FRA222 Microcontroller Interface

03 - PERIPHERALS & ADC

Source: https://www.st.com/resource/en/datasheet/stm32f411re.pdf

https://www.st.com/resource/en/reference_manual/

 $dm 00119316\text{-}stm 32f 411x ce-advanced-armbased-32 bit-mcus-stmicroelectronics.pdf}$

Peripherals

Figure 3. STM32F411xC/xE block diagram

Peripherals can parallel processing with CPU

CPU	Peripheral A	Peripheral B	Peripheral C
Hey A, Measure this	Ok ,1 min		
Hey B output this		Ok, done	
Hey C ,Have any input?	[A done his task]		No
Hey A, Are you done?	Yes, data is 1023		[C have new input]
[Do something with data]			
Hey C ,Have any input?			Yes
Hey C ,what is it?			It's "Hello World"

Peripherals - ADC

Microcontroller is Digital BUT World is Analog

Need of conversion

Sensor แบบ Voltage divider

MQ-2 FC-22 Smoke Gas Sensor

ความเข้มข้นของปริมาณก๊าซแสดงในรูปของแรงดัน **0-5V** ความเข้มข้นยิ่งสูง แรงดันที่อ่านได้ยิ่งสูง

ADC

Resolution & V Ref

Resolution - จำนวน bit ของ ADC ยิ่งจำนวน bit มาก ความละเอียดยิ่ง

V Ref - แรงดันสูงสุดที่สามารถ convert ได้

LSB / Step – ความละเอียด ของ 1 ขั้น ของ ADC

$$LSB = \frac{V_{ref}}{2^{Res}}$$

1 V , 2 Bit 3.3V ,12bit
$$\frac{1}{2^2} = \frac{1}{4} = 0.25 \text{ V/LSB} \quad \frac{3.3}{2^{12}} = \frac{3.3}{4096} \approx 0.8 \text{mV/LSB}$$

2 bit ADC

1 V , 2 Bit

$$\frac{1}{2^2} = \frac{1}{4} = 0.25 \ V/LSE$$

 $\frac{1}{2^2} = \frac{1}{4} = 0.25 \, V/LSB$

Vref: 1V

truncate

Analog Input

3 bit ADC with Vref 8V

กรณี 3-bit ADC: ค่าแรงดันจะถูกแบ่งเป็น $2^3=8$ ระดับ

กรณี Vref = 8V แสดงว่าแต่ละ step ของค่า Digital แสดงถึงระดับแรงดัน 8/2³= 1V

Quantisation error

Resolution ของ ADC ส่งผลถึง quantisation error ด้วย เช่น กรณี 3-bit ADC จะมี step width = 1V และ worst case quantisation error ที่ 0.5 V

เช่นค่า Digital เท่ากับ 001 สามารถเกิดขึ้นเมื่อแรงดัน Analog มีค่าตั้งแต่

$$1 - 0.5 < Analog < 1 + 0.5$$

ADC – Hardware Error

Table 68. ADC accuracy at f_{ADC} = 36 MHz⁽¹⁾

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error	El consideran	±4	±7	
EO	Offset error	f_{ADC} = 36 MHz, V_{DDA} = 2.4 to 3.6 V, V_{REF} = 1.7 to 3.6 V $V_{DDA} - V_{REF} < 1.2 V$	±2	±3	
EG	Gain error		±3	±6	LSB
ED	Differential linearity error		±2	±3	
EL	Integral linearity error		±3	±6	

- 1. Better performance could be achieved in restricted V_{DD}, frequency and temperature ranges.
- 2. Guaranteed by characterization results.

Figure 40. ADC accuracy characteristics

- Example of an actual transfer curve.
- Ideal transfer curve.
- 4. End point correlation line.
- 5. E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.

 - EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

ADC – Sampling Rate

*ยิ่ง sampling rate สูง ก็จะได้จำนวน data เพิ่มขึ้น ต่อวินาที

ADC - channel

1×12-bit, 2.4 MSPS A/D converter: up to 16 channels

ADC - channel - STM32

ADC - Clock

- -เป็นหน่วยเวลา ของ ADC มักจะใช้ แยกกับ CPU และ ช้ากว่าพอสมควร
- -ยิ่ง clock สูง ยิ่งทำงานเร็วขึ้น แต่แลกกับ Noise และ error ที่เพิ่มขึ้น

ADC - SETTING UP

ปรับ resolution /Data alignment

Data alignment รูปแบบ output ข้อมูล12บิตว่าให้ชืดผั้งไหนในตัวแปร16บิต เช่น ถ้าข้อมูลคือ 0b 1111 1111 1111 left คือข้อมูลในรูป 0b 1111 1111 1111 0000 Right จะได้ 0b 0000 1111 1111 1111

ใช้ใน DMA โหมด /Scan mode เท่านั้น

DMA โหมด???? – Incomming, Next week

But For now.

CPU สามารถ เรียกใช้peripheral ต่างๆ กันได้ โดยทั่วไป 3 แบบ

- า Polling CPU สั่งงาน peripheral <u>แล้ว cpu วนถามว่า เสร็จยัง ๆ ไปเรื่อย ๆ จนกว่า จะเสร็จ</u>แล้วจึงอ่านค่า
- ข้อดี ข้อมูลได้ทันทีที่ peripheral ประมวลผลเสร็จ ทำให้ระบบไม่Lag
- o ข้อเสีย CPU แทบจะไม่สามารถทำอย่างอื่นได้ระหว่างรอpolling ทำให้เปลืองCPU time โดยเปล่าประโยชน์
- 2 Intterrupt (IT) CPU สั่งงานแล้วไปทำอย่างอื่นก่อน พอ peripheral เสร็จ จะทักไปหยุดงานที่cpu ทำอยู่เพื่อให้อ่านค่าจาก peripheral ก่อน
- ข้อดี CPU สามารถทำอย่างอื่นรอได้ ระหว่าง peripheral ทำงาน , ข้อมูลที่ได้ไม่ lag(ขึ้นกะการเขียนcode)
- ข้อเสีย ถ้าเกิด Intterrupt บ่อยเกินไป หรือ ยาวเกินไป จะกลายเป็นว่า cpu ไม่ได้ทำงานของตัวเอง

DMA โหมด???? – Incomming, Next week

3 DMA – CPU สั่งงาน peripheral พิเศษ ที่เรียกว่า DMA เพื่อให้ DMA คุยกะ peripheral ที่ต้องการอีกที โดย DMA จะเป็น คนสั่ง และรวบรวมข้อมูล และค่อยส่งให้CPU อีกทีพอได้ข้อมูลจำนวนหนึ่ง

- ข้อดี CPU สามารถทำอย่างอื่นรอได้ ระหว่าง peripheral ทำงาน , สามารถจัดการข้อมูลจำนวนมากๆได้
- ข้อเสีย ถ้าใช้กับข้อมูลน้อยๆ ที่ไม่ต่อเนื่อง จะซ้ากว่า **IT**

ADC – Common Command

```
HAL_ADC_ConfigChannel(...);
ตั้งค่าช่องที่จะใช้แปลง
HAL_ADC_Start(...); , HAL_ADC_Start_IT(...); HAL_ADC_Start_DMA(...);
เริ่มการแปลงในแบบต่างๆ
HAL_ADC_PollForConversion(...);
รอการทำงานในแบบ polling
HAL_ADC_GetValue(...);
อ่านค่า ADC
HAL_ADC_Stop(...);
หยุดการทำงาน ADC
```


Example 3

-สร้างโปรแกรมอ่านค่าanalog จาก 3 แหล่ง PAO,PA1,Temp Sensor


```
/* USER CODE BEGIN PV */
typedef struct
{
    ADC_ChannelConfTypeDef Config;
    uint16_t data;
}ADCStructure;

ADCStructure ADCChannel[3];
/* USER CODE END PV */
```

```
/* USER CODE BEGIN 2 */
ADCConfigInit();
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
    /* USER CODE END WHILE */
    /* USER CODE BEGIN 3 */

    //function call ADC
    ADCPollingMethodUpdate();
}
/* USER CODE END 3 */
```

```
/* USER CODE BEGIN 4 */
void ADCConfigInit()
    //Config ADC Chennel PA0
    ADCChannel[0].Config.Channel = ADC_CHANNEL_0;
    ADCChannel[0].Config.Rank = 1;
    ADCChannel[0].Config.SamplingTime = ADC_SAMPLETIME_3CYCLES;
    //Config ADC Chennel PA1
    ADCChannel[1].Config.Channel = ADC_CHANNEL_1;
    ADCChannel[1].Config.Rank = 1;
    ADCChannel[1].Config.SamplingTime = ADC_SAMPLETIME_3CYCLES;
    //Config ADC Chennel Temp
    ADCChannel[2].Config.Channel = ADC_CHANNEL_TEMPSENSOR;
    ADCChannel[2].Config.Rank = 1;
    ADCChannel[2].Config.SamplingTime = ADC_SAMPLETIME_3CYCLES;
void ADCPollingMethodUpdate()
   for (int i = 0; i < 3; i++) {
       //setting channal of ADC
       HAL_ADC_ConfigChannel(&hadc1, &ADCChannel[i].Config);
       //start Sampling
       HAL_ADC_Start(&hadc1);
       //Wait for sampling and conversion
       if(HAL ADC PollForConversion(&hadc1, 10)==HAL OK)
           //Read data
           ADCChannel[i].data = HAL_ADC_GetValue(&hadc1);
       //stop adc
       HAL_ADC_Stop(&hadc1);
```

/* USER CODE END 4 */

exercise ADC Converter

- 1.สร้างตัวแปรชื่อ ADCOutputConverted และ ADCMode
- 2.ใช้ปุ่มใหนก็ได้ สับADCMode ระหว่าง 2 ค่า คือ

- 2.2 ADCMode = 1 , ADCOutputConverted = อุณหภูมิปัจจุบัน
- 3.แสดงทั้งสองตัวแปรผ่าน debugmode Live Expresstion
- Hint 8. Calculate the temperature using the following formula:

Temperature (in °C) =
$$\{(V_{SENSE} - V_{25}) / Avg_Slope\} + 25$$

Where:

- V₂₅ = V_{SENSE} value for 25° C
- Avg_Slope = average slope of the temperature vs. V_{SENSE} curve (given in mV/°C or μV/°C)

Refer to the datasheet's electrical characteristics section for the actual values of V_{25} and Avg_Slope .

