デMT-2020 / CAICT 中国信通院 / OPPO

无线通信AI大赛

基于排序分离的信道压缩 YZY

智启无线 AI enlightens wireless communication

主办单位: IMT-2020(5G)推进组5G与AI融合研究任务组

承办单位:中国信息通信研究院

OPPO广东移动通信有限公司

OPPO广东移动通信有限公司

主办单位: IMT-2020(5G)推进组5G与AI融合研究任务组

承办单位: 中国信息通信研究院

OPPO广东移动通信有限公司

比赛历程

2月28日第15次提交

第2名

智启无线 AI enlightens wireless communication

主办单位: IMT-2020(5G)推进组5G与AI融合研究任务组

承办单位: 中国信息通信研究院

OPPO广东移动通信有限公司

无线通信AI大赛

智启无线 AI enlightens wireless communication

整体思路

00000000.jpg

00000001.jpg

00000002.jpg

00000000.jpg

00000001.jpg

00000002.jpg

00000003.jpg

00000004.jpg

00000005.jpg

00000003.jpg

00000004.jpg

0000005.jpg

整体思路

整体思路

整体流程如上图所示,先提取数据的行排序,并进行压缩与解压,得到恢复的排序,并利用该排序将信道数据排序,并对排序后的信道进行压缩,将信道压缩数据与排序压缩数据一同输出;

整体思路

在解压模块,排序解压模块与压缩模块中的解压模块是完全一致的,利用排序解压模块对排序压缩数据进行解压,同时信道解压模块对信道进行解压,最后用解压的排序数据对数据进行恢复。

OPPO广东移动通信有限公司

模型结构-DeepSplit

DeepSplit模块

$$S_i = \frac{L+1-i}{\sum L+1-i}Out$$

其中out为输出宽度; L是总 Split层数; i是当前层;

模型结构-排序压缩

名称	输出宽度
Input	24
DeepSplit-4	600
DeepSplit-4	600
DeepSplit-4	300
全连接	16(量化后是16*3=48)
DeepSplit-4	800
DeepSplit-4	600
DeepSplit-4	400
全连接	24

模型结构-信道压缩

名称	输出宽度
Input	32
DeepSplit-4	64*Bits//3
DeepSplit-4	80*Bits//3
DeepSplit-4	32*Bits//3
全连接	Bits
Cat GlobalInfo	Bits + 4 (全局Bit经过两个全连接 得到)
DeepSplit-4	88*Bits//3
DeepSplit-4	72*Bits//3
DeepSplit-4	72*Bits//3
DeepSplit-4	64*Bits//3
全连接	32

排序后信道压缩的bit是: [16, 16, 11, 11, 11, 11, 11, 12, 12], 其中, 最后12个通道用0.5值替代。

(如若不同行压缩的bit数是一样时, 将共享模型)

量化方案--混合Bit

训练方法: Out = Out + (Quant - Out).detach()

无线通信AI大赛

智启无线 AI enlightens wireless communication

量化方案--混合Bit

训练方法: Out = Out + (Quant - Out).detach()

该模块可以用于Finetune,减少方差较小节点消耗的Bit

一些尝试

- 1) 借鉴推荐算法中的特征交叉模块, 易欠拟合;
- 2) 所有信道共享backbone, 易欠拟合;
- 3) 提高全局特征维度,对少 Bit信道产生一定干扰;
- 4) 基于VQ-VAE修改量化方案,少Bit方案下易过拟合;
- 5) 在Encoder的Inference阶段引入轻量训练,将Encoder的输出看成一个可求解量,Decoder(encoded) = X,即encoded = Decoder'(x),这个求解可以用SGD来完成。 考虑该方案需要在Encoder模块中嵌入Decoder,模型会变大很多,同时可能存在违规 风险,故没有采用,但本地测试有效。

承办单位: 中国信息通信研究院

竞赛平台: DataFountain

OPPO广东移动通信有限公司

总结

创新

针对本次比赛,本文的主要创新点及特点如下所示:

- 1) 将任务解耦,分解成排序与排序后信道压缩,达到合理分配作用;
- 2) 设计了DeepSplit模块,可以在一定计算量下能够达到又宽又深的作用;
- 3) 引入混合Bit优化模式,可以有效提高模型性能

可改进点:

采用更优的分配方案,根据信息量动态分配Bit,而不是每一条数据固定Bit,

总结

本文利用排序与信道解耦的方式合理的分配Bit,但分配算法实际可以进一步优化。

デMT-2020 / <u>CAICT</u> 中国信通院 / OPPO

无线通信AI大赛

THANKS

智启无线 AI enlightens wireless communication

主办单位: IMT-2020(5G)推进组5G与AI融合研究任务组

承办单位:中国信息通信研究院

OPPO广东移动通信有限公司

