```
In [1]: print('Name: ')
    print('Plot a heatmap which help you visualize percentage of blood leaving the he
    print('Plot a heatmap which help you visualize Percentage of blood leaving the he
```

Name:

Plot a heatmap which help you visualize percentage of blood leaving the heart a t each contraction of a smoking and non smoking person heart
Plot a heatmap which help you visualize Percentage of blood leaving the heart a t each contraction of person who died due to cardio vascular disease

Task 1 - Plot heat map to visualize percentage of blood leaving the heart at each contraction of a smoking and non smoking person

A normal, healthy heart will never completely empty, but it will pump out 55-70 percent of the blood that's inside it. An ejection fraction of 55-70 percent is normal; 40-55 percent is below normal. Anything less than 40 percent may indicate heart failure, and below 35 percent there's a risk for life-threating arrhythmias

```
In [2]: #predefine code for image
    from IPython.display import Image
    Image(filename='heart.png')
    #predefine code end
```

Out[2]:

The right side of your heart receives oxygen-poor blood from your veins and pumps it to your lungs, where it picks up oxygen and gets rid of carbon dioxide. The left side of your heart receives oxygen-rich blood from your lungs and pumps it through your arteries to the rest of your body.

```
In [3]: # Import all the libraries and read heart_failure_clinical_records_dataset.csv
import numpy as np
import pandas as pd
import matplotlib. pyplot as plt
import seaborn as sns

df = pd.read_csv('heart_failure_clinical_records_dataset.csv')
df
```

Out[3]:

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	s
0	75.0	0	582	0	20	1	265000.00	_
1	55.0	0	7861	0	38	0	263358.03	
2	65.0	0	146	0	20	0	162000.00	
3	50.0	1	111	0	20	0	210000.00	
4	65.0	1	160	1	20	0	327000.00	
294	62.0	0	61	1	38	1	155000.00	
295	55.0	0	1820	0	38	0	270000.00	
296	45.0	0	2060	1	60	0	742000.00	
297	45.0	0	2413	0	38	0	140000.00	
298	50.0	0	196	0	45	0	395000.00	

In [4]: #Group by age and smokers and find the average ejection_fraction rate
 groupby_age = df.groupby(['age','smoking'])['ejection_fraction'].mean().reset_ind
 groupby_age

Out[4]:

	age	smoking	ejection_fraction
0	40.0	0	37.000000
1	40.0	1	35.000000
2	41.0	1	40.000000
3	42.0	0	38.750000
4	42.0	1	31.666667
70	87.0	0	38.000000
71	90.0	0	44.000000
72	90.0	1	40.000000
73	94.0	0	38.000000
74	95.0	0	35.000000

299 rows × 13 columns

75 rows × 3 columns

```
In [6]: # Plot a heatmap to show the ejection fraction rate in smokers and non smokers he
plt.figure(figsize = (10,8))
heatmap_df = pd.pivot_table( values ='ejection_fraction', index ='smoking', colum
sns.heatmap(heatmap_df,cmap = 'plasma')
```


0 are non smokers and 1 are smokers

Conclusion - =

Task 2 Plot a heatmap to visualize percentage of blood leaving the heart at each contraction of people who died due to cardio vascular disease

In [7]: #Group by death events and ejection fraction rate and find the average ejection f
group_death_events = df.groupby(['age','DEATH_EVENT'])['ejection_fraction'].mean(
group_death_events

Out[7]:

	age	DEATH_EVENT	ejection_fraction
0	40.0	0	36.428571
1	41.0	0	40.000000
2	42.0	0	39.166667
3	42.0	1	15.000000
4	43.0	0	50.000000
68	87.0	1	38.000000
69	90.0	0	38.000000
70	90.0	1	45.000000
71	94.0	1	38.000000
72	95.0	1	35.000000

73 rows × 3 columns

```
In [10]: lot a heatmap to show the ejection fraction rate of people who died due to cardior .figure(figsize = (10,8))
tmap_df2 = pd.pivot_table(values = 'ejection_fraction', index = 'DEATH_EVENT', column .heatmap(heatmap_df2,cmap = 'plasma')
```

Out[10]: <AxesSubplot:xlabel='age', ylabel='DEATH_EVENT'>


```
1 are people died due to cardiovascular disease

Conclusion -
```

```
In [ ]:
```