

Federated Prompt Learning for Weather Foundation Models on Devices

Shengchao Chen, Guodong Long, Tao Shen, Jing Jiang, Chengqi Zhang Australian Artificial Intelligence Institute, University of Technology Sydney

INTRODUCTION

Background: On-device weather forecasting

Main Contributions:

- (1) FedPoD, an efficient FL framework for real-world on-device weather forecasting. (2) Adaptive Prompt Tuning, to represent info mation and guide prediction through multi-lev el communication and knowledge sharing.
- (3) Dynamic Graph Modeling, to enhance pers onalization by optimizing collaboration among clients with similar representations

Main Challenges:

Weather data from different regions show significant non.iid. Additionally, devices on seashores and hilltops may collect different data even if they are geographically close.

(2) Communication Overhead

Low-resource weather edge devices cannot support large-scale parameter communications.

OPTIMIZATION OBJECTIVE

 $\mathcal{L}_{ap} = ext{MSE}(y',y) + \mathcal{R}(\{P_i\}; \{P_j\}^l; \{P_i\}^l; \{P\}^*)$ Prompt-based Regularization Term $\mathcal{L}_{ap} = exttt{MSE}(y',y)$ $+\frac{1}{\xi^2}L^2(\{m{P}_i\},\{m{P}\}^*)+\frac{1}{\xi^2}L^2(\{m{P}_i\},\{m{P}_i\}^l)$ $+ \frac{1}{ au^2} \cdot \frac{1}{(|\mathcal{N}|/S_{m{G}}) - 1} \sum_{i \in \mathcal{N}} L^2(\{m{P}_i\}, \{m{P}_j\}^l)$ $+4\{\log_2(\xi) + \log_2(\tau)\}.$

Expanding from a multi-task learning perspective [Kendall et al. 2018] P_i:Prompts from i-th client P_i:Prompts from j-th client

P*:Global prompts

 $\underset{\{\boldsymbol{P}_i\};\boldsymbol{A}}{\operatorname{arg\,min}} \quad \sum_{i=1}^{N} [\frac{n_i}{n} F_i(\{\boldsymbol{P}_i\};D_i) + \mathcal{R}(\{\boldsymbol{P}_i\};\{\boldsymbol{P}_i\}^l;\{\boldsymbol{P}_i\}^l;\{\boldsymbol{P}\}^*)]$ Global Optimization Objective

 $s.t. \quad \{P\}^* \in \operatorname*{arg\,min}_{\{P_1\},...,\{P_N\}} \sum_{i=1}^N \frac{n_i}{n} F_i(\{P_i\}),$ $\{oldsymbol{P}\}^l \in rg \min_{\{oldsymbol{P}_i\}^l} \sum_{j \in \mathcal{N}} oldsymbol{A}_{j,i} S(\{oldsymbol{P}_i\}^l, \{oldsymbol{P}_j\}^l)$

G(A) is a graph-based constraint that ensures each client aggregates with similar neighboring node, Adjacent Matrix from Dynamic Graph Modeling

Architecture of FedPoD. Prompts comprise the Spatial Prompt (Ps), Temporal Prompt (PT), and Inter-variable Prompt (Pv), <->: exchanges prompts among clients, <->: exchange only prompts during client-server communication.

MAIN ARCHITECTURE

LOCAL PROMPTS UPDATING

Temporal Prompt & Inter-variable Prompt Updating

Algorithm 1 Implementation of P_T and P_V Updating Initialize Original input series X_{ipt} , frozen PFM F_M , Temporal/Variable updating steps K_t and K_s . for time forecasting step q=1,2,... do Updating $(m{F}_M(\|m{X}_{ ext{ipt}},m{P}_T\|^T)),m{P}_T\in\mathbb{R}^{q\cdot K_t imes n}$

 $\triangleright \|.\|^T$: concat along temporal dimension $oldsymbol{P}_T \leftarrow \|oldsymbol{P}_T, oldsymbol{P}_T' \in \mathbb{R}^{K_t imes n}\|$

 $\triangleright P_T'$: Next temporal prompt block end for for variable forecasting step p = 1, 2, ... do Updating $(m{F}_M(\|m{X}_{ ext{ipt}},m{P}_V\|^V)),m{P}_V\in\mathbb{R}^{m imes p\cdot K_v}$ $\triangleright \|.\|^V$: concat along variable dimension

 $P_V \leftarrow \|P_V, P_V' \in \mathbb{R}^{m \times K_v}\|^2$ $\triangleright P'_V$: Next inter-variable prompt block end for

Historical observations

Input with Temporal Prompt Input with Temporal Prompt

Spatial Prompt Updating [X_{geo}: geographic information]

 $P_S, X \leftarrow \texttt{LayerNorm}(\|X_{\mathsf{ipt}}, X_{\mathsf{geo}}\|, \|X, P_S\|)$

Upper: Temporal Prompt Bottom: Inter-variable Prompt

Final forecasting results $\overline{oldsymbol{X}} = exttt{FFN}(oldsymbol{F}(oldsymbol{X}_{ ext{ipt}} + oldsymbol{X}))$

MAIN RESULTS

T' T . G		AvePRE		SurTEMP		SurUPS	
Fine-Tuning Strategy	Method	Task1	Task2	Task1	Task2	Task1	Task2
	FedAvg [McMahan et al., 2017]	34.6/44.8	56.0/90.1	47.6/64.4	56.5/78.3	53.5/74.2	54.1/74.6
	FedProx [Li et al., 2020]	31.7/42.1	54.4/87.2	44.4/62.7	52.9/76.4	51.2/69.5	52.3/72.4
	Per-FedAvg [Fallah et al., 2020]	30.9/40.7	54.3/71.5	41.4/60.9	51.8/73.3	50.2/69.7	51.7/71.8
G 4 15 4 1	APFL [Deng et al., 2020]	32.5/43.8	56.1/84.9	46.2/63.1	59.4/77.3	54.3/73.7	53.8/73.4
Conventional Fine-tuning	FedAMP [Huang et al., 2021]	31.9/41.3	54.7/84.2	43.8/62.9	52.3/73.7	51.5/70.0	53.2/73.4
	FedATT [Jiang et al., 2020]	34.5/44.7	63.2/89.8	48.7/63.1	61.0/79.4	58.8/73.6	64.6/82/0
	pFedMe [T Dinh et al., 2020]	32.2/42.7	64.0/85.2	42.9/61.8	50.7/74.6	51.7/70.1	52.5/72.0
	SFL [Chen et al., 2022]	30.0/40.2	<u>53.1</u> /81.2	39.9/62.6	51.7/76.1	48.0/69.1	51.0/70.4
	FedAvg [McMahan et al., 2017]	32.4/42.8	51.0/76.3	41.2/61.7	54.4/76.8	52.1/72.2	53.2/73.8
	FedProx [Li et al., 2020]	27.1/38.0	47.1/70.2	39.7/61.5	51.7/75.2	48.1/67.1	51.0/67.6
	Per-FedAvg [Fallah et al., 2020]	29.3/37.9	45.3/67.4	37.8/60.0	51.3/72.2	47.6/68.2	50.1/69.5
	APFL [Deng et al., 2020]	29.5/38.7	46.0/67.7	38.6/64.2	55.7/75.7	56.2/67.1	59.7/68.2
Adaptive Prompt Tuning (Ours)	FedAMP [Huang et al., 2021]	27.1/37.4	46.7/69.7	39.2/61.0	51.2/73.1	51.5/67.9	52.1/69.3
Fg (0)	FedATT [Jiang et al., 2020]	30.5/40.8	58.7/79.7	38.4/63.7	52.4/79.1	50.9/70.0	53.5/72.6
	pFedMe [T Dinh et al., 2020]	28.2/39.7	47.5/69.9	38.5/61.4	50.5 /74.1	48.4/ <u>66.9</u>	51.2/68.8
	SFL [Chen et al., 2022]	31.1/39.2	46.4/68.8	37.6/59.3	54.2/73.7	47.2/66.0	49.8/67.2
	FedPoD (Ours)	23.7/32.9	44.3/65.5	35.7/55.0	51.4/ 71.2	43.9/62.5	45.2/63.9
041 - D - 475 - 1	PromptFL [Guo et al., 2023]	33.8/42.7	49.2/70.0	44.1/63.2	59.7/78.9	51.1/73.7	58.2/69.2
Other Prompt Tuning	MetePFL [Chen et al., 2023b]	29.9/37.2	46.1/68.0	40.1/58.6	51.3/73.0	48.4/67.7	52.4/67.6

Main results with different fine-tuning strategy (MAE/RMSE report). Conventional finetuning: update local FM with a FFN head. Other Prompt Tuning: add parameters to input to update local FM. AvePRE/SurTEMP/SurUPS: weather forecasting dataset from NASA.

 Variant	$oldsymbol{P}_V$	$oldsymbol{P}_T$	$oldsymbol{W}_{bv}$	$oldsymbol{W}_{bt}$	$oldsymbol{P}_{\!S}$	Federated Aggregation Strategy	Local Loss	Task 1	Task 2
FedPoD-A	w/o	w		_	w	$\{P_i\}_{i=1}^{l,N} \leftarrow \boldsymbol{A}_{\mathrm{T}}\{P_i\}_{i=1}^N + (1-\alpha)\boldsymbol{A}_{\mathrm{S}}\{P_i\}_{i=1}^N$	Ours MSE	29.9/40.4 31.7/42.4	53.7/78.4 54.4/80.0
FedPoD-B	w	w/o	-	-:	w	$\{P_i\}_{i=1}^{l,N} \leftarrow \mathbf{A}_{S}\{P_i\}_{i=1}^N + (1-\alpha)\mathbf{A}_{V}\{P_i\}_{i=1}^N$	Ours MSE	28.2/37.2 29.2/39.0	57.1/85.0 58.2/85.9
FedPoD-C	w/o	w/o	-	-	w	$\{P_i\}_{i=1}^{l,N} \leftarrow {m A}_{\mathrm{S}} \{P_i\}_{i=1}^N$	Ours MSE	30.8/41.2 31.8/42.4	52.0/77.7 54.8/78.9
FedPoD-D	w	w	w	w	w/o	$\{P_i\}_{i=1}^{l,N} \leftarrow \boldsymbol{A}_{\text{TV}} \{P_i\}_{i=1}^{N}$	Ours MSE	30.1/40.9 31.6/42.1	48.7/74.7 50.9/76.0
FedPoD-D	w	w/o	-		w/o	$\{P_i\}_{i=1}^{l,N} \leftarrow {m A}_{ m V} \{P_i\}_{i=1}^N$	Ours MSE	29.4/39.8 31.1/40.8	56.2/84.7 59.0/87.8
FedPoD-E	w/o	w	-	-	w/o	$\{P_i\}_{i=1}^{l,N} \leftarrow m{A}_{\mathrm{T}} \{P_i\}_{i=1}^{N}$	Ours MSE	30.1/40.6 31.7/43.5	53.7/79.0 54.2/80.5
FedPoD (Ori.)	w	w	w	w	w	$\{P_i\}_{i=1}^{l,N} \leftarrow \alpha \mathbf{A} \{P_i\}_{i=1}^N + (1-\alpha) \mathbf{A}' \{P_i\}_{i=1}^N$	Ours MSE	23.7/32.9 25.0/34.4	44.3/65.5 47.7/68.0

Ablation results (MAE/RMSE report). For (1) Local Adaptive Prompts; (2) Local Optimization.

Term 1	Term 2	Term 3	Task 1	Task 2
w	wo	wo	29.1/36.9	47.1/70.1
w	wo	w	27.3/36.3	46.0/69.9
w	w	wo	29.1/34.3	46.6/72.5
wo	w	w	29.0/34.6	47.9/74.8
wo	wo	l w	28.2/37.0	49.2/74.4

10T	(A) (A) (A)		
1	1	39.9/ 51.5	50.2/ 79.5
2	2	38.1/53.7	48.8/85.0
3	3	<u>37.1</u> /52.9	47.9/80.4
4	4	38.6/53.2	47.7/80.1
6	6	35.7 / <u>52.6</u>	46.1 /80.7
12	12	39.3/53.7	50.3/84.8

Impact of Prompt updating steps.

MAE (Task 1/Task 2)

36.9/51.7

39.1/**51.5**

38.1/51.8

38.8/54.0

39.3/54.4

35.9/52.4

Updating step of P_T Updating step of P_V

Ablation results about the optimization objective.

Method/D	ataset	FedPoD	FedPoD-DP	Ave. Variation	
AvePRE	Task1	23.7/32.9	24.8/33.9	↓ 4.33%	
	Task2	44.3/65.5	46.1/66.9	↓ 2.88%	
SurTEMP	Task1	35.7/55.0	37.0/56.6	↓ 2.69%	
	Task2	51.4/71.2	52.7/73.0	↓ 2.53%	
SurUPS	Task1	43.9/62.5	45.1/63.7	↓ 2.33%	
	Task2	45.2/63.0	46.4/65.2	↓ 2.34%	

FedPoD can ensure privacy effectively.

Differential privacy experiment results.

Impact of subgraph step in global aggregation (MAE/RMSE report).

DYNAMIC GRAPH MODELING

Construct Prompt Groups:

- (1) Temporal & Inter-variable Prompts $[P_T, P_V]$
- (2) Spatial Prompts [P_s]
- (3) Full Prompts [P_T, P_V, P_S]

Graph Attention Network for dynamic graph modeling.

Haversine Formula: $D \tan^{-1} \left(\sqrt{\frac{\sin^2(\frac{\Delta\phi}{2}) + \cos(\phi_i) \cdot \cos(\phi_j) \cdot \sin^2(\frac{\Delta\lambda}{2})}{1 - (\sin^2(\frac{\Delta\phi}{2}) + \cos(\phi_i) \cdot \cos(\phi_j) \cdot \sin^2(\frac{\Delta\lambda}{2})))}} \right)$

Adjacent Matrix: $A_{i,j} = \frac{e_{i,j}}{1 + e^{-W[W_iP_i - W_jP_j]}} \longrightarrow A_s, A, A_{TV}$

Correlation Reconstruction:

$$m{A}' \leftarrow exttt{Softmax} \left(rac{(m{A}_{Geo} - m{A}_S) m{A}_{TV}^ op}{\sqrt{d_k}}
ight) m{A}_i$$
 $\{P_i\}_{i=1}^{l,N} \leftarrow lpha m{A} \{P_i\}_{i=1}^N + (1-lpha) m{A}' \{P_i\}_{i=1}^N$

- $[A_{
 m Geo}-A_{
 m S}]$ (1) Highlights the discrepancy between the actual geographic $[A_{
 m Geo}-A_{
 m S}]$ correlation and the encoded spatial correlation.
 - (2) Dynamically adjusts the spatio-temporal correlation among devices to achieve precise potential correlation graph modeling.

PARAMETERS

Method Trainable Param. MAE/RMSE Train from scratch (FedAvg) 40.3/51.2 5,284,173 215,089 33.5/44.5 Pre-trained FM (FedAvg) 31.1/41.9 159,649 Pre-trained FM & Prompts (FedAvg) 159,649 27.0/37.6 FedPoD (Ours) Comparsion of training parameters.

(1) Only trains/transmits 3% param. (2) Nearly 26% of param. can be saved relative to comparable finetuning methods.

RESOURCE

Federated Prompt Learning for Weather Foundation Models on Devices

Step of subgraph S_G

Shengchao Chen, Guodong Long, Tao Shen, Jing Jiang and Chengqi Zhang Australian Artificial Intelligence Institute, FEIT, University of Technology Sydney shengchao.chen.uts@gmail.com, {guodong.long, tao.shen, jing.jiang, chengqi.zhang}@uts.edu.au

Foundation Models for Weather and Climate Data Understanding: A Comprehensive Survey Shengchao Chen, *Member, IEEE*, Guodong Long, Jing Jiang, Dikai Liu, *Senior Member, IEEE*, and Chengqi Zhang, *Senior Member, IEEE*

RMSE

RMSE (Task 1/Task 2)

47.0/79.4

49.9/**79.0**

49.7/78.8

49.1/81.9

49.7/81.8

45.6/79.6