# Statistics with Spa Rows

Lecture 9

Julia Schroeder

## Outline

- Most important concepts
- Can model many questions (including previous t-test)
- If you understand linear models, everything else will be easy as a breeze!
- Aim to fit models to data















understandability vs perfect fit make assumptions consciously

#### **Observed data**















$$y_i = b_0 + b_1 x_i + \varepsilon_i$$



Data. Response variable, e.g. sparrow body mass.



Data. Response variable. Observation 1, 2, 3, etc. e.g. sparrow body mass.



Data. Response variable. Observation 1, 2, 3, etc. e.g. sparrow body mass.

Data. Explanatory variable. e.g. sparrow tarsus length.

$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

$$\downarrow \qquad \qquad \downarrow$$

$$b_0 = ? \qquad b_1 = ? \qquad ?$$

- Note difference in variable format
- Some are vectors, others are single values!



- Note difference in variable format
- Some are vectors, others are single values!
- We aim to estimate b<sub>0</sub> and b<sub>1</sub>
- We will get  $\varepsilon_i$  from the results

$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

- Note difference in variable format
- Some are vectors, others are single values!
- We aim to estimate  $b_0$  and  $b_1$  Parameter estimates
- We will get  $\varepsilon_i$  from the results Error, or residuals

$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

• Let's plot this

```
y_i = b_0 + b_1 x_i + \varepsilon_i
```

Let's plot this





$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

- Let's plot this
- Now we "guesstimate" the line

| У | X |
|---|---|
| 5 | 3 |
| 4 | 1 |
| 7 | 4 |
| 9 | 8 |
| 3 | 2 |



$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

- Let's plot this
- Now we "guesstimate" the line
- Now we "guesstimate" b<sub>0</sub> and b<sub>1</sub>

| У | X |
|---|---|
| 5 | 3 |
| 4 | 1 |
| 7 | 4 |
| 9 | 8 |
| 3 | 2 |



$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

- Let's plot this
- Now we "guesstimate" the line
- Now we "guesstimate" b<sub>0</sub> and b<sub>1</sub>:
- Intercept:



$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

- Let's plot this
- Now we "guesstimate" the line
- Now we "guesstimate" b<sub>0</sub> and b<sub>1</sub>:
- Intercept: something 2.2



$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

- Let's plot this
- Now we "guesstimate" the line
- Now we "guesstimate" b<sub>0</sub> and b<sub>1</sub>:
- Intercept: something 2.2
- Slope: close enough to 1



$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

- Let's plot this
- Now we "guesstimate" the line
- Now we "guesstimate" b<sub>0</sub> and b<sub>1</sub>:
- Intercept: something 2.2
- Slope: close enough to 1





- Let's plot this
- Now we "guesstimate" the line
- Now we "guesstimate" b<sub>0</sub> and b<sub>1</sub>:
- Intercept: something 2.2
- Slope: close enough to 1
- But what's with  $\varepsilon_i$ ?



$$y_i = 2.2 + 1x_i + \varepsilon_i$$

- But what's with  $\varepsilon_i$ ?
- The residuals are the "error" of the model
- We get them by plotting the vertical (y) distance:



$$y_i = 2.2 + 1x_i + \varepsilon_i$$

- But what's with  $\varepsilon_i$ ?
- The residuals are the "error" of the model
- We get them by plotting the vertical (y) distance:



$$y_i = 2.2 + 1x_i + \varepsilon_i$$

- But what's with  $\varepsilon_i$ ?
- The residuals are the "error" of the model
- We get them by plotting the vertical (y) distance



$$y_i = 2.2 + 1x_i + \varepsilon_i$$

0.1

- But what's with  $\varepsilon_i$ ?
- The residuals are the "error" of the model
- We get them by plotting the vertical (y) distance
- Just that R does this all for us





• How can we make this process scientific and mathematically tractable?



- How can we make this process scientific and mathematically tractable?
- Idea: line with smallest residuals wins!











#### No more guesstimates...



#### No more guesstimates...

0



Need to ensure residuals are evaluated as absolute value

Square all of the residuals!

# Sums of squares:





# Sums of squares:





# Sums of squares:





• Find  $b_0$  and  $b_1$  of a line that is positioned so that it minimizes the sum of the squared residuals  $\varepsilon_i$  for the data  $y_i$  and  $x_i$ 

• Find  $b_0$  and  $b_1$  of a line that is positioned so that it minimizes the sum of the squared residuals  $\varepsilon_i$  for the data  $y_i$  and  $x_i$ 

find minimum 
$$Q(b0, b1)$$
, for  $Q(b0, b1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$ 

• Find  $b_0$  and  $b_1$  of a line that is positioned so that it minimizes the sum of the squared residuals  $\varepsilon_i$  for the data  $y_i$  and  $x_i$ 

find minimum 
$$Q(b0, b1)$$
, for  $Q(b0, b1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$ 

• Find  $b_0$  and  $b_1$  of a line that is positioned so that it minimizes the sum of the squared residuals  $\varepsilon_i$  for the data  $y_i$  and  $x_i$ 

find minimum 
$$Q(b0,b1)$$
 for  $Q(b0,b1)=\sum_{i=1}^n \varepsilon_i^2=\sum_{i=1}^n (y_i-b_0-b_1x_i)^2$ 

• Find  $b_0$  and  $b_1$  of a line that is positioned so that it minimizes the sum of the squared residuals  $\varepsilon_i$  for the data  $y_i$  and  $x_i$ 

find minimum 
$$Q(b0,b1)$$
, for  $Q(b0,b1) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - b_0 - b_1 x_i)^2$ 

$$\bar{y} = b_0 + b_1 \bar{x}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

• Find  $b_0$  and  $b_1$  of a line that is positioned so that it minimizes the sum of the squared residuals  $\varepsilon_i$  for the data  $y_i$  and  $x_i$ 

find minimum 
$$Q(b0,b1)$$
 for  $Q(b0,b1) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - b_0 - b_1 x_i)^2$ 

$$b_{0} = \bar{y} - b_{1}\bar{x} \qquad b_{1} = \frac{\sum x_{i}y_{i} - \frac{1}{n}\sum x_{i}\sum y_{i}}{\sum x_{i}^{2} - \frac{1}{n}(\sum x_{i})^{2}}$$

• Find  $b_0$  and  $b_1$  of a line that is positioned so that it minimizes the sum of the squared residuals  $\varepsilon_i$  for the data  $y_i$  and  $x_i$ 

find minimum 
$$Q(b0,b1)$$
 for  $Q(b0,b1) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - b_0 - b_1 x_i)^2$ 

$$b_{0} = \bar{y} - b_{1}\bar{x} \qquad b_{1} = \frac{\sum x_{i}y_{i} - \frac{1}{n}\sum x_{i}\sum y_{i}}{\sum x_{i}^{2} - \frac{1}{n}(\sum x_{i})^{2}} = \frac{Cov[x, y]}{\sigma_{x}^{2}}$$

• Find  $b_0$  and  $b_1$  of a line that is positioned so that it minimizes the sum of the squared residuals  $\varepsilon_i$  for the data  $y_i$  and  $x_i$ 

find minimum 
$$Q(b0,b1)$$
, for  $Q(b0,b1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$ 

Solve for b<sub>1</sub>, and b<sub>0</sub>

Covariance between x and y

$$b_0 = \bar{y} - b_1 \bar{x} \qquad b_1 = \frac{\sum x_i y_i - \frac{1}{n} \sum x_i \sum y_i}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2} = \frac{Cov \left[x, y\right]}{\sigma_x^2}$$

• Find  $b_0$  and  $b_1$  of a line that is positioned so that it minimizes the sum of the squared residuals  $\varepsilon_i$  for the data  $y_i$  and  $x_i$ 

find minimum 
$$Q(b0,b1)$$
, for  $Q(b0,b1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$ 

Solve for b<sub>1</sub>, and b<sub>0</sub>

Covariance between x and y

$$b_0 = \bar{y} - b_1 \bar{x}$$
  $b_1 = \frac{\sum x_i y_i - \frac{1}{n} \sum x_i \sum y_i}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}$   $b_1 = \frac{Cov [x,y]}{\sigma_x^2}$ 

- Let's plot this
- Now we "guesstimate" the line
- Now we "guesstimate" b<sub>0</sub> and b<sub>1</sub>:
- Intercept: something 2.2
- Slope: close enough to 1
- But what's with  $\varepsilon_i$ ?



$$y_i = 2.2 + 1x_i + \varepsilon_i$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{Cov [x,y]}{\sigma_x^2}$$



x, y 3.5

4,7

8,9

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{Cov [x,y]}{\sigma_x^2}$$



SS: 3.03

x, y 3.5

4,7

8,9

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{Cov [x,y]}{\sigma_x^2}$$



SS: 3.03

#### **VARIANCE**



$$\sigma^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

$$\frac{3.5}{4.7} = \frac{(1-3.6)^{2} + (2-3.6)^{2} + (3-3.6)^{2} + (4-3.6)^{2} + (8-3.6)^{2}}{4}$$

$$= 7.3$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{Cov [x,y]}{\sigma_x^2}$$



$$\sigma^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} \\
= \frac{(1-3.6)^{2} + (2-3.6)^{2} + (3-3.6)^{2} + (4-3.6)^{2} + (8-3.6)^{2}}{4} \\
= 7.3$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{Cov[x,y]}{\sigma_x^2} = \frac{Cov[x,y]}{7.3}$$



$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{Cov[x,y]}{\sigma_x^2} = \frac{Cov[x,y]}{7.3}$$



x, y
1,4
2,3
3.5
4,7
8,9
$$Cov(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n}$$
= 6.05

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{Cov[x,y]}{\sigma_x^2} = \frac{Cov[x,y]}{7.3}$$



x, y  
1,4 
$$Cov(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n}$$
  
2,3  
3.5  
4,7  
8,9 = 6.05

$$b_0 = \bar{y} - b_1 \bar{x}$$
 $b_1 = \frac{Cov[x,y]}{\sigma_x^2} = \frac{6.05}{7.3}$ 



x, y
1,4
2,3
3.5
4,7
8,9
$$Cov(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n}$$
= 6.05

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{Cov[x,y]}{\sigma_x^2} = \frac{6.05}{7.3} = 0.83$$



$$b_1 = \frac{Cov [x,y]}{\sigma_x^2} = \frac{6.05}{7.3} = 0.83$$



$$\begin{array}{ll}
x, y \\
1,4 \\
2,3 \\
3.5 \\
4,7 \\
8,9
\end{array} = 6.05$$

$$\begin{array}{ll}
b_0 = \bar{y} - b_1 \bar{x} \\
= 5.6 - 0.83 * 3.6
\end{array}$$

$$b_1 = \frac{Cov [x,y]}{\sigma_x^2} = \frac{6.05}{7.3} = 0.83$$



$$\begin{array}{ll}
x, y \\
1,4 \\
2,3 \\
3.5 \\
4,7 \\
8,9
\end{array} = 6.05$$

$$\begin{array}{ll}
b_0 &= \bar{y} - b_1 \bar{x} \\
&= 5.6 - 0.83 * 3.6 \\
&= 5.6 - 2.99 \\
&= 2.5
\end{array}$$

$$b_1 = \frac{Cov[x,y]}{\sigma_x^2} = \frac{6.05}{7.3} = 0.83$$



- Coefficient of determination
- Proportion of how much variance in y is explained by x

$$R^2 = 1 - \frac{SS_{residuals}}{SS_{total}}$$



- Coefficient of determination
- Proportion of how much variance in y is explained by x

$$R^2 = 1 - \frac{SS_{residuals}}{SS_{total}}$$



Wait, what?

- Coefficient of determination
- Proportion of how much variance in y is explained by x

$$R^2 = 1 - \frac{SS_{residuals}}{SS_{total}}$$



We know what  $SS_{res}$  is – the residual sum of squares.  $\sum (y_i - x_i)^2 = \sum_{i=1}^{x} (\varepsilon_i)^2$ 

- Coefficient of determination
- Proportion of how much variance in y is explained by x

$$R^2 = 1 - \frac{SS_{residuals}}{SS_{total}}$$

We know what  $SS_{res}$  is – the residual sum of squares



$$\sum (y_i - x_i)^2 = \sum^{\mathsf{x}} (\varepsilon_i)^2$$

$$\sum (y_i - \bar{y})^2$$

- Coefficient of determination
- Proportion of how much variance in y is explained by x

$$R^2 = 1 - \frac{SS_{residuals}}{SS_{total}}$$

We know what  $SS_{res}$  is – the residual sum of squares



$$\sum (y_i - x_i)^2 = \sum^{\mathsf{x}} (\varepsilon_i)^2$$

$$\sum (y_i - \bar{y})^2 = \sigma^2 * (n - 1)$$

- Coefficient of determination
- Proportion of how much variance in y is explained by x

$$R^2 = 1 - \frac{SS_{residuals}}{SS_{total}}$$

We know what  $SS_{res}$  is – the residual sum of squares



$$\sum (y_i - \bar{y})^2 = \sigma^2 * (n - 1)$$

- Coefficient of determination
- Proportion of how much variance in y is explained by x

$$R^{2} = 1 - \frac{SS_{residuals}}{SS_{total}}$$

We know what SS<sub>res</sub> is – the residual sum of squares



The total sum of squares is this:

$$\sum (y_i - \bar{y})^2 = \sigma^2 * (n - 1)$$

5.8 \* 4 23.2

#### Linear regression:

- Minimizing sum of squared residuals of line
- Then get b₁ and b₀
- Calculate R<sup>2</sup> to assess how much variance in the response variable is explained by the explanatory variable

#### Exercise — no hand-out

• Run a linear regression in R with x and y as we've used them here.

```
• model1 <- (lm(y~x)) x, y
```

• model1 2,3

• summary(model1) 3.5
4,7

• anova(model1) 8,9

resid(model1)

- cov(x,y)
- var(x)
- plot(y~x)

#### Exercise — no hand-out

$$y_i = 2.2 + 0.83x_i + \varepsilon_i$$

-0.7 -> 0.49 1.2 -> 1.44 0.1 -> 0.01 1 -> 1

• Run a linear regression in R with x and y as we've used them here.

```
model1 <- (lm(y~x))
                        1,4
model1
                        2,3
                        3.5
summary(model1)
                        4,7
                        8,9
anova(model1)
resid(model1)
COV(X, Y)
var(x)
plot(y~x)
```

SS: 3.03

 $0.3 \rightarrow 0.09$ 

Questions:

What is confirmed?

What is different? Why?