

Let's go to the charp world let hise a field of chan p. In general IH*(Xw,h) does not satisfy HL (for any weight) But... It satisfying HL on every IH*(Xn,k) Ww => the p-hL polynomials are equal to = Consequences One pent of Cuestry's conjecture is the ("around the Steinblip Weight") STATUS OF LUSBTILL'S CONSECTURE Let a shi simple algebraic group / Fp Cusative's conjecture is a formula for the character of simple modular representation INSBRT FORMULA - (Anderson Souther-Sougel 94) It is true for posh mules of h (Fielig 12) gave an explicit bound (eg. p> 22 for shall) - (Williamson 13) provided a family of counterexcuples for proch (cn1,10...) Moral By investigating when HI holds in characterities p one would hope to obtain new bonds for Lusstiy's conj. This will be on obuson. We start considering the first interesting example: When does He holds on H* (X, k)?

BASIC FACTS ABOUT H'(X, L)

X hos a cell dec. $X = \bigcup B \cdot wB = \mathbb{C}^{e(w)}$ of all of even real direction $H_*(X,h) = \bigoplus h[X_w]$ $\Rightarrow H^*(X,k) \cong H^*(X,\mathbb{Z}) \otimes k \cong \bigoplus h P_w = \text{ohal basis.}$ Multipliation on $H^*(X,h)$ "Pilni's rule" $A \cdot P_w = \sum_{t \in \mathcal{L}} (\lambda, y) > P_w t_y$ $t \in \mathcal{L}(x,y) = l(w) + l$

Unfortunately this seems hard to compute
Lit's choose a lixicognephe order x,>x2>>xm
Goel If we show that the leading term of Du(x,,, x,)
in the lexicograph" order is non Zero, we are done whe will shetch the proof for simplicity in type A, i.e. G=SLmC4
DECENBRATION OF THE BRUHAT GRAPH
W&S. Weyl anom 8. 6 single reflection.
WYS _{M+1} Weyl group $S_{1},,S_{n}$ right auflection. $I_{0} \geq I_{1} \geq I_{2} \geq, \geq I_{n-1}$
$T_0 \geq T_1 \geq T_2 \geq \geq T_{n-1}$ $\{s_1,,s_n\} \qquad \{s_n\}$
Wi = < Ii> Sulgroy
Wi/With En sin upresentatives in Wi
·
$W \stackrel{(i)}{\longleftarrow} W_{N_{1}} \times W_{N_{2}} \times \dots \times W_{N-1}$ $W \stackrel{(i)}{\longleftarrow} (W^{(i)}, W^{(2)}, \dots, W^{(N-1)})$
·) We huponly the edge W-V s.t. V(i) > W(i) Vi
De replace a coroct with its "leaking term".

