Kapitel 4: Linkanalyse für Autoritäts-Ranking

- 4.1 Page-Rank-Verfahren
- 4.2 Exkurs: Grundlagen aus der Stochastik
- 4.3 HITS-Verfahren
- 4.4 Themenspezifisches Page-Rank-Verfahren

Informationssysteme SS2004

steme SS2004 4

Verbessertes Ranking durch Autoritäts-Scores

Ziel

Höheres Ranking von URLs mit hoher Autorität bzgl. Umfang, Signifikanz, Aktualität und Korrektheit von Information

 \rightarrow verbesserte Präzision von Suchresultaten

Ansätze (mit Interpretation des Web als gerichtetem Graphen G):

- Citation- oder Impact-Rank (q) ~ indegree (q)
- Page-Rank (nach Lawrence Page)
- HITS-Algorithmus (nach Jon Kleinberg)

Kombination von Relevanz- und Autoritäts-Ranking:

- gewichtete Summe mit geeigneten Koeffizienten (Google)
- initiales Relevanz-Ranking und iterative Verbesserung durch Autoritäts-Ranking (HITS)

4-2

4.1 Page-Rank r(q)

gegeben: gerichteter Web-Graph G=(V,E) mit |V|=n und Adjazenzmatrix A: $A_{ii}=1$ falls $(i,j)\in E, 0$ sonst

Idee:
$$r(q) \approx k \sum_{(p,q) \in G} r(p) / out deg ree(p)$$

Def.:
$$r(q) = \varepsilon/n + (1-\varepsilon) \sum_{\substack{(p,q) \in G}} r(p)/out deg ree(p)$$
 mit $0 < \varepsilon \le 0.25$

Satz: Mit $A'_{ij} = 1/\text{outdegree}(i)$ falls $(i,j) \in E$, 0 sonst, gilt: $\vec{r} = \frac{\vec{\varepsilon}}{n} + (1 - \varepsilon)A'\vec{r} \quad \Leftrightarrow \vec{r} = \left(\frac{\vec{\varepsilon}}{n} \vec{1}^T + (1 - \varepsilon)A'\right)\vec{r}$

d.h. r ist Eigenvektor einer modifizierten Transitionsmatrix

Iterative Berechnung von r(q):

- Initialisierung mit r(q) := 1/n
- Verbesserung durch Auswerten der rekursiven Definitionsgleichung konvergiert typischerweise mit ca. 100 Iterationen

Informationssysteme SS2004

4.2 Exkurs: Markov-Ketten

Ein stochastischer Prozeß ist eine Familie von

 $Zufallsvariablen \ \{X(t) \ | \ t \in T\}.$

T heißt Parameterraum, und der Definitionsbereich M der X(t) heißt Zustandsraum. T und M können diskret oder kontinuierlich sein.

Ein stochastischer Prozeß heißt **Markov-Prozeß**, wenn für beliebige $t_1, ..., t_{n+1}$ aus dem Parameterraum und für beliebige $x_1, ..., x_{n+1}$ aus dem Zustandsraum gilt:

$$\begin{split} &P[\;X(t_{n+1}) = x_{n+1}/X(t_1) = x_1 \land X(t_2) = x_2 \land ... \land X(t_n) = x_n\;] \\ &= \;P[\;X(t_{n+1}) = x_{n+1}/X(t_n) = x_n\;] \end{split}$$

Ein Markov-Prozeß mit diskretem Zustandsraum heißt **Markov-Kette** O.B.d.A. werden die natürlichen Zahlen als Zustandsraum gewählt. Notation für Markov-Ketten mit diskretem Parameterraum: X_n statt $X(t_n)$ mit $n=0,\,1,\,2,\,...$

Informationssysteme SS2004

4-4

Exkurs: Eigenschaften von Markov-Ketten mit diskretem Parameterraum (1)

Die Markov-Kette Xn mit diskretem Parameterraum heißt

homogen, wenn die Übergangswahrscheinlichkeiten pij := $P[X_{n+1}=j \mid X_n=i]$ unabhängig von n sind

irreduzibel, wenn jeder Zustand von jedem Zustand mit positiver Wahrscheinlichkeit erreichbar ist:

$$\sum_{n=1}^{\infty} P[X_n = j | X_0 = i] > 0 \text{ für all i, j}$$

aperiodisch, wenn alle Zustände i die Periode 1 haben, wobei die Periode von i der ggT aller Werte n ist, für die gilt:

$$P[X_n = i \land X_k \neq i \text{ für } k = 1,...,n-1/X_0 = i] > 0$$

Informationssysteme SS200

Exkurs: Eigenschaften von Markov-Ketten mit diskretem Parameterraum (2)

Die Markov-Kette Xn mit diskretem Parameterraum heißt

positiv rekurrent, wenn für jeden Zustand i die Rückkehrwahrscheinlichkeit gleich 1 ist und mittlere Rekurrenzzeit endlich:

$$\begin{split} &\sum_{\substack{n=1\\ \infty}}^{\infty} P[X_n = i \wedge X_k \neq i \ fiir \ k = 1,...,n-1/X_0 = i \] = 1 \\ &\sum_{i}^{n} P[X_n = i \wedge X_k \neq i \ fiir \ k = 1,...,n-1/X_0 = i \] < \infty \end{split}$$

 $\mbox{\bf ergodisch},$ wenn sie homogen, irreduzibel, aperiodisch und positiv rekurrent ist.

Informationssysteme SS2004

4-6

Resultate über Markov-Ketten mit diskretem Parameterraum (1)

Für die n-Schritt-Transitionswahrscheinlichkeiten

$$\begin{split} p_{ij}^{(n)} &:= P[X_n = j/X_0 = i] \quad \text{gilt:} \\ p_{ij}^{(n)} &= \sum_k p_{ik}^{(n-1)} p_{kj} \quad \text{mit} \quad p_{ij}^{(1)} := p_{ik} \\ &= \sum_k p_{ik}^{(n-l)} p_{kj}^{(1)} \quad \text{für} \ 1 \le l \le n-1 \\ \text{in Matrix-Notation:} \quad P^{(n)} &= P^n \end{split}$$

Für die Zustandswahrscheinlichkeiten nach n Schritten

$$\pi_{j}^{(n)} := P[X_n = j] \quad \text{gilt:}$$

$$\pi_{j}^{(n)} = \sum_{i} \pi_{i}^{(0)} p_{ij}^{(n)} \quad \text{mit Anfangswahrscheinlichkeiten} \quad \pi_{i}^{(0)}$$
(Chapman-

in Matrix-Notation: $\Pi^{(n)} = \Pi^{(0)} P^{(n)}$

(Chapman-Kolmogorov-Gleichung)

Resultate über Markov-Ketten mit diskretem Parameterraum (2)

Jede homogene, irreduzible, aperiodische Markov-Kette mit endlich vielen Zuständen ist positiv rekurrent und ergodisch.

Für jede ergodische Markov-Kette existieren

stationäre Zustandswahrscheinlichkeiten $\pi_j := \lim_{n \to \infty} \pi_j^{(n)}$ Diese sind unabhängig von $\Pi^{(0)}$ Diese sind unabhängig von $\Pi^{(0)}$

und durch das folgende lineare Gleichungssystem bestimmt:

$$\begin{aligned} \pi_j &= \sum_i \pi_i \ p_{ij} \ \text{ für alle } j \quad \text{(Gleichgewichts-} \\ &\qquad \qquad \qquad \\ \sum_i \pi_j &= 1 \end{aligned}$$

in Matrix-Notation $\Pi = \prod P$ (mit 1×n-Vektor ∏): $\Pi \vec{1} = 1$

Beispiel: Markov-Kette 0.2 0.3 0: sunny (1: cloudy 2: rainy 0.8 0.5 0.3 $\pi 0 = 0.8 \ \pi 0 + 0.5 \ \pi 1 + 0.4 \ \pi 2$ $\pi 1 = 0.2 \ \pi 0 + 0.3 \ \pi 2$ $\pi 2 = 0.5 \ \pi 1 + 0.3 \ \pi 2$ $\pi 0 + \pi 1 + \pi 2 = 1$ $\Rightarrow \pi 0 = 330/474 \approx 0.696$

 $\pi 1 = 84/474 \approx 0.177$ $\pi 2 = 10/79 \approx 0.126$

Page-Ranks im Kontext von Markov-Ketten

Modellierung des Random Walks eines Web-Surfers durch

- Verfolgen von Hyperlinks mit gleichverteilten Wahrscheinlichkeiten
- ..Random Jumps" mit Wahrscheinlichkeit ε
- → ergodische Markov-Kette

Der Page-Rank einer URL ist die stationäre

Besuchswahrscheinlichkeit der URL für diese Markov-Kette.

Verallgemeinerungen sind denkbar

(z.B. Random Walk mit Back-Button u.ä.)

Kritik am Page-Rank-Verfahren:

Page-Rank ist query-unabhängig und orthogonal zur Relevanz

Beispiel: Page-Rank-Berechnung $P = \begin{vmatrix} 0.1 & 0.0 & 0.9 \end{vmatrix}$ $\Pi^{(0)} \approx \begin{pmatrix} 0.333 \\ 0.333 \end{pmatrix}^{T} \Rightarrow \Pi^{(1)} \approx \begin{pmatrix} 0.333 \\ 0.200 \end{pmatrix}^{T} \Rightarrow \Pi^{(2)} \approx \begin{pmatrix} 0.439 \\ 0.212 \end{pmatrix}^{T} \Rightarrow \Pi^{(3)} \approx \begin{pmatrix} 0.332 \\ 0.253 \end{pmatrix}$ 0.346 0.401 $(0.491)^{7}$ $\Rightarrow \Pi^{(4)} \approx \begin{vmatrix} 0.176 \\ 0.527 \end{vmatrix} \Rightarrow \Pi^{(5)} \approx \begin{vmatrix} 0.244 \\ 0.350 \end{vmatrix}$ $\begin{array}{l} \pi 1 = 0.1 \ \pi 2 + 0.9 \ \pi 3 \\ \pi 2 = 0.5 \ \pi 1 + 0.1 \ \pi 3 \\ \pi 3 = 0.5 \ \pi 1 + 0.9 \ \pi 2 \end{array}$ $\Rightarrow \pi1\approx 0.3776,\, \pi2\approx 0.2282,\, \pi3\approx 0.3942$ $\pi 1 + \pi 2 + \pi 3 = 1$

4.3 HITS-Algorithmus: **Hyperlink-Induced Topic Search (1)**

Bestimme

- gute Inhaltsquellen: Authorities (großer indegree)
- gute Linkquellen: Hubs

- bessere Authorities mit guten Hubs als Vorgängern
- · bessere Hubs mit guten Authorities als Nachfolgern

Für Web-Graph G=(V,E) definiere für Knoten $p, q \in V$

Authority-Score $x_q = \sum_{\substack{(p,q) \in E}} y_p \text{ und}$ **Hub-Score** $y_p = \sum_{\substack{(p,q) \in E}} x_q$

HITS-Algorithmus (2)

Authority- und Hub-Scores in Matrix-Notation:

$$\vec{x} = A^T \vec{y}$$

$$\vec{y} = A \vec{x}$$

Iteration mit Adjazenz-Matrix A:

$$\vec{x} := A^T \vec{v} := A^T A \vec{v}$$

$$\vec{x} := A^T \vec{y} := A^T A \vec{x}$$
 $\vec{y} := A \vec{x} := A A^T \vec{y}$

x und y sind also Eigenvektoren von A^TA bzw. AA^T.

Intuitive Interpretation:

 $M^{(auth)} := A^T A$ ist die Cocitation-Matrix: $M^{(auth)}_{ij}$ ist die Anzahl der Knoten, die auf i und j zeigen

 $M^{(hub)} := AA^T$ ist die Bibliographic-Coupling-Matrix: $M^{(hub)}_{ij}$ ist die Anzahl der Knoten, auf die i und j zeigen

Implementierung des HITS-Algorithmus

- 1) Bestimme hinreichend viele (z.B. 50-200) "Wurzelseiten" per Relevanz-Ranking (z.B. mittels tf*idf-Ranking)
- 2) Füge alle Nachfolger von Wurzelseiten hinzu
- 3) Füge für jede Wurzelseite max. d Vorgänger hinzu
- 4) Bestimme durch Iteration die Authority- und Hub-Scores dieser "Basismenge" (von 1000-5000 Seiten) mit Initialisierung $x_q := y_p := 1 / |Basismenge|$
 - und Normalisierung nach jedem Schritt → konvergiert gegen die Eigenvektoren mit dem betragsgrößten Eigenwert (falls dieser Multiplizität 1 hat)
- 5) Gib Seiten nach absteigend sortierten Authority-Scores aus (z.B. die 10 größten Komponenten von x)

Kritik am HITS-Algorithmus:

Relevanz-Ranking innerhalb der Wurzelmenge bleibt unberücksichtigt

Verbesserter HITS-Algorithmus

Potentielle Schwachstellen des HITS-Algorithmus:

- irritierende Links (automatisch generierte Links, Spam, etc.)
- Themendrift (z.B. von "Jaguar car" zu "car" generell)

Verbesserung:

- Einführung von Kantengewichten: 0 für Links auf demselben Host, 1/k bei k Links von k URLs desselben Host zu 1 URL (xweight) 1/m bei m Links von 1 URL zu m URLs desselben Host (yweight)
- Berücksichtigung von thematischen Relevanzgewichten (z.B. tf*idf)
- → Iterative Berechnung von

 $\begin{array}{ll} \text{Authority-Score} & x_q = \sum\limits_{\substack{(p,q) \in E}} y_p * topic \ score(\ p\) * \ xweight(\ p,q\) \\ \text{Hub-Score} & y_p = \sum\limits_{\substack{(p,q) \in E}} x_q * topic \ score(\ q\) * \ yweight(\ p,q\) \\ \end{array}$

Bestimmung verwandter URLs

Cocitation-Algorithmus:

- Bestimme bis zu B Vorgänger der gegebenen URL u
- \bullet Für jeden Vorgänger p
 bestimme bis zu BF Nachfolger $\neq u$
- Bestimme unter allen Geschwistern s von u diejenigen mit der größten Anzahl von Vorgängern, die sowohl auf s als auch auf u zeigen (Cocitation-Grad)

Companion-Algorithmus:

- Bestimme geeignete Basismenge um die gegebene URL u herum
- Wende den HITS-Algorithmus auf diese Basismenge an

Companion-Algorithmus zur Bestimmung verwandter URLs

- 1) Bestimmung der Basismenge: u sowie
 - bis zu B Vorgänger von u und für jeden Vorgänger p bis zu BF Nachfolger ≠ u sowie
 - bis zu F Nachfolger von u und für jeden Nachfolger c bis zu FB Vorgänger \neq u mit Elimination von Stop-URLs (wie z.B. www.yahoo.com)
- 2) Duplikateliminierung:

Verschmelze Knoten, die jeweils mehr als 10 Nachfolger haben und mehr als 95 % ihrer Nachfolger gemeinsam haben

3) Bestimme Authority-Scores mit dem verbesserten HITS-Algorithmus

HITS-Algorithmus zur "Community Detection"

Wurzelmenge kann mehrere Themen bzw. "Communities" beinhalten, z.B. bei Queries "jaguar", "Java" oder "randomized algorithm"

Ansatz:

- ullet Bestimmung der k betragsgrößten Eigenwerte von A^TA und der zugehörigen Eigenvektoren x
- In jedem dieser k Eigenvektoren x reflektieren die größten Authority-Scores eine eng vernetzte "Community"

4.4 Themenspezifisches Page-Rank-Verfahren

für verschiedene thematische Klassen (Sport, Musik, Jazz, etc.), wobei jede Klasse c_k durch eine Menge T_k einschlägiger Autoritäten charakterisiert ist (z.B. aus Verzeichnissen von yahoo.com, dmoz.org)

Kernidee:

Ändere den Random Walk durch themenspezifische Random-Jump-Wahrscheinlichkeiten für Seiten aus T_k:

$$\vec{r}_k = \varepsilon \vec{p}_k + (1 - \varepsilon) A' \vec{r}_k$$
 mit $A'_{ij} = 1/\text{outdegree}(i)$ für $(i,j) \in E$, 0 sonst mit $(p_k)_j = 1/|T_k|$ für $j \in T_k$, 0 sonst (anstatt $p_j = 1/n$)

Verfahren

- 1) Berechne für jede Klasse c_k thematische Page-Rank-Vektoren r_k
- 2) Klassifiziere Query q (inkl. Kontext) bzgl. Klasse \boldsymbol{c}_k
 - \rightarrow Wahrscheinlichkeit $w_k := P[c_k | q]$
- 3) Der Autoritäts-Score von Seite d ist $\sum w_k r_k(d)$

Informationecustama \$\$2004

4.20

Experimentelle Evaluation: Qualitätsmaße

basierend auf Stanford WebBase (120 Mio. Seiten, Jan. 2001) enthält ca. 300 000 von 3 Mio. Seiten aus dmoz.org aus 16 Themen der obersten Stufe von dmoz.org; Link-Graph mit 80 Mio. Knoten und der Größe 4 GB auf 1.5 GHz Dual Athlon mit 2.5 GB Speicher und 500 GB RAID 25 Iterationen für alle 16+1 PR-Vektoren brauchen 20 Stunden Random-Jump-W. ε gesetzt auf 0.25 (themenspezifisch?) 35 Test-Queries, z.B.: classical guitar, lyme disease, sushi, etc.

Qualitätsmaße: Betrachte Top-k zweier Ranglisten $\tau 1$ und $\tau 2$ (k=20)

- $\ddot{\textbf{U}}$ berlappung OSim $(\tau 1, \tau 2) = | top(k, \tau 1) \cap top(k, \tau 2) | / k$
- Kendall's τ KSim $(\tau 1, \tau 2) =$

 $/\{(u,v)/u,v\in U,u\neq v,und\ \tau 1,\tau 2\ haben\ dieselbe\ Ordnung\ von\ u,v\}$

$$/U/\cdot(/U/-1)$$

 $mit U = top(k,\tau 1) \cup top(k,\tau 2)$

Informationssysteme SS2004

Experimentelle Resultate (1)

• Ranglistenähnlichkeit zwischen den ähnlichsten PR Vektoren:

	OSim	KSim
(Games, Sports)	0.18	0.13
(No Bias, Regional)	0.18	0.12
(Kids&Teens, Society)	0.18	0.11
(Health, Home)	0.17	0.12
(Health, Kids&Teens)	0.17	0.11

 \bullet Präzision für Top-10 (# relevante Dok. / 10) von 5 Benutzern:

	Standard	Themenspezifisch
alcoholism	0.12	0.7
bicycling	0.36	0.78
death valley	0.28	0.5
HIV	0.58	0.41
Shakespeare	0.29	0.33
micro average	0.276	0.512

Experimentelle Resultate (2)

• Top-3 für Query "bicycling"

(klassifiziert auf sports mit W. 0.52, regional mit 0.13, health mit 0.07)

Standard	Recreation	Sports
1 www.RailRiders.com	U 1	www.multisports.com
2 www.waypoint.org	www.GrownupCamps.com	www.BikeRacing.com
3 www.gorp.com	www.outdoor-pursuits.com	www.CycleCanada.com

Top-5 für Query-Kontext "blues" (Benutzer wählt Seite aus)
(klassifiziert auf arts mit W. 0.52, shopping mit 0.12, news mit 0.08)

No Bias	Arts	Health	
1 news.tucows.com	www.britannia.com	www.baltimorepsych.com	
2 www.emusic.com	www.bandhunt.com	www.ncpamd.com/seasonal	
3 www.johnholleman.com	www.artistinformation.c	com www.ncpamd.com/Wome	en's_
4 www.majorleaguebasebal	ll www.billboard.com	www.wingofmadness.com	
5 www.mp3.com	www.soul-patrol.com	www.countrynurse.com	
I-6		4	22

Persönliche Page-Rank-Werte

Ziel: Effiziente Berechnung und Speicherung auf einzelne Benutzerpräferenzen zugeschnittener Page-Rank-Vektoren

Page-Rank-Gleichung: $\vec{r}_k = \varepsilon \vec{p}_k + (1 - \varepsilon)A'\vec{r}_k$

Theorem:

Seien u1 und u2 persönliche Präferenzvektoren (für Random-Jump-Ziele) und seien r1 und r2 die zugehörigen Page-Rank-Vektoren. Dann gilt für alle $\alpha 1$, $\alpha 2 \ge 0$ mit $\alpha 1 + \alpha 2 = 1$: $\alpha 1$ r1 + $\alpha 2$ r2 = $(1-\epsilon)$ A' $(\alpha 1$ r1 + $\alpha 2$ r2) + ϵ $(\alpha 1$ u1 + $\alpha 2$ u2)

Korollar:

Für einen Präferenzvektor u mit m von 0 verschiedenen Komponenten und Basisvektoren e_n mit $(e_n)_i = 1$ für i = p, 0 für $i \neq p$ gilt:

$$u = \sum_{p=1}^{m} \alpha_p \cdot e_p$$
 mit Konstanten $\alpha_1 \dots \alpha_m$

und $r = \sum_{p=1}^{m} \alpha_p \cdot r_p$ für den persönlichen Page-Rank-Vektor r