BJT DC Analysis

Problem 1:

$$I_{\epsilon} = \frac{0 - (-3.3)}{3.3K} = 1 \text{ mA}$$
 , $I_{\beta} = I_{\epsilon}/(\beta+1) = 19.6 \text{ MA}$

$$I_{e} = \frac{o - (-5.3)}{3.3K} = 1.6 \text{mA}, I_{B} = 31.5 \text{MA}$$

Assumption is wrong. Assume saturation:

$$U_{B} = -6v$$
, $U_{E} = -5.3v$, $U_{c} = -5.5v$

$$I_{c} = 0.957 \text{mA}$$
 , $I_{\varepsilon} = 1.6 \text{mA} \Rightarrow I_{B} = 0.64 \text{mA}$

I < BI = Assumption right.

$$U_{\beta} = -\lambda u \Rightarrow U_{\epsilon} = -1.3v$$

$$I_{\rm e}=1{\rm mA}$$
 , $I_{\rm B}=19.6\,{\rm Me}$

$$T_{E} = \frac{-4.7 - (-10)}{4.7 \text{K}} = 1.12 \text{mA}$$
 $T_{B} = 22 \text{MA}$

$$I_c = 1.1 \,\text{mA} \rightarrow U_c = -3.64 \text{V}$$

Assume active:

$$V_B = -6V \rightarrow V_E = -6.7v$$

roblem 2:

$$I_{B} = 93 \text{ MA} \rightarrow I_{c} = 930 \text{ MA} - V_{c} = 1.86$$

$$I_{c} = 1.023 \text{ mA}$$

Assume active:

$$V_E = 0 \rightarrow V_B = -0.7v$$

 $I_B = -14 \mu A$

The transistor is aff.

$$U_{B}=0.7v \rightarrow I_{B}=22\mu A \rightarrow I_{c}=220\mu A$$

$$U_{C}=9.55v \quad I_{E}=242\mu A$$

$$V_{CE}=9.55v \quad \gamma_{0.2v} \rightarrow Assumption \quad Correct.$$

Assume active:

$$U_{B}=0.7v \rightarrow I_{B}=93\mu A$$

$$I_{c}=930\mu A \rightarrow U_{c}=8.14v$$

$$U_{ce}=8.14v \rightarrow Assumption correct.$$

Problem 3:

In this problem the 5v supply at base will suffer a small drop due

To the low resistor and the voltage

at B, B2 will be 5v-I (lok), with

the base current of transistors being of very small value => UBI=UB2 = 5v-AV

With that DV of very small value > UE, = UE2 = 5-0.7-DV (measuring from Q) This will lead to UE, =UE2 = 4.3 v - DU. This requires UB2 to be of value (4.3v-DV-0.7) When going from E2 to B2 and that isn't what we actually measured at start! This means there must be either Q, or Q2 off.

Assume Q, active, Q, off:

= UCE, = 1.08v > 0.2v - Active assumption correct.

:
$$V_{EB_2} = 3.9 - 4.6 = -0.7v \rightarrow \text{off assumption Correct.}$$

Problem 4:

KUL @ loop 1:

KUL @ loop 1:

$$-10+2k(I_{c_1}+I_{b_2})+0.7+0.1k(I_{E_2}-I_{b})=0$$

Solving (1) and (2)
$$\rightarrow$$
 $I_{E_2} = 10.8 \text{mA}$, $I_{B_1} = 77.9 \text{MA}$

$$I_{C_2} = 10.6 \text{mA}$$

$$U_{C_3} = -0.6 \text{V} \rightarrow Q_2 \text{ is not active}$$

Assume Q, active, Q2 saturation:

KUL @ loop 3:

$$1 \text{K} \, \text{T}_{c_2} + 0.1 \text{K} \, \text{T}_{c_2} + 0.1 \text{K} \, \text{T}_{B_2} - 0.1 \text{K} \, \text{T}_{B_1} = 10$$

solving
$$\oplus$$
, \oplus , \oplus , $=$ 62.14 MA, $=$ 3.104 mA, $=$ 3.17 mA $=$ $=$ 1.04 mA, $=$ $=$ 1.04 mA, $=$ $=$ 1.04 mA, $=$ $=$ 1.04 mA

$$U_{c_2} = 1v$$
 , $U_{B_2} = 1.71v$, $U_{E_2} = 10$ $\rightarrow I_{c_2} < \beta I_{B_2}$ Assumption might

KUL @ loop 1:
-4+5K
$$I_{8}$$
 + 0.7 + 5K $(I_{1}+I_{8})=2$ -1
KUL @ loop 2
-10+5K I_{1} + look $(I_{1}-I_{2})$ + 5K $(I_{1}+I_{8})=2$ -2
Solwing $(I_{1}-I_{2})$ + 5K $(I_{1}+I_{8})=2$ -2
 $I_{1}=1.04$ MA, $I_{8}=10.2$ MA, $I_{1}=1.02$ MA
 $I_{1}=1.04$ No. $I_{1}=1.02$ MA

UCF = 1.55v > 0.2v Assumption Correct.