MACHINE LEARNING IN BIOINFORMATICS

MODEL BENCHMARKING

Philipp Benner philipp.benner@bam.de

S.3 - eScience Federal Institute for Materials Research and Testing (BAM)

June 25, 2023

MOTIVATION

MOTIVATION

■ Assume we have developed a machine learning model *f*:

$$f(X) = \hat{y}$$

- X are the predictors or independent variables, e.g.
 - ► DNA sequences, motif scores
- \blacksquare \hat{y} are the predictions
 - ► Gene expression levels (regression)
 - ► Enhancer active/inactive (classification)
- Suppose we have a test data set (X, y). How can we evaluate the performance of our model f?

MODEL BENCHMARKING

BENCHMARKING REGRESSORS

Residual sum of squares

$$\sum_{i=1}^{n} (y_i - f(x_i))^2$$

Depends on the variance of y

■ Coefficient of determination

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - f(x_i))^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} = 1 - \frac{\text{residual sum of squares}}{\text{total sum of squares}}$$

- $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$, the mean, can be interpreted as a reference or baseline regressor
- \blacksquare R^2 compares the predictions of f to the baseline

True positive (TP): 4 True negative (TN): 5
False positive (FP): 1 False negative (FN): 2

- We discuss here binary classification problems, i.e. data with two classes
- We have several options for multiclass problems:
 - ▶ one class vs. all other classes
 - one class vs. another class
 - use multi-class losses such as cross-entropy

- We discuss here binary classification problems, i.e. data with two classes
- We have several options for multiclass problems:
 - one class vs. all other classes
 - one class vs. another class
 - use multi-class losses such as cross-entropy
- Classifiers typically return a score, or better, a probability:

$$f(x) = P(\text{positive class} | x) > t \quad \Rightarrow \hat{y} = 1$$

- *t* is a threshold that we can vary
- If the model *f* is a simple linear function, then *t* determines the *y*-intercept

■ True positive rate:

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

also called: sensitivity or recall (How well are positives recognized)

■ False positive rate:

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

(How well are negatives recognized)

- In practice we often deal with imbalanced data sets, i.e. $P \ll N$
- Example: Genome wide identification of enhancers
- Remark: If $N \ll P$ then we flip labels!
- With ROC curves we never compare *P* and *N*:

$$\mathrm{TPR} = \frac{\mathrm{TP}}{\mathrm{P}} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}} \,, \quad \mathrm{FPR} = \frac{\mathrm{FP}}{\mathrm{N}} = \frac{\mathrm{FP}}{\mathrm{FP} + \mathrm{TN}}$$

Positive predictive value (PPV, or precision):

$$PPV = \frac{TP}{TP + FP}$$

BENCHMARKING CLASSIFIERS: ROC/PR-AUC

$$\text{ROC-AUC} = \int_t \text{TPR}(t) \text{dFPR}(t) \qquad \text{PR-AUC} = \int_t \text{PPV}(t) \text{dTPR}(t)$$

BENCHMARKING CLASSIFIERS: CLASSICAL STATISTICS

■ Probability of a type I error:

$$lpha = P(f(x) = 1 | y = 0)$$

$$pprox \frac{\text{FP}}{\text{FP} + \text{TN}}$$

■ Probability of a type II error:

$$eta = P(f(x) = 0 \mid y = 1)$$
 $pprox rac{\mathrm{FN}}{\mathrm{TP} + \mathrm{FN}}$

■ Power of a statistical test:

$$\gamma = P(f(x) = 1 | y = 1)$$
= 1 - \beta

10

BENCHMARKING CLASSIFIERS: ADVANCED MEASURES

- All measures so far were likelihood based, which ignore prevalences
- There are also posterior or "Bayesian" measures
- False discovery rate (FDR):

$$P(y=1|f(x)=0)=\frac{\alpha\pi_0}{\alpha\pi_0+\gamma\pi_1}$$

■ False omission rate (FOR):

$$P(y = O | f(x) = 1) = \frac{\beta \pi_1}{(1 - \alpha)\pi_0 + \beta \pi_1}$$

- Where: $\pi_0 = N/(P+N)$ and $\pi_1 = P/(P+N)$
- Both the FDR and FOR require an estimate of prevalences

READING

■ Section 5.7.2 [Murphy, 2012]

REFERENCES

MURPHY, K. P. (2012).

MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE.

MIT press.