(19) BUNDESREPUBLIK DEUTSCHLAND

PATENTS CHRIFT (11) DD 293 136 A5

(12) Ausschließungspatent

Erteilt gemäß § 17 Absatz 1 Patentgesetz der DDR vom 27.10.1983 in Übereinstimmung mit den entsprechenden

Festlegungen im Einigungsvertrag

5(51) C 12 P 7/62

DEUTSCHES PATENTAMT

In der vom Anmelder eingereichten Fassung veröffentlicht

22.08.91 02.03.90 (22)DD C 12 P / 338 345 6 (21)Akademie der Wissenschaften, Otto-Nuschke-Straße 22/23, O - 1080 Berlin, DE Lapitzkaja, Margarita A., Dr. rer. nat., SU; Pivnitsky, Kasimir K., Dr. rer. nat., SU; Theil, Fritz, Dr. rer. nat., DE; (71)(72)Schick, Hans, Prof. Dr. sc. nat., DE; Schwarz, Sigfrid, Prof. Dr. sc. nat., DE Akademie der Wissenschaften, Zentralinstitut für Organische Chemie, O · 1199 Berlin, DE; Akademie der Medizinischen Wissenschaften der UdSSR, Institut für Experimentelle Endokrinologie, Moskau, SU; VEB Je-(73)napharm, O - 6900 Jena, DE Akademie der Wissenschaften, Zentralinstitut für Organische Chemie, BfPN, Rudower Chaussee 5, O - 1199 (74)Berlin, DE Verfahren zur Herstellung von (1R,4S)-4-Acyloxy-1-hydroxycyclopent-2-enen (54)

(55) (1R,4S)-4-Acyloxy-1-hydroxycyclopent-2-en, enzymkatalysierte Umesterung; cis-1,4-Dihydroxycyciopent-2-en; Carbonsäureester; Carbonsäurevinylester; Lipase; Schweinepankreas-Lipase; Pankreatin; optisch aktives Prostaglandin; Prostaglandinderivat; Herz-Kreislauf-Erkrankung; Veterinärmedizin (57) Die Erfindung betrifft ein Verfahren zur Herstellung von (1R,4S)-4-Acyloxy-1-hydroxycyclopent-2-enen, indem cis-1,4-Dihydroxycyclopent-2-en mit einem Carbonsäureester, erfindungsgemäß einem Carbonsäurevinylester, in Gegenwart einer Lipase umgesetzt wird. Das Zielprodukt dient als Ausgangsmaterial für die Synthese optisch aktiver Prostaglandine und Prostaglandinderivate, die als Herz-Kreislaut-Mittel und in der Veterinärmedizin eingesetzt werden können.

ISSN 0433-6461

4 Seiten

Patentansprüche:

- 1. Verfahren zur Herstellung von (1R,4S)-4-Acyloxy-1-hydroxy-cyclopent-2-enen der allgemeinen Formel I, in der R¹ n-Alkyl bedeutet, durch Umsetzung von cis-1,4-Dihydroxycyclopent-2-en der Formel II mit Carbonsäureestern in Gegenwart einer Lipase bei Temperaturen zwischen 0 und 80°C, dadurch gekennzeichnet, daß als Carbonsäureester ein Carbonsäurevinylester der allgemeinen Formel III, in der R¹ n-Alkyl bedeutet, eingesetzt wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzelchnet, daß die Umsetzung mit dem Carbonsäurevinylester in Gegenwart eines wasserfreien organischen Lösungsmittels erfolgt.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Umsetzung mit dem Carbonsäurevinylester in Gegenwart einer Base erfolgt.
- Verfahren nach Anspruch 1, 2 und 3, dadurch gekennzeichnet, daß die Umsetzung mit dem Carbonsäurevinylester in Gegenwart eines wasserfreien organischen Lösungsmittels sowie einer Base erfolgt.

Hierzu 1 Seite Formeln

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Herstellung von (1R,4S)-4-Acyloxy-1-hydroxycyclopent-2-enen der allgemeinen Formel I.

in der R¹ n-Alkvi bedeutet.

Dieser Verbindungstyp ist Ausgangsmaterial für die Synthese optisch aktiver Prostaglandine und Prostaglandinderivate, die zur Verhütung und Beha.:dlung von Herz-Kreislauf-Erkrankungen, für gynäkologische Indikationen, zur Verhütung und Behandlung von Magen- und Darmgeschwüren in der Humanmedizin sowie zur Geburten- und Brustsynchronisation in der Tierproduktion verwendbar sind.

Charakteristik des bekannten Standes der Technik

Die enzymkatelysierte Umesterung von cis-1,4-Dihydroxycyclopent-2-en mit Carbonsäureestern, insbesondere mit 2,2,2-Trichlorethylacetat, in wasserfreien organischen Lösungsmitteln in Gegenwart einer Base und einer Lipase bei Temperaturen zwischen 0 und 80°C führt zwar zur Bildung der Zielverbindung mit hohem Enantiomerenüberschuß (ca. 95% ee), jedoch nur in Ausbeuten unter 50% (DD-A1-264707). Die Nachteile dieses Verfahrens sind weiterhin die Verwandung des relativ teuren und nur schwer entfernbaren 2,2,2-Trichlorethylacetats und die relativ langen Reaktionszeiten.

Ziel der Erfindung

Das Ziel der Erfindung besteht darin, eine enantioselektive Synthese von (1 R,4S)-4-Acyloxy-1-hydroxycyclopent-2-enen der allgemeinen Formel I aufzufinden, welche mit preiswertem Acylierun(smittel und in kürzerer Zeit abläuft, wobel die chemische Ausbeute bei sehr hohem Enantiomerenüberschuß verbessert werden voll.

Darlegung des Wesens der Erfindung

Die Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung von (1 R,4 S)-4-Acyloxy-1-hydroxycyclopent-2-enen der allgemeinen Formel I, in der R¹ n-Alkyl bedeutet, durch enzymkatalysierte Umesterung zu entwickeln, wobei ein zur Erreichung des Zieles geeignetes Acylierungsmittel eingesetzt werden soll.

Diese Aufgabe wird gelöst, indem die meso-Verbindung cis-1,4-Dihydroxycyclopent-2-en der Formel II (G.O. Schenck, D.E. Dun 3p; Angew. Chem. 68, 248 [1956]; C. Keneko, A. Sugimoto, S. Tanake; Synthesis 1974, 878) mit einem Carbonsäureester, und zwar erfindungsgemäß mit einem Carbonsäurevinylester der aligemeinen Formel III, in der R¹ n-Alkyl bedeutet, in einem

wasserfreien organischen Lösungsmittel wie Diethylether, 1,4-Dloxen, Tetrehydrofuren oder Toluen, vorzugsweise Tetrahydrofuran, in Gegenwart einer Base wie Pyridin, Triethylamin, 4-N,N-Dimethylamino-pyridin oder Imidazol, vorzugsweise Triethylamin, oder ohne Zusatz von Base und in Gegenwart einer Lipase tierischen, mikrobiellen oder pflanzlichen Ursprungs, vorzugsweise roher Schweinepankreas-Lipase in Form des Präparates Pankreatin, beziehungsweise ohne organisches Lösungsmittel in Gegenwart einer Base der obengenannten Art und einer Lipase der obengenannten Art bei Temperaturen zwischen 0 und 80°C, vorzugsweise 25°C, umgesetzt wird.

Hierdurch werden (1R,4S)-4-Acyloxy-1-hydroxycyclopent-2-ene der Formel I in akzeptabler chemischer Ausbeute (etwa 60%) bei sehr hohem Enantiomerenüberschuß (> 99% ee) erhalten. Zugleich wird durch die Wahl der Reaktionsbedingungen die Umsetzung zum Zielprodukt technisch einfacher gestaltbar.

Ausführungsbeisplele

Beispiel 1

Eine Lösung von 1,0g (10mmol) cis-1,4-Dihydroxycyclopent-2-en (II), 6,02 g (70mmol) Vinylacetat und 0,71 g (7,0mmol) absolutem Triethylamin in 25 ml absolutem Tetrahydrofuran wird bei 25°C mit 5g roher Schweinepankreas-Lipase in Form des Präparates Pankreatin versetzt und 2,5 Stunden bei einer Temperatur von 25°C gerühn. Danach wird die Suspension filtriert und der Filterrückstand mit Essigsäureethylester gewaschen. Das Filtrat wird im Vakuum eingeengt. Der Rückstand wird durch Flash-Chromatographie gereinigt. Man erhält 0,921 g (65%) (1R,4S)-4-Acyloxy-1-hydroxycyclopent-2-en (I) als farblose Kristalle vom Schmelzpunkt 46°C bis 48°C.

H-NMR-Spektrum (CDCl₃): 1,58 ppm (1 H, dt, J 15 Hz und 4 Hz, 5 a-H); 1,86 ppm (1 H, s, OH); 1,99 ppm (3 H, s, OAc); 2,74 ppm (1 H, dt, J 15Hz und 8Hz, 50β-H); 4,65 ppm (1H, m, 1a-H); 5,42 ppm (1H, mm, 4a-H); 6,98 ppm (2H, dd, J 15Hz und 6Hz, —CH=CH—). $\{a\}_{0}^{0} - 65,1^{\circ} : c = 1, CHCl_{3}\}.$

Enantiomerenüberschuß: > 99% (nach 19F-NMR des (+)-Mosheresters) Man erhält außerdem 0,588g (32%) cis-1,4-Diacetoxycyclopent-2-en.

Eine Lösung von 0,8g (8mmol) cis-1,4-Dihydroxycyclopent-2-en (II), 6,32g (55mmol) Vinylbutyrat und 0,58g (5,7 mmol) absolutem Triethylamin in 25 ml absolutem Tetrahydrofuran wird bei 25°C mit 4g roher Schweinepankreas-Lipase in Form des Präparates Penkreatin versetzt und 2,5 Stunden bei einer Temperatur von 25°C gerührt. Denach wird die Suspension filtriert und der Filterrückstand mit Essigsäureethylester gewaschen. Das Filtrat wird im Vakuum eingeengt. Der Rückstand wird unter Flash-Chromatographie gereinigt. Man erhält 0,747 mg (55%) (1R,4S)-4-Butyroxy-1-hydroxycyclopent-2-en (I) vom Siedepunkt von 140°C (15Pa, Kugelrohr).

¹H-Nh.ːR-Spektrum (CDCl₃): 0,84 ppm (3H, t, J 7 Hz); 1,36–1,81 ppm (3H, m, 5a-H u. CH₂); 2,04 ppm (1H, s, OH); 2,74 ppm (1H, dt, J 15Hz und 8Hz, 5β·H); 4,64ppm (1 H, m, 1 a·H); 5,44ppm (1 H, m, 4 a·H); 5,38ppm (2H, dd, J 15Hz und 6Hz, –CH=CH–). $[a]_{6}^{20} - 60,7^{\circ} (c = 1, CHCl_3).$

Enantiomerenüberschuß: > 99% (nach ¹⁸F-NMR des (+)-Mosheresters) Man erhält außerdem 0,613g (32%) cis-1,4-Bityroxycyclopent-2-en.

Eine Lösung von 1,0g (10mmol) cis-1,4-Dihydroxycyclo-pent-2-en (II), 13,0g (350mmol) Vinylacetet und 0,71 g (7,0mmol) Triethylamin wird bei 25°C mit 5 g roher Schweinepankreas-Lipase in Form des Präparates Pankreatin versetzt und 2,5 Stunden bel einer Temperatur von 25°C gerührt. Nach analoger Aufarbeitung wie im Beispiel 1 erhält man 0,807 g (57%) (1 R,4S)-4-Acetoxy-1-hydroxycyclopent-2-en (I).

 $[a]_{6}^{20} -64,4^{\circ} (c = 1, CHCl_3)$

Enantiomerenüberschuß: > 99% (nach 19F-NMR des (+)-Mosheresters)

Man erhält außerdem 0,745g (40%) cis-1,4-Discetoxy-cyclopent-2-en.

Beispiel 4

Eine Lösung von 1,0g (10mmol) cis-1,4-Dihydroxycyclopent-2-en (II), 6,02g (70mmol) Vinylacetat und 25 ml Tetrahydrofuran wird bei 25°C mit 5g roher Schweinepankreas-Lipese in Form des Präparates Pankreatin versetzt und 2,5 Stunden bei einer Temperatur von 25°C gerührt. Nach analoger Aufarbeitung wie im Beispiel 1 erhält man 0,849 g (63%) (1 R,4S)-4-Acetoxy-1hydroxycyclopent-2-en (I).

 $[a]_0^{20} - 64,6^{\circ} (c = 1, CHCl_3)$

Enantiomerenüberschuß: > 99% (nach 18F-NMR des (+)-Mosheresters) Man erhält außerdem 0.363g (31 %) cis-1,4-Diacetoxy-cyclopent-2-en.