QUANTITATIVE ANALYSIS

DIFFERENCE OF MEANS (2)

AGENDA

- 1. Follow-up
- 2. Macros
- 3. Difference of Means in Stata
- 4. Effect Sizes
- 5. Graphing Means
- 6. Power Analysis

1 FOLLOW-UP

2 MACROS

AUTOMATING YOUR WORK

- Automation helps
 - improve consistency,
 - manage repetitive tasks,
 - limit debugging,
 - and ultimately decrease time spent coding.

TYPES OF MACROS

LOCAL
STORE A STRING OR VALUE
TEMPORARILY IN A SINGLE
DO-FILE

GLOBAL
STORE A STRING OR VALUE
THAT IS VALID FOR AN ENTIRE
STATA SESSION

LOCAL MACROS

```
// storing lists or other strings:
local macroName "string"
```

local varlist "var1 var2 var3"

describe mpg weight length turn displacement gear_ratio

summarize mpg weight length turn displacement gear_ratio

describe mpg weight length turn displacement gear_ratio

• summarize mpg weight length turn displacement gear_ratio

local coreVars "mpg weight length turn displacement gear_ratio"

describe `coreVars'

summarize `coreVars'

local coreVars "mpg weight length turn displacement gear_ratio"

describe `coreVars'

summarize `coreVars'

```
histogram mpg, frequency scheme(s2mono) title("Miles per
Gallon") subtitle("1978 Automobiles") note("Graph produced by
Christopher Prener, Ph.D.; Data via Stata")
```

```
histogram weight, frequency scheme(s2mono) title("Vehicle
Weight") subtitle("1978 Automobiles") note("Graph produced by
Christopher Prener, Ph.D.; Data via Stata")
```

histogram displacement, frequency scheme(s2mono) title("Vehicle Displacement") subtitle("1978 Automobiles") note("Graph produced by Christopher Prener, Ph.D.; Data via Stata")

```
histogram mpg, frequency scheme(s2mono) title("Miles per
Gallon") subtitle("1978 Automobiles") note("Graph produced by
Christopher Prener, Ph.D.; Data via Stata")
```

```
histogram weight, frequency scheme(s2mono) title("Vehicle
Weight") subtitle("1978 Automobiles") note("Graph produced by
Christopher Prener, Ph.D.; Data via Stata")
```

histogram displacement, frequency scheme(s2mono) title("Vehicle Displacement") subtitle("1978 Automobiles") note("Graph produced by Christopher Prener, Ph.D.; Data via Stata")

```
Local graphOptions "frequency scheme(s2mono) subtitle("1978
Automobiles") note("Graph produced by Christopher Prener, Ph.D.;
Data via Stata")"
```

histogram mpg, title("Miles per Gallon") `graphOptions'

histogram weight, title("Vehicle Weight") `graphOptions'

histogram displacement, title("Vehicle Displacement")
`graphOptions'

```
local graphOptions "frequency scheme(s2mono) subtitle("1978
Automobiles") note("Graph produced by Christopher Prener, Ph.D.;
Data via Stata")"
```

histogram mpg, title("Miles per Gallon") `graphOptions'

histogram weight, title("Vehicle Weight") `graphOptions'

histogram displacement, title("Vehicle Displacement") `graphOptions'

LOCAL MACROS

```
// storing values:
local macroName = val
```

 \cdot local x = 1

summarize mpg

Variable	0bs	Mean	Std. Dev.	Min 	Max
mpg	' 74	 21 . 2973	5.785503	 12	41

. return list

```
r(N) = 74
r(sum_w) = 74
r(mean) = 21.2972972972973
r(Var) = 33.47204738985561
r(sd) = 5.785503209735141
r(min) = 12
r(max) = 41
r(sum) = 1576
```

. return list

scalars:

```
r(N) = 74

r(sum_w) = 74

r(mean) = 21.2972972972973

r(Var) = 33.47204738985561

r(sd) = 5.785503209735141

r(min) = 12

r(max) = 41

r(sum) = 1576
```

. local mpgMean = `r(mean)'

summarize mpg

Variable 	0bs	Mean 	Std. Dev.	Min	Max
mpg	 74	21 . 2973	5.785503	 12	41

- . local mpgMean = `r(mean)'
- display "The average of the variable mpg is `mpgMean'."
 The average of the variable mpg is 21.2972972972973.

generate mpgHigh = mpg

```
recode mpgHigh (1/21.297=0) (21.298/45=1)
(mpgHigh: 74 changes made)
```

tabulate mpgHigh

Cum.	Percent	Freq.	mpgHigh
58.11 100.00	58 . 11 41 . 89	43 31	0 1
	100 . 00	 74	Total

```
. generate mpgHigh = .
. replace mpgHigh = 0 if mpg <= `mpgMean'
(43 real changes made)
. replace mpgHigh = 1 if mpg > `mpgMean'
(31 real changes made)
```

. tabulate mpgHigh

Cum.	Percent	Freq.	mpgHigh
58.11 100.00	58.11 41.89	43 31	0
	100 . 00	+ 74	Total

summarize mpg

Variable	0bs	Mean 	Std. Dev.	Min	Max
mpg	 74	21 . 2973	5.785503	 12	41

```
. local mpgMean = `r(mean)'
```

```
txt "The mean of the miles per gallon variable is " ///
%10.3f `mpgMean' "."
```


summarize mpg

Variable 	0bs	Mean 	Std. Dev.	Min	Max
mpg	' 74	21 . 2973	5.785503	12	41

```
. local mpgMean = `r(mean)'
```

txt " The mean of the miles per gallon variable is " ///
%10.3f `mpgMean' "."

The mean of the miles per gallon variable is 21.297.

summarize mpg

Variable	0bs	Mean	Std. Dev.	Min	Max
 mpg	74	 21 . 2973	5 _• 785503	 12	41

```
. // OFF
. local mpgMean = `r(mean)'
. // ON

. txt "**1.** The mean of the miles per gallon variable is " ///
%10.3f `mpgMean' "."
```

. quietly summarize mpg, detail

. return list

```
r(N) = 74
  r(sum w) = 74
   r(mean) = 21.2972972972973
    r(Var) = 33.47204738985561
     r(sd) = 5.785503209735141
r(skewness) = .9487175964588155
r(kurtosis) = 3.97500459645325
    r(sum) = 1576
    r(min) = 12
    r(max) = 41
    r(p1) = 12
    r(p5) = 14
    r(p10) = 14
    r(p25) = 18
    r(p50) = 20
    r(p75) = 25
    r(p90) = 29
    r(p95) = 34
    r(p99) = 41
```

swilk mpg

Shapiro-Wilk W test for normal data

Variable	0bs	W	V	Z	Prob>z
mpg	74	0.94821	 L 3.335	2 . 627	0.00430

. return list

```
r(p) = .0043009091676854
r(z) = 2.627486783178489
r(V) = 3.334909342486645
r(W) = .9482147278617608
r(N) = 74
```

. sfrancia mpg

Shapiro-Francia W' test for normal data

Variable 	0k	os 	W '	V'	Z 	Prob>z
mpg		74 0 _• 9	 94872 3.	 .650 2	 .510	0.00604

. return list

```
r(z) = 2.50953087416346
r(V) = 3.649896467022918
r(W) = .9487225945150459
r(N) = 74
r(p) = .0060445823550852
```

SUBSAMPLES

// restrict analyses to domestic vehicles with below average mpg

. local insample foreign == 0 & mpg <= `mpgMean'</pre>

summarize price if `insample'

Variable 	0bs	Mean 	Std. Dev.	Min	Max
price	 	6839 . 778	3433 . 552	 3291	15906

GLOBAL MACROS

```
// storing lists or other strings:
global macroName "string"
global varlist "var1 var2 var3"
// storing values:
global macroName = val
```

 \cdot global x = 1

GLOBAL MACROS

```
// returning lists or other strings:
. summarize $varlist

// returning values:
. display $x
```

GLOBAL MACROS

```
// check to see if appropriate directories exist
global projName "mpgMeans"
capture mkdir $projName
// log process
log using "$projName/$projName.txt", text replace
```

3 DIFFERENCE OF MEANS IN STATA

ONE SAMPLE T-TEST

ttest var=mu

. ttest mpg=25

One-sample t test

Variable	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf	. Interval]
mpg	74	21.2973	.6725511	5.785503	19.9569	22.63769

mean = mean(mpg)

t = -5.5055

Ho: mean = 25

degrees of freedom =

Ha: mean < 25Pr(T < t) = 0.0000

Ha: mean != 25 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

Ha: mean > 25

LEVENE'S TEST

sdtest yVar, by(xVar)

sdtest mpg, by(foreign)

Variance ratio test

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf	• Interval]
Domestic Foreign	52 22	19.82692 24.77273	.657777 1.40951	4.743297 6.611187	18.50638 21.84149	21.14747 27.70396
combined	74	21.2973	.6725511	5.785503	19.9569	22.63769

ratio = sd(Domestic) / sd(Foreign)

f = 0.5148

Ho: ratio = 1

degrees of freedom = 51, 21

Ha: ratio < 1 Pr(F < f) = 0.0275 2*Pr(F < f) = 0.0549

Ha: ratio != 1

Pr(F > f) = 0.9725

Ha: ratio > 1

F-DISTRIBUTION

- Named in honor of Ronald Fisher
- Models the distribution of the ratio between two groups based on their variance
- Used to test whether two estimates of variance can be assumed to come from the same population
- Not symmetrical like t, and its shape varies based on the given degrees of freedom

LEVENE'S TEST

sdtest yVar, by(xVar)

sdtest mpg, by(foreign)

Variance ratio test

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf	• Interval]
Domestic Foreign	52 22	19.82692 24.77273	.657777 1.40951	4.743297 6.611187	18.50638 21.84149	21.14747 27.70396
combined	74	21.2973	.6725511	5.785503	19.9569	22.63769

ratio = sd(Domestic) / sd(Foreign)

f = 0.5148

Ho: ratio = 1

degrees of freedom = 51, 21

Ha: ratio < 1 Pr(F < f) = 0.0275 2*Pr(F < f) = 0.0549

Ha: ratio != 1

Pr(F > f) = 0.9725

Ha: ratio > 1

LEVENE'S TEST SCALARS

- quietly sdtest mpg, by(foreign)
- . return list

scalars:

```
r(sd) = 5.785503209735139
r(p) = .0549488631637733
r(p_l) = .0274744315818867
r(p_u) = .9725255684181133
r(sd_2) = 6.611186898567625
r(sd_1) = 4.743297247514701
    r(F) = .514756468853841
r(df_2) = 21
r(df_1) = 51
    r(N) = 74
```

LEVENE'S TEST

INDEPENDENT SAMPLES T-TEST

ttest yVar, by(xVar)

. ttest mpg, by(foreign)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Domestic Foreign	52 22	19.82692 24.77273	.657777 1.40951	4.743297 6.611187	18.50638 21.84149	21.14747 27.70396
combined	74	21.2973	.6725511	5.785503	19.9569	22.63769
diff		-4 . 945804	1.362162		-7 . 661225	-2.230384
<pre>diff = mean(Domestic) - mean(Foreign)</pre>					+	= -3.6308

 $\alpha_{III} = \text{mean}(\text{pomestic}) -$

Ho: diff = 0

degrees of freedom = 72

Ha: diff < 0

Ha: diff != 0 Pr(T < t) = 0.0003 Pr(|T| > |t|) = 0.0005 Pr(T > t) = 0.9997

Ha: diff > 0

INDEPENDENT SAMPLES T-TEST

ttest yVar, by(xVar)

. ttest mpg, by(foreign) unequal welch

Two-sample t test with unequal variances

Group	•		Std. Err.		_	_
Domestic Foreign	52 22	19.82692 24.77273	.657777 1.40951	4.743297 6.611187	18.50638 21.84149	21.14747
combined	74	21.2973	.6725511	5.785503	19.9569	
diff	•	-4 . 945804			-8 . 11642	
diff =		estic) – mean	9	ch's degrees	t of freedom	= -3.1797 = 31.4209
	iff < 0) = 0.0017	Pr(Ha: diff !=			iff > 0) = 0.9983

DEPENDENT SAMPLES T-TEST

ttest varG1==varG2

- . use http://www.ats.ucla.edu/stat/stata/notes/hsb2, clear
- . ttest read==write

Paired t test

Variable	0bs	Mean	Std. Err.	. Std. Dev.	. [95% Con1	f. Interval]
read write	200 200	52.23 52.775	.7249921 .6702372	10.25294 9.478586	50.80035 51.45332	53.65965 54.09668
diff	200	- . 545	. 6283822	8.886666	-1.784142	.6941424

mean(diff) = mean(read - write) t = -0.8673Ho: mean(diff) = 0 degrees of freedom = 199

T-TEST SCALARS

- . use http://www.ats.ucla.edu/stat/stata/notes/hsb2, clear
- . quietly ttest read==write
- . return list

scalars:

```
r(level) = 95
r(sd_2) = 9.47858602138653
r(sd_1) = 10.25293682648241
    r(se) = .6283822053335848
    r(p_u) = .8065906589542506
    r(p_l) = .1934093410457493
        r(p) = .3868186820914985
        r(t) = -.8673065458794776
r(df_t) = 199
r(mu_2) = 52.775
    r(N_2) = 200
r(mu_1) = 52.23
    r(N_1) = 200
```

4 EFFECT SIZES

COHEN'S D AFTER INDEPENDENT T-TEST

COHEN'S D AFTER INDEPENDENT T-TEST

esize twosample mpg, by(foreign) cohensd

Effect size based on mean comparison

```
Obs per group:

Domestic = 52

Foreign = 22

Effect Size | Estimate [95% Conf. Interval]

Cohen's d | -.9234449 -1.441225 -.3997744
```

COHEN'S D AFTER INDEPENDENT T-TEST

. esize twosample mpg, by(foreign) cohensd unequal welch Effect size based on mean comparison, unequal variances

COHEN'S D SCALARS

- quietly esize twosample mpg, by(foreign) cohensd
- return list

scalars:

```
r(d) = -.9234448623222905
r(lb_d) = -1.441225213139341
r(ub_d) = -.3997744112393538
r(N_1) = 52
r(N_2) = 22
r(level) = 95
```

5 GRAPHING MEANS

ONE SAMPLE T-TEST

ttest var=mu

. ttest mpg=25

One-sample t test

Variable	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	. Interval]
mpg	74	21.2973	.6725511	5.785503	19.9569	22.63769

mean = mean(mpg)

t = -5.5055

Ho: mean = 25

degrees of freedom = 73

Ha: mean < 25Pr(T < t) = 0.0000 Ha: mean != 25

Ha: mean > 25Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

```
// create dataset with key values
collapse (mean) meanMpg = mpg (sd) sdMpg = mpg (count) n=mpg
// calculated standard error
generate seMpg = sdMpg/sqrt(n)
// create category variable
. generate cat = 1
```

ttest mpg=25

One-sample t test

Variable	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf	. Interval]
mpg	74	21.2973	.6725511	5 . 785503	19.9569	22.63769

list n meanMpg seMpg sdMpg

•	+ n !	meanMpg	seMpg	sdMpg
1.	74 	21.2973	.6725511	5.7855 +

GRAPH MEAN AND 95% CONFIDENCE INTERVAL

serrbar mVar sVar xVar, scale(val)

serrbar meanMpg seMpg cat, scale(1.96) scheme(s2mono)

One Sample T-Test: Miles per Gallon and µ=25

Results: t = -5.505, p < 0.001

Produced by Christopher Prener, Ph.D.; Data via Stata

INDEPENDENT SAMPLES T-TEST

ttest yVar, by(xVar)

. ttest mpg, by(foreign)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	. Interval]
Domestic Foreign	52 22	19.82692 24.77273	.657777 1.40951	4.743297 6.611187	18.50638 21.84149	21.14747 27.70396
combined	74	21.2973	.6725511	5.785503	19.9569	22.63769
diff		-4 . 945804	1.362162		-7 . 661225	-2.230384
			·			2 6200

diff = mean(Domestic) - mean(Foreign) t = -3.6308

Ho: diff = 0 degrees of freedom = 72

```
// create dataset with key values
. collapse (mean) meanMpg = mpg (sd) sdMpg = mpg (count) n=mpg, by(foreign)

// calculated standard error
. generate seMpg = sdMpg/sqrt(n)
```

GRAPH MEANS AND 95% CONFIDENCE INTERVAL

serrbar mVar sVar xVar, scale(val)

serrbar meanMpg seMpg foreign, scale(1.96) scheme(s2mono)

Two Sample T-Test: Miles per Gallon by Car Type 1978 Automobiles

Results: t = -3.631, p = .0005, Cohen's d = -.923

Produced by Christopher Prener, Ph.D.; Data via Stata

DEPENDENT SAMPLES T-TEST

ttest varG1==varG2

- . use http://www.ats.ucla.edu/stat/stata/notes/hsb2, clear
- . ttest read==write

Paired t test

Variable	0bs	Mean	Std. Err	. Std. Dev.	. [95% Con	f. Interval]
read write	+ 200 200	52.23 52.775	.7249921 .6702372	10.25294 9.478586	50.80035 51.45332	53.65965 54.09668
diff	200	- . 545	.6283822	8.886666	-1 . 784142	.6941424

mean(diff) = mean(read - write) t = -0.8673degrees of freedom = Ho: mean(diff) = 0199

Pr(T < t) = 0.1934

Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0Pr(|T| > |t|) = 0.3868

Pr(T > t) = 0.8066

```
// save key values
. local meanRead = r(mu_1)
. local sdRead = r(sd_1)
. local nRead = r(N_1)
. local meanWrite = r(mu_2)
. local sdWrite = r(sd_2)
. local nWrite = r(N_2)
```

```
// create dataset with key values
clear
set obs 2
generate cat = .
generate mean = .
generate sd = .
generate n = ...
replace cat = 0 in 1
replace mean = `meanRead' in 1
replace sd = `sdRead' in 1
replace n = `nRead' in 1
replace cat = 1 in 2
replace mean = `meanWrite' in 2
replace sd = `sdWrite' in 2
replace n = `nWrite' in 2
```

```
// calculated standard error
generate se = sd/sqrt(n)
```

GRAPH MEANS AND 95% CONFIDENCE INTERVAL

serrbar mVar sVar xVar, scale(val)

serrbar mean se cat, scale(1.96) scheme(s2mono)

Dependent Sample T-Test: Standardized Testing

Reading and Writing Sections

Test Section

Results: t = -.867, p = .387

Produced by Christopher Prener, Ph.D.; Data via Stata

6 POWER ANALYSIS

ERROR

$$Pr(Type | I) = \beta$$

 $I - \beta = power$

Campla	Population			
Sample	$\mu = \mu_0$	µ ≠ µ ₀		
Not Reject	yes	Type II		
Reject	Туре I	yes		

^{*}The null hypothesis is that $\mu = \mu_0$

$$Pr(Type I) = \alpha$$

Scaled risk for foreclosure instrument with range 0 to 20

- Scaled risk for foreclosure instrument with range 0 to 20
- Based on Acock (2016:178), we can estimate standard deviation by assuming that few people will be at either extreme of the distribution (< 2 or > 18):

$$s = \frac{18 - 2}{4} = 4$$

- Scaled risk for foreclosure instrument with range 0 to 20
- Based on Acock (2016:178), we can estimate standard deviation by assuming that few people will be at either extreme of the distribution (< 2 or > 18):

$$s = \frac{18 - 2}{4} = 4$$

If we want to detect a moderate size, we can multiply s by 0.5 (Cohen's d!), which equals 2.

- Scaled risk for foreclosure instrument with range 0 to 20
- Based on Acock (2016:178), we can estimate standard deviation by assuming that few people will be at either extreme of the distribution (< 2 or > 18):

 $s = \frac{18 - 2}{4} = 4$

- If we want to detect a moderate size, we can multiply s by 0.5 (Cohen's d!), which equals 2.
- We then pick two reasonable values that have a difference of 2 (12 and 14, 14 and 16, or 15 and 17, for example).

KEY ASSUMPTIONS

From Acock (2016:181):

- What is the clinically important difference?
- What is the standard deviation of each group?
- How much power do I want to have?
- What alpha level am I using?

KEY ASSUMPTIONS

From Acock (2016:181):

- What is the clinically important difference? 2; possible means 8 and 10
- What is the standard deviation of each group? 4
- ▶ How much power do I want to have? β =0.8 or β =0.9 are common
- What alpha level am I using? typically α =0.05

CALCULATING N

```
power twomeans mean1 mean2, sd(val) power(beta)
power twomeans 8 10, sd(4) power(0.8)
{some output omitted}
Study parameters:
       alpha =
                0.0500
       power = 0.8000
       delta = 2.0000
         m1 = 8.0000
         m2 = 10.0000
         sd = 4.0000
Estimated sample sizes:
          N =
                128
 N per group =
                64
```

CALCULATING N

```
power twomeans mean1 mean2, sd(val) power(beta)
power twomeans 8 10, sd(4) power(0.9)
{some output omitted}
Study parameters:
       alpha =
                0.0500
       power = 0.9000
       delta = 2.0000
         m1 = 8.0000
         m2 = 10.0000
         sd = 4.0000
Estimated sample sizes:
          N =
                172
 N per group =
                86
```

N per group =

CALCULATING N

```
power twomeans mean1 mean2, sd(val) power(beta)
power twomeans 8 10, sd(4) power(0.95)
{some output omitted}
Study parameters:
       alpha =
                0.0500
       power = 0.9500
       delta = 2.0000
          m1 = 8.0000
         m2 = 10.0000
          sd = 4.0000
Estimated sample sizes:
           N =
                 210
```

105

CALCULATING N

```
power twomeans mean1 mean2, sd(val) power(beta)
. power twomeans 7.8 11, sd(4) power(0.9)
{some output omitted}
Study parameters:
       alpha =
                0.0500
       power = 0.9000
       delta = 3.2000
         m1 = 7.8000
         m2 = 11.0000
          sd = 4.0000
Estimated sample sizes:
          N =
                  68
 N per group =
                34
```

DOCUMENT DETAILS

Document produced by <u>Christopher Prener, Ph.D</u> for the Saint Louis University course SOC 5050: QUANTITATIVE ANALYSIS - APPLIED INFERENTIAL STATISTICS. See the <u>course wiki</u> and the repository <u>README.md</u> file for additional details.

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.