# Using Built-in Algorithms in SageMaker



Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

#### Overview

A variety of built-in models to deal with different ML problem types

ML algorithms available out-of-the-box, no need to write any code for the model

Not pre-trained, model is trained on your dataset

Format training data based on model specifications

Wide range of supervised and unsupervised learning models available

# Built-in Algorithms

#### Whales: Fish or Mammals?



**Mammals** 

Members of the infraorder Cetacea



Fish

Look like fish, swim like fish, move with fish

#### Whales: Fish or Mammals?



#### ML-based Classifier

#### **Training**

Feed in a large corpus of data classified correctly

#### **Prediction**

Use it to classify new instances which it has not seen before

#### Training the ML-based Classifier















## Machine Learning Model



#### Machine Learning Model



ML code written using scikitlearn, TensorFlow, Apache MXNet



# Provide out-of-the-box solutions for many common models



# Developer writes no code for the actual ML model



# Model is hosted on Docker containers on AWS



Developer formats the training data to fit the model input specifications



# Model runs training on AWS containers



The model can then be deployed on compute instances



# And used for inference via endpoints

#### **Linear Learner**

Classification and regression

#### **Factorization Machines**

Classification and regression

#### Seq2seq

Text summarization, speech to text

**K-means Clustering** 

Clustering, grouping

Principal Components Analysis

**Dimensionality reduction** 

#### **Linear Learner**

Classification and regression

#### Factorization Machines

Classification and regression

#### Seq2seq

Text summarization speech to text

K-means Clustering
Clustering, grouping

#### Principal Components Analysis

**Dimensionality reduction** 

#### The Linear Learner

# A supervised learning algorithm that can be used for both regression and classification

#### Types of ML Algorithms



**Supervised** 

Labels associated with the training data is used to correct the algorithm



Unsupervised

The model has to be set up right to learn structure in the data

#### Types of ML Algorithms



#### **Supervised**

Labels associated with the training data is used to correct the algorithm



#### Unsupervised

The model has to be set up right to learn structure in the data

#### Linear Learner



Regression

Output prediction is a continuous real value



Classification

Output prediction is a categorical value - binary 0/1

#### Linear Learner



Regression

Output prediction is a continuous real value



Classification

Output prediction is a categorical value - binary 0/1

# Simple Regression



Cause Independent variable



**Effect**Dependent variable

# Simple Regression



Cause

Distance from the city center



**Effect** 

Changes in price per square foot of a house



Finding the best fit line through these points



The "best fit" line is called the regression line

#### Linear Learner



Regression

Output prediction is a continuous real value



Classification

Output prediction is a categorical value - binary 0/1

#### Two Approaches to Deadlines



Start 5 minutes before deadline
Good luck with that



Start 1 year before deadline

Maybe overkill

Neither approach is optimal

## Logistic Regression

Probability of meeting deadline

(1 year,100%)

Start 1 year before deadline 100% probability of meeting deadline

Start 5 minutes before deadline 0% probability of meeting deadline

(5 mins,0%)

Time to deadline

## Working Hard, Fast, Smart



Time to deadline

## Working Hard, Fast, Smart



Time to deadline



Time to deadline



Time to deadline

Start too late, and you'll definitely miss



Time to deadline

Start too early, and you'll definitely make it



Time to deadline

Working smart is knowing when to start



Time to deadline

This is the threshold probability value for classification

### Linear Learner



Regression

Output prediction is a continuous real value



Classification

Output prediction is a categorical value - binary 0/1

## Using Built-in Algorithms

#### Retrieve training data

Explore and clean data

#### Train with built-in algorithms

Stored in containers, set up estimators with containers as input, train with input data

## Use endpoint for inference

Predict using input data

## Format and serialize input data

Set up data in the form accepted by the algorithm, upload to S3

#### **Deploy model**

Creates endpoint configuration and endpoint for prediction

#### Demo

Using the linear learner - a built-in algorithm provided by SageMaker for classification

Identify whether an MNIST digit is a 3 or not (binary classification)

#### MNIST Dataset



Every image is standardized to be of size 28x28

= 784 pixels

## Representing Images

| 0   | 0   | 0   | 0   | 0   | 0 |
|-----|-----|-----|-----|-----|---|
| 0.2 | 0.8 | 0   | 0.3 | 0.6 | 0 |
| 0.2 | 0.9 | 0   | 0.3 | 0.8 | 0 |
| 0.3 | 0.8 | 0.7 | 0.8 | 0.9 | 0 |
| 0   | 0   | 0   | 0.2 | 0.8 | 0 |
| 0   | 0   | 0   | 0.2 | 0.2 | 0 |

# = 784 pixels

### Confusion Matrix

|         | FI           | edicted Labels | _              |
|---------|--------------|----------------|----------------|
| ∧ otus! |              | Cancer         | No<br>Cancer   |
| Actual  | Label        |                |                |
|         | Cancer       | 10 instances   | 4 instances    |
|         | No<br>Cancer | 5 instances    | 1000 instances |

### Confusion Matrix

#### Predicted Labels

**Actual Label** 

Cancer

No Cancer

| Cancer | No<br>Cancer |  |
|--------|--------------|--|
| 10     | 4            |  |
| 5      | 1000         |  |

### True Positive



### False Positive



## True Negative



## False Negative



## Accuracy



#### Precision

#### Predicted Labels



Precision = Accuracy when classifier flags cancer

### Recall

#### Predicted Labels



Recall = Accuracy when cancer actually present

## Principal Components Analysis

### Types of ML Algorithms



#### Supervised

Labels associated with the training data is used to correct the algorithm



#### Unsupervised

The model has to be set up right to learn structure in the data

#### Data in One Dimension



Unidimensional data points can be represented using a line, such as a number line

#### Data in Two Dimensions



It's often more insightful to view data in relation to some other, related data

## A Question of Dimensionality



Pop quiz: Do we really need two dimensions to represent this data?

### Bad Choice of Dimensions



If we choose our axes (dimensions) poorly then we do need two dimensions

### Good Choice of Dimensions



If we choose our axes (dimensions) well then one dimension is sufficient



Objective: Find the "best" directions to represent this data



Start by "projecting" the data onto a line in some direction



Start by "projecting" the data onto a line in some direction



The greater the distances between these projections, the "better" the direction

## Bad Projection



A projection where the distances are minimised is a bad one - information is lost

## Good Projection



A projection where the distances are maximised is a good one - information is preserved



The direction along which this variance is maximised is the first principal component of the original data



Find the next best direction, the second principal component, which must be at right angles to the first



Find the next best direction, the second principal component, which must be at right angles to the first

# Principal Components at Right Angles



Directions at right angles help express the most variation with the smallest number of directions



The variances are clearly smaller along this second principal component than along the first



In general, there are as many principal components as there are dimensions in the original data



Re-orient the data along these new axes

# Dimensionality Reduction



If the variance along the second principal component is small enough, we can just ignore it and use just 1 dimension to represent the data

# Dimensionality Reduction



Variation along 2 dimensions: 2 principal components required

## Dimensionality Reduction



Variation along 1 dimension: 1 principal component is sufficient

PCA is used for dimensionality reduction i.e. use fewer attributes to represent the same information

Choose the most **important** attributes

#### Demo

Use SageMaker's built-in PCA algorithm for dimensionality reduction

Represent the information in 50000 MNIST images using 10 principal components

10 images which contain the most important information from the original 50000

### Summary

ML algorithms available out-of-the-box, no need to write any code for the model

Not pre-trained, model is trained on your dataset

Linear learner and PCA are examples of supervised and unsupervised models available