H21T3A5

a) Geben Sie eine auf $D := \mathbb{C} \setminus \{-1\}$ holomorphe Funktion an, die der folgenden Eigenschaft genügt: $f\left(\frac{1}{n}\right) = \frac{1-\frac{1}{n}}{1+\frac{1}{n}}$ für alle $n \in \mathbb{N}$. Begründen sie, dass es nur eine einzige Funktion gibt, die dieser Eigenschaft genügt.

- b) Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge paarweise verschiedener komplexer Zahlen mit $a=\lim_{n\to\infty}a_n$. Zeigen Sie: Falls $f:\mathbb{C}\setminus\{a\}\to\mathbb{C}$ holomorph und $f(a_n)=0$ für alle $n\in\mathbb{N}$ ist, dann ist entweder f konstant 0 oder f hat bei a eine wesentliche Singularität.
- c) Geben Sie nun zwei auf $\mathbb{C}\setminus\{-1,0\}$ definierte holomorphe Funktionen an, die die in (a) genannte Eigenschaft erfüllen.

Zu a)

 $f: D \to \mathbb{C}$; $z \to \frac{1-z}{1+z}$ erfüllt die geforderte Eigenschaft. Sei nun $g: D \to \mathbb{C}$ eine weitere holomorphe Funktion, die diese Eigenschaft erfüllt. Zu zeigen ist f = g.

 $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$ ist eine Folge von paarweise verschiedenen Folgegliedern mit $0=\lim_{n\to\infty}\frac{1}{n}$. Deshalb hat die Menge $N\coloneqq\left\{\frac{1}{n}:=n\in\mathbb{N}\right\}$ den Häufungspunkt 0.

Es gilt: D ist ein Gebiet, $0 \in D$, f und g sind holomorph auf D und f(z) = g(z) füür alle $z \in N$ mit Häufungspunkt in D. Somit folgt f = g nach dem Identitätssatz.

Zu b)

Sei $A := \{a_n : n \in \mathbb{N}\}$. Diese hat den Häufungspunkt a (Beweis analog zu oben).

Fall 1: a ist hebbare Singularität.

Dann hat f eine holomorphe Fortsetzung $F : \mathbb{C} \to \mathbb{C}$ und wegen $F(a_n) = f(a_n) = 0$ für alle $z \in A$ mit Häufungspunkt in \mathbb{C} , also gilt F(z) = 0 für alle $z \in \mathbb{C}$ nach dem Identitätssatz, somit insbesondere f(z) = 0 für alle $z \in \mathbb{C} \setminus \{a\}$.

Fall 2: a ist Polstelle der Ordnung $k \in \mathbb{N}$.

Dann hat $g: \mathbb{C}\setminus \{a\} \to \mathbb{C}$; $z \to (z-a)^k f(z)$ eine holomorphe Fortsetzung $G: \mathbb{C} \to \mathbb{C}$. Analog zu Fall 1 zeigt man g(z) = 0 für alle $z \in \mathbb{C}\setminus \{a\}$. Aus $(z-a)^k \neq 0$ folgt f(z) = 0 für alle $z \in \mathbb{C}\setminus \{a\}$.

Fall 3: a ist wesentliche Singularität → Die Aussage ist wahr.

Zu c)

Die Funktion $h: \mathbb{C}\setminus\{0\} \to \mathbb{C}$; $z \to e^{\frac{2\pi i}{z}}$ ist holomorph, hat bei 0 eine wesentliche Singularität und es gilt $h\left(\frac{1}{n}\right) = e^{2\pi i n} = 1$ für alle $n \in \mathbb{N}$.

Damit sind $f_1: \mathbb{C}\setminus\{0;1\} \to \mathbb{C}$; $z \to \frac{1-z}{1+z}$ und $f_2: \mathbb{C}\setminus\{0;1\} \to \mathbb{C}$; $z \to \frac{1-z}{1+z}e^{\frac{2\pi i}{z}}$ zwei verschiedene Funktionen, die beide auf $\mathbb{C}\setminus\{0;1\}$ holomorph sind mit $f_1\left(\frac{1}{n}\right) = \frac{1-\frac{1}{n}}{1+\frac{1}{n}} = f_2\left(\frac{1}{n}\right)$.