SED1200 Series LCD Controller/Drivers

Technical Manual

Contents

OVERVIEW	2–
FEATURES	2-
BLOCK DIAGRAM	2–2
PINOUT	2–3
PIN DESCRIPTION	2-
COMMAND DESCRIPTION	2-
SPECIFICATIONS	2-
OPERATION	2–13
APPLICATION NOTES	2–17
APPENDIX A: CHARACTER CODES AND FONTS	2–2
APPENDIX B: I/O TERMINAL STRUCTURE	2-2

OVERVIEW

The SED1200 is a Liquid Crystal Display (LCD) character display controller-driver, capable of directly driving displays as large as 2 lines of 10 5×8 pixel characters, with a minimum of external components.

The SED1200 has an internal character generator (CG) consisting of 160 JIS ASCII characters in ROM and four user definable characters in RAM. The internal CG, a versatile set of cursor and display control commands, mean that the system CPU is only responsible for the display data and commands, and not for the LCD display itself.

FEATURES

- Internal display RAM to hold 20 8-bit character codes.
- Internal character generator
 - 160 JIS ASCII characters. CGROM:
 - CGRAM: 4 user programmable 5×8 pixel

characters

- Font: 5×7 pixel characters plus the underline

cursor.

- JIS character set using SED1200F0A/SED1200D0A
- ASCII character set using SED1200F0B/ SED1200D0B
- Internal LCD driver circuitry
 - 50 segment driver lines
 - 16 common driver lines
 - Total size: Two lines of 10 characters each (maximum). One line of 20 characters

(LCD panel dependent)

- · CPU interface
 - 4-bit CPU data bus
 - 13 display control commands
- Low external component count
 - Built in RC oscillator (using one external feedback)
 - Built in LCD driver voltage-divider network.
- Implemented using low power CMOS technology
 - TTL compatible CPU interface
- · Power supply
 - Logic: 2.5 V to 5.5 V
 - LCD: 3.5 V to 5.5 V
- 80 pin QFP package SED1200F and chip (SED1200D)

EPSON 2-1

BLOCK DIAGRAM

2–2 EPSON

PINOUT

SED1200F Package Outline

SED1200D Die Outline

TABLE 1. SED1200 Pinout

No.	NAME	No.	NAME	No.	NAME	No.	NAME
1	SEG17	21	COM4	41	COM10	61	SEG37
2	SEG16	22	COM5	42	COM11	62	SEG36
3	SEG15	23	COM6	43	COM12	63	SEG35
4	SEG14	24	COM7	44	COM13	64	SEG34
5	SEG13	25	COM8	45	COM14	65	SEG33
6	SEG12	26	A0	46	COM15	66	SEG32
7	SEG11	27	CS	47	COM16	67	SEG31
8	SEG10	28	RD	48	SEG50	68	SEG30
9	SEG9	29	WR	49	SEG49	69	SEG29
10	SEG8	30	Φ	50	SEG48	70	SEG28
11	SEG7	31	XD	51	SEG47	71	SEG27
12	SEG6	32	Xg	52	SEG46	72	SEG26
13	SEG5	33	DB3	53	SEG45	73	SEG25
14	SEG4	34	DB2	54	SEG44	74	SEG24
15	SEG3	35	DB1	55	SEG43	75	SEG23
16	SEG2	36	DB0	56	SEG42	76	SEG22
17	SEG1	37	Vss	57	SEG41	77	SEG21
18	COM1	38	VLCD	58	SEG40	78	SEG20
19	COM2	39	Vdd	59	SEG39	79	SEG19
20	COM3	40	COM9	60	SEG38	80	SEG18

2–4 EPSON

PIN DESCRIPTION

CPU Interface

Active low chip select input.

Active low read enable input.

Active low write strobe.

A0 Selects between instruction and display data

access.

A0 = H: Display data A0 = L: Instruction

D0-D2 Active high CPU data inputs.
 D3 Active high CPU data input/output.
 Φ Clock input for command execution.

LCD Interface

COM1–COM16 LCD common driver outputs. **SEG1–SEG50** LCD segment driver outputs.

Oscillator

OSC1, OSC2 Terminals for the oscillator external

feedback resistor, Rf. If an externally generated clock is used, it is connected to OSC1; OSC2 is left

open.

Power Supply

VDD Logic power supply
VLCD LCD power supply
VSS System ground (0 V).

COMMAND DESCRIPTION

Command Summary

TABLE 2. SED1200 Command Summary

COMMAND NAME	CS	WR	RD	A0	D7	D6	D5	D4	D3	D2	D1	D0	REMARKS
SET CURSOR DIRECTION	0	0	1	0	0	0	0	0	0	1	0	D/I	D0 = 1 Decrement D0 = 0 Increment
CURSOR ADDRESS -1/+1	0	0	1	0	0	0	0	0	0	1	1	-1/+1	D0 = 1 Cursor address -1 D0 = 0 Cursor address +1
CURSOR FONT SELECT	0	0	1	0	0	0	0	0	1	0	0	A/U	D0 = 1 All dots blinking D0 = 0 Underline
CURSOR BLINK ON/OFF	0	0	1	0	0	0	0	0	1	0	1	ON/OFF	D0 = 1 ON D0 = 0 OFF
DISPLAY ON/OFF	0	0	1	0	0	0	0	0	1	1	0	ON/OFF	D0 = 1 ON D0 = 0 OFF
CURSOR ON/OFF	0	0	1	0	0	0	0	0	1	1	1	ON/OFF	D0 = 1 ON D0 = 0 OFF
SYSTEM RESET	0	0	1	0	0	0	0	1	0	0	0	0	Data RAM & CGRAM are not affected
LINE SELECT	0	0	1	0	0	0	0	1	0	0	1	2/1	D0 =1 2 line display (1/16 duty) D0 = 0 1 line display (1/8 duty)
SET CGRAM ADDRESS	0	0	1	0	0	0	1	0	(L	OWE	R ADI	DRESS)	Upper address fixed at 0H
SET CGRAM DATA	0	0	1	0	0	1	0		(C	GRAI	M DA	ТА)	
SET CURSOR ADDRESS	0	0	1	0	1			2nd/	1st (N	N DIG	IT-1)		D6 = 1 2nd line N digit address D6 = 0 1st line N digit address
SET CHARACTER CODE	0	0	1	1			(CHARACTER CODE)						
BUSY FLAG CHECK	0	1	0	0	BF	*	*	*	BF	*	*	*	High impedance

Write Commands

SET CURSOR DIRECTION

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	0	D

Sets the way in which the cursor address register changes as character data is written to the SED1200 by the CPU, and hence the direction of cursor movement.

D = 0: Address register increment direction D = 1: Address register decrement direction

CURSOR ADDRESS -1/+1

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	1	D

Adds one to, or subtracts one from, the current contents of the cursor address register, and hence moves the cursor.

D = 0: ADDRESS = ADDRESS + 1 D = 1: ADDRESS = ADDRESS - 1

CURSOR FONT SELECT

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	0	D

D = 0: Underline cursor D = 1: All dots blinking

CURSOR BLINK ON/OFF

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	1	D

Controls flashing of the underline cursor.

D = 0: Flashing stopped D = 1: Cursor flashing

DISPLAY ON/OFF

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	D

D = 0: Display Blanked

D = 1: Display on

Note: This command does not affect the contents of the display data RAM.

1 7

CURSOR ON/OFF

A0 = 0

	D7	D6	D5	D4	D3	D2	D1	D0
ĺ	0	0	0	0	1	1	1	D

Controls the display of the cursor.

D = 0: Cursor off. D = 1: Cursor on.

SYSTEM RESET

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0	0

Initializes the SED1200 to the following defaults.

- CURSOR DIRECTION: Increment
- 2. CURSOR FONT: Underline
- 3. CURSOR BLINK: Off
- 4. DISPLAY: Off
- 5. CURSOR: Off
- 6. LINE SELECT: One line display
- 7. CURSOR ADDRESS: Address 0 (Line 1, character 0)
 Note: SYSTEM RESET does not affect the contents
 of the display data RAM, or the CGRAM.

LINE SELECT

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	1	D

Selects the number of displayed lines, and hence the LCD drive duty cycle.

D = 0: 1 line display (1/8 duty cycle) D = 1: 2 line display (1/16 duty cycle)

Note: The number of lines which can be displayed depends on the LCD panel used.

SET CURSOR ADDRESS

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
1	L	P ₅	P4	Рз	P ₂	P1	P ₀

Presets the contents of the cursor address register, and hence the position of the cursor.

L = 0: Line 1 select L = 1: Line 2 select

P5-P0: Position of character in selected line.

2–6 EPSON

SET CHARACTER CODE

A0 = 1

D7	D6	D5	D4	D3	D2	D1	D0
C7	C ₆	C ₅	C4	Сз	C2	C1	Co

Writes the character code given by C7–C0 into the character data RAM at the location pointed to by the contents of the cursor address register. The contents of the cursor address register are then modified as specified by the last SET CURSOR DIRECTION instruction.

SET CGRAM ADDRESS

A0 = 0

	D7	D6	D5	D4	D3	D2	D1	D0
Ī	0	0	1	0	*	*	A1	A ₀

Presets the contents of the CGRAM address register to the position of one of the four user definable characters. The address is specified by A1 and A0.

SET CGRAM DATA

Loads the bit pattern D4–D0 into the CGRAM location specified by the current contents of the CGRAM address register. The contents of the CGRAM Address Register are incremented following each write of a SET CGRAM DATA instruction by the CPU.

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	D4	Dз	D2	D1	D ₀

See section 4.3, Loading CGRAM.

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply voltage (1)	Vdd	-0.3 to +7.0	V
Supply voltage (2)	VLCD	VDD-7.0 to VDD+0.3	V
Input voltage	Vin	-0.3 to VDD+0.3	V
Output voltage	Vout	-0.3 to VDD+0.3	V
Operating temperature	Topr	-10 to +70	°C
Storage temperature	Tstg	-40 to +125	°C
Soldering temperature and time	Tsol	260, 10	°C, s

Read Commands BUSY FLAG CHECK

Reading yields the status of the SED1200F.

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
BF	*	*	*	BF	*	*	*

BF = 0: SED1200 READY BF = 1: SED1200 BUSY

Bits D2-D0 are tristate during reads of the Busy Flag.

Electrical Specifications

DC Characteristics

VDD = 5 V

Vss = 0 V, $T_a = -10 \text{ to } +70^{\circ}\text{C}$

_					Rating			7, 1a = -10 t0 +70 C
Parameter	Symbol	С	ondition	min	typ	max	Unit	Pin
Logic supply voltage	VDD			4.5	5.0	5.5	V	VDD
Liquid crystal display supply voltage	VLCD			VDD-5.5	_	VDD-3.5	V	VLCD
Oscillator feedback resistor	Rf	VDD = 5.0 V	, fosc = 100 kHz	240	310	380	kΩ	Xg, Xd
Operating frequency (1) oscillator or external clock frequency	fosc	VDD = 4.5 to	5.5 V	_	100	300	kHz	Xg, Xd
Operating frequency (2)	Φ	VDD = 4.5 to	5.5 V	_	_	3.2	MHz	Φ
External clock duty		VDD = 4.5 to	5.5 V	45	50	55	%	Xg, Φ
External clock rise time	tr	VDD = 4.5 to	5.5 V	_	_	50	ns	Xg, Φ
External clock fall time	t f	VDD = 4.5 to	5.5 V	_	_	50	ns	Xg, Φ
H-level input voltage (1)	VIH1	VDD = 4.5 to	5.5 V	2.0	_	VDD	V	CS, RD, WR,
L-level input voltage (1)	VIL1	VDD = 4.5 to	5.5 V	0	_	0.8	V	DB0 to DB3, Φ
H-level input voltage (2)	VIH2	VDD = 4.5 to	5.5 V	0.8 VDD	VDD	VDD	V	.,
L-level input voltage (2)	VIL2	VDD = 4.5 to	5.5 V	0	0	0.2 VDD	V	XG
H-level input leakage current	ILIH	VDD = 5.5 V	, VIH = 5.5 V	_	_	-1.0	μΑ	Φ, XG,
L-level input leakage current	ILIL	VDD = 5.5 V	, VIL = 0 V	_	_	1.0	μΑ	DB0 to DB3
Input pull-up current	IIPU	VDD = 5.0 V	VDD = 5.0 V, VIL = 0 V		10	30	μΑ	CS, RD, WR, A0
H-level output current	Іон	VDD = 4.5 to	VDD = 4.5 to 5.5 V, VOH = 2.4 V		_	_	mA	200
L-level output current	loL	VDD = 5.5 V	, VoL = 0.4 V	1.6	_	_	mA	DB3
Common driver output current (1)	Іон	V _{DD} level	VDD=4.5 V	-20	_	_	μА	COM1 to COM16
Common driver output current (2)	loL	VLCD level	VLCD=1.0 V	20	_	_	μА	COM1 to COM16
Common driver output current (3)	loL	V _{L1} level	Voltage-divider resistor in low	±8	_	_	μА	COM1 to COM16
Common driver output current (4)	loL	V _{L4} level	impedance state.	±8	_	_	μА	COM1 to COM16
Segment driver output current (1)	Іон	V _{DD} level	1/16 duty	-12	_	_	μΑ	SEG1 to SEG50
Segment driver output current (2)	loL	VLCD level	0.5 V voltage drop Measured on one	12	_	_	μА	SEG1 to SEG50
Segment driver output current (3)	loL	VL2 level	pin with other pins	±4	_	_	μΑ	SEG1 to SEG50
Segment driver output current (4)	loL	VL3 level	open circuit.	±4	_	_	μА	SEG1 to SEG50
Voltage-divider resistor (1)	R _{d1}	Normal con	ditions	30	130	300	kΩ	
Voltage-divider resistor (2)	Rd2	Low impeda	ance state	3.0	13	30	kΩ	
Voltage-divider resistor	4/4	1/8 Duty		_	11/400	_	_	
low impedance duty	tRd1/tRd2	1/16 Duty		_	11/200	_	_	
Command execution time	tcomd	From WR rising edge to the end of internal processing		_	_	16/Ф (MHz)	μs	
Average operating current	loo	fosc = 100 H Φ = 1 MHz,	$\overline{WR} = A0 = 5.0 \text{ V},$	_	80	150	μА	Vod

2–8 EPSON

VDD = 3 V

Vss = 0 V, Ta = -10 to 70° C

_					Rating			v, 1a = -10 to 70 C	
Parameter	Symbol	С	ondition	min	typ	max	Unit	Pin	
Logic supply voltage	VDD			2.5	3.5	4.5	V	VDD	
Liquid crystal display supply voltage	VLCD			V _{DD} -5.5	_	VDD-3.5	V	VLCD	
Oscillator feedback resistor	Rf	VDD = 3.0	V, fosc = 100 kHz	210	290	370	kΩ	Xg, Xd	
Operating frequency (1) oscillator or external clock frequency	fosc	VDD = 2.5 V		_	_	300	kHz	Xg, Xd	
Operating frequency (2)	Φ	VDD = 2.5 V		_	_	1.0	MHz	Φ	
External clock duty		VDD = 2.5v		_	50	_	%	OSC1, Φ	
External clock rise time	tr	VDD = 2.5 V	1	_	_	50	ns	OSC1, Φ	
External clock fall time	tf	VDD = 2.5 V	,	_	_	50	ns	OSC1, Φ	
H-level input voltage (1)	VIH1	VDD = 2.5 V	,	0.8 VDD	_	VDD	V	CS, RD, WR,	
L-level input voltage (1)	VIL1	VDD = 2.5 V	,	0	_	0.2 Vdd	V	DB0 to DB3, Φ	
H-level input voltage (2)	VIH2	VDD = 2.5V		0.8 VDD	_	_	V	.,	
L-level input voltabe (2)	VIL2	VDD = 2.5 V		_	_	0.2 VDD	V	Xg	
H-level input leakage current	Ішн	VDD = 4.5 V	r	_	_	-1.0	μА	Φ, XG,	
L-level input leakage current	ILIL	VDD = 4.5 V		_	_	1.0	μΑ	DB0 to DB3	
Input pull-up current	IIPU	VDD = 3.5 V		1.0	4.0	15	μА	CS, RD, WR, A0	
H-level output current	Іон	VDD = 2.5 V	, Voн = 2.0 V	200	_	_	μΑ		
L-level output current	loL	VDD = 2.5 V	, Vol = 0.5 V	200	_	_	μΑ	DB3	
Common driver output current (1)	Іон	V _{DD} level	VDD-VLCD = 3.5 V	-20	_	_	μΑ		
Common driver output current (2)	loL	VLCD level	Voltage-divider	20	_	_	μΑ		
Common driver output current (3)	loL	V _{L1} level	resistor in low	±8	_	_	μΑ	COM1 to COM16	
Common driver output current (4)	loL	VL4 level	impedance state. 1/16 duty	±8	_	_	μΑ		
Segment drivrer output current (1)	Іон	V _{DD} level	0.5 V voltage drop	-12	_	_	μΑ		
Segment drivrer output current (2)	loL	VLCD level	Measured on one	12	_	_	μА		
Segment drivrer output current (3)	loL	VL2 level	pin with other pins open circuit.	±4	_	_	μΑ	SEG1 to SEG50	
Segment drivrer output current (4)	loL	VL3 level	open circuit.	±4	_	_	μΑ		
Voltage-divider resistor (1)	R _{d1}	Normal con	ditions	_	130	_	kΩ		
Voltage-divider resistor (2)	Rd2	Low impeda	ance state	_	13	_	kΩ		
Voltage-divider resistor low		1/8 Duty		_	11/400	_	_		
impedance duty	tRd1/tRd2	1/16 Duty		_	11/200	_	_		
Command execution time	tcomd	From WR rise time to the end of internal processing		_	_	16/Φ (MHz)	μs		
Average operating current	lod			_	60	_	μА	VDD	

AC Characteristics MPU Read Timing

 $V_{DD} = 4.5$ to 5.5 V, $T_{a} = -10$ to 70° C.

Parameter	Symbol		Unit			
Farameter	Symbol	min	typ	max	J.III	
Setup time for A0 \rightarrow \overline{RD}	tar	0	_	_	ns	
Setup time for $\overline{\text{CS}} \to \overline{\text{RD}}$	tcr	0	_	_	ns	
RD delay output time	trd	_	_	250	ns	
Hold time for $\overline{RD} \rightarrow A0$	tra	20	_	_	ns	
Hold time for $\overline{RD} \to \overline{CS}$	trc	20	_	_	ns	
Data hold time	tкн	10	_	_	ns	
Read pulsewidth	t RP	350	_	_	ns	
Input fall time	tf	_	_	50	ns	
Input rise time	tr	_	_	50	ns	

Note: Load on pin DB3 is CL = 100 pF.

2–10 **EPSON**

 $V_{DD} = 2.5$ to 4.5 V, $T_{a} = -10$ to 70° C.

Parameter	Symbol		Rating		Unit
Parameter	Symbol	min	typ	max	Onit
Setup time for A0 \rightarrow \overline{RD}	t ar	0	_	_	ns
Setup time for $\overline{\text{CS}} \to \overline{\text{RD}}$	tcr	0	_	_	ns
RD delay output time	trd	_	_	350	ns
Hold time for $\overline{RD} \rightarrow A0$	t ra	0	_	_	ns
Hold time for $\overline{RD} \to \overline{CS}$	trc	0	_	_	ns
Data hold time	tкн	10	_	_	ns
Read pulsewidth	trp	400	_	_	ns
Input fall time	t f	_	_	50	ns
Input rise time	t r	_	_	50	ns

Note: Load on pin DB3 is CL = 100 pF.

MPU Write Timing

 $V_{DD} = 5 \text{ V}, \text{ Ta} = -10 \text{ to } 70^{\circ}\text{C}.$

Parameter	Symbol		Rating		Unit
Farameter	Symbol	min	typ	max	Ollit
$A0 \rightarrow \overline{WR}$ setup time	taw	0	_	_	ns
$\overline{\text{CS}} o \overline{\text{WR}}$ setup time	tcw	0	_	_	ns
Data setup time	tos	120	_	_	ns
$\overline{ m WR} ightarrow m A0$ hold time	twa	20	_	_	ns
$\overline{WR} \to \overline{CS}$ hold time	twc	20	_	_	ns
Data hold time	tон	20	_	_	ns
Write pulsewidth	twp	200	_	_	ns
Upper write pulse rising edge to lower	tw1w2	200			20
write pulse falling edge time.	L VV1VV2	200	_	_	ns
Lower write pulse rising edge to upper	twovo	16/Φ			20
write pulse falling edge time.	twcyc	(MHz)	_	_	ns
Input fall time	tf	_	_	50	ns
Input rise time	tr			50	ns

$V_{DD} = 3 \text{ V}, \text{ Ta} = -10 \text{ to } 70^{\circ}\text{C}.$

Parameter	Symbol		Rating		Unit
Farameter	Symbol	min	typ	max	Oilit
$A0 \rightarrow \overline{WR}$ setup time	taw	0	_	_	ns
$\overline{\text{CS}} o \overline{\text{WR}}$ setup time	tcw	0	_	_	ns
Data setup time	tos	120	_	_	ns
$\overline{\text{WR}} \rightarrow \text{A0 hold time}$	twa	0	_	_	ns
$\overline{\text{WR}} \to \overline{\text{CS}}$ hold time	twc	0	_	_	ns
Data hold time	tон	100	_	_	ns
Write pulsewidth	twp	200	_	_	ns
Upper write pulse rising edge to lower	t w1w2	200			20
write pulse falling edge time.	L VV1VV2	200	_	_	ns
Lower write pulse rising edge to upper	twcyc	16/Φ			20
write pulse falling edge time.	twcyc	(MHz)	_	_	ns
Input fall time	tf	_	_	50	ns
Input rise time	tr		_	50	ns

2–12 **EPSON**

OPERATION

Data Input/Output

Because the command codes are 8-bits wide and the SED1200's data bus is only 4-bits wide, the command codes must be split into two nibbles (4-bits), which are written separately.

Nibble	High-order				Low-order			
Data Bus Bit	D3	D2	D1	D0	D3	D2	D1	D0
Command Bit	D7	D6	D5	D4	D3	D2	D1	D0

The high-order nibble is written first, and is latched internally by the SED1200. When the low-order nibble is written, the eight bits of data are shifted into either the

character registers or the command register, depending on the level of A0 during the low-nibble write cycle.

When the busy flag is read, only one read cycle is required.

New commands must not be written to the SED1200 if the device is executing one currently, so the busy flag should be checked before commands are written. It is not necessary to check the busy flag between writes of the upper and lower nibbles of commands. If the busy flag is not going to be checked between writes of individual commands then the MPU must wait long enough to allow for command execution to complete. The maximum time taken by the SED1200 to execute a command is $16/\Phi$, where Φ is the system clock frequency.

System Initialization

Figure 1 is a flow chart of a possible SED1200 initialization sequence. Note that busy flag checks, and busy/wait loops have been omitted for the sake of brevity.

Figure 1. Initialization Flow Chart

Loading CGRAM

The character generator RAM is loaded with a character bit pattern using a combination of one SET CGRAM ADDRESS command and eight SET CGRAM DATA commands. For example, to load the character shown in figure 2 into the area of CGRAM corresponding to character code 01H, the sequence shown in table 3 is used.

Figure 2. User Defined Character

TABLE 3. Loading User Defined Character

Step	A0	WR	Data	Action
1	0	0	21H	Set address of CGRAM 01
2	0	0	40H	Data for Row 1
3	0	0	41H	Data for Row 2
4	0	0	45H	Data for Row 3
5	0	0	49H	Data for Row 4
6	0	0	5FH	Data for Row 5
7	0	0	48H	Data for Row 6
8	0	0	44H	Data for Row 7
9	0	0	40H	Data for Row 8

Notes: 1. These steps do not include busy flag checks.

2. Row 8 maybe used by the underline cursor.

2–14 **EPSON**

Mechanical Specifications SED1200F Package Dimensions

SED1200D Package Dimensions

 $\begin{array}{ll} \text{Chip size:} & 5.86 \text{ mm} \times 3.41 \text{ mm} \\ \text{Chip thickness:} & 0.40 \text{ mm} \pm 0.03 \text{ mm} \\ \text{Pad size:} & 0.90 \text{ mm} \times 0.90 \text{ mm} \end{array}$

Pad pitch: 0.19 mm

Pad				Pa	ad			
Number	Name	Χ (μm)	Υ (μm)	Number	Name	Χ (μm)	Υ (μm)	
1	SEG17	2123	1552	41	COM10	-2220	-1552	
2	SEG16	1932	1552	42	COM11	-2029	-1552	
3	SEG15	1742	1552	43	COM12	-1839	-1552	
4	SEG14	1551	1552			-1648	-1552	
5	SEG13	1361	1552			-1458	-1552	
6	SEG12	1170	1552	46	COM15	-1267	-1552	
7	SEG11	980	1552	47	COM16	-1077	-1552	
8	SEG10	789	1552	48	SEG50	-886	-1552	
9	SEG9	599	1552	49	SEG49	-696	-1552	
10	SEG8	408	1552	50	SEG48	-505	-1552	
11	SEG7	218	1552	51	SEG47	-315	-1552	
12	SEG6	27	1552	52	SEG46	-124	-1552	
13	SEG5	-163	1552	53	SEG45	66	-1552	
14	SEG4	-354	1552	54	SEG44	257	-1552	
15	SEG3	-544	1552	55	SEG43	447	-1552	
16	SEG2	-735	1552	56	SEG42	638	-1552	
17	SEG1	-925	1552	57	SEG41	828	-1552	
18	COM1	-1116	1552	58	SEG40	1019	-1552	
19	COM2	-1306	1552	59	SEG39	1209	-1552	
20	COM3	-1497	1552	60	SEG38	1400	-1552	
21	COM4	-1687	1552	61	SEG37	1590	-1552	
22	COM5	-1878	1552	62	SEG36	1781	-1552	
23	COM6	-2068	1552	63	SEG35	1971	-1552	
24	COM7	-2259	1552	64	SEG34	2162	-1552	
25	COM8	-2778	1429	65	SEG33	2777	-1385	
26	A0	-2778	1238	66	SEG32	2777	-1195	
27	CS	-2778	1048	67	SEG31	2777	-1004	
28	RD	-2778	857	68	SEG30	2777	-814	
29	WR	-2778	667	69	SEG29	2777	-623	
30	Φ	-2778	476	70	SEG28	2777	-433	
31	OSC2	-2778	286	71	SEG27	2777	-242	
32	OSC1	-2778	95	72	SEG26	2777	-52	
33	D3	-2778	-95	73	SEG25	2777	139	
34	D2	-2778	-286	74	SEG24	2777	329	
35	D1	-2778	-476	75	SEG23	2777	520	
36	D0	-2778	-667	76	SEG22	2777	710	
37	Vss	-2778	-857	77	SEG21	2777	901	
38	VLCD	-2778	-1048	78	SEG20	2777	1091	
39	VDD	-2778	-1238	79	SEG19	2777	1282	
40	COM9	-2778	-1429	80	SEG18	2777	1472	

2–16 **EPSON**

APPLICATION NOTES

Display Oscillator

The SED1200 has an internal oscillator to generate the timing signals required for the LCD display.

If the internal oscillator is used, connect the feedback resistor Rf as shown in figure 3. The feedback resistor leads must be kept as short as possible to reduce stray capacitance and the possibility of crosstalk between the oscillator and adjoining signals.

Figure 3. Using the Internal Oscillator

If an external clock is used, connect it to OSC1, as shown in figure 4.

Figure 4. Using an External Clock

The relationship between the oscillator frequency and the LCD drive frame frequency is

fFR = fosc/1600

For example if fosc = 100 kHz, ffr = 62.5 Hz

Command Clock (Φ)

When the system MPU issues a command to the SED1200, the timing for the execution of the command is derived from Φ , the command clock. This would normally be the system MPU clock.

The maximum execution time for a command is $16/\Phi$. For example if Φ = 1 MHz, the maximum execution time for a command is $16 \mu s$.

LCD Drive Waveforms

The SED1200 has an internal low source-impedance voltage-driver network, of the form shown in figure 5. The switches SWd are closed to switch the segment data.

Figure 5. Internal Voltage Divider

2–18 **EPSON**

• LCD Drive Waveform – 1 Line Display (1/8 Duty Cycle)

• LCD Drive Waveform – 2 Line Display (1/16 Duty Cycle)

2–20 **EPSON**

LCD Display Interface

• 10 Characters on 1 line (1/8 duty)

• 10 Characters on 2 lines (1/16 duty)

EPSON

2-21

CPU Interface

• 4-bits CPU with internal I/O port

• 8-bit CPU with external I/O port

2–22 **EPSON**

• Interface with Z-80A type CPU

• Interface with 8085A type CPU

2–24 **EPSON**

APPENDIX A: CHARACTER CODES AND FONTS SED1200F0a/SED1200D0A

		Lower 4 bit (Do to D3) of Character Code (Hexadecimal)															
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	C		Л ARE DOTS	A												
	2		i	11		#	:	8	:	ſ.	>	:		:			
	3					4		<u>.</u>	:			## ##	# ;•	<.		>	•••
decimal)	4											"	K			ŀ	
ode (Hexa	5				5			Ų	Į, j	×	¥					.·*·	
aracter Co	6	-	-==		:				-===	 -	1		k	1		r	
D ₇) of Ch	7	-	-==	! "	-===	+		Ļ	ابرا	×			€	i	3		÷
Higher 4 bit (D4 to D7) of Character Code (Hexadecimal)	Α			ï		•	==			- 1			;				• 1.1
Higher 4	В			-4						-7	•		#				·!
	С	-#		ij		!	. †			#	,i	1			•••		
	D		<u></u>	×	-	†				Ņ		<u>.</u>		-	=	•.*•	

SED1200F0B/SED1200D0B

					Lov	ver 4 b	it (Do t	o D3) c	of Char	acter (Code (I	Hexade	ecimal))			
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	С	GRAN 5 x 8 [1 AREA	A												
	2		:	::					-	:.				::			
mal)	3											::	::				••••
Higher 4 bit (D4 to D7) of Character Code (Hexadecimal)	4																
r Code (F	5													•••		"	
Characte	6	==			=		====			! !	•	:					
to D7) of	7	: -		!	-:			i:			••		::::	:			
4 bit (D4	Α	•												:::::			
Higher	В	•••		:									•••		:::::	 	
	С				: :::												
	D								-								

2–26 **EPSON**

APPENDIX B: I/O TERMINAL STRUCTURE

• Input Terminal (No pull-up) Terminals used: Φ, OSC1

• Input Terminal (No pull-up) Terminals used: D0 to D2

• Output Terminal (No pull-up) Terminals used: OSC2

• Input Terminal (Pull-up) Terminals used: \overline{CS} , \overline{RD} , \overline{WR} , A0

2–28 **EPSON**

• I/O Terminal (No pull-up) Terminals used: D3

• LCD Drive Terminal (No pull-up) Terminals used: SEG1 to SEG50, COM1 to COM16

