Homework Assignment 2

Due Friday, February 7

- 1. Fix $x \in \mathbb{Z}/m\mathbb{Z}$. Recall that a multiplicative inverse of x is an element $y \in \mathbb{Z}/m\mathbb{Z}$ so that $xy = yx = \overline{1}$.
 - (a) Show that $\overline{a} \in \mathbb{Z}/m\mathbb{Z}$ has a multiplicative inverse if and only if gcd(a, m) = 1.
 - (b) Suppose \overline{a} has a multiplicative inverse in $\mathbb{Z}/m\mathbb{Z}$. Show that this means we can solve equations of the form $\overline{a}x = \overline{b}$ for a congruence class x.
 - (c) By part (a) we know that $\overline{3}$ has a multiplicative inverse in $\mathbb{Z}/7\mathbb{Z}$. What is it? Use it to solve the equation $\overline{3}x = \overline{4}$ for x.
- 2. Let * denote multiplication modulo 15, and consider the set $\{3, 6, 9, 12\}$. Fill in the following multiplication table.

*	3	6	9	12
3				
6				
9				
12				

Use the table to prove that $(\{3,6,9,12\},*)$ is a group. What is the identity element?

- 3. Let S be a set, and define $\operatorname{Aut}(S) := \{f : S \to S \mid f \text{ is bijective}\}$. Define a binary operation by composition $f * g := g \circ f$. Show that $\operatorname{Aut}(S)$ is a group. We will call this the *automorphism group of* S.
- 4. Prove the generalized associative law for groups. Explicitly, for G a group, and b_1, b_2, \dots, b_k , then the product $b_1 \times b_2 \times \dots \times b_k$ does not depend on the the bracketing. (Hint: Use induction on k, with base cases 1, 2, and 3).
- 5. Compute the order of every element of $(\mathbb{Z}/7\mathbb{Z})^{\times}$.
- 6. Fix an element x of a group G and suppose |x| = n.
 - (a) Show that x^{-1} is a power of x.
 - (b) Show that the all of $1, x, x^2, \dots, x^{n-1}$ are distinct. Conclude that $|x| \leq |G|$. (We will later show that if |G| is finite then |x| divides |G|.)
- 7. Fix elements x, y of a group G, and suppose xy = e. Show that yx = e.
- 8. Consider the presentation of the Dihedral group $D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle$. Use this presentation to show that every element which is not a power of r has order 2.