

exp(al(w)): h - h

Más ampato

Lemma 0.1. Let G be a connected matrix Lie group, with (real) Lie algebra \mathfrak{g} , and H < G a connected analytic subgroup with Lie algebra $\mathfrak{h} < \mathfrak{g}$. Then $H \lhd G \Leftrightarrow \mathfrak{h}$ is an ideal of \mathfrak{g} .

Proof. Suppose \mathfrak{h} is an ideal of \mathfrak{g} . Then we may restrict $ad: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{h})$. So for $X \in \mathfrak{g}, Y \in \mathfrak{h}$, $ad_X^n(Y) \in \mathfrak{h}$. Thus, $e^{ad_X}(Y) \in \mathfrak{h}$. Then $e^X e^Y e^{-X} = exp(Ad_{e^X}(Y)) = exp(e^{ad_X}(Y)) \in exp(\mathfrak{h})$. So $exp(\mathfrak{g})$ normalizes $exp(\mathfrak{h})$. Since $G = \bigcup_{n \geq 0} exp(\mathfrak{g})^n$, $H = \bigcup_{n \geq 0} exp(\mathfrak{h})^n$, we see that G normalizes H.

Conversely, suppose that G normalizes H. Then G acts on H by conjugation. For $g \in G$, the derivative of this map is $Ad_g : T_eH \to T_eH = \mathfrak{h}$. Then for $X \in \mathfrak{g}$, $Ad_{e^{tX}} : \mathfrak{h} \to \mathfrak{h}$. Taking the derivative at t = 0, we see that $ad_X : \mathfrak{h} \to \mathfrak{h}$, so \mathfrak{h} is an ideal (see Proposition 2.24).

