Линейное программирование Теория

Роланд Хильдебранд

Методы оптимизации, ФУПМ МФТИ, апрель 2022 г.

План

- полиэдры и полиэдральные конусы
- преобразования линейных программ
- теорема Яннакакиса
- аппроксимация Немировского
- теорема об альтернативе
- двойственность
- методы решения ЛП

Линейные программы

задача оптимизации в общем виде формулируется как

$$\min_{x \in X} f(x)$$

здесь

- f(x) функционал цены
- ullet $X\subset \mathbb{R}^n$ допустимое множество

если функционал линейный, $f(x) = \langle c, x \rangle$, и допустимое множество задаётся линейными ограничениями,

$$X = \{x \in \mathbb{R}^n \mid Ax \le b\},\$$

то задача называется линейной программой (ЛП)

Формулировки линейных программ

линейная программа характеризуется условием, что цена и все ограничения линейны (аффинны)

в качестве условий могут выступать равенства и неравенства примеры ЛП

$$\min \langle c, x \rangle : \qquad Ax \le b, \quad Cx = d$$

$$\min_{x \ge 0} \langle c, x \rangle : \qquad Ax = b$$

$$\min_{x \ge 0, y} \langle c, x \rangle + \langle c', y \rangle : \qquad Ax + A'y = b$$

все эти формы переводятся друг в друга, возможно вводом дополнительных переменных или их устранения в силу условий типа равенства

Полиэдры, политопы

множество $X\subset \mathbb{R}^n$, являющееся *конечным* пересечением замкнутых аффинных полупространств, называется *полиэдром*

$$X = \{x \in \mathbb{R}^n \mid Ax \le b\}$$

если $b \in \mathbb{R}^m$, то полупространств m и они задаются в виде

$$H_i = \{x \in \mathbb{R}^n \mid \langle a_i, x \rangle \leq b_i\}$$

где a_i — строки матрицы A

выпуклая оболочка *конечного* множества точек в \mathbb{R}^n называется *политопом*

$$X = \left\{ \sum_{i=1}^{m} \lambda_i x_i \mid \lambda_i \ge 0, \ \sum_{i=1}^{m} \lambda_i = 1 \right\}$$

Симплексы, полиэдральные конусы

выпуклая оболочка аффинно независимого множества точек называется *симплексом*

множество $X \subset \mathbb{R}^n$, являющееся конечным пересечением замкнутых линейных полупространств, называется полиэдральным конусом

$$X = \{x \in \mathbb{R}^n \mid Ax \ge 0\}$$

множество неотрицательных линейных комбинаций линейно независимого множества векторов называют *симплициальным конусом*

Свойства

- любой симплекс является политопом
- любой политоп является полиэдром
- любой политоп является аффинной проекцией симплекса
- любой симплициальный конус является полиэдральным
- любой полиэдральный конус является проекцией симплициального

аффинные сечения и проекции политопов (полиэдров) являются политопами (полиэдрами)

линейные сечения и проекции полиэдральных конусов являются полиэдральными конусами

Экстремальные точки

Лемма

Пусть $X\subset\mathbb{R}^n$ — полиэдр, не содержащий прямой. Тогда X имеет вершину.

вершина ⇔ экстремальная точка (не представляется нетривиальной выпуклой комбинацией других точек)

схема доказательства

- если Х 0-мерно, то единственная точка вершина
- ullet так как X не содержит прямой, то существуют граничные точки
- ullet пусть $x \in \partial X$ и H опорная плоскость к X в x, тогда вершина пересечения $H \cap X$ является вершиной X
- ullet размерность $H\cap X$ строго меньше, чем размерность X, и $H\cap X$ не содержит прямой
- применяем индукцию по размерности Х

Невырожденность

пусть допустимое множество ЛП содержит прямую, $X=X' imes\mathbb{R}$

- если функционал цены ненулевой на направляющей прямой, то задача неограничена
- ullet если функционал цены нулевой на направляющей прямой, то можно сузить задачу на фактор X'

без ограничения общности будем полагать, что допустимое множество ЛП не содержит прямых

Преобразования линейных программ

рассмотрим линейную программу

$$\min_{x \in X} \langle c, x \rangle$$

где $X\subset \mathbb{R}^n$ — полиэдр

пусть X аффинно изоморфно сечению $Y\cap \mathcal{A}$ полиэдра Y, где

$$\mathcal{A} = \{ y \in \mathbb{R}^{n'} \mid Ay = b \}$$

тогда программу можно записать в виде

$$\min_{y \in Y} \langle c', y \rangle$$
: $Ay = b$

где c' — линейный функционал, принимающий на $Y\cap \mathcal{A}$ те же значения, что и c в соответстующих точках X

Преобразования линейных программ

пусть теперь X — проекция Y, т.е. существует аффинное отображение $\Pi:\mathbb{R}^{n'}\to\mathbb{R}^n$ такое, что $X=\Pi[Y]$

тогда программу можно записать в виде

$$\min_{y \in Y} \langle c', y \rangle$$

где $c'=\Pi^\dagger c$, т.е.

$$\langle c', y \rangle = \langle \Pi^{\dagger} c, y \rangle = \langle c, \Pi y \rangle$$

для всех $y \in \mathbb{R}^{n'}$

эти преобразования имеет смысл произвести, если полиэдр Y (большей размерности) имеет более простое описание, чем исходный полиэдр X

Поднятия

часто пространство $\mathbb{R}^{n'}$ возникает как произведение $\mathbb{R}^n imes \mathbb{R}^{n'-n}$ исходного пространства и некоторого пространства дополнительных переменных z

тогда программа принимает вид

$$\min_{(x,z)\in Y}\langle c,x\rangle$$

и называется *поднятием* (lifting) исходной программы

Характеристики множеств

pазмерностью множества $X\subset \mathbb{R}^n$ называют размерность его аффинной оболочки

другие характеристики

- число вершин (политоп)
- минимальное число полупространств в аффинной оболочке, нужных для представления X в виде пересечения
- число экстремальных лучей (конусы)

свойства

- число вершин (экстремальных лучей) не возрастает при аффинной (линейной) проекции
- минимальное число полупространств не возрастает при сечении

Проекция

Сечение

Примеры

шар
$$\|\cdot\|_\infty$$
-нормы

- 2ⁿ вершин
- 2*n* полупространств

шар
$$\|\cdot\|_1$$
-нормы

- \bullet 2ⁿ полупространств
- 2*n* вершин

ортант
$$\mathbb{R}^n_+$$

- *п* полупространств
- п экстремальных лучей

Пример: шар 1-нормы

нужно описать множество $X = \{x \in \mathbb{R}^n \mid \|x\|_1 \leq 1\}$ линейными условиями

$$\sum_{i=1}^{n} \sigma_i x_i \le 1 \qquad \forall \ \sigma \in \{-1, 1\}^n$$

плохое описание: 2^n неравенств

$$x = \lambda_{+} - \lambda_{-}$$
: $\lambda_{+}, \lambda_{-} \ge 0, \ \langle 1, \lambda_{+} + \lambda_{-} \rangle = 1$

хорошее описание: 2n неравенств, одно равенство, n дополнительных переменных

X представлено в виде проекции симплекса размерности 2n-1

Представление множеств через вершины

политоп с малым количеством вершин можно представить через выпуклые комбинации

$$x = \sum_{i=1}^{m} \lambda_i x_i, \quad \lambda \ge 0, \ \langle \lambda, 1 \rangle = 1$$

в описание полиэдра X нужно добавить неотрицательную комбинацию экстремальных рецессивных направлений

$$x = \sum_{i=1}^{m} \lambda_i x_i + \sum_{j=1}^{m'} \mu_j y_j, \quad \lambda, \mu \ge 0, \ \langle \lambda, 1 \rangle = 1$$

 x_i — вершины, y_j — генераторы экстремальных лучей рецессивного конуса полиэдра X

полиэдр представляется как сумма политопа и рецессивного конуса

$$x = \sum_{i=1}^{5} \lambda_i x_i + \sum_{j=1}^{2} \mu_j y_j, \quad \lambda, \mu \ge 0, \ \langle \lambda, 1 \rangle = 1$$

Представление минимальной сложности

пусть дан политоп X с I вершинами, описываемый m линейными неравенствами

Можно ли представить X через политоп Y с меньшей сложностью (числом вершин или неравенств в представлении)? Какова минимальная сложность представления? $\min(I, m)$?

минимальная сложность инвариантна при аффинных биекциях

сконцентрируемся на числе неравенств

если X — аффинное сечение Y, то для описания Y нужно не менее m неравенств

если X — аффинная проекция Y, то число неравенств иногда можно понизить

Пример

для представления шестиугольника нужно 6 неравенств добавлением одной переменной можно перейти к описанию с 5 неравенствами

Матрица невязок

пусть $X=\{x\in\mathbb{R}^n\mid Ax\leq b\}$ — политоп с вершинами x_1,\ldots,x_l , $b\in\mathbb{R}^m$

матрица невязок $S \in \mathbb{R}_+^{m imes I}$ политопа X определяется по-элементно через

$$S_{ij} = (b - Ax_j)_i$$

аффинные преобразования координат, умножения неравенств на положительные константы, и перестановки неравенств и вершин действуют на S умножением на автоморфизмы ортантов \mathbb{R}^m_+ , \mathbb{R}^l_+ слева и справа

автоморфизм \mathbb{R}^n_+ имеет вид $D\cdot P$, где D — диагональная положительно определённая матрица, а P — матрица некоторой перестановки

Теорема Яннакакиса

пусть $S \in \mathbb{R}_+^{m imes l}$ — неотрицательная матрица

heotpuцательным paнгом S называется минимальное число k такое, что существует факторизация

$$S = FG$$

c
$$F \in \mathbb{R}_{+}^{m \times k}$$
, $G \in \mathbb{R}_{+}^{k \times l}$

неотрицательный ранг инвариантен по отношению к действию справа и слева автоморфизмов ортанта

Teopeмa (Yannakakis)

Пусть X — политоп. Минимальное число неравенств, нужное для описания политопа Y такого, что X является проекцией Y, равно неотрицательному рангу матрицы невязок S политопа X.

Пример

пусть $X=\bigcap_{l=1}^6 H_l\subset \mathbb{R}^2$ — регулярный шестиугольник с вершинами $x_k=(\cos \frac{\pi k}{3},\sin \frac{\pi k}{3})^T$, $k=1,\ldots,6$

функционалы, определяющие полуплоскости H_{l} , имеют вид

$$f_l(x) = \left\langle \left(\cos\frac{\pi(l+\frac{1}{2})}{3}, \sin\frac{\pi(l+\frac{1}{2})}{3}\right), x \right\rangle - \cos\frac{5\pi}{6}$$

матрица невязок состоит из элементов

$$S_{lk} = f_l(x_k) = \cos \frac{\pi(k - l - \frac{1}{2})}{3} - \cos \frac{5\pi}{6}$$

$$S = \begin{pmatrix} \sqrt{3} & \sqrt{3} & \frac{\sqrt{3}}{2} & 0 & 0 & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \sqrt{3} & \sqrt{3} & \frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & \sqrt{3} & \sqrt{3} & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & \frac{\sqrt{3}}{2} & \sqrt{3} & \sqrt{3} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & 0 & 0 & \frac{\sqrt{3}}{2} & \sqrt{3} & \sqrt{3} \\ \frac{\sqrt{3}}{2} & 0 & 0 & \frac{\sqrt{3}}{2} & \sqrt{3} & \sqrt{3} \end{pmatrix}$$

$$= \frac{\sqrt{3}}{2} \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

можно показать, что неотрицательный ранг S действительно равен 5

Построение проекции

пусть $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ — политоп с матрицей невязок

$$b1^T - AX = S = FG$$

где столбцы X содержат вершины x_j политопа P, а F,G — неотрицательные факторы

определим политоп Y как пересечение неотрицательного ортанта с аффинной оболочкой столбцов G

определим проекцию

$$\Pi = (0, I) \begin{pmatrix} b^T b & -b^T A \\ -A^T b & A^T A \end{pmatrix}^{-1} \begin{pmatrix} b^T \\ -A^T \end{pmatrix} F$$

Построение проекции

имеем

$$FG = (b, -A) \cdot \begin{pmatrix} 1' \\ X \end{pmatrix},$$
$$\begin{pmatrix} b^T b & -b^T A \\ -A^T b & A^T A \end{pmatrix}^{-1} \begin{pmatrix} b^T \\ -A^T \end{pmatrix} F \cdot G = \begin{pmatrix} 1^T \\ X \end{pmatrix}$$

откуда

$$\Pi G = X$$

далее для любого y = Gz имеем

$$\langle 1, z \rangle b - A \Pi y = (b, -A) \begin{pmatrix} 1^T \\ \Pi G \end{pmatrix} z = (b, -A) \begin{pmatrix} 1^T \\ X \end{pmatrix} z$$
$$= (b, -A) \begin{pmatrix} b^T b & -b^T A \\ -A^T b & A^T A \end{pmatrix}^{-1} \begin{pmatrix} b^T \\ -A^T \end{pmatrix} FGz = Fy$$

Построение проекции

```
любой столбец y=Ge_j фактора G является элементом политопа Y имеем \Pi y=\Pi Ge_j=Xe_j=x_j\in P, откуда P\subset \Pi[Y] пусть теперь y\in Y, т.е. y\geq 0, y=Gz имеем \langle 1,z\rangle=1, b-A\Pi y=Fy\geq 0 откуда x=\Pi y\in P и \Pi[Y]\subset P отсюда получаем \Pi[Y]=P
```

Пример

вернёмся к примеру с шестиугольником

политоп Y задаётся пересечением \mathbb{R}^5_+ с аффинной оболочкой матрицы

$$G = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

аффинная оболочка 3-х мерная

проекция $\Pi:\mathbb{R}^5 o\mathbb{R}^2$ задаётся матрицей

$$\begin{pmatrix} 0 & -\frac{1}{4} & -\frac{3}{4} & \frac{1}{4} & \frac{3}{4} \\ 0 & \frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} \end{pmatrix}$$

Представление регулярного многогранника

регулярный многогранник с n вершинами представляется пересечением n полуплоскостей

но существует поднятие, в котором можно обойтись всего $O(\log n)$ полуплоскостями

это позволяет хорошо аппроксимировать диск проекциями политопов

так как с помощью произведения конусов над двумерными дисками можно представить шар любой размерности, общие задачи конично-квадратичного программирования хорошо аппроксимируются ЛП

Конструкция Немировского

регулярный многогранник с 2^{n+2} вершинами, содержащий диск радиуса 1 и содержащийся в диске радиуса $\frac{1}{\cos \frac{\pi}{2^{n+2}}}$, представляется в виде

$$P = \left\{ x \mid \exists \ u_0, \dots, u_n, v_1, \dots, v_n : \ v_i = \begin{pmatrix} \cos \frac{\pi}{2^{i+1}} & \sin \frac{\pi}{2^{i+1}} \\ -\sin \frac{\pi}{2^{i+1}} & \cos \frac{\pi}{2^{i+1}} \end{pmatrix} u_{i-1}, \right.$$
$$u_{i,1} = v_{i,1}, \ u_{i,2} \ge |v_{i,2}|, \ i = 1, \dots, n;$$
$$|x| \le u_0, \ \begin{pmatrix} 1 & 0 \\ -\tan \frac{\pi}{2^{n+2}} & 1 \end{pmatrix} u_n \le (1,0)^T \right\}$$

здесь $x,u_i,v_i\in\mathbb{R}^2$, а модуль |x| берётся по-элементно

P является проекцией политопа в \mathbb{R}^{n+4} , задающегося 2n+6 линейными неравенствами

Конструкция Немировского

аргументы векторов

$$\begin{split} \arg x &\in [-\pi,\pi], \quad \arg u_0 \in [0,\tfrac{\pi}{2}], \quad \arg v_1 \in [-\tfrac{\pi}{4},\tfrac{\pi}{4}], \\ \arg u_1 &\in [0,\tfrac{\pi}{4}] \ \dots \ \arg v_n \in [-\tfrac{\pi}{2^{n+1}},\tfrac{\pi}{2^{n+1}}], \quad \arg u_n \in [0,\tfrac{\pi}{2^{n+1}}] \end{split}$$

нормы векторов

$$||x|| \le ||u_0|| = ||v_1|| \le ||u_1|| = ||v_2|| \dots ||u_n|| \le \frac{1}{\cos \frac{\pi}{2^{n+2}}}$$

с другой стороны, возможно

$$||x|| = ||u_0|| = ||v_1|| = ||u_1|| = ||v_2|| = \cdots = ||u_n|| = \alpha$$

для любого $\alpha \in [0,1]$

Опорные плоскости

Лемма

Пусть $P = \{x \mid Ax \leq b\}$ — полиэдр, $x^* \in \partial P$ — точка на его границе, $H = \{x \mid u^T x = b_0\}$ — опорная плосткость к P в x^* , τ .e.

$$P \cap C := P \cap \{x \mid u^T x > b_0\} = \emptyset, \quad u^T x^* = b_0$$

Тогда существует вектор $\mu \geq 0$ такой, что $u = A^T \mu$, $b_0 = b^T \mu$.

схема доказательства

- пусть $I = \{i \mid (Ax^* b)_i = 0\}, P' = \{x \mid (Ax b)_I \le 0\},$ тогда $C \cap P' = \emptyset$
- u не отделимо строго от $K = \{A^T \mu \mid \mu \geq 0, \ \mu_j = 0 \ \forall \ j \notin I\},$ и $u \in K$
- ullet существует $\mu \geq 0$ что $\mu_j = 0$ для всех $j
 ot\in I$ и $u = A^T \mu$
- ullet отсюда $\mu^T(Ax^*-b)=0$ и $b_0=\mu^TAx^*=\mu^Tb$

u представляется в виде неотрицательной линейной комбинации направляющих $a_1,\,a_2,\,$ соответствующих активным ограничениям

Теорема об альтернативе

Teopeмa (Farkas)

Пусть $P = \{x \mid Ax \leq b\}$. Тогда либо $P \neq \emptyset$, либо существует $\mu \geq 0$ такое, что $\mu^T A = 0$, $\mu^T b = -1$.

доказательство

- ullet если $P=\emptyset$, то такого μ не существует
- пусть $P = \emptyset$, $P' = \{(x,t) | Ax bt = (A,-b)(x^T,t)^T \le 0\}$, $C = \{(x,t) | t = (0,1)(x^T,t)^T > 0\}$, тогда $P' \cap C = \emptyset$
- ullet по лемме существует $\mu \geq 0$ такое, что $(0,1) = \mu^{\mathcal{T}}(A,-b)$

либо P непусто, либо неотрицательная комбинация неравенств даёт сертификат недопустимости системы

Версия с равенствами

Следствие

Пусть $P = \{x \mid Ax \leq b, \ Cx = d\}$. Тогда либо $P \neq \emptyset$, либо существует $\mu \geq 0$, ν такие, что $\mu^T A + \nu^T C = 0$, $\mu^T b + \nu^T d = -1$.

доказательство

- ullet представим P в виде $\{x\mid Ax\leq b,\ Cx\leq d,\ -Cx\leq -d\}$
- по теореме либо $P=\emptyset$, либо существуют $\mu,\nu_+,\nu_-\geq 0$ такие, что $\mu^TA+\nu_+^TC-\nu_-^TC=0$, $\mu^Tb+\nu_+^Td-\nu_-^Td=-1$
- положим $\nu = \nu_{+} \nu_{-}$

т.е. сертификат можно строить и комбинируя равенства с коэффициентами любого знака

Стандартная форма

рассмотрим произвольную линейную программу

$$\min_{x \in \mathbb{R}^n} c^T x : Ax = b, Cx \le d.$$

введём вектор *невязок у* того же размера m, что и d, и запишем ЛП в виде

$$\min_{x,y} \langle (c,0), (x,y) \rangle : \qquad \begin{pmatrix} A & 0 \\ C & I \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b \\ d \end{pmatrix}, \quad y \in \mathbb{R}_+^m$$

так как допустимое множество не содержит прямой, часть равенств можно использовать для удаления переменных x переменные x записываются как аффинные функции от y и подставляются в оставшиеся уравнения и функионал цены

Стандартная форма

после переименования матриц и переменных и удаления константы в функционале получаем ЛП *стандартного* вида

$$\min_{x \ge 0} c^T x : \qquad Ax = b$$

умножением отдельных равенств на ± 1 можно добится $b \geq 0$

эту линейную программу будем называть *прямой* условимся также, что

$$A \in \mathbb{R}^{m \times n}, \quad c, x \in \mathbb{R}^n, \quad b \in \mathbb{R}^m$$

Граница снизу

для любой допустимой точки x значение $\langle c, x \rangle$ является верхней границей на оптимальное значение задачи

пусть $y \in \mathbb{R}^m$ такое, что $c \geq A^T y$

тогда для любого допустимого x имеем

$$\langle b, y \rangle = y^{\mathsf{T}} b = y^{\mathsf{T}} A x \le c^{\mathsf{T}} x = \langle c, x \rangle$$

таким образом y есть сертификат того, что оптимальное значение ЛП не ниже значения $\langle b,y \rangle$

нахождение *наилучшей* нижней оценки такого типа можно сформулировать в виде ЛП

$$\max_{y} \langle b, y \rangle$$
 : $A^T y \leq c$

Двойственная ЛП

введём невязки s для этой ЛП, которая представится в виде

$$\max_{s \ge 0, y} \langle b, y \rangle : \qquad s + A^T y = c$$

эта программа называется *двойственной* в стандартном виде для любой допустимой для прямой ЛП точки x значение $\langle c, x \rangle$ является *верхней* границей для оптимального значения двойственной программы

напомним, что

$$s \in \mathbb{R}^n$$
, $y \in \mathbb{R}^m$

однако, c,s и x находятся в двойственных друг к другу векторных пространствах, равно как и b и y

Прямо-двойственная симметрия

пусть $\mathcal{A}_P = \{x \mid Ax = b\}, \ \mathcal{A}_D = \{s \mid \exists \ y: \ s + A^T y = c\}$ аффинные оболочки допустимых множеств, а

$$\mathcal{L}_P = \{ x \mid Ax = 0 \}, \quad \mathcal{L}_D = \{ s \mid \exists \ y : \ s + A^T y = 0 \}$$

соответствующие линейные подпространства пусть $x_0 \in \mathcal{A}_P$, тогда для любого $s \in \mathcal{A}_D$

$$\langle x_0, s \rangle = \langle x_0, c - A^T y \rangle = const - \langle b, y \rangle$$

также пусть $s_0 = c - A^T y_0 \in \mathcal{A}_D$, тогда для любого $x \in \mathcal{A}_P$ $\langle s_0, x \rangle = \langle c - A^T y_0, x \rangle = \langle c, x \rangle - \langle y_0, b \rangle = \langle c, x \rangle - const$

- ullet \mathcal{L}_P , \mathcal{L}_D ортогонально дополняют друг друга
- ullet в прямой ЛП цена задаётся функционалом из ${\cal A}_D$ с точностью до константы
- в двойственной ЛП на минимизацию цена задаётся функционалом из \mathcal{A}_{P} с точностью до константы

Двойственный зазор

пусть x, s, y — допустимые точки для прямой и двойственной задачи

тогда разница значений функционалов равна

$$\langle c, x \rangle - \langle b, y \rangle = \langle c, x \rangle - \langle Ax, y \rangle = \langle x, c - A^T y \rangle = \langle x, s \rangle$$

величина $\langle x,s \rangle \geq 0$ называется двойственным зазором для прямо-двойственной пары точек x,s,y она даёт оценку на близость данной пары к решению задачи по функционалу

если $\langle x,s \rangle = 0$, то x,s,y являются решением прямой и двойственной задач

это условие можно записать в виде условия комплементарности

$$x_i s_i = 0 \quad \forall i = 1, \ldots, n$$

Сильная двойственность

Теорема

Если и прямая, и двойственная ЛП допустимы, то их оптимальные значения совпадают, решения этих программ существуют, и для любой прямо-двойственной пары решений выполнено условие комплементарности.

То же имеет место, если одна из этих ЛП допустима и ограничена.

- если прямая задача неограничена, то двойственная недопустима
- если двойственная задача неограничена, то прямая недопустима
- может случиться что *обе* задачи недопустимы

Доказательство

сначала докажем следующее утверждение

Лемма

Пусть прямая задача допустима, и не имеет решения со значением, не превышающим некоторый порог $v \in \mathbb{R}$. Тогда существует допустимая точка для двойственной ЛП со значением, строго большим, чем v.

- пусть $C = \{x \mid c^T x \le v\}$, $P = \{x \mid -x \le 0, \ Ax = b\}$, тогда $C \cap P = \emptyset$
- по теореме об альтернативе существуют $\lambda_0,\lambda\geq 0$, μ такие, что $\lambda_0c-\lambda^TI-\mu^TA=0$, $\lambda_0v-\mu^Tb=-1$
- ullet если $\lambda_0=0$, то $P=\emptyset$, противоречие
- ullet положим $s=rac{\mu}{\lambda_0}$, тогда $c-s^TA\geq 0$, $v+rac{1}{\lambda_0}=s^Tb$
- ullet двойственная задача имеет допустимую точку со значением $v + \lambda_0^{-1} > v$

Доказательство

если прямая задача имеет оптимальное значение v^* , но оно не достигается, то по лемме двойственная задача имеет допустимую точку со значением $> v^*$, противоречие

то же рассуждение можно провести, переставив прямую и двойственную задачу местами

следствия:

- если прямая задача ограничена и допустима, то решение существует
- оптимальное значение двойственной равно оптимальному значению прямой
- по симметрии решение двойственной также существует
- двойственный зазор равен нулю
- выполнено условие комплементарности

Пример

рассмотрим прямую ЛП

$$\min_{x=(x_1,x_2)^T \ge 0} -x_2 = (0,-1) \cdot x : \qquad x_1 = (1,0) \cdot x = -1$$

эта задача недопустима

двойственная задача имеет вид

$$\max_{s \ge 0, y} -y = (-1) \cdot y : \qquad s + (1, 0)^T \cdot y = s + (y, 0)^T = (0, -1)^T$$

она также недопустима

Условия оптимальности

прямо-двойственная пара точек x, s, y является решением задачи, если выполнены

- ullet аффинное условие прямой допустимости Ax=b
- аффинное условие двойственной допустимости $s+A^Ty=c$
- ullet условие прямой неотрицательности $x\geq 0$
- ullet условие двойственной неотрицательности $s\geq 0$
- ullet условие комплементарности $x_i s_i = 0$, $i = 1, \dots, n$

каждое условие в отдельности и некоторые комбинации легко достичь

достичь все условия одновременно означает решить задачу

Методы решения ЛП

условия, выполненные в итерациях разных классов методов

	прямой	двойственный	внутренняя	недопустимая
	симплекс	симплекс	точка	внутренняя
				точка
$x \ge 0$	V	X	строго	строго
$s \geq 0$	X	V	строго	строго
$x \in \mathcal{A}_P$	V	V	V	X
$x \in \mathcal{A}_P$ $s \in \mathcal{A}_D$ $x_i s_i = 0$	V	V	V	X
$x_i s_i = 0$	V	V	X	X

методы, в которых поддерживается условие $\langle x,s \rangle = 0$, называются методами *активных ограничений* методы, в которых поддерживаются условия x,s>0, называются методами *внутренней точки*

Спасибо за внимание