GEL-21946Systèmes et commande linéaires

Examen #1

Vendredi 25 février 2005, 10h30-12h20

Document permis: une feuille 8.5 X 11 pouces

Professeur: André Desbiens, Département de génie électrique et de génie informatique

Note: Une bonne réponse sans justification ne vaut **aucun** point

Question 1 (25%)

Le lieu de Nyquist d'un système linéaire est tracé à la Figure 1. La Figure 2 illustre l'entrée qu'on applique au système. Que vaut la sortie à l'instant t = 12 secondes? À partir de t = 10 secondes, la réponse homogène peut être considérée nulle.

Figure 1

Question 2 (25%)

Un moteur DC à contrôle d'induit possède les spécifications suivantes :

Coefficient de frottement : négligeable

Couple au blocage pour une tension de 8 V : 0.01 N·m

Inductance de l'induit : négligeable

Inertie: $6x10^{-6}$ kg·m²

À partir du repos, si on applique un échelon de 8 V au moteur (sans charge), la vitesse enregistrée est illustrée à la Figure 3. Quel est le temps de réponse à $\pm 5\%$ du moteur?

Figure 3

Question 3(12.5% + 12.5% = 25%)

La Figure 4 représente la réponse en fréquences d'un système linéaire.

- a) Quelle est la fonction de transfert du système?
- b) Si on ajoutait un retard de 5 secondes à ce système, quelle serait la phase du système avec le retard à la fréquence $\omega = 2$ rad/s?

Figure 4

Question 4(10% + 15% = 25%)

La réponse en fréquences d'un système du second ordre est tracée à la Figure 5. Si on suppose les conditions initiales nulles et qu'on applique un échelon d'amplitude 2 à l'entrée de ce système,

- a) quelle est la valeur de la sortie en régime permanent?
- b) quelle est la plus grande valeur que prend la sortie?

Figure 5

Bonne chance!

- 1. Transformation de Laplace
 - Table des transformées :

f(t) pour t ≥0	F(s)
1	<u>1</u>
	S
t	1
	$\overline{s^2}$
e ^{-at}	_1_
	s + a
te ^{-at}	1
	$\sqrt{(s+a)^2}$
cos ωt	S
	$s^2 + \omega^2$
sin wt	ω
	$\overline{s^2 + \omega^2}$
$e^{-at}\cos \omega t$	s + a
	$\sqrt{(s+a)^2+\omega^2}$
$e^{-at} \sin \omega t$	ω
	$\sqrt{(s+a)^2+\omega^2}$

- $f(0^+) = \lim_{s \to \infty} sF(s)$ $f(\infty) = \lim_{s \to 0} sF(s)$
- $\mathcal{L}\frac{df(t)}{dt} = sF(s) f(0^+)$
- $\bullet \qquad \mathcal{L}\int_{0}^{t} f(\tau)d\tau = \frac{F(s)}{s}$
- $\mathcal{L}f(t-\theta)u_e(t-\theta) = e^{-\theta s}\mathcal{L}f(t)u_e(t)$
- 2. Système du deuxième ordre $G(s) = \frac{K}{1 + \frac{2\varsigma}{\omega_n} s + \frac{s^2}{\omega_n^2}}$
 - $\omega_P = \omega_n \sqrt{1 \varsigma^2}$ $\omega_R = \omega_n \sqrt{1 2\varsigma^2}$

 - $Q = \frac{1}{2c\sqrt{1-c^2}}$

Fig. 8-6. — Dépassements successifs de la réponse d'un système du second ordre à un échelon ou à un essai de lâcher. En abscisses: le facteur d'amortissement z. (D'après C.S. DRAPER, W. MCKAY et S. LEES, ouvrage cité au § I.Ab de la bibliographie, p. 257.)

FIG. 8-4. — Facteur de résonance vs facteur d'amortissement.

Fig. 8-11. — Temps de réponse T_r vs facteur d'amortissement. Noter (a) le minimum dans la zone z=0,7 et (b) les discontinuités pour z<0,7, conséquences de la définition du temps de réponse. (D'après C. Draper, W. McKay et S. Lees, loc. cit.)