Some Title And Maybe a Subtitle

Peter Illig Eli Orvis Yukihiko Segawa Nick Spinale

Carleton College

February 20th, 2018

Contents

Introduction

Simplifying the Problem

A Title

Contents of the slide

Roots of $f^n(x)$

$$f(x) = (x - \gamma)^2 + \gamma + m$$

- The roots of f(x) are $\gamma \pm \sqrt{-m-\gamma}$
- If β is a root of $f^n(x)$, then $\gamma \pm \sqrt{\beta m \gamma}$ are roots of $f^{n+1}(x)$

Observation

For n > 0, the roots of $f^n(x)$ are, with n radicals:

$$\gamma \pm \sqrt{-m \pm \sqrt{-m \pm \sqrt{-m \pm \dots \sqrt{-m-\gamma}}}}$$

Roots of $f^n(x)$

Observation

For n > 0, the roots of $f^n(x)$ are, with n radicals:

$$\gamma \pm \sqrt{-m \pm \sqrt{-m \pm \sqrt{-m \pm \dots \sqrt{-m-\gamma}}}}$$

For notational convenience, we define the map $\beta: \Sigma^* \to \mathbb{C}$ where

$$\beta_{\epsilon} = -\gamma$$

$$\beta_{0s} = \sqrt{-m + \beta_{s}}$$

$$\beta_{1s} = -\sqrt{-m + \beta_{s}}$$

For n > 0, the roots of $f^n(x)$ are exactly $\{ \gamma + \beta_s \mid s \in \Sigma^n \}$.