

F.E. (Semester – II) (Revised in 2016-17) Examination, May/June 2017 FUNDAMENTALS OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Duration: 3 Hours

Max. Marks: 100

- Instructions: 1) Answer five questions with two from Part A, two from Part B and one from Part C.
 - 2) Assume suitable data if necessary.
 - 3) Figures to the right indicate full marks.

PART-A

Answer any two questions form the following:

- 1. a) With the help of heat sketch explain the formation of the depletion region in an open circuited PN junction (No Bias condition/No external voltage).
 - b) Differentiate between a bridge and a center-tapped rectifier.
 - c) For the network shown below in Fig. 1 (c) determine the range of R_L and I_L that will result in VR_L being maintained at 12V.

Fig. 1 (c)

d) Derive an expression for RMS value of current (I_{rms}) of a half wave rectifier.

5

7

3

- 2. a) With the help of a neat diagram explain the construction of N-channel Depletion MOSFET. Also draw the drain characteristics for N-channel Depletion MOSFET.

b) Derive the relation between Ic and I_{CFO} for a transistor.

- 3
- c) Determine the dc bias voltage V_{CE} and the current I_C for the voltage divider configuration given below in Fig. 2(c):

6

Fig. 2 (c)

d) Explain the term Thermal Runaway.

- 4
- a) With the help of energy diagrams, explain how materials are classified based on their conductivity.
- 5
- b) Explain how the process of Zener Breakdown occurs in a PN junction diode.
- 5
- c) With the help of a neat diagram explain how a BJT in Common Base (CB) configuration can be used as an amplifier.
- 5

5

d) With the help of a neat diagram and drain/output characteristics explain the working of N-channel JFET.

PART-B

Answer any two questions form the following:

4.	a)	What are the various ways in which a Silicon Controlled Rectifier can be turned off?	5
	b)	With the help of Logic Diagram and Truth Tables, state and prove the DeMorgan's Laws.	6
	c)	Differentiate between an ideal and practical op-amp.	4
	d)	Draw the Logic Symbols, construct Truth Tables, and with the help of circuit diagrams, explain the working of :	5
		i) AND	
		OR to died adjudity alcherem terobencomes advi 9 mislori3 (a. 8.	
5.	a)	Define the gauge factor of a strain gauge. Explain the various characteristics of a strain gauge.	5
	b)	With the help of a block diagram list and explain the basic units of a microprocessor.	5
	c)	What is a PCB? Give the steps involved in the manufacturing of single sided PCB with the help of a flow diagram.	5
	d)	With the help of a neat diagram explain the basic concept of amplitude modulation and frequency modulation.	5
6.	a).	With the help of neat diagram explain the characteristics of an SCR.	6
	b)	Two square waves, A of 500Hz and B of 1 KHz frequency are applied as	
		input to the following Logic Gates. Draw the output waveform in each case.	
		i) NOR Gate	
		ii) XOR Gate	2
	c)	In Digital Electronics, what is Positive and Negative Logic?	2
	d)	With the help of a flow diagram explain the operating cycle of a CPU of a Programmable Logic Controller.	5
	e)	What are the important functions of transmitter and receiver in a basic communication system?	5

PART-C

Answer any one question form the following:

7.	a)	Explain how the process of Avalanche Breakdown occurs in a PN junction diode.	5
	b)	With the help of neat diagram explain how Complementary MOSFET (CMOS) can be used as an inverter.	5
	c)	With the help of a two-transistor model, explain the working of a Silicon Controlled Rectifier.	5
	d)	Explain the working principle of Piezoresistive strain gauge.	5
8.	a)	Explain P type semiconductor materials with the help of a neat diagram.	5
	b)	Draw and explain the output characteristics of a npn BJT connected in CB configuration.	5
	c)	Explain the following:	
		i) Common Mode Rejection Ratio (CMRR).	
		ii) Slew Rate.	5
	d)	What is a PLC ? How is it different from a computer ?	5

ex #105 his location of Sent to enit helps: Institute, \$150 his senteto his w