Beyond the Standard Model with $Sp(4)_c$ on the lattice

Fabian Zierler

SEWM 2024, Frankfurt, August 30, 2024

arXiv: [2202.05191], [2304.07191], [2405.01388], [2405.05765], [2405.06506]

based on work with:

E. Bennett, L. Del Debbio, Y. Dengler, N. Forzano, D.K. Hong, R.C. Hill,

H. Hsiao, S. Kulkarni, J.-W. Lee, C.-J. D. Lin, B. Lucini, A. Lupo, A. Maas,

S. Mee, M. Nikolic, M. Piai, J. Pradler, F. Pressler, D. Vadacchino


```
[1] Holland et.al. [hep-lat/0312022], Mason et.al. [2310.02145] [4] Bennett et.al. [1712.04220] [3] see e.g. Ferretti, Karateev [1312.5330], Ferretti [1604.06467], Hochberg et. al. [1402.5143] [1411.3727] [1512.07917], Kulkarni et.al. [2202.05191] Lattice: Bennett et.al. [1909.12662] [2304.07191] [2311.14663] [2312.08465], Dengler et.al. [2311.18549]
```

Sp(4) Gauge Theories in BSM Models

- QCD-like extensions of the Standard Model:
- Studied in multiple variations on the lattice
 - Pure gauge theory:
 - Deconfinement transition $^{[1]}$, glueballs & large- $N^{[4]}$
 - \circ With Fermions: **Higgs compositeness**, **Dark Matter** $^{[3]}$

QCD-like gauge theories

- New non-SM gauge force with fermions
 - Composite Higgs Models: hyper-gluons and hyper-quarks
 - Dark Matter Models: dark gluons and dark quarks
- Depending on the BSM model they can carry SM charges or not

- I will use the QCD nomenclature:
 - \circ e.g. π : 0^- nonsinglet, ho: 1^- non-singlet, \ldots
 - these states are **not** the QCD hadrons
 - but they are similar in terms of their fermion structure

Strongly Interacting Dark Matter Models

- With fermions: Global symmetries make DM stable
- With mediator: Dark sector coupled to SM

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
DM \\
DM \\
DM \\
DM
\end{array}
\end{array}
\begin{array}{c}
\text{mediator} \\
DM
\end{array}
\end{array}$$

$$\begin{array}{c}
CDM \\
DM
\end{array}$$

$$\begin{array}{c}
-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}_f(i\not\!\!D + m_f)\psi_f$$

Non-vanishing self-scattering cross-section arise

$$\langle v\sigma_{\pi\pi\to\pi\pi}\rangle \neq 0$$

Relic density driven by strong processes

Composite Higgs From Multiple Fermion Representations

$${\cal L} = -rac{1}{2} {
m Tr} F_{\mu
u} F^{\mu
u} + ar{Q}^i \left(i D\!\!\!\!/ - m_i^f
ight) Q^i + ar{\Psi}^j \left(i D\!\!\!\!/ - m_j^{as}
ight) \Psi^j$$

- ullet Gauge theory of group G with field strength tensor $F_{\mu
 u}$
- ullet Two species of fermions Q and Ψ under different irreps of G Applications:
- Composite Higgs+top(fundamental and antisymmetric fermions)
- Models of supersymmetric physics (fundamental + adjoint)

[2] Witten (Nucl.Phys.B.149, 1979) (Nucl.Phys.B.156, 1979) Veneziano (Nucl.Phys.B.159, 1979)

[3] Belyaev et.al. [1512.07242]

Chiral Symmetry and Extra Goldstone Bosons

- ullet One breaking pattern for every fermion representation $^{[1]}$
 - \circ complex: $SU(N_f) imes SU(N_f) o SU(N_f)$
 - \circ pseudoreal: $SU(2N_f) o Sp(2N_f)$
 - \circ real: $SU(2N_f) o SO(2N_f)$
- ullet And one axial U(1) for each representation
 - \circ one (combination of) U(1) broken by axial anomaly! $^{[2]}$
 - \circ Additional U(1) Goldstone for multiple representations! $^{[3]}$
 - o mixed state with contributions from different reps

Flavour symmetry: Pseudo-real representation

- Higher symmetry than theories with complex representations
 - \circ same as two colour QCD (SU(2)=Sp(2))
- Mixing of left- and right-handed Weyl components

$$\Psi = egin{pmatrix} u_L \ d_L \ -SCu_R^* \ -SCd_R^* \end{pmatrix} = egin{pmatrix} u_L \ d_L \ ar{u}_R \ ar{d}_R \end{pmatrix} egin{array}{c} C \dots ext{charge conj.} \ S \dots ext{colour matrix} \ \mathcal{L}_{ ext{fermion}} = iar{\Psi}
ot \hspace{-0.2cm} \Psi - rac{1}{2} \left(\Psi^T SCM \Psi + h.c.
ight) \end{pmatrix}$$

- ullet Mass matrix M proportional to symplectic invariant tensor
- ullet generators $au_a:S au_aS=- au_a^T$

The Hadron Spectrum of Sp(4) Theories

- 1. $Sp(4)_c$ with $N_f=2$ (fundamental)
- 2. $Sp(4)_c$ with $N_f=2$ (fundamental) and $n_f=3$ (antisymmetric)

Lattice setup

ullet Euclidean action S on hypercubic lattice

$$\langle O
angle = rac{1}{Z} \int \mathcal{D}[A_{\mu},\psi,ar{\psi}] e^{-S[A_{\mu},\psi,ar{\psi}]} O[A_{\mu},\psi,ar{\psi}]$$

ullet Lattice regulator: finite spacing a (UV), finite extent L (IR)

- ullet Calculate observable $\langle O
 angle$ on finite lattice
- ullet Extrapolate to the continuum: a o 0 , $L o \infty$
- Wilson fermions, GRID code on GPUs, HiRep code on CPUs

Other mass scales than QCD are potentially relevant!

- ullet Free parameters: Coupling g^2 and bare fermion masses
 - one overall energy scale
 - one fermionic mass scale for every representation
- All scales can deviate strongly from QCD!
 - o can result in different meson mass hierarchies
 - o can give rise to a different finite-temperature phase diagram

Lattice investigations of a larger parameter space are useful!

The $N_f=2$ spectrum of Sp(4)

- Strongly resembles QCD
- ullet Most notable difference: η'
 - o similar to two-flavour QCD
- $\pi\pi$ -scattering investigated (see poster by Y. Dengler)
- ullet f_0/σ and glueballs under ongoing investigation

The spectrum of Sp(4) with mixed representation

- ullet Two fundamental $N_f = 2$ and three antisymmetric $n_f = 3$ fermions
- ullet Quenched hadron and glueball masses are available $^{[1]}$
- But we need to go towards
 dynamical fermions

Mixed-representations: With dynamical fermions

ullet Non-singlet meson masses determined using variational analysis and from spectral densities $^{[1]}$

Mixed-representations: States connected to $U(1)_{A}$

- ullet pseudoscalar flavour-singlets: similar to η and η' of QCD
- ullet Potentially light singlet can have large pheno implications! $^{[1]}$

$$egin{align} O_{\eta^{
m f}} &= \left(ar{Q}^{1}\gamma_{5}Q^{1} + ar{Q}^{2}\gamma_{5}Q^{2}
ight)/\sqrt{2} \ O_{\eta^{
m as}} &= \left(ar{\Psi}^{1}\gamma_{5}\Psi^{1} + ar{\Psi}^{2}\gamma_{5}\Psi^{2} + ar{\Psi}^{3}\gamma_{5}\Psi^{3}
ight)/\sqrt{3} \ \end{pmatrix}$$

- ullet These two states will mix: Light PNGB state η_l' + heavier state η_h'
 - \circ mixing angle in general $\phi
 eq 0$
 - \circ Effective field theory in chiral limit has been developed $^{[2]}$

Mixed-representations: States connected to $U(1)_{A}$

- Masses close to respective non-singlet states, small mixing angle
 - o fermion masses appear to be far from chiral limit

Baryon spectrum of single ensemble

- ullet Preliminary determination of hybrid baryons $(QQ\psi)$
- Plot depicts single lattice ensemble
- Glueballs and scalar singlet under investigation

Looking forward: Connection to the phase diagram

- ullet Pure Gauge: Known first-order deconfinement transition $^{[1]}$
 - \circ Recently investigated using density-of-states method LLR $^{\lfloor 2
 floor}$
 - Goal: Access to gravitational wave parameters
 - Theories with Fermions require further algorithmic development
- Lattice Simulations at finite density possible
 - \circ No sign problem (as in QC₂D)

Summary

- ullet Sp(2N) (and QCD-like theories in general) for BSM scenarios
- ullet Zero-temperature results for Sp(4) available and improving!
- Single rep.: Moderately light fermions available, chiral extrapolation feasible
- Mixed rep.: Currently restricted to heavy dynamical fermions

Outlook

- Finer lattice spacings, lighter fermions, different discretizations
- Glueballs, scalar singlet channel, and more mixing
- Meson scattering and resonances

Back-up slides

Topology of ensembles

ullet not frozen, but correlations in topological charge Q

Configurations chosen such that plaquette is uncorrelated

Lattice spectroscopy: Getting meson masses

- Construct operator with same quantum numbers
- Energy levels from Euclidean correlator

$$C_{\mathcal{O}}(t) = \sum_n rac{1}{2E_n} \langle 0|\mathcal{O}|n
angle^* \langle n|\mathcal{O}|0
angle e^{-E_n t}.$$

• For mesons a generic correlator

$$C(t - t') = \sum_{\vec{x}, \vec{y}} \left(\underbrace{\vec{x}, t} \right) \left(\underbrace{\vec{y}, t'} \right) + \underbrace{\vec{x}, t} \right) + \underbrace{\text{const.}}_{=|\langle 0|O|0\rangle|^2}$$

Available Dynamical Ensembles

Label	β	$am_0^{ m as}$	$am_0^{ m f}$	N_t	N_s	$N_{ m conf}$
M1	6.5	-1.01	-0.71	48	20	479
M2	6.5	-1.01	-0.71	64	20	698
M3	6.5	-1.01	-0.71	96	20	436
M4	6.5	-1.01	-0.70	64	20	709
M 5	6.5	-1.01	-0.72	64	32	295

- Ensembles generated using GPUs with GRID
- Measurements performed with HiRep on CPUs

Composite Higgs + Top Realizations

$G_{ m HC}$	ψ	χ	Restrictions	G/H	
$\mathrm{SO}(N_{\mathrm{HC}})$	$5 \times \mathbf{F}$	$6 imes \mathbf{Spin}$	$N_{ m HC} = 7,9$	$\frac{SU(5)}{SO(5)} \frac{SU(6)}{SO(6)} U(1)$	
$\mathrm{SO}(N_{\mathrm{HC}})$	$5 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\mathrm{HC}} = 7,9$	$\overline{SO(5)} \overline{SO(6)} \overline{O(1)}$	
$\mathrm{Sp}(2N_{\mathrm{HC}})$	$5 \times \mathbf{A}_2$	$6 \times \mathbf{F}$	$2N_{\mathrm{HC}} = 4$	$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \frac{\mathrm{SU}(6)}{\mathrm{Sp}(6)} \cdot \mathrm{U}(1)$	
$\mathrm{SU}(N_{\mathrm{HC}})$	$5 imes \mathbf{A}_2$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$N_{\mathrm{HC}} = 4$	$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \frac{\mathrm{SU}(3) \times \mathrm{SU}(3)}{\mathrm{SU}(3)_D} \mathrm{U}(1)$	
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{\mathrm{HC}} = 10$	$SO(5)$ $SU(3)_D$ $O(1)$	
$\mathrm{Sp}(2N_{\mathrm{HC}})$	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	$2N_{\mathrm{HC}} = 4$	$\frac{\mathrm{SU}(4)}{\mathrm{Sp}(4)} \frac{\mathrm{SU}(6)}{\mathrm{SO}(6)} \mathrm{U}(1)$	
$SO(N_{ m HC})$	$4 imes \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{ m HC} = 11$	Sp(4) SO(6 0 (1)	
$SO(N_{ m HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 \times \mathbf{F}$	$N_{ m HC} = 10$	$\frac{\mathrm{SU}(4)\times\mathrm{SU}(4)'}{\mathrm{SU}(4)_D}\frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}\mathrm{U}(1)$	
$\mathrm{SU}(N_{\mathrm{HC}})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	$N_{ m HC} = 4$	$SU(4)_D$ $SO(6)$ $U(1)$	
$\mathrm{SU}(N_{\mathrm{HC}})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$N_{ m HC} = 5, 6$	$\frac{\mathrm{SU}(4)\times\mathrm{SU}(4)'}{\mathrm{SU}(4)_D}\frac{\mathrm{SU}(3)\times\mathrm{SU}(3)}{\mathrm{SU}(3)_D}\mathrm{U}(1)$	

Table 6. Subclass of models that is likely to be outside of the conformal window, together with the coset they give rise to after spontaneous symmetry breaking.

Lattice Investigation: Masses

- ullet Variational Analysis with $O_{\eta^{
 m f}}$ and $O_{\eta^{
 m as}}$ operators
- Several levels of Wuppertal smearing

- ullet $N_{
 m f}$ and $N_{
 m as}$ enhance singlet contributions
- ullet non-vanishing fermion masses $(m_{
 m f},m_{
 m as})$ suppress them

Results: Effective masses for η_l' and η_h'

- ullet Variational analysis for correlation matrix $C_{ij}(t)$
- ullet $n^{
 m th}$ eigenvalue falls off exponentially with energy E_n
- ullet Masses from fits to correlator at large t

Results: Pseudoscalar Singlet Masses

Spectrum likely dominated by heavy fermion masses

ensemble M1 loss of signal in effective mass fit: mixing angle $\phi/^{\circ}$ 15 10 15 20 $t > t_0 = 5$

Results: Mixing Angle ϕ small

• Consistently small mixing angles

Label	β	N_t	N_s	$\phi/^\circ$
M1	6.5	48	20	6.15(83)
M2	6.5	64	20	6.07(63)
M3	6.5	96	20	6.16(66)
M4	6.5	64	20	7.44(58)
M5	6.5	64	32	6.61(54)

[2] Hochberg et. al. [1411.3727] [1512.07917]

SIMPs from Sp(4) gauge theory

- Pseudo-real representation: [1]
 - ⇒ more pseudo-Goldstones
 - \Rightarrow no fermionic bound states
- ullet $N_f=2$: exactly 5 Goldstones
 - \circ Allows $3\mathrm{DM} o 2\mathrm{DM}$ $^{[2]}$

Sp(4) with two fermions is a minimal SIMP DM realisation

Non-singlet spectrum

The pseudoscalar and vector mesons are the lightest non-singlets.30

The pseudoscalar singlet η' is surprisingly light!

- Phenomenologically relevant:
 - $\sim m_
 ho > m_{\eta'}$ different from QCD
 - o relevant low-energy dof
 - \circ η' relevant for $\pi\pi$ scattering
 - more accessible channels for decays into SM

Interesting! Is this surprising?

Consider different theories:

- ullet Large N_c : $m_{\eta'}-m_\pi \propto N_f/N_c$
 - $\circ \ N_f = 2$ could be "small"
 - $\circ~N_c=4$ could be "large"

SU(2) and SU(3) comparison:

- ullet Similarities:generic $N_f = 2$ feature?
- ullet QCD: strong N_f dependence
- ullet Differences may arise $m_\pi/m_
 ho o 0$ mass driven by flavour content!

Experimental light hadron masses [MeV]

QCD Spectrum

- π, K, η light: pseudo-Goldstones
- Vectors and scalars light
- ullet Light and broad 0^+ singlet f_0/σ
- ullet Heavy 0^- singlet η'
 - \Rightarrow $U(1)_A$ anomalously broken

Lattice Investigation: Mixing Angle

- Obtained from operator mixing (no signal for decay constants)
- ullet Use of flavour basis justifies use of single mixing angle $^{[1]}$

$$egin{pmatrix} \left(egin{array}{ccc} \langle 0|O_{\eta^{
m f}}|\eta_l'
angle & \langle 0|O_{\eta^{
m as}}|\eta_l'
angle \ \langle 0|O_{\eta^{
m as}}|\eta_h'
angle \end{array}
ight) = \left(egin{array}{ccc} A_{
m f}'' & A_{
m as}'' \ A_{
m f}'' & A_{
m as}' \end{array}
ight) \equiv \left(egin{array}{ccc} A_{\eta_l'}\cos\phi & A_{\eta_l'}\sin\phi \ -A_{\eta_h'}\sin\phi & A_{\eta_h'}\cos\phi \end{array}
ight) = \left(egin{array}{ccc} A_{\eta_l'}\sin\phi & A_{\eta_h'}\cos\phi \end{array}
ight) = \left(egin{array}{ccc} A_{\eta_h'}\sin\phi & A_{\eta_h'}\cos\phi \end{array}
ight) = \left(egin{array}{ccc} A_{\eta_h'}\cos\phi & A_{\eta_h'}\cos\phi \end{array}
ight) = \left(e$$

- Matrix elements are obtained from the eigenvectors of the GEVP
- ullet Expected to be constant for all timeslices t
- Test for dominance of fermion masses:
 - $\circ \; m_{
 m fermions}
 ightarrow \infty$ implies that $\phi
 ightarrow 0$

An example: Sp(4) with 2 fundamental + 3 antisymmetric

$${\cal L} = -rac{1}{2} {
m Tr} F_{\mu
u} F^{\mu
u} + ar{Q}^{
m i} \left({
m i} D \!\!\!/ - m^{
m f}_{
m i}
ight) Q^{
m i} + ar{\Psi}^{
m j} \left({
m i} D \!\!\!/ - m^{
m as}_{
m j}
ight) \Psi^{
m j}$$

- ullet Non-perturbative input needed for pheno \Rightarrow Lattice
- ullet 5 + 20 + 1 pseudo-Goldstones + 1 $U(1)_A$ state
- ullet The two U(1) states will mix: both are 0^- iso-singlets
- ullet Fermionic bound states $QQ\Psi$ provide top partner

- Goals: Determine hadron spectrum on the lattice
- In parallel: Develop techniques for finite temperature!