Chương 1	Hàm nhiều biến
	Câu 1: Cho $z = x^2 + 4^y$. Tính dz
	$A. dz = 2xdx + 4^y dy$
	$B. dz = 2xdx + y4^{y-1}dy$
	$C. dz = 2xdx + 4^{y} \ln 4 dy$
	D. $dz = 2xdx + y4^y \ln 4 dy$
	E. $dz = 2xdx + y4^{y-1}\ln 4 dy$
	F. $dz = x^2 dx + 4^y dy$ Cây 2: Cho hàm cất $z = \frac{xy}{1 + x^2} + x\sqrt{1 + x^2}$. Tân nào là miần váo định của hàm cất
	Câu 2: Cho hàm số $z = \frac{xy}{x+y} + x\sqrt{1-y}$. Tập nào là miền xác định của hàm số?
	A. $x + y \neq 0$; $y \leq 1$ B. \mathbb{R}^2
	$C. x + y \ge 0; y \ne 1$
	$D. x + y \le 0; y \ne 1$
	E. $x + y \neq 0$; $y > 1$
	$F. x + y \neq 0; y \geq 1$
	Câu 3: Cho $z = \arctan(y - x)$. Tính z'_y
	A. $z_y' = \frac{-1}{1 + (x - y)^2}$
	B. $z'_y = \frac{-1}{(x-y)^2}$
	C. $z_y' = \frac{1}{\sqrt{1 + (x - y)^2}}$
	D. $z'_{y} = \frac{1}{1 + (x - y)^{2}}$ E. $z'_{y} = \frac{1}{(y - x)^{2}}$
	F. $z_y' = \frac{-1}{\sqrt{1 + (x - y)^2}}$
	$\frac{1}{\sqrt{1+(x-y)^2}}$ Câu 4: Cho $z = xe^y + y^2 + y \sin x$. Tính z''_{xx}
	$A. z_{xx}^{"} = y\cos x$
	B. $z_{xx}^{"} = -y\cos x$
	$C. z_{xx}^{"} = y \sin x$
	$D. z_{xx}^{"} = -y \sin x$
	$E. z_{xx}^{"} = e^{y}$
	$F. z_{xx}^{"} = e^y - y \sin x$
	Câu 5: Tính dz biết $z = \arcsin \frac{y}{x}$
	$A. dz = \frac{1}{\sqrt{x^2 - y^2}} (dx - \frac{y}{x} dy)$
	B. $dz = \frac{1}{\sqrt{x^2 - y^2}} (dx + \frac{y}{x} dy)$
	C. $dz = \frac{1}{\sqrt{x^2 - y^2}} (dy - \frac{y}{x} dx)$
	D. $dz = \frac{1}{\sqrt{x^2 - y^2}} (dy + \frac{y}{x} dx)$
	E. $dz = \frac{1}{\sqrt{x^2 - y^2}} (dx - \frac{x}{y} dy)$
	F. $dz = \frac{1}{\sqrt{x^2 - y^2}} (dx + \frac{x}{y} dy)$
	$\sqrt{x^2-y^2}$ y

/·· \
Câu 6: Tính dz biết $z = \arctan\left(\frac{x}{y} - 1\right)$
$A. dz = \frac{ydx + xdy}{y^2 + (x - y)^2}$
$y^2 + (x - y)^2$ $dx - dy$
B. $dz = \frac{dx - dy}{y^2 + (x - y)^2}$
C. $dz = \frac{-dx - dy}{y^2 + (x - y)^2}$
$\int_{0}^{y^2+(x-y)^2} dx = \int_{0}^{y^2+(x-y)^2} dx$
$D. dz = \frac{ydx - xdy}{y^2 + (x - y)^2}$
$E. dz = \frac{ydx + xdy}{y^2 - (x - y)^2}$
F. $dz = \frac{ydx - xdy}{y^2 - (x - y)^2}$ Câu 7: Nếu $z = \ln(x^2 + xy + y^2)$ thì
$\frac{y^2 - (x - y)^2}{C_{0}^2 + Y_{0}^2 + Y_{0}^2 + Y_{0}^2 + Y_{0}^2 + Y_{0}^2}$
A. $xz'_x + yz'_y = 1$
$B. xz'_x + yz'_y = 1$ $B. xz'_x + yz'_y = 3$
$C. xz'_x + yz'_y = 3$ $C. xz'_x + yz'_y = 2$
D. $xz'_x + yz'_y = -2$
$E. xz'_x + yz'_y = 2$ $E. xz'_x + yz'_y = -1$
$F. xz'_x + yz'_y = -3$
Câu 8: Cho $y = y(x)$ là hàm ẩn xác định bởi phương trình $x - y + \arctan y = 0$. Tính $y'(x)$
A. $y'(x) = 1 + \frac{1}{y^2}$
B. $y(x) = 1 - \frac{1}{y^2}$
B. $y'(x) = 1 - \frac{1}{y^2}$ C. $y'(x) = 1 + \frac{1}{y}$
D. $y'(x) = 1 - \frac{1}{y}$
E. $y'(x) = -1 + \frac{1}{v^2}$
F. $y'(x) = -1 - \frac{1}{y^2}$
Câu 9: Hàm $z = (x - y)^2 + (y^3 - 1)^4 - 1$ có các điểm dừng là
A. $M_1(0,0)$; $M_2(0,1)$
B. $M_1(0,0); M_2(-1,-1)$
C. $M_1(0,0)$; $M_2(1,1)$
D. $M_1(0,0); M_2(1,0)$
E. $M_1(1,0)$; $M_2(0,1)$
F. $M_1(0,0)$; $M_2(0,-1)$
Câu 10: Cho $z = z(x, y)$ là hàm ẩn xác định bởi phương trình $z^2 + xy^3 = \frac{xz}{y}$. Tính z'_y
$A. z_y' = -\frac{xy^4 + xz}{2zy^2 - xy}$
B. $z'_{y} = -\frac{xy^{4} + 3xz}{2zy^{2} - xy}$ C. $z'_{y} = \frac{3xy^{4} + xz}{2zy^{2} - xy}$ D. $z'_{y} = -\frac{3xy^{4} + 3xz}{2zy^{2} - xy}$ E. $z'_{y} = -\frac{3xy^{4} + xz}{2zy^{2} - xy}$ F. $z'_{y} = -\frac{3xy^{4} + xz}{2zy^{2} + xy}$
$2zy^2 - xy$ $3ry^4 + rz$
$C. z_y' = \frac{3xy + xz}{2zy^2 - xy}$
D. $z'_{y} = -\frac{3xy^4 + 3xz}{3x^3}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$E. z_y = -\frac{1}{2zy^2 - xy}$
F. $z'_{y} = -\frac{3xy^4 + xz}{2xy^2 + xy}$
44y TAY

Câu 11: Cho $z = z(x, y)$ là hàm ẩn xác định bởi phương trình $x^3 + z^2 + ye^{xz} + z\cos y = 0$.
Tính $dz(0,0)$ biết $z(0,0) = 0$.
A. dz(0,0) = -dx + dy
B. $dz(0,0) = -dy$
C. dz(0,0) = dx - dy
D. dz(0,0) = dy
E. dz(0,0) = -dx - dy
F. dz(0,0) = -dx
Câu 12: Cho hàm $z = x^4 + y^4 - 8xy$. Khẳng định nào sau đây đúng?
A. z đạt cực đại tại $M_0(0,0)$
B. z đạt cực tiểu tại $M_1(\sqrt{2},\sqrt{2})$ và $M_2(-\sqrt{2},-\sqrt{2})$
C. z chỉ có 2 điểm dừng là $M_1(0,0)$ và $M_2(\sqrt{2},\sqrt{2})$
D. z không có cực trị
E. z đạt cực đại tại $M_0(\sqrt{2}, \sqrt{2})$
F. z đạt cực tiểu tại $M_0(0,0)$
Câu 13: Cho hàm $z = -x^3 + 4xy - 2y^2 + 1$. Khẳng định nào sau đây đúng?
A. z đạt cực đại tại $M_0(0,0)$
B. z đạt cực tiểu tại $M_1(0,0)$ và $M_2(\frac{4}{3},\frac{4}{3})$
C. z đạt cực tiểu tại $M_0(\frac{4}{3},\frac{4}{3})$
D. z đạt cực đại tại $M_0(\frac{3}{3},\frac{4}{3})$
E. z không đạt cực trị
F. z đạt cực tiểu tại $M_0(\frac{4}{3}, \frac{4}{3})$

Chương 2	Tích phân nhiều lớp
	Câu 14: Tính $I = \iint_D 2xy dx dy$ trên miền $D = \{0 \le x \le 1; 0 \le y \le 3\}$.
	$A.\frac{9}{2}$
	B. 9
	$C\frac{1}{2}$. D9
	C. $-\frac{9}{2}$. D. -9 E. $\frac{9}{4}$
	$F\frac{9}{4}$
	Câu 15: Cho $I = \iint_D e^{x^2 + y^2} dxdy$ trên miền $D = \{0 \le y \le \sqrt{1 - x^2}\}$. Chuyển sang tọa
	độ cực ta được
	A. $I = \int_0^\pi d\varphi \int_0^1 e^{r^2} r dr.$
	$B. I = \int_0^\pi d\varphi \int_0^1 e^{r^2} dr$
	C. $I = \int_0^{2\pi} d\varphi \int_0^1 e^{r^2} dr$
	D. $I = \int_0^{2\pi} d\varphi \int_0^1 e^{r^2} r dr$

Câu 20: Xác định cận trong hệ tọa độ cực của $I = \iint_D f(x, y) dx dy$, trong đó D là miền giới hạn bởi $x^2 + y^2 \le 4$; $x \ge 0$; $y \ge 0$.
A. $I = \int_0^{\pi} d\varphi \int_0^2 f(r\cos\varphi, r\sin\varphi) r dr$
B. $I = \int_0^{\pi} d\varphi \int_0^1 f(r\cos\varphi, r\sin\varphi) r dr$
0 0
C. $I = \int_0^{2\pi} d\varphi \int_0^2 f(r\cos\varphi, r\sin\varphi) r dr$
D. $I = \int_0^{2\pi} d\varphi \int_0^1 f(r\cos\varphi, r\sin\varphi) r dr$
E. $I = \int_0^{\pi/2} d\varphi \int_0^2 f(r\cos\varphi, r\sin\varphi) r dr$
$F. I = \int_0^{\pi/2} d\varphi \int_0^1 f(r\cos\varphi, r\sin\varphi) r dr$
Câu 21: Tính $\iint_D 2xy dx dy$, $D = \{(x, y): 0 \le x \le 1, x \le y \le 2 - x\}$.
$A \frac{2}{3}$
$B\frac{1}{2}$
$C. \frac{1}{2}$
$D = \frac{5}{2}$
C. $\frac{1}{5}$ D. $\frac{2}{3}$ E. $\frac{1}{3}$
$F\frac{1}{5}$
Câu 22: Tính $I = \iint_D \frac{dxdy}{x^2 + y^2}$ trên miền $D = \{4 \le x^2 + y^2 \le 16\}$ bằng cách chuyển sang
tọa độ cực.
$A. I = \frac{n}{2}$
B. $I = \pi$ C. $I = 2\pi$
$D. I = \pi \ln 2$
$E. I = 2\pi \ln 2$
$F. I = 2\pi \ln 4$
Câu 23: Tính $I = \iiint_V x dx dy dz$, trong đó V là miền $0 \le x \le 1$; $0 \le y \le 1 - x$; $0 \le z \le 1$
$\begin{vmatrix} 1-x-y \\ \lambda & l-\end{vmatrix}^1$
$\begin{array}{c} A.I - \frac{1}{12} \\ D.I = 1 \end{array}$
A. $I = \frac{1}{12}$ B. $I = \frac{1}{6}$ C. $I = \frac{1}{4}$ D. $I = \frac{1}{24}$
$C. I = \frac{1}{4}$
D. $I = \frac{1}{24}$
E. $I = -\frac{1}{24}$ F. $I = -\frac{1}{12}$
$F. I = -\frac{1}{12}$
Câu 24: Tính $I = \iint_D xy dx dy$, trong đó D là hình phẳng giới hạn bởi $y = x$ và $y^2 =$
2x + 8.
A. $I = -12$
B. $I = 18$
C. I = -14

D. $I = 12$	
E. $I = 14$	
F. $I = -18$	
Câu 25: Xét $I = \iint_D f(x; y) dx dy$; D là miền giới hạn bở	$y = 2 - x; y = \sqrt{x}; x = 0.$
Khi đó	
A. $I = \int_0^1 dy \int_0^{y^2} f(x; y) dx + \int_1^2 dy \int_0^{2-y} f(x; y) dx$	
B. $I = \int_0^1 dx \int_0^{x^2} f(x; y) dy + \int_1^2 dx \int_0^{2-x} f(x; y) dy$	
C. $I = \int_0^1 dx \int_0^{\sqrt{x}} f(x; y) dy + \int_1^2 dx \int_0^{2-x} f(x; y) dy$	
D. $I = \int_0^1 dx \int_0^{2-x} f(x; y) dy$	
E. $I = \int_0^1 dy \int_{y^2}^{2-y} f(x; y) dx$	
F. $I = \int_0^2 dy \int_0^{2-y} f(x; y) dx$	