Hopfbündel

Jürgen Womser-Schütz, https://github.com/JW-Schuetz

Die 3-Sphäre S^3

Mit $p \in \mathbb{R}^4$ ist die 3-Sphäre $S^3 \subset \mathbb{R}^4$ definiert durch ||p|| = 1. Identifiziert man \mathbb{R}^4 mit \mathbb{C}^2 durch die Korrespondenz

$$(x_1, x_2, x_3, x_4) \leftrightarrow (x_1 + ix_2, x_3 + ix_4)$$
 (1)

dann erhält man mit $z_1=x_1+ix_2$ und $z_2=x_3+ix_4$ für die 3-Sphäre (siehe dazu im Anhang die Behauptung 1)

$$S^{3} = \{(z_{1}, z_{2}) \in \mathbb{C}^{2} : |z_{1}|^{2} + |z_{2}|^{2} = 1\}.$$

Diese Darstellung von S^3 ist von 4 Parametern abhängig, es sind aber nur 3 nötig. Also macht man z.B. mit $r_1, r_2 \ge 0$ und $\xi_1, \xi_2 \in \mathbb{R}$ und $r_1^2 + r_2^2 = 1$ den Ansatz $z_1 = r_1 \exp{(i\xi_1)}$ und $z_2 = r_2 \exp{(i\xi_2)}$. Man erhält die Parametrierung für S^3 (siehe dazu im Anhang die Behauptung 2)

$$S^{3} = \left\{ (\cos(\phi) \exp(i\xi_{1}), \sin(\phi) \exp(i\xi_{2})) : \quad \xi_{1}, \xi_{2} \in \mathbb{R}, 0 \le \phi \le \frac{\pi}{2}, \right\}.$$
 (2)

Um sich eine Vorstellung dieser Parametrierung von S_3 machen zu können, werden im folgenden drei Fälle für den Winkel ϕ (und damit von $|z_1| = \cos(\phi)$ und $|z_2| = \sin(\phi)$) behandelt.

Fall 1: $\cos(\phi) = \sin(\phi)$, d.h. $|z_1| = |z_2|$

Es folgt $\phi = \frac{\pi}{4}$ und $|z_1| = |z_2| = \frac{\sqrt{2}}{2}$. Die 3-Sphäre S^3 in diesem Fall ist der 2-dimensionale Torus (2D-Torus)

$$T = \left\{ \left(\frac{\sqrt{2}}{2} \exp\left(i\xi_1\right), \frac{\sqrt{2}}{2} \exp\left(i\xi_2\right) \right) : \quad \xi_1, \xi_2 \in \mathbb{R} \right\}.$$
 (3)

Fall 2: $\cos(\phi) \le \sin(\phi)$, d.h. $|z_1| \le |z_2|$

Abbildung 1: 2D-Torus T und horizontale Kreislinie $\{0\} \times S^1$, modifiziert nach [1]

Wegen $\phi \in \left[0, \frac{\pi}{2}\right]$ folgt $\frac{\pi}{4} \leq \phi \leq \frac{\pi}{2}$. Für das untere Limit $\phi = \frac{\pi}{4}$ ergibt sich der 2D-Torus T nach Gleichung (3). Für das obere Limit $\phi = \frac{\pi}{2}$ folgt die horizontale Kreislinie $K_H = \{0\} \times S^1$ oder

$$K_H = \left\{ \left(0, \frac{\sqrt{2}}{2} \exp\left(i\xi_2\right) \right) : \quad \xi_2 \in \mathbb{R} \right\}.$$

Für jeden Wert ϕ aus dem Intervall $\left[\frac{\pi}{4}, \frac{\pi}{2}\right)$ ergibt sich jeweils ein 2D-Torus T_{ϕ} . Durch die Vereinigung all dieser 2-dimensionalen Tori T_{ϕ} und der Kreislinie K_H entsteht der 3D-Torus

$$K_1 = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| \le |z_2| \},$$
 (4)

der T als Oberfläche hat (siehe Abbildung 1).

Fall 3: $\cos(\phi) \ge \sin(\phi)$, d.h. $|z_1| \ge |z_2|$

Abbildung 2: 3D-Torus K_1 und vertikale Kreislinie $S^1 \times \{0\}$, modifiziert nach [1]

Wegen $\phi \in \left[0, \frac{\pi}{2}\right]$ folgt $0 \le \phi \le \frac{\pi}{4}$. Für das obere Limit $\phi = \frac{\pi}{4}$ ergibt sich wieder der 2D-Torus T nach Gleichung (3). Für das untere Limit $\phi = 0$ ergibt die vertikale Kreislinie $K_V = S^1 \times \{0\}$ oder

$$K_{V} = \left\{ \left(\frac{\sqrt{2}}{2} \exp\left(i\xi_{1}\right), 0 \right) : \xi_{1} \in \mathbb{R} \right\}.$$

 K_V erscheint in Abbildung 2 als Gerade, ist aber eine Kreislinie durch einen Punkt im Unendlichen.

Für jeden Wert ϕ aus dem Intervall $\left(0, \frac{\pi}{4}\right]$ ergibt sich jeweils ein 2D-Torus T_{ϕ} . Durch die Vereinigung all dieser 2-dimensionalen Tori T_{ϕ} und der Kreislinie K_V entsteht der 3D-Torus (siehe Abbildung 2)

$$K_2 = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| \ge |z_2| \}.$$

Die Späre S_3 stellt sich also als Vereinigung zweier miteinander "verschränkter" 3D-Tori K_1 und K_2 dar, die den \mathbb{R}^3 vollständig ausfüllt.

Hauptfaserbündel (Prinzipalbündel)

Für $\underline{p}=(z_1,z_2)\in S_3$ und $g\in S^1$ gilt $\underline{p}g=(z_1,z_2)\,g=(z_1g,z_2g)\in S^3$, die Abbildung $(\underline{p},g)\to\underline{p}g$ ist aus C^∞ . Falls $g_1,g_2\in S^1$ gilt für alle $\underline{p}\in S^3$ $(\underline{p}g_1)\,g_2=\underline{p}\,(g_1g_2)$. Die Identität in S^1 ist $e=\exp{(i0)}=1$ und es gilt $\underline{p}e=p$ für alle $p\in S^3$.

Diese Eigenschaften machen die Abbildung $(\underline{p}, g) \to \underline{p}g$ zu einer stetigen Rechtsoperation der Liegruppe S^1 auf der Mannigfaltigkeit S^3 .

Für einen fixen Punkt $p \in S^3$ wird der Orbit von \underline{p} als die Teilmenge

$$\{pg:g\in S^1\}\subseteq S^3\tag{5}$$

von S^3 definiert, die durch das Durchlaufen aller $g \in S^1$ entsteht. Der Orbit von \underline{p} ist ein Kreis in S^3 durch den Punkt \underline{p} . Man kann zeigen, dass dieser Kreis sogar ein Grosskreis (also die Schnittmenge von $S^3 \subseteq \mathbb{R}^4$ mit einer linearen Hyperebene des \mathbb{R}^4) auf S^3 ist (siehe dazu im Anhang die Behauptung 3).

Anhang

Behauptung 1

Die Aussagen

$$\|(x_1, x_2, x_3, x_4)\|^2 = 1 \tag{6}$$

und

$$\|(x_1 + ix_2, x_3 + ix_4)\|^2 = 1 \tag{7}$$

sind äquivalent.

Beweis

Wegen $x_i \in \mathbb{R}$ für $i = 1, \dots, N$ und $\|(x_1, \dots, x_N)\|^2 = \sum_{n=1}^N |x_n|^2$ (siehe dazu [2]) gelten die folgenden Umformungen.

Von 6 nach 7:

$$||(x_1, x_2, x_3, x_4)||^2 = |x_1|^2 + |x_2|^2 + |x_3|^2 + |x_4|^2$$

$$= x_1^2 + x_2^2 + x_3^2 + x_4^2$$

$$= |x_1 + ix_2|^2 + |x_3 + ix_4|^2$$

$$= ||(x_1 + ix_2, x_3 + ix_4)||^2.$$

Von 7 nach 6:

$$||(x_1 + ix_2, x_3 + ix_4)||^2 = |x_1 + ix_2|^2 + |x_3 + ix_4|^2$$

$$= x_1^2 + x_2^2 + x_3^2 + x_4^2$$

$$= |x_1|^2 + |x_2|^2 + |x_3|^2 + |x_4|^2$$

$$= ||(x_1, x_2, x_3, x_4)||^2.$$

Behauptung 2

Es existiert für jedes Tupel (r_1, r_2) mit $r_1, r_2 \ge 0$ und $r_1^2 + r_2^2 = 1$ ein eindeutig bestimmter Winkel $\phi \in \left[0, \frac{\pi}{2}\right]$ mit $r_1 = \cos(\phi)$ und $r_2 = \sin(\phi)$.

Beweis

Zu r_1 kann man den Winkel $\phi_1 = \arccos(r_1)$ hinzubestimmen und zu r_2 den Winkel $\phi_2 = \arcsin(r_2)$. Aus $r_1^2 + r_2^2 = 1$ folgt $r_2 = \pm \sqrt{1 - r_1^2}$. Wegen $r_2 \ge 0$ kommt nur das positive Vorzeichen in Frage, also gilt $r_2 = \sqrt{1 - r_1^2}$.

Wegen der Identität (siehe dazu [3])

$$\arccos(x) = \arcsin\left(\sqrt{1-x^2}\right)$$

ergibt sich

$$\phi_2 = \arcsin(r_2) = \arcsin\left(\sqrt{1 - r_1^2}\right) = \arccos(r_1) = \phi_1.$$

Die beiden Winkel ϕ_1 und ϕ_2 sind also identisch.

Für $x \ge 0$ gilt $0 \le \arcsin(x) \le \frac{\pi}{2}$ und $0 \le \arccos(x) \le \frac{\pi}{2}$. Für den Winkel ϕ gilt also $\phi \in \left[0, \frac{\pi}{2}\right]$.

Behauptung 3

Der Orbit $\{pg:g\in S^1\}$ eines Punktes $p\in S^3$ der stetigen Rechtsoperation pg bildet einen Grosskreis in S^3 .

Beweis

Fehlt noch.

Literatur

- [1] Topology, Geometry and Gauge Fields; Naber, Gregory; Springer Science+Business Media; 2011
- $[2] \ \ https://de.wikipedia.org/wiki/Euklidische_Norm; \ Abschnitt: Komplexe \ Vektoren \ endlicher \ Dimension$
- $[3] \ https://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie\#Additions theoreme; \ Abschnitt: \ Umrechnung in andere trigonometrische Funktionen$
- [4] https://de.wikipedia.org/wiki/Koordinatenform
- [5] https://en.wikipedia.org/wiki/Hopf_fibration