

linearizing	non Guer process.
- Lasie	d features: PAGE No. /
a fower	
or use	pretrained Neural Networks.
Rougsian d	ecision rule for classification:
	Co dos Occión:
a (ars	C2 dogs P(c1x) P(c) P(x1c)
	p(C x) = p(x c) p(c) = dikelihood x prior
9 ₅	f(x) evidence
?	we may find P(C11x) and if >1 => C1
	We may find $\frac{P(C_{11}x)}{P(C_{21}x)}$ and if $\frac{1}{2} \Rightarrow C_{1}$ [for example]
	(Assuming equal risk)
	ass conditional in D- Dimensions:
22	
	p(x/c,) p(x/c2) both modelled as gaussians
8	D'4) b(x(c)) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
4	$\frac{\sum_{i=1}^{2} p(x_i C_i)}{p(x_i C_i)} = \frac{1}{p(x_i C_i)} \exp\left(-\frac{1}{p(x_i-y_i)}\sum_{j=1}^{2}(x_j-y_j)\right)$ 2 dimensions $\sqrt{\frac{2}{p(x_i-y_i)}}$
3	[General setting]
	Boundary may or may not be linear.
He wish	to look at:
	log (P(x)c1) P(cq) Compand with O.
	log (P(x c1) P(c1) compand with 0. P(x c1) P(c2)
	P(x ci)] + ln[Pcci)] - ln[Pcci)] - ln[Pcci)]
(1) 0:	& of are equal, we can cancel out the constant)
> h (p	$\frac{(x(c_1)) + ln(p(c_0)) - ln(p(x(c_0)) - ln(p(c_0))}{(x-y_1)^T} = \frac{1}{2} (x-y_1) + x_1$
	$= -1 \left(x - y_i \right)^T \leq ^1 \left(x - y_i \right) + K_i$
	$= -\frac{1}{2} (x-y_1)^T \Xi^{\dagger} (x-y_1) + K_1$ $= -\frac{1}{2} (x-y_1)^{\Xi^{\dagger}} (x-y_2) - K_2$
	We get a straight line if $\Sigma_1 = \Sigma_2 = \Sigma$. In general we will not get straight line
	7. general we will not get straight line
	In

