Desenvolvimento Econômico

Aula 6: Infraestrutura

Ricardo Dahis

Infraestrutura e desenvolvimento

- Infraestrutura melhor para eletricidade, água, etc deveria aumentar produtividade e saúde.
 - Capital humano, inovação.
- ► Infraestrutura melhor para transportes e comunicação deveria aumentar produtividade e facilitar trocas.
 - Integração de mercados, comércio, urbanização.

Hoje

Ferrovias

Celulares

Eletrificação

Hoje

Ferrovias

Celulares

Eletrificação

Donaldson (2018) Railroads of the Raj

- Pergunta grande: benefícios de infraestrutura de transportes em comércio.
 - ▶ (Foi seu job market paper. Demorou \approx 10 anos (!) para publicar.)
- Historiadores econômicos adoram.
 - Coleta de dados de arquivos.
 - Conhecimento institucional para usar sal como objeto de estudo.
- Economistas de comércio adoram.
 - Model de comércio com equilíbrio geral que permite medir efeitos em bem-estar.
 - Contribuição teórica: estatística suficiente para ganhos de bem-estar com custos menores de comércio.
 - Forma nova (para economia) de calcular rotas de custo mínimo.
- Economistas em desenvolvimento/trabalho adoram.
 - Análise empírica cuidadosa, e.g. testes placebo.

Crescimento de ferrovias no tempo

Teoria

Quatro passos:

- 1. Diferenciais de preço medem custos de comércio.
- 2. Fluxos de comércio bilateral seguem uma fórmula de "gravidade".
- 3. Ferrovias aumentam renda real.
- 4. Existe uma estatística suficiente para o ganho em bem-estar de ferrovias através de comércio.

Medindo custos de comércio

- Como medir redução no custo de comércio por ferrovias?
- Gaps de preço não são suficiente se há múltiplas rotas.
- Commodity homogênea que origina em uma locação (e lei de não-arbitragem no espaço)

$$\ln p_{dt}^o = \ln p_{ot}^o + \delta T_{odt}^o$$

Medindo custos de comércio

- Sais regionais na Índia
- ► Tem uma origem conhecida e observamos preços em diversos mercados

$$\ln p_{dt}^o = \beta_{ot}^o + \beta_{dt}^o + \delta \ln LCRED(R_t, \alpha)_{odt} + \varepsilon_{odt}^o$$

- ► Resolve computacionalmente usando grid de transporte com estradas, rios, costa, ferrovias.
- Assume preços, encontra rota de mínimo custo entre rotas possíveis, e itera.
- Minimiza soma do quadrado de resíduos para estimar preços (relativos) de usar diferentes opções de transporte.
 - Há um preço relativo constante por quilômetro?

Passo 1: Custos de comércio $\downarrow \implies$ preços \downarrow

TABLE 2—RAILROADS AND TRADE COSTS: STEP 1

Dependent variable: log salt price at destination	(1)	(2)
log effective distance to source, along lowest-cost route (at historical freight rates)	0.088 (0.028)	
log effective distance to source, along lowest-cost route (at estimated mode costs)		0.169 [0.062, 0.296]
Estimated mode costs per unit distance: Railroad (normalized to 1)		$\frac{1}{N/A}$
Road		2.375 [1.750, 10.000]
River		2.250 [1.500, 6.250]
Coast		6.188 [5.875, 10.000]
Observations R^2	7,345 0.946	7,345 0.946

Ferrovias aumentam comércio?

- Poderia regredir volumes de comércio em se a localização tem uma rodovia.
- ► Encontra efeito assim (versão anterior do artigo) mas não captura todos os benefícios em equilíbrio geral
- Usa informações mais ricas de custos de comércio entre pares de localizações e seus comércios bilaterais para 17 commodities.

Passo 2: Custos de comércio ↓ ⇒ comércio ↑

TABLE 3—RAILROADS AND TRADE FLOWS: STEP 2

Dependent variable: log value of exports	(1)	(2)
log effective distance beween origin and destination along lowest-cost route	-1.603 (0.533)	-1.701 (1.141)
(log effective distance beween origin and destination along lowest-cost route) \times (weight per unit value of commodity in 1890)		-0.946 (3.634)
(log effective distance beween origin and destination along lowest-cost route) \times (high-value railroad freight class of commodity in 1859)		1.286 (1.243)
Observations R^2	142,541 0.901	142,541 0.901

Passo 3: Custos de comércio $\downarrow \implies$ renda \uparrow

TABLE 4—RAILROADS AND REAL INCOME LEVELS: STEP 3

Dependent variable: log real agricultural income	(1)	(2)	(3)	(4)
Railroad in district	0.164 (0.049)	0.158 (0.048)	0.160 (0.050)	0.167 (0.050)
Unbuilt railroad in district, abandoned after proposal stage		0.057 (0.058)		
Unbuilt railroad in district, abandoned after reconnaissance stage		0.013 (0.099)		
Unbuilt railroad in district, abandoned after survey stage		-0.069 (0.038)		
(Unbuilt railroad in district, included in Lawrence Plan 1869–1873) × (post-1871 indicator)			0.067 (0.104)	
(Unbuilt railroad in district, included in Lawrence Plan 1874–1878) × (post-1874 indicator)			-0.019 (0.092)	
(Unbuilt railroad in district, included in Lawrence Plan 1879–1883) × (post-1879 indicator)			0.095 (0.084)	
(Unbuilt railroad in district, included in Lawrence Plan 1884–1888) × (post-1884 indicator)			-0.072 (0.075)	
(Unbuilt railroad in district, included in Lawrence Plan 1889–1893) × (post-1889 indicator)			0.047 (0.049)	
(Unbuilt railroad in district, included in Lawrence Plan 1894–1898) × (post-1894 indicator)			-0.088 (0.086)	
(Unbuilt railroad in district, included in Kennedy plan, high-priority) × (year-1848)				-0.0001 (0.002)
(Unbuilt railroad in district, included in Kennedy plan, low-priority) $\times (\text{year-}1848)$				$0.001 \\ (0.003)$
Observations R^2	7,086 0.848	7,086 0.848	7,086 0.848	7,086 0.848

Por que ferrovias afetam renda de agricultura?

- ▶ Um mecanismo é o Ricardiano: região pode focar em sua vantagem comparativa, vender para um mercado maior e importar os bens que não são sua especialidade.
- Estatística suficiente em Eaton and Kortum (2002) é a porcentagem de consumo próprio que o lugar "compra" do próprio lugar.
- Quais são outras formas que ferrovias poderiam afetar renda de agricultura?
- Quais são outros outcomes que importam para bem-estar total que não são capturados por renda de agricultura?

Passo 4: Estatística suficiente do modelo para ganhos de bem-estar

TABLE 5—A SUFFICIENT STATISTIC FOR RAILROAD IMPACT: STEP 4

log real ag. income, corrected for rainfall:	(1)	(2)
Railroad in district	0.258 (0.050)	0.124 (0.050)
"Trade share," as computed in model		-1.587 (0.177)
Observations	7,086	7,086
R^2	0.835	0.844

Hoje

Ferrovias

Celulares

Eletrificaçã

Introdução de celulares em Kerala

- ▶ Jensen (2007) estuda os efeitos de celulares na Índia
- Exemplo fantástico de
 - ▶ Benefícios de TI para pobres em países em desenvolvimento
 - ► Como informação melhora o funcionamento de mercados

Como celulares afetaram pescadores

- Distribuição em estágios entre três regiões de Kerala.
- Pescadores adotaram celulares para procurarem melhor preço de peixe.
- Antes: vendiam no mercado mais próximo.
 - Variação de preço em mercados vizinhos
 - Preço zero quando compradores vão embora: peixe desperdiçado
- Agora: podem procurar o melhor preço entre mercados.

Entrada em estágios

Spread of Mobile Phone Coverage in Kasaragod, Kannur, and Kozhikode Districts

Pescadores mudam onde vendem seu peixe

 ${\bf TABLE~II}$ Mobile Phone Introduction and Changes in Fish Marketing Behavior

	Period 0 (pre-phone)	Period 1 (region I adds phones)	Period 2 (region II adds phones)	Period 3 (region III adds phones)
Percent of fishermen who fish in local catchment zone				
Region I	0.98 (0.003)	0.99 (0.001)	0.98 (0.001)	0.98 (0.002)
Region II	0.99 (0.002)	0.98 (0.001)	0.99 (0.01)	0.99 (0.001)
Region III	0.98 (0.002)	0.98 (0.001)	0.98 (0.001)	0.99 (0.001)
Percent of fishermen who sell in local catchment zone				
Region I	1.00 (0.00)	0.66 (0.005)	0.63 (0.005)	0.62 (0.006)
Region II	1.00 (0.00)	1.00 (0.00)	0.64 (0.004)	0.58 (0.006)
Region III	1.00 (0.00)	1.00 (0.00)	1.00 (0.00)	0.70 (0.005)
Number of fishing units				
Region I	83	85	85	89
Region II	69	74	75	75
Region III	53	55	54	56

Preços entre mercados

Prices and Mobile Phone Service in Kerala

Excedente para produtores e consumidores

Changes in Welfare Associated with Arbitrage

- ▶ Saldo de bem-estar: (B + C) (E + F).
 - ightharpoonup Consumidores para produtores: D A
 - ightharpoonup Consumidores: (A+B)-(D+E)
 - ▶ Produtores: (C A) + (D F)

Quem se beneficiou?

- ▶ Melhorar o funcionamento de mercados aumenta bem-estar total.
- A priori, não sabemos como os ganhos são compartilhados entre consumidores e produtores.
- Aqui, o excedente dos dois grupos aumentou.
 - Menos peixe desperdiçado. Produtores não recebem mais preço zero.
 - Consumidores recebem preço menor e menos flutuação.
- ► Além disso, externalidades para quem não adotou.

Efeitos para produtores e consumidores

 ${\bf TABLE\ VIII}$ Effects of Mobile Phones on Producers and Consumers: Pooled Treatments

	(1) Quantity sold	(2) Price	(3) Price (if >0)	(4) Revenue	(5) Costs	(6) Profits	(7) Profit users	(8) Profit nonuser	(9) Consumer price	(10) Consumer surplus
Phone	23	05	44	205	72	133	184	97	39	.14
	(8.4)	(0.03)	(0.03)	(62)	(5.6)	(60)	(90)	(47)	(0.22)	(0.04)
Region I	36	.25	19	370	3.7	367	458	306	.51	11
	(6.6)	(0.03)	(0.03)	(56)	(4.9)	(54)	(77)	(44)	(30)	(0.03)
Region II	22	.03	07	173	3.3	170	204	130	.38	03
	(5.2)	(0.02)	(0.02)	(42)	(3.0)	(40)	(57)	(35)	(0.27)	(0.02)
Period 1	-5.3	.48	.36	66	7.6	58	63	61	.22	16
	(10)	(0.03)	(0.03)	(59)	(4.2)	(58)	(94)	(43)	(0.05)	(0.04)
Period 2	-17	.64	.51	34	2.3	32	-6.3	62	.65	30
	(14)	(0.04)	(0.03)	(80)	(3.7)	(80)	(122)	(57)	(0.27)	(0.05)
Period 3	-7.8	1.0	.84	215	16	200	212	189	.81	48
	(16)	(0.05)	(0.04)	(99)	(6.0)	(97)	(145)	(74)	(0.35)	(0.05)
Observations	74,700	74,700	73,335	74,700	74,700	74,700	41,012	33,688	3,735	3,735

Hoje

Ferrovias

Celulares

Eletrificação

Efeitos de eletrificação no mercado de trabalho

- Dinkelman (2011) estuda os efeitos de eletrificação no mercado de trabalho, usando entrada em regiões rurais na África do Sul pós-Apartheid.
- ▶ De 1993 a 2003, 28% dos domicílios KwaZulu-Natal, ou 470k domicílios, eram eletrificados.
- Poderia mudar a demanda por trabalho
 - Mais negócios criados, incumbentes expandindo
 - ► Tecnologias poupadoras de trabalho
- Poderia mudar a oferta de trabalho
 - E.g. mulheres livres de trabalho doméstico

Localização não-aleatória

FIGURE 2. SPATIAL DISTRIBUTION OF GRADIENT AND ELECTRICITY PROJECT AREAS IN KWAZULU-NATAL

Notes: Shaded communities are in the analysis sample (N = 1,816). Thick lines depict electricity gridlines in 1996, triangles are electricity substations in 1996, and stars represent towns. Gradient is shown in the figure on the left: steeper areas are shaded dark, flatter areas are shaded light. Electricity Project areas are depicted in the figure on the right: project areas are shaded dark, lighter shaded areas are electrified after 2001 or not at all.

Localização não-aleatória

TABLE 1—BASELINE COMMUNITY VARIABLES BY ELECTRIFICATION PROJECT STATUS AND GRADIENT

	Means	(standard dev	viation)	Differences	in means (sta	ndard error)
Covariates in 1996	Full sample (1)	Eskom project (2)	No project (3)	Columns 2-3 (4)	By gra No controls (5)	Controls (6)
Poverty rate	0.61 (0.19)	0.59 (0.17)	0.61 (0.20)	-0.024** (0.01)	0.00 (0.00)	0.002 (0.00)
Female-headed HHs	0.55 (0.13)	0.55 (0.12)	0.55 (0.13)	0.00 (0.01)	0.005*** (0.00)	0.001 (0.00)
Adult sex ratio $(N_{females}/N_{males})$	1.48 (0.28)	1.41 (0.25)	1.49 (0.29)	-0.080*** (0.02)	0.011*** (0.00)	0.004** (0.00)
Indian, white adults \times 10	0.00 (0.01)	0.00 (0.00)	0.00 (0.01)	0.00 (0.00)	0.000 (0.00)	0.000 (0.00)
Kilometers to road	37.95 (24.57)	35.62 (24.18)	38.54 (24.64)	-2.917** (1.44)	-0.201 (0.41)	-0.156 (0.18)
Kilometers to town	38.57 (18.12)	36.34 (15.34)	39.13 (18.72)	-2.790*** (1.06)	0.278 (0.41)	0.180 (0.13)
Men with high school	0.06 (0.05)	0.08 (0.05)	0.06 (0.05)	0.016*** (0.00)	-0.002*** (0.000)	-0.003** (0.00)
Women with high school	0.07 (0.05)	0.08 (0.05)	0.06 (0.05)	0.020*** (0.00)	-0.002*** (0.000)	0.000 (0.00)
Household density	22.05 (30.48)	32.56 (49.31)	19.41 (22.75)	13.152*** (1.76)	-0.523* (0.31)	-0.944*** (0.30)
Kilometers from grid	19.06 (13.32)	15.75 (10.20)	19.89 (13.88)	-4.139*** (0.77)	-0.235 (0.36)	0.029 (0.12)
Land gradient	10.10 (4.89)	9.12 (4.21)	10.35 (5.02)	-1.232*** (0.29)		
N communities	1,816	365	1,451	1,816	1,816	1,816

Diff-in-Diff simples

TABLE 2—AVERAGE COMMUNITY-LEVEL EMPLOYMENT RATES IN 1996 AND 2001

		Means	(standard devi	ation)	Difference:
	Year	Full sample (1)	Eskom project (2)	No project (3)	Column 2-3 (4)
Female employment rate	1996	0.07 (0.08)	0.09 (0.07)	0.06 (0.08)	0.021*** (0.00)
	2001	0.07 (0.07)	0.08 (0.07)	0.06 (0.07)	0.017*** (0.00)
Difference	Δ_t	0.000 (0.002)	-0.003 (0.005)	0.001 (0.00)	-0.004 (0.00)
Male employment rate	1996	0.14 (0.11)	0.16 (0.11)	0.13 (0.11)	0.031*** (0.01)
	2001	0.10 (0.09)	0.11 (0.09)	0.10 (0.09)	0.014** (0.01)
Difference	Δ_t	-0.04*** (0.00)	-0.050*** (0.01)	-0.033*** (0.00)	-0.017*** (0.01)
N		1,816	365	1,451	, ,

Problema com o diff-in-diff

- ► Alguns fatores que determinaram acesso a eletricidade também associados com mais reestruturação industrial nos anos 1990.
- Expansão foi ao redor do grid.
- Grid tinha sido construído ao redor de fazendas comerciais e cidades brancas.
- Essas áreas viram declínio econômico e menos empregos depois do fim do Apartheid.

Duas alternativas

- O principal custo de eletrificação é na instalação de linhas entre sub-estações e domicílios.
- Custo menor para áreas perto de sub-estações e linhas pré-existentes, maior densidade de assentamentos, e terreno menos inclinado.
- Estratégia 1: usar o gradiente de inclinação para gerar variação exógena em eletrificação (dados do censo, menos outcomes)
 - Controlar para proximidade a sub-estações e linhas, e densidade de assentamentos (e pobreza, composição racial, etc).
- Estratégia 2: diff-in-diff controlando por tendências de distritos; usando dummy de domicílio eletrificado de *surveys*.
 - Mais outcomes para mecanismos dessa fonte de dados.
 - Não sabe unidade geográfica fina e amostra menor. Não pode usar estratégia de IV.

Especificação empírica

- Estratégia 1 usa dados de censos a nível de comunidade-ano (181 comunidades por distrito)
- Estima em primeiras diferenças entre 1996 e 2001

$$\Delta y_{jdt} = \alpha_1 + \alpha_2 \Delta T_{jdt} + X_{jd0} \beta + \lambda_d + (\delta_j + \varepsilon_{jdt})$$

- T_{idt} é acesso a eletricidade, usando dados administrativos
- \triangleright λ_d é tendência de distrito (dado a especificação de primeiras diferenças)
- Controles X_{jd0} permitem diferentes tendências por nível de pobreza, densidade, etc de comunidades.
- ▶ Instrumenta ΔT_{jdt} com o gradiente de inclinação médio da comunidade.

Primeiro estágio

TABLE 3—ASSIGNMENT TO ESKOM PROJECT: FIRST STAGE OLS ESTIMATES

Dependent variable: Eskom project $= [1 \text{ or } 0]$	(1)	(2)	(3)	(4)
$Gradient \times 10$	-0.083** (0.040)	-0.075** (0.034)	-0.078*** (0.027)	-0.077*** (0.027)
Kilometers to grid \times 10		-0.040* (0.021)	-0.012 (0.023)	-0.011 (0.023)
Household density \times 10		0.017*** (0.004)	0.012** (0.006)	0.013** (0.006)
Poverty rate		0.023 (0.069)	0.019 (0.070)	0.017 (0.069)
Female-headed HHs		0.393*** (0.120)	0.165 (0.107)	0.155 (0.107)
Adult sex ratio		-0.173*** (0.052)	-0.130*** (0.042)	-0.121*** (0.042)
Indian, white adults \times 10		-1.236*** (0.401)	-1.116** (0.459)	-1.105** (0.452)
Kilometers to road \times 10		0.003	-0.010 (0.010)	-0.010 (0.010)
Kilometers to town \times 10		0.016 (0.015)	0.008	0.008
Men with high school		-0.269 (0.500)	-0.185 (0.411)	-0.152 (0.417)
Women with high school		1.046** (0.475)	0.965**	0.984** (0.409)
Δ_{t} water access		(()	0.012 (0.048)
Δ_{t} toilet access				0.155
District fixed effects Mean of outcome variable N communities R ² F-statistic on gradient Pr > F	N 0.20 1,816 0.01 4.20 0.04	N 0.20 1,816 0.07 4.87 0.03	Y 0.20 1,816 0.18 8.34 0.00	Y 0.20 1,816 0.18 8.26 0.00
11 > F	0.04	0.03	0.00	0.00

Emprego feminino

TABLE 4—EFFECTS OF ELECTRIFICATION ON EMPLOYMENT: CENSUS COMMUNITY DATA

		Δ_t female employment rate									
		DLS regression	on coefficie	nts	1	V regressio	n coefficien	nts			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
Eskom project	-0.004 (0.005)	-0.001 (0.005)	0.000 (0.005)	-0.001 (0.005)	0.025 (0.045)	0.074 (0.060)	0.090* (0.055)	0.095* (0.055)			
A. R. 95 percent C.I.							[0.05; 0.3]	[0.05; 0.3]			
Poverty rate		0.029*** (0.011)	0.033*** (0.010)	0.031*** (0.010)		0.027** (0.012)	0.032** (0.013)	0.031** (0.013)			
Female-headed HHs		0.042** (0.019)	0.051*** (0.019)	0.047** (0.020)		0.014 (0.031)	0.036 (0.026)	0.033 (0.026)			
Adult sex ratio		0.019** (0.009)	0.017** (0.008)	0.020*** (0.007)		0.033** (0.014)	0.029** (0.012)	0.032*** (0.012)			
Baseline controls? District fixed effects? Δ_t other services? N communities	N N N 1,816	Y N N 1,816	Y Y N 1,816	Y Y Y 1,816	N N N 1,816	Y N N 1,816	Y Y N 1,816	Y Y Y 1,816			

Emprego masculino

TABLE 5—EFFECTS OF ELECTRIFICATION ON EMPLOYMENT: CENSUS COMMUNITY DATA

				Δ_t male en	mployment r	ate		
	О	LS regression	coefficients	s		IV regres	sion coefficient	ts
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Eskom project	-0.017** (0.007)	-0.015*** (0.006)	-0.009 (0.006)	-0.010* (0.006)	-0.063 (0.073)	0.069 (0.082)	0.033 (0.064)	0.035 (0.066)
A. R. 95 percent C.I.	` ′	` ′	, ,	, ,	, ,	, ,	[-0.05; 0.25]	[-0.05; 0.25]
Poverty rate		0.062***	0.064***	0.063***		0.059***	0.064***	0.062***
		(0.020)	(0.018)	(0.018)		(0.022)	(0.019)	(0.019)
Female-headed HHs		0.217***	0.233***	0.227***		0.187***	0.227***	0.220***
		(0.029)	(0.030)	(0.030)		(0.042)	(0.034)	(0.034)
Adult sex ratio		0.018*	0.012	0.017		0.034*	0.018	0.023
		(0.011)	(0.011)	(0.011)		(0.019)	(0.015)	(0.015)
Baseline controls?	N	Y	Y	Y	N	Y	Y	Y
District fixed effects?	N	N	Y	Y	N	N	Y	Y
Δ , other services?	N	N	N	Y	N	N	N	Y
N communities	1,816	1,816	1,816	1,816	1,816	1,816	1,816	1,816

Emprego de dados de pesquisas domiciliares

Table 7—Employment, Hours of Work, Wages and Earnings for Africans in Rural KZN 1995–2001: Household Survey Data

	Fem	nales	Ma	ales	Fem	ales	M	ales
	OLS (1)	FE (2)	OLS (3)	FE (4)	OLS (5)	FE (6)	OLS (7)	FE (8)
	Panel A. Empl	oyment [1/0]			Panel B. Usi	ıal weekly h	ours of work	
MD electrification rate	0.126** (0.058)	0.128 (0.149)	0.090 (0.077)	0.134 (0.164)	6.646*** (1.771)	8.920 (6.634)	5.671** (2.597)	13.090 (12.947)
Trend (1995–2001)	-0.010 (0.012)	0.046** (0.020)	-0.051*** (0.012)	-0.075*** (0.022)	-0.407 (0.491)	-0.588 (0.872)	-0.322 (0.620)	-1.424 (1.701)
N Mean of outcome R^2	152 0.25 0.06	152 0.25 0.63	152 0.42 0.09	152 0.42 0.76	151 42.82 0.06	151 42.82 0.42	151 46.94 0.03	151 46.94 0.45
	Panel C. Log	hourly wage			Panel D. Log	g monthly ea	rnings	
MD electrification rate	-0.148 (0.253)	-1.380 (1.046)	0.101 (0.211)	0.171 (0.483)	-0.070 (0.225)	-0.616 (0.995)	0.414** (0.191)	1.107** (0.477)
Trend (1995–2001)	-0.079*** (0.030)	0.132 (0.137)	-0.027 (0.032)	0.077 (0.063)	-0.091** (0.037)	-0.065 (0.131)	-0.047 (0.033)	-0.085 (0.063)
N	146	146	148	148	146	146	148	148
Mean of outcome R^2	1.17 0.03	1.17 0.52	1.49 0.00	1.49 0.51	6.42 0.03	6.42 0.52	6.80 0.05	6.80 0.57

Mecanismos

- ▶ O resto do artigo explora mecanismos.
- Mostra mudanças em produção domiciliar.
- ► Tenta excluir demanda por trabalho (salários não mudam, sem *spillovers*)
- Examina migração
 - Composição de comunidades de fato muda.
 - Mostra que resultados em oferta de trabalho feminina sobrevive para residentes originais.

Produção domiciliar

Table 8—Effects of Electricity Projects on Household Energy Sources and Other Household Services: Census Community Data

Outcome is Δ_t in:	OLS	OLS	IV	IV
	No controls	Controls	No controls	Controls
	(1)	(2)	(3)	(4)
(1) Lighting with electricity	0.251***	0.221***	0.577***	0.635***
Mean: 0.08	(0.032)	(0.031)	(0.188)	(0.227)
(2) Cooking with wood Mean: -0.035	-0.045*** (0.012)	-0.039*** (0.012)	-0.266 (0.179)	-0.275* (0.147)
(3) Cooking with electricity	0.068***	0.056***	0.250**	0.228**
Mean: 0.037	(0.009)	(0.009)	(0.107)	(0.101)
(4) Water nearby Mean: 0.007	-0.029 (0.029)	0.005 (0.024)	$-0.483* \\ (0.249)$	-0.372 (0.248)
(5) Flush toilet	0.003	0.008	0.018	0.067
Mean: 0.03	(0.006)	(0.005)	(0.069)	(0.068)

Lipscomb et al. (2013)

- Artigo sobre Brasil estudando pergunta parecida de impactos de eletrificação entre 1960 e 2000.
- "First-mover advantage": primeiro artigo na AER, segundo no AEJ:Applied.
- Usam instrumento simulado baseado em um modelo de minimização de custos de alocação de usinas hidroelétricas.
 - Orçamento dado
 - Usinas construídas para minimizar custo até dinheiro acabar
 - Plantas conectadas ao grid elétrico de sub-estações de forma a minimizar custos.
- Argumentam que efeitos são explicados por aumento de produtividade, e não sorting em equilíbrio geral.

Outros artigos

- ► Faber (2014): construção de estradas na China e crescimento local
- Asher and Novosad (2020): estradas rurais na Índia e transformação estrutural
- ► Morten and Oliveira (2018): rodovias e integração de mercados de trabalho no Brasil
- ► Harari (2020): formato de cidades e crescimento econômico
- Allcott et al. (2016): custos de produtividade de apagões elétricos em manufatura na Índia
- Meeks (2017): infraestrutura para água em vilas e oferta de trabalho / produtividade de fazendeiros
- ➤ Yanagizawa-Drott (2014): radio e genocídio em Rwanda

Referências I

- **Allcott, Hunt, Allan Collard-Wexler, and Stephen D. O'Connell**, "How Do Electricity Shortages Affect Productivity? Evidence from India," *American Economic Review*, 2016, *106* (3), 587–624.
- **Asher, Sam and Paul Novosad**, "Rural Roads and Local Economic Development," *American Economic Review*, 2020, *110* (3), 797–823.
- **Dinkelman, Taryn**, "The Effects of Rural Electrification on Employment: New Evidence from South Africa," *American Economic Review*, 2011, 101 (8), 3078–3108.
- **Donaldson, Dave**, "Railroads of the Raj: Estimating the Impact of Transportation Infrastructure," *American Economic Review*, 2018, *108* (4-5), 899–934.
- **Eaton, Jonathan and Samuel Kortum**, "Technology, Geography, and Trade," *Econometrica*, 2002, *70* (5), 1741–1779.
- **Faber, Benjamin**, "Trade integration, market size, and industrialization: Evidence from China's national trunk highway system," *Review of Economic Studies*, 2014, *81* (3), 1046–1070.

Referências II

- Harari, Mariaflavia, "Cities in Bad Shape: Urban Geometry in India," *American Economic Review*, 2020, *110* (8), 2377–2421.
- Jensen, Robert, "The Digital Provide: Information (Technology), Market Performance, and Welfare in the South Indian Fisheries Sector," *Quarterly Journal of Economics*, 2007, 122 (3), 879–924.
- **Lipscomb, Molly, Ahmed Mushfiq Mobarak, and Tania Barham**, "Development Effects of Electrification: Evidence from the Geologic Placement of Hydropower Plants in Brazil," *American Economic Journal: Applied Economics*, 2013, 5 (2), 200–231.
- Meeks, Robyn C., "Water Works The Economic Impact of Water Infrastructure," *Journal of Human Resources*, 2017, 52 (4), 1119–1153.
- **Morten, Melanie and Jaqueline Oliveira**, "The Effects of Roads on Trade and Migration: Evidence from a Planned Capital City," 2018.
- **Yanagizawa-Drott, David**, "Propaganda and Conflict: Evidence from the Rwandan Genocide," *Quarterly Journal of Economics*, 2014, *129* (4), 1947–1994.