시계열 자료와 확률 과정

확률 과정

확률 과정(Stochastic process, Random process)은 상관 관계를 가지는 무한개의 확률 변수의 순서열 (sequence of infinite random variables)을 말한다. 확률 과정에 포함된 확률 변수는 시간 변수 t를 기준으로 정렬한다.

$$Y = \{\cdots, Y_{-2}, Y_{-1}, Y_0, Y_1, Y_2, \cdots\}$$

시계열 자료(time series data)란 이러한 확률 과정의 표본이다.

$$y = \{\cdots, y_{-2}, y_{-1}, y_0, y_1, y_2, \cdots\}$$

시계열 자료는 다음과 같이 표기하기도 한다.

$$\{y_t: t = \cdots, -2, -1, 0, 1, 2, \cdots\}$$

만약 시간 변수 t를 정수만 사용한다면 **이산 시간 확률 과정(discrete time stochastic process)**이라고 한다. 일 반적인 시계열 분석에서는 이산 시간 확률 과정을 다루지만 금융 파생 상품의 가격 결정 이론 등에서는 시간 변수가 임의의 실수가 될 수 있는 연속 시간 확률 과정(continuous time stochastic process)도 다룬다.

In [1]:

```
from matplotlib.patches import ConnectionPatch
t = np.arange(10)
np.random.seed(99)
y1 = np.insert(np.cumsum(sp.stats.norm.rvs(size=9)), 0, 0)
y2 = np.insert(np.cumsum(sp.stats.norm.rvs(size=9)), 0, 0)
y3 = np.insert(np.cumsum(sp.stats.norm.rvs(size=9)), 0, 0)
y4 = np.insert(np.cumsum(sp.stats.norm.rvs(size=9)), 0, 0)
ax1 = plt.subplot(4, 1, 1)
ax1.plot(t, y1, '-o')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
ax1.set_ylim(-9, 9)
ax1.set_zorder(2)
ax1.set_ylabel("표본 1").set_rotation(0)
ax1.yaxis.set_tick_params(pad=30)
plt.title("확률과정의 표본")
ax2 = plt.subplot(4, 1, 2)
ax2.plot(t, y2, '-o')
ax2.set_xticklabels([])
ax2.set_yticklabels([])
ax2.set_ylim(-9, 9)
ax2.set_zorder(1)
ax2.set_ylabel("표본 2").set_rotation(0)
ax2.yaxis.set_tick_params(pad=30)
ax3 = plt.subplot(4, 1, 3)
ax3.plot(t, y3, '-o')
ax3.set_xticklabels([])
ax3.set_yticklabels([])
ax3.set_ylim(-9, 9)
ax3.set_zorder(1)
ax3.set_ylabel("표본 3").set_rotation(0)
ax3.yaxis.set_tick_params(pad=30)
ax4 = plt.subplot(4, 1, 4)
ax4.plot(t, y4, '-o')
ax4.set_yticklabels([])
ax4.set_ylim(-9, 9)
ax4.set_zorder(1)
ax4.set_ylabel("표본 4").set_rotation(0)
ax4.yaxis.set_tick_params(pad=30)
ax4.annotate('$Y_6$', xy=(5.92, -19), xycoords='data', annotation_clip=False)
con = ConnectionPatch(xyA=(6, 9), xyB=(6, -9), Is="--", Iw=2, color="gray",
                      coordsA="data", coordsB="data", axesA=ax1, axesB=ax4)
ax1.add_artist(con)
plt.show()
```


예를 들어 특정 회사의 주가를 시계열 자료로 보고 이 시계열 자료가 확률 과정이라고 가정하면 우리가 보는 주가 경로 전체가 확률 과정에서 나올 수 있는 하나의 표본일 뿐이다. 즉, 우리가 살고 있는 이 세계(지금 보고 있는 바로 그 주가 자료를 가지고 있는 세계) 자체가 확률 과정의 **하나의 표본**이다.

이렇게 본다면 아직 실현되지 않은 미래의 주가는 어떻게 생각 할 수 있을까? 확률 과정의 표본은 음의 무한대부터 양의 무한대까지 모든 시간에 대한 자료를 가지고 있으므로 미래의 주가도 이미 실현(표본링)되어 있는 것으로 생각하면 이해하기 쉽다. 이러한 관점으로 보면 미래는 전체 시계열 자료 중 현재 시점에서 아직 관찰이 불가능한 부분일 뿐이다.

이러한 관점은 연속시간 확률과정을 분석할 때 중요한 역할을 한다. 그러나 이산시간 확률과정의 경우에는 단순히 **서로 상관관계를 가지는 복수개의 확률변수**로 보아도 큰 문제가 없다.

앙상블 평균

이러한 관점에서 확률 과정 Y의 특정 시간에 대한 기댓값 $\mathrm{E}[Y_t]$ 은 이렇게 생성된 복수의 시계열 자료 표본에서 특정 시간 t의 값만을 평균한 것으로 볼 수 있다. 이를 시계열의 **앙상블 평균**(ensemble average)라고 한다.

재현이 가능한 확률 과정, 예를 들어 반복하여 시행할 수 있는 실험(experiment)의 데이터와 같은 경우에는 앙상 블 평균의 추정값을 계산할 수 있다. 하지만 재현이 불가능한 확률 과정에 대해서는 특정시간의 값에 대한 앙상 블 평균의 추정값은 현실적으로 얻을 수 없다. 이 경우 우리가 살고 있는 세계는 **하나의 표본만을 가진 세계**이기 때문이다.

앙상블 평균에 대한 추정값을 얻기 위해서는 확률 과정이 정상 과정(stationary process)이며 에르고딕 과정 (ergodic process)이라는 가정이 있어야 한다. 정상 과정과 에르고딕 과정에 대해서는 추후 자세히 설명한다.

확률 과정의 기댓값, 자기공분산, 자기상관계수

확률 과정의 특성은 개별 시간 변수에 대한 확률 변수들의 결합 확률 밀도 함수를 사용하여 정의한다.

확률 과정의 기대값은 μ_t 로 표기하며 시간 변수 t에 대한 확률 변수 Y_t 의 기댓값이다.

$$\mu_t = \mathrm{E}[Y_t]$$

확률 과정의 자기공분산(auto-covariance)은 $\gamma_{t,s}$ 로 표기하며 시간 변수 t에 대한 확률 변수 Y_t 와 시간 변수 s에 대한 확률 변수 Y_s 의 공분산이다.

$$\gamma_{t,s} = \text{Cov}[Y_t, Y_s] = \text{E}[(Y_t - \text{E}[Y_t])(Y_s - \text{E}[Y_s])]$$

확률 과정의 자기상관계수(auto-correlation)은 $\rho_{t,s}$ 로 표기하며 시간 변수 t에 대한 확률 변수 Y_t 와 시간 변수 s에 대한 확률 변수 Y_s 의 상관계수이다.

$$\rho_{t,s} = \text{Corr}[Y_t, Y_s] = \frac{\text{Cov}[Y_t, Y_s]}{\sqrt{\text{Var}[Y_t]\text{Var}[Y_s]}} = \frac{\gamma_{t,s}}{\sqrt{\gamma_t \gamma_s}}$$

위의 정의에서 다음과 같은 성질을 알 수 있다.

$$\gamma_{t,t} = \text{Var}[Y_t]$$

$$\gamma_{t,s} = \gamma_{s,t}$$

$$|\gamma_{t,s}| \le \sqrt{\gamma_{t,t}\gamma_{s,s}}$$

$$\rho_{t,t} = 1$$

$$\rho_{t,s} = \rho_{s,t}$$

$$|\rho_{t,s}| \le 1$$

협의의 정상 확률 과정

협의의 정상 확률 과정(strictly stationary process, strong stationary process)은 확률 과정의 모든 모멘트 (moment)가 시간 차이(time lag)에만 의존하고 절대 시간에 의존하지 않는 것이다.

이를 수학적으로 표현하면 임의의 t, s, k, 에 대해

$$E[Y_t Y_{t+k_1} Y_{t+k_2} \cdots Y_{t+k_i} \cdots] = E[Y_s Y_{s+k_1} Y_{s+k_2} \cdots Y_{s+k_i} \cdots]$$

가 성립한다.

광의의 정상 확률 과정

다음 두가지 조건만 성립하는 경우에는 **광의의 정상 확률 과정(wide-sense stationary process, weak stationary process)**라고 한다.

기댓값의 경우

$$E[Y_t] = E[Y_s] = \mu$$

가 성립하고

자기공분산의 경우

$$E[Y_t Y_{t+k}] = E[Y_s Y_{s+k}] = f(k)$$

가 성립한다.