CAPSTONE PROJECT: BATTLE OF THE NEIGHBORHOODS

Venue Recommendation for United States of America Visitor's

I. PURPOSE

This document provides the details of how i reached conclusion on mostly commonly visited place and also provide recommendation on best value stay while in USA

II. INTRODUCTION

There are lot of websites that scrapes different websites to provide us a comparison on places to stay or visit. However, most of these websites provides recommendation simply based on usual tourist attractions or key residential areas that are mostly expensive or already known for travelers based on certain keywords like "Hotel", or "Backpackers" etc. The intention on this project is to collect and provide a data driven recommendation that can supplement the recommendation with statistical data. This will also be utilizing data retrieved from New York open data sources and FourSquare API venue recommendations.

The sample recommender in this notebook will provide the following use case scenario:

- A person planning to visit United States as a Tourist or an Expat and looking for a reasonable accommodation.
- The user wants to receive venue recommendation where he or she can stay or rent with close proximity to
 places of interest or search category option.
- The recommendation should not only present the most viable option, but also present a comparison table
 of all possible town venues.

For this demonstration, this notebook will make use of the following data:

- · Median Rental Prices by town.
- Popular Food venues in the vicinity. (Sample category selection)

Note: While this demo makes use of Food Venue Category, Other possible categories can also be used for the same implementation such as checking categories like:

- Outdoors and Recreation
- · Nightlife
- · Nearby Schools, etc.

I will limit the scope of this search as FourSquare API only allows 50 free venue query limit per day when using a free user access.

III. DATA ACQUISITION

This demonstration will make use of the following data sources:

USA median residential rental prices.

Data will retrieved from open dataset from median rent-by-town and flattype
(https://www.quandl.com/data/ZILLOW/M1300_MPPRSF-Zillow-Home-Value-Index-Metro-Median-Price-Of-Reduction-Single-Family-Residence-Canon-City-CO) from https://www.quandl.com (<a href="https://www.quandl.com

The original data source contains median rental prices of Singapore HDB units from 2005 up to 2nd quarter of 2018. I will retrieve rental the most recent recorded rental prices from this data source (Q2 2018) being the most relevant price available at this time. For this demonstration, I will simplify the analysis by using the average rental prices of all available flat type.

Location data retrieved using Google maps API.

Data coordinates of Town Venues will be retrieved using google API. I also make use of MRT stations coordinate as a more important center of for all towns included in venue recommendations.

Top Venue Recommendations from FourSquare API

(FourSquare website: www.foursquare.com(http://www.foursquare.com())

I will be using the FourSquare API to explore neighborhoods in selected towns in Singapore. The Foursquare explore function will be used to get the most common venue categories in each neighborhood, and then use this feature to group the neighborhoods into clusters. The following information are retrieved on the first query:

- Venue ID
- Venue Name
- · Coordinates : Latitude and Longitude
- · Category Name

Another venue query will be performed to retrieve venue ratings for each location. Note that rating information is a paid service from FourSquare and we are limited to only 50 queries per day. With this constraint, we limit the category analysis with only one type for this demo. I will try to retrieve as many ratings as possible for each retrieved venue ID.

IV. METHODOLOGY

United States Cities or Towns List with median residential rental prices obtained from New York free data source

The source data contains median rental prices of United States from 2008 up to of 2019. I will retrive the most recent recorded rental prices from this data source (Q2 2018) being the most relevant price available at this time. For this demonstration, I will simplify the analysis by using the average rental prices of all available flat type.

Data Cleanup and re-grouping. The retrieved table contains some un-wanted entries and needs some cleanup.

The following tasks will be performed:

- Drop/ignore cells with missing data.
- · Use most current data record.

· Fix data types.

Importing Python Libraries

This section imports required python libraries for processing data.

While this first part of python notebook is for data acquisition, we will use some of the libraries make some data visualization.

In [4]:

```
#!conda install -c conda-forge folium=0.5.0 --yes # comment/uncomment if not yet installed.
                                                  # comment/uncomment if not yet installed
#!conda install -c conda-forge geopy --yes
import numpy as np # library to handle data in a vectorized manner
import pandas as pd # library for data analsysis
# Numpy and Pandas libraries were already imported at the beginning of this notebook.
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
import json # library to handle JSON files
from geopy.geocoders import Nominatim # convert an address into latitude and longitude value
from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe
# Matplotlib and associated plotting modules
import matplotlib.cm as cm
import matplotlib.colors as colors
# import k-means from clustering stage
from sklearn.cluster import KMeans
import folium # map rendering Library
import requests # library to handle requests
import bs4 as bs
import urllib.request
print('Libraries imported.')
```

Libraries imported.

1. Downloading towns list with and median residential rental prices

In [5]:

```
data = pd.read_csv('Sale_Prices_Msa.csv')
data.head()
#Taking only region name and # Taking the most recent report which is "2019-04"

df = pd.DataFrame(data[['RegionName','2019-04']])
#renaming RegionName to City and year to median_rent
df.rename(columns = {'RegionName':'Town','2019-04':'median_rent'}, inplace = True)

df.head()
#sgp_median_rent_by_town_data.head()
```

Out[5]:

	Town	median_rent
0	United States	NaN
1	New York, NY	NaN
2	Los Angeles-Long Beach-Anaheim, CA	632800.0
3	Chicago, IL	244400.0
4	Dallas-Fort Worth, TX	NaN

Data Cleanup and re-grouping.

The retrieved table contains some un-wanted entries and needs some cleanup. The following tasks will be performed:

- · Drop/ignore cells with missing data.
- · Use most current data record.
- · Fix data types.

In [6]:

```
# Drop rows with rental price == 'na'.
df.dropna(subset=['median_rent'],axis = 0,inplace = True)

#drop column index as it isnt required
# Ensure that median_rent column is float64.
df['median_rent']=df['median_rent'].astype(np.float64)

df = df.reset_index(drop=True)

df.head()
```

Out[6]:

	Town	median_rent
0	Los Angeles-Long Beach-Anaheim, CA	632800.0
1	Chicago, IL	244400.0
2	San Francisco, CA	789400.0
3	Riverside, CA	353000.0
4	Phoenix, AZ	247300.0

• Note:For this demonstration, We will do a simplier analysis by using a median price for all available rental units regardless of its size.

In [7]:

```
df_avg = df.groupby(['Town'])['median_rent'].mean().reset_index()
df_avg
```

Out[7]:

	Town	median_rent
0	Adrian, MI	145800.0
1	Akron, OH	141600.0
2	Albany, OR	258600.0
3	Anchorage, AK	311700.0
4	Astoria, OR	287700.0
5	Barnstable Town, MA	396700.0
6	Bartlesville, OK	113200.0
7	Bay City, MI	82200.0
8	Beaver Dam, WI	156200.0
9	Bellingham, WA	379500.0

• Adding geographical coordinates of each town location.

In [6]:

```
# The code was removed by Watson Studio for sharing.
```

google_key=hidden_from_view

2. Retrieve town coordinates.

Google api will be used to retrive the coordinates (latitude and longitude of each town centers. The town coordinates will be used in retrieval of Foursquare API location data.

In [8]:

```
df_avg['Latitude'] = 0.0
df_avg['Longitude'] = 0.0

for idx,town in df_avg['Town'].iteritems():
    address = town + " United States"; # I prefer to use MRT stations as more important ce
    url = 'https://maps.googleapis.com/maps/api/geocode/json?address={}&key={}'.format(addr
    print(url)
    lat = requests.get(url).json()["results"][0]["geometry"]["location"]['lat']
    lng = requests.get(url).json()["results"][0]["geometry"]["location"]['lng']
    df_avg.loc[idx,'Latitude'] = lat
    df_avg.loc[idx,'Longitude'] = lng
```

In [13]:

```
#reading from saved file to avoid call to google api multiple times
df_avg = pd.read_csv('United_States_average.csv')
df_avg.head()
```

Out[13]:

	Unnamed: 0	Town	median_rent	Latitude	Longitude
0	0	Adrian, MI	145800.0	41.897547	-84.037166
1	1	Akron, OH	141600.0	41.081445	-81.519005
2	2	Albany, OR	258600.0	44.636511	-123.105928
3	3	Anchorage, AK	311700.0	61.218056	-149.900278
4	4	Astoria, OR	287700.0	46.187884	-123.831253

NameError: name 'google_key' is not defined

```
In [ ]:
```

```
In [14]:
```

df_avg.set_index("Town")

Out[14]:

	Unnamed: 0	median_rent	Latitude	Longitude
Town				
Adrian, MI	0	145800.0	41.897547	-84.037166
Akron, OH	1	141600.0	41.081445	-81.519005
Albany, OR	2	258600.0	44.636511	-123.105928
Anchorage, AK	3	311700.0	61.218056	-149.900278
Astoria, OR	4	287700.0	46.187884	-123.831253
Barnstable Town, MA	5	396700.0	41.700321	-70.300202
Bartlesville, OK	6	113200.0	36.747311	-95.980818
Bay City, MI	7	82200.0	43.594468	-83.888865
Beaver Dam, WI	8	156200.0	43.457769	-88.837329

Generate Singapore basemap.

In [15]:

```
geo = Nominatim()
address = 'United States'
location = geo.geocode(address)
latitude = location.latitude
longitude = location.longitude
print('The geograpical coordinate of United States {}, {}.'.format(latitude, longitude))
# create map of USA using latitude and longitude values
map_USA = folium.Map(location=[latitude, longitude],tiles="OpenStreetMap", zoom_start=4)
# add markers to map
for lat, lng, town in zip(
    df_avg['Latitude'],
    df_avg['Longitude'],
    df_avg['Town']):
    label = town
    label = folium.Popup(label, parse_html=True)
    folium.CircleMarker(
        [lat, lng],
        radius=4,
        popup=label,
        color='blue',
        fill=True,
        fill_color='#87cefa',
        fill_opacity=0.5,
        parse_html=False).add_to(map_USA)
map_USA
```

c:\users\msvdp\appdata\local\programs\python\python37\lib\site-packages\ipyk ernel_launcher.py:1: DeprecationWarning: Using Nominatim with the default "g eopy/1.20.0" `user_agent` is strongly discouraged, as it violates Nominatim's ToS https://operations.osmfoundation.org/policies/nominatim/ (https://operations.osmfoundation.org/policies/nominatim/) and may possibly cause 403 a nd 429 HTTP errors. Please specify a custom `user_agent` with `Nominatim(use r_agent="my-application")` or by overriding the default `user_agent`: `geop y.geocoders.options.default_user_agent = "my-application"`. In geopy 2.0 thi s will become an exception.

"""Entry point for launching an IPython kernel.

The geograpical coordinate of United States 39.7837304, -100.4458825.

Out[15]:

VI. Discussion and Conclusion

On this notebook, Analysis of best venue recommendations based on Food venue category has been presented. Recommendations based on other user searches like available outdoor and recreation areas are also available. The information extracted in this notebook, will be a good supplement to web based recommendations for visitors to find out nearby venues of interest and be a useful aid in deciding a place to stay or where to go during their visits.

Using Foursquare API, we have collected a good amount of venue recommendations. Sourcing from the venue recommendations from FourSquare has its limitation, The list of venues is not exhaustive list of all the available venues is the area. Furthermore, not all the venues found in the the area has a stored ratings. For this reason, the number of analyzed venues are only about 50% of all the available venues initially collected. The results therefore may significantly change, when more information are collected on those with missing data.

The generated clusters from our results shows that there are very good and interesting places located in areas where the median rents are cheaper. This kind of results may be very interesting for travelers who are also on budget constraints. Our results also yielded some interesting findings. For instance, The initial assumption among websites providing recommendations is that the Central Area that have the highest median rent also have better food venues. Result shows that most popular food venue among residents and visitors are **Coffee Shops, American Restaurants, Mexican Restaurants**.

In []:			