Data Structure: Singly Linked list

Singly linked list is a basic linked list type. Singly linked list is a collection of nodes linked together in a sequential way where each node of singly linked list contains a data field and an address field which contains the reference of the next node.

To perform any operation on a linked list we must keep track/reference of the first node which may be referred by **head pointer variable**. In singly linked list address field of last node must contain a NULL value specifying end of the list.

Basic structure of a singly linked list

Each node of a singly linked list follows a common basic structure. In a node we can store more than one data fields but we need at least single address field to store the address of next connected node.

Advantages of Singly linked list

There are several points about singly linked list that makes it an important data structure.

- Insertion and deletion of elements doesn't require movement of all elements when compared to an array.
- Can allocate or deallocate memory easily when required during its execution. (Dynamic Memory allocation)

Disadvantages of Singly linked list

- Linked Lists are sequential access while Arrays are random access.
- Extra memory space is required in Linked list for pointers.

DSA Lab Assignment#2 (Batch:Monday 10.00-12.00)

Write C Code for the following:

- **Q1**. To create a Singly Linked List to store positive integers in the order they are inputted.
- **Q2.** To count the number of nodes in a Singly Linked List.
- **Q3.** To split the Singly Linked List (Created in Q1) in two linked list (List-1 should contain only even values while list-2 contains only odd values).
- **Q4.** To display all nodes of a given Singly Linked List. (Traversal of Singly Linked List)