MATH 370 (Sp. 2025): ULA Midterm I Review Session (with Luc Ta and Adam Wesley)

Remember to sign in, using either the QR code or this link.

Problem 1. Let F be a subfield of \mathbb{C} , and let K/F be a degree 2 extension. Is K/F necessarily Galois?

Problem 2. Let $F \subset M \subset K$ be fields.

- (a) Suppose K/F is Galois. Is K/M necessarily Galois?
- (b) Suppose K/F is Galois. Is M/F necessarily Galois?
- (c) Suppose M/F and K/M are both Galois. Is K/F necessarily Galois?

Problem 3. Classify the Galois groups of the following polynomials.

- (a) $f(x) := x^3 3x + 1$ over \mathbb{Q} .
- (b) The minimal polynomial of $\sqrt{2+i}$ over \mathbb{Q} .
- (c) The minimal polynomial of $\sqrt{2+\sqrt{2}}$ over \mathbb{Q} .
- (d) $f(x) := x^4 2$ over F, where F is the splitting field of $x^2 2$ over \mathbb{Q} .
- (e) The same polynomial as in the last part, but now over \mathbb{Q} .

Problem 4. Let K be a subfield of \mathbb{R} , and let $f \in K[x]$ be an irreducible polynomial. Show that if the Galois group of f has odd order, than the discriminant of f is positive. (Hint: Trying to prove that an abstract polynomial has a positive discriminant is kind of weird. Is there a way to avoid doing that while still solving the problem?)

Problem 5. Let K/F be a Galois extension such that $Gal(K/F) \cong Z_3 \times Z_{18}$. How many intermediate fields M are there such that

(a)
$$[M:F] = 18$$

(e)
$$Gal(K/M) \cong Z_2$$

(b)
$$[M:F] = 27$$

(f)
$$|Gal(K/M)| = 6$$

(c)
$$[M:F]=3$$

(g)
$$Gal(K/M) \cong Z_{27}$$

(d)
$$[M:F] = 6$$

(h)
$$|\operatorname{Gal}(K/M)| = 27$$

You're doing great! :)