Data Preprocessing

Data Preprocessing

- Why preprocess the data?
- Descriptive data summarization
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization
- Summary

Why Data Preprocessing?

- Data in the real world is dirty
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., occupation=""
 - noisy: containing errors or outliers
 - e.g., Salary="-10"
 - inconsistent: containing discrepancies in codes or names
 - e.g., Age="42" Birthday="03/07/1997"
 - e.g., Was rating "1,2,3", now rating "A, B, C"
 - e.g., discrepancy between duplicate records

Why Is Data Dirty?

- Incomplete data may come from
 - "Not applicable" data value when collected
 - Different considerations between the time when the data was collected and when it is analyzed.
 - Human/hardware/software problems
- Noisy data (incorrect values) may come from
 - Faulty data collection instruments
 - Human or computer error at data entry
 - Errors in data transmission
- Inconsistent data may come from
 - Different data sources
 - Functional dependency violation (e.g., modify some linked data)
- Duplicate records also need data cleaning

Why Is Data Preprocessing Important?

- No quality data, no quality mining results!
 - Quality decisions must be based on quality data
 - e.g., duplicate or missing data may cause incorrect or even misleading statistics.
 - Data warehouse needs consistent integration of quality data
- Data extraction, cleaning, and transformation comprises the majority of the work of building a data warehouse

Multi-Dimensional Measure of Data Quality

- A well-accepted multidimensional view:
 - Accuracy
 - Completeness
 - Consistency
 - Timeliness
 - Believability
 - Value added
 - Interpretability
 - Natural,
 - Representational
 - Accessibility

Major Tasks in Data Preprocessing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data transformation

Normalization and aggregation

Data reduction

 Obtains reduced representation in volume but produces the same or similar analytical results

Data discretization

 Part of data reduction but with particular importance, especially for numerical data

Forms of Data Preprocessing

Data Preprocessing

- Why preprocess the data?
- Descriptive data summarization
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization
- Summary

Mining Data Descriptive Characteristics

Motivation

- To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency

- Mean (algebraic measure) (sample vs. population): $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $\mu = \frac{\sum x_i}{N}$
 - Weighted arithmetic mean:
 - Trimmed mean: chopping extreme values

$$\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

- Median: A holistic measure
 - Middle value if odd number of values, or average of the middle two values otherwise
- <u>Mode</u>
 - Value that occurs most frequently in the data
 - Unimodal, bimodal, trimodal

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, right and left skewed data(tail's direction)

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - Five number summary: min, Q₁, M, Q₃, max
 - Boxplot: ends of the box are the quartiles, median is marked, whiskers, and plot outlier individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{N} \sum_{i=1}^{n} x_i^2 - \mu^2$$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

- Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)

Properties of Normal Distribution Curve

- The normal (distribution) curve
 - From μ –σ to μ +σ: contains about 68% of the measurements (μ : mean, σ : standard deviation)
 - From μ -2 σ to μ +2 σ : contains about 95% of it
 - From μ -3 σ to μ +3 σ : contains about 99.7% of it

Positively and Negatively Correlated Data

Korelasyonu görsel değerlendirme

Scatter plots showing the similarity from

-1 to 1.

Korelasyon(Correlation)

• Korelasyon, objeler arasındaki lineer ilişki ölçütlerini ifade eder.

 Korelasyonu hesaplamak için, p ve q data objelerini standardize edip dot product alırız.

$$p'_k = (p_k - mean(p))/std(p)$$

$$q'_k = (q_k - mean(q)) / std(q)$$

$$correlation(p,q) = p' \bullet q'$$

Not Correlated Data

Benzerlik(Similarity)

- Benzerlik(Similarity)
 - İki objenin benzerliğinin sayısal değeri
 - Yüksek değer daha çok benzerlik ifade eder
 - Genellikle [0,1] aralık değerlerindedir
 - Farklılık(Dissimilarity) tam tersini ifade eder

Basit Attributeler için Similarity/Dissimilarity

p ve q veri iki objesi için attribute değerlerdir.

Attribute Type	Dissimilarity	Similarity
Nominal	$d = \left\{egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases}$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p-q	$s = -d$, $s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$

Benzerlik Ölçüleri

Öklit uzaklığı(Euclidean distance)

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

 n boyut(attribute) sayısını, pk ve qk sırasıyla, p ve q objelerinin k'ninci değerlerini ifade eder.

Öklit uzaklığı (Euclidean Distance)

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Uzaklık Matrisi

Minkovski uzaklığı

Minkovski uzaklığı, Öklit uzaklığının genelleştirilmiş versiyonudur.

$$dist = \left(\sum_{k=1}^{n} p_k - q_k\right)^{r}^{\frac{1}{r}}$$

r bir parametre olsun, n boyut(attribute) sayısını, pk ve qk sırasıyla, p
 ve q objelerinin k'ninci değerlerini ifade eder.

Minkovski uzaklığı

- r = 1. City block(Manhattan, taxicab, L_1 norm) distance.
 - Hamming distance bunun genel kullanım örneklerindendir, iki binary vektör arası uzaklığı bulur.
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{\infty} norm) distance.
 - Bu vektörlerin değerleri arasındaki maksimum farkı ifade eder
- r ile n karıştırılmamalıdır, bütün bu uzaklıklar tüm boyutlar için tanımlanmıştır.

Minkovski uzaklığı

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Uzaklık Matrisi

Uzaklıkların Ortak özellikleri

Öklit uzaklığı gibi uzaklıkların bazı temel özellikleri vardır:

- 1. $d(p, q) \ge 0$ tüm p ve q için ve d(p, q) = 0 sadece p = q. (Positive definiteness)
- 2. d(p, q) = d(q, p) tüm p ve q için. (Symmetry)
- 3. d(p, r) ≤d(p, q) + d(q, r) tüm p, q, ve r noktaları için. (Triangle Inequality)

d(p, q), p ve q noktaları(veri objeleri) için uzaklık değeridir.

Bu özellikleri sağlayan tüm uzaklık değerlerine metrik(metric) denir.

Binary Vektörler arası benzerlik

- p ve q objelerinin binary attributeler içeren vektörler olarak ifade edilmesi yaygındır.
- Bu değerlerin benzerlikleri hesaplansın

 $M_{01} = p'nin 0$ ve q'nun 1 olduğu değerlerin sayısı olsun

 M_{10} = p'nin 1 ve q'nun 0 olduğu değerlerin sayısı olsun

 $M_{00} = p'nin 0$ ve q'nun 0 olduğu değerlerin sayısı olsun

 $M_{11} = p'nin 1 ve q'nun 1 olduğu değerlerin sayısı olsun$

Simple Matching ve Jaccard Coefficients

```
SMC = number of matches / number of attributes
= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})
```

Jaccard = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC ve Jaccard Örneği

```
p = 1000000000
q = 0000001001
```

```
M_{01} = 2 (p'nin 0 ve q'nun 1 olduğu değerlerin sayısı)
```

$$M_{10} = 1$$
 (p'nin 1 ve q'nun 0 olduğu değerlerin sayısı)

$$M_{00} = 7$$
 (p'nin 0 ve q'nun 0 olduğu değerlerin sayısı)

$$M_{11} = 0$$
 (p'nin 1 ve q'nun 1 olduğu değerlerin sayısı)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Cosine Benzerliği

 d_1 ve d_2 iki doküman vektörü olsun

$$cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||,$$

Vektörler areası dot product demektir. | | d | | d vektörü uzunluğunu ifade eder.

örnek:

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

$$d_{1} \bullet d_{2} = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_{1}|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_{2}|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(d_{1}, d_{2}) = 0.3150$$

Data Preprocessing

- Why preprocess the data?
- Descriptive data summarization
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization
- Summary

Data Cleaning

- Importance
 - Data cleaning is one of the biggest problems in data analysis
- Data cleaning tasks
 - Fill in missing values
 - Identify outliers and smooth out noisy data
 - Correct inconsistent data
 - Resolve redundancy caused by data integration

Missing Data

- Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Missing data may need to be inferred.

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (assuming the tasks in classification—not effective when the percentage of missing values per attribute varies considerably.
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

Noisy Data

Noise: random error or variance in a measured variable

- Incorrect attribute values may be due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
- Other data problems which requires data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

How to Handle Noisy Data?

Binning

- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Simple Discretization Methods: Binning

- Equal-width (distance) partitioning
 - Divides the range into N intervals of equal size: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

Binning Methods for Data Smoothing

Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34 Then, partition into equal-frequency (equi-depth) bins:

- Bin 1: 4, 8, 9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34
- * Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Regression

Cluster Analysis

Data Preprocessing

- Why preprocess the data?
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization
- Summary

Data Integration

- Data integration:
 - Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g.,
 Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales,
 e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Data Transformation

- Smoothing: remove noise from data
- Aggregation: summarization
- Generalization: concept hierarchy climbing
- Normalization: scaled to fall within a small, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
- Attribute/feature construction
 - New attributes constructed from the given ones

Data Transformation: Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to $\frac{73,000-12,000}{98,000-12,000}(1.0-0)+0=0.709$
- Z-score normalization (μ : mean, σ : standard deviation): $v' = \frac{v \mu_A}{\sigma_A}$

- Ex. Let μ = 54,000, σ = 16,000. Then
$$\frac{73,000-54,000}{16,000}$$
 = 1.188

Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where j is the smallest integer such that Max(|v'|) < 1

Data Preprocessing

- Why preprocess the data?
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization
- Summary

Data Reduction Strategies

- Why data reduction?
 - You may need to process terabytes of data
 - Complex data analysis/mining may take a very long time to run on the complete data set
- Data reduction
 - Obtain a reduced representation of the data set that is much smaller in volume but yet produce the same (or almost the same) analytical results

Data reduction strategies

- Data cube aggregation:
- Dimensionality reduction e.g., remove unimportant attributes
- Data Compression
- Numerosity reduction e.g., fit data into models
- Discretization and concept hierarchy generation

Data Preprocessing

- Why preprocess the data?
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization
- Summary

Discretization

Discretization

- Reduce the number of values for a given continuous attribute by dividing the range of the attribute into intervals
- Interval labels can then be used to replace actual data values
- Reduce data size by discretization
- Also, some classification algorithms only accept categorical attributes.

Discretization and Concept Hierarchy

- Concept hierarchy formation
 - Recursively reduce the data by collecting and replacing low level concepts (such as numeric values for age) by higher level concepts (such as young, middle-aged, or senior)