Filed: December 15, 2000

Page 2

IN THE CLAIMS

Please cancel non-elected claims 1-16, 18-31, 41, and 47-52, without prejudice. Please add the new claims 53 and 54. The following listing of claims replaces all prior listings.

- 1-16 (Canceled).
- 17. (Currently amended) A method for <u>analyzing determining in</u> a plurality of proteomic mixtures the presence of active target members of a group of related proteins in each of said proteomic mixtures, said related proteins related in having a common functionality for conjugation at an active site, said method comprising:
- (a) combining each of said proteomic mixtures with at least one activity-based probe, wherein:
 - (a1) each mixture includes a group of related proteins, the group comprising active target members;
 - (a2) said probe(s) includes a functionality allowing conjugation of said probe to said target members,

whereby said probe(s) is conjugated to said target member comprising a reactive functionality specific for said active site when active, under conditions for conjugation of said probe(s) to said target members to form an adduct; and

(b) determining the presence of <u>said</u> target members conjugated with said probe adduct in each of said proteomic mixtures; whereby the presence of said target members conjugated to said probe(s) adduct in said proteomic mixtures is indicative of the presence of active target members in said mixtures, wherein said related proteins include a common functionality for conjugation at an active site.

18-31. (Canceled)

Filed: December 15, 2000

Page 3

32. (Currently amended). A method according to Claim 17 or 53 18, additionally comprising the additional step of characterizing said active target members conjugated with said probe(s).

- 33. (Previously presented). A method according to Claim 32, wherein said characterizing comprises degrading said active target member and determining the resulting fractions by mass spectrometry.
- 34. (Currently amended). A method according to Claim 17 or <u>53</u> 18, employing a plurality of activity-based probes having different reactive functionalities specific for different groups of related proteins.
- 35. (Currently amended). A method according to Claim 17 or <u>53</u> 18, wherein said activity-based probe(s) comprises a detectable label.
- 36. (Currently amended). A method according to Claim 17 or <u>53</u> 18, wherein said proteomic mixture is in an intact cell.
- 37. (Currently amended). A method according to Claim 17 or <u>53 18</u>, further comprising the step of analyzing for the presence of proteins conjugated with said probe(s) using simultaneous individual capillary electrokinetic analysis or capillary HPLC.
- 38. (Currently amended) A method according to Claim 11, 17, 18 or 19 wherein said activity-based probe(s) are of the formula:

$$R*(F-L)-X$$

wherein:

Filed: December 15, 2000

Page 4

X is a ligand for binding to a reciprocal receptor or a chemically reactive functionality for reacting with a reciprocal functionality to add a ligand;

L is a linking group;

F is a functional group reactive at an active site of a target enzyme; and R is H or a moiety of less than 1kDal providing specific affinity for said target enzymes;

the * intends that R is a part of F or L.

- 39. (Previously presented). A method according to Claim 38, wherein F is a sulphonyl group and R is other than H and bonded to F.
- 40. (Previously presented). A method according to Claim 38, wherein F is a fluorophosphonyl or fluorophosphoryl group.
- 41. (Canceled).
- 42. (Currently amended) A method according to any of Claims 11-13, 15-21, 32, 33, 35-38, or 40, or 41 wherein said activity-based probe(s) are fluorophosphonate-biotin (FP-biotin).
- 43. (Currently amended) A method according to any of Claims 11-13, 15-21, 32, 33, 35-38, or 40, or 41 wherein said activity-based probe(s) are FP-peg-biotin.
- 44. (Currently amended) A method according to any of Claims 11-13, 15-20, 23, 24 17, 32, 33, 35-39 or 53-41 wherein said activity-based probe(s) are selected from the group consisting of 10-((2-pyridylsulfonyl)oxo)-N-biotinamidopentyldecanamide, 10-((p-Toluenesulfonyl)oxo)-N-biotinamidopentyldecanamide, 10-((4-Methoxybenzenesulfonyl)oxo)-N-biotinamidopentyldecanamide, 10-((Methylsulfonyl)oxo)-N-biotinamidopentyldecanamide, 10-((Methylsulfonyl)oxo)-N-

Filed: December 15, 2000

Page 5

biotinamidopentyldecanamide, 10-((Butylsulfonyl)oxo)-*N*-biotinamidopentyldecanamide, 10-((4-Nitrobenzenesulfonyl)oxo)-*N*-biotinamidopentyldecanamide, 10-((8-Quinolinesulfonyl)oxo)-*N*-biotinamidopentyldecanamide, 10-((8-Quinolinesulfonyl)oxo)-*N*-biotinamidopentyldecanamide, 10-((2-Naphthalenesulfonyl)oxo)-*N*-biotinamidopentyldecanamide, 10-((2-Thiophenesulfony)oxo)-*N*-biotinamidopentyldecanamide, α-undecylenyl alcohol, ((2-pyridylsulfonyl)oxo)-10-undecene, 10-((2-pyridylsulfonyl)oxo)-decanoic acid, 1-(2-pyridylsulfonyl)oxo-octane, 1-(2-pyridylsulfonyl)oxo-ethane, and 1-(methanesulfonyl)oxo-octane.

- 45. (Previously presented) A method according to claim 44 wherein said activity-based probe is 1-(2-pyridylsulfonyl)oxo-octane.
- (Currently amended) A method according to Claim 14 or 34 wherein said 46. activity-based probe(s) are selected from the group consisting of FP-biotin, FP-pegbiotin, 10-((2-pyridylsulfonyl)oxo)-N-biotinamidopentyldecanamide, 10-((Benzenesulfonyl)oxo)-N-biotinamidopentyldecanamide, 10-((p-Toluenesulfonyl)oxo)-N-biotinamidopentyldecanamide, 10-((4-Methoxybenzenesulfonyl)oxo)-Nbiotinamidopentyldecanamide, 10-((Methylsulfonyl)oxo)-Nbiotinamidopentyldecanamide, 10-((Butylsulfonyl)oxo)-Nbiontinamidopentyldecanamide, 10-((Octylsulfonyl)oxo)-Nbiotinamidopentyldecanamide, 10-((4-Nitrobenzenesulfonyl)oxo)-Nbiotinamidopentyldecanamide, 10-((8-Quinolinesulfonyl)oxo)-Nbiotinamidopentyldecanamide, 10-((2-Naphthalenesulfonyl)oxo)-Nbiotinamidopentyldecanamide, 10-((2-Thiophenesulfony)oxo)-Nbiotinamidopentyl)decanamide, α-undecylenyl alcohol, ((2-pyridylsulfonyl)oxo)-10-undecene, 10-((2-pyridylsulfonyl)oxo)-decanoic acid, 1-(2-pyridylsulfonyl)oxo-octane, 1-(2-pyridylsulfonyl)oxo-ethane, and 1-(methanesulfonyl)oxo-octane.

Filed: December 15, 2000

Page 6

47-52. (Canceled).

53. (New) A method for determining in a plurality of proteomic mixtures the presence of active target members of a group of related proteins in each of said proteomic mixtures, said related proteins related in having a common functionality for conjugation at an active site, said method comprising:

combining each of said proteomic mixtures with at least one activity-based probe comprising a reactive functionality specific for said active site when active, under conditions for conjugation of said probe(s) to said target members;

determining the presence of target members conjugated with said probe in each of said proteomic mixtures;

whereby the presence of said target members conjugated to said probe(s) in said proteomic mixtures is indicative of the presence of active target members in said mixtures,

wherein said activity-based probe(s) have the formula:

$$R*(F-L)-X$$

wherein:

X is a ligand for binding to a reciprocal receptor or a chemically reactive functionality for reacting with a reciprocal functionality to add a ligand;

L is a linking group;

F is a functional group reactive at an active site of a target enzyme; and R is H or a moiety of less than 1kDal providing specific affinity for said target enzymes;

the * intends that R is a part of F or L.

54. (New) A method for screening for the bioactivity of a candidate compound toward a group of related target proteins in a proteomic mixture of proteins from a cell, employing at least one probe, each probe characterized by comprising a reactive

Filed: December 15, 2000

Page 7

functionality group specific for said group of target proteins and a ligand and said probe, said method comprising:

- (a) combining at least one probe with an untreated portion of said mixture and with a portion inactivated with a non-covalent agent under conditions for reaction with said target proteins;
- (b) sequestering proteins conjugated with said at least one probe from each of said mixtures;
 - (c) determining the proteins that are sequestered; and
- (d) comparing the amount of each of the proteins sequestered from the untreated portion and the inactivated portion as indicative of the bioactivity of said candidate compound with said target proteins.