Tema Nr. 5: Căutarea în tabele de dispersie Adresare deschisa, verificare pătratică

Timp alocat: 2 ore

Implementare

Se cere implementarea **corectă** și **eficientă** a operațiilor de *inserare* si *căutare* într-o tabela de dispersie ce folosește adresarea deschisa cu verificare pătratică.

Informații utile și pseudo-cod găsiți în notițele de curs sau în carte, in secțiunea 11.4 Open addressing.

Notiunile inchis/deschis (closed/open) specifica daca se obliga folosirea unei pozitii sau structuri de date.

Hashing (se refera la tabela de dispersie (hash table))

- Open Hashing
 - Pe o anumita pozitie se pot stoca mai multe elemente ex: chaining
- Closed Hashing
 - Se poate stoca doar un singur element pe o anumita pozitie ex.
 linear/quadratic probing

Addressing (se refera la pozitia finala a unui element fata de pozitia initiala)

- Open Addressing (Adresare Deschisa)
 - Adresa finala (pozitia finala) nu este complet determinat de catre codul hash.
 Pozitia depinde si de elementele care sunt deja in tabela. ex: linear/quadratic
 probing (verificare liniara/patratica)
- Closed Addressing (Adresare Inchisa)
 - Adresa finala este intotdeauna determinata the codul hash (pozitia initiala calculata) si nu exista probing (verificare) ex: chaining

Praguri notare

Nota	Cerințe		
5	Implementarea operațiilor de inserare și căutare într-o tabela de dispersie; demo pe factor de umplere 95%		
7	Evaluarea operației de căutare		
9	Implementare corecta si completa a algoritmului, cu demo		
10	Evaluare, interpretare, discutie		

Evaluare

! Înainte de a începe să lucrați pe partea de evaluare, asigurați-vă că aveți un algoritm corect! Corectitudinea algoritmilor va trebui demonstrată pe date de intrare de dimensiuni mici

Se cere evaluarea operatiei de *cautare* in tabele de dispersie cu adresare deschisă si verificare pătratica, in cazul **mediu statistic** (nu uitati să repetați măsurătorile de 5 ori). Pentru a obtine evaluarea, trebuie sa:

- 1. Alegeti *N*, dimensiunea tabelei, un numar prim in jur de 10000 (e.g. 9973, sau 10007);
- 2. Pentru fiecare din urmatoarele valori pentru factorul de umplere $\alpha \in \{0.8, 0.85, 0.9, 0.95, 0.99\}$:
 - a. Inserati in tabela n elemente aleator, astfel incat sa ajungeti la valoare lui α ($\alpha = n/N$)
 - b. Cautati, in fiecare caz, m elemente aleator ($m \sim 3000$), astfel incat aproximativ jumatate din elemente sa fie gasite, iar restul sa nu fie gasite (in tabela). Asigurati-va ca elementele gasite sunt generate uniform, i.e. să căutați elemente care au fost introduse la moment diferite, cu probabilitate egală (există mai multe moduri în care se poate asigura acest lucru)
 - c. Numarati operatiile efectuate de procedura de cautare (i.e. numarul de celule accesate)

3. Generati un tabel de forma:

Factor de	Efort mediu	Efort maxim	Efort mediu	Efort maxim
umplere	gasite	gasite	ne-gasite	ne-gasite
0.8				
0.85				

Efort mediu = efort_total / nr_elemente

Efort maxim = numar maxim de acese efectuat de o operatie de cautare

4. Interpretati rezultatele.