Lista de Exercícios 2 – 2016.01 10 de maio de 2016

Prof.: Victor Ströele (victor.stroele@ice.ufjf.br)

Máquinas de Turing, Ling. Recursivas

- 1. Desenhe o diagrama de estados de uma Máquina de Turing (em que $\Gamma = \{0, 1, \bot\}$) que: pára sobre e aceita todas as palavras do conjunto $\{(01)^n \mid n \ge 1\}$; pára sobre e rejeita todas as palavras do conjunto $\{0^n \mid n \ge 1\}$; **não** pára sobre todas as demais palavras sobre o alfabeto $\{0, 1\}$.
- 2. Quantas seqüências de configurações (ou computações, ou trajetórias) uma MT determinística pode ter sobre uma dada palavra? Justifique.
- 3. Responda as sequintes perguntas, com suas próprias palavras:
 - (a) O que são linguagens Recursivas?
 - (b) O que são linguagens Recursivamente Enumeráveis?
- 4. Desenhe o diagrama de estados de uma MT que aceite a linguagem de todas as palavras sobre {0,1} nas quais o número de 0's é igual ao número de 1's. Escreva a seqüência de configurações da sua MT sobre as palavras: 00101101 e 011110.
- 5. Descreva o funcionamento de uma MT (não precisa desenhar o diagrama de estados, descreva em português) que iniciada com $\#0^n \sqcup$ na fita, para qualquer $n \geq 2$, computa e pára com $\#0^n \#0^{n^2} \sqcup$ na fita. Por exemplo, se inicialmente a fita contém $\#00 \sqcup$, ao final deve ter $\#00\#0000 \sqcup$; se contém $\#000 \sqcup$, ao final deve ter $\#000\#000000000 \sqcup$.
- 6. Responda as seguintes questões relacionadas a Máquinas de Turing:
 - (a) Desenhe o diagrama de estados de uma Máquina de Turing que calcule a função f(n) = 2n. Quer dizer, sua máquina deve ter o seguinte comportamento: dado como entrada uma fita da forma $\#0^n \sqcup$, onde $n \ge 1$, computa e pára com a fita contendo $\#0^n \#0^{2n} \sqcup$. Por exemplo: se a fita contém inicialmente $\#00000 \sqcup$, a máquina deve parar com a fita contendo #00000#0000000000.
- 7. Desenhe o diagrama de estados de uma Máquina de Turing que tenha o seguinte comportamento. Dada uma palavra da forma #w, onde w é qualquer palavra sobre o alfabeto $\Sigma = \{0,1\}$: se w é uma seqüência de zeros, a máquina troca todos os zeros pelo símbolo X e pára; se w não é uma seqüência de zeros, a máquina inverte a palavra w, quer dizer, troca 0 por 1 e vice-versa, e depois pára.
 - Por exemplo: se a fita contém inicialmente #0000000 \sqcup , a máquina deve parar com a fita contendo #XXXXXXX \sqcup ; se contém inicialmente #00110110 \sqcup , deve parar com a fita contendo #11001001 \sqcup .