UNIVERSITY OF NEVADA LAS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

CPE-300L		Semester:	Spring 2020	
	Document author:	Brysen Kokubun		
	Author's email:	Brysenkokubun96@gmail.com		
	Document topic:	Prelab 9		
Instructor's comments:				
		Document author: Author's email: Document topic:	Document author: Brysen Kokul Author's email: Brysenkokub Document topic: Prelab 9	Document author: Brysen Kokubun Author's email: Brysenkokubun96@gmail. Document topic: Prelab 9

Introduction / Theory of operation

- For this lab experiment we will be learning on how to design a CPU by implementing a single cycle implementation of limited subset of MIPS instructions.

Prelab main content

1. Describe, what is the function of each block (there are 16 blocks) in Fig.1?

- 1) Mux 1: Mux selection from PCSrc output for Mux 2
- 2) Mux 2: Mux selection from Jump output for PC'
- 3) Flip flop: Program counter
- 4) Instruction memory: for Register destination of Program counter
- 5) Adder: Program counter + 4
- 6) Control Unit: Controls the operations of the other components
- 7) Register file: Addresses/write destinations/write enable/read destinations
- 8) Sign Extend: Address offset for I-type, destination/shift amount/function for R-type
- 9) Shifter: shifts 2 bits left
- 10) Mux 3: Mux selection from RegDst output for register file A3
- 11) Mux 4: Mux selection from ALUSrc output for ALU input SrcB

- 12) Shifter: shifts 2 bits left
- 13) ALU: performs arithmetic operations
- 14) Adder: (PC+4) + (Sign extend shifted 2 bits left)
- 15) Data Memory: write data/aluResult to Read data or pass through to Mux_5
- 16) Mux 5: Mux selection from memtoReg output for register file WD3

2. Study the given code and write the name of module that generates each block (there are 16 blocks) in Fig.1.

- 1) Module mux2.v
- 2) Module mux2.v
- 3) Module flopr.v
- 4) Module imem.v
- 5) Module adder.v
- 6) Module controller.v
- 7) Module regfile.v
- 8) Module signext.v
- 9) Module sl2.v
- 10) Module mux2.v
- 11) Module mux2.v
- 12) Module sl2.v
- 13) Module alu.v
- 14) Module adder.v
- 15) Module dmem.v
- 16) Module mux2.v