Lineare Algebra II Repetitorium Übungen, Tag 3

Jendrik Stelzner

21. September 2016

Im Folgenden werden alle auftretenden Skalarprodukträume als endlichdimensional vorausgesetzt.

Übung 1.

Es sei $f\colon V\to V$ ein normaler Endomorphismus eines Skalarproduktraums V. Zeigen Sie:

- 1. Für alle $v \in V$ ist $||f(v)|| = ||f^*(v)||$.
- 2. Es ist $V_{\lambda}(f^*) = V_{\overline{\lambda}}(f)$ für alle $\lambda \in \mathbb{K}$.
- 3. Für alle $\lambda, \mu \in \mathbb{K}$ mit $\lambda \neq \mu$ ist $V_{\lambda}(f) \perp V_{\mu}(f)$.
- 4. Für $v \in V$ und $n \ge 1$ mit $f^n(v) = 0$ ist bereits f(v) = 0. (Hinweis: Betrachen Sie zunächst den Fall n = 2.)
- 5. Folgern Sie, dass $V_{\lambda}^{\sim}(f) = V_{\lambda}(f)$ für alle $\lambda \in K$.

Zeigen Sie außerdem:

- 6. Ein Untervektorraum $U\subseteq V$ ist genau dann f-invariant, wenn U^\perp invariant unter f^* ist
- 7. Es ist im $f^* = (\ker f)^{\perp}$ und $\ker f^* = (\operatorname{im} f)^{\perp}$.

Übung 2.

Zeigen Sie, dass für einen Endomorphismus $f\colon V\to V$ eines Skalarproduktraums V die folgenden Bedingungen äquivalent sind:

- 1. Es gilt $ff^* = id_V$.
- 2. Es gilt $f^*f = id_V$.
- 3. f ist ein Isomorphismus mit $f^* = f^{-1}$.
- 4. Für alle $v_1, v_2 \in V$ ist $\langle f(v_1), f(v_2) \rangle = \langle v_1, v_2 \rangle$.

5. Für alle $v \in V$ ist ||f(v)|| = ||v||.

Übung 3.

Es sei $A \in M_n(\mathbb{K})$.

- 1. Zeigen Sie, dass genau dann $A^*A=I$, wenn die Spalten von A eine Orthonormalbasis von \mathbb{K}^n bilden.
- 2. Zeigen Sie, dass genau dann $AA^*=I$, wenn die Zeilen von A eine Orthonormalbasis von \mathbb{K}^n bilden.

Übung 4.

Es sei $f\colon V\to V$ ein Endomorphismus eines Skalarproduktraums V. Zeigen Sie die folgende Aussagen ohne Verwendung entsprechender Normalenformen:

- 1. Ist f selbstadjungiert, so sind alle Eigenwerte von f reell.
- 2. Ist f antiselbstadjungiert, so sind alle Eigenwerte von f rein imaginär.
- 3. Ist f unitär, so haben alle Eigenwerte von f Betrag 1.

Übung 5.

Es sei $n \geq 1$.

- 1. Zeigen Sie, dass $\det(U) \subseteq S^1$ für alle $U \in \mathrm{U}(n)$, und dass $\det \colon \mathrm{U}(n) \to S^1$ surjektiv ist.
- 2. Zeigen Sie, dass $\det(O) \subseteq \{1,-1\}$ für alle $O \in \mathrm{O}(n)$, und dass $\det\colon \mathrm{O}(n) \to \{1,-1\}$ surjektiv ist.

Übung 6.

Es sei V ein Skalarproduktraum.

- 1. Es sei $v \in V$ ein normierter Vektor. Zeigen Sie, dass die Abbildung $P_v \colon V \to V$ mit $P_v(w) = \langle w, v \rangle v$ die orthogonale Projektion auf die Gerade $\mathcal{L}(v)$ ist.
- 2. Es sei (v_1,\ldots,v_n) eine orthonormale Familie von Vektoren $v_1,\ldots,v_n\in V$. Zeigen Sie, dass $P\coloneqq P_{v_1}+\cdots+P_{v_n}$ die orthogonale Projektion auf den Untervektorraum $\mathcal{L}(v_1,\ldots,v_n)$ ist.

Übung 7.

Es sei $f: V \to V$ ein Endomorphismus eines Skalarproduktraums V.

- 1. Zeigen Sie, dass f genau dann positiv ist, wenn $\langle f(v), v \rangle > 0$ für alle $v \in V$.
- 2. Zeigen Sie, dass ff^* und f^*f positiv selbstadjungiert sind.