Derivatives of Inverse Trigonometric Functions

$$\frac{d}{dx}[\arctan x] =$$

$$f(x) = \tan x$$

$$f^{-1}(x) = \arctan x$$

$$y = \arctan x$$

$$\frac{1}{dx} \left[\frac{1}{dx} \right] = \frac{1}{dx} \left[\frac{1}{dx} \right]$$

$$\sec^2 y \, dy = 1$$

$$\frac{dy}{dx} = \cos^2 y$$

$$\int \frac{dy}{dx} = \frac{1}{x^2 + 1}$$

$$\cos y = \frac{1}{x^2 + 1}$$

$$\cos^2 y = \frac{1}{x^2 + 1}$$

Sketch of guess for
$$\frac{d}{dx}[\arctan x]$$

Sketch of
$$\frac{d}{dx}[\arctan x]$$

$$\frac{d}{dx}[arc\cot x] =$$

	/ \	
f^{-1}	(r)	$= \operatorname{arc} \cot x$
J	(2)	- arccotx

$$y = \operatorname{arc} \cot x$$

$$\int_{0}^{\infty} \left[\cot y \right] = \frac{1}{4x} \left[x \right]$$

$$- \left[\cot y \right] = \frac{1}{4x} \left[x \right]$$

$$- \left[\cot y \right] = \frac{1}{4x} \left[x \right]$$

$$= \frac{1}{4x} \left[\frac{1}{x^2 + 1} \right]$$

$$-\sin^2 y = -\frac{1}{x^2+1}$$

$$-\sin^2 y = \frac{1}{x^2 + 1}$$

Sketch of guess for
$$\frac{d}{dx}[\operatorname{arc}\cot x]$$

Sketch of
$$\frac{d}{dx} [arc \cot x]$$

$$\frac{d}{dx}[\arcsin x] =$$

$$f^{-1}(x) = \arcsin x$$

$$y = \arcsin x$$

Sketch of guess of
$$\frac{d}{dx}[\arcsin x]$$

Sketch of $\frac{d}{dx}[\arcsin x]$

$$\frac{d}{dx}[\arccos x] =$$

 $y = \arccos x$

$$cosy = x$$

$$cosy = f(x)$$

$$X < O$$
 $X < O$
 $X < O$
 $X < O$

$$\frac{dy}{dx} = -(scy)$$

$$\frac{dy}{dx} = \frac{-1}{\sqrt{1-v^2}}$$

$$-\epsilon scy = \sqrt{1-\chi^2}$$

$$-cscy = \frac{-1}{\sqrt{1-x^2}}$$

Sketch of guess of $\frac{d}{dx}[\arccos x]$

