

ANNY CAROLINE WALKER SILVA, 1201324404

LIMITE DE THETA O

• O que é Θ?

A notação Θ descreve o limite assintótico firme, é utilizado para analisar o limite inferior e limite superior do crescimento do processamento de um algoritmo, pois o Θ fica entre esses dois limites. Por definição, Θ é:

 $\Theta(g(n)) = f(n)$, se existem constantes positivas c_1 , c_2 e n_0

tais que
$$0 \le c_1$$
 g(n) \le f(n) $\le c_2$ g(n)

para todo $n \ge n0$.

Figura 1. Gráfico representando notações assintóticas.

Fonte: Prof. Moacir Ponti Ir

Percebemos então que Θ fica entre c_1 g(n) e c_2 g(n), que representam respectivamente o limite inferior e o limite superior.

• O que é Ω?

A notação Ω represente o limite assintótico inferior do crescimento do algoritmo. Por definição:

 $\Omega(g(n)) = f(n)$, se existem constantes positivas c e n_0

tais que
$$0 \le c g(n) \le f(n)$$

para todo $n \ge n_0$

Para encontrar Ω através do limite, temos que:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty,\,\mathsf{f=}\Omega(\mathsf{g})$$

O resultado do limite de $\frac{f(n)}{g(n)}$, com n tendendo a ∞ , em relação a Ω resulta em ∞ , pois f(n) cresce infinitamente com relação a g(n), tornando g(n) desprezível em relação a grandeza de f(n), pois algo muito grande dividido por algo muito pequeno, ainda resulta em algo muito grande.

[ATIVIDADE 3 – LIMITE DE THETA & LIMITE INFERIOR ALGORITMO DE NÚMEROS PRIMOS & EXERCÍCIOS]

ANNY CAROLINE WALKER SILVA, 1201324404

O que é O?

A notação O represente o limite assintótico superior do crescimento do algoritmo. Por definição:

O(g(n)) = f(n), se existem constantes positivas c e n_0

tais que
$$0 \le f(n) \le c g(n)$$

para todo n $\geq n_0$

Para encontrar O através do limite, temos que:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\ 0,\,\mathsf{f=O(g)}$$

O resultado do limite de $\frac{f(n)}{g(n)}$, com n tendendo a ∞ , em relação a O resulta em 0, pois g(n) cresce infinitamente com relação a f(n), tornando f(n) desprezível em relação a grandeza de g(n), pois algo muito pequeno dividido por algo muito grande, ainda resulta em algo muito pequena.

Como definir O usando limite?

Levando em consideração os limites inferior e superior e a definição de Θ, que fica entre esses dois limites, podemos assumir que:

$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$
, f= $\Theta(g)$

O que nos permite concluir que o conjunto de valores de $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ que se aplicam em f= $\Theta(g)$ é dos números inteiros finitos, sendo maiores que 0 e menor que ∞ .

Conjunto de valores de $\lim_{n\to\infty}\frac{f(n)}{g(n)}$, f= $\Theta(g)$: {n | n é um número real tal que n > 0}

LIMITE INFERIOR DO ALGORITMO DE CHECAGEM DE NÚMEROS PRIMOS

AKS primality test ou Agrawal–Kayal–Saxena primality test é atualmente o algoritmo detentor do limite inferior possível para a checagem de números primos, sendo Ω:

$$\Omega$$
 (log n^6)

[ATIVIDADE 3 – LIMITE DE THETA & LIMITE INFERIOR ALGORITMO DE NÚMEROS PRIMOS & EXERCÍCIOS]

ANNY CAROLINE WALKER SILVA, 1201324404 MOSTRE O QUE É PEDIDO

a) $n \log n + 5n = \Theta(n \log n)$

 $c_1 n \log n \le n \log n + 5n \le c_2 n \log n$, para todo $n \ge n_0$

Dividindo por $n \log n$:

$$c_1 \le 1 + \frac{5}{\log n} \le c_2$$

A designaldade do lado direito, pode ser considerada válida para qualquer valor de $n \ge 18$, escolhendo n=18, temos $c_2 \approx 2,7$. Enquanto a designaldade lado esquerdo, pode ser considerada válida para qualquer valor de $n \ge -18$, escolhendo n=-18, temos $c_1 \approx -1,8$. Ou seja, existe pelo menos um valor de c_1 e c_2 que se satisfaçam para $n \log n + 5n$ quando $\Theta(n \log n)$.

b)
$$2^{n+1} = O(2^n)$$

$$0 \le 2^{n+1} \le c 2^n$$

Dividindo por 2^n :

$$0 \le 2 \le c$$

A designaldade do lado direito, pode ser considerada válida para qualquer valor de $n \ge 2$, escolhendo n=3, temos $c \approx 3$. Ou seja, existe pelo menos um valor de c se satisfaça para 2^{n+1} quando $O(2^n)$.

c)
$$2^n - 1 = \Omega(n^2)$$

$$0 \le c n^2 \le 2^n - 1$$

Complexo resolver através da definição, usaremos então a definição por limite de Ω :

 $\lim_{n\to\infty} \frac{2^n-1}{n^2}$, resolvendo, temos que f(n) ou 2^n-1 cresce infinitamente comparado a g(n) ou n^2 , resultando em ∞ . Existe satisfação, porém ela tende ao infinito.

d)
$$n^2 = o(n^3)$$

Para qualquer constante c > 0, existe uma constante n_0 > 0, tal que $0 \le n^2 \le c n^3$, para todo $n \ge n_0$.

Dividindo por n^2 , temos:

$$0 \le 1 \le c n$$

Escolhendo c>0, podemos satisfazer o limite superior o para qualquer n>0, de acordo como a definição.

[ATIVIDADE 3 – LIMITE DE THETA & LIMITE INFERIOR ALGORITMO DE NÚMEROS PRIMOS & EXERCÍCIOS]

ANNY CAROLINE WALKER SILVA, 1201324404

e) $n^2 = \omega(n)$

Para qualquer constante c > 0, existe uma constante n_0 > 0, tal que $0 \le c \ n \le n^2$, para todo $n \ge n_0$.

Dividindo por n, temos:

 $0 \le c \le n$

Escolhendo c=1 e n=1 já satisfazemos as propriedades c>0 e n_0 > 0, cumprindo 0 \leq c \leq n.

f) $n \log n = o(n^2)$

Para qualquer constante c > 0, existe uma constante n_0 > 0, tal que $0 \le n \log n \le c n^2$, para todo $n \ge n_0$.

Dividindo por n^2 , temos:

$$0 \le \frac{\log n}{n} \le c$$

Escolhendo c>0, podemos satisfazer o limite superior o para qualquer n>0, pois $\frac{\log n}{n}$ com n>0 é sempre menor que 1.

g) $2n^2 \neq o(n^2)$

Para qualquer constante c > 0, existe uma constante n_0 > 0, tal que $0 \le 2n^2 \le c n^2$, para todo $n \ge n_0$.

Dividindo por n^2 , temos:

 $0 \le 2 \le c$

Temos a quebra da propriedade c > 0, pois no caso $0 \le 2 \le c$, c deveria ser sempre maior ou igual a 2.

REFERÊNCIAIS

MOACIR PONTI JR. 03 – Análise de Algoritmos (parte 3). Disponível em: < https://edisciplinas.usp.br/pluginfile.php/2027803/mod_resource/content/1/ICC2_03.Analise deAlgoritmos_parte3.pdf>. Acesso em 26 de agosto de 2019.