

- $\checkmark \sigma^*$ (C-X) is lower in energy than the σ^* (C-C)
- ✓ In case of the attack of a nucleophile, the electrons will be initially donated to the σ^* orbital
- ✓ Between C-C and C-X bond, a nucleophile would prefer to react with C-X bond since it has a lower energy σ*

- \checkmark σ^* (X-H) is lower in energy than the σ^* (C-H)
- ✓ X-H is more acidic than C-H

Aldehydes, Ketones and Imines

- ✓ What is the energy level ordering of different MOs in formaldehyde and imine?
- ✓ Aldehydes and ketones undergo acid/base catalysed hydration in water. Which orbitals are involved and how they are connected to the mechanism to the reactions?

Chemistry is Dictated by HOMO-LUMO Interactions

- ✓ It is important to identify the HOMO and LUMO of each of the reactants
- ✓ HOMO and LUMO are termed as Frontier Molecular Orbitals

✓ Energy Ordering of MOs

 σ^* antibonding

 π^* antibonding

Nonbonding orbitals (including lone pairs)

 π bonding

 σ bonding

Energy

Conjugation and Delocalized Bonding

In butadiene:

- ✓ The barrier for rotation for the central C-C bond is 30 kJ/mol
- ✓ The value for a typical C-C bond is 15 kJ/mol
- \checkmark Each carbon is sp² hybridized, these orbitals are used in σ -bonding (localized bonding)
- ✓ Single atomic 2p orbital is free on each carbon atom
- \checkmark π -MOs are formed from these four 2p orbitals and they extend over the whole molecule (delocalized bonding)

π-Molecular Orbitals of Butadiene

- ☐ Hückel theory
- \checkmark Mixing of p orbitals leading to the formation of π MOs
- \checkmark Only π -electrons in conjugated systems (σ electrons are not considered)
- ☐ LCAO: Linear Combination of Atomic Orbitals:

$$\psi = c_1\phi_1 + c_2\phi_2 + c_3\phi_3 + c_4\phi_4$$

☐ Particle in a box

Particle is confined in a 1D box:

✓ The dimension of box can be compared to the length of a molecule

π -Molecular Orbitals of Butadiene

- ✓ The molecular orbitals (ψ) are one-electron wave functions (electron in a box)
- ✓ The coefficients (C) are the weights of the contributions of the atomic orbitals to the molecular orbitals
- ✓ 4 MOs spread all over 4 carbon atoms
- ✓ Bonding electrons reside on ψ_1 and ψ_2