

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. REPORT DATE (DD-MM-YYYY) 04 Jun 2016	2. REPORT TYPE Briefing Charts	3. DATES COVERED (From - To) 24 May 2016 – 04 Jun 2016		
4. TITLE AND SUBTITLE Capillary Discharge Thruster Experiments and Modeling (Briefing Charts)		5a. CONTRACT NUMBER		
		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) Robert Martin		5d. PROJECT NUMBER		
		5e. TASK NUMBER		
		5f. WORK UNIT NUMBER Q12G		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524-7013		8. PERFORMING ORGANIZATION REPORT NO.		
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQR 5 Pollux Drive Edwards AFB, CA 93524-7048		10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S) AFRL-RQ-ED-VG-2016-129		
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited				
13. SUPPLEMENTARY NOTES For presentation at STO-AVT-263 lecture series and VKI workshop; von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium (June 2016) PA Case Number: #16279; Clearance Date: 6/3/2016				
14. ABSTRACT Viewgraph/Briefing Charts				
15. SUBJECT TERMS N/A				
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON M. Young
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	SAR 83	19b. TELEPHONE NO (include area code) N/A

CAPILLARY DISCHARGE THRUSTER EXPERIMENTS AND MODELING

Robert Martin¹

ERC INC.¹, IN-SPACE PROPULSION BRANCH,
AIR FORCE RESEARCH LABORATORY
EDWARDS AIR FORCE BASE, CA USA

Electric propulsion systems
June 2016, Rhode-Saint-Genèse, Belgium

U.S. AIR FORCE

Distribution A: Approved for public release; Distribution Unlimited; PA# 16279

OUTLINE

- 1 INTRODUCTION
- 2 AFRL CDT EXPERIMENTS
- 3 CDT AND RELATED MODELS
- 4 CURRENT STATUS & FUTURE WORK
- 5 CONCLUSION

Spacecraft Propulsion Relevant Plasma:

- From hall thrusters to plumes and fluxes on components
- Complex reaction physics i.e. Discharge and Breakdown in FRC
- Relevant Densities often Span 6+ Orders of Magnitude
- Spatial scales of interest span μm - $100m$ range

Electric Propulsion Plumes

Chamber Environment

Spacecraft Propulsion Relevant Plasma:

- From hall thrusters to plumes and fluxes on components
- Complex reaction physics i.e. Discharge and Breakdown in FRC
- Relevant Densities often Span 6+ Orders of Magnitude
- Spatial scales of interest span μm - $100m$ range

All Relatively Low Energy Density...
Connection to HEDP Capillary Discharge?

All Rarefied Gas and Plasma

...and Highly Non-Equilibrium

Need Efficiency Across Thrust Range:

- Spacecraft Power is Constrained
 - Fundamental Tradeoff: Isp vs. Thrust
 - Optimal Trade Mission Dependent
(i.e. Station Keeping vs. Orbit Insertion)

Pancotti, PhD Dissertation, USC, 2009.

INTEREST IN PULSED PLASMA THRUSTERS

Need Efficiency Across Thrust Range:

- Spacecraft Power is Constrained
- Fundamental Tradeoff: Isp vs. Thrust
- Optimal Trade Mission Dependent
(i.e. Station Keeping vs. Orbit Insertion)
- Electrothermal - Electrostatic Gap

Burton, et. al., AIAA Paper, (TDS83-10), 1983.

INTEREST IN PULSED PLASMA THRUSTERS

Need Efficiency Across Thrust Range:

- Spacecraft Power is Constrained
- Fundamental Tradeoff: Isp vs. Thrust
- Optimal Trade Mission Dependent
(i.e. Station Keeping vs. Orbit Insertion)
- Electrothermal - Electrostatic Gap
- Burton Predicted¹/Demonstrated²
Efficient Pulsed Electrothermal (PET)

¹Burton, Goldstein, Tidman, Winsor, AIAA Paper, 82(1952), 1982.

²Burton, Fleischer, Goldstein, Tidman, Winsor, NASA, (CR-179464), 1984.

Pancotti, PhD Dissertation, USC, 2009.

MOTIVATION

Capillary Discharge Thruster Viability:

- Efficiency Gap for Moderate ISP EP (750s-3000s)
- Capillary Discharge Conceptually Efficient ($\eta_t > 65\%$) in this Range
- Burton Predicted $\eta_t \approx 80\%$
- Burton Observed only 56% Max (0.085 Ns @ 1600s Isp)
- Realizing full Efficiency requires Deeper HED Physics Understanding
- CDTs are Simple Small Devices Accessible to Lab Experiments

Must Converge...

Theory, Models, and Experiments

Burton, et. al., AIAA Paper, (TDS83-10), 1983.

CAPILLARY DISCHARGE PROCESS

Key Processes for Design & Efficiency:

- Assumptions
 - Unmagnetized/LTE/Coupling
- Energy Balance
 - Conduct/Evaporate/Bond Break/Ionize
- Ablation
 - Photo-ablation/Macro-particles/Pyrolysis
- Radiative Transport
 - Optical Depth/Spectrum
- Ionization/Recombination
 - Breakdown/Recombination Rate

Pancotti, PhD Dissertation, USC, 2009.

Key Processes for Design & Efficiency:

- Magnetization
 - Essentially Electrothermal
 - Weaker Assumption if $n = \mathcal{O}(1\text{e}24/m^3)$

Plasma- β :

$$\beta = \frac{P_T}{P_B}$$

$$P_T = nkT \quad \& \quad P_B = \frac{B^2}{2\mu_0}$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$\beta = \frac{8nkT}{\mu_0} \left(\frac{\pi r}{I} \right)^2$$

Using:

$$T=2\text{eV}, n=1\text{e}25/m^3, r=2\text{mm}, I=6\text{kA}$$

$$\beta=22\gg 1$$

CD PROCESS: ASSUMPTIONS

Key Processes for Design & Efficiency:

- Magnetization
- Local Thermodynamic Equilibrium
 - LTE: Acceleration/Collision Balance
 - Highly Collisional After Breakdown

LTE Parameter:

$$K = \frac{\Delta\epsilon_{e \leftrightarrow i}}{\Delta\epsilon_E}$$

$$\Delta\epsilon_{e<->i} = T \left(\frac{2m_e}{m_i} \right)$$

$$\Delta\epsilon_E = \frac{e^2}{m_e} \frac{E}{\nu_{ei}}$$

$$K = \frac{1}{128} \frac{e^6}{\pi^2 \epsilon_0^4 k^3} \frac{m_e}{m_i} \left(\frac{n}{ET} \right)^2$$

Using:

$$T=2\text{eV}, n=1\text{e}25/\text{m}^3, E=1\text{e}5\text{V/m}$$

$$K \approx 2.5e8$$

CD PROCESS: ASSUMPTIONS

Key Processes for Design & Efficiency:

- Magnetization
- Local Thermodynamic Equilibrium
- Plasma Coupling
 - Potential/Kinetic Energy Balance
 - Degree Ideal Plasma EOS Applies

Non-Ideal Parameter:

$$\Gamma = \frac{U_{PE}}{U_{KE}}$$

$$U_{PE} = \frac{e^2}{4\pi\epsilon_0\bar{r}} = \frac{e^2 n^{1/3}}{4\pi\epsilon_0}$$

$$U_{KE} = kT$$

$$\Gamma = \frac{e^2 n^{1/3}}{4\pi\epsilon_0 kT}$$

Using:

$$T=2\text{eV}, n=1\text{e}25/\text{m}^3$$

$$\Gamma \approx 0.16$$

Non-Ideal? $\Gamma < 1$, but not
 $\Gamma \ll 1$?

Ideal Assumption Used, but
Should be Revisited.

CD PROCESS: ENERGY

Key Processes for Design & Efficiency:

- Energy Balance

-Evaporate C₂H₄ from wall: 0.5eV

-Break C-C Bond: 4.5ev

-Break 4 C-H Bond: 14.0eV

Total 6 Atoms: 19.0ev

-Dissociation Energy/Atom: 3.2eV

-Mean Ionization Energy/Atom: 12.8ev

Total Energy/Ion: 16.0ev

Would be Energy Sink Inhibiting Efficiency... but
Recombination before Exit Captures Ion Energy!

Losses via Radiation/Conduction to Housing...
Limited on Discharge Timescales

Pancotti, PhD Dissertation, USC, 2009.

CD PROCESS: ABLATION

Key Processes for Design & Efficiency:

- Photo-Ablation

- Direct Ablation by Photon Energy
- Polymers Highly Susceptible to Photo-Ablation
- Still Requires $\lesssim 300\text{nm}$ Photons

$$h\nu = (1/2 mv^2 - E_{\text{bind}})$$

CD PROCESS: ABLATION

Key Processes for Design & Efficiency:

- Photo-Ablation

- Direct Ablation by Photon Energy
- Polymers Highly Susceptible to Photo-Ablation
- Still Requires $\lesssim 300\text{nm}$ Photons

- Macro-Particles

- Subsurface Energy Deposition
- Vaporization Ejects Macro-particles
- Particles Evaporate Quickly (S/V ratio)

CD PROCESS: ABLATION

Key Processes for Design & Efficiency:

• Photo-Ablation

- Direct Ablation by Photon Energy
- Polymers Highly Susceptible to Photo-Ablation
- Still Requires $\lesssim 300\text{nm}$ Photons

• Macro-Particles

- Subsurface Energy Deposition
- Vaporization Ejects Macro-particles
- Particles Evaporate Quickly (S/V ratio)

• Pyrolysis

- Thermal Evaporation
- Surface Temperature must Exceed T_{vap}
- Conductive Losses with T_{vap}

CD PROCESS: ABLATION

Key Processes for Design & Efficiency:

- Photo-Ablation

- Direct Ablation by Photon Energy
- Polymers Highly Susceptible to Photo-Ablation
- Still Requires $\lesssim 300\text{nm}$ Photons

- Macro-Particles

- Subsurface Energy Deposition
- Vaporization Ejects Macro-particles
- Particles Evaporate Quickly (S/V ratio)

- Pyrolysis

- Thermal Evaporation
- Surface Temperature must Exceed T_{vap}
- Conductive Losses with T_{vap}

Direct Ablation Preferable... Spectrum?

CD PROCESS: RADIATION

Key Processes for Design & Efficiency:

- Spectrum
 - Several Materials Investigated
 - Spectra Generated using PrismSpect®
- Optical Depth
 - $\lambda_{mfp}^{rad} \approx \mathcal{O}(1)R - \mathcal{O}(0.1)R$
 - High Radiation Conductivity → Uniform T

$$T=1.5\text{eV}, n=1.5\text{e}25 \text{ m}^{-3}$$

Pancotti, PhD Dissertation, USC, 2009.

Key Processes for Design & Efficiency:

- Ionization Process
 - Wire Breakdown is Chaotic

Pancotti, PhD Dissertation, USC, 2009.

Key Processes for Design & Efficiency:

- Ionization Process
 - Wire Breakdown is Chaotic
 - Paschen Breakdown more Predictable
 - Breakdown Voltage Density Dependent

Pancotti, PhD Dissertation, USC, 2009.

Key Processes for Design & Efficiency:

- Ionization Process
 - Wire Breakdown is Chaotic
 - Paschen Breakdown more Predictable
 - Breakdown Voltage Density Dependent
 - Spark

Pancotti, PhD Dissertation, USC, 2009.

Key Processes for Design & Efficiency:

- Ionization Process

- Wire Breakdown is Chaotic
- Paschen Breakdown more Predictable
- Breakdown Voltage Density Dependent
- Spark

- Recombination

- Recombination Rate:

$$\nu_e = \alpha_3 n^2 = 8.75 \times 10^{-27} T^{-9/2} n^2 \text{Hz}$$

(T in eV, n in cm⁻³)

- Thermal Velocity / Mean Free Path:

$$u = \sqrt{\frac{8kT}{\pi m}} \quad \lambda = \frac{u}{\nu_e}$$

Device	Burton PET
Density, n*	5.4e27/m ³
Temp, T*	4ev
Rate, ν_e	5.0e14 Hz
Velocity, u*	1.2e4 m/s
MFP, λ^*	2.4e-11 m

Device	Pancotti CDT ^(Est.)
Density, n*	1.0e25/m ³
Temp, T*	2ev
Rate, ν_e	3.9e10 Hz
Velocity, u*	9.6e3 m/s
MFP, λ^*	2.5e-7 m

2.5e-7 m ≪ 2mm

EXPERIMENTAL SETUP

Thruster Design & Ignition:

- Baseline

Pancotti, PhD Dissertation, USC, 2009.

EXPERIMENTAL SETUP

Thruster Design & Ignition:

- Baseline
- Wire Ignition
 - Simple and Reliable
 - Chaotic Process
 - Random Ignition Delays
 - Bi-Modal Performance
 - Only Single Use

Pancotti, PhD Dissertation, USC, 2009.

EXPERIMENTAL SETUP

Thruster Design & Ignition:

- Baseline
- Wire Ignition
 - Simple and Reliable
 - Chaotic Process
 - Random Ignition Delays
 - Bi-Modal Performance
 - Only Single Use
- Paschen Ignition
 - More Repeatable
 - Enabled Use of Thrust Stand
 - Requires some Background Density

Pancotti, PhD Dissertation, USC, 2009.

EXPERIMENTAL SETUP

Thruster Design & Ignition:

- Baseline
- Wire Ignition
 - Simple and Reliable
 - Chaotic Process
 - Random Ignition Delays
 - Bi-Modal Performance
 - Only Single Use
- Paschen Ignition
 - More Repeatable
 - Enabled Use of Thrust Stand
 - Requires some Background Density
- 3-Electrode Ignition
 - More Applicable to Space Vacuum
 - Dielectric Flashover
 - Less Electrode Erosion

Pancotti, PhD Dissertation, USC, 2009.

EXPERIMENTAL FACILITY

Pancotti, PhD Dissertation, USC, 2009.

TORSIONAL THRUST STAND

$$I\ddot{\Theta}(t) + C\dot{\Theta}(t) + K\Theta(t) = M(t)$$

$$I\frac{\ddot{X}(t)}{R_s} + C\frac{\dot{X}(t)}{R_s} + K\frac{X(t)}{R_s} = F_c(t) R_c$$

Pancotti, PhD Dissertation, USC, 2009.

TORSIONAL THRUST STAND

Pancotti, PhD Dissertation, USC, 2009.

Key Processes for Design & Efficiency:

- Linear Impulse with Energy

Pancotti, PhD Dissertation, USC, 2009.

PASCHEN IGNITION PERFORMANCE

Key Processes for Design & Efficiency:

- Linear Impulse with Energy
- Large Scatter in Isp

Pancotti, PhD Dissertation, USC, 2009.

PASCHEN IGNITION PERFORMANCE

Key Processes for Design & Efficiency:

- Linear Impulse with Energy
- Large Scatter in Isp
- Large Scatter in Efficiency

Pancotti, PhD Dissertation, USC, 2009.

PASCHEN IGNITION PERFORMANCE

Key Processes for Design & Efficiency:

- Linear Impulse with Energy
- Large Scatter in Isp
- Large Scatter in Efficiency
- Performance:
 - Impulse: 20-100 mNs
 - Specific Impulse: 350-700s
 - Efficiency: 8-17% (Nozzleless Design)

Scatter due to Electrode Erosion?

Pancotti, PhD Dissertation, USC, 2009.

Key Processes for Design & Efficiency:

- Same Linear Impulse with Energy
- Better Correlated

PASCHEN IGNITION PERFORMANCE

Key Processes for Design & Efficiency:

- Same Linear Impulse with Energy
- Better Correlated
- Clearer Isp Trends
- Higher Isp when Longer

PASCHEN IGNITION PERFORMANCE

Key Processes for Design & Efficiency:

- Same Linear Impulse with Energy
- Better Correlated
- Clearer Isp Trends
- Higher Isp when Longer
- Longer also Higher Efficiency

PASCHEN IGNITION PERFORMANCE

Key Processes for Design & Efficiency:

- Same Linear Impulse with Energy
- Better Correlated
- Clearer Isp Trends
- Higher Isp when Longer
- Longer also Higher Efficiency
- 8cm Efficiency Constant with Energy
- Performance:
 - Impulse: 30-120 mNs
 - Specific Impulse: 350-650s
 - Efficiency: 9-17% (Nozzleless Design)

TEMPERATURE FROM RESISTIVITY

Spitzer Resistivity:

- Ratio of Rate Electron Momentum Exchange to Current Density:

$$\eta = 1/\sigma = \frac{P_{ei}}{j}$$

- For a Lorentz Gas:

(Stationary Ions/Noninteracting Electrons)

$$\eta_L = \frac{pt^{3/2} Z m_e^2 c^2 \nu \ln \Lambda}{2(2kT)^{3/2}}$$

- With e-e Collisions (Spitzer-Härm)

$$\eta = \frac{\eta_L}{\gamma_E}$$

Ionic Charge Z	1	2	4	16	∞
γ_E	0.582	0.683	0.785	0.923	1.000

Pancotti, PhD Dissertation, USC, 2009.

OPTICAL DIAGNOSTICS

Pancotti, PhD Dissertation, USC, 2009.

Time Resolved OES:

- Uses Spectral Line Shape not Intensity
 - Simpler Calibration
- Pulsed Device Requires Time Resolved
- Kinetics Mode via Pixel Time Shifts
 - 5pixel/Spectra
 - $16\mu\text{s}/\text{Spectra}$
 - $0.1\text{nm}/\text{Pixel}$

Pancotti, PhD Dissertation, USC, 2009.

Time Resolved OES:

- Uses Spectral Line Shape not Intensity
 - Simpler Calibration
- Pulsed Device Requires Time Resolved
- Kinetics Mode via Pixel Time Shifts
 - 5pixel/Spectra
 - $16\mu\text{s}/\text{Spectra}$
 - $0.1\text{nm}/\text{Pixel}$

Pancotti, PhD Dissertation, USC, 2009.

Hydrogen- α Line Broadening:

- Neutral Broadening
(Small)
- Doppler Broadening
(H $_{\alpha}$, H $_{\beta}$:<1Å)
- Resonance Broadening
(N-N Collisions)
- Van der Waals Broadening
(Also N-N Collisions)
- Stark Broadening
 $\mathcal{O}(10\text{nm})$

$$\Delta_{1/2}^N \approx 1 \times 10^{-4} [\text{\AA}]$$

$$\Delta_{1/2}^D = 7.16 \times 10^{-7} \lambda_0 \sqrt{\frac{T}{M}} [\text{\AA}]$$

$$\Delta_{1/2}^R = 8.6 \times 10^{-30} \sqrt{\frac{g_i}{g_k}} \lambda_0^2 \lambda_r f_r N_i [\text{\AA}]$$

$$\Delta_{1/2}^W \approx 3 \times 10^{-30} \lambda_0^2 C_6^{2/5} \left(\frac{T}{\mu}\right)^{3/10} N [\text{\AA}]$$

$$\Delta_{1/2}^{S,H} \approx 2.5 \times 10^{-9} \alpha_{1/2} N_e^{2/3} [\text{\AA}]$$

ELECTRON DENSITY DIAGNOSTIC

Hydrogen- α Line Broadening:

- Neutral Broadening
- Doppler Broadening
- Resonance Broadening
- Van der Waals Broadening
- Stark Broadening

Table 3.3: Fractional Intensity Widths[48]

T (K)	T (eV)	N (#/m ³)	$\alpha_{1/2}$
5000	0.431	1×10^{21}	9.69×10^{-3}
5000	0.431	1×10^{22}	14.9×10^{-3}
5000	0.431	1×10^{23}	18.9×10^{-3}
5000	0.431	1×10^{24}	N/A
5000	0.431	1×10^{25}	N/A
10000	0.862	1×10^{21}	7.77×10^{-3}
10000	0.862	1×10^{22}	13.4×10^{-3}
10000	0.862	1×10^{23}	18.6×10^{-3}
10000	0.862	1×10^{24}	21.9×10^{-3}
10000	0.862	1×10^{25}	N/A
20000	1.723	1×10^{21}	6.01×10^{-3}
20000	1.723	1×10^{22}	11.4×10^{-3}
20000	1.723	1×10^{23}	17.5×10^{-3}
20000	1.723	1×10^{24}	22.6×10^{-3}
20000	1.723	1×10^{25}	23.5×10^{-3}
30000	2.588	1×10^{21}	4.98×10^{-3}
30000	2.588	1×10^{22}	10.0×10^{-3}
30000	2.588	1×10^{23}	16.6×10^{-3}
30000	2.588	1×10^{24}	22.9×10^{-3}
30000	2.588	1×10^{25}	25.7×10^{-3}
40000	3.447	1×10^{21}	4.50×10^{-3}
40000	3.447	1×10^{22}	9.29×10^{-3}
40000	3.447	1×10^{23}	15.8×10^{-3}
40000	3.447	1×10^{24}	22.5×10^{-3}
40000	3.447	1×10^{25}	26.9×10^{-3}

Huddlestone & Leonard, *Plasma Diagnostic Techniques*, Academic Press, '65.

$$\Delta_{1/2}^{S,H} \approx 2.5 \times 10^{-9} \alpha_{1/2} N_e^{2/3} [\text{\AA}]$$

ELECTRON DENSITY DIAGNOSTIC

Hydrogen- α Line Broadening:

- Neutral Broadening
- Doppler Broadening
- Resonance Broadening
- Van der Waals Broadening
- Stark Broadening

T (K)	T (eV)	N (#/m³)	$\alpha_{1/2}$
5000	0.431	1×10^{21}	9.69×10^{-3}
5000	0.431	1×10^{22}	14.9×10^{-3}
5000	0.431	1×10^{23}	18.9×10^{-3}
5000	0.431	1×10^{24}	N/A
5000	0.431	1×10^{25}	N/A
10000	0.862	1×10^{21}	7.77×10^{-3}
10000	0.862	1×10^{22}	13.4×10^{-3}
10000	0.862	1×10^{23}	18.6×10^{-3}
10000	0.862	1×10^{24}	21.5×10^{-3}
10000	0.862	1×10^{25}	N/A
20000	1.723	1×10^{21}	6.01×10^{-3}
20000	1.723	1×10^{22}	11.4×10^{-3}
20000	1.723	1×10^{23}	17.5×10^{-3}
20000	1.723	1×10^{24}	22.6×10^{-3}
20000	1.723	1×10^{25}	23.5×10^{-3}
30000	2.585	1×10^{21}	3.98×10^{-3}
30000	2.585	1×10^{22}	10.0×10^{-3}
30000	2.585	1×10^{23}	16.6×10^{-3}
30000	2.585	1×10^{24}	22.5×10^{-3}
30000	2.585	1×10^{25}	25.7×10^{-3}
40000	3.447	1×10^{21}	4.50×10^{-3}
40000	3.447	1×10^{22}	9.22×10^{-3}
40000	3.447	1×10^{23}	15.8×10^{-3}
40000	3.447	1×10^{24}	22.3×10^{-3}
40000	3.447	1×10^{25}	26.9×10^{-3}

Huddlestone & Leonard, *Plasma Diagnostic Techniques*, Academic Press, '65.

$$\Delta_{1/2}^{S,H} \approx 2.5 \times 10^{-9} \alpha_{1/2} N_e^{2/3} [\text{\AA}]$$

Time Resolved Electron Density:

- Spectrum fit to Lorentzian Profile:
$$f(\lambda - \lambda_0) = \frac{1}{\pi\gamma} \left[\frac{\gamma^2}{\lambda^2 + \gamma^2} \right] \text{ where } 2\gamma = \text{FWHM}$$

Pancotti, PhD Dissertation, USC, 2009.

Time Resolved Electron Density:

- Spectrum fit to Lorentzian Profile:
$$f(\lambda - \lambda_0) = \frac{1}{\pi\gamma} \left[\frac{\gamma^2}{\lambda^2 + \gamma^2} \right] \text{ where } 2\gamma = \text{FWHM}$$
- Fit inverted for n_e vs. Time
 - Density $\rightarrow 1e25/m^3$ Estimate
 - Optical Depth $\rightarrow \approx$ Exit Plane n_e ?

n_e vs. Time, 6cm Capillary

n_e vs. Time, 2500V Discharge

Pancotti, PhD Dissertation, USC, 2009.

0D Slab Model:

- Conservation of Mass:

$$V \cdot \frac{dn}{dt} = 2A_w \cdot \Gamma - A_e n^e C_s^e$$

- Conservation of Energy:

$$V \cdot \frac{d(n\epsilon)}{dt} = V \cdot \frac{I^2/A_e^2}{\sigma(n,T)} - A_e n^e C_s^e h - 2A_w \Theta$$

Where:

n is the Plasma/Gas Density

ϵ is the Energy Density

V is the Slab Volume

I is Current

A_w is the Wall Area

$\sigma(n, T)$ is the Conductivity

A_e is the Exit Area

h is the Enthalpy

Γ is the Ablation Flux

C_s is the Sound Speed

C_s is Sound Speed (at the Exit)

Θ is the Wall Energy Flux

Superscript- $(\cdot)^e$ is Isentropically Expanded Exit Value

Pekker, 40th AIAA Plasmadynamics and Laser Conference, 2009.

MODELING: 0D

0D Slab Model:

- Conservation of Mass:

$$V \cdot \frac{dn}{dt} = 2A_w \cdot \Gamma - A_e n^e C_s^e$$

- Conservation of Energy:

$$V \cdot \frac{d(n\epsilon)}{dt} = V \cdot \frac{I^2/A_e^2}{\sigma(n,T)} - A_e n^e C_s^e h - 2A_w \Theta$$

Fig. 6. Polyethylene number density in the plasma core region:
blue - $\eta = 0.5\text{mm}$, green - $\eta = 0.1\text{mm}$, red - $\eta = 0.02\text{mm}$

Fig. 8. Plasma temperature: blue - $\eta = 0.5\text{mm}$, green - $\eta = 0.1\text{mm}$, red - $\eta = 0.02\text{mm}$

Pekker, 40th AIAA Plasmadynamics and Laser Conference, 2009.

MODELING: 1D

1D PDE Model:

- Conservation of Mass:

$$\frac{\partial(A\rho)}{\partial t} + \frac{\partial}{\partial x} [(A\rho u)] = A_w \cdot \Gamma$$

- Conservation of Momentum:

$$\frac{\partial(A\rho u)}{\partial t} + \frac{\partial}{\partial x} [(A(\rho u + p))] = p \frac{\partial A}{\partial x} - A_w f$$

- Conservation of Energy:

$$\frac{\partial(Ae)}{\partial t} + \frac{\partial}{\partial x} [(Au(e + p))] = A (Q_j - Q_{rad} - Q_{conv} - Q_{ab} - \Phi)$$

Where:

A is the Cross Section Area

ρ is the Mass Density

u is the Velocity

A_w is the Wall Surface Area

Γ is the Ablation Mass Flux

p is the Pressure

f is the Viscous Wall Friction

e is the Total Energy

Q_j is the Joule Heating

Q_{rad} is the Radian Energy Losses

Q_{conv} is the Convection Energy Losses

Q_{ab} is the Ablation Energy

Φ is Viscous Wall Energy Loss

MODELING: 1D

1D PDE Model:

- Conservation of Mass:

$$\frac{\partial(A\rho)}{\partial t} + \frac{\partial}{\partial x} [(A\rho u)] = A_w \cdot \Gamma$$

- Conservation of Momentum:

$$\frac{\partial(A\rho u)}{\partial t} + \frac{\partial}{\partial x} [(A(\rho u + p))] = p \frac{\partial A}{\partial x} - A_w f$$

- Conservation of Energy:

$$\frac{\partial(Ae)}{\partial t} + \frac{\partial}{\partial x} [(Au(e + p))] = A(Q_j - Q_{rad} - Q_{conv} - Q_{ab} - \Phi)$$

Energy Flux for 5cm 2500V Capillary Discharge

Comparison of 1D Model- n_e and Experimental Observation

Pancotti, PhD Dissertation, USC, 2009.

COMPARISON OF MODEL AND EXPERIMENT

Discharge Current Predictions:

- Comparison of 2500V Discharge
- Similar Profiles/Trends
- Wire Highest Current
- Paschen Lowest Current
- Models Over-Predict Tail (Especially 0D)
- Initial dI/dt Incorrect

Pancotti, PhD Dissertation, USC, 2009.

ADDITIONAL THRUSTER DEVELOPMENT

For Proof-of-Concept Demonstration:

- Repeatable Ignition
 - 3-Electrode System developed by Pancotti
- Desired Isp & η
 - Nozzle added for Efficient Energy Conversion
 - Additional Propellant Materials were Studied
 - High Efficiencies Demonstrated, Isp \approx 1000s

AFRL-RQ-ED-TR-2012-0045

ADDITIONAL THRUSTER DEVELOPMENT

For Proof-of-Concept Demonstration:

- Repeatable Ignition
 - 3-Electrode System developed by Pancotti
- Desired Isp & η
 - Nozzle added for Efficient Energy Conversion
 - Additional Propellant Materials were Studied**
 - High Efficiencies Demonstrated, Isp \approx 1000s

Tested Capillary Discharge Materials

• HDPE	• PEEK	• FEP
• Nylon 6/6	• Pyropel HD	• PPS
• Molybdenum Diboride/Nylon	• Vespol	• Delrin
• Teflon	• K-Fel	• PTFE Delrin
• Graphite Teflon	• Ruon 123	• POM
• Fluorosint LF207	• Ruon 142	• Acetal Copolymer
• Fluorosint HPV	• Torkon	• Turtite
	• Radel	• PVDF

AFRL-RQ-ED-TR-2012-0045

ADDITIONAL THRUSTER DEVELOPMENT

For Proof-of-Concept Demonstration:

- Repeatable Ignition
 - 3-Electrode System developed by Pancotti
- Desired Isp & η
 - Nozzle added for Efficient Energy Conversion
 - Additional Propellant Materials were Studied
 - High Efficiencies Demonstrated, Isp \approx 1000s**

Tested Capillary Discharge Materials		
• HDPE	• PEEK	• FEP
• Nylon 6/6	• Pyropel HD	• PPS
• Molybdenum Dicarboxylate Nylon	• Vespel	• Delrin
• Teflon	• K-Fel	• PTFE Delrin
• Graphite Teflon	• Rulon 123	• POM
• Fluorosint LF207	• Rulon 142	• Acetal Copolymer
• Fluorosint HFV	• Teflon	• Turcite
	• Radel	• PVDF

AFRL-RQ-ED-TR-2012-0045

ADDITIONAL THRUSTER DEVELOPMENT

For Proof-of-Concept Demonstration:

- Repeatable Ignition
 - 3-Electrode System developed by Pancotti
- Desired Isp & η
 - Nozzle added for Efficient Energy Conversion
 - Additional Propellant Materials were Studied
 - High Efficiencies Demonstrated, Isp \approx 1000s
- Robust Propellant feed Mechanism
 - Remains Unresolved
 - Burton studied Liquid/Gas Schemes
 - Additional research Required

Tested Capillary Discharge Materials		
<ul style="list-style-type: none">• HDPE• Nylon 6/6• Molybdenum Dioxide Nylon• Teflon• Graphite Teflon• Fluorosil LF207• Fluorosil HFV	<ul style="list-style-type: none">• PEEK• Pyrope HD• Vespol• K-Fel• Rulon 123• Rulon 142• Torkon• Radel	<ul style="list-style-type: none">• FEP• PPS• Delrin• PTFE Delrin• POM• Acetal Copolymer• Turcite• PVDF

AFRL-RQ-ED-TR-2012-0045

Breakdown non-LTE:

- Many Particles $\rightarrow \approx$ Continuous Distribution

VDF

Breakdown non-LTE:

- Many Particles $\rightarrow \approx$ Continuous Distribution
 - Discretized VDF yields Vlasov Models
- But 3D3V Severe Dimensionality Curse

Breakdown non-LTE:

- Many Particles $\rightarrow \approx$ Continuous Distribution
- Discretized VDF yields Vlasov Models
But 3D3V Severe Dimensionality Curse
- Particle Methods (i.e. PIC) Simplify to Delta Functions
- Sparse Representation in 3D3V Phase Space
But Added Noise and Low Dynamic Range

Breakdown non-LTE:

- Many Particles → ≈ Continuous Distribution
- Discretized VDF yields Vlasov Models
But 3D3V Severe Dimensionality Curse
- Particle Methods (i.e. PIC) Simplify to Delta Functions
- Sparse Representation in 3D3V Phase Space
But Added Noise and Low Dynamic Range
- Collisions between Discrete Velocities
- Inelastic Collisions in Tail Impact High Moments

Breakdown non-LTE:

- Many Particles → ≈ Continuous Distribution
- Discretized VDF yields Vlasov Models
But 3D3V Severe Dimensionality Curse
- Particle Methods (i.e. PIC) Simplify to Delta Functions
- Sparse Representation in 3D3V Phase Space
But Added Noise and Low Dynamic Range
- Collisions between Discrete Velocities
- Inelastic Collisions in Tail Impact High Moments
- All-or-Nothing Collision → Rare Large Events

Breakdown non-LTE:

- Many Particles $\rightarrow \approx$ Continuous Distribution
- Discretized VDF yields Vlasov Models
But 3D3V Severe Dimensionality Curse
- Particle Methods (i.e. PIC) Simplify to Delta Functions
- Sparse Representation in 3D3V Phase Space
But Added Noise and Low Dynamic Range
- Collisions between Discrete Velocities
- Inelastic Collisions in Tail Impact High Moments
- All-or-Nothing Collision \rightarrow Rare Large Events
- Variable Weights \rightarrow more DOF representing Tails

Breakdown non-LTE:

- Many Particles → ≈ Continuous Distribution
- Discretized VDF yields Vlasov Models
But 3D3V Severe Dimensionality Curse
- Particle Methods (i.e. PIC) Simplify to Delta Functions
- Sparse Representation in 3D3V Phase Space
But Added Noise and Low Dynamic Range
- Collisions between Discrete Velocities
- Inelastic Collisions in Tail Impact High Moments
- All-or-Nothing Collision → Rare Large Events
- Variable Weights → more DOF representing Tails
- Fractional Collisions → New Numerical Particles

Breakdown non-LTE:

- Many Particles $\rightarrow \approx$ Continuous Distribution
- Discretized VDF yields Vlasov Models
But 3D3V Severe Dimensionality Curse
- Particle Methods (i.e. PIC) Simplify to Delta Functions
- Sparse Representation in 3D3V Phase Space
But Added Noise and Low Dynamic Range
- Collisions between Discrete Velocities
- Inelastic Collisions in Tail Impact High Moments
- All-or-Nothing Collision \rightarrow Rare Large Events
- Variable Weights \rightarrow more DOF representing Tails
- Fractional Collisions \rightarrow New Numerical Particles
- Conservative Merge Needed to Control Growth

Breakdown non-LTE:

- Many Particles $\rightarrow \approx$ Continuous Distribution
- Discretized VDF yields Vlasov Models
But 3D3V Severe Dimensionality Curse
- Particle Methods (i.e. PIC) Simplify to Delta Functions
- Sparse Representation in 3D3V Phase Space
But Added Noise and Low Dynamic Range
- Collisions between Discrete Velocities
- Inelastic Collisions in Tail Impact High Moments
- All-or-Nothing Collision \rightarrow Rare Large Events
- Variable Weights \rightarrow more DOF representing Tails
- Fractional Collisions \rightarrow New Numerical Particles
- Conservative Merge Needed to Control Growth

Phase-Space Decomposition

- Given a Set of Particles...

Phase-Space Decomposition

- Given a Set of Particles...
- Particles Binned in Octants

Phase-Space Decomposition

- Given a Set of Particles...
- Particles Binned in Octants
- Octants Recursively Sub-Divided

Phase-Space Decomposition

- Given a Set of Particles...
- Particles Binned in Octants
- Octants Recursively Sub-Divided
- Recursion Halted at 1-Particle/Bin or Other Criteria such as Bin-Density

Restricts Phase-Space Diffusion to
Within Local Bins

(Entropy, $\sum n \log(n)$, Constant within Octree Adaptive Quadrature)

250V DC-Diode Test Case:

- Full 3D Electrostatic-PIC
- Averaged to 1D XT-Plot
- 250V Cathode → Anode
- MCC-Ionization Collisions
- Secondary Emission at Cathode

Control

Merged

250V DC-Diode Test Case:

- Full 3D Electrostatic-PIC
- Averaged to 1D XT-Plot
- 250V Cathode → Anode
- MCC-Ionization Collisions
- Secondary Emission at Cathode
- Weak Chain-Branching
(Marginal on Paschen Curve)

250V DC-Diode Test Case:

- Full 3D Electrostatic-PIC
- Averaged to 1D XT-Plot
- 250V Cathode → Anode
- MCC-Ionization Collisions
- Secondary Emission at Cathode
- Weak Chain-Branching
(Marginal on Paschen Curve)
- Negligible Merge Overhead

250V DC-Diode Test Case:

- Full 3D Electrostatic-PIC
- Averaged to 1D XT-Plot
- 250V Cathode → Anode
- MCC-Ionization Collisions
- Secondary Emission at Cathode
- Weak Chain-Branching
(Marginal on Paschen Curve)
- Negligible Merge Overhead
- Control: Parts/Cell \propto Density

Control

Merged

250V DC-Diode Test Case:

- Full 3D Electrostatic-PIC
- Averaged to 1D XT-Plot
- 250V Cathode → Anode
- MCC-Ionization Collisions
- Secondary Emission at Cathode
- Weak Chain-Branching
(Marginal on Paschen Curve)
- Negligible Merge Overhead
- Control: Parts/Cell \propto Density
- Merge: Parts/Cell **Reduced**

250V DC-Diode Test Case:

- Full 3D Electrostatic-PIC
- Averaged to 1D XT-Plot
- 250V Cathode → Anode
- MCC-Ionization Collisions
- Secondary Emission at Cathode
- Weak Chain-Branching
(Marginal on Paschen Curve)
- Negligible Merge Overhead
- Control: Parts/Cell \propto Density
- Merge: Parts/Cell **Reduced**
- Despite Identical Densities

Control

Merged

1KV DC-Diode Test Case:

- Voltage increased to 1KV
- Otherwise Identical to 250V
- Much Stronger Ionization

Control

Merged

Martin, Cambier, JCP, (accepted), 2016.

(doi:10.1016/j.jcp.2016.01.020)

1KV DC-Diode Test Case:

- Voltage increased to 1KV
- Otherwise Identical to 250V
- Much Stronger Ionization
- Major Features Captured

Control

Merged

Martin, Cambier, JCP, (accepted), 2016.

(doi:10.1016/j.jcp.2016.01.020)

1KV DC-Diode Test Case:

- Voltage increased to 1KV
- Otherwise Identical to 250V
- Much Stronger Ionization
- Major Features Captured
- Some Features Lost...

Control

Merged

Martin, Cambier, JCP, (accepted), 2016.

(doi:10.1016/j.jcp.2016.01.020)

1KV DC-Diode Test Case:

- Voltage increased to 1KV
- Otherwise Identical to 250V
- Much Stronger Ionization
- Major Features Captured
- Some Features Lost...
- Might be Captured by Increasing Target #/cell?

Control

Merged

Martin, Cambier, JCP, (accepted), 2016.

(doi:10.1016/j.jcp.2016.01.020)

1KV DC-Diode Test Case:

- Voltage increased to 1KV
- Otherwise Identical to 250V
- Much Stronger Ionization
- Major Features Captured
- Some Features Lost...
- Might be Captured by Increasing Target #/cell?
- 26x Speedup

Control
Run: 6hr12min

Merged
Run: 14min

Martin, Cambier, JCP, (accepted), 2016.

(doi:10.1016/j.jcp.2016.01.020)

1KV DC-Diode Test Case:

- Voltage increased to 1KV
- Otherwise Identical to 250V
- Much Stronger Ionization
- Major Features Captured
- Some Features Lost...
- Might be Captured by Increasing Target #/cell?
- 26x Speedup
- Control Halted Mem>15GB

Martin, Cambier, JCP, (accepted), 2016.

(doi:10.1016/j.jcp.2016.01.020)

1KV DC-Diode Test Case:

- Voltage increased to 1KV
- Otherwise Identical to 250V
- Much Stronger Ionization
- Major Features Captured
- Some Features Lost...
- Might be Captured by Increasing Target #/cell?
- 26x Speedup
- Control Halted Mem>15GB
- Major VDF Features Captured
- Future? Hybrid Kinetic/Fluid

VDFs at 3ns

Martin, Cambier, JCP, (accepted), 2016.

(doi:10.1016/j.jcp.2016.01.020)

ACKNOWLEDGMENTS

Thank You

This Presentation is derived from Anthony Pancotti's Dissertation Work:

A Study of Ignition Effects on Thruster Performance of a Multi-Electrode Capillary Discharge using Visible Emission Spectroscopy Diagnostics

(<http://digital.library.usc.edu/cdm/ref/collection/p15799coll127/id/270907>)

The work was supported by the former AFRL-RQ Advanced Concepts Team:

Marcus Young, David Scharfe, Jean-Luc Cambier, and Andrew Ketsdever

Along with the USC Faculty and Staff, Sergey & Natasha Gimelshein, and Leonid Pekker.

Special Thanks to Marcus Young and Jean-Luc Cambier for Background Materials

Questions?