1. Let A = (a, b), C = (c, d) where A, C are intervals.

$$A \cap C = \{x | a < x < b\} \cap \{x | c < x < d\}$$
$$= \{x | max(a, c) < x < min(b, d)\}$$
$$= (max(a, c), min(b, d))$$

Similarly for closed intervals and $\frac{1}{2}$ -intervals. Hence, true. False for unions. Observe that $(0,1) \cup (3,4)$ is not an interval.

- 2. (a) $(-\infty, 1) \cup (3, +\infty)$
 - (b) $(-\infty, 1] \cup (7, +\infty)$
 - (c) $(-\infty, 5] \cup (8, +\infty)$
 - (d) (3,8]
 - (e) $[3, +\infty)$
 - (f) $(-\infty, \pi) \cup (\pi, +\infty)$
 - (g) [4]
 - (h) Ø
 - (i) $(-\infty, 7] \cup [8, +\infty)$
 - (j) (5,7]
- 3. Let A be a set of $\mathbb{Z}/\mathbb{Q}/\mathbb{R}$ that has an upper bound $c \in \mathbb{Z}, \mathbb{Q}, \mathbb{R}$. We can find another upper bound c+1>c. Since this can be done with any upper bound, there are infinitely many different upper bounds. \blacksquare
- 4. Let A be a set of $\mathbb{Z}/\mathbb{Q}/\mathbb{R}$ that has a least upper bound c such that for any upper bound b of the set, $c \leq b$. Suppose there exists 2 lubs, c_1, c_2 . Since they are lubs, they are also upper bounds such that $(c_1 \leq c_2) \land (c_2 \leq c_1) \Leftrightarrow c_1 = c_2$. Hence, the lub is unique.
- 5. Let A be a set of $\mathbb{Z}/\mathbb{Q}/\mathbb{R}$ for the following
 - (a) (\Rightarrow) Let b be the least upper bound of A. By definition of lub, $(\forall a \in A)(a \leq b)$ and for any other upper bound $c, b \leq c$.
 - (\Leftarrow) $(\forall a \in A)(a \leq b)$ and for any other upper bound $c, b \leq c$. If A has a least upper bound, then by definition b is the lub of A.

Thus, the statement is true. ■

- (b) (\Rightarrow) Let b be the least upper bound of A. If $\exists c, c < b$, then c is not an upper bound of A. Thus, $\exists a \in \mathbb{A}$ such that a > c.
 - $(\Leftarrow) \exists c, c < b \text{ where } c \text{ is not an upper bound of } A, \text{ and } \exists a \in \mathbb{A} \text{ such that } a > c.$ Since (a) is also true, then b is the lub of A.

Hence, the statement is true. ■

- 6. (a) (\Rightarrow) Let lub(A) = b. Then by definition of least upper bound, $(\forall a \in A)(a \leq b)$. Hence, true.
 - (\Leftarrow) $(\forall a \in A)(a \leq b)$. By definition of least upper bound, we can write lub(A) = b. Hence, true.

Thus, the statement is true. ■

- (b) (\Rightarrow) Let lub(A) = b. Let $\epsilon \in \mathbb{R}$ such that $\epsilon > 0$. $\exists a \in A$ such that $a > b \epsilon$. By definition of lub, $a \leq b$. Rearranging $a > b \epsilon \Leftrightarrow \epsilon > b a$. As a tends to b, $\epsilon > b a \Leftrightarrow \epsilon > 0$. Hence, $(\forall \epsilon > 0)(\exists a \in A)(a > b \epsilon)$ is true.
 - (\Leftarrow) Suppose $(\forall \epsilon > 0)(\exists a \in A)(a > b \epsilon)$. Since $\epsilon > 0$ and $a \in A$, it is also true that $a \leq b$. By definition of lub, we can write lub(A) = b. Hence, true.

Thus, the statement is true. ■

- 7. N
- 8. Let A be a finite set of $\mathbb{Z}/\mathbb{Q}/\mathbb{R}$ such that $\exists b(\forall a \in A)(a \leq b)$. If $b \leq c$ where c is any other element in $\mathbb{Z}/\mathbb{Q}/\mathbb{R}$ that is an upper bound, then b is the least upper bound of A.
- 9. (a) lub(a, b) = b
 - (b) lub[a, b] = b
 - (c) max(a,b) = undefined
 - (d) max[a,b] = b
- 10. Let $A = \{|x y| \mid x, y \in (a, b)\}$. The largest element of A can be constructed by letting $x = b \epsilon, y = a + \epsilon$ such that $|x y| = |(b \epsilon) (a + \epsilon)| = |(b a) 2\epsilon| = (b a) 2\epsilon$ where ϵ tends to 0 from above. Since $b a \ge b a 2\epsilon \Leftrightarrow \epsilon \ge 0$. This is a least upper bound since any element x such that 0 < x < b a will be inside A.
- 11. Let A be a set of $\mathbb{Z}/\mathbb{Q}/\mathbb{R}$. Then $(\forall a \in A)(a \geq b)$, where b is a lower bound of A.
- 12. Let A be a set of $\mathbb{Z}/\mathbb{Q}/\mathbb{R}$. A has a greatest lower bound b if b is a lower bound, and for any other lower bound $c, c \leq b$.
- 13. Let A be a set of $\mathbb{Z}/\mathbb{Q}/\mathbb{R}$ for the following
 - (a) (\Rightarrow) Let b be the greatest lower bound of A. By definition of glb, $(\forall a \in A)(a \ge b)$ and for any other lower bound $c, b \ge c$.
 - (\Leftarrow) $(\forall a \in A)(a \ge b)$ and for any other lower bound $c, b \ge c$. If A has a greatest lower bound, then by definition b is the glb of A.

Thus, the statement is true. ■

- (b) (\Rightarrow) Let b be the greatest lower bound of A. If $\exists c, c > b$, then c is not a lower bound of A. Thus, $\exists a \in \mathbb{A}$ such that a < c.
 - $(\Leftarrow) \exists c, c > b$ where c is not a lower bound of A, and $\exists a \in \mathbb{A}$ such that a < c. Since

Intro to Math Thinking Fall 2024: Assignment 10.1

- (a) is also true, then b is the glb of A. Hence, the statement is true. \blacksquare
- 14. (a) (\Rightarrow) Let glb(A) = b. Then by definition of greatest lower bound, $(\forall a \in A)(a \ge b)$. Hence, true.
 - (\Leftarrow) $(\forall a \in A)(a \ge b)$. By definition of greatest lower bound, we can write glb(A) = b. Hence, true.

Thus, the statement is true. ■

- (b) (\Rightarrow) Let glb(A) = b. Let $\epsilon \in \mathbb{R}$ such that $\epsilon > 0$. $\exists a \in A$ such that $a < b + \epsilon$. By definition of glb, $a \geq b$. Rearranging $a < b + \epsilon \Leftrightarrow \epsilon > a b$. As a tends to b, $\epsilon > a b \Leftrightarrow \epsilon > 0$. Hence, $(\forall \epsilon > 0)(\exists a \in A)(a < b + \epsilon)$ is true.
 - (\Leftarrow) Suppose $(\forall \epsilon > 0)(\exists a \in A)(a < b + \epsilon)$. Since $\epsilon > 0$ and $a \in A$, it is also true that $a \geq b$. By definition of glb, we can write glb(A) = b. Hence, true.

Thus, the statement is true. \blacksquare

- 15. Let A be a nonempty set of \mathbb{R} that has a lower bound. $\exists b (\forall a \in A) (a \geq b)$ where any lower bound $c, c \leq b$. By definition of greatest lower bound, we can write glb(A) = b, and thus \mathbb{R} is complete. \blacksquare
- 16. Completeness Property for \mathbb{Z} states every non-empty set of \mathbb{Z} that contains a lower/upper bound contains a greatest/least lower/upper bound.