PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-331355

(43) Date of publication of application: 30.11.2001

(51)Int.CI.

G06F 12/00 G06F 3/06

(21)Application number: 2000-152672

(71)Applicant: HITACHI LTD

(22)Date of filing:

18.05.2000

(72)Inventor: KITAMURA MANABU

ARAI HIROHARU

(54) COMPUTER SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To transmissively execute data transition among storage devices to host computers in a computer system, in which plural host computers are connected with plural storage devices.

SOLUTION: A back-end server 3 provides a host 1 having a virtual disk. The virtual disk first appears to be same as an old storage device sub-system 2 to the host 1. When data is transited from the old storage device sub-system 2 to a new storage device sub-system 2, the back-end server 3 first instructs a data transition processing to the new storage device sub-system 2, and after that, switches setting of the virtual disk and makes it correspond to the new storage device sub-system 2. Data transition among the disk devices is performed transmissively to the host 1, since this switching is transmissively executed to the host 1.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

4055D414 02/06/27

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2001-331355

(P2001-331355A)

(43)公開日 平成13年11月30日(2001.11.30)

(51) Int.Cl. ⁷	識別記号	F I	テーマコード(参考)
G06F 12/00	5 1 4	G 0 6 F 12/00	514 5B065
	5 4 5		545A 5B082
3/06	301	3/06	301X
	3 0 4		304F

審査請求 未請求 請求項の数2 OL (全 7 頁)

丁目6番地
099番地 株
免研究所内
番地 株式会
テム事業部内
N35 ZA01
1 3

(54) 【発明の名称】 計算機システム

(57)【要約】

【課題】複数のホストコンピュータと複数の記憶装置が 相互結合された計算機システムにおいて、記憶装置間で のデータの移動をホストコンピュータに対して透過的に 実施する。

【解決手段】バックエンドサーバ3はホスト1に対し、仮想ディスクを提供する。仮想ディスクははじめ、旧記憶装置サプシステム2と同じものとしてホスト1に見える。旧記憶装置サプシステム2から新記憶装置サプシステム2にデータを移行する場合、バックエンドサーバ3は最初に新記憶装置サプシステム2にデータ移行処理を指示し、引き続き仮想ディスクの設定を切り替えて新記憶装置サプシステム2に対応させる。この切り替えはホスト1に対して透過的に実施されるため、ホスト1に対して透過的にディスク装置間のデータ移行が可能になる。

【特許請求の範囲】

【請求項1】 複数の計算機と複数の記憶装置と、前記複数の計算機と複数の記憶装置とを相互に結合するスイッチとで構成された計算機システムにおいて、該計算機システムは前記複数の計算機に対し仮想的な記憶装置を提供する手段を有し、前記仮想的な記憶装置は前記複数の記憶装置の少なくとも1つの前記記憶装置に対応する記憶装置であって、前記仮想的な記憶装置を提供する手段は、前記対応を動的に変更することを特徴とする計算機システム。

【請求項2】 請求項1における、仮想的な記憶装置を 提供する手段は、前記対応を動的に変更した際に、前記 複数の計算機に対しては、前記対応が変化したことを見 せないことを特徴とする計算機システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、情報処理システム などにおける記憶装置システムのデータアクセス方法に 係り、特に、記憶装置内のデータ移行方法に関する。

[0002]

【従来の技術】パソコン、ワークステーション、メインフレームなどの異なるアーキテクチャ、オペレーティングシステムを採用しているプラットフォームと複数の記憶装置とを相互に接続し、いわゆる1つのネットワークにまとめる動きが盛んになっている。これを一般に、複数の計算機をイーサネット(登録商標)(Ethernet (登録商標))などのネットワークで接続したLAN (Local Area Network)に対する言葉でSAN (Storage Area Network)と呼ぶ。SANは通常ファイバチャネル(Fibre Channel)という光ケーブルないし銅線の伝送路を用いて計算機と記憶装置を接続する。

【0003】SANにはいくつかの利点があげられてい る。まず第1に複数の計算機から記憶装置が共通にアク セスできる環境を提供することである。第2に記憶装置 同士も相互接続されることにより記憶装置間でのデータ 転送が可能で、これにより、ホスト計算機に負荷をかけ ることなくバックアップや記憶装置間のデータコピーが 実現でき、記憶装置障害時には副系の記憶装置への切り 替えが可能となる。第3に、これまで個々の計算機に個 々の記憶装置が接続されていたため、記憶装置の管理 (装置の状態の監視、設定の変更)は接続されている個々 の計算機からしかできなかったものを、特定の計算機か ら全ての記憶装置の管理を可能にする。また、従来のSC SI(Small Computer System Interface)では最高16台ま での機器しか接続できなかったが、ファイバチャネルに よって100台以上の機器をオンラインで接続でき、容易 な拡張性を得られる。

【0004】近年、SANを実現するための製品が数多く 現れてきているが、実際に上記利点を生かしたものはな い。とくに拡張性においては、機器のオンライン接続は 物理的に可能になったものの、それを活用する基盤技術が不足している。たとえばSANにおいて、ディスク装置の交換のために新規にディスク装置を増設した場合、機器の増設はオンラインにて実施できるが、そのあとでデータの移動をユーザが明示的に行う必要がある。オンラインの機器増設でユーザがメリットを享受するには、単純なハードウェアの増設だけでなく、ハードウェアの増設に伴いデータ移動などがユーザに対して透過的に実施される必要がある。

- 10 【0005】ディスク装置間の、オンラインのデータの 移動に関しては、米国特許5680640号にその例が開示されている。米国特許5680640号はメインフレーム用ディスクを前提としたデータ移行であるが、ディスク装置間を接続する通信線を利用し、ホストとディスク装置間の 15 接続を短時間切断するだけで、あとはユーザに透過的に
- 接続を短時間切断するだけで、あとはユーザに透過的に ディスク装置間のデータ移行を可能にしている。

[0006]

【発明が解決しようとする課題】米国特許5680640号は ユーザに対して限りなく透過的にディスク装置間でのデ 20 一夕移動を可能にしている。ただし、これはメインフレ ーム用ディスクを前提としたデータ移行方法であり、SA Nにおいての適用は出来ない。米国特許5680640号では旧 ディスク装置を新規ディスク装置に切り替える際、ディ スク装置側の設定によって新規ディスクがあたかも旧デ ィスク装置であるかのようにホスト側に見せかけること が出来る。これはディスク装置のデバイス番号などの設 定を操作することで可能である。

【0007】ただし、SAN、たとえばファイバチャネル 環境の場合には、個々のディスクに付与される一意なID は、ネットワークを構成する機器(ディスク装置、ファイバチャネルスイッチ)同士のネゴシエーションによって決定され、ユーザの設定によって変えられるものではない。米国特許5680640号のデータ移行方法を用いる場合、ホストコンピュータに対して、新規ディスク装置を 旧ディスク装置として見せかけることはできず、事実上ユーザに透過的なデータ移行は実現できない。本発明の目的は、ホスト、ユーザに対して透過的で、かつSANの拡張性を生かすことのできるシステムを提供することにある。

40 [0008]

【課題を解決するための手段】本発明における計算機システムは、ホスト計算機、バックエンド計算機、複数の記憶装置サブシステムと、ホスト計算機とバックエンド計算機とを接続するスイッチとで構成される。ホスト計算機はバックエンド計算機を介して各記憶装置サブシステムにアクセスするが、バックエンド計算機は、ホスト計算機に対して1つないし複数の仮想的なディスク装置を提供する。ホスト計算機から仮想的なディスク装置にアクセス要求があると、バックエンド計算機では要求のあった仮想的なディスク装置の種類に応じて、実際に接

続されている記憶装置サブシステムに適宜要求を出す。 【0009】

【発明の実施の形態】図1は、本発明を適用した計算機システムの一実施形態における構成例を示すプロック図である。計算機システムは、ホスト1、旧記憶装置サプシステム2、新記憶装置サプシステム2、バックエンドサーバ3、ファイバチャネルスイッチ4とで構成される。

【0010】ホスト1はオペレーティングシステム1 1、アプリケーション12、インタフェース13から構 成される。オペレーティングシステム11、アプリケー ション12は実際にはホスト1上のCPU、メモリ上で 動作するが、これらハードウェアの構成要素については 本発明の内容と関係が無いため省略している。実際には ホスト1以外に複数のホストコンピュータがつながる環 境が一般的であるが、本発明では簡単のため、ホストコ ンピュータとしてホスト1のみを記載している。旧記憶 装置サプシステム2はディスク21、コントローラ2 2、インタフェース23とから構成される。ディスク2 1は複数の物理ディスクをまとめて1つの論理的なディ スク装置に見せかけた論理ドライブであっても、本発明 の内容に変わりはない。インタフェース23はファイバ チャネルスイッチ4と接続される。新記憶装置サプシス テム2も旧記憶装置サブシステム2と同様、ディスク2 1、コントローラ22、インタフェース23とから構成 される。旧記憶装置サブシステム2と異なる点は、コン トローラ22中にデータ移行手段24が含まれることで ある。

【0011】バックエンドサーバ3は仮想デバイスドライバ31、インタフェース32、33から構成される。 仮想デバイスドライバ31はバックエンドサーバ3上の CPU、メモリ上で動作するソフトウェアで、ユーザに よって外部から設定を変更したりあるいはプログラム自体の入れ替えをすることが可能であるが、CPU、メモリなどのハードウェア構成要素に関しては本発明の内容と関係ないため省略している。

【0012】ファイバチャネルスイッチ4は複数のポート41a、41b、41c、41d、41e(以下総称してポート41と略す)から構成され、ホスト1、旧記憶装置サプシステム2、新記憶装置サプシステム2、バックエンドサーバ3を相互に接続するために使用される。ポート41aからはいずれもポート41b、41c、41d、41eにアクセスすることが可能である。そのため、ホスト1はポート41b、41eから直接旧記憶装置サプシステム2や新記憶装置サプシステム2にアクセスすることもできるが、本実施形態においては、基本的にホスト1はすべてバックエンドサーバ3を介して記憶装置サプシステム2にアクセスすることとする。【0013】バックエンドサーバ3の役割について説明する。バックエンドサーバ3は仮想デバイスドライバ3

1によって、ホスト1から見てあたかも1つないし複数 のディスク装置であるかのように見える。本実施形態で は、ホスト1がポート41dを介してインタフェース3 3を見ると、1つのディスクがつながっているように見 05 えるものとする。以降、このディスクのことを仮想ディ スクと呼ぶ。仮想デバイスドライバ31は、最初はホス ト1からは仮想ディスクが旧記憶装置サブシステム2の ディスク21と同じ物に見えるように設定されている。 すなわちホスト1が仮想ディスクの論理プロックアドレ 10 ス(LBA) 0 あるいはLBA 1 にアクセスすると、仮想デバイ スドライバ31はインタフェース32、ポート41cを 介して、ディスク21のLBA0あるいはLBA1にアクセス し、結果をインタフェース33、ポート41dを介して ホスト1に返す。本発明の実施形態ではインタフェース 15 32がディスク21やディスク21にアクセスするため ~ に使われ、またインタフェース33がホスト1とのやり 取りに使われるようになっているが、1つのインタフェ ースでこれら2つの役割を行わせることも可能である。 また、仮想デバイスドライバ31の設定を変えること 20 で、仮想ディスクが新記憶装置サブシステム2のディス ク21に見えるようにすることも可能である。 設定変更 を行った場合、ホストコンピュータから見える仮想ディ スクに変化はない。ファイバチャネルインタフェースを 持つディスク装置の場合、ホストコンピュータからはポ 25 ートIDと論理ユニット番号(LUN)で一意にディスク装置 が認識できるが、仮想デバイスドライバの設定を変更し て仮想ディスクがディスク21からディスク21に変更 されたとしても、ホスト1に対して見える仮想ディスク のポートIDとLUNは変化せず、ホスト1は実際にアクセ 30 スしているディスクが変わったことの認識はない。次に 新記憶装置サプシステム2のデータ移行手段24につい て説明する。データ移行手段24は米国特許5680640号 に開示されているものと同様の手段を有する。データの 移行が指示されると、データ移行手段24は記憶装置サ 35 プシステム2のディスク21の先頭から順にデータを読 み出し、ディスク21へとデータを書き込む。さらに各 ブロックないしは複数ブロック単位に、データの移行が 終了したかどうかを記録するテーブルを持ち、移行処理 中にリードアクセスがくると、このテーブルを参照し、 40 データ移行が済んでいない領域についてはディスク21 からデータを読み出し、データ移行が済んでいる領域に ついてはディスク21のデータを返す。

や、データ移行処理中のリード、ライト処理ではこのテーブル100を利用する。

【0015】図3で、データ移行手段24の行う移行処 理の流れを説明する。まずカウンタBを用意し、初期値 を0とする(ステップ2001)。次にテーブル100を 参照し、LBA Bのフラグ102が1かどうかチェックす る(ステップ2002)。フラグが1の場合にはデータ移 行が済んでいるため、カウンタBを1増加する(ステッ プ2005)。また、ステップ2002で、フラグ10 2が0であれば、ディスク21からディスク21へとデ ータをコピーし(ステップ2003)、テーブル100の 該当するフラグ102を1に更新し(ステップ200 4)、ステップ2005へと進む。ステップ2006で はディスク21の最終LBAまで処理したかチェックす る。すなわちBがディスク21の最終LBAを超えたかど うかチェックし、超えていれば処理を完了し、超えてい なければステップ2002に戻って、処理を繰り返す。 【0016】次に図4で、データ移行手段が図3のデー 夕移行処理を行っている間に、上位ホスト、すなわち本 実施形態ではバックエンドサーバ3からのライト要求が あった場合の処理を説明する。この処理は簡単で、ステ ップ2101でディスク21にデータを書き込み、ステ ップ2102でテーブル100の該当するLBAのフラ グ102を1に更新する。つまり、データ移行処理中に ライト処理が行われたLBAについては、ディスク21 からのデータ移行は行われない。

【0017】図5で、データ移行手段が図3のデータ移 行処理を行っている間に、上位ホスト、すなわち本実施 形態ではバックエンドサーバ3からのリード要求があっ た場合の処理を説明する。ステップ2201で、テーブ ル100内のリード要求のあったLBAについてフラグ 102を参照する。ステップ2202でフラグ102が 1かどうかチェックして処理を分岐する。フラグが1の 場合には、そのLBAについてはディスク21からのデ ータ移行が完了しているので、ディスク21からデータ を読み出す(ステップ2203)。フラグが0の場合に は、そのLBAについてデータ移行が完了していないの で、一旦ディスク21からディスク21にデータをコピ ーする(ステップ2205)。続いてテーブル100のフ ラグ102を1に更新して(ステップ2206)、ステッ プ2203以降へ進む。ステップ2204で読み出した データをバックエンドサーバ3に渡して処理は完了す

【0018】次に、本実施形態のシステムでの、旧記憶装置サプシステム2から新記憶装置サプシステム2へのデータ移行処理について、システム全体の流れを説明していく。データ移行を行う際、ユーザはバックエンドサーバ3に移行を指示する。バックエンドサーバ3から新記憶装置サプシステム2へのデータ移行処理開始の指示は、インタフェース32を介して新記憶装置サプシステ

ム2に伝えられる。図6はバックエンドサーバ3の処理 の流れを説明している。バックエンドサーバ3は移行の 指示を受けると、まず、仮想デバイスドライバ31によ る仮想ディスクの動作を停止する(ステップ100

05 1)。これにより、仮想デバイスドライバ31から旧記 憶装置サプシステム2へのアクセスは中断され、仮想デ バイスドライバ31はホスト1から仮想ディスクに対す るアクセスコマンドを受け付けても、アクセス中止が解 除されるまで応答を返さない。次に記憶装置管理プログ 10 ラム34は新記憶装置サブシステム2に対してデータ移 行処理の開始を指示する(ステップ1002)。新記憶装 置サブシステム2の行うデータ移行処理については後述 する。ステップ1003では、仮想デバイスドライバ3 1がこれまでホスト1に見せていた仮想デバイスの設定 15 を、ディスク21へのアクセスを行うように変更し、ス ~ テップ1004ではステップ1001で中止していたア クセスを再開させる。仮想ディスクのアクセスが再開さ れると、ステップ1001、ステップ1002の間にホ スト1から仮想ディスクに対してアクセスがきていた場 20 合、そのアクセスは全てディスク21に対して実施され

【0019】また、本実施形態においては、記憶装置サ ブシステム2とバックエンドサーバ3が直接スイッチに つながった接続形態であったが、図7のように記憶装置 25 サプシステム 2 がバックエンドサーバ 3 を介してつなが る構成であっても実現は可能である。さらに、新規に増 設する記憶装置サプシステム2が図1の例のようにデー 夕移行手段24をもたないような場合には、図8のよう にバックエンドサーバ3側にデータ移行手段24を持た 30 せ、バックエンドサーバでデータ移行処理を行わせるこ とで同様のことが実現できる。また、本実施形態ではバ ックエンドサーバ3を設けてホストに仮想的なディスク を見せる処理を施しているが、図9のように仮想デバイ スドライバ31、記憶装置管理プログラム34、そして 35 データ移行手段24をファイバチャネルスイッチ4に持 たせるという構成も可能である。本実施形態では、ホス トコンピュータに透過的にディスク間のデータ移行がで きる例を示したが、さまざまな適用先がある。仮想デバ イスドライバが仮想ディスクと実際の記憶装置との対応 40 付けを行えば、ホストコンピュータにとっては実際にデ ータがどの記憶装置にあってもかまわない。そのため、 例えば普段は必要最低限の仮想ディスクを定義してお き、必要になった時点で動的に必要な容量の仮想ディス クを用意できるような記憶装置管理システムや、データ 45 のアクセス頻度により、ホストに透過的にデータを低速 ディスクから動的に高速ディスクに移動するシステムな

[0020]

どに応用できる。

【発明の効果】本発明によれば、ホストコンピュータに 50 対して一切透過的にディスク装置間のデータ移動や、デ

ィスク容量のオンライン拡張など、あらゆるデータ操作 が可能となる。

【図面の簡単な説明】

【図1】本発明の実施形態における計算機システムの構 成例を示すブロック図である。

【図2】本発明の新記憶装置サプシステムのデータ移行 手段の使用するテーブルを示すテーブル構成図である。

【図3】本発明のデータ移行手段が行うデータ移行処理 の流れを示すフローチャートである。

【図4】データ移行処理中にライト要求が来たときの、 データ移行手段の処理の流れを示すフローチャートであ

【図5】データ移行処理中にリード要求が来たときの、 データ移行手段の処理の流れを示すフローチャートであ

【図6】本発明の実施形態における計算機システムにお いて、旧記憶装置サプシステムから新記憶装置サプシス テムへのデータ移行処理を行うときの、バックエンドサ

【図1】

ーバの処理の流れを示すフローチャートである。

【図7】本発明の実施形態を実現する、別の計算機シス テムの構成例を示すプロック図である。

【図8】本発明の実施形態を実現する、別の計算機シス 05 テムの構成例を示すプロック図である。

【図9】本発明の実施形態を実現する、別の計算機シス テムの構成例を示すプロック図である。

【符号の説明】

【図2】

2 2

Ø

LBAn

1…ホスト、2…旧記憶装置サプシステム、2…新記憶 10 装置サプシステム、3…バックエンドサーバ、4…ファ イバチャネルスイッチ、11…オペレーティングシステ ム、12…アプリケーション、13…インタフェース、 21…ディスク、22…コントローラ、23…インタフ ェース、24…データ移行手段、31…仮想デバイスド

15 ライバ、32…インタフェース、33…インタフェー

ス、34…記憶装置管理プログラム、41a…ポート、 41b…ポート、41c…ポート、41d…ポート、4 1 e …ポート。

図 1 アプリケ ファイバテャネルスイッチ 41d ▲ 佐田子バイスドライバ 紀備装置管理プログラム サーバ 12971-2J 23 投配債装置サブシステム コントローラ 7-19548 ディスク , 新記憶装置サブシステム

ر¹⁰¹ح 処理開始) アドレス フラグ 2101 ディスク21に LBAO 1 データを書き込む

LBA1 2102 -ブルのフラグを LBA2 0 LBA3 0 LBA4 1 終了

【図6】

23 6

終了

【図4】

図 4

(処理開始) 1001 仮想ディスクの動作を 停止する 新記憶装置サブシステムに データ移行処理を指示 仮想ディスクの設定を 変更 ,1004 仮想ディスクの動作を 再開する

【図9】

150 9

