DATASCI207-005/007 Applied Machine Learning

Vilena Livinsky, PhD(c)

School of Information, UC Berkeley

Week 5: 02/05/2025 & 02/06/2025

Today's Agenda

- Multiclass Classification & Metrics
- Walkthroughs:
 - Metrics
 - Multiclass Classification
 - + TensorFlow

Practice

TensorFlow: General Modeling Steps

Activation Functions: Sigmoid vs. Softmax

Sigmoid,

$$\varphi(z) = \frac{1}{1 + e^{-z}}$$

$$\hat{y} := egin{cases} 1 & ext{if } \sigma(z) > 0.5 \\ 0 & ext{otherwise} \end{cases}$$

Image Ref., Edited: Raschka, S., & Mirjalili, V. (2019). Python Machine Learning, Third Edit.

Logistic Regression: Accuracy

Accuracy __(TP+TN)__ (TP+TN+FP+FN)

- A single threshold accuracy
 - Considers model quality only at one point
 - Threshold: typically, 0.5

- Compare: Model confidence
- Compare: Prediction 0.49 vs.
 0.51 for y=1?

The Confusion Matrix: Binary Classifier

	y'=Sneaker (1)	y'=Other (0)
y=Sneaker (1)	True Positive (TP)	False Negative (FN)
y=Other (0)	False Positive (FP)	True Negative (TN)

Example, consider:

Goal: Want to detect sneaker

• Metric: Accuracy

Actual \ Predicted	Other
Other	990
Sneaker	10

• Correct Predictions: 990

• Total Predictions: 1000

• Accuracy: 99.00%

Accuracy

(TP+TN) (TP+TN+FP+FN)

$$ext{Accuracy} = rac{ ext{Correct Predictions}}{ ext{Total Predictions}} imes 100$$

$$\text{Accuracy} = \frac{990}{1000} \times 100 = 99.00\%$$

- Example: 4 predictions
 - Class 1 = x2(1s)
 - Class 0 = x2 (0s)

0 0.3 Typically, 0.5 threshold $\hat{y}:=egin{cases} 1 & \text{if } \sigma(z)>0.5 \\ 0 & 0.6 \\ 1 & 0.9 \end{cases}$	у	ŷ	_
$\hat{y} := \begin{cases} 1 & \text{if } \delta(z) > 0.5 \\ 0 & \text{otherwise} \end{cases}$	0	0.3	Typically, 0.5 threshold
	1	0.5	$\int 1 \text{if } \sigma(z) > 0.5$
1 0.9	0	0.6	$y := \begin{cases} 0 & \text{otherwise} \end{cases}$
	1	0.9	

- Example: 4 predictions
 - Class 1 = 2 (1s)
 - Class 0 = 2 (0s)
- Consider next all predictions y'as threshold

- Example: 4 predictions
 - Class 1 = 2 (1s)
 - Class 0 = 2 (0s)
- Consider next all predictions y' as threshold

- Example: 4 predictions
 - Class 1 = 2 (1s)
 - Class 0 = 2 (0s)
- Consider next all predictions y'as threshold

True Positive Rate =
$$\frac{TP}{TP + FN}$$
 $\frac{2}{2+0} = 1.0$ $\frac{1}{1+1} = 0.5$ $\frac{1}{1+1} = 0.5$ False Positive Rate = $\frac{FP}{FP + TN}$ $\frac{1}{1+1} = 0.5$ $\frac{1}{1+1} = 0.5$ $\frac{0}{0+2} = 0.0$

Multiclass Confusion Matrix

- Classifier over multiple classes
 - Ex.: shirt-shirt = 514 correct predictions of shirt
 - Ex.: shirt-tshirt = 108 times predicted shirt as tshirt
- Multiclass ROC
 - Scikit-learn: Multiclass ROC
- Confusion Matrix:
 - Sklearn: Confusion Matrix

Precision, Recall, F1

emphasize correctness if we predict outcome is xyz (cost: a high num of FN)

- **Precision** is the percentage of **predicted** positives that were correctly classified
 - how good a model is at predicting the positive class
 - concerned with accuracy of the positive predictions
 - increasing precision reduces recall and vice versa

optimizing for recall helps with minimizing the chance of not detecting

XVZ

 Recall is the percentage of actual positives that were correctly classified

· Consider when: Class imbalance

Consider Use-Cases:

- Fraud detection
- Subscribe or not to a product (Customer Acquisition)
- Medical Field: detection of a tumor with xyz imaging

Recall

TP / (TP+FP)

TP / (TP+FN)

$$F_1 = rac{2}{rac{1}{ ext{precision} + rac{1}{ ext{recall}}}} = 2 imes rac{ ext{precision} imes ext{recall}}{ ext{precision} + ext{recall}} = rac{TP}{TP + rac{FN + FP}{2}}$$

Logistic Regression: Softmax Regression

Another example: walkthrough by Rashka: Multinomial Logistic

examples

Loss: Categorical Cross-Entropy

- Categorical cross-entropy
 - minimizes the distance between the probability distributions output by the model and the true distribution of the targets
- Handling labels in multiclass classification:
 - Encoding via categorical encoding (also known as one-hot encoding)
 - Use: categorical_crossentropy as a loss function
 - Encoding the labels as integers
 - Use: sparse_categorical_crossentropy loss function