

Redes de Computadores I

Centro Universitário 7 Setembro - Uni7 **Sistemas de Informação**

Aula 13

Prof. MSc Manoel Ribeiro

manoel@opencare.com.br

Roteamento na camada de Rede

- Problemas
 - Crescimento rápido da Internet
 - Novas tecnologias
 - o Internet = "rede lenta"
 - Arquitectura IPv4 obsoleta
- Soluções
 - CIDR
 - VPNs e NAT
 - IPng

Roteamento na camada de Rede

- Atualmente não só empresas que querem implantar a Internet em suas dependências, como também escolas e universidades têm problemas para conseguir até mesmo uma faixa de endereços.
- Como uma solução para este problema, na segunda metade dos anos 90 foram estabelecidas as regras para o funcionamento do que seria chamado de próxima geração de endereços IP, conforme descrito em [RFC1671], o IPv6, ou simplesmente IPng (IP next generation).

Colapso do pool Ipv4

Objetivos do IPv6

- Simplicidade;
- Escalabilidade;
- Flexibilidade topológica;
- Desempenho;
- Robustez;
- Transição;
- Independência ao meio;

- Orientação a datagrama;
- Facilidade de configuração;
- Segurança;
- Multicast;
- Mobilidade;
- Qualidade de serviço;
- Potencialidade de evolução.

Características principais

- Extensão das capacidades de endereçamento e routing
- Simplificação do formato de header
- Suporte para header de extensão e de opções
- Suporte para autenticação e privacidade
- Suporte de auto-configuração
- Suporte para seleção de rota pelo originador
- Transição simples e flexível
- Suporte para tráfego com garantia de qualidade de serviço

Cabeçalhos de opção

- Opções:
 - o nó-a-nó
 - opções de destino
 - fragmentação
 - encaminhamento
 - autenticação
 - cifração

Endereçamento

- Endereços IPv4 possuem 32 bits de tamanho, enquanto endereços IPv6 possuem 128 bits.
- A representação básica de um endereço IPv6 se dá na forma X:X:X:X:X:X:X:X, onde X refere-se a quatro dígitos hexadecimais (16 bits). Cada dígito consiste em quatro bits, cada inteiro consiste em quatro dígitos e cada endereço consiste em oito inteiros, num total de 128 bits (4x4x8=128)
- Tipos: unicast, multicast, anycast

Cabeçalho IPv6

IPv4 Header

Type of Service	Total Length	
Identification		Fragment Offset
Protocol	Header Checksum	
Source Addr	ess	
Destination Ad	Idress	
Options		Padding
ot kept in IPv6		
	Protocol Source Addr Destination Ad Options ame kept from IF ot kept in IPv6	Flags Protocol Heade Source Address Destination Address Options ame kept from IPv4 to IPv

IPv6 Header

Version	Traffic Class	Flow Label	
Payl	load Length	Next Header	Hop Limit
	Source	Address	
	Destinati	on Address	

Endereçamento Ipv6

2001:0DB8:0234:AB00:0123:4567:8901:ABCD

Global Unicast Address Indicator

001 Region

ODB8 Local Internet Registry (LIR) or Internet Service Provider (ISP)

0234 Customer AB00 Subnet

0123:4567:8901:ABCD The 64-bit Extended Unique Identifier (EUI-64TM)

Endereçamento Ipv6

- Apenas 15 % de todo espaço IPv6 está alocado, ficando os outros 85% restantes para uso futuro.
- Devido a esta pré-alocação, será comuns endereços com uma longa seqüência de bits zero.
- Neste caso, a especificação permite "suprimir" estes zero. Em outras palavras, o endereço "2000:0:0:0:0:0:0:1" pode ser representado como "2000::1".

Ipv4 x Ipv6

IPV4 vs IPV6

· The following table compares the key characters of IPv6 vs. IPv4:

Subjects	Ipv4	Ipv6	Ipv6 Advantages
Address Space	4 Billion Addresses	2^128	79 Octillion times the IPv4 address space
Configuration	Manual or use DHCP	Universal Plug and Play (UPnP) with or without DHCP	Lower Operation Expenses and reduce error
Broadcast / Multicast	Uses both	No broadcast and has different forms of multicast	Better bandwidth efficiency

