Haroun Hassan BRAHIM

🔰 07 58 83 77 78 📗 🔤 haroun-hassan.brahim@etu.univ-amu.fr

Marseille, France

PROFIL | Etudiant en Intelligence Artificielle, spécialisé en Apprentissage Automatique et Apprentissage Profond.

COMPÉTENCES

par Ordinateur, Traitement Automatique du Langage Naturel, (LLMs, Transformers), IA Générative

Data: Traitement, analyse, visualisation

IA: Apprentissage Automatique, Apprentissage Profond, Vision Frameworks: Scikit-learn, keras/TensorFlow, PyTorch

Langages: Python, Java, C/C++, Dart/Flutter, Matlab, R, SQL

Outis/MLOps: Git, MLflow, Docker, AWS, Vercel, Autres: Scrum (Agile), Pytest, JUnit, Slurm

FORMATIONS

Master en Intelligence Artificielle et Apprentissage Automatique

2024 - en cours

Faculté des Sciences AMU | Aix-Marseille Université

Master de Recherche en Technologies Numériques pour la Santé Physique et Mentale

2020 - 2022

Institut Supérieur d'Informatique et de Multimédia de Sfax | *Université de Sfax*

Licence Fondamentale en Sciences Informatiques

2017 - 2020

Faculté des Sciences de Gabès (FSG) | Université de Gabès

EXPÉRIENCES PROFESSIONNELLES

Assistant chercheur stagiaire

Mai 2025 – Juillet 2025

Marseille, France

Centre de Recherche en Psychologie et Neurosciences (CRPN)

- ¤ Bases Cérébrales du traitement de la parole chez le nourrisson: EEG et Apprentissage Automatique
 - Visualisation, prétraitement de données : filtrage, suppression des artefacts et segmentation
 - Mise en place du Pipeline d'apprentissage pour la classification des propriétés sonores à partir des données
 - Décodage EEG : cas des phonèmes /da/ et /ba/, analyse et évaluation

Outils: Scikit-learn, VsCode, Jupyter-Lab, Slurm (Cluster), Git, Gitlab, MNE-Python

Assistant chercheur stagiaire

Février 2022 – Novembre 2022

Multimedia, InfoRmation systems and Advanced Computing Laboratory (MIRACL)

Sfax, Tunisie

- ¤ Détection du MCI à partir des données EEG et FNIRS, basée sur le Deep Learning (Transformers)
 - Analyse, nettoyage et organisation de données
 - Visualisation détaillée et précise de données
 - Personnalisation de l'architecture Transformer
 - Construction du modèle final de classification, entraînement, test et évaluation du modèle

Outils: Tensorflow, Keras, Colab, Jupyter-Lab, Matlab, MNE-Python, Git, Gitlab, CUDA et cuDNN Toolkit

Stagiaire data-analyste

Mars 2021 – Avril 2021

Sfax, Tunisie

Multimedia, InfoRmation systems and Advanced Computing Laboratory (MIRACL)

- ¤ Visualisation et analyse des signaux électroencéphalographiques (EEG)
 - Enregistrement et acquisition de données EEG avec le casque Emotiv EPOC+
 - Visualisation de données avec le logiciel EmotivPro
 - Traitement de données avec élimination d'artefacts
 - Développement d'une interface pour la visualisation et l'analyse de données EEG Outils: Colab, Emotiv EPOC+, EmotivPro, Django, Vuejs

Stagiaire Développeur	📋 Février 2020 – Juin 2020
Unité de Recherche RTIM (Research Team in Intelligent Machines)	■ Gabès, Tunisie
Développement d'une application OCR pour scanner des algorithmes	SCRATCH
 Traitement par filtrage approfondi des images 	
• Segmentation des blocs composants les algorithmes Scratch, basée sur	les contours et le Deep Learning
• Détection et Extraction du texte dans différents blocs segmentés	
• Génération de graphe par DFS et Conversion d'algorithme Scratch en j	python.
Outils: OpenCV, Tesseract-OCR, EAST (An Efficient and Accurate Scen	ne Text Detector), Mask-RCNN, Graphviz
Stagiaire Développeur Intellect Academy Département IT	☐ Janvier 2020 – Février 2020 Gabès, Tunisie
¤ Développement d'une application OCR pour scanner des algorithmes	SCRATCH
 Construction de la base de données à partir des images contenant d'alg 	gorithmes Scratch
• Catégorisation et annotation des images avec le logiciel d'annotation V	⁄IA
Outils: Scratch, VGG Image Annotator (VIA)	
PROJETS ACADÉMIQUES	
Aix-Marseille Université	
¤ Conception et implémentation d'un modèle de langage neuronal base	é sur le (MLP) en PyTorch
• Entraînement du modèle et optimisation par descente de gradient	
• Implémentation de la génération de texte par échantillonnage aléatoir	e à partir des distributions de proba prédites
• Calcul de la perplexité sur un corpus de test pour évaluer la qualité du	modèle.
• Optimisation des performances via le traitement par lots (batching) et	recherche de la taille de batch optimale
¤ Implémentation d'un modèle de langage markovien (unigram, bigra	n, trigram)
• Génération automatique de phrases à partir d'une amorce (<s><s> distributions conditionnelles estimées</s></s>	pour trigram) en tirant aléatoirement selon les
• Utilisation de techniques d'estimation par maximum de vraisemblance	et lissage de Laplace pour gérer les proba nulles.
• Évaluation des modèles via la perplexité et le taux de bonnes prédiction	ns sur des textes masqués
• Analyse comparative des performances entre les modèles unigram, big	ram et trigram sur des corpus segmentés
Laboratoire MIRACL	□ 2021 – 2022
Détection et prédiction de l'état pathologique de la rétine dans des ir	nages OCT
 Prétraitement des données, usage du modèle de classification Inception Détection du cancer de la peau 	
 Prétraitement des données, construction du modèle de classification CI Analyse du Cancer du sein 	NN, entraînement, test et évaluation du modèle
Analyse des données, visualisation des données, sélection de caractéris	tiques et extraction de caractéristiques.
CERTIFICATIONS	LANGUES
CCNA1: Certifié 2020	AZ Français
Cisco Certified Network Associate, Routing and Switching	Anglais
☐ Juillet 2020 – Pas de date d'expiration	Arabe ● ● ● ●
PUBLICATIONS	
3. Haroun Hassan et al. New MCI Detection Method Based on Trans	sformer and EEG Data European Signal Processing

Conference (EUSIPCO) (2023) 🔗