kandi työotsikkko

Topias Karjalainen

17. maaliskuuta 2020

Sisältö

1	Johdanto	4
2	Teoriaa	;
	2.1 Perusmääritelmiä	
	2.2 Markovin ketjut	4
	2.2.1 Äärellinen tilajoukko	
	2.2.2 Ääretön jatkuva tilajoukko	
ก	Matura alia II adia wa almonitani	8
3	Metropolis-Hastings algoritmi	

Luku 1

Johdanto

Tilastotieteissä frekventistinen koulukunta oli pitkään vallitseva koulukunta. Bayesiläinen päättely ei päässyt leviämään, sillä toisin kuin frekventistinen koulukunta, Bayesiläisyys ei tarjonnut suurinpaan osaan kysymyksiä analyyttisiä ratkaisuja. Vasta tietokoneiden aikakautena Markovin ketju Monte Carlo -menetelmät (MCMC-menetelmät) ovat antaneet mahdollisuuden ratkaista posteriori-jakaumat monimutkaisemmilta malleilta.

Monte Carlo menetelmän kehitteli 50-luvulla Los Alamosissa työskennelleet Nicholas Metropolis, Stanislav Ulam ja yleisnero John von Neumann.

Tässä kanditutkielmassa aion selventää MCMC-menetelmien teoriaa, sekä esittää yleisimmät kaksi algoritmia: *Gibbs*- ja *Metropolis–Hastings* algoritmit.

Luku 2

Teoriaa

2.1 Perusmääritelmiä

Määritellään ensiksi todennäköisyys.

Määritelmä 2.1. σ -algebra. Olkoot Ω mielivaltainen epätyhjä joukko. Sigma-algebra perusjoukolla Ω on sen osajoukkojen joukkoperhe \mathcal{F} , joka toteuttaa ehdot:

- 1. $\emptyset \in \mathcal{F}$
- 2. jos $A \in \mathcal{F}$, $niin A^c \in \mathcal{F}$
- 3. jos jos $A_k \in \mathcal{F}$, kaikilla $k \in K$, missä K on numeroituva joukko, niin $\bigcup_{k \in K} A_k \in \mathcal{F}$

Määritelmä 2.2. Kuvaus P liittää kuhunkin tapahtumaan A todennäköisyyden, joka on luku suljetulla välillä [0,1] ja sille pätee:

- 1. $P(\Omega) = 1$
- 2. Jos Aon tapahtuma, niin sen komplementtitapahtuman A^c todennäköisyys on $\mathbf{P}(A^c)=1-\mathbf{P}(A)$
- 3. Jos $(A_k)_{k\in\mathbb{N}}$ ovat erillisiä tapahtumia, niin

$$\mathbf{P}(\bigcup_{k\in\mathbb{N}}A_k)=\sum_{k\in\mathbb{N}}\mathbf{P}(A_k)$$

Määritelmä 2.3. Kolmikkoa $(\Omega, \mathcal{F}, \mathbf{P})$ kutsutaan todennäköisyysavaruudeksi.

Määritelmä 2.4. Satunnaismuuttuja X on (lähes) mielivaltainen kuvaus $X:\Omega\to S,$ jossa S on tilajoukko.

2.2 Markovin ketjut

2.2.1 Äärellinen tilajoukko

Määritelmä 2.5. Jono $(X_n: n=1,2,3,...)$ satunnaismuuttujia on diskreettiaikainen stokastinen prosessi.

Merkintä 2.6. Merkitään stokastista prosessia merkinnällä $\{X_n\}$

Määritelmä 2.7. Stokastinen prosessi $\{X_n\}$ on *Markovin ketju*, jos kaikilla alkuhetkillä m, n ja tiloilla $i, j \in S$ on voimassa

(2.8)
$$\mathbf{P}(X_{n+1} = j | X_0 = i_0, X_1 = i_1, ..., X_{n-1} = i_{n-1}, X_n = i) = \mathbf{P}(X_{n+1} = j | X_n = i)$$

ja siirtymätodennäköisyyksille on voimassa

(2.9)
$$p_{ij} = \mathbf{P}(X_{n+1} = j | X_n = i) = \mathbf{P}(X_{m+1} = j | X_m = i)$$

Yhtälöä 2.8 kutsutaan Markovin-ehdoksi ja yhtälöä 2.9 taas kutsutaan stationarisuusehdoksi, mikä tarkoittaa, että siirtymätodennäköisyys tilojen i ja j välillä ei riipu ajasta m ja n, vaan pelkästään tiloista i ja j.

Määritelmä 2.10. Satunnaismuuttujan X_0 jakaumaa kutsutaan alkujakaumaksi.

Lause 2.11. Ajanhetkellä $n \ge 1$ polun $(i_0, ... i_n)$ todennäköisyys on

(2.12)
$$P(X_0 = i_0, ..., X_n = i_n) = p_{i_0} p_{i_0, i_1} p_{i_1, i_2} ... p_{i_{n-1}, i_n}$$

Todistus. Käyttäen ehdollisen todennäköisyyden kaavaa, saadaan 2:lle tapahtumalle

$$P(A_0, A_1) = P(A_0)P(A_1|A_0)$$

Jos tapahtumia on kolme, saadaan

$$\mathbf{P}(A_0, A_1, A_2) = \mathbf{P}(A_0)\mathbf{P}(A_1|A_0)\mathbf{P}(A_2|A_1, A_0)$$

neljä

$$P(A_0, A_1, A_2, A_3) = P(A_0)P(A_1|A_0)P(A_2|A_1, A_0)P(A_3|A_2, A_1, A_0)$$

ja n

(2.13)
$$\mathbf{P}(A_0, ..., A_n) = \mathbf{P}(A_0)\mathbf{P}(A_1|A_0)...\mathbf{P}(A_n|A_{n-1}, ...A_0)$$

Tämä on yleinen ehdollinen todennäköisyys. Merkataan $A_n := (X_i = i_n)$. Koska käsittelemme Markovin ketjua, niin yhtälö 2.8 pätee, jolloin yhtälöstä 2.13 saadaan

$$\mathbf{P}(X_0 = i_0, ..., X_n = i_n) = \mathbf{P}(X_0 = i_0)\mathbf{P}(X_1 = i_1|X_0 = i_0)...\mathbf{P}(X_n = i_n|X_{n-1} = i_{n-1})$$

jossa $\forall n=0,1,2,...,n: \mathbf{P}(X_n=i_n|X_{n-1}=i_{n-1})$ on siirtymätödennäköisyys p_{i_{n-1},i_n} jolloin tulos seuraa substituoimalla termit.

Merkintä 2.14.

(2.15)
$$p_{ij}^{(m)} := \mathbf{P}(X_m = j | X_0 = i), \ i, j \in S, m \in T$$

on siirtymätodennäköisyys tilasta i tilaan j, kun aikaa kuluu m yksikköä.

Määritelmä 2.16. Siirtymämatriisi on matriisi

(2.17)
$$\mathbf{P}^{(m)} := (p_{ij}^{(m)})_{i,j} = \begin{pmatrix} p_{00}^{(m)} & p_{01}^{(m)} & \dots & p_{0n}^{(m)} \\ p_{10}^{(m)} & p_{11}^{(m)} & \dots & p_{1n}^{(m)} \\ \vdots & & \ddots & \vdots \\ p_{n0}^{(m)} & p_{n1}^{(m)} & \dots & p_{nn}^{(m)} \end{pmatrix}$$

Lause 2.18. Kaikilla ajanhetkillä on voimassa

$$(2.19) P^{(m)} = P^m$$

Todistus. Todistus on melko pitkä, joten ohitetaan se.

Määritelmä 2.20. Todennäköisyysjakauma $\pi = (\pi)_{i \in S}$ on Markovin ketjun $\{X_n\}$ tasapainojakauma, jos

(2.21)
$$\sum_{i \in S} \pi_i p_{ij} = \pi_j, \forall j \in S$$

Yhtälö 2.21 voidaan kirjoittaa myös muotoon

Lause 2.23. Äärellisellä Markovin ketjulla on aina jokin tasapainojakauma π .

Määritelmä 2.24. Markovin ketju on $k\ddot{a}\ddot{a}ntyv\ddot{a}$, jos löytyy sellainen TN-jakauma $\lambda=(\lambda_i)_{i\in S},$ että

$$(2.25) \lambda_i p_{ij} = \lambda_j p_{ji}, \forall i, j \in S$$

Lause 2.26. Jos Markovin ketju on kääntyvä, niin $\lambda = \pi$ on sen tasapainojakauma.

Esimerkki 2.27. Pohditaan lyhyttä esimerkkiä, jossa tilajoukko on $S = {\text{"sataa", "paistaa"}}$. Määritellään siirtymätodennäköisyydet siirtymämatriisilla

$$\mathbf{P}^{(1)} = \begin{pmatrix} 0.7 & 0.3 \\ 0.2 & 0.8 \end{pmatrix}$$

Tämä voidaan visualisoida seuraavanlaisesti:

Ketju on äärellinen, joten sillä on tasapainojakauma. Yhtälö 2.22 implikoi, että jakauma π on siirtymämatriisin **P** vasen ominaisvektori ($\pi^T \mathbf{P} = \lambda \pi^T$, jossa $\lambda = 1$). Tämä voidaan ratkaista numeerisesti, ja ratkaisu on $\pi^T = (0.4, 0.6)$. Helposti nyt nähdään, että 2.22 pätee.

2.2.2 Ääretön jatkuva tilajoukko

Kun Markovin ketjun tilajoukko S ei olekkaan rajattu (esimerkiksi, jos halutaan simuloida normaalijakaumasta, joka voi saada minkä vain arvon väliltä $(-\infty, \infty)$), niin teoria muuttuu hieman. Suurin osa tuloksista pätee pienin muutoksin, mutta niiden todistaminen on hankalaa ja ylittää kanditason. Esitetään kuitenkin tarvittavat perustulokset.

Määritelmä 2.28. Kun S on rajoittamaton, siirtymämatriisi on parasta ajatella kuvauksena $T: S \times S \to [0,1]$, joka kuvaa tilaparin $x,y \in S$ todennäköisyydeksi T(x,y)

Määritelmä 2.29. Iistymätodennäköisyys $p_{ij}^{(n)}$ voidaan kirjoittaa siirtymätiheytenä $T^{(n)}(x,y)$, jolle pätee

(2.30)
$$\int_S T(x,y)dy = 1$$
 ja $\int_S T^{(n)}(x,y)dy = 1, \forall n \ge 1$

Määritelmä 2.31. Jakauma π on Markovin ketjun $\{X_n\}$ kun S on jatkuva, tasapainojakauma jos

(2.32)
$$\pi(y) = \int_{S} \pi(x)T(x,y)dx$$

Määritelmä 2.33. Markovin ketju jatkuvassa S:ssä on kääntyvä, jos on olemassa

$$\pi(x)T(x,y) = \pi(y)T(y,x), \forall x, y \in S$$

Lause 2.35. Jos Markovin ketju $\{X_n\}$ on kääntyvä ja tilajoukko S on jatkuva, niin π on sen tasapainojakauma.

Todistus.Yhtälön 2.30 mukaan $\int_S T(y,x) dx = 1,$ joten

(2.36)
$$\int_{S} \pi(x)T(x,y)dx = \int_{S} \pi(y)T(y,x)dx = \pi(y)\int_{S} T(y,x)dx = \pi(y)$$

Luku 3

Metropolis-Hastings algoritmi

Metropolis–Hastings algoritmi on kehittelijöidenssä Nicholas Metropolisksen (1915-1999) ja Wilfred Keith Hastings:n (1930-2016) mukaan nimetty MCMC-menetelmä, jolla voidaan simuloida Bayesiläisessä analyysissa käytettäviä posteriori jakaumia myös silloin kun tiheys on mahdotonta määrittää analyyttisesti.

Algoritmin pohjan kehitti Stanislav Ulam ja Metropolis työskennellessään Los Alamosissa ja myöhemmin Metropolis kehitteli nykyään Metropolis-algoritmina tunnettua algoritmiä ja esittelivät sen artikkelissa Equation of state calculations by fast computing machines[?]. Tämä versio algoritmista vaati, että pian esiteltävä ehdotusjakauma on symmetrinen. Myöhemmin Hastings laajenti algoritmin koskemaan myös epäsymmetrisiä ehdotusjakaumia artikkelissa Monte Carlo Sampling Methods Using Markov Chains and Their Applications

Merkintä 3.1. TN-jakauma $J_n(\cdot|\cdot)$ on niin sanottu ehdotusjakauma (proposal distribution, jumping distribution), josta MH-algoritmissa arvotaan ehdotus tila.

Määritelmä 3.2. Metropolis–Hastings algoritmi on seuraavanlainen

- 1. Valitaan aloitus tila θ_0 ja asetetaan n=0
- 2. Generoidaan kandidaatti tila θ' satunnaisesti jakaumasta $J_n(\theta'|\theta_{n-1})$
- 3. Lasketaan tiheyksien tai todennäköisyyksien suhde

$$r = \frac{p(\theta'|y)/J_n(\theta'|\theta_{n-1})}{p(\theta_{n-1}|y)/J_n(\theta_{n-1}|\theta')}$$

4. Asetetaan

$$\theta_t = \begin{cases} \theta', \text{todennäköisyydellä} & \min(r, 1) \\ \theta_{t-1}, \text{muuten} \end{cases}$$

Jossa $J_t(\theta'|\theta^{t-1})$ on ns. ehdotusjakauma (eng. proposal distribution).

Lause 3.3. Määritelmän 3.2 algoritmi tuottaa Markovin ketjun jolla on uniikki tasapainojakauma, ja jonka tasapainojakauma on posteriorijakauma $p(\theta|y)$, jossa y on data.

Todistus. Ohitamme todistuksen, että kyseessä Markovin ketju jolla yksi tasapainojakauma, mutta todistamme toisen osan, eli että tasapainojakauma on haluttu $p(\theta|y)$ eli posteriori jakauma. Todistus nojautuu Markovin ketjun kääntyvyysominaisuuteen (2.24 ja 2.33), eli

$$(3.4) T(\theta_n|\theta_{n-1})p(\theta_{n-1}|y) = T(\theta_{n-1}|\theta_n)p(\theta_n|y)$$

joka on siis riittävä ehto tasapainojakauman olemassaololle. Mietitään kahta tapausta: (1) $\theta_n \neq \theta_{n-1}$ ja (2) $\theta_n = \theta_{n-1}$. Tapauksen (2) siirtymä voi tapahtua kahdella tavalla. Joko kohdassa 4. ehdotus θ' hylätään, tai se hyväksytään, mutta osutaan sattumanvaraisesti takaisin samaan kohtaan. Kuitenkin selvästi nähdään, että ehto 3.4 pätee tilanteessa (2).

Tilanteessa (1)Siirtymätodennäköisyys pisteestä θ_{n-1} pisteeseen θ_n on

(3.5)
$$T(\theta_n | \theta_{n-1}) = J_n(\theta_n | \theta_{n-1}) \min \left(\frac{p(\theta_n | y) J_n(\theta_{n-1} | \theta_n)}{p(\theta_{n-1} | y) J_n(\theta_n | \theta_{n-1})}, 1 \right)$$

Jota voidaan muokata helposti

(3.6)
$$T(\theta_{n}|\theta_{n-1}) = J_{n}(\theta_{n}|\theta_{n-1}) \min\left(\frac{p(\theta_{n}|y)J_{n}(\theta_{n-1}|\theta_{n})}{p(\theta_{n-1}|y)J_{n}(\theta_{n}|\theta_{n-1})}, 1\right) \\ = \frac{1}{p(\theta_{n-1}|y)} \min\left(p(\theta_{n}|y)J_{n}(\theta_{n-1}|\theta_{n}), p(\theta_{n-1}|y)J_{n}(\theta_{n}|\theta_{n-1})\right)$$

Nähdään kuitenkin, että yhtälön 3.6 alempi yhtäläisyys on symmetrinen eli

$$(3.7) T(\theta_{n-1}|\theta_n) = \frac{1}{p(\theta_n|y)} \min\left(p(\theta_{n-1}|y)J_n(\theta_n|\theta_{n-1}), p(\theta_n|y)J_n(\theta_{n-1}|\theta_n)\right)$$

joten kerrotaan 3.6 termillä $p(\theta_{n-1}|y)$ ja hyödynnetään 3.7 ominaisuutta

$$T(\theta_n|\theta_{n-1})p(\theta_{n-1}|y) = \frac{1}{p(\theta_{n-1}|y)} \min\left(p(\theta_n|y)J_n(\theta_{n-1}|\theta_n), p(\theta_{n-1}|y)J_n(\theta_n|\theta_{n-1})\right)p(\theta_{n-1}|y)$$

$$= \frac{1}{p(\theta_n|y)} \min\left(p(\theta_{n-1}|y)J_n(\theta_n|\theta_{n-1}), p(\theta_n|y)J_n(\theta_{n-1}|\theta_n)\right)p(\theta_n|y)$$

$$= T(\theta_{n-1}|\theta_n)p(\theta_n|y)$$

Eli myös tapauksessa (1) yhtälö 3.4 pätee.

Esimerkki 3.8. Ajatellaan kuvitteellista tapausta, jossa meillä jatkuva kaksiulotteinen todennäköisyysjakauma, jonka tiheysfunktio on

(3.9)
$$p(\theta) \propto \exp(-5|\theta_1^2 + \theta_2^2 - 1|)$$

joka muodostaa regasmaisen 2-ulotteisen jakauman. Valitaan ehdotusjakaumaksi $J_n(\theta_n|\theta_{n-1})$ 2d-multinormaalijakauma

$$(3.10) J_n(\theta_n|\theta_{n-1}) \sim N(\theta_{n-1}, \sigma^2 I_2)$$

jossa I_2 on 2x2 yksikkömatriisi ja olkoot $\sigma^2 = 0.01$. Nyt Metropolis Hastings algoritmin avulla voidaan simuloida jakaumaa $p(\theta)$ algoritmilla 3.2. Simuloiddaan kaksi Markovin ketjua asettemalla aloitustiloiksi (0,0) ja (5,5). Simuloimme tästä Markovin ketjusta 10

Kuva 3.1: Vasemmalla aloituspiste on (5,5), keskellä (0,0), ja oikea kuva on tiheysestimaatti.

000 pistettä näillä aloituspisteillä. Simuloimme myös 100 000 pistettä aloitusarvolla (0,0), joista loimme tiheysestimaatin. Tulokset löytyy kuvasta 3.1. Kahdessa ekassa kuvassa viiva on ensimmäisen 250 pisteen polku. Selvästi nähdään, että aloituspisteellä ei ole väliä. Markovin ketjun tasapainojakauma on sama huolimatta aloituspisteestä.

Kirjallisuutta