

HTBLuVA St. Pölten Höhere Abteilung für Informatik

DIPLOMARBEIT Pathfinding

im Projekt Einsatz von LiDAR im autonomen Fahren

Ausgeführt im Schuljahr 2023/24 von: Emilio Zottel, 5AHIF-22

Betreuer/Betreuerin:
Dipl.-Ing Christoph Schreiber

St. Pölten, am 23. Oktober 2023

Diplomandenvorstellung

Emilio ZOTTEL

Geburtsdaten:

11.05.2005 in St. Pölten

Wohnhaft in: Waldstraße 8 3061 Schönfeld

Werdegang:

2019 - 2024:

HTBLuVA St.Pölten, Abteilung für Informatik

2015 - 2019:

Neue Mittelschule Neulengbach

2011 - 2015:

Volksschule St. Christophen

Kontakt:

emilio.zottel@gmail.com

Danksagungen

Danke

Inhaltsverzeichnis

Vc	orwort		į
	Diploma	andenvorstellung	j
	Danksa	agungen	iii
ln	haltsverzeich	nnis	V
1	Grundlagen	des Pathfinding (9 Seiten)	1
	1.0.1	Pathfinding im Allgemeinen (3 Seiten)	1
	1.0.2	Graphentheorie und Netzwerke (3 Seiten)	1
	1.0.3	Bewertungskriterien für Pathfinding-Algorithmen (3 Seiten)	1
2	Klassische	Pathfinding-Algorithmen (10 Seiten)	3
	2.0.1	Dijkstra-Algorithmus (3 Seiten)	3
	2.0.2	A*-Algorithmus (3 Seiten)	3
	2.0.3	Best-First Search (2 Seiten)	3
	2.0.4	Uniform Cost Search (2 Seiten)	3
3	Heuristisch	e Algorithmen (9 Seiten)	5
	3.0.1	Greedy Best-First Search (3 Seiten)	5

	3.0.2	A*-Algorithmus mit verschiedenen Heuristiken (2 Seiten)	
	3.0.3	Jump Point Search (2 Seiten)	5
	3.0.4	Theta* (2 Seiten)	Ę
4	Metaheurist	ische Algorithmen (7 Seiten)	7
	4.0.1	Genetische Algorithmen (3 Seiten)	7
	4.0.2	Ameisenalgorithmus (2 Seiten)	7
	4.0.3	Simulierte Abkühlung (2 Seiten)	7
5	Vergleich ur	nd Evaluation der Algorithmen (4 Seiten)	9
	5.0.1	Vergleichsparameter und Benchmarking (2 Seiten)	Ć
	5.0.2	Fallstudien und Experimente (2 Seiten)	S
6	Ergebnisse	und Schlussfolgerungen (4 Seiten)	11
	6.0.1	Zusammenfassung der Ergebnisse (2 Seiten)	11
	6.0.2	Empfehlungen (2 Seiten))	11
Ar	nhang		12
	Abbildu	ngsverzeichnis	12
	Tabeller	nverzeichnis	15
	Verzeicl	hnis der Listings	17
	Literatu	rverzeichnis	19

Grundlagen des Pathfinding (9 Seiten)

1.0.1 Pathfinding im Allgemeinen (3 Seiten)

Pathfinding bzw.¹ Wegfindung ist ein Optimierungsproblem, bei dem versucht wird, den oder die kürzesten Pfade zwischen zwei oder mehreren Punkten zu finden.

- 1.0.2 Graphentheorie und Netzwerke (3 Seiten)
- 1.0.3 Bewertungskriterien für Pathfinding-Algorithmen (3 Seiten)

¹beziehungsweise

Klassische Pathfinding-Algorithmen (10 Seiten)

- 2.0.1 Dijkstra-Algorithmus (3 Seiten)
- 2.0.2 A*-Algorithmus (3 Seiten)
- 2.0.3 Best-First Search (2 Seiten)
- 2.0.4 Uniform Cost Search (2 Seiten)

Heuristische Algorithmen (9 Seiten)

- 3.0.1 Greedy Best-First Search (3 Seiten)
- 3.0.2 A*-Algorithmus mit verschiedenen Heuristiken (2 Seiten)
- 3.0.3 Jump Point Search (2 Seiten)
- 3.0.4 Theta* (2 Seiten)

Metaheuristische Algorithmen (7 Seiten)

- 4.0.1 Genetische Algorithmen (3 Seiten)
- 4.0.2 Ameisenalgorithmus (2 Seiten)
- 4.0.3 Simulierte Abkühlung (2 Seiten)

Vergleich und Evaluation der Algorithmen (4 Seiten)

- 5.0.1 Vergleichsparameter und Benchmarking (2 Seiten)
- 5.0.2 Fallstudien und Experimente (2 Seiten)

Ergebnisse und Schlussfolgerungen (4 Seiten)

- 6.0.1 Zusammenfassung der Ergebnisse (2 Seiten)
- 6.0.2 Empfehlungen (2 Seiten))

Abbildungsverzeichnis

Tabellenverzeichnis

Listings

Literaturverzeichnis

[EZ:Web01]

[EZ:Web00] http://www.meta-x.de/faq/LaTeX-Einführung.html Latex-Einführung 28.September 2012

[EZ:Web00] http://docs.oracle.com/cd/E12839_01/core.1111/e10043/introjps.htm Oracle Security Guide über das Java Sicherheits Model 13.11.2014