

SRM Institute of Science and Technology College of Engineering and Technology B.Tech - Mechanical Engineering

Academic Year: 2022-23 Semester: 6 /Even Mark: 50

Subject Code: 18MEO113T Title: Design of Experiments Duration: 100 mins

Type of Test: CLA II

Q. No.	Part A $(10 \times 1 = 10)$	M	BL	CO	PO	PI
1	The natural variability of a process is measured by	1	1	1	3	3.1.6
	·	•	1	1	3	
	A. Sample standard deviation					
	B. Process standard deviation					
	C. Process mean					
	D. Sample mean					216
2	How many levels of a factor are recommended for a	1	2	1	3	3.1.6
	qualitative experiment? A. one					
	B. two					
	C. three					
	D. three or more than three					
	_ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
3	What is presented in this diagram?	1	1	1	3	4.1.4
	Nozzle Wind kniFe Sticky confirm Wipe frequency Wipe speed Sticky mat	1	1	1	3	
	0.0024-					
	0.0022					
	0.0020-					
	QCCC18 Yes No Yes No Yes No Yes No Yes No Yes No					
	A. Mutual exclusivity					
	B. Cross-over effects					
	C. Main effects					
	D. Synergistic interactions					
4	What plot describes average response values at all	1	2	1	3	4.3.4
	combinations of a process or design parameter settings?	1		1	3	
	A. Pareto					
	B. MPP					
	C. Main Effects					
	D. Cube plots					
5	Strength of a machine - What Taguchi's design would you	1	2	1	3	4.3.4
	plot for this?					
	A. Smaller the better					
	B. Larger the better					
	C. Nominal the betterD. Everything's equal					
6	What is the other name for nominal value?					3.1.6
	A. confidence interval	1	1	1	3	3.1.0
	B. probability limit					
	C. functional limit					
	D. probability limit					

7	WILL A NIDD 1.					216
7	What does the NPP plot convey?	1	2	1	3	3.1.6
	A. Normal distribution compliance					
	B. mean					
	C. variance					
	D. R ² value	<u> </u>				
8	Multiple values of control factors are called	1	1	1	3	4.3.4
	A. interactions					
	B. noise					
	C. signal					
	D. levels					
9	occurs experimentation is done in a way to	1	2	1	3	4.3.4
	reduce bias.	1		1		
	A. Interaction					
	B. Error					
	C. Replication					
	D. Randomization					
10	A formal way to seek the direction of minimum damage	1	1	1	3	4.3.4
	in optimisation process problems is called the	1	1	1	3	
	A. Tunneling					
	B. Localisation					
	C. Method of steepest descent					
	D. Method of steepest ascent					
	2. Here of book works	<u> </u>				
	Part B - Answer any 2 out of 3 (2 x 4 = 8 marks)					
11		1	2	2	2	2 1 6
11	What is a screening design? Why is it needed? Give one	4	2	2	3	3.1.6
11	What is a screening design? Why is it needed? Give one example.	4	2	2	3	3.1.6
11	What is a screening design? Why is it needed? Give one example. • In many process development and manufacturing	4	2	2	3	3.1.6
11	What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or	4	2	2	3	3.1.6
11	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. 	4	2	2	3	3.1.6
11	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design 	4	2	2	3	3.1.6
11	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors 	4	2	2	3	3.1.6
11	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. 	4	2	2	3	3.1.6
11	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process 	4	2	2	3	3.1.6
11	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important 	4	2	2	3	3.1.6
11	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important factors, or the 'vital few'. 	4	2	2	3	3.1.6
11	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important factors, or the 'vital few'. Screening Designs expounded by R.L. Plackett and 	4	2	2	3	3.1.6
11	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important factors, or the 'vital few'. Screening Designs expounded by R.L. Plackett and J.P. Burman in 1946 – hence the name 	4	2	2	3	3.1.6
11	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important factors, or the 'vital few'. Screening Designs expounded by R.L. Plackett and J.P. Burman in 1946 – hence the name Plackett–Burman designs (P–B designs). 	4	2	2	3	3.1.6
11	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important factors, or the 'vital few'. Screening Designs expounded by R.L. Plackett and J.P. Burman in 1946 – hence the name 	4	2	2	3	3.1.6
	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important factors, or the 'vital few'. Screening Designs expounded by R.L. Plackett and J.P. Burman in 1946 – hence the name Plackett–Burman designs (P–B designs). The screening design has n-1 runs for n factors. 					
11	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important factors, or the 'vital few'. Screening Designs expounded by R.L. Plackett and J.P. Burman in 1946 – hence the name Plackett–Burman designs (P–B designs). The screening design has n-1 runs for n factors. 	4	3	2	3	3.1.6
	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important factors, or the 'vital few'. Screening Designs expounded by R.L. Plackett and J.P. Burman in 1946 – hence the name Plackett–Burman designs (P–B designs). The screening design has n-1 runs for n factors. Briefly discuss the experimenter's role in the planning phase of DOE.					
	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important factors, or the 'vital few'. Screening Designs expounded by R.L. Plackett and J.P. Burman in 1946 – hence the name Plackett–Burman designs (P–B designs). The screening design has n-1 runs for n factors. 					
	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important factors, or the 'vital few'. Screening Designs expounded by R.L. Plackett and J.P. Burman in 1946 – hence the name Plackett–Burman designs (P–B designs). The screening design has n-1 runs for n factors. Briefly discuss the experimenter's role in the planning phase of DOE.					
	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important factors, or the 'vital few'. Screening Designs expounded by R.L. Plackett and J.P. Burman in 1946 – hence the name Plackett–Burman designs (P–B designs). The screening design has n-1 runs for n factors. Briefly discuss the experimenter's role in the planning phase of DOE. Problem Recognition and Formulation 					
	 What is a screening design? Why is it needed? Give one example. In many process development and manufacturing applications, the number of potential process or design variables or parameters (or factors) is large. Screening reduces the number of process or design parameters (or factors) by identifying the key factors affecting product quality or process performance. This reduction allows one to focus process improvement efforts on the few really important factors, or the 'vital few'. Screening Designs expounded by R.L. Plackett and J.P. Burman in 1946 – hence the name Plackett–Burman designs (P–B designs). The screening design has n-1 runs for n factors. Briefly discuss the experimenter's role in the planning phase of DOE. Problem Recognition and Formulation Selection of Response or Quality Characteristic 					

	4. Classification of Process Variables5. Determining the Levels of Process Variables					
	6. All the Interactions of Interest					
13	what is blocking? Explain with axamples	4	3	2	3	4.1.4
13	What is blocking? Explain with examples. A technique used to increase the precision of an experiment by breaking the experiment into homogeneous segments (blocks) in order to control block variability. It basically deals with noise factors. Purpose: the main purpose of the principle of blocking is to increase the efficiency of an experimental design by decreasing the experimental error. Eg: 1. Batches of raw materials 2. operators	4	3	2	3	4.1.4
	3. time: shifts, days, etc. 4. Gender					
	Dant C					
14	Part C - Answer any 2 out of 3 (2 \times 4 = 8 marks)	4	3	2	3	4.3.4
14	What does this graph indicate? Discuss it. Taguchi Quality Loss Function (QLF): Taguchi defines Quality as "the loss imparted by the product to society from the time the product is shipped" LOSS = Cost to operate, Failure to function, maintenance and repair cost, customer satisfaction, poor design.	4	3	2	3	4.3.4
	Product to be produced "being within specification.					
15	Briefly discuss nominal-the-best Taguchi's approach. Taguchi's loss function is given by	4	2	2	3	4.3.4
	 L(y) = k(y-m)² (1) where k = a proportionality constant called the quality loss coefficient m = the target value of y y = the value of the quality characteristic L(y) = loss in dollars when the quality characteristic is equal to y Note that L(y) = 0 when y = m. The functional tolerance range of the quality characteristic is (m-Δ) and (m+Δ) which represents the maximum permissible variation. If the consumer's average loss is A when the quality characteristic is at the limit of the functional tolerance, then A represents the customer cost for repair or replacement of the product. The proportionality constant k is obtained from A = kΔ² or, k = A²/Δ² (2) or, k = A²/Δ² (3) Then L(y) in Eq. (1) can be written as L(y) = A/Δ²(y-m)² (4) 					
16	What is a robust design? Describe disturbances types briefly.	4	2	2	3	3.1.6

	In the design of a new product, any design activity can be					
	called robust, if it leads the product;					
	1. To have longer life (higher reliability)					
	2. To be more consistent with use					
	3. To be more consistent from product to product					
	4. To perform consistently as temperature and other					
	conditions change					
	 Products and services should be designed to be 					
	inherently defect-free and high quality.					
	 Meet customer's expectations also under non-ideal 					
	conditions					
	 Disturbances are events that cause the design 					
	performance to deviate from its target value					
	Taguchi divides disturbances into three categories					
	1. External disturbances: variation in the					
	environment where the product is used					
	2. Internal disturbances: wear and tear inside a					
	specific unit					
	3. Disturbances in the production process:					
	deviation from target values					
	deviation from target values					
	Part D - Answer either of the choices in each question.					
	$(2 \times 12 = 24 \text{ marks})$					
		I				
	(2 A 12 21 marks)					
17	A. Write in detail about the barriers in the effective	12	3	2	3	3.1.6
17		12	3	2	3	3.1.6
17	A . Write in detail about the barriers in the effective	12	3	2	3	3.1.6
17	A . Write in detail about the barriers in the effective application of DOE.	12				
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers	12				
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers	12				
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers	12				
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers	12				
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers	12				
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers	12				
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers	12				
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers 5. Other barriers	12				
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers 5. Other barriers OR B. (i) What is Linear Regression? What are its types?	12				
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers 5. Other barriers OR B. (i) What is Linear Regression? What are its types? The regression model predicts the response for different					
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers 5. Other barriers OR B. (i) What is Linear Regression? What are its types? The regression model predicts the response for different combinations of process parameters (or design	12				
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers 5. Other barriers The regression model predicts the response for different combinations of process parameters (or design parameters) at their best levels. Regression coefficients					
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers 5. Other barriers OR B. (i) What is Linear Regression? What are its types? The regression model predicts the response for different combinations of process parameters (or design parameters) at their best levels. Regression coefficients are estimates of the unknown population parameters and					
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers 5. Other barriers OR B. (i) What is Linear Regression? What are its types? The regression model predicts the response for different combinations of process parameters (or design parameters) at their best levels. Regression coefficients are estimates of the unknown population parameters and describe the relationship between a predictor variable and					
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers 5. Other barriers OR B. (i) What is Linear Regression? What are its types? The regression model predicts the response for different combinations of process parameters (or design parameters) at their best levels. Regression coefficients are estimates of the unknown population parameters and describe the relationship between a predictor variable and the response. In linear regression, coefficients are the					
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers 5. Other barriers OR B. (i) What is Linear Regression? What are its types? The regression model predicts the response for different combinations of process parameters (or design parameters) at their best levels. Regression coefficients are estimates of the unknown population parameters and describe the relationship between a predictor variable and					
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers 5. Other barriers OR B. (i) What is Linear Regression? What are its types? The regression model predicts the response for different combinations of process parameters (or design parameters) at their best levels. Regression coefficients are estimates of the unknown population parameters and describe the relationship between a predictor variable and the response. In linear regression, coefficients are the					
17	A. Write in detail about the barriers in the effective application of DOE. Some noticeable barriers are as follows: 1. Educational barriers 2. Management barriers 3. Cultural barriers 4. Communication barriers 5. Other barriers OR B. (i) What is Linear Regression? What are its types? The regression model predicts the response for different combinations of process parameters (or design parameters) at their best levels. Regression coefficients are estimates of the unknown population parameters and describe the relationship between a predictor variable and the response. In linear regression, coefficients are the					

(ii)A sample of the various prices for a particular product has been conducted in 16 stores selected randomly in a city's neighbourhood. The following prices were noted:

95, 108, 97, 112, 99, 106, 105, 100, 99, 98, 104, 110, 107, 111, 103, 110.

Assuming that the prices of this product follow a normal law of variance of 25 and an unknown mean:

1. What is the distribution of the sample mean?

$$\bar{x}$$
 = (95 +108 + 97 + 112 + 99 +106 +105 +100 + 99 + 98 + 104 + 110 +107 + 111 + 103 + 110) / 16

$$= 104$$

if the student wrote normal distribution is assumed, marks can be given.

2. Determine the confidence interval at 95% for the population mean.

$$N = 16$$

$$\mathbf{CI} = \overline{x} \pm 3 \left\{ \frac{SD}{\sqrt{N}} \right\}$$

2

2

		s =	$\sqrt{\frac{1}{N-1}}$	$\sum_{i=1}^{N} (x_i - \overline{x})^2,$					
	SD =								
	$\sqrt{\frac{1}{16-1}}$	$-\frac{16}{1}$ (95	- 104) ² +	+ (110 - 104) ²	6				
	x	x - x bar	sq (x - x bar)						
	95	-9	81						
	108	4	16						
	97	-7	49						
	112	8	64						
	99	-5	25						
	106	2	4						
	105	1	1						
	100	-4	16						
	99	-5	25						
	98	-6	36						
	104	0	0						
	110	6 3	36 9						
	111	7	49						
	103	-1	1						
	110	6	36						
		_							
	sum sq (x	- x bar) =	448						
		$\sqrt{\frac{448}{15}} = 4$							
	$\therefore CI = 10$	$04 \pm 3 \left\{ \frac{1}{2} \right\}$ $4 \pm 3 \left\{ \frac{1}{2} \right\}$	\[\frac{5.465}{4} \right\} \tag{36625}						
		4 ± 4.098							
	$\mathbf{CI} = [9]$	9.90125,	108.09875]						
18	A. (i) Wh	nat factors	s affect qua	lity characteristics? Briefly	5	3	3	2	3.1.6
	discuss th		1	,	+				
	1. Si	gnal			8				
		oise and				4	3	2	4.3.4
		ontrol fact		_					
			ired for eac						
				put and output variability					
	parameter	rs in great	detail.						
					<u> </u>				

The quality of a management greature is a11			
The quality of a measurement system is usually			
determined by the statistical properties of the data it			
generates over a period of time which captures both long-			
and short-term variation.			
Experimenters should be aware of the repeatability,			
reproducibility and uncertainty of the measurements prior			
to the execution of industrial experiments. It is advisable			
to make sure that the measurement system is capable,			
stable, robust and insensitive to environmental changes.			
Experimenters should define the measurement system			
prior to performing the experiment in order to understand			
what to measure, where to measure and who is doing the			
measurements, etc. so that various components of			
variation (measurement system variability, operator	7		
variability, part variability, etc.) can be evaluated.	3		
Classification of Process Variables	1		
After identification of process variables, classify them	-		
into controllable and uncontrollable variables	1		
	1		
Control variables are those which can be controlled by a			
process engineer/production engineer in a production			
environment.			
Uncontrollable variables (or noise variables) are those			
which are difficult or expensive to control in actual			
production environments.			
urement system, including human resources, equipments			
and measurement methods, is a fundamental aspect in			
planning experimental studies.			
It is important to ensure that equipment exists and is			
suitable, accessible and calibrated.			
Selection of Process Variables or Design Parameters			
Some possible ways to identify potential process variables			
are the use of engineering knowledge of the process,			
historical data, cause-and-effect analysis and			
brainstorming.			
It is a good practice to conduct a screening experiment in			
the first phase of any experimental investigation to			
identify the most important design parameters or process			
variables.			
Classification of Process Variables			
Variables such as ambient temperature fluctuations,			
humidity fluctuations, raw material variations, etc. are			
examples of noise variables.			
The effect of such nuisance variables can be minimized			
by the effective application of DOE principles such as			
blocking, randomization and replication.			
	L		

B. The following table gives the hardness values of 3 replicates of an L9 welding experiment with the aim of maximising hardness. There are 3 variables varied on 3 levels. Voltage Current Wire-Speed H1 H2 H3 20 150 180 163.3 139.3 170.0 20 180 200 156.0 131.3 138.0 20 200 250 136.3 134.5 140.5 23 150 200 131.3 131.5 145.0 23 180 250 186.5 176.5 180.5 23 200 180 140.5 179.3 200.5 25 150 250 153.5 145.5 140.5 25 180 180 180.5 170.5 190.5 25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.				OR				
maximising hardness. There are 3 variables varied on 3 levels. Voltage Current Wire-Speed H1 H2 H3 20 150 180 163.3 139.3 170.0 20 180 200 156.0 131.3 138.0 20 200 250 136.3 134.5 140.5 23 150 200 131.3 131.5 145.0 23 180 250 186.5 176.5 180.5 23 200 180 140.5 179.3 200.5 25 150 250 153.5 145.5 140.5 25 180 180 180.5 170.5 190.5 25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	B. Th	e followi	ng table g					
levels. Voltage Current Wire-Speed H1 H2 H3 20 150 180 163.3 139.3 170.0 20 180 200 156.0 131.3 138.0 20 200 250 136.3 134.5 140.5 23 150 200 131.3 131.5 145.0 23 180 250 186.5 176.5 180.5 23 200 180 140.5 179.3 200.5 25 150 250 153.5 145.5 140.5 25 180 180 180.5 170.5 190.5 25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	replic	ates of ar	ı L9 weld	ling experin	nent with	the aim of		
Voltage Current Wire-Speed H1 H2 H3 20 150 180 163.3 139.3 170.0 20 180 200 156.0 131.3 138.0 20 200 250 136.3 134.5 140.5 23 150 200 131.3 131.5 145.0 23 180 250 186.5 176.5 180.5 23 200 180 140.5 179.3 200.5 25 150 250 153.5 145.5 140.5 25 180 180 180.5 170.5 190.5 25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	maxir	nising ha	rdness. T	here are 3 v	ariables	varied on 3		
20	levels							
20								
20 180 200 156.0 131.3 138.0 20 200 250 136.3 134.5 140.5 23 150 200 131.3 131.5 145.0 23 180 250 186.5 176.5 180.5 23 200 180 140.5 179.3 200.5 25 150 250 153.5 145.5 140.5 25 180 180 180.5 170.5 190.5 25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.		-		-				
20 200 250 136.3 134.5 140.5 23 150 200 131.3 131.5 145.0 23 180 250 186.5 176.5 180.5 23 200 180 140.5 179.3 200.5 25 150 250 153.5 145.5 140.5 25 180 180 180.5 170.5 190.5 25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.		150			139.3	170.0		
23 150 200 131.3 131.5 145.0 23 180 250 186.5 176.5 180.5 23 200 180 140.5 179.3 200.5 25 150 250 153.5 145.5 140.5 25 180 180 180.5 170.5 190.5 25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	20	180	200	156.0	131.3	138.0		
23 180 250 186.5 176.5 180.5 23 200 180 140.5 179.3 200.5 25 150 250 153.5 145.5 140.5 25 180 180 180.5 170.5 190.5 25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	20	200	250	136.3	134.5	140.5		
23 200 180 140.5 179.3 200.5 25 150 250 153.5 145.5 140.5 25 180 180 180.5 170.5 190.5 25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	23	150	200	131.3	131.5	145.0		
25 150 250 153.5 145.5 140.5 25 180 180 180.5 170.5 190.5 25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	23	180	250	186.5	176.5	180.5		
25 180 180 180.5 170.5 190.5 25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	23	200	180	140.5	179.3	200.5		
25 180 180 180.5 170.5 190.5 25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	25	150	250	153.5	145.5	140.5		
25 200 200 190.0 174.5 180.0 Answers given in the separate mail pdf attachment Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	25	180						
Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	25							
Calculate (i) Main effects for all levels of all factors. (ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	Answ	ers given	in the se	parate mail	pdf attac	chment		
(ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.		_		•				
(ii) Draw the main effects plots (iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.	(i) Ma	ain effect	s for all 1	evels of all	factors.			
(iii) Identify which combination gives the maximum hardness. (iv) State which Taguchi's function is appropriate for this problem.								
hardness. (iv) State which Taguchi's function is appropriate for this problem.								
(iv) State which Taguchi's function is appropriate for this problem.		-						
problem.			h Taguch	i's function	is annro	priate for this		
1.	` ′		ii iugucii	ii 5 iuniculon	is appro	priace for tills		
Larger -the-better	1 -		ter					

Prepared by: DSS

Outcome Alignment Matrix:

QUESTION			CO distribution	1	
NUMBER	CO1	CO2	CO3	CO4	CO5
1		X			
2		X			
3		X			
4		X			
5		X			
6			X		
7			X		
8			X		
9			X		
10			X		
11		X			
12		X			

13	X		
14		X	
15		X	
16		X	
17A	X		
17B	X		
18A		X	
18B		X	
Total			
%	50%	50%	

"Quality Matrix":

Question	BL Distribution						
No.	L1	L2	L3	L4			
1	X						
2		X					
3	X						
4		X					
5	X						
6		X					
7	X						
8		X					
9	X						
10		X					
11		X					
12			X				
13			X				
14			X				
15		X					
16		X					
17A			X				
17B				X			
18A			X				
18B				X			
Total							
%							

Bloom's Level

Prepared by and Course Coordinator (Deborah Serenade Stephen)