Smart Clothing Sensor Hub S/W Specification V0.9

AiQ Smart Clothing Ltd.

All Rights reserved

Revisioin History

Revision	Date	Author	Changes
0.1	2016/9/28	John Chen	Preliminary release
0.2	2016/10/06	John Chen	1. Updated 4.1.3, 4.2.1, 4.2.2 CMD
			table and 4.3 power management
			2. Added 4.4 state machine chart
0.3	2016/10/07	John Chen	1. Updated 2. H/W block diagram
			2. Added 5. S/W implementation
			guideline of application processor
0.4	2016/10/10	John Chen	1. Updated 4.1.3 sensor data fusion
			2. Updated 4.3 power management
			3. Updated 4.4 state machine
			4. Added chapter 5 & 6
0.5	2016/10/20	John Chen	Corrected typo in 4.1.3 title
			2. Updated 4.1.3 RTC interval to
			1ms
			3. Update 4.1.1 for the initial
		\rightarrow ()	settings of accelerometer &
			gyroscope sensors
0.6	2016/10/21	John Chen	Added H/W block diagram
0.7	2016/11/21	John Chen	Added 8 Kbit EEPROM into
•	1		figure 1 "H/W block diagram"
			2. Updated figures in 5.2 State
	Y		machine.
0.8	2016/11/24	John Chen	Updated "H/W block diagram".
0.9	2016/12/19	John Chen	Corrected some wordings.

Table of content

1.	OVERVIEW	4
2.	H/W BLOCK DIAGRAM	4
3.	S/W BLOCK DIAGRAM	5
4.	S/W IMPLEMENTATION GUIDELINES OF SENSOR HUB	
4	1.1 SENSOR FUSION	6
	4.1.1 Sensor initialization	6
	4.1.2 Sensor data capturing	6
	4.1.2 Sensor data capturing	7
4	1.2 DATA TRANSFER	9
	4.2.1 Sending sensor fusion data to application processor	
	4.2.2 Communication protocol	. 10
4	POWER MANAGEMENT	.12
4	1.4 STATE MACHINE	.13
5.	S/W IMPLEMENTATION GUIDELINES OF APPLICATION PROCESSOR	13
5	5.1 LED BEHAVIOR	
5	5.2 STATE MACHINE	.15
6.	F/W UPDATE MECHANISM	16

1. Overview

This document defines the SW architecture & implementation guidelines for AiQ smart clothing sensor hub.

2. H/W block diagram

Two key GPIOs are used on application processor and sensor hub for following purposes.

- Cloth attached detection pin
 - The pin is an input pin to sensor hub.
 - The pin is pulled high by default and cloth will pull it low while cloth is attached.
 - The pin will be pulled high again after cloth is de-attached.

Sensor hub wakeup pin 2.

- The pin is an output pin to application processor and an input pin to sensor hub.
- The pin should be pulled high by default and application procesor pulls it low while it wants to wakeup sensor hub.
- The pin should be low all the time while sensor hub is in active mode.
- Application processor pull high the pin while it wants sensor to enter stop mode.

Smart cloth

Figure 1: H/W block diagram

Figure 2: Type C connector pin definition (sensor hub side)

Figure 3: Type C connector pin definition (smart cloth side)

3. S/W block diagram

To be added.

4. S/W implementation guidelines of sensor hub

In this chapter, following items are defined.

- Sensor fusion
- 2. Data transfer
 - Sending sensor fusion data to application processor
 - Communication protocol
- 3. Power management
- 4. State machine

4.1 Sensor fusion

The motion sensor data is read at the rate of 200Hz, meaning at 5ms interval, and be sent to application processor for motion capture.

Considering the sensors are connected to sensor hub by I2C, sensor hub needs to have ability to read at least 8 sensors (may be 6-axis or 9-axis sensors) at the required interval.

To meet the timing requirement, sensor hub is designed as follows.

- Multiple I2C buses are used to read sensor data to minimize reading time
- 2. Hardware I2C is used instead of software ones
- Two sensors w/ different I2C address are connected to a single I2C bus

4.1.1 Sensor initialization

All the sensors need to be properly initialized after connected to sensor hub.

1. Accelerometer: +/- 8G

2. Gyroscope: +/- 2000 dps

4.1.2 Sensor data capturing

Sensor hub starts sensor data capturing as long as it receives "START" command from application processor and stop capturing while receiving

"STOP" command. After capturing the sensor data, the raw data will be further processed which called sensor fusion. Two buffers are used for storing the senor data captured and fused as follows.

 Buffer for sensor raw data This is the buffer used for storing sensor raw data during sensor data capturing process and will be cleared while next capture starts.

2. Buffer for sensor fusion data

- After sensor data captured, the raw data will be further processed into the format for application processor. This buffer contains the fused data for application processor to read.
- The buffer needs to have capability for storing several sensor fusion data if motion algorithm supports aggregated report data i.e. several sensor fusion data will be aggregated together and application processor will read it at once.

4.1.3 Sensor data fusion

The fused sensor data needs to contain data in following table. The data format applies to both single and multiple aggregated sensor data.

Item	Description	Length	Data
Timestamp	Timestamp of the read sensor	4 bytes	The RTC timer count.
. `	data.		RTC timer interval: 1ms
I2C bus ID	This field carries the I2C bus	1 byte	1. #5~8 bits represents
	ID as well as the amount of		the I2C bus ID e.g.
	motion sensors connected.		1 st I2C, 2 nd I2C, 3 rd
			I2C, 4 th I2C and etc.
			2. #1~4 bits represents
			how many sensor
			connected to the I2C
			bus.
			For example:

			0x12:
			1 st I2C bus connects 2
			motion sensors
Sensor type	The type of sensor e.g. 6-axis	1 byte	1: 6-axis sensor
	or 9-axis motion sensor		2: 9-axis sensor
			Others: reserved
6-axis motion	Raw data of a 6-axis motion	12 bytes	Accel. X + Accel. Y +
sensor raw	sensor		Accel. Z + Gyro X +
data			Gyro Y + Gyro Z
9-axis motion	Raw data of a 9-axis motion	18 bytes	Accel. X + Accel. Y +
sensor raw	sensor		Accel. Z + Gyro X +
data			Gyro Y + Gyro Z +
			Magnet X + Magnet Y +
		X	Magnet Z

Table 1: Senor fusion data report format

Given four 6-axis and four 9-axis motion sensors are connected to four I2C buses of the sensor hub, then the sensor fusion data format will be as follows, 137 bytes in total.

I2C bus ID	Timestamp	Timestamp	Timestamp	Timestamp	I2C bus ID	Sensor type	Accel. X
(0xFF)	byte 1 (LSB)	byte 2	byte 3	byte 4 (MSB)	(0x12)	(1)	LSB
Accel. X	Accel. Y	Accel. Y	Accel. Z	Accel. Z	Gyro X	Gyro X	Gyro Y
MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB
Gyro Y	Gyro Z	Gyro Z	Sensor type	Accel. X	Accel. X	Accel. Y	Accel. Y
MSB	LSB	MSB	(2)	LSB	MSB	LSB	MSB
Accel. Z	Accel. Z	Gyro X	Gyro X	Gyro Y	Gyro Y	Gyro Z	Gyro Z
LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB
Magnet. X	Magnet. X	Magnet. Y	Magnet. Y	Magnet. Z	Magnet. Z	I2C bus ID	Sensor type
LSB	MSB	LSB	LSB	LSB	LSB	(0x22)	(1)
Accel. X	Accel. X	Accel. Y	Accel. Y	Accel. Z	Accel. Z	Gyro X	Gyro X
LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB

Gyro Y	Gyro Y	Gyro Z	Gyro Z	Sensor type	Accel. X	Accel. X	Accel. Y
LSB	MSB	LSB	MSB	(2)	LSB	MSB	LSB
Accel. Y	Accel. Z	Accel. Z	Gyro X	Gyro X	Gyro Y	Gyro Y	Gyro Z
MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB
Gyro Z	Magnet. X	Magnet. X	Magnet. Y	Magnet. Y	Magnet. Z	Magnet. Z	I2C bus ID
MSB	LSB	MSB	LSB	LSB	LSB	LSB	(0x32)
Sensor type	Accel. X	Accel. X	Accel. Y	Accel. Y	Accel. Z	Accel. Z	Gyro X
(1)	LSB	MSB	LSB	MSB	LSB	MSB	LSB
Gyro X	Gyro Y	Gyro Y	Gyro Z	Gyro Z	Sensor type	Accel. X	Accel. X
MSB	LSB	MSB	LSB	MSB	(2)	LSB	MSB
Accel. Y	Accel. Y	Accel. Z	Accel. Z	Gyro X	Gyro X	Gyro Y	Gyro Y
LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB
Gyro Z	Gyro Z	Magnet. X	Magnet. X	Magnet. Y	Magnet. Y	Magnet. Z	Magnet. Z
LSB	MSB	LSB	MSB	LSB	LSB	LSB	LSB
I2C bus ID	Sensor type	Accel. X	Accel. X	Accel. Y	Accel. Y	Accel. Z	Accel. Z
(0x42)	(1)	LSB	MSB	LSB	MSB	LSB	MSB
Gyro X	Gyro X	Gyro Y	Gyro Y	Gyro Z	Gyro Z	Sensor type	Accel. X
LSB	MSB	LSB	MSB	LSB	MSB	(2)	LSB
Accel. X	Accel. Y	Accel. Y	Accel. Z	Accel. Z	Gyro X	Gyro X	Gyro Y
MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB
Gyro Y	Gyro Z	Gyro Z	Magnet. X	Magnet. X	Magnet. Y	Magnet. Y	Magnet. Z
MSB	LSB	MSB	LSB	MSB	LSB	LSB	LSB
Magnet. Z							
LSB							

Figure 4: Example senor fusion data report format

4.2 Data transfer

Sensor hub connects to application processor by SPI interface and this chapter will talk about how the data transfer works as well as the communication protocol.

4.2.1 Sending sensor fusion data to application processor

Sensor hub captures the sensor data at a pre-configured interval (default is 5ms, meaning 200Hz), and will notify application processor to read the fusion data at a pre-configured interval (default is the same as sampling interval). Sensor hub needs to make sure the sensor fusion data will not be corrupted while application processor is reading it i.e. the buffer should not be updated with new data unless application processor is not reading it.

After notified by sensor hub, application processor should issue a READ command and sensor hub will reply with the data defined in 4.1.3.

4.2.2 **Communication protocol**

The protocol is used for communication between application processor and sensor hub. Please note every command is followed by a response from sensor hub.

The protocol packet format is as following.

CMD ID	Length	Data
(1 byte)	(1 byte)	(Length is specified in length field)

Figure 5: Communication protocol packet format

The CMD ID is defined in following table.

CMD ID	Description	Length	Data
0x01	Get/Set cloth info	AP->Hub: TBD	AP->Hub: TBD
	including sensor #,	Hub->AP: TBD	Hub->AP: TBD
	type & I2C slave		
	address on each I2C		
	bus		
0x02	Get sensor fusion	AP->Hub: 1 byte	AP->hub: Reserved

	data length	Hub->AP: 1 byte	Hub->AP: Sensor fusion data length
0x03	Get/Set # of sensor	AP->Hub: 1 byte	AP->hub:
	fusion data to be	Hub-> AP: 1 byte	- 0x00: Get # of reported data
	reported at once		from sensor hub
	(Default is 1, meaning		- Otherwise the new requested
	data is reported at		# e.g. 0x2 means 2 sensor
	every sampling		fusion data is reported at
	interval)		once.
			Hub->AP: CMD result
			- 0x00: Requested # of report
			data is not supported
			- Otherwise: Return
		A (current/new # of report data
0x04	Sensor calibration	AP->Hub: 1 byte	AP->hub: Operation instruction
	operation	Hub->AP: 1 byte	- 0x00: Stop calibration
		X	- 0x01: Start calibration
			- 0x02: Get calibration status
		,	Hub->AP: CMD result
) '	- 0x00: Failure
			- 0x01: Success
			- 0x02: Calibration is ongoing
0x05	Get/Set sampling rate	AP->Hub: 1 byte	AP->hub:
	(Default sampling rate	Hub->AP: 1 byte	- 0x00: Get current sampling
	is 200Hz)		rate from sensor hub
	*		- Otherwise the new requested
			sampling rate e.g. 0x64
			means 100 Hz and 0xC8
			means 200Hz.
			Hub->AP: CMD result
			- 0x00: Requested sampling
			rate is not supported
			- Otherwise: Return

			current/new sampling rate
0x10	Start/stop sensor	AP->Hub: 1 byte	AP->Hub: Start/stop instruction
	fusion	Hub->AP: 1 byte	- 0x00: Stop
			- 0x01: Start
			Hub->AP: CMD result
			- 0x00: Failure
			- 0x01: Success
0x11	Read sensor fusion	AP->Hub: 1 byte	AP->Hub: Reserved
	data	Hub->AP: sensor	Hub->AP: Sensor fusion data
		fusion data length	• • • • • • • • • • • • • • • • • • • •

Table 2: Communication protocol CMD list

4.3 Power management

There're three power modes of sensor hub designed to achieve maximum battery life as follows.

Power off mode

This is the mode while sensor hub is powered off.

2. Stop mode

- This is the low power mode for sensor hub to conserve power consumption after power on.
- Sensor hub should stay in this mode while the wakeup pin is de-asserted.

Active mode 3.

- This is the full power mode.
- Sensor hub should stay in this mode while the wakeup pin is asserted.

State machine

Figure 6: Sensor hub state machine

5. S/W implementation guidelines of application processor

In this chapter, following items are defined.

- LED bahavior
- 2 State machine

LED behavior

There're two LEDs, Green and Red color, and are controlled by two GPIOs of application processor. The two LED can be lighted at the same time with different duty to generate other colors e.g. Orange color. Three colors will be used in our design, Green, Red and Orange. The use cases are defined in following table.

Primary mode	Secondary mode	LED color	LED behavior
	Data transferring		On 0.5 sec and then off
Charging	(SD card access)	Orange	0.5 sec periodically
	No data transfer		Always on
	Data transferring	Orange	On 0.5 sec and then off
Fully charged	(SD card access)		0.5 sec periodically
	No data transfer	None	Always off
Power on	N/A	Green	On 3 sec and then off
Power off	N/A	None	Always off
Pairing/	N/A	Green	On 0.5 sec and then off
Connecting			0.5 sec periodically
Paired/	N/A	Green	On 3 sec and then off
Connected		1) 7
Heart beat	After connected to	Green	On 0.5 sec and then off
	paired host		9.5 sec periodically
Low battery	N/A	Red	On 0.5 sec and then off
(<=15%)			9.5 sec periodically
Encountering	N/A	Red	Always on
error			

Table 3: LED behavior

State machine

Figure 7: Application processor state machine while not connected to PC/power adapter

Figure 8: Application processor state machine while connect to PC/power adapter in power on mode

Figure 9: Application processor state machine while connected to PC/power adapter in power off mode

6. F/W update mechanism

The goal is the entire system FW can be updated including application processor and sensor hub as follows.

- Application processor FW can be updated by OTA (Over-The-Air). 1.
 - Fail-safe mechanism shall be considered. To be added.
- 2. Sensor hub FW can be included in the APK and APK can update sensor hub FW on demand.
 - Fail-safe mechanism shall be considered. To be added.