An introduction to calculus (1)

The Slope of the Tangent

Secant Line

Let y = f(x) be a function and $P(x_1, y_1)$ and $Q(x_2, y_2)$ two points on its graph.

The *slope* of the *secant line* that passes through the points P and Q is given by:

$$m = \frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

If P(a, f(a)) and Q(a + h, f(a + h)) then the *slope* of the *secant line* is given by:

$$m = \frac{f(a+h) - f(a)}{h}$$

Tangent Line

As the point ${\it Q}$ approaches the point ${\it P}$, the secant line approaches the *tangent line* at ${\it P}$. See the diagram on the right side.

The slope of the tangent line at P(a, f(a)) is:

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \quad (1)$$

Ex 1. Consider $y = f(x) = x^2 - 2x$. **Algebraic Computation** 1. Use the formula $m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$. a) Find the slope of the tangent line at the generic point P(a, f(a)). 2. Do not substitute h by 0 because you will get the indeterminate case $\frac{0}{0}$. 3. Compute algebraic the difference quotient $DQ = \frac{f(a+h) - f(a)}{h}$ until you succeed to cancel out the factor h. 4. Substitute in the remaining expression h by 0. b) Find the point where the tangent line is horizontal. c) Find the point P such that $m_P=2$. d) Find the point P such that the tangent line at P is perpendicular to the line $L_2: x-3y=3$.

Rate of Change

Average Rate of Change

y = f(x), $y_1 = f(x_1)$, $y_2 = f(x_2)$ $\Delta x = x_2 - x_1$ (change in variable x) $\Delta y = y_2 - y_1$ (change in variable y) The *Average Rate of Change* (ARC) in y variable over the interval $[x_1, x_2]$ is given by:

$$ARC = \frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Note: The Average Rate of Change is the same as the slope of the secant line passing through the points $P(x_1, y_1)$ and $Q(x_2, y_2)$.

If $x_1 = a$ and $x_2 = a + h$ then:

$$ARC = \frac{f(a+h) - f(a)}{h}$$

Instantaneous Rate of Change

As $h \rightarrow 0$ the Average Rate of Change approaches to the *Instantaneous Rate of Change* (IRC):

$$IRC = RC = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Note: The Instantaneous Rate of Change (IRC) is the same as the slope of the tangent line at the point P(a, f(a)).

Similarly, the Average Velocity (AV) approaches Instantaneous Velocity (IV):

$$IV = v = \lim_{h \to 0} \frac{s(a+h) - s(a)}{h}$$

Ex 2. Consider the following position function:

$$s(t) = t^2 - 4t$$
.

a) Find the instantaneous velocity at t = 3s.

b) Find the instantaneous velocity at the generic moment t = a

	c) Use the formula at part b) to compute the velocity at time t = 5s.
d) Find the moment(s) of time at which the velocity is zero.	Ex 3. Consider $y = f(x) = (x + 1)^2$. Find the rate of change in the y variable over the interval $[-1, 2]$.

Limit of a Function

Left-Hand Limit

If the values of y = f(x) can be made arbitrarily close to L by taking x sufficiently close to a with x < a, then:

$$\lim_{x \to a^{-}} f(x) = L$$

Read: The limit of the function f(x) as x approaches a from the left is L.

Notes:

- 1. The function may be or not defined at a.
- 2. DNE stands for Does Not Exist.
- 3. L must be a number.
- 4. ∞ is not a number.

Right-Hand Limit

If the values of y = f(x) can be made arbitrarily close to L by taking x sufficiently close to a with x > a, then:

$$\lim_{x \to a^+} f(x) = R$$

Read: The limit of the function f(x) as x approaches a from the right is R.

Notes:

- R must be a number. ∞ is not a number.
- 2. The function may be or not defined at a.

Limit

If the values of y = f(x) can be made arbitrarily close to l by taking x sufficiently close to a (from both sides), then:

$$\lim_{x \to a} f(x) = l$$

Read: The limit of the function f(x) as x approaches a is l.

Notes:

- 1. If $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$ then $\lim_{x \to a} f(x)$ does exist and L = R = l.
- 2. If $\lim_{x\to a^+} f(x) \neq \lim_{x\to a^-} f(x)$ then $\lim_{x\to a} f(x)$ Does Not Exist (DNE).
- 3. I must be a number. ∞ is not a number.
- 4. The function may be or not defined at a.

Ex 1. Use the function y = f(x) defined by the following graph to find each limit.

- a) $\lim_{x \to -4^-} f(x)$
- b) $\lim_{x \to -2^{-}} f(x)$
- c) $\lim_{x \to -1^-} f(x)$
- d) $\lim_{x\to 3^-} f(x)$

Ex 2. Use the function y = f(x) defined at Ex 1. to find each limit.

- a) $\lim_{x \to -1^+} f(x)$
- b) $\lim_{x \to 3^+} f(x)$
- c) $\lim_{x \to 1^+} f(x)$
- $\operatorname{d)} \lim_{x \to -2^+} f(x)$

Ex 3. Use the function y = f(x) defined at Ex 1. to find each limit.

- a) $\lim_{x \to a} f(x)$
- b) $\lim_{x \to -1} f(x)$
- c) $\lim_{x \to 2} f(x)$
- d) $\lim_{x \to -3} f(x)$
- e) $\lim_{x \to -2} f(x)$

Substitution

If the function is defined by a *formula* (algebraic expression) then the limit of the function at a point *a* may be determined by *substitution*:

$$\lim_{x\to a} f(x) = f(a)$$

Notes:

- 1. In order to use substitution, the function must be defined *on both sides* of the number a.
- 2. Substitution does not work if you get one of the following 7 *indeterminate cases*:

$$\infty - \infty \quad 0 \times \infty \quad \frac{0}{0} \quad \frac{\infty}{\infty} \quad 1^{\infty} \quad \infty^0 \quad 0^0$$

Ex 4. Compute each limit.

- a) $\lim_{x \to 1^{-}} \frac{x^2}{x+1}$
- b) $\lim_{x \to 1^+} \frac{x^2}{x+1}$
- c) $\lim_{x \to 1} \frac{x^2}{x+1}$
- d) $\lim_{x\to 2^-} \sqrt{x-2}$
- e) $\lim_{x \to 2^+} \sqrt{x-2}$
- f) $\lim_{x\to 2} \sqrt{x-2}$

Piece-wise defined functions

If the function changes formula at a then:

- 1. Use the appropriate formula to find first the *left-side* and the *right-side* limits.
- 2. Compare the left-side and the right-side limits to conclude about the limit of the function at a. Example:

$$f(x) = \begin{cases} f_1(x), & x < a \\ f_2(x), & x > a \end{cases}$$

$$L = f_1(a)$$
, $R = f_2(a)$ (if exist)

Ex 5. Consider
$$f(x) = \begin{cases} 2x-3, & x < 2 \\ 0, & x = 2 \\ x^2-1, & x > 2 \end{cases}$$

- a) Find $\lim_{x\to 2} f(x)$.
- b) Find $\lim_{x\to 0} f(x)$.
- c) Draw a diagram to illustrate the situation.

Properties of Limits

Limits Properties

We assume that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then:

- 1. $\lim_{x \to a} k = k$
- 2. $\lim_{x \to a} x = a$
- 3. $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
- 4. $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$
- 5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \quad \lim_{x \to a} g(x) \neq 0$
- 6. $\lim_{x \to a} [f(x)g(x)] = [\lim_{x \to a} f(x)][\lim_{x \to a} g(x)]$
- 7. $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$
- 8. If P(x) is a polynomial function, then

$$\lim_{x \to a} P(x) = P(a)$$

Ex 1. Given $\lim_{x\to 3} f(x) = -2$ and $\lim_{x\to 3} g(x) = 1$, use the limits

properties to find $\lim_{x\to 3} \frac{2f(x)+g(x)}{-4\sqrt{g(x)}}$

Substitution

Substitution is the best strategy to find a limit. Note: Substitution does not work if (by substitution) you get one of the following 7 indeterminate cases:

$$\infty - \infty \quad 0 \times \infty \quad \frac{0}{0} \quad \frac{\infty}{\infty} \quad 1^{\infty} \quad \infty^0 \quad 0^0$$

Specific strategies are available to avoid an indeterminate case to appear.

Ex 2. Compute $\lim_{x\to 2} \frac{x^2 - 2x + 1}{x - 1}$.

Factoring

The indeterminate form $\frac{0}{0}$ may be eliminated by

factoring and canceling out the common factor that generates zeros:

$$\lim_{x \to a} \frac{F(x)}{G(x)} = \lim_{x \to a} \frac{(x-a)f(x)}{(x-a)g(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}$$

Note: Canceling out the common factor (x-a) is a correct operation because $\lim_{x\to a}$ means that x approaches a but is not equal to a.

Ex 3. Compute $\lim_{x\to 1} \frac{x^2+x-2}{x-1}$.

Conjugate Dadicals	1
Conjugate Radicals When dealing with the indeterminate form $\frac{0}{0}$ you may use the <i>conjugate radicals</i> to cancel out the common factor that generates zeros.	Ex 4. Compute $\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$.
Change of Variables	
By changing the variable, the process of canceling the common factor may be simplified.	Ex 5. Change the variable to compute $\lim_{x\to 1} \frac{\sqrt{x}-1}{\sqrt[3]{x}-1}$.
Note. If the change of variable is $u = g(x)$ then: as $x \to a$, $u \to g(a)$	

Absolute Value Function

When dealing with an absolute value function, rewrite it as piece-wise defined function according to:

$$|f(x)| = \begin{cases} f(x), & f(x) \ge 0 \\ -f(x), & f(x) < 0 \end{cases}$$

Ex 6. Compute each limit. Draw a diagram to illustrate.

a)
$$\lim_{x\to 0} \frac{|x|}{x}$$

b)
$$\lim_{x\to 0} x|x|$$

c)
$$\lim_{x\to 0} \frac{x^2}{|x|}$$