EEE 551 Information Theory (Spring 2022)

Chapter 11: Information Theory and Statistics

The Method of Types

- lacktriangle Consider a finite alphabet ${\mathcal X}$
- For a sequence $x^n \in \mathcal{X}^n$ and $a \in \mathcal{X}$, let

$$N(a|x^n) = \#$$
 of occurrences of a in x^n

$$= |\{i : x_i = a\}|$$

$$= \sum_{i=1}^n \mathbf{1}(x_i = a)$$

- $P_{x^n}(a) = \frac{N(a|x^n)}{n}$ is called the **type** of x^n
- For example, if $x^n = (0, 1, 1, 0, 0, 1, 0)$, then

$$N(0|x^n) = 4, \quad N(1|x^n) = 3$$

 $P_{x^n}(0) = \frac{4}{7}, \quad P_{x^n}(1) = \frac{3}{7}$

■ The type is a distribution: $\sum_{a \in \mathcal{X}} P_{x^n}(a) = \sum_{a \in \mathcal{X}} \frac{N(a|x^n)}{n} = \frac{n}{n} = 1$

The Simplex and the Set of Types

■ Let \mathcal{P} be the **probability simplex** for \mathcal{X} , the set of probability distributions on \mathcal{X} :

$$\mathcal{P} = \left\{ P \in \mathbb{R}^{|\mathcal{X}|} : P(x) \geq 0 \text{ for all } x \in \mathcal{X}, \ \sum_{x \in \mathcal{X}} P(x) = 1 \right\}$$

- Let \mathcal{P}_n be the set of all types of n-length sequences
- \blacksquare For example, if $\mathcal{X} = \{0, 1\}$, then

$$\mathcal{P}_n = \left\{ (0,1), \left(\frac{1}{n}, \frac{n-1}{n}\right), \left(\frac{2}{n}, \frac{n-2}{n}\right), \dots, \left(\frac{n-1}{n}, \frac{1}{n}\right), (1,0) \right\}$$

- $\mathbb{P}_n \subset \mathcal{P}$
- $|\mathcal{P}_n| \le (n+1)^{|\mathcal{X}|}$

Proof:

- For any type $P \in \mathcal{P}_n$ and each $a \in \mathcal{X}$, $P(a) \in \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right\}$
- Thus at most n+1 choices for each $P(\boldsymbol{a})$
- Therefore $|\mathcal{P}_n| \leq (n+1)^{|\mathcal{X}|}$

This bound is loose, but what matters is that the number of types is **polynomial** in n, whereas the number of sequences is **exponential**. Thus there are exponentially many sequences with each type

Probability of a Sequence

For distribution $Q(x) \in \mathcal{P}$, define i.i.d. distribution $Q^n(x^n) = \prod Q(x_i)$

$$Q^{n}(x^{n}) = 2^{-n[D(P_{x^{n}} \| Q) + H(P_{x^{n}})]}$$

Proof:
$$\log Q^n(x^n) = \sum_{i=1}^n \log Q(x_i)$$

$$= \sum_{a \in \mathcal{X}} n P_{x^n}(a) \log Q(a)$$

 $= \sum N(a|x^n) \log Q(a)$

$$\sum_{a \in \mathcal{X}} n P_{x^n}(a) \log Q(a)$$

$$= n \sum_{a \in \mathcal{X}} P_{x^n}(a) \left[\log Q(a) - \log P_{x^n}(a) + \log P_{x^n}(a) \right]$$

$$= n \sum_{a \in \mathcal{X}} P_{x^n}(a) \left[-\log \frac{P_{x^n}(a)}{Q(a)} + \log P_{x^n}(a) \right]$$

$$= n \left[-D(P_{x^n} \| Q) - H(P_{x^n}) \right]$$

Corollary: If $x^n \in T(Q)$, then $Q^n(x^n) = 2^{-nH(Q)}$

Type Class

Given a type P, the **type class** T(P) is the set of n-length sequences with type P; i.e.

$$T(P) = \{x^n \in \mathcal{X}^n : P_{x^n} = P\}$$

Example:
$$\mathcal{X} = \{1, 2, 3\}, \ n = 5, \ P(1) = \frac{3}{5}, \ P(2) = \frac{1}{5}, \ P(3) = \frac{1}{5}$$

$$T(P) = \{11123, 11132, 11213, 11231, 11312, 11321, 12113, 12131, 12131, 12131, 13112, 13121, 13211, 21113, 21131, 21311, 23111, 31112, 31121, 31211, 32111\}$$

$$|T(P)| = \frac{5!}{3! \, 1! \, 1!} = \begin{pmatrix} 5\\3,1,1 \end{pmatrix} = 20$$

Size of Type Class

For any type
$$P \in \mathcal{P}_n$$
, $|T(P)| = \frac{n!}{\prod_{x \in \mathcal{X}} (nP(x))!}$

We may more usefully bound the type class size as follows:

$$\frac{1}{(n+1)^{|\mathcal{X}|}} 2^{nH(P)} \le |T(P)| \le 2^{nH(P)}$$

Proof of upper bound: Let $P^n(T(P)) = \Pr\{X^n \in T(P)\}$ where $X^n \stackrel{\text{iid}}{\sim} P(x)$.

$$1 \ge P^{n}(T(P))$$

$$= \sum_{x^{n} \in T(P)} P^{n}(x^{n})$$

$$= \sum_{x^{n} \in T(P)} 2^{-nH(P)}$$

$$= |T(P)|2^{-nH(P)}$$

Proof of lower bound:

We will prove that $P^n(T(P)) \geq P^n(T(Q))$ for all $Q \in \mathcal{P}_n$. Therefore:

$$1 = \sum_{Q \in \mathcal{P}_n} P^n(T(Q))$$

$$\leq \sum_{Q \in \mathcal{P}_n} P^n(T(P))$$

$$= |\mathcal{P}_n| P^n(T(P))$$

$$\leq (n+1)^{|\mathcal{X}|} P^n(T(P))$$

$$= (n+1)^{|\mathcal{X}|} |T(P)| 2^{-nH(P)}$$

Rearranging gives $|T(P)| \ge \frac{1}{(n+1)^{|\mathcal{X}|}} 2^{nH(P)}$

To prove $P^n(T(P)) \geq P^n(T(Q))$, we need the following fact:

For any integers $m, k, \frac{m!}{k!} \ge k^{m-k}$

■ If
$$m < k$$
, then $\frac{k!}{m!} = \prod_{i=m+1}^k i \le k^{k-m}$, so $\frac{m!}{k!} \ge k^{m-k}$

Thus:

hus:
$$\frac{P^n(T(P))}{P^n(T(Q))} = \frac{|T(P)| \prod_x P(x)^{nP(x)}}{|T(Q)| \prod_x P(x)^{nQ(x)}}$$

$$= \frac{\frac{n!}{\prod_x (nP(x))!}}{\frac{n!}{\prod_x (nQ(x))!}} \prod_x P(x)^{n(P(x)-Q(x))}$$

$$= \prod_x \frac{(nQ(x))!}{(nP(x))!} P(x)^{n(P(x)-Q(x))}$$

$$\geq \prod_x (nP(x))^{nQ(x)-nP(x)} P(x)^{n(P(x)-Q(x))}$$

$$= \prod_x n^{n(Q(x)-P(x))}$$

$$= n^n \sum_x (Q(x)-P(x)) = 1$$

Probability of Type Class

For any $P \in \mathcal{P}_n$ and any distribution Q,

$$\frac{1}{(n+1)^{|\mathcal{X}|}} 2^{-nD(P||Q)} \le Q^n(T(P)) \le 2^{-nD(P||Q)}$$

Proof:

$$Q^{n}(T(P)) = \sum_{x^{n} \in T(P)} Q^{n}(x^{n}) = |T(P)| 2^{-n[D(P||Q) + H(P)]}$$

From upper bound on |T(P)|:

$$Q^n(T(P)) \le 2^{-nD(P||Q)}$$

From lower bound on |T(P)|:

$$Q^{n}(T(P)) \ge \frac{1}{(n+1)^{|\mathcal{X}|}} 2^{-nD(P||Q)}$$

Summary of Results on the Method of Types

$$|\mathcal{P}_n| \le (n+1)^{|\mathcal{X}|}$$

$$Q^n(x^n) = 2^{-n[D(P_{x^n} || Q) + H(P_{x^n})]}$$

$$|T(P)| \doteq 2^{nH(P)}$$

$$Q^n(T(P)) \doteq 2^{-nD(P||Q)}$$

where \doteq means equality in first-order in the exponent

i.e.
$$a_n \doteq b_n$$
 iff $\lim_{n \to \infty} \frac{1}{n} \log a_n = \lim_{n \to \infty} \frac{1}{n} \log b_n$

Universal Source Coding

Source distribution is i.i.d. but unknown — code must work no matter what Q is

An (M, n) code is given by

- An encoding function $f: \mathcal{X}^n \to \{1, \dots, M\}$
- A decoding function $g: \{1, \dots, M\} \to \mathcal{X}^n$

Probability of error with respect to distribution ${\cal Q}$ is

$$P_e^{(n)}(Q) = Q^n \{ g(f(X^n)) \neq X^n \}$$

Theorem

For any rate R, there exists a sequence of $(2^{nR}, n)$ codes such that

$$P_e^{(n)}(Q) \to 0$$
 as $n \to \infty$ for all Q such that $H(Q) < R$.

Proof:

Fix rate
$$R$$
. Let $R_n = R - |\mathcal{X}| \frac{\log(n+1)}{n}$

■ Let
$$A = \{x^n \in \mathcal{X}^n : H(P_{x^n}) \le R_n\}$$

■ Encoder:
$$f(x^n) = \begin{cases} \text{index of } x^n \in A, & \text{if } x^n \in A \\ 1, & \text{otherwise} \end{cases}$$

Decoder: given $f(x^n) = m$, select $\hat{x}^n \in A$ where $f(\hat{x}^n) = m$

- Note that $P_e^{(n)}(Q) = Q^n(A^c)$
- Need to show: (1) $|A| \le 2^{nR}$, (2) For any Q with H(Q) < R, $Q^n(A^c) \to 0$
- Proof of (1):

$$|A| = \sum_{P \in \mathcal{P}_n: H(P) \le R_n} |T(P)|$$

$$\le \sum_{P \in \mathcal{P}_n: H(P) \le R_n} 2^{nH(P)}$$

$$\le \sum_{P \in \mathcal{P}_n: H(P) \le R_n} 2^{nR_n}$$

$$\le (n+1)^{|\mathcal{X}|} 2^{nR_n}$$

$$= 2^{n \binom{R_n + |\mathcal{X}| \log(n+1)}{n}} - 2^{nR}$$

Proof of (2): Assume H(Q) < R:

$$Q^{n}(A^{c}) = \sum_{P \in \mathcal{P}_{n}: H(P) > R_{n}} Q^{n}(T(P))$$

$$\leq (n+1)^{|\mathcal{X}|} \max_{P \in \mathcal{P}_{n}: H(P) > R_{n}} Q^{n}(T(P))$$

$$\leq (n+1)^{|\mathcal{X}|} \max_{P \in \mathcal{P}_{n}: H(P) > R_{n}} 2^{-nD(P||Q)}$$

$$\leq (n+1)^{|\mathcal{X}|} 2^{-n} \min_{P: H(P) > R_{n}} D(P||Q)$$

Since $R_n \to R$, for sufficiently large n, $H(Q) < R_n$

Thus $\min_{P:H(P)>R_n}D(P\|Q)>0$, so $Q^n(A^c)\to 0$

Large Deviation Theory

Bounds on the probability that an i.i.d. sum differs significantly from its mean

Example: $X^n \stackrel{\text{iid}}{\sim} \operatorname{Bern}(1/3)$, how does $\operatorname{Pr}\left\{\frac{1}{n}\sum_{i=1}^n X_i > 3/4\right\}$ behave for large n?

Probability roughly 2^{-nD^*} for a constant D^*

This event can be described in terms of the type P_{X^n} :

$$P_{X^n} \in E = \{P : P(1) > 3/4\}$$

Sanov's Theorem

Theorem (Sanov's theorem)

Let $X^n \stackrel{\text{iid}}{\sim} Q(x)$, and let E be a set of probability distributions. Let

$$P^* = \operatorname*{arg\,min}_{P \in E} D(P \| Q)$$

- $Q^n(E) = \Pr\{P_{X^n} \in E\} \le (n+1)^{|\mathcal{X}|} 2^{-nD(P^*||Q)}$
- If E is the closure of its interior 1 , then

$$\lim_{n \to \infty} \frac{1}{n} \log Q^n(E) = -D(P^* || Q)$$

¹Equivalent to the following: For all $a \in E$, there exists a sequence a_1, a_2, \ldots where $a_n \to a$, and for each n, there exists $\epsilon_n > 0$ where $\{b : \|b - a_n\|_2 \le \epsilon_n\} \subset E$.

Proof of Sanov's theorem:

$$\begin{split} Q^{n}(E) &= \sum_{P \in E \cap \mathcal{P}_{n}} Q^{n}(T(P)) \\ &\leq \sum_{P \in E \cap \mathcal{P}_{n}} 2^{-nD(P \parallel Q)} \\ &\leq \sum_{P \in E \cap \mathcal{P}_{n}} \max_{P \in E \cap \mathcal{P}_{n}} 2^{-nD(P \parallel Q)} \\ &\leq (n+1)^{|\mathcal{X}|} 2^{-n \min_{P \in E} D(P \parallel Q)} \\ &= (n+1)^{|\mathcal{X}|} 2^{-nD(P^{*} \parallel Q)} \end{split}$$

If E is the closure of its interior, then there exists a sequence of distributions $P_n \in E \cap \mathcal{P}_n$ where $P_n \to P^*$.

$$Q^{n}(E) = \sum_{P \in E \cap \mathcal{P}_{n}} Q^{n}(T(P))$$

$$\geq Q^{n}(T(P_{n}))$$

$$\geq \frac{1}{(n+1)^{|\mathcal{X}|}} 2^{-nD(P_{n}||Q)}$$

Thus

$$\liminf_{n \to \infty} \frac{1}{n} \log Q^n(E) \ge \liminf_{n \to \infty} \left[-\frac{|\mathcal{X}| \log(n+1)}{n} - D(P_n \| Q) \right] = -D(P^* \| Q)$$

Example of Sanov's Theorem

- Let X_i be i.i.d. with $\mathbb{E}[X_i] = \mu$
- \blacksquare Consider a probability of the form $\Pr\left\{\frac{1}{n}\sum_{i=1}^n X_i \geq \mu + \epsilon\right\}$
- Equivalent to $\Pr\{P_{X^n} \in E\}$ where $E = \left\{P : \sum_{a \in Y} P(a) \ a \ge \mu + \epsilon\right\}$
- By Sanov's theorem, $Q^n(E) \leq (n+1)^{|\mathcal{X}|} 2^{-nD^*}$ where $D^* = \min_{P: \sum_{n \in \mathcal{X}} P(a)} D(P\|Q)$
- lacktriangle To minimize over P, we form the Lagrangian

$$L(P) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)} + \lambda \left(\mu + \epsilon - \sum_{x} P(x) x\right) + \nu \left(\sum_{x} P(x) - 1\right)$$

 \blacksquare To solve for P, we need

$$0 = \frac{\partial L(P)}{\partial P(x)} = \log \frac{P(x)}{O(x)} + \frac{1}{\ln 2} - \lambda x + \nu$$

■ Thus

$$P(x) = Q(x)2^{\lambda x - \nu - 1/\ln 2} = \frac{Q(x)2^{\lambda x}}{\sum_{a \in \mathcal{X}} Q(a)2^{\lambda a}}$$

where $\lambda \geq 0$ is chosen so that $\mathbb{E}_P[X] = \mu + \epsilon$

Alternative Proof of Large Deviation Bound

- Let $X^n \stackrel{\text{iid}}{\sim} Q(x)$
- We use the **Chernoff bounding** approach: For any t > 0,

$$\Pr\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i} \geq \mu + \epsilon\right\} = \Pr\left\{t\sum_{i=1}^{n}X_{i} \geq nt(\mu + \epsilon)\right\}$$

$$= \Pr\left\{2^{t\sum_{i=1}^{n}X_{i}} \geq 2^{nt(\mu + \epsilon)}\right\}$$

$$\leq \frac{\mathbb{E}\left[2^{t\sum_{i=1}^{n}X_{i}}\right]}{2^{nt(\mu + \epsilon)}}$$

$$= 2^{-nt(\mu + \epsilon)}\mathbb{E}\left[\prod_{i=1}^{n}2^{tX_{i}}\right]$$

$$= 2^{-nt(\mu + \epsilon)}\left(\mathbb{E}[2^{tX}]\right)^{n}$$

$$= 2^{-n\left(t(\mu + \epsilon) - \log \mathbb{E}[2^{tX}]\right)}$$

■ Thus

$$\Pr\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i} \geq \mu + \epsilon\right\} \leq \min_{t>0} 2^{-n\left(t(\mu+\epsilon) - \log \mathbb{E}[2^{tX}]\right)} = 2^{-n\left(\max_{t>0}t(\mu+\epsilon) - \log \mathbb{E}[2^{tX}]\right)}$$

Markov's inequality

 $\Pr\left\{\frac{1}{n}\sum_{i=0}^{n}X_{i} \geq \mu + \epsilon\right\} \leq 2^{-nD^{\star}} \text{ where } D^{\star} = \max_{t>0} t(\mu + \epsilon) - \log \mathbb{E}[2^{tX}]$

 \blacksquare The optimal t will satisfy

$$0 = \frac{d}{dt} \left(t(\mu + \epsilon) - \log \sum_{x} Q(x) 2^{tx} \right) = \mu + \epsilon - \frac{\sum_{x} Q(x) x 2^{tx}}{\sum_{x} Q(x) 2^{tx}}$$

■ Let $P(x) = \frac{Q(x)2^{tx}}{\sum_{x \in \mathcal{X}} Q(a)2^{ta}}$, so $\frac{\sum_{x} Q(x)x2^{tx}}{\sum_{x} Q(x)2^{tx}} = \sum_{x} P(x)x = \mathbb{E}_{P}[X]$

■ Thus, the optimal t is where $\mathbb{E}_P[X] = \mu + \epsilon$, and so $D^* = t(\mu + \epsilon) - \log \sum Q(x)2^{tx}$ $= t \mathbb{E}_P[X] - \log \sum Q(x) 2^{tx}$ $= \sum tx P(x) - \log \sum_{x} Q(x) 2^{tx}$ $= \sum_{x} P(x) \log \frac{2^{tx}}{\sum_{a} Q(a)2^{ta}}$ $= \sum P(x) \log \frac{P(x)}{Q(x)} = D(P||Q)$

Hypothesis Testing

- Given a variable $X \in \mathcal{X}$, we wish to distinguish between two hypotheses:
 - $H_0: X \sim P_0$
 - $\blacksquare H_1: X \sim P_1$
- Problem: design a function (a test) $g: \mathcal{X} \to \{0,1\}$ that accurately determines which hypothesis is in force.
 - i.e. g(X)=0 means "I guess H_0 " and g(X)=1 means "I guess H_1 "
- \blacksquare It is equivalent to specify the acceptance region $A=\{x:g(x)=1\}$
- Two probabilities of error:

$$\alpha = \Pr\{g(X) = 0 \mid H_1\} = P_1(A^c)$$

 $\beta = \Pr\{g(X) = 1 \mid H_0\} = P_0(A)$

We wish both to be small, but there is a trade-off

Neyman-Pearson Lemma

Lemma (Neyman-Pearson)

For T > 0, let $g^*(x)$ be a likelihood ratio test where $g^*(x) = 1$ iff

$$\frac{P_1(x)}{P_0(x)} > T.$$

Let α^*, β^* be the corresponding probabilities of error.

For any other test g(x) with probabilities of error α, β , if $\alpha \leq \alpha^*$, then $\beta \geq \beta^*$.

Proof: Let A be the acceptance region for g^* , i.e. $A = \left\{ x : \frac{P_1(x)}{P_0(x)} > T \right\}$.

$$[g^*(x) - g(x)] [P_1(x) - T P_0(x)] \ge 0.$$

Indeed, consider the two cases:

For all x.

■ $x \in A$: Thus $\frac{P_1(x)}{P_0(x)} > T$, i.e. $P_1(x) - TP_0(x) > 0$.

Also
$$g^*(x) = 1$$
, so $g^*(x) - g(x) \ge 0$

■ $x \notin A$: Thus $P_1(x) - TP_0(x) \le 0$, and $g^*(x) = 0$, so $g^*(x) - g(x) \le 0$

- We proved that for all x, $\left[g^*(x) g(x)\right] \left[P_1(x) T P_0(x)\right] \ge 0$.
- Thus,

$$0 \leq \sum_{x} [g^{*}(x) - g(x)] [P_{1}(x) - T P_{0}(x)]$$

$$= \sum_{x} [g^{*}(x) P_{1}(x) - T g^{*}(x) P_{0}(x) - g(x) P_{1}(x) + T g(x) P_{0}(x)]$$

$$= P_{1}(g^{*}(X) = 1) - T P_{0}(g^{*}(X) = 1) - P_{1}(g(X) = 1) + T P_{0}(g(X) = 1)$$

$$= (1 - \alpha^{*}) - T \beta^{*} - (1 - \alpha) + T \beta$$

$$= T(\beta - \beta^{*}) - (\alpha^{*} - \alpha).$$

- If $\alpha \geq \alpha^*$, then $0 \leq T(\beta \beta^*)$
- Since T > 0, we have $\beta \beta^* \ge 0$, i.e. $\beta \ge \beta^*$

Chernoff-Stein Lemma

- Consider the hypothesis testing problem between two i.i.d. distributions:
 - $\blacksquare H_0: X^n \stackrel{\mathsf{iid}}{\sim} P_0(x)$
 - $\blacksquare H_1: X^n \stackrel{\mathsf{iid}}{\sim} P_1(x)$

where the problem is to design a test $g: \mathcal{X}^n \to \{0,1\}$.

- Let $\alpha_n = P_1^n(g(X^n) = 0)$ and $\beta_n = P_0^n(g(X^n) = 1)$.
- \blacksquare For fixed $\epsilon \in (0,1),$ let $\beta_n^\epsilon = \min_{g: \alpha_n \leq \epsilon} \beta_n$

Lemma (Chernoff-Stein)

$$\lim_{n \to \infty} \frac{1}{n} \log \beta_n^{\epsilon} = -D(P_1 || P_0).$$

Proof:

■ By the Neyman-Pearson lemma, the optimal test has acceptance region

$$A = \left\{ \frac{P_1^n(x^n)}{P_0^n(x^n)} > T \right\}$$

- Let $\alpha_n(T) = P_1^n \left(\frac{P_1^n(X^n)}{P_0^n(X^n)} \le T \right)$
- Let T_n^{ϵ} be the largest T such that $\alpha_n(T) \leq \epsilon$. Then $\beta_n^{\epsilon} = P_0^n \left(\frac{P_1^n(X^n)}{P_0^n(X^n)} > T_n^{\epsilon} \right)$.
- $\bullet \ \alpha_n(T) = P_1^n \left(\log \frac{P_1^n(X^n)}{P_0^n(X^n)} \le \log T \right) = P_1^n \left(\frac{1}{n} \sum_{i=1}^n \log \frac{P_1(X_i)}{P_0(X_i)} \le \frac{1}{n} \log T \right)$
- Variables $\log \frac{P_1(X_i)}{P_0(X_i)}$ are i.i.d. with mean (under P_1) $D(P_1 \| P_0)$, so by the law of large numbers, for any $\delta > 0$:
 - \blacksquare if $\frac{1}{n}\log T \geq D(P_1\|P_0) + \delta$ then $\alpha_n(T) \to 1$
 - if $\frac{1}{n}\log T \leq D(P_1\|P_0) \delta$ then $\alpha_n(T) \to 0$

Thus
$$\frac{1}{n}\log T_n^{\epsilon} \to D(P_1\|P_0)$$

$$\beta_n^{\epsilon} = P_0^n \left(\frac{P_1^n(X^n)}{P_0^n(X^n)} > T_n^{\epsilon} \right)$$

$$= P_0^n \left(\frac{1}{n} \sum_{i=1}^n \log \frac{P_1(X_i)}{P_0(X_i)} > \frac{1}{n} \log T_n^{\epsilon} \right)$$

$$= P_0^n \left(\sum_x P_{X^n}(x) \log \frac{P_1(x)}{P_0(x)} > \frac{1}{n} \log T_n^{\epsilon} \right)$$

$$= P_0^n \left(D(P_{X^n} || P_0) - D(P_{X^n} || P_1) > \frac{1}{n} \log T_n^{\epsilon} \right)$$

Since $\lim_{n\to\infty} \frac{1}{n} \log T_n^{\epsilon} = D(P_1 || P_0)$,

$$\lim_{n \to \infty} \frac{1}{n} \log \beta_n^{\epsilon} = \lim_{n \to \infty} \frac{1}{n} \log P_0^n \left(D(P_{X^n} \| P_0) - D(P_{X^n} \| P_1) \ge D(P_1 \| P_0) \right)$$

$$= - \min_{P: D(P \| P_0) - D(P \| P_1) \ge D(P_1 \| P_0)} D(P \| P_0)$$

$$\leq - \min_{P: D(P \| P_0) - D(P \| P_1) \ge D(P_1 \| P_0)} \left[D(P_1 \| P_0) + D(P \| P_1) \right]$$

$$< -D(P_1 \| P_0)$$

with equality if $P = P_1$

Chernoff Information

Consider the Bayesian hypothesis testing problem, with two hypotheses:

- $\blacksquare H_0: X^n \stackrel{\mathsf{iid}}{\sim} P_0$, occurs with prior probability π_0
- $\blacksquare H_1: X^n \stackrel{\mathsf{iid}}{\sim} P_1$, occurs with prior probability π_1

where $\pi_0 + \pi_1 = 1$.

Given a test $g:\mathcal{X}^n \to \{0,1\}$, the probability of error is given by

$$P_e^{(n)} = \pi_1 \alpha_n + \pi_0 \beta_n = \pi_1 P_1^n(g(X^n) = 0) + \pi_0 P_0^n(g(X^n) = 1).$$

Let
$$D^* = \lim_{n \to \infty} -\frac{1}{n} \log \min_g P_e^{(n)}$$

Theorem

$$D^* = D(P_{\lambda^*} || P_1) = D(P_{\lambda^*} || P_0)$$
 where

$$P_{\lambda}(x) = \frac{P_{1}(x)^{\lambda} P_{0}(x)^{1-\lambda}}{\sum_{a \in \mathcal{X}} P_{1}(a)^{\lambda} P_{0}(a)^{1-\lambda}}$$

and $\lambda^* \in [0,1]$ is such that $D(P_{\lambda^*} || P_1) = D(P_{\lambda^*} || P_0)$. This quantity is called the Chernoff information.

Proof:

By the Neyman-Pearson lemma, the optimal test will be a likelihood ratio test with acceptance region

$$A = \left\{ x^n : \frac{P_1^n(x^n)}{P_0^n(x^n)} > T \right\} = \left\{ x^n : D(P_{x^n} || P_0) - D(P_{x^n} || P_1) > \frac{1}{n} \log T \right\}$$

■ Thus

$$\lim_{n \to \infty} -\frac{1}{n} \log \beta_n = \lim_{n \to \infty} -\frac{1}{n} \log P_0^n(A)$$

$$= \min_{P:D(P||P_0) - D(P||P_1) \ge \frac{1}{n} \log T} D(P||P_0)$$

■ To solve this optimization, consider the Lagrangian

$$\sum_{x} P(x) \log \frac{P(x)}{P_0(x)} - \lambda \sum_{x} P(x) \log \frac{P_1(x)}{P_0(x)} + \nu \sum_{x} P(x)$$

■ Differentiating with respect to P(x):

$$\log \frac{P(x)}{P_0(x)} + 1 - \lambda \log \frac{P_1(x)}{P_0(x)} + \nu = 0$$

$$\log \frac{P(x)}{P_0(x)} + 1 - \lambda \log \frac{P_1(x)}{P_0(x)} + \nu = 0$$

$$\blacksquare$$
 Rearranging gives $P(x) = \frac{P_1(x)^{\lambda}P_0(x)^{1-\lambda}}{2^{\nu'}} = P_{\lambda}(x)$

- Thus $\beta_n \doteq 2^{-nD(P_\lambda \parallel P_0)}$ where λ is chosen so that $D(P_\lambda \parallel P_0) D(P_\lambda \parallel P_1) = \frac{1}{n} \log T$
- By a similar analysis, $\alpha_n \doteq 2^{-nD(P_\lambda \parallel P_1)}$ where again $D(P_\lambda \parallel P_0) D(P_\lambda \parallel P_1) = \frac{1}{n} \log T$

$$P_e^{(n)} = \pi_1 \alpha_n + \pi_0 \beta_n$$

$$\stackrel{\cdot}{=} \pi_1 2^{-nD(P_{\lambda} || P_1)} + \pi_0 2^{-nD(P_{\lambda} || P_0)}$$

$$\stackrel{\cdot}{=} 2^{-n \min\{D(P_{\lambda} || P_1), D(P_{\lambda} || P_0)\}}$$

- $\blacksquare \min\{D(P_{\lambda}\|P_1),D(P_{\lambda}\|P_0)\}$ is maximized when $D(P_{\lambda}\|P_1)=D(P_{\lambda}\|P_0),$ i.e. $\lambda=\lambda^*$
- \blacksquare Therefore $P_e^{(n)} \doteq 2^{-nD(P_{\lambda^*} \parallel P_1)} = 2^{-nD(P_{\lambda^*} \parallel P_0)}$

Parameter Estimation

- Let $\theta \in \Theta$ be an unknown parameter to be estimated from data X related to θ
- For each θ , there is a PDF $f(x;\theta)$ for the distribution of X given θ
- \blacksquare An estimator is a function $T:\mathcal{X}\to\Theta$ that produces an estimate T(X) that should be close to θ
- **Example:** $X \sim \mathcal{N}(\theta, 1)$. An estimator is T(X) = X
- **Example:** $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\theta,)$. An estimator is $T(X_1, \ldots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i$
- The **bias** of an estimator T is $\mathbb{E}_{\theta}[T(X)] \theta$
- An estimator is said to be **unbiased** if its bias is 0 for all θ ; i.e., if

$$\mathbb{E}_{\theta}[T(X)] = \theta \text{ for all } \theta$$

■ Question: How small can we make the mean-square error of an estimator? i.e.,

$$\mathbb{E}_{\theta}\left[\left(T(X)-\theta\right)^{2}\right]$$

Cramér-Rao Bound

Theorem

For any unbiased estimator T(X) of the parameter θ ,

$$\mathbb{E}_{\theta}[(T(X) - \theta)^{2}] \ge \frac{1}{J(\theta)}$$

where $J(\boldsymbol{\theta})$ is the Fisher information, defined by

$$J(\theta) = \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \ln f(X; \theta) \right]^2$$

Proof:

Consider the variable inside the expectation (sometimes called the score):

$$V = \frac{\partial}{\partial \theta} \ln f(X; \theta) = \frac{\frac{\partial}{\partial \theta} f(X; \theta)}{f(X; \theta)}$$

- $J(\theta) = \mathbb{E}_{\theta}[V^2]$
- The expectation of the score is

$$\mathbb{E}_{ heta}[V] = \int rac{rac{\partial}{\partial t}}{\partial t}$$

By the Cauchy-Schwartz inequality,

$$\left(\mathbb{E}_{\theta}[(V - \mathbb{E}_{\theta}V)(T - \mathbb{E}_{\theta}T)]\right)^{2} \leq \mathbb{E}_{\theta}(V - \mathbb{E}_{\theta}V)^{2}\,\mathbb{E}_{\theta}(T - \mathbb{E}_{\theta}T)^{2}$$

- lacksquare We know $\mathbb{E}_{ heta}V=0$, and by the assumption that T is unbiased, $\mathbb{E}_{ heta}T= heta$
- The left-hand side of the above inequality becomes

$$\left(\mathbb{E}_{\theta}[V(T-\theta)]\right)^{2} = \left(\mathbb{E}_{\theta}[VT] - \mathbb{E}_{\theta}[V\theta]\right)^{2} = \left(\mathbb{E}_{\theta}[VT]\right)^{2}$$

■ The right-hand side becomes

$$\mathbb{E}_{\theta} V^{2} \mathbb{E}_{\theta} [(T - \theta)^{2}] = J(\theta) \mathbb{E}_{\theta} [(T - \theta)^{2}]$$

- So $\left(\mathbb{E}_{\theta}[VT]\right)^2 \leq J(\theta) \, \mathbb{E}_{\theta}[(T-\theta)^2]$
- Rearranging gives

$$\mathbb{E}_{\theta}[(T-\theta)^2] \ge \frac{\left(\mathbb{E}_{\theta}[VT]\right)^2}{J(\theta)}$$

$$\mathbb{E}_{\theta}[VT] = \int \frac{\frac{\partial}{\partial \theta} f(x; \theta)}{f(x; \theta)} T(x) f(x; \theta) dx$$

$$= \int \frac{\partial}{\partial \theta} f(x; \theta) T(x) dx$$

$$= \frac{\partial}{\partial \theta} \int f(x; \theta), T(x) dx$$

$$= \frac{\partial}{\partial \theta} \mathbb{E}_{\theta} T(X)$$

$$= \frac{\partial}{\partial \theta} \theta$$

$$= 1$$

Therefore

$$\mathbb{E}_{\theta}[(T(X) - \theta)^{2}] \ge \frac{1}{J(\theta)}$$

Cramér-Rao Bound for i.i.d. Data

■ Suppose, for each θ , we observe X_1, X_2, \ldots, X_n i.i.d., that is

$$f(x_1,\ldots,x_n;\theta)=\prod_{i=1}^n f(x_i;\theta)$$

The score variable is

$$V = \frac{\partial}{\partial \theta} \ln f(X_1, \dots, X_n; \theta) = \frac{\partial}{\partial \theta} \sum_{i=1}^n \ln f(X_i; \theta) = \sum_{i=1}^n V_i$$

where $V_i = \frac{\partial}{\partial \theta} \ln f(X_i; \theta)$

■ The Fisher information for n-samples is

$$J_n(\theta) = \mathbb{E}_{\theta} V^2 = \mathbb{E}_{\theta} \left(\sum_{i=1}^n V_i \right)^2 = \sum_{i=1}^n \mathbb{E}_{\theta} V_i^2 = nJ(\theta)$$

■ Now the Cramér-Rao bound says that for any unbiased T,

$$\mathbb{E}_{\theta}[(T(X_1,\ldots,X_n)-\theta)^2] \geq \frac{1}{n I(\theta)}$$

lacksquare That is, in the best case the mean squared error for n samples goes down like 1/n

Relationship Between Fisher Information and Differential Entropy

- \blacksquare Assume that the parametric PDF has the form $f(x;\theta)=f(x-\theta)$; i.e., θ shifts the distribution of X
- The Fisher information becomes

$$J(\theta) = \int f(x - \theta) \left[\frac{\partial}{\partial \theta} \ln f(x - \theta) \right]^2 dx$$
$$= \int f(x - \theta) \left[\frac{\partial}{\partial x} \ln f(x - \theta) \right]^2 dx$$
$$= \int f(x) \left[\frac{\partial}{\partial x} \ln f(x) \right]^2 dx$$

■ Since in this case J does not depend on θ , we write this as J(X)

Theorem (de Bruijn's identity)

Let X have finite variance with PDF f(x). Let $Z \sim \mathcal{N}(0,1)$ independent of X. Then

$$\left. \frac{\partial}{\partial t} h(X + \sqrt{t} Z) \right|_{t=0} = \frac{1}{2 \ln 2} J(X).$$