TD N°2 Econométrie (Suite)

Exercice 4:

L'estimation d'un modèle de régression a fourni les résultats suivants :

$$\hat{y}_t = -7.5 + 3.8x_t + 2.4z_t$$

$$T = 33; \sum (y_t - \bar{y})^2 = 25; \sum \hat{\varepsilon}_t^2 = 5$$

$$\sum \hat{\varepsilon}_t \, \hat{\varepsilon}_{t-1} = -3.6; \sum (\hat{\varepsilon}_t - \hat{\varepsilon}_{t-1})^2 = 17.2$$

- 1) Calculer et interpréter le coefficient de détermination R^2 .
- 2) Tester au seuil de 5% la significativité globale du modèle.
- 3) Tester l'hypothèse d'autocorrélation des erreurs d'ordre 1. S'il y a autocorrélation, estimer le coefficient. Quelle méthode d'estimation peut-on employer ?

Exercice 5:

On considère le modèle linéaire suivant :

$$y_t = \alpha + \beta x_t + u_t$$
 où $u_t = 0.5u_{t-1} + \varepsilon_t$

Avec ε_t étant un bruit blanc.

On dispose du tableau des données suivant :

y_t	0,4	1,2	3,6	3,8	6,9	9,45
x_t	1,2	1,6	2,8	4,4	6,2	8,1

- 1) Expliquer la procédure d'estimation de ce modèle.
- 2) Estimer les paramètres α et β .

Exercice 6:

Soit le modèle économétrique suivant : $y_t = a + bx_t + \varepsilon_t$.

On fournit les données suivantes :

Y observé	Y estimé	Résidu	
662.344	664.27	-1.9261	
669.345	746.135	-76.790	
912.796	828.001	84.795	
935.220	909.867	25.353	
1027.22	991.733	35.490	
1145.04	1073.6	71.444	
1193.76	1155.46	38.302	
1224.08	1237.33	-13.252	
1281.74	1319.20	-37.541	
1426.31	1401.06	25.25	
1376.29	1482.93	-106.64	
1327.78	1564.79	-237.01	
1420.66	1646.66	-226.00	
1933.94	1728.52	205.42	
2023.42	1810.39	213.03	

Par ailleurs, on a :
$$\hat{y}_t = 582,404 + 81,866x_t$$
 (72,272) (7,949)

Les chiffres entre parenthèses indiquent les écarts-types estimés des estimateurs.

On se propose de vérifier l'existence d'une éventuelle autocorrélation des erreurs.

- 1) Rappeler les conditions d'utilisation du test de Durbin-Watson.
- 2) Calculer la statistique de Durbin-Watson.
- 3) Effectuer le test de Durbin-Watson et conclure.
- 4) Existe-t-il une autocorrélation des erreurs d'ordre 2 ? Justifier la réponse.

Chargée du cours : Amira GASMI SASSI

A.U.:2022-2023

Exercice 7:

On considère le modèle économétrique suivant :

$$y_t = \alpha + \beta x_t + \varepsilon_t \qquad (1)$$

On donne le tableau des valeurs suivant :

y	-3	8	1	12	-10	0	-1	2	6	9
x	1	0	0	1	-1	-1	1	0	1	0

- 1) Estimer par les MCO les paramètres du modèle (1).
- 2) Calculer la SCR et en déduire R^2 .
- 3) Quel test peut-on effectuer pour tester l'autocorrélation des erreurs d'ordre 1 ? Rappeler son principe.
- 4) Procéder à ce test de deux manières différentes et conclure.

On dispose des données suivantes :

$$(A'A)^{-1} = \begin{pmatrix} 0.117 & -0.025 & 0.003 \\ -0.025 & 0.207 & -0.003 \\ 0.003 & -0.003 & 0.004 \end{pmatrix} ; A'\hat{\varepsilon} = \begin{pmatrix} 8.145 \\ 8.141 \\ -137.393 \end{pmatrix}$$

Avec:

 $A = [1, x_t, \hat{\varepsilon}_{t-1}]$ et $\hat{\varepsilon}$ est le vecteur des résidus estimés du modèle (1).