Drawings:

Applicant kindly requests the examiners help regarding exact terminology.

On page 3, paragraph 5, lines 3-7, the office action reads:

"Although it may be said that a Variac controller (as disclosed in Applicants specification) has infinite multiple positions; in a conventional Variac, these infinite positions do not correspond to an infinite number of tap positions, but a finite number of tap positions where a wiper contact slides along the edges of an arcuate coil, progressively making contact with each succeeding turn or group of turns of the coil."

On page 10, paragraph 19, lines 10-15, the office action reads:

"Gonzalez discloses using a Variac (a continuously-tapped autotransformer coil having variable controller with a control knob connected to it, said controller having infinite multiple positions corresponding to an infinite amount of tap positions along the continuously-tapped coil to define first and second impedance means) with a tube amplifier as an infinite-tap output transformer by connecting the Variac....."

Applicant wishes to disclose the use of a regular Variac (probably the same kind as used by Gonzalez) with the invention. Applicant is not a native English speaker and respectfully whishes to ask the examiner for help to find the correct terminology.

Applicant is not sure weather the drawings can be corrected in such a way to match a definition of a Variac as

a) a device having a controller having infinite multiple positions corresponding to an infinite amount of tap positions along a continuously-tapped coil; or

Appendix A $\begin{array}{c|c}
R & & & \\
R & & \\
R & & \\
R & & & \\
R$ SCHOLZ (affenuation according to position of switch) $\frac{1}{RI} = \frac{\alpha RO \cdot RI}{\alpha RO + RI}, \quad \frac{1}{R2} = \frac{(1-\alpha)RO \cdot ZL}{(1-\alpha)RO + 2I}$ $U_{L} = \frac{\hat{R}_{2}}{\hat{R}_{1} + \hat{R}_{2}} U_{0} = \frac{1}{1 + \frac{\hat{R}_{1}}{\hat{R}_{2}}} U_{0} = \frac{1}{1 + \left(\frac{\alpha}{1 - \alpha}\right) \frac{R_{1}}{2} \cdot \frac{(+\alpha)R_{0} + 2L}{1 + \alpha}}$ (If assumed that ZL < RO (SCHOLZ requires RI+ZL < RO)) $U_{L^{2}} = \frac{1}{1 + \left(\frac{\alpha}{1-\alpha}\right) \frac{R1}{21} \cdot \left(\frac{1-\alpha}{1-\alpha}\right) R0} U_{0} \approx \frac{1}{1 + \alpha \frac{R0}{21}} U_{0}$

Because ZL is frequency-dependent (Rz-iwL) the voltage UL is not in constant relation to Uo

Appendix A $V_0 \begin{cases} \alpha Z_0 \frac{3}{3} & 3Z_1 \\ (1-\alpha)Z_0 \frac{3}$ $U_{L} = \frac{1}{1 + \frac{21}{2.2}} = \frac{1}{1 + \left(\frac{\alpha}{1 - \alpha}\right) \cdot \frac{(1 - \alpha) z_{0} + z_{L}}{z_{L}}} \quad U_{0}$ For low frequencies (20 « ZL)

UL = 1+(x) Uo For high frequencies $U_{L} \approx \frac{1}{1+(\frac{\alpha}{1-\alpha}) \cdot (1-\alpha) \cdot lo}$ (ωLo) RL frequency Gequenci Frequency-dependent in first

PAGE 12/16 * RCVD AT 3/11/2004 11:20:51 AM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/1 * DNIS:8729314 * CSID: * DURATION (mm-ss):04-12

Appendix A See $\frac{1}{1+\left(\frac{\alpha}{1-\alpha}\right)\frac{R_1}{2L}}\cdot\frac{(1-\alpha)Z_0+2L}{\alpha Z_0+R_1}$ is in approximate proportion to ZL => Z0=BZL 18 Larger than Zo => aZo+R, & R, $1 + \left(\frac{\alpha}{1-\alpha}\right) \cdot \left[1 + \beta\left(1-\alpha\right)\right]$

no frequency-dependence in first order.