1. 模型说明

1.1 桁架模型

健康桁架以及损伤桁架,由于 Abaqus 中节点顺序不一致,导致两个文件中的节点编号存在较大差异,下面给出节点的对应信息:

表格 1 模型节点编号对应信息

模型	节点编号对应									
Damage	1	2	3	4	5	6	7			
Health	18	17	1	3	5	4	16			
Damage	8	9	10	11	12	13	14			
Health	6	15	2	19	9	8	10			
Damage	15	16	17	18	19	20	21			
Health	7	20	21	11	14	12	22			
Damage	22	23	24	25	26	27	28			
Health	23	13	24	-	-	28	30			
Damage	29	30	31	32	33	34				
Health	26	31	25	32	27	29				

Fig. 1 Damage Truss Model

Fig. 2 Health Truss Model

1.2 随机力

在各节点上施加4s 的 1000N 的随机力(力的幅值在-1000 至 1000, 力的方向是沿y 轴方向)

随机力是根据 Excel 中的 randbetween 函数生成,一共生成了 34 个幅值,分别施加在两个模型中的节点处,幅值信息在 'random_force.xlsx',即在节点 1(损伤模型和健康模型)处施加的随机力幅值为 Amp1,即在损伤模型中的节点 1 施加的幅值是 Amp1,在健康模型中的节点 1 施加的幅值也是 Amp1。

PS: 原文献中应该是所有的都为随机,但是我这里做的时候健康 状态施加的 32 个随机力幅值来源于损伤状态中施加的 34 个随机力 幅值,这里会有点问题,但是应该不影响识别损伤状态和健康状态, 后续更新模型的数据正在处理。

2. 加速度数据文件说明

2.1 文件说明

文件名"Health_Truss_LOAD{i}.csv", 代表模型为 Health Truss, 随机力加载在第 i 号节点上;

文件名 "Damage_Truss_LOAD{i}.csv", 代表模型为 Damage Truss, 随机力加载在第 i 号节点上;

2.2 表格信息说明

表格中格式如下图所示:

Frame			Node ID	Accleration_x	Accleration_y	Accleration_z
Incremer	nt 0: Step Time	= 0.000	1	0	0	0
Increment	1: Step Time =	2.0000E-03	1	0.000255901	0.000114625	0.000211529
Increment	2: Step Time =	4.0000E-03	1	0.00199619	0.000898681	0.001675344
Increment	3: Step Time =	6.0000E-03	1	0.006519038	0.002991368	0.005630309
Increment	4: Step Time =	8.0000E-03	1	0.010636503	0.005222058	0.009932929
Increment	5: Step Time =	1.0000E-02	1	0.005621189	0.004129247	0.008195931
Increment	6: Step Time =	1.2000E-02	1	-0.011450153	-0.00178705	-0.00166007
Increment	7: Step Time =	1.4000E-02	1	-0.026512595	-0.008265204	-0.010466705
Increment	8: Step Time =	1.6000E-02	1	-0.020090012	-0.009310918	-0.008551011
Increment	9: Step Time =	1.8000E-02	1	0.006554267	-0.00443971	-0.001053103
Increment	10: Step Time =	2.0000E-02	1	0.027675407	0.001579035	9.18E-05
Increment	11: Step Time =	2.2000E-02	1	0.023235746	0.005716854	-0.001946578
Increment	12: Step Time =	2.4000E-02	1	0.001206596	0.00799	0.004916157
Increment	13: Step Time =	2.6000E-02	1	-0.020736851	0.005188169	0.011355098
Increment	14: Step Time =	2.8000E-02	1	-0.035336521	-0.00644333	-0.004311065
Increment	15: Step Time =	3.0000E-02	1	-0.034240037	-0.019655485	-0.028977066
Increment	16: Step Time =	3.2000E-02	1	-0.007241402	-0.020917667	-0.02445698
Increment	17: Step Time =	3.4000E-02	1	0.033895776	-0.007485666	0.006279124
Increment	18: Step Time =	3.6000E-02	1	0.059585217	0.0121423	0.020794548
Increment	19: Step Time =	3.8000E-02	1	0.050462004	0.027088705	0.008800428
Increment	20: Step Time =	4.0000E-02	1	0.007224715	0.02703736	0.000926282

Fig. 3 加速度数据

各列的变量分别表示

- (1) Frame: 表示加载中的每一帧,时间间隔为 0.002s,每一个节点有 2001 个 Frame 的加速度数据
- (2) Node ID: 即对应模型的节点编号
- (3) Accleration x: 该节点的 x 方向上的加速度
- (4) Accleration y: 该节点的 y 方向上的加速度
- (5) Accleration_z: 该节点的 z 方向上的加速度

3. 注意事项

- 1. 文件中包含将随机力施加在四个角点(即支座处),在使用数据时可以剔除以下文件:
 - (1) Damage_Truss_Load4.csv
 - (2) Damage Truss Load10.csv
 - (3) Damage_Truss_Load32.csv
 - (4) Damage Truss Load34.csv
 - (5) Health_Truss_Load2.csv
 - (6) Health _Truss_Load3.csv
 - $(7) \ Health _Truss_Load 29.csv$
 - (8) Health Truss Load32.csv
- 2. 在损伤的情况下,有两组损伤数据与其他数据差异很大,为 "Damage_Truss_Load16.csv"和"Damage_Truss_Load26.csv" 即当随机力施加在 16 节点和 26 节点时,仅有该杆受力,因 此其他点的加速度为 0,因为也应该剔除掉这两种情况。

3. 同时,损伤模型中的 25, 26 号节点实际上是自由端,虽然表格中记录了这两点的加速度信息,但是这两点在健康模型中并没有对应的节点,在读取"Damage_Truss_Load{i}.csv"数据时,应不考虑这两个节点的加速度信息。