21-128 and 15-151 problem sheet 9

Solutions to the following exercises and optional bonus problem are to be submitted through Gradescope.

Problem 1

By counting in two ways, prove that $n^2 = 2\binom{n}{2} + n$ for all $n \ge 0$.

Solution.

Fix $n \ge 0$ and let $X = [n] \times [n]$. We count the number of elements of X by counting in two ways.

- **Procedure 1.** An element of X is an ordered pair (a, b), where $a \in [n]$ and $b \in [n]$. If we first pick a, and then pick b, there are n choices for each, and hence n^2 choices in total by the Multiplication Principle (since we have a multi-step process). Thus $|X| = n^2$.
- Procedure 2. Let

$$D = \{(x,x): x \in [n]\} \subseteq X \quad \text{and} \quad A = \{(x,y): x,y \in [n] \text{ and } x \neq y\}$$

If $(x,y) \in X$ then either x=y, in which case $(x,y) \in D$ or $x \neq y$, in which case $(x,y) \in A$. Moreover, if $(x,y) \in D \cap A$ then x=y since $(x,y) \in D$, and $x \neq y$ since $(x,y) \in A$ —this is a contradiction, so $D \cap A = \emptyset$. Hence $X = D \cup A$ is a partition of X.

Now, |D| = n since we can specify a pair $(x, x) \in D$ by choosing $x \in [n]$. Moreover, $|A| = 2\binom{n}{2}$ by the Multiplication Principle (because we have a multi-step process), since we can specify an element $(x, y) \in A$ by first choosing which two (distinct) elements of [n] will appear in the pair $\binom{n}{2}$ choices), and then choosing which order they appear in (2! = 2 choices).

Hence
$$|X| = |A| + |D| = 2\binom{n}{2} + n$$
.

It follows that $n^2 = 2\binom{n}{2} + n$ by the Addition Principle.

Problem 2

By counting in two ways, prove that

$$\binom{n}{j}\binom{n}{k} = \sum_{i=0}^{\min(j,k)} \binom{n}{i} \binom{n-i}{j-i} \binom{n-j}{k-i}$$

for all $n, j, k \in \mathbb{N}, j, k \leq n$.

Solution. Let $X = \{(A, B) \mid A, B \subseteq [n], |A| = j, |B| = k\}$. Any $(A, B) \in X$ can be chosen uniquely by first choosing j elements of [n] to be in A (there are $\binom{n}{j}$ ways to do this) and then choosing k elements of [n] to be in B (there are $\binom{n}{k}$ ways to do this). Since we have a multi-step process, $|X| = \binom{n}{i} \binom{n}{k}$ by the Multiplication Principle.

Another way to uniquely choose $(A,B) \in X$ is to choose $A \cap B$, $A \setminus B$, and $B \setminus A$ (ensuring that the sets are all pairwise disjoint), and then $A = (A \cap B) \sqcup (A \setminus B)$ and $B = (A \cap B) \sqcup (B \setminus A)$. We know $A \cap B$ and $A \setminus B$ are disjoint because $x \in A \cap B \implies x \in B$ but $x \in A \setminus B \implies x \notin B$. Thus, there is a unique way to partition any $A \subseteq [n]$ into the elements of A that are in B and those that are not in B and the cases are exhaustive. The same argument holds for partitioning B. In addition, $A \setminus B$ and $B \setminus A$ are disjoint because $x \in A \setminus B \implies x \in A$ and $B \setminus A \implies x \notin A$. Therefore, choosing $A \cap B$, $A \setminus B$, and $B \setminus A$ results in a unique choice of (A, B).

We now partition on the cardinality of $A \cap B$. It must be that $|A \cap B| \leq \min(j, k)$. AFSOC $|A \cap B| > \min(j, k)$ and WLOG let $\min(j, k) = j$. Then since $A \cap B \subseteq A$, $|A| \geq |A \cap B| > j$, contradiction. We have shown that our partition is exhaustive, and it is mutually exclusive because the size of $A \cap B$ is unique. Then we can let X_i be the set of all $(A, B) \in X$ such that $|A \cap B| = i$.

All $(A, B) \in X_i$ can be chosen uniquely by the following multi-step process. First, we choose i elements of [n] to be in $A \cap B$; there are $\binom{n}{i}$ ways to do this. Next, we have to pick j-i elements to be in $A \setminus B$, because then, by the Addition Principle, we can get that $|A| = |A \cap B| + |A \setminus B| = i + (j-i) = j$. These elements cannot be in $A \cap B$, so we have n-i options to choose from. Thus there are $\binom{n-i}{j-i}$ ways to pick $A \setminus B$. Lastly, we pick k-i elements to be in $B \setminus A$, because by the Addition Principle, we can get that $|B| = |A \cap B| + |B \setminus A| = i + (k-i) = k$. We need to exclude the elements that have been chosen to be in A (which will exclude the elements in $A \cap B$ as well), so there are n-j elements to pick from, so there are $\binom{n-j}{k-i}$ ways to choose $B \setminus A$. By the Multiplication Principle, $|X_i| = \binom{n}{i} \binom{n-i}{j-i} \binom{n-j}{k-i}$.

Therefore, $|X| = \sum_{i=0}^{\min(j,k)} \binom{n}{i} \binom{n-i}{j-i} \binom{n-j}{k-i}$ by the Addition Principle, and it follows that the claim is true.

Problem 3

By counting in two ways, prove that $\sum_{i=1}^{n} (i-1)(n-i) = \binom{n}{3}$ for all $n \ge 1$.

Solution. There are $\binom{n}{3}$ subsets of [n] with 3 elements. Note that any such subset can be written uniquely as $\{a,b,c\}$, where a < b < c. Since $\{a,b,c\} \subseteq [n]$ we must have $1 \le b \le n$, so that the set of subsets of [n] of size 3 is partitioned by the sets X_1, X_2, \ldots, X_n , where for each $1 \le i \le n$, X_i is the set of 3-element subsets of [n] whose middle element is i.

Hence $\binom{n}{3} = \sum_{i=1}^{n} |X_i|$ by the Addition Principle.

Fix $i \in [n]$. A set $S \in X_i$ can be written uniquely as $\{a, i, b\}$, where $1 \le a \le i-1$ and $i+1 \le b \le n$. Thus a procedure for choosing such a subset is first to pick a (i-1 choices) and then to pick b (n-i choices). Hence $|X_i| = (i-1)(n-i)$ by the Multiplication Principle (since we have a multi-step process).

It follows that $\binom{n}{3} = \sum_{i=1}^{n} (i-1)(n-i)$.

Problem 4

Let x, y, z be nonnegative real numbers such that $y + z \ge 2$. Prove that

$$(x+y+z)^2 \ge 4x + 4yz$$

Solution. Let's make this look a bit more suggestive. Dividing through by 4 yields the equivalent inequality

$$\left(\frac{x+y+z}{2}\right)^2 \ge x + yz$$

Since $y+z \ge 2$ we must have $y \ge 1$ or $z \ge 1$. To see this, suppose y < 1 and z < 1; then y+z < 2, contradicting the assumption that $y+z \ge 2$.

Suppose $z \ge 1$. (If $y \ge 1$, swap the roles of y and z.) The AGM inequality yields

$$\left(\frac{x+y+z}{2}\right)^2 = \left(\frac{(x+y)+z}{2}\right)^2 \ge (x+y)z$$

We know that $z \ge 1$. Since $x \ge 0$, we have $xz \ge x$. Thus

$$\left(\frac{x+y+z}{2}\right)^2 = (x+y)z = xz + yz \ge x + yz$$

Multiplying through by 4 yields the desired inequality:

$$(x+y+z)^2 \ge 4x + 4yz$$

Problem 5

Consider the following system of equations of real numbers:

$$\begin{cases} 3w + 2x + y + z = 14 \\ w^2 + x^2 + y^2 + z^2 = 14 \end{cases}$$

What is the maximum possible value of z?

Solution. Using Cauchy-Schwarz:

$$(3w + 2x + y)^{2} \le (w^{2} + x^{2} + y^{2})(3^{2} + 2^{2} + 1^{2})$$

$$\implies (14 - z)^{2} \le (14 - z^{2}) \cdot 14$$

$$\implies 196 - 28z + z^{2} \le 196 - 14z^{2}$$

$$\implies 15z^{2} - 28z \le 0$$

$$\implies z(15z - 28) < 0$$

If $z > \frac{28}{15}$, both parts of the product will be positive. This tells us that $z \leq \frac{28}{15}$.

Now we need to prove that there indeed exists a solution where $z=\frac{28}{15}$. Equality for Cauchy-Schwarz holds when $\frac{w}{3}=\frac{x}{2}=y=k$, or when w=9k, x=4k, y=k. So we need

$$\begin{cases} 14k^2 + (\frac{28}{15})^2 = 14\\ 14k + (\frac{28}{15}) = 14 \end{cases}$$

$$14k = 14 - \frac{28}{15} \implies 14k^2 = k(14 - \frac{28}{15}) = 14 - (\frac{28}{15})^2 \implies k = \frac{14 - (\frac{28}{15})^2}{14 - \frac{28}{15}} = \frac{13}{15}$$

 $k = \frac{13}{15}$ is a solution, so we've proven that the maximum possible value of z is $\frac{28}{15}$.

Problem 6

The standard way to define ordered fields is to start with a strict order on \mathbb{F} and then axiomatize the properties that make it compatible with arithmetic:

$$(O1)$$
 $x < y \implies x + z < y + z$

$$(O2)$$
 $0 < x, y \implies 0 < x * y$

Alternatively, we can introduce positive sets $P \subseteq \mathbb{F}$ and use them to define order:

- $(P1) x, y \in P \implies x + y \in P$
- (P2) $x, y \in P \implies x * y \in P$
- $(P3) x \in P \lor x = 0 \lor -x \in P$

In (P3), exactly one of the cases is supposed to hold. Given < we can define $P_{<} = \{x \in \mathbb{F} \mid 0 < x\}$ and, conversely, $x <_P y \iff y - x \in P$.

- (a) Show that $P_{<}$ is a positive set in any ordered field.
- (b) Show that for any positive set P, the order $<_P$ produces an ordered field.

Solution.

- (a) Let $P = P_{<}$.
- (P1) Let $x, y \in P$. Then 0 < x, y so by (O1) y < x + y and by transitivity 0 < x + y.
- (P2) Entirely similar, but use (O2).
- (P3) (O1) plus trichotomy of < produces trichotomy for P.
- (b) Let $\leq = \leq_P$.

Clearly < is irreflexive and asymmetric. Transitivity follows from (P1) and trichotomy for P.

- (O1) Let x < y so that $y x \in P$. Hence, by (P1), $(y + z) (x + z) \in P$ and thus x + z < y + z.
- (O2) Suppose 0 < x, y whence $x, y \in P$. By (P2), $x * y \in P$ and thus 0 < x * y.

Bonus

Show by counting in two ways that:

$$2^{(n^2)} = \sum_{i=0}^{n} \binom{n}{i} (2^n - 1)^i$$

Solution. Let S be the set of $n \times n$ matrices made up of only zeros and ones.

LHS: We define an n^2 step process.

- 1) Choose 0 or 1 for position (0,0): 2 choices
- 2) Choose 0 or 1 for position (0,1): 2 choices

. . .

 n^2) Choose 0 or 1 for position (n, n): 2 choices

We have a valid k step process, so by MP, there are $2^{(n^2)}$ different possibilities.

RHS: We next partition our set based on the number of rows that are not all 0. The partition is disjoint because for any matrix, there is a unique number of non-all 0 rows, and it is exhaustive because there is some number of rows between 0 and n that are not all 0.

We now have that this is a valid partition, so by AP, we know that

$$|S| = \sum_{i=0}^{n} |S_i|$$

where S_i is the number of matrices with i all zero rows.

Next we count S_i .

First, I define a process for picking values for a single row such that not all entries are 0. I do so by complementary counting. First, I pick 0 or 1 for position 1, then position 2, up until position n. By MP, there are 2^n options. Exactly 1 of them (all zeros) is not allowed, so the overall number of ways to pick values in a row such that they are not all 0 is $2^n - 1$.

Now that I know this quantity, I can count the number of matrices with i all zero rows:

- 1) Choose the *i* non-all zero rows: $\binom{n}{i}$ choices
- 2) Choose the 0s and 1's for the first non-all zero row: $(2^n 1)$ choices

i+1) Choose the 0s and 1's for last non-all zero row: (2^n-1) choices

This is a valid k step process, so by MP, $|S_i| = \binom{n}{i}(2^n - 1)^i$. This yields a final count of:

$$\sum_{i=0}^{n} \binom{n}{i} (2^n - 1)^i$$

.