Simulation of Biomolecules

Simulation Analysis part 2

2024 CCP5 Summer School

Dr Matteo Degiacomi

Durham University

matteo.t.degiacomi@durham.ac.uk

Dr Antonia Mey
University of Edinburgh

antonia.mey@ed.ac.uk

The Data Mining world

From scikit-learn.org 2

The Data Mining world

From scikit-learn.org

Features are possible ways to represent data

Interactomic distances

Labels assign featurised data to categories

- take labelled data
- create an n-dimensional feature vector from data
- Separate «feature space» in different regions

- take labelled data
- create an n-dimensional feature vector from data
- Separate «feature space» in different regions

- take labelled data
- create an n-dimensional feature vector from data
- Separate «feature space» in different regions
- Warning: a too precise classification of examples might sacrifice generality (overfitting)

Data

Some terminology

Confusion Matrix: describes classification results can also describe n classes

		Dog	Cat		
ובאפור	Dog	90	10		
	Cat	12	88		

real

• **precision** =
$$\frac{\text{true positives}}{\text{selected elements}} = \frac{1}{1}$$

• sensitivity = recall =
$$\frac{\text{true positives}}{\text{relevant elements}} = \frac{1}{100}$$

•
$$accuracy = \frac{true positives + true negatives}{total population}$$

Learning Algorithms

- Artificial Neural Network (ANN)
- Decision Tree (DT)
- Random Forests (RF)
- Support Vector Machine (SVM)
- Logistic Regression (LOGRES)
- Naïve Bayes (NB)
- K Nearest Neighbor (KNN)
- ...

Learning Algorithms

- Artificial Neural Network (ANN)
- Decision Tree (DT)
- Random Forests (RF)
- Support Vector Machine (SVM)
- Logistic Regression (LOGRES)
- Naïve Bayes (NB)
- K Nearest Neighbor (KNN)
- ...

A **neuron** fires if input signal is above a threshold

The activation function **f** can take several shapes

$$f(w_1x_1 + w_2x_2 + ... + w_nx_n + b) = y$$

A single neuron can be used to take simple decisions

$$H(w_1x_1 + w_2x_2 + b) = y$$

A single neuron can be used to take simple decisions

Complex decision making emerges when arranging neurons into **networks**

A single neuron can be used to take simple decisions

Complex decision making emerges when arranging neurons into **networks**

An ANN with one hidden layer can approximate any function

[Extra] Convolutional neural networks (CNN)

Convolution: a mathematical operation, "sliding a kernel" (filter) over the signal.

Input

[Extra] Convolutional neural networks (CNN)

Convolution: a mathematical operation, "sliding a kernel" (filter) over the signal.

[Extra] Convolutional neural networks

Convolution: a mathematical operation, "sliding a filter" (kernel) over the signal. Example, edge detection:

$$\mathbf{G}_x = egin{bmatrix} -1 & 0 & +1 \ -2 & 0 & +2 \ -1 & 0 & +1 \end{bmatrix} * \mathbf{A}$$

and

$$\mathbf{G}_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix} * \mathbf{A}$$

Convolutional neural network: instead of neurons, has many kernels. Learning = optimising kernel weights

[Extra] Convolutional neural networks

Exploit local correlation in data (e.g. Images, spectra, ...).

Can deal with inputs of arbitrary sizes with less parameters to learn

[Extra] Support Vector Machine (SVM)

- invented by V. Vapnik et al. in the 1970s in Russia, but only known to the West in 1992
- linear classifier finding a hyperplane to separate two class of data
- **Kernel functions** (Φ) used for nonlinear separation

Decision Trees (DT)

- Subdivides features space in sectors
- Can overfit if space subdivision becomes too fine

Bootstrap Aggregating (Bagging)

a weighted sum of weak classifiers creates a single strong classifier

Useful when a small change to training set causes large change in the output classifier ("learner is unstable")

Create *N* bootstrap samples S drawing *m* random examples from *D* with replacement

$$S[0]=$$
 5 1 7 2 7 9 2 6 5 \rightarrow C[0]
 $S[1]=$ 9 4 7 1 2 8 9 7 6 \rightarrow C[1]

$$S[2]= 0 8 2 0 9 7 7 0 1 \rightarrow C[2]$$

• • •

$$S[N] = 1 2 3 4 5 6 7 8 9 \rightarrow C[N]$$

Training: for every S, build a distinct classifier C using the same learning algorithm

[Extra] Boosting

 a weighted sum of weak classifiers creates a single strong classifier

 iteratively add classifiers to a pool, tweaked to give more importance to data misclassified by previous classifiers

Weights based on learners accuracy

Random Forests (RF)

- Data bagging: creates N decision trees trained on bagged data
- Feature bagging: Given M features, every tree learns on m<M randomly selected features
- Classification based on voting of resulting forest

Advantages:

- does not overfit
- Can handle thousands of features
- estimates what variables are important for classification

How do I pick the best learning algorithm?

Learning algorithms quality criteria:

- accuracy: percentage of correct classification
- robustness: handling noise and missing values
- efficiency: time to construct and use the model
- scalability: efficiency in memory requirements
- interpretability: how much the model is understandable

[Extra] Accuracy and robustness benchmark (1)

R. Caruana et al. systematically tested learning algorithms against different datasets

PROBLEM	#ATTR	TRAIN SIZE	TEST SIZE	%Poz
ADULT BACT COD CALHOUS COV_TYPE HS LETTER.P1 LETTER.P2 MEDIS MG	14/104 $11/170$ $15/60$ 9 54 200 16 16 63 124	5000 5000 5000 5000 5000 5000 5000 500	35222 34262 14000 14640 25000 4366 14000 14000 8199 12807	25% 69% 50% 52% 36% 24% 3% 53% 11% 17%
SLAC	59	5000	25000	50%

Problem	n Attr	Train	Valid	Test	%Pos
Sturn	761	10K	2K	9K	33.65
Calam	761	10K	$2\mathrm{K}$	9K	34.32
Digits	780	48K	12K	10K	49.01
Tis	927	$5.2 \mathrm{K}$	1.3K	6.9K	25.13
Cryst	1344	2.2K	1.1K	2.2K	45.61
KDD98	3848	76.3K	19K	96.3K	5.02
R-S	20958	35K	$7\mathrm{K}$	30.3K	30.82
Cite	105354	81.5K	18.4K	81.5K	0.17
Dse	195203	120K	43.2K	107K	5.46
Spam	405333	36K	9K	42.7K	44.84
Imdb	685569	84K	18.4K	84K	0.44

R. Caruana and A. Niculescu-Mizil, *An Empirical Comparison of Supervised Learning Algorithm*, Proceedings of the 23rd International Conference on Machine Learning, 2006

R. Caruana et al., *An Empirical Evaluation of Supervised Learning in High Dimensions*, Proceedings of the 25rd International Conference on Machine Learning, 2008

[Extra] Accuracy and robustness benchmark (2)

Bootstrap analysis: all methods learn from of a random training subset, and get ranked by accuracy

Jal	MODEL	1st	2ND	3rd	4TH	5тн	6тн	7тн	8тн	9тн	10тн
lot high dimension	BST-DT RF BAG-DT SVM ANN KNN BST-STMP DT LOGREG NB	0.580 0.390 0.030 0.000 0.000 0.000 0.000 0.000 0.000	0.228 0.525 0.232 0.008 0.007 0.000 0.000 0.000 0.000	0.160 0.084 0.571 0.148 0.035 0.000 0.002 0.000 0.000 0.000	0.023 0.001 0.150 0.574 0.230 0.009 0.013 0.000 0.000	0.009 0.000 0.017 0.240 0.606 0.114 0.014 0.000 0.000	0.000 0.000 0.000 0.029 0.122 0.592 0.257 0.000 0.000	0.000 0.000 0.000 0.001 0.000 0.245 0.710 0.004 0.040 0.000	0.000 0.000 0.000 0.000 0.000 0.038 0.004 0.616 0.312 0.030	0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.291 0.423 0.284	0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.225 0.686

	AVG	1st	2ND	3RD	4TH	5TH	6тн	$7\mathrm{TH}$	8TH	9тн	10TH
a	RF	0.727	0.207	0.054	0.011	0.001	0	0	0	0	0
\subseteq	ANN	0.053	0.172	0.299	0.256	0.119	0.072	0.019	0.011	0	0
.0	BSTDT	0.059	0.228	0.18	0.222	0.18	0.075	0.044	0.012	0.001	0
ns	SVM	0.043	0.195	0.213	0.193	0.156	0.088	0.08	0.031	0.001	0
ime	LR	0.089	0.132	0.073	0.075	0.108	0.177	0.263	0.081	0	0
	BAGDT	0.002	0.012	0.109	0.123	0.251	0.284	0.123	0.078	0.016	0
р	KNN	0.023	0.045	0.051	0.057	0.085	0.172	0.122	0.177	0.258	0.01
<u></u>	BSTST	0.004	0.009	0.021	0.063	0.086	0.109	0.3	0.387	0.02	0
∀□	PRC	0	0	0	0	0.013	0.024	0.047	0.222	0.695	0
	NB	0	0	0	0	0	0	0	0	0.01	0.99

Conclusion

 Know what algorithms do, what their limitations are, and how their parameters may affect results

Pick your algorithm depending on the nature of your data

Better data often beats better algorithms

Getting started: consider Python!