ЗАДАНИЕ ПО ФИЗИКЕ ВАРИАНТ 27111 для 11-го класса

1. Некоторое количество одноатомного идеального газа совершает два различных процесса a и δ (см. рис.). Сравните теплоемкости газа в этих процессах в точке D.

- 2. Два тела, массы которых равны m_1 и $m_2 = 2m_1$, начинают двигаться в O T_0 поле силы тяжести. В начальный момент времени их скорости взаимно перпендикулярны и равны, соответственно, v_1 =3 м/с и v_2 =4 м/с. Через некоторый промежуток времени скорость первого тела стала равна нулю. Найдите скорость второго тела через тот же промежуток времени. Сила сопротивления движению отсутствует.
- 3. Анод и катод вакуумного диода представляют собой плоскопараллельные пластины, которые подключены к источнику постоянного напряжения через реостат. При изменении сопротивления реостата напряжение на диоде связано с силой тока в цепи выражением $U=C\sqrt[3]{I^2}$. Как изменится сила давления электронов о поверхность анода, если напряжение между пластинами увеличить в 3 раза? Начальной скоростью электронов пренебречь.
- 4. В одном сосуде находится сухой воздух. В другом таком же сосуде находится влажный воздух с относительной влажностью $\varphi=50\%$. На сколько процентов отличаются плотности сухого и влажного воздуха в сосудах, если их температуры и давления одинаковы? Молярная масса воздуха $M_{\rm B}=29$ г/моль, молярная масса водяного пара $M_{\rm \Pi}=18$ г/моль. Давление насыщенных паров при данной температуре определяется формулой $p_{\rm Hac}=0,2p$, где p-давление влажного воздуха. Постройте качественно график зависимости плотности воздуха от его относительной влажности $\rho(\varphi)$.
- 5. Маленький шарик радиусом R=1 см изготовлен из меди (плотность $\rho=8,96$ г/см³) и покрыт тонким слоем материала, полностью поглощающего электромагнитное излучение. Он вращается вокруг Солнца по почти круговой орбите радиусом $r=15\cdot10^7$ км со скоростью $v=30\,$ км/с. Поглощая электромагнитные волны, шарик полностью переизлучает их в пространство так, что не нагревается. Определите тангенциальное ускорение торможения шарика. Считайте, что интенсивность излучения Солнца («солнечная постоянная») на орбите шарика составляет $J=1,36\,$ кВт/м². Влиянием других тел, любым излучением (кроме электромагнитного), магнитным полем Солнца и т. д. пренебречь. Температура во всех точках шарика одинакова и не меняется со временем. Скорость света $c=3\cdot10^8\,$ м/с.