Appunti di Architettura

Architettura degli Elaboratori (prof. Fersini) - CdL Informatica Unimib - 23/24

Federico Zotti

Indice

1	Sist	temi Numerici			2
	1.1	Introduzione		 	 2
	1.2	Vari sistemi numerici		 	 2
		1.2.1 Sistema Binario		 	 3
2	Rap	ppresentazione di numeri interi con se	egno		3
	2.1	Operazioni aritmetiche		 	 3
		2.1.1 Somma		 	 3
		2.1.2 Sottrazione		 	 4
	2.2	Modulo e Segno		 	 4
		2.2.1 Somma		 	 4
		2.2.2 Sottrazione		 	 5
	2.3	Complemento a 1		 	 5
	2.4	Complemento a 2		 	 5
		2.4.1 Conversione da CA2 a decima	ıle	 	 6
		2.4.2 Somma		 	 6
		2.4.3 Sottrazione		 	 6
	2.5	Shift		 	 6
	2.6	Rappresentazione Eccesso 2^{n-1}			 6

1 Sistemi Numerici

1.1 Introduzione

I calcolatori utilizzano, a differenza di noi, il **sistema binario**. Questo perché la corrente elettrica può rappresentare solo due stati: acceso (1) e spento (0).

Sono stati definiti degli **standard di codifica**: regole che vengono utilizzate nella rappresentazione dei dati in formato binario.

Con il termine **bit** definiamo l'**unità di misura dell'informazione**. Combinando tra loro più bit si ottengono strutture più complesse. In particolare:

• Nybble (o nibble): 4 bit

• Byte: 8 bit

• Halfword: 16 bit

• Word: 32 bit

• Doubleword: 64 bit

Dati k bit, il numero di configurazioni ottenibili è pari a 2^k .

Una **rappresentazione** è un modo per descrivere un'entità. Bisogna distinguere l'entità (o valore) e la sua rappresentazione.

1.2 Vari sistemi numerici

Il sistema numerico decimale:

- Usa 10 cifre
- È un **sistema posizionale**: ogni cifra assume un valore diverso a seconda della posizione che occupa all'interno del numero

Il **sistema romano** invece non è posizionale (il valore della cifra non dipende dalla sua posizione).

Nei sistemi numerici posizionali un valore numerico N è caratterizzato dalla seguente rappresentazione:

$$\begin{split} N &= d_{n-1} \; d_{n-2} \ldots d_1 \; d_0 \, , \, d_{-1} \ldots d_{-m} \\ N &= d_{n-1} \cdot r^{n-1} + \cdots + d_0 \cdot r^0 + d_{-1} \cdot r^{-1} + \ldots d_{-m} \cdot r^{r-m} \\ N &= \sum_{i=-m}^{n-1} d_i \cdot r^i \end{split}$$

Dove: -d è la singola cifra -r la radice o base del sistema -n numero di cifre della parte intera (sinistra della virgola) -m numero di cifre della parte frazionaria (destra della virgola) -N è la rappresentazione del numero

1.2.1 Sistema Binario

Un **byte** è una sequenza di 8 bit consecutivi. Il bit "più a sinistra" è chiamato **MSB** (most significant bit) ovvero il bit che rappresenta la cifra con il valore più grande. Il bit "più a destra" è chiamato **LSB** (least significant bit) ovvero il bit che rappresenta la cifra con il valore più piccolo.

2 Rappresentazione di numeri interi con segno

2.1 Operazioni aritmetiche

2.1.1 Somma

La somma di due sequenze di bit è la somma tra i bit di pari ordine:

- 0 + 0 = 0
- 0 + 1 = 1
- 1 + 0 = 1
- 1 + 1 = 0 con riporto 1 sul bit di ordine superiore
- 1 + 1 + 1 = 1 con riporto 1 sul bit di ordine superiore

Dunque la somma è definita su 3 elementi:

- I due addendi
- Il riporto (carry)

2.1.2 Sottrazione

La sottrazione di due sequenze di bit è la sottrazione tra i bit di pari ordine:

- 0 0 = 0
- 1 0 = 1
- 1 1 = 0
- 0 1 = 1 con prestito 1 dal bit di ordine superiore

Dunque la sottrazione è definita su 3 elementi:

- Minuendo e sottraendo
- Il prestito (borrow)

2.2 Modulo e Segno

Supponiamo di avere a disposizione 1 Byte per rappresentare numeri sia positivi che negativi.

Con il metodo del modulo e segno utilizzeremo:

- I primi 7 bit per il valore assoluto del numero
- Il bit più a sinistra (MSB) per indicare il segno (1 se il numero è negativo, 0 se è
 positivo)

Con *n* bit totali si possono rappresentare i numeri interi nell'intervallo

$$[-(2^{n-1}-1),+(2^{n-1}-1)]_{10}$$

I problemi di questa rappresentazione sono che esistono due diverse rappresentazioni dello 0 e che un bit viene "speso" solo per il segno.

2.2.1 Somma

Confronto i bit di segno dei due numeri:

• Se i bit di segno sono uguali:

- Il bit di segno risultante sarà il bit di segno dei due addendi
- Eseguo la somma bit a bit (a meno di overflow)
- Se i bit di segno sono diversi:
 - Confronto i valori assoluti dei due addendi
 - Il bit si segno risultate sarà il bit di segno dell'addendo con valore assoluto
 - Eseguo la somma bit a bit

2.2.2 Sottrazione

Dalle slide #todo-uni

2.3 Complemento a 1

Questo metodo si basa sull'**operazione di complemento**. Con complemento si intende l'operazione che associa ad un bit il suo opposto.

Il metodo del **complemento a 1** è molto semplice:

- Se il numero da codificare è positivo, lo si converte in binario con il metodo tradizionale
- Se il numero è negativo, basta convertire in binario il suo modulo e quindi eseguire
 l'operazione di complemento sulla codifica binaria effettuata

Anche in questo caso sussiste il problema delle due diverse rappresentazioni dello 0.

2.4 Complemento a 2

Il complemento a 2 è un altro metodo di codifica usato per rappresentare i numeri interi sia positivi che negativi. È basato sul complemento a 1.

A differenza del complemento a 1 i numeri negativi dopo aver complementato il numero vengono incrementati di 1.

Dati *n* bit si possono rappresentare i numeri interi nell'intervallo

$$[-(2^{n-1}), +(2^{n-1}-1)]_{10}$$

2.4.1 Conversione da CA2 a decimale

Se il numero è positivo (MSB = 0), si converte in base decimale usando il numero binario puro. Se il numero è negativo (MSB = 1), si applica l'operazione di CA2 a questo valore ottenendo la rappresentazione del corrispondente positivo, si converte il risultato come numero in binario puro e si aggiunge il segno meno.

2.4.2 Somma

Dalle slide #todo-uni

2.4.3 Sottrazione

Dalle slide #todo-uni

2.5 Shift

Dalle slide #todo-uni

2.6 Rappresentazione Eccesso 2^{n-1}

Dalle slide #todo-uni