

大数据导论 Introduction to Big Data

第8讲 决策树归纳

叶允明 计算机科学与技术学院 哈尔滨工业大学(深圳)

目录

- 决策树分类的基本思想
- 分类决策树归纳算法
 - > ID3
 - > C4.5算法
 - ► CART算法
 - > 决策树剪枝

决策树分类的基本思想

贷款审批的经验流程

• 信贷审批员如何判断是否给一名借贷人房贷?

年龄	消费收入比	未偿还贷款
中年	高	高

决策树分类的基本思想:决策树归纳学习

• 决策树构建: 对训练数据进行递归划分的过程

序号	年龄	消费收入比	未偿还贷款	审批
1	中年	高	高	不通过
2	中年	一般	高	通过
3	中年	一般	较高	通过
4	中年	一般	低	通过
5	中年	一般	高	通过
6	老年	正常	低	通过
7	中年	超出	中	通过
8	中年	一般	较高	通过
9	青年	超出	低	通过
10	中年	正常	低	通过
11	中年	一般	较高	通过
12	中年	正常	低	不通过
13	中年	超出	中	不通过
14	中年	正常	高	不通过
15	中年	正常	低	不通过

决策树分类的基本思想:决策树归纳学习

- 基础算法是贪心算法,算法要点:
 - » 树以自顶向下的递归/分治的方式进行构建
 - > 初始状态下,所有训练样本都处于树根的位置
 - 属性是用来对当前节点的训练数据集进行划分的(假定为离散属性,否则先离散化),即根据不同属性值划分
 - ▶ 选择对于当前节点"最优"的属性进行划分,划分过程递归进行

• 停止划分的条件

- > 给定节点的所有样本属于同一个类别
- > 没有剩余的属性可用于进一步分区 使用多数投票方法来对叶子进行分类
- > 没有多余的样本

ID3, C4.5, CART

信息增益

• 训练集D的信息不确定性程度(<u>信息熵</u>): 类别数量

$$H(D) = -\sum_{i=1}^{N} p_i \log p_i = -\sum_{i=1}^{N} \frac{|D_i|}{|D|} \log \frac{|D_i|}{|D|}$$

根据属性A将D划分为 v 个子集后的信息熵 (条件熵):

$$H(D|A) = -\sum_{j=1}^{v} \frac{|D^{(j)}|}{|D|} H(D^{(j)})$$

• 信息增益表示随机事件A发生后,对原数据D的不确定性减少程度

$$I(D;A) = H(D) - H(D|A)$$

为什么使用信息增益?

- 对于给定的训练集D与特征集A:
 - ▶ H(D)表示数据集D进行分类的不确定性
 - ▶ H(D|A)表示在特征A给定的条件下对数据集D进行分类的不确定性
 - ▶ I(D;A)=H(D)-H(D|A)表示由于特征A的引入使得对数据集D分类的不确定性减少的程度
- 由此,信息增益越大的特征,对训练集分类的不确定性减少越多,具有越强的分类能力

计算H(D)

$$H(D) = -\frac{10}{15} \log \frac{10}{15} - \frac{5}{15} \log \frac{5}{15} = 0.918$$

	年龄	消费收入比	未偿还贷款	审批
1	中年	高	高	不通过
2	中年	一般	高	通过
3	中年	一般	较高	通过
4	中年	一般	低	通过
5	中年	一般	高	通过
6	老年	正常	低	通过
7	中年	超出	中	通过
8	中年	一般	较高	通过
9	青年	超出	低	通过
10	中年	正常	低	通过
11	中年	一般	较高	通讨
12	中年	正常	低	不通过
13	中年	超出	中	不通过
14	中年	正常	高	不通过
15	中年	正常	低	不通过

计算H(T|A=年龄)

$$H(D|A_1) = \frac{1}{15}H(T^{\frac{1}{3}} + \frac{13}{15}H(T^{\frac{1}{3}} + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}{15}H(T^{\frac{2}{3}}) = \frac{1}{15} \times \left(-\frac{1}{1}\log\frac{1}{1}\right) + \frac{1}{15}H(T^{\frac{2}{3}} + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}{15}H(T^{\frac{2}{3}} + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}{15}H(T^{\frac{2}{3}} + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}{15}H(T^{\frac{2}{3}} + \frac{1}{15}H(T^{\frac{2}{3}}) + \frac{1}$$

$$\frac{13}{15} \times \left(-\frac{8}{13} \log \frac{8}{13} - \frac{5}{13} \log \frac{5}{13} \right) +$$

$$\frac{1}{15} \times \left(-\frac{1}{1} \log \frac{1}{1} \right)$$

= 0.833

	序号	年龄	消费收入比	未偿还贷款	审批
	1	中年	高	高	不通过
Γ	2	中年	一般	高	通过
	3	中年	一般	较高	通过
	4	中年	一般	低	通过
	5	由年	一般	高	通过
L	6	老年	正常	低	通过
	7	中年	超出	中	通过
ļ,	8	中年	一般	较高	通过
L	9	青年	超出	低	通过
	10	中年	正常	低	通过
	11	中年	一般	较高	通过
	12	中年	正常	低	不通过
	13	中年	超出	中	不通过
	14	中年	正常	高	不通过
L	15	中年	正常	低	不通过

计算H(D|A=消费收入比)、

H(D|A=未偿还贷款)

$$H(T|A_2) = \frac{6}{15}H(T^{-\frac{1}{15}}H(T^{-\frac{1}{15}}) + \frac{1}{15}H(T^{-\frac{1}{15}}) + \frac{3}{15}H(T^{\frac{1}{15}})$$

$$= \frac{6}{15} \times \left(-\frac{6}{6}\log\frac{6}{6}\right) + \frac{5}{15} \times \left(-\frac{2}{5}\log\frac{2}{5} - \frac{3}{5}\log\frac{3}{5}\right) + \frac{1}{15} \times \left(-\frac{1}{1}\log\frac{1}{1}\right) + \frac{3}{15} \times \left(-\frac{2}{3}\log\frac{2}{3} - \frac{1}{3}\log\frac{1}{3}\right) = 0.507$$

$$H(T|A_3) = \frac{6}{15}H(T^{(1)}) + \frac{2}{15}H(T^{(1)}) + \frac{3}{15}H(T^{(2)}) + \frac{4}{15}H(T^{(3)})$$

$$= \frac{6}{15} \times \left(-\frac{4}{6}\log\frac{4}{6} - \frac{2}{6}\log\frac{2}{6}\right) + \frac{2}{15} \times \left(-\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2}\right) + \frac{3}{15} \times \left(-\frac{3}{3}\log\frac{3}{3}\right) + \frac{4}{15} \times \left(-\frac{2}{4}\log\frac{2}{4} - \frac{2}{4}\log\frac{2}{4}\right) = 0.767$$

序号	年龄	消费收入比	未偿还贷款	审批
1	中年	高	高	不通过
2	中年	一般	高	通过
3	中年	一般	较高	通过
4	中年	一般	低	通过
5	中年	一般	高	通过
6	老年	正常	低	通过
7	中年	超出	中	通过
8	中年	一般	较高	通过
9	青年	超出	低	通过
10	中年	正常	低	通过
11	中年	一般	较高	通过
12	中年	正常	低	不通过
13	中年	超出	中	不通过
14	中年	正常	高	不通过
15	中年	正常	低	不通过

计算I(D;A)

$$I(D; A_1) = H(D) - H(D|A_1) = 0.918 - 0.833 = 0.085$$

$$I(D; A_2) = H(D) - H(D|A_2) = 0.918 - 0.507 = 0.411$$

$$I(D; A_3) = H(D) - H(D|A_3) = 0.918 - 0.767 = 0.151$$

$$I(D; A_{max}) = I(D; A_2) = 0.411$$

最后,选择"消费收入比"的属性进行分支划分,划分分支为"一般、正常、高、超出"

序号	年龄	消费收入比	未偿还贷款	审批
1	中年	高	高	不通过
2	中年	一般	高	通过
3	中年	一般	较高	通过
4	中年	一般	低	通过
5	中年	一般	高	通过
6	老年	正常	低	通过
7	中年	超出	中	通过
8	中年	一般	较高	通过
9	青年	超出	低	通过
10	中年	正常	低	通过
11	中年	一般	较高	通过
12	中年	正常	低	不通过
13	中年	超出	中	不通过
14	中年	正常	高	不通过
15	中年	正常	低	不通过

连续属性的信息增益计算

- 对每个连续属性A:
 - » 将A的值按递增顺序进行排序
 - \rightarrow 每个相邻值的中点被看做是可能的分裂点: $\left(\frac{a_i+a_{i+1}}{2}\right)$
 - > A的具有最小期望信息需求的点选做为A的分裂点
- 所有连续属性按以上方式计算出最佳分裂点,优中选优
- 如果选定A属性,进行二叉划分:
 - ▶ 对于分裂点 $a_{\rm split}$, D1是集合D中满足A ≤ $a_{\rm split}$ 的元组合集合, 而D2是集合D中满足A > $a_{\rm split}$ 的元组合集合

ID3算法中"学习"的三要素

- 定义模型空间:
 - ▶ 模型f(x)的取值空间为一颗多叉树
- 评价模型f(x) "好坏"的标准
 - ▶ 在树高尽量低的情况下,拥有较低的错分率(训练集)
- 搜索"最优"模型f*的算法
 - > 以贪心策略递归计算特征集合的信息熵,而得到次优解

C4.5: 信息增益比

- ID3存在的bias问题:倾向于选择具有大量不同取值的属性
- 解决方法: 信息增益比
 - > 将信息增益进行归一化, 以克服选择过多属性值的bias

$$I_R(D;A) = \frac{I(D;A)}{SplitInfo_A(D)}$$

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

基尼指数(CART, IBM IntelligentMiner)

- 数据集D包含n个类的样本,基尼指数gini(D)定义为: $gini(D)=1-\sum\limits_{j=1}^{n}p_{j}^{2}$
- 二叉划分策略:如果属性A的二元划分将数据集D划分成 D_1 and D_2 ,则给定该划分,D的基尼指数gini(D)定义为: $gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$
- "不纯度"降低为: $\Delta gini(A) = gini(D) gini_A(D)$
- 选择产生最小基尼指数*gini_{split}(D)*(或者最大化不纯度降低)的属性作为分裂属性

CART: 离散属性的二叉划分问题

• 贪心策略

信息增益、信息增益率和基尼系数对比

- 总得来说,这三种度量都能得到良好的结果。但是:
 - ▶ 信息增益:
 - ✓偏向于多值属性
 - ▶ 增益率:
 - ✓ 倾向于产生不平衡的划分,其中一个分区比其他分区小得多
 - ▶ 基尼指数:
 - ✓ 倾向于多值属性
 - ✓当类的数量很大时会有困难
 - ✓ 倾向于导致相等大小的分区和纯度

离散属性的相关性

• 思考: 能否用卡方X² 作为作为属性选择方法?

其它属性选择方法

- CHAID: 一种流行的决策树算法,使用一种基于统计x²检验的属性选择度量
- C-SEP:在某些情况下比信息增益和基尼指数的性能好
- G-statistics: 一种信息论度量,非常近似于 χ^2 分布
- 最小描述长度(Minimal Description Length, MDL)原理(即具有最小偏向多值属性的偏倚):
 - > 将最佳决策树定义为最少需要二进位的树:
 - (1) 对树编码; (2) 对树的异常编码
- 多元划分(元组的划分基于属性的组合而不是单个属性)
 - ▶ CART: 可以基于属性的线性组合发现多元划分
- 哪种属性选择度量最好?
 - > 大部分度量都产生相当好的结果,并未发现一种度量显著优于其他度量。

决策树剪枝

分类器性能的评估

- 乐观估计: 基于训练集误差
- 独立测试样本评估: 将给定的数据随机划分为两个独立的集合
 - ▶ 训练集 (例如2/3) 用于模型构建
 - 》 测试集 (例如1/3)用于准确率估计

分类器准确性度量指标

- 分类器M的准确率 Acc(M): 分类器M正确分类的样本所占比例
 - ▶ 分类器M的错误率(误分类率) =1-acc(M)

欠拟合与过拟合的基本概念

• 欠拟合

• 过拟合

决策树的过拟合问题和剪枝方法

- 过拟合: 决策树归纳可能过度拟合训练数据
 - ▶ 由于数据中的噪声和离群点,许多分枝反映的是训练数据中的异常
 - > 对未知样本分类精度低
 - ▶ 通常表现为"复杂"的树
- 两种常用的方法可以避免过拟合:
 - > 先剪枝: 提前停止树的构建
 - ▶ 后剪枝: 从"完全生长"的树剪去子树——产生一个渐进的剪枝树的集合、

预剪枝策略

- 在决策树建树过程中便对决策树的生长进行控制,一旦符合下列条件, 决策树便停止生长
 - > 限制决策树的最高高度
 - > 设定叶子节点正确划分率
 - > 设定叶子节点最少样本数量

>

后剪枝策略

决策树生成完成后,根据一定的条件判断某些子树的过拟合程度,动态进行修剪,从而限制决策树的最高高度

> 如:误差降低剪枝

• 使用独立于训练集(用于建立未剪枝树)的样本集

决策树回归?

• 定义模型空间

• 评价模型"好坏"的标准

• 搜索"最优"模型的算法