ST449 Artificial Intelligence and Deep Learning

Lecture 8

Temporal difference and eligibility traces

Milan Vojnovic

https://github.com/lse-st449/lectures

Topics of this lecture

- Temporal-difference (TD) learning
- TD prediction
- Sarsa: on-policy TD control
- Q-learning: off-policy TD control

Time-difference (TD) learning

- TD learning: a learning method that combines ideas from Monte Carlo (MC) and Dynamic Programming (DP) methods
- Similarities with MC methods: learning directly from experience without a model of the environment
 - Model of the environment: transition probabilities and conditional expected one-step rewards
- Differences with MC methods: incremental updates of value function estimates
 - MC methods: episode-by-episode incremental updates
 - TD methods: step-by-step incremental updates

MC prediction

• A basic every-visit MC method for non-stationary environments uses the following update rule for estimation of the value function V^{π} :

$$V(s_t) \leftarrow V(s_t) + \eta [R_t - V(s_t)]$$

where R_t is the observed return from time t, and η is a constant step size

- This method is referred to as a constant- η MC method
- We may regard R_t as a target
- The update can be performed only after the return R_t is observed (i.e. after the episode is completed)

TD prediction

- Unlike MC methods, TD methods wait only until next time step
- The simplest TD method (so called TD(0)) is defined by the update:

$$V(s_t) \leftarrow V(s_t) + \eta[r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$

- This update rule has $r_{t+1} + \gamma V(s_{t+1})$ as the target
- Considered as a bootstrap method: update in part based on an existing estimate

MC vs TD update

• Note that
$$V^{\pi}(s) = \mathbf{E}_{\pi}[R_t \mid s_t = s]$$
 (M)
$$= \mathbf{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s]$$
$$= \mathbf{E}_{\pi}[r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} | s_t = s]$$
$$= \mathbf{E}_{\pi}[r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s]$$
 (T)

- MC methods use as the target the random variable in (M)
 - Estimate of unknown expected future returns value
- TD methods use as the target the random variable in (T)
 - Estimate for two reasons: expected value in (T) and estimate of the future returns from the next step
- TD methods can be seen as combining the sample of MC and bootstrapping of DP

TD(0) method for estimating a value function

- Initialization: V arbitrary, π policy to be evaluated
- **Repeat** for each episode:

Initialize S

Repeat for each step of the episode:

 $\alpha \leftarrow$ action given by π for s

Take action α , observe reward r and next state s'

$$V(s) \leftarrow V(s) + \eta[r + \gamma V(s') - V(s)]$$
$$s \leftarrow s'$$

until s is a terminal state

Backup diagram

- TD methods are referred to as sample backups
 - They involve looking ahead to a sample successor state (or state-action pair)
 using the value of the successor and the reward along the way to compute a
 backed-up value, and then changing the value of the original state
- MC methods are also sample backups
- DP methods are full backups
- The backup diagram of TD(0):

Advantages of TD prediction methods

- Bootstrapping principle: learn a guess from a guess
- Advantage over DP methods: no need to know the environment
- Naturally implementable in a fully incremental fashion
 - Step-by-step as opposed to episode-by-episode increments of MC methods
- TD vs MC with respect to convergence speed:
 - No formal convergence speed theorem
 - In practice, TD methods are usually faster than constant- η MC method

Example: random walk prediction problem

Consider a simple random walk on a path:

Reward for transition to state S of value 1, zero reward for any other transition

• Exercise: show that
$$V(A) = \frac{1}{6}$$
, $V(B) = \frac{2}{6}$, $V(C) = \frac{3}{6}$, $V(D) = \frac{4}{6}$, $V(E) = \frac{5}{6}$

• Exercise: implement MC and TD methods for estimating V(s) for $s \in S$ (seminar)

Sarsa: an on-policy TD control

- Sarsa: a TD prediction methods for the control problem
 - Follows the pattern of generalized policy iteration
 - Uses a TD method for the policy evaluation part
- Key step: estimate action value $Q^{\pi}(s,a)$ for given policy π for all states s and actions a
- An episode interpreted as an alternating sequence of state and state-action pairs:

Sarsa: an on-policy TD control (cont'd)

The incremental estimation of the action value function:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \eta[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

which is run for any nonterminal state st

If s_{t+1} is a terminal state, then $Q(s_{t+1}, a_{t+1}) = 0$

• The update uses every element of the quintuple of variables:

$$(s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1})$$

S A R S A

Sarsa algorithm

- **Initialization**: *Q* arbitrarily
- **Repeat** for each episode:

Initialize S

Choose α from s using policy derived from q (e.g. ϵ -greedy)

Repeat for each step of episode:

Take action a, observe reward r and next state s'

Choose a' from s' using policy derived from Q (e.g. ϵ -greedy)

$$Q(s,a) \leftarrow Q(s,a) + \eta[r + \gamma Q(s',a') - Q(s,a)]$$

$$s \leftarrow s', a \leftarrow a'$$

until s is a terminal state

Q-learning: an off-policy TD control

Basic one-step Q-learning update:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \eta[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)]$$

- Learning optimal action value function Q^*
 - For whichever behavior policy has been followed
 - The behavior policy has an effect on which state-action pairs are visited
- Q: Why is Q-learning an off-policy control method?

Q-learning algorithm

- Initialization: *Q* arbitrary
- **Repeat** for each episode:

Initialize s

Repeat for each step of episode:

Choose a from s using policy derived from Q (e.g. ϵ -greedy) Take action a, observe r and s'

$$Q(s,a) \leftarrow Q(s,a) + \eta \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$
$$s \leftarrow s'$$

until s is a terminal state

Q-learning algorithm (cont'd)

• The backup diagram:

 Q-learning has a guaranteed convergence by the condition that all (state, action) pairs continue to be updated

A: why is Q-learning an off-policy learning method?

- Q-learning is an off-policy learning method because it updates Q values using the Q value of the next state s' and action a' selected by using the greedy policy
 - Not using the behavior policy in the action value estimation
- SARSA is an on-policy learning method because it updates Q values using the Q value of next state s' and action a' selected by using the current policy
- Q-learning is an on-policy in the special case when the current policy is a greedy policy, which is of no practical interest because the current policy should explore

Actor-critic methods

- Actor-critic methods: TD methods that have a separate memory structure to explicitly represent the policy and value function
 - Actor: policy improvement
 - Critic: value prediction
- Learning is always on-policy
 - The critic must learn about and critique whichever policy is currently being followed by the actor

The actor-critic architecture

Actor-critic example

 Critic maintains value function estimate V and after each action selection, it evaluates the TD error:

$$\delta_t = r_{t+1} + \gamma V(s_{t+1}) - V(s_t)$$

- Actor uses the TD error for selection of future actions
 - If $\delta_t > 0$ increase preference for selecting action a_t
 - If $\delta_t < 0$ decrease preference for selectin action a_t
- For example, actor may use the policy $\pi_t(s, a) = \frac{e^{p(s,a)}}{\sum_{a'} e^{p(s,a')}}$

where
$$p(s_t, a_t) \leftarrow p(s_t, a_t) + \beta \delta_t$$

An alternative:
$$p(s_t, a_t) \leftarrow p(s_t, a_t) + \beta (1 - \pi_t(s_t, a_t)) \delta_t$$

Eligibility traces

- Eligibility traces: a bridge between TD and MC methods
- (Theoretical) forward view: eligibility traces produce a family of methods that span a spectrum of methods with MC at one end and one-step TD at the other
- (Mechanistic) backward view: an eligibility trace is a temporary record of the occurrence of an event, such as visiting of a state or taking an action
 - The trace marks the memory parameters associated with the event as eligible or undergoing learning changes
- Eligibility traces can be seen as a mechanism for temporal credit assignment
 - Similar to TD methods: when a TD error occurs, only the eligible states or actions are assigned credit or blame for the error

n-step TD prediction

- Goal: estimate state value function V^{π} from sample episodes generated by following policy π
- Backup methods:
 - Full backup: perform a backup for each state based on entire sequence of observed rewards from that state until the end of episode (ex. MC method)
 - 1-step backup: perform a backup based on **just one next reward**, using the value of the state one step later as a proxy for the remaining rewards (ex. TD(0) method)
 - n-step backup: perform a backup based on next n rewards and using the value of the state after n steps as a proxy for the remaining rewards (n-step TD methods)

n-step TD prediction cont'd

- Consider the backup applied to state s_t as a result of a state-reward sequence $s_t, r_{t+1}, s_{t+1}, r_{t+1}, \dots, r_T, s_T$ where T is the last step of the episode
- Backup targets:

```
• Full: R_t = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{T-t-1} r_T

• 1-step: R_t^{(1)} = r_{t+1} + \gamma V_t(s_{t+1})

• 2-step: R_t^{(2)} = r_{t+1} + \gamma r_{t+2} + \gamma^2 V_t(s_{t+2})

:

• n-step: R_t^{(n)} = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \gamma^n V_t(s_{t+n}) (n-step return)
```

• Truncation: if $n \ge T - t$, then $R_t^{(n)} = R_t^{(T-t)} \equiv R_t$

n-step backup

The n-step backup is defined by

$$V(s_t) \leftarrow V(s_t) + \Delta V_t(s_t)$$

where

$$\Delta V_t(s_t) = \eta \left(R_t^{(n)} - V_t(s_t) \right)$$

 η is a positive step-size parameter, and

$$R_t^{(n)} = \begin{cases} r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \gamma^n V_t(s_{t+n}) & \text{if } n < T - t \\ R_t & \text{otherwise} \end{cases}$$

Online vs offline updates

 Online updates: updates are done per each time step during the episode as soon as the increment is computed

$$V_{t+1}(s) = V_t(s) + \Delta V_t(s)$$
 for $s \in S$

 Offline updates: value function increments are accumulated per step during an episode but are used for updating only at the end of the episode

$$V(s) \leftarrow V(s) + \sum_{t=0}^{T-1} \Delta V_t(s)$$
 for $s \in S$

The forward view and complex backups

- Backups can be performed not just towards any n-step return, but towards any average of n-step returns
- E.g. average of 2-step and 4-step returns:

$$R_t^{avg} = \frac{1}{2}R_t^{(2)} + \frac{1}{2}R_t^{(4)}$$

Complex backups: a backup that averages simpler component backups

Backup diagram of a complex backup

 Mixing half of a 2-step backup and half of a 4-step backup

$TD(\lambda)$ method

- TD(λ) method: uses an average of n-step backups, each weighted with λ^n where $\lambda \in [0,1]$ is a parameter
- The λ -return:

$$R_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)}$$

- Special cases:
 - Case $\lambda = 0$: $R_t^{\lambda} = R_t^{(1)}$ (1-step TD method)
 - Case $\lambda = 1$: $R_t^{\lambda} = R_t$ (constant- η MC method)

Backup diagram for $TD(\lambda)$

λ -return algorithm

• For each time step *t*:

$$\Delta V_t(s) = \begin{cases} \eta \left[R_t^{\lambda} - V_t(s_t) \right] & \text{if } s = s_t \\ 0 & \text{otherwise} \end{cases}$$

The backward view of $TD(\lambda)$

- Backward view: causal incremental method for approximating the forward view
- Eligibility trace: for state $s \in S$, eligibility trace $e_t(s) \in \mathbb{R}^+$ has jumps of size 1 at each state s visit and exponential time discounting:

$$e_t(s) = \gamma \lambda e_{t-1}(s) + \mathbf{1}_{\{s_t = s\}}$$

 Each eligibility trace indicates the degree to which the corresponding state is eligible for undergoing learning changes

Eligibility trace illustration

On-line $TD(\lambda)$ algorithm

- Initialization: V(s) arbitrary and e(s) = 0 for all $s \in S$
- **Repeat** for each episode:

```
Initialize S
Repeat for each step of the episode:
          \alpha \leftarrow action given by policy \pi for s
          Take action a, observe reward r and next state s'
          \delta \leftarrow r + \gamma V(s') - V(s)
          e(s) \leftarrow e(s) + 1
          For each s'':
                    V(s'') \leftarrow V(s'') + \eta e(s'')\delta
                   e(s'') \leftarrow \gamma \lambda e(s'')
          s \leftarrow s'
```

until s is terminal

Equivalence of forward and backward views

- Forward view update: $\Delta V_t^{\lambda}(s_t) = \eta \left(R_t^{\lambda} V_t(s_t) \right)$
- Backward view update: $\Delta V_t^{TD}(s) = \eta e_t(s) \delta_t$
- The equivalence property: for offline updating it holds

$$\sum_{t=0}^{T-1} \Delta V_t^{TD}(s) = \sum_{t=0}^{T-1} \Delta V_t^{\lambda}(s_t) \mathbf{1}_{\{s_t = s\}} \text{ for all } s \in S$$

• For online updating, the equality holds approximately for small step size η (small changes of the value function within an episode)

Proof of the equivalence property

• Basic fact:

$$e_t(s) = \sum_{k=0}^t (\gamma \lambda)^{t-k} \mathbf{1}_{\{s_k = s\}}$$

Proof of the equivalence property (cont'd)

• Basic facts: (a)
$$\frac{1}{\eta} \Delta V_t^{\lambda}(s_t) = R_t^{\lambda} - V_t(s_t)$$

(b) $R_t^{(n)} = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \gamma^n V_t(s_{t+n})$

 $=\sum_{k=t}^{\infty}(\gamma\lambda)^{k-t}\delta_{k}=\sum_{k=t}^{T-1}(\gamma\lambda)^{k-t}\delta_{k}$

•
$$R_t^{\lambda} - V_t(s_t) = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)} - V_t(s_t)$$

= $(1 - \lambda) \sum_{n=0}^{\infty} \lambda^n [\sum_{k=0}^n \gamma^k r_{t+k+1} + \gamma^{n+1} V_t(s_{t+n+1})] - V_t(s_t)$
= $\sum_{n=0}^{\infty} (\gamma \lambda)^n r_{t+n+1} + \sum_{n=0}^{\infty} [(\gamma \lambda)^n \gamma V_t(s_{t+n+1}) - (\gamma \lambda)^{n+1} V_t(s_{t+n+1})] - V_t(s_t)$
= $\sum_{n=0}^{\infty} (\gamma \lambda)^n r_{t+n+1} + \sum_{n=0}^{\infty} (\gamma \lambda)^n [\gamma V_t(s_{t+n+1}) - V_t(s_{t+n})]$
= $\sum_{n=0}^{\infty} (\gamma \lambda)^n [r_{t+n+1} + \gamma V_t(s_{t+n+1}) - V_t(s_{t+n})]$

Proof of the equivalence property (cont'd)

From the last slide, it follows

$$\sum_{t=0}^{T-1} \Delta V_t^{\lambda}(s_t) \mathbf{1}_{\{s_t=s\}} = \sum_{t=0}^{T-1} \eta \left(\sum_{k=t}^{T-1} (\gamma \lambda)^{k-t} \delta_k \right) \mathbf{1}_{\{s_t=s\}}$$
$$= \sum_{t=0}^{T-1} \eta \mathbf{1}_{\{s_t=s\}} \sum_{k=t}^{T-1} (\gamma \lambda)^{k-t} \delta_k$$

• The proof follows because we have shown that $\sum_{t=0}^{T-1} \Delta V_t^{TD}(s)$ is also equal to the right-hand side in the above equation

$Sarsa(\lambda)$

- Eligibility traces are used not just for prediction, but also for control
- A popular approach is to learn the action values $Q_t(s, a)$
- Basic idea: apply the $TD(\lambda)$ prediction method to state-action pairs

$$Q_{t+1}(s, a) = Q_t(s, a) + \eta e_t(s, a)\delta_t$$
 for all s, a

where
$$\delta_t = r_{t+1} + \gamma Q_t(s_{t+1}, a_{t+1}) - Q_t(s_t, a_t)$$

and
$$e_t(s, a) = \gamma \lambda e_{t-1}(s, a) + \mathbf{1}_{\{s=s_t\} \cap \{a_t=a\}}$$

Sarsa(λ) algorithm

- Initialization: Q(s, a) arbitrary and e(s, a) = 0 for all s, a
- Repeat for each episode:

```
Initialize s, a
Repeat for each step of episode:
          Take action a, observe r, s'
         Choose a' from s' using policy derived from Q (ex \epsilon-greedy)
          \delta \leftarrow r + \gamma Q(s', a') - Q(s, a)
         e(s,a) \leftarrow e(s,a) + 1
          For each s'', a'':
                   Q(s'',a'') \leftarrow Q(s'',a'') + \eta e(s'',a'')\delta
                   e(s'', a'') \leftarrow \gamma \lambda e(s'', a'')
         s \leftarrow s' and a \leftarrow a'
```

until s is terminal

Backup diagram for Sarsa(λ)

References

• R. S. Sutton and A. G. Barto, Reinforcement Learning, Chapters 6 and 7, 1998

Seminar exercises

- TD(0) for random walk problem
- Sarsa: The Windy GridWorld
- Q-learning: The Cliff Walking problem

Extras

MC vs TD(0) exercise: you are the predictor

• Observed (state, reward) outcomes for eight episodes:

```
    (A, 0), (B, 0)
    (B, 1)
    (B, 1)
    (B, 1)
    (B, 0)
```

- Q1: What are estimates of V(A) and V(B) according to the MC method?
- Q2: What are estimates of V(A) and V(B) according to the TD(0) method?
- Discuss your answers

The error reduction property

• For any value function *V*:

$$\max_{s} |\mathbf{E}_{\pi} \left[R_{t}^{(n)} | s_{t} = s \right] - V^{\pi}(s)]| \le \gamma^{n} \max_{s} |V(s) - V^{\pi}(s)|$$

 By using the error reduction property, it can be shown that online and offline TD prediction methods using n-step backups converge to the correct predictions under certain technical conditions

Example: random walk revisited

- Suppose in the first episode the sequence of states is C, D, E
- Assume $V_0(s) = 1/2$ for all $s \in S$
- 1-step method: changes the value estimate only for the last state, V(E), which is incremented towards 1
- 2-step method: changes the value estimates only for the last two states, V(D), V(E), both incremented towards 1
- Three (or more)-n step methods: change the value estimates for all states, V(C), V(D), V(E), incrementing them all towards 1
- Q: which method is better?

$Q(\lambda)$ learning method

- Q-learning: an off-policy method
 - Learning about the greedy policy while following another policy (typically a policy involving exploratory actions)
 - This requires a care when introducing eligibility traces
- Example:
 - Consider backing up the state-action pair s_t , a_t at time t
 - Suppose in the next two time steps the agent selects greedy actions, but in the on the third it selects an exploratory nongreedy action
 - For learning the value of the greedy policy we can only use the two-step returns
- In general, subsequent experience can be used as long as the greedy policy is being followed

Two $Q(\lambda)$ learning approaches

- Watkings's $Q(\lambda)$: only looks ahead as far as the next exploratory action
 - Other principles are much alike to $TD(\lambda)$ and $Sarsa(\lambda)$
 - If a_{t+n} is the first exploratory action, then the longest backup is toward:

$$r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \gamma^n \max_{a} Q_t(s_{t+n}, a)$$

- Peng's $Q(\lambda)$: avoids cutting off traces every time an exploratory action is taken
 - Cutting off traces every time an exploratory action is taken loses advantage of using eligibility traces
 - The implementation is more complex

Watkins's $Q(\lambda)$ algorithm

- Initialization: Q(s, a) arbitrary and e(s, a) = 0 for all s, a
- Repeat for each episode:

```
Take action a, observe r, s'
       Choose a' from s' using policy derived from Q (ex \epsilon-greedy)
       a^* \leftarrow \operatorname{argmax}_a Q'(s', b) (if a' is in argmax then take a^* \leftarrow a')
       \delta \leftarrow r + \gamma Q(s', a^*) - Q(s, a)
       e(s,a) \leftarrow e(s,a) + 1
       For each s'', a'':
                  Q(s'',a'') \leftarrow Q(s'',a'') + \eta \delta e(s'',a'')
                  If a' = a^* then e(s'', a'') \leftarrow \gamma \lambda e(s'', a'')
                  else e(s'', a'') \leftarrow 0
       s \leftarrow s' and a \leftarrow a'
until s is terminal
```

Replacing traces

A capping of eligibility trace: a replacing trace for state s defined by

$$e_t(s) = \begin{cases} \gamma \lambda e_{t-1}(s) & \text{if } s \neq s_t \\ 1 & \text{if } s = s_t \end{cases}$$

- Different from the standard definition according to which an eligibility trace can assume a value larger than 1
- It can produce a significant improvement in learning rate