Aprendizagem

- Aprendizagem é qualquer mudança num sistema que lhe permite ter um melhor desempenho ao executar pela segunda vez uma tarefa [Simon, 1983]
- Aprendizagem é um processo orientado por objectivos através do qual se melhora o conhecimento usando a experiência e o próprio conhecimento [Michalski, 1994]

Aprendizagem = Inferência + Memorização

Aprendizagem: tipos de inferência

- Inferência dedutiva preserva a verdade
 - Especialização dedutiva restringir o conjunto de referência Se { $\forall x \ x \in A \Rightarrow p(x), B \subset A$ } |- $\forall x \ x \in B \Rightarrow p(x)$
 - Generalização dedutiva alargar o conjunto de referência
 - Dedução simples
 - Abstracção
- Inferência indutiva não preserva a verdade, mas é essencial para a aprendizagem
 - Generalização indutiva alarga o conjunto de referência; é o inverso da especialização dedutiva

```
Se { \forall x \ x \in B \Rightarrow p(x), B \subseteq A } |- \forall x \ x \in A \Rightarrow p(x)
```

- Especialização indutiva o inverso da generalização dedutiva
- Abdução gera uma premissa a partir da qual se poderá deduzir uma dada observação
- Concretização Adiciona detalhes sobre o conjunto de referência.

Aprendizagem: níveis de supervisão

• Supervisão

- Aprendizagem supervisionada cada exemplo contém uma instância do conceito a aprender, que está devidamente identificado
 - Redes neuronais, árvores de decisão, etc.
- Aprendizagem semi-supervisionada apenas uma (pequena) pequena parte dos exemplos contém informação do conceito a aprender
- Aprendizagem por reforço o agente aprende o seu comportamento tendo em conta as recompensas (positivas ou negativas) que recebe pelas suas ações
- Aprendizagem não supervisionada neste caso é o próprio processo de aprendizagem que descobre um novo conceito
 - Algoritmos de agrupamento (*clustering*)

Aprendizagem: os dados

- Quantidade de exemplos
 - Muitos exemplos
 - Redes neuronais, árvores de decisão
 - Um ou poucos exemplos
 - Aprendizagem baseada em explicações (EBL): usa generalização dedutiva
 - Aprendizagem analógica / baseada em casos (CBR)
- Utilização de símbolos e números
 - Aprendizagem simbólica o conhecimento aprendido está representado numa forma equivalente a lógica proposicional ou de primeira ordem
 - Regras, árvores de decisão, EBL, CBR
 - Aprendizagem conectionista / sub-simbólica
 - Redes neuronais, redes de Bayes, árvores de regressão

Aprendizagem baseada em colecções de exemplos: motivação

• Como aprender a prever qual vai ser a evolução do lucro numa empresa de produtos informáticos?

Idade	Competição	Tipo	Lucro
Velha	Não	Software	Desce
Intermédia	Sim	Software	Desce
Intermédia	Não	Hardware	Sobre
Velha	Não	Hardware	Desce
Nova	Não	Hardware	Sobe
Nova	Não	Software	Sobe
Intermédia	Não	Software	Sobe
Nova	Sim	Software	Sobe
Intermédia	Sim	Hardware	Desce
Velha	Sim	Software	Desce

Aprendizagem com colecções de exemplos: protocolo básico (I)

• Um conjunto de atributos ou características

$$-A = \{A_1, ..., A_n\}$$

• Cada atributo pode assumir valores dentro de um conjunto finito de valores simbólicos.

$$-A_i = \{A_{i1}, ..., A_{ik}\}$$

• Os objectos do domínio estão organizados em classes

$$- C = \{ C_1, ..., C_m \}$$

O problema é aprender a reconhecer a classe
 (=classificar) do objecto dada uma descrição desse
 objecto em termos dos atributos em A

Aprendizagem com colecções de exemplos: protocolo básico (I)

- O processo de aprendizagem baseia-se numa colecção de exemplos de treino, *S*.
- É gerada uma função $f: A \to C$ tal que:
 - $\forall x \ x \in S f(x) = classe(x)$
- Por generalização indutiva chega-se a:
 - $\forall x \ f(x) = classe(x)$
- Isto chama-se Aprendizagem por Indução

Aprendizagem de regras: pesquisa em profundidade (gulosa)

- Para cada classe C, fazer o seguinte
 - 1. $Regras \leftarrow \emptyset$
 - 2. $Pos \leftarrow$ conjunto dos exemplos da classe C
 - 3. $Neg \leftarrow restantes exemplos$
 - 4. Antecedente \leftarrow Verdade
 - 5. Selecionar um novo *Teste*
 - 6. Antecedente \leftarrow Antecedente \land Teste
 - 7. Se Antecedente ainda cobre alguns exemplos em Neg, voltar a 5.
 - 8. $Regras \leftarrow Regras \cup \{ Antecedente \Rightarrow C \}$
 - 9. $Pos \leftarrow Pos \{ \text{ exemplos cobertos pelo } Antecedente \}$
 - 10. Se $Pos \neq \emptyset$, voltar a 4.

Aprendizagem de regras: critérios

- Estão nesta categoria algoritmos bem conhecidos como o AQ e o CN2
- Critérios de comparação e selecção de regras para refinamento
 - -Pc/Tc sendo Pc o número de exemplos positivos cobertos e Tc = Pc + Nc o número total de exemplos cobertos
 - Pc+Ne sendo Pc o número de exemplos positivos cobertos
 e Ne o número de exemplos negativos excluídos

Aprendizagem de árvores de decisão: algoritmo

• A árvore de decisão é gerada através de um processo recursivo descendente (*TDIDT – Top-Down Induction of Decision Trees*)

```
TDIDT(Exemplos)

se todos os Exemplos pertencem a uma classe C,
  então Arvore.classe = C;

senão:

A \leftarrow atributo de teste para Exemplos

Arvore.teste \leftarrow A

para cada valor a_i de A:

E_i \leftarrow subjconjunto de Exemplos em que A=a_i

Arvore.subarv_i \leftarrow TDIDT(E_i)

retornar Arvore
```

Árvores de decisão: selecção do atributo de teste (I)

- Podemos ver o domínio dos exemplos como uma fonte de mensagens, cada uma delas representando uma das classes possíveis
- Baseado na Teoria da Informação
 - Entropia *apriori*: $H(C) = -\sum p(C_i) \times log_2(p(C_i))$
 - Entropia *aposteriori*, dado o valor de um atributo: $H(C|a_{j,k}) = -\sum_i p(C_i|a_{j,k}) \times log_2(p(C_i|a_{j,k}))$
 - Entropia global *aposteriori*: $H(C|A_j) = \sum_k p(a_{j,k}) \times H(C|a_{j,k})$

Árvores de decisão: selecção do atributo de teste (III)

- Ganho de informação
 - Ou seja, redução da entropia

$$I(C;A_j) = H(C)-H(C|A_j)$$

- As probabilidades podem ser estimadas com base nos exemplos disponíveis
- Nota: Este método funciona mal quando os atributos têm muitos valores possíveis

Árvores de decisão: selecção do atributo de teste (II)

Razão do ganho

- $-H(A_j) = -\Sigma p(a_{j,k}) \times log_2(p(a_{j,k}))$
- $-R(C;A_j) = I(C;A_j) / H(A_j)$
- Resolve o problema dos atributos com muitos valores.
- Quando $H(A_j)$ se aproxima de zero, a razão do ganho fica instável; por isso, são excluídos à partida os atributos cujo ganho de informação seja inferior à média

Árvores de decisão: selecção do atributo de teste (III)

Critério GINI

- Impureza apriori
 - $G = \sum_{m \neq n} p(C_m) \times p(C_n)$
- Impureza aposteriori:
 - $G(A_i) = \sum p(a_{i,k}) \times \sum_{m \neq n} p(C_m/a_{i,k}) \times p(C_n|a_{i,k})$

Alguns problemas (I)

- Tratamento do ruido por vezes, os exemplos de treino contém ruido, ou seja, particularidades não representativas do domínio que podem levar o algoritmo de aprendizagem a fazer um generalização incorrecta.
- Atributos numéricos como usá-los nas regras ou nas árvores de decisão?
- Atributos com valores não especificados nos exemplos

Alguns problemas (II)

- Levar em conta o custo de cálculo de cada atributo
- Aprendizagem incremental
- Aprendizagem por indução em lógica de primeira ordem
 - FOIL

Árvores de decisão: tratamento do ruído

- Parar a expansão da árvore quando o número de exemplos disponíveis é inferior a um dado limiar
- Ter um estimativa do erro, e parar a expansão quando a estimativa do erro começa a subir
- Ter um estimativa do erro, e parar a expansão quando essa estimativa sobe para além de um dado limiar.
- Expandir completamente a àrvore e no fim podá-la.

Avaliação de algoritmos de aprendizagem supervisionada

- Complexidade computacional
 - Tanto na aprendizagem como na utilização
- Legibilidade a representação do conhecimento aprendido deve ser tão legível quanto possível
 - Especialmente relevante em sistemas de apoio à decisão
- Precisão o conhecimento aprendido deve ser tão preciso quanto possível
 - No caso de problemas de classificação, a precisão é avaliada experimentalmente como a percentagem de erros de classificação num conjunto de exemplos de teste (não usados na aprendizagem).

Avaliação experimental da precisão em aprendizagem supervisionada (I)

- Partição dos exemplos disponíveis em <u>dois</u> <u>subconjuntos</u>:
 - Subconjunto de treino exemplos usados para a aprendizagem (p. ex. 2/3 de todos os exemplos)
 - Subconjunto de teste exemplos usados na avaliação experimental da precisão (p. ex. 1/3)

Avaliação experimental da precisão em aprendizagem supervisionada (II)

Validação-cruzada-k

- Divide-se o conjunto de exemplos disponíveis em k subconjuntos
- Para cada subconjunto S_i , treinar usando todos os outros e testar em S_i
- A precisão é dada pela percentagem global de erros (após todas as iterações treino-teste)

Um-de-fora

 Equivale à validação-cruzada-k, para o caso em que k é o número total de exemplos disponíveis