Scilab Textbook Companion for Microwave and Radar Engineering by M. Kulkarni¹

Created by
Chandawar Saichander
ECE
Electronics Engineering
Sastra University
College Teacher
N. Raju
Cross-Checked by
K. V. P. Pradeep

May 26, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Microwave and Radar Engineering

Author: M. Kulkarni

Publisher: Umesh Publications, New Delhi

Edition: 3

Year: 2008

ISBN: 81-88114-00-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
3	Transmission Lines	5
4	Microwave Transmission Lines	16
5	Cavity Resonators	43
6	Microwave Components	48
7	Microwave Measurements	58
8	Microwave Tubes and Circuits	62
9	Solid State Microwave Devices	81
10	Microwave Communication Systems	93
11	Radars	105

List of Scilab Codes

Exa 3.1	Terminating Impedance	5
Exa 3.2	power	6
Exa 3.3	phase velocity	7
Exa 3.4	power	8
Exa 3.5	VSWR and Reflection coefficient	9
Exa 3.6	point of attachment	10
Exa 3.7	Terminating Impedance	11
Exa 3.8	VSWR and Impedance	12
Exa 3.9	Reflection loss	13
Exa 3.10	Characteristic Impedance	14
Exa 4.1	Characteristic Impedance	16
Exa 4.2	attenuation and phase constants	17
Exa 4.3	breakdown power	18
Exa 4.4	Characteristic Impedance	19
Exa 4.5	Characteristic Impedance	20
Exa 4.6	ratio of areas	21
Exa 4.7	breadth of the guide	23
Exa 4.8	guide wavelength	24
Exa 4.9	guide wavelength	25
Exa 4.10	area	27
Exa 4.11	possible modes	28
Exa 4.12	guide wavelength	29
Exa 4.13	frequency	30
Exa 4.14	guide wavelength	31
Exa 4.15	possible modes	32
Exa 4.16	Characteristic Impedance	33
Exa 4.17	guide wavelength	34
Exa 4.18	proof	35

Exa 4.19	amount of attenuation	36
Exa 4.20	max power handling capacity	37
Exa 4.21	maximum power	38
Exa 4.22	peak value of electric field	39
Exa 4.23	breakdown power	40
Exa 4.24	breakdown power	41
Exa 5.1	minimum distance	43
Exa 5.2	lowest resonant frequency	44
Exa 5.3	resonant frequency	45
Exa 5.4	resonant frequency	46
Exa 6.2	distance to be shifted	48
Exa 6.3	Scattering parameters	49
Exa 6.4	powers in the remaining ports	50
Exa 6.5	power	51
Exa 6.6	Reflected power	51
Exa 6.7	Scattering matrix	52
Exa 6.9	Scattering matrix	53
Exa 6.10	output powers	54
Exa 6.11	coupling isolation directivity	55
Exa 6.12	VSWR	55
Exa 6.13	phase shift	56
Exa 7.1	measured distance	58
Exa 7.2	VSWR and Reflected power	59
Exa 7.3	VSWR	60
Exa 7.4	Reflected power	60
Exa 8.1	electron velocity and etc	62
Exa 8.2	power and etc	63
Exa 8.3	efficiency and etc	64
Exa 8.4	electron velocity and etc	65
Exa 8.5	efficiency and etc	67
Exa 8.6	electronic efficiency and etc	68
Exa 8.7	efficiency and etc	70
Exa 8.8	cyclotron frequency and etc	71
Exa 8.9	phase velocity and anode voltage	72
Exa 8.10	electron velocity and etc	73
Exa 8.11	dc electron velocity and etc	74
Exa 8.12	gap transit angle	75
Exa 8.13	efficiency and etc	76

Exa 8.14	cyclotron angular frequency and etc	78
Exa 8.15	efficiency and etc	79
Exa 8.16		79
Exa 9.1	frequency	81
Exa 9.2	threshold electric field	82
Exa 9.3	power gain	82
Exa 9.4	breakdown voltage and etc	83
Exa 9.5		84
Exa 9.6		85
Exa 9.7	minimum voltage	86
Exa 9.8	rational frequency	86
Exa 9.9	efficiency and etc	87
Exa 9.10	drift time	88
Exa 9.11		89
Exa 9.12		90
Exa 9.13		91
Exa 10.1	radio horizon	93
Exa 10.2	value of factor	94
Exa 10.3	power	95
Exa 10.4	power	96
Exa 10.5	antenna beam angle	97
Exa 10.6	round trip time	98
Exa 10.7	figure of merit	99
Exa 10.8	CNR	00
Exa 10.9	system noise temperature	00
Exa 10.10	HPBW 1	01
Exa 10.11		02
Exa 10.12	gain	03
Exa 10.13	power gain	04
Exa 11.1	max range	05
Exa 11.2	max range	06
Exa 11.3	RCS	07
Exa 11.4		08
Exa 11.5		09
Exa 11.6		10

Chapter 3

Transmission Lines

Scilab code Exa 3.1 Terminating Impedance

```
1 //chapter-3 page 47 example 3.1
2 //
3 clc;
4 clear;
5 6 Z0=100; // Characteristic Impedance in ohms
7 S=5; // Voltage Standing Wave Ratio (VSWR)
8
9 //CALCULATION
10 Zm=Z0*S; // Termainating impedance at a max of the voltage standing wave
11 Z1=Zm; // Loading Impedance
12  //OUTPUT
14 mprintf('Terminating impedance at a maximum of the voltage standing wave is Zl= %3.0 f ohms', Zl);
15  // END OF PROGRAM
```

Scilab code Exa 3.2 power

```
1 / \text{chapter} - 3 \text{ page } 48 \text{ example } 3.3
2 / /
3 clc;
4 clear;
6 R=8; // Resistance of a transmission line in ohm/km
7 L=0.002; //Inductance of a transmission line in henry
      /km
8 C=0.002*(10^(-6)); // Capacitance of a transmission
      line in Farads
9 G=0.07*(10^{(-6)}); //Conductance of a transmission
      line in siemens/km
10 f = 2000; // Frequency in Hz
11 w=2*(%pi)*f;//Angular Frequency in rad/sec
12 Vs=2; //Input Voltage in volts
13 1=500; //Length of Transmission line in km
14
15 //CALCULATIONS
16 Z0 = sqrt((R + (w*L*(%i)))/(G + (w*C*(%i)))); //
      Characteristic Impedance
17 x = real(Z0);
18 y = imag(Z0);
19 disp('Characteristic Impedance in ohms is');
20 disp(Z0);
21 g = sqrt((R+(w*L*(\%i)))*(G+(w*C*(\%i)))); // Propagation
22 a=real(g); // Attenuation Constant in NP/km
23 b=imag(g); // Phase Constant in rad/km
24 Is=Vs/Z0;
25 IO=Is*exp(-(g*1));//Load current
```

Scilab code Exa 3.3 phase velocity

```
1 //chapter-3 page 48 example 3.3
3 clc;
4 clear;
6 w=4*(%pi);//Angular Frequency in rad/sec
7 b=0.02543; // Phase Constant in rad/km
8
9 //CALCULATION
10 Vp=w/b; //Phase Velocity in km/sec
11
12 //OUTPUT
13 mprintf('Phase Velocity is Vp=\%3.2 f km/sec', Vp);
14
  //——END OF PROGRAM—
15
16
  //NOTE: CHECK THE CALCULATION PART GIVEN IN THE
17
     TEXTBOOK
        //GIVEN ANSWER 494.22 KM/SEC
18
        //GETTING ANSWER 494.16 KM/SEC
19
```

Scilab code Exa 3.4 power

1 / chapter - 3 page 48 example 3.4

```
2 / /
3 clc;
4 clear;
6 f=37.5*10^6; // Frequency in Hz
7 c=3*10^8; // Velocity of Light in m/sec
8 l1=10; //Length of line in met
9 Vg=200; // Generator Voltage in volts (rms)
10 Zint=200; //Internal Resistance of Generator in ohms
11 Z0=200; // Characteristic Impedance in ohms
12 Zl=100; //Load impedance in ohms
13
14 //CALCULATIONS
15 w=c/f; //Wave Length in met
16 b=2*(\%pi)/w;
17 11=(5/4)*w;//For Lossless Line
18 Zi=Z0*((Z1+(Z0*(\%i)*tan(b*11)))/(Z0+(Z1*(\%i)*tan(b*11)))
     11))));//Input Impedance at Generator end
19 Vs=Vg*(Zi/(Zi+Z0));//Voltage in line in volts
20 Is=Vg/(Zi+Z0);//Current in Line drawn from Generator
       in amps
21 Ps=Vs*Is; //Power drawn in line
22 Pl=Ps;//For Lossless Lines Power delivered to load
      is equal to the Power drawn in line
23 Il=sqrt((P1/Z1));//Current flowing in the load
24 m=real(I1); // Magnitude of Current flowing in the
     load
25 p=imag(I1);//Phase of Current flowing in the load
26
```

```
//CALCULATIONS
mprintf('\nCurrent drawn from Generator is Is=%1.3 f
    amps \nMagnitude of Current flowing in the load
    is m=%1.3 f \nPhase of Current flowing in the load
    is p=%2.2 f deg \nPower delivered to load is Pl=
    %2.2 f watts', Is, m, p, Pl);
//=_____END OF PROGRAM
```

Scilab code Exa 3.5 VSWR and Reflection coefficient

```
1 / \text{chapter} - 3 \text{ page } 50 \text{ example } 3.5
3 \text{ clc};
4 clear;
5
6 Z0=50; // Characteristic Impedance in ohms
7 f=300*10^6; // Frequency in Hz
8 Z1=50+(50*(%i)); // Terminating load impedance in ohms
9 w = ((3*10^8)/f); //Wave Length
10
11 //CALCULATIONS
12 p=((Z1-Z0)/(Z1+Z0));//Reflection Coefficient (Complex
       Form)
13 y=real(p);
14 z = imag(p);
15 x=sqrt(y^2+z^2); // Reflection Coefficient Value
16 s=((1+x)/(1-x));//Voltage Standing Wave Ratio(VSWR)
17
18 //OUTPUT
19 mprintf('\nReflection Coefficient is x=\%1.4 f\
```

```
nVoltage Standing Wave Ratio(VSWR) is s=%1.2 f', x, s);

20
21 // END OF PROGRAM
```

Scilab code Exa 3.6 point of attachment

```
1 / \text{chapter} - 3 \text{ page } 50 \text{ example } 3.6
2 / /
3 clc;
4 clear;
6 Z1=100; // Pure Load resistance of a dipole antenna in
7 Z0=600; // Characteristic Impedance of a wire feeder
      in ohms
8 f=100*10^6; // Frequency in Hz
9 c=3*10^8; // Velocity of Light in m/sec
10
11 //CALCULATIONS
12 w=c/f;//Wave Length in met
13 1=((w/(2*(\%pi)))*atan(sqrt(Z1/Z0))); //The position
      of the Stub in met
14 x=atand(sqrt((Z1*Z0))/(Z1-Z0));
15 y=180+x; //In Degrees
16 11=((w/(2*(\%pi)))*y);/Length of Short Circuited
      Stub in met
17 \ 10=11*((\%pi)/180);
18
19 //OUTPUTS
20 mprintf('\nThe Point of Attachment is l=\%1.3 f met \
      nLength of SC Stub is 11=\%1.2 \,\mathrm{f} met',1,10);
```

Scilab code Exa 3.7 Terminating Impedance

```
1 / \text{chapter} - 3 \text{ page } 50 \text{ example } 3.7
3 clc;
4 clear;
6 Z0=50; // Characteristic Impedance in ohms
7 S=3.2; // Voltage Standing Wave Ratio (VSWR)
9 //It is possible to measure the load impedance if
      the line is assumed lossless, by measuring the
     VSWR, wavelength and the distance from the load to
       the nearest voltage minimum
10 //CALCULATIONS
11 w=1; //Assume Wavelength in met
12 Xmin=0.23*w; // Distance from the load to the nearest
      voltage minimum in met
13 b = (2*(\%pi))/w;
14 Z1=Z0*((1-(S*(\%i)*tan(b*Xmin)))/(S-((\%i)*tan(b*Xmin)))
      )));//Load impedance in ohms
15 disp('Load impedance in ohms is');
16 disp(Z1);
17
18
19 // END OF PROGRAM
```

```
20
21 //Note: Check the answer given in Text book once. I
think it is wrong in text book..
```

Scilab code Exa 3.8 VSWR and Impedance

1 / chapter - 3 page 51 example 3.8

```
3 \text{ clc};
4 clear;
6 Z0=50; // Characteristic Impedance in ohms
7 Zl=100; //Load impedance in ohms
8 f=300*10^3; // Frequency in Hz
9 Pl=0.05; //Load Power in watts
10 c=3*10^8; // Velocity of Light in m/sec
11
12 //CALCULATIONS
13 w=c/f; //Wave Length in met
14 p=((Z1-Z0)/(Z1+Z0));//Reflection Coefficient
15 S=((1+p)/(1-p)); // Voltage Standing Wave Ratio (VSWR)
16
17 //Since Zl>Z0, first Vmax is located at the load and
       first Vmin is located at Wavelength/4
18 x1max=0; // Position of first Vmax (located at the
      load) from load in met
19 x1min=w/4; // Position of first Vmin from load in met
20 Vmax=sqrt(P1*Z1);//Value of maximum voltage in volts
21 Vmin=Vmax/S; // Value of minimum voltage in volts
22 Zmax=Z0*S; //Impedance at Vmax in ohms
23 Zmin=ZO/S; //Impedance at Vmin in ohms
24
25 //OUTPUTS
```

Scilab code Exa 3.9 Reflection loss

```
1 //chapter-3 page 52 example 3.9
2 //
3 clc;
4 clear;
5
6 Z0=600;//Characteristic Impedance in ohms
7 Zs=50;//Generator impedance in ohms
8 l=200;//Length of transmission line in met
9 Zl=500;//Load impedance in ohms
10
11 //CALCULATIONS
12 p=((Zl-Z0)/(Zl+Z0));//Reflection Coefficient
13 x=abs(p);
14 Lr=10*log10(1/(1-x^2));//Reflection loss in dB
15 La=0;//Since the line is lossless, attenuation loss is zero dB
16 Lt=La+Lr;//Transmission loss in dB
```

Scilab code Exa 3.10 Characteristic Impedance

1 / chapter - 3 page 52 example 3.10

```
2 //
3 clc;
4 clear;
5
6 f=1000;//Frequency in Hz
7 l=10000;//Length of open wire transmission line in met
8 z1=2930;//Magnitude of a short circuit impedance in ohms
9 p1=26;//Phase of a short circuit impedance in deg
10 z2=260;//Magnitude of a open circuit impedance in ohms
11 p2=-32;//Phase of a open circuit impedance in deg
12 //CALCULATIONS
13 Zsc=((z1*cosd(p1))+((%i)*(z1*sind(p1))));
14 Zoc=((z2*cosd(p2))+((%i)*(z2*sind(p2))));
15 Z0=sqrt(Zsc*Zoc);//Characteristic Impedance in ohms
16 disp('Characteristic Impedance in ohms is');
17 [ro,theta]=polar(Z0)
```

```
18 disp(ro);
19 disp(theta*180/%pi);
20 g=((1/1)*(atanh(sqrt(Zsc/Zoc))));//Propagation
     Constant
21 disp(g)
22 b=imag(g);//Phase Constant
23 w=2*f*(\%pi);//Angular Frequency in rad/sec
24 Vp=w/b;//Phase Velocity in m/sec
25 disp(Vp)
26 //OUTPUT
27 mprintf('\nPhase\ Velocity\ is\ Vp=\%5.2f\ m/sec', Vp);
28
                     END OF PROGRAM
29 //=
30
31
32 //Note: Check the calculation once
```

Chapter 4

Microwave Transmission Lines

Scilab code Exa 4.1 Characteristic Impedance

```
1 //chapter -4 page 141 example 4.1
2 //
```

```
3 clc;
4 clear;
5
6 d=0.0049;//Diameter of inner conductor in met
7 D=0.0110;//Inner Diameter of outer conductor in met
8 er=2.3;//Polyethylene dielectric
9 c=3*10^8;//Velocity of Light in m/sec
10
11 //CALCULATIONS
12 x=log(D/d);
13 L=(2*10^(-1)*x);//Inductance per unit lengths in microH/m
14 C=(55.56*(er/x));//The Capacitance per unit lengths in picoF/m
15 R0=(x*(60/sqrt(er)));//The Characteristic Impedance in ohms
16 V=(c/sqrt(er))/(10^3);//The Velocity of propagation
```

```
in Km/s

17

18 //OUTPUT

19 mprintf('\nInductance per unit lengths is L=%1.5 f
    microH/m \nThe Capacitance per unit lengths is C=
    %2.2 f picoF/m \nThe Characteristic Impedance is
    R0=%2.2 f ohms \nThe Velocity of propagation is V=
    %6.2 f Km/s', L, C, RO, V);

20

21 //====END OF PROGRAM
```

Scilab code Exa 4.2 attenuation and phase constants

1 //chapter-4 page 142 example 4.2

```
16 //CALCULATIONS
17 \quad Z0 = sqrt(L/C);
18 A=(R/(2*Z0)); // Attenuation Constant in NP/m
19 w=(2*(%pi)*f); // Angular Frequency in rad/sec
20 B=(w*sqrt(L*C));//Phase Constant in rad/m
21 Vp=(1/sqrt(L*C))/(10^3);//Phase Velocity in Km/s
22 er=(((c/V)^2)/e0); // Relative Permittivity
23 Pl=(2*Pin*1); //Power Loss in watts
24
25 //OUTPUT
26 mprintf('\nAttenuation Constant is A=\%1.4 f NP/m \setminus
      nPhase Constant is B=\%4.3 f rad/m \nPhase Velocity
        is Vp=%4.3 f Km/s \nRelative Permittivity is er=
      \%12.2 \,\mathrm{f} \, \mathrm{NPower} \, \mathrm{Loss} \, \mathrm{is} \, \mathrm{Pl} = \%5.0 \,\mathrm{f} \, \mathrm{watts}', \mathrm{A,B,Vp,er},
      P1);
27
              END OF PROGRAM
```

Scilab code Exa 4.3 breakdown power

Scilab code Exa 4.4 Characteristic Impedance

```
1 //chapter-4 page 142 example 4.4
2 / /
3 clc;
4 clear;
6 b=0.3175;//Distance between ground planes of strip
     line in cm
7 d=0.0539; //Diameter of circular conductor in cm
8 er=2.32; // Dielectric Constant
9 c=3*10^8; // Velocity of Light in m/sec
10
11 //CALCULATION
12 Z0 = ((60/sqrt(er))*log((4*b)/(d*(%pi)))); //
     Characteristic Impedance in ohms
13 V=(c/sqrt(er))/(10^3);//The Velocity of propagation
     in Km/s
14
```

```
15 //OUTPUT
16 mprintf('\nCharacteristic Impedance is Z0=%2.2f ohms
    \nThe Velocity of propagation is V=%5.2f Km/s',
    Z0,V);
17
18 //=______END OF PROGRAM
```

Scilab code Exa 4.5 Characteristic Impedance

1 / chapter - 4 page 143 example 4.5

```
2 / /
3 clc;
4 clear;
6 //For a microstrip transmission line
7 er=9.7;//relative dielectric constant of an alumina
     substrate
8 x1=0.5; //w/h ratio in first transmission line
9 x2=5;//w/h ratio in second transmission line
10 c=3*10^8; // Velocity of Light in m/sec
11
12 //CALCULATION
13 disp('For case1: w/h=0.5');
14 disp('Since x1=0.5<1, for this we use high impedance
       analysis');
15 Eeff1=(((er+1)/2)+((er-1)/2)*(1/((sqrt(1+(12/x1))))
     +(0.04*(1-x1)^2)));//Effective dielectric
     constant
16 Zo1=((60/sqrt(Eeff1))*log((8/x1)+(x1/4)));//
      Characteristic impedance in ohms
17 V1=(c/sqrt(Eeff1))/10^8;//Velocity of propagation in
```

```
10^8 \text{ m/sec}
18 mprintf('\nEffective dielectric constant is Eeff1=\%1
      .2 f \nCharacteristic impedance is Zo1=\%2.2 f ohms
      \nVelocity of propagation is V1=\%1.1f *10^8 m/sec
      ', Eeff1, Zo1, V1);
19
20 disp('For case2: w/h=5');
21 disp('here x2>1');
22 Eeff2=(((er+1)/2)+((er-1)/2)*(1/(sqrt(1+(12/x2))));
      //Effective dielectric constant
23 Zo2 = ((120*(\%pi)/sqrt(Eeff2))*(1/(x2+1.393+(0.667*log)))
      (1.444+x2)))));//Characteristic impedance in ohms
24 V2=(c/sqrt(Eeff2))/10<sup>8</sup>;//Velocity of propagation in
       10^8 \text{ m/sec}
25 mprintf('\nEffective dielectric constant is Eeff2=%1
      .2 f \nCharacteristic impedance is Zo2=\%2.2 f ohms
      \nVelocity of propagation is V2=\%1.2 f *10^8 m/sec
      ', Eeff2, Zo2, V2);
26
                       END OF PROGRAM
27 //=
```

Scilab code Exa 4.6 ratio of areas

1 / chapter - 4 page 144 example 4.6

```
similar or equal cutoff frequencies/wavelengths')
8
9 disp('Case1: When TE wave is propagated');
10 disp('For standard rectangular waveguides a=2b and
     For TE11 dominant mode in circular waveguide wc1
     =(2(pi)r)/1.841');
11 disp('where r is the radius of the circular
     waveguide and wc1 is the cutoff wavelength for
      circular waveguide');
12 disp('It is given wc1=wc2 where wc2 is the cutoff
     wavelength for rectangular waveguide');
13 disp('For TE10(dominant mode) of propagation in
     rectangular waveguide wc2=2a');
14 disp('Since wc2=(2ab)/(sqrt((mb)^2+(nb)^2)) as m=1;n
     =0 for TE10 wc2=2ab/b=2a');
15 disp('By equating wc1=wc2, we get a=1.70645r');
16 disp('For a standard waveguide a=2b therefore, b=a/2
17 disp('Now the area of rectangular waveguide=a*b=a*a
     /2=1.70645 r*1.70645 r/2=1.456 r^2;
18 disp('Area of rectangular waveguide=1.456r^2, Area
     of circular waveguide=(pi)*r^2');
19 disp('Ratio of area of circular to area of
     rectangular waveguide=(Area of circular waveguide
     /Area of rectangular waveguide)=(pi*r^2)/(1.456r)
      ^{2} = 2.1576873 = 2.2;
20 disp('This clearly shows that the space occupied by
     a rectangular waveguide system is less compared
     to that for a circular waveguide system. Hence
      circular waveguides are not preferred in some
      applications');
21
22 disp('Case2: When TM wave is propagated');
23 disp('For TM01 mode wc1 = (2*pi*r)/(Pnm)min = (2*pi*r)/
     Pnm = (2*pi*r)/2.405 where r is the radius of
     circular waveguide wc1=2.6155r');
24 disp ('Now if wc2 is the wavelength for TM11 wave
```

```
propagating in a standard rectangular waveguide
     wc2=wc1 but wc2=(2ab)/sqrt(a^2+b^2);
25 disp ('For standard waveguides, we know a=2b, wc2=(2*2)
     b*b)/sqrt(4b^2+b^2)=(4b^2)/sqrt(5b^2)=4b/sqrt(5)
     );
26 disp('By equating wc1=wc2, we get 2.6155 r=4b/sqrt(5)
     =>b=1.4621 r');
27 disp('Area of rectangular waveguide=b*b=b^2 but b
     =1.4621r, so Area of rectangular waveguide
      =(1.4621 \, \text{r})^2=2.132 \, \text{r}^2 and Area of circular
     waveguide= pi*r^2');
28 disp('Ratio of area of circular to area of
     rectangular waveguide=(Area of circular waveguide
     /Area of rectangular waveguide) = (pi*r^2)/(2.132r
      ^{\hat{}}2) = 1.5;
29
          END OF PROGRAM
30 //=
```

Scilab code Exa 4.7 breadth of the guide

1 / chapter - 4 page 146 example 4.7

```
2 //
3 clc;
4 clear;
5 
6 //For a rectangular waveguide
7 disp('For a rectangular waveguide the dominant mode is the TE10 mode.TE10 mode can propagate at a lower frequency');
8 f=9*10^9;//frequency in Hz
9 wg=4;//guide wavelength in cm
10 c=3*10^10;//Velocity of Light in cm/sec
```

```
11 disp('For TE10 mode wc=2a');
12
13 //CALCULATION
14 w0=(c/f);//free space wavelength in cm
15 wc = (w0/sqrt(1-(w0/wg)^2)); //Cutoff wavelength for
      TE10 mode in cm
16 disp('Free space wavelength w0 in cm is');
17 disp(w0);
18 disp('Cutoff wavelength we in cm is');
19 disp(wc);
20 disp('Since wc>w0, the wave propagates');
21 a=(wc/2); //length of the guide in cm
22 b=(wc/4);//breadth of the guide in cm
23
24 //OUTPUT
25 mprintf('\nlength of the guide is a=\%1.0 \, \mathrm{f} \, \mathrm{cm} \setminus
      nbreadth of the guide is b=\%1.1 f cm',a,b);
26
                      END OF PROGRAM
27 / =
```

Scilab code Exa 4.8 guide wavelength

1 / chapter - 4 page 147 example 4.8

```
3 clc;
4 clear;
5 
6 a=10;//breadth of a rectangular waveguide in cm
7 f=2.5*10^9;//Frequency in Hz in TE10 mode
8 c=3*10^10;//Velocity of Light in cm/sec
9
10 //CALCULATION
```

Scilab code Exa 4.9 guide wavelength

1 / chapter - 4 page 147 example 4.9

```
15 disp(w0);
16 disp('For TE waves, wc = (2ab/sqrt((mb)^2 + (na)^2))');
17 disp('For TE01 waves');
18 \text{ m1=0};
19 n1=1;
20 \text{wc1}=((2*a*b)/(\text{sqrt}((m1*b)^2+(n1*a)^2))); // \text{Cutoff}
      wavelength for TE01 mode in cm
21 disp('Cutoff wavelength for TE01 mode in cm is');
22 disp(wc1);
23 disp('Since we for TE01=2cm is not greater than w0
      TE01, will not propagate for TE01 mode. ');
24 disp('For TE10 waves');
25 \text{ m} 2 = 1;
26 \text{ n} 2 = 0;
27 \text{ wc2}=((2*a*b)/(sqrt((m2*b)^2+(n2*a)^2)));//Cutoff
      wavelength for TE10 mode in cm
28 disp('Cutoff wavelength for TE10 mode in cm is');
29 disp(wc2);
30 disp('Since we TE10 > w0 TE10 is a possible mode.');
31 fc=(c/wc2)/10^9;//Cutoff frequency in GHz
32 disp('For TE11 and TM11 waves');
33 \text{ m} 3 = 1;
34 \text{ n} 3 = 1;
35 \text{ wc3}=((2*a*b)/(sqrt((m3*b)^2+(n3*a)^2))); //Cutoff
      wavelength for TE11 mode in cm
36 disp('Cutoff wavelength for TE11 and TM11 modes in
      cm is');
37 disp(wc3);
38 \operatorname{disp}('As we for TE11 and TM11 is < w0 both TE11 and
      TM11 do not propagate as higher modes.');
39 wg = (w0/sqrt(1-(w0/wc2)^2)); //Guide wavelength in cm
40 disp('From the above analysis we conclude that only
      TE10 mode is possible');
41
42 //OUTPUT
43 mprintf('\nCutoff frequency is fc=\%1.0 f GHz \nGuide
      wavelength is wg=\%1.3 f cm', fc, wg);
44
```

Scilab code Exa 4.10 area

```
1 / \text{chapter} - 4 \text{ page } 148 \text{ example } 4.10
2 //
3 clc;
4 clear;
6 //For an air filled circular Waveguide in the
      dominant mode
7 c=3*10^10; // Velocity of Light in cm/sec
8 disp('For an air filled circular Waveguide TE11 is
      the dominant mode ie propagated');
9 wc=10; //cutoff wave length in cm
10
11 //CALCULATION
12 r = ((1.841*wc)/(2*(\%pi))); //radius of circular
      Waveguide in cm
13 A=(%pi)*r^2;//Cross sectional area of the guide in
      sq.cms
14 fc=(c/wc)/10^9;//Cutoff frequency for TE11 mode in
15 disp('Cutoff frequency for TE11 mode in GHz is');
16 disp(fc);
17 disp('Frequncy above 3GHz can be propagated through
      the waveguide');
18
19 //OUTPUT
20 mprintf('\nCross sectional area of the guide is A=\%2
      .2 f sq.cms', A);
21
```

Scilab code Exa 4.11 possible modes

```
1 / \text{chapter} - 4 \text{ page } 149 \text{ example } 4.11
2 / /
3 clc;
4 clear;
6 //For a rectangular waveguide
7 f=5*10^9; //frequency in Hz
8 c=3*10^10; // Velocity of Light in cm/sec
9 a=4;//Length of Rectangular Waveguide in cm
10 b=3; //Width of Rectangular Waveguide in cm
11
12 //CALCULATION
13 disp('The condition for the wave to propagate along
      a guide is that wc>w0.');
14 w0=c/f; //free space wavelength in cm
15 disp('Free space wavelength w0 in cm is');
16 disp(w0);
17 disp('For TE waves, wc = (2ab/sqrt((mb)^2 + (na)^2))');
18 disp('For TE01 waves');
19 m1=0;
20 \quad n1=1:
21 wc1=((2*a*b)/(sqrt((m1*b)^2+(n1*a)^2)));//Cutoff
      wavelength for TE01 mode in cm
22 disp('Cutoff wavelength for TE01 mode in cm is');
23 disp(wc1);
24 disp('Since we for TE01=6cm is not greater than w0
      TE01, will not propagate for TE01 mode. ');
25 disp('For TE10 waves');
```

```
26 \text{ m} 2 = 1;
27 \quad n2=0;
28 wc2=((2*a*b)/(sqrt((m2*b)^2+(n2*a)^2)));//Cutoff
      wavelength for TE10 mode in cm
29 disp('Cutoff wavelength for TE10 mode in cm is');
30 disp(wc2);
31 disp('Since we TE10 > w0 TE10 is a possible mode.');
32 disp('For TE11 waves');
33 \text{ m} 3 = 1;
34 \text{ n3=1};
35 \text{ wc3}=((2*a*b)/(sqrt((m3*b)^2+(n3*a)^2)));//Cutoff
      wavelength for TE11 mode in cm
36 disp('Cutoff wavelength for TE11 mode in cm is');
37 disp(wc3);
38 disp('As wc TE11 < w0 TE11 does not propagate.');
39
40 //=____END OF PROGRAM
```

Scilab code Exa 4.12 guide wavelength

1 / chapter - 4 page 149 example 4.12

```
3 clc;
4 clear;
5 
6 //For an air filled circular Waveguide in the dominant mode
7 D=4;//Inner diameter of an air filled circular Waveguide in cm
8 c=3*10^10;//Velocity of Light in cm/sec
9
10 //CALCULATION
```

```
11 disp('The dominant mode in the circular waveguide
     would be like TE11, wc is maximum');
12 r=D/2; //radius in cm
13 wc = ((2*(\%pi)*r)/1.841); //Cutoff wavelength in cms
14 fc=(c/wc)/10^9;//Cutoff frequency in GHz
15 mprintf('\nCutoff wavelength is wc=\%1.4f cms \
     nCutoff frequency is fc=\%1.3 f GHz', wc, fc);
16 disp('Since cut-off frequency is 4.395 GHz,
     frequencies higher than fc will be propagated.
     Assume a signal of frequency of 5 GHz is being
     propagated');
17 f=5*10^9; //frequency of signal in Hz
18 w0=(c/f); //free space wavelength in cm
19 wg = (w0/sqrt(1-(w0/wc)^2)); //Guide wavelength in cm
20 mprintf('\nWave length in the guide is wg=\%2.2 f cm',
     wg);
21
              END OF PROGRAM
```

Scilab code Exa 4.13 frequency

2 / /

1 / chapter - 4 page 150 example 4.13

```
3 clc;
4 clear;
5
6 //For a rectangular waveguide in TE10 mode
7 a=6;//Length of Rectangular Waveguide in cm
8 b=4;//Width of Rectangular Waveguide in cm
9 c=3*10^10;//Velocity of Light in cm/sec
10 x=4.55;//distance between maximum and minimum in cm
```

Scilab code Exa 4.14 guide wavelength

1 / chapter - 4 page 151 example 4.14

```
2 / /
3 clc;
4 clear;
6 //For a rectangular waveguide
7 b=2.5; //Length of Rectangular Waveguide in cm
8 a=5; //breadth of Rectangular Waveguide in cm
9 c=3*10^10; // Velocity of Light in cm/sec
10 w0=4.5; // Free space wavelength in cm
11
12 //CALCULATION
13 disp('For a TE10 mode which is the dominant mode');
14 wc=2*a; // Cutoff wavelength in cm
15 wg = (w0/sqrt(1-(w0/wc)^2)); //Guide wavelength in cm
16 Vp=(c/sqrt(1-(w0/wc)^2))/10^10; //Phase Velocity in
      10^10 \text{ cm/sec}
17 B=((2*(\%pi)*sqrt(wc^2-w0^2))/(w0*wc)); //Phase
```

```
constant in radians

//OUTPUT

mprintf('\nGuide wavelength is wg=%1.5 f cm \nPhase constant is B=%1.3 f radians \nPhase Velocity is Vp=%1.2 f *10^10 cm/sec', wg, B, Vp);

//END OF PROGRAM

//Note: Check the answers once
//Correct answers are
//Guide wavelength is wg=5.03903 cm
//Phase constant is B=1.247 radians
//Phase Velocity is Vp=3.36 *10^10 cm/sec
```

Scilab code Exa 4.15 possible modes

```
1 //chapter-4 page 152 example 4.15
2 //

3 clc;
4 clear;
5 
6 wcTE10=16; // Critical wavelength of TE10 mode in cm
7 wcTM11=7.16; // Critical wavelength of TM11 mode in cm
8 wcTM21=5.6; // Critical wavelength of TM21 mode in cm
9 disp('For any wave to be propagated, the condition
to be met is wc>wo');
10 wo1=10; // Free space wavelength in cm
11 wo2=5; // Free space wavelength in cm
12 disp('Critical wavelength of TE10 mode in cm is');
13 disp(wcTE10);
14 disp('Critical wavelength of TM11 mode in cm is');
```

```
disp(wcTM11);
disp('Critical wavelength of TM21 mode in cm is');
disp(wcTM21);
disp('For wo1=10cm, The mode that propagates only
    TE10.Because wcTE10>wo1 and all other modes that
    is TM11 TM21 donot propagate');
disp('For wo2=5cm');
disp('wcTE10>wo2, so TE10 mode propagates');
disp('wcTM11>wo2, so TE11 mode propagates');
disp('wcTE21>wo2, so TE21 mode propagates');
```

Scilab code Exa 4.16 Characteristic Impedance

```
1 //chapter-4 page 152 example 4.16
2 //
```

```
3 clc;
4 clear;
6 n=120*(%pi);//Intrinsic Impedance
7 a=3;//Length of Rectangular Waveguide in cm
8 b=2;//Width of Rectangular Waveguide in cm
9 f=10^10; //Frequency in Hz
10 c=3*10^10; // Velocity of Light in cm/sec
11
12 //CALCULATION
13 wc = ((2*a*b)/sqrt(a^2+b^2)); //Cutoff wavelength in
     TM11 mode in cms
14 w0=(c/f); // Free space wavelength in cms
15 ZTM=(n*sqrt(1-(w0/wc)^2));//Characteristic Wave
     Impedance in ohms
16
17 //OUTPUT
18 mprintf('\nCharacteristic Wave Impedance is ZTM=\%2.3
```

```
f ohms', ZTM);
19
20
                         END OF PROGRAM
21
22
23 // Note: Check the given answer once it is wrong
24 //currect answer is 163.242 ohms
   Scilab code Exa 4.17 guide wavelength
1 / \text{chapter} - 4 \text{ page } 152 \text{ example } 4.17
2 / /
3 clc;
4 clear;
6 c=3*10^10; // Velocity of Light in cm/sec
7 f=6*10^9; //Frequency in Hz
9 //CALCULATION
10 fc=(0.8*f); // Given Cutoff frequency for TE11 mode in
      Hz
11 wc=(c/fc);//Cutoff wavelength in cms
12 D=((1.841*wc)/(%pi));//Diameter of waveguide in cm
13 w0=(c/f);//Free space wavelength in cm
14 wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cm
15
16 //OUTPUT
17 mprintf('\nDiameter of the waveguide is D=\%1.4 f cm \
     nGuide wavelength is wg=\%1.3 f cm', D, wg);
18
        END OF PROGRAM
```

Scilab code Exa 4.18 proof

```
1 / \text{chapter} - 4 \text{ page } 153 \text{ example } 4.18
2 / /
3 clc;
4 clear;
6 //For a TE10 mode
7 a=1.5; //Length of an air filled square Waveguide in
  b=1;//breadth of an air filled square Waveguide in
9 c=3*10^10; // Velocity of Light in cm/sec
10 f=6*10^9; //Impressed Frequency in Hz
11 er=4; // dielectric constant
12
13 //CALCULATION
14 wc=2*a; // Cutoff wavelength in cm
15 fc=(c/wc)/10^9;//Cutoff frequency in GHz
16 disp('Cutoff frequency in GHz is');
17 disp(fc);
18 disp('The impressed frequency of 6 GHz is less than
      the Cutoff frequency and hence the signal will
      not pass through the guide');
19 w=(c/f);//Wavelength in cm
20 disp('Alternatively, the wavelength of the impressed
       signal in cm is');
21 disp(w);
22 wair=w;
23 disp('which is longer than the cutoff wavelength (3)
      cm) and hence no propagation of the wave');
24 w1=wair/sqrt(er);//Wavelength in cm
```

```
disp('If the waveguide is loaded with dielectric of
    er=4, then the wavelength in cm is');
disp(w1);
disp('which is lessthan wair');
disp('Now the signal with 6 GHz frequency will pass
    through the dielectric loaded waveguide');

// END OF PROGRAM
```

Scilab code Exa 4.19 amount of attenuation

1 / chapter - 4 page 153 example 4.19

```
2 / /
3 clc;
4 clear;
6 a=0.015; //Length of hollow Rectangular Waveguide in
7 b=1;//breadth of hollow Rectangular Waveguide in cm
8 f=6*10^9; //Frequency in Hz in TE10 mode
9 c=3*10^8; // Velocity of Light in m/sec
10 m=1; //Value of m in TE10 mode
11 n=0; //Value of n in TE10 mode
12 u=4*(\%pi)*10^(-7); // Permeability in free space in
13 e=8.854*10^{(-12)}; // Permittivity in free space in F/m
14
15 //CALCULATION
16 wc=2*a;//Cutoff wavelength for TE10 mode in m
17 fc=c/wc; // Cutoff frequency in Hz
18 w=2*(%pi)*f;//Angular frequency in rad/sec
19
```

Scilab code Exa 4.20 max power handling capacity

1 / chapter - 4 page 154 example 4.20

```
2 / /
3 clc;
4 clear;
6 a=3;//Length of Rectangular Waveguide in cm
7 b=1;//Width of Rectangular Waveguide in cm
8 f=9*10^9; //Frequency in Hz in TE10 mode
9 c=3*10^10; // Velocity of Light in cm/sec
10 Emax=3000; //Max potential gradient in V/cm
11
12 //CALCULATION
13 w0=(c/f); // Free space wavelength in cms
14 disp('Free space Wavelength in cm is');
15 disp(w0);
16 wc=2*a; // Cutoff wavelength in TE10 mode in cms
17 wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cms
18 disp('Guide Wavelength in cm is');
```

Scilab code Exa 4.21 maximum power

1 / chapter - 4 page 154 example 4.21

```
2 / /
3 \text{ clc};
4 clear;
6 d=5;//Internal Diameter of circular waveguide in cm
7 f=9*10^9; //Frequency in Hz in TE11 mode
8 c=3*10^10; // Velocity of Light in cm/sec
9 Emax=300; //Max field strength in V/cm
10
11 //CALCULATION
12 w0=(c/f); // Free space wavelength in cms
13 wc = ((d*(\%pi))/1.841); //Cutoff wavelength in TE11
      mode in cms
14 wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cms
15 Pmax = (0.498*(Emax^2)*(d^2)*(w0/wg))/1000; //Maximum
      power in kWatts
16
17 //OUTPUT
```

```
18 mprintf('\nMaximum power is Pmax=%4.2 f kWatts', Pmax)
;
19
20
21 //_____END OF PROGRAM
```

Scilab code Exa 4.22 peak value of electric field

1 / chapter - 4 page 155 example 4.22

```
2 / /
3 clc;
4 clear;
6 //For an air filled square waveguide
7 a=0.01; //Length of an air filled square Waveguide in
8 b=0.01; //breadth of an air filled square Waveguide
9 c=3*10^8; // Velocity of Light in m/sec
10 f=30*10^9; //Frequency in Hz in TE11 mode
11 Pmax=746; //Max power =1 horsepower in W
12 n=120*(%pi); //Impedance of freespace in ohms
13
14 //CALCULATION
15 w0=(c/f); //Free space wavelength in m
16 wc=2*a; // Cutoff wavelength in m
17 ZTE=(n/sqrt(1-(w0/wc)^2));//Impedance in ohms
18 Emax=(sqrt((Pmax*4*ZTE)/(a*b)))/1000;//The Peak
      value of Electric field occuring in the guide in
     kV/m
19 //From P=(1/2)*Integration(Re(E*H))da
20 // \text{and } \text{Pmax} = (1/(4*\text{ZTE}))*\text{Emax}^2*a*b
```

```
21
22 //OUTPUT
23 mprintf('\nThe Peak value of Electric field occuring in the guide is Emax=%3.2 f kV/m', Emax);
24
25 //_____END OF PROGRAM
```

Scilab code Exa 4.23 breakdown power

1 / chapter - 4 page 156 example 4.23

```
3 \text{ clc};
4 clear;
6 //For an air filled rectangular waveguide
  a=0.023; // Length of an air filled Rectangular
      Waveguide in m
  b=0.01; // breadth of an air filled Rectangular
      Waveguide in m
9 c=3*10^8; // Velocity of Light in m/sec
10 f=9.375*10^9; // Frequency in Hz in TE11 mode
11 w0=0.01; // Free space wavelength in m
12 wc=0.02; // Cutoff wavelength in m
13 Pmax=746; //Max power =1 horsepower in W
14
15 //CALCULATION
16 wo=(c/f); // Free space wavelength in cm
17 Pbd=(597*a*b*sqrt(1-(wo/(2*a))^2));//The breakdown
      power for the dominant mode ie TE11 in W
18 wg = (w0/sqrt(1-(w0/wc)^2)); //Guide wavelength in m
19 \operatorname{Emax} = (\operatorname{sqrt}((\operatorname{Pmax} * \operatorname{wg}) / (6.63 * 10^{(-4)} * \operatorname{w0}))) / 1000; //\operatorname{Max})
       electric field in kV/m
```

```
20
21 //OUTPUT
22 mprintf('\nThe breakdown power for the dominant mode ie TE11 is Pbd=%1.5 f W \nMax electric field is Emax=%1.4 f kV/m', Pbd, Emax);

23
24 // END OF PROGRAM

25
26
27 //Note: Check the answers once
28 //Correct answers are
29 //The breakdown power for the dominant mode ie TE11 is Pbd=0.09864 W

30 //Max electric field is Emax=1.1398 kV/m
```

Scilab code Exa 4.24 breakdown power

```
1 //chapter-4 page 156 example 4.24
2 //
3 clc;
4 clear;
5 6 a=2.5; //Radius of circular waveguide in cm
7 d=5; //Internal Diameter of circular waveguide in cm
8 f=9*10^9; //Frequency in Hz in TE11 mode
9 c=3*10^10; //Velocity of Light in cm/sec
10
11 //CALCULATION
12 w0=(c/f); //Free space wavelength in cms
13 wc=((d*(%pi))/1.841); //Cutoff wavelength in TE11 mode in cms
14 fc=(c/wc); //Cutoff frequency in Hz
```

Chapter 5

Cavity Resonators

Scilab code Exa 5.1 minimum distance

1 / chapter - 5 page 174 example 5.1

```
3 clc;
4 clear;
6 //For a circular waveguide
7 a=3; //radius in cm
8 f0=10*10^9; //resonant frequency of a circular
      resonator in Hz
9 disp('Given the mode of operator is TM011 so here n
      =0, m=1, p=1');
10 c=3*10^10; // Velocity of light in cm/sec
11 m=1;
12 n=0;
13 p=1;
14 Pnm=2.405; //dominant mode value [TM01]
15
16 //CALCULATION
17 d=((p*(%pi))/(sqrt((2*(%pi)*f0/c)^2-(Pnm/a)^2)));//
```

Scilab code Exa 5.2 lowest resonant frequency

```
1 //chapter-5 page 174 example 5.2
2 //
3 clc;
```

```
4 clear;
6 //For a rectangular cavity resonator
7 a=2;//breadth in cm
8 b=1; //height in cm
9 1=3;//length of rectangular waveguide in cm
10 disp('Lowest resonant frequency is obtained for the
     dominant mode TE10 [f=c/w where w increases as f
     decreases. In dominant mode we is maximum]');
11 disp('So the dominant mode is TE101 so here m=1,n=0,
     p=1');
12 c=3*10^10; // Velocity of light in cm/sec
13 m=1;
14 n = 0;
15 p=1;
16
17 //CALCULATION
```

```
18 f0=((c/2)*sqrt((m/a)^2+(n/b)^2+(p/1)^2))/10^9; //The
    resonant frequency of a rectangular cavity
    resonator in GHz

19
20 //OUTPUT
21 mprintf('\nThe resonant frequency of a rectangular
    cavity resonator is f0=%1.0 f GHz',f0);
22
23 //=====END OF PROGRAM
```

Scilab code Exa 5.3 resonant frequency

1 / chapter - 5 page 175 example 5.3

```
3 clc;
4 clear;
5
6 //For a circular resonator
7 D=12.5; // diameter in cm
8 l=5; // length of circular waveguide in cm
9 disp('Given the mode of operator is TM012 so here n
=0,m=1,p=2');
10 c=3*10^10; // Velocity of light in cm/sec
11 m=1;
12 n=0;
13 p=2;
14 Pnm=2.405; // dominant mode value [TM01]
15
16 //CALCULATION
17 a=D/2; // radius in cm
```

18 f0=((c/(2*(%pi)))*sqrt((Pnm/a)^2+((p*(%pi))/1)^2)) /10^9;//The resonant frequency of a circular

Scilab code Exa 5.4 resonant frequency

1 / chapter - 5 page 175 example 5.4

```
2 //
3 clc;
4 clear;
6 //For a circular resonator
7 a=3; //radius in cm
8 b=2; //dimension in cm
9 1=4; //length of circular waveguide in cm
10 disp('Given the mode of operator is TE101 so here m
     =1,n=0,p=1');
11 c=3*10^10; // Velocity of light in cm/sec
12 \, m=1;
13 n = 0;
14 p=1;
15
16 //CALCULATION
17 f0=((c/2)*sqrt((m/a)^2+(n/b)^2+(p/1)^2))/10^9;//The
      resonant frequency of a circular resonator in GHz
18
19 //OUTPUT
20 mprintf('\nThe resonant frequency of a circular
```

```
resonator is f0=%1.2 f GHz',f0);
21
22 //_____END OF PROGRAM
```

Chapter 6

Microwave Components

Scilab code Exa 6.2 distance to be shifted

```
1 / Chapter - 6, Example 6.2, Page 234
3 //Input parameters
4 //[s] = [0, (0.3 + (\%i) * (0.4)); (0.3 + (\%i) * (0.4)), 0]; //
      scattering matrix of a two port
5 // Calculations
6 //to find l such that S12 and S21 will be real when
      port1 is shifted lm to the left
7 //let port 1 be shifted by phi1 degree to the left
      and port2 position be remained unchanged i.e.,
      phi2=delta
8 //Then [phi] = [e^-(j*phi1), 0; 0, 1]
9 // [S'] = [phi] * [s] * [phi]
10 //for S12 and S21 to be real
11 phi1=53.13; // in degrees
12 phi1=phi1*(%pi/180);//phi in radians
13 b=34.3; //measured in rad/m
14 l=(phi1)/b;//distance of shift in m
15 //Output
```

```
16 mprintf("distance that the position of part1 should be shifted to the left so that S21 and S12 will be real numbers is %1.4 f m",1)

17 // END OF PROGRAM
```

Scilab code Exa 6.3 Scattering parameters

 $25 \quad S24 = sqrt(1-0.1-(S34)^2)$

```
1 / Chapter - 6, Example 6.3, Page 236
2 / /
3 clc;
4 //Input parameters
5 D=30; // directivity in dB
6 VSWR=1;//VSWR at each port under matched conditions
7 C=10; //coupling factor
8 // Calculations
9 \text{ S41=sqrt}(0.1);
10 S14=S41; //under matched and lossless conditions
11 S31=sqrt(((S41)^2)/(10)^(D/10));
12 S13=S31;
13 S11 = (VSWR - 1) / (VSWR + 1);
14 S22=S11;
15 S33=S22;
16 S44=S33;
17 //let input power is given at port1
18 / p1 = p2 + P3 + p4
19 S21 = sqrt(1 - (S41)^2 - (S31)^2);
20 S12=S21;
21 S34 = sqrt((0.5)*(1+(S12)^2-0.1-0.0001));
22 S43=S34
23 S23 = sqrt(1-10^-4-(S34)^2)
24 \text{ S32=S23};
```

Scilab code Exa 6.4 powers in the remaining ports

```
1 / Chapter - 6, Example 6.4, Page 238
2 / /
3 clc;
4 //Input parameters
5 a1=32*10^{-3}; //power in watts
6 a2=0;
7 a3=0;
8 // Calculations
9 [S] = [0.5, -0.5, 0.707; -0.5, 0.5, 0.707; 0.707, 0.707, 0]; //
     S-matrix for H-plane tee
10 / [B] = [b1, b2, b3]
11 [B]=[S].*[a1,0,0;0,0,0;0,0,0];
12 b1=(0.5)^2*a1;//power at port 1
13 b2=(-0.5)^2*a1;//power at port 2
14 b3=(0.707)^2*a1;//power at port 3
15 //Output
16 mprintf ("Thus b1, b2, b3 are %g W, %g W, %g W
      respectively",b1,b2,b3);
                                     END OF PROGRAM
```

Scilab code Exa 6.5 power

```
1 / Chapter - 6, Example 6.5, Page 239
3 clc;
4 //Input parameters
5 [S] = [0.5, -0.5, 0.707; -0.5, 0.5, 0.707; 0.707, 0.707, 0];
6 R1=60; //load at port1 in ohms
7 R2=75; //load at port2 in ohms
8 R3=50; //characteristic impedance in ohms
9 P3=20*10^-3; //power at port 3 in Watts
10 //calculations
11 p1=(R1-R3)/(R1+R3);
12 p2=(R2-R3)/(R2+R3);
13 P1=0.5*P3*(1-(p1)^2);//power delivered to the port1
     in Watts
14 P2=0.5*P3*(1-(p2)^2);/power delivered to the port2
     in Watts
15 //Output
16 mprintf("Thus power delivered to the port1 and port2
      are \%g W,\%g W respectively",P1,P2);
                     END OF PROGRAM
17
```

Scilab code Exa 6.6 Reflected power

```
3 \text{ clc};
4 //Input parameters
5 p1=0.5; // reflection coefficient at port 1
6 p2=0.6; // reflection coefficient at port 2
7 p3=1;//reflection coefficient at port 3
8 p4=0.8; // reflection coefficient at port 4
9 // [S
      ] = [0, 0, 0.707, 0.707; 0, 0, 0.5, -0.707; 0.707, 0.707, 0.707, 0, 0; -0.707, 0.707, 0, 0]
      S matrix of magic Tee
10 //solving for b1, b2, b3, b4 we get it as
11 //calculations
12 b1=0.6566;
13 b2=0.7576;
14 \ b3=0.6536;
15 \quad b4 = 0.0893;
16 P1=(b1)^2;//power at port1 in watts
17 disp(P1);
18 P2=(b2)^2;//power at port2 in watts
19 disp(P2);
20 P3=(b3)^2;//power at port3 in watts
21 disp(P3);
22 P4=(b4)^2;//power at port4 in watts
23 disp(P4);
24 //======
                                     END OF PROGRAM
```

Scilab code Exa 6.7 Scattering matrix

5 ins=0.5;//insertion loss in db

```
1 //Chapter -6, Example 6.7, Page 240
2 //
3 clc;
4 //Input parameters
```

```
6 iso=30; //isolation loss in db
7 // Calculations
8 S21=10^-(ins/20); //insertion loss=0.5=-20*log[S21]
9 S12=10^-(iso/20); //isolation loss=30=-20*log[s12]
10 S11=0;
11 S22=0;
12 [S]=[S11,S12;S21,S22];
13 disp(S);
14 // END OF PROGRAM
```

Scilab code Exa 6.9 Scattering matrix

```
1 //Chapter -6, Example 6.9, Page 241
2 //
3 clc;
```

```
4 //Input parameters
5 ins=0.5;//insertion loss in db
6 iso=20;//isolation loss in db
7 \text{ S=2}; //\text{VSWR}
8 // Calculations
9 S21=10^-(ins/20); // insertion loss=0.5=-20*log[S21]
10 S13=S21;
11 S32=S13;
12 S12=10^-(iso/20); // isolation loss=30=-20*log[s12]
13 S23=S12;
14 S31=S23;
15 p=(S-1)/(S+1);
16 \text{ S11=p};
17 S22=p;
18 S33=p;
19 [S]=[S11,S12,S13;S21,S22,S23;S31,S32,S33];
20 disp(S);
```

Scilab code Exa 6.10 output powers

Watts = ');

n Watts) = ';

1 / Chapter - 6, Example 6.10, Page 242

```
4 clc;
5 clear;
6 close;
7 In_loss =0.5; // i n s e r t i o n l o s s ( i n dB)
8 C = 20; //coupling coefficient in dB
9 D =35; //directivity i n dB
10 Pi_Pf =10^( C /10);
11 Pi =90; // i n Watts
12 Pf=Pi/ Pi_Pf ;
13 Pf_Pb =10^( D /10) ;
14 Pb=Pf/ Pf_Pb ;
15 P_rec =(Pi -Pf -Pb); //Power r e c e i v e d ( i n
     Watts )
16 P_rec_dB =10* log (Pi/ P_rec )/log (10) ;
17 P_rec_eff = P_rec_dB - In_loss ; // E f f e c t i v
     e power r e c e i v e d ( i n dB)
18 disp ( Pf , 'Output power through coupled port ( i n
```

19 disp (Pb , 'Output power through isolated port (i

Scilab code Exa 6.11 coupling isolation directivity

```
1 / Chapter - 6, Example 6.11, Page 242
2 //
3 clc;
4 // Calculations
5 S13=0.1*(\cos(90*\%pi/180)+(\%i)*\sin(90*\%pi/180));//
      conversion from polar to rectangular
6 S13 = abs(S13);
7 C=-20*log10(S13);//coupling coefficient in dB
8 S14=0.05*(\cos(90*\%pi/180)+(\%i)*\sin(90*\%pi/180));//
      conversion from polar to rectangular
9 S14 = abs(S14);
10 D=20*log10(S13/S14);//directivity in dB
11 I = -20 * log 10 (S14); // isolation in dB
12 mprintf("Thus coupling, directivity and isolation are
       \%1.0\,\mathrm{f} dB,\%1.2\,\mathrm{f} dB and \%2.2\,\mathrm{f} dB respetively ",C,D
      ,I);
13 //====
                                     END OF PROGRAM
```

Scilab code Exa 6.12 VSWR

```
1 / \text{chapter} - 6 \text{ page } 244 \text{ example } 6.12
2 / /
3 clc;
4 clear;
6 x=3.5; // distance between two minimas in cm
7 y=0.25; // distance between twice minimum power points
       in cm
8
9 //CALCULATION
10 wg=2*x; // guided wavelength in cm
11 S=(wg/(y*(%pi)));//Voltage Standing Wave Ratio(VSWR)
12
13 //OUTPUT
14 mprintf('\nVoltage Standing Wave Ratio(VSWR) is S=\%1
      .4 f', S);
15
            END OF PROGRAM
16 / =
```

Scilab code Exa 6.13 phase shift

1 / chapter - 6 page 244 example 6.13

```
waveguide component in cm

//CALCULATION
z=x-y; // Path difference introduced due to the component in cm

p=(2*(%pi)*(z/wg)); // Phase difference introduced in rad

Pd=(p*180)/(%pi); // Phase shift introduced in deg

//OUTPUT
mprintf('\nPhase shift introduced is Pd=%2.0f deg', Pd);

// END OF PROGRAM
```

Chapter 7

17

Microwave Measurements

Scilab code Exa 7.1 measured distance

1 / chapter - 7 page 278 example 7.1

```
2 //
3 clc;
4 clear;
6 a=4; //Length of Waveguide in cm
7 b=2.5; //breadth Waveguide in cm
8 f=10^10; //Frequency in Hz
9 x=0.1; // distance between twice minimum power points
      in cm
10 c=3*10^10; // Velocity of Light in cm/sec
11
12 //CALCULATION
13 wc=2*a; // Cutoff wavelength in TE10 mode in cms
14 w0=(c/f); // Free space wavelength in cms
15 wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cms
16 S=(wg/(x*(%pi))); // Voltage Standing Wave Ratio (VSWR)
       for double minimum method
```

```
18 //OUTPUT
19 mprintf('\nFor double minimum method, Voltage
     Standing Wave Ratio (VSWR) is S=\%2.1 f',S);
20
          END OF PROGRAM
21 //====
  Scilab code Exa 7.2 VSWR and Reflected power
1 / \text{chapter} - 7 \text{ page } 279 \text{ example } 7.2
2 / /
3 clc;
4 clear;
6 x=3; //O/P incident power from first directional
     coupler in mW
  y=0.1;//O/P reflected power from second directional
     coupler in mW
9 //CALCULATION
10 Pi=x*100; //Incident Power in mW
11 Pr=y*100; // Reflected Power in mW
12 p=sqrt(Pr/Pi); // Reflection Coefficient
13 S=((1+p)/(1-p));//Voltage Standing Wave Ratio(VSWR)
14
15 //OUTPUT
16 mprintf('\nVoltage Standing Wave Ratio(VSWR) in the
     main waveguide is S=%1.2f \nReflected Power is Pr
     =\%2.0 \text{ f mW', S,Pr};
17
        END OF PROGRAM
18 //=
```

Scilab code Exa 7.3 VSWR

```
1 / \text{chapter} - 7 \text{ page } 279 \text{ example } 7.3
3 clc;
4 clear;
6 Pi=2.5; // Incident Power from one directional coupler
      in mW
7 Pr=0.15; // Reflected Power from other directional
      coupler in mW
8
9 //CALCULATION
10 p=sqrt(Pr/Pi);//Reflection Coefficient
11 S=((1+p)/(1-p));//Voltage Standing Wave Ratio(VSWR)
12
13 //OUTPUT
14 mprintf('\nVoltage Standing Wave Ratio(VSWR) in the
     waveguide is S=\%1.2 \, f',S);
15
          END OF PROGRAM
```

Scilab code Exa 7.4 Reflected power

```
1 //chapter -7 page 279 example 7.4
2 //
```

3 clc;

Chapter 8

Microwave Tubes and Circuits

Scilab code Exa 8.1 electron velocity and etc

1 / chapter - 8 page 336 example 8.1

```
2 //
3 clc;
4 clear;
6 //For a four cavity Klystron
7 V0=14500; //Beam voltage in V
8 I=1.4; //Beam current in A
9 f=10^10; // Operation frequency in Hz
10 p0=10^(-6); //dc electron charge density in C/m<sup>3</sup>
11 p=10^{(-8)}; //RF charge density in C/m<sup>3</sup>
12 V=10<sup>5</sup>; // Velocity perturbations in m/sec
13 e0=8.854*10^{(-12)}; // Permittivity of free space in F/
      \mathbf{m}
14 R = 0.4;
15
16 //CALCULATION
17 v0 = (0.593*10^6*sqrt(V0))/10^8; //The dc electron
      velocity in 10<sup>8</sup> m/sec
```

```
18 w=2*(%pi)*f;//angular frequency in rad/sec
19 v = v0 * 10^8;
20 c=(w/v); //The dc Phase Constant
21 wp=(sqrt(1.759*10^11*(p0/e0)))/10^8;//The Plasma
      Frequency in 10<sup>8</sup> rad/sec
22 \text{ wp1=wp*10^8};
23 wq=(R*wp1)/10^8;//The Reduced Plasma Frequency in
      10^8 rad/sec
24 J0=p0*v; //The dc beam current density in A/sqm
  J=(p*v)+(p0*V); //The instantaneous beam current
      density in A/sqm
26
27 //OUTPUT
28 mprintf('\nThe dc electron velocity is v0=\%2.3 f
      *10^8 m/sec \nThe dc Phase Constant is c=\%1.2 f
      rad/sec\nThe Plasma Frequency is wp=\%1.2 f *10^8
      rad/sec \nThe Reduced Plasma Frequency is wq=\%1.3
      f *10^8 rad/sec \nThe dc beam current density is
      J0=\%2.1 f A/sqm \nThe instantaneous beam current
      density is J=\%1.3 \text{ f A/sqm}', v0, c, wp, wq, J0, J);
29
                       END OF PROGRAM
30
```

Scilab code Exa 8.2 power and etc

1 / chapter - 8 page 337 example 8.2

```
8 Pin=0.005; //I/P power in W
9 Rin=30000; //Rsh of i/p cavity in ohms
10 R0=40000; //Rsh of o/p cavity in ohms
11 Rl=40000; //load impedance in ohms
12 R=20000; // Parallel resistance of R0 and R1 (R0//R1)
     in ohms
13
14 //CALCULATION
15 Vin=sqrt(Pin*Rin); //The input rms voltage in V
     From Pin=Vin^2/Rin]
16 V0=Vin*10^(Av/20);//The output rms voltage in V
     From Av=20\log(V0/Vin)
17
  PO=(VO^2)/R; //The Power delivered to the load in W
18
19 //OUTPUT
20 mprintf('\nThe input rms voltage is Vin=\%2.2 f V \
     nThe output rms voltage is V0=\%2.2 f V \nThe Power
      delivered to the load is P0=\%1.4 f W', Vin, V0, P0);
21
               END OF PROGRAM
22 / =
```

Scilab code Exa 8.3 efficiency and etc

1 //chapter-8 page 338 example 8.3

2 / /

```
3 clc;
4 clear;
5
6 //For a reflex klystron
7 n=2;//peak mode value
8 V0=300;//beam voltage in V
9 I0=0.02;//beam current in A
```

```
10 Vs=40; //signal voltage in V
11 J1=1.25; // bessel coefficient for n=2
12
13 //CALCULATION
14 Pdc=V0*I0; //The input power in watts
15 Pac = ((2*Pdc*J1)/((2*n*(\%pi))-((\%pi)/2))); //The
      output power in watts
16 n=(Pac/Pdc)*100;//Efficiency in percentage
17
18 //OUTPUT
19 mprintf('\nThe input power is Pdc=\%1.0 f watts \nThe
     output power is Pac=%1.2f watts \nEfficiency is n
     =\%2.1 f percentage', Pdc, Pac, n);
20
                        END OF PROGRAM
21 / =
```

Scilab code Exa 8.4 electron velocity and etc

1 //chapter-8 page 338 example 8.4

```
clc;
d clear;

//For a 2 cavity klystron amplifier
V0=900; //Beam voltage in V
I0=0.03; //Beam current in A
f=8*10^9; //frequency in Hz
d=0.001; //gap spacing in either cavity in m
L=0.04; //spacing between centers of cavities in m
Rsh=49000; // Effective shunt impedance in ohms
J1=0.582; // value of J1(X)
X=1.841; // bunching parameter
```

```
15
16 //CALCULATION
17 v0 = (0.593*10^6*sqrt(V0))/10^6; //velocity of electron
       in 10^6 \text{ m/sec}
18 w=2*(%pi)*f;//angular frequency in rad
19 v = v0 * 10^6;
20 T0=(L/v)/10^{(-8)}; //dc transit time of electrons in
      10^{(-8)} sec
21 a=w*T0*10^(-8); // transit angle in rad
22 tg=w*d/v;//average gap transit angle in rad
23 Tg=tg*(180/(\%pi));
24 Bi=(sind(Tg/2))/(tg/2);//beam coupling coefficient
25 Bo=Bi; //output cavity coupling coefficient
26 V1max = ((3.68*V0)/(Bi*a)); //Input voltage for Maximum
       output voltage in V
27 RO=VO/IO; //impedance in ohms
28 Av=(Bo^2*a*Rsh*J1)/(R0*X);//Voltage gain
29 AvdB=20*log10(Av); // Voltage gain in dB
30
31 //OUTPUT
32 mprintf('\nVelocity of electron is v0=\%2.2 \text{ f }*10^6 \text{ m/}
      sec \nThe dc transit time of electrons is T0=\%1.3
      f *10^{(-8)} sec \setminus nInput voltage for Maximum output
       voltage is V1max=%2.3 f V \nVoltage gain is Av=%2
      .2 f \nThe Voltage gain in dB is AvdB=\%2.2 f dB', v0
      ,TO,V1max,Av,AvdB);
33
                           END OF PROGRAM
35
36 //Note: Check the calculation given in text book for
       voltage gain Rsh=49 kohms
37 //but, taken as 40 kohms
38 //correct answers areVoltage gain is Av=28.52
39 //The Voltage gain in dB is AvdB=29.10 dB
```

Scilab code Exa 8.5 efficiency and etc

```
1 / \text{chapter} - 8 \text{ page } 339 \text{ example } 8.5
3 clc;
4 clear;
6 //For a 2 cavity klystron amplifier
7 V0=1200;//Beam voltage in V
8 IO=0.028; //Beam current in A
9 f=8*10^9; // frequency in Hz
10 d=0.001; //gap spacing in either cavity in m
11 L=0.04;//spacing between centers of cavities in m
12 Rsh=40000; // Effective shunt impedance in ohms
13 J1=0.582; // value of J1(X)
14 X=1.841; // bunching parameter
15
16 //CALCULATION
17 w=2*(%pi)*f;//angular frequency in rad
18 v0=0.593*10^6*sqrt(V0); // velocity of electron in m/
19 Vomax = ((3.68*V0*v0)/(w*L)); //max output power in V
20 tg=(w*d)/v0;//avg gap transit angle in rad
21 Tg=tg*(180/(%pi));
22 Bi=(sind(Tg/2))/(tg/2);//beam coupling coefficient
23 Bo=Bi; //output cavity coupling coefficient
24 Vimax=Vomax/Bi; //The input microwave voltage in
      order to generate maximum output voltage in V
25 t0=w*L/v0; //transit angle in rad
26 RO=VO/IO; //impedance in ohms
27 Av=((Bo^2*J1*t0*Rsh)/(R0*X)); // Voltage gain
28 I2 = 2 * I0 * J1;
```

```
29 V2 = Bo * I2 * Rsh;
30 disp('neglecting beam loading');
31 Eff=0.58*(V2/V0)*100; // Efficiency in %
32 \text{ GO} = 1/\text{RO};
33 GB=(GO/2)*(Bo*(Bo-cos(Tg/2))); //Beam loading
      conductance in mhos
34 RB=(1/GB)/1000;//Beam loading resistance in Kohms
35 disp('Beam loading resistance in Kohms is');
36 disp(RB);
37 disp('The value 73 kohms is very much comparable to
     Rsh and cannot be neglected because Tg is quite
     high');
38
39 //OUTPUT
40 mprintf('\nThe input microwave voltage in order to
      generate maximum output voltage is Vimax=%2.2 f V
     \nThe voltage gain is Av=\%2.2f percentage \nBeam
      loading conductance is GB=%1.10f mhos', Vimax, Av,
     GB);
41
               END OF PROGRAM
```

Scilab code Exa 8.6 electronic efficiency and etc

```
2 //
3 clc;
4 clear;
5
6 //For a reflex klystron
7 n=2;//peak mode value
8 V0=500;//beam voltage in V
```

1 / chapter - 8 page 338 example 8.4

```
9 Rsh=20000; //Shunt resistance in ohms
10 L=0.001; // distance in m
11 f=8*10^(9); ///Operation frequency in Hz
12 V1=200; //microwave gap voltage in V
13 x=1.759*10^11; //e/m value in C/kg
14 J1=0.582;
15
16 //CALCULATION
17 disp('Assume the gap transit time and beam loading
      are neglected');
18 w=2*(%pi)*f;//angular frequency in rad
19 VR = (V0 + ((sqrt(8*V0/x)*w*L)/((2*(%pi)*n)-((%pi)/2))))
     ;//Repeller voltage in V
20 disp('Assuming output coupling coefficient Bo=1');
21 I0=(V1/(2*J1*Rsh))/10^(-3);/Beam current necessary
     to obtain an microwave gap voltafe of 200V in mA
v0=0.593*10^6*sqrt(V0); //velocity of electron in m/
23 t0=((w*2*L*v0)/(x*(VR+V0)));//transit angle in rad
24 Bi=1; //beam coupling coefficient [assume]
25 X = ((Bi*V1*t0)/(2*V0));
26 disp('Since X=1.51, from graph, J1(X)=0.84');
27 XJ1=0.84;
28 Eff=((2*(XJ1))/((2*n*(%pi))-((%pi)/2)))*100//
      Efficiency in %
29
30 //OUTPUT
31 mprintf('\nRepeller voltage is VR=\%3.2 f V \nThe dc
     necessary to give an microwave gap voltafe of 200
     V is I0=%1.2 f mA \nElectronic Efficiency is Eff=
     \%2.2 f percentage', VR, IO, Eff);
32
                             END OF PROGRAM
34
35 //Note: Check the answer for VR once
36 // Correct answer is Repeller voltage is VR=1189.36 V
```

Scilab code Exa 8.7 efficiency and etc

```
1 / \text{chapter} - 8 \text{ page } 342 \text{ example } 8.7
3 clc;
4 clear;
6 //For a reflex klystron
7 \text{ n=1;} //\text{mode value}
8 Pi=0.04; //the dc input power in W
9 x = 0.278; // ratio of V1 over V0
10
11 //CALCULATION
12 X = x * 3 * (\%pi)/4;
13 J1=0.3205; // bessel coefficient value [JI(X')]
14 ef = ((2*X*J1)/((2*(%pi)*n)-((%pi)/2)))*100;
      Efficiency of the reflex klystron in %
15 Pout=((ef/100)*Pi)/10^{(-3)};//Total power output in
     mW
16 p=20; //percentage of the power delivered by the
      electron beam dissipated in the cavity walls
17 Pd=Pout*(100-p)/100;//Power delivered to load in mW
18
19 //OUTPUT
20 mprintf('\nEfficiency of the reflex klystron is ef=
      %1.2f percentage\nTotal power output is Pout=\%1.3
      f mW \nIf the 20 percentage of the power
      delivered by the electron beam is dissipated in
      the cavity walls then the Power delivered to load
       is Pd=\%1.2 \text{ f mW'}, ef, Pout, Pd);
21
                        END OF PROGRAM
```

Scilab code Exa 8.8 cyclotron frequency and etc

```
1 / \text{chapter} - 8 \text{ page } 342 \text{ example } 8.8
2 / /
3 clc;
4 clear;
6 //For a circular magnetron
7 a=0.15; //inner radius in m
8 b=0.45; //outer radius in m
9 B=1.2*10^(-3); // magnetic flux density in Wb/sqm
10 x=1.759*10^11; // Value of e/m in C/kg
11 V=6000; //beam voltage in V
12
13 //CALCULATION
14 V0 = ((x/8) * (B^2) * (b^2) * (1 - (a/b)^2)^2) / 1000; // Hull cut
      -off voltage in kV
15 Bc=((sqrt(8*(V/x)))/(b*(1-(a/b)^2)))*1000;//Cut-off
      magnetic flux density in mWb/sqm
16 fc = ((x*B)/(2*(\%pi)))/10^9; //Cyclotron frequency in
      GHz
17
18 //OUTPUT
19 mprintf('\nHull cut-off voltage is V0=\%2.3f kV\nCut-
      off magnetic flux density is Bc=\%1.6 f mWb/sqm \
      nCyclotron frequency is fc=\%1.4 f GHz', VO, Bc, fc);
20
                            END OF PROGRAM
21
22
23
```

```
// Check the answers once
// Correct answers are
// Hull cut-off voltage is V0=5.066 kV
// Cut-off magnetic flux density is Bc=1.305953 mWb/sqm
// Cyclotron frequency is fc=0.0336 GHz
```

Scilab code Exa 8.9 phase velocity and anode voltage

1 / chapter - 8 page 343 example 8.9

```
2 / /
3 clc;
4 clear;
6 //For a helical TWT
7 c=3*10^8; // Velocity of light in m/sec
8 d=0.002;//diameter in m
9 x=5000; //no. of turns per m
10 m=9.1*10^(-31); //mass of an electron in kg
11 e=1.6*10^{(-19)}; //charge of an electron in C
12
13 //CALCULATION
14 y=(%pi)*d;//circumference in m
15 p=1/x; // pitch in m
16 Vp=(c*p)/y;//Axial phase velocity in m/sec
17 V0 = ((m*Vp^2)/(2*e)); //The Anode voltage at which the
      TWT can be operated for useful gain in V
18
19 //OUTPUT
20 mprintf('\nAxial phase velocity is Vp=\%6.2f m/sec \
     nThe Anode voltage at which the TWT can be
      operated for useful gain is V0=\%2.2 f V', Vp, V0);
21
```

Scilab code Exa 8.10 electron velocity and etc

```
1 / \text{chapter} - 8 \text{ page } 344 \text{ example } 8.10
2 / /
3 clc;
4 clear;
6 //For a 2 cavity klystron amplifier
7 V0=900; //Beam voltage in V
8 IO=0.03; //Beam current in A
9 f=8*10^9; // frequency in Hz
10 d=0.001; //gap spacing in either cavity in m
11 L=0.04; //spacing between centers of cavities in m
12 Rsh=40000; // Effective shunt impedance in ohms
13 y=0.582; //value of J1(X)
14 \quad X = 1.841;
15
16 //CALCULATION
17 v0 = (0.593 * sqrt(V0) * 10^6) / 10^7; //The electron
      velocity in 10<sup>7</sup> m/sec
18 v = v0 * 10^7;
19 t0=(d/v)/10^{(-10)}; // Transit time in 10^{(-10)} sec
20 t=t0*10^{(-10)};
21 a=2*(%pi)*f*t;//Gap transit angle in rad
22 Bi=(\sin(a/2))/(a/2);//Beam coupling coefficient
23 Bo=Bi;
24 to=(2*(\%pi)*f*L)/v;//dc transit angle in rad
25 disp('For maximum outout voltage, V2 J1(X) = 0.582, X
      =1.841');
26 V1 = ((2*V0*X)/(Bo*to))//The input voltage for maximum
```

Scilab code Exa 8.11 dc electron velocity and etc

1 / chapter - 8 page 345 example 8.11

```
18 w=2*(%pi)*f;//angular frequency in rad/sec
19 v = v0 * 1000;
20 c=(w/v); //The dc Phase Constant
21 wp=(sqrt(1.759*10^11*(p0/e0)))/10^8;/The Plasma
      Frequency in 10<sup>8</sup> rad/sec
22 \text{ wp1=wp*10^8};
23 wq=(R*wp1)/10^8;//The Reduced Plasma Frequency in
      10<sup>8</sup> rad/sec
24 J0=p0*v; //The dc beam current density in A/sqm
  J=(p*v)-(p0*V); //The instantaneous beam current
      density in A/sqm
26
27 //OUTPUT
28 mprintf('\nThe dc electron velocity is v0=\%4.2 f Km/
      sec \nThe dc Phase Constant is c=\%3.2 f rad/sec\
      nThe Plasma Frequency is wp=\%1.2 f *10^8 rad/sec \
      nThe Reduced Plasma Frequency is wq=\%1.3 f *10^8
      rad/sec \nThe dc beam current density is J0=\%2.2 f
       A/sqm \nThe instantaneous beam current density
      is J=\%1.4 \text{ f A/sqm}', v0, c, wp, wq, J0, J);
29
                           END OF PROGRAM
30
   Scilab code Exa 8.12 gap transit angle
1 / \text{chapter} - 8 \text{ page } 345 \text{ example } 8.12
2 / /
3 clc;
```

17 $v0 = (0.593*10^6*sqrt(V0))/1000; //The dc electron$

15

16 //CALCULATION

velocity in Km/sec

```
4 clear;
6 //For a reflex klystron
7 f=5*10^9; //Frequency of operation in hz
8 V0=1000; //anode voltage in V
9 d=0.002; //cavity gap in m
10 Vr=-500; //repeller voltage in V
11
12 //CALCULATION
13 N=7/4; //mode value
14 VR = abs(Vr);
15 L=(((VR+V0)*N)/(6.74*10^(-6)*f*sqrt(V0)))/10^(-3);//
     Optimum length of the drift region in mm
16 u=5.93*10^5*sqrt(V0); // in m/sec
17 w=2*(%pi)*f;//angular frequency in rad
18 Tg=(w*d)/u;//Gap transit angle in rad
19
20 //OUTPUT
21 mprintf('\nOptimum length of the drift region is L=
     %1.3 f mm \nGap transit angle is Tg=%1.3 f rad', L,
     Tg);
22
                     END OF PROGRAM
23
```

Scilab code Exa 8.13 efficiency and etc

1 //chapter-8 page 346 example 8.13

```
2 //

3 clc;
4 clear;
5 6 //For a 2 cavity klystron amplifier
```

```
7 V0=1200; //Beam voltage in V
8 IO=0.03; //Beam current in A
9 f=10*10^9; //frequency in Hz
10 d=0.001; //gap spacing in either cavity in m
11 L=0.04; //spacing between centers of cavities in m
12 Rsh=40000; // Effective shunt impedance in ohms
13 J1=0.582; // value of J1(X)
14 X=1.841; //bunching parameter
15
16 //CALCULATION
17 v0=0.593*10^6*sqrt(V0); // velocity of reference
      electron in m/sec
18 w=2*(%pi)*f;//angular frequency in rad
19 a=w*L/v0;//transit angle without RF voltage in rad
20 tg=a*d/L; //average gap transit angle in rad
21 Bi=(\sin(tg/2))/(tg/2);//beam coupling coefficient
22 V1max = ((2*X*V0)/(Bi*a)); //Input RF voltage for
     Maximum output voltage in V
23 BO=Bi;//output cavity coupling coefficient
24 V2=2*B0*I0*J1*Rsh; //in V
25 Av=V2/V1max; // Voltage gain
26 AvdB=20*log10(Av); // Voltage gain in dB
27 n=0.58*(V2/V0)*100; //Maximum efficiency in %
28
29 //OUTPUT
30 mprintf('\nInput RF voltage for Maximum output
      voltage is V1max=%2.2 f V \nThe Voltage gain is
     AvdB=\%2.2 f dB \nMaximum efficiency is I0=\%2.2 f
      percentage ', V1max, AvdB, n);
31
                            END OF PROGRAM
32
33
34 //Note: Check the answers once
35 //There are slight changes in values
36 //Input RF voltage for Maximum output voltage is
     V1max = 55.28 V
37 //The Voltage gain is AvdB=24.35 dB
```

```
Scilab code Exa 8.14 cyclotron angular frequency and etc
```

```
1 / \text{chapter} - 8 \text{ page } 347 \text{ example } 8.14
3 clc;
4 clear;
6 //For aa X-band cylindrical magnetron
7 a=0.04; //inner radius in m
8 b=0.08; //outer radius in m
9 B=0.01; // magnetic flux density in Wb/sqm
10 x=1.759*10^11; // Value of e/m in C/kg
11 V=30000; //beam voltage in V
12
13 //CALCULATION
14 w=(x*B)/10^9; // Cyclotron angular frequency in 10^9
      rad/sec
15 VHC=((x/8)*(B^2)*(b^2)*(1-(a/b)^2)^2)/1000; //Hull
      cut-off voltage in kV
16 Bc=((sqrt(8*(V/x)))/(b*(1-(a/b)^2)))*1000;//Cut-off
      magnetic flux density in mWb/sqm
17
18 //OUTPUT
19 mprintf('\nCyclotron angular frequency is w=\%1.3 f
      *10^9 rad/sec \nHull cut-off voltage is VHC=\%1.4 f
      kV \nCut-off magnetic flux density is Bc=\%2.3 f
     mWb/sqm',w,VHC,Bc);
20
21 //=
                       END OF PROGRAM
```

Scilab code Exa 8.15 efficiency and etc

```
1 / \text{chapter} - 8 \text{ page } 348 \text{ example } 8.15
2 / /
3 clc;
4 clear;
6 //For a reflex klystron
7 n=2;//peak mode value
8 V0=280; //beam voltage in V
9 IO=0.022; //beam current in A
10 Vs=30; //signal voltage in V
11 J1=1.25; // bessel coefficient for n=2
12
13 //CALCULATION
14 Pdc=V0*I0; //The input power in watts
15 Pac = ((2*Pdc*J1)/((2*n*(\%pi))-((\%pi)/2))); //The
      output power in watts
16 n=(Pac/Pdc)*100;//Efficiency in percentage
17
18 //OUTPUT
19 mprintf('\nThe input power is Pdc=\%1.2f watts \nThe
      output power is Pac=%1.1f watts \nEfficiency is n
     =\%2.2 f percentage', Pdc, Pac, n);
20
                   END OF PROGRAM
21 / =
```

Scilab code Exa 8.16 repeller voltage and etc

```
1 / chapter - 8 page 348 example 8.16
2 / /
3 clc;
4 clear;
6 //For a reflex klystron
7 n=2; //peak mode value
8 V0=300; //beam voltage in V
9 Rsh=20000; //Shunt resistance in ohms
10 L=0.001; // distance in m
11 J1=0.582; // bessel coefficient value [JI(X')]
12 f=8*10^(9);///Operation frequency in Hz
13 V1=200; //RF gap voltage in V
14 x=1.759*10^11; //e/m value in C/kg
15
16 //CALCULATION
17 disp('Assume the gap transit time and beam loading
      are neglected');
18 w=2*(%pi)*f;//angular frequency in rad
19 VR = (V0 + ((sqrt(8*V0/x)*w*L)/((2*(%pi)*n)-((%pi)/2))))
      ;//Repeller voltage in V
20 disp('Assuming output coupling coefficient Bo=1');
21 I0=(V1/(2*J1*Rsh))/10^(-3);/Beam current necessary
     to obtain an RF gap voltafe of 200V in mA
22
23 //OUTPUT
24 mprintf('\nThe Repeller voltage is VR=\%3.2 f V \nBeam
       current necessary to obtain an RF gap voltafe of
       200V \text{ is } I0=\%1.2 \text{ f mA', VR, IO)};
25
                    END OF PROGRAM
26 //=
```

Chapter 9

Solid State Microwave Devices

```
Scilab code Exa 9.1 frequency
```

```
1 / \text{chapter} - 9 \text{ page } 411 \text{ example } 9.1
2 / /
3 clc;
4 clear;
6 L=2*10^(-6); // Drift Length of a IMPATT diode in m
7 Vd=(10^7)*(10^(-2));//Drift Velocity for Siin m/sec
8
9 //CALCULATION
10 f=(Vd/(2*L))/10^9;//Operating Frequency in GHz
11
12 //OUTPUT
13 mprintf('\nOperating Frequency of the IMPATT diode
     is f=\%2.0 f \text{ GHz}', f);
14
         END OF PROGRAM
15 / =
```

Scilab code Exa 9.2 threshold electric field

```
1 //chapter-9 page 411 example 9.2
3 clc;
4 clear;
6 L=75*10^(-6);//Device Length in m
7 V=25;//Voltage Pulse Amplified in V
8 f=10*10^9; // Operating Frequency in Hz
9
10 //CALCULATION
11 Eth=(V/L)/10<sup>5</sup>;//Threshold Electric Field in kV/cm
12
13 //OUTPUT
14 mprintf('\nThreshold Electric Field is Eth=\%1.2 f kV/
     \mathrm{cm} ', Eth);
15
           END OF PROGRAM
16 / =
```

Scilab code Exa 9.3 power gain

```
1 //chapter -9 page 411 example 9.3
2 //
3 clc;
4 clear;
```

```
6 fs=2*10^9; // Signal Frequency in Hz
7 fp=12*10^9//Pump Frequency in Hz
8 Ri=16; //O/P resistance of signal generator in ohms
9 Rs=1000; //On types resistance of signal generator in
      ohms
10
11 //CALCULATION
12 P=10*log10((fp-fs)/fs);//Power gain in dB
13 Pusb=10*log10((fp+fs)/fs);//Power gain as USB
     converter in dB
14
15 //OUTPUT
16 mprintf('\nPower gain is P=\%1.2 f dB \nPower gain as
     USB converter is Pusb=\%1.2 f dB',P,Pusb);
17
           END OF PROGRAM
18
19
20
21 //Note: Answer given in textbook is wrong Check it
     once..
22 // Correct answers are Power gain is P=6.99 dB
                        Power gain as USB converter is
23 //
      Pusb = 8.45 dB
```

Scilab code Exa 9.4 breakdown voltage and etc

1 / chapter - 9 page 411 example 9.4

```
2 //
3 clc;
4 clear;
5 6 es=12.5; // Relative Dielectric constant
```

```
7 e0=8.854*10^(-12);//Permittivity in Free Space in F/
8 N=3.2*10^22; // Donor Concentration per m^3
9 L=8*10^(-6); //Length of Si BARITT diode in m
10 q=1.6*10^(-19); // Charge of an Electron in C
11
12 //CALCULATION
13 Vc = ((q*N*L^2)/(2*es*e0))/10^3; // Critical Voltage in
14 Vbd=2*Vc; //Breakdown Voltage in kV
15 Ebd=(Vbd/L)/100;//Breakdown Electric Field in kV/cm
16
17 //OUTPUT
18 mprintf('\nCritical Voltage is Vc=%1.2f kV \
     nBreakdown Voltage is Vbd=%1.2 f kV \nBreakdown
     Electric Field is Ebd=\%6.2 f kV/cm', Vc, Vbd, Ebd);
19
                     END OF PROGRAM
20 / =
```

Scilab code Exa 9.5 Avalanche zone velocity

1 / chapter - 9 page 412 example 9.5

Scilab code Exa 9.6 power gain

```
1 //chapter -9 page 412 example 9.6
2 / /
3 clc;
4 clear;
6 //For an IMPATT diode power amplifier
7 Rd=25; // Negative Resistance in ohms
8 R1=50; //Load Resistance in ohms
9
10 //CALCULATION
11 x = abs(Rd);
12 G=((-x-R1)/(-x+R1))^2; //Power gain of an IMPATT
     diode
13
14 //OUTPUT
15 mprintf('\nPower gain of an IMPATT diode is G=\%1.0 f'
     ,G);
16
        END OF PROGRAM
17 //=
```

Scilab code Exa 9.7 minimum voltage

Scilab code Exa 9.8 rational frequency

```
1 //chapter -9 page 412 example 9.8
2 //
3 clc;
4 clear;
```

```
5
6 //For a Gunn Diode
7 L=20*10^(-4); // Active Length in cm
8 Vd=2*10^7; // Drift Velocity of Electrons in cm/sec
9 Ec=3.3*10^3; // Criticl Field for GaAs in V/cm
10
11 //CALCULATION
12 fn=(Vd/L)/10^9; // Natural (Rational) Frequency in GHz
13 Vc=L*Ec; // Critical Voltage of the diode in volts
14
15 //OUTPUT
16 mprintf('\nNatural(Rational) Frequency is fn=\%2.0 f
     GHz \nCritical Voltage of the diode is Vc=\%1.1f
     volts',fn,Vc);
17
                     END OF PROGRAM
18
```

Scilab code Exa 9.9 efficiency and etc

1 / chapter - 9 page 412 example 9.9

```
3 clc;
4 clear;
5
6 //For an IMPATT diode
7 Lp=0.5*10^(-9);//Inductance in Henry
8 Cj=0.5*10^(-12);//Capacitance in Farad
9 Ip=0.8;//RF peak current in A
10 Rl=2;//Load Resistance in ohms
11 Vbd=100;//Breakdown Voltage in V
12 Ib=0.1;//dc Bias current in A
```

```
//CALCULATION
f = (1/(2*(%pi)*sqrt(Lp*Cj)))/10^9; // Resonant
    Frequency in GHz

n = ((R1*Ip^2)/(2*Vbd*Ib))*100; // Efficiency in
    Percentage

//OUTPUT
mprintf('\nResonant Frequency is f=%2.0 f GHz \
    n Efficiency is n=%1.1 f percentage',f,n);
// END OF PROGRAM
```

Scilab code Exa 9.10 drift time

1 / chapter - 9 page 413 example 9.10

```
2 / /
3 clc;
4 clear;
6 //For an IMPATT diode
7 L=2*10^(-6);//Drift Length in m
8 Vd=10^5; // Carrier Drift Velocity (Assume/Consider)
      in m/sec
9
10 //CALCULATION
11 t=(L/Vd)/10^{(-9)}; // Drift Time of the Carrier in nano
       sec [From f = (1/2t) = (Vd/2L)]
12 t1=t*10^{(-9)};
13 f=(1/(2*t1))/10^9;//Operating Frequency of the diode
       in GHz
14
15 //OUTPUT
```

```
16 mprintf('\nDrift Time of the Carrier is t=\%1.2f nano
       sec \nOperating Frequency of the diode is f=\%2.0
     f GHz',t,f);
17
            END OF PROGRAM
18 //===
   Scilab code Exa 9.11 breakdown voltage and etc
1 / \text{chapter} - 9 \text{ page } 413 \text{ example } 9.11
2 / /
3 clc;
4 clear;
6 //For an M-Si-M Basitt diode
7 er=11.8; // Relative dielectric constant of Si
8 e0=8.854*10^(-12); // Permittivity of freespace in F/m
9 N=3*10^(21);//Donor Concentration per m^3
10 L=6.2*10^(-6); //Si Length in m
11 q=1.6*10^(-19); // Charge of an Electron in C
12
13 //CALCULATION
14 Vbd=((q*N*L^2)/(er*e0));//Breakdown Voltage in V
15 Ebd=(Vbd/L)/10^3;//Breakdown Electric Field in kV/m
16
17 //OUTPUT
18 mprintf('\nBreakdown Voltage is Vbd=\%3.1 f V \
     nBreakdown Electric Field is Ebd=\%5.0f kV/m', Vbd,
     Ebd);
19
         END OF PROGRAM
20 / =
```

Scilab code Exa 9.12 max power gain and etc

```
1 / \text{chapter} - 9 \text{ page } 413 \text{ example } 9.12
3 clc;
4 clear;
6 //For an upconverter parametric amplifier
7 rQ=8; // figure of merit for a diode nonlinear
      capacitor
8 r = 0.2;
9 y=8; //ratio of output frequency over signal
      frequency (f0/fs)
10 Td=300; //Diode Temperature in K
11 T0=300; // Ambient Temperature in K
12
13 //CALCULATION
14 X = ((rQ)^2)/y;
15 G=((y*X)/(1+sqrt(1+X))^2);/Max power gain
16 GdB=10*log10(G); //Maximum Power Gain in dB
17 F = (1 + ((2*Td/T0)*((1/rQ)+(1/rQ)^2))); //Noise Figure
18 FdB=10*log10(F);//Noise Figure in dB
19 BW=2*r*sqrt(y); //Bandwidth
20
21 //OUTPUT
22 mprintf('\nMaximum Power Gain is GdB=%1.2 f dB\nNoise
       Figure is FdB=\%1.2 f dB \nBandWidth is BW=\%1.2 f',
      GdB, FdB, BW);
23
                END OF PROGRAM
```

Scilab code Exa 9.13 gain and etc

```
1 / \text{chapter} - 9 \text{ page } 414 \text{ example } 9.13
3 clc;
4 clear;
6 //For a negative resistance parametric amplifier
7 fs=2*10^9; // Signal Frequency in Hz
8 fp=12*10^9; //pump Frequency in Hz
9 fi=10*10^9; //idler Frequency in Hz
10 fd=5*10^9; // Frequency in Hz
11 Ri=1000;//o/p resistance of idler generator in ohms
12 Rg=1000; //o/p resistance of signal generator in ohms
13 RTs=1000; //total series resistance at fs in ohms
14 RTi=1000; //total series resistance at fi in ohms
15 \text{ r=0.35};
16 rQ=10; // figure of merit
17 Td=300; //Avg Diode Temperature in K
18 T0=300; //Ambient Temperature in K
19 C=0.01*10^{(-12)}; // Capacitance in F
20
21 //CALCULATION
22 \text{ ws}=2*(\%\text{pi})*\text{fs};
23 \text{ wi} = 2*(\%\text{pi})*\text{fi};
24 R=((r^2)/(ws*wi*RTi*C^2)); // Equivalent noise
      resistance in ohms
25 \quad a = (R/RTs):
26 \text{ G} = ((4*fi*a*Rg*Ri)/(fs*RTs*RTi*(1-a)^2)); //Gain
27 GdB=10*log10(G);//Gain in dB
28 F = (1 + ((2*Td/T0)*((1/rQ)+(1/rQ)^2))); //Noise Figure
29 FdB=10*log10(F);//Noise Figure in dB
```

Chapter 10

Microwave Communication Systems

Scilab code Exa 10.1 radio horizon

1 / chapter -10 page 486 example 10.1

```
2 //
3 clc;
4 clear;
5
6 ht=144;//TV transmitter antenna height in m
7 hr=25;//TV receiver antenna height in m
8 //Radio horizon is about 4/3 as far as the optical horizon
9
10 //CALCULATION
11 dr=4*sqrt(hr);//distance in km
12 dt=4*sqrt(ht);//Radio Horizon in km
13 d=dt+dr;//The Maximum distance of Propagation of the TV signal in km
14
15 //OUTPUT
```

```
16 mprintf('\nThe Maximum distance of Propagation of
      the TV signal is d=\%2.0 f km \nRadio Horizon is dt
     =\%2.0 \text{ f km}', d, dt);
17
             END OF PROGRAM
18 //===
   Scilab code Exa 10.2 value of factor
1 / \text{chapter} -10 \text{ page } 486 \text{ example } 10.2
2 / /
3 clc;
4 clear;
6 r=6370*10^3; // radius of the earth in m
7 \text{ x=-0.05*10^(-6)}; //the gradient of refractive index
      of air near the ground per m [du/dh]
8
9 //CALCULATION
10 k=1/(1+(r*x)); //The value of the factor by which the
       horizon distance of a transmitter will be
      modified
11
12 //OUTPUT
13 mprintf('\nThe value of the factor by which the
      horizon distance of a transmitter will be
      modified is k=\%1.4 \, f', k);
14
               END OF PROGRAM
15 / =
```

Scilab code Exa 10.3 power

```
1 / \text{chapter} -10 \text{ page } 487 \text{ example } 10.3
2 //
3 clc;
4 clear;
6 //For a microwave LOS link
7 f=2*10^9; // frequency of operation in Hz
8 c=3*10^8; // Velocity of light in m/sec
9 r=50000; //repeater spacing in m
10 PrdBm=-20; //required carrier power at the receiver i
      /p to avoid deterioration due to fading and noise
11 GtdB=34; //antenna gain of transmitter in dB
12 GrdB=34;//antenna gain of receiver in dB
13 LdB=10; //coupling and waveguide loss in transmitter
      in dB
14
15 //CALULATION
16 w=c/f; //wavelength in m
17 x=(w^2)/(4*(\%pi));
18 y=(4*(\%pi)*r^2);
19 PtdBm = PrdBm + (10*log10(y)) - GtdB - (10*log10(x)) + LdB -
      GrdB; // The required Carrier Transmitter power in
      dBm
20
21 //OUTPUT
22 mprintf('\nThe required Carrier Transmitter power is
       PtdBm=\%2.1 f dBm', PtdBm);
23
                           END OF PROGRAM
24 / =
```

Scilab code Exa 10.4 power

1 / chapter -10 page 487 example 10.4

```
3 clc;
4 clear;
6 //For a geostationary communication satellite
7 f=6*10^(9); //uplink frequency in Hz
8 Pt=1000; // Transmitter power in W
9 x=36000*10^3; // vertical distance between surface of
     earth and satellite in m
10 a=5; //antenna elevation angle in deg
11 GtdB=60; //antenna gain of transmitter in dB
12 GrdB=0; //antenna gain of receiver in dB
13 c=3*10^8; // Velocity of light in m/sec
14
15 //CALCULATION
16 Gt=10^(GtdB/10);//antenna gain of transmitter
17 Gr=10^(GrdB/10);//antenna gain of receiver
18 w=c/f; //wavelength in m
19 Ar=(w^2)*(Gr/(4*(%pi)));//area in sqm
20 r=x/(sind(a));//distance between transmitter and
      receiver in m [From Sine formula and diagram]
21 Pr = ((Pt*Gt*Ar)/(4*(\%pi)*r^2))/10^(-12); //The
     received power at the input of the satellite
     receiver in pico watts
22
23 //OUTPUT
24 mprintf('\nThe received power at the input of the
      satellite receiver is Pr=\%1.2f pico watts(pW)',Pr
     );
```

```
25
26 //=____END OF PROGRAM
```

Scilab code Exa 10.5 antenna beam angle

```
1 //chapter-10 page 487 example 10.5
2 / /
3 clc;
4 clear;
6 x1=35855; // Distance between geostationary orbit to
     surface of earth in km
7 x2=6371; // Distance between center of earth to
     surface of earth in km
9 //CALCULATION
10 x=x1+x2; // distance of satellite from center of earth
11 y=x2*(%pi);//Circumference of half circle arc in km
12 b=y/x;//Beam angle in rad
13 Bdeg=(b*180)/(%pi);//Beam angle in deg
14
15 //OUTPUT
16 mprintf('\nAntenna Beam angle required by a
     satellite antenna to provide full global coverage
      from a geostationary orbit is Bdeg=\%2.2f deg',
     Bdeg);
17
           END OF PROGRAM
18 //======
```

Scilab code Exa 10.6 round trip time

```
1 / \text{chapter} -10 \text{ page } 488 \text{ example } 10.6
3 clc;
4 clear;
6 //For a satellite communication system
7 h=35855; // Distance between geostationary orbit to
      surface of earth in km
8 r=6371; // Distance between center of earth to surface
       of earth in km
9 a=5; //earth station elevation angle wrt the
      geostationary satellite in deg
10 b=5; // angle in deg
11 c=3*10^5; // Velocity of light in km/sec
12 b1=90; //angle for vertical transmission in deg
13 \text{ a1=0};
14
15 //CALCULATION
16 d=(sqrt((r+h)^2-(r*cosd(a))^2))-sind(b);//distance
17 T=2*(d/c); //The round trip time between the earth
      station and the satellite in sec
18 d1=(sqrt((r+h)^2-(r*cosd(a))^2))-sind(b);//distance
      in km
19 Tv = (2/c)*(d1-r); //The round trip time for vertical
      transmission between the earth station and the
      satellite in sec
20
21 //OUTPUT
22 mprintf('\nThe round trip time between the earth
```

```
station and the satellite is T=\%1.3f sec \nThe
      round trip time for vertical transmission between
       the earth station and the satellite is Tv=%1.3f
      sec', T, Tv);
23
   Scilab code Exa 10.7 figure of merit
1 / \text{chapter} -10 \text{ page } 488 \text{ example } 10.7
3 \text{ clc};
4 clear;
6 Tant=25; // effective noise temperature in K
7 Tr=75;//receiver noise temperature in K
8 GdB=45; // Isotropic power gain of the antenna in dB
9
10 //CALCULATION
11 T=Tant+Tr; //The total noise in K
12 TdB=10*log10(T);//The total noise in dB
13 MdB=GdB-TdB; // Figure of merit of earth station in dB
14
15 //OUTPUT
16 mprintf('\nFigure of merit of earth station is MdB=
      \%2.0 \, f \, dB', MdB);
17
                END OF PROGRAM
18 / =
```

Scilab code Exa 10.8 CNR

```
1 / \text{chapter} -10 \text{ page } 488 \text{ example } 10.8
2 //
3 clc;
4 clear;
6 //For a Satellite communication link
7 EIRPdB=55.5; // Satellite ESM in dBW
8 MdB=35; //G/T ratio of earth station in dB
9 LfsdB=245.3//Freespace loss in dB
10
11 //CALCULATION
12 CNRdB=EIRPdB+MdB-LfsdB+228.6; // Carrier to Noise
      Ratio at the earth station receiver in dB
13
14 //OUTPUT
15 mprintf('\nCarrier to Noise Ratio at the earth
      station receiver is CNRdB=%2.1f dB', CNRdB);
16
               END OF PROGRAM
17 / =
```

Scilab code Exa 10.9 system noise temperature

1 / chapter -10 page 489 example 10.9

```
2 //
3 clc;
4 clear;
5
6 D=30;//Diameter of a dish antenna with circular
```

```
aperture in m
7 f=4*10^9; //down link frequency in Hz
8 MdB=20; //G/T ratio of earth station in dB
9 c=3*10^8; // Velocity of light in m/sec
10
11 //CALCULATION
12 A = ((\%pi)/4)*D^2; //area in sqm
13 w=c/f; //wavelength in m
14 G = (4*(\%pi)*A)/w^2; //Gain
15 GdB=10*log10(G);//Gain in dB
16 TsdB=GdB-MdB; //The System Noise Temperature in dB
17
18 //OUTPUT
19 mprintf('\nThe System Noise Temperature is TsdB=\%2.2
     f dB', TsdB);
20
  //——END OF PROGRAM
21
```

Scilab code Exa 10.10 HPBW

```
//chapter -10 page 489 example 10.10
//
clear;
clear;
//
for a parabolic antenna
Gp=1500; // Power gain
w=0.1; // wavelength in m
//CALCULATION
D=sqrt(Gp)*(w/(%pi)); // Diameter of the circular mouth of a parabolic antenna in m
```

```
12 HPBW=58*(w/D); // Half Power BeamWidth of the antenna
      in deg
13
14 //OUTPUT
15 mprintf('\nDiameter of the circular mouth of a
      parabolic antenna is D=\%1.4 f m \nHalf Power
      BeamWidth of the antenna is HPBW=\%1.3 f deg', D,
      HPBW);
16
                        END OF PROGRAM
17
   Scilab code Exa 10.11 gain
1 / \text{chapter} -10 \text{ page } 490 \text{ example } 10.11
2 / /
3 \text{ clc};
4 clear;
```

6 D=1; //Assume diameter of the parabolic reflectors in

10 D1=2*D; //diameter of the parabolic reflectors in the

the original system in m

11 G=6*(D/w)^2; //gain in original system 12 G1=6*(D1/w)^2; //gain in modified system

13 GdB=10*log10(G1/G);//Overall gain that can be

14 GdBo=2*GdB; // Overall gain of the system (combining

7 w=1;//Assume wavelength in m

modified system in m

expected in dB

Rx) in dB

9 //CALCULATION

the two antennas one at the Tx and other at the

```
17 mprintf('\nOverall gain that can be expected is GdB=
      %1.0 f dB \nOverall gain of the system (combining
      the two antennas one at the Tx and other at the
      Rx) is GdBo=\%1.0 f dB', GdBo, GdBo);
18
                          END OF PROGRAM
19
20
21 // Note: Check the answer once ... it should be GdB=10
      log(4)=6 dB and GdBo=12dB
   Scilab code Exa 10.12 gain
1 / \text{chapter} -10 \text{ page } 490 \text{ example } 10.12
2 / /
3 clc;
4 clear;
6 D=3; //dimension of a paraboloid in m
7 f=3*10^9; //frequency (S band) in Hz
8 c=3*10^8; // Velocity of light in m/sec
9
10 //CALCULATION
11 w=c/f; //wave length in m
12 BWFN=140*(w/D);//BeamWidth between First Nulls in
13 BWHP=70*(w/D);//BeamWidth between HalfPower points
      in deg
14 G=6*(D/w)^2; // Gain of the antenna
15
16 //OUTPUT
```

15

16 //OUTPUT

Scilab code Exa 10.13 power gain

```
1 / \text{chapter} -10 \text{ page } 490 \text{ example } 10.13
3 \text{ clc};
4 clear;
6 l=1; // (Assume)-dimension (wavelength) in cm
8 //CALCULATION
9 x=5*1;//given square aperture of an optimum horn
      antenna as a side dimension in cm
10 A=x*x; //Area in sq.cm
11 Gp=4.5*(A/1^2); //Power gain of an optimum horn
      antenna
12
13 //OUTPUT
14 mprintf('\nPower gain of an optimum horn antenna is
      Gp=\%3.1 \, f ', Gp);
15
                END OF PROGRAM
16 //=
```

Chapter 11

Radars

```
Scilab code Exa 11.1 max range
```

```
1 / \text{chapter} -11 \text{ page } 504 \text{ example } 11.1
3 clc;
4 clear;
6 //For a radar system
7 Pt=600000;//peak pulse power in W
8 Smin=10^(-13);//minimum detectable signal in W
9 Ae=5;//cross sectional area of the radar antenna in
      sq m
10 w=0.03; //wavelength in m
11 s=20; //radar cross sectional area in sq m
12
13 //CALCULATION
14 \operatorname{Rmax} = (((Pt*s*Ae^2)/(4*(\%pi)*Smin*w^2))^(1/4))/1000;
      //Maximum range of a radar system in km
15 RMax=Rmax/1.853; //In nautical miles; 1 nm=1.853 km
16
17 //OUTPUT
```

Scilab code Exa 11.2 max range

1 / chapter - 11 page 504 example 11.2

```
2 / /
3 clc;
4 clear;
6 //For a radar system
7 Pt=250000; //peak transmitted power in W
8 G=2500;//power gain of the antenna
9 Smin=10^(-14);//minimum detectable signal in W
10 Ae=10; //cross sectional area of the radar antenna in
11 f=10*10^9; //frequency of radar in Hz
12 s=2; //radar cross sectional area in sq m
13 c=3*10^8; // Velocity of light in m/sec
14
15 //CALCULATION
16 w=c/f; // wavelength in m
17 \operatorname{Rmax} = (((\operatorname{Pt} *G * \operatorname{Ae} *s) / (\operatorname{Smin} * (4 * (\%pi))^2))^(1/4)) / 1000;
      //Maximum range of a radar system in km
18
19 //OUTPUT
20 mprintf('\nMaximum range of a radar system is Rmax=
```

Scilab code Exa 11.3 RCS

```
1 / \text{chapter} - 11 \text{ page } 504 \text{ example } 11.3
3 \text{ clc};
4 clear;
6 //For a marine radar system
7 Pt=250000; //peak transmitted power in W
8 G=4000; //power gain of the antenna
9 R=50000; //maximum range of radar in m
10 Pr=10^(-11); //minimum detectable signal in W
11 f=10*10^9; //frequency of radar in H
12 c=3*10^8; // Velocity of light in m/sec
13
14 //CALCULATION
15 w=c/f;//wavelength in m
16 Ae=((G*w^2)/(4*(\%pi)));//cross sectional area of the
       radar antenna in sq m
17 s=((Pr*(4*(\%pi)*R^2)^2)/(Pt*G*Ae)); //The cross
      section of the target the radar can sight in sq m
18
19 //OUTPUT
20 mprintf('\nThe cross section of the target the radar
       can sight is s=\%2.2 f sq m',s);
21
       END OF PROGRAM
```

Scilab code Exa 11.4 Duty cycle and etc

1 / chapter - 11 page 505 example 11.4

```
2 / /
3 clc;
4 clear;
6 //For a guided missile tracking radar
7 Pt=400000; //transmitted power in W
8 prf=1500;//pulse repitition frequency in pps(pulse
      per sec)
9 tw=0.8*10^{(-6)}; // pulse width in sec
10 c=3*10^8; // Velocity of light in m/sec
11
12 //CALCULATION
13 Runamb=(c/(2*prf))/1000;//Unambiguous range in km
14 dc=tw/(1/prf);//Duty cycle
15 Pav=Pt*dc; // Average power in W
16 n1=1;
17 BW1=(n1/tw)/10^6; // Suitable BW in MHz for n=1
18 n2=1.4;
19 BW2=(n2/tw)/10^6; //Suitable BW in MHz for n=1.4
20
21 //OUTPUT
22 mprintf('\nUnambiguous range is Runamb=\%3.0 f km \
     nDuty cycle is dc=\%1.4f \nAverage power is Pav=\%3
      .0 f W', Runamb, dc, Pav);
23 disp('For efficiency n=1, suitable bandwidth in MHz
      is');
24 disp(BW1);
25 disp('For efficiency n=1.4, suitable bandwidth in MHz
       is');
```

Scilab code Exa 11.5 max range

```
1 / \text{chapter} -11 \text{ page } 505 \text{ example } 11.5
3 clc;
4 clear;
6 //For a military radar
7 Pt=2500000; // power output in W
8 f=5*10^9; //frequency of radar in H
9 c=3*10^8; // Velocity of light in m/sec
10 D=5; //antenna diameter in m
11 B=1.6*10^6; //receiver bandwidth in Hz
12 s=1;//radar cross sectional area in sq m
13 NF=12; //noise figure in dB
14
15 //CALCULATION
16 w=c/f;//wavelength in m
17 F=10^(NF/10);//noise figure
18 \operatorname{Rmax} = (48*((Pt*s*D^4)/(B*(F-1)*w^2))^(1/4)); // \operatorname{Maximum}
       detection range in km
19
20 //OUTPUT
21 mprintf('\nMaximum detection range of a radar is
      Rmax=\%3.0 f km', Rmax);
22
23 // END OF PROGRAM
```

Scilab code Exa 11.6 factor

```
1 / \text{chapter} - 11 \text{ page } 506 \text{ example } 11.6
2 / /
3 clc;
4 clear;
6 //For a civilian radar
7 Rmax=30; //maximum range in kms
8 x = 50;
9 y = 2;
10 disp ('Maximum range with an equivalent echoing area
      of 50 times in kms is');
11 R = Rmax * x^{(1/4)};
12 disp(R);
13 disp('Range would be increased if Tx power is
      doubled by a factor of');
14 f=y^(1/4);
15 disp(f);
16
               END OF PROGRAM
17 //======
```