

Cabeamento para Redes Locais e WANs

Ciência da Computação Comunciação de Dados Prof^a Ana Lúcia R. Wiggers

Procedimentos para testar cabos

Os dez parâmetros de testes primários que devem ser verificados para que um link de cabo possa satisfazer os padrões TIA/EIA são:

- Mapa de fios
- Perda por inserção (atenuação X descontinuidade impedância)
- Diafonia próxima (NEXT Near-end crosstalk)
- Diafonia próxima por soma de potências (PSNEXT Power sum near-end crosstalk)
- Diafonia distante de mesmo nível (ELFEXT Equal-level far-end crosstalk)
- Diafonia distante por soma de potência de mesmo nível (PSELFEXT Power sum equal-level far-end crosstalk)
- Perda de retorno (reflexões causadas pelas descontinuidades de impedância)
- Atraso de propagação (medida para saber quanto tempo leva para um sinal propagar-se ao longo do cabo sendo testado)
- Comprimento do cabo
- Desvio de atraso (diferença de atraso de propagação entre diferentes fios do mesmo cabo)

Procedimentos para testar cabos – Mapa de Fios

Procedimentos para testar cabos – Falha dos fios

Fiação Correta T568B

Falha de fiação de par dividido

Falha de fiação de par invertido

Falha de fiação de pares transpostos

Camada Física da Rede Local - LAN

Algumas vantagens e desvantagens relacionadas de acordo com o uso dos meios:

- Comprimento do cabo
- Custo
- Facilidade de instalação
- Suscetibilidade à interferência

Camada Física da Rede Local - LAN

- · Physical layer implementations vary.
- · Some implementations support multiple physical media.

Ethernet em um Campus

A Ethernet foi implementada inicialmente pelo grupo DIX, criando a primeira especificação para redes locais Ethernet, que foi usada como base para a especificação 802.3 IEEE - Institute of Electrical and Electronics Engineers, lançada em 1980.

IEEE estendeu a 802.3 a três novos comitês conhecidos como:

- 802.3u (Fast Ethernet),
- 802.3z (Gigabit Ethernet através de Fibra Ótica), e
- 802.3ab (Gigabit Ethernet através da UTP).

Ethernet em um Campus

	Implementação de rede Ethernet 10BaseT	Implementação de rede Ethernet Rápida	Implementação de Gigabit Ethernet
Nível de usuário final	Proporciona conectividade para aplicações de baixo e médio volume	Proporciona acesso ao servidor a 100Mbps p/estações de trabalho Pc de alto desempenho	Não é normalmente utilizado neste nível
Nível de grupo de trabalho	Não é normalmente utilizado neste nível	Proporciona conectividade entre usuário final e grupos de trabalho, e grupo de trabalho (ao bloco de servidor) ao backbone	Proporciona conectividade de alto desempenho ao bloco de servidor empresarial
Nível de backbone	Não é normalmente utilizado neste nível	Proporciona conectividade a partir do bloco de servidor do grupo de trabalho ao backbone	Proporciona conectividade de alto desempenho entre o backbone e o dispositivo de rede

Meios Ethernet e requisitos de conectores

	10BASE2	10BASE5	10BASE-T	100BASE-TX	100BASE-FX	1000BASE-CX	1000BASE-T	1000BASE-SX	1000BASE-LX
Media	50-ohm coaxial (Thinnet)	50-ohm coaxial (Thicknet)	EIA/TIA Category 3, 4, 5 UTP, two pair	EIA/TIA Category 5 UTP, two pair	62.5/125 multimode fiber	STP	EIA/TIA Category 5 UTP, four pair	62.5/50 micro multimode fiber	62.5/50 micro multimode fiber; 9-micron single-mode fiber
Maximum Segment Length	185 m (606,94 feet)	500 m (1640.4 feet)	100 m (328 feet)	100 m (328 feet)	400 m (1312.3 feet)	25 m (82 feet)	100 m (328 feet)	275 m (853 feet) for 62.5 micro fiber; 550 m (1804.5 feet) for 50 micro fiber	440 m (1443.6 feet) for 62.5 micro fiber; 550 m (1804.5 feet) for 50 micro fiber; 3 to 10 km (1.86 to 6.2 miles) on single-mode fiber
Topology	Bus	Bus	Star	Star	Star	Star	Star	Star	Star
Connector	BNC	Attachment unit interface (AUI)	ISO 8877 (RJ-45)	ISO 8877 (RJ-45)	Duplex media interface connector (MIC) ST or SC connector	ISO 8877 (RJ-45)	ISO 8877 (RJ-45)	SC connector	SC connector
- II						→			

O jack é o componente fêmea em um dispositivo de rede que compoem a tomada de parede ou patch panel .

As conexões de punch down encontram-se na parte de trás do jack onde o cabo UTP Ethernet se conecta.

Use cabos diretos para o seguinte cabeamento:

- Comutador ao roteador
- •Comutador para o PC ou servidor
- •Hub para PC ou servidor

Use cabos cruzados para os seguintes cabeamentos:

- Comutador para comutador
- Comutador para hub
- •Hub para hub
- •Roteador para roteador
- •PC para PC
- •Roteador para PC

Use straight-through when only one port is designated with an "x".

Use crossover cable when BOTH ports are designated with an "x"or neither port is designated with an "x".

Repetidores

O repetidor recebe um sinal, restaura e retemporiza os sinais de rede ao nível de bit para permitir que trafeguem uma distância maior nos meios.

A regra 5-4-3 divide a regra em dois tipos de segmentos físicos: segmentados populados (usuário), e segmentos não-populados (link).

Hubs

Os hubs vêm em três tipos básicos:

- Passivo: serve apenas de ponto de conexão física usado somente para compartilhar os meios físicos.
- Ativo: precisa estar ligado a uma tomada elétrica, pois necessita de energia para amplificar o sinal que chega a uma porta antes de passá-lo para as outras portas.
- Inteligente: às vezes são chamados smart hubs(capaz de detectar e se preciso desconectar da rede estações com problemas, evitando que uma estação faladora prejudique o tráfego ou mesmo derrube a rede inteira; detectar pontos de congestionamento na rede, fazendo o possível para normalizar o tráfego). Esses dispositivos basicamente funcionam como hubs ativos, mas incluem também um chip microprocessador e capacidade de diagnóstico. Os hubs inteligentes são mais caros que os ativos, mas são mais úteis nas situações de resolução de problemas.

Wireless

As redes sem-fio usam para transportar os sinais de um computador:

- radiofreqüências (RF);
- laser;
- infravermelho (IR) geralmente exige visada direta, ambientes pequenos tipo sala- fácil de instalar, mas sinais de dados podem ser atenuados ou obstruídos pela umidade do ar ou por pessoas que andam pela sala.
- satélite/microondas.

Obs.: O único cabeamento permanente pode ser para os pontos de acesso da rede (access points).

No núcleo das comunicações sem-fio se encontram dispositivos conhecidos como transmissores e receptores.

Para comunicações de mão dupla, cada dispositivo exige um transmissor e um receptor. Muitos fabricantes de dispositivos para redes confeccionam o transmissor e o receptor em uma só unidade conhecida como transceiver ou placa de rede sem-fio.

Bridges – ver figura 5.1.9

- •Se o dispositivo de **destino estiver no mesmo segmento que o quadro**, a bridge impede que o quadro siga para outros segmentos. Este processo é conhecido como **filtragem**.
- •Se o dispositivo de destino estiver em um **segmento diferente**, a bridge **encaminhará o quadro ao segmento apropriado**.
- •Se o endereço de **destino for desconhecido para a bridge**, a **bridge encaminha o quadro a todos os segmentos com exceção daquele de onde foi recebido**. Este processo é conhecido como **inundação** (flooding).

Switches

Os comutadores operam em velocidades muito mais altas que as bridges e podem suportar novas funcionalidades, como redes locais virtuais (Virtual LAN).

Switches

Uma vantagem é que um comutador Ethernet permite que muitos usuários se comuniquem em paralelo através da utilização de circuitos virtuais e segmentos dedicados de rede em um ambiente virtualmente livre de colisões, isso maximiza a largura de banda disponível no meio compartilhado. Outra vantagem é que mudar para um ambiente de rede local comutada é muito econômico porque o cabeamento e o hardware existentes podem ser reutilizados

Switches

Dedicated paths between sender and receiver hosts.

Os equipamentos de comutação realizam duas operações básicas: 1º é a comutação de quadros de dados (frames) processo pelo qual um quadro é recebido em um meio de entrada e depois transmitido a um meio de saída; 2º é a manutenção das operações de comutação onde os comutadores criam e mantêm tabelas de comutação e procuram por loops.

Conectividade do Host

A placa de rede também conhecida como adaptador de rede, é uma placa de circuito impresso que cabe no slot de expansão na placa mãe ou dispositivo periférico a ser inserido em um computador.

Dispositivo de camada 2 do OSI.

Redes tipo: Ponto-a-Ponto X Cliente-Servidor

Dois computadores tipicamente se comunicam usando protocolos de pedido/resposta (request/response). Um computador emite um pedido para um serviço e o segundo computador recebe e responde àquele pedido. O requisitante assume o papel de um cliente e o que responde assume o papel de um servidor.

Em uma rede ponto-a-ponto, os computadores interconectados agem como parceiros iguais, ou pares onde cada computador pode assumir a função de cliente ou a função de servidor.

Em uma configuração cliente/servidor, os serviços de redes estão localizados em um computador dedicado denominado servidor. O servidor responde às solicitações de clientes.

Antes que um cliente possa acessar os recursos do servidor, ele precisa ser identificado e autorizado a usá-los. Isto é possível quando se dá a cada cliente um nome de conta e senha que é verificada por um serviço de autenticação.

Com a centralização das contas, da segurança e do controle de acesso do usuário, as redes baseadas em servidor simplificam a administração de grandes redes.

Redes tipo: Ponto-a-Ponto X Cliente-Servidor

Vantagens de uma Rede Ponto-a-Ponto	Vantagens de uma Rede Cliente/Servidor
Mais econômico para implementar.	Oferece melhor segurança.
Não exige software adicional especializado de administração de redes.	É mais fácil de se administrar quando a rede é grande pois a administração é centralizada.
Não exige um administrador dedicado de redes.	Pode-se fazer back up dos dados em um local central.

As desvantagens de uma Rede Ponto-a-Ponto	As desvantagens de uma Rede Cliente/Servidor
Não se adapta bem ao crescimento de grandes redes e a administração se torna mais difícil de ser gerenciada.	Exige software especializado muito caro para a operação e a administração de redes
Cada usuário precisa ser treinado para realizar tarefas administrativas.	Exige hardware mais caro e muito mais potente para a máquina do servidor.
Menos seguro.	Requer um administrador profissional
Todas as máquinas que compartilham os recursos tem o desempenho afetado de maneira negativa.	Possui um único ponto de falha. Se o servidor estiver inativo os dados do usuário não estarão disponíveis.

Camada física da WAN

Cisco HDLC	ддд	Frame Relay	ISDN BRI	DSL Modem	Cable Modem
	-449		RJ-45 Note: ISDN BRI cable pinouts are different than the pinouts for Ethernet	RJ-11 Note: Works over telephone line	F Note: Works over Cable TV line

- Physical Layer implementation vary
- · Cable specifications define speed of link

As implementações da camada física variam dependendo da distância entre o equipamento e os serviços, da velocidade e do próprio tipo de serviço.

Camada física da WAN

As conexões seriais são usadas para acomodar os serviços WAN tais como linhas dedicadas alugadas sobre as quais são utilizados:

- Point-to-Point Protocol (PPP) ou
- Frame Relay.

A velocidade dessas conexões variam de acordo com os serviços, exemplo:

- T1 a 1,544 Mbps
- E1 2,048 Mbps
- Integrated Services Digital Network-ISDN (BRI-basic rate interface) dois canais B (dados) de 64Kbps e um canal D (delta) de 16 Kbps (p/sinalização e gerenciamento)
- Modem DSL
- Cable modem

Obs.: ISDN oferece conexões de discagem por demanda ou serviços de dial backup.

Conexões de seriais WAN

Data (bps)	Distance (Meters) EIA/TIA-232	Distance (Meters) EIA/TIA-449
2400	60	1250
4800	30	625
6900	15	312
19,200	15	156
38,400	15	78
115,200	3.7	_
T1 (1.544 Mbps)	_	15

Conexões de seriais WAN

Data Terminal Equipment:

 End of the user's device on the WAN Link

Data Communications Equipment:

- End of the WAN provider's side of the communication facility
- Responsible for clocking

Cisco 2503 Router-Rear View

Os roteadores são responsáveis pelo roteamento de pacotes de dados desde a origem até o destino dentro da rede local e pelo fornecimento de conectividade à WAN. Dentro de um ambiente de rede local o roteador bloqueia os broadcasts, fornece serviços de resolução de endereços locais, como ARP e RARP e pode segmentar a rede usando uma estrutura de sub-redes.

Para configurar uma porta em uma placa modular, é necessário especificar a interface usando a sintaxe "port type slot number/port number".

Exemplo a etiqueta "serial 1/0," quando a interface for serial, o número do slot onde o módulo estará instalado é 1, e a porta que está sendo referenciada é porta 0.

Roteadores e Conexões ISDN BRI

Uma interface BRI sem um NT1 integrado é etiquetada BRI S/T.

Uma interface BRI com um NT1 integrado é etiquetada BRI U.

Importante: o cabo que sai da porta ISDN BRI sé é utilizado com um conector ou comutador ISDN. O ISDN BRI usa voltagens que podem danificar gravemente os dispositivos que não são ISDN.

Roteador e Conexão DSL

O roteador Cisco 827 ADSL possui uma interface ADSL (Asymmetric Digital Subscriber Line). Para conectar uma linha ADSL à porta ADSL no roteador, faca o seguinte:

- Conecte o cabo telefônico à porta ADSL no roteador.
- Conecte a outra extremidade do cabo telefônico ao conector de telefone.

Para conectar um roteador ao serviço DSL, use um cabo telefônico com conectores RJ-11. O DSL funciona através de linhas telefônicas padrão usando os pinos 3 e 4 em um conector RJ-11 padrão.

Roteadores e Conexões de Cabos

O roteador de acesso a cabo Cisco uBR905 fornece acesso de alta velocidade à rede através do sistema de televisão a cabo de assinantes residenciais, e empresas de pequeno porte e escritórios domiciliares (SOHO).

O roteador uBR905 possui um cabo coaxial, ou conector F, interface que conecta diretamente ao sistema de cabos. Um cabo coaxial e um conector F são usados para conectar o roteador e o sistema de cabos.

Instalando Conexões de Console

- Os PCs exigem um único adaptador de RJ-45 para DB-9 ou de RJ-45 para DB-25.
- As definições de portas COM são 9600 bps, 8 bits de dados, sem paridade, 1 bit de parada, sem controle de fluxo.
- Isto proporciona o acesso ao console out-of-band.
- A porta AUX do comutador pode ser usada para um console conectado por modem.