FedTMOS: Efficient One-Shot Federated Learning with Tsetlin Machine

Shannon How, Jagmohan Chauhan, Geoff V Merrett, Jonathan Hare

University of Southampton

Overview

One-shot Federated Learning (OFL):

A method to collaboratively train a global model across decentralized devices in a single communication round

Challenges in Existing OFL approaches:

- Data Availability: Relies heavily on public datasets, which might not be accessible
- Aggregation Latency: Require server-aide computations, introducing latency
- Data Heterogeneity: Misalignment of models trained on heterogeneous dataset, impacting model generalization

Contributions: A novel, efficient, data-free OFL approach using the Tsetlin Machine that eliminates the need for server-side training and is robust to data heterogeneity

The Tsetlin Machine

The TM is a machine learning method grounded in propositional logic and bit-based representation, leveraging Tsetlin Automata (TA) and game theory principles to derive logical propositions for classification

Methodology

Given J clients, each having local datasets D_1, D_2, \dots, D_J . The objective is to aggregate the local TM models, $T = \{T_1, T_2, \dots, T_J\}$, into ϕ server models ($\phi < J$) that generalizes well over $\mathbf{D} \equiv \cup_{i \in J} D_i$ in one communication round

Scaled weights undergo **k-means clustering** to facilitate smoother weight reassignment and maintain balance, thereby averting significant class weight disparities and enhancing efficiency

preventing minority classes from being overshadowed by

dominant ones

Weights reassigned to ϕ models by maximizing the interclass distance based on the cluster centroids the class belongs:

maximize
$$\frac{1}{\phi} \sum_{m=1}^{\phi} \sum_{i \neq j} \|\mu_m^i - \mu_m^j\|^2$$
,

ensuring that each model maintains distinct class boundaries

Final Classification: The classification output is obtained by the class with the highest value from the aggregated sum of all ϕ TMs:

$$\hat{y} = argmax_m \sum_{i=1}^{\phi} \frac{1}{a^i} s_m^i(x)$$

Experimental Results

Server model performance under data heterogeneity

Dataset	Partition	DENSE	Co-Boosting	Distilled- FedOV	OT-Fusion	RegMean	FedFisher	FedTMOS
MNIST	Dir(0.05)	68.79 ± 14.19	83.42±7.77	$89.34{\pm}0.67$	$52.38{\pm}4.74$	$76.64{\pm}4.57$	77.14 ± 8.65	$93.80{\pm}3.81$
	Dir(0.1)	82.05±7.33	91.73 ± 5.80	93.60 ± 0.62	66.20 ± 3.70	85.25 ± 1.80	79.32 ± 3.05	$96.60{\pm}1.85$
	Dir(0.3)	95.61 ± 1.47	96.41 ± 0.83	97.67 ± 0.15	97.37 ± 0.10	$94.37{\pm}1.42$	$92.03{\pm}2.52$	$98.41 {\pm} 0.10$
	S(2)	$48.84{\pm}12.44$	$62.57{\pm}4.09$	$56.26{\pm}4.88$	28.68 ± 7.16	$65.92{\pm}11.88$	$36.92{\pm}17.01$	$92.94{\pm}0.51$
	S(3)	57.63 ± 8.12	79.85 ± 5.55	86.22 ± 3.20	42.69 ± 3.39	69.92 ± 7.57	$62.66{\pm}14.46$	$95.23{\pm}0.47$
	S(4)	81.65 ± 7.31	$93.91{\pm}2.48$	$70.92{\pm}1.07$	$62.40{\pm}11.10$	87.58 ± 6.06	85.12 ± 3.04	$96.84{\pm}0.50$
F-MNIST	Dir(0.05)	51.67 ± 5.31	59.93 ± 10.00	75.39 ± 0.85	42.06 ± 9.06	58.02 ± 2.66	$55.02{\pm}6.97$	$75.45{\pm}3.58$
	Dir(0.1)	56.97 ± 9.78	$60.55{\pm}6.47$	77.84 ± 1.21	50.66 ± 3.66	63.27 ± 5.35	$60.60{\pm}4.91$	$78.21{\pm}3.58$
	Dir(0.3)	$73.95{\pm}2.65$	$78.94{\pm}1.69$	$83.24{\pm}0.58$	$76.49{\pm}4.12$	75.14 ± 1.26	$75.57{\pm}1.69$	$84.97{\pm}1.39$
	S(2)	30.73 ± 8.94	$40.94{\pm}1.95$	56.97 ± 0.71	21.53 ± 3.65	35.29 ± 9.21	32.25 ± 8.06	$59.17{\pm}1.56$
	S(3)	46.35 ± 7.68	59.94 ± 2.11	$74.85{\pm}1.06$	$32.48{\pm}5.29$	$60.34{\pm}5.18$	46.07 ± 0.91	$74.94{\pm}1.78$
	S(4)	$54.00{\pm}4.34$	57.24 ± 5.38	61.20 ± 0.42	$36.81{\pm}2.35$	68.87 ± 2.78	$65.21{\pm}1.88$	78.78 ± 0.77
SVHN	Dir(0.05)	38.09 ± 19.61	35.62 ± 12.99	63.17 ± 0.95	35.97 ± 0.13	55.52 ± 3.07	56.32 ± 2.29	$63.54{\pm}2.61$
	Dir(0.1)	52.45 ± 11.26	53.42 ± 14.28	$64.94{\pm}6.22$	$47.68{\pm}1.28$	55.28 ± 3.36	$54.35{\pm}2.84$	$69.79{\pm}2.33$
	Dir(0.3)	$65.65{\pm}8.95$	76.09 ± 6.10	77.53 ± 2.30	77.27 ± 0.21	72.43 ± 3.25	$76.90{\pm}1.04$	$78.86{\pm}1.27$
	S(2)	$26.60{\pm}5.78$	$43.29{\pm}5.54$	54.26 ± 8.80	17.63 ± 3.61	$33.25{\pm}6.73$	$34.57{\pm}6.66$	$61.63{\pm}1.13$
	S(3)	$43.96{\pm}5.47$	58.89 ± 4.17	74.98 ± 0.75	29.67 ± 7.82	$54.66{\pm}6.73$	57.25 ± 3.96	$78.09{\pm}0.25$
	S(4)	51.44 ± 4.34	63.88 ± 5.39	73.47 ± 0.56	$35.69{\pm}4.41$	$63.89{\pm}2.54$	$64.77{\pm}6.53$	$75.24{\pm}0.68$
CIFAR-10	Dir(0.05)	$25.97{\pm}2.52$	26.17 ± 3.85	$40.04{\pm}5.61$	30.70 ± 0.80	$33.58{\pm}4.59$	$35.61{\pm}1.41$	$47.69{\pm}2.59$
	Dir(0.1)	$32.46{\pm}3.62$	36.71 ± 7.87	46.79 ± 2.66	$31.46{\pm}1.52$	33.49 ± 0.83	$39.55{\pm}5.36$	$52.25{\pm}1.71$
	Dir(0.3)	43.11 ± 0.95	$43.35{\pm}2.08$	$48.24{\pm}5.22$	49.43 ± 2.94	$44.34{\pm}1.42$	51.18 ± 1.45	$57.03 {\pm} 0.74$
	S(2)	15.73 ± 3.77	$21.91{\pm}6.51$	33.90 ± 0.12	18.57 ± 0.59	24.24 ± 2.57	$22.23{\pm}1.53$	$39.95{\pm}1.33$
	S(3)	29.13±3.26	$33.21{\pm}4.00$	$45.64{\pm}2.14$	24.70 ± 2.77	31.06 ± 1.36	$32.36{\pm}4.15$	52.18 ± 0.73
	S(4)	$31.26{\pm}1.61$	$36.39{\pm}1.22$	$41.17{\pm}1.63$	33.67 ± 0.62	$38.97{\pm}1.33$	$41.46{\pm}2.31$	$59.59 {\pm} 0.30$

Server model performance with different number of clients

Clients	DENSE	Co-Boosting	Distilled- FedOV	OT-Fusion	RegMean	FedFisher	FedTMOS
20	$31.18{\pm}6.90$	$34.55{\pm}3.89$	$37.20{\pm}1.55$	$24.95{\pm}3.24$	18.55 ± 8.92	$32.46{\pm}2.34$	$50.08{\pm}3.62$
50	$27.47{\pm}3.77$	$34.33{\pm}2.08$	$30.43{\pm}1.56$	$27.17{\pm}1.36$	$31.74{\pm}1.94$	$37.52 {\pm} 0.37$	$50.90{\pm}0.94$
80	$23.85{\pm}11.70$	$32.47{\pm}2.36$	$25.65{\pm}1.04$	$22.20{\pm}1.85$	$20.86{\pm}2.25$	$33.66{\pm}0.95$	$49.15{\pm}1.08$

Efficiency analysis in terms of server-side latency and upload communication costs

