

# Week 10-11: Tree ADT

**CS-250 Data Structure and Algorithms** 

DR. Mehwish Fatima | Assist. Professor Department of AI & DS | SEECS, NUST

# Recap





# Recap



Dr. Mehwish Fatima | Assist.

#### Focus



#### Linear vs. Non-Linear Data Structures

- Linear vs non-linear classification of data structures is dependent upon how individual elements are connected to each other.
  - All linear data structures have one thing in common that they are sequential
  - Not efficient for information retrieval →O(n)
- Linear lists are useful for serially ordered data.
  - (e0, e1, e2, ..., en-1)
  - Days of week
  - Months in a year
  - Students in this class

#### Linear vs. Non-Linear Data Structures

- Linear vs non-linear classification of data structures is dependent upon how individual elements are connected to each other.
  - All linear data structures have one thing in common that they are sequential
  - Not efficient for information retrieval →O(n)
- Trees are useful for hierarchically ordered data
  - Structure of directories
  - Employees of a corporation
  - President, vice presidents, managers, and so on

# Tree vs. Graph

- A graph is non-linear data structure which is use to model complex problems.
  - Like finding shortest path from on city to other city in maps
  - It has set of vertices/nodes and edges. Vertices are connected through edges





#### Tree vs. Graph

- A tree is a graph with no cycles.
  - Cycle means a path which starts and ends at same node (a-b-e-h-d-a)





#### **Tree**

- A non linear data structure which presents hierarchical relationship between data elements.
  - Hierarchical means some elements are below and some are above from others.
  - Like family tree, folder structure, table of contents



#### **Tree: Recursive Data Structure**

- Tree is a recursive data structure
  - it contain certain patterns that are themselves are trees.
  - it is composed of smaller pieces of its own data type.
  - Such as list and trees.
    - a is root of all nodes like b, c, d etc.
    - b, c, d are also root of their sub trees



#### **Tree: Recursive Data Structure**

#### So, a tree T can be defined recursively as

- Tree T is a collection of nodes such that
  - T is empty/NULL (No node) OR
  - There is a special node called root,
    - which can have 0 or more children (T1, T2, T3 ...Tn)
    - which are also sub-trees themselves.
    - T1, T2, T3 ...Tn are disjoint subtrees ( no shared node)



# Why Trees

- They are suitable for
  - Hierarchical structure representation, e.g.,
    - File directory.
    - Organizational structure of an institution.
    - Class inheritance tree.
  - Problem representation, e.g.,
    - Expression tree.
    - Decision tree.
  - Efficient algorithmic solutions, e.g.,
    - Search trees.
    - Efficient priority queues via heaps.

#### Trees as tool for abstraction

- We often use trees in our everyday lives
  - To keep track of our ancestors: a family tree
    - Most of the terminology used in trees in computer science here
  - When describing the organization of a company: a company chart
  - Organization of files in a computer: a directory structure
- In here we want to concentrate on trees as tools for the implementation of computer programs: trees as abstract data structures

# Terminologies

#### **Tree Terminologies**

- Node/Vertex
  - One data unit of tree
- Edge
  - Arch/link from one node to other
- Path
  - A sequence of adjacent of vertices connected by edges
- Length of a Path
  - # of edges on the path from one node to other



# Tree



# **Nodes**



# Edges



# Path



#### **Trees, Paths and Forests**

- The main property of a tree is based on paths
  - In a tree there is exactly one path between any two nodes
- If there exist more than one path between any pair of nodes or if there is no path between any of them we do not have a tree
- A disjoint set of trees is called a forest

#### **Tree Terminologies**

- Root node
  - The top node of tree.
  - A node with no parent
- Leaf/External node
  - Node with no child
- Internal Node
  - Node with child



#### **Rooted Trees**

- A rooted tree is a tree where one node is "**special**" and is called the root of the tree
- A tree where there is no root is called a free tree
- Rooted trees are the most common in computer applications
  - so common that we'll use the term tree as a synonym for rooted tree



# **Tree Terminologies**

- SubTree
  - A node within tree with descendants



#### Tree vs. Subtree

- In a rooted tree, any node is a root of a subtree consisting of itself and the nodes "below" it
  - By definition there is only one path between the root and each of the other nodes.
    - Because a root is also a node the main property applies



# **Tree Terminologies**

Ancestor Nodes

Parent, all grandparents and all great grand parents of node.

• a, b and e are ancestors of i.

Descendant Nodes

• Child, all grandchildren and great grandchildren of node.

• i, j, e and f are descendants of b

Siblings

- Nodes with same parent and at same level
- i and j
- b and c and d



Root

Leaf

#### Trees with specific number of children

- It is possible that the order in which children are defined is important.
  - We call these trees ordered trees
- Sometimes a node must have a maximum number of children.
  - If for the whole tree the maximum number of children nodes can have is **M** and this tree is ordered we have a **M-ary tree**.
- A binary tree is a special case of a M-ary tree where all nodes (except the leaves) have at most 2 children.
  - Because the tree is ordered the children have a order and they are normally referred to as left and right child

# **Tree Terminologies**

- Degree of Node
  - Number of its children
    - a's degree is 3
    - b, h and e's degree is 2
    - c's degree is 1
- Degree of Tree
  - Maximum degree of any node
    - Since a has degree 3 that is maximum so degree of tree is 3



# **Tree Terminologies**

- Depth/Level of Node
  - Number of branches on the path
  - j has depth 3
- Height of Tree
  - Number of nodes on the longest path from the root to a leaf
  - Maximum level OR Maximum depth →4
  - Number of nodes on the Longest path from root to any leaf node →4



#### **Hierarchical Data And Trees**

- The element at the top of the hierarchy is the root
  - Elements next in the hierarchy are the children of the root
  - Elements next in the hierarchy are the grandchildren of the root, and so on
  - Elements at the lowest level of the hierarchy are the leaves

# **Applications**

- Expression evaluations
  - note how different traversals result in different notation
- Storing and retrieving information by a key
- Representing structured objects
  - e.g. the universe in an adventure game
- Useful when needing to make a decision on how to proceed
  - tic-tac-toe, chess

# Tree ADT

#### **Tree ADT**

A simple tree T provides following basic operations

- Tree Methods
  - size(root)
    - returns total number of nodes
  - isEmpty(root)
    - if tree is empty or not
  - root()
    - returns root node of tree

#### **Tree ADT**

A simple tree T provides following basic operations

- Node Methods
  - parent(node)
    - returns parent of node
  - child(node)
    - returns list of all child's of node
  - isInternal(node)
    - if node is non-leaf
  - isExternal(node)
    - if node is leaf
  - isRoot(node)
    - if node is root

# **Binary Trees**

#### **Binary Trees**

- A special tree where each node can have maximum two children.
  - Each node has a left child and a right child.
  - Even if a node has only one child, other child is still mentioned with NULL.





# **Binary Trees**

- A non-empty binary tree has a root element
  - The remaining elements, if any, are partitioned into two binary trees
  - These are called the left and right subtrees of the binary tree





#### **Tree vs. Binary Trees**

- No node in a binary tree may have a degree more than 2
- whereas there is no limit on the degree of a node in a tree.
- A binary tree may be empty
- The subtrees of a binary tree are ordered
  - those of a tree are not ordered.





#### Tree vs. Binary Trees

- The subtrees of a binary tree are ordered
- those of a tree are not ordered



- Are different when viewed as binary trees
- Are the same when viewed as trees

- Informal defn
  - each node has 0, 1, or 2 children
- Formal defn
  - a binary tree is a structure that
  - contains no nodes, or
  - is comprised of three disjoint sets of nodes
    - a root
    - a binary tree called its left subtree
    - a binary tree called its right subtree
  - A binary tree that contains no nodes is called empty
- Note: the position of a child matters!



- Full Binary Tree
  - Every node except leaf nodes has its maximum number of children.
  - It is a tree in which every node in the tree has either 0 or 2 children.



- Perfect Binary Tree
  - A Full binary tree in which each leaf node has same depth/level.



- Complete Binary tree
  - A tree that is completely filled at all levels, except the last level which is filled from left to right



### What is a binary tree?

- Property1: each node can have up to two successor nodes (children)
  - The predecessor node of a node is called its parent
  - The "beginning" node is called the root (no parent)
  - A node without children is called a leaf



### What is a binary tree?

- Property2: a unique path exists from the root to every other node
  - Below given example is not binary tree due to multiple paths from A to D



### **Binary Tree Terminologies**

- Ancestor of a node
  - any node on the path from the root to that node
- Descendant of a node
  - any node on a path from the node to the last node in the path
- Depth of a node
  - number of edges in the path from the root to that node.
    - Remember, the depth of root node is 0; the depth of root's child nodes is 1 and so on
- Height of a node x
  - In the subtree of tree rooted at node x, find the leaf node y which is farthest from x;
  - start counting nodes upwards from y to x.
  - Height of x is the final count.



- Recursive Definition
  - T is a binary tree if
  - T is empty (NULL) OR
  - T's root node has maximum two children's, where each child is itself a binary tree.
    - · Left child is called left subtree and right child is called right subtree



# **Mathematical Properties of Binary Trees**

- Let's us look at some important mathematical properties of binary trees
  - A good understanding of these properties will help the understanding of the performance of algorithms that process trees



- Some of the properties relate to the structural properties of these trees.
  - This is the case because performance characteristics of many algorithms depend on these structural properties and not only the number of nodes

# **Mathematical Properties of Binary Trees**

- Maximum nodes at level i of binary tree?
  - 2<sup>i</sup>



#### Minimum Number Of Nodes

- If binary tree has height h, minimum number of nodes is h
  - in case of left skewed and right skewed binary tree
- minimum number of nodes is h
  - N=h



#### **Maximum Number Of Nodes**

- All possible nodes at first d depths are present
  - Maximum number of nodes

• = 
$$1 + 2 + 4 + 8 + ... + 2^d = 2^h - 1$$



### **Number Of Nodes & Height**

- Let n be the number of nodes in a binary tree whose height is h.
- (h) <= n <= 2h 1
- $\lfloor \log 2(n) \rfloor \leq h \leq n$
- The max height of a tree with N nodes is N
- The min height of a tree with N nodes is Llog2(N).

•

lacktriangle

# Binary Tree ADT

- Binary Tree ADT is a finite set of nodes which is
  - either empty
  - or consists of root and two disjoint binary trees
    - left and right subtrees of the root
- Nodes with no successors are called leaves.
- A child has one parent.
- A parent has at most two children.



# **Why Binary Trees**

- Every Data structure has its own efficiency and limitations
  - Arrays
    - Good for element access
  - Linked Lists
    - Good for lot of insertions and deletions
  - Stacks
    - Where order is much important like mathematical expression evaluation
  - Queue
    - Again order matters, process scheduling on CPU

# **Why Binary Trees**

- Tree
  - good where data has hierarchical relationship, like file system, parsers, sorting
  - One common issue with all linear data structures is in-efficient searching
    - takes O(n) time
  - Binary Trees can improve this time to an average case of O(log n)
  - Even though worst case can still leads to O(n) time but this can be improved using certain types of Trees.
- There are some variations of Binary Tree which guarantees O(log n) time for insertion, deletion and searching
  - Binary Search Tree (BST),
  - AVL Trees,
  - Heaps
  - etc

# **Applications of Binary Tree**

- Binary Tree has different variations which are used for different purposes
  - Parse Tree
    - Expression trees (e.g., in compiler design) for checking that the expressions are well formed and for evaluating them.
      - leaf nodes are operands (e.g. constants)
      - non leaf nodes are operators
  - Huffman coding trees, for implementing data compression algorithms:
    - each leaf is a symbol in a given alphabet
    - code of the symbol constructed following the path from root to the leaf (left link is 0 and right link is 1)
  - Binary Search Tree (BST) →Ordered Tree
  - Binary Heap





$$a = 0, b = 100, c = 101, d = 11$$

### Linked-based Representation

#### Each node has two links left and right

- If root node is null, means tree is empty
- If node's left, right links are NULL, it means its leaf node
- Optionally, a parent field with a pointer to the parent node

```
Struct Node{
    Data;
    Node*left;
    Node*right;
};
```



### **Array-based Representation**

- A fixed size tree can be represented using arrays.
- If we know the height of tree,
  - we can define size of array to hold maximum possible number of nodes → 2<sup>h+1</sup>-1
  - Root of tree → array[0]
  - Left child of root →array[1]
  - Right child of root →array[2]
  - Left child of node at index k →array[2k+1]
  - Right child of node at index k→array[2k+2]



| 0 | 1 | 2 | 3 | 4 | 5    | 6 |
|---|---|---|---|---|------|---|
| а | b | q | С | f | NULL | h |

#### **Tree Traversal**

- A tree traversal means visiting each node of tree once.
- Due to non-linear structure of tree there is not a single way to traverse node:
  - Breadth First Search
  - Depth First Search
    - Pre-Order
    - In-Order
    - Post-Order

- Starting from root node, visit all of its children, all of its grandchildren and all of its great grandchildren
  - Order of nodes: a b g c f h d e
  - Nodes at same level must be visited first before nodes of next level
- Also known as level order traversal
- Implementation?
  - We should store nodes to keep track of them.
  - The sequence in which we store them effects the sequence in which we retrieve them back
- Which data structure can be used to store nodes?
  - array, stack or queue











abdefhijkl

Algorithm: Iterative\_BFS(node \*root)

- Set current = root and Queue is empty initially
- if (current != NULL)
  - Enqueue (current)
  - while (Queue is not empty)
    - current = Dequeue()
    - visit current
    - if (current.left) // if( lsLeft(current))
      - Enqueue (current.left)
    - if (current.right) // if( IsRight(current))
    - Enqueue (current.right)
  - End While
- End if



```
a
b g
g c f
c f h
f h d e
```

Output: a b g c f h d e

Recursive\_BFS(Node \*node)

- If (node != Null)
  - visit(node)
- If hasLeft(node)
  - enqueue(node->left)
- If hasRight(node)
  - enqueue(node->right)
- If Q is not Empty
  - Recursive\_BFS(Dequeue())
- Else
  - return

K C H L X Q M P



# Depth First Search (DFS)

- Using the top-down view of the tree, starting from root, go to each subtree
  as far as possible, then back track
- Possible Orders
  - Left subtree and then right subtree
    - abcdefgh
  - right subtree and then left subtree
    - aghbfced
- Implementation
  - Can we use a stack instead of queue



# Depth First Search (DFS)

- Depth First Search can also be implemented with recursive approach.
- Depending upon the order in which we go in depth can bring different variations in order of node traversal.
  - Pre-Order (simple DFS)
    - Visit node
    - Visit left child of node
    - Visit right child of node
  - Post-Order
    - Visit left child of node
    - Visit right child of node
    - Visit node
  - In-Order
    - Visit left child of node
    - Visit node
    - Visit right child of node



#### Inorder vs. Preorder vs. Post order

- Pre-order (node-left-right)
- Post-order (left-right-node)
- In-order (left-node-right)



#### Inorder vs. Preorder vs. Postorder

- Pre-order (node-left-right)
  - abcdefgh
- Post-order (left-right-node)
  - decfbgha
- In-order (left-node-right)
  - dcebfagh



#### Inorder vs. Preorder vs. Postorder





#### Inorder vs. Preorder vs. Postorder





Pre-Order: a b e i j f d h k l Post-Order: i j e f b k l h d a In-Order: i e j b f a k h l d

#### **Inorder Traversal**

Algorithm: IterativeInOder(node \* root) Input: a pointer to root node of Tree.

Set current = root and initially Stack is empty

C

b

a

h

a

b

a

- while(current ! =NULL || stack is nonempty)
  - if(current! = NULL)
    - push (current)
    - current = current.left
  - else
    - current = pop ()
    - visit current
    - current = current.right
- End While



### **Inorder Traversal**

- Recursive\_InOrder(Tree \*node)
  - If node is not NULL
    - Recursive\_InOrder(node.left)
    - visit(node)
    - Recursive\_InOrder(node.right)
  - End If

## **Inorder Traversal (LNR)**



InOrder(NULL)

InOrder(♥))

InOrder(K)

InOrder(A)

```
if (t) {
    InOrder(t->left);
    visit(t);
    InOrder(t->right);
}
```

InOrder(M->left)

visit(M)

InOrder(M->right)

t=Ø

InOrder(C->left)

visit(C)

InOrder(C->right)

t=C

InOrder(K->left)

visit(K)

 $t=\mathbb{K}$ 

InOrder(K->right)

InOrder(A->left)

visit(A)

t=A

InOrder(A->right)

## **Inorder Traversal (LNR)**



```
InOrder(TreeNode *t)
{
    if (t == Null ) then return;
    InOrder(t.left);
    visit(t);
    InOrder(t.right);
}
```

#### **Preorder Traversal**

Algorithm: IterativePreOder(node \* root)

- Set current = root and initially stack is empty
- while(current ! = NULL || stack is nonempty)
  - if(current! = NULL)
    - visit current
    - if (current.right! = NULL)
      - push(current.right)
    - current = current.left
  - else
    - current = pop()
- End while



e f f f g g g g h

#### **Preorder Traversal**

- Recursive PreOrder(Tree \*node)
  - If node is not NULL
    - visit(node)
    - Recursive\_PreOrder(node.left)
    - Recursive\_PreOrder(node.right)
  - End If

## **Preorder Traversal (NLR)**



```
PreOrder(TreeNode *t)
{
    if (t == NULL) then return;
    visit(t);
    PreOrder(t.left);
    PreOrder(t.right);
}
```

#### PostOrder Traversal

Algorithm: IterativePostOder(node \* root)

- Set current = root lastNodeVisited = NULL topNode = Null
- while (current ! = NULL || Stack is not empty)
  - if (current! = NULL)
    - push(current)
    - current = current.left
  - else
    - topNode = top()
    - if (topNode.Right! = NULL && lastNodeVisited! = topNode.right)current = topNode.Right
    - else
      - visit topNode
      - lastNodeVisited = pop()
- **End While**



| d | a |   | е |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|
| С | С | С | С | С |   | f |   |   |   | h |   |
| b | b | b | b | b | b | b | b |   | g | g | g |
| а | а | а | а | а | а | а | а | а | а | а | а |

#### PostOrder Traversal

- Recursive\_PostOrder(Tree \*node)
  - If node is not NULL
    - Recursive\_PostOrder(node->left)
    - Recursive\_PostOrder(node->right)
    - visit(node)
  - End If

### Postorder Traversal (LRN)



```
PostOrder(TreeNode *t)
{
    if (t == NULL) then return;
    PostOrder(t.left);
    PostOrder(t.right);
    visit(t);
}
```

# Binary Search Tree (BST)

#### **BST**

- A Binary Search Tree is a binary tree with a special property
  - For each node in tree

Node's left subtree holds values less than the node's value,

 Node's right subtree holds values greater than the node's value.

- BST are used to present sorted data
  - If you traverse tree in order, it will produce numbers
    - 10 13 15 18 20 25 26 27 30



- Search
- Insertion
- Deletion



## **Searching BST**

BST\_SEARCH(node, value)

- Input: root node of tree, value to be searched
- Output: node which contains value
- If node!= null
  - If value==node.data
    - return node
  - If value < node.data</li>
    - return BST\_SEARCH( node.left, value)
  - If value > node.data
    - return BST\_SEARCH(node.right, value)
- End If

Let say we want to search 26
How much time will it take?
What would be the worst case scenario?



## **Searching BST**

#### BST\_Search\_iterative(key, root):

- node = root
- while (node !=Null)
  - if (key == node.data)
    - return node
  - else if (key < node.data)</li>
    - node = node.left
  - else // key > node.data
    - node = node.right
- End while
- return Null

Let say we want to search 26
How much time will it take?
What would be the worst case scenario?



## **Sorting BST**

- BST is already sorted.
- We only have to select our traversing strategy.
  - In-order traversal of a binary search tree always gives a sorted sequence of the values.
- This is a direct consequence of the BST property.

- Three Case
  - Tree is empty
    - Node is Root now
  - Node is less than to Root
    - Traverse left Subtree to find a suitable null space
  - Node is greater than Root
    - Traverse right Subtree to find a suitable null space
- Point to Remember
  - Node is always inserted as leaf if tree is non-empty



#### BST-With Multiple Nodes



- Point to Remember
  - Node is always inserted as leaf if tree is non-empty
- Let say we want to insert 5,
  - We have reached at a node which is > 5
  - It's right child >5
  - It does not has left child
  - Make 5 it's left child



What will happen if we want to insert 7 & 24



BSTInsert\_Recursive(node, newNode)

- Input: root node of tree for 1st call & new node
- Output: updated tree with newNode
- if( node == NULL )
  - node = newNode
- else if (newNode.data < node.data)</li>
  - BSTInsert( node.Left, newNode )
- else if (newNode.data > node.data)
  - BSTInsert( node.Right, newNode )
- Return node

BSTInsert\_Iterative(node, newNode)

- Parent = Null
- if( node == NULL )
  - node = newNodé
- else
  - while (node != Null)
    - Parent = node
    - if (newNode.data < node.data)</li>
      - node = node.left
    - else if (newNode.data > node.data)
      - node = node.right
    - else
      - return
  - End while
- if newNode.data < Parent.data)</li>
  - Parent.left = newNode
- else
  - Parent.right = newNode

- There are three possible cases to consider:
  - Deleting a leaf (node with no children)
    - Deleting a leaf is easy, as we can simply remove it from the tree.
  - Deleting a node with one child
    - Delete it and replace it with its child.
  - Deleting a node with two children
    - Call the node to be deleted N.
      - Do not delete N.
    - Instead, choose either its inorder successor or its inorder predecessor, R.
    - Copy the value of R to N, then recursively call delete on R until reaching one of the first two cases.

- If node is leaf node
  - Delete node
- Let Say: Delete 18



- If node has one child
  - Link parent of node to child of node
  - Delete node
- Let say: Delete 25



- If Node has two child
  - Consider node 25 in following modified tree
  - Now which node will come above from both children?
  - So that BST property remains in hold.
  - That child node is called successor of node.
  - Find inorder successor of node
  - Replace node's data with successor's data
  - Delete successor
- Inorder Successor of a node is a node
  - Which comes next in inorder traversal.
  - In inorder traversal which node comes after 25?
  - That is 26



- If Node has two child
  - Find inorder successor of node?
  - Should we go to right subtree to?
  - Or left sub tree?
- What if 26 has left child?
  - It can't

#### INORDER\_SUCCESSOR(node)

- Set curr= node.right
- While(curr.left!=null)
  - curr=curr.left
- End While
- Return curr



Finding Successor is also called Splicing out

### **Inorder Successor**

- 5 is inorder successor of 15
- 26 is inorder successor of 25
- If Node has two child
  - Find inorder successor of node?
    - Use INORDER\_SUCCESSOR(node)
  - Replace node's data with successor's data
    - Node.data= successor.data
  - Delete successor
    - Again this can be case 1 or 2 (Recursive call)



### **BST Deletion: Internal node with 2 Childern**



### **BST Deletion: Internal node with 2 Children**

If Node has two child

What if we replace node with its inorder predecessor?

- Inorder Predecessor of a node is node that comes
   before that node in inorder traversal
- It is actually largest node in left subtree of node
- Even though it does not affect BST property if you choose successor or predecessor
- But it is good to choose randomly between them to maintain tree balance



### **BST Deletion: Internal node with 2 Children**

- Consider the example
  - if you always pick from one half of tree, eventually tree will become skewed.
  - One side will become extremely short than other



#### BSTDelete(node, value)

- Input: root node of tree for 1st call, value to be deleted
- Output: updated tree without node that contains key
- if (value < node.data)</li>
  - BSTDelete(node.left, value)
- else if (value > node.data)
  - BSTDelete(node right, value)
- else
  - if (node.left && node.right) // if both children are present
    - replacement = FindMin(node.right)
    - node.data = replacement.data
    - BSTDelete(node.right, replacement.data)
  - else if (node.left)
    - ReplaceNode(node, node.left) // if 1 child
  - else if (node right)
    - ReplaceNode(node, node.right) // if 1 child
  - else
    - ReplaceNode(node, NULL) // if 0 child

#### BSTDelete(node, value)

- Input: root node of tree for 1st call, value to be deleted
- Output: updated tree without node that contains key
- if (value < node.data)</li>
  - BSTDelete(node.left, value)
- else if (value > node.data)
  - BSTDelete(node right, value)
- else
  - if (node.left && node.right) // if both children are present
    - replacement = **FindMax**(node.left)
    - node.data = replacement.data
    - BSTDelete(node.left, replacement.data)
  - else if (node.left)
    - ReplaceNode(node, node.left) // if 1 child
  - else if (node right)
    - ReplaceNode(node, node.right) // if 1 child
  - else
    - ReplaceNode(node, NULL) // if 0 child

node FindMin(node)

//Gets minimum node (leftmost leaf) in Right subtree

- Set current = node
- while (current.left)
  - current = current.left
- return current

node FindMax(node)

//Gets maximum node (rightmost leaf) in Left subtree

- Set current = node
- while (current.right)
  - current = current.right
- return current

#### ReplaceNode (node, child)

- if (child == NULL)
  - delete node
- else
  - node.data = child.data
  - if (child == node.left)
    - node.left = NULL
  - else
    - node.right = NULL
  - delete child

## **BST Time Complexity**

- Depends upon height Big-Oh→h



h=log n

h=almost log n

h=n

Worst

## **BST Time Complexity**

Binary Search Tree is a type of balanced tree.

- Linked Structure (size is flexible)
  - Data is stored in a sorted fashion
    - Search: O (log n)
    - Insertion: O (log n)
    - Deletion: O (log n)
- Sorted Array (Fixed Size)
  - Need to know the size of the largest data set
  - Space wastage
    - Search: O (log n)
    - Insertion: O (n)
    - Deletion: O (n)