TDAB01 Probability and Statistics

Maryna Prus IDA, Linköping University

Lecture 9: Hypothesis Testing

Overview

- Hypothesis testing
- ► Z-test
- ▶ T-test
- χ^2 -test

Hypothesis testing

Example 1. New medication affects blood pressure

Null hypothesis : $H_0: \mu = 0$

Alternative hypothesis: $H_A: \mu \neq 0$

- two-side alternative
- ► Example 2. Proportion of defective products is higher than 4%

Null hypothesis : $H_0: p \le 0.04$

Alternative hypothesis: $H_A: p > 0.04$

- one-side, right-tail alternative
- ▶ Example 3. Average connection speed is worse than the provider promised

Null hypothesis : $H_0: \mu \geq \mu_0$

Alternative hypothesis: $H_A: \mu < \mu_0$

one-side. left-tail alternative

Hypothesis testing

▶ Two-sided test: reject H_0 if μ is greater or less than μ_0

Null Hypothesis : H_0 : $\mu = \mu_0$

Alternative hypothesis: $H_A: \mu \neq \mu_0$

One-sided tests

Null Hypothesis : $H_0: \mu \le \mu_0$

Alternative hypothesis: $H_A: \mu > \mu_0$

or

Null hypothesis : $H_0: \mu \ge \mu_0$

Alternative hypothesis: $H_A: \mu < \mu_0$

One-sided tests are often written as

Null hypothesis : H_0 : $\mu = \mu_0$

Alternative hypothesis: $H_A: \mu < \mu_0$ or $H_A: \mu > \mu_0$

→ the same result

Steps in hypothesis testing

- 1. Choose **test statistic** $T = T(X_1, ..., X_n)$
- 2. Determine sampling distribution F_0 for T if H_0 is true (null distribution)
- 3. Determine the rejection region \mathcal{R} such that $P(T \in \mathcal{R}|H_0) = \alpha$
- 4. Reject H_0 at significance level α if $T_{obs} \in \mathcal{R}$, T_{obs} observed value of T

On picture: f_0 - pdf of T in dependence of value of T

• H_0 is about population $\to H_0$ is true or not with probability 1Accepting H_0 does **not** mean that H_0 is true with probability $1-\alpha$ Accepting H_0 means that evidence obtained from data is not sufficient to reject H_0

Type I and Type II errors

Type I error

$$\alpha = \mathbf{P}(\text{Reject } H_0 | H_0 \text{ is true})$$

 α - significance level, predetermined, low

Type II error

$$\beta = \mathbf{P}(Accept \ H_0|H_A \ is \ true)$$

 β depends on parameter value (set of values in H_A)

	Accept H_0	Reject H ₀
H ₀ true	Correct decision	Type I error
H_A true	Type II error	Correct decision

- ▶ Power of test: $P(\text{Reject } H_0|H_A \text{ is true}) = 1 \beta$
- Formally: Do we reject H_0 or not, we never accept it

Z-test

- ightharpoonup Sampling distribution of test statistic if H_0 is true is normal distribution
 - Case 1. $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, σ^2 known

$$\Rightarrow Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$$

- ▶ Case 2. Central Limit Theorem \rightarrow Z appr. normally distributed
- ▶ One-sided Z-tests: $H_0: \mu = \mu_0$ and $H_A: \mu > \mu_0$ (right-tail Z-test)

$$\begin{cases} \text{Reject } H_0 & \text{if } Z > z_{\alpha} \\ \text{Accept } H_0 & \text{if } Z \leq z_{\alpha} \end{cases}$$

or $H_0: \mu = \mu_0$ and $H_A: \mu < \mu_0$ (left-tail Z-test)

$$\begin{cases} \text{Reject } H_0 & \text{if } Z < -z_{\alpha} \\ \text{Accept } H_0 & \text{if } Z \ge -z_{\alpha} \end{cases}$$

▶ Two-sided Z-test: $H_0: \mu = \mu_0$ and $H_A: \mu \neq \mu_0$

$$\begin{cases} \text{Reject } H_0 & \text{if } |Z| > z_{\alpha/2} \\ \text{Accept } H_0 & \text{if } |Z| \le z_{\alpha/2} \end{cases}$$

Z-test

Example: See Example 9.25 in textbook

Two-sample Z-test

We can also test if two populations have the same expected value:

$$H_0: \mu_X = \mu_Y$$

$$H_A: \mu_X \neq \mu_Y$$

- Example: Is the average salary the same in Stockholm and Malmö?
- X_1, \ldots, X_n random sample from $N(\mu_X, \sigma_X^2)$, σ_Y^2 known
- Y_1, \ldots, Y_m random sample from $N(\mu_Y, \sigma_Y^2)$, σ_Y^2 known
- ▶ **Test Statistics**: $\bar{X} \bar{Y}$. Sampling distribution under H_0 ?
 - Linear combination of normal variables is normally distributed, i.e. $\bar{X} \bar{Y}$ is normally distributed
 - $E(\bar{X} \bar{Y}) = \mu_X \mu_Y = 0$ under H_0
 - $Var(\bar{X} \bar{Y}) = Var(\bar{X}) + Var(\bar{Y}) = \sigma_X^2/n + \sigma_Y^2/m$
 - ▶ Then

$$Z = \frac{X - Y}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim N(0, 1)$$

Example: See Example 9.26 in textbook

T-test

- Z-test is used when sampling distribution of test statistic under H₀ is normal distribution
- If σ^2 **not** known but estimated with s^2

$$t=\frac{\bar{X}-\mu_0}{s/\sqrt{n}}$$

in **not** normally distributed but t-distributed with n-1 degrees of freedom

- Use t_{α} instead of z_{α}
- t_{lpha} (1-lpha)-quantile of t-distribution with n-1 degrees of freedom
- Values for t_{α} in Table A5 in textbook

Duality: hypothesis test and confidence interval

A Z-test or T-test of $H_0: \theta = \theta_0$ against $H_A: \theta \neq \theta_0$ at the significance level α accepts the null hypothesis if and only if θ_0 is included in a symmetric $(1-\alpha)100\%$ confidence interval for θ .

P-value

- How do we choose α ?
- α Type I error \rightarrow should be low
- Very low α requires very large / very small observed value of test statistic to reject H_0
- Idea: Test hypothesis for all α
- P-value = the lowest significance level α for which we can reject H_0 = the highest significance level α for which we can accept H_0
- Alternative definition: Probability to obtain a test statistic that is as extreme or even more extreme than T_{obs}
- Example: One-sided, right-tail Z-Test:

$$P$$
-value = $P(Z \ge Z_{obs}) = 1 - \Phi(Z_{obs})$

- Reject H_0 at level α if $\alpha > P$ -value
- Example: See Example 9.38 in textbook

χ^2 -test for population variance

• Unbiased estimator of σ^2 :

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2$$

▶ Sampling distribution of s^2 if $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$:

$$\frac{(n-1)s^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim \chi_{n-1}^2$$

- χ^2 -distribution is used for hypothesis testing and confidence intervals as normal and t-distributions
- Pdf of $X \sim \chi^2_{\nu}$:

$$f(x) = \frac{1}{2^{\nu/2}\Gamma(\nu/2)}x^{\nu/2-1}e^{-x/2}, \quad x > 0$$

u - number of degrees of freedom

- $\mathbb{E}(X) = \nu$ and $Var(X) = 2\nu$
- $\chi^2_{
 u}$ distribution is a special case of Gamma-distribution: Gamma(
 u/2,1/2)
- $\chi^2_{1-\frac{\alpha}{2}}$ and $\chi^2_{\frac{\alpha}{2}}$ quantiles of χ^2 -distribution, values in Table A6
- $\chi^2_{
 u}$ distribution is **not symmetric** ightarrow both $\chi^2_{1-\frac{\alpha}{2}}$ and $\chi^2_{\frac{\alpha}{2}}$ needed

Thank you for your attention!