

State of Transfer Learning in NLP

Sudalai Rajkumar

13 - 16 November 2019

12 JULY 2018 / NATURAL LANGUAGE PROCESSING

NLP's ImageNet moment has arrived

ImageNet Challenge

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - o 1.2 M train
 - 100k test.

Information in Different Layers

Information captured across different layers of GoogLeNet trained on ImageNet dataset

Transfer Learning

TRAINING FROM SCRATCH

TRANSFER LEARNING

NLP - Count / TFIDF

Word	TF		IDF	TF*IDF		
vvoid	Α	В	IDI	Α	В	
The	1/7	1/7	$\log(2/2) = 0$	0	0	
Car	1/7	0	log(2/1) = 0.3	0.043	0	
Truck	0	1/7	log(2/1) = 0.3	0	0.043	
Is	1/7	1/7	$\log(2/2) = 0$	0	0	
Driven	1/7	1/7	$\log(2/2) = 0$	0	0	
On	1/7	1/7	$\log(2/2) = 0$	0	0	
The	1/7	1/7	log(2/2) = 0	0	0	
Road	1/7	0	log(2/1) = 0.3 0.043		0	
Highway	0	1/7	log(2/1) = 0.3	0	0.043	

Word Embeddings

Pretrained Language Models

Transformer Architecture

Self Attention

Pretrained Language Models

- RoBERTa
- **DistilBERT**

Bidirectional Encoder Representations for Transformers

BERT Tokenization

Tokenization - Wordpiece

[CLS] my dog is cute [SEP] he likes play ##ing [SEP]

- Attention Mask (optional) a sequence of 1s and 0s, with 1s for all input tokens and 0s for all padding tokens.
- Segment Mask (optional) a sequence of 1s and 0s used to identify whether the input is
 one sentence or two sentences long.

BERT Pre-training tasks

- Masked Language Modeling
 - 15% of the tokens are chosen for masking
 - Replaced with [MASK] 80% of the times
 - Replaced with random token 10% of the times
 - Left unchanged 10% of the times
- Next sentence prediction
 - Given a pair of sentences, the task is to predict whether the second sentence is the actual next sentence of the first sentence
 - Binary classification task

Downstream NLP Tasks

- Sequence classification
 - Sentiment analysis
 - Document classification
- Sentence Pair classification
 - Textual similarity
- Question Answering
- Single Sentence Tagging
 - Named Entity Recognition
- Natural Language Generation

Hack Session

build passing license Apache-2.0

website online

Model Performance on Fashion Reviews

Model Name	00101010101 AUC 1010 101	Training Time	Prediction Time
BERT (Base uncased)	0.9644	300	40
BERT (Base cased)	0 111 10111 0.9608 11 110	011 11 0300 111101 111	00111111000110401100011111100
XLNet (Base cased)	0.9632	404	55
RoBERTa 0000100000001	0.9635 00 0 1	I 0 00 [324] 00 00000	110000001036.0111000000
DistilBERT	0.9572	181	24

Performance Comparison

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task si	ngle models	on dev								
$BERT_{LARGE}$	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-3	_
$XLNet_{LARGE}$	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	_	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-

From RoBERTa paper

Performance Comparison

	BERT	RoBERTa	DistilBERT	XLNet
Size (millions)	Base: 110 Large: 340	Base: 110 Large: 340	Base: 66	Base: ~110 Large: ~340
Training Time	Base: 8 x V100 x 12 days* Large: 64 TPU Chips x 4 days (or 280 x V100 x 1 days*)	Large: 1024 x V100 x 1 day; 4-5 times more than BERT.	Base: 8 x V100 x 3.5 days; 4 times less than BERT.	Large: 512 TPU Chips x 2.5 days; 5 times more than BERT.
Performance	Outperforms state-of- the-art in Oct 2018	2-20% improvement over BERT	3% degradation from BERT	2-15% improvement over BERT
Data	16 GB BERT data (Books Corpus + Wikipedia). 3.3 Billion words.	160 GB (16 GB BERT data + 144 GB additional)	16 GB BERT data. 3.3 Billion words.	Base: 16 GB BERT data Large: 113 GB (16 GB BERT data + 97 GB additional). 33 Billion words.

References

- https://ruder.io/nlp-imagenet/
- http://jalammar.github.io/illustrated-transformer/
- https://yashuseth.blog/2019/06/12/bert-explained-faqs-understand-bert-working/
- https://towardsdatascience.com/bert-roberta-distilbert-xlnet-which-one-to-use-3d5ab82b
 a5f8

Thank you!

