Promptly - Model Development Report

1. Overview

This report documents the model development process for *Promptly*, an Al-powered document-based Q&A system. The model development focuses on loading preprocessed embeddings from the data pipeline, preparing for model training, fine-tuning large language models (LLMs), model validation, sensitivity analysis, bias detection, and pipeline automation for continuous improvement.

2. Model Development Process

2.1 Loading Data from the Data Pipeline

Our data pipeline automates the ingestion, processing, and storage of documents. This involves the following steps:

Ingestion: We use Airflow DAGs to trigger the document ingestion process.

PII Detection and Redaction: Sensitive information is identified and redacted using custom PII detection techniques.

Semantic Chunking and Embedding: Documents are semantically chunked using Markdown chunking methods, and embeddings are generated using the Nomic embed-text-v1.5 model.

Storage: Cleaned documents and their embeddings are stored in Supabase, which is used for both RAG and as a database.

Finetuning Data: To finetune our model for now we run a script to ingest dummy conversations and their relevant context chunks in Supabase. These conversation are then fetched to finetune our LLM model.

2.2 Model Training & Selection

We trained multiple LLM models like Qwen/Qwen2.5-0.5B-Instruct, Llama 3.1 8B but we chose Qwen/Qwen2.5-0.5B-Instruct to balance the accuracy and managing resource constraint.

- **Embeddings**: Generated with nomic-embed-text-v1.5.
- Training: Conducted using Leave-One-Out Cross-Validation due to limited dataset size.
- Model Selection: The best model was chosen based on accuracy and stability across validation runs.
- Model Upload: After finetuning the best model is uploaded to huggingface.

2.3 Model Validation

Validation metrics included:

- ROUGE Metrics (ROUGE-1, ROUGE-2, ROUGE-L): Used to evaluate the quality of model-generated responses by comparing them against ground truth outputs. This helps quantify improvements in content overlap and linguistic accuracy.
- Baseline vs. Fine-Tuned Model Comparison: We evaluate the fine-tuned model's performance relative to the pre-trained model to assess the impact of fine-tuning.
- Quantitative and Qualitative Analysis:
 - Quantitative: ROUGE scores for each test sample and their averages are recorded for performance benchmarking.
 - Qualitative: Sample outputs (query, ground truth, model responses) are collected for manual inspection of model behavior.
- Model Checkpoint Evaluation: We use the best-performing model checkpoint for validation to ensure optimal performance.
- **Reproducibility:** We ensure consistent evaluation through controlled decoding parameters and comprehensive logging with Weights & Biases (wandb) and MLflow.

2.4 Bias Detection

We implemented bias detection by measuring user dominance in the training data.

- Method: Aggregating chunk contributions by upload_user_id using Supabase join queries.
- Threshold: If any single user contributes more than 50% of document chunks, retraining is blocked.

• **Implementation:** Integrated into Airflow retraining DAG using a branch operator. Future plans include slicing-based bias detection by document category.

2.5 CI/CD Pipeline Integration

Our model development is automated using Airflow and containerized processes:

- Data Pipeline DAGs: Handle document ingestion, PII redaction, and chunk embedding.
- Model Pipeline DAGs: Automate fine-tuning, evaluation, and model registry updates.
- **GitHub Actions:** Trigger fine-tuning jobs, deploy docker images to the container registry, and monitor performance logs.

3. Hyperparameter Tuning

Hyperparameters tuned:

- LoRA Parameters: Tuned rank and alpha values for efficient training.
- Batch Size: Explored sizes from 4 to 32, selecting 16 for stability and speed.
- **Learning Rate:** Fine-tuned between 1e-5 and 5e-6 for optimal convergence.

Hyperparameter decisions are logged and tracked for reproducibility.

4. Experiment Tracking & Results

Used MLflow for experiment tracking

• MLFlow Tracking:

5. Model Sensitivity Analysis

- Feature Importance: Not applicable (dense embedding vectors).
- **Hyperparameter Sensitivity:** Minor fluctuations were noted when tuning our LLM models' hyperparameter like learning rate, LORA and etc.

6. Model Bias Detection (Using Slicing Techniques)

- Current implementation: User dominance bias detection via join-based analysis of document_chunks and documents in Supabase.
- Future roadmap:
 - Slice performance analysis by document categories.
 - Visual bias reports via Fairlearn and TFMA once larger datasets are available.
 - Planned bias mitigation through re-sampling and balanced synthetic data generation.

7. CI/CD Pipeline Automation for Model Development

• Orchestration: Kaggle model training integrated with the CI/CD with bias detection gating.

- **Trigger Setup:** Planned GitHub Actions integration.
- Validation & Metrics Logging: Automatic metrics computation post-training and also logs to MIFlow and Cloudwatch.
- Automated Bias Detection: Included in the branch logic.
- **Model Registry Push:** Deploying model endpoint docker image to GCP Artifact Registry.
- Rollback Mechanism: If the new model underperforms, revert to the last stable model pickle. (Work in Progress)

8. Code Implementation Summary

- Data Loading: Processed Data has been pushed to our RAG system Supabase and versioned data sources. Processed data is directly loaded from Supabase, which also handles document chunking for RAG.
- **Training & Selection:** Training and validation are managed in Jupyter notebook (training/Promptly-Finetuning), with model selection and evaluation.
- Bias Detection: bias_detection.py fully integrated with Supabase and Airflow.
- **Inference Service:** Available in the fine tuning jupyter notebook. Also, can be found in inference service (inference_service.py) using FAISS and fallback LLMs.
- **Front-end:** Streamlit app for end-user queries still work in progress but available to see in model/scripts/streamlit_ui.py
- **Containerization:** Dockerfile for the model endpoint is created and available in model_endpoint directory for reproducibility and deployment.
- Monitoring & Experimentation: Implemented MLflow for model experimentation and tracking, with logs integrated into AWS CloudWatch for monitoring. Future plans include Weights & Biases (W&B) and Prometheus integration for long-term tracking.

9. Model Fine-Tuning and Synthetic Data Generation Pipeline

9.1 Fine-Tuning Qwen2.5-0.5B-Instruct

- Base Model: Qwen/Qwen2.5-0.5B-Instruct
- **Fine-Tuning Framework:** LoRA adaptation (r=16, lora_alpha=32)
- **Dataset:** 69 conversational examples from the Supabase conversations table.
- Training Config:
 - Batch size: 1 (gradient accumulation steps = 8)
 - o Learning rate: 2e-4
 - o Epochs: 3
 - Tracked on W&B
- **Deployment:** Hosted on Hugging Face Hub: huggingface/promptly-tuned

9.2 Synthetic Data Generation Pipeline

- Workflow:
 - Ingest and redact documents
 - Semantic chunking and embedding generation
 - Generate queries and responses using LLaMA 3.2 8B
 - Store conversations in Supabase for future fine-tuning
- Technology Stack:
 - Data Pipeline: Airflow

o Storage: Supabase

o Embeddings: Nomic

o Synthetic Generation: LLaMA 3.2 8B

9.3 Fine-Tuning Results

Example ID	Baseline ROUGE-L	Fine-Tuned ROUGE-L
0	0.5244	0.5029
1	0.8397	0.8730
2	0.7629	0.7957
3	0.4828	0.7955
4	0.7143	0.8434
5	0.5656	0.8681
6	0.2342	0.3700
7	0.8163	0.9023
Average	0.6175	0.7438

9.4 Future Improvements

- Expand the dataset with real user queries
- Add multi-modal document support
- Improve conversational diversity in synthetic data

10. Conclusion

The Promptly project has successfully established a robust end-to-end model pipeline integrating data ingestion, embeddings, classification, fine-tuning, and inference. Bias detection,

model selection, and planned CI/CD automation ensure sustainable model development. Future improvements will focus on scaling, enhancing fairness detection, and automating deployment with GCP services.