Mouvement dans un champ uniforme

I. La deuxième loi de Newton

A. Référentiel galiléen

Définition: Un référentiel galiléen est un référentiel où la première loi de Newton s'applique aussi (le principe d'inertie).

Rappel: Le principe d'inertie dit que si toutes les forces appliquées au système se compensent ou qu'aucune force ne s'exerce sur le système alors:

- Si le système est immobile alors il le reste.
- Si le système est en mouvement alors son mouvement est rectiligne uniforme.

$$\sum \vec{F}_{\rm ext} = \vec{0}$$

B. Deuxième loi de Newton

On suppose que le référentiel est galiléen, ainsi on a:

$$\sum \vec{F}_{\rm ext} = m \frac{d\vec{v}(t)}{dt} = m\vec{a} \quad \text{car } m \text{ est constant.}$$

II. Mouvement dans un champ de pesanteur uniforme

Définition: Un champ de pesanteur uniforme correspond à un champ où le système n'est soumis qu'à une seule force constante, le poids.

Ainsi, on applique la deuxième loi de Newton:

$$\sum \vec{F}_{\rm ext} = m\vec{a}$$

$$\Rightarrow \vec{P} = m\vec{g} = m\vec{a}$$

$$\Rightarrow \vec{a} = \vec{g}$$

A) Étude cinématique

On se place dans un repère (O, \vec{i}, \vec{j}) avec \vec{j} dirigé vers le haut. Comme \vec{g} est vertical et va vers le bas on a:

$$\vec{g} = \begin{cases} g_x = 0 \\ g_y = -g \end{cases}$$

Donc:

$$\vec{a} = \begin{cases} a_x = 0 \\ a_y = -g \end{cases}$$

Comme $\vec{a} = \frac{d\vec{v}(t)}{dt}$ alors $\vec{v}(t)$ est la primitive de \vec{a} .

$$\vec{v}(t) = \begin{cases} v_x(t) = C_1 \\ v_y(t) = -gt + C_2 \end{cases}$$

Les conditions initiales permettent de déterminer C_1 et C_2 . À t=0:

$$\vec{v}(0) = \begin{cases} v_x(0) = v_0 \cos \alpha \\ v_y(0) = v_0 \sin \alpha \end{cases}$$

avec v_0 la vitesse initiale et α l'angle entre $\overrightarrow{v_0}$ et l'axe (Ox).

Alors:

$$C_1 = v_0 \cos \alpha$$
 et $C_2 = v_0 \sin \alpha$

Donc:

$$\vec{v}(t) = \begin{cases} v_x(t) = v_0 \cos \alpha \\ v_y(t) = -gt + v_0 \sin \alpha \end{cases}$$

On sait que $\overrightarrow{v} = \frac{d\overrightarrow{OM}(t)}{dt}$ alors $\overrightarrow{OM}(t)$ est la primitive de \overrightarrow{v} . Donc:

$$\overrightarrow{OM}(t) = \begin{cases} x(t) = v_0 \cos \alpha t + C_3 \\ y(t) = -\frac{1}{2}gt^2 + v_0 \sin \alpha t + C_4 \end{cases}$$

Les conditions initiales permettent de déterminer C_3 et C_4 . À t=0:

$$\overrightarrow{OM}(0) = \begin{cases} x(0) = 0\\ y(0) = 0 \end{cases}$$

Alors: $C_3 = 0$ et $C_4 = 0$ **Donc:**

$$\overrightarrow{OM}(t): \begin{cases} x(t) = (v_0 \cos \alpha)t & (1) \\ y(t) = -\frac{1}{2}gt^2 + (v_0 \sin \alpha)t & (2) \end{cases}$$

B) Mouvement d'un projectile.

1° Equation de trajectoire.

D'après (1) on a:

$$t = \frac{x}{v_0 \cos \alpha} \quad (3)$$

On injecte (3) dans (2) pour avoir y(x).

Donc:

$$y(x) = -\frac{1}{2}g \times \left(\frac{x}{v_0 \cos \alpha}\right)^2 + v_0 \sin \alpha \times \frac{x}{v_0 \cos \alpha}$$

$$= -\frac{1}{2}g\frac{x^2}{(v_0\cos\alpha)^2} + (\tan\alpha)x \quad (4)$$

Remarque: y(x) est de la forme $ax^2 + bx + c$, donc la trajectoire du projectile correspond à une parabole.

2° Flèche du mouvement.

Définition: La flèche du tir correspond à l'altitude maximale atteinte par le projectile.

À cet instant $\overline{v}(t_{\text{flèche}}) = -g \cdot t_{\text{flèche}} + v_0 \sin \alpha = 0$

Donc:

$$t_{\text{flèche}} = \frac{v_0 \sin \alpha}{g} \quad (5)$$

On injecte (5) dans (2)

Ainsi:

$$y_{\text{flèche}} = \frac{(v_0 \sin \alpha)^2}{2g}$$

3° Portée du Tir

Définition La portée du tir correspond à la distance entre le point de lancement O et le point d'impact P du projectile sur l'axe Ox.

On a alors:

$$y = x \tan \alpha - \frac{1}{2} \frac{g}{v_0^2 \cos^2 \alpha} x^2 + \tan \alpha \times x_p = 0$$

On a deux solutions :

$$x = 0$$
 (point de lancement)
$$x_p = \frac{v_0^2 \sin \alpha}{g}$$

Attention : ici on prend le point O, l'origine du mouvement. Parfois le point de lancement se situe plus haut à une altitude h.

III. Aspect Énergétique

A) Théorème de l'énergie mécanique

$$\Delta E_m = \Delta E_c + \Delta E_{pp} = \sum \mathcal{W}_{AB}(\overrightarrow{F}_{\rm force\ non\ conservative})$$

Ici seule le poids P s'applique et cette force est conservative. Donc :

$$\Delta E_m = 0$$

$$\Rightarrow E_m(B) = E_m(A)$$

$$\Rightarrow E_c(B) + E_{pp}(B) = E_c(A) + E_{pp}(A)$$
$$\Rightarrow \frac{1}{2}mv_B^2 + mgz_B = \frac{1}{2}mv_A^2 + mgz_A$$

Si nous prenons comme point de départ O et point d'arrivée M, on a :

$$\frac{1}{2}mv_0^2 + mgz_0 = \frac{1}{2}mv_M^2 + mgz_M$$

III. Accélérateur linéaire de particules chargées

A) Champ électrique uniforme

Un champ électrique uniforme possède les mêmes caractéristiques qu'un champ de pesanteur uniforme, soit que la seule force qui s'exerce sur le système est $\vec{F} = q\vec{E}$ avec \vec{E} le champ électrique uniforme.

 \vec{E} est perpendiculaire aux deux armatures du condensateur qui crée le champ électrique, va de la borne + à la borne - :

$$\vec{E} = \frac{U_{AB}}{d}$$

En appliquant la deuxième loi de Newton, on a :

$$\vec{a} = \frac{q\vec{E}}{m}$$

B) Étude cinématique

On admet, pour cette étude, que la particule est chargée positivement, qu'elle n'a pas de vitesse initiale, et que \vec{E} est horizontal et a le même sens que \vec{i} dans le repère $(O; \vec{i}, \vec{j})$.

On a :

$$\vec{a} = \begin{cases} a_x = \frac{q\vec{E}}{m} \\ a_y = 0 \end{cases}$$

On en déduit :

$$\vec{v}(t) = \begin{cases} v_x(t) = (\frac{qE}{m}t) \\ v_y(t) = 0 \end{cases}$$

Enfin:

$$\overrightarrow{OM} = \begin{cases} x(t) = \frac{1}{2} \times \frac{qE}{m} \times t^2 + x_0 \\ y(t) = y_0 \end{cases}$$

avec x_0 et y_0 les coordonnées initiales de la particule.

C) Aspect énergétique.

Comme \vec{F}_e est une force conservative alors

$$\Delta E_m = 0.$$

D) Principe d'un accélérateur linéaire de particules

Un accélérateur linéaire de particules est constitué d'un condensateur plan. Dans un condensateur plan, le travail de la force électrique $\vec{F_e}$ fait varier l'énergie cinétique de la particule de charge q.

$$\Delta E_c = W_{AB} = \vec{F_e} \cdot \vec{AB} = q \times \vec{E} \cdot \vec{AB} = q \times E \times \vec{AB} \times \cos(\theta)$$

Or l'angle $(\widehat{\vec{AB}}, \vec{E})$ vaut 0 et $\vec{AB} = d$. Donc

$$\Delta E_c = q \times E \times d \times \cos(0)$$

$$= q \times E \times d \times 1$$

$$= q \times U_{AB}$$

$$-q \times U_{AB}.$$

Le signe de U_{AB} est choisi pour que $W_{AB}(\vec{F}_e)>0$ car :

- Si q < 0 alors $U_{AB} < 0 \implies \Delta E_c > 0$
- Si q > 0 alors $U_{AB} > 0 \implies \Delta E_c > 0$