CSE 31 Computer Organization

Lecture 23 - CPU Design (3)

Announcement

- Lab #10
 - Due in 1 week
- HW #7 in CatCourses
 - Due Monday (5/6) at 11:59pm
- HW #8 in zyBooks (Through CatCourses)
 - Due Saturday (5/11) at 11:59pm
- Reading assignment
 - Chapter 5.7-5.11 of zyBooks
 - Make sure to do the Participation Activities
 - Due Friday (5/3) at 11:59pm
- Course evaluation online by 5/9

Announcement

- Final Exam
 - 5/11 (Saturday), 11:30am 2:30pm
 - Cover all
 - Practice exam in CatCourses
 - Closed book
 - 2 sheet of note (8.5" x 11")
 - MIPS reference sheet will be provided
 - Review: 5/10 (Friday) 2-4pm, COB2 140

Generic Steps of Datapath

How do we handle the different register usage between r-type and i-type instructions?

A zoomed in version of RegFile and ALU

Load Memory

R[rt] = Mem[R[rs] + SignExt[imm16]]

Store Memory

Mem[R[rs] + SignExt[imm16]] = R[rt]

Datapath for Branch Operations

beq rs, rt, imm16

Single Cycle Datapath

Abstract View of the Implementation

A Single Cycle Datapath

We have everything except <u>control</u> <u>signals</u>

Meaning of the Control Signals

```
▶ nPC_sel: "+4": 0 \Rightarrow PC \leftarrow PC + 4

"br": 1 \Rightarrow PC \leftarrow PC + 4 + \{SignExt(Im16), 00\}

"n"=next
```

Later in lecture: higher-level connection between mux and branch condition

Meaning of the Control Signals

ExtOp: "zero", "sign"

▶ ALUsrc: $0 \Rightarrow \text{regB}$;

 $1 \Rightarrow immed$

ALUctr: "ADD", "SUB", "OR"

MemWr: 1 ⇒ write memory

MemtoReg: 0 ⇒ ALU; 1 ⇒ Mem

RegDst: $0 \Rightarrow$ "rt"; $1 \Rightarrow$ "rd"

RegWr: 1 ⇒ write register

The Add Instruction

add rd, rs, rt

- MEM[PC] Fetch the instruction from memory
- R[rd] = R[rs] + R[rt] The actual operation
- PC = PC + 4 Calculate the next instruction's address

Instruction Fetch Unit start of Add

▶ Fetch the instruction from Instruction memory:

The Single Cycle Datapath during Add

Instruction Fetch Unit end of Add

- PC = PC + 4
 - This is the same for all instructions except: Branch and Jump

Single Cycle Datapath for Ori

Single Cycle Datapath for Ori

Single Cycle Datapath for LW

R[rt] = Data Memory {R[rs] + SignExt[imm16]}

Single Cycle Datapath for LW

R[rt] = Data Memory {R[rs] + SignExt[imm16]}

Single Cycle Datapath for SW

Data Memory {R[rs] + SignExt[imm16]} = R[rt]

Single Cycle Datapath for SW

Data Memory {R[rs] + SignExt[imm16]} = R[rt]

Single Cycle Datapath for Branch

if (R[rs] - R[rt] == 0) then Zero = 1; else Zero = 0

Single Cycle Datapath for Branch

Single Cycle Datapath for Branch

if (R[rs] - R[rt] == 0) then Zero = 1; else Zero = 0

Type of Circuits

- Synchronous Digital Systems are made up of two basic types of circuits:
- Combinational Logic (CL) circuits
 - Our previous adder circuit is an example.
 - Output is a function of the inputs only.
 - Similar to a pure function in mathematics, y = f(x).
 (No way to store information from one invocation to the next. No side effects)
- State Elements: circuits that store information.

General Synchronous Systems

- Collection of CL blocks separated by registers.
- Registers may be back-to-back and CL blocks may be back-to-back.
- Feedback is optional.
- Clock signal(s) connects only to clock input of registers.

Circuits with STATE (register)

Uses for State Elements

- As a place to store values for some indeterminate amount of time:
 - Register files (like \$1-\$31 on the MIPS)
 - Memory (caches, and main memory)
- Help control the flow of information between combinational logic blocks.
 - State elements are used to hold up the movement of information at the inputs to combinational logic blocks and allow for orderly passage.

Truth Tables

a	b	c	d	y
0	0	0	0	F(0,0,0,0)
0	0	0	1	F(0,0,0,1)
0	0	1	0	F(0,0,1,0)
0	0	1	1	F(0,0,1,1)
0	1	0	0	F(0,1,0,0)
0	1	0	1	F(0,1,0,1)
0	1	1	0	F(0,1,1,0)
0	1	1	1	F(0,1,1,1)
1	0	0	0	F(1,0,0,0)
1	0	0	1	F(1,0,0,1)
1	0	1	0	F(1,0,1,0)
1	0	1	1	F(1,0,1,1)
1	1	0	0	F(1,1,0,0)
1	1	0	1	F(1,1,0,1)
1	1	1	0	F(1,1,1,0)
1	1	1	1	F(1,1,1,1)

TT #1: XOR, 1 iff a/b=1 (not both)

a	b	y
0	0	0
0	1	1
1	0	1
1	1	0

TT #2: 2-bit adder

A	В	C
a_1a_0	b_1b_0	$c_2c_1c_0$
00	00	000
00	01	001
00	10	010
00	11	011
01	00	001
01	01	010
01	10	011
01	11	100
10	00	010
10	01	011
10	10	100
10	11	101
11	00	011
11	01	100
11	10	101
11	11	110

How Many Rows?

TT #3: 32-bit unsigned adder

A	В	C
000 0	000 0	000 00
000 0	000 1	000 01
•	•	• How Many
•	•	. Rows?
•	•	•
111 1	111 1	111 10

TT #4: 3-input majority circuit

a	b	c	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Gates (1/2)

	a - 1	ab	c
	L)— C	00	0
AND		01	0
		10	0
		11	1
	ant	ab	c
	h	00	0
OR		01	1
		10	1
		11	1
	a - 1 >0- b	a	b
NOT		0	1
		1	Λ

Logic Gates (2/2)

XOR

NAND

00	0
01	1
10	1
11	0
ab	c
00	1
01	1
10	1
11	0
ab	c
00	1
01	0
10	0
11	0

ab

NOR

2-input gates extend to n-inputs

- N-input XOR is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the # of 1s at its input is odd

a	b	c	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

TT ⇒ Gates (e.g., majority circ.)

	a	b	c	y	
-	0	0	0	0	•
	0	0	1	0	
	0	1	0	0	a To
	0	1	1	1	
	1	0	0	0	
	1	0	1	1	
	1	1	0	1	
	1	1	1	1	

Boolean Algebra (e.g., for majority fun.)

Laws of Boolean Algebra

$$x \cdot \overline{x} = 0$$

$$x \cdot 0 = 0$$

$$x \cdot 1 = x$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$(xy)z = x(yz)$$

$$x(y + z) = xy + xz$$

$$\overline{x}y + x = x$$

$$\overline{x}y + x = x + y$$

$$\overline{x} \cdot \overline{y} = \overline{x} + \overline{y}$$

$$x + x = 1$$

$$x + 1 = 1$$

$$x + 0 = x$$

$$x + x = x$$

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$(x + y)x = x$$

$$(x + y)x = x$$

$$(\overline{x} + y)x = xy$$

$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

complementarity laws of 0's and 1's identities idempotent law commutativity associativity distribution uniting theorem uniting theorem v.2 DeMorgan's Law

Boolean Algebraic Simplification

$$y = ab + a + c$$

 $= a(b+1) + c$ distribution, identity
 $= a(1) + c$ law of 1's
 $= a + c$ identity

Circuit & Algebraic Simplification

$$y = ((ab) + a) + c$$

$$= ab + a + c$$

$$= a(b+1) + c$$

$$= a(1) + c$$

$$= a + c$$

$$\downarrow$$

original circuit

equation derived from original circuit

algebraic simplification

BA also great for circuit <u>verification</u>
Circ X = Circ Y?
use BA to prove!

simplified circuit

Canonical forms (1/2)

Canonical forms (2/2)

$$y = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + a\overline{b}\overline{c} + ab\overline{c}$$

$$= \overline{a}\overline{b}(\overline{c} + c) + a\overline{c}(\overline{b} + b)$$

$$= \overline{a}\overline{b}(1) + a\overline{c}(1)$$

$$= \overline{a}\overline{b} + a\overline{c}$$

distribution complementarity identity

