

## Funciones discriminantes

Jorge Civera Alfons Juan Albert Sanchis

Departamento de Sistemas Informáticos y Computación

### **Objetivos formativos**

- Aplicar funciones discriminantes
- Calcular la frontera de decisión entre dos clases
- Identificar el tipo de frontera de decisión
- Calcular las regiones de decisión de un clasificador
- Obtener e identificar clasificadores equivalentes



# Índice

| 1 | Introducción                | 3  |
|---|-----------------------------|----|
| 2 | Clasificadores lineales     | 5  |
| 3 | Fronteras de decisión       | 6  |
| 4 | Regiones de decisión        | 8  |
| 5 | Clasificadores equivalentes | 9  |
| 6 | Conclusiones                | 10 |



#### 1. Introducción

Un *clasificador* es una función definida como:

$$c(x) = \underset{c}{\operatorname{arg\,max}} \ g_c(x)$$

donde para cada clase c se define su función discriminante  $g_c$ .

El grado de pertenencia del objeto x a la clase c es  $g_c(x)$ .

c(x) es la clase a la que el objeto x pertenece en mayor grado.



#### Introducción

**Ejemplo:** Un clasificador en 3 clases para  $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$ :

$$x_1$$
 $x_2$ 
 $g_1(x)$ 
 $g_2(x)$ 
 $g_3(x)$ 
 $c(x)$ 

 0
 0
 1.0
 0.0
 0.0
 1

 0
 1
  $\frac{1}{3}$ 
 $\frac{1}{3}$ 
 $\frac{1}{3}$ 
 1

 1
 0
 0.25
 0.5
 0.25
 2

 1
 1
 0.01
 0.01
 0.98
 3

El clasificador de Bayes se obtiene como  $g_c(x) = p(c \mid x)$ :

$$c(x) = \underset{c}{\arg\max} \ p(c \mid x)$$



. . . .

#### 2. Clasificadores lineales

Un *clasificador lineal* se define en términos de f.d. lineales:

$$g_c(\boldsymbol{x}) = \sum_d w_{cd} x_d + w_{c0} = \boldsymbol{w}_c^t \boldsymbol{x} + w_{c0}$$

donde  $w_c$  es el vector de pesos de la clase c y  $w_{c0}$ , el peso umbral.

**Ejemplo:** Clasificador lineal en 2 clases para x unidimensional





#### 3. Fronteras de decisión

La *frontera de decisión* entre dos clases i, j es el lugar geométrico de los puntos  $\mathbf{x} \in E$  donde se cumple:

$$g_i(\mathbf{x}) = g_j(\mathbf{x}) \qquad i \neq j, \quad 1 \leq i, j \leq C$$



$$g_1(x) = g_2(x) \to 4x - 4 = 12x - 36 \to x = \frac{32}{8} = 4$$



\_ . . . .

#### Fronteras de decisión

La *frontera de decisión* entre dos clases i, j con  $\mathbf{x} \in E$  es:

- Un punto, si  $E \equiv \mathbb{R}$
- Una línea (ej. *rectas*), si  $E \equiv \mathbb{R}^2$
- Una superficie (ej. *planos*), si  $E \equiv \mathbb{R}^3$

En general son hipersuperficies definidas por las ecuaciones:

$$g_i(\mathbf{x}) - g_j(\mathbf{x}) = 0$$
  $i \neq j, 1 \leq i, j \leq C$ 



## 4. Regiones de decisión

Un clasificador en C clases divide el espacio de representación de x en C regiones de decisión,  $R_1, \ldots, R_C$ :

$$R_j = \{ \mathbf{x} \in E : g_j(\mathbf{x}) > g_i(\mathbf{x}) \mid i \neq j, \ 1 \leq i \leq C \}$$





\_ . . . .

## 5. Clasificadores equivalentes

Dos *clasificadores*  $(g_1, \ldots, g_C)$  y  $(g'_1, \ldots, g'_C)$  son *equivalentes* si definen las mismas fronteras y regiones de decisión, es decir:

$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \Leftrightarrow g_i'(\mathbf{x}) > g_j'(\mathbf{x}) \qquad \forall j \neq i, \ \forall \mathbf{x} \in E$$

¿Cómo obtener clasificadores equivalentes?

$$g'_i(\mathbf{x}) = a \cdot g_i(\mathbf{x}) + b$$
 con  $a > 0$   $1 \le i \le C$   $g'_i(\mathbf{x}) = \ln g_i(\mathbf{x})$  con  $g_i(\mathbf{x}) > 0$   $1 \le i \le C$ 

Dado  $(g_1, g_2)$  de la traspa anterior, un clasificador equivalente sería:

$$g_1'(x) = x - 1$$
 y  $g_2'(x) = 3x - 9 \rightarrow x = \frac{8}{2} = 4$ 

donde 
$$a = \frac{1}{4}$$
 y  $b = 0$ .



### 6. Conclusiones

#### Hemos visto:

- La aplicación de funciones discriminantes
- El cálculo de sus fronteras y regiones de decisión asociadas
- La obtención de clasificadores equivalentes

