Subgraphs

• A subgraph G' of graph G i.e., $(G' \subset G)$ is a graph, each of whose vertices $(V' \subset V)$ and edges $(E' \subset E)$

• Transitivity rule:

if $G'' \subset G' \subset G$, then $G'' \subset G$

Edge-disjoint Subgraphs

• Subgraphs G' and G" of graph G are edge disjoint if G' and G" do not have any edge in common

Walk (repeating edges or vertices is fine)

- A walk in a graph G = (V, E) is a finite sequence of vertices and edges that begins from any vertex V_0 and ends at any vertex V_k
 - E.g., abcdbcd is a walk
- Open Walk: A walk that has different starting and ending vertices i.e., V₀ ≠ V_k
 - E.g., abc is an open walk
- Closed Walk: A walk that has the same starting vertex as its ending vertex i.e., $V_0 = V_k$
 - E.g., abcdba is a closed walk

Trails, Circuits, Cycles

- Trails are walks with no edge repeated
 - E.g., abc is a trail

- E.g., hbcdefcgh
- Cycles are circuits with only one repeated vertex i.e., the starting vertex as its ending vertex
 - E.g., bcgfb

Paths

 A Path is a trial with no repeated vertex (so it has to be an open trail)

• E.g., abcde is a path

Connected / Disconnected Graph

- A graph G is connected if there is at least one path between each pair of vertices in G. Otherwise its disconnected
- Each connected part in a disconnected graph is called a component or a community
- A simple graph with N vertices and K components can have at most $\frac{(N-K)(N-K+1)}{2}$ edges

Adjacency, Incidences and Degree

Adjacency:

- Two vertices V_1 and V_2 are adjacent if there is an edge joining them
- A vertex to vertex property

• Incidence:

- If V_1 and V_2 are joined by an edge e, then both V_1 and V_2 are incident on edge e
- An edge to edge or edge to vertex property

• Degree:

- Degree of a vertex V in graph G is the number of edges incident with V and is written as deg(V) or d(V)
- A vertex property

Adjacency Matrix, Edge List & Adjacency list

Adjacency matrix

Edge List

3, 4

5, 1

Adjacency List

2: 34

3: 24