Rank-65603 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65603

General information

Number of lines	11
Number of points	11
Number of singular points	5
Number of Eckardt points	3
Number of double points	4
Number of single points	0
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3 ¹¹
Type of lines on points	$4^4, 3^3, 2^4$

Singular Points

The surface has 5 singular points:

$$0: P_1 = \mathbf{P}(0,1,0,0) = \mathbf{P}(0,1,0,0) \\ 1: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0) \\ 2: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

$$3: P_{10} = \mathbf{P}(0,1,0,1) = \mathbf{P}(0,1,0,1) \\ 4: P_{12} = \mathbf{P}(0,0,1,1) = \mathbf{P}(0,0,1,1)$$

The 11 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \mathbf{Pl}(0,0,1,0,0,0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \mathbf{Pl}(0,0,0,0,0,1)_{19}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{Pl}(0,0,0,1,0,0)_{5}$$

$$\ell_{4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{29} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{29} = \mathbf{Pl}(0,0,0,1,0,1)_{25}$$

$$\ell_{5} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{6} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{31} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{31} = \mathbf{Pl}(0,1,0,0,0,1)_{21}$$

$$\ell_{7} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{Pl}(0,0,1,1,1,1)_{32}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{9} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{9} = \mathbf{Pl}(1,1,0,0,1,1)_{29}$$

$$\ell_{9} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0,1,0,1,0,0)_{7}$$

$$\ell_{10} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{32} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{32} = \mathbf{Pl}(0,1,0,1,0,1)_{27}$$

Rank of lines: (0, 4, 28, 30, 29, 34, 31, 12, 9, 33, 32)

Rank of points on Klein quadric: (0, 2, 19, 5, 25, 1, 21, 32, 29, 7, 27)

Eckardt Points

The surface has 3 Eckardt points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1), T = -1$$

$$1: P_7 = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0), T = 14$$

$$2: P_{14} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1). T = 14$$

Double Points

The surface has 4 Double points:

The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_7$$

$$P_6 = (1,0,1,0) = \ell_1 \cap \ell_8$$

Single Points

The surface has 0 single points:

The single points on the surface are:

 $P_4 = (1, 1, 1, 1) = \ell_7 \cap \ell_8$

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	0123456789	
0	0111100100	0
1	1010011010	0
2	1101111001	1
	1010111011	
	1011011101	
5	0111101101	1
6	0111110011	1
7	1000110010	1
8	0101001100	1
9	0011111000	1
10	0011111111	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_7
in point	P_0	P_1	P_1	P_1	P_5

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_5	ℓ_6	ℓ_8
in point	P_0	P_2	P_2	P_2	P_6

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_9	ℓ_{10}
in point	P_1	P_2	P_1	P_1	P_2	P_2	P_7	P_7

Line 3 intersects

Line	_			_	ℓ_6	_	_	
in point	P_1	P_1	P_1	P_3	P_{10}	P_{10}	P_3	P_{10}

Line 4 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_5	ℓ_6	ℓ_7	ℓ_9	ℓ_{10}
in point	P_1	P_1	P_1	P_{12}	P_{14}	P_{12}	P_{14}	P_{12}

Line 5 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_6	ℓ_7	ℓ_9	ℓ_{10}
in point	P_2	P_2	P_3	P_{12}	P_2	P_{12}	P_3	P_{12}

Line 6 intersects

Line	ℓ_1	ℓ_2	. 0	ℓ_4	ℓ_5	ℓ_8	ℓ_9	ℓ_{10}
in point	P_2	P_2	P_{10}	P_{14}	P_2	P_{10}	P_{14}	P_{10}

Line 7 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_8	ℓ_{10}
in point	P_5	P_{12}	P_{12}	P_4	P_{12}

Line 8 intersects

Line	ℓ_1	ℓ_3	ℓ_6	ℓ_7	ℓ_{10}
in point	P_6	P_{10}	P_{10}	P_4	P_{10}

Line 9 intersects

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_{10}
in point	P_7	P_3	P_{14}	P_3	P_{14}	P_7

 ${\rm Line}\ 10\ {\rm intersects}$

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_8	ℓ_9
in point	P_7	P_{10}	P_{12}	P_{12}	P_{10}	P_{12}	P_{10}	P_7

The surface has 11 points:

The points on the surface are:

$$\begin{array}{lll} 0: \, P_0 = (1,0,0,0) & 4: \, P_4 = (1,1,1,1) & 8: \, P_{10} = (0,1,0,1) \\ 1: \, P_1 = (0,1,0,0) & 5: \, P_5 = (1,1,0,0) & 9: \, P_{12} = (0,0,1,1) \\ 2: \, P_2 = (0,0,1,0) & 6: \, P_6 = (1,0,1,0) & 10: \, P_{14} = (0,1,1,1) \\ 3: \, P_3 = (0,0,0,1) & 7: \, P_7 = (0,1,1,0) & \end{array}$$