4.5. 3. $z\;x_1\quad x_2\quad x_3\quad s_1\quad s_2\quad s_3\quad RHS\ Ratio$ _____ 1-2 1 -1 0 0 0 0 0 3 1 1 1 0 0 60 20 -----0 1 -1 2 0 1 0 10 10^* Enter x_1 in row 2 0 1 1 -1 0 0 1 20 20 _____ _____ 1 0 -1 3 0 2 0 20 _____ $0\ 0\ 4\ -5\ 1\ -3\ 0\ 30\ 15/2$ -----0 1 -1 2 0 1 0 10 None

0 0 2 -3 0 -1 1 10 5* Enter x₂ in

row 3

$z x_1$	\mathbf{x}_2	\mathbf{x}_3 \mathbf{s}_1 \mathbf{s}_2	$_2$ s_3 RHS	Ratio
1 0	0	3/2 0 3	/2 1/2 25	
0 0	0	1 1 -1	-2 10	
0 1	0	1/2 0 1	/2 1/2 15	
0 0	1	-3/2 0 -1	1/2 1/2 5	

This is an optimal tableau with optimal solution z = 25, $s_1 = 10$, $x_1 = 15$, $x_2 = 5$, $s_2 = s_3 = 0$.

4.5.5. Initial Tableau

Z	X1	X2	S1	S2	S3	RHS
1	-1	-1	0	0	0	0
0	4	1	1	0	0	100
0	1	1	0	1	0	80
0	1	0	0	0	1	40

We could choose to enter either X1 or X2 into the basis. We arbitrarily choose to enter X2 into basis. Row 2 is the pivot row yielding the following (optimal) tableau.

Z	X1	X2	S1	S2	S3	RHS
1	0	0	0	1	0	80
0	3	0	1	-1	0	20
0	1	1	0	1	0	80
0	1	0	0	0	1	40

Optimal solution is z = 80, x1=0, x2=80, s1=s2=0, s3=40.

-	
h	
ι,	

Z	X1	X2	X3	S1	S2	S 3	RHS
1	-1	-1	-1	0	0	0	0
0	1	2	2	1	0	0	20
0	2	1	2	0	1	0	20
0	2	2	1	0	0	1	20

We arbitrarily choose X1 to enter basis. Then we arbitrarily choose X1 to enter the basis in ROW 3. The resulting tableau follows:

Z	X1	X2	X3	S1	S2	S3	RHS
1	0	0	5	0	0	.5	10
0	0	1	1.5	1	0	5	10
0	0	-1	1	0	1	-1	0
0	1	1	.5	0	0	.5	10

Now X3 enters basis in Row 2. The resulting tableau follows:

Z	X1	X2	X3	S1	S2	S3	RHS
1	0	5	0	0	.5	0	10
0	0	2.5	0	1	-1.5	1	10
0	0	-1	1	0	1	-1	0
0	1	1.5	0	0	5	1	10

X2 enters basis in ROW 1 yielding the following optimal tableau:

Z	X1	X2	X3	S1	S2	S 3	RHS
1	0	0	0	.2	.2	.2	12
0	0	1	0	.4	6	.4	4
0	0	0	1	.4	.4	6	4
0	1	0	0	6	.4	.4	4

The optimal solution to the LP is Z=12, X1=X2=X3=4.

4.6.1

1. z x_1 x_2 s_1 s_2 s_3 RHS Ratio 1 -4 1 0 0 0 0 0 2 1 1 0 0 8 8 0 0 1 0 1 0 5 5* Enter x_2 in 0 1 -1 0 0 1 4 None

row 2

1	-4	0	0	-1	0	-5	
0	2	0	1	-1	0	3	
0	0	1	0	1	0	5	
0	1	0	0	1	1	9	

The current tableau is optimal because each variable has a non-positive coefficient in the current tableau. Thus the optimal solution to the LP is z = -5, $s_1 = 3$, $x_2 = 5$, $s_3 = 9$,

 $x_1 = s_2 = 0$. Observe that the optimal objective function value for an LP can be negative.

4.7.2

2. $z x_1 x_2 s_1 s_2$ RHS Ratio

1 0 0 0 3 6 0 17/2 0 1 -7/2 28 0 -1/2 1 0 1/2 1

This is an optimal tableau with optimal solution z=6, $s_1=28$, $x_2=1$, $s_2=x_1=0$. Since the non-basic variable x_1 has a zero coefficient in Row 0 we can enter x_1 into the basis to obtain the alternative optimal solution z=6, $x_1=56/17$, $x_2=45/17$. By averaging these two optimal solutions, a third optimal solution may be obtained. This yields the optimal solution z=6, $x_1=28/17$, $x_2=31/17$.

4.8.1

1. z x₁ x₂ s₁ s₂ RHS Ratio

1 0 -2 0 0 0

0 1 -1 1 0 4 None

0 -1 1 0 1 1 1* Enter x₂

in row 2

Since x_1 has a negative coefficient in Row 0 and a non-positive coefficient in each constraint, we have an unbounded LP. From the final tableau we find that (holding $s_2 = 0$)

$$z = 2 + 2x_1$$

 $s_1 = 5$
 $x_2 = 1 + x_1$
 $s_2 = 0$

Thus if $2 + 2x_1 = 10,000$ or $x_1 = 4,999$ we can find z = 10,000.

a point in the feasible region with

Thus z = 10,000, $s_1 = 5$, $x_1 = 4,999$, $x_2 = 5,000$, $s_2 = 0$ is a point in the feasible region having z > 10,000.

4.12.3

3. Note that since $x_1 + x_2 = 3$, the constraint $x_1 + x_2 >= 3$ is automatically satisfied so we may omit this constraint from consideration. Then we wish to $\max z = 3x_1 + x_2 - Ma_2$

s.t.
$$2x_1 + x_2 + s_1 = 4$$

 $x_1 + x_2 + a_2 = 3$

Eliminating a_2 from $z - 3x_1 - x_2 + Ma_2$ we obtain

z - $(M + 3)x_1$ - $(M + 1)x_2$ = -3M. Proceeding with the simplex we obtain

z x_1 x_2 s_1 a_2 RHS

1	-M-3	3 -N	1 -1	0	0	-3M		
0	2	1	1	0	4			
0	1	1	0	1	3			

1	0	(1-M)	/2 (M	+ 3)/	2 0	6-M
0	1	1/2	1/2	0	2	
0	0	1/2	-1/2	1	1	
Z	\mathbf{x}_1	X ₂	s_1	a_2	RHS	

1	0	0	2	M-1	5	
0	1	0	1	-1	1	
0	0	1	-1	2	2	

This is an optimal tableau with optimal solution z = 5, $x_1 = 1$ $x_2 = 2$, $x_1 = 0$.