考研数学笔记 以姜晓千强化课讲义为底本

Weary Bird

2025年7月31日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月31日

目录

第一章	行列式	1
1.1	数字行列式的计算	3
1.2	代数余子式求和	8
1.3	抽象行列式的计算	10
第二章	矩阵	14
2.1	求高次幂	15
2.2	逆的判定与计算	17
2.3	秩的计算与证明	20
2.4	关于伴随矩阵	22
2.5	初等变换与初等矩阵	24
第三章	向量	27
3.1	知识体系	27
3.2	线性表示的判定与计算	28
3.3	线性相关与线性无关的判定	31
3.4	极大线性无关组的判定与计算	34
3.5	向量空间(数一专题)	36
第四章	线性方程组	38
4.1	知识体系	38
4.2	解的判定	39
4.3	求齐次线性方程组的基础解系与通解	41
4.4	求非齐次线性方程组的通解	44

4.5	解矩阵方程	48
4.6	公共解的判定与计算	50
第五章	特征值与特征向量	54
5.1	特征值与特征向量的计算	54
5.2	相似的判定与计算	60
5.3	相似对角化的判定与计算	63
5.4	实对称矩阵的计算	66
第六章	二次型	70
6.1	求二次型的标准形	71
6.2	合同的判定	74
6.3	二次型正定与正定矩阵的判定	76
第十音	补充知识_线性代数	79

第一章 行列式

	(行列式的概念	
	重要行列式	上(下)三角,主对角行列式 副对角行列式
		副对角行列式
		ab型行列式
		拉普拉斯展开式
		范德蒙行列式
行	展开定理	ab型行列式 拉普拉斯展开式 范德蒙行列式 $\begin{cases} a_{i1}A_{j1} + \ldots + a_{in}A_{jn} = \begin{cases} A & i = j \\ 0 & i \neq j \end{cases} \\ a_{1i}A_{1j} + \ldots + a_{ni}A_{nj} = \begin{cases} A & i = j \\ 0 & i \neq j \end{cases} \end{cases}$
列($\begin{cases} 0 & i \neq j \end{cases}$
式		$\begin{vmatrix} a_{1i}A_{1j} + \ldots + a_{ni}A_{nj} = \end{vmatrix} A i = j$
		$ \left\{ \begin{array}{cc} 0 & i \neq j \end{array} \right. $
		$\begin{cases} kA = k^n A & AB = A B \end{cases}$
	行列式公式	$ A^T = A \qquad A^{-1} = A ^{-1}$
		$\begin{cases} kA = k^n A & AB = A B \\ A^T = A & A^{-1} = A ^{-1} \\ A^* = A ^{n-1} & \\ \exists A \text{ bh 特征值为} \lambda_1 \dots \lambda_n, \mathbb{M} A = \Pi_{i=1}^n \lambda_i \\ \exists A \text{ fh Bh M}, \mathbb{M} A = B & \\ \end{cases}$
		设 A 的特征值为 $\lambda_1 \dots \lambda_n$,则 $ A = \prod_{i=1}^n \lambda_i$
	Grammer 法则	$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n = \frac{D_n}{D}$

拉普拉斯展开式(上,下三角分块行列式的结论)

$$D = \begin{vmatrix} A & C \\ \mathbf{0} & D \end{vmatrix} = \begin{vmatrix} A & \mathbf{0} \\ C & D \end{vmatrix} = \det(A)\det(D)$$

对于一般分块矩阵

$$A = \begin{pmatrix} B & C \\ D & E \end{pmatrix}$$

若 B 可逆,则有如下结论

$$\det(A) = \det(B) \cdot \det(E - DB^{-1}C)$$

1.1 数字行列式的计算

Remark. 基本方法

- (1) 利用行列式的性质 (5条) 来化简
- (2) 要么出现重要行列式 (5组)
- (3) 要么展开定理(0比较多的时候)
 - 1. 设

$$f(x) = \begin{vmatrix} x-2 & x-1 & x-2 & x-3 \\ 2x-2 & 2x-1 & 2x-2 & 2x-3 \\ 3x-3 & 3x-2 & 4x-5 & 3x-5 \\ 4x & 4x-3 & 5x-7 & 4x-3 \end{vmatrix}$$

则方程 f(x) = 0 根的个数为 ____

Solution. 第一列乘 -1 加到其他列

$$f(x) = \frac{\widehat{\$} - \underbrace{5} - \underbrace{5} + \underbrace{5}$$

则 x = 0 或 x = 1

2. 利用范德蒙行列式计算

范德蒙行列式
$$V(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

$$\begin{vmatrix} a & a^2 & bc \\ b & b^2 & ac \\ c & c^2 & ab \end{vmatrix} = \underline{\qquad}$$

Solution.

3. 设
$$x_1x_2x_3x_4 \neq 0$$
,则
$$\begin{vmatrix} x_1 + a_1^2 & a_1a_2 & a_1a_3 & a_1a_4 \\ a_2a_1 & x_2 + a_2^2 & a_2a_3 & a_2a_4 \\ a_3a_1 & a_3a_2 & x_3 + a_3^2 & a_3a_4 \\ a_4a_1 & a_4a_2 & a_4a_3 & x_4 + a_4^2 \end{vmatrix} = \underline{\qquad}.$$

Solution. 考虑加边法,为该行列式增加一行一列,变成如下行列式

原行列式 =
$$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ a_1 & x_1 + a_1^2 & a_1a_2 & a_1a_3 & a_1a_4 \\ a_2 & a_2a_1 & x_2 + a_2^2 & a_2a_3 & a_2a_4 \\ a_3 & a_3a_1 & a_3a_2 & x_3 + a_3^2 & a_3a_4 \\ a_4 & a_4a_1 & a_4a_2 & a_4a_3 & x_4 + a_4^2 \end{vmatrix}$$

$$= (x_1 x_2 x_3 x_4) (1 + \sum_{i=1}^{4} \frac{a_i^2}{x_i})$$

爪型行列式

关键点在于化简掉一条爪子

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

4. 计算三对角线行列式

$$D_{n} = \begin{vmatrix} \alpha + \beta & \alpha & 0 & \cdots & 0 & 0 \\ \beta & \alpha + \beta & \alpha & \cdots & 0 & 0 \\ 0 & \beta & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha \\ 0 & 0 & 0 & \cdots & \beta & \alpha + \beta \end{vmatrix}$$

Solution.

(方法一) 递推法

$$D_{1} = \alpha + \beta$$

$$D_{2} = \alpha^{2} + \alpha\beta + \beta^{2}$$

$$\cdots$$

$$D_{n} = (\alpha + \beta)D_{n-1} - \alpha\beta D_{n-2}$$

$$D_{n} - \alpha D_{n-1} = \beta(D_{n-1} - \alpha D_{n-2})$$

$$= \beta^{2}(D_{n-2} - \alpha D_{n-3})$$

$$\cdots$$

$$= \beta^{n-1}(D_{2} - D_{1}) = \beta^{n}$$

$$D_{n} = \beta^{n} + \alpha D_{n-1} = \beta^{n} + \alpha(\beta^{n-1} + \alpha D_{n-2})$$

$$\cdots$$

$$= \beta^{n} + \alpha\beta^{n-1} + \dots + \alpha^{n}$$

(方法二) 数学归纳法

if
$$\alpha = \beta$$
, $D_1 = 2\alpha$, $D_2 = 3\alpha^2$, assume, $D_{n-1} = n\alpha^{n-1}$
then $D_n = D_n = (\alpha + \beta)D_{n-1} - \alpha\beta D_{n-2} = (n+1)\alpha^n$
when $\alpha \neq \beta$, $D_1 = \frac{\alpha^2 - \beta^2}{\alpha - \beta}$, $D_2 = \frac{\alpha^3 - \beta^3}{\alpha - \beta}$,
Assume, $D_{n-1} = \frac{\alpha^n - \beta^n}{\alpha - \beta}$, then,
 $D_n = \dots = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$

(方法三) 二阶差分方程

$$D_n - (\alpha + \beta)D_{n-1} + \alpha\beta D_{n-2} = 0$$
$$D_{n+2} - (\alpha + \beta)D_{n+1} + \alpha\beta D_n = 0$$

类似于二阶微分方程解特征方程

$$r^{2} - (\alpha + \beta)r + \alpha\beta = 0$$

 $r_{1} = \alpha$ $r_{2} = \beta$

差分方程的关键 r^n 代换 e^{rx}

如果 $\alpha = \beta$

$$D_n = (C_1 + C_2 n)\alpha^n, D_1 = 2\alpha, D_2 = 3\alpha^2$$

得到 $C_1 = C_2 = 1, \Box D_n = (n+1)\alpha^n$

如果 $\alpha \neq \beta$

$$D_n = C_1 \alpha^n + C_2 \beta^n, \, \text{th} \, D_1 = 2\alpha, D_2 = 3\alpha^2$$

$$C_1 = \frac{\alpha}{\alpha - \beta}, C_2 = \frac{-\beta}{\alpha - \beta}$$

$$D_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$$

Corollary 1.1.1. 如下行列式有和例题 4 完全相等的性质

$$D_{n} = \begin{vmatrix} \alpha + \beta & \alpha\beta & 0 & \cdots & 0 & 0 \\ 1 & \alpha + \beta & \alpha\beta & \cdots & 0 & 0 \\ 0 & 1 & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & 1 & \alpha + \beta \end{vmatrix}$$

$$D_n = \begin{cases} (n+1) \alpha^n, & \alpha = \beta \\ \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}, & \alpha \neq \beta \end{cases}.$$

1.2 代数余子式求和

Remark. 代数余子式求和的基本办法

- (1) 代数余子式的定义(求一个的时候使用)
- (2) 展开定理 (求一行或者一列的时候使用)
- (3) 利用伴随矩阵的定义 (求全部代数余子式的时候使用)
 - 5. 已知

$$|A| = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 2 & 2 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix} = 27$$

$$\mathbb{N} A_{41} + A_{42} + A_{43} = \underline{\hspace{1cm}}, A_{44} + A_{45} = \underline{\hspace{1cm}}$$

(方法一)利用展开定理构建新的矩阵来计算

$$A_{41} + A_{42} + A_{43} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 0 & 0 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix}$$

$$A_{44} + A_{45} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 0 & 0 & 0 & 1 & 1 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix}$$

但这样 |A| = 27 的条件就没用到

(方法二)

直接对第四行使用展开定理,则

$$|A| = A_{41} + A_{42} + A_{43} + 2A_{44} + 2A_{45} = 27$$

直接对第二行使用展开定理,则

$$|A| = 2A_{41} + 2A_{42} + 2A_{43} + A_{44} + A_{45} = 0$$

相当于解 A + 2B = 27, 2A + B = 0, 容易计算 $A_{41} + A_{42} + A_{43} = -9, A_{44} + A_{45} = 18$

6. 设

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 \\ n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

则 |A| 的所有代数余子式的和为_____

Solution. 对于求所有代数余子, 基本都是考察 A^* 的定义, 即

$$A^* = \begin{pmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{pmatrix},$$

又由于 $A^* = |A| A^{-1}$, 对于这道题

$$|A| = (-1)^{(n+1)}n!$$

 A^{-1} 可以通过分块矩阵来求

$$|A|A^{-1} = |A| \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 \\ \hline n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$= |A| \begin{pmatrix} 0 & & \frac{1}{n} \\ \hline diag(1, \frac{1}{2}, \dots, \frac{1}{n-1}) & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & & \frac{1}{n}|A| \\ \hline diag(|A|, \frac{|A|}{2}, \dots, \frac{|A|}{n-1}) & 0 \end{pmatrix}$$

则所有代数余子式之和为

$$(-1)^{(n+1)}n!\sum_{i=1}^{n}\frac{1}{i}$$

1.3 抽象行列式的计算

Remark. 抽象行列式的计算方法

- (1) 通过行列式的性质
- (2) 行列式的公式 (7个)
 - 7. (2005, 数一、二) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量, $A = (\alpha_1, \alpha_2, \alpha_3), B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$. 若 |A| = 1, 则 |B| =______

Solution.

(方法一利用性质)

$$B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$$

$$= (\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + 3\alpha_3, \alpha_2 + 5\alpha_3)$$

$$= 2(\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + 3\alpha_3, \alpha_3)$$

$$= 2(\alpha_1, \alpha_2, \alpha_3)$$

$$|B| = 2|A| = 2$$

(方法二分块矩阵)

$$B = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 9 \end{pmatrix}$$
$$|B| = |A| \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 9 \end{vmatrix} = |A|(2-1)(3-1)(3-2) = 2$$

8. 设 A 为 n 阶矩阵, α, β 为 n 维列向量. 若 |A| = a, $\begin{vmatrix} A & \alpha \\ \beta^T & b \end{vmatrix} = 0$, 则 $\begin{vmatrix} A & \alpha \\ \beta^T & c \end{vmatrix} =$

Solution. 这道题的关键在于巧妙构建行列式的和

$$\begin{vmatrix} A & \alpha \\ \beta^T & c \end{vmatrix} = \begin{vmatrix} A & \alpha + 0 \\ \beta^T & b + c - b \end{vmatrix}$$
$$= \begin{vmatrix} A & \alpha \\ \beta^T & b \end{vmatrix} + \begin{vmatrix} A & 0 \\ \beta^T & c - b \end{vmatrix}$$
$$= |A|(c - b) = a(c - b)$$

9. 设 A 为 2 阶矩阵,
$$B=2\left(\begin{array}{cc} (2A)^{-1}-(2A)^* & 0\\ 0 & A \end{array}\right)$$
 若 $|A|=-1$, 则 $|B|=$ _______

Solution. 这道题比较纯粹就是行列式公式的应用

$$|B| = 2^{4} |A| \cdot |(2A)^{-1} - (2A)^{*}|$$

$$= 2^{4} |A| \cdot \left| \frac{1}{2} A^{-1} - 2A^{*} \right|$$

$$= 2^{4} \left| \frac{1}{2} E - 2|A| \right| = 100$$

10. 设 n 阶矩阵 A 满足 $A^2 = A, A \neq E$, 证明 |A| = 0

易错点

由 $|A|^2 = |A| \implies |A| = 1$ 或 = 0,又 $A \neq E \implies |A| \neq 1$,故 |A| = 0 注意矩阵不等关系是无法推出行列式的不等关系的,矩阵式数表只要顺序不同就不一样,但不一样的矩阵其行列式完全有可能相等.

等于1的矩阵并非只能是E

Solution.

(方法一, 反证法) 若 $|A| \neq 0$, 则 A 可逆, 对于等式 $A^2 = A$ 两边同乘 A^{-1} , 则 A = E 与题 设矛盾, 故 $|A| \neq 0$

(方法二, 秩) 由于 $A(A-E)=0 \implies r(A)+r(A-E) \le n, \ \ensuremath{\nabla} A \ne E, r(A-E) \ge 1,$ 故 $r(A) \le n,$ 故 |A|=0

(方法三, 方程组) 由于 A(A-E) = 0, 且 $A \neq E$ 可知方程 AX = 0 有非零解即 (A-E) 中的非零列, 故 r(A) < n, |A| = 0

(方法四, 特征值与特征向量) 由于 $A(A-E)=0, A\neq E$, 取 A-E 的非零列向量 $\beta\neq 0, A\beta=0$ 故由特征值与特征值向量的定义, A 由特征值 0, 而 $|A|=\prod_{i=1}^n \lambda_i=0$

总结

若 AB = 0 有如下结论

- $(1) r(A) + r(B) \le n$
- (2)B 的列向量均为方程 AX = 0 的解
- (3) 若 $A_{n \times n}$, 则 B 的非零列向量均为 A 的特征值为 0 的特征向量

第二章 矩阵

2.1 求高次幂 第二章 矩阵

2.1 求高次幂

Remark. 基本方法

- (1) 若 r(A) = 1, 则 $A^n = tr(A)^{n-1}A$, 关键点在于 $r(A) = 1 \implies A = \alpha \beta^T$
- (2) 若 A 可以分解为 E + B, 且 B 是类似于如下形式 (非零元素仅在对角线的上方或下方) 的矩阵则有如下结论.

$$B = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}, \mathbb{M}B^2 = \begin{pmatrix} 0 & 0 & ac \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, B^3 = \mathbf{0}$$

$$A^n = C_n^n E + C_n^1 B + C_n^2 B^2 \label{eq:Anderson}$$

(3) 分块矩阵

$$A = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{C} \end{pmatrix}, A^n = \begin{pmatrix} \mathbf{B}^n & \mathbf{0} \\ \mathbf{0} & \mathbf{C}^n \end{pmatrix}$$

(4) 相似对角化

$$P^{-1}AP = \Lambda \otimes A = P\Lambda P^{-1}$$
,

$$A^{n} = P\Lambda^{n}P^{-1} = Pdiag(\lambda_{1}^{n}, \dots, \lambda_{n}^{n})P^{-1}$$

2.1 求高次幂 第二章 矩阵

1. 设
$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix}$$
, $B 为 3 阶矩阵, 满足 $BA = O$, 且 $r(B) > 1$, 则 $A^n = \underline{\hspace{1cm}}$.$

Solution. 由 BA = 0 知 $r(A) + r(B) \le n$, 又 r(B) > 1, $r(A) \ge 1$ 所以 $1 \le r(A) \le 1$, \Longrightarrow r(A) = 1,

$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 1, & -1, & 2 \end{pmatrix}$$

$$A^{n} = tr(A)^{n-1}\alpha\beta^{T} = 9^{n-1} \begin{pmatrix} 2 & -1 & 3 \\ -2 & 1 & -3 \\ 4 & -2 & 6 \end{pmatrix}$$

2. 设 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}$ 则 $A^n =$ _____.

Solution.
$$A = 2E + B, B = \begin{pmatrix} 0 & 0 & 0 \\ -3 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix}, B^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -3 & 0 & 0 \end{pmatrix}, B^3 = \mathbf{0}, \mathbb{N}$$

$$A^{n} = 2^{n}E + 2^{n-1}nB + 2^{n-3}n(n-1)B^{2}$$

3. 设 $A = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -3 & 6 & -3 \end{pmatrix}$ P 为 3 阶可逆矩阵, $B = P^{-1}AP$, 则 $(B + E)^{100} =$ _____

Solution.
$$r(A) = 1, A^2 = tr(A) \cdot A = -2A$$
 即 $A^2 + 2A = \mathbf{0}, (A+E)^2 = E$, 由题
$$(B+E)^{100} = (P^{-1}AP + E)^{100} = (P^{-1}AP + P^{-1}EP)^{100} = (P^{-1}(A+E)P)^{100} = E$$

2.2 逆的判定与计算

- 4. 设n 阶矩阵A满足 $A^2 = 2A$,则下列结论不正确的是:
 - (A) A 可逆
- (B) A − E 可逆
- (C)A + E 可逆
- (D)A 3E 可逆

5. 设 A, B 为 n 阶矩阵,a, b 为非零常数. 证明:

- (a) 若 AB = aA + bB, 则 AB = BA;
- (b) 若 $A^2 + aAB = E$, 则 AB = BA.

总结

$$(1)A_{n\times n}B_{n\times n} = E \implies \begin{cases} \overline{\text{可逆}} \\ \bar{\text{求逆}}, B = A^{-1}, A = B^{-1} \\ \bar{\text{满足交换律}}, AB = BA \end{cases}$$

$$(2)AB \overline{\text{可交换的充分条件}} \begin{cases} B = f(A), A^{-1}, A^* \\ AB = aA + bB(a, b \neq 0) \\ A^2 + aAB = E, (a \neq 0) \end{cases}$$

(2)
$$AB$$
 可交换的充分条件
$$\begin{cases} B = f(A), A^{-1}, A^* \\ AB = aA + bB(a, b \neq 0) \\ A^2 + aAB = E, (a \neq 0) \end{cases}$$

6. 设
$$A = \begin{pmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{pmatrix}$$
 满足 $A^3 = O$.

- (a) 求 a 的值;
- (b) 若矩阵 X 满足 $X XA^2 AX + AXA^2 = E$, 求 X.

2.3 秩的计算与证明

Remark. 秩

秩的定义: $\exists r$ 阶子式非零且 $\forall r+1$ 阶子式均为零 秩的性质

- (1) 设 A 为 $m \times n$ 阶矩阵, 则 $r(A) < \min\{m, n\}$
- (2) $r(A+B) \le r(A) + r(B)$
- $(3) r(AB) \le \min\{r(A), r(B)\}$
- (4) $\max\{r(A), r(B)\} \le r(A \mid B) \le r(A) + r(B)$
- (5) $r(A) = r(kA)(k \neq 0)$
- (6) 设 A 为 $m \times n$ 阶矩阵,P 为 m 阶可逆矩阵,Q 为 n 阶可逆矩阵, 则 r(A) = r(PA) = r(AQ) = r(PAQ)
- (7) 设 A 为 $m \times n$ 阶矩阵, 若 r(A) = n 则 r(AB) = r(B), 若 r(A) = m 则 r(CA) = r(C) 左乘列满秩, 右乘行满秩, 秩不变
- (8) $r(A) = r(A^T) = r(A^T A) = r(AA^T)$
- (9) 设 A 为 $m \times n$ 阶矩阵, B 为 $n \times s$ 阶矩阵, AB = 0, 则 $r(A) + r(B) \le n$
 - 7. (2018, 数一、二、三) 设 A, B 为 n 阶矩阵,(XY) 表示分块矩阵,则:
 - (a) r(A AB) = r(A)
 - (b) r(A BA) = r(A)
 - (c) $r(A B) = \max\{r(A), r(B)\}$
 - (d) $r(A B) = r(A^T B^T)$

8. 设 A 为 n 阶矩阵, 证明:

(1)
$$A^2 = A, 则 r(A) + r(A - E) = n.$$

(II) 若
$$A^2 = E$$
, 则 $r(A + E) + r(A - E) = n$.

2.4 关于伴随矩阵

Remark. 伴随矩阵的性质

(1)
$$AA^* = A^*A = |A| \xrightarrow{|A| \neq 0} A^{-1} = \frac{1}{|A|}A^*, A^* = |A|A^{-1}$$

(2)
$$(kA)^* = k^{n-1}A^*$$

(3)
$$(AB)^* = B^*A^*$$

$$(4) |A^*| = |A|^{n-1}$$

(5)
$$(A^T)^* = (A^*)^T$$

(6)
$$(A^{-1})^* = (A^*)^{-1} = \frac{A}{|A|}$$

$$(7) (A^*)^* = |A|^{n-2} A$$

(8)
$$r(A) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n - 1 \\ 0, & r(A) < n - 1 \end{cases}$$

- 9. 设 n 阶矩阵 A 的各列元素之和均为 2, 且 |A| = 6, 则 A^* 的各列元素之和均为:
 - (A) 2
- (B) $\frac{1}{3}$ (C) 3
- (D)6

10. 设 $A=(a_{ij})$ 为 $n(n \geq 3)$ 阶非零矩阵, A_{ij} 为 a_{ij} 的代数余子式,证明:

(a)
$$a_{ij} = A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = A^T \Leftrightarrow AA^T = E \perp |A| = 1;$$

(b)
$$a_{ij} = -A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = -A^T \Leftrightarrow AA^T = E \perp |A| = -1.$$

2.5 初等变换与初等矩阵

Remark. 初等变换与初等矩阵的性质

- (1) |E(i,j)| = -1, |E(i(k))| = k, |E(ij(k))| = 1
- (2) $E(i,j)^T = E(i,j), E(i(k))^T = E(i(k)), E(ij(k))^T = E(ji(k))$
- (3) $E(i,j)^{-1} = E(i,j), E(i(k))^{-1} = E(i(\frac{1}{k})), E(ij(k)^{-1}) = E(ij(-k))$
- (4) 初等行(列)变换相当于左(乘)对应的初等矩阵
- (5) 可逆矩阵可以写成有限个初等矩阵的乘积
 - 11. (2005, 数一、二) 设 A 为 $n(n \ge 2)$ 阶可逆矩阵, 交换 A 的第 1 行与第 2 行得到矩阵 B, 则:
 - (A) 交换 A^* 的第 1 列与第 2 列, 得 B^*
 - (B) 交换 A* 的第1行与第2行,的 B*
 - (C) 交换 A^* 的第 1 列与第 2 列, 得 $-B^*$
 - (D) 交换 A 的第 1 行与第 2 行, 得 $-B^*$

12. 设

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

则
$$(P^{-1})^{2023}A(Q^T)^{2022} =$$
 ______.

26

第三章 向量

3.1 知识体系

3.2 线性表示的判定与计算

- 1. 设向量组 α, β, γ 与数 k, l, m 满足 $k\alpha + l\beta + m\gamma = 0$ $(km \neq 0)$, 则
 - (A) $\alpha, \beta \ni \alpha, \gamma$ 等价
 - (B) $\alpha, \beta \in \beta, \gamma$ 等价
 - (C) $\alpha, \gamma 与 \beta, \gamma$ 等价
 - (D) α 与 γ 等价

- 2. (2004, 数三) 设 $\alpha_1 = (1,2,0)^T$, $\alpha_2 = (1,a+2,-3a)^T$, $\alpha_3 = (-1,-b-2,a+2b)^T$, $\beta = (1,3,-3)^T$ 。当 a,b 为何值时,
 - (I) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示
 - (II) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 唯一地线性表示, 并求出表示式;
 - (III) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,但表示式不唯一,并求出表示式。

3. (2019, 数二、三) 设向量组 (I) $\alpha_1 = (1,1,4)^T$, $\alpha_2 = (1,0,4)^T$, $\alpha_3 = (1,2,a^2+3)^T$; 向量组 (II) $\beta_1 = (1,1,a+3)^T$, $\beta_2 = (0,2,1-a)^T$, $\beta_3 = (1,3,a^2+3)^T$ 。 若向量组 (I) 与 (II) 等价, 求 a 的值,并将 β_3 由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

3.3 线性相关与线性无关的判定

- 4. (2014, 数一、二、三) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量,则对任意常数 $k, l, \alpha_1 + k\alpha_3, \alpha_2 + l\alpha_3$ 线性无关是 $\alpha_1, \alpha_2, \alpha_3$ 线性无关的
 - (A) 必要非充分条件
 - (B) 充分非必要条件
 - (C) 充分必要条件
 - (D) 既非充分又非必要条件

5. 设 A 为 n 阶矩阵, $\alpha_1,\alpha_2,\alpha_3$ 均为 n 维列向量,满足 $A^2\alpha_1=A\alpha_1\neq 0,$ $A^2\alpha_2=\alpha_1+A\alpha_2,$ $A^2\alpha_3=\alpha_2+A\alpha_3$,证明 $\alpha_1,\alpha_2,\alpha_3$ 线性无关。

6. 设 4 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,与 4 维列向量 β_1, β_2 两两正交,证明 β_1, β_2 线性相关。 *Solution*.

3.4 极大线性无关组的判定与计算

- - (I) 当 a 为何值时, 该向量组线性相关, 并求其一个极大线性无关组;
 - (II) 当 a 为何值时,该向量组线性无关,并将 $\alpha = (4,1,6,10)^T$ 由其线性表示。

8. 证明:

- (I) 设 A, B 为 $m \times n$ 矩阵, 则 $r(A+B) \le r(A) + r(B)$;
- (II) 设 A 为 $m \times n$ 矩阵, B 为 $n \times s$ 矩阵, 则 $r(AB) \leq \min\{r(A), r(B)\}$ 。

3.5 向量空间(数一专题)

Remark. 向量空间

过度矩阵

由基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 到基 $\beta_1, \beta_2, \dots, \beta_n$ 的过渡矩阵为 $(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)C$ 即 $C = (\alpha_1, \alpha_2, \dots, \alpha_n)^{-1}(\beta_1, \beta_2, \dots, \beta_n)$

坐标转换公式

设向量 γ 在基 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 中的坐标为 $x=(x_1,x_2,\ldots,x_n)^T$, 在基 $\beta_1,\beta_2,\ldots,\beta_n$ 中的坐标为 $y=(y_1,y_2,\ldots,y_n)^T$ 则坐标转换公式为 x=Cy

- 8. (2015, 数一) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 为 R^3 的一个基, $\beta_1 = 2\alpha_1 + 2k\alpha_3$, $\beta_2 = 2\alpha_2$, $\beta_3 = \alpha_1 + (k+1)\alpha_3$ 。
 - (a) (I) 证明向量组 β_1,β_2,β_3 为 R^3 的一个基:
 - (b) (II) 当 k 为何值时,存在非零向量 ξ 在基 $\alpha_1, \alpha_2, \alpha_3$ 与基 $\beta_1, \beta_2, \beta_3$ 下的坐标相同,并求所有的 ξ 。

37

第四章 线性方程组

4.1 知识体系

4.2 解的判定

- 1. (2001, 数三) 设 A 为 n 阶矩阵, α 为 n 维列向量, 且 $\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} = r(A)$, 则线性方程组
 - (A) $Ax = \alpha$ 有无穷多解
 - (B) $Ax = \alpha$ 有唯一解

(C)
$$\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 只有零解

(D)
$$\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 有非零解

- 2. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = m < n, 则下列结论不正确的是
 - (A) 线性方程组 $A^T x = 0$ 只有零解
 - (B) 线性方程组 $A^T A x = 0$ 有非零解
 - (C) $\forall b$, 线性方程组 $A^T x = b$ 有唯一解
 - (D) $\forall b$, 线性方程组 Ax = b 有无穷多解

4.3 求齐次线性方程组的基础解系与通解

- 3. (2011, 数一, 二) 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为 4 阶矩阵, $(1,0,1,0)^T$ 为线性方程组 Ax = 0 的基础解系,则 $A^*x = 0$ 的基础解系可为
 - (A) α_1, α_2
 - (B) α_1, α_3
 - (C) $\alpha_1, \alpha_2, \alpha_3$
 - (D) $\alpha_2, \alpha_3, \alpha_4$

4. (2005, 数一、二) 设 3 阶矩阵 A 的第 1 行为 (a,b,c), a,b,c 不全为零, $B=\begin{pmatrix}1&2&3\\2&4&6\\3&6&k\end{pmatrix}$ 满足 AB=O,求线性方程组 Ax=0 的通解。

5. (2002, 数三) 设线性方程组

$$\begin{cases} ax_1 + bx_2 + bx_3 + \dots + bx_n &= 0 \\ bx_1 + ax_2 + bx_3 + \dots + bx_n &= 0 \\ bx_1 + bx_2 + ax_3 + \dots + bx_n &= 0 \\ \vdots && \\ bx_1 + bx_2 + bx_3 + \dots + ax_n &= 0 \end{cases}$$

其中 $a \neq 0, b \neq 0, n \geq 2$ 。当 a, b 为何值时,方程组只有零解、有非零解,当方程组有非零解时,求其通解。

4.4 求非齐次线性方程组的通解

6. 设 A 为 4 阶矩阵, k 为任意常数, η_1, η_2, η_3 为非齐次线性方程组 Ax = b 的三个解, 满足

$$\eta_1 + \eta_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad \eta_2 + 2\eta_3 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}.$$

若 r(A) = 3 则 Ax = b 的通解为 ()

$$(A)\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} + k\begin{pmatrix} -1\\0\\1\\2 \end{pmatrix}(B)\begin{pmatrix} 2\\3\\4\\5 \end{pmatrix} + k\begin{pmatrix} 1\\2\\0\\1 \end{pmatrix}(C)\begin{pmatrix} 0\\1\\2\\3 \end{pmatrix} + k\begin{pmatrix} -1\\0\\1\\2\\3 \end{pmatrix}(D)\begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix} + k\begin{pmatrix} 1\\2\\0\\1\\1 \end{pmatrix}$$

7. (2017, 数一、三、三) 设 3 阶矩阵 $A=(\alpha_1,\alpha_2,\alpha_3)$ 有三个不同的特征值, 其中 $\alpha_3=\alpha_1+2\alpha_2$ 。

- (I) 证明 r(A) = 2;
- (II) 若 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,求线性方程组 $Ax = \beta$ 的通解。

8. 设
$$A = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}, b = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$$
, 线性方程组 $Ax = b$ 有两个不同的解.

- (I) 求 λ , a 的值;
- (II) 求方程组 Ax = b 的通解。

- 9. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = r, 若 $\xi_1 \xi_2 \dots \xi_{n-r}$ 为齐次方程组 Ax = 0 的基础解系, η 为非其次线性方程组 Ax = b 的特解, 证明:
 - (I) $\eta, \xi_1, \xi_2, \dots, \xi_{n-r}$ 线性无关
 - (II) $\eta, \eta + \xi_1, \eta + \xi_2, \dots, \eta + \xi_{n-r}$ 线性无关;
 - (III) $\eta, \eta + \xi_1, \eta + \xi_2, \dots, \eta + \xi_{n-r}$ 为 Ax = b 所有解的极大线性无关组。

4.5 解矩阵方程

10. 设
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \\ -2 & 0 & 2 \end{pmatrix}$$
 矩阵 X 满足 $AX + E = A^{2022} + 2X$,求矩阵 X 。

11. (例 4.11) (2014, 数一、二、三) 设
$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$$

- (a) (I) 求线性方程组 Ax = 0 的一个基础解系;
- (b) (II) 求满足 AB = E 的所有矩阵 B。

4.6 公共解的判定与计算

12. (2007, 数三) 设线性方程组

(I)
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$

与方程

$$(II)x_1 + 2x_2 + x_3 = a - 1$$

有公共解, 求 a 的值及所有公共解。

13. 设齐次线性方程组

(I)
$$\begin{cases} 2x_1 + 3x_2 - x_3 = 0 \\ x_1 + 2x_2 + x_3 - x_4 = 0 \end{cases}$$

齐次线性方程组 (II) 的一个基础解系为 $\alpha_1=(2,-1,a+2,1)^T$, $\alpha_2=(-1,2,4,a+8)^T$

- (1) 求方程组(I)的一个基础解系;
- (2) 当 a 为何值时, 方程组 (I) 与 (II) 有非零公共解, 并求所有非零公共解。

14. (2005, 数三) 设线性方程组

(I)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 + 5x_3 = 0 \\ x_1 + x_2 + ax_3 = 0 \end{cases}$$

与 (II)

$$\begin{cases} x_1 + bx_2 + cx_3 = 0 \\ 2x_1 + b^2x_2 + (c+1)x_3 = 0 \end{cases}$$

同解, 求a,b,c的值。

第五章 特征值与特征向量

5.1 特征值与特征向量的计算

Remark. 特征值与特征值向量的性质

- (1) 不同特征值的特征向量线性无关
- (2) 不同特征值的特征向量之和不是特征向量
- (3) k重特征值有k个线性无关的特征向量
- (4) 设 A 的特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 则 $\sum_{i=1}^n \lambda_i = tr(A), \prod_{i=1}^n \lambda_i = |A|$
- (5) 若 r(A) = 1 则 $A = \alpha \beta^T$, 其中 α, β 是 n 维非零列向量, 则 A 的特征值为

$$\lambda_1 = tr(A) = \alpha^T \beta = \beta^T \alpha, \lambda_2 = \dots = \lambda_n = 0$$

(6) 设 α 为矩阵 A 属于特征值 λ 的特征值向量则,有

A	f(A)	A^{-1}	A^*	A^T	$P^{-1}AP$
λ	$f(\lambda)$	$\frac{1}{\lambda}$	$\frac{ A }{\lambda}$	λ	λ
α	α	α	α	???	$P^{-1}\alpha$

1. 设

求 A 的特征值与特征向量。

2. (2003, 数一) 设
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}, P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, B = P^{-1}A^*P 求 B + 2E$$
 的特征值与

3. 设
$$A = \begin{pmatrix} 1 & 2 & 2 \\ -1 & 4 & -2 \\ 1 & -2 & a \end{pmatrix}$$
 的特征方程有一个二重根,求 A 的特征值与特征向量。

4. 设 3 阶非零矩阵 A 满足 $A^2 = O$,则 A 的线性无关的特征向量的个数是

A.0 B.1 C.2 D.3

- 5. 设 $A=\alpha\beta^T+\beta\alpha^T$,其中 α,β 为 3 维单位列向量,且 $\alpha^T\beta=\frac{1}{3}$,证明:
 - (I) 0 为 A 的特征值;
 - (II) $\alpha + \beta, \alpha \beta$ 为 A 的特征向量;
 - (III) A 可相似对角化。

5.2 相似的判定与计算

Remark. 相似的性质

- (1) 若 $A \sim B$, 则 A, B 具有相同的行列式, 秩, 特征方程, 特征值与迹
- (2) 若 $A \sim B$, 则 $f(A) \sim f(B)$, $A^{-1} \sim B^{-1}$, $AB \sim BA(|A \neq 0|)$, $A^T \sim B^T$, $A^* \sim B^*$
- (3) 若 $A \sim B, B \sim C$ 则 $A \sim C$

6. 设
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{pmatrix}$$
 矩阵 B, A 相似, 则 $r(B - A) + r(B - 3E) =$ _____

7. 设 n 阶矩阵 A,B 相似, 满足 $A^2=2E$, 则 |AB+A-B-E|= ____

8. (2019, 数一、二、三) 设
$$A = \begin{pmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$$
相似.

- (I) 求 x, y 的值;
- (II) 求可逆矩阵 P,使得 $P^{-1}AP = B$ 。

5.3 相似对角化的判定与计算

9. (2005, 数一、二) 设 3 阶矩阵 A 的特征值为 1,3,-2, 对应的特征向量分别为 $\alpha_1,\alpha_2,\alpha_3$ 。 若 $P=(\alpha_1,2\alpha_3,-\alpha_2)$ 则 $P^{-1}AP=$ ______。

10. 设n 阶方阵A 满足 $A^2 - 3A + 2E = O$, 证明A 可相似对角化。

- 11. (2020, 数一、二、三) 设 A 为 2 阶矩阵, $P=(\alpha,A\alpha)$,其中 α 为非零向量且不是 A 的特征向量。
 - (I) 证明 P 为可逆矩阵;
 - (II) 若 $A^2\alpha + 6A\alpha 10\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵。

5.4 实对称矩阵的计算

12. 设 n 阶实对称矩阵 A 满足 $A^2+A=O,n$ 阶矩阵 B 满足 $B^2+B=E$ 且 r(AB)=2 则 $|A+2E|=__$

13. (2010, 数二、三) 设 $A=\begin{pmatrix}0&-1&4\\-1&3&a\\4&a&0\end{pmatrix}$ 正交矩阵 Q 使得 Q^TAQ 为对角矩阵。若 Q 的 第 1 列为 $\frac{1}{\sqrt{6}}(1,2,1)^T$,求 a,Q。

- 14. 设 3 阶实对称矩阵 A 满足 $A^2=E$, A+E 的各行元素之和均为零,且 r(A+E)=2。
 - (I) 求 A 的特征值与特征向量;
 - (II) 求矩阵 A。

第六章 二次型

6.1 求二次型的标准形

- 1. (2016, 数二、三) 设二次型 $f(x_1,x_2,x_3)=a(x_1^1+x_2^2+x_3^2)+2x_1x_2+2x_2x_3+2x_1x_3$ 的正、负惯性指数分别为 1,2 则
 - A. a > 1 B. a < -2 C. -2 < a < 1 D. a = 1 或 a = -2

2. (2022, 数一) 设二次型 $f(x_1, x_2, x_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} ijx_ix_j$ 。

- (1) 求 $f(x_1, x_2, x_3)$ 对应的矩阵;
- (2) 求正交变换 x = Qy, 将 $f(x_1, x_2, x_3)$ 化为标准形;
- (3) 求 $f(x_1, x_2, x_3) = 0$ 的解。

- 3. (2020, 数一、三) 设二次型 $f(x_1, x_2) = 4x_1^2 + 4x_2^2 + 4x_1x_2$ 经正交变换 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = Q \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ 化为二次型 $g(y_1, y_2) = ay_1^2 + 4y_1y_2 + by_2^2$, 其中 $b \ge 0$ 。
 - (1) 求 a, b 的值;
 - (2) 求正交矩阵 Q。

6.2 合同的判定

4. (2008, 数二、三) 设
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
, 与 A 合同的矩阵是

$$A. \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$$

$$A. \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \qquad B. \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad C. \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \qquad D. \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$

$$C. \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$D.\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$

5. 设 A, B 为 n 阶实对称可逆矩阵,则存在 n 阶可逆矩阵 P,使得

$$(I)PA=B \qquad (II)P^{-1}ABP=BA \qquad (III)P^{-1}AP=B \qquad (IV)P^TA^2P=B^2$$
 成立的个数是

6.3 二次型正定与正定矩阵的判定

- 6. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = m, 则下列结论
 - (1) $A^T A$ 与单位矩阵等价;
 - (2) $A^T A$ 与对角矩阵相似;
 - (3) $A^T A$ 与单位矩阵合同;
 - (4) $A^T A$ 正定。

正确的个数是

A. 1 B. 2 C.3 D.4

7. 证明:

- (1) 设 A 为 n 阶正定矩阵, B 为 n 阶反对称矩阵, 则 $A-B^2$ 为正定矩阵;
- (2) 设 A, B 为 n 阶矩阵, 且 r(A+B) = n, 则 $A^TA + B^TB$ 为正定矩阵。

第七章 补充知识-线性代数

补充知识来自于

- (1) 线性代数入门
- (2) 做题总结