Espaces préhilbertiens réels

Produit scalaire

Exercice 1 [03480] [Correction]

On note $E=\mathbb{R}\left[X\right]$ et on considère l'application $\varphi:E\times E\to\mathbb{R}$ donnée par

$$\varphi(P,Q) = \int_0^{+\infty} P(t)Q(t)e^{-t} dt$$

- a) Justifier que l'application φ est bien définie de $E \times E$ vers \mathbb{R} .
- b) Montrer que l'application φ définit un produit scalaire sur E.
- c) Pour $p, q \in \mathbb{N}$, calculer $\varphi(X^p, X^q)$.
- d) Orthonormaliser par le procédé de Gram-Schmidt la famille $(1, X, X^2)$.

Exercice 2 [03322] [Correction]

Soient a un vecteur unitaire d'un espace préhilbertien réel E, k un réel et $\varphi: E \times E \to \mathbb{R}$ l'application déterminée par

$$\varphi(x,y) = \langle x,y \rangle + k \langle x,a \rangle \langle y,a \rangle$$

Donner une condition nécessaire et suffisante pour que φ soit un produit scalaire.

Exercice 3 [04092] [Correction]

Soit $E = \mathcal{C}^1([0,1], \mathbb{R})$. Pour $f, g \in E$, on pose

$$\varphi(f,g) = \int_0^1 f'(t)g'(t) dt + f(1)g(0) + f(0)g(1)$$

Montrer que φ définit un produit scalaire sur E.

Calculs dans un espace préhilbertien réel

Exercice 4 [00505] [Correction]

Démontrer que la boule unité fermée B d'un espace préhilbertien réel est strictement convexe i.e. que pour tout $x, y \in B$ différents et tout $t \in]0,1[$, $\|(1-t)x+ty\|<1$.

Exercice 5 [00511] [Correction]

On munit $E = \mathcal{C}([a, b], \mathbb{R})$ du produit scalaire défini par

$$(f \mid g) = \int_{a}^{b} f(t)g(t) dt$$

En exploitant le théorème d'approximation uniforme de Weierstrass, établir que l'orthogonal du sous-espace vectoriel F de E formé des fonctions polynomiales est réduit à $\{0\}$.

Exercice 6 [00513] [Correction]

Soit E un espace préhilbertien réel.

a) Etablir que pour tout sous-espace vectoriel F de E, $\bar{F} \subset F^{\perp \perp}$.

Désormais, on suppose $E = \mathbb{R}[X]$ muni du produit scalaire défini par

$$(P \mid Q) = \int_{-1}^{1} P(t)Q(t) dt$$

b) Montrer que

$$H = \left\{ P \in \mathbb{R}\left[X\right] / \int_{-1}^{1} |t| P(t) \, \mathrm{d}t = 0 \right\}$$

est un hyperplan fermé de E.

c) Soit $Q \in H^{\perp}$. Etablir que pour tout $P \in \mathbb{R}[X]$.

$$\int_{-1}^{1} P(t)Q(t) dt = \left(\int_{-1}^{1} |t| P(t) dt \right) \left(\int_{-1}^{1} Q(t) dt \right)$$

d) Etablir que $H^{\perp} = \{0\}$ et conclure qu'ici l'inclusion $\bar{H} \subset H^{\perp \perp}$ est stricte.

Exercice 7 [03318] [Correction]

Soient x_1, \ldots, x_n des vecteurs d'un espace préhilbertien réel E.

On suppose qu'il existe $M\in\mathbb{R}$ tel que

$$\forall (\varepsilon_1, \dots, \varepsilon_n) \in \{1, -1\}^n, \left\| \sum_{k=1}^n \varepsilon_k x_k \right\| \leq M$$

Montrer

$$\sum_{k=1}^{n} \|x_k\|^2 \leqslant M^2$$

Exercice 8 [03321] [Correction]

On munit l'espace $E = \mathcal{C}([0,1],\mathbb{R})$ du produit scalaire

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, \mathrm{d}x$$

Pour $f \in E$, on note F la primitive de f qui s'annule en 0

$$\forall x \in [0, 1], F(x) = \int_0^x f(t) dt$$

et on considère l'endomorphisme v de E déterminé par v(f) = F.

a) Déterminer un endomorphisme v^* vérifiant

$$\forall f, g \in E, \langle v(f), g \rangle = \langle f, v^{\star}(g) \rangle$$

b) Déterminer les valeurs propres de l'endomorphisme $v^* \circ v$.

Exercice 9 [03325] [Correction]

Soit F un sous-espace vectoriel d'un espace préhilbertien réel E. Etablir

$$F^{\perp} = \bar{F}^{\perp}$$

Exercice 10 [00351] [Correction]

Soient $e = (e_i)_{1 \leq i \leq n}$ et $f = (f_j)_{1 \leq j \leq n}$ deux bases orthonormales d'un espace euclidien E.

Soit $u \in \mathcal{L}(E)$. On pose

$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} (f_i \mid u(e_j))^2$$

Montrer que A ne dépend pas des bases orthonormales choisies

Exercice 11 [03979] [Correction]

Soient a, b deux vecteurs unitaires d'un espace euclidien E.

Déterminer le maximum sur la boule unité fermée de $f: x \mapsto (a \mid x) (b \mid x)$

Représentation d'une forme linéaire

Exercice 12 [02666] [Correction]

a) Montrer l'existence et l'unicité de $A \in \mathbb{R}_n[X]$ tel que

$$\forall P \in \mathbb{R}_n [X], P(0) = \int_0^1 A(t)P(t) dt$$

b) Etablir que A est de degré n.

Exercice 13 [03024] [Correction]

On définit sur $\mathbb{R}[X]$ le produit scalaire

$$\langle P \mid Q \rangle = \int_0^1 P(t)Q(t) dt$$

Existe-t-il $A \in \mathbb{R}[X]$ tel que

$$\forall P \in \mathbb{R} [X], P(0) = \langle A \mid P \rangle ?$$

Exercice 14 [01573] [Correction]

Soit $E = \mathbb{R}[X]$.

- a) Montrer que $\varphi(P,Q) = \int_0^1 P(t)Q(t) dt$ définit un produit scalaire sur E.
- b) Soit $\theta: E \to \mathbb{R}$ la forme linéaire définie par $\theta(P) = P(0)$.

Montrer qu'il n'existe pas de polynôme Q tel que pour tout $P \in E$ on ait $\theta(P) = \varphi(P,Q)$.

Polynômes orthogonaux

Exercice 15 [03079] [Correction]

On définit

$$Q_n(X) = \frac{1}{2^n n!} ((X^2 - 1)^n)^{(n)}$$

- a) Soit $n \ge 1$. Montrer que Q_n possède n racines simples dans]-1,1[.
- b) Montrer que

$$Q_n = X^n + (X^2 - 1)R_n(X)$$

avec $R_n \in \mathbb{R}[X]$. En déduire $Q_n(1)$ et $Q_n(-1)$.

Enoncés

c) On pose, pour $(P,Q) \in \mathbb{R}[X]^2$,

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t) dt$$

Montrer que Q_n est orthogonal à $\mathbb{R}_{n-1}[X]$.

d) Calculer $||Q_n||^2$.

Exercice 16 [03657] [Correction]

On munit $\mathbb{R}[X]$ du produit scalaire

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t) dt$$

- a) Etablir l'existence et l'unicité d'une suite de polynômes (P_n) formée de polynômes deux à deux orthogonaux avec chaque P_n de degré n et de coefficient dominant 1.
- b) Etudier la parité des polynômes P_n .
- c) Prouver que pour chaque $n \ge 1$, le polynôme $P_{n+1} XP_n$ est élément de l'orthogonal à $\mathbb{R}_{n-2}[X]$.
- d) En déduire alors qu'il existe $\lambda_n \in \mathbb{R}$ tel que

$$P_{n+1} = XP_n + \lambda_n P_{n-1}$$

Exercice 17 [01332] [Correction]

Soient $n \in \mathbb{N}^*$, $E = \mathbb{R}_n[X]$ et

$$\langle , \rangle : (P, Q) \in E^2 \mapsto \langle P, Q \rangle = \int_0^{+\infty} P(t)Q(t)e^{-t} dt$$

- a) Justifier la définition de \langle , \rangle et montrer qu'il s'agit d'un produit scalaire. On pose $F = \{P \in E, P(0) = 0\}$. On cherche à déterminer d(1, F). On note (P_0, \ldots, P_n) l'orthonormalisée de Schmidt de $(1, X, \ldots, X^n)$.
- b) Calculer $P_k(0)^2$.
- c) Déterminer une base de F^{\perp} que l'on exprimera dans la base (P_0, \ldots, P_n) . En déduire $d(1, F^{\perp})$ et d(1, F).

Familles obtusangles

Exercice 18 [03157] [Correction]

Soit $\mathcal{F} = (x_1, \dots, x_n)$ une famille de $n \ge 2$ vecteurs d'un espace préhilbertien réel.

On suppose

$$\forall 1 \leqslant i \neq j \leqslant n, (x_i \mid x_j) < 0$$

Montrer que toute sous famille de n-1 vecteurs de \mathcal{F} est libre.

Exercice 19 [01574] [Correction]

[Famille obtusangle]

Soit $x_1, x_2, ..., x_{n+2}$ des vecteurs d'un espace vectoriel euclidien E de dimension $n \in \mathbb{N}^*$.

Montrer qu'il est impossible que

$$\forall 1 \leq i \neq j \leq n+2, \ (x_i \mid x_j) < 0$$

Exercice 20 [00520] [Correction]

Soient $x_1, x_2, ..., x_{n+2}$ des vecteurs d'un espace vectoriel euclidien E de dimension $n \in \mathbb{N}^*$.

Montrer qu'il est impossible que

$$\forall i \neq j, (x_i \mid x_j) < 0$$

On pourra commencer par les cas n = 1 et n = 2

Eléments propres d'endomorphismes euclidiens

Exercice 21 [00517] [Correction]

Soit a un vecteur normé d'un espace vectoriel euclidien E. Pour tout $\alpha \in \mathbb{R},$ on considère l'endomorphisme

$$f_{\alpha}: x \mapsto x + \alpha(a \mid x)a$$

- a) Préciser la composée $f_{\alpha} \circ f_{\beta}$. Quelles sont les f_{α} bijectives?
- b) Déterminer les éléments propres de f_{α} .

Exercice 22 [00518] [Correction]

Soient a, b deux vecteurs unitaires d'un espace vectoriel euclidien E et f l'application de E vers E donnée par

$$f: x \mapsto x - (a \mid x)b$$

- a) A quelle condition la fonction f est-elle bijective?
- b) Exprimer $f^{-1}(x)$ lorsque c'est le cas.
- c) A quelle condition l'endomorphisme f est-il diagonalisable?

Projections orthogonales

Exercice 23 [01595] [Correction]

Soit p une projection d'un espace vectoriel euclidien E. Montrer que la projection p est orthogonale si, et seulement si,

$$\forall x \in E, \|p(x)\| \leqslant \|x\|$$

Exercice 24 [03924] [Correction]

Soit p un projecteur d'un espace euclidien E vérifiant

$$\forall x \in E, \langle p(x), x \rangle \geqslant 0$$

Montrer que p est un projecteur orthogonal.

Exercice 25 [00524] [Correction]

Soient E un espace vectoriel euclidien muni d'une base orthonormée $e = (e_1, \ldots, e_n)$ et F un sous-espace vectoriel de E muni d'une base orthonormée (x_1, \ldots, x_p) . Montrer que la matrice de p_F dans la base e est

$$\sum_{k=1}^{p} X_k^{\ t} X_k$$

où X_k est la colonne des coordonnées du vecteur x_k dans e.

Exercice 26 [03766] [Correction]

On pose $E = \mathcal{C}^1([0,1],\mathbb{R})$ et

$$\forall f, g \in E, \langle f, g \rangle = \int_0^1 f(t)g(t) dt + \int_0^1 f'(t)g'(t) dt$$

- a) Montrer que $\langle .,. \rangle$ définit un produit scalaire sur E.
- b) On pose

$$V = \{ f \in E/f(0) = f(1) = 0 \}$$
 et $W = \{ f \in E/f \text{ est } C^2 \text{ et } f'' = f \}$

Montrer que V et W sont supplémentaires et orthogonaux. Exprimer la projection orthogonale sur W.

c) Soient $\alpha, \beta \in \mathbb{R}$ et

$$E_{\alpha,\beta} = \{ f \in E/f(0) = \alpha \text{ et } f(1) = \beta \}$$

Calculer

$$\inf_{f \in E_{\alpha,\beta}} \int_0^1 \left(f(t)^2 + f'(t)^2 \right) dt$$

Exercice 27 [00529] [Correction]

On définit une application $\varphi : \mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}$ par

$$\varphi(P,Q) = \int_0^{+\infty} P(t)Q(t)e^{-t} dt$$

- a) Montrer que φ définit un produit scalaire sur $\mathbb{R}[X]$.
- b) Calculer $\varphi(X^p, X^q)$.
- c) Déterminer

$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^{+\infty} e^{-t} (t^2 - (at+b))^2 dt$$

Exercice 28 [02735] [Correction]

Calculer

$$\inf \left\{ \int_0^1 t^2 (\ln t - at - b)^2 dt, (a, b) \in \mathbb{R}^2 \right\}$$

Familles totales

Exercice 29 [00530] [Correction]

[Formule de Parseval]

On suppose que $(e_n)_{n\in\mathbb{N}}$ est une famille orthonormale totale d'un espace préhilbertien E. Montrer que pour tout $x\in E$,

$$||x||^2 = \sum_{n=0}^{+\infty} |(e_n | x)|^2$$

Produit scalaire et transposition matricielle

Exercice 30 [03937] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Comparer d'une part les espaces

 $\ker A \text{ et } \ker({}^t A A)$

et d'autre part les espaces

 $\operatorname{Im} A \text{ et } \operatorname{Im}(A^t A)$

Exercice 31 [03935] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^2 = 0$.

a) Etablir

$$\ker({}^{t}A + A) = \ker(A) \cap \ker({}^{t}A)$$

b) En déduire

$${}^{t}A + A \in \mathrm{GL}_{n}(\mathbb{R}) \Leftrightarrow \mathrm{Im}A = \ker A$$

Exercice 32 [03936] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), ||AX|| \leq ||X||$$

où $\|\,.\,\|$ désigne la norme euclidienne usuelle sur l'espace des colonnes. Etablir

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), ||^t AX|| \leq ||X||$$

Exercice 33 [03938] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), ||AX|| \leq ||X||$$

- où $\| \, . \, \|$ désigne la norme euclidienne usuelle sur l'espace des colonnes.
- a) Etablir

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), ||^t AX|| \leqslant ||X||$$

- b) Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Montrer que si AX = X alors ${}^tAX = X$
- c) Etablir

$$\mathcal{M}_{n,1}(\mathbb{R}) = \ker(A - I_n) \oplus \operatorname{Im}(A - I_n)$$

Exercice 34 [00354] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Etablir

$$rg(^t A A) = rg A$$

Corrections

Exercice 1 : [énoncé]

- a) Pour $P, Q \in E$, la fonction $f: t \mapsto P(t)Q(t)e^{-t}$ est définie et continue par morceaux sur $[0, +\infty[$ et intégrable car $t^2f(t) \xrightarrow{t} 0$.
- b) L'application φ est clairement bilinéaire symétrique et positive.
- Si $\varphi(P,P)=0$ alors par intégration d'une fonction continue positive on obtient

$$\forall t \in [0, +\infty[, P(t)]^2 e^{-t} = 0$$

et donc P admet une infinité de racines (les éléments de $[0, +\infty[),$ c'est donc le polynôme nul.

c) Posons $I_n = \int_0^{+\infty} t^n e^{-t} dt$ de sorte que $\varphi(X^p, X^q) = I_{p+q}$. Par intégration par parties

$$\int_0^A t^n e^{-t} dt = \left[-t^n e^{-t} \right]_0^A + n \int_0^A t^{n-1} e^{-t} dt$$

et quand $A \to +\infty$, on obtient $I_n = nI_{n-1}$. Sachant $I_0 = 1$, on conclut $I_n = n!$ et

$$\varphi(X^p, X^q) = (p+q)!$$

- d) Notons que la famille $(1,X,X^2)$ est libre et qu'il est donc licite de l'orthonormaliser par le procédé de Schmidt. On pose $P_0=1$.
- On cherche $P_1 = X + \lambda P_0$ avec $(P_0 \mid P_1) = 0$ ce qui donne $1 + \lambda = 0$ et donc $P_1 = X 1$.

On cherche $P_2 = X^2 + \lambda P_0 + \mu P_1$ avec $(P_0 \mid P_2) = 0$ et $(P_1 \mid P_2) = 0$ ce qui donne $2 + \lambda = 0$ et $4 + \mu = 0$ donc $P_2 = X^2 - 4X + 2$.

La famille orthonormalisée cherchée et alors (Q_0, Q_1, Q_2) avec

$$Q_0 = 1, Q_1 = X - 1 \text{ et } Q_2 = \frac{1}{2} (X^2 - 4X + 2)$$

Exercice 2 : [énoncé]

Il est immédiat que φ est une forme bilinéaire symétrique sur E. On a

$$\varphi(x,x) = \|x\|^2 + k \langle x, a \rangle^2$$

En particulier

$$\varphi(a, a) = ||a||^2 + k ||a||^4 = (1 + k)$$

Pour que la forme bilinéaire symétrique φ soit définie positive, il est nécessaire que 1+k>0.

Inversement, supposons 1 + k > 0. Si $k \ge 0$ alors $\varphi(x, x) \ge ||x||^2$ et donc

$$\forall x \in E \setminus \{0_E\}, \varphi(x, x) > 0$$

Si $k \in]-1,0[, k = -\alpha \text{ avec } \alpha \in]0,1[$ et

$$\varphi(x,x) = \|x\|^2 - \alpha \langle x, a \rangle^2$$

Par l'inégalité de Cauchy-Schwarz

$$\langle x, a \rangle^2 \le ||x||^2 ||a||^2 = ||x||^2$$

donc

$$\varphi(x, x) \ge ||x||^2 - \alpha ||x||^2 = (1 - \alpha) ||x||^2$$

de sorte que

$$\forall x \in E \setminus \{0_E\}, \varphi(x, x) > 0$$

Ainsi φ est une forme bilinéaire symétrique définie positive donc un produit scalaire.

Finalement, φ est un produit scalaire si, et seulement si, 1+k>0.

Exercice 3: [énoncé]

L'application φ est bien définie de $E\times E\to \mathbb{R}$ et clairement bilinéaire et symétrique.

Soit $f \in E$.

$$\varphi(f, f) = \int_0^1 f'(t)^2 dt + 2f(0)f(1)$$

Par l'inégalité de Cauchy-Schwarz

$$\left(\int_0^1 f'(t) \, \mathrm{d}t\right)^2 \leqslant \int_0^1 f'(t)^2 \, \mathrm{d}t$$

et donc

$$\int_0^1 f'(t)^2 dt \ge (f(1) - f(0))^2$$

puis

$$\varphi(f, f) \ge f(1)^2 + f(0)^2 \ge 0$$

Au surplus, si $\varphi(f, f) = 0$ alors f(0) = f(1) = 0, mais aussi $\int_0^1 f'(t)^2 dt = 0$. La fonction f est donc constante égale à 0.

Exercice 4: [énoncé]

Par l'inégalité triangulaire

$$||(1-t)x + ty|| \le (1-t)||x|| + t||y|| \le 1$$

De plus, s'il y a égalité alors ||x|| = 1, ||y|| = 1 et les vecteurs (1 - t)x et ty sont positivement liés.

Les vecteurs x et y étant unitaires et positivement liés, ils sont égaux. Ceci est exclu.

Exercice 5 : [énoncé]

Soit $f \in F^{\perp}$. Puisque f est continue sur le segment [a, b], par le théorème d'approximation uniforme de Weierstrass :

$$\forall \varepsilon > 0, \exists P \in \mathbb{R} [X], \|f - P\|_{\infty, [a,b]} \leqslant \varepsilon$$

On a alors

$$||f||^2 = \int_a^b f^2 = \int_a^b f(f - P) + \int_a^b fP = \int_a^b f(f - P)$$

avec

$$\left| \int_{a}^{b} f(f - P) \right| \leq (b - a) \|f\|_{\infty} \|f - P\|_{\infty} \leq (b - a) \|f\|_{\infty} \varepsilon$$

En faisant tendre ε vers 0, on obtient $||f||^2 = 0$ donc f = 0. Ainsi $F^{\perp} \subset \{0\}$ puis $F^{\perp} = \{0\}$.

Exercice 6 : [énoncé]

- a) On sait $F \subset F^{\perp \perp}$ et $F^{\perp \perp}$ fermé donc $\bar{F} \subset F^{\perp \perp}$.
- b) H est le noyau de la forme linéaire

$$\varphi: P \mapsto \int_{-1}^{1} |t| \, P(t) \, \mathrm{d}t$$

En vertu de l'inégalité de Cauchy-Schwarz, $|\varphi(P)| \leq ||P||$ et donc φ est continue. Par suite H est un hyperplan fermé.

c) Pour $P \in \mathbb{R}[X]$, on observe que

$$R = P - \int_{-1}^{1} |u| P(u) du$$

appartient à H. La relation $(R \mid Q) = 0$ donne la relation voulue.

d) La relation précédente donne

$$\int_{-1}^{1} \left(Q(t) - |t| \int_{-1}^{1} Q(u) \, \mathrm{d}u \right) P(t) \, \mathrm{d}t = 0$$

pour tout $P \in \mathbb{R}[X]$. Par suite

$$Q(t) = |t| \int_{-1}^{1} Q(u) \, \mathrm{d}u$$

Ceci n'est possible dans $\mathbb{R}[X]$ que si $\int_{-1}^{1} Q(u) du = 0$ et donc seulement si Q = 0. Ainsi $H^{\perp} = \{0\}$ puis $H^{\perp \perp} = E$ alors que $\bar{H} = H \neq E$.

Exercice 7: [énoncé]

Cas n=1, c'est immédiat.

Cas n=2:

Si $||x+y|| \le M$ et $||x-y|| \le M$ alors

$$||x||^2 + 2(x \mid y) + ||y||^2 \le M^2 \text{ et } ||x||^2 - 2(x \mid y) + ||y||^2 \le M^2$$

Si $(x \mid y) \ge 0$ alors première identité donne $||x||^2 + ||y||^2 \le M^2$, si $(x \mid y) \le 0$, c'est la deuxième identité qui permet de conclure.

Supposons la propriété vraie au rang $n \ge 1$.

Supposons

$$\forall (\varepsilon_1, \dots, \varepsilon_{n+1}) \in \{1, -1\}^{n+1}, \left\| \sum_{k=1}^{n+1} \varepsilon_k x_k \right\| \leqslant M$$

Par l'étude du cas n=2 appliquée au vecteur

$$x = \sum_{k=1}^{n} \varepsilon_k x_k \text{ et } y = x_{n+1}$$

on obtient

$$\forall (\varepsilon_1, \dots, \varepsilon_n) \in \{1, -1\}^n, \left\| \sum_{k=1}^n \varepsilon_k x_k \right\|^2 + \|x_{n+1}\|^2 \leqslant M^2$$

donc

$$\forall (\varepsilon_1, \dots, \varepsilon_n) \in \{1, -1\}^n, \left\| \sum_{k=1}^n \varepsilon_k x_k \right\| \leqslant \sqrt{M^2 - \left\| x_{n+1} \right\|^2}$$

Par hypothèse de récurrence

$$\sum_{k=1}^{n} \|x_k\|^2 \leqslant M^2 - \|x_{n+1}\|^2$$

et l'on peut conclure. Récurrence établie.

Exercice 8 : [énoncé]

a) Par intégration par parties

$$\int_0^1 F(x)g(x) \, dx = F(1)G(1) - \int_0^1 f(x)G(x) \, dx$$

ce qui se réécrit

$$\int_0^1 F(x)g(x) \, \mathrm{d}x = \int_0^1 f(x) \left(G(1) - G(x) \right) \, \mathrm{d}x$$

Ainsi pour

$$v^{\star}(g) : x \mapsto G(1) - G(x) = \int_{x}^{1} g(t) dt$$

on vérifie que v^* est un endomorphisme de E vérifiant

$$\forall f, g \in E, \langle v(f), g \rangle = \langle f, v^{\star}(g) \rangle$$

b) Soit $\lambda \in \mathbb{R}$ et $f \in E$ vérifiant $(v^* \circ v)(f) = \lambda f$. La fonction f est nécessairement dérivable et vérifie

$$\begin{cases} \lambda f(1) = 0 \\ v(f)(x) = -\lambda f'(x) \end{cases}$$

La fonction f est donc nécessairement deux fois dérivable et vérifie

$$\begin{cases} \lambda f(1) = 0 \\ \lambda f'(0) = 0 \\ f(x) = -\lambda f''(x) \end{cases}$$

Si $\lambda=0$ alors f=0 et donc λ n'est pas valeur propre.

Si $\lambda > 0$ alors en écrivant $\lambda = 1/\sqrt{\omega}$, l'équation différentielle $\lambda y'' + y = 0$ donne la solution générale

$$y(t) = \alpha \cos(\omega t) + \beta \sin(\omega t)$$

La condition f'(0) = 0 donne $\beta = 0$ et la condition f(1) = 0 donne $\alpha \cos(\omega) = 0$. Si $\omega \notin \pi/2 + \pi \mathbb{N}$ alors f = 0 et $\lambda = 1/\sqrt{\omega}$ n'est pas valeur propre. En revanche, si $\omega \in \pi/2 + \pi \mathbb{N}$, alors par la reprise des calculs précédents donne $\lambda = 1/\sqrt{\omega}$ valeur propre associé au vecteur propre associé $f(x) = \cos(\omega x)$. Si $\lambda < 0$ alors la résolution de l'équation différentielle linéaire à coefficients constants avec les conditions proposées donne f = 0 et donc λ n'est pas valeur propre.

Exercice 9: [énoncé]

Puisque $F \subset \overline{F}$, on a déjà

$$\bar{F}^{\perp} \subset F^{\perp}$$

Soit $a \in F^{\perp}$.

Pour tout $x \in \overline{F}$, il existe une suite (x_n) d'éléments de F telle que $x_n \to x$. Puisque

$$\forall n \in \mathbb{N}, \langle x_n, a \rangle = 0$$

à la limite (le produit scalaire étant continue)

$$\langle x, a \rangle = 0$$

et donc $a \in \bar{F}^{\perp}$.

Finalement, par double inclusion $F^{\perp} = \bar{F}^{\perp}$.

Exercice 10 : [énoncé]

Puisque la base f est orthonormale, on a

$$A = \sum_{j=1}^{n} \|u(e_j)\|^2$$

et donc

$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} (e_i \mid u(e_j))^2$$

Notons $M = (m_{i,j})$ la matrice de u dans la base orthonormale e. On a

$$m_{i,j} = (e_i \mid u(e_j))$$

et donc

$$A = \operatorname{tr}(^t M M)$$

Si $e' = (e'_1, \dots, e'_n)$ est une autre base orthonormale de E et si M' est la matrice de u dans e', on peut écrire

$$M' = {}^t PMP \text{ avec } P \in \mathcal{O}_n(\mathbb{R})$$

et alors

$$\operatorname{tr}({}^{t}M'M') = \operatorname{tr}({}^{t}P^{t}MMP) = \operatorname{tr}({}^{t}MMP^{t}P) = \operatorname{tr}({}^{t}MM)$$

Finalement, la quantité A ne dépend ni de choix de f ni de celui de e.

Exercice 11: [énoncé]

Cas a = b:

 $f(x) = (a \mid x)^2$ et le maximum cherché est évidemment en a.

Cas a = -b:

 $f(x) = -(a \mid x)^2$ et le maximum cherché est évidemment en 0.

Cas restants:

Les vecteurs a + b et a - b constituent une famille orthogonale.

Posons

$$e_1 = \frac{a+b}{\|a+b\|}, e_2 = \frac{a-b}{\|a-b\|}$$

Les vecteurs e_1 et e_2 forment une famille orthonormale que le peut compléter en une base orthonormale $(e_i)_{1 \leq i \leq n}$.

Pour x tel que $||x|| \le 1$, on peut écrire

$$x = x_1 e_1 + \dots + x_n e_n \text{ avec } x_1^2 + \dots + x_n^2 \le 1$$

et alors

$$(a \mid x) = x_1 \frac{1 + (a \mid b)}{\|a + b\|} + x_2 \frac{1 - (a \mid b)}{\|a - b\|}$$

puis

$$f(x) = x_1^2 \left(\frac{1 + (a \mid b)}{\|a + b\|} \right)^2 - x_2^2 \left(\frac{1 - (a \mid b)}{\|a + b\|} \right)^2$$

Le maximum cherché est pour $x_1 = 1$ et $x_2 = \ldots = x_n = 0$. Il vaut

$$\left(\frac{1+(a\mid b)}{\|a+b\|}\right)^2$$

Cette formule convient aussi pour les cas initialement isolés.

Exercice 12 : [énoncé]

a) Il est bien connu que l'application

$$(P,Q) \mapsto \langle P,Q \rangle = \int_0^1 P(t)Q(t) dt$$

définit un produit scalaire sur $\mathbb{R}_n[X]$. L'application $P \mapsto P(0)$ est une forme linéaire sur $\mathbb{R}[X]$ donc il existe un unique polynôme $A \in \mathbb{R}_n[X]$ tel que cette forme linéaire corresponde au produit scalaire avec A, ce qui revient à dire

$$\forall P \in \mathbb{R}_n [X], P(0) = \langle A, P \rangle = \int_0^1 A(t)P(t) dt$$

b) Si par l'absurde le degré de A est strictement inférieur à n alors P = XA est élément de $\mathbb{R}_n[X]$ et donc

$$\int_0^1 tA(t)^2 \, \mathrm{d}t = P(0) = 0$$

Or la fonction $t\mapsto tA(t)^2$ est continue positive sur [0,1] et la nullité de l'intégrale précédente entraı̂ne alors

$$\forall t \in [0,1], tA(t)^2 = 0$$

On en déduit A=0 ce qui est absurde.

Exercice 13: [énoncé]

Supposons l'existence d'un tel polynôme A et considérons P(X) = XA(X). On a

$$0 = P(0) = \langle A \mid P \rangle = \int_0^1 t A(t)^2 dt$$

Par nullité de l'intégrale d'une fonction continue positive, on obtient

$$\forall t \in [0,1], tA(t)^2 = 0$$

Le polynôme A admet une infinité de racine, c'est donc le polynôme nul ce qui est absurde.

Exercice 14: [énoncé]

- a) ras
- b) Supposons qu'un tel polynôme Q existe et considérons P=XQ

On a $\theta(P) = 0 = \int_0^1 tQ^2(t) dt$ donc Q = 0 d'où $\theta = 0$. Absurde.

Exercice 15 : [énoncé]

a) 1 et -1 sont racines de multiplicité n du polynôme $(X^2-1)^n$. 1 et -1 sont donc racines des polynômes

$$(X^2-1)^n$$
, $((X^2-1)^n)'$,..., $((X^2-1)^n)^{(n-1)}$

En appliquant le théorème de Rolle, on peut alors montrer par récurrence sur $k \in \{0, ..., n\}$ que $((X^2 - 1)^n)^{(k)}$ possède au moins k racines dans l'intervalle]-1,1[.

En particulier Q_n possède au moins n racines dans]-1,1[, or $\deg Q_n=n$ donc il n'y a pas d'autres racines que celles-ci et elles sont simples.

b) Raisonnons par récurrence sur $n \in \mathbb{N}$.

Pour n = 0, c'est immédiat.

Supposons la propriété établie au rang $n \ge 0$.

$$Q_{n+1}(X) = \frac{1}{2^{n+1}(n+1)!} \left(2(n+1)X(X^2-1)^n \right)^{(n)}$$

Par la formule de Leibniz

$$Q_{n+1}(X) = \frac{1}{2^n n!} \left(X \left((X^2 - 1)^n \right)^{(n)} + nX \left((X^2 - 1)^n \right)^{(n-1)} \right)$$

1 et -1 sont racines du polynôme $((X^2-1)^n)^{(n-1)}$ et donc celui-ci peut s'écrire $(X^2-1)S(X)$.

En exploitant l'hypothèse de récurrence, on obtient

$$Q_{n+1}(X) = X^{n+1} + X(X^2 - 1)R_n(X) + 2nX(X^2 - 1)S(X) = X^{n+1} + (X^2 - 1)R_{n+1}(X)$$

Récurrence établie

c) Par intégration par parties successives et en exploitant l'annulation en 1 et -1 des polynômes

$$(X^2-1)^n$$
, $((X^2-1)^n)'$,..., $((X^2-1)^n)^{(n-1)}$

on obtient

$$\int_{-1}^{1} P(t)Q_n(t) dt = \frac{(-1)^n}{2^n n!} \int_{-1}^{1} P^{(n)}(t)(t^2 - 1)^n dt$$

En particulier, si $P \in \mathbb{R}_{n-1}[X]$,

$$\int_{-1}^{1} P(t)Q_n(t) \, \mathrm{d}t = 0$$

d) Par la relation qui précède

$$\int_{-1}^{1} (Q_n(t))^2 dt = \frac{1}{2^n n!} \int_{-1}^{1} Q_n^{(n)}(t) (1 - t^2)^n dt$$

Puisque le polynôme $(X^2 - 1)^n$ est unitaire et de degré 2n

$$[(X^2 - 1)^n]^{(2n)} = (2n)! \text{ et } Q_n^{(n)} = \frac{(2n)!}{2^n n!}$$

De plus, par intégration par parties successives

$$\int_{-1}^{1} (1 - t^2)^n dt = \int_{0}^{1} (1 - t)^n (1 + t)^n dt = \frac{2^{2n+1} (n!)^2}{(2n+1)!}$$

Au final

$$\|Q_n\|^2 = \frac{2}{(2n+1)}$$

Exercice 16: [énoncé]

a) Par récurrence sur $n \ge 0$, établissons l'existence et l'unicité de la sous-famille $(P_k)_{0 \le k \le n}$ telle que voulue.

Cas n = 0: le polynôme P_0 vaut 1.

Supposons la propriété vraie au rang $n \ge 0$.

Les polynômes P_0, \ldots, P_n sont alors déterminés de façon unique par l'hypothèse de récurrence et il reste seulement à former P_{n+1} . Celui-ci peut s'écrire

$$P_{n+1} = X^{n+1} + Q(X)$$
 avec $Q(X) \in \mathbb{R}_n[X]$

On veut $(P_{n+1} \mid P_k) = 0$ pour tout $k \in \{0, \dots, n\}$. Le polynôme Q doit donc vérifier

$$\forall k \in \{0, \dots, n\}, (Q(X) \mid P_k) = -(X^{n+1} \mid P_k)$$

Ces relations détermine entièrement le polynôme Q puisque (P_0, \ldots, P_n) est une base orthogonale de $\mathbb{R}_n[X]$:

$$Q = -\sum_{k=0}^{n} \frac{(X^{n+1} | P_k)}{\|P_k\|^2} P_k$$

Le polynôme P_{n+1} existe donc et est unique.

Récurrence établie.

b) La famille $((-1)^n P_n(-X))$ vérifie les mêmes conditions que celles ayant défini la suite (P_n) . On en déduit

$$\forall n \in \mathbb{N}, P_n(-X) = (-1)^n P_n(X)$$

c) Soit $Q \in \mathbb{R}_{n-2}[X]$.

On peut écrire $Q = \sum_{k=0}^{n-2} a_k P_k$ et donc $(P_{n+1} \mid Q) = 0$.

On peut aussi écrire $XQ = \sum_{k=0}^{n-1} a'_k P_k$ et donc $(XP_n \mid Q) = (P_n \mid XQ) = 0$.

On en déduit

$$\forall Q \in \mathbb{R}_{n-2} [X], (P_{n+1} - XP_n \mid Q) = 0$$

d) Par simplification des termes de plus haut degré

$$P_{n+1} - XP_n \in \mathbb{R}_n [X]$$

On peut donc écrire

$$P_{n+1} - XP_n = \sum_{k=0}^{n} \alpha_k P_k$$

Or $P_{n+1} - XP_n$ est orthogonal à P_0, \ldots, P_{n-2} donc

$$P_{n+1} - XP_n = \alpha_n P_n + \alpha_{n-1} P_{n-1}$$

Enfin, par parité, $\alpha_n = 0$ et donc

$$P_{n+1} - XP_n = \alpha_{n-1}P_{n-1}$$

Exercice 17 : [énoncé]

a) Pour $P,Q \in E$, la fonction $t \mapsto P(t)Q(t)\mathrm{e}^{-t}$ est définie et continue par morceaux sur $[0,+\infty[$ et vérifie

$$t^2 P(t)Q(t)e^{-t} \xrightarrow[t \to +\infty]{} 0$$

On peut donc affirmer que cette fonction est intégrable sur $[0, +\infty[$ ce qui assure la bonne définition de \langle , \rangle .

On vérifie aisément que \langle , \rangle est une forme bilinéaire symétrique positive. Si $\langle P, P \rangle = 0$ alors par nullité de l'intégrale d'une fonction continue positive

$$\forall t \in [0, +\infty[, P(t)]^2 e^{-t} = 0$$

On en déduit que le polynôme P admet une infinité de racines et donc P = 0. b) Pour $k \ge 1$ ou k = 0, on peut affirmer que les polynômes P_k et P'_k sont orthogonaux car

$$P'_k \in \operatorname{Vect}(P_1, \dots, P_{k-1})$$

Par une intégration par parties

$$0 = \int_0^{+\infty} P_k'(t) P_k(t) e^{-t} dt = \frac{1}{2} \left[P_k(t)^2 e^{-t} \right]_0^{+\infty} + \frac{1}{2} \int_0^{+\infty} P_k(t)^2 e^{-t} dt$$

On en déduit

$$P_k(0)^2 = \|P_k\|^2 = 1$$

c) F est un hyperplan (car noyau de la forme linéaire non nulle $P \mapsto P(0)$). Son orthogonal est donc une droite vectorielle. Soit Q un vecteur directeur de celle-ci. On peut écrire

$$Q = \sum_{k=0}^{n} \langle P_k, Q \rangle P_k$$

Or

$$\langle P_k, Q \rangle = \langle P_k - P_k(0), Q \rangle + P_k(0) \langle 1, Q \rangle$$

Puisque le polynôme $P_k - P_k(0)$ est élément de F, il est orthogonal à Q et l'on obtient

$$\langle P_k, Q \rangle = P_k(0) \langle 1, Q \rangle$$

ce qui permet d'écrire

$$Q = \lambda \sum_{k=0}^{n} P_k(0) P_k \text{ avec } \lambda = \langle 1, Q \rangle \neq 0$$

On en déduit

$$d(1,F) = \frac{|\langle 1, Q \rangle|}{\|Q\|} = \frac{1}{\sqrt{\sum_{k=0}^{n} P_k(0)^2}} = \frac{1}{\sqrt{n+1}}$$

Enfin par Pythagore

$$||1||^2 = d(1,F)^2 + d(1,F^{\perp})^2$$

et l'on obtient

$$d(1, F^{\perp}) = \sqrt{\frac{n}{n+1}}$$

Exercice 18: [énoncé]

Raisonnons par récurrence sur $n \ge 2$.

Pour n=2 la propriété est immédiate car aucun vecteur ne peut être nul.

Supposons la propriété établie au rang $n \ge 2$.

Soit (x_1, \ldots, x_{n+1}) une famille de vecteurs vérifiant

$$\forall 1 \leqslant i \neq j \leqslant n+1, (x_i \mid x_j) < 0$$

Par projection orthogonale sur le sous-espace vectoriel de dimension finie $D = \operatorname{Vect} x_{n+1}$, on peut écrire pour tout $i \in \{1, \dots, n\}$

$$x_i = y_i + \lambda_i x_{n+1}$$

avec y_i un vecteur orthogonal à x_{n+1} et $\lambda_i < 0$ puisque $(x_i \mid x_{n+1}) < 0$. On remarque alors

$$(x_i | x_j) = (y_i | y_j) + \lambda_i \lambda_j ||x_{n+1}||^2$$

et on en déduit

$$\forall 1 \leqslant i \neq j \leqslant n, (y_i \mid y_j) < 0$$

Par hypothèse de récurrence, on peut affirmer que la famille (y_2, \ldots, y_n) est libre et puisque ses vecteurs sont orthogonaux au vecteur x_{n+1} non nul, on peut aussi dire que la famille $(y_2, \ldots, y_n, x_{n+1})$ est libre. Enfin, on en déduit que la famille $(x_2, \ldots, x_n, x_{n+1})$ car cette dernière engendre le même espace que la précédente et est formée du même nombre de vecteurs.

Par permutation des indices, ce qui précède vaut pour toute sous-famille formée de n vecteurs de la famille initiale (x_1,\ldots,x_n,x_{n+1}) .

Récurrence établie.

Exercice 19 : [énoncé]

Par récurrence sur $n \in \mathbb{N}^*$

Pour n=1 : Soit u un vecteur unitaire de E. On peut écrire

$$x_1 = \lambda_1.u, x_2 = \lambda_2.u, x_3 = \lambda_3.u$$

On a alors

$$(x_1 \mid x_2) = \lambda_1 \lambda_2, (x_2 \mid x_3) = \lambda_2 \lambda_3, (x_3 \mid x_1) = \lambda_3 \lambda_1$$

Ces trois quantités ne peuvent être négatives car

$$\lambda_1 \lambda_2 \lambda_3 \lambda_3 \lambda_3 \lambda_1 = (\lambda_1 \lambda_2 \lambda_3)^2 \geqslant 0$$

Supposons la propriété établie au rang $(n-1) \in \mathbb{N}^*$:

Par l'absurde, supposons que la configuration soit possible :

Nécessairement $x_{n+2} \neq 0$.

Posons $F = \text{Vect}(x_{n+2})^{\perp}$. On a dim F = n - 1.

$$\forall 1 \leqslant i \leqslant n+1, x_i = y_i + \lambda_i . x_{n+2}$$

avec $y_i \in F$ et $\lambda_i \in \mathbb{R}$.

Comme $(x_i \mid x_{n+2}) < 0$ on a $\lambda_i < 0$.

$$\forall 1 \leq i \neq j \leq n+1, \ (x_i \mid x_j) = (y_i \mid y_j) + \lambda_i \lambda_j \|x_{n+2}\|^2 < 0$$

donc $(y_i \mid y_i) < 0$.

On peut appliquer l'hypothèse de récurrence à la famille (y_1, \ldots, y_{n+1}) formée de vecteurs qui évoluent dans F. Récurrence établie.

Exercice 20: [énoncé]

Cas n=1.

Supposons disposer de vecteurs x_1, x_2, x_3 tels que

$$\forall i \neq j, (x_i \mid x_j) < 0$$

Puisque $x_1 \neq 0$, (x_1) est une base de E.

Cela permet d'écrire $x_2 = \lambda x_1$ et $x_3 = \mu x_1$.

 $(x_2 \mid x_1) < 0$ et $(x_3 \mid x_1) < 0$ donne $\lambda < 0$ et $\mu < 0$ mais alors

 $(x_2 \mid x_3) = \lambda \mu \|x_1\|^2 > 0!$

Cas n=2.

Supposons disposer de vecteurs $x_1, ..., x_4$ tels que

$$\forall i \neq j, (x_i \mid x_j) < 0$$

 x_1 étant non nul on peut écrire

$$\forall i \geqslant 2, x_i = \lambda_i x_1 + y_i$$

avec $y_i \in \{x_1\}^{\perp}$ et $\lambda_i < 0$.

Or

$$\forall i \neq j \geqslant 2, (x_i \mid x_j) = \lambda_i \lambda_j + (y_i \mid y_j) < 0$$

 $donc (y_i \mid y_j) < 0.$

 y_2, y_3, y_4 se positionnant sur la droite $\{x_1\}^{\perp}$, l'étude du cas n=1 permet de conclure.

Cas général.

Par récurrence sur $n \ge 1$.

Pour n = 1: ci-dessus

Supposons la propriété établie au rang $n \ge 1$.

Supposons disposer de vecteurs $x_1, ..., x_{n+3}$ tels que

$$\forall i \neq j, (x_i \mid x_i) < 0$$

à l'intérieur d'un espace vectoriel euclidien de dimension n+1.

 x_1 étant non nul on peut écrire

$$\forall i \geqslant 2, x_i = \lambda_i x_1 + y_i$$

avec $y_i \in \{x_1\}^{\perp}$ et $\lambda_i < 0$.

On a

$$\forall i \neq j \geqslant 2, (x_i \mid x_j) = \lambda_i \lambda_j + (y_i \mid y_j) < 0$$

donc $(y_i \mid y_j) < 0$.

 $y_2, ..., y_{n+3}$ se positionnant sur le sous-espace vectoriel $\{x_1\}^{\perp}$ qui est de dimension n, l'hypothèse de récurrence permet de conclure.

Récurrence établie.

Exercice 21 : [énoncé]

a) $f_{\alpha} \circ f_{\beta} = f_{\alpha+\beta+\alpha\beta}$.

Si $\alpha = -1$ alors $a \in \ker f_{\alpha}$ et donc f_{α} n'est pas bijective.

Si $\alpha \neq -1$ alors, pour $\beta = -\frac{\alpha}{1+\alpha}$,

$$f_{\beta} \circ f_{\alpha} = f_{\alpha} \circ f_{\beta} = f_0 = \operatorname{Id}$$

d'où la bijectivité de f_{α} .

b) Tout vecteur non nul orthogonal à a est vecteur propre associé à la valeur propre 1.

Tout vecteur non nul colinéaire à a est vecteur propre associé à la valeur propre $1+\alpha$.

Pour une raison de dimension, il ne peut y avoir d'autres vecteurs propres.

Exercice 22: [énoncé]

a) L'application f est linéaire et l'espace E est de dimension finie. Il suffit d'étudier l'injectivité de f pour pouvoir conclure.

Si $x \in \ker f$ alors $x = (a \mid x)b$ et donc $(a \mid x) = (a \mid x)(a \mid b)$.

Si $(a \mid x) \neq 0$ alors $(a \mid b) = 1$ et donc a = b (par égalité dans l'inégalité de Cauchy-Schwarz).

Par contraposée si $a \neq b$ alors $(a \mid x) = 0$ et x = 0 donc f bijective.

En revanche si a = b alors $a \in \ker f$ et f n'est pas bijective.

b) Supposons $a \neq b$. Si y = f(x) alors $y = x - (a \mid x)b$ puis

 $(a \mid y) = (a \mid x)(1 - (a \mid b))$ et donc

$$x = y + \frac{(a \mid y)}{1 - (a \mid b)}b$$

c)

$$f(x) = \lambda x \Leftrightarrow (a \mid x)b = (1 - \lambda)x$$

Soit λ une valeur propre. Il existe $x \neq 0$ tel que $f(x) = \lambda x$ donc $(a \mid x)b = (1 - \lambda)x$ puis $(a \mid x)(a \mid b) = (1 - \lambda)(a \mid x)$ ce qui donne $(a \mid x) = 0$ (qui

Si $(a \mid b) = 0$: $\lambda = 1$ est seule valeur propre et l'espace propre associé est l'hyperplan de vecteur normal a.

L'endomorphisme n'est alors pas diagonalisable.

implique $\lambda = 1$ avec $E_{\lambda}(f) = \{a\}^{\perp}$) ou $\lambda = 1 - (a \mid b)$.

Si $(a \mid b) \neq 0$: $\lambda = 1$ et $\lambda = 1 - (a \mid b)$ sont valeurs propres et puisque $E_1(f)$ est un hyperplan, l'endomorphisme est diagonalisable.

Exercice 23 : [énoncé]

Si p est une projection orthogonale sur un sous-espace vectoriel F alors

$$\forall x \in E, x = p(x) + (x - p(x))$$

avec $p(x) \perp (x - p(x))$. Par le théorème de Pythagore

$$||x||^2 = ||p(x)||^2 + ||x - p(x)||^2 \ge ||p(x)||^2$$

Inversement, soit p une projection telle que

$$\forall x \in E, \|p(x)\| \leqslant \|x\|$$

Puisque p est une projection, les espaces $F = \operatorname{Im} p$ et $G = \ker p$ sont supplémentaires et p est la projection sur F parallèlement à G. Il s'agit alors de montrer que ces deux espaces sont orthogonaux.

Soient $u \in F, v \in G$ et $\lambda \in \mathbb{R}$. Considérons le vecteur

$$x = u + \lambda . v$$

On a p(x) = u et $||p(x)||^2 \le ||x||^2$ ce qui donne

$$0 \leqslant 2\lambda(u \mid v) + \lambda^2 \|v\|^2$$

Ceci valant pour tout $\lambda \in \mathbb{R}$, on a nécessairement $(u \mid v) = 0$. En effet, si $(u \mid v) \neq 0$ alors

$$2\lambda(u \mid v) + \lambda^2 \|v\|^2 \underset{\lambda \to 0}{\sim} 2\lambda(u \mid v)$$

ce qui est une expression qui change de signe.

Ainsi les espaces F et G sont orthogonaux et p est donc une projection orthogonale.

Exercice 24 : [énoncé]

Le projecteur p projette sur $\mathrm{Im} p$ parallèlement à $\ker p$. Il est orthogonal si, et seulement si, $\mathrm{Im} p$ et $\ker p$ sont des sous-espaces vectoriels orthogonaux. Soient $x \in \ker p$ et $y \in \mathrm{Im} p$. On a

$$\forall \lambda \in \mathbb{R}, \langle p(x+\lambda y), x+\lambda y \rangle \geqslant 0$$

ce qui donne

$$\forall \lambda \in \mathbb{R}, \langle \lambda y, x + \lambda y \rangle \geqslant 0$$

Corrections

puis

$$\forall \lambda \in \mathbb{R}, \lambda \langle y, x \rangle + \lambda^2 \langle y, y \rangle \geqslant 0$$

Si par l'absurde $\langle y, x \rangle \neq 0$ alors

$$\lambda \langle y, x \rangle + \lambda^2 \langle y, y \rangle \underset{\lambda \to 0}{\sim} \lambda \langle y, x \rangle$$

qui n'est pas de signe constant. C'est absurde.

Exercice 25 : [énoncé]

On sait

$$p_F(x) = \sum_{k=1}^{p} (x_k \mid x) x_k$$

donc

$$p_F(e_i) = \sum_{k=1}^p ({}^t X_k E_i) x_k$$

en notant $E_i = \text{Mat}_e(e_i)$. Puisque tX_kE_i est un réel,

$$\operatorname{Mat}_{\mathcal{B}}(p_F(e_i)) = \sum_{k=1}^{p} {t \choose X_k E_i} X_k = \sum_{k=1}^{p} X_k^t X_k E_i$$

puis

$$\operatorname{Mat}_{\mathcal{B}}(p_F) = \sum_{k=1}^{p} X_k^{t} X_k$$

 $\operatorname{car} (E_1 \mid \cdots \mid E_n) = I_n.$

Exercice 26: [énoncé]

- a) Vérification sans peine.
- b) Soit $(f,g) \in V \times W$. On a

$$\langle f, g \rangle = \int_0^1 f(t)g''(t) + f'(t)g'(t) dt = [f(t)g'(t)]_0^1 = 0$$

et les espaces V et W sont donc en somme directe.

Soit $f \in E$. Posons

$$\lambda = f(0) \text{ et } \mu = \frac{f(1) - f(0) \text{ch}(1)}{\text{sh}(1)}$$

On a f = g + h avec $h = \lambda \operatorname{ch} + \mu \operatorname{sh} \in W$ et $g = f - h \in V$ par construction. Les espaces V et W sont donc supplémentaires orthogonaux et l'on peut introduire la projection orthogonale p sur W. Par ce qui précède

$$p(f) = f(0)\operatorname{ch} + \frac{f(1) - f(0)\operatorname{ch}(1)}{\operatorname{sh}(1)}\operatorname{sh}$$

14

c) Soit g la fonction de $E_{\alpha,\beta}$ définie par

$$g = \alpha \operatorname{ch} + \frac{\beta - \alpha \operatorname{ch}(1)}{\operatorname{sh}(1)} \operatorname{sh}$$

Les fonctions de $E_{\alpha,\beta}$ sont alors de la forme f = g + h avec h parcourant V et par orthogonalité de g et h

$$\int_0^1 (f(t)^2 + f'(t)^2) dt = ||f||^2 = ||g||^2 + ||h||^2$$

On en déduit

$$\inf_{f \in E_{\alpha,\beta}} \int_0^1 \left(f(t)^2 + f'(t)^2 \right) dt = \|g\|^2 = \frac{(\alpha^2 + \beta^2) \operatorname{ch}(1) - 2\alpha\beta}{\operatorname{sh}(1)}$$

Exercice 27 : [énoncé]

a) symétrie, bilinéarité et positivité : ok

Si $\varphi(P,P) = 0$ alors $\int_0^{+\infty} P^2(t) e^{-t} dt = 0$ donc (fonction continue positive d'intégrale nulle)

$$\forall t \in \mathbb{R}^+, P(t) = 0$$

Comme le polynôme P admet une infinité de racines, c'est le polynôme nul.

b) Par intégration par parties successives, $\int_0^{+\infty} t^n e^{-t} dt = n!$ donc

$$\varphi(X^p, X^q) = (p+q)!$$

c) On interprète

$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^{+\infty} e^{-t} (t^2 - (at+b))^2 dt = d(X^2, \mathbb{R}_1[X])^2 = \|X^2 - \pi\|^2$$

avec $\pi = aX + b$ le projeté orthogonal de X^2 sur $\mathbb{R}_1[X]$ $(X^2 - \pi \mid 1) = (X^2 - \pi \mid X) = 0$ donne

$$\begin{cases} a+b=2\\ 2a+b=6 \end{cases}$$

Après résolution a = 4, b = -2 et

$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^{+\infty} e^{-t} (t^2 - (at+b))^2 dt = 4$$

Exercice 28: [énoncé]

En introduisant l'espace E des fonctions réelles f continues sur]0,1] telles que $t \mapsto (tf(t))^2$ soit intégrable et en munissant cet espace du produit scalaire

$$(f \mid g) = \int_0^1 t^2 f(t)g(t) \,\mathrm{d}t$$

la quantité cherchée est : $m=d(f,F)^2$ avec $f:t\mapsto \ln t$ et $F=\mathrm{Vect}(f_0,f_1)$ où $f_0(t)=1$ et $f_1(t)=t$.

 $m = ||f - p(f)||^2$ avec p la projection orthogonale sur F.

p(f)(t) = a + bt avec $(p(f) \mid f_0) = (f \mid f_0)$ et $(p(f) \mid f_1) = (f \mid f_1)$. La résolution du système ainsi obtenu donne a = 5/3 et b = -19/12.

 $m = ||f - p(f)||^2 = (f - p(f) | f) = 1/432.$

Exercice 29 : [énoncé]

On sait déjà

$$\sum_{n=0}^{+\infty} (e_n \mid x)^2 \le ||x||^2$$

en vertu de l'inégalité de Bessel.

Par totalité de la famille, pour tout $\varepsilon > 0$, il existe $y \in \text{Vect}(e_n)_{n \in \mathbb{N}}$ tel que $||x - y|| \le \varepsilon$.

Le vecteur y est une combinaison linéaire de la famille $(e_n)_{n\in\mathbb{N}}$ donc il existe $N\in\mathbb{N}$ tel que $y\in\mathrm{Vect}(e_0,\ldots,e_N)$ et donc

$$\varepsilon \geqslant ||x - y|| \geqslant ||x - p(x)||$$

avec p(x) le projeté de x sur $Vect(e_0, \ldots, e_N)$ c'est-à-dire

$$p(x) = \sum_{n=0}^{N} (e_n \mid x)e_n$$

Par suite $|||x|| - ||p(x)||| \le ||x - p(x)|| \le \varepsilon$ donne

$$||x|| \leqslant ||p(x)|| + \varepsilon = \sqrt{\sum_{n=0}^{N} (e_n \mid x)^2} + \varepsilon \leqslant \sqrt{\sum_{n=0}^{+\infty} (e_n \mid x)^2} + \varepsilon$$

Ceci valant pour tout $\varepsilon > 0$, on obtient $||x|| \leqslant \sqrt{\sum_{n=0}^{+\infty} (e_n \mid x)^2}$ et finalement

$$||x||^2 = \sum_{n=0}^{+\infty} (e_n \mid x)^2$$

Exercice 30 : [énoncé]

On sait $\ker A \subset \ker({}^tAA)$ et si $X \in \ker({}^tAA)$ alors ${}^tAAX = 0$ donc

$$||AX||^2 = {}^tX^tAAX = 0$$

puis $X \in \ker A$. Ainsi

$$\ker A = \ker({}^t A A)$$

Il en découle

$$rg(A) = rg(^t A A)$$

puis

$$rg(A) = rg(^tA) = rg(^{tt}A^tA) = rg(A^tA)$$

Or $\operatorname{Im}(A^t A) \subset \operatorname{Im} A$ donc

$$Im(A^t A) = Im A$$

Exercice 31 : [énoncé]

a) Evidemment

$$\ker({}^t A + A) \supset \ker(A) \cap \ker({}^t A)$$

Inversement, soit $X \in \ker({}^{t}A + A)$. On a

$$^t AX + AX = 0$$

et donc

$$A^t A X + A^2 X = A^t A X = 0$$

puis

$${}^{t}XA^{t}AX = \left\| {}^{t}AX \right\|^2 = 0$$

On en déduit ${}^tAX = 0$ puis aussi AX = 0.

On peut alors conclure l'égalité demandée.

b) (\Rightarrow) Supposons ${}^tA + A$ inversible. On a alors

$$\ker(^t A + A) = \ker(A) \cap \ker(^t A) = \{0\}$$

On en déduit

$$\dim \ker A + \dim \ker^t A \leqslant n$$

Or

$$\dim \ker^t A + \operatorname{rg}^t A = n$$

donc

$$\dim \ker A \leqslant \operatorname{rg}^t A = \operatorname{rg} A$$

Mais $A^2 = 0$ entraı̂ne $\operatorname{Im} A \subset \ker A$ puis $\operatorname{rg} A \leqslant \dim \ker A$. Finalement, $\operatorname{Im} A \subset \ker A$ et $\operatorname{rg} A = \dim \ker A$ donc $\operatorname{Im} A = \ker A$. (\Leftarrow) Supposons $\operatorname{Im} A = \ker A$. Soit $X \in \ker({}^t A + A) = \ker(A) \cap \ker({}^t A)$. C

(\Leftarrow) Supposons Im $A = \ker A$. Soit $X \in \ker({}^tA + A) = \ker(A) \cap \ker({}^tA)$. On a $X \in \ker A$ donc $X \in \operatorname{Im} A$. Il existe alors une colonne Y telle que X = AY. Mais on a aussi ${}^tAX = 0$ donc ${}^tAAY = 0$ puis

$$||X||^2 = ||AY||^2 = {}^tY^tAAY = 0$$

Ainsi $\ker(^t A + A) = \{0\}$ et la matrice $^t A + A$ s'avère inversible.

Exercice 32 : [énoncé]

On a

$$||^t AX||^2 = {}^t X A^t AX = \langle X, A^t AX \rangle$$

Par l'inégalité de Cauchy-Schwarz

$$\left\| {^tAX} \right\|^2 = \left\langle {X,A^tAX} \right\rangle \leqslant \left\| {X} \right\| \left\| {A^tAX} \right\| \leqslant \left\| {X} \right\| \left\| {^tAX} \right\|$$

Ainsi

$$||^t AX|| \leqslant ||X||$$

et ce que ${}^{t}AX = 0$ ou non.

Exercice 33 : [énoncé]

a) On a

$$\left\| {}^{t}AX \right\|^{2} = {}^{t}XA^{t}AX = \left\langle X, A^{t}AX \right\rangle$$

Par l'inégalité de Cauchy-Schwarz

$$\left\|{}^{t}AX\right\|^{2} = \left\langle X, A^{t}AX \right\rangle \leqslant \left\|X\right\| \left\|A^{t}AX\right\| \leqslant \left\|X\right\| \left\|{}^{t}AX\right\|$$

Ainsi

$$||^t AX|| \leqslant ||X||$$

et ce que ${}^{t}AX = 0$ ou non.

b) Si AX = X alors

$$\|^{t}AX - X\|^{2} = \|^{t}AX\|^{2} - 2\langle^{t}AX, X\rangle + \|X\|^{2} \le 2(\|X\|^{2} - {}^{t}XAX) = 0$$

On en déduit ${}^tAX = X$.

b) Soit $X \in \ker(A - I_n) \cap \operatorname{Im}(A - I_n)$.

On a AX = X (et donc ${}^tAX = X$) et il existe $Y \in E$ vérifiant X = AY - Y.

$$||X||^2 = \langle X \mid AY - Y \rangle = {}^t X A Y - {}^t X Y$$

Or

$${}^{t}XAY = {}^{t}({}^{t}AX)Y = {}^{t}XY$$

et donc $||X||^2 = 0$. Ainsi

$$\ker(A - I_n) \cap \operatorname{Im}(A - I_n) = \{0\}$$

Enfin, le théorème du rang

$$\dim \ker(A - I_n) + \operatorname{rg}(A - I_n) = \dim E$$

permet de conclure

$$E = \ker(A - I_n) \oplus \operatorname{Im}(A - I_n)$$

Exercice 34: [énoncé]

Si $X \in \ker A$ alors $X \in \ker^t AA$.

Inversement, si $X \in \ker^t AA$ alors $^t AAX = 0$ donc $^t X^t AAX = ^t (AX)AX = 0$ d'où AX = 0 puis $X \in \ker A$.

Ainsi

$$\ker(^t AA) = \ker A$$

puis par la formule du rang

$$rg(^t A A) = rg A$$