

Por su tipo de acceso las memorias se clasifican en:

- acceso aleatorio. El valor de [m (t+1)] es independiente de t Estas memorias, en inglés, se denominan Random Access Memory (RAM)
- acceso secuencial. [m (t+1)] depende de t. Ejemplos: discos, CDs, cinta, etc. Hasta 1990 existieron memorias secuenciales de estado sólido (bubble memories)

Estructura de procesador típico con memorias rápidas y de almacenamiento masivo.

Memoria RAM estática.

Si en (1) hay un uno, en (2) debe haber un cero y esta situación es estable. Para cambiar este estado, por las líneas de bit se establece el estado deseado y se conectan las líneas de word. Esto implica que los transistores de las líneas de word manejan mas potencia que los de las salidas de las compuertas.

Esta configuración recibe el nombre de celda RAM estática de seis transistores. M_{1-3} y M_{2-4} son de simetría complementaria

Flujo de información en modo escritura

Fuente: Integrated Circuit Engineering Corp., 2003

Source: ICE , "Memory 1997"

18471A

Celda de memoria convencional

Celda de memoria de transistores de película fina (TFT)

Estructura y layout de una celda de seis transistores de simetría complementaria. Proceso de 0,25 µm, 1997.

Estructura y layout de una celda con TFT. Proceso de $0.25 \mu m$, 1997.

Memoria RAM dinámica

circuito

estructura en silicio. Evolución del capacitor

¿Que pasa cuando las celdas son muchas?

(much as $\geq 10^6$)

Circuito canónico para decodificador $n / 2^n$ para n = 2Pensemos en n = 20...

Estructura de los ciclos de lectura / escritura

Este ciclo se basa en un doble búfer, con un registro para filas y otro para columnas

Comparación de estructuras de memoria

Celda estática

- Celda mas grande → menor densidad mas alto costo / bit
- no hay refresco
- la lectura es no destructiva
- Lectura simple \rightarrow menor t_{acc}
- Se integra con lógica estándar

Celda dinámica

- Celda mas chica → mayor densidad menor costo / bit
- necesita refresco y refresco luego de lectura.
- Lectura mas compleja y lenta
- requiere procesos especiales y es difícil integrar con lógica estándar

Memoria y borrador de memorias EPROM

Memoria ROM de máscara

Problemas: Escala de trabajo

Ventajas:

- Muy bajo costo
- •Usa un solo transistor
- •Muy pequeño tamaño

1, 2 son transistores que funcionan como cargas

Reemplazando el contacto por un fusible se crea la PROM, en la que se pueden programar localmente los unos.

Memoria EPROM (PROM borrable)

Source: Intel/ICE, "Memory 1997"

El transistor de la izquierda es normal. El de la derecha es el tipo de dispositivo usado en las EPROM

Source: ICE, "Memory 1997"

Dos fotos de celdas de 1 M de Hitachi (arriba) y de Motorola (abajo)

Tecnología: 0,25 μm 1996.

22462

El campo se interrumpe, quedando los electrones retenidos en la puerta flotante.

Para borrar, se deben recombinar.

Para ello se usa radiación UV. (20' a 5 W/cm²)

Source: ICE, "Memory 1997"

17548A

Inconvenientes de las EPROM:

• Para borrar requieren ventanas de cuarzo (transparente a UV) Esto equivale a encapsulados de cerámica (coef. térmico) y esta solución es demasiado cara.

Ventajas de las EPROM:

• Tienen una celda muy chica y permite alta integración a bajo costo

La tecnología ha caído en desuso...

EEPROM Ellectrically Erasable PROM PROM borrable eléctricamente

Celda de 1 M producida por Winbond, Inc. Ver detalle de la geometría del transistor.

Source: ICE, "Memory 1997"

Celda de 1 M de Xicor, Inc.

Ver detalle de cómo se establece la ventana para efecto túnel CELL ARRAY

C 3 2 BIT B

1 BIT A

TUNNEL OXIDE DEVICE

Chip de 1 K x 8 de acceso serial. SGS-Thomson

Ver tamaño relativo de la memoria contra el resto del circuito

Source: ICE, "Memory 1997"

Memoria Flash. EEPROM: cada bit (byte) se graba / borra individualmente FLASH: Un bloque de datos de graba / borra en conjunto

EPROM MEMORY CELL

FLASH MEMORY CELL

Photos by ICE, "Memory 1997"

Fotos de celdas EPROM y FLASH de AMD, Inc.

Los dispositivos son equivalentes en tamaño

Ver diferencias en geometría entre ambas celdas

Modos de programación de celdas Flash

Source: ICE, "Memory 1997"

NOR ARCHITECTURE

DINOR ARCHITECTURE

NAND ARCHITECTURE

Comparación de arquitecturas de celdas Flash.

DiNOR = divide bit line NOR

AND ARCHITECTURE

Source: ICE, "Memory 1997"

Productos disponibles Feb. '13: • USB drives (64 GB) • Memory cards (128 GB) • Discos de estado sólido (640 GB)

Caso 1: Memoria de 16K x 1, 1979.

PIN NOMENCLATURE			
į.			
A0-A6	Addresses		
CAS	Column Address Strobe		
D	· Data Input		
a	Data Output		
RAS	Row Address Strobe		
V _{BB}	-5-V Power Supply		
Vcc	+5-V Power Supply		
V _{DD}	+ 12-V Power Supply		
VSS	Ground		
w	Write Enable		

Fuente: TI Inc. Usado con autorización

Sumario de especificaciones

- 16,384 X 1 Organization
- 10% Tolerance on All Supplies
- All Inputs Including Clocks TTL-Compatible
- Unlatched Three-State Fully TTL-Compatible Output
- 3 Performance Ranges:

	ACCESS	ACCESS	READ	READ,
	TIME	TIME	OR	MODIFY-
	ROW	COLUMN	WRITE	WRITE†
	ADDRESS	ADDRESS	CYCLE	CYCLE
	(MAX)	(MAX)	(MIN)	(MIN)
TMS4116-15	150 ns	100 ns	375 ns	375 ns
TMS4116-20	200 ns	135 ns	375 ns	375 ns
TMS4116-25	250 ns	165 ns	410 ns	515 ns

Esquema de conexiones

Organización en bloques. CAS -TIMING & CONTROL $R/\overline{W} \rightarrow$ ROW (1/2) MEMORY ARRAY ADDRESS DECODE DATA А3 BUFFERS REG DUMMY CELLS (1/2) 1 OF 64 COLUMN DECODE SENSE BUFFER & DATA OUT REG. AMP 128 SENSE REFRESH 1 OF 2 AMPS O SELECTION CONTROL (1/2) 1 OF 64 COLUMN DECODE COLUMN DUMMY CELLS ADDRESS ROW BUFFERS DECODE (1/2) MEMORY ARRAY (7) A0-A6

Caso 2. Memoria estática 4 K x 1, 1990.

IMS1203 CMOS High Performance 4K x 1 Static RAM

Fuente: INMOS Corp. Usado con permiso.

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- 4K x 1 Bit Organization
- 25, 35, and 45 nsec Access Times
- 25, 35, and 45 nsec Chip Enable Access Times
- Fully TTL Compatible
- Separate Data Input and Output
- Three-state Output
- 18 Pin, 300-mil DIP
- Single +5V ± 10% Operation
- · Power Down Function

PIN CONFIGURATION

LOGIC SYMBOL

PIN NAMES

Ao-A11 ADDRESS INPUTS		Vcc POWER
w	WRITE ENABLE	Vss GROUND
D	DATA INPUT	
Ē	CHIP ENABLE	
Q	DATA OUTPUT	

Ciclo de lectura: Write permanece en alto durante todo el ciclo

El ciclo está controlado por enable.

Líneas de control:

CE: chip enable. Activo en bajo. Selecciona el chip

Write: Activa usualmente en bajo. Selecciona el modo escritura

Read: Activa usualmente en alto. Selecciona el modo lectura Read y Write muchas veces están asociadas en un único pin.

Ras, Cas: líneas de control de filas y columnas en sistemas matrizados. RAS es normalmente usada para refresco en los chips DRAM.