NOTA TECNICA: NTPI0004 Data Pub: 21 maggio 2020

Versione: 1.1

Clorazione dell'acqua di mare

LA CLORAZIONE DELL'ACQUA DI MARE È MOLTO PIÙ COMPLESSA DI QUANTO SI PENSI E, SEBBENE LA MISURA DEI RESIDUI DI CLORO ED IL CONTROLLO AUTOMATICO DEL DOSAGGIO DEL CLORO SIANO POSSIBILI, SI OTTERRANNO RISULTATI MIGLIORI E SI EVITERANNO ERRORI SE LA CHIMICA È PIENAMENTE COMPRESA.

LA CHIMICA

NaBr + HOCI NaCl + HOBr

L'acqua di mare contiene tra i 65 gli 80 ppm di bromuri disciolti¹ molti dei quali sono nella forma di bromuro di sodio. Quando si dosa del cloro in acqua di mare, questo, in quanto più reattivo, sposta il bromo dal bromuro e lo converte in un cloruro.

Analizzatore multiparametrico

Quindi, fino a circa 70 ppm di cloro totale dosato nell'acqua, ciò che effettivamente misuriamo sono il **bromo libero** ed il **bromo combinato** e non il cloro libero ed il cloro combinato pertanto, è il **bromo totale** che fa la disinfezione².

Sensore amperometrico in cella di flusso

Quindi perché generalmente si parla di clorazione quando tecnicamente è bromurazione? Di fatto perché sono in pochi a conoscere questo interessante capitolo della chimica della disinfezione.

¹ Goosen, M.F.A., and Shayya, W.H.. Water management, purification, and conservation in arid climates. Volume 2: Water Purification (Univ. of Sultan Qaboos Univ. (OM), 1999).

² White's Handbook of Chlorination and Alternative Disinfectants, 5th Edition, Wiley - pag. 874, pagine 122-129.

NOTA TECNICA: NTPl0004 Data Pub: 21 maggio 2020

Versione: 1.1

Generalmente conoscere questa parte teorica non fa molta differenza poiché il bromo è un **disinfettante efficace**. Può comunque verificarsi molta confusione quando si tratta di monitorare i residui e controllare il dosaggio. La scelta del sensore corretto per controllare il dosaggio è fondamentale, così come lo è la scelta del test DPD corretto per effettuare la calibrazione.

Nella tabella seguente si possono osservare le concentrazioni dei costituenti principali dell'acqua di mare³ in superficie.

Costituenti principali dell'acqua di mare

At salinity (PPS 1978): S = 35.000%				
	g/kg	ppm (mg/l)	mmol/kg	nM
Na⁺	10.781	10781	468.96	480.57
K ⁺	0.399	399	10.21	10.46
CI-	19.353	19353	545.88	559.4
Br-	0.0673	67	0.844	0.865
F-	0.0013	1	0.068	0.07

CLORO LIBERO E BROMO TOTALE

A causa della confusione esistente su questo argomento e su ciò che viene realmente misurato, può capitare che un ingegnere indichi lo strumento sbagliato e/o lo calibri in modo errato. Ad esempio, è possibile che si specifichi un sensore di cloro libero per il controllo della clorazione dell'acqua di mare che, come vedremo in seguito, è una pratica errata.

La maggior parte, ma non tutti, i sensori elettrochimici di cloro libero reagiscono al bromo libero, eppure, questa non è necessariamente la scelta migliore per il controllo della bromurazione.

La maggior parte delle pubblicazioni sull'argomento concordano sul fatto che, mentre la capacità di disinfezione tra cloro libero e cloro combinato differisce notevolmente, quando si tratta di bromo libero e bromo combinato, entrambe le forme sono ugualmente efficaci nella disinfezione quindi una misura migliore è il bromo totale, il quale richiede un sensore di cloro totale con un elettrolita speciale.

DPD E LA CLORAZIONE DELL'ACQUA DI MARE

Ad aumentare ulteriormente la confusione, per tracciare i residui di disinfettante nell'acqua è necessario considerare la calibrazione dei sensori in linea e l'utilizzo di fotometri portabili.

Due fiale senza (sinistra) e con (destra) DPD e cloro

Il DPD è ampiamente utilizzato sia per effettuare la misurazione dei residui di cloro, ma anche perché reagisce al bromo. Nonostante ciò il DPD 1 misura il cloro libero o il bromo totale. Non vi è un modo semplice per misurare il bromo libero.

³ Tabella da: www.ocean.washington.edu/courses/oc400/Lecture_Notes/CHPT4.pdf

NOTA TECNICA: NTPI0004 Data Pub: 21 maggio 2020

Versione: 1.1

Per questo potrebbe accadere che si disponga di un analizzatore per l'analisi in linea che utilizza un sensore di cloro libero, che misura effettivamente il bromo libero ma che è stato calibrato come se fosse un sistema per la misura del bromo totale (DPD 1). Uno strumento per la misura in linea dev'essere impostato e calibrato correttamente altrimenti la lettura che darà sarà errata.

In genere i risultati migliori si ottengono specificando un sensore di bromo totale (cloro totale) e calibrandolo con DPD 1.

Ma non è tutto, quando si specifica un analizzatore, è fondamentale **informare il produttore** che lo strumento è destinato all'uso con acqua di mare in quanto la sua composizione fisica e chimica è molto diversa dall'acqua potabile e questo può influire su ciò che verrà fornito ai clienti.

L'EFFETTO DELLA SALINITÀ SUI SENSORI A MEMBRANA

È fondamentale sapere se il sensore sarà utilizzato in acqua di mare in modo da poter fornire un elettrolita con una salinità elevata. L'acqua infatti, tende a passare da una concentrazione di soluto basso ad una concentrazione di soluto più alta attraverso una membrana semi-permeabile (osmosi) come quella del sensore.

L'elettrolita nei nostri sensori è più salato dell'acqua potabile o di processo, pertanto, l'osmosi forza l'acqua verso l'estremità del sensore il quale è progettato per funzionare in questo modo. Tuttavia, con l'acqua di mare, il processo viene invertito e l'acqua nell'elettrolita può essere forzata fuori dal sensore e dentro il campione d'acqua che si vuole analizzare. Per risolvere il problema forniamo un elettrolita appositamente progettato per l'acqua di mare, con una salinità più elevata.

ACQUE DI ESTUARIO

Molte applicazioni di clorazione dell'acqua di mare sono in prossimità di un estuario quindi in parte acqua di mare ed in parte acqua dolce. In questo caso è il grado di diluizione a determinare quale sensore e quale elettrolita utilizzare. L'acqua di mare ha circa 70 ppm di bromuri e quindi fino a 70 ppm di cloro la sostituzione sarà del 100%, ma se l'acqua di mare fosse composta al 50% d'acqua dolce, allora fino a

35 ppm di cloro si otterrebbe uno **spostamento di specie del 100%**.

Se si osservasse, ad esempio, un residuo di 2 ppm, l'acqua potrebbe essere solo al 3% acqua di mare ed al 97% acqua dolce e si dovrebbe comunque misurare il bromo, di conseguenza, sarebbe appropriato un sensore di bromo totale calibrato con DPD 1.

ALCUNI ESEMPI CON I TEST DPD

Poiché il bromo è più pesante del cloro, 1 mg/L di cloro equivale a ^1.6 mg/L di bromo, quindi è importante capire cosa si stia misurando. I kit DPD possono essere utilizzati in tre modi per la clorazione dell'acqua di mare:

- 1. Un test kit di cloro DPD 1 misurerà il bromo totale ma riporterà la concentrazione come equivalente in cloro. Se utilizzato per calibrare i nostri sensori, si deve utilizzare un sensore di cloro totale che riporterà il valore in mg/L di cloro equivalente.
- 2.Un test kit di cloro DPD 1 può essere utilizzato e la lettura in mg/L può essere moltiplicata per 1.6 per dare il valore equivalente di bromo totale. Se questo è utilizzato per calibrare il nostro sensore si deve usare un sensore di bromo totale.
- 3.Un test kit di bromo DPD1 è uguale ad un test kit di cloro DPD1 con l'eccezione che effettua una moltiplicazione interna e dà direttamente un valore in mg/L di bromo totale. Se è utilizzato per calibrare un sensore, bisogna usare un sensore di bromo totale.

CONCLUSIONE

Tutto questo può risultare molto complicato, quindi si consiglia sempre di contattare la *Leafy Technologies* per discutere della propria applicazione con un esperto di disinfezione che saprà guidarvi verso la soluzione più adequata.

Per maggiori informazioni sull'analizzatore di cloro e bromo visitare: www.leafytechnologies.it/prodotti/analizzatore-di-cloro.