Decision Trees

```
In [2]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

The Data

We will be using the same dataset through our discussions on classification with tree-methods (Decision Tree,Random Forests, and Gradient Boosted Trees) in order to compare performance metrics across these related models.

We will work with the "Palmer Penguins" dataset, as it is simple enough to help us fully understand how changing hyperparameters can change classification results.

Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.

Gorman KB, Williams TD, Fraser WR (2014) Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis). PLoS ONE 9(3): e90081. doi:10.1371/journal.pone.0090081

Summary: The data folder contains two CSV files. For intro courses/examples, you probably want to use the first one (penguins_size.csv).

- penguins size.csv: Simplified data from original penguin data sets. Contains variables:
 - species: penguin species (Chinstrap, Adélie, or Gentoo)
 - culmen_length_mm: culmen length (mm)
 - culmen_depth_mm: culmen depth (mm)
 - flipper_length_mm: flipper length (mm)
 - body_mass_g: body mass (g)
 - island: island name (Dream, Torgersen, or Biscoe) in the Palmer Archipelago (Antarctica)
 - sex: penguin sex
- (Not used) penguins_lter.csv: Original combined data for 3 penguin species

Note: The culmen is "the upper ridge of a bird's beak"

Our goal is to create a model that can help predict a species of a penguin based on physical attributes, then we can use that model to help researchers classify penguins in the field, instead of needing an experienced biologist

```
In [132]:
```

```
df = pd.read_csv("D:\\Study\\Programming\\python\\Python course from udemy\\Udemy - 2022
Python for Machine Learning & Data Science Masterclass\\01 - Introduction to Course\\1UNZ
IP-FOR-NOTEBOOKS-FINAL\\DATA\\penguins_size.csv")
df.head()
```

Out[132]:

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE

EDA

Missing Data

Recall the purpose is to create a model for future use, so data points missing crucial information won't help in this task, especially since for future data points we will assume the research will grab the relevant feature information.

```
In [133]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):
                      Non-Null Count Dtype
   Column
---
                      -----
                      344 non-null
0
   species
                                      object
   island
                      344 non-null
1
                                      object
    culmen_length_mm 342 non-null
culmen_depth_mm 342 non-null
                                      float64
                                      float64
    flipper_length mm 342 non-null
                                      float64
 5
   body_mass_g
                       342 non-null float64
 6
   sex
                       334 non-null object
dtypes: float64(4), object(3)
memory usage: 18.9+ KB
In [134]:
df.isnull().sum()
Out[134]:
species
                     0
island
                     0
culmen_length_mm
                     2
culmen_depth mm
                     2
                     2
flipper length mm
                     2
body_mass_g
                    10
sex
dtype: int64
In [135]:
# What percentage are we dropping?
100* (10/344)
Out[135]:
2.9069767441860463
In [136]:
df= df.dropna()
In [137]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 334 entries, 0 to 343
Data columns (total 7 columns):
 # Column
                      Non-Null Count Dtype
                       ----
    -----
                      334 non-null object
0 species
1 island
                      334 non-null object
```

float64

float64

2 culmen length mm 334 non-null

3 culmen depth mm 334 non-null

```
flipper length mm 334 non-null
                                             float64
 5
                           334 non-null
                                             float64
     body_mass_g
                           334 non-null
 6
     sex
                                             object
dtypes: float64(4), object(3)
memory usage: 20.9+ KB
In [138]:
df.head()
Out[138]:
  species
             island culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g
                                                                                   sex
   Adelie Torgersen
                               39.1
                                               18.7
                                                              181.0
                                                                         3750.0
                                                                                 MALE
                                                              186.0
                                                                         3800.0 FEMALE
                               39.5
                                               17.4
1
   Adelie Torgersen
                                                              195.0
                                                                         3250.0 FEMALE
   Adelie Torgersen
                               40.3
                                               18.0
                               36.7
                                                              193.0
                                                                         3450.0 FEMALE
   Adelie Torgersen
                                               19.3
   Adelie Torgersen
                               39.3
                                               20.6
                                                              190.0
                                                                         3650.0
                                                                                 MALE
In [139]:
df['island'].unique()
Out[139]:
array(['Torgersen', 'Biscoe', 'Dream'], dtype=object)
In [140]:
df['sex'].unique()
Out[140]:
array(['MALE', 'FEMALE', '.'], dtype=object)
In [141]:
df[df['sex'] == '.']
Out[141]:
            island culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g sex
    species
336 Gentoo Biscoe
                              44.5
                                              15.7
                                                             217.0
                                                                        4875.0
In [142]:
# Here if we want to drop that row
#df=df[df['sex']!='.']
#df
In [143]:
# Here we will do some analyis and try to find out the sex of missing penguin
# That pengine belongs to 'Gentoo' species
df[df['species'] == 'Gentoo'].groupby('sex').describe().transpose()
Out[143]:
                                FEMALE
                                             MALE
                  sex
culmen_length_mm count
                         1.0
                               58.000000
                                          61.000000
```

44.5

NaN

44.5

mean

std

min

25%

45.563793

2.051247

40.900000

43.850000

49.473770

2.720594

44.400000

48.100000

	sex 50%	44.5	FEMALE 45.500000	MALE 49.500000
	75%	44.5	46.875000	50.500000
	max	44.5	50.500000	59.600000
culmen_depth_mm	count	1.0	58.000000	61.000000
	mean	15.7	14.237931	15.718033
	std	NaN	0.540249	0.741060
	min	15.7	13.100000	14.100000
	25%	15.7	13.800000	15.200000
	50%	15.7	14.250000	15.700000
	75%	15.7	14.600000	16.100000
	max	15.7	15.500000	17.300000
flipper_length_mm	count	1.0	58.000000	61.000000
	mean	217.0	212.706897	221.540984
	std	NaN	3.897856	5.673252
	min	217.0	203.000000	208.000000
	25%	217.0	210.000000	218.000000
	50%	217.0	212.000000	221.000000
	75%	217.0	215.000000	225.000000
	max	217.0	222.000000	231.000000
body_mass_g	count	1.0	58.000000	61.000000
	mean	4875.0	4679.741379	5484.836066
	std	NaN	281.578294	313.158596
	min	4875.0	3950.000000	4750.000000
	25%	4875.0	4462.500000	5300.000000
	50%	4875.0	4700.000000	5500.000000
	75%	4875.0	4875.000000	5700.000000
	max	4875.0	5200.000000	6300.000000

By observing above data we find that 336 is female

```
In [144]:
```

```
# here we assign that 336 is female
df.at[336,'sex'] = 'FEMALE'
```

In [145]:

df.loc[336]

Out[145]:

specie	es	Gentoo		
island	f	Biscoe		
culmer	n leng	44.5		
culmer	n dept	15.7		
flippe	er lei	ngth mm	217.0	
body r	nass (g	4875.0	
sex	_		FEMALE	
Name:	336,	dtype:	object	

Visualization

Tn [146]:

```
sns.pairplot(data=df,hue='species')
```

Out[146]:

<seaborn.axisgrid.PairGrid at 0x1630e218520>

In [147]:

sns.scatterplot(x='culmen_length_mm',y='culmen_depth_mm',data=df,hue='species')

Out[147]:

<AxesSubplot: xlabel='culmen_length_mm', ylabel='culmen_depth_mm'>

In [148]:

sns.catplot(x='species', y='culmen_length_mm', data=df, kind='box', col='sex', palette='Dark2')

Out[148]:

<seaborn.axisgrid.FacetGrid at 0x16330ff9f10>

Feature Engineering

Here we have different different island so we need to create dummy for that

```
In [149]:
```

```
pd.get_dummies(df).head()
```

Out[149]:

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	species_Adelie	species_Chinstrap	species_Gento
0	39.1	18.7	181.0	3750.0	1	0	
1	39.5	17.4	186.0	3800.0	1	0	
2	40.3	18.0	195.0	3250.0	1	0	
4	36.7	19.3	193.0	3450.0	1	0	
5	39.3	20.6	190.0	3650.0	1	0	
4							Þ

```
In [150]:
```

```
pd.get dummies(df.drop('species',axis=1),drop first=True).head()
```

Out[150]:

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	island_Dream	island_Torgersen	sex_MALE
0	39.1	18.7	181.0	3750.0	0	1	1
1	39.5	17.4	186.0	3800.0	0	1	0
2	40.3	18.0	195.0	3250.0	0	1	0
4	36.7	19.3	193.0	3450.0	0	1	0
5	39.3	20.6	190.0	3650.0	0	1	1

Train | Test Split

```
In [151]:
X = pd.get dummies(df.drop('species',axis=1),drop first=True)
y = df['species']
In [152]:
y.head()
Out[152]:
   Adelie
1
    Adelie
    Adelie
   Adelie
    Adelie
Name: species, dtype: object
In [153]:
from sklearn.model_selection import train_test_split
In [154]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test size=0.3, random state=101)
```

Decision Tree Classifier

Default Hyperparameters

```
In [155]:
from sklearn.tree import DecisionTreeClassifier

In [156]:
model = DecisionTreeClassifier()

In [157]:
model.fit(X_train, y_train)
Out[157]:

v DecisionTreeClassifier
DecisionTreeClassifier()

In [158]:
base pred = model.predict(X test)
```

Evaluation

In [159]:

from sklearn.metrics import confusion matrix, classification report

In [160]:

from mlxtend.plotting import plot_confusion_matrix

In [164]:

```
gd=confusion_matrix(y_test,base_pred)
gd
```

Out[164]:

In [167]:

```
fig, ax = plot_confusion_matrix(conf_mat=gd,colorbar=True)
plt.show()
```


In [168]:

 $\verb|print(classification_report(y_test,base_pred))|\\$

	precision	recall	f1-score	support
Adelie Chinstrap Gentoo	0.91 0.90 1.00	0.95 0.83 1.00	0.93 0.86 1.00	41 23 37
accuracy macro avg	0.94	0.93	0.94	101 101
weighted avg	0.94	0.94	0.94	101

In [172]:

These are columns as per there importance in decision making

Out[174]:

Feature Importance

culmen_length_mm	0.335149
culmen_depth_mm	0.052214
flipper_length_mm	0.531201
body_mass_g	0.013251
island_Dream	0.068185
island_Torgersen	0.000000
sex_MALE	0.000000

In [176]:

```
sns.boxplot(data=df,x='species',y='body mass g');
```


Visualize the Tree

This function is fairly new, you may want to review the online docs:

Online Documentation: https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html

```
In [179]:
```

```
from sklearn.tree import plot_tree
```

In [181]:

```
plt.figure(figsize=(12,8),dpi=100)
plot tree(model);
```


In [186]:

```
# Adding filled colors and feature_names in boxes
plt.figure(figsize=(12,8),dpi=150)
plot_tree(model,filled=True,feature_names=X.columns);
```


Reporting Model Results

To begin experimenting with hyperparameters, let's create a function that reports back classification results and plots out the tree.

In [190]:

```
def report_model(model):
    model_preds = model.predict(X_test)
    print(classification_report(y_test, model_preds))
    print('\n')
    plt.figure(figsize=(12,8),dpi=150)
    plot_tree(model,filled=True,feature_names=X.columns);
```

In [192]:

```
report_model(model)
                            recall
              precision
                                     f1-score
                                                support
                    0.91
                              0.95
                                         0.93
      Adelie
                                                      41
                              0.83
   Chinstrap
                   0.90
                                         0.86
                                                      23
                   1.00
                              1.00
                                         1.00
                                                     37
      Gentoo
                                         0.94
                                                    101
    accuracy
                   0.94
                              0.93
                                         0.93
   macro avg
                                                    101
weighted avg
                   0.94
                              0.94
                                         0.94
                                                    101
```


Understanding Hyperparameters

Max Depth

In [191]:

#help(DecisionTreeClassifier)

In [193]:

pruned_tree = DecisionTreeClassifier(max_depth=2)
pruned_tree.fit(X_train,y_train)

Out[193]:

▼ DecisionTreeClassifier

DecisionTreeClassifier(max depth=2)

In [194]:

report model(pruned tree)

	precision	recall	f1-score	support
Adelie Chinstrap	0.97 0.81	0.88	0.92	41
Gentoo	1.00	1.00	1.00	37
accuracy			0.94	101
macro avg	0.93	0.94	0.93	101
weighted avg	0.95	0.94	0.94	101

In [196]:

```
pruned_tree = DecisionTreeClassifier(max_leaf_nodes=3)
pruned_tree.fit(X_train,y_train)
```

Out[196]:

```
DecisionTreeClassifier
DecisionTreeClassifier(max leaf nodes=3)
```

In [197]:

report_model(pruned_tree)						
	precision	recall	f1-score	support		
Adelie	0.97	0.88	0.92	41		
Chinstrap	0.83	0.87	0.85	23		
Gentoo	0.93	1.00	0.96	37		
accuracy			0.92	101		
macro avg	0.91	0.92	0.91	101		
weighted avg	0.92	0.92	0.92	101		

Criterion

In [199]:

```
entropy_tree = DecisionTreeClassifier(criterion='entropy')
entropy_tree.fit(X_train,y_train)
```

Out[199]:

▼ DecisionTreeClassifier DecisionTreeClassifier(criterion='entropy')

In [200]:

report_model(entropy_tree)

	precision	recall	f1-score	support
Adelie Chinstrap Gentoo	0.91 0.90 1.00	0.95 0.83 1.00	0.93 0.86 1.00	41 23 37
accuracy macro avg weighted avg	0.94 0.94	0.93 0.94	0.94 0.93 0.94	101 101 101

In []: