

General information

Designation

Guaiacum spp. (L)

Typical uses

Bearing & bushing blocks; lining of stern tubes for steamship propeller shafts; underwater use; mallets; pulley sheaves; caster wheels; stencil; chisel block; turned articles; brush backs.

Composition overview

Fatigue strength at 10^7 cycles

Cellulose/Hemicellulose/Lignin/12%H2O

Compositional summary

Cellulose/Fleffilicellulose/Elgfilif/ 12 /of 12O				
Material family	Natural			
Base material	Wood (tropical)			
Renewable content	100 %			
Composition detail (polymers and natura	materials)			
Wood	100 %			
Price				
Price	* 6.7 - 10.8 USD/kg			
Physical properties				
Density	1.11e3 - 1.35e3 kg/m^3			
Mechanical properties				
Young's modulus	* 12.1 - 14.8 GPa			
Yield strength (elastic limit)	* 79.6 - 97.3 MPa			
Tensile strength	* 133 - 163 MPa			
Elongation	* 2.97 - 3.63 % strain			
Compressive strength	70.7 - 86.5 MPa			
Flexural modulus	11 - 13.4 GPa			
Flexural strength (modulus of rupture)	* 143 - 175 MPa			
Shear modulus	* 0.9 - 1.1 GPa			
Shear strength	* 20.7 - 25.3 MPa			
Bulk modulus	* 5.19 - 5.85 GPa			
Poisson's ratio	* 0.35 - 0.4			
Shape factor	4.7			
Hardness - Vickers	* 23.7 - 28.9 HV			
Hardness - Brinell	* 136 - 167 MPa			
Hardness - Janka	* 23.7 - 28.9 kN			

* 43

52.6

MPa

Mechanical loss coefficient (tan delta)	* 0.0068	-	0.0083	
Differential shrinkage (radial)	* 0.32	-	0.39	%
Differential shrinkage (tangential)	* 0.53	-	0.65	%
Radial shrinkage (green to oven-dry)	* 3.2	-	7	%
Tangential shrinkage (green to oven-dry)	* 6.8	-	11.5	%
Volumetric shrinkage (green to oven-dry)	* 11	-	18	%
Work to maximum strength	* 214	-	261	kJ/m^3

Impact & fracture properties

Fracture toughness *	13.4	- 16.4	MPa.m^0.5
----------------------	------	--------	-----------

Thermal properties

Glass temperature	77	-	102	°C
Maximum service temperature	120	-	140	°C
Minimum service temperature	* -73	-	-23	°C
Thermal conductivity	* 0.54	-	0.66	W/m.°C
Specific heat capacity	1.66e3	-	1.71e3	J/kg.°C
Thermal expansion coefficient	* 2	-	11	μstrain/°C

Electrical properties

Electrical resistivity	* 6e13	-	2e14	µohm.cm
Dielectric constant (relative permittivity)	* 12	-	14.7	
Dissipation factor (dielectric loss tangent)	* 0.15	-	0.183	
Dielectric strength (dielectric breakdown)	* 0.4	-	0.6	MV/m

Magnetic properties

Magnetic type	Non-magnetic	
IVISANETIC TVAE	NOD-MAGNATIC	

Optical properties

Transparency	Opaque	
Durability		

Durability

Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good

Flammability

	Highly flammable				
Primary production energy, CO2 and water					
Embodied energy, primary production	*	11.6	-	12.8	MJ/kg
CO2 footprint, primary production	*	0.574	-	0.633	kg/kg
Water usage	*	665	-	735	l/kg
Processing energy, CO2 footprint & water					
Coarse machining energy (per unit wt removed)	*	1.08	-	1.2	MJ/kg
Coarse machining CO2 (per unit wt removed)	*	0.0811	-	0.0897	kg/kg
Fine machining energy (per unit wt removed)	*	6.54	-	7.23	MJ/kg
Fine machining CO2 (per unit wt removed)	*	0.491	-	0.542	kg/kg
Grinding energy (per unit wt removed)	*	12.6	-	13.9	MJ/kg
Grinding CO2 (per unit wt removed)	*	0.946	-	1.05	kg/kg
Recycling and end of life					
Recycle		×			
Recycle fraction in current supply		8.55	-	9.45	%
Downcycle		✓			
Combust for energy recovery		✓			
Heat of combustion (net)	*	19.8	-	21.3	MJ/kg
Combustion CO2	*	1.69	-	1.78	kg/kg
Landfill		✓			
Biodegrade		✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse	
Reference	
Shape	