Desafío: Determinación de g mediante Conservación de la Energía Mecánica

Objetivos

- Verificar experimentalmente la conservación de la energía mecánica en un sistema pendular.
- Determinar el valor de la aceleración de la gravedad g a partir de una gráfica de v^2 contra H.
- Desarrollar habilidades en adquisición de datos experimentales y uso de sensores digitales.
- Aplicar técnicas de análisis gráfico y teoría de errores para estimar parámetros físicos.

Materiales

- Una esfera metálica con ojal de diámetro menor a 1 cm
- ullet Dos cuerdas delgadas de igual longitud L
- Un fotointerruptor con interfase conectada al computador (Vernier)
- Una regla graduada en milímetros
- Un transportador
- Cinta adhesiva y placa opaca rectangular delgada

Fundamento teórico

La conservación de la energía mecánica se expresa como:

$$E_k + U = \text{constante}$$

En un péndulo sin fricción, al descender desde una altura H, la energía potencial gravitacional se transforma en energía cinética. Usando el teorema:

$$v^2 = 2qL\cos\alpha - 2qH$$

Se obtiene una relación lineal entre v^2 y H, cuya pendiente es -2g. A partir de esta pendiente puede determinarse el valor de g.

Figura 1: Montaje para conservación de la energía

Procedimiento experimental

- 1. Monte el sistema como se indica en la figura 1, asegurando que las cuerdas tengan la misma longitud L y estén bien fijas.
- 2. Pegue una placa opaca delgada en la parte inferior de la esfera para bloquear el fotointerruptor cuando pase por el punto más bajo.
- 3. Determine el ángulo α con el transportador y calcule $L\cos\alpha$.
- 4. Suelte la masa desde distintas alturas H, midiendo para cada una el tiempo Δt que tarda en bloquear el sensor.
- 5. Calcule $v = \frac{L \cos \alpha}{\Delta t}$
- 6. Llena la siguiente tabla:

H (cm)	$\Delta t \text{ (ms)}$	$v^2 ({\rm m}^2/{\rm s}^2)$

- 7. Grafique v^2 contra H. Ajuste una recta y determine la pendiente p=-2g.
- 8. Determine $g = -\frac{p}{2}$ e incluya la incertidumbre calculada mediante regresión lineal.

Preguntas para orientar el análisis

- ¿Por qué se espera que la gráfica v^2 vs H sea lineal?
- ¿Qué factores experimentales pueden alterar la forma de la gráfica?
- ¿Cómo se justifica la fórmula $v = \frac{L\cos\alpha}{\Delta t}$?
- ¿Qué diferencias esperarías si las cuerdas no tienen la misma longitud?
- ¿Qué representa la ordenada al origen de la gráfica?

Conexiones

Ciencia: Comprensión del principio de conservación de la energía. Tecnología: Uso de sensores digitales para adquisición de datos. Ingeniería: Montaje experimental preciso y controlado. Matemáticas: Linealización de funciones, regresión lineal y propagación de incertidumbre.

Rúbrica de evaluación del informe (2.5 puntos)

Criterio	Puntaje Máximo
Descripción clara del montaje experimental y procedimiento	0.5
seguido	
Presentación organizada de la tabla de datos y unidades	0.5
correctas	
Gráfica de v^2 vs H correctamente etiquetada y con ajuste	0.5
lineal	
Análisis y justificación del modelo teórico y obtención de g	0.5
Cálculo y discusión de la incertidumbre en la medición de g	0.5
Total	2.5

Rúbrica de evaluación de la sustentación oral (2.5 puntos)

Criterio	Puntaje Máximo
Dominio del tema y claridad en la exposición del modelo	0.5
físico	
Explicación detallada del procedimiento y justificación de	0.5
fórmulas	
Análisis crítico de resultados y coherencia con el modelo	0.5
teórico	
Participación equilibrada de todos los integrantes del grupo	0.5
Capacidad de responder a preguntas del jurado con funda-	0.5
mentos sólidos	
Total	2.5

Nota final: Suma de informe (2.5) + sustentación (2.5) = 5.0 puntos