VERI YAPILARI VE ALGORITMALAR

BLM2512 Gr.2

2020-2021 Bahar Yarıyılı (Uzaktan Eğitim)

Dr.Öğr.Üyesi Göksel Biricik

ALGORİTMA ANALİZİ TEMELLERİ

Algoritma Analizi

- Algoritma Analizi, farklı çözüm yöntemlerinin başarımını analizi etmeyi sağlayan araçlar sunan Bilgisayar Bilimlerinde bir alandır.
- Neden algoritmayı analiz ederiz?
 - Algoritmanın performansını ölçmek için
 - Farklı algoritmalarla karşılaştırmak için
 - Daha iyisi mümkün mü? Olabileceklerin en iyisi mi?
- Aynı problemi çözen iki algoritmanın performansı nasıl karşılaştırılır?
 - Teorik analiz
 - Empirik analiz

Empirik Yöntemle Algoritma Analizi

- Basit yöntem, algoritmaların bir programlama dili ile gerçekleştirilerek çalıştırılması ve işletim sürelerinin karşılaştırılmasıdır. Algoritma yerine programın başarımın karşılaştırılmasının da zorluk ve sakıncaları bulunmaktadır.
 - Algoritma nasıl kodlandı?
 - İşletim sürelerinin karşılaştırılması gerçekleştirimlerin karşılaştırılmasıdır.
 - Kodlar, programcının stiline bağlıdır ve algoritma başarımının düzgün ölçülmesine engel olabilir.
 - Kullanılan bilgisayar sonucu etkileyebilir.
- Algoritma başarımının aşağıdaki unsurlardan bağımsız hesaplanabilmesi gerekir:
 - Belirli bir bilgisayarın özelliklerinden
 - Kullanılan verinin özelliklerinden
 - Programlama dili avantaj/dezavantajlarından

Teorik Algoritma Analizi

- Algoritma analizi sırasında, algoritmanın başarımını gerçekleştirim, bilgisayar ya da veriden bağımsız değerlendirmeye olanak sağlayan matematiksel yöntemler kullanılabilmesi gereklidir.
- Algoritma Analizinde;
 - Belirli bir çözümün etkinliğini belirlemek için öncelikle önemli işlemlerin sayısı belirlenir.
 - Ardından büyüme fonksiyonları (growth function) kullanılarak algoritma etkinliği ifade edilir.

- Bir algoritmadaki her bir işlemin bir maliyeti vardır.
 - Her işlem belirli bir sürede tamamlanır.
 - count = count + 1; // Belirli bir süre gerekir. Bu süre sabittir.
- Birden çok işlem

```
• count = count + 1; Maliyet: c1
```

sum = sum + count; Maliyet:c2

→ Toplam Maliyet = c1 + c2

If komutu Maliyeti:

	<u>Maliyet</u>	<u>Tekrar</u>
if (n < 0)	с1	1
absV = -n	c2	1
else		
absV = n;	с3	1

Toplam Maliyet = c1 + max(c2,c3)

Basit Döngü Maliyeti:

Toplam Maliyet = c1 + c2 + (n+1)*c3 + n*c4 + n*c5

→ Bu algoritma için gereken süre *n* ile doğru orantılıdır.

İç içe Döngü Maliyeti:

```
Maliyet
                                      Tekrar
                               c1
 i=1;
                               c2
 sum = 0;
                               c3 n+1
 while (i \le n) {
                               c4
          j=1;
                                     n
                          c5 n*(n+1)
          while (j \le n) {
              sum = sum + i; c6 n*n
                            c7
                                     n*n
              j = j + 1;
     i = i + 1;
                               c8
                                      n
Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5 +
 n*n*c6 + n*n*c7 + n*c8
```

→ Bu algoritma için gereken süre n^2 ile doğru orantılıdır.

Genel Öngörü Kuralları

- Döngü: Döngü işletim süresi, azami olarak, iterasyon sayısı kere döngü içerisindeki komutların toplam işletim süresidir.
- İç içe döngü: İç içe döngü işletim süresi, en içte kalan döngü bloğundaki komutların toplam işletim süresinin tüm döngü iterasyon sayısı çarpımı ile bulunur.
- Art arda Komutlar: Basitçe her bir komutun işletim süreleri toplamı ile elde edilir.
- If/Else: if bloğundaki ve else bloğundaki işlemlerin daha çok zaman gerektirene, karşılaştırma için gereken işlem süresinin eklenmesiyle elde edilen toplamdan fazla olamaz.

Algoritmada Büyüme Oranları

- Algoritma zaman gereksinimi, problemin boyutunun bir fonksiyonu olarak ölçülür.
 - Problem boyutu uygulamaya bağımlıdır: Sıralanacak eleman sayısı, arama yapılacak listedeki kullanıcı sayısı, vb..
- Problem boyutu n ise, örneğin;
 - A Algoritması n²/5 birim zaman gerektirir.
 - B Algoritması 5*n birim zaman gerektirir.
- Anlaşılması gereken en önemli husus, problem boyutuna göre algoritmanın zaman gereksiniminin ne kadar hızlı arttığıdır.
 - A Algoritması n² ile orantılı zaman gerektirir.
 - B Algoritması n ile orantılı zaman gerektirir.
- Algoritmanın oransal zaman gereksinimi büyüme oranı olarak adlandırılır.
- Algoritmaların başarımları büyüme oranlarına bakılarak karşılaştırılabilir.

Algoritmada Büyüme Oranları

Algoritma Büyüme Oranları

 N < 1000 için iki algoritma arasındaki yürütme zamanı ihmal edilebilir.

N	T1	T2
10	10 ⁻² sn.	10 ⁻⁴ sn.
100	10 ⁻¹ sn.	10 ⁻² sn.
1000	1 sn.	1 sn.
10000	10 sn.	100 sn.
100000	100 sn.	10000 sn.

Yaygın Büyüme Oranları

Fonksiyon	Büyüme oranı İsmi
С	Sabit
log N	Logaritmik
log ² N	Logaritmik kare
N	Doğrusal
N log N	Doğrusal Logaritmik
N2	İkinci derece (Kare)
N3	Kübik
2N	Üstel
N!	Faktöryel

Yaygın Büyüme Oranları

Döngülerin Büyüme Oranları

- for (i=0; i<1000; i++)f(n)=n (Doğrusal)
- for (i=0; i<1000; i+=2)
 - f(n)=n/2 (Doğrusal)
- for $(i=1; i \le 1000; i = 2)$
 - f(n)=log n (Logaritmik)

Döngülerin Büyüme Oranları

```
• for (i=0; i<1000; i++)
     for (j=0; j<1000; j++)

    f(n)=n² (Quadratik)

• for (i=0; i<1000; i++)
     for (j=0; j<i; j++)
 f(n)=n((n+1)/2) (Bağımlı Quadratik)
• for (i=0; i<1000; i++)
     for (j=1; j <= 1000; j *= 2)

    f(n)=n logN (Doğrusal Logaritmik)
```

Fonksiyon Büyüme Analizi ve 'Büyük O' Gösterimi

- Bir algoritma g(n) ile doğru orantılı zaman gerektiriyorsa, g(n) seviyesinde olduğu söylenir ve O(g(n)) şeklinde gösterilir.
- g(n) fonksiyonu algoritmanın büyüme oranı fonksiyonu olarak adlandırılır.
- Gösterim için O (büyük harf) kullanıldığından Büyük O
 (Big O) gösterimi olarak adlandırılır.
 - A Algoritması n² ile doğru orantılı zaman gerektiriyor ise O(n²).
 - A Algoritması n ile doğru orantılı zaman gerektiriyor ise O(n).

Büyüme Oranı Fonksiyonları

- O(1) Zaman gereksinimi sabittir ve problem boyutundan bağımsızdır.
- O(log₂n) Logaritmik algoritmaların zaman gereksinimi, boyut artışından daha yavaş artış.
- O(n) Doğrusal algoritma zaman gereksinimi, boyut artışına paralel artış.
- O(n*log₂n) n*log₂n algoritmanın zaman gereksinimi, doğrusal algoritmadan çok daha hızlı artar.
- O(n²) İkinci dereceden bir algoritmanın zaman gereksinimi, problem boyutuna göre süratle artar.
- O(n³) Üçüncü dereceden bir algoritmanın zaman gereksinimi, problem boyutuna göre ikinci dereceden bir algoritmanın zaman gereksiniminden çok daha yüksek süratle artar.
- O(2ⁿ) Üssel bir algoritmanın zaman gereksinimi, algoritmanın kullanışlı olmasının önüne geçecek şekilde aşırı yüksek süratle artar.

Büyüme Oranlarının Karşılaştırılması (N=10.000)

Büyüme Oranı	Big-O	Iterasyon Sayısı	Tahmini süre
Logaritmik	O(logN)	13	mikrosaniyeler
Doğrusal	O(N)	10.000	saniyeler
Doğrusal Logaritmik	O(NlogN)	140.000	saniyeler
Quadratik	$O(N^2)$	10.000 ²	dakikalar
Polinomiyal	O(N ^k)	10.000 ^k	saatler
Üssel	O(c ^N)	210.000	Felaket :)
Faktoryel	O(N!)	10.000!	Ölümcül :)

Büyüme Oranlarının Karşılaştırılması (N=10.000)

(a)					n		
	Function	10	100	1,000	10,000	100,000	1,000,000
	1	1	1	1	1	1	1
	log ₂ n	3	6	9	13	16	19
	n	10	10 ²	10^{3}	104	105	106
	n ∗ log₂n	30	664	9,965	105	106	10 ⁷
	n²	10 ²	10 ⁴	106	108	1010	10 ¹²
	n³	10³	10^{6}	10 ⁹	1012	1015	10 ¹⁸
	2 ⁿ	10 ³	1030	1030	1 103,0	10 10 ³⁰ ,	103 10301,030

Algoritma Seviyesi

- Bir algoritma n boyutundaki bir problemi çözmek için f(n)=n²-3*n+10 saniye gerektiriyor.
- $k*n^2 > n^2-3*n+10$ (her $n \ge n0$ için) olacak şekilde
- k ve n₀ sabitleri bulunabiliyorsa, algoritma n² seviyesindedir.
- $k = 3 \text{ ve } n_0 = 2 \text{ ile};$
- $3*n^2 > n^2-3*n+10$ $(n \ge 2 \text{ için})$.
- Dolayısıyla, algoritma n ≥ n₀ olduğunda k*n² birim zamandan fazlasına gerek duymaz ve seviyesi O(n²) olur.

Algoritma Seviyesi

Algoritma Seviyesi Tanımı

- A algoritmasının,
- n ≥ n₀ boyutundaki problemi çözmek için
- asgari k*g(n) birim zamana ihtiyaç duyacağı şekilde
- k ve n₀ sabitleri bulunabiliyorsa,
- A'nın omega g(n) seviyesinde olduğu söylenir ve
- Ω (g(n)) olarak gösterilir.
 - $f(n) \ge k*g(n)$; her $n \ge n0$ için

Algoritma Seviyesi Tanımı

- A algoritmasının,
- n ≥ n₀ boyutundaki problemi çözmek için
- asgari k₁*g(n) ve
- azami k₂*g(n) birim zamana ihtiyaç duyacağı şekilde
- k₁, k₂ ve n₀ sabitleri bulunabiliyorsa,
- A'nın teta g(n) seviyesinde olduğu söylenir ve
- θ (g(n)) olarak gösterilir.
 - $k_2*g(n) \ge f(n) \ge k_1*g(n)$; her $n \ge n_0$ için

Algoritma Seviyesi Tanımı

- O fonksiyonu üstten, Ω alttan bağlarken, θ hem alttan hem üstten bağlamaktadır. Başka açıdan:
- $\Theta(n)$: $O(n) \ge f(n) \ge \Omega(n)$ olur.
- ≥ yerine > konursa sırasıyla o, ve ω gösterimleri elde edilir.

Büyük-O Özellikleri

- 1. Düşük seviyeli terimler göz ardı edilebilir.
 - Bir algoritma O(n³+4n²+3n) ise aynı zamanda O(n³)'dür.
 - Büyüme oranı fonksiyonu olarak sadece en yüksek seviyeli terim kullanılır.
- 2. Sabit bir çarpan göz ardı edilebilir.
 - Bir algoritma O(5n³) ise aynı zamanda O(n³)'dür.
- 3. Büyüme oranı fonksiyonları birleştirilebilir.
 - O(f(n)) + O(g(n)) = O(f(n)+g(n))
 - Bir algoritma O(n³) + O(4n²) ise aynı zamanda O(n³ +4n²) olur
 - $\bullet \rightarrow O(n^3).$
 - Çarpma için de aynı kural geçerlidir.

Büyük-O Örnek-1

```
<u>Maliyet</u>
                                                Tekrar
                                  c1
 i = 1;
                                  c2
 sum = 0;
                                  c3
 while (i \le n) {
                                                n+1
            i = i + 1;
                                 c4
                                                n
            sum = sum + i; c5
                                                n
T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*c5
       = (c3+c4+c5)*n + (c1+c2+c3)
       = a*n + b
```

→ Algoritmanın büyüme oranı fonksiyonu (karmaşıklığı) O(n) olur.

Büyük-O Örnek-2

```
Maliyet
                                              Tekrar
                                      c1
 i=1;
                                      c2
 sum = 0;
                                      c3
                                              n+1
 while (i \le n) {
                                      c4
            j=1;
                                              n
                                     c5 n*(n+1)
           while (j \le n) {
                sum = sum + i; c6
                                             n*n
                                    с7
                j = j + 1;
                                             n*n
       i = i + 1;
                                      c8
                                              n
T(n)
       = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5 + n*n*c6 + n*n*c7 + n*c8
       = (c5+c6+c7)*n^2 + (c3+c4+c5+c8)*n + (c1+c2+c3)
       = a*n^2 + b*n + c
```

→ Algoritmanın büyüme oranı fonksiyonu (karmaşıklığı) O(n²) olur.

Büyük-O Örnek-3

$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1$$
 Algoritmanın büyüme oranı fonksiyonu $O(n^3)$ olur.

- Özyineli fonksiyonların zaman karmaşıklık fonksiyonu T(n), kendisi cinsinden ifade edilir ve T(n) yineleme denklemi (recurrence equation) olarak adlandırılır.
- Özyineli bir fonksiyonun büyüme oranı fonksiyonunu çözebilmek için yineleme ilişkisini çözmek gerekir.

Örnek: Fibonacci Sayıları

```
int fib(int n)
{
   if (n <= 1)
     return n;
   return fib(n - 1) + fib(n - 2);
}</pre>
```

- n=0 T(0) = c1
- n=1 T(1) = c2
- n>1 ise T(n)=c1+c2+T(n-1)+T(n-2) \rightarrow T(n-1)+T(n-2)+c
- Yineleme ilişkisi denklemini çözmek gereklidir.
- T(n-1) ~ T(n-2) kabul edebiliriz
 - aslında T(n-1) ≥ T(n-2) ama üstten sınırlayabiliriz (upper bound)

$$T(n) = T(n-1) + T(n-2) + c$$

$$= 2T(n-1) + c // T(n-1) \sim T(n-2) \text{ yaklaşımı ile}$$

$$= 2*(2T(n-2) + c) + c$$

$$= 4T(n-2) + 3c$$

$$= 8T(n-3) + 7c$$

$$= 2^k * T(n-k) + (2^k-1) * c$$

$$n-k=0, k=n$$

$$T(n) = 2^n * T(0) + (2^n - 1) * c$$

$$= 2^n * (1 + c) - c$$

$$T(n) \sim 2^n$$

→ Algoritmanın büyüme oranı fonksiyonu O(2ⁿ) olur.

Değerlendirme

- Bir algoritma aynı boyuttaki farklı sorunları çözmek için farklı sürelere gereksinim duyabilir.
 - n elemanlı bir dizide, sıradan arama yapmanın maliyeti. → 1, 2, ..., n
- En kötü durum (Worst-Case) Analizi Algoritmanın n boyutundaki problemi çözmesi için gereken azami süre.
 - Algoritma karmaşıklığı için üst sınır verir.
 - Genel olarak algoritmaların en kötü durum davranışı incelenir.
- En iyi durum (Best-Case) Analizi Algoritmanın n boyutundaki problemi çözmesi için gereken asgari süre.
 - Çok kullanışlı değildir.
- Ortalama durum (Average-Case) Analizi Algoritmanın n boyutundaki problemi çözmesi için gereken ortalama süre.
 - Çoğunlukla belirlenmesi zordur.
 - Olası veri durumu değerlendirilip, dağılımına bakılır.
 - En kötü durum analizi, ortalama durum analizinden daha çok kullanılır.

Sıralı Arama

```
int sequentialSearch(int a[], int size, int x) {
  int i;

for (i=0; i<size && a[i]!=x; i++);

if (i==size)
  return -1;

return i;</pre>
```

- Bulunamazsa O(n)
- Bulunursa,
 - En iyi durum: aranan değer ilk eleman, O(1)
 - En kötü durum: aranan değer son elemandır O(n)
 - Ortalama durum: karşılaştırma sayısı 1, 2, ..., n $(\sum_{i=1}^n n)/n$ **O(n)**

İkili Arama

- Dizi sıralı ise, ikili arama kullanılabilir.

```
\rightarrow O(log<sub>2</sub>n)
```

Başarılı arama :

En iyi durum: aranan değer dizinin bakılan ilk elemanıdır →O(1)

En kötü durum: aranan değer son bakılacak konumdadır Llog₂n +1
→ O(log₂n)

Ortalama durum : karşılaştırma sayısı < log₂n → O(log₂n)

```
0 1 2 3 4 5 6 ← 7 elemanlı dizi
```

3 2 3 1 3 2 3 **← yineleme sayısı**

Ortalama yineleme sayısı : = $17/7 = 2.4285 < log_2 7$

O(logN) Performansı

<u>n</u>	<u> O(log₂n)</u>
16	4
64	6
256	8
1024	10
16,384	14
131,072	17
262,144	18
524,288	19
1,048,576	20
1,073,741,824	30

Binary Search

```
int binarySearch(int a[], int size, int x) {
   int low =0;
   int high = size -1;
   int mid; // aranan değer bulunursa mid konumu tutar.
   while (low <= high) {
    mid = (low + high)/2;
    if (a[mid] < x)
       low = mid + 1;
    else if (a[mid] > x)
       high = mid - 1;
    else
       return mid;
   return -1;
```