MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, a tanári gyakorlatnak megfelelően jelölve a hibákat és a hiányokat.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a **javító által adott pontszám** a mellette levő téglalapba kerül.
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.
- 5. Az ábrán kívül a **ceruzával írt részeket** a javító tanár nem értékelheti.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók**, hacsak az útmutató másképp nem rendelkezik. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- 5. Ha a megoldási útmutatóban **zárójelben szerepel** egy megjegyzés vagy mértékegység, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 6. Egy feladatra adott **többféle megoldási próbálkozás** közül csak egy, a vizsgázó által megjelölt változat értékelhető.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont**) nem adható**.
- 8. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 9. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1. a) első megoldás		
(A négyzetgyök függvény értelmezési tartománya és értékkészlete miatt:) $x \in [-2; 0]$.	1 pont	Ha a vizsgázó nem adja meg az ismeretlen lehet- séges értékeit, de a gyö- kök helyességét behelyet- tesítéssel vizsgálja, akkor ez a pont jár.
Négyzetre emelés után: $x + 2 = x^2$.	1 pont	
Az $x^2 - x - 2 = 0$ egyenlet gyökei: 2 és –1.	1 pont	
Közülük csak a –1 eleme a fenti intervallumnak (és az átalakítások ezen az intervallumon ekvivalensek), ezért ez az egyetlen megoldás.	1 pont	
Összesen:	4 pont	

1. a) második megoldás		
Az $x \mapsto \sqrt{x+2}$ $(x \ge -2)$, és az $x \mapsto -x$ függvények ábrázolása közös koordinátarendszerben.	1-1 pont	Ha a vizsgázó ábrázolás nélkül a függvények szigorú monotonitására hivatkozik, akkor ez a 2 pont jár.
A metszéspontjuk első koordinátája $x = -1$.	1 pont	
Ellenőrzés behelyettesítéssel.	1 pont	
Összesen:	4 pont	

1. b)		
Közös alapra hozva a két oldalt: $4^{(x-1)(x+4)} = 4^{\frac{x-1}{x+4}}.$	1 pont	
(Az exponenciális függvény szigorú monotonitása miatt) $(x-1) \cdot (x+4) = \frac{x-1}{x+4}.$	1 pont	
Ebből $x_1 = 1$ vagy	2 pont	
$(x+4)^2 = 1.$	1 pont	A négyzetre emelés után az $x^2 + 8x + 15 = 0$ egyenletet kapjuk.
Ebből $x_2 = -3$ vagy $x_3 = -5$.	1 pont	
Ellenőrzés.	1 pont	
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó az $x^3 + 7x^2 + 7x - 15 = 0$ egyenlethez jut, ebből megkapja a gyököket és azokat ellenőrzi, akkor maximális pontszámot kaphat.

2. első megoldás		
A szövegnek megfelelő, az adatokat helyesen feltün-		
tető ábra.		
A A B B $D = E$	2 pont	Ez a 2 pont akkor is jár, ha a vizsgázó a különbö- ző rajzokon vagy rajz nélkül, de az itt feltünte- tett összefüggéseket he- lyesen használja.
Az <i>ACB</i> és <i>DFE</i> szögek egyenlők (mivel mindkettő a napsugarak és a függőleges által bezárt szög).	1 pont	Ez a pont akkor is jár, ha a vizsgázó a szögek egyenlőségét az ábrán jelöli.
A DEF derékszögű háromszögben:		
$tg\alpha = \frac{a}{2a} = \frac{1}{2}.$	2 pont	
$\alpha \approx 26,57^{\circ}$	1 pont	
$BAC \text{ sz\"{o}g } (90^{\circ} - 15^{\circ} =) 75^{\circ}.$	1 pont	
Így $\beta \approx 78,43^\circ$.	1 pont	
(Szinusztétel az <i>ABC</i> háromszögben:)		
$\frac{\sin 78,43^{\circ}}{\sin 26,57^{\circ}} = \frac{x}{3} .$	2 pont	
$x \approx 6,57$	1 pont	
	•	Ha a vizsgázó nem kere-
A fa tehát körülbelül 6,6 méter magas.	1 pont	kít vagy rosszul kerekít,
		akkor ez a pont nem jár.
Összesen:	12 pont	

írásbeli vizsga 1311 4 / 17 2013. október 15.

2. második megoldás		
Bontsuk fel az <i>ABC</i> háromszöget egy vízszintes sza- kasszal két derékszögű háromszögre (<i>ABT</i> és <i>CTB</i> háromszögek).	2 pont	Ez a 2 pont akkor is jár, ha a vizsgázó a különbö- ző rajzokon vagy rajz nélkül, de az itt feltünte- tett összefüggéseket he- lyesen használja.
Az ABT szög szintén 15°.	1 pont	
(Az <i>ABT</i> derékszögű háromszögben:) $\sin 15^\circ = \frac{AT}{3}$.	1 pont	
$AT \approx 0.78 \text{ (m)}$	1 pont	
A <i>BT</i> távolság szögfüggvények vagy a Pitagorasztétel segítségével számítható ki.	1 pont	Ez a pont a megfelelő egyenlet felírásáért jár.
$BT \approx 2,90 \text{ (m)}$	1 pont	
A <i>CTB</i> háromszög hasonló az <i>FDE</i> háromszöghöz, (mivel oldalaik páronként párhuzamosak, így megfelelő szögeik megegyeznek),	2 pont	
ezért $\frac{BT}{CT} = \frac{1}{2}$.	1 pont	
$CT \approx 5.80 \text{ (m)}$	1 pont	
A fa teljes magassága tehát $(AT + CT \approx)$ 6,6 méter.	1 pont	Ha a vizsgázó nem kere- kít vagy rosszul kerekít, akkor ez a pont nem jár.
Összesen:	12 pont	

írásbeli vizsga 1311 5 / 17 2013. október 15.

3. a)		
Ha az 50 adat átlaga 0,32, akkor összegük $(50 \cdot 0,32 =) 16$.	2 pont	
(Mivel az adatsokaság minden adata nemnegatív,) legfeljebb 8 darab 2-es lehet az 50 adat között. (8 darab 2-es és 42 darab 0 esetén valóban 0,32 az átlag.)	2 pont	
Összesen:	4 pont	

3. b) első megoldás		
Indirekt módon tegyük fel, hogy a medián lehet 0,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
azaz a nemcsökkenő sorozatba rendezett sokaságban a 25. és a 26. szám (és így az első 24 szám) is 0.	1 pont	
Ekkor összesen legfeljebb 24 szám lehet 1 vagy 2.	1 pont	
Az 50 szám összege tehát legfeljebb 48 lehet,	1 pont	
az elérhető legnagyobb átlag pedig 0,96.	1 pont	
Mivel ez kisebb, mint 1,04, ellentmondásra jutottunk,	1 pont	
azaz nem lehet a medián 0.	1 pont	
Összesen:	7 pont	

3. b) második megoldás		
Indirekt módon tegyük fel, hogy a medián lehet 0,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
azaz a nemcsökkenő sorozatba rendezett sokaságban a 25. és a 26. szám (és így az első 24 szám) is 0.	1 pont	
Ekkor összesen legfeljebb 24 szám lehet 1 vagy 2, vagyis ha x az 1-esek, y pedig a 2-esek száma, akkor $x+y \le 24$,	1 pont	
és $\frac{x+2y}{50} = 1,04$, ahonnan $x = 52 - 2y$.	1 pont	
Behelyettesítve az egyenlőtlenségbe: $52-2y+y \le 24$, ahonnan $y \ge 28$.	1 pont	
Mivel ez nagyobb, mint 24, ellentmondásra jutottunk,	1 pont	
azaz nem lehet a medián 0.	1 pont	
Összesen:	7 pont	

3. c)		
Például 31 darab 1 és 19 darab 0 esetén 0,62 az átlag, valamint 1 a(z egyetlen) módusz,	2 pont	Bármilyen jó példáért vagy más helyes indoklá- sért jár ez a 2 pont.
tehát lehet az 50 adat módusza az 1.	1 pont	
Összesen:	3 pont	

írásbeli vizsga 1311 6 / 17 2013. október 15.

4. a)		
A 17 gramm 18 karátos ékszer aranytartalma		
17.18 –	1 pont	
17. 24		
=12,75 (gramm).	1 pont	
x gramm 14 karátos ékszer aranytartalma:		
$x \cdot \frac{14}{24} = 12,75$ (gramm).	1 pont	
24 24 (gramm).		
(Ebbol $x \approx 21,86$), igy a ket gyuru együttes tömege	1 pont	
(a megfelelő kerekítéssel) legfeljebb 21,9 gramm.	1 point	
Összesen:	4 pont	

4. b)		
A két gyűrű térfogatának összege: $V = \frac{m}{\rho} = \frac{16}{15} \approx$	1 pont	
$\approx 1,0667 \text{ cm}^3 = 1066,7 \text{ mm}^3.$	1 pont	Ez a pont a jó mértékegy- ség-átváltásért jár.
Egy gyűrű térfogata két henger térfogatának különbsége.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az egyik gyűrű belső sugara 8,5 mm, külső sugara 10 mm, és ha x a keresett szélesség, akkor $V_1 = 10^2 \pi \cdot x - 8,5^2 \pi \cdot x \approx$	1 pont	
$\approx 87.2x \text{ (mm}^3).$	1 pont	
A másik gyűrű belső sugara 9,9 mm, külső sugara 11,5 mm, így $V_2 = 11.5^2 \pi \cdot x - 9.9^2 \pi \cdot x \approx$	1 pont	
$\approx 107.6x \text{ (mm}^3\text{)}.$	1 pont	
$V = V_1 + V_2$, azaz 1066,7 = 87,2x + 107,6x.	1 pont	
Ebből $x \approx 5,48$ mm.	1 pont	
A gyűrűk szélessége (a megfelelő kerekítéssel) 5,5 mm.	1 pont	
Összesen:	10 pont	

Megjegyzések:

írásbeli vizsga 1311 7 / 17 2013. október 15.

^{1.} Ha a vizsgázó a gyűrűk megadott átmérőjét tekinti sugárnak, akkor a b) feladatra legfeljebb 8 pontot kaphat.

^{2.} Ha a vizsgázó valamelyik válaszában nem kerekít vagy rosszul kerekít, akkor ezért a feladatban összesen 1 pontot veszítsen.

II.

5. a)		
Az összes eset száma $\binom{10}{5}$ (= 252),	1 pont	Ez a 2 pont akkor is jár, ha a megoldásból kiderül,
a kedvező esetek száma $\binom{7}{4}$ (= 35),	1 pont	hogy a vizsgázó gondo- latmenete helyes volt.
így a kérdéses valószínűség: $p = \frac{\binom{7}{4}}{\binom{10}{5}} \approx 0,139.$	1 pont	A 13,9% is elfogadható válaszként.
Összesen:	3 pont	

Megjegyzés: Ha a vizsgázó rossz (pl. visszatevéses) modellt használ, akkor erre a részre 0 pont jár.

5. b) első megoldás		
Bármelyik öt számot egyféleképpen lehet növekvő sorrendben kihúzni.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A megfelelő húzások (a kedvező esetek) száma tehát $\binom{10}{5}$ (= 252).	1 pont	
(A húzási sorrendet figyelembe véve) az összes eset száma $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 (= 30\ 240)$.	1 pont	
A keresett valószínűség: $p = \frac{\binom{10}{5}}{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6} \approx 0,008.$	1 pont	A 0,8% is elfogadható vá- laszként.
Összesen:	4 pont	

5. b) második megoldás		
Bármelyik öt szám húzása esetén bármelyik húzási sorrend egyenlően valószínű.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Adott öt szám esetén ezek száma 5! (= 120).	1 pont	
Ezek közül egy húzási sorrend növekvő.	1 pont	
A keresett valószínűség: $p = \frac{1}{5!} \approx 0,008$.	1 pont	A 0,8% is elfogadható válaszként.
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó valamelyik válaszában nem kerekít vagy rosszul kerekít, akkor az a) és b) részben összesen 1 pontot veszítsen.

5. c)		
A telitalálat valószínűsége: $p_5 = \frac{1}{\binom{10}{5}} = \frac{1}{252} \approx 0,004.$	1 pont	
Négy találat esetén a kedvező esetek száma: $\binom{5}{4} \cdot \binom{5}{1} = 25,$	2 pont	
így a négy találat valószínűsége: $p_4 = \frac{25}{\binom{10}{5}} = \frac{25}{252} \approx 0,099.$	1 pont	
Összesen:	4 pont	

5. d) első megoldás		
A szelvények eladásából származó bevétel: 240 · 200 = 48 000 (Ft).	1 pont	
Egy szelvényre vonatkozóan a kiadás várható értéke: $p_5 \cdot 5000 + p_4 \cdot 1000 = 0,004 \cdot 5000 + 0,099 \cdot 1000 = 119$ (Ft).	2 pont	
Az eladott összes szelvényre a kiadás várható értéke: 240·119=28 560 (Ft).	1 pont	
Így az alapítvány hasznának várható értéke: 48 000 – 28 560 = 19 440 Ft.	1 pont	
Összesen:	5 pont	

5. d) második megoldás		
A szelvények eladásából származó bevétel: 240 · 200 = 48 000 (Ft).	1 pont	
Az öttalálatos szelvények számának várható értéke: $p_5 \cdot 240 = 0,004 \cdot 240 = 0,96$.	1 pont	
A négytalálatosok számának várható értéke: $p_4 \cdot 240 = 0,099 \cdot 240 = 23,76$.	1 pont	
Az eladott összes szelvényre a kiadás várható értéke: $0.96 \cdot 5000 + 23.76 \cdot 1000 = 28560$ (Ft).	1 pont	
Így az alapítvány hasznának várható értéke: 48 000 – 28 560 = 19 440 Ft.	1 pont	
Összesen:	5 pont	

Megjegyzés: Más, helyes gondolatmenettel és jó kerekítésekkel kapott részeredmények és végeredmény is elfogadható.

6. a)		
A tehertaxi működtetésének kilométerenkénti teljes költsége az üzemeltetésből származó $400 + 0.8x$ (Ft) költségből és a vezető $\frac{2200}{x}$ (Ft) munkadíjából tevődik össze x $\frac{\mathrm{km}}{\mathrm{h}}$ átlagsebesség esetén.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A teljes költséget 1 kilométerre forintban az $f: \mathbf{R}^+ \to \mathbf{R}, f(x) = 400 + 0.8x + \frac{2200}{x} \text{ függvény adja}$ meg.	1 pont	Ez a pont jár, ha bármilyen módon (pl. x > 0) helyesen utal a függvény értelmezési tartományára.
Az <i>f</i> -nek csak ott lehet szélsőértéke, ahol az első deriváltja 0.	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$f'(x) = 0.8 - \frac{2200}{x^2}$	1 pont*	
$f'(x) = 0$ pontosan akkor teljesül, ha $0.8x^2 = 2200$.	1 pont*	
Ebből $x = \sqrt{2750} \approx 52,44$.	1 pont	
Mivel $f''(x) = \frac{4400}{x^3} > 0$, tehát a függvény második deriváltja mindenhol, így 52,44-ben is pozitív, ezért f -nek itt valóban minimuma van.	1 pont*	Ez a pont akkor is jár, ha a vizsgázó az első deri- vált előjelváltásával in- dokol.
Tehát (egészre kerekítve) 52 km/h átlagsebesség esetén minimális a kocsi kilométerenkénti működtetési költsége.	1 pont	
Összesen:	8 pont	

Megjegyzés: A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

11108/08/2001 11 Suit Jetoti + Pottiet ii 2 iii iii eet Soitii otiiii.		
A számtani és a mértani közép közötti egyenlőtlenséget használva: $0.8x + \frac{2200}{x} \ge 2 \cdot \sqrt{0.8x \cdot \frac{2200}{x}} = 2\sqrt{1760} .$	2 pont	
Mivel az egyenlőtlenség jobb oldala állandó, a bal oldal akkor minimális, ha éppen ezzel az állandóval egyenlő.	1 pont	
Egyenlőség akkor és csak akkor áll fenn, ha az öszszeg két tagja egyenlő, azaz $0.8x = \frac{2200}{x}$.	1 pont	

6. b)		
Jó ábra. 2- 1- 1- 2- 3- 3- 3- 4 4 5 6 7 ** ** ** ** ** ** ** ** **	1 pont	Ez a pont akkor is jár, ha a vizsgázó nem készít áb- rát, de a kérdéses terüle- tet jól írja fel.
A kérdéses terület: $T = 2 \left(\int_{0}^{4} \sqrt{x} dx + \int_{4}^{6} \frac{x^{2} - 12x + 36}{2} dx \right)$	2 pont	
A zárójelben szereplő első tag primitív függvénye $\frac{2}{3}x^{\frac{3}{2}} \left(= \frac{2}{3}x\sqrt{x} \right),$	1 pont	
a második tagé pedig $\frac{x^3}{6} - 3x^2 + 18x$.	1 pont	
(Alkalmazva a Newton-Leibniz tételt:) $T = 2\left[\left[\frac{2}{3}x\sqrt{x}\right]_{0}^{4} + \left[\frac{x^{3}}{6} - 3x^{2} + 18x\right]_{4}^{6}\right] =$	1 pont	
$= 2\left[\left(\frac{16}{3} - 0\right) + \left(36 - \frac{104}{3}\right)\right] = 2\left(\frac{16}{3} + \frac{4}{3}\right) = \frac{40}{3},$ tehát az embléma modelljének területe $\frac{40}{3}$ területegység.	2 pont	
Összesen:	8 pont	

írásbeli vizsga 1311 11 / 17 2013. október 15.

7. a) első megoldás		
Ha a hatszög oldalának hossza <i>a</i> , a rövidebb átló az <i>a</i> oldalú szabályos háromszög magasságának kétszerese,	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$igy \ a\sqrt{3} = 5\sqrt{2} \ ,$	1 pont*	
ahonnan $a = \frac{5\sqrt{2}}{\sqrt{3}} \left(= \frac{5\sqrt{6}}{3} \right)$.	1 pont*	
A szabályos hatszög területe 6 darab <i>a</i> oldalú szabályos háromszög területének összege,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$igy T = 6 \cdot \frac{a^2 \sqrt{3}}{4} =$	1 pont	
$=25\sqrt{3}$.	1 pont	
Összesen:	6 pont	

Megjegyzés: A *-gal jelölt 3 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

<u> </u>		<u> </u>	 0	
(A hatszög középpontját <i>K</i> -val jelölve) az <i>ACK</i> háromszög egy 120°-os szárszögű egyenlő szárú háromszög.	1 pont			
Ebben a háromszögben felírva a koszinusztételt: $ (5\sqrt{2})^2 = a^2 + a^2 - 2a^2 \cos 120^\circ. $	1 pont			
Ebből $a^2 = \frac{50}{3}$.	1 pont			

7. a) második megoldás		
A szabályos hatszög felbontható hat darab, az (első megoldáshoz tartozó megjegyzés jelölésével) <i>ACK</i> háromszöggel egybevágó háromszögre.	1 pont	
Mivel az $AC = 5\sqrt{2}$ oldalú szabályos háromszög három darab, az ACK háromszöggel egybevágó háromszögre bontható fel,	1 pont	
ezért a hatszög területe kétszerese a háromszög területének.	2 pont	
$\text{Így } T = 2 \cdot \frac{\left(5\sqrt{2}\right)^2 \cdot \sqrt{3}}{4} =$	1 pont	
$=25\sqrt{3}.$	1 pont	
Összesen:	6 pont	

7. b)		
A t_1 területű szabályos hatszög oldala az ABC háromszög AC oldalához (mely az eredeti hatszög rövidebb	1 pont	
átlója) tartozó középvonala,	_	

hossza $a_1 = \frac{5\sqrt{2}}{2}$.	1 pont	
$t_1 = 6 \cdot \frac{a_1^2 \sqrt{3}}{4} = \frac{75\sqrt{3}}{4}$	1 pont	
(A következő szabályos hatszög t_2 területét megkaphatjuk például úgy, hogy a t_1 területű hatszög szomszédos oldalfelező pontjait összekötő szakaszok által a hatszögből levágott háromszögek területének öszszegét levonjuk t_1 -ből.) $t_2 = t_1 - 6 \cdot \frac{\left(\frac{a_1}{2}\right)^2 \cdot \sin 120^\circ}{2} = \frac{3 \cdot 75\sqrt{3}}{16} \left(=\frac{225\sqrt{3}}{16}\right).$	2 pont*	
A $\{t_n\}$ sorozat mértani sorozat,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
amelynek hányadosa $q = \frac{t_2}{t_1} = \frac{3}{4}$.	1 pont*	
A kérdéses határérték annak a mértani sornak az összege, amelynek első tagja $t_1 = \frac{75\sqrt{3}}{4}$, hányadosa pedig $q = \frac{3}{4}$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Így $\lim_{n\to\infty} (t_1 + t_2 + + t_n) = \frac{t_1}{1-q} =$	1 pont	
$=75\sqrt{3}$. Összesen:	1 pont 10 pont	

Megjegyzések:

1. A *-gal jelölt pontok akkor is járnak, ha a vizsgázó átdarabolással vagy az a) rész eredményére hivatkozva igazolja, hogy az egymást követő hatszögek területének aránya mindig $\frac{3}{4}$.

2. Ha a vizsgázó nem mindenhol pontos értékekkel számol, akkor legfeljebb 8 pontot kaphat.

3. Az utolsó 3 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

$t_1 + t_2 + \dots + t_n = t_1 \cdot \frac{q^n - 1}{q - 1} = t_1 \cdot \frac{\left(\frac{3}{4}\right)^n - 1}{\frac{3}{4} - 1}$	1 pont	
Mivel $\lim_{n\to\infty} \left(\frac{3}{4}\right)^n = 0$, ezért		
$\lim_{n \to \infty} (t_1 + t_2 + \dots + t_n) = \lim_{n \to \infty} 4t_1 \left(1 - \left(\frac{3}{4} \right)^n \right) = 4t_1 =$	1 pont	
$=75\sqrt{3}$.	1 pont	

8.		
(Ha a keresett szám $10a + b$, akkor – mivel két szám számtani közepe nem kisebb a számok harmonikus közepénél – a feladat szövege szerint) $\frac{a+b}{2} - \frac{2}{\frac{1}{a} + \frac{1}{b}} = 1$	2 pont	
(ahol a és b nullától különböző számjegyek).		
Ezt átalakítva: $(a-b)^2 = 2(a+b)$.	2 pont	
Mivel a és b számjegyek, ezért $(a-b)^2 = 2(a+b) \le 36$.	1 pont	
Mivel $2(a + b)$ páros, ezért $(a - b)^2$ is, tehát vagy mindkét számjegy páros vagy mindkettő páratlan.	1 pont	
Pozitív páros négyzetszám 36-ig három van: 4, 16 és 36, azaz vagy 2 vagy 4 vagy 6 a két számjegy különbsége.	1 pont	
I) $ a-b = 2$. Ekkor $4 = 2(a+b) \Rightarrow 2 = a+b$.	1 pont	
(Mivel mindkettő 0-nál nagyobb egész, ezért) csak $a = 1$, $b = 1$ lehetne, ekkor viszont a számtani és harmonikus közép egyenlő, tehát ezen az ágon nincs megfelelő szám.	1 pont	
II) Ha $ a-b = 4$, akkor $a+b=8$.	1 pont	
Az egyenletrendszert megoldva kapjuk: $a = 6, b = 2$	1 pont	
vagy $a = 2, b = 6.$	1 pont	
III) $ a-b = 6$. Ekkor $36 = 2(a+b) \Rightarrow 18 = a+b$.	1 pont	
(Mivel mindkettő 10-nél kisebb egész, ezért) csak $a = 9$, $b = 9$ lehetne, ekkor viszont a számtani és harmonikus közép egyenlő, tehát ezen az ágon sincs megfelelő szám.	1 pont	
Mivel csak a II) esetben kaptunk megoldást, ezért a megfelelő számok a 26 és a 62.	1 pont	
Ellenőrzés: a 2 és a 6 számtani közepe 4, harmonikus közepe 3, tehát megfelelnek a feladat feltételeinek.	1 pont	
Összesen:	16 pont	

Megjegyzés: Ha a vizsgázó megvizsgál minden szóba jöhető (a, b) számpárt, és helyesen kiválasztja a feladat megoldásait, akkor maximális pontszámot kaphat.

írásbeli vizsga 1311 14 / 17 2013. október 15.

9. a)		
Akkor kapunk négy megfelelő húrt, ha a végpontjaik között az ötből pontosan négy különböző szerepel. (A körüljárási iránynak megfelelően minden kiválasztott pontnégyeshez pontosan egy konvex négyszög tartozik.)	1 pont	
(Öt pontból négyet ötféleképpen lehet kiválasztani, ezért) a kedvező esetek száma 5.	1 pont	
Az összes eset száma: $\begin{pmatrix} 10 \\ 4 \end{pmatrix}$.	1 pont	
A keresett valószínűség:		
$p = \frac{5}{\binom{10}{4}} = \frac{1}{42} (\approx 0,024).$	1 pont	
Összesen:	4 pont	

9. b)		
Ha mindhárom pontot érintjük, akkor $3 \cdot 2 \cdot 1 = 6$ lehetőség van.	1 pont	
Ha csak két ponton megyünk át, akkor a lehetőségek száma $3 \cdot 2 = 6$.	1 pont	
Ha csak egy ponton megyünk át, akkor 3 lehetőség van, de közvetlenül is átmehetünk <i>A</i> -ból <i>C</i> -be, ez még 1 eset.	1 pont	
Az összes lehetséges útvonalak száma tehát: $6+6+3+1=16$.	1 pont	Ez a pont nem jár, ha a vizsgázó a fentiek közül csak egy esetet vizsgált.
Összesen:	4 pont	<u> </u>

Megjegyzés: Ha a vizsgázó az összes lehetséges útvonalat helyesen felsorolja, akkor a maximális pontszám jár.

írásbeli vizsga 1311 15 / 17 2013. október 15.

9. c) első megoldás		
Az összes lehetséges esetből kivonjuk azokat, amikor csak 2 vagy 1 szín szerepel.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
Mindegyik húrt háromféle színre festhetjük, ezért az összes lehetőség száma: $3^{10} (= 59\ 049)$.	1 pont	
Ha két színt használunk a háromból, akkor az adott két szín segítségével mindegyik húrt kétféleképpen színezhetjük ki, a tíz húrt 2 ¹⁰ -féleképpen.	1 pont	
De ebbe beleszámoltuk azt az esetet is, amikor csak egyetlen színt használunk, ezért a fenti értéket 2-vel csökkenteni kell: $2^{10} - 2$.	1 pont	
A megadott 3 színből kettőt 3-féleképpen választhatunk ki, így a pontosan két színt használó színezések száma $3 \cdot (2^{10} - 2)$ (= 3066).	1 pont	
Pontosan egy színnel 3-féleképpen színezhetjük ki a húrokat.	1 pont	
Tehát a lehetséges színezések száma: $3^{10} - [3 \cdot (2^{10} - 2)] - 3 =$	1 pont	
= 55 980.	1 pont	
Osszesen:	8 pont	

9. c) második megoldás		
(Számoljuk össze az eseteket aszerint, hogy az egyes színekkel hány húrt színezünk ki.) Lehetséges, hogy az egyik színnel 8, a másik két színnel 1-1 húrt színeztünk. Ekkor $\binom{10}{8}$ = 45-féleképpen választhatjuk meg azt, hogy melyik 8 húrt színezzük az első, majd $\binom{2}{1}$ = 2-féleképpen azt, hogy melyik húrt színezzük a második színnel (a harmadik szín felhasználása ezek után már egyértelmű).	1 pont	Ez a 2 pont jár bármelyik 10 = a + b + b típusú eset helyes kiszámolásá- ért.
Háromféleképpen választhatjuk meg azt, hogy a három közül melyik színből legyen 8, így az összes lehetőségek száma ebben az esetben $45 \cdot 2 \cdot 3 = 270$.	1 pont	

Lehetséges, hogy az egyik színnel 7, egy másikkal 2, a harmadikkal 1 húrt színeztünk.		
Ekkor $\binom{10}{7}$ = 120-féleképpen választhatjuk meg azt,		
hogy melyik 7 húrt színezzük az első, majd	1 pont	
$\binom{3}{2} = 3\text{-féleképpen azt, hogy melyik húrt színezzük a}$	- F	Ez a 2 pont jár bármelyik $10 = a + b + c$ típusú
második színnel (a harmadik szín felhasználás ezek után már egyértelmű).		eset helyes kiszámolásá- ért.
Háromféleképpen választhatjuk meg azt, hogy a három közül melyik színből legyen 7, majd kétféleképpen azt, hogy melyik színből legyen 2, így az összes lehetőségek száma ebben az esetben $120 \cdot 3 \cdot 6 = 2160$.	1 pont	
Hasonló gondolatmenetet követve a többi esetben a megfelelő színezések száma: $6+3+1 \Rightarrow \binom{10}{6} \cdot \binom{4}{3} \cdot 6 = 210 \cdot 4 \cdot 6 = 5040$ $6+2+2 \Rightarrow \binom{10}{6} \cdot \binom{4}{2} \cdot 3 = 210 \cdot 6 \cdot 3 = 3780$ $5+4+1 \Rightarrow \binom{10}{5} \cdot \binom{5}{4} \cdot 6 = 252 \cdot 5 \cdot 6 = 7560$ $5+3+2 \Rightarrow \binom{10}{5} \cdot \binom{5}{3} \cdot 6 = 252 \cdot 10 \cdot 6 = 15120$ $4+4+2 \Rightarrow \binom{10}{4} \cdot \binom{6}{4} \cdot 3 = 210 \cdot 15 \cdot 3 = 9450$ $4+3+3 \Rightarrow \binom{10}{4} \cdot \binom{6}{3} \cdot 3 = 210 \cdot 20 \cdot 3 = 12600$	3 pont	Egy hiányzó vagy hibás eset esetén 2 pont, két hi- ányzó vagy hibás eset esetén 1 pont jár, kettőnél több hiányzó vagy hibás eset esetén nem jár pont.
Az összes lehetséges színezések száma a fenti 8 esetben kapott lehetőségek számának összege, tehát 55 980.	1 pont	
Összesen:	8 pont	