Giải. Với $n \ge 3$, xét cột đầu tiên của bàn cờ $2 \times n$. Có thể phủ cột này theo hai cách.

- 1) Bằng một domino dọc: phần còn lại, là bàn cờ $2 \times (n-1)$, có a_{n-1} cách phủ.
- 2) Bằng hai domino ngang để phủ cả hai cột đầu bên trái: phần còn lại, là bàn cờ $2 \times (n-2)$, có a_{n-2} cách phủ.

Theo quy tắc cộng, $a_n = a_{n-1} + a_{n-2}$, $\forall n \geq 3$, trong đó $a_1 = 1$, $a_2 = 2$. Giải hệ thức này, được

$$\begin{split} a_n &= \Big(\frac{1}{2} - \frac{\sqrt{5}}{2}\Big)^n \Big(\frac{1}{2} - \frac{\sqrt{5}}{10}\Big) + \Big(\frac{1}{2} + \frac{\sqrt{5}}{2}\Big)^n \Big(\frac{\sqrt{5}}{10} + \frac{1}{2}\Big) \\ &= \Big(\frac{1 + \sqrt{5}}{2}\Big)^n \Big(\frac{1}{2\sqrt{5}} + \frac{1}{2}\Big) - \Big(\frac{1 - \sqrt{5}}{2}\Big)^n \Big(\frac{1}{2\sqrt{5}} - \frac{1}{2}\Big) \\ &= \frac{1}{\sqrt{5}} \Big[\Big(\frac{1 + \sqrt{5}}{2}\Big)^{n+1} - \Big(\frac{1 - \sqrt{5}}{2}\Big)^{n+1}\Big], \end{split}$$

Trong ví dụ trên $a_n = F_{n+1}$.

Sử dụng tính chất của số Fibonacci [có thể chứng minh bằng nguyên lý quy nạp],

$$F_n>lpha^{n-2},\; \forall n\geq 3,\; ext{v\'oi}\; lpha=rac{1+\sqrt{5}}{2},$$

Gabriel Lamé* đã chứng minh

Ví dụ 9.15 (Định lý Lamé). Cho $a,b\in\mathbb{Z}^+$, $a,b\geq 2$. Số phép chia dùng trong thuật toán Euclid để tìm ước chung lớn nhất của a và b không quá b lần số chữ số của b.

Giải. Đặt $r_0 = a$ và $r_1 = b$, ta có

Khi đó, $gcd(a, b) = r_n$, là phần dư khác không cuối cùng, và thuật toán thực hiện n phép chia.

Nguyễn Đức Thinh

^{*}Gabriel Lamé, 1795-1870, nhà toán học Pháp

Ta thấy, $q_i \ge 1$, $\forall i = \overline{1, n}$. Riêng $q_n \ge 2$, vì $r_{n-1} = r_n q_n$ mà $0 < r_n < r_{n-1}$. Như vậy

Dẫn đến

$$b \ge F_{n+1} > \alpha^{(n+1)-2} = \alpha^{n-1}$$

$$\Rightarrow n-1 < \log_{\alpha} b = \log_{\alpha} 10 \cdot \log_{10} b = 4.784971 \log_{10} b < 5\log_{10} b.$$

Nếu b có k chữ số, thì $10^{k-1} \le b < 10^k$, nên $\log_{10} b < k$. Do đó n-1 < 5k, hay $n \le 5k$, tức là số phép chia trong thuật toán Euclid không quá 5 lần số chữ số của b.

Ví dụ 9.16. Tìm hệ thức đệ quy của a_n , là số xâu nhị phân độ dài n không có các số 0 liên tiếp.

Giải. Cách 1: Với mỗi xâu đếm bởi a_n , có hai khả năng:

- 1) Số đầu là 1, thì phần còn lại là xâu độ dài n-1 không có các số 0 liên tiếp. Số xâu như vậy là a_{n-1} .
- 2) Số đầu là 0, thì số thứ hai phải là 1, và phần còn lại là xâu độ dài n-2 không có các số 0 liên tiếp. Số các xâu như vậy là a_{n-2} .

Theo quy tắc cộng, $a_n = a_{n-1} + a_{n-2}$, $\forall n \ge 3$. Ta xác định thêm $a_1 = 2$, $a_2 = 3$.

Cách 2: Cách này sử dụng các biến phụ. Trong các xâu đếm bởi a_n , đặt $a_n^{(0)}$ là số xâu số đầu là 0, và $a_n^{(1)}$ là số xâu có số đầu là 1. Khi đó $a_n = a_n^{(0)} + a_n^{(1)}$. Vì mỗi xâu dạng 1s đếm bởi $a_n^{(1)}$ khi và chỉ khi xâu s đếm bởi a_{n-1} , nên $a_n^{(1)} = a_{n-1}$.

Với mỗi xâu đếm bởi a_n , có hai khả năng:

- 1) Số thứ hai là 0, thì số đầu chỉ có thể là 1. Số xâu như vậy là $a_{n-1}^{(0)}$.
- 2) Số thứ hai là 1, thì số đầu có hai lựa chọn, là 0 hoặc 1. Số xâu như vậy là $2a_{n-1}^{(1)}$.