Challenge Nine

Problem

Ada gives John a positive integer \mathbf{N} . She challenges him to construct a new number (without leading zeros), that is a multiple of 9, by inserting *exactly* one digit $(0 \dots 9)$ anywhere in the given number \mathbf{N} . It is guaranteed that \mathbf{N} does not have any leading zeros.

As John prefers smaller numbers, he wants to construct the *smallest* such number possible. Can you help John?

Input

The first line of the input gives the number of test cases, **T**. **T** test cases follow.

Each test case has a single line containing a positive integer N: the number Ada gives John.

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the new number constructed by John. As mentioned earlier, y cannot have leading zeros.

Limits

Memory limit: 1 GB. $1 \le \mathbf{T} \le 100$.

Test Set 1

Time limit: 20 seconds.

 $1 \leq \mathbf{N} \leq 10^5.$

Test Set 2

Time limit: 40 seconds. For at most 10 cases: $1 \leq N \leq 10^{123456}$. For the remaining cases: $1 < N < 10^5$.

Sample

Sample Input

Sample Output

Case #1: 45 Case #2: 333 Case #3: 121212 In Sample Case #1, there are only two numbers that can be constructed satisfying the divisibility constraint: 45 and 54. John chooses the smaller number.

In Sample Case #2, 333 is the only number possible.

In Sample Case #3, there are four possible options - 212121, 122121, 121221 and 121212 - out of which the smallest number is 121212.