Lecture 3

Introduction to optimization: Gradient descent

GEOL 4397: Data analytics and machine learning for geoscientists

Jiajia Sun, Ph.D. Jan. 24th, 2019

Today's agenda

- Motivation
- Concept: gradient
- Gradient descent
 - Stochastic gradient descent
 - Mini-batch gradient descent
- Learning rate

Motivation

Each point represents one training example/instance.

Figure from Aurelien Geron's ML book, page 19

General approach to learning/training

defining a cost function &

minimizing it

Minimization

Cost function measures how bad a candidate model is

min
$$J(\theta_0, \theta_1) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

Learning/training = Minimization = Optimization

 Optimization: finding optimal parameter values that minimize a cost function

Matrix-vector form

$$J(\theta) = \sum_{i=1}^{M} (\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)})^{2}$$

$$J(\theta) = \|\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y}\|^{2}$$

$$X = \begin{bmatrix} (x^{(1)})^T \\ \dots \\ (x^{(M)})^T \end{bmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ \dots \\ y^{(M)} \end{bmatrix}$$

$$Mx(N+1) \qquad Mx1$$

Analytical solution

• Minimize:

$$J(\theta) = \|X\theta - y\|^2$$

$$\widetilde{\boldsymbol{\theta}} = \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}(\boldsymbol{X}^T\boldsymbol{y})$$

Analytical solution

• Minimize:

$$J(\theta) = \|X\theta - y\|^2$$

Normal equation method

$$\widetilde{\boldsymbol{\theta}} = \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}(\boldsymbol{X}^T\boldsymbol{y})$$

Analytical solution

Minimize:

$$J(\theta) = \|X\theta - y\|^2$$

Normal equation method

$$\widetilde{\boldsymbol{\theta}} = \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}(\boldsymbol{X}^T\boldsymbol{y})$$

theta = np.matmul(np.linalg.inv(np.matmul(X.T,X)), np.matmul(X.T,y))

To derive normal equation (optional)

 http://www.programmingtechniques.com/2013/12/gradient-descent-versusnormal-equation.html

http://cs229.stanford.edu/notes/cs229-notes1.pdf
 page 8-11

$$\widetilde{\boldsymbol{\theta}} = \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}(\boldsymbol{X}^T\boldsymbol{y})$$

$$\widetilde{\boldsymbol{\theta}} = (X^T X)^{-1} (X^T y)$$
(N+1)X(N+1)

Computational cost

increases linearly with M (# of instances)

$$\widetilde{\boldsymbol{\theta}} = (X^T X)^{-1} (X^T y)$$
(N+1)X(N+1)

Computational cost

- increases linearly with M (# of instances)
- Increases cubically* with N (# of features)

^{*}Strictly speaking, computational complexity is $O(N^{2.4})$ to $O(N^3)$. If we double the number of features, the computation time increase by $2^{2.4} = 5.3$ to $2^3 = 8$ times

$$\widetilde{\boldsymbol{\theta}} = (X^T X)^{-1} (X^T y)$$
(N+1)X(N+1)

Computational cost

- increases linearly with M (# of instances)
- Increases cubically* with N (# of features)
- For big data, computationally very expensive

^{*}Strictly speaking, computational complexity is $O(N^{2.4})$ to $O(N^3)$. If we double the number of features, the computation time increase by $2^{2.4} = 5.3$ to $2^3 = 8$ times

$$\widetilde{\boldsymbol{\theta}} = (X^T X)^{-1} (X^T y)$$
(N+1)X(N+1)

Computational cost

- increases linearly with M (# of instances)
- Increases cubically* with N (# of features)
- For big data, computationally very expensive

Think about the life satisfaction problem, we only used one feature, i.e., GDP per capita. What other features could we use?

^{*}Strictly speaking, computational complexity is $O(N^{2.4})$ to $O(N^3)$. If we double the number of features, the computation time increase by $2^{2.4} = 5.3$ to $2^3 = 8$ times

$$\widetilde{\boldsymbol{\theta}} = (X^T X)^{-1} (X^T y)$$
(N+1)X(N+1)

Computational cost

- increases linearly with M (# of instances)
- Increases cubically* with N (# of features)
- For big data, computationally very expensive

For nonlinear optimization, normal equation does not even exist.

^{*}Strictly speaking, computational complexity is $O(N^{2.4})$ to $O(N^3)$. If we double the number of features, the computation time increase by $2^{2.4} = 5.3$ to $2^3 = 8$ times

Gradient descent

- Computationally less demanding
- Generally applicable to both linear and nonlinear optimization*

^{*}so long as gradient can be calculated.

What is gradient?

Let us first recall what is derivative.

Picture taken from https://en.wikipedia.org/wiki/Derivative

From derivative to gradient

- Let us consider a function f(x, y)
- Two partial derivatives

$$\frac{\partial f}{\partial x}$$

$$\frac{\partial f}{\partial y}$$

Gradient

• Gradient of a function f(x, y) is defined as

$$\nabla f(x, y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

More on gradient

- It is a vector
- Therefore, it has direction and magnitude
- Its direction points in the direction of the greatest rate of increase (i.e., <u>direction of maximum</u> <u>increase</u>) of the function
- Its magnitude is the slope of the graph of the function (i.e., the rate of increase) in that direction

 Imagine you are standing on a hillside. Look all around you, and find the direction of steepest ascent.

- Imagine you are standing on a hillside. Look all around you, and find the direction of steepest ascent.
- That is the direction of the gradient.

- Imagine you are standing on a hillside. Look all around you, and find the direction of steepest ascent.
- That is the direction of the gradient.
- Now measure the slope in that direction (rise over run)

- Imagine you are standing on a hillside. Look all around you, and find the direction of steepest ascent.
- That is the direction of the gradient.
- Now measure the slope in that direction (rise over run)
- That is the magnitude of the gradient.
- Here, the function is the height of hill (as a function of positions).

Understanding gradient

- Consider the topography as a 2D function f(x, y)
- The gradient direction tells you the fastest way up

Picture taken from https://mathoverflow.net/questions/1977/why-is-the-gradient-normal

Gradient in the context of optimization

 Optimization problem is often posed as a minimization problem 100 $J(heta_{\scriptscriptstyle 0}, heta_{\scriptscriptstyle 1})$ 50 10 10 We want to find where the -10 -10 minimum of a cost function is. θ_1

Picture taken from Andrew Ng's Machine Learning class on Coursera.org

Gradient descent algorithm

- Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$
- While (not convergence):

$$\boldsymbol{\theta}^{(j)} = \boldsymbol{\theta}^{(j-1)} - \alpha \nabla J(\boldsymbol{\theta}^{(j-1)})$$

Gradient descent algorithm

- Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$
- While (not convergence):

$$\theta_0^{(j)} = \theta_0^{(j-1)} - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0^{(j-1)}, \theta_1^{(j-1)})$$

$$\theta_1^{(j)} = \theta_1^{(j-1)} - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0^{(j-1)}, \theta_1^{(j-1)})$$

Gradient descent algorithm for linear regression

- Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$
- While (not convergence):

$$\theta_0^{(j)} = \theta_0^{(j-1)} - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0^{(j-1)}, \theta_1^{(j-1)})$$

$$\theta_1^{(j)} = \theta_1^{(j-1)} - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0^{(j-1)}, \theta_1^{(j-1)})$$

$$\min \quad J(\theta_0, \theta_1) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

Gradient descent algorithm for linear regression

- Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$
- While (not convergence):

$$\theta_0^{(j)} = \theta_0^{(j-1)} - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0^{(j-1)}, \theta_1^{(j-1)})$$

$$\theta_1^{(j)} = \theta_1^{(j-1)} - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0^{(j-1)}, \theta_1^{(j-1)})$$

$$\min \quad J(\theta_0, \theta_1) = \frac{1}{2M} \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

Gradient descent algorithm for linear regression

- Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$
- While (not convergence):

$$\theta_0^{(j)} = \theta_0^{(j-1)} - \alpha \frac{1}{M} \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})$$

$$\theta_1^{(j)} = \theta_1^{(j-1)} - \alpha \frac{1}{M} \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) x^{(i)}$$

Slides 36-44 are from Andrew Ng's machine learning course on coursera.org

(for fixed θ_0 , θ_1 , this is a function of x) $\begin{array}{c} 700 \\ 600 \\ \hline \\ 500 \\ \hline \\ 400 \\ \hline \\ 200 \\ \hline \\ 100 \\ \hline \end{array}$

Size (feet²)

 $h_{\theta}(x)$

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

(for fixed θ_0 , θ_1 , this is a function of x) $\begin{array}{c} 700 \\ 600 \\ \hline \\ 500 \\ \hline \\ 400 \\ \hline \\ \hline \\ 200 \\ \hline \\ 100 \\ \hline \end{array}$

Size (feet²)

 $h_{\theta}(x)$

 $J(\theta_0,\theta_1)$ (function of the parameters θ_0,θ_1)

(for fixed θ_0 , θ_1 , this is a function of x) $\begin{array}{c}
700 \\
600 \\
\hline
500 \\
400 \\
\hline
9 \\
100 \\
\hline
1000 \\
2000 \\
3000 \\
4000
\end{array}$ Training data

— Current hypothesis

Size (feet²)

 $h_{\theta}(x)$

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

(for fixed θ_0 , θ_1 , this is a function of x) $\begin{array}{c}
700 \\
600 \\
\hline
800 \\
400 \\
\hline
90 \\
200 \\
\hline
1000 \\
2000 \\
3000 \\
4000
\end{array}$ Training data

Current hypothesis

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

(for fixed θ_0 , θ_1 , this is a function of x) $\begin{array}{c}
700 \\
600 \\
\hline
800 \\
400 \\
\hline
901 \\
200 \\
\hline
1000 \\
2000 \\
3000 \\
400
\end{array}$ Training data

Current hypothesis

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

(for fixed θ_0, θ_1 , this is a function of x) 700 600 Price \$ (in 1000s) 000 \$ 000 000 \$ 000 000 \$ 000 500 200 100 Training data Current hypothesis 0 1000 2000 3000 4000 Size (feet²)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

Gradient descent algorithm

- Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$
- While (not convergence):

$$\theta_0^{(j)} = \theta_0^{(j-1)} - \alpha \frac{1}{M} \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})$$

$$\theta_1^{(j)} = \theta_1^{(j-1)} - \alpha \frac{1}{M} \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) x^{(i)}$$

Observation

 Each step of gradient descent uses ALL the training examples.

Batch gradient descent

 Each step of gradient descent uses ALL the training examples.

Problem with batch gradient descent

When the number of training data is huge, say, M = 300,000,000, batch gradient descent becomes very slow.

Problem with batch gradient descent

When the number of training data is huge, say, M = 300,000,000, batch gradient descent becomes very slow.

```
In 2017,
67 million Instagram posts uploaded each day!
656 million Tweets were generated each day!
4.3 billion Facebook messages posted daily!
```

https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/

Gradient descent algorithm

- Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$
- While (not convergence):

$$\theta_0^{(j)} = \theta_0^{(j-1)} - \alpha \frac{1}{M} \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})$$

$$\theta_1^{(j)} = \theta_1^{(j-1)} - \alpha \frac{1}{M} \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) x^{(i)}$$

• Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$

$$\theta_0 = \theta_0 - \alpha \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)$$

$$\theta_1 = \theta_1 - \alpha (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) x^{(i)}$$

• Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$

```
randomly shuffle indices [0,1,2, ..., M-1] For i in shuffled indices { \theta_0 = \theta_0 - \alpha \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)}\right) \theta_1 = \theta_1 - \alpha (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) x^{(i)} }
```

• Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$

one pass one epoch

```
randomly shuffle indices [0,1,2, ..., M-1] For i in shuffled indices { \theta_0 = \theta_0 - \alpha \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)}\right) \theta_1 = \theta_1 - \alpha (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) x^{(i)}
```

Stochastic gradient descent

```
• Given initial values \boldsymbol{\theta}^{(0)} = \left| \theta_0^{(0)}, \theta_1^{(0)} \right|
           Repeat {
                 randomly shuffle indices [0,1,2,...,M-1]
For i in shuffled indices \{
one pass
                          \theta_0 = \theta_0 - \alpha \left( \theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)
one epoch
                        \theta_1 = \theta_1 - \alpha(\theta_0 + \theta_1 x^{(i)} - y^{(i)}) x^{(i)}
```

SGD vs BGD

- SGD much faster
- Search path very irregular
- Cost function bounces up and down, decreasing only on average
- Over time, it ends up close to minimum, but never settles down.

SGD vs BGD

Picture taken from https://www.cs.cmu.edu/~yuxiangw/docs/SSGD.pdf

SGD cost function

https://upload.wikimedia.org/wikipedia/commons/f/f3/Stogra.png

Mini-batch gradient descent

 Mini-batch uses a small number (1 < # < M)of training examples to update model parameters

Batch vs stochastic vs Mini-batch

Figure from Aurelien Geron's ML book, page 120

Learning rate

$$\theta_1^{(j)} = \theta_1^{(j-1)} - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1^{(j-1)})$$

If α is too small, gradient descent becomes very slow.

Learning rate

$$\theta_1^{(j)} = \theta_1^{(j-1)} - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1^{(j-1)})$$

If α is too large, you might overshoot the minimum. It may fail to converge, sometimes even diverge.

