L12 Row space, column space and the Rank-Nullity Theorem 1MA901/1MA406 Linear algebra

Jonas Nordqvist

Engelsk-svensk ordlista

English	Swedish
Vector space	Vektorrum
Subspace	Underrum
Nullspace (of a matrix)	Nollrum (till en matris)
Span	Spänner
Spanning set	Linjärt hölje/spannet
Linear independence	Linjärt oberoende
Basis	Bas
Change of basis	Basbyte
Row space (of a matrix)	Radrummet (till en matris)
Column space (of a matrix)	Kolonnrummet (till en matris)
Rank	Rang
Rand-nullity theorem	Dimensionssatsen

Row space and column space

Definition

Given a matrix A of size $m \times n$ the subspace spanned by its row vectors is called the *row space* of A and is a subspace of R^n . The subspace spanned by its columns is called the *column space* of A and is a subspace of \mathbb{R}^m .

Row space and column space

Definition

Given a matrix A of size $m \times n$ the subspace spanned by its row vectors is called the *row space* of A and is a subspace of R^n . The subspace spanned by its columns is called the *column space* of A and is a subspace of \mathbb{R}^m .

Example

Find the row and column space of the matrix

$$A = \begin{pmatrix} 2 & 1 & 0 \\ -1 & -1 & 4 \end{pmatrix}.$$

The row space consists of all vectors of the form

$$\alpha(2,1,0) + \beta(-1,-1,4) = (2\alpha - \beta, \alpha - \beta, 4\beta).$$

The column space is \mathbb{R}^2 since we have that every vector in the column space may be written of the form

$$\alpha(2,-1)^T + \beta(1,-1)^T + \gamma(0,4)^T.$$

Theorem

Two row equivalent matrices have the same row space.

Theorem

Two row equivalent matrices have the same row space.

Proof.

Since B is row equivalent to A its row space must be a subspace of the row space of A, since the row vectors of B are linear combinations of the rows in A. Since the opposite is also true, their subspaces must coincide.

Note! In general note true for the column space.

Theorem

Two row equivalent matrices have the same row space.

Proof.

Since B is row equivalent to A its row space must be a subspace of the row space of A, since the row vectors of B are linear combinations of the rows in A. Since the opposite is also true, their subspaces must coincide.

Note! In general note true for the column space.

Definition

The rank of a matrix is the dimension of its row space, and this is denoted by rank(A).

Theorem

Two row equivalent matrices have the same row space.

Proof.

Since B is row equivalent to A its row space must be a subspace of the row space of A, since the row vectors of B are linear combinations of the rows in A. Since the opposite is also true, their subspaces must coincide.

Note! In general note true for the column space.

Definition

The rank of a matrix is the dimension of its row space, and this is denoted by rank(A).

Definition

The *nullity* of a matrix is the dimension of its null space.

Theorem

Two row equivalent matrices have the same row space.

Proof.

Since B is row equivalent to A its row space must be a subspace of the row space of A, since the row vectors of B are linear combinations of the rows in A. Since the opposite is also true, their subspaces must coincide.

Note! In general note true for the column space.

Definition

The rank of a matrix is the dimension of its row space, and this is denoted by rank(A).

Definition

The nullity of a matrix is the dimension of its null space.

Theorem (Rank-nullity theorem (Dimensionssatsen))

If A is an $m \times n$ matrix then the sum of its rank and its nullity is equal to n.

Theorem

Two row equivalent matrices have the same row space.

Proof.

Since B is row equivalent to A its row space must be a subspace of the row space of A, since the row vectors of B are linear combinations of the rows in A. Since the opposite is also true, their subspaces must coincide.

Note! In general note true for the column space.

Definition

The rank of a matrix is the dimension of its row space, and this is denoted by rank(A).

Definition

The nullity of a matrix is the dimension of its null space.

Theorem (Rank-nullity theorem (Dimensionssatsen))

If A is an $m \times n$ matrix then the sum of its rank and its nullity is equal to n.

Proof.

Let U be the reduced row echelon form of A. Then $Ax = 0 \sim Ux = 0$. If A has rank r then U will have r nonzero rows, and the system will have r leading variables and n-r free variables. The dimension of N(A) is equal to the number of free variables.

Dimension of column space

Theorem

Let A be a $m \times n$ matrix. The linear system Ax = b is consistent for every $b \in \mathbb{R}^m$ if and only if the column vectors of A span \mathbb{R}^m . The system of linear equations Ax = b has at most one solution for every $b \in \mathbb{R}^m$ if and only if the columns of A are linearly independent.

Dimension of column space

Theorem

Let A be a $m \times n$ matrix. The linear system Ax = b is consistent for every $b \in \mathbb{R}^m$ if and only if the column vectors of A span \mathbb{R}^m . The system of linear equations Ax = b has at most one solution for every $b \in \mathbb{R}^m$ if and only if the columns of A are linearly independent.

Theorem

If A is an $m \times n$ matrix, the dimension of the row space of A equals the dimension of the column space of A.

Dimension of column space

Theorem

Let A be a $m \times n$ matrix. The linear system Ax = b is consistent for every $b \in \mathbb{R}^m$ if and only if the column vectors of A span \mathbb{R}^m . The system of linear equations Ax = b has at most one solution for every $b \in \mathbb{R}^m$ if and only if the columns of A are linearly independent.

Theorem

If A is an $m \times n$ matrix, the dimension of the row space of A equals the dimension of the column space of A.

Remark

If A is $m \times n$, then

$$dim(col \ space) = dim(row) = n - dim(null \ space).$$

Suppose that the rank of A is equal to r. Further let U be the reduced row echelon form of A. Then U has r leading ones.

Suppose that the rank of A is equal to r. Further let U be the reduced row echelon form of A. Then U has r leading ones.

The columns of U with leading ones are linearly independent, but they are not necessarily a basis for the columns space of A. Denote by U_L and A_L the matrices in which we remove the columns without leading ones in U and the corresponding columns of A. Then $A_L \sim U_L$.

Suppose that the rank of A is equal to r. Further let U be the reduced row echelon form of A. Then U has r leading ones.

The columns of U with leading ones are linearly independent, but they are not necessarily a basis for the columns space of A. Denote by U_L and A_L the matrices in which we remove the columns without leading ones in U and the corresponding columns of A. Then $A_L \sim U_L$.

This implies that any solution x to Ax=0 must necessarily also be a solution of Ux=0. We've concluded that the columns of U must be linearly independent, and thus x=0 is the only solution (according to the previous theorem). As a consequence (of said previous theorem) we must have that the columns of A_L are linearly independent.

Suppose that the rank of A is equal to r. Further let U be the reduced row echelon form of A. Then U has r leading ones.

The columns of U with leading ones are linearly independent, but they are not necessarily a basis for the columns space of A. Denote by U_L and A_L the matrices in which we remove the columns without leading ones in U and the corresponding columns of A. Then $A_L \sim U_L$.

This implies that any solution \times to Ax=0 must necessarily also be a solution of Ux=0. We've concluded that the columns of U must be linearly independent, and thus x=0 is the only solution (according to the previous theorem). As a consequence (of said previous theorem) we must have that the columns of A_L are linearly independent.

Hence, we may conclude that the columns space of A is at least of dimension r, since there are r linearly independent columns of A. So, we've shown that

$$dim(col space) \ge dim(row space)$$
.

However, we also have

$$dim(row space of A) = dim(col space of A^T)$$

 $\geq dim(row space of A^T)$
 $= dim(col space of A).$

This completes the proof of the theorem.

Example

Let A be the matrix

$$A = \left(\begin{array}{ccc} 4 & 3 & 6 \\ 4 & 5 & 10 \\ 1 & 1 & 2 \end{array}\right).$$

Then we have

$$A \sim \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{array}\right) = U.$$

Note that

$$A_L = \left(\begin{array}{cc} 4 & 3 \\ 4 & 5 \\ 1 & 1 \end{array} \right) \sim \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right) = U_L.$$

The columns of leading ones are $(1,0,0)^T$ and $(0,1,0)^T$ which clearly does not span the colum space since e.g. $(4,4,1)^T$ cannot be written as a linear combination of these two.

Although the corresponding vectors in A, *i.e.* $(4,4,1)^T$ and $(3,5,1)^T$ are linearly independent, and form a basis for the column space.

Example

Example

Let A be the matrix

$$A = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 4 & 0 \\ -1 & 1 & -1 & 1 & -1 \\ 2 & 3 & 4 & 6 & 1 \end{array}\right)$$

Find the rank of A and the dimension of its column space and null space. Further, find a basis for the corresponding subspaces.