

EGCO486: Image Processing

Final Project

จัดทำโดย

นายจารุภัทร โชติสิตานันท์	6513161
นางสาวชลิษา บัวทอง	6513163
นายนพรุจ ฤทธิ์เนติกุล	6513168

เสนอ

ผศ.ดร. นริศ หนูหอม
คณะวิศวกรรมคอมพิวเตอร์ มหาวิทยาลัยมหิดล
ภาคเรียนที่ 1 ปีการศึกษา 2567

คำนำ

รายงานฉบับนี้จัดทำขึ้นเพื่อเป็นส่วนหนึ่งของรายวิชา Image Processing (EGCO486) โดยคณะผู้จัดทำ ได้จัดทำขึ้นเพื่อใช้ประกอบการทำโครงงานเรื่อง Exercise Pose Correction and Classification ซึ่งจัดทำขึ้นเพื่อศึกษาและพัฒนา โปรแกรมที่สามารถช่วยผู้ใช้งานใน การระบุข้อผิดพลาดของท่าออกกำลังกายใน แต่ละประเภท พร้อมทั้งให้คำแนะนำเพื่อปรับปรุงท่าทาง และสามารถจำแนก ประเภทท่าออกกำลังกายในแต่ละประเภทได้อย่างแม่นยำ โดยมีเป้าหมายเพื่อช่วย ลดความเสี่ยงจากการบาดเจ็บ และเพิ่มประสิทธิภาพในการออกกำลังกายให้ดีขึ้น

ทางคณะผู้จัดทำขอขอบพระคุณ ผศ.ดร. นริศ หนูหอม ผู้ให้ความรู้ และ แนวทางการศึกษา สุดท้ายนี้ทางคณะผู้จัดทำหวังว่ารายงานฉบับนี้จะสามารถเป็น ประโยชน์ไม่มากก็น้อยแก่ผู้อ่านทุกท่าน หากมีข้อผิดพลาดประการใด ผู้จัดทำขอ น้อมรับไว้ และขออภัยมา ณ ที่นี้

ขอขอบพระคุณ

คณะผู้จัดทำ

สารบัญ

หัวข้อ	หน้า
ที่มาและความสำคัญของโครงงาน	1
วัตถุประสงค์ของโครงงาน	2
ขอบเขตของโครงงาน	3
วิธีการดำเนินงาน	5
ข้อจำกัดของโปรแกรม	17
ผลการทดลอง	18
บทสรุปของโครงงาน	21
การต่อยอดในอนาคต	22

ที่มาและความสำคัญของโครงงาน (Background)

ในปัจจุบัน การออกกำลังกายเป็นที่นิยมอย่างแพร่หลาย เนื่องจากผู้คนให้
ความสำคัญกับสุขภาพ และ การพัฒนาสมรรถภาพร่างกายมากขึ้น อย่างไรก็ตาม
การออกกำลังกายที่มีท่าทางที่ไม่ถูกต้องอาจก่อให้เกิดอาการบาดเจ็บหรือไม่ได้
ผลลัพธ์ตามที่คาดหวัง โดยเฉพาะอย่างยิ่งการออกกำลังกายด้วยน้ำหนัก (Weight Training) ซึ่งต้องอาศัยการจัดท่าทางที่ถูกต้องเพื่อความปลอดภัยและ
ประสิทธิภาพที่ดียิ่งขึ้น

โครงงานนี้มีเป้าหมายในการพัฒนาโปรแกรมที่สามารถตรวจจับข้อผิดพลาด ในท่าออกกำลังกาย เพื่อให้คำแนะนำที่ช่วยผู้ใช้งานปรับปรุงเทคนิคและการจัด ท่าทางให้ถูกต้อง พร้อมทั้งสามารถวิเคราะห์และจำแนกประเภทท่าออกกำลังกาย ได้อย่างแม่นยำ โดยระบบนี้ถูกออกแบบให้รองรับการใช้งานผ่านวิดีโอ ทำให้ สามารถช่วยผู้ใช้งานได้แม้ไม่มีผู้ฝึกสอนส่วนตัว

ระบบดังกล่าวไม่เพียงช่วยลดความเสี่ยงในการบาดเจ็บ แต่ยังช่วยเพิ่ม ประสิทธิภาพในการออกกำลังกาย และสนับสนุนการเรียนรู้ของผู้ใช้งานให้มีความ เข้าใจในรูปแบบการออกกำลังกายที่ถูกต้องและปลอดภัย

วัตถุประสงค์ของโครงงาน (Objective)

- 1. เพื่อตรวจจับข้อผิดพลาดในแต่ละท่าออกกำลังกาย พร้อมให้คำแนะนำใน การปรับปรุงเทคนิคและการจัดท่าให้ถูกต้อง ซึ่งครอบคลุมท่าออกกำลังกาย ทั้งหมด 5 ท่า ได้แก่ Squat, Bicep Curl, Incline Dumbbell Press, Dumbbell Row, และ Lat Pulldown
- 2. เพื่อจำแนกประเภทท่าออกกำลังกายในแต่ละประเภทได้อย่างแม่นยำ
- 3. เพื่อสนับสนุนและส่งเสริมสุขภาพด้วยการออกกำลังกายด้วยท่าที่ปลอดภัย และถูกต้อง
- 4. เพื่อช่วยให้ผู้ใช้งานสามารถออกกำลังกายได้ด้วยตนเอง โดยไม่ต้องมี เทรนเนอร์มาคอยกำกับ

ขอบเขตของโครงงาน (Scope of Work)

โครงงานนี้มุ่งพัฒนาโปรแกรมที่สามารถ ให้คำแนะนำในการปรับปรุงเทคนิค และการจัดท่าให้ถูกต้อง และ จำแนกท่าทางการออกกำลังกาย โดยมีรายละเอียด ดังนี้

การตรวจจับ Skeleton

ใช้ MediaPipe เพื่อตรวจจับจุดสำคัญบนร่างกาย เช่น ข้อศอก หัว ไหล่ เข่า และสะโพก ในวิดีโอที่ผู้ใช้งานอัปโหลดเข้าสู่ระบบ

• การจำแนกประเภทของท่าออกกำลังกาย

ใช้ Deep Learning Model (LSTM : Long Short-Term Memory) ในการวิเคราะห์ลำดับข้อมูลจาก Keypoints เพื่อจำแนกประเภทท่าออก กำลังกายที่รองรับทั้งหมด 5 ท่า ได้แก่

- 1. Squat
- 2. Incline Dumbbell Press
- 3. Lat Pulldown
- 4. Dumbbell Row
- 5. Bicep Curl

• การให้คำแนะนำในการปรับปรุงท่าทาง

ระบบจะวิเคราะห์จุดสำคัญและคำนวณมุมของข้อต่อ เพื่อตรวจหาข้อ ผิดพลาดในแต่ละท่า เช่น ข้อมืออยู่ห่างกันเกินไป, ข้อศอกขยับ พร้อม แนะนำวิธีแก้ไขท่าเพื่อป้องกันการบาดเจ็บและเพิ่มประสิทธิภาพของการ ออกกำลังกาย

- การพัฒนา Web Application : พัฒนาด้วย Python และ JavaScript
 - **Streamlit** : เพื่อสร้าง Web Application
 - **React** : สำหรับตกแต่ง User Interface ให้ดูทันสมัยและใช้งานง่าย ซึ่งผู้ใช้สามารถอัปโหลดวิดีโอเพื่อตรวจสอบและรับคำแนะนำแต่ละท่า ได้ผ่าน คอมพิวเตอร์ หรือ มือถือ โดยไม่ต้องติดตั้งซอฟต์แวร์เพิ่มเติม

• กลุ่มเป้าหมาย

โปรแกรมนี้ออกแบบมาสำหรับผู้ใช้งานทั่วไปที่สนใจในด้านการออก กำลังกาย และต้องการคำแนะนำในการพัฒนาท่าทางอย่างถูกต้องและ ปลอดภัย โดยไม่จำเป็นต้องมีเทรนเนอร์ส่วนตัว

วิธีการดำเนินงาน (Method)

การประมวลผลเบื้องต้น (Pre-processing)

- 1. การเพิ่มข้อมูลด้วย Data Augmentation
 - เพิ่มความหลากหลายของข้อมูล โดยวิดีโอจะถูก Flip ซ้าย-ขวา เพื่อ
 เพิ่มความสามารถในการเรียนรู้ของโมเดล
- 2. ใช้ **MediaPipe** ในการวาด Skeleton บนวิดีโอเพื่อเตรียมข้อมูลสำหรับการ Train โมเดล
 - นำวิดีโอที่ต้องการเข้าสู่ระบบ **MediaPipe** เพื่อสร้าง Skeleton
 - ตรวจสอบตำแหน่งของ Skeleton ว่าอยู่บนตัวบุคคลและมีความถูก ต้องหรือไม่ (เช่น Skeleton ไม่ควรวาดบนวัตถุที่ไม่ใช่คน หรือมี ตำแหน่งผิดเพี้ยนอย่างมาก)
 - หากพบว่าวิดีโอดังกล่าวมีข้อผิดพลาด จะลบวิดีโอนั้นทิ้งเพื่อป้องกัน
 ข้อมูลที่ไม่เหมาะสมเข้าสู่กระบวนการ train โมเดล

เหตุผลที่เลือกใช้ MediaPipe

MediaPipe เป็นเครื่องมือ Open-Source Framework สำหรับการประมวล ผลข้อมูลภาพและวิดีโอแบบเรียลไทม์ โดยมีความสามารถในการสร้าง Landmark ได้ทั้งหมด 32 จุดในระบบ 3D (ดังแสดงในรูป 3.1) ซึ่งจุด Landmark สำคัญที่ MediaPipe มีและอาจไม่มีในโมเดล Skeleton อื่น ๆ ได้แก่ นิ้วเท้า (foot_index) และ นิ้วมือ (index) ซึ่งสำคัญในการตรวจสอบการวางตำแหน่งมือและเท้าที่ถูกต้อง ในท่าออกกำลังกายบางท่า โดยเฉพาะท่าที่เกี่ยวข้องกับการใช้ข้อมือในบริหาร ร่างกายส่วนบน หรือท่าที่ต้องใช้มือในการจับอุปกรณ์ จุดเหล่านี้จึงมีความสำคัญใน การพิจารณาท่าทางที่ถูกต้อง

อย่างไรก็ตาม ในโครงงานนี้ยังไม่มีการคำนวณมุมของข้อมือ เนื่องจากข้อ จำกัดด้านความแม่นยำในการระบุตำแหน่ง Landmark ของ MediaPipe โดยเฉพาะ ในกรณีที่ข้อมืออยู่ในมุมที่ยากต่อการระบุ เช่น การหมุนหรือการเอียงของข้อมือ แต่ MediaPipe ยังสามารถให้ข้อมูลที่เพียงพอสำหรับการตรวจสอบท่าทางอื่นๆ เช่น การวางขา, ข้อศอก, และหัวไหล่ที่สามารถใช้ในการประเมินท่าทางได้

รูป 3.1

MediaPipe ถูกใช้ในสองส่วนหลักของโครงงาน คือ

- 1. การสกัด Features เพื่อใช้ฝึกโมเดล
- คำนวณมุมในระบบ 2D จาก Landmark Points ที่ MediaPipe สร้างขึ้น ทั้งหมด 8 มุม ได้แก่

ข้างขวา: right_shoulder_angle, right_elbow_angle, right_hip_angle, right_knee_angle

ข้างซ้าย: left_shoulder_angle, left_elbow_angle, left_hip_angle, left_knee_angle

การคำนวณมุมจะดำเนินการในแต่ละเฟรมของวิดีโอ และบันทึกเป็นชุด
 ข้อมูลในรูปแบบไฟล์ CSV โดยแต่ละ Row แทนแต่ละเฟรม และแต่ละ
 Column แทนมุมทั้ง 8

ฟังก์ชันที่ใช้คำนวณมุมในระบบ 2D :

- ใช้คำนวณมุม 2 มิติ ระหว่างจุดสามจุด โดยจุดที่รับมาจะมาเป็นพิกัด (x, y, z) เช่น ตำแหน่งของข้อต่อต่างๆ ในร่างกายที่รับมาจาก Skeleton (Landmark) ของ MediaPipe ตรวจจับได้

```
def calculate_angle_2d(a, b, c):
    a = np.array(a)
    b = np.array(b)
    c = np.array(c)

radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
    angle = np.abs(radians * 180.0 / np.pi)

if angle > 180.0:
    angle = 360.0 - angle

return angle
```

ตัวอย่างการคำนวณ :

```
right_shoulder_angle = calculate_angle_2d(right_hip_x, right_shoulder_x, right_elbow_x)
right_elbow_angle = calculate_angle_2d(right_shoulder_x, right_elbow_x, right_wrist_x)
right_hip_angle = calculate_angle_2d(right_knee_x, right_hip_x, right_shoulder_x)
right_knee_angle = calculate_angle_2d(right_hip_x, right_knee_x, right_ankle_x)
```

2. การคำนวณความถูกต้องของท่าออกกำลังกาย

- โปรแกรมจะคำนวณมุมทั้ง 8 มุม และใช้โมเดลทำนายว่าเป็นท่าออกกำลัง กายประเภทใด
- การตรวจสอบความถูกต้องของท่าแต่ละประเภทจะมีการคำนวณที่แตกต่าง กัน เช่น ระยะห่าง, มุมในระบบ 2D และ 3D หรือเปรียบเทียบตำแหน่งใน แกน X และ Y

ตัวอย่างเงื่อนไขในแต่ละท่า

1. Dumbbell Row

- ใช้ตำแหน่งแกน Y เปรียบเทียบ : left_elbow.y * 1.05 < back_mid[1] ถ้า เงื่อนไขนี้เป็นจริงแสดงว่าคนในวิดีโอนั้นเดึงแขนขึ้นมาสูงเกินไปและจะแสดง ข้อความว่า Elbow too high และมีการใช้การเปรียบเทียบมุมในระบบ 2 มิติ กับแขนข้างที่ไม่ได้ยกน้ำหนัก ถ้ามุมของข้อศอกน้อยกว่า 130 องศา ถือว่า แขนงอเกินไปจะแสดงข้อความว่า keep the support arm straight

```
if left_elbow.y*1.05 < back_mid[1]:
    set_error("elbow_hi",7,["elbow_hi","arm_st"])
    cv2.putText(frame, f'Elbow too high', (10, 260), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

if rightangle2 < np.degrees(2.26892803 ) : # 130 degree
    set_error("arm_st",7,["elbow_hi","arm_st"])
    cv2.putText(frame, f'keep the support arm straight', (10, 290), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)</pre>
```

2. Bicep Curl

- ใช้ตำแหน่งแกน X เปรียบเทียบและระยะห่างในระบบ 3 มิติ : elbow_x > left_elbow.x โดย elbow_x คือค่า left_elbow.x เมื่อ 5 frame ที่แล้ว ถ้าค่า x เปลี่ยนไปเกิน sho_hip_dis * 0.1(ระยะห่างของสะโพกกับไหล่) แสดงว่าเกิน การขยับข้อศอกมากเกินไป จะแสดงข้อความว่า FIX Elbow

3. Squat

- ใช้การคำนวณมุม ระยะห่างในระบบ 3 มิติ และมุมในระบบ 2 มิติ : เปรียบ เทียบ squat_angle > np.degrees(2.7925268) #160 degree เงื่อนไขนี้ คือตอนที่กำลังยืน (คำนวณได้แม่นยำเฉพาะตอนยืน) เปรียบเทียบ ankle_distance > (shoulder_distance * 1.43) ถ้าเงื่อนไขเป็นจริงแสดงว่า ท่าทางมีการวางเท้าที่กว้างเกินไป จะแสดงข้อความว่า adjust your ankle closer และในทางตรงกันข้ามแสดงว่าท่าทางมีการวางเท้าแคบเกินไป จะ แสดงข้อความว่า adjust your ankle wider
- เปรียบเทียบ right_knee.x < right_foot_index.x และ right_knee.x +
 (squat_stand) < right_foot_index.x เป็นจริง แสดงว่าตำแหน่งของเข่านั้น
 เลยนิ้วเท้าไป จะแสดงข้อความว่า false knee position

```
squat_angle = calculate_angle(
    a: [right_hip.x, right_hip.y, right_hip.z],
    b: [right_knee.x, right_knee.y, right_knee.z],
    c: [right_ankle.x, right_ankle.y, right_ankle.z]
)
squat_angle2 = calculate_angle_2d(
    a: [right_hip.x, right_hip.y],
    b: [right_knee.x, right_knee.y],
    c: [right_ankle.x, right_ankle.y]
)
```

4. Lat Pulldown

- ใช้การคำนวณระยะห่างในระบบ 3 มิติ : เปรียบเทียบ wrist_distance > shoulder_distance * 2.5 ถ้าเงื่อนไขเป็นจริงแสดงว่า การใช้มือจับอุปกรณ์ นั้นห่างเกินไป จะแสดงข้อความว่า Keep Wrists Closer

```
shoulder_distance = calculate_distance(
    [right_shoulder.x, right_shoulder.y, right_shoulder.z],
    [left_shoulder.x, left_shoulder.y, left_shoulder.z]
)
wrist_distance = calculate_distance(
    [right_wrist.x, right_wrist.y, right_wrist.z],
    [left_wrist.x, left_wrist.y, left_wrist.z]
)
if wrist_distance > shoulder_distance * 2.5:
    set_error("wrist_cl",7)
    cv2.putText(frame, "Keep Wrists Closer", (10, 260), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
```

5. Incline Dumbbell Press

- ใช้การคำนวณมุมแบบ 3 มิติ แลการเทียบตำแหน่งในแกน y เปรียบเทียบ left_elbow.y * 0.95 > left_shoulder.y คือท่าทางในการดันน้ำหนักขึ้น
- ถ้าเงื่อนไข shoulder_angle > np.degrees (2.7925268) เป็นจริงแสดงว่า ข้อศอกนั้นกางออกเกินไป(เกิน 160 องศา)
- ถ้าเงื่อนไข shoulder_angle < np.degrees (1.0471976) เป็นจริงแสดงว่า
 ข้อศอกนั้นหุบเข้าหาลำตัวเกินไป (น้อยกว่า 60 องศา)

การเทรนโมเดล (Model Training)

ใช้โมเดล LSTM (Long Short-Term Memory) ซึ่งเป็นหนึ่งในเทคนิคของ **Deep Learning** โดยนำข้อมูลที่ผ่านการ Pre-processing มาใช้ในการเทรนโมเดล
ตามขั้นตอนดังนี้

- 1. การเตรียมข้อมูล (Data Preparation)
 - อ่านข้อมูลจากไฟล์ CSV ซึ่งมีค่ามุมทั้ง 8 มุมและประเภทของท่าออกกำลัง กายทั้งหมด 5 ท่าได้แก่ Squat, Bicep Curl, Dumbbell Row, Incline Dumbbell Press และ Lat Pulldown
 - แปลงค่าประเภทของท่าออกกำลังกายให้เป็นตัวเลขด้วย LabelEncoder จาก sklearn เพื่อใช้ในกระบวนการเทรน
 - การปรับขนาดข้อมูล (Standardization) : ใช้ StandardScaler ปรับข้อมูล ให้อยู่ในช่วงมาตรฐาน (Mean = 0, Std = 1) เพื่อช่วยให้โมเดลเรียนรู้ได้ดีขึ้น
- 2. การสร้างลำดับข้อมูล (Sequence Preparation)
 - แบ่งข้อมูลตามเฟรม โดยแต่ละเฟรมจะถือเป็น 1 ข้อมูล (1 frame = 1 data)
 - กำหนดประเภทของท่าออกกำลังกาย (Labels) จะถูกกำหนดให้กับแต่ละ เฟรมของวิดีโอ ซึ่งจะแสดงถึงประเภทของท่าที่ปรากฏในเฟรมที่เกี่ยวข้อง ตัวอย่างเช่น ถ้าในเฟรมที่ 1-40 แสดงท่า Squat ก็จะกำหนด Label : Squat ให้กับแต่ละเฟรมในลำดับนั้น
- 3. การแบ่งชุดข้อมูล (Data Splitting)
 - Training Set : 80% ใช้สำหรับฝึกโมเดล
 - Test Set: 20% ใช้สำหรับทดสอบประสิทธิภาพของโมเดล
- 4. การสร้างโมเดล LSTM (LSTM Model Architecture)

โครงสร้างของโมเดล มีดังนี้

- LSTM Layer ประกอบไปด้วย LSTM 2 ชั้นที่มีจำนวน 64 units ในแต่ละชั้น โดยชั้นแรกจะมีการตั้งค่า ReturnSequences = True เพื่อส่งข้อมูลไปยัง LSTM ชั้นถัดไป
- ใช้ Dropout ในการลดปัญหาการเกิด overfitting โดยตั้งค่า Dropout Rate ที่ 20%
- หลังจากการประมวลผลจาก LSTM จะมี Dense Layer ที่ประกอบด้วย 32 units พร้อมกับ activation function แบบ ReLU
- Output Layer ใช้ Softmax เพื่อให้การจำแนกประเภทท่าทางออกกำลังกาย (5 ประเภท) โดยมีผลลัพธ์เป็นค่าความน่าจะเป็นของท่าทางแต่ละประเภท

เหตุผลที่เลือกใช้ LSTM (Long Short-Term Memory)

ในโครงงานนี้ การใช้ LSTM (Long Short-Term Memory) เป็นทางเลือกที่ เหมาะสมที่สุดสำหรับการตรวจจับและจำแนกท่าออกกำลังกายจากข้อมูลวิดีโอ เนื่องจาก LSTM เป็นส่วนหนึ่งของ Recurrent Neural Networks (RNN) ที่ได้รับ การออกแบบมาเพื่อจัดการกับข้อมูลที่มีลำดับ (Sequence Data) ซึ่งสามารถ ประมวลผลข้อมูลที่มีการเปลี่ยนแปลงต่อเนื่อง เช่น ข้อมูลการเคลื่อนไหวของ ร่างกายในแต่ละเฟรมของวิดีโอ

- จัดการกับข้อมูลลำดับ (Sequential Data): ท่าออกกำลังกายที่ใช้ในโครง งานนี้เกี่ยวข้องกับการเคลื่อนไหวที่มีลำดับและต่อเนื่อง เช่น การยืดและงอ ของข้อต่อในท่า Squat หรือ Dumbbell Row ข้อมูลเหล่านี้มีการ เปลี่ยนแปลงตามเวลาจากเฟรมหนึ่งไปยังเฟรมถัดไป ซึ่ง LSTM สามารถ จัดการได้ดี เพราะมันถูกออกแบบมาเพื่อจัดการกับข้อมูลที่มีลำดับยาวและ สามารถจดจำข้อมูลในระยะยาวได้

- สามารถจดจำข้อมูลระยะยาว (Long-Term Dependencies): LSTM สามารถแก้ปัญหาการหายไปของเกรเดียนท์ (Vanishing Gradient Problem) ที่พบใน RNN ทั่วไปได้ จึงสามารถจดจำข้อมูลที่สำคัญระยะยาว ได้ เช่น การเชื่อมโยงการเคลื่อนไหวในเฟรมห่างกันได้
- **ประสิทธิภาพในข้อมูลที่มีการเปลี่ยนแปลงตามเวลา**: การออกกำลังกาย แต่ละท่ามีการเคลื่อนไหวที่ต้องเชื่อมโยงกับท่าทางในลำดับต่าง ๆ ซึ่ง LSTM สามารถ "จำ" ลำดับของการเคลื่อนไหวที่ซับซ้อนและแยกแยะความแตกต่าง ของท่าออกกำลังกายได้ดี
- สามารถทำงานร่วมกับข้อมูลที่ได้จาก MediaPipe: ในโครงงานนี้ ข้อมูล จาก MediaPipe ที่ใช้ในการสร้าง skeleton และคำนวณมุมของข้อต่อใน แต่ละเฟรมของวิดีโอจะถูกส่งเข้าโมเดล LSTM ซึ่งจะช่วยให้โมเดลสามารถ เรียนรู้จากลำดับของการเคลื่อนไหวจากแต่ละจุด (เช่น ข้อมือ, ข้อศอก, หัว เข่า) ได้อย่างแม่นยำ

การพัฒนา Web Application

หลังจากการสร้างโมเดลเสร็จสมบูรณ์ เราได้พัฒนา Web Application เพื่อ อำนวยความสะดวกให้ผู้ใช้งานสามารถเข้าถึงโปรแกรมได้จากทุกที่ผ่านเว็บ เบราว์เซอร์ โดยไม่จำเป็นต้องติดตั้งซอฟต์แวร์เพิ่มเติม ซึ่ง Web Application ถูก พัฒนาขึ้นโดยใช้เทคโนโลยีดังนี้

- 1. **Streamlit** : ใช้ในการพัฒนาโครงสร้างหลักของ Web Application ช่วย ให้การสร้างหน้าเว็บเป็นไปอย่างรวดเร็ว
- 2. **React** : ใช้ในการพัฒนา User Interface (UI) เพื่อให้หน้าเว็บมีความทันสมัย ใช้งานง่าย และตอบสนองต่อผู้ใช้ได้อย่างราบรื่น
- 3. Python : ใช้ในการเรียกใช้งานโมเดลที่พัฒนาขึ้น โดยเชื่อมต่อกับส่วนของ Web Application เพื่อประมวลผลข้อมูลที่ผู้ใช้งานส่งมา

Web Application มีหน้าเว็บทั้งหมด 4 หน้า ดังนี้

1. หน้ายินดีต้อนรับสู่โปรแกรม

- แสดงข้อความต้อนรับผู้ใช้งาน พร้อมอธิบายสั้น ๆ เกี่ยวกับโปรแกรม
- จัดทำให้ผู้ใช้งานสามารถเข้าใจวัตถุประสงค์ของโปรแกรมได้อย่าง รวดเร็ว

2. หน้าแสดงรายชื่อสมาชิก

- ระบุชื่อและรหัสนักศึกษาของสมาชิกในโครงงาน

3. หน้าแสดงคำแนะนำก่อนเริ่มใช้โปรแกรม

- อธิบายวิธีการเตรียมวิดีโอและข้อควรระวังในการอัปโหลดไฟล์
- เพิ่มความเข้าใจแก่ผู้ใช้งานเกี่ยวกับการใช้งานโปรแกรมอย่างถูกต้อง และมีประสิทธิภาพ

4. หน้าใช้งานโปรแกรม

- ผู้ใช้งานสามารถอัปโหลดวิดีโอการออกกำลังกายเข้าสู่ระบบได้
- โปรแกรมจะวิเคราะห์ข้อมูลจากวิดีโอ โดยใช้โมเดลที่พัฒนาขึ้น และ แสดงผลลัพธ์ เช่น ประเภทของท่าออกกำลังกาย ข้อผิดพลาด และคำ แนะนำในการปรับปรุงท่า

สรุปคือ Web Application นี้สามารถ

- รองรับการใช้งานจากหลากหลายอุปกรณ์ : ผู้ใช้งานสามารถใช้ Web
 Application ผ่านคอมพิวเตอร์หรืออุปกรณ์พกพา เช่น โทรศัพท์มือถือหรือ
 แท็บเล็ต
- **การประมวลผลแบบอัตโนมัติ** : ระบบสามารถประมวลผลวิดีโอและแสดง ผลลัพธ์ได้ในระยะเวลาอันสั้น
- **ไม่ต้องติดตั้งซอฟต์แวร์เพิ่มเติม** : ช่วยลดความยุ่งยากในการใช้งาน และ เพิ่มความสะดวกสำหรับผู้ใช้

ข้อจำกัดของโปรแกรม

- 1. โปรแกรมรองรับท่าออกกำลังกายเพียง 5 ประเภท ได้แก่ Squat, Bicep Curl, Incline Dumbbell Press, Dumbbell Row และ Lat Pulldown ทำให้ไม่ สามารถตรวจจับหรือให้คำแนะนำสำหรับท่าออกกำลังกายประเภทอื่นได้
- 2. MediaPipe อาจไม่สามารถตรวจจับ Landmark ได้อย่างแม่นยำในบางกรณี เช่น การจับภาพที่มีแสงไม่เพียงพอ หรือมุมกล้องที่ไม่เหมาะสม ส่งผลให้การ คำนวณมุมและการให้คำแนะนำแก่ผู้ใช้ผิดพลาด
- 3. โปรแกรมมีข้อจำกัดในการคำนวณท่าทางที่ซับซ้อน โดยเฉพาะในระบบ 3 มิติที่อาจไม่แม่นยำ เนื่องจากข้อจำกัดในการจับตำแหน่งของ Landmark ที่ ได้กล่าวไปข้างต้นในข้อที่ 2
- 4. เพื่อให้การคำนวณและการคาดเดาของโมเดลถูกต้อง มุมกล้องในวิดีโอต้อง อยู่ในทิศทางที่กำหนดตามคำแนะนำ "How to use" ดังนั้นการถ่ายทำในมุม ที่ไม่เหมาะสมอาจส่งผลต่อประสิทธิภาพของโมเดล
- 5. การประมวลผลวิดีโออาจใช้เวลานาน โดยเฉพาะวิดีโอที่มีความยาวหรือ เฟรมเรตสูง
- 6. หากมีการเปลี่ยนท่าออกกำลังกายในคลิปเดียวกัน ช่วงที่เริ่มทำท่าต่อไปอาจ เกิดดีเลย์เล็กน้อยในการคาดเดาท่าของโมเดล เนื่องจากขึ้นอยู่กับความยาว ของลำดับข้อมูล (sequence length)
- 7. Web Application รองรับไฟล์วิดีโอที่มีขนาดไม่เกิน 200MB และต้องเป็น ไฟล์วิดิโอเท่านั้น รวมไปถึงไม่สามารถรองรับ Real-Time ได้
- 8. เมื่อคลิปวิดีโอประมวลผลเสร็จแล้ว ไม่สามารถที่จะแสดงบน Web Application ได้ทันที จำเป็นที่จะต้องดาวน์โหลดเพื่อเปิดดูคลิปที่ผ่านการ ประมวลผลแล้วเท่านั้น
- 9. Web Application รองรับการประมวลผลได้ที่ละวิดีโอ ไม่สามารถประมวล ผลหลายวิดีโอ ได้ในเวลาเดียวกัน

ผลการทดลอง (Experiment results)

โครงงานนี้ได้ทำการเทรนโมเดล ได้แก่ **LSTM**, **GRU** และ **MLP** โดยเทรนโมเดลทั้ง 3 ตัวด้วยข้อมูลในไฟล์ output.csv ซึ่งมีมุมทั้งหมด 8 มุม ได้แก่ ข้างขวา : right_shoulder_angle, right_elbow_angle, right_hip_angle, right_knee_angle ข้างซ้าย : left_shoulder_angle, left_elbow_angle, left_hip_angle, left_knee_angle

ทำการตรวจสอบความแม่นยำ MLP โมเดล ด้วย sklearn train_test_split ใน การแยกข้อมูลไว้ทดสอบ 20% และใช้ accuracy_score ในการวัดความแม่ยำเ การ ตรวจสอบความแม่นยำ GRU และ LSTM โมเดลด้วย sklearn train_test_split ใน การแยกข้อมูลไว้ทดสอบ 20% ใช้ tensorflow.keras.models Sequential และใช้ function evaluate ได้ค่าความแม่นยำเป็น

LSTM: 99.91%, GRU: 93.10%, MLP: 100%

ได้ทำการทดลองใช้โมเดล ที่ทำการ train กับวิดีโอชุดเดียวกันทั้งหมด โดย ชุดวิดีโอเป็นวิดีโอที่ใช้ในการทำไฟล์ output.csv และได้หาความถูกต้องในการ คาดเดาของแต่ละโมเดลบนชุดข้อมูลวิดีโอทดสอบได้ผลลัพธ์ดังนี้

LSTM: 99.9616%, GRU: 12.7177%, MLP: 15.6333%

โมเดล LSTM มีประสิทธิภาพสูงกว่าโมเดล GRU และ MLP ในการทำนาย frame ของการออกกำลังกายอย่างมีนัยสำคัญ ในทางกลับกัน โมเดล GRU และ MLP มี ความถูกต้องต่ำกว่า ซึ่งบ่งชี้ว่าพวกมันมีประสิทธิภาพน้อยกว่าในงานนี้

สรุปผลการทดลองใช้โมเดล

โมเดลที่ใช้	ความแม่นยำที่ได้จาก การประเมิน	ความแม่นยำที่ได้จาก ทดลองใช้จริง
LSTM	99.91%	99.9616%
GRU	93.10%	12.7177%
MLP	100%	15.6333%

ความสามารถในการหา Long-Term Dependencies

- LSTM: Memory cells และ Gating mechanisms (มี 3 gate 1. input gate 2. Forget gate 3. Output gate) ใน LSTM ทำให้มีประสิทธิภาพในการหา Long-Term Dependencies: ในข้อมูลลำดับ ซึ่งเป็นสิ่งสำคัญสำหรับงาน อย่างการทำนาย frame การออกกำลังกายที่โมเดลจำเป็นต้องจำและใช้ ข้อมูลจาก frame ก่อนหน้า
- **GRU** : แม้ว่า GRU สามารถหา long-term dependencies ได้ แต่โครงสร้างที่ ง่ายกว่า(มีแค่ 2 gate 1. update gate 2. reset gate)น่าจะไม่สามารถรักษา และใช้ข้อมูลนี้ได้อย่างมีประสิทธิภาพเท่ากับ LSTM ในข้อมูลลำดับที่ยาวขึ้น

ความเร็วในการเทรนโมเดล

- LSTM : มีพารามิเตอร์จำนวนมากขึ้น และ gate จำนวนมาก ใช้เวลาในการ train และใช้การคำนวณที่มากกว่า GRU
- **GRU** : สถาปัตยกรรมที่ง่ายกว่าของ GRU จำนวน gate น้อยกว่าหมายถึงการ คูณเมทริกซ์น้อยกว่า มีประโยชน์ในการเทรนที่เร็วกว่าและลดภาระในการ คำนวณ

ความเร็วในการคาดเดาคำตอบ

- **LSTM** : ความซับซ้อนของการดำเนินการของ LSTM สามารถทำให้เวลาใน การประมวลผลต่อลำดับที่ยาวขึ้น
- **GRU** : การประมวลเร็วขึ้นเนื่องจากโครงสร้างที่ง่ายกว่า ทำให้มีประสิทธิภาพ มากขึ้นสำหรับการใช้งาน real-time

บทสรุปของโครงงาน

โครงงาน Exercise Pose Correction and Classification มีเป้าหมายเพื่อ พัฒนาโปรแกรมที่สามารถช่วยผู้ใช้งานตรวจจับข้อผิดพลาดในท่าทางการออก กำลังกาย พร้อมทั้งให้คำแนะนำการปรับปรุงเทคนิคให้อยู่ในลักษณะที่ถูกต้องและ ปลอดภัย นอกจากนี้ยังสามารถจำแนกประเภทท่าทางการออกกำลังกายได้อย่าง แม่นยำ โดยมีการรองรับท่าพื้นฐาน 5 ท่า ได้แก่ Squat, Bicep Curl, Incline Dumbbell Press, Dumbbell Row และ Lat Pulldown

เครื่องมือและเทคโนโลยีที่ใช้

- MediaPipe สำหรับการตรวจจับ Skeleton และสร้าง Landmark ของ ร่างกาย
- LSTM โมเดล ใช้ในการวิเคราะห์และจำแนกท่าทางจากข้อมูลที่ได้ โดยได้ค่า Accuracy อยู่ที่ 99.9616%
- Web Application พัฒนาด้วย Python (Streamlit) และ React เพื่อให้ผู้ใช้ งานสามารถอัปโหลดวิดีโอและรับคำแนะนำได้ง่าย

ขอบเขตการทำงาน

ระบบสามารถตรวจจับจุดสำคัญบนร่างกาย เช่น ข้อศอก หัวไหล่ สะโพก และเข่า เพื่อคำนวณมุมที่จำเป็นสำหรับการวิเคราะห์ข้อผิดพลาดและแนะนำการปรับปรุง โดยข้อมูลทั้งหมดถูกประมวลผลผ่านโมเดล LSTM ที่พัฒนามาจากชุดข้อมูลที่ผ่าน การ Pre-process ด้วย MediaPipe

การต่อยอดในอนาคต (Future work)

- 1. หาวิธีคำนวณมุมกล้องและใช้ range มุมกล้องเพื่อเลือกโมเดลที่ใช้ข้อมูลจาก มุมกล้องนั้นๆ ในการทำนายผลให้แม่นยำขึ้น หรือใช้ range มุมกล้องไปเป็น feature ของโมเดล
- 2. ศึกษาและปรับปรุง pipeline ของ MediaPipe เพื่อให้สามารถตรวจจับและ สร้าง landmarks ได้แม่นยำยิ่งขึ้น ซึ่งจะช่วยในการคำนวณข้อผิดพลาด ต่างๆ ได้ถูกต้องและหลากหลายมากขึ้น
- 3. เพิ่ม features ในการตรวจจับอุปกรณ์ (เช่น ดัมเบล) เพื่อเพิ่มความแม่นยำ ในการจำแนกท่าทาง เนื่องจากท่าที่มีมุมการเคลื่อนไหวคล้ายกันอาจมีความ แตกต่างกันตามการใช้อุปกรณ์ เช่น bicep curl กับ tricep push down
- 4. เพิ่มความหลากหลายของ Dataset โดยเก็บข้อมูลในสภาพแวดล้อมที่แตก ต่างกัน เช่น มุมกล้องหลายมุม ระดับแสงที่แตกต่างกัน เพื่อให้โมเดลสามารถ ทำงานได้แม่นยำในหลายสถานการณ์