remi.angot@umontpellier.fr

Géométrie plane - Partie 2 Théorèmes et calculs

Si les points A, M, N sont alignés, et si les points A, N C sont alignés, et si de plus (MN) est parallèle à (BC) alors :

Les longueurs des côtés des triangles AMN et ABC sont proportionnelles.

Si les points A, M, N sont alignés, et si les points A, N C sont alignés, et si de plus (MN) est parallèle à (BC) alors : $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$.

Les longueurs des côtés des triangles *AMN* et *ABC* sont proportionnelles.

Les droites (GH) et (IJ) sont parallèles. GH=9 cm, KI=3 cm, KH=5,4 cm Calculer IJ.

$$(GH) \ // \ (IJ)$$

 $GH = 9 \text{ cm}, \ KI = 3 \text{ cm},$
 $KH = 5,4 \text{ cm}$
Calculer II .

- Les points G, K, J sont alignés.
- Les points H, K, I sont alignés.
- ► (GH) // (IJ)

Donc d'après le théorème de Thalès,

on a :
$$\frac{G\dot{K}}{KJ} = \frac{HK}{KI} = \frac{GH}{IJ}$$

$$\frac{5.4 \text{ cm}}{3 \text{ cm}} = \frac{9 \text{ cm}}{IJ}$$

$$IJ = \frac{3 \text{ cm} \times 9 \text{ cm}}{5.4 \text{ cm}} = 5 \text{ cm}$$

Réciproque du théorème de Thalès

Si A, M, N d'une part et si A, N C d'autre part sont alignés dans le même ordre, et si de plus $\frac{AM}{AB} = \frac{AN}{AC}$ alors les droites (MN) et (BC) sont parallèles

Cette propriété permet de démontrer que des droites sont parallèles à l'aide d'un calcul.

Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égale à la somme des carrés des longueurs des côtés de l'angle droit.

Application 1

Le triangle KFL est rectangle en F donc d'après le théorème de Pythagore on a :

Application 1

Le triangle KFL est rectangle en F donc d'après le théorème de

Pythagore on a : $KL^2 = KF^2 + FL^2$

Application 1

Le triangle KFL est rectangle en F donc d'après le théorème de

Pythagore on a :
$$KL^2 = KF^2 + FL^2$$

$$KL^2 = (4.8 \text{ cm})^2 + (5.5 \text{ cm})^2 = 53.29 \text{ cm}^2$$

Application 1

Le triangle KFL est rectangle en F donc d'après le théorème de

Pythagore on a :
$$KL^2 = KF^2 + FL^2$$

$$KL^2 = (4.8 \text{ cm})^2 + (5.5 \text{ cm})^2 = 53.29 \text{ cm}^2$$

$$KL = \sqrt{53,29} \text{ cm} = 7,3 \text{ cm}$$

Application 2

Le triangle GHM est rectangle en G donc d'après le théorème de Pythagore on a :

Application 2

Le triangle GHM est rectangle en G donc d'après le théorème de

Pythagore on a : $MH^2 = GM^2 + GH^2$

Application 2

Le triangle GHM est rectangle en G donc d'après le théorème de

Pythagore on a :
$$MH^2 = GM^2 + GH^2$$

$$(9 \text{ cm})^2 = (2 \text{ cm})^2 + GH^2$$

Application 2

Le triangle GHM est rectangle en G donc d'après le théorème de

Pythagore on a :
$$MH^2 = GM^2 + GH^2$$

$$(9 \text{ cm})^2 = (2 \text{ cm})^2 + GH^2$$

$$GH^2 = (9 \text{ cm})^2 - (2 \text{ cm})^2 = 77 \text{ cm}^2$$

$$GH = \sqrt{77}$$
 cm

Application 2

Le triangle GHM est rectangle en G donc d'après le théorème de

Pythagore on a :
$$MH^2 = GM^2 + GH^2$$

$$(9 \text{ cm})^2 = (2 \text{ cm})^2 + GH^2$$

$$GH^2 = (9 \text{ cm})^2 - (2 \text{ cm})^2 = 77 \text{ cm}^2$$

$$GH = \sqrt{77}$$
 cm ≈ 8.8 cm

Pour faire l'arrondi au millimètre près on regarde le chiffre des dixièmes de millimètre.

Un triangle avec ces dimensions est-il rectangle?

Un triangle avec ces dimensions est-il rectangle?

D'une part : $NO^2 = (9,7 \text{ cm})^2 = 94,09 \text{ cm}^2$

Un triangle avec ces dimensions est-il rectangle?

D'une part : $NO^2 = (9,7 \text{ cm})^2 = 94,09 \text{ cm}^2$

D'autre part : $MO^2 + MN^2 = (6,5 \text{ cm})^2 + (7,2 \text{ cm})^2 = 94,09 \text{ cm}^2$

Un triangle avec ces dimensions est-il rectangle?

D'une part :
$$NO^2 = (9,7 \text{ cm})^2 = 94,09 \text{ cm}^2$$

D'autre part :
$$MO^2 + MN^2 = (6,5 \text{ cm})^2 + (7,2 \text{ cm})^2 = 94,09 \text{ cm}^2$$

On constate que $NO^2 = MO^2 + MN^2$ donc d'après la réciproque du

théorème de Pythagore le triangle MNO est rectangle en M.

Trigonométrie dans le triangle rectangle

Lorsqu'on fixe un angle aigu dans un triangle rectangle, on obtient des triangles semblables.

On a donc
$$\frac{AC}{A'C'} = \frac{AB}{A'B'}$$
 soit $AC \times A'B' = A'C' \times AB$ ou encore $\frac{A'B'}{A'C'} = \frac{AB}{AC}$.

Cela signifie que ce rapport ne dépend pas du triangle mais seulement de l'angle. On le définit comme le cosinus de l'angle.

$$\cos \widehat{A} = \frac{\text{longueur du côté adjacent à } \widehat{A}}{\text{longueur de l'hypoténuse}} =$$

$$\sin \widehat{A} = \frac{\text{longueur du côté opposé à } \widehat{A}}{\text{longueur de l'hypoténuse}} =$$

$$\tan \widehat{A} = \frac{\text{longueur du côté opposé à } \widehat{A}}{\text{longueur du côté adjacent à } \widehat{A}} =$$

$$\cos \widehat{A} = \frac{\text{longueur du côté adjacent à } \widehat{A}}{\text{longueur de l'hypoténuse}} = \frac{AB}{AC}$$

$$\sin \widehat{A} = \frac{\text{longueur du côté opposé à } \widehat{A}}{\text{longueur de l'hypoténuse}} =$$

$$\tan \widehat{A} = \frac{\text{longueur du côté opposé à } \widehat{A}}{\text{longueur du côté adjacent à } \widehat{A}} =$$

$$\cos \widehat{A} = \frac{\text{longueur du côté adjacent à } \widehat{A}}{\text{longueur de l'hypoténuse}} = \frac{AB}{AC}$$

$$\sin \widehat{A} = \frac{\text{longueur du côté opposé à } \widehat{A}}{\text{longueur de l'hypoténuse}} = \frac{BC}{AC}$$

$$\tan \widehat{A} = \frac{\text{longueur du côté opposé à } \widehat{A}}{\text{longueur du côté adjacent à } \widehat{A}} =$$

$$\cos \widehat{A} = \frac{\text{longueur du côté adjacent à } \widehat{A}}{\text{longueur de l'hypoténuse}} = \frac{AB}{AC}$$

$$\sin \widehat{A} = \frac{\text{longueur du côté opposé à } \widehat{A}}{\text{longueur de l'hypoténuse}} = \frac{BC}{AC}$$

$$\tan \widehat{A} = \frac{\text{longueur du côt\'e oppos\'e à } \widehat{A}}{\text{longueur du côt\'e adjacent à } \widehat{A}} = \frac{AB}{AC}$$

Utilisation des fonctions trigonométriques

Déterminer une longueur manquante

Utilisation des fonctions trigonométriques

Déterminer une longueur manquante

<u>></u>

Utilisation des fonctions trigonométriques

Déterminer une longueur manquante

Le triangle DEF est rectangle en E, on a donc $\tan \hat{F} = \frac{DE}{DF}$.

<u>////</u>

Utilisation des fonctions trigonométriques

Déterminer une longueur manquante

Le triangle
$$DEF$$
 est rectangle en E , on a donc $\tan \widehat{F} = \frac{DE}{DF}$. $\tan(35^\circ) = \frac{7 \text{ cm}}{EF}$

Déterminer une longueur manquante

Le triangle
$$DEF$$
 est rectangle en E , on a donc $\tan \hat{F} = \frac{DE}{DF}$. $\tan(35^\circ) = \frac{7 \text{ cm}}{EF}$

$$EF = \frac{7}{\tan(35^\circ)} \approx 10 \text{ cm (arrondi au millimètre près)}$$

Utilisation des fonctions trigonométriques

Déterminer une mesure d'angle

<u>>></u>

Utilisation des fonctions trigonométriques

Déterminer une mesure d'angle

Le triangle MNO est rectangle en O donc (au choix) :

$$\cos \widehat{O} = \frac{NO}{MO}$$

$$\sin \widehat{O} = \frac{NM}{NO}$$

$$\tan \widehat{O} = \frac{NM}{NO}$$

Utilisation des fonctions trigonométriques

Déterminer une mesure d'angle

Le triangle MNO est rectangle en O donc (au choix) :

$$\cos \widehat{O} = \frac{NO}{MO}$$

$$\cos \widehat{O} = \frac{6,5}{9,7}$$

$$\cos \widehat{O} = \frac{6.5}{9.7}$$

$$\sin \widehat{O} = \frac{NM}{NO}$$

$$\tan \widehat{O} = \frac{NM}{NQ}$$

Utilisation des fonctions trigonométriques

Déterminer une mesure d'angle

Le triangle MNO est rectangle en O donc (au choix) :

$$\cos \widehat{O} = \frac{NO}{MO}$$
 $\sin \widehat{O} = \frac{NM}{NO}$ $\tan \widehat{O} = \frac{NM}{NO}$

$$\sin \widehat{O} = \frac{NM}{NO}$$

$$\tan \widehat{O} = \frac{NM}{NO}$$

$$\cos \widehat{O} = \frac{6.5}{9.7}$$
 d'où $\widehat{O} \approx 48^{\circ}$ (arrondi au degré près)

On utilise la fonction inverse du cosinus (arccos ou \cos^{-1}). On tape $\arcsin\left(\frac{6.5}{9.7}\right)$.

