

CSE 4205 Digital Logic Design

Sequential Circuit Model

Course Teacher: Md. Hamjajul Ashmafee

Lecturer, CSE, IUT

Email: ashmafee@iut-dhaka.edu

Sequential Circuit Model

- The present state of the circuit is stored in the memory element
 - This memory element can be any device to store enough information to specify the state of the circuit
- There are two logic circuits in the SC model:
 - Next state decoder:
 - Output decoder:

Sequential Circuit Model: Block Diagram

3

Classification of SC

- Generally 5 different classes:
 - Class A circuits
 - Class B circuits
 - Class C circuits
 - Class D circuits
 - Class E circuits

Classification of SC: Class A circuits

- Defined as *Mealy Machine*
 - Named after *G.H. Mealy*

Basic property:

- The output decoder is a function of the present input(s) and the present state(s) of the circuit
- The next state decoder is a function of present state(s) and present input(s)

Classification of SC: Class B circuits

- Defined as Moore Machine
 - Named after *E.F. Moore*

Basic property:

- The output decoder is a function of the present state(s) only
 - It's a MOORE machine with an output decoder
- The next state decoder is a function of present state(s) and present input(s)

Classification of SC: Class C circuits

- Also, defined as Moore Machine
- Basic property:
 - The output decoder is not included in this circuit
 - It's a MOORE machine without an output decoder
 - Contents of memory elements are considered as the output directly
 - The next state decoder is a function of present state(s) and present input(s)

Classification of SC: Class D circuits

Basic property:

- The next state decoder is a function of present input(s) only
- No output decoder
 - Contents of memory elements are considered as the output directly

Classification of SC: Class E circuits

Basic property:

- The next state decoder is not included in this circuit
 - Inputs are directly inserted into the memory element
- No output decoder
 - Contents of memory elements are considered as the output directly

State Diagram or State Machine to Represent a Sequential Circuit

State Diagram or State Machine

- A transitional diagram from one state to another
 - Also called as finite automata (or machine)
 - Alternatively, Finite state machine (FSM)

Mealy State Machine: Circuit Diagram

Random example

Mealy State Machine: State Diagram

Random example

Outputs are represented along with current input(s) separated by '/'

Lecture SC 13

Moore State Machine

- Where output depends on only current state, i.e. output is solely related (paired) to current state.
 - But, **states** change based on *current input(s)* and *current state(s)*
 - *Output* is a function of current states
 - Basically, synchronous to state changes
 - Application: Edge detector of clock pulses, Elevator (Loop), Binary adder in FSM, Clocked sequential circuit

Moore State Machine: Circuit Diagram

Random example

Moore State Machine: State Diagram

Random example

Outputs are represented along with current state separated by '/'

Moore to Mealy FSM Conversion

Steps for Moore to Mealy conversion:

- 1. Create the state table for given Moore FSM
- 2. Derive the state table of Mealy FSM from the above state table of Moore FSM
- 3. Draw the Mealy FSM from the derived state table of Mealy machine

Example of a Moore FSM

Moore to Mealy FSM Conversion

Note: If any two rows are identical, one of the nodes is redundant

CSE 4205: Digital Logic Design

Lecture SC Step 1

Mealy to Moore FSM Conversion

• Steps for Mealy to Moore conversion (more nodes are produced):

- 1. For each state(Qi), calculate the number of different outputs based on the input flow (also available in the transition table) of the Mealy machine.
 - Why input flow: Because it indicates when that state is produced which output is associated with that state.

2. One of two:

- Keep the same state ,Qi, if all the input flows produce the same output with that state.
- Or, break the state into n states (as Qi1...Qin) if the input flows produce *n* different outputs
- 3. Associate appropriate output with each state separated by a slash (/) (q01/1)
- 4. Check all possible inputs for each state from the diagram

Mealy to Moore FSM Conversion

PS	Input = 0		Input = 1	
	NS	Output	NS	Output
q1	q1	0	q2	0
q2	q2	1	q3	0
q3	q2	0	q3	1

When q1, output is same = 0, no split. Two outputs when q2 - q20 and q21Two outputs when q3 - q30 and q31

