

What are Algorithms?

- A well-defined computational procedure that
 - -takes some value, or set of values, as input and
 - -produces some value, or set of values, as output;
- A tool to solve a well-specified computational problem.
- Problem vs. Algorithm

L01-2 ECM5605(S20)

Analysis of Algorithms

- The theoretical study of computer-program performance and resource usage
- But what's more important than performance?

√

- ✓ Correctness
- √ User-friendliness
- √ Functionality
- ✓ Reliability
- ✓ Modularity
- ✓ Extensibility
- ✓ Robustness
- ✓ Programming time
- ✓ Maintainability

Basic Issues About Algorithms

- How to express algorithms
- Proving correctness
- Efficiency
 - -theoretical analysis
 - -empirical analysis
- Optimality

Why Study Algorithms?

- Understand what can be solved and what cannot be solved
 - -Is there any well-defined problem for which we cannot find any algorithm??
- Understand how much resource including time and space is used to solve this problem
 - -TSP problem: if *n* =20 \Rightarrow 20! combinations
 - -Can we find a better algorithm for the same problem?
- Learn how to adapt old solutions to new problems
 - -Many problems seem new but actually not!

ECM5605(S20)

Correctness

- For any algorithm, we must prove that it always returns the desired output for all legal instances of the problem.
- For a correct TSP tour, check if
 - (1) Hamiltonian property: the tour visits all points with starting and ending at the same point (tour or circuit property)
 - (2) Optimality property: the tour length is the shortest
- Algorithm correctness is not obvious in many (optimization) problems.

Traveling Salesman Problem (TSP)

- Input A set of points (cities) P together with a distance d(p,q) between any pair $p,q \in P$
- Output The shortest circular route that starts and ends at a given point (s) and visits all other points

• Exist any correct and efficient algorithm?

L01-6 ECM5605(S20)

Nearest Neighbor Tour

- A popular solution (but wrong!!!)
 - -Start at some point p_0 and then walks to its nearest neighbor p₁ first
 - -Repeat from p_1 , etc until done $(p_n \rightarrow p_0)$
- Example

Starting from the leftmost point will not fix the problem.

ECM5605(S20) L01-7 ECM5605(S20) L01-8

Closest-Pair Tour

- Another idea (still wrong!!!)
 - Repeatedly connect the closest pair of points whose connection will not cause a cycle or a three-way branch until all points are in one tour
- It works on previous example but fails below

ECM5605(\$20) L01-9

A Correct Algorithm

Exhaustive Search

- -try all possible orderings of the points
- then select the one which minimizes the total length of the tour
- Since all possible orderings are considered, end up to guarantee the shortest tour
 - -total number of permutations: *n*! cases
 - -too slow if n>30 (17.9 min@1 μ sec/case)
- No efficient-and-correct algorithm exists for TSP so far.

ECM5605(S20) L01-10

Expressing Algorithms

- Need some way to express the sequence of steps comprising an algorithm
 - Options: English, psuedocode, real programming languages (ex: C/C++, Ada)
- In order of increasing precision
 - -English > pseudocode > real programs
- Ease of expression
 - -English < pseudocode < real programs</p>
- Problems need to be carefully specified
 - -Ex: "shortest tour" is better than "best tour"

Mathematical Review (I)

Ceilings and Floors

-EX:
$$\begin{bmatrix} 5/2 \end{bmatrix} = 3 \quad \begin{vmatrix} 5/2 \end{vmatrix} = 2 \quad \begin{bmatrix} x/2 \end{bmatrix} + \begin{bmatrix} x/2 \end{bmatrix} = x$$

Exponentials

-EX:

Logarithms

-EX:

Summation

-Linearity
$$\sum_{k=1}^{n} (ca_k + b_k) = c \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

L01-12

Mathematical Review (II)

- Summations
 - Arithmetic series: Gaussian close form
 - Geometric series: Geometric close form
 - Harmonic series

ECM5605(S20) L01-13

More on Proof by Induction

- We've been using weak induction
- Axiom of induction made in 1988
 - **predicate**: operator in logic that returns true/false
- Another variation:
 - Basis: show S(0), S(1)
 - Hypothesis: assume S(n) and S(n+1) are true
 - Step: show S(n+2) follows
- Strong induction implies the procedure
 - Basis: show S(0)
 - Hypothesis: assume S(k) holds for arbitrary $k \le n$
 - -Step: Show S(n+1) follows

Bounding Summations: Technique (1)

- Proof by induction:
 - 1) Basis: show formula is true when n = k
- inductive Hypothesis: assume formula is true for an arbitrary n
 - 3) Step: show that formula is then true for n+1
 - Example: Gaussian close form
 - Basis: If n=0, then 0 = 0(0+1)/2
 - Hypothesis: assume 1 + 2 + 3 + ... + n = n(n+1) / 2
 - Step (show true for n+1):

$$1 + 2 + ... + n + n + 1 = (1 + 2 + ... + n) + (n+1)$$

= $n (n+1)/2 + n + 1 = [n(n+1) + 2(n+1)]/2$
= $(n+1)(n+2)/2 = (n+1)(n+1+1)/2$

ECM5605(S20) L01-14

Technique (2): Bounding Terms

 A quick (maybe good) upper bound can be obtained by bounding each term

-Ex:
$$\sum_{k=1}^{n} k \le \sum_{k=1}^{n} n = n^{2}$$

 May give weak bounds using the geometric close form

if
$$\frac{a_{k+1}}{a_k} \le r$$
 for some $r < 1$, then

$$\sum_{k=0}^{n} a_k \le \sum_{k=0}^{\infty} a_0 r^k = a_0 \sum_{k=0}^{\infty} r^k = a_0 \frac{1}{1-r}$$

ECM5605(S20) L01-15 ECM5605(S20) L01-16

Bounding Terms (cont'd)

■ Ex: bound the summation $\sum_{k=1}^{\infty} \frac{k}{4^k}$

$$\frac{\sum_{k=1}^{\infty} \frac{k+1}{4^{k+1}}, the \ 1^{st} \ term \ is \ \frac{1}{4}, then}{\frac{(k+2)/4^{k+2}}{(k+1)/4^{k+1}}} = \frac{1}{4} \frac{(k+2)}{(k+1)} \le \frac{1}{4} \cdot \frac{2}{1} = \frac{1}{2} < 1$$

$$\therefore \sum_{k=1}^{\infty} \frac{k}{4^k} = \sum_{k=1}^{\infty} \frac{k+1}{4^k} \le \frac{1}{4} \cdot \frac{2}{1-1/2} = \frac{1}{2}$$

■ Pitfall example: infinite harmonic series $\sum_{k=1}^{\infty} \frac{1}{k} = ?$

$$\sum_{k=1}^{\infty} \frac{1}{k} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} = \lim_{n \to \infty} (\ln n) = \infty$$

- What's wrong?? $\because \frac{1/k+2}{1/k+1} = 1 \cdot \frac{k+1}{k+2} \approx 1 \text{ when } k \to \infty$

ECM5605(S20) L01-17

Technique (3): Splitting Summations

- Express the series into the sum of two or more subseries
 - -partition the range of the index
 - -bound each series
- Ex: bound the summation $\sum_{k=0}^{\infty} \frac{k^2}{2^k}$

$$\because \frac{(k+1)^2/2^{k+1}}{k^2/2^k} = \frac{(k+1)^2}{2k^2} \le \frac{8}{9} < 1 \ if k \ge 3$$

$$\therefore \sum_{k=0}^{\infty} \frac{k^2}{2^k} = \sum_{k=0}^{2} \frac{k^2}{2^k} + \sum_{k=3}^{\infty} \frac{k^2}{2^k} \le \sum_{k=0}^{2} \frac{k^2}{2^k} + \frac{9}{8} \sum_{k=0}^{\infty} (\frac{8}{9})^k$$
Why?

ECM5605(S20) L01-18

Summations by Parts for H_n

■ Harmonic series *H*_n can be expressed as

L01-19

$$\begin{array}{c} \bullet \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \dots + \frac{1}{n} \\ & \downarrow & \downarrow & \\ group 1 \ group 2 \end{array}$$

$$\begin{array}{c} \sigma \\ group 3 \\ sum_{group 2} \leq \frac{1}{2} + \frac{1}{2} \\ sum_{group 3} \leq \frac{1}{2} + \frac{1}{2} \\ sum_{group 3} \leq \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1 \\ sum_{group 4} \leq \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = 1 \\ \\ \vdots \\ \sum_{k=1}^{n} \frac{1}{k} \leq \sum_{i=0}^{\lfloor \lg n \rfloor} \sum_{j=0}^{2^{i}-1} \frac{1}{2^{i}} = \sum_{i=0}^{\lfloor \lg n \rfloor} 1 \leq \lg n + 1 \end{array}$$

Technique (4): Approximation by Integrals

Get Started: Sorting Problem

- Input: a sequence of n numbers $\langle a_0, a_1, ..., a_{n-1} \rangle$
- Output: a permutation $\langle a_{\pi(0)}, a_{\pi(1)}, ..., a_{\pi(n-1)} \rangle$ of the input sequence such that
 - The numbers to be sorted are known as the keys
 - -Permutation: A=<9,6,8> \Rightarrow A'=<6,8,9> \Rightarrow π(0)=2, π(1)=0, π(2)=1
- Example:
 - -Input: 8 2 4 9 3 6 ⇒ Output: 2 3 4 6 8 9
 - $-\pi(0)=4 \pi(1)=0 \pi(2)=2 \pi(3)=5 \pi(4)=1 \pi(5)=3$

ECM5605(S20) L01-21

Pseudocode of Insertion-Sort()

Insertion-Sort(A) //n=length(A[0..n-1])

1 for $j \leftarrow 1$ to (length(A)-1) do //A[0] is sorted

2 key \leftarrow A[j];

3 // insert A[j] into sorted A[0..j-1]

4 $i \leftarrow j - 1$;

5 while $i \ge 0$ and A[i] > key do

6 A[i+1] \leftarrow A[i];

7 $i \leftarrow i - 1$;

8 A[i+1] \leftarrow key;

In-Class Exercise #1: Implement your Insertion-Sort()

ECM5605(\$20) L01-22

Example of Insertion-Sort()

Features of Insertion-Sort()

- Sorted in place:
 - The numbers are rearranged within the array A
 - –with at most a *constant* number of them stored outside the array at any time ⇒ *irrelevant* to array length
- Loop invariant:
 - -At the start of each iteration of the for loop of line 1-8, the subarray A[0..j-1] consists of the elements originally in A[0..j-1] but *in* sorted order

Proving Correctness

- Use loop invariants to prove correctness
 - Initialization: true before the 1st iteration
 - Maintenance: if is true before an iteration, it remains true before the next iteration
 - Termination: when the loop terminates, the invariants result in the correctness of the algorithm
- Loop invariants in Insertion-Sort(A)
 - Initialization: $j=1 \Rightarrow A[0]$ is sorted
 - **Maintenance**: move A[j-1], A[j-2]... one position to the right until proper A[j] position is found
 - **Termination**: when j=n+1 \Rightarrow **A**[0]...**A**[n] are sorted, the entire array is sorted

ECM5605(S20) L01-25

Running Time Analysis

- Depends on the input:
 - -an already sorted array is easier to sort
 - Parameterize the running time by the size of the input since short sequences are easier to sort than longer ones
- Defined as the number of primitive operations or "steps" executed
 - convenient to define the notion of step so that it is as *machine-independent* as possible
- Generally, we're seeking for upper bound on the running time because it is a guarantee

Analyze Insertion-Sort()

- Analyzing an algorithm has come to mean predicting the resources that the algorithm requires.
 - -resources: memory, time, logic gate, communication bandwidth, and etc.
 - -assumption: random access machine (RAM) model, which assumes a generic one-processor
 - ⇒ instructions are executed one by one and no *concurrent* operations
- Shall have occasion to investigate models for parallel computers and digital hardware

ECM5605(S20) L01-26

Types of Analyses

- Worst-case: (usually)
 - $-\mathbf{T}(n) \equiv maximum \ time \ of the algorithm on any input of size <math>n$
- Average-case: (sometimes)
 - $-\mathbf{T}(n) \equiv expected time$ of the algorithm on all input of size n
 - require assumption of statistical distribution of inputs
- Best-case: (bogus)
 - A slow algorithm can cheat and work fast on some input

ECM5605(S20) L01-27 ECM5605(S20) L01-28

Exact Analysis of Insertion-Sort()

Ins	sertion-Sort(A) // n=length(A[0n-1])	cost	times
1	for $j \leftarrow 1$ to (length(A)-1) do	\mathbf{c}_1	n
2	$\text{key} \leftarrow \mathbf{A}[j];$	c_2	<i>n</i> -1
3	// insert $A[j]$ into sorted $A[0.j-1]$	0	<i>n</i> -1
4	$i \leftarrow j-1;$	c_4	<i>n</i> -1
5	while $i \ge 0$ and $A[i]$ >key do	c_5	• $\sum_{j=1}^{n-1} t_j$
6	$\mathbf{A}[i+1] \leftarrow \mathbf{A}[i];$	c_6	• $\sum_{j=1}^{n-1} (t_j - 1)$
7	$i \leftarrow i - 1;$	\mathbf{c}_7	• $\sum_{j=1}^{n-1} (t_j - 1)$
8	$A[i+1] \leftarrow \text{key};$	c_8	<i>n</i> -1

- The for loop is executed (n-1)+1 times (why?)
- t_j: # of times the while loop test for value j (i.e., 1+# of elements that have to be slided right to insert the j-th item)
- Step 5 is executed $t_1+t_2+t_3+...+t_{n-1}$ times.
- Step 6 is executed $(t_1-1)+(t_2-1)+...+(t_{n-1}-1)$ times

ECM5605(S20)

29

Exact Analysis (cont'd)

■ Total Running Time *T*(*n*):

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

■ Best-case: If the input is already sorted, all t_i's are 1

- Linear:
$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$

- Worst-case: If array in reverse sorted order, $t_i = j$, $\forall j$
 - Quadratic:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5 + c_6 + c_7}{2}\right) n^2 - \left(c_1 + c_2 + c_4 + \frac{c_5 - c_6 - c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8)$$

$$= \left(\frac{c_5 + c_6 + c_7}{2}\right) n^2 - \left(\frac{c_5 + c_7}{2}\right)$$

Running Time Analysis (revisited)

- Comparison/Analysis depends on computer(s) in use
 - -relative speed (on the same machine)
 - EX: Algorithm A and B run on Machine X
 - -absolute speed (on different machines)
 EX: Alg A run on Intel Core i7-860 (2.8GHz)
 vs. Alg B run on AMD FX-9590 (4.7GHz)
- Measure the number of primitive operations or "steps" executed ⇒ machine-independent
 - -ignore machine-dependent constants
 - -focus on the *growth* of T(n) as $n \rightarrow \infty$
 - -called "asymptotic analysis"

Asymptotic Notation

- O notation: asymptotic "less than/equal to":
 - f(n)=O(g(n)) implies: f(n) "≤" g(n)
- o notation: asymptotic "less than":
 - f(n)=o(g(n)) implies: f(n) "<" g(n)
- Ω notation: asymptotic "greater than/equal to":
 - f(n)= Ω(g(n)) implies: f(n) "≥" g(n)
- *ω* notation: asymptotic "*greater than*":
 - $f(n) = \Omega(g(n))$ implies: f(n) ">" g(n)
- ⊙ notation: asymptotic "equal to":
 - $f(n) = \Theta(g(n))$ implies: f(n) "=" g(n)

Θ-notation

- Mathematical definition: A function f(n) is $\Theta(g(n))$ iff \exists positive constants c_1 , c_2 , and n_0 such that $c_1g(n) \le f(n) \le c_2g(n) \ \forall \ n \ge n_0$
- Engineering manipulation:
 - -drop lower-order terms
 - -ignore leading constants

EX:
$$f(n) = 3n^2 + 6n + 202 = \Theta(n^2)$$

ECM5605(S20) L01-33

Insertion-Sort() (revisited)

■ Best-case:

$$-\mathbf{T}(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8) = \Theta(n)$$

Worst-case:

$$-\mathbf{T}(n) = (c_5/2 + c_6/2 + c_7/2)n^2 + (c_1 + c_2 + c_4 + c_5/2 - c_6/2 - c_7/2 + c_8)n - (c_2 + c_4 + c_5 + c_8) = \Theta(n^2)$$

Average-case: all permutations equally likely

$$-\mathbf{T}(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^2)$$

- When should we use insertion sort?
 - -Moderately so for small *n*
 - −Not at all for large n

Comparison of Asymptotic Performance

■ When n gets large enough, a $\Theta(n^2)$ algorithm will always beat a $\Theta(n^3)$ algorithm

- However, still shouldn't ignore asymptotic slower algorithms
 - Real-word applications often needs a balance
- Asymptotic analysis helps structure our thinking

ECM5605(S20) L01-34

Summary (Part 1)

- What is Algorithm and its relationship with problem?
- Why do we study Algorithms?
- Review mathematical backgrounds in App. A
- Insertion-Sort()
 - -Pseudocode
 - -How to prove its correctness
 - Best-case vs. average-case vs. worst-case analysis

L01-36

- Why do we use asymptotic analysis?
 - –Θ-notation
- Up Next ⇒ Merge-Sort() and Recurrence

About Designing Algorithms

- Insertion sort is an *incremental* approach.
 - -find the position for one key at one time
- Can we have any other choice?
 - -Divide-and-Conquer(-and-Combine)
 - -EX: Merge Sort
- Recursive procedure
 - -divide the problem into sub-problems
 - -conquer the sub-problem
 - -combine the results from sub-problems

ECM5605(S20) L01-37

Pseudocode of Merge-Sort()

Merge-Sort(A[0..n-1])

- 1. If *n*=0, done
- 2. Recursively sort $A[0.\lfloor n/2 \rfloor]$ and $A[\lfloor n/2 \rfloor + 1..n-1]$
- 3. Merge(A[0. $\lfloor n/2 \rfloor$], A[$\lfloor n/2 \rfloor$ +1..n-1)

Key subroutine: Merge

ECM5605(\$20) L01-38

Example of Merge-Sort()

1 3 8 9 10 14 15 22

Time = $\Theta(n)$ to merge a total of n elements — linear time

Analyze Merge-Sort()

	time
Merge-Sort(A[0n-1])	T (<i>n</i>)
1. If <i>n</i> =1, done	$\Theta(1)$
2. Recursively sort A[0⌊n/2⌋] and	$2\mathbf{T}(n/2)$
$A[\lfloor n/2 \rfloor +1n-1]$ //by Merge-Sort()	
3. Merge(A[0. $\lfloor n/2 \rfloor$], A[$\lfloor n/2 \rfloor$ +1 n -1])	$\Theta(n)$

- In step 1, Θ(1) is abusively used
- Step 2 should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$ but does not matter in the asymptotic analysis

ECM5605(S20) L01-39 ECM5605(S20) L01-40

Recurrence for Merge-Sort()

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

- Usually omit stating the base case when T(n)
 = ⊙(1) for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence
- Textbook provides several ways to find a good upper bound on T(n)

ECM5605(S20) L01-41

Merge-Sort() vs Insertion-Sort()

- $\Theta(n \lg n)$ grows more slowly than $\Theta(n^2)$
- Therefore, merge sort asymptotically beats insertion sort in the worst case
- In practice, merge sort beats insertion sort for n>30 or so
- We will see the comparison later!

In-Class Exercise #2:

- 1. Implement your MergeSort()
- 2. Find *n* for Mergesort() to beat InsertionSort()

L01-43

Recursion Tree

■ Solve $T(n)=2T(n/2)+\Theta(n)$ where c>0 is constant

$$\Rightarrow$$
 T(n)=2T(n/2)+cn

ECM5605(S20)

O: Upper Bounding Function

- Def: f(n)= O(g(n)) if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$
- Intuition: f(n) "≤" g(n) when we ignore constant multiples and small values of n
- How to show O(Big-Oh) relationships?

$$-f(n) = O(g(n))$$
 iff $\lim_{n\to\infty}$ = c for some $c \ge 0$

- Remember L'Hopitals Rule?

ECM5605(S20)

L01-42

ECM5605(S20)

Ω : Lower Bounding Function

- Def: f(n)= O(g(n)) if $\exists c > 0$ and $n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$
- Intuition: f(n) " \geq " g(n) when we ignore constant multiples and small values of n
- How to show Ω (Big-Omega) relationships?

$$-f(n) = \Omega(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = c$$

 $\text{for some } c \geq 0$

■ EX:

$$-c=1$$
 and $n_0=16$

ECM5605(S20)

Θ: Tightly Bounding Function

- <u>Def</u>: $f(n) = \Theta(g(n))$ if $\exists c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$
- Intuition: f(n) " = " g(n) when we ignore constant multiples and small values of n
- How to show
 relationships?
 - –Show both "big Oh" (Ω) and "big Omega" (Ω) relationships

$$-f(n) = \Theta(g(n)) \text{ iff } \lim_{n \to \infty} = c$$

for some $c > 0$

ECM5605(S20) L01-46

o-notation & ω-notation

- **O**-notation and Ω -notation are like \leq and \geq
- o-notation and ω-notation are like < and >

$$-f(n)=o(g(n))$$
 if $\exists c>0$ and $n_0>0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$

$$-f(n)=\omega(g(n))$$
 if $\exists c>0$ and $n_0>0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$

Example:

= m $\omega((g,w))$ whate $m_0 = 1 - 1$

 $-2m^2 = 1000m^2$) without $m_{\rm eff} = 2m_{\rm eff}$

Meaning of Asymptotic Notations

- "An algorithm has worst-case run time O(f(n))": there is a constant c s.t. for every n big enough, every execution on an input of size n takes at most cf(n) time
- "An algorithm has worst-case run time $\Omega(f(n))$ ": there is a constant c s.t. for every n big enough, at least one execution on an input of size n takes at least cf(n) time

Asymptotic Properties (I)

- Transitivity: If $f(n) = \Pi(g(n))$ and $g(n) = \Pi(h(n))$, then $f(n) = \Pi(h(n))$, where $\Pi = \mathbf{O}$, o, Ω , ω , or Θ
- Rule of sums: $\Pi(f(n) + g(n)) = \Pi(\max\{f(n), g(n)\})$, where $\Pi = \mathbf{O}$, o, Ω , ω , or Θ
- Rule of sums: $f(n) + g(n) = \Pi(\max\{f(n), g(n)\})$, where $\Pi = \mathbf{O}$, Ω , or Θ
- Rule of products:

If
$$f_1(n) = \Pi(g_1(n))$$
 and $f_2(n) = \Pi(g_2(n))$,
then $f_1(n) f_2(n) = \Pi(g_1(n) g_2(n))$,
where $\Pi = \mathbf{O}$, o, Ω , ω , or Θ

ECM5605(S20) L01-49

Asymptotic Functions

- Polynomial-time complexity:
 - $-\mathbf{O}(p(n))$, where n is the **input size** and p(n) is a polynomial function of $n(p(n) = n^{\mathbf{O}(1)})$

Asymptotic Properties (II)

Transpose symmetry:

$$-f(n) = O(g(n))$$
 iff $g(n) = \Omega(f(n))$

Transpose symmetry:

$$-f(n) = o(g(n)) \text{ iff } g(n) = \omega(f(n))$$

■ Reflexivity:

$$-f(n) = \Pi(f(n))$$
, where $\Pi = \mathbf{O}$, Ω , or Θ

Symmetry:

$$-f(n) = \Theta(g(n)) \text{ iff } g(n) = \Theta(f(n))$$

ECM5605(S20) L01-50

Runtime Comparison

Run-time comparison: Assume 1000 MIPS, 1 instruction/operation

Order	Θ	n = 10	n = 100	$n = 10^3$	$n = 10^6$
1	⊝(1)	1×10^{-9} sec	1×10^{-9} sec	1×10^{-9} sec	$1 \times 10^{-9} \text{ sec}$
lg* n	⊖(lg*n)	$3 \times 10^{-9} \text{ sec}$	$3 \times 10^{-9} \text{ sec}$	$3 \times 10^{-9} \text{ sec}$	4 × 10 ⁻⁹ sec
$\lg \lg n$	$\Theta(\lg \lg n)$	$2 \times 10^{-9} \text{ sec}$	$3 \times 10^{-9} \text{ sec}$	$3 \times 10^{-9} \text{ sec}$	4 × 10 ⁻⁹ sec
lg n	$\Theta(\lg n)$	3 × 10 ⁻⁹ sec	$7 \times 10^{-9} \text{ sec}$	1 × 10 ⁻⁸ sec	2 × 10 ⁻⁸ sec
\sqrt{n}	$\Theta(\sqrt{n})$	3 × 10 ⁻⁹ sec	1 × 10 ⁻⁸ sec	3 × 10 ⁻⁸ sec	1 × 10 ⁻⁶ sec
n	$\Theta(n)$	1 × 10 ⁻⁸ sec	1×10^{-7} sec	1×10^{-6} sec	0.001 sec
$n \lg n$	$\Theta(n \lg n)$	3 × 10 ⁻⁸ sec	2×10^{-7} sec	3×10^{-6} sec	0.006 sec
n^2	$\Theta(n^2)$	$1 \times 10^{-7} \text{ sec}$	1×10^{-5} sec	0.001 sec	16.7_min
_n 3	$\Theta(n^3)$	1×10^{-6} sec	0.001_sec	1 sec	3 × 10 ⁵ cent.
2^n	$\Theta(2^n)$	1×10^{-6} sec	3×10^{17} cent.	∞	∞
n!	$\Theta(n!)$	0.003 sec	∞	∞	∞

Summary (Part 2)

- Merge Sort
 - -Pseudocode
 - -Asymptotic analysis by recursion tree
 - –Quiz: What are best-case, average-case and worst-case?
- Asymptotic analysis
 - -O-notation, Ω -notation and Θ -notation
 - -Ordering of asymptotic functions
- Next lecture
 - -Recurrence and proving skills
 - -Heap sort, Quick sort and other linear sorts

ECM5605(S20) L01-53