A Quantum Module

Figure 1 Regular Tetrahedron.

Figure 2 One of 4 Quarter Tetrahedra (blue) in the Tetrahedron.

Figure 3 One of 6 A Quantum Modules (red) in the Quarter Tetrahedron.

Figure 4 All 6 A Quantum Modules outline in one Quarter Tetrahedron.

Figure 5 Positive (green) and Negative (red) A Quantum Modules.

Figure 6 Vertex labeling of A Quantum Module.

Topology:

Vertices = 4

Edges = 6

Faces = 4 unequal triangles

Lengths:

 $EL \equiv Edge length of the regular Tetrahedron.$

 $V1 \equiv Vertex of regular Tetrahedron.$

 $V2 \equiv Mid\text{-edge of regular Tetrahedron}.$

V3 = Face center of regular Tetrahedron.

V4 ≡ Center of volume of regular Tetrahedron.

Edge Lengths:

$$V1.V2 = \frac{1}{2}$$
 EL = Half of the regular Tetrahedron's edge length.

$$V1.V3 = \frac{1}{\sqrt{3}} EL \cong 0.577 350 269 EL = DFV_T$$

$$V1.V4 = \frac{3}{2\sqrt{6}}$$
 EL ≈ 0.612372436 EL $= DVV_T$

$$V2.V3 = \frac{1}{2\sqrt{3}}$$
 EL $\cong 0.288 675 135$ EL = DFE_T

$$V2.V4 = \frac{1}{2\sqrt{2}}$$
 EL ≈ 0.353553391 EL = DVE_T

$$V3.V4 = \frac{1}{2\sqrt{6}}$$
 EL $\approx 0.204\ 124\ 145$ EL $= DVF_T$

Center of Face to Vertex:

DF(V1.V2.V3)V(V1) =
$$\frac{\sqrt{13}}{6\sqrt{3}}$$
 EL ≈ 0.346944333 EL

DF(V1.V2.V3)V(V2) =
$$\frac{1}{3\sqrt{3}}$$
 EL \approx 0.192 450 090 EL

DF(V1.V2.V3)V(V3) =
$$\frac{\sqrt{7}}{6\sqrt{3}}$$
 EL ≈ 0.254587539 EL

DF(V1.V2.V4)V(V1) =
$$\frac{1}{2\sqrt{2}}$$
 EL \cong 0.353 553 391 EL

DF(V1.V2.V4)V(V2) =
$$\frac{1}{2\sqrt{6}}$$
 EL \approx 0.204 124 145 EL

DF(V1.V2.V4)V(V4) =
$$\frac{1}{2\sqrt{3}}$$
 EL \approx 0.288 675 135 EL

DF(V1.V3.V4)V(V1) =
$$\frac{\sqrt{11}}{6\sqrt{2}}$$
 EL $\approx 0.390 867 980$ EL

DF(V1.V3.V4)V(V3) =
$$\frac{1}{2\sqrt{6}}$$
 EL \approx 0.204 124 145 EL

DF(V1.V3.V4)V(V4) =
$$\frac{1}{3\sqrt{2}}$$
 EL \approx 0.235 702 260 EL

DF(V2.V3.V4)V(V2) =
$$\frac{1}{2\sqrt{6}}$$
 EL \approx 0.204 124 145 EL

DF(V2.V3.V4)V(V3) =
$$\frac{1}{6\sqrt{2}}$$
 EL $\approx 0.117 851 130$ EL

DF(V2.V3.V4)V(V4) =
$$\frac{1}{6}$$
 EL $\approx 0.166 666 667$ EL

Center of Face to Mid-edge:

DF(V1.V2.V3)E(V1.V2) =
$$\frac{\sqrt{7}}{12\sqrt{3}}$$
 EL \approx 0.127 293 769 EL

DF(V1.V2.V3)E(V1.V3) =
$$\frac{1}{6\sqrt{3}}$$
 EL $\approx 0.096 225 045$ EL

DF(V1.V2.V3)E(V2.V3) =
$$\frac{\sqrt{13}}{12\sqrt{3}}$$
 EL $\approx 0.173 472 167$ EL

DF(V1.V2.V4)E(V1.V2) =
$$\frac{1}{4\sqrt{3}}$$
 EL ≈ 0.144337567 EL

DF(V1.V2.V4)E(V1.V4) =
$$\frac{1}{4\sqrt{6}}$$
 EL $\approx 0.102 062 073$ EL

DF(V1.V2.V4)E(V2.V4) =
$$\frac{1}{4\sqrt{2}}$$
 EL ≈ 0.176776695 EL

DF(V1.V3.V4)E(V1.V3) =
$$\frac{1}{6\sqrt{2}}$$
 EL $\approx 0.117 851 130$ EL

DF(V1.V3.V4)E(V1.V4) =
$$\frac{1}{4\sqrt{6}}$$
 EL ≈ 0.102062073 EL

DF(V1.V3.V4)E(V3.V4) =
$$\frac{\sqrt{11}}{12\sqrt{2}}$$
 EL $\approx 0.195 433 990$ EL

DF(V2.V3.V4)E(V2.V3) =
$$\frac{1}{12}$$
 EL \cong 0.833 333 333 EL

DF(V2.V3.V4)E(V2.V4) =
$$\frac{1}{12\sqrt{2}}$$
 EL $\approx 0.058 925 565$ EL

DF(V2.V3.V4)E(V3.V4) =
$$\frac{1}{4\sqrt{6}}$$
 EL ≈ 0.102062073 EL

Center of Volume to Vertex:

DVV(V1) =
$$\frac{\sqrt{21}}{8\sqrt{2}}$$
 EL $\approx 0.405\ 046\ 294$ EL

DVV(V2) =
$$\frac{\sqrt{5}}{8\sqrt{2}}$$
 EL $\approx 0.197 642 354$ EL

DVV(V3) =
$$\frac{\sqrt{5}}{8\sqrt{2}}$$
 EL $\approx 0.197 642 354$ EL

DVV(V4) =
$$\frac{\sqrt{23}}{8\sqrt{6}}$$
 EL ≈ 0.244736253 EL

Center of Volume to Mid-edge:

DVE(V1.V2) =
$$\frac{\sqrt{5}}{8\sqrt{2}}$$
 EL $\approx 0.197 642 354$ EL

DVE(V1.V3) =
$$\frac{\sqrt{7}}{8\sqrt{6}}$$
 EL $\approx 0.135\ 015\ 431\ EL$

DVE(V1.V4) =
$$\frac{\sqrt{7}}{8\sqrt{6}}$$
 EL $\approx 0.135\ 015\ 431\ EL$

DVE(V2.V3) =
$$\frac{\sqrt{7}}{8\sqrt{6}}$$
 EL $\approx 0.135\ 015\ 431\ EL$

DVE(V2.V4) =
$$\frac{\sqrt{7}}{8\sqrt{6}}$$
 EL $\approx 0.135\ 015\ 431\ EL$

DVE(V3.V4) =
$$\frac{\sqrt{5}}{8\sqrt{2}}$$
 EL \approx 0.197 642 354 EL

Center of Volume to Face Center:

DVF(V1.V2.V3) =
$$\frac{\sqrt{23}}{24\sqrt{6}}$$
 EL ≈ 0.081578751 EL

DVF(V1.V2.V4) =
$$\frac{\sqrt{5}}{24\sqrt{2}}$$
 EL $\approx 0.065 880 785$ EL

DVF(V1.V3.V4) =
$$\frac{\sqrt{5}}{24\sqrt{2}}$$
 EL $\approx 0.065 880 785$ EL

DVF(V2.V3.V4) =
$$\frac{\sqrt{7}}{8\sqrt{6}}$$
 EL \approx 0.135 015 431 EL

Areas:

$$V1.V2.V3 = \frac{1}{8\sqrt{3}} EL^{2} \approx 0.072 \ 168 \ 784 EL^{2}$$

$$V1.V2.V4 = \frac{1}{8\sqrt{2}} EL^{2} \approx 0.088 \ 388 \ 348 EL^{2}$$

$$V1.V3.V4 = \frac{1}{12\sqrt{2}} EL^{2} \approx 0.058 \ 925 \ 565 EL^{2}$$

$$V2.V3.V4 = \frac{1}{24\sqrt{2}} EL^{2} \approx 0.029 \ 462 \ 783 EL^{2}$$

$$Total face area = \frac{6+\sqrt{6}}{24\sqrt{2}} EL^{2} \approx 0.248 \ 945 \ 479 EL^{2}$$

$$= \frac{6+\sqrt{6}}{6\sqrt{2}} (V1.V2)^{2} \approx 0.995 \ 781 \ 916 (V1.V2)^{2}$$

Volume:

Cubic measure volume equation =
$$\frac{1}{144\sqrt{2}}$$
 EL³ $\approx 0.004 910 464$ EL³.

Synergetics' Tetra-volume equation =
$$\frac{1}{24}$$
 EL³ $\approx 0.041 666 667$ EL³

Angles:

Face Angles:

Sum of face angles = 720°

Face V1.V2.V3:

$$V2.V1.V3 = 30^{\circ}$$

$$V1.V2.V3 = 90^{\circ}$$

$$V1.V3.V2 = 60^{\circ}$$

Face V1.V2.V4:

$$V2.V1.V4 = \arcsin\left(\frac{1}{\sqrt{3}}\right) \approx 35.264\ 389\ 683^{\circ}$$

$$V1.V2.V4 = 90^{\circ}$$

$$V1.V4.V2 = \arccos\left(\frac{1}{\sqrt{3}}\right) \approx 54.735610317^{\circ}$$

Face V1.V3.V4:

$$V3.V1.V4 = \arccos\left(\frac{2\sqrt{2}}{3}\right) \approx 19.471\ 220\ 634^{\circ}$$

$$V1.V3.V4 = 90^{\circ}$$

$$V1.V4.V3 = \arcsin\left(\frac{2\sqrt{2}}{3}\right) \approx 70.528779366^{\circ}$$

Face V2.V3.V4:

$$V3.V2.V4 = \arcsin\left(\frac{1}{\sqrt{3}}\right) \approx 35.264 389 683^{\circ}$$

$$V2.V3.V4 = 90^{\circ}$$

$$V2.V4.V3 = \arccos\left(\frac{1}{\sqrt{3}}\right) \approx 54.735 610 317^{\circ}$$

Central Angles (identified by edge labels):

$$V1.V2 = \arccos\left(\frac{-3}{\sqrt{105}}\right) \approx 107.023\ 866\ 185^{\circ}$$

V1.V3 =
$$\arccos\left(\frac{-25}{3\sqrt{105}}\right) \approx 144.414697544^{\circ}$$

$$V1.V4 = \arccos\left(\frac{-29}{3\sqrt{161}}\right) \approx 139.626\ 683\ 085^{\circ}$$

$$V2.V3 = \arccos\left(\frac{-1}{15}\right) \cong 93.822553729^{\circ}$$

$$V2.V4 = \arccos\left(\frac{-\sqrt{15}}{3\sqrt{23}}\right) \approx 105.616\ 129\ 405^{\circ}$$

$$V3.V4 = \arccos\left(\frac{11\sqrt{3}}{3\sqrt{115}}\right) \approx 53.685\ 288\ 534^{\circ}$$

Dihedral Angles (identified by edge labels):

$$V1.V2 = \arccos\left(\frac{\sqrt{2}}{\sqrt{3}}\right) \approx 35.264389683^{\circ}$$

$$V1.V3 = 90^{\circ}$$

$$V1.V4 = 60^{\circ}$$

$$V2.V3 = 90^{\circ}$$

$$V2.V4 = 90^{\circ}$$

$$V3.V4 = 60^{\circ}$$

Vertex Coordinates (X, Y, Z):

Positive A Quantum Module:

$$V1 = \left(\frac{-3}{8}, \frac{-1}{4\sqrt{3}}, \frac{-1}{8\sqrt{6}}\right) EL$$

$$\cong (-0.375, -0.144\ 337\ 567, -0.051\ 031\ 036) EL$$

$$V2 = \left(\frac{1}{8}, \frac{-1}{4\sqrt{3}}, \frac{-1}{8\sqrt{6}}\right) EL$$

$$\cong (0.125, -0.144\ 337\ 567, -0.051\ 031\ 036) EL$$

$$V3 = \left(\frac{1}{8}, \frac{1}{4\sqrt{3}}, \frac{-1}{8\sqrt{6}}\right) EL$$

$$\cong (0.125, 0.144\ 337\ 567, -0.051\ 031\ 036) EL$$

$$V4 = \left(\frac{1}{8}, \frac{1}{4\sqrt{3}}, \frac{3}{8\sqrt{6}}\right) EL$$

 \cong (0.125, 0.144 337 567, 0.153 093 109) EL

Negative A Quantum Module:

$$V1 = \left(\frac{3}{8}, \frac{-1}{4\sqrt{3}}, \frac{-1}{8\sqrt{6}}\right) EL$$

$$\cong (0.375, -0.144\ 337\ 567, -0.051\ 031\ 036) EL$$

$$V2 = \left(\frac{-1}{8}, \frac{-1}{4\sqrt{3}}, \frac{-1}{8\sqrt{6}}\right) EL$$

$$\cong (-0.125, -0.144\ 337\ 567, -0.051\ 031\ 036) EL$$

$$V3 = \left(\frac{-1}{8}, \frac{1}{4\sqrt{3}}, \frac{-1}{8\sqrt{6}}\right) EL$$

$$\cong (-0.125, 0.144\ 337\ 567, -0.051\ 031\ 036) EL$$

$$V4 = \left(\frac{-1}{8}, \frac{1}{4\sqrt{3}}, \frac{3}{8\sqrt{6}}\right) EL$$

$$\cong (-0.125, 0.144\ 337\ 567, 0.153\ 093\ 109) EL$$

$$\cong (-0.125, 0.144\ 337\ 567, 0.153\ 093\ 109) EL$$

Unfolded Vertex Coordinates (X, Y):

Figure 7 Layout for the A Quantum Module.

$$\alpha = 30^{\circ} + \arccos\left(\frac{\sqrt{2}}{\sqrt{3}}\right) + \arccos\left(\frac{2\sqrt{2}}{3}\right) \approx 84.735 611^{\circ}$$

$$\beta = \arccos\left(\frac{1}{\sqrt{3}}\right) \approx 54.735 610^{\circ}$$

V1 = (0.0, 0.0) EL

$$V2_1 = \left(\frac{\sqrt{3}}{2}, 0.0\right) EL \cong (0.866\ 025\ 4, 0.0) EL$$

 $V2_2 = (0.5 \cos(\beta), 0.5 \sin(\beta)) EL \cong (0.288 675 1, 0.408 248 3) EL$

$$V3_1 = \left(\frac{1}{\sqrt{3}}, 0.0\right) EL \cong (0.577\ 350\ 3, 0.0) EL$$

$$V3_2 = \left(\frac{1}{\sqrt{3}}\cos(\alpha), \frac{1}{\sqrt{3}}\sin(\alpha)\right) EL \cong (0.052\ 972\ 9,\ 0.574\ 915) EL$$

V4 =
$$\left(\frac{1}{\sqrt{3}}, \frac{1}{2\sqrt{6}}\right)$$
 EL \approx (0.577 350 3, 0.204 124 2) EL

Comments:

The A Quantum Module is $1/6^{th}$ of the 1/4-Tetrahedron. It is therefore 1/24 of the regular Tetrahedron.

There are 2 different A Quantum Modules labeled A+ and A-. These are mirror images of each other. The A+ Quantum Model can be opened and folded into the A- Quantum Model and visa versa.

The A Quantum Module does not fill all-space by itself.

The dual of the A Quantum Module is another (different) irregular Tetrahedron which is not considered further in this text.

The A Quantum Module can be subdivided into A and B Quantum Modules (6 AQM + 2 BQM).

Figure 7 A Quantum Module outlined in red.

Figure 8 A Quantum Module divided into smaller A and B Quantum Modules.