## Solution to Level\_2 Paper\_1 Section\_A Q1 (2018/19): page 1 of 3

### (a,application)

Normalization requires

$$\int_0^1 \psi^* \psi \, dx = 1 \quad \text{with} \quad \psi = Ax^2 (1 - x)$$

$$1 = A^2 \int_0^1 x^4 (1 - x)^2 dx = A^2 \int_0^1 (x^4 - 2x^5 + x^6) dx = A^2 \left[ \frac{x^5}{5} - \frac{x^6}{3} + \frac{x^7}{7} \right]_0^1$$

$$= A^2 \left( \frac{1}{5} - \frac{1}{3} + \frac{1}{7} \right) = A^2 \left( \frac{21 - 35 + 15}{105} \right) = A^2 \frac{1}{105}$$

Hence  $A = \sqrt{105}$  [2 marks]

Probability that x > 1/2 is

$$\int_{1/2}^{1} \psi^* \psi \, dx = 105 \left[ \frac{x^5}{5} - \frac{x^6}{3} + \frac{x^7}{7} \right]_{1/2}^{1} = 105 \left( \frac{1}{105} - \frac{1}{32 \times 5} + \frac{1}{64 \times 3} - \frac{1}{128 \times 7} \right) = 1 - \left( \frac{21}{32} - \frac{35}{64} + \frac{15}{128} \right)$$
$$= 1 - \frac{84 - 70 + 15}{128} = 1 - \frac{29}{128} = 0.773$$

[2 marks]

### (b,analysis)

The wavefunction in the figure is anti-symmetric about x = L/2 hence the coefficients of the symmetric eigenfunctions

$$c_1 = c_3 = 0$$

[2 marks]

The wavefunction looks most like  $\phi_2$  but with the sign flipped and so  $c_2$  is negative and of the largest magnitude. [1 mark]

 $c_4$  is positive as the peaks of  $\psi$  are closer to together than those of  $\phi_2$ 

[1 mark]

#### (c,analysis)

For  $E_1 = 2\hbar\omega$  you can have either  $n_x = 1$  and  $n_y = 0$  or  $n_x = 0$  and  $n_y = 1$  and so the degeneracy is two. [2 marks]

For  $E_1 = 3\hbar\omega$  you can have either  $n_x = 1$  and  $n_y = 1$  or  $n_x = 2$  and  $n_y = 0$  or  $n_x = 0$  and  $n_y = 2$  and so the degeneracy is three.

### (d,analysis)



## Solution to Level\_2 Paper\_1 Section\_A Q1 (2018/19): page 2 of 3

The sketch should show the following features.

Ground state has one turning point and the first excited state two turning points.

[2 marks]

The wavefunctions should decay to zero more gradually on the left than the right.

[1 mark]

The turning points should be slightly displaced to the left relative to the symmetric case. [1 mark]

### (e,application)

The perturbation to the energy is given by

$$\begin{split} E_1^1 &= \langle \psi_{100}^0 | H' \psi_{100}^0 \rangle = (\pi a^3)^{-1} \int_0^\infty \int_0^{2\pi} \int_0^\pi e^{-r/a} \epsilon \, (r \cos \theta)^2 \, e^{-r/a} r^2 \sin \theta \, d\theta d\phi dr \\ E_1^1 &= \frac{\epsilon}{\pi a^3} \, 2\pi \, \int_0^\infty r^4 e^{-2r/a} dr \, \int_0^\pi \cos^2 \theta \, \sin \theta \, d\theta \\ E_1^1 &= \frac{2\epsilon}{a^3} \, \int_0^\infty r^4 e^{-2r/a} dr \, \int_0^\pi \cos^2 \theta \, \sin \theta \, d\theta \\ E_1^1 &= \frac{2\epsilon}{a^3} \, \left( 4! \left( \frac{a}{2} \right)^5 \right) \left[ -\cos^3 \theta \right]_0^\pi = -\frac{a^2\epsilon}{2} \, \left[ \cos^3 \theta \right]_0^\pi = -\frac{a^2\epsilon}{2} \, \left[ -1 - 1 \right] = a^2\epsilon \end{split}$$

[3 marks]

### (f,analysis)

The energy expectation value is given by

$$\langle E \rangle = \int \psi^* H \psi dx = \int \psi^* \left( \frac{-\hbar^2}{2m} \right) \frac{d^2}{dx^2} \psi \, dx$$

$$\langle E \rangle = A^2 \int_0^L x (L - x) \left( \frac{2\hbar^2}{2m} \right) \, dx = \frac{30}{L^5} \frac{\hbar^2}{m} \left[ \frac{Lx^2}{2} - \frac{x^3}{3} \right]_0^L = \frac{30\hbar^2}{mL^5} \left( \frac{L^3}{2} - \frac{L^3}{3} \right) = \frac{5\hbar^2}{mL^2}$$
[2 mark]

The ground state energy is  $E_1 = (\pi^2/2)\hbar^2/mL^2 = 4.934 \,\hbar^2/mL^2$ .

 $\langle E \rangle > E_1$  as it must be as you can't have energy less than the ground state [1 mark] But also the difference is very small as  $\psi(x) = Ax(l-x)$  is very similar in shape to the ground state  $\phi_1 \propto \sin(\pi x/L)$  [1 mark]

### (g,analysis)

Given

$$\psi = A(3\phi_1 - 4\phi_2)$$

Conservation of probability requires  $9A^2 + 16A^2 = 1$  ie. A = 1/5Hence the probability if measuring  $E_2$  is  $(-4/5)^2 = 16/25 = 64\%$ 

[1 mark] [2 marks]

If  $E_2$  is measured the wave function has collapsed to become  $\phi_2$  and subsequent measurements will also measure  $E_2$  with 100% probability. [1 mark]

### (h,application)

To find the eigenvalues for

$$\begin{pmatrix} 2 & -3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = E \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

we solve

$$\begin{vmatrix} 2 - E & 3 \\ 2 & 1 - E \end{vmatrix} = (1 - E)(2 - E) - 6 = E^2 - 3E - 4 = 0$$

$$E = \frac{3 \pm \sqrt{9 + 16}}{2} = \frac{3 \pm 5}{2} = 4 \quad \text{or } -1$$

## Solution to Level\_2 Paper\_1 Section\_A Q1 (2018/19): page 3 of 3

Sub in for E=4 we have  $-2\alpha+3\beta=0$  i.e. eigenvector is

[2 marks]

 $\binom{3}{2}$ 

Sub in for E=-1 we have  $3\alpha+3\beta=0$  i.e. eigenvector is

[1 mark]

 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 

[1 mark]

### (a,application)

The expectation value is given by

$$\langle r \rangle = 4\pi \int \psi * r \psi r^2 dr$$

[2 marks]

$$\langle r \rangle = \frac{4\pi}{\pi a^3} \int_0^\infty r^3 e^{-2r/a} \, dr$$

[1 mark]

which using the given standard integral

$$\langle r \rangle = \frac{4}{a^3} 3! \left(\frac{a}{2}\right)^4 = \frac{3a}{2}$$

[2 marks]

#### (b, analysis)

Sub into the Schödinger equation

$$\frac{-\hbar^2}{2mr^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + V(r)\psi = E\psi$$

[2 marks]

$$\frac{-\hbar^2}{2mr^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial e^{-r/a}}{\partial r}\right) - \frac{\hbar^2}{mar}, e^{-r/a} = Ee^{-r/a}$$

$$\frac{-\hbar^2}{2mr^2}\frac{\partial}{\partial r}\left((-r^2/a)e^{-r/a}\right) - \frac{\hbar^2}{mar}e^{-r/a} = Ee^{-r/a}$$

[1 mark]

$$\frac{\hbar^2}{2mr^2} \left( (2r/a - r^2/a^2)e^{-r/a} \right) - \frac{\hbar^2}{mar} e^{-r/a} = E e^{-r/a}$$

$$E = \frac{\hbar^2}{mar} - \frac{\hbar^2}{2ma^2} - \frac{\hbar^2}{mar} = -\frac{\hbar^2}{2ma^2}$$
 QED

[2 marks]

### (c,knowledge)

Information below in [] not required to get the mark.

The n is the principal or radial quantum number and determines the energy of the state [1 mark]

The *l* is the total angular momentum quantum number [such that  $L^2\psi = l(l+1)\hbar^2\psi$ .] [1 mark]

The m is the magnetic quantum number and labels the z-component of the angular momentum  $[L_z\psi = m\hbar\psi]$  [1 mark]

 $l < n \text{ and } -l \le m \le l$ 

Hence we have l=0 with m=0

l = 1 with m = -1, 0, 1

l = 2 with m = -2, -1, 0, 1, 2

I.E. degeneracy equals 1+3+5=9 (or  $n^2=9$ ) [3 marks]

(d,synthesis)

 $\langle r \rangle > 3a/2$  as

$$\langle r \rangle = 4\pi \int \psi * r \psi r^2 dr \propto 4\pi \int r^3 r^2 e^{-2r/a} dr$$

is weighted to larger r by the extra  $r^2$  factor.

[2 marks]

## Solution to Level\_2 Paper\_1 Section\_A Q2 (2018/19): page 2 of 2

Alternatively, could say it has to be larger as it is not the ground state and the ground state is the lowest energy and hence most compact state.

### (e,application)

Change in energy of the bound electron is

$$\Delta E = -13.6 \text{ eV} \left( 1 - \frac{1}{2^2} \right) = -10.2 \text{ eV}$$

[1 mark]

Hence the emitted photon must carry this energy away

$$10.2 \text{ eV} = h\nu = hc/\lambda$$

$$\lambda = \frac{hc}{10.2 \text{ eV}} = \frac{6.63 \times 10^{-}34 \times 3 \times 10^{8}}{10.2 \times 1.60 \times 10^{-19}} = 1.21(5) \times 10^{-7} \text{ m} = 121 \text{ or } 122 \text{ nm}$$

[2 marks]

### (f,analysis)

Classically the kinetic energy can't be negative and so  $r_{\text{max}}$  is given by  $E = V(r_{\text{max}})$  [1 mark]

$$E = -\frac{\hbar^2}{2ma^2} = V(r_{\text{max}}) = \frac{-\hbar^2}{mar_{\text{max}}},$$
  

$$\Rightarrow r_{\text{max}} = 2a$$

[2 marks]

The probability of measuring r > 2a is given by

$$P(r > 2a) = 4\pi \int_{2a}^{\infty} \psi^* \psi \, r^2 \, dr$$

[1 mark]

$$P(r > 2a) = \frac{4\pi}{\pi a^3} \int_{2a}^{\infty} r^2 e^{-2r/a} dr$$

[1 mark]

Integrate by parts

$$P(r > 2a) = \frac{4}{a^3} \left( \left[ r^2 \left( \frac{a}{-2} \right) e^{-2r/a} \right]_{2a}^{\infty} - \int_{2a}^{\infty} 2r \left( \frac{a}{-2} \right) e^{-2r/a} dr \right)$$

[1 mark]

and again

$$P(r > 2a) = \frac{4}{a^3} \left( \left[ r^2 \left( \frac{a}{-2} \right) e^{-2r/a} \right]_{2a}^{\infty} + a \left[ r \left( \frac{a}{-2} \right) e^{-2r/a} \right]_{2a}^{\infty} - a \int_{2a}^{\infty} \left( \frac{a}{-2} \right) e^{-2r/a} dr \right)$$

[1 mark]

$$P(r>2a) = \frac{4}{a^3} \left( \ \left[ r^2 \left( \frac{a}{-2} \right) e^{-2r/a} \right]_{2a}^{\infty} + a \left[ r \left( \frac{a}{-2} \right) e^{-2r/a} \right]_{2a}^{\infty} + \frac{a^2}{2} \left[ \left( \frac{a}{-2} \right) e^{-2r/a} \right]_{2a}^{\infty} \right)$$

$$P(r > 2a) = \frac{4}{a^3} \frac{1}{4} a \left( e^{-2(2a)/a} \left( a^2 + 2a(2a) + 2(2a)^2 \right) \right) = e^{-4} (1 + 4 + 8) = 13e^{-4} = 0.248 = 23.8\%$$

[2 marks]

# **Electromagnetism**

Professor Hampshire June 19 Qn. 1

a) Fresnel's equations are derived by requiring that Maxwell's equations are met at all points in space and time across the interface between the two media. More specifically that the continuity of **E** and **H** are met across the interface.

[4 marks - Comprehension]

b) A radio transmitter is an arrangement of conductors that conduct an A.C. current. The A.C. current causes charges to accelerate and produce the electromagnetic waves that are transmitted.

[4 marks – Comprehension]

c) 
$$\underline{\boldsymbol{C}} = x^2 y^2 \hat{\boldsymbol{\jmath}}$$
 
$$LHS: \ \underline{\boldsymbol{\nabla}} \times \underline{\boldsymbol{C}} = \begin{vmatrix} \hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & x^2 y^2 & 0 \end{vmatrix} = 2xy^2 \ \hat{\boldsymbol{k}}, \ \underline{\boldsymbol{\nabla}} \times \underline{\boldsymbol{\nabla}} \times \underline{\boldsymbol{C}} = \begin{vmatrix} \hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & 0 & 2xy^2 \end{vmatrix} = 4xy\hat{\boldsymbol{i}} - 2y^2 \ \hat{\boldsymbol{j}}$$
 RHS, 
$$\underline{\boldsymbol{\nabla}} \cdot \underline{\boldsymbol{C}} = 2x^2 y, \ +\underline{\boldsymbol{\nabla}} (\underline{\boldsymbol{\nabla}} \cdot \underline{\boldsymbol{C}}) = 4xy\hat{\boldsymbol{i}} + 2x^2\hat{\boldsymbol{j}}$$

$$-\nabla^2 \underline{\mathbf{C}} = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) x^2 y^2 \hat{\mathbf{j}} = -(2y^2 + 2x^2)\hat{\mathbf{j}}$$

LHS = RHS =  $4xy\hat{\imath} - 2y^2\hat{j}$  as required

[4 marks – Application]

d) For a good conductor  $\sigma_N \mu_0 \omega \gg \mu_0 \epsilon \omega^2 => \sigma_N \gg \epsilon \omega$ . In this case:  $\sigma_N = 2 \times 10^{-9} \ \Omega^{-1} \mathrm{m}^{-1}$  and  $\epsilon \omega = \epsilon_0 \epsilon_r \cdot 2\pi f = 8.85 \times 10^{-12}$ .  $10.2\pi$ .  $10^9 = 0.55 \ \Omega^{-1} \mathrm{m}^{-1}$  so  $\sigma_N \ll \epsilon \omega$  and the material is a poor conductor

[4 marks - Application]

e) The Lorentz force equation leads to F = BIL where B is the magnetic field each wire experiences from the other wire, I is the current in the wire and L is the length of wire on which the force acts. Ampere's law gives  $B = \mu_0 I/2\pi r$  where symbols have their usual meaning. Hence the force per unit length  $F/L = \mu_0/2\pi = 2 \times 10^{-7} \, \text{N. m}^{-1}$ 

[4 marks - Application]

f)



 $\underline{E} \perp \underline{B} \perp \underline{k}$  and  $(\underline{E} \times \underline{B})//\underline{k}$ 

[4 marks - Comprehension]

g) A waveguide is material (eg glass or metal tube) that confines an electromagnetic wave to propagate in one direction and that generates very little energy loss. Examples: (i) a copper tube for guiding microwaves to heat a fusion plasma, (ii) an optical fibre for communications.

[4 marks – Application]

# **Electromagnetism**

Professor Hampshire June 19 Qn. 2

a) Given:  $\underline{B} = -\mu_0 \lambda^2 \ \underline{\nabla} \times \underline{J}$  and  $\underline{\nabla} \times (\underline{\nabla} \times \underline{B}) = \underline{\nabla} (\underline{\nabla} \cdot \underline{B}) - \nabla^2 \underline{B}$ . Substituting in the curl of Maxwell's equation  $\underline{\nabla} \times \underline{B} = \mu_0 \underline{J}$  gives  $\underline{B} = -\lambda^2 \ \underline{\nabla} \times \underline{\nabla} \times \underline{B}$ . Using the vector identity gives:

$$\nabla^2 \underline{B} = \frac{1}{\lambda^2} \underline{B}$$

This equation has exponential solutions where  $\underline{B}(x) = \underline{B}_0 \exp(-x/\lambda)$  - Meissner state.

[3 marks - Comprehension]

b) Substituting into the differential equation gives:

$$\lambda = (m_e/\mu_0 n e^2)^{1/2}$$

[3 marks - Comprehension]

c) The susceptibility  $\chi = M/H$ . For a cylinder  $\chi = \mu_0 M/B_{applied}$  and M = IA/V Maxwell's equation gives :

$$\partial B/\partial x = B_{applied}/\lambda = \mu_0 J = \mu_0 I/L\lambda$$

where I is the current flowing around the surface of a length L of the cylinder. [2 Marks - Synthesis]

The screening current flows over a distance  $\lambda$  so

M = I 
$$(A/V)$$
 =  $-(L\lambda B_{applied}/\lambda \mu_0)(\pi(a-\lambda)^2/\pi a^2 L)$  [2 Marks - Synthesis]

Substituting into these equations gives:

$$\chi = \mu_0 M/B_{applied} = -(a-\lambda)^2/a^2 \approx -1 + 2\lambda/a$$
 [4 Marks - Analysis]

d)



[2 Marks – Synthesis + 4 later]

 $n = n_0(1 - T/T_c)$  where  $T_c$  is the critical temperature [2 Marks - Synthesis]

Hence:

$$\chi \approx -1 + 2\lambda/a \approx -1 + 2(m_e/\mu_0 n_0 (1 - T/T_c)e^2)^{1/2}/a$$

Differentiating gives, for low temperatures:

$$\partial \chi / \partial T \approx \frac{2}{a} \left( \frac{m_e}{\mu_0 n_0 e^2} \right)^{\frac{1}{2}} \frac{1}{2} \frac{(1 - T/T_c)^{-\frac{3}{2}}}{T_c} = \frac{1}{a T_c} \left( \frac{m_e}{\mu_0 n_0 e^2} \right)^{\frac{1}{2}} [4 \text{ Marks - Synthesis}]$$

e) Addition of powder line to sketch [4 marks – Synthesis]

After powdering the sample, each powder particle of the superconductor is much less well screened. This general argument holds at all temperatures. Hence this leads to a reduction of the diamagnetic signal at all temperatures.

The critical temperature of the supeconductor is unchanged.

[4 marks – Synthesis]