Pós-Graduação Engenharia de Software

Modelagem de Dados

Modelo de Dados Relacional

Objetivo

 Estudar os conceitos envolvidos no modelo Relacional e aprender a derivar o esquema lógico de um banco de dados relacional a partir do modelo conceitual (DER).

Principais tópicos

- Introdução ao Modelo Relacional
- Notação Relacional
- Atributos-chaves de uma Relação
- Esquema de um BD Relacional
- Restrições de integridade
 - Restrição de Integridade Referencial
- Mapeamento do DER / MDR
- Questões

- O Modelo Relacional (MR) é um modelo de dados lógico utilizado para desenvolver projetos lógicos de bancos de dados.
- Os SGBDs que utilizam o MR são denominados SGBD Relacionais.
- O MR representa os dados do BD como relações.
 - A palavra relação é utilizada no sentido de lista ou rol de informações e não no sentido de associação ou relacionamento.

- Cada relação pode ser entendida como uma tabela ou um simples arquivo de registros.
- Uma relação DEPENDENTE, com seus atributos e valores de atributos.

		Atributo					
	CódigoCliente	Nome	TipoRelação	Sexo	DataNasc		
	0001	Maria	Esposa	F	01/01/1970		
	0001	Vítor	Filho	М	02/02/2002		
*	0001	Ana	Filha	F	03/03/2003		
	1000	João	Filho	М	02/02/2002		
Tupla	1000	Vítor	Filho	M	02/02/2002		
-	1000	Vítor	Marido	М	02/02/1971		
	9876	Sônia	Esposa	F	01/01/1970		
Valor							

- Os valores de atributos são indivisíveis, ou seja, atômicos.
- O conjunto de atributos de uma relação é chamado de relação esquema.
- Cada atributo possui um domínio.
- O grau de uma relação é o número de atributos da relação.

- **DEPENDENTE** (CódigoCliente, Nome, TipoRelação, Sexo, DataNasc)
 - É a relação esquema.
 - DEPEDENTE é o nome da relação.
 - O Grau da Relação é 5.
 - Os **Domínios** dos Atributos são:
 - dom(CódigoCliente) = 4 dígitos que representam o Código do Cliente.
 - dom(Nome) = Caracteres que representam nomes dos dependentes.
 - dom(TipoRelação) = Tipo da Relação (filho, esposa, pai, mãe e outras)
 do dependente em relação do seu cliente .
 - dom(Sexo) = Caractere: (M: Masculino, F: Feminino) do dependente.
 - dom(DataNasc) = Datas de Nascimento do dependente.

Notação Relacional

- A relação esquema R de grau n:
 - $R(A_1, A_2, ..., A_n).$
- A tupla t em uma relação r(R) :

$$- t = \langle v_1, v_2, ..., v_n \rangle,$$

v_i é o valor do atributos A_i.

- t[A_i] indica o valor v_i em t para o atributo A_i.
- t[A_u, A_w, ..., A_z] indica o conjunto de valores
 <v_u, v_w, ..., v_z> de t correspondentes aos atributos A_u, A_w, ..., A_z de R.

Exemplo

A figura apresenta a Relação DEPENDENTE:

- -t = <0001, Ana, Filha, F, 03/03/2003> é uma tupla
- t[CódigoCliente] = 0001
- t[Nome, Sexo] = <Ana, F>

Atributos-chaves de uma Relação

Superchave:

- Subconjunto de atributos de uma relação cujos valores são distintos:
- t1[SC] \neq t2[SC]

Chave:

É uma Superchave mínima

Chave-Candidata:

Chaves de uma relação

Chave-Primária:

 Uma das Chaves escolhidas entre as Chaves-Candidatas de uma relação.

Atributos-chaves de uma Relação

Exemplos de Superchaves da relação Empregado

```
EMPREGADO( Nome, Uf, Rg, Código, Cpf, Endereço, Salário )
```

- SCa = { Nome, Uf, Rg, Código, Cpf, Endereço, Salário } (superchave trivial)
- SCb = { Nome, Uf, Rg, Código, Cpf, Endereço }
- SCc = { Nome, Uf, Rg, Código, Cpf }
- SCd = { Nome, Uf, Rg, Código }
- SCe = { Nome, Uf, Rg }
- SCf = { Uf, Rg } (superchave mínima)

Atributos-chaves de uma Relação

- SCf = { Uf, Rg } é uma superchave mínima:
 - Pois não é possível retirar de SCf nenhum de seus atributos e o subconjunto resultante continuar com a propriedade de ser superchave.
- Assim, SCf, além de ser superchave, é uma chave da relação esquema DEPENDENTE.

Atributos-chaves de uma Relação

- Uma relação esquema pode possuir mais de uma chave.
- Nestes casos, tais chaves são chamadas de <u>chaves-</u> <u>candidatas</u>.
- O esquema da relação EMPREGADO possui três chaves-candidatas:

EMPREGADO(Nome, Uf, Rg, Código, Cpf, Endereço, Salário)

```
– CC1 = { Uf, Rg } (Superchave mínima, Chave e Chave-Candidata)
```

```
– CC2 = { Código } (Superchave mínima, Chave e Chave-Candidata)
```

Atributos-chaves de uma Relação

- As chaves-candidatas são candidatas à <u>chave-</u> <u>primária</u>.
- A chave-primária é a escolhida, dentre as chavescandidatas, para identificar de forma única, tuplas de uma relação.
- A chave-primária é indicada na relação esquema sublinhando-se os seus atributos.
 - EMPREGADO(Nome, Código, Rg, Cpf, Endereço, Salário)

Esquema de um BD Relacional

- O esquema de um BD relacional é o conjunto de todos os esquemas de relações.
- Esquema do BD relacional do Sistema Companhia:

Restrições de integridade

- Restrição de Integridade são regras que restringem os valores que podem ser armazenados nas relações.
- Um SGBD relacional deve garantir:
 - Restrição de Chave: os valores das chaves-candidatas devem ser únicos em todas as tuplas de uma relação.
 - Restrição de Entidade: chaves-primárias não podem ter valores nulos.
 - Restrição de Integridade Referencial: Usada para manter a consistência entre tuplas. Estabelece que um valor de atributo, que faz referência a uma outra tupla, deve-se referir a uma tupla existente.

Restrição de Integridade Referencial

EMPREGADO

PNOME	NSS	ENDEREÇO	
Joaquim	305	R. X, 123	
Katarina	381	Av. K, 43	
Daví	422	R. D, 12	
Carlos	489	R. H, 9	
Bárbara	533	R. II, 55	

TELEFONE

NSS	<u>NÚMERO</u>
305	555-444
381	555-333
489	555-376
533	555-101
381	555-101
489	555-222
489	555-376

Valores da Chave-Estrangeira

Mapeamento do DER / MDR

- É comum, em projetos lógicos de BD, realizar a modelagem dos dados através de um modelo de dados de alto-nível
- O produto desse processo é o esquema do BD
- O modelo de dados de alto-nível normalmente adotado é o MER e o esquema do BD é especificado em MR

O DER do Sistema Companhia

DER / MDR - Passo 1

Passo 1:

- Para cada tipo de entidade normal E no DER, crie uma relação R que inclua todos os atributos simples de E.
- Inclua também os atributos simples dos atributos compostos.
- Escolha um dos atributos-chave de E como a chaveprimária de R.
- Se a chave escolhida é composta, então o conjunto de atributos simples que o compõem formarão a chaveprimária de R.

Esquema do BD Companhia

PROJETO PNOME | PNÚMERO | PLOCALIZAÇÃO |

DER / MDR - Passo 2

Passo 2:

- Para cada tipo de entidade fraca W do DER com o tipo de relacionamento de identificação E, crie uma relação R e inclua todos os atributos simples (ou os atributos simples de atributos compostos) de W como atributos de R.
- Além disso, inclua como a chave-estrangeira de R a chave-primária da relação que corresponde ao tipo de entidade proprietário da identificação.
- A chave-primária de R é a combinação da chave-primária do tipo de entidade proprietário da identificação e a chave-parcial do tipo de entidade fraca W.

Esquema do BD Companhia

PROJETO
| PNOME | | PNÚMERO | | PLOCALIZAÇÃO |

DEPENDENTE

NSSEMP | NOMEDEPENDENTE | SEXO | DATANIV | RELAÇÃO |

CE

DER / MDR - Passo 3

Passo 3:

- Para cada tipo de relacionamento binário 1:1, R, do DER, identifique as relações S e T que correspondem aos tipos de entidade que participam de R.
- Escolha uma das relações, por exemplo S, e inclua como chaveestrangeira de S a chave-primária de T.
 - É melhor escolher o tipo de entidade com participação total em R como sendo a relação S.
- Inclua todos os atributos simples (ou os atributos simples de atributos compostos) do tipo de relacionamento 1:1, R, como atributos de S.

Esquema do BD Companhia

PROJETO
| PNOME | | PNÚMERO | | PLOCALIZAÇÃO |

DEPENDENTE

NSSEMP | NOMEDEPENDENTE | SEXO | DATANIV | RELAÇÃO |

CE

DER / MDR - Passo 4

Passo 4:

- Para cada tipo de relacionamento binário regular 1:N (não fraca), R, identificar a relação S que representa o tipo de entidade que participa do lado N de R.
- Inclua como chave-estrangeira de S a chave-primária de T que representa o outro tipo de entidade que participa em R; isto porque cada entidade do lado 1 está relacionada a mais de uma entidade no lado N.
- Inclua também quaisquer atributos simples (ou atributos simples de atributos compostos) do tipo de relacionamento 1:N, como atributos de S.

Esquema do BD Companhia

DEPENDENTE

NSSEMP | NOMEDEPENDENTE | SEXO | DATANIV | RELAÇÃO |

CE

DER / MDR - Passo 5

Passo 5:

- Para cada tipo de relacionamento binário M:N, R, crie uma nova relação S para representar R.
- Inclua como chave-estrangeira de S as chaves-primárias das relações que representam os tipos de entidade participantes; sua combinação irá formar a chave-primária de S.
- Inclua também qualquer atributo simples do tipo de relacionamento M:N (ou atributos simples dos atributos compostos) como atributos de S.
 - Note que não se pode representar um tipo de relacionamento M:N como uma simples chave-estrangeira em uma das relações participantes - como foi feito para os tipos de relacionamentos 1:1 e 1:N. Isso ocorre porque o MR não permite a representação de atributos multivalorados.

Esquema do BD Companhia

DER / MDR - Passo 6

Passo 6:

- Para cada atributo A multivalorado, crie uma nova relação R que inclua o atributo A e a chave-primária, K, da relação que representa o tipo de entidade ou o tipo de relacionamento que tem A como atributo.
- A chave-primária de R é a combinação de A e K.
- Se o atributo multivalorado é composto inclua os atributos simples que o compõem.

Esquema do BD Companhia

DER / MDR - Passo 7

Passo 7:

- Para cada tipo de relacionamento n-ário, R, n>2, crie uma nova relação S para representar R.
- Inclua como chave-estrangeira em S as chaves-primárias das relações que representam os tipos de entidades participantes.
- Inclua também qualquer atributo simples do tipo de relacionamento nário (ou atributos simples dos atributos compostos) como atributo de S.
- A chave-primária de S é normalmente a combinação de todas as chaves-estrangeiras que referenciam as relações que representam os tipos de entidades participantes.
 - Porém, se a restrição estrutural (min, max) de um dos tipos de entidades E que participa em R, tiver max=1, então a chaveprimária de, S, pode ser a chave-estrangeira que referencia a relação E; isto porque cada entidade e em E irá participar em apenas uma instância em R e, portanto, pode identificar univocamente esta instância de relacionamento.

DER / MDR - Passo 7-Resultado

Questões

 Dado o DER de uma locadora de vídeo (próximo slide), obtenha o esquema do BD Relacional utilizando os passos de mapeamento do DER / MDR

Modelo de Dados Relacional

Referências Bibliográficas

- 1. Batini, C.; Ceri, S.; Navathe, S. Conceptual Database Design: An Entity-Relationship Approach. Benjamin/Cummings, Redwood City, Calif., 1992.
- 2. Date, C.J., Introdução a Sistemas de Banco de Dados, tradução da 8 edição americana, Campus, 2004.
- 3. Elmasri, R.; Navathe, S.B. Fundamentals of Database Systems, 4th ed. Addison-Wesley, Reading, Mass., 2003.
- 4. Ferreira, J.E.; Finger, M., Controle de concorrência e distribuição de dados: a teoria clássica, suas limitações e extensões modernas, Coleção de textos especialmente preparada para a Escola de Computação, 12a, São Paulo, 2000.

Modelo de Dados Relacional

Referências Bibliográficas

- Heuser, C.A., Projeto de Banco de Dados., Sagra Luzzatto, 1 edição, 1998.
- 6. Korth, H.; Silberschatz, A. Sistemas de Bancos de Dados. 3a. Edição, Makron Books, 1998.
- 7. Ramakrishnan, R.; Gehrke, J., Database Management Systems, 2 nd ed., McGraw-Hill, 2000.
- 8. Teorey, T.; Lightstone, S.; Nadeau, T. Projeto e modelagem de bancos de dados. Editora Campus, 2007.

Referências Web

 Takai, O.K; Italiano, I.C.; Ferreira, J.E. Introdução a Banco de Dados. Apostila disponível no site: http://www.ime.usp.br/~jef/apostila.pdf. (07/07/2005).

Pós-Graduação Engenharia de Software

Obrigado!

