Mécanique quantique

TD 6: Oscillateur harmonique quantique

1 Définitions

- 1. Donner des exemples physiques faisant intervenir le modèle d'oscillateur harmonique.
- 2. Rappeler l'énergie classique d'un oscillateur harmonique de masse m en fonction de sa pulsation propre ω . En déduire l'expression du hamiltonien quantique à une dimension.
- 3. On définit les opérateurs $\tilde{X} = \sqrt{\frac{m\omega}{\hbar}}X$ et $\tilde{P} = \frac{1}{\sqrt{m\omega\hbar}}P$. Montrer que le hamiltonien s'écrit :

$$H = \frac{\hbar \omega}{2} (\tilde{X}^2 + \tilde{P}^2). \tag{1}$$

4. Sachant que $[X, P] = i\hbar$, calculer le commutateur $[\tilde{X}, \tilde{P}]$.

2 Opérateurs annihilation et création

On définit les opérateurs

$$a = \frac{1}{\sqrt{2}}(\tilde{X} + i\tilde{P})$$
 et $a^{\dagger} = \frac{1}{\sqrt{2}}(\tilde{X} - i\tilde{P})$ (2)

appelés respectivement opérateur annihilation et opérateur création.

- **5.** Calculer le commutateur $[a, a^{\dagger}]$.
- **6.** Écrire le hamiltonien H en fonction de ces opérateurs a et a^{\dagger} .
- 7. On définit un dernier opérateur $N=a^{\dagger}a$ appelé *opérateur nombre*. Calculer les commutateurs [N,a] et $[N,a^{\dagger}]$.

Trouver le spectre du hamiltonien revient à trouver celui de l'opérateur *N*. On se concentre dans la suite sur ce problème.

3 Spectre de N

Soit λ une valeur propre de N, de vecteur propre associé $|\phi\rangle$.

- 8. Écrire la valeur propre λ sous la forme de la norme d'un vecteur, et en déduire son signe.
- **9.** En utilisant les commutateurs précédents, montrer que $a|\phi\rangle$ et $a^{\dagger}|\phi\rangle$ sont aussi des vecteurs propres de N si $\lambda \neq 0$. Donner leur valeur propre respective. Préciser le cas $\lambda = 0$.
- **10.** En déduire que les valeurs propres de N sont des entiers positifs. Justifier les noms des trois opérateurs a, a^{\dagger} et N.

4 Vecteurs propres de l'hamiltonien

Vus les résultats précédents, on note $n \in \mathbb{N}$ les valeurs propres de N dont on peut montrer par récurrence qu'elles sont non-dégénérées. Dans cette partie, on cherche les états propres $|\phi_n\rangle$ associés.

- 11. Calculer la fonction propre $\phi_0(x)$ associée à $\lambda = 0$. On pourra utiliser les résultats de la partie précédente
- 12. Montrer par récurrence que les états peuvent s'écrire

$$|\phi_n\rangle = \frac{1}{\sqrt{n!}} \left(a^{\dagger}\right)^n |\phi_0\rangle \tag{3}$$

5 États cohérents

Les états propres $|\phi_n\rangle$ sont des états purement quantiques, dans lesquels se trouvent un nombre déterminé d'excitations élémentaires (de *quanta d'énergie*). À l'inverse, on peut justifier que les états les plus fidèle à la mécanique classique sont les états propres de l'opérateur a. Ces états sont appelés *états cohérents*.

- 13. Chercher un état cohérent $|\alpha\rangle$ de valeur propre α sous la forme d'une superposition d'états propres de H.
- **14.** Calculer les valeurs moyennes $\langle X \rangle_{\alpha}$, $\langle P \rangle_{\alpha}$, ainsi que $\langle H \rangle_{\alpha}$ l'énergie moyenne d'un tel état en fonction de $\hbar \omega$ et α .
- **15.** On montre que $\langle H^2 \rangle_{\alpha} = \hbar^2 \omega^2 (|\alpha|^4 + 2|\alpha|^2 + 1/4)$. En déduire l'étalement en énergie ΔH_{α} de l'état cohérent. L'état a-t-il une énergie bien déterminée ?
- **16.** Donner l'évolution temporelle de l'état $|\psi(t=0)\rangle = |\alpha_0\rangle$. Montrer que celui-ci est toujours vecteur propre de a. Que remarque-t-on?

6 Cas d'un oscillateur dans un champ électrique homogène

- **17.** Identifier une situation physique où une particule subit à la fois un potentiel harmonique, et un champ électrique.
- **18.** Écrire l'énergie classique associée à la particule en fonction du champ \mathscr{E} constant selon l'axe Ox de l'oscillateur. En déduire le hamiltonien quantique H du problème.
- 19. Expliciter l'équation aux valeurs propres que vérifie une fonction propre ψ .
- **20.** Montrer que le problème se ramène à celui d'un oscillateur harmonique, et donner l'expression des énergies propres du problème.