Escalamiento de variables

Qué es?

Transformar datos **numéricos** en una escala estándar.... Por ejemplo entre 0 y 1.

Importante

Se escala por columna (variable), no por fila

Pais	Continente	Mes	Expectativa de vida	# Habitantes
Afganisthan	Asia	Enero	28.80	8425333
Afganisthan	Asia	Febrero	31.332	9240934
Afganisthan	Asia	Marzo	31.997	10267083
Afganisthan	Asia	Abril	34.020	11537966
Afganisthan	Asia	Mayo	36.088	13079460

Tipos communes de escalamiento

Normalización:

- Valores entre 0 y 1
- Más sensible a valores atípicos
- No modifica la distribución original
- Útil cuando la distribución de tus datos no es normal

Cuándo utilizarla?

 Cuando tienes algoritmos que se basan en magnitud o distancia (KNN, Redes Neuronales, SVMs con kernel RBF)

Estandarización:

- Transforma los datos para que tengan media 0 y std 1
- Menos afectada por los valores atípicos
- Útil cuando los datos están normalmente distribuidos

Cuándo utilizarla?

 Cuando tienes algoritmos que asumen distribuciones normales (Regresión Lineal, Regresión Logística, PCA)

Porqué escalar los datos?

 Métodos que utilizan gradiente descendente pueden batallar en converger sin el escalamiento

 Algunos modelos se verán sesgados por diferentes escalas, ya que se basan en métricas de distancia.

Quién es más similar?

