Промышленная автоматика

Программируемые контроллеры *HIMatrix*

F31 02

Руководство по эксплуатации

Важные указания

Все упомянутые в настоящем документе продукты фирмы HIMA Paul Hildebrandt GmbH зарегистрированы и защищены законодательством Европейского Союза. Это же действует и в отношении других упомянутых в настоящем документе производителей и их продукции.

Описываемое в настоящем документе изделие сертифицировано в Европейском Союзе и соответствует требованиям Европейской Директивы по электромагнитной совместимости.

Все технические сведения и указания в настоящем документе были разработаны с большой тщательностью и составлены с соблюдением эффективных мер контроля. Тем не менее, не исключается возможность появления ошибок.

Пэтому фирма HIMA Paul Hildebrandt GmbH не гарантирует отсутствие ошибок и не несет юридическую или другую ответственность за возможные последствия, возникшие в результате предоставления в документе ошибочных сведений.

Фирма HIMA Paul Hildebrandt GmbH с благодарностью примет все сообщения о возможных ошибках и неточностях.

Фирма HIMA Paul Hildebrandt GmbH оставляет за собой право на внесение технических изменений без предварительного уведомления.

Дополнительную информацию и техническую поддержку можно получить на сайте фирмы HIMA Paul Hildebrandt GmbH <u>www.hima.com</u> и по адресу:

HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Bruehl Germany

Тел.: +49 6202 709 0 Факс: +49 6202 709 107

Адрес электронной почты: info@hima.com

F31 02

Содержание

1	KO	нтроллер німаттх F31 02	4
	1.1 1.2	Вид спереди	
2	Бе	зопасные цифровые входы	5
	2.1 2.2	Перенапряжение на цифровых входах Контроль линии	
3	Бе	зопасные цифровые выходы	7
	3.1	Контроль линии	9
4	Ко	ммуникация	9
	4.1 4.2 4.3	Подключения для связи Ethernet Используемые сетевые порты для связи Ethernet IP-адрес и ID системы (SRS)	10
5	Кн	опка сброса	10
6	Ча	сы аппаратного обеспечения	11
7	Св	етодиодные индикаторы	11
8	Ус	тановка F31 02 во взрывоопасной зоне класса 2	12
9	Ко	нфигурация входов/выходов	13
1(0 (Сигналы и коды ошибок входов/выходов	13
		Цифровые входы F31 02 Цифровые выходы F31 02	
1	1 1	Гехнические характеристики F31 02	16
1:	2 (Сертификаты HIMatrix F31 02	17

1 Контроллер *HIMatrix* F31 02

1.1 Вид спереди

Безопасный программируемый логический контроллер *HIMAtrix* **F31 01** (далее контроллер) представляет собой компактное программируемое электронное устройство в металлическом корпусе с 20 цифровыми входами и 8 цифровыми выходами, а также четырьмя подключениями для Ethernet.

Рисунок 1: Вид спереди F31 02

1.2 Блок-схема

Рисунок 2: Блок-схема F31 0

2 Безопасные цифровые входы

Контроллер имеет 20 цифровых входов. Их состояние отображается посредством светодиодов.

Питание беспотенциальных пассивных контактных датчиков с LS+ осуществляется от устойчивых к короткому замыканию источников напряжения 24 В. Один источник напряжения снабжает группу из четырех датчиков.

Вместо контактов могут также подключаться источники сигналов с собственным питанием. Тогда минус источника сигнала необходимо соединить с минусом сигнала входа (L-).

Рисунок 3: Подключения к безопасным цифровым входам

Безопасным состоянием входа является передача сигнала 0 в логическую схему прикладной программы.

Если тестовые программы цифровых входов обнаружили ошибку, то для неисправного канала согласно принципу тока покоя в прикладной программе обрабатывается сигнал 0 и активируется светодиод «FAULT».

Для внешней проводки и подключения датчиков следует применять принцип тока покоя. Таким образом, для входных сигналов в качестве безопасного состояния в случае ошибки принимается обесточенное состояние (сигнал 0).

Если внешняя линия не контролируется, тогда обрыв провода оценивается как безопасный сигнал 0.

Цифровые входы подключаются при помощи следующих клемм:

№ клеммы	Обозначение	ие Функция (входы)	
13	LS+ Питание датчиков входов 14		
14	1 Цифровой вход 1		
15	2 Цифровой вход 2		
16	3 Цифровой вход 3		
17	4	Цифровой вход 4	
18	L-	Минус входного сигнала	

№ клеммы	Обозначение	Функция (входы)
19	LS+ Питание датчиков входов 58	
20	5	Цифровой вход 5
21	6 Цифровой вход 6	
22	7	Цифровой вход 7

№ клеммы	Обозначение	Функция (входы)	
23	8	Цифровой вход 8	
24	L-	Минус входного сигнала	

№ клеммы	Обозначение	Функция (входы)	
25	LS+ Питание датчиков входов 912		
26	9 Цифровой вход 9		
27	10 Цифровой вход 10		
28	11	Цифровой вход 11	
29	12	Цифровой вход 12	
30	L-	Минус входного сигнала	

№ клеммы	Обозначение	Обозначение Функция (входы)	
31	LS+ Питание датчиков входов 1316		
32	13 Цифровой вход 13		
33	14 Цифровой вход 14		
34	15 Цифровой вход 15		
35	16	Цифровой вход 16	
36	L-	Минус входного сигнала	

№ клеммы	Обозначение	Функция (входы)	
37	LS+ Питание датчиков входов 1720		
38	17 Цифровой вход 17		
39	18 Цифровой вход 18		
40	19	Цифровой вход 19	
41	20	Цифровой вход 20	
42	L-	Минус входного сигнала	

Таблица 1: Назначение клемм цифровых входов

2.1 Перенапряжение на цифровых входах

Вследствие непродолжительного времени цикла систем HIMatrix на цифровых входах импульс перенапряжения согласно EN 61000-4-5 может считываться как кратковременный сигнал высокого уровня.

Чтобы в таких случаях избежать сбоев в работе, в соответствии с применением необходимо принять одну из следующих мер:

- инсталлировать экранированные линии ввода для предотвращения воздействия перенапряжения в системе,
- устранить помехи в прикладной программе: сигнал должен поступить минимум в двух циклах, прежде чем его можно будет проанализировать.

Внимание: за счет этого увеличивается время реакции системы!

От вышеуказанных мер можно отказаться, если при расчете параметров установки можно исключить возможности перенапряжение в системе.

К расчету параметров, в частности, относятся меры защиты, касающиеся перенапряжения, удара молнии, заземления и проводного монтажа установки на основе данных изготовителя и релевантных стандартов.

2.2 Контроль линии

Контроль линии представляет собой контроль на замыкание и обрыв линии, например, входов EMERGENCY STOP согласно категории 4 в соответствии с EN 954-1, который для системы F31 можно параметрировать.

Для этого цифровые выходы DO 1–DO 8 системы соединяются с цифровыми входами DI той же системы следующим образом (пример):

Рисунок 4: Управление линией

Цифровые выходы DO 1–DO 8 синхронизируются, чтобы контролировать линии, идущие к цифровым входам. Сигналы для тактовых выходов должны начинаться с DO[01]. Value и следовать непосредственно друг за другом (см. системные сигналы в гл. 10.2).

На передней панели системы управления мигает светодиод «FAULT», входы устанавливаются на сигнал 0 и отображается (пригодный для анализа) код ошибки, если возникают следующие ошибки:

- перекрестное замыкание между двумя параллельными линиями,
- скрещивание двух линий (напр., DO 2 на DI 3),
- замыкание одной из линий на землю (только при заземленном минусе выходного сигнала),
- обрыв линии или размыкание контактов, т. е. даже при задействовании одного из показанных выше переключателей аварийного отключения мигает светодиод «FAULT» и отображается код ошибки.

Конфигурация контроля линии в прикладной программе описана в **Руководстве по проектированию** для HIMatrix.

3 Безопасные цифровые выходы

Контроллер имеет 8 цифровых выходов. Их состояние отображается посредством светодиодов.

Безопасным состоянием любого выхода является обесточенное состояние. При ошибках канала отключаются задействованные выходы, а при ошибках контроллера – все выходы. При сбое связи через Ethernet для выхода устанавливается параметрированное предустановленное значение по умолчанию. Это необходимо учитывать в поведении подключенных исполнительных элементов.

Ошибки в одном или нескольких каналах, а также ошибки контроллера отображаются при помощи светодиода «FAULT» на передней панели. Дополнительно системные сигналы могут анализироваться в прикладной программе контроллера.

Нагрузка выходов 1...3 и 5...7 при максимальной температуре окружающей среды может составлять 0,5 A, выходов 4 и 8 — соответственно 1 A, при температуре окружающей среды до $50\,^{\circ}\text{C}$ – 2 A.

При перегрузке отключается один выход или все. Если перегрузка устранена, то выходы снова включаются в соответствии с заданным состоянием (см. «Технические характеристики»).

Внешняя линия выхода не контролируется, но при распознавании короткого замыкания подается сигнал.

Цифровые выходы подключаются при помощи следующих клемм:

№ клеммы	Обозначение	Функция (выходы)	
1	L-	Минус выходного сигнала группы каналов	
2	1	Цифровой выход 1	
3	2	Цифровой выход 2	
4	3	Цифровой выход 3	
5	4	Цифровой выход 4 (для повышенной нагрузки)	
6	L-	Минус выходного сигнала группы каналов	

№ клеммы	Обозначение	Функция (выходы)	
7	L-	Минус выходного сигнала группы каналов	
8	5 Цифровой выход 5		
9	6	Цифровой выход 6	
10	7	Цифровой выход 7	
11	8	Цифровой выход 8 (для повышенной нагрузки)	
12	L-	Минус выходного сигнала группы каналов	

Таблица 2: Назначение клемм цифровых выходов

Пример подключения исполнительных элементов к выходам

Рисунок 5: Подключение исполнительных элементов к выходам

Параллельное соединение с резервированием двух выходов должно выполняться только с применением развязывающих диодов.

Для надежного срабатывания встроенной защиты однополюсного нагруженного выхода обязательно выполнение двухполюсного подключения нагрузки с использованием соответствующего минуса выходного сигнала L- используемой группы каналов.

Подключение индуктивных нагрузок может осуществляться без гасящего диода на потребителе. Однако для шунтирования напряжения помех непосредственно на потребителе настоятельно рекомендуется использовать защитный диод.

3.1 Контроль линии

Цифровые выходы могут использоваться для контроля замыкания и обрыва линии входов, напр., для кнопок аварийного отключения EMERGENCY STOP согласно кат. 4 в соответствии с EN 954-1. Для этого выходы синхронизируются и соединяются с безопасными цифровыми входами того же устройства (см. главу 2.2). Выходы в этом случае берут на себя функцию тактовых выходов.

Тактовые выходы нельзя использовать как безопасные выходы!

4 Коммуникация

4.1 Подключения для связи Ethernet

Обозначение	Разъем	Функция	
1 10/100BaseT	RJ-45	С обеспечением безопасности: Safeethernet	
		Без обеспечения безопасности: Ethernet/IP, OPC, TCP-SR, Modbus-TCP, SNTP программирующее устройство (PADT)	
2 10/100BaseT	RJ-45	С обеспечением безопасности: Safe ethernet	
		Без обеспечения безопасности: Ethernet/IP, OPC, TCP-SR, Modbus-TCP, SNTP, программирующее устройство (PADT)	
Следующие под	отся только в F31 02:		
3 10/100BaseT	RJ-45	С обеспечением безопасности: Safeethernet	
		Без обеспечения безопасности: Ethernet/IP, OPC, TCP-SR, Modbus-TCP, SNTI программирующее устройство (PADT)	
4 10/100BaseT	RJ-45	С обеспечением безопасности: Safeethernet	
		Без обеспечения безопасности: Ethernet/IP, OPC, TCP-SR, Modbus-TCP, SNTP, программирующее устройство (PADT)	

Таблица 3: Подключения для связи Ethernet

По два подключения RJ-45 со встроенными светодиодами расположены с нижней и верхней сторон корпуса слева. Значения светодиодов объясняются в главе «Индикация связи» Руководства по компактным системам.

Считывание параметров соединения основано на «MAC-адресе» (Media Access Control), определяемом при производстве.

МАС-адрес контроллера указан на наклейке над обоими подключениями RJ-45 (1 и 2).

Пример наклейки: MAC-ADR

00.E0.A1.00.06.C0

F31 02 имеет встроенный сетевой коммутатор для безопасной связи Ethernet (Safeethernet). Более подробная информация на тему «сетевой коммутатор» и «Safeethernet» находится в главе «Безопасная связь» Руководства по компактным системам.

4.2 Используемые сетевые порты для связи Ethernet

Порты UDP / использование

8000: Программирование и управление при помощи ELOP II Factory

8001: Конфигурация удаленного устройства ввода/вывода посредством ПЭС

6010: Safeethernet и OPC

123: SNTP (синхронизация по времени между ПЭС и устройством удаленного ввода/

вывода, а также внешними устройствами)

6005/

6012: Если в сети НН не выбрано TCS_DIRECT

8895: Ведущее устройство Modbus UDP, если конфигурировано

44818: Ethernet/IP протокол сессии для идентификации устройства

2222: Обмен данными Ethernet/IP

Порты ТСР /использование

502: Modbus (изменяется пользователем)

ххх: TCP-SR задается пользователем

44818: Ethernet/IP Explicit Messaging Services

4.3 IP-адрес и ID системы (SRS)

Вместе с системой управления поставляется прозрачная наклейка, на которой можно написать IP-адрес и ID системы (SRS, System-Rack-Slot) после изменения:

ΙP		SRS		

Значение по умолчанию для IP-адреса:192.168.0.99Значение по умолчанию для SRS:60000.0.0

Не закрывать наклейками вентиляционные щели на корпусе системы управления.

Изменение IP-адреса и ID системы описано в руководстве «Первые шаги» **ELOP II Factory**.

5 Кнопка сброса

Контроллер оснащен кнопкой сброса. Нажимать на нее нужно только в том случае, если неизвестны имя пользователя или пароль для доступа администратора. Если настроенный IP-адрес устройства не подходит к PADT (ПК), то установить соединение позволяет запись «Route add» в ПК.

Доступ к кнопке возможен через небольшое круглое отверстие на верхней стороне корпуса, прибл. в 5 см от левого края. Нажимать на кнопку следует при помощи стержня из изоляционного материала, чтобы избежать коротких замыканий внутри корпуса.

Сброс осуществляется только в том случае, если происходит перезагрузка контроллера (выключение, включение) и одновременно минимум 20 секунд удерживается нажатой кнопка сброса. Нажатие кнопки во время работы не дает никакого результата.

Внимание! Возможны нарушения связи по полевой шине!

Перед включением контроллера **с** нажатой кнопкой сброса необходимо отсоединить все штекеры полевой шины устройства, так как в противном случае возможны помехи при связи с полевой шиной других участников.

Вновь вставить штекеры полевой шины можно только тогда, когда контроллер будет находиться в рабочем состоянии STOP или RUN.

Свойства и поведение контроллера после перезагрузки с нажатием кнопки сброса:

- Параметры соединения (IP-адрес и ID контроллера) устанавливаются на **default values** (значения по умолчанию).
- Деактивируются все доступы пользователя, кроме доступа пользователя по умолчанию **Administrator without password** (администратор без пароля).
- Начиная с версии операционной системы COM 10.42, загрузка прикладной программы или операционной системы с параметрами соединения по умолчанию блокирована!
 Загрузка станет возможна только после того, как в контроллере будут заданы параметры соединения и доступ пользователя, и будет произведена перезагрузка.

После повторной перезагрузки без нажатия кнопки сброса

- Становятся действительны заданные пользователем параметры соединения (IP-адрес и ID контроллера) и доступы пользователя.
- Если изменений не было, то вновь действуют параметры соединения и доступы пользователя, введенные перед перезагрузкой **с** нажатием кнопки сброса.

6 Часы аппаратного обеспечения

При снятии рабочего напряжения энергии встроенного конденсатора достаточно для того, чтобы поддерживать работу часов контроллера приблизительно одну неделю.

7 Светодиодные индикаторы

Значение светодиодов для контроллера, связи и рабочего напряжения объясняется в главе «Светодиодные индикаторы» Руководства по компактным системам.

8 Установка F31 02 во взрывоопасной зоне класса 2 (по ГОСТ Р 52350.10 – 2005 и ГОСТ Р 52350.14 – 2006)

Контроллер F31 02 допускается устанавливать во взрывоопасной зоне класса 2 по ГОСТ P 52350.10 - 2005 (МЭК 60079-10:2002) в соответствии с требованиями ГОСТ P 52350.14 - 2006 (МЭК 60079-14:2002). Декларация изготовителя о соответствии приведена в конце настоящего Руководства.

Маркировка взрывозащиты контроллера F31 02: Ex nA II T4 X.

При установке и эксплуатации контроллера F31 02 необходимо строго соблюдать следующие особые условия (специальные условия \mathbf{X}):

Специальные условия Х:

1. Контроллер F31 02 должен находиться внутри корпуса, удовлетворяющего требованиям ГОСТ Р 52350.15-2005 (МЭК 60079-15:2005) и обеспечивающего степень защиты не ниже IP54 по ГОСТ 14254-96. На наружней стороне корпуса должна быть закреплена табличка с предупредительной надписью:

«Предупреждение – не открывать под напряжением»

При гарантированном отсутствии взрывоопасной атмосферы допускается кратковременное открытие и под напряжением.

- 2. Используемый корпус должен надежно отводить выделяемое при работе контроллера тепло. Максимальная мощность возникаемых при работе тепловых потерь зависит от величины питающего напряжения и подключенных нагрузок и может достигать 25 Вт.
- 3. Питающее напряжение должно подаваться на контроллер через предохранитель **10 A** (отдельный предохранитель для каждого питающего входа контроллера) от безопасного источника питания в исполнении 3CHH или БСНН.
- 4. Наряду с другими предписаниями должно быть обеспечено безусловное и полное выполнение требований стандартов:

ΓΟCT P 52350.14-2006 (MЭK 60079-14:2002)

ΓΟCT P 52350.15-2005 (M9K 60079.15:2005)

5. Изготовитель оснащает контроллер следующей этикеткой:

HIMA	Paul Hildebrandt GmbH Albert-Bassermann-Straße 28 68782 Brühl Germany	Орган по сертификации НАНИО ЦСВЭ 109377, Москва, а/я 22	
HIMatrix	Ex nA II T4 X	Сертификат соответствия	
E24 02	-25 °C ≤ Ta ≤ 70 °C POCC GE.ΓБ05.B XXXX		
F31 02	Соблюдать специальные условия Х!		

9 Конфигурация входов/выходов

При помощи программного обеспечения **ELOP II Factory** сигналы, предварительно определенные в редакторе сигналов программного обеспечения (Hardware Management), присваиваются отдельным имеющимся каналам контроллера (входы/ выходы) (см. главу «Конфигурация входов/выходов» в Руководстве по компактным системам).

Сигналы, имеющиеся в контроллере для присвоения сигналов, указаны в главе «Сигналы и коды ошибок входов/выходов».

10 Сигналы и коды ошибок входов/выходов

В следующих таблицах приведены считываемые и настраиваемые сигналы входов/выходов, включая коды ошибок.

Коды ошибок можно считать в рамках прикладной программы посредством соответствующего присвоенного в логической схеме сигнала.

Коды ошибок могут также отображаться в ELOP II Factory Hardware Management:

- Выделите ресурс HIMatrix и щелкните по нему правой кнопкой мыши.
- В контекстном меню выберите **Online**, затем в подменю выберите **Diagnosis**.
- После этого в окне «Diagnosis» Вы увидите все ответные сообщения контроллера (ЦПУ, СОМ), включая коды ошибок входов/выходов, если в них имеются ошибки.
- Дальнейшие указания Вы найдете в главе «Диагностика» Руководства по компактным системам.

Сигналы входов/выходов можно при помощи *ELOP II Factory* присвоить сигналам редактора сигналов. Сигналы могут быть присвоены логической схеме (*Project Management*), а также считываться из нее или описываться в ней. В целях тестирования и проверки прохождения сигнала они могут устанавливаться и/или отображаться в редакторе инициализации (*Hardware Management*).

Проверка прохождения сигнала подробно описывается при помощи редактора инициализации в руководстве *ELOP II Factory* «Первые шаги».

10.1 Цифровые входы F31 02

Системный сигнал	R/W	Значение	
Module.SRS [UDINT]	R	Номер слота (System-Rack-Slot)	
Module.Type [UINT]	R	Тип модуля, заданное значение: 0x00A5 [165 _{dez}]	
Module.Error Code [WORD]	R	Коды ошибок модуля	
		0x0000	Обработка ввода/вывода, при необходимости с ошибками, см. следующие коды ошибок
		0x0001	Отсутствует обработка ввода/вывода (ЦПУ не в состоянии RUN)
		0x0002	Отсутствует обработка ввода/вывода во время теста при загрузке
		0x0004	Интерфейс изготовителя в режиме работы
		0x0010	Отсутствует обработка ввода/вывода:
			неправильное параметрирование
		0x0020	Отсутствует обработка ввода/вывода:
			превышено допустимое количество ошибок
		0x0040/	Отсутствует обработка входа/выхода:

Системный сигнал	R/W	Значение	
		0x0080	не вставлен конфигурированный модуль
DI.Error Code [WORD]	R	Коды ошибок всех цифровых входов	
		0x0001 0x0002	Ошибка в зоне цифровых входов Тест FTZ образца тестирования содержит ошибку
DI[xx].Error Code [BYTE]	R	Коды ошибок цифровых входных каналов	
		Ох01 Ошибка в модуле цифрового ввода Замыкание линии канала Прерывание линии между тактовым выходом DO и тактовым входом DI, например, в результате обрыва линии разомкнутых переключателей пониженного напряжения L+	
DI[xx].Value [BOOL]	R	Входное значение цифровых входных каналов	
		0	Вход не включается Вход включается
DI No. of Pulse Channel [USINT]	W	Количество тактовых выходов (питающие выходы)	
		1	Тактовый выход для распознавания LS/LB* не предусмотрен Тактовый выход 1 предусмотрен для распознавания LS/LB*
		2	Тактовые выходы 1 и 2 предусмотрены для распознавания LS/LB*
		8	 Тактовые выходы 18 предусмотрены для распознавания LS/LB*
		Тактовые выходы нельзя использовать как безопасные выходы!	
DI Pulse Slot [UDINT]	W	Слот модуля тактового питания (распознавание LS/LB*), установить значение на 2	
DI[xx].Pulse Channel [USINT]	W	Исходный канал тактового питания	
		0 Входной канал	
		1 2	Такт 1-го канала DO Такт 2-го канала DO
		8	 Такт 8-го канала DO
DI Pulse Delay [10E-6 s] [UINT]	W	Время ожидания для управления линией (распознавание замыкания/перекрестного замыкания)	

^{*} LS = замыкание линии LB = обрыв линии

10.2 Цифровые выходы F31 02

Системный сигнал	R/W	Значение
Module.SRS [UDINT]	R	Номер слота (System-Rack-Slot)

Системный	R/W	Значение		
сигнал				
Module.Type [UINT]	R	Тип модуля, заданное значение: 0x00B4 [180 _{dez}]		
Module.Error Code [WORD]	R	Коды ошибок модуля		
		0x0000	Обработка ввода/вывода, при необходимости	
			с ошибками, см. следующие коды ошибок	
		0x0001	Отсутствует обработка ввода/вывода (ЦПУ не в состоянии RUN)	
		0x0002	Отсутствует обработка ввода/вывода во время теста при загрузке	
		0x0004	Интерфейс изготовителя в режиме работы	
		0x0010	Отсутствует обработка ввода/вывода:	
			неправильное параметрирование	
		0x0020	Отсутствует обработка ввода/вывода:	
		00040/	превышено допустимое количество ошибок Отсутствует обработка входа/выхода:	
		0x0040/ 0x0080	не вставлен конфигурированный модуль	
DO.Error Code [WORD]	R	Коды ошибок всех цифровых выходов		
[WORD]		0x0001	Ошибка в зоне цифровых выходов	
		0x0001	Тест MEZ предохранительного отключения	
		000002	показывает ошибку	
		0x0004	Tect MEZ вспомогательного напряжения	
		0x0008	показывает ошибку	
		0x0010	Тест FTZ образца тестирования показывает	
			ошибку	
		0x0020	Тест MEZ образца тестирования выходного	
		020040	выключателя показывает ошибку	
		0x0040 0x0200	Тест MEZ образца тестирования выходного выключателя (тест отключения выходов)	
		0X0200	показывает ошибку	
		0x0400	Тест MEZ активного отключения посредством	
		0x0800	WD показывает ошибку	
		0x1000	Все выходы отключены, превышен общий ток	
			Тест FTZ: температурный порог 1 превышен	
			Тест FTZ: температурный порог 2 превышен	
			Тест FTZ: контроль вспомогательного	
DO[xx].Error Code	R	напряжения 1: пониженное напряжение Коды ошибок цифровых выходных каналов		
[BYTE]				
		0x01	Ошибка в модуле цифрового ввода	
		0x02	Выход отключен из-за перегрузки	
		0x04	Ошибка при обратном считывании настройки цифровых выходов	
		0x08	Ошибка при обратном считывании состояния	
		цифровых выходов		
DO[xx].Value	W	Выходное	е значения для каналов DO:	
[BOOL]			, включен	
		0 = выход	ц обесточен	
		Тактовые выходы нельзя использовать как		
		безопасные выходы!		

11 Технические характеристики F31 02

Система управления			
Пользовательская память	Прикладная программа макс. 500 кБ Данные пользователя макс. 500 кБ		
Время реакции	≥ 20 MC		
Интерфейсы: Ethernet	4 x RJ-45, 10/100BaseT (100 Мбит/с) с встроенным сетевым коммутатором		
Рабочее напряжение	24 В DC, -15%…+20%, w _{ss} ≤ 15%, от блока питания с безопасным разделени-ем, согласно требованиям МЭК 61131-2		
потребление тока	Макс. 8 А (с максимальной нагрузкой) Ток холостого хода: прибл. 0,4 А при 24 В		
Предохранитель (внешний)	10 A T		
Буфер для даты/времени	Goldcap		
Рабочая температура	0 °C+60 °C		
Температура хранения	-40 °C+85 °C		
Степень защиты	IP 20		
Макс. размеры (без штекера)	Ширина: 257 мм (с винтами корпуса) Высота: 114 мм (с крепежным запором) Глубина: 66 мм (с заземляющим болтом)		
Macca	1,2 кг (F31 02)		

Цифровые входы			
Количество входов	20 (без гальванического разделения)		
Сигнал 1: напряжение потребление тока	15 В30 В DC ≥ 2 мА при 15 В		
Сигнал 0: напряжение потребление тока	Макс. 5 В DC Макс. 1,5 мА (1 мА при 5 В)		
Точка переключения	Станд. 7,5 В		
Питание	5 x 20 B/100 мА (при 24 B), устойчивость к короткому замыканию		

Цифровые выходы		
Количество выходов	8 (без гальванического разделения)	
Выходное напряжение	≥ L+ минус 2 B	
Выходной ток	Каналы 13 и 57: 0,5 А при 60 °C Каналы 4 и 8: 1 А при 60 °C (2 А при 50 °C)	
Минимальная нагрузка	2 мА на каждый канал	
Внутреннее падение напряжения	Макс. 2 В при 2 А	
Ток утечки (для сигнала 0)	Макс. 1 мА при 2 В	
Поведение при перегрузке	Отключение соответствующего выхода с циклическим повторным включением	
Общий выходной ток	Макс. 7 А При превышении отключение всех выходов с циклическим повторным включением	

12 Сертификаты HIMatrix F31 02

HIMatrix F31 01 и F31 02		
CE	ЭМС, АТЕХ зона 2	
TÜV	МЭК 61508 1-7:2000 до уровня совокупной	
	безопасности 3	
	MЭK 61511:2004	
	EN 954-1:1996 до категории 4	
TÜV ATEX	94/9/EG	
	EN 1127-1	
	EN 61508	
Регистр Ллойда	Сертификация для судоходства	
	ENV1, ENV2 и ENV3:	
	Номер спецификации испытаний 1 - 2002	
UL Underwriters	ANSI/UL 508, NFPA 70 – Industrial Control	
Laboratories Inc.	Equipment	
	CSA C22.2 No.142	
	UL 1998 Software Programmable Components	
	NFPA 79 Electrical Standard for Industrial	
	Machinery	
	MЭK 61508	
FM Approvals	Class I, DIV 2, Groups A, B, C and D	
	Class 3600, 1998	
	Class 3611, 1999	
	Class 3810, 1989	
	Including Suppliment #1, 1995	
	CSA C22.2 No 142	
	CSA C22.2 No 213	

Konformitätserklärung Declaration of Conformity

Wir / We

HIMA Paul Hildebrandt GmbH + Co KG Albert Bassermann-Straße 28 - 68782 Brühl Postfach 1261 - 68777 Brühl Telefon 0 62 02 / 709-0

erklären in eigner Verantwortung, dass die Produkte declare under our sole responsibility that the products

F1 DI 16 01	
F2 DO 4 01	
F2 DO 8 01	
F2 DO 16 01	
F2 DO 16 02	
F3 AIO 8/4 01	
F3 DIO 8/8 01	
F3 DIO 16/8 01	
F3 DIO 20/8 01 + 02	
F31 01 + 02	
F20, F30, F35	
	F2 DO 4 01 F2 DO 8 01 F2 DO 16 01 F2 DO 16 02 F3 AIO 8/4 01 F3 DIO 8/8 01 F3 DIO 16/8 01 F3 DIO 20/8 01 + 02 F31 01 + 02

auf die sich diese Erklärung bezieht, mit den folgenden Normen übereinstimmen. to which this declaration relates is in conformity with the following standards.

EN 61000-6-4 (08.02) EN 61000-6-2 (08.02) EN 61131-2 (2003)

EN 60079-15 (2003)

Elektrische Betriebsmittel für gasexplosionsgefährdete Breiche – Teil 15: Zündschutzart "n" Electrical apparatus for explosive gas atmospheres – Part 15: Type of protection "n"

Gemäß den Bestimmungen der Richtlinien Following the provisions of Directives

EMV-Richtlinie

89/336/EWG

Ex-Richtlinie

94/9/EG

Brühl, den 16. Februar 2006

ppa.

Prof. Dr. habil. Josef Börcsök Bereichsleiter Entwicklung Vice-President Development i.A.

Jürgen Hölzel

Leiter Vorentwicklung und Qualitätswesen Lead Engineer Predevelopment and Quality

Assurance

HIMA ... the safe decision.

HIMA Paul Hildebrandt GmbH Системы промышленной автоматизации

Postfach 1261 • D-68777 Brühl Телефон: +49(06202) 709-0 • Факс: +49(06202) 709-107 Эл. почта: info@hima.com • Интернет: www.hima.de