(B2) ₩ 么 井 (12) 排 (19) 日本国籍許许 (JP)

(11)特許出頭公告番号

特公平6—69002

(24) (44)公告日 平成6年(1994)8月31日

技術表示箇所 님 斤内整理番号 7436-5] 3522-5 J 1 撤別記号 3/217 (51)Int.Cl.* 11 0 1 F II 0 3 F

神奈川県横須賀市武1丁目2356番地 日本 神奈川県横須賀市武1丁目2356番地 日本 最終頁に続く 発明の数2(全9頁) 電信電話株式会社通信網第二研究所內 **電信電話株式会社通信網第二研究所內** 電信電話株式会社通信網第二研究所內 東京都千代田区内幸町1丁目1番6号 エヌ・ティ・ティ移動通信網株式会社 神奈川県横須賀市武1丁目2356番地 東京都港区虎ノ門2丁目10番1号 (74)上記1名の代理人 弁理士 井出 直孝 日本電信電話株式会社 西木 貞之 野島 俊雄 (11) 出版人 99999999 鈴木 博 (11)出版((72) 発明者 (72) 発明者 (72)発明者 IR和61年(1986) 5 月23日 昭和62年(1987)11月28日 特與昭61-118788 特別昭62-274906 (21)出版部号 (65)公阴春号 (22)川頃日 (43)公開日

(54) 【 発明の名称 】 原周波増陶器

(特許加米の範囲)

【開氷項1】ソース後地またはエミッタ接地された半導 体均幅者子を備えた高周波均幅器において、

この半洋体増制者子の制御電桶に印加される人力信号の 包烙線成分を検出する回路と、

この同路が検出する包格税成分にほぼ比例して上記半導 体表子のドレイン電橋またはコレクタ電桶に印加する電

を備えたことを特徴とする高周政均幅器。 旧を変化させる街川原御回路と

この半導体増幅落子の制御電桶に印加される人力信号の 【開泉項2】ソース接地またはエミック接地された半導 体均幅素子を備えた高周波均幅器において、 包格税成分を検出する回路と、

体表子のドレイン電極またはコレクタ電桶に印加する電 この国路が検用する包路線成分にほぼ比例して上記半導

前記包絡線成分にほぼ比例して上記半導体素子の制御電 圧を変化させる第一の棺圧制御回路と、

頃に印加するパイアス電圧を変化させる第二の電圧制御

を伽えたことを特徴とする高周波増幅器。

る側御入力電圧により側御される半導体可変抵抗業子を 【清求項3】第一の電圧側御回路は包絡線成分に比例す 含む特許請求の範囲第(2)項に記載の高周波増幅器。

(情求項4) 第一の電圧制御回路は、直流直流変換器を 含み、その直流直流変換器は包絡線成分に比例する制御 人力他圧に応じてスイッチング周波数が変化するスイッ チング回路を含む特許請求の範囲第(3)項に記載の高周

[発明の詳細な説明]

[産業上の利用分野]

本発明は無線送信装置の電力増幅器として利用するに適 する。本発明は電源効率(直流消費電力に対する高周波 ll力の効率)の高い高周改増幅器に関するものである。 **木発型は高周波帯の線形型幅器として利用する。**

ようなフィルタ回路を接続し、増幅器内部における電圧 F級増幅が知られている。これは、増幅器をスイッチン は開放となり、かつ基本信号周波数に対しては整合する 従来、街周被帯の増幅器の電廠効率を高める方法として が動作するまで高い入力レベルで駆倒させ、さらに出力 整合回路に、信号周波数の高調波に対しては短絡もしく と電流の位相を90度ずらして電力の消費がほとんどなく なるようにしたものである。

化するような信号の増幅には適さない欠点があった。ま びB級増幅があるが、いずれも包絡線のレベル変化が大 た、線形増幅が可能な増幅形式としては、A級増幅およ きい場合にはレベルが低い領域において電源効率が低下 この従来回路では、亀瀬効率が一定の値以上であること が必要であり、このために包絡線成分が時間とともに変 (発明が解決しようとする問題点) する欠点があった。

り、特に包絡線レベルが低くなる場合にも電源効率が低 下することなく動作する線形増幅器を提供することを目 本発明は、入力信号の包絡線レベルが変化することがあ

[問題点を解決するための手段]

本発明の第一の発明は、ソース接地またはエミッタ接地 この半導体増幅素子の制御電極に印加される入力信号の 包絡線成分を検出する回路と、この回路が検出する包絡 線成分にほぼ比例して上記半導体素子のドレイン電極式 たはコレクタ電極に印加する電圧を変化させる電圧制御 された半導体増幅素子を備えた高周波増幅器において、 回路とを備えたことを特徴とする。

て、入力信号の包絡線成分にほぼ比例して上記半導体素 子の制御電極に印加するバイアス電圧を変化させる第二 本発明の第二の発明は、上記第一の発明の構成に加え

第一の電圧制御回路は包絡線成分に比例する制御入力館 圧により制御される半導体可変抵抗紫子を含むことがで の電圧制御回路を備えたことを特徴とする。

第一の電圧制御回路は、直流直流変換器を含み、その直 流直流変換器は包絡線成分に比例する制御入力電圧に応 じてスイッチング周波数が変化するスイッチング回路を 含むことができる。

よらず動作点を電源利用効率が设も高い点に維持できる 本発明はドレイン電圧(またはコレクタ地圧)を入力信 丹の包絡線レベルに比例して変化させることを设も大き な特徴とする。これにより、入力信号の包絡線の変化に

ようにしたもので、この点が従来の技術となっている。

流変換回路を用いる場合などがある。このドレイン電圧 第1図は本発明の第一支施例を説明する囚であって、14 により出力電圧を可変できるようにした電圧可変直流直 **森子となる電界効果トランジスタ (FET) である。こ** 6には、トランジスタやPINダイオードを使用して構 中符号11は信号人力端子、2.は信号出力端子、3.は増幅 る。符号7は直流電圧給電端子である。存身8は直流阻 比コンデンサ、9 は髙周被阻止チョーク、10はゲートバ イアス給電端子である。ここで、ドレイン地圧側御回路 成した可変抵抗回路を用いる場合、あるいはスイッチン グレギュレータのスイッチング周波数を可変にすること **器、5は直流増幅器、6はドレイン電圧制御回路であ** の増幅器はソース接地形である。符号エは包格線検波 傾御回路6については後で詳しく説明する。

せる。ここでこのドレイン電圧傾御回路6は、入力信号 れている電圧がFET3のドレインに直接印加され、か 包格線検波器4は入力信号の包格線成分を検出する。こ の包絡級信号は値流増幅器5により増幅されドレイン電 圧制御回路6に入力される。ドレイン電圧側御回路6は FET3のドレイン電圧を包絡製信号に比例して変化さ のレベルが愚大のときに直流亀圧給電端子7から給棺さ つ入力信号のレベルが零のときにドレイン他圧が零とな るように散定する。

つぎにFET3の動作点がB級増幅となるようにゲート パイアスを設定し、かつ借号の増幅が負荷線いっぱいに なるようなドレイン 植圧をFET3に対して 与えるよう に直流増幅器5の増幅度を設定する。

圧の変化と出力信号のレベルの変化量を一致させること によらず、常に許容できる風大の振幅でFETをB股桁 このように設定して動作させることにより、ドレイン電 ができる。これにより線形動作が可能となるから、入力 信号のレベルの変化、すなわち入力信号の包路級の変化 幅器として動作させることが可能になる。

電圧を制御することにより負荷線を変化させ、信号の包 铬緑の変化によらず常に吸大の電磁効率で増幅動作をす 第2図は入力信号の包絡線の大きいときと小さいときの 二つのレベルに対応した負荷線と出力被形の様子を示し たものである。同図からわかるように本発明はドレイン るようにしたものでこの点に吸大の特徴がある。

る。図中符号11は高調波阻止フィルタ、12は基本周波数 次に第3図は本発明の第二の実施例を説明する図であ 同期フィルタ、13はゲートパイアス電圧制御回路であ る。符号15は別の資流増幅器である。

第3図に示す回路はF級増幅に対応した回路を示してい る。包格級核波器4、真流均幅器5、ドレイン池圧制御 回路6は第1図のものと同様である。ゲートバイアス市 ト電圧を変化させ、包絡線の各レベルに対してF級とし 圧制御回路13は入力信号の包格級の変化に追従してゲー ての動作が良好に行われるように、FET3のバイアス

90度になるように機能する。基本周波数同期フィルタ12 私用を制御する。高周夜附出フィルタ目は出力信号の数 形を散形し、FETに印加される項圧と項流の位相差が は基本波出力のみが用力されるように機能する。これら : つのフィルタは下級的幅するために必要な基本回路で あり、このように構成された回路を使用し、さらに増幅 録をスイッチング動作するまで高い人力レベルで駆動さ せることにより、倫理的には100%近い効率を達成でき

行に道覧したドフイン為用や変化させる。 国際にゲート パイプス 電圧側御回路13が、同様に人力信号の包終線の 4 以に示すように負債数とバイアス点は人力信号の包格 **破棄化に迫阻して変化することになる。因では、ゲート** て包格様変化によらず定体的に下級で抑制制作すること ができる。すなわちF級動作にもかかわらず増幅器は線 も、ドレイン電圧制御回路6は、人力信号の包格級の変 変化に追随してゲート電圧を変化させる。この結果、第 第一国の説明で述べた動作と同様に本実施例の場合に 電圧は包路線が大きいときと小さいとき、それぞれV *1. V 4.2により、そのためドレインパイアス電圧も それぞれV_{ab}, V_{aa}, になっている。このようにし 形型軸端として機能することになる。

以上の説明はF級動作についてであったが、人力能力を が、この場合にも回接に入力信辱レベルによらず常に負 過れ信動作まで加大させない場合にはA級的幅となる 荷扱いっぱいに信号を扱って増幅することが可能であ

ジスタ3のコレクタ地圧を入力高周波信号の包絡幕に比 は増幅系子としてパイポーラトランジスタ3を用いたも し、この出力を直流が結認らて枠組して、コレクタ池圧 初御回路6に与える。コレクタ電圧前御回路6はトラン ボーラトランジスタであっても同様に電数効率の高い炉 第5因は本発明第三支施列回路の回路図である。この例 のである。雄子!からトランジスタ3のベースに与えら 例する他に倒御する。この構成により、抑制者子がバイ れる活因彼信号の包掛線を包路線被波器4により検出 机器が決現できる。

タ23のペースに与えられる。トランジスタ23は可変抵抗 第6四は本発明を実施するための電圧領御回路もの構成 の一例を示す図である。端子21には伽御入力が上述の点 **悶として作用する。 撬子7 に与えられる危険札圧はこの 液増幅器5から与えられる。この側御入力はトランジス** 阿御人力にほぼ比例する地圧として端子22に送出され

び33が、自動発験形のスイッチング素子として接続され この例は直流直流変換器を用いたものでその制御精度は 高い。トランス別の一次側に二つのトランジスタ22およ **で。端子21に与えられる側御人力により重界効果トラン** ジスタヨの特性が変化して、このスイッチング点での意 第7四は屯圧傾御回路6の別の構成倒を示す図である。

展局被数を変化させる。トランス31は一次側の電圧を昇 FFして、その二次側では整流回路35によりこれを整流平 沿して直流を得る。この回路により、端子21の制御入力 こしたがってこの直流直流変換器の動作発振周波数が変 化し、その出力端子22に送出される道流電圧を制御入力 にほぼ比例するように似御することができる。

この例は端子21に与えられる制御入力を電圧制御発振器 16の制御植圧として、制御入力電圧に対応する周波数の 発展出力を得る。この発振出力をトランジスタ37による し、その増幅出力を整流回路35により整流することによ 第8図は電圧制御回路6の別の構成例を示す図である。 コレクタ接地シングル形チョッパ増幅器の側御信号と り川力竜圧を得る。 第9図はゲートパイアス用の電圧側御回路13の一例を示 **ず回路図である。端子41には直流増幅器15から側御入力** が与えられる。端子42には出力電圧が送出される。この 回路は直流差動増幅器43を備え、端子45および46から正 ①の直流動作電流が供給される。端子47には基準電圧V そのパイアス衛圧の変化分を制御入力に比例した値とす sが与えられる。この回路により高周波増幅器の増幅素 子の御竜艦に一定の直流パイアス電圧を与えたうえで、 ることができる。

て、従来の場合の最大版幅動作時の効率を入力信号の包 格扱の変化によらず定常的に維持できるため高い増幅効 第10図は増幅器の各バイアス形式について、入力信号レ ベルに対する増幅効率のシュミレーション結果を示す図 ン橋圧御御回路としてトランジスタやPINダイオード ドレイン制御回路での損失が生じている。一点鎖線はス イッチングレギュレータのスイッチング周波数を可変す **ることにより出力電圧を可変できる電圧可変形の直流直** この場合には原理的にはドレイン電圧を損失なしに変換 この結果からわかるように、本発明を適用することによ り、可変抵抗器型のドレイン電圧制御回路を用いた場合 約10%の効率改資が違成されている。また、F級増幅の 場合には線形均幅器として機能するようになり、かつそ の効率はB級におけるものよりも20%以上良好になって いる。ただし、B級の場合には可変抵抗器では効率の改 許は見られない。しかし、電圧可変形の直流直流変換器 である。図中実像は従来形式によるもの、故線はドレイ を用いて構成した可変抵抗器を適用した場合のもので、 **近変換器 (第7図の例)を適用した場合のものであり、** を用いた場合には、A級、B級、F級それぞれについ でも、A級増幅でV_{max}/V_aが0.25~0.75の範囲で できる。ここで、Vmex、Vgはそれぞれ出力信号の ピーク電圧と直流電圧給電端子7の給電電圧である。 年を遺成できる。

以上の結果から明らかなように、本発明の適用により高 同政増幅器を従来の技術では遠成できなかった高い電源 効率で線形均幅動作させることが可能になる。

に適用しこれらを小型・経済化・低消費阻力化できる利 以上説明したように、本発明は従来になく高い効率で観 形増幅することが可能であるため、高周波帯の送信用線 形電力増幅器の低消費電力化を達成する方法とし有効で ならびに線形変調を用いるマイクロ被通信用の無線装置 **ちる。大電力送信が必要な放送局用の送信器や消費電力** のきわめて低いことが要求される移動通信用無線装置、

【図面の簡単な説明】

点がある。

第1図は本発明の第一実施例回路図。

第2図はこの第一実施例の動作を説明するための負荷線 図と出力液形図。

第3図は本発明の第二実施例回路図。

第4図は第二実施例の動作を説明するための負荷線図と、

第6図は本発明を実施するために使用する電圧制御回路 第5図は本発明の第三実施例回路の構成図。 出力被形図。

…第二の程圧制御回路。

第9図は関御電機に与えるパイプス地圧を側御する側形 第8因は塩圧制御回路のさらに別の構成例を示す四。 第7四は他任制御回路の別の構成例を示す団。

の構成図を示す図。

1……入力益子、2……出力益子、3……FET、4… …包絡線検波器、2……真流均幅器、6……ドレイン用 する効率のシュミレーション結果を示す図。

第10図は本発明の効果を示すための各バイアス形式に対

資質回路の権权配かポナ区。

路)、7……低流程圧給積端子、8……直流阻止コンデ ・・波数同闘フィルタ、13……ゲートパイアス用の電圧傾卸 ンサ、 9 …… 栢周波阻止チョーク、10・……ゲートバイプ 又結動雄子、二……治量波阻止フィルタ、13……冼本図 回路(第二の桓圧寅御回路)、15……貞洪均輔器、16… またはコレクタ川の地圧傾御回路(第一の地圧側御回

(第1図)

愈 笟 実 1 魠

(元明の効果)

- 4 -

(近十四)

エン

(第3個)

(第10国)

(第6四)

0.75

S

(%) 年位——

23

ě

新的回路

ဖ

~~ ~~

知御入力

1

出力

出 33 9

(第8四)

電圧制御回路

電圧制御回路

特公平6-69002

電圧 制御回路 (ケーナバイアス用)

ンロントページの税が

(72) 宠明者 下葉 財司 神奈川県韓須賀市武士丁川2356帯地 日本 電信電話株式会社通信網第二研究所内

審查官 東森 秀朋