最大公因数的一些性质.

Lemma:
$$x \neq \forall a, b \in \mathbb{Z}$$
, $\forall n \in \mathbb{Z}_{\geq 1}$, $\not h : gcd(a^n, b^n) = (gcd(a, b))^n$

Proof: $\not \exists a, b \not \equiv 30 \, \text{Bt}$, $a = 0 \, \text{Bb} = 0$... $a^n = 0 \, \text{Bb}^n = 0$
... $gcd(a^n, b^n) = gcd(0, 0) = 0$... $gcd(a, b) = gcd(0, 0) = 0$
... $(gcd(a, b))^n = 0^n = 0$... $f \Rightarrow b \in \mathbb{Z}_{\geq 1}$... $gcd(a, b) = \mathbb{Z}_{\geq 1}$... $gcd(a, b$

$$\begin{split} &: \left(\operatorname{gol}(a,b)^n \cdot \operatorname{gol} \left(\frac{a^n}{(\operatorname{gol}(a,b))^n} , \frac{b^n}{(\operatorname{gol}(a,b))^n} \right) = \operatorname{gol} \left(\left(\operatorname{gol}(a,b) \right)^n \cdot \frac{a^n}{(\operatorname{gol}(a,b))^n}, \left(\operatorname{gol}(a,b) \right)^n \cdot \frac{b^n}{(\operatorname{gol}(a,b))^n} \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right)^n \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right)^n \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(b^n, a^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(b^n, a^n \right) = \left(\operatorname{gol} \left(b^n, a^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(b^n, a^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(b^n, a^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(b^n, a^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(b^n, a^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(b^n, a^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(b^n, a^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(b^n, a^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(b^n, a^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(b^n, a^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) = \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right) \right) \right) \\ &: \left(\operatorname{gol} \left(a^n, b^n \right)$$

当一个时,

3

Proof: 假说 C=0. 则有以下两种可能: (i). n=0. 此时 $C^n=0^\circ$ 天意义. 希. :: a=0=\$b=0. (ii) $n \in \mathbb{Z}_{\geq 1}$. Hold $c^n = 0^n = 0$. $ab = c^n = 0$ · a EZA 且 b EZA ·· 看. :: c≠0. :: c∈Z且c≠0. 分处下的情况讨论: $\mathbb{O}_{n=0}$. Hold $\mathbb{C}^n = \mathbb{C}^o = 1$. $\mathbb{C}^o = 1$. : 0=116=1. $(\gcd(\alpha,c))^n = (\gcd(1,c))^n = 1 = \alpha.$ $(\gcd(b,c))^n = (\gcd(l,c))^0 = l = b$ - 结论成立。 2 n = 1. Let ab = c' = c ... c = ab = ba, $a \in \mathbb{Z}_{\geq 1}$, $b \in \mathbb{Z}_{\geq 1}$ ·ac且bc. $\therefore \gcd(a,c) = a, \gcd(b,c) = b$ $\therefore \alpha = \gcd(\alpha, c) = \left(\gcd(\alpha, c)\right), \quad b = \gcd(b, c) = \left(\gcd(b, c)\right). \quad \text{if it is the proof } b = \gcd(b, c) = \left(\gcd(b, c)\right).$ 3 $n \ge 2$. Hold $n-1 \ge 1$: $n-1 \in \mathbb{Z}_{\ge 1}$ $\therefore a,b \in \mathbb{Z}_{\geq 1}, \ \gcd(a,b) = 1 \qquad \therefore \gcd(a^{n-1},b) = 1, \gcd(a^n,b) = 1$ $\therefore a^n, b, a \in \mathbb{Z}, \gcd(a^n, b) = 1 \Rightarrow \gcd(a^n, ba) = \gcd(a^n, a) = \gcd(a, a^n) = a$ $\therefore a = \gcd(a^n, ba) = \gcd(a^n, ab) = \gcd(a^n, c^n) = \left(\gcd(a, c)\right)^n$ $\underbrace{\text{i. a}}_{\text{Let}} = \gcd(a^n, ba) = \gcd(a^n, ab) = \gcd(a^n, c^n) = \left(\gcd(a, c)\right)^n$: $a, b \in \mathbb{Z}_{\geq 1}$, gcd(a, b) = 1 : $gcd(a, b^{n-1}) = 1$, $gcd(a, b^n) = 1$: $gcd(b^n, a) = 1$ $\therefore \gcd(b^n, \alpha) = 1$ $b^{n}, a, b \in \mathbb{Z}, \gcd(b^{n}, a) = 1 : \gcd(b^{n}, ab) = \gcd(b^{n}, b) = \gcd(b, b^{n}) = b$ $b = \gcd(b^n, ab) = \gcd(b^n, c^n) = (\gcd(b, c))^n$