전공 포트폴리오 심민호

프로젝트 목록

- 1. 멀티에이전트 군사훈련 인공지능기술 연구개발
- 2. 확장현실(XR) 기반 복합테러 대응 교육·훈련 테스트 베드 구축

멀티에이전트 군사훈련 인공지능기술 연구개발

- 프로젝트 참여기간: 2020년 11월 ~ 2021년 06월
- 프로젝트 목표: 가상훈련 체계의 고도화를 위한 **시나리오 자동 생성, 지능형 에이전트, 정량적 훈련 평가 기술** 개발
- 기여한 부분: 강화 학습 및 규칙 기반 알고리즘을 활용한 군사 시뮬레이션을 위한 지능형 에이전트 연구

멀티에이전트 군사훈련 인공지능기술 연구개발 개요

▶ 시나리오 자동 생성:

- 사용자 입력 자연어 기반 키워드 추출 및 각 부대 별 부대원 역할, 위치, 훈련 목표 등을 포함한 시나리오 자동 생성
- ▶ 지능형 에이전트:
 - 강화 학습 및 규칙 기반 알고리즘 활용, 멀티에이전트 병사 시뮬레이션이 가능한 지능형 에이전트 연구 목표
- ▶ 훈련 자동 평가:
 - 훈련 사후 강평 단계에서 시뮬레이션 결과 기반 전체 세력/분대/개인 자동 평가 수행

지능형 에이전트 개발 형상

확장현실(XR) 기반 복합테러 대응 교육·훈련 테스트 베드 구축

- 프로젝트 참여기간: 2021년 07월 ~ 2023년 08월
- 프로젝트 목표: XR 기반 가상 훈련 플랫폼을 운영하여 개인 및 팀을 훈련할 수 있는 종합 훈련장 체계 구축
- 기여한 부분: NPC 별 행동 트리 구축 및 행동 추론 기술 개발, 훈련 현장 영상으로부터 훈련원의 행동 인식 기술 개발

최종 연구개발 목표

기여한 부분

- ▶ 한국어 음성 발화 인식 및 합성 기술 개발:
 - 실감형 XR 훈련을 위한 음성 발화 인식 및 합성 기술 개발
 - 훈련원 음성 인식 바탕 NPC 행동 분기 변경 및 상황에 맞는 적절한 응답 생성 목표
- ▶ 시나리오 특화 지능형 에이전트 기술 개발:
 - 사전 정의된 에이전트의 행동 규칙을 행동 트리로 제어하기 위한 규칙관리도구 개발
 - 규칙관리도구의 행동 트리와 연계하여 행동 추론을 수행하는 REST API 제공
- ▶ 현장 영상 내 훈련원의 행동 인식 기술 개발:
 - 실시간 훈련 현장 훈련원 행동 인식 및 인식 결과 바탕 사후 훈련 강평 지원
 - 행동 인식 정확도 및 실시간 성능 향상을 위한 유사도 기반 행동인식 모델 연구 진행

NPC 별 행동 트리 구축 및 행동 추론 기술 개발

훈련 현장 영상으로부터 훈련원의 행동 인식 기술 개발

논문 목록

- 1. RNN 기반 멀티에이전트 심층강화학습을 활용한 자연스러운 경로 생성 (KCC2021)
- 2. 행동 유사도 임베딩 기반 실시간 훈련원 행동 인식 (KCC2022)
- 3. Attention Masking for Improved Near Out-of-Distribution Image Detection (BigComp2023)
- 4. A Simple Debiasing Framework for Out-of-Distribution Detection in Human Action Recognition (ECAI 2023)

RNN 기반 멀티에이전트 심층강화학습을 활용한 자연스러운 경로 생성

- 목표: 임의의 시나리오에서 균등하고, 실시간으로 동작하는 **자연스러운 경로 생성 시뮬레이터** 구현
- **독창성**: RNN 기반 멀티에이전트 심층강화학습을 활용한 **scalable**, **memorable**한 경로 생성 모델 구현
- 결과: 임의의 군중 시뮬레이션 테스트 시나리오에 대해 **다수의 장애물, 캐릭터 간 충돌 없는 경로 생성** 확인

자연스러운 경로 생성을 위한 멀티에이전트 강화학습 세부사항

➤ 상태(State):

- 에이전트는 자신의 로컬 관측정보(local observations)만 활용
- 내부 상태 $s_{int} = M^{-1}(\bar{p} p)$
 - 에이전트의 로컬 좌표계에서 계산된 목적지의 상대 위치 계산
 - $M \in \mathbb{R}^{2x2}$: 에이전트 회전 행렬, \bar{p} : 목적지 절대 좌표
- 외부 상태 $s_{ext} = \{(d_1, \dots, d_N), (v_1, \dots, v_N)\}$
 - LiDAR와 비슷한 방식으로 depth/velocity map 측정

➤ 행동(Action):

• 에이전트가 현재 받는 힘을 나타내는 벡터 $a_t \in \mathbb{R}^2$

에이전트 내부, 외부 상태 시각화

➤ 보상(Reward):

- 에이전트는 목적지를 향해 이동하며, 충돌을 피해야 하고, 사람과 같은 자연스러운 행동을 보여야 한다.
- 3종류의 보상을 정의하고, 각 보상의 합(sum)을 최종 보상으로 활용하여 매 스텝마다 계산

$$R = r_{aoal} + r_{collision} + r_{smooth}$$

• 목표 보상 (goal reward): 목적지에 가까워진 정도만큼 양의 보상

$$r_{aoal} = w_1(\bar{l} - l)$$

• 충돌 보상 (collision reward): 충돌이 발생한 경우 음의 보상

$$r_{collision} = \begin{cases} -w_2, & \text{if collision occurs} \\ 0, & \text{otherwise} \end{cases}$$

• 부드러움 보상(smoothness reward): 사전 정의된 속도, 각속도를 벗어난 만큼 음의 보상

$$r_{smooth} = -w_3 FLOOD(v, v_{min}, v_{max}) - w_4 FLOOD(\omega, \omega_{min}, \omega_{max})$$

시뮬레이션 결과

시나리오 01. 원 (circle)

시나리오 03. 수평 교차 (horizontal crossing)

시나리오 02. 장애물 (obstacles)

시나리오 04. 수직 교차 (vertical crossing)

결과 비디오: https://youtu.be/pXNPWXa9Doo

행동 유사도 임베딩 기반 실시간 훈련원 행동 인식

- 목표: 가상훈련시스템에서 동작하는 행동 유사도 임베딩 기반 실시간 훈련원 행동 인식 프레임워크 제안
- 독창성: 훈련 행동 데이터셋 바디 파트 임베딩(BPE)을 저장하는 standard action DB 를 활용한 실시간 행동 인식
- 결과: 테스트셋 영상에 대해 높은 정확도(90.3%) 및 실시간 성능 (944.67ms) 달성

제안하는 행동 인식 프레임워크 standard wife extracted skeletons Standard 행동 임베딩 생성 Alary 행동인식 REST API sample action skeletons BPE model standard action DB

Sample 행동 임베딩 생성

행동 인식 프레임워크 동작 과정 상세

▶ 실시간 행동 인식 REST API:

• 가상 훈련장에 설치된 카메라로 촬영된 영상을 행동 인식기로 전송

> Standard Action DB:

- 기학습된 포즈 추정기(pose estimator)를 통해 입력 영상에서 human skeleton 추출
- SARA 데이터셋으로 학습한 BPE(Lee et al., 2021) 모델을 활용, 행동 별 임베딩 생성 및 standard action DB 구축

▶ 실시간 행동 인식:

- Standard action DB 구축시와 동일한 방법으로 수신한 영상의 임베딩 추출
- Standard action DB에 저장된 임베딩과 Dynamic Time Warping (DTW) 알고리즘을 사용하여 **time alignment 수행**
- Cosine similarity를 활용하여 DB 내 행동들과 샘플 행동 간 유사도 계산
- K-Nearest Neighbors (K-NN) 알고리즘 활용 행동 추론

정확도 분석 결과

실험 1. sample, standard 행동 임베딩 간 거리 행렬

- 7개의 클래스(hand signal1, hand signal2, jump, squat, walk, PT, stop)로 구성된
 자체 행동 인식 데이터셋 구축
- 훈련 데이터셋 기반 standard action DB 구축 및 테스트 데이터셋에 대해 행동 인식 프레임워크 성능 측정
- Cosine distance 기반 K-NN 알고리즘
 활용 행동 추론 시 90,3% 의 정확도 달성

실시간 성능 분석 결과

분류	소요 시간(ms)			
<u>е</u> т	AVA	Ours		
통신 소요 시간	382.52	344.66		
스켈레톤 추출	-	41.50		
행동 임베딩 추출	-	151.14		
행동 인식	5189.05	407.37		
합계	5571.57	944.67		

실험 2. 실시간 성능 분석 결과

- 실시간 성능을 '통신 소요 시간', '스켈레톤 추출', '행동 임베딩 추출', '행동인식 '의
 4가지 항목으로 구분하여 측정
- 30fps로 추출된 2초 길이의 270p 테스트셋 영상에 대해 항목별 행동 인식 프레임워크 수행 시간 측정
- 약 940ms의 총 수행 시간으로 AVA(Gu et al., 2018) 모델에 비해 약 5배 빠른 실시간 성능 달성

Attention Masking for Improved Near Out-of-Distribution Image Detection

- 목표: 이미지에 존재하는 노이즈 제거를 통한 분포 외 이미지 탐지 성능 향상
- 독창성: 모델이 입력에 대해 집중하는 부분을 나타내는 어텐션 맵을 활용하여 노이즈를 제거하는 Attention Masking 기법 제안
- 결과: It-threshold 마스킹과 Mahalanobis distance 기반 분포 외 탐지 방법 활용 시 평균 2%의 AUROC 향상 확인

Attention Masking 기법 상세

> 어텐션 맵(attention map) 계산:

• Attention Rollout [Abnar et al., 2020] 알고리즘 활용, 모델이 입력 이미지의 각 패치에 대해 집중하는 정도를 계산

> Attention Masking:

- 계산된 어텐션 값을 기준으로 <u>4가지의 attention masking 방법</u> 제안
 - "top-ratio": top N%의 어텐션 값을 가지는 패치들을 마스킹
 - "bottom-ratio": bottom N%의 어텐션 값을 가지는 패치들을 마스킹
 - "qt-threshold": 어텐션 값이 <u>특정 스레쉬홀드보다 높은</u> 패치들을 마스킹
 - "It-threshold": 어텐션 값이 <u>특정 스레쉬홀드보다 낮은</u> 패치들을 마스킹
- 마스킹된 이미지를 활용하여 Mahalanobis distance 기반 OOD score 계산

▶ 성능 비교 및 분석:

- 주로 사용되는 세가지 OOD metric 측정 (AUROC, AUPR, FPR at TPR 95)
- "It-threshold" 방법이 가장 높은 성능을 보임을 실험적으로 확인

Image Near OOD Detection

CIFAR-100 (Out-of-dist.)

분포 외 이미지 탐지 결과

- In-distribution 데이터셋에 대해 fine-tuning 진행 후 분포 외 탐지 성능 측정

Model	Mahalanobis distance			Masked Mahalanobis distance (Ours)			
	AUROC↑	AUPR↑	FPR95↓	AUROC↑	AUPR↑	FPR95↓	
ViT-Tiny	0.9543	0.9563	0.2332	0.9609	<u>0.9615</u>	<u>0.1971</u>	
ViT-Small	0.9761	0.9771	0.1291	0.9783	0.9784	0.1099	
ViT-Base	0.9767	0.9788	0.1166	0.9839	0.9843	<u>0.0770</u>	

제로샷 분포 외 이미지 탐지 결과

- 대규모로 기학습된 ViT 모델만을 활용하여 분포 외 탐지 성능 측정

Model	Mahalanobis distance			Masked Mahalanobis distance (Ours)			
	AUROC↑	AUPR↑	FPR95↓	AUROC↑	AUPR↑	FPR95↓	
ViT-Tiny	0.8194	0.7959	0.6314	0.8319	0.7921	0.5208	
ViT-Small	0.9336	0.9262	0.2828	0.9326	0.9240	0.2828	
ViT-Base	0.9123	0.9045	0.3744	0.9289	<u>0.9216</u>	0.3004	

A Simple Debiasing Framework for Out-of-Distribution Detection in Human Action Recognition

- 목표: 행동 인식 도메인에서 <u>분포 외 탐지 성능 향상</u> 및 분포 외 행동 탐지에 영향을 주는 <u>salient part 탐색</u>
- **독창성: <u>어텐션 기반 비디오 마스킹</u>을 통해 <u>영상 내 정적 편향 제거</u> 및 정적 편향이 분포 외 탐지에 주는 영향 분석**
- 결과: 비디오 비젼 트랜스포머 모델에서 **기존 분포 외 탐지 방법(MSP, Energy, Mahalanobis)의 균일한 성능 향상 확인**

▶ 행동 인식에서의 분포 외 탐지와 정적 편향(static bias) 문제:

- 실제 환경에서 행동 인식 모델의 배포를 위해서는 모델이 학습하지 못한 행동을 구별하는 분포 외 행동 탐지가 중요
- 행동 인식 모델은 입력에서 정적인 부분(e.g., 배경)에 편향되는 정적 편향 문제를 가지고 있음
- ▶ 정적 편향 완화를 위한 어텐션 기반 비디오 마스킹:
 - Attention Rollout [Abnar et al., 2020] 알고리즘 활용, 모델이 입력에서 집중하는 부분을 나타내는 **어텐션 맵 계산**
 - 시간, 공간축을 모두 가지는 비디오의 특성을 고려하여 spatial/temporal 어텐션 맵 계산
 - 어텐션 맵을 활용하여, <u>2단계의 debiasing step(frame selection, patch masking)</u>을 통해 **입력에서 정적인 부분을 제거**
 - 마스킹 된 비디오와 representation 기반 분포 외 탐지 방법(MSP, Energy, Mahalanobis) 활용하여 분포 외 행동 탐지 수행

분포 외 행동 탐지 성능 비교

- 대규모 Kinetics 기반 분포 외 행동 탐지 태스크에서 균일한 성능 향상을 보임

Metrics	K400 + K600 excl.			K400 + K700 excl.		
	Original	Ours	Diff	Original	Ours	Diff
AUROC AUPR FPR95	72.172 69.943 76.250	74.287 71.921 71.920	2.114 1.977 4.330	74.633 72.225 73.761	76.335 73.668 69.701	1.702 1.442 4.059

행동 그룹 별 제안하는 방법의 효과 분석

- 제안하는 방법의 분석을 위해, Kinetics에서 제안한 **부모-자식 그룹핑 도입**
- 그래프에서 녹색 그룹은 효과적, 붉은색은 효과적이지 않은 그룹을 나타냄
- 효과적이었던 그룹의 경우, 행동의 temporal dynamics가 중요 (e.g., golf, body motions, and gymnastics)

Groupwise Mean of Mahalanobis Distance Differences

제안하는 방법의 효과에 대한 그룹 별 분석