

MULTIPITCH ESTIMATION USING A PCLA-BASED MODEL: IMPACT OF PARTIAL USER ANNOTATION

Camila de Andrade Scatolini, Gaël Richard, Benoit Fuentes

Institut Mines-Télécom, Télécom ParisTech, CNRS LTCI

40th IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, April 2015

1. Introduction

- Context: Multipitch estimation in musical recordings based on a probabilistic framework (PLCA).
- Applications: Main melody extraction, cover song identification, music transcription, etc.
- Objective: Can we improve the transcription performance if a user partially annotates the musical recording? How can we better take into account the user inputs?

2. The BHAD Model [1]

The absolute value of the normalised constant-Q transform (CQT) of a signal is modeled as a probability distribution P(f,t).

Main characteristics:

- Better model for real signals: fundamental frequency and spectral envelope variations across note repetitions
- Entirely unsupervised
- Decomposes the signal as the sum of a polyphonic harmonic and a noise signal

Polyphonic harmonic signal:

- All possible pitches considered, with possibly zero weights
- All parameters estimated with the EM algorithm

Spectral envelopes:

- Well initialised parameters
- Slower convergence rate by using a "brake"
- The "brake" influences the direction in which the algorithm goes

Use of priors:

- Resemblance prior applied to the spectral envelopes for each pitch
- Sparsness prior applied to the time-frequency activations

3. Note initialisation

Annotated notes: For each note, the average of all occurrences of this given note.

Non-annotated notes: Three strategies proposed: keep the original slope initialisation, copy previous notes templates or interpolate neighbour notes' templates.

Schematic representation of the copy strategy.

Schematic representation of the interpolate strategy.

4. Convergence rate

Goal: exploit the user input by controlling the convergence rate of the spectral envelopes when compared to other parameters of the model which are less well initialised.

Idea: convergence rate coefficient $\beta_{brake}(n)$ depends on the notes n:

$$\beta_{brake}(n) = \begin{cases}
\beta_1, & \text{if } i_n \in \text{learning base} \\
\beta_0, & else
\end{cases}, \beta_1 > \beta_0$$

5. Results

Options	Unsup.	Semi-Guided		
		Slope	Copy	Interp.
NO	67.68	68.38	65.00	43.68
S	73.91	75.07	71.44	52.07
R	66.46	68.28	64.13	47.05
RS	69.51	72.30	67.60	52.35
В	77.85	78.63	75.88	50.90
SB	74.64	76.54	72.47	45.68
RB	77.39	79.49	73.89	50.79
RSB	74.85	77.02	70.52	47.00

Mean F-Measure for the semi-guided and unsupervised approaches, considering the different initialisations of the non-annotated notes.

	No brake	Brake annotated notes			
	$\beta_{0,1}=0$	$\beta_1 = 0.1$	$\beta_1 = 1$	$\beta_1 = 10$	
В	68,38	68,25	66,43	62,93	
SB	75,07	74,84	74,29	72,74	
RB	68,28	68,53	69,20	69,16	
RSB	72,30	72,35	72,53	72,66	

	Even	Brake all notes		
	$\beta_{0,1} = 10$	$\beta_1 = 10.1$	$\beta_1 = 11$	$\beta_1 = 20$
В	78,63	78,63	78,66	78,66
SB	76,54	76,54	76,55	76,55
RB	79,49	79,49	79,51	79,61
RSB	77,02	77,02	77,03	76,98

Mean F-Measure considering the different strategies for controlling the convergence rate of the annotated notes and the different options of the BHAD algorithm (priors).

Results for the non-annotated notes (symbols) and the unsupervised approach without and with brake coefficients ($\beta_1 = 20$ and $\beta_0 = 10$).

6. Conclusions

Contributions:

- Substantial gain in performance by using a learning step
- Better initialisation of the model parameters

Future work:

- Alternative strategies for the user annotation
- Involve the user in a more interative way

References:

[1] B.Fuentes, R. Badeau & G. Richard, "Blind harmonic adptive decomposition applied to supervised source separation", EUSIPCO 2012