

Team Members

Erick Mauti Statistical Sleuth

Isaack Onyango

Hypothesis Whisperer

Marilyn Akinyi Data Alchemist

Lvdia Chumba Data Alchemist

Insight Illuminator

....

Rodgers Otieno Story Teller

Samwel Ongechi

Feature Forge Master

Sentiment Analysis of Tweets on Apple and Google Products September 2025

Presented by Group 5

TM: George Kamundia

Business Understanding

- Social media plays a huge role in shaping brand perception
- Apple and Google face constant public scrutiny about their products.

Business problem

"Can we automatically classify the sentiment of tweets about Apple and Google products to support actionable business insights?"

Stakeholders

- *Apple & Google Executives* for product strategy.
- *Marketing Teams* to refine campaigns.
- *Product Managers* to address customer concerns.
- *Customer Support* to monitor satisfaction trends.

Objectives

- Understand overall public sentiment (positive, neutral, negative).
- Identify drivers of sentiment for Apple vs. Google.
- Provide actionable insights to improve marketing & product development.

Data Understanding

- **Source**: 9,000+ tweets labeled by sentiment.
- Sentiment distribution:
- ➤ Neutral (61%)
- > Positive (33%)
- ➤ Negative (6%)
- Apple tweets generated 85% more mentions than Google.

Visualizations (EDA)

- **Neutral:** 61% of tweets
- **Positive:** 32.7% of tweets
- **Negative:** 6.3% of tweets

Visualizations (EDA) Cont.....

- Overall Distribution Characteristics
- Central Tendency & Variability Patterns
- Outlier Detection
- Distribution Concentration Patterns
- Behavioral Pattern Recognition
- Statistical Validation

Visualizations (EDA) Cont.....

- Apple generates stronger emotional engagement across its ecosystem
- Google has opportunity to increase emotional engagement with its broader product suite
- Corporate branding matters more than individual product names in emotional discourse

Data Preparation

- Cleaning tweets: removed duplicates, URLs, mentions, emoji's, and irrelevant text.
- Standardized sentiment into three categories: Positive, Negative, Neutral.
- Imputed missing brand mentions (Apple/Google).
- Mapped products into ecosystems: Apple vs Google.

Modeling

- Tested multiple models
- Addressed class imbalance with SMOTE.
- Measured performance using Accuracy, Precision, Recall, F1-Score.

Baseline Models

- Naïve Bayes
- Logistic Regression.

- Random Forest
- XGBoost
- Neural Networks

Evaluation

Model	Train_Accurac	Test_Accura	Test_F1_Weigh	Test_F1_Macr	Test_Precision_	Test_Recall_Wei	Training_	Prediction_	Overfitting_
	у	су	ted	0	Weighted	ghted	Time(s)	Time(s)	Score
XGBoost	0.805	0.66	0.652	0.526	0.648	0.66	524.43	3.556	0.145
Naive Bayes (Untuned)	0.803	0.574	0.595	0.511	0.653	0.574	0.01	0.006	0.23
Naive Bayes (Tuned)	0.826	0.596	0.613	0.529	0.65	0.596	53.02	0.004	0.23
Random Forest (Tuned)	0.97	0.677	0.673	0.584	0.671	0.677	902.66	7.69	0.292
Neural Network	0.954	0.649	0.648	0.553	0.647	0.649	743.36	0.088	0.306
Logistic Regression (Tuned)	0.956	0.632	0.637	0.548	0.643	0.632	4098.08	0.014	0.324

Evaluation Cont....

- **XGBoost** best model because it offered the most reliable balance between performance, efficiency, and generalization.
- Random Forest (Tuned) achieved the highest test accuracy (0.677) but showed higher overfitting compared to XGBoost.
- Neural Network and Logistic Regression (Tuned) achieved good training scores but struggled with generalization, showing signs of overfitting.
- Naive Bayes (Untuned/Tuned) was the fastest to train and predict, but its accuracy and F1 scores were noticeably lower.
- Best trade-off between performance and generalization → XGBoost
- Fastest → Naive Bayes
- Highest raw accuracy → Random Forest (but more overfitting)

Model Selection

Train_Acc	Test_Acc	Test_F1_	Test_F1_	Test_Pre	Test_Rec	Training_	Predictio	Overfitti
uracy	uracy	Weighte	Macro	cision_W	all_Weig	Time(s)	n_Time(s	ng_Score
		d		eighted	hted)	
0.882	0.675	0.666	0.546	0.662	0 .675	1096.29	0.324	0.207
0.97	0.677	0.673	0.584	0.671	0.677	150.11	2.305	0.292
0.939	0.619	0.626	0.542	0.64	0.619	832.11	0.061	0.321
	0.882	uracy uracy 0.882 0.675 0.97 0.677	0.882 0.675 0.666 0.97 0.677 0.673	uracy uracy Weighte Macro d 0.882 0.675 0.666 0.546 0.97 0.677 0.673 0.584	uracy uracy Weighte Macro cision_W eighted 0.882 0.675 0.666 0.546 0.662 0.97 0.677 0.673 0.584 0.671	uracy uracy Weighte Macro cision_W eighted all_Weighted 0.882 0.675 0.666 0.546 0.662 0.675 0.97 0.677 0.673 0.584 0.671 0.677	uracy weighte Macro cision_wall_weighted Time(s) 0.882 0.675 0.666 0.546 0.662 0.675 1096.29 0.97 0.677 0.673 0.584 0.671 0.677 150.11	uracy uracy Weighte Macro cision_W eighted all_Weig Time(s) n_Time(s) 0.882 0.675 0.666 0.546 0.662 0.675 1096.29 0.324 0.97 0.677 0.673 0.584 0.671 0.677 150.11 2.305

XGBoost offers more balanced performance and robustness, therefore selected for deployment.

Tuning of the top three models for selection:

- XGBoost
- Random Forest
- Neural Network
- XGBoost demonstrated balanced performance with relatively low overfitting
- Random Forest achieved the highest test accuracy and F1-score, but higher overfitting score compared to XGBoost
- Neural Network underperformed compared to tree-based models, with lower accuracy and highest overfitting.

XGBoost Model can be integrated into:

- Social Media Monitoring Dashboards.
- Real-time Brand Sentiment Trackers.
- Customer Feedback Systems.

Recommendations

- Deploy XGBoost Model
- Monitor Sentiment Trends Over Time
- Implement Periodic Model Retraining
- Expand Analysis and Exploration

Limitations

- Class Imbalance
- Short Text Nature of Tweets
- Dynamic Language and Slang
- Model Generalization on Current Events
- Performance Ceiling of Traditional ML

