Incertidumbre

Incertidumbre

- En los temas anteriores se han descrito técnicas de representación del conocimiento y razonamiento para un modelo del mundo:
 - Completo
 - Consistente
 - Inalterable
- Sin embargo, en muchos dominios de interés no es posible crear tales modelos debido a la presencia de incertidumbre:
 - "Falta de conocimiento seguro y claro de algo". (DiccionarioRAE)
- En los próximos temas se revisarán las principales aproximaciones para tratar con la incertidumbre haciendo hincapié en las Redes Bayesianas

Fuentes de Incertidumbre: Hechos

Con respecto a los hechos:

Ignorancia

- Puede que en un determinado campo el conocimiento sea incompleto.
 - Por ejemplo en el campo de las Ciencias Médicas.
- Aunque se pudiera completar el conocimiento, puede ser necesario tomar decisiones con información incompleta.
 - Un paciente llega con gravedad a urgencias y es necesario proponer un tratamiento sin que sea posible realizar todos los tests necesarios para saber con total exactitud su enfermedad.
- En otros campos la ignorancia es irreducible
 - Presente en modelos físicos
 - » ¿Cuál será el resultado del lanzamiento de una moneda?
 - Presente en la vida real
 - » ¿Es la otra persona sincera?

Vaguedad e Imprecisión

- Algunos conceptos son vagos o imprecisos.
 - Las personas altas, guapas, felices etc.

Fuentes de Incertidumbre: Reglas

Con respecto a las reglas:

- Las reglas son generalmente heurísticas que utilizan los expertos en determinadas situaciones.
- En el mundo real utilizamos habitualmente reglas que son :

Inexactas o incompletas

- "Si es un ave entonces vuela", ¿y los pingüinos?
- "Si te duele la cabeza tienes gripe" ¿y si te diste un golpe?

Imprecisas

- "Si el agua está caliente añada un poco de sal"

Inconsistentes

- "Al que madruga Dios le ayuda"
- "No por mucho madrugar amanece más temprano"

Razonamiento con Incertidumbre

Objetivo:

 Ser capaz de razonar sin tener todo el conocimiento relevante en un campo determinado utilizando lo mejor posible el conocimiento que se tiene.

Implementación

- Es dificil cumplir estos requerimientos utilizando la lógica de primer orden
- Deben de introducirse modelos para manejar información vaga, incierta, incompleta y contradictoria.
- Crucial para un sistema funcione en el "mundo real"

Cuestiones a Resolver por las Aproximaciones a la Incertidumbre

- ¿Cómo evaluar la aplicabilidad de las condiciones de las reglas?
 - Si X es mayor necesita gafas.
 - ¿Se puede aplicar la regla si X tiene 40 años?
- ¿Cómo combinar hechos imprecisos ?
 - X es alto, X es rubio
 - ¿Con que certidumbre puedo afirmar que X es alto y rubio?
- Dada un hecho imprecisa y una regla imprecisa: ¿qué confianza se puede tener en las conclusiones?
 - X estudia mucho
 - Si X estudia mucho aprobará
 - ¿Con que certidumbre puedo afirmar que X aprobará?

Cuestiones a Resolver por las Aproximaciones a la Incertidumbre

- Dada la misma conclusión incierta de varias reglas: ¿qué confianza se puede tener en la conclusión?
 - Juan llega tarde, Luis llega tarde
 - Si Juan llega tarde la carretera está cortada
 - Si Luis llega tarde la carretera está cortada
 - ¿Cuál es la certidumbre de que la carretera esté cortada?

Algo de Historia

- Inicialmente la mayoría de los investigadores en IA enfatizaban la importancia del razonamiento simbólico y evitaban la utilización de números.
 - Los sistemas expertos no deben usar números puesto que los expertos humanos no lo hacen.
 - Los expertos no pueden suministrar los números requeridos.
- Sin embargo los ingenieros que desarrollaban las aplicaciones se dieron cuenta pronto de la necesidad de representar la incertidumbre
 - El sistema experto MYCIN (años 70) para el tratamiento de infecciones bacterianas fue el primer éxito en este campo.
- Los métodos numéricos (especialmente los basados en probabilidad) son actualmente una herramienta aceptada en IA
 - Debido a los éxitos prácticos
 - A la complejidad de las teorías alternativas

Principales Modelos de Representación de la Incertidumbre

 La lógica de primer orden (LPO) no es adecuada para modelar la incertidumbre por lo que son necesarios nuevos modelos, entre ellos destacan:

Modelos Simbólicos

- Lógicas por Defecto
- Lógicas basadas en Modelos Mínimos
 - La asunción del mundo cerrado
 - Terminación de predicados

Modelos Numéricos

- Probabilidad
- Teoría de Dempster-Shaffer
- Lógica difusa

Representación Simbólica de la Incertidumbre: LPO

La LPO asume que el conocimiento:

- Es exacto.
 - Los hechos son ciertos o falsos
- Es completo.
 - Se conoce todo acerca del campo de trabajo.
- Es consistente.
 - No tiene contradicciones.

Por tanto, con la LPO :

- No se puede expresar incertidumbre.
- No puede hacer deducciones lógicamente incorrectas pero probables
- No se puede trabajar con información contradictoria

El Razonamiento no Monótono

- Como la LPO asume que el conocimiento es completo y consistente, una vez que un hecho se asume/es cierto permanece así (Monotonía)
 - Si de una Base de Conocimiento (BC) se deduce una expresión s, y se tiene otra Base de conocimiento BC' de forma que BC ⊂ BC', entonces de BC' también se deduce s.
 - Por tanto el añadir nuevo conocimiento siempre incrementa el tamaño de la Base de Conocimiento.
- La presencia de conocimiento incompleto nos lleva a modelos no monótonos:
 - El conocimiento de nuevos hechos puede hacer que nos retractemos de algunas de nuestras creencias.
 - Ejemplo:

Representación Simbólica de la Incertidumbre

Lógica por defecto

- Propuesta por Reiter para solucionar el problema del conocimiento incompleto (1980).
- Para ello se introducen una serie de reglas por defecto.
- Intuitivamente:
 - "Las reglas por defecto expresan características comunes a un conjunto de elementos que se asumen ciertas salvo que se indique lo contrario".

Asunción del mundo cerrado

- Sirve para manejar conocimiento incompleto.
- Intuitivamente:
 - "Lo que no se puede probar a partir de mi Base de Conocimiento es falso"
- Utilizado en las B.D. y Prolog.

Inconvenientes

Teorías complejas y a veces inconsistentes.

Representación Numérica de la Incertidumbre: Factores de Certeza

Los Factores de certeza aparecieron en el sistema experto MYCIN:

desarrollado en la Universidad de Stanford (década de los 70)
 para el diagnóstico y consulta de enfermedades infecciosas.

Factores de certeza

- La Base de Conocimiento de MYCIN consistía en reglas de la forma:
 - Evidencia → Hipótesis FC(H|E)
- El factor de certeza FC representa la certidumbre en la Hipótesis cuando se observa la Evidencia.
- Los FC varían entre –1 (creencia nula) y 1 (creencia total)

Representación Numérica de la Incertidumbre: Factores de Certeza

Grados de creencia

- Los FC se calculan a partir de los grados de creencia GC y no creencia en la hipótesis
- Los GC varían entre 0 (creencia nula) y 1 (creencia total)
- La relación entre FC y GC es: FC(H|E)=GC(H|E)- GC(¬H|E)

Propiedades

A diferencia de los grados de creencia probabilísticos
 GC(H|E)+GC(¬H|E) ≠ 1

Las Reglas en Mycin

Ejemplo:

(\$AND (SAME CNTXT GRAM GRAMNEG)

(SAME CNTXT MORPH ROD)

(SAME CNTXT AIR ANAEROBIC))

(CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY .6)

Lo que significa:

SI el organismo es gram-negativo

Y tiene forma de bastón

Y es anaerobio

ENTONCES el organismo es bacteriode (con certeza 0.6)

Los factores de certidumbre se introducían a mano por el diseñador

Combinación de Factores de Certeza

Combinación de Reglas Convergentes

```
Si E_1 entonces H con FC(H|E_1)
Si E_2 entonces H con FC(H|E_2)
Si E_1 \lor E_2 entonces H con FC(H|E_1 \lor E_2)
```

$$\begin{array}{ll} \text{Con: FC(H| E_1 \lor E_2)=} f_{\text{comb}}(\text{FC(H|E_1), FC(H|E_2)}) \text{ definida como} \\ f_{\text{comb}}(x,y) = \begin{cases} x+y-xy & x,y>0 \\ (x+y)/(1-\text{min}(|x|,|y|)) & xy \leq 0 \\ x+y+xy & x,y<0 \end{cases}$$

Encadenado de Reglas

Si A entonces B con FC(B|A)

Si B entonces C con FC(C|B)

Si A entonces C con FC(C|A)

Con:
$$FC(C|A) = \begin{cases} FC(C|B) FC(B|A) & FC(B|A) \ge 0 \\ 0 & FC(B|A) < 0 \end{cases}$$

Ejemplo de Combinación de Factores de Certeza

 Dadas siguientes reglas calcular el factor de certeza de la proposición A ∨ B ∨ E→F

 Por tanto, si observamos A,B y E podemos concluir F con certidumbre 0.38

¿Cómo era el rendimiento de Mycin?

- El sistema experto Mycin proporcionaba diagnósticos y recomendaciones terapéuticas que eran al menos tan buenas como los mejores expertos en la especialidad
- Sin embargo los factores de certeza tienen graves incoherencias, por ejemplo:
 - De Sarampión→Ronchas (0.8) y Ronchas→Alergia (0.5) obtenemos (encadenado) Sarampión→Alergia (0.4)!

Representación Numérica de la Incertidumbre: Lógica difusa

- Desarrollada a partir de los trabajos de Zadeh (mediados de los 60)
- Asigna a cada proposición A un "grado de verdad"
 V entre 0 y 1 donde:
 - V(A)=0 indica que la proposición es completamente falsa
 - V(A)=1 indica que la proposición es totalmente verdadera
 - Valores intermedios de V(A) reflejan diferentes grados de verdad de la proposición
- Es una generalización de la lógica clásica (que aparece tomando los valores de verdad de todas las proposiciones como 0 ó 1)
- Relacionada con la descripción de la vaguedad en vez de la incertidumbre

Ejemplo

Dada la proposición "La temperatura del enfermo es alta"

- En la lógica clásica
 - Diríamos por ejemplo alta(temperatura)⇔ temperatura>38
 - Por tanto si la temperatura es 37.99 diríamos que la temperatura no es alta.
 Nosotros no solemos razonar así
- En la lógica difusa
 - Se da un grado de verdad V a alta en función de temperatura
 - Por ejemplo:

$$V(alta(temperatura)) = \begin{cases} 0 & temperatura < 38 \\ temperatura - 38 & 38 \le temperatura \le 39 \\ 1 & temperatura > 39 \end{cases}$$

Grados de verdad del predicado alta(temperatura)

Proposiciones Compuestas

- En la lógica difusa al igual que en la lógica clásica el valor de verdad de una proposición compuesta se calcula a través del valor de verdad de las proposiciones individuales
- Existen varias formas de calcular estos valores de verdad. Los más usuales son:

```
- V(A \land B) = min(V(A), V(B))
```

- $V(A \lor B) = max(V(A), V(B))$
- $V(\neg A)=1-V(A)$
- $V(A \rightarrow B) = max(1 V(A), V(B))$
- Nótese que la lógica difusa no cumple:
 - No contradicción: V(A∧¬A) ≠ 0 en general
 - Tercio excluso: $V(A \lor \neg A) \neq 1$ en general

Razonamiento Difuso basado en Reglas

Lo mostraremos con un ejemplo:

- Se le toma la temperatura a un paciente y se quiere saber la dosis apropiada de un medicamento.
- Hechos:
 - temperatura=38
- Reglas:
 - normal(temperatura)→baja(dosis)
 - templada(temperatura) → media(dosis)
 - alta(temperatura) →alta(dosis)

Razonamiento Difuso basado en Reglas

- Generalmente el proceso de razonamiento difuso consta de 4 pasos
 - Difusión: Obtener los grados de verdad de los antecedentes.
 - Se obtienen los grados de verdad de los antecedentes utilizando los hechos observados.
 - En el ejemplo:
 - Hechos:
 - temperatura=38
 - Grados de verdad:
 - » normal(temperatura): 0.33
 - » templado(temperatura): 1
 - » alta(temperatura): 0.33

Razonamiento Difuso: Inferencia

- Inferencia: Obtener los grados de verdad de los consecuentes
 - Una vez calculados los grados de verdad de la premisa de cada regla se recalculan los grados de verdad de los consecuentes mediante:
 - Min: los grados de verdad del consecuente se cortan a la altura del grado de verdad de la premisa, o
 - Producto: se multiplican los grados de verdad de consecuente y premisa
- Ejemplo (continuación)
 - Reglas:
 - normal(temperatura)→baja(dosis) v=0.33

templada(temperatura) → media(dosis) v=1

alta(temperatura) →alta(dosis) v=0.33

Razonamiento Difuso: Composición

- Composición de consecuentes
 - Todos los grados de verdad difusos correspondientes a reglas con el mismo consecuente se combinan para dar lugar a los grados de verdad de la conclusión de las reglas mediante:
 - Max: Se toma el máximo de los grados de verdad correspondientes a las distintas consecuencias, o
 - Sum: Se toma la suma de los grados de verdad correspondientes a las distintas consecuencias

Razonamiento Difuso: Concisión

- Concisión (Opcional)
 - Se utiliza cuando se necesita convertir una conclusión difusa en concreta.
 - Generalmente se utilizan los métodos:
 - Centroide: Se calcula el centro de gravedad de los grados de verdad de la conclusión difusa, o
 - Máximo: Se elige el máximo valor de los grados de verdad.

centroide =
$$\frac{\int x \cdot v(x) \ dx}{\int v(x) \ dx}$$

- Por tanto con 38 grados la dosis sería de 6.76 ml.

Representación Numérica de la Incertidumbre: Probabilidad

La Teoría de la Probabilidad (TProb)

- Es un área de las Matemáticas que ha sido aplicada a problemas de razonamiento con incertidumbre
- Es una teoría elegante, bien entendida y con mucha historia (formalizaciones a partir de mediados del siglo XVII)
- Asigna valores numéricos (llamados probabilidades) a las proposiciones.
- Nos dice, dadas las probabilidades de ciertas proposiciones, y algunas relaciones entre ellas como asignar probabilidades a las proposiciones relacionadas
- Relación con la LPO:
 - En la LPO las proposiciones son ciertas o falsas.
 - Con la Tprob las proposiciones son también ciertas o falsas pero se tiene un grado de creencia en la certeza o falsedad.

¿Qué son las Probabilidades?

 A pesar de su larga historia los valores numéricos que representan las probabilidad no tiene una interpretación única.

Algunas Interpretaciones:

- Frecuentista: Es el valor, cuando el número de pruebas tiende a infinito, de la frecuencia de que ocurra algún evento
- Subjetiva: Es un grado de creencia acerca de un evento incierto

Aún así:

 Existe un consenso sobre el modelo matemático que soporta la Teoría

Los Valores Numéricos de la Probabilidad

- Denotaremos por P(A) a la probabilidad de la proposición A
 - A="El paciente tiene sarampión"
 - A="Mañana saldrá el sol" ...
- Los valores de la Probabilidad satisfacen un conjunto de axiomas:
 - $-0 \le P(A) \le 1$
 - P(Proposición Verdadera)=1
 - $P(A \lor B) = P(A) + P(B)$
 - Siempre que A y B sean disjuntos, es decir ¬(A∧B)
- A partir de ellos se puede demostrar por ejemplo:
 - $P(\neg A)=1-P(A)$
 - P(Proposición Falsa)=0
 - $P(A \lor B) = P(A) + P(B) P(A \land B)$

Variables Aleatorias

- Muchas veces tenemos un evento con un conjunto de resultados:
 - Completo

Se conocen todos los posibles resultados

Mutuamente excluyente

No se pueden dar dos resultados distintos simultáneamente.

Ejemplos

- Si tiramos una moneda, el resultado es cara o cruz
- Si tiramos un dado, se producen seis resultados distintos
- La temperatura de un paciente puede estar en un conjunto de intervalos: <36.5, 36.5-37.4, 37.5-38.4, 38.5-39.4, >39.4
- En lugar de tener una proposición para cada resultado se introduce el concepto de Variable aleatoria
- Se permiten proposiciones de la forma Variable = resultado
 - Por ejemplo, si M="Resultado de tirar una moneda con valores posibles cara y cruz" se permiten las proposiciones:
 - M=cara y M=Cruz y podemos hablar de
 - P(M=cara) y P(M=cruz) que representan la probabilidad de obtener una cara y una cruz respectivamente

Variables Aleatorias

- Por consistencia, se puede considerar que todas las proposiciones son variables aleatorias que toman dos valores verdadero o falso
 - Por ejemplo, dada la proposición "Tiene Sarampión"
 - Construimos la variable aleatoria Sarampión que toma los valores verdadero y falso
 - Y representamos la probabilidad de que un paciente tenga Sarampión P("Tiene Sarampión") como P(Sarampión =verdadero)

Abreviaturas

- Se suele escribir P(M=cara) como P(cara), cuando está claro que nos referimos a la variable aleatoria M.
- Si una variable aleatoria como Sarampión toma únicamente los valores verdadero o falso se suele escribir P(Sarampión =verdadero) como P(sarampión) y P(Sarampión =falso) como P(¬ sarampión)

Distribuciones de Probabilidad

- Dada una Variable Aleatoria nos gustaría conocer la probabilidad para cada valor que pueda tomar
- Esta descripción se llama distribución de probabilidad (Dprob) de la variable aleatoria y consiste en listar los valores de probabilidad para cada valor de la variable

Ejemplo:

Distribución de probabilidad de la variable Llueve

Variable ──→	Llueve	P(Llueve)	
Valores <	Verdadero	0.1	> Probabilidades
	Falso	0.9	110000000000000000000000000000000000000

Proposiciones más Complejas

- Podemos estar interesados en estudiar varias variables en conjunto.
 - Por ejemplo
 - P(Sarampión=verdadero \(\times \) Fiebre=verdadero) que es la probabilidad de que el paciente tenga sarampión y fiebre
 - Generalmente lo escribiremos como:
 - P(sarampión∧ fiebre) o P(sarampión, fiebre)
- Para ello se necesita asignar probabilidades a cada posible combinación de los valores de las variables.
- El listado de todos esos valores se llama la distribución conjunta del conjunto de variables

Ejemplo de distribución conjunta

 Distribución conjunta de las variables Llueve y EnCalle P(Llueve, EnCalle):

Цueve	EnCalle	P(Llueve,EnCalle)
Verdadero	Verdadero	0.01
Verdadero	Falso	0.09
Falso	Verdadero	0.2
Falso	Falso	0.7

También se puede escribir como:

Циеve	EnCalle	P(Llueve,EnCalle)
llueve	encalle	0.01
llueve	–encalle	0.09
¬ llueve	encalle	0.2
¬ llueve	¬encalle	0.7

- Recuerda a la tabla de la verdad lógica excepto que:
 - Describe las probabilidad para cada combinación de valores de las variables
 - Generalmente dichos valores no se pueden calcular a partir de sus componentes

La Importancia de la Distribución Conjunta

- La distribución conjunta contiene todo lo que se necesita saber acerca de un conjunto de variables aleatorias.
- En particular, la distribución de cada variable individual se puede calcular a partir de la distribución conjunta (y se llama distribución marginal)
 - Ejemplo: Supongamos las variables aleatorias: Llueve y EnCalle con distribución conjunta P(Llueve, EnCalle)

llueve	encalle	0.01
llueve	¬encalle	0.09
¬ llueve	encalle	0.2
¬ llueve	¬encalle	0.7

- Entonces P(llueve)= P(llueve ∧ enCalle)+
 P(llueve ∧¬ enCalle)=0.01+0.09=0.1.
- De forma similar P(¬llueve)= 0.9
- También podemos calcular la probabilidad de disyunciones:
 P(Ilueve v enCalle)=0.01+0.09+0.2= 0.3

Probabilidad Condicional

- Escribiremos P(A|B) para representar la probabilidad de A dado B. Esta probabilidad se llama probabilidad condicional.
- Lo podemos interpretar como mi grado de creencia en A cuando todo lo que sé es B.
 - O de forma alternativa, de los casos en los que se da B, ¿en que proporción se da A?

Probabilidad Condicional Representación gráfica

Se define como:

- P(A|B)=P(A∧B)/P(B) (Asumiendo P(B)≠0) o equivalentemente
- $P(A \land B) = P(A \mid B)P(B)$ (Regla del Producto)

Distribución Condicional

- Nos permite conocer la probabilidad de que se tomen unos determinados valores por un conjunto de variables aleatorias cuando se saben los valores que han tomado otras.
 - Ejemplo: P(Llueve|enCalle)

Llueve	P(Llueve enCalle)		
llueve	0.05		
¬ Ilueve	0.95		

Ejemplo: P(Llueve| ¬ enCalle)

Llueve	P(Llueve ¬enCalle)		
llueve	0.11		
¬ Ilueve	0.89		

 Nótese que Llueve|enCalle y Llueve| ¬ enCalle son variables aleatorias

Razonamiento con Probabilidades: La Regla de Bayes

Propuesta en 1763 por el Reverendo T. Bayes

- P(A|B) = P(B|A) P(A) / P(B)
- Es una consecuencia de la regla del producto:
 - P(A|B)P(B) = P(A,B) = P(B|A)P(A)

Thomas Bayes

De forma intuitiva:

 La probabilidad de una hipótesis A dada una evidencia B: P(A|B) es proporcional a probabilidad de la hipótesis P(A) multiplicada por el grado en que la hipótesis predice los datos P(B|A)

Aplicabilidad

 En muchos problemas dado un conjunto de datos (evidencia) B tenemos que seleccionar la hipótesis A más probable mediante P(A|B)

Regla de Bayes: Forma General

Forma general de la Regla de Bayes

 Si se tiene un conjunto de proposiciones {A₁, A₂,..., A_m} completas y mutuamente excluyente se tiene:

$$P(A_i|B) = P(B|A_i) P(A_i)$$

 $P(B|A_1) P(A_1) + ... P(B|A_n) P(A_m)$

O lo que es lo mismo, si tiene una variable aleatoria A con valores a_1 , a_2 ,..., a_m

$$P(a_i|B) = P(B|a_i) P(a_i)$$

 $P(B|a_1) P(a_1) + ... P(B|a_n) P(a_m)$

La Regla de Bayes: Ejemplo

- Intentemos resolver un caso real con probabilidades:
 - Se pretende determinar la presencia o no de una enfermedad con un test.
 - En este caso:
 - Hipótesis (A): Enfermedad (variable aleatoria con dos valores verdadero y falso)
 - Evidencia (B): Test (variable aleatoria con dos valores positivo y negativo)
 - Se tiene:
 - P(a)=1/10000 (Prevalencia)
 P(b|a)=0.99 (Sensibilidad)
 P(¬ b|¬ a)=0.99 (Especificidad)
 - Aplicando la Regla de Bayes:

 Al elegir la hipótesis más probable debemos concluir que con este test si el resultado es positivo lo más probable es que el paciente no esté enfermo!

La Regla de Bayes: Ejemplo

Continuamos con el ejemplo:

- ¿Y si hay varios tests B₁,B₂,...,B_m?
 - Supondremos que cada test B₁,B₂,...,B_m es una variable aleatoria con dos resultados: positivo y negativo.
- Entonces si queremos calcular la probabilidad de que el paciente esté enfermo necesitamos calcular:

$$P(A|B_1,B_2,...,B_m)=P(B_1,B_2,...,B_m|A)P(A)/P(B_m,B_m,...,B_m)$$

- Si al paciente se le hace un conjunto de 30 pruebas y por simplificar se supone que cada una da como resultado sí o no.
 - Entonces para almacenar la tabla de probabilidad conjunta P(B₁, B₂,...,B_m| A) se necesitan guardar unos 2³⁰ números reales (unos 8 DVD's por paciente).
 - ¿De donde sacamos los números ? ¿Cómo estimar los números a partir de casos (en la Tierra hay 2³² personas aproximadamente)?
 - ¿Cómo hacemos los cálculos computacionalmente eficientes?

Independencia: ¿Una Solución?

Independencia

- Decimos que dos proposiciones A₁ y A₂ son independientes si el conocimiento de una no cambia la probabilidad de la otra
 - Por ejemplo si
 - A₁="Es rubio" , A₂="Tiene la piel clara" ,A₃="Lloverá mañana"
 - A₁ y A₃ son independientes A₁ y A₂ no.
- Formalmente A₁,A₂ son independientes si P(A₁|A₂)=P(A₁)
 o de forma equivalente: P(A₂|A₁)=P(A₂)
 o utilizando la regla del producto P(A₁∧A₂)= P(A₁) P(A₂)
- Entonces P(A₁ ∧ A₂ ∧... ∧ A_n)= P(A₁) P(A₂)... P(A_n)
 Para especificar la distribución conjunta de n variables se necesitan o(n) números en lugar de o(2ⁿ)
- Dos variables aleatorias son independientes si el conocimento del valor que toma una no cambia la probabilidad de los valores de la otra: P(A₁=c|A₂=d) = P(A₁=c)

Independencia Condicional

Pero...

- La condición de independencia es muy restrictiva.
- Por ejemplo, los resultados de los tests en medicina no suelen ser independientes.

Independencia condicional

- Se dice que dos proposiciones A₁,A₂ son independientes dada una tercera B si cuando B está presente el conocimiento de una no influye en la probabilidad de la otra: P(A₁|A₂,B)=P(A₁|B)
 - o de forma equivalente: $P(A_2|A_1,B)=P(A_2|B)$
 - o de forma equivalente: $P(A_1 \land A_2 | B) = P(A_1 | B) P(A_2 | B)$
 - Ejemplo:
 - A₁="Tengo congestión nasal" A₂="Tengo fiebre" A₃="Tengo gripe"
 - A₁ y A₂ son dependientes pero son independientes si se conoce A₃.
- Ahora se tiene: $P(A_1 \land A_2 \land ... \land A_n \mid B) = P(A_1 \mid B) P(A_2 \mid B) ... P(A_n \mid B)$
 - Tenemos o(n) números en lugar de o(2ⁿ)

Independencia Condicional

Finalizamos el ejemplo:

- \dot{c} Y si hay varios tests $B_1, B_2, ..., B_m$?
- Como vimos, para calcular la probabilidad de que el paciente esté enfermo hay que calcular:

$$P(A|B_1,B_2,...,B_m)=P(B_1,B_2,...,B_m|A)P(A)/P(B_m,B_m,...,B_m)$$

 Si los tests B₁,B₂,...,B_m son independientes dada la enfermedad A (aproximación que suele dar buenos resultados):

$$P(B_1, B_2, ..., B_m | A) = P(B_1 | A) P(B_2 | A) ... P(B_m | A)$$

El problema a resolver ya es abordable:

Basta calcular:

$$P(A|B_1,B_2,...,B_m)=P(B_1|A) P(B_2|A)...P(B_m|A)P(A)/P(B_m,B_m,...,B_m)$$

 $P(\neg A|B_1,B_2,...,B_m)=P(B_1|\neg A) P(B_2|\neg A)...P(B_m|\neg A) P(\neg A)$
 $P(B_m,B_m,...,B_m)$

con
$$P(B_m, B_m, ..., B_m) = P(B_1|A) P(B_2|A) ... P(B_m|A) P(A) + P(B_1|A) P(B_2|A) ... P(B_m|A) P(B_m|A) P(A)$$

Representación de la Independencia:Redes Bayesianas

- La clave hacer factible la inferencia con probabilidades es la introducción explícita de la independencia entre variables
- El modelo más extendido de representación de independencias lo constituye las Redes Bayesianas.
- En este modelo se representa de forma explícita la dependencia entre variables mediante un grafo
- Los nodos del grafo se corresponden con variables y las dependencias se representan mediante arcos entre ellas

Aplicación Regla de Bayes

Ejemplo simple

Se que se da S, ¿que probabilidad hay de que se de E?

$$P(E|S) = \frac{P(S|E).P(E)}{P(S|E).P(E) + P(S|\neg E).P(\neg E)}$$

Aplicación Regla de Bayes

Caso simple: Probabilidad inducida por un efecto

Se conoce P(E), P(E|C) y $P(E|\neg C)$, ¿Puedo calcular P(C|E)?

$$P(C|E) = \frac{P(E|C).P(C)}{P(E|C).P(C) + P(E|\neg C).P(\neg C)}$$

Aplicación Regla de Bayes

Probabilidad inducida por varias efectos (suponiendo independencia)

ENFERMEDAD (E): presente (+e), ausente (\neg e)

SÍNTOMA (S): presente (+s), ausente (-s)

PRUEBA ANALÍTICA (A): positivo (+a), negativo (¬a)

Grafo dirigido acíclico

$$P(+e) = 0'002$$

 $P(+s|+e) = 0'93 P(+a|+e) = 0'995$
 $P(+s|-e) = 0'01 P(+a|-e) = 0'003$
 $P(+e/+s,+a) = P(+e,+s,+a) / P(+s,+a)$
 $P(+e,+s,+a) = P(+e).P(+s|+e).P(+a|+e) = 0,00185$
 $P(-e,+s,+a) = P(-e).P(+s|-e).P(+a|-e) = 0,00003$
 $P(+s,+a) = P(+e,+s,+a) + P(-e,+s,+a) = 0,00188$
 $P(+e/+s,+a) = P(+e,+s,+a) / P(+s,+a) = 0,984$

Red Bayesiana

 Probabilidad inducida por varias causas (independientes) y varios efectos (independientes)

PALUDISMO (X): presente (+x), ausente (-x)

ZONA DE ORIGEN (U1): alto riesgo (u1+), medio riesgo (u1O), bajo riesgo (u1-)

TIPO SANGUÍNEO (U2): mayor inmunidad (u2+), menor inmunidad (u2-)

GOTA GRUESA (Y1): positivo (+y1), negativo (-y1)

FIEBRE (Y2): presente (+y2), ausente (¬y2)

Grafo dirigido acíclico

Red Bayesiana

$$\begin{cases} P(u_1^+) = 0'10 \\ P(u_1^0) = 0'10 \\ P(u_1^-) = 0'80 \end{cases} \begin{cases} P(u_2^+) = 0'60 \\ P(u_2^-) = 0'40 \end{cases}$$

$P(+x u_1,u_2)$	U_1^+	U_1^0	U_1^-
$u_2^{\scriptscriptstyle +}$	0'015	0'003	0'0003
u_2^-	0'022	0'012	8000'0

$$\begin{cases} P(+y_1|+x) = 0.992 & P(+y_2|+x) = 0.98 \\ P(+y_1|-x) = 0.006 & P(+y_2|-x) = 0.017 \end{cases}$$

Probabilidad conjunta:

$$P(u_1, u_2, x, y_1, y_2) = P(u_1) \cdot P(u_2) \cdot P(x|u_1, u_2) \cdot P(y_1|x) \cdot P(y_2|x)$$

Cálculo de la probabilidad

$$P(u_1, u_2, x, y_1, y_2) = P(u_1) \cdot P(u_2) \cdot P(x|u_1, u_2) \cdot P(y_1|x) \cdot P(y_2|x)$$

• Ejemplo: calcular $P(+x|u_1^0, u_2^-, \neg y_1, +y_2)$

$$P(u_{1}^{0}, u_{2}^{-}, +x, \neg y_{1}, +y_{2}) =$$

$$= P(u_{1}^{0}) \cdot P(u_{2}^{-}) \cdot P(+x|u_{1}^{0}, u_{2}^{-}) \cdot P(\neg y_{1}|+x) \cdot P(+y_{2}|+x)$$

$$= 0'10 \cdot 0'40 \cdot 0'12 \cdot 0'008 \cdot 0'98 = 0'0000376$$

$$P(u_{1}^{0}, u_{2}^{-}, \neg x, \neg y_{1}, +y_{2}) =$$

$$= P(u_{1}^{0}) \cdot P(u_{2}^{-}) \cdot P(\neg x|u_{1}^{0}, u_{2}^{-}) \cdot P(\neg y_{1}|\neg x) \cdot P(+y_{2}|\neg x)$$

$$= 0'10 \cdot 0'40 \cdot 0'88 \cdot 0'994 \cdot 0'017 = 0'0005948$$

$$P(u_{1}^{0}, u_{2}^{-}, \neg y_{1}, +y_{2}) = 0'0000376 + 0'0005948 = 0'0006324$$

$$P(+x|u_{1}^{0}, u_{2}^{-}, \neg y_{1}, +y_{2}) = \frac{P(u_{1}^{0}, u_{2}^{-}, +x, \neg y_{1}, +y_{2})}{P(u_{1}^{0}, u_{2}^{-}, \neg y_{1}, +y_{2})} = \frac{0'0000376}{0'000632} = 0'056$$

Resumen de representaciones numéricas

Grados de certidumbre en Mycin

- Asigna:Un número entre -1 y 1 a cada regla
- Mide: La incertidumbre asociada a cada regla
- Aplicaciones: Sistemas Expertos
- Ventajas: El número de parámetros necesario es razonable
- Inconvenientes: Débil representación de la independencia, Incoherencias

Lógica difusa

- Asigna:Un número entre 0 y 1 a cada proposición
- Mide: La verdad asociada a cada proposición
- Aplicaciones: Sistemas Expertos, Control
- Ventajas: Proporciona una forma de razonar con la vaguedad asociadas al lenguaje natural
- Inconvenientes: Tiene muchas elecciones arbitrarias (combinación de grados de creencia, inferencia, etc.)

Resumen de representaciones numéricas

Probabilidad

- Asigna:Un número entre 0 y 1 a cada proposición
- Mide: La incertidumbre asociada a dicha proposición
- Aplicaciones: Sistemas Expertos, Clasificación
- Ventajas: Sistema formalmente probado y robusto
- Inconvenientes: Se necesita mucha información