

8.29.2023

Robert Xi

DNA Origami

• Long single-stranded DNA M13 "Scaffold" + short single strand DNA "staple strand"

DNA Origami — square tile

Square Tile without sticky ends Under AFM, scale bar length 1µm

Melting Curve & Melting Temperature

• 1-Fraction of singlet f

$$f = 1 - \frac{-1 + \sqrt{4x + 1}}{2x}$$

$$x = Ce^{-\frac{\Delta H - T\Delta S}{k_B T}}$$

- C—Concentration
- T—Temperature

• Melting temperature is defined as the temperature when f = 0.5.

Single horizontal sticky ends : 45°C Single Vertical sticky ends: 14.4°C

A, B, C Square Tiles

Approx. Conjugate DNA strands pairs Melting Temp

47°C	38°C
L1-R1	
L2-R2	U-D
L3-R3	

A, B, C Square Tiles

//////

Approx. Conjugate DNA strands pairs Melting Temp

47°C	38°C
L1-R1	
L2-R2	U-D
L3-R3	

Formation of ABC Seed (PolyT)

//////

Theoretical Calculation

Number of square tiles consist in a single string: i, j, r. (Smoluchowski coagulation equation)

Assumption:
$$J_r = \frac{1}{2} \sum_{i+j=r} k_{ij} C_i C_j f^2 - \sum_{n=1}^{\infty} k_{rn} C_r C_n f^2 - \underbrace{\alpha_r C_r}_{\text{form loop}}$$
 (rate of forming / loosing string)

form into r form into r+ J_r — number of length string r increased/decreased per m^3 per sec, $[1/m^3s]$;

 k_{ij} — constant depends on $i, j, [m^3/s], (k_{ij} = k_{ji});$

 C_i, C_j — concentration of $i, j, [1/m^3]$

f— 1-singlet fraction given by melting curve

Assumption: $J_r = \alpha_r C_r$ (rate of forming Loop)

 α_r — constant depends on r, [1/s]

$$K = \begin{bmatrix} 0 & 0 & \alpha_3 & \dots & 0 \\ 0 & k_{11} & k_{12} & \dots & k_{1j} \\ \alpha_3 & k_{21} & k_{22} & \dots & k_{2j} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & k_{i1} & k_{i2} & \dots & k_{ij} \end{bmatrix}$$

Calculate k_{ij}

$$J_{ij} = k_{ij}C_iC_j$$

Time for i, j combined into i + j. $\tau_{ij} = \tau_l(\underbrace{1}_{t_j} + \underbrace{\frac{\tau_r}{\tau_c}}_{t_c})$, [sm³]: time for them to meet for the first time # of times for them to meet until combined

- translational search time $\tau_l = \frac{3l_i l_j \mu}{2k_B T(l_i + l_j)^2} \frac{1}{C_i C_j}$, [sm³]
- rotational search time $\tau_r = \frac{1}{D_\theta} \frac{ln4}{\bar{\alpha}} = \frac{8\pi\mu}{k_B T} \frac{ln4}{\bar{\alpha}} \frac{l_i^3 l_j^3}{l_i^3 + l_j^3}, [s]$
- collision time $\tau_c = \frac{H}{6D_{ij}} = \frac{H\pi\mu}{k_BT} \frac{l_i l_j}{l_i + l_j}$, [s]
- DNA hybridization time assume instant

- D_{θ} : effective rotational diffusion constant
- D_{ij} : effective translational diffusion constant
- *H*: length square of a Sticky ends $\approx 2.5 \times 10^{-17} m^2$
- l_i : radius of i, which is half the length of the string $i \times 2.5 \times 10^{-8} m$
- $\bar{\alpha}$: relative capture area ≈ 0.47
- μ : dynamic viscosity $\approx 0.6 \times 10^{-3} [Ns/m^2]$

Calculate k_{ij}

Time for i, j combined into i + j, $\tau_{ij} = \tau_l (1 + \frac{\tau_r}{\tau_c})$

- τ_l : translational search time
- τ_c : collision time
- τ_r : rotational search time

$$\tau_{ij} = \frac{1}{M} \left(\frac{l_i l_j}{(l_i + l_j)^2} + N \frac{l_i^3 l_j^3}{(l_i^3 + l_i^3)(l_i + l_j)} \right) \frac{1}{C_i C_i}, \quad M = \frac{2k_B T}{3\mu}, N = \frac{16ln2}{H\bar{\alpha}}$$

since $J_{ij} = 1/\tau_{ij}$, and $J_{ij} = k_{ij}C_iC_j$ J_{ij} formation of (i+j) string by combining i, j string

$$J_{ij} = \left(\frac{M(l_i + l_j)^2}{l_i l_j + N \frac{l_i^3 l_j^3 (l_i + l_j)}{(l_i^3 + l_j^3)}}\right) C_i C_j = k_{ij} C_i C_j \quad \Rightarrow \quad \left(k_{ij} = \frac{M(l_i + l_j)^2}{l_i l_j + N \frac{l_i^3 l_j^3 (l_i + l_j)}{(l_i^3 + l_j^3)}}\right)$$

Calculate k_{ij}

In our case, there are three pairs of different sticky ends.

$$k_{ij} = \frac{M(l_i + l_j)^2}{l_i l_j} \cdot \frac{1}{3}$$

$$l_i l_j + N \frac{l_i^3 l_j^3 (l_i + l_j)}{(l_i^3 + l_i^3) \cdot n_{ij}}$$

$$A+BC = ABC/BCA$$

 $A+B = AB$

Configurational constant
$$n_{ij} = \begin{cases} 2, & \text{if mod}(i+j, 3) = 0 \\ 1, & \text{else.} \end{cases}$$

Calculate α_r — proportion of string at given time that their two ends are close enough to form a loop

$$J_r = k_{0r}C_r = \alpha_r C_r,$$

$$\alpha_r = \begin{cases} 0 < \alpha_r < 1, & \text{if mod(r, 3)} = 0 \\ 0, & \text{else.} \end{cases}$$

if d < 2R, it form loop; if d > 2R, it doesn't; Compute using Matlab

α_3	0.0074
α_6	0.0065
α_9	0.0041
$\overline{\alpha_{12}}$	0.0031
α_{15}	0.0025

$$K = \begin{bmatrix} 0 & 0 & \alpha_3 & \dots & 0 \\ 0 & k_{11} & k_{12} & \dots & k_{1j} \\ \alpha_3 & k_{21} & k_{22} & \dots & k_{2j} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & k_{i1} & k_{i2} & \dots & k_{ij} \end{bmatrix}$$

Assumption: 1. hinge is free, 2. They will bind when closer than 2R

Simulation

Assumption:

for horizontal sticky ends, $\Delta H = -82.8 [\text{kcal/mol}],$ $\Delta S = -222.6 [\text{cal/mol s}]$ count right after annealing process ends

Distribution of sizes across time, 2nM, 1°C/hour, 53°C to 25°C

Experiment

AFM result example

- 1. 2nM /1.5nM A,B,C monomer mixture (that's 6nM monomer)
- 2. Annealing from 53°C to 25°C at 1°C/hour

AFM of 2nM 1°C/hour 53°C to 25°C

Simulation vs Experiment

- 1. 2nM /1.5nM A,B,C monomer mixture (that's 6nM monomer)
- 2. Annealing from 53°C to 25°C at 1°C/hour

Assumption:

for horizontal sticky ends, $\Delta H = -82.8 [\text{kcal/mol}],$ $\Delta S = -222.6 [\text{cal/mol K}]$ $\bar{\alpha} = 0.47$

Theoretical Calculation

Add vertical sticky ends back

Similar to formation of seed (Smoluchowski coagulation equation)

$$J_{r} = \underbrace{\frac{1}{2} \sum_{i+j=r} k_{ij} C_{i} C_{j} f^{2} - \sum_{n=1}^{\infty} k_{rn} C_{r} C_{n} f^{2}}_{\text{form into r}} \qquad \qquad k_{ij} = \frac{M(l_{i} + l_{j})^{2}}{l_{i} l_{j} + N \frac{l_{i}^{3} l_{j}^{3} (l_{i} + l_{j})}{(l_{i}^{3} + l_{j}^{3})}} \qquad M = \underbrace{\frac{2k_{B}T}{3\mu}, N = \frac{16ln2}{H\bar{\alpha}}}_{\text{H}\bar{\alpha}}$$

Simulation

count time/s $\times 10^4$ 2nM 1°C/hour 53°C-25°C

Assumption:

for vertical sticky ends, $\Delta H = -58.3 [\text{kcal/mol}],$ $\Delta S = -154.3 [\text{cal/mol K}]$ count right after annealing process ends

2nM 1°C/hour 53°C-25°C, wait another 70 hours after annealing. Intensity plot (one length 5 string has intensity 5)

Experiment

Experiment

Simulation vs Experiment

Assumption:

for horizontal sticky ends, $\Delta H = -58.3 [\text{kcal/mol}],$ $\Delta S = -154.3 [\text{cal/mol K}]$ $\bar{\alpha} = 0.67$ count right after annealing process ends

