CS 511, Fall 2020, Lecture Slides 10 Binary Decision Diagrams (BDD's)

Assaf Kfoury

September 15, 2020

background and reading material

- ► The last chapter, Chapter 6, in the book [LCS] is entirely devoted to BDD's. You should read at least Sections 6.1 and 6.2.
 - Sections 6.3 and 6.4 go into topics that will not be covered this semester (**symbolic model-checking** and **mu-calculus**), but still cover material that will deepen your knowledge of BDD's, if you can handle them.
 - My presentation is somewhat different from that in [LCS], especially in regard to explaining connections between propositional WFF's and BDD's.
- Although there is rather little on BDD's, especially from a persepctive stressing formal methods and formal modeling in textooks,¹ there is a lot on BDD's that you can find by searching the Web.
 - For a good expository account of BDD's and their history, click here

¹ There is a book by Rolf Drechsler and Bernd Becker, *Binary Decision Diagrams, Theory and Practice*, 1998, written from the perspective of people working on VLSI (Very Large Scale Integration) and the design of electronic circuits. From an algorithmic perspective, there is a very nice section (Section 7.1.4) in Donald Knuth, *The Art of Computer Programming, Vol. 4*, 2008.

canonical representations of WFF's of propositional logic?

Proof: given a WFF φ of propositional logic, is there a **canonical representation** of φ , call it φ^* , satisfying the following condition:

```
for every WFF \psi of propositional logic, \varphi and \psi are equivalent iff \varphi^\star=\psi^\star?? (we write \varphi^\star=\psi^\star to mean \varphi^\star and \psi^\star are syntactically the same.)
```

canonical representations of WFF's of propositional logic?

Proof given a WFF φ of propositional logic, is there a **canonical representation** of φ , call it φ^* , satisfying the following condition:

```
for every WFF \psi of propositional logic, \varphi and \psi are equivalent iff \varphi^\star = \psi^\star?? (we write \varphi^\star = \psi^\star to mean \varphi^\star and \psi^\star are syntactically the same.)
```

- if yes, hopefully φ^* and ψ^* are obtained by "easy" syntactic transformation, allowing for a "quick" syntactic test $\varphi^* = \psi^*$
- perhaps the CNF's of propositional WFF's can be the desired canonical representations???
- or perhaps the DNF's of propositional WFF's can be the desired canonical representations???

bad news: CNF's and DNF's are not canonical representations

Two WFF's of propositional logic:

$$\varphi \triangleq x \land (y \lor z)$$

$$\psi \triangleq x \land (x \lor y) \land (y \lor z)$$

- $ightharpoonup \varphi$ and ψ are both in CNF
- ightharpoonup arphi and ψ are equivalent
- \blacktriangleright yet, φ and ψ are syntactically different
- Conclusion:

CNF's are **not** canonical representations of propositional WFF's. Same conclusion for DNF's. ²

²See comments in Lecture Slides 05 on what is *canonical*

truth-table representation of propositional WFF's is canonical

Canonicity of Truth Tables: For arbitrary propositional WFF's φ_1 and φ_2 , φ_1 and φ_2 are equivalent iff $\mathbf{table}(\varphi_1) = \mathbf{table}(\varphi_2)$.³

The equivalence of φ_1 and φ_2 is therefore reduced

to a syntactic test of equality between $\mathbf{table}(\varphi_1)$ and $\mathbf{table}(\varphi_2)$.

We limit $table(\varphi)$ to the columns corresponding to the variables in φ together with the last column in the truth-table of φ .

truth-table representation of propositional WFF's is canonical

- **Canonicity of Truth Tables**: For arbitrary propositional WFF's φ_1 and φ_2 , φ_1 and φ_2 are equivalent iff $\mathbf{table}(\varphi_1) = \mathbf{table}(\varphi_2)$. The equivalence of φ_1 and φ_2 is therefore reduced to a syntactic test of equality between $\mathbf{table}(\varphi_1)$ and $\mathbf{table}(\varphi_2)$.
- **Example**: for the WFF's $\varphi = x \wedge (y \vee z)$ and $\psi = x \wedge (x \vee y) \wedge (y \vee z)$ on slide 5, $\mathbf{table}(\varphi) = \mathbf{table}(\psi)$ is the following truth-table:

\mathcal{X}	У	z	φ	
F	F	F	F	
F	F	Т	F	
F	Т	F	F	
F	Т	Т	F	
Т	F	F	F	
Т	F	Т	T	
Т	Т	F	Т	
Т	Т	Т	Т	

, , -			9
х	y	z	ψ
F	F	F	F
F	F	Т	F
F	Т	F	F
F	Т	Т	F
Т	F	F	F
Т	F	Т	Т
Т	Т	F	Т
Т	Т	Т	Т

But canonicity of truth tables comes with a heavy price, which is . . .

 $^{^3}$ We limit $able(\varphi)$ to the columns corresponding to the variables in φ together with the last column in the truth-table of φ .

in search of a canonical representation of propositional WFF's

In the next few slides, we show:

- how to transform an arbitrary propositional WFF $\,\varphi$ to a binary decision tree (BDT) representing $\,\varphi$,
- how to translate a binary decision tree (BDT) T back to a propositional WFF that T represents,
- how to transform a binary decision tree (BDT) T to an equivalent binary decision diagram (BDD) D.
- how to transform a binary decision diagram (BDD) D to an equivalent reduced ordered binary decision diagram (OBDD) D'.

for propositional WFF φ with atoms in $X = \{x_1, \dots, x_n\}$, two basic approaches:

- (A) substitute \bot (*i.e.*, *false*) and \top (*i.e.*, *true*) for the atoms in X in some order, delaying simplification until all atoms are replaced.
- (B) substitute \bot (*i.e.*, *false*) and \top (*i.e.*, *true*) for the atoms in X in some order, without delaying simplification until all atoms are replaced.
 - method (A) produces a full binary tree with exactly $(2^n 1)$ internal nodes and 2^n leaf nodes.
 - ▶ method (B) produces a binary tree with at most $(2^n 1)$ internal nodes and 2^n leaf nodes.
 - \blacktriangleright simplification in both methods based on, for arbitrary WFF ψ :

as well as $(\psi \to \psi') \equiv (\neg \psi \lor \psi')$, commutativity of " \lor " and " \land ", etc.

Example: applying method (A) to WFF $\varphi \triangleq (q \rightarrow p) \land r \rightarrow (p \leftrightarrow r) \land q$:

The preceding is a binary tree, labelled in a particular way, but NOT yet a BDT!

Example: applying method (B) to WFF $\varphi \triangleq (q \to p) \land r \to (p \leftrightarrow r) \land q$:

The preceding is a binary tree, labelled in a particular way, but NOT yet a BDT!

Remarks:

▶ for the same WFF $\varphi \triangleq (q \to p) \land r \to (p \leftrightarrow r) \land q$ in slide 11, method (B) produces different trees for different orderings of the atoms $\{p,q,r\}$.

Exercise: apply method (B) to φ using the ordering: (1) r, (2) q, and (3) p.

• the trees returned by methods (A) and (B) give the same complete semantic information about the input WFF φ .

for the input $\varphi \triangleq (q \to p) \land r \to (p \leftrightarrow r) \land q$ in slides 10 and 11:

- arphi is ${f not}$ a tautology/valid WFF ${f -}$ some leaf nodes are ${f \perp}$
- φ is ${\color{red}\textbf{not}}$ unsatisfiable/contradictory WFF ${\color{gray}\textbf{-}}$ some leaf nodes are \top
- φ is contingent WFF :
 - φ is satisfied by any valuation of $\{p, q, r\}$ induced by a path from the root to a leaf node \top
 - ightharpoonup arphi is falsified by any valuation of $\{p,q,r\}$ induced by a path from the root to a leaf node \bot

one more step to transform the trees in slides 10 and 11 returned by methods (A) and (B) into what are called binary decision trees (BDT's):

Starting from the same WFF, we obtained two different BDT's! And the shape of the BDT on the right, obtained using method (B), changes with the orderings of $\{p, q, r\}$!!

from a binary decision tree (BDT) to a propositional WFF

one approach is to write a DNF (disjunction of conjuncts) where each conjunct represents the truth assignment along a path from the root of the BDT to a leaf node labelled "1".

Example: We can write the DNF's φ_A and φ_B , below, for the BDT's on the left and on the right in slide 13, respectively:

$$\varphi_{A} \triangleq (\neg p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land \neg r) \lor (p \land q \land \neg r) \lor (p \land q \land r)$$

$$\varphi_{B} \triangleq (\neg p \land \neg q \land \neg r) \lor (\neg p \land q) \lor (p \land \neg q \land \neg r) \lor (p \land q)$$

there are 6 conjuncts in φ_A and 4 conjuncts in φ_B , corresponding to the number of paths in each of the two BDT's leading to a leaf node "1".

from a binary decision tree (BDT) to a propositional WFF

another approach is to write a WFF using the logical connective if-then-else.

Example: For the BDT on the right in slide 13 (leaving the BDT on the left in slide 13 to you), we can write:

Exercise: the logical connective **if-then-else** is not directly available in the syntax of propositional logic. Show how to define **if-then-else** using the standard connectives in $\{\rightarrow, \land, \lor, \neg\}$.

binary decision trees (BDT), binary decision diagrams (BDD)

- definition of BDT is in first paragraph of Sect 6.1.2 [LCS, page 361]
- definition of BDD in Definition 6.5 [LCS, page 364]
- BDT's are a special case of BDD's
- BDD's allow three optimizations {C1, C2, C3} [LCS, page 363], which are not allowed in BDT's

consider the propositional WFF φ (written as a Boolean function of 6 variables):

$$\varphi \triangleq (x_1 + x_2) \cdot (x_3 + x_4) \cdot (x_5 + x_6)$$

 $(\varphi$ as a function, we follow the convention: "+" instead of " \vee " and " \cdot " instead of " \wedge ")

- if we include all propositional variables along all paths from the root, then the corresponding ${\bf BDT}(\varphi)$ has $2^6=64$ leaf nodes and $2^6-1=63$ internal nodes (just too large to draw on this slide!!)
- ▶ if **BDT**(φ) is produced using method (A) in slide 9, then its size is not affected by the ordering of the variables $\{x_1, x_2, x_3, x_4, x_5, x_6\}$, it is the same regardless of the ordering
- relative to a fixed ordering of the variables, *e.g.*, $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$, starting from the root, **BDT**(φ) is unique (as an unordered binary tree)

▶ applying repeatedly reduction rules $\{C1, C2, C3\}$ to $BDT(\varphi)$ on slide 17:

C1: merge leaf nodes into two nodes "0" and "1"

C2: remove redundant nodes

C3: merge isomorphic sub-dags

we obtain a ROBDD w.r.t. to the ordering $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$:

▶ applying repeatedly reduction rules $\{C1, C2, C3\}$ to $BDT(\varphi)$ on slide 17:

C1: merge leaf nodes into two nodes "0" and "1"

C2: remove redundant nodes

C3: merge isomorphic sub-dags

we obtain a ROBDD w.r.t. to the ordering $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$:

however, w.r.t. the (different) ordering $x_1 < x_3 < x_5 < x_2 < x_4 < x_6$, applying the 3 reduction rules repeatedly produces a much larger ROBDD:

consider the so-called two-bit comparator:

$$\psi \triangleq (x_1 \leftrightarrow y_1) \land (x_2 \leftrightarrow y_2)$$

and the corresponding ${\bf BDT}(\psi),$ which has 15 internal nodes/decision points and 16 leaf nodes:

(I use method (A) from slide 9 to obtain **BDT**(ψ) from ψ above.)

▶ applying repeatedly reduction rules {C1, C2, C3} to BDT(ψ) on slide 21, we obtain a ROBDD w.r.t. to the ordering $x_1 < y_1 < x_2 < y_2$, with 6 internal nodes and 2 leaf nodes:

however, if we use the ordering $x_1 < x_2 < y_1 < y_2$ for the BDT of the two-bit comparator ψ , and apply the 3 reduction rules repeatedly, we obtain a larger ROBDD, with 9 internal nodes and 2 leaf nodes:

facts about ROBDD's – some bad news!

► The *n*-bit comparator is the following WFF:

$$\psi_n \triangleq (x_1 \leftrightarrow y_1) \land (x_2 \leftrightarrow y_2) \land \cdots \land (x_n \leftrightarrow y_n)$$

- ▶ **Fact**: If we use the ordering $x_1 < y_1 < \cdots < x_n < y_n$, the number of nodes in **ROBDD** (ψ_n) is $3 \cdot n + 2$ (linear in n).
- **Fact**: If we use the ordering $x_1 < \cdots < x_n < y_1 < \cdots < y_n$, the number of nodes in **ROBDD**(ψ_n) is $3 \cdot 2^n 1$ (exponential in n).

Exercise: Prove two preceding facts (easy!) .

Fact: There are propositional WFF's φ whose ROBDD's have sizes exponential in $|\varphi|$ for all orderings of variables (bad news!) .

Exercise: Prove this fact (not easy!) .

Fact: Finding an ordering of the variables in an arbitrary φ so that the size of **ROBDD**(φ) is minimized is an NP-hard problem (more bad news!).

Exercise: Search the Web for a paper proving this fact.

facts about ROBDD's – some good news!

- Fact: ROBDD's are canonical.
 - Specifically, they are canonical relative to a fixed ordering of the variables (imposing the same ordering on variables in all paths from root to terminals), in which case **ROBDD**(φ) is a uniquely defined dag.
- ▶ **Fact**: Relative to the same ordering of variables along all paths from the root to a terminal, the transformation from $BDT(\varphi)$ to $ROBDD(\varphi)$ can be carried out in **linear time**.

facts about ROBDD's – still some **good** news!

Exploiting canonicity of ROBDD's.

- ▶ Fact: checking equivalence of φ and ψ is the same as checking if $\mathbf{ROBDD}(\varphi)$ and $\mathbf{ROBDD}(\psi)$ are equal, w.r.t. same ordering of variables.
- ▶ Fact: tautological validity of φ can be determined by checking if ROBDD(φ) is equal to the ROBDD with a single terminal label "1"
- ▶ Fact: unsatisfiability of φ can be determined by checking if ROBDD(φ) is equal to the ROBDD with a single terminal label "0"

facts about ROBDD's – more good news!

Exploiting canonicity of ROBDD's.

▶ Fact: satisfiability of φ can be determined by <u>first</u> checking if **ROBDD**(φ) is **equal** to the ROBDD with a single terminal label "0", in which case φ is unsatisfiable, otherwise

Exercise: Fill in the missing part in preceding statement (easy!) .

Exercise: determine if φ is satisfiable **and** construct a satisfying assignment (more interesting!) .

Exercise: determine if φ is satisfiable **and** count the number of satisfying assignments (still more interesting!).

▶ Fact: implication, *i.e.*, φ implies ψ , can be determined by checking if ROBDD($\varphi \land \neg \psi$) is equal to the ROBDD with a single terminal label "0"

Exercise: Prove this fact (easy!) .

(THIS PAGE INTENTIONALLY LEFT BLANK)