

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Genómica Computacional

Clave:	Semestre:	Eje tema	Eje temático:				
	6-8	Bio-Info	Bio-Informática				
Carácter: Optativa			Horas		Horas por semana	Total de Horas	
Tipo: Teórico-Práctica			Teoría:	Práctica:			
Tipo: Te	Onco-Practica		3	4	7 112		
Modalidad: Curso			Duración del programa: Semestral				

Asignatura con seriación indicativa antecedente: Probabilidad I

Asignatura con seriación indicativa subsecuente: Ninguna

Objetivo general:

Formar a estudiantes con conocimientos básicos de genómica computacional para que estén en condiciones de integrarse a un grupo de trabajo en el área.

Presentar los fundamentos matemáticos detras de los algoritmos bioinformáticos más utilizados en el área de genómica, filogenia y transcriptómica.

Familiarizar a los estudiantes con el uso de dichos algoritmos.

Fomentar la crítica, modificación y creación de nuevas herramientras de cómputo para la biología, para lo cual una comprensión de los fundamentos biológicos es indispensable.

Dar una breve revisión de algunos algoritmos inspirados en procesos biológicos.

Índice te	mático			
Heided	Tamas	Horas		
Unidad	Temas	Teóricas	Prácticas	
l	Estructura y función de los ácidos nucleicos	6	8	
II	Estructura y función de las proteínas	3	4	
III	Alineación y búsqueda de patrones en secuencias moleculares	9	12	
IV	Firmas genómicas	6 8		
V	Biología evolutiva computacional	9	12	
VI	Análisis de expresión génica	6	8	
VII	Cómputo bioinspirado	9	12	
	Total de horas:	48	64	
	Suma total de horas:	1	12	

Contenido temático					
Unidad	Tema				
I Estructura y función de los ácidos nucleicos					
I.1	DNA. Duplicación y transcripción. Estructura primaria. Doble hélice, nucleos				
	supercoiling.				
1.2	RNA. Traducción y código genético. Problemas computacionales asociados a la				
	estructura secundaria.				
	a y función de las proteínas				
II.1	El problema del plegamiento.				
II.2	Interacción proteína-proteína.				
III Alineación y búsqueda de patrones en secuencias moleculares					
III.1	Enzimas de restricción.				
III.2	Algoritmos de alineación.				
IV Firmas					
IV.1	Firmas estructurales.				
IV.2	El juego del caos.				
V Biología	evolutiva computacional				
V.1	Comparación entre genomas.				
V.2	Filogenias.				
VI Análisis	de expresión génica				
VI.1	Microarreglos.				
VII Cómpu	to bioinspirado				
VII.1	Cómputo evolutivo.				
VII.2	Cómputo neuronal.				
VII.3	Cómputo con enjambres.				
VII.4	Cómputo con DNA.				

Bibliografía básica:

- 1. Hui Liu B., Shi L.M., Statistical Genomics and Bioinformatics, Taylor and Francis Inc., 2010.
- 2. Heath, L.S., Ramakrishnan, N., *The Problem Solving Handbook for Computational Biology and Bioinformatics*, Springer-Verlag, 2010.
- 3. Chetty, M., Charleston, M., *Microarrays and Gene Expression in Bioinformatics*, John Wiley, 2010.
- 4. Michael Gromiha, M., Penrose, D., *Protein Bioinformatics : From Sequence to Function*, Elsevier, 2010.
- 5. H.J. Bockenhauer, D. Bongartz. *Algorithmic Aspects of Bioinformatics*, Springer-Verlag, 2007.

Bibliografía complementaria:

- 1. Michael Gromiha, M., Penrose, D., *Protein Bioinformatics : From Sequence to Function*, Elsevier, 2010.
- 2. H.J. Bockenhauer, D. Bongartz. *Algorithmic Aspects of Bioinformatics*, Springer-Verlag, 2007.

Sugerencias didácticas:		Métodos de evaluación:		
Exposición oral	(X)	Exámenes parciales	()	
Exposición audiovisual	(X)	Examen final escrito	()	
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)	
Ejercicios fuera del aula	(X)	Prácticas de laboratorio	()	
Seminarios	(X)	Exposición de seminarios por los alumnos	(X)	
Lecturas obligatorias	(X)	Participación en clase	(X)	
Trabajo de investigación	(X)	Asistencia	()	
Prácticas de taller o laboratorio	(X)	Proyectos de programación	(X)	
Prácticas de campo	()	Proyecto final	()	
•	• • •	Seminario	()	
Otras:			• • •	
		Otras:		

Perfil profesiográfico:

Matemático, físico, actuario o Licenciado en Ciencias de la Computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos. Con experiencia docente.