Analyse

Chapitre 1: Espaces vectoriels topologiques

Lucie Le Briquer

5 novembre 2018

Table des matières

1	Espaces vectoriels normés	2
2	Parties convexes, bornées, équilibrées	5
3	Espaces de dimension finie 3.1 Compacité et dimension finie	6 6 7
4	Théorème de Baire	8
5	Théorèmes de Banach	9
6	L'espace des fonctions continues	13
	6.1 Théorème d'Arzela-Ascoli	13
	6.2 Théorème de Stone-Weierstrass	15
	6.3 Continuité et convergence simple	17

Définition 1 (espace vectoriel topologique) -

E un \mathbb{K} -ev ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) est un espace vectoriel topologique s'il est muni d'une topologie compatible avec sa structure algébrique i.e. si l'addition $(x,y) \mapsto x+y$ et la dilatation $(\lambda,x) \mapsto \lambda.x$ sont continues.

1 Espaces vectoriels normés

Définition 2 (semi-norme)

Soit E un \mathbb{K} -ev. $\rho \colon E \longrightarrow \mathbb{R}_+$ est une semi-norme si

- 1. $\rho(\lambda x) = |\lambda|\rho(x)$
- 2. $\rho(x+y) \leqslant \rho(x) + \rho(y)$

Si de plus $\rho(x) = 0 \Leftrightarrow x = 0$, alors ρ est une norme.

On note $\|.\|$ une norme. Si $\|.\|$ est une norme sur E alors $d(x,y) = \|x-y\|$ est une distance. En effet :

- 1. d(x, y) = d(y, x)
- 2. $d(x,z) \le d(x,y) + d(y,z)$
- 3. $d(x,y) = 0 \Leftrightarrow x = y$

Si (E, ||.||) est un e.v.n. on munit E de la topologie induite par la distance. Une base de voisinages est :

$$\{\mathcal{B}(x,r), x \in E, r > 0\}$$
 où $\mathcal{B}(x,r) = \{y \in E \mid ||y - x|| < r\}$

Remarque. Un ouvert est un voisinage de chacun de ses points.

Propriété 1 -

Un e.v.n. est un e.v.t.

Preuve

Soit
$$A \colon \left\{ \begin{array}{ccc} E \times E & \longrightarrow & E \\ (x,y) & \longmapsto & x+y \end{array} \right.$$

Montrons que A est continue, i.e. montrons que $A^{-1}(U)$ est un ouvert pour U ouvert. Soit $(x,y) \in A^{-1}(U)$. $x+y \in U$ donc $\exists \delta > 0$ tel que $\mathcal{B}(x+y,\delta) \subset U$. Ainsi :

$$\mathcal{B}\left(x, \frac{\delta}{2}\right) + \mathcal{B}\left(y, \frac{\delta}{2}\right) \subset U$$

En effet si $||x'-x|| < \frac{\delta}{2}$ et $||y'-y|| < \frac{\delta}{2}$ alors $||x'+y'-(x+y)|| < \delta$, donc :

$$\mathcal{B}\left(x, \frac{\delta}{2}\right) \times \mathcal{B}\left(y, \frac{\delta}{2}\right) \subset A^{-1}(U)$$

Or $\mathcal{B}\left(x,\frac{\delta}{2}\right)\times\mathcal{B}\left(y,\frac{\delta}{2}\right)$ est un ouvert de la topologie produit.

Remarque. Rappel, la topologie produit est définie comme suit : $(X_{\alpha}, \mathcal{T}_{\alpha})_{\alpha \in A}, X = \prod_{\alpha \in A} X_{\alpha}, \pi_{\alpha} : X \longrightarrow X_{\alpha}$, c'est la topologie minimale qui rend ces applications continues.

Idem pour $B: (\lambda, x) \mapsto \lambda x$.

Corollaire 1 -

Les translations $x \mapsto x + u$ et les homothéties $x \mapsto \lambda x$ ($\lambda \neq 0$) sont des homéomorphismes (i.e. des bijections continues, de réciproque continue).

Preuve.

 $T_u \colon x \mapsto u + x \text{ est continue car } \left\{ \begin{array}{ccc} E & \longrightarrow & E \times E \\ x & \longmapsto & u + x \end{array} \right.$ est continue.

 $(T_u)^{-1} = T_{-u}$ est aussi continue. Idem pour $x \mapsto \lambda x$.

- **Définition 3** (normes équivalents) —

Deux normes sont équivalentes s'il existe deux constantes $c_1, c_2 > 0$ telles que :

$$c_1 ||x||_1 \le ||x||_2 \le c_2 ||x||_1$$

Remarque. Cela revient à dire que les deux topologies coïncident.

Soient $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux e.v.n. Soit $T: E \mapsto F$ linéaire.

- Propriété 2 -

Les propriétés suivantes sont équivalentes :

- 1. T est continue
- 2. T est continue à l'origine
- 3. T est bornée sur un voisinage de l'origine
- 4. T est bornée, au sens où $\sup_{\|x\|_{E}\leqslant 1}\|T(x)\|_{F}<+\infty$

Preuve.

- $(4) \Rightarrow (3)$: trivial
- $(3) \Rightarrow (2): T(0) = 0. \text{ On veut montrer que } \forall \rho > 0, \ T^{-1}(\mathcal{B}_F(0,\rho)) \text{ contient une boule } \mathcal{B}_E(0,r).$ $\exists R > 0, \ \exists M > 0 \text{ tels que } \|x\|_E \leqslant R \Rightarrow \|T(x)\|_F \leqslant M \text{ par (3). Posons alors } r = \frac{\rho R}{2M}. \text{ Si } \|u\|_E < r$ $\text{alors } x = \frac{2M}{\rho} u \in \mathcal{B}_E(0,R) \text{ donc } \|T(x)\|_F \leqslant M. \left\|\frac{2M}{\rho} T(u)\right\|_F \leqslant M, \text{ ainsi } \|T(u)\|_F \leqslant \frac{\rho}{2} < \rho.$
- $(1) \Rightarrow (2)$: trivial
- $(2) \Rightarrow (1)$: car les translations sont des homéomorphismes donc T continue en tout point, donc (pas trivial) T continue.
- $(2) \Rightarrow (4)$: idem.

- Définition 4

On note $\mathcal{L}(E,F)$ l'e.v. des applications linéaires continues de $E\longrightarrow F$. C'est un e.v.n. pour la norme :

$$\|T\| := \sup_{x \neq 0} \frac{\|T(x)\|_F}{\|x\|_E} \quad \text{not\'ee} \ \|T\|_{\mathcal{L}(E,F)}$$

Remarque. Si $F = E, T_1, T_2 \in \mathcal{L}(E, E)$ alors $T_1 T_2 \in \mathcal{L}(E, E)$ et $||T_1 T_2|| \leq ||T_1|| \cdot ||T_2||$.

- **Définition 5** (dual topologique) —

On note E^* (ou E') le dual topologique de $E, E^* = \mathcal{L}(E, \mathbb{K})$.

- **Définition 6** (suite de Cauchy) -

Soit $(u_n)_{n\in\mathbb{N}}$ une suite dans un e.v.n. E. On dit que (u_n) est une suite de Cauchy si :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \mid \forall m, n \geqslant N, \ \|u_m - u_n\| < \varepsilon$$

Remarque. Toute suite convergente est une suite de Cauchy.

- **Définition 7** (complet)

On dit que E est complet si toute suite de Cauchy est convergente.

Remarque. On a la même définition pour les espaces métriques.

- **Définition 8** (Banach) -

Un espace de Banach est un e.v.n. complet.

- Proposition 1 —

Soit E un e.v.n. quelconque et F un espace de Banach, alors $\mathcal{L}(E,F)$ est un espace de Banach.

Remarque. E^* est de Banach pour tout e.v.n. E car \mathbb{R} et \mathbb{C} sont des Banach.

Preuve.

Soit $(T_n)_{n\in\mathbb{N}}$ une suite de Cauchy. Soit $x\in E$. On a :

$$||T_m(x) - T_n(x)||_F \le ||T_m - T_n|| \cdot ||x||_E$$

Donc $(T_n(x))_{n\in\mathbb{N}}$ est de Cauchy dans F qui est complet, donc converge. On note T(x) sa limite. $T: x \mapsto T(x)$ est linéaire. Montrons maintenant que T est continue. On utilise le fait que $(\|T_n\|)_{n\in\mathbb{N}}$ est bornée (car de Cauchy, car $\|.\|$ -Lipschitz).

 $\exists M>0$ tel que $\forall x\in E,\ \forall n\in\mathbb{N},\ \|T_n(x)\|\leqslant M\|x\|$. D'où $\|T(x)\|\leqslant M\|x\|$ puis T continue car bornée. Puis, par critère de Cauchy,

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \mid \forall m, n \geqslant N, \ \|T_m(x) - T_n(x)\|_F \leqslant \varepsilon \|x\|_E$$

En faisant tendre $m \longrightarrow +\infty$:

$$||T(x) - T_n(x)||_F \leqslant \varepsilon ||x||_E \quad \Rightarrow \quad ||T - T_n|| \leqslant \varepsilon$$

2 Parties convexes, bornées, équilibrées

Définition 9 (convexe, borné, équilibré) –

Soit E e.v.t., $A \subset E$. On dit que :

- 1. A est convexe si $[x,y] \subset A \ \forall x,y \in A \ \text{où} \ [x,y] = \{(1-t)x+ty,\ t \in [0,1]\}$
- 2. A est borné si pour tout voisinage V de 0, $\exists t > 0$ tel que $\forall s \geqslant t \ A \subset sV$
- 3. A est équilibré si $\forall |\lambda| \leq 1 \ \lambda A \subset A$

- **Définition 10** (normable) -

 (E, \mathcal{T}) e.v.t. est normable s'il existe une norme telle que $\mathcal{T}_{\|.\|} = \mathcal{T}$, où $\mathcal{T}_{\|.\|}$ est la topologie induite par $\|.\|$.

- Proposition 2 -

Un e.v.t. E est normable ssi il existe un voisinage convexe et borné de l'origine.

Preuve.

Si E est normable avec $\|.\|$ alors $\{x \in E \mid \|x\| \le 1\}$ est convexe borné et voisinage de 0.

Réciproquement, soit C un convexe borné voisinage de l'origine dans E. On veut définir une norme.

- Lemme 1 -

Il existe un convexe équilibré borné U inclus dans C, contenant 0.

Preuve.

Posons

$$\tilde{C} = \bigcap_{|\lambda| \leqslant 1} \lambda C$$

Alors $U = \overset{\circ}{\tilde{C}}$ convient (exercice).

On introduit la fonctionnelle de Minkowski :

$$\mu \colon \left\{ \begin{array}{ccc} E & \longrightarrow & \mathbb{R}_+ \\ x & \longmapsto & \inf\{t > 0 \mid x \in tU\} \end{array} \right.$$

Idée : si $\|.\|$ est une norme alors $\|x\| = \inf\{t > 0 \mid x \in t\mathcal{B}_E(0,1)\}$

- Lemme 2 -

 μ est une norme.

Preuve.

 $x \in E$. Soit $I(x) = \{t > 0 \mid x \in tU\}$.

• $I(x) \neq \emptyset$ car $\varepsilon x \in U$ pour $|\varepsilon|$ assez petit par continuité, a fortiori $x \in \varepsilon^{-1}U$

• Si $t \in I(x)$ alors $\forall s \ge t$, $s \in I(x)$. x = tu, $u \in U$:

$$x = s \frac{t}{s} u = s \left[\underbrace{\left(1 - \frac{t}{s}\right) 0 + \frac{t}{s} u}_{\in U} \right] \in sU$$

Donc $I(x) = [\mu(x), \infty[$ ou $]\mu(x), \infty[$.

• Montrons que $\mu(x+y) \le \mu(x) + \mu(y)$; Soient $t > \mu(x)$ $s > \mu(y)$ alors $x \in tU$ et $y \in sU$. Maintenant :

$$x + y = (s + t) \left[\frac{t}{s + t} (t^{-1}x) + \frac{s}{s + t} (s^{-1}y) \right] \in (s + t)U$$

Ainsi $s + t \in I(x + y)$ donc $\mu(x + y) \leq \mu(x) + \mu(y)$.

- $\mu(\lambda x) = \lambda \mu(x) \ \forall \lambda > 0$ par définition de μ . Puis $\mu(\lambda x) = |\lambda| \mu(x)$ car U est équilibré.
- $\mu(0) = 0$
- $\mu(x) = 0 \Rightarrow x = 0$. En effet, si $x \neq 0$, comme $\{0\}$ est fermé, il existe un voisinage V de x avec $0 \notin V$, et comme U est borné, il existe x > 0 tel que $U \subset xV$. $x \notin x^{-1}U$ et $\mu(x) \geqslant x^{-1}$ par définition de μ .

Il reste à justifier que μ est une norme qui convient. Considérons $B = \{rU, r > 0\}$. $\forall V$ voisinage de $0, \exists \rho > 0$ tel que $\rho U \subset V$. Tout voisinage de 0 contient un élément de B donc B est une base de voisinages de 0. Par ailleurs $rU = B_{\mu}(0, r)$.

3 Espaces de dimension finie

3.1 Compacité et dimension finie

- **Théorème 1** (Riesz) -

Soit E un e.v.n. La boule unité fermée est compacte ssi E est de dimension finie.

- Lemme 3

Soit F un sous-espace fermé de E, différent de E. Alors pour tout réel $r \in]0,1[$, il existe $u \in E$ tel que ||u|| = 1 et $d(u,F) \geqslant r$.

Preuve.

Soit $x \in E \setminus F$. On a $r \in]0,1[$ donc $\frac{1}{r}d(x,F)>d(x,F)$. Alors $\exists y \in F$ tel que $||x-y|| \leqslant \frac{d(x,F)}{r}$. Posons $u=\frac{1}{||x-y||}(x-y)$.

On a bien ||u|| = 1 et $d(u, F) \ge r$ car pour tout $z \in F$:

$$||u - z|| = \left\| \frac{1}{||x - y||} (x - y) - z \right\|$$

$$= \frac{1}{||x - y||} ||x - y - ||x - y||z||$$

$$\geqslant \frac{1}{||x - y||} d(x, F) \quad \text{puisque } y + ||x - y||z \in F$$

Donc $||u-z|| \ge r$.

Preuve. (du théorème de Riesz)

Par contraposition, supposons E de dimension infinie. On cherche à construire une suite $(u_n)_{n\in\mathbb{N}}$, bornée, sans valeur d'adhérence. On en déduira le théorème. On construit (u_n) telle que :

- 1. $\forall n, ||u_n|| = 1$
- 2. $\forall n, m, n \neq m \Rightarrow ||u_n u_m|| \geqslant \frac{1}{2}$

On choisit u_0 de norme 1, puis par récurrence on définit u_{n+1} grâce au lemme appliqué à F_n le sev engendré par $u_0, ..., u_n$.

3.2 Unicité de la topologie en dimension finie

Théorème 2

Soit E un e.v. de dimension finie (sur \mathbb{R} ou \mathbb{C}). Il existe une unique topologie séparée qui munisse E d'une structure d'e.v.t.

Preuve.

 $d = \dim E, (e_1, \dots, e_d)$ base de E.

$$||x|| = \left(\sum_{i=1}^{d} |x_i|^2\right)^{\frac{1}{2}} \quad \text{si } x = \sum_{i=1}^{d} x_i e_i$$

On note $E_c = (E, ||.||)$. Soit \mathcal{T} une topologie séparée telle que (E, \mathcal{T}) est un e.v.t. Montrons que $\mathcal{T} = \mathcal{T}_{||.||}$. Il suffit de montrer que id est un homéomorphisme.

1. id est continue de (E_c) dans (E, \mathcal{T}) . Soit $U \in \mathcal{T}$ avec $0 \in U$.

L'application
$$\begin{cases} E \times \ldots \times E & \longrightarrow & E \\ (x_1, \ldots, x_d) & \longmapsto & x_1 + \ldots + x_d \end{cases}$$
 étant continue,

 $\exists V_1, \ldots, V_d \in \mathcal{T}$ tels que $V_1 + \ldots + V_d \subset U$. Posons alors :

$$V = \bigcap_{i=1}^{d} V_i \in \mathcal{T}$$
 (car intersection finie d'ouverts)

Par continuité de la dilatation, il existe $r_1, \ldots, r_d > 0$ tels que $|\lambda| \leqslant r_i \Rightarrow \lambda e_i \in V$. Maintenant si $||x|| < r = \min r_i$ alors $|x_i| < r$ puis $x_i e_i \in V$. Donc $x = \sum_{i=1}^d x_i e_i \in V + \ldots + V \subset U$. Donc $\mathcal{B}_{\|.\|}(0,r) \subset \operatorname{id}^{-1}(U)$.

- 2. id est continue de (E, \mathcal{T}) dans E_c . Soit V voisinage de 0 dans E_c . Soit $\rho > 0$ tel que $\mathcal{B}_{\|\cdot\|}(0, \rho) \subset V$ et soit $S = \partial \mathcal{B}_{\|\cdot\|}(0, \rho) = \{x \in E \mid \|x\| = \rho\}$. S est fermée bornée, et comme la dimension de $E < +\infty$, S est compacte.
 - id: $(E, \|.\|) \longrightarrow (E, \mathcal{T})$ est continue, donc S est compacte dans (E, \mathcal{T}) donc fermée car \mathcal{T} séparée. Donc $E \setminus S \in \mathcal{T}$. Par ailleurs $0 \notin S$ donc $\exists W$ voisinage ouvert de 0 avec $W \cap S = \emptyset$. En fait il existe U ouvert équilibré, $U \subset W$, $0 \in U$.

$$U:=\bigcup_{|\lambda|\leqslant \varepsilon} \lambda W \quad \text{avec } \varepsilon \text{ assez petit}$$

Alors $U \subset V$. Montrons ceci par l'absurde. S'il existe $u \in U \setminus V$, alors $u \notin \mathcal{B}(0,\rho)$ donc $\|u\| \geqslant \rho$. Posons $v = \frac{\rho}{\|u\|} \cdot u$. Alors $v = \lambda u$, $|\lambda| \leqslant 1$ et U équilibré donc $v \in U$. Mais $\|v\| = \rho$ donc $v \in S$ puis $U \cap S \neq \emptyset$.

Corollaire 2 —

En dimension finie on a l'équivalence des normes.

Cours du 25 septembre.

Weierstrass formalise la notion de limites en 1850. + Bolzano \Rightarrow de toute suite réele bornée, on peut extraire une sous-suite convergente.

Cauchy (1821, royaliste) : introduit les suites de Cauchy ε, δ .

Dans ce cours on va étudier des résultats de Baire et de Banach.

4 Théorème de Baire

- **Définition 11** (espace de Baire) —

Un espace de Baire est un espace topologique tel que toute intersection dénombrable d'ouverts denses est dense.

Proposition 3

Dans un espace de Baire, toute réunion dénombrable de fermés d'intérieur vide est d'intérieur vide.

Preuve.

$$\left(\bigcup_{p\in\mathbb{N}} F_p\right)^C = \bigcap_{p\in\mathbb{N}} F_p^C$$

 F_p fermé donc F_p^C ouvert. F_p est d'intérieur vide donc il n'existe pas V ouvert tel que $V \subset F_p$, ainsi $\forall V$ ouvert $V \cap F_p^C \neq \emptyset$; alors par définition F_p^C est dense.

Donc $\bigcap_{p\in\mathbb{N}}F_p^C$ dense $\Rightarrow \left(\bigcup_{p\in\mathbb{N}}F_p\right)$ est d'intérieur vide.

Remarque. (\mathbb{Q}, d) , d(x, y) = |x - y|. (\mathbb{Q}, d) n'est pas de Baire par $\mathbb{Q} = \bigcup_{r \in \mathbb{Q}} \{r\}$ est une union dénombrable de fermés d'intérieur vide mais n'est pas d'intérieur vide.

Théorème 3

Tout espace métrique complet est de Baire.

Soit (X, d) un espace métrique complet. $(\Omega_n)_{n \in \mathbb{N}}$ une suite d'ouverts denses. Montrons que $\Omega = \bigcap_{n \in \mathbb{N}} \Omega_n$ est dense i.e. $\forall V$ ouvert $V \cap \Omega \neq \emptyset$. Soit V un ouvert.

- Ω_0 dense donc $\exists x_0 \in \Omega_0 \cap V$. De plus Ω_0 est ouvert donc $\Omega_0 \cap V$ est ouvert. Ainsi, $\exists \rho_0 > 0$ tel que $\mathcal{B}(x_0, \rho_0) \subset \Omega_0 \cap V$. Et donc $\overline{\mathcal{B}(x_0, \rho_0/2)} \subset \Omega_0 \cap V$.
- Ω_1 est dense donc $\Omega_1 \cap \mathcal{B}(x_0, \rho_0/2) \neq \emptyset$. Ainsi, comme précédemment, $\exists x_1 \in X, \ \exists \rho_1 > 0$ tels que :

$$\overline{\mathcal{B}(x_1,\rho_1/2)} \subset \Omega_1 \cap \mathcal{B}(x_0,\rho_0/2)$$

• On construit par récurrence $(x_n)_{n\in\mathbb{N}}$ et une suite $(r_n)_{n\in\mathbb{N}}$ de réels tels que :

$$\overline{\mathcal{B}(x_{n+1}, r_{n+1})} \subset \mathcal{B}(x_n, r_n) \cap \Omega_{n+1}, \ 0 < r_n < 2^{-n}$$

Montrons que (x_n) est une suite de Cauchy. En effet, si $n \ge N$, $p \ge N$, alors $x_p, x_n \in \mathcal{B}(x_N, r_N)$. Donc $d(x_n, x_p) \le d(x_n, x_N) + d(x_p, x_N) \le 2^{-N+1}$. Ainsi (x_n) est de Cauchy et converge vers un élément $x \in X$. $\overline{\mathcal{B}(x_N, r_N)}$ fermé et $x_n \in \mathcal{B}(x_N, r_N) \ \forall n \ge N$, alors $x \in \overline{\mathcal{B}(x_N, r_N)} \ \forall N$. Donc $x \in \Omega_N \ \forall N \in \mathbb{N}$, ainsi $x \in \Omega$. De plus $x \in \mathcal{B}(x_0, r_0) \subset V$, alors $x \in \Omega \cap V$.

5 Théorèmes de Banach

"T linéaire, entre espaces de Banach, alors T est continue"

Définition 12 (espace de Banach)

Un espace de Banach est un espace vectoriel normé complet pour la distance issue de sa norme.

Théorème 4 (Banach-Steinhaus) -

Soit E un espace de Banach, soit F un espace vectoriel normé, soit $\{T_{\alpha}\}_{{\alpha}\in A}$ une famille d'applications linéaire continues de E dans F simplement bornée i.e. :

$$\forall x \in A, \sup_{\alpha \in A} ||T_{\alpha}x||_F < +\infty$$

alors cette famille est bornée dans $\mathcal{L}(E,F)$:

$$\sup_{\alpha \in A} \|T_{\alpha}\|_{\mathcal{L}(E,F)} < +\infty$$

Remarque. Bornée dans $\mathcal{L}(E,F)$ revient à dire :

$$\exists c > 0, \ \forall x \in E, \forall \alpha \in A, \ \|T_{\alpha}x\|_F \leqslant c\|x\|_E$$

Remarque. Bornée dans $\mathcal{L}(E,F)\Rightarrow$ simplement bornée.

On utilise le théorème de Baire en cherchant à écrire $E = \bigcup_{p \in \mathbb{N}} E_p$, E_p fermé. Comme E est complet, Baire nous donne que $\exists P \in \mathbb{N}$ tel que E_P est d'intérieur non vide. Ici :

$$E_p = \{ x \in E \mid \forall \alpha \in A, \ \|T_{\alpha}x\|_F \leqslant p \}$$

On a bien $E = \bigcup_{p=0}^{+\infty} E_p$ car $\forall x$ on a $\sup_{\alpha \in A} ||T_{\alpha}x||_F < +\infty$.

 E_p est fermé car intersection d'images réciproques par une application continue d'un fermé :

$$E_p = \bigcap \varphi_\alpha^{-1}([0,p]) \quad \text{où} \quad \varphi_\alpha \colon \left\{ \begin{array}{ccc} E & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \|T_\alpha \cdot x\|_F \end{array} \right. \text{ continue}$$

Donc $\exists P$ tel que E_P est d'intérieur non vide (sinon E le serait). Donc $\exists x_0 \in E, \exists r > 0$ tel que $\mathcal{B}(x_0, r) \subset E_P$. Ainsi $\forall u \in \mathcal{B}(x_0, r), ||T_\alpha u||_F \leqslant P$.

Soit $x \in E$, $u = x_0 + \frac{r}{2} \frac{1}{\|x\|_E} x \in \mathcal{B}(x_0, r)$. Donc:

$$\left\| T_{\alpha} \left(x_0 + \frac{r}{2\|x\|_E} x \right) \right\|_F \leqslant P$$

Donc,

$$\left\| T_{\alpha} \left(\frac{r}{2\|x\|_{E}} x \right) \right\|_{F} \leqslant P + \underbrace{\left\| T_{\alpha} x_{0} \right\|_{F}}_{\leqslant P \operatorname{car} x_{0} \in \mathcal{B}(x_{0}, r)}$$

Finalement,

$$||T_{\alpha}x||_F \leqslant \frac{4P}{r}||x||_E \ \forall \alpha \in A$$

Corollaire 3

Soient E un espace de Banach et F un e.v.n. et (T_n) une suite d'applications linéaires continues qui converge simplement : $\forall x \in E$ la suite $(T_n x)$ converge vers une limite Tx. Alors $T \in \mathcal{L}(E, F)$.

Preuve.

- T linéaire par linéarité de la limite
- $\forall x \in E$, $\sup_n ||T_n x|| \mathcal{F} < +\infty$ alors

$$\exists c > 0 \text{ tq } \forall x \in E, \ \|T_n x\|_F \leqslant c \|x\|_E$$

d'après Banach-Steinhaus. En passant à la limite, $||Tx||_F \leqslant c||x||_E$ donc T est continue.

Théorème 5 (isomorphisme de Banach) -

Soit E, F deux espaces de Banach et $T \colon E \longrightarrow F$ application linéaire continue et bijective. Alors T^{-1} est linéaire continue.

On veut montrer que $\exists c > 0$ tel que $\forall y \in F$, $||T^{-1}y||_E \leqslant c||y||_F$ i.e.:

$$T^{-1}(\mathcal{B}_{F}(0,1)) \subset \mathcal{B}_{E}(0,c)$$

$$\Leftrightarrow \mathcal{B}_{F}(0,1) \subset T(\mathcal{B}_{E}(0,c))$$

$$\Leftrightarrow \exists c' > 0, \mathcal{B}_{F}(0,c') \subset T(\mathcal{B}_{E}(0,1))$$

Montrons cette dernière équivalence.

Lemme 4 -

Supposons qu'il existe r > 0 tel que $\mathcal{B}_F(0,r) \subset \overline{T(\mathcal{B}_E(0,1))}$, alors :

$$\mathcal{B}_F(0,r/2) \subset T(\mathcal{B}_E(0,1))$$
 (*)

Preuve.

Soit $y \in \mathcal{B}_F(0,r)$. Alors $y \in \overline{T(\mathcal{B}_E(0,1))}$, donc $\exists y_0 \in T(\mathcal{B}_E(0,1))$ tel que $||y-y_0||_F < r/2$.

Or $(*) \Rightarrow \mathcal{B}_F(0, r/2) \subset \overline{T(\mathcal{B}_E(0, 1/2))}$. En effet si $v \in \mathcal{B}_R(0, r/2)$, $2v \in \overline{T(\mathcal{B}_E(0, 1))}$ donc $2v = \lim_n Tx_n$ avec $x_n \in \mathcal{B}(0, 1)$ donc $v = \lim_n T(\frac{1}{2}x_n) \Rightarrow v \in \overline{T(\mathcal{B}_E(0, 1/2))}$.

On en déduit qu'il existe $y_1 \in T(\mathcal{B}_E(0, 1/2))$ tel que :

$$||y - y_0 - y_1||_F \leqslant \frac{r}{4}$$

On construit par récurrence une suite y_n telle que :

1.
$$y_n \in T(\mathcal{B}_E(0, 2^{-n}))$$

2. $||y - y_0 - \dots - y_n|| \leq \frac{r}{2^{n+1}}$

Posons $x_n = T^{-1}y_n \in \mathcal{B}(0, 2^{-n})$. On a :

$$\sum_{N} \|x_n\|_E \leqslant \sum_{\mathbb{N}} 2^{-n} < +\infty$$

Donc la série $\sum x_n$ converge normalement et donc converge car E est un espace de Banach. Posons $z_n = \sum_{n=0}^{+\infty} x_n$. Alors $\|z\|_E < 2$ puisque $\sum 2^{-k} = 2$ et $\|x_k\| < 2^{-k}$, et Tz = y car $\|y - TS_n\| \xrightarrow[n \to +\infty]{} 0$ par construction.

Donc $\mathcal{B}_F(0,r) \subset T(\mathcal{B}_E(0,2))$ donc $\mathcal{B}_F(0,r/2) \subset T(\mathcal{B}_E(0,1))$.

Montrons qu'il existe c > 0 tel que :

$$\mathcal{B}_F(0,c) \subset \overline{T(\mathcal{B}_E(0,1))}$$

On va utiliser le fait que F est un Banach et le théorème de Baire. On écrit $F=\bigcup_{p\in\mathbb{N}}F_p$ avec F_p fermé, prenons :

$$F_p = \overline{T(\mathcal{B}_E(0,p))} = p\overline{T(\mathcal{B}_E(0,1))}$$

On a bien $F = \bigcup F_p$ car T surjective. D'après Baire on obtient que $\overline{T(\mathcal{B}(0,1))}$ est d'intérieur non vide. Donc $\exists y_0 \in F$ et r > 0 tel que :

$$\mathcal{B}(y_0,r) \subset \overline{T(\mathcal{B}_E(0,1))}$$

En particulier $y_0 = \lim Tx_n$ avec $x_n \in \mathcal{B}_E(0,1)$. D'où $-y_0 = \lim T(-x_n) \in \overline{T(\mathcal{B}_E(0,1))}$. Si $y \in \mathcal{B}_F(0,r)$, alors $y = -y_0 + (y_0 + y)$.

$$y \in \overline{T(\mathcal{B}_E(0,1))} + \overline{T(\mathcal{B}_E(0,1))} \Rightarrow y \in \overline{T(\mathcal{B}_E(0,2))}$$

Corollaire 4 (équivalence des normes) —

Soit E un espace vectoriel muni de 2 normes $\|.\|_1$ et $\|.\|_2$ de Banach pour ces 2 normes. Si

$$\exists c > 0, \ \forall x \in E, \ \|x\|_1 \leqslant c \|x\|_2 \quad (*)$$

alors:

$$\exists c' > 0 \mid \forall x \in E, \ \|x\|_2 \leqslant c' \|x\|_1 \quad (**)$$

Preuve.

Considérons:

$$T\colon \left\{ \begin{array}{ccc} (E,\|.\|_2) & \longrightarrow & (E,\|.\|_1) \\ x & \longmapsto & x \end{array} \right.$$

 $(*) \Rightarrow T$ continue. Théorème de l'application ouverte $\Rightarrow T^{-1}$ continue $\Rightarrow (**)$.

- **Définition 13** (graphe) —

Considérons deux espaces normés E et F, et $T\colon E\longrightarrow F$. Le graphe de T est un sous-ensemble de $E\times F$ définit comme :

$$G(T) = \{(x, y) \in E \times F, \ y = Tx\}$$

- **Théorème 6** (du graphe fermé) -

Soit E, F deux espaces de Banach. Soit $T \colon E \longrightarrow F$ linéaire. Alors T est continue si et seulement si G(T) est fermé.

Preuve.

 $T \in \mathcal{L}(E, F) \Rightarrow G(T)$ fermé (exercice)

Réciproquement, supposons que G(T) est fermé. Introduisons la norme du graphe :

$$N(x) = ||x||_E + ||Tx||_F$$

- N(0) = 0
- $N(x) = 0 \implies ||x||_E = 0 \implies x = 0$
- $N(\lambda x) = |\lambda| N(x)$
- $N(x+y) \leqslant N(x) + N(y)$

Montrons que (E, N) est de Banach. Soit (x_n) une suite de Cauchy pour (E, N). Alors (x_n) est une suite de Cauchy dans $(E, \|.\|_E)$ et (Tx_n) est une suite de Cauchy dans $(F, \|.\|_F)$. Donc $\exists x, y$ tel que $x_n \xrightarrow[n \to +\infty]{} x$ et $Tx_n \xrightarrow[n \to +\infty]{} y$.

On veut montrer que $N(x_n - x) \xrightarrow[n \to +\infty]{n \to +\infty} 0$. Comme le graphe est fermé, (x_n, Tx_n) converge vers $(x,y) \in G(T)$ dans $(E \times F, \|.\|_E + \|.\|_F)$. Ainsi y = Tx. Donc $\|Tx_n - Tx\|_F \xrightarrow[n \to +\infty]{n \to +\infty} 0$. Finalement :

$$N(x_n - x) = ||x_n - x||_E + ||Tx_n - Tx||_F \xrightarrow[n \to +\infty]{} 0$$

Donc $(E, ||.||_E)$ et (E, N) sont de Banach. Or $||x||_E \leq N(x)$. Par équivalence des normes $\exists c > 0$ tel que $N(x) \leq c||x||_E$.

$$||x||_E + ||Tx||_E \le c||x||_E \implies ||Tx||_F \le (c-1)||x||$$

Donc T est continue.

6 L'espace des fonctions continues

6.1 Théorème d'Arzela-Ascoli

Définition 14 (famille équicontinue) -

Soient (X, \mathcal{T}) un espace topologique et (Y, ρ) un espace métrique. Soit \mathcal{F} une famille de fonctions $f \colon X \longrightarrow Y$. Pour $x \in X$ on note $\mathcal{V}(x)$ l'ensemble des voisinages de x (i.e. l'ensemble des parties qui continnent un élément de \mathcal{T} contenant x). On dit que \mathcal{F} est équicontinue dès que :

$$\forall x \in X, \ \forall \varepsilon > 0, \ \exists O \in \mathcal{V}(x), \ | \ \forall z \in O, \ \forall f \in \mathcal{F}, \ \rho(f(x), f(z)) < \varepsilon$$

Théorème 7 (Arzela-Ascoli) -

Soient (X, \mathcal{T}) un espace topologique séparable et (Y, ρ) métrique. Soit \mathcal{F} une famille équicontinue de fonctions $f_n \colon X \longrightarrow Y$. Si $\{f_n(x)\}_{n \in \mathbb{N}}$ est relativement compact $\forall x \in X$ alors

- 1. Il existe une sous-suite de \mathcal{F} qui converge simplement vers une fonction f.
- 2. La convergence est uniforme sur tous les compacts.

 $D=\{x_n\}_{n\in\mathbb{N}}\subset X$ dénombrable dense. $\overline{\{f_n(x_1)\}}_{n\in\mathbb{N}}$ est compacte donc séquentiellement compacte. Soit alors $\{f_{\varphi_1(n)}(x_1)\}_{n\in\mathbb{N}}$ une sous-suite convergente. Par récurrence on construit une suite $\{f_{\varphi_1\circ\ldots\circ\varphi_{j+1}(n)}(x_{j+1})\}_{n\in\mathbb{N}}$ extraite de $\{f_{\varphi_1\circ\ldots\circ\varphi_j(n)}(x_{j+1})\}_{n\in\mathbb{N}}$ convergente. Par extraction diagonale on considère $\{f_{\varphi(n)}(x_j)\}_{n\in\mathbb{N}}$ où $\varphi(n)=\varphi_1\circ\ldots\circ\varphi_n(n)$.

C'est une sous-suite de $\{f_{\varphi_1 \circ \dots \varphi_j(n)}(x_j)\}_{n \in \mathbb{N}}$ donc elle converge. Pour alléger les notations on pose $g_n = f_{\varphi(n)}$. On a ainsi défini une suite $(g_n)_{n \in \mathbb{N}}$ qui converge simplement sur D. Pour montrer que $(g_n)_{n \in \mathbb{N}}$ converge simplement sur X tout entier il suffit de montrer que $(g_n(x))_{n \in \mathbb{N}}$ est de Cauchy $\forall x \in X$.

En effet $g_n(x) \in \overline{f_n(x)}_{n \in \mathbb{N}}$ qui est compact donc complet. Fixons $\varepsilon > 0$. Puisque \mathcal{F} est équicontinue $\exists O \in \mathcal{V}(x)$ tel que $\forall n \in \mathbb{N}, \forall z \in O, \rho(g_n(x), g_n(z)) < \frac{\varepsilon}{3}$.

Comme D est dense dans X, $\exists x_j \in D$ tel que $x_j \in O$. Enfin par convergence de $(g_n(x_j))_{n \in \mathbb{N}}$ il existe $N \in \mathbb{N}$ tel que $\forall m, n \geqslant N, \rho(g_m(x_j), g_n(x_j)) < \frac{\varepsilon}{3}$. Cela permet de conclure à la convergence simple :

$$\rho(g_m(x), g_n(x)) \leqslant \rho(g_m(x), g_m(x_j)) + \rho(g_m(x_j), g_n(x_j)) + \rho(g_n(x_j), g_n(x))$$
$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

On montre directement la continuité de la limite g en passant à la limite dans l'inégalité de l'équicontinuité.

$$\forall x \in X, \ \forall \varepsilon > 0, \ \exists O \in \mathcal{V}(x), \ | \ \forall z \in O, \ \forall n \in \mathbb{N}, \ \rho(g_n(x), g_n(z)) < \varepsilon$$

En $n \longrightarrow +\infty : \forall z \in O, \ \rho(g(x), g(z)) < \varepsilon$. Soit maintenant $K \subset X$ compact.

$$\forall x \in X \ \exists O_x \in \mathcal{V}(x) \mid \forall z \in O_x, \ \forall f \in \mathcal{F}, \ \rho(f(x), f(z)) < \varepsilon$$

 $K \subset \bigcup_{x \in K} O_x : \exists x_1, \dots, x_k \in K \text{ tel que}$

$$K \subset \bigcup_{i=1}^k O_{x_i}$$

 $\exists N \in \mathbb{N} \text{ tel que } \forall n \geqslant N, \ \rho(g_n(x_i), g(x_i)) < \frac{\varepsilon}{3} \ \forall 1 \leqslant i \leqslant k.$

$$\forall x \in K, \rho(g(x), g_n(x)) \leqslant \rho(g(x), g(x_i)) + \rho(g(x_i), g_n(x_i)) + \rho(g_n(x_i), g_n(x))$$
$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

 $\forall n \geq N$, d'où la convergence uniforme sur tout compact.

6.2 Théorème de Stone-Weierstrass

- Propriété 3 -

 $A \subset \mathbb{R}$ non borné. $f: A \longrightarrow \mathbb{R}$ limite uniforme de polynômes. Alors f est un polynôme.

Preuve.

 $(P_n)_{n\in\mathbb{N}}$ suite de polynômes qui converge uniformément vers $f. \exists N\in\mathbb{N}$ tel que $\forall n\geqslant N: \sup_{x\in A}|P_n(x)-P_N(x)|\leqslant 1.$ P_n-P_N est un polynôme borné sur A donc est constant $P_n=P_N+\alpha_n$. Ainsi $(P_n-P_N)_{n\geqslant N}$ vérifie le critère de Cauchy uniforme. De là $(\alpha_n)_{n\geqslant N}$ est de Cauchy donc converge vers $\alpha\in\mathbb{R}$.

$$f(x) = \lim_{n \to +\infty} P_n(x) = P_N(x) + \lim_{n \to +\infty} \alpha_n = P_N(x) + \alpha$$

f est un polynôme.

- Lemme 5 -

 $\forall a > 0, \exists (P_n)_{n \in \mathbb{N}}$ une suite de polynômes qui converge uniformément vers |.| sur [-a, a].

Preuve.

On commence par $a = \frac{1}{2}$. Dans ce cas on écrit $|x| = \sqrt{1 - (1 - x^2)} \ \forall x \in \left[-\frac{1}{2}, \frac{1}{2} \right]$ et on utilise le DSE de $u \mapsto \sqrt{1 - u}$.

$$(1+u)^{\alpha} = 1 + \frac{\alpha}{1!}u + \ldots + \frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{n!}u^{n} + \ldots$$

et cette série CN sur $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

 $|x| = P_n(x) + R_n(x)$ où :

$$P_n(x) = \sum_{k=1}^n \frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!} (1-x^2)^k$$

Si $a \neq \frac{1}{2}$, $|x| = 2a \left| \frac{x}{2a} \right| = 2aP_n\left(\frac{x}{2a}\right) + 2aR_n\left(\frac{x}{2a}\right)$ ce qui donne une approximation uniforme explicite de la valeur absolue sur [-a,a].

- **Théorème 8** (Weierstrass) —

Soit $f: [a, b] \longrightarrow \mathbb{C}$

$$\forall \varepsilon > 0, \ \exists P \in \mathbb{C}[X] \ \text{tq} \ |f(x) - P(x)| < \varepsilon \ \forall x \in [a, b]$$

Lemme 6

Soit X un espace topologique compact qui contient au moins deux éléments. $H\subset C(X,\mathbb{R})$ tel que :

- 1. $\forall u, v \in H$, $\sup(u, v)$, $\inf(u, v) \in H$
- 2. $\forall x_1 \neq x_2 \in X$, $\forall \alpha_1, \alpha_2 \in \mathbb{R}$, $\exists u \in H$ tel que $u(x_1) = \alpha_1$ et $u(x_2) = \alpha_2$ On dit que H est un treillis. Alors H est dense dans $C(X, \mathbb{R})$.

Soient $f \in C(X, \mathbb{R})$ et $\varepsilon > 0$. Soit $x \in X$. $\forall y \neq x \in X$, $\exists u_y \in H$ tel que $u_y(x) = f(x)$ et $u_y(y) = f(y)$. Soit :

$$O_y = \{ z \in X \mid u_y(z) > f(z) - \varepsilon \}$$

 $\forall y \neq x \in X, O_y$ est un ouvert qui contient y et x donc $X = \bigcup_{y \neq x \in X} O_y$. Par compacité :

$$X = \bigcup_{j=1}^{r} O_{y_j}, \ y_j \neq x \in X$$

Soit $v_x = \sup_{u_{y_1}, \dots, u_{y_r}} v_x \in H$ et $v_x(x) = f(x)$ et $\forall x' \in X$ $v_x(x') > f(x') - \varepsilon$. En effet $v_x(x') \geqslant u_{y_j}(x') \ \forall 1 \leqslant j \leqslant r$. En particulier $x' \in O_{y_{j_0}}, \ v_x(x') \geqslant u_{y_{j_0}}(x') > f(x') - \varepsilon$.

On fait maintenant varier x et on pose, pour chaque $x \in X$,

$$\Omega_x = \{ x' \in X \mid v_x(x') < f(x') + \varepsilon \}$$

 Ω_x est un ouvert de X par continuité de v et $x\in\Omega_x.$ On peut utiliser à nouveau la compacité de X pour obtenir :

$$X = \bigcup_{i=1}^{s} \Omega_{x_i}$$

Soit enfin $v = \inf(v_{x_1}, \dots, v_{x_s})$. $v \in H$ et $\forall x \in X$ on a $v(x) > f(x) - \varepsilon$ et $v(x) \leq v_{x_i}(x)$ $\forall 1 \leq i \leq s$. En particulier $x \in \Omega_{x_i}$, $v(x) \leq v_{x_i}(x) < f(x) + \varepsilon$.

En définitive, $v \in H$ et $f(x) - \varepsilon < v(x) < f(x) + \varepsilon$.

Théorème 9 (Stone-Weierstrass) -

Soit X métrique compact. Soit $A \subset C(X,\mathbb{R})$ sous-algèbre unitaire (i.e. qui contient les fonctions constantes et qui est stable par addition et multiplication). On suppose de plus que A sépare les points de X au sens où $\forall x \neq y \in X, \exists f \in A$ tel que $f(x) \neq f(y)$. Alors A est dense dans $C(X,\mathbb{R})$.

Preuve.

Notons que si X est réduit à un seul élément alors le résultat est trivial car $C(X,\mathbb{R})$ est alors constitué des fonctions constantes qui sont dans A par hypothèse. On suppose donc que X contient au moins deux éléments. La démonstration repose sur le lemme de densité précédent. Pour en déduire le théorème on montre que \overline{A} est un treillis, ainsi \overline{A} est dense, i.e. A est dense.

Exemple. (X, d), (X', d') des espaces métriques. $X \times X'$ muni de :

$$d_{X \times X'}((x, x'), (y, y')) = \max(d(x, y), d'(x', y'))$$

qui induit la topologie produit.

$$C(X,\mathbb{R}) \otimes C(X',\mathbb{R}) = \left\{ (x,x') \mapsto \sum_{k=1}^{n} \lambda_k f_k(x) g_k(x') \right\}$$

dense dans $C(X \times X', \mathbb{R})$.

cf. corde de Melde et équation de la chaleur.

6.3 Continuité et convergence simple

Lemme 7

Soient (Y_1,d_1) et (Y_2,d_2) deux e.m. et $y\in Y_1$. $T\colon Y_1\longrightarrow Y_2$ est continue au point y ssi elle est séquentiellement continue i.e. si $\forall y_n\xrightarrow[n\to+\infty]{}y\in Y_1,\ T(y_n)\xrightarrow[n\to+\infty]{}T(y)\in Y_2.$

Preuve.

 \Rightarrow : $\forall \varepsilon > 0$, $\exists \delta > 0$ tel que $d_1(x,y) < \delta \Rightarrow d_2(T(x),T(y)) < \varepsilon$

 \Leftarrow : Réciproquement, si T n'est pas continue en y alors $\forall n \in \mathbb{N}, \exists x_n \in \mathcal{B}_{d_1}(y, 2^n)$ tel que $d_2(T(y), T(x_n)) \geqslant 1$. T n'est pas séquentiellement continue.

- Propriété 4 –

X e.t. compact. Toutes les normes sur $C(X,\mathbb{R})$ qui le rendent complet et entraı̂nent la convergence simple sont équivalentes.

Preuve.

Soit $\|.\|$ qui rende $C(X,\mathbb{R})$ complet et qui entraı̂ne la convergence simple. Posons $E=(C(X,\mathbb{R}),\|.\|)$ et :

$$\Lambda_x \colon \left\{ \begin{array}{ccc} E & \longrightarrow & \mathbb{R} \\ f & \longmapsto & \Lambda_x(f) = f(x) \end{array} \right.$$

Montrons que Λ_x est continue $\forall x \in E$. Pour cela nous allons utiliser la caractérisation séquentielle de la continuité donnée par le lemme précédent.

Si $||f_n|| \xrightarrow[n \to +\infty]{} 0$ alors $f_n(x) \xrightarrow[n \to +\infty]{} 0$. Par hypothèse et par définition de Λ_x , $\Lambda_x(f_n) \xrightarrow[n \to +\infty]{} 0$. Notons ensuite $\mathcal{F} = \{\Lambda_x, x \in X\}$. La famille est simplement bornée :

$$\forall x \in X, \forall f \in E, \quad |\Lambda_x(f)| = |f(x)| \leqslant \sup_{y \in X} |f(y)| < +\infty$$

Ainsi le théorème de Banach-Steinhaus assure que \mathcal{F} est uniformément bornée dans $\mathcal{L}(E,\mathbb{R})$ ce qui se traduit par l'existence de c>0 tel que :

$$\forall x \in X, \forall f \in E, \quad |f(x)| = |\Lambda_x(f)| \leq ||\Lambda_x||_{\mathcal{L}(E,\mathbb{R})} \cdot ||f|| \leq c||f||$$

Alors $||f||_{\infty} = \sup_{x \in X} |f(x)| \le c||f||$. On termine la preuve en utilisant la complétude de E et le corollaire du théorème de l'application ouverte qui énonce que deux normes sur un espace de Banach sont équivalentes dès que l'une domine l'autre.

Théorème 10

Soit X un espace de Baire et (Y,d) métrique. Soit $f_n: X \longrightarrow Y$ une suite de fonctions continues qui converge simplement vers $f: X \longrightarrow Y$. Alors f est continue sur un ensemble dense.

Remarque.

- $\bullet \ \mathbb{1}_{\mathbb{Q}}$ n'et pas limite simple de fonctions continues.
- f dérivable : f' est continue sur un ensemble dense.

 ${\bf Soient}:$

Soient :
$$A_{N,k} = \bigcap_{m,n\geqslant N} \left\{ x \in X \mid d(f_m(x),f_n(x)) \leqslant \frac{1}{k} \right\}$$
 fermés. Comme $f_n \xrightarrow[n \to +\infty]{} f$ simplement, $X = \bigcup_{n \in \mathbb{N}} A_{N,k} \ \forall k \in \mathbb{N}^*$.

 $\Omega_k = \bigcup_{N \in \mathbb{N}} \widehat{A_{N,k}}$ est un ouvert dense (à partir du théorème de Baire). On montre ensuite que f est continue sur $\bigcap_{k \in \mathbb{N}^*} \Omega_k$.