普通生物学(C)试题整理

来自 Xzonn 的小站

作业题整理

込 下う	为历次作业中出现过的题目。				
1. [以下哪个是生命的基本特征。				Е
A.	进化的适应性	B.	新陈代谢与	 万能量流动	
C.	对环境的应激性	D.	生长与繁殖	直	
E.	以上全部				
2. L	以下哪一类群所包含的物种数量最少。				В
A.	动物界 B. 豹属	C.	猫科	D. 食肉目	
E.	哺乳纲				
3. 7	在第1课关于蛇拟态的研究中,攻击人工蛇村	莫型的捕	i 猎者之一是	是哺乳动物。大多数哺乳动	物其实是色盲
Ē	无法如人类一样分辨色彩。以下哪一实验设	计是验证	正"人工蛇	模型的颜色对于捕食者是否	5重要"这一
ĵì	问题的最好方案。				Е
A.	在没有毒蛇 (红黑白环纹的珊瑚蛇) 分布的	的地区,	比较红黑白	日环纹的人工蛇模型相对于	黑棕白环纹的
	人工蛇模型的被攻击率				
В.	在有很多毒蛇 (红黑白环纹的珊瑚蛇) 分布	有的地区	,记录黑杨	宗白环纹的人工蛇模型的被工	文 击率
C.	在有很多毒蛇 (红黑白环纹的珊瑚蛇) 分布	布的地区	X, 比较黑标	宗白纵纹的人工蛇模型相对于	于黑棕白环纹
	的人工蛇模型的被攻击率				
D.	在有很多毒蛇 (红黑白环纹的珊瑚蛇) 分	布的地區	区, 比较黑	棕白环纹的人工蛇模型相对	计于纯棕色 人
	工蛇模型的被攻击率.				
E.	在有很多毒蛇 (红黑白环纹的珊瑚蛇) 分	布的地區	区, 比较红	黑白环纹的人工蛇模型相对	计于黑棕白 环
	纹的人工蛇模型的被攻击率				
4. j	关于组成生物体的常量元素与微量元素,以-	下描述正	确的是	•	C
A.	Mg 是微量元素				
B.	微量元素在人体中的含量低于 0.1%				
C.	自然界丰度低的元素对生物体的毒性可能	恨大			
D.	Fe 是常量元素				
E.	自然界丰度高的元素在生物体中的含量也高	高			
5. <u>/</u>	生物体通过排汗来散热,其中与这一机能直打	妾相关的	水的性质是	<u>.</u> .	В
A.	较大的表面张力				
B.	破坏液态水分子间的氢键需要吸收大量的热	热			
C.	破坏液态水分子间的氢键需要释放大量的热	热			
D.	固体 (冰) 的密度比液体小				
6. Ti	碳元素是生命构成的基本元素,原因是				A

A	碳元素能够形成大	而复杂的分子				
В	碳元素仅在有机分	子中存在				
C	生化物质的性质的	性质完全决定于碳元	素形成的骨	 架结构		
D	并非所有生化物质	均含有碳元素				
7.	以下哪种物质不属于	糖类 。				В
A	糖原	B. 糖精	C.	甘油醛	D. 几丁质	
8.	以下哪一种多糖的结	构带有最多的分支 _	•			E
A	纤维素	B. 几丁质	C.	直链淀粉	D. 支链淀粉	
E	糖原					
9.	相比于热带鱼,产自	南极的鱼油含有	_			A
A	更多不饱和脂肪酸					
В	更多胆固醇					
C	更多反式不饱和脂	肪酸				
D	更多氢化脂肪酸					
10.	以下关于脂类的说法	哪一个是正确的	- °			E
A	都由甘油和脂肪酸	构成	B.	都含有氮元素		
C	储藏能量的能力都	很低	D.	水溶液呈酸性		
E	都难溶或者不溶于	水				
11.	将生长中的细胞用 14	C标记的葡萄糖培养法	追踪生物大	分子的合成途	径,下面哪一种大分子最	早出现放射
	性。					В
A	蛋白质	B. 淀粉	C.	核酸	D. 脂肪酸	
12.	以下哪种生物大分子	不是通过脱水反应聚	合而成	<u> </u>		В
A	多糖	B. 脂类	C.	蛋白质	D. 核酸	
13.	蛋白质是生命存在的	重要基础,以下哪个	不属于蛋白	I质的功能	•	C
	结构支撑					
	提供营养					
	储存能量					
	催化反应					
		微量元素。下列哪些				В
		B. 血红蛋白				المراجعة الم
		, , _ , , , , , , , , , , , , , , , , ,		,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	青柠或柠檬汁配以多种调	
					4"生鱼的原理在于	. A
		蛋白质结构中的氢键,			活而	
		结构中的离子键,使	得蛋 白质型	性		
	· 柠汁中含有能水解					
		作用力溶解了细胞膜	(F) 남표4 (A) (F)	로파슈카라 리트로크 1d. /드		
				战敗非敗性氨	基酸缬氨酸取代。请推测	
	红蛋白中谷氨酸最可	肥沙丁。	70	亚山丘丛沙 1.	. kt}- 호7	A
A	蛋白质的表面		В.	蛋白质的疏水	性内部	

(C. 和氧气结合的	力活性位点	D. 血红素结合位点			
17.	如果氢键被破坏	、蛋白质的各级结构中,	那一级结构不受影响。			A
A	A. 一级结构	B. 二级结构	C. 三级结构	D.	四级结构	
18.	血红蛋白上导致	文了镰刀形贫血症的突变改变	变了蛋白质的哪些结构	•		D
A	A. 一级结构	B. 二级结构	C. 四级结构	D.	以上全部	
19.	以下哪种生物大	大分子在物理化学特性以及约	结构多样性上最保守。			C
A	A. 多糖	B. 多肽	C. DNA	D.	RNA	
20.	RNA 和 DNA 的	区别在于。				C
A	A.DNA 编码遗作	专信息,而 RNA 不能				
I	B. DNA 形成双钮	连结构,而 RNA 不能				
(C. DNA 含有胸肌	腺嘧啶而 RNA 不含 _; RNA	含有尿嘧啶			
Ι	D. 以上全部					
21.	以下有关细胞结	· 古构的描述,不正确的是 _	•			D
A	A. 质膜是一种选	译性屏障,允许氧气、营	养物质和代谢废物通过			
I	3. 真核细胞的遗	是传信息储存在细胞核中,	由核糖体执行信息传递的功能	Ł E		
(C. 细胞的内膜系	· 统成分既可以是连续的,	也可以通过囊泡的转运而连挂	妾		
Ι	D. 内质网是细胞	1内最大的内膜系统,负责	蛋白质合成的核糖体全部附着	 手内质	可网	
22.	原核生物中不存	产在以下哪种物质。				A
A	A. 核膜	B. DNA	C. 染色质	D.	以上全部	
23.	使用放射性 UTI	P (三磷酸尿苷,尿嘧啶的	衍生物) 理细胞, 在最初几分	分钟内,	请推测细胞中哪	一部位的
	放射性浓度最高	<u> </u>				D
A	A. 核纤层	B. 细胞质	C. 粗面内质网	D.	核仁	
24.	与膜脂合成相关	长的酶最可能位于细胞的哪-	一部位。			A
A	A. 内质网	B. 细胞核	C. 溶酶体	D.	高尔基体	
]	E. 细胞膜					
25.	布雷非德菌素 A	A(Brefeldin A)是一种从真	真菌分离的抗生素,抑制蛋白	目质从内]质网转运到高尔	基体。请
	问还有其他哪些	至细胞器和膜系统将受到影响	响。			A
A	A. 溶酶体、分泌	必泡和细胞膜				
I	3. 溶酶体、过氧	[化物酶体和细胞膜				
(C. 分泌泡、线粒	位体和细胞膜				
Ι	D. 溶酶体、分泌	必泡和核膜				
]	E. 所有胞内细胞	是器和内膜系统				
26.	固着核糖体上合	市成的蛋白质,一般会被运	输到 。			D
A	A. 细胞核	B. 线粒体	C. 溶酶体	D.	细胞外	
27.	主要起物质分选	是作用的细胞器是。				В
A	A. 内质网	B. 高尔基体	C. 溶酶体	D.	质体	
28.	很可能是由内共	生作用而形成的细胞器是	•			В
A	A. 内质网	B. 线粒体	C. 高尔基体	D.	溶酶体	
29.	紫杉醇在临床上	用于治疗乳腺癌, 其疗效:	是通过诱导与促进微管蛋白。	聚合, 阻	止了微管解聚而	实现的。

请据此推测癌细胞和止常细胞相比哪些细胞功能	更加显者,使得紫杉醇具有 <u>抗</u> 癌作用。	С
A. 细胞形态的维持	B. 纤毛或者鞭毛	
C. 细胞分裂时染色体的运动	D. 细胞缢裂	
E. 胞质环流		
30. 当细胞开始失水, 植物细胞不如动物细胞收缩的	那么明显,是因为。	D
A. 细胞质膜的伸缩性不同		
B. 细胞质膜上的小孔数目不同		
C. 细胞内外的渗透压不同		
D. 植物细胞具有细胞壁		
31. 细胞膜有能量交换、物质运输和能量传递三种功	能,这些功能与以下哪一种物质均有关。	C
A. 磷脂 B. 糖类	C. 蛋白质 D. 固醇类	
32. 关于细胞膜的描述,正确的是。		A
A. 脂肪酸构成磷脂非极性的尾部, 朝向膜的中央		
B. 磷酸构成细胞膜非极性的尾部, 朝向膜的两侧		
C. 磷脂在膜上具有流动性, 膜蛋白没有		
D. 膜蛋白覆盖在磷脂的两侧		
33. 钠离子通过以下哪种方式实现跨膜运输。		C
A. 简单扩散 B. 易化扩散	C. 主动运输 D. 胞吞与胞吐	
34. 以下与物质运输相关的膜蛋白, 行使协同运输作	用的蛋白是。	C
A. 水孔蛋白		
B. 离子通道蛋白		
C. 质子泵驱动的葡萄糖转运载体		
D. 钠钾离子泵		
35. ATP 成分是。		В
A. 鸟嘌呤 核糖 磷酸	B. 腺嘌呤 核糖 磷酸	
C. 鸟嘌呤 脱氧核糖 磷酸	D. 腺嘌呤 脱氧核糖 磷酸	
36. 以下分子中,不能作为细胞信号传递的第二信使的	句是 。	D
A. 钙离子	B. 三梨酸肌醇和二酰甘油	
C. 环化一磷酸腺苷	D. 氧气	
37. 在细胞转导过程中,信号分子与其受体结合,引	发细胞内一系列反应。这个过程一定涉及。	В
A. 蛋白质的共价修饰		
B. 蛋白质高级结构的改变		
C. 转录因子的激活		
D. 新基因的表达		
38. 以下对 G 蛋白耦联受体的描述,不正确的是:	•	В
A. 是多次跨膜的蛋白		
B. 能够将 GTP 水解为 GDP, 从而改变自身活性		
C. 一般需要第二信使在细胞内传递信号		
D. 与我们的视觉、味觉等有紧密关联		

39. 🕹	生长因子类的受体一般具有潜在的激酶活性。当′	它们]被激活时,能够	•		C
A.	对赖氨酸残基进行乙酰化修饰					
B.	对丝氨酸残基进行磷酸化修饰					
C.	对酪氨酸残基进行磷酸化修饰					
D.	有时修饰苏氨酸,有时修饰丝氨酸					
40.	类固醇激素作用于细胞后,最终导致。					В
A.	第二信使的合成	B.	新蛋白的合成			
C.	细胞质 Ca ²⁺ 浓度上升	D.	蛋白质磷酸化			
41. 1	以下有关氧化还原反应的描述错误的是。					В
A.	氧化过程是指,反应物失去电子; 还原过程是	指,	反应物得到电子			
В.	电子的受体称为还原剂,电子的供体称为氧化剂	剂				
C.	反应物之间发生电子转移的化学反应被称为氧	化辽	区原反应			
D.	化学反应中通过电子的转移,将储存在有机分	子中	的能量释放出来,释	汝的	能	
42. l	从下关于酶的描述错误的是。					D
A.	酶可以催化水解反应	B.	酶可以降低反应的活	化能	垒	
C.	酶与底物的结合具有特异性	D.	所有的酶均为蛋白质			
43.	经过糖酵解,每一分子的葡萄糖被氧化为丙酮酸		°			C
A.	产生6个分子的ATP					
В.	消耗 4 个分子的 ATP, 产生 2 个分子的 ATP					
C.	消耗 2 个分子的 ATP,产生 4 个分子的 ATP					
D.	净产生4个ATP					
44. [从下有关细胞呼吸的描述,错误的是。					C
A.	在细胞呼吸的过程中,来自有机物的电子首先	被转	转移至 NAD ⁺ ,NAD ⁺ 7	玍细	胞呼吸过程中起到	到氧化剂
	的作用					
B.	细胞呼吸过程中产生 ATP 最多的步骤是氧化磷	酸化	上的过程			
C.	糖酵解和三羧酸循环过程中的底物水平磷酸化	并不	产生 ATP			
D.	糖酵解主要发生在细胞质,先后可分为耗能阶具	没利	口放能阶段			
45. l	以下物质中,不是三羧酸循环的中间产物的是 _		•			D
A.	草酰乙酸 B. 延胡索酸	C.	琥珀酸	D.	乙酰辅酶 A	
46.	下列物质中,无法进入三羧酸循环被彻底氧化分解	解的	为是。			C
A.	硬脂酸 B. 谷氨酸	C.	尿素	D.	果糖	
47. <i>A</i>	ATP 是重要的能量提供者。关于 ATP 的说法,正	确自	的是。			Е
A.	呼吸作用中 ATP 主要由 ATP 合酶产生					
B.	糖酵解产生 ATP 的机制,与三羧酸循环直接产	生	ATP 的机制相同			
C.	ATP 有时还提供磷酸基团,用于修饰蛋白质,!	以改	文变蛋白质的生物活性			
D.	如果线粒体内膜的不通透性被破坏,ATP 的产生	生将	子受到严重影响			
E.	以上全部					
48. ∜	塘酵解过程中,ATP 的形成机制是 。					C
A.	氧化磷酸化 B. 光和磷酸化	C.	底物水平磷酸化	D.	电子传递	

49. 关于化学渗透假说,错误叙述是。		D
A. 需要在线粒体内膜两侧形成电位差		
B. H ⁺ 顺离子浓度梯度由膜外回流驱动 ATP 形成		
C. 质子泵的作用在于储存能量		
D. 必须把膜外侧的 H ⁺ 通过呼吸链泵到膜内		
50. 呼吸作用中,葡萄糖分解代谢顺序描述正确的是	•	D
A. 葡萄糖 (细胞质) →乙酰辅酶 A (线粒体基质	t) → 丙酮酸 (线粒体内膜) → CO ₂ (线粒体基	基质)
B. 葡萄糖 (细胞质) →乙酰辅酶 A (线粒体内膜	!) →丙酮酸 (线粒体基质) →氧 (线粒体基质	质)
C. 葡萄糖 (线粒体基质) →丙酮酸 (细胞质) —	→ 细胞色素 C (线粒体内膜) \rightarrow CO_2 (线粒体基	基质)
D. 葡萄糖 (细胞质) →丙酮酸 (细胞质) → 乙酉	先辅酶 A(线粒体基质) \rightarrow CO ₂ (线粒体基质)	
51. 白化病是常染色体隐性遗传病,一对肤色正常的]夫妇产下一名患有白化病的女婴后,再产下—	-名患有白
化病的男婴的概率是:		D
A. 0 B. 1/2	C. 1/4 D. 1/8	
52. 一只白母鸡和一只黑公鸡的后代均为灰色,对于	这种遗传模式,最简单的解释为:	E
A. 基因的多效性	B. 性连锁遗传	
C. 等位基因的自由组合	D. 基因的连锁	
E. 不完全显性		
53. 一对男女婚后生育子女 5 人, 但没有一人与他们之	之中任何一个血型相同,则二人血型最可能是	В
A. A 型和 B 型 B. AB 型和 O 型	C. AB 型和 AB 型 D. O 型和 O 型	
54. 下列疾病中,按照孟德尔定律遗传的是		В
A. 糖尿病		
B. 软骨发育不全侏儒症		
C. 乳腺癌		
D. 先天性心脏病		
55. 家族性高胆固醇血症是一种:		A
A. 常染色体显性遗传病	B. 常染色体隐性遗传病	
C. X 染色体显性遗传病	D. X 染色体隐性遗传病	
56. 本节课所提到的短尾家猫的谱系中, 猫妈是半	长尾,猫爸正常尾。生下的后代中,尾长有半	华民尾的,
也有极短的几乎无尾的个体,请问以下哪一种解	解最合理?	D
A. 共显性 B. 不完全显性	C. 不完全外显 D. 基因型的表现度	Ë
57. 夫妻二人都有耳垂,他们生下一个儿子,关于耳	垂的表型为:	C
A. 一定有耳垂		
B. 一定无耳垂		
C. 有耳垂和无耳垂的可能性都有		
D. 和性别有关		
58. 以下说法正确的是.		A
A. 有一些隔代遗传的现象可以用显性基因的外显		
B. 在人群中, 一个显性基因的频率比隐性基因的]频率高	
C. 亨廷顿舞蹈症的病因是致死性显性突变, 该致	[病基因将消失	

- D. 粉色绣球花的遗传模式是不完全显性
- 59. 两只大白猫生出的小猫有各种不同的毛色型,对于形成这种色型遗传模式的最简单的解释是
- В

- A. 基因的多效性
- B. 基因的上位效应
- C. 多基因遗传
- D. 复等位基因效应
- E. 不完全显性
- 60. 本节课所提到的一只近白的布偶猫和一只纯黑猫生了一只小蓝猫(灰色,在家猫的毛色定义中称为蓝 猫),对于形成这种蓝猫的色型遗传模式的解释是: C

- A. 基因的多效性 B. 基因的上位效应 C. 多基因遗传 D. 复等位基因效应
- E. 不完全显性
- 61. 最早提出遗传因子在染色体上的是:

- A. 孟德尔
- B. 摩尔根
- C. 萨顿
- D. 杜布赞斯基

- 62. 关于遗传的染色体学说,以下描述正确的是:

 - A. 萨顿将特定基因与特定染色体相联系
 - B. 摩尔根发现了减数分裂过程中染色体行为与遗传因子的平行关系
 - C. 摩尔根实验室确定了果蝇眼色基因位于 X 染色体上
 - D. 位于同一条染色体上的基因连锁遗传
- 63. 已知蜜蜂和蚂蚁的雄性为单倍体。那么与 XY 性别决定的二倍体物种相比, 以下对
- D

C

 \mathbf{C}

- A. 雄性蜜蜂体内的 DNA 含量是雌性蜜蜂的一半,而人类男性和女性体内所含的含量基本相同 DNA
- B. 从基因组的角度考虑,同样发生在基因组上的隐性有害突变对于蜜蜂雄性的影响要高于对于果蝇雄性 的影响
- C. 雄性的哺乳动物和果蝇可以产生雄性的后代, 而雄性的蜜蜂则不可能产生雄性的后代
- D. 以上答案全部正确
- 64. 三倍体生物通常不育,而四倍体生物常常是可育的,以下哪一说法是对该现象的合理解释?
 - A. 有丝分裂中, 三倍体生物中的一些染色体无法实现同源染色体联会配对, 然而四倍体生物的染色体联 会配对不受影响
 - B. 减数分裂中,三倍体生物中的一些染色体无法实现同源染色体联会配对,然而四倍体生物的染色体联 会配对不受影响
 - C. 有丝分裂中, 四倍体生物中的一些染色体无法实现同源染色体联会配对, 然而三倍体生物的染色体联 会配对不受影响
 - D. 减数分裂中, 四倍体生物中的一些染色体无法实现同源染色体联会配对, 然而三倍体生物的染色体联 会配对不受影响
- 65. 司法机构的亲子鉴定的哪一结果可表明被测 "父亲" 不是孩子的亲生父亲?

В

- A. 孩子的线粒体 DNA 序列与 "父亲" 的不同
- B. 孩子的 5 号染色体 DNA 序列与 "父亲" 的不同
- C. 孩子的线粒体 DNA 序列与母亲的不同
- D. 孩子的 5 号染色体 DNA 序列与母亲的不同
- E. 孩子的线粒体 DNA 序列与 "父亲" 的相同但是与母亲的不同

66. J	血友病是 X 染色体连	锁的隐性遗传病。如	果父亲患血友病,而	母亲及其家族均正常	的,则其后代中最有
Ī	可能患血友病的是:				D
A.	儿子	B. 女儿	C. 孙子	D. 外孙	
67	一个男人在核电站工作	作, 妻子在超市工作,	这个家庭生了一个点	患血友病的男孩,因	因此男人起诉了核电
Ž	站,要求为患儿治疗并	并赔偿。从遗传学角度	,你被要求在法庭上	作证,你会对这种情	情况做怎样的解释?
A.	核电站有责任				В
B.	核电站无责任		C. 超市和核电	站都有责任	
D.	很难说				
68. 7	生北大校园里见到一 只	?纯色的大橘猫,关于	它的性别,以下说法	正确的是	A
A.	公猫的可能性较大				
B.	母猫的可能性较大				
C.	公猫和母猫的可能性	上一样			
D.	不好说				
69.	关于哺乳动物的剂量补	卜偿效应,下列说法不	正确的是		C
A.	失活的 X 染色体会被	皮减数分裂激活, 但不	不会被有丝分裂激活		
B.	X 染色体随机失活是	是雌性哺乳动物特有的	,在一般情况下雄性	不会发生	
C.	雌性细胞中两条X多	染色体均有活性			
D.	一位女性的细胞含有	 再两个巴尔小体,她可	能的性染色体组成可	能为 XXX	
70. J	真核生物的染色体具有	Ī:			E
A.	DNA				
B.	蛋白				
C.	RNA				
D.	核小体				
E.	上述全部				
71. I	DNA 复制过程中前导领	链与后随链的不同是:			A
A.	前导链合成的方向与	万复制叉移动的方向相	同,后随链合成的方	向与复制叉移动的力	方向相反
B.	前导链合成的是后隙	 链的两倍			
C.	后随链连续合成, 而	可前导链的合成需要先	合成一系列的冈崎片	段, 再由连接酶连接	接而成
D.	前导链的合成是由I	DNA 聚合酶在 3'端加	上核苷酸,而后随链	合成是由 DNA 聚合	酶在 5'端加上核苷
	酸				
72. <i>†</i>	如果一个 DNA 片段(线状 DNA 或者环状]	DNA) 可以发生复制	,那么必须具备以了	下描述中的哪一个条
1	牛?				В
A.	双螺旋结构				
B.	至少有一个复制起点	ī.			
C.	至少有 3,000,000 个	碱基对			
D.	必须有两个或两个以	人上的突变位点			
E.	必须有连接酶的结合	合位点			
73. 🗓	杂色体端粒酶的作用是	1			C
A.	防止 DNA 从端粒处	降解			

C.	防止 DNA 因复制过程而变短			
D.	合成 RNA 引物			
74.	为什么一些科学家认为,在生命起源的初期 RN	IA 作	为最开始的遗传物质,而不是 DNA?	A
A.	RNA 既可以储存遗传信息又可以起到催化作	用		
В.	RNA 中含有尿嘧啶,而 DNA 中含有胸腺嘧啶	定		
C.	RNA 的自我复制比 DNA 的自我复制更为准确	角		
D.	RNA 可以自发演化为 DNA			
E.	以上说法均正确			
75. f	 段设你发现了某基因上的一个突变,该突变不	影响	该基因所编码的多肽,那么该基因突变的类型可能	影
ļ	臣:			D
A.	一个核苷酸的缺失	В.	一个核苷酸的插入	
C.	起始密码子的位置移动	D.	一个核苷酸的替换	
76. 💈	细胞中进行蛋白质合成时,密码子指的是:			В
A.	DNA 上三个连续的脱氧核苷酸	В.	mRNA 上三个连续排列的核苷酸	
C.	蛋白质中三个连续排列的氨基酸	D.	细胞质中三个游离的 RNA 分子构成	
77.	下列物质不可能作为基因表达的终产物的是:			A
A.	mRNA B. tRNA	C.	rRNA D. 多肽	
78. I	以下关于 mRNA 修饰的作用的描述,正确的是,	:		D
A.	协助将 mRNA 运输到细胞质中			
B.	保护 mRNA 免受水解酶的影响			
C.	帮助核糖体结合到 mRNA 的 5' 端上			
D.	上述全部均正确			
79. J	具有同源结构的动物很可能:			A
A.	由同一祖先进化而来	B.	历史上偶然发生了类似的突变	
C.	没有关系	D.	具有更高的遗传多样性	
80. I	以下哪对性状属于同功性状?			В
A.	蜻蜓的翅膀和企鹅的鳍状肢	B.	蜻蜓的翅膀和蝙蝠的翅膀	
C.	企鹅的鳍状肢和鲨鱼的背鳍	D.	鲨鱼的背鳍和蝙蝠的翅膀	
81. l	以下系统发生树上的哪一分支点代表了鸡和蛙的	的最近	共同祖先 (the most recent common ancestor) ?	С
A.	分支点 A B. 分支点 B	C.	分支点 C D. 分支点 D	
82. 1	叚设两个物种有近期的共同祖先,那么这这两个	个物种	最可能	С
A.	没有形态学上的相似性	B.	酶的生化特性上没有很大的相似性	
C.	一些基因有相同的对应的氨基酸序列	D.	具有非常相似的栖息地	
83. 🔻	根据下图的系统发生树,以下哪一种性状不能用	于区	分陆生脊椎动物之间的系统发生关系?	A
A.	四足 B. 羊膜卵	C.	羽毛 D. 毛发	
84. 7	在生物演化中,一个生物体的适合度一般用以了	下哪一	个参数来衡量:	В
A.	环境变化时的物种稳定性	B.	对于下一代基因库的贡献	
C.	遗传多样性	D.	突变率	

B. 降解 DNA 复制后余留的 RNA 引物

A. 血红蛋白载氧气时呈鲜红色, 缺氧时呈蓝紫色。 B. 人类有尾椎骨的残余 C. 许多沙漠植物的叶呈针状 D. 镰刀型血红蛋白等位基因携带者对疟疾具有抗性 86. 囊性纤维化 (cystic fibrosis) 是由位于第7对染色体 CF 基因突变引起的常染色体隐性遗传病,该遗传 病在亚洲和非洲人群中极低,但是在北欧人群中较高,以下哪一种进化机制最合理地解释北欧人群中较 高的 CF 等位基因的频率? D A. 种群瓶颈效应 B. 奠基者效应 (founder effect) C. 遗传漂变 D. 自然选择 87. 有一种鸟的雌性偏好与色彩鲜艳的雄性交配,然而背部色彩鲜艳的雄性更容易被鹰捕捉。假设该物种具 有丰富的遗传多样性,那么最有可能的自然选择结果是: \mathbf{C} A. 雄性具有鲜艳的颜色 B. 雌性选择色彩黯淡的雄性 C. 雄性具有鲜艳的胸部和暗淡的背部 D. 这一物种会因被鹰捕捉了全部雄性而灭绝 88. 1. 以下描述哪一种场景描述最接近于1亿5千万年前的中生代? C ■ 海洋生物繁盛、陆地上尚没有生命的痕迹 ■ 蕨类植物繁盛, 无脊椎动物占主导 • 裸子植物繁盛, 爬行动物占主导 • 被子植物繁盛,哺乳动物占主导 89. 以下关于进化的说法正确的是. D A. 自然选择提供给种群或个体需要或希望的特征 B. 自然选择是一种强大的力量, 不停地驱策着生物体趋向完美 C. 生物进化发生在个体水平, 通过对于个体的自然选择、遗传漂变等机制而实现 D. 遗传漂变是指种群的特定基因频率在代际间发生随机改变的一种现象 90. 以下的哪一项发现将对生物进化的理论形成挑战? A. 从地球最古老的地层中发现哺乳动物化石 B. 南极大陆上发现了煤炭储藏 C. 加拉帕戈斯群岛中地雀的部分线粒体 DNA 序列与欧洲的一种鸟相同 D. 发现 4 亿年前鲎的化石, 形态与现存的中华鲎几乎没有差异 91. 为什么认为病毒都是专性寄生的? Α A. 病毒无法在宿主细胞外繁殖 B. 病毒 DNA 总要插入到宿主 DNA 中 C. 病毒会无差别杀害侵染的细胞 D. 病毒必须依赖病毒自身编码的酶 92. 病毒含有的核酸是. \mathbf{C} B. 只有 RNA C. 有 DNA 或 RNA D. 有 DNA 和 RNA A. 只有 DNA 93. 疯牛病是一种感染牛的中枢神经系统并致死的传染性疾病。以下关于疯牛病的说法正确的是. C

85. 生物的适应性定义为有利于生存和繁殖的性状,以下哪一种性状可认为是适应性的体现?

 \mathbf{C}

A.	将患病牛的大脑组织匀浆用细菌过滤器过滤,即可去除其感染性			
В.	疯牛病的感染会改变病牛的遗传信息			
C.	疯牛病的感染会改变病牛大脑中的蛋白质结构			
D.	将病牛肉用醋浸泡后再食用就不会患病			
94. D	人下关于支原体的说法错误的是:			A
A.	可以导致沙眼,我国科学家汤飞凡最早分离出了该病原体			
В.	是目前发现最小的细胞			
C.	根据最新分子系统学的研究证据,属于革兰氏阳性菌			
D.	没有细胞壁			
95. D	人下关于革兰氏阴性菌和革兰氏阳性菌的说法不正确的是:			C
A.	革兰氏阴性菌的细胞壁中的肽聚糖含量较革兰氏阳性菌低			
В.	革兰氏阴性菌的细胞壁由肽聚糖和磷脂双分子层组成			
C.	青霉素只能针对性地杀死革兰氏阴性菌			
D.	革兰氏阳性菌的细胞壁较革兰氏阴性菌厚			
96. D	人下哪一种对于细菌的描述最为正确?			C
A.	细菌都是有害的			
В.	细菌大多数是寄生的,必须依赖于寄主生活			
C.	芽孢是细菌的特有特征,可保持休眠状态几个世纪			
D.	细菌是引起流行性感冒的主要病因			
97. 7	下面关于古菌的说法正确的是:			C
A.	可导致多种人类疾病			
В.	相比于真核生物更接近于细菌			
C.	可以适应许多极端环境			
D.	是地球上最古老的光合作用微生物			
98. 🦠	区里的鱼缸不小心金鱼体表长了霉,死了。这里的"水霉"是一种			C
A.	绿藻 B. 真菌 C. 原生生物	D.	细菌	
99. 枚	公露巧克力(truffle chocolate)中的松露是指其形态和以下哪一种真菌相值	以?		C
A.	接合菌 B. 球囊菌 C. 子囊菌	D.	担子菌	
100. 4	生态系统的以下哪一种功能不属于真菌?			D
A.	分解者 B. 寄生者 C. 捕食者	D.	生产者	
101. 1	尔观察到了几种单细胞生物,哪个特征可以使你确定它们属于真菌?			D
A.	具有线粒体			
B.	不具有叶绿体			
C.	具有细胞核			
D.	具有几丁质细胞壁			
102. 月	月二命名法来定名的家猫的学名是			C
A.	Felis Catus B. Felis Catus C. Felis catus	D.	Felis catus	
103. 🏋	青代袁枚有诗曰:白日不到处,青春恰自来。苔花如米小,也学牡丹开。	严;	格来说 "苔花"	的说法并
7	下正确,它其实是苔藓植物的:			A

	A.	孢子体	B.	配子体	(C.	孢子		D.	配子	
104.	框	直物中存在孢子体和配	子体	的世代交替, 1	以下关于	F孢	子体和配	子体说法正	确的	J是	D
	A.	孢子体只进行减数分	裂,	配子体只进行	有丝分裂						
	В.	植物的配子体需寄生	于推	已子体上							
	C.	配子体不如孢子体重	要								
]	D.	孢子体细胞中的遗传	物质	5多于配子体细胞	佨						
105.	维	主管植物比无维管植物:	具有	「更高的适应性,	原因在	E于	维管组织	使植物具有	以下	哪一种特征?	В
	A.	储存水分	B.	高大的孢子体	(C.	通过孢子	繁殖	D.	高大的配子体	
106.	D	人下哪种结构为被子植	物的]胚提供营养?							D
	A.	珠被	B.	膨大的子房壁	(C.	大孢子母	细胞	D.	胚乳	
107.	크	6细胞开始失水,植物:	细胜	见不如动物细胞L	 收缩的那	『 么	,明显,是	因为:			D
	A.	细胞质膜的伸缩性不	同]	B.	细胞质膜	上的小孔数	目不	同	
	C.	细胞内外的渗透压不	同		I	D.	植物细胞	具有细胞壁			
108.	轺	副对称体型的动物比	两侧	对称动物更擅	长哪种往	亍为	1?				C
	A.	沿特定方向快速移动									
	В.	准确侦测到来自上方	和下	方的威胁							
	C.	高效摄取 360°均匀分	布的	自食物							
]	D.	注意力保持在一个方	向								
109.	有	E演化上海绵动物与其	他所	「有的动物都不」	司在于						E
	A.	成体不能运动,与植	物类	終似]	B.	绝大多数	个体是雌雄	同体	Ž	
	C.	没有特化的细胞类型]	D.	只有两胚	层			
	E.	没有真正的组织分化									
110.	‡	方肢动物是地球上最繁	盛的	可动物类群,以	下关于节	方肢	动物的说	法错误的是			A
	A.	节肢动物的体节愈合	成头	、胸腹三部分							
	В.	蜘蛛不属于昆虫纲									
	C.	节肢动物有高度分工	的阵	t肢, 使其可以;	适应不同	可的	生存环境				
]	D.	存在固着生活的节肢	动物	J							
111.	阴	全工的是 以外所有脊髓	惟动	力物至少在其生活	舌史的音	73分	·时期都具	有的特征			Е
	A.	脊索	B.	背神经管	(C.	软骨		D.	头部	
	E.	上下颌									
112.	Д	日足动物的登陆是脊椎	动物	勿进化中的重大	事件,	以	下哪个不同	属于这一过程	呈中	出现的适应陆均	也生活的性
	出	† ?									В
	A.	有骨骼支撑的四肢	B.	湿润的皮肤	(C.	肺		D.	肋骨	
113.	D	人下特征中, 哪个不是	在乌	b类演化过程中,	产生的与	すて	行相关的	适应性性状	?		C
	A.	四心室和发达的肺部]	B.	角质化的	喙替代牙齿			
		羊膜卵						只有单个卵	巢		
		人下关于鸟类、哺乳类			关系的说	兑法	哪个是正	确的?			A
	A.	鸟类与恐龙有最近的	共同	祖先							
	В.	爬行类和鸟类都是四	足类	度,而哺乳类不是	是						

C.	哺乳类出现于恐龙刃	7绝之后					
D.	鸟类和哺乳类之间的	的关系比鸟	类和鳄鱼类更近				
115.	以下描述哪一种场景指	描述最接近	于1亿5千万年	前的中生代?			C
A.	海洋生物繁盛,陆地	也上尚没有	生命的痕迹				
B.	蕨类植物繁盛,无省	脊椎动物占	主导				
C.	裸子植物繁盛,爬行	_了 动物占主	:导				
D.	被子植物繁盛, 哺乳	L动物占主	导				
116.	以下哪一种性状不能用	月于区分陆	生脊椎动物之间	的系统发生关系?			A
A.	四足	B. 羊膜	卵	C. 羽毛	D.	毛发	
117.	在脊索动物的演化历程	星中,以下	哪种动物最早出	现了头?			D
A.	蚯蚓						
B.	海鞘						
C.	蚓螈						
D.	盲鳗						
118.	以下哪个物种不属于人	入科 (Hom	inidae) ?				C
A.	始祖地栖猿	B. 南方	古猿	C. 长臂猿	D.	倭猩猩	
E.	红毛猩猩						
119.	1974年出土于东非的詞	露茜(Luc	y)从人类进化角	度来看,属于:			A
A.	南方古猿	B. 能人		C. 直立人	D.	智人	
120.	1930年在北京周口店方	龙骨山发现	2的山顶洞人,从	人类进化角度来看,	属于:		D
A.	南方古猿	B. 能人		C. 直立人	D.	智人	
121.	1929年在北京周口店力	龙骨山出土	上的北京猿人,从	人类进化角度来看,	属于:		C
A.	南方古猿	B. 能人	-	C. 直立人	D.	智人	
122.	几种早期人类出现的先	上后顺序最	准确的是?				C
A.	始祖地栖猿—直立人	—南方古	猿—智人				
B.	南方古猿—始祖地根	西猿—智人	.—直立人				
C.	始祖地栖猿—南方古	了猿— 直立	人—智人				
D.	南方古猿—直立人—	-始祖地栖	i猿—智人				
	美国经济学家 Casey M			-			
	更多物种,同时降低组						
2	绝的物种起死回生的打	支术 ,以』	比达到生物多样性	生和物种保护的目的	。这样的	保护的理念忽略了生	上物多
	羊性的不同层次, 即便	更成功也是	只是实现了以下	哪一层次的保护?			В
	遗传多样性						
	物种多样性						
C.	生态系统多样性						
D.	以上全部						

© \$ 0 BY NC SA