

Introduction to Basic Microbiology

Session 3

Objectives

By the end of this module, the participants will be able to:

- Define key terminologies used in microbiology
- Describe main groups of microorganisms
- Describe different modes of transmission of infectious agents
- Discuss Multidrug Resistant organisms (MROs)

Introduction

The science of microbiology revolves around two themes:

Understanding basic life processes, and

Applying our understanding of microbiology for the benefit of humankind

- Microbiology has two important functions related to the prevention and control of infections:
 - Clinical: identify pathogens and their susceptibility to treatment
 - **Epidemiological:** identify pathogens causing disease or outbreak in a population and potential sources for these pathogens.

Key Terminologies

• Microbiology –

 Study of organisms that make up normal flora and transient flora, and how these organisms impact the health and safety of the host

Infectious dose

Number of organisms needed to successfully infect

Latent period

• Exposure to infectiousness interval

Incubation period

• Interval from exposure to clinical symptoms

Infectivity

• The ability to infect a host

Terminologies (cont.)

- Infectious period
 - Interval during which host can transmit infection
- Reproductive rate
 - Ability of an agent to spread in populations
- Pathogenicity
 - The ability to cause disease in the host
- Virulence
 - The ability to cause severe disease in the host
- Immunogenicity
 - The ability to induce an immune response in the host
- Outbreak
 - happens when a disease occurs in greater numbers than expected in a community or region or during a season

Normal Human Flora

- Many of the microbes in and on our body are good and help to protect us from infection and aid in digestion
- When microbes live harmlessly in and on our body it is called **COLONISATION**
- Exposure to microbes does not always result in an infection

Pathogenesis of Infection

To cause disease, microbes need:

- Contamination Gain access to the host
- Adherence Attachment to the host
- Colonization Replicate in the host
- Invasion Entry into tissues
- Damage-Produce toxins or other agents that cause host harm

Microbes and Infection

When microbes find a new host and start to multiply;

- A balance can develop between colonised microbes and humans –(normal flora)
 - Microbes can cause disease called an infection
 - If source of microbe is patient's own flora –called an endogenous infection
 - If source of microbe is flora from outside the patient's body –
 called exogenous infection

Infection

Process of microbes entering, surviving and multiplying in its host and cause clinical signs and symptoms

Different Outcomes of an Exposure To an Infectious Agent

Classification of Infectious Agents

- Bacteria
- Viruses
- Fungi
- Parasites
- Rickettsia
- Chlamydia
- Prions

Slide 11

Interchanged slide 11 and 12 Noel Odhiambo, 10/28/2019 NO2

Mode of Transmission

- Direct
 - o Droplet
 - o Aerosol
 - o Skin to skin
- Indirect
 - o Fomites (clothes, blankets, door handles etc.)
 - Vectors (e.g. mosquitoes)
 - o Food and water
 - Intermediate hosts (e.g., snails, mosquito)

Bacteria

- Cause the majority of infections associated with healthcare settings
- Can survive on appropriate media, stain grampositive or gram-negative
- Can multiply if the appropriate environment is provided (e.g., on or inside a host, or on culture media in a laboratory)

Bacterial Cell Structure

Slide 14

NO3 Notes added

Noel Odhiambo, 10/28/2019

Bacterial Identification

- Microscopy-wet preparation and gram staining
- Culture

Gram Staining

Bacteria are classified by their gram stain characteristics

Gram positive organisms:

- Have a thick cell wall made of peptidoglycan
- Stain blue when challenged with the Gram stain technique **Gram negative** organisms:
 - Have a thinner cell wall and an additional outer layer made up of polysaccharides
 - Stain red when challenged with the Gram stain

Gram staining provides fast accurate guidance to the type of bacteria involved in an infection

Classification of Bacteria

Fostering Regional Cooperation for Better Health

- Viruses are obligate intracellular organisms
- Only replicate intracellularly
- Classified as DNA or RNA
- Complete infectious virus outside of a cell wall is termed a virion

Virus (cont.)

- The virion consists of the specific nucleic acid (DNA or RNA) surrounded by a protein coat (capsid) hence referred to as DNA or RNA virus
- Some viruses are enveloped while others are non enveloped (naked)
- Viruses as causative agents of HAIs are mostly encountered in paediatric wards
- Blood transmitted viruses (human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV) are very important viruses encountered in healthcare

Fungi

- Fungi are organisms often found in the environment
- Non-motile filamentous, branching strands of connected cells
- Some yeasts, such as Candida spp, are classified as fungi

Fungi (cont.)

- Can be part of normal flora as well as invasive opportunistic pathogens
- Usually resistant to many treatments and difficult to eradicate
- In general patients with fungal infections are not infectious to other patients
- Some Candida species can be transmitted from patient to patient on hands of healthcare workers

Fostering Regional Cooperation for Better Health

Parasites

- Include protozoa
 - o Unicellular microorganisms
 - O Live in nature or in human or animal host
 - o Some of them cause infections
- Multicellular parasites
 - o Worms, that can also cause infections (often called infestations)
- Cause frequent diseases in humans, especially in warm climates (e.g., malaria, shistosomiasis)
- Not often the cause of HAIs

Rickettsia and Chlamydia

Rickettsia

Very small bacteria spread by ticks

Chlamydia

- o Bacteria lacking cell walls
- Not often the cause of HAI

Prions

- Prions are proteinaceous particles
 - o Do not contain any nucleic acid
- Connected to several severe neurologic diseases
- Highly resistant to usual disinfection and sterilisation methods
- Possibility of iatrogenic transmission
 - Through transplantation
 - o Through instruments contaminated with brain tissue, dura or cerebrospinal fluid of infected person

Multi-Drug Resistant Organisms (MDROs)

- Bacteria that acquire the ability to resist treatment against more than one antibiotic
- Infections caused by MDROs:
 - o More difficult to treat and require more toxic antibiotics
 - Often result in poor patient outcomes
 - o Cost more
- MDROs are readily transmitted in healthcare settings

Causes of MDROs

- Antibiotic overuse
- Inappropriate antibiotic use
- Inadequate antibiotic doses
- Wrong route of administration
- Inadequate patient education

Effects of MDROs To the Health System

- Risk of morbidity, mortality and disability to patients
- Increased length of stay
- Complications that may require admission to ICU
- Expensive antibiotics
- Increased utilization of other resources

Controlling MDROs

- Having surveillance systems in place to identify and manage the risks presented by MDROs in health facilities
- Prompt reporting of any of these microorganisms by the laboratory to the Infection Control Practitioner (ICP) and physician

MDROs Gram Positive Organisms

Staphylococcus aureus

- Healthcare-associated MRSA
- Community-associated MRSA
- Vancomycin resistant organisms

Clostridium difficile

 Named "difficile" because they were difficult to culture in the laboratory.

Staphylococcus aureus

- ~ 20% of humans are persistently colonized (children > adults); ~ 60% are intermittently colonized
- Most often spread via contaminated hands

Methicillin-Resistant Staphylococcus aureus (MRSA)

- Resistant to beta-lactam antibiotics (all penicillins and cephalosporins)
- Identified based on antimicrobial susceptibility testing

MRSA Clinical Spectrum

"Types" of MRSA

- Healthcare-associated (HA-MRSA) infections
 - Causes healthcare-associated pneumonia, surgical wounds, and bloodstream infections
 - Risk factors: hospitalization, Long term care facilities, dialysis, surgery
 - Resistant to many antimicrobials
 - Skin infections common

"Types" of MRSA (cont'd)

- Community-associated (CA-MRSA)
 - Skin infections common
 - No recent hospitalization, dialysis, surgery, long-term care facility (e.g., nursing home)
 - Susceptible to most antibiotics except beta-lactam antibiotics and erythromycin

Clostridium difficile (C. diff)

- Named due to difficulty to isolate in the lab (Latin *difficile* = difficult)
- Spore-forming, anaerobic, gram-positive bacillus
- Fecal-oral transmission
 - Hands of healthcare personnel
 - Contaminated inanimate objects
- Two major reservoirs:
 - Infected humans (symptomatic or colonized)
 - Inanimate objects

Risk Factors for C. diff Infection

- Antimicrobial exposure
- Acquisition of *C. diff*
- Advanced age
- Underlying illness
- Immunosuppression
- Tube feedings
- Gastric acid suppression
- Use of nasogastric or gastrostomy feeding tubes
- Use of proton-pump inhibitors

Main modifiable risk factors

C. diff and Antibiotic Use

• > 90% cases occur during or after antibiotic therapy

- All antibiotics implicated
 - o Broad spectrum agents are more likely associated

Clinical Manifestations of *C.diff*

Asymptomatic colonization

Ţ

Asymptomatic colonization may be protective against C.diff

Diarrheal illness

Pseudomembranous colitis

Toxic megacolon

- Fever
- · Cramping abdominal pain
- Increased frequency of loose, watery, unformed bowel movements not due to another cause
- Recent history of antibiotic exposure

39

Gram Negative MDROs

- Pseudomonas aeruginosa
- Acinetobacter baumanni
- Klebsiella pneumoniae
- E.coli

Enterobacteriaceae

- Large family of gram-negative bacteria
- Common species
 - o Klebsiella pneumoniae
 - o Escherichia coli
 - Enterobacter cloacae
 - Enterobacter aerogenes

Carbapenem-Resistant Enterobacteriaceae (CRE)

Carbapenems

- Class of antibiotics
 - $\circ\,Ertapenem$
 - o Imipenem
 - $\\ \circ Meropenem$
 - $\circ\, Doripenem$
- Mainstay of treatment targeting resistant gram-negative bacilli

CRE

- Resistant to ≥3 classes of antibiotics, including carbapenems
- Resistance mechanisms
 - o Enzymes that inactivate carbapenems
 - Klebsiella pneumoniae carbapenemase (KPC)
 - New Delhi Metallo β-lactamase (NDM-1)
 - Located on chromosomes or plasmids (mobile genetic elements)

What Types of Infections Do CREs Cause?

- Urinary tract, intestinal or abdominal, respiratory tract, and wound infections
- Most frequently isolated from urine, sputum, or blood
- Bloodstream infections are associated with higher rates of death than infection at other sites

Who Is At Increased Risk for Infection With CREs?

Hospitalized patients with:

- Co-morbid conditions
- Frequent or prolonged hospitalization
- Invasive devices
- Antimicrobial exposure
 (vancomycin,
 fluoroquinolones, penicillins,
 and extended-spectrum
 cephalosporins)

Summary

- MDROs are a growing challenge in all areas of healthcare
- Early identification of MDROs and implementation of infection prevention and control measures is effective in limiting transmission
- Patient education is an important MDRO prevention measure in ambulatory care
- Compliance with infection prevention measures is essential
- Proper combating of MDROs and implementation of infection prevention and control measures are effective in limiting transmission.

Thank You Questions?

References

- Tenover FC, Hughes JM. The challenges of emerging infectious diseases:development and spread of multiply-resistant bacterial pathogens. JAMA.1996;275(4):300-304.
- Centers for Disease Control and Prevention. Community-associated methicillin-resistant Staphylococcus aureus infections in Pacific Islanders—Hawaii, 2001–2003. MMWR. 2004;53(33):767-770.
- Galaxy Diagnostics, written on May 13th, 2020,"The infectious Dose of pathogens and transmission Risk".
- Greseck J. Modern Infectious Disease Epidemiology, Hodder Arnold, 2020.