Lista 2

Exercício 1. Prove, pela definição, que a função dada é contínua no ponto dado.

(a)
$$f(x) = 4x - 3 \text{ em } p = 3$$

(c)
$$f(x) = x + 1 \text{ em } p = 2$$

(b)
$$f(x) = -3x \text{ em } p = 1$$

Exercício 2. Dê exemplo de uma função definida em \mathbb{R} e que seja contínua em todos os pontos exceto em -1,0 e 1.

Exercício 3. Seja f dada por $f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ -1 & \text{se } x \notin \mathbb{Q} \end{cases}$. Mostre que f não é contínua em p qualquer que seja o número real p (sugestão: use o fato de que todo intervalo da reta contém números racionais e irracionais).

Exercício 4. Determine o valor, caso exista, que a função dada deveria ter no ponto dado para ser contínua nesse ponto.

(a)
$$g(x) = \frac{x^2 - 4}{x - 2}$$
 em $p = 2$.

(b)
$$f(x) = \frac{x^9 - 9}{x - 3}$$
 em $p = 3$.

Exercício 5. Calcule

(a)
$$\lim_{x \to -1} \frac{x^3 + 1}{x^2 - 1}$$

(g)
$$\lim_{x \to 0} \frac{x^3 + x^2}{3x^3 + x^4 + x}$$

(b)
$$\lim_{x\to 0} (x^2 + 3xh)$$

(h)
$$\lim_{x \to p} \frac{x^4 - p^4}{x - p}$$

(c)
$$\lim_{x\to 3} \frac{x^2-9}{x^2+9}$$

(d)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^4 + 3x - 4}$$

(e)
$$\lim_{x \to 2} \frac{\frac{1}{x} - \frac{1}{2}}{x - 2}$$

(f)
$$\lim_{x\to p} \frac{g(x)-g(p)}{x-p}$$
 em que $g(x)=\frac{1}{x^2}$