CS 771A: Intro to Machine Learning, IIT Kanpur			Endsem Exam (27 Apr 2025)		
Name					40 marks
Roll No		Dept.			Page 1 of 4

Instructions:

- 1. This question paper contains 2 pages (4 sides of paper). Please verify.
- 2. Write your name, roll number, department in block letters with ink on each page.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ ambiguous cases will get 0 marks.

Q1 (Anomalous Thresholds) Melba is designing an anomaly detection algorithm, using a neural network to embed all data points as 2D vectors and finding the mean vector \mathbf{c} . Melba now wants to find a radius threshold r such that given a test data point with 2D embedding \mathbf{x} , Melba can label it as $\hat{y} = +1$ (anomalous) if $\|\mathbf{x} - \mathbf{c}\|_2 > r$ else label it as $\hat{y} = -1$ (normal). Melba has the following test data containing normal and anomalous points. To simplify, the Euclidean distance of all test points from mean \mathbf{c} and their ground truth label y (y = +1 for anomalous, y = -1 for normal) is given.

$\ \mathbf{x} - \mathbf{c}\ _2$	1.0	2.5	3.0	4.5	5.0	6.5	7.0	8.5	9.0	10.5
true label y	-1	-1	-1	+1	-1	-1	-1	+1	-1	+1

For each part, answer in the box and also justify briefly in space provided.

 $((1+1) \times 3 = 6 \text{ marks})$

Is there a radius threshold that achieves perfect test accuracy i.e. i.e. $\mathbb{P}[\hat{y}=y]=1$?
Write T or F . Justify your answer briefly.

Give (any) one radius threshold for which Melba's classifier achieves perfect true-positive rate (TPR) on test data i.e. $\mathbb{P}[\hat{y}=1|y=1]=1$. Justify your answer briefly.

Among radius thresholds that achieve perfect TPR, find (any) one that minimizes the false-positive rate (FPR) i.e. $\mathbb{P}[\hat{y}=1|y=-1]$ is smallest. Justify your answer briefly.

Q2 (Probabilistic DT) Melbo wants to solve a mixed regression problem using two regression models \mathbf{p} , $\mathbf{q} \in \mathbb{R}^d$. A classifier $\mathbf{c} \in \mathbb{R}^d$ is also needed to decide which model to use at test time (see figure). For a data point $\mathbf{x} \in \mathbb{R}^d$, if $\mathbf{c}^\mathsf{T}\mathbf{x} \geq 0$, Melbo will predict $\mathbf{p}^\mathsf{T}\mathbf{x}$. If $\mathbf{c}^\mathsf{T}\mathbf{x} < 0$, predict $\mathbf{q}^\mathsf{T}\mathbf{x}$. Assume that bias is hidden inside the models. Note that this is nothing but a regression tree with one root and two leaves. (4 x 4 = 16 marks)

Melbo has training data (\mathbf{x}^i, y^i) , $i \in [N]$ where $\mathbf{x}^i \in \mathbb{R}^d$, $y^i \in \mathbb{R}$ but does not know which data point belongs to which model so Melba advises using latent variables. For each data point $i \in [N]$, Melbo uses a binary latent variable $z^i \in \{-1, +1\}$ and the following likelihoods: $\mathbb{P}[z^i \mid \mathbf{x}^i, \mathbf{p}, \mathbf{q}, \mathbf{c}] = \sigma(z^i \cdot \mathbf{c}^\mathsf{T} \mathbf{x}^i)$ and $\mathbb{P}[y^i \mid \mathbf{x}^i, z^i = +1, \mathbf{p}, \mathbf{q}, \mathbf{c}] = \frac{1}{\sqrt{\pi}} \exp\left(-\left(y^i - \mathbf{p}^\mathsf{T} \mathbf{x}^i\right)^2\right)$ and $\mathbb{P}[y^i \mid \mathbf{x}^i, z^i = -1, \mathbf{p}, \mathbf{q}, \mathbf{c}] = \frac{1}{\sqrt{\pi}} \exp\left(-\left(y^i - \mathbf{q}^\mathsf{T} \mathbf{x}^i\right)^2\right)$ where $\sigma(t) \stackrel{\text{def}}{=} \frac{1}{(1 + \exp(-t))}$ is the sigmoid.

Give brief derivation of an expression for the exact likelihood $\mathbb{P}[y^i \mid \mathbf{x}^i, \mathbf{p}, \mathbf{q}, \mathbf{c}]$ by eliminating z^i .

CS 771A: Intro to	Machine Learnin	Endsem Exam (27 Apr 2025)			
Name	Dont			40 marks Page 3 of 4	
Roll No	Dept			1 age 3 01 4	
Step 2: Freeze p, q,	c and give brief deriv	ation on how to find	$ \operatorname{argmax}_{\{z^i\}}\mathcal{L}(\mathbf{p},\mathbf{q}) $	$(\mathbf{c}, \{z^i\}).$	
Step 3: Freeze p, q,	$\{z^i\}$ and give brief de	erivation on how to f	ind argmax $_{\mathbf{c}} \mathcal{L}(\mathbf{p}, \mathbf{c})$	$\mathbf{q}, \mathbf{c}, \{z^i\}$).	
	s) The sigmoid function $(x; B) \stackrel{\text{def}}{=} 1/(1 + \exp($		· ·	_	
	generates that curve			$(5 \times 1 = 5 \text{ marks})$	
1 y	1. y			1 y	
0.5	0.5	0.5	0.5	0.5	
(a)	(b)	° x	°	(e)	
$\bigcirc B \to -\infty$	$\bigcirc B \to -\infty$	$\bigcirc B \to -\infty$	$\bigcirc B \to -\infty$	$\bigcirc B \to -\infty$	
$ \bigcirc B = -1 \\ \bigcirc B = 0 $	$ \bigcirc B = -1 \\ \bigcirc B = 0 $	$ \bigcirc B = -1 \\ \bigcirc B = 0 $	$ \bigcirc B = -1 \\ \bigcirc B = 0 $	$ \bigcirc B = -1 \\ \bigcirc B = 0 $	
$ \bigcirc B = +1 \\ \bigcirc B \to +\infty $	$ \bigcirc B = +1 \\ \bigcirc B \to +\infty $	$ \bigcirc B = +1 \\ \bigcirc B \to +\infty $	$ \bigcirc B = +1 \bigcirc B \to +\infty $	$ \bigcirc B = +1 \\ \bigcirc B \to +\infty $	

Q4 (Total Confusion) Melbu used a linear model $\operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$ to solve a binary classification problem with model vector $\mathbf{w} \in \mathbb{R}^d$ and bias $b \in \mathbb{R}$. The classifier was evaluated on 1000 test data points and the following confusion matrix was obtained. Note that y denotes

	$\hat{y} = 1$	$\hat{y} = -1$
y = 1	100	700
y = -1	100	100

the true label of a test point and \hat{y} denotes the label predicted by the classifier. The entries in the confusion matrix show how many points of a particular class were classified in a particular manner by the classifier. There are only two classes namely -1, +1. Calculate the following quantities for the classifier based on its test performance (no derivations needed) (4 x 1 + 2 = 6 marks)

Accuracy $\mathbb{P}[\hat{y}=y]$ Recall $\mathbb{P}[\hat{y}=1|y=1]$ False omission rate $\mathbb{P}[\hat{y}\neq y|\hat{y}=-1]$

Melbu's classifier is not very good. Suggest a simple change to the model parameters so that the new classifier's accuracy goes up to at least 75% (maybe more). You are not allowed to (re)train on original or additional data or change the training algorithm. All you can do is make modifications directly to the model parameters \mathbf{w} , b learnt by Melbu. Briefly justify your answer.

Q5 (Hyperbolic Networks) We wish to use a neural network with architecture shown on the left, to solve a binary classification problem shown on the right. The bold decision boundaries in the figure depict the hyperbola xy=4. The NN has parameters a 2×2 matrix $A\in\mathbb{R}^{2\times 2}$, a 2D vector $\mathbf{w}\in\mathbb{R}^2$ and a bias $b\in\mathbb{R}$. The output of the NN is a sign $(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x})+b)$ where a with

square activation being applied coordinate-wise i.e. for a vector $\mathbf{v}=(v_1,v_2)$, the square activation is applied as $(\mathbf{v})^2 \stackrel{\text{\tiny def}}{=} (v_1^2,v_2^2)$. Find values of the parameters A, \mathbf{w} , b so that the NN gives output +1 in the shaded region and -1 in the white region. Be careful to write value of A and not A^{T} (note that we have $\phi(\mathbf{x})=(A\mathbf{x})^2$ not $(A^{\mathsf{T}}\mathbf{x})^2$). Write only in the space provided. (7 marks)

$$A = \begin{bmatrix} \Box & \Box \\ \Box & \Box \end{bmatrix} \quad \mathbf{w} = [\ \Box \ \ \Box \] \qquad b = \Box$$