Övningar till lektion 3 och 4

Normalformer, logisk konsekvens, sundhet och fullständighet inom satslogiken

- 1. Låt signaturen vara $\sigma = \{p, q, r\}$. För var och en av formlerna nedan, finn en disjunktiv normalform (DNF) samt en konjunktiv normalform (KNF) som är ekvivalent med formeln. för var och en av följande formler i $LP(\sigma)$ där $\sigma = \{p, q, r\}$:
 - (a) $p \vee \neg (q \vee \neg r)$
 - (b) $\neg (p \leftrightarrow q)$
 - (c) $((p \rightarrow q) \rightarrow q) \rightarrow q)$
 - (d) ⊥
 - (e) $(p \leftrightarrow (\neg q \rightarrow r)) \rightarrow \neg((\neg q \lor r) \lor \neg p)$
- 2. Låt σ vara vilken signatur som helst. Visa att för varje $\varphi \in LP(\sigma)$ så finns formler $\psi_1, \psi_2, \psi_3 \in LP(\sigma)$ sådana att var och en av ψ_1, ψ_2 och ψ_3 är ekvivalent med φ och
 - (a) ψ_1 innehåller endast konnektiven \neg och eller \land .
 - (b) ψ_2 innehåller endast konnektiven \neg och eller \lor .
 - (c) ψ_3 innehåller endast konnektiven \neg och eller \rightarrow .

Du kan använda faktumet att för varje $\varphi \in LP(\sigma)$ så finns en DNF (alternativt KNF) som är ekvivalent med φ , samt kända ekvivalenser (som du finner i boken) som anger hur vissa konnektiv kan uttryckas med hjälp av andra.

- 3. Låt σ vara vilken icketom signatur som helst. Beskriv en formel $\varphi \in LP(\sigma)$ sådan att ingen formel som är uppbygd endast med konnektiven \vee och/eller \wedge är ekvivalent med φ . Förklara varför din formel har denna egenskap.
- 4. Låt σ vara vilken signatur som helst och låt \star vara ett konnektiv med följande sanningsvärdestabell.

p	$\mid q \mid$	$(p \star q)$
\overline{S}	S	F
S	F	S
F	S	S
F	F	S

År följande sant? För varje $\varphi \in LP(\sigma)$ så finns en formel som är ekvivalent med φ och uppbyggd endast med konnektivet \star . Bevisa påståendet eller ge ett motexempel.

- 5. Låt σ vara en signatur, $\Gamma \subseteq LP(\sigma)$ och $\varphi \in LP(\sigma)$.
 - (a) Förklara vad som menas med att φ är en (logisk) konsekvens av Γ .
 - (b) Förklara vad som menas med $\Gamma \models_{\sigma} \varphi$.
 - (c) Förklara vad som menas med $\models_{\sigma} \varphi$.

Om signaturen σ är given av sammanhanget eller irrelevant för resonemanget så skriver vi ofta \models i stället för \models_{σ} . Om $\Gamma = \{\psi\}$ (dvs om Γ bara innehåller formeln ψ) så kan vi skriva $\psi \models \varphi$ i stället för $\{\psi\} \models \varphi$.

6. Formulera sundhetssatsen för satslogik.

7. Formulera fullständighetssatsen för satslogik.

Antag att $A, B, C \in LP(\sigma)$ för någon signatur σ . Antag också att både A, B och C kan anta båda sanningsvärdena (sant/falskt) oberoende av varandra. Avgör om följande stämmer. (Tips: sundhetssatsen/fullständighetssatsen.)

8.
$$\neg A \lor \neg B \vdash \neg A \to B$$

9.
$$\neg A \land B \vdash \neg A \rightarrow \neg B$$

10.
$$\{A, \neg A \leftrightarrow B\} \vdash B \lor C$$

11.
$$\{A \lor \neg C, \ C \lor \neg B\} \vdash A \lor \neg B$$

- 12. Vilka av de fyra sista sekventerna stämmer om vi antar att A är en tautologi, men inte B?
- 13. Vilka av de fyra sista sekventerna stämmer om vi antar att B är en tautologi, men inte A?

Antag att $\varphi, \psi, \gamma, \delta \in LP(\sigma)$ för någon signatur σ . Antag också att φ, ψ, γ och δ kan anta båda sanningsvärdena oberoende av varandra. Avgör om följande stämmer. Om det stämmer, så utför beviset i naturlig deduktion. Om det inte stämmer, så motivera varför. (Tips: sundhetssatsen/fullständighetssatsen.)

14.
$$\varphi \lor (\psi \land \gamma) \vdash (\varphi \lor \psi) \land \gamma$$

15.
$$(\varphi \lor \psi) \land \gamma \vdash \varphi \lor (\psi \land \gamma)$$

16.
$$\varphi \lor \psi \vdash (\varphi \longrightarrow \psi) \longrightarrow \psi$$

17.
$$\varphi \longrightarrow (\psi \wedge \sigma) \vdash (\varphi \longrightarrow \psi) \wedge \sigma$$

18.
$$\varphi \longrightarrow (\psi \lor \sigma) \vdash (\varphi \longrightarrow \psi) \lor \sigma$$

19.
$$\{(\varphi \longrightarrow \psi) \longrightarrow \gamma, \ \neg \gamma, \ (\varphi \longrightarrow \delta) \lor \psi\} \vdash \delta$$

- 20. (Svår) Visa sundhetssatsen i fallet då vi har endast formler med konnektiven \neg och \rightarrow (och därmed endast bevisregler för dessa två konnektiv).
- 21. Översätt följande till satslogiska formler, och avgör sedan om resonemanget är logiskt giltigt. Dvs är slutsatsen en logisk konsekvens av premisserna? Du får själv välja en lämplig signatur σ .
 - (a) Om jag är i Paris så är jag i Frankrike, och om jag är i Geneve så är jag i Schweiz. Härav följer att om jag är i Paris så är jag i Schweiz eller att om jag är i Geneve så är jag i Frankrike.
 - (b) Om 2 är ett primtal så är det det minsta primtalet.

Om 2 är det minsta primtalet så är 1 inte ett primtal.

Talet 1 är inte ett primtal.

Härav följer att 2 är ett primtal.