REDES DE COMPUTADORES EXAMEN DE CONTENIDOS TEÓRICOS

Convocatoria de Enero de 2022

Apellidos: Nombre:		Nota:				
Grupo de Teoría:	Lunes 17:00	I2ADE		VAL	Viernes 11:00	

GRADO EN INGENIERÍA INFORMÁTICA

NORMAS PARA REALIZAR EL EXAMEN DE TEORÍA:

- Duración del examen: 1 hora 10 minutos.
- La nota de este examen se corresponde con el **100**% de la nota de la parte de contenidos teóricos.
- La realización de este examen implica la condición de PRESENTADO a la convocatoria de Enero de 2022.
- La solución escogida para cada pregunta del test se debe especificar con BOLÍGRAFO en la tabla de soluciones. Se evaluará sólo lo contestado en esta tabla.
- En la tabla se debe especificar una sola respuesta por pregunta con letra mayúscula (**A**, **B**, **C** o **D**) de forma clara; de lo contrario será considerada como respuesta en blanco.
- Cada respuesta incorrecta penaliza 1/3 de respuesta correcta.
- La nota del test se obtiene de la fórmula: **Nota = (RC RI/3)*10/35**, donde RC son el número de respuestas correctas y RI el número de respuestas incorrectas.
- Las preguntas no contestadas no penalizan.

TABLA DE SOLUCIONES

Pregunta	Solución	Pregunta	Solución	Pregunta	Solución	Pregunta	Solución
1	C	11	C	21	C	31	A
2	A	12	D	22	В	32	A
3	C	13	В	23	В	33	C
4	В	14	D	24	D	34	В
5	C	15	D	25	C	35	D
6	В	16	A	26	В		
7	В	17	C	27	В		
8	D	18	A	28	C		
9	D	19	В	29	D		
10	C	20	В	30	D		

1. ¿ Qué tipo de topología de red NO es adecuada para una red de difusión ?

- a) Anillo.
- b) Bus común.
- c) Árbol.
- d) Inalámbrica.

2. Sobre el funcionamiento de las redes de difusión es cierto que:

- a) Se identifican los equipos de la red con secuencias únicas de bits.
- b) No existen colisiones en la transmisión simultánea de información por varios equipos.
- c) Se transmiten varios paquetes cuando se envía la misma información a un grupo de equipos.
- d) El fallo de un equipo provoca la incomunicación de todos los equipos de la red.

3. ¿ En qué tipo de redes de comunicaciones tiene menos retardo el proceso de encaminamiento?

- a) Redes de difusión.
- b) Redes de conmutación de paquetes con datagramas.
- c) Redes de conmutación de paquetes con circuitos virtuales.
- d) El retardo en el proceso de encaminamiento no depende del tipo de red.

4. Sobre el funcionamiento de las redes de conmutación de paquetes con datagramas es cierto que:

- a) Se identifican los equipos de la red con secuencias de bits que pueden repetirse para varios equipos.
- b) La transmisión de una información a todas las máquinas de la red precisa de transmisiones en varios medios físicos.
- c) La transmisión de una información a todas las máquinas de la red puede realizarse con la transmisión física de un solo paquete.
- d) El intercambio de información precisa del establecimiento previo de un camino en la red entre origen y destino.

5. Si en una red de conmutación de paquetes con circuitos virtuales se produce el fallo en un router de la red, es cierto que:

- a) Los circuitos virtuales establecidos que emplean el router que ha fallado no se verán afectados.
- b) Los circuitos virtuales establecidos en todos los routers adyacentes al que ha fallado dejarán de funcionar.
- c) Los circuitos virtuales que se intenten establecer no emplearán el router que ha fallado.
- d) Ningún circuito virtual establecido se verá afectado, pues el router que ha fallado redirigirá sus circuitos virtuales a través de otro router.

6. Sobre el funcionamiento de las capas de una arquitectura de red, es cierto que:

- a) Si una capa no puede detectar un error de la comunicación, será la capa inferior la encargada de detectarlo.
- b) Si una capa no puede detectar un error de la comunicación, será la capa superior la encargada de detectarlo.
- c) Si una capa no puede detectar un error de la comunicación, será la capa par la encargada de detectarlo.
- d) Si una capa no puede detectar un error de la comunicación, siempre es el usuario de la red el encargado de detectarlo.

7. Si la capa n de una arquitectura de red tiene disponible la funcionalidad de la fragmentación, es cierto que:

- a) Divide la información procedente de la capa superior en paquetes del mismo tamaño.
- b) Divide la información procedente de la capa superior en paquetes con un tamaño máximo determinado.
- c) Envía la información procedente de la capa superior a su capa par dividiéndola en paquetes siempre del mismo tamaño.
- d) Envía la información procedente de la capa superior a su capa par dividiéndola en paquetes siempre con un tamaño mínimo determinado.

8. ¿ Cómo se normalizan el conjunto de protocolos definidos en la arquitectura TCP/IP?

- a) Documentos IAB.
- b) Documentos IETF.
- c) Documentos IRTF.
- d) Documentos RFC.

9. ¿ Qué protocolo de nivel de enlace en la actualidad NO permite el envío de paquetes IP ?

- a) Ethernet.
- b) IEEE 802.11.
- c) VLAN Ethernet.
- d) Actualmente todos los protocolos de nivel de enlace permiten el envío de paquetes IP.

10. ¿ Qué dispositivo de interconexión NO permite el intercambio de paquetes de difusión entre los segmentos que interconecta ?

- a) Puente.
- b) Repetidor.
- c) Router.
- d) Todos los dispositivos de interconexión permiten el intercambio de paquetes de difusión entre segmentos.

11. ¿ Qué tipo de transiciones NO existen en una MEF que modela un protocolo ?

- a) Transiciones con eventos de entrada y eventos de salida.
- b) Transiciones con eventos de entrada y sin eventos de salida.
- c) Transiciones con eventos de salida y sin eventos de entrada.
- d) Transiciones con más eventos de entrada que eventos de salida.

12. Sobre la transmisión de una señal de pulsos de dos niveles a través de un medio físico, es cierto que:

- a) A mayor ancho de banda del medio físico, la señal de pulsos estará compuesta por más armónicos.
- b) A mayor velocidad de transmisión, más armónicos de la señal serán transmitidos por el medio físico.
- c) A menor ancho de banda del medio físico, la señal de pulsos estará compuesta por más armónicos
- d) A menor velocidad de transmisión, más armónicos de la señal serán transmitidos por el medio físico.

13. Sobre la velocidad máxima de transmisión de datos en un medio físico SIN ruido es cierto que:

- a) Solo depende del ancho de banda disponible en el medio físico.
- b) Aumenta al incrementar el número de niveles de la señal de pulsos transmitida.
- c) Se reduce al aumentar el número de componentes frecuenciales (armónicos) de la señal.
- d) Solo se puede aumentar si se aumenta el ancho de banda del medio físico.

14. En un cable eléctrico, ¿ qué tipo de distorsión de las que sufre una señal al ser transmitida NO es debida a las características físicas del medio ?

- a) Distorsión por el ancho de banda.
- b) Distorsión por ruido cruzado.
- c) Distorsión de retardo.
- d) Distorsión por ruido de impulso.

15. Si una señal de pulsos se transmite por un medio físico a una velocidad superior al teorema de Nyquist, es cierto que:

- a) La señal se transmite sin errores siempre que exista ruido.
- b) La señal se transmite sin errores dado que el teorema de Shannon siempre proporciona un valor mayor de velocidad que el teorema de Nyquist.
- c) La señal se transmite sin errores si el teorema de Nyquist proporciona un valor superior al teorema de Shannon.
- d) La señal recibida tendrá menos componentes frecuenciales (armónicos) que la señal transmitida.

16. ¿ En qué tipo de señales de pulsos es más probable que un receptor no interprete correctamente el número de bits en una secuencia de varios 1 seguidos ?

- a) Codificación binaria sin retorno a cero unipolar.
- b) Codificación binaria con retorno a cero bipolar.
- c) Codificación binaria con retorno a cero unipolar.
- d) Codificación Manchester.

- 17. ¿ Con qué tipo de modulación se conseguirá una mayor velocidad de transmisión en un medio físico que tiene un determinado ancho de banda ?
 - a) Modulación ASK.
 - b) Modulación FSK.
 - c) Modulación OAM.
 - d) Modulación PSK.
- 18. ¿ Qué tipo de modulación digital se emplea cuando es necesaria la multiplexión TDM de varios canales de información analógicos ?
 - a) PCM.
 - b) ASK.
 - c) QAM.
 - d) OPSK.
- 19. Sobre las características de los cables UTP es cierto que:
 - a) Presentan un alto nivel de ruido cruzado.
 - b) A mayor valor de categoría, mayor ancho de banda del cable.
 - c) A mayor valor de categoría, mayor valor de distancia máxima de comunicación.
 - d) A mayor valor de categoría, menor relación señal-ruido.
- 20. Sobre la dispersión intermodal en fibras ópticas, es cierto que:
 - a) Limita el ancho de banda en las fibras multimodo de índice de salto a 2 GHz.
 - b) Limita el ancho de banda en las fibras multimodo de índice gradual a 2 GHz.
 - c) Limita el ancho de banda en las fibras monomodo a 2 GHz.
 - d) Limita la velocidad máxima de transmisión en todos los tipos de fibra óptica.
- 21. ¿ En qué tipo de aplicaciones la fibra óptica alcanza velocidades de miles de Gbps y distancias de cientos de kilómetros ?
 - a) Conmutadores Ethernet de alta velocidad.
 - b) Redes de fibra óptica al hogar (FTTH).
 - c) Enlaces oceánicos internacionales.
 - d) No es posible conseguir esas capacidades de comunicación con la fibra óptica.
- 22. ¿ Qué capa dentro del modelo IEEE 802.x es capaz de detectar errores en los bits de los paquetes IP que se transmiten ?
 - a) Física.
 - b) MAC.
 - c) LLC.
 - d) IP.

23. Sobre el funcionamiento de las redes Ethernet es cierto que:

- a) El mecanismo CSMA/CD permite un funcionamiento half duplex y full duplex.
- b) Se realiza el reenvío de paquetes Ethernet que han sufrido errores por colisiones.
- c) Se realiza el reenvío de paquetes Ethernet que han sufrido errores debido a ruido de impulso.
- d) Existen dos formatos de paquete incompatibles que no pueden ser empleados al mismo tiempo en una red Ethernet.

24. ¿ En qué tipo de redes Ethernet NO existe el dominio de difusión ?

- a) Concentradores Ethernet 10BaseT.
- b) Conmutadores Ethernet 100BaseTX.
- c) Conmutadores VLAN Ethernet.
- d) En todas las redes Ethernet existe el dominio de difusión.

25. ¿ En qué tipo de tecnología Ethernet se emplea la codificación 8B/10B?

- a) Ethernet 100BaseTX.
- b) Ethernet 1000BaseT.
- c) Ethernet 1000BaseLX.
- d) Ethernet 1000BaseFX.

26. Sobre el funcionamiento de los conmutadores VLAN es cierto que:

- a) Permiten definir diferentes dominios de colisión en un conmutador VLAN.
- b) Permiten definir diferentes redes IP en un conmutador VLAN.
- c) Permiten definir un dominio de difusión en el que se definen varias redes IP.
- d) Emplea el protocolo GVRP para diferenciar los puertos de enlace de los puertos troncales en el conmutador VLAN.

27. Sobre el funcionamiento de las redes inalámbricas IEEE 802.11x es cierto que:

- a) Emplean el mismo formato de paquete MAC que la norma IEEE 802.3.
- b) Identifica los equipos de la red inalámbrica con una dirección de 48 bits.
- c) Todas las redes inalámbricas emplean el mismo valor de frecuencia en su funcionamiento.
- d) El número de colisiones en una red inalámbrica es menor que en las redes Ethernet conmutadas.

28. Sobre el funcionamiento del mecanismo RTC/CTS es cierto que:

- a) Evita el envío de ACKs en la transmisión de cada paquete.
- b) Limita el número de estaciones posibles en una red inalámbrica.
- c) Reduce el número de colisiones en las redes inalámbricas.
- d) No puede emplearse en redes inalámbricas de infraestructura.

29. ¿ En qué mecanismo de seguridad Wi-Fi se genera una clave de cifrado a partir de un valor MK diferente para cada usuario ?

- a) WEP.
- b) WPA-PSK.
- c) WPA2-PSK.
- d) WPA-Enterprise.

30. ¿ Qué valor de máscara de red es la adecuada para emplearla en una red punto a punto ?

- a) 255.255.255.255
- b) 255.255.255.248
- c) 255.255.255.192
- d) 255.255.255.252

31. Indica qué característica NO afecta a la congestión en Internet:

- a) La cantidad de datos en un paquete IP.
- b) El número de equipos en una red que transmiten paquetes IP.
- c) La capacidad de proceso de la CPU de los routers de Internet.
- d) La fragmentación de paquetes IP en los routers de Internet.

32. Sobre el funcionamiento del protocolo BGP es FALSO que:

- a) Emplea como métrica el número de SA (Sistemas Autónomos) en un router frontera.
- b) Un router frontera establece conexiones TCP a otros routers frontera.
- c) La conectividad entre SA de Internet nunca se puede modificar.
- d) Emplea los mensajes Keepalive para verificar que una conexión TCP sigue activa.

33. En cuanto al funcionamiento del protocolo IPv6, es cierto que:

- a) Emplea una cabecera de extensión para indicar las direcciones IP origen y destino.
- b) Permite emplear direcciones IP de 32 bits y 128 bits.
- c) Permite mejorar la transmisión de flujos de vídeo empleando la multidifusión.
- d) La identificación de flujos con diferentes prioridades se especifica en una cabecera de extensión.

34. Sobre el funcionamiento del mecanismo de prevención de la congestión por decremento multiplicado en TCP es cierto que:

- a) Se activa cuando la ventana de congestión supera a la ventana de recepción.
- b) Modifica el valor de la ventana de congestión cuando expira un temporizador de espera de ACK.
- c) Modifica el valor del tiempo de espera de ACKs al transmitir paquetes TCP.
- d) Aumenta el valor de la ventana de recepción en cada expiración de un temporizador de espera de ACK.

35. ¿ En qué tipo de red de acceso se emplea el multiplexado en el tiempo (TDM) para separar el canal UPSTREAM y DOWNSTREAM ?

- a) Accesos xDSL.
- b) Accesos FTTH.
- c) Accesos HFC.
- d) Ninguna red de acceso emplea TDM para separar canales UPSTREAM y DOWSTREAM.