Name: ______ Instructor: D. Kushary

<u>Information and Instruction:</u>

- (1) Test is open book and open notes and you can you computer.
- (2) Time is 1 hour 30 minutes (strictly).
- (3) YOUR ANSWER PAPER SHOULD BE A PDF FILE AND FILE-NAME SHOULD BE TEST2_LASTNAME_FIRSTNAME.PDF
- (4) YOUR R-PROGRAM NEEDS TO BE SUBMITTED IN CANVAS OR VIA EMAIL FILE NAME SHOULD BE TEST2_LASTNAME_FIRSTNAME.R)

1. A researcher is interested in predicting the time requires to service vending machines including traveling time. The variables impacting the total time were (1) Number of cases stocked (X_1) and the distance traveled (X_2) . Twenty five data points were used and a multiple linear regression was fitted and the following results were found:

$$\hat{Y} = -2.3412 + 1.6159 \times X_1 + 0.0144 \times X_2$$
 & $S = 3.2595$

During the residual analysis 9th point seems to have some issues. Given the following: $y_9 = 79.24, \hat{y}_9 = 71.8203, h_{99} = 0.4983$

- (a) Find R-student for the 9th observation and judge whether it should be considered an outlier or not using the test at 5% level.
- b) Find the Cook's D for the 9th point? (10 points)
- c) Find also the standardized Press residual for 9th observation.
- 2. A researcher fitted a full MLR model (Model-1) using 13 observations where the response, y, is the yield of what in kg/ha. The regressors are:

 X_1 : the amount of rain in mm for the period October to April.

 X_2 : is the number of days in the growing season.

 X_3 : is the amount of rain in mm during the growing season.

 X_4 : is the water use in mm for the growing season.

 X_5 : is the pan evaporation in mm during the growing season.

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	\hat{eta}_i
$\overline{X_1}$	1	11517225.11	11517225.11	20.13	0.0028	8.72
X_2	1	134897.52	134897.52	0.24	0.6421	6.57
X_3	1	32645.77	32645.77	0.06	0.8180	-10.54
X_4	1	990824.49	990824.49	1.73	0.2296	13.03
X_5	1	486488.95	486488.95	0.85	0.3871	-3.25
Residuals	7	4004641.24	572091.61			

- (a) Is the above model significant at 5% level?
- (b) Next, the researcher tried the Model-2 $Y = \beta_1.X_1 + \beta_2.X_2 + \beta_3.X_3 + \text{Error}$, Is Model-2, significant at 5% level?
- (c) Is variable X_3 significant in Model-2 at 5% level?

(WRITE APPROPRIATE R-PROGRAM TO SOLVE Q3 AND SUBMIT IT)

- 3. The attached data set has 5 independent variables (x1-x5) and one dependent variable (y). Use forward ($\alpha = 0.05$), backward($\alpha = 0.05$)
 - (a) Let say X_m is the last variable added in the model in the forward selection procedure above. Now, if α value is changed from the 0.05 to 0.01 in forward selection, X_m will still be added to the model (no need to run with the new alpha)?
 - (b) Looking at the final model chosen by the backward elimination, which variable is the next candidate to be dropped if we change the α value and what value of α is that.
 - (c) Did the forward and the backward choose the same model? If not, which one you prefer and why.