

Presenting:

Supporting Landscape Level Planning and Management with DA-facilitated Integrated Science Modeling by Tim Nieman and Karen Jenni

DAAG Conference 2016

DAAG is the annual conference of the SDP.

To find out more about SDP or to become a member, visit

www.decisionprofessionals.com

Supporting Landscape Level Planning and Management with DA-facilitated Integrated Science Modeling

DAAG, April 8, 2016

Presented by:

Tim Nieman, Decision Applications, St. Helena CA

Karen Jenni, US Geological Survey, Science and Decisions Center, Denver CO

Outline

Introduction

- Landscape-scale natural resource management as an important "societal decision"
- Getting started with collaborative framing

Moving beyond values clarification

- Five modeling challenges
- Five partial solutions

What makes societal decisions unique?

- Decentralized decision makers and decision making processes
- Many stakeholders, with varying degrees of decision-making authority
- Multiple and often conflicting values of varying importance to different stakeholders
- Stakeholder engagement and participation is critical
 - May be more important to success than the tradition DA/DQ steps

Example: Land and Natural Resource Management

- Technically complex
 - Many uncertainties
 - Resource and stressor relationships are often poorly understood
- Organizationally complex
 - Unprecedented scales
 - Overlapping & conflicting DMs, responsibilities, authorities
 - Need for coordinated action
- Passionate and highly invested stakeholders

"The responsible management of natural resources for present-day needs and future generations requires integrated approaches that are place-based, embrace systems thinking, and incorporate the social, economic, and environmental considerations of sustainability"

A Few Specific Examples

Applications

Getting Started: Lots of People, Lots of Frames, Lots of Perspectives, Lots of Goals...

- In our experience, it helps to bring DMs, stakeholders and scientists together to talk about:
 - Scope of issue
 - Roles, responsibilities, authorities
 - Goals and objectives
 - On the landscape
 - For the analysis process and results
- When this is not possible, the analysis team can serve as "intermediaries"
 - Individual or smaller group discussions
 - Develop a combined framing and offer it back to the stakeholders

Even If You Can Identify Common Objectives...

- ... A lot more may be required before it is even remotely possible to mutually agree on paths forward
 - Decision makers and stakeholders need ways to understand and explore the potential impacts of alternative futures
 - That's where modeling comes in
 - Decision-makers and stakeholders may want a role in developing, vetting, and/or reviewing those models

The rest of this presentation will review some of the unique modeling challenges and our (partial and evolving) solutions

Challenge #1: Integration

- State of the art appears to be map overlays
 - Of resources, stressors, etc.
 - Sometimes combined into an "index"
- Is this enough?
 - Probably not...

- The models we have been working on aim to
 - Appropriately represent the biophysical relationships between natural resources
 - To model those relationships dynamically to project changes over time
- Why isn't this done? What makes it difficult? How do we get to what we need?

(Partial) Solution: Respect *Separate* Expertise and Focus on Connections

- Bring scientists from different disciplines together:
 - Create linked models and move towards integrated models
- Example: Energy development scenarios flow through to impacts on other resources

Challenge #2: Choosing a Spatial and Temporal Scale

- "Landscape scale" implies a large geography
 - Different disciplines define their "large geographies" differently

- Land and resource management plans are often prepared for 5 to 20-year time horizons
 - Managing for climate resilience implies even longer time horizons
- The scale of existing data rarely aligns. E.g.,
 - Energy and groundwater data defined by subsurface geology; surface water data is defined by surface hydrology
- How do we define a useful scale and scope for modeling?
 - What scales have we used?

(Partial) Solution: Remember That You Can't Solve Everything All At Once

- Stay focused on the initial choices about which decision makers and which decisions the models aimed to inform
- "Too small" scale makes it overwhelming in terms of data and detail
- "Too large" makes it uninformative

Example of a "small" scale

Methow Basin = 1,800 sq mi

Spatial scale is at the sub-basin level

- Water availability and water use aggregated within each sub-basin
- Size of a sub-basin averages about 150K acres
- Time scale is monthly
 - Sufficient to see seasonal impacts

Example of a "large" scale

- PRB = 22,000 sq mi
- Spatial scale is the entire Powder River Structural Basin in NE Wyoming and SE Montana
 - Matches the scale of energy data
 - Spans geopolitical boundaries
 - Modeled using a 600m x600m grid size
- Time scale is a 5-year increment
 - Sufficient to see long-term impacts

Challenge #3: Defining / modeling scenarios of change

- A major "selling point" for integrated models is to allow end-users to explore the implications of future changes
 - E.g., new management plans, different environmental policies, different climate conditions, etc.
- Many possible scenarios could be defined, yet we can't model everything
- How do you identify an appropriate set for a particular region?

(Partial) Solution: Focus on Interests of Stakeholders and DMs

- Two key principles of effective decision support:
 - Begin with user's needs
 - Link information producers and users
- Common in this arena for scientists to focus on their technical interests
 - Focusing on the drivers of changes most relevant to DMs and stakeholders increases the likelihood of the science influencing decision-making

Report available on: http://www.nap.edu/catalog.php?record_id=12626

Example: CBNG Development Scenarios

Several elements must be specified:

- Price for PRB CBM gas, e.g.,
- Development approach
 - Random well locations within the basin
 - Economic screening with random or prioritized well locations
- We then model a development trajectory that will
 - Meet the production target, if specified, or
 - Develop economically attractive locations only
- Models would also function with direct specification of the quantity, location and timing of gas development, but no such scenarios are readily available

Example: Climate Change Scenarios

Challenge #4: Modeling Uncertainty

- These models are big
- The underlying science is uncertain
- How do you incorporate uncertainty into such large models?

(Partial) Solution: Modularization and Multiple Approaches to Uncertainty

- Overall modular structure allows a combination of approaches to be used
 - Some uncertainty is dealt with probabilistically (e.g., stochastic energy resources) and propagated through simulation.

- Some is included via scenarios (e.g., mining scenarios;

climate uncertainty)

 This is a challenge with such large spatial models. We have to be judicious to manage computer limitations

Challenge #5: Communicating Models and Results

- There are lots of interrelated outputs, extending over a large area, potentially over a long time horizon, with different "outputs" of interest to different decision-makers and stakeholders, with uncertainty.
- How can end-users make sense of all of that?

(Partial) Solution: Use multiple displays and modes

- This is one of our biggest challenges
- We try to provide users multiple ways to view outputs. E.g.,
 - For spatial representations, we use GIS, and animations of GIS maps to bring in changes over time.
 - For aggregated outputs, or those for a specific location, we generate a wide variety of graphs and charts to show impacts.

Coal/CBNG Development

Terrestrial Devel. Index

Illustration: GIS display of CBNG/Coal development & impacts over time

Coal/CBNG Development

Groundwater Extracted

Terrestrial Devel. Index

Example Uncertainty Illustration: Probability of CBNG development

Gray scale shows likelihood of being drilled by 2035

Example: Graphical/Numeric Summary of Regional Impacts

Impact summary table

	-						1
	Scenario: EIA reference case	for both coal	and CBNG	producti	on		
	CBNG development driven by RO						
	No restrictions based on water use or habitat						
		2015	2020	2025	2030	2035	
Energy							
Coal	Recoverable resources	125.1	123.054	120.764	118.457	116.23	billion short tons
	Reserves (at 10:1 stripping ratio or	0.0	0.454	0.004	4 557	0	hillian abankkana
	less) Cumulative coal extracted (since	8.2	6.154	3.864	1.557	0	billion short tons
	2010)	1.9	3.946	6.236	8.543	10.77	billion short tons
CBNG	·						
	Technically recoverable resources	9.106	8.024	6.943	5.788	4.94	TCF
	production (mid)	1.869	1.082	1.081	1.155	0.848	TCF
	Cumulative CBM extracted (since	1.000	2.054	4.022	E 407	6.035	TOF
18/ - 4	2010)	1.869	2.951	4.032	5.187	6.035	TCF
Water		450::	4561.5	4500.0	4500.0	4500.0	I my c c
Ground water	Total Quantity	4591.4	4591.0	4590.9	4590.8	4590.6	millions of acre-ft
	Quantity potentially recoverable	826.4	826.1	826.0	825.9	825.7	millions of acre-ft
	Cumulative water removed for energy extraction (since 2010)	246	335	427	586	767	thousands of acre-ft
	Quality?	240	333	721	300	707	triousarius of acre-it
Surface water	Perennial streams	2800					km
	Impaired streams	810					km
Ecology and Biology	paou oouo	810					KIII
Ecology and biology	Cumulative greenhouse gas						I
Air quality	emissions from develoment	50	101	157	214	268	million tons of CO2
	activities						
Habitats and terrestrial disturbance	0% terrestrial disturbance	2.17	2.14	2.14	2.10	2.08	million acres
	>0% to 1% terrestrial disturbance	1.15	1.13	1.11	1.07	1.03	million acres
	>1% to 3% terrestrial disturbance	2.15	2.09	2.01	1.90	1.79	million acres
	>3% to 5% terrestrial disturbance	1.22	1.24	1.27	1.33	1.40	million acres
	>5% to 20% terrestrial disturbance	1.54	1.61	1.67	1.79	1.88	million acres
	>20% terrestrial disturbance	0.39	0.41	0.41	0.43	0.44	million acres
Sage grouse core areas	Not impacted	1.38E+06	1.38E+06	1.37E+06	1.30E+06	1.24E+06	acres
	Violation of restriction	0.00E+00	2.67E+02	1.67E+04	7.90E+04	1.45E+05	acres
	% of SG core area impacted	0.0%	0.0%	1.2%	5.7%	10.5%	
Sage grouse connectivity areas	Not impacted	3.19E+05	3.19E+05	3.19E+05	3.12E+05	3.01E+05	acres
	Violation of best practices	0.00E+00	0.00E+00	0.00E+00	6.05E+03	1.77E+04	acres
	% of SG connectivity area	0.0%	0.0%	0.0%	1.9%	5.6%	
	impacted						
Conservation areas for "species of greatest conservation need"	Not impacted	2.85E+06	2.85E+06	2.83E+06	2.75E+06	2.69E+06	acres
	Moderate impact	0.00E+00 0.00E+00	1.78E+03 3.29E+03	6.85E+03 1.59E+04	2.24E+04 7.67E+04	3.44E+04 1.33E+05	acres acres
	High impact			1.59E+04 0.00E+00			
	Extreme impact % of total area with moderate or	0.00E+00	0.00E+00	0.00⊑+00	0.00E+00	0.00E+00	acres
	worse impact	0.0%	0.2%	0.8%	3.5%	5.9%	
Habitat adjacent to Critical Stream Corridors	Not impacted	8.34E+04	1.38E+06	1.38E+06	1.38E+06	1.38E+06	acres
	Impacted (wells within the same						
	80-acre parcel as the critical	0.00E+00	0.00E+00	0.00E+00	8.90E+01	2.05E+03	acres
	stream corridor)	28					
	% of potential habitat affected	0.0%	0.0%	0.0%	0.1%	2.5%	

Questions?

Tim Nieman: +1-408-916-1004, tnieman@decisionapplications.com

Karen Jenni: +1-303-236-5766, kjenni@usgs.gov

