Логика и алгоритмы, весна 2019. Задачи для семинара N 3.

(Все модели нормальные)

В задачах 1–3 рассматривается чистая теория равенства Eq (или исчисление предикатов с равенством в сигнатуре $\{=\}$) и формулы этой сигнатуры.

- 1. (a) Найдите замкнутую формулу, которая не выводится и не опровергается в Eq.
 - (b) Найдите замкнутую формулу A, которая не выводится и не опровергается в Eq, для которой обе теории $Eq \cup \{A\}$, $Eq \cup \{\neg A\}$ неполны.
 - (c) Докажите, что не существует замкнутой формулы A, для которой обе теории $Eq \cup \{A\}, \ Eq \cup \{\neg A\}$ полны.
- 2. Постройте такие замкнутые формулы A и B, что в Eq не выводится ни одна из формул $A \wedge B$, $\neg A \wedge B$, $A \wedge \neg B$, $A \wedge \neg B$.
- 3. Пусть $F(P_1, P_2)$ пропозициональная формула с двумя переменными, которая не является тавтологией. Докажите, что в сигнатуре $\{=\}$ существует ее подстановочный пример F(A, B), не выводимый в Eq.
- 4. Докажите, что элементарная теория конечной модели в любой (даже бесконечной) сигнатуре с равенством сильно категорична.
- 5. Докажите, что если теория с равенством полна и имеет конечную модель, то она сильно категорична.
- 6. Докажите, что в сигнатуре абелевых групп $\{0, +, =\}$
 - (a) $\mathbb{Z} \not\equiv \mathbb{Q}$;
 - (b) $\mathbb{Q} \not\equiv \mathbb{Q} \oplus \mathbb{Z}$.
- 7. Докажите, что в сигнатуре упорядоченных множеств $\{<,=\}$;
 - (a) $\mathbb{Z} \not\equiv \mathbb{Q}$;
 - (b) $\mathbb{Z} \not\equiv \mathbb{Q} + \mathbb{Z}$;
 - (c) $\mathbb{Z} + \mathbb{Q} \not\equiv \mathbb{Q} + \mathbb{Z}$.

Здесь + означает упорядоченную сумму.

Спектром замкнутой формулы называется множество мощностей ее конечных моделей.

- 8. Для сигнатуры с 2-местным предикатным символом R и равенством постройте формулу, спектр которой состоит из всех (положительных) четных чисел.
- 9. Постройте формулу какой-нибудь сигнатуры с равенством, спектр которой есть множество $\{3n+1 \mid n \in \mathbb{N}\}.$

- 10. Пусть в сигнатуре есть один одноместный фунциональный символ и равенство. Докажите, что для любого n существует формула $A_n(a)$ без кванторов, такая что формула $\exists x \, A_n(x)$ имеет модель мощности n и не имеет моделей меньшей мощности.
- 11. Придумайте формулу в сигнатуре с одним одноместным функциональным символом и равенством, выполнимую только в бесконечной модели.
- 12. Докажите, что следующая формула истинна во всех конечных моделях (своей сигнатуры), но не общезначима:

$$\forall x S(x,x) \land \forall x \forall y \forall z (S(x,z) \to S(x,y) \lor S(y,z)) \to \exists x \forall y S(x,y).$$

- 13. Пусть $B \stackrel{\bullet}{=} \exists x_1 \dots \exists x_n A$ замкнутая формула без функциональных символов и констант, где A не содержит кванторов. Докажите, что если B выполнима, то она имеет модель мощности не выше n.
- 14. Как изменится ответ, если в сигнатуре есть константы? Оцените сверху мощность модели.

Теория называется конечно аксиоматизируемой, если она эквивалентна конечной теории. Теория T_1 — строгое расширение теории T, если множество теорем T_1 строго содержит множество теорем T.

- 15. (Критерий Тарского) Докажите, что если T_1, T_2, \ldots счетная последовательность теорий, где T_{i+1} строгое расширение T_i , то объединение этих теорий не конечно аксиоматизируемо.
- 16. Рассмотрим теорию абелевых групп ABG в сигнатуре $\{0,+,=\}$. Теория абелевых групп без кручения ABGTF получается из ABG добавлением аксиом

$$\forall x(\underbrace{x+x+\ldots+x}_n=0\to x=0)$$
 для всех натуральных $n.$

- (a) Докажите, что ABGTF не является конечно аксиоматизируемой.
- (b) Полна ли эта теория?
- 17. В той же сигнатуре: $Th(\mathbb{Q})$ не конечно аксиоматизируема.
- 18. Докажите, что теория полей характеристики 0 в сигнатуре $\{0,1,+,\cdot,=\}$ не конечно аксиоматизируема.