5/5/2022

EXPERIMENT NO.1

EC111

Name - Vishal Ruman Prajapati Roll - 2101227

Aim:

To draw seatic forward characteristics of tiode.

Apparatup!

1N4007, 1KJ resistor, former supply, breadboard Circuit Diagram!

Vin VD (V) -0.3783 0 0.3458 0.2 0.4524 0.4 0.4924 0.8 0. 5230 0.8 0.5410 1.0 0.5564 1.2 0.5684 1.4 0.5790 1.6 0.5864 1.8 0.5975 2.0 0.6344 4 0:6576 6 0.6721 8 0.6832 10 0.6920 12

ID (MA) ALL 28. P 78,78MA 206.45 MA 0.387 0.739 0.786 0. 9060 1.0941 1.2785 1.4156 3.525 5.495 7.612 9.535 11.553

1

EXPERIMENT NO. 1

TITLE: TO STUDY V-I CHARACTERISTICS OF A DIODE

OBJECTIVE:

To design the circuit and verify the V-I characteristics.

APPARATUS REQUIRED:

- Resister 1kohm
- power supply
- breadboard
- diode IN4007
- wires, etc.

THEORY:

The diode is a device formed from a junction of n-type and p-type semiconductor material. The lead connected to the p-type material is called the anode and the lead connected to the n-type material is the cathode. In general, the cathode of a diode is marked by a solid line on the diode.

FUNCTION OF P-N JUNCTION DIODE IN FORWARD BIAS:

The positive terminal of the battery is connected to the P side(anode) and the negative terminal of the battery is connected to the N side(cathode) of a diode, the holes in the p-type region and the electrons in the n-type region are pushed toward the junction and start to neutralize the depletion zone, reducing its width. The positive potential applied to the p-type material repels the holes, while the negative potential applied to the n-type material repels the electrons. The change in potential between the p side and the n side decreases or switches signs. With increasing forward-bias voltage, the depletion zone eventually becomes thin enough that the zone's electric field cannot counteract charge carrier motion across the p-n junction, which as a consequence reduces electrical resistance. The electrons that cross the p-n junction into the p-type material (or holes that cross into the n-type material) will diffuse into the nearby neutral region. The amount of minority diffusion in the near-neutral zones

determines the amount of current that may flow through the diode.

CIRCUIT DIAGRAM:

OBSERVATION:

S.NO.	VOLTAGE	VOLTAGE ACROSS	CURRENT ACROSS
	V _{IN} (V)	DIODE	DIODE
		V _D (V)	I _D (mA)
1	0	-0.3783	0
2	0.2	0.3458	0.00489
3	0.4	0.4524	0.07878
4	0.6	0.4924	0.20645
5	0.8	0.5230	0.387

6	1.0	0.5410	0.739
7	1.2	0.5564	0.786
8	1.4	0.5684	0.906
9	1.6	0.5790	1.0941
10	1.8	0.5864	1.2785
11	2.0	0.5975	1.4156
12	4	0.6344	3.525
13	6	0.6576	5.495
14	8	0.6721	7.612
15	10	0.6832	9.535
16	12	0.6920	11.553

CALCULATIONS:

- STATIC FORWARD RESISTANCE R_{DC} = V_D/I_D
- DYNAMIC FORWARD RESISTANCE $R_{AC} = \Delta V_D / \Delta I_D$
- AVERAGE RESISTANCE $R_{AVG} = \Delta V_D / \Delta I_D$

S.NO.	VOLTAGE V _{IN} (V)	STATIC RESISTANCE (ohm)	DYNAMIC RESISTANCE (ohm)
1	0	Infinite	148078
2	0.2	1270.14	1442.69
3	0.4	1185.58	313.308
4	0.6	1077.74	169.482
5	0.8	838.836	51.134
6	1.0	937.913	327.66
7	1.2	1042.17	100
8	1.4	1045.19	56.353
9	1.6	1049.17	40.1302
10	1.8	1037.7	80.9628
11	2.0	1035.74	17.4931
12	4	984.0	11.7766
13	6	986.242	6.8493
14	8	981.242	5.7723
15	10	983.726	4.3605
16	12	981.39	59.8979

AVERAGE FORWARD RESISTANCE = 942.25 Ohm

RESULT:

Analyze the V-I characteristics of a diode.

