ECE 467 Project #1

Olivier Innocent Robert Ciesielski Ryn Stewart Joseph Riem

Inverter Chain	3
Delay vs. Number of stages (N)	3
Delay and Supply Voltage Data Table (for optimal N)	4
Delay vs. Supply Voltage Graph	4
Delay and Temperature Data Table (for optimal N)	5
Delay vs. Temperature Graph	5
Leakage Current and Supply Voltage & Temperature Data Table (for optimal N)	6
Leakage current vs. Supply Voltage & Temperature Graph	6
Delay and Vbs (all NMOS) Data Table	7
Delay vs Vbs Graph	7
Schematics and Symbols	8
Two Input NAND	10
Schematic	10
Gate Symbol	11
Two Input NOR	12
Schematic	12
Gate Symbol	13
Three Input NAND	14
Schematic	14
Gate Symbol	15
Three Input Nor	16
Schematic	16
Gate Symbol	17
Two Input XOR	18
Schematic	18
Gate Symbol	19
Gate Results(Testing with 2 Input NOR)	20
Delay vs. Supply Voltage(Tested at 25°C)	20
Delay vs. Temperature(Tested with VDD=1.1V)	21
Leakage current vs. Supply Voltage & Temperature (Tested with VDD=1.1V)	22
Delay vs. NMOS Body Bias(Tested with VDD=1.1V at 25°C)	23
Appendix A	24
Work Distribution	24

Inverter Chain

$$U^{N} = 128$$
; $t_{p} = 0.5(t_{HL} + t_{LH})$

Delay characteristics for different N data table

N	U	\mathbf{t}_{p}
5	2.63016	0.34445 ns
6	2.24492	0.31495 ns
7	2	0.3018 ns
8	1.83400	0.2942 ns
9	1.71449	0.2911 ns
10	1.62450	0.29245 ns

Optimal U= 1.71449

Optimal N= ln(128)/ln(1.71449)= 9

Delay vs. Number of stages (N)

Delay and Supply Voltage Data Table (for optimal N)

Voltage(V)	0.9	1.0	1.1	1.2
$\mathbf{t}_{p}(\mathbf{n}\mathbf{s})$	0.4806ns	0.3599ns	0.2911ns	0.2503ns

Delay vs. Supply Voltage Graph

Delay and Temperature Data Table (for optimal N)

Temperature(°C)	$T_p(ns)$
0°C	0.25920 ns
25°C	0.29110 ns
50°C	0.32860 ns
75°C	0.37340 ns
100°C	0.41875 ns

Delay vs. Temperature Graph

Leakage Current and Supply Voltage & Temperature Data Table (for optimal N)

Supply Voltage at constant 1.1V

Temperature(°C)	Leakage current
0°C	199.2405 nA
25°C	347.2131 nA
50°C	559.2233 nA
75°C	844.6916 nA
100°C	1211.098 nA

Leakage current vs. Supply Voltage & Temperature Graph

Delay and Vbs (all NMOS) Data Table

Vbs (V)	$t_p(ns)$
-0.25 V	0.32615 ns
0 V	0.29110 ns
0.25 V	0.26615 ns

Delay vs Vbs Graph

Schematics and Symbols

Inverter (minimum sized):

Two Input NAND

Schematic

Shown sizing is to match the delay of a minimum sized inverter. The transistor sizes for variants of the inverter are given in the below table.

Inverter Upsize Factor	NMOS and PMOS lengths (nm)	PMOS Width (nm)	NMOS Width (nm)
2	90	360	360
3	135	540	540

Gate Symbol

Two Input NOR

Schematic

Shown sizing is to match the delay of a minimum sized inverter. The transistor sizes for variants of the inverter are given in the below table.

Inverter Upsize Factor	NMOS and PMOS lengths (nm)	PMOS Width (nm)	NMOS Width (nm)
2	90	720	180
3	135	1080	270

Gate Symbol

Three Input NAND

Schematic

Shown sizing is to match the delay of a minimum sized inverter. The transistor sizes for variants of the inverter are given in the below table.

Inverter Upsize Factor	NMOS and PMOS lengths (nm)	PMOS Width (nm)	NMOS Width (nm)
2	90	270	540
3	135	540	810

Three Input Nor

Schematic NORI_nA

Shown sizing is to match the delay of a minimum sized inverter. The transistor sizes for variants of the inverter are given in the below table.

Inverter Upsize Factor	NMOS and PMOS lengths (nm)	PMOS Width (nm)	NMOS Width (nm)
2	90	1080	180
3	135	1620	270

Gate Symbol

Two Input XOR

Schematic

PMOS width = 180nm, *NMOS width* = 90nm, *PMOS/NMOS Length* = 45nm Shown sizing is to match the delay of a minimum sized inverter. The transistor sizes for variants of the inverter are given in the below table.

Inverter Upsize Factor	NMOS and PMOS lengths (nm)	PMOS Width (nm)	NMOS Width (nm)
2	90	360	180
3	135	540	270

Gate Results(Testing with 2 Input NOR)

Delay vs. Supply Voltage(Tested at 25°C)

Voltage(V)	0.9	1.0	1.1	1.2
$\mathbf{t}_{p}(\mathbf{n}\mathbf{s})$	0.045475	0.035125	0.02956	0.023625

Delay vs. Temperature(Tested with VDD=1.1V)

Temperature(°C)	$\mathbf{T}_{\mathtt{p}}$
0°C	0.02756ns
25°C	0.02956ns
50°C	0.03209ns
75°C	0.035345ns
100°C	0.03672ns

Leakage current vs. Supply Voltage & Temperature (Tested with VDD=1.1V)

Temperature(°C)	Leakage current
0°C	4.66317pA
25°C	10.2843pA
50°C	22.1507pA
75°C	44.4096pA
100°C	82.8285pA

Delay vs. NMOS Body Bias(Tested with VDD=1.1V at 25°C)

Vbs (V)	t _p (ns)
-0.25 V	0.03467ns
0 V	0.02956ns
0.25 V	0.025785ns

Appendix A

Work Distribution

Olivier Innocent	Inverter Chain: · Schematic and Symbols · Inverter Chain Analysis Data
Joseph Riem	2-Input NAND and NOR Gates: · Schematic and Symbols Gate Analysis Data
Ryn Stewart	3-Input NAND and NOR Gates: · Schematic and Symbols Graphing Script
Robert Ciesielski	XOR Gate: · Schematic and Symbol