CS3243 Tutorial 3

Eric Han

Sep 6, 2022

Annoucements

Important admin

- 1. Attendance Marking on telegram; Same as last week. Check-in if you are here!
- 2. Show me your bonus to collect your snacks
- 3. Assignment 1 results are out on turnitin, check scores and comments:

Figure 1: Turnitin, comments on Luminus; 2 places you can find the comments.

Tidbits from tutorials

1. Heuristics should be thought of as functions, so combining heuristics are like combining functions – $h(n) = \max(h_1(n), h_2(n))$, also $h = \max(h_1, h_2)$

Annoucements (New)

Tidbits from tutorials

1. [From Prof] In L3, slide 42 it says - 'dominance requires admissibility and that is applied in CS3243' - we should apply this in general. This would mean Tut3, Q2c is missing a statement - 'Here we do not require admissibility for dominance'.

Annoucement from Prof.

Error in the lecture slides.

Figure 2: Graph Algo

I recommend you to see implementations at https://github.com/aimacode/aima-python.

Previously from T02, Q5

Recap

• What is an admissible/consistent heuristic?

Figure 3: Illustration

- a. In the search problem below, we have listed 5 heuristics. Indicate whether each **heuristic** is **admissible** and/or **consistent** in the table below.
- b. Write out the order of the nodes that are explored by the A^* Search algorithm. Assume a graph search (v3) implementation that utilises heuristic h_4 .
- c. Which heuristic would you use? Explain why.
- d. Prove or disprove the following statement:

The heuristic $h(n) = max\{h_3(n), h_5(n)\}$ is admissible.

Answer 5a

8	S	\overline{A}	В	G	Admissible	Consistent
$h_1(s)$	0	0	0	0	Т	T
$h_2(s)$	8	1	1	0	${f T}$	\mathbf{F}
$h_3(s)$	9	3	2	0	${ m T}$	${ m T}$
$h_4(s)$	6	3	1	0	${ m T}$	\mathbf{F}
$h_5(s)$	8	4	2	0	\mathbf{F}	F
$\max\{h_3(s),h_5(s)\}$	9	4	2	0	\mathbf{F}	F

Answer 5b

$$S - A - B - G$$

Answer 5c

 h_3 , as $h_3 = h^*$ is the optimal heuristic.

Answer 5d

$$4=h(A)>h^*(A)=3$$

Question 1

Given a two-dimensional, rectangular, $n \times m$ grid of coloured squares.

- State Space: $n \times m$ where each cell value is color, [0, c].
- Initial State: Random matrix where each cell [1, c].
- Final State: Zero matrix.
- Action: Delete a group of the same color.
- Transition Model: Replace group with 0, any cell which has 0 below will move down until zeros are ontop, columns move left if zero column.

Design an admissible heuristic for this puzzle game. Your heuristic may not be h(s) = 0 for all states s, the optimal heuristic, or a linear combination/simple function thereof. You may assume that the tile layout

Figure 4: Q1 eg.

in the initial grid is solvable i.e. there is some path to a goal state. You must prove that your heuristic is admissible.

Recap

- How is a heuristic useful?
- What is the h^* heuristic?
- What is a potential downfall of choosing an optimal heuristic?

Question 1 - Answer crowd-sourced from TG4/TG5

h(n) =

- 1. No. of colors See next slide for discussion.
- 2. No. of groups [Inadmissible]
 - BBGGBB > BBBB > \emptyset $h(n) = 3 > h^*(n) = 2$
- 3. No. of singletons [Inadmissible]
 - GBRRBG > GBBG > GG > \emptyset $h(n) = 4 > h^*(n) = 3$
- 4. min(No. of groups, No. of singletons) [Inadmissible]

Figure 5: min(No. of groups, No. of singletons)

Question 1 - Answer

h(s) = number of colors remaining.

Proof of Admissibility

 $h^*(s)$ is the number of optimal moves from s to goal.

- 1. Each group contains exactly 1 colour.
- 2. So for each remaining colour, there can be 1 or more groups.
- 3. There are 2 possibilities from a particular move:
 - Reduce the number of colors Number of groups (maximally) reduced by 1.
 - Do not reduce the number of colors.

Hence, h(s) is less than or equals to at least the minimum moves on the board $\implies h(s) \leq h^*(s)$.

Figure 6: Tetriminos

Question 2

Each turn, when a new piece appears to be placed, the player must select the location and orientation before it falls.

• State Space: Matrix where each cell is 0 empty or 1 filled.

• Initial State: Empty matrix.

• Final State: Filled matrix, with all 1s.

• Action: Orientation and column position.

• Transition Model: Transition cost - 1, add 1 to the position of the dropped tetriminos.

Recap

- What is an admissible heuristic? $h(N) \leq h^*(N)$
- What are some properties of admissibility?

Question 2a

Admissible, or inadmissible?

- $h_1(n) = \text{number of unfielded tetriminos}$
- $h_2(n) = \text{number of gaps}$
- $h_3(n) = \text{number of incomplete rows}$
- $h_4(n) = \text{number of blocked gaps}$
- None of the options are admissible.

. . .

Answer

- $h_1(n)$ Admissible, optimal steps must be \geq than the number of teriminos.
- $h_2(n)$ Inadmissible, yellow square block fills a gap of 4 but optimal cost is 1.
- $h_3(n)$ Inadmissible, cyan vertical block fills a gap of 4 rows but optimal cost is 1.
- $h_4(n)$ Admissible (Assuming that blocked gaps cannot be filled):
 - Whenever there is a blocked gap, h^* is infinite.
 - Whenever there is none, $h_4(.) = 0 \le h^*(.)$

Question 2b

h	Admissiblity
$\overline{h_1}$	Admissible
h_2	Inadmissible
h_3^-	Inadmissible
h_4	Admissible

Select all of the following that are True:

h	Admissiblity
h_4	Admissible

Select all of the following that are True:

- [False] $\max(h_1, h_2)$ is admissible*
- [False] $\min(h_2, h_3)$ is admissible
 - L shaped piece gap, $h_2=4, h_3=2$ but $h^\ast=1$
- [True] $\max(h_3, h_4)$ is inadmissible*
- [True] $min(h_1, h_4)$ is admissible

. . .

Analysis, cases, which are always true for general case?

- max(Admissible, Admissible) Admissible
- max(Admissible, Inadmissible)
- max(Inadmissible, Inadmissible)
- min(Admissible, Admissible)
- min(Admissible, Inadmissible) Admissible
- min(Inadmissible, Inadmissible)

Question 2c

h	Admissiblity
$\overline{h_1}$	Admissible
h_2	Inadmissible
h_3	Inadmissible
h_4	Admissible

Recall the hueristics:

- $h_1(n) =$ number of unfielded tetriminos
- $h_2(n) = \text{number of gaps}$
- $h_3(n) = \text{number of incomplete rows}$
- $h_4(n) = \text{number of blocked gaps}$

Question

Select all of the following that are True:

- h_1 dominates h_2
- h_2 dominates h_4
- h_3 does not dominate h_2
- h_4 does not dominate $h_2/2$

Recap

• What is dominates? $h_2(n) \ge h_1(n)$ for every state n, then h_2 dominates h_1 .

Question 2c - Answer

h	Admissiblity
$\overline{h_1}$	Admissible
h_2	Inadmissible
h_3	Inadmissible
h_4	Admissible

Recall the hueristics:

- $h_1(n) = \text{number of unfielded tetriminos}$
- $h_2(n) = \text{number of gaps}$
- $h_3(n)$ = number of incomplete rows
- $h_{\Lambda}(n) = \text{number of blocked gaps}$

Select all of the following that are True:

- [False] h_1 dominates h_2 Admissible cannot dominate inadmissible.
- [True] h_2 dominates h_4 Gaps \geq Blocked Gaps $\implies h_2 \geq h_4$
- [True] h_3 does not dominate h_2 Consider inital state: $0 = h_3(s_0) < h_2(s_0) \neq 0$
- [True] h_4 does not dominate $h_2/2$ Consider inital state: $0 = h_4(s_0) < h_2(s_0)/2 \neq 0$

Question 3

Assignment Question; we will go through this question next week.

For next question, we will assume all hueristics are admissible.

Figure 7: Pac-Man Example

Question 4

- h_1 : Number of pellets left at any point in time.
- h_2 : Number of pellets left + the minimum among all Manhattan distances from each remaining pellet to the current position of Pac-Man.
- h_3 : The Maximum among all Manhattan distances from each remaining pellet to the current position of Pac-Man.
- h_4 : The average over all Euclidean distances from each remaining pellet to the current position of Pac-Man.

Recap

- What is euclidean distance?
- What is manhattan distance?

Answer

- We pick h_1 to analyse dominate relationship:
 - h_2 dominates h_1 ; Trival to see $h_2(.) \ge h_1(.)$.
 - h_3 No RS, h_4 No RS; see example
 - * Case where 1 pellet left, pacman is 10 units away: $h_1 = 1 < h_3 = h_4 = 10\,$
 - * Case where 4 pellets left, pacman is 1 units away: $h_1=4>h_3=h_4=1$

- We pick h_2 to analyse dominate relationship.
 - h_3 **No RS**, h_4 **No RS**; see example
 - * Case where 2 pellet left, pacman is 1,9 units away: $h_2 = 2 < h_3 = 9, h_4 = 5\,$
 - * Case where 4 pellets left, pacman is 1 units away: $h_2 = 5 > h_3 = h_4 = 1$
- We pick h_3 with h_4 to analyse dominate relationship. h_3 dominates h_4 ; We consider h_3' which is average of all manhattan distance. Then, h_3 (max man.) dominates h'_3 (avg man.) dominates h_4 (avg. eucl.).

Bonus Question - Work for Snack

To help you further your understanding, not compulsory. Our task today is to just install Anaconda, OpenAI Gym and play around with a PacMan environment.

- Anaconda is a very popular tool for AI/ML.
- OpenAI Gym is a very good tool for RL/Env.

Tasks

- 1. Fork the repository https://github.com/eric-vader/CS3243-2223s1-bonus
- 2. Install Anaconda https://www.anaconda.com/products/distribution
- 3. Install the conda environment: cond env create -f tutorial3.yml
- 4. Activate the environment: conda activate tutorial3
- 5. Run and see PacMan in action: python3 tutorial3.py
- 6. Fill in anywhere TODO in the code as appropriate.