

Segurança da Informação

Resumos Criptográficos (Funções de Hash)

Funções de Hash

- AKA resumos criptográficos.
- Redundâncias anexadas a mensagens com o propósito de detectar alterações.
- Dependem exclusivamente da mensagem (sem chave):

Resumos Criptográficos

- Assinaturas digitais *não* são aplicadas ao *conteúdo* de documentos eletrônicos, mas a *resumos* do conteúdo.
- Motivo: algoritmos de assinatura são muito mais lentos que funções de resumo (hash).

Problemas?

Resumos Criptográficos

Propriedades Fundamentais

- (Resistência a primeira inversão) Dado um resumo R, é inviável encontrar uma mensagem M tal que R = H(M).
- (Resistência a segunda inversão) Dado um resumo R e uma mensagem M_1 tal que $R = H(M_1)$, é inviável encontrar uma outra mensagem $M_2 \neq M_1$ tal que $R = H(M_2)$.
- (Resistência a colisões) É inviável encontrar duas mensagens M_1 e M_2 tais que $H(M_1) = H(M_2)$.

Propriedades Fundamentais

Outras Propriedades

- A alteração de 1 bit da entrada causa a alteração de cerca de metade dos bits de saída (avalanche completa).
- É inviável prever o valor de qualquer bit de saída (balanço perfeito).
- É inviável inverter a função parcialmente (recuperar apenas alguns bits da entrada).
- As propriedades fundamentais valem para qualquer sub-cadeia da saída.

Outras Propriedades

- Certas propriedades empíricas transcendem os objetivos originais de projeto das funções.
- Necessário analisar quantitativamente até que ponto essas propriedades são válidas.
- Algumas propriedades não são válidas em certas aplicações.
- Construções auxiliares estabelecem essas propriedades (algoritmos de MAC).

Projeto de Funções de Hash

- Não existe ainda uma teoria completa para o projeto sistemático de uma função de hash.
- Quase todas as funções de hash existentes, em particular as padronizadas e as mais resistentes a ataques, são derivadas de cifras de bloco.
- A estrutura genérica dessas construções utiliza a cifra de bloco subjacente como uma caixa preta (definida apenas por sua interface).

Projeto de Funções de Hash

- É possível quantificar a segurança de certas construções por *redução*: se for possível violar as propriedades fundamentais dessas construções, então é possível quebrar a cifra de bloco subjacente (qualquer que seja).
- Paradigma Merkle-Damgård: estado interno (resumo parcial) atualizado iterativamente, aplicando uma função de compressão à mensagem particionada em blocos.

Complemento Merkle-Damgård

- Parâmetros:
 - Limite de tamanho de mensagens: $m < 2^N$ bits.
 - Tamanho de bloco: b bits.
 - Tamanho de estado interno: h bits.
- Acrescenta-se à mensagem um bit '1', seguido de tantos bits '0' quantos forem necessários para que o tamanho do resultado seja um múltiplo de b bits, exceto por um espaço final de N bits.
- Anexa-se o valor do tamanho m da mensagem original em bits na forma de um inteiro de N bits, com zeros binários à esquerda.

Complemento Merkle-Damgård

Função de Compressão

- Construção propriamente derivada da cifra de bloco.
- Atualiza o estado interno H_i da função de hash (valor parcial do resumo) a partir do estado anterior H_{i-1} e do bloco corrente Mi da mensagem:

$$(H_{i-1}, M_i) \xrightarrow{\mathcal{F}} H_i$$

- H_{i-1} e M_i participam como entrada e/ou chave da cifra subjacente, e são combinados com a saída cifrada para tornar a construção irreversível.
- O valor R do resumo é o valor final do estado interno H_t , possivelmente transformado (e.g. truncado).

Função de Compressão

Função de Compressão

- Três dentre as funções de compressão demonstravelmente tão seguras quanto a cifra de bloco são mais amplamente empregadas:
 - Davies-Meyer;
 - Matyas-Meyer-Oseas;
 - Miyaguchi-Preneel.
- A primeira é mais popular, mas as outras duas são quantitativamente mais seguras.

Davies-Meyer

Matyas-Meyer-Oseas

Miyaguchi-Preneel

Construções paralelizáveis

- Cálculo paralelo com hardware disponível.
- Incremental em plataformas sequenciais.
- Baixo custo para correção e atualização de resumos acumulados (pequena alteração em grande massa de dados).
- Paradigma Bellare-Micciancio: "randomizethen-combine".

Construções paralelizáveis

• Particionamento da mensagem:

$$M = M_1 M_2 ... M_m$$
; $|M_i| = n (i < m), |M_m| \le n$.

• Função de "randomização":

$$F: \mathbb{N} \times \{0, 1\}^b \to \{0, 1\}^h$$

$$R_i \leftarrow F(i, M_i)$$

Combinação: operação
 de grupo abeliano com 2^h elementos.

$$H(M) \leftarrow R_1 \bullet \dots \bullet R_m$$
.

Construções paralelizáveis

- F pode ser a função de compressão de uma função de hash comum, desde que livre de colisões.
- Operação de combinação:
 - MuHash: multiplicação módulo $p \approx 2^h$ (lenta, mas equivalente ao PLD se F for ideal).
 - AdHash: adição módulo $p \approx 2^h$ (rápida, e equivalente ao problema da mochila ponderada se F for ideal).
 - XHash: XOR (trivialmente quebrável).

Funções de Hash

Família MD

- Desenvolvida por Ronald Rivest.
- MD2, MD4, MD5.
- Completamente quebrada.

Família SHA

- Desenvolvida pela NSA.
- SHA-0, SHA-1: projeto inspirado em MD4.

 SHA-2 (quatro funções: SHA-224, SHA-256, SHA-384, SHA-512).

Família MD

CONTRACT

At the price of \$176,495 Alf Blowfish

sells his house to Ann Bonidea...

CONTRACT

At the price of \$276,495 Alf Blowfish

sells his house to Ann Bonidea...

```
f<sub>MD4</sub>(IV ||
"*****************
ONTRACT__At_the_price_of_
$176,495_Alf_Blow") = h
```


- Função inicialmente proposta como padrão americano para uso em assinaturas digitais, com resumos de 160 bits.
- Vulnerabilidade anunciada (sem detalhes) em 1993 pela NSA, redescoberta em 1998 por Chabaud e Joux.
- Quebrada em 2004 (Joux et al.; Wang et al.)

Referência	Passos do ataque	Tempo (PC)
Chabaud&Joux (1998)	2 ⁶¹	
Biham et al. (2004)	2 ⁵¹	20 anos
Wang et al. (2005)	2 ³⁹	
Naito et al. (2006)	2 ³⁶ - 2 ⁴⁰	100 h
Manuel&Peyrin (2008)	2 ³³	1 h

- Supostamente corrige a vulnerabilidade da função SHA-0.
- Função mais amplamente empregada em aplicações não legadas.
- Enfraquecida em 2005 (Wang et al.) e 2006 (de Cannière et al.): ≈2⁶¹ passos para obter colisões vs. 2⁸⁰ passos projetados.
- Futuro incerto:
 - colisão viável para 70 dos 80 passos,
 - obsolescência anunciada para 2010.

Estrutura básica

- Complemento Merkle-Damgård:
 - b = 512 bits.
 - *N* = 64 bits.
 - h = 160 bits.
- Compressão Davies-Meyer.
- Cifra de bloco dedicada:
 - Operações simples em processadores de 32 bits ou em hardware.
 - Função de compressão variável, distribuída em 4×20 passos.
 - Escalonamento linear de mensagem.

Estrutura básica

Escalonamento de Mensagem

- Família de quatro funções propostas para equiparar a segurança de hash aos tamanhos de chave do 3DES e do AES.
- Pela primeira vez, reconhece-se a estrutura interna como derivada explicitamente de um algoritmo de bloco dedicado.
- Projeto semelhante para as quatro funções, e mais simples que o SHA-1.

Estrutura Básica de SHA-2

- Semelhante ao SHA-1.
- Complemento Merkle-Damgård.
- Compressão Davies-Meyer.
- Cifra dedicada mais homogênea.
 - SHA-224/256: b = 512 bits, N = 64 bits.
 - SHA-384/512: b = 1024 bits, N = 128 bits.
- SHA-224 e SHA-384: essencialmente iguais, respectivamente, a SHA-256 e SHA-512 (diferem apenas em algumas constantes de inicialização e no truncamento do valor final de hash).

Cifra de bloco dedicada SHA-2

Escalonamento de Mensagem

Função de Compressão: SHA-224 e SHA-256

Funções auxiliares:

Maj(x,y,z) =
$$(x \land y) \oplus (x \land z) \oplus (y \land z)$$

Ch(x,y,z) = $(x \land y) \oplus (\neg x \land z)$
 $\Sigma_0(x) = \text{rotr}_2(x) \oplus \text{rotr}_{13}(x) \oplus \text{rotr}_{22}(x)$
 $\Sigma_1(x) = \text{rotr}_6(x) \oplus \text{rotr}_{11}(x) \oplus \text{rotr}_{25}(x)$
 $\sigma_0(x) = \text{rotr}_7(x) \oplus \text{rotr}_{18}(x) \oplus (x \gg 3)$
 $\sigma_1(x) = \text{rotr}_{17}(x) \oplus \text{rotr}_{19}(x) \oplus (x \gg 10)$

Função de Compressão: SHA-384 e SHA-512

Funções auxiliares:

Maj
$$(x,y,z) = (x \land y) \oplus (x \land z) \oplus (y \land z)$$

Ch $(x,y,z) = (x \land y) \oplus (\neg x \land z)$
 $\Sigma_0(x) = \text{rotr}_{28}(x) \oplus \text{rotr}_{34}(x) \oplus \text{rotr}_{39}(x)$
 $\Sigma_1(x) = \text{rotr}_{14}(x) \oplus \text{rotr}_{18}(x) \oplus \text{rotr}_{41}(x)$
 $\sigma_0(x) = \text{rotr}_1(x) \oplus \text{rotr}_8(x) \oplus (x \gg 7)$
 $\sigma_1(x) = \text{rotr}_{19}(x) \oplus \text{rotr}_{61}(x) \oplus (x \gg 6)$

Outras funções de hash

- Família RIPEMD
 - RIPEMD, RIPEMD-128, RIPEMD-160.
 - Projeto europeu (RIPE).
 - RIPEMD original quebrada (Wang et al.).
 - Versões modificadas: margem de segurança insuficiente.

HAVAL

- Parametrizada pelo comprimento (128–256 passo 32) e número de passos (3–5).
- Todas as combinações quebradas.

Outras funções de hash

Tiger

- Hash de h = 192 bits, com truncamento previsto para 160 bits em sistemas legados.
- Dedicada a processadores de 64 bits.
- Ataques recentes: colisões contra 16 19 22 de um total de 24 passos.
- Segurança limitada a 2^{96} : inferior aos valores mínimos recomendados atualmente ($\geq 2^{112} \Rightarrow h \geq 224$ bits).
- Inúmeras propostas quebradas, mesmo algumas mais recentes (Panama, SMASH, FORK, ...).

Funções "provavelmente" seguras

- VSH ("Very Smooth Hash")
 - Baseada na dificuldade de fatorar números inteiros e de calcular raízes quadradas módulo inteiros compostos.

- LASH ("LAttice [based] Secure Hash")
 - Baseada na dificuldade de encontrar vetores próximos ou curtos em reticulados.

- FSB ("Fast Syndrome Based [hash]")
 - Baseada na dificuldade de decodificar códigos lineares

Funções "provavelmente" seguras

- "If a [hash] is *provably* secure, it's *probably* not" (Lars Knudsen).
- Todas ≈25(!) vezes mais lentas que funções convencionais para o mesmo nível de segurança.

 N.B. Existem funções convencionais de hash que não foram afetadas pelo "extermínio em massa".

WHIRLPOOL

- Parâmetros:
 - b = 512 bits.
 - h = 512 bits.
 - N = 256 bits (i.e. $|M| < 2^{256}$).
- Compressão Miyaguchi-Preneel.
- Cifra dedicada W, projetada conforme a estratégia de trilha larga (mesma família do AES).
- Projeto belgo-brasileiro (B., Rijmen 2000).

Cifra Dedicada W

- γ : substituição byte a byte.
 - $b_{i,j} \leftarrow S[a_{i,j}]$.
- π: permutação circular das colunas.
 - $b_{i,j} \leftarrow a_{(j-i) \bmod 8,j}$
- θ: combinação linear.
 - $b_{i,j} \leftarrow \sum_k a_{i,k} c_{k,j}$ (i.e. B = AC).
- σ: adição (xor) de chave ou constante.
 - $b_{i,j} \leftarrow a_{i,j} \oplus h_{i,j}$ ou $a_{i,j} \oplus q_{i,j}$.

Cifra Dedicada W

- Tabela de substituição (S-box) 8×8: composição de mini-tabelas 4×4.
- E, E^{-1} : algébricas; R: aleatória.
- Transformação resultante altamente não linear.
- Implementação eficiente em HW e SW.
- Constantes de escalonamento de chaves derivadas diretamente da S-box.

WHIRLPOOL

 Matriz de difusão C corresponde a código corretor de erros MDS.

```
C = \begin{bmatrix} 1 & 1 & 4 & 1 & 8 & 5 & 2 & 9 \\ 9 & 1 & 1 & 4 & 1 & 8 & 5 & 2 \\ 2 & 9 & 1 & 1 & 4 & 1 & 8 & 5 \\ 5 & 2 & 9 & 1 & 1 & 4 & 1 & 8 \\ 8 & 5 & 2 & 9 & 1 & 1 & 4 & 1 \\ 1 & 8 & 5 & 2 & 9 & 1 & 1 & 4 \\ 4 & 1 & 8 & 5 & 2 & 9 & 1 & 1 \\ 1 & 4 & 1 & 8 & 5 & 2 & 9 & 1 \end{bmatrix}.
```


WHIRLPOOL

- Resiste a todas as linhas de ataque conhecidas, inclusive ataques de colisão de blocos múltiplos.
- Estratégia de trilha larga aplicada não só ao laço de cifração de W, mas também ao escalonamento de chave.
- Eficiência relativa a SHA-512: ≈10% mais rápida em software, ≈20 vezes mais rápida em hardware.