

Anatoly Dymarsky, Elena Gryazina, Boris Polyak, Sergei Volodin

1 Notations

The goal of the project is to solve a number of tasks for quadratic maps, which are

1. (Real case) The map $f: \mathbb{R}^n \to \mathbb{R}^m$ s.t.

$$f_i(x) = x^T A_i x + 2b_i^T x, A_i = A_i^T$$

2. (Complex case) The map $f: \mathbb{C}^n \to \mathbb{R}^m$ s.t.

$$f_i(x) = x^* A_i x + b_i^* x + x^* b_i, A_i = A_i^*$$

Where \cdot^* is Hermitian conjugate.

From this point on, X denotes \mathbb{R}^n for real case or \mathbb{C}^n for complex case.

We use the following notations:

Definition 1.1. For scalars, vectors, tuples of vectors or tuples of matrices $A = (A_1, ..., A_n) \in X^n$ and $B = (B_1, ..., B_n)$ the dot product is defined as following:

$$A \cdot B = \sum_{i=1}^{n} A_i \cdot B_i$$

For example, for a vector $c \in \mathbb{R}^n$ and a tuple of matrices $A = (A_1, ..., A_n)$, $A_i : m \times m$ the expression $c \cdot A = \sum_{i=1}^n c_i A_i$ is a matrix $c \cdot A : m \times m$.

Definition 1.2. The image of f is denoted as F:

$$F = f(X)$$

Definition 1.3. The convex hull of F is denoted as G:

$$G = \operatorname{conv} F$$

Definition 1.4. The boundary points of F (or G) touched by a supporting hyperplane with the normal vector $c \in \mathbb{R}^m$:

$$\partial F_c = \partial G_c = \underset{y \in F}{\operatorname{arg\,min}} (c \cdot y)$$

2 Functions

The library consists of a number of functions defined in separate .m files. Input format for the map is the following:

- The number A(i, j, k) denotes i'th row and j'th column of the matrix A_k
- The number b(i,j) denotes i'th element of the vector $b_i \in \mathbb{R}^m$
- 1. Feasibility membership oracle. Given:

• The map f as matrices A and vectors b

• A point $y \in \mathbb{R}^m$.

Determine: if $y \in F$

Figure 1: Infeasibility oracle: hyperplane c separates the point y^0 from the image F

is_infeasible = infeasibility_oracle(A, b, y)

This function tries to separate the point y from the convex hull G with a hyperplane. See Theorem 3.2 from the article.

Return value: 1 means that the separation was successful and the point $y \notin G$. This implies $y \notin F$. On the contrary, 0 means that the feasibility is uncertain.

2. Boundary oracle. Given:

- \bullet The map f as matrices A and vectors b
- A point $y \in G$
- A direction $d \in \mathbb{R}^m$

The following two tasks are considered:

(a) **Find:** distance to the boundary from a given point inside G.

Figure 2: Boundary oracle: distance from y to the boundary ∂G in direction d

[t, is_in_F] = boundary_oracle(A, b, y, d)

This function finds the point y + td on the boundary ∂G with the largest t:

$$t = \sup\{\tau | y + \tau d \in G\}$$

Return value:

- t is the largest step in direction d such that y + td is still in G.
- is_in_F is a binary variable indicating if the resulting point y + td belongs to F: it is 1 if it is true or 0 if the result is uncertain

Exception: if optimization task failed, in particular, if $y \notin G$ or the normal vector does not exist at that point.

(b) **Find:** the normal vector c at the boundary point y + td.

Figure 3: Boundary oracle: normal vector c at boundary point y + td

$$c = get_c_from_d(A, b, y, d)$$

This function obtains the normal vector c at the boundary point y + td using dual problem (5) from the article.

Return value: the normal vector c s.t. $y + td \in \partial G_c$

Exception: if optimization task failed, in particular, if $y \notin G$ or the normal vector does not exist at this point.

3. Nonconvexity certificate. Given:

- \bullet The map f as matrices A and vectors b
- A point $y \in F$
- \bullet Number of iterations k

The following two tasks are considered:

(a) **Find:** a vector c such that ∂F_c is nonconvex.

This function is generating at most k random directions d and checks if the intersection of the boundary ∂G_c with a hyperplane with normal vector c at the boundary point y + td is nonconvex.

Return value: c s.t. ∂F_c is nonconvex

Exception: if c was not found in k iterations

(b) **Determine:** if F is nonconvex.

is_nonconvex = nonconvexity_certificate(A, b, y, k)

This function checks if the image is nonconvex via obtaining $c \in C_-$. If c was found in k iterations, the image F is guaranteed to be nonconvex, Otherwise the result is uncertain

Return value: 1 if F is nonconvex, 0 if result is uncertain

4. **Positive-definite** $c \cdot A$. Given:

- ullet The map f as matrices A and vectors b
- \bullet The initial normal vector p

The following three tasks are considered:

(a) **Find:** vector c_+ , s.t. $c_+ \cdot A > 0$

This function generates a random vector p and then finds c_+ nearest to it. Function generates at most k vectors p.

Return value: c_+ s.t. $c_+ \cdot A \succeq 0$ Exception: if c_+ was not found

(b) **Find:** c_+ , s.t. the convex cut is maximal.

This function returns the "best" vector c s.t. $c \cdot A \succeq 0$ and $\lambda_{\min}(c \cdot A) \to \max$. The spectrum of the resulting matrix $c_+ \cdot A$ is separated from 0 the most. This is a heuristic trying to achieve maximal value of z_{\max} in this direction.

Return value: c_+ s.t. $c_+ \cdot A \succeq 0$ Exception: if c_+ was not found

(c) **Find:** c_+ close to given arbitrary p.

This function finds the nearest to p vector c_+ such that $c_+ \cdot A \succeq 0$ heuristically from the neighbourhood of p.

Return value: c_+ s.t. $c_+ \cdot A \succeq 0$ Exception: if c_+ was not found

- 5. Convex subpart. Given:
 - The map f as matrices A and vectors b
 - The point $y \in F$
 - \bullet Number of iterations k
 - Vector c_+ s.t. $c_+ \cdot A \succeq 0$

Find: maximal convex cut of F.

Figure 4: Convex subpart: maximal value of z_{max} such that a cut with a hyperplane c_+ is still convex

This function returns the maximal value z_{max} such that the cut in the direction of c_{+} of size z_{max} is still convex. This procedure is a heuristic (convexity of maximality is not guaranteed)

Return value: Maximal value $z_{\rm max}$ or Inf if no nonconvexities were found

Exception: None