Probability and Propositional Logic CheatSheet

Basic Probability Rules

Probability of an Event:

$$P(A) = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$$

Complement Rule:

$$P(\neg A) = 1 - P(A)$$

Addition Rule (for Union of Two Events):

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

If A and B are mutually exclusive:

$$P(A \cup B) = P(A) + P(B)$$

Conditional Probability:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Chain Rule:

$$P(A \cap B) = P(A \mid B) \cdot P(B)$$

Bayes' Theorem:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Naive Bayes Classifier

Posterior Probability:

$$P(C \mid X) = \frac{P(X \mid C) \cdot P(C)}{P(X)}$$

Naive Bayes Assumption (Conditional Independence):

$$P(X_1, X_2, ..., X_n \mid C) = \prod_{i=1}^n P(X_i \mid C)$$

Propositional Logic Symbols

- A, B, C, \ldots Propositional variables (statements)
- $\neg A$ Negation (not A)
- $A \wedge B$ Conjunction (both A and B are true)
- $A \vee B$ Disjunction (either A or B or both are true)
- $A \to B$ Implication (if A is true, then B is true)
- $A \leftrightarrow B$ Biconditional (if A, then B, and if B, then A)
- ⊤ True
- \bullet \perp False

Logical Equivalences

Commutative Laws:

$$A \wedge B \equiv B \wedge A$$

$$A \lor B \equiv B \lor A$$

Associative Laws:

$$(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$$

$$(A \lor B) \lor C \equiv A \lor (B \lor C)$$

Distributive Laws:

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

De Morgan's Laws:

$$\neg (A \land B) \equiv \neg A \lor \neg B$$

$$\neg (A \lor B) \equiv \neg A \land \neg B$$

Implication Equivalences:

$$A \to B \equiv \neg A \vee B$$

Rules of Inference

Modus Ponens:

$$\frac{A,A\to B}{B}$$

If A and $A \to B$ are true, then B must be true.

Modus Tollens:

$$\frac{\neg B, A \to B}{\neg A}$$

If $A \to B$ and $\neg B$ are true, then $\neg A$ must be true.

Disjunctive Syllogism:

$$\frac{A \vee B, \neg A}{B}$$

If $A \vee B$ is true and A is false, then B must be true.

Hypothetical Syllogism:

$$\frac{A \to B, B \to C}{A \to C}$$

If $A \to B$ and $B \to C$ are true, then $A \to C$ must be true.

Conjunction:

$$\frac{A,B}{A \wedge B}$$

If A and B are true, then $A \wedge B$ must be true.

Truth Table Definitions

Negation (\neg) :

A	$\neg A$
\top	Ι.
上	T

Conjunction (\land):

A	B	$A \wedge B$
Τ	Т	Т
T	上	\perp
_	Т	\perp
_	\perp	\perp

Disjunction (\vee) :

A	B	$A \vee B$
\top	\top	Т
T	\perp	Т
上	Т	Т
_	\perp	上

Implication (\rightarrow) :

A	B	$A \rightarrow B$
\top	Т	Т
T	丄	
_	Т	Т
_	\perp	Т

Biconditional (\leftrightarrow) :

A	B	$A \leftrightarrow B$
T	Т	Т
T	1	
_	Т	
_	1	T