Prevendo o peso cerebral

Exercício:

Parte 1: Desenvolva o código necessário para a fórmula básica da regressão linear simples, calculando os coeficientes.

Parte 2: Use o modelo para fazer previsões.

O dataset abaixo contém dados sobre medidas da cabeça de seres humanos e o peso do cérebro. Seu trabalho é criar um modelo de regressão linear simples que preveja o peso do cérebro conforme seu tamanho.

```
In [1]: # Importando as bibliotecas
   import pandas as pd
   import matplotlib.pyplot as plt
   /matplotlib inline
   import seaborn as sns
   from statsmodels.formula.api import ols
```

In [2]: # Carregando os dados
data = pd.read_csv('pesos2.csv')

In [3]: # Verificando as 5 primeiras Linhas
data.head()

Out[3]:

Sexo Grupo Head Size Brain Weight

1530 0 1 1 4512 1530 1 1 1 3738 1297 2 1 1 4281 1335 3 1 1 3777 1282 4 1 1 4177 1590

In [4]: # Verificando as 15 primeiras Linhas
data.head(15)

Out[4]:

	Sexo	Grupo	Head Size	Brain Weight
0	1	1	4512	1530
1	1	1	3738	1297
2	1	1	4261	1335
3	1	1	3777	1282
4	1	1	4177	1590
5	1	1	3585	1300
6	1	1	3785	1400
7	1	1	3559	1255
8	1	1	3613	1355
9	1	1	3982	1375
10	1	1	3443	1340
11	1	1	3993	1380
12	1	1	3840	1355
13	1	1	4208	1522
14	1	1	3832	1208

In [5]: # Verificando as 5 últimas Linhas data.tail()

Out[5]:

	Sexo	Grupo	Head Size	Brain Weight
282	2	2	3214	1110
233	2	2	3394	1215
234	2	2	3233	1104
235	2	2	3352	1170
236	2	2	3391	1120

In [6]: #Verificando o número de Linhas e colunas data.shape

Out[6]: (237, 4)

```
Out[6]: (237, 4)
In [20]: #Verificar se há valores NAN (Retirar se houver)
data.isnull().sum()
 Out[20]:
          Sexo
           Grupo
Head Size
Brain Weight
dtype: int64
In [27]: #Retirando a coluna Grupo
data.drop('Grupo' , axis = 1, inplace=True)
 In [28]: data.head()
 Out[28]:
              Sexo Head Size Brain Weight
           0 1 4512 1530
                        3738
                                    1297
           2 1 4261
                                 1335
           3 1
                       3777
                                    1282
           4 1 4177 1590
In [100]: #Mudando o nome das colunas para o portugues
data.rename(columns= {'Head Size':'tamanho da cabeca','Brain Weight':'peso do cerebro'}, inplace=True)
data.head()
Out[100]:
              Sexo tamanho da cabeca peso do cerebro
           0 1 4512 1530
                               3738
                                              1297
           2 1
                            4261
                                              1335
           3 1 3777 1282
4 1 4177 1590
 In [73]: #Utilizar o método describe para conhecer sua tabela data.describe()
 In [73]: #Utilizar o método describe para conhecer sua tabela
data.describe()
 Out[73]:
                          Sexo i tamanho da cabeca i peso do cerebro
              count 237.000000 237.000000 237.000000
              mean
                       1.434599
                                       3833 991581
                                                        1282 873418
             etd 0.496753 365.261422 120.340446
               min
                       1.000000
                                       2720.000000
                                                        955,000000
                                    3389.000000 1207.000000
                      1.000000
               25%
               50%
                       1.0000000
                                       3614.000000
                                                        1280.000000
              75% 2.000000 3876.000000 1350.000000
               max
                       2.000000
                                       4747.000000
                                                        1635.000000
  In [72]: #Fazer a correlação e seu gráfico de calor (heatmap)
corr= data.corr()
sns.heatmap(corr,annot = True)
 Out[72]: <matplotlib.axes._subplots.AxesSubplot at 0x1290ca2fd30>
                                                                             - 1.0
                                                                             - 0.8
                                                                             - 0.6
                                                                             0.4
              tamanho da cabeca
                                                                             - 0.2
                                                                             - 0.0
                                                                             -0.2
                 peso do cerebro
                                                  0.8
```


In [94]:
#Fazer um gráfico de dispersão Peso x Tamanho do Cérebro
sns.scatterplot(x= 'tamanho da cabeca', y= 'peso do cerebro', data=data)

Out[94]: <matplotlib.axes._subplots.AxesSubplot at 0x1290cb2e040>

```
In [94]: #Fazer um gráfico de dispersão Peso x Tamanho do Cérebro
sns.scatterplot(x= 'tamanho da cabeca', y= 'peso do cerebro', data=data)
```

Out[94]: <matplotlib.axes._subplots.AxesSubplot at 0x1290cb2e040>


```
In [98]: #Fazer a regressão Linear para prever o peso do cérebro, usando o tamanho dele
formula = 'tamanho da cabeca ~ peso do cerebro'
modelo_v1 = ols (formula, data = data).fit()
modelo_v1.sumary()
```

Traceback (most recent call last):

```
File "C:\Users\leona\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3343, in run_code exec(code_obj, self.user_global_ns, self.user_ns)
```

File "<ipython-input-98-95508697cbff>", line 4, in <module> modelo_v1 = ols (formula, data = data).fit()

File "C:\Users\leona\anaconda3\lib\site-packages\statsmodels\base\model.py", line 168, in from_formula tmp = handle_formula_data(data, None, formula, depth=eval_env,

File "C:\Users\leona\anaconda3\lib\site-packages\statsmodels\formula\formulatools.py", line 64, in handle_formula_data result = dmatrices(formula, Y, depth, return_type='dataframe',

File "C:\Users\leona\anaconda3\lib\site-packages\patsy\highlevel.py", line 309, in dmatrices (lhs, rhs) = _do_highlevel_design(formula_like, data, eval_env,

File "C:\Users\leona\anaconda3\lib\site-packages\patsy\highlevel.py", line 164, in _do_highlevel_design design_infos = _try_incr_builders(formula_like, data_iter_maker, eval_env,

File "C:\Users\leona\anaconda3\lib\site-packages\patsy\highlevel.py", line 66, in _try_incr_builders return design_matrix_builders{[formula_like.lhs_termlist,

File "C:\Users\lenna\anaconda3\lih\site-nackages\natsv\huild.nv". line 689. in design matrix huilders