

Music Generation

Research style project:
An exploration of Melspectrogram.

cMelGAN - conditional generative model based on MelSpectrograms, a faster model for limited hardware computing resources

ECE324 UNIVERSITY OF TORONTO APRIL 2022

<u>Digital Representation of Music</u>

• Sound is a wave

• Sheet music of **notes**

- Present music in time and frequency domain
- Closest to human perception of music

WAV form

<u>MIDI</u>

<u>MelSpectrogram</u>

Mel Spectrogram pictures of sounds

- 2-D representation of audios by taking fourier transform of the waveform at regular interval.
- Human cochlea contains hairs associated with one particular frequency to extract the frequency information given an audio wave.
- Would this representation generate better music?

Fourier analysis happening right now...

- Can Mel Spectrograms outperform traditional MIDI-based formats?
- Add genre conditioning because its rarely been done in generative models based on MelSpectrograms
- Potentially **closer** to human perception
- Downside is less structured format so harder for network to learn good representations
- Maybe similar to how convolutional networks match human perception of images and so do better on image-based tasks

PAST WORK

PROBLEM STATEMENT

PASTWORK

DATACOLLECTION

MidiNET:

Convolutional GAN Music Generator

HTTPS://ARXIV.ORG/PDF/1703.10847V2.PDF

- h = # of MIDI Notes
- w = # of time steps
- Noise vector z gets fed into the Generator, G.
- Each entry of G(z)
 gets simultaneously
 conditioned by 2D
 conditions (Blue
 Block)
- Output of G(z) is
 h x w matrix.

PASTWORK

DATACOLLECTION

Data Collection

- 3 Genre Total 18 hours of music
- youtube-dl to scrape music based on genre
- Subset of MAESTRO dataset
- torchaudio to resample and automatically generate melspectrograms from audio, use network to predict next frame of spectrogram
- Allows for conditional generation based on genre

<u>Data Pipeline</u>

Scalable **custom MusicDataset** pipeline using Pytorch Dataset class Divide music into training samples on the scale of **seconds**Convert it from **wave form** to **MelSpectrogram**

OPTIMIZATION

DIVERGETRAINING

ANALYZE RESUTLS

Autoregressive element-by-element music generation

- RNN based autoregressive conditional generative model
- Time-delayed stack and Frequency-delayed stack
- Feature **extraction** networks
- Gaussian mixture modelling
- Multiscale modelling

$$p(x) = \prod_{i \ j} p(x_{ij} | x_{< ij}; \theta_{ij})$$

$$p(y|x) = \sum_{k} \pi_{k}(x) N(y|\mu_{k}(x), I\sigma_{k}^{2}(x)).$$

• Training objective: minimizing mixture density networks loss

$$L(w) = \frac{-1}{N} \sum_{n=1}^{N} \log \left(\sum_{k} \pi_{k}(x_{n}, w) N(y_{n} | \mu_{k}(x_{n}, w), I\sigma_{k}^{2}(x_{n}, w)) \right),$$

MelNET

RESEARCH

SET UP MODEL

OPTIMIZATION

DIVERGE TRAINING ANALYZE RESUTLS

Implemented in Pytorch

```
39 class TimeDelayedStack(nn.Module):
        def __init__(self, dims):
            super().__init__()
41
42
            self.bi_freq_rnn = nn.GRU(dims, dims, batch_first=True, bidirectional=True)
43
            self.time_rnn = nn.GRU(dims, dims, batch_first=True)
44
45
        def forward(self, x_time):
46
47
            # Batch, Timesteps, Mels, Dims
48
            B, T, M, D = x_{time.size}()
49
50
            # Collapse the first two axes
51
            time_input = x_time.transpose(1, 2).contiguous().view(-1, T, D)
52
            freq_input = x_time.view(-1, M, D)
53
54
            # Run through the rnns
55
            x_1, _ = self.time_rnn(time_input)
56
            x_2_and_3, _ = self.bi_freq_rnn(freq_input)
57
58
            # Reshape the first two axes back to original
59
            x_1 = x_1.view(B, M, T, D).transpose(1, 2)
60
            x_2_{and_3} = x_2_{and_3.view(B, T, M, 2 * D)}
61
62
            # And concatenate for output
63
            x_{time} = torch.cat([x_1, x_2_and_3], dim=3)
64
            return x_time
```


(a) Time-delayed stack

(b) Frequency-delayed stack

$$h_{ij}^{t}[l] = W_{l}^{t}F_{l}^{t}(h^{t}[l-1])_{ij} + h_{ij}^{t}[l-1].$$

RESEARCH

SET UP MODEL

OPTIMIZATION

DIVERGE TRAINING ANALYZE RESUTLS

MULTISCALE MODELLING

$$p(x; \psi) = \prod_{g} p(x^g | x^{< g}; \psi^g).$$

GENERATES SPECTROGRAMS FROM

HIGH-LEVEL STRUCTURE TO FINE-GRAINED DETAILS BY

ITERATING THROUGH THE MULTIPLE TIERS THAT A

SPECTROGRAM IS PRE-PARTITIONED INTO

EACH TIER CONTAINING HIGHER RESOLUTION OF INFORMATION THAN THE PREVIOUS ONE

FEATURE EXTRACTION NETWORKS

```
98 class FeatureExtraction(nn.Module):
         def __init__(self, num_mels, n_layers):
             super().__init__()
             # Input layers
             #self.freq_fwd = nn.GRU(time_steps, time_steps, batch_first=True)
             #self.freq_back = nn.GRU(time_steps, time_steps, batch_first=True)
             self.time_fwd = nn.GRU(num_mels, num_mels, batch_first=True)
             self.time_back = nn.GRU(num_mels, num_mels, batch_first=True)
             self.weights = nn.Linear(2,1)
107
             #self.num_params()
         def forward(self, spectrogram):
110
             # Shift the inputs left for time-delay inputs
111
             # spectrogram: (batch_size, time, freq)
112
             #print("spec", spectrogram.shape)
113
             #N,T,F = spectrogram.size()
             #freq_input = spectrogram.transpose(1, 2).contiguous()
115
             #print("the fatuers extracting from", type(spectrogram), len(spectrogram))
116
             time_fwd_feats, _ = self.time_fwd(spectrogram)
117
             time_back_feats, _ = self.time_back(spectrogram.flip(1))
118
             #freq_fwd_feats, _ = self.freq_fwd(freq_input)
             #freq_back_feats, _ = self.freq_back(freq_input.flip(2))
120
121
             #freq_features = freq_features.transpose(1,2).contiguous().view(-1, T, 2*F)
122
             stacked = torch.stack((time_fwd_feats, time_back_feats), dim=-1)#, freq_fwd_fe
             #assert not torch.any(torch.isinf(spectrogram))
             #print(spectrogram.max())
             #assert not torch.any(torch.isinf(time_fwd_feats))
             #assert not torch.any(torch.isinf(stacked))
127
             #assert not torch.any(torch.isinf(self.weights(stacked)))
128
             return self.weights(stacked).squeeze(-1)
129
130
         def num_params(self):
131
             parameters = filter(lambda p: p.requires_grad, self.parameters())
132
             parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
133
             print('Trainable Parametersextrac: %.3fM' % parameters)
134
```


OPTIMIZATION

DIVERGE TRAINING **ANALYZE RESUTLS**

Initial approach was **far too slow**Speed up training by a factor of **10**

- Improved resampling processing and MelSpectrogram conversion
- Further reduced disk accesses from O(N) to O(1)
- Used a different **batching method** to expand usable dataset
- Set multiple worker, it is now multi-threaded using the dataloader API
- Added buffer checkpointing, ~50 times increase in model expressive power
- Changed the data pipeline to be optimal on Google Colab

RESEARCH

SET UP MODEL

OPTIMIZATION

DIVERGE TRAINING

ANALYZE RESUTLS

Model 1 (big)

50.8 M Parameters

~ 5hrs / epoch (3.6 Hz)

30 epochs

DataConfig:

batch_sz=6, num_mels=180,

win_sz=3,

stft_hop_sz=800,

stft win sz=256*8

TrainConfig:

dims=256, n_layers=[12,6,5,4], directions=[2,1]

Model 2 (small)

4.04 M Parameters

~ 1hr / epoch (18 Hz)

30 epochs

DataConfig:

batch_sz=6, num_mels=180,

win_sz=8,

stft_hop_sz=800, stft_win_sz=256*8

TrainConfig:

dims=64, n_layers=[12,6,5,4], directions=[2,1]

RESEARCH

SET UP MODEL

OPTIMIZATION

DIVERGE TRAINING

ANALYZE RESUTLS

Very hard to train, need to build another model.

Comparison results at the end of the presentation.

CMelGAN

Inspired by MelGAN and cGAN
Conditional Generative Adversarial Networks
based on Melspectrograms

OPTIMIZATION

ANALYZE RESUTLS

Discriminator

Combines ideas from MelGAN and CGAN

Generator

- Embedding layer for genre, elementwise multiplication
- Transposed 2D convolutions, with weight normalization
- **Dropout** and batchnorm for regularization
- Residual blocks with dilated convolutions
- Transposed 1D convolutions, with weight normalization
- **Dropout** and 1D batchnorm

Discriminator

• 2D grouped convolution, linear layer

Generator

OPTIMIZATION

ANALYZE RESUTLS

Optimization of model

- Run on **tiny fraction** of dataset (~10%) to get quick look at hyperparameter performance
- Most hyperparameter settings were unstable, with either the discriminator either being easily fooled, or the generator not powerful enough to fool the discriminator
- With fractional trick, were able to test far more hyperparameter settings
- Settled on some decent ones that made neither discriminator nor generator dominate
- Add dropout, batchnorm, and weight normalization (bag of tricks)

Preliminary RESEARCH

SET UP MODEL

ANALYZE RESUTLS

Model	MOS (/5)	Processing Rate (train)
MelNet (small)	0.0 (random noise)	307 kHz
MelNet (large)	0.0 (random noise)	75 kHz
GriffinLim (MelNet settings)	0.5 (basically random noise)	-
ConditionalMelGAN (medium)	0.0 (random noise)	980 kHz
CMelGAN (large, no 1D Convolution)	0.0 (random noise)	705 kHz
GriffinLim (CMelGAN settings)	0.5 (basically random noise)	_

Conclusion and Next Steps

SET UP MODEL

- Melspectrograms are really hard to work with
- Unstructured format makes it too hard for networks to learn a good representation
- Griffin-Lim algorithm not good enough for inversion, need to add a neural vocoder
- MIDI approach seems to be better option, at least on limited hardware
- Network was **unable** to learn a good representation of music
- Probably underestimated the difficulty of the project

