Funciones de varias variables - Superficies espaciales

1) Sea
$$f(x, y, z) = \frac{x^2 + y}{z^3}$$
, calcular:

a)
$$f(1,2,-1)$$

b)
$$f(-1,1,0)$$

a)
$$f(1,2,-1)$$
 b) $f(-1,1,0)$ c) $f(x+\Delta x,b,c)$

2) Graficar los siguientes planos:

a)
$$\begin{cases} x = 3 \\ y = y \\ z = z \end{cases}$$

a)
$$\begin{cases} x = 3 \\ y = y \\ z = z \end{cases}$$
 b)
$$\begin{cases} x + 2z = 6 \\ y = y \end{cases}$$
 c) $x + 3y + 2z = 6$ d) $2x - 2y + z = 6$

$$c) x+3y+2z=6$$

d)
$$2x - 2y + z = 6$$

$$e(x+y+z-1) = 0 \qquad f(x) \begin{cases} z=3 \\ x=x \\ y=y \end{cases} \qquad g(x+2y) = 2 \qquad h(x) \begin{cases} 2x-4z=1 \\ y=y \end{cases}$$

$$f \begin{cases} z = 3 \\ x = x \\ y = y \end{cases}$$

$$g\left(x + 2y = 2z\right)$$

$$z = z$$

$$h) \begin{cases} 2x - 4z = \\ y = y \end{cases}$$

3) Utilizando GeoGebra o similar, graficar las siguientes superficies:

$$a)z = 4x^2 + 4y^2$$

$$b) z = -4x^2 - 4y^2 + 2$$

a)
$$z = 4x^2 + 4y^2$$
 b) $z = -4x^2 - 4y^2 + 2$ c) $z = 4(x-1)^2 + 4(y-2)^2$

$$d)z = \frac{y^2}{9} - \frac{x^2}{4}$$

$$d)z = \frac{y^2}{9} - \frac{x^2}{4} \qquad e) \quad \frac{y^2}{4} + \frac{z^2}{4} = x$$

4) Graficar utilizando las curvas de nivel

a)
$$x^2 + y^2 + z^2 = 16$$
 b) $\frac{x^2}{2} + \frac{y^2}{2} + \frac{z^2}{12} = 1$ c) $z = x^2 - y^2$

b)
$$\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} = 1$$

$$c) \ z = x^2 - y$$

5) Hallar el dominio de definición y hacer el gráfico correspondiente:

a)
$$f(x, y) = x^2 + 2xy + y^3$$
 b) $z = \frac{x+y}{x-y}$

b)
$$z = \frac{x+y}{x-y}$$

c)
$$z = \frac{x+y}{xy}$$

d)
$$f(x, y) = x\sqrt{y}$$

d)
$$f(x, y) = x\sqrt{y}$$
 e) $f(x, y) = \sqrt{x^2 + y^2 - 4}$ f) $z = \sqrt{x^2 + y^2 + 1}$

f)
$$z = \sqrt{x^2 + y^2 + 1}$$

$$g) z = \ln(3 + x - y)$$

h)
$$z = \ln[(x+3)(y-2)]$$

g)
$$z = \ln(3+x-y)$$
 h) $z = \ln[(x+3)(y-2)]$ i) $f(x,y) = \frac{\ln(y-x^2+3)}{\sqrt{-y-x^2+5}}$

$$j)z = \frac{1}{x + 2y - 4}$$

$$k) \ z = \sqrt{1 - x^2 - y^2}$$

$$l) \ln\left(y-x^2\right)$$

$$j)z = \frac{1}{x + 2y - 4} \qquad k) \ z = \sqrt{1 - x^2 - y^2} \qquad l) \ \ln(y - x^2) \quad m) \ z = \frac{1}{\sqrt{-16 + x^2 + y^2}}$$

TP 14: ANÁLISIS MATEMÁTICO 2022

Funciones de varias variables - Superficies espaciales

6) Identifique que superficie representa cada ecuación:

a)
$$3z = 3x^2 + 2y^2$$

b)
$$2x^2 + 2y^2 - z^2 = 0$$

a)
$$3z = 3x^2 + 2y^2$$
 b) $2x^2 + 2y^2 - z^2 = 0$ c) $x^2 + 2y^2 + 2z^2 = 4$

$$d) \ 5x^2 + 5y^2 + 5z^2 =$$

$$e)$$
 $x^2 + 2y^2 - z^2 = -4$

$$f)2x^2 + 2y^2 + 2z^2 = 8$$

d)
$$5x^2 + 5y^2 + 5z^2 = 3$$
 e) $x^2 + 2y^2 - z^2 = -4$ f) $2x^2 + 2y^2 + 2z^2 = 8$ g) $3x^2 - y^2 + 2z^2 = 5$ h) $2x^2 + 4y^2 + 6z^2 = 4$ i) $3x - 2y^2 + z^2 = 0$

h)
$$2x^2 + 4y^2 + 6z^2 = 4$$

i)
$$3x-2y^2+z^2=0$$

$$j) 2x^2 + 3y^2 + z^2 = 6$$

$$(x) \quad 3x^2 + 3y^2 + 3z^2 = 4$$

j)
$$2x^2 + 3y^2 + z^2 = 6$$
 k) $3x^2 + 3y^2 + 3z^2 = 4$ l) $3x^2 + 2y^2 + 3z^2 = 0$

7) De una ecuación como ejemplo de cada una:

- a) Paraboloide hiperbólico
- b) Hiperboloide de 1 hoja de eje "z"
- c) Cono elíptico de eje "x"
- d) Hiperboloide de 2 hojas de eje "y"
- e) Hiperboloide de 2 hojas de eje "x"
- f) Paraboloide elíptico de eje "x"
- g) Esfera
- h) Elipsoide