Information Security Technologies COMP607 Tutorial

Session 4 Asymmetric Key Cryptography -- RSA

- 1. Test Euler's theorem with some simple examples.
 - a. Choose a number n < 100.
 - b. Obtain $\Phi(n)$ by counting the number of integers that is relatively prime to n.
 - c. Choose a number $M \le 100$ and show that $M^{\Phi(n)} \, mod \; n = 1$
- 2. Work in pairs, each person:

Choose two prime number p,q < 100, compute n = pqCompute $\Phi(n) = (p-1)(q-1)$; discard p,qBy trial and error choose $e,d < \Phi(n)$ such that $ed \equiv 1 \mod \Phi(n)$, i.e. $ed = 1 + k\Phi(n)$

Give your partner your public key $\langle e,n \rangle$, keep your private key $\langle d,n \rangle$ secret

(a). Encryption messages to each other:

Choose a message $M \le n$, that is relatively prime to n and encrypt it using $C = M^d \mod n$ and give it to your partner.

Decrypt each other's cipher text using $C^d \mod n$. Can you get the correct message?

Repeat with a message *M* that is not relatively prime to *n*. Can you correctly decrypt the message?

(b). Signatures:

Choose a message $M \le n$ to sign, (note that M must be relatively prime to n). Normally the message digest is obtained using a hash function. To keep things simple and avoid large numbers, just by sign the message by computing $sig = M^d \mod n$. Give $\{M, sig\}$ to your partner.

Verify your partner's signature, sig using his/her public key e, by computing $sig^e \mod n$ and comparing to M. Is the signature it verified?

- (c). Breaking RSA using some simple methods. Given your partner's public key $\langle e,n \rangle$ try to compute his/her private key d, e.g. by guessing the value of $\Phi(n)$, factorizing n, etc.
- 3. One of the most attractive applications of public-key algorithms is the establishment of a secure session key for a private-key algorithm such as AES over an insecure channel. Assume Bob has a pair of public/private keys for the RSA cryptosystem. Develop a simple protocol using RSA which allows the two parties Alice and Bob to agree on a shared secret key. Who determines the key in this protocol, Alice, Bob, or both?