COSC 6364 Final Project

Assessing the effectiveness of an emergency sound recognition system utilizing frequency centric signal processing

Import required libraries

```
In [1]: #Import necessary libraries
        import numpy as np
        import matplotlib.pyplot as plt
        from scipy.io import wavfile
        import sys
        from scipy.signal import fftconvolve
         import pandas as pd
         import random
         import cv2
        import keras
        from keras.models import Sequential
        from keras.layers import Dense, Dropout, Flatten
        from keras.layers import Conv2D, MaxPooling2D
        import tensorflow as tf
        from sklearn.model selection import train test split
        from keras.preprocessing.image import ImageDataGenerator
        from sklearn.metrics import accuracy_score
        from sklearn.metrics import accuracy score
        from sklearn.metrics import precision_score
        from sklearn.metrics import recall_score
        from sklearn.metrics import f1_score
        from sklearn.metrics import roc_auc_score
        from sklearn.metrics import confusion matrix
        from tensorflow.keras.applications.vgg16 import VGG16
        from tensorflow.keras.applications.vgg16 import preprocess_input
        from tensorflow.keras import layers, models
        from tensorflow.keras.applications.resnet50 import ResNet50
        from tensorflow.keras.applications.resnet50 import preprocess_input
        from sklearn.metrics import *
         import seaborn as sns
```

Define helper functions to perform some basic signal processing on audio files and analyze their frequency content.

```
In [2]: # This function is used to pad the input data with zeros to the nearest power of tw
def padding(list):
    k = 0
    while 2**k < len(list):
        k = k+1
        return np.concatenate((list,([0]*(2**k-len(list)))))</pre>
In [3]: # This function computes the DFT of the input data.
def dft(data):
    data = np.asarray(data, dtype=float)
```

```
N = data.shape[0]
          n = np.arange(N)
          k = n.reshape((N, 1))
          M = np.exp(-2j*np.pi*k * n / N)
          return np.dot (M, data)
In [4]: # This function recursively computes the FFT of the input data by dividing it into
        def fft(data):
          data=padding(data)
          data = np.asarray(data, dtype=float)
          n = data.shape[0]
          if n <= 32:
            return dft (data)
          else:
            odd = fft(data[1::2])
            even = fft (data[::2])
            factor = np.exp(-2j*np.pi*np.arange(n)/n)
            return np.concatenate([even + factor[:n // 2] * odd,even + factor[n// 2:]*odd])
```

Visualize the FFT and Convolution of Emergency Audio Signal with itself and Non-Emergency Signal

```
In [5]: # Load the emergency sound data and compute fft
        rate emerg, data emerg = wavfile.read("sound 1.wav")
        sig_emerg = data_emerg.T[0]
        emerg_fft = fft(sig_emerg)
        emerg_fft_len = len(emerg_fft)//2
In [6]: # Load the non-emergency sound data and compute fft
        rate_non_emerg, data_non_emerg = wavfile.read("sound_401.wav")
        sig non emerg = data non emerg.T[0]
        non_emerg_fft = fft(sig_non_emerg)
        non_emerg_fft_len = len(non_emerg_fft)//2
In [7]: #Perform convolution on emergency signal with itself
        convolve_emerg = fftconvolve(sig_emerg, sig_emerg[::-1], mode='same')
        ce = convolve_emerg*np.conj(convolve_emerg)
        #Perform convolution on emergency signal with non-emergency signal
         convolve emerg = fftconvolve(sig non emerg, sig emerg[::-1], mode='same')
        cne = convolve emerg*np.conj(convolve emerg)
In [8]: #Draw the plots for FFT and Signal Convolutions
        fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 8))
        axes[0, 0].plot(abs(emerg_fft[:(emerg_fft_len-1)]),'r')
        axes[0, 0].set title('FFT EMERGENCY')
        axes[0, 0].set xlabel('Frequency (Hz)')
        axes[0, 0].set_ylabel('Amplitude')
        axes[0, 1].plot(abs(non_emerg_fft[:(non_emerg_fft_len-1)]),'g')
        axes[0, 1].set_title('FFT NON-EMERGENCY')
        axes[0, 1].set_xlabel('Frequency (Hz)')
        axes[0, 1].set_ylabel('Amplitude')
        axes[1, 0].plot(ce)
        axes[1, 0].set title('Convolve Noisy Emergency Signal with Emergency')
        axes[1, 0].set_xlabel('Frequency (Hz)')
        axes[1, 0].set_ylabel('Amplitude')
        axes[1, 1].plot(cne)
        axes[1, 1].set_title('Convolve Noisy Emergency Signal with Non-Emergency')
```

```
axes[1, 1].set_xlabel('Frequency (Hz)')
axes[1, 1].set_ylabel('Amplitude')

fig.tight_layout()
plt.show()
```



```
In [9]: print(len(sig_emerg))
132300
```

Visualize the Original and Mixed/Noisy Signals

```
In [10]:
        signal = np.random.normal(0,1,132300)
          signal = signal[:132300]
         mixed = signal*6000+sig emerg
         # create a figure with 1 row and 2 columns of subplots
         fig, axs = plt.subplots(1, 2, figsize=(10, 4))
         # plot the first subplot in the first row
         axs[0].plot(sig_emerg)
         axs[0].set_title('Original Emergency Signal')
         axs[0].set_xlabel('Time')
         axs[0].set_ylabel('Amplitude')
         # plot the second subplot in the first row
         axs[1].plot(mixed)
         axs[1].set_title('Noisy Emergency Signal')
         axs[1].set_xlabel('Time')
         axs[1].set ylabel('Amplitude')
         # adjust the spacing between subplots to prevent overlapping of titles and labels
         plt.tight layout()
```

```
# show the plot plt.show()
```



```
# convolve the mixed signal with the emergency signal
In [11]:
         convolve_emerg = fftconvolve(mixed, sig_emerg[::-1], mode='same')
         ce_emerg = convolve_emerg * np.conj(convolve_emerg)
         # convolve the mixed signal with the non-emergency signal
         convolve_non_emerg = fftconvolve(mixed, sig_non_emerg[::-1], mode='same')
         ce_non_emerg = convolve_non_emerg * np.conj(convolve_non_emerg)
         # create a figure with 1 row and 2 columns of subplots
         fig, axs = plt.subplots(1, 2, figsize=(10, 4))
         # plot the first subplot in the first column
         axs[0].plot(ce_emerg)
         axs[0].set_title('Convolve Noisy Emergency Signal with Emergency')
         axs[0].set_xlabel('Frequency (Hz)')
         axs[0].set_ylabel('Amplitude')
         # plot the second subplot in the second column
         axs[1].plot(ce non emerg)
         axs[1].set_title('Convolve Noisy Emergency Signal with Non-Emergency')
         axs[1].set_xlabel('Frequency (Hz)')
         axs[1].set_ylabel('Amplitude')
         # adjust the spacing between subplots to prevent overlapping of titles and labels
         plt.tight_layout()
         # show the plot
         plt.show()
```



```
DATASET_LOCATION = "dataset/train_images/"
In [12]:
         import os
         filenames = os.listdir(DATASET_LOCATION)
         classes = []
         for filename in filenames:
             image_class = filename[0:3]
             if image_class == "eme":
                  classes.append(0)
             else:
                  classes.append(1)
         print(classes[:5])
         [0, 0, 0, 0, 0]
In [13]: print(filenames)
         df = pd.DataFrame({"filename": filenames, "category": classes})
         df["category"] = df["category"].replace({1: "non_emergency", 0: "emergency"})
         df.head(-5)
```

['emergency_1.jpg', 'emergency_10.jpg', 'emergency_100.jpg', 'emergency_101.jpg',
'emergency_102.jpg', 'emergency_103.jpg', 'emergency_104.jpg', 'emergency_105.jp g', 'emergency_106.jpg', 'emergency_107.jpg', 'emergency_108.jpg', 'emergency_109. jpg', 'emergency_11.jpg', 'emergency_110.jpg', 'emergency_111.jpg', 'emergency_11 2.jpg', 'emergency_113.jpg', 'emergency_114.jpg', 'emergency_115.jpg', 'emergency_ 116.jpg', 'emergency_117.jpg', 'emergency_118.jpg', 'emergency_119.jpg', y_12.jpg', 'emergency_120.jpg', 'emergency_121.jpg', 'emergency_122.jpg', 'emergency_120.jpg' cy_123.jpg', 'emergency_124.jpg', 'emergency_125.jpg', 'emergency_126.jpg', 'emergency_126.jp ency_127.jpg', 'emergency_128.jpg', 'emergency_129.jpg', 'emergency_13.jpg', 'emergency_13.jpg', 'emergency_129.jpg' gency_130.jpg', 'emergency_131.jpg', 'emergency_132.jpg', 'emergency_133.jpg', 'em ergency_134.jpg', 'emergency_135.jpg', 'emergency_136.jpg', 'emergency_137.jpg', 'emergency_138.jpg', 'emergency_140.jpg', 'emergency_141.jpg', 'emergency_142.jpg', 'emergency_143.jpg', 'emergency_144.jp g', 'emergency_145.jpg', 'emergency_146.jpg', 'emergency_147.jpg', 'emergency_148. jpg', 'emergency_149.jpg', 'emergency_15.jpg', 'emergency_150.jpg', 'emergency_15 1.jpg', 'emergency_152.jpg', 'emergency_153.jpg', 'emergency_154.jpg', 'emergency_ 155.jpg', 'emergency_156.jpg', 'emergency_157.jpg', 'emergency_158.jpg', 'emergency_159.jpg', 'emergency_160.jpg', 'emergency_161.jpg', cy_162.jpg', 'emergency_163.jpg', 'emergency_164.jpg', 'emergency_165.jpg', 'emergency_165.jpg' ency_166.jpg', 'emergency_167.jpg', 'emergency_168.jpg', 'emergency_169.jpg', 'eme rgency_17.jpg', 'emergency_170.jpg', 'emergency_171.jpg', 'emergency_172.jpg', 'em ergency_173.jpg', 'emergency_174.jpg', 'emergency_175.jpg', 'emergency_176.jpg', 'emergency_177.jpg', 'emergency_178.jpg', 'emergency_179.jpg', 'emergency_180.jpg', 'emergency_180.jpg', 'emergency_181.jpg', 'emergency_182.jpg', 'emergency_183.jp g', 'emergency_184.jpg', 'emergency_185.jpg', 'emergency_186.jpg', 'emergency_187. jpg', 'emergency_188.jpg', 'emergency_189.jpg', 'emergency_19.jpg', 'emergency_19 0.jpg', 'emergency_191.jpg', 'emergency_192.jpg', 'emergency_193.jpg', 'emergency_ 194.jpg', 'emergency_195.jpg', 'emergency_196.jpg', 'emergency_197.jpg', 'emergency_198.jpg', 'emergency_2.jpg', 'emergency_2.j 24.jpg', 'emergency_25.jpg', 'emergency_26.jpg', 'emergency_27.jpg', 'emergency_2 8.jpg', 'emergency_29.jpg', 'emergency_3.jpg', 'emergency_30.jpg', 'emergency_31.j pg', 'emergency_32.jpg', 'emergency_33.jpg', 'emergency_34.jpg', 'emergency_35.jpg', 'emergency_36.jpg', 'emergency_37.jpg', 'emergency_38.jpg', 'emergency_39.jp g', 'emergency_4.jpg', 'emergency_40.jpg', 'emergency_41.jpg', 'emergency_42.jpg', 'emergency_43.jpg', 'emergency_44.jpg', 'emergency_45.jpg', 'emergency_46.jpg', 'emergency_47.jpg', 'emergency_48.jpg', 'emergency_49.jpg', 'emergency_5.jpg', 'emergency_5.jpg', 'emergency_6.jpg', gency_50.jpg', 'emergency_51.jpg', 'emergency_52.jpg', 'emergency_53.jpg', 'emerge ncy_54.jpg', 'emergency_55.jpg', 'emergency_56.jpg', 'emergency_57.jpg', 'emergency_57.jpg' y_58.jpg', 'emergency_59.jpg', 'emergency_6.jpg', 'emergency_60.jpg', 'emergency_61.jpg', 'emergency_63.jpg', 'emergency_64.jpg', 'emergency_65.jpg', 'emergency_66.jpg', 'emergency_67.jpg', 'emergency_68.jpg', 'emergency_69.jp g', 'emergency_7.jpg', 'emergency_70.jpg', 'emergency_71.jpg', 'emergency_72.jpg', 'emergency_73.jpg', 'emergency_74.jpg', 'emergency_75.jpg', 'emergency_76.jpg', 'emergency_77.jpg', 'emergency_79.jpg', 'emergency_8.jpg', 'emerge gency_80.jpg', 'emergency_81.jpg', 'emergency_82.jpg', 'emergency_83.jpg', 'emergency_84.jpg', 'emergency_85.jpg', 'emergency_86.jpg', 'emergency_87.jpg', 'emergency_87.jpg' y_88.jpg', 'emergency_89.jpg', 'emergency_9.jpg', 'emergency_90.jpg', 'emergency_9 1.jpg', 'emergency_92.jpg', 'emergency_93.jpg', 'emergency_94.jpg', 'emergency_95. jpg', 'emergency_96.jpg', 'emergency_97.jpg', 'emergency_98.jpg', 'emergency_99.jp g', 'non_emergency_1.jpg', 'non_emergency_10.jpg', 'non_emergency_100.jpg', 'non_e mergency_101.jpg', 'non_emergency_102.jpg', 'non_emergency_103.jpg', 'non_emergenc y_104.jpg', 'non_emergency_105.jpg', 'non_emergency_106.jpg', 'non_emergency_107.j pg', 'non_emergency_108.jpg', 'non_emergency_109.jpg', 'non_emergency_11.jpg', 'no n_emergency_110.jpg', 'non_emergency_111.jpg', 'non_emergency_112.jpg', 'non_emerg ency_113.jpg', 'non_emergency_114.jpg', 'non_emergency_115.jpg', 'non_emergency_11 6.jpg', 'non_emergency_117.jpg', 'non_emergency_118.jpg', 'non_emergency_119.jpg', 'non_emergency_12.jpg', 'non_emergency_120.jpg', 'non_emergency_121.jpg', 'non_eme rgency_122.jpg', 'non_emergency_123.jpg', 'non_emergency_124.jpg', 'non_emergency_ 125.jpg', 'non_emergency_126.jpg', 'non_emergency_127.jpg', 'non_emergency_128.jp g', 'non_emergency_129.jpg', 'non_emergency_13.jpg', 'non_emergency_130.jpg', 'non _emergency_131.jpg', 'non_emergency_132.jpg', 'non_emergency_133.jpg', 'non_emerge ncy_134.jpg', 'non_emergency_135.jpg', 'non_emergency_136.jpg', 'non_emergency_13 7.jpg', 'non_emergency_138.jpg', 'non_emergency_139.jpg', 'non_emergency_14.jpg',

'non_emergency_140.jpg', 'non_emergency_141.jpg', 'non_emergency_142.jpg', 'non_em ergency_143.jpg', 'non_emergency_144.jpg', 'non_emergency_145.jpg', 'non_emergency _146.jpg', 'non_emergency_147.jpg', 'non_emergency_148.jpg', 'non_emergency_149.jp g', 'non_emergency_15.jpg', 'non_emergency_150.jpg', 'non_emergency_151.jpg', 'non _emergency_152.jpg', 'non_emergency_153.jpg', 'non_emergency_154.jpg', 'non_emerge ncy_155.jpg', 'non_emergency_156.jpg', 'non_emergency_157.jpg', 'non_emergency_15 8.jpg', 'non_emergency_159.jpg', 'non_emergency_16.jpg', 'non_emergency_160.jpg', 'non_emergency_161.jpg', 'non_emergency_162.jpg', 'non_emergency_163.jpg', 'non_em ergency_164.jpg', 'non_emergency_165.jpg', 'non_emergency_166.jpg', 'non_emergency _167.jpg', 'non_emergency_168.jpg', 'non_emergency_169.jpg', 'non_emergency_17.jp g', 'non_emergency_170.jpg', 'non_emergency_171.jpg', 'non_emergency_172.jpg', 'no n_emergency_173.jpg', 'non_emergency_174.jpg', 'non_emergency_175.jpg', 'non_emerg ency_176.jpg', 'non_emergency_177.jpg', 'non_emergency_178.jpg', 'non_emergency_17 9.jpg', 'non_emergency_18.jpg', 'non_emergency_180.jpg', 'non_emergency_181.jpg', 'non_emergency_182.jpg', 'non_emergency_183.jpg', 'non_emergency_184.jpg', 'non_em ergency_185.jpg', 'non_emergency_186.jpg', 'non_emergency_187.jpg', 'non_emergency _188.jpg', 'non_emergency_189.jpg', 'non_emergency_19.jpg', 'non_emergency_190.jp g', 'non_emergency_191.jpg', 'non_emergency_192.jpg', 'non_emergency_193.jpg', 'no n_emergency_194.jpg', 'non_emergency_195.jpg', 'non_emergency_196.jpg', 'non_emergency_196. ency_197.jpg', 'non_emergency_198.jpg', 'non_emergency_199.jpg', 'non_emergency_2. jpg', 'non_emergency_20.jpg', 'non_emergency_200.jpg', 'non_emergency_21.jpg', 'no n_emergency_22.jpg', 'non_emergency_23.jpg', 'non_emergency_24.jpg', 'non_emergency_24.jpg', 'non_emergency_25.jpg', 'non_emergency_26.jpg', 'non y_25.jpg', 'non_emergency_26.jpg', 'non_emergency_27.jpg', 'non_emergency_28.jpg', 'non_emergency_29.jpg', 'non_emergency_3.jpg', 'non_emergency_30.jpg', 'non_emerge ncy_31.jpg', 'non_emergency_32.jpg', 'non_emergency_33.jpg', 'non_emergency_34.jp g', 'non_emergency_35.jpg', 'non_emergency_36.jpg', 'non_emergency_37.jpg', 'non_e mergency_38.jpg', 'non_emergency_39.jpg', 'non_emergency_4.jpg', 'non_emergency_4 0.jpg', 'non_emergency_41.jpg', 'non_emergency_42.jpg', 'non_emergency_43.jpg', 'n on_emergency_44.jpg', 'non_emergency_45.jpg', 'non_emergency_46.jpg', 'non_emergen cy_47.jpg', 'non_emergency_48.jpg', 'non_emergency_49.jpg', 'non_emergency_5.jpg', 'non_emergency_50.jpg', 'non_emergency_51.jpg', 'non_emergency_52.jpg', 'non_emerg ency_53.jpg', 'non_emergency_54.jpg', 'non_emergency_55.jpg', 'non_emergency_56.jp g', 'non_emergency_57.jpg', 'non_emergency_58.jpg', 'non_emergency_59.jpg', 'non_e mergency_6.jpg', 'non_emergency_60.jpg', 'non_emergency_61.jpg', 'non_emergency_6 2.jpg', 'non_emergency_63.jpg', 'non_emergency_64.jpg', 'non_emergency_65.jpg', 'n on_emergency_66.jpg', 'non_emergency_67.jpg', 'non_emergency_68.jpg', 'non_emergen cy_69.jpg', 'non_emergency_7.jpg', 'non_emergency_70.jpg', 'non_emergency_71.jpg', 'non_emergency_72.jpg', 'non_emergency_73.jpg', 'non_emergency_74.jpg', 'non_emerg ency_75.jpg', 'non_emergency_76.jpg', 'non_emergency_77.jpg', 'non_emergency_78.jp g', 'non_emergency_79.jpg', 'non_emergency_8.jpg', 'non_emergency_80.jpg', 'non_em ergency_81.jpg', 'non_emergency_82.jpg', 'non_emergency_83.jpg', 'non_emergency_8 4.jpg', 'non_emergency_85.jpg', 'non_emergency_86.jpg', 'non_emergency_87.jpg', 'n on_emergency_88.jpg', 'non_emergency_89.jpg', 'non_emergency_9.jpg', 'non_emergenc y_90.jpg', 'non_emergency_91.jpg', 'non_emergency_92.jpg', 'non_emergency_93.jpg', 'non_emergency_94.jpg', 'non_emergency_95.jpg', 'non_emergency_96.jpg', 'non_emerg ency_97.jpg', 'non_emergency_98.jpg', 'non_emergency_99.jpg']

Out[13]:		filename	category
	0	emergency_1.jpg	emergency
	1	 emergency_1.jpg emerg emergency_10.jpg emerg emergency_100.jpg emerg emergency_101.jpg emerg emergency_102.jpg emerg mon_emergency_90.jpg non_emerg non_emergency_91.jpg non_emerg non_emergency_92.jpg non_emerg non_emergency_92.jpg non_emerg 	emergency
	2		emergency
	 0 emergency_1.jpg emerge 1 emergency_10.jpg emerge 2 emergency_100.jpg emerge 3 emergency_101.jpg emerge 4 emergency_102.jpg emerge 390 non_emergency_90.jpg non_emerge 391 non_emergency_91.jpg non_emerge 392 non_emergency_92.jpg non_emerge 393 non_emergency_93.jpg non_emerge 	emergency	
	4	emergency_102.jpg	emergency
	•••		
	390	non_emergency_90.jpg	non_emergency
	391	non_emergency_91.jpg	non_emergency
	392	non_emergency_92.jpg	non_emergency
	393	non_emergency_93.jpg	non_emergency
	394	non_emergency_94.jpg	non_emergency
	205	2	

395 rows × 2 columns

Visualize the Spectograms of Emergency and Non-emergency Audio Signal

```
In [14]: # read the images
    emergency_image = cv2.imread(DATASET_LOCATION + "/emergency_99.jpg")
    non_emergency_image = cv2.imread(DATASET_LOCATION + "/non_emergency_99.jpg")

# create a figure with 1 row and 2 columns of subplots
    fig, axs = plt.subplots(1, 2, figsize=(9, 8))

# plot the first image in the first subplot
    axs[0].imshow(cv2.cvtColor(emergency_image, cv2.COLOR_BGR2RGB))
    axs[0].set_title('Emergency Signal Sample')

# plot the second image in the second subplot
    axs[1].imshow(cv2.cvtColor(non_emergency_image, cv2.COLOR_BGR2RGB))
    axs[1].set_title('Non-Emergency Signal Sample')

# adjust the spacing between subplots to prevent overlapping of titles and labels
    plt.tight_layout()

# show the plot
    plt.show()
```


Build a CNN Model to detect the emergency audio signal

```
IMAGE_WIDTH = 64
In [15]:
         IMAGE HEIGHT = 64
          IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT)
         INPUT_SHAPE = (IMAGE_WIDTH, IMAGE_HEIGHT, 3)
         #Custom built Model with combination of Conv2D, Maxpooling, Dense layers
In [16]:
         model = Sequential()
         model.add(Conv2D(32, kernel_size=(3, 3), activation="relu",input_shape=INPUT_SHAPE)
         model.add(Conv2D(64, (3, 3), activation="relu"))
         model.add(MaxPooling2D(pool_size=(2, 2)))
         model.add(Dropout(0.5))
         model.add(Flatten())
         model.add(Dense(128, activation="relu"))
         model.add(Dropout(0.25))
         model.add(Dense(2, activation="sigmoid"))
         model.compile(
              loss=keras.losses.categorical crossentropy,optimizer=tf.keras.optimizers.Adam()
         model.summary()
```

Param #

Model: "sequential"

```
Layer (type)
                                 Output Shape
        ______
         conv2d (Conv2D)
                                  (None, 62, 62, 32)
                                                          896
                             (None, 60, 60, 64)
         conv2d_1 (Conv2D)
                                                         18496
         max_pooling2d (MaxPooling2D (None, 30, 30, 64)
         dropout (Dropout)
                                  (None, 30, 30, 64)
         flatten (Flatten)
                                  (None, 57600)
                                  (None, 128)
         dense (Dense)
                                                          7372928
         dropout_1 (Dropout)
                           (None, 128)
         dense_1 (Dense)
                                  (None, 2)
                                                          258
        ______
        Total params: 7,392,578
        Trainable params: 7,392,578
        Non-trainable params: 0
In [17]: # Create the test and validation dataset out of the original images using train_tes
        train_df, test_df = train_test_split(df, test_size=0.20, random_state=42)
        train_df, val_df = train_test_split(train_df, test_size=0.20, random_state=42)
In [18]: len(test_df)
Out[18]:
In [19]:
       train_datagen = ImageDataGenerator(
           rescale=1.0 / 255
        )
        test_datagen = ImageDataGenerator(
            rescale=1.0 / 255
        BATCH SIZE = 16
        train_generator = train_datagen.flow_from_dataframe(
            train_df,
            DATASET_LOCATION,
            x_col="filename",
            y_col="category",
            target size=IMAGE SIZE,
            class_mode="categorical",
            batch_size=BATCH_SIZE,
            color_mode="rgb",
            seed=42
        val_generator = train_datagen.flow_from_dataframe(
            val df,
            DATASET_LOCATION,
            x_col="filename",
            y_col="category",
            target_size=IMAGE_SIZE,
```

```
class_mode="categorical",
  batch_size=BATCH_SIZE,
  color_mode="rgb",
  seed=42
)

test_generator = train_datagen.flow_from_dataframe(
  test_df,
  DATASET_LOCATION,
  x_col="filename",
  y_col="category",
  target_size=IMAGE_SIZE,
  class_mode="categorical",
  batch_size=1,
  color_mode="rgb",
  seed=42
)
```

Found 256 validated image filenames belonging to 2 classes. Found 64 validated image filenames belonging to 2 classes. Found 80 validated image filenames belonging to 2 classes.

Epoch 1/15

C:\Users\qasim\AppData\Local\Temp\ipykernel_30896\1214772301.py:2: UserWarning: `M
odel.fit_generator` is deprecated and will be removed in a future version. Please
use `Model.fit`, which supports generators.
history = model.fit_generator(

```
WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure th
    at your dataset or generator can generate at least `steps_per_epoch * epochs` batc
    hes (in this case, 5 batches). You may need to use the repeat() function when buil
    ding your dataset.
    0.4883 - val_loss: 0.6945 - val_accuracy: 0.4219
    Epoch 2/15
    0.6992
    Epoch 3/15
    0.8867
    Epoch 4/15
    0.9375
    Epoch 5/15
    0.9805
    Epoch 6/15
    0.9883
    Epoch 7/15
    0.9805
    Epoch 8/15
    0.9961
    Epoch 9/15
    0.9922
    Epoch 10/15
    0.9961
    Epoch 11/15
    1.0000
    Epoch 12/15
    1.0000
    Epoch 13/15
    1.0000
    Epoch 14/15
    1.0000
    Epoch 15/15
    1.0000
In [21]: loss, accuracy = model.evaluate(test_generator)
    print("Test set accuracy of the model:", accuracy*100, "%")
    80/80 [=========== ] - 1s 8ms/step - loss: 0.0022 - accuracy: 1.
    Test set accuracy of the model: 100.0 %
In [22]: xt = 0
    y_{\text{test}} = []
    prediction = []
    images = []
    for i in test generator:
    p = np.argmax(model.predict(i[0]), axis=-1)[0]
```

```
a = np.argmax(i[1], axis=-1)[0]
y_test.append(a)
prediction.append(p)
images.append(i[0][0])
xt+=1
if xt==80:
    break
```

	0000 000+7tdv.1	•uii	10110	ai / tilaiyolo i ilit
1/1	[=======]	-	0s	86ms/step
1/1	[======]	-	0s	38ms/step
1/1	[=======]	-	0s	26ms/step
1/1	[=======]	_	0s	26ms/step
1/1	[=======]	_	0s	27ms/step
1/1	[=======]	_	0s	32ms/step
1/1	[=======]	_	0s	30ms/step
1/1	[=========]	_	0s	30ms/step
1/1	[======]	_	0s	27ms/step
1/1	[======]	_	0s	27ms/step
1/1	[======]	_	0s	26ms/step
1/1	[=======]	_		40ms/step
٠.			0s	, ,
1/1	[========]	-	0s	26ms/step
1/1	[========]	-	0s	29ms/step
1/1	[========]	-	0s	25ms/step
1/1	[========]	-	0s	28ms/step
1/1	[========]	-	0s	27ms/step
1/1	[=======]	-	0s	36ms/step
1/1	[======]	-	0s	30ms/step
1/1	[=======]	-	0s	30ms/step
1/1	[=======]	-	0s	27ms/step
1/1	[=======]	-	0s	39ms/step
1/1	[=======]	_	0s	26ms/step
1/1	[========]	_	0s	26ms/step
1/1	[=======]	_	0s	27ms/step
1/1	[========]	_	0s	38ms/step
1/1	[=======]		0s	25ms/step
٠.	<u>.</u>	_		, ,
1/1	[========]	-	0s	23ms/step
1/1	[=======]	-	0s	33ms/step
1/1	[========]	-	0s	35ms/step
1/1	[======]	-	0s	26ms/step
1/1	[======]	-	0s	29ms/step
1/1	[=======]	-	0s	28ms/step
1/1	[=======]	-	0s	26ms/step
1/1	[======]	-	0s	33ms/step
1/1	[=======]	_	0s	30ms/step
1/1	[=======]	_	0s	28ms/step
1/1	[=======]	_	0s	27ms/step
1/1	[======]			
1/1	[======]			24ms/step
1/1	[======]			, ,
	-			, ,
1/1	[========]			26ms/step
1/1	[========]			32ms/step
1/1	[========]	-		35ms/step
1/1	[========]	-		33ms/step
1/1	[=======]			27ms/step
1/1	[======]	-		28ms/step
1/1	[=======]	-	0s	27ms/step
1/1	[=======]	-	0s	28ms/step
1/1	[=======]	-	0s	28ms/step
1/1	[======]	-	0s	30ms/step
1/1	[=======]	_	0s	24ms/step
1/1	[=======]	_	0s	25ms/step
1/1	[========]			•
1/1	[======]			29ms/step
1/1	[======]			26ms/step
1/1	[=======]			38ms/step
1/1	[======]			25ms/step
· .				•
1/1	[=======]		0s	20ms/step
1/1	[=======]			41ms/step
1/1	[=======]			33ms/step
1/1	-			27ms/step
1/1	[======]			•
1/1	[======]	-	0s	29ms/step

```
1/1 [======] - 0s 28ms/step
      1/1 [=======] - 0s 36ms/step
      1/1 [======] - 0s 25ms/step
      1/1 [======] - 0s 29ms/step
      1/1 [======] - 0s 27ms/step
      1/1 [======] - 0s 30ms/step
      1/1 [======] - 0s 30ms/step
      1/1 [======] - 0s 23ms/step
      1/1 [=======] - 0s 23ms/step
      1/1 [=======] - 0s 28ms/step
      1/1 [=======] - 0s 26ms/step
      1/1 [=======] - 0s 25ms/step
      1/1 [=======] - 0s 28ms/step
      1/1 [======] - 0s 24ms/step
In [23]: images2 = images.copy()
      y_test2 = y_test.copy()
      images = images.copy()
      y_test = y_test.copy()
In [24]: print(accuracy_score(y_test, prediction))
      1.0
In [25]: precision = precision_score(y_test, prediction)
      print('Precision: %f' % precision)
      # recall: tp / (tp + fn)
      recall = recall_score(y_test, prediction)
      print('Recall: %f' % recall)
      # f1: 2 tp / (2 tp + fp + fn)
      f1 = f1_score(y_test, prediction)
      print('F1 score: %f' % f1)
      Precision: 1.000000
      Recall: 1.000000
      F1 score: 1.000000
In [26]: plt.figure(figsize=(12, 8))
      for i in range(6):
         ax = plt.subplot(2, 3, i + 1)
         plt.title(("Predicted:{}, Actual:{}").format(prediction[i],y_test[i]))
         plt.imshow(images[i][:,:,0])
```


In [27]: #Plot the confusion matrix for Custom Model

Set the colormap
cmap = 'coolwarm'

plt.rcParams['figure.figsize'] = 5, 5
plt.xlabel('Prediction')
plt.ylabel('Ground Truth')
plt.title('Confusion Matrix for Custom Built CNN Model')
sns.heatmap(confusion_matrix(y_test, prediction), annot=True)
plt.show()

Confusion Matrix for Custom Built CNN Model


```
In [28]: def add_noise(image, percent):
             gauss = np.random.normal(0,1,(image.shape))
             gauss = gauss.reshape(image.shape)
             noisy = image + (gauss*percent/100)
             return noisy
```

```
In [29]: noise_levels = [0, 5, 15, 25, 35]
          accuracy = []
         for n in noise levels:
           xt = 0
           y_test3 = []
           prediction3 = []
           images = []
           for i in test_generator:
             i[0][0] = add_noise(i[0][0],n)
             p = np.argmax(model.predict(i[0]), axis=-1)[0]
             a = np.argmax(i[1], axis=-1)[0]
             y_test3.append(a)
             prediction3.append(p)
             xt+=1
             if xt==80:
                break
           accuracy.append(accuracy_score(y_test3, prediction3))
```

	0000 00047 tav. 1	14	10110	ar / araryolo i iii
1/1	[=======]	-	0s	32ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	23ms/step
1/1	[========]	-	0s	25ms/step
1/1	[=======]	-	0s	28ms/step
1/1	[=======]	-	0s	27ms/step
1/1	[=======]	-	0s	30ms/step
1/1	[=======]	-	0s	28ms/step
1/1	[=======]	-	0s	37ms/step
1/1	[========]	-	0s	25ms/step
1/1	[=========]	-	0s	29ms/step
1/1	[=======]	-	0s	28ms/step
1/1	[=========]	-	0s	38ms/step
1/1	[======]	_	0s	40ms/step
1/1	[=======]	_		22ms/step
1/1	-			27ms/step
1/1	[=======]	_		21ms/step
1/1	-			25ms/step
1/1	-			26ms/step
1/1				26ms/step
-	[========]			•
	[=======]			23ms/step
-	[========]			25ms/step
	[========]			30ms/step
	[=========]			27ms/step
1/1	-			27ms/step
	[========]			30ms/step
	[=========]			27ms/step
	[=========]			26ms/step
1/1				22ms/step
1/1	-			28ms/step
1/1	-			27ms/step
•	-			27ms/step
1/1	-			
1/1				40ms/step
	[=======]			
	[======================================			
	[=======]			
•	[========]			24ms/step
•	[========]			26ms/step
	[========]			27ms/step
1/1				26ms/step
1/1				34ms/step
1/1				22ms/step
1/1				25ms/step
1/1	-			
1/1				•
1/1				•
1/1				
1/1				
	[]			
1/1				
	[]			
1/1	[]			
1/1				
1/1				
1/1				
1/1	-			•
1/1				•
1/1				24ms/step
1/1				28ms/step
1/1	-			27ms/step
1/1				•
1/1	[======]	-	0s	27ms/step

	0000 000+7tav. 1	t uii	10110	ai 7 ti lai y 515 T II I
	[]			
1/1	[======]	-	0s	18ms/step
1/1	[=======]	-	0s	25ms/step
1/1	[========]	-	0s	27ms/step
1/1	[========]	-	0s	28ms/step
1/1	[======]	-	0s	31ms/step
1/1				27ms/step
	[=======]			25ms/step
	[========]			25ms/step
1/1	-			
	-			36ms/step
1/1	-			24ms/step
1/1				28ms/step
	[=======]			27ms/step
1/1	[======]	-	0s	26ms/step
1/1	[=======]	-	0s	23ms/step
1/1	[=======]	-	0s	26ms/step
1/1	[========]	-	0s	40ms/step
1/1	[========]	-	0s	25ms/step
1/1	[=======]	_		27ms/step
1/1	-			29ms/step
1/1				26ms/step
	[=========]			26ms/step
	[=======]			
-	-			27ms/step
	[========]			21ms/step
	[=======]			18ms/step
	[=======]			26ms/step
1/1	-			26ms/step
	[=======]			25ms/step
1/1	[========]	-	0s	26ms/step
1/1	[=======]	-	0s	26ms/step
1/1	[========]	-	0s	27ms/step
1/1	[======]	_	0s	32ms/step
1/1	[=======]	_		24ms/step
1/1	-			26ms/step
1/1	I I			32ms/step
•	[========]			
	[=======]			
	[======================================			
•	[========]			34ms/step
•	[=======]			25ms/step
	[=======]			27ms/step
1/1	-			28ms/step
1/1	[======]	-		29ms/step
1/1	[=======]	-	0s	33ms/step
1/1	[=======]	-	0s	29ms/step
1/1	[=======]	-	0s	27ms/step
1/1	[========]	-	0s	22ms/step
1/1	[=======]	-	0s	35ms/step
1/1	[=======]	_	0s	27ms/step
1/1				
1/1	[=======]			
1/1				
•	[========]			
	[=========]			
1/1	I I			
٠.				
1/1	_			
1/1				
1/1				
1/1				•
1/1				21ms/step
1/1				26ms/step
1/1	-			26ms/step
1/1				
1/1	[======]	-	0s	32ms/step

	0000 0004 / ld v. 1	•	10110	ai / tilaiyolo i ili
1/1	[=======]	-	0s	26ms/step
1/1	[=======]	-	0s	19ms/step
1/1	[======]	_	0s	25ms/step
1/1				26ms/step
1/1				20ms/step
1/1	[=======]			
				34ms/step
1/1				24ms/step
1/1	[======]	-	0s	22ms/step
1/1	[=======]	-	0s	32ms/step
1/1	[=======]	-	0s	25ms/step
1/1	[======]	_	0s	27ms/step
1/1				28ms/step
1/1				24ms/step
1/1				32ms/step
	-			
1/1				25ms/step
1/1				25ms/step
1/1	-			25ms/step
1/1	[======]	-	0s	25ms/step
1/1	[=======]	-	0s	28ms/step
1/1	[======]	_	0s	27ms/step
1/1				
1/1				
-				
1/1				27ms/step
1/1				33ms/step
1/1	-			25ms/step
1/1	[======]	-	0s	26ms/step
1/1	[========]	-	0s	24ms/step
1/1	[======]	-	0s	27ms/step
1/1	[=======]	_		32ms/step
1/1				27ms/step
	[======]			
1/1				23ms/step
1/1	[=======]			19ms/step
1/1	[======]			27ms/step
1/1	[======]	-	0s	23ms/step
1/1	[=======]	-	0s	27ms/step
1/1	[======]	-	0s	15ms/step
1/1	[=======]	_	0s	29ms/step
	[=======]			•
	[======]			24ms/step
•				•
,	[=======]			23ms/step
1/1	[=======]			25ms/step
1/1				
1/1	[=======]	-	0s	25ms/step
1/1	[=======]	-	0s	26ms/step
1/1				
1/1				
1/1				
٠.				
1/1	-			
1/1				
1/1				
1/1	[=======]			
1/1	[=======]	-	0s	25ms/step
1/1	[=======]	-	0s	26ms/step
1/1				
1/1	I I			
1/1				•
٠.	-			
1/1				
1/1	[=======]			
1/1	[======]			
1/1	[=======]	-	0s	35ms/step
1/1	[=======]	-	0s	26ms/step
1/1	[=======]			
1/1	[=======]			
•	[========]			
⊥/ ⊥	[]	_	03	عاد ردسد

	0000 000+7tav. 1	14	10110	ai 7 ti lai y 515 T II I
	[]			
1/1	-			38ms/step
1/1	[=======]	-	0s	25ms/step
	[]			29ms/step
1/1	[]		0s	25ms/step
1/1	[]	-	0s	29ms/step
1/1	[=======]	-	0s	21ms/step
1/1	[=======]	-	0s	27ms/step
1/1	[=======]	-	0s	26ms/step
1/1	[=======]	-	0s	26ms/step
1/1	[=======]	-	0s	28ms/step
1/1	[=========]	-	0s	27ms/step
1/1	[======]	_	0s	26ms/step
1/1	[=======]	_		22ms/step
1/1	[=======]	_		25ms/step
1/1				27ms/step
1/1	-			27ms/step
1/1				22ms/step
1/1	-			27ms/step
1/1	-			27ms/step
1/1				37ms/step
	[========]			22ms/step
	[========]			25ms/step
-	[========]			33ms/step
	[======]			26ms/step
	-			•
	[=======]			23ms/step
1/1	-			24ms/step
	[=======]			22ms/step
	[=======]			26ms/step
	[========]			28ms/step
1/1	-			27ms/step
1/1	-			31ms/step
1/1				26ms/step
1/1				26ms/step
1/1				23ms/step
1/1	[]	-	0s	27ms/step
1/1	[]	-	0s	26ms/step
1/1	[=======]	-	0s	24ms/step
1/1	[=======]	-	0s	23ms/step
1/1	[======]	-	0s	24ms/step
1/1	[======]	-	0s	21ms/step
1/1	[=======]	-	0s	27ms/step
1/1	[=======]	-	0s	28ms/step
1/1	[=======]	-	0s	21ms/step
1/1	[=======]	-	0s	28ms/step
1/1	[=======]	-	0s	29ms/step
1/1	[=======]	-	0s	27ms/step
1/1				•
1/1				•
1/1	[========]	_	0s	26ms/step
1/1	[]			
1/1				
1/1	[]			
	[========]			
1/1	I I			
1/1				
1/1				
1/1				
1/1	I I			
1/1				24ms/step
1/1				25ms/step
1/1				26ms/step
1/1	[==========]			•
т/ Т	L	-	US	20113/3CE

	0000 000+7tav.1	•uii	.00	ar / araryolo i iii
1/1	[=======]	-	0s	27ms/step
1/1	[=======]	-	0s	25ms/step
1/1	[======]	-	0s	20ms/step
1/1	[=======]	_	0s	25ms/step
1/1				26ms/step
1/1	[=======]			24ms/step
	-			
1/1				26ms/step
1/1				19ms/step
1/1	[======]	-	0s	25ms/step
1/1	[=======]	-	0s	26ms/step
1/1	[======]	-	0s	25ms/step
1/1	[========]	_		24ms/step
1/1	[========]	_		24ms/step
1/1				25ms/step
1/1				26ms/step
٠.	-			
1/1				31ms/step
1/1	-			27ms/step
1/1	[======]	-	0s	25ms/step
1/1	[=======]	-	0s	23ms/step
1/1	[======]	-	0s	25ms/step
1/1	[=======]	_		
1/1				
1/1				25ms/step
٠.				
1/1				31ms/step
1/1	-			24ms/step
1/1	[]	-	0s	24ms/step
1/1	[======]	-	0s	26ms/step
1/1	[========]	-	0s	33ms/step
1/1	[======]	-	0s	27ms/step
1/1				25ms/step
1/1	[=======]			27ms/step
•				
1/1	[========]			23ms/step
1/1	[=======]			26ms/step
1/1	[======]	-		26ms/step
1/1	[=======]	-	0s	25ms/step
1/1	[=======]	-	0s	27ms/step
1/1	[======]	-	0s	27ms/step
	[=======]			•
	[=======]			32ms/step
•				•
•	[=======]			27ms/step
	[=======]			16ms/step
1/1	-			22ms/step
1/1	[======]	-	0s	29ms/step
1/1	[========]	-	0s	26ms/step
1/1	[=======]	_	0s	22ms/step
1/1	- I			
1/1				
1/1	- I			
٠.				
1/1				
1/1	-			
1/1	[======]			
1/1	[======]	-	0s	26ms/step
1/1	[=======]	-	0s	26ms/step
1/1	[=======]	-	0s	27ms/step
1/1	I I			
1/1				•
1/1				
	-			
1/1	[========]			
1/1	[======]			
1/1	[]			
1/1	[]			
1/1	[======]	-	0s	26ms/step
1/1	[=======]	-	0s	29ms/step
•	[=======]			
., -	. ,			-, - cop

	0000 000+7tav.			•
1/1	[======================================	-	0s	26ms/step
1/1	[=======]	-	0s	25ms/step
1/1	[=======]	_	0s	25ms/step
1/1	[========]	_	0s	22ms/step
1/1	[========]		0s	25ms/step
1/1	[=======]			24ms/step
1/1	[=======]			21ms/step
,	-			· · ·
1/1	[=========]			26ms/step
1/1	[========]		0s	28ms/step
1/1	[=======]		0s	23ms/step
1/1	[========]		0s	21ms/step
1/1	[========]	-	0s	25ms/step
1/1	[========]	-	0s	22ms/step
1/1	[========]	-	0s	25ms/step
1/1	[========]	-	0s	24ms/step
1/1	[=======]	_	0s	34ms/step
1/1	[========]	_	0s	26ms/step
1/1	[=======]			27ms/step
1/1	[========]		0s	24ms/step
1/1	[========]			24ms/step
1/1	[========]			26ms/step
٠.				•
1/1	[=======]		0s	28ms/step
1/1	[==========		0s	· · ·
1/1	[========]		0s	34ms/step
1/1	[========]		0s	26ms/step
1/1	[========]	-	0s	27ms/step
1/1	[========]	-	0s	33ms/step
1/1	[======================================	-	0s	26ms/step
1/1	[=======]	-	0s	25ms/step
1/1	[========]	_	0s	27ms/step
1/1	[=======]			36ms/step
1/1	[=======]			25ms/step
1/1	[=======]			26ms/step
1/1	[========]			25ms/step
	[=========]			
1/1				- / F
	[======================================			21ms/step
	[======================================			
•	[===========			· · ·
	[=======]			
1/1	[=======]	-	0s	22ms/step
1/1	[========]	-	0s	24ms/step
1/1	[=========]	-	0s	26ms/step
1/1	[========]	-	0s	25ms/step
1/1	[======================================	-	0s	25ms/step
1/1	[======================================	-	0s	27ms/step
1/1	[======================================	-	0s	27ms/step
1/1	[=======]	_	0s	22ms/step
1/1	[========]			•
1/1	[=========]			
1/1	[========]			
-	[========]			
	[========]			
•				27ms/step
	[=======]			
	[=========			
	[=========]			
1/1	[========]			25ms/step
1/1	[=======]			
1/1	[======]	-	0s	26ms/step
1/1	[=======]	-	0s	25ms/step
1/1	[=======]	-	0s	24ms/step
1/1	[========]	-	0s	24ms/step
1/1	[========]	-	0s	13ms/step
1/1	[=========]	-	0s	35ms/step
1/1	[=========]			•
	-			•

```
1/1 [======] - 0s 27ms/step
1/1 [======] - 0s 25ms/step
1/1 [======] - 0s 24ms/step
1/1 [=======] - 0s 26ms/step
1/1 [=======] - 0s 21ms/step
   1/1 [=====
   1/1 [=======] - 0s 13ms/step
1/1 [=======] - 0s 39ms/step
1/1 [=======] - 0s 27ms/step
1/1 [======] - 0s 28ms/step
```

```
In [30]: accuracy_with_noise = [x * 100 for x in accuracy]
```

```
In [31]: plt.plot(noise_levels, accuracy_with_noise)
    plt.title('Custom Model')
    plt.xlabel('Noise Levels (%)')
    plt.ylabel('Accuracy (%)')
    plt.show()
```



```
In [32]: for i, j in zip(noise_levels,accuracy_with_noise):
    print('Accuracy at Noise Level {}% is {}%'.format(i, round(j,2)))

Accuracy at Noise Level 0% is 100.0%
    Accuracy at Noise Level 5% is 100.0%
    Accuracy at Noise Level 15% is 100.0%
    Accuracy at Noise Level 25% is 78.75%
    Accuracy at Noise Level 35% is 55.0%
```

Retrain Data with smaller training set

```
In [33]: from sklearn.model_selection import train_test_split
         train_df, test_df = train_test_split(df, test_size=0.80, random_state=42)
         train_df, val_df = train_test_split(train_df, test_size=0.20, random_state=42)
         from keras.preprocessing.image import ImageDataGenerator
         train_datagen = ImageDataGenerator(
              rescale=1.0 / 255
         test_datagen = ImageDataGenerator(
             rescale=1.0 / 255
         BATCH SIZE = 16
          train_generator = train_datagen.flow_from_dataframe(
             train_df,
             DATASET_LOCATION,
             x_col="filename",
             y_col="category",
             target_size=IMAGE_SIZE,
             class mode="categorical",
             batch_size=BATCH_SIZE,
             color_mode="rgb",
             seed=42
          val_generator = train_datagen.flow_from_dataframe(
             val_df,
             DATASET LOCATION,
             x col="filename",
             y_col="category",
             target_size=IMAGE_SIZE,
             class_mode="categorical",
             batch_size=BATCH_SIZE,
             color_mode="rgb",
             seed=42
          test generator = train datagen.flow from dataframe(
             test_df,
             DATASET LOCATION,
             x_col="filename",
             y_col="category",
             target_size=IMAGE_SIZE,
             class_mode="categorical",
             batch_size=1,
             color mode="rgb",
             seed=42
          )
          EPOCHS = 15
          history = model.fit_generator(
             train_generator,
             epochs=EPOCHS,
             validation data=val generator,
```

```
COSC 6364 Adv. Numerical Analysis Final Project Code Base
   validation_steps=test_df.shape[0] // BATCH_SIZE,
   steps_per_epoch=train_df.shape[0] // BATCH_SIZE,
)
Found 64 validated image filenames belonging to 2 classes.
Found 16 validated image filenames belonging to 2 classes.
Found 320 validated image filenames belonging to 2 classes.
Epoch 1/15
C:\Users\qasim\AppData\Local\Temp\ipykernel_30896\425113232.py:57: UserWarning: `M
odel.fit_generator` is deprecated and will be removed in a future version. Please
use `Model.fit`, which supports generators.
 history = model.fit_generator(
00WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure
that your dataset or generator can generate at least `steps_per_epoch * epochs` ba
tches (in this case, 20 batches). You may need to use the repeat() function when b
uilding your dataset.
4/4 [============ - 1s 162ms/step - loss: 5.8012e-04 - accurac
y: 1.0000 - val_loss: 0.0011 - val_accuracy: 1.0000
Epoch 2/15
4/4 [==========] - 1s 129ms/step - loss: 3.8851e-04 - accurac
y: 1.0000
Epoch 3/15
4/4 [============ - - 1s 126ms/step - loss: 4.1116e-04 - accurac
y: 1.0000
Epoch 4/15
4/4 [============ - - 1s 124ms/step - loss: 2.6328e-04 - accurac
y: 1.0000
Epoch 5/15
4/4 [==========] - 1s 131ms/step - loss: 1.5711e-04 - accurac
y: 1.0000
Epoch 6/15
4/4 [============ - - 1s 128ms/step - loss: 2.6554e-04 - accurac
y: 1.0000
Epoch 7/15
4/4 [==========] - 1s 124ms/step - loss: 1.8320e-04 - accurac
y: 1.0000
Epoch 8/15
4/4 [==========] - 1s 127ms/step - loss: 3.7036e-04 - accurac
y: 1.0000
Epoch 9/15
4/4 [===========] - 1s 122ms/step - loss: 2.2192e-04 - accurac
y: 1.0000
Epoch 10/15
4/4 [===========] - 1s 124ms/step - loss: 3.2875e-04 - accurac
y: 1.0000
Epoch 11/15
4/4 [==========] - 1s 123ms/step - loss: 1.6841e-04 - accurac
y: 1.0000
Epoch 12/15
y: 1.0000
Epoch 13/15
y: 1.0000
Epoch 14/15
4/4 [==========] - 1s 129ms/step - loss: 1.1394e-04 - accurac
y: 1.0000
Epoch 15/15
```

y: 1.0000

	0000 000+71av.1	•uii	10110	ai / ii lai yolo i ii le
1/1	[======]	-	0s	19ms/step
1/1	[=======]	_	0s	25ms/step
1/1	[========]	_	0s	25ms/step
1/1	[=======]	_	0s	27ms/step
1/1	[=======]	_	0s	18ms/step
1/1	[======]		_	20ms/step
٠.		_	0s	
1/1	[=======]	-	0s	20ms/step
1/1	[=======]	-	0s	23ms/step
1/1	[=======]	-	0s	27ms/step
1/1	[=======]	-	0s	29ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[======]	-	0s	24ms/step
1/1	[========]	_	0s	26ms/step
1/1	[========]	_	0s	26ms/step
1/1	[=======]	_	0s	27ms/step
1/1	[=======]	_	0s	27ms/step
-, -	[=======]	_		•
1/1			0s	36ms/step
1/1	[=======]	-	0s	37ms/step
1/1	[========]	-	0s	25ms/step
1/1	[=======]	-	0s	27ms/step
1/1	[======]	-	0s	24ms/step
1/1	[=======]	-	0s	25ms/step
1/1	[======]	-	0s	34ms/step
1/1	[========]	_	0s	26ms/step
1/1	[========]	_	0s	21ms/step
1/1	[=======]	_	0s	34ms/step
1/1	[=======]		0s	27ms/step
٠.		_		
1/1	[=======]	-	0s	25ms/step
1/1	[=======]	-	0s	36ms/step
1/1	[=======]	-	0s	24ms/step
1/1	[======]	-	0s	28ms/step
1/1	[=======]	-	0s	27ms/step
1/1	[======]	-	0s	27ms/step
1/1	[=======]	-	0s	24ms/step
1/1	[=======]	_	0s	26ms/step
1/1	[=======]	_	0s	22ms/step
	[======]		0s	
1/1	[=======]			
٠.				
1/1	[=======]			1.
1/1				
1/1		-		
1/1	[======]	-	0s	25ms/step
1/1	[======]	-	0s	26ms/step
1/1	[=======]	-	0s	24ms/step
1/1	[======]	-	0s	35ms/step
1/1	[=======]	-	0s	26ms/step
1/1	[======]	_	0s	26ms/step
1/1	[========]	_	0s	26ms/step
1/1	[=======]		0s	27ms/step
1/1	[=======]		0s	33ms/step
1/1			0s	28ms/step
٠.		_		
1/1	[========]	-	0s	24ms/step
1/1	[=======]		0s	39ms/step
1/1	[======]	-	0s	29ms/step
1/1	[======]	-	0s	26ms/step
1/1	[]	-	0s	29ms/step
1/1	[======]	-	0s	26ms/step
1/1	[======]	-	0s	25ms/step
1/1	[======]	-	0s	25ms/step
1/1	[=======]	_	_	36ms/step
1/1	[=======]			25ms/step
1/1				26ms/step
1/1	[=======]			
1/1	[=======]			
Τ/ Ι	LJ	-	US.	Jems/steb

```
1/1 [=======] - 0s 26ms/step
   1/1 [======] - 0s 28ms/step
   1/1 [======] - 0s 37ms/step
   1/1 [======] - 0s 26ms/step
   1/1 [======] - 0s 26ms/step
   1/1 [=======] - 0s 38ms/step
   1/1 [=======] - 0s 25ms/step
   1/1 [======] - 0s 22ms/step
   1/1 [=======] - 0s 25ms/step
   1/1 [======] - 0s 25ms/step
   1/1 [=======] - 0s 26ms/step
   In [35]: print(accuracy_score(y_test, prediction))
```

1.0

Pre-trained Models

VGG 16 Model

```
base_model = VGG16(weights="imagenet", include_top=False, input_shape=(64, 64, 3))
In [36]:
         base model.trainable = False
In [37]: flatten_layer = layers.Flatten()
         dense_layer_2 = layers.Dense(20, activation='relu')
         prediction_layer = layers.Dense(2, activation='softmax')
         model = models.Sequential([
             base model,
             flatten_layer,
             dense_layer_2,
             prediction_layer
         ])
In [38]:
        from sklearn.model_selection import train_test_split
         train_df, test_df = train_test_split(df, test_size=0.20, random_state=42)
         train df, val df = train test split(train df, test size=0.20, random state=42)
         from keras.preprocessing.image import ImageDataGenerator
         train_datagen = ImageDataGenerator(
             rescale=1.0 / 255
         test datagen = ImageDataGenerator(
             rescale=1.0 / 255
         BATCH SIZE = 16
         train_generator = train_datagen.flow_from_dataframe(
             train_df,
             DATASET LOCATION,
```

```
x_col="filename",
    y_col="category",
    target_size=IMAGE_SIZE,
    class_mode="categorical",
    batch_size=BATCH_SIZE,
    color_mode="rgb",
    seed=42
)
val_generator = train_datagen.flow_from_dataframe(
    val_df,
    DATASET_LOCATION,
    x_col="filename",
    y_col="category",
    target size=IMAGE SIZE,
    class_mode="categorical",
    batch_size=BATCH_SIZE,
    color_mode="rgb",
    seed=42
test_generator = train_datagen.flow_from_dataframe(
    test_df,
    DATASET LOCATION,
    x_col="filename",
    y_col="category",
    target_size=IMAGE_SIZE,
    class_mode="categorical",
    batch_size=1,
    color_mode="rgb",
    seed=42
)
model.compile(
    loss=keras.losses.categorical_crossentropy,optimizer=tf.keras.optimizers.Adam()
EPOCHS = 15
history = model.fit generator(
    train generator,
    epochs=EPOCHS,
    validation_data=val_generator,
    validation_steps=test_df.shape[0] // BATCH_SIZE,
    steps_per_epoch=train_df.shape[0] // BATCH_SIZE,
)
Found 256 validated image filenames belonging to 2 classes.
Found 64 validated image filenames belonging to 2 classes.
Found 80 validated image filenames belonging to 2 classes.
Epoch 1/15
C:\Users\qasim\AppData\Local\Temp\ipykernel_30896\883491752.py:61: UserWarning: `M
```

```
odel.fit_generator` is deprecated and will be removed in a future version. Please
use `Model.fit`, which supports generators.
 history = model.fit_generator(
```

```
WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure th
   at your dataset or generator can generate at least `steps_per_epoch * epochs` batc
   hes (in this case, 5 batches). You may need to use the repeat() function when buil
   ding your dataset.
   0.5312 - val_loss: 0.7692 - val_accuracy: 0.4219
   Epoch 2/15
   0.6211
   Epoch 3/15
   0.7148
   Epoch 4/15
   0.8359
   Epoch 5/15
   0.7812
   Epoch 6/15
   0.8125
   Epoch 7/15
   0.8438
   Epoch 8/15
   0.8359
   Epoch 9/15
   0.8750
   Epoch 10/15
   0.8594
   Epoch 11/15
   0.8594
   Epoch 12/15
   0.8828
   Epoch 13/15
   0.8242
   Epoch 14/15
   0.8516
   Epoch 15/15
   0.8477
   loss, accuracy = model.evaluate(test generator)
In [39]:
   80/80 [============ ] - 2s 22ms/step - loss: 0.3650 - accuracy:
   0.8625
In [40]: xt = 0
   y_{\text{test}} = []
   prediction = []
   images = []
   for i in test_generator:
    p = np.argmax(model.predict(i[0]), axis=-1)[0]
    a = np.argmax(i[1], axis=-1)[0]
    y_test.append(a)
```

```
prediction.append(p)
images.append(i[0][0])
xt+=1
if xt==80:
    break
```

	0000 000+7tdv.1	•	.00	ai / ii lai y 515 i ii ii
1/1	[======]	-	0s	139ms/ste
1/1	[=======]	-	0s	52ms/step
1/1	[======]	-	0s	39ms/step
1/1	[======]	_	0s	41ms/step
1/1	[=======]	_	0s	43ms/step
1/1	[========]	_	0s	43ms/step
1/1	[======]	_	0s	47ms/step
1/1	[=======]	_	0s	45ms/step
1/1	[=======]	_	0s	41ms/step
1/1	[=======]	_	0s	39ms/step
1/1	[======]	_	0s	45ms/step
1/1	[======]	_	0s	43ms/step
1/1	[=======]	_	0s	38ms/step
1/1	[=======]	_	0s	39ms/step
· .		_		•
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	53ms/step
1/1	[=======]	-	0s	52ms/step
1/1	[=======]	-	0s	39ms/step
1/1	[========]	-	0s	41ms/step
1/1	[=======]	-	0s	46ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	45ms/step
1/1	[======]	-	0s	41ms/step
1/1	[=======]	-	0s	52ms/step
1/1	[======]	-	0s	39ms/step
1/1	[=======]	-	0s	47ms/step
1/1	[======]	-	0s	39ms/step
1/1	[=======]	-	0s	49ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	43ms/step
1/1	[=======]	_	0s	45ms/step
1/1	[========]	_	0s	47ms/step
1/1	[========]	_	0s	39ms/step
1/1	[=======]	_	0s	38ms/step
1/1	[=======]	_	0s	41ms/step
1/1	[=======]	_	_	, ,
1/1	[=======]			
1/1	[==========			•
1/1	[======]			42ms/step
1/1	[======]			47ms/step
1/1	[=======]			
1/1	[========]			
· .	-			
1/1	[=======]			
1/1		-		41ms/step
1/1		-		39ms/step
1/1	-			46ms/step
1/1	-			41ms/step
1/1				39ms/step
1/1	[=======]			
1/1	[=======]			•
1/1	[=======]			
1/1	[=======]			•
1/1	[======]			
1/1	[======]			•
1/1	-			40ms/step
1/1	[======]			47ms/step
1/1	[======]			41ms/step
1/1	[======]			39ms/step
1/1	[]			39ms/step
1/1	[]	-	0s	42ms/step
1/1	[]	-	0s	37ms/step
1/1	[]	-	0s	45ms/step
1/1	[======]	-	0s	44ms/step
1/1	[======]	-	0s	44ms/step

```
1/1 [=======] - 0s 39ms/step
1/1 [======] - 0s 44ms/step
1/1 [======] - 0s 39ms/step
1/1 [======] - 0s 40ms/step
1/1 [======] - 0s 42ms/step
1/1 [======] - 0s 42ms/step
1/1 [======] - 0s 40ms/step
1/1 [======] - 0s 40ms/step
1/1 [=======] - 0s 40ms/step
1/1 [=======] - 0s 45ms/step
1/1 [=======] - 0s 43ms/step
1/1 [=======] - 0s 38ms/step
1/1 [=======] - 0s 38ms/step
```

In [41]: print(accuracy_score(y_test, prediction))

0.8625

```
In [42]: #Plot the confusion matrix for VGG16

# Set the colormap
cmap = 'coolwarm'

plt.rcParams['figure.figsize'] = 5, 5
plt.xlabel('Prediction')
plt.ylabel('Ground Truth')
plt.title('Confusion Matrix for VGG16 Model')
sns.heatmap(confusion_matrix(y_test, prediction), annot=True)
plt.show()
```



```
In [43]: noise_levels = [0, 5, 15, 25, 35]
accuracy = []
for n in noise_levels:
```

```
xt = 0
y_test3 = []
prediction3 = []
images = []

for i in test_generator:
    i[0][0] = add_noise(i[0][0],n)
    p = np.argmax(model.predict(i[0]), axis=-1)[0]
    a = np.argmax(i[1], axis=-1)[0]
    y_test3.append(a)
    prediction3.append(p)
    xt+=1
    if xt==80:
        break
accuracy.append(accuracy_score(y_test3, prediction3))
```

	0000 000+7tav. 1	•	10110	air tilaiyolo i ilit
1/1	[======]	-	0s	41ms/step
1/1	[=======]	-	0s	37ms/step
1/1	[======]	-	0s	47ms/step
1/1	[======]	_	0s	40ms/step
1/1	[=======]	_	0s	41ms/step
1/1	[========]	_	0s	38ms/step
1/1	[======]	_	0s	41ms/step
1/1	[=======]	_	0s	38ms/step
1/1	[=======]	_	0s	50ms/step
1/1	[=======]	_	0s	47ms/step
1/1	[=======]	_	0s	46ms/step
1/1	[=======]	_		40ms/step
٠.			0s	/ I
1/1	[=======]	-	0s	38ms/step
1/1	[=======]	-	0s	38ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	39ms/step
1/1	[=======]	-	0s	49ms/step
1/1	[=======]	-	0s	48ms/step
1/1	[======]	-	0s	42ms/step
1/1	[=======]	-	0s	39ms/step
1/1	[=======]	-	0s	53ms/step
1/1	[=======]	-	0s	49ms/step
1/1	[======]	-	0s	42ms/step
1/1	[======]	_	0s	39ms/step
1/1	[=======]	_	0s	46ms/step
1/1	[=======]	_	0s	42ms/step
1/1	[=======]	_	0s	49ms/step
1/1	[=======]	_	0s	50ms/step
1/1	[=======]	_	0s	47ms/step
1/1	[=======]	_		40ms/step
•				•
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	49ms/step
1/1	[=======]	-	0s	-,
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[======]	-	0s	38ms/step
1/1	[======]	-	0s	51ms/step
1/1	[=======]	-	0s	48ms/step
1/1	[=======]	-	0s	46ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	_	0s	40ms/step
1/1	[=======]			•
1/1	[======]			•
1/1		_		44ms/step
1/1		_		47ms/step
1/1				43ms/step
٠.	-			•
1/1	[=======]			
1/1	-			41ms/step
1/1	[=======]			
1/1	[======]			•
1/1	[======]	-	0s	40ms/step
1/1	[======]			•
1/1	[======]			
1/1	[======]	-	0s	51ms/step
1/1	[=======]	-	0s	53ms/step
1/1	[=======]	-	0s	45ms/step
1/1	[=======]	-	0s	41ms/step
1/1				41ms/step
1/1	[======]			40ms/step
1/1	[=======]			46ms/step
1/1	[==========			41ms/step
1/1				42ms/step
1/1	[======]			•
1/1	[========]			
-/ I	[-	US	Joins/ steb

	0000 000+7 tav. 1	•uii	10110	ai / ii ai y 5i 5 i ii ii
1/1				
1/1	[=======]	-	0s	52ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	48ms/step
1/1	[=======]	-	0s	52ms/step
1/1	[=======]	-	0s	46ms/step
1/1	[=======]	-	0s	48ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[========]	-	0s	47ms/step
1/1	[=======]	-	0s	50ms/step
1/1	[========]	-	0s	52ms/step
1/1	[=========]	-	0s	41ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	_	0s	41ms/step
1/1	[=======]	_	0s	50ms/step
1/1	[=======]	_	0s	47ms/step
1/1	[=======]	_	0s	50ms/step
1/1	[=======]	_	0s	48ms/step
1/1	[=======]	_	0s	43ms/step
1/1	[=======]			47ms/step
1/1	[=======]	_		43ms/step
1/1	[=======]	_		44ms/step
1/1	[=======]	_		43ms/step
1/1	[=======]	_		48ms/step
1/1	[=======]	_		53ms/step
1/1	[======]	_		54ms/step
1/1	[======]	_	_	
1/1	[=======]	_		
1/1	[=======]	_		
1/1	[=======]	_		47ms/step
1/1	[=======]	_	_	
1/1	[=======]			
1/1	[======]	-	_	1.
1/1	[======]			44ms/step
	[======]			
1/1				
1/1				
-	[==========]			
	-			•
	[========]			
•	[========]			42ms/step
	[========]			48ms/step
1/1	[========]			49ms/step
1/1	[========]			
1/1	[=========]			43ms/step
1/1	[========]			41ms/step
1/1	[========]			45ms/step
1/1				
1/1	[========]			
1/1	[========]			
1/1	[========]			•
	[=======]			
1/1	[======]			
	[======]			
	[======]			
1/1				
1/1	[=======]			42ms/step
1/1	[=======]			
1/1	[======]			•
1/1	[======]			
1/1	[=======]			42ms/step
1/1	[=======]			43ms/step
1/1	[======]			
1/1	[======]			
1/1	[======]	-	0s	42ms/step

	0000 000+7 tav. 1	•uii	10110	ai / ii ai y 5i 5 i ii ii
1/1	[======]	-	0s	41ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	39ms/step
1/1	[=======]	-	0s	45ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[========]	-	0s	41ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	_	0s	45ms/step
1/1	[=======]		0s	51ms/step
1/1	[=======]			41ms/step
1/1	[=======]			43ms/step
1/1	[=======]	_		43ms/step
1/1	[=======]			43ms/step
1/1	[=======]	_		41ms/step
1/1	[=======]			44ms/step
1/1	-			•
1/1	[=======]			42ms/step
1/1	[=======]			•
1/1	[========]			45ms/step
1/1				48ms/step
1/1	[=======]			44ms/step
1/1	[=======]			42ms/step
1/1	[=======]			48ms/step
•	[======]			
1/1	[========]			40ms/step
1/1				43ms/step
1/1	[=======]			46ms/step
1/1	-			42ms/step
1/1	[========]			44ms/step
1/1	[========]			42ms/step
1/1	[========]			
1/1	[========]			
1/1	[=======]			40ms/step
٠.	[========]			
	[========]			•
	[=======]			•
-	[=======]			50ms/step
,	[=======]			47ms/step
	[=======]			41ms/step
1/1	[=========]			50ms/step
1/1	[======]			
1/1	[=======]			37ms/step
1/1	[=======]			48ms/step
1/1	[========]			40ms/step
1/1	[=======]			
1/1	[======]			
1/1	[======]			
1/1	[======]			•
1/1	[======]			
1/1	[]			
	[]			
1/1	[]			
1/1	[=======]		0s	43ms/step
1/1	[======]			41ms/step
1/1				42ms/step
1/1	[]			•
1/1	[======]	-	0s	45ms/step
1/1	[=======]		0s	42ms/step
1/1	[=======]			43ms/step
1/1	[=======]			
1/1	[======]			
1/1	[=======]	-	0s	41ms/step

	COSC 6364 Adv. 1	Null	ierica	ai Ariaiysis Firi
1/1				
1/1	[======]	-	0s	40ms/step
1/1	[======]	-	0s	39ms/step
1/1	[]	-		38ms/step
1/1	[======]	-		41ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	46ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	43ms/step
1/1	[=======]	_	0s	40ms/step
1/1				43ms/step
1/1	-			43ms/step
1/1				41ms/step
1/1				41ms/step
1/1				46ms/step
1/1				41ms/step
1/1				42ms/step
1/1				43ms/step
1/1				40ms/step
•				•
1/1	-			49ms/step
1/1	-			43ms/step
1/1				40ms/step
1/1				46ms/step
1/1	-			40ms/step
1/1	[=======]			40ms/step
1/1				40ms/step
1/1				44ms/step
1/1				40ms/step
1/1	[======]			48ms/step
1/1	[=======]	-	0s	39ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	56ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	38ms/step
1/1	[=======]	-	0s	40ms/step
	[=======]			•
	[=======]			
	[=======]			
	[========]			
	[========]			
	[========]			
	[========]			
	[========]			
	[========]			
	[=======]			
	[=========]			
	[========]			
	-			
	[========]			
	[========]			
	[========]			
	[=======]			
	[=======]			
	[=======]			
	[======]			
	[======]			
	[=======]			
	[]			
	[]			
	[======]			
	[======]			
1/1	[======]	-	0s	41ms/step
1/1	[======]	-	0s	44ms/step

	0000 000+7tav.1	•	10110	ai / ii lai y 515 i ii ii
1/1	[======]	-	0s	41ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	43ms/step
1/1	[=======]	_	0s	43ms/step
1/1	[=======]	_	0s	40ms/step
1/1	[=======]	_	0s	55ms/step
1/1	[======]	_	0s	41ms/step
1/1	[========]	_	0s	40ms/step
1/1	[=======]	_	0s	48ms/step
1/1	[=======]	_	0s	39ms/step
1/1	[======]	_	0s	
1/1	[=======]	_		1.
٠.			0s	, ,
1/1	[=======]	-	0s	, ,
1/1	[=======]	-	0s	39ms/step
1/1	[=======]	-	0s	1
1/1	[=======]	-	0s	, ,
1/1	[========]	-		42ms/step
1/1	[=======]	-	0s	-,
1/1	[======]	-	0s	42ms/step
1/1	[=======]	-		43ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	_	0s	58ms/step
1/1	[=======]	_	0s	43ms/step
1/1	[=======]	_	0s	1.
1/1	[=======]	_	0s	50ms/step
1/1	[=======]	_		41ms/step
1/1	[=======]	_	0s	•
1/1	[======]	_	0s	, ,
1/1	[======]			41ms/step
1/1		-		
	-	-		40ms/step
1/1	[=======]	-		42ms/step
1/1				41ms/step
1/1	[=======]			•
1/1	[=======]			
1/1	[======]			42ms/step
1/1	[======]			41ms/step
1/1	[======]			
1/1	[======]	-	0s	57ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[======]	-	0s	52ms/step
1/1	[======]	-	0s	45ms/step
1/1	[======]	-	0s	43ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	43ms/step
1/1	[=======]	_	0s	49ms/step
1/1	[=======]			•
1/1	[=======]			
1/1	[=======]			•
1/1	[========]			
1/1	[==========			43ms/step
1/1	[======]			59ms/step
1/1	[=======]			41ms/step
1/1	[======]			45ms/step
· .	[========]			•
1/1	[=========]			43ms/step
1/1	2			43ms/step
1/1	[]			43ms/step
1/1	-			49ms/step
1/1	[=======]			
1/1	[======]	-	۷S	44ms/step

	0000 000+7\dv.1	•uii	10110	ai / ii lai yolo i ii le
1/1	[======]	_	0s	42ms/step
1/1	[========]	_	0s	42ms/step
1/1	[======]	_	0s	•
1/1	[=======]			
٠.		-	0s	
1/1	[=======]	-	0s	50ms/step
1/1	[======]	-	0s	44ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[======]	-	0s	42ms/step
1/1	[========]	_	0s	41ms/step
1/1	[=======]	_	0s	1.
1/1	[=======]	_		44ms/step
-, -				- /
1/1	[=======]	-	0s	
1/1	[=======]	-		42ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	48ms/step
1/1	[========]	-	0s	45ms/step
1/1	[======]	-	0s	44ms/step
1/1	[========]	_	0s	49ms/step
1/1	[=======]	_		42ms/step
1/1	[=======]	_		42ms/step
,				, ,
1/1	[=======]	-		43ms/step
1/1	[=======]	-		45ms/step
1/1	[======]	-	0s	43ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	43ms/step
1/1	[======]	-	0s	42ms/step
1/1	[=======]	_	0s	51ms/step
1/1	[=======]	_	0s	1.
1/1	[======]	_		42ms/step
٠.	[======]			
1/1				40ms/step
1/1	[=======]	-	0s	
1/1	[======]	-	0s	41ms/step
1/1	[=======]	-	0s	55ms/step
1/1	[======]	-	0s	41ms/step
1/1	[=======]	-	0s	49ms/step
1/1	[======]	-	0s	42ms/step
1/1	[=======]	_	0s	43ms/step
1/1	[=======]			
1/1	[=======]			
٠.				-,
1/1				42ms/step
1/1				
1/1	[=======]			•
1/1	[======]	-	0s	41ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[======]	-	0s	41ms/step
1/1	-			39ms/step
1/1	-			44ms/step
1/1	-			43ms/step
1/1				
	-			42ms/step
1/1	[=======]			
1/1				41ms/step
1/1	[]			
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	48ms/step
1/1	[=======]	-	0s	48ms/step
1/1	[=======]	-	0s	41ms/step
1/1	-			41ms/step
1/1	[=========]			41ms/step
1/1	[======]			47ms/step
	[======]			47ms/step 43ms/step
1/1				
1/1	-			42ms/step
1/1	[=======]			
1/1	[======]	-	ØS	46ms/step

```
In [44]: accuracy_with_noise_vgg = [x * 100 for x in accuracy]

plt.plot(noise_levels, accuracy_with_noise_vgg)
plt.title('Pre-Trained(VGG) Model')
plt.xlabel('Noise Levels (%)')
plt.ylabel('Accuracy (%)')
plt.show()
```



```
In [45]: accuracy_with_noise_vgg
Out[45]: [86.25, 81.25, 75.0, 58.75, 55.0000000000000]
```

ResNet50 Model

```
base_model_resNet = ResNet50(weights="imagenet", include_top=False, input_shape=(64
In [46]:
          base_model_resNet.trainable = False
In [47]: flatten_layer = layers.Flatten()
          dense_layer_2 = layers.Dense(20, activation='relu')
          prediction_layer = layers.Dense(2, activation='softmax')
          model = models.Sequential([
             base_model_resNet,
              flatten_layer,
              dense_layer_2,
              prediction_layer
          ])
         from sklearn.model_selection import train_test_split
In [48]:
          train_df, test_df = train_test_split(df, test_size=0.20, random_state=42)
          train_df, val_df = train_test_split(train_df, test_size=0.20, random_state=42)
          from keras.preprocessing.image import ImageDataGenerator
          train_datagen = ImageDataGenerator(
              rescale=1.0 / 255
          test_datagen = ImageDataGenerator(
              rescale=1.0 / 255
          BATCH_SIZE = 16
          train_generator = train_datagen.flow_from_dataframe(
              train_df,
              DATASET_LOCATION,
              x col="filename",
              y col="category",
              target_size=IMAGE_SIZE,
              class_mode="categorical",
              batch_size=BATCH_SIZE,
              color_mode="rgb",
              seed=42
          )
          val generator = train datagen.flow from dataframe(
              val df,
              DATASET_LOCATION,
              x_col="filename",
              y_col="category",
              target_size=IMAGE_SIZE,
              class_mode="categorical",
              batch_size=BATCH_SIZE,
              color mode="rgb",
              seed=42
          )
          test_generator = train_datagen.flow_from_dataframe(
              test_df,
              DATASET_LOCATION,
              x_col="filename",
              y_col="category",
              target_size=IMAGE_SIZE,
```

```
class_mode="categorical",
  batch_size=1,
  color_mode="rgb",
  seed=42
)

model.compile(
  loss=keras.losses.categorical_crossentropy,optimizer=tf.keras.optimizers.Adam()
)

EPOCHS = 15
history = model.fit_generator(
  train_generator,
  epochs=EPOCHS,
  validation_data=val_generator,
  validation_data=val_generator,
  validation_steps=test_df.shape[0] // BATCH_SIZE,
  steps_per_epoch=train_df.shape[0] // BATCH_SIZE,
)
```

Found 256 validated image filenames belonging to 2 classes. Found 64 validated image filenames belonging to 2 classes. Found 80 validated image filenames belonging to 2 classes. Epoch 1/15

C:\Users\qasim\AppData\Local\Temp\ipykernel_30896\55655360.py:62: UserWarning: `Mo
del.fit_generator` is deprecated and will be removed in a future version. Please u
se `Model.fit`, which supports generators.
history = model.fit_generator(

```
WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure th
   at your dataset or generator can generate at least `steps_per_epoch * epochs` batc
   hes (in this case, 5 batches). You may need to use the repeat() function when buil
   ding your dataset.
   0.4883 - val_loss: 0.7691 - val_accuracy: 0.4219
   Epoch 2/15
   0.5352
   Epoch 3/15
   0.5352
   Epoch 4/15
   0.5391
   Epoch 5/15
   0.5352
   Epoch 6/15
   0.5352
   Epoch 7/15
   0.5352
   Epoch 8/15
   0.5352
   Epoch 9/15
   0.5352
   Epoch 10/15
   0.5586
   Epoch 11/15
   0.5430
   Epoch 12/15
   0.6250
   Epoch 13/15
   0.5430
   Epoch 14/15
   0.5820
   Epoch 15/15
   0.5508
   loss, accuracy = model.evaluate(test generator)
In [49]:
   80/80 [============ ] - 2s 30ms/step - loss: 0.6978 - accuracy:
   0.4750
In [50]: xt = 0
   y_{\text{test}} = []
   prediction = []
   images = []
   for i in test_generator:
    p = np.argmax(model.predict(i[0]), axis=-1)[0]
    a = np.argmax(i[1], axis=-1)[0]
    y_test.append(a)
```

```
prediction.append(p)
images.append(i[0][0])
xt+=1
if xt==80:
    break
```

	0000 000+7\dv.1	•uii	.00	ai / ii lai y olo i ii ii
1/1	[======]	-	1s	801ms/ste
1/1	[=======]	_	0s	40ms/step
1/1	[=======]	_	0s	41ms/step
1/1	[=======]	_		42ms/step
1/1	[=======]	_	0s	44ms/step
1/1	[========]	_	0s	49ms/step
1/1	[======]	_	0s	42ms/step
1/1	[=======]	_	0s	1.
1/1	[=======]	_	0s	1
1/1	[======]	_	0s	, ,
1/1	[=======]	_		41ms/step
1/1	[=======]	_		43ms/step
1/1	[=======]	_		42ms/step
1/1	[=======]	_		44ms/step
1/1	[=======]	_		41ms/step
1/1	[=======]	_	0s	1
1/1	[=======]	_		42ms/step
1/1	[=======]	_		41ms/step
1/1	[=======]	_		47ms/step
1/1	[=======]	_	0s	
1/1	[======]	_		47ms/step
1/1	[======]	_		43ms/step
1/1	[=======]			•
_, _		-		41ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	54ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	58ms/step
1/1	[=======]	-	0s	50ms/step
1/1	[=======]	-		, ,
1/1	[========]			48ms/step
1/1	[========]	-	0s	, ,
1/1	[=======]	-	0s	, ,
1/1		-		42ms/step
1/1	[=======]	-		43ms/step
1/1		-		43ms/step
1/1	[======]	-	0s	42ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	52ms/step
1/1	[======]	-		42ms/step
1/1	[======]	-	0s	42ms/step
1/1	[======]			51ms/step
1/1	[======]	-	0s	49ms/step
1/1	[======]	-	0s	43ms/step
1/1	[======]	-	0s	46ms/step
1/1	[======]	-	0s	49ms/step
1/1	[======]	-	0s	44ms/step
1/1	[]	-	0s	48ms/step
1/1	[]	-	0s	44ms/step
1/1	[]			
1/1	[]	-	0s	44ms/step
1/1	[======]	-	0s	43ms/step
1/1	[======]			•
1/1	[======]			
1/1	[]			
1/1	[======]	-	0s	48ms/step
1/1	[======]	-	0s	41ms/step
1/1	[======]			42ms/step
1/1	[======]	-	0s	42ms/step
1/1	[======]	-		50ms/step
1/1	[======]	-	0s	52ms/step
1/1	[]	-	0s	51ms/step
1/1				57ms/step
1/1	[======]			
1/1	[======]	-	0s	63ms/step

```
1/1 [======] - 0s 42ms/step
1/1 [=======] - 0s 45ms/step
1/1 [======] - 0s 62ms/step
1/1 [======] - 0s 44ms/step
1/1 [======] - 0s 42ms/step
1/1 [======] - 0s 43ms/step
1/1 [======] - 0s 41ms/step
1/1 [======] - 0s 45ms/step
1/1 [=======] - 0s 43ms/step
1/1 [=======] - 0s 46ms/step
1/1 [======] - 0s 42ms/step
1/1 [=======] - 0s 45ms/step
1/1 [=======] - 0s 52ms/step
```

In [51]: print(accuracy_score(y_test, prediction))

0.475

```
In [52]: #Plot the confusion matrix for ResNet50

# Set the colormap
cmap = 'coolwarm'

plt.rcParams['figure.figsize'] = 5, 5
plt.xlabel('Prediction')
plt.ylabel('Ground Truth')
plt.title('Confusion Matrix for ResNet50 Model')
sns.heatmap(confusion_matrix(y_test, prediction), annot=True)
plt.show()
```

Confusion Matrix for ResNet50 Model


```
In [53]: noise_levels = [0, 5, 15, 25, 35]
    accuracy = []
    for n in noise_levels:
```

```
xt = 0
y_test3 = []
prediction3 = []
images = []

for i in test_generator:
    i[0][0] = add_noise(i[0][0],n)
    p = np.argmax(model.predict(i[0]), axis=-1)[0]
    a = np.argmax(i[1], axis=-1)[0]
    y_test3.append(a)
    prediction3.append(p)
    xt+=1
    if xt==80:
        break
accuracy.append(accuracy_score(y_test3, prediction3))
```

	0000 000+7tdv.1	•uii	.0	ar / araryolo i iii
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	43ms/step
1/1	[=======]	-	0s	42ms/step
1/1	- I			42ms/step
1/1				52ms/step
1/1				45ms/step
	-			
1/1	1			44ms/step
1/1	1			47ms/step
1/1				44ms/step
1/1	[=======]	-	0s	47ms/step
1/1	[=======]	-	0s	43ms/step
1/1	[=======]	_	0s	42ms/step
1/1	[=======]			45ms/step
1/1				41ms/step
1/1				43ms/step
٠.	-			
1/1	1			41ms/step
1/1				50ms/step
1/1				55ms/step
1/1	[======]	-	0s	42ms/step
1/1	[=======]	-	0s	44ms/step
1/1	- I			
1/1	- I			
1/1				
٠.	-			•
1/1				42ms/step
	[======]			
1/1	[======]	-		•
1/1	[=======]	-	0s	54ms/step
1/1	[========]	-	0s	52ms/step
1/1	[======]	-	0s	53ms/step
1/1	[=======]			52ms/step
1/1	1			43ms/step
•				
1/1	[========]			52ms/step
1/1	[=======]			59ms/step
1/1	[======]			
1/1	[=======]	-	0s	49ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[======]	-	0s	44ms/step
1/1	[=======]	_	0s	49ms/step
	[======]			•
	-			
	[========]			•
	[=======]			44ms/step
1/1	-			
1/1	[=======]	-	0s	42ms/step
1/1	[========]	-	0s	43ms/step
1/1	[=======]	_	0s	42ms/step
1/1	- I			
1/1	1			
1/1	- I			
٠.	- I			
1/1				
1/1	-			
1/1				
1/1				
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	42ms/step
1/1	1			
1/1				
٠.				
1/1				
1/1	[=========]			
1/1	[======]			
1/1	[======]			
1/1	[=======]			
1/1	[======]	-	0s	44ms/step
1/1				
•	[========]			
-, -			55	.ээ, эсср

	0000 000+7tav.1	•	10110	ai / ii lai y 515 i ii ii
1/1	[======]	-	0s	40ms/step
1/1	[=======]	-	0s	40ms/step
1/1	[======]	_	0s	43ms/step
1/1	[=======]	_	0s	41ms/step
1/1	[=======]	_	0s	43ms/step
1/1	[=======]	_	0s	43ms/step
1/1	[=======]	_	0s	46ms/step
1/1	[=======]	_	0s	53ms/step
1/1	[=======]	_	0s	51ms/step
1/1	[=======]	_	0s	50ms/step
1/1	[======]	_	0s	•
1/1	[=======]	_	0s	1
1/1	[=======]	_		42ms/step
1/1	[=======]	_	0s	
1/1	[=======]	_		42ms/step
1/1	[=======]	_	0s	1.
1/1	[======]	_	0s	1.
1/1	[=======]	_		43ms/step
1/1	[=======]	_		44ms/step
1/1	[=======]			44ms/step 43ms/step
1/1	[=======]	-		41ms/step
1/1	[=======]	-		
		-		42ms/step
1/1	[=======]	-	0s	53ms/step
1/1	[=======]	-	0s	49ms/step
1/1	[=======]	-		46ms/step
1/1	[=======]	-		41ms/step
1/1	[=======]	-		49ms/step
1/1	[======]	-		43ms/step
1/1	[========]	-		41ms/step
1/1	[=======]	-		42ms/step
1/1	[======]	-	0s	43ms/step
1/1	[======]	-	0s	45ms/step
1/1	[======]	-	0s	55ms/step
1/1	[======]	-	0s	46ms/step
1/1	[======]	-	0s	48ms/step
1/1	[======]	-	0s	47ms/step
1/1	[======]	-	0s	41ms/step
1/1	[=======]	-	0s	47ms/step
1/1	[======]	-	0s	50ms/step
1/1	[======]	-	0s	55ms/step
1/1	[======]	-	0s	57ms/step
1/1	[======]	-	0s	51ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[======]	-	0s	60ms/step
1/1	[=======]	-	0s	54ms/step
1/1	[========]	-	0s	45ms/step
1/1	[========]	-	0s	49ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	46ms/step
1/1	[=======]	-	0s	46ms/step
1/1	[=======]	_	0s	44ms/step
1/1	[=======]			
1/1	[=======]			42ms/step
1/1	[=======]			45ms/step
1/1	[=======]			41ms/step
1/1	[=======]			42ms/step
1/1	[======]			41ms/step
1/1	[===========			44ms/step
1/1	[===========			56ms/step
1/1				43ms/step
1/1	[=======]			
1/1	[=======]			•
, –			-	, p

	0000 00047 tav. 1	t uii	10110	ai / ii lai y 515 i ii i
	[=======]			
1/1	[=======]	-	0s	45ms/step
1/1	[=======]	-	0s	57ms/step
1/1	[=======]	-	0s	54ms/step
1/1	[========]	-	0s	53ms/step
1/1	[=======]	-	0s	50ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[=======]	-	0s	53ms/step
1/1	[=======]	-	0s	54ms/step
1/1	[=======]	-	0s	53ms/step
1/1	[========]	-	0s	54ms/step
1/1	[=========]	-	0s	56ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	_		52ms/step
1/1	[=======]	_		53ms/step
1/1				49ms/step
1/1	[=======]	_		43ms/step
1/1	-			
1/1				
	[========]			
	[========]			•
	[=======]			40ms/step
	[========]			40ms/step
	[=======]			52ms/step
	[=========]			49ms/step
	[======]			46ms/step
	[======]			41ms/step
	[=========]			54ms/step
	[=========]			
1/1	-			48ms/step 42ms/step
1/1	-			•
1/1	-			41ms/step
1/1	-			
1/1				48ms/step
	[=======]			
	[========]			
	[=======]			
	[=======]			
	[========]			
	[========]			
1/1	-			•
1/1				•
1/1				60ms/step
1/1				51ms/step
1/1	-			
1/1				•
1/1				•
1/1				
1/1				
1/1	[]			
1/1				
	[]			
1/1	[]			
1/1				
1/1				
1/1				
1/1	-			•
1/1				•
1/1				42ms/step
1/1				•
1/1	-			•
1/1				
1/1	[]	-	0s	42ms/step

				,
1/1	[======]	-	0s	41ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[======]	-	0s	49ms/step
1/1	[=========]	-	0s	45ms/step
1/1	[=========]	-	0s	43ms/step
1/1	[======]	-	0s	43ms/step
1/1	[=======]	_	0s	42ms/step
1/1				
1/1				
1/1	- I			
1/1				45ms/step
1/1				41ms/step
1/1				43ms/step
1/1				
1/1	-			43ms/step
1/1				40ms/step
1/1				44ms/step
1/1				47ms/step
1/1				42ms/step
•	[========]			43ms/step
	[=======]			44ms/step
1/1				•
1/1				•
1/1	- I			
1/1	- I			
1/1	- I			
1/1	-			•
1/1				
•	- I			
1/1	- I			
1/1				
	[=======]			•
	[=======]			
	[=======]			•
	[=======]			
	[=======]			
	[======]			
	[=======]			
	[======]			
	[=======]			
	[======]			
	[======]			
	[======]			
	[]			•
	[=======]			49ms/step
	[======]			50ms/step
_	[======]			46ms/step
1/1				
	[=======]			•
	[======]			43ms/step
1/1	-			
1/1				
1/1				
1/1				•
1/1	-			
1/1				
1/1				
1/1				•
1/1				•
1/1	[]			
1/1				
1/1				
1/1	[======]			
1/1				
1/1	[======]	-	0s	40ms/step

	0000 000+7tav.1	•	10110	ai / ii lai y 515 i ii ii
1/1	[======]	-	0s	43ms/step
1/1	[=======]	-	0s	43ms/step
1/1	[======]	_	0s	41ms/step
1/1	[=======]	_	0s	41ms/step
1/1	[=======]	_	0s	40ms/step
1/1	[=======]	_	0s	50ms/step
1/1	[=======]	_	0s	44ms/step
1/1	[========]	_	0s	39ms/step
1/1	[========]	_	0s	, ,
1/1	[======]	_	0s	43ms/step
1/1	[======]	_	0s	
1/1	[=======]	_	0s	1.
1/1	[=======]	_	0s	1.
1/1	[=======]	_	0s	1
· .		_		•
1/1	[========]	-	0s	, ,
1/1	[========]	-	0s	41ms/step
1/1	[========]	-		43ms/step
1/1	[=======]	-		42ms/step
1/1	[========]	-		45ms/step
1/1	[========]	-		43ms/step
1/1	[========]	-		41ms/step
1/1	[=======]	-		48ms/step
1/1	[======]	-	0s	42ms/step
1/1	[=======]	-	0s	60ms/step
1/1	[=======]	-	0s	45ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[======]	-	0s	42ms/step
1/1	[=======]	-	0s	47ms/step
1/1	[=======]	-	0s	51ms/step
1/1	[=======]	-	0s	43ms/step
1/1	[=======]	_	0s	43ms/step
1/1	[========]	_	0s	43ms/step
1/1	[=======]	_	0s	43ms/step
1/1	[=======]	_		53ms/step
1/1	[=======]	_	0s	53ms/step
1/1	[===========		0s	, ,
1/1	[===========		_	
1/1	[===========			
1/1	[======]			55ms/step
1/1	[======]			42ms/step
1/1	[======]			, ,
1/1	[========]			
· .	-			•
1/1	[=======]			
1/1	[========]	-		
1/1	[========]	-		58ms/step
1/1	[========]			47ms/step
1/1	-			42ms/step
1/1	-			42ms/step
1/1	[=======]			•
1/1	[=======]			•
1/1	[=======]			
1/1	[=======]			•
1/1	[=======]			
1/1	[=======]			•
1/1	[======]			45ms/step
1/1	[=======]			47ms/step
1/1	[======]			44ms/step
1/1	[======]			46ms/step
1/1	[]	-	0s	45ms/step
1/1	[]	-	0s	62ms/step
1/1	[]	-	0s	48ms/step
1/1	[]	-	0s	44ms/step
1/1	[======]			
1/1	[=======]	-	0s	42ms/step

	COSC 6364 Adv. 1	Null	ierica	ai Ariaiysis Firi
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[=======]	-	0s	45ms/step
1/1	[=======]	-	0s	51ms/step
1/1				49ms/step
1/1	-			46ms/step
1/1				
1/1				46ms/step
1/1				40ms/step
1/1				56ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[=======]	-	0s	43ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	56ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	58ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	45ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	45ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[======]	-	0s	42ms/step
1/1	[=======]	-	0s	50ms/step
1/1	[=======]	-	0s	46ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[======]	-	0s	42ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	60ms/step
1/1	[=======]	_	0s	43ms/step
1/1	[=======]	-		
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[=======]	_	0s	40ms/step
	[=======]			
	[=======]			
1/1	[=======]	-	0s	41ms/step
	[=======]			
	[=======]			
1/1	[=======]	-	0s	43ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	46ms/step
1/1	[=======]	-	0s	44ms/step
1/1	[========]	-	0s	40ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	47ms/step
1/1	[=======]	-	0s	42ms/step
1/1	[=======]	-	0s	41ms/step
1/1	[=======]	-	0s	41ms/step
	[=======]			
1/1	[=======]	-	0s	53ms/step
	[=======]			
	[=======]			
	[=======]			
	[=======]			•
	[=======]			
	[======]			•
	[=======]			•
	-			·

```
1/1 [=======] - 0s 43ms/step
1/1 [======] - 0s 42ms/step
1/1 [======] - 0s 43ms/step
1/1 [=======] - 0s 41ms/step
1/1 [=======] - 0s 42ms/step
1/1 [=======] - 0s 54ms/step
1/1 [=======] - 0s 50ms/step
1/1 [=======] - 0s 45ms/step
1/1 [=======] - 0s 44ms/step
1/1 [=======] - 0s 51ms/step
```

```
In [54]: accuracy_with_noise_resNet = [x * 100 for x in accuracy]

plt.plot(noise_levels, accuracy_with_noise_resNet)
plt.title('Pre-Trained(ResNet) Model')
plt.xlabel('Noise Levels (%)')
plt.ylabel('Accuracy (%)')
plt.show()
```



```
In [55]: accuracy_with_noise_resNet
Out[55]: [47.5, 47.5, 46.25, 45.0, 45.0]
In [56]: from tabulate import tabulate
    # Define the data and noise levels
    accuracy_with_noise
    accuracy_with_noise_vgg
```

```
accuracy_with_noise_resNet
noise_levels = [0, 5, 15, 25, 35]

# Create a list of lists to hold the table data
table_data = []
for i in range(len(accuracy)):
    table_data.append([noise_levels[i], accuracy_with_noise[i], accuracy_with_noise]

# Print the table using the tabulate function
print(tabulate(table_data, headers=['Noise Level', 'Accuracy with Custom Model', 'Accuracy with Custom
```

Noise Level h ResNet50		Accuracy with Custom Model	Accuracy with VGG16	Accuracy wit
	0	100	86.25	
47.5				
	5	100	81.25	
47.5			02125	
47.3	15	100	75	
46.25	13	100	/5	
46.25				
	25	78.75	58.75	
45				
	35	55	55	
45				

```
In [57]: # Create a new figure
         plt.figure(figsize=(12, 4))
         # Plot the accuracies for the base model
         plt.subplot(1, 3, 1)
         plt.plot(noise_levels, accuracy_with_noise)
         plt.title('Accuracy for Custom Model')
          plt.xlabel('Noise Level')
         plt.ylabel('Accuracy')
         # Plot the accuracies for VGG
         plt.subplot(1, 3, 2)
         plt.plot(noise_levels, accuracy_with_noise_vgg)
          plt.title('Accuracy for VGG')
          plt.xlabel('Noise Level')
         plt.ylabel('Accuracy')
         # Plot the accuracies for ResNet
          plt.subplot(1, 3, 3)
          plt.plot(noise_levels, accuracy_with_noise_resNet)
         plt.title('Accuracy for ResNet')
         plt.xlabel('Noise Level')
         plt.ylabel('Accuracy')
         # Adjust the layout of the plots
         plt.tight_layout()
         # Display the figure
          plt.show()
```


In []: