

A result on the phase diagram of a Ginzburg-Landau problem

Mathieu Dutour
 ENS, Paris and Hebrew University, Jerusalem,*

Abstract

Working with a particular modelization of Ginzburg-Landau phenomenological theory (see [Du01], [Du99] and Section II), we first recall the form of the phase diagram of this modelization as it usually drawn in the physical literature ([T], [Ki], [SST] and [Ge]).

We then study in detail the special case, when the critical Ginzburg Landau parameter k is equal to $\frac{1}{\sqrt{2}}$. This allows us to prove that the critical magnetic field $H_{c1}(k)$ is strictly decreasing at $k = \frac{1}{\sqrt{2}}$.

PACS: 01.30.Cc, 02.30.Jr, 74.25.Dw

I INTRODUCTION

In 1950 V. Ginzburg and L. Landau ([GL50]) have proposed a modelization for describing the various states of a superconducting material. They introduce a functional depending on a *wave function* ϕ and a *magnetic potential vector* \mathbf{A} , whose local minima will describe the properties of the material; in this modelization $|\phi|^2$ represents the local density of superconducting electrons.

Abrikosov ([Ab]) has introduced a particular Ginzburg-Landau modelization, which predicts the periodic structure for the zeros of ϕ , which was subsequently observed in experiments. His model depends on two positive parameters k and H_{ext} , called *Ginzburg-Landau parameter* and *external magnetic field*. It also assumed that:

*Research financed by EC's IHRP Programme, within the Research Training Network "Algebraic Combinatorics in Europe," grant HPRN-CT-2001-00272.

1. The superconductor is infinite, homogeneous and isotropic.
2. The magnetic field $\mathbf{H}_{\text{ext}} = (0, 0, H_{\text{ext}})$ is constant.
3. The energy functional $F(\phi, \mathbf{A})$ has a Ginzburg-Landau form and depends on the *Ginzburg-Landau parameter* k .
4. The pairs (ϕ, \mathbf{A}) considered are gauge invariant along the z-axis and also along a lattice of \mathbb{R}^2 .
5. The lattice has a fixed shape and there is one quantum flux per unit cell of it.

After some change of variable, recalled in Section II, we obtain the following formulation of the problem:

Denote \mathcal{L} a lattice of \mathbb{R}^2 , with fundamental domain Ω of area 1. Define the vector bundle E_1 over \mathbb{R}^2/\mathcal{L} as the vector bundle, whose C^∞ sections are described by

$$C^\infty(E_1) = \left\{ u : \mathbb{R}^2 \rightarrow \mathbb{C} \text{ s.t. } \forall (x, y) \in \mathbb{R}^2, \forall v = (v_x, v_y) \in \mathcal{L}, \begin{array}{l} u((x, y) + v) = e^{i\pi(v_x y - v_y x)} u(x, y) \end{array} \right\}$$

The vector bundle E_1 is non-trivial; this implies that any section $u \in C^\infty(E_1)$ has at least one zero in \mathbb{R}^2/\mathcal{L} .

The potential vector \mathbf{a} belongs to the space

$$\{\mathbf{a} \in H_{\text{loc}}^1(\mathbb{R}^2; \mathbb{R}^2) \text{ such that } \text{div } \mathbf{a} = 0, \mathbf{a} \text{ is } \mathcal{L}\text{-periodic and } \int_{\Omega} \mathbf{a} = 0\}$$

We denote by \mathcal{A} the space of all pairs (u, \mathbf{a}) with u being a H_{loc}^1 section of E_1 and \mathbf{a} belonging to the above space.

Denote H_{int} the *internal magnetic field* and $E_{k, H_{\text{int}}}$ the functional defined over \mathcal{A} by

$$E_{k, H_{\text{int}}}(u, \mathbf{a}) = \int_{\Omega} \frac{\mu}{2} \|i\nabla u + (\mathbf{A}_0 + \mathbf{a})u\|^2 + \frac{1}{4}(1 - |u|^2)^2 + \frac{\mu^2 k^2}{2} |\text{curl } \mathbf{a}|^2$$

with $\mu = \frac{H_{\text{int}}}{2\pi k}$ and $\mathbf{A}_0 = \pi \begin{pmatrix} -y \\ x \end{pmatrix}$. We then define the energy of the superconductor as

$$E_{k, H_{\text{ext}}}(H_{\text{int}}, u, \mathbf{a}) = E_{k, H_{\text{int}}}(u, \mathbf{a}) + \frac{1}{2}(H_{\text{int}} - H_{\text{ext}})^2.$$

The term $\frac{1}{2}(H_{\text{int}} - H_{\text{ext}})^2$ is a simple magnetic energy, while the term $E_{k,H_{\text{int}}}$ is the internal energy of the superconductor. The energy $\mathcal{E}_{k,H_{\text{ext}}}$ is then defined as the minimum of $E_{k,H_{\text{ext}}}$ over all magnetic field H_{int} and pairs $(u, \mathbf{a}) \in \mathcal{A}$. Also we denote $m_E(k, H_{\text{int}})$ the infimum of $E_{k,H_{\text{int}}}$ over all pairs $(u, \mathbf{a}) \in \mathcal{A}$.

For $u = 0$, $\mathbf{a} = 0$ and $H_{\text{int}} = H_{\text{ext}}$ one obtains the energy $E_{\mathcal{N}} = \frac{1}{4}$, which is the energy of the so called *normal state*. In the limit case $H_{\text{int}} = 0$, one obtains (see [Du99] or [Du01]) the energy $E_{\mathcal{P}} = \frac{H_{\text{ext}}^2}{2}$, which is the energy of the *pure state*. This leads us to introduce three sets in $\mathbb{R}_+^* \times \mathbb{R}_+^*$:

$$\begin{aligned}\mathcal{N} &= \{(k, H_{\text{ext}}) \in \mathbb{R}_+^* \times \mathbb{R}_+^* \text{ s.t. } \mathcal{E}_{k,H_{\text{ext}}} = E_{\mathcal{N}}\}, \\ \mathcal{P} &= \{(k, H_{\text{ext}}) \in \mathbb{R}_+^* \times \mathbb{R}_+^* \text{ s.t. } \mathcal{E}_{k,H_{\text{ext}}} = E_{\mathcal{P}}\}, \\ \mathcal{M} &= \{(k, H_{\text{ext}}) \in \mathbb{R}_+^* \times \mathbb{R}_+^* \text{ s.t. } \mathcal{E}_{k,H_{\text{ext}}} < \inf(E_{\mathcal{P}}, E_{\mathcal{N}})\}.\end{aligned}$$

The set \mathcal{M} is the complementary of $\mathcal{P} \cup \mathcal{N}$ in $\mathbb{R}_+^* \times \mathbb{R}_+^*$; if $(k, H_{\text{ext}}) \in \mathcal{M}$, then the superconductor is said to be in a *mixed state*.

Using this simple modelization we were able (see [Du99] and [Du01]) to prove following *monotonicity theorem*.

Theorem 1 (i) If $(k, H_{\text{ext}}) \in \mathcal{P}$, $k' \leq k$ and $H'_{\text{ext}} \leq H_{\text{ext}}$ then $(k', H'_{\text{ext}}) \in \mathcal{P}$.
(ii) If $(k, H_{\text{ext}}) \in \mathcal{N}$, $k' \geq k$ and $H'_{\text{ext}} \geq H_{\text{ext}}$ then $(k', \frac{k'}{k} H_{\text{ext}}) \in \mathcal{N}$.

The existence of such a Theorem is possible only because the system is invariant by homotheties (see, for example, [DH] for the case of a superconductor restricted to a domain \mathcal{D} of \mathbb{R}^2).

From this theorem we derived the existence of two functions $k \mapsto H_{c1}(k)$ and $k \mapsto H_{c2}(k)$ such that

$$\begin{aligned}\mathcal{N} &= \{(k, H_{\text{ext}}), \text{ s.t. } H_{\text{ext}} \geq H_{c2}(k)\}, \\ \mathcal{P} &= \{(k, H_{\text{ext}}), \text{ s.t. } H_{\text{ext}} \leq H_{c1}(k)\}, \\ \mathcal{M} &= \{(k, H_{\text{ext}}), \text{ s.t. } H_{c1}(k) < H_{\text{ext}} < H_{c2}(k)\}.\end{aligned}$$

Using this modelization we obtained in [Du01] the qualitative form of the phase diagram depicted in Figure 1, which is recalled in Section IV

This phase diagram is made of three curves:

- (i) (*boundary normal-pure*) $H_{\text{ext}} = H_{c1}(k) = H_{c2}(k) = \frac{1}{\sqrt{2}}$ with $k \leq \frac{1}{\sqrt{2}}$,
- (ii) (*boundary normal-mixed*) $H_{\text{ext}} = H_{c2}(k) = k$ with $k \geq \frac{1}{\sqrt{2}}$,
- (iii) (*boundary pure-mixed*) $H_{\text{ext}} = H_{c1}(k)$ with $k \geq \frac{1}{\sqrt{2}}$.

Figure 1: Phase diagram in Abrikosov modelization

The exact expression of curve (iii) is unknown. Those three curves meet at the triple point $k = H_{\text{ext}} = \frac{1}{\sqrt{2}}$. A key point of the proof is that the case $k = \frac{1}{\sqrt{2}}$ is exactly solvable thanks to the Bochner-Kodaira-Nakano formula explained in Section III. Using a more advanced analysis of the case $k = \frac{1}{\sqrt{2}}$ in Section V, we prove in Section VI the following Theorem:

Theorem 2 (i) *There exist $\delta > 0$ and $S > 0$ such that for all h in $[0, \delta]$, we have*

$$-h \leq H_{c1}\left(\frac{1}{\sqrt{2}} + h\right) - \frac{1}{\sqrt{2}} \leq -Sh .$$

(ii) *The critical magnetic field $H_{c1}(k)$ is strictly decreasing at $k = \frac{1}{\sqrt{2}}$.*

II THE CHANGE OF VARIABLE

In this Section, we recall the original formulation of the problem by V.Ginzburg and L.Landau in [GL50] and how it is related to our formulation. They proposed the following expression for the density of energy in superconductors

$$\frac{1}{2} \|ik^{-1} \nabla \phi + \mathbf{A} \phi\|^2 + \frac{1}{4} (1 - |\phi|^2)^2 + \frac{1}{2} (\text{curl } \mathbf{A} - H_{\text{ext}})^2$$

This expression belongs to $L^1_{\text{loc}}(\mathbb{R}^3)$ if (ϕ, \mathbf{A}) is in the Sobolev space $H^1_{\text{loc}}(\mathbb{R}^3; \mathbb{C}) \times H^1_{\text{loc}}(\mathbb{R}^3; \mathbb{R}^3)$. It is invariant under the gauge transform

$(\phi', \mathbf{A}') = (\phi e^{ikg}, \mathbf{A} + \nabla g)$ with $g \in H_{\text{loc}}^2(\mathbb{R}^2)$; this property is shared by other physically significant quantities like the density of superconducting electron $|\phi|^2$, the magnetic field $\text{curl } \mathbf{A}$ and the current vector of superconducting electron $\text{Re}[\bar{\phi}(ik^{-1}\nabla\phi + \mathbf{A}\phi)]$.

We assumed that the problem is invariant under translation along the z -axis. This means that we consider pairs (ϕ, \mathbf{A}) , which satisfies: for every $h \in \mathbb{R}$, the pair $(\phi, \mathbf{A})(x_1, x_2, x_3 + h)$ is gauge equivalent to the pair (ϕ, \mathbf{A}) .

In fact, as proved in [Du99] p. 17, we can assume that the pairs (ϕ, \mathbf{A}) considered are independent of x_3 and satisfy $\mathbf{A}_{x_3} = 0$. So, we can reduce ourself to a 2-dimensional problem.

We take \mathcal{L} a 2-dimensional lattice of \mathbb{R}^2 with fundamental domain Ω of area 1. We consider the dilated lattice : $\mathcal{L}_\lambda = \sqrt{\lambda}\mathcal{L}$ with fundamental domain $\Omega_\lambda = \sqrt{\lambda}\Omega$. Following Abrikosov, we choose λ in \mathbb{R}_+ and restrict the analysis to pairs (ϕ, \mathbf{A}) , which are gauge periodic with respect to \mathcal{L}_λ ([Ab]). This means that, for all $v \in \mathcal{L}_\lambda$, there exists $g^v \in H_{\text{loc}}^2(\mathbb{R}^2)$ such that

$$\phi(z + v) = e^{ikg^v(z)}\phi(z) \quad \text{and} \quad \mathbf{A}(z + v) = \mathbf{A}(z) + \nabla g^v(z) .$$

Consequently, all the considered physical quantities are \mathcal{L}_λ -periodic. We denote by $|\Omega_\lambda|$ the area of Ω_λ , which is actually equal to λ .

A classic consequence (see [Du99], [BGT]) of gauge periodicity is that there exist $d \in \mathbb{Z}$ satisfying to

$$2\pi d = k \int_{\Omega_\lambda} \text{curl } \mathbf{A} .$$

We will then, according to Abrikosov, fix the quantization d per unit cell equal to 1.

The Ginzburg-Landau functional is obtained by integration of the local density over the fundamental domain Ω_λ and division by $|\Omega_\lambda|$. This gives:

$$F(\phi, \mathbf{A}) = \frac{1}{|\Omega_\lambda|} \int_{\Omega_\lambda} \frac{1}{2} \|ik^{-1}\nabla\phi + \mathbf{A}\phi\|^2 + \frac{1}{4}(1 - |\phi|^2)^2 + \frac{1}{2}(\text{curl } \mathbf{A} - H_{\text{ext}})^2,$$

which should be understood as a mean energy.

We denote by $H_{\text{int}} = \frac{1}{|\Omega_\lambda|} \int_{\Omega_\lambda} \text{curl } \mathbf{A}$ the mean internal magnetic field induced by \mathbf{A} . The quantization relation is then rewritten as $2\pi = k\lambda H_{\text{int}}$.

It is also a classical result (see [BGT], [YS] or [Du99], p. 21-29) that we can associate to the pair (ϕ, \mathbf{A}) , another pair (ϕ', \mathbf{A}') , with the same Ginzburg-Landau energy but satisfying to

- (i) $\mathbf{A}' = \frac{H_{\text{int}}}{2\pi} \mathbf{A}_0 + \mathbf{P}$ with \mathbf{P} \mathcal{L}_λ -periodic, $\operatorname{div} \mathbf{P} = 0$, $\int_{\Omega_\lambda} \mathbf{P} = 0$,
- (ii) $\phi'(z+v) = e^{ikg^v(z)}\phi'(z)$ with $g^v(x,y) = \frac{H_{\text{int}}}{2}(v_x y - v_y x)$ for all $v \in \mathcal{L}_\lambda$.

This reduction is rather involved and is performed by a suitable gauge transform and a translation in x, y . The relation relating $\phi'(z+v)$ to $\phi'(z)$ actually defines the sections of a complex line bundle over the torus \mathbb{R}^2/\mathcal{L} ; above result is so, a classification result.

With this expression one gets

$$\frac{1}{|\Omega_\lambda|} \int_{\Omega_\lambda} \frac{1}{2} (\operatorname{curl} \mathbf{A} - H_{\text{ext}})^2 = \frac{1}{|\Omega_\lambda|} \int_{\Omega_\lambda} \frac{1}{2} (\operatorname{curl} \mathbf{P})^2 + \frac{1}{2} (H_{\text{int}} - H_{\text{ext}})^2.$$

This leads to the simple expression $F(\phi, \mathbf{A}) = F^{\text{int}}(\phi, \mathbf{P}) + \frac{1}{2}(H_{\text{int}} - H_{\text{ext}})^2$ with

$$F^{\text{int}}(\phi, \mathbf{P}) = \frac{1}{\lambda} \int_{\Omega_\lambda} \frac{1}{2} \|ik^{-1} \nabla \phi + \mathbf{A} \phi\|^2 + \frac{1}{4}(1 - |\phi|^2)^2 + \frac{1}{2} (\operatorname{curl} \mathbf{P})^2.$$

The functional F^{int} is called internal energy and depends only on H_{int} , k , ϕ and \mathbf{P} .

The quantities H_{int} , k and λ are related by the quantization relation $2\pi = k\lambda H_{\text{int}}$, which makes the analysis of F^{int} cumbersome. So, we reduce the complexity of the computation by the following change of variables and of functions:

$$\begin{cases} u(x) &= \phi(x \sqrt{\frac{2\pi}{kH_{\text{int}}}}), \\ \mathbf{a}(x) &= \sqrt{\frac{2\pi k}{H_{\text{int}}}} [\mathbf{A} - \frac{H_{\text{int}}}{2\pi} \mathbf{A}_0](x \sqrt{\frac{2\pi}{kH_{\text{int}}}}) = \sqrt{\frac{2\pi k}{H_{\text{int}}}} \mathbf{A}(x \sqrt{\frac{2\pi}{kH_{\text{int}}}}) - \mathbf{A}_0(x). \end{cases}$$

We then obtain the formulation given in the introduction since the pair (u, \mathbf{a}) so defined belongs to \mathcal{A} and verifies $E_{k, H_{\text{int}}}(u, \mathbf{a}) = F^{\text{int}}(\phi, \mathbf{P})$.

III THE FUNCTIONAL $E_{k, H_{\text{int}}}$

Let us now analyze the functional $E_{k, H_{\text{int}}}$ by assuming here that k and H_{int} are fixed.

$E_{k, H_{\text{int}}}$ is defined over \mathcal{A} since (u, \mathbf{a}) of class H^1 guarantees local integrability of the density, while the compactness of the torus \mathbb{R}^2/\mathcal{L} guarantees its integrability.

In fact, the variational theory of the functional $E_{k,H_{\text{int}}}$ is easy (see [Du99]) since the torus \mathbb{R}^2/\mathcal{L} is compact and the non-linear partial differential equations obtained for the critical points are elliptic; the vector bundle adds only technical difficulties (see [LM]). More precisely one can prove successively that:

1. *Coerciveness*: for every $C \in \mathbb{R}$ there is a $C' > 0$ such that $E_{k,H_{\text{int}}}(u, \mathbf{a}) < C$ implies $\|u\|_{H^1} + \|\mathbf{a}\|_{H^1} \leq C'$.
2. *Lower semicontinuity*: If $(u_n, \mathbf{a}_n) \in \mathcal{A}$ converges weakly to $(u, \mathbf{a}) \in \mathcal{A}$, then $E_{k,H_{\text{int}}}(u, \mathbf{a}) \leq \underline{\lim}_n E_{k,H_{\text{int}}}(u_n, \mathbf{a}_n)$.
3. *Minimum*: The functional $E_{k,H_{\text{int}}}$ attains its minimum on at least one pair $(u, \mathbf{a}) \in \mathcal{A}$.
4. *Ginzburg-Landau equations*: The minimizing pairs satisfy to the following equation

$$\begin{cases} \mu[i\nabla + \mathbf{A}_0 + \mathbf{a}]^2 u &= (1 - |u|^2)u \\ \Delta \mathbf{a} &= \frac{1}{k^2} \operatorname{Re}[\bar{u}(i\nabla u + (\mathbf{A}_0 + \mathbf{a})u)] \end{cases}$$

5. *Regularity*: The pairs $(u, \mathbf{a}) \in \mathcal{A}$ verifying the Ginzburg-Landau equations are in fact of class C^∞ .
6. *Maximum principle*: The pairs $(u, \mathbf{a}) \in \mathcal{A}$ verifying the Ginzburg-Landau equations satisfy $|u| \leq 1$.

We now explain the Bochner-Kodaira-Nakano formula for the functional $E_{k,H_{\text{int}}}$ (see [De], [JaTa] and [WY] for related formulas and results). This classical formula is also called Bogmol'nyi formula, Weitzenbock formula, Lichnerowicz formula (see [JT]) according to different scientific schools.

We set $\mathbf{C} = \mathbf{A}_0 + \mathbf{a}$; we get $\operatorname{curl} \mathbf{C} = 2\pi + \operatorname{curl} \mathbf{a}$ and define

$$A_{+,H_{\text{int}}}(u, \mathbf{a}) = \int_{\Omega} \frac{\mu}{2} |D_+ u|^2 + \frac{1}{4} |\mu \operatorname{curl} \mathbf{C} - (1 - |u|^2)|^2,$$

where $\mu = \frac{H_{\text{int}}}{2\pi k}$ and $D_+ = \frac{\partial}{\partial x} + i\frac{\partial}{\partial y} + C_y - iC_x$.

Theorem 3 (Bochner-Kodaira-Nakano)

For all $(u, \mathbf{a}) \in \mathcal{A}$, we have :

$$E_{\frac{1}{\sqrt{2}},H_{\text{int}}}(u, \mathbf{a}) = \mu\pi - (\mu\pi)^2 + A_{+,H_{\text{int}}}(u, \mathbf{a}).$$

Proof. We perform computations with smooth functions and then extend by density. After expansion, simplification and regrouping one obtains

$$\begin{aligned} \{A_{+,H_{\text{int}}}-E_{\frac{1}{\sqrt{2}},H_{\text{int}}}\}(u,\mathbf{a}) &= \frac{1}{2}\int_{\Omega} \operatorname{div} \mathbf{W} - \mu \operatorname{curl} \mathbf{C} \\ &\quad + \frac{\mu^2}{4}\int_{\Omega} |\operatorname{curl} \mathbf{C}|^2 - |\operatorname{curl} \mathbf{a}|^2 \end{aligned}$$

with $\mathbf{W} = \begin{pmatrix} \bar{u}(i\frac{\partial u}{\partial y} + C_y u) \\ -\bar{u}(i\frac{\partial u}{\partial x} + C_x u) \end{pmatrix}$. The vector field \mathbf{W} being \mathcal{L} -periodic, the integral of its divergence over Ω is 0. The formula is then obtained by replacing $\operatorname{curl} \mathbf{C}$ by $2\pi + \operatorname{curl} \mathbf{a}$ and using $\int_{\Omega} \operatorname{curl} \mathbf{a} = 0$. \square

The *magnetic Schrödinger* operator is defined as $H = [i\nabla + \mathbf{A}_0]^2$; its spectrum, called *Landau levels*, is recalled in next theorem.

- Theorem 4**
- (i) *The operator H admits a self-adjoint extension over $L^2(E_1)$, also denoted by H , whose domain is $H^2(E_1)$.*
 - (ii) *It can be expressed as $H = L_+^* L_+ + 2\pi$ with $[L_+, L_+] = 4\pi$ and $L_+ = 2\partial_{\bar{z}} + \pi z$.*
 - (iii) *Its spectrum is discrete, $\operatorname{sp}(H) = 2\pi + 4\pi\mathbb{N}$, and every eigenvalue is simple.*
 - (iv) *The eigenvector u_0 associated to $\lambda = 2\pi$ satisfies $L_+(u_0) = 0$ and has a unique simple zero in Ω denoted by z_0 .*

Proof. (i) and the discreteness of the spectrum follow from the fact that H is an elliptic pseudo-differential operator of order 2 defined over the vector bundle of a compact manifold (see [LM]).

Formula $H = L_+^* L_+ + 2\pi$ and $[L_+, L_+] = 4\pi$ are proved by first computing with smooth functions and then extending by density.

If we proved that the equation $L_+(u) = 0$ has a unique solution u_0 up to scalar, then by the harmonic oscillator formalism we would get (iii).

In fact, if one writes, $u_0(z) = e^{-|z|^2 \frac{\pi}{2}} s(z)$, then $s(z)$ is analytic. Furthermore, without loss of generality, we can assume that \mathcal{L} is generated by the vectors $v_1 = (u, 0)$ and $v_2 = (w, r)$ with $ru = 1$. Then, after using gauge periodicity conditions, one finds the following expression for u_0 :

$$u_0(x, y) = e^{i\pi xy} \sum_{n \in \mathbb{Z}} e^{-\pi(y+nu)^2} e^{\pi n^2 iwu + 2\pi n u ix}.$$

This expression is a theta function; it is known that such function have a unique simple zero in Ω (see [Cha]). Another method of proof is the use of Rouché Theorem as done in [Du99]. \square

Theorem 5 If $k \geq \frac{1}{\sqrt{2}}$ and $H_{\text{int}} \geq k$, then $m_E(k, H_{\text{int}}) = \frac{1}{4}$. Furthermore, the minimum is met only by the pair $(0, 0)$.

Proof. We use following expansion of the functional $E_{k, H_{\text{int}}}$:

$$\begin{aligned} E_{k, H_{\text{int}}}(u, \mathbf{a}) &\geq E_{\frac{1}{\sqrt{2}}, H_{\text{int}}}(u, \mathbf{a}) \\ &\geq (\mu\pi) - (\mu\pi)^2 + \int_{\Omega} \frac{\mu}{2} |D_+ u|^2 + \frac{1}{4} |2\mu\pi - 1 + \mu \operatorname{curl} \mathbf{a} + |u|^2|^2 \\ &\geq (\mu\pi) - (\mu\pi)^2 + \frac{(2\mu\pi-1)^2}{4} + \frac{1}{4} \int_{\Omega} 2(2\mu\pi - 1)(\mu \operatorname{curl} \mathbf{a} + |u|^2) \\ &\quad + \frac{1}{4} \int_{\Omega} |\mu \operatorname{curl} \mathbf{a} + |u|^2|^2 \\ &\geq \frac{1}{4} + \frac{2\mu\pi-1}{2} \int_{\Omega} |u|^2. \end{aligned}$$

Then using the hypothesis $2\mu\pi - 1 = \frac{H_{\text{int}}}{k} - 1 \geq 0$, we get $m_E(k, H_{\text{int}}) \geq \frac{1}{4}$ by positivity of terms of above equation.

Now assume that $E_{k, H_{\text{int}}}(u, \mathbf{a}) = \frac{1}{4}$; in fact, last computation give us the following equalities:

$$\begin{cases} 0 = (2\mu\pi - 1) \int_{\Omega} |u|^2, & 0 = \int_{\Omega} |\operatorname{curl} \mathbf{a} + |u|^2|^2, \\ 0 = (k^2 - \frac{1}{2}) \int_{\Omega} |\operatorname{curl} \mathbf{a}|^2, & 0 = \int_{\Omega} |D_+ u|^2. \end{cases}$$

The second equality give us $\operatorname{curl} \mathbf{a} + |u|^2 = 0$, which integrated over Ω yields

$$\int_{\Omega} |u|^2 = - \int_{\Omega} \operatorname{curl} \mathbf{a} = 0$$

and then $u = 0$.

Now, using the equation $\operatorname{div} \mathbf{a} = 0$, one obtains the equality $\operatorname{curl}^* \operatorname{curl} \mathbf{a} = \Delta \mathbf{a} = 0$. The potential vector \mathbf{a} is \mathcal{L} periodic; so, it has to be constant. Now, the property $\int_{\Omega} \mathbf{a} = 0$ yields $\mathbf{a} = 0$. \square

IV THE PHASE DIAGRAM

Let us first consider the special case when $k = H_{\text{ext}} = \frac{1}{\sqrt{2}}$. We have the following Lemma:

Lemma 6 One has

- (i) $E_{\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}}(H_{\text{int}}, u, \mathbf{a}) = \frac{1}{4} + A_{+, H_{\text{int}}}(u, \mathbf{a})$,
- (ii) $\mathcal{E}_{\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}} = \frac{1}{4}$,
- (iii) $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \in \mathcal{P} \cap \mathcal{N}$.

Proof. (i) is in fact a rewriting of the Bochner-Kodaira-Nakano formula; it yields (ii) by positivity of $A_{+,H_{\text{int}}}$, while (iii) is obtained by remarking that $E_{\mathcal{N}} = \frac{1}{4} = \frac{1}{2}(\frac{1}{\sqrt{2}})^2 = E_{\mathcal{P}}$. \square

Theorem 7 (*Type I superconductors*) *If $k \leq \frac{1}{\sqrt{2}}$, then:*

(i) *If $H_{\text{ext}} \leq \frac{1}{\sqrt{2}}$, then $\mathcal{E}_{k,H_{\text{ext}}} = E_{\mathcal{P}}$ and $(k, H_{\text{ext}}) \in \mathcal{P}$,*

(ii) *If $H_{\text{ext}} \geq \frac{1}{\sqrt{2}}$, then $\mathcal{E}_{k,H_{\text{ext}}} = E_{\mathcal{N}}$ and $(k, H_{\text{ext}}) \in \mathcal{N}$.*

Proof. Lemma 6 combined with Theorem 1.(i) give the result in the case $H_{\text{ext}} \leq \frac{1}{\sqrt{2}}$.

In particular, if $k \leq \frac{1}{\sqrt{2}}$ we have $(k, \frac{1}{\sqrt{2}}) \in \mathcal{P}$ and so, $\mathcal{E}_{k,\frac{1}{\sqrt{2}}} = E_{\mathcal{P}} = \frac{1}{2}(\frac{1}{\sqrt{2}})^2 = \frac{1}{4} = E_{\mathcal{N}}$; therefore Theorem 1.(ii) gives the conclusion in case $H_{\text{ext}} \geq \frac{1}{\sqrt{2}}$. \square

Theorem 8 (*Type II superconductors*) *If $H_{\text{ext}} \geq k \geq \frac{1}{\sqrt{2}}$, then:*

(i) *If $H_{\text{ext}} \geq k$, then $\mathcal{E}_{k,H_{\text{ext}}} = E_{\mathcal{N}}$ and $(k, H_{\text{ext}}) \in \mathcal{N}$,*

(ii) *If $H_{\text{ext}} < k$, then $(k, H_{\text{ext}}) \notin \mathcal{N}$.*

Proof. Lemma 6 combined with Theorem 1.(ii) gives (i).

By setting $H_{\text{int}} = H_{\text{ext}}$, $u = \alpha u_0$, $\mathbf{a} = 0$ and doing a development of order 2 around the pair $(0, 0)$, one obtains

$$E_{k,H_{\text{ext}}}(H_{\text{ext}}, \alpha u_0, 0) = E_{k,H_{\text{ext}}}(\alpha u_0, 0) = \frac{1}{4} + \frac{1}{2}(\frac{H_{\text{ext}}}{k} - 1)\alpha^2 + o(\alpha^2).$$

Since $k > H_{\text{ext}} = H_{\text{int}}$, one obtains for α small $E_{k,H_{\text{ext}}}(H_{\text{ext}}, \alpha u_0, 0) < \frac{1}{4}$; so, the energy will be lower than $\frac{1}{4}$, i.e. $(k, H_{\text{ext}}) \notin \mathcal{N}$. \square

V ANALYSIS OF THE CASE $k = \frac{1}{\sqrt{2}}$

In this section we will find all pairs (u, \mathbf{a}) verifying $A_{+,H_{\text{int}}}(u, \mathbf{a})$, thus get the value of $m_E(\frac{1}{\sqrt{2}}, H_{\text{int}})$. A similar study is done in [Al2] for a rectangular problem. In book [JaTa], the case considered is of u defined over \mathbb{R}^2 , while in paper ([Ga]) the problem is considered over a Riemann surface. Also, in

[JaTa] it is proved that all critical points of the Ginzburg-Landau functional are solution of the Bogmol'nyi equations, but their proof does not apply to our case.

The papers ([KW]), ([CY]), ([WY]) are devoted to existence theorem concerning the Kazdan-Warner equation. They get as a byproduct existence Theorems for the self-dual equations.

Theorem 9 (*Kazdan-Warner, see [KW]*) *If h is a positive function, $h \neq 0$, and $C^\infty(\mathbb{R}^2/\mathcal{L})$. If $A > 0$ then the equation*

$$-\Delta f + e^f h = A$$

has a unique solution f in $C^\infty(\mathbb{R}^2/\mathcal{L})$.

We define

$$\begin{cases} u_{H_{\text{int}}} &= u_0 e^{f_{H_{\text{int}}}} \\ \mathbf{a}_{H_{\text{int}}} &= \left(\frac{\partial f_{H_{\text{int}}}}{\partial y}, -\frac{\partial f_{H_{\text{int}}}}{\partial x} \right), \end{cases}$$

with $f_{H_{\text{int}}}$ being the unique solution of $1 - 2\mu\pi = |u_0|^2 e^{2f} - \mu\Delta f$ and $\mu = \frac{H_{\text{int}}}{\pi\sqrt{2}}$.

Let us introduce first the following family of sections of E_1 :

$$u_h(x, y) = e^{i\pi(h_y x - h_x y)} u_0(z - h).$$

Recall that z_0 is the zero of u_0 in \mathbb{R}^2/\mathcal{L} ; the section u_h verifies the following easy properties

$$\begin{cases} u_h \in C^\infty(E_1), & L_+(u_h) = 2\pi h u_h, \\ u_h(z) = 0 \text{ if and only if } z \in z_0 + h + \mathcal{L}. \end{cases}$$

Furthermore, for any $h \in \mathbb{R}^2$, $v \in \mathcal{L}$, there exists $\alpha \in \mathbb{R}$ such that

$$u_{h+v}(z) = e^{i\alpha} e^{i\pi(v_y x - v_x y)} u_h(z).$$

Theorem 10 *We assume $H_{\text{int}} \leq \frac{1}{\sqrt{2}}$.*

(i) *If $(u, \mathbf{a}) \in \mathcal{A}$ satisfies $A_{+, H_{\text{int}}}(u, \mathbf{a}) = 0$, then there exist $c \in \mathbb{R}$ such that $(u, \mathbf{a}) = (e^{ic} u_{H_{\text{int}}}, \mathbf{a}_{H_{\text{int}}})$.*

(ii) *The pair $(u_{H_{\text{int}}}, \mathbf{a}_{H_{\text{int}}})$ satisfies to*

$$\begin{cases} \int_\Omega (1 - |u_{H_{\text{int}}}|^2)^2 = \mu^2 [(2\pi)^2 + \int_\Omega |\operatorname{curl} \mathbf{a}_{H_{\text{int}}}|^2] \\ \int_\Omega \frac{\mu}{2} \|i\nabla u_{H_{\text{int}}} + (\mathbf{A}_0 + \mathbf{a}) u_{H_{\text{int}}}\|^2 + \frac{\mu^2}{2} |\operatorname{curl} \mathbf{a}_{H_{\text{int}}}|^2 = (\mu\pi) - 2(\mu\pi)^2. \end{cases}$$

Proof. Let $(u, \mathbf{a}) \in \mathcal{A}$ be a pair satisfying $A_{+, H_{\text{int}}}(u, \mathbf{a}) = 0$, it then verifies the following Bogmol'nyi equations

$$D_+ u = L_+ u + (a_y - ia_x)u = 0 \quad \text{and} \quad 2\mu\pi + \mu \operatorname{curl} \mathbf{a} = 1 - |u|^2$$

and, by Theorem 3, minimizes the functional $E_{\frac{1}{\sqrt{2}}, H_{\text{int}}}$. Therefore, by Section III it satisfies the Ginzburg-Landau equations and so, it is C^∞ .

Since the vector bundle E_1 is non trivial the section u possess at least one zero in \mathbb{R}^2/\mathcal{L} , which we write as $z_h = z_0 + h$.

The zero-set of the function u defined on \mathbb{R}^2 contains $z_h + \mathcal{L}$, while the zero-set of u_h is exactly $z_h + \mathcal{L}$; so, one defines on $\mathbb{R}^2 - (z_h + \mathcal{L})$ the function

$$f = \frac{u}{u_h} .$$

Since both u and u_h are section of the vector bundle E_1 , the function f is \mathcal{L} -periodic. The equation $D_+ u = 0$ is rewritten on $\mathbb{R}^2 - (z_h + \mathcal{L})$ as:

$$0 = 2(\partial_{\bar{z}} f)u_h + f D_+ u_h = 2(\partial_{\bar{z}} f)u_h + [2\pi h f + (a_y - ia_x)f]u_h ,$$

Since u_h is not zero on $\mathbb{R}^2 - (z_h + \mathcal{L})$ we obtain:

$$\partial_{\bar{z}} f = fw \quad \text{with} \quad w = \frac{1}{2}[(-a_y - 2\pi h_x) + i(a_x - 2\pi h_y)] .$$

Note that the function w is defined on \mathbb{R}^2 , also it is C^∞ and \mathcal{L} -periodic.

We now want to extend f to \mathbb{R}^2 : it is a classic result of complex analysis that the equation $\partial_{\bar{z}} k = w$ has a C^∞ solution k on \mathbb{R}^2 .

The function $g = fe^{-k}$ is defined on $\mathbb{R}^2 - (z_h + \mathcal{L})$, satisfies $\partial_{\bar{z}} g = 0$ and is so, analytic. If $m \in z_h + \mathcal{L}$ then $u = O(z - m)$, since u is C^∞ . The complex m is a simple zero of u_h , consequently $u_h^{-1} = O(|z - m|^{-1})$ and $f = O(1)$ at m .

The function g stay bounded around m and is analytic outside m . By a classic result of complex analysis, we get that g can be extended to m in a complex analytic function. The function g is extended to \mathbb{C} and so, f too.

The function g is analytic and so, its zero set is discrete. There exist a translate Ω' of Ω such that the boundary $\partial\Omega'$ of Ω' does not meet any zero of g .

By Rouché theorem the number n of zero of g in Ω' is equal to :

$$n = \frac{1}{2\pi i} \int_{\partial\Omega'} \frac{\partial_z g}{g} dz = \frac{1}{2\pi i} \int_{\partial\Omega'} \frac{\partial_z f}{f} dz - \frac{1}{2\pi i} \int_{\partial\Omega'} \partial_z k dz = \frac{-1}{2\pi i} \int_{\partial\Omega'} \partial_z k dz .$$

The integral of $\frac{\partial_z f}{f}$ over $\partial\Omega'$ is zero, since f is \mathcal{L} -periodic.

Now using Stokes theorem, we get :

$$\begin{aligned} n &= \frac{-1}{2\pi i} \int_{\partial\Omega'} \partial_z k dz = \frac{-1}{2\pi i} \int_{\Omega'} d(\partial_z k dz) = \frac{-1}{2\pi i} \int_{\Omega'} \partial_{\bar{z}} \partial_z k d\bar{z} \wedge dz \\ &= \frac{-1}{2\pi i} \int_{\Omega'} \partial_z \partial_{\bar{z}} k d\bar{z} \wedge dz = \frac{-1}{2\pi i} \int_{\Omega'} \partial_z w d\bar{z} \wedge dz. \end{aligned}$$

The function w is \mathcal{L} -periodic; consequently the function $\partial_z w$ is a \mathcal{L} -periodic function, which has integral zero over Ω' ; so, $n = 0$.

Since $f = g e^k$, the function f has no zero over \mathbb{R}^2 . Since \mathbb{R}^2 is simply connected there exist a complex valued C^∞ function ψ such that $f = e^\psi$.

The function ψ is not \mathcal{L} -periodic, but since the function f is \mathcal{L} -periodic and C^∞ there exist two integer n_1, n_2 such that

$$\psi(z + v_1) = \psi(z) + 2\pi i n_1 \quad \text{and} \quad \psi(z + v_2) = \psi(z) + 2\pi i n_2.$$

We pose $v' = n_1 v_2 - n_2 v_1$, the function $\psi_2(z) = \psi(z) - 2\pi i \det(z, v')$ is \mathcal{L} -periodic, and we have :

$$u(z) = f(z) u_h(z) = e^{\psi_2(z) + 2\pi i [xv'_y - yv'_x]} u_h(z) = e^{\psi_2(z) - i\alpha} u_{h+v'}(z)$$

with $\alpha \in \mathbb{R}$. We set $h_3 = h + v'$, $\psi_3 = \psi_2 - i\alpha$, and we rewrite u as:

$$u(z) = e^{\psi_3(z)} u_{h_3}(z)$$

with ψ_3 a \mathcal{L} -periodic C^∞ function. The Bogmol'nyi equations are rewritten as

$$\begin{cases} \frac{\partial \psi_3}{\partial \bar{z}} &= \frac{1}{2}[(-a_y - \pi h_{3,x}) + i(a_x - \pi h_{3,y})], \\ 0 &= 2\mu\pi - 1 + |u_{h_3}|^2 e^{2\operatorname{Re} \psi_3} + \mu \operatorname{curl} \mathbf{a}. \end{cases}$$

The real and imaginary part of first equation give us the expression of the potential vector:

$$\begin{cases} a_x &= \pi h_{3,y} + \frac{\partial \operatorname{Re} \psi_3}{\partial y} + \frac{\partial \operatorname{Im} \psi_3}{\partial x}, \\ a_y &= -\pi h_{3,x} - \frac{\partial \operatorname{Re} \psi_3}{\partial x} + \frac{\partial \operatorname{Im} \psi_3}{\partial y}. \end{cases}$$

The equation $\operatorname{div} \mathbf{a} = 0$ is then rewritten as $\Delta \operatorname{Im} \psi_3 = 0$. Thus $\operatorname{Im} \psi_3$ is constant, since it is \mathcal{L} -periodic. We now write $\psi_3 = f + ic$ with f a real C^∞ , \mathcal{L} -periodic function; so, one has

$$a_x = \pi h_{3,y} + \frac{\partial f}{\partial y} \quad \text{and} \quad a_y = -\pi h_{3,x} - \frac{\partial f}{\partial x}.$$

The functions \mathbf{a} , $\frac{\partial f}{\partial x}$, and $\frac{\partial f}{\partial y}$ have zero integral over Ω . So, we have $h_3 = 0$ and the zero of u in Ω is z_0 .

One then obtain $\operatorname{curl} \mathbf{a} = -\Delta f$ and the following equation for f :

$$0 = 2\mu\pi - 1 + |u_0|^2 e^{2f} - \mu\Delta f.$$

So, one gets $f = f_{H_{\text{int}}}$; now above equation rewrites as

$$-\mu \operatorname{curl} \mathbf{a}_{H_{\text{int}}} = 2\mu\pi - 1 + |u_{H_{\text{int}}}|^2.$$

It yields $\int_{\Omega} |u_{H_{\text{int}}}|^2 = 1 - 2\mu\pi$ and $\int_{\Omega} (1 - |u_{H_{\text{int}}}|^2)^2 = \mu^2[(2\pi)^2 + \int_{\Omega} |\operatorname{curl} \mathbf{a}_{H_{\text{int}}}|^2]$, the second equation of (ii) is then obtained by Theorem 3. \square

Corollary 11 . For every positive H_{int} one has:

$$m_E\left(\frac{1}{\sqrt{2}}, H_{\text{int}}\right) = \begin{cases} \frac{H_{\text{int}}}{\sqrt{2}} - \left(\frac{H_{\text{int}}}{\sqrt{2}}\right)^2 & \text{if } H_{\text{int}} \leq \frac{1}{\sqrt{2}}, \\ \frac{1}{4} & \text{if } H_{\text{int}} \geq \frac{1}{\sqrt{2}}. \end{cases}$$

Proof. By Theorem 3, one has the inequality $m_E\left(\frac{1}{\sqrt{2}}, H_{\text{int}}\right) \geq \frac{H_{\text{int}}}{\sqrt{2}} - \left(\frac{H_{\text{int}}}{\sqrt{2}}\right)^2$, since $A_{+,H_{\text{int}}} \geq 0$. This lower bound is attained by the pair $(u_{H_{\text{int}}}, \mathbf{a}_{H_{\text{int}}})$.

Theorem 5 give the result if $H_{\text{int}} \geq \frac{1}{\sqrt{2}}$. \square

Remark 12 It can be shown that the pair $(u_{H_{\text{int}}}, \mathbf{a}_{H_{\text{int}}})$ depends continuously on H_{int} and vanish for $H_{\text{int}} = \frac{1}{\sqrt{2}}$, i.e. it is a bifurcated state (see [Du99]).

VI LOCAL STUDY

We define

$$\begin{aligned} H_k(u, \mathbf{a}) &= \frac{1}{4\pi k} \int_{\Omega} \|i\nabla u + (\mathbf{A}_0 + \mathbf{a})u\|^2 \\ &+ \sqrt{\left[\frac{1}{2} + \frac{1}{2(2\pi)^2} \int_{\Omega} |\operatorname{curl} \mathbf{a}|^2\right] \left[\int_{\Omega} (1 - |u|^2)^2\right]}. \end{aligned}$$

Theorem 13 If $k \geq \frac{1}{\sqrt{2}}$ then $H_{cl}(k) = \inf_{(u, \mathbf{a}) \in \mathcal{A}} H_k(u, \mathbf{a})$. If this infimum is attained on a pair, say, $(u', \mathbf{a}') \in \mathcal{A}$, then one has

$$E_{k, H_{cl}(k)}(H_{\text{int}}, u', \mathbf{a}') = \frac{H_{cl}^2(k)}{2} \quad \text{with} \quad H_{\text{int}} = \frac{1}{2} \sqrt{\frac{\int_{\Omega} (1 - |u'|^2)^2}{\left[\frac{1}{2} + \frac{1}{2(2\pi)^2} \int_{\Omega} |\operatorname{curl} \mathbf{a}'|^2\right]}}.$$

Proof. By Section I, we have $(k, H_{\text{ext}}) \in \mathcal{P}$ equivalent to:

$$E_{k,H_{\text{int}}}(u, \mathbf{a}) + \frac{1}{2}(H_{\text{int}} - H_{\text{ext}})^2 \geq \frac{H_{\text{ext}}^2}{2},$$

which after simplification is equivalent to

$$\begin{cases} H_{\text{int}}[\frac{1}{2} + \frac{1}{2(2\pi)^2} \int_{\Omega} |\operatorname{curl} \mathbf{a}|^2] + \frac{1}{4H_{\text{int}}} \int_{\Omega} (1 - |u|^2)^2 \\ + \frac{1}{4\pi k} \int_{\Omega} \|i\nabla u + (\mathbf{A}_0 + \mathbf{a})u\|^2 \geq H_{\text{ext}}. \end{cases}$$

The minimum over $H_{\text{int}} > 0$ of the above expression is attained for $H_{\text{int}} = \frac{1}{2} \sqrt{\frac{\int_{\Omega} (1 - |u|^2)^2}{\frac{1}{2} + \frac{1}{2(2\pi)^2} \int_{\Omega} |\operatorname{curl} \mathbf{a}|^2}}$ which yields the Theorem. \square

The above expression of $H_{c1}(k)$ allow us to obtain $H_{c1}(k) = O(\frac{\ln k}{k})$ (see [Du99]). From Theorem 7, one has $H_{c1}(\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}$.

Theorem 14 *The set of pairs $(u, \mathbf{a}) \in \mathcal{A}$ verifying $H_{\frac{1}{\sqrt{2}}}(u, \mathbf{a}) = \frac{1}{\sqrt{2}}$ is*

$$(e^{ic} u_{H_{\text{int}}}, \mathbf{a}_{\mathbf{H}_{\text{int}}})$$

with $c \in \mathbb{R}$ and $0 < H_{\text{int}} \leq \frac{1}{\sqrt{2}}$.

Proof. If $(u, \mathbf{a}) \in \mathcal{A}$ satisfies $H_{\frac{1}{\sqrt{2}}}(u, \mathbf{a}) = \frac{1}{\sqrt{2}}$, then one has

$$E_{\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}}(H_{\text{int}}, u, \mathbf{a}) = \frac{1}{4} \quad \text{and} \quad H_{\text{int}} = \frac{1}{2} \sqrt{\frac{\int_{\Omega} (1 - |u|^2)^2}{\frac{1}{2} + \frac{1}{2(2\pi)^2} \int_{\Omega} |\operatorname{curl} \mathbf{a}|^2}}.$$

By Lemma 6.(i), first equation simplifies to $A_{+, H_{\text{int}}}(u, \mathbf{a}) = 0$, and then using Theorem 10 to $(u, \mathbf{a}) = (e^{ic} u_{H_{\text{int}}}, \mathbf{a}_{\mathbf{H}_{\text{int}}})$.

When the expression of (u, \mathbf{a}) is substituted into the second equation, one obtains

$$4H_{\text{int}}^2 = \frac{\int_{\Omega} (1 - |u_{H_{\text{int}}}|^2)^2}{\frac{1}{2} + \frac{1}{2(2\pi)^2} \int_{\Omega} |\operatorname{curl} \mathbf{a}_{\mathbf{H}_{\text{int}}}|^2}.$$

By Theorem 10.(ii), this relation is always satisfied. \square

Theorem 15 (i) *There exist $\delta > 0$ and $S > 0$ such that for all h in $[0, \delta]$, we have*

$$-h \leq H_{c1}\left(\frac{1}{\sqrt{2}} + h\right) - \frac{1}{\sqrt{2}} \leq -Sh.$$

(ii) *The critical magnetic field $H_{c1}(k)$ is strictly decreasing at $k = \frac{1}{\sqrt{2}}$.*

Proof. The expression of $H_{c1}(k)$ obtained in Theorem 13 give us that the function $k \mapsto kH_{c1}(k)$ is increasing; this yields the lower bound.

Now we will prove the upper bound by using the $(u_{H_{\text{int}}}, \mathbf{a}_{\mathbf{H}_{\text{int}}})$ as quasi-modes. If $k = \frac{1}{\sqrt{2}} + h$ then we will have

$$H_k(u_{H_{\text{int}}}, \mathbf{a}_{\mathbf{H}_{\text{int}}}) = \frac{1}{\sqrt{2}} - \frac{h}{2\pi} \int_{\Omega} \|i\nabla u_{H_{\text{int}}} + (\mathbf{A}_0 + \mathbf{a}_{\mathbf{H}_{\text{int}}})u_{H_{\text{int}}}\|^2 + o(h).$$

We get the following values of S using Bochner-Kodaira-Nakano

$$\begin{aligned} S &= \sup_{0 < H_{\text{int}} < \frac{1}{\sqrt{2}}} \frac{1}{2\pi} \int_{\Omega} \|i\nabla u_{H_{\text{int}}} + (\mathbf{A}_0 + \mathbf{a}_{\mathbf{H}_{\text{int}}})u_{H_{\text{int}}}\|^2 \\ &= \sup_{0 < H_{\text{int}} < \frac{1}{\sqrt{2}}} \left[1 - \frac{H_{\text{int}}}{\sqrt{2}} - \frac{H_{\text{int}}}{2\pi^2 \sqrt{2}} \int_{\Omega} |\operatorname{curl} \mathbf{a}_{\mathbf{H}_{\text{int}}}|^2 \right] \end{aligned}$$

follows from Theorem 10.(ii). \square

One may want now to know the exact value of S at $\frac{1}{\sqrt{2}}$. Using numerical simulations we obtain that the function

$$\chi(H_{\text{int}}) = 1 - \sqrt{2}H_{\text{int}} - \frac{H_{\text{int}}}{2\pi^2 \sqrt{2}} \int_{\Omega} |\operatorname{curl} \mathbf{a}_{\mathbf{H}_{\text{int}}}|^2$$

is decreasing and has a limit of approximately 0.78 at $H_{\text{int}} = 0$ for a square lattice.

References

- [Ab] A. Abrikosov, *Magnetic properties of group II Superconductor*, JETP Lett. (USSR), **32-5** (1957) 1174-1182.
- [JT] T. Jürgen, A. Thomas, *the generalized Lichnerowicz formula and analysis of Dirac operators*, J. Reine Ang. Math., **471** (1996) 23-42.
- [Al2] Y. Almog, *Periodic solutions to the self dual Ginzburg-Landau equations*, European J. Appl. Math., **10-3** (1999) 285-295.
- [BGT] E. Barany, M. Golubitsky and J. Turski, *Bifurcations with local gauge symmetries in the Ginzburg-Landau equations*, Physica-D, **56** (1992) 36-56.
- [CY] L. Caffarelli and Y. Yang, *Vortex condensation in the Chern-Simons Higgs model: An existence theorem*, Comm. in Math. Phys., **168** (1995) 321-336.

- [Du01] M. Dutour, *Phase diagram for Abrikosov lattice*, J. Math. Phys., **42-10** (2001) 4915-4926.
- [Du99] M. Dutour, *Bifurcation vers l'état d'Abrikosov et diagramme des phases*, Thesis Orsay december 1999, <http://www.arxiv.org/abs/math-ph/9912011>.
- [Ga] O. Garcia Prada, *A direct existence proof for the vortex equations over a compact Riemannian manifold*, Bull. London Math. Soc., **26** (1994) 88-96.
- [Cha] K. Chandrasekharan, *Elliptic functions*, Springer-Verlag.
- [WY] S. Wang and Y. Yang, *Abrikosov's vortices in the critical coupling*, SIAM J. Math. Anal., **23-5** (1992) 1125–1140.
- [De] J. P. Demailly, *Sur l'identité de Bochner-Kodaira-Nakano en géométrie hermitienne*, Séminaire d'analyse P. Lelong, P. Dolbeault, H. Skoda, Lecture Notes in Maths, **1198** (1983/84) 88-97.
- [LM] H. Lawson and M. Michelsohn, *Spin geometry*, Princeton University press (1989).
- [DH] M. Dutour and B. Helffer, *On bifurcation from normal solutions from superconducting states*, Rendiconti del seminario matematico, Università e Politecnico Torino "Advances in Partial Differential Equations", **58-3** (2000) 259–280.
- [Ge] P. G. de Gennes, *Superconducting properties of metals and alloys*, Addison Wesley (1966).
- [GL50] V.L. Ginzburg and L.D. Landau, *On the theory of superconductivity*, Soviet Phys. JETP, **20** (1950) 1064-1082.
- [JaTa] A. Jaffe and C. Taubes, *Vortices and Monopoles*, Birkhäuser (1980).
- [Ki] C. Kittel, *Introduction to Solid State Physics*, Wiley (1996).
- [KW] J.L. Kazdan and F.W. Warner, *Curvature functions for compact 2-manifolds*, Ann. Math, **99** (1974) 14-47.
- [SST] D. Saint-James, G. Sarma and E.J. Thomas, *Type II Superconductivity*, Pergamon Press (1969).
- [T] M. Tinkham, *Introduction to superconductivity*, 2nd edition, McGraw-Hill (1996).
- [YS] Yang and Yi Song, *The existence of Ginzburg-Landau solutions on the plane by a direct variational method*, Ann. Inst. H. Poincaré, Analyse non linéaire, **11-5**, (1994) 517-536.