$_{
m UPFRAL}^{
m UPFRAL}$ Hosted in privat github repo ./horvathcso/Optimisation-exam-notes. For acces contact: sifuto2013@qmail.com

feasible sol, constrain, LP, NLP, boundary, interior, global/local opt, standard form $S = \{x : Ax = b, x \ge 0\}$ $f: \mathbb{R}^n o \mathbb{R}$ Gradient ∇f , Hessian $\nabla^2 f$ $\operatorname{sim} (\operatorname{Young}), \operatorname{Jacobian} \nabla f^T, f : \mathbb{R}^n \to \mathbb{R}^m$ **Def.** (Descent direction) p dir of f in x, if $\exists \epsilon > 0: \ f(x + \alpha p) < f(x), \forall 0 < \alpha \le \epsilon$ (Gradient) p less than 90° from $-\nabla f(x)$ is descent, i.e $\mathbf{p^T}\nabla \mathbf{f}(\mathbf{x}) < \mathbf{0}$

if x(k) loc opt: STOP else: find p search dir, a step **do**: x(k+1)=x(k)+a*p,

Optimality conditions

Th. (1-ord nec) $\nabla f(x^*) = 0$ stationary **Th.** (2-ord nec) x^* loc min $\Rightarrow \nabla^2 f(x^*) \geq 0$ **Th.** (suf) $\nabla f(x^*) = 0$, $\nabla^2 f(x^*) > 0 \Rightarrow x^*$ strict loc min

Taylor series

 $f(x+p) \approx f(x) + p\nabla f(x) + \frac{1}{2}p^T\nabla^2 f(x)p + \frac{1}{2}p^T\nabla^2 f($

Convexity

Def. (conv) $\forall x, y \in S : \alpha x + (1 - \alpha)y \in S$ $+: f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y)$ **Th.** Suppose convexity: $loc min \Rightarrow global$.

Rm. Constrained problem: If step size α feasible $\Rightarrow \forall \beta < \alpha \text{ as well.}$

Th. $\nabla^2 f > 0 \Rightarrow f \text{ conv. } \nabla^2 f > 0 \Rightarrow f$ strict conv, f conv if above the tagent $f(y) \ge f(x) + \nabla f(x)^T (y - x)$

Newton's Method for Nonlin eq

find f(x)=0: given x_0 do: $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ $/x_{k+1} = x_k - f(x_k) \frac{x_k - k_{k-1}}{f(x_k) - f(x_{k-1})}$

Th. quadratic conv if $f' \neq 0$, f'' cont, x_0 from Taylor: close, ϵ_0 small.

Biz.
$$\underbrace{x_* - x_{k+1}}_{\varepsilon_{k+1}} = \frac{-f''(\xi_k)}{2f'(x_k)} (\underbrace{x_* - x_k}_{\varepsilon_k})^2$$

find: g(x)=0: $(x_0, g: \mathbb{R}^n \to \mathbb{R}^n)$ **do**: $x_{k+1} = x_k - \nabla g(x_k)^{-T} g(x_k)$ $p \Leftarrow g(x_k + p) \approx g(x_k) + \nabla g(x_k)^T p = 0$

Newton's Method for optim Idea: $\nabla f(x)$ necessary cond.

 $x_{k+1} = x_k - [\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$ quadratic Sup.lin $x_{k+1} = x_k + p_k$, if $\lim \frac{||p_k - p_{N_k}||}{||p_k||} = 0$ glob. strat. if fails: no conv, sing Hessian Desc dir: $p_k^T \nabla f_{x_k} = -\nabla f^T [\nabla^2 f]^{-1} \nabla f < 0$ a):angle condition $-\frac{p_k^T \nabla f(x_k)}{||p_k||||\nabla f(x_k)||} \ge \epsilon_1 > 0$ b): "grad related" $M \ge ||p_k|| \ge \epsilon_2 ||\nabla f(x_k)||$

c) Armijo "sufficient decrease" $\mu \in (0,1)$: $f(x_k + \alpha_k p_k) \le f(x_k) + \mu \alpha_k p_k^T \nabla f(x_k),$ d) Backtracking line search-"not too small"

while: $||\nabla f(x_k)|| \ge \epsilon$ $\mathbf{do} : \nabla^2 f(x_k) + D_1 = LDL^T,$

p from: $(LDL^T)p = -\nabla f(x_k)$ **do**: line search $x_{k+1} = x_k + \alpha_k p_k$

Th. $f: \mathbb{R}^n \to \mathbb{R}, \{x: f(x) \ge f(x_0)\}$ bound, $\nabla f \text{ Lipsch cont}, a) - d) \Rightarrow \lim \nabla f(x_k) = 0$ Biz. 1)f bound below, $\lim \alpha_k ||\nabla f(x_k)||^2 = 0 \quad 4)1 \geq \alpha_k$ $\epsilon ||\nabla f(x_k)||^2$

Steepest-Descent method

 $p_k = -\nabla f(x_k), \, \alpha_k \text{ from line search.}$ a), b) satisfied trivially + conv rate linear. With exact line search $x_k \perp x_{k+1}$

Lem. $e_{k+1} \le \left(\frac{cond(Q)-1}{cond(Q)+1}\right)^2 e_k$, if $f = x^T Q x - c^T x$, Q poz def, $e_k = f x_k - f x_*$

Quasi-Newton Methods

given: x_0, B_0 if: x_k opt STOP lin srch $x_{k+1} = x_k + \alpha_k (-B_k^{-1} \nabla f(x_k))$ s_k , y_k and $B_{k+1} = B_k + \dots$ compute

 $\nabla^2 f$ and $(\nabla^2 f)^{-1}$ expensive to compute idea: $B_k p = -\nabla f(x_k) \to p = B_k^{-1} \nabla f(x_k)$

• be symm (like Hess) • esay update

• B = I steepest desc, • B = Hess Newton **Secant:**1D opt: $x_{k+1} = x_k - \frac{f'(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$

Def. (Secant cond) $B_k \cdot (s_k) = y_k$ $s_k = x_k - x_{k-1}, \ y_k = \nabla f(x_k) - \nabla f(x_{k-1})$ $B_{k+1} = B_k + smth \bullet secant, \bullet \mathcal{O}(n^2)$ update + inverz, •symm, •pos def

 $\begin{aligned} & \text{sym rnk-1} \ smth = \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k} \\ & \text{BFGS rnk-2} \ smth = \frac{y_k y_k^T}{y_k^T s_k} - \frac{(B_k s_k)(B_k s_k)^T}{s_k^T B_k s_k} \end{aligned}$

Broyden cl: $\Phi = 0$ BFGS, $\Phi = 1$ DFP $B_{k+1} = B_k - \frac{(B_k s_k)(B_k s_k)^T}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k} + \Phi \cdot (s_k^T B_k s_k) v_k^T, \text{ where } v_k = \frac{y_k}{y_k^T s_k} - \frac{B_k s_k}{s_k^T B_k s_k}$ **Lem.** (BFGS) B_k poz def, B_{k+1} poz def \Leftrightarrow

 $y_k^T s_k > 0$

Th. (Broyden cl) • $S = \{f(x) \leq f(x_0)\}$ bnded \bullet $f, \nabla f, \nabla^2 f$ cont in $S \bullet \nabla^2 f$ poz def $\bullet p_k = B_k^{-1} - \nabla f(x_k), \ B_0 = I, \ 0 \le \Phi < 1$ $\bullet \alpha_k : Armijo \& \exists 0 < \nu < 1 : p_k^T \nabla f(x_k + \nu)$ $\alpha_k p_k$) $\geq \nu p_k^T \nabla f(x_k) \Rightarrow \lim_{\mathbf{k}} \mathbf{x}_{\mathbf{k}} = \mathbf{x}_*, x_*$ unique glob min, conv rate superlinear.

Constrained

 $min \ f(x), \ s.t: \ g_i(x) = / \ge 0, i \in E$ **loc opt:** x_* : $f(x_*) \leq f(x), \forall x$ feasible $\&|x-x_*|<\epsilon\Rightarrow$ interior same cond Bound point opt: no feasible&descent dir. $p\nabla f(x_*) \geq 0$ for all feas. p Asm: loc opt, 2 differ, constr quali, full rank

Lin eq

 $minf(x) Ax = / \ge b$ convex space $=: p \in \text{nullspace} \rightarrow Z \text{ nullspace matrix}:$ N(A) = Im(Z)Reformul:x feasible: $min_v\varphi(v) = f(x + Zv)$

 $\nabla \varphi = Z^T \nabla f(x), \nabla^2 \varphi = Z^T \nabla^2 f(x) Z$

So we can use the opt conditions convex space With Lagrange multipliers: $\nabla f(x_*) =$

 $A^T \lambda_* \Leftrightarrow 1$ -ord condition. repr: change in opt val to unit change in b

Lr func: $\mathcal{L}(x,\lambda) = f(x) - \lambda^T (Ax - b)$ stat point (x, λ) : $\nabla \mathcal{L}(x, \lambda) = 0$

≥: polytope/polyhedron

only active constr relevant to opt. den: \hat{A} , \hat{b} necces: minf(x); $Ax = b \Rightarrow$

1-ord: $Z^T \nabla f(x_*) = 0$ or $\exists \hat{\lambda_*} \geq 0$: $\nabla f(x_*) = \hat{A}^T \hat{\lambda_*}$ 2-ord: $Z^T \nabla^2 f Z$ pos semi. Complementary slackness: $\lambda_*^T(Ax_* - b) =$ $0, \lambda \geq 0$, So $\lambda_i = 0 \Leftrightarrow i$ non-active rows in

necc: 2-ord: $Z^T \nabla^2 f(x_*) Z$ pos semi, 1-ord: $\exists \lambda_* \geq 0 : \nabla f(x_*) = A^T \lambda_*, \lambda_*^T (Ax_* - b) = 0$ **suff:** 1-ord + strict compl slack: $a_i^T x_* - b_i =$ $0/\lambda_{*i} = 0$ and 2-ord: pos def

Non-Lin eq

 $minf(x), g_i(x) = / \ge 0$, feas curve $Z(x_k)$ null space of Jacobian $\nabla g(x_k)^T$ 1-ord: stat point lag: $\mathcal{L}(x,\lambda) = f(x)$ – $\sum \lambda_i g_i(x)$ cond: $\nabla f = \sum \lambda_i \nabla g$ **necc for =:** 1-ord $\nabla_x \mathcal{L}(x_*, \lambda_*) = 0$, 2-ord: $Z(x_*)\nabla^2_{xx}\mathcal{L}(x_*,\lambda_*)Z(x_*)$ pos semi. **suff:** $g_i(x_*) = 0 + \text{pos definite the end.}$ **KKT:** feasible $(=/\ge)$, no-feasible decrease

 dir , compl $\operatorname{slack}(\geq)$, pos $\operatorname{lagrange mult}(\geq)$

Methods

lin eq: reform + Newton: $-\nabla^2 \varphi^{-1} \cdot \nabla \varphi$ $x_{k+1} = x_k + Z[Z^T \nabla^2 f(x_k) Z]^{-1} Z^T \nabla f(x_k)$ active-set: "guess" active constraints set. W active constraints set. ITERATE: opt*check:* •no active •optimal to active: λ •if $\lambda \geq 0$ stop else left negative search dir descent p respect to Wstep len: α : $f(x_k + \alpha p) < f(x_k), \alpha \le \hat{\alpha}$ update, SQP*solving constr opt as sequence of unconstr

barrier: $minf, g \ge 0 \quad \mu_k \to 0$ Sequence, nice small is hard, and holds conv **Log bar func.** $f(x) - \mu \sum_{i=1}^{m} \log(g_i(x))$ Inverse barrier func $f(x) + \mu \sum_{i=1}^{m} \frac{1}{q_i(x)}$ **penalty meth:** minf, g = 0, $\mu_k \to \infty$ $min f + \mu \frac{1}{2} \sum g_i^2$ problem may: no f on feas region.

 \mathbf{LP}

Lin func: $f = c^T x$, $\nabla f = c$, Quadr func: $f = \frac{1}{2}x^TQx - b^Tx$, $\nabla f = Qx - b$, $\nabla^2 f = Q$ Condition numb: $cond(A) = ||A|| \cdot ||A^{-1}||$ **Def.** (Standard) min cx s.t. Ax = b, $x \ge 0$ All LP can be transformed to standard form •feasible region: \mathcal{P} polytope*/ polyhedron • $\mathcal{P}^* = conv(\text{vertex}) \ Representation \ thm$ **Def.** (basic solution) $Ax = b \& clmns A_i$ for $x_i \neq 0$ linearly independent, basis B **Def.** (BFS) $+ x \ge 0$ - $x_i \ne 0$ basic var • x extreme point \Leftrightarrow BFS • adj - \exists edge •adj basis-1col dif •adj basis \sim adj ext. pnt **St.** if c bounded in \mathcal{P} , than $\exists x^* BFS \text{ opt.}$ **Th.** $x \ extrm \Leftrightarrow BFS, x \in S$ $Biz. \Rightarrow x = (B, N), B \text{ may not square},$ suppose B lin. dep. $Bp = 0, x_B \geq 0,$ $\exists \epsilon > 0 : x \pm \epsilon p$ \Leftarrow supp. $x = (x_B, x_N)$ not extreme, $\exists (y_B, y_N), (z_B, z_N): \quad \alpha y + (1 - \alpha)z = x,$ $y_N = z_N = 0$, & $\exists B^{-1} \text{ so } x = y = z$

Def. (redundant constrain) slack variable **Def.** (Direction of unbondness) $x + \alpha d \in$ $S, \forall \alpha \geq 0 \Rightarrow Ad = 0 \text{ for standard form}$ **Th.** (Repr) $\forall x \in S : x = d + \sum \alpha_i v_i$, $V = \{v_i\}$ vertices

Th. If c on S bounded $\Rightarrow \exists$ opt. BFS

Simplex

idea: \exists opt ext point=BFS \Leftrightarrow basis of A Iterate in adj vertices (bases) always decrease until opt.

Df: $(non-)basis \ \mathcal{E} \ entering/leaving \ vari$ **Df:** $x_B = B^{-1}b$ cur sol, $z = c_B^T B^{-1}b$ cur obj given: basis B, BFS $x_B = B^{-1}b \ge 0$ **if** opt?: $?c_N = c_N - N^T B^{-T} c_B \ge 0$ else: x_t : $\hat{c}_t < 0$ entering (Bland) $s = argmin_i \{ \frac{\hat{b}_i}{\hat{a}_{i,t}} : \hat{a}_{i,t} > 0 \} \mathbf{i} \mathbf{f} \quad \not\exists a_{i,t} \quad \text{unbn}$ else update: $x_b - = \hat{A}_t x_t$, $z + = \hat{c}_t x_t$

 $x_B = B^{-1}b - \alpha(B^{-1}N)_t, \ x_N = 0 + \alpha\delta_t$ init sol:find smhow/ 2-phase/ punish slack Unbounded:recognize in step 2 if $\forall a_{i,t} < 0$ | Null&Range space Def. $A \in \mathbb{R}^{m \times n}, \ m \le n$: $\mathcal{N}(A) = \{p \in \mathbb{R} : q = A^T x\}$

may be $\alpha = 0$, baj cycling: Bland rule / perturbation = lexicographic mthd

Th. (weak duality) If x primal feasible, ydual feasible: $cx \geq by$

Th. (strong duality) If prim or dual \exists bounded opt: $\exists opt \ other \& \ mincx = maxyb$ Th. (Complementary slackness) x^*, y^* prim, dual opt sol: $x^{T}(c - A^{T}y) = 0$, and if x^{1} , y feasible and = holds: x, y opt sol. So either $x_i = 0$ or $(A^T y)_i = c_i \ \forall j$

Def. (degenerate v) \exists basic part of sol = 0 **Degeneracy:** $\exists 0$ valued basic variable, $dim(\mathcal{N}(A)) = n - rk(A)$, $\mathcal{N}(A) \perp \mathcal{R}(A^T)$

Sequential quadratic programming: minf(x), g(x) = 0, 1-ord lin apprx of: $\nabla \mathcal{L}(x,\lambda) = 0$ Newton: $\begin{pmatrix} x_{k+1} \\ \lambda_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ \lambda_k \end{pmatrix} + 1$ $\begin{pmatrix} p_k \\ v_k \end{pmatrix}$,

$$p_{k}, v_{k} \text{ from: } \nabla^{2}\mathcal{L}\left(x_{k}, \lambda_{k}\right) \begin{pmatrix} p_{k} \\ v_{k} \end{pmatrix} = -\nabla\mathcal{L}\left(x_{k}, \lambda_{k}\right) \cdot = \begin{pmatrix} \nabla_{xx}^{2}\mathcal{L}\left(x_{k}, \lambda_{k}\right) & -\nabla g\left(x_{k}\right) \\ -\nabla g\left(x_{k}\right)^{T} & 0 \end{pmatrix} \begin{pmatrix} p_{k} \\ v_{k} \end{pmatrix} = \begin{pmatrix} -\nabla_{x}\mathcal{L}\left(x_{k}, \lambda_{k}\right) \\ g\left(x_{k}\right) \end{pmatrix}.$$
1-ord cond in quadratic from:
$$q(p) = \frac{1}{2}p^{T} \begin{bmatrix} \nabla_{xx}^{2}\mathcal{L}\left(x_{k}, \lambda_{k}\right) \end{bmatrix} p + p^{T} \begin{bmatrix} \nabla_{x}\mathcal{L}\left(x_{k}, \lambda_{k}\right) \end{bmatrix}$$

1-ord cond in quadratic from: $\left[\nabla g\left(x_{k}\right)\right]^{T} p + g\left(x_{k}\right) = 0,$ subject to