NON-BLACK-BOX ZK (Barak's Protocol)

ALON ROSEN

IDC HERZLIYA

The Goal

Goal: construct CZK argument $\forall L \in NP$

- with negligible soundness
- a constant number of rounds
- and public-coin

Need to address:

- How to use V^* 's code (BB impossibility)
- V^* 's running time is not a-priori bounded

Non-BB ZK Arguments for NP

- No $L \notin BPP$ has a <u>black-box</u> ZK protocol that is:
 - constant-round
 - negligible-soundness
 - public-coin
- So for $L \notin BPP$ must use a <u>non-black box simulator</u>
- On the one hand, $\forall V^* \exists S$ should be easier than $\exists S \forall V^*$
- · On the other hand, where do we even begin?
 - Reverse engineering V^* is difficult!
 - Key insight: there is no need to reverse engineer
 - Enough for S to prove that he possesses V^* 's code

Non-BB ZK Arguments for NP

<u>Theorem [B'01]</u>: If CRH exist, every $L \in NP$ has a constant-round, public-coin, negligible-soundness, ZK argument

- <u>Idea</u>: enable usage of verifier's code as a "fake" witness
- In the real proof, the code is V's random tape
- In simulation, the code is V^* 's "next-message function"
- Since P does not have access to V's random tape in real interactions, this will not harm soundness
- The simulator S, on the other hand, will be always able to make verifier accept since it obtains V^* 's code as input

Collision-Resistant Hash Functions

<u>Definition</u>: $H_k: \{0,1\}^* \to \{0,1\}^k$ is (t,ε) -<u>CRH</u> if \forall time-t A

 $Pr[A \text{ finds a collision in } h \in_R H_k] \leq \varepsilon$

Collision: $x \neq x'$ such that h(x) = h(x')

Candidate CRHs:

• Discrete-log-based: $g^{x_L}h^{x_R} \mod P$

• SIS: $Ax \mod q$

• SHA: $h(x_L, x_R)$

Later: $H_k: \{0,1\}^* \to \{0,1\}^k$ from $h: \{0,1\}^{2k} \to \{0,1\}^k$

Constant-Round ZK Arguments for NP

The Basic Idea

witness w

 $x \in L$

V

$$c = Com(0^k)$$

$$r \in_R \{0,1\}^{2n}$$

 $\mathsf{NTIME}(t(n))$ statement

WIAOK statement: $\exists w, \pi, z \text{ s.t.}$

- **1.** $(x, w) \in R_L \text{ or }$
- 2. "c is a commitment to a program π s.t. $\pi(z) = r$ within t(n) steps"

Intuition:

- In the real interaction P cannot predict the random string r
- In simulation, $r = V^*(c)$ so S can set $\pi = V^*$ and z = c

Completeness

witness w

 $x \in L$

V

$$c = Com(0^k)$$

$$r$$

Use w to prove

WIAOK statement: $\exists w, \pi, z \text{ s.t.}$

- **1.** $(x, w) \in R_L$ or
- 2. "c is a commitment to a program π s.t. $\pi(z) = r$ within t(n) steps"

ACCEPT

Soundness

 P^* $x \notin L$ V

$$c = Com(0^k)$$

$$r \in_R \{0,1\}^{2n}$$

WIAOK statement: $\exists w, \pi, z \text{ s.t.}$

- 1. $(x, w) \in R_L \underline{\text{or}}$
- 2. "c is a commitment to a program π s.t. $\pi(z) = r$ within t(n) steps"

$$\forall \pi, \ Pr_r[\exists z \in \{0,1\}^n, \pi(z) = r] \le 2^n \cdot 2^{-2n}$$

= 2^{-n}

Zero-Knowledge

Simulator **S**

 $x \notin L$

 V^*

$$c = Com(V^*)$$

$$r = V^*(c)$$

Use
$$\pi = V^*$$
 $z = c$ to prove

WIAOK statement: $\exists w, \pi, z \text{ s.t.}$

- $1. \quad (x,w) \in R_L \text{ or }$
- 2. "c is a commitment to a program π s.t. $\pi(z) = r$ within t(n) steps"

Cannot distinguish if 1 or 2

By definition,
$$\pi(z) = V^*(c) = r$$

Observations and Technical Issues

- Simulator runs in strict polynomial time
- Possession of V^* is sufficient. No reverse engineering!

First technical issue:

- V^* 's size is poly(n), but not a-priori bounded
- In particular, how can $c = Com(V^*)$ accommodate V^* ?
- Solution: use $h: \{0,1\}^* \to \{0,1\}^k$ to compute $Com(h(V^*))$

Second technical issue:

- Running time t(n) of V^* not bounded by any fixed poly(n)
- So NTIME(t(n)) relation in WIAOK is not an NP-relation
- Solution: WIAOK that handles $NTIME(n^{\omega(1)})$ relations

A constant-round ZK Argument

witness w P $x \in L$ $V_{H_k}: \{0,1\}^* \to \{0,1\}^k$ $h \in_R H_k$ $c = Com(0^n)$ $r \in_R \{0,1\}^{2n}$

WIAOK statement: $\exists w, \pi, z \text{ s.t.}$

- **1.** $(x, w) \in R_L$ or
- 2. "c is a commitment to $h(\pi)$ where π is a program s.t. $\pi(z) = r$ within t(n) steps"

The Relation R_{SIM}

 $x \in L$

 $H_k: \{0,1\}^* \to \{0,1\}^k$

$$c = Com(0^n)$$

$$h \in_R H_k$$

 $r \in_R \{0,1\}^{2n}$

NTIME(t(n)) statement

WIAOK statement: $\exists w, \langle \pi, s, z \rangle$ s.t.

- **1.** $(x, w) \in R_L$ or
- **2.** $(\langle h, c, r \rangle, \langle \pi, s, z \rangle) \in R_{SIM}$

$$(\langle h, c, r \rangle, \langle \pi, s, z \rangle) \in R_{SIM}$$
:

- $|z| \leq |r| n$
- 2. $c = Com(h(\pi), s)$ and
- 3. $\pi(z) = r$ within t(n) steps

The Universal Language L_U

Goal: handling NTIME(t(n)) statements for $t(n) = n^{\omega(1)}$

Consider the universal language L_U :

$$y = (M, x, t) \in L_U$$

$$\updownarrow$$

 $\exists w, M(x, w) = ACCEPT \text{ within } t \text{ steps}$

- Every $L \in NP$ is linear-time reducible to L_U
- A proof system for L_U enables to handle all NP -statements
- More importantly, a proof system for L_U enables to handle $\mathrm{NTIME}(n^{\omega(1)})$ statements and even beyond (NEXP)

Universal Arguments

Universal Argument Systems

$$y = (M, x, t) \in L_U \iff \exists w, M(x, w) = ACCEPT \text{ in } t \text{ steps}$$

<u>Definition [K'91, M'91, BG'02]</u>: A <u>universal argument</u> system for L_U is a pair (P, V) such that $\forall y = (M, x, t)$:

Efficient verification: V runs in poly(|y|) time

Completeness: If $y \in L_U$, then Pr[(P, V) accepts y] = 1Moreover, P runs in time poly(t)

Computational soundness: If $y \notin L_U$, then $\forall PPT \ P^*$ $Pr[(P^*, V) \text{ accepts } x] \leq neg(n)$

<u>Theorem</u>: If CRH exist, L_U has a universal argument

Building block: PCP Proof System

Makes use of a PCP[O(log), poly] system for L_U

What is a PCP[O(log), poly] proof system?

- It is a $PPT\ V_{PCP}$ with access to an oracle π_y that represents a proof for $y \in L_U$ in redundant form
- V_{PCP} (non-adaptively) queries q oracle bits of π_y where

- the bit positions are determined by $V_{\rm PCP}$'s coin tosses
- the number of coins tossed by V_{PCP} is O(log t)
- and the length of π_{ν} is

$$exp(O(log t)) = poly(t) \leftarrow P's complexity$$

PCP Reduction

Commitment with Local Decommitment

<u>Problem</u>: the PCP is too long to be sent to V in its entirety

Solution: commit to π_{ν} and allow "local decommitment"

H is computationally binding - built using CRH h

The Protocol

witness w $Y = (M, x, t) \in L_U$ $V_{H_k}: \{0,1\}^* \to \{0,1\}^k$

time
$$poly(t)$$
 \downarrow π_y

$$c = H(\pi_y)$$

$$h \in_R H_k$$

Authenticated replies to
$$q$$
 queries $V_{\rm PCP}(r)$ with respect to c

$$r \in_R \{0,1\}^{O(\log t)}$$

Time poly(q) = poly(|y|)

Completeness

Computational Soundness

Recall: binding of H is computational - built using CRH h

Interlude: Merkle Trees

Merkle Tree

Merkle Tree: Collision Resistance

Computationally (globally) binding

Merkle Tree: Local Decommitment

Merkle Tree: Local Decommitment

Computationally (locally) binding

Back to ZK Arguments for NP

Recall: Barak's Protocol

witness w $x \in L$ $h \in_R H_k$ $c = Com(0^n)$ $r \in_{R} \{0,1\}^{2n}$ WIUAOK statement: $\exists w, \pi, z$ s.t. **1.** $(x, w) \in R_L$ or 2. "c is a commitment to $h(\pi)$ where π is a program s.t. $\pi(z) = r$ within t(n) steps"

So far: we only saw how to build UAOK. What about WI?

WI Universal Arguments

Subtle point: actually run k parallel copies of ZKPOK with constant soundness error

-WIAOK statement: $\exists \beta, \delta$ s.t.

1.
$$c = Com(\beta)$$

2.
$$d = Com(\delta)$$

3.
$$V(\alpha, \beta, \gamma, \delta) = ACCEPT$$

Summary

Saw:

- CZK argument $\forall L \in NP$
- with negligible soundness
- a constant number of rounds
- and public-coin

Tools:

- Non-black-box simulation
- WI universal arguments

Follow-up Work (2001-2012)

- Resettably-sound ZK [BGGL'01,CPS'13,COPVV'13]
- Constant-round bounded-conc. ZK and MPC [B'01,PR'03]
- Constant-round ZK with strict poly-time sim. [BL'02]
- Simultaneously resettable ZK and MPC [DGS'09,GM'11]
- Constant-round covert MPC [GJ'10]
- Constant-round public-coin parallel ZK [PRT'11]
- Simultaneously resettable WI-POK [COSV'12]
- Constant-round conc. ZK from iO [CLP'13, PPS'13, CLP'15]
- Concurrent secure computation [GGS'15]

New non-BB Techniques

[BP'12]:

- Impossibility for obfuscation → non BB simulation
- In particular, no use of PCP

[BKP'15]:

- Homomorphic trapdoors
- Enables to break all Black-Box barriers for e.g. WH

Food for Thought

Efficiency Optimizations

Efficiency of universal arguments depends on:

- Number q of oracle queries made by $V_{\rm PCP}$ to π_y q = poly(|y|)
- Length of π_y depends on number of coins tossed by V_{PCP} $exp\big(\mathsf{O}(\log t)\big) = poly(t)$
- Optimizing params:
 - Larger alphabet size
 - Trading off prover/verifier time
- Less modular design and/or other models:
 - Interactive PCPs/oracle IPs
 - Using homomorphism of commitments

Merkle Trees: Other Considerations

- Can turn Merkle-tree into statistically hiding:
 - Generically
 - Assuming h is a random oracle

Open questions:

- Is $O(qk \log N)$ optimal?
- In practice N can be quite large
- Bulletproofs is $O(q + k \log N)$ but verifier space is N
- Lattices/amortization gets $O(q + k\sqrt{N})$
- Ideally $O(q + k \log N)$ size and verification time

Modern Crypto

- Define what it means to be secure
- Build a protocol/scheme
- Prove that protocol/scheme satisfies definition

• First feasibility then efficiency

Relax definitions

History

Boaz Barak

Joe Kilian

Ralph Merkle

History

Rafael Pass

Nir Bitansky

Dakshita Khurana

Omer Paneth

Rachel Lin

Kai-Min Chung

Dustin Tseng

Muthuramakrishnan Venkitasubramaniam

Vipul Goyal

Abhishek Jain

Ivan Visconti

Questions?