Cross-lingual Transfer learning for Causal Commonsense Reasoning

QIU Jiaxing, XIONG Guangzhi Dec. 21, 2020

Background

Causal Commonsense Reasoning

▶ "Bridge between premises and possible hypotheses with world knowledge that is not explicit in text"

	Premise	Hypothesis
\checkmark	I poured water on my sleeping friend.	My friend awoke.
×	Teddy is my son.	Teddy is a male.

Background

Cross-lingual Transfer Learning

- ▶ Solve one problem and apply it to a different but related problem (Transfer Learning)
- Leverage large datasets available in one language—typically English—to build multilingual models that can generalize to other languages
- ► ZERO-SHOT / FEW-SHOT

Overview

PROCEDURE

- Data preprocessing
- Pretraining
- Fine-tuning

▶ Test

Datasets

- Datasets for Pretraining
 - SocialIQA
 - "context": "Tracy protected her teammates from injury when she saw an accident about to happen prevented it."
 - "question": "Why did Tracy do this?"
 - "answerA": "make a play", "answerB": "prevent injuries", "answerC": "injure them"

WinoGrande

- "sentence": "The GPS and map helped me navigate home. I got lost when the _ got turned off. "
- "option1": "GPS", "option2": "map"
- Datasets for Fine-tuning
 - COPA
 - "premise": "I poured water on my sleeping friend. "
 - "choice1": "My friend awoke. ", "choice2": "My friend snored. "
- Datasets for Test
 - COPA
 - XCOPA

Sentence Encoder

- Input sentence $S = \{[CLS], Tok_1, Tok_2, ..., Tok_n, [EOS]\}$
- Hidden states $H = \{h_0, h_1, h_2, \dots, h_n, h_{n+1}\}$
- Take the hidden state of [CLS] (h_0) as the representation of the sentence

Commonsense Detector

- lacksquare Obtain the representation of the i- sentence : r_i
- Compute the possibility of having a causal relation

$$P_i = sigmoid(W_b \sigma(W_a r_i + b_a) + b_b)$$

■ Use binary cross entropy (BCE) as the detection loss

$$\mathcal{L} = -\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(label_i = 1) \log P_i + \mathbb{I}(label_i = 0) \log (1 - P_i)$$

Denoising Module

- Background
 - Noncausal relation with positive label
- Target
 - Denoise low-quality input data
- Method
 - Train a rank model for monolingual (English) causal commensense reasoning detection
 - Compute positive scores for *N* sentences
 - Keep top *k* sentences

Denoising Module

How to train?

- Input m instances $\{S_i\}_{i=1}^m$ where only one is positive
- ▶ Compute their positive scores using Roberta and MLP

$$r_i = Encoder(S_i)$$

 $score_i = w_m r_i + b_m$

ightharpoonup Apply a softmax function to compute the probability of i-th instance to be positive

Network Architecture

Commonsense

Detector

Experiment

▶ Pretraining: batch_size=64 Adam with learning_rate=4e-4 and weight_decay=0.01

Fine tuning: batch_size=16 Adam with learning_rate=1e-5 and weight_decay=0.1

References

- Murray Singer, Michael Halldorson, Jeffrey C Lear, and Peter Andrusiak. 1992. Validation of causal bridging inferences in discourse understanding. Journal of Memory and Language, 31(4):507–524.
- Artetxe, M., Labaka, G. and Agirre, E., 2020. Translation Artifacts in Cross-lingual Transfer Learning. arXiv preprint arXiv:2004.04721.
- Ponti, E.M., Glavaš, G., Majewska, O., Liu, Q., Vulić, I. and Korhonen, A., 2020. XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning. *arXiv* preprint *arXiv*:2005.00333.
- Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L. and Stoyanov, V., 2019. Unsupervised cross-lingual representation learning at scale. *arXiv preprint arXiv:1911.02116*.
- Roemmele, M., Bejan, C.A. and Gordon, A.S., 2011, March. Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning. In AAAI spring symposium: logical formalizations of commonsense reasoning (pp. 90-95).
- Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L. and Stoyanov, V., 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
- Sap, M., Rashkin, H., Chen, D., LeBras, R. and Choi, Y., 2019. Socialiqa: Commonsense reasoning about social interactions. arXiv preprint arXiv:1904.09728.
- Sakaguchi, K., Le Bras, R., Bhagavatula, C. and Choi, Y., 2020, April. Winogrande: An adversarial winograd schema challenge at scale. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 34, No. 05, pp. 8732-8740).

Thanks for your attention