ECE102, Spring 2021

Signals & Systems

University of California, Los Angeles; Department of ECE

Homework #4 Prof. A. Kadambi TAs: P- Chari

Due Friday, 7 May 2021, by 11:59pm to CCLE.

100 points total.

This homework covers questions relate to Fourier series and LTI systems.

1. (28 points) Fourier Series

- (a) (18 points) Find the Fourier series coefficients for each of the following periodic signals:
 - i. $f(t) = \cos(3\pi t) + \frac{1}{2}\sin(4\pi t)$
 - ii. f(t) is a periodic signal with period T = 1 s, where one period of the signal is defined as e^{-2t} for 0 < t < 1 s, as shown below.

iii. f(t) is the periodic signal shown below:

- (b) (10 points) Suppose you have two periodic signals x(t) and y(t), of periods T_1 and T_2 respectively. Let x_k and y_k be the Fourier series coefficients of x(t) and y(t).
 - i. If $T_1 = T_2$, express the Fourier series coefficients of z(t) = x(t) + y(t) in terms of x_k and y_k .
 - ii. If $T_1 = 2T_2$, express the Fourier series coefficients of w(t) = x(t) + y(t) in terms of x_k and y_k .

2. (20 points) Fourier series of transformation of signals

Suppose that f(t) is a periodic signal with period T_0 , with the following Fourier series:

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Determine the period of each of the following signals, then express its Fourier series in terms of c_k :

- (a) g(t) = f(t) + 1
- (b) g(t) = f(-t)
- (c) g(t) = f(at), where a is positive real number

3. (10 points) Eigenfunctions and LTI systems

- (a) (5 points) Show that $f(t) = \cos(\omega_0 t)$ is not an eigenfunction of an LTI system.
- (b) (5 points) Show that f(t) = t is not an eigenfunction of an LTI system.

4. (29 points) LTI systems

Consider the following system:

The system takes as input x(t), it first multiplies the input with e^t , then sends it through an LTI system. The output of the LTI system gets multiplied by e^{-t} to form the output y(t).

(a) Show that we can write y(t) as follows:

$$y(t) = \left[\left(e^t x(t) \right) * h(t) \right] e^{-t} \tag{1}$$

(b) Use the definition of convolution to show that (1) can be equivalently written as:

$$y(t) = \int_{-\infty}^{\infty} h'(\tau)x(t-\tau)d\tau \tag{2}$$

where h'(t) is a function to define in terms of h(t).

- (c) Equation (2) represents a description of the equivalent system that maps x(t) to y(t). Show using (2) that the equivalent system is LTI and determine its impulse response $h_{eq}(t)$ in terms of h(t).
- (d) Suppose that system S_1 is given by its step response s(t) = r(t-1). Find the impulse response h(t) of S_1 . What can you say about the causality and stability of system S_1 ? What can you say about the causality and stability of the overall equivalent system?

5. (13 points) MATLAB

(a) (6 points) **Task 1**

Write an m-file that takes a set of Fourier series coefficients, a fundamental frequency, and a vector of output times, and computes the truncated Fourier series evaluated at these times. The declaration and help for the m-file might be:

```
function fn = myfs(Dn,omega0,t)

% fn = myfs(Dn,omega0,t)

% % Evaluates the truncated Fourier Series at times t

% Dn -- vector of Fourier series coefficients

%

% omega0 -- fundamental frequency

% t -- vector of times for evaluation

%

% fn -- truncated Fourier series evaluated at t

The output of the m-file should be
```

$$f_N(t) = \sum_{n=-N}^{N} D_n e^{j\omega_0 nt}$$

The length of the vector Dn should be 2N + 1. You will need to calculate N from the length of Dn.

- (b) (7 points) Task 2 Verify the output of your routine by checking the Fourier series coefficients for Problem 1-a-ii. Try for N=10, N=50 and N=100. Use the MATLAB command "subplot" to put multiple plots on a page. As usual, include both codes and plots.
- (c) (7 points) **Task 3** Repeat the steps of Task 2 for the case of the signal from Problem 1-a-iii.