Roll Control for LV2.3

William Harrington Portland State Aerospace Society

June 14, 2015

Introduction

The roll control system for the current generation of launch vehicle (2.3) has more or less not been functioning properly since Launch 8. (Nate: explain here some of the problems with previous incarnations of the roll control system). In June of 2014, another attempt at designing a roll control system was initiated. The purpose of this report is to document the process of re-developing the roll control system.

State space model

In this section we set out to develop a state space model for the roll dynamics of the rocket.

Equations approximating the motion of the rocket are derived from free-body diagrams (FBD) and kinetic diagrams (KD), as taught in a mid level mechanical engineering dynamics course. Developing equations in this manner is known as developing from first principles because basic Newtonian principles F=ma are used to derive them. [1] The diagrams are shown below:

From this diagram we get the following differential equation $I_{zz}\ddot{\theta} = l_f u - K_d\dot{\theta}$ [1]

Modern control theory is founded on the state space approach. Therefore, we will review and discuss important terminology that pertains to developing our state space model.

The **state** of a dynamic system is the smallest set of variables (called *state variables*) such that knowledge of these variables at $t = t_0$, together with knowledge of the input for $t \ge t_0$, completely determines the behavior of the system for any time $t \ge t_0$. [2]

The **state variables** of a dynamic system are the variables making up the smallest set of variables that determine the state of the dynamic system. If at least n variables $x_1, x_2, ..., x_n$ are needed to completely describe the behavior of a dynamic system (so that once the input is given for $t \geq t_0$ and the initial state at $t = t_0$ is specified, the future state of the system is completely determined), then such n variables are a set of state variables. [2]

If n state variables are needed to completely describe the behavior of a given system, then these n state variables can be considered the n components of a veto \mathbf{x} . Such a vector is called a **state vector**. A state vector is thus a vector that determines uniquely the system $\mathbf{x}(\mathbf{t})$ for any time $t \geq t_0$, once the state at $t = t_0$ is given and the input $\mathbf{u}(\mathbf{t})$ for $t \geq t_0$ is specified. [2]

The *n*-dimensional space whose coordinate axes consist of the x_1 axis, x_2 axis,..., x_n axis, where $x_1, x_2, ..., x_n$ are state variables, is called a **state space**. Any state can be represented by a point in the state space. [2]

In state-space analysis we are concerned with three types of variables: input variables, output variables, and state variables.

Blahblah

References

- [1] Portland State Aerospace Society, Roll Control Wiki http://psas.pdx.edu/rollcontrol/
- [2] Katsuhiko Ogata Modern Control Engineering, Fifth Edition Prentice Hall, Boston, MA, 2010