MC558 — Análise de Algoritmos II

Cid C. de Souza Cândida N. da Silva Orlando Lee

29 de março de 2023

Antes de mais nada...

- Uma versão anterior deste conjunto de slides foi preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para uma instância anterior desta disciplina.
- O que vocês tem em mãos é uma versão modificada preparada para atender a meus gostos.
- Nunca é demais enfatizar que o material é apenas um guia e não deve ser usado como única fonte de estudo. Para isso consultem a bibliografia (em especial o CLR ou CLRS).

Orlando I ee

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Uma lista destes "colaboradores" (em ordem alfabética) é dada abaixo:
 - Célia Picinin de Mello
 - José Coelho de Pina
 - Orlando Lee
 - ▶ Paulo Feofiloff
 - ▶ Pedro Rezende
 - Ricardo Dahab
 - Zanoni Dias

Digrafos

Um digrafo (grafo orientado/direcionado) é uma tripla $D=(V,A,\psi)$ na qual:

- V é um conjunto de elementos chamados vértices,
- A é um conjunto de elementos chamados arcos/arestas e
- ③ ψ é uma função que associa cada elemento de A a um par ordenado de elementos de V.

Exemplo:

- $V = \{u, v, w, x, y, z\},$

Desenho de digrafos

а	a_1	a_2	<i>a</i> ₃	<i>a</i> ₄	a_5	<i>a</i> ₆	<i>a</i> ₇	a 8	a 9	a ₁₀
$\psi(a)$	(x,y)	(x,y)	(z, v)	(v,z)	(v, y)	$\overline{(u,v)}$	$\overline{(u,x)}$	(u, u)	(v, w)	(y,z)

Figura: Desenho de um digrafo D.

Digrafos

Para um digrafo $D = (V, A, \psi)$,

- \bullet V é chamado conjunto de vértices de D,
- A é chamado conjunto de arcos/arestas de D e
- \bullet ψ é chamado função de incidência de D.

Muitas vezes, escreveremos simplesmente digrafo D ficando implícito que $D = (V(D), A(D), \psi_D)$.

Observação. neste curso suporemos que Ve A são sempre finitos.

Arcos em digrafos

- Escrevemos a = (u, v) se $\psi(a) = (u, v)$.
- Neste caso, dizemos que u é o início (cauda) e v é o final (cabeça) do arco a.
- Dizemos que u e v são os extremos de a e que u e v são ligados por a.
- Dizemos que *u* domina *v* e que *v* é dominado por *u*.
- Dizemos que a sai/parte de u e entra/chega em v.

Laços

Um arco a é um laço se existe algum vértice u tal que $\psi(a) = (u, u)$, ou seja, tem início e final idênticos.

Arcos múltiplos/paralelos

Dois arcos a e b são múltiplos ou paralelos se $\psi(a) = \psi(b)$, ou seja, têm o mesmo início e mesmo final.

Observação. Note que a_3 e a_4 **não** são paralelos.

Digrafos estritos

- ① Um digrafo D é estrito se não possui laços nem arcos paralelos.
- Em um digrafo estrito, um arco é totalmente identificado por seus extremos.
- Sassim, é usual pensar em um arco de um digrafo estrito como um par ordenado de vértices.

Notação

- ① Muitas vezes definimos um digrafo como um par D = (V, A) deixando implícita a função de incidência, interpretando cada arco como um par ordenado de vértices.
- **2** Podemos então escrever $(u, v) \in A$ significando que existe um arco com início u e final v em D.
- Isto não apresenta problemas se D é estrito, mas pode causar confusão em grafos não-simples.

Usaremos também as seguintes notações:

- ② m(D) é o número de arcos de D.

Quando D está claro dentro do contexto, podemos escrever n e m simplesmente.

Grau de saída

O grau de saída de um vértice v em D, denotado por $d_D^+(v)$, é o número de arcos que saem de v.

	и	V	W	X	у	Z
$d_d^+()$	2	3	0	3	1	1

Grau de entrada

O grau de entrada de um vértice v em D, denotado por $d_D^-(v)$, é o número de arcos que entram em v.

	и	V	W	X	у	Z
$d_d^-()$	2	2	1	0	3	2

Graus e arcos

Teorema. Para todo digrafo D = (V, A) temos que

$$\sum_{v \in V} d_D^+(v) = \sum_{v \in V} d_D^-(v) = |A|.$$

Prova. (Contagem)

Considere um arco qualquer de D, digamos a=(u,v). Ela é contada exatamente uma vez em cada uma das expressões. Logo, as identidades valem.

Graus mínimo e máximo

9 O grau mínimo de saída de um digrafo D, denotado por $\delta^+(D)$ é o menor valor dos graus dos vértices de D, ou seja,

$$\delta^+(D) := \min\{d_D^+(v) : v \in V(G)\}.$$

② O grau máximo de saída de um digrafo D, denotado por $\Delta^+(D)$ é o maior valor dos graus dos vértices de D, ou seja,

$$\Delta^+(D) := \max\{d_D^+(v) : v \in V(G)\}.$$

3 O grau mínimo de entrada $\delta^-(D)$ e o grau máximo de entrada $\Delta^-(D)$ são definidos de modo análogo.

Vizinhança de saída

1 A vizinhança de saída de um vértice u em D é definida por

$$N_D^+(u) := \{ v \in V : (u, v) \in A \}.$$

Ou seja, é o conjunto dos vértices dominados por u.

② Na figura, $N_D^+(v) = \{y, w, z\}$ e $N_D^+(u) = \{u, v\}$.

Vizinhança de entrada

lacktriangle A vizinhança de entrada de um vértice u em D é definida por

$$N_D^-(u) := \{ v \in V : (v, u) \in A \}.$$

Ou seja, é o conjunto dos vértices que dominam u.

② Na figura, $N_D^-(v) = \{u, z\}$ e $N_D^-(u) = \{u, x\}$.

Matriz de adjacência

Seja D=(V,A) um digrafo. A matriz de adjacência de D é a matriz $B_D=(b_{uv})$ indexada nas linhas e nas colunas por V tal que b_{uv} é o número de arcos ligando u a v.

	и	V	W	X	у	Z
и	1	1	0	0	0	0
V	0	0	1	0	1	1
W	0	0	0	0	0	0
X	1	0	0	0	2	0
y	0	0	0	0	0	1
Z	0	1	0	0	0	0 1 0 0 1 0

Matriz de incidência

Seja D=(V,A) um digrafo. A matriz de incidência de D é a matriz $M_D=(m_{va})$ indexada nas linhas por V e nas colunas por A tal que $m_{va}=1$ se v é início de a, $m_{va}=-1$ se v é final de a e $m_{va}=0$ caso contrário. No caso de a ser um laço, a coluna a é formada de zeros.

	<i>a</i> 1	<i>a</i> ₂	aз	ал	as	a 6	a ₇	a۵	a o	<i>a</i> 10
и	0	0	0	0	0	1 -	-1	0	0	0
v	0	0 -	-1	1	1-	-1	0	0	1	0
W	0	0	0	0	0	0	0	0 -	-1	0
X	1	1	0	0	0	0	1	0	0	0
y	-1-	-1	0	0 -	-1	0	0	0	0	1
z	0 0 0 1 -1-	0	1 -	-1	0	0	0	0	0 -	-1

Listas de adjacências (usada em Algoritmos em Grafos)

Seja D=(V,A) um digrafo **estrito**. A representação por listas de adjacências de D consiste em um vetor $\mathrm{Adj}[\]$ indexado por V tal que para cada $u\in V$, $\mathrm{Adj}[u]$ aponta para uma lista ligada contendo os vértices dominados por u.

Conceitos de grafos estendidos para digrafos

- Muitos conceitos vistos para grafos podem ser estendidos de modo natural para digrafos e não apresentaremos todos.
- Por exemplo: remoção de (conjunto de) vértices/arcos, subdigrafos (induzidos), superdigrafos, isomorfismo entre digrafos.

Grafo subjacente

Seja D=(V,A) um digrafo. O grafo subjacente de D, denotado por G(D), é o grafo obtido de D, substituindo cada arco (u,v) por uma aresta (par não-ordenado) uv.

Figura: Digrafo D e seu grafo subjacente G(D).

Grafo subjacente

- Usando o grafo subjacente de D, podemos tomar emprestado terminologia e conceitos típicos de grafos.
- Por exemplo: vizinhança/adjacência, incidência, grau, componentes, bipartição, decomposição etc.
- Certos conceitos como passeios ou cortes requerem definições específicas para digrafos.

Figura: Digrafo D e seu grafo subjacente G(D).

Orientações

Uma orientação de um grafo G é um digrafo obtido substituindo cada aresta uv de G por um arco (u, v) ou (v, u).

Figura: Um grafo G e uma orientação D de G.

Quantas possíveis orientações um grafo simples G possui? $2^{m(G)}$

Passeios

Um passeio em um digrafo D = (V, A) é uma sequência:

$$W = (v_0, a_1, v_1, a_2, v_2, \dots, v_{\ell-1}, a_\ell, v_\ell),$$

onde v_0, v_1, \ldots, v_ℓ são vértices de G e $a_i = (v_{i-1}, v_i)$ são arcos de D para todo $i = 1, 2, \ldots, \ell$. Se D for **estrito**, escrevemos apenas os vértices.

Figura: Passeio W := (r, z, y, x, w, v, y, z, t).

Passeios

- Usamos a mesma terminologia que usamos para passeios em grafos: início e final de um passeio, comprimento, passeios fechados etc.
- As definições de trilhas, caminhos e ciclos são análogos e omitimos aqui.
- Algumas vezes usaremos o termo orientado para enfatizar que estamos nos referindo a um digrafo. Por exemplo, caminho (ou ciclo) orientado.

Corte orientado

Seja D = (V, A) um digrafo e seja $S \subseteq V$.

Denotamos por $\partial_D^+(S)$ o conjunto dos arcos com início em S e final em V-S, i.e., o conjunto dos arcos que saem de S.

Denotamos por $\partial_D^-(S)$ o conjunto dos arcos com início em V-S e final em S, i.e., o conjunto do arcos que entram em S.

Arborescências

Uma r-arborescência é um digrafo conexo D contendo um vértice r chamado raiz tal que:

- $d_D^-(r) = 0 e$
- ② $d_D^-(v) = 1$ para todo $v \in V(D) \{r\}$.

Equivalentemente, D é uma orientação de uma árvore na qual existe um caminho orientado de r a qualquer vértice de D. (Exercício!)

Caminhos versus cortes orientados

Teorema. Seja D=(V,A) um digrafo e sejam $s,t\in V$. Então existe um caminho de s a t em D se, e somente se, não existe $S\subseteq V-\{t\}$ tal que $s\in S$ e $\partial_D^+(S)=\emptyset$.

Caminhos versus cortes orientados

Teorema. Seja D=(V,A) um digrafo e sejam $s,t\in V$. Então existe um caminho de s a t em D se, e somente se, não existe $S\subseteq V-\{t\}$ tal que $s\in S$ e $\partial_D^+(S)=\emptyset$.

Prova.

- (⇒) Se existe um caminho de s a t em D, então claramente não existe $S \subseteq V \{t\}$ tal que $s \in S$ e $\partial_D^+(S) = \emptyset$.
- (\Leftarrow) Suponha então que não existe caminho de s a t em D. Seja

$$S := \{ v \in V : \text{existe um caminho de } s \text{ a } v \text{ em } D \}.$$

Claramente $t \notin S$, $s \in S$ e $\partial_D^+(S) = \emptyset$ e o resultado segue.

Caminhos e arborescências

Observação. Note que se um digrafo D contém uma r-arborescência geradora, então existe um caminho de r para cada vértice de V(D). O próximo resultado diz que a recíproca também é verdade.

Exercício. Seja D um digrafo e seja r um vértice de D. Seja

 $R := \{ v \in V : \text{existe um caminho de } r \text{ a } v \text{ em } D \}.$

Mostre que D contém uma r-arborescência H com V(H) = R.

Digrafos Eulerianos

Um digrafo D é Euleriano se admite uma trilha fechada T que passa por todas os arcos de D. Dizemos que T é uma trilha Euleriana ou trilha de Euler.

Figura: O digrafo em (a) é Euleriano, mas o digrafo em (b) não é.

Como seria uma condição necessária e suficiente para que um digrafo ${\cal D}$ seja Euleriano?

Digrafos Eulerianos

As seguintes condições são necessárias:

- $d_D^+(v) = d_D^-(v)$ para todo vértice v de D, e
- 2 D tem no máximo um componente não-trivial.

Figura: O digrafo em (a) é Euleriano, mas o digrafo em (b) não é.

Dizemos que D é balanceado se $d_D^+(v) = d_D^-(v)$ para todo vértice v de D.

Digrafos Eulerianos

Teorema. Seja D um digrafo. Então D é Euleriano se, e somente se,

- D é balanceado e
- 2 D tem no máximo um componente não-trivial.

Prova. (Exercício).

Um modo de provar é tomar uma trilha \mathcal{T} de comprimento máximo. Usando o fato de D ser balanceado, é fácil ver que \mathcal{T} deve ser fechada. Se \mathcal{T} não for Euleriana, então é possível construir uma trilha de comprimento maior que o de \mathcal{T} , uma contradição.

Esta é a mesma estratégia que apresentamos na prova da caracterização de grafos Eulerianos.

Existem 2^n strings binárias de comprimento n. Existe um arranjo cíclico de 2^n dígitos em $\{0,1\}$ tal que **todos** os 2^n segmentos de comprimento n sejam distintos dois-a-dois (ou seja, correspondem a todas as possíveis strings binárias de comprimento n)?

```
Por exemplo, para n=4 as 2^n(=16) sequências de comprimento n são: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1111
```

e a sequência

(0000111101100101)

faz o serviço (por verificação).

Segundo Good (1946), podemos usar tal arranjo para acompanhar a posição de um tambor rotativo. O tambor tem 2^n posições. Uma faixa colocada ao redor da circunferência é dividida em 2^n porções codificadas por 0 ou 1. Sensores lêem n posições consecutivas. Se a codificação tem a propriedade referida, então a posição do tambor é determinada (unicamente) pela string lida pelos sensores.

Para obter o arranjo circular, definimos o digrafo D_n com conjunto de vértices $\{0,1\}^{n-1}$ tal que um vértice $x=(x_1,x_2,\ldots,x_{n-1})$ domina outro vértice $y=(y_1,\ldots,y_{n-2},y_{n-1})$ se $(x_2,\ldots,x_{n-1})=(y_1,\ldots,y_{n-2})$. (Ou seja, as últimas n-2 entradas de x coincidem com as primeiras n-2 entradas de y.)

Rotule o arco (x, y) com a última entrada de y, i.e., y_{n-1} .

Digrafo D_4 .

 D_n é balanceado.

Todo vértice v de D_n tem grau de saída igual a 2, pois podemos acrescentar 0 ou 1 ao final do nome de v e obter o nome do vértice dominado por v. Similarmente, todo vértice de D_n tem grau de entrada igual a 2.

Note que isto implica que $|A(D_n)| = \sum_{v \in V(D_n)} d^+(v) = 2 \cdot 2^{n-1} = 2^n$.

Teorema. O digrafo D_n é Euleriano. Além disso, se T é uma trilha fechada Euleriana de D_n , então a sequência dos rótulos das arestas de T formam um arranjo cíclico no qual todos os 2^n segmentos consecutivos de comprimento n são distintos dois-a-dois.

Prova: Primeiro mostraremos que D_n é Euleriano.

Já vimos que D_n é balanceado.

Resta mostrar que D_n é fortemente conexo.

Ideia: saindo de um vértice $a=(a_1,a_2,\ldots,a_{n-1})$ podemos chegar a um vértice $b=(b_1,b_2,\ldots,b_{n-1})$ seguindo arcos de rótulos b_1,b_2,\ldots,b_{n-1} sucessivamente.

Exemplo. Um caminho de 001 a 101 é (001, 011, 110, 101). Note que a seguência de rótulos dos arcos no caminho é 1, 0 e 1.

Saindo de um vértice $a=(a_1,a_2,\ldots,a_{n-1})$ podemos chegar a outro vértice $b=(b_1,b_2,\ldots,b_{n-1})$ seguindo arcos de rótulos b_1,\ldots,b_{n-1} sucessivamente como abaixo:

```
(a_{1}, a_{2}, a_{3}, \dots, a_{n-3}, a_{n-2}, a_{n-1})
(a_{2}, a_{3}, a_{4}, \dots, a_{n-2}, a_{n-1}, b_{1})
(a_{3}, a_{4}, a_{5}, \dots, a_{n-1}, b_{1}, b_{2})
(a_{4}, a_{5}, a_{6}, \dots, b_{1}, b_{2}, b_{3})
\vdots
(a_{n-1}, b_{1}, b_{2}, \dots, b_{n-4}, b_{n-3}, b_{n-2})
(b_{1}, b_{2}, b_{3}, \dots, b_{n-3}, b_{n-2}, b_{n-1})
```

Portanto, D_n é fortemente conexo e do teorema anterior, segue que D_n é Euleriano.

Seja T uma trilha Euleriana de D_n . Mostraremos que para quaisquer duas seções de T de comprimento n, as suas sequências de rótulos correspondentes são distintas.

Considere uma seção $Q=(v_1,\ldots,v_n,v_{n+1})$ de T de comprimento n. Suponha que $v_n=(b_1,b_2,\ldots,b_{n-1})$. Então os rótulos das arestas de v_1Qv_n são b_1,\ldots,b_{n-1} (slide anterior). Logo, a sequência dos n rótulos em Q consiste do nome do vértice v_n seguido do último bit de v_{n+1} .

Os nomes dos 2^{n-1} vértices de D_n são distintos, os arcos saindo de cada vértice têm rótulos distintos e T não repete arcos. Portanto, os 2^n segmentos de comprimento n são distintos dois-a-dois.

Trilha T = (101, 010, 100, 000, 000, 001, 011, 111, 111, 110, 101, 011, 110, 100, 001, 010, 101)

Sequência de rótulos de *T*: 0000111101100101

1001 é a sequência de rótulos da seção Q = (101, 011, 110, 100, 001).

Referências

Consulte a Seção 1.4 do West96.