MA241: Ordinary Differential Equations

Naman Mishra

January 2024

Contents

0	The Course	1	
	0.1 Introduction	1	
1	Linear Systems	2	Lecture
			01: Wed
_			03 Jan
()	The Course		'24

MS Teams Code: ucwewgr

Textbook: Differential Equations and Dynamical Systems by Lawrence

Perko.

TA: Babhrubahan Bose (PhD student)

Prerequisites: Real analysis, specifically convergence of sequences and series of functions. Linear algebra. Some topology.

0.1 Introduction

We wish to solve systems of the form

$$\dot{x} = f(x)$$

where $x: (a,b) \subseteq \mathbb{R} \to \mathbb{R}^n$, $x(t) = (x_1(t), \dots, x_n(t))$, $f: \mathbb{R}^n \to \mathbb{R}^n$, $f = (f_1, \dots, f_n)$ and

$$\dot{x}(t) \coloneqq (x_1'(t), \dots, x_n'(t)).$$

So the system is shorthand for

$$x'_1(t) = f_1(x_1(t), \dots, x_n(t))$$

:

$$x'_n(t) = f_n(x_1(t), \dots, x_n(t)).$$

We will later show that higher order derivatives and equations like $\dot{x} = f(t, x)$ can be reduced to this form.

1 Linear Systems

Where f is linear, *i.e.*,

$$f(x) = Ax$$
 where $A \in M(n, \mathbb{R})$.

 $M(n,\mathbb{R})$ is the set of all $n \times n$ matrices with real entries.

For n=1 this reduces to $\dot{x}=ax,\,a\in\mathbb{R}$. A (The) solution is $x(t)=ce^{at},\,c\in\mathbb{R}$.

Theorem 1.1 (Uniqueness). All solutions to $\dot{x} = ax$ are of the form $x(t) = ce^{at}$ for some $c \in \mathbb{R}$.

Proof. For any solution x, $(xe^{-at})' = \dot{x}e^{-at} - axe^{-at} = 0$. Thus $x = ce^{at}$ for some $c \in \mathbb{R}$.

Consider n=2.

Definition 1.2 (Uncoupled system). A system $\dot{x} = f(x)$ is uncoupled if f_j does not depend on x_i for $i \neq j$.

Consider an uncoupled linear system

$$\dot{x} = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} x.$$

The unique solution is $x(t) = \begin{pmatrix} c_1 e^{-t} \\ c_2 e^{2t} \end{pmatrix}, c_1, c_2 \in \mathbb{R}.$

Phase Portrait of an ODE System

We can plot the solution curves of this system in \mathbb{R}^2 for various values of the parameters. This plot is called the *phase portrait* of the system. The paths of the solutions are called *orbits*.

We can also write the solution as

$$x(t) = \begin{pmatrix} e^{-t} & 0 \\ 0 & e^{2t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

Consider the map $\phi \colon \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$\phi(t,c) = \begin{pmatrix} e^{-t} & 0\\ 0 & e^{2t} \end{pmatrix} c.$$

 ϕ is then called the flow or the dynamical system associated with the ODE system.

An interpretation of the phase portrait requires viewing the tangent vectors at any point x(t) in a path, as $\dot{x}(t)$ or f(x). The system can be viewed through the lens of its vector field, which is given by f(x). Any solution to the system is simply a curve which lies tangent to the vector field at every point.