FUNDAMENTOS DE ALGORITMIA

Facultad de Informática, UCM - curso 2019-20

Control Tema 1: Análisis de la eficiencia de los algoritmos

24 de septiembre de 2019

Nombre y apellidos:			
N	om	bre y apellidos:	_
Ejercicio 1 Para cada una de las siguientes afirmaciones indica si es verdadera (V) o falsa (F).			
1	.•	$2^n + n^{99} \in \Omega(n^{99}).$	
2	2.	Si $f(n) = n^2$ y $g(n) = n^3$, entonces $f(n)g(n) \in O(n^6)$.	
3	3.	Si $T(1) = 9$ y $T(n) = 2T(n/2) + 9n - 1$ para $n > 1$, entonces $T(n) \in \Theta(n, \log(n))$.	
4		$n! \in \Theta((n+1)!).$	
5	.	Si $T(1) = 7$ y $T(n) = 3T(n/2) + 7n$ para $n > 1$, entonces $T(n) \in \Theta(n^{\log_3 2})$.	
6	5.	Si $f(n) = n^2$, entonces $3f(n) + 2n \in \Theta(f(n))$.	
7	' .	Si $f(n) = n^2$, entonces $f(n)^3 \in O(n^5)$.	
8	3.	Sea $f(n)$ creciente y $g(n) = f(3^n) \in O(n)$, entonces $f(n) \in O(n)$.	
9).	$2^n + 3^n + n^{59} \in \Omega(2^n).$	
1	0.	$n^2 \in \Omega(n^3)$.	
1	1.	$\Theta(2^{n+2}) = \Theta(4^n).$	
1	2.	$n^2 \in O(n^3)$.	
1	3.	Si $T(1) = 5$ y $T(n) = T(n/2) + 3n$ para $n > 1$, entonces $T(n) \in \Theta(n, \log(n))$.	
1	4.	$2^n \in \Theta(2^{n+1}).$	
1	5.	Si $f(n) \in O(g(n))$, entonces $2^{f(n)} \in O(2^{g(n)})$.	

Ejercicio 2 Utilizando exclusivamente la definición de orden de complejidad O, demuestra si cada afirmación se cierta o falsa.

a).
$$O((1+\varepsilon)^n + 2^n) = O(2^n)$$
.

b). Si
$$f(n) \in O(n^2)$$
 y $g(n) \in O(n^{1+\varepsilon})$, entonces $f(n) + g(n) \in O(n^{1+\varepsilon})$.

Siendo en ambos casos ε una constante real positiva arbitraria, $0<\varepsilon<1.$