Murder in the United States

•••

Predicting Clearance Rate

with Machine Learning

More common than you think

1 in 20,000 people died from intentional homicide in 2019

5th highest cause of death for Americans 15-49

14th for all ages

94th highest homicide rate of 230 countries with UN data

Cost to Society

To some degree, we are all victims of murder:

Grief felt by loved ones

Loss of sense of security faced by anyone who knew the victim

Paranoia experienced by anyone who learns about a murder

Loss of faith in institutions when murders go unsolved

We are all stakeholders.

The objective of this project is to predict the probability of a murder being solved via machine learning.

Law enforcement agencies can use such a model to allocate investigative resources and solve more murders.

We can all use such a model to assess our law enforcement's strengths and weaknesses.

The Data

- Nonprofit that aggregates United States murder data
 - No federal equivalent
- SPSS and CSV formats
- Used with SQL queries to find unknown serial killers

804, 751

Murders in the US spanning 1976 - 2019

Variables

Name	Description	Туре
YEAR	Year of Murder	Numerical - Discrete
MONTH	Month of Murder	Numerical - Discrete
CNTYFIPS	County	Categorical - Nominal
STATE	State	Categorical - Nominal
STATENAME	Name of State	Categorical - Nominal
FSTATE	Numerical State Identifier	Categorical - Nominal
MSA	Name of Metro Area of Crime	Categorical - Nominal
VICAGE	Victim Age	Numerical - Discrete
VICSEX	Victim Sex	Categorical - Nominal
VICRACE	Victim Race	Categorical - Nominal
VICETHNIC	Victim Hispanic Identification	Categorical - Nominal
OFFAGE	Offender Age	Numerical - Discrete
OFFSEX	Offender Sex	Categorical - Nominal
OFFRACE	Offender Race	Categorical - Nominal
OFFETHNIC	Offender Hispanic Identification	Categorical - Nominal
ORI	Investigating Agency Number	Categorical - Nominal
AGENCY	Investigating Agency Name	Categorical - Nominal
AGENTYPE	Investigating Agency Type	Categorical - Nominal

Date	
Location	
Victim	
Offender	Crime Characteristics
Investigator	Clerical

Name	Description	Туре
SOLVED	Crime Clearance Status	Categorical - Nominal
HOMICIDE	Murder of Negligence Flag	Categorical - Nominal
SITUATION	Single/Multiple Victim(s)/Offender(s) Description	Categorical - Nominal
WEAPON	Murder Weapon Type	Categorical - Nominal
RELATIONSHIP	Offenders' Relationship to Victim	Categorical - Nominal
CIRCUMSTANCE	Circumstances Surrounding Crime	Categorical - Nominal
SUBCIRCUM	Secondary Circumstances Surrounding Crime	Categorical - Nominal
VICCOUNT	Number of Victims in Entire Related Incident	Numerical - Discrete
OFFCOUNT	Number of Offenders	Numerical - Discrete
ID	Unique Identifier	Numerical - Discrete
SOURCE	Source of data	Categorical - Nominal
INCIDENT	Alternative Identifier	Categorical - Nominal
ACTIONTYPE	Nature of Report (Original or Update)	Categorical - Nominal
FILEDATE	Date Record Added to Dataset	Date

Exploring the Data

Victims by Age - Histogram

Victim Race - Bar Chart

Offender Race - Bar Chart

Victim Sex - Bar Chart

Offender Sex - Bar Chart

Murders By Year - Bar Chart

Clearance Rate

Solved murders / Total Murders

30%

Of murders in the United States go unsolved, and this rate has worsened since the 1970's.

Victims, their families, and all of society deserve a better outcome.

Unknown Data Entries

Changing ages (999) to average age

Leaving 'Unknown' as a viable category for victim demographic data

Data Engineering

New Feature : White Victim Percent

New Feature: Total Agency Cases

Removing data leakage from 'SITUATION'

Name	Description	Туре
YEAR	Year of Murder	Numerical - Discrete
MONTH	Month of Murder	Numerical - Discrete
VICAGE	Victim Age	Numerical - Discrete
VICSEX	Victim Sex	Categorical - Nominal
VICRACE	Victim Race	Categorical - Nominal
VICETHNIC	Victim Hispanic Identification	Categorical - Nominal
AGENTYPE	Investigating Agency Type	Categorical - Nominal
HOMICIDE	Murder of Negligence Flag	Categorical - Nominal
SITUATION	Single/Multiple Victim(s)/Offender(s) Description	Categorical - Nominal
WEAPON	Murder Weapon Type	Categorical - Nominal
VICCOUNT	Number of Victims in Entire Related Incident	Numerical - Discrete
WhiteVictimPercent	(White Victims)/(Total Victims) for Cases Handled by Investigating Agency	Numerical - Continuous
AgencyCases	Total Murder Cases Handled by Investigating Agency	Numerical - Discrete
SOLVED	Crime Clearance Status	Categorical - Nominal

Date
Victim
Investigator
Crime
Characteristics
Engineered

Chosen Features for Modeling

Algorithm Requirements

Classifiers

Must Predict Probabilities (no SVM)

Must Handle Large Dataset (no KNN)

Algorithm Choices

Logarithmic Regression

Naive Bayes Classifier

Random Forest

Extremely Randomized Trees

Model Scoring

Metrics must account for entire range of probabilities

ROC AUC, Log Loss

New Metric: 'Binned Sum of Squared Residuals'

Grid Searches

Logistic Regression

(

Random Forest, Extremely Randomized Trees

n_estimators

max_depth

min_samples_split

Final Grid Search Output

			Precision			
	BSSR Mean	ROC_AUC Mean	Mean	Recall Mean	Accuracy Mean	F1 Mean
RandomForest balanced	-96.05	0.7185	0.6614	0.6607	0.6607	0.6603
ExtraTrees balanced	-164.29	0.7057	0.6492	0.6476	0.6476	0.6467
RandomForest unbalanced	-172.33	0.7247	0.7024	0.7285	0.7285	0.6832
ExtraTrees unbalanced	-178.45	0.7083	0.6974	0.7229	0.7229	0.6586
LogReg balanced	-255.99	0.6642	0.6226	0.6220	0.6220	0.6215
LogReg unbalanced	-695.70	0.6648	0.6646	0.7093	0.7093	0.6233
RandomForest model balanced	-3391.83	0.7201	0.7126	0.6665	0.6665	0.6796
ExtraTrees model balanced	-4195.71	0.7112	0.7077	0.6474	0.6474	0.6624
LogReg model balanced	-6304.65	0.6650	0.6857	0.6087	0.6087	0.6260
NaiveBayes balanced	-7516.91	0.6454	0.6187	0.5549	0.5549	0.4857
NaiveBayes unbalanced	-14680.93	0.6453	0.6790	0.5320	0.5320	0.5451

Optimal Model ROC Curve

Optimal Model Feature Importances

Optimal Model Test Set Probability Distribution

Optimal Model Binned Sum of Squared Residuals Chart

Sub-Optimal Model Binned Sum of Squared Residuals Chart

Can clearance rate be predicted?

Yes!

What should law enforcement do with this?

When a new murder occurs, input the features of the murder into the model.

Calculate the probability of the murder being solved. If low:

Send idle resources!

Send computing power!

Send the *best* investigators!

Send *more* investigators!

What information do you need for a prediction?

Victim demographics: age, race, gender, ethnicity (LatinX or not)

Investigating agency information

Date of homicide or discovery

Location of homicide

Type of weapon used

Total number of victims

'WhiteMurderPercent' by Probability

Potential Pitfalls of the Model

Reinforcing bias and inequality.

The model's output should be used as a method of determining which murders should have more resources directed toward their clearance, not as a filtering process that reinforces already-existing demographic or geographic inequality. "Ignore this murder, because it's unlikely to be solved anyway."

Complacency toward cases with high clearance probabilities

Future Work

Better, more computationally-intensive models

Census data about murder location as features

Requesting from law enforcement more features related to characteristics of the murder

Major data constraint: lacking time elapsed between murder and clearance, a likely useful feature

Activism. The federal government **must** enact uniform collection and reporting requirements for data relating to violent crime.