Business Analytics (IM561)

Module2. Underlying Mechanisms of Deep Learning

Intelligent Video Analytics with Deep Learning

Jongho Kim

December & Company Inc.

Spring, 2019

Note. This content mainly refers the summer session of KAIST organized by Jiyong Park(2018)

Module2. Underlying Mechanisms of Deep Learning

Intuitive Understanding of Deep Learning

- What is deep learning?
 - Deep learning is "**Representation Learning**" to learn and discover how to represent features of data. (Here, representation means a machine-understandable format)

How to draw faces?

cars

Intuitive Understanding of Deep Learning

- Why important to well-represent the features of data?
- What needs to well-represent the features of data?
- Why is deep learning outstanding at representation learning?

Intuitive Understanding of Deep Learning

• Why important to well-represent the features of data?

Ch1. Representational Learning

 What needs to well-represent the features of data?

Ch2. Artificial Neural Networks

Why is deep learning outstanding at representation learning?

Ch3. Deep Learning Algorithms

Ch1. Representational Learning

What is the meaning of Well-Representation of the Data Feature?

• First, let's look at an example of what a Representation is:

How can you distinguish the objects?

What is the meaning of Well-Representation of the Data Feature?

First, let's look at an example of what a Representation is:

- If you try to solve the problem of Classify the following shape, the number of corners can be used as a Representation
 - Square: 4 corner
 - Triangle: 3 corner
 - Circle: 0 corner

What is the meaning of Well-Representation of the Data Feature?

• But how do we cope if this shape comes in?

 You need great expertise in good representation, and Deep Learning automatically learns this representation

Why Should We Care about Learning Representation?

- The performance of machine learning methods is heavily dependent on the choice of data representation
- Conventional machine-learning techniques were limited in their ability to process natural data in their raw form.

Why Should We Care about Learning Representation?

• Deep-learning methods are representation-learning methods with multiple levels of representation from a concrete level to slightly more abstract level.

• Very complex functions can be learned by learning representation using Deeplearning

Ch2. Artificial Neural Networks

Neural Networks

- Artificial neural network mimics the human brain
 - ➤ While neural network-based algorithms for classification or regression may be useful for the purpose of artificial intelligence (AI), neural network itself has nothing to do with.
 - \triangleright Single neuron is activated (=1) or not (=0).

Capacity of Neural Networks

• Linearly separable problems

• Non-linearly separable problems

Capacity of Neural Networks

- Artificial neural networks can solve non-linearly separable problems.
 - ➤ That is, neural networks can represent more complex features!
- Linearly separable problems

• Non-linearly separable problems

Multi-layer neural networks can solve it by transforming the input in a better representation.

Learning Algorithm of Neural Networks

Back-propagation

= Learning parameters to minimize the error from the true value in the reverse way

Activation function
$$y = f(w_1 * 1 + w_0 * 0)$$

- (1) If the model outputs 1 and the true value is 0, how should you modify the parameters (w_1, w_0, h) ?
- (2) If the model outputs 0 and the true value is 1, how should you modify the parameters (w_1, w_0, h) ?
- (3) Until when? Minimizing the error (loss) function

Ch3. Deep Learning Algorithms

Representation Learning + Deep Architecture

- "Deep Learning can be considered as special case of representation learning algorithms which learn representations of the data in a Deep Architecture with multiple levels of representations." (Najafabadi et al. 2015, p. 5)
- Recent deep learning algorithms are mostly based on neural networks.
 - ➤ Neural network + Deep architecture
 - = Feed-forward networks with many hidden layers
 - = Multi-layer perceptron (MLP)
 - = Deep neural network (DNN)
 - ➤ More specialized algorithms: CNN, RNN, LSTM, etc.

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep Learning Applications and Challenges in Big Data Analytics. *Journal of Big Data*, 2(1), 1.

Representation Learning + Deep Architecture

• Then, how deep?

Convolutional Neural Network

What is Convolutional Neural Network (CNN)?

A typical example of CNN

- ➤ Inputs (2-dimension × channels) \rightarrow [Convolution -> ReLu -> Pooling] \rightarrow ...
 - → [Convolution -> ReLu -> Pooling] → Fully connected layer
 - → Output prediction (Multi-class classification)

Example: 1D Convolution

• How can we apply convolution on 1D time series data?

• 1D Convolution of discrete time signals

Example

• Kernel: -1 1

• Time series data: 0 0 0 1 0 1 1 1

Example: 1D Convolution

• Example

•
$$N = 1: -1*0 + 1*0 = 0$$

-1 1

0 0 0 1 0 1 1

•
$$N = 2: -1*0 + 1*1 = 1$$

0 0 0 1 0 1 1

Example: 2D Convolution

Convolution

Image data

Convolution filter

Image

Convolved Feature

Applying 2D Multiple Kernel

ReLU

- Introducing non-linearity (ReLU)
 - ➤ The purpose of ReLU is to introduce non-linearity in CNN.
 - ➤ Other non-linear functions such as tanh or sigmoid can also be used, but ReLU has been found to perform better in most situations.

Output = Max(zero, Input)

Max Pooling

- Reducing the dimensionality of each feature map (Pooling)
 - ➤ The purpose of pooling is to reduce the number of parameters and computations in the network, therefore, controlling overfitting.
 - Another purpose is to make the network invariant to small transformations, distortions and translations in the input image.
 - ➤ Pooling can be of different types: Max, Average, Sum, etc.

Source: An Intuitive Explanation of Convolutional Neural Networks (Data Science Blog) https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

What is Convolutional Neural Network (CNN)?

A typical example of CNN

- ➤ Inputs (2-dimension × channels) \rightarrow [Convolution -> ReLu -> Pooling] \rightarrow ...
 - → [Convolution -> ReLu -> Pooling] → Fully connected layer
 - → Output prediction (Multi-class classification)

Convolutional Neural Network (CNN)

• CNN automatically learns the best filters to extract the feature maps for image classifications through back propagation.

Source: Image Kernels demo, http://setosa.io/ev/image-kernels/

Convolutional Neural Network (CNN)

- CNN has been considered as a basic deep learning algorithm. Why is CNN superior at feature representations?
 - Effectively reducing computational complexity (Convolution filter)
 - ➤ Hierarchical feature representation (multiple convolution layers)
 - Non-linearity and less overfitting (Rectified Linear Unit (ReLU) and Pooling)

Thank you ©

Contact Info: quantic.jh@gmail.com

(Appendix) Learning Algorithm of Neural Networks

- Gradient descent method (Back-propagation)
 - = Learning parameters to minimize the error from the true value in the systematic, reverse way even for multiple hidden layers

The goal is to minimize the following error (loss) function,

$$E = -\sum_{i=1}^{3} [t_i \log(x_i) + (1 - t_i) \log(1 - x_i))]$$

(Appendix) Learning Algorithm of Neural Networks

- Gradient descent method (Back-propagation)
 - = Learning parameters to minimize the error from the true value in the systematic, reverse way even for multiple hidden layers

Firstly, update the parameters between output and hidden layers.

$$\frac{\partial E}{\partial w_{j1}} = \frac{\partial E}{\partial x_i} \frac{\partial x_i}{\partial s_i} \frac{\partial s_i}{\partial w_{ji}}$$
 (Chain rule)

$$\therefore \frac{\partial E}{\partial w_{i1}} = (x_i - t_i)x_j$$

Source: Backpropagation 설명 예제와 함께 완전히 이해하기 (Jaejun Yoo's Playground) http://jaejunyoo.blogspot.com/2017/01/backpropagation.html

(Appendix) Learning Algorithm of Neural Networks

- Gradient descent method (Back-propagation)
 - = Learning parameters to minimize the error from the true value in the systematic, reverse way even for multiple hidden layers

Secondly, update the parameters between hidden and input layers.

$$\frac{\partial E}{\partial w_{kj}} = \frac{\partial E}{\partial s_j} \frac{\partial s_j}{\partial w_{ki}}$$

$$\frac{\partial E}{\partial w_{kj}} = \sum_{i=1}^{3} \frac{\partial E}{\partial s_i} \frac{\partial s_i}{\partial x_j} \frac{\partial x_j}{\partial s_j} \times \frac{\partial s_j}{\partial w_{ki}}$$

$$\therefore \frac{\partial E}{\partial w_{kj}} = \sum_{i=1}^{3} (x_i - t_i) w_{ji} (x_j (1 - x_j)) \times x_k$$

Source: Backpropagation 설명 예제와 함께 완전히 이해하기 (Jaejun Yoo's Playground) http://jaejunyoo.blogspot.com/2017/01/backpropagation.html