

دانشگاه تهران

دانشکده ریاضی، آمار و علوم کامپیوتر

نيم سال دوم تحصيلي سال 1401-1400

پاسخ آزمونک سوم اصول سیستمهای کامپیوتری

مسئله۱. مدار متناظر با یک دیکودر 4 × 2 را تنها با استفاده از گیت های nor پیادهسازی کنید.(همچنین برای آن پایه فعال ساز enable لحاظ کنید)

Е	Α	В	D_0	D_1	D_2	D_3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

$$D_0 = EA'B' = (E' + A + B)'$$

 $D_1 = EA'B = (E' + A + B')'$
 $D_2 = EAB' = (E' + A' + B)'$
 $D_3 = EAB = (E' + A' + B')'$

A < B < C مسئله ۲. با استفاده از دو دیکودر 8×8 و گیت های کمکی، یک مقایسه کننده برای 3 عدد 2 بیتی A و B و B بسازید به طوری که اگر رابطه A < B < C برقرار بود در خروجی 1 و در غیر این صورت A = C قرار دهد.

			دیکودر ۱	ديكودر ٢				
	γ							
A_1	$\boldsymbol{B_1}$	C_1	امکان برقراری رابطه $A < B < C$ هست؟	A_0, B_0, C_0	مينترم			
0	0	0	0	-	-			
0	0	1	1	0,1,X	2,3			
0	1	0	0	-	-			
0	1	1	1	X,0,1	1,5			
1	0	0	0	-	-			
1	0	1	0	-	-			
1	1	0	0	-	-			
1	1	1	0	-	-			

مسئله ۳. تابع F(X,Y,Z,T) که توسط مدار زیر پیاده سازی شده است را به صورت جمع مینترمهای آن بنویسید.

کافیست بر روی Z حالت بندی کنیم. در صورتی که Z=0 باشد(Z') از مالتی پلکسر بالا باید هرچه مخالف صفر است برداشته شود. یعنی Z=0 و Z=0 اما دقت کنید که هنگامی که Z=0 است بس در مینترم Z' است پس در مینترم Z' داریم. در مورد Z=0 اما در هر صورت و بدون در نظر گرفتن Z' خروجی Z' داریم. در مینترم Z' داریم.

برای مالتی پلکسر پایین نیز به طور مشابه. در کل داریم:

 $XY'Z'T + X'YZ' + X'Y'Z + XYZ \rightarrow F(X,Y,Z,T) = \Sigma(2,3,4,5,9,14,15)$

مسئله۴. تابع زیر را با استفاده از یک مالتی پلکسر 1 × 4 و دیگر گیت های خارجی طراحی کنید.(از A و B به عنوان پایه های انتخابگر استفاده کنید)

 $F(A, B, C, D) = \Sigma(1,3,4,11,12,13,14,15)$

Α	В	С	D	F	F(C,D)
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	0	D
0	0	1	1	1	
0	1	0	0	1	
0	1	0	1	0	C'D'
0	1	1	0	0	C'D'
0	1	1	1	0	
1	0	0	0	0	
1	0	0	1	0	CD
1	0	1	0	0	CD
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	

مسئله ۵. یک ROM طراحی کنید که 4 بیت ورودی بگیرد و حاصل x+y-z-t را در 3 بیت خروجی دهد. خروجی اول sum یا حاصل عبارت است. خروجی دوم carry است که در صورتی که علامت منفی باشد 1 می شود.

х	У	z	t	sum	carry	sign
0	0	0	0	0	0	0
0	0	0	1	1	0	1
0	0	1	0	1	0	1
0	0	1	1	0	1	1
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	1	1	1	0	1
1	0	0	0	1	0	0
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	0	0

