0.1. Opis problemu

Można aktualnie zaobserwować dużą zmianę na rynku pracy. Z powodu globalnej epidemii wiele firm zdecydowało się na zmianę pracy stacjonarnej na zdalną. W 2020 roku około 70% pracowników zatrudnionych na pełen etat w Stanach Zjednoczonych pracowało z domu [1]. Nawet po złagodzeniu obostrzeń znaczna część miejsc pracy pozostała przy takim trybie lub przyjęło hybrydową formę pracy. Około 89% europejskich firm planuje pozostać czy hybrydowym trybie pracy nawet po zakończeniu epidemii [2]. Taka forma pracy prowadzi ma jednak własne utrudnienia. W pewnych przypadkach pracownicy muszą łączyć się za pomocą funkcji zdalnego pulpitu z komputerami znajdującymi się w biurze. Może to wynikać z niewystarczającej wydajności sprzętu pracownika lub dostępu do specyficznych programów albo zasobów. W takich sytuacjach komputer, z którym łączy się użytkownik, musi być uruchomiony, a w przypadku awarii - zrestartowany. Dodatkowo taki dostęp może być wymagany jedynie przez ograniczony czas, co powoduje, że dużą część czasu maszyna spędza włączona, ale nieużywana.

Możliwym sposobem na złagodzenie tego problemu jest użycie zmniejszonej liczby stacji roboczych, które mogą być używane przez większą liczbę pracowników jednocześnie za pośrednictwem maszyn wirtualnych. Zmniejsza to liczbę działających maszyn fizycznych, a zarządzanie wirtualnymi może być wykonywane zdalnie.

Tworzony przez nas system umożliwi zmniejszenie liczby stanowisk na rzecz jednego przezroczystego komputera. Pracownicy będą mogli poprosić o zdalny dostęp do maszyny z zasobami
systemowymi dopasowanymi do ich potrzeb. System sam zadba o udostępnienie i zarządzanie
tymi zasobami.

0.2. Podobne rozwiązania

Podobnymi rozwiązaniami oferującymi możliwość zdalnej pracy przy użyciu wirtualnych pulpitów są między innymi Amazon WorkSpaces (https://aws.amazon.com/workspaces/), Pararells RAS (url https://www.parallels.com/products/ras/remote-application-server/) oraz Cirtrix (https://www.citrix.com/pl-pl/). Usługa Citrix Virtual Apps and Desktops [5] oferowana przez firmę Citrix jest bardzo podobna do naszego rozwiązania.Przy zakupie dostępu można wybrać czy interesuje nas udostępnianie całego pulpitu zdalnego jako serwisu (tzw. DaaS - Desktop as a Service), czy zdalny dostęp do wybranego komputera.

System oferowany przez Citrixa ten posiada także zbiór komputerów łączonych w klaster oraz aplikacje balansującą, która równomiernie rozkłada zużycie wszystkich maszyn w klastrze.

Możliwe jest skorzystanie z gotowej infrastruktury zaoferowanej przez Citrixa albo wybudowanie własnego klastra.

Jedną z ważniejszych różnic Citrixa od naszego systemu jest większa wirtualizacja zasobów podłączonych do maszyny wirtualnej. W naszym systemie możliwe jest bardziej statyczne przyporządkowanie zasobów (np. karta graficzna) co pozwala na uzyskanie lepszej wydajności do nietypowych zastosowań biurowych (np. symulacje numeryczne w programach typu CAD). Możliwe jest przekazanie do maszyny wirtualnej dowolnego urządzenia PCI zdefiniowanego w konfiguracji. Umożliwia to pracę z bardzo nietypowymi urządzeniami, nawet zdalnie.

Dodatkowo nasz system pozwala łatwo wykorzystać istniejące stacje robocze do stworzenia klastra. Konfiguracja każdego komputera w klastrze może być ustawiona oddzielnie. System odpowiednio zarządzi różnymi typami maszyn. Może to obniżyć koszty, jeżeli pracownicy często zmieniają swój tryb pracy.

0.3. Wizja systemu

Tworzony system ma za zadanie umożliwiać zdalną pracę za pomocą protokołu zdalnego pulpitu. Rozwiązanie pozwala na wykorzystanie istniejących stacji roboczych do tworzenia wirtualnych stanowisk.

Użytkownikami końcowymi są pracownicy, którzy za pomocą okienkowej aplikacji klienckiej mogą uzyskać sesję do pracy zdalnej. Użytkownik podczas pracy łączy się za pomocą protokołu zdalnego pulpitu z maszyną wirtualną uruchamiającą obraz systemu GNU/Linux. Uruchamianie i zarządzanie maszynami jest zadaniem aplikacji działającej na rzeczywistej stacji roboczej, która udostępnia swoje zasoby maszynom wirtualnym. Aplikacja ta, oraz rzeczywista maszyna uruchamiająca ją, nazywana jest dalej serwerem wirtualizacji. Serwery działają niezależnie od siebie i nie ma teoretycznego ograniczenia na ich liczbę w systemie. Komunikacją z użytkownikami oraz zarządzaniem systemem zajmuje się aplikacja nadzorcza. Ilość jej instancji również jest teoretycznie nieograniczone co umożliwia balansowanie obciążeniem oraz zwiększa odporność systemu na awarie.

System pozwala na tworzenie maszyn wirtualnych różnych typów, czyli kombinacji zasobów systemowych udostępnianych dla maszyny wirtualnej oraz faktu czy ma ona bezpośredni dostęp do karty graficznej maszyny, na której pracuje. Do używania systemu użytkownik musi posiadać konto w systemie katalogowym, na które loguje się podczas użytkowania systemu. Foldery domowe pracowników montowane są wewnątrz maszyny z zewnętrznego dysku sieciowego i umożliwiają przechowywanie danych między połączeniami.

0.4. ISTOTNE POJECIA

System udostępnia panel administracyjny w postaci strony WWW umożliwiający podgląd obciążenia i stanu systemu przez upoważnione osoby. Komunikacja aplikacji klienckiej z aplikacją nadzorczą oraz panel administratora wykorzystują komunikację za pomocą protokołu HTTP. Możliwe jest użycie szyfrowanego protokołu HTTPS [3], pod warunkiem użycia poprawnych certyfikatów SSL/TSL.

0.4. Istotne pojęcia

- Aplikacja kliencka aplikacja okienkowa uruchamiana na komputerze użytkownika, która
 umożliwia komunikację z systemem oraz uruchomienie zewnętrznego programu implementującego protokół RDP. Działa pod systemem operacyjnym Windows 10 oraz GNU/Linux.
- Aplikacja nadzorcza (Nadzorca) aplikacja, która przetwarza zapytania od aplikacji klienckiej oraz komunikuje się ze wszystkimi serwerami wirtualizacji. Na podstawie tych informacji buduje model zajętości każdego z serwerów wirtualizacji oraz decyduje kiedy, i na którym serwerze, trzeba uruchomić nowe maszyny wirtualne. Decyduje również, do której wirtualnej maszyny ma podłączyć się użytkownik proszący o utworzenie sesji. Aplikacja może działać na dowolnym komputerze spełniającym wymagania.
- Serwer wirtualizacji komputer, który udostępnia swoje zasoby (rdzenie procesora, karty graficzne, pamięć RAM oraz przestrzeń dyskową) w postaci uruchamianych na nim maszyn wirtualnych. Komputer ten uruchamia aplikację, która odpowiada na zapytania aplikacji nadzorczej oraz wykonuje operacje na maszynach wirtualnych (uruchamianie i wyłączanie). Komputer może uruchamiać co najwyżej jedną aplikację, dlatego zarówno maszynę, jak i aplikację, nazywamy serwerem wirtualizacji. Uruchamiana na stacji roboczej, która ma być częścią klastra.
- Broker wiadomości aplikacja przekazująca wiadomości pomiędzy połączonymi z nią innymi aplikacjami.
- Maszyna wirtualna CPU maszyna systemowa emulująca, lub para-emulująca, sprzęt i służąca do uruchamiania systemu operacyjnego. Udostępnia użytkownikowi podstawowe zasoby (procesor, pamięć RAM i przestrzeń dyskowa). Uruchamiana jest na serwerze wirtualizacji z liczbą zasobów określoną w konfiguracji. Maszyna wirtualna uruchamia system operacyjny GNU/Linux (ArchLinux https://archlinux.org/).
- Maszyna wirtualna GPU maszyna analogiczna do maszyny wirtualnej CPU. Wyróż-

nia się przekazaną na wyłączność, za pośrednictwem mechanizmu PCI Passthrough, kartą graficzną podłączoną do serwera wirtualizacji.

- RDP protokół zdalnego dostępu do pulpitu od firmy Microsoft [8]. Maszyny wirtualne uruchamiają serwer RDP (xrdp http://xrdp.org/), który umożliwia pracę za pośrednictwem protokołu zdalnego dostępu.
- Sesja jednorazowy dostępu użytkownika do systemu oraz maszyny wirtualnej. Utworzenie sesji wiąże się z przypisaniem do użytkownika konkretnej maszyny wirtualnej, na której będzie pracować. Sesja kończy się w przypadku, gdy użytkownik poinformuje system o zakończeniu pracy lub gdy minie czas oczekiwania na odzyskanie połączenia po jego utracie.
- Vagrant Box [7] przygotowany wcześniej obraz maszyny wirtualnej, który umożliwia
 zmianę dostępnych zasobów. Uruchamiają się z obrazu pierwotnego w środowisku programu
 Vagrant. Obrazy te używane są do tworzenia maszyn wirtualnych.
- Ansible playbook [6] skrypt konfiguracyjny dla systemu operacyjnego, który umożliwia parametryzację oraz wykonywanie określonych akcji po uruchomieniu Vagrant Boxa.
- Panel administratora aplikacja przeglądarkowa, która umożliwia administratorowi systemu podgląd statusu serwerów wirtualizacji znajdujących się w systemie oraz zajętość zasobów.
- Konto użytkownika profil użytkownika w systemie, do którego ma dostęp na każdej
 maszynie wirtualnej. Używane do logowania się do systemu oraz maszyn wirtualnych. Przechowywane jest w zewnętrznym systemie katalogowym.
- Katalog użytkownika prywatny folder dostępny dla użytkownika na każdej maszynie wirtualnej. Przechowywany na zewnętrznym dysku sieciowym oraz montowane na maszynach wirtualnych.
- Konfiguracja stała konfiguracja maszyny wirtualnej, która nie zmienia się w zależności od miejsca uruchomienia. Zapisana jest w Vagrant Boxie. W razie potrzeby można ją także zdefiniować w odpowiednim Ansible playbooku.
- Konfiguracja zmienna konfiguracja maszyny wirtualnej, która zmienia się w zależności
 od miejsca uruchomienia. Jest definiowana w odpowiednim Ansible playbooku uruchamianym przy każdym włączeniu maszyny.

0.5. Wymagania funkcjonalne

0.5.1. Nadzorca

Rysunek 0.1: Przypadki użycia aplikacji nadzorczej

Tablica 0.1: Przypadki użycia aplikacji nadzorczej

Aktor	Nazwa	Opis	Odpowiedź systemu
Użytkownik	Uzyskanie sesji	Uzyskanie sesji do pracy na maszy-	Do użytkownika zostaje przydzie-
	do pracy	nie wirtualnej odpowiedniego typu.	lona maszyna wirtualna oraz zesta-
			wione połączenie RDP. Jeżeli przy-
			pisana do użytkowinka sesja nie zo-
			stała jeszcze zakończona, to system
			przydziela mu tą samą maszynę.
	Poznanie ilości	Wyświetlanie szacowanej ilości do-	Użytkownikowi zostaje wyświetlona
	dostępnych ma-	stępnych maszyn każdego typu.	szacowana liczba dostępnych ma-
	szyn		szyn obliczona na podstawie infor-
			macji o dostępnych zasobach każ-
			dego z serwerów wirtualizacji.
Serwer wirtualizacji	Zgłoszenie	Serwer zgłasza nadzorcy dostępne	Nadzorca wykorzystuje zgłoszone
	dostępnych	zasoby.	zasoby do wyliczenia szacowanej
	zasobów		liczby dostępnych maszyn oraz ba-
Serwer wirtual			lansowania obciążeniem serwerów
Ser			wirtualizacji.
	Podgląd stanu	Nadzorca udostępnia panelowi ad-	Panel administratora wykorzystuje
Panel administratora	modelu	ministratora stan zasobów systemu.	uzyskane dane to wyświetlenia ad-
			ministratorowi raportu o stanie sys-
nel ninis			temu.
Panel admir			

0.5.2. Serwer wirtualizacji

Rysunek 0.2: Przypadki użycia serwera wirtualizacji

Tablica 0.2: Przypadki użycia serwera wirtualizacji

Aktor	Nazwa	Opis	Odpowiedź systemu
Użytkownik	Nawiązanie po- łączenia z ma- szyną	Użytkownik nawiązuje połączenie z maszyną wirtualną	Maszyna wirtualna zostaje zajęta przez użytkownika; serwer wirtuali- zacji rozpoczyna monitorowanie, czy sesja wciąż trwa
	Poproś o zgło- szenie zasobów	Nadzorca wysyła do wszystkich ser- werów wirtualizacji prośbę o zgło- szenie swoich używanych i wolnych zasobów	Serwer wirtualizacji informuje nad- zorcę o stanie swoich zasobów
Nadzorca	Stwórz nową maszynę wirtu- alną	Nadzorca prosi serwer wirtualizacji o stworzenie nowej wirtualnej ma- szyny dla danego użytkownika na wybranym typie maszyny	Serwer wirtualizacji tworzy maszynę wirtualną wybranego typu i udo- stępnia możliwość połączenia się z nią
	Wyłącz kon- kretną maszynę wirtualną	Nadzorca prosi serwer wirtualiza- cji aby wyłączył konkretną maszynę wirtualną.	Serwer wirtualizacji wyłącza kon- kretną maszynę wirtualną oraz pil- nuje aby na pewno się wyłączyła.
	Zmień obraz maszyn wirtual- nych	Zmiana obrazu źródłowego maszyn wirtualnych	Zdefiniowany przez administratora vagrant-box jest używany przez ser- wery wirtualizacji
Administrator	Zmień konfigu- rację maszyn wirtualnych	Zmiana zmiennej konfiguracji maszyn wirtualnych	Zmodyfikowany ansible playbook jest używany przez serwery wirtuali- zacji
	Zdefiniuj zasoby maszyn wirtual- nych	Zmiana łącznej ilości zasobów prze- znaczonych na maszyny	Zmodyfikowana konfiguracja zaso- bów będzie wykorzystywana przez serwer wirtualizacji przy kolejnym uruchomieniu

0.5.3. Panel administratora

Rysunek 0.3: Przypadki użycia panelu administratora

Tablica 0.3: Przypadki użycia panelu administratora

Aktor	Nazwa	Opis	Odpowiedź systemu
Administrator	Podgląd zaso-	Wyświetlanie wolnych oraz zajętych	Wyświetlenie zasobów poszczegól-
	bów serwerów	zasobów serwerów wirtualizacji	nych serwerów wirtualizacji, liczby
	wirtualizacji		zajętych maszyn oraz szacowanej
			liczby wolnych maszyn

0.6. Wymagania niefunkcjonalne

Tablica 0.4: Wymagania niefunkcjonalne

Grupa wymagań	Nr wymagania	Opis
Użytkowanie	1	Aplikacja kliencka ma działać na systemach operacyjnych
(Usability)		MS Windows (Windows 10) oraz GNU/Linux (Arch Li-
		nux). Aplikacja na systemach GNU/Linux wymaga zain-
		stalowanego klienta RDP zgodnego z XRDP [4].
	2	Aplikacja kliencka musi udostępniać możliwość użycia
		własnego klienta RDP do nawiązania połączenia z ma-
		szyną wirtualną
	3	Maszyny wirtualne muszą mieć dostęp do systemu prze-
		chowującego konta użytkowników wraz z ich katalogami
		domowymi
Niezawodność 4		System musi być odporny na awarie poszczególnych serwe-
(Reliability)		rów wirtualizacji i kontynuować działanie w sposób niezau-
		ważalny dla użytkowników nie używających danego ser-
		wera.
	5	Awaria nadzorcy może spowodować uniemożliwienie roz-
		poczęcia nowych sesji, ale nie może przerwać istniejących
		sesji
Wydajność	6	Łącznie zużywane zasoby przez maszyny wirtualne na po-
(Performance)		szczególnym serwerze wirtualizacji nie mogą przekroczyć
		wcześniej zdefiniowanych limitów
	7	Nadzorca musi balansować obciążenie serwerów wirtuali-
		zacji
	8	W systemie zawsze musi istnieć jedna działająca maszyna
		wirtualna nie połączona z żadną sesją, aby można było ją
		szybko przydzielić użytkownikowi
	9	Zwolnione maszyny wirtualne, które nie są wykorzysty-
		wane jako zapas, muszą być wyłączane
Utrzymanie 10		Możliwe jest działanie więcej niż jednego nadzorcy w sys-
(Supportability)		temie, w celu zwiększenie dostępności lub przeprowadzenia
		prac utrzymaniowych

0.7. Analiza ryzyka

Tablica 0.5: Analiza ryzyka

Mocne strony

- Łatwa skalowalność pod względem liczby sesji w systemie
- Wiele rozwiązań Open Source
- Elastyczność pod względem konfiguracji
- Tańsze rozwiązanie niż kupno stacji roboczych

Słabości

- System trudny w konfiguracji
- Potrzeba wymiany sprzętu komputerowego
- Krótki czas rozwoju systemu
- Ograniczone doświadczenie twórców systemu
- Małe prawdopodobieństwo dalszego wsparcia projektu po zakończeniu prac

Okazje

- Grupa docelowa to firmy z dużą ilością stacji roboczych
- Zwiększenie zapotrzebowania na prace zdalną na rynku pracy

Zagrożenia

- Istnienie konkurencji ugruntowanej na rynku
- System w dużej mierze oparty o oprogramowanie rozwijane przez inne organizacje

0.7.1. Omówienie zagrożeń

• System trudny w konfiguracji - wysoko prawdopodobne

Można temu zaradzić poprzez udostępnienie dokładnej dokumentacji lub ścisłą współprace z klientem przy wdrażaniu systemu.

Waga: duża

• Potrzeba wymiany sprzętu komputerowego - średnio prawdopodobne

Klient może potrzebować wymienić aktualne stacje robocze na terminale oraz zainwestować w sprzęt serwerowy. Jednak gdy klientami będą firmy, które mają dużo pracowników pracujących spoza biura, lub dopiero tych pracowników pozyskują, to kupno terminali i

0.7. Analiza ryzyka

serwerów powinno być bardziej zachęcające niż kupno stacji roboczych.

Waga: średnia.

• Krótki czas rozwoju systemu - wysoko prawdopodobne

Czas rozwoju systemu jest bardzo ograniczony. Aby pomimo tego ograniczenia działał on w sposób akceptowalny powinniśmy skupić się na dobrym przedyskutowaniu i opisaniu kluczowych modułów systemu. W czasie projektu należy pilnować aby nie dodawać nadmiarowych funkcjonalności do systemu. W czasie implementacji krytyczne będzie dokładne zaplanowanie aplikacji pod katem testowania automatycznego. Ułatwi to wyłapywanie prostych błędów jeszcze we wczesnej fazie projektu.

Waga: wysoka

• Ograniczone doświadczenie twórców systemu - pewne

Jedynym sposobem na ograniczenie ryzyka jest rozważna implementacja.

Waga: średnia

 Małe prawdopodobieństwo wsparcia projektu po zakończeniu prac - wysoko prawdopodobne

Trudno teraz przewidzieć co się stanie z projektem po zakończeniu prac. Jednak prawdopodobnie twórcy systemu zajmą się innymi projektami. Można jedynie dokładnie komentować kod i pokrywać jak najwięcej jego części testami. Wtedy inne osoby będą w stanie szukać błędów albo próbować w taki sposób uzupełnić brakującą wiedzę o systemie.

Waga: niska

• Istnienie konkurencji ugruntowanej na rynku - bardzo prawdopodobne

Konkurencyjne systemy oferujące podobne rozwiązania są już dobrze ugruntowane na rynku i przetestowane. Nasz system może spróbować konkurować jedynie z nimi ceną implementacji oraz elastycznością.

Waga: średnia

• System w dużej mierze oparty o oprogramowanie rozwijane przez inne organizacje - nisko prawdopodobne

W czasie życia systemu mogą pojawić się błędy w oprogramowaniu nie rozwijanym w ramach naszego systemu. naprawa takich błędów może trwać bardzo długo. Pewnym sposobem wsparcia takiego systemu jest własnoręczne poprawiania błędów w zewnętrznym oprogramowaniu i zgłaszanie ich do odpowiedniej organizacji. Do czasu zastosowania poprawki jest możliwość korzystania z wersji, na którą nanieśliśmy własną poprawkę. Waga: wysoka

0.8. Podział pracy

W czasie realizacji systemu podzieliśmy się pracą:

- Krzysztof Smogór aplikacja serwera wirtualizacji (w tym integracja z Vagrantem oraz libvirtem) oraz aplikacja nadzorcy (przetwarzanie informacji o systemie oraz udostępnienie ich aplikacjom klienckim)
- Piotr Widomski aplikacja kliencka (wraz z integracją z klientami RDP), aplikacja panelu administracyjnego, struktura modelu systemu oraz komunikacja pomiędzy modułami.

W czasie pisania pracy dyplomowej podział był następujący:

- Krzysztof Smogór Analiza rozwiązania (rozdział ??) oraz część opisu rozwiązania związania z konfiguracja i wymaganiami (rozdział od ?? do ??).
- Piotr Widomski Wstęp (rozdział ??), Podsumowanie (rozdział ??) oraz teoretyczna część opisu rozwiązania (rozdział od ?? do ??)