Modélisation de réactions biochimiques

Patrick AMAR

15/01/2021

TER Simulation stochastique

Modélisation discrète stochastique

Algorithme de Gillespie

Caractéristiques

- Modélise le temps par des réels et les quantités de réactants par des entiers (modèle continu/discret)
- Suppose à tout moment un mélange homogène
- Localisation dans l'espace non prise en compte (tube à essai)
- ► Calcul *stochastique*

Algorithme de Gillespie

- ► N espèces moléculaires : {S₁,...,S_N}
- ► M réactions chimiques $\{R_1, ..., R_M\}$ avec leur cinétiques $\{c_1, ..., c_M\}$
- Vecteur d'état dynamique $X(t) = (X_1(t), \dots, X_N(t))$ avec $X_i(t)$ nombre de molécules de l'espèce S_i à l'instant t
- Simulation stochastique exacte

"Propensions"

Réaction bimoléculaire

$$R_n: A+B \stackrel{c_n}{\longrightarrow} C$$

- probabilité qu'elle se produise pendant dt :
 - $P(n, dt) = h_n c_n dt$ avec $h_n = \alpha[A][B]$
- $ightharpoonup a_n = h_n c_n$ est la *propension* de la réaction
- $h_n = \alpha[A]$ pour une réaction mono moléculaire.

Quand? (First Reaction Method)

Variable aléatoire de distribution :

(loi de Poisson de paramètre a)

Avec rand uniforme sur [0, 1]

$$au = -log(rand)/a$$

Quelle réaction?

- ► Calculer la date de toutes les réactions : $\{\tau_1, \ldots, \tau_M\}$
- Déclencher la première :

$$R_i$$
 tq $\tau_i = inf (\tau_1, \dots, \tau_M)$
décrémenter les réactants dans $X(t)$
incrémenter les produits dans $X(t)$

▶ Avancer le temps : $t = t + \tau_i$

Exemple SSA

Optimisation: tau leaping

- ▶ Méthode exacte ⇒ trop de calculs!
- Méthode approchée : avancer par pas de durée T où plusieurs réactions peuvent se produire
- ▶ Bonne approximation : choisir τ assez petit pour que les propensions changent peu
- Difficile à mettre en oeuvre avec des réactions de vitesses très différentes.
- Problèmes potentiels de concentrations négatives durant un saut...

HSIM SSA

HSIM SSA

$$collisions(A \rightarrow P) \qquad \stackrel{\triangle}{=} \#A$$

collisions
$$(A + B \rightarrow P) \stackrel{\triangle}{=} \frac{\alpha}{V} \begin{cases} \#A \cdot \#B & \text{if } A \neq B \\ \#A \cdot (\#A - 1)/2 & \text{otherwise.} \end{cases}$$

Where

- \triangleright V is the cell volume in μ^3
- $\sim \alpha = 7.4 \cdot 10^{-7}$

Modélisation discrète stochastique

"Entité-centrée"

Caractéristiques

- Modélise le temps par pas et les quantités de réactants par des entiers (modèle discret/discret)
- Localisation dans l'espace prise en compte (discrete ou continue)
- ► Calcul *stochastique*

Caractéristiques

- Pas de lois globales imposées
- ► Modélise un *mécanisme* moléculaire
- Modélisation bottom up : le comportement macroscopique émerge du calcul microscopique (interactions à l'échelle moléculaire)

HSIM: Système hybride

- entités représentant les molécules
 - position dans l'espace
 - taille et type (espèce biochimique)
- Diffusion des molécules selon un mouvement brownien
- Reaction entre molécules : changement d'espèce biochimique.

Diffusion et mouvement brownien

Déplacement d'une particule durant un intervalle de temps *t* selon un vecteur *r*

- ▶ moyenne du déplacement : < r >= 0
- moyenne du déplacement au carré :

$$<|r|^2>=6Dt$$

D: constante de diffusion facteur 6: dimensionnalité (2×3D)

Exemple de mouvement brownien

Marche aléatoire et mouvement brownien

► Après *N* étapes de déplacement (distance *a*, temps \mathcal{T} , direction aléatoire, $\|\overrightarrow{n_i}\| = 1$)

$$r = a\overrightarrow{n_1} + a\overrightarrow{n_2} + \ldots + a\overrightarrow{n_N}$$

Carré de la distance parcourue : $|r|^2 = a^2 \left(\overrightarrow{n_1} + \overrightarrow{n_2} + \ldots + \overrightarrow{n_N} \right)^2$

$$|r|^2 = Na^2 + a^2 \sum \overrightarrow{n_i} . \overrightarrow{n_j}$$

► comme $\langle \overrightarrow{n_i}.\overrightarrow{n_i}\rangle = 0$

$$<|r|^2>=Na^2$$

Marche aléatoire et mouvement brownien

Temps écoulé après N étapes : $t = N\tau$

$$<|r|^2>=\frac{a^2}{\tau}t$$

 \implies mouvement brownien, constante de diffusion $D = a^2/6\tau$

HSIM: Règles d'évolution

HSIM: Algorithme

Une étape de simulation consiste à traiter une et une seule fois toutes les molécules présentes

Règles d'évolution

Règles de base :

Réaction $A + B \rightarrow C + D$ [Pr]

Cas particuliers:

Synthèse $A \rightarrow A + B$ [Pr] Dégradation $D + A \rightarrow D$