

Recap: Data Science / Machine Learning Algorithms

Recap: Business Use Case: Leasing Industry

■ Important channel to market durables

- ☐ Most prominently cars
- ☐ Machinery, IT equipment, etc.

■ Typical setup

- ☐ Clients lease equipment for a given period
- □ Provider receives monthly fee
- ☐ Client returns the item when contract expires
- ☐ Provides resales the used item in the second-hand market

■ Prediction-based decision support

- ☐ Predict resale price in the second-hand market
- ☐ Set leasing rate so as to cover all costs including depreciation

HP Notebooks

Business Use Case: Credit Scoring

Visa Platinum

4000 1234 5678 9010

- Huge variety of financial products from traditional loans to on-demand rate payment
- Lender sets interest rate and earns a fixed, contract-agreed fee...
- ... but faces the risk of default, meaning that the borrower does not pay back their depth
- Prediction-based decision support
 - ☐ Estimate probability to default (PD) using data from the application form
 - □ Decide on the application based on estimated default risk

Agenda

Introduction

Principles of prediction, regression & classification

Predictive Analytics Using Supervised Machine Learning Estimate functional relationship between features and a target

- Data includes values for attributes a value for the target variable
- Two flavors depending on the type of the target variable
 - □ Discrete target variable → classification (e.g., credit risk modeling)
 - □ Numerical target variable → regression (e.g., resale price forecasting)

BUREAU SCORE	•••	DEFAULT (e.g., 90 days late)
650	•••	No
280	•••	Yes
750	•••	No
600	• • •	No
575	•••	No
715	•••	No
580	•••	Yes
4 10		No

PRODUCT	•••	RESALE PRICE [\$]
Dell XPS 15'	• • •	347
Dell XPS 15'	•••	416
Dell XPS 17'	•••	538
HP Envy 17'	•••	121
HP EliteBook 850	•••	172
Lenovo Yoga 11'	•••	88
Lenovo Yoga 13'		266
•••		• • •

Formalization of Supervised Machine Learning

Resale price forecasting example

- \blacksquare We aim at forecasting resale prices (our target variable) denoted by Y
- \blacksquare We assume that resale prices Y depend on features X
 - ☐ We do not know how exactly resale prices depend on feature values
 - \square But we have access to historical data $\mathcal{D} = \{Y_i, X_i\}_{i=1}^n$ that exemplifies the relationship
- \blacksquare At decision time, i.e., when we need a forecast, we can observe X but not Y
- \blacksquare We use algorithms to learn a model f that maps from features to target $f(X) \longrightarrow Y$

CLIENT INDUSTRY Mining			0
Mining			RESA
Health		- /	
Manufacturing	<u> </u>	f(X)	
$\in \mathbb{R}^n$	ı]_		Y
	\top		
Office	•••		
	Office		

PRICE [\$]

Two-Stage Paradigm of Supervised Machine Learning

Together with some more terminology

Learning Algorithm

Stage 1: Model Training

Data-driven development of a predictive model using **labelled** data $\mathcal{D} = \{Y_i, X_i\}_{i=1}^n$

Training data incl. Y						
i	Y	<i>X</i> ₁	<i>X</i> ₂		X_m	
1	•••	•••				
2	•••					
•••	•••					
n	••	•••				

Model

Stage 2: Model Application

Apply trained model to novel data w/o known output to obtain a forecast

Implications of the Supervised ML Paradigm Supervised ML requires labeled data

OLDI-UNIVERSITÄ,

■ Defining the target variable

- ☐ Credit scoring example: 90 days past due
- ☐ Resale price forecasting example: actual resale price

■ Observing the value of the target variable

- ☐ The value of the target is what we aim to predict
- ☐ Two possible scenarios
 - The value cannot be known when it is needed
 - It is not practical to measure the value when it is needed
- ☐ Have access to the feature values and leverage these to predict the target (i.e., stage 2)
- ☐ Training set (i.e., stage 1) comprises past data

■ Is past data representative for the future?

Algorithms for Supervised Learning (Selection)

A subjective view and a bit of guidance

Supervised learning algorithms

Tree- and prototype-based algorithms (non-parametric)

- CART
- CHAID ├─ Individual trees
- C4.5
- Bagging / Random Forest Ensembles
- Gradient Boosting / XGB (many trees)
- Nearest neighbors
- ..

Regression-type algorithms (semi-/parametric)

- Linear regression
- Generalized linear models (GLM)
- Generalized additive models (GAM)
- Artificial neural networks (ANN)
- Support vector machines (SVM)
- **.**..

The Linear Regression Model

Parametric model, loss function and residuals, model estimation

Linear Regression Model

Postulates a linear, additive feature-to-target relationship

■ Famous regression equation in a resale price forecasting context

RESALE PRICE = $bias + w_1 LIST PRICE + w_2 AGE + \cdots + w_m INDUSTRY + residual$

■ Simplification for plotting:

RESALE PRICE =
$$bias + w_1 AGE + \epsilon$$

•••	AGE [MONTH]	•••	RESALE PRICE [\$]
•••	6	•••	900
•••	13	•••	515
•••	17	•••	890
•••	23	•••	395
•••	29	•••	180
•••	31	•••	501
	38	•••	100
	• • •	•••	•••

Linear Regression Model

Postulates a linear, additive feature-to-target relationship

- Regression model explains variation in resale prices (target) by differences in the Age of resold items (feature values)
- The famous \mathbb{R}^2 statistic captures how much of the variation in resale prices the regression explains

Determine the free parameters of the regression function

■ Linear regression belongs to the family of parametric models

- ☐ We assume we know the true dependency of the target variable and the features
- □ We specify a function expressing the assumed relationship (e.g., linear and additive)
- ☐ We incorporate free parameters that govern the shape of the function

■ Formally

RESALE PRICE =
$$bias + w_1 LIST$$
 PRICE + $w_2 AGE + \cdots + w_m INDUSTRY + residual$

$$Y = b + w_1 X_1 + w_2 X_2 + \cdots + w_m X_m + \epsilon$$

■ Model estimation (aka training, fitting, development)

- \square Find *suitable* values for the free parameters (here denoted by w)
- □ Introduce a measure that captures what is meant by *suitable*
- □ Set parameters such this measure signals an optimal fit of the model to the data

Regression Model Estimation IntuitionReach steady-state with minimal energy

OT-UNIVERSITA,

- The data points are fixed at their location
- The position of the regression line is flexible and depends on two parameters
 - ☐ The intercept and the slope
 - \square Denoted by *bias* and w_1 above
- A spring connects each data point with the regression line
- Springs exerts a force on the regression line, pulling it toward 'their' data point
- The more we bend a spring the higher the force it exerts

Not an equilibrium solution!

Regression Model Estimation IntuitionReach steady-state with minimal energy

ON TOT-UNIVERSITA?

- The data points are fixed at their location
- The position of the regression line is flexible and depends on two parameters
 - ☐ The intercept and the slope
 - \square Denoted by *bias* and w_1 above
- A spring connects each data point with the regression line
- Springs exerts a force on the regression line, pulling it toward 'their' data point
- The more we bend a spring the higher the force it exerts

Equilibrium solution!

Maximizing model fit through minimizing a loss function

- A loss function J measures the degree to which the model output \widehat{Y} agrees with the true value of the target Y
- Squared-error loss

$$J = \sum_{i=1}^{n} (\epsilon_i)^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

■ Whereby the model output depends on the free parameters *w*

$$\hat{y}_i = b + w_1 x_{i1} + w_2 x_{i2} + \dots + w_m x_{im}$$

$$\hat{y}_i = b + \sum_{j=1}^m w_j x_{ij}$$

So here, the value of the loss function *J* is:

$$\sum_{i=1}^{n} (\epsilon_i)^2 = (\epsilon_1)^2 + (\epsilon_2)^2 = 200^2 + (-500)^2 = 290,000$$

Maximizing model fit through minimizing a loss function

■ Given the model output depends on the free parameters w (and the bias b)

$$\hat{y}_i = b + \sum_{j=1}^m w_j x_{ij}$$

- We can adjust the model output by adjusting w (or b)
 - \Box Let's focus, for simplicity, on w
 - ☐ Changing w will change the slope of the regression line
- For each slope we can calculate the loss (e.g., sum of squared residuals)
- Eventually, we know which slope (i.e., value of w) gave the lowest loss; our *least-squares solution*

Least squares loss function

■ Squared-error loss

$$J(b, \mathbf{w}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \left(y_i - \left(b + \sum_{j=1}^{m} w_j x_{ij} \right) \right)^2$$

■ Visualization for a single feature X

- ☐ Simply think of *X* as a placeholder for some data you believe will influence your target variable
- \square For ex. the feature could measure the price of a product when aiming to forecast sales (Y) based on prices

Finding the optimal solution

■ Formalization of model estimation (aka training)

- \square Given data set $\mathcal{D} = \{y_i, x_i\}_{i=1}^n$
- \square Select a suitable loss function $J(w, \mathcal{D})$
- □ Minimize that loss over the adjustable parameters $\widehat{w} \leftarrow \operatorname{argmin}_{w} J(w, \mathcal{D})$

■ Special case

- ☐ Linear regression with squared error loss function
- □ Optimal solution is easily found analytically
 - Calculate partial derivatives of J(w) wrt w and set to zero
 - Gives famous normal equation $\hat{w} = (X^T X)^{-1} X^T y$

■ General case

- ☐ Same principle: minimize loss over parameters
- ☐ Use some iterative algorithm for (loss) function minimization (e.g., gradient descent)

Linear Regression as Supervised Learning Algorithm

■ Model specification

- □ Continuous target variable
- ☐ Linear, additive relationship
- □ Random variation

■ Model estimation

$$\widehat{\boldsymbol{w}} \leftarrow \operatorname{argmin}(\boldsymbol{y}_i - (b + \boldsymbol{w}\boldsymbol{x}_i))^2$$

- □ Determine free parameter w
- \square Find $\hat{\boldsymbol{w}}$ that maximizes model fit
- ☐ Objective: minimize least-squares loss

■ Model

- □ Estimated coefficients
- ☐ Facilitates forecasting

$$i = 1, \dots, n$$

$$\widehat{Y} = \widehat{b} + \widehat{w}X$$

New data w/o Y						
i	<i>X</i> ₁	X_2		X_m		
n+1	•••	•••		•••		
n+2						

Lear-

ning

Algo-

rithm

Model

ŵ

Two-Stage Paradigm in Supervised ML

■ Learning algorithm

- ☐ (Semi-)Parametric approaches mimic linear regression
- □ Nonparametric approaches make no assumptions about DGP*

■ Model training

- □ Empirical risk minimization: maximize model fit on training data
- ☐ Structural risk minimization: balance model fit vs. complexity
- ☐ Minimize a loss function

■ Model

- ☐ Form varies across algorithms
- ☐ Function with estimated parameters
- □ Decision rules or tree-structure

New data w/o Y						
i	<i>X</i> ₁	<i>X</i> ₂		X_m		
n+1	•••	:	:			
n+2						

Lear-

ning

Algo-

rithm

Model

*DGP: Data generating process

The Two Faces of Linear Regression

■ We discussed how the regression function explains variation in resale prices by age

- Because of this feature, linear regression is an explanatory model
 - ☐ Clarifies the relationship between features and the target
 - ☐ Can work out the strength of the effect of a feature
 - ☐ Can calculate elasticities, i.e., how a 1% change in age will change resale prices
- However, linear regression also facilitates prediction
 - ☐ Given a value of age, we can easily predict the corresponding resale price using the estimated coefficients
 - ☐ Just evaluate regression equation
 - \square Resale Price Forecast = $bias + w_1$ Age
- Hence, linear regression is also a *predictive model*

Summary

Learning goals

- Predictive analytics (PA) principle & implications
- Fundamentals of linear regression

PA requires past data with labels / target variable

- Regression predicts a numeric target
- Classification predicts a discrete target
- Two-step approach: model training and testing
- Linear regression supports both, explanatory and predictive modeling
 - Assume linear, additive relationship
 - Determine parameters by minimizing the sum of squared residuals

What next

Findings

- How to prepare data for analytics
- Preprocessing pipeline & techniques

Thank you for your attention!

Stefan Lessmann

Chair of Information Systems
School of Business and Economics
Humboldt-University of Berlin, Germany

Tel. +49.30.2093.5742

Fax. +49.30.2093.5741

stefan.lessmann@hu-berlin.de http://bit.ly/hu-wi

www.hu-berlin.de

