Pohjoismainen matematiikkakilpailu 2006

Tehtävien ratkaisuja

1. Olkoot E ja F ne puolisuorien AB ja AC pisteet, joille AE = AF = AB + AC. Olkoon D janojen AE ja AF keskinormaalien leikkauspiste. On helppo havaita, esimerkiksi suorakulmaisista kolmioista, joiden hypotenuusa on AD ja toiset kateetit AD:n projektiot AB:llä ja AC:llä, että D on kulman BAC puolittajalla. Lisäksi $\angle ADF = 180^{\circ} - 2 \cdot \angle CAD = 180^{\circ} - \angle BAC$. Kolmio ADF on tasakylkinen, joten kolmioissa ABD ja DCF on $\angle BAD = \angle DAC = \angle CFD$

ja AD = DF. Lisäksi CF = AF - AC = AB. Kolmiot ADB ja FDC ovat siis yhtenevät (sks). Siis $\angle BDA = \angle CDF$. Mutta tästä seuraa, että $\angle BDC = \angle ADF = 180^{\circ} - \angle BAC$. Näin ollen ABDC on jännenelikulmio, ja väite on todistettu.

2. Olkoon (x, y, z) yhtälöryhmän ratkaisu. Koska

$$x = k - \frac{1}{y} = \frac{ky - 1}{y}$$
 ja $z = \frac{1}{k - y}$,

on

$$\frac{1}{k-y} + \frac{y}{ky-1} = k,$$

mikä sievenee muotoon

$$(1 - k^2)(y^2 - ky + 1) = 0.$$

Siis joko |k| = 1 tai

$$k = y + \frac{1}{y}.$$

Jälkimmäinen vaihtoehto sijoitettuna alkuperäisiin yhtälöihin antaa heti x=y ja z=y. Ainoa mahdollisuus on $k=\pm 1$. Jos k=1, esimerkiksi $x=2,\,y=-1$ ja $z=\frac{1}{2}$ on ryhmän ratkaisu, jos k=-1, kelpaavat äskeisten vastaluvut. Ainoat mahdolliset k:n arvot ovat siis 1 ja -1.

3. Tarkastellaan lauseketta $x^5+487 \mod 4$. Selvästi $x\equiv 0 \Rightarrow x^5+487 \equiv 3$, $x\equiv 1 \Rightarrow x^5+487 \equiv 0$; $x\equiv 2 \Rightarrow x^5+487 \equiv 3$ ja $x\equiv 3 \Rightarrow x^5+487 \equiv 2$. Tunnetusti neliöluuvt ovat $\equiv 0$ tai $\equiv 1 \mod 4$. Jos tutkittavassa jonossa on parillinen neliöluku, kaikki loput jonon luvut ovat joko $\equiv 2$ tai $\equiv 3 \mod 4$, eivätkä siis neliölukuja. Jos jonossa on pariton neliöluku, sitä seuraava jonon luku voi olla parillinen neliöluku, mutta kaikki loput jonon luvut ovat ei-neliölukuja. Jonossa voi siis olla enintään kaksi neliölukua. Tällöin ensimmäinen neliöluku on samalla jonon ensimmäinen luku, sillä mikään jonossa

toista lukua seuraava luku ei toteuta ehtoa $x \equiv 1 \mod 4$. Etsitään sellaiset luvut k^2 , että $k^{10} + 487 = n^2$. Koska 487 on alkuluku, on oltava $n - k^5 = 1$ ja $n + k^5 = 487$ eli n = 244 ja k = 3. Tehtävän ainoa ratkaisu on siis $m = 3^2 = 9$.

4. Olkoon R_i i:nnen vaakarivin ruutujen väritykseen käytettyjen värien määrä ja C_j j:nnen pystyrivin ruutujen väritykseen käytettyjen värien määrä. Olkoon r_k niiden vaakarivien määrä, joilla esiintyy väri k ja olkoon c_k niiden pystyrivien määrä, joilla esiintyy väri k. Aritmeettis-geometrisen epäyhtälön perusteella $r_k + c_k \geq 2\sqrt{r_k c_k}$. Koska väri k esiintyy enintään c_k kertaa jokaisella niistä r_k :sta pystyrivistä, joilla se esiintyy, niin $c_k r_k$ on \geq kuin värin k esiintymien kokonaismäärä, joka on 100. Siis $r_k + c_k \geq 20$. Summassa $\sum_{i=1}^{100} R_i$ jokainen väri k antaa kontribuution r_k kertaa ja summassa $\sum_{j=1}^{100} C_j$ jokainen väri k antaa kontribuution c_k kertaa. Näin ollen

$$\sum_{i=1}^{100} R_i + \sum_{j=1}^{100} C_j = \sum_{k=1}^{100} r_k + \sum_{k=1}^{100} c_k = \sum_{k=1}^{100} (r_k + c_k) \ge 2000.$$

Mutta jos 200 positiivisen kokonaisluvun summa on ainakin 2000, niin ainakin yksi yhteenlaskettava on ainakin 10. Väite on todistettu.