The α -representations of the Fisher Information Matrix — On equivalent expressions of the FIM —

Frank Nielsen
Frank.Nielsen@acm.org

19 September 2017 Revised September 2020

The Fisher Information Matrix [1] (FIM) for a family of parametric probability models $\{p(x;\theta)\}_{\theta\in\Theta}$ (densities $p(x;\theta)$ expressed with respect to a positive base measure ν) indexed by a D-dimensional parameter vector $\theta := (\theta^1, \dots, \theta^D)$ is historically defined by

$$I(\theta) := [I_{ij}(\theta)], \quad I_{ij}(\theta) := E_{p(x;\theta)} [\partial_i l(x;\theta) \partial_j l(x;\theta)], \tag{1}$$

where $l(x;\theta) := \log p(x;\theta)$ is the log-likelihood function, and $\partial_i := \frac{\partial}{\partial \theta^i}$ (by notational convention). The FIM is a $D \times D$ positive semi-definite matrix for a D-order parametric family.

The FIM is a cornerstone in statistics and occurs in many places, like for example the celebrated $Cram\acute{e}r$ -Rao lower bound [3] for an unbiased estimator $\hat{\theta}$:

$$\operatorname{Var}_{p(x;\theta)}[\hat{\theta}] \succeq I^{-1}(\theta),$$

where \succeq denotes the Löwner @artial ordering of positive semi-definite matrices: $A \succeq B$ iff. $A-B \succ 0$ is positive semi-definite. Another use of the FIM is in gradient descent method using the *natural gradient* (see [5] for its use in deep learning).

Yet, it is common to encounter another equivalent expression of the FIM in the literature [3, 1]:

$$I'_{ij}(\theta) := 4 \int \partial_i \sqrt{p(x;\theta)} \partial_j \sqrt{p(x;\theta)} d\nu(x)$$
 (2)

This form of the FIM is well-suited to prove that the FIM is always positive semi-definite matrix [1]: $I(\theta) \succeq 0$.

It turns out that one can define a family of equivalent representations of the FIM using the α -embeddings of the parametric family. We define the α -representation of densities $l^{(\alpha)}(x;\theta) := k_{\alpha}(p(x;\theta))$ with

$$k_{\alpha}(u) := \begin{cases} \frac{2}{1-\alpha} u^{\frac{1-\alpha}{2}}, & \text{if } \alpha \neq 1\\ \log u, & \text{if } \alpha = 1. \end{cases}$$
 (3)

The function $l^{(\alpha)}(x;\theta)$ is called the α -likelihood function. The α -representation of the FIM (or α -FIM for short) is

$$I_{ij}^{(\alpha)}(\theta) := \int \partial_i l^{(\alpha)}(x;\theta) \partial_j l^{(-\alpha)}(x;\theta) d\nu(x)$$
(4)

In compact notation, we have $I_{ij}^{(\alpha)}(\theta)=\int\partial_i l^{(\alpha)}\partial_j l^{(-\alpha)}\mathrm{d}\nu(x)$ (this is the α -FIM). We can expand the α -FIM expressions as follows

$$I_{ij}^{(\alpha)}(\theta) = \begin{cases} \frac{1}{1-\alpha^2} \int \partial_i p(x;\theta)^{\frac{1-\alpha}{2}} \partial_j p(x;\theta)^{\frac{1+\alpha}{2}} d\nu(x) & \text{for } \alpha \neq \pm 1\\ \int \partial_i \log p(x;\theta) \partial_j p(x;\theta) d\nu(x) & \text{for } \alpha \in \{-1,1\} \end{cases}$$

The proof that $I_{ij}^{(\alpha)}(\theta) = I_{ij}(\theta)$ follows from the fact that

$$\partial_i l^{\alpha} = p^{-\frac{\alpha+1}{2}} \partial_i p = p^{\frac{1-\alpha}{2}} \partial_i l,$$

since $\partial_i l = \frac{\partial_i p}{p}$. Therefore we get

$$\partial_i l^{(\alpha)} \partial_i l^{(-\alpha)} = p \partial_i l \partial_i l,$$

and $I_{ij}^{(\alpha)}(\theta)=E[\partial_i l \partial_j l]=I_{ij}(\theta)$. Thus Eq. 1 and Eq. 2 where two examples of the α -representation, namely the 1-representation and the 0-representation, respectively. The 1-representation of Eq. 1 is called the logarithmic representation, and the 0-representation of Eq. 2 is called the square root representation.

Note that
$$I_{ij}(\theta) = E[\partial_i l \partial_j l] = \int p \partial_i l \partial_j l d\nu(x) = \int \partial_i p \partial_j l d\nu(x) = I_{ij}^{(1)}(\theta)$$
 since $\partial_i l = \frac{\partial_i p}{p}$

In information geometry [1], $\{\partial_i l^{(\alpha)}\}_i$ plays the role of tangent vectors, the α -scores. Geometrically speaking, the tangent plane $T_{p(x;\theta)}$ can be described using any α -base. The statistical manifold $M = \{p(x;\theta)\}_{\theta}$ is imbedded into the function space $\mathbb{R}^{\mathcal{X}}$, where \mathcal{X} denotes the support of the densities.

Under regular conditions [3, 1], the α -representation of the FIM for $\alpha \neq -1$ can further be rewritten as

$$I_{ij}^{(\alpha)}(\theta) = -\frac{2}{1+\alpha} \int p(x;\theta)^{\frac{1+\alpha}{2}} \partial_i \partial_j l^{(\alpha)}(x;\theta) d\nu(x).$$
 (5)

Since we have

$$\partial_i \partial_j l^{(\alpha)}(x;\theta) = p^{\frac{1-\alpha}{2}} \left(\partial_i \partial_j l + \frac{1-\alpha}{2} \partial_i l \partial_j l \right),$$

it follows that

$$I_{ij}^{(\alpha)}(\theta) = -\frac{2}{1+\alpha} \left(-I_{ij}(\theta) + \frac{1-\alpha}{2} I_{ij} \right) = I_{ij}(\theta).$$

Notice that when $\alpha = 1$, we recover the equivalent expression of the FIM (under mild conditions)

$$I_{ij}^{(1)}(\theta) = -E[\nabla^2 \log p(x;\theta)].$$

In particular, when the family is an exponential family [4] with cumulant function $F(\theta)$, we have

$$I(\theta) = \nabla^2 F(\theta) \succ 0.$$

Similarly, the coefficients of the α -connection can be expressed using the α -representation as

$$\Gamma_{ij,k}^{(\alpha)} = \int \partial_i \partial_j l^{(\alpha)} \partial_k^{(-\alpha)} d\nu(x).$$

The Riemannian metric tensor g_{ij} (a geometric object) can be expressed in matrix form $I_{ii}^{(\alpha)}(\theta)$ using the α -base, and this tensor is called the Fisher metric tensor.

The FIM may further be represented using the more general (ρ, τ) -monotone embeddings [2]: Let ρ and τ be two strictly increasing functions, and f a strictly convex function such that $f'(\rho(u)) = \tau(u)$ (with f^* denoting its convex conjugate). Let us write $p_{\theta}(x) = p(x; \theta)$. Then we have $\rho, \tau = [\rho, \tau, \tau]$ with

$$\rho^{\tau} g_{ij}(\theta) = \int (\partial_i \rho(p_{\theta}(x))) (\partial_j \tau(p_{\theta}(x))) d\nu(x), \qquad (6)$$

$$= \int f''(\rho(p_{\theta}(x))) \left(\partial_{i}\rho(p_{\theta}(x))\right) \left(\partial_{j}\rho(p_{\theta}(x))\right) d\nu(x), \tag{7}$$

$$= \int (f^*)''(\tau(p_{\theta}(x))) \left(\partial_i \tau(p_{\theta}(x))\right) \left(\partial_j \tau(p_{\theta}(x))\right) d\nu(x), \tag{8}$$

$$= \int \frac{1}{\rho'(p_{\theta}(x))\tau'(p_{\theta}(x))} \left(\partial_i p_{\theta}(x)\right) \left(\partial_j p_{\theta}(x)\right) d\nu(x). \tag{9}$$

This last equation shows that there is a gauge function freedom $\Psi(u) := \frac{1}{\rho'(u)\tau'(u)}$ when calculating the FIM.

Initially created 19th September 2017 (last updated September 2, 2020).

References

- [1] O. Calin and C. Udrişte. *Geometric Modeling in Probability and Statistics*. Mathematics and Statistics. Springer International Publishing, 2014.
- [2] Jan Naudts and Jun Zhang. Rho–tau embedding and gauge freedom in information geometry. *Information geometry*, 1(1):79–115, 2018.
- [3] Frank Nielsen. Cramér-Rao lower bound and information geometry. arXiv preprint arXiv:1301.3578, 2013.
- [4] Frank Nielsen and Vincent Garcia. Statistical exponential families: A digest with flash cards. arXiv preprint arXiv:0911.4863, 2009.
- [5] Ke Sun and Frank Nielsen. Relative Fisher information and natural gradient for learning large modular models. In Doina Precup and Yee Whye Teh, editors, *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 3289–3298, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.