Devoir : ≠SAT

Remy Detobel

18 décembre 2017

1 Introduction

Nous devons prouver que \neq SAT est NP-Complet.

1.1 Définition de \neq SAT

Prenons ϕ comme étant une formule sous la forme normale conjonctive de trois littéraux. Une assignation des variables de ϕ est correcte si deux littéraux ont deux valeurs différentes. En d'autres mots, les trois littéraux ne peuvent pas avoir la même valeur. \neq SAT est une collection de ce genre de formule. Nous appellerons ces formules sous forme normale conjonctive : " \neq assignement".

1.2 Définition de NP-Complet

Un langage B est "NP-complet" si et seulement si :

- $-B \in NP$
- Pour chaque $A \in NP, A \leq_p B$

Dans le cas présent, nous devons donc prouver que \neq SAT est dans NP et également que pour un problème A étant lui même NP on peut écrire : $A \leq_p \neq$ SAT. C'est à dire qu'il existe une fonction f s'exécutant en un temps polynomial tel que :

$$\forall w, w \in A \Leftrightarrow f(w) \in B$$

2 Réduction

Nous allons donc réduire 3SAT en \neq SAT.

2.1 Réduction de 3SAT

Pour se faire nous allons modifier les clauses du problème 3SAT. Notons $x_{i,j}$ un littéral appartenant à la $i^{\text{ème}}$ clause et étant le $j^{\text{ème}}$ élément de cette clause (variant de 1 à 3 pour 3SAT). La clause i peut donc être écrite comme étant :

$$(x_{i,1} \lor x_{i,2} \lor x_{i,3})$$

Comme indiqué, nous voulons éviter que chaque littéral soit égal à True. Pour ce faire nous allons rajouter une variable C_i et une constante False. Nous pouvons donc écrire :

$$(x_{i,1} \lor x_{i,2} \lor C_i)$$

 $\land (x_{i,3} \lor C_i \lor False)$

Où
$$C_i = (x_{i,1} \vee x_{i,2} \vee x_{i,3}) \wedge (\overline{x_{i,1}} \vee \overline{x_{i,2}}).$$

En effet, on veut que l'assignation soit fausse si $x_{i,1}, x_{i,2}$ et $x_{i,3}$ sont faux car cette assignation serait fausse également pour le problème 3SAT. Cette première phrase justifie la condition dans la première parenthèse. En effet, on peut écrire :

$$\overline{C_i} = (\overline{x_{i,1}} \wedge \overline{x_{i,2}} \wedge \overline{x_{i,3}})$$

$$\Leftrightarrow C_i = x_{i,1} \vee x_{i,2} \vee x_{i,3}$$

La seconde condition permet de vérifier que lorsque $x_{i,1}$ et $x_{i,2}$ sont à True, C_i soit bien à False pour éviter que les trois littéraux ne soient à True, on peut donc écrire :

$$\overline{C_i} = x_{i,1} \land x_{i,2}$$

$$\Leftrightarrow C_i = \overline{x_{i,1}} \lor \overline{x_{i,2}}$$

2.1.1 Exemple de réduction d'un problème 3SAT

Un problème 3SAT peut donc être écrit de la manière suivante :

$$(x_1 \lor x_2 \lor x_3)$$

$$\land (\overline{x_1} \lor x_2 \lor x_3)$$

$$\land (\overline{x_1} \lor \overline{x_2} \lor x_3)$$

Une solution possible est : $x_1 = True, x_2 = True$ et $x_3 = True$. Appliquons donc la réduction :

$$(x_1 \lor x_2 \lor C_1)$$

$$\land (x_3 \lor C_1 \lor False)$$

$$\land (\overline{x_1} \lor x_2 \lor C_2)$$

$$\land (x_3 \lor C_2 \lor False)$$

$$\land (\overline{x_1} \lor \overline{x_2} \lor C_3)$$

$$\land (x_3 \lor C_3 \lor False)$$

Où $C_i = (x_{i,1} \vee x_{i,2} \vee x_{i,3}) \wedge (\overline{x_{i,1}} \vee \overline{x_{i,2}}).$ Donc pour $x_1 = True, x_2 = True$ et $x_3 = True$, on aura :

$$C_{1} = (x_{1} \lor x_{2} \lor x_{3}) \land (\overline{x_{1}} \lor \overline{x_{2}})$$

$$= (True \lor True \lor True) \land (\overline{True} \lor \overline{True})$$

$$= (True \lor True \lor True) \land (False \lor False)$$

$$= False$$

$$C_{2} = (\overline{x_{1}} \lor x_{2} \lor x_{3}) \land (\overline{(x_{1})} \lor \overline{x_{2}})$$

$$= (False \lor True \lor True) \land (\overline{False} \lor \overline{True})$$

$$= (False \lor True \lor True) \land (True \lor False)$$

$$= True$$

$$C_{3} = (\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}) \wedge (\overline{(\overline{x_{1}})} \vee \overline{(\overline{x_{2}})})$$

$$= (False \vee False \vee True) \wedge (\overline{False} \vee \overline{False})$$

$$= (False \vee False \vee True) \wedge (True \vee True)$$

$$= True$$

On a donc $C_1 = False, C_2 = True$ et $C_3 = True$.

Si l'on considère une autre solution : $x_1 = False$, $x_2 = True$ et $x_3 = False$, on aura : $C_1 = True$, $C_2 = False$ et $C_3 = True$.

$2.2 \neq SAT$ est un problème NP

Un problème appartient à NP s'il existe un algorithme permettant de vérifier les solutions en un temps polynomial par rapport aux nombres d'entrées. Pour vérifier qu'une solution assignant n variables soit à T, soit à F, il suffit de calculer chacune des clauses. Le nombre étant fixe pour un problème donné, cette vérification se fait en O(n). Il s'agit donc bien d'un problème appartenant à NP.

3 Conclusion

En prouvant qu'il existe une réduction de 3SAT vers \neq SAT en un temps polynomial et en montrant que \neq SAT était bien un problème appartenant à NP, on a bien montré que \neq SAT est NP-Complet.