AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Currently amended) A method for recovery of metals, in particular copper[[,]] from copper-bearing raw material <u>further</u> containing also other valuable metals, iron, and sulphur, the method comprising:

leaching said raw material into an aqueous solution of copper chloride and hydrochloric acid in a leaching stage;

adjusting a redox potential of a copper-containing raw material leach in the leaching stage using a feed of an oxydating-oxidizing agent to the range of 480 - 500 mV with regard to a Ag/AgCl electrode, whereby iron and sulphur remain in a deposit formed in leaching and the copper in the aqueous solution is mainly divalent;

feeding the aqueous solution coming from the leaching stage to the first extraction stage of a two-stage liquid-liquid extraction stage;

extracting, in the first extraction stage, copper from the aqueous solution coming from the leaching stage into a first-copper-depleted organic extraction solution while the other valuable metals remain in the aqueous solution coming from the leaching stage;

partitioning the aqueous solution coming from the first extraction stage into a first part and a second part;

feeding the first part of the aqueous solution back to the leaching stage; neutralizing the second part of the aqueous solution;

feeding the neutralized aqueous solution into the second extraction stage;

extracting, in the second extraction stage, copper from the neutralized aqueous solution into a second-copper-depleted organic extraction solution while the other valuable metals remain in the neutralized aqueous solution;

transferring a-the first organic extraction solution and a-second organic extraction solutions to a stripping stage where copper is transferred from the first and second organic extraction solutions into an aqueous solution of sulphuric acid forming a copper-depleted organic extraction solution;

transferring the copper-depleted organic extraction solution to: the first extraction stage forming the first copper-depleted organic extraction solution and the second extraction stage forming the second copper-depleted organic extraction solution; and

feeding the aqueous solution of sulphuric acid from the stripping stage to an electrowinning stage for recovery of elemental copper.

- 2. (Currently amended) The method according to claim 1, wherein the oxydating oxidizing agent is oxygen.
- 3. (Currently amended) The method according to claim 1, wherein the oxydating oxidizing agent is air.
 - 4-7. (Cancelled)
- 8. (Previously presented) The method according to claim 1, wherein the extraction temperature is less than or equal to about 40°C.

Attorney's Docket No. 1034281-000022

Application No. 10/531,363

Page 4

(Previously presented) The method according to claim 1, wherein the aqueous 9.

solution of sulphuric acid fed to the stripping stage comprises a return acid from the copper

electrowinning stage.

(Previously presented) The method according to claim 1, further comprising 10.

precipitating the other valuable metals from the aqueous solution coming from the second

extraction stage using alkali hydroxide precipitation.

(Previously presented) The method according to claim 1, wherein the copper-11.

bearing raw material comprises gold and/or platinum group metals.

(Previously presented) The method according to claim 11, further comprising 12.

precipitating the gold and/or platinum group metals in connection with precipitation of

sulphur and iron, the gold and/or platinum group metals being recovered from a precipitate

deposit during a sulphur flotation stage.

(Previously presented) The method according to claim 1, wherein a pH value 13.

in the leaching stage is at least 1.5.

(Previously presented) The method according to claim 10, wherein the other 14.

valuable metals are selected from the group consisting of nickel, cobalt and zinc.

(Previously presented) The method according to claim 10, further comprising 15.

treating the aqueous solution coming from the precipitation step with sulphuric acid whereby

hydrochloric acid is obtained; and feeding the treated aqueous solution back to the leaching stage.