

Diskrete Strukturen Tutorium

Jay Zhou Technische Universität München Garching b. München, 13. November 2023

$$f: A \to B$$

 $f \subseteq A \times B$ eine Funktion von A nach B ist

 $\mathsf{Dom}(f)$

Urbildmenge, also A

 $\mathsf{Rng}(f)$

Bildmenge, also $\{f(a) \mid a \in A\}$

Total

Für jedem $a \in A$ wird ein Bild f(a) zugewiesen

Komposition

```
Sei f:A\to B und g:B\to C zwei Funktionen, dann gilt es (g\circ f):A\to C, a\to g(f(a)) (g\circ f) (a) = g(f(a))
```

Komposition ist assoziativ: $(h \circ (g \circ f)) = ((h \circ g) \circ f)$

Injektiv

$$f: A \rightarrow B$$

$$\forall x \in A. \exists y \in B. f(x) = y$$

$$f: A \rightarrow B$$

$$\forall y \in B. \exists x \in A. f(x) = y$$

$$f: A \rightarrow B$$

$$\forall x \in A . \exists y \in B . f(x) = y$$

$$\forall x \in A . \exists y \in B . f(x) = y$$

und $\forall y \in B . \exists x \in A . f(x) = y$

Aufgabe

Sei $f: X \to Y$ eine Funktion mit $X \neq \emptyset$. Zeigen Sie:

(a) Für alle $C \subseteq Y$ gilt $f^{-1}(f(f^{-1}(C))) = f^{-1}(C)$.

Def:
$$f: X \to Y$$
 $f(x) = \{f(x') \mid x' \in x\}$ Trivial $f^{-1}(y) = \{x \in X \mid f(x) \in y\}$

$$f^{-1}(f(f^{-1}(C)))$$

=
$$\{x \in X \mid f(x) \in f(f^{-1}(C))\}$$
 Def.

=
$$\{x \in X \mid f(x) \in \{f(x') \mid x' \in f^{-1}(C)\}\}$$
 Det.

$$= \{ x \in X \mid f(x) \in \{ f(x') \mid x' \in \{ x'' \in X \mid f(x'') \in C \} \} \} \text{ Def.}$$

$$= \{ x \in X \mid f(x) \in C \}$$

Sei $f: X \to Y$ eine Funktion mit $X \neq \emptyset$. Zeigen Sie:

(b) Sei $g: Y \to Z$ eine weitere Funktion. Dann gilt $(g \circ f)^{-1}(E) = f^{-1}(g^{-1}(E))$ für alle $E \subseteq Z$.

Def:
$$f: X \to Y$$
 $f'(y) = \{x \in X \mid f(x) \in y\}$
 $(g \circ f)(x) = g(f(x))$

$$(g \circ f)^{-1}(E)$$

=
$$\{x \in X \mid (g \circ f)(x) \in E\}$$
 Def.

=
$$\{x \in X \mid g(f(x)) \in E\}$$
 Def.

=
$$\{x \in X \mid f(x) \in g^{-1}(E)\}$$
 Inv. Funktion

=
$$\{x \in X \mid x \in f^{-1}(g^{-1}(E))\}$$
 Inv. Funktion

wenn A stimmt, stimmt B $(A \rightarrow B)$ Wenn B stimmt, stimmt A $(A \leftarrow B)$ Sei $f: X \to Y$ eine Funktion mit $X \neq \emptyset$. Zeigen Sie:

(c) Zeigen Sie: f ist genau dann surjektiv, falls es eine Funktion $g: Y \to X$ mit $f \circ g = \mathsf{Id}_Y$ gibt. Hinweis: Sie dürfen annehmen, dass es eine Funktion $r: X \to X$ mit $r(x) \equiv_f x$ und $(r(x) = r(x') \text{ gdw. } x \equiv_f x') \text{ gibt.}$

Surjektion $f: X \rightarrow Y \quad \forall y \in Y . \exists x \in X . f(x) = y$

$$A \leftarrow B$$
 $f \circ g = Idr$

 $\Rightarrow \forall y \in Y. f(g(y)) = y$ g(y) ist ein Urbild von y unter f

Vaegiy). Tyey. fia) = y

Beweis: Genau dann wenn

Zu Zeigen A gdw. B

=> I swjektiv

$$A \rightarrow B$$

$$\forall y \in Y . \exists x \in X . f(x) = y$$

$$\Rightarrow \exists x \in X. \exists y \in Y. x \in f^{-1}(y)$$
 Inv. Funktion

$$\Rightarrow \exists x, x' \in X. \exists y, y' \in Y. x = x' \text{ und } x \in f^{-1}(y) \text{ und } x' \in f^{-1}(y') \text{ Trivial}$$

Da
$$\exists x, x' \in X$$
. $x \equiv_{f} x' gdw$. $r(x) = r(x')$ Hinneis

$$\Rightarrow \forall y \in Y. |r(f^{-1}(y))| = 1$$

Da
$$\exists x \in X . x \in f^{-1}(y)$$
 2. Zeile

Sei
$$g:Y\to X$$
 mit $g(y)=x$

Für jedes $i \in \mathbb{N}$ sei A_i eine abzählbare, nicht leere Menge.

Zeigen Sie, dass dann auch $A:=\bigcup_{i\in\mathbb{N}}A_i$ abzählbar ist.

A ist abzählbar, falls IAI ≤ INI

Hinweis: Falls es eine surjektive Abbildung $\mathbb{N} \to A$ gibt, dann gibt es auch eine injektive Abbildung $A \to \mathbb{N}$. Weiterhin gibt es nach Vorlesung eine Bijektion von \mathbb{N} nach $\mathbb{N} \times \mathbb{N}$.

Annahme: Vi∈IN. Ai abzählbar

Zu zeigen: $A = \bigcup_{i \in \mathbb{N}} A_i$ abzählbar

Ziel: abzählbar > |A| < |IN| >

Peim Beweis sollte man am Anfang immer bestimmen, was man zeigen wollte (zu Zeigen), damit man eine grobe Orientierung hat.

=> Surjektivität

Daher wollen wir eine surjektive Funktion $g(n): IN \rightarrow A$ erzeugen.

1 Da Ai abzählbar ist, gilt IAil < INI, also fi ist injektiv.

2 Wir betrachten jetzt $g_i := f_i^{-1} : \mathbb{N} \to A_i$.

Dabei Können wir gi so definieren:

$$g_{i}(k) := \begin{cases} a & \text{falls } f_{i}(a) = k \\ a_{i} & \text{sonst} \end{cases}$$
 $\Rightarrow Damit g_{i}(k) surjektiv wäre$

ai muss also fixiert sein, z.B. min(f: (Ai))

A Absolute Werte (1,2,...) dürfen wir nicht nehmen, denn er nicht unbedingt E Ai.

gi(k) ist also nach Definition surjektiv.

$$g(n) \xrightarrow{\exists q. q: |N| \rightarrow |N| \times |N|} g(k)$$

Wir definieren
$$q(n) := (q_1(n), q_2(n)) = (i, k)$$

Danit:
$$g_i(k) = g_{g_i(n)}(g_2(n)) = g(n)$$

Va E A. Sei a E A beliebig

$$\Rightarrow \exists k \in \mathbb{N}. \ g_i(k) = a$$

$$\Rightarrow \exists n \in \mathbb{N}. \ q(n) = (i,k)$$

$$\Rightarrow \exists n \in \mathbb{N}. \ g(n) = g_i(k) = a$$

 $\forall a \in A$. $\exists n \in \mathbb{N}$. g(n) = aDef. Surjektivität

Ziel erreicht!

Fazit: A*für A abzählbar, da YkeIN A*abzählbar

Für $R \subseteq A \times A$ eine binäre Relation sei $H_R := (R \setminus \mathsf{Id}_A) \setminus (R \setminus \mathsf{Id}_A)^2$.

Wir betrachten hier $A = \{a, b\}^2 \cup \{a, b\}^3$.

Die zu betrachtenden Elementen sind also:

{aa, ab, ba, bb, aaa, aab, aba, baa, abb, bab, bba, bbb}

Vorlage

Für $R \subseteq A \times A$ eine binäre Relation sei $H_R := (R \setminus \mathsf{Id}_A) \setminus (R \setminus \mathsf{Id}_A)^2$.

(a) Für $A = \{a, b\}^2 \cup \{a, b\}^3$ sei $R = \{(uv, vu) \in A \times A \mid u, v \in \{a, b\}^*\}.$

Stellen Sie R, $R \setminus \mathsf{Id}_A$, $(R \setminus \mathsf{Id}_A)^2$ und H_R graphisch dar.

$$\frac{ab}{\frac{a}{u}\frac{b}{v}} \in \mathcal{R} \longrightarrow ba \in \mathcal{R}$$

$$\frac{aab}{\frac{u}{v}} \in \mathcal{R} \longrightarrow baa \in \mathcal{R}$$

$$\frac{aab}{\frac{u}{v}} \in \mathcal{R} \longrightarrow baa \in \mathcal{R}$$

$$aba \in \mathcal{R}$$

- Id sind zurück: (a,b). (b,a) = (a,a)

= (R) Ida) (R) Ida)

- Kreise mit 3 Elementen bleiben:

 $(a,b) \circ (b,c) = (a,c)$

- Kreise mit 2 Elementen verschwinden

Für $R \subseteq A \times A$ eine binäre Relation sei $H_R := (R \setminus \mathsf{Id}_A) \setminus (R \setminus \mathsf{Id}_A)^2$.

(b) Für $A = \{a, b\}^2 \cup \{a, b\}^3$ sei $R = \{(u, uv) \in A \times A \mid u, v \in \{a, b\}^*\}.$

Stellen Sie R, $R \setminus \mathsf{Id}_A$, $(R \setminus \mathsf{Id}_A)^2$ und H_R graphisch dar.

$$\Rightarrow ab \in \mathcal{R} \rightarrow \frac{ab \cdot \varepsilon}{aba} = ab \in \mathcal{R} \quad Id$$

$$aba \in \mathcal{R}$$

$$abb \in \mathcal{R}$$

 $aab \in R \rightarrow aab \in R$ Id

- Keine transitive Relationen aus RIIda → leer

 $= (R \cdot Id_A) \cdot (R \cdot Id_A)^2$

Für $R \subseteq A \times A$ eine binäre Relation sei $H_R := (R \setminus \mathsf{Id}_A) \setminus (R \setminus \mathsf{Id}_A)^2$.

(c) Bestimmen Sie H_R für $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \leq y\}$.

$$(2,2) \in R$$

$$(2,3) \in R \quad aber \quad (2,1) \notin R$$

$$(2,4) \in R$$

$$\vdots$$

$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \leqslant y\}$$

$$R \setminus Id_A = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x < y\}$$
 (a,a) $\notin R \setminus Id_A$

$$(R \setminus Id_A)^2 = \{(x, z) \in \mathbb{Z} \times \mathbb{Z} \mid x < z - 1\}$$

Formal: Mit (x,y), $(y,z) \in S$ gilt $y \ge x+1$ and $z \ge y+1$, also $z \ge y+1 \ge x+2$

$$H_{R} = (R \cdot Id_{A}) \cdot (R \cdot Id_{A})^{2} = \left\{ (x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x = y - 1 \right\} = \left\{ (x, x + 1) \in \mathbb{Z} \times \mathbb{Z} \right\}$$

Alle Folien werden hier hochgeladen :)

https://discord.gg/v44bAsfmdK

Fragen?