Examenul național de bacalaureat 2021 Proba E. c) Matematică M mate-info BAREM DE EVALUARE ȘI DE NOTARE

Testul 8

Testul 8

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1 < \sqrt[3]{7} < 2$ și $4 < \log_2 21 < 5$, deci $A = \{2,3,4\}$	3р
	Produsul elementelor multimii A este egal cu 24	-
	,	2p
2.	$f(x) = y \Leftrightarrow x^2 + 4x = 5x + 2 \Leftrightarrow x^2 - x - 2 = 0$	3p
	Abscisele punctelor de intersecție a graficului funcției f cu dreapta d sunt $x = -1$ și $x = 2$	2p
3.	$2 \cdot 3^{2x} - 3^{2x} - 3 = 0 \Leftrightarrow 3^{2x} = 3$	3p
	$2x = 1, \text{ deci } x = \frac{1}{2}$	2p
4.	Mulțimea numerelor naturale de trei cifre are 900 de elemente, deci sunt 900 de cazuri posibile	2p
	Mulțimea numerelor naturale de trei cifre, care au cifrele numere prime distincte, are $4 \cdot 3 \cdot 2 = 24$ de elemente, deci sunt 24 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{24}{900} = \frac{2}{75}$	1p
5.	$\overrightarrow{MB} - \overrightarrow{MC} = \overrightarrow{AB} - \overrightarrow{MB} \Leftrightarrow \overrightarrow{MB} + \overrightarrow{CM} = \overrightarrow{AB} + \overrightarrow{BM}$	3p
	$\overrightarrow{CB} = \overrightarrow{AM}$, deci AMBC este paralelogram	2p
6.	$\cos^2 x = 1 - \sin^2 x = \frac{225}{289}$	2p
	Cum $x \in \left(\pi, \frac{3\pi}{2}\right)$, obținem $\cos x = -\frac{15}{17}$, deci $\operatorname{tg} x = \frac{8}{15}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \end{bmatrix} \Rightarrow \det(A(2)) = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \end{bmatrix} =$	2p
	=-3+2+0-0-(-6)-1=4	3р
b)	$\det(A(a)) = a^2 + a - 2$, pentru orice număr real a	2p
	Sistemul de ecuații nu este compatibil determinat \Leftrightarrow det $(A(a)) = 0$, deci $a = -2$ sau $a = 1$	3 p
c)	Sistemul are soluția unică (x_0, y_0, z_0) , deci $a \in \mathbb{N} \setminus \{1\}$ și $x_0 = \frac{5}{a+2}$	3p
	$x_0 \in \mathbb{Z} \Leftrightarrow (a+2) 5 \text{ si, cum } a \in \mathbb{N} \setminus \{1\} \text{, obtinem } a = 3$	2p
2.a)	$1*5 = 1+5 - \frac{1 \cdot 5}{5} =$	3p
	=1+5-1=5	2p

Probă scrisă la matematică M mate-info

Barem de evaluare și de notare

b)	$\sqrt{x} + \sqrt{x} - \frac{x}{5} = 5 \Leftrightarrow 10\sqrt{x} = 25 + x$, unde x este număr real, $x \ge 0$	2p
	$\left(\sqrt{x}-5\right)^2=0$, de unde obţinem $x=25$	3p
c)	x*0=0*x=x, pentru orice număr real x , deci $e=0$ este elementul neutru al legii de compoziție "*"	1p
	$a*a'=0 \Leftrightarrow 5a+5a'-aa'=0 \Leftrightarrow a'(a-5)=5a$, deci $a'=\frac{5a}{a-5}$, pentru orice număr real a , $a \neq 5$, unde a' este simetricul lui a	3р
	$\frac{5a}{a-5} < 0 \Leftrightarrow a \in (0,5)$	1p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \ln(x+1) + (x-1) \cdot \frac{1}{x+1} =$	3p
	$= \ln(x+1) + \frac{x+1-2}{x+1} = 1 + \ln(x+1) - \frac{2}{x+1}, \ x \in (0, +\infty)$	2p
b)	$\lim_{x \to +\infty} \left(f(x) f\left(\frac{1}{x}\right) \right) = \lim_{x \to +\infty} \left(-\frac{(x-1)^2}{x} \ln(x+1) \ln\left(\frac{1}{x}+1\right) \right) =$	2p
	$= \lim_{x \to +\infty} \left(-\frac{\left(x-1\right)^2}{x^2} \ln\left(x+1\right) \ln\left(1+\frac{1}{x}\right)^x \right) = -\infty$	3 p
c)	$f''(x) = \frac{x+3}{(x+1)^2} > 0$, pentru orice $x \in (0,+\infty) \Rightarrow f'$ este strict crescătoare pe $(0,+\infty)$	2p
	f' este injectivă pe $(0,+\infty)$, deci $f'(a) \neq f'(b)$, pentru orice $a, b \in (0,+\infty)$, cu $a \neq b$, de	
	unde obținem că tangentele la graficul funcției f în punctele $A(a, f(a))$ și $B(b, f(b))$	3р
		ъp
	sunt concurente, pentru orice $a, b \in (0, +\infty)$, cu $a \neq b$	
2.a)	$\int_{1}^{2} x \sqrt{x+1} f(x) dx = \int_{1}^{2} 3x^{2} dx = x^{3} \Big _{1}^{2} =$	3 p
	=8-1=7	2p
b)	$\int_{0}^{1} \frac{9x^{2}}{x+1} dx = 9 \int_{0}^{1} \frac{x^{2} - 1 + 1}{x+1} dx = 9 \int_{0}^{1} \left(x - 1 + \frac{1}{x+1} \right) dx = 9 \left(\frac{x^{2}}{2} - x + \ln\left(x + 1\right) \right) \Big _{0}^{1} =$	3p
	$=9\left(\frac{1}{2}-1+\ln 2-0\right)=9\left(\ln 2-\frac{1}{2}\right)$	2p
c)	$\int_{0}^{3} f(x)F(x)dx = \int_{0}^{3} F'(x)F(x)dx = \frac{1}{2}F^{2}(x)\Big _{0}^{3} =$	3p
	$= \frac{1}{2} \left(F^2(3) - F^2(0) \right) = \frac{1}{2} \left(8^2 - 0^2 \right) = 32$	2p