Plenumsregning 30/8-13

Kristina, B1037 Abel, kristrd@math.wio.no

Somplekse tall

3.1: 1) d)
$$(5+2i)(3+i)=5.3+5.i+2i.3+2i.i$$

$$= 15 + 5i + 6i - 2 = 13 + 11i$$

$$9) \frac{-5+2i}{5-4i} = \frac{(-5+2i)(5+4i)}{(5-4i)(5+4i)} = \frac{-25-20i+10i-8}{25+16}$$

$$= \frac{-33 - 10i}{41} = -\frac{33}{41} - \frac{10}{41}i$$

3.) c)
$$-7-8i = -7+8i$$

5) c)
$$\frac{z-2}{z+1} = 3i$$

 $z-2 = 3i(z+1)$
 $z-2 = 3iz + 3i$
 $z-3iz = 2+3i$
 $z=\frac{2+3i}{1-3i} = \frac{(2+3i)(1+3i)}{(1-3i)(1+3i)} = \frac{2+6i+3i-9}{1+9}$
 $z=\frac{-7+9i}{10} = -\frac{7}{10} + \frac{9}{10}i$

(a)
$$\begin{cases} Z + w = 2i & (1) \\ Z - w = 3 + i & (2) \end{cases}$$

$$(1)+(2): \quad 2+y6+2-y6=2i+3+i$$

$$27=3i+3$$

$$7=\frac{3}{2}+\frac{3}{2}i$$

Innsett
$$i(1)$$
: $z+w=2i$

$$\frac{3}{2}+\frac{3}{2}i+w=2i$$

$$w=-\frac{3}{2}+\frac{1}{2}i$$

8.) i)
$$Vis$$
: $\overline{Z} + \overline{W} = \overline{Z} + \overline{W}$;

La $Z = a + ib$, der $a, b \in IR$. La

 $W = c + id$, der $c, d \in IR$.

 VS : $\overline{Z} + \overline{W} = (a - ib) + (c - id) = (a + c) - i(b + d)$
 VS : $\overline{Z} + \overline{W} = (a + c) + i(b + d) = (a + c) - i(b + d)$

Ser at $VS = HS$, sû regneregelen holder.

9.) $\overline{(Z} = \overline{W} = \overline{Z} = \overline{W}$

Regnereger konjugarjon $VS = \overline{Z} = \overline{Z}$

3.2: Geometrisk tolkning av komplekse tare 1) a) 1+i:

Tips for å huske aksakk verdier:

	0	푸	#4	$\frac{1}{3}$	卫
sin	(P) 2	(<u>-</u>	12/2	(3) N	4
Cos	(g) 2	(2m/n	<u> </u>	(<u>-</u> 2	6/2

3.) c)
$$1+\lambda$$
: $r = \sqrt{1^2 + 1^2} = \sqrt{2}$

$$2 \sin \theta = 1 \Rightarrow \sin \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{2} + 2k\pi$$

$$2 \cos \theta = 1 \Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \Rightarrow \frac{\pi}{2} + 2k\pi$$

$$4 \cos \theta = 1 \Rightarrow \cos \theta = \frac{\pi}{2} \Rightarrow \frac{\pi}{2} + 2k\pi$$

$$4 \cos \theta = 1 \Rightarrow \cos \theta = \frac{\pi}{2} \Rightarrow \frac{\pi}$$

10) b) {z: |z-1|<2} d) {z: |z-2| < |z-i+2|} |z-2| < |z-i+2|, |z=x+iy| $|z-2| = \sqrt{(x-2)^2 + y^2}$. $\in \mathbb{R}$ $\in \mathbb{R}$ $\in \mathbb{R}$ $\in \mathbb{R}$ $\sqrt{(x-2)^2+y^2}$ < $\sqrt{(x+2)^2+(y-1)^2}$ (siden √... ev ≥0) $(x-2)^2 + y^2 < (x+2)^2 + (y-1)^2$ x -4x +4+y2 < x2+4x +4+ y2-2y+1 2y < 8x+1 9/ / 4=4x+

13.)
$$z = |+ i\sqrt{3}|, w = 1 + i$$

a) $zw = (1 - 13) + i(1 + 13)$
 $\frac{z}{w} = \frac{1 + \sqrt{3}}{2} + i \frac{\sqrt{3} - 1}{2}$
b) $z: = \sqrt{1 + 3} = 2$, $2w\theta_z = 1 \Rightarrow w\theta_z = \frac{1}{2}$
 $2\sin\theta_z = \sqrt{3} \Rightarrow \sin\theta_z = \frac{3}{2}$
 $z = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$
 $z = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$

C)
$$\frac{z}{w} = \Omega \left(\omega \frac{\pi}{12} + i \sin \frac{\pi}{12} \right)$$

$$\Gamma_{\frac{z}{w}} = \frac{\Gamma_{z}}{\Gamma_{w}} \quad \theta_{z} = \theta_{z} - \theta_{w}$$

From a) well visit $\frac{z}{w} = \frac{\sqrt{3}+1}{2} + i \frac{\sqrt{3}-1}{2}$

$$\frac{\sqrt{3}+1}{2} = \sqrt{2} \cos \frac{\pi}{12} \quad \text{org. } \sin \frac{\pi}{12} = 2 \sin \frac{\pi}{12}$$

$$\cos \frac{\pi}{12} = \frac{\sqrt{3}+1}{2\sqrt{2}} \quad \text{org. } \sin \frac{\pi}{12} = \frac{\sqrt{3}-1}{2\sqrt{2}}$$

Garge $m/\sqrt{2}$ org. org. rade:

$$\omega^{\frac{\pi}{12}} = \frac{\sqrt{6}-\sqrt{2}}{4} \quad \text{sin} \frac{\pi}{12} = \frac{\sqrt{6}-\sqrt{2}}{4}$$