ผู้จัดทำ

1. นางสาวกัญญาณัฐ	สุระเรื่องชัย	6114400461		1	T 1.01.
2. นางสาวชญาดา	แก้วชัยเจริญกิจ	6114400470		1) +	(UMM)
3. นางสาวณัฐชยา	รตะสุขารมย์	6114400500		\	

15.14 A research laboratory was developing a new compound for the relief of severe cases of hay fever. The amounts of two active ingredients (low, medium, high) in the compound were varied at three levels each using 18 volunteers. Randomization was used in assigning volunteers to each of the treatment combinations. Data were collected on hours of relief.

b. Identify all factors. factor levels. and factor-level combinations.

Ans Factor 1: Ingredients 1 have 3 levels (low, medium, high).

Factor 2: Ingredients 2 have 3 levels (low, medium, high).

c. Describe how randomization would be performed in this study.

Ans Randomization requires that a series of experimental units (or teatments) be placed in a random order. Two factors and three treatments (low, medium, high) are considered. So, There are 9 combination.

16.10. Cash offers. A consumer organization studied the effect of age of automobile owner on size of cash offer for a used car by utilizing 12 persons in each of three age groups (young, middle,elderly) who acted as the owner of a used car. A medium price, six-year-old car was selected for the experiment, and the "owners" solicited cash offers for this car from 36 dealers selected at random from the dealers in the region. Randomization was used in assigning the dealers to the "owners." The offers (in hundred dollars) follow. Assume that ANOVA model (16.2) is applicable.

```
dm 'log;clear;out;clear;';
EDATA cash; input order trt y 88;
  cards:
  1 1 23
                    3 1 21 4 1 22 5 1 21 6 1 22 7 1 20 8 1 23
           2 1 25
                                                                                 9 1 19 10 1 22
                                                                                                     11 1 19
                                                                                                                12 1 21
 1 2 28  2 2 27  3 2 27  4 2 29  5 2 26  6 2 29  7 2 27  8 2 30  9 2 28  10 2 27  1 3 23  2 3 20  3 3 25  4 3 21  5 3 22  6 3 23  7 3 21  8 3 20  9 3 19  10 3 20
                                                                                                      11 2 26
                                                                                                                 12 2 29
Eproc gla data = cash;
      class trt;
      model y=trt/ss3;
      means trt:
      means trt/tukey;
      id order;
      output out=diag p=pred r=resid;
  title 'ANOVA FOR CRD';
Eproc gplot data=cash;
  title 'Scatter Plot of Cash offer and Age';
 plot y*trt;
  run:
 quit:
 run:
```

a. Prepare aligned dot plots of the data. Do the factor level means appear to differ? Does the variability of the observations within each factor level appear to be approximately the same for all factor levels?

Level of		у	
trt	N	Mean	Std Dev
1	12	21.5000000	1.73205081
2	12	27.7500000	1.28805703
3	12	21.4166667	1.67648622

ค่าเฉลี่ยในแต่ละระดับปัจจัยแตกต่างกัน โดยที่ระดับที่ 2 มีค่าเฉลี่ยมากที่สุด ในขณะที่ระดับที่ 1 และ 3 มีค่าใกล้เคียงกัน และความแปรปรวนภายในของแต่ละปัจจัยพบว่าการกระจายของข้อมูลไม่แตกต่างกัน โดย ที่ 1 คือ young / 2 คือ middle / 3 คือ elderly

b. Obtain the fitted values.

$$\overline{Y_{1.}}$$
= 21.50

$$\overline{Y_{2.}}$$
= 27.75

$$\overline{Y_{3}} = 21.417$$

c. Obtain the residuals.

$e_{11} = Y_{11} - \overline{Y_{1.}}$	$e_{21}=e_{21}-\overline{Y_{2.}}$	$e_{31} = Y_{31} - \overline{Y_{3.}}$
= 23-21.50=1.5	= 28-27.75=0.25	= 23-21.417=1.583
<i>e</i> ₁₂ =3.5	e ₂₂ =-0.75	e ₃₂ =-1.417
<i>e</i> ₁₃ =-0.5	e ₂₃ =-0.75	e ₃₃ =3.583
e ₁₄ =0.5	e ₂₄ =1.25	e ₃₄ =-0.417
e ₁₅ =-0.5	e ₂₅ =-1.75	e ₃₅ =0.583
<i>e</i> ₁₆ =0.5	e ₂₆ =1.25	e ₃₆ =1.583
<i>e</i> ₁₇ =-1.5	e ₂₇ =-0.75	<i>e</i> ₃₇ =-0.417
<i>e</i> ₁₈ =1.5	e ₂₈ =2.25	<i>e</i> ₃₈ =-1.417
<i>e</i> ₁₉ =-2.5	e ₂₉ =0.25	e ₃₉ =-2.417
e ₁₁₀ =0.5	e ₂₁₀ =-0.75	<i>e</i> ₃₁₀ =-1.417
<i>e</i> ₁₁₁ =-2.5	<i>e</i> ₂₁₁ =-1.75	e ₃₁₁ =0.583
<i>e</i> ₁₁₂ =-0.5	e ₂₁₂ =1.25	<i>e</i> ₃₁₂ =-0.417
e _{1.} =0	e _{2.} =0	e _{3.} =0

d. Obtain the analysis of variance table.

ANOVA FOR CRD

The GLM Procedure

Dependent Variable: y

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	316.7222222	158.3611111	63.60	<.0001
Error	33	82.1666667	2.4898990		
Corrected Total	35	398.8888889			

R-Square	Coeff Var	Root MSE	y Mean
0.794011	6.698808	1.577941	23.55556

Source	DF	Type III SS	Mean Square	F Value	Pr > F
trt	2	316.7222222	158.3611111	63.60	<.0001

e. Conduct the F test for equality off actor level means; use α = .01. State the alternatives, decision rule, and conclusion. What is the P-value of the test?

สมมติฐาน
$$H_0: \mu_1=\mu_2=\mu_3$$

 H_1 : มีค่าเฉลี่ยอย่างน้อย 1 คู่ไม่เท่ากัน

พิจารณา F* = 63.60 มีค่ามากกว่า $F_{0.01(2,33)} = 5.31$ และค่า P-Value มีค่าเท่ากับ 0.0001 ซึ่งน้อย กว่า 0.01 ดังนั้นจึงปฏิเสธ H_0 แสดงว่ามีค่าเฉลี่ยของกลุ่มช่วงอายุอย่างน้อย 1 กลุ่มช่วงอายุที่ไม่เท่ากันที่ระดับ นัยสำคัญ 0.01

f. What appears to be the nature of the relationship between age of owner and mean cash offer?

Regression Analysis: y versus trt

Method

Categorical predictor coding (1, 0)

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	2	316.72	158.361	63.60	0.000
trt	2	316.72	158.361	63.60	0.000
Error	33	82.17	2.490		
Total	35	398.89			

Model Summary

S R-sq R-sq(adj) R-sq(pred) 1.57794 79.40% 78.15% 75.49%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	21.500	0.456	47.20	0.000	
trt					
2	6.250	0.644	9.70	0.000	1.33
3	-0.083	0.644	-0.13	0.898	1.33

Regression Equation

$$y = 21.500 + 0.0 trt_1 + 6.250 trt_2 - 0.083 trt_3$$

Fits and Diagnostics for Unusual Observations

				Std	
Obs	У	Fit	Resid	Resid	
2	25.000	21.500	3.500	2.32	R
27	25.000	21.417	3.583	2.37	R

R Large residual

พบว่า ค่า F ที่ได้จากการวิเคราะห์ในรูปแบบ Regression และรูปแบบ Experimental เท่ากัน คือ 63.60 และค่า fitted values เท่ากัน

เปรียบเทียบรายคู่ด้วยวิธี Tukey ที่ระดับนัยสำคัญ 0.01

The SAS System

The GLM Procedure

Tukey's Studentized Range (HSD) Test for y

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ

Alpha	0.01
Error Degrees of Freedom	33
Error Mean Square	2.489899
Critical Value of Studentized Range	4.42231
Minimum Significant Difference	2.0144

Means with the same letter are not significantly different.

พบว่า ค่าเฉลี่ยช่วงกลุ่มอายุ Young และ Elderly เหมือนกัน แต่ช่วงกลุ่มอายุ Middle แตกต่างจากทุกกลุ่มช่วงอายุ โดยที่ช่วงกลุ่มอายุ Middle มีค่าเฉลี่ยสูงที่สุด

AH V. 21 12 de nate vong Elderly Mademin on als Young & Elderly