BSC. (HONS.) BOTANY SEMESTER - VI

Category-I

Botany (H) Courses for Undergraduate Programme of study with Botany as a Single Core Discipline

DISCIPLINE SPECIFIC CORE COURSE - 16: Plant Biotechnology

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre- requisite
		Lecture	Tutorial	Practical/		of the
				Practice		course
						(if any)
Plant	4	2	0	2	Class XII	Nil
Biotechnology					pass with	
					Biology/	
DSC-16					Biotechnolog	
					у	

Learning objective:

• to provide knowledge of techniques used in plant biotechnology and their application.

Learning outcomes: At the end of the course the students will be able to:

- 14. understand basic concepts, principles and methods in plant biotechnology.
- 15. explain the use of acquired knowledge in biotechnological, pharmaceutical, medical, ecological and agricultural applications.

Unit 1: Introduction to Biotechnology

02 Hours

Historical timeline; sectors of Biotechnology, brief overview of techniques and methods in Biotechnology.

Unit 2: Plant Tissue Culture

08 Hours

Historical perspective (Major contributions of Haberlandt, Laibach, White, Reinert and Steward, Murashige and Skoog, Cocking, Guha and Maheshwari, Bhojwani, Morel and Martin); types and composition of media: roles of nutrients (major and minor), vitamins, hormones and others (coconut water, activated charcoal); plasticity and totipotency; regeneration: organogenesis (direct and indirect) and embryogenesis (somatic and zygotic); protoplast isolation, culture and fusion; tissue culture applications (micropropagation, androgenesis, haploids, triploids, cybrids, production of virus-free plants).

Unit 3: Recombinant DNA technology

07 Hours

Restriction Endonucleases (History, Types I - IV, biological roles and applications); modifying enzymes and their applications (nucleases, ligases, alkaline phosphatase, polynucleotide kinase), introduction to prokaryotic and eukaryotic cloning vectors: pBR322, pUC18, pUC19, BACs, Lambda phage, YACs. Gene Cloning: Restriction digestion of DNA, elution of DNA from agarose gels, ligation, bacterial transformation and selection of

recombinant clones (alpha complementation, antibiotic selection, restriction enzyme based selection)

Unit 4: Genetic transformation of Plants

05 Hours

Methods of gene transfer to plants: *Agrobacterium*-mediated transformation (Ti plasmids, development of binary vectors), Direct gene transfer by Electroporation, Microinjection, Microprojectile bombardment; selection of transgenic plants: selectable marker genes (Positive selection markers – antibiotic- and herbicide-resistance conferring genes) and reporter genes (Luciferase, GUS, GFP); Introduction to genome editing.

Unit 5: Applications

08 Hours

Pest resistant (Bt-cotton) and herbicide resistant plants (RoundUp ReadyTM soybean); Transgenic crops with improved quality traits (Flavr SavrTM tomato. GoldenTM rice); Improved horticultural varieties (Moondust carnations); Bioremediation (Superbug); Edible vaccines; Biosafety of transgenic plants.

Practicals 60 hours

- 4. Preparation of Murashige & Skoog's (MS) medium.
- 5. Initiation of axenic cultures- seed sterilisation and inoculation
- 6. Micropropagation (shoot induction) using leaf and/or nodal explants of tobacco/*Datura/ Brassica* etc.
- 7. Study of anther culture, embryo and endosperm culture, somatic embryogenesis using digital resources.
- 8. Preparation of artificial seeds.
- 9. Induction of callus and analysis of effects of growth regulators (Auxin and Cytokinin) on *in vitro* regeneration using tobacco leaf explant.
- 10. Preparation of chemically competent cells of *E. coli*.
- 11. Transformation of *E. coli* with plasmid DNA by heat shock method.
- 12. Restriction digestion and gel electrophoresis of plasmid DNA.
- 13. Construction of restriction map of circular and linear DNA from the data provided.
- 14. Visit to a research laboratory.

Suggested Readings:

- 5. Slater, A., Scott, N. W. & Fowler, M. R. (2010) Plant Biotechnology: The Genetic Manipulation of Plants. 2ndedn. New York, USA: Oxford University Press Inc.
- 6. Snustad, D.P., Simmons, M.J. (2010) Principles of Genetics, 5th edition. Chichester, England: John Wiley and Sons.
- 7. Brown, T. A. (2020) Gene Cloning & DNA Analysis: An Introduction. 8thedn. UK: Wiley Blackwell.
- 8. Primrose, S. B. & Twyman, R.M. (2006). Principles of Gene Manipulation and Genomics. 7thedn. Victoria, Australia: Blackwell Publishing.
- 9. Bhojwani, S.S., Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Amsterdam, Netherlands: Elsevier Science.

Additional Resources:

9. Bhojwani, S.S. and Dantu, P.K. (2013). Plant Tissue Culture: An Introductory Text. Springer New Delhi Heidelberg New York Dordrecht London

- 10. Glick, B.R., & Patten C. (2022). Molecular Biotechnology: Principles and Applications. 6thedn. Washington, U.S.: ASM Press.
- 11. Bhojwani, S.S., Bhatnagar, S.P. (2011). The Embryology of Angiosperms, 5th edition. New Delhi, Delhi: Vikas Publication House Pvt. Ltd.
- 12. Stewart, C.N. Jr. (2008). Plant Biotechnology and Genetics: Principles, Techniques and Applications. New Jersey, U.S.: John Wiley & Sons Inc.
- 13. Glick, B.R., Pasternak, J. J. & Patten C. (2010). Molecular Biotechnology: Principles and Applications. 4thedn. Washington, U.S.: ASM Press.
- 14. Glick, B.R., & Patten C. (2017). Molecular Biotechnology: Principles and Applications. 5thedn. Washington, U.S.: ASM Press.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.