## Defuzzyfication

#### Defuzzification Methods

- Fuzzy rule based systems evaluate linguistic if-then rules using fuzzification, inference and composition procedures. They produce fuzzy results which usually have to be converted into crisp output.
- ► To transform the fuzzy results in to crisp, defuzzification is performed.
- Defuzzification is the process of converting a fuzzified output into a single crisp value with respect to a fuzzy set. The defuzzified value in FLC (Fuzzy Logic Controller) represents the action to be taken in controlling the process.
- Different Defuzzification Methods
- Center of Sums Method (COS)
- Center of gravity (COG) / Centroid of Area (COA) Method
- Center of Area / Bisector of Area Method (BOA)
- Weighted Average Method
- Maxima Methods
  - First of Maxima Method (FOM)
  - Last of Maxima Method (LOM)
  - Mean of Maxima Method (MOM)

# Center of gravity (COG) / Centroid of Area (COA) Method

This method provides a crisp value based on the center of gravity of the fuzzy set. The total area of the membership function distribution used to represent the combined control action is divided into a number of sub-areas. The area and the center of gravity or centroid of each sub-area is calculated and then the summation of all these sub-areas is taken to find the defuzzified value for a discrete fuzzy set.

For discrete membership function, the defuzzified value denoted as  $\boldsymbol{x}^*$  using COG is defined as:

$$x^* = \frac{\sum_{i=1}^n x_i . \mu(x_i)}{\sum_{i=1}^n \mu(x_i)}$$
 , Here  $x_i$  indicates the sample element,  $\mu(x_i)$  is

the membership function, and n represents the number of elements in the sample.

For continuous membership function,  $oldsymbol{\mathcal{X}}^*$  is defined as :

$$x^* = \frac{\int x \, \mu_A(x) \, dx}{\int \mu_A(x) \, dx}$$

#### Example: Fuzzy Set C1 and C2





### Combined Fuzzy Set



#### Calculation of Area



The defuzzified value  $\chi^*$  using COG is defined as:

$$\chi^* = \frac{\sum_{i=1}^N A_i \times \bar{x_i}}{\sum_{i=1}^N A_i}$$
 , Here N indicates the number of sub-areas,  $A_i$  and

 $\bar{x}_i$  represents the area and centroid of area, respectively, of  $i^{th}$  sub-area.

In the aggregated fuzzy set as shown in figure 2., the total area is divided into six sub-areas.

For COG method, we have to calculate the area and centroid of area of each sub-area.

These can be calculated as below.

The total area of the sub-area 1 is  $\frac{1}{2}$  \* 2 \* 0.5 = 0.5

The total area of the sub-area 2 is (7-3) \* 0.5 = 4 \* 0.5 = 2

The total area of the sub-area 3 is  $\frac{1}{2}$  \* (7.5-7) \* 0.2 = 0.5 \* 0.5 \*0.2 = .05

The total area of the sub-area 4 is  $0.5^*$  0.3 = .15

The total area of the sub-area 5 is  $0.5^*$  0.3 = .15

The total area of the sub-area 6 is  $\frac{1}{2}$  \*1\* 0.3 = .15

#### Calculation of Centroids of primary shapes









Figure 2 : Fuzzy sets C1 and C2

#### Calculation of Centroids:

Centroid of 1 = 1 + (1+3)/3 = 2.333

Centroid of 2 = (3+7)/2 = 5.00

Centroid of 3 = 7 + (7.5-7)/3 = 7.166

Centroid of 4 = (7.5+7)/2 = 7.25

Centroid of 5 = (8+7.5)/2 = 7.75

Centroid of 6 = 8 + (9-8)/3 = 8.333

Table 1

| Sub-area number | Area( $A_i$ ) | Centroid of area $(\overline{x_i})$ | $A_i \overline{.x_i}$ |
|-----------------|---------------|-------------------------------------|-----------------------|
| 1               | 0.5           | 2.333                               | 1.1665                |
| 2               | 02            | 5                                   | 10                    |
| 3               | .05           | 7.166                               | 0.3583                |
| 4               | .15           | 7.25                                | 1.0875                |
| 5               | .15           | 7.75                                | 1.1625                |
| 6               | .15           | 8.333                               | 1.2499                |

The defuzzified value  $x^*$  will be  $\frac{\sum_{i=1}^N A_i imes \overline{x_i}}{\sum_{i=1}^N A_i}$ 

$$\frac{\sum_{i=1}^{N} A_i \times \overline{x_i}}{\sum_{i=1}^{N} A_i}$$

$$=\frac{(1.1665+10+0.3583+1.0875+1.1625+1.2499)}{(0.5+2+.05+.15+.15+.15)}$$

$$x^* = 5.008$$

# It will be Continued....