Section 3.6 – Newton's Method

Procedure for Newton's Method

The goal of Newton's method, also called the *Newton-Raphson* method, for estimating a solution of an equation f(x) = 0 is to produce a sequence of approximations that approach the solution.

We begin with the first number x_0 of the sequence. Then the function is approximated by its tangent line, and one computes the x-intercept of this tangent line. At each step the method approximates a zero of f with a zero of one of its linearization.

Initial estimates, x_0 , the method than uses the tangent curve y = f(x) @ $\left(x_0, f\left(x_0\right)\right)$ to approximate the curve, calling the point x_1 where the tangent meets the x-axis. The number x_1 usually a better approximation to the solution that is x_0 . The point x_2 where the tangent to the curve at $\left(x_1, f\left(x_1\right)\right)$ crosses the x-axis is the next approximation in the sequence. We continue on using each approximation to generate the next, until we are close enough to the root to stop.

The point-slope equation for the tangent to the curve at $(x_n, f(x_n))$ is

$$y = f(x_n) + f'(x_n) \cdot (x - x_n)$$

We can find where it crosses the x-axis by setting y = 0.

$$0 = f(x_n) + f'(x_n) \cdot (x - x_n) \implies x - x_n = -\frac{f(x_n)}{f'(x_n)}$$

$$x = x_n - \frac{f(x_n)}{f'(x_n)}$$

Newton's Method

- **1.** Guess a first approximation to a solution of the equation f(x) = 0. A graph of y = f(x) may help.
- 2. Use the first approximation to get a second, the second to get a third, and so on, using the formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad \text{if } f'(x_n) \neq 0$$

Example

Find the positive root of the equation $f(x) = x^2 - 2 = 0$

Solution

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}$$
$$= x_n - \frac{x_n}{2} + \frac{1}{x_n}$$
$$= \frac{x_n}{2} + \frac{1}{x_n}$$

Example

Find the *x*-coordinate of the point where the curve $y = x^3 - x$ crosses the horizontal line y = 1.

Solution

$$-x^{3} - x = 1$$

$$x^{3} - x - 1 = 0$$

$$f(x) = x^{3} - x - 1$$

$$\begin{cases} f(1) = -1 \\ f(2) = 5 \end{cases}$$

$$f'(x) = 3x^{2} - 1$$

n	x n	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
0	1	-1	2	1.5
1	1.5	0.875	5.75	1.347826087
2	1.347826087	0.100682173	4.449905482	1.325200399
3	1.325200399	0.002058362	4.268468292	1.324718174
4	1.324718174	0.000000924	4.264634722	1.324717957
5	1.324717957	-1.8672 E-13	4.264632999	1.324717957

The result: x = 1.324717957

Exercises Section 3.6 – Newton's Method

- Use Newton's method to estimate the on real solution of $x^3 + 3x + 1 = 0$. Start with $x_0 = 0$ and then 1. find x_2
- Use Newton's method to estimate the on real solution of $x^4 + x 3 = 0$. Start with $x_0 = -1$ for the 2. left-hand zero and with $x_0 = 1$ for the zero on the right. Then, in each case, find x_2
- Use Newton's method to estimate the on real solution of $2x x^2 + 1 = 0$. Start with $x_0 = 0$ for the **3.** left-hand zero and with $x_0 = 2$ for the zero on the right. Then, in each case, find x_2
- Use Newton's method to estimate the on real solution of $x^4 2 = 0$. Start with $x_0 = 1$ and then find 4. x_2

Use the Newton's method to approximate the roots to ten digits of

5.
$$f(x) = 3x^3 - 4x^2 + 1$$

6.
$$f(x) = e^{-2x} + 2e^x - 6$$

$$f(x) = 3x^3 - 4x^2 + 1$$
 6. $f(x) = e^{-2x} + 2e^x - 6$ **7.** $f(x) = 2x^5 - 6x^3 - 4x + 2$