微积分 (第五章)

一、定积分的概念

- 一、定积分的定义
 - 。 1.概念引入

1、定积分概念的引入

实例1 (求曲边梯形的面积)

曲边梯形由连续曲线 $y = f(x)(f(x) \ge 0)$ 、 x轴与两条直线x = a、 x = b所围成.

第一步: 分割

曲边梯形如图所示,在区间 [a,b] 内插入若干个分点, $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$,

把区间 [a,b] 分成 n个小区间 $[x_{i-1},x_i]$, 长度为 $\Delta x_i = x_i - x_{i-1}$;

y q x_1 x_{i-1} x_i x_{n-1} x_n

称为区间的-

第二步:近似

在每个小区间 $[x_{i-1},x_i]$ 上任取一点 ξ_i ,以 $[x_{i-1},x_i]$ 为底, $f(\xi_i)$ 为高的小矩形面积为 $A_i=f(\xi_i)\Delta x_i$

 A_i 与 ξ_i 的选择有关.

第三步: 求和

曲边梯形面积的近似值为 $A \approx \sum_{i=1}^{n} f(\xi_i) \Delta x_i$

A与分法T及点 ξ_i 的选择有关.

第四步: 取极限

当分割无限加细,即小区间的最大长度 $\lambda = \max\{\Delta x_1, \Delta x_2, \cdots \Delta x_n\}$ 趋近于零 $(\lambda \to 0)$ 时, 曲边梯形面积为 $A = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$

。 2.定义

2、定积分的定义

定义: 设函数 f(x) 在 [a,b] 上有界,在 [a,b] 中任意插入若干个分点 $a=x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$ 把区间 [a,b] 分成 n 个小区间,各小区间的长度依次为 $\Delta x_i = x_i - x_{i-1}$, $(i=1,2,\cdots)$, 在各小区间上任取 一点 ξ_i ($\xi_i \in \Delta x_i$),作乘积 $f(\xi_i)\Delta x_i$ ($i=1,2,\cdots$)并作和 $S=\sum_{i=1}^n f(\xi_i)\Delta x_i$,记 $\lambda=\max\{\Delta x_1,\Delta x_2,\cdots,\Delta x_n\}$,如果不论对 [a,b]

" $\varepsilon - \delta$ "语言描述的定积分定义:

定义 使得对任意的分割

$$T: a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$$
 若存在一常数 I ,任给 $\varepsilon > 0$,存在 $\delta > 0$,只要 $\max\{\Delta x_i : 1 \le i \le n\} = \lambda(T) < \delta$,任给 $\xi_i \in [x_{i-1}, x_i]$,都有

$$\Big|\sum_{i=1}^n f(\xi_i) \Delta x_i - I\Big| < \varepsilon$$

成立,则称I为函数f(x)在区间[a,b]上的定积分。

——黎曼Riemann积分

注意:

(1) 积分值仅与被积函数及积分区间有关, 而与积分变量的字母无关.

$$\int_a^b f(x)dx = \int_a^b f(t)dt = \int_a^b f(u)du$$

- (2) 定义中区间的分法和 ξ_i 的取法是任意的.
- (3) 当函数f(x)在区间[a,b]上的定积分存在时,称f(x)在区间[a,b]上可积.

。 3.性质

■ (1) 交换积分上下限a,b,定积分反号

性质:交换积分上、下限,定积分反号: $\int_a^b f(x) dx = -\int_b^a f(x) dx.$

证:保持分法T不变, $\xi_i \in [x_{i-1}, x_i]$ 的取值也不变.

则由a往b看, $\Delta x_i = x_i - x_{i-1}$;

由b往a看, $\Delta x_i^* = x_{i-1} - x_i = -\Delta x_i$.

$$\int_{a}^{a} f(x) \, \mathrm{d}x = 0$$

$$\int_{b}^{a} f(x) dx = \lim_{|\Delta x^{*}| \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}^{*} = \lim_{|\Delta x| \to 0} \sum_{i=1}^{n} f(\xi_{i}) (-\Delta x_{i})$$
$$= -\int_{a}^{b} f(x) dx.$$

■ (2) a=b,则定积分为0

。 4.几何意义

$$f(x) > 0$$
, $\int_a^b f(x)dx = A$ 曲边梯形的面积 $f(x) < 0$, $\int_a^b f(x)dx = -A$ 曲边梯形的面积 的负值

• 二、可积函数类

。 性质1: 可积必有界

性质(可积的必要条件)

设f(x)在区间[a,b]上可积,则f(x)在[a,b]上有界.

证:(反证法) 若f(x)在区间[a,b]上无界,则对于[a,b]内的任意分割 T, 必存在属于T的某个小区间 Δ_k ,f(x)在 Δ_k 上无界,在 $i \neq I$ 的各个小区间 Δ_k 上任意取定 ξ_i ,并记 $G = \sum_{i \neq k} f(\xi_i) \Delta x_i$ | 现对任意大的正数M,由于f(x) 在 Δ_k 上无界,故存在 $\xi_k \in \Delta_k$,使得 $|f(\xi_k)| > \frac{M+G}{\Delta x}$. 于是有:

$$|\sum_{i=1}^{n} f(\xi_i) \Delta x_i| \geq |f(\xi_k) \Delta x_k| - |\sum_{i \neq k} f(\xi_i) \Delta x_i| > \frac{\Delta x_k}{\Delta x_k} \cdot \Delta x_k - G = M.$$

这与f(x)在[a,b]上可积相矛盾,从而定理得证。

。 推论1: 有界不一定可积

例: 证明狄理克雷函数

$$D(x) = \begin{cases} 1, & x \to \text{有理数} \\ 0, & x \to \text{无理数} \end{cases}$$

在[0,1]上有界但不可积.

定理 1: 设f(x)在区间[a,b]上连续,

则f(x)在[a,b]上可积.

定理2:设f(x)在区间[a,b]上有界,且只有

有限个间断点,则f(x)在[a,b]上可积.

定理3:设f(x)在区间[a,b]上单调,

则f(x)在[a,b]上可积.

。定理

• 三、用定义计算定积分**常均分为n等分**

例 利用定义计算定积分
$$\int_0^1 x^2 dx$$
.

解 将[0,1]n等分,分点为
$$x_i = \frac{i}{n}$$
, $(i = 1, 2, \dots, n)$
小区间[x_{i-1}, x_i]的长度 $\Delta x_i = \frac{1}{n}$, $(i = 1, 2, \dots, n)$
取 $\xi_i = x_i$, $(i = 1, 2, \dots, n)$
$$\sum_{i=1}^n f(\xi_i) \Delta x_i = \sum_{i=1}^n \xi_i^2 \Delta x_i = \sum_{i=1}^n x_i^2 \Delta x_i,$$

$$= \sum_{i=1}^n \left(\frac{i}{n}\right)^2 \cdot \frac{1}{n} = \frac{1}{n^3} \sum_{i=1}^n i^2 = \frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{1}{6} \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right),$$

$$\lambda \to 0 \Rightarrow n \to \infty$$

$$\int_0^1 x^2 dx = \lim_{\lambda \to 0} \sum_{i=1}^n \xi_i^2 \Delta x_i = \lim_{n \to \infty} \frac{1}{6} \left(1 + \frac{1}{n} \right) \left(2 + \frac{1}{n} \right) = \frac{1}{3}.$$

例 设函数 f(x)在区间[0,1]上连续,且取正值.

试证
$$\lim_{n\to\infty} \sqrt[n]{f\left(\frac{1}{n}\right) \cdot f\left(\frac{2}{n}\right) \cdots f\left(\frac{n}{n}\right)} = e^{\int_0^1 \ln f(x) dx}$$
.

证明: 利用对数的性质得

$$\lim_{n\to\infty} \sqrt{f\left(\frac{1}{n}\right) \cdot f\left(\frac{2}{n}\right) \cdots f\left(\frac{n}{n}\right)} = e^{\ln\left(\lim_{n\to\infty} \sqrt{f\left(\frac{1}{n}\right) \cdot f\left(\frac{2}{n}\right) \cdots f\left(\frac{n}{n}\right)}\right)}$$

$$= e^{\lim_{n\to\infty} \left(\ln \sqrt{f\left(\frac{1}{n}\right) \cdot f\left(\frac{2}{n}\right) \cdots f\left(\frac{n}{n}\right)}\right)} = e^{\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \ln f\left(\frac{i}{n}\right)}$$

指数上可理解为: $\ln f(x)$ 在区间 [0,1]上的一个积分和.

分点为
$$x_i = \frac{i}{n} (i = 1, 2, \dots, n)$$
.

因为f(x)在区间[0,1]上连续,且f(x) > 0

所以 $\ln f(x)$ 在[0,1]上有意义且可积,

$$\lim_{n\to\infty}\sum_{i=1}^n \ln f\left(\frac{i}{n}\right)\cdot\frac{1}{n} = \int_0^1 \ln f(x)dx$$

故:
$$\lim_{n\to\infty} \sqrt[n]{f\left(\frac{1}{n}\right) \cdot f\left(\frac{2}{n}\right) \cdots f\left(\frac{n}{n}\right)} = e^{\int_0^1 \ln f(x) dx}$$

例: 将和式极限:
$$\lim_{n\to\infty}\frac{1}{n}\left[\sin\frac{\pi}{n}+\sin\frac{2\pi}{n}+\cdots+\sin\frac{(n-1)\pi}{n}\right]$$

表示成定积分.

解: 原式 =
$$\lim_{n \to \infty} \frac{1}{n} \left[\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \frac{(n-1)\pi}{n} + \sin \frac{n\pi}{n} \right]$$

= $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \sin \frac{i}{n} \pi = \frac{1}{\pi} \lim_{n \to \infty} \sum_{i=1}^{n} \left(\sin \frac{i\pi}{n} \right) \cdot \frac{\pi}{n}$
= $\frac{1}{\pi} \int_{0}^{\pi} \sin x dx$.

0