(19) народна РЕПУБЛИКА БЪЛГАРИЯ

ОПИСАНИЕ НА ИЗОБРЕТЕНИЕ

(ii) 17385

по авторско свидетелотно

(61)Доп. към №

(62) Разд. от № ·

(51) C 07 d 51/64 51/70

(21) Per. No. 18962

(22) Заявено на 09.11.71

Институт за изобретения и рационализации (46) Публикувано в бюлетия №

ma 10.11.73

(45) Otnevarano na 29.03.78.

(71) Заявител:

(72) ABTODH:

NINE

LETTPATHA

NAT HTHA

BUBDUCTEKA

Светлана Стоянова Зиколова Кирил Асенов Нинов Петър Николов Манолов Собия

(54) производни на бинвихидрилпиперазина и метод за получаването им

на о обща формуна I

CeHs CHACOR

в конто R може да бъде ажинись радикам с 2 до 8 въглеродии атома, ажинись радикам с 8 или 4 въглеродии атома, фенинализись или дифе инжанизись радикам с 2 или 8 въглеродии атома в ажинисвата верига, феноможетилов, инфтиметиловов, нафтиметиловов, бензонись, р-хлор-бензонись, триметексибензонись, фенинацетилов, дифенинацетилов, ди-фенинацетилов, нафтимацетилов, цикломексилов, циклопентилов, дистиманиностилов, пимеридиностилов или морфолиностилов остатък, вкируштенно и техните фармакслогичее ново-

сими соли с неорганични или органични инсенний, както и до метод за получаването им.

Новополучените съединения могат да се разглеждат като анамози на напожника се вече в прантината белгийски препарач Пинаризии.

от чило отруктура е занавела і бенахидримпиперавиневата част.

Съединенията с обна формуна I се получават по два начина:

1. Като се надиза от бенанхидрилиниеразии (III) и съответнето жалегенепроизводно (IV).

III

I = CI, BP.

2. При кондензации им обответно монозанестен инперавии (Ч) с бензидринхамогения (ЧІ)

X = CI man le.

Маходиние момесубститунрани пиперазнии (III и V) се алимират нии анимират в среда от полирен или меномирен разглорител (бенвек, томуол, комиси, метамен, етамон, емукски от имертем разглоритем и вода) при обинисвени температура или при нагрязане в продължение на половин до нест часа, до базите на съединения I.

Като кондензационно оредство се използва налишъв от находния амин или друго вещество с базични свойства, като например $Nalco_8$, Na_2co_8 , пиридни, триотивании и др.

Получените бази I по обикновените нетоди, чрез разгваряне в подходящ разгворител и утанване с подходящ разгвор от съответната киселина или продухване с ханогеноводород дават желаните от нас соли.

Две от съединенията: N^1 -бензхидрии- N^4 -едининиеразии (съединение n 7 от приложения таблица, с условен инфър n -2) и n n -6ензхидрии-n -нафтикацетилиниеразии (съединение n 22 от таблицата, с условен инфър n -18) са подложени на фармакологичее процата, с условен инфър n -18) са подложени на фармакологичее проучане, обхванаю тестеве за илиние върху сърдечие-съдовата систена, вегетативната нервия система, гладката мускулатура и остра токсичност. Данните от проучванията показват, че съединенията са физирногично активни. Осебено подчертам е вазодилатиравият ефейт върху
венечните съдове и увеличението на норожарини дебит в спити ви
витром на съединението n -2. Последното увеличава корожарини, дебит на препарат от изолирано теплокръвно сърше средно съе 160 % при
контрола с превидании — 108 % и цинаризии — 104 % (сравненията са
направени с ситимално действуващите концентрации на последните два
препарата). Следователно n -2 в сравнение с прениданина и цинаризина предизвиква с около 50 % не-голяно увеличение на дебита.

и двого озедниемин упражинват известен спазмолитичем ефект, който при $\mathbb{A}_S = 2$ е приблизително едианъв с този на папаверина.

По отноменно на вегетативната нервиа система веществата живт слабо изразена активност. Върху урегамизирани котии съеденеинича оказват прачночрайно хиночениямо действие.

Томончесска на ведеската, изразена в \mathbb{D}_{50} , е средно оконо 100 мг/иг за мини при интраноритополино положение, определена
не Катбет. Резорбщита им е добра. $\Lambda_5 - 2$ има индека на резорбщия
около 2 и добра терановична инрина.

От този макар и предварителии фармокологичим проучвания стала локо, че тоза са блокогически активии ведоства, които могат да бъдат обект на по-нататини проучвания с оглед създаването на нови цемпротрени средства.

Съодиненията е обиа формула I са нови, неописани в литературата вецества. Вначенията на R и точките на топомо са дадели в таблица.

Спедацият пример неменива не-подробно изобретеннето.

Пример: Получаване на М¹-егин-М⁴-бенахидрия-пинеразии.

Към разтвер на 5,04 г (0,03 и) М-монобенахидриянимеразии
в 50 ил сух бензол, в присъствие на 2 г (0,024 и) Мансо₃, при бъркаме и нагрязане на водна бани се изкапла за 80 имиути разтвер на
8,1.(0,02 и) егинбедид в 50 ил сух бензол. Нагрява се и се бърна оде
4 меса. След охнаждане се филтрува и суми над Ма₂ 5 0₄. От бензолими разтвер се уталва чрез продухване със сух хнероводерод или с
наситем разтвер на имиринсва киселина съответно хидрохиоряд и имерат.

Інфектория — 2.2. 361-6° (р). Начислен оветав в 5:064,55 Н 7,87; N 7,98, СІ 20,12; нанорене С 64,70, Н 7,80; N 7,77; СІ 20,11.

Пикрат - т.т. 232-3⁰(р). Почиской олежа в \$1 С 5042; Н 4.07; N 15,12; какереко С 50,60; И 3,86; N 15,45. Пример 2. Получаване во N^4 — (β — фенел.)—одил- N^4 — бенехидрия пинеразии.

нам разгвор на 4 г (0,021 м) моло-N-(В -фанцы)-егнипиперавия и 80 их сух бензох, в присъотвио но 4 г (0,096 м) наприов
нарбонат при бържано и нагрявано на водна байн, за оконо 80 минути
се накапва разгвор на 4 г (0,021 м) бензиндриждеория в 20 ми сух
бензох. Нагрява се и се бържа още 5 часа. Спед схидидано и финтрараме се буйн илд нагриев сухфат и се отдејстимира бензойни. Чася
от остатъка се разгваря в алкохом и с насегом разгвор на оксанова ки
селина в егор се утанва сом на помучената база. Спед прокрастамизапин се получава оксанат с т.т. 184 – 186°. Изчислено обябрилено:
С 64,93%, и 5,97%, и 5,22%. Немерено при аканиз: С 64,58%, и 6,30%,
и 4,99%.

При този метод могат да се получат и возчан се жадинемия, описани в таблицата.

TABINUA

2 по	R	ХОЭ	
ред		HÄH	T.T.
		୍ର ଓଡ଼ିଆ	
1	2	8	4
1 сн ₃ сн ₂ -		нава л хайбохновай	251-3 ⁰ (p) 232-3 ⁰ (p)

1	2	8	4
2	CH ₈ CH ₂ CH ₂ CH ₂ -	хихроххорид оксалаз тартарая	297-40° 128-80° 300-208° (p)
3	CH3CH2CH2CH2CH2 -	Lablada Umrber Umrber	105-8 ⁰ (p) 218-21 ⁰ (p) 198-200 ⁰ (p)
4	CH3CH2CH2CH2CH2CH2 _	оковлат пикрат тартарат	124-6° (p) 225-7° (p) 205-7° (p)
5	CH3CH2CH2CH2CH2CH2CH2 -	orçaxat Taptapat	140-2° (p) 202-4° (p)
6	CH3CH2CH2CH2CH2CH2CH2CH2-	okoanar Taprapar	180–8° (p) 205–8° (p)
7	CH2=CHCH2+	хидрохнорид	226-8 ⁰
8	eh ₃ ch=ch. ch ₂ -	оксалат пикрат	179–181° (p) 210–12° (p)
9	C6H2 CH2CH2-	CECEPONO.	184–6 ⁰ (p)
10	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	organat nuupat	198–9 ⁰ (p) 218–5 ⁰
11	(C8H5)2 CHCH2-	OKCAMAT	195 –7⁰ (p)
18	(C8H2)8CHCH5CH5-	оксалат пикрат	280–38°(p) 288–90°(p)
18	d -С ₁₀ H ₂ CH ₂ -	TPKROHO	200-201 ⁰ (p)
14	∠ -c ₁₀ H ₇ €H ₂ CH ₂ -	orcene?	192 –4 ° (p)
15	с ₆ н ₅ о. сн ₂ он ₂ -	ORGRAS .	158–60 ⁰ (p)
16	с ₆ н ₅ со-	oroana? Taptapat	140 <u>-42</u> 0 145-70

	1 8	8	4
17	ρ -CIC ₆ H ₄ CO	хидрох цитрат	лорид 237-40 ⁰ 150-53 ⁰ (р)
18	3,4,5(CH ₃ 0) ₃ C ₆	H ₂ CO- dasa	149-150 ⁰
19	c ₆ H ₅ cH ₂ co -	dasa	141-3 ⁰
20	(C ₆ H ₅) ₂ CHCO -	пикре т	188–190 ⁰ (p)
21	(0 ₆ н ₅) ₂ снсн ₂ со -	база хадрох	лорид 113-5 ⁰ 128-30 ⁰
22	√ -c ₁₀ нγсн ₂ со -	база хидрох	166-70 ⁰ порид 257-9
23	CH2 CH2 - CH2	CH -	199-5° (p) 160-2° (p) 194-6° (p)
24	CH ₂ - CH ₂ CH	OKCARA: Taptap Quipat	
25	(c ³ H ²) ³ McH ³ cH ³	- оксала:	167–169 ⁰ (p)
26	(CH ₃) ₂ NCH ₂ CH ₂ -	оксала: Тартара	
27	MCH ⁵ CH ⁵	orcana: Taptapa	
28	MCH2 CH	2 OKORNA: Taptapa	

Ú,

Автороки протоиции

1. Производни на белахидрининеразина с обща формуна I

18

в конто R е алкинов радинал с 2 до 8 въглеродии атома, адкенилов радинал с три или четири въглеродии атома, фенилалкилов, или дифенилалкилов радинал с 2 или 8 въглеродии атома в алкиловата верига феноисчетилов, нафтилистиленов, нафтиленов, бензоилов, р-хлор-бензоилов, триметокомбензоилов, фенилацетилов, дифенилацетилов, дифенилацетилов, дифенилацетилов, дифенилацетилов, дифенилов, дифениловетилов, инключентилов, дифениловетилов, отнироженов, дифениловетилов, пиналоженскитов, пиналоженскитов, пиналоженскитов, пиналоженскитов или мерфолиностилов етилов, диметинализисстилов, пинеридисстилов или мерфолиностилов сотитьк, включителию и техните физиологично поносими соли с неор-

- 2. N^{4} бенахидрин— N^{4} -ания—пиперазии.
- 8. Метод за получаване на бенахидриживноразмиови производим с соща формуна I, съгнасно претенция 1, карактеризиращ се с това, че бенахидриживнеразми реагира със съответното халогено-производно съгнасно схемата

4. Метод за получаване на бензихидрилниперазинови производии, озгласне претенция 1, характеризиран се с това, че съответинит N-монезаместен пинеразии реалира със съответното халогенопроизводие съгласно охената

в която X е хлор или бром, а R има дадените в претенция 1 значения, в присъствие на разгворитех и алкално кондензационно оредстве,
при обикновена температура или при нагряване, до съединения I,
след което последните по желание се превръщат в соли на меорганичим или органичим кисежних.

Издание на Института за изобретения и рационализации Софии, бул. "Насър° № 52

Пор. № 5589

Офсетова печатна база на ИИР

THPAX 200

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.