F-statistics and PCA

Benjamin Peter

April 22, 2021

Population structure and ancient DNA

Population structure and ancient DNA

https://reich.hms.harvard.edu/

PCA and *F*-statistics

Goals of this talk

- Technical & Conceptual Background
- Establish conceptual links between frameworks
 - How can we interpret PCA in context of F-stats?
 - 4 How can we interpret F-stats in the context of PCA?
- (Use established links to improve data interpretation)

Goals of this talk

- Technical & Conceptual Background
- Establish conceptual links between frameworks
 - **1** How can we interpret PCA in context of *F*-stats?
 - We have a second to the context of PCA?
 Output
 Description:
- (Use established links to improve data interpretation)

Focus on intuition

Some details in terms of estimation, normalization, missing data will be glossed over

Definition	Branch length
$F_2(X_1, X_2) = \sum_{l} (X_{il} - X_{jl})^2 - H_1 - H_2$	$\begin{array}{cccc} A & P_0 \\ & & \\ P_1 & & P_2 \end{array}$

Definition

Branch length

$$F_2(X_1, X_2) = \sum_{l} (X_{il} - X_{jl})^2 - H_1 - H_2$$

$$F_3(X_x; X_1, X_2) = \sum_{I} (X_{xI} - X_{1I})(X_{xI} - X_{2I}) - H_X$$

$$F_3(X_x; X_1, X_2) = F_2(X_x, X_1) + F_2(X_x, X_2) - F_2(X_1, X_2)$$

Patterson et al. 2012; Peter 2016

	c.	٠.		
1)	efi	nıt	10	n
_	· · · ·			

Branch length

$$F_2(X_1, X_2) = \sum_{l} (X_{il} - X_{jl})^2 - H_1 - H_2$$

$$P_1$$
 P_2

$$F_3(X_x; X_1, X_2) = \sum_{l} (X_{xl} - X_{1l})(X_{xl} - X_{2l}) - H_X$$

$$P_1$$
 P_X P_2

$$F_3(X_x; X_1, X_2) = F_2(X_x, X_1) + F_2(X_x, X_2) - F_2(X_1, X_2)$$

"Admixture"- F_3 -statistic: If data is generated by a tree-like relationship, $F_3(P_X; P_1, P_2) \ge 0$

atterson et al. 2012; Peter 2016

	· ·		
- 1)	efir	าเป	\cap n
$\boldsymbol{\nu}$	CIII	ΠL	IUII

Branch	
length	

$$F_2(X_1, X_2) = \sum_{l} (X_{il} - X_{jl})^2 - H_1 - H_2$$

$$P_1$$
 P_2

$$F_3(X_x; X_1, X_2) = \sum_l (X_{xl} - X_{1l})(X_{xl} - X_{2l}) - H_X$$

$$P_1$$
 P_X P_2

$$F_3(X_x; X_1, X_2) = F_2(X_x, X_1) + F_2(X_x, X_2) - F_2(X_1, X_2)$$

"Outgroup" - F_3 -statistic: Most similar pops have highest $F_3(P_2; P_X, P_1)$

Patterson et al. 2012; Peter 2016

D (.	
Defi	nition

$$F_2(X_1, X_2) = \sum_{l} (X_{il} - X_{jl})^2 - H_1 - H_2$$

$$P_0$$

$$F_3(X_x; X_1, X_2) = \sum_{l} (X_{xl} - X_{1l})(X_{xl} - X_{2l}) - H_X$$

$$P_1$$
 P_X P_2

$$F_3(X_x; X_1, X_2) = F_2(X_x, X_1) + F_2(X_x, X_2) - F_2(X_1, X_2)$$

$$F_4^{(B)}(X_1; X_2; X_3, X_4) = \sum_{I} (X_{1I} - X_{3I})(X_{2I} - X_{4I})$$

Patierson et 4.22613: P4ter 2010

D (.		
Defi	nıt	ion
	• • • •	. •

$$F_2(X_1, X_2) = \sum_l (X_{il} - X_{jl})^2 - H_1 - H_2$$

$$P_0$$
 P_1
 P_2

$$F_3(X_x; X_1, X_2) = \sum_{l} (X_{xl} - X_{1l})(X_{xl} - X_{2l}) - H_X$$

$$P_1$$
 P_X P_2

$$F_3(X_x; X_1, X_2) = F_2(X_x, X_1) + F_2(X_x, X_2) - F_2(X_1, X_2)$$

$$F_4^{(T)}(X_1; X_2; X_3, X_4) == \sum_{I} (X_{1I} - X_{2I})(X_{3I} - X_{4I})$$

Patterson et 2.22613; Pater 2016

• Raw SNP data **X**; x_{ij}

- Raw SNP data **X**; x_{ij}
- Centering $\mathbf{Y} = \mathbf{CX}$; $y_{ij} = x_{ij} \mu_j$

- Raw SNP data X; x_{ij}
- Centering $\mathbf{Y} = \mathbf{CX}$; $y_{ij} = x_{ij} \mu_j$
- Rotation $\mathbf{Y} = \underbrace{\mathbf{P}}_{\mathsf{PCs}} \underbrace{\mathbf{L}}_{\mathsf{Rotation}}$

- Raw SNP data **X**; x_{ij}
- Centering $\mathbf{Y} = \mathbf{CX}$; $y_{ij} = x_{ij} \mu_j$
- Rotation $\mathbf{Y} = \mathbf{PL}$

- Raw SNP data X; x_{ij}
- Centering $\mathbf{Y} = \mathbf{CX}$; $y_{ij} = x_{ij} \mu_j$
- \bullet Rotation $\mathbf{Y} = \mathbf{PL}$

• Truncation
$$\hat{\mathbf{P}} = \begin{pmatrix} \mathbf{P}_1 \\ \mathbf{p}_2 \\ \vdots \\ \mathbf{p}_n \end{pmatrix}$$

- Raw SNP data **X**; x_{ij}
- Centering $\mathbf{Y} = \mathbf{CX}$; $y_{ij} = x_{ij} \mu_j$
- Rotation Y = PL

• Truncation
$$\hat{\mathbf{P}} = \begin{pmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \vdots \\ \mathbf{p}_n \end{pmatrix}$$

 \bullet Approximation $\hat{\boldsymbol{Y}}=\hat{\boldsymbol{P}}\hat{\boldsymbol{L}}$

Singular Value Decomposition:Y = (UD)L = PL

- Singular Value Decomposition:Y = (UD)L = PL
- Eigendecomposition of \mathbf{YY}^T : $\mathbf{YY}^T = \mathbf{UD}^2\mathbf{U}^T = \mathbf{PP}^T$

- Singular Value Decomposition:Y = (UD)L = PL
- Eigendecomposition of \mathbf{YY}^T : $\mathbf{YY}^T = \mathbf{UD}^2\mathbf{U}^T = \mathbf{PP}^T$
- \bullet $(\mathbf{YY}^T)_{ij}$

- Singular Value Decomposition:Y = (UD)L = PL
- Eigendecomposition of \mathbf{YY}^T : $\mathbf{YY}^T = \mathbf{UD}^2\mathbf{U}^T = \mathbf{PP}^T$

•
$$(\mathbf{YY}^T)_{ij} = \sum_{l} (x_{il} - \mu_l)(x_{jl} - \mu_l)$$

- Singular Value Decomposition:Y = (UD)L = PL
- Eigendecomposition of \mathbf{YY}^T : $\mathbf{YY}^T = \mathbf{UD}^2\mathbf{U}^T = \mathbf{PP}^T$
- $(\mathbf{YY}^T)_{ij} = \sum_{l} (x_{il} \mu_l)(x_{jl} \mu_l)$
- $\bullet \ (\mathbf{YY}^T)_{ij} = F_3(\mu; \mathbf{X}_i, \mathbf{X}_j)$

- Singular Value Decomposition:Y = (UD)L = PL
- Eigendecomposition of \mathbf{YY}^T : $\mathbf{YY}^T = \mathbf{IID}^2 \mathbf{II}^T = \mathbf{PP}^T$
- $(\mathbf{YY}^T)_{ij} = \sum_{l} (x_{il} \mu_l)(x_{jl} \mu_l)$
- $\bullet \ (\mathbf{YY}^T)_{ij} = F_3(\mu; \mathbf{X}_i, \mathbf{X}_j)$

Observation

PCA is equivalent to outgroup- F_3 -analysis with sample mean as outgroup

PCA is MDS on \mathbf{F}_2

ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$

PCA is MDS on \mathbf{F}_2

- ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$
- Consider \mathbf{F}_2 ; $f_{ij} = F_2(X_i, X_j) = X_i^2 + X_j^2 2X_iX_j$

PCA is MDS on \mathbf{F}_2

- ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$
- Consider \mathbf{F}_2 ; $f_{ij} = F_2(X_i, X_j) = X_i^2 + X_j^2 2X_iX_j$
- \bullet MDS is Eigendecomposition of $-\frac{1}{2}\textbf{C}\textbf{F}_{2}\textbf{C}$

PCA is MDS on \mathbf{F}_2

- ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$
- Consider \mathbf{F}_2 ; $f_{ij} = F_2(X_i, X_j) = X_i^2 + X_j^2 2X_iX_j$
- MDS is Eigendecomposition of $-\frac{1}{2}\mathbf{CF}_2\mathbf{C}$

•
$$\mathbf{CF_2C} = \underbrace{\mathbf{CX_i^2C}}_{0} + \underbrace{\mathbf{CX_i^2C}}_{0} - 2\underbrace{\mathbf{CXX^TC}}_{\mathbf{YY^T}}$$

PCA is MDS on \mathbf{F}_2

- PCA is decomposition of Covariance matrix: YY^T
- Consider \mathbf{F}_2 ; $f_{ij} = F_2(X_i, X_j) = X_i^2 + X_j^2 2X_iX_j$
- MDS is Eigendecomposition of $-\frac{1}{2}\mathbf{CF}_2\mathbf{C}$

•
$$\mathbf{CF_2C} = \underbrace{\mathbf{CX_i^2C}}_{0} + \underbrace{\mathbf{CX_i^2C}}_{0} - 2\underbrace{\mathbf{CXX_T^TC}}_{\mathbf{YY^T}}$$

Observation

PCA is equivalent to MDS on \mathbf{F}_2

ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$

- ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$
- Consider $\mathbf{F}_3(O)$; $f_{ij} = F_3(O; X_i, X_j) = O^2 OX_i OX_j + X_iX_j$

- ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$
- Consider $\mathbf{F}_3(O)$; $f_{ij} = F_3(O; X_i, X_j) = O^2 OX_i OX_j + X_iX_j$

- PCA is decomposition of Covariance matrix: YY^T
- Consider $\mathbf{F}_3(O)$; $f_{ij} = F_3(O; X_i, X_j) = O^2 OX_i OX_j + X_iX_j$

•
$$\mathbf{CF_3C} = \underbrace{\mathbf{CO^2C}}_0 - \underbrace{\mathbf{COX_iC}}_0 - \underbrace{\mathbf{COX_jC}}_0 + \underbrace{\mathbf{CXX^TC}}_{\mathbf{YY^T}}$$

- ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$
- Consider $\mathbf{F}_3(O)$; $f_{ij} = F_3(O; X_i, X_j) = O^2 OX_i OX_j + X_iX_j$

$$\bullet \ \, \mathbf{CF_3C} = \underbrace{\mathbf{C}\mathcal{O}^2\mathbf{C}}_0 - \underbrace{\mathbf{C}\mathcal{O}\mathbf{X_iC}}_0 - \underbrace{\mathbf{C}\mathcal{O}\mathbf{X_jC}}_0 + \underbrace{\mathbf{C}\mathbf{X}\mathbf{X}^T\mathbf{C}}_{\mathbf{YY}^T}$$

Observation

Decomposition of *any* centered F_3 -matrix is equivalent to PCA.

0-diagonal MDS

• Recall that PCA is just translation + rotation

- Recall that PCA is just translation + rotation
- Distances (such as F_2) are invariant to translation + rotation

- Recall that PCA is just translation + rotation
- Distances (such as F_2) are invariant to translation + rotation

•

$$F_2(X_1, X_2) = \sum_{\text{loci}} (x_{1I} - x_{2I})^2$$

- Recall that PCA is just translation + rotation
- Distances (such as F_2) are invariant to translation + rotation

$$F_2(X_1, X_2) = \sum_{\text{loci}} (x_{1I} - x_{2I})^2$$

•

•

$$F_2(X_1, X_2) = \sum_{PCs} (x_{1p} - x_{2p})^2$$

- Recall that PCA is just translation + rotation
- Distances (such as F_2) are invariant to translation + rotation

•

$$F_2(X_1, X_2) = \sum_{\text{loci}} (x_{1l} - x_{2l})^2$$

•

$$F_2(X_1, X_2) = \sum_{PCs} (x_{1p} - x_{2p})^2$$

Observation

 F_2 can be decomposed in contributions of different principal components

- F-statistics have a geometrical representation on PCA-plot
- Exact only if we use all PCs

- F-statistics have a geometrical representation on PCA-plot
- Exact only if we use all PCs
- Good approximation for 2D-plot if first 2 PCs capture relevant population structure

- $F_2(X_1, X_2) = \sum_{I} (X_{1I} X_{2I})^2$
- $F_2(X_1, X_2) = ||X_1, X_2||^2$

- Given X_1, X_2 , which pops have $F_3 < 0$?
- $F_3(Y; X_1, X_2) = 0$ is a circle!

- Given X_1, X_2 , which pops have $F_3 < 0$?
- $F_3(Y; X_1, X_2) = 0$ is a circle!

- Given X_1, X_2 , which pops have $F_3 < 0$?
- $F_3(Y; X_1, X_2) = 0$ is a circle!

Genome-wide average admixture proportion

- Given X_1, X_2 , which pops have $F_3 < 0$?
- $F_3(Y; X_1, X_2) = 0$ is a circle!
- $F_3(Y; X_1, X_2) = k < 0$ is smaller circle

Admixture F_3 -stats on PCA-plot

Admixture F_3 -stats on PCA-plot

- Given X_1, X_x , which pops X_2 have $F_3 < 0$?
- F_3 is 0 if $(X_x; X_1), (X_x; X_2)$ form a right angle!

Admixture F_3 -stats on PCA-plot

- Given X_1, X_x , which pops X_2 have $F_3 < 0$?
- F_3 is 0 if $(X_x; X_1), (X_x; X_2)$ form a right angle!
- Inner (dot) product: $F_3(X_x; X_1, X_2) = \langle X_x - X_1, X_x - X_2 \rangle$

F_4 -stats on PCA-plot

Where does Orthogonality come from?

- Better link F-stats and PCA results
 - \bullet use Dimensions / Orthogonality for useful data representations

- Better link F-stats and PCA results
 - use Dimensions / Orthogonality for useful data representations
- ② Distinguish admixture events

- Better link F-stats and PCA results
 - use Dimensions / Orthogonality for useful data representations
- ② Distinguish admixture events
 - same F₃ value may arise from distinct admixture events, PCs may point to differences

- Better link F-stats and PCA results
 - use Dimensions / Orthogonality for useful data representations
- ② Distinguish admixture events
 - same F₃ value may arise from distinct admixture events, PCs may point to differences
- Understand discrepancies
 - most likely due to data artifacts / higher PCs

- Better link F-stats and PCA results
 - use Dimensions / Orthogonality for useful data representations
- Distinguish admixture events
 - same F₃ value may arise from distinct admixture events, PCs may point to differences
- Understand discrepancies
 - most likely due to data artifacts / higher PCs
- Standardize normalization
 - $F_2^{(PCA)} = \frac{1}{\hat{\sigma}} \sum (X_i X_j)^2$
 - $F_2^{(F-stats)} = \sum (X_i X_j)^2$

- Better link F-stats and PCA results
 - use Dimensions / Orthogonality for useful data representations
- Distinguish admixture events
 - same F₃ value may arise from distinct admixture events, PCs may point to differences
- Understand discrepancies
 - most likely due to data artifacts / higher PCs
- Standardize normalization
 - $F_2^{(PCA)} = \frac{1}{\hat{\sigma}} \sum (X_i X_j)^2$
 - $F_2^{(F-stats)} = \sum (X_i X_j)^2$

- Better link F-stats and PCA results
 - use Dimensions / Orthogonality for useful data representations
- ② Distinguish admixture events
 - same F₃ value may arise from distinct admixture events, PCs may point to differences
- Understand discrepancies
 - most likely due to data artifacts / higher PCs
- Standardize normalization
 - $F_2^{(PCA)} = \frac{1}{\hat{\sigma}} \sum (X_i X_j)^2$
 - $F_2^{(F-stats)} = \sum (X_i X_j)^2$
- Setter out-of-sample predictions
 - qpGraph and other tools fail with large samples

