Trabalho V

Giovanne Lucas Dias Pereira Mariano 173317 26 de junho de 2020

EXERCÍCIOS

- 1. Considere as transaçes T1, T2 e T3 e uma variável X de uma tupla do banco de dados. Sejam os seguintes escalonamentos, onde as operações estão escritas na ordem do tempo. Por exemplo, no escalonamento (A), a operação "read(T2,Z)" ocorre antes de "read(T2,Y)" e assim por diante. Para cada escalonamento, desenhe o grafo de precedência completo (seriabilidade em conflito) e responda se o escalonamento é serializável ou não. Para os escalonamentos serializáveis, escreva um escalonamento serial equivalente.
 - (a) $\operatorname{read}(T2,Z)$, $\operatorname{read}(T2,Y)$, $\operatorname{write}(T2,Y)$, $\operatorname{read}(T3,Y)$, $\operatorname{read}(T3,Z)$, $\operatorname{read}(T1,X)$, $\operatorname{write}(T1,X)$, $\operatorname{write}(T3,Y)$, $\operatorname{write}(T3,Z)$, $\operatorname{read}(T2,X)$, $\operatorname{read}(T1,Y)$, $\operatorname{write}(T1,Y)$, $\operatorname{read}(T2,X)$, $\operatorname{write}(T2,X)$, $\operatorname{read}(T2,Y)$, $\operatorname{write}(T2,Y)$

Figura 1: Grafo de seriabilidade em conflito. Feito na plataforma https://www.lucidchart.com/.

Analisando a imagem, é evidente que não é serializável, visto que há ciclos no grafo.

(b) $\operatorname{read}(T3,Y), \operatorname{read}(T3,Z), \operatorname{read}(T1,X), \operatorname{write}(T1,X), \operatorname{write}(T3,Y), \operatorname{write}(T3,Z), \operatorname{read}(T2,X), \operatorname{read}(T1,Y), \operatorname{write}(T1,Y), \operatorname{read}(T2,Y), \operatorname{write}(T2,Y), \operatorname{read}(T2,Z), \operatorname{write}(T2,Z)$

Analisando a imagem, é evidente que é serializável, visto que não há ciclos no grafo.

Um escalonamento serial equivalente é: T3, T1, T2.

- 2. Considere as transações T1 e T2.
 - (a) INSIRA no espaço indicado, na T2, um comando que faça com que ela viole o protocolo 2PL. A resposta só será considerada se o comando for inserido no local marcado.

T1	T2
	SLOCK(C)
	read(C)
	UNLOCK(C)
XLOCK(B)	
read(B)	
B = B + 5	
XLOCK(C)	
. ,	XLOCK(A)
	read(A)
	A = 3 * A
	WRITE(A)
	UNLOCK(A)
read(C)	,
write(B)	
UNLOCK(C)	
UNLOCK(B)	
ETC	ETC

(b) Justifique, em até 2 linhas, porque sua solução está correta.

Após o UNLOCK(C) inserido, para não violar 2PL, T2 não poderia mais requisitar trancas, porém é requisitada a tranca XLOCK(A).

- 3. Considere o seguinte arquivo de LOG, referente às transações T1, T2, T3, T4 e T5, sendo A, B, D, E atributos do BD. Os registros de log, neste caso, são estruturados da forma.
 - (a) Após a falha, apenas T2, T3 e T4 terão suas operações garantidas (duráveis), para efeito de recuperação.
 - A afirmação é falsa, pois a transação T5 também havia sido commitada antes da falha e, portanto, o SGBD tem o compromisso de recuperar a transação T5.
 - (b) Após a falha, a transação T2 não precisará ser desfeita (UNDO), nem passar posteriormente por REDO.
 - Afirmação verdadeira, pois a transação T2 terminou antes do checkpoint.

4. Considere as três relações, em que (A), (B) e (D) são chaves de R1, R2 e R3, respectivamente.

Seja a consulta em SQL:

SELECT A, C FROM R1 NATURAL JOIN R2;

(a) Escreva o esquema e o resultado da consulta sob forma de tabela.

A	С
1	3

(b) RE-ESCREVA a consulta em SQL sem usar expressões JOIN na clausula FROM.

SELECT A, C FROM R1, R2 WHERE R1.B = R2.B;

Escreva o esquema e o resultado das operações abaixo, sob forma de tabela.

i. SELECT * FROM R2, R3;

В	С	D	E
2	3	1	5
0	0	1	5

ii. SELECT * FROM R2 JOIN R3;

В	С	D	Ε
2	3	1	5
0	0	1	5

iii. SELECT A,C FROM R1 RIGHT OUTER JOIN R2 ON R1.B = R2.B;

A	С
1	3
NULL	0

iv. SELECT A,C FROM R1 LEFT OUTER JOIN R2 ON R1.B = R2.B;

A	С
1	3
3	NULL
7	NULL