Ex.1 - Pitch Detection and Linear Prediction

- \bullet Load the file <code>voiced_a.wav</code> and consider frames of duration $25~\mathrm{ms}$
 - Detect the pitch using zero-crossing rate on the original signal
 - Detect the pitch using zero-crossing rate on the signal filtered with a passband filter
 - pass band: 50 600 Hz, stop band: 25 650 Hz
 - pass band ripple: 4.5 dB, stop band attenuation: 10 dB
 - Oetect the pitch using autocorrelation
 - Oetect the pitch using Cepstrum

Ex.1 - Pitch Detection and Linear Prediction

- Perform linear prediction for each frame
 - Compute LP coefficients of order 12
 - Plot the prediction error and its magnutude spectrum
 - Build an impulse train with the estimated pitch period
 - Consider the impulse train as excitation and build synthetic speech

Ex. 2 - Vocoder with voiced/unvoiced classification

• Load the files a.wav and shh.wav and build a single signal x(t)

