### Variational Autoencoders VS Generative Adversarial Networks

Alexander Mennborg Ismat Halabi Elliot Härenby Deak

#### **Table of Contents**

- Introduction
- Generative Adversarial Networks
- Variational Autoencoders
- Comparisons
- Future Work

#### Introduction

- Generative models, complex data, hard train
- Delimitation: this only considers image generation
- Aims to compare performance of both models
- Related Work
  - Goodfellow I. et al. <u>Generative Adversarial Nets</u>
  - Kingma, D. P. and Welling, M. <u>Auto-Encoding Variational Bayes</u>

#### Taxonomy of Generative Models



## Generative Adversarial Networks

#### What are GANs?

Invented by Ian Goodfellow in 2014



Image credit: Thalles Silva

#### Deep Convolutional GANs (DCGANs)

- One specific GAN architecture among many
- Generator model inputs latent vector and outputs image
- Conv. layers uses transposed convolutions



#### Deep Convolutional GANs (DCGANs) - Tips

- Training can be quite unstable
- Use batch normalization,
- Use strided convolutions instead of pooling layer
- Use ReLU (generator) and LeakyReLU (discriminator)

#### Downscaling (strided convolution)

2x2 output

↑

5x5 input





#### **Upscaling**

(fractional strided convolution)
5x5 output

 $\uparrow$ 

3x3 input (+ padding)

#### Training Results - MNIST

#### Real Images



#### Fake Images Training Progression



- Uses vanilla GANs
- Learns overall structure quickly
- Some minor denoising happening



#### Training Results - CIFAR10

#### Real Images



Fake Images Training Progression



- Uses DCGANs
- Fake images, blurry, CIFAR10 like
- Mostly unrecognizable results



## Bayesian

Variational Auto-Encoders (VAE)

#### General Idea

- Type of <u>unsupervised learning</u>
- UL:
  - No labels, just data
  - Goal: learn some underlying hidden structure of data
- Given observed data points X\_n {n=1 to N} distributed according to some (unknown) ground truth distribution p\_gt(x), learn a model p that we can sample from, such that p is as similar to p\_gt(x) as possible.

#### Standard AutoEncoder (AE)



latent vector / variables

Source: http://kvfrans.com/variational-autoencoders-explained/

- Save encoded image
- Recover it later
- Middle part called bottleneck: dimensionality reduced
- Deterministic encoding/decoding, no new images: output ~ input!

#### VAE: Constrained Stochastic AE => Generative!



Source: http://kvfrans.com/variational-autoencoders-explained/



https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a

- Encoder constraints: generate latent vectors that roughly follows unit gaussian distribution
- Sample latent vector from unit gaussian
- Parameterization trick: encoder generates vector of means and vector and standard deviations instead of vector of real numbers to optimize KL divergence
- Decoder generates new sample from latent space!

#### Losses

- generation loss = mean(square(generated\_image real\_image))
  - Accuracy in reconstruction images
- latent\_loss = KL\_Divergence(latent\_variable, unit\_gaussian)
  - How close z matches unit Gaussian
- total\_loss = generation\_loss + latent\_loss

Generation loss: same as in standard AE

#### Reparameterization Trick



Source: https://www.youtube.com/watch?v=rZufA635dq4

 $z = \mu + \sigma.\epsilon$ , only  $\mu$  and  $\sigma$  trained,  $\epsilon$  purely stochastic, all Gaussian unit

Allows for end-to-end training

#### **ELBO: Evidence Lower Bound**

- Originally,  $p(x) = \int p(z).p(x|z)dz$  intractable (decoder)
- Similarly, p(z|x) = p(x|z)p(z) / p(x) also intractable (Bayes' theorem, encoder)

- ELBO(x) = Expected(z|x) [log p(x,z) log q(z|x)]
- q(z|x): stochastic encoder, p(z|x): true posterior
- Objective:
  - maximize ELBO (data likelihood, tractable)
  - Minimize KL divergence (distance) of stochastic encoder from true posterior

#### Training Results





Generated images

- 2D variations of z decoded
- CNN / transposed CNN used



#### **Exploring Latent Space**



- Slowly increase/decrease one latent variable leaving others unchanged along each dimension => "continuous" output
- Each dimension encodes different latent feature
- Wanted: uncorrelated latent variables

Source: https://www.youtube.com/watch?v=rZufA635dg4

#### Application: Debiasing, RL, SL

Capable of uncovering underlying latent variables in a dataset

VS



Homogeneous skin color, pose



Diverse skin color, pose, illumination

How can we use latent distributions to create fair and representative datasets?

Source: <a href="https://www.youtube.com/watch?v=rZufA635dq4">https://www.youtube.com/watch?v=rZufA635dq4</a>

#### Experience Gained with VAE

- Used ready code in github
- Difficult to adapt:
  - Compact code but minor changes may break the functioning of the model
  - Understand the intuition but not the maths

# Comparison and Differences

#### Main differences between generators

GAN

- Based on two networks
   (discriminative/generative)
- Discriminator is not useful after training
- Learns to generate directly from gaussian data

VAE

- Based on one network
- Encoder not used after training, but could be
- Learns to compress data to gaussian distribution and decompress it back to image, gaussian noise yields new data

#### Comparison by results

#### Real images

#### GAN fake images

#### VAE fake images



#### Comparison of generators - "pros" and "cons"

GAN

- Convincing data
- Sharp

- Somewhat noisy
- Difficult to navigate in latent space
- May suffer from Mode Collapse
- Only real/fake basis
- Difficult to evaluate no one to rule the all

- Convincing data
- Easy to navigate in latent space

VAE

Fuzzy-looking

#### Supervised? Unsupervised? Semi/self-supervised?

Most probably unsupervised, according to most litterature

GANs - Unsupervised with supervised loss

VAEs do not have labels - Unsupervised according to MIT and Stanford

Input is used as reference to the output

#### Why not combine them?

Future work

#### **VAE-GAN**

- Combination of VAE and GAN
- Basically merge decoder and generator
- Use discriminator during training



From "Autoencoding beyond pixels using a learned similarity metric" A. Larsen

#### References

Goodfellow I. et al. Generative Adversarial Nets, 2014

Radford A., Metz L., Chintala S. <u>Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks</u>, 2016.

Kingma, D. P. and Welling, M. <u>Auto-encoding Variational Bayes</u>. Proceedings of the 2nd International Conference on Learning Representations (ICLR), Banff, Canada, 2014

A. Larsen <u>Autoencoding beyond pixels using a learned similarity metric</u>, 2016