How would you set up an experiment to determine the rate exponent for the following reaction?

 $C_6H_{12}O_{6(s)} + H_2SO_{4(aq)}$

Exponents for a rate law expression must be determined experimentally (empirically).

Concentrations of each reactant must be changed one at a time to see how much the overall reaction rate does or doesn't change.

Related to how the reaction takes place at the atomic level, which we cannot see.

HANDOUT - Table 1

Concentration Factor Change	Reaction Rate Factor Change	Rate Law Exponent on the Concentration
2x	no change	0
3x	no change	0
4x	no change	0
2x	$2^1 = 2$	1
3x	$3^1 = 3$	1
4x	4 ¹ = 4	1

HANDOUT - Table 1

Concentration Factor Change	Reaction Rate Factor Change	Rate Law Exponent on the Concentration
2x	$2^2 = 4$	2
3x	$3^2 = 9$	2
4x	$4^2 = 16$	2
2x	$2^3 = 8$	3
3x	$3^3 = 27$	3
4x	$4^3 = 64$	3

HANDOUT - Example 1

Initial Concentration (mol / L)		Initial Rate of Formation of
[A]	[B]	Products (mol/L•s)
0.10	0.10	0.20
0.20	0.10	0.40
0.30	0.10	0.60
0.30	0.20	2.40
0.30	0.30	5.40

Order for [A]: I r=k[A][B]²
Order for [B]: 2

Order of overall rxn: 3

 $k = 2.0 \times 10^2 L^2 \text{ mol}^{-2} \text{ s}^{-1}$

HANDOUT - Example 2

Initial Concentration (mol/L)	Initial Rate of Formation of Products
[SO ₂ CI ₂]	(mol/L•s)
0.100	2.2 x 10 ⁻⁶
0.200	4.4 x 10 ⁻⁶
0.300	6.6 x 10 ⁻⁶

Order for $[SO_2Cl_2]$: I $r=k[SO_2Cl_2]$ Order of overall rxn: I $k = 2.2 \times 10^{-5} \text{ s}^{-1}$

HANDOUT - Example 3

Initial Concentration (mol/L)		Initial Rate of Formation of
[A]	[B]	Products (mol/L•s)
0.40	0.30	1.0 x 10 ⁻⁴
0.80	0.30	4.0 x 10 ⁻⁴
0.80	0.60	1.6 x 10 ⁻³

 $r = k[A]^2[B]^2$

Order for [A]: 2

Order for [B]:

Order of overall rxn: 4

 $k = 6.9 \times 10^{-3} L^3 \text{ mol}^{-3} \text{ s}^{-1}$

HANDOUT - Example 4

Initial Concentration (mol/L)		Initial Rate of
[NO]	[H ₂]	Formation of
[NO]		Products (mol/L•s)
0.10	0.10	1.23 x 10 ⁻³
0.10	0.20	2.46 x 10 ⁻³
0.20	0.10	4.92 x 10 ⁻³

Order for [NO]: 2 $r=k[NO]^2[H_2]$ Order for $[H_2]$: 1

Order of overall rxn: 3

 $k = 1.2 L^2 \text{ mol}^{-2} \text{ s}^{-1}$

Ex. 1 The decomposition of N₂O₅ is:

$$2 N_2 O_5 \rightarrow 4 NO_2 + O_2$$

This is a first order rxn with respect to N_2O_5 . Given initial rate of 2.1 x 10^{-4} mol/L•s and initial [N_2O_5] = 0.40 mol / L, predict the rate when [N_2O_5] = 0.80 M.

$$r = k [N_2O_5]$$
 $2.1 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1} = k [0.40 \text{mol/L}]$
 $2.1 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1} = k$
 0.40mol/L
 $0.000525 \text{ s}^{-1} = k$

Ex. 1 The decomposition of N₂O₅ is:

$$2 N_2 O_5 \rightarrow 4 NO_2 + O_2$$

This is a first order rxn with respect to N_2O_5 . Given initial rate of 2.1 x 10^{-4} mol/L•s and initial [N_2O_5] = 0.40 mol / L, predict the rate when [N_2O_5] = 0.80 M.

```
r = k [N_2O_5]
= 0.000525 s<sup>-1</sup> [0.80mol/L]
= 4.2x10<sup>-4</sup> mol L<sup>-1</sup> s<sup>-1</sup>
```

Notice how this is a first order reaction, so doubling the concentration DOUBLES the rate of reaction

Therefore the rate is 4.2x10⁻⁴ mol L⁻¹ s⁻¹

Ex. 2 Given $2C_4H_6 \rightarrow C_8H_{12}$ where $r = k[C_4H_6]^2$.

If the initial rate was 32 mmol C₄H₆/L•min at a certain [C₄H₆], what would be the initial rate if the concentration were doubled?

Since this is a second order reaction, doubling the concentration quadruples the rate.

$$2x[] = rx4$$

Therefore the rate of reaction is 1.3x10² mmol/L•min

half-life - the time required for half the concentration of a reactant to be used up in a rxn

Ex. 3 If the mass of an antibiotic is 2.464 g, what mass will remain after 6.0 h, if the half-life is 2.0 h, and no more antibiotic is added.

$$m_{final} = m_{initial} (0.5)^n$$
 $^{n=\# \text{ of half lives}}$ $m_{final} = 2.464g (0.5)^{6.0/2.0}$ $= 2.464g (0.5)^3$ $= 0.308g$ $= 0.31g$

Therefore 0.31g of antibiotic remains

Equation relating half-life and the rate constant:

The radioisotope lead-212 has half-life of 10.6 h. What is the rate constant for this isotope?

$$r = k[Pb-212]^{1}$$
and
$$kt_{\frac{1}{2}} = 0.693$$

$$k = 0.693$$

$$t_{\frac{1}{2}}$$

$$k = 0.693$$

$$10.6h$$

$$k = 0.0654h^{-1}$$

.: the rate constant is 0.0654h⁻¹