BMS2004 Biochemistry

Lecture 5: Structures and Functions of Proteins II

Kwok-On LAI Department of Neuroscience

Learning Outcomes

To define the basic concepts in protein binding

 To describe the structure of heme-binding pocket and reversible binding of hemoglobin to its ligand (oxygen)

 To explain the regulation of binding between oxygen and hemoglobin

To recognize hemoglobin-related diseases

Basic concepts in protein interactions

- Ligand: a molecule bound <u>reversibly</u> by a protein (a ligand can itself be a protein, or another type of molecule); the binding is very <u>specific</u>
- Binding site: the site where the ligand binds; it is complementary to the ligand in size, shape, charge and hydrophobic or hydrophilic character
- Induced fit: the structure adaptation between protein and ligand upon their binding; involves <u>conformational change of</u> <u>the protein</u>.
- In a multi-subunit protein, a conformational change in one subunit may affect the conformation of other subunits

Basic concepts in protein interactions

What if the protein is an enzyme?

- The ligand is the <u>substrate</u> (what's the difference between a ligand and a substrate?)
- The binding site is the <u>catalytic site</u>

A protein can have multiple binding partners

- The C-terminus is structurally disordered and flexible
- Adopt different structures when binds to different ligands

The blood oxygen circulation system

Globin proteins – Carriers of oxygen (why need a carrier?)

 Myoglobin: found in the muscle tissue in almost all mammals (e.g. Whale); as the storage for oxygen

Hemoglobin: carried by erythrocytes (red blood cells);
 as the transporter of oxygen

They were the first proteins for which three-dimensional structures were determined

Myoglobin

- -one subunit
- -one binding pocket
- -16,700 Da
- -consists of 8 α -helices (labelled A-H)

All contain Heme-Fe-O₂ binding pocket

• Hemoglobin

- -tetramer (four subunits)
- -two α subunits (α 1, α 2) and two β subunits (β 1, β 2)
- -four binding pockets
- -total 64,500 Da

Similar structures between myoglobin and the subunit of hemoglobin

The primary sequence is less similar (only 30%-50% identity)

A simple model for ligand binding: Myoglobin-Heme-Fe-O₂

Heme: protoporphyrin ring (forms a plane)
 binds to iron atom in its <u>ferrous (Fe²⁺) state</u>

 Four nitrogen atoms take four coordination bonds of Fe to maintain the Fe²⁺ state

Binding pocket for Heme-Fe-O₂

 O₂ could have a reversible coordination bond with Fe²⁺ in myoglobin

Binding of O₂ to Fe²⁺
 and Heme is stabilized
 by His F8 (by a
 coordination bond of
 Fe) and His E7 (by a
 hydrogen bond) of
 myoglobin

Quantitative description of protein-ligand binding

Θ: Percentage of binding site occupied

$$\Theta = \frac{\text{Binding sites occupied}}{\text{total sites}} = \frac{[PL]}{[PL] + [P]}$$

- K_d dissociation constant
- K_d equals to the concentration (in molar) of the ligand, at which half of the binding sites are occupied by the ligand ($\Theta = 0.5$)

Binding curve of oxygen to myoglobin

What are the K_d of these two ligands?

Which ligand has higher affinity?

K_d and the binding affinity

TABLE 5–1 Some Protein Dissociation Constants

Protein	Ligand	К _d (м)*
Avidin (egg white)	Biotin	1×10^{-15}
Insulin receptor (human)	Insulin	1×10^{-10}
Anti-HIV immunoglobulin (human)†	gp41 (HIV-1 surface protein)	4×10^{-10}
Nickel-binding protein (E. coli)	Ni ²⁺	1×10^{-7}
Calmodulin (rat) [‡]	Ca ²⁺	3×10^{-6}
		2×10^{-5}

Affinity

A more complex model for ligand binding

- A hemoglobin has four subunits, each binds to one Heme and O₂
- Two crystal structures of hemoglobin are present, the T state and R state, both can bind to O₂, but T state usually has less O₂
- O₂ has significant higher affinity for the R state of hemoglobin and stabilizes the R state

Structure transition from T state to R state upon the binding of O₂

The cooperative binding model

- Binding of O₂ stimulates the conformational change of hemoglobin towards the R state and promote the affinity of O₂ at the other binding sites (cooperative binding)
- Allosteric protein: binding of one site affects the binding of the other sites. Hemoglobin is one example

Cooperative binding is an adaption to different levels of O₂ in different tissues

Modulation of hemoglobin binding to O₂

 Hemoglobin is an allosteric protein: binding of oxygen to one site affects oxygen binding to the other sites.

 There are other molecules besides oxygen that affect hemoglobin-O2 interaction

CO₂, H⁺, BPG and CO also bind to hemoglobin

More layers of complexity: Binding of H⁺ and CO₂ by Hemoglobin

Hemoglobin can also bind to H⁺ and CO₂; their binding is inversely related to the binding of O₂ "Bohr effect"

Effect of pH on oxygen binding to hemoglobin

In tissues

- -CO₂ is high (oxidation in mitochondria)
- -pH decreases because: $CO_2 + H_2O \rightleftharpoons H^+ + HCO_3$ Catalyzed by carbonic anhydrase
- -Decrease binding affinity of O₂
- -Release O₂ and bind to CO₂ and H⁺

In lung

- -CO₂ is low (excreted)
- -pH rises
- -Increase binding affinity of O₂
- -Release CO₂ and H⁺ and bind to O₂

 $K_{\rm d}$ (in lung) < $K_{\rm d}$ (in tissue)

Regulation of oxygen binding to hemoglobin by 2,3-Bisphosphoglycerate (BPG)

- BPG is present in relatively high concentration in erythrocytes (red blood cells)
- BPG <u>reduces</u> the binding of oxygen to hemoglobin

Elevated level of BPG in blood at high altitude promotes the release of oxygen

 BPG level is important for people adaptation to high altitude where O₂ concentration is lower:

-Concentration of BPG is increased when people are transferred to high altitude

-Affinity of O₂ to hemoglobin is reduced (from blue line to green line)

-Percentage of O_2 release in tissue is increased (from 30% back to 37%, which is similar to that in sea level)

Hemoglobin related diseases: Why can CO kill people?

- Carbon monoxide (CO) binds to hemoglobin with an affinity 250-fold greater than O_2 (competing with O_2 at the <u>same</u> binding pocket)
- CO is a byproduct of incomplete burn of fossil fuels; also present in tobacco smoke

>60% of CO-Hemoglobin causes death because O₂ uptake and release are blocked

Sickle cell anemia

 A disease caused by genetic mutation in residue 6 of β chain of hemoglobin (Glu -> Val, acidic -> hydrophobic) resulting in variable abnormal red blood cells

- Caused by formation of aberrant aggregation of hemoglobin S (the mutated type of hemoglobin in patient) when deoxygenated (hence changing the shape of the red blood cells)
- Homozygous mutation causes serious disease because after physical exertion hemoglobin can become only half of the normal value
- Heterozygous mutation causes 1% of abnormal red cells; live normally if avoid vigorous exercise

Figure 5-20
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

(b)

Summary

- Basic concepts in protein binding
 Ligand, binding site and induced fit
- Reversible binding of a protein to a ligand Myoglobin and hemoglobin Binding pocket conformation K_d The cooperative binding model
- Regulation of the binding between oxygen and hemoglobin
 H⁺ and CO₂
 BPG
- Hemoglobin related diseases
 CO poisoning
 Sickle cell anemia

Study Question

Three proteins (1, 2, 3) can bind to a membrane protein with different affinities. According to the information below, which of the following statements is CORRECT?

Hormone	Y		
concentration (nM)	Protein 1	Protein 2	Protein 3
0.2	0.048	0.29	0.17
0.5	0.11	0.5	0.33
1	0.2	0.67	0.5

- A. Protein 1 has the highest binding affinity to the membrane protein
- B. Protein 2 has the highest binding affinity to the membrane protein
- C. Protein 3 has the lowest binding affinity to the membrane protein
- D. Not sufficient information to tell which protein has the highest affinity to the membrane protein

Study Question

Which of the following statements about hemoglobin is CORRECT?

- A. Each tetramer of hemoglobin binds to four BPG molecules
- B. CO₂ and O₂ bind to the same site on hemoglobin
- C. BPG in red blood cells helps people living in high attitude by increasing the hemoglobin binding affinity to O_2 in the lung
- D. None of the above