

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2021 - 1st Year Examination - Semester 1

EN1106 – Introductory Mathematics Multiple Choice Question Paper

(ONE HOUR)

Important Instructions:

- The duration of the paper is 1 (one) hour.
- The medium of instruction and guestions is English.
- The paper has **25 questions** and **06 pages**.
- All questions are of the MCQ (Multiple Choice Questions) type.
- All questions should be answered.
- Each question will have 5 (five) choices with **one or more** correct answers.
- All questions will carry equal marks.
- There will be a penalty for incorrect responses to discourage guessing.
- The mark given for a question will vary from 0 (All the incorrect choices are marked & no correct choices are marked) to +1 (All the correct choices are marked & no incorrect choices are marked).
- Answers should be marked on the special answer sheet provided.
- Note that questions appear on both sides of the paper.

 If a page is not printed, please inform the supervisor immediately.
- Mark the correct choices on the question paper first and then transfer them to the given answer sheet which will be machine marked. Please completely read and follow the instructions given on the other side of the answer sheet before you shade your correct choices.
- Calculators are not allowed.
- All Rights Reserved.

(a) 50 cm

(b) $10\sqrt{34}$ cm

(c) 40 cm

(d) $10\sqrt{41}$ cm

(e) 30 cm

If x = 5 then $x + \frac{1}{1 + \frac{1}{x}}$ is equal to

(a) 31/6

(b) 37/6

(c) 35/6

(d) 33/6

(e) 29/6

How many prime numbers are there between 100 and 120?

(a) 8

(b) 7

(c) 6

(d) 5

(e) 4

The solution to the following set of simultaneous equations is

$$\frac{1}{x} + \frac{1}{y} = 5$$
 and $\frac{1}{x} - \frac{1}{y} = 1$

(a) x = 3, y = 2(b) x = 1/3, y = 1/2(c) x = 2, y = 3(d) x = 1/2, y = 1/3(e) x = 1/3, y = -1/2

Two cars A and B which are 100km apart move in the same direction where A is in front of B and, B starts 30 minutes after A. If A moving at 50kmph and B at 100kmph, how long will it take for B to overtake A?

(a) 2 hours

(b) 2 hours and 15 minutes

(c) 3 hours

(d) 2 hours and 20 minutes

(e) 2 hours and 30 minutes

Which of the following lines are parallel to the line 2x + 3y - 7 = 0.

(a) 4x + 8y - 7 = 0 (b) 4x + 6y - 15 = 0(d) 2x + 3y - 6 = 0 (e) 4x - 6y - 6 = 0

(c) 2x + 4y - 4 = 0

(a) 2 and 3		
(b) -2 and -3		
(c) -2 and -1		
(d) -1 and -3		
(e) -2 and 3		
The expression $1 + \frac{1}{1 - \frac{2}{1 - \frac{2}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\frac{1}{x^2}$ is equal to	
		22
(a) $\frac{2x^2}{1-x^2}$	(b) $\frac{2x^2}{1+x^2}$	(c) $\frac{2x^2}{2+x^2}$
(a) $\frac{2x^2}{1-x^2}$ (d) $\frac{2x}{1-x^2}$	(e) $\frac{2x}{1+x^2}$	
	n the possible values of x are	
(a) $x > 1$ (d) $-1 < x < 5$	(b) $x > 0$	(c) Any real number
(d) $-1 < x < 5$	(e) $-5 < x < 1$	
A solid metal cube of side height of this cone in cm is (a) $6k/\pi$	k cm is melted and a cone of bases $\frac{1}{3k/\pi}$	se radius $k/2$ cm is made. The (c) $9k/\pi$
(d) $24k/\pi$	(e) $12k/\pi$	
The sum of squares of two sum of x and y is	numbers x and y is 2, and their	product is 1. Then the square of th
	(b) 3	(c) 6
(a) 4		
(a) 4 (d) 2	(e) 8	

(b) 10×2^9

(e) 10×2^8

(a) 10×2^{10}

(d) 5120

(c) 2560

- 13) If |4x 1| > 3, then x will satisfy
 - (a) x > 1
 - (b) x > 2
 - (c) x < 1
 - (d) x < -2
 - (e) x < -1/2
- A spherical bowl of diameter 20 cm is full of water. This is emptied by pouring the water into a cuboid shaped vessel with a square base of side 10 cm. Then the height of water in the cuboid shaped vessel in cm is
 - (a) $20\pi/3$

(b) $60\pi/3$

(c) $30\pi/4$

(d) $40\pi/3$

- (e) $27\pi/4$
- The price of a pen, a pencil and an eraser are in the ratio 4:3:2. If the price of 3 pens, 2 pencils and an eraser is Rs. 200, find the prices of 3 pens, 2 pencil and an eraser as a triad (pen, pencil, eraser).
 - (a) (120, 60, 20)

- (b) (120, 40, 40)
- (c) (80, 60, 60)

(d) (110, 75, 15)

- (e) (100, 60, 40)
- 16) The value of $log_2 3 = x$ then $log_4 12$ is equal to
 - (a) $\frac{x+2}{2}$

(b) $\frac{x+1}{2}$

(c) $\frac{x-2}{2}$

(d) $\frac{x+3}{2}$

- (e) $\frac{x+2}{3}$
- 17) If the sum of the first *n* cubic numbers is $\left[\frac{n(n+1)}{2}\right]^2$, then the sum $5^3 + 6^3 + 7^3 + 8^3 + 9^3$ is
 - (a) 2215

(b) 1925

(c) 1825

(d) 2125

(e) 2225

 $\frac{36x^5}{(9x^2)^{2/3} \times 27x} = 2^a \times 3^b \times x^c, \text{ then the triad } (a, b, c) \text{ is equal to}$

- (a) (2, -7/3, -8/3)
- (b) (3, -7/3, -8/3)
- (c) (3, 7/3, 8/3)

- (d) (2, -7/3, 8/3)
- (e) (2, 7/3, 8/3)

19)

A invested Rs. 500,000 on 1st January 2021 in a business. His friend B joined this business on 1st April 2021 with Rs 1,000,000. In what ratio should they divide the year end profits.

- (a) A : B = 3 : 2
- (b) A : B = 1 : 1
- (c) A : B = 2 : 3

- (d) A : B = 3 : 4
- (e) A : B = 1/3 : 1/2

20)

The solution to the equation $log_9(2-3x) = log_3(\frac{1}{3})$ is

- (a) x = 27/17
- (b) x = 15/27

(c) x = 16/27

- (d) x = 17/27
- (e) x = 27/16

21)

If a fraction has its denominator 7 more than its numerator (x) and the fraction is positive, but less than 1/2, then the numerator is

x < 7 (a)

- (b) 7 < x < 14
- (c) x < -7

(d) x < 14

(e) -14 < x < -7

22)

Rs X invested at compound interest of 100r % per annum for 2 years yields the same amount when it is invested at simple interest of 10 % for 5 years. Then the value of r is

(c) $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}}$

(d)

23) The sum
$$S = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2} + \cdots$$
 is

- (a) more than 10
- (b) is infinite
- (c) less than 4
- (d) is equal to 2
- (e) is equal to 1
- 24) Which of the following are possible solutions of $73 \equiv x \pmod{7}$
 - (a) 3
 - (b) 7
 - (c) 10
 - (d) -4
 - (e) 1
- 25) The remainder when 2^{18} is divided by 17 is
 - (a) 13

(b) 4

(c) 7

(d) 5

(e) 11
