业务背景

机器人气动伺服点焊枪,电阻焊的一种,用于连接车身钢板材零件。

在 BBA 的铁西厂区和大东厂区, 共有将近 2000 把焊枪, 根据 PLC 中事先定义好的位置信息和生产节拍, 负责白车身的焊接工作。

然而气动焊枪的潜在问题很多,例如,C 类型焊枪的电极臂容易开裂,每年有超过 5 次此故障。电极臂开裂故障发生时,点焊枪无法继续工作,需要更换新的备枪,故障平均修复时间 45 分钟,所以会造成生产线长停。业务想通过实施预测性维护,当电极臂刚刚开裂时,准确触发预警,在非生产时间更换焊枪,避免故障发生,保证生产线的正常运转。

除了与电极臂开裂直接相关的错误代码 E016 之外,系统还内置了多种报错,具体请参见"报错信息"表格。

典型的 C 型焊枪图例:

数据说明

train.zip	解压后,为 train / {date}.csv		
	数据范围: 04/25 - 05/18		
	采样频率:每秒一次,但不保证每秒都有数据上报		
	字段:共计 23 列, W_Error 为故障代码		
phd_test.csv	数据范围: 05/19 - 05/21		
	数据量: 共计 300 万行		
	焊枪设备: 与训练数据中焊枪的设备相同, 共计 13 台		
	字段:共计 22 列, 与训练数据相比,不含故障代码 W_Error		
description.txt	训练数据和测试数据的字段描述,详细物理意义参加下表		

Colum	Column	Description (EN)	Description (CN)
n			
Index			
1	time	Time of data	数据时间
2	gun_no	Gun number	焊枪号
3	W_Error	Error Code	错误代码
4	C_Cylinder_force	Cylinder force	主气缸压力
5	C_Differential_pressure	Differential	平衡缸压差
		pressure	
6	W_Friction	Friction	摩擦力
7	W_Maximum_aperture	Maximum aperture	最大孔径
8	W_Maximum_electrode_force	Maximum	最大电极压力
		electrode force	
9	W_Start_friction	Start friction	起始摩擦力
10	W_US2	US2 status	US2 电源状态
11	W_Welding_point_count	Welding point	焊接点数
		count	
12	W_position_count	Position count	电极位移次数
13	area	Area	焊接区域
14	in_Counterbalance_pressure	Set	平衡缸压力设定值
		counterbalance	
		pressure	
15	in_Electrode_force	Set electrode force	电极压力设定值
16	in_Electrode_position	Set electrode	电极位移设定值
		position	
17	in_Sheet_thickness	Set sheet	板材厚度设定值
		thickness	
18	in_Velocity	Set velocity	速度设定值
19	in_force_build_up	Set force build up	压力建立状态设定
			值
20	out_Cap_offset	Real cap offset	实际电极帽偏移量
21	out_Electrode_force	Real electrode	实际电极压力
		force	

22	out_Electrode_position	Real electrode	实际电极位移
		position	
23	out_force_build_up	Real force build up	实际压力建立状态

表:字段说明

算法题

1. 故障检测

对于测试数据中每一条数据 (当前数据产生时间 T,为 unix timestamp),预测该设备是 否会在未来 10 分钟之内([T,T+600])发生故障。

* 未来 10 分钟内,相同设备(焊枪号相同)会产生至少一条故障代码 W_Error 不为 0 的数据。

提交数据格式

文件名	predict_error.csv		
格式	每条测试数据的预测结果单独一行, 共计 300 万行		
	预测取值为		
	0: 未来 10 分钟内无故障		
	1:未来10分钟内有故障 (含当前)		

2. 重大故障检测

对于测试数据中每一条数据,预测该设备是否会在未来 10 分钟之内发生代码为 E016 的故障。

提交数据格式

文件名	predict_e016.csv	
格式	每条测试数据的预测结果单独一行, 共计 300 万行	
	预测取值为	
	0:未来 10 分钟内无 E016 故障	

1: 未来 10 分钟内有 E016 故障 (含当前)

3. 设备剩余使用时间预测

对于测试数据中每一条数据,预测该设备距离下一次发生停机故障 (代码为 E016)的时间。剩余使用寿命 (RUL):整数,单位 s,最长的剩余使用寿命为 5 天 (432000 秒)

提交数据格式

文件名	predict_rul.csv
格式	每条测试数据的预测结果单独一行, 共计 300 万行
	预测取值范围 [0, 432000]

4. 打分规则

问题 1: 故障检测	F2_score = 5 * Precision * Recall / (4 * Precision + Recall)		
问题 2: 重大故障检测	F2_score = 5 * Precision * Recall / (4 * Precision + Recall)		
问题 3: 设备剩余使用时	MSE (mean square error)		
间预测			
总分规则	问题 1 总分: 35 分		
	问题 2 总分: 35 分		
	问题 3 总分: 30 分		
	每个队伍按照每个问题排名计分,总和为队伍总分		
	排名第一的队伍: 35		
	排名第二的队伍: 25		
	排名第三的队伍: 15		
	排名第四的队伍: 5		
	未提交结果: 0		

创意题

1.产品设计展示

请用任意语言搭建一个用户终端系统,让使用者(设备维修人员)能够得到算法的推荐,迅速定位有问题的设备,并且尽可能给错误原因等其他信息。

2.发散思维展示

当前的场景<mark>数据源比较单一</mark>,请根据题目场景设计一套实际可落地的解决方案,可以添加数据源,使用 AI 手段等等,阐述<mark>如何实现设备的预测性维护</mark>。

创意题参考计分方式:

重点考察:

- 参赛者对业务流程的理解程度;
- 怎样利用多维度数据,提取关键信息,达成预测性维护的目标;
- 考察对数据架构的理解和运用。

参赛者交付的其实是一个面向用户的产品。以下关键点,都可适当加分:

- 能够解决用户需求
 - 对目标用户的理解;
 - 恰到好处的辅助。
- 用户体验良好
 - 让用户付出最小成本,获得最大价值。用户付出的成本可以分为时间成本,学习成本,使用成本等多个维度。在产品上的体现则包括产品细节、框架结构、功能流程、页面设计、交互样式、使用场景等多个维度,其中「易用性」就可以归纳到用户体验中。
- 可以创造价值
 - 对用户来说,解决需求的同时是否获得了超预期的价值。
 - 对企业的价值,企业价值并不仅仅指产品收益,还包括产品流量,产品产生的社会 价值等。
 - 技术上可实现
- 可实现;

附录

报错信息

Code Code E001 measuring error 检测系统错误 ●检查气缸电缆 ●更换气缸 E003 no pressure supply 没有供气 ●检查气源以及气管是否插 (1,21 口)	对
error ●更换气缸 E003 no pressure supply 没有供气 ●检查气源以及气管是否插	对
E003 no pressure supply 没有供气 ●检查气源以及气管是否插	对
	对
(1,21 口)	
●检查节气阀线缆是否松动或	损
坏 (灯不亮)	
●检查主缸锁紧阀线缆是否损	坏
(灯不亮)	
E004 maximum cylinder 超过最大气缸力 ●检查最大的气缸输出力	
force exceeded ●检查是否有障碍物阻挡	
E005 internal memory error 内部存储错误 ●报错不能被消除,需联系 fest	0
E006 position not reachable, 位置无法到达,超出 ●检查设定值是否在允许范围	之
specified position 气缸行程 内 (最 大 开 度)
beyond the stroke of ●检查是否碰到行程限位	
the cylinder	
E007 pressure sensor in 气缸内部压力传感器 ●更换气缸/联系 festo	
cylinder is faulty 错误 ●检查气缸电缆	
E008 invalid force setpoint 无效的夹紧力设定 ●检查设定值是否正确	
●检查"最大气缸力"的参数设置	
E009 position timeout, 定位超时, 无法到达 ●检查是否有障碍物阻挡电极	移
position was not 设定位置 (10s) 动	
reached ●检查气缸电缆	
E010 force was not 夹紧力无法到达(超 ●检查供气压力	
reached(timeout) 时) (2s) ●检查比例阀	

E011	direction of motion error, cylinder moving in the wrong direction	主气缸运动方向错误	●检查主阀 MPYE 的气管是否插 对
E012	counterbalance pressure was not reached(timeout)	平衡缸压力未到(超时)(2s)	●检查气源压力●检查平衡缸接头是否漏气●压差阀信号线松动●平衡缸标定错误
E013	parameter error	参数错误	●错误不能被清除
E015	calibration of force	力的标定	●检查是否有外部力传感器接在 X8接口上
E016	electrode broken/missing	电极帽破损/丢失	●更换新的电极帽后重新做一次 行程标定 ●检查电极杆和电极臂是否有损坏 「修改形变量参数」。查看轴是否过紧(X枪),是则需要松轴 ●修改 Homing pressure 大小 (Expert 模式) ●更换气缸或焊枪
E017	system friction below min. limit	系统摩擦力低于下限	●找出为何摩擦力会过小
E018	system friction above max. limit	系统摩擦力高于上限	●找出为何摩擦力会过大/是否需 要重新润滑
E019	sheet thickness error	焊板厚度错误	●在力模式下,焊接力在电极到达 开度 (焊板厚度) 之前就已经到达
E020	short circuit at output0	输出 0 短路	●消除短路
E021	short circuit at output1	输出 1 短路	●消除短路
E022	short circuit at output2	输出2短路	●消除短路
E023	short circuit at output3	输出3短路	●消除短路
E026	closed-loop controller parameters the closed-loop controller gain is 0	控制器闭环参数错误,增益是0	●更改控制器闭环参数

E027	cylinder extended cylinder reached its	在力模式下, 气缸位 置超过其前端限位	●检查焊枪机械结构
	advanced end position		
	during force build-up		
E028	Unwanted movement	气缸非正常运动 (气	● 检查气管接头和主气缸是否漏
		缸到位之后,没有接	气
		收到定位指令的情况	● 检查 MPYE 是否正常
		下,气缸位移量超过	● 重新标定位移
		行程 6.5%)	
E029	Drift	气缸漂移 (US2 断开	● 主气缸漏气
		后,气缸漂移速度大	● 主气缸锁紧模块损坏
		于 5mm/min)	●供气和控制主气缸电磁阀信号
			线接反