

Curso de Tecnologia em Sistemas de Computação Gabarito da 1ª Avaliação à Distância de Física para Computação – 2010/I

Nome: _	g	
Pólo:		

Observação: Em todas as questões, explique passo a passo todas as etapas do seu desenvolvimento. Não se limite à aplicação de fórmulas. Desse modo, resultados parciais e evidências de compreensão do conteúdo pertinente podem ser considerados e pontuados.

	Valor	Nota
1ª Questão	1.0	
2ª Questão	0.5	
3ª Questão	2.0	
4 ª Questão	0.5	
5 ª Questão	2.0	
6 ^a Questão	2.0	
7ª Questão	1.0	
8ª Questão	1.0	
Total	10.0	

1ª Questão

As figuras mostram uma ginasta olímpica que se sustenta em duas argolas presas por meio de duas cordas ideais presas a um suporte horizontal fixo; as cordas têm 2,0m de comprimento cada uma. Na posição ilustrada na figura 1 os fios são paralelos e verticais. Nesse caso, as tensões em ambos os fios valem T. Na posição ilustrada na figura 2, os fios estão inclinados, formando o mesmo ângulo š com a vertical. Nesse caso, as tensões em ambos os fios valem T' e a distância vertical de cada argola até o suporte horizontal é h=1,80m, conforme indica a figura 2. Calcule T e T', admitindo desprezível a massa do fio.

Solução:

Através da Segunda Lei de Newton temos que as forças resultantes de ambos os sistemas são nulas, assim:

Figura 1: Como as tensões em ambos os fios são iguais:

$$T + T - P = 0$$

$$T = \frac{P}{2} = \frac{mg}{2}$$

Figura 2: Nesse caso, trabalhamos com a componente vertical da tensão:

$$T_y + T_y - P = 0$$

Onde $T_y = cos(\theta)T'$ e analisando o triangulo retângulo gerado na figura 2 temos:

$$cos(\theta) = \frac{1.8}{2.0} = 0.9$$

Assim nossa relação anterior toma a seguinte forma:

$$cos(\theta)T' + cos(\theta)T' - P = 0$$
$$T' = \frac{P}{2\cos(\theta)} = \frac{P}{2X0.9} = \frac{mg}{1.8}$$

2ª Questão

Qual o trabalho realizado por uma força dada em Newtons por F = (2xi + 3j), onde x está em metros, que é exercida sobre uma partícula enquanto ela se move da posição, em metros, $r_i = 2i + 3j$ para a posição (em metros) $r_f = -4i - 3j$. Onde i e j são os vetores unitários nas direções x e y, respectivamente.

Solução:

Como a força é conservativa, pode-se escolher qualquer caminho do ponto inicial ao final. Suponha que a partícula mova-se primeiramente ao longo do eixo constante y=3m, indo desde $x_1 = 2m$ até $x_2 = -4m$. Neste percurso o trabalho realizado é:

$$W_1 = \int_{x_1}^{x_2} F_x dx = \int_{2}^{-4} 2x dx = x^2 |_{2}^{-4} = (-4)^2 - (2)^2 = 12 \text{ J}.$$

Agora, para completar o percurso, suponhamos que a partícula mova-se ao longo da linha x=-4m, indo de $y_1=3m$ até $y_2=-3m$. O trabalho nesse percurso é:

$$W_2 = \int_{y_1}^{y_2} F_y dy = \int_3^{-3} 3dy = 3y|_3^{-3} = 3 * \{(-3) - 3\} = -18 \text{ J}.$$

O trabalho total do percurso é:

$$W = W_1 + W_2 = 12J - 18J = -6J$$

3ª Questão

(a) Uma bola de massa m e velocidade v bate perpendicularmente em uma parede e recua com perda de velocidade desprezível. (i) O tempo de colisão é Δt, qual a força média exercida pela bola na parede? (ii) Avalie numericamente essa força média no caso de uma bola de borracha de massa 140g à velocidade de 7,8m/s, sendo de 3,9ms a duração do choque.

Solução:

Considere o esquema dado:

(i) A força média envolvida na colisão é:

$$F = \frac{\Delta p_x}{\Delta t} = \frac{p - p_0}{\Delta t} = \frac{m(v - v_0)}{\Delta t} = \frac{m - v - v}{\Delta t} = \frac{-2mv}{\Delta t}$$

(ii) O módulo da força média é

$$F = \frac{-2mv}{\Delta t} = \frac{2(0.140kg)(7.8\frac{m}{s})}{3.9X10^{-3}s} = 560N$$

(b) Mostre que, numa colisão elástica unidimensional, a velocidade do centro de massa de duas partículas, de massas m1 e m2, que têm velocidade inicial v1i e v2i, respectivamente, é expressa por

$$v_{cm} = \frac{m_1}{m_1 + m_2} v_{1i} + \frac{m_2}{m_1 + m_2} v_{2i}$$

Solução:

A posição do centro de massa de duas partículas, $m_1 e m_2$, cujas posições iniciais são, respectivamente, $x_{1i} e x_{2i}$, é dado por:

iniciais são, respectivamente,
$$x_{1i}$$
 e x_{2i} , é dado por:
$$X_{cm} = \frac{1}{m_1 + m_2} (m1x_{1i} + m_2x_{2i})$$

Derivando-se ambos os membros desta equação em relação ao tempo:

$$v_{cm} = \frac{m_1}{m_1 + m_2} \frac{dx_{1i}}{dt} + \frac{m_2}{m_1 + m_2} \frac{dx_{2i}}{dt}$$

Portanto,

$$v_{cm} = \frac{m_1}{m_1 + m_2} v_{1i} + \frac{m_2}{m_1 + m_2} v_{2i}$$

(a) Imagine uma roda girando em torno do seu eixo e considere um ponto em sua borda. O ponto tem aceleração radial, quando a roda gira com velocidade angular constante? Tem aceleração tangencial? Quando ela gira com aceleração angular constante, o ponto tem aceleração radial? Tem aceleração tangencial? Os módulos dessas acelerações variam com o tempo?

Solução:

Sim, a aceleração radial é $a_r = w^2 r$. A aceleração tangencial é nula nesse caso. Girando com aceleração angular constante, o ponto da borda tem aceleração radial $a_r(t) = (\alpha t)^2 r$ e aceleração tangencial $a_t = \alpha r$, constante.

(b) Um corpo rígido pode girar livremente em torno de um eixo fixo. É possível que a aceleração angular deste corpo seja diferente de zero, mesmo que a velocidade angular seja nula (talvez, instantaneamente)? Qual o equivalente linear desta situação?

Solução:

Sim, se o corpo rígido for submetido a uma desaceleração, sua velocidade angular em algum momento será nula, e depois começará a crescer, em módulo, no sentido contrário. O equivalente linear desta situação pode ser a de um corpo jogado verticalmente para cima; sua velocidade zera no ponto mais alto da trajetória e ele torna a cair.

5ª Questão

 (a) Explique por que a dilatação aparente de um líquido num tubo de vidro, quando aquecido, não corresponde exatamente à verdadeira expansão do líquido.
 Solução:

Porque o vidro que contém o líquido também se expande.

(b) O aquecimento global é um problema que tem sido foco de muita discussão nos últimos anos. *Icebergs* no Atlântico Norte representam riscos ao tráfego de navios, fazendo com que a extensão das rotas de navegação aumente em cerca de 30% durante a temporada de *icebergs*. Tentativas de destruição dessas montanhas de gelo incluem a implantação de explosivos, bombardeio, torpedeamento, colisão e pintura com negro de fumo. Suponha que se tente derreter o *iceberg*, pela colocação de fontes de calor sobre o gelo. Quanto calor é necessário para derreter 10% de um *iceberg* de 210.000 toneladas que esteja inicialmente a zero grau?

Solução:

A massa de gelo a ser derretida, m, é:

$$M = 0.1 m_0$$

Onde m_0 é a massa total do *iceberg*. A quantidade de calor necessária para fundir uma massa m de gelo é dada por:

$$Q = L_f m_0$$

onde L_f é o calor latente de fusão do gelo. Substituindo-se os valores numéricos nessa equação:

$$Q = \left(3,33X10^5 \frac{J}{mol}\right) 0,1(2,1X10^8 kg) = 6,993X10^{12} J$$

Observação: Tal energia poderia ser propiciada por um motor a gasolina, se ele funcionasse seguidamente com aproximadamente $7X10^5$ litros, já que um motor a gasolina propicia cerca de 10MJ por litro. Ou seja, com 700.000 litros de gasolina, tal motor levaria a Brasília e traria de volta ao Rio de Janeiro um carro quase 5 mil vezes.

(c) As duas paredes opostas de um recipiente de gás são mantidas a diferentes temperaturas. O ar entre os vidros de uma janela contra tempestade é um bom exemplo. Descreva, em termos de teoria cinética, o mecanismo de condução do calor através do gás.

Solução:

O calor é transferido no gás por um mecanismo combinado de condução e convecção. As moléculas de ar, próximas da parede mais quente tem energia maior que a energia média e perdem energia nas colisões com as moléculas que tem energia mais baixa, que estão mais próximas da parede mais fina. Mas há também um transporte de massa no processo, porque o ar junto da parede quente expande-se, tendo sua densidade diminuída. O ar mais frio vai ocupando o lugar deixado pelo ar mais quente, estabelecendo-se uma corrente de convecção entre as paredes.

(d) Dê uma explicação qualitativa da conexão entre o livre caminho médio das moléculas de amônia no ar e o tempo que se leva para sentir o cheiro da amônia, quando um vidro é aberto do outro lado de uma sala.

Solução:

O tempo típico para se sentir o cheiro é de cerca de um minuto. As moléculas de amônia difundem-se no ar, tendo um livre caminho médio da ordem de 10^{-8} m, sofrendo da ordem de 10^{9} colisões por segundo. Como as moléculas movem-se em todas as direções devido às colisões, precisam deste tempo para atravessar uma sala. O movimento das moléculas também é afetado pelas correntes de convecção do ar, em geral presentes numa sala.

6ª Questão

(a) Que evidência experimental existe para afirmarmos que a velocidade do som, no ar, é a mesma para qualquer comprimento de onda?

Solução:

O fenômeno do eco evidencia bem este fato. Se o ar fosse um meio dispersivo, o som refletido no eco não reproduziria o som emitido.

(b) Uma palma no palco de um anfiteatro produz ondas sonoras que se dispersam em uma arquibancada com degraus de largura L=0,75m. O som retorna ao palco como uma série de pulsos periódicos, um de cada degrau; os pulsos soam juntos como uma nota. A que freqüência os pulsos retornarão isto é, qual a freqüência da nota recebida?

Solução:

A pessoa bate palmas apenas uma vez, isto é, emite um único pulso sonoro. Os números 1,2,3 etc representam instantes de tempo consecutivos e indicam a posição do pulso emitido e suas reflexões nos degraus. Cada reflexão está separada por uma distancia 2L, que corresponde ao comprimento de onda da onda recebida de volta pela pessoa. A velocidade v da onda pode ser definida em função do comprimento de onda λ do período T por:

$$V = \frac{\lambda}{T}$$

Assim,

$$T = \frac{\lambda}{\nu} = \frac{2L}{\nu}$$

Assim a frequência da onda refletida vale:

$$f = \frac{1}{T} = \frac{v}{2L} = \frac{343\frac{m}{s}}{2(0.75m)} = 228,666Hz \cong 230Hz$$

7ª Ouestão

(a) Uma carga puntiforme q de massa m é colocada em repouso num campo não uniforme. Será que ela seguirá, necessariamente, a linha de força que passa pelo ponto em que foi abandonada?

Solução:

Não. A força elétrica sempre coincidirá com a direção tangente à linha de força. A força elétrica, em cada ponto onde se encontra a carga, é dada por qE, onde E é o vetor campo elétrico no ponto onde se encontra a carga. Como a carga parte do repouso, a direção de sua aceleração inicial é dada pela direção do campo elétrico no ponto inicial. Se o campo elétrico for uniforme (ou radial), a trajetória da carga deve coincidir com a direção da linha de força. Entretanto, para um campo elétrico não uniforme (nem radial), a trajetória da carga não precisa coincidir necessariamente com a direção da linha de força. Sempre coincidirá, porém, com a direção tangente à linha de força.

(b) Uma bola carregada positivamente está suspensa por um longo fio de seda. Desejamos determinar E num ponto situado no mesmo plano horizontal da bola. Para isso, colocamos uma carga de prova positiva q_0 neste ponto e medimos F/q_0 . A razão F/q_0 será menor, igual ou maior do que E no ponto em questão? **Solução:**

Quando a carga de prova é colocada no ponto em questão, ela repele a bola que atinge o equilíbrio numa posição em que o fio de suspensão fica numa direção ligeiramente afastada da vertical. Portanto, a distância entre o centro da esfera e a carga de prova passa a ser maior do que a distancia antes do equilíbrio. Donde se conclui que o campo elétrico no ponto considerado (antes de colocar a carga de prova) é maior do que o valor F/q medido por meio da referida carga de prova.

8ª Questão

Uma carga puntiforme é colocada no centro de uma superfície gaussiana esférica. O valor do fluxo Φ através da superfície envolvente mudará se (a) a esfera for substituída por um cubo do mesmo volume? (b) a superfície for substituída por um cubo de volume dez vezes menor? (c) a carga for removida para fora da esfera original? (d) uma segunda carga for colocada dentro da superfície gaussiana?

Solução:

- (a) Não. O fluxo total só depende da carga total no interior da superfície gaussiana considerada. A forma da superfície gaussiana considerada não é relevante.
- (b) Não. O fluxo total só depende da carga total no interior da superfície gaussiana considerada. O volume englobado pela superfície gaussiana considerada não é relevante.
- (c) Sim. Neste caso, como a carga total no interior da superfície gaussiana considerada é nula, o fluxo total será igual a zero.
- (d) Sim. Neste caso, como a carga total no interior da superfície gaussiana considerada passa a ser igual a q_1+q_2 , o fluxo total é igual a $\frac{q_1+q_2}{\epsilon_0}$.