P44 [Total No. of Pages : 2

APR - 17/BE/Insem - 51 B.E. (E & TC) SOFT COMPUTING TECHNIQUES (2012 Pattern)

Time: 1 Hour] [Max. Marks: 3				
Insti	ructio		the candidates:	
		1)	Answer Q. 1 or Q.2, Q.3 or Q.4, Q.5 or Q.6	
		2)	Neat diagrams must be drawn wherever necessary.	
		3)	Figures to the right indicate full marks.	
Q1)	a)	Using Mc-Culloch Pitts neuron, implement XOR function. Assume suitable initial weights. [6]		Assume [6]
	b)	Cor	mpare and contrast the biological neurons with an artificia del.	l neuron [4]
			OR	
Q2)	a)	Explain with suitable diagrams, the various learning mechanisms used ANN.		s used in [6]
	b)		te the Hebbian Rule, stating its limitation and the modification the same.	cation to [4]
Q3)	a)	Explain backpropagation algorithm for MLP. State how momentum term can cause faster convergence of algorithm. [6]		
	b)	Explain the following terms:		[4]
		i)	Learning rate	
		ii)	Weights	
		,	OR	
Q4)	a)	Stat	te the architecture of Radial basis function networks.	[6]
	b)	Stat	te the algorithm for self Organized feature Map network.	[4]

Q5) a) Consider two fuzzy sets A and B, calculate $A \cap \overline{B}$ and $B \cap \overline{A}$ [6]

$$A = \left\{ \frac{0.1}{2}, \frac{0.6}{3}, \frac{0.4}{4}, \frac{0.3}{5}, \frac{0.8}{6} \right\}$$

$$B = \left\{ \frac{0.5}{2}, \frac{0.8}{3}, \frac{0.4}{4}, \frac{0.6}{5}, \frac{0.4}{6} \right\}$$

b) State any four properties of Fuzzy sets
OR
[4]

- **Q6)** a) Explain any one fuzzy membership function with its transfer characteristics. Describe the possible use of the same with a suitable example. [6]
 - b) Consider fuzzy relations: [4]

$$R = \begin{matrix} y_1 & y_2 & Z_1 & Z_2 & Z_3 \\ x_1 \begin{bmatrix} 0.7 & 0.6 \\ 0.8 & 0.3 \end{bmatrix} S = \begin{matrix} y_1 \begin{bmatrix} 0.8 & 0.5 & 0.4 \\ y_2 \end{bmatrix} \\ y_2 \begin{bmatrix} 0.1 & 0.6 & 0.7 \end{bmatrix}$$

Find the relation $T = R \circ S$ using max-product composition