Questões para fixação - Mineração de dados

- 1. A mineração de dados pode ser definida como:
 - "Extração não trivial de informação implícita, previamente desconhecida, e potencialmente útil".
 - (a) Sabe-se que área de mineração é dividida em 4 grandes tarefas, ou seja, problemas que os métodos buscam resolver. Explique quais são as tarefas de mineração de dados, e para cada uma delas, forneça um exemplo de como poderia ser aplicada em algum banco de dados (escreva uma amostra do banco para explicar).
 - (b) Como as tarefas estão relacionadas com os conceitos de aprendizado supervisionado e não supervisionado?
- 2. Considerando o processo geral para se resolver um problema de aprendizado supervisionado representado na Figura 1, responda o que se pede.

Figura 1: Abordagem geral para resolução de um problema de aprendizado supervisionado

- (a) Explique o qual o que está acontecendo em I, bem como a decisão em II.
- (b) Qual é a importância de se conhecer os parâmetros do algoritmo utilizado para o aprendizado?
- (c) O que está acontecendo em III?
- 3. O gráfico da Figura 2 mostra a acurácia de um modelo de classificação usando árvores de decisão, para diferentes tamanhos máximos de árvore.
 - (a) Pelo gráfico, qual tamanho de árvore você escolheria para o seu modelo?
 - (b) O que acontece a partir do de 6 nós?
- 4. Considere a árvore de decisão representada na Figura 3. A árvore foi treinada para ser um classificador de vinhos (dentre 3 possíveis, tipo 1, tipo 2 e tipo 3), com base em 13 características do vinho (representadas em um vetor X).
 - Com base nisso, responda o que se pede:
 - (a) Qual é o atributo mais importante para diferenciar os vinhos? Por quê?

Figura 2: Abordagem geral para resolução de um problema de aprendizado supervisionado

- (b) Com base na Figura 3, qual foi o critério usado para a separação dos nós no aprendizado do modelo?
- (c) Considerando o vinho com as seguintes características

$$X = [14, 2, 2, 14.56, 128, 2.08, 1, 0.25, 1, 5.5, 1, 10, 700]$$

$$\tag{1}$$

Como ele seria classificado, de acordo com o modelo? Mostre as condições que você usou na árvore para chegar à classificação final.

- (d) Dê um exemplo de vinho (mostrando seu vetor de características X), de forma que ele seja classificado como um vinho do *tipo 1*?
- (e) Considere que após a classificação de um conjunto de testes, a seguinte matriz de confusão foi criada.

$$\begin{bmatrix} 14 & 3 & 0 \\ 4 & 22 & 1 \\ 0 & 0 & 10 \end{bmatrix}$$

Em qual classe de vinhos o modelo têm o pior desempenho? Quantas classificações erradas ele fez?

(f) Ainda considerando a matriz de confusão, qual cálculo deveria ser executado para extrair a eficácia do modelo? (não precisa calcular, só deixar o registro da operação e dos elementos envolvidos).

Figura 3: Árvore para classificação de vinhos

5. Sabe-se que a entropia de um nó é dada por:

$$E(V) = -\sum_{k} P(v_k) \log_2 P(v_k)$$
(2)

Em que k é o número de classes no nó, v_k a k-ésima classe, e $P(v_k)$ a probabilidade de ocorrência da classe v_k no nó. Ainda, o ganho de informação ΔI pela separação dos dados de acordo com algum atributo é dado por:

$$\Delta I = E(V_{pai}) - M(E(V_{filhos})) \tag{3}$$

Em que M é a média ponderada da entropia dos nós filhos. Considere que dois atributos foram usados para realizar a separação dos dados em um nó, conforme Figura 4. Qual o melhor atributo para separação dos dados, considerando o ganho de informação (responda com base no cálculo)?

- 6. Considere a amostra de um banco de dados mostrado na Tabela 1. A coluna *Activity* indica a primeira atividade que o paciente foi submetido no hospital, a segunda, terceira e quarta coluna se referem à idade, gênero e peso, respectivamente. O hospital deseja estudar a existência de grupos de pacientes com características semelhantes, de forma a otimizar as atividades executadas, de forma que decidem usar o algoritmo *k-means*.
 - (a) Esse algoritmo executa qual tarefa da mineração de dados?

Figura 4: 2 atributos usados para separar os dados

- (b) Como o banco de dados deve ser transformado para que o algoritmo possa ser aplicado de forma correta?
- 7. Considere o gráfico gerado na Figura 5. O que este gráfico representa? Qual seria o valor ideal de grupos considerando o gráfico?

Figura 5: Elbow plot

Activity	\mathbf{Age}	Gender	Weight
Hospital Admission	56	Female	100
CT Scan	55	Female	50
Discharge	40	Male	57

Tabela 1: Banco de dados atividade inicial em hospital

- 8. Devido a sua rápida curva de aprendizagem, bem como a uma comunidade ativa e contribuinte, a linguagem de programação Python se tornou muito usada em análise e mineração de dados. Considere às questões abaixo a respeito da linguagem:
 - (a) Considerando os dois códigos abaixo, o que será impresso na tela?

```
ed1 = ["A","E","I","O","U"]
ed2 = [("A","E"),("I","O","U"),("F",1,2)]
ed3 = {"A":ed1, "B":ed2, "C":ed3}
ed4 = ([1,2,3],["a,b,s"], {"C1":[2,22,2], "C2":"C3"})
ed5 = [ed3, ed4]

print(type(ed5))
print(ed5[1][1])
```

```
x = [1,2,3,4,5,6,7]
print(x[5:])
```

- (b) Como você faria para imprimir na tela o elemento "O"
contido na estrutura ed2 a partir da estrutura ed5?
- 9. Para cada um dos códigos abaixo, explique o que ele está fazendo:

```
import matplotlib.pyplot as plt
import numpy as np

x1 = np.random.randint(10,20,100)
x2 = np.random.randint(-30,20,100)

fig, ax = plt.subplots(1,2)
ax[0].plot(x1)
ax[1].hist(x2, bins = 5)
plt.show()
```