LÓGICA PROPOSICIONAL

Lógica y Metodología de la Matemática

Año 2024

CONECTIVOS LÓGICOS

CONECTIVO LÓGICO	SÍMBOLO	EXPRESIÓN EN LENGUAJE NATURAL	
NEGACIÓN	~p; ¬p	No p	
CONJUNCIÓN	p ^ q	p y/e q	
DISYUNCIÓN	p∨q	p o q, o ambos	
DISYUNCIÓN EXCLUYENTE	p⊻q	p o q , pero no ambos	
CONDICIONAL	$p \rightarrow q$	Si p entonces q	
BICONDICIONAL	$p \leftrightarrow q$	p si y sólo si q	

PROPOSICIONES

PROPOSICIÓN SIMPLE

Es aquella que no puede reducirse a otras más sencillas.

Ejemplos:

r:"Los elefantes vuelan"

PROPOSICIÓN COMPUESTA

Está conformada por dos o más proposiciones simples relacionadas por ciertos términos llamados conectivo (o nexos) lógicos.

~r: "No es cierto que los elefantes vuelan"

PROPOSICIONES

Ejemplos:

p:"Las tardes de verano son calurosas"

Proposiciones simples

q:"Las tardes de verano son húmedas"

"Las tardes de verano son calurosas y húmedas." Proposición compuesta

p ∧ q: "Las tardes de verano son calurosas y húmedas"

ACTIVIDAD 3

Identificar cuáles de las siguientes expresiones son fórmulas bien formadas y cuáles no.

a)
$$p \rightarrow \vee r \sim$$

a)
$$p \rightarrow \vee r \sim b$$
 $(r \wedge r) \rightarrow \sim pq$ c) $(p \rightarrow t) \sim q$ d) $\sim (p \leftrightarrow s) \rightarrow t$

c)
$$(p \rightarrow t) \sim c$$

d)
$$\sim$$
(p \leftrightarrow s) \rightarrow t

a)
$$p \rightarrow \vee r \sim no es una fbf porque ...$$

b)
$$(r \wedge r) \rightarrow \sim pqno es una fbf porque ...$$

c)
$$(p \rightarrow t) \sim q$$
 no es una fbf porque...

d)
$$\sim$$
 (p \leftrightarrow s) \rightarrow t es una fbf

ACTIVIDAD 4

Identificar proposiciones simples y compuestas. En las que sean compuestas, indicar cuál es el conectivo lógico

- a) Mariela estudia lógica o toma mate.
- b) 5+6=14.
- c) Una célula puede ser vegetal o animal.
- d) Los delfines son peces.
- e) La sociedad argentina se encuentra en cuarentena a causa de una pandemia.
- f(1) = 0
- g) Groenlandia es una isla si y solo si está rodeada de agua.
- h) Si Luis se dedica a estudiar, entonces comprenderá los temas.

r: "Mariela estudia lógica"

s: "Mariela toma mate"

r ∨ s: "Mariela estudia lógica o toma mate."

b) 5+6=14. Proposición Simple

p: "5+6=14"

c) Una célula puede ser vegetal o animal. Proposición compuesta

t: "Una célula puede ser vegetal."

p: "Una célula puede ser animal"

t ∨ p: "Una célula puede ser vegetal o animal."

- d) Los delfines son peces. Proposición Simpleq: "Los delfines son peces."
- e) La sociedad argentina se encuentra en cuarentena a causa de una pandemia.

Proposición Simple

t: "La sociedad argentina se encuentra en cuarentena a causa de una pandemia."

```
f) |1| \ge 0 Proposición compuesta.
```

p: |1|>0; p: "El valor absoluto de uno es mayor que cero."

q: |1| = 0; q: "El valor absoluto de uno es igual a cero."

$$p \vee q : "|1| \geq 0"$$

g) Groenlandia es una isla si y solo si está rodeada de agua.

Proposición compuesta

p: "Groenlandia es una isla." q: "Groenlandia está rodeada de agua."

p ↔ q: "Groenlandia es una isla si y solo si está rodeada de agua."

h) Si Luis se dedica a estudiar, entonces comprenderá los temas. Proposición compuesta.

p: "Luis se dedica a estudiar" q: "Luis comprenderá los temas"

 $p \rightarrow q$: "Si Luis se dedica a estudiar, entonces comprenderá los temas."

TEORÍA INTERPRETATIVA

DEFINICIÓN SEMANTICA DE LAS CONECTIVAS LÓGICAS

TABLAS DE VALORES VERDAD

NEGACIÓN

р	~p	
V	F	
F	V	

CONJUNCIÓN

р	q	p∧q	
V	V	V	
V	F	F	
F	V	F	
F	F	F	

DISYUNCIÓN INCLUYENTE

p	q	p∨q	
V	V	V	
V	F	V	
F	V	V	
F	F	F	

DEFINICIÓN SEMANTICA DE LAS CONECTIVAS LÓGICAS

TABLAS DE VALORES VERDAD

DISYUNCIÓN EXCLUYENTE

p	q	p <u>∨</u> q	
V	V	F	
V	F	V	
F	V	V	
F	F	F	

CONDICIONAL

p	q	$p \rightarrow q$	
V	V	V	
V	F	F	
F	V	V	
F	F	V	

BICONDICIONAL

p	q	$p \leftrightarrow q$	
V	V	V	
V	F	F	
F	V	F	
F	F	V	

¿Cómo construir la tabla de valores de una proposición compuesta?

N^{o} DE FILAS DE LA TABLA= 2^{n}

donde *n* es la cantidad de proposiciones simples

$$(\sim p \land q) \rightarrow \sim q$$

N° DE FILAS DE LA TABLA= 2^{n}

$$\Rightarrow$$
 2²= 4 filas

р	q	~p	~q	~p ∧ q	(~p ∧ q) →~q
V	V	F	F	F	V
V	F	F	V	F	V
F	V	V	F	V	F
F	F	V	V	F	V

No siempre se construyen tablas de valores para conocer el valor de verdad de una proposición compuesta.

Determinar el valor de verdad de la proposición ($\sim p \land q$) $\rightarrow \sim q$ sabiendo que V(p)=V

$$\mathcal{V}(p)=V \rightarrow \mathcal{V}(\sim p)=F$$

$$\mathcal{V}(\sim p) = F \rightarrow \mathcal{V}(\sim p \land q) = F$$

$$\mathcal{V}(\sim p \land q) = F \rightarrow \mathcal{V}((\sim p \land q) \rightarrow \sim q) = V$$

$$\mathcal{V}((\sim p \land q) \rightarrow \sim q) = V$$

Justificación

Una proposición y su negación poseen valores de verdad diferentes.

Una conjunción solo es verdadera cuando ambas proposiciones son verdaderas. Y en este caso, se sabe que una de ellas no lo es $V(\sim p)=F$.

Un condicional solo es falso cuando el antecedente es verdadero y el consecuente es falso. En este caso, se sabe que el antecedente, es $\mathcal{U}(\sim p \land q)=F$, por lo tanto se trata de un condicional verdadero.

5. Utilizar tablas de verdad para determinar si las siguientes expresiones son tautologías,

contradicciones o contingencias:

b.
$$\sim (p \lor \sim q) \rightarrow \sim p$$

c.
$$(\sim r \land q) \lor \sim (r \lor \sim p)$$

- 6. Analizar cada caso y responder, justificando la respuesta:
- a. Sabiendo que las proposiciones: $\sim p$; $(t \rightarrow p)$; $t \leftrightarrow q$ son todas verdaderas, ¿cuál es el valor
 - de verdad de cada una de las proposiciones simples que las componen?
- c. Si el valor de verdad de $(p \lor q) \rightarrow p$ es falso ¿se puede determinar el valor de verdad de q?
- f. ¿Cuál es el valor de verdad de $(p \land \sim q) \rightarrow (q \lor \sim p)$ si q es verdadera?

PROPOSICIÓN CONDICIONAL

Dadas dos proposiciones p y q, se le llama <u>proposición condiciona</u>l a la expresión: $\mathbf{p} \rightarrow \mathbf{q}$.

La *proposición p* recibe el nombre de antecedente, y la proposición *q* se denomina consecuente.

Se dice que el antecedente de condicional es condición suficiente para el consecuente.

Mientras que el consecuente es condición necesaria para el antecedente.

Una proposición condicional es <u>falsa</u> únicamente cuando el antecedente es verdadero y el consecuente falso. Es decir, que partiendo de una verdad no es posible deducir una falsedad.

PROPOSICIÓN CONDICIONAL

 $p \rightarrow q$

"si p, entonces q"

"p sólo si q".

" $q \ si \ p$ ".

"p es una condición suficiente para q".

"q es una condición necesaria para p".

"q es una consecuencia lógica de p"

p: "Juan ingresa a la universidad." q: "Le regalo una computadora a Juan."

 $p \rightarrow q$: "Si Juan ingresa a la universidad entonces le regalo una computadora." (Si p entonces q)

"Si Juan ingresa a la universidad, le regalo una computadora." (Si p, q)

"Que Juan ingrese a la universidad es condición suficiente para que regale una computadora."

(p es condición suficiente para q)

"Que le regale una computadora a Juan es una consecuencia de su ingreso a la universidad."

(q es una consecuencia de p)

RELACIONES ENTRE LAS PROPOSICIONES CONDICIONALES

Dada la proposición condicional p \rightarrow q

- su recíproca es la proposición $\mathbf{q} \rightarrow \mathbf{p}$.
- su contraria es la proposición ~p → ~q.
- su contrarecíproca es la proposición ~q → ~p.

Dadas la proposiciones p y q, escribir el condicional directo y sus asociadas.

p: "ABC es un triángulo equilátero." q: "ABC es un triángulo isósceles."

PROPOSICIÓN BICONDICIONAL

Dadas dos proposiciones p y q, se le llama proposición bicondicional a la

expresión: $\mathbf{p} \leftrightarrow \mathbf{q}$.

p si y solamente si q

p sólo si q, y, p si q

Si p, entonces q, y, si q, entonces p

p es condición necesaria y suficiente para q

p: "4 es número par ." q: "4 es múltiplo de 2."

 $p \leftrightarrow q$: "4 es número par si y solo si es múltiplo de 2."

"4 es número par si y solamente si es múltiplo de 2."

"Que 4 sea número par es condición necesaria y suficiente para ser múltiplo de 2."

7. Escriba la recíproca, la contraria, la contrarecíproca y la negación de las siguientes proposiciones en lenguaje natural y simbólico:

c. "Si
$$-1 < 3$$
 y $3 + 7 = 10$, entonces $\left(\frac{3\pi}{2}\right) = -1$."

EVALUACIÓN SEMÁNTICA DE FÓRMULAS

TAUTOLOGÍA

CONTRADICCIÓN

CONTINGENCIA

Una fórmula es semánticamente válida, si es verdadera para todas las interpretaciones.

Las verdades tautológicas no dependen de su contenido informativo sino de su estructura lógica.