CS & IT ENGNEERNG

Computer Network

Error Control

By - Abhishek Sir

Lecture No. - 02

Recap of Previous Lecture

ABOUT ME

Hello, I'm Abhishek

- GATE CS AIR 96
- M.Tech (CS) IIT Kharagpur
- 12 years of GATE CS teaching experience

Telegram Link: https://t.me/abhisheksirCS_PW

Topic: One-bit parity

Suppose "Even parity"

DATA = "1 0 1 1 1 0 1"

$$d_1 d_2 d_3 d_4 d_5 d_6 d_7$$

$$\alpha(A) = a$$

$$\alpha \oplus 0 = a$$

0	$d_1 = 1$
	$d_2 = 0$

$$d_3 = 1$$

$$0 d_4 = 1$$

$$d_5 = 1$$

$$\bigcirc \qquad \qquad \mathsf{d}_6 = 0$$

$$\bigcirc \qquad \qquad d_7 = 1$$

$$\mathbf{P} = \mathbf{0}$$

AT Sender (Transmitter)

Input = "1 0 1 1 1 0 1
$$\underline{0}$$
"
 $d_1 \ d_2 \ d_3 \ d_4 \ d_5 \ d_6 \ d_7 \ \underline{P}$

Input = "1 0 1 1 1 0 1
$$\underline{1}$$
"
 $d_1 \ d_2 \ d_3 \ d_4 \ d_5 \ d_6 \ d_7 \ \underline{P}$

k-bits input

n-bits output

k = input data bits

n = code length

No of parity bit in each code word = (n-K)

 $\rightarrow 2^k$ codewords of length n.

Codeword = [data with parity]

One-bit parity (with even parity) and 3 data bits

```
Codeword
 Data
             d_1d_2d_3P
d_1d_2d_3
                          Set of (2K=8)
                  0000
 000
        -->
                  0011
 001
        -->
                  0101
 010
        -->
                  0110
 011
        -->
                  1001
 100
        -->
                  1010
 101
        -->
                  1100
 110
        -->
                  1111
 111
        -->
```


→ Linear combination of codewords

if
$$C_i$$
 and C_j are codewords in Set then C_k is also be a codeword in that Set where $C_k = C_i \oplus C_j$

Binary arithmatic & Moduloz Arithmatic:

→ Cyclic combination of linear codewords

if C is codeword [9234]

then bit-wise cyclic left or right shift on C is also be a codeword

Cyclic Left

Topic: Valid Codewords vs Invalid Codewords

→ Valid codewords :

0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111

→ Invalid codewords :

0001, 0010, 0100, 0111, 1000, 1011, 1101, 1110

Transmitter always transmit valid code word in the channel

-> If receiver receives a codeword from channel, which is belongs to valid code set, then receiver conclude no error detected.

-> Afreceiver receives a codeword from channel, which belongs to Invalid Codeword set then receiver conclude "Error Detected".

2 thace bit organ Receiver Isansmitter Codeword Osinglebitoner Invalid Code word ONo any Valid Codeword BTWO 6; Regge

Pw

- → Cyclic Redundancy Check (CRC)
- → Frame Check Sequence (FCS)

Topic: Polynomial Function

→ Polynomial function, where coefficients are either zero or one.

Example:

Function =
$$X^5 + X^2 + 1$$

= $1*X^5 + 0*X^4 + 0*X^3 + 1*X^2 + 0*X^1 + 1*X^0$

Topic: Generator Polynomial

G(X): Generator Polynomial function

- \rightarrow (n+1) terms [Xⁿ to X⁰]
- → Degree[G(X)] = n => (oefficient of the term x should be one.
- → Coefficient of term X⁰ should be "one"
 [G(X) shuold not be divisible by X]
- → Both transmitter and receiver must agree on same G(X).

$$G(X) = X^n + \ldots + 1$$

$$G(X) = X^n + \ldots + 1$$

Example:

$$G(X) = X^3 + X^2 + 1$$
$$= 1*X^3 + 1*X^2 + 0*X^1 + 1*X^0$$

Divisor
$$= 1101$$

Topic: Message Polynomial

- M(X): Message Polynomial function
 - \rightarrow m terms, [X(m-1) to X⁰]
 - → coefficients are either zero or one

DATA (Message) : binary string (m - bits)

Topic: Message Polynomial

DATA (Message) : binary string (m - bits)

Example :-

$$M(X) = X^{7} + X^{4} + X^{3} + X$$

$$= 1*X^{7} + 0*X^{6} + 0*X^{5} + 1*X^{4} + 1*X^{3} + 0*X^{2} + 1*X^{1} + 0*X^{0}$$

DATA =
$$10011010$$

Transmitter protocol:

[$M(X) * X^n$] [Modulo-2 Division] [G(X)] $[f_1(X) * f_2(X)]$ division $[f_3(X)]$

THANK - YOU