# Байесовский классификатор

### Текстовые задачи

• Классификация текста

• Определение авторства

• Определение эмоциональной окраски текста

• Парсинг научных статей

### Байесовская постановка задачи

$$y$$
 – класс,  $x$  - документ 
$$P(y|x) = \frac{P(y)P(x|y)}{P(x)}$$

$$y_{MAP} = \arg\max_{y \in Y} P(y|\mathbf{x}) = \arg\max_{y \in Y} \frac{P(y)P(\mathbf{x}|y)}{P(\mathbf{x})} = \arg\max_{y \in Y} P(y)P(\mathbf{x}|y)$$

$$\arg\max_{y\in Y} P(y)P(x|y) = \arg\max_{y\in Y} P(x_1, x_2, \dots, x_n|y)P(y)$$

Наивное предположение (о независимости):

$$P(x_1, x_2, ..., x_n | y) = P(x_1 | y) P(x_2 | y) P(x_3 | y) ... P(x_n | y)$$

### Bag-of-Words (BoW)

Важен только набор слов, не важен порядок.

 $x_1, x_2, ..., x_n$ - количества слов из словаря длины n в документе.

Словарь может быть как полный, так и ограниченный.



### Наивный байесовский классификатор

$$P(x_1, x_2, ..., x_n | y) = P(x_1 | y) P(x_2 | y) P(x_3 | y) ... P(x_n | y)$$

$$y_{MAP} = \arg \max_{y \in Y} P(y)P(x|y)$$

$$y_{NB} = \arg \max_{y \in Y} P(y) \prod_{i} P(x_i|y)$$

### Слова в документах

P(y) — частота класса y.

 $P(x_i|y)$  – вероятность значения признака  $x_i$  в классе y, например доля документов в классе, в которых определенное слово встречается k раз.

$$P(x_i|y) = \frac{count(x_i,y_j)}{count(x_i)}$$

Проблема –  $count(x_i, y_i) = 0$ 

$$\widehat{P}(x_i|y) = \frac{count(x_i,y_j) + \alpha}{count(x_i) + \alpha K}$$



### Обработка текста

#### • Уменьшение словаря:

- 35, 535, 17, 200000 → \$number
- (5+3),  $\frac{1}{2}$ w<sup>T</sup>w + C  $\rightarrow$  \$formula
- Stemming приведение слова в инфинитивную форму (не всегда работает хорошо)

#### • Повышение веса:

- Слова в названии документа (гиперссылка, подписях к картинкам)
- Слова в предложениях, которые содержат слова из названия
- Первое предложение в каждом абзаце

### Байесовский классификатор с другими признаками

#### Бернулли:

$$P(x_i|y) = P(x_i = 1|y)x_i + (1 - P(x_i = 1|y))(1 - x_i), \qquad x_i \in \{0,1\}$$

Распределение Гаусса:

$$p(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} e^{-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}}$$

### Оценка распределения

Простой вариант (для домашки, например) — выборочное среднее и дисперсия для  $\mu$  и  $\sigma$ .



Более сложный вариант – EM (Expectation-maximization) со смесью Гауссиан (Gaussian mixture).

### Expectation-maximization (EM)

Смесь К Гауссиан задается параметрами:

 $\mu_k$  — вектор среднего,  $\Sigma_k$  — матрица ковариций  $\alpha_k$  — "вес" гауссианы, вероятность того, что случайная точка принадлежит к Гауссиане k  $\Sigma \alpha_k = 1$ 

Принадлежность объекта  $x_i$  к k-му распределению :

$$w_{ik} = p(\mu_k, \Sigma_k | \mathbf{x}_i) = \frac{p(\mathbf{x}_i | \mu_k, \Sigma_k) \cdot \alpha_k}{\sum_j p(\mathbf{x}_i | \mu_j, \Sigma_j) \cdot \alpha_j}$$

$$\alpha_k^{new} = \frac{\sum_{i=1}^N w_{ik}}{N} = \frac{N_k}{N}$$

**E-Step:** считаем  $w_{ik}$ 

M-Step:

$$\mu_k^{new} = \left(\frac{1}{N_k}\right) \sum_{i=1}^N w_{ik} \cdot \mathbf{x}_i$$

$$\Sigma_k^{new} = \left(\frac{1}{N_k}\right) \sum_{i=1}^N w_{ik} \cdot (\mathbf{x}_i - \boldsymbol{\mu}_k^{new}) (\mathbf{x}_i - \boldsymbol{\mu}_k^{new})^T$$













# Naïve Bayes — отличный Baseline!