Chi ha superato la prova intermedia nell'A.A. corrente può limitarsi a risolvere i problemi 4, 5, 6, 7 sul retro del foglio: per il superamento della prova occorre risolvere correttamente i problemi 4, 5 e almeno uno tra 6 e 7. Chi non ha superato la prova intermedia nell'A.A. corrente deve risolvere anche i problemi 1, 2, 3.

- 1. Dato un grafo G = (V, E), siano U = V l'insieme universo e \mathfrak{I} una famiglia di sottoinsiemi di U così definita: $\mathfrak{I} = \{X \subseteq U : X \text{ è un insieme stabile}\}$. La coppia (U, \mathfrak{I}) è un matroide? Giustificare la risposta oppure fornire un controesempio.
 - La famiglia è subclusiva ma non gode in generale della proprietà di scambio: in un grafo con 3 nodi e archi 12, 13 gli insiemi {1} e {2, 3} sono entrambi stabili, ma aggiungendo al primo un elemento qualsiasi del secondo l'insieme ottenuto perde questa proprietà.
- 2. Dire se il vettore $\mathbf{u} = (2/3, 1/2, 7/4)$ è una combinazione conica dei vettori $\mathbf{u}_1 = (1/3, 0, 3)$, $\mathbf{u}_2 = (-5, 3, 0)$ e $\mathbf{u}_3 = (1, 1, 1/2)$ motivando la risposta. In caso contrario, specificare di che tipo di combinazione si tratta.

Il vettore \mathbf{u} si ottiene come combinazione lineare dei vettori \mathbf{u}_1 , \mathbf{u}_2 e \mathbf{u}_3 con coefficienti $\frac{1}{2}$, 0, $\frac{1}{2}$. Si tratta di una combinazione conica che al medesimo tempo risulta affine: quindi di una combinazione convessa.

3. Un gioco d'azzardo per i più piccini

Le estrazioni del lotto in forma ridotta per i minorenni consentono di giocare solo ambi e terni estratti fra i numeri 1, 2, 3, 4. Giocare un ambo costa 40¢, giocare un terno 1€, e ogni settimana vengono estratti 3 numeri su 4. Si vuole giocare un sistema di costo minimo che garantisca l'uscita sicura di almeno un ambo. Formulare il problema come programmazione lineare intera 0-1

Gli ambi possibili sono 6, i terni possibili 4. Ogni ambo copre se stesso, mentre il terno *abc* copre gli ambi *ab*, *bc*, *ac*. Si associno le variabili di decisione 0-1 x_j ai possibili ambi e terni da giocare (j = 1, ..., 10) facendo loro assumere valore 1 se e solo la giocata corrispondente viene prescelta. Si associ poi a ogni giocata j un vettore 0-1 \mathbf{u}_j a 6 componenti corrispondenti ai possibili ambi: la componente u_{ij} varrà 1 se e solo se l'ambo i è coperto dalla giocata j. I vettori \mathbf{u}_i formano la seguente matrice:

	\mathbf{u}_1	\mathbf{u}_2	\mathbf{u}_3	\mathbf{u}_4	\mathbf{u}_5	\mathbf{u}_6	\mathbf{u}_7	\mathbf{u}_8	u 9	\mathbf{u}_{10}
12	1	0	0	0	0	0	1	1	0	0
13	0	1	0	0	0	0	1	0	1	0
14	0	0	1	0	0	0	0	1	1	0
23	0	0	0	1	0	0	1	0	0	1
24	0	0	0	0	1	0	0	1	0	1
34	0	0	0	0	0	1	0	0	1	1

Il problema si formula

4. Applicando il metodo di Fourier-Motzkin dire se il seguente sistema lineare è compatibile.

$$2x_1 + 5x_2 - 4x_3 \le 2$$

$$x_1 - 3x_2 - x_3 = 1$$

$$3x_1 + 2x_2 + x_3 \le 2$$

$$x_2 \ge 0$$

$$x_1 \le 0$$

Il sistema richiede $0 \le x_2 \le \min\{-1/33, -2/17\}$ ed è chiaramente incompatibile.

5. Scrivere il duale (D) del problema P) min $x_1 - 2x_2 + x_3$

$$\begin{array}{ccc}
x_1 - 2x_2 + x_3 \\
x_2 - 3x_3 & \leq 1 \\
x_1 + x_2 - x_3 & = 5 \\
x_1 + 2x_3 & \geq 3 \\
x_1, x_2 & \geq 0 \\
x_3 & \leq 0
\end{array}$$

Supponendo che (P) ammetta una soluzione ottima **x***, che cosa si può dire del problema (D)?

In alternativa si può porre $x_3' = -x_3$, da cui

Se (P) ammettesse una soluzione ottima finita \mathbf{x}^* , anche (D) ammetterebbe soluzione ottima finita \mathbf{y}^* e per dualità forte si avrebbe $\mathbf{y}\mathbf{b}^* = \mathbf{c}\mathbf{x}^*$.

6. Logistica distributiva

Si deve organizzare il trasporto di 10 unità di un certo prodotto dalla città a alle città e, f attraverso la rete di figura. La quantità richiesta dalla città e è pari a 7 unità. Trasportare un'unità di prodotto lungo il generico arco ij della rete costa c_{ij} (in numeri associati agli archi della rete corrispondono ai costi unitari c_{ij}). Formulare il problema come programmazione lineare, e rispondere alle domande seguenti.

Una soluzione ottima è intera? Se sì, perché? Se no, perché?

Trasportare merce sugli archi tratteggiati corrisponde a una soluzione di base? Se sì, perché? Se no, perché?

Indichiamo con x_{ij} la quantità trasportata lungo l'arco ij. Il problema si formula

$$\min 11x_{ab} + 10x_{ac} + 9x_{ad} + 10x_{bd} + 9x_{bf} + 12x_{ce} + 3x_{dc} + 10x_{ef} + 6x_{fd}
-x_{ac} - x_{ad} = -10
x_{ab} - x_{bd} - x_{bf} = 0
x_{ac} - x_{ce} + x_{dc} = 0
x_{ad} + x_{bd} - x_{dc} + x_{fd} = 0
x_{ce} - x_{ef} = 7
x_{bf} + x_{ef} - x_{fd} = 3
x_{ii} > 0 ij \in E$$

Il problema è in forma standard e la sua matrice dei coefficienti è totalmente unimodulare. Poiché il vettore dei termini noti è intero, ogni soluzione di base (e quindi anche almeno una soluzione ottima) è a componenti intere.

Una base corrisponde a una sottomatrice di rango pieno. Le sottomatrici della matrice di incidenza nodi-archi di un grafo orientato che godono di questa proprietà hanno le colonne corrispondenti a archi di un albero ricoprente il grafo. Questo non è il caso degli archi tratteggiati, quindi una soluzione che trasporti quantità positive su tali archi non è una soluzione di base del problema.

7. Produzione industriale

Un impianto trasforma 2 tipi di risorsa, disponibili in quantità $b_1 = 100$, $b_2 = 140$, in altrettanti prodotti. Il secondo prodotto, insieme a un opportuno quantitativo di una terza risorsa disponibile in quantità $b_3 = 120$, dà luogo a un terzo tipo di prodotto. Attenzione: fabbricare un'unità di questo prodotto causa il consumo di 2 unità del secondo prodotto.

La risorsa 3 può essere commercializzata (acquistata o venduta) al prezzo unitario c_0 , mentre il prodotto i viene venduto al prezzo unitario c_j , j=1,2,3. Risolvere con il metodo del simplesso il problema di determinare i livelli di produzione x_1 , x_2 , x_3 dei tre prodotti che massimizzano il profitto complessivo, sapendo che la produzione di un'unità di prodotto j consuma a_{ij} unità di risorsa i (i valori dei parametri sono riportati nella tabella seguente).

	Prodotto 1	Prodotto 2	Prodotto 3	
Risorsa 1	$a_{11} = 2$	$a_{12} = 2$	0	
Risorsa 2	$a_{21} = 3$	$a_{22} = 1$	0	
Risorsa 3	0	0	$a_{33} = 4$	$c_0 = 4$
	$c_1 = 12$	$c_2 = 14$	$c_3 = 18$	prezzi

Indichiamo con x_0 il quantitativo di risorsa 3 destinato alla vendita (tale valore, se negativo, si intende acquistato). L'obiettivo del problema si scrive:

$$\max \quad 4x_0 + 12x_1 + 14x_2 + 18x_3$$

Una soluzione del problema deve soddisfare i vincoli

Introducendo tre variabili di slack e ponendo $x_0 = u_0 - z_0$ il problema si porta facilmente in forma canonica. La tabella iniziale del simplesso è:

u_0	z_0	x_1	x_2	x_3	w_1	w_2	W_3	
4	-4	12						0
0	0	2	2	0	1	0	0	100 140 0
0	0	3	1	0	0	1	0	140
0	0	0	-1	2	0	0	1	0
	-1		0			0	0	120

e la forma canonica si ottiene sommando alla riga 0 l'ultima riga moltiplicata per -4:

u_0	z_0	x_1	x_2	x_3	w_1	w_2	W_3	
0	0	12	14	2	0	0	0	-480
0	0	2	2	0	1	0	0	100
0	0	3	1	0	0	1	0	140
0	0	0	-1	2	0	0	1	0 120
1	-1	0	0	4	0	0	0	120

La soluzione iniziale di base è degenere. Scegliendo x_2 come variabile entrante ed eseguendo un'operazione di pivot la degenerazione viene però eliminata, e si ricava

u_0	z_0	x_1	x_2	x_3	w_1	w_2	W_3	
0	0	-2	0	2	-14	0	0	-1180
0	0	1	1	0	1	0	0	
0	0	2	0	0	0	1	0	90
0	0	1	0	2	1	0	1	50
1	-1	0	0	4	0	0	0	120

Ora si può scegliere x_3 come variabile entrante. Eseguendo l'operazione di pivot in riga 3 si ha

u_0	z_0	x_1	x_2	x_3	w_1	w_2	w_3	
0	0	-3	0	0	-15	0	-1	-1230
0	0	1	1	0	1	0	0	50
0	0	2	0	0	0	1	0	90
0	0	1/2	0	1	1/2	0	1/2	25
1	-1	-2	0	0	-2	0	-2	20

La soluzione così determinata è ottima. Essa consiste nel fabbricare 50 unità di prodotto 2, 25 di prodotto 3, e nell'alienare 20 unità eccedenti di risorsa 3.