COMP 311 Exam 2

ALU Component Design

 \gg is Logical Right Shift

 $>\!\!>$ is Arithmetic Right Shift

Operations that only take 1 cycle:

AND, OR, XOR, NOT, NOR

Clock Period is the time it takes for one cycle $f = \frac{1}{T}$, Where T is the period

Latches & Flip-Flops

Latches are essentially 2-to-1 MUX w/ Feedback

Reminder: NO CLOCK!!

- When G = 0, it is opaque, meaning that it is stable
- When G = 1, it is transparent, meaning that it is unstable

In other words, when G is transparent, then G follows D. And when G is opaque, D will be stable.

Flip-flops

With Flip-flops, there are reliable timing with clocks **D Flip-flop**

D flip-flops is just one neg. connected to one pos. It holds the value of D when there is rising edge until the next rising edge

If used in State Machine Truth Table, it is 1 when D is 1, refer to table.

Moreover, we can simply look at the current bits and the next bits and figure out what D input is.

T Flip-flop

Toggle flip-flop

If used in State Machine Truth Table, it is 1 when the bit switches

J-K Flip-flop

Set (J) and Reset (K) flip flop, having T and D capabilities

Memory/Register Design

 ${\it N-bit}$ registers need N flip-flops, generally using Rising-edge enabled D flip-flops

Each clock cycle, ALL the flip-flops will be updated

Clock events applies only to registers and NOT ALUs

State machines

States

 $States = 2^{\# \text{ of bits per state}}$

Transitions and Bits

One transition bit = two possible transitions # of transitions = $2^{\# \text{ of transition bits}}$ ALL transitions must be defined

State Truth Tables

- Convert Diagram to Truth Table
- Select flip-flop storage Component
- Define flip-flop inputs

Miscellaneous

Two's Complement

Negative Number Steps in 2's Complement

- 1. Invert the Digits
- 2. Add 1
- 3. Then add two values together if needed

Karnaugh Maps

Rules:

- Every Rectangle has to be as Large as possible
- Goes 00, 01, 11, 10 per row/col

Don't Cares

Rules

- X is treated as a 0 or 1
- Circle an X only if it helps us cover 1's with larger rectangle
- We don't care about X if it's not helpful for covering 1's

Multiplexer & Demultiplexer

S bits to "select" which inputs (A or B) becomes the output

- For the Multiplexer \mathbf{MUX}
 - If S = 1, then Y = B
 - If S = 0, then Y = A
- # of inputs = $2^{\# \text{ of select bits}}$
- $-\,$ For circuit, think of the two ANDs into 1 OR
- Decoder, where S input bits are used to "select" which outputs (A) are turned on (logic 1)
- Usually 2-to-4 as we need two bits to dictate which of the 4 will be on
- # of outputs = $2^{\text{# of select bits}}$
- Example: $S_2S_1=00 \rightarrow A_1=1$ $A_2,A_3,A_4=0$
- Think the 4 ANDs that need that specific case in order to be one

Figure 1: T Flip-flop, J K Flip-flop, and D flip-flop truth tables respectively

8-bit Full Add Circuit

If the clock period is 1 ns, then how many clock cycles (worst case) are needed?

- Carry out delay (t_d) = 0.75 ns
- Total delay = $t_d \times$ number of bits = 0.75 \times 8 = 6 ns (6 clock cycles are needed).

8-bit Full Add and Subtract Circuit

If the clock period is 1 ns, then how many clock cycles (worst case) are needed?

- LSB (C_0) carry-out delay (t_d^0) = 1.0 ns
- FA carry-out delay $(t_d) = 0.75 \text{ ns}$
- Total delay = $t_d^0 + t_d \times (\text{number of bits} 1) = 1.0 + 0.75 \times 7 = 6.25 \text{ ns}$ (7 clock cycles are needed)

