Persistence simplification of discrete Morse functions on surfaces

Ulrich Bauer¹ Carsten Lange² Max Wardetzky¹

¹Georg-August-Universität Göttingen

²Freie Universität Berlin

January 15, 2009

Goal

Topological denoising of functions on surfaces

- minimize number of critical points
- stay close to original function

Goal

Topological denoising of functions on surfaces

- minimize number of critical points
- stay close to original function

Using:

- Discrete Morse theory [Forman 1998]
 - provides notion of critical point in the discrete setting
- ► Homological persistence [Edelsbrunner et al. 2002]
 - quantifies homological features

Consider finite CW complex K.

- Discrete vector field:
 - ▶ a set of *pairs* of cells (σ, τ) , where σ is a regular facet of τ (arrow from σ to τ)
 - each cell in at most one pair

Consider finite CW complex K.

- Discrete vector field:
 - ▶ a set of *pairs* of cells (σ, τ) , where σ is a regular facet of τ (arrow from σ to τ)
 - each cell in at most one pair
- Discrete gradient vector field:
 - no closed paths

- ► Critical cell:
 - not contained in any pair

- ► Critical cell:
 - not contained in any pair
- ► Cancellation of critical cells:
 - Prerequisite: path between two critical cells

- Critical cell:
 - not contained in any pair
- ► Cancellation of critical cells:
 - Prerequisite: path between two critical cells
 - Reversing vector field along path cancels critical cells

- Critical cell:
 - not contained in any pair
- ► Cancellation of critical cells:
 - Prerequisite: path between two critical cells
 - Reversing vector field along path cancels critical cells

- Critical cell:
 - not contained in any pair
- ► Cancellation of critical cells:
 - Prerequisite: path between two critical cells
 - Reversing vector field along path cancels critical cells
 - ► If path is unique: preserves gradient vector field property

- Critical cell:
 - not contained in any pair
- Cancellation of critical cells:
 - Prerequisite: path between two critical cells
 - Reversing vector field along path cancels critical cells
 - If path is unique: preserves gradient vector field property

Discrete Morse function [Forman, 1998]

A function $f: \{\text{cells of } \mathcal{K}\} \to \mathbb{R} \text{ and a gradient vector field } V_f \text{ with:}$

- ▶ For all σ facet of τ :
 - ▶ If there is an arrow $\sigma \to \tau$: $f(\sigma) \ge f(\tau)$
 - Otherwise: $f(\sigma) < f(\tau)$

f is consistent with V_f .

Discrete Morse function (Pseudo-Morse function)

A function $f: \{\text{cells of } \mathcal{K}\} \to \mathbb{R} \text{ and a gradient vector field } V_f \text{ with:}$

- ▶ For all σ facet of τ :
 - ▶ If there is an arrow $\sigma \to \tau$: $f(\sigma) \ge f(\tau)$
 - Otherwise: $f(\sigma) < f(\tau)$ $\left(f(\sigma) \le f(\tau) \right)$

f is consistent with V_f .

Attracting and repelling sets

A gradient vector field V enforces inequalities on cells

- Attracting set of a (critical) cell σ : all cells ρ with $g(\rho) \ge g(\sigma)$ for any g consistent with V
- ► Repelling set: analogously for $g(\rho) \le g(\sigma)$

Back to our problem

Aim: Cancel critical points from pseudo-Morse function (g, V)

To do: Cancelation requires two steps:

- Reverse gradient vector field (which pairs?)
- Make function consistent to new vector field (how?)

Investigate change of homology for growing spaces

Given:

- ► CW complex K
- ightharpoonup An injective (Pseudo-)Morse function (f, V)
- ightharpoonup Critical cells $\{\rho_1, \dots, \rho_N\}$ of V such that $f(\rho_i) < f(\rho_{i+1})$

Investigate change of homology for growing spaces

Given:

- ightharpoonup CW complex \mathcal{K}
- ightharpoonup An injective (Pseudo-)Morse function (f, V)
- ► Critical cells $\{\rho_1, ..., \rho_N\}$ of V such that $f(\rho_i) < f(\rho_{i+1})$

Morse theory: homology depends on critical cells

Investigate change of homology for growing spaces

Given:

- ► CW complex K
- ► An injective (Pseudo-)Morse function (*f*, *V*)
- ► Critical cells $\{\rho_1, ..., \rho_N\}$ of V such that $f(\rho_i) < f(\rho_{i+1})$

Morse theory: homology depends on critical cells

Level Subcomplex $\mathcal{K}(\rho)$: all cells ϕ with $f(\phi) \leq f(\rho)$ and their faces

Investigate change of homology for growing spaces

Given:

- ightharpoonup CW complex \mathcal{K}
- ► An injective (Pseudo-)Morse function (*f*, *V*)
- ► Critical cells $\{\rho_1, ..., \rho_N\}$ of V such that $f(\rho_i) < f(\rho_{i+1})$

Morse theory: homology depends on critical cells

- Level Subcomplex $\mathcal{K}(\rho)$: all cells ϕ with $f(\phi) \leq f(\rho)$ and their faces
- ▶ Investigate change of homology of $\mathcal{K}(\rho_i)$ as *i* increases

Example: level subcomplexes


```
\mathcal{K}(\rho_1)
H_0 \cong \mathbb{K}
H_1 \cong 0
H_2 \cong 0
\rho_1 \ positive \ cell
```


 $\mathcal{K}(\rho_1)$

 $H_0 \cong \mathbb{K}$

 $H_1 \cong 0$

 $H_2 \cong 0$

 ρ_1 positive cell

• (ρ_2, ρ_3) is a persistence pair: ρ_3 kills homology created at ρ_2

- (ρ_2, ρ_3) is a persistence pair: ρ_3 kills homology created at ρ_2
- $f(\rho_3) f(\rho_2)$ is the *persistence* of (ρ_2, ρ_3)

Canceling persistence pairs

Canceling persistence pairs

Natural questions

- ► Can we cancel all persistence pairs?
 - ► Are the assumptions for canceling satisfied?
- Can we cancel all persistence pairs with small persistence?
- ▶ If yes, how close can we stay to the original function?

Main result

Let (g, V) be a discrete pseudo-Morse function on a combinatorial surface and $\delta > 0$.

Then there exists a pseudo-Morse function (g_{δ}, V_{δ}) with:

- $||g g_{\delta}||_{\infty} < \delta$
- All persistence pairs of (g, V) with persistence $< 2\delta$ are canceled

This function achieves the minimal number of critical points.

Comparison with other methods

Example: Simplification of terrain

Example: Medical images

Example: Medical images

...thanks for your attention!