תרגילים: NP שלמות

שאלה 1 האם הטענה הבאה נכונה, לא נכונה, או שקולה לבעיה פתוחה.

 $.NP = Co\,NP$ אזי $A \leq_P ar{A}$ אם $A \leq_P ar{A}$

 $A \leq_P C$ אזי $B \leq_P C$ וגם $A \leq_P B$ אם A, B, C אזי $B \leq_P C$ הוכיחו כי לכל $B \leq_P C$

שאלה 3

תשובות

שאלה 1 הטענה שקולה לבעיה פתוחה:

ידוע כי לכל בעייה $A=\Sigma^*$ ווא האומר למעט $A\leq_P \bar{A}$ מתקיים מתקיים לבי לכל בעייה אומר כלום לגבי השאלה $A\in P\subseteq NP$ מתקיים לבי האומר כי לכל בעייה A=0

 $NP = Co\,NP$ -שלמה, יכול להתקיים לפי הנתון ש- יכול -NP איא אם A

 $w \in \Sigma^*$ לכל $w \in A \Leftrightarrow f(w) \in B$ שמקיימת $A \leq_P B$ לכל הרדוקצית הרדוקצית מהי

 $w\in \Sigma^*$ לכל $w\in B\Leftrightarrow f(w)\in C$ שמקיימת שמקיימת הרדוקציה הרדוקציה לכל

 $A \leq_P C$ נוכיח שקיימת רדוקציה

h פונקצית הרדוקציה

$$h(w) = g\left(f(w)\right)$$
 נגדיר $w \in \Sigma^*$ לכל

נכונות הרדוקציה

 $w\in A\Leftrightarrow h(w)\in C$ שלב 1. נוכיח כי

- $.h(w) = g\left(f(w)\right) \in C \Leftarrow f(w) \in B \Leftarrow w \in A$ אם •
- $.h(w) = g\left(f(w)\right) \notin C \Leftarrow f(w) \notin B \Leftarrow w \notin A$ אם •

שלב 2. נוכיח כי h חשיבה בזמן פולינומיאלי:

f את הפולינומם של p_f את הפולינומם

g את הפולינומם של ב- נסמן ב-

: אזי לכל $w \in \Sigma^*$ אזי לכל, $w \in \Sigma^*$ אזי לכל

$$p_f(|w|) + p_g(|f(w)|) \le p_f(|w|) + p_g(p_f(|w|)) = p_f(|w|) + (p_f \circ p_f)(|w|)$$

|w| באטן פולינומיאלי פולינומים. לכן ניתן לחשב את $p_f \circ p_f$ הוא הרכבה של שני פולינומים. לכן ניתן לחשב

שאלה 3