TD 2: Bases et dimensions

2020/2021

E3FI Semestre 2

1 Bases

Définition 1. On dit qu'une famille $F = (\vec{e_i})_{1 \leq i \leq n}$ de vecteurs de E est génératrice de E, si tout vecteur \vec{x} de E s'écrit comme combinaison linéaire des vecteurs de la famille F, c'est à dire :

$$\forall \vec{x} \in E, \exists (\lambda_1, ..., \lambda_n) \in \mathbb{K}_n \quad | \vec{x} = \lambda_1 \vec{e_1} + ... + \lambda_n \vec{e_n} = \sum_{i=1}^n \lambda_i \vec{e_i}$$
 (1)

Définition 2.

- (i) On dit que la famille $(e_1,...,e_n)$ de vecteurs de E est **libre** si elle vérifie $\forall \lambda_1,...,\lambda_n \in \mathbb{K}$, $\lambda_1 e_1 + ... + \lambda_n e_n = \vec{0} \Rightarrow \lambda_1 = ...\lambda_n = \vec{0}$. On dit que les vecteurs $e_1,...,e_n$ sont linéairement indépendants.
- (ii) On dit que la famille $(e_1,...,e_n)$ est **liée** si elle n'est pas libre ce qui signifie $\exists \lambda_1,...,\lambda_n \in K$, tel que $\lambda_1e1+...\lambda_nen=0$ et $(\lambda_1,...,\lambda_n) \neq (0,...,0)$. Une égalité $\lambda_1e_1+...+\lambda_ne_n=0$ avec $\lambda_1,...,\lambda_n$ non tous nuls est appelée relation linéaire sur les vecteurs $e_1,...,e_n$.

Proposition 1. Soient $n \geq 2$ et $(e_1,...,e_n)$ une famille de vecteurs de E. On a équivalence entre :

- (i) $(e_1, ... e_n)$ est liée
- (ii) L'un des vecteurs $e_1, ..., e_n$ est combinaisson linéaire des autres.

Définition 3. On dit qu'une famille $\mathbb{B} = (e_i)_{1 \leq i \leq n} = (e_1, ..., e_n)$ de vecteurs de E est une base de E si celle-ci est libre et génératrice.

2 Dimension d'un espace vectoriel

Définition 1. Soit un espace vectoriel engendré par n vecteurs.

Alors toutes les bases de E possèdent le même nombre d'éléments. Cet entier s'appelle la **dimension** de E. On a $dim(E) \le n$

Par convention, on pose $dim(\vec{0}) = 0$.

Lemme 1. Soit E un espace vectoriel engendré par n vecteurs. Alors toute famille libre de E est de cardinal inférieur ou égal à n.

Théorème 1. Soit E un espace vectoriel de dimension finie. Alors :

- Toute famille libre $\mathcal F$ de E vérifie $card(\mathcal F) \leq dim(E)$ et $card(\mathcal F) = dim(E)$ mplique que $\mathcal F$ est une base de E.
- Toute famille génératrice de E a au moins dim(E) éléments. Si une famille génératrice de E a exactement dim(E) éléments, alors c'est une base de E.

Corollaire 1. Pour vérifier qu'une famille \mathcal{F} de est une base, il faut et il suffit que :

$$card(\mathcal{F}) = dim(E)$$
 et \mathcal{F} soit une famille libre ou génératrice de E

Proposition 2. Soit E un espace vectoriel de dimension finie et F un sous espace vectoriel de E alors:

- (i) F est de dimension finie et $dim(F) \leq dim(E)$
- (ii) $si\ dim(F) = dim(E)\ alors\ F = E$

3 Exercices

Exercice 1. Soient dans \mathbb{R}^3 les vecteurs $v_1 = (1, 1, 0), v_2 = (4, 1, 4)$ et $v_3 = (2, -1, 4)$. La famille (v_1, v_2, v_3) est-elle libre?

Exercice 2. Familles libres et Familles liées :

- (i) On considère dans \mathbb{R}^3 les vecteurs $v_1 = (2, -1, 0)$ et $v_2 = (-4, 2, 0)$. Peut-on trouver un vecteur w tel que (v_1, v_2, w) soit libre? Si oui, construisez-en un.
- (ii) On suppose que v_1, v_2, v_3, v_4 sont des vecteurs linéairement indépendant de \mathbb{R}^4 .
 - (a) Les vecteurs $v_1 v_2, v_2 v_3, v_3 v_4, v_4 v_1$ sont-ils linéairement indépendant ?
 - (b) Les vecteurs $v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4 + v_1$ sont-ils linéairement indépendant ?
 - (c) Les vecteurs $v_1, v_1 + v_2, v_1 + v_2 + v_3, v_1 + v_2 + v_3 + v_4$ sont-ils linéairement indépendant ?

Exercice 3. Familles liées et bases : Soient u = (1, -1, 1), v = (0, -1, 2), w = (1, -2, 3). Montrer que (u, v, w) est liée et donner une base de F = Vect(u, v, w),

Exercise 4. Bases de sous-espaces vectoriels : Soient $e_1 = (0, 1, -1)$, $e_2 = (-1, 2, 1)$, $e_3 = (1, 1, -4)$, $e_4 = (1, -3, 0)$ et $e_5 = (-1, 4, -1)$.

On pose $F = Vect(e_1, e_2, e_3)$ et $G = Vect(e_4, e_5)$.

- (i) La famille (e_1, e_2, e_3) est-elle libre? En déduire une base de F,
- (ii) Donner une base de G,
- (iii) Donner une équation cartésienne de G.

Exercice 5. Les familles suivantes sont-elles libres? Justifier.

- (i) $v_1 = (1,0,1), v_2 = (0,2,2), v_3 = (3,7,1) \ dans \ \mathbb{R}^3$
- (ii) $v_1 = (1, 0, 0), v_2 = (0, 1, 1), v_3 = (1, 1, 1)$
- (iii) $v_1 = (1, 2, 1, 2, 1), v_2 = (2, 1, 2, 1, 2), v_3 = (1, 0, 1, 1, 0), v_4 = (0, 1, 0, 0, 1)$ dans \mathbb{R}^5 .
- (iv) $v_1 = (2, 4, 3, -1, -2, 1), v_2 = (1, 1, 2, 1, 3, 1), v_3 = (0, -1, 0, 3, 6, 2)$ dans \mathbb{R}^6
- (v) $v_1 = (2, 1, 3, -1, -4, -2), v_2 = (-1, 1, -2, 2, -3, 3), v_3 = (1, 5, 0, 4, -1, 7)$ dans \mathbb{R}^6

Exercice 6. Soient dans \mathbb{R}^4 les vecteurs $u_1 = (1, 2, 3, 4)$ et $u_2 = (1, -2, 3, -4)$. Peut-on déterminer x et y pour que $(x, 1, y, 1) \in Vect(u_1, u_2)$? De même, pour que $(x, 1, 1, y) \in Vect(u_1, u_2)$

Exercice 7. Dans \mathbb{R}^4 on considère l'ensemble des vecteurs (x_1, x_2, x_3, x_4) vérifiant $x_1 + x_2 + x_3 + x_4 = 0$. L'ensemble E est-il un sous-espace vectoriel de \mathbb{R}^4 ? Si tel est le cas, en déterminer une base.

Exercice 8. Soient $u_1 = (2, 3, -1), u_2 = (1, -1, -2), u_3 = (3, 7, 0), u_4 = (5, 0, -7)$. On considère les sous-espaces vectoriels $E = Vect(u_1, u_2)$ et $F = Vect(u_3, u_4)$. Montrer que E = F.

Exercice 9. On considère les vecteurs de \mathbb{R}^4 suivant, $u_1 = (0, 1 - 2, 1), u_2 = (1, 0, 2, -2), u_3 = (3, 2, 2, -1), u_4 = (0, 0, 1, 0),$

Les propositions sont-elles vraies ou fausses (justifier).

- (i) $Vect(u_1, u_2, u_3) = Vect((1, 1, 0, 0), (-1, 1, -4, 2))$
- (ii) $(1,1,0,0) \in Vect(u_1,u_2) \cap Vect(u_2,u_3,u_4)$

- (iii) $dim(Vect(u_1, u_2) \cap Vect(u_2, u_3, u_4)) = 1$
- (iv) $Vect(u_1, u_2) + Vect(u_2, u_3, u_4) = \mathbb{R}^4$

Exercice 10. Soient $u_1 = (1,1,1), u_2 = (2,-2,-1), u_3 = (1,1,-1)$ et $E = \{(x,y,z) \in \mathbb{R}^3, y+z=0\}$ et $F = Vect(u_1,u_2)$.

- (i) Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 et en déterminer une base.
- (ii) La famille (u_1, u_2, u_3) est-elle libre?
- (iii) A t-on $u_3 \in F$? et $u_3 \in E$?
- (iv) Donner une base de $E \cap F$.
- (v) Soit $u_4 = (-1, 7, 5)$. A t-on $u_4 \in F$? Et $u_4 \in E$?

Exercice 11. Soit E l'espace vectoriel sur \mathbb{R} obtenu par les combinaisons linéaires à coefficients réels des vecteurs e_1, e_2, e_3, e_4, e_5 où $e_1(x) = 1, e_2(x) = \sin 2x, e_3(x) = \cos 2x, e_4(x) = \sin 4xe_5(x) = \cos 4x$

- (i) Montrer que $(\{e_1, e_2, e_3, e_4, e_5)\}$ est une base de E.
- (ii) Montrer que les fonctions de la forme $\alpha_1 + \alpha_2 \sin 2x + \alpha_3 \cos 2x + \alpha_4 \sin^2 2x + \alpha_5 \cos^2 2x$ forment un sous espace vectoriel F de E. Trouver une base de F.