SMART INDIA HACKATHON 2025

TITLE PAGE

- Problem Statement ID SIH25178
- **Problem Statement Title** Short term forecast of gaseous air pollutants (ground-level O3 and NO2) using satellite and reanalysis data.
- Theme Space Technology
- PS Category Software
- **Team ID** 65478
- Team Name Dues-Ex-Machina

PROJECT CANARY

O3 regression

Output Heads

REST

API

Backend API

eature Engg

Deployment

REACT Dashboard

NO2

О3

Satellite Data (Sentinel-5P TROPOMI): Tropospheric NO₂ and O₃ densities, processed from GeoTIFF to spatiotemporal tensors.

Meteorological Reanalysis (ERA5 & CPCB): Hourly variables interpolated to station coordinates.

Ground Monitoring Data (CPCB): Hourly station-level NO₂ and O₃, used as supervised labels.

CNN Encoder: Extracts spatial features from gridded rasters.

biLSTM Layer: Captures temporal dependencies from the past 24 hours of pollutant + meteorology data.

Attention Mechanism: Dynamically weights recent timesteps to emphasize critical events (example, rush-hour emissions)

Feature Engineering. Normalized column densities by PBL height to approximate surface-level pollutant concentrations.

Data & Model: Processed datasets stored as .npy tensors → used to train PyTorch forecasting model.

Serving & Visualization: Trained model exposed via REST API backend → results displayed on lightweight dashboard.

WHAT MAKES IT UNIQUE

MULTI-SOURCE DATA FUSION

Conventional models: ground data only. We integrate: satellite tropospheric columns + reanalysis meteo + ground truth labels.

Design allows integration with **real-time APIs** (OpenAQ, Copernicus ADS, GEE) for live deployment.

SCALABILITY & GENERALIZATION

AUTOMATED RETRAINING

Architecture supports
transfer learning, pretrained
on Delhi, adaptable to other
metros or Tier-2 cities with
limited ground data.

Updates model weights as new data arrives, ensuring continuous model adaptability without manual intervention.

WHAT IT SOLVES

SPARSE COVERAGE

DECISION SUPPORT

Satellite products bridge gaps where **station density is insufficient**, while CPCB provides calibration.

Helps govt and orgs take data-driven decisions to help in policy making.

MORE THAN JUST PREDICTION

The Hybrid model captures: pollutant spread across space (CNN), temporal evolution (LSTM), and key weather influences (Attention).

Input 1

TECHNICAL APPROACH

IMPLEMENTATION PROCESS

Data Preprocessing

Data Integration: Combined Sentinel-5P satellite grids (NO_2 , O_3) with ERA5 weather data and CPCB ground-station readings.

Imputation: Handled gaps using imputation (prev-day fill, KNN), normalized with StandardScaler, and reduced using PCA.

Final inputs: Satellite tensors (T,9,10,2), station features (T,18), and hourly labels (T,2) for $NO_2 \& O_3$.

model architecture

CNN Encoder: Two convolutional layers with pooling extract spatial patterns in NO₂ and O₃ grids, forming 32-dim feature maps.

Temporal Modeling (BiLSTM): Captures both short-term (hourly) and long-term (seasonal) dependencies w/ biLSTM (hidden = 256).

Feature Fusion: Combines CNN and LSTM outputs with ERA5-derived station features for richer contextual learning.

Attention Mechanism: Dynamically weights meteorological drivers such as wind and boundary-layer height for explainable forecasts.

Dual Regression Heads: Predict hourly NO₂ and O₃ concentrations simultaneously across the next forecast window.

NO₂ SO₂ CO HCHO O₃ H₂O Cloud CH₄ Aerosol Convolution B. Normalize Satallite FC: 11 → 128 FC: 11 → 128 FC: 128 → 64 Embedding

Input 2

11 Tabular Features

9-Channel Grids

AUTO RETRAINING

TECH STACK

MLflow	Automate retraining for continuous model improvement.
Scikit-learn	To preprocess data (imputation, scaling, PCA)
PyTorch	To implement model, training & inference.
Pandas	Handling tabular data and time-series alignment.
NumPy	Scientific calculations & processing data.
Rasterio	Reading and processing GeoTIFF satellite rasters.
Django	REST API backend for serving forecasts.
React.js	Interactive dashboard for visualization.

FEASIBILITY AND VIABILITY

FEASIBILITY

DATA AVAILABILITY

Uses **open-source**, publicly available datasets (Sentinel-5P, ERA5, CPCB).

DIVERSE COVERAGE

Covers **diverse variables** across multi-year timeframes for robust training.

EASY INTEGRATION

Easily integrates with dashboards, APIs, and existing AQI systems.

VIABILITY

AUTO RETRAINING

Supports **automated retraining** with incoming data streams (MLflow).

COST EFFICIENT

Ensures **low operational costs** (open data + light deployment).

ADAPTABILITY

Extendable to additional pollutants (PM_{2.5}, SO₂, CO) without redesign.

IT IS SCALABLE

Scales from city-level to **pan- India** forecasts with minimal effort.

CURRENT CHALLENGES

PLANNED SOLUTIONS

Taking live data as inputs

Transitioning to live API libraries of Sentinel and ERA5 for **real-time** ingestion.

Low res of ERA5 data

Aggregate **multiple CPCB stations** within each cell by averaging to align with ERA5 resolution.

High computational load

Optimize w/ **model pruning**, distributed training & GPU accn. to cut train time and inference costs.

PAST CHALLENGES

HOW WE SOLVED THEM

Spatial alignment in sat. data

Rasters cropped to Delhi AOI & resampled to fixed 10×11 grid for consistent pixel tracking.

Temporal mismatch bw datasets

Built a robust data pipeline for timestamp alignment and resampling across sources.

Joint encoding of NO₂ & O₃ is hard due to differing chemistry

Optimize w/ **model pruning**, distributed training & GPU accn. to cut train time and inference costs.

DUES-EX-MACHINA

IMPACTS AND BENEFITS

REDUCE STATION DEPENDECY

Satellite-ERA5 fusion enables forecasts even in areas with sparse monitoring coverage.

SCALABILITY

Same pipeline can **extend** from Delhi to pan-India with minimal retraining.

COST-**EFFECTIVENESS**

Open-access datasets + API deployment means lower cost than expanding ground station infrastructure.

DECISION SUPPORT

Helps orgs & govt bodies make datadriven decisions, to guide policy, and response actions.

DATA DEMOCRATIZATION

Converts complex data into accessible, interpretable insights for researchers.

MPACTS

PUBLIC AWARENESS

Forecast-driven AQI dashboards provide citizens with actionable early warnings.

MODEL EXPLAINABILITY

Attention-based feature weighting highlights critical meteo drivers, improving interpretability for experts.

RESEARCH ACCELERATION

Creates high-res, multi-source spatiotemporal datasets for academic and policy studies.

USE CASES

Researchers use the highres, explainable dataset to analyze pollutant dynamics. Citizens & policymakers get to monitor pollution trends effectively.

Health departments get predictive support, alert system and IOT integration.

RESEARCH AND REFERENCES

RESEARCH

1

Research paper

<u>Attention mechanism based CNN-LSTM hybrid deep learning model for atmospheric ozone concentration prediction.</u>

by: Jiang Yuan, Hua Dengxin, Wang Yufeng, Yang Xueting, Di Huige & Yan Qing

Research paper

<u>Urban Air Pollution Forecasting: a Machine Learning Approach</u> <u>leveraging Satellite Observations and Meteorological Forecasts.</u>

by: Giacomo Blanco, Luca Barco, Lorenzo Innocenti & Claudio Rossi

EXPLANATORY VIDEO