Logistics

- Exam 3: · Wednesday 5/12 any 90 mins
 - · Same format, length, + weight as Exams 1+2
 - · Material since Exam 2
 - · Review materials on ilearn today
- Final Project: · See "Final Project Guldelines" at top of ilearn
 - Report due Thursday 5/20

 (~3-page paper or ~10-min video
 explaining topic as though to our
 class based on reading but drawing
 on Exploration Problems for examples)
 - · Optional rough draft due Weds. 5/12

Integral Domains + Fields

- <u>Video</u>: Two special types of a & R:
 - · Zero divisor: a. (something) = 0
 - unit: $a \cdot (something) = 1$

Two special types of R:

- · integral domain: no zero-divisor
- · field: everything except 0 a unit
- Def: A ring is a set R with two operations, + and ·, satisfying....

Worksheet 39: Integral Domains and Fields

Math 335

Reporter:		
Recorder:		
Equity Manager:		

1. For each of the following rings R, determine which elements of R are zero-divisors, which are units, and whether R is an integral domain and/or field.

R	Zero-divisors	Units	Integral Domain?	Field?
\mathbb{Z}_5	none	1, 2, 3,4	Yes	Yes
\mathbb{Z}_9	3, 6	1,2,4,5,7,8	No	No
\mathbb{Z}	none	1,-1	Ye s	No
Q	none	Q\{o}	Yes	Yes
$\mathbb{Z} \oplus \mathbb{Z}$ where the operations are $(a,b)+(c,d)=(a+c,b+d)$ $(a,b)\cdot(c,d)=(a\cdot c,b\cdot d)$	(a,o), (o,b)	(±1,±1)	No	No

Note: Nothing that's a unit

2. Based on the examples on the previous page, do you think that

R is an integral domain $\Rightarrow R$ is a field?

Do you think that

R is a field $\Rightarrow R$ is an integral domain?

3. Show that it's impossible for $a \in R$ to be both a zero-divisor and a unit.

Suppose a eR is both a zero-divisor and a unit. Then I nonzero be R such that

$$a \cdot b = 0$$

and 3 at & R. Thus,

$$a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0$$

contradicting our assumption bis nonzero.

4. Can you use what you proved in Problem 3 to prove your answer to Problem 2?

Suppose R is a field.

Let a & R. Then either

1) a=0, which is not a 0-divisor by definition ×

a) a ≠ 0, in which case a is a unit and thus not a 0-divisor.

So no a eR is a O-divisor, meaning R is an integral domain.