## CS 321H HW1 - Lyell Read

Submit written solutions to all questions as a pdf file in Canvas. Use a word processor or text editor, hand written assignments will receive a 0. For problems 1, 2, & 3 also submit JFLAP files separately in Canvas (do NOT zip).

1) (5 pts) Construct an NFA with three states that accepts the language

$$L = \{a^n : n \ge 1\} \cup \{b^m a^k : m \ge 0, k \ge 0\}.$$



2) (5 pts) Suppose that a bank only permits passwords that are strings from the alphabet  $= \{a, b, c, d, 1, 2, 3, !, ?, \$\}$  that follow the rules: The length is at least four characters. It begins with a letter  $\{a, b, c, d\}$ . Must contain at least one digit  $\{1, 2, 3\}$ . Must end with a "special character"  $\{!, ?, \$\}$ . The set of legal passwords forms a regular language L. Construct an NFA or DFA for L. The table above contains some sample test cases.



3) (5 pts) A number is divisible by 3 if the sum of its digits is divisible by 3. Construct a DFA M that accepts a base-10 number if it is divisible by 3.

That is  $L(M) = \{ w \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^* : w \mod 3 = 0 \}$ . Hint:  $\lambda \notin L(M)$ .



4) (5 pts) For the DFA M below, give its formal definition as a quintuple. Verbally describe the language, L(M), accepted by M.



Alphabet  $(\Sigma) = \{0, 1\}$ 

States (Q) =  $\{q0, q1, q2, q3\}$ 

Initial State  $(q_0) = q0$ 

Final States  $(F) = \{q1, q3\}$ 

Transition Function ( $\delta$ ) = { $\delta$ (q0,0)=q1,  $\delta$ (q0,1)=q3,  $\delta$ (q1,0)=q1,  $\delta$ (q1,1)=q2,  $\delta$ (q2,0)=q2,  $\delta$ (q2,2)=q2,  $\delta$ (q3,0)=q1,  $\delta$ (q3,1)=q3}

```
M=(  \{q0,\,q1,\,q2,\,q3\}, \\ \{0,\,1\}, \\ \{\delta(q0,0)=q1,\,\delta(q0,1)=q3,\,\delta(q1,0)=q1,\,\delta(q1,1)=q2,\,\delta(q2,0)=q2,\,\delta(q2,2)=q2,\\ \delta(q3,0)=q1,\,\delta(q3,1)=q3\}, \\ q0, \\ \{q1,\,q3\} \ )
```

5) (5 pts) Let L = {w  $\in$  {a, b}\*:w begins with an "a" and ends with a "b" }. a) Prove that L is a regular language. b) Prove that L is a regular language.

Language L is a regular language if we can define DFA for L that accepts all strings in L:



Language  $\mathcal{L}$  is a regular language as we can define a DFA that accepts all strings in  $\mathcal{L}$ :



6) (5 pts) Prove that the class of regular languages is closed under complementation. That is if L is a regular language then  $\mathcal{L}$  is also a regular language. Hint: Use the DFA M that recognizes L to construct a DFA  $\mathcal{M}$  that recognizes  $\mathcal{L}$ .

Given a quintuple M representing a DFA for language L, where M = (Q,  $\Sigma$ ,  $\delta$ , q<sub>0</sub>, F), we can generate a DFA that accepts everything not accepted by language L (creating a DFA that accepts language  $\mathcal{L}$ ) by making all states final states, and making the final states normal states. This is achieved in quintuple M<sub>1</sub> = (Q,  $\Sigma$ ,  $\delta$ , q<sub>0</sub>, Q-F), where all non-final states become final, and

all final states become non-final.  $M_1$  is a DFA for language  $\mathcal{L}$ , as it accepts everything that was not accepted in M, the DFA for L.