a	\overline{x}	$-\infty$	x_1	а	${f \mathcal{C}}_2$	x_3		$+\infty$
f(x)	signe c	le - a 0	signe de a	0 signe de	- a 0	signe de \boldsymbol{a}	

Application à la résolution des inéquations de degré 3

En utilisant le même principe que pour les inéquations de degré 2, il nous est possible de résoudre des équations de degré 3 en utilisant le tableau de signes associé, si le polynôme est factorisable.

EXEMPLE

« Résoudre 4(x-1)(x+7)(x-3) > 0. »

Réponse : Le tableau de signes de f(x) = 4(x-1)(x+7)(x-3) est donné par :

x	$-\infty$		-7		1		3		$+\infty$
f(x)		_	0	+	0	_	0	+	

Et par lecture du tableau, on en déduit que S =]-7; $1 [\cup] 3$; $+\infty[$

Représentation graphique des fonctions AX^3 et $AX^3 + B$

Pour les fonctions de la forme ax^3 , plus a sera important en valeur absolue, plus la courbe sera « proche » de l'axe des ordonnées. Le signe de a modifiera quant à lui le sens de variation.

Pour ce qui est des fonctions de la forme $ax^3 + b$, la courbe ax^3 sera translaté de b unités vers le haut ou vers le bas en fonction du signe de b (tout comme pour les fonctions $ax^2 + b$).

Résolution d'équations du type $X^N = C$

Résolution de l'équation $X^2 = A$

Les solutions de l'équation $x^2 = a$, où a est un nombre réel positif, sont \sqrt{a} et $-\sqrt{a}$.

EXEMPLE

« Résoudre $x^2=16$. »

Réponse : Les solutions sont $x = \sqrt{16} = 4$ et $x = -\sqrt{16} = -4$.

Résolution d'une équation $X^3 = C$

Soit *c* un réel positif, alors l'équation

$$x^3 = c$$

admet une unique solution qui est :

$$x = c^{\frac{1}{3}} = \sqrt[3]{c}$$

EXEMPLE

« Résoudre $x^3=27$. »

Réponse : On a $x = \sqrt[3]{27} = 3$