FILTERS

Prepared by: Dr. Nik Nur Wahidah Nik Hashim

Department of Mechatronics Engineering

International Islamic University Malaysia (IIUM)

Filter Representations

ANALOG FILTER DESIGN (Butterworth filter)

Butterworth Filter Response

Amplitude response of an nth order Butterworth filter is given as,

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}}$$

Fig. 7.20 Amplitude response of a normalized lowpass Butterworth filter.

Table for Normalized Butterworth filter, $\omega_c=1$

Table 1: BUTTERWORTH POLYNOMIALS AND NORMALIZED LOWPASS BUTTERWORTH FILTERS

Order n	Butterworth polynomials $B_n(s)$
1	s + 1
2	$s^2 + \sqrt{2}s + 1$
3	$(s^2 + s + 1)(s + 1)$
4	$(s^2 + 0.76536s + 1)(s^2 + 1.84776s + 1)$
5	$(s+1)(s^2+0.6180s+1)(s^2+1.6180s+1)$

Normalized low-pass Butterworth filters $H_n(s) = \frac{1}{B_n(s)}$

Determination of Filter Order and Cutoff

The order of the filter is determined using the equation below where G_s and G_p is the stopband and passband gain in dB. (Gains G_s at G_s and G_p at G_p)

$$n = \frac{\log \left[\left(10^{-\hat{G}_s/10} - 1 \right) / \left(10^{-\hat{G}_p/10} - 1 \right) \right]}{2 \log(\omega_s/\omega_p)}$$

The cutoff frequency (in rad/s) is determined using

$$\omega_c = \frac{\omega_p}{\left[10^{-\hat{G}_p/10} - 1\right]^{1/2n}} \qquad \text{or} \qquad \omega_c = \frac{\omega_s}{\left[10^{-\hat{G}_s/10} - 1\right]^{1/2n}}$$

Frequency Scaling

- So far we have consider only normalized Butterworth filters with 3dB bandwidth and cut-off frequency $\omega_c = 1$.
- We can design filters for any other cut-off frequency by substituting s by s/ω_c .
- For example, the transfer function for a second-order Butterworth filter for ω_c =100 is given by:

$$H(s) = \frac{1}{\left(\frac{s}{100}\right)^2 + \sqrt{2}\left(\frac{s}{100}\right) + 1}$$
$$= \frac{1}{s^2 + 100\sqrt{2}s + 10^4}$$

Example #1

Butterworth Filter Design

Design a Butterworth lowpass filter to meet the specifications,

- Passband gain to lie between 1 and Gp=0.794 (-2dB) for $0 \le \omega \le 10$.
- Stopband gain not exceed Gs=0.1 (-20dB) for $\omega \geq 20$.

Magnitude Response for Previous Example

Fig. 7.23 Amplitude response of the lowpass Butterworth filter in Example 7.6.

The amplitude response of this filter is given by Eq. (7.31) with n=4 and $\omega_c=10.693$

$$|H(j\omega)| = \frac{1}{\sqrt{(\frac{\omega}{10.693})^8 + 1}}$$

Example #2

Design an analog Butterworth filter that has a -2dB or better cutoff frequency at 20 rad/sec and at least 10 dB attenuation at 30 rad/sec.

Solution:

The critical requirements are:

$$\Omega_1 = 20$$
, $K_1 = -2$, $\Omega_2 = 30$, $K_2 = -10$,

Substituting these requirements into (1):

$$n = \left\lceil \frac{\log_{10}[(10^{-(-2)/10} - 1)/(10^{-(-10)/10} - 1)]}{2\log_{10}(20/30)} \right\rceil = \left\lceil 3.3709 \right\rceil = 4$$

Example #2 (continue)

Using this value of n in (2) to exactly satisfy the -2dB requirement gives:

$$\Omega_c = 20/(10^{0.2} - 1)^{1/8} = 21.3868$$

The *normalised* Butterworth lowpass filter ($\Omega_c = 1$) for n = 4, can be found in Table 1 as:

$$H_4(s) = \frac{1}{(s^2 + 0.76536s + 1)(s^2 + 1.84776s + 1)}$$

Applying a normalised lowpass to lowpass transformation, $s \rightarrow s/\Omega_c$ with $\Omega_c = 21.3868$ gives the desired transfer function as:

Example #2 (continue)

$$\begin{split} H(s) &= H_4(s) \Big|_{s \to s/21.3868} \\ &= \frac{1}{\left[\left(\frac{s}{21.3868} \right)^2 + 0.76536 \left(\frac{s}{21.3868} \right) + 1 \right]} \times \frac{1}{\left[\left(\frac{s}{21.3868} \right)^2 + 1.84776 \left(\frac{s}{21.3868} \right) + 1 \right]} \\ &= \frac{0.209210 \times 10^6}{(s^2 + 16.3686s + 457.394) \cdot (s^2 + 39.5176s + 457.394)} \end{split}$$

DIGITAL FILTERS (FIR & IIR)

LTI Filtering

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
$$Y(\omega) = H(\omega)X(\omega)$$

where

$$\begin{array}{ccc}
x(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & X(\omega) \\
h(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & H(\omega) \\
y(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & Y(\omega)
\end{array}$$

$$H(\omega) = |H(\omega)|e^{j\Theta(\omega)}$$

$$|Y(\omega)| = |H(\omega)||X(\omega)|$$

$$\angle Y(\omega) = \Theta(\omega) + \angle X(\omega)$$

Causal Finite Impulse Response (FIR) Filters

Definition: a discrete-time finite impulse response (FIR) filter is one in which the associated impulse response has finite duration.

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$
$$= \sum_{k=0}^{M-1} h(k)x(n-k)$$

- \blacktriangleright lower limit of k=0 is from causality requirement
- ▶ upper limit of $0 \le M 1 < \infty$ is from the finite duration requirement; in this case the support is M consecutive points starting at time 0 and ending at M 1

Causal Infinite Impulse Response (IIR) Filters

Definition: a discrete-time infinite impulse response (IIR) filter is one in which the associated impulse response has infinite duration.

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$
$$= \sum_{k=0}^{\infty} h(k)x(n-k)$$

- ▶ lower limit of k = 0 is from causality requirement
- necessary upper limit of ∞ is from the infinite duration requirement

Filter Representation using LCCDEs

Linear constant coefficient difference equations (LCCDEs) are an important class of filters that we consider in this course:

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

Time shifting:
$$x(n-k)$$
 $z^{-k}X(z)$ ROC, except $z=0$ (if $k>0$)

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}} = \frac{\text{polynomial in } z}{\text{another polynomial in } z}$$

Depending on the values of N, M, a_k and b_k they can correspond to either FIR or IIR filters.

FIR LCCDEs

$$y(n) = \sum_{k=0}^{M-1} b_k x(n-k)$$

$$H(z) = \sum_{k=0}^{M-1} b_k z^{-k}$$

IIR LCCDEs

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

FIR vs IIR

	FIR	IIR
Impulse response	finite	infinite
System function	H(z) = N(z)	H(z) = N(z) / D(z)
Structure diagram	no feedback	have feedback
Phase response	Exact linear phase h[n]= + h[n-N]	_
Zero-poles	only have zeros	both zeros and poles

Digital Filter Design

▶ Desired filter characteristics are specified in the frequency domain in terms of desired magnitude and phase response of the filter; i.e., $H(\omega)$ is specified.

Filter design involves determining the coefficients of a causal FIR or IIR filter that closely approximates the desired frequency response specifications.

FIR Filter Design using Window Technique

Linear Phase FIR Filter

Time shifting: x(n-k) $e^{-j\omega k}X(\omega)$

- Linear phase filters maintain the relative positioning of the sinusoids in the filter passband.
- This maintains the structure of the signal while removing unwanted frequency components.
- FIR filter is linear phase if it follows (M=sample number),
 - 1. $h(n) = \pm h(M-1-n)$ for n = 0,1,2,...,M-1
 - $2. \quad \alpha = \frac{M-1}{2}$

- Use the table below to determine the number of sample, M.
- Choosing a proper window depends on the stopband gain which is approximately represented by the peak sidelobe.

Window	Main lobe	Peak sidelobe
type	width	(dB)
Rectangular	$4\pi/M$	-13
Bartlett	$8\pi/M$	-25
Hanning	$8\pi/M$	-31
Hamming	$8\pi/M$	-41
Blackman	$12\pi/M$	-57

1. Begin with a desired frequency response $H_d(\omega)$ that is linear phase with a delay of (M-1)/2 units in anticipation of forcing the filter to be length M.

Example:

$$H_d(\omega) = \begin{cases} 1 \cdot e^{-j\omega(M-1)/2} & 0 \le |\omega| \le \omega_c \\ 0 & \text{otherwise} \end{cases}$$

2. The corresponding impulse response is given by:

$$h_d(n) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} H_d(\omega) e^{j\omega n} d\omega$$

Example:

$$h_d(n) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega(n-(M-1)/2)} d\omega$$

$$= \begin{cases} \frac{\sin \omega_c \left(n - \frac{M-1}{2}\right)}{\pi \left(n - \frac{M-1}{2}\right)} & n \neq \frac{M-1}{2} \\ \frac{\omega_c}{\pi} & n = \frac{M-1}{2} \\ \frac{\sin \omega_c \left(n - \frac{M-1}{2}\right)}{\pi \left(n - \frac{M-1}{2}\right)} & \text{(if } M \text{ is even)} \end{cases}$$

3. Multiply $h_d(n)$ with a window of length M.

$$h(n) = h_d(n) \cdot w(n)$$

Example: rectangular window

$$w(n) = \begin{cases} 1 & n = 0, 1, \dots, M - 1 \\ 0 & \text{otherwise} \end{cases}$$

$$h(n) = h_d(n) \cdot w(n)$$

$$= \begin{cases} \frac{\sin \omega_c \left(n - \frac{M-1}{2}\right)}{\pi \left(n - \frac{M-1}{2}\right)} & 0 \le n \le M - 1, n \ne \frac{M-1}{2} \\ \frac{\omega_c}{\pi} & n = \frac{M-1}{2} \text{ and } M \text{ is odd} \\ 0 & \text{otherwise} \end{cases}$$

Window Function

Rectangular:

$$w(n) = \begin{cases} 1 & 0 \le n \le M - 1 \\ 0 & \text{otherwise} \end{cases}$$

Hamming:

$$w(n) = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi n}{M-1}\right) & 0 \le n \le M-1 \\ 0 & \text{otherwise} \end{cases}$$

Hanning:

$$w(n) = \begin{cases} 0.5 - 0.5 \cos\left(\frac{2\pi n}{M-1}\right) & 0 \le n \le M-1 \\ 0 & \text{otherwise} \end{cases}$$

Blackman:

$$w(n) = \begin{cases} 0.42 - 0.5 \cos\left(\frac{2\pi n}{M-1}\right) + 0.08 \cos\left(\frac{4\pi n}{M-1}\right) & 0 \le n \le M-1 \\ 0 & \text{otherwise} \end{cases}$$

Example

FIR Filter Design

- 1) Design a linear phase FIR filter to approximate an ideal LPF with passband gain of unity, cutoff frequency of 850Hz and a sampling frequency of 5000Hz. The length of the impulse response should be 5. Use i) Rectangular window, ii) Hamming window.
- 2) Design a linear phase FIR filter using the window method to satisfy the specifications below:
 - $0.99 \le |H(\omega)| \le 1.01 \text{ for } 0 \le \omega \le 0.19\pi$
 - $|H(\omega)| \le 0.01 \quad for \quad 0.21\pi \le \omega \le \pi$
 - Cutoff frequency of 0.2π

IIR Filter Design using Impulse Invariance Method (IIM)

s-z Mapping (1)

To investigate the mapping between the s-plane and the z-plane implied by the sampling process, we rely on a generalization of the expression relating z-transform of h(n) to the Laplace transform of $h_a(nT)$. This relationship is given by

$$H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n}$$

$$H(z)|_{z=e^{sT}} = \sum_{n=-\infty}^{\infty} h(n)e^{-sTn}$$

$$the s-z mapping$$

s-z Mapping (2)

Note that when, $s = j\Omega$

$$H(z)\Big|_{z=e^{sT}} = \frac{1}{T} \sum_{k=-\infty}^{\infty} H_a \left(s - j \frac{2\pi k}{T}\right)$$

reduces to

$$H(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} H_a(j\Omega - jk\Omega_s)$$

$$\omega = \Omega T \qquad \Omega_s = \frac{2\pi}{T}$$

Frequency Mapping (IIM-Prewarp)

The general characteristic of the s-z mapping defined as $z = e^{sT}$ can be obtained by substituting

$$s = \sigma + j\Omega$$
 $z = re^{j\omega}$

With these substitutions we get

$$z = e^{(\sigma + j\Omega)T} = e^{\sigma T} e^{j\Omega T} = r e^{j\omega}$$

$$r = e^{\sigma T}$$
 $\omega = \Omega T$

s-z Mapping (4)

a)
$$\sigma < 0 \rightarrow 0 < r < 1$$
 $\sigma > 0 \rightarrow r > 1$ $\sigma = 0 \rightarrow r = 1$

The left-half of s-plane is mapped inside the unite circle in z-plane and right-half of s-plane is mapped into points that fall outside the unit circle in z-plane. This is one of the desirable properties of a good s-z mapping.

b) $j\Omega$ -axis is mapped into the unit circle in z-plane as indicated above.

s-z Mapping (5)

IIR Filter Design using IIM

The impulse response of the **analog** filter $h_a(t)$

$$h_a(t) = L^{-1} \{ H_a(s) \}$$

$$\frac{h_a(t)}{h_a(t)} = L^{-1} \{ H_a(s) \}$$

$$= L^{-1} \left\{ \sum_{k=1}^{N} \frac{c_k}{s + s_k} \right\} = \sum_{k=1}^{N} L^{-1} \left\{ \frac{c_k}{s + s_k} \right\}$$

$$=\sum_{k=1}^{N}c_{k}e^{-s_{k}t} \longrightarrow t=nT$$

The impulse response of the **digital** filter $h(\underline{nT})$:

$$h(n) = h_a(nT) = \sum_{k=1}^{N} c_k e^{-s_k nT}$$

$$n = 0, 1, 2, 3, \dots, \infty$$

The system function of the **digital** filter

Transfer Function from s to z

Transfer function of the analog filter:

$$H_a(s) = \sum_{k=1}^{N} \frac{c_k}{s + s_k}$$

System function of the digital filter:

$$H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{-s_k T} z^{-1}}$$

Comparing $H_a(s)$ and H(z), we see that H(z) can be obtained from $H_a(s)$ by using the mapping relation:

$$\frac{c_k}{s+s_k} \to \frac{c_k}{1-e^{-s_k T}z^{-1}}$$

Example

IIR-IIM Filter Design

1) The transfer function of an analog system is given as $H_a(s) = \frac{s+1}{s^2+2s+5}$. Use the impulse invariance method to determine H(z) for a discrete-time system such that h(n) = h(nT), T = 1.

IIR Filter Design using Bilinear Transformation

Bilinear Transform

bilinear transformation mapping is:

$$s = \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$

The mapping $s = \frac{2}{T} \left(\frac{1-z^{-1}}{1+z^{-1}} \right)$ will work for any order of differential equation to convert $H_a(s)$ to H(z).

General Methodology:

- 1. Start with $H_a(s)$ expression.
- 2. Determine T through the problem specifications.
- 3. $H(z) = H_a\left(\frac{2}{T}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)\right)$

$s \rightarrow z$ Mapping

For $s = j\Omega$ and $z = e^{j\omega}$:

The entire $-\infty < \Omega < \infty$ axis is mapped to $-\pi < \omega < \pi$. There is a huge compression of the frequency response at large Ω -values.

Frequency Mapping (BT-Prewarp)

To derive the relation between ω and Ω

$$s = \frac{2}{T_{d}} \left(\frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} \right) = \sigma + j\Omega = \frac{2}{T_{d}} \left[\frac{2e^{-j\omega/2} j sin(\omega/2)}{2e^{-j\omega/2} cos(\omega/2)} \right] = \frac{2j}{T_{d}} tan\left(\frac{\omega}{2} \right)$$

which yields

$$\Omega = \frac{2}{T_d} \tan\left(\frac{\omega}{2}\right)$$

$$\Omega = \frac{2}{T_d} tan \left(\frac{\omega}{2} \right) \qquad or \qquad \omega = 2 \arctan \left(\frac{\Omega T_d}{2} \right)$$

Example

IIR-BT Filter Design

Design a digital low pass filter, H(z) using the bilinear transformation to satisfy the following equivalent analog specifications:

- Monotonic passband attenuation: -3.01dB or less at cutoff frequency 6 kHz.
- Monotonic stopband attenuation: -20 dB or greater at 9 kHz.
- Sampling rate of 24 kHz.

Extra Example

· Bilinear transform applied to Butterworth

$$0.89125 \le \left| H(e^{j_{\omega}}) \right| \le 1$$
 $0 \le \left| \omega \right| \le 0.2\pi$ $\left| H(e^{j_{\omega}}) \right| \le 0.17783$ $0.3\pi \le \left| \omega \right| \le \pi$

· Apply bilinear transformation to specifications

$$\begin{split} 0.89125 \leq \left| H(j\Omega) \right| \leq 1 & 0 \leq \left| \Omega \right| \leq \frac{2}{T_d} \, tar \! \left(\frac{0.2\pi}{2} \right) \\ \left| H(j\Omega) \right| \leq 0.17783 & \frac{2}{T_d} \, tar \! \left(\frac{0.3\pi}{2} \right) \leq \left| \Omega \right| < \infty \end{split}$$

We can assume T_d=1 and apply the specifications to

$$\left|H_{c}(j\Omega)\right|^{2} = \frac{1}{1 + (\Omega/\Omega_{c})^{2N}}$$

to get

$$1 + \left(\frac{2 tan0.1\pi}{\Omega_c}\right)^{\text{2N}} = \left(\frac{1}{0.89125}\right)^{\!2} \quad \text{and} \quad 1 + \left(\frac{2 tan0.15\pi}{\Omega_c}\right)^{\!2N} = \left(\frac{1}{0.17783}\right)^{\!2N}$$

Extra Example (cont..)

• Solve N and
$$\Omega_c$$

$$N = \frac{log \left[\left(\left(\frac{1}{0.17783} \right)^2 - 1 \right) / \left(\left(\frac{1}{0.89125} \right)^2 - 1 \right) \right]}{2 \, log \left[tan(0.15\pi) / tan(0.1\pi) \right]} = 5.305 \cong 6$$

· The resulting transfer function has the following poles

 $\Omega_{c} = 0.766$

$$s_k = \Omega_c e^{(j\pi/12)(2k+11)}$$
 for $k = 0,1,...,11$

Resulting in

$$H_c(s) = \frac{0.20238}{(s^2 + 0.3996s + 0.5871)(s^2 + 1.0836s + 0.5871)(s^2 + 1.4802s + 0.5871)}$$

Applying the bilinear transform yields

$$H(z) = \frac{0.0007378(1+z^{-1})^6}{(1-1.2686z^{-1}+0.7051z^{-2})(1-1.0106z^{-1}+0.3583z^{-2})} \times \frac{1}{(1-0.9044z^{-1}+0.2155z^{-2})}$$