Math 295: Homework 8

Carter Rhea

March 26, 2014

- 1. Chapter 4.6 # 4 Which of the following relations \mathbb{R} are equivalence relations? For those that are equivalence relations, what are the equivalence classes?
 - (a) $R = \{(x,y) \in \mathbb{R} \times \mathbb{R} | x-y \in \mathbb{N}\}$ R is not an equivalence relation because it fails to satisfy the requirement regarding symmetry in order to be an equivalence relation. $x,y \in R$ and xRy. Then $x-y \in \mathbb{N}$. Thus $y-x=-(x-y) \notin \mathbb{N}$ since the negative of a natural number is not a natural number because by definition $\mathbb{N} = \{0,1,2,3...\}$. Example: Allow x=2 and y=1. Then $x-y=2-1=1\in \mathbb{N}$, but $y-x=1-2=-1\notin \mathbb{N}$.
 - (b) $S = \{(x,y) \in \mathbb{R} \times \mathbb{R} | x y \in \mathbb{Q}\}$ Reflexive: Suppose $x \in \mathbb{R}$. Then $x x = o \in \mathbb{Q}$, so $(x,x) \in S$, and therefore S is reflexive. Symmetric: Suppose $(x,y) \in S$. By the definition of S, this means that $x y \in \mathbb{Q}$. Then $y x = -(x y) \in \mathbb{Q}$ since the negative of a rational number is also a rational number, thus $(y,x) \in S$. Because (x,y) was an arbitrary element of S, S is symmetric. Transitive: Suppose $(x,y) \in S$ and $(y,z) \in S$. Then $x y \in \mathbb{Q}$ and $y z \in \mathbb{Q}$. It follows that the sum $x y + y z = x z \in \mathbb{Q}$, so $(x,z) \in S$, as required. Thus S is an equivalence relation on \mathbb{R} . Equivalence Class: $\mathbb{R}/S = \{[0]\} \cup \{[q] \mid q \in \mathbb{R} \setminus \mathbb{Q}\}$, where $[0] = \mathbb{Q}$, and $\{[q] \mid q \in \mathbb{R} \setminus \mathbb{Q}\}$ such that each irrational number added with a rational is the equivalence class of the irrational number alone.
 - (c) $T = \{(x,y) \in \mathbb{R} \times \mathbb{R} | \exists n \in \mathbb{Z}(y = x10^n) \}$ Reflexive: Suppose $x \in \mathbb{R}$. Then $\exists n \in \mathbb{Z}(x = x10^n)$, n = 0 satisfies the equations, so $(x,x) \in T$, and therefore S is reflexive. Symmetric: Suppose $(x,y) \in T$. By the definition of S, this means $\exists n \in \mathbb{Z}(y = x10^n)$. Then $\exists n \in \mathbb{Z}(x = y10^n)$, thus $(y,x) \in T$. Since (x,y) was an arbitrary element of T, T is symmetric. Transitive: Suppose $(x,y) \in T$ and $(y,z) \in T$. Then $\exists n \in \mathbb{Z}(y = x10^n)$ and $\exists m \in \mathbb{Z}(z = y10^m)$. Thus $\exists n \in \mathbb{Z} \exists m \in \mathbb{Z} (z10^{-m} = x10^n)$. Then $\exists n \in \mathbb{Z} \exists m \in \mathbb{Z}(z = x10^{n+m})$. By substuting n + m = s, $\exists s \in \mathbb{Z}(z = x10^s)$, so $(x,z) \in T$ as required. Thus T is an equivalence relation on \mathbb{R} . Equivalence Class: $\mathbb{R}/T = \{[x] \mid x \in \mathbb{R}\}$ where $[b] = \{a \in \mathbb{R} \mid \exists n \in \mathbb{Z}a = b10^n\}$
- 2. Chapter 4.6 #10 Let C_m be the congruence mod m relation defined in the text, for a positive integer m.
 - (a) Complete the proof that C_m is an equivalence relation on \mathbb{Z} by showing that it is reflexive and symmetric.

 $C_m = \exists k \in \mathbb{Z}(x - y = km)$

Reflexive: Suppose $x \in \mathbb{R}$. Then x - x = 0 = km for some $k \in \mathbb{Z}$, namely, z = 0. So $(x, x) \in C_m$, and therefore C_m is reflexive.

Symmetric: Suppose $(x,y) \in C_m$. By the definition of C_m , $\exists k \in \mathbb{Z}(x-y=km)$. Then $\exists k \in \mathbb{Z}(y-x=-(x-y)=km)$. Thus, since k can be negative, $(y,x) \in C_m$. Since (x,y) was an arbitrary element of C_m , C_m is symmetric.

(b) Find all of the equivalence classes for C_2 and C_3 . How many equivalence classes are there in each case? In general, how many equivalence classes do you think there are for C_m ? Equivalence class for C_2 : $\{[x]|x\in\mathbb{Z}\}=\{[0],[1]\}$, where $[0]=\{n\in\mathbb{Z}|2n\}$ and $[1]=\{m\in\mathbb{Z}|2m+1\}$

Equivalence class for C_3 : $\{[x]|x \in \mathbb{Z}\} = \{[0], [1], [2]\}$, where $[0] = \{n \in \mathbb{Z}|3n\}$, $[1] = \{m \in \mathbb{Z}|3m+1\}$, and $[2] = \{s \in \mathbb{Z}|3s+2\}$.

In general, C_m will have m equivalence classes.

3. Chapter 4.6 # 11 Prove that for every integer n, either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$. Rewritten in symbols: $\forall n (\exists k \in \mathbb{Z}(n^2 = 4k) \text{ or } \exists w \in \mathbb{Z}(n^2 = 4w + 1))$.

Proof: Let $n \in \mathbb{Z}$, thus n is either even or odd.

Case 1: Assume n is even. If n is even, then n=2r such that $r \in \mathbb{Z}$. Thus $n^2=(2r)^2=4r^2$. Thus $n^2=4k$ with $k \in \mathbb{Z}$.

Case 2: Assume *n* is odd. If *n* is odd, then n = 2s + 1 such that $s \in \mathbb{Z}$. Thus $n^2 = (2s + 1)^2 = 4s^2 + 4s + 1 = 4(s^2 + s) + 1$. Thus $n^2 = 4w + 1$ with $4w \in \mathbb{Z}$.

Thus for every integer n, either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

4. Chapter 5.1 # 1

- (a) Let $A = \{1, 2, 3\}, B = \{4\}$, and $f = \{(1, 4), (2, 4), (3, 4)\}$. Is f a function from A to B? Yes, because there exists only one g for each g, and each g is used.
- (b) Let $A = \{1\}$, $B = \{2, 3, 4\}$, and $f = \{(1, 2), (1, 3), (1, 4)\}$. Is f a function from A to B? No, because there exists multiple y-values for each x.
- (c) Let C be the set of all cars registered in your state, and let S be the set of all finite sequences of letters and digits. Let $L = \{(c, s) \in C \times S | \text{ the lisence plate number of the car } c \text{ is } s \}$. Is L a function from C to S?

Yes, because there exists only one liscence plate s, for each car, c, registered in the state. Thus, each c has one and only one corresponding s, so L qualifies as a function from C to S.

5. Chapter 5.1 # 4

- (a) Let N be the set of all countries and C the set of all cities. Let $H: N \to C$ be the function defined by the rule that for every country n, H(n) =the capital of the country n. What is H(Italy)? Rome!
- (b) Let $A = \{1, 2, 3\}$ and $B = \mathcal{P}(A)$. Let $F : B \to B$ be the function defined by the formula $F(X) = A \setminus X$. What is $F(\{1, 3\})$? $F(\{1, 3\}) = A \setminus \{1, 3\} = \{2\}$.
- (c) Let $f = \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ be the function defined by the formula f(x) = (x+1, x-1). What is f(2)? f(2) = (2+1, 2-1) = (3, 1)
- 6. Chapter 5.1 # 6 Let f and g be functions from \mathbb{R} to \mathbb{R} defined by the following formulas:

$$f(x) = \frac{1}{x^2 + 2}$$
 $g(x) = 2x - 1$

Find formulas for $(f \circ g)(x)$ and $(g \circ f)(x)$.

$$(f \circ g)(x) = \frac{1}{(2x-1)^2 + 2} = \frac{1}{4x^2 - 4x + 1 + 2} = \frac{1}{4x^2 - 4x + 3}$$
$$(g \circ f)(x) = 2\frac{1}{x^2 + 2} - 1 = \frac{2}{x^2 + 2} - 1 = \frac{2}{x^2 + 2} - \frac{x^2 + 2}{x^2 + 2} = \frac{-x^2}{x^2 + 2}$$