Examen de probabilités

USTC, 2022, cours de P. Marchal

On utilise les notations usuelles : Card(E) désigne le cardinal d'un ensemble E, $2\mathbb{Z}$ désigne l'ensemble des entiers pairs et $\mathbb{Z} - 2\mathbb{Z}$ désigne l'ensemble des entiers impairs.

Soit $(U_n, n \ge 1)$ une suite iid de variables aléatoires uniformes sur l'ensemble $\{1, 2\}$. Soit E_0 un sous-ensemble fini de \mathbb{Z} . On définit par récurrence l'ensemble E_n ainsi : pour tout entier $n \ge 1$,

$$E_n = \{k \in \mathbb{Z}, Card(\{k-1, k+1\} \cap E_{n-1}) \ge U_n\}$$

Pour $n \geq 0$ on note $M_n = Card(E_n)$ et F_n est la tribu engendrée par E_0 , $U_1, \ldots U_n$.

I)

- 1) On suppose que $E_0 = \{0\}$ et que $U_1 = 1$. Montrer que $E_1 = \{-1, 1\}$.
- 2) On suppose que $E_0 = \{0\}$ et que $U_1 = 2$. Quel est l'ensemble E_1 ?
- 3) On suppose que $E_0 = \{1, 2, 3\}$. Quel est l'ensemble E_1 si $U_1 = 1$? Quel est l'ensemble E_1 si $U_1 = 2$?
- II) On suppose dans cette partie $E_0 = \{0, 1\}$.
- 1) On suppose que $U_1 = 1$, $U_2 = 2$, $U_3 = 2$. Que valent E_1 , E_2 et E_3 ?
- 2) Montrer que pour tout n, E_n est soit vide, soit de la forme [-k, k+1] pour un certain entier $k \geq 0$.
- 3) Montrer que $(E_n, n \ge 0)$ est une chaine de Markov sur l'ensemble des parties de \mathbb{Z} qui sont soit l'ensemble vide, soit un intervalle de la forme [-k, k+1]. Préciser les probabilités de transition de cette chaine de Markov.
- 4) Montrer que (F_n) est une filtration et que $(M_n, n \ge 0)$ est une martingale pour cette filtration.
- 5) Pour un entier $N \geq 2$, on note $T_N = \inf\{n, M_n = 2N\}$ et on pose $T_0 = \inf\{n, M_n = 0\}$. Calculer $\mathbb{P}(T_0 < T_N)$.
- III) On suppose dans cette partie $E_0 = \{0\}$. Pour $k \geq 0$ on pose $U_{2k} = [-2k, 2k] \cap 2\mathbb{Z}$ et $U_{2k+1} = [-(2k+1), 2k+1] \cap (\mathbb{Z} 2\mathbb{Z})$.
- 1) Montrer que pour tout n, soit E_n est vide, soit il existe $k \geq 0$ tel que $E_n = U_k$.
- 2) Montrer que $(E_n, n \ge 0)$ est une chaine de Markov sur l'ensemble des parties de \mathbb{Z} qui sont soit l'ensemble vide, soit un ensemble de la forme U_k . Préciser les probabilités de transition de cette chaine de Markov.
- 3) Montrer que $(M_n, n \ge 0)$ est une martingale pour la filtration (F_n) .
- 4) Montrer que pour tout $x \in \mathbb{Z}$ et tout entier $n \geq 0$,

$$\mathbb{P}(x \in E_{n+1}) = \frac{1}{2} [\mathbb{P}(x+1 \in E_n) + \mathbb{P}(x-1 \in E_n)]$$

- 5) Soit $x \in \mathbb{Z}$. Soit $(S_n, n \ge 0)$ la marche aléatoire simple symétrique sur \mathbb{Z} partant de 0. Montrer que pour tout n, $\mathbb{P}(x \in E_n) = \mathbb{P}(S_n = x)$.
- IV) On suppose maintenant que E_0 est un sous-ensemble fini quelconque de \mathbb{Z} .
- 1) En utilisant le fait que pour tout n,

$$M_n = \sum_{x \in \mathbb{Z}} \mathbf{1}_{\{x \in E_n\}}$$

montrer que (M_n) est une martingale pour la filtration (F_n) (on pourra utiliser III 4).

- 2) Montrer que presque sûrement, il existe un entier $N \geq 1$ tel que pour tout $n \geq N, E_n = \emptyset$.
- 3) Montrer que (E_n) est une chaine de Markov. Quels sont ses états récurrents et transitoires ?

On suppose désormais $E_0 = \{0, 1, 2k, 2k + 1\}$ avec $k \ge 2$.

- 4) Montrer que $T = \inf\{n, E_n = \emptyset\}$ est un temps d'arrêt presque sûrement fini.
- 5) Montrer que T a même loi que

$$\tau_{\{0,k\}} + \mathbf{1}_{\{S_{\tau_{\{0,k\}}}=k\}} \tau_0'$$

οù

 $\tau_{\{0,k\}}$ est le temps d'atteinte de $\{0,k\}$ par une marche aléatoire simple symétrique (S_n) sur $\mathbb Z$ avec $S_0=1$,

 τ_0' est le temps d'atteinte de $\{0\}$ par une marche aléatoire simple symétrique (S_n') sur \mathbb{Z} , indépendante de (S_n) , avec $S_0' = 2k$.

Indication: on pourra poser

$$R = \inf\{n, E_n \in \{\emptyset, [-(k-1), 3k]\}\$$

et considérer (M_n) avant et après l'instant R.