Prime Factorization - R vs. R[x]

Stefan Kohl

1 Definition Let R be an euclidean domain all of whose residue class rings are finite. We call a function $f: R \to R$ analytic if it satisfies the condition

$$\forall x, y \in R \ f(x) \equiv f(x+y) \ \text{mod} \ y.$$

We call the function f reducible if it can be written as (pointwise) product of two other analytic functions f_1, f_2 over R whose images do not entirely consist of units, and irreducible if not. We say that a product $f = \prod_{i=1}^k f_i$ of irreducible analytic functions f_i over R fulfills the limited factoring condition if and only if there is an $x \in R$ such that f(x) has at most k prime factors. We say that f has polynomial growth if for all sequences x_1, x_2, \ldots of elements of R satisfying $\lim_{n\to\infty} |R/x_nR| = \infty$ we have

$$\limsup_{n \to \infty} \frac{|R/f(x_n)R|}{|R/x_nR|!} = 0.$$

We call R a *limited factoring domain* if all analytic functions over R of polynomial growth fulfill the limited factoring condition.

- **2** Conjecture The ring \mathbb{Z} is a limited factoring domain.
- **3 Question** How to characterize limited factoring domains in general?