MATH 322 Assignment 3

Oliver Tonnesen V00885732

March 11, 2019

1

1.i

$$b = \frac{\lambda n(n-1)}{k(k-1)}$$
$$= \frac{3 \cdot 25(24)}{10(9)}$$
$$= 20$$

$$r = \frac{\lambda(n-1)}{k-1}$$
$$= \frac{3 \cdot 24}{9}$$
$$= 8$$

By Fisher's Inequality, we see that this design cannot exist, since b < n.

1.ii

$$n(n-1) = \frac{bk(k-1)}{\lambda}$$

$$\Rightarrow n^2 - n - \frac{bk(k-1)}{\lambda} = 0$$

$$\Rightarrow n^2 - n - 90 = 0$$

$$\Rightarrow n = \frac{1 \pm \sqrt{361}}{2}$$

$$= 9, 10$$

$$= 10$$

$$r = \frac{\lambda(n-1)}{k-1}$$
$$= \frac{2(9)}{3}$$
$$= 6$$

1.iii

$$n = \frac{r(k-1)}{\lambda} + 1$$
$$= \frac{13 \cdot 5}{1} + 1$$
$$= 66$$

$$b = \frac{\lambda n(n-1)}{k(k-1)}$$
$$= \frac{1 \cdot 66(65)}{6(5)} = 143$$

$\mathbf{2}$

Our n parameter is clearly 16.

For the k parameter, notice that each block B_i consists of each element in the same row as i as well as each element in the same column as i, but not i. Each row and column has 4 elements, so each block thus contains 6 elements, and k = 6.

For the λ parameter, consider any pair of elements, say A_{ij} and A_{kl} . It's clear to see that the only two elements whose rows or columns contain both A_{ij} and A_{kl} are A_{il} and A_{kj} . Any other does not contain one or both of A_{ij} and A_{kl} in its block, so clearly each pair occurs in exactly two blocks (specifically, $B_{A_{il}}$ and $B_{A_{kj}}$).

3

Take an arbitrary pair of points, x_1 and x_2 . x_1 and x_2 are contained in λ blocks, and x_1 or x_2 (inclusive) are contained in 2r blocks. Thus, the number of blocks containing either x_1 or x_2 (exclusive) is $2r - \lambda$. Let y be the number of blocks containing neither x_1 nor x_2 . Then $b = y + 2r - \lambda \Rightarrow y = b - 2r + \lambda$. Thus if y is the number of blocks in \mathcal{B} not containing x_1 or x_2 , then y is the number of blocks containing both x_1 and x_2 in \mathcal{B}' . Thus (X, \mathcal{B}') is an $(n, n - k, b - 2r + \lambda)$ -design.

4

4.i

1 - 2 = 14	1 - 3 = 13	1 - 5 = 11	1 - 6 = 10	1 - 9 = 7
1 - 11 = 5	2 - 1 = 1	2 - 3 = 14	2 - 5 = 12	2 - 6 = 11
2 - 9 = 8	2 - 11 = 6	3 - 1 = 2	3 - 2 = 1	3 - 5 = 13
3 - 6 = 12	3 - 9 = 9	3 - 11 = 7	5 - 1 = 4	5 - 2 = 3
5 - 3 = 2	5 - 6 = 14	5 - 9 = 11	5 - 11 = 9	6 - 1 = 5
6 - 2 = 4	6 - 3 = 3	6 - 5 = 1	6 - 9 = 12	6 - 11 = 10
9 - 1 = 8	9 - 2 = 7	9 - 3 = 6	9 - 5 = 4	9 - 6 = 3
9 - 11 = 13	11 - 1 = 10	11 - 2 = 9	11 - 3 = 8	11 - 5 = 6
11 - 6 = 5	11 - 9 =	= 2		

We can clearly see that this is indeed a (15, 7, 3)-difference set.

4.ii

$$\begin{array}{c} D = \{1,4,5,6,7,9,11,16,17\} \\ \mathbb{Z}_{19} \setminus D = \{0,2,3,8,10,12,13,14,15,18\} \\ 0-2=17 & 0-3=16 & 0-8=11 & 0-10=9 \\ 0-13=6 & 0-14=5 & 0-15=4 & 0-18=1 \\ 2-3=18 & 2-8=13 & 2-10=11 & 2-12=9 \\ 2-14=7 & 2-15=6 & 2-18=3 & 3-0=3 \\ 3-8=14 & 3-10=12 & 3-12=10 & 3-13=9 \\ 3-15=7 & 3-18=4 & 8-0=8 & 8-2=6 \\ 8-10=17 & 8-12=15 & 8-13=14 & 8-14=13 \\ 8-18=9 & 10-0=10 & 10-2=8 & 10-3=7 \end{array}$$

8 - 18 = 9	10 - 0 = 10	10 - 2 = 8
10 - 12 = 17	10 - 13 = 16	10 - 14 = 15
12 - 0 = 12	12 - 2 = 10	12 - 3 = 9
12 - 13 = 18	12 - 14 = 17	12 - 15 = 16
13 - 2 = 11	13 - 3 = 10	13 - 8 = 5
13 - 14 = 18	13 - 15 = 17	13 - 18 = 14
14 - 3 = 11	14 - 8 = 6	14 - 10 = 4
14 - 15 = 18	14 - 18 = 15	15 - 0 = 15

18 - 12 = 6

$$13 - 15 = 17$$
 $13 - 18 = 14$ $14 - 0 = 14$ $14 - 2 = 12$
 $14 - 8 = 6$ $14 - 10 = 4$ $14 - 12 = 2$ $14 - 13 = 1$
 $14 - 18 = 15$ $15 - 0 = 15$ $15 - 2 = 13$ $15 - 3 = 12$
 $15 - 10 = 5$ $15 - 12 = 3$ $15 - 13 = 2$ $15 - 14 = 1$
 $18 - 0 = 18$ $18 - 2 = 16$ $18 - 3 = 15$ $18 - 8 = 10$

0 - 12 = 7

2 - 0 = 2

2 - 13 = 8

3 - 2 = 1

3 - 14 = 8

8 - 3 = 5

8 - 15 = 12

10 - 18 = 11

12 - 10 = 2

13 - 0 = 13

13 - 12 = 1

18 - 15 = 3

10 - 8 = 2

10 - 15 = 14

12 - 18 = 13

13 - 10 = 3

18 - 14 = 4

12 - 8 = 4

Thus $\mathbb{Z}_{19} \setminus D$ is a (19, 10, 5)-difference set.

15 - 8 = 7

15 - 18 = 16

18 - 10 = 8

5

Fix $x \in \mathbb{Z}_n$. x can be written as the difference of two elements in \mathbb{Z}_n in exactly n ways, as the difference of two elements in \overline{D} in $n-2k+\lambda$ ways. Thus, we have that x can be written as the difference of two elements, one in D and the other in \overline{D} in

18 - 13 = 5

$$n - \lambda - (n - 2k + \lambda) = 2k - 2\lambda = 2(k - \lambda)$$

ways.

6

6.i

q=7 is the only multiplier satisfying the Multiplier Theorem. Let D be a difference set fixed by q, i.e. 7D=D. D must be some union of the following sets:

$$\begin{cases} \{0\} \\ \{1,7,9,10,12,16,26,33,34\} \\ \{2,14,15,18,20,24,29,31,32\} \\ \{3,4,11,21,25,27,28,30,36\} \\ \{5,6,8,13,17,19,22,23,35\} \end{cases}$$

We see that $\{1,7,9,10,12,16,26,33,34\}$ is a (37,9,2)-difference set.

6.ii

q=3 and q=9 are the possible multipliers satisfying the Multiplier Theorem. Let D be a difference set fixed by q, i.e. 3D=D or 9D=D. D must be some union of the either these sets (q=3):

$\{1, 3, 9, 27, 25, 19\}$	$\{2, 6, 18, 54, 50, 38\}$
$\{5, 15, 45, 23, 13, 39\}$	$\{7, 21\}$
$\{10, 30, 34, 46, 26, 22\}$	$\{11, 33, 43, 17, 51, 41\}$
{28}	$\{29, 31, 37, 55, 53, 47\}$
	$\{5, 15, 45, 23, 13, 39\}$ $\{10, 30, 34, 46, 26, 22\}$

or of these sets (q = 9):

{0}	$\{1, 9, 25\}$	$\{2, 18, 50\}$	$\{3, 27, 19\}$
$\{4, 36, 44\}$	$\{5, 45, 13\}$	$\{6, 54, 38\}$	{7}
$\{8, 16, 32\}$	$\{10, 34, 26\}$	$\{11, 43, 51\}$	$\{12, 52, 20\}$
{14}	$\{15, 23, 39\}$	$\{17, 41, 33\}$	{21}
$\{22, 30, 46\}$	$\{24, 48, 40\}$	{28}	$\{29, 37, 53\}$
$\{31, 55, 47\}$	$\{35\}$	$\{42\}$	{49}

We see that no such union gives a difference set, and so no difference set exists.