$12n_{0109} (K12n_{0109})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 6.35220 \times 10^{79} u^{55} + 2.03304 \times 10^{79} u^{54} + \dots + 6.01137 \times 10^{80} b + 5.14680 \times 10^{80}, \\ &- 6.55161 \times 10^{79} u^{55} - 5.38999 \times 10^{80} u^{54} + \dots + 6.01137 \times 10^{80} a - 2.37369 \times 10^{81}, \ u^{56} + 2u^{55} + \dots - u - I_2^u &= \langle b + 1, \ -2u^2 + a + u - 4, \ u^3 + 2u + 1 \rangle \\ I_3^u &= \langle b + 1, \ 2u^3 - u^2 + a + 3u - 2, \ u^4 - u^3 + 2u^2 - 2u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 63 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $\begin{matrix} \text{I.} \\ I_1^u = \langle 6.35 \times 10^{79} u^{55} + 2.03 \times 10^{79} u^{54} + \dots + 6.01 \times 10^{80} b + 5.15 \times 10^{80}, \ -6.55 \times 10^{79} u^{55} - 5.39 \times 10^{80} u^{54} + \dots + 6.01 \times 10^{80} a - 2.37 \times 10^{81}, \ u^{56} + 2u^{55} + \dots - u - 1 \rangle \end{matrix}$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.108987u^{55} + 0.896633u^{54} + \dots + 0.394522u + 3.94866 \\ -0.105670u^{55} - 0.0338199u^{54} + \dots - 0.859496u - 0.856178 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.146691u^{55} + 0.118799u^{54} + \dots - 1.49357u - 0.175836 \\ -0.0587371u^{55} - 0.170653u^{54} + \dots - 0.0940050u - 0.334345 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.00331723u^{55} + 0.862813u^{54} + \dots - 0.464973u + 3.09249 \\ -0.105670u^{55} - 0.0338199u^{54} + \dots - 0.859496u - 0.856178 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.228248u^{55} - 0.101789u^{54} + \dots - 1.32208u - 0.0980010 \\ 0.0815574u^{55} + 0.220588u^{54} + \dots - 0.171485u - 0.0778350 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.00788014u^{55} + 0.337184u^{54} + \dots + 0.0774386u + 0.935949 \\ 0.0508844u^{55} + 0.122185u^{54} + \dots + 0.834455u - 0.157223 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0740743u^{55} + 0.802152u^{54} + \dots + 0.322672u + 3.77114 \\ -0.134670u^{55} - 0.112515u^{54} + \dots - 0.799927u - 0.831523 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.152843u^{55} + 0.00107466u^{54} + \dots + 0.363574u + 1.27464 \\ 0.288502u^{55} + 0.643234u^{54} + \dots + 0.739466u - 0.449730 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.103064u^{55} + 0.314464u^{54} + \dots - 0.906044u - 1.96765 \\ -0.000335653u^{55} - 0.103672u^{54} + \dots - 0.200689u - 0.573235 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2.60373u^{55} + 0.0539183u^{54} + \cdots + 14.8197u + 24.5026$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{56} + 20u^{55} + \dots + 436u + 1$
c_2, c_4	$u^{56} - 8u^{55} + \dots + 20u - 1$
c_3, c_6	$u^{56} + 7u^{55} + \dots - 192u + 128$
c_5, c_9	$u^{56} - 2u^{55} + \dots + u - 1$
	$u^{56} - 2u^{55} + \dots + 24u + 36$
c_8, c_{11}, c_{12}	$u^{56} + 2u^{55} + \dots + 3u + 1$
c_{10}	$u^{56} + 14u^{55} + \dots + 663u + 99$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{56} + 40y^{55} + \dots - 177984y + 1$
c_2, c_4	$y^{56} - 20y^{55} + \dots - 436y + 1$
c_{3}, c_{6}	$y^{56} - 45y^{55} + \dots - 749568y + 16384$
c_5, c_9	$y^{56} + 14y^{55} + \dots - 5y + 1$
c ₇	$y^{56} - 6y^{55} + \dots + 8424y + 1296$
c_8, c_{11}, c_{12}	$y^{56} + 50y^{55} + \dots - 5y + 1$
c_{10}	$y^{56} + 2y^{55} + \dots - 93069y + 9801$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.434045 + 0.764937I		
a = 0.226290 - 1.290380I	-5.25808 + 6.99458I	-0.29764 - 8.96864I
b = -0.870790 + 0.961543I		
u = 0.434045 - 0.764937I		
a = 0.226290 + 1.290380I	-5.25808 - 6.99458I	-0.29764 + 8.96864I
b = -0.870790 - 0.961543I		
u = 0.607815 + 0.613715I		
a = 0.265971 - 1.018000I	-2.75732 + 1.48664I	3.92275 - 4.13753I
b = -0.230951 + 0.717761I		
u = 0.607815 - 0.613715I		
a = 0.265971 + 1.018000I	-2.75732 - 1.48664I	3.92275 + 4.13753I
b = -0.230951 - 0.717761I		
u = -0.451362 + 0.714754I		
a = 0.234053 + 1.284310I	-0.27969 - 3.79973I	5.42430 + 9.11034I
b = -0.750580 - 0.842936I		
u = -0.451362 - 0.714754I		
a = 0.234053 - 1.284310I	-0.27969 + 3.79973I	5.42430 - 9.11034I
b = -0.750580 + 0.842936I		
u = -0.862715 + 0.810503I		
a = -0.398734 + 0.878095I	1.24825 - 8.12321I	0
b = 0.522743 - 1.197170I		
u = -0.862715 - 0.810503I		
a = -0.398734 - 0.878095I	1.24825 + 8.12321I	0
b = 0.522743 + 1.197170I		
u = 0.892853 + 0.801583I		
a = -0.414906 - 0.801769I	6.21297 + 4.29286I	0
b = 0.592527 + 1.126870I		
u = 0.892853 - 0.801583I		
a = -0.414906 + 0.801769I	6.21297 - 4.29286I	0
b = 0.592527 - 1.126870I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.278333 + 0.741597I		
a = 0.099886 + 1.151350I	-6.70409 + 0.23714I	-3.85920 + 2.27316I
b = -1.217460 - 0.625912I		
u = -0.278333 - 0.741597I		
a = 0.099886 - 1.151350I	-6.70409 - 0.23714I	-3.85920 - 2.27316I
b = -1.217460 + 0.625912I		
u = 1.056250 + 0.600176I		
a = -0.185355 - 0.398040I	-3.26116 + 0.99617I	0
b = 0.633974 + 0.569529I		
u = 1.056250 - 0.600176I		
a = -0.185355 + 0.398040I	-3.26116 - 0.99617I	0
b = 0.633974 - 0.569529I		
u = -0.073699 + 0.770744I		
a = -0.052889 + 0.368979I	-7.63905 - 3.70925I	-4.91263 + 4.06920I
b = -1.55528 - 0.19232I		
u = -0.073699 - 0.770744I		
a = -0.052889 - 0.368979I	-7.63905 + 3.70925I	-4.91263 - 4.06920I
b = -1.55528 + 0.19232I		
u = -0.942964 + 0.786108I		
a = -0.426418 + 0.678802I	3.85768 - 0.35095I	0
b = 0.687117 - 1.007030I		
u = -0.942964 - 0.786108I		
a = -0.426418 - 0.678802I	3.85768 + 0.35095I	0
b = 0.687117 + 1.007030I		
u = -0.749144 + 1.024530I		
a = 0.848834 - 1.108890I	0.55186 + 2.03907I	0
b = 0.771803 + 0.803578I		
u = -0.749144 - 1.024530I		
a = 0.848834 + 1.108890I	0.55186 - 2.03907I	0
b = 0.771803 - 0.803578I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.014910 + 0.770101I		
a = -0.429292 + 0.522295I	3.49549 - 0.01257I	0
b = 0.792637 - 0.851387I		
u = -1.014910 - 0.770101I		
a = -0.429292 - 0.522295I	3.49549 + 0.01257I	0
b = 0.792637 + 0.851387I		
u = 0.354062 + 0.595793I		
a = 0.21013 - 1.55671I	-1.72486 + 1.19747I	-0.82877 - 2.04827I
b = -0.850160 + 0.434176I		
u = 0.354062 - 0.595793I		
a = 0.21013 + 1.55671I	-1.72486 - 1.19747I	-0.82877 + 2.04827I
b = -0.850160 - 0.434176I		
u = 0.784983 + 1.045670I		
a = 0.735614 + 1.168520I	5.42839 + 1.98837I	0
b = 0.864080 - 0.816507I		
u = 0.784983 - 1.045670I		
a = 0.735614 - 1.168520I	5.42839 - 1.98837I	0
b = 0.864080 + 0.816507I		
u = 0.085970 + 0.684763I		
a = -0.488414 - 0.527247I	-2.62828 + 1.16505I	0.23653 - 4.88495I
b = -1.353840 + 0.169567I		
u = 0.085970 - 0.684763I		
a = -0.488414 + 0.527247I	-2.62828 - 1.16505I	0.23653 + 4.88495I
b = -1.353840 - 0.169567I		
u = 1.064270 + 0.803296I		
a = -0.499399 - 0.427068I	5.24801 - 4.07030I	0
b = 0.922982 + 0.802570I		
u = 1.064270 - 0.803296I		
a = -0.499399 + 0.427068I	5.24801 + 4.07030I	0
b = 0.922982 - 0.802570I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.413382 + 0.518807I		
a = 1.54616 - 0.28428I	-2.93194 + 2.06182I	3.92769 - 4.29642I
b = -0.174530 - 0.207759I		
u = 0.413382 - 0.518807I		
a = 1.54616 + 0.28428I	-2.93194 - 2.06182I	3.92769 + 4.29642I
b = -0.174530 + 0.207759I		
u = -0.824055 + 1.071620I		
a = 0.590241 - 1.211660I	2.94925 - 6.19699I	0
b = 0.975048 + 0.809784I		
u = -0.824055 - 1.071620I		
a = 0.590241 + 1.211660I	2.94925 + 6.19699I	0
b = 0.975048 - 0.809784I		
u = -0.468063 + 0.427077I		
a = 2.06154 + 1.32565I	0.420464 + 0.590909I	7.13336 + 0.51074I
b = -0.599437 + 0.131295I		
u = -0.468063 - 0.427077I		
a = 2.06154 - 1.32565I	0.420464 - 0.590909I	7.13336 - 0.51074I
b = -0.599437 - 0.131295I		
u = 0.509445 + 0.375315I		
a = 2.90388 - 1.33826I	-4.18225 - 3.70043I	1.67113 - 1.36683I
b = -0.746189 - 0.253774I		
u = 0.509445 - 0.375315I		
a = 2.90388 + 1.33826I	-4.18225 + 3.70043I	1.67113 + 1.36683I
b = -0.746189 + 0.253774I		
u = -1.096180 + 0.817244I		
a = -0.518579 + 0.361029I	-0.10153 + 7.89751I	0
b = 0.983579 - 0.750622I		
u = -1.096180 - 0.817244I		
a = -0.518579 - 0.361029I	-0.10153 - 7.89751I	0
b = 0.983579 + 0.750622I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.873027 + 1.098490I		
a = 0.401362 - 1.247710I	2.46724 - 6.89451I	0
b = 1.115410 + 0.785925I		
u = -0.873027 - 1.098490I		
a = 0.401362 + 1.247710I	2.46724 + 6.89451I	0
b = 1.115410 - 0.785925I		
u = 0.90047 + 1.09827I		
a = 0.313656 + 1.301590I	4.29861 + 11.19740I	0
b = 1.19115 - 0.80027I		
u = 0.90047 - 1.09827I		
a = 0.313656 - 1.301590I	4.29861 - 11.19740I	0
b = 1.19115 + 0.80027I		
u = -0.10217 + 1.42460I		
a = 0.637507 - 0.076993I	-4.30900 - 2.14834I	0
b = 0.711327 + 0.052901I		
u = -0.10217 - 1.42460I		
a = 0.637507 + 0.076993I	-4.30900 + 2.14834I	0
b = 0.711327 - 0.052901I		
u = -0.91547 + 1.10371I		
a = 0.250236 - 1.309310I	-1.0410 - 15.1593I	0
b = 1.23792 + 0.78854I		
u = -0.91547 - 1.10371I		
a = 0.250236 + 1.309310I	-1.0410 + 15.1593I	0
b = 1.23792 - 0.78854I		
u = 0.85543 + 1.15949I		
a = 0.352837 + 1.051270I	-4.89061 + 5.92736I	0
b = 1.096290 - 0.637339I		
u = 0.85543 - 1.15949I		
a = 0.352837 - 1.051270I	-4.89061 - 5.92736I	0
b = 1.096290 + 0.637339I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.481256		
a = 0.741225	0.741508	13.5170
b = 0.0486633		
u = -0.453091 + 0.130268I		
a = 6.23400 + 2.08890I	-4.97667 - 2.52844I	15.0645 + 21.3531I
b = -1.045430 + 0.085047I		
u = -0.453091 - 0.130268I		
a = 6.23400 - 2.08890I	-4.97667 + 2.52844I	15.0645 - 21.3531I
b = -1.045430 - 0.085047I		
u = 0.20928 + 1.56362I		
a = 0.526789 + 0.134917I	-10.62760 + 5.32282I	0
b = 0.787380 - 0.084461I		
u = 0.20928 - 1.56362I		
a = 0.526789 - 0.134917I	-10.62760 - 5.32282I	0
b = 0.787380 + 0.084461I		
u = 0.355132		
a = 10.2088	-0.754394	76.5300
b = -1.03133		

II.
$$I_2^u = \langle b+1, -2u^2+a+u-4, u^3+2u+1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{2} - u + 4\\-1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{2} - u + 3\\-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{2} - u + 4\\-1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u\\-u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u\\-u^{2} + u\\-u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + u + 1\\u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3u^2 + u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_6	u^3
c_4	$(u+1)^3$
c_5, c_8, c_{10}	$u^3 + 2u + 1$
<i>C</i> ₇	$u^3 + 3u^2 + 5u + 2$
c_9, c_{11}, c_{12}	$u^3 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_6	y^3
$c_5, c_8, c_9 \\ c_{10}, c_{11}, c_{12}$	$y^3 + 4y^2 + 4y - 1$
c ₇	$y^3 + y^2 + 13y - 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.22670 + 1.46771I		
a = -0.432268 - 0.136798I	-11.08570 + 5.13794I	-7.46495 - 0.52866I
b = -1.00000		
u = 0.22670 - 1.46771I		
a = -0.432268 + 0.136798I	-11.08570 - 5.13794I	-7.46495 + 0.52866I
b = -1.00000		
u = -0.453398		
a = 4.86454	-0.857735	-15.0700
b = -1.00000		

III.
$$I_3^u = \langle b+1, \ 2u^3-u^2+a+3u-2, \ u^4-u^3+2u^2-2u+1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2u^{3} + u^{2} - 3u + 2 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{3} + u^{2} - 3u + 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{3} + u^{2} - 3u + 2 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u^{3} + u^{2} - u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} + u^{2} - 2u + 2 \\ -u^{3} - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^3 + 3u^2 4u + 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_6	u^4
c_4	$(u+1)^4$
c_5, c_8, c_{10}	$u^4 - u^3 + 2u^2 - 2u + 1$
c ₇	$(u^2 - u + 1)^2$
c_9, c_{11}, c_{12}	$u^4 + u^3 + 2u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_6	y^4
$c_5, c_8, c_9 \\ c_{10}, c_{11}, c_{12}$	$y^4 + 3y^3 + 2y^2 + 1$
	$(y^2 + y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.621744 + 0.440597I		
a = 0.57070 - 1.62477I	-4.93480 + 2.02988I	2.57732 - 1.82047I
b = -1.00000		
u = 0.621744 - 0.440597I		
a = 0.57070 + 1.62477I	-4.93480 - 2.02988I	2.57732 + 1.82047I
b = -1.00000		
u = -0.121744 + 1.306620I		
a = -0.570696 + 0.107280I	-4.93480 - 2.02988I	-3.07732 + 2.50966I
b = -1.00000		
u = -0.121744 - 1.306620I		
a = -0.570696 - 0.107280I	-4.93480 + 2.02988I	-3.07732 - 2.50966I
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^7)(u^{56} + 20u^{55} + \dots + 436u + 1)$
c_2	$((u-1)^7)(u^{56} - 8u^{55} + \dots + 20u - 1)$
c_{3}, c_{6}	$u^7(u^{56} + 7u^{55} + \dots - 192u + 128)$
C_4	$((u+1)^7)(u^{56}-8u^{55}+\cdots+20u-1)$
<i>C</i> ₅	$(u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)(u^{56} - 2u^{55} + \dots + u - 1)$
	$((u^2 - u + 1)^2)(u^3 + 3u^2 + 5u + 2)(u^{56} - 2u^{55} + \dots + 24u + 36)$
<i>c</i> ₈	$(u^{3} + 2u + 1)(u^{4} - u^{3} + 2u^{2} - 2u + 1)(u^{56} + 2u^{55} + \dots + 3u + 1)$
c_9	$(u^3 + 2u - 1)(u^4 + u^3 + 2u^2 + 2u + 1)(u^{56} - 2u^{55} + \dots + u - 1)$
c_{10}	$(u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)(u^{56} + 14u^{55} + \dots + 663u + 99)$
c_{11}, c_{12}	$(u^3 + 2u - 1)(u^4 + u^3 + 2u^2 + 2u + 1)(u^{56} + 2u^{55} + \dots + 3u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^7)(y^{56} + 40y^{55} + \dots - 177984y + 1)$
c_2, c_4	$((y-1)^7)(y^{56}-20y^{55}+\cdots-436y+1)$
c_3, c_6	$y^7(y^{56} - 45y^{55} + \dots - 749568y + 16384)$
c_5,c_9	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{56} + 14y^{55} + \dots - 5y + 1)$
c_7	$((y^2 + y + 1)^2)(y^3 + y^2 + 13y - 4)(y^{56} - 6y^{55} + \dots + 8424y + 1296)$
c_8, c_{11}, c_{12}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{56} + 50y^{55} + \dots - 5y + 1)$
c_{10}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)$ $\cdot (y^{56} + 2y^{55} + \dots - 93069y + 9801)$