概率论与数理统计公式集锦

一、随机事件与概率

公式名称	公式表达式		
德摩根公式	$\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}$		
古典概型	$P(A) = \frac{m}{n} = A$ 包含的基本事件数 基本事件总数		
几何概型	$P(A) = \frac{\mu(A)}{\mu(\Omega)}$, 其中 μ 为几何度量(长度、面积、体积)		
求逆公式	$P(\overline{A}) = 1 - P(A)$		
加法公式	P(A∪B)=P(A)+P(B)-P(AB) 当P(AB)=0时,P(A∪B)=P(A)+P(B)		
减法公式	$P(A-B)=P(A)-P(AB)$, $B \subset A $ $\exists P(A-B)=P(A)-P(B)$		
条件概率公式 与乘法公式	$P(B A) = \frac{P(AB)}{P(A)} \qquad P(AB) = P(A)P(B A) = P(B)P(A B)$ $P(ABC) = P(A)P(B A)P(C AB)$		
全概率公式	$P(A) = \sum_{i=1}^{n} P(B_i) P(A B_i)$		
贝叶斯公式 (逆概率公式)	$P(B_i A) = \frac{P(B_i)P(A B_i)}{\sum_{i=1}^{n} P(B_i)P(A B_i)}$		
两个事件 相互独立	$P(AB) = P(A)P(B)$; $P(B A) = P(B)$; $P(B A) = P(B \overline{A})$;		

二、随机变量及其分布

1、分布函数

$$F(x) = P(X \le x) = \begin{cases} \sum_{x_k \le x} P(X = x_k) \\ \int_{-x}^{x} f(t)dt \end{cases}, \quad P(a < X \le b) = F(b) - F(a)$$

2、离散型随机变量及其分布

分布名称	分布律		
0-1 分布 X □ b(1, p)	$P(X = k) = p^{k} (1-p)^{1-k}, k = 0,1$		
二项分布 $X \square b(n,p)$	$P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,\dots,n$		
泊松分布 X □ P (λ)	$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, 2, \dots$		

3、续型随机变量及其分布

分布名称	密度函数	分布函数	
均匀分布 <i>X□U(a,b)</i>	$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & 其他 \end{cases}$	$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, a \le x < b \\ 1, & x \ge b \end{cases}$	

分布名称	密度函数	分布函数	
指数分布 <i>X</i> □ <i>e</i> (λ)	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$	$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$	
正态分布 X □ N (μ,σ ²)	$f(\mathbf{x}) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(\mathbf{x} - \mu)^2}{2\sigma^2}}$ $-\infty < \mathbf{x} < +\infty$	$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$	
标准正态分布 <i>X</i> □ <i>N</i> (0,1)	$\varphi(\mathbf{x}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\mathbf{x}^2}{2}}$ $-\infty < \mathbf{x} < +\infty$	$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$	

4、随机变量函数 Y=g(X)的分布

离散型: $P(Y = y_i) = \sum_{g(x_i) = y_i} p_j, i = 1, 2, \dots,$

连续型: ①分布函数法, ②公式法 $f_{y}(y) = f_{x}(h(y)) \cdot |h'(y)|(x = h(y))$ 单调)

三、多维随机变量及其分布

1、离散型二维随机变量及其分布

分布律:
$$P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \dots$$
 分布函数 $F(X, Y) = \sum_{i \in I} \sum_{j \in I} p_{ij}$

边缘分布律:
$$p_{i.} = P(X = x_i) = \sum_{i} p_{ij}$$
 $p_{.j} = P(Y = y_j) = \sum_{i} p_{ij}$

条件分布律:
$$P(X = x_i | Y = y_j) = \frac{p_{ij}}{p_{ij}}, i = 1, 2, \dots, P(Y = y_j | X = x_i) = \frac{p_{ij}}{p_{i}}, j = 1, 2, \dots$$

- 2、连续型二维随机变量及其分布
- ①分布函数及性质

分布函数:
$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

性质:
$$F(+\infty, +\infty) = 1$$
, $\frac{\partial^2 F(x, y)}{\partial x \partial y} = f(x, y)$, $P((x, y) \in G) = \iint_G f(x, y) dx dy$

②边缘分布函数与边缘密度函数

分布函数:
$$F_X(x) = \int_{-\infty}^x \int_{-\infty}^{+\infty} f(u, v) dv du$$
 密度函数: $f_X(x) = \int_{-\infty}^{+\infty} f(x, v) dv$

$$F_Y(y) = \int_{-\infty}^y \int_{-\infty}^{+\infty} f(u, v) du dv \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(u, y) du$$

③条件概率密度

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}, -\infty < y < +\infty , \quad f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}, -\infty < x < +\infty$$

3、 随机变量的独立性

随机变量 X、Y 相互独立 $\Leftrightarrow F(x,y) = F_x(x)F_y(y)$,

离散型: $p_{ii} = p_{ii}p_{ii}$, 连续型: $f(x,y) = f_{x}(x)f_{y}(y)$

4、二维随机变量和函数的分布

离散型: $P(Z=z_k) = \sum_{i=1,\dots,k} P(X=x_i, Y=y_j)$

连续型: $f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \int_{-\infty}^{+\infty} f(z - y, y) dy$

四、随机变量的数字特征

1、数学期望

①定义: 离散型
$$E(X) = \sum_{k=1}^{+\infty} x_k p_k$$
, 连续型 $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$

②性质: E(C)=C, E[E(X)]=E(X), E(CX)=CE(X), $E(X\pm Y)=E(X)\pm E(Y)$ $E(aX\pm b)=aE(X)\pm b$, 当 X、Y 相互独立时: E(XY)=E(X)E(Y)

2、方差

①定义: $D(X) = E[(X - E(X))^2] = E(X^2) - E^2(X)$

②性质: D(C) = 0 , $D(aX \pm b) = a^2 D(X)$, $D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y)$ 当 X、Y 相互独立时: $D(X \pm Y) = D(X) + D(Y)$

3、协方差与相关系数

①协方差: Cov(X,Y) = E(XY) - E(X)E(Y), 当 X、Y 相互独立时: Cov(X,Y) = 0

②相关系数: $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$, 当 X、Y 相互独立时: $\rho_{XY} = 0$ (X, Y 不相关)

③协方差和相关系数的性质: Cov(X,X) = D(X), Cov(X,Y) = Cov(Y,X) $Cov(X_1 + X_2,Y) = Cov(X_1,Y) + Cov(X_2,Y)$, Cov(aX + c,bY + d) = abCov(X,Y)

4、常见随机变量分布的数学期望和方差

市光随机文重力市的数于新至市力左				
分布	数学期望	方差		
0-1 分布 b(1, p)	p	<i>p</i> (1- <i>p</i>)		
二项分布 $b(n,p)$	пр	<i>np</i> (1- <i>p</i>)		
泊松分布 P(λ)	λ	λ		
均匀分布 U(a,b)	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$		
正态分布 $N(\mu, \sigma^2)$	μ	σ^2		
指数分布 $e(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$		

五、大数定律与中心极限定理

1、切比雪夫不等式

若 $E(X) = \mu, D(X) = \sigma^2$, 对于任意 $\varepsilon > 0$ 有 $P\{|X - E(X)| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$

2、大数定律: ①切比雪夫大数定律: 若 $X_1 \cdots X_n$ 相互独立,

$$E(X_i) = \mu_i, D(X_i) = \sigma_i^2 \perp \sigma_i^2 \leq C, \quad \text{M}: \quad \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \frac{1}{n} \sum_{i=1}^n E(X_i), (n \to \infty)$$

②伯努利大数定律:设 n_A 是 n 次独立试验中事件 A 发生的次数,p 是事件 A 在每次试验中发生的概率,则 $\forall \varepsilon > 0$,有: $\lim_{n \to \infty} P\left(\left|\frac{n_A}{n} - p\right| < \varepsilon\right) = 1$

③辛钦大数定律: 若 X_1, \dots, X_n 独立同分布,且 $E(X_i) = \mu$,则 $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P \to \infty} \mu$

3、中心极限定理

①列维一林德伯格中心极限定理: 独立同分布的随机变量 X_i $(i=1,2,\cdots)$,均值 为 μ ,方差为 $\sigma^2 > 0$,当 n 充分大时有: $Y_n = (\sum_{k=1}^n X_k - n\mu) / \sqrt{n}\sigma \longrightarrow N(0,1)$

②棣莫弗—拉普拉斯中心极限定理: 随机变量 $X \sim B(n, p)$, 则对任意 x 有:

$$\lim_{n \to \infty} P\{\frac{X - np}{\sqrt{np(1 - p)}} \le x\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(x)$$

③近似计算:
$$P(a \le \sum_{k=1}^{n} X_k \le b) \approx \Phi(\frac{b-n\mu}{\sqrt{n\sigma}}) - \Phi(\frac{a-n\mu}{\sqrt{n\sigma}})$$

六、数理统计的基本概念

1、总体和样本的分布函数

设总体 $X \square F(x)$,则样本的联合分布函数 $F(x_1, x_2 \cdots x_n) = \prod_{k=1}^n F(x_k)$

2、统计量

样本均值:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i^2 - n \overline{X}^2)$

样本标准差:
$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$
 ,样本 k 阶原点距: $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k, k = 1, 2 \cdots$

样本 k 阶中心距: $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k, k = 1, 2, 3 \cdots$

- 3、三大抽样分布
- $(1)\chi^2$ 分布: 设随机变量 $X_i \square N(0,1)$ $(i=1,2,\cdots,n)$ 且相互独立,则称统计量 $\chi^2 = X_1^2 + X_2^2 + \cdots X_n^2$ 服从自由度为n 的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n)$

性质: ① $E[\chi^2(n)] = n, D[\chi^2(n)] = 2n$ ②设 $X \sim \chi^2(m), Y \sim \chi^2(n)$ 且相互独立,则 $X + Y \sim \chi^2(m+n)$

(2) t 分布: 设随机变量 $X \sim N(0,1), Y \sim \chi^2(n)$, 且 X 与 Y 独立,则称统计量:

$$T = \frac{X}{\sqrt{Y/n}}$$
 服从自由度为 n 的 t 分布,记为 $T \sim t(n)$

性质: ①
$$E(T) = 0$$
 $(n > 1)$, $D(T) = \frac{n}{n-2}$ $(n > 2)$ ② $\lim_{n \to \infty} f_n(x) = \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

(3) F 分布: 设随机变量 $X \sim \chi^2(m), Y \sim \chi^2(n)$,且 X 与 Y 独立,则称统计量 $F(m,n) = \frac{X/m}{Y/n}$ 服从第一自由度为 m,第二自由度为 n 的 F 分布,记为

 $F \sim F(m,n)$, 性质: 设 $F \sim F(m,n)$, 则 $\frac{1}{F} \sim F(n,m)$

七、参数估计

- 1. 参数估计
- ①定义: 用 $\overset{\circ}{ heta}(X_1,X_2,L,X_n)$ 估计总体参数 θ ,称 $\overset{\circ}{ heta}(X_1,X_2,L,X_n)$ 为 θ 的估
- 计量,相应的 $\hat{\theta}(x_1, x_2, \dots, x_n)$ 为总体 θ 的估计值。
- ②当总体是正态分布时,未知参数的矩估计值=未知参数的极大似然估计值
- 2. 点估计中的矩估计法:
- 基本思想: 用样本矩来估计相应的总体矩
- 求法步骤: 设总体 X 的分布中包含有未知参数 $\theta_1, \theta_2, \dots, \theta_k$, 它的前 k 阶原点

矩 $\mu_i = E(X^i)(i=1,2,\dots,k)$ 中包含了未知参数 $\theta_1,\theta_2,\dots,\theta_k$,

即 $\mu_i = g_i(\theta_1, \theta_2, \dots, \theta_k)$ $(i = 1, 2, \dots, k)$; 又设 x_1, x_2, L , x_n 为总体 X 的 n 个样本

值,用样本矩代替 μ ,,在所建立的方程组中解出的 k 个未知参数即为参数

 $\theta_1, \theta_2, \cdots, \theta_k$ 的矩估计量 $\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_k$ 。

注意:分布中有几个未知参数,就求到几阶矩。

3. 点估计中的极大似然估计

设 X_1, X_2, L X_n 取自X 的样本,设 $X \sim f(x, \theta)$ 或 $X \sim P(x, \theta)$, 求法步骤:

①似然函数:
$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta)$$
(连续型)或 $L(\theta) = \prod_{i=1}^{n} P_i(x_i, \theta)$ (离散型)

②取对数:
$$\ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i, \theta)$$
 或 $\ln L(\theta) = \sum_{i=1}^{n} \ln p_i(x_i, \theta)$

③解方程:
$$\frac{\partial \ln L}{\partial \theta_1} = 0$$
, L , $\frac{\partial \ln L}{\partial \theta_k} = 0$, 解得:
$$\begin{cases} \hat{\theta}_1 = \hat{\theta}_1(x_1, x_2, \dots, x_n) \\ \dots \\ \hat{\theta}_k = \hat{\theta}_k(x_1, x_2, \dots, x_n) \end{cases}$$

4. 估计量的评价标准

	11.1.1 = 11.1.1 11.1.1			
估计	无偏性	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, L_n, x_n)$ 为未知参数 θ 的估计量。若 $E(\hat{\theta}) = \theta$,则称 $\hat{\theta}$ 为 θ 的无偏估计量。		
量的评价	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_2, L, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_2, L, x_n)$ 是未知参数 θ 的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。		
标准	一致性	设 $\hat{\theta}_n$ 是 θ 的一串估计量,如 $\forall \varepsilon > 0$,有 $\lim_{n \to \infty} P(\hat{\theta}_n - \theta > \varepsilon) = 0$ 则称 $\hat{\theta}_n$ 为 θ 的一致估计量(或相合估计量)。		

5. 单正态总体参数的置信区间

条件	估计 参数	枢轴量	枢轴量 分布	置信水平为 $1-\alpha$ 的置信区间
已知 $oldsymbol{\sigma}^2$	μ	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	N(0,1)	$\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$
未知 $oldsymbol{\sigma}^2$	μ	$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$	t(n-1)	$\left(\overline{x} - t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}, \overline{x} + t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}\right)$
已知 <i>μ</i>	σ^2	$\chi^2 = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2$	$\chi^2(n)$	$\left(\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\alpha/2}^{2}(n)}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\alpha/2}^{2}(n)}\right)$
未知 μ	σ^2	$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$	$\chi^2(n-1)$	$\left(\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)}\right)$

八、假设检验

1. 假设检验的基本概念

1. 11/2	大型加工工作机心				
基本	假设检验	俭的统计思想是小概率原理。			
思想	小概率导	耳件的概率就是显著性水平α,常取α=0.05,0.01或0.10。			
	①提出原	原假设 H ; ②选择检验统计量 $g(X_1,L_1,X_n)$; ③对于 α 查表找			
基本	分位数 λ , 使 $P(g(X_1,L,X_n) \in W) = \alpha$, 从而定出拒绝域 W ;				
步骤	④由样2	本观测值计算统计量实测值 $g(x_1,\cdots,x_n)$;并作出判断:当实			
	测值落入	测值落入 W 时拒绝 H, 否则认为接受 H。			
	第一类 错误	当 B 为真时,而样本值却落入了拒绝域,应当否定 B 。这时,我们把客观上 B 成立判为 B 为不成立(即否定了真实的假设),称这种错误为"弃真错误"或第一类错误,记 B 0 为犯此类错误的概率,即: B 1 B 1 B 2 B 3 B 3 B 4 B 4 B 5 B 5 B 6 B 6 B 7 B 7 B 8 B 9			
两类错误	第二类错误	当 H 为真时,而样本值却落入了接受域,应接受 H 。这时,我们把客观上 H 不成立判为 H 成立(即接受了不真实的假设),称这种错误为"取伪错误"或第二类错误,记 H 为犯此类错误的概率,即: H			
	两类错	人们当然希望犯两类错误的概率同时都很小。但是,当			
	误的关	容量 n 一定时, α 变小,则 β 变大;相反地, β 变小,则 α			
	系	变大。取定 α 要想使 $oldsymbol{eta}$ 变小,则必须增加样本容量。			
	•				

2. 单正态总体均值和方差的假设检验

2. 早止念总体均值和万左的假反检验						
条件	原假设	检验统计量	统计量 分布	拒绝域		
	$H_0: \mu = \mu_0$		N(0,1)	$ z > z_{\alpha/2}$		
已知 σ^2	$H_0: \mu \leq \mu_0$	$Z = \frac{X - \mu_0}{\sigma / \sqrt{n}}$		$z > z_{\alpha}$		
	$H_0: \mu \geq \mu_0$			$z < -z_{\alpha}$		
	H_0 : $\mu = \mu_0$	<u> </u>	t(n-1)	$ t > t_{\alpha/2} (n-1)$		
未知 σ^2	$H_0: \mu \leq \mu_0$	$T = \frac{X - \mu_0}{S / \sqrt{n}}$		$t > t_{\alpha}(n-1)$		
	$H_0: \mu \geq \mu_0$	5 / \ 11		$t < -t_{\alpha}(n-1)$		
	$H_0: \sigma^2 = \sigma^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^2(n-1)$	$\chi^2 < \chi^2_{1-\alpha/2}(n-1)$		
未知μ	110.0			或 $\chi^2 > \chi^2_{\alpha/2}(n-1)$		
ZICZIH A	$H_0: \sigma^2 \leq \sigma_0^2$	σ_0^2		$\chi^2 > \chi_\alpha^2(n-1)$		
	$H_0: \sigma^2 \ge \sigma_0^2$			$\chi^2 < \chi_{1-\alpha}^2 \ (n-1)$		
	$H_0: \sigma^2 = \sigma^2$	$\chi^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\sigma_{0}^{2}}$	$\chi^2(n)$	$\chi^2 < \chi^2_{1-\alpha/2}(n) $		
已知 μ				$\chi^2 > \chi^2_{\alpha/2}(n)$		
(少见)	$H_0: \sigma^2 \leq \sigma_0^2$			$\chi^2 > \chi^2_\alpha(n)$		
	$H_0: \sigma^2 \geq \sigma_0^2$			$\chi^2 < \chi^2_{1-\alpha} \ (n)$		