OtherItem 5

王胤雅

201911010205

201911010205@mail.bnu.edu.cn

2024年4月15日

- SOUTION . 1. 令 $\xi_i = \mathbbm{1}_{\hat{\pi} i \text{ 次正面朝上}}$ 。那么 $X_n = \sum_{i=1}^n \xi_i$,显然 X_n 是马氏链。设 $Y_n \equiv X_n \pmod 2$,那么 Y_n 的状态空间是 $E = \{0,1\}$,且 Y_n 是马氏链。设 Y_n 的状态转移矩阵为 P,那么 $P = (p_{ij})_{i,j \in E}$,则 $p_{00} = p_{11} = \mathbb{P}\{\xi_i = 0\} = \frac{2}{3}$, $p_{10} = p_{01} = \mathbb{P}\{\xi_i = 1\} = \frac{1}{3}$ 。显然 P 是非周期,不可约的,且是有限维的,故 P 具有唯一平稳分布。设为 μ , μ 满足 $\mu P = P$,其中 $\mu = (\mu_0, \mu_1)$ 。不难算出 $\mu = (\frac{1}{2}, \frac{1}{2})$ 。故 $\lim_{n \to \infty} \mathbb{P}(Y_n = 0) = \lim_{n \to \infty} \mathbb{P}(X_n$ 是偶数) $= \frac{1}{2}$ 。
- 2. 令 $\xi_n^i = \mathbbm{1}_{\Re n \text{ 次抽出} \Re i \text{ 种五福}}, i = 1, \cdots, 5,$ 那么 $X_n^{(i)} = \sum_{k=1}^n \xi_k^{(i)}$ 。那么, $X_{2(n+1)}^{(i)} X_{2n}^{(i)} = \xi_{2n+1}^{(i)} + \xi_{2n+2}^{(i)} \perp \{\xi_k^{(i)} : k \leq 2n\},$ 故 $X_{2n}^{(i)} \text{ 是马氏链。}$ 令 $Y_n^{(i)} \equiv X_{2n}^{(i)} \pmod{2}, i = 1, \cdots, 5,$ 那么 $\sum_{i=1}^5 Y_n^{(i)} \equiv \sum_{i=1}^5 X_{2n}^{(i)} \equiv 0 \pmod{2}$ 。令 $Y_n = (Y_n^{(1)}, \cdots, Y_n^{(5)}),$ 则 Y_n 是状态空间为 $E = \mathbb{Z}_2^5$ 的马氏链。设 P 为 $(Y_n : n \geq 1)$ 转移矩阵, $P = (p_{ij})_{i,j \in E}$ 。

下计算 P: 设 $i, j \in E$, $i = (i_1, \dots, i_5), j = (j_1, \dots, j_5)$ 。

- (a) 若 $\sum_{k=1}^{5} i_k \not\equiv 0 \pmod{2}$, 那么 $\forall j \in E, p_{ij} = 0$ 。
- (b) 若 $\sum_{k=1}^{5} i_k \equiv 0 \pmod{2}$, 那么 $p_{ii} = \mathbb{P}(\exists i \in \{1, \dots, 5\}, \xi_1^{(i)} = 1 = \xi_2^{(i)}, \xi_1^{(j)} = \xi_2^{(j)} = 0, \forall j \in \{1, \dots, 5\}) = \sum_{i=1}^{5} p_i^2 \circ$ 若 $j \neq i$, 那么 $\sum_{k=1}^{5} i_k j_k \equiv 0 \pmod{2}$, 则 $|\{k : i_k \neq j_k\}| \in \{2, 4\}$ 。
 - i. $|\{k: i_k \neq j_k\}| = 2$, $\exists \mathbb{F} \angle p_{ij} = \mathbb{P}(\exists u \neq v \in \{1, \dots, 5\}, \xi_1^{(u)} = 1, \xi_2^{(v)} = 1, \forall s \in \{1, \dots, 5\} \setminus \{u\}, \xi_1^{(s)} = 0, \forall s \in \{1, \dots, 5\} \setminus \{v\}, \xi_2^{(s)} = 0)$. $\exists \mathbb{F} p_{ij} = \sum_{1 \leq u, v \leq 5} p_u p_v$.
 - ii. $|\{k:i_k\neq j_k\}|=4$,那么两次抽类获得了 4 个福袋,则 $p_{ij}=0$ 。
 - iii. $|\{k:i_k\neq j_k\}|\in\{1,3,5\}$, 则 $p_{ij}=0$ 。

显然,P 非周期, $\forall i, j \in E$,则 $p_{ij}^5 \geq \prod_{k:i_k \neq j_k} \mathbb{E}(\xi_n^{(k)}) \prod_{k:i_k = j_k} (1 - \mathbb{E}(\xi_n^k)) > 0$,故 P 是不可约的。那么 P 具有唯一的平稳分布记为 μ ,则 $\mu P = \mu$ 。由于 P 是对称的,则 $\mu P^T = \mu$,即 $\sum_{k=1}^{16} \mu_k p_{ik} = 1$, $\sum_{k=1}^{16} p_{ik} = 1$,由于 $\frac{1}{16} I$, $I = (1, \cdots, 1)_{1 \times 16}$ 满足平稳分布条件,又由于唯一性知, $\mu = \frac{1}{16} I$ 。从而 $\lim_{n \to \infty} P(Y_n = (0, 0, 0, 0, 0)) = \lim_{n \to \infty} \mathbb{P}(X_n^{(i)}$ 是偶数, $\forall i = 1, \cdots, 5) = \frac{1}{16}$ 。

- SOUTION. 1. Let $g(x) = f^{-1}(x)$. Since f'' < 0, then g'' > 0, then g' increases. Since $K(x) = f^{-1}(f(x+\varepsilon)) x = \int_{f(x)}^{f(x)+\varepsilon} g'(t)dt$, then K increases. If Green and Red never meet in the process, suppose the Red satisfies X(t) = 0 and Green satisfies Y(t) = x. Let $x_0 = x$, $x_{n+1} = 1 x_n K(x_n)$. We can get to know x_{n+1} is position of the different one when the another one arrives 0. By the assumption, we can know $x_n \in (0,1)$. Next, we will prove $x_0 = x_n, \forall n \geq 1$. If not, then $\{n \geq 1 : x_0 \neq x_n\} \neq \emptyset$, w.l.o.g., we let $1 = \min\{n \geq 1 : x_0 \neq x_n\}$.
 - (a) If $x_1 < x_0$, then $x_2 = 1 x_1 K(x_1) = 1 (1 x_0 K(x_0)) K(x_1) = x_0 + K(x_0) K(x_1)$. Since K' > 0, then $x_2 < x_0$. We prove $(-1)^n (x_{n+2} - x_n) < 0$ by mathematic induction. n = 0, we have proved, next suppose $(-1)^n (x_{n+2} - x_n) < 0$, we go to n + 1. Then $(-1)^{n+1}(x_{n+3} + x_{n+1}) = (-1)^{n+1}(K(x_n) - K(x_{n+2}) + x_n - x_{n+2}) = (-1)^n (K(x_{n+2}) - K(x_n)) + (-1)^n (x_{n+2} - x_n)$. If $(-1)^n = 1$, then $x_{n+2} - x_n < 0$, then $K(x_{n+2}) - K(x_n) < 0$, then $(-1)^{n+1}(x_{n+3} + x_{n+1}) < 0$. If $(-1)^n = -1$, then $x_{n+2} - x_n > 0$, then $K(x_{n+2}) - K(x_n) > 0$, then $(-1)^{n+1}(x_{n+3} + x_{n+1}) < 0$.
 - (b) If $x_1 > x_0$, then $x_2 = 1 x_1 K(x_1) = 1 (1 x_0 K(x_0)) K(x_1) = x_0 + K(x_0) K(x_1)$. Since K' > 0, then $x_2 > x_0$. We prove $(-1)^n(x_{n+2} - x_n) > 0$ by mathematic induction. n = 0, we have proved, next suppose $(-1)^n(x_{n+2} - x_n) > 0$, we go to n + 1. Then $(-1)^{n+1}(x_{n+3} + x_{n+1}) = (-1)^{n+1}(K(x_n) - K(x_{n+2}) + x_n - x_{n+2}) = (-1)^n(K(x_{n+2}) - K(x_n)) + (-1)^n(x_{n+2} - x_n)$. If $(-1)^n = 1$, then $x_{n+2} - x_n > 0$, then $K(x_{n+2}) - K(x_n) > 0$, then $(-1)^{n+1}(x_{n+3} + x_{n+1}) > 0$. If $(-1)^n = -1$, then $x_{n+2} - x_n < 0$, then $K(x_{n+2}) - K(x_n) < 0$, then $(-1)^{n+1}(x_{n+3} + x_{n+1}) > 0$.

Therefore, x_0 satisfies F(x) = 1 - 2x - K(x), $F(x_0) = 0 = x_1 - x_0 = 0$. And F' = -1 - K' < 0, then x_0 is the only solution satisfies of F(x). By now, we get if Green and Red never meet, then x_0 s.t. $F(x_0) = 0$. So, if x_0 is not the solution of F(x), then Green and Red will meet.

2. Also, we consider $g=f^{-1}$, then $g(y)=\frac{\mathrm{e}^{by}-1}{\mathrm{e}^{b}-1}$. And we define $\{x_n:n\in\mathbb{N}\}$ as above. So we find the circles that Red did before they meet, we need to find $\lim_{n\to\infty}\frac{1}{|x_{n+3}-x_{n+1}|}=\lim_{n\to\infty}\frac{1}{|K(x_{n+2})-K(x_{n+1})|}$. Since $K(u)-K(v)=g(f(u)+\varepsilon)-g(f(u))-(g(f(v)+\varepsilon)-g(f(v)))=\frac{(\mathrm{e}^{bf(u)}-\mathrm{e}^{bf(v)})(\mathrm{e}^{b\varepsilon}-1)}{\mathrm{e}^{b}-1}$, and $x_n\to 0, n\to\infty$, then $\lim_{n\to\infty}\frac{1}{|x_{n+3}-x_{n+1}|}=\lim_{n\to\infty}\frac{1}{|K(x_{n+2})-K(x_{n+1})|}=C\frac{1}{b\varepsilon}$, where C is a constance.

SOUTION. 1. Since
$$\operatorname{tr}(A)=0$$
, so we can assume $A=\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$. And $\det(A)\neq 0$, then $-a^2-bc\neq 0$

0. So
$$A^{2} = \begin{pmatrix} a^{2} + bc & 0 \\ 0 & a^{2} + bc \end{pmatrix}$$
. So $A^{2} = -(\det(A))I_{2}$, where $I_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. $\forall w = (w_{1}, w_{2}) \in \mathbb{R}^{2} \forall n \geq 1$, $A^{-n}w = (\overline{w_{1}}, \overline{w_{2}}) \in \mathbb{R}^{2}$, let $v = ([\overline{w_{1}}], [\overline{w_{2}}]) \in \mathbb{Z}^{2}$, so $|v - A^{-n}w| < 2$. Consider $A^{n}v - w = A^{n}(v - A^{-n}w)$:

- (a) If $n = 2k, k \in \mathbb{N}$, then $|A^n v w| = |a^2 + bc|^k |v A^{-n}w| \le 2|a^2 + bc|^k = 2|\det(A)|^{\frac{n}{2}}$. Then $\frac{\inf_{v \in \mathbb{Z}^2} |A^n v w|}{|\det(A)|^{\frac{n}{2}}} \le 2$.
- (b) If n = 2k + 1, then we get that $|A^n v w| = |a^2 + bc|^k |A(v A^{-n}w)| \le 2|a^2 + bc|^k |A|| = \frac{2||A||}{|\det(A)|^{1/2}} |\det(A)|^{\frac{n}{2}}$. Where $||A|| = \sup_{x \in \mathbb{R}^2, x \neq 0} \frac{|Ax|}{|x|}$, it must be well-defined, since $\dim(Mn_2(\mathbb{R})) = 2$. Then $\frac{\inf_{v \in \mathbb{Z}^2} |A^n v w|}{|\det(A)|^{\frac{n}{2}}} \le \frac{2||A||}{|\det(A)|^{\frac{1}{2}}}$.

Then, $C = \max\{2, \frac{2||A||}{|\det(A)|^{\frac{1}{2}}}\}$, we get what we want.

- 2. Let $f(x) = x^2 + ax + b$, where $a, b \in \mathbb{Z}$ is the characteristic polynomial of A. Since f(x) is irreducible in \mathbb{Q} , we get f(x) has no rational root. Therefore, f(x) has no shigene in \mathbb{R} if it has roots. If $x_1, x_2 \in \mathbb{C}$ are roots of f:
 - (a) If $x_1 = x_2$, then $x_1 + x_2 = 2x_1 = -a$, then $x_1 = -\frac{a}{2} \in \mathbb{Q}$, contradiction!
 - (b) $x_1 \neq x_2$, then $x_1 = \overline{x_2}$ and $|x_1| = |x_2| = |\det(A)|^{\frac{1}{2}}$ and $\exists P \in M_2(\mathbb{C}) \ PAP^{-1} = \Lambda$, where $\Lambda = \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix}$. Then $A^n = P^{-1}\Lambda^n P$. And $||\Lambda||_{\mathbb{C}} = |x_1|$, then $||A^n||_{\mathbb{C}} = |\det(A)|^{\frac{n}{2}}||P||||P^{-1}||$, then $\forall w \in \mathbb{R}^2, \exists v \in \mathbb{Z}^2, |v A^{-n}w| < 2$, then $|v A^n w| \leq ||A^n|||v A^{-n}w| \leq 2||p||||p^{-1}|||\det(A)|^{\frac{n}{2}}$.

SOUTION. 1.

- 2. $\dim(W \cap U_0) = d + 1$.
- 3.