

AD-A157 897

(2)

CERL

Computer-based Education Research Laboratory

APPLICATION OF COMPONENT SCORING TO A COMPLICATED COGNITIVE DOMAIN

KIKUMI K. TATSUOKA

KENTARO YAMAMOTO

Approved for public release; distribution unlimited.
Reproduction in whole or in part permitted for any purpose
of the United States Government.

This research was sponsored by the Personnel and Training
Research Program, Psychological Science Division, Office
of Naval Research, under Contract No. N00014-82-K-0604.
Contract Authority Identification Number NR 150-495.

DMC FILE COPY

RESEARCH REPORT 85-2-ONR

MAY 1985

University of Illinois at Urbana-Champaign

85 812 047

14

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

ADA 157 897

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release Distribution unlimited	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 85-2-ONR		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Computer-based Ed Res Lab University of Illinois	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION University of Illinois	
6c. ADDRESS (City, State, and ZIP Code) Urbana, IL 61801		7b. ADDRESS (City, State, and ZIP Code) Grants and Contracts 105 Davenport House - 809 S. Wright St. Champaign, IL 61820	
8a. NAME OF FUNDING / SPONSORING ORGANIZATION Office of Naval Research	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
8c. ADDRESS (City, State, and ZIP Code) Personnel and Training Research Programs 800 N. Quincy St., Arlington, VA 22217		10. SOURCE OF FUNDING NUMBERS	
11. TITLE (Include Security Classification) Unclassified: Application of Component Scoring to a Complicated Cognitive Domain			
12. PERSONAL AUTHOR(S) Kikumi K. Tatsuoka and Kentaro Yamamoto		13a. TYPE OF REPORT Research	
13b. TIME COVERED FROM _____ TO _____		14. DATE OF REPORT (Year, Month, Day) 1985, May, 15	
15. PAGE COUNT 16			
16. SUPPLEMENTARY NOTATION			
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) problem-solving, structural relations, component scoring, basic electricity, rule space, error patterns.	
19. ABSTRACT (Continue on reverse if necessary and identify by block number) The recent development of cognitive psychology and science suggests that the lack of understanding of important structural relations between the entities in a problem-solving domain causes difficulties in learning. This study proposes a new scoring method by which the structural relations as well as processes used in subcomponents of the knowledge structure are taken into account when determining the scores. By so doing, a score of "1" derived by wrong reasons will be eliminated and patterns of zeros and ones will contain information closely associated with student's cognitive processes. The procedure is illustrated with basic electricity problems. <i>Keywords?</i>			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE (Include Area Code)	22c. OFFICE SYMBOL

Copies of this Report
may be requested from:

Kikumi K. Tatsuoka
University of Illinois
252 CERL
103 S. Mathews St.
Urbana, IL 61801

Some of the analyses performed in this report were done on the PLATOR^R system. The PLATOR^R system is a development of the University of Illinois, and PLATOR^R is a service mark of Control Data Corporation.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

Tatsuoka (1983) showed in the context of signed-number problems that dividing the unit of scores into subcomponents, sign and number parts, enabled us to observe misconceptions possessed by students explicitly. However, the recent development of computer technology has made it easier to write computer programs that are capable of solving problems in procedural domains. This study utilizes such work to show cognitive errors occurring at unobservable subcomponents of problem-solving activities.

Riley and her associates (Riley, 1983; Riley, Bee & Mokwa, 1981) have developed a model that represents the theoretical analysis of the knowledge required for successful performance on the Navy's basic electricity and electronics (BE&E) training program. The analysis is presented in the form of a computer program, in other words, a production system which is comprised of two components of knowledge. The first component is a database that includes a network of elements and relations between those elements. The second is a set of production rules which consist of conditions and actions related with "if" and "then" statements. A schematic representation of solving problems in D-C circuits is presented in one of Riley's studies (Riley, 1983). The processes, components of the problem and their relations are expressed in a coherent structure in her paper. Further, an empirical study through a series of interviews with students at the Navy BE&E school revealed that the lack of understanding and acquisition of important components of knowledge structure yielded several errors which were also identified by the theoretical analysis. Montague and Riley constructed a new test by taking these findings into account. This study uses the Montague-Riley test to introduce a new scoring procedure that enables us to see errors in cognitive processes occurring at subcomponents of solving an electricity problem. The scores from the new

scoring procedure reflect the weaknesses and strengths of a student's understanding in the important knowledge components.

Montague-Riley test and a computer program that solves a circuit problem

The tests consist of four parts. Each part includes 36 problems. The content of the test is divided into: 1) series circuits; 2) parallel circuits; 3) and 4) combination circuits. In this study, parts 1) and 2) (simple circuits) are subjected to investigation. As can be seen in Figure 1, the problems are open-ended and require several

Insert Figure 1 about here

steps to reach the right answers. These steps are: 1) knowing the terminology and its meanings; 2) understanding the schematic expression of a circuit; 3) setting the known conditions properly that are given in the problem; 4) select an unknown variable that can be solved from the known condition; 5) select appropriate rule(s) expressing various relations among resistors, current and voltage; 6) substitute proper numerals or relations (increase or decrease) in the variables ; 7) solve the equation for the unknown variable; or make a quantitative inference; 8) get the answer; 9) update a set of known conditions.

Independently from Riley's production system, a new computer program was designed and written on the PLATO® system at the University of Illinois (ELTEST, Tatsuoka & Baillie, 1984). Riley's production system uses a backward-search strategy to locate the requested unknown variables which are solvable by the known conditions, but the ELTEST program applies a decision-table strategy which consists of a contingency table of four rows and n columns (the number of resistors plus two columns). The first

	1	2	3	tot	
I	0	+	0		3
E			0	1	
R				0	
I	1	1	1	1	

No. 1

	1	2	3	tot	
I	0	+	0	+	4
E			0	1	
R			-	1	
I	1	1	1	3	

No. 2

	1	2	3	tot	
I	0	+	0	-	4
E			0	1	
R	-	-	-	-	4
I	2	2	2	3	

No. 3

	1	2	3	tot	
I	0	+	0	-	4
E	-		0	1	
R	-	-	-	-	4
I	3	2	2	3	

No. 4

	1	2	3	tot	
I	0	+	0	-	4
E	-		-	0	3
R	-	-	-	-	4
I	3	2	3	3	

No. 5

	1	2	3	tot	
I	0	+	0	-	4
E	-	+	-	0	4
R	-	-	-	-	4
I	3	3	3	3	

No. 6

Figure 1: The condition table of a series circuit problem

at six different stages of problem-solving activities

row represents resistors R_i , the second for voltage drop E_i at R_i and the third row for the current at R_i , $i=1,2,\dots,n$. The fourth row contains the number of total cells filled in the known quantities or the known relations: increase, decrease or unchanged. The n -th column represents the total resistance, total voltage drop, and the total current. The last column includes the number of cells filled in the known quantities or relations. The information in these last rows and columns enables the computer program to solve a problem forwardly instead of backwardly as in Riley's production system. The forwarding path, the ordered string of consecutively solvable variables is uniquely determined except for that E_i and E_j ($i \neq j$) may be alternated. Riley's theoretical findings that the lack of understanding in the part-whole relations properly causes errors in the answers was taken into account in the design of ELTEST. The part-whole relationships are decomposed into two parts; that of between columns and within columns (Ohm's law).

The between-column relations include:

$$\sum_{i=1}^n R_i = R_t, \quad \sum_{i=1}^n E_i = E_t, \quad I_1 = I_2 = \dots = I_t \text{ for series circuit,}$$

$$\sum_{i=1}^n 1/R_i = 1/R_t, \quad E_1 = E_2 = \dots = E_t, \quad \sum_{i=1}^n I_i = I_t \text{ for parallel circuits,}$$

and the within-column relations common to both the series and parallel circuits (Ohm's law) are given by,

$$I_i = E_i/R_i, \quad i=1,2,\dots,n.$$

Misconceptions or lack of knowledge

Many errors can be anticipated at any step from 1 to 8 described earlier by a content analysis. However, Riley (1984) found five sources of misconceptions through her protocol study. She reported the frequencies of these errors with a sample of 7 Naval trainees. These errors are described in Table 1 with the same code she used in the previous study.

Insert Table 1 about here

The Montague-Riley test was administered to 250 high school students. Frequencies of their responses to the test items and frequencies of their response patterns as a whole were calculated, and the high-frequency responses are summarized in Table 2.

Insert Table 2 about here

As can be seen in Table 2, quite a few students produced erroneous response patterns different from those of the right responses. The purpose of the next section is to identify the underlying misconceptions which resulted from producing those answers. First, a new scoring procedure (component scoring procedure) that is designed to reflect closely the results of theoretical analysis mentioned earlier into the scores of nine responses will be introduced.

Component scoring procedure

Tatsuoka (1983), Tatsuoka and Tatsuoka (1981) proposed a component scoring procedure in signed-number subtraction problems (number and sign

parts of responses are scored separately), and formulated a rule space where each erroneous rule of operation was presented as an ordered pair of latent variables θ_1 and θ_2 , representing the abilities of calculating the correct

Table 1

Riley's Five Categories of Errors

1. GC-1 Failure to distinguish the identities of the quantities mapped into circuit formulas.
2. E = R Failure to distinguish between voltage drops and resistance.
3. LG Mixing local and global variables when Ohm's law was solved.
4. NA No Answer
5. Other

Table 2

Frequencies of response patterns observed in the problems of series circuits (N = 253)

<u>Problem 1</u>		<u>Problem 2</u>	
<u>Frequencies</u>	<u>Response</u>	<u>Frequencies</u>	<u>Response</u>
	<u>Pattern</u>		<u>Pattern</u>
132*	+--0-----	108*	-++0+++++
5	+0+0+----	5	-+-+00000
20	+0+0+0000	14	-0-0-0000
8	+--0-00000	34	-+-+0+-++
6	+00000----		
5	+--++0000		
6	+0-0-----		
5	+---0-----		

<u>Problem 3</u>		<u>Problem 4</u>	
<u>Frequencies</u>	<u>Response</u>	<u>Frequencies</u>	<u>Response</u>
	<u>Pattern</u>		<u>Pattern</u>
28*	+--0-----	159*	+---0-----
42	+----0-00	18	+000+0000
32	-----	9	+000+----
17	+---0----	7	+---00000
10	----0----	5	+----+----
9	+0000----	5	+---0000-
18	0-----	6	+-----
6	00000----		
12	0---0----		

*The response patterns listed at the top represent the correct answer.

numbers and signs, respectively, for the answers. However, the problems in the Montague-Riley test are far more complicated than signed-number arithmetic and thus require the help of a computer. For example, Problem 1 in the series circuit test asks:

What would be the effect of an increase in resistance of R₂ on the circuit values?

The students are expected to fill in the boxes displayed in the problem with "+" for increase, "-" for decrease, and "0" for remain fixed. The right procedure starts with filling cell R₂ with "+" and E_a with "0" because the battery voltage (E_a) should always be invariant. Then the cells R₁ and R₂ must be filled with "0". Figure 2 shows a summary of the successive conditions determined by various stages of problem solving. The only solvable equation in No. 1 of Figure 2 is the relation of the first row:

R₁ + R₂ + R₃ = [] and the answer is "+". Then the next step is to

Insert Figure 2 about here

apply Ohm's law at the total level in No. 2: I_t = E_a/R_t and the right answer is "-". The next step also follows uniquely: use the relation I₁ = I₂ = I₃ = I_t (because the current is invariant) to fill the cells I₁, I₂ and I₃. Now in No. 3 of Figure 1, apply Ohm's law, E₁ = I₁ × R₁ and E₃ = I₃ × R₃. Then the answers in cells E₁ and E₃ are uniquely determined and they are "-". Since Ohm's law at E₂, E₂ = I₂ × R₂ cannot provide the unique answer with the conditions R₂ = + and I₂ = -, the relationship E_T =

Mark the appropriate box.

If the resistance of R_2 increases, what happens to:

	Increases	Decreases	No change
R_T			
E_{R1}			
E_{R2}			
E_{R3}			
E_T			
I_{R1}			
I_{R2}			
I_{R3}			
I_T			

Figure 2: A series circuit with three resistors and answer format

$E_1 + E_2 + E_3$ must be used. Since E_1 is invariant, E_1 and E_3 are decreasing, the part-whole relation determines E_2 to be +. Thus, the response sequence to the problem is "+ - + - 0 - - -" when the right procedure is applied. The procedure used in solving each unknown is summarized in the Table 3.

Insert Table 3 about here

The computer program ELTEST, described in an earlier section, was used to score 250 students' responses to the items. The program generates the right answer consecutively for an unknown variable encountered and solves it at each step by using the conditions determined by the previous steps. If the generated response to the question does not match a student's answer, then the program prints the location of the component as well as the conditions used at the current step, picks up the student's wrong response and makes it one of the conditions in solving the next unknown variable (question). The sequential path of solving each unknown variable can be examined by using Table 4. A row of the table represents the

Insert Table 4 about here

necessary conditions to be known in order to obtain the value of a column variable with one type of four arithmetic operations without any combination. For example, $E_1 = E_4 = -E_2 - E_3$ is a simple operation but $E_2 = (E+/R+)*R_2$ is a combination. The variation of paths of solving unknown variables are only within a step, hence in terms of scoring applications of rules the path difference is trivial and does not affect component scoring

Table 3

Summary of the right procedure at each step of solving the unknowns

Variable	Current Condition	Relation to be used	Answer	Order of
				steps
R _t	R ₁ =0, R ₂ =+, R ₃ =0, (E _t ≤0)	R _t =R ₁ +R ₂ +R ₃	+	2
E ₁	R ₁ =0, I ₁ =-	E ₁ =I ₁ × R ₁	-	7
E ₂	R ₂ =+, I ₂ =-	E ₂ =I ₂ × R ₂	**	8
	E ₁ =-, E ₃ =-, E _t =0	E _t =E ₁ +E ₂ +E ₃	+	10
E ₃	R ₃ =0, I ₃ =-	E ₃ =I ₃ × R ₃	-	9
E _t	E _t ≤0	Terminology	0	1
I ₁	I _t =0	I _t =I ₁	-	4
I ₂	I _t =0, I ₁ =0	I _t =I ₁ =I ₂	-	5
I ₃	I _t =0, I ₁ =0, I ₂ =0	I _t =I ₁ =I ₂ =I ₃	-	6
I _t	E _t =+, R _t =+	I _t =E _t /R _t	-	3

**Impossible to diagnose

Table 4

Prerequisite conditions to derive the correct values of the column variable

	R+	E ₁	E ₂	E ₃	E _t	I ₁	I ₂	I ₃	I _t	
R+						1				1 step 2
E ₁			1	1	1	1				
E ₂		1		1	1		1			step 5
E ₃		1	1		1			1		
E _t	1	1	1	1						1 step 3
I ₁	*	*	*	*	*	*	*	*	*	
I ₂	*	*	*	*	*	*	*	*	*	step 4
I ₃	*	*	*	*	*	*	*	*	*	
I _t	1	*	*	*	*	*	*	*	*	
R ₁	1	1				1				
R ₂			1				1			step 1
R ₃	1			1				1		

* Within each column one of the *'s needs to be known

1 To solve unkown column variable necessarily being know row
variables are coded as 1

2 This coding is based on a serial circuit with 3 resistors

at all.

The scoring at a particular point is based on the correctness of applying the appropriate rule using preceding conditions, hence, the wrong response at a particular point does not effect the score of later variables. This scoring enables us to identify the exact spot where an erroneous application of a rule was made. For example, the following student produced the response pattern shown in Table 5.

Insert Table 5 about here

The example given in Table 5 can be diagnosed as follows:

- 1) The student lacks the knowledge that $E_a =$ remains fixed;
- 2) at $E_1 = I_1 \times R_1$, substituting "unchanged" and "decrease" in R_1 and I_1 , respectively, E_1 should be decreased. The same action is repeated at E_3 ;
- 3) at $I_t = E_t/R_t$, the answer should be undetermined, but the response is -. The student's error is due to a lack of understanding of the algebraic relationships of Ohm's law.

Discussion

This study displayed the successful application of the component scoring method in the domain of electronics, which is more complicated than the signed-number subtraction domain. This scoring method is applicable and useful unless the number of components is unmanageably large.

The immediate return of component scoring is being able to identify where the error was made. This leads directly to a remediation scheme for a particular error. The evaluation of component scores is difficult to do. One way to do this evaluation is to ask how objective the scoring is by examining sources of variations of scoring and the meaningfulness of these

Table 5

Comparison between component scoring and traditional "right or wrong"
scoring procedures

Problem	Answer	Component Scoring	Traditional Scoring	Right Answer
R+	+	1	1	+
E ₁	0	0	0	-
E ₂	+	1	1	+
E ₃	0	0	0	-
E _a	+	0	0	0
I ₁	-	1	1	-
I ₂	-	1	1	-
I ₃	-	1	1	-
I _T	-	0	1	-

variations. Using some information similar to the table, one can answer these two questions. In this study there was only one general sequential path, and the variation within the general path produced identical results, hence variation was trivial.

The other way to evaluate the scoring is to compare the item by item correlation matrix of component scoring and regular scoring. If the scores reflect the knowledge of electricity circuits, then the correlations of scores should be non-negative. It was found that there were eleven significantly large negative correlations for the regular scoring, while only one in the component scoring.

The number of components can be derived by first making a theoretical study of materials to be tested and further modified after the pilot study, and then validating the components by comparing the real data and the responses simulated by the erroneous rules of various components. Benefits of component scoring are far reaching. For example, instead of a very specific conditional description needed to express the erroneous rule in one component (right or wrong responses), the component scoring method can express most of the erroneous rules by the combination of components and component specific errors. For example if three errors are identified with each of four components then $3 \times 4 = 81$ combinations of possible erroneous rules exist; and each of 81 erroneous rules can be specifically defined by only 12 rules. Other benefits of the component scoring method are realized when responses are mapped on to the rule space (Tatsuoka, 1984) by using right or wrong response patterns. Some rules can have small spatial distances on the rule space but the response patterns are distinctly unique. For such a case, if the component scoring method were utilized, two response patterns can be distinguished more precisely.

References

Riley, M. S. (1983). Structural understanding in performance and learning. (Unpublished doctoral dissertation). Pittsburgh, PA: Learning Research and Development Center, University of Pittsburgh.

Riley, M. S. (1984). Personal communication.

Riley, M. S., Bee, N. V., & Mokwa, J. J. (1981). Representations in early learning: The acquisition of problem-solving strategies in basic electricity/electronics (Report prepared for the Navy Personnel Research and Development Center under ONR Contract N_001-80-C-0477). Paper presented at, and published in the proceedings of, the international workshop on Problems Concerning Students' Representations of Physics and Chemistry Knowledge held in Ludwigsburg, Germany, September 14-16, Sponsored by the Volkswagen Stiftung.

Tatsuoka, K. K. (1983) Rule Spaces: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20, 4, 345-354.

Tatsuoka, K. K. (1984). Caution indices based on item response theory. Psychometrika, 51, 1, 95-110.

Tatsuoka, K. K., & Baillie, R. (1985). Program for solving electricity series and parallel circuit problems [Computer program]. Urbana, IL: University of Illinois, Computer-based Education Research Laboratory.

Tatsuoka, K. K., & Tatsuoka, M. M. (1981). Item analysis when a test is designed for diagnosing bugs: Item relations structure analysis method (Technical Report 81-7-NIE). Urbana, Ill.: University of Illinois, Computer-based Education Research Laboratory.

Distribution List

Personnel Analysis Division
AF/MPXA
5C360, The Pentagon
Washington, DC 20330

Air Force Human Resources Lab
AFHRL/MPD
Brooks AFB, TX 78235

Air Force Office
of Scientific Research
Life Sciences Directorate
Bolling Air Force Base
Washington, DC 20332

Dr. Robert Ahlers
Code N711
Human Factors Laboratory
NAVTRAEEQUIPCEN
Orlando, FL 32813

Dr. Ed Aiken
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1455 Copenhagen
DENMARK

Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Technical Director
Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450

Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
Israel

Dr. Werner Birke
Personalstammamt
der Bundeswehr
D-5000 Koeln 90
WEST GERMANY

Code N711
Attn: Arthur S. Blaiwes
Naval Training Equipment Center
Orlando, FL 32813

Dr. R. Darrell Bock
University of Chicago
Department of Education
Chicago, IL 60637

Mr. Arnold Bohrer
Psychological Research Section
Caserne Petits Chateau
CRS
1000 Brussels
BELGIUM

Dr. Nick Bond
Office of Naval Research
Liaison Office, Far East
APO San Francisco, CA 96503

Dr. Robert Breaux
Code N-095R
NAVTRAEEQUIPCEN
Orlando, FL 32813

Dr. Robert Brennan
American College Testing
Programs
P. O. Box 168
Iowa City, IA 52243

Dr. John S. Brown
XEROX Palo Alto Research
Center
3333 Coyote Road
Palo Alto, CA 94304

Dr. Glenn Bryan
6208 Poe Road
Bethesda, MD 20817

University of Illinois/Tatsuoka, Tatsuoka, & Eddins

19 April 1985

Dr. Patricia A. Butler
NIE Mail Stop 1806
1200 19th St., NW
Washington, DC 20208

Dr. James Carlson
American College Testing
Program
P.O. Box 168
Iowa City, IA 52243

Dr. John B. Carroll
409 Elliott Rd.
Chapel Hill, NC 27514

Dr. Robert Carroll
NAVOP 01B7
Washington, DC 20370

Director
Manpower Support and
Readiness Program
Center for Naval Analysis
2000 North Beauregard Street
Alexandria, VA 22311

Chief of Naval Education
and Training
Liason Office
AFHRL
Operations Training Division
Williams AFB, AZ 85224

Chief of Naval Education
and Training
Liason Office
Air Force Human Resource Laboratory
Operations Training Division
Williams AFB, AZ 85224

Assistant Chief of Staff
Research, Development,
Test, and Evaluation
Naval Education and
Training Command (N-5)
NAS Pensacola, FL 32508

Dr. Hans Crombag
University of Leyden
Education Research Center
Boerhaavelaan 2
2334 EN Leyden
The NETHERLANDS

CTB/McGraw-Hill Library
2500 Garden Road
Monterey, CA 93940

CDR Mike Curran
Office of Naval Research
800 N. Quincy St.
Code 270
Arlington, VA 22217-5000

Mr. Timothy Davey
University of Illinois
Educational Psychology
Urbana, IL 61801

Dr. Dattprasad Divgi
Syracuse University
Department of Psychology
Syracuse, NY 13210

Dr. Hei-Ki Dong
Ball Foundation
800 Roosevelt Road
Building C, Suite 206
Glen Ellyn, IL 60137

Dr. Fritz Drasgow
University of Illinois
Department of Psychology
603 E. Daniel St.
Champaign, IL 61820

Defense Technical
Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC
(12 Copies)

Dr. Stephen Dunbar
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. John M. Eddins
University of Illinois
252 Engineering Research
Laboratory
103 South Mathews Street
Urbana, IL 61801

University of Illinois/Tatsuoka, Tatsuoka, & Eddins

19 April 1985

Dr. John Ellis
Navy Personnel R&D Center
San Diego, CA 92252

Dr. Richard Elster
Deputy Assistant Secretary
of the Navy (Manpower)
Washington, DC 20350

Dr. Susan Embertson
University of Kansas
Psychology Department
Lawrence, KS 66045

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

Dr. Benjamin A. Fairbank
Performance Metrics, Inc.
5825 Callaghan
Suite 225
San Antonio, TX 78228

Dr. Marshall J. Farr
2520 North Vernon Street
Arlington, VA 22207

Dr. Richard L. Ferguson
American College Testing
Program
P.O. Box 168
Iowa City, IA 52240

Dr. Gerhard Fischer
Liebiggasse 5/3
A 1010 Vienna
AUSTRIA

Dr. Myron Fischl
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Prof. Donald Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRALIA

Dr. Dexter Fletcher
University of Oregon
Computer Science Department
Eugene, OR 97403

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. Bob Frey
Commandant (G-P-1/2)
USCG HQ
Washington, DC 20593

Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01002

Dr. Robert Glaser
Learning Research
& Development Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

H. William Greenup
Education Advisor (E031)
Education Center, MCDEC
Quantico, VA 22134

Dipl. Pad. Michael W. Habon
Universitat Dusseldorf
Erziehungswissenschaftliches
Universitatsstr. 1
D-4000 Dusseldorf 1
WEST GERMANY

Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

Dr. Delwyn Harnisch
University of Illinois
51 Gerty Drive
Champaign, IL 61820

Ms. Rebecca Hetter
Navy Personnel R&D Center
Code 62
San Diego, CA 92152

19 April 1985

Prof. Lutz F. Hornke
Universitat Dusseldorf
Erziehungswissenschaftliches
Universitatsstr. 1
Dusseldorf 1
WEST GERMANY

Dr. Paul Horst
677 G Street, #184
Chula Vista, CA 90010

Dr. Lloyd Humphreys
University of Illinois
Department of Psychology
603 East Daniel Street
Champaign, IL 61820

Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

Dr. Earl Hunt
Department of Psychology
University of Washington
Seattle, WA 98105

Dr. Huynh Huynh
College of Education
Univ. of South Carolina
Columbia, SC 29208

Dr. Zachary Jacobson
Bureau of Management Consulting
365 Laurier Avenue West
Ottawa, Ontario K1A 0S5
CANADA

Dr. Douglas H. Jones
Advanced Statistical
Technologies Corporation
10 Trafalgar Court
Lawrenceville, NJ 08148

Prof. John A. Keats
Department of Psychology
University of Newcastle
N.S.W. 2308
AUSTRALIA

Dr. Norman J. Kerr
Chief of Naval Education
and Training
Code 00A2
Naval Air Station
Pensacola, FL 32508

Dr. William Koch
University of Texas-Austin
Measurement and Evaluation
Center
Austin, TX 78703

Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Anita Lancaster
Accession Policy
OASD/MI&L/MP&FM/AP
Pentagon
Washington, DC 20301

Dr. Daryll Lang
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Jerry Lehnus
OASD (M&RA)
Washington, DC 20301

Dr. Thomas Leonard
University of Wisconsin
Department of Statistics
1210 West Dayton Street
Madison, WI 53705

Dr. Alan M. Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Michael Levine
Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801

Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat 23
9712GC Groningen
The NETHERLANDS

University of Illinois/Tatsuoka, Tatsuoka, & Eddins

19 April 1985

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Robert Lockman
Center for Naval Analysis
200 North Beauregard St.
Alexandria, VA 22311

Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541

Dr. James Lumsden
Department of Psychology
University of Western Australia
Nedlands W.A. 6009
AUSTRALIA

Dr. William L. Maloy (02)
Chief of Naval Education
and Training
Naval Air Station
Pensacola, FL 32508

Dr. Gary Marco
Stop 31-E
Educational Testing Service
Princeton, NJ 08451

Dr. Kneale Marshall
Operations Research Department
Naval Post Graduate School
Monterey, CA 93940

Dr. Clessen Martin
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

Dr. James McBride
Psychological Corporation
c/o Harcourt, Brace,
Javanovich Inc.
1250 West 6th Street
San Diego, CA 92101

Dr. Clarence McCormick
HQ, MEPCOM
MEPCT-P
2500 Green Bay Road
North Chicago, IL 60064

Mr. Robert McKinley
University of Toledo
Department of Educational Psychology
Toledo, OH 43606

Dr. Barbara Means
Human Resources
Research Organization
1100 South Washington
Alexandria, VA 22314

Dr. Arthur Melmed
724 Brown
U. S. Department of Education
Washington, DC 20208

Dr. Robert Mislevy
Educational Testing Service
Princeton, NJ 08541

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152

Ms. Kathleen Moreno
Navy Personnel R&D Center
Code 62
San Diego, CA 92152

Headquarters, Marine Corps
Code MPI-20
Washington, DC 20380

Spec. Asst. for Research, Experimental Programs, & Academic Programs
Naval Technical Training Command
(Code 016)
NAS Memphis (75)
Millington, TN 38054

Program Manager for Manpower,
Personnel, and Training
NAVMAT 0722
Arlington, VA 22217-5000

Dr. W. Alan Nicewander
University of Oklahoma
Department of Psychology
Oklahoma City, OK 73069

Dr. William E. Nordbrock
FMC-ADCO Box 25
APO, NY 09710

University of Illinois/Tatsuoka, Tatsuoka, & Eddins

19 April 1985

Director, Training Laboratory
NPRDC (Code 05)
San Diego, CA 92152

Director, Manpower and Personnel
Laboratory
NPRDC (Code 06)
San Diego, CA 92152

Director
Human Factors
& Organizational Systems Lab.
NPRDC (Code 07)
San Diego, CA 92152

Library
Code P201L
Navy Personnel R&D Center
San Diego, CA 92152

Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

Dr. Harry F. O'Neil, Jr.
Training Research Lab
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Stellan Ohlsson
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 1521

Dr. James Olson
WICAT, Inc.
1875 South State Street
Orem, UT 84057

Office of Naval Research
Code 442PT
800 N. Quincy Street
Arlington, VA 22217-5000
(5 Copies)

Special Assistant for Marine
Corps Matters
Code 100M
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217-5000

Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

Commanding Officer
Army Research Institute
ATTN: PERI-BR (Dr. J. Orasanu)
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Jesse Orlansky
Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311

Dr. Randolph Park
AFHRL/MOAN
Brooks AFB, TX 78235

Wayne M. Patience
American Council on Education
GED Testing Service, Suite 20
One Dupont Circle, NW
Washington, DC 20036

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

Dr. James W. Pellegrino
University of California,
Santa Barbara
Department of Psychology
Santa Barbara, CA 93106

Dr. Roger Pennell
Air Force Human Resources
Laboratory
Lowry AFB, CO 80230

University of Illinois/Tatsuoka, Tatsuoka, & Eddins

19 April 1985

Military Assistant for Training and
Personnel Technology
OUSD (R & E)
Room 3D129, The Pentagon
Washington, DC 20301

Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93940

Department of Operations Research
Naval Postgraduate School
Monterey, CA 93940

Dr. Joseph Psotka
ATTN: PERI-1C
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Mark D. Reckase
ACT
P. O. Box 168
Iowa City, IA 52243

Dr. Malcolm Ree
AFHRL/MP
Brooks AFB, TX 78235

Dr. Fred Reif
Physics Department
University of California
Berkeley, CA 94720

Dr. Lauren Resnick
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 1521

Dr. Mary S. Riley
Program in Cognitive Science
Center for Human Information
Processing
University of California
La Jolla, CA 92093

Dr. Bernard Rimland
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Carl Ross
CNET--PDCD
Building 90
Great Lakes NTC, IL 60088

Mr. Robert Ross
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Lawrence Rudner
403 Elm Avenue
Takoma Park, MD 20012

Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

Dr. Fumiko Samejima
Department of Psychology
University of Tennessee
Knoxville, TN 37916

Mr. Drew Sands
NPRDC Code 62
San Diego, CA 92152

Dr. Robert Sasmor
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Walter Schneider
University of Illinois
Psychology Department
603 E. Daniel
Champaign, IL 61820

Lowell Schoer
Psychological & Quantitative
Foundations
College of Education
University of Iowa
Iowa City, IA 52242

Dr. Mary Schratz
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Judah L. Schwartz
MIT
20C-120
Cambridge, MA 02139

University of Illinois/Tatsuoka, Tatsuoka, & Eddins

19 April 1985

Dr. W. Steve Sellman
OASD(MRA&L)
2B269 The Pentagon
Washington, DC 20301

Dr. Sylvia A. S. Shafto
National Institute of Education
1200 19th Street
Mail Stop 1805
Washington, DC 20208

Dr. Joyce Shields
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Kazuo Shigemasu
7 9-24 Kugenuma-Kaigan
Fujisawa 251
JAPAN

Dr. William Sims
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

Dr. H. Wallace Sinaiko
Manpower Research
and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

Dr. Alfred F. Smode
Senior Scientist
Code 7B
Naval Training Equipment Center
Orlando, FL 32813

Dr. Richard Snow
Liaison Scientist
Office of Naval Research
Branch Office, London
Box 39
FPO New York, NY 09510

Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Paul Speckman
University of Missouri
Department of Statistics
Columbia, MO 65201

Dr. Robert Sternberg
Department of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

Martha Stocking
Educational Testing Service
Princeton, NJ 08541

Dr. Peter Stoloff
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

Dr. William Stout
University of Illinois
Department of Mathematics
Urbana, IL 61801

Maj. Bill Strickland
AF/MPXOA
4E168 Pentagon
Washington, DC 20330

Dr. Hariharan Swaminathan
Laboratory of Psychometric and
Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

Mr. Brad Sympson
Navy Personnel R&D Center
San Diego, CA 92152

Dr. John Tangney
AFOSR/NL
Bolling AFB, DC 20332

Dr. Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth St.
Champaign, IL 61820

Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

Mr. Gary Thomasson
University of Illinois
Educational Psychology
Champaign, IL 61820

University of Illinois/Tatsuoka, Tatsuoka, & Eddins

19 April 1985

Dr. Robert Tsutakawa
Department of Statistics
University of Missouri
Columbia, MO 65201

Dr. Ledyard Tucker
University of Illinois
Department of Psychology
603 E. Daniel Street
Champaign, IL 61820

Dr. Vern W. Urry
Personnel R&D Center
Office of Personnel Management
1900 E. Street, NW
Washington, DC 20415

Headquarters, U. S. Marine Corps
Code MPI-20
Washington, DC 20380

Dr. David Vale
Assessment Systems Corp.
2233 University Avenue
Suite 310
St. Paul, MN 55114

Dr. Frank Vicino
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Howard Wainer
Division of Psychological Studies
Educational Testing Service
Princeton, NJ 08540

Dr. Ming-Mei Wang
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Mr. Thomas A. Warm
Coast Guard Institute
P. O. Substation 18
Oklahoma City, OK 73169

Dr. Brian Waters
HumRRO
300 North Washington
Alexandria, VA 22314

Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

Dr. Donald Weitzman
MITRE
1820 Dolley Madison Blvd.
MacLean, VA 22102

Major John Welsh
AFHRL/MOAN
Brooks AFB, TX 78223

Dr. Douglas Wetzel
Code 12
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Rand R. Wilcox
University of Southern
California
Department of Psychology
Los Angeles, CA 90007

German Military Representative
ATTN: Wolfgang Wildegrube
Streitkraefteamt
D-5300 Bonn 2
4000 Brandywine Street, NW
Washington, DC 20016

Dr. Bruce Williams
Department of Educational
Psychology
University of Illinois
Urbana, IL 61801

Dr. Hilda Wing
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Ms. Marilyn Wingersky
Educational Testing Service
Princeton, NJ 08541

Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152

University of Illinois/Tatsuoka, Tatsuoka, & Eddins

19 April 1985

Dr. Frank Withrow
U. S. Office of Education
400 Maryland Ave. SW
Washington, DC 20202

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152

Dr. George Wong
Biostatistics Laboratory
Memorial Sloan-Kettering
Cancer Center
1275 York Avenue
New York, NY 10021

Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Joe Yasatuke
AFHRL/LRT
Lowry AFB, CO 80230

Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940

Dr. Joseph L. Young
Memory & Cognitive
Processes
National Science Foundation
Washington, DC 20550

Dr. Leigh Burstein
Department of Education
University of California
Los Angeles, CA 90024

Dr. Norman Cliff
Department of Psychology
University of California
University Park
Los Angeles, CA 90007

Dr. Lee Cronbach
Department of Education
Stanford University
Stanford, CA 94305

Dr. James Greeno
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. Anthony J. Nitko
School of Education
Educational Research
Methodology
University of Pittsburgh
5C03 Forbes Quadrangle
Pittsburgh, PA 15260

Dr. Ross Traub
Ontario Institute for
Studies in Education