Работа 4.7.2 Эффект Поккельса

Шарапов Денис, Б05-005

Содержание

1	Аннотация	2
2	Теоретические сведения	2
3	Результаты измерений и обработка данных	2

1 Аннотация

Цель работы: исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

В работе используются: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластина, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осцилограф, линейка.

2 Теоретические сведения

Эффект Поккельса — изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития LiNbO₃ с цетрольноосевой симметрией вдоль оси Z. Для световой волны с \mathbf{E} перпендикулярно Z показатель преломления будет n_o , а для волны с \mathbf{E} вдоль $Z-n_e$. В случае, когда луч света идёт под углом θ к оси, есть два значения показателя преломления n_1 и n_2 : $n_1=n_o$ для волны с \mathbf{E} перпендикулярным плоскости (\mathbf{k} , \mathbf{Z}) (обыкновенная волна) и n_2 для волны с \mathbf{E} в этой плоскости (необыкновенная волна). В последнем случае

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}.$$
 (1)

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности — результат интерфернции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен тёмные и наоборот). В случаи, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения, радиус тёмного кольца с номером m равен

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m,\tag{2}$$

где L — расстояние от центра кристалла до экрана, l — длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле $E_{\rm эл}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда n_o . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления $n_0 - \Delta n$ и $n_o + \Delta n$ (быстрая и медленная ось), причём $\Delta n = AE_{\rm эл}$. Для поляризованного вертикально света и анализатора, пропускающего горизонтальную поляризацию, на выходе интенсивность на выходе будет иметь вид

$$I_{\text{вых}} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right),\tag{3}$$

где $U_{\lambda/2}=\frac{\lambda}{4A}\frac{d}{l}$ – *полуволновое напряжение*, d – поперечный размер кристалла. При напряжении $U=E_{\mathfrak{I}}d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

3 Результаты измерений и обработка данных

Рис. 1: Схема для наблюдения интерференционной картины

Таблица 1: Параметры установки

n_0	λ , mkm	l, мм
2,29	0,630	26

В схеме, изображенной на рис. 1 получим интерфереционную картину. Измерим радиусы r(m) тёмных колец при расстоянии L=60 см и результаты запишем в таблицу 1. На рис. 2 изобразим график зависимости $r^2=f(m)$.

Таблица 2: Радиусы темных колец при расстоянии $L=60~{
m cm}$

	m	1	2	3	4	5	6	7	8
ĺ	r, см	1,8	2,7	3, 5	4, 2	4,7	5,1	5, 6	5, 9

Из МНК получим угловой коэффициент

$$k = 4,36 \pm 0,04 \text{ cm}^2.$$

Откуда при значениях из таблицы 1 получим

$$n_0 - n_e = 0, 11 \pm 0, 01.$$

Рис. 2: Схема для изучения двойного лучепреломления в электрическом поле

На установке, изображенной на рис. 3, определим полуволновое напряжение

$$U_{\lambda/2} = 450 \pm 15$$
 B.