Part I

Роль алгоритмов в вычислениях

1 Алгоритмы

Алгоритм - любая корректно определенная вычислительная процедура на вход которой подается некоторый набор величин и результатом выполнения которой явялется выходной набор значений

Алгоритм корректен, если для каждого ввода результатом его работы является корректный вывод

2 Структуры данных

Структура данных - способ хранения и организации данных, облегчающий доступ к этим данным и их модификацию

3 Сложные задачи

Задачи, для которых неизвестны эффективные методы решения называются **NP-полные**

Они представляют интерес:

- 1. Не доказано, что эффективного алгоритма не существует
- 2. Если эффективный алгоритм существует хотя бы для одной NP-полной задачи, то его можно сформулировать и для остальных
- 3. Некоторые NP-полные задачи похожи на задачи, для которых известны эффективные алгоритмы

4 Алгоритмы как технология

4.1 Эффективность

Алгоритмы часто различаются по эффективности, различия могут быть значительнее, чем те, что вызваны разной мощностью аппаратного обеспечения Пример:

 $\overline{Copmuposka}$ вставкой: требует время, которое оценивается как c_1n^2 , где c_1 - константа, не зависящая от n. Таким образом, время работы этого алгоритма пропорционально n^2 .

Cортировка слиянием: требует время, приблизительно равное c_2nlgn .

Для этих двух методов зависимые множители относятся как $\frac{lgn}{n}$. Для маленьких n сортировка вставкой работает быстрее, но для больших n проявляется преимущество сортировки слиянием.

Part II

Приступаем к изучению

5 Сортировка вставкой

Вход: Последовательность из n чисел $< a_1, a_2, \cdots, a_n >$

Выход: Перестановка $< a_1', a_2', \cdots, a_n' >$ входной последовательности таким образом, что $a_1' \le a_2' \le \cdots \le a_n'$

Сортируемые числа известны под названием *ключи* (keys)

Псевдокод:

```
\begin{split} & \text{Insertion\_Sort}\,(A)\colon \\ & \text{for } j = 2 \text{ to length}\,[A]\colon \\ & \text{key} = A[\,j\,] \\ & \text{\# Insert } A[\,j\,] \text{ into sorted sequence } A[\,1\colon j-1] \\ & \text{i} = j-1 \\ & \text{while } i > 0 \text{ and } A[\,i\,] > \text{key}\colon \\ & \text{do } A[\,i\,+\,1] = A[\,i\,] \\ & \text{i} = i\,-\,1 \\ & A[\,i\,+\,1] = \text{key} \end{split}
```

5.1 Инварианты цикла и корректность сортировки вставкой

В начале каждой итерации цикла for подмассив A[1:j-1] содержит те элементы, которые были в нем с самого начала, но расположенные в отсортированном порядке. Это свойство элементов A[1:j-1] называется **инвариантом цикла** Инварианты цикла позволяют понять, что алгоритм работает корректно. Необходимо показать, что инварианты циклов обладают следующими тремя свойствами:

- 1. Инициализация: Они справедливы перед первой инициализацией цикла
- 2. Сохранение: Если они истинны перед очередной итерацией цикла, то остаются истинны и после нее
- 3. **Завершение:** По завршении цикла инварианты позволяют убедиться в правильности алгоритма

Если выполняются первые два свойства, то инварианты **остаются истинными перед каждой очередной итерацией цикла**

Доказательства

Инициализация:

 $j=2 \to$ подмножество элементов A[1:j-1] состоит из одного элемента A[1], сохраняющего исходное значение. Более того, в этом подмножестве элементы рассортированы. Инвариант соблюдается

Сохранение:

В теле внешного цикла происходит сдвиг элементов A[j-1], A[j-2], A[j-3], ... на одну позицию вправо до тех пор, пока не освободится подходящее место для элемента A[j]

Завершение:

При сортировке методом включений внешний цикл завершается, когда j превышает n, т.е. когда j=n+1. Подставим в формулировку инварианта цикла значение n+1, получим утверждение: в подмножестве элементов A[1:n] находятся те же элементы, что и были в нем до начала работы алгоритма, но расположенные в отсортированном порядке. Подмножество A[1:n] и есть массив A. Таким образом, весь массив отсортирован.

6 Анализ алгоритмов

Анализ алгоритма заключается в том, чтобы предсказать требуемые для его выполнения ресурсы. Чаще всего определяется время выполнения.

Путем анализа нескольких алгоритмов можно выбрать наиболее эффективный Модель ресурсов:

В качестве технологии реализации принята модель обобщенной однопроцессороной машины с *памятью с произвольным доступом* (RAM). Команды процессора выполняются последовательно, одновременно выполняемые операции отсутствуют. Команды процессора:

- 1. Арифметические операции
- 2. Операции перемещения данных
- 3. Управляющие (условное и безусловное ветвление, вызов подпрограммы, возврат из нее)

Для выполнения каждной такой инструкции требуется определенный фиксированный промежуток времени

Типы данных:

- 1. Целочисленный тип данных
- 2. Тип чисел с плавающей точкой

Существует верхний предел размера слова данных

Например, если обрабатываются входные данные с максимальным значением n, обычно предполагается, что целые числа представлены clgn битами, где c произвольная константа $\infty > c > 1$.

Вычисление 2k рассматривается как элементарная операция, если k достаточно малое число

6.1 Анализ алгоритма Insertion Sort

Для анализа необходимо использовать **размер входных данных**. Для некоторых задач это может быть *количество входных элементов*, для других - *общее количество бит*

Время работы измеряется в количестве элементарных операций, которые необходимо выполнить.

Предположим, что для выполнения строки псевдкода требуется фиксированное время. Одна и та же строка i выполняется за время c_i

 t_j - количество проверок условия в цикле while. При нормальной работе циклов условие проверяется на один раз больше, чем выполняется тело цикла

Время работы алгоритма - это сумма времени промежутков времени, необходимых для выполнения каждой входящей в его состав исполняемой инструкции

$$T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7(n-1)$$

Если массив уже отсортирован, то $t_i = 1$

Если массив отсортирован в обратном порядке, то это наихудший случай. Каждый элемент необходимо сравнивать со всеми элементами уже отсортированного множества. Так что $\forall j: t_i=j$

$$\sum_{i=2}^{n} j = \frac{n(n+1)}{2} - 1$$

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4(\frac{n(n+1)}{2} - 1) + c_5(\frac{n(n-1)}{2}) + c_6(\frac{n(n-1)}{2}) + c_7(n-1)$$

$$T(n) = \left(\frac{c_4 + c_5 + c_6}{2}\right)n^2 + \left(c_1 + c_2 + c_3 + \frac{c_4 + c_5 + c_6}{2} + c_7\right)n - \left(c_2 + c_3 + c_5 + c_7\right)$$

Это время работы можно записать как $an^2 + bn + c$, где константы зависят от c_i . Таким образом, это квадратичная функция n^2

6.2 Наихудшее и среднее время работы

В основном уделяется внимание наихудшему времени работы

- 1. Наихудший случай верхний предел
- 2. В некоторых алгоритмах наихудший случай встречается довольно часто
- 3. Характер поведения усредненного времени работы часто ничем не лучше поведения для наихудшего случая

6.3 Порядок возрастания

Во внимание будет приниматься только главный член формулы. Постоянные множители будут игнорироваться, так как для оценки вычислительной эффективности алгоритма с большими входными данными они менее важны, чем порядок роста Обычно один алгоритм считается эффективнее другого, если время его работы в наихудшем случае имеет более низкий порядок роста

Part III

Разработка алгоритмов

В алгоритме, работающем по методу вставок, применяется **инкрементный подход**: располагая отсортированным подмассивом A[1:j-1], мы помещаем очередной элемент A[j] туда, где он должен находится, в результате чего получаем отсортированный подмассив A[1:j]

7 Метод декомпозиции

Сложная задача разбивается на несколько более простых, которые подобны исходной задаче, но имеют меньший объем. Далее эти вспомогательные задачи решаются рекурсивным методом, после чего полученные решения комбинируются с целью получить решение исходной задачи Разделяй и властвуй

- 1. Разделение задачи на несколько подзадач
- 2. Покорение рекурсивное решение этих подзадач. Когда объем подзадачи достаточно мал, выделенные подзадачи решаются непосредственно
- 3. **Комбинирование** решений исходной задачи из решений вспомогательной задачи

7.1 Алгоритм сортировки слиянием

- 1. **Разделение:** Сортируемая последовательность разбивается на две меньшие последовательности, каждая из которых содержит n/2 элементов
- 2. **Покорение:** Сортировка обеих вспомогательных последовательностей методом слияния
- 3. **Комбинирование:** Слияние двух отсортированных последовательностей для получения конечного результата

Рекурсия достигает своего нижнего пределга, когда длина сортируемой последовательности становится равно 1. В этом случае вся работа уже сделана, поскольку любую такую последовательность можно считать упорядоченной.

Основная операция, которая производится в процессе сортировки слиянияем - это **объединение двух отсортированных последовательностей**.

Это делается с помощью вспомогательной функции Merge(A, p, q, r), где A - массив, p, q, r - индексы, такие что $p \le q < r$.

В этой процедуре предполагается, что элементы подмассивов A[p:q] и A[q+1:r] упорядочены. Она сливает эти два подмассива в один отсортированный, элементы которого заменяют текущие элементы массива A[p:r]

Для выполнения процедуры Merge требуется время $\Theta(n)$, где n=r-p+1. Аналогия с картами:

Из двух младших карт выбрать наиболее младшую, извлечь ее из соответствующей стопки и поместить в выходную стопку. Этот шаг повторяется до тех пор, пока в одной стопке не окажется 0 карт. После этого все оставшиеся в другой стопке карты необходимо поместить в выходную стопку.

Дополнительная идея: Используем **сигнальную карту** В ходе каждого шага не приходится проверять является ли каждая из двух стопок пустой. Не существует карт, достоинство которых больше сигнальной карты. Процесс продолжается до тех пор, пока карты в обеих стопках не окажутся сигнальными. В выходной стопке должна содержаться \mathbf{r} - \mathbf{p} + 1 карта \rightarrow на этом значении **процесс можно остановить**

Псевдокод

```
Merge(A, p, q, r):
n1 = q - p + 1
                                      #Calculate len A[p:q]
n2 = r - q
                                      #Calculate len A[q+1:r]
# Create arrays L[1:n1+1], R[1:n2+1]
for i=1 to n1:
                                      #Copy A elements to L, R
    L[i] = A[p + i - 1]
for j = 1 to n2:
    R[j] = A[q + j]
L[n1 + 1] = \infty
                             # Add signal values
R[n2 + 1] = \infty
i = 1
j = 1
fpr k = p to r:
    if L[i] \leq R[j]:
        A[k] = L[i]
        i = i + 1
    else:
        A[k] = R[j]
        j = j + 1
```

Инвариант цикла

- 1. **Инициализация:** Перед первой итерацией цикла k=p, поэтому подмассив A[p:k-1] пуст. Он содержит k-p=0 наименьших элементов массивов L, R. Поскольку i=j=1, элементы $L[i],\,R[j]$ наименьшие элементы массивов L и R, не скопированные обратно в массив A
- 2. Сохранение: Предположим, что L[i] ≤ R[j]. Тогда L[i] наименьший элемент еще не скопированный в массив А. Поскольку в массиве А[p:k-1] содержится k-p наименьших элементов, после копирования L[i] в A[k] в подмассиве A[p:k] будет содержаться k-p+1 наименьших элементов. В результате увеличения k в цикле for и i инварианта цикла сохраняется. Аналогично для L[i] ≥ R[j]

3. Завершение: Алгоритм завершается, когда k=r+1. В соответствии с инвариантом цикла подмассив A[p:k-1], т.е. массив A[p:r] содержит k-p=r-p+1 наименьших элементов массивов L[1:n1+1], R[1:n2+1] в отсортированном порядке. Все они, кроме сигнальных, скопированны в исходный массив.

Merge Sort(A, p, r):

Производит сортировку элементов в подмассиве A[p:r]. Если справедливо неравентсво $p \geq r$, в массиве содержится не больше 1 элемента и он является **уже отсортированным** Псевдокод

7.2 Анализ алгоритмов, построенных на принципе "разделяй и властвуй"

Время работы можно описать с помощью **рекуррентного уравнения**, которое выражает время решения задачи n через решения задач для меньших входных данных

Обозначим время решения задачи через T(n)

$$T(n) = \Theta(1), n \le c$$

с - некоторая заранее известная константа

Если задача делится на а подзадач, объем каждой из которых равен 1/b от исходной задачи:

Для решения подзадачи потребуется время T(n/b), для решения а задач: aT(n/b) Предположим, что на разбитие задачи расходуется время D(n), на переход к исходной задаче C(n) Тогда:

$$T(n) = \begin{cases} \Theta(1), c \le n \\ aT(n/b) + D(n) + C(n), c > n \end{cases}$$

7.3 Анализ алгоритма Merge Sort

- 1. **Разделение**: Определяет, где находится середина подмассива $D(n) = \Theta(1)$
- 2. **Властвование**: Рекуррентно решаются 2 подзадачи размер которых составляет 1/2 от исходной. 2T(n/2)
- 3. Комбинирование: Процедура Мегде. Работает за $C(n) = \Theta(n)$

$$T(n) = \begin{cases} \Theta(1), c = 1\\ 2T(n/2) + \Theta(1) + \Theta(n) = 2T(n/2) + cn, n > 1 \end{cases}$$

Полностью раскрытое дерево имеет lgn+1 уровень, а вклад каждого уровня - cn \to cnlgn - cn $\to \Theta(nlgn)$