Matrices

Alex Shaffer

Matrices

Matrices are collections of numbers organized into a rectangular array.

• A matrix with n rows and m columns is a $n \times m$ matrix.

• $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is an example of a 2x2 matrix.

Matrix Addition

- Matrices have a special type of algebra with its own multiplication and addition.
- To add matrices, we just add elements in the same position.
 - You can only add matrices of the same dimensions together.

Matrix Scalar Multiplication

- In the context of matrix algebra, a scalar is just a number.
 - You can multiply matrices by scalars, and it just distributes out to all of its elements.

•
$$3 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 9 & 12 \end{pmatrix}$$

Matrix Multiplication

- You can multiply matrices of dimension $n \times k$ by $k \times m$
 - They must both have the same inner dimension.
 - This produces a matrix of dimension $n \times m$
 - The order of the multiplication matters. Unlike multiplying numbers matrices do not always commute.
 - To do the multiplication you multiply element-wise rows from the first matrix with columns from the second matrix and add those values up.
 - The value from row 1 column 2 will be places in position (1, 2) in the resulting matrix.

Matrix Multiplication Examples

$$\cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 1 \cdot 2 & 1 \cdot 2 + 1 \cdot 1 \\ 1 \cdot 1 + (-1) \cdot 2 & 1 \cdot 2 + (-1) \cdot 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ -1 & 1 \end{pmatrix}$$

$$\cdot \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 1 & 1 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 6 \\ 6 & 6 \end{pmatrix}$$

The Identity Matrix

- When multiplying numbers, 1 is the identity.
 - This just means multiplying by one leave the value unchanged.
 - The identity for addition is 0.
- For matrix multiplication the identity matrix is:

•
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 for 2×2

•
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 for 3×3

That pattern continues

Matrix Determinant

- For a square matrix, the determinant is a property of that matrix. It
 has geometric properties associated corresponding linear
 transformations. If you are curious watch this.
 - For us we will only worry about 2×2 matrix determinants.
 - For the matrix $\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ its determinant written $\det(M) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} =$ ad bc.

Inverse Matrices

- Some square matrices have inverses.
 - If M is a matrix with is an inverse, and M^{-1} is its inverse. Then $M^{-1}M = MM^{-1} = I$.
 - Inverse matrices can be challenging to calculate we will only concern ourselves with 2×2 matrices.
 - Matrix inverse only exists if the determinant is 1.
 - For a 2 × 2 matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ we get $M^{-1} = \frac{1}{\det(M)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
 - Let's check for ourselves that this is right.

•
$$\frac{1}{ad-bc} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{ad-bc} \begin{pmatrix} ad-bc & -ab+ab \\ cd-cd & ad-bc \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Inverse Matrix Example

- Consider the matrix $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
 - $\det(M) = 4 6 = -2$

•
$$M^{-1} = \frac{-1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

Vectors

- Vectors have lots of definitions based on the context but usually roughly refer to the same type of object with some definitions just being more general that others.
 - In physics a vector is referred to as something with magnitude and direction.
 - In linear algebra a vector is an element of a vector space.
 - In differential geometry a vector is a rank 1 contravariant tensor.
- For us a vector will be a $n \times 1$ matrix.
 - $\binom{1}{0}$ is a 2 × 1 vector.

Matrix-Vector Multiplication

• Just a special case of matrix-matrix multiplication.

$$\cdot \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 0 \\ 2 \cdot 1 + (-1) \cdot 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

• Sometimes we will encode plaintext/ciphertext as a vector.

The Hill Cipher

- The hill cipher uses square invertible matrices as keys.
 - For a key matrix K of size $n \times n$. We can encode blocks of n letter (represented as integers).
 - The determinant of the matrix must be coprime with 26.
 - $E(x) = Kx \pmod{26}$
 - where x is a vector of length n.
- Decryption uses a decryption key $K^{-1} \pmod{26}$
 - $D(x) = K^{-1}x \pmod{26}$

Hill Cipher Encryption Example

Let's use the encryption matrix.

•
$$K = \begin{pmatrix} b & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$

- Consider the plaintext example: "Hello world"
 - We have an even number of total letters; we will encrypt 2 at a time.
 - Converted to numbers: [7, 4, 11, 11, 14, '', 22, 14, 17, 11, 3]

Hill Encryption Continued

Now to do out matrix vector multiplication:

•
$$\binom{1}{2}$$
 $\binom{1}{3}\binom{7}{4}\pmod{26} = \binom{11}{26}\pmod{26} = \binom{11}{0}$
• $\binom{1}{2}$ $\binom{1}{3}\binom{11}{11}\pmod{26} = \binom{22}{55}\pmod{26} = \binom{22}{3}$
• $\binom{1}{2}$ $\binom{1}{3}\binom{14}{22}\pmod{26} = \binom{36}{94}\pmod{26} = \binom{10}{16}$
• $\binom{1}{2}$ $\binom{1}{3}\binom{14}{17}\pmod{26} = \binom{31}{79}\pmod{26} = \binom{5}{1}$
• $\binom{1}{2}$ $\binom{1}{3}\binom{11}{3}\pmod{26} = \binom{14}{31}\pmod{26} = \binom{14}{5}$

lawdk qfbof

Hill Decryption

Now let's invert our in encryption matrix:

•
$$K = \begin{pmatrix} b & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \rightarrow K^{-1} \pmod{26} = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} \pmod{26} = \begin{pmatrix} 3 & 25 \\ 24 & 1 \end{pmatrix}$$

Now we want to decrypt: "lawdk qfbof"