Math 109 HW 8

Ray Tsai

11/21/2022

1. (a)

Proposition 1. \sim is equivalent.

Proof. We will show that \sim is reflexive, symmetric, and transitive. Reflexive: Let $(a,b) \in \mathbb{R}^2$. We will show that $(a,b) \sim (a,b)$. Since there exists $k=1 \in \mathbb{R}$ such that $(a,b)=(ka,kb), (a,b) \sim (a,b)$. Symmetric: Let $(a,b) \sim (c,d)$. We will show that $(c,d) \sim (a,b)$. Since $(a,b) \sim (c,d)$, we know that there exists $k \in \mathbb{R}$ such that (a,b)=(kc,kd). Since $k \neq 0$, we can let $m=\frac{1}{k} \in \mathbb{R}$. We then get (ma,mb)=(kmc,kmd)=(c,d), which shows that (c,d) (a,b). Transitive: Let $(a,b) \sim (c,d), (c,d) \sim (e,f)$. We will show that $(a,b) \sim (e,f)$. Since $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$, we have (a,b)=(kc,kd) and $(c,d)=(me,mf), k,m \in \mathbb{R}_{\neq 0}$. We then have (a,b)=(kc,kd)=(kme,kmf). Since $km \in \mathbb{R}_{\neq 0}$, we have $(a,b) \sim (e,f)$.

Therefore, \sim is reflexive, symmetric, and transitive.

(b)

Proposition 2. \sim is not equivalent.

Proof. Consider the case $(1,0), (0,0) \in \mathbb{R}^2$. Since $1^2 + 0^2 = 1 \ge 0^2 + 0^2$, we have $(1,0) \sim (0,0)$. However, $(0,0) \not\sim (1,0)$ because $0^2 + 0^2 = 1 < 1^2 + 0^2$. Therefore, \sim is not equivalent. □

2.

Proposition 3. \approx is an equivalent relation.

Proof. We will show that \approx is reflexive, symmetric, and transitive.

Reflexive: Let $a \in A$. We will show that $a \approx a$. Since \sim is an equivalent relation and f(a) = f(a), we know that $f(a) \sim f(a)$ by the reflexive property. Therefore, since $f(a) \sim f(a)$, we have $a \approx a$.

Symmetric: Let $a_1 \approx a_2$. We will show that $a_2 \approx a_1$. Since $a_1 \approx a_2$, we know that $f(a_1) \sim f(a_2)$. By the symmetric property of \sim , we have $f(a_2) \sim f(a_1)$, which shows that $a_2 \approx a_1$.

Transitive: Let $a_1 \approx a_2$, $a_2 \approx a_3$. We will show that $a_1 \approx a_3$. Since $a_1 \approx a_2$, $a_2 \approx a_3$, we know that $f(a_1) \sim f(a_2)$ and $f(a_2) \sim f(a_3)$. By the transitive property of \sim , we have $f(a_1) \sim f(a_3)$, which shows that $a_1 \approx a_3$.

Therefore, \approx is an equivalent relation.

3. (a)

Proposition 4. $S/\sim has\ 3$ elements.

Proof. We know that for all $m \in S$, $1 \le m \le 15$, $m \in \mathbb{Z}$. Since the 2 is the smallest integer, 1 has 0 prime factors. Since $2 \in S$, we know that S/\sim contains a equivalent class for elements that have 1 prime factor. The second smallest integer is 3. Since $2 \cdot 3 = 6 \in S$, we know that S/\sim contains a equivalent class for elements that have 2 prime factor. The third smallest integer is 5. The smallest integer that has 3 or more prime factors is $2 \cdot 3 \cdot 5 = 30 \notin S$, as it is greater than 15. Since all the integers that have 3 or more prime factors are greater than 15, there does not exist an equivalent class for them. Therefore, S/\sim has 3 elements, namely integers that have 0,1,2 prime factors respectively.

- (b) 6 has 2 prime factors, so the equivalent class containing 6 is $\{6, 10, 12, 14, 15\} \subseteq S$.
- 4. Let $a, b, c, d, n \in \mathbb{Z}$ such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

(a)

Proposition 5. $a + c \equiv b + d \pmod{n}$.

Proof. Let $a = nk_1 + b$, $c = nk_2 + d$, $k_1, k_2 \in \mathbb{Z}$. We will show that $a + c \equiv b + d \pmod{n}$. We know that

$$a + c \equiv (nk_1 + b) + (nk_2 + d) \pmod{n} \tag{1}$$

$$\equiv n(k_1 + k_2) + b + d \pmod{n} \tag{2}$$

$$\equiv b + d \pmod{n}. \tag{3}$$

Therefore, $a + c \equiv b + d \pmod{n}$.

(b)

Proposition 6. $ac \equiv bd \pmod{n}$.

Proof. Let $a = nk_1 + b$, $c = nk_2 + d$, $k_1, k_2 \in \mathbb{Z}$. We will show that $ac \equiv bd \pmod{n}$. We know that

$$ac \equiv (nk_1 + b)(nk_2 + d) \pmod{n} \tag{4}$$

$$\equiv n(nk_1k_2 + k_1d + k_2b) + bd \pmod{n} \tag{5}$$

$$\equiv bd \pmod{n}$$
. (6)

Therefore, $ac \equiv bd \pmod{n}$.

(c)

Proposition 7. $a^m \equiv b^m \pmod{n}$ for all $m \in \mathbb{Z}_{>0}$.

Proof. We will proceed by induction on m.

Suppose m = 1, we have $a \equiv b \pmod{n}$.

Suppose that $a^m \equiv b^m \pmod n$ for some m. We will show that $a^{m+1} \equiv b^{m+1} \pmod n$. Since $a \equiv b \pmod n$ and the induction hypothesis, we know that $a \cdot a^m \equiv b \cdot b^m \pmod n$ by Q4.b. Thus, $a^{m+1} \equiv b^{m+1} \pmod n$ if $a^m \equiv b^m \pmod n$.

Therefore, $a^m \equiv b^m \pmod{n}$ for all $m \in \mathbb{Z}_{>0}$.

5.

Proposition 8. $13^{145} \equiv 13 \pmod{21}$

Proof.

$$13^{145} \equiv 13^{12 \cdot 12 + 1} \pmod{21} \tag{7}$$

$$\equiv 13 \cdot (13^{12})^{12} \pmod{21} \tag{8}$$

$$\equiv 13 \cdot (1)^{12} \pmod{21} \tag{9}$$

$$\equiv 13 \pmod{21} \tag{10}$$

6.

Proposition 9. $2^{101} \equiv 4 \pmod{7}$.

Proof. Since

$$2^1 \equiv 2 \pmod{7} \tag{11}$$

$$2^2 \equiv 4 \pmod{7} \tag{12}$$

$$2^3 \equiv 1 \pmod{7},\tag{13}$$

we know that

$$2^{101} \equiv 2^{3 \cdot 33 + 2} \pmod{7} \tag{14}$$

$$\equiv 2^2 \cdot (2^3)^{33} \pmod{7} \tag{15}$$

$$\equiv 4 \cdot (1)^{33} \pmod{7} \tag{16}$$

$$\equiv 4 \pmod{7}.\tag{17}$$

7.

Proposition 10. The possible congruence classes are [1], [-2].

Proof. Let $2x + 3 \equiv -1 \pmod{6}$ for some congruence class x. We then have $2x \equiv -4 \equiv 2 \pmod{6}$ by Q4.a. By Q4.b, we can cancel the 2 on all sides, which shows that $x \equiv -2 \pmod{6}$ or $x \equiv 1 \pmod{6}$.

Therefore, the possible congruence classes are [1], [-2].

8.

Proposition 11. There does not exist integers x, y such that $x^3 + 7y^2 = 3$.

Proof. We will prove by contradiction. Let x, y be integers. Suppose for the sake of contradiction that $x^3 + 7y^2 = 3$. By taking modulo 7 of the equation, we have $x^3 + 7y^2 \equiv x^3 \equiv 3 \pmod{7}$. However, there does not exist x such that $x^3 \equiv 3 \pmod{7}$, since

$$0^3 \equiv 0 \pmod{7} \tag{18}$$

$$(\pm 1)^3 \equiv \pm 1 \pmod{7} \tag{19}$$

$$(\pm 2)^3 \equiv \pm 8 \pmod{7} \tag{20}$$

$$\equiv \pm 1 \pmod{7} \tag{21}$$

$$(\pm 3)^3 \equiv \pm 27 \pmod{7} \tag{22}$$

$$\equiv \pm 1 \pmod{7},\tag{23}$$

none of which are congruent to 3, which contradicts our assumption.

Therefore, there does not exist integers x such that $x^3 + 7y^2 = 3$.

9.

Proposition 12. If $n \equiv 3 \pmod{4}$, then there does not exist integers x, y such that $x^2 + y^2 = n$.

Proof. We will prove by contradiction. Let $x, y \in \mathbb{Z}$. Suppose for the sake of contradiction that $n \equiv 3 \pmod 4$. By taking modulo 4 of $x^2 + y^2 = n$, we have $x^2 + y^2 \equiv 3 \pmod 4$. Since

$$0^2 \equiv 0 \pmod{4} \tag{24}$$

$$(\pm 1)^2 \equiv 1 \pmod{4} \tag{25}$$

$$2^2 \equiv 0 \pmod{4},\tag{26}$$

 $x^2 \pmod{4}$ and $y^2 \pmod{4}$ can only be congruent to 0 or 1.

If $x^2 \equiv 0 \pmod 4$, then $y^2 \pmod 4$ must be congruent to 3, which is impossible.

If $x^2 \equiv 1 \pmod 4$, then $y^2 \pmod 4$ must be congruent to 2, which is also impossible.

This contradicts our assumption and shows that there does not exist $x, y \in \mathbb{Z}$ such that $x^2 + y^2 = n$.