EXAM: Modèle linéaire

La durée de l'examen est 3 heures. Les calculatrices, téléphones portables et ordinateurs sont interdits. Pour chaque étudiant, une feuille A4 recto-verso est autorisée. Chaque réponse doit être justifiée. Des points seront attribués pour la présentation.

Questions générales

- Soit X et Y deux vecteurs Gaussiens indépendants de dimension respective p et q. Donner la loi de AX + BY en fonction des moyennes (μ_X et μ_Y) et covariances (Σ_X et Σ_Y) de X et Y, où $A \in \mathbb{R}^{2 \times p}$ et $B \in \mathbb{R}^{2 \times q}$ sont des matrices déterministes.
- \bigvee 2) Soit y_1, y_2, \ldots, y_n i.i.d. tel que $\mathbb{E}[y_1^2] < \infty$. Soit $(w_i)_{1 \le i \le n}$ un vecteur de poids positifs et déterministes. Quel estimateur $\hat{\mu}$ minimise $\sum_{i=1}^n w_i (y_i \mu)^2$? Donner son biais et sa variance, pour tout n > 1.
- **¥**3) Soit $y_1, y_2, ..., y_n$ i.i.d. tel que $\mathbb{E}[y_1^2] < \infty$. Soit $(w_i)_{1 \le i \le n}$ un vecteur de poids positifs et déterministes. Quel estimateur $\hat{\mu}$ minimise $\sum_{i=1}^n w_i (y_i \mu)^2 + \lambda \mu^2$? Donner son biais et sa variance, pour tout n > 1.
 - 4) On observe un échantillon i.i.d. $(X_i)_{1 \leq i \leq n}$. On note $\sigma^2 = \text{Var}(X_1)$. Donner un estimateur sans biais de σ^2 . Justifier.
- **V**5) La fonction $x \mapsto e^{-x^2}$, définie su \mathbb{R} , est-elle convexe? Est-elle concave?
- \checkmark 6) On note A^+ la pseudo-inverse de A. En utilisant la SVD de X (dont on introduira les notations), montrer que $X(X^TX)^+X^T$ est un projecteur orthogonal. On précisera son espace image.
- 7) Donner le projeté orthogonal du vecteur $Y \in \mathbb{R}^n$ sur $\text{Vect}(e_k)$, avec e_k le k-ème vecteur de la base canonique de \mathbb{R}^n .
- **X**8) Montrer que pour toute matrice A, $\ker(A) = \ker(A^T A)$.

Moindres carrés : $Y = (y_1, \dots, y_n)^T \in \mathbb{R}^n$ et $X = (1_n, \tilde{X}) \in \mathbb{R}^{n \times (p+1)}, \ 1_n = (1, \dots, 1)^T \in \mathbb{R}^n$.

- 9) Soit $\mu_n = \tilde{X}^T 1_n/n$ et $X_c = \tilde{X} 1_n \mu_n^T$. Montrer que l'assertion " $\exists u \neq 0$ dans \mathbb{R}^{p+1} telle que Xu = 0" est équivalente à " $\exists v \neq 0$ dans \mathbb{R}^p telle que $X_c v = 0$ ". En admettant que pour toute matrice A, $\ker(A) = \ker(A^T A)$, on exprimera la condition d'unicité des moindres-carrées à l'aide de la matrice de covariance empirique.
- 10) On suppose que X est de rang plein et on note $\hat{\theta}_n$ l'estimateur OLS. On note $\tilde{X} = (\tilde{X}_1, \dots, \tilde{X}_p)$. On change l'échelle d'une des variables : \tilde{X}_k est remplacé par $\tilde{X}_k b$, où b > 0.
 - (a) Soit $X_b = (1, X_1, \dots, X_k b, \dots, X_p)$. Montrer que $X_b = XD$ où D est une matrice diagonale que l'on précisera.
 - (b) Soit $\hat{\theta}_{b,n}$ l'estimateur OLS associé à X_b . Exprimer $\hat{\theta}_{b,n}$ en fonction de $\hat{\theta}_n$ et D.
 - (c) Donner la variance de $\hat{\theta}_{b,n}$.
 - (d) On a vu que l'estimateur $\hat{\theta}_n$ était affecté par un changement d'échelle. Qu'en est-il de la valeur prédite par le modèle?
- X11) Donner la formulation de la pseudo inverse de X connaissant sa SVD (réduite) : $X = \sum_{i=1}^{r} s_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$, avec $r = \operatorname{rg}(X)$ et $s_1 \ge \cdots \ge s_r > 0$. A l'aide de cette dernière et du vecteur Y, exprimer l'estimateur OLS. On notera que X n'est pas nécessairement de rang plein ici.
- **√**12) Soit n un entier pair. Donner une formule explicite du problème $\arg\min_{\theta \in \mathbb{R}^{p+1}} \frac{1}{2}(Y X\theta)^{\top} \Omega(Y X\theta)$ pour une matrice $\Omega = \operatorname{diag}(w_1, \dots, w_n)$ telle que $w_i = 1$ si i est pair et 0 si i est impair. Donner une condition équivalente à l'unicité des solutions.

Tests, intervalle de confiance et Bootstrap. On suppose toujours $Y = (y_1, \ldots, y_n)^T \in \mathbb{R}^n$ et $X = (1_n, \tilde{X}) \in \mathbb{R}^{n \times (p+1)}$. On note $\theta^* = (\theta_0^*, \ldots, \theta_p^*)^T \in \mathbb{R}^{p+1}$.

- \sim 13) Dans le cas du modèle de régression (avec design deterministe) et bruit Gaussien centré de variance σ^2 , donner la loi de l'estimateur des moindres carrés $\hat{\theta}_n$ en supposant que X est de plein rang. Soit $x \in \mathbb{R}^{p+1}$ et l'hypothèse nulle $H_0: x^T \theta^* = 10$. En déduire une statistique de test et une région critique à 95%.
 - 14) Dans la cadre du modèle linéaire Gaussien avec matrice X de rang plein et bruits de variance σ^2 connue, donner la loi de la statistique $T = (\hat{\theta}_k \theta_k^*)/\sqrt{\sigma^2 s_k}$, avec $s_k = e_k^T (X^\top X)^{-1} e_k$, $k \in \{0, \dots p\}$ et e_{k-1} le k-ème vecteur de la base canonique. En déduire un intervalle de confiance à 95% pour le paramètre θ_k^* .
 - 15) Soient Z_1, \ldots, Z_n des variables aléatoires i.i.d. d'espérance μ et de variance finie. Écrire un pseudo code de bootstrap pour le test sur la moyenne $\mu = 1$. On définira la racine \hat{R} et la racine bootstrap \hat{R}^* .

Ridge. A partir de maintenant $X \in \mathbb{R}^{n \times p}$. On note ici $\hat{\theta}_n = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{2} \|Y - X\theta\|_2^2 + \frac{\lambda}{2} \|\theta\|_2^2$ l'estimateur Ridge, où $\lambda > 0$.

(16) Exprimer $\hat{\theta}_n$.

- 17) On rappelle la SVD complète $X = USV^T$ où $U \in \mathbb{R}^{n \times n}$ et $V \in \mathbb{R}^{p \times p}$.
 - (a) Montrer que

$$(X^{T}X + \lambda I_{p})^{-1}X^{T} = X^{T}(XX^{T} + \lambda I_{n})^{-1}$$

(hint : on utilisera ici la SVD complète de X)

- (b) Si $n \ll p$, donner une formule alternative pour calculer l'estimateur Ridge avec moins d'opération. Comparer le nombre d'opérations nécessaires.
- 18) Donner une formule explicite de

$$\hat{\theta}_n = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} (Y - X\boldsymbol{\theta})^T \Omega (Y - X\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_2^2,$$

pour une matrice diagonale $\Omega = \operatorname{diag}(w_1, \ldots, w_n)$ dont les coefficients sont strictement positifs.

- $\sqrt{19}$ Donner en tout point la sous-différentielle de la fonction réelle $x \mapsto \max(-x, 0)$.
 - 20) Donner l'étape de mise à jour principale en descente par coordonnée pour résoudre le problème de l'Elastic Net : $\hat{\theta}_{\lambda} = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \left[\frac{1}{2} \|Y X\boldsymbol{\theta}\|_2^2 + \lambda \left(\alpha \|\boldsymbol{\theta}\|_1 + (1-\alpha) \frac{\|\boldsymbol{\theta}\|_2^2}{2} \right) \right].$