PUMPING LEMMA FOR REGULAR SETS

Dr. A. Beulah AP/CSE

INTRODUCTION

- A Regular language is a formal language that can be expressed using a regular expression
- A regular language satisfies the following equivalent properties:
 - it is the language accepted by a nondeterministic finite automaton
 - it is the language accepted by a deterministic finite automaton
 - it can be generated by a regular grammar
 - it can be generated by a prefix grammar
 - it can be accepted by a read-only Turing machine
- Regular set is a set of strings of a Regular Language
- For every regular language there is a FA that accepts the language

THE PIGEONHOLE PRINCIPLE

• If you put n pigeons into m pigeonholes, and n > m > 0, then at least at least two pigeons are in the same pigeonhole.

THE PIGEONHOLE PRINCIPLE

THE PIGEONHOLE PRINCIPLE

A pigeonhole must contain at least two pigeons

PIGEONHOLE PRINCIPLE & DFAS

Consider a DFA with 4 states

PIGEONHOLE PRINCIPLE & DFAS

Consider the walk of a "long" string: aabb (>=4)

PIGEONHOLE PRINCIPLE & DFAS

The state is repeated as a result of the pigeonhole principle

- Describes an essential property of all regular languages
- For a particular language, any sufficiently long string in the language contains a section, or sections, that can be removed, or repeated any number of times(pumping), with the resulting string remaining in that language
- The pumping lemma is used to prove that a particular language is non-regular

 Let L be a regular language. Then there is a constant n (which depends on L/ number of states in FA) such that for every string w in L such that |w| \geq n, we can break w into three strings, w = xyz, such that y $\neq \varepsilon$ ie |y| > 0, $|xy| \le n$, and for all $i \ge 0$, xy^iz is also in L.

Proof

- Let n be |Q|.
- $-\delta(q_0, a_1a_2...a_i) = q_i$

- If $w \in L$ and $|w| \ge n$. Let $w = a_1 a_2 ... a_m$, where $m \ge n$.

- Since there are only n states in Q and $m \ge n$, by the pigeon hole theorem there are two states of q_0 , q_1 , q_2 , ..., and q_n are same, say $0 \le i < j \le n$ and $q_i = q_j$.

 If w ∈L and |w| ≥ n, then, at least one state is repeated in the walk of w

- There could be many states repeated
- Take q to be the first state repeated

• We can write w = xyz

- In DFA: write w = xyz
- 1 occurrence of y (xyz)

• 2 occurrences of y (xyyz)

• 3 occurrences of y (xyyyz)

- Many occurrences of y (xyⁱz)
- xyⁱz is also in L

- $\delta(q_0, a_1 a_2 ... a_i) = q_i = q_i$
- $\delta(q_i, a_{i+1}..a_j) = q_i$, and
- $\delta(q_i, a_{j+1}...a_m) = q_n$

It is obvious that $\delta(q_i, y^i) = q_i$ for $i \ge 0$.

So, if the FA accepts w = xyz, it also accepts xy^iz .

APPLICATION

- Useful to prove a language L is not a regular set
- Method
 - Select an arbitrary 'n'
 - Choose a string w in L where $|w| \ge n$
 - For any partition of w = xyz such that
 - $|xy| \le n$ and $|y| \ge 1$, show a contradiction;
 - i.e. show that there is a string xy^kz not in L;
 - k will depend on n, x, y, and z

EXAMPLE

• L= $\{a^mb^m/m>=1\}$

$$W = 242$$

$$1241 \leq n$$

$$1241 \leq n$$

$$242 \neq i \neq 0$$

$$242 \neq i \neq 0$$

$$3mb = n$$

$$W = a^{p}b^{p}$$

$$|a^{p}b^{p}| |a^{p}b^{p}| > n$$

$$|a^{p}b^{p}| > n$$

$$|a^{p}$$

EXAMPLE

• L={a^m/m is a prime}

EXAMPLE

- L= $\{a^{i2}/i >= 1\}$
- a^i^2

SUMMARY

- Definition of Pumping lemma Regular Language
- Application of pumping lemma

TEST YOUR KNOWLEDGE

- If we select a string w such that w∈L, and w=xyz. Which of the following portions cannot be an empty string?
 - a) x
 - b) y
 - c) z
 - d) all of the mentioned
- Which of the following one can relate to the given statement: Statement: If n items are put into m containers, with n>m, then atleast one container must contain more than one item.
 - a) Pumping lemma
 - b) Pigeon Hole principle
 - c) Count principle
 - d) None of the mentioned

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

