Parallel Sparse Matrix Solver for Circuit Simulations using FPGA

Yogesh Mahajan

Supervisor: Prof. Sachin Patkar

Electrical Engineering, IIT Bombay October 2018

Motivation

Why and How to Accelerate Circuit Simulations?

Simulation requires several thousand repeated solution of the network matrix

Structure of matrix remains the same in each iteration

Parallelizing the Sparse LU Decomposition

Pre-processing

- Convert matrix to sparse storage format
- Pre-order the matrix for fill in reduction
- Generate verification data

Scheduling

- Generate memory map
- Generate priority list based schedule for the computation flow graph

Symbolic Analysis

Find the non-zero location in factors

- Generate the computation flow graph
- Assign priority to each operation

Numeric Computation

- Copy matrix data to FPGA
- Execute using the predefined schedule
- Write results back to main memory

7

4

Sparse Matrix Storage Formats

$$\begin{bmatrix} 5 & 0 & -5 & 0 & 6 \\ 0 & 4 & 0 & -4 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 1 & -3 & 0 & -1 & 0 \\ 0 & 0 & -2 & 0 & 3 \end{bmatrix}$$

Sparse Matrix

$$\begin{bmatrix} 5 & -5 & 6 \\ 4 & -4 & 0 \\ 2 & 0 & 0 \\ 1 & -3 & -1 \\ -2 & 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 & 4 \\ 1 & 3 & -1 \\ 0 & -1 & -1 \\ 0 & 1 & 3 \\ 2 & 4 & -1 \end{bmatrix}$$

ELLPACK

Values	5	-5	6	4	-4	2	-	-3	-1	-2	3
Column Indices	0	2	4	1	3	0	0	1	3	2	4
Row Indices	0	0	0	1	1	2	3	3	3	4	4

Triplet Format

Values	5	2	1	4	-3	-5	-2	-4	-1	6	3
Row Indices	0	2	3	1	3	0	4	1	3	0	4
Column Pointers	0			3		5		7		9	

Compressed Column Format

Values	5	-5	6	4	-4	2	-	-3	-1	-2	3
Column Indices	0	2	4	1	3	0	0	1	3	2	4
Row Pointers	0				3	Ę	5	(3	9	

Compressed Row Format

Approximate Minimum Degree Ordering

Find a permutation matrix P = amd(A) such that the *Cholesky factor* of P^TAP has less number of fill-ins than the factors of A, where A is a $n \times n$ symmetric matrix

For asymmetric matrix $P = amd(A + A^T)$

The linear problem Ax = b can be solved by solving the reordered system $(P^TAP)(P^Tx) = P^Tb$

100

nz = 442

Symbolic Analysis

$$U_{(i,j)} = A_{(i,j)} - \sum_{k=1}^{i-1} L_{(i,k)} U_{(k,j)} \qquad L_{(i,j)} = \frac{A_{(i,j)} - \sum_{k=1}^{j-1} L_{(i,k)} U_{(k,j)}}{U_{(j,j)}}$$

Crout's

Left-Looking

Right-Looking

Gilbert-Peierls' Algorithm

Algorithm 1 Gilbert-Peierls Algorithm: A Column-Oriented LU Factorization

Precondition: A, a $n \times n$ asymmetric matrix

```
1 L := I
2 \mathbf{for} \ j := 1 \ \mathrm{to} \ n \ \mathbf{do}
3 \mathrm{Solve} \ L_j u_j = a_j \ \mathrm{for} \ u_j
```

- $b_j' := a_j' L'ju_j$
- 5 Do Partial Pivoting on b'j
- $6 u_{jj} := b_{jj}$
- $l_j' := b_j'/u_{jj}$

J. Gilbert and T. Peierls, "Sparse partial pivoting in time proportional to arithmetic operations," SIAM Journal on Scientific and Statistical Computing, vol. 9, no. 5, pp. 862-874, 1988.

Solving the Lower Triangular System

Gilbert-Peierls'

Algorithm 2 Gilbert-Peierls Algorithm: Solving Triangular System $L_j x = b$

Precondition: L_j is a lower triangular matrix, x, b are sparse column vectors

- $1 \ x := b$
- 2 for each $j \in \chi$ do
- for each i > j for which $l_{ij} \neq 0$ do
- $x_i := x_i l_{ij} x_j$

T. Nechma and M. Zwolinski, "Parallel sparse matrix solution for circuit simulation on fpgas," IEEE Transactions on Computers, vol. 64, pp. 1090-1103, April 2015.

Finding Non-Zero Locations

Gilbert-Peierls'

Column dependence in the factorization process can be modelled using a DGA of columns.

Computational dependence for j^{th} column is given by Reach of that column in column dependence DAG:

$$Reach(j) = \bigcup Reach(i)$$
$$i \in \{i | x_{ij} \neq 0\}$$

Hence the fill-ins are given by:

$$fill In(j) = Reach(j) - \{i | x_{ij} \neq 0\}$$

T. Nechma and M. Zwolinski, "Parallel sparse matrix solution for circuit simulation on fpgas," IEEE Transactions on Computers, vol. 64, pp. 1090-1103, April 2015.

Finding Non-Zero Locations (Example)

Gilbert-Peierls'

Step 5: Column 6 Reach(3,4,6,7) = {3,7,4,5,6,9}

Step 6: Column 7 Rech(7) = {7}

Computation Task Graph

MAC Super Node

$$U_{3,4} = A_{3,4} - U_{3,4}L_{3,0} - U_{0,4}L_{3,2}$$

Total n! different execution sequences are possible for computing an element with n pairs of multiplicands

Sequence 1

Sequence 2

Scheduling

Priority of the Operations

Memory Allocation Policy

Hardware Architecture

Scheduling Algorithm

Priority of each node is computed recursively using

$$Priority(n) = \sum_{x \in parents(n)} Priority(n) + \sum_{i \in tasks(n)} Delay(i)$$

Column wise Memory Allocation

	BRAM 0		BRAM 1
)	$A_{(0,0)}, U_{(0,0)}$	0	$A_{(1,1)}, U_{(1,1)}$
	$A_{(2,0)}, L_{(2,0)}$	1	$A_{(3,1)}, L_{(3,1)}$
2	$A_{(3,0)}, L_{(3,0)}$	2	
3		3	
L		4	

	BRAM 2
0	$A_{(0,2)}, U_{(0,2)}$
1	$U_{(2,2)}$
2	$L_{(3,2)}$
3	$A_{(4,2)}, L_{(4,2)}$
4	

Circular Memory Allocation

${ m BRAM} \ 0$
$A_{(0,0)}, U_{(0,0)}$
$A_{(1,1)}, U_{(1,1)}$
$U_{(2,2)}$

	BRAM 1
0	$A_{(2,0)}, L_{(2,0)}$
1	$A_{(3,1)}, L_{(3,1)}$
2	$L_{(3,2)}$
3	
4	

BRAM 2

0
$$A_{(3,0)}, L_{(3,0)}$$

1 $A_{(0,2)}, U_{(0,2)}$

2 $A_{(4,2)}, L_{(4,2)}$

3 4

Hardware Architecture

Quad Port BRAM

Signals Waves 150 ns 160 ns 130 ns 140 ns Time clk 1x= clk 2x= sel = port a in[7:0] = 01 port_b_in[7:0] = 02 04 96 08 bram_port_a_in[7:0] = 01 08 θ3 θ2 05 04 07 06 01 08 Θ1 03 bram_port_a_out[7:0] = 08 Θ1 02 03 96 07 05 port_a_out[7:0] = Θ7 01 Θ3 05 port_b_out[7:0] = 04 08 02 04 06 active=

BRAMs can operate at the clock frequencies up to 400 MHz, which is at least two time faster than the processing elements

Clock and Reset Generation

Overall Control Flow

Scheduling

Scheduler Table

Finding Assignments

Grouping

Available Read Ports

Available Write Ports

				_										
2	1	2	1		2	1	1	2		2	2	2	2	
	1	1				1								
1										1				
	1	1	1					1						
		1	1					1						
1										1				

Node Ids

n9_0

n7_d

n6_2

n10_0

n8_d

Required Read Ports

Required Write Ports

Previous Work

T. Nechma and M. Zwolinski, "Parallel sparse matrix solution for circuit simulation on fpgas," IEEE Transactions on Computers, vol. 64, pp. 1090-1103, April 2015.

N. Kapre and A. DeHon, "Parallelizing sparse matrix solve for spice circuit simulation using fpgas," in 2009 International Conference on Field Programmable Technology, pp. 190-198, Dec 2009.

Results

Performance Variation with the Number of Units

Performance Variation with the Latency of Units

Hardware Testing

ILA ports are connected to the inputs and outputs of the BRAM ports

Hardware Configuration Parameter	Value
Number of PEs	4
Number of BRAMs	4
Number of Ports/ BRAM	4
Read Latency of BRAM	2
Latency of MAC Units	20
Latency of Diver Units	31

False Hold Violation

The path between R3 and R4 is not triggered at the rising edge of the CLK_1X hence the hold violation at this edge must be ignored

Future Work

- Synthesize BRAM
- Integrate with the on-chip ARM core
- New scheduling strategies

Thank you

Future Work

Synthesize BRAM

Port the tool on for on-chip ARM core

New scheduling strategies

Parallelizing the Sparse LU Decomposition