Матричная запись

• Линейная комбинация векторов;

- Линейная комбинация векторов;
- Зависимые и независимые наборы векторов.

Линейная комбинация

Определение

Вектор с называется линейной комбинацией векторов \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{c} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$$

Линейная комбинация

Определение

Вектор с называется линейной комбинацией векторов \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{c} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$$

Пример. Вектор
$$\binom{4}{5}$$
 — это линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Линейная комбинация: геометрия

Любой вектор — линейная комбинация

Любой вектор $\mathbf{v} \in \mathbb{R}^2$ — линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Любой вектор — линейная комбинация

Любой вектор $\mathbf{v} \in \mathbb{R}^2$ — линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Аналогично, любой вектор $\mathbf{v} \in \mathbb{R}^3$ представим в виде:

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + v_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Линейная зависимость

Определение

Набор A из двух и более векторов называется линейно зависимым, если хотя бы один вектор является линейной комбинацией остальных.

Набор $A = \{ \mathbf{0} \}$ из одного нулевого вектора также называется линейно зависимым.

Линейная зависимость: геометрия

Набор $\{{f a},{f b},{f c}\}$ — линейно зависим.

Набор $\{{f a},{f b},{f d}\}$ — линейно независим.

Линейная зависимость: примеры

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$
 — линейно независимый.

Линейная зависимость: примеры

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$
 — линейно независимый.

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$
 — линейно зависимый:

$$\begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Линейная зависимость: дубль два

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Линейная зависимость: дубль два

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Доказательство эквивалентности

Вектор с ненулевым коэффициентом α_i перед ним можно выразить через остальные.

Линейная зависимость: дубль два

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Доказательство эквивалентности

Вектор с ненулевым коэффициентом α_i перед ним можно выразить через остальные.

Если вектор ${\bf v}_2$ выражен через ${\bf v}_1$ и ${\bf v}_3$, ${\bf v}_2=\alpha_1{\bf v}_1+\alpha_3{\bf v}_3$, то искомая нулевая линейная комбинация имеет вид:

$$\alpha_1 \mathbf{v}_1 + (-1)\mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \mathbf{0}.$$

Линейная оболочка

• Линейная оболочка векторов;

- Линейная оболочка векторов;
- Базис линейной оболочки векторов;

- Линейная оболочка векторов;
- Базис линейной оболочки векторов;
- Размерность линейной оболочки векторов.

Линейная оболочка

Определение

Множество векторов V, содержащее все возможные линейные комбинации векторов $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$, называется их линейной оболочкой,

$$V = \mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$

Линейная оболочка векторов: картинка

Вектор $\mathbf c$ лежит в плоскости Span $\{\mathbf a, \mathbf b\}$. Вектор $\mathbf d$ не лежит в плоскости Span $\{\mathbf a, \mathbf b\}$.

Базис линейной оболочки

Определение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_d\}$ незывается базисом линейной оболочки ${\sf Span}\{{f x}_1,{f x}_2,...,{f x}_k\}$, если:

- $\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_d\}=\operatorname{Span}\{\mathbf{x}_{,}\mathbf{x}_2,\dots,\mathbf{x}_k\};$
- Набор векторов A линейно независим.

Базис линейной оболочки: картинка

Для линейной оболочки $\mathrm{Span}\{\mathbf{a},\mathbf{b},\mathbf{c}\}$ базисами будут $A_1=\{\mathbf{a},\mathbf{b}\}, A_2=\{\mathbf{b},2\mathbf{c}\}, A_3=\{3\mathbf{a},5\mathbf{c}\}.$

Базис оболочки: примеры

Рассмотрим линейную оболочку

$$V = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \end{pmatrix} \right\}$$

Базис оболочки: примеры

Рассмотрим линейную оболочку

$$V = \operatorname{Span}\left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 3\\0 \end{pmatrix}, \begin{pmatrix} 0\\4 \end{pmatrix} \right\}$$

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$
 — базис для V .

Базис оболочки: примеры

Рассмотрим линейную оболочку

$$V = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \end{pmatrix} \right\}$$

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$
 — базис для V .

Набор
$$A = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ -4 \end{pmatrix} \right\}$$
 — базис для V .

Свойства базиса линейной оболочки

Утверждение

Если набор векторов $A=\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$ линейно независим, то он сам является базисом своей линейной оболочки $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$.

Свойства базиса линейной оболочки

Утверждение

Если набор векторов $A=\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$ линейно независим, то он сам является базисом своей линейной оболочки $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$.

Утверждение

Если наборы векторов A и B — являются базисами для линейной оболочки V, то наборы A и B содержат одинаковое количество векторов.

Свойства базиса линейной оболочки

Утверждение

Если набор векторов $A=\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$ линейно независим, то он сам является базисом своей линейной оболочки $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$.

Утверждение

Если наборы векторов A и B — являются базисами для линейной оболочки V, то наборы A и B содержат одинаковое количество векторов.

Утверждение

Если набор A содержит k векторов, то базис линейной оболочки Span A содержит k элементов или меньше.

Размерность линейной оболочки

Определение

Если базис линейной оболочки V содержит d элементов, то число d называется размерностью линейной оболочки V.

Размерность линейной оболочки: картинка

Размерность линейной оболочки: картинка

Размерность $Span\{a,b,c\}$ равна 2.

Размерность линейной оболочки: картинка

Размерность $Span\{a,b,c\}$ равна 2.

Размерность $Span\{a,b,d\}$ равна 3.

Умножение матрицы на вектор

Умножение матрицы на матрицу

Три взгляда на умножение матриц

Решение системы уравнений методом Гаусса

Задача о шахматной доске