answers.md 2025-10-11

1. salloc command line used

To allocate a compute node interactively:

```
salloc --cpus-per-task=8 <executable_path>
```

2. Maximum number of cores M on the node

80 (I used the command)

3. How I set different N_t's

```
export OMP_NUM_THREADS=1  # For N1
./omp_hello2

export OMP_NUM_THREADS=2  # For N2
./omp_hello2

export OMP_NUM_THREADS=4  # For N3
./omp_hello2
```

4. Record execution times and plot averages

5. Speedup relative to N_1

answers.md 2025-10-11

(each point represents N_i at i)

6. Questions

(a) Why printed messages may differ in order for a given N_t

OpenMP threads run concurrently; the exact timing of each thread is not known in advance, printing from multiple threads can cause random-looking output orders.

(b) Why execution times may be larger for larger N_t

Thread management overhead increases with more threads.

(c) How to modify the code to obtain speedup > 1 for all N_t

By choosing values of N_t which lie between 16 and 64?

(d) Type of parallelism in omp_hello2.c

Data parallelism

(e) Modify code to avoid if (tid == 0) while keeping master print

```
#pragma omp parallel
{
   int tid = omp_get_thread_num();
   #pragma omp master
   {
      printf("Hello from the master thread!\n");
   }
```

answers.md 2025-10-11

```
printf("Hello from thread %d\n", tid);
}
```