

			c		
L	\mathbf{C}	∕∕\:	ta.	h	ren
\mathbf{I}	a	u	ια	П	

Aufgabennummer: B_237

Technologieeinsatz:

möglich ⊠

erforderlich

a) Fährt man mit dem Fahrrad bei Windstille auf ebener Strecke mit konstanter Geschwindigkeit, so muss man den Rollwiderstand der Reifen und den Luftwiderstand überwinden.

v ... gefahrene Geschwindigkeit in km/h

 $P_L(v)$... Leistung in Watt (W) zum Überwinden des Luftwiderstands

P_R(v) ... Leistung in W zum Überwinden des Rollwiderstands

- Interpretieren Sie die Funktionsgraphen in Abb. 1 in Bezug auf den Funktionstyp.
- Ermitteln Sie grafisch die Gesamtleistung, die bei einer gefahrenen Geschwindigkeit von 30 km/h erforderlich ist, um Roll- und Luftwiderstand zu überwinden.
- Stellen Sie eine Funktion für die Leistung zur Überwindung des Rollwiderstands auf.

- b) Sobald es spürbar bergauf geht, muss der Fahrer in erster Linie die Hangabtriebskraft $\overrightarrow{F_{\rm H}}$ überwinden.
 - Die Grafik (Abb. 2) zeigt die Zerlegung der Gewichtskraft $\overrightarrow{F_G}$ in eine Normalkomponente $\overrightarrow{F_N}$ und die Hangabtriebskraft $\overrightarrow{F_H}$ (Roll- und Luftwiderstand werden nicht berücksichtigt).
 - Berechnen Sie den Steigungswinkel α für eine Steigung von 15 %.
 - Berechnen Sie für diese Steigung die Hangabtriebskraft F_H in Newton (N), wenn Fahrer und Fahrrad zusammen eine Gewichtskraft von 932 N haben.

Radfahren 2

 Meistens ist es nicht windstill.
 Die Vektorgrafik (Abb. 3) zeigt das Zusammenwirken von Windgeschwindigkeit und Fahrtgeschwindigkeit. (Eine Einheit entspricht einer Geschwindigkeit von 10 km/h.)

 $\overrightarrow{v_{\mathsf{F}}}$... Fahrtgeschwindigkeit

 $\overrightarrow{v_{\mathrm{W}}}$... Windgeschwindigkeit

 $\overrightarrow{v_r}$... resultierende Geschwindigkeit

- Lesen Sie die Koordinaten der dargestellten Geschwindigkeiten $\overrightarrow{v_F}$ und $\overrightarrow{v_W}$ ab.
- Berechnen Sie mit diesen Vektoren die resultierende Geschwindigkeit $\overrightarrow{v_r}$ und ihren Betrag v_r in km/h.
- Berechnen Sie den Winkel zwischen Fahrtrichtung und resultierender Geschwindigkeit in Grad (°).

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Möglicher Lösungsweg

Der Funktionsgraph des Rollwiderstands stellt eine (homogene) lineare Funktion in Abhängigkeit a) von der Geschwindigkeit v mit positiver Steigung dar.

Der Funktionsgraph des Luftwiderstands stellt eine Potenzfunktion (könnte auch eine quadratische Funktion oder Exponentialfunktion sein) mit positiver Steigung dar.

Bei einer Geschwindigkeit von 30 km/h:

$$P_{\rm R}(v) \approx 60 \text{ W}$$

$$P_{L}(v) \approx 260 \text{ W}$$

Gesamtwiderstand $P(v) \approx 320 \text{ W}$

Funktion P_R :

homogene lineare Funktion:

$$P_{\mathsf{R}}(v) = k \cdot v$$

dem Graphen 2 Punkte entnehmen,

$$k = \frac{\Delta y}{\Delta x} = \frac{60}{30} = 2$$

$$P_{R}(v) = 2v$$

$$P_{\rm R}(v) = 2v$$

Angemessene Toleranz beim Ablesen der Werte wird vorausgesetzt.

b) Steigungswinkel berechnen:
$$k = \tan \alpha$$

Steigung von 15 % $\rightarrow k = 0,15$

$$\alpha = 8,530...$$

$$\alpha \approx 8,53^{\circ}$$

$$\sin(8,53) = \frac{\overrightarrow{F_H}}{\overrightarrow{F_G}}$$

$$\overrightarrow{F_{H}}$$
 = 932 · sin(8,53...) = 138,253...

Die Hangabtriebskraft $\overrightarrow{F_H}$ beträgt ca. 138 N.

Auch eine Berechnung mit Proportionen (ähnliche Dreiecke) wäre möglich.

c)
$$\overrightarrow{v_F} = \begin{pmatrix} 30 \\ 0 \end{pmatrix}$$
, $\overrightarrow{v_W} = \begin{pmatrix} 0 \\ -20 \end{pmatrix}$ \rightarrow $\overrightarrow{v_r} = \begin{pmatrix} 30 \\ -20 \end{pmatrix}$

$$V_r = \sqrt{30^2 + 20^2} = 36,055...$$

 $v_r \approx 36 \text{ km/h}$

Die resultierende Geschwindigkeit ist ca. 36 km/h.

$$\tan \varphi = \frac{|\overrightarrow{V_W}|}{|\overrightarrow{V_F}|} = \frac{20}{30}$$

$$\varphi = 33,690...$$

$$\varphi \approx 34^{\circ}$$

Die resultierende Geschwindigkeit weicht von der Fahrtrichtung ca. 34° ab.

Radfahren

Klassifikation

Wesentlicher Bereich der Inhaltsdimension:

⊠ Teil B

- a) 3 Funktionale Zusammenhänge
- b) 2 Algebra und Geometrie
- c) 2 Algebra und Geometrie

Nebeninhaltsdimension:

a) –

□ Teil A

- b) —
- c) —

Wesentlicher Bereich der Handlungsdimension:

- a) C Interpretieren und Dokumentieren
- b) B Operieren und Technologieeinsatz
- c) B Operieren und Technologieeinsatz

Nebenhandlungsdimension:

- a) A Modellieren und Transferieren
- b) —
- c) A Modellieren und Transferieren

Schwierigkeitsgrad:

Punkteanzahl:

- a) leicht
- b) mittel
- c) leicht

- a) 3
- b) 2
- c) 4

Thema: Sport

Quellen: -