EE263 Autumn 2015 S. Boyd and S. Lall

# **Autonomous linear dynamical systems**

- ▶ autonomous linear dynamical systems
- examples
- ▶ higher order systems
- ▶ linearization near equilibrium point
- ▶ linearization along trajectory

### Autonomous linear dynamical systems

continuous-time autonomous LDS has form

$$\dot{x} = Ax$$

- $ightharpoonup x(t) \in \mathbb{R}^n$  is called the state
- $\triangleright$  n is the state dimension or (informally) the number of states
- lacksquare A is the dynamics matrix (system is time-invariant if A doesn't depend on t)

# Phase plane



# Example 1

$$\dot{x} = \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix} x$$



## Example 2

$$\dot{x} = \begin{bmatrix} -0.5 & 1\\ -1 & 0.5 \end{bmatrix} x$$



# **Block diagram**

block diagram representation of  $\dot{x} = Ax$ :



- $lackbox{1}/s$  block represents n parallel scalar integrators
- ightharpoonup coupling comes from dynamics matrix A

# **Block diagram**

useful when A has structure, e.g., block upper triangular:



here  $x_1$  doesn't affect  $x_2$  at all

#### Linear circuit



circuit equations are

$$\begin{split} C\frac{dv_c}{dt} &= i_c, \qquad L\frac{di_l}{dt} = v_l, \qquad \left[ \begin{array}{c} i_c \\ v_l \end{array} \right] = F\left[ \begin{array}{c} v_c \\ i_l \end{array} \right] \\ C &= \operatorname{diag}(C_1, \dots, C_p), \qquad L = \operatorname{diag}(L_1, \dots, L_r) \end{split}$$

with state 
$$x=\left[egin{array}{c} v_c \\ i_l \end{array}\right]$$
 , we have  $\dot{x}=\left[egin{array}{cc} C^{-1} & 0 \\ 0 & L^{-1} \end{array}\right]Fx$ 

#### Chemical reactions

- ightharpoonup reaction involving n chemicals;  $x_i$  is concentration of chemical i
- ▶ linear model of reaction kinetics

$$\frac{dx_i}{dt} = a_{i1}x_1 + \dots + a_{in}x_n$$

ightharpoonup good model for some reactions; A is usually sparse

# **Example**

series reaction  $A \xrightarrow{k_1} B \xrightarrow{k_2} C$  with linear dynamics

$$\dot{x} = \begin{bmatrix} -k_1 & 0 & 0 \\ k_1 & -k_2 & 0 \\ 0 & k_2 & 0 \end{bmatrix} x$$

plot for  $k_1 = k_2 = 1$ , initial x(0) = (1, 0, 0)



#### Finite-state discrete-time Markov chain

 $z(t) \in \{1, \dots, n\}$  is a random sequence with

**Prob**( 
$$z(t+1) = i \mid z(t) = j ) = P_{ij}$$

where  $P \in \mathbb{R}^{n \times n}$  is the matrix of *transition probabilities* 

can represent probability distribution of z(t) as n-vector

$$p(t) = \left[ \begin{array}{c} \mathbf{Prob}(z(t) = 1) \\ \vdots \\ \mathbf{Prob}(z(t) = n) \end{array} \right]$$

(so, e.g.,  $\mathbf{Prob}(z(t)=1,2, \text{ or } 3)=[1\ 1\ 1\ 0\cdots 0]p(t)$ ) then we have p(t+1)=Pp(t)

## **Graphical representation**

 $\boldsymbol{P}$  is often sparse; Markov chain is depicted graphically

- nodes are states
- edges show transition probabilities

### **Example: Markov chain**



- ▶ state 1 is 'system OK'
- ▶ state 2 is 'system down'
- ▶ state 3 is 'system being repaired'

$$p(t+1) = \begin{bmatrix} 0.9 & 0.7 & 1.0 \\ 0.1 & 0.1 & 0 \\ 0 & 0.2 & 0 \end{bmatrix} p(t)$$

### Numerical integration of continuous system

compute approximate solution of  $\dot{x}=Ax,\ x(0)=x_0$  suppose h is small time step (x doesn't change much in h seconds) simple ('forward Euler') approximation:

$$x(t+h) \approx x(t) + h\dot{x}(t) = (I+hA)x(t)$$

by carrying out this recursion (discrete-time LDS), starting at  $x(0)=x_0$ , we get approximation

$$x(kh) \approx (I + hA)^k x(0)$$

(forward Euler is never used in practice)

### Higher order linear dynamical systems

$$x^{(k)} = A_{k-1}x^{(k-1)} + \dots + A_1x^{(1)} + A_0x, \quad x(t) \in \mathbb{R}^n$$

where  $x^{(m)}$  denotes mth derivative

define new variable 
$$z=\begin{bmatrix}x\\x^{(1)}\\\vdots\\x^{(k-1)}\end{bmatrix}\in\mathbb{R}^{nk}$$
 , so

$$\dot{z} = \begin{bmatrix} x^{(1)} \\ \vdots \\ x^{(k)} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & I \\ A_0 & A_1 & A_2 & \cdots & A_{k-1} \end{bmatrix} z$$

a (first order) LDS (with bigger state)

# Higher order linear dynamical systems

## block diagram:



### Mechanical systems

mechanical system with k degrees of freedom undergoing small motions:

$$M\ddot{q} + D\dot{q} + Kq = 0$$

- $lackbox{} q(t) \in \mathbb{R}^k$  is the vector of generalized displacements
- ▶ *M* is the *mass matrix*
- ► *K* is the *stiffness matrix*
- $\triangleright$  D is the damping matrix

with state  $x = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$  we have

$$\dot{x} = \begin{bmatrix} \dot{q} \\ \ddot{q} \end{bmatrix} = \begin{bmatrix} 0 & I \\ -M^{-1}K & -M^{-1}D \end{bmatrix} x$$

### Linearization near equilibrium point

nonlinear, time-invariant differential equation (DE):

$$\dot{x} = f(x)$$

where  $f: \mathbb{R}^n \to \mathbb{R}^n$ suppose  $x_e$  is an *equilibrium point*, *i.e.*,  $f(x_e) = 0$ (so  $x(t) = x_e$  satisfies DE) now suppose x(t) is near  $x_e$ , so

$$\dot{x}(t) = f(x(t)) \approx f(x_e) + Df(x_e)(x(t) - x_e)$$

with  $\delta x(t) = x(t) - x_e$ , rewrite as

$$\dot{\delta x}(t) \approx Df(x_e)\delta x(t)$$

replacing pprox with = yields  $\it linearized$  approximation of DE near  $\it x_e$  we  $\it hope$  solution of  $\it \delta x = Df(\it x_e) \delta x$  is a good approximation of  $\it x - \it x_e$  (more later)

## **Example: Pendulum**

2nd order nonlinear DE  $ml^2\ddot{\theta}=-lmg\sin\theta$  rewrite as first order DE with state  $x=\left[egin{array}{c} \theta \\ \dot{\theta} \end{array}\right]$ :

$$\dot{x} = \left[ \begin{array}{c} x_2 \\ -(g/l)\sin x_1 \end{array} \right]$$

equilibrium point (pendulum down): x=0 linearized system near  $x_e=0$ :

$$\dot{\delta x} = \begin{bmatrix} 0 & 1 \\ -g/l & 0 \end{bmatrix} \delta x$$



#### Does linearization 'work'?

the linearized system usually, but not always, gives a good idea of the system behavior near  $\boldsymbol{x}_{e}$ 

example 1: 
$$\dot{x} = -x^3$$
 near  $x_e = 0$ 

for 
$$x(0) > 0$$
 solutions have form  $x(t) = (x(0)^{-2} + 2t)^{-1/2}$ 

linearized system is  $\dot{\delta x}=0$ ; solutions are constant

example 2: 
$$\dot{z} = z^3$$
 near  $z_e = 0$ 

for 
$$z(0) > 0$$
 solutions have form  $z(t) = (z(0)^{-2} - 2t)^{-1/2}$ 

(finite escape time at  $t = z(0)^{-2}/2$ )

linearized system is  $\dot{\delta z}=0$ ; solutions are constant

#### Does linearization 'work'?



- > systems with very different behavior have same linearized system
- lacktriangleright linearized systems do not predict qualitative behavior of either system

### Linearization along trajectory

- lacktriangle suppose  $x_{\mathrm{traj}}: \mathbb{R}_+ o \mathbb{R}^n$  satisfies  $\dot{x}_{\mathrm{traj}}(t) = f(x_{\mathrm{traj}}(t), t)$
- lacktriangle suppose x(t) is another trajectory, i.e.,  $\dot{x}(t)=f(x(t),t)$ , and is near  $x_{\mathrm{traj}}(t)$
- ▶ then

$$\frac{d}{dt}(x - x_{\text{traj}}) = f(x, t) - f(x_{\text{traj}}, t) \approx D_x f(x_{\text{traj}}, t)(x - x_{\text{traj}})$$

▶ (time-varying) LDS

$$\dot{\delta x} = D_x f(x_{\text{trai}}, t) \delta x$$

is called *linearized* or *variational system* along trajectory  $x_{\text{traj}}$ 

#### **Example: Linearized oscillator**

suppose  $x_{\text{traj}}(t)$  is T-periodic solution of nonlinear DE:

$$\dot{x}_{\mathrm{traj}}(t) = f(x_{\mathrm{traj}}(t)), \qquad x_{\mathrm{traj}}(t+T) = x_{\mathrm{traj}}(t)$$

linearized system is

$$\dot{\delta x} = A(t)\delta x$$

where  $A(t) = Df(x_{\text{traj}}(t))$ 

A(t) is T-periodic, so linearized system is called T-periodic linear system. used to study:

- startup dynamics of clock and oscillator circuits
- effects of power supply and other disturbances on clock behavior