Gene Expression Analysis

W. Zachary Horton and Matthew Oehler

Brigham Young University

February 16, 2018

Problem Introduction

Cancer Patient Data

Goals

Goals of the Analysis:

 Use the cancer patient data to determine which genes are associated with highly malignant tumors

Foreseeable Problems:

 We have more variables than observations, which may cause problems with common statistical methods used to approach this kind of problem.

LASSO Regression

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

 $\mathbf{y} = \text{response vector} \quad (nx1)$

X = model matrix (nxp)

 β = model coefficients (px1)

 $\epsilon = \text{errors} (nx1)$

Estimated $\hat{\beta}$ minimizes:

$$\min_{\boldsymbol{\beta}} \quad \sum_{i=1}^{n} (\mathbf{y} - \mathbf{x}_{i}^{\prime} \boldsymbol{\beta})^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}|$$

where λ is a penalty parameter.

Model Bootstrap

- Use bootstrap to obtain confidence intervals
- ullet Keep same λ over each iteration

Centered 95% Confidence Interval Formula:

$$(2\hat{\beta} - \hat{\beta}_{\mathsf{boot}}^{0.975}, 2\hat{\beta} - \hat{\beta}_{\mathsf{boot}}^{0.025})$$

where $\hat{\beta}$ is the estimated coefficient and $\hat{\beta}_{\text{boot}}^t$ is the t percentile of the bootstrap estimates.

Model Choice

Advantages of Regression

- Estimated coefficients show the effect on tumor malignancy
- Confidence intervals show significance

Why choose LASSO?

- Too many variables
- Implicit variable selection

Model Assumptions

Linearity is the only assumption.

Hard to assess due to excess of covariates.

Random sample will suffice.

LASSO Model

Shrinkage Parameter

Model Performance

• Shrinkage Parameters:

Lambda Values

	Result
Minimum	0.03
1 Std. Error	0.04

• How well did the model do?

Performance Assessment

	Result
MSE	0.04
R-squared	0.89

Results

- Reduced down to 29 genes
- 3 genes were significant
- Variables were standardized

Table of Significant Genes

	CI Lower	Estimate	CI Upper	
(Intercept)	0.474	0.511	0.543	
X33921_at	-0.063	-0.031	-0.005	
X37639_at	0.085	0.139	0.206	
$X38087_s_at$	-0.180	-0.101	-0.065	

Results

- Reduced down to 29 genes
- 3 genes were significant
- Variables were standardized

Table of Significant Genes

	0		
	CI Lower	Estimate	CI Upper
(Intercept)	0.474	0.511	0.543
X33921_at	-0.063	-0.031	-0.005
X37639_at	0.085	0.139	0.206
X38087_s_at	-0.180	-0.101	-0.065

RESULT: Activating and inhibiting these genes in the right way can significantly influence tumor malignancy

Conclusions

Conclusions

- We found 3 genes that significantly affected malignancy levels
- Shortcomings:
 - Handling collinear variables
- Next steps:
 - Exploring interactions between different genes