WORKS OF PROFESSOR CECIL H. PEABODY

PUBLISHED BY

JOHN WILEY & SONS.

Thermodynamics of the Steam-englie and other Heat-englies.

This work is intended for the use of students in technical schools, and gives the theoretical training required by engineers. 8vo, cloth, \$100.

Tables of the Properties of Saturated Steam and other Vapors.

These tables were prepared for the use of students in technical schools and colleges, and of engineers in general. 8vo, cloth, \$1 00.

Valve-gears for Steam-engines.

This book is intended to give engineering students instruction in the theory and practice of designing valve-gears for steam-engines—800, cloth, \$5.50.

Steam-bollers.

By Prof. Chem. H. Pranody and Prof. Edward F. Miller. Nearly 400 pages; 142 illustrations. Evo, cloth, \$4.00.

SATURATED STEAM

AND OTHER VAPORS.

BY

CECIL H. PEABODY,

PROFESSOR OF MAKINE ENGINEERING AND NAVAL ARCHITECTURE,
MASSACHUSETTS INSTITUTE OF TRUINOLOGY.

SIXTH EDITION, REVISED AND ENLARGED.

FOURTH THOUSAND.

NEW YORK: JOHN WILEY & SONS. 536. T

Copyright, 1888, BY CECIL H. PEABODY.

AUTOGA MELLINES US MOVES

SATURATED STEAM, AND OTHER VAPORS.

A comparison of the several tables of the properties of saturated steam, expressed in English units, reveals discrepancies of considerable magnitude; and investigation shows that, while all are in some manner founded on the experiments of Regnault, various methods of calculation have been used, and in some cases other experimental data have been employed. A review of the whole subject, in connection with the preparation of notes on thermodynamics for the use of the students of the Massachusetts Institute of Technology, made it seem important to calculate a set of tables, to accompany those notes, founded on the best and most recent data.

In presenting the tables for general use, it appears proper to state in full the data and the methods of calculation employed, so that each one may see the degree of accuracy and correctness of the tables, and the reliance to be placed on them.

Tables of the properties of other vapors have been added, which will be discussed hereafter.

Pressure of Saturated Steam.—As a conclusion from all the experiments on the tension of saturated steam, Regnault gives, in the *Memoires de l'Institut de France*, etc., Tome XXI., the following data:—

TEMPERATURE	PRESSURE			
C.	MM. OF MERCURY.			
-32	0.32			
16	1.29			
0	4.60			
25	23.55			
50	91.98			
75	288.50			
100	760.00			
130	2030.0			
160	4651.6			
190	9426.			
2 20	17390.			

following formulæ, which give the pressure in millimetres of mercury for any temperature in degrees Centigrade:—

A. For steam from -32° to 0° C.

$$p = a + ba^n$$
.
 $a = -0.08038$.
 $\log b = 9.6024724 - 10$.
 $\log a = 0.033398$.

$$\log b = 9.6024724 - 10.$$

$$\log a = 0.033398.$$

$$n = 32^{\circ} - t.$$
B. For steam from 0° to 100° **C.**

B. For steam from 0° to 100° C

$$\log p = a - ba^n + c\beta^n.$$

$$a = 4.7384380.$$

$$\log b = 0.6116485.$$

$$\log c = 8.1340339 - 10.$$

$$\log a = 9.9967249 - 10.$$

$$\log \beta = 0.006865036.$$

$$n = t.$$

C. For steam from 100° to 220° C.

$$\log p = a - ba^n + c\beta^n.$$

$$a = 5.4583895.$$

$$\log b = 0.4121470.$$

$$\log c = 7.7448901 - 10.$$

$$\log a = 9.997412127 - 10.$$

$$\log \beta = 0.007590697.$$

$$n = t - 100.$$
D. For steam from -20° to 220° Colog $p = a - ba^{n} - c\beta^{n}$.
 $a = 6.2640348$.

log
$$b = 0.1397743$$
.
log $c = 0.6924351$.
log $a = 9.994049292 - 10$.
log $\beta = 9.998343862 - 10$.
 $n = t + 20$.

By aid of the formulæ A and B, Regnault calculated and recorded tables of the pressures of saturated steam for temperatures from -32° to 100° C. The formula D was calculated from the data given above for the temperatures -20° , $+40^{\circ}$, 100° , 160° , and 220° C., and was intended to represent the whole range of experiments. By this formula, instead of formula C, he

calculated the pressures set down in his tables for temperatures from 100° C.

to 220° C.

,

that differ but little from those that will be given later. Some of the more recent tables in the French system were calculated by his equations.

oni oniliab bilani, and orinin van ono.

Equations for the Pressure of Steam at Paris. — In view of the preceding statements, it appeared desirable to re-calculate the constants for Equations B and C, with a degree of accuracy that should exclude any doubt as to the reliability of the results. Accordingly, the logarithms required were taken from Vega's ten-place table, and then the remainder of the calculations were carried on with natural numbers, checking by independent methods, with the following results: —

B. For steam from 0° to 100° C.

$$\log p = a - ba^n + c\beta^n.$$

$$a = 4.7393622142.$$

$$\log b = 0.6117400190.$$

$$\log c = 8.1320378383 - 10.$$

$$\log a = 9.996725532820 - 10.$$

$$\log \beta = 0.006864675924.$$

$$n = t.$$
C. For steam from 100° to 220° C.

$$\log p = a - ba^n + c\beta^n.$$

$$a = 5.4574301234.$$

 $\log b = 0.4119787931.$ $\log c = 7.7417476470 - 10.$

 $\log \alpha = 9.99741106346 - 10.$ $\log \beta = 0.007642489113.$

n=t-100.

To show the degree of accuracy attained, the following tables are given:—

EQUATION B.

t.	p.	LOG p FROM TABLE OF LOGARITHMS.	LOG p CALCULATED BY EQUATION.
0	4.60	0.6627578317	
25	23.55	1.3719909115	1.37199097
50	91.98	1.9636934052	1.96369346
75	288.50	2.4601458175	2.46014587
100	760	2.8808135923	2.88081365

EQUATION C.

LOG p FROM TABLE t. p.

OF LOGARITHMS.

BY EQUATION.

100

760.00

2.8808135923

C and the numerical work was not carried to so large a number of decimal places. For the calculation of tables, the constants are carried to seven places of significant figures only; this gives six significant figures in the result, of which five are recorded in the table.

Pressure of Steam at Latitude 45°. — French System. — It is customary to reduce all measurements to the latitude of 45°, and to sea-level. The standard thermometer should then have its boiling and freezing points determined under, or reduced to such conditions. The value of g, the acceleration due to gravity, is, at Paris, latitude 48° 50′ 14" and 60 metres above sea-level, 9.809218 metres; and at 45°, and at sea-level, it is 9.806056 metres. Consequently, 760 mm. of mercury at 45° gives a pressure equal to that of 759.755 mm. at Paris; and this corresponds to a temperature of 99.991 C. In other words, the thermometer which is standard at 45° has each degree

0.99991 of the length of the degree of a thermometer standard at Paris.

To reduce Equation B to 45° latitude, we have

$$\log p = a + \log \frac{980.9218}{980.6056} - ba^{0.00001t} + c\beta^{0.00001t};$$

and for Equation C,

$$\log p = a + \log \frac{980.9218}{980.6056} - ba^{(0.00001t - 100)} + c\beta^{(0.00001t - 100)}$$

$$= a + \log \frac{980.9218}{980.6056} - ba^{-0.000} a^{0.00001(t - 100)} + c\beta^{-0.000} \beta^{0.00001(t - 100)}.$$

The resulting equations which were used in calculating Table III are

For steam from 0° to 100° C. at 45° latitude.

$$\log p = a_1 - ba_1^n + c\beta_1^n.$$

$$a_1 = 4.739502.$$

$$\log b = 0.6117400.$$

$$\log c = 8.13204 - 10.$$

$$\log a_1 = 9.996725828 - 10$$

$$\log \beta_1 = 0.0068641.$$

n = t.

n = t - 100.

$$\log p = a_1 - b_1 a_1^n + c_1 \beta_1^n.$$

$$a_1 = 5.457570.$$

$$\log b_1 = 0.4120021.$$

$$\log c_1 = 7.74168 - 10.$$

$$\log a_1 - 9.997411296 - 10.$$

$$\log \beta_1 = 0.0076418.$$

equations for the pressure of steam, so that they will give the pressures in pounds on the square inch for degrees Fahrenheit, there are required the comparison of measures of length, and of weight, the comparison of the scales of the thermometers, and the specific gravity of mercury.

Professor Rogers (Proceedings of the Am. Acad. of Arts and Sciences, 1882-83, also Additional Observations, etc.) gives for the length of the metre, 39.3702 inches. This differs from the value given by Capt. Clarke (Proceedings of the Royal Society, vol. xv., 1866), by an amount that does not affect the values in the tables; his value being 39.370432 inches.

Professor Miller (*Phil. Transactions, cxlvi., 1856*) gives for the weight of one kilogram, 2.20462125 pounds.

Reguardt gives, for the weight of one litre of merenry, 13.5959 kilograms. The degree Fahrenheit is $\frac{\pi}{6}$ of the length of the degree Centigrade.

Let
$$k = \frac{13.5959 \times 2.204621}{39.3702};$$

then the equations B and C have for the reduction to degrees Fahrenheit, and pounds on the square inch,

$$\log p = a_1 + \log k - ba^{fin} + c\beta^{fin}, \log p = a_1 + \log k - b_1a_1^{fin} + c_1 \beta_1^{fin}.$$

The resulting equations, which were used in calculating Tables I and II, are:—

B. For steam from 32° to 212° F., in pounds on the square inch.

$$\log p = a_2 - ba_2^n + c\beta_2^n.$$

$$a_2 = 3.025908.$$

$$\log b = 0.6117400.$$

$$\log c = 8.13204 - 10.$$

$$\log a_2 = 9.998181015 - 10.$$

$$\log \beta_2 = 0.0038134.$$

$$n = t - 32.$$

C. For steam from 212° to 428° F., in pounds on the square inch.

$$\log p = a_2 - b_1 a_2^n + c_1 \beta_2^n.$$

$$a_2 = 3.743976.$$

$$\log b_1 = 0.4120021.$$

$$\log c_1 = 7.74168 - 10.$$

$$\log a_2 = 9.998561831 - 10.$$

$$\log \beta_2 = 0.0042454.$$

$$n = t - 212.$$

All of the foregoing equations make the pressure a function of the tem-

Other Equations for the Pressure of Steam. — Rankine, in his Steam Engine and other Prime Movers, gives the following equation: —

$$\log p = A - \frac{B}{T} - \frac{C}{T^2}.$$

For pounds on the square inch, corresponding to degrees Fahrenheit, -

$$A = 6.1007.$$

 $\log B = 3.43642.$
 $\log C = 5.59873.$
 $T = t + 461.^{\circ}2 \text{ F}.$

This equation has been largely used for calculating tables on the English system. The following table will give a comparison between the results from this formula and those from Formula B and C.

TEMPERATURE.	PRESSU	RE.
	Regnault at 45° latitude.	Rankino.
32	0.0890	0.083
77	0.4555	0.452
122	1.7789	1.78
167	5.579	5.58
212	14.99	14.70
257	33.711	33.71
302	69.27	69.21
347	129.79	129.8
392	225.56	225.9
428	336.26	336.3

Differential Co-efficient $\frac{dp}{dt}$.— As will be seen later, the differential co-efficient $\frac{dp}{dt}$ is used in calculating the volume and density of saturated vapors.

From the general equation of the form,

$$\log p = a + ba^n + c\beta^n,$$

differentiation gives

$$\frac{1}{\eta}\frac{dp}{dt} = \frac{1}{M^2}b \log a \cdot a^n + \frac{1}{M^2}c \log \beta \cdot \beta^n,$$

in which M is the modulus of the common system of logarithms.

The equation may be written, —

$$\frac{1}{a}\frac{dp}{dt} = Aa^n + B\beta^n.$$

French units.

- B. For 0° to 100° C., mm. of mercury, $\log A = 8.8512729 10.$ $\log B = 6.69305 10.$ $\log a_1 = 9.996725828 10.$ $\log \beta_1 = 0.0068641.$
- C. For 100° to 220° C., mm. of mercury. $\log A = 8.5495158 10.$ $\log B = 6.34931 10.$ $\log a_1 = 9.997411296 10.$ $\log \beta_1 = 0.0076418.$

English units.

B. For 32° to 212° F., pounds on the square inch. $\log A = 8.5960005 - 10$.

 $\log B = 6.43778 - 10.$ $\log a_2 = 9.998181015 - 10.$

 $\log \beta_2^2 = 0.0038134.$

C. For 212° to 428° F., pounds on the square inch, $\log A = 8.2942434 - 10$. $\log B = 6.09403 - 10$. $\log a_2 = 9.998561831 - 10$. $\log \beta_0 = 0.0042454$.

Heat of the Liquid and Specific Heat.—A preliminary series of experiments convinced Regnault that the specific heat of water at low temperature is unity. To test the specific heat at higher temperatures, he ran hot water from a boiler, and at a known temperature, into a calorimeter in which the

trom a boiler, and at a known temperature, into a calorimeter in which the temperature varied from 8° to 14° C., and the resulting upper temperature varied from 17° to 29° C. Knowing the original weight of water in the calorimeter, the weight run in from the boiler, and the initial and final temperatures in the calorimeter, he calculated the mean specific heat of water between the temperature of the boiler and the final temperatures of the calorimeter. A series of forty such experiments was made, with the temperature of the boiler varying from 108° to 192° C., from which Regnault concluded that the mean specific neat from 0° to 100° is 1.005; and from 0° to 200°, 1.016. The corresponding heat of the liquid, i.e., the heat required to raise one kilogram of water from 0° to a given temperature, t, is

and solving for the two constants by aid of the two known values of q, the following equation, which is commonly used, is deduced:—

$$q = t + 0.00002t^2 + 0.0000003t^8$$
.

The specific heat at any temperature is, therefore, -

$$c = \frac{dq}{dt} = 1 + 0.00004t + 0.000000t^2.$$

These equations are for use with the Centigrade scale; for the Fahrenheit scale, a given temperature may be reduced to the Centigrade scale, and then introduced in the same equations.

The process of making the experiments is really a complex one; for the water, in leaving the boiler, has work done on it by the steam pressure in the boiler, and it has a certain velocity impress on it at the same time, and again, in entering the calorimeter, it does work against the atmospheric pressure, and the kinetic energy of its motion is changed into heat. At higher temperatures there is a double change of state; part of the water changes to steam on leaving the boiler, and that steam is condensed again in the calorimeter. It is probable that the error of neglecting the effect of these several actions is inconsiderable.

The degree of accuracy to be accorded to this work is indicated by the fact that Regnault gives four significant figures in stating the data for the calculation of the constants in the equations.

Rowland's Experiments.—A series of experiments was made by Rowland at Baltimore, to determine the mechanical equivalent of heat, which gave a delicate method of determining the heat of the liquid, and the specific heat.

The apparatus used was similar to that used by Joule, with modifications to give greater certainty of results. The calorimeter was of larger size, and the paddle had the upper vanes curved like the blades of a centrifugal pump, to give a strong circulation up through the centre, past the thermometer for taking the temperatures, and down at the outside. The paddle was driven by a petroleum engine, and the power applied was measured by making the calorimeter into a friction brake, with two arms at which the turning moment was measured. Radiation was made as small as possible, and then was made determinate by use of a water-jacket outside of the calorimeter.

The experiments consisted essentially in delivering a measured amount of work to the water in the calorimeter, and in noting the rise of temperature produced thereby.

The whole range covered by the experiments was from 2° to 41° C. The results show that 430 kilogrammetres of work are required to raise one kilogramme of water from 2° to 3° C. Assuming that the same amount will be

ROWLAND'S MECHANICAL EQUIVALENT OF HEAT.

Degrees, C.	Total Number of Kilogram- meters.	Mechanical Equivalent of Heat.	Heat of the Liquid, Experimental.	Heat of the Liquid, Calculated.	Degrees, C.	Total Number of Kilogram- meters.	Mechanical Equivalent of Heat.	Heat of the Liquid, Experimental.	Heat of the Liquid, Calculated.
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 10 17 18 19 20 21	430 860 1200 1721 2150 2580 3009 3439 3868 4296 4723 5151 5578 6000 6433 6861 7280 7717 8144 8571 8007	420.8 420.8 420.3 420.0 428.8 428.5 428.3 428.1 427.7 427.7 427.4 427.2 427.0 426.8 426.4 426.4	1.0068 2.0135 3.0204 4.0295 5.0339 6.0408 7.0452 8.0520 9.0504 10.059 11.058 12.061 13.000 14.063 15.065 16.064 17.066 18.068 19.068 20.068 21.005	1.007 2.014 3.022 4.029 5.036 6.040 7.045 8.049 9.054 10.058 11.060 12.061 13.063 14.064 15.066 17.066 18.066 19.066 20.066 21.064	22 23 24 25 27 28 29 30 31 33 34 35 37 38 40 41	9424 9850 10277 10701 11128 11553 11978 12399 12828 13253 13675 14101 14527 14952 15379 15805 16657 17083 17508	426.1 426.0 425.9 425.8 425.7 425.6 425.6 425.6 425.7 425.7 425.7 425.8 425.8	22,065 23,063 24,062 25,055 26,054 27,050 28,045 29,031 30,035 31,030 32,018 33,016 34,011 35,008 37,007 38,003 39,000 30,908 40,993	22.063 23.061 24.059 25.058 26.053 27.048 28.042 29.037 30.032 31.027 32.023 33.018 84.014 35.009 36.007 37.005 38.004 39.002 40.000

In the above table, column 1 gives the number of degrees above freezing on the Centigrade scale; column 2 gives the number of kilogrammetres required to raise one kilogramme of water from freezing point to the given temperature; column 3 is Rowland's mechanical equivalent of heat at the given temperature derived from 10° intervals on column 2; column 4 is obtained by dividing the numbers in column 2 by the mechanical equivalent of heat at 16% C., or 62° F., from column 3; and column 5 is calculated by considering the specific heat to be constant for each five degrees of temperature. These specific heats were derived from a curve obtained by plotting temperatures for abscissæ, and heats of the liquid for ordinates. The values of the specific heats will be given later, in connection with those for higher temperatures.

A review of the preceding table shows that the specific heat at low temperatures varies quite markedly, so that it appeared advisable to investigate the effect of this variation on Regnault's experiments already quoted. This was done quite expeditiously by multiplying the mean specific heat given by him for his several experiments by the true average specific heat for the range of temperature in the calcumeter. This corrected specific heat was

temperature of the boiler. The results were then plotted as before, and compared with the heats of the liquid derived from Regnault's mean specific heats uncorrected. The points by the corrected method were a little more regularly arranged than the points obtained by assuming the specific heat to be unity at low temperatures; but the improvement was incansiderable. The inequality of the specific heat at low temperatures is seldom so much as the unavoidable errors of the method.

It appeared, that if the specific heat was assumed to be constant, from 40° to 45°, from 45° to 155°, and from 155° to 200° C., the straight lines thus drawn represented the experimental values as recalculated quite nearly; and, further, they represented the uncorrected experimental values more nearly than Regnault's equation.

Specific Heat of Water.—The combination of Rawland's and Regnault's experiments on the heat of the liquid by the method described gives the specific heats set down in the following table, Centigrade scale:—

					sı	PECUFIC HEAT.	
From 0° t	o 5° C.	32° ti) 41° F			1.0072	
5°	10°	41°	$50^{\rm o}$		 •	1.0044	
10°	15°	$50^{\rm o}$	59^{o}			1.0016	
15°	2()°	59°	68°			1.	
20°	25°	(B°	77"			0,9984	
25°	30°	770	86°	•		0.9948	
30°	35°	86°	95^{o}			0.9954	
35°	40°	95°	104^{o}			0.0982	
40°	45°	1040	113^{o}			1.	
45°	15ã°	1130	3110			1,008	
155°	200°	3110	3920			1.046	

Thermal Unit.—Heat is measured in calories, or British thermal units (BTU). A caloric commonly is defined as the heat required to raise one kilogramme of water from freezing point to 1° C.; and a British thermal unit, that required to raise one pound from 32° to 33° F. Nothing is known about the specific heat of water from 0° to 2° C.; consequently the commonly accepted value of the thermal unit is an ideal quantity inferred from the behavior of water at higher temperatures. It is more scientific to take an easily verified quantity for the standard; and there is a practical convenience in choosing 62° F. for the standard temperature, because it is near the mean temperature of the air during experimental work. Therefore, it is near the mean temperature in the calorimeter during ordinary work with that instru-

one pound of water from 62° to 63° F. This agrees substantially with the definition of the calorie, as the heat required to raise one kilogramme of water from 15° to 16° C.

In the tables for other vapors than steam, the old definition for the calorie, and Regnault's value for the heat of the liquid, are retained, to avoid entire recalculation.

Mechanical Equivalent of Heat.—The mechanical equivalent in metrekilogrammes of one calorie at $16\frac{20}{3}$ ° C., deduced from Rowland's experiments in the third column of the table on page 58, is 427.1.

Since the value given by Joule is commonly quoted, it will be of interest to make a comparison of his latest work (1873) with Rowland's, as given in the following table:—

Temperature.	Joule's Value at Manchester,	Reduced to the z	Rowland's Value,	
, , , , , , , , , , , , , , , , , , ,	English System.	English.	French.	corresponding.
14.79 12.79 15.59 14.59 17.39	772.7 774.6 773.4 767.0 774.0	776.1 778.5 776.4 770.5 777.0	425.8 427.1 426.0 422.7 426.3	427.6 428.0 427.3 427.5 426.9

The value of g at Baltimore, latitude 39° 17′, is 980.05 centimetres therefore, reducing to 45° of latitude, and at the sea level, the value of the mechanical equivalent of heat is

$$J = 426.9.$$

To reduce to the English system, multiply by §, and by the length of the metre in feet, so that

Total Heat.—This term is defined as the heat required to raise a unit of weight of water from freezing point to a given temperature, and to entirely evaporate it at that temperature. The experiments made by Regnault were in the reverse order; that is, steam was led from a boiler into the calorimeter, and there condensed. Knowing the initial and final weights of the calorimeter, the temperature of the steam, and the initial and final temperatures of the water in the culorimeter, he was able, after applying the necessary corrections, to calculate the total heats for the several experiments.

As a conclusion of the work, he gives the following values for the total heats:—

Assuming an equation of the form

$$\lambda = A + Bt,$$

Regnault calculated the constants from the values given for 100° and 195°, and gives the equation

$$\lambda = 606.5 + 0.305t.$$

Wishing to see the effect of the varying value of the specific heat at low temperatures, I recalculated the total heats given by experiment, by a method resembling that used in recalculation of the heats of the liquid, and plotted the results together with Regnault's values uncorrected. The recalculated points were a little more regular than the original ones, and lay nearer the line represented by the above equation. Especially did the recalculated points for those experiments, for which the true mean specific heat of the water in the calorimeter was nearly unity, lie near that line. It therefore appears that the equation represents our best knowledge of the total heat of steam.

For the Fahrenheit seale the equation becomes

$$\lambda = 1091.7 + 0.305 (t - 32).$$

Heat of Vaporization.—If the heat of the liquid be subtracted from the total heat, the remainder is called the heat of vaporization, and is represented by r, so that

$$r = \lambda - q.$$

Internal and External Latent Heat. — The heat of vaporization overcomes external pressure, and changes the state from liquid to vapor at constant temperature and pressure. Let the specific volume of the saturated vapor be s, and that of the liquid be σ , then the change of volume is $s - \sigma = u$, on passing from the liquid to the vaporous state. The external work is

$$p(s - \sigma) = pu$$

and the corresponding amount of heat, or the external latent heat, is

$$Ap(s-\sigma)=Apu$$

A being the reciprocal of the mechanical equivalent of heat.

The heat required to do the disgregation work, or the internal latent heat, is

$$\rho = r - \Lambda pu$$
.

Specific Volume and Density of Steam. — On account of the great difficulty of direct determination of the weight of saturated steam, it is customary to calculate the specific volume of steam by aid of the following equation, derived by the application of the principles of thermo-dynamics to the general

in which A is the reciprocal of the mechanical equivalent of heat, T is the temperature from the absolute zero, and σ is the volume of one unit of weight of the liquid from which the vapor is formed. The differential co-efficient $\frac{dp}{dt}$ can be calculated by aid of the equations on page 11.

The absolute temperature is obtained by adding 273.7 to the temperature in degrees Centigrade, or 460.7 to the temperature in degrees Fahrenheit.

The volumes and densities of saturated steam given in Tables I, II, and III, were calculated by this method.

It is of interest to consider the degree of accuracy that may be expected from this method of calculating the density of saturated vapor. The value of r repends on λ and q; for the first, Regnanlt gives three figures in the data from which the empirical equation is deduced, and the experimental work does not indicate a greater degree of accuracy. The fourth figure, if stated, is likely to be in error to the extent of five units. The value of T is commonly stated in four figures, of which the last may be in error by two units. A, as determined by Rowland, has four figures, the last being uncertain to the extent of one or two units. The differential co-efficient $\frac{dp}{ds}$ is deduced from the equations for calculating p; and those equations are derived from data having five places of significant figures. Now the Equations B and C, for steam at 45° of latitude for the English system give a pressure of 14.6967 pounds on the square inch; but the specific volume calculated by aid of Equation B is 26.550 cubic feet, while Equation C gives 26.637 cubic feet. The mean, 26.60, differs from either extreme by about one in seven hundred. This discrepancy is due to the fact that the curves represented by Equations B and C meet at the common temperature, 212°, but do not have a common Since the equations are empirical and not logical, the error or uncertainty is unavoidable, and all calculated specific volumes are affected by a similar uncertainty. The greatest probable error is in determining r, for which it may be about one in one thousand. The error introduced into this equation by using the values of A in common use, that is, 772 instead of 778, is about one in one hundred.

Tate and Fairbairn's Experiments.—In 1860 an attempt was made by Tate and Fairbairn to determine the specific volume of steam by direct experiment. The following table, taken from the *Philosophical Transactions*, Vol. cl., gives the results of all their experiments, together with the volumes calculated by their empirical formula,

	Pressure in Inches of Mercury. P.	Maximum Temperature, Fuhrenheit, of Saturation. T	Specific Volume from Experiments, 1'.	Specific Volume from Formula, F.	Error of Formula,	
1 2 3 4 5 6 7 8 9	5.35 8.02 9.45 12.47 12.61 13.62 16.01 18.36 22.88	190,77 155,39 159,36 170,92 171,48 174,92 182,30 188,30 198,78	8275,3 5353,5 4920,2 9722,0 9715,1 9438,1 9051,0 2620,4 2149,5	8183 5626 4900 9766 9740 9478 2985 2620 2124	- 9 0 - 7 6 2 - 2 4 6 - + 1 7 - + 1 14 9 - + 1 6 - 4 6 - + 5 4 - 9 0	
1' 2' 3' 4' 5' 6' 7' 8' 11' 12' 13'	53,61 55,52 55,89 66,84 76,20 81,53 84,20 92,23 90,68 90,60 104,54 112,78 122,25 114,25	242,90 244,82 245,22 255,50 263,14 267,21 269,20 274,76 276,30 276,42 287,25 262,58 287,25	940. 1 908. 0 892.5 759.4 615.3 605.7 684.4 646.2 646.2 487.2 458.3 403.1 440.6	987 900 9758 909 908 608 602 549 401 401 428 430	- 1	

It is apparent that the errors of this formula are much larger than the probable errors of the thermo-dynamic method.

The following table, giving the volumes in cubic metres of one kilogramme of saturated steam, shows the comparison of the two methods:—

By equation
$$g = 0$$
, for c , 100° c , 150° c , 200° c , $s = \frac{1}{AT} \cdot \frac{dt}{dt} + \sigma$, 211.5 12.11 1.660 0.3875 0.1277

From equation

$$V = 25.62 + \frac{49158}{P + 0.72}$$
, 54.97 11.43 1.643 0.3706 0.1348

Steam Entropy. — From the second law of thermo-dynamics may be deduced the equation

$$d\phi = \frac{dQ}{T},$$

in which ϕ is the entropy, dQ is the heat applied or withdrawn, and T is the absolute temperature. Since the entropy depends on the state of the substance only, and not on the method of arriving at that state, we may calculate the increase of entropy in one unit of weight of a given mixture of water and steam above the entropy at the entropy of the substance of the entropy of the entrop

freezing point to the temperature t, and that the portion x is then changed into steam. During the first operation the change of entropy will be

$$\theta = \int_{\mathfrak{o}}^{\iota} \frac{dq}{T} = \int_{\mathfrak{o}}^{\iota} \frac{cdt}{T}.$$

During the second operation the change of entropy will be

$$\frac{x_{I}}{T}$$
,

since the heat is added at the constant temperature t. The entire change of entropy will be

$$\phi = \frac{xr}{T} + \int_0^{\infty} \frac{cdt}{T} = \frac{xr}{T} + \theta.$$

At any other state the entropy of a unit of weight of a mixture of steam and water will be

$$\phi_1 = \frac{x_1 \tau_1}{T_1} + \theta_1,$$

and the change of entropy will be

$$\phi - \phi_1 = \frac{xr}{T} + \theta - \frac{x_1r_1}{T_1} - \theta_1.$$

During an adiabatic change no heat is transmitted, and the entropy is constant.

$$\frac{xr}{T} + \theta = \frac{x_1r_1}{T_1} + \theta_1.$$

When the initial state including the value of x is known, and also the final temperature or pressure, the final value of x_1 may be calculated by the above equation; and the initial and final volumes may be found by the equations

$$v = xu + \sigma$$
, $v_1 = x_1u_1 + \sigma$;

the value of u for a given temperature or pressure, from the equation,

$$s = u + \sigma$$
.

Entropy of the Liquid. — When the specific heat of a liquid is known in terms of the temperature, the entropy of the liquid,

$$\theta = \int_0^{t} Cdt$$

is readily calculated. For water we have, for example, the entropy of the liquid at 13° C.

$$1.0072 \log_e \frac{T_5}{T_0} + 1.0044 \log_e \frac{T_{10}}{T_5} + 1.0016 \log_e \frac{T_{1\delta}}{T_{10}}$$

For other liquids having the general formula for the heat of the liquid,

$$q = at + bt^2 + ct^3,$$

Other Vapors.—Tables IV to IX are taken from Zeumer's Mechanischen Wärmetheorie. His values for the specific volume and density were calculated with 273 for the absolute temperature of 0° C., and with 424 for the mechanical equivalent of heat. To bring these tables into accord with Tables I, II, and III, the values of the specific volume and density have been modified by using 273.7 for the absolute temperature of 0° C., and 426.7 for the mechanical equivalent of heat at Paris.

The equations by which the tables were calculated, taken from Regnault's memoirs, Académie des Sciences, Comptes rendus, Tome XXXVI, are here assembled, together with Zeuner's equations for the differential co-efficient, $\frac{1}{p} \frac{dp}{dt}$.

TEMPERATURE AND PRESSURE.

1	log p	8 8	b 4	a 5
Alcohol	$a - ba^n + ct^n$ $a + ba^n - ct^n$ $a - ba^n - ct^n$ $a - ba^n - ct^n$ $a - ba^n - ct^n$	5,0280208 5,0280208	4.0800000 0,0002284 2.0534284 3.4405063 9,4375480	0,0485307 3,1906390 0,0668673 0,2857386 4,0674890

TEMPERATURE AND PRESSURE - Concluded.

	log a.	log p.	n 8	Limits.
Alcohol Ether Chloroform Carbon bisulphide . Carbon tetrachloride .	1.00708557 0.0145775 1.0074144 7.0077628 1.0007120	1,0409485 1,046877 1,0868176 1,0911907 1,0940780	t.~~일() t.~~일()	-20°,+150°C, -20°,+120° +20°,+164° -20°,+140° -20°,+188°

The equation for the temperature and pressure of the saturated vapor of aceton, as recalculated by Zenner, is,—

$$\log p = a - ba^{n} + c\beta^{n}.$$

$$\frac{1}{p}\frac{d\,p}{dt}=Aa^n+B\beta^n$$

From Zeuner's Wärmetheorie.

	នេះ	IN.			
	Aa^n	$B\beta^n$	Log (Aa ⁿ)	$\text{Log }(B\beta^n)$	
Alcohol Ether	+++++	1+++++	-1.1720041-0.0020143 <i>t</i> -1.3390624-0.0031223 <i>t</i> -1.3410130-0.0025856 <i>t</i> -1.4339778-0.0022372 <i>t</i> -1.8011078-0.0002880 <i>t</i> -1.3268535-0.0020148 <i>t</i> <i>t</i> , temperature C.	$\begin{array}{l} -2.9992701-0.0590515t\\ -4.4616396+0.0145775t\\ -2.0667124-0.0131824t\\ -2.0511078-0.0088003t\\ -1.3812195-0.0050220t\\ -1.9064582-0.0215592t \end{array}$	

HEAT OF THE LIQUID.

Alcohol	•	•	•	$q = 0.54754t + 0.0011218t^2 + 0.000002206t^4$
Ether				$q = 0.52901t + 0.0002959t^2$
Chlorofor	m			$q = 0.23235t + 0.0000507t^2$
Carbon b	isulph	ide		$q = 0.23523t + 0.0000815t^2$
Carbon to	etrach	loride		$q = 0.19798t + 0.0000906t^2$
Aceton	•	•		$q = 0.50643t + 0.0003965t^2$
				TOTAL HEAT.

		TOTAL HEAT.
Ether		$\lambda = 94 + 0.45t - 0.00055556t^2$
Chloroform .		$\lambda = 67 + 0.1375t$
Carbon bisulphide		$\lambda = 90 + 0.14601t - 0.0004123t^2$
Carbon tetrachloride		$\lambda = 52 + 0.14625t - 0.000172t^2$
Aceton	_	$\lambda = 140.5 + 0.36644t - 0.000516t^2$

The total heat of alcohol varies in so irregular a manner that no equation can be given for it.

Zenner gives the following empirical equations for calculating the heat equivalent of the internal work, which are proposed to lessen the labor of calculation

HEAT EQUIVALENT OF INTERNAL WORK.

Water .			$\rho = 575.40 - 0.791t$
Ether .	•	•	$\rho = 86.54 - 0.10648t - 0.0007160t^2$
Chloroform	•	•	$\rho = 62.44 - 0.11282t - 0.0000140t^2$
Carbon bisul	phide	•	$\rho = 82.79 - 0.11446t - 0.0004020t^2$
Carbon tetra	chloride	з.	$\rho = 48.57 - 0.06844t - 0.0002080t^2$
Aceton			$a = 131.63 - 0.20184t - 0.0006280t^2$

Sulphur Dioxide and Ammonia. — The use of ice-machines has brought into prominence liquids which vaporize at low temperatures. For two such

SULPHUR DIOXIDE.	AMMONIA.
$\log p = a - ba^n - c\beta^n$	$\log p = a - ba^n - c\beta^n$
a = 5.6663790	a = 11.5043330
b = 3.0146890	b = 7.4503520
c = 0.1465400	c = 0.9499674
$\log a = \overline{1.9972989}$	$\log \alpha = \overline{1.9996014}$
$\log \beta = \bar{1}.9872900$	$\log \beta = \overline{1.9939729}$
n = t + 28	n = t + 22
Limits, $-28, +62$.	Limits, -22 , $+82$.

Unfortunately the heat of the liquid and the total heat for these substances have not been determined. We have, however, some of the properties of these substances in the gaseous state or more properly in the state of superheated vapors.

Now, it has been shown by Zeuner that superheated steam may have its properties represented by the equation

$$pv = BT - Cp^a$$

in which p is the pressure in pounds on the square foot or kilograms on the square meter, v is the volume of a pound in cubic feet or of a kilogram in cubic meters, and T is the absolute temperature. The constants have the following values when calculated from the properties of saturated steam:

French units, . . .
$$B = 51.3$$
 $C = 198$ $a = \frac{1}{4}$.
English units, . . . $B = 93.5$ $C = 971$ $a = \frac{1}{4}$.

It was first proposed by Ledoux to find similar equations to represent the properties of superheated sulphur dioxide and ammonia, and to use such equations for calculating approximate tables of the properties of these vapors when saturated, just as the tables of the properties of saturated steam had been used in establishing the equation for superheated steam.

In the *Thermodynamics of the Steam-engine* by the author, pages 452 to 459, this calculation has been carried out with the best ascertained properties of the superheated vapors of sulphor dioxide and ammonia with the following results:

SULPHUR DIOXIDE.

AMMONIA.

French units, pv = 14.5 $T - 48p^{0.22}$ pv = 54.3 $T - 142p^{\frac{1}{2}}$ English units, pv = 26.4 $T - 184p^{0.22}$ pv = 99 $T - 540p^{\frac{1}{2}}$

The application of these equations to the venors when seturated gives

HEAT OF VAPORIZATION.

French units,
$$r = 98 - 0.27t$$
 $r = 300 - 0.8t$.
English units, $r = 176 - 0.27(t - 32)$ $r = 540 - 0.8(t - 32)$.

SPECIFIC HEAT OF THE LIQUID.

SULPHUR DIOXIDE. AMMONIA. c=0.4 c=1.1

Tables X and XI were calculated by aid of the equations written, and may be of use for approximate calculations, in default of more reliable tables.

Specific Volume of Liquids. — Table XII was taken from the *Phys.-Chem. Tabellen* of Landolt and Börnstein.

Volume of Water.—Table XIII gives the volumes of water compared with its volume at 4°. From 0° to 100° C., the values are those given by Rossetti. Above 100°, the values are those calculated by the equations given by Hirn in the *Annales de Chimie et de Physique*, 1867.

Volumes of Liquids.—The volumes of liquids at high temperatures, compared with the volume at freezing point, are represented by the following equations given by Hirn in the Annales:—

Water 100° C. to 200° C. (vol. at 4° C.=	Logs.
uul(y) $v=1+0.00010867875t$	6,0361445-10
$+0.0000030073053\ell^2$	4.4781862 - 10
$+0.000000028730422t^3$	1.4583410-10
-0.0000000000066457031t	8.8225409-20
Alcohol 30° C. to 160° C. (vol. at 0° C.=	
mity) $v=1+0.00073802205t$	6.8685091-10
+0.00001055235 <i>(</i> ²	3.0233492 - 10
-0.0000000024808428	2.5660517 - 10
+0.000000004041356774	0.0005278 10
Ether 30° C. to 130° C. (vol. at 0° C.=	
uni(y) $v=1+0.0013480050t$	7.1209817 - 10
$+0.0000065537 t^2$	4.8104866 - 10
$-0.00000034400750l^3$	2.5377028-11
$+0.0000000033772062t^4$	0.5285571 - 10
Carbon bisulphide 30° to 100° C. (vol. at	T OUT THE THE
0° C.=unity) $v=1+0.0011680550t$	7.0674636 - 10
$+0.00000164805086^2$	4.2172103 - 10
$-0.00000000081119062 t^3$	0.9091229 - 10
+0.00000000000000046589&	.7840404-20
Claritan tetra distantia 2004 a 1000 Clarita	
Carbon tetrachloride 30° to 160° C. (vol. at	7 0000000 10
0°C.=unity)v=1+0.0010671883t	7.0282409-10 4.5520763-10
+0.0000035051378ℓ²	2.1746202-10
-0.00000014949281t ⁸	
+0.00000000085182318&	#####################################
1	

Other Data. — For convenience the following			
Length of the metre in inches	•	. {	[39.3702 (Rogers) [39.370432 (Clarke)
Weight of the kilogramme in pounds. Weight of 1 litre (1 cn. decimetre) of mer One horse power, in foot pounds per secon Cheval à vapeur, in kilogrammetres per se	nd	•	2.20462125 13.5959 kilos. 550 75
Normal pressure of the atmosphere .	•	. {	760 mm, of mercury, 10,333 kilos per sq. m, 14,6967 lbs. per sq. in, 2116,32 lbs. per, sq. ft.
Absolute temperature of freezing point		. {	273.°7 ().

Explanation of the Tables. — In Table I, the first column gives the temperature, t, of saturated steam.

The second column gives the corresponding pressure, p_i in pounds on the square inch, above an absolute vacuum; the differences are placed between the two numbers from which they are derived. For example, the pressure at 40° F, is 0.1216 pounds per square inch; and the difference to be used in interpolation, and placed half a line lower, is 48.

The third column gives the heat of the liquid, q, required to raise the temperature of one pound of water from 32° F. to a given temperature.

The fourth column gives the total heat, λ , required to raise one pound of water from 32° F, to a given temperature, and to entirely vaporize it under the pressure due to that temperature.

The fifth column gives the heat of vaporization, or the heat required to vaporize one pound of water at a given temperature, under the pressure corresponding.

The sixth column gives the heat required to do the disgregation work during the vaporization of one pound of water.

The seventh column gives the heat required to overcome the external pressure, and do the work of increasing the volume from σ to s.

The eighth column gives the entropy of the liquid.

The ninth and tenth columns give the specific volume, or volume in cubic feet, of one pound of saturated stemm, and the density or weight of one cubic foot in pounds.

Table II differs from Table I in that it is arranged to give the properties of saturated steam for each pound of pressure.

Table III gives the properties of saturated steam in French units; and Tables IV to XI give the properties of other saturated vapors in the same

TABLE I.

SATURATED STEAM.

ENGLISH UNITS.

The large state The large						NGLISH					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e, ahr.	per	uíd.		ion.	lent 1	lent al	nid.	me.		ibr.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	atur es F	pode fach	the Lig	eat.	rizat	uiva erna	uiva tern	of Liq	Volı	in , of	ture s Fe
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	per	Por Por	t of	H	of	P. Tit	P. E. G.	opy the	iffe	ght, inds Cu c.	gret
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l'em De	Pres	Heal	Pota	Heat Vi	leat ≪of	Jeat M	Intr	pec	reig Pou one Foc	De
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, "					[[cdt	1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						<u> </u>		$\frac{1}{T}$,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									3387 197	0.0002952	32
$ \begin{array}{c} \textbf{37} \\ \textbf{38} \\ 0.1120 \\ 44 \\ 0.1417 \\ 46 \\ 0.1526 \\ 47 \\ 0.1526 \\ 0.1670 \\ 0.000370 \\ 0.000470 \\ 0.00$	33		1.01	1002.0	1091.0	1035.1	55.9	0.0020	3260_{122}^{121}	0.0003067_{120}^{110}	33
$ \begin{array}{c} \textbf{37} \\ \textbf{38} \\ 0.1120 \\ 44 \\ 0.1417 \\ 46 \\ 0.1526 \\ 47 \\ 0.1526 \\ 0.1670 \\ 0.000370 \\ 0.000470 \\ 0.00$										0.0003187199	
$ \begin{array}{c} \textbf{37} \\ \textbf{38} \\ 0.1120 \\ 44 \\ 0.1417 \\ 46 \\ 0.1526 \\ 47 \\ 0.1526 \\ 0.1670 \\ 0.000370 \\ 0.000470 \\ 0.00$		0.1002 40							3022 112	0.0003300127	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		***				}			107	132	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		() 1190 40								0.0003508136	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A COMA SIS							OHAT WY	0.0003845141	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	0.4040	9.00	10011	1058.0	1090.71	50.3	0.0100	SEOO		40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		40			1000.0	1020.0	00.4	0.0102	2000 91		40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									Common Of	0.0004141_{155}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10 1001 01							2020 84	0.0004200160	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44	0.1117	10.00	1005 1	1/10/0 0		ĺ		80		ĺĺĺ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10 1171 04		1005.4					2104 77	$\left[\begin{array}{c} 0.0004621171 \\ 0.0004702171 \end{array} \right]$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	0.1528 58	14.00						2013 74	0.0004968_{181}^{176}	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	47	0.1580	15.00	1006.3	1081.2	1024.2	57.0	0.0302	1040	0.0005149.55	47
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	0.1646 00	16,10	1000.0	1080,5	1023.4	57.1	0.0322	1874 08	0.0005336187	48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49		17.10	1000.0	1070.8	1022.0	67.2	0.0341	1808 63	0.0005530_{201}^{101}	49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	0.1773 66	18,10	1007.2	1079.1	1021.8	57.3	0.0361	1745 60		50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	0.1830	19,11	1007.5	1078,4	1021.1	57.3	0.0381	1085 -	0.0005937310	51
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1077.7				1020 80	0.0006150^{218}_{210}	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	0.1070 78	21.11	1006.1	1077.0	1010.6	67.5	0.0420	1570 54		33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										0.0006595284	
$ \begin{bmatrix} 57 \\ 58 \\ 0.2370 \\ 80 \\ 0.2450 \\ 80 \end{bmatrix} \underbrace{25.12}_{20.12} \underbrace{1090.3}_{1090.6} \underbrace{1074.2}_{1073.5} \underbrace{1016.3}_{1015.6} \underbrace{57.9}_{57.9} \underbrace{0.0407}_{0.0517} \underbrace{1367}_{1321} \underbrace{46}_{45} \underbrace{0.0007317}_{0.0007571} \underbrace{58}_{200} \underbrace{58}_{27.12} \underbrace{0.0007834}_{270} \underbrace{59}_{27.12} \underbrace{0.0007834}_{27.0} \underbrace{0.0007834}_$		0.2128 78							1400 50		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4 or					ł		40	l .	
		11 11070 (11)							1001 40	0.0007317254	
		0.2450 80							1276 45	0.0007834203	
67 (1997) 40 49 4400 5 4054 4 4040 6 60 0 0 0 0 0 0 0 0 0 0 0 0 0	60	O OF IF	28.12	1100.2	1072.1	1014.0	58.1	0.0555	4004		60
	67	0.0007	40.10	1100 -	1071	1010.0	FO.0	0.0554	41	280	67

_					: 1		[i.	DENSITY.	.:
	.ip.	Pressure, Pounds per Square Inch.	ne Liquid.	.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	ig.	Specific Volume		Temperature, Degrees Fahr.
ĺ	ature es Fe	e, ound Inch	₽	Feat.	portz	equiv	equi Sxter	o Ad	ite V		gree
- 1	Temperature, Degrees Fahr.	Pressure, Pounds Square Inch.	Heat of	Total Heat.	eat o	of 1	A.c. H	the	peci	Weight, in Pounds, of one Cubic Foot.	Lem, De
			1	γ	Ħ r	Ħ	Apu	Entropy of	s	γ	t
ļ	t	<i>p</i>						-	(4)mt)	0.0000972	64
	64	0.2929104	32.12 33.12	1101.5 1101.8	1069.4 1068.7	1010.9	58.5 58.6	0.0632	107836 1042. : 1000;;;;	0.0009273313 0.0009586325 0.00099 C320	65 66
	65 66	$\begin{array}{c} 0.2020 \\ 0.3033 \\ 0.3140 \\ 110 \end{array}$	34.12	1102.1	1008.0	1009.4	58.0	0.0670		0.0000011320	67
	67		35.12	$1102.4 \\ 1102.7$	1007.3	$1008.6 \\ 1007.8$	58.7 58.8	0.0689	976.3 _{.316} 914.7364 914.3 ₂₉₃	0.001024.55	68
į	68 69	$\begin{array}{c} 0.3250 \\ 0.3364 \\ 117 \\ 0.3481 \\ 121 \end{array}$	36.12 37.12	1103.0	1065.9	1007.0	58.0	0.0727		1.0000000000000000000000000000000000000	69
	70	0.3602124	38.11	1103.3	1005.2	1006.2	50.0	0.0745	885.0283	0.00113037	70
	71		39,11	1103.6	1064.5	1005.4	50.1	$0.0764 \\ 0.0783$	850.7272	0.00116738	71
	72 73	$\substack{0.3726\\0.3854}_{132}^{128}\\0.3986^{136}_{136}$	40.11 41.11	[1103.9] [1104.2]	1003.3	1004.6 1003.8	50.3	0.0802	\$50.7 ₂₇₂ \$29.5 ₂₆₃ \$60.2 ₂₅₃	0.00124540	73
	74		42.11	1104.5	1002.4	1003.0	59.4	0.0820		0.00128041 0.00132743	74 75
	75	$\substack{0.4122\\0.4262\\1.14\\0.4406\\1.49}$	43.11	1101.8	1061.7	4002.3 1001.5	59.4 59.5	0.0839	777.0.211 753.5230 720.0228	0.00137043	76
	76			1105.4	1060.3	1000.7	50.0	0.0870	707.1.,,,	0.00141445	77
	77	$\substack{0.4555\\0.4708\\157\\0.4805\\162}$	45.10 46.10	1105.7	1059,6	0.000,0 1.000	59.7 59.8	0.0895	707.1 ₂₁₀ 085.2211 064.1 ₂₀₅	$\begin{array}{c} 0.00141445 \\ 0.00145946 \\ 0.00150548 \end{array}$	78
	79		47.00	1100.0	1058,0		59.9	0,0932	018.807	0,00 (553,10	80
	80	0.5027107	48.00	1106.3	1058.2	0,800				1	81
	81 82	0.5104171	49,08 50.08	1106.6	1057.5	997.5 990.8	(0.1	0,0950	005,0181	0.00180254	82 83
	83	$\begin{bmatrix} 0.5194 \\ 0.5365 \\ 0.5365 \\ 177 \\ 0.5542 \\ 181 \end{bmatrix}$	51.07	1107.3	1056.2	096.0	00.2	0.0087	005.0184 586.6178	1	1 1
	84		52.07	1107.6 1107.9	1055.5 1054.8	995.2 994.4		0.1005		0,00175855 0,00181356	84 85
	85	$\begin{smallmatrix} 0.5723 \\ 0.5010 \\ 0.5010 \\ 0,0102 \\ 197 \end{smallmatrix}$	53,06 54,06	1108.2	1054.1	093.7	1			(0.00150557	86
	87	1	1	1108.5	1053.1	992.9			510.215	$\begin{array}{c} 0.001926_{59} \\ 0.001985_{60} \\ 0.002045_{62} \end{array}$	87
•	88	$ \begin{array}{c} 0.6290_{203} \\ 0.6502_{209} \\ 0.6711_{214} \end{array} $	50.05	1108.8	1052.7	002.1		1		0.00204560	89
	90	0.6925221			1051.4	0,000	s 60.8	0.116			90
	91	1	1	1100.7	1050.7	080.8			1	1	91 92
	92	0.73722220	60.03	1110.0	1050.0	0.080.0				$\begin{bmatrix} 0.002171_{66} \\ 0.002237_{67} \\ 0.002304_{68} \end{bmatrix}$	93
	1					1	1 01.2	0.1180		1	94
	94	0.8090_{250}^{240}	02.02	1110.0	1047.0	080.0	3 (51.3)	0.120	1 409.3	$\begin{bmatrix} 2 & 0.00244845 \\ 0.00254073 \\ \end{bmatrix}$	95
	96	i		1			ļ	1	1	0.009500	97
	97	0.8807200	$\frac{3}{3} \begin{vmatrix} 65.01 \\ 66.01 \end{vmatrix}$. 1111.8	1045.8	084.3	2 (01.0	1 0, 125	a bearing a bear	$\begin{array}{c c} 0 & 0.00250076 \\ 0.00266678 \\ 0.00274480 \end{array}$	98 99
	99	0.9140_{28}^{27}	67.01		10-15.1	083,	4 61.7		10	1	
	100	0.0421	68.01	1112.4	1044.4	082.	7 61.7	$7 \mid 0.120$	3 354.0 ₀₀	0.00282482	100

,	per lh.	nid		ioi	lent 1	lent I	d.	tme	DENSITY.	br	
Temperature, Degrees Fahr	Pressure, Pounds per Square Inch.	the Liquid	eat.	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volum	Weight, in Pounds, of one Cubic Foot.	Temperature, Degrees Fabr.	
mper Jegra	Po Po Squar	Heat of	Total Heat.	at of Vap	at ec of In	at eq.	tropy	eific	sight, ounds le C	mper	
T. Te							edt Ledt				
	<i>p</i>	q	γ	<i>r</i>	. — Р	Apu ——	\int \frac{cdt}{T}	<u> </u>	γ	t	
104 105	1.0019319	72.0 73.0	$1113.7 \\ 1114.0$	1041.7 1041.0.	979.6 978.8	62.1 62.2	0.1364	316.188	$\begin{array}{c} 0.003163_{01} \\ 0.003254_{03} \\ 0.003347^{03} \end{array}$	104	
106	1.0019_{319} 1.0038_{328} 1.1266_{336}	74.0	1111.3	1040.3	978.0	62.3	0.1382 0.1400	$\begin{array}{c} 316.1_{88} \\ 307.3_{85} \\ 298.8_{82} \end{array}$	0.00323493 0.00334794	105 106	
107		75.0	1114.6	1039.6	977.2	62.4	0.1417		0.003441	107	
108 109	$\substack{1.1602_{345}\\1.1947354\\1.2301_{362}}$	76.0 77.0	1114.9 1115.2	1038.9 1038.2	976.4 975.6	62.5 62.6	$0.1435 \\ 0.1452$	$\begin{array}{c} 200.6_{70} \\ 282.777 \\ 275.075 \end{array}$	$\begin{array}{c} 0.003441_{06} \\ 0.003537_{99} \\ 0.003636_{102} \end{array}$	108	
110	1.2663_{372}	78.0	1115.5	1037.5	974.8	62.7	0.1470	267.5_{72}	0.003738_{104}	110	
111	1.3035381	79.0 80.0	1115.8 1116.1	1036.8 1036.1	974.0 973.2	62.8 62.9	0.1487	260.370	0.003842106	111 112	
113	$\substack{1.3035381\\1.3416331\\1.3807301}$	81.0	1116.4	1035.4	972.4	63.0	0.1505	$\begin{array}{c} 260.3\\ 253.370\\ 253.368\\ 246.5\\ 66 \end{array}$	$\begin{array}{c} 0.003842_{106} \\ 0.003948_{109} \\ 0.004057_{111} \end{array}$	113	
114 115	1.4207411	82.0 83.0	1116.7 1117.0	1034.7 1034.0	971.6 970.8	63.1	0.1540 0.1558	239.9 239.564	0.004168115	114 115	ı
116	$\frac{1.4207}{1.4618}$	84.0	1117.3	1033.3	970.0	63.3	0.1575	$\substack{239.9 \\ 233.5 \\ 227.3 \\ 60}$	$\begin{array}{c} 0.004168_{115} \\ 0.004283116 \\ 0.004309_{120} \end{array}$	116	
117 118		85.0 86.0	1117.6	1032.6	969.2 968,4	63.4	0.1592		0.004519121	117 118	
119	1,5470 1,5012452 1,6364464	87.0	1117.9 1118.2	1031.9 1031.2	007.6	03.0	$0.1610 \\ 0.1627$	$\begin{array}{c} 221.3 \\ 215.558 \\ 200.055 \end{array}$	$\begin{array}{c} 0.004519121 \\ 0.004640124 \\ 0.004764128 \end{array}$	119	ļ
120	1.0828474	88.1	1118.5	1030.4	906.7	63.7	0.1645	204.453	0.004892130	120	
121	l .	80.1	1118.8	1029.7	966.0	63.7	0.1002		0.005022134	121	
122 123	$\substack{1.7302\\1.7789\\1.8287\\510}$	90.1 91.1	1110.2	1029.1 1028.4	965,3 964,5	63.8	0.1679 0.1697	$^{190.1}_{\substack{193.952\\198.950\\188.948}}$	$\begin{array}{c} 0.005022\\ 0.005156137\\ 0.005203180 \end{array}$	122 123	
124 125		92.1	1119.8	1027.7	963.7	64.0	0.1714		0.005432142	124 125	
126	$\substack{1.8797521\\1.931852\\1.9852\\547}$	93.1. 94.1	1120.1 1120.4	1027.0	962 9 962, 1	64.1	0.1731 0.1748	$\begin{bmatrix} 184.1_{47} \\ 179.4_{46} \\ 174.8_{44} \end{bmatrix}$	$\begin{array}{c} 0.005432_{142} \\ 0.005574_{146} \\ 0.005720_{148} \end{array}$	126	
127	2.0300560	95.1	1120.7	1025.6	961.3	64.3	0.1765		$\begin{array}{c} 0.005868\\ 0.006020152\\ 0.006176156\end{array}$	127	,
128 129	$\begin{bmatrix} 2.0300 \\ 2.0350560 \\ 2.0950574 \\ 2.1533580 \end{bmatrix}$	96.1 97.1	1121.0	1024,0 1024,2	960.5 959.7	04.5	0.1783	$\begin{array}{c} 170.4_{43} \\ 166.1_{42} \\ 161.9_{41} \end{array}$	$\begin{array}{c} 0.006020156 \\ 0.006176160 \end{array}$	128 129	
130	2.2110600	98.1	1121.6	1023.5	058.0	64.6	0.1817	157.830	0.006336 ₁₆₂	130	
131		99.1	1121.0	1022.8	958.1	64.7	0.1834	153.038	0.000498166	131 132	
132	$\begin{smallmatrix} 2.2710 \\ 2.3333614 \\ 2.3931628 \\ 2.3961642 \end{smallmatrix}$	100.2	$\begin{array}{c c} 1122.2 \\ 1122.5 \end{array}$	1022.0	057.2 050.4	04.8	0.1851	$\begin{bmatrix} 153.0_{38} \\ 150.1_{37} \\ 146.4_{36} \end{bmatrix}$	$ \begin{array}{c} 0.006498166 \\ 0.006664169 \\ 0.006833172 \end{array} $	133	
134	2,4603 ₀₅₈	102.2	1122.8	1020.6	055.6	35.0	0.1885		0.007005176	134 135	
135 136	$\begin{bmatrix} 2.4603 \\ 2.5261 \\ 2.5261 \\ 2.5032 \\ 687 \end{bmatrix}$	103.2	1123.1 1123.4	1019.9 1019.2	054.8 054.0	65.1 65.2	0.1902	$\begin{array}{c} 142.8_{30} \\ 130.2_{34} \\ 135.8_{33} \end{array}$	$\begin{bmatrix} 0.007005_{176} \\ 0.007181_{180} \\ 0.007361_{184} \end{bmatrix}$	136	
137		105.2	1128.7	1018.5	953.2	65.3	0.1936			137 138	ļ
138 139	$\begin{bmatrix} 2.6619 \\ 2.7321702 \\ 2.8040734 \end{bmatrix}$	106.2 107.2	1124.0 1124.3	1017.8 1017.1	052.4 951.6	65.4 65.5	0.1952 0.1969	$\begin{array}{c} 132.5_{32} \\ 120.3_{31} \\ 120.2_{30} \end{array}$	$ \begin{array}{c} 0.007545 \\ 0.007732 \\ 0.007924 \\ 100 \end{array} $	139	
140	2.8774751	108.2	1124.6	1016.4	950.8	65.6	0.1986	123.230	0.008120108	140	
141	2.0525	100.2	1124.9	1015.7	950.0	65.7	0.2003	120.200	0.008318904	141	

						near, floresteading plints.				;		-	•		
177 178 179	174 175 176	171 172 173	170	167 168 169	164 165 166	161 162 163	160	157 158 159	154 155 156	151 152 153	150	147 148 149	144 145 146	t	Temperature, Degrees Fahr.
7.014 ₁₅₀ 7.173 ₁₆₂ 7.335 ₁₆₅ 7.500 ₁₆₈	6.554 6.704154 6.858156	$\begin{array}{c} 6.120 \\ 6.262142 \\ 6.407145 \\ \end{array}$	5.081 ₁₃₀	5.579 ₁₃₁ 5.710 ₁₃₄ 5.844 ₁₃₇	$\begin{array}{c} 5.200 \\ 5.324 \\ 5.324 \\ 120 \\ 5.450 \\ 120 \end{array}$	$\substack{4.8435\\4.96011180\\5.079}_{121}$	4.72021143	$\substack{4.4000\\4.50751075\\4.61721097\\4.61721120}$	4.0903 4.19141032 4.2046 ₁₀₅₄	3.7993 ₀₅₀ 3.8943 ₉ 70 3.9913 ₉₉₀	3.7063 ₀₃₀	3.4387 ₈₇₃ 3.5260 ₈₉₂ 3.6152 ₉₁₁	8.1877 ₈₁₉ 8.2696836 8.3532 ₈₅₅	Þ	Pressure, Pounds per Square Inch.
145.5 140.5 147.5	142.5 143.5 144.5	139.5 140.5 141.5	138.5	135.4 136.4 137.4	132.4 133.4 134.4	120.4 130.4 131.4	128.4	125.4 126.4 127.4	122.3 123.3 124.3	119.3 120.3 121.3	118.3	115.3 116.3 117.3	112.2 113.3 114.3	q	Heat of the Liquid.
1135.0 1136.2 1136.5	1135.0 1135.3 1135.6	1134.1 1134.4 1134.7	1183.8	1182.0 1133.2 1133.5	1132.0 1132.3 1132.6	1131.0 1131.4 1131.7	1130.7	1129.8 1130.1 1130.4	1128.0 1120.2 1120.5	1128,0 1128,3 1128,6	1127.7	1126.8 1127.1 1127.4	1125.0 1126.2 1126.5	λ	Total Heat.
000,4 080.7 080.0	002.5 091.8 091.1	094.6 093.9 093.2	995.3	99 7. 5 99 6. 8 99 6. 1	999,6 998,9 998,2	1001,6 1001,0 1000,3	1002.3	1004.4 1003.7 1003.0	1006.0 1005.9 1005.2	1008.7 1008.0 1007.1	1000.4	1011.5 1010.8 1010.1	1013.7 1012.0 1012.2	r	Heat of Vaporization
921.8 920.5 919.7	023.7 022.0 022.1	020.0 025.2 024.4	020.8	020.8 028.5 027.7	931.7 930.9 930.1	034.0 033.3 032.5	p::4.8	937.2 930.4 935.6	939,7 938,9 938,1	042.0 941.3 940.5	142.8	945.2 944.4 943.6	947.7 946.8 946.0	ρ	Heat equivalent of Internal Work.
60.1 60.2 60.3	08,8 08,0 69,0	68,6 68.7 68.8	68.5	08.2 68.3 68.4	67.0 68.0 68.1	67.0 67.7 67.8	67.5	67.2 67.3 67.4	66.9 67.0 67.1	66.7 66.8	66.6	66.3 66.4 66.5	66.0 66.1 66.2	alpu	Heat equivalent of External Work.
0.2580 0.2604 0.2620	0,2541 0,2557 0,2573	0,2493 0,2509 0,2525	0.2477	0.2420 0.2445 0.2461	0,2381 0,2397 0,2413	0,2302 0,2349 0,2365	0,2316	0,2267 0,2284 0,2300	0,2218 0,2235 0,2251	0.2160 0.2185 0.2202	0,2152	0.2103 0.2119 0.2336		Sidt r	Entropy of the Liquid.
53.26 ₁₁₂ 52.14 ₁₀₈ 51.06 ₁₀₅ 50.01 ₁₀₃	56.76120 55.56116 54.40114	00,53 59,25128 57,99123	01.85 132	66.05 64.02 60.22 137	70,58 69,01150 67,51146	75.43 73.77166 73.77163 72.14 ₁₅₈	77.14171	$\begin{array}{c} 82.50 \\ 80.70 \\ 78.90 \\ 176 \end{array}$	88.43 ₂₀₁ 86.42 ₁₉₅ 84.47 ₁₉₁	$^{04.79}_{02.01212}_{00.40206}$	97.03221	104.1 101.724 99.3524	$^{111.8}_{\substack{109.226\\109.226\\106.625}}$.	Specific Volume
$\begin{bmatrix} 0.01878_{40} \\ 0.01018_{40} \\ 0.01058_{42} \\ 0.02000_{42} \end{bmatrix}$			0.0101735	$\begin{array}{c} 0.01514_{34} \\ 0.01548_{34} \\ 0.01582_{35} \end{array}$	$\begin{array}{c} 0.01417_{32} \\ 0.01440_{32} \\ 0.01481_{33} \end{array}$	0.0132630 0.0135630 0.0138630	0.0120630	0.01211 ₂₈ 0.01239 ₂₈ 0.01267 ₂₉	0,01131,28 0,0115727 0,0118327	$\begin{array}{c} 0.03055_{25} \\ 0.01080_{25}^{25} \\ 0.01105_{26}^{25} \end{array}$	0.01031_{24}	$\begin{array}{c} 0.009004_{220} \\ 0.009833_{237} \\ 0.01007_{24} \end{array}$	$\substack{0.008019\\0.000159217\\0.000370220}$. سيون	Weight, in Founds, of one Cubic Foot.
177 178 179	174 175 176	171 172 173	170	167 168 169	164 165 166	161 162 163	160	157 158 159	154 155 156	151 152 153	150	147 148 149	144 145 146	t	Temperature, Degrees Fahr.

e,	· be	nid		ion	len 1	le11	ıid.	me	DENSITY.	pr.	
Temperature, Degrees Fabi	Pressure, Pounds pe Square Inch.	Heat of the Liquid	Total Heat.	Heat of Vaporization	Heat equivalen of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid	Specific Volum	Weight, in Pounds, of one Cubic Foot.	Temperature, Degrecs Fahr.	
t	ħ	7	λ	r	ρ	Ари	$\int \frac{cdt}{T}$	s	γ	t	
184 185 186	8.102 8.373181 8.558185	152.6 153.6 154.6	1138.1 1138.4 1138.7	985.5 984.8 984.1	915.7 914.9 914.1	69.8 69.9 70.0	0.2699 0.2714 0.2730	$\substack{46.03\\45.0904\\45.1789}$	$\begin{array}{c} 0.02172_{46} \\ 0.02218_{46} \\ 0.02264_{47} \end{array}$	184 185 186	
187 188 189	$\begin{array}{c} 8.746 \\ 8.937 \\ 9.132 \\ 198 \end{array}$	155.6 150.6 157.0	1139.0 1139.3 1139.6	983.4 982.7 982.0	913.4 912.6 901.8	70.0 70.1 70.2	$\begin{array}{c} 0.2745 \\ 0.2761 \\ 0.2777 \end{array}$	$\begin{array}{c} 43.28_{87} \\ 42.4185 \\ 41.50_{83} \end{array}$	$\begin{array}{c} \textbf{0.02811}_{47} \\ \textbf{0.0235848} \\ \textbf{0.02406}_{49} \end{array}$	187 188 189	
190	9.330_{202}	158.6	1139,9	981.3	911.0	70.3	0.2792	40.7381	0.02455_{50}	190	
191 192 193	$\begin{array}{c} 0.532_{200} \\ 0.738_{200} \\ 0.047_{213} \end{array}$	159.6 160.6 161.6	1440.2 1140.5 1140.8	980.6 979.9 979.2	910.2 909.4 908.6	70.4 70.5 70.0	0.2808 0.2823 0.2838	$\begin{array}{c} 30.92_{79} \\ 39.13_{78} \\ 38.35_{70} \end{array}$	$\substack{0.02505\\0.0255652\\0.0260852}$	191 192 193	
194 195 196	$\begin{array}{c} 10.160 \\ 10.377 \\ 221 \\ 10.598 \\ \underline{224} \end{array}$	162.6 163.7 164.7	1141.1 1141.4 1141.7	978.5 977.7 977.0	907.8 906.9 900.2	70.7 70.8 70.8	0.2854 0.2869 0.2855	$\begin{array}{c} 37.59_{74} \\ 36.85_{72} \\ 36.13_{71} \end{array}$	$\substack{0.02600\\0.0271454\\0.0276855}$	194 195 196	
197 198 199	$\begin{array}{c} 10.822_{229} \\ 11.051_{232} \\ 11.283_{237} \end{array}$	105.7 100.7 107.7	1142.0 1142.3 1142.6	976.3 975.6 974.9	904.0 904.0 903.8	70.9 71.0 71.1	0.2900 0.2915 0.2930	$\begin{array}{c} 35.42 \\ 34.73 \\ 07 \\ 34.06 \\ 06 \end{array}$	$\begin{array}{c} 0.0282356 \\ 0.0287057 \\ 0.0203058 \end{array}$	197 198 199	
200	11.520_{241}	108.7	1142.0	074.2	003.0	71.2	0.2946	33.40_{64}	0.02994_{50}	200	
201 202 203	$\substack{11.761\\12.005\\240\\12.254\\254}$	169.7 170.7 171.7	1143.2 1143.6 1143.9	973.5 972.9 972.2	902.2 901.5 900.8	71.3 71.4 71.4	0.2061 0.2076 0.2091	$\begin{array}{c} 32.70_{03} \\ 32.1301 \\ 31.52_{00} \end{array}$	$\substack{0.03053\\0.0311201\\0.0317302}$	201 202 203	
204 205 206	$\substack{12.508 \\ 12.765263 \\ 13.028266}$	172.7 173.7 174.7	1144.2 1144.5 1144.8	971.5 970.8 970.1	900.0 899.2 898.4	71.5 71.6 71.7	0.3007 0.3022 0.3037	$\begin{array}{c} 30.02_{50} \\ 30.3357 \\ 20.76_{57} \end{array}$	$\substack{0.03235\\0.0329762\\0.0336166}$	204 205 206	
207 208 209	$\substack{13.204 \\ 13.505270 \\ 13.841281}$	175.8 170.8 177.8	1145.1 1145.4 1145.7	969,3 968,6 967,9	807.5 806.7 806.0	71.8 71.9 71.9	$\begin{array}{c} 0.3052 \\ 0.3067 \\ 0.3082 \end{array}$	29.19_{50} 28.0354 28.0952	$\substack{0.08426\\0.0349367\\0.03500}$	207 208 209	
210	14.122_{285}	178.8	1146.0	067.2	805.2	72.0	0.3007	27.57_{52}	0.0302869	210	
211 212 213	$\substack{14.407_{200}\\14.097_{203}\\14.990_{200}}$	179.8 180.8 181.8	1146.3 1140.6 1146.9	966.5 905.8 965.1	804.4 803.5 802.0	72.1 72.3 72.5	$\begin{array}{c} 0.3112 \\ 0.3127 \\ 0.3142 \end{array}$	$\begin{array}{c} 27.05_{45} \\ 20.60_{44} \\ 26.10_{40} \end{array}$	$\substack{0.03697\\0.0376064\\0.03824}_{72}$	211 212 213	
214 215 216	$\substack{15.280\\15.592303\\15.901313}$	182.8 183.8 184.8	1147.2 1147.5 1147.8	964.4 963.7 963.0	891.8 891.0 890.2	72.6 72.7 72.8	0.3157 0.3172 0.3187	$\begin{array}{c} 25.07_{48} \\ 25.10_{40} \\ 24.73_{45} \end{array}$	$\begin{array}{c} 0.0389673 \\ 0.0396074 \\ 0.0404375 \end{array}$	214 215 216	
217 218 219	$\begin{array}{c} 16.214_{310} \\ 16.533324 \\ 16.857_{320} \end{array}$	185.8 180.8 187.8	1148.1 1148.4 1148.7	962.3 961.6 960.9	889.5 888.7 887.9	72.8 72.9 73.0	0.3202 0.3217 0.3232	$\begin{array}{c} 24.28_{44} \\ 23.84_{43} \\ 23.41_{43} \end{array}$	$\begin{array}{c} 0.04118_{70} \\ 0.0419478 \\ 0.04272_{80} \end{array}$	217 218 219	
220	17.186_{335}	188.0	1149.0	960.1	887.1	73.0	0.3246	22.08_{42}	0.04352_{80}	220	
221	17.521 240	180.0	1149.3	050.4	886.3	73.1	0.3261	22.5641	0.0443200	221	

e, abr		uid		ion.	lent 1	lent al	uid.	ıme	DENSITY.	ihr.	
Temperature, Degrees Fahr	Pressure, Pounds I Square Inch.	the Liquid	cat.	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume	Weight, in Pounds, of one Cubic Foot.	Temperature, Degrees Fahr.	
npe	essur Po itare	Heat of	Total Heat.	at of Vapo	at eq f Ini Vorb	at ed f Ed	tropy	cific	right bund ne C not.	nper	
Te			. I		IIe		E cdt		We Pc or Fc		
t	<i>p</i>	7	λ	<i>r</i>		Afri	$\int \frac{cdt}{T}$	<u>s</u>	γ	t	
224	18.557257	192.9	1150.8	957.4	884.0	73.4	0.3305	21.37	0.04679	224	
225	$\begin{array}{c} 18.557_{357} \\ 18.914_{362} \\ 19.276_{368} \end{array}$	193.9 194.9	1150.6 1150.9	956.7 956.0	883.3 882.5	73.4 73.5	0.3320 0.3335	$\begin{array}{c} 21.37 \\ 20.9938 \\ 20.6237 \\ 20.6237 \end{array}$	$\begin{array}{c} 0.04679_{85} \\ 0.04764_{86} \\ 0.04850_{88} \end{array}$	225 226	
227	19.644	195.9	1151.2	955.3	881.7	73.6	0.3349			227	
228	$\substack{19.644\\20.018379\\20.397386}$	196.9	1151.5	954.6	880.9	73.7	0.3364	$20.25_{19.8936}$ $19.8935_{19.5434}$	$\substack{0.04938\\0.05028}\\0.05118}_{90}$	228	
	20.501386	197.9	1151.8	953.9	880.2	73.7	0.3379	19.54		229	
230	20.783_{302}	198.9	1152.1	953.2	879.4	73.8	0.3393	19.20 ₃₃	0.05208_{92}	230	
231	$\frac{21.175}{21.572407}$	199.9 201.0	1152.4 1152.7	952.5 951.7	878.6 877.8	73.9 73.0	0.3408	18.87 ₃₃ 18.5433	$\begin{array}{c} 0.05300_{94} \\ 0.05304_{95} \\ 0.05480_{97} \end{array}$	231 232	
233	$\substack{21.175\\21.572\\21.976\\410}$	202.0	1153.0	951.0	877.0	74.0	0.3437	$18.87_{33} \\ 18.54_{32} \\ 18.22_{32}$	0.0548997	233	
234	22.386417	203.0	1153.3	950.3 949.6	876.2	74.1	0.3452	17.9031	0.0558699	234 235	
236	$\substack{22.386 \\ 22.803 \\ 423 \\ 23.226 \\ 420}$	204.0 205.0	1153.6 1153.9	948.9	875.4 874.6	74.2 74.3	0.3466 0.3481	$\begin{array}{c} 17.90 \\ 17.50 \\ 30 \\ 17.20 \\ 30 \end{array}$	$\begin{array}{c} 0.05586_{00} \\ 0.05685_{00} \\ 0.05784_{101} \end{array}$	236	
237		206.0	1154,2	948.2	873.9	74.3	0.3495			237	
238	$\substack{ 23.055 \\ 24.001 \\ 442 \\ 24.533 \\ 449 }$	207.0 208.0	1154.5 1154.8	947.5 946.8	873.1 872.3	74.4	0.3510 0.3524	$\substack{16.99\\16.7029\\16.4228}$	$\begin{array}{c} 0.05885_{102} \\ 0.05987_{103} \\ 0.06090_{105} \end{array}$	238 239	
240	24.982 ₄₅₀	209.0	1155.1	946.1	871.6	74.5	0.3538	16.14 ₂₇	0.06195 ₁₀₆	240	
					ĺ.			-•			
241 242	$\substack{25.438 \\ 25.900470 \\ 26.370470}$	210.0 211.0	1155.4 1155.8	945.4 944.8	870.8 870.1	74.6	0.3553 0.3507	$\begin{array}{c} 15.87_{27} \\ 15.60_{26} \\ 15.34_{26} \end{array}$	$\begin{array}{c} 0.06301_{108} \\ 0.06400110 \\ 0.06510111 \end{array}$	241 242	
243		212.0	1156.1	944.1	869.3	74.8	0.3581			243	
244	26.846484	213.0 214.1	1156.4 1156.7	943.4 942.6	868.5 867.7	74.9 74.9	0.3596	$\substack{15.08_{25}\\14.83_{25}\\14.58_{24}}$	0.06630	244 245	
246	$\substack{26.846\\27.830\\491\\27.821\\408}$	215.1	1157.0	941.9	866.9	75.0	0.3624	14.58_{24}^{25}	$\begin{array}{c} 0.06630 \\ 0.06743113 \\ 0.06858 \\ 115 \end{array}$	246	
247		216.1	1157.3	941.2	866.1	75.1	0.3639	14.3423		247	
248 249	$\substack{28.310 \\ 28.824512 \\ 29.336 \\ 520}$	217.1 218.1	1157.6 1157.9	940.5 939.8	865.3 864.5	75.2 75.3	0.3653	$\begin{array}{c} 14.34_{23} \\ 14.11_{23} \\ 13.88_{23} \end{array}$	$\begin{array}{c} 0.06973_{116} \\ 0.07089_{118} \\ 0.07207_{120} \end{array}$	248 249	
250	20.856 ₅₂₈	210.1	1158.2	939.1	863.8	75.3	0.3681	13.65 ₂₂	0.07327 ₁₂₁	250	ľ
251		220.1	1158.5	938.4	863.0	75.4	0.3695			251	}
252 253	$\begin{array}{c} 30.384 \\ 30.919543 \\ 31.462 \\ 550 \end{array}$	221.1 222.1	1158.8	937.7 937.0	862.2 861.4	75.5 75.6	$0.3709 \\ 0.3724$	$\begin{array}{c} 13.43_{22} \\ 13.21_{22} \\ 12.99_{21} \end{array}$	$ \begin{array}{c} 0.07448_{123} \\ 0.07571_{126} \\ 0.07697_{128} \end{array} $	252 253	5.
254 255	$\substack{ 32.012 \\ 32.571566 \\ 33.137574 }$	223.1 224.1	1159.4 1159.7	93 6.3 935.6	860.7 859.9	75.6 75.7	$\begin{vmatrix} 0.3738 \\ 0.3752 \end{vmatrix}$	$\begin{array}{c c} 12.78_{21} \\ 12.57_{20} \\ 12.37_{20} \end{array}$	$ \begin{array}{c c} 0.07825_{128} \\ 0.07953_{129} \\ 0.08082_{132} \end{array} $	254 255	ŀ
256	88.137 ₅₇₄	225.1	1100.0	934.9	859.1	75.8	0.3766			256	:
257 258	33.711	226.2 227.2	1160.3 1160.6	934.1 933.4	858.2 857.5	75.9 75.9	0.3780 0.3794	12.1719	0.08214133	257 258	
259	$\substack{\frac{39.711}{84.294590}\\84.884590}$	228.2	1160.9	932.7	856.7	76.0	0.3808	$\begin{array}{c} 12.17_{19} \\ 11.98_{19} \\ 11.79_{19} \end{array}$	$ \begin{array}{c c} 0.08214_{133} \\ 0.08347_{135} \\ 0.08482_{137} \end{array} $	259	
260	35.483 ₆₀₇	220.2	1161.2	932.0	855.9	76.1	0.3822	11.60 ₁₈	0.08619 ₁₃₈	260	
261	30.090 ₀₁₀	230.2	1161.5	931.3	855.1	76.2	0.3836	11.4218	0.08757 ₁₄₀	261	

Temperature, Degrees Fahr	264 265 266	267 268 269	270	271 272 273	274 275 276	277 278 279	280	281 282 283	284 285 286	287 288 289	290	291 292 293	294 295 296	297 298 299	300	301
Weight, in Pounds, of one Cubic Foot.	$\begin{array}{c} 0.09182 \\ 0.09327145 \\ 0.09474 \\ 150 \end{array}$	$\begin{array}{c} 0.09624 \\ 0.09775152 \\ 0.09927153 \end{array}$	0.100816	$\begin{array}{c} 0.1024\\ 0.1040\\ 0.1056\\ 16 \end{array}$	$\substack{0.1072\\0.108817\\0.110517}$	$\begin{array}{c} 0.1122 \\ 0.113017 \\ 0.115617 \\ \end{array}$	0.1173_{18}	$\begin{array}{c} 0.1191 \\ 0.120018 \\ 0.122718 \end{array}$	$\begin{array}{c} 0.1245_{10} \\ 0.1204_{10} \\ 0.1283_{10} \end{array}$	$\begin{array}{c} 0.1302 \\ 0.13210 \\ 0.134019 \\ \end{array}$	0.135020	$\begin{bmatrix} 0.1379_{20} \\ 0.1399_{20} \\ 0.1419_{21} \end{bmatrix}$	$\begin{array}{c} 0.1440_{21} \\ 0.1461_{21} \\ 0.1482_{21} \end{array}$	$\begin{array}{c} 0.1503_{21} \\ 0.1524_{21} \\ 0.1545_{22} \end{array}$	0.156722	0.158922
Specific Volum	$\begin{bmatrix} 10.80 & 17 \\ 10.72 & 17 \\ 10.55 & 16 \end{bmatrix}$	$\begin{bmatrix} 10.39 & 16 \\ 10.23 & 16 \\ 10.07 & 15 \end{bmatrix}$	9.918 ₁₅₂	$\begin{array}{c} 9.766_{149} \\ 9.617_{146} \\ 9.471_{143} \end{array}$	$\begin{array}{c} 9.328_{141} \\ 9.187_{138} \\ 9.049_{136} \end{array}$	$8.913_{133} \\ 8.780_{134} \\ 8.640_{128}$	8.521_{126}	$\substack{8.305\\8.271}_{122}^{124}\\8.140\\119$	$\begin{array}{c} 8.030\\ 7.913\\ 7.707\\ 113 \end{array}$	$\begin{array}{c} 7.084_{111} \\ 7.578_{109} \\ 7.464_{108} \end{array}$	7.356 ₁₀₅	$\begin{array}{ c c c c }\hline 7.251_{103} \\ 7.148_{102} \\ 7.046_{100} \\ \hline \end{array}$	$ \begin{vmatrix} 6.946_{99} \\ 6.847_{97} \\ 6.750_{95} \end{vmatrix} $	$\begin{bmatrix} 0.055_{03} \\ 0.562_{02} \\ 0.470_{00} \end{bmatrix}$	6.38088	0.292_{87}
Entropy of the Liquid.	0.3878 0.3891 0.3906	0,3919 0,3933 0,3947	0.3901	0.3975 0.3988 0.4002	0.4016 0.4030 0.4043	0.4057 0.4071 0.4084	0.4008	0.4112 0.4125 0.4130	0,4152 0,4166 0,4179	0.4206	0.4233	0.4260	0.4300	0.4340		0.4380
External Work.	76.4 76.5 76.6	76.6 76.7 76.8	76.0	76.9 77.0 77.1	77.2 77.3 77.3	77.4 77.5 77.6	77.6	77.8	78.0	78.3	78.4	78.0	78.8	3 79.0		79.
Heat equivalen of Internal Work.	852.0 852.1 851.3	850.6 849.8 849.0	848.1	847.4 840.0 845.8	845.0 844.2 843.5	812.7 811.0 811.1	840.4	839.6 838.8 838.0	837.2 830.5 835.7	834.0 834.1 833.4	832.0	831.0	828,0	826.5		823.9
y Heat of Vaporizatio	928.0	027.2 020.5 025.8	925.0	024.3 023.6 022.0	022.2 021.5 020.8	920.1 919.4 918.7	918.0	917.3 916.0 915.9	915.2 914.5 913.8	913.1 912.4 911.7	911.0	910,3 900,6 908,9	908.2 907.4 900.7	905,3	1	003.2
> Total Heat.	1162.5 1162.8 1163.1	1163.4 1163.7 1164.0	1104.3	1104.0 1104.0 1105.2	1105.5 1105.8 1100.1	1106.4 1106.7 1107.0	1107.3	1167.6 1168.0 1168.3	1168.6 1168.9 1169.2	1100.8	1170.4	1171.0	1171.9	1172.8	1173.4	1173.7
Heat of the Liqui	233.2 234.2 235.2	230.2 237.2 238.2	230.3	240.3 241.3 242.3	243.3 244.3 245.3	240.3 247.3 248.3	249.3	250.3 251.4 252.4	253.4 254.4 255.4	250.4 257.4 258.4	259.4	200.4 201.4 202.4	263.4 264.5 265.5	200.5 207.5 208.5	209.5	270.
Pressure,	37.063 ₆₄₁ 38.604 ₆₅₁ 39.255 ₆₅₉	$\begin{array}{c} 39.914_{668} \\ 40.582677 \\ 41.259686 \end{array}$	41.945_{695}	$\substack{42.040\\43.345705\\44.059714\\44.059723}$	$\substack{44.782\\45.515743\\46.258753}$	$\begin{array}{c} 47.011_{702} \\ 47.773_{772} \\ 48.545_{783} \end{array}$	40.328702	50,12 ₈₀ 50,02 ₈₂ 51,74 ₈₂	52.50 ₈₃ 53.30 ₈₅ 54.24 ₈₅	55.09 ₈₇ 55.96 ₈₇ 56.83 ₈₀	57.72 ₉₀	58.0291 59.5392 60.4593	62.3355	00.22100	67.22102	08.24
Thegrees Fadr	54 55 56	57 58 59	70	71 72 73	74 75 76	77 78 79	30	B1 B2 B3	94 95 96	87 118 39	90	91 92 93	94 95 96	97 98 99	00	01

abı	s pe ch.	níd		tior	Jen.	leni al	id.	nme	DENSITY.	ibr.	
Temperature, Degrees Fabi	Pressure, Pounds pe Square Inch.	Heat of the Liquid	Total Heat.	Heat of Vaporization	Heat equivalen of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volum	Weight, in Pounds, of one Cubic Foot.	Temperature, Degrees Fahr.	
t	<i>*</i>	9	λ		ρ	Apu	$\int \frac{cdt}{T}$	s	γ	t	
304 305 306	$\begin{array}{c} 71.36\\72.42106\\73.50108\\ \end{array}$	273.5 274.5 275.5	1174.7 1175.0 1175.3	901.2 900.5 899.8	\$21.7 \$20.9 \$20.1	79.5 79.6 79.7	0.4419 0.4433 0.4446	$\begin{array}{c} \textbf{6.035}_{83} \\ \textbf{5.952}_{81} \\ \textbf{5.871}_{80} \end{array}$	$\begin{array}{c} 0.1657 \\ 0.1680 \\ 23 \\ 0.1703 \\ 24 \end{array}$	304 305 306	
307 308 309	$\begin{array}{c} 74.59 \\ 75.69 \\ 76.80 \\ 113 \end{array}$	276.6 277.6 278.6	1175.6 1175.9 1176.2	899.0 898.3 897.0	819.3 818.5 817.7	79.7 79.8 79.9	0.4459 0.4472 0.4485	$\begin{array}{c} 5.791_{70} \\ 5.71278 \\ 5.634_{76} \end{array}$	$\substack{0.1727_{24}\\0.1751_{24}\\0.1775_{24}}$	307 308 309	
310	77.93	279.6	1176.5	896 .9	817.0	79.9	0.4498	5.558_{74}	0.1799_{24}	310	
311 312 313	$\begin{bmatrix} 79.07_{116} \\ 80.23_{116} \\ 81.39_{118} \end{bmatrix}$	280.6 281.6 282.7	1176.8 1177.1 1177.4	896.2 895.5 894.7	\$16.2 \$15.4 814.5	80.0 80.1 80.2	0.4511 0.4524 0.4538	$\begin{array}{c} 5.484 \\ 5.41073 \\ 5.33771 \end{array}$	$\substack{0.1823_{25}\\0.184825\\0.187826}$	311 312 313	
314 315 316	82.57 83.77 84.98 122	283.7 284.8 285.8	1177.7 1178.0 1178.3	894.0 893.2 892.5	813.8 812.9 812.1	80.2 80.3 80.4	$\begin{array}{c} 0.4552 \\ 0.4565 \\ 0.4570 \end{array}$	$\substack{5.26671\\5.19569\\5.12668}$	$\begin{array}{c} 0.1899 \\ 0.1925 \\ 0.1951 \\ 26 \end{array}$	314 315 316	
317 318 319	86.20 87.43123 88.68125 88.68127	286.9 287.9 289.0	1178.6 1178.9 1179.2	891.7 891.0 890.2	811.3 810.5 809.6	80.4 80.5 80.6	0.4592 0.4600 0.4619	$\begin{array}{c} 5.05867 \\ 4.99166 \\ 4.92564 \end{array}$	$\begin{array}{c} 0.1977_{27} \\ 0.200427 \\ 0.203127 \end{array}$	317 318 319	
320	89.95128	200.0	1179.5	889.5	808.8	80.7	0.4633	4.86164	0.205827	320	
321 322 323	$\begin{array}{c} 91.23_{129} \\ 92.52_{130} \\ 93.82_{132} \end{array}$	201.0 202.1 203.1	1179.8 1180.2 1180.5,	888.8 888.1 887.4	808.1 807.3 806.5	80.7 80.8 80.9	0.4646 0.4659 0.4672	$\substack{4.797\\ 4.73562\\ 4.67301}$	$\begin{array}{c} 0.2085_{27} \\ 0.211228 \\ 0.214028 \end{array}$	321 322 323	
324 325 326	$\begin{array}{c} 95.14_{134} \\ 96.48_{135} \\ 97.83_{137} \end{array}$	294.2 295.2 296.3	1180.8 1181.1 1181.4	886. 6 885.9 885.1	805.7 804.9 804.1	80.9 81.0 81.1	0.4686 0.4690 0.4713	$\substack{4.612\\4.55250\\4.49357}$	$\begin{array}{c} 0.2168_{20} \\ 0.219729 \\ 0.2226_{20} \end{array}$	324 325 326	
327 328 329	$\begin{array}{c} 99.20_{138} \\ 100.58139 \\ 101.97141 \end{array}$	207.3 208.4 209.4	1181.7 1182.0 1182.3	884.4 883.6 882.9	803.3 802.4 801.6	81.1 81.2 81.3	0.4726 0.4739 0.4752	$\substack{4.43657\\4.37056\\4.32356}$	$\begin{array}{c} 0.2255_{29} \\ 0.2284_{29} \\ 0.2313_{30} \end{array}$	327 328 329	
330	103.38 ₁₄₃	300.5	1182.6	882.1	800.8	81.3	0.4766	4.267_{54}	0.234331	330	
331 332 333	$\begin{array}{c} 104.81_{144} \\ 106.25_{145} \\ 107.70_{147} \end{array}$	301.5 302.6 303.6	1182.9 1183.2 1183.5	881.4 880.6 879.9	800.0 799.1 798.4	81.4 81.5 81.5	0.4779 0.4792 0.4805	$\begin{array}{c} 4.213_{54} \\ 4.15052 \\ 4.10752 \end{array}$	$\begin{array}{c} 0.2374_{30} \\ 0.240431 \\ 0.2435_{31} \end{array}$	331 332 333	
334 335 336	${ 109.17 \atop 110.66151 \atop 112.17}_{152}$	304.6 305.7 306.7	1183.8 1184.1 1184.4	879.2 878.4 877.7	797.6 796.7 796.0	81.6 81.7 £1.7	0.4818 0.4832 0.4845	$\begin{array}{c} 4.055\\ 4.00450\\ 3.95450\end{array}$	$\begin{array}{c} 0.2466_{32} \\ 0.2498_{31} \\ 0.2520_{32} \end{array}$	334 335 336	
337 338 339	$\begin{array}{c} 113.09 \\ 115.22 \\ 15.22155 \\ 110.77 \\ 157 \end{array}$	307.8 308.8 309.9	1184.7 1185.0 1185.3	870.9 870.2 875.4	795.1 794.3 793.5	81.8 81.9 81.9	0.4858 0.4871 0.4884	$\begin{array}{c} 3.904_{49} \\ 3.85548 \\ 3.80747 \end{array}$	$\begin{array}{c} 0.2561_{33} \\ 0.2594_{33} \\ 0.2627_{33}^{23} \end{array}$	337 338 339	
340	118.34 ₁₅₉	310.9	1185.6	874.7	702.7	82.0	0.4897	3.760_{47}	0.266033	340	
341	119.93160	312.0	1185.9	873.9	791.8	82.1	0.4010	3.71345	0.269333	341	

1	br.	per	nid.		ion.	ent	ent	,	me.	DENSITY.	, H. J.	
ature	Degrees Fahr.	Pressure, Pounds p Square Inch.	the Liquid.	eat.	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume	Weight, in Pounds, of one Cubic Foot.	Temperature, Degrees Faho	
n ner)egre	P. P. Dare	Heat of	Total Heat.	at of Vap	at at of Ind Nork	at eq	tropy he Li	ecific	eight, oundi ve C	mper Degre	
		F. B.		£ λ	1		Apu	日 Sedt T	s Sp		£ t	
-	t	ħ	7					T		γ		
3	44 45 46	$\begin{array}{c} 124.78 \\ 126.43165 \\ 128.10167 \end{array}$	315.1 316.1 317.2	1180.9 1187.2 1187.5	871.8 871.1 870.3	789.5 788.8 787.9	82.3 82.3 82.4	0.4949 0.4962 0.4975	$\begin{array}{c} 3.578_{44} \\ 3.504_{43} \\ 3.491_{42} \end{array}$	$\begin{array}{c} 0.2795_{35} \\ 0.2830_{35} \\ 0.2865_{35} \end{array}$	344 345 346	
1	47	100	318.2	1187.8	809.6	787.1	82.5	0.4088			347	
13	48 49	$\substack{129.79 \\ 131.49170 \\ 133.21174}$	319.3 320.3	1188.1 1188.4	808.8 808.1	786.3 785.5	82.5 82.6	0.5001 0.5014	$\begin{array}{c} 3.449 \\ 3.407 \\ 42 \\ 3.365 \\ 41 \end{array}$	$\substack{0.2900 \\ 0.203536 \\ 0.207137}$	348 349	
1	350		l i	1188.7	807.3	784.7	82.6	0.5027		0.3008 ₃₇	350	
	1	134.05 ₁₇₆	321.4						3.32440		351	
13	351 352 353	$^{136.71}_{138.48179}_{140.27}_{181}$	322.4 323.5 324.5	1189.0 1189.3 1189.6	805.8 805.1	783.9 783.0 782.3	82.7 82.8 82.8	0.5040 0.5053 0.5066	$\begin{array}{c} 3.284_{39} \\ 3.245_{39} \\ 3.206_{38} \end{array}$	$\substack{0.304537\\0.308237\\0.311938}$	352 353	
13	354		325.6	1189,9	864.3	781.4	82.0	0.5078			354	
	355 356	142.08 143.91184 145.75 ₁₈₇	326.6 327.7	1100.2	803.6 802.8	780.7 770.8	82.0	0.5001	$\begin{array}{c} 3.168_{38} \\ 3.130_{38} \\ 3.002_{36} \end{array}$	$\begin{array}{c} 0.3157_{38} \\ 0.3105_{39} \\ 0.3234_{38} \end{array}$	355 356	
	357	I.	328.7	1190.8	862.1	779.0	83.1	0.5117	1	$\begin{array}{c} 0.8272_{30} \\ 0.8311_{40} \\ 0.8351_{40} \end{array}$	357 358	
	358 359	$\begin{array}{c} 147.62 \\ 149.50 \\ 151.40 \\ 193 \end{array}$	330.8	1.101.t 4.1011	801.4 800.6	778.3	83.1	0.5130	3.050.36 3.02036 2.08435	0.335140	359	
	360	153,33 ₁₉₄	331.8	1191.7	850.0	770.7	83.2	0.5155	2.04035	0.330140	360	
	361 362	155.27 105	332.0 333.0	1102.0 1102.4	850.1 858.5	775.8 775.2	83.3 83.3	0.5168 0.5181	2.914 ₃₄ 2.880 ₃₄ 2.840 ₃₃	$\begin{array}{c} 0.3431_{41} \\ 0.347241 \\ 0.351342 \end{array}$	361 362	
	363	$\begin{array}{c c} 155.27_{105} \\ 157.22_{108} \\ 159.20_{200} \end{array}$	335.0	1102.7	857.7	774.3	83.4	0.5193	2.84633		363	
	364	161.20202	330.0	1103.0 1103.3	857.0 856.2	773.5 772.7	83.5	0.5200 0.5210	2.81333	$ \begin{array}{c} 0.3555_{42} \\ 0.3507_{42} \\ 0.3630_{43} \end{array} $	364 365	
	365 366	165.25206	337.1	1193.6	855.5	771.0		0.5231	2.813.13 2.780.32 2.74832	0.3630_{43}^{42}	366	
	367	107.31 ₂₀₈ 109.30 ₂₀₉ 171.48513	330.2 340.2	1403.9 1404.2	854.7 854.0	771.1 770.4	83.6 83.6	0.5244 0.5257	$\begin{bmatrix} 2.716_{31} \\ 2.685_{31} \\ 2.654_{31} \end{bmatrix}$	$\begin{array}{c} 0.3682_{43} \\ 0.3725_{43} \\ 0.3768_{44} \end{array}$	367 368	
	368 369	171.48212	341.3	1101.5	853.2	709.5		0.5269	2.05481	1	369	
ļ	370	173.60214		1104.8	852.5	768.7	83.8	0.5282	2.02330	0.381244	370	
	371 372	175.74215	343,3	1105.1	851.8 851.0					$\begin{array}{c} 0.3850_{45} \\ 0.3001_{45} \\ 0.3040_{46} \end{array}$	371	
1	373		345.5	1105.7	850.2	1			2.534_{20}^{20}		373	
	374	100 017	10000	1196.0	840.5 848.8					$\begin{array}{c} 0.3002_{46} \\ 0.403846 \\ 0.4084_{47} \end{array}$	374	
	375 376		348.6		848.0				2.448_{28}^{28}		376	
	377	198 00	940 8		847.3				2.42027	$\begin{bmatrix} 0.4131_{47} \\ 0.4178_{49} \\ 0.4227_{40} \end{bmatrix}$	377 378	
	378 379	F 101.27(09)	1 (3)().()		840.0					0.4227_{40}^{40}	379	1
	380	1		1107.8	845.0	760.8	84.2	0.5407	2.33825	0.4270 ₄₇	380	ŀ
		1	`		1				0000	0.4000	201	k

Temperature, Degrees Fabr	Pressure, Pounds pe Square Inch.	of the Liquid	Total Heat.	Heat of Vaporizatio	Heat equivale of Esternal Work.	terrade External ob.	hy of the Liqui	Zev den	Weight, in Pouris, if one cuite Fact.	Temperature. Degrees Fahr	
empe Degr	ressu P quare	Heat o	otal	Teat Va	MA A		1	<i>i.</i>	Pon Pon Pres Pres	empe Deg	
į į	to the	9	λ	7.	μ	Apu	J. #	7	γ	-	
384 385 386	$\begin{array}{c} 205.43 \\ 207.87246 \\ 210.33248 \end{array}$	350,9 358,0 359,0	1109.1 1199.4 1199.7	\$12.2 \$41.4 \$40.7	757.8 756.9 756.2	84.1 81.5 84.5	0.5157 0.5109 0.5181	2. (S ¹ 2.)	0.4470 0.452154 0.457251	384 385 386	
387 388 389	$\substack{242.81 \\ 245.31250 \\ 245.31253 \\ 217.84255}$	360.1 361.1 362.2	1200.0 (200.3 (200.6	838,4 838,4	755.3 754.6 753.8	81.6 81.6 81.6	(15461) (1566) (1566)	$\frac{2.160}{2.160}$ $\frac{1}{2.160}$ $\frac{1}{2.115}$ $\frac{1}{23}$	$\substack{0.4023 \\ 0.467552 \\ 0.472853}$	387 388 389	
390	220,39257	303.2	1200.0	807.7	753.0	81.7	0,5533	2.00223	0.4780_{53}	390	
391 392 393	$\substack{\frac{222,96}{225,56260}\\225,56263\\228,10264}$	364.3 365.3 366.4	1201.2 1201.5 1201.8	836,9 836,2 835,4	752.2 751.1 750.6	SLS	16,5542 0,5555 0,5568 (0,5568)		0,4833 0,488754 0,491455	391 392 393	
394 395 396	$\substack{230.83\\233.50}\substack{207\\230.10}\substack{200\\272}$	307.4 308.4 300.5	1202,1 1202,4 1202,7	\$34.7 \$34.0 \$34.2	748.0 748.0 748.0	84.9	0,5590 (0,5592) 0,5601 (1.055% 1.055%	0,4998 0,505156 0,50766 0,510756	394 395 396	
397 398 399	238.01 241.05277 244.42279	370.5 371.6 372.0	1203.0 1203.3 1203.6	812.5 811.7 811.0	747.6 746.7 746.0	Sam	0,5616 0,5611 0,5611	1.89651		397 398 399	
400	247.21_{282}	373.7	1200.0	830,2	715.2	85.0	0,2053	1.57420		400	
401 402 403	$\begin{array}{c} 250.03_{284} \\ 252.87287 \\ 255.74287 \end{array}$	374.7 375.8 376.8	1204.2 1204.4 1204.9	829,5 828,8 828,1	741.5 743.7 743.0	85.1 85.1	0,5665 0,5677 0,5680	1.851 ₂₀ 1.831 ₂₀ 1.811 ₂₀	0,530458 0,545260 0,544260	401 402 403	
404 405 406	258,63 201,55295 264,50207	377.9 378.9 380.0	1205.2 1205.5 1205.8	827.3 820.6 825.8	742.2 741.4 740.6	85,1 85,2 85,2	0,57(d 0,57(d 0,5720	1.701 p 1.775 p 1.756 p	0,5572 0,569362 0,5695 <mark>6</mark> 1	404 405 406	
407 408 409	207.47 ₃₀₀ 270.47 ₃₀₂ 273.40 ₃₀₅	381.0 382.0 383.1	1200.1 1200.4 1200.7	825.1 824.4 823.6	730.0 730.2 738.3	85.2 85.2 85.3	0.5768 0.5744 0.5762 (1.707 8 1.719 10 1.700 8		407 408 409	
410	276.54 ₃₀₈	384.1	1207.0	H22.9	7:17.0	85,0	0.5774	1.68218	0.5945_{05}	410	
411 412 413	270.02 282.73311 285.80313	385.2 386.2 387.3	1207.3 1207.6 1207.6	820.0 821.4 820.0	7391,8 7391,1 735,3	29,1,77	0,5780 0,5798 : 0,5810 :	1.00115 1.01017 1.02017	0.6014 0.6077 0.6147	411 412 413	
414 415 416	$\begin{array}{c} 289.02\\ 202.21310\\ 202.21321\\ 205.42325 \end{array}$	388.3 389.4 390.4	1208,2 1208,5 1208,8	819,9 819,1 818,4	731.5 733.7 733.0	85, I 85, I 85, I	0,5822 0,6834 0,5846 ;	1.61217		414 415 416	
417 418 419	208,67 ₃₂₇ 301,04 ₃₃₀ 305,24 ₃₃₃	301.5 302.5 303.0	1200.1 1200.4 1200.7	817.0 816.0 816.1	732.2 731.5 730.7	85,4 85,4 85,4	0,5858 0,5870 0,5881 [1.56110 1.54517 1.52510		417 418 419	
420	308.57336	394.6	1210.0	815.4	730.0	85,4	0,5893	1.51216		420	
421	311.08000	395,0	1210.3	814.7	7291.3	85.4	11,58815	1.4981	0.668	421	

TABLE II.

SATURATED STEAM.

ENGLISH UNITS.

	Pressure, Pounds per Square Inch.	Temperature, Degrees Fahr.	Heat of the Liquid.	> Total Heat.	, Heat of Vaperization.	Heat equivalent	Mar spittabett M. Brand	Energy !	* Specific Volume.	DENSITY OF PROPERTY OF PARTY O	Pressure. Pounds per Square Inch.
ı	1	, I	9	^					4.		
	1 2 3	$\begin{array}{c} 101.90_{2428} \\ 126.271535 \\ 141.62_{1147} \end{array}$	70.0 94.4 109.8	1113.1 1120.5 1125.1	1043.0 1020.1 1015.3	981.1 961.9 949,5	61,9 64,2 65,8	0,1329 0,1754 0,2013	231.6 173.655.2 118.4 _{28.1}	0,00200 <u>.</u> 77 0,00576268 0,00844 <u>2</u> 68	1 2 3
	4 5 6	$\substack{153.00 \\ 162.34780 \\ 170.14076}$	121.4 130.7 138.6	1431.5 1431.5 1433.8	1007.2 1000,8 1005.2	10 (0,4 10;3, f 1020,7	67.7	0.2203	$\frac{90.31}{73.22}$ $\frac{17.09}{61.65}$ $\frac{11.55}{8.30}$	0,01107 ₂₅₀ 0,01360256 0,01622256	4. 5 6
	7 8 9	170,90 ₀₀₂ 182,92541 188,33 ₄₉₂	145.4 451.5 150.0	1135.9 1137.7 1139.4	000,5 080,2 082,5	916,5	70.1	0.2587 0.2682 0.2766	53.1174.30 13.1174.30 42.1133.117	0,01871 0,02125251 0,02071217	7 8 9
1	10	103,25 ₄₅₃	101.9	140.9	979,0	908.4	70.0	0.2842	48.16 _{0.18}	0.026212.65	10
	11 12 13	197.78420 201.98391 205.89368	166.5 170.7 174.6	1142.8 1143.6 1144.7	975.8 972.9 970.1	004.8 004.5 808.4	71.1	0.2943 0.2976 0.3035	21.8%, #1 22.115 21 22.8%, #1	0,09960 0,03111941 0,03355915	11 12 13
	14 15 16	200,57 ₃₄₀ 213,05 ₃₂₀ 216,32 ₃₁₂	178.3 181.8 185.1	1145.8 1146.9 1147.0	967.5 965.1 962.8	805,5 802,6 800,0		(4,000) (4,014.1 (4,419.2	27.53 26.454.61	0,03000 0,0390241 0,04007240	14 15 16
	17 18 19	210.44.200 222.40284 225.24271	188.3 191.3 194.1	1148.9 1149.8 1150.7	960,6 958,5 956,6	887.4 885.0 885.0	70.2	0,3238 0,3282 0,3284	23,221,22 22,1001, 10 20,100 0,100		17 18 19
	20	227.95200	190,9	1151.5	951.6	881.0	73.6	0,:000	19,54 (6)	0,05023230	20
	21 22 23	$\begin{array}{c} 230.55\\ 233.06251\\ 233.06241\\ 235.47232 \end{array}$	100.5 202.0 204.5	1152.3 1153.0 1153.7	052.8 051.0 040.2	879.0 877.0 875.0	74.0	0,33101 0,33138 0,33173	17.45/10	0,05250 0,05405230 0,05405230 0,05431235	21 22 23
	24 25 26	237.70 240.04225 242.21217 242.21211	200,8 200,1 211,2	1154.4 1155.1 1155.8	047.6 646.0 944.6	874.2 871.5 869.9		0,3200 0,3530 0,3570	16,70 16,165 16,565 16,565	(0.05040) (0.06106120) (0.061020)	24 25 26
	27 28 29	244.32 240.30204 248.34 103	213.4 215.4 217.4	1150,5 1157,1 1157,7	943.1 941.7 940.3	868,2 866,7 865,1	74.9 75.0 75.2	0,3800 0,3829 0,3657	(5,48) ₅₁ (4,49) ₄₀ (4,63) ₄₄	0.08890231 0.08890231 0.07130230	27 28 29
	30	250.27188	210.4	1158.3	0.80	કલદા,લ	75.3	្រព្ធដូរជាក់ភ	13.5941	0,07300230	30
	31. 32 33	252,15 253,98178 255,76178	221,3 223,1 224,0	1158,8 1159,4 1150 0	937.5 936.3 936.0	802.0 800.7 836 0	75.0	0.3712 0.3737 0.3737	13.18 m 12.78 m	0.075180.231	31 32 33

Temperature, Degrees Fahr		Heat of the Liquid	> Total Heat.	Heat of Vaporization	Heat equivalen of Internal Work.	Heat equivalen of External Work.	તે Entropy of the Liquid	Specific Volum	Weight, in Pounds, of one Cubic Foot.	Pressure, Pounds per Square Inch.	
1		<i>q</i>		<i>r</i>		Apu	\int_{-T}^{cdt}	<u>s</u>	γ	<i>p</i>	
34 35 36	$\substack{257.50 \\ 259.19160 \\ 260.85}_{162}$	$\begin{array}{c} 226.7 \\ 228.4 \\ 230.0 \end{array}$	1160.4 1161.0 1161.5	933.7 - 932.6 931.5	857.8 856.6 855.3	75.9 76.0 76.2	0.3787 0.3811 0.3834	$\substack{12.07_{32}\\11.75_{30}\\11.45_{20}}$	$\begin{array}{c} 0.08280_{228} \\ 0.08508_{228} \\ 0.08736_{228} \end{array}$	34 35 36	
37 38 39	$\substack{\frac{262,47}{264,06}}_{\substack{155}\\265,61}_{\substack{151}}$	231.7 233.3 234.8	1162.0 1162.5 1163.0	930,3 929,2 928,2	854.0 852.8 851.7	76.3 76.4 76.5	0.3856 0.3878 0.3900	$\substack{11.16 \\ 10.8828 \\ 10.6225}$	$\begin{array}{c} 0.08964_{227} \\ 0.00191_{226} \\ 0.09417_{227} \end{array}$	37 38 39	
40	207.13_{140}	236,4	1163.4	027.0	850.3	76.7	0.3921	10.37_{24}	0.09644225	40	
41 42 43	$\begin{array}{c} 268.62_{146} \\ 270.08_{143} \\ 271.51_{140} \end{array}$	237.0 239.3 240.8	1163.9 1164.3 1164.8	92 6. 0 92 5. 0 92 4. 0	849.2 848.1 847.0	76.8 76.9 77.0	$\begin{array}{c} 0.3942 \\ 0.3962 \\ 0.3982 \end{array}$	$\substack{10.13 \\ 9.006216 \\ 9.690206}$	$\substack{0.09869\\0.1009\\23\\0.1032\\22}$	41 42 43	
44 45 46	$\begin{array}{c} 272.01188 \\ 274.20136 \\ 275.05_{134} \end{array}$	242.2 243.6 245.0	1165.2 1165.6 1166.0	923.0 922.0 921.0	845.9 844.8 843.7	77.1 77.2 77.3	0,4001 0,4020 0,4038	$\begin{array}{c} 9.484 \\ 9.287190 \\ 9.097183 \end{array}$	$\substack{0.1054_{23}\\0.107722\\0.109923}$	44 45 46	
47 48 49	270,90 278,30 128 270,58 127	246.3 247.6 248.0	1166.4 1166.8 1167.2	920,1 919,2 918,3	842.7 841.7 840.7	77.4 77.5 77.0	0.4056 0.4074 0.4092	$8.914_{174} \\ 8.740167 \\ 8.573_{150}$	$\substack{0.1122_{22}\\0.1144_{22}\\0.1166_{22}}$	47 48 49	
50	280,85 ₁₂₅	250,2	1107.0	017.4	830.7	77.7	0.4109	8.414_{155}	0.1188_{23}	50	
51 52 53	$\substack{282,10\\283,32121\\284,53110}$	251.5 252.7 253.0	1108.0 1168.4 1168.7	916,5 915,7 914,8	838.7 837.8 830.8	77.8 77.9 78.0	0.4126 0.4143 0.4160	$\substack{8.259 \\ 8.110149 \\ 7.968138}$	$\substack{0.1211_{22}\\0.1233_{22}\\0.1255_{22}}$	51 52 53	
54 55 56	285.72117 286.80116 288.05114	255.1 256.3 257.5	1169.1 1169.4 1169.8	914.0 913.1 912.3	835.9 834.9 834.0	78.1 78.2 78.3	0.4175 0.4191 0.4207	$\begin{array}{c} 7.820 \\ 7.606128 \\ 7.568125 \end{array}$	$\begin{array}{c} 0.1277 \\ 0.1209 \\ 22 \\ 0.1321 \\ 23 \end{array}$	54 55 56	
57 58 59	$\substack{289,19\\200,31112\\291,42109}$	258.0 250.7 200.8	1170.1 1170.5 1170.8	911.5 910.8 910.0	833,1 832,4 831,5	78.4 78.4 78.5	0.4222 0.4237 0.4252	$\substack{7.443\\7.323}120\\7.208\\112$		57 58 59	
60	202.51_{108}	201.0	1171.2	6,000	830.7	78.6	0.4207	7.006109	0.1409_{22}	60	
61 62 63	$\substack{293.59\\294.65106\\295.70}_{104}$	263.0 264.1 265.2	1171.5 1171.8 1172.1	908.5 907.7 906.9	829.8 828.0 828.0	78.7 78.8 78.9	0.4281 0.4295 0.4309	$\begin{array}{c} 0.987\\ 0.882\\ 0.882\\ 0.770\\ 0.0$	$\begin{array}{c} 0.1431_{22} \\ 0.1453_{22} \\ 0.1475_{22} \end{array}$	61 62 63	
64 65 66	$\begin{array}{c} 296.74\\ 297.77103\\ 298.7800 \end{array}$	200.2 207.2 208.3	1172.4 1172.7 1173.0	906,2 905,5 904.7	827.3 826.5 825.6	78.9 79.0 79.1	0.4323 0.4337 0.4350	$\substack{6.68007\\6.58393\\6.49089}$	$\begin{array}{c} 0.1497_{22} \\ 0.1519_{22} \\ 0.1541_{21} \end{array}$	64 65 66	=
67 68 69	299.77 ₉₉ 300.7698 301.74 ₉₇	200.3 270.3 271.2	1173.3 1173.6 1173.9	904.0 903.3 902.7	824.8 824.1 823.4	70.2 70.2 79.3	0.4363 0.4376 0.4389	$\begin{array}{c} \textbf{6.401}_{87} \\ \textbf{6.31486} \\ \textbf{6.228}_{84} \end{array}$	$\begin{array}{c} 0.1502_{22} \\ 0.1584_{22} \\ 0.1600_{22} \end{array}$	67 68 69	-
70	302.71 ₉₅	272.2	1174.3	902.1	822.7	70.4	0.4402	6.14481	0.162821	70	
71	303,660	273.2	1174.6	901.4	821.9	79.5	0.4415	6.06370	0.164922	71	

SATURATED STEAM-Continued.

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahr.	S Heat of the Liquid.	> Total Heat.	v Heat of Vaporization.	Heat equivalent • 1.f Eternal Work.	Mean Controllent	Figure of	* Specific Volume.	Western in Factors of States of Stat
74 75 76	$\begin{array}{c} 306.46_{92} \\ 307.38_{90} \\ 308.28_{90} \end{array}$	276.0 276.9 277.8	1175.4 1175.7 1176.0	809.4 808.8 808.2	\$19.7 \$19.1 \$18.4	79.7 79.7 79.8	0.4452 0.4464 0.4476	5.76212	0.1714, 0.1736 0.1757
77 78 79	$\begin{array}{c} 309.18_{88} \\ 310.06_{88} \\ 310.94_{86} \end{array}$	278.7 279.6 280.5	1176.2 1176.5 1176.8	807.5 806.0 806.0	817.6 817.0 816.0	79.9 79.9 80,0	0,4487 0,4499 0,4544	5,621 5,551,67 5,488 60	0.1770 0.1: 01 0.1822
80	311.80 ₈₆	281.4	1177.0	805.0	815,5	80.1	0.4522	5.425_{03}	0.184a
81 82 83	$\begin{array}{c} 312.66_{S5} \\ 313.51_{S5} \\ 314.36_{S3} \end{array}$	282.3 283.2 284.1	1177.3 1177.6 1177.8	895.0 864.4 893.7	\$14.9 \$14.2 \$13.4	80.2	0,4534 - 0,4545 0,4557	5.300///	0.1865 0.1880 0.1968
84 85 86	315.19 ₈₃ 316.02 ₈₂ 316.84 ₈₁	285.0 285.8 286.7	1178.1 1178.3 1178.6	802.5 802.5 801.0	812.8 812.1 811.5	80.1	0, 1568 0, 15730 0, 4590		0,19036 0,4954 0,1972
87 88 89	$\begin{array}{c} 317.65_{80} \\ 318.45_{80} \\ 319.25_{70} \end{array}$	287.5 288.4 280.2	1178.8 1179.1 1179.3	891.3 800.7 800.1	810,8 810,8 800,5	80.5	a (6)(1) 0, [6]; 0, [6];	4,000 (5) 4,500 (5)	(0.1986 (0.2011 (0.2023)
90	320.04_{77}	200.0	1179.6	880.0	808.0	8047	0, 1632	4,505 arc	0,2074
91 92 93	$320.83_{77} \ 321.60_{77} \ 322.37_{77}$	200.8 201.6 202.4	1170.8 1180.0 1180.3	889.0 888.1 887.0	805.3 807.6 807.1	80,8 80,8 80,4	0, (0.13) 0.16331 0.16631	1,545 ps 4,740 ps 4,740 ps	0.240 0.240 0.241
94 95 96	$\begin{array}{c} 323.14 \\ 323.8975 \\ 324.6474 \end{array}$	293.2 294.0 294.8	1180.5 1180.7 1181.0	887.3 886.7 886.2		80,0	0,4673 0,1683 0,1683	4,665 4,619 4,571 4	$\begin{array}{c} 0.214 \\ 0.216 \\ 0.218 \end{array}$
97 98 99	$\begin{array}{c} 325.38_{74} \\ 326.12_{74} \\ 326.86_{72} \end{array}$	295.6 296.4 297.1	1181.2 1181.4 1181.6	885.0 885.0 884.5	801.0 803.0 800.4	SLI	0, 1700 - 0, 1710 0, 1720 0, 1720	$\frac{4.530}{4.486}$ H $\frac{12}{4.444}$	H week.
100	327.5872	-207.0	1181.0	884.0	ыс.я	81.2	0.4733 ;		0.227
101 102 103	$\begin{array}{c} 328.30_{72} \\ 329.0271 \\ 329.73_{70} \end{array}$	208.6 299.4 300.1	1182.1 1182.3 1182.5	882,4 882,4	802.3 801.6 801.1		0, 1743 0, 1753 0, 1762	4,302 m 4,322 m 4,322 m 4,322 m	0,221 0,221 0,222
104 105 106	$\begin{array}{c} 330.43_{70} \\ 331.13_{70} \\ 331.83_{60} \end{array}$	300.0 301.6 302.3	1182.7 1182.0 1183.1	881,8 881,3 880,8	800.4 700.10 700.31	SI 4 ' SI . 1 SI . 5	0, 1771 0, 1780 0, 1790	1.214 1.2063 1.1603	0.553 0.553 0.553
107 108 109	332.52 333.2068 333.8868	303.8 304.5	1183.4 1183.6 1183.8	879,8	708.0 708.2	51.5 51.6	11,47381 11,45189	4.132 m 4.666 m	0,24! 0,24!

pe	e, ahı	uid		ion	len 1	ai ai	nid	ime	DENSITY.	per
Pressure, Pounds pe	Temperature, Degrees Fahr	Ileat of the Liquid	> Total Heat.	الالالالالالالالالالالالالالالالالالال	Heat equivalen of Internal Work.	Heat equivalent of External	ntropy of the Liquid	Specific Volum	Weight, in Pounds, of one Cubic Foot.	Pressure, Pounds Square Inch
		4			ρ	-tpu	$\int \frac{dt}{T}$		γ	p
114 115 116	$\begin{array}{c} 337.20 \\ 337.8664 \\ 338,50 \\ 64 \end{array}$	308.0 308.7 309.4	$^{1184.8}_{1185.0}_{1185.2}$	870.8 870.3 875.8	795.0 794.4 793.9	81.8 81.9 81.9	0.4860 0.4869 0.4877	$\begin{array}{c} 3.894_{32} \\ 3.862_{31} \\ 3.831_{30} \end{array}$	$\begin{array}{c} 0.2568 \\ 0.258921 \\ 0.261021 \\ \end{array}$	114 115 116
117 118 119	339.14_{04} 339.78_{04} 340.42_{03}	310.0 310.7 311.4	1185.4 1185.6 1185.8	875.4 874.9 874.4	793.5 792.9 792.4	81.9 82.0 82.0	0.4886 0.4894 0.4903	$3.801_{31} \ 3.770_{30} \ 3.740_{20}$	$ \begin{array}{c c} 0.2631_{22} \\ 0.2658_{21} \\ 0.2674_{21}^{21} \end{array} $	117 118 119
120	34 K 05 ₆₂	312.0	1486.0	874.0	791.9	82.1	0.4911	3.71128	0.269520	120
121 122 123	341.67 ₀₂ 342.20 <u>62</u> 342.94 ₆₁	312.7 313.3 314.0	1186.2 1186.3 1186.5	873.5 873.0 872.5	791.4 790.8 790.3	\$2.1 \$2.2 \$2.2	0.4919 0.4927 0.4935	$\begin{array}{c} 3.683_{28} \\ 3.655_{28} \\ 3.027_{28} \end{array}$	$ \begin{array}{c} 0.2715 \\ 0.273621 \\ 0.275721 \\ 0.275722 \end{array} $	121 122 123
124 125 126	343,52 ₀₄ 344,130 344,73 ₆₀	314.6 315.2 315.9	1180.7 1180.9 1187.1	872.1 871.7 871.2	780.0 780.4 788.0	62.2 82.3 82.3	0.4943 0.4951 0.4959	$\begin{array}{c} 3.500 \\ 3.57227 \\ 3.54626 \end{array}$	$\begin{array}{c} 0.2779 \\ 0.2800 \\ 0.2820 \\ 21 \end{array}$	124 125 126
127 128 129	345,33 ₆₀ 345,93 ₆₀ 346,53 ₅₀	316.5 317.1 317.7	1187.3 1187.4 1187.0	870.8 870.3 869.9	785.4 787.0 787.5	82.4 82.4 82.4	0.4067 0.4974 0.4082	$\begin{array}{c} 3.520 \\ 3.49426 \\ 3.46025 \end{array}$	$ \begin{array}{c} 0.2841 \\ 0.286221 \\ 0.288321 \end{array} $	J.27 128 129
130	347.12_{59}	318.4	1187.8	869.4	780.9	82.5	0.4000	3.444 ₂₅	0.2904_{21}	130
131 132 133	347.71 ₅₈ 348.2958 348.8758	319.0 319.0 320.2	1188.0 1188.2 1188.4	869.0 868.0 868.2	780.5 780.1 785.0	82.5 82.5 82.6	$\begin{array}{c} 0.4997 \\ 0.5005 \\ 0.5012 \end{array}$	$\begin{array}{c} 3.419_{24} \\ 3.30524 \\ 3.37124 \end{array}$	$\begin{smallmatrix} 0.2025_{21} \\ 0.2040_{21} \\ 0.2067_{21}^{21} \end{smallmatrix}$	131 132 133
134 135 136	$\substack{349.45\\350.0358\\350.0057\\350.0057}$	320,8 321,4 322,0	1188.5 1188.7 1188.9	807.7 807.3 800.9	785.1 784.7 784.2	82.6 82.6 82.7	0,5020 0,5027 0,5035	$\begin{array}{c} 3.347_{24} \\ 3.323_{23} \\ 3.300_{23} \end{array}$	$\begin{array}{c} 0.2088_{21} \\ 0.3009_{21}^{21} \\ 0.3030_{21}^{21} \end{array}$	134 135 136
137 138 139	$\begin{array}{c} 351.17 \\ 351.7356 \\ 351.7856 \\ 352.2056 \end{array}$	322,6 323,2 323,8	1180.0 1180.2 1180.4	866.4 866.0 865.6	783.7 783.3 782.8	82.7 82.7 82.8	0.5042 0.5040 0.5050	$\substack{3.277_{22}\\3.25521\\3.284_{22}}$	$\begin{array}{c} 0.3051_{21} \\ 0.3072_{20} \\ 0.3092_{21} \end{array}$	137 138 139
140	352.85 ₅₅	324.4	1189.5	805.1	782.3	82.8	0.5064	3.21221	0.311321	140
141 142 143	$\begin{array}{c} 353.40 \\ 353.0555 \\ 354.50 \\ 55 \end{array}$	325,0 325,0 326,1	1189.7 1189.9 1190.1	864.7 864.3 864.0	781.9 781.4 781.1	82.8 82.0 82.0	0.5071 0.5078 0.5085	$\begin{array}{c} 3.191_{21} \\ 3.170_{21} \\ 3.140_{21} \end{array}$	$ \begin{array}{c} 0.3134_{21} \\ 0.3155_{21} \\ 0.3170_{21} \end{array} $	141 142 143
144 145 146	355,0554 355,5054 356,1354	326.7 327.2 327.8	1190.2 1190.4 1190.6	803.5 803.2 802.8	780.6 780.2 770.8	82.9 83.0 83,0	0.5002 0.5009 0.5106	$\begin{bmatrix} 3.128_{21} \\ 3.107_{20} \\ 3.087_{19} \end{bmatrix}$	$ \begin{array}{c} 0.3197_{21} \\ 0.3218_{21} \\ 0.3230_{20} \end{array} $	144 145 146
147 148 149	356.67 ₅₃ 357.2053 357.73 ₅₃	328.3 328.0 329.4	1190.7 1190.9 1191.0	862.4 862.0 861.6	779.4 778.9 778.5	83.0 83.1 83.1	0.5113 0.5119 0.5126	$\begin{array}{c} 3.068 \\ 3.049 \\ 3.030 \\ 10 \end{array}$	$\begin{array}{c} 0.3259_{21} \\ 0.3280_{20} \\ 0.3300_{21} \end{array}$	147 148 149
150	358.20_{52}	330.0	1101.2	801.2	778.1	83.1	0.5133	3.01119	0.332121	150
151	358.78	330,5	1191.4	860.0	777.7	83.2	0.5140	2.00210	0.834291	151

,	Pressure, Pounds per Square Inch.	Temperature, Degrees Fahr.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	, Specific Volume.	Weight, in Pounds, of Cubic Cubic Cubic Foot.	Pressure, Pounds per Square Inch.	
	Pr. Pr.	t Te	ğı g	Σ	Ĥ,	E P	Apu.	\int_{-T}^{Ω}	ig s	γ Σ~ οΉ	£ 3.	
	154 155 156	$\begin{array}{c} 360.34_{\overline{5}2} \\ 360.8652 \\ 361.3751 \end{array}$	332.2 332.7 333.3	1191.8 1192.0 1192.2	859.0 859.3 858.0	776.8 776.0 775.0	83,3 85,3 83,3	0,5160 0,5160 0,5175	2,937 2,919 2,919 2,901 17	0,3405 <u>21</u> 0,3426 <u>21</u> 0,347 <u>72</u> 0	154 155 156	
	157 158 159	$\begin{array}{c} 361.88 \\ 362.3951 \\ 362.9051 \\ \end{array}$	333.8 334.3 334.9	1192.3 1192.5 1192.7	858,5 858,2 857,8	775.2 771.8 774.4	83,3 81,4 81,4	0.5179 0.5186 0.5192	2.884 2.867 2.850 17	$\begin{array}{c} 0.3467_{24} \\ 0.348824 \\ 0.350924 \end{array}$	157 158 159	
	160	363.4050	335.4	1102.8	857.4	774.0	83.4	0.5198	2.83815	0.353021	160	
	161 162 163	363,90 364,4050 364,90 ₄₉	335.0 336.4 337.0	1193,0 1193,1 1193,3	857.1 856.7 856.3	770.7 772.2 772.8	83.4 83.5 83.5	0.5205 0.5211 0.5217	2.816 2.70017 2.78016 2.78016	$\begin{array}{c} 0.0551_{24} \\ 0.057254 \\ 0.050054 \end{array}$	161 162 163	
	164 165 166	365,39 ₄₉ 365,88 ₄₉ 366,37 ₄₈	:07.5 :08.0 :08.5	1193.4 1193.4 1193.7	855,9 855,6 855,2	772.4 772.0 771.0	\$3,5 \$3,6 \$3,6	0,522 (0,523) 0,5230	2.767 2.751 2.756 15	$\begin{array}{c} 0.3014 \\ 0.363521 \\ 0.365520 \\ 0.365520 \end{array}$	164 165 166	
	167 168 169	366,85 367,3348 367,8148	339,0 339,5 340,0	1193,9 1194,0 1194,2	854.0 854.5 854.2	771.3 770.9 770.5	83.6 83.6 83.7	0,5949 8196,0 1696,0	2.721 2.70615 2.60115	$\begin{array}{c} 0.3075 \\ 0.369520 \\ 0.371621 \end{array}$	167 168 169	
	170	$368,20_{48}$:40,5	1404.3	859,8	770.1	83.7	០,៦ខាង	2.67815	0.070721	170	
	171 172 173	368,77 369,2447 369,7147	341.0 341.5 342.0	1194.4 1194.6 1194.7	853,4 853,1 852,7	709.7 769.4 768.9	83.7 83.7 83.8	0.5266 0.5272 0.5278	2.661 2.61714 2.63215 2.63214	$\begin{array}{c} 0.0758_{20} \\ 0.0778_{21} \\ 0.0700_{21} \end{array}$	171 172 173	
	174 175 176	$\begin{array}{c} 370, 18 \\ 370, 65 \\ 47 \\ 371, 12 \\ 47 \end{array}$	342.5 343.0 343.5	1194,8 1195,0 1195,1	852.0 852.0 851.0	768,5 768,2 767,8	83,8 83,8 83,8	0,528 (0,5290 0,5297	2,618 2,60345 2,58044 2,58044	0,8820 0,881151 0,886251	174 175 176	
	177 178 179	$ \begin{array}{r} 371.59 \\ 372.0546 \\ 372.5146 \end{array} $	344.0 444.4 344.9	1495,3 1495,4 1495,6	851.8 851.0 850.7	707.5 707.1 700.8	80,8 80,9 80,9	0,520g 0,520s 0,52(2	2,575 2,561 2,518 2,518 10	0,3883,4	177 178 179	
	180	372.07 _{.16}	345.4	1495.7	850.11	700.4	83.9	0,5339	2.535 13	0.304521	180	
	181 182 183	373.43 373.8845 374.3345	345,0 346,4 346,8	1195.9 1196.0 1196.1	850.0 849.0 849.3		81.0	0,5325 0,5351 0,5353		0,3966,4 0,3987,4 0,4008,2	181 182 183	
	184 185 186	$874.78 \\ 875.2345 \\ 875.0845 \\ 44$	347.3 347.8 348.2	1196.2 1196.4 1196.5	0.818 0.818 1.818	761.0 761.6 764.3	81,0 81,0 81,0	0.5312 0.5347 0.5353	2,482 2,450 2,450 2,450	0,4029 0,40423 0,404024	184 185 186	
	187 188 189	$\begin{array}{c} 376.12 \\ 376.5644 \\ 377.00 \\ 44 \end{array}$	348.7 349.2 340.6	1196,6 1196,8 1196,9	847.9 847.0 847.3	763.3 763.2	81.1 81.1 81.1	0.5350 0.5364 0.5350		0,4090	187 188 189	
	190	377.44 ₄₄	350,1	1197.1	847.0	762.0	84.1	0,5375	2.40%	0.4153 ₂₁	190	

ł	s per	re, ?abr	the Liquid.		ation	alent al	alent ial	ıid.	lume	DENSITY.	s per	
	Pressure, Pounds per Square Inch.	Temperature, Degrees Fabr	of the Lic	Total Heat.	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	드를 Entropy of 나를 the Liquid.	Specific Volume	Weight, in Pounds, of one Cubic Foot.	Pressure, Pounds p Square Inch.	
	Pressure, Pour Square In	Temp Deg	Heat of	Total	Heat (Va	Heat of I	Heat of E	Entro	Specif	Weigh Poun one Foot.	Pressi P	
	ħ	t	q	λ	r	ρ	Apu	$\int \frac{cdt}{T}$	s	γ	Þ	
	194 195	379.18 379.41 ⁴ 3	351.9 352.4	1197.6 1197.7	845.7 845.3	761.5 761.1	84.2 84.2	0.5397 0.5402	2.361 2.34912	$0.4236 \atop 0.425721 \atop 0.427821$	194	
	196	379.18 ₄₃ 379.61 ₄₃ 380.04 ₄₃	352.8	1107.8	845.0	760.8	84.2	0.5408	$\frac{2.345}{2.337} \frac{12}{12}$	0.12.0	196	
	197 198 199	$380.47_{42} \\ 380.80_{42} \\ 381.31_{42}$	353.3 353.7 354.1	1198.0 1198.1 1198.2	844.7 844.4 844.1	760.4 760.1 759.8	84.3 84.3 84.3	0.5413 0.5418 0.5423	$2.325 \\ 2.31411 \\ 2.30410$	$\substack{0.4298 \\ 0.431820 \\ 0.433821}$	197 198 199	Í
ļ	200	381.73_{42}	354.6	1108.4	843.8	759.5	84.3	0.5429	2.294_{10}	0.435920	200	
	201 202 203	382,1542 382,5742 382,0042	355.0 355.4 355.9	1198.5 1198.6 1198.8	843.5 843.2 842.0	759.1 758.8 758.5	84.4 84.4 84.4	0.5434 0.5439 0.5444	$\begin{array}{c} 2.284\\ 2.27410\\ 2.26311\\ 2.11 \end{array}$	$\begin{array}{c} 0.4370_{20} \\ 0.4390_{21}^{20} \\ 0.4420_{21}^{21} \end{array}$	201 202 203	
	204 205 206	$\begin{array}{c} 383.41 \\ 383.8241 \\ 384.2341 \end{array}$	350.3 356.8 357.2	1108.0 1190.0 1190.1	842.6 842.2 841.9	758.2 757.8 757.4	84.4 84.4 84.5	0.5449 0.5454 0.5459	$\begin{array}{c} 2.252 \\ 2.24111 \\ 2.23110 \\ \end{array}$	$\begin{array}{c} 0.4441_{20} \\ 0.4461_{21} \\ 0.4482_{21} \end{array}$	204 205 206	
	207 208 209	$384.64 \\ 385.0541 \\ 385.4641$	357.6 358.0 358.5	1199.3 1199.4 1199.5	841.7 841.4 841.0	757.2 756.9 750.5	84.5 84.5 84.5	0.5465 0.5470 0.5475	$\begin{array}{c} 2.221 \\ 2.21110 \\ 2.20011 \end{array}$	$\begin{array}{c} 0.4503_{21} \\ 0.452420 \\ 0.454420 \\ \end{array}$	207 208 209	
	210	38 5. 87 _{.11}	858.0	1100.6	840.7	756.2	84.5	0.5480	2.10010	0.450521	210	
	211 212 213	$\begin{array}{c} 386.28 \\ 986.6840 \\ 387.0840 \end{array}$	359.3 359.7 360.1	1100,8 1100,0 1200,0	840.5 840.2 839.9	750.0 755.6 755.3	84.5 84.0 84.0	0.5485 0.5489 0.5404	$\begin{array}{c} 2.180 \\ 2.171 \\ 2.102 \\ 10 \end{array}$	$\begin{array}{c} 0.4586 \\ 0.460721 \\ 0.462720 \\ 0.462721 \end{array}$	211 212 213	
	214 215 216	$387.48_{10} \\ 387.88_{10} \\ 388.28_{30}$	300.6 361.0 361.4	1200.1 1200.2 1200.4	839.5 839.2 839.0	754.9 754.6 754.4	84.6 84.6 84.6	0.5490 0.5504 0.5509	$\begin{bmatrix} 2.152\\ 2.14210\\ 2.13210 \end{bmatrix}$	$\begin{array}{c} 0.4648_{21} \\ 0.4669_{21} \\ 0.4690_{21} \end{array}$	214 215 216	
	217 218 219	388,67,39 389,0639 389,4539	361.8 362.2 362.6	1200.5 1200.6 1200.7	838.7 838.4 838.1	754.1 753.8 753.4	84.0 84.0 84.7	$\begin{array}{c} 0.5514 \\ 0.5519 \\ 0.5524 \end{array}$	$\begin{array}{c} 2.123 \\ 2.1140 \\ 2.105 \\ 0 \end{array}$	$ \begin{array}{c} 0.4711 \\ 0.473120 \\ 0.475120 \\ 0.475121 \end{array} $	217 218 219	
	220	380,84 ₃₀	363.0	1200.8	837.8	753.1	84.7	0.5529	2.006	0.4772_{20}	220	
	221 222 223	390,23 ₃₉ 390,23 ₃₉	363.5 363.9 364.3	1201.0 1201.1 1201.2	837.5 837.2 830.9	752.8 752.5 752.2	84.7 84.7 84.7	0.5538 0.5548 0.5543	$2.087_{0.0780}$ 2.060_{0}	$\begin{bmatrix} 0.4702_{21} \\ 0.4813_{21} \\ 0.4834_{21} \end{bmatrix}$	221 222 223	
	224 225 226	$391.40_{39} \\ 391.7938 \\ 392.1738$	364.7 365.1 865.5	1201.3 1201.4 1201.6	836.6 836.3 836.1	751.0 751.0 751.3	84.7 84.7 84.8	0.5548 0.5553 0.5557	$2.060_{9} \\ 2.051_{9} \\ 2.042_{8}$	$\begin{array}{c} 0.4855_{21} \\ 0.4876_{21} \\ 0.4896_{21} \end{array}$	224 225 226	
	227 228 229	302,55 _{.38} 302,9338 303,3138	365.0 366.3 366.7	1201.7 1201.8 1201.9	835.8 835.5 835.2	751.0 750.7 750.4	84.8 84.8 84.8	0.5562 0.5507 0.5571	2.034 ₈ 2.026 ₉ 2.017 ₈	$\begin{array}{c} 0.4917_{20} \\ 0.4939_{20} \\ 0.4959_{20} \end{array}$	227 228 229	
	230	393,0038	367.1	1202.0	834.9	750.1	84.8	0.5576	2.0008	0.497921	230	
	237	304.07	367.5	1202.1	834.6	749.8	84.8	0.5581	2.0010	0.5000	231	

per	abr.	uid.		tion.	Heat equivalent of Internal Work.	alent	,vid.	nme	DENSITY.	per .	
ich ich	Temperature, Degrees Fahr.	the Liquid.	feat.	Heat of Vaporization.	quiva	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume	Weight, in Pounds, of one Cubic Foot.	Pressure, Pounds p Square Inch.	
Pressure, Pour Square In	Degr	Heat of	Total Heat.	eat o	eat e	# # # # # # # # # # # # # # # # # # #	iitra	heeff	felgh Feum	Pressure, Pour Square In	
		Ä	Α	H ,	 	1/4	$\int_{-T}^{\Omega} T$	111 s	Y	二 方	
<i>p</i>				• • .	-		, ,			1	
234 235	305.10 ₃₇ 305.56 ₃₇ 305.93 ₃₇	368,6 369,0	1202.5 1202.6	\$33.9 \$33.6	749.0 748.7	\$1.0 \$1.0 \$1.0	0,5594 0,5590 0,5800	1.976 _S 1.968 _S	0,5082 ₂₀ 0,508221 0,510320	234	
236		360.4	1202.7	833.3	718.4	1		1.5008		236	
237	306.30 _{.37} 306.6737 397.0437	309.8 370.2 370.6	1202.8 1202.0 1203.0	Sin.0 Sin.17 Sin.4 Sin.4	1	81.90	0,5608 0,5612 0,5617	1.952 1.9145 1.9368	$ \begin{vmatrix} 0.5123_{21} \\ 0.514121 \\ 0.516521 \\ 0.516521 \end{vmatrix} $	237 238 239	
239			1203.2		747.3	1	0,5621	1.928 ₇	0.518620		
240	397.4136	371.0				i		1 '		240	
241 242	307.77 ₃₆ 308.13 ₄₀ 308.40 ₃₆	371.3	1203.3	S12.0 S31.7	717.0	85,0	0,5626	1.9432	$\begin{array}{c} 0.5206_{20} \\ 0.5226_{21} \\ 0.524721 \end{array}$	241	
243		372.1 -	1208.5	831.4	7-161	1	0,5035			243	
244 245	308,85 ₃₆ 309,21 ₃₆ 309,57 ₃₆	372.5 372.8	1208.6	\$31.1 \$30.0	745.0	85,0		1.8015	0,5268 0,528059 0,531121	244	
246	309.57_{30}^{36}	373.2	1200.8	830.6	745.0	South	0,5648	1.8808	0.501121	246	
247 248	309,93336	373.6 374.0	1203.0 1204.0	\$30,8 \$30,0			0,5652 0,5656		0.583221 0.585820 0.587820	247 248	ĺ
249	309,93 ₃₆ 400,20 ₃₅ 400,64 ₃₅	374.3	1204.1	820,8			0,5601	1.8017	0.507020	249	
250	400,00 ₀₅	374.7	1201.2	829.5	714.5	85,0	0,5665	4.854_{7}	0.530020	250	
251 252	401.3435	375.1 375.4	1201.5 1201.5	829.3 829.4	741.2	85.1 85.1	0,5669 0,5670	1.84%. 1.846.	0.544320	251 252	
253	$\begin{array}{c} 401.34_{35} \\ 401.0035 \\ 402.0435 \end{array}$	375.S	1204,6	828,8	710.7	85.1	0.5675	LSaal	6,5413go 6,545424 6,545424	253	
254		376.2	1201.7	828,5			0,5652	1.820.		254	
255 256	$\substack{402.30\\402.7435\\403.0035}$	370.5 376.0	1204.8 1204.9	828.0 828.0	713.2	85.1 85.1		1.8102 1.8124	0.547521 0.548624 0.554724	255 256	
257		377.3	1205.0				0,5695	1,805.		257	
258 259	403,44 ₃₅ 403,7934 404,13 ₃₄	377.0 378.0		827.5 827.2	742.1 712.1	85.1 85.1	- 0,5699 - 0,5761	1.805. 1.708. 1.702.	0.5558_{24}^{-1} 0.5559_{24}^{-1} 0.5580_{24}^{-2}	258 259	
260	404.47 ₃₄	378.4	1205.3	826,9	711.7	- 85,2	0.5707	1.785 _d	0,56(0.20	260	
261		378.7	1205.4	826.7	741.5	85,2	0.5711	1.779	0.5691	261	
262 263	404.81 ₃₄ 405.15 ₃₄ 405.40 ₃₄	370.4 370.4	1205.5 1205.6	826,4 826,2	$711.2 \\ 711.0$	85.2 85.2	0,5715	1.770 1.7755 1.7667	0,5021 0,501251 0,500251	262 263	
264		379.8	1205.7		710.7	85,2	0,5721	•		264	
265 266	405.8334 406.1734 406.5133	380,2 380,5	1205.8 1205.9	825,6			0,5728 0,5732	$\frac{1.750}{1.7307}$ $\frac{1.7507}{1.7407}$	0,572320 0,572320	265 266	
267		850,8			740,0	55,2				267	
268 269	406,84 407,1834 407,52 ₃₃	381.2 381.5	120d,1 120d,2	824.0	739.7	85.2 85.2	0,5740	1.700 1.734 1.725 1.725	0.5746.4	268	
		1		824,7	7:31.5				. "4076"21	269	
270	407.85 ₃₃	381.9	1200.3	824.4	733,2	85. 2	0.5748	1. Tini	, ग,तन्त्रमाञ्चल	270	
									_		

ds per h.	re, Fahr.	Heat of the Liquid.		ation.	alent al	alent al	.:	ume.	DENSITY.	ls per	
Pressure, Pounds per Square Inch.	Temperature, Degrees Fahr.	of the	Total Heat.	Heat of Vaporization.	equiv Intern rk.	equive Extern rk.	py of Liquic	Specific Volume	bt, in ids, of Cubic	Pressure, Pounds Equare Inch.	
1 1		Heat		Heat	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specil	Weight, in Pounds, of one Cubic Foot.	Pressure, Pou Square II	
<i>I</i> *	t	1	λ		Р	Apu	$\int \frac{cdt}{T}$	s	γ	<i>p</i>	
274 275 276	409.17 ₃₃ 409.50 ₃₃ 409.83 ₃₃	383.3 383.6 384.0	1206.7 1206.8 1206.9	\$23.4 \$23.2 \$22.9	738.1 737.9 737.6	85.3 85.3 85.3	0.5764 0.5768 0.5772	$1.697_{1.6916}$ 1.685_{6}	$\begin{array}{c} 0.5892 \\ 0.591321 \\ 0.593421 \end{array}$	274 275 276	
277 278 279	410.1632 410.4832 410.8032	384.6 384.6 385.0	1207.0 1207.1 1207.2	822.7 822.5 822.2	737.4 737.2 736.9	85.3 85.3 85.3	$\begin{array}{c} 0.5776 \\ 0.5779 \\ 0.5783 \end{array}$	$1.679_{6} \\ 1.673_{5} \\ 1.668_{6}$	$\begin{array}{c} 0.5955_{21} \\ 0.5976_{21} \\ 0.5997_{23} \end{array}$	277 278 279	
280	411.1233	385.3	1207.3	822.0	736.7	85.3	0.5787	1.662_{6}	0.6022	280	
281 282 283	$\begin{array}{c} 411.44_{32} \\ 411.7632 \\ 412.0832 \end{array}$	385.6 386.0 386.3	1207.4 1207.5 1207.6	821.8 821.5 821.3	736.5 736.2 736.0	85.3 85.3 85.3	0.5791 0.5795 0.5799	$1.650_{6} \\ 1.650_{5} \\ 1.645_{6}$	$\begin{array}{c} 0.604_2 \\ 0.606_2 \\ 0.608_2 \end{array}$	281 282 283	
284 285 286	412.40 412.7232 413.0432	386.0 387.0 387.3	1207.7 1207.8 1207.9	821.1 820.8 820.6	735.8 735.5 735.3	85.3 85.3 85.3	0.5803 0.5806 0.5810	1.639_{5} 1.634_{6} 1.628_{5}	$\begin{array}{c} 0.610_{2} \\ 0.612_{2}^{2} \\ 0.614_{2}^{2} \end{array}$.284 285 286	:
287 288 289	$\begin{array}{c} 413.3632 \\ 413.6832 \\ 414.0032 \end{array}$	387.7 388.0 388.3	1208.0 1208.1 1208.2	820.3 820.1 819.0	735.0 734.7 734.5	85.8 85.4 85.4	0.5814 0.5818 0.5822	$\begin{array}{c} 1.623 \\ 1.6176 \\ 1.6125 \end{array}$	$\begin{array}{c} 0.616_2 \\ 0.618_2 \\ 0.620_2 \end{array}$	287 288 289	
290	414.3231	388.6	1208.3	819.7	734.3	85.4	0.5826	1.6076	0.6223	290	
291 292 293	$\begin{array}{c} 414.6334 \\ 414.9434 \\ 415.2531 \end{array}$	389.0 389.3 389.6	1208.4 1208.5 1208.6	819.4 819.2 819.0	734.0 733.8 733.6	85.4 85.4 85.4	0.5829 0.5833 0.5837	$\begin{array}{c c} 1.601_{5} \\ 1.5065 \\ 1.5016 \end{array}$	$ \begin{array}{c} 0.625_{2} \\ 0.627_{2}^{2} \\ 0.620_{2}^{2} \end{array} $	291 292 293	
294 295 296	415.56.31 415.87.31 416.1831	390.0 390.3 390.6	1208.7 1208.8 1208.9	818.7 818.5 818.3	733.3 733.1 732.0	85.4 85.4 85.4	0.5840 0.5844 0.5848	$\begin{array}{c} 1.585_{5} \\ 1.580_{5} \\ 1.575_{5} \end{array}$	$\begin{array}{c} 0.631_2 \\ 0.633_2 \\ 0.635_2 \end{array}$	294 295 296	
297 298 299	$\begin{bmatrix} 416.49 \\ 416.8031 \\ 417.1131 \end{bmatrix}$	390.9 391.3 391.6	1200.0 1200.1 1200.2	818.1 817.8 817.6	732.7 732.4 732.2	85.4 85.4 85.4	0.5851 0.5855 0.5850	$\begin{array}{c} 1.570_{6} \\ 1.564_{5} \\ 1.559_{5} \end{array}$	$ \begin{vmatrix} 0.637_2 \\ 0.630_2 \\ 0.641_3^2 \end{vmatrix} $	297 298 299	
300	417.42;30	301.0	1200.3	817.4	732.0	85.4	0.5803	1.5545	0.644_{2}	300	
301 302 303	$\begin{bmatrix} 417.72_{30} \\ 418.02_{30} \\ 418.32_{30} \end{bmatrix}$	302.2 302.5 302.8	1200.3 1200.4 1200.5	817.1 810.0 810.7	731.7 731.5 731.3	85.4 85.4 85.4	(0.5870)	$\begin{array}{c c} 1.540_{5} \\ 1.544_{5} \\ 1.530_{5} \end{array}$	$\begin{array}{c} 0.646_2 \\ 0.648_2 \\ 0.650_2 \end{array}$	301 302 303	
304 305 306	$\begin{array}{c c} 418.02_{30} \\ 418.02_{30} \\ 419.22_{30}^{30} \end{array}$	303.2 303.5 303.8	1209.6 1209.7 1209.8	816.4 816.2 816.0	731.0 730.8 730.6	85.4	0.5880	$\begin{array}{c} 1.534_{5} \\ 1.529_{5} \\ 1.524_{4} \end{array}$	$\begin{array}{c} 0.652_2 \\ 0.654_2^2 \\ 0.656_2 \end{array}$	304 305 306	
307 308 309	420.1230	304.1 304.4 394.7	1200.0 1210.0 1210.1	815.8 815.0 815.4	730.4 730.2 730.0	85.4	0.5801	1.515%	$\begin{array}{c} 0.658_2 \\ 0.660_2 \\ 0.662_2 \end{array}$	307 308 309	
310	1	395.0	1210.2	815.2	729.8	85.4	0.5808	1.5055	0.6642	310	
	1		1		-	1	1	Lunes		0.00	-

TABLE III.

SATURATED STEAM.

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal	Beat equivalent of External	Entropy of the Liquid.	Specific Volume.	Weight, in Kilos, of one Cubic Meter.	Temperature, Degrees Centi- grade.
Tem Tem	Press Mil	Heat of	と Total	Heat V	Heat of Wo	Ind V Heat	Suppose	' Specif	1	Temp Temp grad
			· probable conditions		\ <u>`</u>		J T		γ	
0	4.602,339	0.000	606.5	606.5	575.5	31.0	0.00000	211.5138	0.004730_{327}	o
1 2 3	4.041362 5.303380 5.689311	1,007 2,014 3,022	606.8 607.1 607.4	605.8 605.1 604.4	574.7 573.0 573.2	31.1 31.2 31.2	0.00367 0.00733 0.01098	$\substack{197.7\\184.6\\122\\172.4\\112}$		1 2 3
4 5 6	$0.100_{-130} \\ 0.536_{-105} \\ 7.004_{-103}$	4,020 5,036 6,040	007.7 008.0 008.3	603.7 603.0 602.3	572.4 571.6 570.8	31.3 31.4 31.5	0.01461 0.01823 0.02183	$\substack{161.2\\150.8\\96\\141.2\\90}$	$\substack{0.006203\\0.006630427\\0.007080450\\481}$	4 5 6
7 8 9	7.494 ₅₂₅ 8.010 <u>557</u> 8.570 ₅₀₄	7.045 8.049 9.054	008.6 008.9 009.2	601.6 600.9 600.1	570.0 569.3 568.4	31.6 31.6 31.7	0.02542 0.02809 0.03255	$\substack{132.2\\123.983\\126.277\\116.272}$	$\substack{0.007501\\0.008000508\\0.008008529}$	7 8 9
10	0.167_{028}	10.058	600.6	500.5	507.7	31.8	0.03600	109.067	0.000177602	10
11 12 13	0.705 10.46065 11.164704	11,060 12,064 13,063	600.0 610.2 610.5	598,8 598,1 597,4	566.0 566.1 565.3	31.0 32.0 32.1	0,03062 0,04313 0,04663	$\substack{102.3\\96.09590\\90.19590\\543}$	$\substack{0.000779\\0.0104167\\0.0110871}$	11 12 13
14 15 16	$\substack{11.911 \\ 12.702837 \\ 13.530884}$	14,064 15,000 10,000	010.8 011.1 011.4	506.7 506.0 505.3	504.5 503.8 503.0	32.2 32.2 32.3	0.05012 0.05350 0.05705	$\substack{84.76\\70.69507\\74.97472\\441}$	$\substack{0.01179\\0.0125576\\0.01334}_{83}$	14 15 16
17 18 19	14.423 ₀₃₇ 15.360 ₀₈₀ 16.340 ₁₀₄₆	17.066 18.066 10.066	612.0 612.3	594.6 593.9 593.2	562.2 561.4 560.0	32.4 32.5 32.6	0.06050 0.06330 0.06735	$\begin{array}{c} 70.56 \\ 66.44412 \\ 62.58360 \end{array}$	$\begin{array}{c} 0.01417_{88} \\ 0.0150503 \\ 0.0150807 \end{array}$	17 18 19
20	17.305 1103	20.066	612.6	502.5	559.8	32.7	0.07076	58.98 ₃₃₇	0.01005103	20
21 22 23	$\substack{18.408\\19.663\\1220\\20.802\\1296}$	21.064 22.063 23.061	012.9 013.2 013.5	591.8 591.1 590.4	559,0 558,2 557.5	32.8 32.9 32.9	$\begin{array}{c} 0.07415 \\ 0.07754 \\ 0.08001 \end{array}$	$\begin{array}{c} 55.61 \\ 52.46205 \\ 40.51277 \end{array}$	$\begin{array}{c} 0.01798 \\ 0.01000114 \\ 0.02020119 \end{array}$	21 22 23
24 25 26	22.188 23.554 1360 24.004 1510	24,059 25,058 26,053	013.8 014.1 014.4	580.7 580.0 588.3	556.7 555.0 555.1	33.0 33.1 33.2	0.08427 0.08762 0.09004	$\substack{46.74 \\ 44.15250 \\ 44.15243 \\ 41.72227}$	$\begin{array}{c} 0.02130 \\ 0.02205126 \\ 0.02397132 \\ 0.02397138 \end{array}$	24 25 26
27 28 29	$26.510 \atop 28.1071597 \atop 28.1071670 \atop 29.7861767$	27.048 28.042 29.037	014.7 015.0 015.3	587.7 587.0 580.3	554.4 553.6 552.8		0.09426 0.09756 0.10085	$\begin{array}{c} 30.45_{214} \\ 37.31_{201} \\ 35.30_{188} \end{array}$	$\begin{array}{c} 0.02535 \\ 0.02680145 \\ 0.02833 \\ 159 \end{array}$	27 28 29
30		30.032	015.7	585.7	552.1	33.6	0.10413		0.02002 ₁₆₈	30

Temperature, Degrees Centi grade.	Pressure, Millimeters of Mercury.	the Liquid	eat.	Heat cî Vaporization	Heat equivalent of Internal Work.	it equivalent External 70rk.	of juid.	Specific Volume	DENSITY.	Temperature, Degrees Centigrade.	
Degree grade.	wesure Willim of Wel	Heat of	Total Heat	eat cî Vapo	eat eq of Int Work.	Heat eq of Ext Work.	Entropy of the Liquid.	ecific	Weight, in Kilos, of one Cubic Meter.	mpera Degree grade.	
Ĕ t	Ę,	Ħ q	ĭΑ	Ä *	Pρ	Apu	$\int_{\overline{T}}^{cdt}$	S	γ ≱	Ĕ t	
31	33.411,052	81.027	616.0	585.0	551.3	33.7	0.10740	31.65	0.03160, ==	31	
32 33	33,411 ₁₉₅₃ 35,804 <u>2052</u> 37,416 <u>2155</u>	32.023 33.018	616.3 616.6	584.3 583.6	550.5 549.7	33.8 33.9	$0.11067 \\ 0.11392$	$ \begin{array}{r} 31.65 \\ 29.98156 \\ 28.42148 \end{array} $	$\begin{array}{c} 0.03160 \\ 0.03335175 \\ 0.03519 \\ 193 \end{array}$	32 33	
34 35 36	$\begin{array}{c} 39.571_{2262} \\ 41.8332374 \\ 44.2072400 \end{array}$	34.014 35.000 36.007	616.9 617.2 617.5	582.9 582.2 581.5	548.9 548.2 547.4	34.0 34.0 34.1	$\begin{array}{c} 0.11716 \\ 0.12039 \\ 0.12362 \end{array}$	$\substack{26.94 \\ 25.56131 \\ 24.25123}$	$\begin{array}{c} 0.03712 \\ 0.03913201 \\ 0.04124211 \\ 220 \end{array}$	34 35 36	
37 38 39	$\substack{\frac{40.6972011}{49.3082742}\\52.05280}$	1 }	617.8 618.1 618.4	580.8 580.1 570.4	546.6 545.8 545.0	34.2 34.3 34.4	$\begin{array}{c} 0.12683 \\ 0.13004 \\ 0.13324 \end{array}$	$23.02_{116} $ $21.86_{109} $ $20.77_{103} $	$\substack{0.04344\\0.04574230\\0.04815241}$	37 38 39	
40	54.91_{301}	40.0	618.7	578.7	544.2	34.5	0.1364	19.74 ₉₈	0.05066	46	
41 42 43	$\begin{array}{c} 57.02 \\ 61.06329 \\ 64.35345 \end{array}$	41.0 42.0 43.0	619.6 619.3 619.0	578.0 577.3 570.6	543.4 542.6 541.8	34.6 34.7 34.8	0.1396 0.1428 0.1459	$^{18.76}_{17.84}{}^{92}_{86}\\{}^{16.98}{}^{86}_{82}$		41 42 43	
44 45 46	07.80300 71.40370 75.10374	44.0 45.0 46.0	019.9 020.2 020.5	575.9 575.2 574.5	541.0 540.2 539.4	34.9 35.0 35.1	$\begin{array}{c} 0.1491 \\ 0.1522 \\ 0.1554 \end{array}$	$16.16_{77} \\ 15.39_{78} \\ 14.66_{69}$	$\begin{bmatrix} 0.06187_{310} \\ 0.06497_{325} \\ 0.06822_{338} \end{bmatrix}$	44 45 46	
47 48 49	$\begin{array}{c} 70,10\\83.21\\430\\87.51\\447\end{array}$	47.0 48.0 40.0	620.8 621.1 621.4	573.8 573.1 572.4	538.6 537.8 537.0	35.2 35.3 35.4	0.1585 0.1617 0.1648	$\begin{bmatrix} 13.97_{66} \\ 13.31_{62} \\ 12.69_{58} \end{bmatrix}$	$\begin{bmatrix} 0.07160_{352} \\ 0.07512_{366} \\ 0.07878_{381} \end{bmatrix}$	47 48 49	
50	91.98,107	50.0	621.8	571.8	530.3	35.5	0.1679	12.11 ₅₅	0.08250304	50	
51 52 53	$\begin{array}{c} 96,65 \\ 101,54510 \\ 106,64531 \end{array}$	51.0 52.1 53.1	022.1 022.4 022.7	571.1 570.3 509.6	535.5 534.6 533.8	35.6 35.7 35.8	$\begin{bmatrix} 0.1710 \\ 0.1741 \\ 0.1772 \end{bmatrix}$	11.56 ₅₃ 11.03 ₅₀ 10.53 ₄₇		51 52 53	
54 55 56	$\begin{bmatrix} 111.95\\ 117.49554\\ 123.25\\ 001 \end{bmatrix}$	54.1 55.1 56.1	623.0 623.3 623.6	508.9 508.2 507.5	533.0 532.2 531.4	36.0	0.1803 0.1833 0.1864	$\begin{bmatrix} 10.06 \\ 9.610 \\ 9.185 \\ 40. \end{bmatrix}$	$\begin{bmatrix} 0.09940_{470} \\ 0.1041_{48} \\ 0.1089_{50} \end{bmatrix}$	54 55 56	
57 58 59	$\begin{bmatrix} 129, 26 \\ 135, 51 \\ 142, 02 \\ 678 \end{bmatrix}$	57.1 58.1 50.1	623.0 624.2 624.5	500.8 500.1 505.4	530.7 520.0 520.1	36.2	0.1805 0.1925 0.1956		$\begin{smallmatrix} 0.1139_{52} \\ 0.1191_{54} \\ 0.1245_{56} \end{smallmatrix}$	57 58 59	
60	148.80705	60.1	624.8	564.7	528.3	36.4	0.1986	7.687,32		60	
61 62 63	$\begin{bmatrix} 155.85_{733} \\ 103.18_{762} \\ 170.80_{702} \end{bmatrix}$	61.1 62.1 63.1	625.1 625.4 625.7	564.0 563.3 562.6	527.5 526.7 525.9	36.6	0.2046	$\begin{array}{ c c c c c }\hline 7.302_{311}\\ 7.051_{207}\\ 6.754_{28}\\ \end{array}$	$\begin{smallmatrix} 0.1358_{60} \\ 0.1418_{63} \\ 0.1481_{65} \end{smallmatrix}$	61 62 63	
64 65 66		64.2 65.2 66.2	026.0 026.3 026.6	501.8 501.1 500.4	525.0 524.2 523.4	36.9	0.2136	$ \begin{vmatrix} 6.470_{269} \\ 6.201_{254} \\ 5.947_{245} \end{vmatrix} $	$\begin{smallmatrix} 0.1546_{07} \\ 0.1613_{69} \\ 0.1682_{71} \end{smallmatrix}$	64 65 66	
67 68	204.38 ₀₂₂ 213.60 ₀₅₇	67.2 68.2 60.2	620.0 627.2 627.5	559.7 559.0 558.3	522.6 521.8 521.0	37.2	$\begin{array}{c} 0.2106 \\ 0.2225 \\ 0.2254 \end{array}$	5.705 ₂₃₅ 5.472 ₂₂₅ 5.250 ₂₁	$\begin{array}{c} 0.1753_{74} \\ 0.182778 \\ 0.1905_{20} \end{array}$	67 68 69	

										1)	:		3
Temperature, Degrees Cent grade.	71 72 73	74 75 76	77 78 79	80	81 82 83	84 85 86	87 88 89	90	91 92 93	94 95 96	97 98 99	100	101 102 103		107 108 109
Weight, in Edwing Willow, of Zame Cubic Ameter.	$\begin{array}{c} 0.2067_{84} \\ 0.215188 \\ 0.2239_{91} \end{array}$	$\substack{0.2330_{95}\\0.2425_{97}\\0.2522_{101}}$	$\substack{0.2623\\0.2726103\\0.2833}_{111}$	0.2944_{114}	$\begin{array}{c} 0.3058_{118} \\ 0.3176_{122} \\ 0.3208_{125} \end{array}$	$\substack{0.3423\\0.3552\\133\\0.3085\\137}$	$\substack{0.3822\\0.3965140\\0.4111\\149}$	0.4260_{155}	$\begin{array}{c} 0.4415_{160} \\ 0.4575_{164} \\ 0.4739_{169} \end{array}$	$\begin{array}{c} 0.4908_{173} \\ 0.5081_{180} \\ 0.5261_{184} \end{array}$	$ \begin{array}{c} 0.5445_{101} \\ 0.5636_{105} \\ 0.5831_{101} \\ \end{array} $	0.6024195	$ \begin{array}{c} 0.6219_{208} \\ 0.6427_{218} \\ 0.6645_{223} \end{array} $	$ \begin{array}{c} \textbf{0.6868} \\ \textbf{0.7097} \\ \textbf{236} \\ \textbf{0.7333} \\ \textbf{243} \end{array} $	$\begin{array}{c} 0.7576_{249} \\ 0.7825_{255} \\ 0.8080_{260} \end{array}$
ь Specific Volume	$\begin{array}{c} 4.839_{191} \\ 4.648_{183} \\ 4.465_{174} \end{array}$	$\substack{4.201\\4.124\\159\\3.965\\152}$	$\substack{3.813\\3.668\\139\\3.529\\132}$	3.397_{127}	$\begin{array}{c} 3.270 \\ 8.149121 \\ 8.033111 \end{array}$	$2.922_{107} \\ 2.815_{101} \\ 2.714_{98}$	$\substack{2.616 \\ 2.52390 \\ 2.43386}$	2.347_{82}	$\substack{2.265\\2.18676\\2.11072}$	$2.038_{70} $ $1.908_{67} $ $1.901_{65} $	$1.830_{62} \\ 1.77450 \\ 1.715_{54}$	1.661 ₅₂	$\begin{array}{c} 1.609\\ 1.55651\\ 1.50549 \end{array}$	$\begin{array}{c} 1.450_{47} \\ 1.409_{47} \\ 1.305_{45} \end{array}$	$1.320_{42} \\ 1.278_{40} \\ 1.248_{20}$
Entropy of the Liquid.	0.2313 0.2342 0.2371	0.2400 0.2429 0.2458	0.2487 0.2516 0.2544	0.2573	0.2601 0.2630 0.2658	$\begin{array}{c} 0.2686 \\ 0.2714 \\ 0.2742 \end{array}$	$\begin{array}{c} 0.2770 \\ 0.2798 \\ 0.2820 \end{array}$	0.2854	0.2881 0.2909 0.2937	0.2964 0.2991 0.3019	0.3046 0.3073 0.3100	0.3127	0.3154 0.3181 0.3208	0.3235 0.3261 0.3288	0.3341
Heat equivalent of External Work.	37.5 37.6 37.7	37.8 37.9 38.0	38.1 38.2 38.3	38.3	38.4 38.5 38.6	38.7 38.8 38.9	39.0 39.1 39.2	30.3	39.3 39.4 39.5	30.6 30.7 30.8	39.9 39.9 40.0	40.2	40.3 40.4 40.5		40.8
Heat equivalent of Internal Work.	519.5 518.7 517.9	517.1 516.3 515.5	514.6 513.8 513.0	512.3	511.5 510.7 509.9	509.1 508.3 507.5	506.7 505.9 505.0	504.3	503.6 502.8 502.0	501.2 500.4 400.6	408.8 408.1 407.3	496.4	495.6 494.7 493.9	403.2 402.4 401.0	490.1
ب Heat of Vaporization.	557.0 556.3 555.6	554.0 554.2 553.5	552.7 552.0 551.3	550.6	549.9 549.2 548.5	547.8 547.1 546.4	545.7 545.0 544.2	543.6	542.9 542.2 541.5	540.8 540.1 530.4	538.7 538.0 537.3	536.6	535.9 535.1 534.4	533.7 533.0 532.3	531.6 530.9 530.2
ン Total Heat.	628.2 628.5 628.8	$\begin{array}{c} 629.1 \\ 629.4 \\ 629.7 \end{array}$	630.0 630.3 630.6	630.9	031.2 031.5 031.8	632.1 632.4 632.7	633.6 633.6	634.0	634.8 634.6 634.0	635.2 635.5 635.8	030.1 030.4 030.7	637.0	637.3 637.6 637.9	638.2 638.5 638.8	630.1 630.4 630.7
Heat of the Liguid.	71.2 72.2 73.2	74.2 75.2 76.2	77.3 78.3 79.3	80.3	81.3 82.8 83.3	84.3 85.3 80.3	87.3 88.3 89.4	90.4	$ \begin{array}{c} 01.4 \\ 02.4 \\ 03.4 \end{array} $	94.4	97.4 98.4 99.4	100.4	101.4 102.5 103.5	104.5 105.5 106.5	107.5 108.5 109.5
Pressure, Millimeters of Mercury.	$\substack{243.39\\254.07\\1107\\265.14\\1148}$	$\begin{array}{c} 276.02_{1180} \\ 288.511232 \\ 300.831276 \end{array}$	$\substack{313.59\\320.80\\1368\\340.48\\1445}$	354.031404	$\begin{array}{c} 369.27 \\ 384.44 \\ 400.08 \\ 1010 \end{array}$	$\substack{416.27\\433.01\\450.31\\1780}$	468.18 ₁₈₄₀ 480.641907 505.71 ₁₉₆₉	525,40 ₂₀₃₂	$\substack{545.72\\566.702108\\588.342233}$	610.67 ₂₃₀₃ 633.70 ₂₃₇₅ 657.45 ₂₄₄₈	$\begin{array}{c} 681.93_{2524} \\ 707.172602 \\ 733.19_{2681} \end{array}$	760,00275	787.5 ₂₈₃ 815.8 <u>202</u> 845.0 <u>301</u>	875.1 ₃₀₉ 906.0 ₃₁₉ 937.9 ₃₂₈	970.7 ₃₃₇ 1004.4 ₃₄₇
Temperature, Degrees Cent grade.	71 72 73	74 75 76	77 78 79	80	81 82 83	84 85 86	87 88 89	90	91 92 93	94 95 96	97 98 99	100	101 102 103	104 105 106	107 108

	Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	f the Liquid	ist,	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	of guid.	Specific Volume	DENSITY.	Temperature, Degrees Centi- grade.	
	npera Jegree rade.	ssure, fillime f Mer	Heat of t	Total Heat,	rat of Vapo	eat eq	eat es	Entropy of the Liquid.	ecific	Weight, in Klios, of one Cubic Meter.	трет Эерген таде.	
	Ter	Pre Pre	He	y T	HE *	E C	Apu	j.#	112 s	k e e e	£ 4	
:				410.1	528.0	487.8	-11.1	0,3420	1.169	O SCOS	111	
	111 112 113	$\begin{array}{c} 1111.4_{377} \\ 1140.1_{398} \\ 1187.0_{308} \end{array}$	111.5 112.5 113.5	640.4 640.7 641.0	528.2 527.5	487.0 480.3	41.2 41.2	0,3440 0,3471	1.162.36 1.12636 1.09135	0,8608 0,8889285 0,0466286	112	
	114 115 116	$\substack{1227.7 \\ 1268.7 \\ 1310.7 \\ 432}$	114.6 115.6 116.6	641.8 641.0 641.9	526.7 526.0 525.3	483.8 484.0 485.4	41.3 41.4 41.5	0,3198 0,3524 0,3550	$\frac{1.057}{1.025}$ $\frac{92}{91}$ $\frac{0.9942}{200}$	0,9456 ₂₀₉ 0,0755 ³⁰⁵ 1,006 ³¹	114 115 116	
i	117 118 119	1353.9 ₄₄₄ 1398.3 ₄₅₅ 1443.8 ₄₆₇	117.6 118.6 119.6	042.8 042.5 042.2	524,6 523,0 523,2	483,1 482,3 481,5	$\begin{array}{c} 41.5 \\ 41.6 \\ 41.7 \end{array}$	0,3576 0,3601 0,3627	0,9613 ₂₈₉ 0,1654 <u>278</u> 0,9676 ₂₆₈	1.037.5 1.060% 1.10%	117 118 119	
	120	1400.5_{480}	120.6	643.1	522.5	480.7	41.8	0,3653	0,5505,255		120	
	121 122 123	1538.5 ₋₀₃₂ 1587.7 ₅₀₀ 1638.3 ₅₁₈	121.6 122.6 123.6	643.4 643.7 644.0	521.8 521.1 520.4	480.0 479.2 478.4	11.8 41.9 42.0	0.3378 0.3791 0.3729	0,8550,50 0,8660,50 0,8650,233	1,170 1,20535 1,24130	121 122 123	
	124 125 126	$\substack{1600.1\\1743.3532\\1797.8545\\1797.8559}$	124.6 125.6 126.6	644.3 644.0 644.9	519.7 519.0 518.3	477.8 476.8 476.1	12.1	0,3755 0,3780 0,3805	0.7890 ₀₉₄ 0.7609544 0.7380 ₉₄₄	1.278.7 1.01534 1.05140	124 125 126	
	127 128 129	$\substack{1853.7573\\1911.0587\\1969.7601}$	127.7 128.7 120.7	615.2 615.5 615.8	517.5 516.8 516.1	475.2 471.4 473.0	42.4	0.0800 0.0850 0.0851	0.7175 0.3973765	1.2963	127 128 129	
	130	2020.8_{017}	130.7	646.2	515,5	473.0	42.5	0.13998	-0.6594_{183}	1.5!7 [3]	130	
	131 132 133	$\begin{array}{c} 2091.5 \\ 2154.8 \\ 0.17 \\ 2219.5 \\ 003 \end{array}$	131.7 132.7 133.7	616.8 617.1	514.8 514.1 513.1	472.2 471.4 470.6	12.7 12.7 12.5	0,3951 0,3955 0,3980	0,640% 0,6231 170 0,6661 165	1,560,15 1,005,15 1,050,15	131 132 133	
	134 135 136	$\substack{2285.8 \\ 2353.7695 \\ 2423.2712}$	134.7 135.7 136.7	047.4 047.7 048.0	512.7 512.0 511.3	469.8 039.1 465.0	12,0 12,0		0.5736	1.606 1.74318 1.791 ₄₉	134 135 136	
	137 138 139	2404.4 2507.2729 2641.7745 2641.7762	137.7 138.7 139.8	648,3 648,6 648,9	540,B 509,9 509,1	4167.5 (186.5) 415.41	13.1 44.2 43.2	0, 1070 ° 0, 1104 0, 1128 °	0.5289	1,840 1,801 1,14451	137 138 139	
	140	2717.9 ₇₈₀	140,8	610.2	508,4	465.1	11.11	0.4152	manna l		140	
	141 142 143	2705.0 ₇₀₈ 2875.7 ₈₁₆ 2057.3 ₈₃₅	142,8 142,8 143,8	619.5 619.8 650.1	507.7 507.0 500.3	461.3 463.5 462.5	14, 1 13, 5 13, 4	0, 1177 11, 1291 11, 1225		2.41% 2.10% 2.15% 2.15%	141 142 143	
	144 145 146	3040.8 3120.1872 3213.3872	144.8 145.8 146.8	650,4 650,7 651.0	505,6 501.9 501.2	462,0 461,2 460,1	1.1,11 1.1,7 1.1,8	n, te tu . n 1974 n 1997	0.644	2.215.3	144 145 146	
	147 148	3302.5 3303.4 031	147.8 148.8	651.3 651.6	500,5 502,8	459.6 458.0	13.9 13.9	0.1391 0.1425	n. 1179 [65]		147 148	,

Temperature, Degrees Centigrade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in Kilos, of woo Cubic H	Temperature, Degrees Centi- grade.	
t	Þ	q	λ	r	Р	Ари	$\int \frac{cdt}{T}$	s	γ	t	
151 152 153	$\begin{array}{c} 8679.1 \\ 8778.4 \\ 903 \\ 3778.4 \\ 1014 \\ 3879.8 \\ 1035 \end{array}$	151.8 152.9 153.9	052.6 052.9 053.2	500.8 500.0 400.3	456.6 455.8 455.0	44.2 44.2 44.3	0.4417 0.4440 0.4464	$\begin{array}{c} 0.3779_{93} \\ 0.3686_{90} \\ 0.3596_{87} \end{array}$	$\substack{2.646 \\ 2.71368 \\ 2.78169}$	151 152 153	
154 155 156	$\substack{3983,3\\4089,01079\\4196,9\\1102}$	154.9 155.9 156.9	653.5 653.8 654.1	408.6 497.9 497.2	454.2 453.4 452.7	44.4 44.5 44.5	0.4488 0.4511 0.4536	$\begin{array}{c} 0.3509_{85} \\ 0.3424_{82} \\ 0.3342_{80} \end{array}$	$\substack{2.850 \\ 2.92070 \\ 2.99272 \\ 2.99274}$	154 155 156	
157 158 159	$\substack{4307.1\\4419.5\\1148\\4534.3\\1171}$	158.0 159.0 160.1	654.4 654.7 655.0	496.4 495.7 494.9	451.8 450.0 449.2	44.6 44.7 44.7	0.4560 0.4584 0.4608	$\begin{array}{c} 0.326278 \\ 0.318476 \\ 0.310873 \end{array}$	$\begin{array}{c} 3.066_{75} \\ 3.14176 \\ 8.21778 \end{array}$	157 158 159	
160	4651.41195	161.1	055.3	494.2	449.4	44.8	0.4633	0.3035 ₇₁	3.295 ₇₉	160	
161 162 163	$\begin{array}{c} 4770.9 \\ 4892.7 \\ 1243 \\ 5017. \\ 127 \end{array}$	162.2 163.2 164.2	055.6 055.9 050.2	493.4 492.7 492.0	448.5 447.7 447.0	44.0 45.0 45.0	0.4657 0.4681 0.4705	$\begin{array}{c} 0.2064_{60} \\ 0.289507 \\ 0.2828_{66}^{07} \end{array}$	$\begin{array}{r} 3.374_{80} \\ 3.454_{82} \\ 3.536_{84} \end{array}$	161 162 163	
164 165 166	5144. 129 5273. 132 5405. 134	165.3 166.3 167.4	656.5 656.8 657.1	491.2 490.5 489.7	446.1 445.3 444.5	45.1 45.2 45.2	0.4729 0.4752 0.4776	$\begin{array}{c} 0.2762 \\ 0.269063 \\ 0.263762 \\ \end{array}$	3.620 ₈₅ 3.70587 3.702 ₈₈	164 165 166	
167 168 169	5539, 137 5676, 140 5816, 143	108.4 169.5 170.5	657.4 657.7 658.0	489.0 488.2 487.5	4-13.7 4-12.9 4-12.1	45.3 45.3 45.4	0.4800 0.4824 0.4847	$ \begin{array}{c} 0.2577 \\ 0.251058 \\ 0.240257 \\ 0.246255 \end{array} $	3.880 ₉₀ 3.970 ₉₁ 4.061 ₉₃	167 168 169	
170	5959, 145	171.6	658.4	480.8	441.3	45.5	0.4871	0.240753	4.154 ₉₄	170	
171 172 173	6104, 147 6251, 151 6402, 153	172.6 173.7 174.7	658.7 659.0 659.3	486.1 485.3 484.6	440.5 439.7 438.9	45.6 45.6 45.7	0.4895 0.4918 0.4941	$ \begin{array}{c c} 0.2354 \\ 0.230252 \\ 0.225151 \end{array} $	4.248 ₉₇ 4.345 ₉₉ 4.444 ₉₉	171 172 173	
174 175 176	6555. 157 6712. 159 6871. 162	175.8 176.8 177.8	650.6 650.9 660.2	483.8 483.1 482.4	438.1 437.3 436.5	45.7 45.8 45.0	0.4965 0.4988 0.5011	$ \begin{array}{c} 0.2201_{48} \\ 0.215347 \\ 0.210645 \end{array} $	4.543 ₁₀₁ 4.644 ₁₀₃ 4.747 ₁₀₅	174 175 176	
177 178 179	7033, 165 7198, 168 7366, 171	178.9 179.9 181.0	000.5 600.8 601.1	481.6 480.9 480.1	435.7 434.9 434.0		0.5035 0.5058 0.5081	$ \begin{array}{c} 0.2061 \\ 0.201744 \\ 0.197344 \\ 0.197342 \end{array} $	4.852 ₁₀₇ 4.950 ₁₀₉ 5.068 ₁₁₀	177 178 179	
180	7537. 175	182.0	661.4	479.4	433.3	46.1	0.5104	0.193141	5.178113	180	İ
181 182 183	7712. 177 7889. 181 8070. 183	183.1 184.1 185.2	001.7 002.0 002.3	478.6 477.0 477.1	432.4 431.7 430.8	46.2	0.5127 0.5150 0.5173	$\begin{bmatrix} 0.1890_{40} \\ 0.1850_{30} \\ 0.1811_{38} \end{bmatrix}$	5.201 5.405114 5.522117 5.522118	181 182 183	
184 185 186	8253, 187 8440, 191 8631, 193	186.2 187.3 188.3	662.6 662.9 663.2	476.4 475.6 474.9	430.1 420.2 428.5	46.4		$ \begin{array}{c} 0.1773_{37} \\ 0.1736_{36} \\ 0.1700_{36} \end{array} $	$\begin{array}{c c} 5.640_{120} \\ 5.760_{122} \\ 5.882_{125}^{122} \end{array}$	184 185 186	
187 188	8824. 107 9021. 201	189.4 190.4	663.5 663.8	474.1 473.4	427.0 426.0		0.5264 0.5287	0.1684 ₃₄ 0.1630 ₃₈	6.007 ₁₂₇ 6.134 ₁₂₈ 6.262 ₁₂₈	187 188 189	

SATURATED

, <u>.</u>				on.	lent	lent al		juid.	лише.	1	ENHITY.	Centi
c Cent	eters rcury.	the Liquid.	leat.	Vaporization.	equiva merna rk.	Heat equivalent of External	4	Entropy of the Liquid.	Specific Volume.		Weight, in Kilos, of one Cubic Meter.	Temperature, Jegrees Centi- grade.
Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of	Total Heat.	Heat of Vapo	Heat equivalent of Internal Work.	Heat		## 	iii s		AS ES	# # # # #
ž /	Pi p	q	λ	7	P	11/	' '	r	~	1 mg ar - 1815-96	Penalt with the State agrant of	e-4
191 192	9638-211 984	108.5 194.0	004.8 005.1 005.4	471.3 470.5 409.8	424.0 423.7 423.0	40. 40. 40.	8 0	.5355 .5377 .5400	0, 1532 0, 1501 0, 1471		$\begin{array}{c} 0.525_{130} \\ 0.601_{137} \\ 0.708_{140} \end{array}$	191 192 193
193	10000-218	195.6	665.7	469.0 468.3	422.2	40	0 0	.5422 .544 <u>I</u>	0,1444 0,1412 0,1384	20 28	$\begin{array}{c} 6.038 \\ 7.080 \\ 145 \\ 7.225 \\ 147 \end{array}$	194 195 196
194 195 196	$\substack{10276{222}\\10498{226}\\10724{229}}$	197.7 198.8	6,000	407.5	420.0	3 46		,5467 1,5489	0 1955			1.97
197 198	$\substack{10953{233}\\11186{238}\\11424{240}}$	199.8 200.9 201.9	006.6 000.0 007.2	466.8 466.0 465.3	410.8 419.6 418.3	1 17	0 1	15511 15533	0.1333	100	$\substack{7.372 \\ 7.521 \\ 151 \\ 7.072 \\ 155 }$	198
199			667.5	464.5	417.	4 4	1.1	0,5555	0.127	725	7.827_{157}	20
200	11004-245	203.0	667.8	460.8	416.	7 4		0,5577 0,5504	(-0.122)	85.1	$\substack{7.984\\8.143162\\8.305102}$	20
201 202 203	11000-240 12158-253 12411-257	205.0 206.1	008.1	462.3	415.	1 4	7.2	0,5021	0.120	423		- 1
204 205	12668. ₂₆₂ 12980. ₂₆₅	207.1	(3(35), (460.8	4 413	5 4	7.2	0,566 0,568	5 0.117		8.470 ₁₆₆ 8,630171 8,810 ₁₇₁	
206	13405.07	210.	669.6	450.	0 411	.11 .	7.3	0.570	1 0.10	133.21 1221 1221	9.16017 9.16017 9.33418	20
208	18730-276	$\frac{2}{3}$ $\frac{212.}{212.}$	1 070.	2 457.	1		17.4 17.4	0.575 0.577	1	50 ₂₀	9,519 ₁₈	1
210	1			9 456	4 40	0,0	47.4 47.4	0.575 0.58	55 0.10 17 0.10	11 1 10 10 10 10 10 10 10 10 10 10 10 10	0.704 (n 0.864 (s	() 2
21: 21: 21:	2 14880.20		5 671.		01-10	7.6	47.4	0.5%	1		10.00.20	
21 21	4 15478.30 5 15785.30	_ 217	.0 072	.1 45	5 40	6.7 8.0 6.2	47.5 47.5 47.5	11,0%	0,1 0,0 0,1 0,0 0,1 0,0	173 (0 154 (8 130 (8	$\begin{array}{c} 10.28_{20} \\ 10.48_{20} \\ 10.68_{21} \end{array}$!
21	į.		.7 672	.7 455	1 2 40	H.5 El.7	47.5	0.55	124 11.0 145 0.0	1115 17 1811 17 1814 17	10.80 ₂₁ 11.10 ₂₁ 11.31 ₂₂	
23		$\frac{26}{31}$ $\frac{221}{222}$		1,33 45		n,in	47.8	3	1	mun 111	11.53	
2	20 17389.	22	3.0 678	3.6 44	0.7	02.2	47.	5 0.51	Mary 1111	pr 34 #9. P	weather and a second	Medical and a special or series

TABLE IV.

SATURATED VAPOR OF ETHER.

ıre, Centi-	ers 1ry.	the Liquid.	. •	ation.	t equivalent Internal ork.	alent nal	uld.	lume.	DENSITY.	re, Centi-
Temperature, Degrees Centigrade.	Pressure, Millimeters of Mercury.	Heat of th	Total Heat.	Heat of Vaporization	Heat equivof Interventer	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in Kilos, of one Cubic Meter.	Temperature, Degrees Centigrade.
Ť t	<i>₽</i>	Ä 7	λ	H	μ Ε	Apu	$\int_{\frac{Cdt}{T}}^{\Xi}$	s Sp	A FR 9M	Te Je
О	184.39	0.00	94.00	0-4,00	80.45	7.55	0.0000	1.278	0.782	0
10	280.83	5.32	98.44	93.12	85.37	7.75	0.01909	0.8440	$egin{array}{c} 1.185 \ 1.742 \ 2.402 \end{array}$	10
20	432.78	10.70	102.78	92.08	84.13	7.95	0.03772	0.5741		20
30	634.80	10.14	107.00	90.80	82.72	8.14	0.05593	0.4013		30
40	907,04	21.63	111.11	80.48	81.15	8.33	$\begin{array}{c} 0.07374 \\ 0.09117 \\ 0.1083 \end{array}$	0.2877	3.746	40
50	1264,8	27.19	115.11	87.02	79.41	8.51		0.2108	4.744	50
60	1725,0	32.80	110.00	80.20	77.53	8.07		0.1580	6.329	60
70	2304.0	38.48	122.78	84,30	75.49	8.81	0.1250	0.1203	8.313	70
80	3022.8	44.21	120.44	82,23	73.32	8.91	0.1415	0.0032	10.73	80
90	3898.3	50.00	130.00	80,00	71.03	8.97	0.1576	0.0731	13.68	90
100	4953.3	55.86	133.44	77.58	68,62	8.96	0.1735	0.0577	17.33	100
110	6214.6	61.77	136.78	75.01	66,13	8.88	0.1801	0.0459	21.79	110
120	7719.2	07.74	140.00	72.26	63,57	8.69	0.2045	0.0364	27.47	120

TABLE V.

SATURATED VAPOR OF ALCOHOL

Temperature, n Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	> Total Heat.	y Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External	ાં Butropy of પ્રકૃ the Liquid.	ь Specific Volume.	Weight, in Kilos, of Cubic Meter.	Temperature, Degrees Centigrade.
0	12.70	0.00	236.5	230.50	223.38	13.12	0.0000	32.21	0.03105	0
10	24.23	5.59	244.4	238.81	225, 20	13.52	0.01996	17.39	0.05750	10
20	44.46	11.42	252.0	240.58	226, 56	14.02	0.04003	9.847	0.1016	20
30	78.52	17.40	258.0	240.51	226, 03	14.48	0.06029	5.753	0.1738	30
40	133.69	23.71	262.0	238.29	223.44	14.85	0.08073 0.1014 0.1223	3.465	0.2886	40
50	219.90	30.21	264.0	233.79	218.59	15.10		2.143	0.4666	50
60	350.21	37.37	265.0	227.63	212.38	15.25		1.359	0.7358	60
70	541.15	44.58	205.2	220.62	205.28	15.34	0.1435	0.8855	1.129	70
80	812.91	52.11	205.2	213.09	197.69	15.40	0.1650	0.5921	1.689	80
90	1180.3	50.07	200.0	206.03	190.54	15.49	0.1868	0.4073	2.455	90
100	1697. 6	68.18	267.8	190.12	183.54	15.58	$0.2090 \\ 0.2315 \\ 0.2544$	0.2874	3.479	100
110	2367.6	70.74	269.6	192.86	177.15	15.71		0.2083	4.801	110
120	3231. 7	85.67	272.5	186.83	170.97	15.86		0.1544	6.477	120
130	4323.0	04.98	276.0	181.02	164.99	16.03	0.2776	0.1170	8.547	130
140	5674.6	104.70	280.5	175.80	159.55	16.25	0.3013	0.0905	11.05	140
150	7318.4	114.82	285.3	170.48	154.03	16.45	0.3254	0.0714	14.01	150

TABLE VI.

SATURATED VAPOR OF CHLOROFORM.

Temperature, Degrees Centigrade.	Pressnre, * Millimeters of Mercury.	S Heat of the Liquid.	> Total Heat,	y Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	« Specific Volume.	Weight, in Kilos, of wa one Cubic List	Temperature, Degrees Centigrade.
0	50.72	0.00	67.00	67.00	62.45	4.55	0.00000	2.377	0.42,07	0
10 20 30	$100.47 \\ 100.47 \\ 247.51$	2.33 4.07 7.02	68.38 69.75 71.12	$\begin{array}{c} 66.04 \\ 65.08 \\ 64.10 \end{array}$	61.29 60.14 59.00	4.75 4.94 5.10	0.00836 0.01646 0.02432	1.475 0.9601 0.0437	0.6780 2.042 1.554	10 20 30
40	369.26	9.37	72.50	63.13	57.87	5.26	0.03196	0.4449	2.248	40
50	535.05	11.74	73.87	62.13	56.73	5.40	0.03940	0.3155	3.170	50
60	755.44	14.12	75.25	61.13	55.60	5.53	0.04004	0.2291	4.356	60
70	1042,1	16.51 18.01 21.32	76.62	00.11	54.45	5.60	0.05369	0.17/J0	5.88	70
80	1407.6		78.00	59.09	53.31	5.78	0.06057	0.1286	7.78	80
90	1865.2		79.37	58.05	52.16	5.80	0.06729	0.5991	10.09	90
100	2428.5	23.74	80.75	57.01	51.01	$\begin{array}{c} 6.00 \\ 6.11 \\ 6.22 \end{array}$	0.07386	0.0777	12.87	100
110	3111.0	20.17	82.12	55.05	49.84		0.08027	0.0618	10.18	110
120	3025.7	28.01	83.50	54.80	48.67		0.08655	0.0500	20.00	120
130	4885.1	31.00	84.87	53.81	47.48	6.33	0.09270	0.0410	24.39	130
140	6000.2	33.52	80.25	52.73	40.30	6.43	0.09872	0.0340	29.4	140
150	7280.6	35.00	87.02	51.63	45.10	6.53	0.10462	0.0286	35.0	150
160	8734.2	38.47	89.00	50.53	43.90	6.63	0.11041	0.0243	41.2	160

TABLE VII.

SATURATED VAPOR OF CARBON BISULPHIDE.

PRESCH ONUTS.

Temperature, Degrees Centi. grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	> Total Heat,	Theat of Vaporization.	Heat equivalent C Internal Work.	Mar regiviles	The live of the li	s Spoil? V. une.	DESSITY. REST TOTAL A STATE OF THE STATE OF	Temperature, Tegree Centi-
0	127.01	0.00	00,00	Q11, (10)	82,70	7.21	а,ткиянт	1.760	0.5862	0
10	198.40	2,30	91.42	80,00	\$1,58	7.48	0,00517	1.177	0,8496	10
20	298.03	4,74	92.76	88,02	80,31	7.71	0,01670	0.3071	1,239	20
30	484.02	7,13	94.01	86,88	78,97	7.91	0,02472	0.5084	1,759	30
40	617.53	9,54	95.18	85.61	77.51		0,03252	0,4068	2.440	40
50	857.07	11,06	90.27	84.31	70.01		0,04043	0,3017	3.315	50
60	1164.5	14,41	97.28	82.87	71.15		0,04756	0,2261	4.417	60
70	1552.1	10.86	08,20	81.34	72.78		0,05482	0,1726	5.794	70
80	2032.5	19.34	09,04	79.70	71.03		0,06192	0,1338	7.473	80
90	2010.1	21.83	09,80	77.97	60.20		0,06886	0,1052	9.51	90
100	3325.2	24.34	100,48	76.14	67.29	8,85	0,07500	0,0827	11,95	100
110	4164.1	26.86	101,07	74.21	65.31	8,90	0,08933	0,0674	14,84	110
120	5148.8	29.40	101,58	72.18	63.21	8,94	0,8880,0	0,0549	18,21	120
130	6201.6	31.96	102.01	70,05	61.09	8,96	0.09527	0,0459	22.12	130
140	7604.0	34.53	102.36	07,83	88.83	8,95	0.19137	0,0475	26.7	140
150	9005.9	37.12	102.62	05,50	83.03	8,92	0.19775	0,0414	31.8	150

TABLE VIII.

SATURATED VAPOR OF CARBON TETRACHLORIDE.

Temperature, Tegrates Centigrade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	ン Total Heat,	Heat of Vaporization.	Heat equivalent of Internal	Heat equivalent of External	Entropy of 의혹 the Liquid.	" Specific Volume.	Weight, in Kilos, of cone Cubic Meter.	Temperature, Degrees Centigrade.
0	32.95	0.00	52.00	52.00	48.54	3.46	0.00000	3.272	0.3056	C
10	55.97	1.00	53.44	51.45	47.85	3.60	0.00714	2.005	0.4987	10
20	90.99	3.00	54.80	50.87	47.13	3.74	0.01400	1.283	0.7794	20
30	142.27	0.02	50.23	50.21	40.33	3.88	0.02087	0.8510	1.175	30
40	214.81	8.00	57.58	49.52	45.51	4.01	0.02740	$0.5831 \\ 0.4109 \\ 0.2969$	1.715	40
50	314.38	10.12	58.88	48.7 6	44.62	4.14	0.03306		2.434	50
60	447.43	12.20	80.10	47.96	43.00	4.25	0.04028		3.368	60
70	021.15	14.30	61.40	47.10	42.75	4.35	0.04648	0.2192	4.562	70
80	843.20	16.42	62.60	40.18	41.74	4.44	0.04255	0.1650	6.061	80
90	1122.3	18.55	63.77	45.22	40.50	4.72	0.05849	0.1263	7.92	90
100	1407.1	20.70	04.00	44.20	39.62	4.58	0.00433	0.0980	10.20	100
110	1887.4	22.87	00.01	43.14	38.52	4.02	0.07006	0.0770	12.99	110
120	2303.7	25.00	67.07	42.01	37.36	4.65	0.07569	0.0611	16.37	120
130	2006.0	27.27	68.10	40.83	36.18	4.65	0.08122	0.0490	20.41	130
140	3709.0	20.49	09.10	39.61	34.05	4.63	0.08666	0.039 5	25.3	140
150	4543.1	31.73	70.07	38.34	33.75	4.50	0.09201	0.0321	31.2	150
160	5513.1	34.00	71.00	37.00	32,47	4.53	0.09729	0.0262	38.2	160

TABLE IX.

SATURATED VAPOR OF ACETON.

Temperature, Degrees Centi.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	> Total Heat.	y Heat of Vajorization.	Heat equivalent	Heat equivalent	Entropy of the Liquid.	* Sjætific Volume.	Meight, in Klisk, of Kand One Cubic Kand Meter.	Temperature, Negrees Centigrade.
o	63.33	0.00	1.40,50	140,50	131.82	8,68	(),()()()())	4.275	0.2330	o
10 20 30	110,32 180,08 280,05	5,10 10,29 15,55	144.11 147.62 151.03	139,01 137,33 135,48		10,17	0,018/12 0,03627 0,05380	2,686 1,758 1,187	0.8728 0.6688 0.8425	10 20 30
40 50 60	419,35 008,81 860,96	20,80 20,31 31,81	154,33 157,53 100,63	133, 14 131,22 128,82	110,50,	11.36	0.07119 0.08820 0.1049	0,8227 0,5830 0,4215	1,215 1,715 2,372	40 50 60
70 80 90	1180.9 1611.1 2140.8	37,30 43,05 48,70	163.62 106.51 109.30	126,23 123,46 120,51	111.49	11.97	0.1214 0.1376 0.1536	0,3106 0,2328 0,1773	3,220 4,296 5,640	70 80 90
100 110 120	2706.2 8504.8 4552.0	54.61 60.50 66.48	171,98 174,56 177,04	117.37 114.06 110.56	101.78	12.28	0,1694 0,1850 0,2064	0, 1372 0, 1076 0, 0856	7.280 9.204 11.68	100 110 120
130 140	5084.0 7007.0	72.54 78.67	170.42 181.60	100,88 103,02			0,2156 0,230d	0,0880 0,0561	14.51 17.83	130 140

TABLE X. SATURATED VAPOR OF AMMONIA.

· ENGLISH UNITS.

1										
Temperature, Degrees Fah- renheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal	Heat equivalent of External Work.	Entropy of the Liquid,	Specific Volume.	Weight, in pounds, of good Cubic Foot.	Temperature. Degrees Fub- renheit.
/	*	9	λ	r	ρ	Apu	\int_{-T}^{cdt}	<u>s</u>	γ	ż .
-40	9.98	-79	519	598	549	49	$ \begin{array}{c c} -0.1737 \\ -0.1607 \\ -0.1482 \end{array} $	26.9	0.0373	-40
-35	11.58	-74	520	594	544	50		23.3	0.0429	-35
-30	18.30	-68	522	590	540	50		20.3	0.0492	-30
-25 -20 -15	15.40 17.70 20.25	$ \begin{array}{r} -63 \\ -57 \\ -52 \end{array} $	523 525 520	586 582 578	535 531 526	51 51 53	$ \begin{array}{r} -0.1354 \\ -0.1229 \\ -0.1103 \end{array} $	17.8 15.6 13.7	0.0562 0.0640 0.0726	-25 -20 -15
-10 -5 0	23.10 26.25 29.74	$ \begin{array}{r} -46 \\ -41 \\ -35 \end{array} $	528 520 531	574 570 566	522 517 513	53 53 53	-0.0982 -0.0859 -0.0738	12.2 10.8 9.63	0.0821 0.0925 0.104	-10 -5 0
5 10 15	83.58 87.80 42.43	$ \begin{array}{r} -30 \\ -24 \\ -19 \end{array} $	532 534 535	562 558 554	508 504 500	53 54 54	-0.0619 -0.0501 -0.0386	8.60 7.71 6.93	0.116 0.130 0.144	5 10 15
20	47.49	-13	537	550	495	55	-0.0271 -0.0157 -0.0044	6.24	0.160	20
25	53 01	-8	538	540	491	55		5.64	0.177	25
30	59 01	-2	540	543	486	56		5.11	0.196	30
35	05.58	3	541	538	482	50	0.0067	4.64	$0.216 \\ 0.237 \\ 0.260$	35
40	72.59	9	543	534	478	56	0.0177	4.20		40
45	80.21	14	544	580	473	57	0.0287	3.85		45
50	88.44	20	540	520	469	57	0.0395	3.52	0.284	50
55	97.30	25	547	522	464	58	0.0502	8.22	0.310	55
60	106.82	81	540	518	460	58	0.0608	2.96	0.338	60
65	117.04	86	550	514	456	58	0.0713	2.72	0.867	65
70	127.98	42	552	510	451	59	0.0817	2.51	0.898	70
75	139.67	47	553	506	447	59	0.0921	2.82	0.481	75
80	152.15	53	555	502	442	60	0.1028	2.14	0.467	80
85	165.47	58	556	498	438	60	0.1124	1.99	0.504	85
90	179.64	64	558	494	484	60	0.1224	1.82	0.548	90
95	194.70	69	559	490	428	61	0.1824	1.71	0.584	95
100	210.70	75	561	486	425	61	0.1428	1.59	0.627	100

TABLE XI.
SATURATED VAPOR OF SULPHUR DIOXIDE.

ENGLISH UNITS,

ا ف	ا ہے			Ë	ent	ent	De la		DENSITY.	. d
Temperature, Degrees Fab- renheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in pounds, of one Cubic Foot.	Temperature, Drgrees Fah- renheit.
Her D	F S P S	He	Tot	He	Ile	He		Spe	We	Ter
t	<i>j</i>	q	λ	r	ρ	Apu	$\int \frac{cdt}{T}$	s	γ	t
-40	3.14	-29	166	195	182	13	$\begin{array}{c c} -0.0632 \\ -0.0584 \\ -0.0539 \end{array}$	23.0	0.0434	-40
-35	3.70	-27	167	194	180	14		19.7	0.0507	-35
-30	4.34	-25	168	193	179	14		17.0	0.0590	-30
-25	5.07	-23	168	191	177	14	$ \begin{array}{c c} -0.0492 \\ -0.0447 \\ -0.0401 \end{array} $	14.7	0.0682	-25
-20	5.90	-21	169	190	176	14		12.7	0.0785	-20
-15	6.83	-19	170	189	175	14		11.1	0.0901	-15
-10	7.88	-17	170	187	173	14	$ \begin{array}{r r} -0.0357 \\ -0.0312 \\ -0.0268 \end{array} $	9.73	0.103	-10
-5	9.05	-15	171	186	172	14		8.56	0.117	-5
0	10.35	-13	172	185	170	15		7.54	0.133	0
5	11.81	-11	172	183	168	15	$\begin{array}{c c} -0.0225 \\ -0.0182 \\ -0.0140 \end{array}$	6.67	0.150	5
10	13.41	-9	173	182	167	15		5.98	0.169	10
15	15.19	-7	174	181	166	15		5.29	0.189	15
20	17.15	-5	174	179	164	15	$\begin{array}{c} -0.0098 \\ -0.0057 \\ -0.0016 \end{array}$	4 72	0.212	20
25	19.30	-3	175	178	163	15		4.23	0.236	25
30	21.66	-1	176	177	162	15		3.81	0.263	30
35	24.24 27.06 30.12	1	176	175	160	15	0.0024	3.43	0.291	35
40		3	177	174	158	16	0.0064	3.10	0.322	40
45		5	177	172	156	16	0.0104	2.81	0.356	45
50	33.45	7	178	171	155	16	0.0144	2.58	0.390	50
55	37.07	9	179	170	154	16	0.0182	2.32	0.430	55
60	40.98	11	179	168	152	16	0.0221	2.11	0.473	60
65	45.20	13	180	167	151	16	0.0259	1.94	0.516	65
70	49.75	15	181	166	150	16	0.0297	1.78	0.563	70
75	54.64	17	181	164	148	16	0.0334	1.63	0.614	75
80	59.90	19	182	163	146	17	0.0372	1.50	0.668	80
85	65.54	21	183	162	145	17	0.0409	1.38	0.725	85
90	71.57	23	183	160	148	17	0.0445	1.27	0.786	90
95	78.02	25	184	159	142	17	0.0482	1.18	0.849	95
100	84.90	27	185	158	141	17	0.0518	1.00	0.917	100

84

TABLE XII.

SPECIFIC GRAVITY AND SPECIFIC VOLUME OF LIQUIDS.

Name of Liquid.	Specific Gravity, compared with Water at 4° C.	Specific Volum e. Cubic Meters per Kilo.
Alcohol, C ₂ II ₆ O Ether, C ₄ II ₁₀ O	1.527 [Thorpe, 1880]	0.000774 0.000613 0.00123

TABLE XIII.

VOLUME OF WATER.

Vol. at 4° C=1.

[Rossettl, 1871] and [Hirn, 1867.]

Tempera- ture.	Volume.	Tempera- ture.	Volume.	Tempera- ture.	Volume.	Tempera- ture.	Volume.
10	1.000253	60	1.01691	110	1.0512	160	1.1018
20	1.001744	70	1.02256	120	1.0599	170	1.1139
30	1.00425	80	1.02887	130	1.0694	180	1.1268
40	1.00770	90	1.08567	140	1.0795	190	1.1403
50	1.01105	100	1.04312	150	1.0903	200	1.1544

							•	•	8	ย
1.0	0.0000	0.00995	0.01980	0.02956	0.03922	0.04879	0.05827	0.06766	0.07696	0.08618
1.1	0,09531	0.1044	0.1133	0.1222	0.1310	0.1398	0.1484	0.1570	0.1655	0.1739
1.2	0,1823	0.1906	0.1988	0.2070	0.2151	0.2231	0.2311	0.2390	0.2469	0.2546
1.3	0,2624	0.2700	0.2776	0.2852	0.2927	0.3001	0.3075	0.3148	0.3221	0.3293
1.4	0.3365	0.3436	0.3507	0.3577	0.3646	0.3716	0.3784	0.3853	0.3920	0.3988
1.5	0.4055	0.4121	0.4187	0.4253	0.4318	0.4382	0.4447	0.4511	0.4574	0.4637
1.6	0.4700	0.4762	0.4824	0.4886	0.4947	0.5008	0.5068	0.5128	0.5188	0.5247
1.7	0.5306	0.5365	0.5423	0.5481	0.5539	0.5596	0.5653	0.5710	0.5766	0.5822
1.8	0.5878	0.5933	0.5988	0.6043	0.6098	0.6152	0.6206	0.6259	0.6313	0.6366
1.9	0.6418	0.6471	0.6523	0.6575	0.6627	0.6678	0.6729	0.6780	0.6831	0.6881
2.0	0.6931	0.6981	0.7031	0.7080	0.7129	0.7178	0.7227	0.7275	0.7324	0.7372
2.1	0.7419	0.7467	0.7514	0.7561	0.7608	0.7655	0.7701	0.7747	0.7793	0.7839
2.2	0.7884	0.7930	0.7975	0.8020	0.8065	0.8109	0.8154	0.8198	0.8242	0.8236
2.3	0.8329	0.8372	0.8416	0.8459	0.8502	0.8544	0.8587	0.8629	0.8671	0.8713
2.4	0.8755	0.8796	0.8838	0.8879	0.8920	0.8961	0.9002	0.9042	0.9083	0.9123
2.5	0.9163	0.9203	0.9243	0.9282	0.9322	0.9361	0.9400	0.9439	0.9478	0.9517
2.6	0.9555	0.9594	0.9632	0.9670	0.9708	0.9746	0.9783	0.9821	0.9858	0.9895
2.7	0.9933	0.9969	1.0006	1.0043	1.0080	1.0116	1.0152	1.0188	1.0225	1.0260
2.8	1.0296	1.0332	1.0367	1.0403	1.0438	1.0473	1.0508	1.0543	1.0578	1.0613
2.9	1.06.47	1.0682	1.0716	1.0750	1.0784	1.0818	1.0852	1.0886	1.0919	1.0953
3.0	1,0986	1.1019	1.1053	1.1086	1.1119	1.1151	1.1184	1.1217	1.1249	1.1282
3.1	1.1314	1.1346	1.1378	1.1.410	1.1442	1.1474	1.1506	1.1537	1.1569	1.1600
3.2	1.1632	1.1663	1.169.4	1.1725	1.1756	1.1787	1.1817	1.1848	1.1878	1.1909
3.3	1.1939	1.1969	1.2000	1.2030	1.2000	1.2090	1.2119	1.2149	1.21 7 9	1.2208
3.4	1.2238	1.2267	1.2296	1.2326	1.2355	1.2384	1.2413	I.2442	I.2470	1.2499
3.5	1.2528	1.2556	1.2585	1.2513	1.2641	1.2669	1.2698	I.2726	I.2754	1.2782
3.6	1.2809	1.2837	1.2865	1.2892	1.2920	1.2947	1.2975	I.3002	I.3029	1.3056
3.7	1.3083	1.3110	1.3137	1.3164	1.3191	1.3218	1.3244	1.3271	1.3297	1.3324
3.8	1.3350	1.3376	1.3403	1.3420	1.3455	1.3481	1.3507	1.3533	1.3558	1.3584
3.9	1.3610	1.3635	1.3661	1.3686	1.3712	1.3737	1.3762	1.3788	1.3813	1.3838
4.0	1.3863	1.3888	1,3913	1.3938	1.3962	1.3987	1.4012	1.4036	1.4061	1.4085
4.1	1.4110	I.4134	1.4150	1.4183	1.4207	1.4231	I.4255	1.4279	1.4303	I.4327
4.2	1.4351	I.4375	1.4398	1.4422	1.4446	1.4469	I.4493	1.4516	1.4540	I.4563
4.3	1.4586	I.4609	1.4633	1.4656	1.4679	1.4702	I.4725	1.4748	1.4770	I.4793
4.4	1.4816	1.4839	1.4861	r.4884	1.4907	1.4929	1.4951	1.4974	1.4996	1.5019
4.5	1.5041	1.5063	1.5085	1.5107	1.5129	1.5151	1.5173	1.5195	1.5217	1.5239
4.6	1.5261	1.5282	1.5304	1.5326	1.5347	1.5369	1.5390	1.5412	1.5433	1.5454
4.7	1.5476	1.5497	1.5518	1.5539	1.5560	1.5581	1.5602	1.5623	1.5644	1.5665
4.8	1.5686	1.5707	1.5728	1.5748	1.5769	1.5790	1.5810	1.5831	1.5851	1.5872
4.9	1.5892	1.5913	1.5933	1.5953	1.5974	1.5994	1.6014	1.6034	1.6054	1.6074
5.0	1.6094	1.6114	1.6134	1.6154	1.6174	1.6194	1.6214	1.6233	1.6253	1.6273
5.1	1.6292	1.6312	1.6332	1.6351	1.637 1	1.6390	1.6409	1.6429	1.6448	1.6467
5.2	1.6487	1.6506	1.6525	1.6544	1.6563	1.6582	1.6601	1.6620	1.6639	1.6658
5.3	1.6677	1.6696	1.6715	1.6734	1.6752	1.6771	1.6790	1.6808	1.6827	1.6845
5.4	1.6864	1.6882	1.6901	1.6919	1.6938	1.6956	1.6974	1.6993	1.7011	1.7029
5.5	1.7047	1.7066	1.7084	1.7102	1.7120	1.7138	1.7156	1.7174	1.7192	1.7210
5.6	1.7228	1.7246	1.7263	1.7281	1.7299	1.7317	1.7334	1.7352	1.7370	1.7387

	0	1	2	3	4	5	6	7	8	9
5.7	1.7.105	1.7.122	1.7.1.40	1.7457	1.7475	~				
5.8	I 7579	1.7500	1.7613	1.7630	1.7647	1.7492	1.7509	1.7527	I.7544	1.7561
5.9	1.7750	1.7706	1.7783	1.7800	1.7817	1.7834	1.7851	1.7699	1.7716	1.7733
6.0	1.7918	1.7934	1.7951	1.7967	1.7984	1.8001	1.8017	1.8034	1.8050	18,066
6.1	T.8083	1.8000	1.8116	- 0-			2.001/	1.0034	1.6050	10,000
6.2	1.82.15	1.8202	1.8278	1.8204	1.8148	1.8165	1.8181	1.8197	1.8213	1.8229
6.3	1.8.105	1.8421	1.8.137	1.8453	1.8310	1.8326	1.83.12 1.8500	1.8358	1.8374	1.8390
6.4	1.8563	1.8570	1.850.1	1.8610	1.8625			1	1	1
6.5	1.8718	1.8733	1.87.19	1.876.1	1.8779	1.8641	1.8656	1.8672	1.8687	1.8703
6.6	1.8871	1.8886	I.Syoi	1.8916	1.8931	1.8946	1.8961	1.8825	1.8840	1.8856
6.7	Loost	x.9036	1.0051	1.9066	1.0081	1.9095		-		1
6.8	1,0100	1.018.1	1.0100	1.9213	1,9228	1.9242	1.9110	1.9125	1.9140	1.9155
6.9	1.9315	1.9330	1.9344	1.9359	1.9373	1.9387	1.9402	1.9416	1.9286 1.9430	1.9301
7.0	1.9459	1.9473	1.9488	1,9502	1.9516	1.9530	1.9544	1.9559	1.9573	1.9587
7.1	r.gbor	1.0615	1.9629	1.9643	1.9657	1.9671	7.060-			
7.2	1.07.11	1.0755	1,0700	1.0782	1.9796	1.9810	1.9685 1.9824	1.9699 1.9838	1.9713	1.9727
7.3	1.9879	TayBija	1.9906	1.9920	1.9933	1.9947	1.9961	1.9974	1.9851 1.9988	2.0001
7.4	2,0015	9.0098	2.00.12	2.0055	2,0060	2.0082	2.0000	2.0100	2.0122	2.0136
$7.5 \\ 7.6$	2,01,10	2,0102	2.0176	2.0189	2,0202	2.0215	2.0229	2.02.12	2.0255	2.0268
	2.0281	ಜ.೦೨೮೮	2.0308	2.0321	2.033.1	2.03.17	2.0360	2.0373	2.0386	2.0399
7.7 7.8	3.0541	2.0.125	2.0.138	2,0,151	20,164	2.0.177	2.0490	2.0503	2.0516	2.0528
7.9	2.0008	2,0081	2,0507	2.0580	2,0592	2.0005	2,0618	2.0631	2.0043	2.0656
8.0	2.0794	2.0807			2.0719	2.0732	2.0744	2,0757	2.0769	2.0782
			2.0819	2.0832	2.08.1.1	2.0857	2,0869	2.0881	2.0894	2.0906
2.2 2.3	2.0019	2,0031	2.0043	2.0956	2.0968	2,0980	2.0992	2.1005	2.1017	2.1029
8.3	2.1041	2.1054	2.1066	2.1078	2.1000	2.1102	2.1114	2.1126	2.1138	2.1150
			· ·		2.1211	2.1223	2.1235	2.12.17	2.1258	2.1270
8.4	2.1.01	2.120.4	2.1306	2.1318	2.1330	2.13.12	2.1353	2.1365	2.1377	2.1389
8.6	2.1518	2,1,12 2,1529	2.1.12.1	2.1.[36] 2.1552	2.1.48	2.1459	2.1471	2.1483	2.1494	2.1506
					2,1504	2.1576	2.1587	2.1599	2.1610	2,1622
8.7 8.8	2,1548	2.16.15	2.1656	2.1668	2,1679	2.1691	2.1702	2.1713	2.1725	2.1736
8.9	2.1801	2.1750	2.1770 2.1883	2,189,1	2,1793 2,1905	2,1804	2.1815	2.1827	2.1838	2.18.10
9.0	2.1972	2,1083	2.1994	2.2006	2,2017	2,2028		2.1939	2.1950	2.1961
							2.2039	2,2050	2.2061	2.2072
9.1	a.ao83	3,2303 2,2004	2,2105	2.2116	2.2127	2.2138	2.2148	2.2159	2.2170	2.2181
9.3	2,2300	3,2311	3:3353 3:331:4	2.2332	2.2235 2.2343	2.2246 2.2354	2.2257 2.2364	2.2208	2.2279 2.2386	2.2289
9.4	2.2.107	2.2418	2.2428	2,2430	2.2450	2.2460	2.247I	2,2481	2.2492	0.000
9.5	2.2513	2,2523	2.2534	2.2544	2.2555	2.2565	2.2576	2.2586	2.2597	2.2502
9.6	2,2018	2,2628	2,2038	2,2649	2,2659	2.2670	2.2080	2.2690	2.270I	2.2711
9.7	2.2721	2.2732	2.27.12	2,2752	2.2762	2.2773	2.2783	2.2793	2.2803	2.2814
9.8	2.2824	2.2834	2.2844	2.2854	2.2865	2.2875	2.2885	2.2895	2.2905	2.2915
0.0	2.2925	2,2935	2.2946	2,2956	2.2966	2.2976	2.2986	2.2996	2.3006	2.3016
0.0	2,3026									l

SHORT-TITLE CATALOGUE

OF THE

PUBLICATIONS

OF

JOHN WILEY & SONS,

NEW YORK,

LONDON: CHAPMAN & HALL, LIMITED.

ARRANGED UNDER SUBJECTS.

Descriptive circulars sent on application.

Books marked with an asterisk are sold at *net* prices only.

All books are bound in cloth unless otherwise stated.

AGRICULTURE.

CATTLE FEEDING—DAIRY PRACTICE—DISEASES OF ANIMALS—GARDENING, ETC.

Armsby's Manual of Cattle Feeding12mo,	\$1 75
Downing's Fruit and Fruit Trees8vo,	5 00
Grotenfelt's The Principles of Modern Dairy Practice. (Woll.)	
12mo,	2 00
Kemp's Landscape Gardening12mo,	2 50
Loudon's Gardening for Ladies. (Downing.)12mo,	1 50
Maynard's Landscape Gardening12mo,	1 50
Steel's Treatise on the Diseases of the Dog8vo,	8 50
" Treatise on the Diseases of the Ox8vo,	6 00
Stockbridge's Rocks and Soils 8vo,	2 50
Woll's Handbook for Farmers and Dairymen12mo,	1 50

ARCHITECTURE.

Building-Carpentry-Stairs-Ventilation-Law, Etc.

	, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		
Berg's B	uildings and Structures of American Railroads4to,	7	50
Birkmire	s's American Theatres—Planning and Construction.8vo,	3	00
**	Architectural Iron and Steel8vo,	8	50
**	Compound Riveted Girders8vo,	2	00
	Skeleton Construction in Buildings8vo,	8	00

Birkmire's Planning and Construction of High Office Buildings.	
8 v o,	\$3 50
Carpenter's Heating and Ventilating of Buildings8vo,	3 00
Freitag's Architectural Engineering8vo,	2 50
Gerhard's Sanitary House Inspection	1 00
" Theatre Fires and Panics	1 50
Hatfield's American House Carpenter8vo,	5 00
Holly's Carpenter and Joiner	75
Kidder's Architect and Builder's Pocket-book16mo, morocco,	4 00
Merrill's Stones for Building and Decorationsvo,	5 00
Monckton's Stair Building-Wood, Iron, and Stone4to,	4 00
Wait's Engineering and Architectural Jurisprudence8vo,	6 00
Sheep,	6 50
Worcester's Small Hospitals-Establishment and Maintenance,	
including Atkinson's Suggestions for Hospital Archi-	
tecture12mo,	. 1 25
World's Columbian Exposition of 1893 Large 4to,	2 50
ARMY, NAVY, Etc.	
MILITARY ENGINEERING-ORDNANCE-LAW, ETC.	
Bourne's Screw Propellers4to,	5 00
* Bruff's Ordnance and Guunery8vo,	6 00
Chase's Screw Propellers8vo,	3 00
Cooke's Naval Ordnance	12 50
Cronkhite's Gunnery for Non-com. Officers32mo, morocco,	2 00
* Davis's Treatise on Military Law8vo,	7 00
Sheep,	7 50
* " Elements of Law8vo,	2 50
De Brack's Cavalry Outpost Duties. (Carr.)32mo, morocco,	2 00
Dietz's Soldier's First Aid	1 25
* Dredge's Modern French ArtilleryLarge 4to, half morocco,	15 00
" Record of the Transportation Exhibits Building,	
World's Columbian Exposition of 18934to, half morocco,	10 00
Durand's Resistance and Propulsion of Ships8vo,	5 00
Dyer's Light Artillery	3 00
Hoff's Naval Tactics8vo,	1 50
# T 11 1 T) 11'-42' [T] 11'-42	1 50

,

Mahan's Permanent Fortifications. (Mercur.).8vo, half morocco,	\$7	50
Mercur's Attack of Fortified Places	2	00
" Elements of the Art of War8vo,	4	00
Metcalfe's Ordnance and Gunnery12mo, with Atlas,	5	00
Murray's A Manual for Courts-Martial16mo, morocco,	1	50
" Infantry Drill Regulations adapted to the Springfield		
Rifle, Caliber .4532mo, paper,		10
*Phelps's Practical Marine Surveying8vo,	2	50
Powell's Army Officer's Examiner	4	00
Sharpe's Subsisting Armies	1	50
Very's Navies of the World8vo, half morocco,		50
Wheeler's Siege Operations8vo,	2	00
Winthrop's Abridgment of Military Law12mo,		50
Woodhull's Notes on Military Hygiene16mo,		50
Young's Simple Elements of Navigation 16mo, morocco,		00
" " first edition	1	0 0
ASSAYING.		
SMELTING-ORE DRESSING-ALLOYS, ETC.		
Fletcher's Quant. Assaying with the Blowpipe16mo, morocco,	1	50
Furman's Practical Assaying8vo,	3	00
Kunhardt's Ore Dressing8vo,	1	50
O'Driscoll's Treatment of Gold Ores8vo,	2	00
Ricketts and Miller's Notes on Assaying8vo,	3	00
Thurston's Alloys, Brasses, and Bronzes8vo,	2	5 0
Wilson's Cyanide Processes12mo,	1	50
" The Chlorination Process	1	50
ASTRONOMY.		
PRACTICAL, THEORETICAL, AND DESCRIPTIVE.		
Craig's Azimuth4to,	3	50
Doolittle's Practical Astronomy8vo,	4	00
Gore's Elements of Geodesy8vo,	2	50
Hayford's Text-book of Geodetic Astronomy8vo.	3	00
* Michie and Harlow's Practical Astronomy8vo,	3	00
* White's Theoretical and Descriptive Astronomy 12mo	2	00

BOTANY.

GARDENING FOR LADIES, ETC.

Baldwin's Orchids of New EnglandSmall 8vo,	\$ 1	50
London's Gardening for Ladies. (Downing.)12mo,	1	50
Thome's Structural Botany	2	25
Westermaier's General Botany. (Schneider.)svo,	2	00
BRIDGES, ROOFS, Etc.		
Cantileven-Draw-Highway-Suspension.		
(See also Enumerenia, p. 7.)		
Boller's Highway Bridges8vo,	2	00
* " The Thames River Bridge4to, paper,	ti	00
Burr's Stresses in Bridges	3	50
Crehore's Mechanics of the Girder8vo,	5	00
Dredge's Thunes Bridges7 parts, per part,	1	25
Du Bois's Stresses in Framed StructuresSmall 4to,	10	00
Foster's Wooden Trestle Bridges	5	00
Greene's Arches in-Wood, etc8yo,	2	50
" Bridge Trusses8vo,	2	50
" Roof Trusses,8yo,	1	25
Howe's Trentise on Arches	4	00
Johnson's Modern Framed Structures	10	00
Morriman & Jacoby's Text-book of Roofs and Bridges.		
Part I., Stresses	2	60
Merriman & Jacoby's Text-book of Roofs and Bridges,		
Part II., Graphic Statics8vo,	23	50
Merriman & Jacoby's Text-book of Roofs and Bridges,		
Part III., Bridge Designsvo,	2	50
Merriman & Jacoby's Text-book of Roofs and Bridges,		
Part IV., Continuous, Draw, Cantllever, Suspension, and		
Arched Bridges8vo,	잃	50
* Morison's The Memphis BridgeOblong 4to,	10	00
Waddell's Iron Highway Bridges	4	00
" De Pontibus (a Pocket-book for Bridge Engineers),		
16mo, morocco,	8	00
Wood's Construction of Bridges and Roofs	2	00

CHEMISTRY.

QUALITATIVE—QUANTITATIVE—ORGANIC—INORGANIC, ET	Э.
Adriance's Laboratory Calculations	\$ 1 25
Allen's Tables for Iron Analysis8vo,	3 00
Austen's Notes for Chemical Students12mo,	1 50
Bolton's Student's Guide in Quantitative Analysis8vo,	1 50
Classen's Analysis by Electrolysis. (Herrick and Boltwood.).8 vo ,	3 00
Crafts's Qualitative Analysis. (Schaeffer.)12mo,	1 50
Drechsel's Chemical Reactions. (Merrill.)	1 25
Fresenius's Quantitative Chemical Analysis. (Allen.)8vo,	6 00
" Qualitative " (Johnson.)8vo,	3 00
" " (Wells.) Trans.	
16th German Edition8vo,	5 00
Fuertes's Water and Public Health12mo,	1 50
Gill's Gas and Fuel Analysis12mo,	1 25
Hammarsten's Physiological Chemistry. (Maudel.)8vo,	4 00
Helm's Principles of Mathematical Chemistry. (Morgan).12mo,	1 50
Kolbe's Inorganic Chemistry12mo,	1 50
Ladd's Quantitative Chemical Analysis12mo,	1 00
Landauer's Spectrum Analysis. (Tingle.)8vo,	3 00
Löb's Electrolysis and Electrosynthesis of Organic Compounds.	
(Lorenz.)12mo,	1 00
Mandel's Bio-chemical Laboratory	1 50
Mason's Water-supply8vo,	5 00
" Examination of Water	1 25
Meyer's Organic Analysis. (Tingle.) (In the press.)	
Miller's Chemical Physics8vo,	2 00
Mixter's Elementary Text-book of Chemistry12mo,	1 50
Morgan's The Theory of Solutions and its Results12mo,	1 00
" Elements of Physical Chemistry	2 00
Nichols's Water-supply (Chemical and Sanitary)8vo,	2 50
O'Brine's Laboratory Guide to Chemical Analysis8vo,	2 00
Perkins's Qualitative Analysis	1 00
Pinner's Organic Chemistry. (Austen.)	1 50
Poole's Calorific Power of Fuels8vo,	3 00
Rieketts and Russell's Notes on Inorganic Chemistry (Non-	
metallic) Oblong 8vo, morocco,	75

	Schimpf's Volumetric Analysis12mo,	\$2 50
	Spencer's Sugar Manufacturer's Handbook16mo, morocco,	2 00
	" Handbook for Chemists of Beet Sugar Houses.	
	16mo, morocco,	3 00
	Stockbridge's Rocks and Soils8vo,	2 50
	Tillman's Descriptive General Chemistry. (In the press.)	
	Van Deventer's Physical Chemistry for Beginners. (Boltwood.)	
	12mo,	1 50
•	Wells's Inorganic Qualitative Analysis	1 50
	" Laboratory Guide in Qualitative Chemical Analysis.	•
	8vo,	1 50
	Whipple's Microscopy of Drinking-water8vo,	3 50
	Wiechmann's Chemical Lecture Notes	3 00
	" Sugar Analysis Small 8vo,	2 50
	Wulling's Inorganic Phar. and Med. Chemistry12mo,	2 00
	DRAWING.	
	ELEMENTARY—GEOMETRICAL—MECHANICAL—TOPOGRAPHIC	ΑĻ.
	Hill's Shades and Shadows and Perspective8vo,	2 00
	MacCord's Descriptive Geometry8vo,	3 00
	" Kinematics8vo,	5 00
	" Mechanical Drawing8vo,	4 00
	Mahan's Industrial Drawing. (Thompson.)2 vols., 8vo,	3 50
	Reed's Topographical Drawing. (H. A.)4to,	5 00
	Reid's A Course in Mechanical Drawing8vo.	2 00
	" Mechanical Drawing and Elementary Machine Design.	
	8vo. (In the press.)	
	Smith's Topographical Drawing. (Macmillan.)8vo,	2 50
	Warren's Descriptive Geometry	3 50
	" Drafting Instruments	1 25
	" Free-hand Drawing	1 00
,	" Linear Perspective	1 00
•	" Machine Construction	7 50
	" Plane Problems	1 25
	" Primary Geometry12mo,	75
	(f Dual-lama and Dhagagana	0.50

TIT t - O2 1 1 O1 1	
Warren's Shades and Shadows8vo,	\$3 00
"Stereotomy—Stone-cutting	2 50
Whelpley's Letter Engraving	2 00
ELECTRICITY AND MAGNETISM.	
ILLUMINATION—BATTERIES—PHYSICS—RAILWAYS.	
Authony and Brackett's Text-book of Physics. (Magic.) Small	
8vo,	3 00
Anthony's Theory of Electrical Measurements12mo,	1 00
Barker's Deep-sea Soundings8vo,	2 00
Benjamin's Voltaic Cell8vo,	3 00
"History of Electricity8vo,	3 00
Classen's Analysis by Electrolysis. (Herrick and Boltwood.) 8vo,	3 00
Cosmic Law of Thermal Repulsion12mo,	75
Crehore and Squier's Experiments with a New Polarizing Photo-	
Chronograph8vo,	3 00
Dawson's Electric Railways and Tramways. Small, 4to, half	
moroceo,	12 50
* Dredge's Electric Illuminations2 vols., 4to, half moroeco,	25 00
" " Vol. II4to,	7 50
Gilbert's De magnete. (Mottelay.)8vo,	2 50
Holman's Precision of Measurements8vo,	2 00
" Telescope-mirror-scale MethodLarge 8vo,	75
Löb's Electrolysis and Electrosynthesis of Organic Compounds.	
(Lorenz.)12mo,	1 00
*Michie's Wave Motion Relating to Sound and Light, 8vo,	4 00
Morgan's The Theory of Solutions and its Results12mo,	1 00
Niaudet's Electric Batteries. (Fishback.)	2 50
Pratt and Alden's Street-railway Road-beds8vo,	2 00
Reagan's Steam and Electric Locomotives	2 00
Thurston's Stationary Steam Engines for Electric Lighting Pur-	
poses8vo,	2 50
*Tillman's Heat8vo,	1 50
7	

ENGINEERING.

CIVIL-MECHANICAL-SANITARY, ETC.

(See also Bridges, p. 4; Hydraulies, p. 9; Materials of	F EN
GINEERING, p. 10; MECHANICS AND MACHINERY, p. 12;	STEAM
Engines and Boilers, p. 14.)	
Baker's Masonry Construction Svo.	\$5 (4)
" Surveying Instruments	3 00
Black's U. S. Public WorksOblong 4to,	5 00
Brooks's Street-railway Location16mo, morocco,	1 50
Butts's Civil Engineers' Field Book16mo, morocco,	2 50
Byrne's Highway Construction	5 00
" Inspection of Materials and Workmanship Itimo,	3 00
Carpenter's Experimental Englacering	8 00
Church's Mechanics of Engineering-Sollds and Fluids Svo.	6 (B)
" Notes and Examples in Mechanics	2 00
Crandall's Earthwork Tables	1.50
The Transition Curve16mo, morocco,	1.50
*Dredge's Penu. Railroad Construction, etc. Large 4to.	
half moracco,	20 00
* Drinker's Tunnelling4to, half morocco,	25 00
Eissler's Explosives-Nitroglycerine and Dynamite Svo.	4 (8)
Folwell's Sewerage	3 00
Fowler's Coffer-dam Process for Piers	2.50
Gerhard's Sanitary House Inspection12mo.	1 00
Godwin's Railroad Engineer's Field-book16mo, morocco,	2 50
Gore's Elements of Geodesy	2.50
Howard's Transition Curve Field-book 16mo, moreovo,	1 50
Howe's Retaining Walls (New Edition.)	1 25
Hudson's Excavation Tubles. Vol. II	1 00
Hutton's Mechanical Engineering of Power Plants 8vo.	ង មា
Johnson's Materials of Construction	6 00
prede reduction vielding but the first state in the first	50
THEORY MING TREEFING OF MILES INC WHISH MAN	4 00
Kent's Mechanical Engineer's Pocket-book16mo, morocco,	5 00
Kiersted's Sewage Disposal	1 35
Mahan's Civil Engineering. (Wood.)	5 00
Merriman and Brook's Handbook for Surveyors 16mo, mor.	3 INI
Merviman's Geodetic Surveying	2 (R)
requiring whith that bluedily thing	3 (8)
Santary Engineering	2 (8)
Nagle's Manual for Rallroad Engineers16mo, morecro, Ogden's Sewer Design. (In the press.)	H (N)
Patton's Civil Engineering	_
action of Otan Langing Colling	27 56.11

Patton's Foundations Pratt and Alden's Street-railway Road-beds	
Pratt and Alden's Street-railway Road-beds	\$5 00
THUCK WELL'S ROads on J. D.	2 00
Seaties's Field Engineering	1 25
Kallroad Carret	3 00
Dispert and Riccoin's Mr. 1	1 50
Diffill's Ringingeria T	1 50
Shilling Wire Monnet	2 50
Spanding's Roads and Pavements	3 00
Hydranlia O	2 00
Taylor's Prismoidel Tone	2 00
Indirection's Materials of G. Syn	1 50
Thurston's Materials of Construction	5 00
Cross-section Cross-section, morocco,	5 00
Excavations and Embart. Sheet,	25
Taying Out C	2 00
* 'Laying Out Curves12mo, morocco, Waddell's De Pontibus (A Pocket-book for Bridge Engineers).	2 50
book for Bridge Engineers).	
Wait's Engineering and Architectural Jurisprudence8vo,	3 00
Swo,	6 00
"Law of Field Operation in Engineering, etc8vo.	6 50
Warren's Stereotomy—Stone-cutting	
Warren's Stereotomy—Stone-cutting	2 50
War Edition, morocco,	50
Wegmann's Construction of Masonry Dams4to,	1 25
Wellington's Location of Railways	5 60
Wheeler's Civil Engineering.:	5 00
Wolff's Windmill as a Prime Mover8vo,	4 00
	3 00
HYDRAULICS.	
WATER-WHEELS-WINDMILLS-SERVICE PIPE-DRAINAGE, ETC	,
(See also Engineering, p. 7.)	j .
Bazin's Experiments upon the Contraction of the Liquid Vein.	
(Trautwine.).	
Bovey's Treatise on Flydraulice 2	00
Coffin's Graphical Solution of Handard Solutio	00
Ferrel's Treatise on the Winds Company of the Winds	50
Fuertes's Water and Public Fools, and Tornadoes 8vo, 4	00
	50
Hogovia Filtration and A	ሰሰ

Hazen's Filtration of Public Water C

8vo,

4 00

Kiersted's Sewage Disposal,	\$1 27
Mason's Water SupplySvo.	5 06
" Examination of Water	1 23
Merriman's Treatise on Hydraulics	1 00
Nichois's Water Supply (Chemical and Sanitary)Svo,	? áu
Wegmann's Water Supply of the City of New York 4to,	10 00
Weisbach's Hydraulies. (Dn Bols.)svo,	5 (8)
Whipple's Microscopy of Drinking Water	3 50
Wilson's Irrigation Engineering8vo.	4 110
" Hydraulic and Placer Mining	2 00
Wolff's Windmill as a Prime Mover	8 00
Wood's Theory of Turbines	2 50
MANUFACTURES.	
	• •
BOILERS-EXPLOSIVES-IRON -STEEL-SPOAR WOOLLENS,	Pirc.
Allen's Tables for Iron Analysis	3 60
Beaumont's Woollen and Worsted Manufacture12mo.	1.50
Bolland's Encyclopædia of Founding Terms	8 06
"The Iron Founder	9,50
" " " Supplement	2 50
Bouvier's Handbook on Oil Painting	2 (R1
Eissler's Explosives, Nitroglycerine and Dymunite	4 00
Fodr's Boiler Making for Boller Makers	1 180
Metcalfe's Cost of Manufactures	à tri
Metcalf's Steel—A Manual for Steel Users	2 (8)
* Reisig's Guide to Piece Dyeing	
Spencer's Sugar Manufacturer's Handbook Himo, moroccu,	25 181 2 100
" Handbook for Chemists of Beet Sugar Houses.	\$ 90
16mo, monorra,	**
Thurston's Manual of Steam Boffers	21 (11)
William Lagrange on Marshadens	ង លា
Wulke's Lectures on Explosives	4 thi
West's American Foundry Practice	\$ 50
monarci a gradinone i and an analysis and an analysis i Cities	2 50
Wicelinnum's Sugar Analysis, Small bys.	\$ 50
Woodbury's Fire Protection of Mills	ង ដូច
MATERIALS OF ENGINEERING.	
STRENGTHELASTICITY RESISTANCE, Erc.	
(See also Engineering, p. 74	
Baker's Masonry Construction	5 110
Beardslee and Kent's Strength of Wrought Iron.	1 50
Bovey's Strength of Materials	7 50
Burr's Elasticity and Resistance of Materials Myss.	
Byrne's Highway Construction	S 181
with a comment and a property restriction of the contraction of the same of the contraction of the same of the contraction of t	5 to

Lanza's Applied Mechanics	7	50
Martens's Materials. (Henning.)8vo. (In the press.)		
Merrill's Stones for Building and Decoration8vo.	5	00
Merriman's Mechanics of Materials8vo,		00
" Strength of Materials	1	00
Patton's Treatise on Foundations		00
Rockwell's Roads and Pavements in France12mo,	1	25
Spalding's Roads and Pavements12mo.	2	00
Thurston's Materials of Construction8vo,		00
" Materials of Engineering 3 vols., 8vo,	8	00
Vol. I., Non-metallic8vo,	2	00
Vol. II., Iron and Steel8vo,	3	50
Vol. III., Alloys, Brasses, and Bronzes8vo,	_	50
Wood's Resistance of Materials8vo,		00
•		
MATHEMATICS.		
CALCULUS—GEOMETRY—TRIGONOMETRY, ETC.		
Baker's Elliptic Functions8vo,	1	50
Ballard's Pyramid Problem8vo,	1	50
Barnard's Pyramid Problem8vo,	1	50
*Bass's Differential Calculus	4	00
Briggs's Plane Analytical Geometry12mo,	1	00
Chapman's Theory of Equations12mo,	1	50
Compton's Logarithmic Computations	1	50
Davis's Introduction to the Logic of Algebra8vo,	1	50
Halsted's Elements of Geometry8vo,	1	75
" Synthetic Geometry8vo,	1	50
Johnson's Curve Tracing	1	00
" Differential Equations—Ordinary and Partial.		
Small 8vo,	3	50
" Integral Calculus	1	50
" " Unabridged. Small 8vo.		
(In the press.)		
" Least Squares12mo,	1	50
*Ludlow's Logarithmic and Other Tables. (Bass.)8vo,	2	00
* " Trigonometry with Tables. (Bass.)8vo,	3	00
*Mahan's Descriptive Geometry (Stone Cutting)8vo,	1	50
Merriman and Woodward's Higher Mathematics8vo,	5	00
Merriman's Method of Least Squares8vo,	2	00
Parker's Quadrature of the Circle8vo,	2	50
Rice and Johnson's Differential and Integral Calculus,		
2 vols. in 1, small 8vo,	2	50

Rice and Johnson's Differential Calculus
Rice and Johnson's Differential Calculus. Abridgment of Differential Calculus. Small 8vo, 1 50
Totten's Metrology
TIT . man'e 1168CP1UiliVO Ground
((
"Free-hand Drawing
"Higher Linear Perspective
Linear Perspective
Primary Geometry
" Plane Problems
Problems and Theorems
Wood's Co-ordinate Geometry 12mo, 1 00 Wood's Co-ordinate Geometry 3 00
Wood's Co-ordinate Geometry
TrigonometryLarge 8vo,
Woolf's Descriptive GeometryLarge 8vo, 3 00
MCCHANICS—MACHINER
TOWN BOOKS AND PRACTICAL WORKS.
27
Baldwin's Steam Heating for Buildings
Baldwin's Wrinkles and Recipes
Chordal's Letters to Mechanics
Church's Mechanics of Engineering
Notes and Examples in Mechanics
Crehore's Mechanics of the Girder
" Toothea dearing" - 15mb, 2 and
Clampton's First Lessons in Metal 11 12 ino, 1 30
Compton and De Glood's of
Dana's Elementary Mechanics
Dinger's Machinery Lawrence World Exposition.
Dredge's Truis. Targe 4to half moroco,
m mrt. motion
" YOL XXI, 2000 S 00
" Vol. III., Kinetics. 18mo, 1 00 Fitzgerald's Boston Machinist. 12mo, 2 00 12mo, 2 00
Fitzgerald's Boston Machinist
731 - Al- 620 1 1VT 3111 Option 5
((K())0 Diriving.
Hall's Car Lubrication
Hall's Car Bling
Johnson's Theoretical mediates

Jones's Machine Design. Part II., Strength and Proportion of	
Machine Parts8vo,	\$ 3 00
Lanza's Applied Mechanics	7 50
MacCord's Kinematics	5 00
Merriman's Mechanics of Materials 8vo,	4 00
Metcalfe's Cost of Manufactures8vo,	5 00
*Michie's Analytical Mechanics8vo,	4 00
Richards's Compressed Air	1 50
Robinson's Principles of Mechanism	3 00
Smith's Press-working of Metals	3 00
Thurston's Priction and Lost Work	3 00
"The Animal as a Machine	1 00
Warren's Machine Construction	7 50
Weishach's Hydraulics and Hydraulic Motors. (Du Bois.)8vo,	5 00
" Mechanics of Engineering. Vol. III., Part I.,	- 00
Sec. I. (Klein.)	5 00
Sec. II. (Klein.)	F 00
Weisbach's Steam Engines. (Du Bois.)	5 00 5 00
Wood's Analytical Mechanics	3 00
"Elementary Mechanics	1 25
" " Supplement and Key12mo,	1 25
Supponent and Rey	1 20
METALLURGY.	
IRON-GOLD-SILVER-ALLOYS, ETC.	
Allen's Tables for Iron Analysis8vo,	3 00
Allen's Tables for Iron Analysis	3 00 7 50
Allen's Tables for Iron Analysis	
Allen's Tables for Iron Analysis	7 50
Allen's Tables for Iron Analysis	7 50 7 50 15 00 15 00
Allen's Tables for Iron Analysis	7 50 7 50 15 00 15 00 1 50
Allen's Tables for Iron Analysis. 8vo, Egleston's Gold and Mercury. Large 8vo, " Metallurgy of Silver. Large 8vo, * Kerl's Metallurgy—Copper and Iron. 8vo, * " Steel, Fuel, etc. 8vo, Kunhardt's Ore Dressing in Europe. 8vo, Metcalf's Steel—A Manual for Steel Users. 12mo,	7 50 7 50 15 00 15 00 1 50 2 00
Allen's Tables for Iron Analysis	7 50 7 50 15 00 15 00 1 50 2 00 2 00
Allen's Tables for Iron Analysis	7 50 7 50 15 00 15 00 1 50 2 00 2 00 3 50
Allen's Tables for Iron Analysis	7 50 7 50 15 00 15 00 1 50 2 00 2 00 3 50 2 50
Allen's Tables for Iron Analysis	7 50 7 50 15 00 15 00 1 50 2 00 2 00 3 50
Allen's Tables for Iron Analysis	7 50 7 50 15 00 15 00 1 50 2 00 2 00 3 50 2 50
Allen's Tables for Iron Analysis. 8vo, Egleston'c Gold and Mercury. Large 8vo, "Metallurgy of Silver. Large 8vo, * Kerl's Metallurgy—Copper and Iron. 8vo, * '' Steel, Fuel, etc. 8vo, Kunhardt's Ore Dressing in Europe. 8vo, Metcalf's Steel—A Manual for Steel Users. 12mo, O'Driscoll's Treatment of Gold Ores. 8vo, Thurston's Iron and Steel. 8vo, "Alloys. 8vo, Wilson's Cyanide Processes. 12mo,	7 50 7 50 15 00 15 00 1 50 2 00 2 00 3 50 2 50 1 50
Allen's Tables for Iron Analysis. 8vo, Egleston'r Gold and Morcury. Large 8vo, "Metallurgy of Silver. Large 8vo, "Kerl's Metallurgy—Copper and Iron. 8vo, "Steel, Fuel, etc. 8vo, Kunhardt's Ore Dressing in Europe. 8vo, Metcalf's Steel—A Manual for Steel Users. 12mo, O'Driscoll's Treatment of Gold Ores. 8vo, Thurston's Iron and Steel. 8vo, "Alloys. 8vo, "Alloys. 8vo, Wilson's Cyanide Processes. 12mo, MINERALOGY AND MINING. MINERALOGY AND MINING.	7 50 7 50 15 00 15 00 1 50 2 00 2 00 3 50 2 50 1 50
Allen's Tables for Iron Analysis	7 50 7 50 15 00 15 00 1 50 2 00 2 00 3 50 2 50 1 50
Allen's Tables for Iron Analysis	7 50 7 50 15 00 15 00 1 50 2 00 2 00 3 50 2 50 1 50
Allen's Tables for Iron Analysis	7 50 7 50 15 00 15 00 1 50 2 00 2 00 3 50 2 50 1 50

Brush and Penfield's Determinative Mineralogy. New Ed. 8vo, \$4 00 Chester's Catalogue of Minerals
ENGINES, BOILERS, Etc.
STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.
STATIONARY—MARINE—LOCOMOTIVE—GAS ENGINES, ETC. (See also Engineering, p. 7.)
Baldwin's Steam Heating for Buildings. 12mo, 2 50 Clerk's Gas Engine. 18mo, 1 00 Ford's Boiler Making for Boiler Makers. 12mo, 2 00 Hemenway's Indicator Practice. 8vo, 1 50 Hoadley's Warm-blast Furnace. 8vo, 1 50 Kneuss's Practice and Theory of the Injector 8vo, 2 00 MacCord's Slide Valve. 4to, 10 00 Meyer's Modern Locomotive Construction 8vo, 4 00 Peabody and Miller's Steam-boilers. 8vo, 1 00 Peabody's Tables of Saturated Steam Engine 8vo, 2 50 Thermodynamics of the Steam Engine 8vo, 2 50 Valve Gears for the Steam Engine 8vo, 2 50

Reagan's Steam and Electric Locomotives 12mo,	\$2	00
Röntgen's Thermodynamics. (Du Bois.)	5	00
Sinclair's Locomotive Running	2	00
Snow's Steam-boiler Practice8vo. (In the press.)		
Thurston's Boiler Explosions	1	50
Engine and Boner Trais8vo,	5	00
Manual of the Steam Engine. Part I., Structure		
and Theory	6	00
mandan of the Steam Engine. Part II., Design,		
Construction, and Operation8vo,		00
2 parts, Thurston's Philosophy of the Steam Engine12uno,	10	
" Reflection on the Motive Power of Heat. (Carnot.)		75
12mo.	1	50
" Stationary Steam Engines8vo,	_	50
"Steam-boiler Construction and Operation8vo,		00
Spangler's Valve Gears	-	50
Weisbach's Steam Engine. (Du Bois.)8vo,		00
Whitham's Constructive Steam Engineering8vo,		00
" Steam-engine Design8vo,	_	00
Wilson's Steam Boilers. (Flather.)		50
Wood's Thermodynamics, Heat Motors, etc8vo,	4	00
TABLES, WEIGHTS, AND MEASURES.		
FOR ACTUARIES, CHEMISTS, ENGINEERS, MECHANICS-MET	RIC	
Tables, ETC.		
Adriance's Laboratory Calculations	1	25
Allen's Tables for Iron Analysis8vo,	3	00
Bixby's Graphical Computing Tables Sheet,		25
Compton's Logarithm s	1	50
Crandall's Railway and Earthwork Tables 8vo,	1	50
Egleston's Weights and Measures18mo,		75
Fisher's Table of Cubic Yards Cardboard,		25
Hudson's Excavation Tables. Vol. II8vo,	_	00
Johnson's Stadia and Earthwork Tables8vo,		25
Ludlow's Logarithmic and Other Tables. (Bass.) 12mo,		00
Totten's Metrology8vo,	z	50
VENTILATION.		
STEAM HEATING-HOUSE INSPECTION-MINE VENTILATIO	N.	
Baldwin's Steam Heating12mo,		50
Beard's Ventilation of Mines12mo,		50
Carpenter's Heating and Ventilating of Buildings8vo,		00
Gerhard's Sanitary House Inspection		00
Reid's Ventilation of American Dwellings	1	50

MISCELLANEOUS PUBLICATIONS.

Alcott's Gems, Sentiment, LanguageGilt edges,	\$	500
Bailey's The New Tale of a Tub8vo,		75
Ballard's Solution of the Pyramid Problem8vo,	1	1 50
Barnard's The Metrological System of the Great Pyramid8vo,	1	L 50
Davis's Elements of Law8vo,	6	3 00
Emmon's Geological Guide-book of the Rocky Mountains 8vo,	1	1 50
Ferrel's Treatise on the Winds8vo,	4	1 00
Haines's Addresses Delivered before the Am. Ry. Assn12mo.	2	50
Mott's The Fallacy of the Present Theory of Sound Sq. 16mo,	1	00
Perkins's Cornell UniversityOblong 4to,	1	l 50
Ricketts's History of Rensselaer Polytechnic Institute8vo,	S	3 00
Rotherham's The New Testament Critically Emphasized.		
12mo,	1	50
" The Emphasized New Test. A new translation.		
Large 8vo,	2	00
Totten's An Important Question in Metrology8vo,	2	50
Whitehouse's Lake McrisPaper,		25
* Wiley's Yosemite, Alaska, and Yellowstone 4to,	3	00
HEBREW AND CHALDEE TEXT-BOOKS.		
For Schools and Theological Seminaries.		
Gesenius's Hebrew and Chaldee Lexicon to Old Testament.		
(Tregelles.)Small 4to, half morocco,	5	00
Green's Elementary Hebrew Grammar	1	25
" Grammar of the Hebrew Language (New Edition).8vo,	3	00
" Hebrew Chrestomathy8vo,	2	00
Letteris's Hebrew Bible (Massoretic Notes in English).		
8vo, arabesque,	2	25
MEDICAL.		
Bull's Maternal Management in Health and Disease12mo,		00
Hammarsten's Physiological Chemistry. (Mandel.)8vo,	4	00
Mott's Composition, Digestibility, and Nutritive Value of Food.		
Large mounted chart,		25
Ruddiman's Incompatibilities in Prescriptions8vo,		00
Steel's Treatise on the Diseases of the Ox8vo,	6	00
"Treatise on the Diseases of the Dog8vo,		50
Woodhull's Military Hygiene16mo,	1	50
Worcester's Small Hospitals—Establishment and Maintenance,		
including Atkinson's Suggestions for Hospital Archi-		
tecture 12mo	1	95