NTIN071 A&G: CVIČENÍ 11 – TURINGOVY STROJE

Cíle výuky: Po absolvování student umí

- vysvětlit formální definici deterministického i nedeterministického Turingova stroje
- popsat graf konfigurací, definovat rozpoznávaný jazyk, počítanou funkci
- provést výpočet daného Turingova stroje na daném vstupu
- rozpoznat, jaký jazyk rozpoznává daný Turingův stroj
- zkonstruovat Turingův stroj rozpoznávající daný jazyk nebo počítající danou funkci
- analyzovat různé varianty a modifikace výpočetního modelu Turingova stroje

PŘÍKLADY NA CVIČENÍ

Příklad 1 (Turingův stroj). Uvažme Turingův stroj popsaný následující tabulkou:

- (a) Nakreslete stavový diagram.
- (b) Popište výpočet (posloupností konfigurací) na vstupu w = aabca.
- (c) Jaký jazyk rozpoznává? Jakou funkci počítá?

Příklad 2 (Smaž jedničky). Navrhněte Turingův stroj nad abecedou $\{0,1\}$, který ze vstupu smaže všechny 1ky a vrátí se na začátek (např. začne-li v konfiguraci q_0 0011010, skončí v q_F 0000 pro nějaké $q_F \in F$).

Příklad 3 (Předchůdce). Sestrojte Turingův stroj T, který pro dané vstupní přirozené číslo x>0 v binárním zápisu spočte jeho předchůdce, tj. x-1, v binárním zápisu (a vrátí čtecí hlavu na začátek).

- (a) Nakreslete stavový diagram T.
- (b) Napište posloupnost konfigurací, kterými T projde při výpočtu pro vstup w=10100. Vytvořte deterministický, jednopáskový, jednostopový stroj (chcete-li např. dvoustopový, musíte jej sami naprogramovat.) Číslo v binárním zápisu nesmí začínat nulou, pokud není rovno 0. Příklady vstupních a výstupních konfigurací:
 - z konfigurace q_01 skončíme v q_0 pro nějaké $q \in F$,
 - z konfigurace q_01001 skončíme v q1000 pro nějaké $q' \in F$,
 - z konfigurace q_0100 skončíme v q11 pro nějaké $q'' \in F$.

Příklad 4 (Jednostraně nekonečná páska). Popište jak převést Turingův stroj s (jednou) oboustranně nekonečnou páskou na stroj, jehož páska je nekonečná jen v jednom směru, doprava. (Můžete předpokládat, že v prvním poli je speciální znak ⊳.)

Příklad 5 (Nedeterministický test neprvočíselnosti). Navrhněte nedeterministický Turingův stroj, který přijme jazyk $L = \{1^n \mid n \text{ není prvočíslo}\}.$

K procvičení a k zamyšlení

Příklad 6 (Programování Turingových strojů). Navrhněte Turingův stroj, který přijme jazyk L Napište posloupnost konfigurací, která ukazuje, že přijmeme slovo w.

(a)
$$L = \{0^n 1^n 2^n \mid n \ge 0\}, \ w = 001122$$

(b) $L = \{w \in \{0, 1\}^* \mid |w|_0 = |w|_1\},$
 $w = 100110$
(c) $L = \{ucu^R \mid u \in \{0, 1\}^*\}, \ w = 10c01$
(d) $L = \{ucu \mid u \in \{0, 1\}^*\}, \ w = 10c10$
(e) $L = \{uu \mid u \in \{0, 1\}^*\}, \ w = 110110$

Příklad 7 (Zrcadlení). Navrhněte Turingův stroj, který ze zadaného vstupního slova vytvoří jeho zrcadlový obraz.

Příklad 8 (Paměťové bloky). Navrhněte Turingův stroj, který prohodí obsah dvou paměťových bloků. Konkrétně, počáteční konfiguraci $q_0u\#v\#w\#x\#y$ (kde $u,v,w,x,y\in\Sigma\setminus\{\#\}$) převede na fu#x#w#v#y pro nějaké $f\in F$.

Příklad 9 (Pohyby hlavy). Uvažte modifikace Turingova stroje, kde jsou povoleny následující pohyby hlavy. Jaké třídy jazyků rozpoznávají?

Příklad 10 (Jen dvě akce najednou). Ukažte, že každý jednopáskový Turingův stroj M lze převést na stroj M', který smí provést jen dvě z následujících tří akcí najednou, tj. instrukce může:

- změnit stav a pozici hlavy,
- změnit stav a přepsat symbol na pásce, nebo
- změnit pozici hlavy a přepsat symbol na pásce

ale žádná instrukce nesmí provést všechny tři akce najednou.

Příklad 11 (Doprava nebo restartuj). Uvažte modifikaci Turingova stroje, kde páska je nekonečná jen v jednom směru (doprava), a hlava může provést dva typy pohybů: right (R) nebo RESTART (návrat na první políčko). Ukažte, jak převést standardní jednopáskový stroj na tento typ stroje.

Příklad 12 (Přepiš jen jednou). Uvažte jednopáskový Turingův stroj, který smí přepsat každé políčko na pásce nejvýše jednou. Ukažte, že tento výpočetní model je ekvivalentní standardnímu Turingovu stroji.

Příklad 13 (Nepřepisuj vstup). Vysvětlete, proč zakážeme-li Turingovu stroji měnit políčka obsahující vstup, bude ekvivalentní konečnému automatu. (Takové stroje tedy rozpoznávají jen regulární jazyky.) Stačí popsat myšlenku.

Příklad 14 (Uzávěrové vlastnosti). Ukažte, že jak *rekurzivní* tak *rekurzivně spočetné* jazyky jsou uzavřené na: (a) *sjednocení*, (b) *průnik*, (c) *konkatenaci*, (d) *iteraci*.

Ukažte, že (e) rekurzivní jazyky jsou uzavřené na doplněk, ale (f) rekurzivně spočetné ne.