Álvaro Jiménez 2019/2020

Homework 5. Advanced Algebra

Advanced Algebra

Exercise 1. Let Γ be a finite, connected graph with vertices (e_1, \ldots, e_E) and edges (k_1, \ldots, k_K) . We endow the edges wih an orientation and obtain the incidence matrix $I_{\Gamma} \in \operatorname{Mat}_{E \times K}(\mathbb{Z})$ of Γ as

$$(I_{\Gamma})_{ij} := \begin{cases} +1 & \text{if } k_j \text{ starts in } e_i \\ -1 & \text{if } k_j \text{ ends in } e_i \end{cases}.$$

$$0 & \text{else}$$

Consider the complex C_* given by

$$C_1 = e_1 \mathbb{Z} \oplus \cdots \oplus e_E \mathbb{Z}, \ C_0 = k \mathbb{Z} \oplus \cdots \oplus k_K \mathbb{Z}, \ C_n = 0$$

for all $n \geq 2$, endowed with the differential $d_1 \colon C_1 \to C_0$ given by multiplication with I_{Γ} and $d_n = 0$ for $n \neq 1$. Prove the following statements:

- a) (C_*, d) is a complex.
- b) The only nonzero homology modules are $H_0(C_*)$ and $H_1(C_*)$. We have $\operatorname{rk}(H_0(C_*)) = 0$ and $\operatorname{rk}(H_1(C_*)) = E K 1$.
- c) The number of closed paths in Γ is E-K-1.

Solution. At the moment I'm writing this there are some typos in the exercise. (e_1, \ldots, e_E) should be the **edges** and not the vertices, since we want C_1 to be the free group \mathbb{Z} -module generated by the edges and C_0 freely generated by the vertices.

Also, the rank of H_1 is not E - K - 1 but rather E - K + 1. I'm changing the notation a little bit, so denote by (e_1, \ldots, e_E) the edges and by (v_1, \ldots, v_V) the vertices, so that C_1 is the free module generated by the edges and C_0 the free module generated by the vertices.

- a) Well, it is clearly a complex, since multiplication by I_{Γ} is linear, and so it is a module homomorphism. Since there is only one non-trivial map, $d = d_1 \colon C_1 \to C_0$, we have that $d^2 = 0$, and so it is a complex.
- b) Since the only non-trivial map is d, then the only non-trivial homology groups will be $H_0(C_*)$ and $H_1(C_*)$, which will be given respectively by

$$H_0 = C_0 / \operatorname{im} d$$
, $H_1 = \ker d$.

Next, notice that if we have an edge e joining two vertices v_i and v_j , we can define a source and target map as

$$t(e) = v_i, s(e) = v_i.$$

These induce then source and target maps $t, s: E \to V$ from the set of edges to the set of vertices, and we view mulitplication by the incidence matrix I_{Γ} as $I_{\Gamma}e = t(e) - s(e)$.

Furthermore, if we are given a path e_1, \ldots, e_L from v_i to v_j , we have

$$s(e_1) = v_i$$
, $t(e_L) = v_i$ and $t(e_k) = s(e_{k+1})$,

SO

$$I_{\Gamma} \cdot \sum_{k=1}^{L} e_k = \sum_{k=1}^{L} I_{\Gamma} \cdot e_k = \sum_{k=1}^{L} (t(e_k) - s(e_k)) = v_j - v_i$$

since it is a telescopic sum being e_1, \ldots, e_L a path. Therefore, we see that the elements $v_j - v_i$ are on the image of d provided that there exists a path between them. But Γ is path connected, which means that any two vertices have a path, so we can fix some vertex \tilde{v} , so that for any v there exists a path from v_j to \tilde{v} . This shows that C_0 is generated by

$$\{\tilde{v}, v_1 - \tilde{v}, \dots, v_V - \tilde{v}\}$$

and since the elements $v_1 - \tilde{v}$ belong to the image of d, they get zeroes out in H^0 , so we only get that \tilde{v} generates H_0 , and so

$$\operatorname{rk}(H_0(C_*)) = 1.$$

For H_1 we use the Rank-Nullity Theorem to see that

$$E = \operatorname{rk} C_1 = \operatorname{rk}(\ker d) + \operatorname{rk}(\operatorname{im} d)$$
$$= \operatorname{rk}(H_1) + (\operatorname{rk}(C_0) - \operatorname{rk}(H_0))$$
$$= \operatorname{rk}(H_1) + V - 1$$

which shows that $\operatorname{rk}(H_1(C_*)) = E - V + 1$.

c) A closed path is a sequence e_1, \ldots, e_L such that $s(e_1) = t(e_L)$. Then, we have $I_{\Gamma} \cdot \sum_{k=1}^{L} e_k = 0$, so these generate the kernel of d, and so there are E - V + 1 of those, by the above.

Exercise 2. a) Verify that

$$\cdots \xrightarrow{d_{n+1}} C_n(K,R) \xrightarrow{d_n} \cdots \xrightarrow{d_2} C_1(K,R) \xrightarrow{d_1} C_0(K,R) \longrightarrow 0$$

is a complex. It is called the *simplicial chain complex*.

- b) Determine the simplicial chain complex with coefficients in \mathbb{R} for the simplicial complex K on $\{0,1,2,3\}$ given by all subsets of cardinality ≤ 2 . Compute the homology groups $H_n(K,\mathbb{R}) = \ker(d_n)/\operatorname{im}(d_{n+1})$.
- c) For any (geometric) simplicial complex one can construct and abstract simplicial complex by only retaining the set of vertices. Profe that, conversely, for any finite abstract simplicial complex K one can construct a (geometric) simplicial complex K'.

Solution. a) First, we notice that the face maps $\partial_i \colon K_n \to K_{n-1}$ satisfy the identity

$$\partial_j \circ \partial_i = \partial_{i-1}\partial_j$$

whenever j < i. Indeed, going by the left hand side we obtain the

$$\{x_0,\ldots,x_{j-1},x_{j+1},\ldots,x_{i-1},x_{i+1},\ldots,x_n\}.$$

On the other hand, if we first apply ∂_j , then we would have shifted by 1 the index of i so that x_i is now in the position i-1, so we get

$$\{x_0,\ldots,x_{i-1},x_{i+1},\ldots,x_{i-1},x_{i+1},\ldots,x_n\}$$

as well. Then, we compute

$$d \circ d = d \left(\sum_{i=0}^{n} (-1)^{i} e_{\partial_{i}\sigma} \right) = \left(\sum_{j=0}^{n-1} (-1)^{j} e_{\partial_{j}} \right) \circ \left(\sum_{i=0}^{n} (-1)^{i} e_{\partial_{i}\sigma} \right)$$

$$= \sum_{0 \leq j < i \leq n} (-1)^{i+j} e_{\partial_{j}\partial_{i}} + \sum_{0 \leq i \leq j \leq n-1} (-1)^{i+j} e_{\partial_{j}\partial_{i}\sigma}$$

$$= \sum_{0 \leq j < i \leq n} (-1)^{i+j} e_{\partial_{i-1}\partial_{j}} + \sum_{0 \leq i \leq j \leq n-1} (-1)^{i+j} e_{\partial_{j}\partial_{i}\sigma}$$

$$= \sum_{0 \leq i < j \leq n} (-1)^{i+j} e_{\partial_{j-1}\partial_{i}\sigma} + \sum_{0 \leq i \leq j \leq n-1} (-1)^{i+j} e_{\partial_{j}\partial_{i}\sigma}$$

$$= \sum_{0 \leq i \leq j \leq n-1} (-1)^{i+j-1} e_{\partial_{j}\partial_{i}\sigma} + \sum_{0 \leq i \leq j \leq n-1} (-1)^{i+j} e_{\partial_{j}\partial_{i}\sigma}$$

$$= 0$$

where we have split the sum between j < i and $i \le j$, used the identity $\partial_j \circ \partial_i = \partial_{i-1}\partial_j$ from before and then identify i with j and finally j with j-1.

b) We obtain the following complexes:

$$C_0 = \{\{0\}, \{1\}, \{2\}, \{3\}\}\}$$

$$C_1 = \{\{0, 1\}, \{0, 2\}, \{0, 3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}\}$$

and the rest of them all trivial. For the zero-th homology group $H_0(K, \mathbb{R})$, we need to look at im (d_1) . This is given by

$$d_1(\{0,1\}) = \{1\} - \{0\}$$

$$d_1(\{0,2\}) = \{2\} - \{0\}$$

$$d_1(\{0,3\}) = \{3\} - \{0\}$$

$$d_1(\{1,2\}) = \{2\} - \{1\}$$

$$d_1(\{1,3\}) = \{3\} - \{1\}$$

$$d_1(\{2,3\}) = \{3\} - \{2\}$$

which we can write in matrix form as

$$\operatorname{im}(d_1) = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

which has rank 3. This $\operatorname{im}(d_1) \cong \mathbb{R}^3$ and thus

$$H_0(K, \mathbb{R}) = C_0/\mathrm{im}(d_1) \cong \mathbb{R}^4/\mathbb{R}^3 \cong \mathbb{R}$$
.

For the other one, however, now we have that $\operatorname{im}(d_2) \cong 0$, and thus

$$H_1(K,\mathbb{R}) \cong \ker(d_1)/\operatorname{im}(d_2) \cong \mathbb{R}^3/0 \cong \mathbb{R}^3$$
.

The rest of the homology groups are trivial.

c) Given an anstract simplicial complex K, define a category Face(K) whose objects are the faces of K and morphisms are given by inclusions. Let

$$|\Delta^n| = \left\{ (t_0, \dots, t_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n t_i = 1, t_i \ge 0 \right\}$$

be the standard topological n-simplex. Define a functor

$$\mathcal{F} \colon \mathrm{Face}(K) \to \mathbf{Top}$$

 $X \mapsto |\Delta^{\dim X}|$.

Given another face Y of dimension $n \leq m = \dim X$, there is a map $F(Y) \to F(X)$ consisting of sending $|\Delta^m|$ to the m-dimensional face of $|\Delta^n|$. Then we define a simplicial complex as the colimit of the functor \mathcal{F} .

Exercise 3. Let M, N be smooth manifolds.

- (a) Show that the dimension of the 0-th de Tham cohomology group $H_{dR}^0(M)$ euals the number of connected components of M.
- (b) Let $f, g: M \to N$ be homotopic smooth maps. Prove that he induced maps $\overline{f}, \overline{g}: \Omega^*(N) \to \Omega^*(M)$ of complexes (on $\Omega^p(N)$ they are given by the pullbacks f^*, g^*) are homotopic. In particular, we have $H^p_{dR}(f) = H^p_{dR}(g)$ for all $p \geq 0$.
- (c) Compute the de Rham cohomology groups for the n-dimensional sphere S^n .
- (d) Let $v, w \in \mathbb{R}^n$. Compute the de Rham cohomology groups for $\mathbb{R}^n \setminus \{v\}$ and $\mathbb{R}^n \setminus \{v, w\}$.

Solution. a) We can decompose M as a sum of its connected components, and since cohomology commutes with finite coproducts, we have that

$$H_{dR}^0(M) \cong \bigoplus_{i=1}^n H_{dR}^0(M_i)$$

where M_i denotes the *i*-th connected component of M. Now, $H_{dR}^0(M_i)$ is simply the set of closed 0-forms on M_i , that is, smooth functions on M_i such that df = 0. These is the group of locally constant functions on M_i , but since M_i is connected, locally constant implies globally constant, so $H_{dR}^0(M_i) \cong \mathbb{R}$. Therefore,

$$H^0_{dR}(M) \cong \mathbb{R}^n$$

so the dimension of the 0-th de Rham cohomology group equals the number of conncted components.

b) Let $H: M \times [0,1] \to N$ be a homotopy between f and g, that is, such that H(x,0) = f(x) and H(x,1) = g(x). Consider a cocycle $\omega \in \Omega^k(N)$. The pullback is then along H can be written as

$$H^*\omega = \omega_0 + \mathrm{d}\,t \wedge \omega_1$$

where $\omega_0 \in \Omega^k(M)$ and $\omega_1 \in \Omega^{k-1}(M)$, so we get

$$f^*\omega = \omega_0 = g^*\omega.$$

Since $F^*\omega$ is a cocylce, then

$$0 = d F^* \omega = d t \wedge \left(\frac{\partial \omega_0}{\partial t} - d_M \omega_1 \right) + \cdots$$

and thus

$$f^*\omega - g^*\omega = \omega_0(1) - \omega_0(0) = \int_0^1 \frac{\partial \omega_0}{\partial t} dt = \int_0^1 d_M \omega_1 dt = d_M \int_0^1 \omega_1 dt.$$

This means that $f^*\omega$ and $g^*\omega$ are the same in cohomology.

c) First we need the case base for S^1 . We do this by choosing a cover $S^1 = U \cup V$ of two semicircles overlapping, so that $U \cap V$ is the union of two disconnected segments. Applying Mayer-Vietoris to this cover, it becomes

$$0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \longrightarrow H^1(S^1) \longrightarrow 0$$

since $H^0(S^1) \cong \mathbb{R}$, and $H^0(U) \cong \mathbb{R} \cong \mathbb{R}^2$. This implies that $H^1(S^1) = \mathbb{R}$. The claim is that

$$H^{n}(S^{m}) = \begin{cases} \mathbb{R} & \text{if } n = 0, m \\ 0 & \text{otherwise} \end{cases}$$

To see this. choose a cover of S^m by U and V being S^m minus the north and south pole respectively. Using Poincare Lemma we have that

$$H^k(U) = H^k(V) \cong 0$$

for all k. On the other hand, $U \cap V$ deformation retracts onto S^{m-1} , for which the induction hypothesis applies. Hence we know all cohomology groups except $H^n(S^m)$ for 1 < n < m.

If n = 1, first notice that the map $H^0(S^m) \to H^0(U) \oplus H^0(V)$ has trivial kernel and its image is isomorphic to \mathbb{R} , so $H^0(S^n) \cong \mathbb{R}$. On the other hand, the connecting homomorphism $\delta \colon H^0(S^{m-1}) \to H^1(S^m)$ is surjective since the map $H^1(S^2) \to H^1(U) \oplus H^1(V)$ is trivial. Using Poincaré Lemma for $H^k(U) = H^k(V) = 0$ for k > 0, a similar argument as used for $H^1(S^1)$ shows that $H^1(S^m) = 0$. If 1 < n < m, then all the mapso going from $H^n(S^m)$ and into it are trivial, so $H^n(S^m) = 0$.

Finally, if m = n, the connecting homomorphism δ is surjective, and $H^{n-1}(S^{n-1}) \cong \mathbb{R}$ by induction hypothesis. Moreover, the image of the substraction map that goes into $H^{n-1}(S^{n-1})$ is zero, so the last connecting homomorphism δ has trivial kernel and is therefore an isomorphism. Hence $H^n(S^n) \cong \mathbb{R}$.

d) We have done the first one. $\mathbb{R} \setminus \{v\}$ deformation retracts onto the sphere S^{n-1} , for which we already know the cohomology groups.

For $\mathbb{R}^n \setminus \{u, v\}$, I'm guessing that this deformation retracts onto the wedge of two S^{n-1} , so we would have

$$H^m(\mathbb{R}\setminus\{u,v\})\cong H^m(S^{n-1})\oplus H^m(S^{n-1})$$
.