9 Лінійні простори

Лінійна система є алгебраїчною структурою, яка абстрагує властивості, пов'язані із додаванням та множенням векторів евклідова простору на скаляр.

§9.1 Лінійні простори і функціонали

Означення 9.1. Дійсним лінійним (векторним) простором називається упорядкована трійка $(E,+,\cdot)$, що складається з множини E, елементи якого називаються векторами, операції додавання і операції множення на дійсні числа, якщо для кожних двох її елементів x та y визначено їх суму $x+y\in E$, і для будь-якого x та дійсного числа λ визначено добуток $\lambda x\in E$, які задовольняють аксіоми лінійного простору:

```
1. \exists \vec{0} \in E, що x + \vec{0} = x для довільного x \in E;
```

```
2. \forall x \in E \ \exists (-x) \in E : x + (-x) = 0;
```

3.
$$(x + y) + z = x + (y + z)$$
 (асоціативність додавання);

4.
$$x + y = y + x$$
 (комутативність додавання);

5.
$$(\lambda + \mu)x = \lambda x + \mu x$$
 (дистрибутивність);

6.
$$\lambda(x+y) = \lambda x + \lambda y$$
 (дистрибутивність);

7.
$$(\lambda \mu)x = \lambda(\mu x)$$
 (асоціативність множення);

8. $1 \cdot x = x$.

Зауваження 9.1 — Властивості 1–4 означають, що лінійний простір є **абеле-вою (комутативною) групою**.

Приклад 9.1

Сукупність дійсних чисел \mathbb{R} із звичайними арифметичними операціями додавання та множення є лінійним простором.

Приклад 9.2

Евклідів простір \mathbb{R}^n — сукупність векторів (x_1, x_2, \dots, x_n) , що складаються с дійсних чисел, є лінійним.

Означення 9.2. Лінійні простори E і F називаються **ізоморфними**, якщо між їхніми елементами можна установити взаємно-однозначну відповідність, яка узгоджена із операціями в цих просторах, тобто $x \leftrightarrow x', y \leftrightarrow y', x, y \in E, x', y' \in F$: $x + y \leftrightarrow x' + y', \lambda x \leftrightarrow \lambda x'$.

Зауваження 9.2 — Ізоморфні простори можна вважати різними реалізаціями одного простору.

Приклад 9.3

Простір \mathbb{R}^n і простір поліномів, степінь яких не перевищує n-1 є ізоморфними.

Означення 9.3. Числова функція f, визначена на лінійному просторі E, називається функціоналом.

Означення 9.4. Функціонал f називається **адитивним**, якщо

$$\forall x, y \in E : f(x+y) = f(x) + f(y).$$

Означення 9.5. Функціонал називається однорідним, якщо

$$\forall \lambda \in \mathbb{R} \forall x \in E : f(\lambda x) = \lambda f(x).$$

Означення 9.6. Адитивний однорідний функціонал називається лінійним.

Означення 9.7. Функціонал називається **неперервним у точці** x_0 , якщо з того що послідовність x_n прямує до x_0 випливає, що послідовність $f(x_n)$ прямує до $f(x_0)$.

Означення 9.8. Сукупність усіх лінійних неперервних функціоналів, заданих на лінійному топологічному просторі E, називається **спряженим простором**, і позначається як E^* .

Приклад 9.4

 $I(f) = \int_a^b f(t) dt$ є лінійним функціоналом в C[a,b].

Означення 9.9. Нехай E — лінійний простір. Визначений на просторі E функціонал p(x) називається опуклим, якщо

$$\forall x, y \in E, 0 < a < 1 : p(\lambda x + (1 - \lambda)y) < \lambda p(x) + (1 - \lambda)p(y).$$

Означення 9.10. Функціонал p(x) називається додатно-однорідним, якщо

$$\forall x \in E, \lambda > 0 : p(\lambda x) = \lambda p(x).$$

Приклад 9.5

Будь-який лінійний функціонал є додатно-однорідним.

Означення 9.11. Непорожня підмножина L' лінійного простору L називається лінійним підпростором, якщо вона сама утворює лінійний простір відносно операцій додавання і множення на число, уведених в просторі L.

§9.2 Продовження функціоналів

Означення 9.12. Нехай E — дійсний лінійний простір, а E_0 — його підпростір. До того ж на підпросторі E_0 заданий деякий лінійний функціонал f_0 . Лінійний функціонал f, визначений на всьому просторі E, називається **продовженням** функціонала f_0 , якщо

$$\forall x \in E_0 : f_0(x) = f(x).$$

9 Лінійні простори 55

Теорема 9.1 (Хана—Банаха)

Нехай p(x) —додатно-однорідний і опуклий функціонал, визначений на дійсному лінійному просторі L, а L_0 — лінійний підпростір в L. Якщо f_0 — лінійний функціонал, заданий на L_0 і підпорядкований на цьому підпросторі функціоналу p, тобто

$$f_0(x) \le p(x), \forall x \in L_0 \tag{9.1}$$

то функціонал f_0 може бути продовжений до лінійного функціонала f, заданого на просторі L і підпорядкованого функціоналу p на всьому просторі L:

$$f(x) \le p(x), \forall x \in L. \tag{9.2}$$

Доведення. Покажемо, що якщо $L_0 \neq L$, то f_0 можна продовжити на $L' \supset L_0$, зберігаючи умову підпорядкованості. Нехай $z \in L' \setminus L_0$, а L'— елементарне розширення L_0 :

$$L' = \{x' : x' = \lambda z + x, x \in L_0, \lambda \in \mathbb{R}\} = \{L_0; z\}.$$

Якщо f' — шукане продовження f_0 на L', то

$$f'(\lambda z + x) = \lambda f'(z) + f(x) = \lambda f'(z) + f_0(x).$$

Покладемо f'(z) = c. Тоді $f'(\lambda z + x) = \lambda c + f_0(x)$. Виберемо c так, щоб виконувалась умова підпорядкованості:

$$\forall x \in L_0: f_0(x) + \lambda c \le p(x + \lambda z). \tag{9.3}$$

Якщо $\lambda>0$, поділимо (9.3) на λ і отримаємо еквівалентну умову

$$\forall x \in L_0: f_0(\frac{x}{\lambda}) + c \le p(\frac{x}{\lambda} + z) \implies c \le p(\frac{x}{\lambda} + z) - f_0(\frac{x}{\lambda}). \tag{9.4}$$

Якщо $\lambda < 0$, поділимо (9.3) на $-\lambda$. Тоді

$$\forall x \in L_0 : -f_0(\frac{x}{\lambda}) - c \le p(-\frac{x}{\lambda} - z) \implies c \ge -p(-\frac{x}{\lambda} - z) - f_0(\frac{x}{\lambda}). \tag{9.5}$$

Покажемо, що число c, що задовольняє умови (9.4) і (9.5) існує. Нехай y' і $y'' \in L_0$, а $z \in L' \setminus L_0$. Тоді

$$f_0(y''-y')=f_0(y'')-f_0(y')\leq p(y''-y')=p(y''+z-y-z)\leq p(y''+z)+p(-y'-z).$$

З цього випливає, що

$$-f_0(y'') + p(y'' + z) \ge -f_0(y') - p(-y' - z).$$

Покладемо

$$c'' = \inf_{y''} (-f_0(y'') + p(y'' + z)), \quad c' = \sup_{y'} (-f_0(y') + p(-y' - z)).$$

Оскільки y' і y'' — довільні, то з умови підпорядкованості випливає, що $c'' \ge c'$. Отже, $\exists c: c'' \ge c \ge c'$.

Визначимо функціонал f' на L':

$$f'(\lambda z + x) = \lambda c + f_0(x).$$

За побудовою цей функціонал задовольняє умову (9.1). Отже, якщо f_0 задано на $L_0 \subset L$ і задовольняє на L_0 умову (9.1), то його можна продовжити на $L' \supset L$ із збереженням цієї умови (9.2).

Якщо в просторі L існує злічена система елементів $x_1, x_2, \ldots, x_n, \ldots$ така, що будьякий елемент простору L можна подати як (скінченну) лінійну комбінацію елементів $x_1, x_2, \ldots, x_n, \ldots$, то продовження функціонала f_0 на L можна побудувати за індукцією, розглядаючи зростаючий ланцюжок підпросторів

$$L^{(1)} = \{L_0, x_1\}, \quad L^{(2)} = \{L^{(1)}; x_2\}, \quad \dots, \quad L^{(n)} = \{L^{(n-1)}; x_n\}, \quad \dots,$$

де $L^{(k)} = \{L^{(k-1)}; x_k\}$ — мінімальний лінійний підпростір, що містить $L^{(k-1)}$ і x_k . Тоді кожний елемент $x \in L$ увійде в деякий $L^{(k)}$ і функціонал f_0 буде продовжений на весь простір L.

В загальному випадку використовується схема, яка базується на лемі Цорна. Уведемо в розгляд потрібні означення.

§9.3 Ланцюги і мажоранти

Означення 9.13. Говорять, що на множині X задано відношення часткового порядку \leq , якщо виділено деяку сукупність пар $P = \{(x, y) \in X \times X\}$, для яких

- 1. $x \leq x$;
- $2. \ x \leq y, y \leq z \implies x \leq z.$

При цьому не вимагається, щоб усі елементи були порівняними.

Приклад 9.6

Площина \mathbb{R}^2 , на якій між точками $x = (x_1, x_2)$ і $y = (y_1, y_2)$ встановлено відношення $x \leq y$, якщо $x_1 \leq y_1$ і $x_2 \leq y_2$.

Означення 9.14. Якщо всі елементи X є попарно порівняними, то множина X називається лінійно упорядкованою.

Означення 9.15. Лінійно упорядкована підмножина частково упорядкованої множини називається **ланцюгом**.

Приклад 9.7

Пряма \mathbb{R} із покоординатним порядком, що розглядається як підмножина площини \mathbb{R}^2 , є ланцюгом.

Означення 9.16. Якщо X — частково упорядкована множина і $M \subset X$, то елемент $m^* \in X$ називається мажорантою множини M, якщо

$$m \leq m^{\star}, \forall m \in M.$$

Означення 9.17. Якщо m_{\star} — така мажоранта $M \subset X$, що $m_{\star} \leq m'$ для будь-якої іншої мажоранти m' множини M, то m_{\star} називається **точною верхньою гранню** множини M.

Означення 9.18. Елемент $m \in X$ називається **максимальним**, якщо немає такого елемента $m' \in X$, що m < m'.

9 Лінійні простори 57

Лема 9.1 (Цорна)

Якщо будь-який ланцюг в частково упорядкованій множині X має мажоранту, то в X існує максимальний елемент.

Доведения. (теореми Хана—Банаха) Позначимо через \mathfrak{M} сукупність усіх можливих продовжень функціоналу f_0 на більш широкі підпростори з умовою підпорядкованості p. Кожне таке продовження f' має лінійну область визначення L', на якій $f' \leq p$ і $f'|_{X_0} = f$. Будемо вважати продовження f' підпорядкованим продовженню f'', якщо для відповідних областей визначення маємо $L' \subset L''$ і $f''|_{L'} = f'$. Таким чином, маємо частковий порядок. Умова щодо ланцюгів виконана: якщо дано ланцюг продовжень f_α з областями визначення L_α , то мажоранта $f \in \mathfrak{M}$ будується так. Розглянемо множину $L = \bigcup_\alpha L_\alpha$, яка є лінійним простором, оскільки $\forall x, y \in L \; \exists L_\alpha, L_\beta$, такі що $x \in L_\alpha$ і $y \in L_\beta$. Але за означенням ланцюга або $L_\alpha \subset L_\beta$, або $L_\beta \subset L_\alpha$, тобто $x + y \in L$. Ясно, що $\lambda x \in L$, $\forall \lambda \in \mathbb{R}$. З тих же причин функціонал $f(x) = f_\alpha(x_\alpha)$ для $x = x_\alpha$ коректно заданий на L, тобто $f_\alpha(x_\alpha) = f_\beta(x_\beta)$, якщо $x_\alpha = x_\beta$. До того ж $f \leq p$ на L. Отже, $f \in \mathfrak{M}$ — мажоранта для всіх f_α . За лемою Цорна в \mathfrak{M} є максимальний елемент f. Отже, область визначення функціонала f збігається із X, інакше функціонал f можна було б лінійно продовжити на більш широкий простір із умовою підпорядкованості p, що суперечить максимальності p.

§9.4 Література

- [1] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 91–96, 106–109).
- [2] Колмогоров А. Н. Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 119–138).
- [3] **Богачев В. И.** Действительный и функциональный анализ. Университетский курс / В. И. Богачев, О. Г. Смолянов М.: Ижевск: НИЦ "Регулярная и хаотическая динамика", 2009 (стр. 14–16, 258–264).