Supplementary Materials for "Outcome-Guided Disease Subtyping for High-Dimensional Omics Data"

Peng Liu, Yusi Fang, Ren Zhao, Lu Tang*and George C. Tseng[†]

January 12, 2022

^{*}Correspond to: lutang@pitt.edu † Correspond to: ctseng@pitt.edu

Table S1: Comparison of sparse k-means (SKM), penalized model based clustering (PMBC), supervised clustering (SC) and outcome-guided clustering (ogClust) under four simulation model settings with 600 observations and 2 baseline covariates, 1000 genes and $G_{j|j\in\mathcal{A}_2}\sim N(3,1)$ in 100 repetitions.

Methods	Estimated K			ARI	Selected Genes		Outcome			
	2	3	> 3		FPs	FNs	RMSE	R^2		
Model 1: $\gamma = 1; \delta = 2$										
SKM	37	63	0	0.00	286.2	9.9	1.94	0.24		
PMBC	0	97	3	0.00	78.7	13.4	1.93	0.24		
SC	100	0	0	0.35	45.3	4.8	1.59	0.46		
ogClust	41	59	0	0.45	5.8	3.0	1.55	0.51		
Model 2: $\gamma = 1; \delta = 3$										
SKM	37	63	0	0.00	286.2	9.9	2.68	0.14		
PMBC	0	95	5	0.00	85.3	13.4	2.68	0.13		
SC	100	0	0	0.36	28.5	5	2.13	0.45		
ogClust	2	98	0	0.86	14.6	0	1.90	0.55		
Model 3: $\gamma = 1; \delta = 5$										
SKM	37	63	0	0.00	286.2	9.9	4.25	0.05		
PMBC	0	98	2	0.00	92.0	13.2	4.27	0.04		
SC	100	0	0	0.36	32.4	4.9	3.25	0.42		
ogClust	1	99	0	0.91	14.4	0	2.72	0.61		
Model 4: $\gamma = 3; \delta = 3$										
SKM	38	62	0	0.00	406.1	8.5	2.67	0.14		
PMBC	0	100	0	0.00	82.0	13.8	2.67	0.13		
SC	100	0	0	0.41	17.5	5	2.20	0.41		
$_{\rm ogClust}$	2	98	0	0.88	12.1	0	1.74	0.63		

Table S2: Comparison of sparse k-means (SKM), penalized model based clustering (PMBC), supervised clustering (SC) and outcome-guided clustering (ogClust) under four simulation model settings with 600 observations and 2 baseline covariates, 1000 genes and $G_{j|j\in\mathcal{A}_2}\sim N(0.5,1)$ in 100 repetitions.

Methods	Estimated K			ARI	Selected Genes		Outcome				
	2	3	> 3		FPs	FNs	RMSE	R^2			
Model 1: $\gamma = 1; \delta = 2$											
SKM	100	0	0	0.05	794.0	1.6	1.94	0.24			
PMBC	73	1	26	0.33	182.7	4.4	1.93	0.24			
SC	100	0	0	0.35	47.9	4.8	1.59	0.48			
ogClust	66	31	3	0.45	14.0	3.3	1.55	0.51			
Model 2: $\gamma = 1; \delta = 3$											
SKM	100	0	0	0.05	794.0	1.6	2.66	0.13			
PMBC	74	0	26	0.30	172.0	5.9	2.68	0.13			
SC	100	0	0	0.36	51.0	4.8	2.09	0.47			
ogClust	2	97	1	0.86	21.3	0.1	1.90	0.56			
Model 3: $\gamma = 1; \delta = 5$											
SKM	100	0	0	0.05	794.0	1.6	4.22	0.05			
PMBC	69	1	30	0.28	171.8	6.5	4.24	0.04			
SC	100	0	0	0.36	47.5	4.8	3.21	0.46			
ogClust	0	100	0	0.91	5.1	0.1	2.70	0.61			
Model 4: $\gamma = 3; \delta = 3$											
SKM	100	0	0	0.06	769.0	2.0	2.62	0.15			
PMBC	77	1	22	0.33	187.8	6.4	2.64	0.15			
SC	100	0	0	0.41	17.3	5.0	2.02	0.51			
ogClust	0	100	0	0.88	2.5	0.1	1.75	0.63			

Figure S1: (A) Data generation scheme. $\mathcal{O} = \{1, 2, 3\}$ denotes three clusters defined by genes set $G_{\mathcal{A}_1}$, $\mathcal{A}_1 = \{1, \dots, 15\}$, and $\mathcal{I} = \{1, 2, 3\}$ denotes another three independent clusters defined by $G_{\mathcal{A}_2}$, $\mathcal{A}_2 = \{16, \dots, 30\}$. Expression of genes in $G_{\mathcal{A}_1}$ and $G_{\mathcal{A}_2}$ are generated from the distributions listed on the above table. For subject i, only $G_{\mathcal{A}_1}$ have real signals effecting Z_i , which is drawn from a Multinomial distribution with probability $\pi_i = \{\pi_{i1}, \pi_{i2}, 1 - \pi_{i1} - \pi_{i2}\}$. Baseline variables X_1 and X_2 are generated from N(1,1) and N(1,2) respectively. Given X_i , G_i and Z_i , the outcome Y_i is generated finally. (B) Heatmap of the expression of 1000 genes across samples. A total of nine subgroups C_1, \dots, C_9 are jointly defined by genes sets $G_{\mathcal{A}_1}$ and $G_{\mathcal{A}_2}$.

Figure S2: Comparison of ogClust and SC,SKM and PMBC under four simulation settings with survival outcome. We compare RMSE, \mathbb{R}^2 , ARI and FNs (y-axis) vs number of genes selected in each setting (x-axis).

Figure S3: Plot of (A) \mathbb{R}^2 and (B) RMSE against the number of clusters.