupt SelectRW	Offset 4	45-44 - Primary Interrupt Channel (0000h) RW
7	ATX / AT Power IndicatorRO	15	1/0 = Ena/Disa IRQ15 as Primary Intrpt Channel
	0 ATX	14	1/0 = Ena/Disa IRQ14 as Primary Intrpt Channel
	1 AT	13	1/0 = Ena/Disa IRQ13 as Primary Intrpt Channel
6	SUSC# StateRO	12	1/0 = Ena/Disa IRQ12 as Primary Intrpt Channel
5	Reserved always reads 0	11	1/0 = Ena/Disa IRQ11 as Primary Intrpt Channel
4	SUSC# AC-Power-On Default ValueRO	10	1/0 = Ena/Disa IRQ10 as Primary Intrpt Channel
	This bit is written at RTC Index 0A bit-7.	9	1/0 = Ena/Disa IRQ9 as Primary Intrpt Channel
3-0	SCI Interrupt Assignment	8	1/0 = Ena/Disa IRQ8 as Primary Intrpt Channel
	0000 Disableddefault	7	1/0 = Ena/Disa IRQ7 as Primary Intrpt Channel
	0001 IRQ1	6	1/0 = Ena/Disa IRQ6 as Primary Intrpt Channel
	0010 Reserved	5	1/0 = Ena/Disa IRQ5 as Primary Intrpt Channel
	0011 IRQ3	4	1/0 = Ena/Disa IRQ4 as Primary Intrpt Channel
	0100 IRQ4	3	1/0 = Ena/Disa IRQ3 as Primary Intrpt Channel
	0101 IRQ5	2	Reserved always reads 0
	0110 IRQ6	1	1/0 = Ena/Disa IRQ1 as Primary Intrpt Channel
	0111 IRQ7	0	1/0 = Ena/Disa IRQ0 as Primary Intrpt Channel
	1000 IRQ8	O.CC4	AT AC Complement Channel (0000h) DVV
	1001 IRQ9		47-46 - Secondary Interrupt Channel (0000h) RW
	1010 IRQ10	15	1/0 = Ena/Disa IRQ15 as Secondary Intr Channel
	1011 IRQ11	14	1/0 = Ena/Disa IRQ14 as Secondary Intr Channel
	1100 IRQ12	13	1/0 = Ena/Disa IRQ13 as Secondary Intr Channel
	1101 IRQ13	12	1/0 = Ena/Disa IRQ12 as Secondary Intr Channel
	1110 IRQ14	11	1/0 = Ena/Disa IRQ11 as Secondary Intr Channel
	1111 IRQ15	10	1/0 = Ena/Disa IRQ10 as Secondary Intr Channel
		9	1/0 = Ena/Disa IRQ9 as Secondary Intr Channel
Offset 4	43 – Internal Timer Read TestRO	8	1/0 = Ena/Disa IRQ8 as Secondary Intr Channel
7-0	Internal Timer Read Test	7	1/0 = Ena/Disa IRQ7 as Secondary Intr Channel
		6	1/0 = Ena/Disa IRQ6 as Secondary Intr Channel
		5	1/0 = Ena/Disa IRQ5 as Secondary Intr Channel
		4	1/0 = Ena/Disa IRQ4 as Secondary Intr Channel
		3	1/0 = Ena/Disa IRQ3 as Secondary Intr Channel
		2	Reserved always reads 0

1/0 = Ena/Disa IRQ1 as Secondary Intr Channel 1/0 = Ena/Disa IRQ0 as Secondary Intr Channel

Offset 4	B-48 – Power Managemen	t I/O BaseRW
31-16	Reserved	always reads 0
15-7	Power Management I/O	
	Port Address for the base	
	Management I/O Register	
	AD[15:7]. The "I/O Space	
	enables access to this regist	
	of the registers in the	
	Register Block are include	
	following the Power-M	
	Configuration register des	
<i>c</i> 0	Management Subsystem over	erview.
6-0	0000001b	
	C – Host Bus Power Mana	_
7-4	Thermal Duty Cycle (THN	
	This 4-bit field determine	
	STPCLK# signal when the	
	low. The field is decoded a	
	0000 Reserved	default
	0001 0-6.25%	
	0010 6.25-12.50%	
	0011 18.75-25.00%	
	0100 31.25-37.50%	
	0101 37.50-43.75%	
	0110 43.75-50.00%	
	0111 50.00-56.25%	
	1000 56.25-62.50%	
	1001 62.50-68.75%	
	1010 68.75-75.00%	
	1011 75.00-87.50%	
	1100 75.00-81.25%	
	1101 81.25-87.50%	
	1110 87.50-93.75%	
	1111 93.75-100%	
3	THRM Enable	
	0 Disable	default
	1 Enable	
2	Frame Input as Resume E	
		default
	1 Enable	
1		always reads 0
0	CPU Stop Grant Cycle Sel	
		Grant Cycledefault
	1 From Stop Grant Cyc	
	This bit is combined with	
	controlling the start of Cl	PUSTP# assertion during
	system suspend mode:	
	Rx2C[3] $Rx4C[0]$	
	Function 4 Function 4	
	I/O Space Cfg Space	CPUSTP# Assertion
	0 x	Immediate
	1 0	Wait for CPU Halt
		/ Stop Grant cycle
	1 1	Wait for CPU
		Stop Grant cycle

Offset 4	4D – Throttle / Clock Stop ControlRW
7	Throttle Timer Reset def = 0
6-5	Throttle Timer
	0x 4-Bitdefault
	10 3-Bit
	11 2-Bit
4	Fast Clock (7.5us) as Throttle Timer Tick
	0 Disabledefault
	1 Enable
3	Reserved always reads 0
2	Internal Clock Stop for PCI Idle
	0 Disabledefault
	1 Enable
1	Internal Clock Stop During C3
	0 Disabledefault
	1 Enable
0	Internal Clock Stop During Suspend
	0 Disabledefault
	1 Enable

Offset 53-50 - GP Timer Control (0000 0000h)RW 31-30 Conserve Mode Timer Count Value 00 1/16 seconddefault 01 1/8 second 10 1 second 11 1 minute **Conserve Mode Status** This bit reads 1 when in Conserve Mode 28 **Conserve Mode Enable** Disabledefault 1 Enable 27-26 Secondary Event Timer Count Value 00 2 milliseconds......default 01 64 milliseconds 10 ½ second 11 by EOI + 0.25 milliseconds

25 Secondary Event Occurred Status

This bit reads 1 to indicate that a secondary event has occurred (to resume the system from suspend) and the secondary event timer is counting down.

24 Secondary Event Timer Enable

- 0 Disabledefault
- 1 Enable

23-16 GP1 Timer Count Value (base defined by bits 5-4) Write to load count value; Read to get current count

15-8 GP0 Timer Count Value (base defined by bits 1-0) Write to load count value; Read to get current count

7 GP1 Timer Start

On setting this bit to 1, the GP1 timer loads the value defined by bits 23-16 of this register and starts counting down. The GP1 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP1 timer counts down to zero, then the GP1 Timer Timeout Status bit is set to one (bit-3 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP1 Timer Timeout Enable bit is set (bit-3 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

6 GP1 Timer Automatic Reload

- 0 GP1 Timer stops at 0default
- 1 Reload GP1 timer automatically after counting down to 0

5-4 GP1 Timer Base

- 00 Disabledefault
- 01 1/4 msec
- 10 1 second
- 11 1 minute

3 GP0 Timer Start

On setting this bit to 1, the GP0 timer loads the value defined by bits 15-8 of this register and starts counting down. The GP0 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP0 timer counts down to zero, then the GP0 Timer Timeout Status bit is set to one (bit-2 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP0 Timer Timeout Enable bit is set (bit-2 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

2 GP0 Timer Automatic Reload

- 0 GP0 Timer stops at 0default
- 1 Reload GP0 timer automatically after counting down to 0

1-0 GP0 Timer Base

- 00 Disable......default
- 01 1/16 second
- 10 1 second
- 11 1 minute

Offset:	54 – Power Well Control WO
7	SMBus Clock Select
	0 SMBus Clock from 14.31818 MHz Divider def
	1 SMBus Clock from RTC 32.768 KHz
6	STR Power Well Output Gating
	0 Disabledefault
	1 Enable
5	SUSC# = 0 for STR
	0 Disabledefault
	1 Enable
4	SUSST1# / GPO3 Select (Pin V10)
	0 SUSST1#default
	1 GPO3
3	GPO2 / SUSB# Select (Pin W9)
	0 SUSB#default
	1 GPO2
	Before chip rev C, these definitions were reversed
2	GPO1 / SUSA# Select (Pin V9)
	0 SUSA#default
	1 GPO1
	Before chip rev C, these definitions were reversed
1-0	GPO0 (SLOWCLK) Output Selection (Pin T8)
	00 From GPO0 (PMU I/O Rx4C[0])default
	01 1 Hz
	10 4 Hz
	11 16 Hz

Offset:	55 – USB Wake	upRW
7-1	Reserved	always reads 0
0	USB Wakeup	for STR/STD/Soff
	0 Disable.	default
	1 Enable	

Offset 58 - GP2 / GP3 Timer ControlRW

7 GP3 Timer Start

On setting this bit to 1, the GP3 timer loads the value defined by Rx5A and starts counting down. The GP3 timer is reloaded at the occurrence of certain events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP3 timer counts down to zero, then the GP3 Timer Timeout Status bit is set to one (bit-13 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP3 Timer Timeout Enable bit is set (bit-13 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

6 GP3 Timer Automatic Reload

- 0 GP3 Timer stops at 0default
- 1 Reload GP3 timer automatically after counting down to 0

5-4 GP3 Timer Tick Select

- 00 Disabledefault
- 01 1/4 millisecond
- 10 1 second
- 11 1 minute

3 GP2 Timer Start

On setting this bit to 1, the GP2 timer loads the value defined by Rx59 and starts counting down. The GP2 timer is reloaded at the occurrence of certain events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP2 timer counts down to zero, then the GP2 Timer Timeout Status bit is set to one (bit-12 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP2 Timer Timeout Enable bit is set (bit-12 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

2 GP2 Timer Automatic Reload

- 0 GP2 Timer stops at 0default
- 1 Reload GP2 timer automatically after counting down to 0

1-0 GP2 Timer Tick Select

- 00 Disabledefault
- 01 1/16 second
- 10 1 second
- 11 1 minute

<u>Offset</u>	<u>59 – GP2 Timer</u>	RW
7	Write: GP2 Timer Load Value	default = 0
	Read: GP2 Timer Current Count	
Offset	5A – GP3 Timer	RW
7	Write: GP3 Timer Load Value	default = 0
	Read: GP3 Timer Current Count	

Offset 61 - Program Interface Read Value...... WO

7-0 Rx09 Read Value

The value returned by the register at offset 9h (Programming Interface) may be changed by writing the desired value to this location.

Offset 62 - Sub Class Read Value...... WO

7-0 Rx0A Read Value

The value returned by the register at offset 0Ah (Sub Class Code) may be changed by writing the desired value to this location.

Offset 63 - Base Class Read Value...... WO

7-0 Rx0B Read Value

The value returned by the register at offset 0Bh (Base Class Code) may be changed by writing the desired value to this location.

Hardware-Monitor-Specific Configuration Registers

Offset 7	71-70 - Hardware Monitor I/O Base	RW
15-7	I/O Base (128-byte I/O space)	default = (
6-0	Fixed always rea	ds 00000011
Offset 7	74 -Hardware Monitor Control	RW
7-4	Reservedal	ways reads (
3	Hardware Monitoring Interrupt	
	0 SMI	defaul
	1 SCI	
2-1	Reservedal	ways reads (
0	Hardware Monitoring I/O Enable	
	0 Disable hardware monitor function	nsdefaul
	1 Enable hardware monitor function	S

System Management Bus-Specific Configuration Registers

Offset 9	3-90 – SMBus I/O Base RW
31-16	Reserved always reads 0
15-4	I/O Base (16-byte I/O space) default = 00h
3-0	Fixedalways reads 0001b
Offset I	02 – SMBus Host ConfigurationRW
7-4	Reserved always reads 0
3	SMBus Interrupt Select
	0 SMIdefault
	1 SCI
2	Reserved always reads 0
1	SMBus IRQ
	0 Disable default
	1 Enable
0	SMBus Host Controller Enable
	0 Disable SMB controller functions default
	1 Enable SMB controller functions
Offset I	03 – SMBus Host Slave CommandRW
7-0	
Offset I	04 – SMBus Slave Address for Port 1RW
7-0	SMBus Slave Address for Port 1default=0
Bit-0 mu	ast be set to 0 for proper operation
	1 1
Offset I	05 – SMBus Slave Address for Port 2 RW
7-0 Bit-0 mi	SMBus Slave Address for Port 2 default=0 ast be set to 0 for proper operation
Offset I	06 – SMBus Revision IDRO
7-0	SMBus Revision Code

Power Management I/O-Space Registers

Basic Power Management Control and Status

I/O Off	set 1-0 - Power Management StatusRWC	I/O Off	set 3-2 - Power Management EnableRW		
The bits in this register are set only by hardware and can be reset by software by writing a one to the desired bit position.			The bits in this register correspond to the bits in the Power Management Status Register at offset 1-0.		
15	Wakeup Status (WAK_STS) default = 0 This bit is set when the system is in the suspend state and an enabled resume event occurs. Upon setting this bit, the system automatically transitions from the suspend state to the normal working state (from C3 to C0 for the processor).	15	Reservedalways reads 0		
14-12	Reserved always reads 0	14-12	Reserved always reads 0		
11	Abnormal Power-Off (APO_STS) default = 0	11	Reserved always reads 0		
10	RTC Status (RTC_STS) default = 0 This bit is set when the RTC generates an alarm (on assertion of the RTC IRQ signal).	10	RTC Enable (RTC_EN)default = 0 This bit may be set to trigger either an SCI or an SMI (depending on the setting of the SCI_EN bit) to be generated when the RTC_STS bit is set.		
9	Sleep Button Status (SB_STS) default = 0 This bit is set when the sleep button (SLPBTN# / IRQ6 / GPI4) is pressed.	9	Sleep Button Enable (SB_EN)default = 0 This bit may be set to trigger either an SCI or SMI when the SB_STS bit is set.		
8	Power Button Status (PB_STS) default = 0 This bit is set when the PWRBTN# signal is asserted LOW. If the PWRBTN# signal is held LOW for more than four seconds, this bit is cleared, the PBOR_STS bit is set, and the system will transition into the soft off state.	8	Power Button Enable (PB_EN)default = 0 This bit may be set to trigger either an SCI or an SMI (depending on the setting of the SCI_EN bit) to be generated when the PB_STS bit is set.		
7-6	Reserved always reads 0	7-6	Reserved always reads 0		
5	Global Status (GBL_STS)	5	Global Enable (GBL_EN)		
4	Bus Master Status (BM_STS) default = 0 This bit is set when a system bus master requests the system bus. All PCI master, ISA master and ISA DMA devices are included.	4	Reserved always reads 0		
3-1	Reserved always reads 0	3-1	Reserved always reads 0		
0	ACPI Timer Carry Status (TMR_STS) default = 0 The bit is set when the 23^{rd} (31st) bit of the 24 (32) bit ACPI power management timer changes.	0	ACPI Timer Enable (TMR_EN)default = 0 This bit may be set to trigger either an SCI or an SMI (depending on the setting of the SCI_EN bit) to be generated when the TMR_STS bit is set.		

I/O Offset 5-4 - Power Management ControlRW

- 15 Soft Resume
- **14 Reserved**always reads 0

12-10 Sleep Type (SLP_TYP)

- 000 Normal On
- 001 Suspend to RAM (STR)
- 010 Suspend to Disk (STD) (also called Soft Off). The VCC power plane is turned off while the VCCS and VBAT planes remain on.
- 011 Reserved
- 100 Power On Suspend without Reset
- 101 Power On Suspend with CPU Reset
- 110 Power On Suspend with CPU/PCI Reset
- 111 Reserved

In any sleep state, there is minimal interface between powered and non-powered planes so that the effort for hardware design may be well managed.

9-3 Reserved always reads 0

1 Bus Master Reload (BMS RLD)

- O Bus master requests are ignored by power management logic.......default
- 1 Bus master requests transition the processor from the C3 state to the C0 state

0 SCI Enable (SCI_EN)

Selects the power management event to generate either an SCI or SMI:

- 0 Generate SCIdefault
- 1 Generate SMI

Note that certain power management events can be programmed individually to generate an SCI or SMI independent of the setting of this bit (refer to the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24). Also, TMR_STS & GBL_STS always generate SCI and BIOS_STS always generates SMI.

I/O Offset 0B-08 - Power Management Timer RW

31-24 Extended Timer Value (ETM_VAL)

This field reads back 0 if the 24-bit timer option is selected (Rx41 bit-3).

23-0 Timer Value (TMR VAL)

This read-only field returns the running count of the power management timer. This is a 24/32-bit counter that runs off a 3.579545 MHz clock, and counts while in the S0 (working) system state. The timer is reset to an initial value of zero during a reset, and then continues counting until the 14.31818 MHz input to the chip is stopped. If the clock is restarted without a reset, then the counter will continue counting from where it stopped.

Processor Power Management Registers

I/O Offset 13-10 - Processor & PCI Bus ControlRW			
31-12	Reserved always reads 0		
11	PCI Stop (PCISTP# asserted) when PCKRUN# is		
	Deasserted (PCI_STP)		
	0 Enabledefault		
	1 Disable		
10	PCI Bus Clock Run Without Stop (PCI_RUN)		
	0 PCKRUN# will be de-activated after the PCI		
	bus is idle for 26 clocksdefault		
	1 PCKRUN# is always asserted		
9	Host Clock Stop Enable (HOST_STP)		
	0 STPCLK# will be asserted in the C3 state, but		
	the CPU clock is not stoppeddefault		
	1 CPU clock is stopped in the C3 state		
8	Assert SLP# for Processor Level 3 Read		
	0 Disabledefault		
	1 Enable		
	Used in Slot-1 systems only.		
7-5	Reserved always reads 0		
4	Throttling Enable (THT_EN)		
	Setting this bit starts clock throttling (modulating the		
	STPCLK# signal) regardless of the CPU state. The		
	throttling duty cycle is determined by bits 3-0 of this		
2.0	register.		
3-0	Throttling Duty Cycle (THT_DTY)		
	This 4-bit field determines the duty cycle of the		
	STPCLK# signal when the system is in throttling		
	mode (the "Throttling Enable" bit is set to one). The		
	duty cycle indicates the percentage of time the		
	STPCLK# signal is asserted while the Throttling		
	Enable bit is set. The field is decoded as follows:		
	0000 Reserved		
	0001 0-6.25% 0010 6.25-12.50%		
	0010 6.23-12.30% 0011 18.75-25.00%		
	0100 31.25-37.50%		
	0100 31.23-37.50% 0101 37.50-43.75%		
	0110 43.75-50.00%		
	0110 43.75-30.00%		
	1000 56.25-62.50%		
	1000 56.25-62.30%		
	1001 62.30-08.73%		
	1010 68.73-73.00% 1011 75.00-87.50%		
	1101 75.00-87.50% 1100 75.00-81.25%		
	1100 75.00-81.25% 1101 81.25-87.50%		
	1101 81.23-87.30% 1110 87.50-93.75%		
	1110 87.50-93.75% 1111 93.75-100%		
	1111 /J./J ⁻ 100/0		

I/O Offset 14 - Processor Level 2.....RO

7-0 Level 2always reads 0 Reads from this register put the processor into the Stop Grant state (the VT8231 asserts STPCLK# to suspend the processor). Wake up from Stop Grant state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes to this register have no effect.

I/O Offset 15 - Processor Level 3.....RO

Reads from this register put the processor in the C3 clock state with the STPCLK# signal asserted. If Rx10[9] = 1 then the CPU clock is also stopped by asserting CPUSTP#. Wakeup from the C3 state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes to this register have no effect.

General Purpose Power Management Registers

I/O Offset 21-20 - General Purpose Status (GP STS). RWC

- **15 Reserved** always reads 0
- 14 USB Wake-Up Status (UWAK_STS) For STR / STD / Soff
- 13 AC97 Wake-Up Status (AWAK_STS)
 Can be set only in suspend mode
- 12 Battery Low Status (BL_STS)

 This bit is set when the BATLOW# input is asserted low.
- 11 Notebook Lid Status (LID_STS)

 This bit is set when the LID input detects the edge selected by Rx2C bit-7 (0=rising, 1=falling).
- 10 Thermal Detect Status (THRM_STS)
 This bit is set when the THRM input detects the edge selected by Rx2C bit-6 (0=rising, 1=falling).
- 9 USB Resume Status (USB_STS)
 This bit is set when a USB peripheral generates a resume event.
- 8 Ring Status (RING_STS)
 This bit is set when the RING# input is asserted low.
- 7 GPI18 Toggle Status (GPI18_STS) This bit is set when the GPI18 pin is toggled.
- GPI6 / EXTSMI6 Toggle Status (GPI6_STS)
 This bit is set when the GPI6 pin is toggled.
- 5 GPI5 Toggle Status (GPI5_STS)
 This bit is set when the GPI5 pin is toggled.
- 4 GPI4 / EXTSMI4 Toggle Status (GPI4_STS)
 This bit is set when the GPI4 pin is toggled.
- 3 GPI17 Toggle Status (GPI17_STS)
 This bit is set when the GPI17 pin is toggled.
- 2 GPI16 Toggle Status (GPI16_STS)
 This bit is set when the GPI16 pin is toggled.
- 1 GPI1 Toggle Status (GPI1_STS)
 This bit is set when the GPI1 pin is toggled.
- **EXTSMI# Status (EXT_STS)**This bit is set when the EXTSMI# pin is asserted low.

Note that the above bits correspond one for one with the bits of the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24: an SCI or SMI is generated if the corresponding bit of the General Purpose SCI or SMI Enable registers, respectively, is set to one.

The above bits are set by hardware only and can only be cleared by writing a one to the desired bit.

- **15 Reserved**always reads 0
- 14 Enable SCI on setting of the UWAK_STS bit def=0
- 13 Enable SCI on setting of the AWAK_STS bit def=0
- 12 Enable SCI on setting of the BL_STS bitdef=0
- 11 Enable SCI on setting of the LID STS bitdef=0
- 10 Enable SCI on setting of the THRM STS bit def=0
- 9 Enable SCI on setting of the USB_STS bitdef=0
- 8 Enable SCI on setting of the RING_STS bit .def=0
- 7 Enable SCI on setting of the GPI18_STS bit..def=0
- Enable SCI on setting of the GPI6_STS bit....def=0
 Enable SCI on setting of the GPI5_STS bit....def=0
- 4 Enable SCI on setting of the GPI4 STS bit....def=0
- 3 Enable SCI on setting of the GPI17_STS bit..def=0
- 2 Enable SCI on setting of the GPI16_STS bit..def=0
- 1 Enable SCI on setting of the GPI1_STS bit....def=0
- 0 Enable SCI on setting of the EXT_STS bit def=0

These bits allow generation of an SCI using a separate set of conditions from those used for generating an SMI.

I/O Offset 25-24 - General Purpose SMI Enable RW

15-14 Reservedalways reads 0

- 13 Enable SMI on setting of the AWAK_STS bit def=0
- 12 Enable SMI on setting of the BL_STS bitdef=0
- 11 Enable SMI on setting of the LID_STS bitdef=0
- 10 Enable SMI on setting of the THRM_STS bit def=0
- 9 Enable SMI on setting of the USB_STS bit ... $def{=}0$
- 8 Enable SMI on setting of the RING_STS bit def=0
- 7 Enable SMI on setting of the GPI18_STS bit.def=0
- Enable SMI on setting of the GPI6_STS bit...def=0
 Enable SMI on setting of the GPI5 STS bit...def=0
- 4 Enable SMI on setting of the GPI4_STS bit...def=0
- 3 Enable SMI on setting of the GPI17 STS bit...def=0
- 2 Enable SMI on setting of the GPI16_STS bit.def=0
- 1 Enable SMI on setting of the GPI1_STS bit...def=0
- 0 Enable SMI on setting of the EXT_STS bit....def=0

These bits allow generation of an SMI using a separate set of conditions from those used for generating an SCI.

Generic Power Management Registers

I/O Off	Set 29-28 - Global StatusRWC	
15	GPIO Range 1 Access Status (GR1_STS) def=0	
14	GPIO Range 0 Access Status (GR0_STS) def=0	
13	GP3 Timer Timeout Status (G3TO_STS) def=0	
12	GP2 Timer Timeout Status (G2TO_STS) def=0	
11	SERIRQ SMI Status (SSMI_STS) def=0	
10-9	Reserved always reads 0	
8	PCKRUN# Resume Status (PRRSM_STS) def=0	
	This bit is set when PCI bus peripherals wake up the	
	system by asserting PCKRUN#	
7	Primary IRQ Resume Status (PIRSM_STS). def=0	
	This bit is set at the occurrence of primary IRQs as	
	defined in Rx45-44 of PCI configuration space	
6	Software SMI Status (SW_SMI_STS) def=0	
	This bit is set when the SMI_CMD port (offset 2F) is	
	written.	
5	BIOS Status (BIOS_STS)def=0	
	This bit is set when the GBL_RLS bit is set to one	
	(typically by the ACPI software to release control of	
	the SCI/SMI lock). When this bit is reset (by writing	
	a one to this bit position) the GBL_RLS bit is reset at	
	the same time by hardware.	

- 4 Legacy USB Status (LEG_USB_STS)def=0 This bit is set when a legacy USB event occurs.
- **3 GP1 Timer Time Out Status (GP1TO_STS)**.. def=0 This bit is set when the GP1 timer times out.
- 2 GP0 Timer Time Out Status (GP0TO_STS).. def=0
 This bit is set when the GP0 timer times out.

Note that SMI can be generated based on the setting of any of the above bits (see the offset 2Ah Global Enable register bit descriptions in the right hand column of this page).

The bits in this register are set by hardware only and can only be cleared by writing a one to the desired bit position.

I/O Off	Set 2B-2A - Global EnableRW			
15	GPIO Range 1 SMI Enable (GR1_EN)def=0			
14	GPIO Range 0 SMI Enable (GR0_EN)def=0			
13	GP3 Timer Timeout SMI Enable (G3TO EN) def=0			
12	GP2 Timer Timeout SMI Enable (G2TO_EN) def=0			
11	SERIRQ SMI Enable (SSMI_EN)def=0			
10-9	Reservedalways reads 0			
8	PCKRUN# Resume Enable (PRRSM_EN) def=0			
	This bit may be set to trigger an SMI to be generated			
	when the PRRSM_STS bit is set.			
7	Primary IRQ Resume Enable (PIRSM_EN)def=0			
	This bit may be set to trigger an SMI to be generated			
	when the PIRSM_STS bit is set.			
6	SMI on Software SMI (SW_SMI_EN)def=0			
	This bit may be set to trigger an SMI to be generated			
	when the SW_SMI_STS bit is set.			
5	SMI on BIOS Status (BIOS_EN)def=0			
	This bit may be set to trigger an SMI to be generated			
	when the BIOS_STS bit is set.			
4	SMI on Legacy USB (LEG_USB_EN)def=0			
	This bit may be set to trigger an SMI to be generated			
	when the LEG_USB_STS bit is set.			
3	SMI on GP1 Timer Time Out (GP1TO_EN) .def=0			
	This bit may be set to trigger an SMI to be generated			
	when the GP1TO_STS bit is set.			
2	SMI on GP0 Timer Time Out (GP0TO_EN) .def=0			
	This bit may be set to trigger an SMI to be generated			
	when the GPOTO_STS bit is set.			
4				

- 1 SMI on Secondary Event Timer Time Out (STTO_EN)def=0
 This bit may be set to trigger an SMI to be generated when the STTO_STS bit is set.
- **O** SMI on Primary Activity (PACT_EN)def=0 This bit may be set to trigger an SMI to be generated when the PACT_STS bit is set.

I/O Offset 2D-2C - Global Control (GBL CTL)RW always reads 0 11 **IDE Secondary Bus Power-Off** 0 Disabledefault Enable 10 **IDE Primary Bus Power-Off** 0 Disabledefault 1 Enable always reads 0 Reserved **SMI Active (INSMI)** 0 SMI Inactive.....default SMI Active. If the SMIIG bit is set, this bit needs to be written with a 1 to clear it before the next SMI can be generated. **LID Triggering Polarity** 0 Rising Edgedefault 1 Falling Edge 6 **THRM# Triggering Polarity** 0 Rising Edgedefault 1 Falling Edge **Battery Low Resume Disable** 5 0 Enable resumedefault 1 Disable resume from suspend when BATLOW# is asserted SMI Lock (SMIIG) 0 Disable SMI Lock Enable SMI Lock (SMI low to gate for the next SMI)default Wait for Halt / Stop Grant Cycle for CPUSTP# Assertion 0 Don't wait.....default 1 This bit works with Rx4C[7] of PCI configuration space to control the start of CPUSTP# assertion. **Power Button Triggering Select** 0 SCI/SMI generated by PWRBTN# rising edgedefault 1 SCI/SMI generated by PWRBTN# low level Set to zero to avoid the situation where PB_STS is set to wake up the system then reset again by PBOR_STS to switch the system into the soft-off state. **BIOS Release (BIOS RLS)** This bit is set by legacy software to indicate release of the SCI/SMI lock. Upon setting of this bit, hardware automatically sets the GBL_STS bit. This bit is cleared by hardware when the GBL_STS bit cleared by software. Note that if the GBL_EN bit is set (bit-5 of the Power Management Enable register at offset 2), then setting this bit causes an SCI to be generated (because setting this bit causes the GBL_STS bit to be set). 0 SMI Enable (SMI_EN) 0 Disable all SMI generation.....default

I/O Offset 2F - SMI Command (SMI CMD)RW

7-0 SMI Command

Writing to this port sets the SW_SMI_STS bit. Note that if the SW_SMI_EN bit is set (see bit-6 of the Global Enable register at offset 2Ah), then an SMI is generated.

Enable SMI generation

I/O Offset 33-30 - Primary Activity Detect Status......RWC

These bits correspond to the Primary Activity Detect Enable bits in offset 37-34. All bits default to 0, are set by hardware only, and may only be cleared by writing 1s to the desired bit.

31-11	Reserved	always read 0
10	Audio Access Status	(AUD STS)
	Set if Audio is accessed.	· – /

- 9 Keyboard Controller Access Status..... (KBC_STS) Set if the KBC is accessed via I/O port 60h.
- 8 VGA Access Status......(VGA_STS) Set if the VGA port is accessed via I/O ports 3B0-3DFh or memory space A0000-BFFFFh.
- 7 Parallel Port Access Status......(LPT_STS) Set if the parallel port is accessed via I/O ports 278-27Fh or 378-37Fh (LPT2 or LPT1).
- 6 Serial Port B Access Status (COMB_STS) Set if the serial port is accessed via I/O ports 2F8-2FFh or 2E8-2Efh (COM2 and COM4 respectively).
- 5 Serial Port A Access Status (COMA_STS) Set if the serial port is accessed via I/O ports 3F8-3FFh or 3E8-3EFh (COM1 and COM3, respectively).
- 4 Floppy Access Status.....(FDC_STS) Set if the floppy controller is accessed via I/O ports 3F0-3F5h or 3F7h.
- 3 Secondary IDE Access Status.....(SIDE_STS) Set if the IDE controller is accessed via I/O ports 170-177h or 376h.
- 2 Primary IDE Access Status (PIDE_STS)
 Set if the IDE controller is accessed via I/O ports
 1F0-1F7h or 3F6h.
- 1 Primary Interrupt Activity Status..... (PIRQ_STS)
 Set on the occurrence of a primary interrupt (enabled via the "Primary Interrupt Channel" register at Function 4 PCI configuration register offset 44h).
- O PCI Master Access Status(DRQ_STS)
 Set on the occurrence of PCI master activity.

Note: The bits above correspond to the bits of the Primary Activity Detect Enable register at offset 34 (see right hand column of this page): if the corresponding bit is set in that register, setting of the above bits will cause the PACT_STS bit to be set (bit-0 of the Global Status register at offset 28). Setting of PACT_STS may be set up to enable a "Primary Activity Event": an SMI will be generated if PACT_EN is set (bit-0 of the Global Enable register at offset 2Ah) and/or the GP0 timer will be reloaded if the "GP0 Timer Reload on Primary Activity" bit is set (bit-0 of the GP Timer Reload Enable register at offset 38 on this page).

Note: Bits 2-9 above also correspond to bits of the GP Timer Reload Enable register (see offset 38 on next page): If bits are set in that register, setting a corresponding bit in this register will cause the GP1 timer to be reloaded.

I/O Offset 37-34 - Primary Activity Detect Enable...... RW

These bits correspond to the Primary Activity Detect Status bits in offset 33-30. Setting of any of these bits also sets the PACT_STS bit (bit-0 of offset 28) which causes the GP0 timer to be reloaded (if PACT_GP0_EN is set) or generates an SMI (if PACT_EN is set).

		is set).
31-11	Rese	rved always read 0
10		on Audio Status(KBC_EN)
	0	Don't set PACT_STS if AUD_STS is set def
	1	Set PACT_STS if AUD_STS is set
9	SMI	on Keyboard Controller Status (KBC_EN)
	0	Don't set PACT_STS if KBC_STS is set def
	1	Set PACT_STS if KBC_STS is set
8		on VGA Status(VGA_EN)
	0	Don't set PACT_STS if VGA_STS is set def
	1	Set PACT_STS if VGA_STS is set
7		on Parallel Port Status(LPT_EN)
	0	
_	1	Set PACT_STS if LPT_STS is set
6		on Serial Port B Status(COMB_EN)
	0	
_	1	Set PACT_STS if COMB_STS is set
5		on Serial Port A Status (COMA_EN) Don't set PACT_STS if COMA_STS is set. def
	0 1	Set PACT_STS if COMA_STS is set. def
4	_	on Floppy Status(FDC_EN)
•	0	Don't set PACT_STS if FDC_STS is set def
	1	Set PACT_STS if FDC_STS is setder
3	_	on Secondary IDE Status(SIDE_EN)
	0	Don't set PACT_STS if SIDE_STS is set def
	1	Set PACT_STS if SIDE_STS is set
2	SMI	on PrimaryIDE Status(PIDE_EN)
	0	• • • • • • • • • • • • • • • • • • • •
	1	Set PACT_STS if PIDE_STS is set
1	SMI	on Primary INTR Status(PIRQ_EN)
	0	Don't set PACT_STS if PIRQ_STS is set def
	1	Set PACT_STS if PIRQ_STS is set
Δ	CNAT	DOLM-14-1 CA-A-1
0		on PCI Master Status (DRQ_EN)
	U	Don't set PACT_STS if DRQ_STS is set def

1 Set PACT STS if DRQ STS is set

I/O Offset 3B-38 - GP Timer Reload EnableRW			
All bits	in this register default to 0 on power up.		
31-8	Reserved always read 0		
7	GP1 Timer Reload on KBC Access		
	0 Normal GP1 Timer Operationdefau	ılt	
	1 Setting of KBC_STS causes the GP1 timer	to	
	reload.		
6	GP1 Timer Reload on Serial Port Access		
	0 Normal GP1 Timer Operationdefau		
	1 Setting of COMA_STS or COMB_STS cause	es	
	the GP1 timer to reload.		
5	Reservedalways read	Ω	
3	Reserved arways read	U	
4	GP1 Timer Reload on <u>VGA Access</u>		
	0 Normal GP1 Timer Operationdefau	ılt	
	1 Setting of VGA_STS causes the GP1 timer	to	
	reload.		
3	GP1 Timer Reload on IDE/Floppy Access		
	0 Normal GP1 Timer Operationdefau	ılt	
		or	
	PIDE_STS causes the GP1 timer to reload.		
2	GP3 Timer Reload on GPIO Range 1 Access		
_	0 Normal GP3 Timer Operationdefau	ılt	
	1 Setting of GR1_STS causes the GP3 timer		
	reload.		
1	GP2 Timer Reload on GPIO Range 0 Access		
	0 Normal GP2 Timer Operationdefau	ılt	
	1 Setting of GR0_STS causes the GP2 timer	to	
	reload.		
0	CD0 Times Daland on Drimery Activity		
U	GP0 Timer Reload on Primary Activity 0 Normal GP0 Timer Operationdefau	.1+	
	1 Setting of PACT_STS causes the GP0 timer		
	reload. Primary activities are enabled via the		
	Primary Activity Detect Enable register (offs		
	37-34) with status recorded in the Primar		
	Activity Detect Status register (offset 33-30)	•	

I/O Off	set 40 – Extended I/O Trap Status	RW0
7-2	Reserved	always read
1	GPIO Ramge 3 Access Status	(GPR3_STS
0	GPIO Ramge 2 Access Status	
I/O Off	set 42 – Extended I/O Trap Enable	RV
7-2	Reserved	always read
1	SMI on GPIO Ramge 3 Access	(GPR3_EN
	0 Disable	defaul
	1 Enable	
0	SMI on GPIO Ramge 2 Access	(GPR2_EN
	0 Disable	defaul
	1 Enable	

General Purpose I/O Registers

<u>I/O Offset 44 – External SMI / GPI Input ValueRO</u>
Depending on the configuration, up to 8 external SCI/SMI
ports are available as indicated below. The state of these
inputs may be read in this register.

outs	may be read in this register.
7	RING# Input Value(GPI7 pin)
6	SMBALRT# Input Value (GPI6 pin)
5	PME# Input Value (GPI5 pin)
4	SLPBTN# Input Value (GPI4 pin)
3	General Purpose Input 17 Value (GPI17 pin)
2	General Purpose Input 16 Value (GPI16 pin)
1	General Purpose Input 1 Value(GPI1 pin)
0	EXTSMI# Input Value

<u>I/O Offset 45 – SMI / IRQ / Resume StatusRO</u>

- **7-5 Reserved**always reads 0
- 4 Latest PCSn Status
 - 0 Latest PCSn was an I/O Read
 - 1 Latest PCSn was an I/O Write
- 3 FM SMI or Serial SMI Status
- 2 Hardware Monitor IRQ Status
- 1 SMBus IRQ Status
- **0** SMBus Resume Status

I/O Off	<u>set 4B-48 - GPI Port Input Val</u>	ue (GPIVAL)RO
31-24	Reserved	always read 0
23-16	GPI[23-16] by Refresh Scan	Read Only
15-12	Reserved	always read 0
11-0	GPI[11-0] Input Value	Read Only
I/O Off	set 4F-4C - GPO Port Output	Value (GPOVAL)RW
Reads f	rom this register return the last	value written (held on
chip)		
31-26	Reserved	always reads 0
25-0	GPO[25-0] Output Value	\dots def = 3FFFFFFh

System Management Bus I/O-Space Registers

The base address for these registers is defined in Rx93-90 of the Function 4 PCI configuration registers. The System Management Bus I/O space is enabled for access by the system if RxD2[0] = 1.

I/O Offset 00 – SMBus Host StatusRWC				
7-5	Reser			
4	Failed Bus TransactionRWC			
	0	SMBus interrupt not caused by failed bus		
		transactiondefault		
	1	SMBus interrupt caused by failed bus		
		transaction. This bit may be set when the		
		KILL bit (I/O Rx02[1]) is set and can be		
		cleared by writing a 1 to this bit position.		
3	Bus (CollisionRWC		
	0	SMBus interrupt not caused by transaction		
		collisiondefault		
	1	SMBus interrupt caused by transaction		
		collision. This bit is only set by hardware and		
		can be cleared by writing a 1 to this bit		
		position.		
2	Devic	ee ErrorRWC		
	0	SMBus interrupt not caused by generation of		
		an SMBus transaction errordefault		
	1	SMBus interrupt caused by generation of an		
		SMBus transaction error (illegal command		
		field, unclaimed host-initiated cycle, or host		
		device timeout). This bit is only set by		
		hardware and can be cleared by writing a 1 to		
		this bit position.		
1		us InterruptRWC		
	0	SMBus interrupt not caused by host command		
	4	completiondefault		
	1	SMBus interrupt caused by host command		
		completion. This bit is only set by hardware		
		and can be cleared by writing a 1 to this bit		
0	TT = =4	position.		
0	nosi ()	BusyRO SMBus controller host interface is not		
	U	processing a commanddefault		
	1	SMBus host controller is busy processing a		
	1	command. None of the other SMBus registers		
		should be accessed if this bit is set.		
		should be accessed if this bit is set.		

I/O Off	set 011	n – SMBus Slave StatusRWC
7-6	Reser	•vedalways reads 0
5	Alert	StatusRWC
	0	SMBus interrupt not caused by SMBALERT#
		signaldefault
	1	SMBus interrupt caused by SMBALERT#
	•	signal. This bit will be set only if the Alert
		Enable bit is set in the SMBus Slave Control
		Register at I/O Offset R08[3]. This bit is only
		set by hardware and can be cleared by writing
		a 1 to this bit position.
4	Chod	ow 2 StatusRWC
4	Snau ()	SMBus interrupt not caused by address match
	U	
	1	to SMBus Shadow Address Port 2 default
	1	SMBus interrupt or resume event caused by
		slave cycle address match to SMBus Shadow
		Address Port 2. This bit is only set by
		hardware and can be cleared by writing a 1 to
		this bit position.
3	Shad	ow 1 StatusRWC
	0	SMBus interrupt not caused by address match
		to SMBus Shadow Address Port 1 default
	1	SMBus interrupt or resume event caused by
		slave cycle address match to SMBus Shadow
		Address Port 1. This bit is only set by
		hardware and can be cleared by writing a 1 to
		this bit position.
2	Slave	StatusRWC
	0	SMBus interrupt not caused by slave event
		matchdefault
	1	SMBus interrupt or resume event caused by
		slave cycle event match of the SMBus Slave
		Command Register at PCI Function 4
		Configuration Offset D3h (command match)
		and the SMBus Slave Event Register at
		SMBus Base + Offset 0Ah (data event match).
		This bit is only set by hardware and can be
		cleared by writing a 1 to this bit position.
1	Resei	
0		•
U	Siave ()	BusyRO SMBus controller slave interface is not
	U	
	1	processing data
	1	SMBus controller slave interface is busy
		receiving data. None of the other SMBus

registers should be accessed if this bit is set.

I/O Of	fset 02h – SMBus Host ControlRW	I/O Offset 03h - SMBus Host CommandRW		
7 6	Reserved	7-0 SMBUS Host Command		
_	bit (SMBus Host Status Register bit-0) can be used to identify when the SMBus controller has completed command execution. Reservedalways reads 0	0 Execute a WRITE command default 1 Execute a READ command		
5 4-2	Reservedalways reads 0 SMBus Command Protocol	I/O Offset 05h – SMBus Host Data 0RW		
1	000 Quick Read or Writedefault 001 Byte Read or Write 010 Byte Data Read or Write 011 Word Data Read or Write 100 Reserved 101 Block Read or Write 110 Reserved 111 Reserved Kill Transaction in Progress	The contents of this register are transmitted in the Data 0 field of SMBus host transaction writes. On reads, Data 0 bytes are stored here. 7-0 SMBUS Data 0		
	0 Normal host controller operationdefault	I/O Offset 06h - SMBus Host Data 1RW		
	1 Stop host transaction currently in progress. Setting this bit also sets the FAILED status bit (Host Status bit-4) and asserts the interrupt selected by the SMB Interrupt Select bit (Function 4 SMBus Host Configuration	The contents of this register are transmitted in the Data 1 field of SMBus host transaction writes. On reads, Data 1 bytes are stored here. 7-0 SMBUS Data 1		
	Register RxD2[3]).	I/O Offset 07h - SMBus Block DataRW		
0	Interrupt Enable 0 Disable interrupt generationdefault 1 Enable generation of interrupts on completion of the current host transaction.	Reads and writes to this register are used to access the 32-byte block data storage array. An internal index pointer is used to address the array. It is reset to 0 by reads of the SMBus Host Control register (I/O Offset 2) and incremented automatically by each access to this register. The transfer of block data into (read) or out of (write) this storage array during an SMBus transaction always starts at index address 0. 7-0 SMBUS Block Data		

7-4	Rese	rved always reads 0
3		us Alert Enable
_	0	Disabledefault
	1	Enable generation of an interrupt or resume
		event on the assertion of the SMBALERT#
		signal
2	SMB	us Shadow Port 2 Enable
	0	Disabledefault
	1	Enable generation of an interrupt or resume
		event on external SMBus master generation of
		a transaction with an address that matches the
		SMBus Slave Shadow Port 2 register (PCI
		function 4 configuration register RxD5).
1	SMB	us Shadow Port 1 Enable
	0	Disabledefault
	1	Enable generation of an interrupt or resume
		event on external SMBus master generation of
		a transaction with an address that matches the
		SMBus Slave Shadow Port 1 register (PCI
		function 4 configuration register RxD4).
0	SMB	us Slave Enable
	0	2134010
	1	Enable generation of an interrupt or resume
		event on external SMBus master generation of
		a transaction with an address that matches the
		SMBus host controller slave port of 10h, a
		command field which matches the SMBus
		Slave Command register (PCI function 4

configuration register RxD3), and a match of

one of the corresponding enabled events in the

SMBus Slave Event Register (I/O Offset 0Ah).

I/O Offset 09h - SMBus Shadow CommandRO

This register is used to store command values for external SMBus master accesses to the host slave and slave shadow ports.

I/O Offset 0Ah – SMBus Slave EventRW

This register is used to enable generation of interrupt or resume events for accesses to the host controller's slave port.

This field contains data bits used to compare against incoming data to the SMBus Slave Data Register (I/O Offset 0Ch). When a bit in this register is set and the corresponding bit the Slave Data register is also set, an interrupt or resume event will be generated if the command value matches the value in the SMBus Slave Command register and the access was to SMBus host address 10h.

I/O Offset 0Ch - SMBus Slave DataRO

This register is used to store data values for external SMBus master accesses to the shadow ports or the SMBus host controller's slave port.

Hardware Monitor I/O Space Registers

The I/O base address for access to the Hardware Monitor registers is defined in Rx71-70 of function 4 PCI configuration space. The hardware monitor I/O space is enabled for I/O access by the system if Rx74[0] = 1.

Offset 13 – Analog Data 15-8	<u>RW</u>
Offset 14 – Analog Data 7-0	RW
Offset 15 – Digital Data 7-0	RW
Offset 16 – Channel Counter	RW
Offset 17 – Data Valid & Channel Indicators	RW

Offset 1D - TSENS3 Hot Temperature High LimitRW Offset 1E - TSENS3 Hot Temp Hysteresis Lo Limit.....RW Offset 1F - TSENS3 Temperature Reading.....RW

Temperature sensor 3 is an internal bandgap-type sensor which has 10-bit resolution. The high order 8 bits are stored here and the low order 2 bits are stored in Rx49[7-6]. Only the high order 8 bits are used for comparison with the limit values in offsets 1D and 1E.

Offset 20 – TSENS1 Temperature ReadingRW

Temperature sensor 1 is an external sensor input on pin W13 which has 10-bit resolution. The high order 8 bits are stored here and the low order 2 bits are stored in Rx4B[7-6]. Only the high order 8 bits are used for comparison with the limit values in offsets 39 and 3A.

Offset 21 - TSENS2 Temperature ReadingRW

Temperature sensor 2 is an external sensor input on pin Y13 which has 10-bit resolution. The high order 8 bits are stored here and the low order 2 bits are stored in Rx49[5-4]. Only the high order 8 bits are used for comparison with the limit values in offsets 3D and 3E.

Offset 22 - VSENS1 (Pin U13) Voltage Reading (2.0V	/).RW
Offset 23 – VSENS2 (Pin V13) Voltage Reading (2.5V	/).RW
Offset 24 – Internal Core Voltage Reading (3.3V)	RW
Offset 25 – VSENS3 (Pin W14) Voltage Reading (5V)	RW
Offset 26 – VSENS4 (Pin Y14) Voltage Reading (12V)RW
Offset 27 Pecewood (12V Sense Voltage Peeding)	DW/

Offset 27 – Reserved (-12V Sense Voltage Reading)RW
Offset 28 - Reserved (-5V Sense Voltage Reading)RW

Offset 29 – FAN1 (Pin T12) Count Reading	<u>. RW</u>
Offset 2A – FAN2 (Pin U12) Count Reading	. RW
The above two locations store the number of counts of	of the
internal clock per fan revolution.	

merian crock per rain revolution.
Offset 2B – VSENS1 Voltage High Limit (CPU 2.0V) RW
Offset 2C - VSENS1 Voltage Low Limit (CPU 2.0V) RW
Offset 2D – VSENS2 Voltage High Limit (NB 2.5V) RW
Offset 2E – VSENS2 Voltage Low Limit (NB 2.5V) RW
Offset 2F – Internal Core Voltage High Limit (3.3V) RW
Offset 30 – Internal Core Voltage Low Limit (3.3V) RW
Offset 31 – VSENS3 Voltage High Limit (5V)RW
Offset 32 – VSENS3 Voltage Low Limit (5V)RW
Offset 33 – VSENS4 Voltage High Limit (12V)RW
Offset 34 – VSENS4 Voltage Low Limit (12V)RW
Offset 35 – Reserved (-12V Sense High Limit)RW
Offset 36 - Reserved (-12V Sense Low Limit)RW
Offset 37 – Reserved (-5V Sense High Limit)RW
Offset 38 - Reserved (-5V Sense Low Limit)RW
Offset 39 – TSENS1 Hot Temperature High Limit RW
Offset 3A – TSENS1Hot Temp Hysteresis Lo Limit RW
Offset 3B – FAN1 Fan Count LimitRW
Offset 3C - FAN2 Fan Count LimitRW
The above two locations store the number of counts of the
internal clock per fan revolution for the low limit of the fan
speed.

Offset 3D - TSENS2 Hot Temperature High Limit...... RW Offset 3E – TSENS2 Hot Temp Hysteresis Lo Limit..... RW Offset 3F – Stepping ID Number.....RW

For high limits, comparisons are "greater than" comparisons. For low limits, comparisons are "less than or equal" comparisons.

One consequence of the above is that if high limits are set to all ones (FFh or 111111111b), interrupts are disabled for high limits (i.e., interrupts will only be generated for cases when voltages are <u>equal to</u> or <u>below</u> the <u>low</u> limits).

Offset 40 - Hardware Monitor ConfigurationRW

7 Initialization

- 6 Chassis Intrusion Reset
 - 0 Normal operationdefault
 - 1 Reset the Chassis Intrusion pin
- 5-4 Reserved (R/W) default = 0
- 3 Hardware Monitor Interrupt Clear
 - 0 Normal operation
- 2 Reserved always reads 0
- 1 Hardware Monitor Interrupt Enable
 - O Disable hardware monitor interrupt output.. def
 - 1 Enable hardware monitor interrupt output
- 0 Start
 - O Place hardware monitor in standby mode.... def
 - 1 Enable startup of hardware monitor logic. At startup, limit checking functions and scanning begins. All high and low limits should be set prior to turning on this bit. Note: the hardware monitor interrupt output will not be cleared if the user writes a zero to this bit after an interrupt has occurred (the hardware monitor interrupt clear bit must be used for this purpose).

Offset	41 -Hardware Monitor Interrupt Status 1RO	Offset	43 -Hardware Monitor Interrupt Mask 1 RW
7	Fan 2 Error	7	Fan 2 Count Error Mask
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 Fan 2 count limit exceeded		1 Disable interrupt on error status bit set
6	Fan 1 Error	6	Fan 1 Count Error Mask
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 Fan 1 count limit exceeded		1 Disable interrupt on error status bit set
5	Reserved always reads 0	5	TSENS1 Thermal Alarm Control Mask
	•		0 Enable TSENS1 over-temp condition to
			control the thermal alarm (function 4 Rx40[7]
4	TSENS1 Temperature Error		automatic CPU clock throttling must be set)def
	0 No errordefault		1 Disable
	1 High or low hot temperature limit exceeded.	4	TSENS1 Temperature Error Mask
	The interrupt mode is determined by		0 Enable interrupt on error status bit set def
	Temperature Resolution register Rx4B[1-0].		1 Disable interrupt on error status bit set
3	VSENS3 Voltage Error (5V)	3	VSENS3 Voltage Error Mask (5V)
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 High or low limit exceeded		1 Disable interrupt on error status bit set
2	Internal Core VCC Voltage Error (3.3V)	2	Internal Core VCC Voltage Error Mask (3.3V)
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 High or low limit exceeded		1 Disable interrupt on error status bit set
1	VSENS2 Voltage Error (2.5V NB Core Voltage)	1	VSENS2 Voltage Error Mask (2.5V NB Core)
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 High or low limit exceeded		1 Disable interrupt on error status bit set
0	VSENS1 Voltage Error (2.0V CPU Core Voltage)	0	VSENS1 Voltage Error Mask (2.0V CPU Core)
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 High or low limit exceeded		1 Disable interrupt on error status bit set
0.00	40 H 1 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00	44 TI 1 NO 14 TA AND 10 DIV
	42 -Hardware Monitor Interrupt Status 2RO		44 – Hardware Monitor Interrupt Mask 2 RW
7	TSENS3 (Internal Bandgap) Temp Error	7	TSENS3 Temperature Error Mask
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 High or low hot temperature limit exceeded.	_	1 Disable interrupt on error status bit set
	Interrupt mode is determined by Rx4B[5-4].	6	TSENS3 Thermal Alarm Control Mask
6-5	Reserved always reads 0		0 Enable TSENS3 over-temp condition to
4	Chassis Error		control the thermal alarm (function 4 Rx40[7]
	0 No errordefault		automatic CPU clock throttling must be set) def
_	1 Chassis Intrusion has gone high	_	1 Disable
3	TSENS2 Temperature Error	5	TSENS2 Thermal Alarm Control Mask
	0 No errordefault		0 Enable TSENS2 over-temp condition to
	1 High or low hot temperature limit exceeded.		control the thermal alarm (function 4 Rx40[7]
2.1	Interrupt mode is determined by Rx4B[3-2].		automatic CPU clock throttling must be set) def
2-1	Reserved always reads 0		1 Disable
0	VSENS4 Voltage Error (12V)	4	Chassis Error Mask
	0 No errordefault		0 Enable interrupt on error status bit set def
NT 4	1 High or low limit exceeded	•	1 Disable interrupt on error status bit set
	When either status register is read, status conditions in	3	TSENS2 Temperature Error Mask
that register are reset. In the case of voltage priority			0 Enable interrupt on error status bit set def
indications, if two or more voltages were out of limits, then			1 Disable interrupt on error status bit set
	indication would automatically be generated if it was	2-1	Reserved always reads 0
	adled during interrupt service. Errant voltages may be	0	VSENS4 Voltage Error Mask (12V)
	d in the control register until the operator has time to		0 Enable interrupt on error status bit set def
clear th	e errant condition or set the limit higher or lower.		1 Disable interrupt on error status bit set

Offset	47 –Hardware Monitor Fan ConfigurationRW	Offset -	<u> 4B –Temperature Interr</u>
7-6	Fan 2 RPM Control	7-6	TSENS1 Value Low-O
	00 Divide by 1		Upper 8 bits are stored in
	01 Divide by 2default	5-4	TSENS3 Hot Temp Int
	10 Divide by 4	3-2	TSENS2 Hot Temp Int
	11 Divide by 8	1-0	TSENS1 Hot Temp Int
5-4	Fan 1 RPM Control		The following applies to
	00 Divide by 1		00 Default Interrupt
	01 Divide by 2default		the temperature g
	10 Divide by 4		interrupt will be c
	11 Divide by 8		is read, but will
3-0	Reserved always reads 0		next conversion i
0.00	40 ** 1		continue to be ge
	49 -Hardware Monitor Temp Low Order Value RW		goes below the hy
7-6	TSENS3 Value Low-Order Bits		01 One-Time Interru
	Upper 8 bits are stored in offset 1Fh		generated if the
5-4	TSENS2 Value Low-Order Bits		hot limit. The in
	Upper 8 bits are stored in offset 21h		the status register
3	Over Temperature Active Low for PMU to		will not be genera
	Control Stop Clock		drops below the h
	0 Disabledefault		10 Comparator mode
	1 Enable		temperature goes
2	Chassis Active Low Output 20 msec		interrupt remains
	0 Disabledefault		goes below the ho
	1 Enable		11 Default Interrupt
1	Interrupt Active High Output		1
	0 Disabledefault		
	1 Enable		
0	Reserved always reads 0		

Offset	4B –Temperature Interrupt Configuration RW	
7-6	TSENS1 Value Low-Order Bitsdef = 00	
	Upper 8 bits are stored in offset 20h	
5-4	TSENS3 Hot Temp Interrupt Mode def = 01	
3-2		
1-0	TSENS1 Hot Temp Interrupt Mode def = 01	
	The following applies to each of the above 3 fields	
	00 Default Interrupt Mode. An interrupt occurs if	
	the temperature goes above the hot limit. The	
	interrupt will be cleared once the status register	
	is read, but will be generated again when the	
	next conversion is completed. Interrupts will	
	continue to be generated until the temperature	
	goes below the hysteresis limit.	
	01 One-Time Interrupt Mode. An interrupt is	
	generated if the temperrature goes above the	
	hot limit. The interrupt will be cleared when	
	the status register is read. Another interrupt	
	will not be generated until the temperature first	
	drops below the hysteresis limitdefault	
	10 Comparator mode. An interrupt occurs if the	
	temperature goes above the hot limit. This	
	interrupt remains active until the temperature	
	goes below the hot limit (i.e., no hysteresis).	
	11 Default Interrupt Mode (same as 00)	

Function 5 & 6 Registers - AC97 Audio & Modem Codecs

The codec interface is hardware compatible with AC97 and SoundBlaster Pro. There are two sets of software accessible registers: PCI configuration registers and I/O registers. The PCI configuration registers for the <u>Audio Codec</u> are located in the <u>function 5</u> PCI configuration space of the VT8231. The PCI configuration registers for the <u>Modem Codec</u> are located in the <u>function 6</u> PCI configuration space. The I/O registers are located in the system I/O space.

PCI Configuration Space Header - Function 5 Audio

Offset 1	-0 - Vendor IDRO
0-7	Vendor ID (1106h = VIA Technologies)
Offset 3	3-2 - Device IDRO
0-7	Device ID (3058h = VT8231 Audio Codec)
Offset 5	S-4 - CommandRW
15-10	Reserved
9	Fast Back-to-Back fixed at 0
8	SERR# Enable fixed at 0
7	Address Steppingfixed at 0
6	Parity Error Response
5	VGA Palette Snoopfixed at 0
4	Memory Write and Invalidatefixed at 0
3	Special Cycle Monitoringfixed at 0
2	Bus Master fixed at 0
1	Memory Spacefixed at 0
0	I/O Space default=0 (disabled)
Offset 7	7-6 - StatusRWC
15	Detected Parity Error fixed at 0
14	Signalled System Errorfixed at 0
13	Received Master Abortfixed at 0
12	Received Target Abortfixed at 0
11	Signalled Target Abortfixed at 0
10-9	DEVSEL# Timing
	00 Fast
	01 Medium fixed
	10 Slow
	11 Reserved
8	Data Parity Error fixed at 0
7	Fast Back-to-Back Capablefixed at 0
6-5	Reserved always reads 0
4	PM 1.1 fixed at 1
3-0	Reserved always reads 0
Offset 8	3 - Revision ID (40h) RO

Offset 9	9 - Programming Interface (00h)RO
Offset A	A - Sub Class Code (01h=Audio Device)RO
Offset 1	3 - Base Class Code (04h=Multimedia Device) RO
Offset I	O - Latency Timer (00h)RO
Offset 1	E - Header Type (00h)RO
Offset 1	F - BIST (00h)RO
Offset 1	3-10 - Base Address 0 – SGD Control / Status RW
	Reservedalways reads 0
	Base Address default = 00h
7-0	00000001b (256 bytes)
Offset 1	17-14 - Base Address 1 – FM NMI Status RW
31-16	Reserved always reads 0
15-2	Base Address default = 0000h
1-0	01b (4 bytes)
Offset 1	B-18 - Base Address 2 – MIDI PortRW
31-16	Reserved always reads 0
15-2	Base Address default = 0330h
1-0	01b (4 bytes)
	2F-2C – Subsystem ID / Sub Vendor IDRO* egister is RW if function 5-6 Rx42[5] = 1
Offset 3	34 – Capture Pointer (Default = C0h)RO
	34 – Capture Pointer (Default = C0h)RO 3C - Interrupt LineRW
	BC - Interrupt Line
Offset 3	Reservedalways reads 0 Audio Interrupt Routing
Offset 3	BC - Interrupt Line
Offset 3	Reserved always reads 0 Audio Interrupt Routing 0000 Disabled default 0001 IRQ1
Offset 3	Reserved always reads 0 Audio Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved
Offset 3	Reserved always reads 0 Audio Interrupt Routing 0000 Disabled default 0001 IRQ1
Offset 3	Reserved always reads 0 Audio Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3
Offset 3	Reserved always reads 0 Audio Interrupt Routing default 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6
Offset 3	RC - Interrupt Line
Offset 3	RC - Interrupt Line
Offset 3	RC - Interrupt Line
Offset 3	Reserved always reads 0 Audio Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ9
Offset 3	RC - Interrupt Line
Offset 3	Reserved
Offset 3	Reserved
Offset 3	Reserved
Offset 3 7-4 3-0	Reserved
Offset 3 7-4 3-0	Reserved

Silicon Revision Code

7-0

PCI Configuration Space Header – Function 6 Modem

Offset 1	<u>-0 - Vendor IDRO</u>	
0-7	Vendor ID (1106h = VIA Technologies)	
Offset 3	-2 - Device IDRO	
0-7	Device ID (3068h = 8231 Modem Codec)	
Offset 5	-4 - CommandRW	
15-10	Reserved always reads 0	
9	Fast Back-to-Back fixed at 0	
8	SERR# Enable fixed at 0	
7	Address Steppingfixed at 0	
6	Parity Error Response	
5	VGA Palette Snoop	
4	Memory Write and Invalidatefixed at 0	
3	Special Cycle Monitoringfixed at 0	
2	Bus Master	
1	Memory Space	
0	I/O Space default=0 (disabled)	
Offset 7	7-6 - StatusRWC	
15	Detected Parity Error fixed at 0	
14	Signalled System Errorfixed at 0	
13	Received Master Abortfixed at 0	
12	Received Target Abortfixed at 0	
11	Signalled Target Abortfixed at 0	
10-9	DEVSEL# Timing	
	00 Fast	
	01 Medium fixed	
	10 Slow	
	11 Reserved	
8	Data Parity Error fixed at 0	
7	Fast Back-to-Back Capablefixed at 0	
6-0	Reserved always reads 0	
Offset 8	- Revision ID (nnh)RO	
7-0	Silicon Revision Code (0 indicates first silicon)	
Offset 9	- Programming Interface (00h)*RO	
Offset A	A - Sub Class Code (80h)*RO	
Offset F	B - Base Class Code (07h)*RO	
*Registers 9-B are RW if function 5-6 Rx44[5] = 1		
Offset D - Latency Timer (00h)RO		
Offset I	E - Header Type (00h)RO	
Offset I	F - BIST (00h)RO	

Onset 1	.5-10 - Dase Address v – SGD Control / Status Kw
31-16	Reserved always reads 0
15-8	Base Address default = 00h
7-0	00000001b (256 bytes)
Offset 1	F-1C - Base Address 3 – Codec Reg Shadow RW
31-16	Reserved always reads 0
15-8	Base Address default = 00h
7-0	00000001b (256 bytes)
Offset 3	C - Interrupt LineRW
7-4	Reserved always reads 0
3-0	Audio Interrupt Routing
	0000 Disableddefault
	0001 IRQ1
	0010 Reserved
	0011 IRQ3
	0100 IRQ4
	0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	1000 IRQ8
	1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1101 IRQ13
	1110 IRQ14
	1111 Disabled
Offset 3	D - Interrupt Pin (03h) RO
Offset 3	E - Minimum Grant (00h)RO
Offset 3	F - Maximum Latency (00h)RO

Function 5 & 6 Codec-Specific Configuration Registers

<u> Jiffset 4</u>	10 – AC97	<u> Interface StatusRO</u>
7-5	Reserve	dalways reads 0
4	AC97 C	odec Low-Power StatusRO
	0 A	C97 Codec not in low-power mode
	1 A	C97 Codec in low-power mode
3	Reserve	d always reads 0
2	Seconda	ry Codec 2 (CID=10b) Ready StatusRO
	0 Co	odec Not Ready
	1 Co	odec Ready (AC97 ctrlr can access codec)
1	Seconda	ry Codec 1 (CID=01b) Ready StatusRO
	0 Co	odec Not Ready
	1 Co	odec Ready (AC97 ctrlr can access codec)
0	Primary	Codec Ready StatusRO
	0 C	odec Not Ready
	1 Co	odec Ready (AC97 ctrlr can access codec)

Offset	41 – AC Link Interface ControlRW
7	AC-Link Interface Enable (ENAC97)
	0 Disabledefault
	1 Enable
6	AC-Link Reset (ACRST#)
	0 Assert AC-Link Resetdefault
	1 De-assert AC-Link Reset
5	AC-Link Sync (RSYNCHI)
	0 Release SYNC default
	1 Force SYNC High
4	AC-Link Serial Data Out
	0 Release SDOdefault
	1 Force SDO High
	on 5 Only (Reserved in Function 6):
3	Variable-Sample-Rate On-Demand Mode
	0 Disabledefault
	1 Enable
	Bit valid in function 5 only (reserved in function 6)
2	AC Link SGD Read Channel PCM Data Output
	0 Disabledefault
	1 Enable
	Bit valid in function 5 only (reserved in function 6)
1	AC Link FM Channel PCM Data Out (SELFM)
	0 Disabledefault
	1 Enable
	Bit valid in function 5 only (reserved in function 6)
0	AC Link SB PCM Data Output (SELSB)
	0 Disabledefault
	1 Enable
	Bit valid in function 5 only (reserved in function 6)

<u> Jiiset</u>	42 – Function EnableRW (Function 5)		44 – MC9/ Interface Control RO (Function 5)
Offset	42 – Function EnableRO (Function 6)	Offset	44 - MC97 Interface Control RW (Function 6)
7	MIDI PnP	7	Function 5 AC-Link Interface Access
•	0 MIDI Port Address Selected by Rx43[3-2]. def		0 Disable default
	1 MIDI Port Address Selected by IOBase2		1 Enable
6	Mask MIDI IRQ	6	Secondary Codec Support
U	0 Disabledefault		0 Disable default
	1 Enable		1 Enable
5	Function 5 Config Reg Rx2C Writable	5	Function 6 Config Reg Rx9-B Writable
3	0 F5Rx2C-2F ROdefault		0 F6Rx9-B ROdefault
	1 F5Rx2C-2F RW		1 F6Rx9-B RW
4	Gate SoundBlaster PCM When FIFO Empty	4	Function 6 Config Reg 2Ch Writable
7	0 Disabledefault	-	0 F6Rx2C-2F ROdefault
	1 Enable		1 F6Rx2C-2F RW
3	Game Port Enable (ENGAME)	3-0	Reservedalways reads 0
3	0 Disabledefault		110502 104
	1 Enable (200-207h)		
2	FM Enable (ENFM)		
2	0 Disabledefault	Offset	48 – FM NMI Control RW (Function 5)
		Offset	48 – FM NMI ControlRO (Function 6)
1	` /	7-3	Reserved always reads 0
1	MIDI Enable (ENMIDI) 0 Disabledefault	2	FM IRQ Select
	1 Enable	_	0 Route FM Trap interrupt to NMI default
0			1 Route FM Trap interrupt to SMI
0	SoundBlaster Enable (ENSB) 0 Disabledefault	1	FM SGD Data for SoundBlaster Mixing
		-	0 Disable default
	1 Enable		1 Enable
		0	FM Trap Interrupt
		v	0 Enable default
Offset	43 – Plug and Play ControlRW (Function 5)		1 Disable
	43 – Plug and Play ControlRO (Function 6)		1 District
		Offcot	4B-4A – Game Port Base Address . RW (Function 5)
7-6	SoundBlaster IRQ Select (SBIRQS[1:0])		
	00 IRQ5default		4B-4A – Game Port Base Address RO (Function 6)
	01 IRQ7	15-0	Game Port Base Address default = 0
	10 IRQ9		
	11 IRQ10		
5-4	SoundBlaster DRQ Select (SBDRQS[1:0])		
	00 DMA Channel 0		
	01 DMA Channel 1default		
	10 DMA Channel 2		
	11 DMA Channel 3		
3-2	MIDI Decode Select (MIDIBASE)		
	00 300-303h		
	01 310-313h		
	10 320-323h		
	11 330-333hdefault		
1-0	SoundBlaster Decode Select (SBBASE)		
	00 220-22Fhdefault		
	01 240-24Fh		
	01 240-24Fh 10 260-26Fh		
	01 240-24Fh		

Function 5 I/O Base 0 Regs - DXSn Scatter/Gather DMA

"n" is 0-3 for DXS channels 0-3

I/O Off	<u> Set n0 – DXSn SGD Read Channel StatusRWC</u>
7	SGD Active (0 = completed or terminated)RO
6-3	Reserved always reads 0
2	SGD StoppedRO
1	SGD EOLRWC
0	SGD FlagRWC
T/O O8	Prot m1 DVCm CCD Dood Channel Control DW
	Set n1 – DXSn SGD Read Channel ControlRW
7	SGD Trigger
	0 No effect 1 Trigger SGD Operation
	1 1118801 2 02 0 permitten
6	SGD Terminate
	0 No effect
_	1 Terminate SGD Operation
5	Auto Restart
	0 Stop SGD Operation at EOL
4	1 Restart SGD Operation at EOL
4	SGD Pause 0 Release SGD pause and resume the transfer
	•
	from the paused line
	1 Pause SGD read operation (SGD pointer stays
2.2	at the current address)
3-2	Reserved always reads 0
1	Interrupt on EOL @ End of Block
	0 Disabledefault
0	1 Enable
0	Interrupt on FLAG @ End-of-Blk O Disable default
	o Bisucio
	1 Enable
I/O Off	Set n2 – DXSn Read Channel Left VolumeRW
7-6	Reserved always reads 0
5-0	Left Volume Control
	000000 0 dbdefault
	000111 -10.5 db
	011111 -46.5 dbdefault
	111111 muted (instead of –94.5 db)
	· · · · · · · · · · · · · · · · · · ·
<u> I/O Off</u>	Set n3 – DXSn Read Channel Right VolumeRW
7-6	Reserved always reads 0
5-0	Right Volume Control
	000000 0 dbdefault
	000111 -10.5 db
	011111 -46.5 dbdefault
	111111 muted (instead of –94.5 db)

I/O Offset n7-n4 – DXSn SGD Table Pointer Base RW			
31-0	SGD Table Pointer Base Address (even addr) W		
	Current Pointer AddressR		
I/O Off	set nB-n8 – DXSn Read Channel FormatRO		
31-24	Stop Index (SGD operation will stop at end of entry)		
23-22	Reserved always reads 0		
21-20	PCM Format		
	00 8-Bit Mono Formatdefault		
	01 8-Bit Stereo Format		
	10 16-bit Mono Formatdefault		
	11 16-bit Stereo Format		
19-0	DXSx Channel Sample Rate		
I/O Off	set nF-nC – DXSn SGD Count PointerRO		
31-24	Current SGD Index		
23-0	Current SGD Count		

SGD Table Format

<u>63</u>	<u>62</u>	<u>61</u>	<u>60-56</u>	<u>55-32</u>	<u>31-0</u>
EOL	FLAG	STOP	-reserved-	Base	Base
		(FM		Count	Address
		Chan		[23:0]	[31:0]
		Only)			

- **EOL** End Of Link. 1 indicates this block is the last of the link. If the channel "Interrupt on EOL" bit is set, then an interrupt is generated at the end of the transfer.
- **FLAG** Block Flag. If set, transfer pauses at the end of this block. If the channel "Interrupt on FLAG" bit is set, then an interrupt is generated at the end of this block.
- **STOP** <u>Block Stop.</u> If set, transfer pauses at the end of this block. To resume the transfer, write 1 to Rx?0[2].

I/O Off	fset 40 – 3D Channel SGD StatusRWC	I/O Off	<u>set 47-44 – 3D Channel SGD Table Pointer RW</u>
7	SGD Active (0 = completed or terminated)RO	31-0	SGD Table Pointer Base Address (even addr) W
6-3	Reserved always reads 0		Current Pointer AddressR
2	SGD StoppedRO		
1	SGD EOLRWC		set 4B-48 – 3D Channel SGD Slot-SelectRW
0	SGD FlagRWC	31-24	Stop Index (SGD operation will stop at end of entry)
- 10 0 0		23-20	Slot 9 Data Select
	fset 41 – 3D Channel SGD ControlRW		0000 No data assigned to slot 9
7	SGD Trigger WO (always reads 0)		0001 1 st data in the sample is assigned to slot9
	0 No effect		0010 2 nd data in the sample is assigned to slot9
	1 Trigger SGD Operation		0011 3 rd data in the sample is assigned to slot9
6	SGD Terminate WO (always reads 0)		0100 4 th data in the sample is assigned to slot9
	0 No effect		0101 5 th data in the sample is assigned to slot9
	1 Terminate SGD Operation		0110 6 th data in the sample is assigned to slot9
5	Auto Restart		0111 -invalid-
	0 Stop SGD Operation at EOL		1xxx -invalid-
	1 Restart SGD Operation at EOL	19-16	Slot 6 Data Select
4	SGD Pause	15-12	Slot 8 Data Select
	0 Release SGD pause and resume the transfer	11-8	Slot 7 Data Select
	from the paused line	7-4	Slot 4 Data Select
	1 Pause SGD read operation (SGD pointer stays	3-0	Slot 3 Data Select
	at the current address)	T/O O66	Prot AE AC 2D Character County DO
3-2	Reserved always reads 0		set 4F-4C – 3D Channel SGD Current CountRO
1	Interrupt on EOL @ End of Block		Current SGD Index
	0 Disabledefault	23-0	Current SGD Count
	1 Enable		
0	Interrupt on FLAG @ End-of-Blk		
	0 Disabledefault		
	1 Enable		
I/O Off	fset 42 – 3D Channel SGD FormatRW		
<u> 7</u>	PCM Format		
,	0 8-bitdefault		
	0 8-bitderaunt 1 16-bit		
6-4	# of Channels		
0-4	000 -invaliddefault		
	001 One channel		
	010 Two channels		
	011 Three channels		
	100 Four channels		
	101 Five channels		
	110 Six channels		
	110 Six channels 111 -invalid-		
3-0	Reserved always reads 0		
3-0	Acset veu atways feads 0		
I/O Off	fset 43 – ScratchRW		
	No Assigned Hardware Function		

I/O Off	set 50 – FM Channel SGD StatusRWC
7	SGD Active (0 = completed or terminated)RC
6-3	Reserved always reads (
2	SGD StoppedRC
1	SGD EOLRWC
0	SGD FlagRWC
I/O Off	set 51 – FM Channel SGD ControlRW
7	SGD Trigger WO (always reads 0)
	0 No effect
	1 Trigger SGD Operation
6	SGD Terminate WO (always reads 0)
	0 No effect
	1 Terminate SGD Operation
5-4	Reserved (Do Not Program) always write 0's
3	SGD Pause
	0 Release SGD pause and resume the transfer
	from the paused line
	1 Pause SGD read operation (SGD pointer stays
• •	at the current address)
2-0	Reserved (No Function) RW
I/O Off	set 52 – FM Channel SGD TypeRW
7	Auto Restart
	0 Stop SGD Operation at EOL
	1 Restart SGD Operation at EOL
6-4	Reserved always reads (
3-2	Interrupt Select
	00 Interrupt at last line PCI read
	01 Interrupt at last sample sent
	10 Interrupt at less than one line to send
	11 -reserved-
1	Interrupt on EOL @ End of Block
	0 Disabledefaul 1 Enable
0	
0	Interrupt on FLAG @ End-of-Blk O Disabledefaul
	1 Enable
	1 Ellable
I/O Off	set 57-54 – FM Channel SGD Table PointerRW
31-0	SGD Table Pointer Base Address (even addr)W
	Current Pointer Address
I/O Off	set 5F-5C – FM Channel SGD Current CountRC
31-24	Current SGD Index
_	Current SGD Count

<u> 1/O OII</u>	set 60 – Wr Channel 0 SGD StatusRWC	<u>1/O Off</u>	set 70 – Wr Channel I SGD Status RWC
7	SGD Active (0 = completed or terminated) RO	7	SGD Active (0 = completed or terminated) RO
6	SGD PausedRO	6	SGD PausedRO
5-4	Reserved always reads 0	5-4	Reserved always reads 0
3	SGD Trigger Queued (transaction will restart after	3	SGD Trigger Queued (transaction will restart after
	EOL) RO		EOL) RO
2	SGD StoppedRO	2	SGD StoppedRO
1	SGD EOL (clear interrupt if Rx62[1] is set) RWC	1	SGD EOL (clear interrupt if Rx62[1] is set) RWC
0	SGD Flag (clear interrupt if Rx62[0] is set)RWC	0	SGD Flag (clear interrupt if Rx62[1] is set) RWC
U	SGD Flag (Clear interrupt if Kx02[0] is set)KWC	U	SGD Flag (clear interrupt if Kx02[0] is set) KWC
I/O Off	set 61 – Wr Channel 0 SGD ControlRW	I/O Off	fset 71 – Wr Channel 1 SGD ControlRW
7	SGD Trigger WO (always reads 0)	7	SGD TriggerWO (always reads 0)
,	0 No effect	,	0 No effect
	1 Trigger SGD Operation		1 Trigger SGD Operation
6	SGD TerminateWO (always reads 0)	6	SGD TerminateWO (always reads 0)
6	0 No effect	U	0 No effect
5 4	1 Terminate SGD Operation	<i>5</i> 4	1 Terminate SGD Operation
5-4	Reserved	5-4	Reserved always reads 0
3	SGD Pause	3	SGD Pause
	0 Release SGD pause and resume the transfer		0 Release SGD pause and resume the transfer
	from the paused line		from the paused line
	1 Pause SGD read operation (SGD pointer stays		1 Pause SGD read operation (SGD pointer stays
	at the current address)		at the current address)
3-2	Reserved always reads 0	3-2	Reserved always reads 0
I/O Off	set 62 – Wr Channel 0 SGD FormatRW	I/O Off	fset 72 – Wr Channel 1 SGD FormatRW
7	Auto Restart	7	Auto Restart
•		,	
•	0 Stop SGD Operation at EOL	,	0 Stop SGD Operation at EOL
	0 Stop SGD Operation at EOL1 Restart SGD Operation at EOL		0 Stop SGD Operation at EOL1 Restart SGD Operation at EOL
6	 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 	6	 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO
	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disabledefault		 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6	 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable default 1 Enable
6 5	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disabledefault 1 Enable PCM 8/16 Format (0=8bit, 1=16bit) PCM Mono/Stereo Format (0=Mono, Stereo) Recording Source	6	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
5 4 3-2	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	5 4 3-2	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
5 4 3-2	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	5 4 3-2	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
5 4 3-2	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	5 4 3-2	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4 3-2	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4 3-2	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4 3-2	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4 3-2	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4 3-2 1 0	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4 3-2	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4 3-2 1 0	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4 3-2 1 0	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4 3-2 1 0	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4 3-2 1 0	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4 3-2 1 0	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4 3-2 1 0	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4 3-2 1 0 I/O Off 31-0	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4 3-2 1 0 I/O Off 31-0	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4 3-2 1 0 I/O Off 31-0	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4 3-2 1 0 <u>I/O Offi</u> 31-0	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable
6 5 4 3-2 1 0 I/O Off 31-0 I/O Off 31-24	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable	6 5 4 3-2 1 0 I/O Offi 31-0 I/O Offi 31-24	0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Recording FIFO 0 Disable

<u> Offset I</u>	E3-E0 – AC97 Controller Command / StatusRW	<u>Offset</u>	<u>F3-F0 – SGD Status ShadowRO</u>
31-30	Codec IDRW	31	Reservedalways reads 0
	00 Select Primary Codec	30	Write Chan 1 SGD STOP Shadow(Rx70[2])
	01 Select Secondary Codec 01	29	Write Chan 1 SGD EOL Shadow(Rx70[1])
	10 Select Secondary Codec 10	28	Write Chan 1 SGD FLAG Shadow(Rx70[0])
	11 -reserved-	27	Reservedalways reads 0
29	Reserved always reads 0	26	Write Chan 0 SGD STOP Shadow(Rx60[2])
28	AC97 Controller BusyRO	25	Write Chan 0 SGD EOL Shadow(Rx60[1])
	O Primary Codec is ready for a register access command	24	Write Chan 0 SGD FLAG Shadow(Rx60[0])
	1 AC97 Controller is sending a command to the	23	Reservedalways reads 0
	primary codec (commands are not accepted)	22	FM Read Chan SGD STOP Shadow(Rx50[2])
27	Reserved always reads 0	21	FM Read Chan SGD EOL Shadow(Rx50[1])
26	Secondary Codec 2 Data / Status ValidRWC	20	FM Read Chan SGD FLAG Shadow(Rx50[0])
	0 Not Valid	19	Reservedalways reads 0
	1 Valid (OK to Read bits 0-23)	18	3D Read Chan SGD STOP Shadow(Rx40[2])
25	Secondary Codec 1 Data / Status ValidRWC	17	3D Read Chan SGD EOL Shadow(Rx40[1])
	0 Not Valid	16	3D Read Chan SGD FLAG Shadow(Rx40[0])
	1 Valid (OK to Read bits 0-23)		
24	Primary Codec Data / Status ValidRWC	15	Reservedalways reads 0
	0 Not Valid	14	DX3 Read Chan SGD STOP Shadow(Rx30[2])
	1 Valid (OK to Read bits 0-23)	13	DX3 Read Chan SGD EOL Shadow(Rx30[1])
23	Codec Command Register Read/Write Mode RW	12	DX3 Read Chan SGD FLAG Shadow (Rx30[0])
	0 Select Codec command register write mode	11	Reservedalways reads 0
	1 Select Codec command register read mode	10	DX2 Read Chan SGD STOP Shadow(Rx20[2])
22-16	Codec Command Register Index [7:1] RW	9	DX2 Read Chan SGD EOL Shadow(Rx20[1])
	Index of the AC97 codec command register to access	8	DX2 Read Chan SGD FLAG Shadow (Rx20[0])
	(in the attached codec). Data must be written before		
	or at the same time as Index as writing to the index	7	Reservedalways reads 0
	triggers the AC97 controller to access the addressed	6	DX1 Read Chan SGD STOP Shadow(Rx10[2])
	codec register over the AC-link interface.	5	DX1 Read Chan SGD EOL Shadow(Rx10[1])
15-0	Codec Command Register Data / Status RW	4	DX1 Read Chan SGD FLAG Shadow(Rx10[0])
	W Codec Command Register Data	3	Reservedalways reads 0
	R Codec Status Register Data	2	DX0 Read Chan SGD STOP Shadow(Rx00[2])
	5	1	DX0 Read Chan SGD EOL Shadow(Rx00[1])
		0	DX0 Read Chan SGD FLAG Shadow(Rx00[0])

the FM index port

Function 5 I/O Base 1 Registers -Audio FM NMI Status I/O Offset 0 – FM NMI StatusRO always reads 0 Reserved 1-0 **FM NMI Status** 00 Undefined 01 OPL3 Bank 0 10 OPL3 Bank 1 11 Undefined I/O Offset 1 – FM NMI Data....RO 7-0 FM NMI Data This register allows readback of the data written to the FM data port <u>I/O Offset 2 – FM NMI IndexRO</u> **FM NMI Index** 7-0

This register allows readback of the data written to

Function 5 I/O Base 2 Registers - MIDI / Game Port

<u>I/O Offset 1-0 – MIDI Port Base</u>	RW
15-0 MIDI Port Base Address This register is functional only if Rx42[7] = 1	
I/O Offset 3-2 – Game Port Base	
15.0 Come Port Page Address	dofoult = 0.200h

Function 6 I/O Base 0 Regs -Modem Scatter/Gather DMA

I/O Off	set 0 – Modem Read Channel SGD StatusRWC	I/O Off	<u>fset 10 – Modem Write Channel SGD Status RWC</u>
7	SGD Active (0 = completed or terminated)RO	7	SGD Active (0 = completed or terminated) RO
6	SGD PausedRO	6	SGD PausedRO
5-4	Reserved always reads 0	5-4	Reserved always reads 0
3	SGD Trigger Queued (transaction will restart after	3	SGD Trigger Queued (transaction will restart after
	EOL)RO		EOL)RO
2	SGD StoppedRO	2	Reserved always reads 0
1	SGD EOLRWC	1	SGD EOL (clear interrupt if Rx62[1] is set) RWC
0	SGD FlagRWC	0	SGD Flag (clear interrupt if Rx62[0] is set) RWC
I/O Off	set 1 – Modem Read Channel SGD ControlRW	I/O Off	set 11 – Modem Write Channel SGD Control RW
7	SGD Trigger WO (always reads 0)	7	SGD TriggerWO (always reads 0)
	0 No effect		0 No effect
	1 Trigger SGD Operation		1 Trigger SGD Operation
6	SGD Terminate	6	SGD TerminateWO (always reads 0)
	0 No effect	ŭ	0 No effect
	1 Terminate SGD Operation		1 Terminate SGD Operation
5-4	Reserved (Do Not Program)always write 0's	5-4	Reservedalways reads 0
3	SGD Pause	3	SGD Pause
•	0 Release SGD pause and resume the transfer	3	0 Release SGD pause and resume the transfer
	from the paused line		from the paused line
	Pause SGD read operation (SGD pointer stays		1 Pause SGD read operation (SGD pointer stays
	at the current address)		at the current address)
2-0	Reserved (No Function)RW	3-2	Reservedalways reads 0
2-0	reserved (110 Function)	3-2	Reservedarways reads o
I/O Off	set 2 – Modem Read Channel SGD TypeRW	I/O Off	<u> fset 12 – Modem Write Channel SGD Format RW</u>
<u>I/O Off</u> 7	set 2 – Modem Read Channel SGD TypeRW Auto Restart	<u>I/O Off</u> 7	fset 12 – Modem Write Channel SGD Format RW Auto Restart
	Auto Restart 0 Stop SGD Operation at EOL		
	Auto Restart		Auto Restart
	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved		Auto Restart 0 Stop SGD Operation at EOL
7	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL	7	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL
7 6-4	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved	7 6-2	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reservedalways reads 0
7 6-4	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved	7 6-2	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reservedalways reads 0 Interrupt on EOL @ End of Block
7 6-4	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved	7 6-2	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved always reads 0 Interrupt on EOL @ End of Block 0 Disable default 1 Enable
7 6-4	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved always reads 0 Interrupt Select 00 Interrupt at last line PCI read 01 Interrupt at last sample sent	7 6-2 1	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved always reads 0 Interrupt on EOL @ End of Block 0 Disable default
7 6-4	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved	7 6-2 1	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved always reads 0 Interrupt on EOL @ End of Block 0 Disable default 1 Enable Interrupt on FLAG @ End-of-Blk
7 6-4 3-2	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved	7 6-2 1 0	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved always reads 0 Interrupt on EOL @ End of Block 0 Disable default 1 Enable Interrupt on FLAG @ End-of-Blk 0 Disable default 1 Enable
7 6-4 3-2	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved	7 6-2 1 0	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved always reads 0 Interrupt on EOL @ End of Block 0 Disable default 1 Enable Interrupt on FLAG @ End-of-Blk 0 Disable default
7 6-4 3-2	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved	7 6-2 1 0	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved always reads 0 Interrupt on EOL @ End of Block 0 Disable default 1 Enable Interrupt on FLAG @ End-of-Blk 0 Disable default 1 Enable
7 6-4 3-2	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved	7 6-2 1 0	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reservedalways reads 0 Interrupt on EOL @ End of Block 0 Disabledefault 1 Enable Interrupt on FLAG @ End-of-Blk 0 Disabledefault 1 Enable fset 17-14 – Modem Wr Chan SGD Table Ptr RW
7 6-4 3-2	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved always reads 0 Interrupt Select 00 Interrupt at last line PCI read 01 Interrupt at last sample sent 10 Interrupt at less than one line to send 11 -reserved- Interrupt on EOL @ End of Block 0 Disable default 1 Enable Interrupt on FLAG @ End-of-Blk	7 6-2 1 0 <u>I/O Off</u> 31-0	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved always reads 0 Interrupt on EOL @ End of Block 0 Disable default 1 Enable Interrupt on FLAG @ End-of-Blk 0 Disable default 1 Enable Sect 17-14 – Modem Wr Chan SGD Table Ptr RW SGD Table Pointer Base Address (even addr) W Current Pointer Address
7 6-4 3-2 1 0	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved always reads 0 Interrupt Select 00 Interrupt at last line PCI read 01 Interrupt at last sample sent 10 Interrupt at less than one line to send 11 -reserved- Interrupt on EOL @ End of Block 0 Disable default 1 Enable Interrupt on FLAG @ End-of-Blk 0 Disable default 1 Enable	7 6-2 1 0 <u>I/O Offi</u> 31-0	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved
7 6-4 3-2 1 0	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved	7 6-2 1 0 <u>I/O Off</u> 31-0 <u>I/O Off</u> 31-24	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved
7 6-4 3-2 1 0	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved always reads 0 Interrupt Select 00 Interrupt at last line PCI read 01 Interrupt at last sample sent 10 Interrupt at less than one line to send 11 -reserved- Interrupt on EOL @ End of Block 0 Disable default 1 Enable Interrupt on FLAG @ End-of-Blk 0 Disable default 1 Enable	7 6-2 1 0 <u>I/O Off</u> 31-0 <u>I/O Off</u> 31-24	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved
7 6-4 3-2 1 0	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved	7 6-2 1 0 <u>I/O Off</u> 31-0 <u>I/O Off</u> 31-24	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved
7 6-4 3-2 1 0 1/O Off 31-0	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved	7 6-2 1 0 <u>I/O Off</u> 31-0 <u>I/O Off</u> 31-24	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved
7 6-4 3-2 1 0 I/O Off 31-0	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved	7 6-2 1 0 <u>I/O Off</u> 31-0 <u>I/O Off</u> 31-24	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved
7 6-4 3-2 1 0 I/O Offf 31-0 I/O Offf 31-24	Auto Restart O Stop SGD Operation at EOL Restart SGD Operation at EOL Reserved	7 6-2 1 0 <u>I/O Off</u> 31-0 <u>I/O Off</u> 31-24	Auto Restart 0 Stop SGD Operation at EOL 1 Restart SGD Operation at EOL Reserved

Offset 2	3-20 -Modem Codec Command / StatusRW	Offset 33-30 - Codec GPI Interrupt Status / GPIO RWC
	Codec ID	31-16 GPI Interrupt Status
	1 AC97 Controller is sending a command to the primary codec (commands are not accepted)	Offset 37-34 – Codec GPI Interrupt EnableRW
27 26	Reserved	31-16 Interrupt on GPI[15-0] Change of StatusRW 0 Disable 1 Enable 15-0 Reserved always reads 0
25	Secondary Codec 1 Data / Status ValidRWC 0 Not Valid 1 Valid (OK to Read bits 0-23)	
24	Primary Codec Data / Status ValidRWC 0 Not Valid 1 Valid (OK to Read bits 0-23)	
23	Codec Command Register Read/Write Mode RW 0 Select Codec command register write mode 1 Select Codec command register read mode	
22-16	Codec Command Register Index [7:1]	

FUNCTIONAL DESCRIPTIONS

Power Management

Power Management Subsystem Overview

The power management function of the VT8231 is indicated in the following block diagram:

Figure 6. Power Management Subsystem Block Diagram

Refer to ACPI Specification v1.0 and APM specification v1.2 for additional information.

Processor Bus States

The VT8231 supports the complete set of C0 to C3 processor states as specified in the Advanced Configuration and Power Interface (ACPI) specification (and defined in ACPI I/O space Registers 10-15):

- C0: Normal Operation
- C1: CPU Halt (controlled by software).
- C2: Stop Clock. Entered when the P_LVL2 register is read. The STPCLK# signal is asserted to put the processor in the Stop Grant State. The CPUSTP# signal is not asserted so that host clocks remain running. To exit this state, the chip negates STPCLK#.
- C3: Suspend. Entered when the P_LVL3 register is read. In addition to STPCLK# assertion as in the C2 state, the SUSST1# (suspend status 1) signal is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz suspend clock (SUSCLK) provided by the VT8231. If the HOST_STP bit is enabled, then CPUSTP# is also asserted to stop clock generation and put the CPU into Stop Clock State. To exit this state, the chip negates CPUSTP# and allows time for the processor PLL to lock. Then the SUSST1# and STPCLK# signals are negated to resume to normal operation.

During normal operation, two mechanisms are provided to modulate CPU execution and control power consumption by throttling the duty cycle of STPCLK#:

- a. Setting the THT_EN bit to 1, the duty cycle defined in THT_DTY (IO space Rx10) is used.
- b. THRM# pin assertion enables automatic clock throttling with duty cycle pre-configured in THM_DTY (PCI configuration Rx4C).

System Suspend States and Power Plane Control

There are three power planes inside the VT8231. The first power plane (VCCS) is always on unless turned off by the mechanical switch. The second power plane (VCC) is controlled by chip output SUSC# (also called "PSON"). The third plane (VCCRTC) is powered by the combination of the VCCS and the external battery (VBAT) for the integrated real time clock. Most of the circuitry inside the VT8231 is powered by VCC. The amount of logic powered by VCCS is very small; its main function is to control the supply of VCC and other power planes. VCCRTC is always on unless both the mechanical switch and VBAT are removed.

The VT8231 supports multiple system suspend states by configuring the SLP_TYP field of ACPI I/O space register Rx4-5:

- a) POS (Power On Suspend): Most devices in the system remain powered. The host bus is put into an equivalent of the C3 state. In particular, the CPU is put into the Stop Grant State or Stop Clock State depending on the setting of the HOST_STP bit. SUSST1# is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz SUSCLK provided by the VT8231. As to the PCI bus, setting the PCLK_RUN bit to 0 enables the CLKRUN protocol defined in the PCI Mobile Design Guide. That is, the PCKRUN# pin will be deactivated after the PCI bus is idle for 26 clocks. Any PCI bus masters including the north bridge may resume PCI clock operation by pulling the PCKRUN# pin low. During the PCKRUN# deactivation period, the PCISTP# pin may be activated to disable the output of the PCI clock generator if the PCI_STP bit is enabled. When the system resumes from POS, the VT8231 can optionally resume without resetting the system, can reset the processor only, or can reset the entire system. When no reset is performed, the chip only needs to wait for the clock synthesizer and processor PLL to lock before the system is resumed, which typically takes 20ms.
- b) STR (Suspend to RAM): Power is removed from most of the system except the system DRAM. Power is supplied to the suspend refresh logic in the north bridge (VTT of VT82C598) and the suspend logic of the VT8231 (VCCS). The VT8231 provides a 32KHz suspend clock to the north bridge for it to use to continue DRAM refresh.
- c) STD (Suspend to Disk, also called Soft-off): Power is removed from most of the system except the suspend logic of VT8231 (VCCS).
- **d) Mechanical Off:** This is not a suspend state. All power in the system is removed except the RTC battery.

The suspend state is entered by setting the SLP_EN bit to 1. Three power plane control signals (SUSA#, SUSB# and

SUSC#) are provided to turn off more system power planes as the system moves to deeper power-down states, i.e., from normal operation to POS (only SUSA# asserted), to STR (both SUSA# and SUSB# asserted), and to STD (all three SUS# signals asserted). In particular, the assertion of SUSC# can be used to turn off the VCC supply to the VT8231.

One additional suspend status indicator (SUSST1#) is provided to inform the north bridge and the rest of the system of the processor and system suspend states. SUSST1# is asserted when the system enters the suspend state or the processor enters the C3 state. SUSST1# is connected to the north bridge to switch between normal and suspend-DRAM-refresh modes.

General Purpose I/O Ports

As ACPI compliant hardware, the VT8231 includes PWRBTN#, SLPBTN#, and RI# pins to implement power button, sleep button, and ring indicator functionality, respectively. Furthermore, the VT8231 offers many general-purpose I/O ports with the following capabilities:

- I²C/SMB Support
- Thermal Detect
- Notebook Lid Open/Close Detect
- Battery Low Detect
- Twelve General Purpose Input Ports (multiplexed with other functions).
- Nineteen General Purpose Output Ports (1 dedicated and 18 multiplexed with other functions)
- Four General Purpose Input / Output Ports (multiplexed with other functions)

In addition, the VT8231 provides an external dedicated SMI pin (EXTSMI#). The external SMI input can be programmed to trigger an SCI or SMI at both the rising and falling edges of the corresponding input signal. Software can check the status of the input pin and take appropriate actions.

Power Management Events

Three types of power management events are supported:

- ACPI-required Fixed Events defined in the PM1a_STS and PM1a_EN registers. These events can trigger either SCI or SMI depending on the SCI_EN bit:
 - PWRBTN# Triggering
 - RTC Alarm
 - · Sleep Button
 - ACPI Power Management Timer Carry (always SCI)
 - BIOS Release (always SCI)
- 2) ACPI-aware General Purpose Function Events defined in the GP_STS and GP_SCI_EN, and GP_SMI_EN registers. These events can trigger either SCI or SMI depending on the setting of individual SMI and SCI enable bits:
 - · External SMI triggering
 - · USB Resume
 - Ring Indicator (RI#)
 - Battery Low Detect (BATLOW#)
 - Notebook Lid Open/Close Detect (LID)
 - Thermal Detect (THRM#)

- 3) Generic Global Events defined in the GBL_STS and GBL_EN registers. These registers are mainly used for SMI:
 - PCI Bus Clock Run Resume
 - Primary Interrupt Occurance
 - · GP0 and GP1 Timer Time Out
 - Secondary Event Timer Time Out
 - Occurrence of Primary Events (defined in register PACT_STS and PACT_EN)
 - Legacy USB accesses (keyboard and mouse)
 - Software SMI

System and Processor Resume Events

Depending on the system suspend state, different features can be enabled to resume the system. There are two classes of resume events:

- VCCS-based events. Event logic resides in the VCCS plane and thus can resume the system from any suspend state. Such events include PWRBTN#, RI#, BATLOW#, LID, SMBus resume event, RTC alarm, EXTSMI#, and GP1 (EXTSMI1#).
- b) VCC-Based Events. Event logic resides in the VCC plane and thus can only resume the system from the POS state. Such events include the ACPI PM timer, USB resume, and EXTSMIn#.

Figure 7. System Block Diagram Using the VT8231 Super South Bridge

Legacy Power Management Timers

In addition to the ACPI power management timer, the VT8231 includes the following four legacy power management timers:

GP0 Timer: general purpose timer with primary event **GP1 Timer**: general purpose timer with peripheral event reload

Secondary Event Timer: to monitor secondary events **Conserve Mode Timer**: Hardware-controlled return to standby

The normal sequence of operations for a general purpose timer (GP0 or GP1) is to

- 1) First program the time base and timer value of the initial count (register GP_TIM_CNT).
- 2) Then activate counting by setting the GP0_START or GP1_START bit to one: the timer will start with the initial count and count down towards 0.
- 3) When the timer counts down to zero, an SMI will be generated if enabled (GP0TO_EN and GP1TO_EN in the GBL_EN register) with status recorded (GP0TO_STS and GP1TO_STS in the GBL_STS register).
- 4) Each timer can also be programmed to reload the initial count and restart counting automatically after counting down to 0. This feature is not used in standard VIA BIOS.

The GP0 and GP1 timers can be used just as the general purpose timers described above. However, they can also be programmed to reload the initial count by system primary events or peripheral events thus used as primary event (global standby) timer and peripheral timer, respectively. The secondary event timer is solely used to monitor secondary events.

System Primary and Secondary Events

Primary system events are distinguished in the PRI_ACT_STS and PRI_ACT_EN registers:

Bit Event		<u>Trigger</u>	
7 Keyboar	d Access	I/O port	60h
- ~		- 10	

6 **Serial Port Access** I/O ports 3F8h-3FFh, 2F8h-2FFh,

3E8h-3EFh, or 2E8h-2EFh

5 **Parallel Port Access** I/O ports 378h-37Fh or 278h-27Fh

4 Video Access I/O ports 3B0h-3DFh or memory

A/B segments

3 IDE/Floppy Access I/O ports 1F0h-1F7h, 170h-177h,

or 3F5h

2 Reserved

1 Primary Interrupts Each channel of the interrupt

controller can be programmed to be a primary or secondary

interrupt

0 ISA Master/DMA Activity

Each category can be enabled as a primary event by setting the corresponding bit of the PRI_ACT_EN register to 1. If enabled, the occurrence of the primary event reloads the GP0

timer if the PACT_GP0_EN bit is also set to 1. The cause of the timer reload is recorded in the corresponding bit of PRI_ACT_STS register while the timer is reloaded. If no enabled primary event occurs during the count down, the GP0 timer will time out (count down to 0) and the system can be programmed (setting the GP0TO_EN bit in the GBL_EN register to one) to trigger an SMI to switch the system to a power down mode.

The VT8231 distinguishes two kinds of interrupt requests as far as power management is concerned: the primary and secondary interrupts. Like other primary events, the occurrence of a primary interrupt demands that the system be restored to full processing capability. Secondary interrupts, however, are typically used for housekeeping tasks in the background unnoticeable to the user. The VT8231 allows each channel of interrupt request to be declared as either primary, secondary, or ignorable in the PIRQ_CH and SIRQ_CH registers. Secondary interrupts are the only system secondary events defined in the VT8231.

Like primary events, primary interrupts can be made to reload the GP0 timer by setting the PIRQ_EN bit to 1. Secondary interrupts do not reload the GP0 timer. Therefore the GP0 timer will time out and the SMI routine can put the system into power down mode if no events other than secondary interrupts are happening periodically in the background.

Primary events can be programmed to trigger an SMI (setting of the PACT_EN bit). Typically, this SMI triggering is turned off during normal system operation to avoid degrading system performance. Triggering is turned on by the SMI routine before entering the power down mode so that the system may be returned to normal operation at the occurrence of primary events. At the same time, the GP0 timer is reloaded and the count down process is restarted.

Peripheral Events

Primary and secondary events define system events in general and the response is typically expressed in terms of system events. Individual peripheral events can also be monitored by the VT8231 through the GP1 timer. The following four categories of peripheral events are distinguished (via register GP_RLD_EN):

Bit-7 Kevboard Access

Bit-6 Serial Port Access

Bit-4 Video Access

Bit-3 **IDE/Floppy Access**

The four categories are subsets of the primary events as defined in PRI_ACT_EN and the occurrence of these events can be checked through a common register PRI_ACT_STS. As a peripheral timer, GP1 can be used to monitor one (or more than one) of the above four device types by programming the corresponding bit to one and the other bits to zero. Time out of the GP1 timer indicates no activity of the corresponding device type and appropriate action can be taken as a result.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Min	Max	Unit	Comment
Storage temperature	-55	125	oC	T_{S}
Operating temperature - Case	0	85	оС	T _C
Operating temperature - Ambient	0	70	оС	T _A
Reference Voltage	0	5.5	Volts	V_{REF}
Core Voltage	0	3.6	Volts	V _{CC}
Suspend Voltage	-0.5	$V_{CC} + 0.3$	Volts	V _{SUS}
USB Voltage	-0.5	$V_{CC} + 0.3$	Volts	V_{USB}
Hardware Monitor Voltage	-0.5	$V_{CC} + 0.3$	Volts	V_{HWM}
LAN MII Voltage	-0.5	$V_{CC} + 0.3$	Volts	V _{MII}
LAN RAM Voltage	-0.5	$V_{CC} + 0.3$	Volts	V _{RAM}
PLL Voltage	-0.5	$V_{CC} + 0.3$	Volts	V _{PLL}
Battery Voltage	-0.5	$V_{CC} + 0.3$	Volts	V_{BAT}
Input voltage (3.3V only inputs)	-0.5	$V_{CC} + 0.3$	Volts	FERR#, USBCLK, PWRBTN#, EXTSMI#, BATLOW#, FAN1, FAN2, SMBCLK, SMBDATA
Input voltage (5V tolerant inputs)	-0.5	$V_{REF} + 0.5$	Volts	All other inputs

Note: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

DC Characteristics

 $\begin{array}{l} T_{A}\text{ -0-70}{}^{O}C\text{, } V_{REF}\text{=}5V\text{ }\pm5\%\text{,, } V_{BAT}\text{=}3.3V\text{ }+0.3/\text{-}1.3V\text{, }GND\text{=}0V\\ V_{CC}\text{=}V_{CCSUS}\text{=}V_{CCHWM}\text{=}V_{CCUSB}\text{=}V_{CCMII}\text{=}V_{CCRAM}\text{=}V_{CCPLL}\text{=}3.3V\text{ }\pm0.3V \end{array}$

Symbol	Parameter	Min	Max	Unit	Condition
V_{IL}	Input low voltage	-0.5	0.8	V	
V_{IH}	Input high voltage	2.0	V _{CC} +0.3	V	
V _{OL}	Output low voltage	-	0.45	V	$I_{OL} = 4.0 \text{mA}$
V_{OH}	Output high voltage	2.4	-	V	$I_{OH} = -1.0 \text{mA}$
$I_{\rm IL}$	Input leakage current	-	±10	uA	$0 < V_{\rm IN} < V_{\rm CC}$
I_{OZ}	Tristate leakage current	-	±20	uA	$0.45 < V_{OUT} < V_{CC}$
I_{CC}	Power supply current	-	80	mA	

Output Drive

 $\begin{array}{l} T_{A}\text{ -0-70}{}^{O}C\text{, } V_{REF}\!\!=\!\!5V\pm\!5\%\text{,, } V_{BAT}\!\!=\!\!3.3V+\!0.3\!/\!\!-\!1.3V\text{, } GND\!\!=\!\!0V \\ V_{CC}\!\!=\!\!V_{CCSUS}\!\!=\!\!V_{CCHWM}\!\!=\!\!V_{CCUSB}\!\!=\!\!V_{CCMII}\!\!=\!\!V_{CCRAM}\!\!=\!\!V_{CCPLL}\!\!=\!\!3.3V\pm\!0.3V \end{array}$

Drive	Signal	Load	Delay
4 mA	GPO0, GPIOA, GPIOC, GPIOD, GPIOE, EECS#, EECK, EEDO, APICD[1:0],	50 pF	15 ns
	SMBCK1, SMBCK2, SMBDT1, SMBDT2,	50 pF	15 ns
	SUSA#, SUSB#, SUSC#, SUSCLK, SUSST1#,	50 pF	15 ns
	A20M#, INIT, INTR, NMI, ROMCS#, STPCLK#, CPURST, SMI#, IGNNE#, SLP#,	50 pF	15 ns
	TXD, RTS#, DTR#, IRTX	50 pF	15 ns
8 mA	KBDT, KBCK, MSDT, MSCK,	50 pF	10 ns
	PCISTP#, CPUSTP#,	50 pF	8 ns
	SD[15:0], PDD[15:0], SDD[15:0],	50 pF	8 ns
	MDCK, MDIO, MTXENA, MTXD[3:0],	50 pF	8 ns
	PREQL#, PREQH#	30 pF	6 nS
12 mA	PDCS1#, PDCS3#, SDCS1#, SDCS3#, PDA[2:0], SDA[2:0],	40 pF	8 ns
	PDDACK#, SDDACK#, PDIOR#, PDIOW#, SDIOR#, SDIOW#	40 pF	8 ns
16 mA	LA[21:20], SA[19:0], MEMR#, MEMW#, IOR#, IOW#, PCIRST#	85 pF	10 ns
PCI	AD[31:0],	50 pF	6 ns
	CBE[3:0]#, FRAME#, DEVSEL#, IRDY#, TRDY#, STOP#, PAR, PCKRUN#	50 pF	5 ns
	LFRAME#, LAD[3:0], USBP[3:0]+/-		
	ACRST, ACSYNC, ACSDOUT, MSO		
	PCS0#, PCS1#, MCCS#, SPKR		
	DRVDEN[1:0], MTR[1:0]#, DS[1:0]#, DIR#, STEP#, HDSEL#, WDATA#, WGATE#		
	PINIT#, STROBE#, AUTOFD#, SLCTIN#, PD[7:0]		
	RTCX2		

Input Voltage

 $\begin{array}{l} T_{A} \text{ -0-70}{}^{O}C,\ V_{REF} \!\!=\!\! 5V \pm\! 5\%,,\ V_{BAT} \!\!=\!\! 3.3V +\! 0.3 \!\!/\!\!-\! 1.3V,\ GND \!\!=\!\! 0V \\ V_{CC} \!\!=\!\! V_{CCSUS} \!\!=\!\! V_{CCHWM} \!\!=\!\! V_{CCUSB} \!\!=\!\! V_{CCMII} \!\!=\!\! V_{CCRAM} \!\!=\!\! V_{CCPLL} \!\!=\!\! 3.3V \pm\! 0.3V \end{array}$

Input Voltage	Signal
Analog	DTD+/-, UIC[5:1]
1.5 – 3.3V Programmable Threshold	FERR#
5V	AD[31:0], CBE[3:0]#, FRAME#, DEVSEL#, IRDY#, TRDY#, STOP#, SERR#,
	PAR, SERIRQ, PCKRUN#
3.3V (5V Tolerant)	PGNTH#, PGNTL#, PINT[A:D]#,
	SA[19:0], SD[15:0], MEMR#, MEMW#, IOR#, IOW#, OSC,
	PDD[15:0], SDD[15:0], PDDRQ, SDDRQ, PDRDY, SDRDY, IRQ14, IRQ15,
	KBCK, KBDT, MSCK, MSDT, GAMED[7:0],
	INDEX#, TRK00#, RDATA#, DSKCHG#, WRTPRT#, PD[7:0],
	PINIT#, STROBE#, AUTOFD#, SLCTIN#, SLCT, ACK#, ERROR#, BUSY, PE,
	RXD, CTS#, DSR#, DCD#, RI#, IRRX, IRRX2,
	SMBCK1, SMBCK2, SMBDT1, SMBDT2, SMBALRT#,
	MCOL, MCRS, MDIO, MRXCLK, MRXD[3:0], MRXDV, MRXERR, MTXCLK,
	MSI, ACSDIN[2:0], ACBITCLK,
	GPIOA, GPIOC, GPIOD, GPIOE, GPI0, GPI1, PWRGD, BATLOW#, THRM
3.3 V	USBP[3:0]+/-, USBCLK, USBOC[1:0]#, LDRQ#, LAD[3:0], EEDI,
	PCICLK, APICCLK, WSC#, FAN1, FAN2 / SLPBTN#, PWRBTN#, RTCX1,
	EXTSMI#, RSMRST#, PME#, LID, RING#, CPUMISS, INTRUDER#

PACKAGE MECHANICAL SPECIFICATIONS

Figure 8. Mechanical Specifications – 376 Pin Ball Grid Array Package