POS tagging

Natural Language Processing: Lecture 5

5.10.2017

Kairit Sirts

Plan

- What are POS tags?
- POS tagging task as a disambiguation task
- Approaches to POS tagging:
 - Hidden Markov models and Viterbi decoding
 - Log-linear models
 - Neural networks

POS tags

- Part-of-speech tags, syntactic categories, word classes
- POS tags give information about the word and its neighbors
- Useful for many other NLP tasks: information extraction, syntactic parsing, information retrieval, summarization

Janet will back the bill

Proper noun Modal verb Verb Article Noun

Main POS categories

- Nouns
 - Common nouns things (chair), events (lecture), abstractions (justice), verblike terms (swimming) etc
 - Proper nouns proper names of people (John), countries (Estonia), organizations (University of Tartu) etc
- Verbs words referring to actions and processes (to draw, to ponder)
- Adjectives words describing properties or qualities (black, young)
- Adverbs words modifying (mostly) verbs
 - Unfortunately, John walked home extremely slowly yesterday

Open and closed class words

Open class words

- Nouns
- Verbs
- Adjectives
- Adverbs

Closed class words

- Prepositions: on, under, over
- Determiners: a, an, the
- Pronouns: she, who, I, others
- Conjunctions: and, but, or, as
- Auxiliary verbs: can, may, are
- Particles: up, down, on, off
- Numerals: one, two, first

English POS tags – Penn Treebank tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb base form	eat
FW	foreign word	mea culpa	VBD	verb past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating
JJ	adjective	yellow	VBN	verb past participle	eaten
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, sing.	<i>IBM</i>	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	" or "
POS	possessive ending	's	,,	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

Estonian POS tags – used in estnltk

POS tag	Description	Example	POS tag	Description	Example
Α	Adjective	kallis	N	Cardinal number	kaks
С	Adj., comparative	laiem	0	Ordinal number	teine
D	Adverb	kõrvuti	Р	Pronoun	see
G	Genitive attribute	balti	S	Common noun	asi
Н	Proper name	Edgar	U	Adj., superlative	pikim
1	Interjection	tere	V	Verb	lugema
J	Conjunction	ja	X	Verb complements	plehku
K	Adposition	kaudu	Υ	Abbreviation	USA
			Z	Punctuation	-, /,

Morphological tags

	Nouns	Verbs
English	2 numbers (singular, plural)	6 different forms
	2 cases (nominative, genitive)	
Estonian	2 numbers	Tens of different forms
	14 cases	

POS tags in Multext-East corpus

Language	Number of tags
English	104
Polish	588
Hungarian	429
Czech	573
Serbian	456
Farsi	207
Bulgarian	104
Slovak	581
Slovene	610
Estonian	316

Universal POS tags

POS tag	Description
VERB	Verbs (all tenses and modes)
NOUN	Nouns (common and proper)
PRON	Pronouns
ADJ	Adjectives
ADV	Adverbs
ADP	Adpositions (prepositions and postpositions)
CONJ	Conjunctions
DET	Determiners
NUM	Cardinal numbers
PRT	Particles or other function words
X	Other: foreign words, typos, abbreviations
	Punctuation

POS tagging

```
Janet will back the bill NNP MD VB DT NN NOUN VERB VERB DET NOUN
```

```
Teise koha sai seekord Jänes
O+sg_g S+sg_g V+s D H+sg_n
NUM NOUN VERB ADV NOUN
```

POS tagging as a disambiguation task

Teise	koha	sai se	ekord .	Jänes
O+sg_g	S+sg_g S+sg_n S+sg_p V+o	V+s S+sg_n	D	S+sg_n H+sg_n

POS tagging as a disambiguation task

Teise	koha	sai seekord	Jänes
O+adt	S+sg_g	V+s D	S+sg_n
O+sg_g	S+sg_n	S+sg_n	H+sg_n
P+adt	S+sg_p		
P+sg_g	V+o		

Tag ambiguity in English

Types:	Types:		WSJ		wn
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)
Tokens:					
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)

Figure 10.2 The amount of tag ambiguity for word types in the Brown and WSJ corpora, from the Treebank-3 (45-tag) tagging. These statistics include punctuation as words, and assume words are kept in their original case.

POS tagging approaches

- 1. Hidden Markov Models
- 2. Log-linear models
- 3. Neural networks

Hidden Markov Model

Hidden Markov Model

$$\hat{t}_{1}^{n} = \arg \max_{t_{1}^{n}} P(t_{1}^{n}|w_{1}^{n})
= \arg \max_{t_{1}^{n}} \frac{P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})}{P(w_{1}^{n})}
= \arg \max_{t_{1}^{n}} P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})$$

Application of the Bayes rule:

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

Argmax does not depend on the denominator, thus can be omitted

$$= \arg \max_{t_1^n} \prod_{i=1}^n P(w_i|t_1) P(t_i|t_{i-1})$$

Factor the probabilities according to the dependencies in the graphical model

Hidden Markov Model

Parameter estimation

Transition probabilities

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$

$$P(VB|MD) = \frac{C(MD, VB)}{C(MD)}$$
$$= \frac{10471}{13124} = 0.80$$

Emission probabilities

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(will|MD) = \frac{C(MD, will)}{C(MD)}$$
$$= \frac{4046}{13124} = 0.31$$

Viterbi decoding

- The goal is to find the most likely sequence of hidden tags
- Viterbi decoding is a dynamic programming algorithm

In <u>computer science</u>, <u>mathematics</u>, <u>management science</u>, <u>economics</u> and <u>bioinformatics</u>, **dynamic programming** (also known as **dynamic optimization**) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space.

Figure 10.7 A schematic of the tagging task for the sample sentence, showing the ambiguities for each word and the correct tag sequence as the highlighted path through the hidden states.

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

Transition probabilities

Figure 10.5 The A transition probabilities $P(t_i|t_{i-1})$ computed from the WSJ corpus without smoothing. Rows are labeled with the conditioning event; thus P(VB|MD) is 0.7968.

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

Emission probabilities

Figure 10.6 Observation likelihoods *B* computed from the WSJ corpus without smoothing.

Viterbi algorithm

- Create a table V with N+2 rows and T columns:
 - N the number of states/tags
 - T the length of the sequence/sentence
- Initialise the first column
 - For each tag t in the tagset compute:

$$V[t,1] = P(t|start)P(w_1|t)$$

- For each column j = 2 to T in the table V:
 - For each tag t in the tagset compute:

$$V[t,j] = \max_{t'} V[t',j-1]P(t|t')P(w_j|t)$$

	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009				
MD	0				
VB	0				
JJ	0				
NN	0				
RB	0				
DT	0				

	NNP
< <i>s</i> >	0.2767
NNP	0.3777
MD	0.0008
VB	0.0322
JJ	0.0366
NN	0.0096
RB	0.0068
DT	0.1147

	Janet
NNP	0.000032
MD	0
VB	0
JJ	0
NN	0
RB	0
DT	0

$$V[t,1] = P(t|start)P(w_1|t)$$

	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009	0			
MD	0	0.000009*0.011* 0.308431=3E-8			
VB	0	0.000009*0.0009* 0.000028=2.3E-13			
JJ	0	0			
NN	0	0.000009*0.0584* 0.0002=1.1E-10			
RB	0	0			
DT	0	0			

	Janet	will
NNP	0.000032	0
MD	0	0.308431
VB	0	0.000028
JJ	0	0
NN	0	0.000200
RB	0	0
DT	0	0

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025

$$V[t, 2] = \max_{t'} V[t', 1] P(t|t') P(w_2|t)$$

	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009	0	0		
MD	0	0.000009*0.011* 0.308431=3E-8	0		
VB	0	0.000009*0.0009* 0.000028=2.3E-13			
JJ	0	0			
NN	0	0.000009*0.0584* 0.0002=1.1E-10			
RB	0	0			
DT	0	0	0		

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

$$V[t,3] = \max_{t'} V[t',2]P(t|t')P(w_3|t)$$

back

	VB	וו	NN	RB
MD 3E-8	*0.7968=2.4E-8	*0.0005=1.5E-11	*0.0008=2.4E-11	*0.009=2.7E-10
VB 2.3E-13	*0.005=1.5E-15	*0.0837=1.9E-14	*0.0615=1.4E-14	*0.0514=1.2E-14
NN 1.1E-10	*0.0014=1.5E-13	*0.0086=9.5E-13	*0.1216=1.3E-11	*0.0177=1.9E-12

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

$$\max_{t'} V[t', 2] P(t|t')$$

		Janet	will			back			the	the	the	the bill
	NNP	0.2767* 0.000032= 0.000009	0			0						
	MD	0	0.00000 0.30843	9*0.011 ³ 31=3E-8	*	0						
	VB	0		9*0.0009 8=2.3E-1			0.7968* 572=1.6E-11	L				
	IJ	0	0				0.0005* 34=5.1E-15					
	NN	0		9*0.0584 :1.1E-10			0*0.1216* 223=3E-15					
	RB	0	0				0.009* 146=2.8E-12	<u>)</u>				
		Janet	will	back	the		bill					
	IP	0.000032	0	0	0.00	00048	0					
U	D	0	0.308431	0	0		0					

	Janet	WIII	Dack	tne	DIII
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

$$V[t,3] = \max_{t'} V[t',2]P(t|t')P(w_3|t)$$

	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009	0	0		
MD	0	0.000009*0.011* 0.308431=3E-8	0	0	
VB	0	0.000009*0.0009* 0.000028=2.3E-13	3E-8*0.7968* 0.000672=1.6E-11	0	
JJ	0	0	3E-8*0.0005* 0.00034=5.1E-15		
NN	0	0.000009*0.0584* 0.0002=1.1E-10	1.1E-10*0.1216* 0.000223=3E-15		
RB	0	0	3E-8*0.009* 0.010446=2.8E-12	0	
	Janet will 0.000032 0		bill 048 0		

	Janet	Will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

$$V[t, 4] = \max_{t'} V[t', 3] P(t|t') P(w_4|t)$$

the

	NNP	וו	NN	DT
VB 1.6E-11	*0.0322=5.2E-13	*0.0837=1.3E-12	*0.0615=9.8E-13	*0.2231=3.6E-12
JJ 5.1E-15	*0.0366=1.9E-16	*0.0733=3.7E-16	*0.4509=2.3E-15	*0.0036=1.8E-17
NN 3E-15	*0.0096=2.9E-17	*0.0086=2.6E-17	*0.1216=3.6E-16	*0.0068=2E-17
RB 2.8E-12	*0.0068=1.9E-14	*0.1012=2.8E-13	*0.0120=3.4E-14	*0.0479=1.3E-13

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

$$\max_{t'} V[t', 3] P(t|t')$$

	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009	0	0	1.6E-11*0.0322* 0.000048=2.5E-17	
MD	0	0.000009*0.011* 0.308431=3E-8	0	0	
VB	0	0.000009*0.0009* 0.000028=2.3E-13	3E-8*0.7968* 0.000672=1.6E-11	0	
JJ	0	0	3E-8*0.0005* 0.00034=5.1E-15	1.6E-11*0.0837* 0.000097=1.3E-16	
NN	0	0.000009*0.0584* 0.0002=1.1E-10	1.1E-10*0.1216* 0.000223=3E-15	1.6E-11*0.0615* 0.000006=5.9E-18	
RB	0	0	3E-8*0.009* 0.010446=2.8E-12	0	
	net will 000032 0 0.3084	back the 0 0.00004 131 0 0	bill 8 0 0	1.6E-11*0.2231* 0.506099=1.8E-12	

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

$$V[t, 4] = \max_{t'} V[t', 3] P(t|t') P(w_4|t)$$

	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009	0	0	1.6E-11*0.0322* 0.000048=2.5E-17	0
MD	0	0.000009*0.011* 0.308431=3E-8	0	0	0
VB	0	0.000009*0.0009* 0.000028=2.3E-13	3E-8*0.7968* 0.000672=1.6E-11	0	
IJ	0	0	3E-8*0.0005* 0.00034=5.1E-15	1.6E-11*0.0837* 0.000097=1.3E-16	0
NN	0	0.000009*0.0584* 0.0002=1.1E-10	1.1E-10*0.1216* 0.000223=3E-15	1.6E-11*0.0615* 0.000006=5.9E-18	
RB	0	0	3E-8*0.009* 0.010446=2.8E-12	0	0
	net will 000032 0 0.3084	back the 0 0.000048	bill 8 0 0	1.6E-11*0.2231* 0.506099=1.8E-12	0

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

$$V[t, 5] = \max_{t'} V[t', 4] P(t|t') P(w_5|t)$$

bill

	VB	NN
NNP 2.5E-17	*0.0009=2.2E-20	*0.0584=1.5E-18
JJ 1.3E-16	*0.0001=1.3E-20	*0.4509=5.9E-17
NN 5.9E-18	*0.0014=8.3E-21	*0.1216=7.2E-19
DT 1.8E-12	*0.0002=3.6E-16	*0.4744=8.5E-13

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

$$\max_{t'} V[t', 4] P(t|t').$$

	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009	0	0	1.6E-11*0.0322* 0.000048=2.5E-17	0
MD	0	0.000009*0.011* 0.308431=3E-8	0	0	0
VB	0	0.000009*0.0009* 0.000028=2.3E-13	3E-8*0.7968* 0.000672=1.6E-11	0	1.8E-12*0.0002* 0.000028=1E-20
JJ	0	0	3E-8*0.0005* 0.00034=5.1E-15	1.6E-11*0.0837* 0.000097=1.3E-16	0
NN	0	0.000009*0.0584* 0.0002=1.1E-10	1.1E-10*0.1216* 0.000223=3E-15	1.6E-11*0.0615* 0.000006=5.9E-18	1.8E-12*0.4744* 0.002337=2E-15
RB	0	0	3E-8*0.009* 0.010446=2.8E-12	0	0
	net will 000032 0	back the 0.00004	bill 8 0	1.6E-11*0.2231* 0.506099=1.8E-12	0
0	0.3084	31 0 0	0 000028		

NNP **MD VB** 0.000028 0.000672 0 0.000028 JJ 0.000340 0.000097 0 0 0 **NN** 0.000200 0.000223 0.000006 0.002337 0 **RB** 0.010446 0 0 0 \mathbf{DT} 0.506099 0 0 0

$$V[t, 5] = \max_{t'} V[t', 4] P(t|t') P(w_5|t)$$

	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009	0	0	1.6E-11*0.0322* 0.000048=2.5E-17	0
MD	0	0.000009*0.011* 0.308431=3E-8	0	0	0
VB	0	0.000009*0.0009* 0.000028=2.3E-13	3E-8*0.7968* 0.000672=1.6E-11	0	1.8E-12*0.0002* 0.000028=1E-20
IJ	0	0	3E-8*0.0005* 0.00034=5.1E-15	1.6E-11*0.0837* 0.000097=1.3E-16	0
NN	0	0.000009*0.0584* 0.0002=1.1E-10	1.1E-10*0.1216* 0.000223=3E-15	1.6E-11*0.0615* 0.000006=5.9E-18	1.8E-12*0.4744* 0.002337=2E-15
RB	0	0	3E-8*0.009* 0.010446=2.8E-12	0	0
DT	0	0	0	1.6E-11*0.2231* 0.506099=1.8E-12	0

	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009	0	0	1.6E-11*0.0322* 0.000048=2.5E-17	0
MD	0	0.000009*0.011* 0.308431=3E-8	0	0	0
VB	0	0.000009*0.0009* 0.000028=2.3E-13	3E-8*0.7968* 0.000672=1.6E-11	0	1.8E-12*0.0002* 0.000028=1E-20
IJ	0	0	3E-8*0.0005* 0.00034=5.1E-15	1.6E-11*0.0837* 0.000097=1.3E-16	0
NN	0	0.000009*0.0584* 0.0002=1.1E-10	1.1E-10*0.1216* 0.000223=3E-15	1.6E-11*0.0615* 0.000006=5.9E-18	1.8E-12*0.4744* 0.002337=2E-15
RB	0	0	3E-8*0.009* 0.010446=2.8E-12	0	0
DT	0	0	0	1.6E-11*0.2231* 0.506099=1.8E-12	0

	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009	0	0	1.6E-11*0.0322* 0.000048=2.5E-17	0
MD	0	0.000009*0.011* 0.308431=3E-8	0	0	0
VB	0	0.000009*0.0009* 0.000028=2.3E-13	3E-8*0.7968* 0.000672=1.6E-11	0	1.8E-12*0.0002* 0.000028=1E-20
IJ	0	0	3E-8*0.0005* 0.00034=5.1E-15	1.6E-11*0.0837* 0.000097=1.3E-16	0
NN	0	0.000009*0.0584* 0.0002=1.1E-10	1.1E-10*0.1216* 0.000223=3E-15	1.6E-11*0.0615* 0.000006=5.9E-18	1.8E-12*0.4744* 0.002337=2E-15
RB	0	0	3E-8*0.009* 0.010446=2.8E-12	0	0
DT	0	0	0	1.6E-11*0.2231* 0.506099=1.8E-12	0

	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009	0	0	1.6E-11*0.0322* 0.000048=2.5E-17	0
MD	0	0.000009*0.011* 0.308431=3E-8	0	0	0
VB	0	0.000009*0.0009* 0.000028=2.3E-13	3E-8*0.7968* 0.000672=1.6E-11	0	1.8E-12*0.0002* 0.000028=1E-20
IJ	0	0	3E-8*0.0005* 0.00034=5.1E-15	1.6E-11*0.0837* 0.000097=1.3E-16	0
NN	0	0.000009*0.0584* 0.0002=1.1E-10	1.1E-10*0.1216* 0.000223=3E-15	1.6E-11*0.0615* 0.000006=5.9E-18	1.8E-12*0.4744* 0.002337=2E-15
RB	0	0	3E-8*0.009* 0.010446=2.8E-12	0	0
DT	0	0	0	1.6E-11*0.2231* 0.506099=1.8E-12	0

	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009	0	0	1.6E-11*0.0322* 0.000048=2.5E-17	0
MD	0	0.000009*0.011* 0.308431=3E-8	0	0	0
VB	0	0.000009*0.0009* 0.000028=2.3E-13	3E-8*0.7968* 0.000672=1.6E-11	0	1.8E-12*0.0002* 0.000028=1E-20
JJ	0	0	3E-8*0.0005* 0.00034=5.1E-15	1.6E-11*0.0837* 0.000097=1.3E-16	0
NN	0	0.000009*0.0584* 0.0002=1.1E-10	1.1E-10*0.1216* 0.000223=3E-15	1.6E-11*0.0615* 0.000006=5.9E-18	1.8E-12*0.4744* 0.002337=2E-15
RB	0	0	3E-8*0.009* 0.010446=2.8E-12	0	0
DT	0	0	0	1.6E-11*0.2231* 0.506099=1.8E-12	0

	NNP	MD	VB	DT	NN
	Janet	will	back	the	bill
NNP	0.2767* 0.000032= 0.000009	0	0	1.6E-11*0.0322* 0.000048=2.5E-17	0
MD	0	0.000009*0.011* 0.308431=3E-8	0	0	0
VB	0	0.000009*0.0009* 0.000028=2.3E-13	3E-8*0.7968* 0.000672=1.6E-11	0	1.8E-12*0.0002* 0.000028=1E-20
JJ	0	0	3E-8*0.0005* 0.00034=5.1E-15	1.6E-11*0.0837* 0.000097=1.3E-16	0
NN	0	0.000009*0.0584* 0.0002=1.1E-10	1.1E-10*0.1216* 0.000223=3E-15	1.6E-11*0.0615* 0.000006=5.9E-18	1.8E-12*0.4744* 0.002337=2E-15
RB	0	0	3E-8*0.009* 0.010446=2.8E-12	0	0
DT	0	0	0	1.6E-11*0.2231* 0.506099=1.8E-12	0

POS tagging using HMM

- The so-called "classical" method
- Can use smoothing and interpolating similar to ngram language modeling to include more information
- Prefix and suffix probabilities for unknown words
- Expectation-maximization for unsupervised POS tagging
- Estonian morphological disambiguator (accessible in estnltk) uses HMM.

POS tagging with log-linear models

- Maximum entropy markov model
- Bidirectional MEMM Stanford POS tagger
- Conditional Random Fields (CRF)

Maximum Entropy Markov Model

MEMM

$$\hat{t}_{1}^{n} = \arg \max_{t_{1}^{n}} P(t_{1}^{n} | w_{1}^{n})$$

$$= \arg \max_{t_{1}^{n}} \prod_{i=1}^{n} P(t_{i} | t_{i-1}, w_{i})$$

$$= \arg \max_{t_{1}^{n}} \prod_{i=1}^{n} P(t_{i} | t_{1}^{i-1}, w_{1}^{n})$$

MEMM

- \bullet Each factorized component $\,P(t_i|t_1^{i-1},w_1^n)\,$ is a local maximum entropy classifier
- The features can be extracted from the currently predicted tag, the tags predicted for the previous words and from the whole word sequence
- The cost function for one local model has a familiar log-linear form:

$$P(t_i|t_1^{i-1}, w_1^n) = \frac{\exp(v \cdot f(t_i, t_1^{i-1}, w_1^n))}{\sum_{t \in T} \exp(v \cdot f(t, t_1^{i-1}, w_1^n))}$$

Word and tag feature templates

$$\begin{split} \langle t_i, w_{i-2} \rangle, \langle t_i, w_{i-1} \rangle, \langle t_i, w_i \rangle, \langle t_i, w_{i+1} \rangle, \langle t_i, w_{i+2} \rangle \\ \langle t_i, t_{i-1} \rangle, \langle t_i, t_{i-2}, t_{i-1} \rangle, \\ \langle t_i, t_{i-1}, w_i \rangle, \langle t_i, w_{i-1}, w_i \rangle \langle t_i, w_i, w_{i+1} \rangle, \end{split}$$

```
t_i = VB and w_{i-2} = Janet

t_i = VB and w_{i-1} = will

t_i = VB and w_i = back

t_i = VB and w_{i+1} = the

t_i = VB and w_{i+2} = bill

t_i = VB and t_{i-1} = MD

t_i = VB and t_{i-1} = MD and t_{i-2} = NNP

t_i = VB and t_{i-1} = back and t_{i-1} = the
```

Feature templates for unknown words

```
w_i contains a particular prefix (from all prefixes of length \leq 4) w_i contains a particular suffix (from all suffixes of length \leq 4) w_i contains a number w_i contains an upper-case letter w_i contains a hyphen w_i is all upper case w_i's word shape w_i's short word shape w_i is upper case and has a digit and a dash (like CFC-12) w_i is upper case and followed within 3 words by Co., Inc., etc.
```

```
Features for the word
 well-dressed
prefix(w_i) = w
prefix(w_i) = we
prefix(w_i) = wel
prefix(w_i) = well
suffix(w_i) = ssed
suffix(w_i) = sed
\operatorname{suffix}(w_i) = \operatorname{ed}
\operatorname{suffix}(w_i) = \mathbf{d}
has-hyphen(w_i)
word-shape(w_i) = xxxx-xxxxxx
short-word-shape(w_i) = \mathbf{x} - \mathbf{x}
```

Decoding in MEMM

Greedy decoding

 Proceed from left to right and make predictions

PRO:

Very quick

CON:

Local solutions, future cannot influence the present

Viterbi decoding

 Change the standard Viterbi by replacing the transition and emission probabilities with the log-linear probability

PRO:

 Future decisions can influence earlier decisions

CON:

Slower (but not too slow)

Label bias problem

Occurs because the models are locally normalised

```
P(TO|to) = 1
NN? TO
MD?
P(TO|NN) = large
P(TO|MD) = small
P(TO|MD) = small
P(TO|to, t(will)) = P(TO|to) = 1
P(TO|to, MD) = 1
P(TO|to, NN) = 1
```

Bidirectional MEMM

- Stanford POS tagger
 - Toutanova et al., 2003. <u>Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network</u>
 - Accuracy on English WSJ corpus 97.24%

POS tagging with neural models

- Feed-forward neural network
 - Collobert et al., 2011. <u>Natural Language Processing (Almost) from Scratch</u>
 - Andor et al., 2016. Globally Normalized Transition-Based Neural Networks
- Bidirectional LSTM
 - Ma and Hovy, 2016. <u>End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF</u>
 - Huang et al., 2015. <u>Bidirectional LSTM-CRF Models for Sequence Tagging</u>
 - Ling et al., 2015. <u>Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation</u>

Collobert & Weston, 2011

- Senna word embeddings
- Feed-forward network
- Predicts a POS tag looking at a local window of words

Figure 1: Window approach network.

Andor et al., 2016

- Simple feed-forward network with one hidden layer
- Conditional Random Fields (CRF) objective
- The network learns the embeddings for features
- Features:
 - are extracted from a 7 word window centered on the current word
 - The word itself, character ngrams up to length 3
 - Tags predicted for the last 4 words

Conditional Random Field - CRF

$$\hat{t}_1^n = \arg\max_{t_1^n} \frac{\exp\sum_{i=1}^n \rho(t_i, t_1^{i-1}, w_1^n)}{Z}$$

Beam search

Beam search is used to approximate the normalization constant

A <u>beam search</u> is used to efficiently select the top-N highest scoring tag sequences from among the very large set of possible tag sequences that the model can generate

Bidirectional LSTM

Word embeddings from characters

Greedy softmax output layer

CRF output layer

Conclusion

- POS tags represent syntactic functions of words
- POS tagging is the task of labelling each word in a sentence with its part-of-speech
- The classic model for POS tagging is HMM with Viterbi decoding
- The state-of-the-art models on English are log-linear models
- Lots of work recently on experimenting with different neural architectures