2010 年全国硕士研究生招生考试试题

—	、选择题(本题共8小题,每小题4分,共32分.	在每小题给出的四个选项中,只有一项符合题目
	要求,把所选项前的字母填在题后的括号内.)	

$$(1) 极限 \lim_{x \to \infty} \left[\frac{x^2}{(x-a)(x+b)} \right]^x = ($$
(A) 1 (B) a (C) a^{a-b}

(2) 设函数
$$z = z(x,y)$$
 由方程 $F\left(\frac{y}{x}, \frac{z}{x}\right) = 0$ 确定,其中 F 为可微函数,且 $F_2' \neq 0$,则 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} =$
(A) x . (B) z . (C) $-x$. (D) $-z$.

(3)设
$$m,n$$
均是正整数,则反常积分 $\int_0^1 \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性()

(A)仅与 m 的取值有关.

(B)仅与 n 的取值有关.

(C)与m,n的取值都有关.

(D)与m,n的取值都无关.

$$(4) \lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)} = ($$

(A)
$$\int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y^2)} dy$$
.

(B)
$$\int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y)} dy$$
.

(C)
$$\int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y)} dy$$
.

(D)
$$\int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y^2)} dy$$
.

(5)设A为 $m \times n$ 矩阵,B为 $n \times m$ 矩阵,E为m阶单位矩阵,若AB = E,则(

(A)秩 r(A) = m, 秩 r(B) = m.

(B)秩 $r(\mathbf{A}) = m$,秩 $r(\mathbf{B}) = n$.

(C)秩 $r(\mathbf{A}) = n$,秩 $r(\mathbf{B}) = m$.

(D)秩 $r(\mathbf{A}) = n$,秩 $r(\mathbf{B}) = n$.

(6)设A为4阶实对称矩阵,且 $A^2 + A = 0$. 若A的秩为3,则A相似于()

(7) 设随机变量
$$X$$
 的分布函数 $F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{2}, & 0 \le x < 1, & 则 $P\{X = 1\} = ($) $1 - e^{-x}, & x \ge 1, \end{cases}$$

$$(B)\frac{1}{2}$$

$$^{37}(C)\frac{1}{2}-e^{-1}.$$

淘宝店铺: 筑梦教育
$$(D)1-e$$
 .

(8)设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为[-1,3]上均匀分布的概率密度, 若

$$f(x) = \begin{cases} af_1(x), & x \le 0, \\ bf_2(x), & x > 0 \end{cases} (a > 0, b > 0)$$

为概率密度,则a,b应满足(

$$(A)2a + 3b = 4.$$

(B)
$$3a + 2b = 4$$
. (C) $a + b = 1$. (D) $a + b = 2$.

$$(C)a + b = 1.$$

(D)
$$a + b = 2$$
.

二、填空题(本题共6小题,每小题4分,共24分,把答案填在题中横线上.)

$$(10) \int_0^{\pi^2} \sqrt{x} \cos \sqrt{x} dx = \underline{\qquad}.$$

- (11)已知曲线 L 的方程为 $\gamma = 1 |x|(x \in [-1,1])$,起点是(-1,0),终点为(1,0),则曲线积分 $\int_{C} xy \, \mathrm{d}x + x^2 \, \mathrm{d}y = \underline{\qquad}.$
- (12)设 $\Omega = \{(x, y, z) \mid x^2 + y^2 \le z \le 1\}$,则 Ω 的形心的竖坐标 $\bar{z} = 1$.
- (13)设 $\alpha_1 = (1,2,-1,0)^T$, $\alpha_2 = (1,1,0,2)^T$, $\alpha_3 = (2,1,1,a)^T$. 若由 α_1 , α_2 , α_3 生成的向量空间的 维数为 2 则 a =
- (14) 设随机变量 X 的概率分布为 $P\{X=k\} = \frac{C}{k!}, k=0,1,2,\cdots, 则 <math>E(X^2) = \underline{\qquad}$
- 三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.)
- (15)(本题满分10分)

求微分方程 $y'' - 3y' + 2y = 2xe^x$ 的通解.

(16)(本题满分10分)

求函数 $f(x) = \int_{1}^{x^2} (x^2 - t) e^{-t^2} dt$ 的单调区间与极值.

(17)(本题满分10分)

(I) 比较
$$\int_0^1 |\ln t| [\ln(1+t)]^n dt$$
 与 $\int_0^1 t^n |\ln t| dt (n=1,2,\cdots)$ 的大小,说明理由; (II) 记 $u_n = \int_0^1 |\ln t| [\ln(1+t)]^n dt (n=1,2,\cdots)$,求极限 $\lim_{n\to\infty} u_n$.

(18)(本题满分10分)

求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛域及和函数.

(19)(本题满分10分)

设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 处的切平面与 xOy 面垂直,求点 P 的轨迹 C,并计算曲面积分 $I = \iint_{\Sigma} \frac{(x+\sqrt{3})|y-2z|}{\sqrt{4+y^2+z^2-4yz}} \, \mathrm{d}S$,其中 Σ 是椭球面 S 位于曲线 C 上方的部分.

(20)(本题满分11分)

设
$$\mathbf{A} = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}, \mathbf{b} = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$$
. 已知线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 存在 2 个不同的解.

- (I)求λ,a;
- (Ⅱ)求方程组Ax = b的通解.

(21)(本题满分11分)

已知二次型 $f(x_1,x_2,x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 在正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y}$ 下的标准形为 $y_1^2 + y_2^2$,且 \mathbf{Q} 的第三列为 $\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)^T$.

(I) 求矩阵 A;

(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.

(22)(本题满分11分)

设二维随机变量(X,Y)的概率密度为

$$f(x,y) = Ae^{-2x^2 + 2xy - y^2}, -\infty < x < +\infty, -\infty < y < +\infty,$$

求常数 A 及条件概率密度 $f_{Y|X}(y|x)$.

(23)(本题满分11分)

设总体X的概率分布为

X	1	2	3	
P	$1 - \theta$	$\theta - \theta^2$	θ^2	_,

其中参数 $\theta \in (0,1)$ 未知. 以 N_i 表示来自总体 X 的简单随机样本(样本容量为 n)中等于 i 的个数 (i=1,2,3). 试求常数 a_1,a_2,a_3 ,使 $T=\sum_{i=1}^3 a_i N_i$ 为 θ 的无偏估计量,并求 T 的方差.