Back to search page

Click to download printable version of this guide.

<u>AWR Microwave Office Element Catalog</u> > <u>Lumped Element</u> > Parallel LC with Q (Closed Form): PLCQ <u>Prev</u>

Parallel LC with Q (Closed Form): PLCQ

Symbol

Topology

Parameters

Name	Description	Unit Type	Default
	·		

Name	Description	Unit Type	Default
ID	Element ID	Text	LC1
С	Capacitance	Capacitance	1 pF
QC	Quality factor for capacitor		0
FQC	Reference frequency for QC	Frequency	0 GHz
ALPHC	Scaling factor for Qc		1
L	Inductance	Inductance	1 nH
QL	Quality factor for inductor		0
FQL	Reference frequency for QL	Frequency	0 GHz
ALPHL	Scaling factor for QL		1
DCMod	DC modeling	Vector text (pull-down)	Lossless

Parameter Details

DCMod. Specifies the DC behavior of the model. **Lossless** indicates that the model is modeled as an ideal capacitor in parallel with an ideal inductor at DC. **Lossy** indicates that loss is taken into account at DC.

Implementation Details

$$QL(f) = Q(\frac{f}{FQL})^{ALPHL}$$

$$QC(f) = Q(\frac{f}{FQC})^{ALPHC}$$

The admittance of the resonant circuit is given by:

$$Y = 2\pi f C(\frac{1}{QC(f)} + j) + \frac{1}{2\pi f L(\frac{1}{QL(f)} + j)}$$

Layout

This element does not have an assigned layout cell. You can assign artwork cells to any element. See "Assigning Artwork Cells to Layout of Schematic Elements" for details.

<u>Prev</u> <u>Up</u> <u>Next</u> Home

Please send email to awr.support@cadence.com if you would like to provide feedback on this article. Please make sure to include the article link in the email.

Legal and Trademark Notice