## 사물인터넷 (Internet of Things)

김태운

## 목치

- Non-IP 기반의 WPAN 기술
  - 802.15.4

# Network Layer: Non-IP 기반의 WPAN 기술 IEEE 802.15.4

- IEEE 802.15.4?
  - IEEE
    - Institute of Electrical and Electronics Engineers의 약자로, 전기전자공학자협회를 의미
    - 전기전자공학 전문가들로 구성된 국제 조직으로, 전기전자 분야 기술 공유 및 산업 표준을 제정하는 역할을 주로 수행함
    - 회원 수는 약 38.5만명(150여개 국가)이며, 전기전자 분야 뿐 아니라, 컴퓨터 및 자연과학계열 분야로 확대됨
  - IEEE 802.15.4?
    - IEEE에서 제정한 표준은 자체 번호 체계에 따라 번호를 할당 받으며, IEEE 802.15.4는 <u>IEEE 802 표준 위원회의 802.15</u> Working Group (WG) 에서 개발한 기술 표준 중 하나에 해당함
    - IEEE 802 표준 위원회
      - LAN/MAN(Local and Metropolitan Area Networks)를 위한 표준 및 권고안을 개발/유지하며, 특히 OSI 참조 모델의 하위 두 계층 (PHY/MAC)에 대한 표준 및 권고안(Recommended Practice)를 개발하기 위해 1980년 2월에 설립된 비영리 표준 위원회
      - IEEE 802 에서 다루고 있는 대표적인 표준은 Ethernet, Wireless LAN, Wireless PAN (WPAN), Wireless MAN 등이 있음
      - IEEE 802 조직은 표준 개발 그룹(Standard Development Working Group) 및 스폰서 투표 그룹으로 구성되며, 표준 개발 그룹은 표준초 안을 개발하는 역할을 수행하기 위해 그 아래에 Working Group (WG), Technical Advisory Group(기술 자문 그룹), Study Group(스터디그룹) 등을 두고 있음
    - IEEE 802.15 WPAN Working Group은 <u>Personal Area Network 또는 근거리 무선 네트워크에 대한 PHY/MAC 기술 표준화</u>를 추진 중이며, 10m 이내 기기를 연결하는 PAN, 개인 신체에 부착되거나 수 미터 이내의 기기를 연결하는 Body Area Network, 수 km 이내 기기를 저전력으로 연결하는 Utility Network 등으로 대상을 확장하여 표준 개발을 지속하고 있음

- IEEE 802.15.4
  - IEEE 802.15 WPAN Working Group은 Personal Area Network 또는 근거리 무선 네트워크에 대한 PHY/MAC 기술 표준화를 정의하며, 상위 계층은 통신/네트워크 기술별로 특화된 기능을 사용함



- IEEE 802.15.4
  - 저속 무선 개인용 네트워크를 의미하는 Low Rate WPAN (LR-WPAN)으로도 불리우며, <u>낮은 전송속도, 낮</u> 은 가격, 저전력 응용 분야에서 무선으로 연결되는 간단한 구조의 통신 네트워크 기술 개발을 목표로 함
  - ZigBee, 6LoWPAN, Wireless HART, MiWi 등 사물인터넷을 위한 <u>다수의 통신/네트워크 프로토콜의 기반</u>이 됨. 응용 분야는 홈 네트워크, 원격 제어(산업용 원격 제어), 자동 센서, 가전기기 제어, 빌딩 제어 등
  - 기술적 특징
    - 다중 접속: CSMA/CA
    - 기기 연결: 최대 255개
    - 전송 거리: ~10미터
    - 통신 속도: 20~250 kbps
    - 전력 소모: 초 저 전력형
    - 네트워크 구조: Star, mesh, cluster, peer-to-peer 토폴로지 등
    - 동작 주파수 대역: 저 주파수 대역(868MHz, 915MHz) 및 고 주파수 대역(2.4GHz 비 면허 ISM 대역)

| Channel number(s) | 채널 설명 (802.15.4-2003 기준)                           |
|-------------------|----------------------------------------------------|
| 0                 | Channel 0 is in 868 MHz band using BPSK            |
| 1 - 10            | Channels 1 to 10 are in 915 MHz band using BPSK    |
| 11 - 26           | Channels 11 to 26 are in 2.4 GHz band using O-QPSK |
| 27 - 31           | Reserved                                           |

- Multiple Access 및 Collision
  - 통신 주파수 대역은 제한적이며 <u>다수의 단말이 동일한 주파수 대역을 공유해서 사용</u>함(Multiple Access)
  - 다수의 인접한 단말이 <u>동시에 데이터 전송을 시도하면 충돌(Collision) 문제</u>가 발생하며 충돌된 데이터는 전 송 실패로 간주함
  - MAC 계층은 충돌을 최소화 하기 위해 전송 매체(= 주파수)를 사용하는 방법을 정의하고 있으며, 802.15.4 에서는 CSMA/CA 기반의 매체 접근 기법을 사용함
- CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance)
  - 전송 신호(반송파)를 감지하는 방식으로 동작하는 <u>다중 접속 기법으로, 충돌 회피 기법을</u> 사용함

Carrier Sense

Multiple Access

Collision Avoidance

- CS: 공유 전송 매체에 전송중인 데이터가 있는지 여부를 탐지함
- MA: 다수의 단말이 동일한 전송 매체(주파수 대역)을 공유해서 사용함
- CA: 무선 통신 인터페이스는 송수신을 동시에 수행 할 수 없고, 따라서 데이터를 전송하는 중에는 충돌이 발생했는지 여부를 확인할 수 없음. 따라서, 최대한 충돌을 회피할 수 있는 방식을 동작함(즉, 충돌이 발생 할 수 있음)
- 동작 방식
  - 통신 채널이 IDLE 한 상태가 될 때까지(즉, 아무런 통신 신호가 감지 되지 않을 때 까지) 채널을 sensing (= listen)
  - (채널이 IDLE 한 것을 감지한 후) 추가로 임의의 시간 동안 대기(back-off)함. 그리고 나서도 여전히 채널이 IDLE 한 것으로 센싱 되었다면 데이터 전송을 시작. 만약 채널 상태가 BUSY 하다면 (즉, 다른 통신 단말이 데이터를 송신 중인 것을 감지함) 랜덤 한 시간 동안 기다린 후 다시 통신 채널을 센싱하여 IDLE 여부를 확인

#### ■ 통신 단말의 <u>종류</u>에 따른 구분

- FFD(Full function device)
  - 모든 토폴로지에서 사용할 수 있고, 일반 통신 단말 및 Network Coordinator 역할을 수행할 수 있음
  - 연결된 모든 단말과 통신 할 수 있음
- RFD(Reduced function device)
  - Star topology 에만 연결될 수 있고, Network Coordinator 역할을 수행할 수 없음
  - Network Coordinator 와 통신할 수 있고, 그 외의 단말과는 통신 불가
  - 매우 단순하게 구현되고 기능이 제한적인 단말에 해당함(예: light switch, passive infrared sensor 등 간헐적으로 소량의 데이터를 전송할 목적으로 개발된 저 성능 단말)

#### ■ 통신 단말의 역할에 따른 구분

- Device: 일반 단말(RFD 및 FFD)
- Coordinator
  - 일반적으로, 하나의 PAN을 최초에 개시/형성한 FFD가 coordinator 역할을 수행 함
  - FFD 단말은 coordinator가 될 수 있고, coordinator는 <u>PAN 네트워크를 형성하고 관리</u>할 수 있음 (RFD 단말은 coordinator가 될 수 없고, terminal/leaf node 역할만 수행 할 수 있음)
  - Coordinator는 데이터 릴레이 또는 라우팅 기능을 수행할 수 있음
  - Star 토폴로지에서 모든 단말은 coordinator와 통신하며, Peer-to-peer 토폴로지에서는 FFD 단말간 직접 통신이 가능

- Wireless PAN 네트워크 토폴로지
  - 하나의 PAN은 반드시 1개 이상의 FFD 및 1개의 Coordinator로 구성되어야 함
  - 네트워크에 참여하는 모든 단말은 고유한 64-bit 주소를 가짐
    - 단, 데이터 전송 량 감소를 위해 Coordinator에 의해 short address가 할당될 수 있음
  - 각 PAN은 고유한 ID 값을 가짐(이를 통해 서로 다른 PAN간 addressing 이 가능)
  - 토폴로지는 크게, star 토폴로지 및 P2P 토폴로지로 구분할 수 있음



#### ⟨Start Topology⟩

- FFD만이 coordinator 역할을 담당할 수 있음
- 모든 Device는 coordinator 과 통신함 (직접 통신 불가)
- Coordinator 단말은 지속적으로 데이터를 송수신 하므로, 안 정적인 전원이 공급되는 FFD 단말을 coordinator로 지정하 는 것이 일반적임

#### ⟨P2P Topology⟩

- FFD만이 peer-to-peer 네트워크를 구성할 수 있음
- P2P 네트워크에서는 FFD 단말간 직접 통신이 가능함

#### ■ 통신 방식

- IEEE 802.15.4는 비콘 메시지 유무에 따라 두 종류의 통신 방식을 정의함: beacon-based 및 beacon-less
- Beacon-based Operation
  - Coordinator 는 일정 시간 간격으로 비콘 메시지를 방송함
    - 비콘 메시지가 발생하면 Superframe Duration이 시작된다는 이벤트를 모든 소속 단말이 인지할 수 있음(시간 동기화)
    - 단말은 비콘 메시지를 기반으로 데이터 송수신, PAN 네트워크 합류 등을 수행할 수 있음
    - 추가적으로, 비콘 메시지는 저전력 모드로 전환하기 위한 타이밍 정보를 제공함 (inactive portion 동안...)
  - Beacon interval 중 일부분은 inactive portion으로 할당되고, 이 때는 모든 단말이 sleep 모드로 전환하여 전력 소모를 최소화 함(저전력 모드)
  - Superframe Duration 중 active portion 은 16개의 동등한 길이의 타임 슬롯으로 구성됨
  - CFP(Contention Free Period) 내의 GTS(Guaranteed timed slots): coordinator는 소속 단말에게 전용 타임슬롯을 할당해 줄 수 있고, GTS 기간에는 다른 단말과 경쟁하지 않고 채널을 단독으로 사용. 실시간성을 확보해야 하는 서비스 등에서 주로 사용(주기적으로 타임슬롯을 할당하는 방식으로 운영). 모든 GTS 의 총합으로 CFP 길이가 정해짐
  - CAP(Contention Access Period): Slotted CSMA/CA channel access 기법을 사용하여, 경쟁 기반의 채널 획득 및 데 이터 전송을 수행



### ■ 통신 방식

- IEEE 802.15.4에는 두 종류의 통신 방식이 정의되어 있음: beacon-based 및 beacon-less
- Beacon-less Operation: Unslotted CSMA/CA
  - 통신 단말은 CSMA/CA 기법에 따라(즉, Coordinator의 스케줄링 없이) 독립적으로 채널에 접근하고 데이터를 전송함
  - 참고: Slotted vs unslotted

| Slotted   | <ul> <li>Coordinator 가 Beacon 메시지를 방송하면, PAN에 소속된 단말은 이를 기반으로 시간을 동기화 할 수 있음.</li> <li>시간은 고정 길이를 가지는 time slot의 연속으로 구성되어 있다고 간주함</li> <li>CFP 기간: 슬롯을 배정받은 단말은 슬롯의 시간 동안 단독으로, 경쟁 없이 데이터를 송수신 함</li> <li>CAP 기간: 단말은 슬롯의 시작 시점에 채널 접근을 시도하며 경쟁적으로 채널을 획득함</li> </ul> |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unslotted | Coordinator 가 전송하는 Beacon 메시지가 없으므로 (모든 단말이 공통으로 인지하고 있는) 슬롯이 존재하지 않음     각 단말은 슬롯을 고려하지 않고, 언제든 채널 접근을 경쟁적으로 시도함                                                                                                                                                      |

- MAC(매체 접근 제어) 구조 설계
  - MAC 계층은 두 개의 서비스(MAC data service 및 MAC management service)를 제공하며, 주요 역할은
    - 비콘 메시지 관리
    - 채널 접근 제어
    - GTS 관리
    - 데이터 및 ACK 송수신
    - 단말이 PAN 에 합류(association) 하거나 탈퇴(disassociation) 하는 과정 관리 등
  - MAC data service 는 데이터 송수신을 제어하기 위해 MCPS-SAP 와의 상호작용을 수행
    - MCPS-SAP: MAC Common layer Sublayer data Service Access Point
  - MAC management service 는 관리 기능 실행을 위해 MLME-SAP 와의 상호작용을 수행
    - MLME-SAP: MAC sub-Layer Management Entity Service Access Point)



■ 데이터 전송 절차: 단말 → Coordinator

#### 〈비콘 기반의 PAN〉



데이터 전송을 희망하는 단말은 Coordinator로 부터의 비콘 메시지를 기다림. <u>비콘 메시지를 수신 후</u>, CFP 또 는 CAP 동안 데이터 전송을 수행함

#### 〈비콘 없는 PAN〉



데이터 전송을 희망하는 단말은 <u>언제든</u> CSMA/CA 기 법으로 채널을 접근하고 데이터를 전송함

■ 데이터 전송 절차: 단말 ← Coordinator

#### 〈비콘 기반의 PAN〉



Coordinator 가 단말로 데이터 전송을 희망하는 경우, 이를 비콘 메시지에 기록하여 비콘을 방송함. 해당 메시 지를 수신한 단말은 채널 접근 권한을 얻은 후, Coordinator 에게 데이터 송신을 요청함

#### 〈비콘 없는 PAN〉



단말은 주기적으로 Coordinator 에게 데이터 송신을 요 청하고, 단말에게 전송할 데이터가 있는 경우, Coordinator는 단말에게 데이터를 전송함

- Frame 구조
  - Frame은 데이터 전송의 기본 단위임 (즉, Frame 단위로 데이터 송신함)
  - Data frame (데이터 전송에 사용)

FCS (Frame Check Sequence) : 프레임 오류를 검출하기 위한 코드



• Ack frame (수신 데이터에 대한 긍정 응답으로 사용)



그 외 데이터 프레임

- Beacon frame: Superframe 의 시작 및 PAN 내부 단말간 시간 동기화에 사 용하며, PAN Coordinator 가 방송함
- MAC command frame : MAC 계층 관리용(associate, dis-associate, beacon request, GTS request 등)

- 데이터 전송 성공률 개선을 위한 기능
  - CSMA/CA : 비콘이 없는 동작 모드에서는 unslotted CSMA/CA를, 비콘이 있는 동작 모드의 CAP 기간에는 slotted CSMA/CA 기법을 사용하여 채널에 접근하며, 이를 통해 충돌 현상을 최소화함
  - Frame ACK: Positive ACK 또는 timer 기반으로 동작하여 전송 실패에 대응함
  - Data verification : 수신 데이터에 오류가 없다는 것을 검증하기 위해 CRC 기반의 오류 검출 기법을 사용함 (오류 발생 시, 재전송을 요청함)

- PAN 네트워크 시작 순서
  - 1. FFD 단말이 구동됨 (MAC/PHY 계층의 기능 동작이 시작됨)
  - 2. FFD 단말이 PAN 네트워크를 생성하고 Coordinator 가 됨
  - 3. Coordinator 는 고유한 PAN ID 를 생성
    - 주변 네트워크의 메시지를 모니터링 하여, 중첩되지 않는 ID 값을 선택)
  - 4. PAN 네트워크에서 사용할 주파수를 선택
    - 센싱 가능한 모든 채널을 대상으로 energy detection scan을 수행하고, 센싱되는 에너지/신호세기가 최소인 채널 선택
  - 5. PAN 네트워크를 시작하고, FFD 단말은 coordinator mode 로 전환함
    - 이 시점부터 다른 단말의 association request 를 수신하고 처리할 수 있음
  - 6. FFD/RFD 단말은 active 또는 passive channel scan 을 통해 PAN 네트워크를 감지하고, 네트워크 합류를 위해 Coordinator 에게 association request 를 전송함
    - Active channel scan: beacon request 메시지를 방송하여 coordinator 로 부터 beacon 메시지 전송을 요청함
    - Passive channel scan: coordinator 가 전송하는 beacon 메시지를 기다림
  - 7. Coordinator 는 자체 접속 제어 규칙, 가용 자원 량 등을 고려하여 association 을 허용할지를 결정
    - 해당 단말에게 16-bit short address 를 부여할 수 있음

