Scilab Textbook Companion for Principles Of Electric Machines And Power Electronics by P. C. Sen¹

Created by giridharan electrical engineering Electrical Engineering IIT Bombay College Teacher Dr.Madhu.N.Belur Cross-Checked by

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Principles Of Electric Machines And Power Electronics

Author: P. C. Sen

Publisher: John Wiley And Sons, Australia

Edition: 3

Year: 1989

ISBN: 0-471-61717-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	magnetic circuit	6
2	TRANSFORMERS	10
3	ELECTROMECHNICAL ENERGY CONVERSION	19
4	DC MACHINES	22
5	INDUCTION(ASYNCHRONOUS) MACHINES	31
6	SYNCHRONOUS MACHINES	41
7	SINGLE PHASE MOTORS	53
8	SPECIAL MACHINES	65
9	TRANSIENTS AND DYNAMICS	68
10	POWER SEMICONDUCTOR CONVERTERS	7 1

List of Scilab Codes

Exa 1	current	6
Exa 2	fluxdensity	7
Exa 3	airgapflux	7
Exa 4	magneticflux	8
Exa 5	fluxvoltage	8
Exa 6	dimensions	9
Exa 1	powertaken	10
Exa 2	parameters	10
Exa 3	voltageregulation	11
Exa 4	efficiency	13
Exa 5	efficiency	14
Exa 6	kvarating	15
Exa 7	volcurregulation	15
Exa 8	supplyvoltage	16
Exa 9	impedances	17
Exa 1	fieldenergy	19
Exa 2	mechanicalforce	20
Exa 3	liftingforce	21
Exa 1.b	torque	22
Exa 10	speedtorque	22
Exa 11	firingangle	23
Exa 12	speedcontrol	24
Exa 2	terminalvoltage	25
Exa 3	fieldcurrent	25
Exa 4	fullloadvoltage	26
Exa 5	seriesturns	26
Exa 6	resistance	26
Eva 7	ampereturns	28

Exa 8	powerresistance	29
Exa 9	startingcurrent	29
Exa 1		31
Exa 10	parasitictorque	31
Exa 11		3
Exa 2	powerloss	34
Exa 3	parameters	34
Exa 4	sliptorque	35
Exa 5	resistance	88
Exa 6		3 9
Exa 7		3 9
Exa 1		1
Exa 2		12
Exa 3		13
Exa 4		16
Exa 5		<u>1</u> 7
Exa 6	statorcurrent	<u>1</u> 9
Exa 7		0
Exa 2		53
Exa 4		5
Exa 5		60
Exa 6		3
Exa 1		5
Exa 3	maximumvoltage	5
Exa 4		6
Exa 1		8
Exa 3	maximumcurrent	8
Exa 1		⁷ 1
Exa 2		72
Exa 3		72
Exa 4		4
Exa 5		74
Exa 6		75
Exa 7		75
Exa 8	1	76
Exa 9		76

Chapter 1

magnetic circuit

Scilab code Exa 1 current

```
1 Bc=0.8; Hc=510; Bg=0.8;
2 A=4*\%pi*10^-7;lg=1.5*10^-3;
3 lc=0.36; N=500;
5 Fg = Bg/A*(2*1g)
7 Fc=Hc*1c
9 F = Fc + Fg
10
11 i=F/N
12
13 Pre=Bc/Hc
14
15 RelPre=Pre/A
16
17 F = Hc * 1c
18
19 i=F / N
```

Scilab code Exa 2 fluxdensity

```
1  A=4*%pi*10^-7; lc=360;
2  N=500; i=4; lg=2*10^-3;
3  4  m=-A*(lc/lg)
5  c=(N*i*A)/(lg)
7  8  Hc=(N*i)/(lc)
```

Scilab code Exa 3 airgapflux

```
1 N1=500; I1=10; N2=500; I2=10;
2 Ibafe=3*52*10^-2; A=4*\%pi*10^-7;
3 b=1200; Ag=4*10^-4; Ac=4*10^-4;
4 lg=5*10^-3; Ibecore=51.5*10^-2; c=2.067*10^-4;
5 d=4.134*10^-4;
7 F1=N1*I1
9 F2=N2*I2
10
11 Pre=1200*A
12
13 Rbafe=(Ibafe)/(Pre*Ac)
14
15 Rg = lg/(A*Ag)
16
17 Rbecore=Ibecore/(Pre*Ac)
18
19 Bg=d/(Ag)
```

```
20
21 Hg=Bg/A
```

Scilab code Exa 4 magneticflux

```
1 Irad=20; Orad=25; Dia=22.5
2 N=250; i=2.5;
3 l=2*%pi*Dia*10^-2;
4 B=1.225;
6 radius=1/2*(Irad+Orad)
8 \ H = (N*i)/1
10 A=%pi*((Orad-Irad)/2)^2*10^-4
11
12 z=(1.225)*(\%pi*6.25*10^-4)
13
14 y = (N*z)
15
16 L=(y/i)
17
18 \text{ core} = (B/H)
19
20 1 = (2 * \%pi * 22.5 * 10^-2)
21
22 Rcore=(1)/(core*A)
23
24 L=(N^2)/(Rcore)
```

Scilab code Exa 5 fluxvoltage

```
1 n=500; E=100; A=0.001; b=1/120;
```

```
2 f=1.2;

3

4 max1=(E/1000)*(b)

5

6 max2=(f*A)

7

8 E=(120*n*max2*2)
```

Scilab code Exa 6 dimensions

Chapter 2

TRANSFORMERS

Scilab code Exa 1 powertaken

```
1 resimp=9; inte=1; V=10; A=1/3;
2
3 I=V/(inte+resimp)
4
5 P=I^2*resimp
6
7 R=(A^2)*(resimp)
8
9 I1=V/(inte+I)
10
11 P1=I1^2*inte
```

Scilab code Exa 2 parameters

```
1  Vh=220; Ih=4.55; Wl=100;
2  Vl=150; Il=2.5; Wh=215;
3  Vhrated=2200; Vlrated=220;
4  Ihrated=4.55; Ilrated=45.5;
```

```
5
6 Rcl=Vlrated^2/Wl
8 Poc=(Vlrated^2/Rcl)
10 Icl=Vlrated/Rcl
11
12 Iml=(Il^2-Icl^2)^(1/2)
13
14 Xml=Vlrated/Iml
15
16 A=Vhrated/Vlrated
17
18 Rch=A^2*Rc1
19
20 \quad Xmh = A^2 \times Xml
21
22 Reqh=215/Ihrated^2
23
24 \, \text{Psc=Ihrated^2*Reqh}
25
26 Zeqh=Vl/Ihrated
27
28 Xeqh=(Zeqh^2-Reqh^2)^(1/2)
29
30 \text{ Reql=Reqh/A}^2
31
32 \text{ Xeql=Xeqh/A}^2
33
34 P=(Poc/(Vlrated*I1))
35
36 Psh=(Psc/(V1*Ihrated))
```

Scilab code Exa 3 voltageregulation

```
1 Fullload=75; Ia=4.55; V1=2200;
3 Fulload=Fullload/100
5 Ih=Fullload*Ia
7 function[x,y]=polar2rect(r,theta)
8 \text{ x=r*cos}(\text{theta*\%pi/180});
9 y=r*sin(theta*%pi/180);
10 endfunction
11
12 [x1,y1]=polar2rect(V1,0)
13
[x2,y2] = polar2rect(35.46,-53.13)
15
16 [x3,y3]=polar2rect(106.73,36.87)
17
18 \quad X1 = x1 + \%i * y1
19
20 \quad X2 = x2 + \%i * y2
21
22 \quad X3 = x3 + \%i * y3
23
24 \quad X = X1 + X2 + X3
25
26 function[r,theta]=rect2polar(x,y)
27 r = sqrt(x^2+y^2);
28 theta=atan(y/x)*180/\%pi;
29 endfunction
30
31 [V, Angle] = rect2polar(2306.5,35.67)
32
33 VolReg = (V-V1)/V1*100
34
35 function[x,y]=polar2rect(r,theta)
36 \text{ x=r*cos}(\text{theta*\%pi/180});
37 \text{ y=r*sin}(\text{theta*\%pi/180});
38 endfunction
```

```
[x1,y1] = polar2rect(V1,0)
39
40
   [x2,y2] = polar2rect(35.46,53.13)
41
42
43 [x3,y3]=polar2rect(106.73,143.13)
44
45 \quad X1 = x1 + \%i * y1
46
47 \quad X2 = x2 + \%i * y2
48
49 \quad X3 = x3 + \%i * y3
50
51 \quad X = X1 + X2 + X3
52
53 function[r,theta]=rect2polar(x,y)
54 r = sqrt(x^2+y^2);
55 theta=atan(y/x)*180/\%pi;
56 endfunction
57
58 [V1, Angle1] = rect2polar(2135.89,92.4)
59
60 VolReg = (V1 - V1) / V1 * 100
```

Scilab code Exa 4 efficiency

```
1  V=0.75; I=10000; A=0.6;
2  Pc=100; Reqh=10.4; Ih=(0.75*4.55)^2;
3  Reql=0.104; V2=220; B=1;
4
5  Pout=V*I*A
6
7  Pcu=(Ih*Reqh)
8
9  Eff=Pout/(Pout+Pc+Pcu)
10
```

```
11 Eff=Pout/(Pout+Pc+Pcu)*100

12

13 I2=(100/0.104)^(1/2)

14

15 Pout1=V2*I2*B

16

17 Eff1=Pout1/(Pout1+Pc+Pcu)

18

19 Eff1=Pout1/(Pout1+Pc+Pcu)*100
```

Scilab code Exa 5 efficiency

```
1 Power=50; Lo1=0.5;
   2 \text{ Lo}2=0.75; \text{Lo}3=1; \text{Lo}4=1.1;
    3 Pf1=1; Pf2=0.8; Pf3=0.9;
   4 Pf4=1; Ho1=6; Ho2=6; Ho3=3; Ho4=3; Ho=6; Pc=200;
   5 Pcu = 500;
    7 EngOut = (Lo1*Power*Ho1*Pf1) + (Lo2*Power*Ho2*Pf2) + (Lo3*Power*Ho2*Pf2) + (Lo3*Powe
                               Power*Ho3*Pf3)+(Lo4*Power*Ho4*Pf4)
   9 A = Pc / 1000
10
11 TotalHour=Ho+Ho1+Ho2+Ho3+Ho4
12
13 Coreloss=A*TotalHour
14
15 B = Pcu / 1000
16
17 Copperloss = (Lo1^2*B*Ho1) + (Lo2^2*B*Ho2) + (Lo3^2*B*Ho3)
                               +(Lo4^2*B*Ho4)
18
19 Totalloss=Coreloss+Copperloss
20
21 Eff=EngOut/(EngOut+Totalloss)*100
```

Scilab code Exa 6 kvarating

```
1  P=100000; Vs=2000; Vp=200; Ih=500;
2  V1=2000;
3
4  Iab=P/Vp
5
6  Ibc=P/Vs
7
8  I1=Ih+50
9
10  Vh=V1+200
11
12  Kva1=(V1*I1)/(1000)
13
14  Kva2=(Vh*Ih)/(1000)
```

Scilab code Exa 7 volcurregulation

```
1  Power=120000;; Phase=3;
2  V=230; Pri=2300; Sec=230; Z=0.012+%i*0.016; Pf=0.85;
3  4  Is=Power/(sqrt(Phase)*V)
5  6  I2=Is/sqrt(Phase)
7  8  a=Pri/V
9  I1=I2/a
11  Zeq=(Z)*10^2
```

```
13
14
    a=acos(Pf)
15
    Deg=(a*180)/%pi
16
17
18 function[x,y]=polar2rect(r,theta)
19 x=r*cos(theta*\%pi/180);
20 y=r*sin(theta*%pi/180);
21 endfunction
22
23 [a,b]=polar2rect(Pri,0)
24
25 A = a + \%i * b
26
27 function[x,y]=polar2rect(r,theta)
28 \text{ x=r*} \cos(\text{theta*}\%\text{pi}/180);
29 y=r*sin(theta*%pi/180);
30 endfunction
31
32 [c,d]=polar2rect(I1,-Deg)
33
34 \quad A1 = c + \%i * d
35
36 \quad A2 = A1 * (Zeq)
37
38 \quad A3 = A2 + A
39
40 V1 = 2332.4;
41
42 PriVol=sqrt(Phase)*V1
43
44 VR=(V1-Pri)/Pri*100
```

Scilab code Exa 8 supplyvoltage

```
1 Pri=1330; Sec=230; Z1=0.12+%i*0.25; Phase=3; V=230;
2 Z=0.8+\%i*5; Power=27;
3 \quad Zz = 0.003 + \%i * 0.015; Pf = 0.9
5 A=(Pri/Sec)^2*(Z1)
7 \text{ Req} = 4.01;
9 \text{ Xeqh} = 8.36;
10
11 a=(sqrt(Phase)*Pri)/V
12
13 Reql=0.8;
14
15 Xeql=5;
16 \text{ Rr} = 0.003;
17
18 \text{ Xx} = 0.015;
19
20 R = (Reql + Req) * (1/10^2) + Rr
21
22 X = (Xeql + Xeqh) * (1/10^2) + Xx
23
24 V1=V/sqrt(Phase)
25
26 Il=(Power*10^3)/(Phase*133)
27
28 Angle=-acos(\%pi*Pf/180)
```

Scilab code Exa 9 impedances

```
1  Vh=2200; Vl=220; Pb=10000;
2  I=0.25; a=10; Z=10.4+%i*31.3;
3
4  Ib=Pb/Vh
```

```
5
6 Il=Pb/Vl
8 Zb=Vh/Ib
9
10 Z1=V1/I1
11
12 Ih=I/Ib
13
14 \text{ Zeq=Z/Zb}
15
16 \text{ Zeql} = \text{Z}*(1/100)
17
18 Zpu=Zeq1/Z1
19
20 Pcu=Ib^2*10.4
21
22 Ppu=Pcu/Pb
```

Chapter 3

ELECTROMECHNICAL ENERGY CONVERSION

Scilab code Exa 1 fieldenergy

```
19 Vc=2*(G*10^-2*D*10^-2*0.20)+2*(A*10^-2*B*10^-2*0.10)
20
21 Wfc=Wfc*Vc
22
23 Wfg=1.0/(2*Z)
24
25 Vg=2*(G*10^-2*10*10^-2*0.005)
26
27 Wfg=(Wfg*G*10^-2*10^-3)
28
29 Wf=Wfc+Wfg
```

Scilab code Exa 2 mechanical force

```
1  I=3;G=0.05;
2
3  Lam=(0.09*I^(.5)/G)
4
5  t1=0:0.1:3;
6
7  t0=0;
8
9  a=integrate('((0.09*2)/(G*I))*I^(0.5)','i',t0,t1)
10
11  Wf=((0.09*2)/(G*I))*I^(1.5)
12
13  Fm=-0.09*(2/3)*I^(1.5)*(1/G^2)
14
15  Wf1=(G^2*Lam^3)/(0.09^2*I)
16
17  Lam1=(0.09*I^(.5)/G)
18
19  Fm=-((Lam1^3)*2*G)/(I*0.09^2)
```

Scilab code Exa 3 liftingforce

```
1 A=4*\%pi*10^-7; N=300; V=120;
2 R=6; G=5*10^{-3}; Ag=6*6*10^{-4};
3 Lg=2*5*10^-3;
4 Vo = 2*6*6*5*10^{-7};
6 I = V/R
8 Bg=(A*N*I)/(2*G)
10 Wf = (Bg^2)/(2*A)*(Vo)
11
12 Fm = (Bg^2)/(2*A)*(2*Ag)
13
14 L = (N^2 * A * Ag) / (Lg)
15
16 Irms=V/(sqrt(6^2+15.34^2))
17
18 Brms=(A*N*Irms)/(2*G)
19
20 \text{ Fm} = (Brms^2)/(2*A)*(2*Ag)
```

Chapter 4

DC MACHINES

Scilab code Exa 1.b torque

```
1  P=4; A=2; Z=462; Wn=(1000/60)*(2*%pi); z=0.0276;
2  Icoil=100;
3
4  Ka=(Z*P)/(2*2*%pi)
5
6  Wn
7
8  Ea=(Ka*z*Wn)
9
10  Icoil
11
12  Ia=2*Icoil
13
14  T=(Ka*z*Ia)
15
16  Pa=Ea*Ia
```

Scilab code Exa 10 speedtorque

```
1 Ia=40; Ra=0.25; La=10;
2 ACv = 265; Angle = 30;
3 \text{ Ka=0.18};
5 A = cos (%pi * Angle / 180)
7 Vt=(2*sqrt(2)*ACv*A)/(%pi)
9 Ea=Vt-(Ia*Ra)
10
11 N=Ea/Ka
12
13 Sec=(Ka*60)/(2*\%pi)
14
15 \text{ T=Sec*Ia}
16
17 P = Vt * Ia
18
19 P=(Ia^2*Ra)+Ea*Ia
```

Scilab code Exa 11 firingangle

```
14 A=cos(%pi*Angle/180)
15
16 Vt1=Vt*A
17
18 Ea1=Vt1-(Ia*Ra)
19
20 No1=Ea1/Ka
21
22 \quad \text{Eaf} = \text{Ka} * \text{N}
23
24 Vtf=Eaf+(Ia*Ra)
25
    Angle=Vtf/Vt
26
27
    a=acos(Angle)
28
29
    Alfa=a*180/%pi
30
31
32 Eas=Vtf-(Ia*Ra)
33
34 Nos=Eas/Ka
35
36 \text{ SpeedReg=(Nos-N)/N*100}
```

Scilab code Exa 12 speedcontrol

```
1 Supv=120; Ia=20; Ra=0.5;
2 Ka=0.05;
3
4 Vt=Ia*Ra
5
6 A=(Vt/Supv)
7
8 Ea=Supv-(Ia*Ra)
```

Scilab code Exa 2 terminalvoltage

Scilab code Exa 3 fieldcurrent

```
1  Eaa=111; Ia=120; Ra=0.1;
2  Rfw=80; Eac=85; If=0.5;
3  v=100;
4
5  Vt=Eaa-(Ia*Ra)
6  7  Rf=v/1
8  9  Rfc=Rf-Rfw
10
11  Rfcrit=Eac/If
12
13  Rfc=Rfcrit-Rfw
```

Scilab code Exa 4 fullloadvoltage

Scilab code Exa 5 seriesturns

Scilab code Exa 6 resistance

```
1 Vt=100; Ra=0.1; Ia=6; If=0.99; Rfw=80;
2 Ia1=5; Iarated=120; N=1000;
```

```
3 Afl=0.95; Prot=497.5;
5 Eanl=Vt-(Ia*Ra)
7 Rf=Vt/If
9 Rfc=Rf-Rfw
10
11 Prot=Ea*5
13 Eanl=Vt-(Ia*Ra)
14
15 Eafl=Vt-(Iarated*Ra)
16
17 Wfl=(Eafl/Eanl)*N
18
19 Wm = (Wf1/60) *2 * \%pi
20
21 T=(Eafl*Iarated)/Wm
22
23 Pout=(Eafl*Iarated)-(Prot)
24
25 Pin=(Vt)*(Iarated+If)
26
27 Eff = (Pout/Pin) *100
28
29 Wfl1=(Eafl/Eanl)*(1/Afl)*N
30
31 Wm1 = (Wfl1/60) * (2*%pi)
32
33 T=(Eafl*Iarated)/(Wm1)
34
35 Eff1=(Pout/Pin)*100
36
37 Wm = (1000/60) * (2*\%pi)
38
39 \text{ Ka=Eanl/Wm}
40
```

Scilab code Exa 7 ampereturns

```
1 If=0.99; Vt=100; Ia=120; Ra=0.1;
2 Rpm1=932; Rpm2=1000;
3 Ifeff=0.86; Nf=1200;
4 rpm1=1000;
5 Ifeff1=1.32; Rpm3=800;
6 EA=65;
8 \text{ Ea=Vt-(Ia*Ra)}
10 Ea1=Rpm2/Rpm1*Ea
11
12 Ifar=If-Ifeff
13
14 \text{ At=Nf*Ifar}
15
16 \quad \text{Ea2=Rpm2/Rpm3*Ea}
17
18 Nsr=(Ifeff1-If+Ifar)*(Nf)/(Ia+If)
19
20 Ifeff2=If-(Nsr*(Ia+If))/Nf-Ifar
21
```

Scilab code Exa 8 powerresistance

```
1 Vt=220; Ia=25; Ra=0.6;
2 \text{ Rsr} = 0.4; \text{Rae} = 0; \text{N} = 300;
3 \text{ N1=200; Wm=(2*\%pi/60);}
4 Hp = 746;
6 Ea=Vt-Ia*(Ra+Rsr+Rae)
8 P=Ea*Ia
9
10 a=P/Hp
11
12 T=(Ea*Ia)/(N*Wm)
13
14 Ksr=T/Ia<sup>2</sup>
15
16 T1 = (N1/N)^2 * T
17
18 P = (T1 * N1 * Wm)
19
20 a=T1/Ksr
21
22 a=sqrt(Ia)
23
24 Rae=(Vt-Ea-(Ia*Ra)+(Ia*Rsr))/Ia
25
26 P = Ea * Ia
```

Scilab code Exa 9 startingcurrent

```
2 Ra=0.1;
3 Ia1=200;
5 Iastart=Vt/Ra
7 Rae=(Vt-20)/(200)
9 Ea2=Vt-Iarated*(Ra+Rae)
10
11 Rae2=(Vt-Ea2-20)/(200)
12
13 Ea3=Vt-Ia*(Ra+Rae2)
14
15 Ea3=Vt-Iarated*(Ra+Rae2)
16
17 Rae3=(Vt-Ea3-20)/200
18
19 Ea4=Vt-Iarated*(Ra+Rae3)
20
21 \quad Rae4 = (Vt - Ea4 - 20) / 200
22
23 Ia=(Vt-Ea4)/Ra
24
25 R1=Rae-Rae2
26
27 R2=Rae2-Rae3
28
29 R3=Rae3-Rae4
```

Chapter 5

INDUCTION(ASYNCHRONOUS) MACHINES

Scilab code Exa 1 frequency

```
1 F=60; P=4; S=0.05;
2 Ns=1800; V=460; Tr=0.5;
3
4 Ns=(120*F)/(P)
5
6 N=(1-S)*Ns
7
8 F2=S*F
9
10 Sliprpm=S*Ns
11
12 A=S*Tr*V/sqrt(3)
```

Scilab code Exa 10 parasitictorque

```
1 F=60; P=4; N=1740; R1=0.5;
```

```
2 R2=0.5; X1=1; X2=1; Xm=35;
3 I=1.1; Peak=10; H=5; H1=7;
4 Phase=3;
5
6 Ns = 120 * F/P
8 S1 = (Ns - N) / Ns
10 \quad A=R2/S1
11
12 Z1 = (Xm * \%i) * (A + X1 * \%i) / (A + X2 * \%i + Xm * \%i)
13
14 Rth=12.08;
15
16 Pg1=Phase*((I*Peak)/sqrt(2))^2*Rth
17
18 Wsyn = (Ns/60) *2 * \%pi
19
20 T1 = Pg1/Wsyn
21
22 \text{ Ns1} = -(120*H*F)/P
23
24 S2 = (Ns1 - N) / Ns1
25
26 B=R2/S2
27
28 \text{ Xm1} = \text{H} * \text{Xm}
29
30 \text{ hX2=H*X2}
31
32 Z2=Xm1*\%i*(B+hX2*\%i)/(B+hX2*\%i+Xm1*\%i)
33
34 \text{ Rth2} = 0.39;
35
36 Pg2=Phase*((0.22*Peak)/sqrt(2))^2*Rth2
37
38 \text{ Wsyn2} = (\text{Ns1/60}) *2 * \% \text{pi}
39
```

```
40 T2=Pg2/Wsyn2
41
42 Ns3 = (120*H1*F)/P
43
44 \quad S3 = (Ns3 - N) / Ns3
45
46 \quad C=R2/S3
47
48 \text{ Xm3} = \text{H1} * \text{Xm}
49
50 \text{ hX3} = \text{H1} * \text{X2}
51
52 \quad Z3 = Xm3 * \%i * (C+hX3 * \%i) / (C+hX3 * \%i + Xm3 * \%i)
53
54 \text{ Rth3} = 0.54;
55
56 Pg3=Phase*((0.16*Peak)/sqrt(2))^2*Rth3
57
58 \text{ Wsyn3} = (\text{Ns3/60}) *2*\%pi
59
60 T3=Pg3/Wsyn3
```

Scilab code Exa 11 voltage

```
1 S=2; Pole=50; F=50;
2 Slip=0.25;
3
4 Pole=Pole*10^-2
5
6 Vs=S*Pole*F
7
8 Vs=Vs*3600/1000
9
10 V=(1-Slip)*(Vs)
```

Scilab code Exa 2 powerloss

```
1  Hp=15; Loss=750;
2  F=60; P=4; N=1728;
3
4  Mecp=P+Loss
5
6  Ns=120*F/P
7
8  S=(Ns-N)/Ns
9
10  Pag=Mecp/(1-S)
11
12  P2=S*Pag
```

Scilab code Exa 3 parameters

```
1 Nof=60; NoV=2200;
2 NoI=4.5; NoP=1600;
3 BF=15; BV=270; BI=25;
4 BP=9000;
5 R1=2.8; V=2200; F=60;
6 Rb1=4.8;
7
8 Pn1=1600
9
10 Prot=Pn1-(3*NoI^2*R1)
11
12 Vt=V/sqrt(3)
13
14 Zn1=(Vt/NoI)
15
```

```
16 Rnl = (Pnl) / (3*Nol^2)
17
18 Xnl=(Znl^2-Rnl^2)^(1/2)
19
20 \text{ Rbl=BP/(3*BI^2)}
21
22 \text{ Zbl} = (BV)/(sqrt(3)*BI)
23
24 Xbl = (Zbl^2 - Rbl^2) (1/2)
25
26 \text{ Xbl} = \text{Xbl} * (\text{F/BF})
27
28 X1 = Xb1/2
29
30 \text{ Xm} = (\text{Xnl} - \text{X1})
31
32 R=Rb1-R1
33
34 R2 = ((X1 + Xm) / (Xm))^2 *2
35
36 \text{ Vth} = (Xm)/(X1+Xm)
37
38 \text{ Rth} = (Vth^2) *R1
```

Scilab code Exa 4 sliptorque

```
1 R1=0.25; X1=0.5; X2=0.5;
2 R2=0.2; Xm=30; V=460;
3 N=1740; F=60; P=4; Phase=3; No=1800;
4
5 V1=V/sqrt(Phase)
6
7 Z1=(R1+%i*X1)+(%i*Xm*(R2+%i*X2)/(R2+%i*30.5))
8
9 function[r,theta]=rect2polar(x,y)
```

```
10 r = sqrt(x^2+y^2);
11 theta=\frac{\text{atan}}{y/x} *180/\%pi;
12 endfunction
13
14 [Rth, Angle] = rect2polar(0.44,0.99)
15
16 function[x,y]=polar2rect(r,theta)
17 x=r*cos(theta*\%pi/180);
18 y=r*sin(theta*%pi/180);
19 endfunction
20
21 [a,b]=polar2rect(Rth,Angle)
22
23 X = a + \% i * b
24
25 Ist=(V1/X)
26
27 function[r,theta]=rect2polar(x,y)
28 r = sqrt(x^2+y^2);
29 theta=\frac{\text{atan}}{y/x} *180/\%pi;
30 endfunction
31
32 [Ist, Angle] = rect2polar (99.56, -224.0)
33
34 \text{ Wsy} = (1800/F) *2 * \%pi
35
36 Vth = (V1 * \%i * Xm) / (R1 + \%i * 30.5)
37
38 Vth=265.3;
39
40 Zth = \%i * Xm * (\%i * R1 + \%i * X1) / (R1 + \%i * 30.5)
41
42 Zth = (\%i * Xm * (R1 + \%i * X1)) / (R1 + \%i * 30.5)
43
44 Rth=0.24;
45
46 \text{ Xth} = 0.49;
47
```

```
48 a=Vth^2/((Rth+R2)^2+(Xth+X1)^2)
49
50 \text{ Tst} = ((Phase/Wsy)*a*R2)
51
52 S = (No - N) / No
53
54 \text{ FL}=\text{R2/S}
55
56 \quad Z1 = (R2 + \%i * X2) + ((\%i * Xm) * (FL + \%i * X2)) / (FL + \%i * 30.5)
57
58 function[r,theta]=rect2polar(x,y)
59 r = sqrt(x^2+y^2);
60 theta=atan(y/x)*180/\%pi;
61 endfunction
62
[c,d] = rect2polar(5.78,2.09)
64
65 function[x,y]=polar2rect(r,theta)
66 \text{ x=r*cos}(\text{theta*\%pi/180});
67 y=r*sin(theta*%pi/180);
68 endfunction
69
70 [z,y]=polar2rect(c,d)
71
72 X = z + \% i * y
73
74 Ifl=V1/X
75
76 function[r,theta]=rect2polar(x,y)
77 r = sqrt(x^2+y^2);
78 theta=atan(y/x)*180/\%pi;
79 endfunction
80
81 [Ifl, Ang] = rect2polar (40.63, -14.6)
82
83
84 Ratio=Ist/Ifl
85
```

```
86 Pf = cos(\%pi*19.8/180)
87
88 z=Vth^2/((Rth+FL)^2+(Xth+X2)^2)
89
90 T=(Phase/Wsy)*z*FL
91
92 \text{ Pag} = T * Wsy
93
94 P2=S*Pag
95
96 \text{ Pmech} = (1-S) * Pag
97
98 \quad Pout = Pmech - 1700
99
100 Pinp=Phase*V1*If1*Pf
101
102 EFFMotor=Pout/Pinp*100
103
104
      EFFint = (1-S)*100
105
106
      Stmax = R2/(Rth^2+(Xth+X2)^2)^0.5
107
      X = Rth + (Rth^2 + (Xth + X2)^2)^0.5
108
109
110
111
      Tmax = (Phase/2*Wsy)*X
112
113
      T = T \max / T
```

Scilab code Exa 5 resistance

```
1 F=60; P=6; RPM=1140;
2 RPM1=1000; R=0.2;
3
4 Ns=(120*F/P)
```

```
5
6 S1=(Ns-RPM)/(Ns)
7
8 S2=(Ns-RPM1)/(Ns)
9
10 Rext=(R/S1)*S2-(R)
```

Scilab code Exa 6 startingtorque

```
1 F=60; P=4; N=1710; RI=6;
2
3 Ns=(120*F)/P
4
5 Sfl=(Ns-N)/Ns
6
7 Tst=RI^2*Sfl
8
9 Stmax=(0.0875/0.91)^(1/2)
10
11 NMaxT=(1-Stmax)*Ns
12
13 Tmax=(1+Stmax^2)/(2*Stmax)*Tst
```

Scilab code Exa 7 speedpower

```
1 F1=60; F2=15; F3=120; F=60; P=6;
2 V=240; A=2;
3
4 S=F2/F1
5
6 Ns=(120*F)/P
7
8 N=(1+S)*Ns
```

```
10 N1 = (1-S) * Ns
11
12 S1=F3/F1
13
14 n = (1+S1)*Ns
15
16 \quad n1 = (1-S1) * Ns
17
18 Pac=1/S
19
20 \operatorname{Pac1} = -1/S
21
22 \text{ Pdc} = -(1-(S))/S
23
24 \text{ Pdc} = -(1+(S))/-S
25
26 \text{ Pac1=1/S1}
27
28 \text{ Pac1=1/-S1}
29
30 \text{ Pdc} = -(1-S1)/S1
31
32 \text{ Pdc} = -(1+S1)/-S1
```

SYNCHRONOUS MACHINES

Scilab code Exa 1 powerfactor

```
1 IMp=500; Pf=0.8; Pf1=0.6;
2 \text{ SMp} = 300; Pfs = 1; P1 = 400;
3 P2=4;
5 \text{ Power=IMp*Pf}
7 RecPower=IMp*Pf1
9 SyPower=SMp*Pfs
10
11 TotalPower=Power+SyPower
12
13 RecPower
14
15 ComplesPower=sqrt (TotalPower^2+RecPower^2)
16
17 PowerFactor=(TotalPower/ComplesPower)
18
19 Power1=sqrt(Power^2-RecPower^2)
20
21 KVAR=RecPower-Power1
```

```
22
23 NewKVA=sqrt(TotalPower^2+KVAR)
24
25 PowerFactor1=(TotalPower/NewKVA)
26
27 Ism=P1/(sqrt(3)*P2)
28
29 PowerfactorSYS=SyPower/P1
```

Scilab code Exa 2 unsaturated values

```
1 V=14000; Phase=3; Ra=0.07; V1=10; Is=490; Pf=0.8;
2 If=200; V1=18000;
4 Vb=V/sqrt(Phase)
6 Ib=(V1*10^6)/(sqrt(Phase)*V)
8 \text{ Zb=Vb/Ib}
10 Zsun = (V1/sqrt(3))/Is
11
12 Xsun=sqrt(Zsun^2-Ra^2)
13
14 Xsun=Xsun/Zb
15
16 Zssa=(V/sqrt(3))/Is
17
18 Xssa=Zssa/Zb
19
20 \ a = \cos(0.8)
21
22 Deg=a*180/%pi
24 Zs=Zssa/Ra
```

```
25
26 \quad Zs = atan(Zs)
27
28 Angle=Zs*180/\%pi
29
30 function[x,y]=polar2rect(r,theta)
31 \text{ x=r*cos}(\text{theta*\%pi/180});
32 \text{ y=r*sin}(\text{theta*\%pi/180});
33 endfunction
34
35 [a,b]=polar2rect(1,0)
36
37 X1=a+\%i*b
38
39 [c,d]=polar2rect(1,-Deg)
40
41 \quad X2 = c + \%i * d
42
43 [e,f]=polar2rect(0.84,Angle)
44
45 X3 = e + \%i * f
46
47 \quad X = X1 + (X2 * X3)
48
49 function[r,theta]=rect2polar(x,y)
50 r = sqrt(x^2+y^2);
51 theta=\frac{\text{atan}}{y/x} *180/\%pi;
52 endfunction
53
54 [I, Angle] = rect2polar(1.54,0.64)
55
56 \quad \text{Ef=I*V}
57
58 If = I * If
```

Scilab code Exa 3 excitationvoltage

```
1 function[r,theta]=rect2polar(x,y)
2 r = sqrt(x^2+y^2);
3 theta=atan(y/x)*180/\%pi;
4 endfunction
5 \ V=208; Poles=4; F=60; Phase=3; Vol=5000; Xs=8;
7 Vt=V/sqrt(Phase)
9 Ia=Vol/(sqrt(Phase)*V)
10 function[x,y]=polar2rect(r,theta)
11 x=r*cos(theta*\%pi/180);
12 y=r*sin(theta*%pi/180);
13 endfunction
14 [x1,y1]=polar2rect(Vt,0)
15
[x2,y2] = polar2rect(Ia,-36.9)
17
18 [x3,y3]=polar2rect(8,90)
19
20 \quad X1 = x1 + \%i * 0
21
22 \quad X2 = x2 + \%i * 0
23
24 \quad X2 = x2 + \%i * y2
25
26 \quad X3 = x3 + \%i * y3
27
28 \quad X = X1 + (X2 * X3)
29
30 function[r,theta]=rect2polar(x,y)
31 r = sqrt(x^2+y^2);
32 theta=atan(y/x)*180/\%pi;
33 endfunction
34
35 [Ef, Angle] = rect2polar(186.7,88.7)
36
```

```
37 \text{ Newvol=} 1.2 * \text{Ef}
38
39 function[x,y]=polar2rect(r,theta)
40 x=r*cos(theta*%pi/180);
41 y=r*sin(theta*%pi/180);
42 endfunction
43
44 [x1,y1]=polar2rect(Newvol,21)
45
46 [x2,y2]=polar2rect(Vt,0)
47
48 [x3,y3]=polar2rect(Xs,90)
49
50 \quad X1 = x1 + \%i * y1
51
52 \quad X1 = x2 + \%i * y2
53
54 X1 = x3 + \%i * y3
55
56 \quad X = (X1 - X2) / X3
57
58 function[r,theta]=rect2polar(x,y)
59 r = sqrt(x^2+y^2);
60 theta=\frac{\text{atan}}{y/x} *180/\%pi;
61 endfunction
62
63 [Ia, Angle1] = rect2polar(11.11, -13.93)
64
65 Pf = cos(\%pi*51.5/180)
66
67 a=sin(\%pi*51.5/180)
68
69 ReactiveKva=(Phase*Vt*Ia*a*10^-3)
70
71 Pmax=(Phase*Ef*Vt)/Xs
72
73 function[x,y]=polar2rect(r,theta)
74 x=r*cos(theta*\%pi/180);
```

```
75 y=r*sin(theta*%pi/180);
 76 endfunction
 77
 78 [x1,y1]=polar2rect(206.9,90)
 79
 80 [x2,y2] = polar2rect(120,0)
 81
 82 [x3,y3] = polar2rect(8,90)
 83
 84 \quad X1 = x1 + \%i * y1
 85
 86 \quad X2 = x2 + \%i * y2
 87
 88 \quad X3 = x3 + \%i * y3
 89
90 \quad X = (X1 - X2) / X3
91
92 function[r,theta]=rect2polar(x,y)
93 r = sqrt(x^2+y^2);
 94 theta=\frac{\text{atan}}{y/x} *180/\%pi;
95 endfunction
96
97 [Ia, Angle2] = rect2polar(25.8,15)
98
99 tan=Vt/Ef
100
101 Ang=tan * 180/%pi
102
103 Pf = cos (%pi * Ang/180)
```

Scilab code Exa 4 powerangle

```
1  V=208; F=60; Phase=3; Power=3000; Xs=8;
2
3  Vt=V/sqrt(Phase)
```

```
4
5 Ia=Power/(Phase*Vt)
7 function[x,y]=polar2rect(r,theta)
8 \text{ x=r*cos}(\text{theta*\%pi/180});
9 y=r*sin(theta*%pi/180);
10 endfunction
11 [x1,y1] = polar2rect(120,0)
12
13 [x2,y2] = polar2rect(8.33,0)
14
15 [x3,y3]=polar2rect(8,90)
16
17 \quad X = X1 - (X2 * X3)
18
19 function[r,theta]=rect2polar(x,y)
20 r = sqrt(x^2+y^2);
21 theta=atan(y/x)*180/\%pi;
22 endfunction
23
24 [Ef, Angle] = rect2polar(120, -66.64)
25
26 Pmax = (Phase * Ef * Vt) / Xs
27
28 \text{ Ws} = (1800/\text{F}) * 2 * \% \text{pi}
29
30 Tmax=Pmax/Ws
```

Scilab code Exa 5 fieldcurrent

```
1  V=460; Phase=3; N=1200; Hp=125;
2  Ra=0.078; Xal=0.15; Xar=1.85; Nre=28.2; Nse=28.2;
3
4  Ia=sqrt(Phase)*V
```

```
6 Ia = 121.4
8 Vt=V/sqrt(Phase)
10 Ea=Vt-(Ia*Ra)
11
12 Xs = Xal + Xar
13
14 function[x,y]=polar2rect(r,theta)
15 x=r*cos(theta*\%pi/180);
16 y=r*sin(theta*%pi/180);
17 endfunction
18
19 [x1,y1]=polar2rect(Ea,0)
20
21 [x2,y2]=polar2rect(Xs,90)
22
23 \quad X1 = x1 + \%i * y1
24
25 \quad X2 = x2 + \%i * y2
26
27 \text{ Im}=X1/X2
28
29 function[r,theta]=rect2polar(x,y)
30 r = sqrt(x^2+y^2);
31 theta=atan(y/x)*180/\%pi;
32 endfunction
33
34 [Im, Angle1] = rect2polar(7.84D-15,-128.0)
35
36 function[x,y]=polar2rect(r,theta)
37 \text{ x=r*}\cos(\text{theta*}\%\text{pi}/180);
38 \text{ y=r*sin}(\text{theta*\%pi/180});
39 endfunction
40
41 [x1,y1]=polar2rect(Im,Angle1)
42
43 [x2,y2]=polar2rect(Ia,0)
```

```
44
45 \quad X1 = x1 + \%i * y1
46
47 \quad X2 = x2 + \%i * y2
48
49 \quad X = X1 - X2
50
51 function[r,theta]=rect2polar(x,y)
52 r = sqrt(x^2+y^2);
53 theta=atan(y/x)*180/\%pi;
54 endfunction
55
[a,b] = rect2polar(-121.4,-128)
57
58 n=sqrt(2)/Phase*Nre
59
60 If=(a/n)*(Xs/Xar)
```

Scilab code Exa 6 statorcurrent

```
1  V=11; Phase=3; F=60; IncExe=150; DecExe=50; Xs=10;
2  Power=80000;
3
4  Vt=V/sqrt(Phase)
5
6  Vt=Vt*1000
7
8  Ef=IncExe/100
9
10  Ef1=DecExe/100
11
12  Ia=(Vt-(Ef*Vt))/(Xs)
13
14  Pf=cos(90/90*%pi/2)
```

```
16 Ia1 = (Vt - (Ef1 * Vt)) / (Xs)
17
18 Pf1 = cos(90/90 * \%pi/2)
19
20 Ia=Power/(Phase*Vt)
21
22 function[x,y]=polar2rect(r,theta)
23 x=r*cos(theta*%pi/180);
24 y=r*sin(theta*%pi/180);
25 endfunction
26
27 [x1,y1] = polar2rect(4.2,0)
28
29 [x2,y2] = polar2rect(10,90)
30
31 \quad X1 = x1 + \%i * y1
32
33 \quad X2 = x2 + \%i * y2
34
35 X = X1 * X2
36
37 function[r,theta]=rect2polar(x,y)
38 r = sqrt(x^2+y^2);
39 theta=\frac{\text{atan}}{y/x} *180/\%pi;
40 endfunction
41
42 [a,b] = rect2polar(Vt,42)
```

Scilab code Exa 7 powercurrent

```
1  Vt=1; Ia=1; Xd=0.8; Xq=0.4; Loss=0.15; Angle=36.9;
2  
3  a=cos(%pi*Angle/180)
4  
5  b=sin(%pi*Angle/180)
```

```
6
7 TanDeg=(Vt*Xq*a)/(Vt+(Ia*Xq*b))
9 z=atan(TanDeg)
10
11 Deg=(z*\%pi/180)
12
13 Deg=(z*180/\%pi)
14
15 Angl=Angle-Deg
16
17 Id=Ia*sin(%pi*Angl/180)
18
19 Iq=Ia*cos(%pi*Angl/180)
20
21 Ef = (Vt*cos(\%pi*Deg/180)) - (Id*Xq)
22
23 Pf=((Vt*Ef)/Xd)*sin(%pi*Deg/180)
24
25 Pr = (Vt^2*(Xd-Xq)/(2*Xd*Xq))*sin(%pi*45.6/180)
26
27 Pout=Vt*Ia*a
28
29 Prmax=(Vt^2*(Xd-Xq))/(2*Xd*Xq)
30
31 v=asin(Loss/Prmax)/2
32
33 Deg1 = (v*180/\%pi)
34
35 Id=Vt*cos(%pi*Deg1/180)/Xd
36
37 \text{ Iq=Vt*sin}(\%pi*Deg1/180)/Xq
38
39 Ia=(Id^2+Iq^2)^(1/2)
40
    Ang=atan(Id/Iq)
41
42
    Ang=(Ang*180/%pi)
43
```

```
44

45 Phi=Ang+Deg1

46

47 Pf=cos(%pi*Phi/180)
```

SINGLE PHASE MOTORS

Scilab code Exa 2 ouputpower

```
1 F=60; P=4; N=1730; Zb=27.86;
2 R=1.35; X=1.63; R1=2.9; X1=3.26;
3 V=120; Prot=81.2;
5 \text{ Ns} = (120*F)/P
7 S = (Ns - N)/N
9 a = \%i * Zb * ((R/S) + \%i * X)
10
11 b = (R/S) + \%i * (Zb + X)
12
13 \text{ Zf} = a/b
14
15 Rf=13.06;
16
17 Xf=16.31;
18
19 a = \%i * Zb * (R/(2-S) + \%i * X)
20
21 b=R/(2-S)+\%i*(Zb+X)
```

```
22
23 Zb=a/b
24
25 \text{ Rb} = 0.61;
26
27 \text{ Xb} = 1.55;
28
29 Zinput = (R1+Rf+Rb)+\%i*(X1+Xf+Xb)
30
31 function[r,theta]=rect2polar(x,y)
32 r = sqrt(x^2+y^2);
33 theta=\frac{\text{atan}}{(y/x)*180/\%pi};
34 endfunction
35
36 [a,b]=rect2polar(16.57,21.12)
37
38 Iinput=V/a
39
40 \cos(\%pi*b/180)
41
42 Pinput=V*Iinput*ans
43
44 Wsy=Ns*2*(%pi/F)
45
46 T=Iinput^2*(Rf-Rb)/Wsy
47
48 Pmech=T*Wsy*(1-S)
49
50 OutputPower=Pmech-Prot
51
52 Eff=OutputPower/Pinput*100
53
54 Pgf=Iinput^2*Rf
55
56 Pgb=Iinput^2*Rb
57
58 airgap=Pgf+Pgb
59
```

Scilab code Exa 4 externalresistance

```
1 V=120; F=60; Pole=4; Zm=1.5+4.0; Za=3+6;
2 Xa=6; Xm=4; Rm=1.5; Ra=3;
4 Ra=(Xa/Xm)*(Rm+sqrt(18.25))
6 C=(2*\%pi*F)*(Xa+(Ra*Rm)/(Xm+sqrt(18.25)))
8 a=((-Xm*Ra)+(sqrt(18.25)*sqrt(13.2)))
10 Xc = Xa + (a/Rm)
11
12 Ia=V/(3+\%i*6)
13
14 function[r,theta]=rect2polar(x,y)
15 r = sqrt(x^2+y^2);
16 theta=atan(y/x)*180/\%pi;
17 endfunction
18
19 [Is, Angle] = rect2polar(8, -16)
20
21 \text{ Im} = V/(1.5 + \%i * 4)
22
23 function[r,theta]=rect2polar(x,y)
24 r = sqrt(x^2+y^2);
25 theta=\frac{\text{atan}}{y/x} *180/\%pi;
26 endfunction
27
28 [Is1, Angle1] = rect2polar (9.86, -26.3)
29
30 Alfa=Angle1-Angle
31
```

```
32 \text{ Ts=Is*sin}(\%pi*6.01/180)
33
34 function[x,y]=polar2rect(r,theta)
35 \text{ x=r*cos}(\text{theta*\%pi/180});
36 \text{ y=r*sin}(\text{theta*\%pi/180});
37 endfunction
38
39 [a,b]=polar2rect(Is1,Angle1)
40
41 X = a + \%i * b
42
43 C=1/C*10^6
44
45 a=((-Xm*Ra)+(sqrt(18.25)*sqrt(13.2)))
46
47 Xc = Xa + (a/Rm)
48
49 C=10^6/(2*\%pi*F*Xc)
50
51 Ia=V/(3+\%i*6)
52
53 function[r,theta]=rect2polar(x,y)
54 r = sqrt(x^2+y^2);
55 theta=\frac{\text{atan}}{y/x} *180/\%pi;
56 endfunction
57
58 [Is, Angle] = rect2polar(8, -16)
59
60 Im=V/(1.5+\%i*4)
61
62 [Is1, Angle1] = rect2polar(9.86, -26.3)
63
64 Alfa=Angle1-Angle
65
66 Ts=Is*sin(%pi*6.01/180)
67
68 function[x,y]=polar2rect(r,theta)
69 \text{ x=r*cos}(\text{theta*\%pi/180});
```

```
70 y=r*sin(theta*%pi/180);
 71 endfunction
 72
 73 [a,b]=polar2rect(Is1,Angle1)
 74
 75 X = a + \%i * b
 76
 77 [c,d]=polar2rect(Is,Angle)
 78
 79 X1 = c + \%i * d
 80
 81 \quad X2 = X + X1
 82
 83 function[r,theta]=rect2polar(x,y)
 84 r = sqrt(x^2+y^2);
 85 theta=\frac{atan}{y/x}*180/%pi;
 86 endfunction
 87
 88 [I, Angle] = rect2polar (17.86, -42.3)
 89
90 Ia=V/(Ra+\%i*Xa)
91
 92 function[r,theta]=rect2polar(x,y)
 93 r = sqrt(x^2+y^2);
 94 theta=\frac{\text{atan}}{y/x} *180/\%pi;
95 endfunction
 96
 97 [Ia, Angle] = rect2polar (9.3, -6.4)
98
99 \text{ Alfa} = 69.33 - 34.53
100
101 Ts=Ia*sin(\%pi*Alfa/180)
102
103 function[x,y]=polar2rect(r,theta)
104 \text{ x=r*cos}(\text{theta*\%pi/180});
105 \text{ y=r*sin}(\text{theta*\%pi/180});
106 endfunction
107
```

```
[Is, Angle] = polar2rect(Ia, Angle)
108
109
110 [Is1, Angle1] = polar2rect(28.1, -69.44)
111
112 X=Is+%i*angle
113
114 X1=Is1+%i*Angle1
115
116 \quad X2=Is+\%i*Angle
117
118 \quad X = X1 + X2
119
120 function[r,theta]=rect2polar(x,y)
121 r = sqrt(x^2+y^2);
122 theta=\frac{\text{atan}}{y/x} *180/\%pi;
123 endfunction
124
125 [Is, Angle] = rect2polar(19.1, -32.7)
126
127 \text{ Xc} = 10^6/(2*\%pi*F*405)
128
129 Ia=V/(Ra+(\%i*6+\%i*6.55))
130
131 function[r,theta]=rect2polar(x,y)
132 r = sqrt(x^2+y^2);
133 theta=atan(y/x)*180/\%pi;
134 endfunction
135
136 [Is, Angle] = rect2polar(2.16, -9.04)
137
138
139 Ia=V/(Ra+(\%i*6-\%i*6.55))
140
141 [Is, Angle] = rect2polar(38.6,7.09)
142
143 Alfa=69.44+Angle
144
145 Ts=Is*sin(\%pi*Alfa/180)
```

```
146
147 function[x,y]=polar2rect(r,theta)
148 x=r*cos(theta*\%pi/180);
149 y=r*sin(theta*\%pi/180);
150 endfunction
151
152 [Is, Angle] = polar2rect(28.1, -69.44)
153
154 [Is1, Angle1] = polar2rect (39.34,10.4)
155
156 \quad X1 = Is + \%i * Angle
157
158 X2=Is1+%i*Angle1
159
160 X = X1 + X2
161
162 function[r,theta]=rect2polar(x,y)
163 r = sqrt(x^2+y^2);
164 theta=atan(y/x)*180/\%pi;
165 endfunction
166
167 [Is, Angle] = rect2polar (48.56, -19.20)
168
169 Ia=V/(Ra+(\%i*Xa-\%i*Xc))
170
171 function[r,theta]=rect2polar(x,y)
172 r = sqrt(x^2+y^2);
173 theta=atan(y/x)*180/\%pi;
174 endfunction
175
176 [I, Angle] = rect2polar(23.9,19.6)
177
178 \text{ Alfa} = 69.44 + 39.5
179
180 Ts=I*sin(\%pi*Alfa/180)
181
182 function[x,y]=polar2rect(r,theta)
183 x=r*cos(theta*\%pi/180);
```

```
184 y=r*sin(theta*\%pi/180);
185 endfunction
186
    [Is, Angle] = polar2rect (28.1, -69.44)
187
188
189
    [Is1, Angle1] = polar2rect(I, 39.35)
190
191 X=Is+\%i*Angle
192
193 X1=Is1+%i*Angle1
194
195 \quad X2 = X + X1
196
197 function[r,theta]=rect2polar(x,y)
198 r = sqrt(x^2+y^2);
199 theta=\frac{\text{atan}}{y/x}*180/\%pi;
200 endfunction
201
202 [I, Angle] = rect2polar(33.7, -6.7)
```

Scilab code Exa 5 maximumtorque

```
V=120; F=60; X1m=2; R1m=1.5; R2=1.5;
X1a=2; R1a=1.5; X2=2; Xmag=48; C=30; a=1;
Z1m=1.5; Zb=0.69+%i*0.98; Z1a=2.5;
Xc=%i*2-%i*88.4; Ra=2.5;

Kc=10^6/(2*%pi*F*C)

Zb

function[r,theta]=rect2polar(x,y)
r=sqrt(x^2+y^2);
theta=atan(y/x)*180/%pi;
endfunction
```

```
14
15 [x,y] = rect2polar(0.69,0.98)
16
17 function[x,y]=polar2rect(r,theta)
18 x=r*cos(theta*\%pi/180);
19 y=r*sin(theta*%pi/180);
20 endfunction
21
22 [a,b]=polar2rect(V,0)
23
24 X = a + \%i * b
25
26 z = (Z1m + \%i * 2 + 2 * (Zb))
27
28 \text{ Im}=X/z
29
30 function[r,theta]=rect2polar(x,y)
31 r = sqrt(x^2+y^2);
32 theta=atan(y/x)*180/\%pi;
33 endfunction
34
35 [Is, Angle] = rect2polar(14.41, -19.81)
36
37 y = (Z1a + Xc + 2*(Zb))
38
39 Ia=X/y
40
41 function[r,theta]=rect2polar(x,y)
42 r = sqrt(x^2+y^2);
43 theta=atan(y/x)*180/\%pi;
44 endfunction
45
46 [Is1, Angle1] = rect2polar(0.065,1.41)
47
48 Wsy = (1800*2*\%pi)/F
49
50 Ts=2*(Is)*(Is1)*2*0.69*sin(%pi*141.1/180)/Wsy
51
```

```
52 \text{ Zm} = \text{Z1m} + \%i * 2 + 2 * (Zb)
53
54 function[r,theta]=rect2polar(x,y)
55 r = sqrt(x^2+y^2);
56 theta=atan(y/x)*180/\%pi;
57 endfunction
58
59 [Ip1, Angle1] = rect2polar(2.88,3.96)
60
61 Za=Ra+\%i*2+2*(Zb)
62
63 R=3.88; Im=3.96;
64 Xc=Im-((Im*R-4.9*sqrt(26.22))/2.88)
65
66 c=10^6/(2767.34)
67
68 \quad Cs = c - C
69
70 function[x,y]=polar2rect(r,theta)
71 x=r*cos(theta*%pi/180);
72 y=r*sin(theta*\%pi/180);
73 endfunction
74
75 [v,a]=polar2rect(V,0)
76
77 X = v + \%i * a
78
79 R=3.88; Im=3.96; Xc=7.34;
80
81 a=R+(\%i*Im-\%i*Xc)
82
83 z=X/a
84
85 function[r,theta]=rect2polar(x,y)
86 r = sqrt(x^2+y^2);
87 theta=atan(y/x)*180/\%pi;
88 endfunction
89
```

```
90 [Is1, Angle1] = rect2polar(17.5,15.3)
91
92 Is = 24.4; Angle = -53.4;
93 function[x,y]=polar2rect(r,theta)
94 \text{ x=r*cos}(\text{theta*\%pi/180});
95 y=r*sin(theta*%pi/180);
96 endfunction
97
98 [a,b]=polar2rect(Is,Angle)
99
100 X1 = a + \%i * b
101
102 [c,d]=polar2rect(Is1,Angle1)
103
104 \quad X2 = c + \%i * d
105
106 \quad X = X1 + X2
107
108 function[r,theta]=rect2polar(x,y)
109 r = sqrt(x^2+y^2);
110 theta=atan(y/x)*180/\%pi;
111 endfunction
112
113 [z,y]=rect2polar(32.04,-4.28)
114
115 \ a=sin(\%pi*95/180)
116
117 Ts=2*(Is1)*(Is)*2*0.69*a/Wsy
118
119 T=Ts/z
```

Scilab code Exa 6 torquedev

```
1 V=120; F=60; N=2000; A=0.6;
2 Ohm=20; L=0.25;
```

SPECIAL MACHINES

Scilab code Exa 1 shaftposition

```
1  T=0.2; V=115; N=3000; F=60;
2  J=10^-5;
3
4  Km=T/V
5
6  Wm=(N*2*%pi/F)
7
8  Fm=T/Wm
9
10  Tm=J/Fm
11
12  A=Km/Fm
13
14  Kmv=A*V
15
16  KmvT=A*Tm
```

Scilab code Exa 3 maximumvoltage

```
1 Rw=1; Lw=30; I=3; TimeOn=2; RF=0.0675;
2 StepRate = 300; Turns = 100; TimeOff = 1;
3 \text{ PeakI=3};
4
5 R=Lw/TimeOn
7 \text{ Rext} = R - TimeOff
9 Prext=(I^2*Rext)
10
11 Vs = I * R
12
13 Rext=R-Rw
14
15 R1=Lw/TimeOff
16
17 Rf = R1 - R
18
19 Energy=(1/2*Lw*I^2)
20
21 Power=Turns*Rf
22
23 Power=Turns*RF
24
25 \text{ Vc=V+(PeakI*R)}
```

Scilab code Exa 4 inductionenergy

```
1 Lw=30; R=15; Ia=3; V=45;
2
3 Tow=Lw/R
4
5 t1=0.7*Tow
6
7 t0=0:0.1:t1;
```

```
8
9 t=0;
10
11 a=integrate('45*(-3+6*%e^(-x/2))', 'x',t,t0)
12
13 Energy=(1/2)*Lw*Ia^2
14
15 ProEnergy=(a/Energy)*100
```

TRANSIENTS AND DYNAMICS

Scilab code Exa 1 armaturevoltage

```
1 Rf=100; Lf=25; Ra=0.25; Laq=0.02;
2 Kg=100; Ll=0.15; V=200; Rl=1;
3
4 tow=Lf/Kg
5
6 log(0.1)
7
8 t=2.30/4
9
10 Towat=(Ll+Laq)/(Rl+Ra)
```

Scilab code Exa 3 maximumcurrent

```
1  Xd=0.9; Vt=1; Ia=1; Xd1=0.4; Xd2=0.2; Ta=0.2;
2  Td1=4; Td2=0.6; t=0.1;
```

```
4 function[x,y]=polar2rect(r,theta)
5 \text{ x=r*cos}(\text{theta*\%pi/180});
 6 y=r*sin(theta*%pi/180);
 7 endfunction
9 [x,y] = polar2rect(Ia,-25.8)
10
11 X = x + \%i * y
12
13 [x1,y1]=polar2rect(Xd,90)
14
15 \quad X1 = x1 + \%i * y1
16
17 A = Vt + (X * X1)
18
19 function[x,y]=polar2rect(r,theta)
20 \text{ x=r*cos}(\text{theta*\%pi/180});
21 y=r*sin(theta*%pi/180);
22 endfunction
23
24 [Ei, Angle] = rect2polar(1.39,0.81)
25
[x,y] = polar2rect(Ia,-25.8)
27
28 \ X = x + \% i * y
29
30 [x2,y2]=polar2rect(Xd1,90)
31
32 \quad X2 = x2 + \%i * y2
33
34 [Ei2, Angle1] = rect2polar(1.17,0.36)
35
36 [x,y] = polar2rect(Ia,-25.8)
37
38 \quad X = x + \% i * y
39
40 [x3,y3]=polar2rect(Xd2,90)
41
```

```
42 X3=x3+%i*y3
43
44 [Ei2,Angle2]=rect2polar(1.08,0.10)
45
46 Idc=sqrt(2)*(Ei2/Xd2)
47
48 Td1=(Xd1/Xd)*Td1
49
50 Td2=(Xd2/Xd1)*Td2
51
52 Isc=sqrt(2)*(Td1+1.29*%e^(-0.562*0.1)+2.42*%e^(-3.3*0.1))+7.78*%e^(-5*0.1)
```

POWER SEMICONDUCTOR CONVERTERS

Scilab code Exa 1 firingangle

```
1 Ka=0.09; N=1000;
2 Ia=30; Ra=0.4; V=120;
3 RevEa=-90;
5 \quad \text{Ea=Ka*N}
7 Vo=Ea+(Ia*Ra)
9 a=Vo*%pi
10
11 b=2*sqrt(2)*V
12
13 c=a/b
14
15 angle=acosd(c)
16
17 P = Vo * Ia
18
19 S=V*Ia
```

```
20
21 \text{ Pf=P/S}
22
23 Vo1=RevEa+(Ia*Ra)
24
25 a = Vo1 * \%pi
26
27 b=2*sqrt(2)*V
28
29 c=a/b
30
31 Angle=acosd(c)
32
33 Pdc=Ea*Ia
34
35 Pr=Ia^2*Ra
36
37 Ps=Pdc-Pr
```

Scilab code Exa 2 ouputvoltage

```
1  Vp=120; Angle=60;
2
3  t0=%pi/2
4
5  t1=t0:0.01:(210/360*2*%pi);
6
7  integrate('2^.5*120*sin(t)','t',t0,t1)
8
9  Vo=((3*sqrt(6))/(2*%pi))*120*cos(%pi*Angle/180)
```

Scilab code Exa 3 powerfactor

```
1 V=480; Ka=0.3; N=1500;
2 Ia=130; Ra=0.1; No=1000;
4 Vp=V/sqrt(3)
 6 \quad \text{Ea=Ka*N}
8 Vo=Ea+(Ia*Ra)
10 a=Vo*%pi
11
12 b=3*sqrt(6)*Vp
13
14 c=a/b
15
16 Angle=acosd(c)
17
18 IA = sqrt(2/3) * Ia
19
20 S=3*Vp*IA
21
22 \text{ Ps=Vo*Ia}
23
24 Pf=Ps/S
25
26 Ea1=Ka*No
27
28 \text{ Vol} = -300 + (Ia*Ra)
29
30 a = Vo1 * \%pi
31
32 b=3*sqrt(6)*Vp
33
34 c=a/b
35
36 Angle=acosd(c)
37
38 \text{ Pdc}=\text{Ea}1*\text{Ia}
```

```
39
40 Pr=Ia^2*Ra
41
42 Ps=Pdc-Pr
```

Scilab code Exa 4 controlfiringangle

```
1  OutP=100*0.746; Eff=0.8;
2  Pf=0.85; V=460;
3
4  S=OutP/(Eff*Pf)
5
6  Il=S/(sqrt(3)*V)
7
8  Ip=Il/sqrt(3)
9
10  Is=Ip/sqrt(2)
11
12  Vs=sqrt(2)*V
13
14  Angle=acosd(Pf)
```

Scilab code Exa 5 supply power

```
10
11 Pr=Ia^2*Ra
12
13 Ps=V*Ia*0.5
14
15 Vo=Ea1+(Ia*Ra)
16
17 Vo=Ea1+(Io*Ra)
18
19 Pmotor1=Ea1*Io
20
21 Pr1=Ia^2*Ra
22
23 Ps=V*Io*1/8
```

Scilab code Exa 6 outputpower

```
1  V=300; I=540; Angle=45;
2
3  t0=0:0.1: %pi;
4
5  t=0;
6  integrate('540*sin((x-45*%pi/180))', 'x',t,t0)/%pi
7
8  Is=242.89;
9
10  Ps=V*I
11
12  Vo1=(4*V)/(%pi*sqrt(2))
13
14  Pout=Vo1*Io/sqrt(2)*cos(%pi*Angle/180)
```

Scilab code Exa 7 phasevoltage

```
1  V=600; Phase=3;
2
3  Vl=sqrt(2/3)*V
4
5  Vp=V*sqrt(2)/Phase
```

Scilab code Exa 8 angleshift

```
1  V=120; Vo=50; Vo1=100;
2
3  Angleshift=(Vo^2/V^2)*180
4
5  Angleshift=(Vo1^2/V^2)*180
```

${\bf Scilab} \ {\bf code} \ {\bf Exa} \ {\bf 9} \ {\bf output current}$

```
1 I=100;
2 PulseScr=sqrt(1/3);
3 PulseOut=sqrt(2/3);
4
5 a=PulseScr
6
7 msScr=a*I
8
9 b=PulseOut
10
11 RmsOut=b*I
```