

DISSERTAÇÃO DE MESTRADO

RETROFITTING DO ROBÔ ASEA IRB6-S2 BASEADO EM TECNOLOGIAS DE COMANDO NUMÉRICO USANDO LINUXCNC

EMANUEL PEREIRA BARROSO NETO

Brasília, Julho de 2018

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA

RETROFITTING DO ROBÔ ASEA IRB6-S2 BASEADO EM TECNOLOGIAS DE COMANDO NUMÉRICO USANDO LINUXCNC

EMANUEL PEREIRA BARROSO NETO

DISSERTAÇÃO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA MECÂNICA DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE BRASÍLIA COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM SISTEMAS MECATRÔNICOS

APROVADA POR:

Prof. Dr. Eugênio Liborio Feitosa Fortaleza, PP- MEC/UnB *Orientador*

Prof. Dr. André Murilo de Almeida, Gama/UnB *Membro Interno*

Prof. Dr. Renan Bonnard, MENESR/França *Membro Externo*

BRASÍLIA/DF, 07 DEZEMBRO DE 2016

Barroso Neto, Emanuel Pereira

Retrofitting do robô ASEA IRB6-S2 baseado em tecnologias de comando numérico usando LinuxCNC / EMANUEL PEREIRA BARROSO NETO. -Brasil, 2018. 170 p.

Orientador: Eugênio Liborio Feitosa Fortaleza

Dissertação (Mestrado) - Universidade de Brasília - UnB Faculdade de Tecnologia - FT

Programa de Pós-Graduação em Sistemas Mecatrônicos - PPMEC, 2018.

1. Smart Reservoir. 2. Recuperação Secundária. 3. Engenharia de Reservatório. 4. Produção de Petróleo. 5. Otimização. I. Eugênio Liborio Feitosa Fortaleza, orientador. II. Universidade de Brasília. III. Faculdade de Tecnologia.

Agradecimentos

Em primeiro lugar a Deus, por me permitir a oportunidade de estar com vida e honrar seu nome por meio de minhas ações diárias.

Ao meu filho sendo uma infinita motivação diária, sempre confiante em romper os meus limites imaginários com o intuito de atingir meus objetivos sem receios. "A engenharia é como a vida", digo ao meu filho, "é uma arte especial que permite descobrir caminhos nunca antes percorridos, com convicção de que sempre existe mais alguma coisa por fazer. Sendo assim, querido Juan José sempre estará em capacidade de superar seus próprios limites, suas próprias fronteiras geográficas e culturais, seus sonhos, amo a você na distancia"

Ao meu maravilhoso núcleo familiar: minha mãe Clara Inés, meu Pai Efrain e minha irmã Diana Andrea que sempre estiveram e estão ao meu lado, sem se importarem com as condições externas, me contribuindo continuamente ao fortalecimento, mesmo distante, dos laços familiares. Saúdo também à todos os membros de minha família que me apoiaram em meus sonhos.

Agradeço carinhosamente à eterna professora de português, que sem ela não haveria condições de obter a realização desta etapa de minha vida. Sou muito grato à ela ter sempre acreditado em meu potencial, até quando eu duvidada de mim mesmo. Obrigado senhorita Carvalho Bonifácio por estar neste caminho de aprendizagem constante ao meu lado, sempre me protegendo, me contagiando com essa energia de esperança e felicidade.

Aos colegas e amigos Diego Benavides e Luiz Eduardo, que ao longo desta decisão acadêmica nos tornamos maduros com as experiências de vida. Condições esta que nos são necessárias para conquistarmos qualquer meta e cumprir quaisquer sonhos. Reconhecendo a importância da disciplina e paixão.

A todas as pessoas que de alguma maneira, direta e indiretamente, contribuíram para que este sonho pudesse hoje estar concluído, através de uma palavra, um abraço, uma caminhada noturna. Detalhes que marcam as vidas de pessoas que convivem na mesma realidade.

Por último, mas não menos importante, ao professor Alberto Alvares pela oportunidade de levar este projeto até o final, pela paciência quando precisei recuperar o foco na minha estadia no Brasil. O mais importante foi ter aprendido com sua sabedoria que os objetivos só são atingidos com disciplina, sacrifício e objetividade.

Ao CNPq pela bolsa de mestrado que me permitiu manter ao longo dos 24 meses de dedicação exclusiva. Aportando dinamicamente um grão de areia da literatura relacionada com minha paixão, a robótica. Ao PPMEC e especialmente ao professor Edson por me ter dado a oportunidade de fazer concretizar um ideal de vida.

EMANUEL PEREIRA BARROSO NETO

RESUMO

O presente trabalho busca apresentar e prover uma implementação inicial de um algoritmo alternativo de controle de produção em reservatórios de petróleo, além de analisar seus resultados iniciais. O algoritmo desenvolvido, nomeado *Smart Reservoir*, foi concebido com a intenção de obter uma rentabilidade equivalente aos valores encontrados na literatura com custo computacional e tempo de produção reduzidos, partindo da premissa de que o dinheiro perde valor ao longo do tempo.

A solução proposta para o problema de se antecipar a produção de petróleo foi testada utilizando-se dois modelos de reservatório conhecidos na indústria petrolífera: o *Egg Model* e o SAIGUP. A ideia central do *Smart Reservoir* é, dada uma função objetivo bastante utilizada para otimização de produção — NPV—, modificá-la de maneira a se considerar na análise parâmetros de reservatório além dos dados de produção; assim, torna se possível comparar diferentes estratégias de simulação utilizando-se apenas simulações de reservatório de médio termo, promovendo uma redução significativa de custos computacionais. Além dessa redução, que chega a cerca de 90%, é possível obter uma redução de tempo de produção de pelo menos 50%, sem prejudicar os resultados econômicos obtidos por meio de outros métodos de otimização presentes na literatura.

Palavras-chave: Otimização, Reservatório, Simulação, Redução de Custos, NPV

ABSTRACT

The present work aims to present and provide an initial implementation of an alternative control algorithm of production in oil reservoirs, besides analyzing its initial results. The developed algorithm, named Smart Reservoir, was conceived with the intention of obtaining an equivalent profit to the values found in literature with reduced computational cost and production time, starting from the premise that money loses its value over time.

The proposed solution for the problem of anticipating oil production was tested using two reservoir models acknowledged in oil industry: the Egg Model and the SAIGUP. The central idea of the Smart Reservoir is, given an objective function fairly used in production optimization – NPV –, to modify it in order to consider in the analysis reservoir parameters in addition to the production data. Therefore, it becomes possible to compare different simulation strategies using only medium term reservoir simulations, thus promoting a significant reduction of computational costs. Besides this reduction, which reaches about 90%, it is possible to obtain a production time reduction of at least 50% without harming the economical results obtained by other optimization methods present in literature.

Key words: Optimization, Reservoir, Simulation, Cost Reduction, NPV

SUMÁRIO

R	ESUMO		i	
ABSTRACT				
L	ISTA DE	FIGURAS	v	
L	ISTA DE	TABELAS	vii	
L	ISTA DE	SÍMBOLOS	ix	
L	ISTA DE	ABREVIATURAS E ACROGRAMAS	xi	
1	Introdu	ıção	1	
	1.1	Contextualização	1	
	1.2	Definição do Problema	1	
	1.3	Objetivos da Dissertação	1	
	1.3.1	Objetivo Geral	1	
	1.3.2	Objetivos Específicos	1	
	1.4	Apresentação do Documento	1	
2	Fundar	mentação Teórica	2	
	2.1	Introdução	2	
	2.2	Métodos Convencionais de Recuperação Secundária	2	
	2.2.1	Conceito e Contextualização da Recuperação Secundária	2	
	2.2.2	Classificação dos Métodos de Recuperação Secundária	5	
	2.2.3	Métodos Convencionais	5	
	2.2.4	Esquemas de Injeção	6	
	2.2.5		10	
	2.3			
	2.3.1	Leis FÃ∎sicas Consideradas		
	2.3.2		19	
	2.3.3	Uso de Simuladores NumÃl'ricos para Estudos de ReservatÃşrios		
	2.4	Conceitos de Otimização	21	
	2.4.1	,	21	
	2.4.2	Diferenciabilidade de Funções Escalares		

	2.4.3	Diferenciabilidade de Funções Multivariáveis e Campos Vetoriais	26		
	2.4.4	Convexidade	28		
	2.4.5	Condições de Otimalidade	30		
	2.4.6	Principais Algoritmos de Otimização	35		
	2.4.7	Tratamento de Problemas de Otimização	39		
	2.5	Otimização e Engenharia de Reservatório	40		
	2.5.1	Contexto	40		
	2.5.2	Algoritmos de Gradiente Descendente	40		
	2.5.3	Algoritmos Meta-heurísticos	40		
3	Construção do Algoritmo Smart Reservoir com Utilização do MRST				
	3.1	Introdução	41		
	3.2	MATLAB Reservoir Simulation Toolbox	41		
	3.3	Modelos de Reservatório Utilizados.	42		
	3.3.1	Egg Model	43		
	3.3.2	Modelo SAIGUP	44		
	3.4	Função de Custo: NPV	44		
	3.5	Algoritmo Smart Reservoir	46		
	3.6	Utilização da Programação Paralela	46		
4	Execuç	Execução e Resultados do Algoritmo Smart Reservoir 47			
	4.1	Introdução	47		
	4.2	Execução Utilizando o Egg Model	47		
	4.3	Execução Utilizando o Modelo SAIGUP	47		
	4.4	Discussão dos Resultados	47		
5	Conclu	ısões	48		
	5.1	Conclusões do Trabalho	48		
	5.2	Sugestões para Trabalhos Futuros.	48		
R	EFERÊN	NCIAS BIBLIOGRÁFICAS	49		
Al	PÊNDIC	ES	51		
	Simulações dos Poços no Egg Model, Fase 1				
В	Simulações dos Poços no Egg Model, Fase 2				
C	Simulações dos Poços no Egg Model, Fase 3				
D	Simulações dos Poços no Egg Model, Fase 4				
E	Simulações dos Poços no Egg Model, Fase 5				
F	Simulações dos Poços no SAIGUP de Curto Prazo 57				

LISTA DE FIGURAS

2.1	Injeção periférica (ROSA, 2006, p. 565).	7
2.2	Injeção no topo (ROSA, 2006, p. 566).	7
2.3	Injeção na base (ROSA, 2006, p. 566).	8
2.4	Injeção em linha direta (ROSA, 2006, p. 567).	8
2.5	Injeção em linhas esconsas (ROSA, 2006, p. 567).	9
2.6	Malha <i>five-spot</i> (ROSA, 2006, p. 568).	9
2.7	Malha seven-spot (ROSA, 2006, p. 568).	9
2.8	Malha nine-spot (ROSA, 2006, p. 568).	10
2.9	Malha inversa seven-spot (ROSA, 2006, p. 569).	10
2.10	Malha inversa <i>nine-spot</i> (ROSA, 2006, p. 569).	11
2.11	Esquemas de redes de distribuição (ROSA, 2006, p. 657).	13
2.12	Tipos de completação de poços de injeção de água (ROSA, 2006, p. 658)	13
2.13	Teste step rate (ROSA, 2006, p. 660).	14
2.14	Esquema bÃasico de desenvolvimento de um simulador numÃl'rico de reservatÃsrio (ROSA,	
	2006, p. 519)	17
2.15	Exemplo de comparaÃĕÃčo de dados entre simuladores de vazÃčo de Ãagua e de Ãşleo	
	de um modelo (JANSEN et al., 2014).	17
2.16	AplicaÃğÃčo de simuladores numÃl'ricos em reservatÃşrios (ROSA, 2006, p. 522)	21
3.1	Exemplo de realização do <i>Egg Model</i> (JANSEN et al., 2014)	44
3.2	Vista de topo do <i>Egg Model</i> , evidenciando o posicionamento dos poços	44
A.1	Vazões de óleo nos poços produtores do Egg Model, simulação 1	52
A.2	Vazões de água nos poços produtores do Egg Model, simulação 1	52
B.1	Vazões de óleo nos poços produtores do Egg Model, simulação 2	53
B.2	Vazões de água nos poços produtores do Egg Model, simulação 2	53
C.1	Vazões de óleo nos poços produtores do Egg Model, simulação 3	54
C.2	Vazões de água nos poços produtores do Egg Model, simulação 3	54
E.1	Vazões de óleo nos poços produtores do Egg Model, simulação 5	56
E.2	Vazões de água nos poços produtores do Egg Model, simulação 5	56
F.1	Vazões de óleo nos poços produtores do SAIGUP, curto prazo	57
F2	Vazões de água nos pocos produtores do SAIGUP curto prazo	57

G .1	Vazões de óleo nos poços produtores do SAIGUP, longo prazo	58
G.2	Vazões de água nos poços produtores do SAIGUP, longo prazo	58

LISTA DE TABELAS

2 1	Danamia da da a	.dldd	1 - T M - J - 1	(IANICENI -4 -1 2014	.)	12
ว I	Propriedades	de rocha e illindos i	10 E.99 MOAEL	CIAINSEIN ELAL ZU14	.]	4 1
J. I	1 1 Opilouduo	ac rooma e maraos	TO DAY THEOREM	(51 11 15 11 1 0 0 01 1 2 0 1 1	<i>,</i>	

LISTA DE SÍMBOLOS

Símbolos Latinos

 \mathbb{P} Problema de Otimização não-linear

Pressão p

Fluxo/vazão q

 \mathbb{R} Conjunto dos números reais

 \mathbb{R}^n Espaço euclidiano de dimensão n

 $\mathbb{R}^{n \times n}$ Espaço das matrizes quadradas de ordem n sobre os números reais

Saturação TTemperatura

tTempo VVolume

 \mathbb{Z}_{+} Conjunto dos números inteiros não negativos

Símbolos Gregos

 ∇ Operador gradiente ou primeira derivada

 ∇^2 Segunda derivada δ Pequena variação Viscosidade

 μ

Massa específica ρ

Sobrescritos

Variação temporal

Valor ótimo

Subscritos

Gás g

Óleo o

Água w

Notações

$\mathcal{F}(\cdot)$	Conjunto viável (factível)
$H(\cdot)$	Matriz Hessiana
$\mathcal{I}(\cdot)$	Conjunto de Índices
$J(\cdot)$	Matriz Jacobiana
$tr[\cdot]$	Traço de uma matriz
\mathbf{X}	Representação de matriz
x	Representação de variável em \mathbb{R}^n
$\mathbf{x}^{(n)}$	Iteração de variável

LISTA DE ABREVIATURAS E ACROGRAMAS

BFGS Broydon-Fletcher-Goldfarb-Shanno

BHP Bottom-Hole Pressure
EOR Enhanced Oil Recovery

FJ Fritz-John

IOR Improved Oil Recovery
KKT Karush-Kuhn-Tucker
MATLAB Matrix Laboratory

MRST MATLAB Reservoir Simulation Toolbox

NPV Net-Present Value

PSO Particle Swarm Optimization

RAO Razão água/óleo

SAIGUP Sensistivity Analysis of the Impact of Geological Uncertainties on Production

SPMD Single Program, Multiple Data

SQP Sequential Quadratic Programming

STB Stock Tank Barrel

Capítulo 1

Introdução

- 1.1 Contextualização
- 1.2 Definição do Problema
- 1.3 Objetivos da Dissertação
- 1.3.1 Objetivo Geral
- 1.3.2 Objetivos Específicos
- 1.4 Apresentação do Documento

Capítulo 2

Fundamentação Teórica

2.1 Introdução

Este capítulo destina-se a apresentar os componentes teóricos que irão delinear o plano de fundo, a concepção e a implementação do *Smart Reservoir*. Inicialmente, são apresentados conceitos, aspectos operacionais e projetos de métodos convencionais de recuperação secundária de petróleo, a maioria presente em (ROSA, 2006) e (THOMAS, 2004); a seguir, é dada uma introdução aos aspectos de simulação numérica de reservatórios, tópico que norteia a própria implementação do algoritmo proposto nesta dissertação. Após a revisão dos conceitos de engenharia de reservatório, procede-se aos conceitos matemáticos básicos da teoria de otimização e os principais algoritmos presentes na literatura; esses podem ser encontrados, por exemplo, em (GULLER, 2010), (IZMAILOV; SOLODOV, 2005), (REKLAITIS, 1983) e (YANG, 2010). Finalmente, é apresentado o estado da arte no que concerne à aplicação dos métodos e algoritmos de otimização em problemas recorrentes na engenharia de reservatórios, como o de maximização de rendimento (operacional e econômico) da produção e posicionamento ótimo de poços, sejam de produção ou mesmo de injeção.

2.2 Métodos Convencionais de Recuperação Secundária

2.2.1 Conceito e Contextualização da Recuperação Secundária

De acordo com Rosa, nas acumulações de petróleo há, na época de sua descoberta, uma dada quantidade de energia, chamada de *energia primária*, cuja grandeza é determinada pelo volume e pela natureza dos fluidos existentes no meio, além dos níveis de pressão e temperatura do reservatório. Quando se dá o processo de produção, parte dessa energia é dissipada por causa da descompressão dos fluidos do reservatório e das resistências que os mesmos encontram ao fluir em direção aos poços produtores — resistências associadas às forças viscosas e capilares presentes no meio poroso. A consequência dessa dissipação de energia primária resulta no decréscimo de pressão do reservatório em sua vida produtiva e, consequentemente, na redução da produtividade dos poços. A quantidade de óleo retirada utilizando-se unicamente a energia do reservatório é denominada *recuperação primária*.

De forma a se minorar os efeitos danosos da dissipação da energia primária, existem duas linhas de ação a serem consideradas:

- Reduzir as resistências viscosas e/ou capilares por meio de métodos especiais, como por exemplo aquecendo a jazida;
- Adicionar suplemento de energia secundária, artificialmente comunicada, através de injeção de fluidos em poços selecionados.

Quando se suplementa o reservatório com energia transferida artificialmente, ou se empregam meios de incrementar a eficiência da energia primária, a quantidade adicional de óleo produzida é chamada de *recuperação secundária*. Por extensão, todas as operações que conduzem à obtenção desse adicional de óleo também são denominadas recuperação secundária. Essas operações, atualmente, são implantadas em sua grande maioria o tão cedo quanto possível na vida do reservatório.

É importante ressaltar que há uma diferença entre recuperação secundária e métodos de elevação artificial e de estimulação de poços; estes não afetam diretamente as energias expulsivas do reservatório, embora sua aplicação concorra para economizá-las. As técnicas de elevação artificial e de estimulação de poços estão mais ligadas ao comportamento dos poços produtores do que ao comportamento do reservatório como um todo. Contudo, a linha divisória entre tais métodos e os métodos de recuperação secundária não é muito nítida — certos métodos de estimulação, como a injeção cíclica de vapor, são usualmente incluídos entre os métodos de recuperação secundária (ROSA, 2006).

Ainda segundo Rosa, há dois objetivos práticos básicos dos métodos de recuperação secundária:

- Aumento da eficiência de recuperação A eficiência de recuperação primária é normalmente baixa; em alguns casos, dependendo das características do reservatório e dos fluidos, ela pode ser até nula. Em alguns casos, a eficiência de recuperação secundária pode passar de 60% em casos bemsucedidos; contudo, o valor mais frequente dessa eficiência, nos métodos convencionais, se situa entre 30 e 50%.
- Aceleração da produção O emprego dos métodos de recuperação secundária busca acelerar a
 produção ou ao menos reduzir a taxa de seu declínio natural. A aceleração da produção resulta em
 antecipação do fluxo de caixa; portanto, há o aumento de seu valor presente e uma consequente
 melhoria da economicidade da exploração do campo ou reservatório.

Além dos objetivos básicos de emprego da recuperação secundária, Rosa citam vários incentivos ao uso desses métodos, tais como: preço do petróleo; custos de exploração, desenvolvimento e produção; e avanços tecnológicos na área. Porém, destaca-se que apenas o uso dessas técnicas não é o suficiente para mitigar todos os males da produção de petróleo e do esgotamento das reservas; outras medidas podem e devem ser tomadas, simultaneamente, para aumentar a eficiência e a rentabilidade da produção, tais como:

• Exploração de reservas não convencionais — Xistos e folhelhos betuminosos, por exemplo, acumulam grandes quantidades de óleo. Várias dessas reservas já foram encontradas em regiões como

Athabasca, no Canadá, cinturão do Orinoco, na Venezuela, e o Colorado, nos Estados Unidos. O custo de produção nessas reservas é considerável, mas já se projetam meios tecnológicos para reduzir o mesmo. Entre outras reservas não convencionais de hidrocarbonetos, há a presença de gás natural em solução existente na água de aquíferos; embora a razão de solubilidade do gás natural na água normalmente seja pequena, o imenso volume dos aquíferos perimitiria uma produção de grandes volumes desse gás. Uma outra reserva não convecional poderá ser o gás natural proveniente de hidratos localizados no fundo de oceanos e em regiões congeladas da Terra.

- Estimulação de Poços De acordo com Thomas, a estimulação de poços é um conjunto de atividades realizadas com o objetivo de aumentar o índice de produtividade ou injetividade do poço (THOMAS, 2004, p. 166). Os principais métodos de estimulação são: fraturamento hidráulico, em que se cria, através de uma ruptura na rocha-reservatório causada por um elevado gradiente de pressão, um caminho preferencial de alta condutividade, facilitando um fluxo de fluidos do reservatório ao poço (ou vice-versa); e acidificação, onde se injeta um ácido com pressão inferior à pressão de fraturamento da formação, visando remover danos da mesma. Tais métodos contribuem para a aceleração da produção e até, em alguns casos, o aumento da eficiência de recuperação. A aplicação de métodos de estimulação pode, inclusive, ser feita em campos submetidos a operações de recuperação secundária.
- Uso de poços especiais Nas últimas décadas houve um incremento considerável no uso dos chamados *poços especiais*, que possuem como característica marcante a não-verticalidade, Segundo Thomas, esses poços são perfurados com várias finalidades, como: controlar um poço em *blowout* por meio de poços de alívio; atingir formações produtoras abaixo de locais inacessíveis, como rios, lagos, cidades, entre outros; desviar a trajetória do poço de acidentes geológicos, como domos salinos e falhas; perfurar vários poços de um mesmo ponto, como é o caso da produção em plataformas marítimas; e desviar poços que tiveram seu trecho final perdido por problemas operacionais (THOMAS, 2004, p. 106). O uso desses poços inclinados, horizontais, multilaterais, etc., pode aumentar a velocidade de drenagem do reservatório, ou seja, antecipar a produção, bem como aumentar a eficiência de recuperação através do aumento da eficiência de varrido, por exemplo.
- Extração de líquidos de gás natural A produção de hidrocarbonetos líquidos pode ser aumentada pela instalação de plantas de gasolina natural e de unidades portáteis de extração de líquidos de gás natural.
- Reestudo de áreas julgadas improdutivas ou antieconômicas Mesmo que as reservas mundiais de petróleo sejam limitadas, elas estão longe de terem sido totalmente exploradas; de fato, apenas uma pequena porcentagem da superfície do planeta foi inteiramente explorada. Seja na terra ou no fundo do mar, há ainda perspectivas notáveis fora das áreas hoje em produção; além disso, as estimativas do volume de óleo que ainda poderá ser descoberto são ainda vagas. É com essa perspectiva que a indústria pode medir as oportunidades que tem à frente no caso de esgotamento das áreas hoje em produção. Portanto, de um modo geral, deve-se pensar sempre na adoção das seguintes medidas, sem danos ao andamento das operações de recuperação secundária: estudar novas áreas; estudar formações mais profundas (o pré-sal é um exemplo); reestudar áreas consideradas esgotadas ou de produção antieconômica; e investir mais dinheiro, tempo e pessoal em treinamento e pesquisa, visando melhorar os métodos de exploração e produção existentes.

2.2.2 Classificação dos Métodos de Recuperação Secundária

Segundo Rosa, os métodos de recuperação de óleo visando suplementar a energia do reservatório, logo após a fase de recuperação primária, eram denominados, originalmente, métodos de recuperação secundária, enquanto que logo após essa fase de recuperação secundária eram empregados outros métodos, chamados de *recuperação terciária*. Os métodos eram então classificados de acordo com a sua cronologia de aplicação em determinado campo ou reservatório. Posteriormente, todos os métodos de recuperação aplicados com o objetivo de aumentar a eficiência de recuperação e/ou acelerar a produção em relação à produção primária passaram a ser denominados de recuperação secundária¹.

Nas últimas décadas, a classificação dos métodos de recuperação secundária se deu em *métodos convencionais* (os antigos métodos de recuperação secundária) e *métodos especiais* (os antigos métodos de recuperação terciária), os últimos também conhecidos, na literatura inglesa, como métodos de *EOR* (*Enhanced Oil Recovery*) — esse termo, nos últimos anos, tem sido substituído pelo termo *IOR* (*Improved Oil Recovery*), cuja diferença, em relação ao *EOR*, reside no fato de que os métodos de *IOR* englobam, além dos métodos de *EOR*, quaisquer métodos ou técnicas não-convencionais ou modernas que possuam o objetivo de aumentar a produção e/ou acelerar a produção em relação à produção primária e/ou secundária².

Em termos da classificação mais atual, são métodos convencionais de recuperação secundária os métodos de injeção de água e injeção imiscível de gás. Já os métodos especiais incluem, entre outros, a injeção miscível de gás, a injeção de vapor, a injeção de polímeros e a combustão *in situ*³.

2.2.3 Métodos Convencionais

Os dois tipos de métodos considerados convencionais, já citados, são os métodos de injeção imiscível de fluidos no reservatório, seja água ou gás. Segundo Eremin, o método de injeção de água é um dos mais utilizados devido à sua utilização também como método mantenedor da pressão no reservatório, além do fato da água ser um fluido acessível, consideravelmente barato e possuir propriedade de deslocamento específica (EREMIN; NAZAROVA, 2003). Já a injeção de imiscível de gás consiste em injeção de fluido gasoso, mas de forma que ele não se misture ao óleo, criando uma mistura bifásica (ROSA, 2006, p. 564).

Segundo Rosa, ao se escolher um projeto de injeção, deve-se levar em conta a escolha do esquema de injeção, isto é, da distribuição dos poços de injeção e de produção mais adequada ao reservatório de petróleo em estudo. Como o objetivo primordial da injeção é o aumento da recuperação de petróleo, deve-se tentar produzir esse volume adicional desejado utilizando-se esquemas em que os volumes de fluidos injetados sejam os menores possíveis e a produção do fluido injetado seja a menor possível. Por fim, devem ser observadas as características particulares do reservatório em estudo, como a existência de falhas, variações de permeabilidade, etc., além do aspecto econômico da produção (ROSA, 2006, p. 564); o aspecto econômico envolve estudo de custos relacionados à adoção do método de recuperação, como os custos de estudo, de perfuração de novos poços, da conversão de poços produtores em injetores, entre outros (LATIL, 1980).

¹Ver (ROSA, 2006, p. 564).

²*Ibid.*, p. 564.

³ Ibid., p. 564. Uma abordagem sobre os métodos especiais pode ser encontrada em (ROSA, 2006, pp. 677-726)

De acordo com Latil, entre os métodos convencionais de injeção de fluidos, o de injeção de gás é mais indicado em casos de reservatórios com baixa razão gás-óleo — neste caso, seria necessária um grande volume de gás injetado para se criar a fase gasosa — ou de óleo saturado, desde que a permeabilidade à água seja suficientemente alta; já em casos de reservatórios com alta razão gas-óleo, a injeção imiscível de gás se torna um método que resulta em melhores índices de recuperação de óleo. Por fim, em casos de reservatórios heterogêneos com presença de água, a injeção de água é a mais recomendada (LATIL, 1980).

2.2.4 Esquemas de Injeção

Segundo Rosa, há vários tipos de esquemas de injeção, separados em dois grupos principais: os esquemas baseados na estrutura do reservatório (injeção periférica, no topo ou na base) ou baseados no modo como os poços são distribuídos (esquemas em malha) (ROSA, 2006, p. 564).

2.2.4.1 Esquemas baseados na Estrutura do Reservatório

Nos esquemas baseados na estrutura do reservatório, os poços de mesmo tipo (de injeção ou de produção) se concentram em determinadas áreas do reservatório. Em reservatórios de estrutura anticlinal, por exemplo, é mais utilizado o esquema de *injeção periférica*, mostrada na Figura 2.1. Neste caso, os poços produtores se concentram no centro do reservatório, equanto que os injetores são situados na periferia do mesmo, justificando o nome do esquema⁴. A *injeção no topo* consiste em situar os poços injetores no topo do reservatório, enquanto os produtores são localizados na base (ver Figura 2.2); o fluido injetado, neste caso, é o gás. Por fim, a *injeção na base* considera os poços injetores na base do reservatório e os produtores no topo (ver Figura 2.3); o fluido injetado, neste caso, é a água. Vale notar que os esquemas de injeção no topo e na base podem ser combinados, e que, em determinado momento, os poços produtores podem ser convertidos em poços injetores. Rosa ainda destaca que, na verdade, essas diferentes maneiras de se fazer injeção não se classificam exatamente como *esquemas* de injeção, uma vez que a disposição dos poços não está previamente estabelecida, ou seja, não existem arranjos prefixados para a localização dos poços (ROSA, 2006, p. 566).

2.2.4.2 Esquemas de Injeção em Malha

Neste grupo, se situam esquema de injeção aplicados em reservatórios com grandes áreas e pequenas inclinações e espessuras; os poços tanto de um tipo quanto do outro estão uniformemente distribuídos em toda a área do reservatório. Neste caso, o fluido deslocante é injetado na própria zona de óleo, alterando-se drasticamente a distribuição de saturações e a movimentação natural dos fluidos no reservatório (ROSA, 2006, p. 567).

Dos tipos de injeção em malha, destacam-se as injeções em *linha direta* e em *linhas esconsas*, em que, os poços de produção e injeção são alternados em linhas, formando malhas normalmente retangulares; no caso das linhas esconsas, há uma defasagem entre as linhas de produtores e injetores. As Figuras 2.4 e 2.5 mostram, respectivamente, exemplos de esquemas de linha direta e linhas esconsas.

⁴Ver (ROSA, 2006, p. 565)

Figura 2.1: Injeção periférica (ROSA, 2006, p. 565).

Figura 2.2: Injeção no topo (ROSA, 2006, p. 566).

Em alguns casos, os esquemas de malha em linhas diretas ou esconsas podem ser adaptados utilizandose polígonos regulares como constituintes da malha; três exemplos deste tipo de caso são:

Figura 2.3: Injeção na base (ROSA, 2006, p. 566).

Figura 2.4: Injeção em linha direta (ROSA, 2006, p. 567).

- Malha *five-spot*: Neste caso, a malha é formada por linhas esconsas, formando um quadrado perfeito; um poço produtor é cercado por quatro injetores (ver Figura 2.6).
- Malha seven-spot: A malha considerada consiste em hexágonos regulares, em que um poço produtor é cercado por seis injetores (ver Figura 2.7); pode ser considerada um esquema de linhas esconsas, mas com alternância de dois injetores para cada produtor em cada linha.
- Malha *nine-spot*: Assim como a malha *five-spot*, é constituída por quadrados; porém, o esquema de injeção base pode ser visto como linhas diretas, em que há linhas só de injetores e linhas alternadas entre produtores e injetores; neste tipo de malha, cada poço produtor é cercado por oito poços injetores (ver Figura 2.8).

Os esquemas de injeção em malhas vistos nas Figuras 2.6, 2.7 e 2.8 consideram um poço produtor cercado de vários injetores; são consideradas, portanto, malhas de tipo *normal*. Contudo, as mesmas

Figura 2.5: Injeção em linhas esconsas (ROSA, 2006, p. 567).

Figura 2.6: Malha *five-spot* (ROSA, 2006, p. 568).

Figura 2.7: Malha seven-spot (ROSA, 2006, p. 568).

malhas podem também ser projetadas tomando-se em conta um poço injetor cercado por vários produtores; são as chamadas *malhas invertidas* ou *inversas* (ROSA, 2006, p. 569). As Figuras 2.9 e 2.10 mostram

Figura 2.8: Malha *nine-spot* (ROSA, 2006, p. 568).

exemplos de malhas invertidas.

Figura 2.9: Malha inversa seven-spot (ROSA, 2006, p. 569).

2.2.5 Aspectos Operacionais da Injeção de Água

O método de recuperação secundária por injeção de água é ainda um dos mais utilizados; ela tem o objetivo de deslocar o óleo em direção aos poços produtores, aumentando assim a produção de petróleo em relação à recuperação primária.

A injeção de água no reservatório faz com que a saturação de água se eleve nas imediações dos poços injetores; esse aumento de saturação gera um banco de óleo cujo avanço se dá em direção aos poços produtores. Uma vez alcançando esses poços, o banco de óleo faz com que a produção de óleo aumente bruscamente.

Segundo Rosa, o período de tempo entre o início das operações e a chegada do óleo ao poço produtor é chamado de tempo de enchimento ("fill up"); posteriormente, a frente de avanço atinge o poço produtor, aumentando bruscamente a razão água/óleo (RAO), ocorrendo então o que se chama de erupção ("breakth-

Figura 2.10: Malha inversa nine-spot (ROSA, 2006, p. 569).

rough"). Após a erupção, a RAO continua a crescer até atingir níveis que irão inviabilizar economicamente a produção do poço, o qual é fechado ou eventualmente transformado em poço injetor (ROSA, 2006).

2.2.5.1 Fatores de Influência

Os projetos de injeção de água dependem não somente do objetivo de se obter uma melhor produção de petróleo; os fatores físicos do reservatório, por exemplo, também devem ser levados em conta na fase inicial do projeto. Os seguintes fatores ajudam a ditar parâmetros de um projeto de injeção de água⁵ (como formato da malha de injeção, número de injetores, entre outros):

- 1. Mecanismos de produção do reservatório: A depender do mecanismo de produção, a quantidade de água a ser injetada varia; no caso de um influxo de água, por exemplo, será requerida uma menor vazão de injeção (ou essa vazão até poderá ser nula) para que a pressão do reservatório seja mantida. O balanço de materiais (diferença entre o volume que sai e o volume que é reposto pela natureza) irá determinar o volume e a vazão total que deverá ser reposta pela recuperação secundária. Já no caso do mecanismo de gás em solução, a quantidade de água injetada deve ser maior, pois a pressão tende a cair rapidamente, ou seja, a depleção do reservatório é mais rápida, acarretando urgência na adoção da recuperação secundária.
- 2. Características da rocha: Características como permeabilidade, porosidade, presença de finos, a argila do reservatório e sua composição química são determinantes em um projeto de injeção de água; de acordo com Eremin, por exemplo, caso haja uma incompatibilidade química entre a água injetada e o reservatório, haverá uma deposição de sais que, consequentemente, afetam a pososidade e a permeabilidade do reservatório, reduzindo a recuperação de óleo nos poços produtores (EREMIN; NAZAROVA, 2003).

⁵Ver (ROSA, 2006, pp. 652-653)

- 3. Características dos fluidos: Assim como nas características da rocha, deve-se haver uma compatibilidade química entre a água injetada e os fluidos do reservatório, de maneira a evitar a formação de precipitados; além disso, caso haja uma alta razão de mobilidades entre o óleo e a água, devese aumentar o número de poços injetores e diminuir a vazão dos mesmos, de maneira a evitar um "breakthrough" prematuro nos poços produtores.
- 4. Profundidade do reservatório: O gradiente máximo de pressão entre os poços injetores e o reservatório é diretamente influenciado pela sua profundidade, por esta ser proporcional às pressões de injeção e fraturamento do reservatório.
- 5. **Conformação estrutural do reservatório:** A depender da estrutura do reservatório, torna-se preferencial a adoção de esquemas de injeção específicos; o esquema de injeção periférica, por exemplo, é adequado para reservatórios muito inclinados, onde a segregação gravitacional dos fluidos é grande.

2.2.5.2 Componentes Principais de um Sistema de Injeção

Vistos os fatores que influenciam um projeto de recuperação secundária por injeção de água, procede-se à descrição dos seus componentes⁶ principais:

- 1. **Captação:** A captação do fluido injetado pode se dar de rios, lagos, mares, subsuperfície, água de produção ou até mesmo de outros campos de reservatórios.
- Adução: Sistema de transporte água. Como lida com água não tratada, devem ser empregados materiais resistentes à agressividade da água para desenvolver esse sistemas. A redução de depósitos sólidos também deve ser considerada.
- 3. Tancagem: Sistema de armazenamento de água; a depender do tipo de captação da água, a tancagem de água bruta pode ser largamente utilizada ou até mesmo dispensada (como em casos de captação da água do mar). A tancagem de água potável, por outro lado, é necessária para armazenar reserva para determinados equipamentos, como por exempo, água limpa para contra-lavagem dos filtros ou para refrigeração de bombas.
- 4. Tratamento: A água bruta a ser utilizada precisa ser tratada, de maneira a ser propriamente injetada; os dois principais métodos utilizados de tratamento são a retirada de sólidos e o controle bacteriológico, já que as bactérias tendem a consumir o petróleo, por este ser composto majoritariamente de matéria orgânica.
- 5. **Conjunto motor-bomba:** Responsável pelo fornecimento de energia para a água se deslocar em direção ao reservatório com a vazão desejada. Dois tipos de bombas são normalmente utilizados: bombas centrífugas, em sistemas de pressão mais baixa, e bombas alternativas (deslocamento positivo) em sistemas de alta pressão.
- 6. **Rede de distribuição:** Integra a estação de injeção de água, um sistema adutor e os poços de injeção. Há dois tipos, apresentados na Figura 2.11: a rede de distribuição em marcha ("espinha de peixe") e a centralizada através de "manifolds" ("pé de galinha").

⁶Ver (ROSA, 2006, pp. 653-659)

Distribuição em Marcha (espinha de peixe)

Figura 2.11: Esquemas de redes de distribuição (ROSA, 2006, p. 657).

7. Poços de injeção: A maioria dos poços injetores são, na verdade, antigos poços produtores convertidos ou recompletados para injeção; há até mesmo casos em que o mesmo poço comporta uma zona produtora e outra injetora. Alguns tipos de completação de poços injetores são apresentados na Figura 2.12.

Figura 2.12: Tipos de completação de poços de injeção de água (ROSA, 2006, p. 658).

- 8. **Poços de captação:** Normalmente, são antigos poços produtores de óleo, recompletados (recanhoneados) em zonas produtoras de água. Apesar de serem poços previamente abandonados, são poços problemáticos, devido às altas vazões de fluido com sais dissolvidos, tais poços produzem areia, diminuindo a vida útil dos equipamentos.
- 9. Poços de "dump-flood": São os sistemas mais simples de injeção de água, consistindo simplesmente

em poços simultaneamente produtores e injetores de água, isto é, produzem água na zona superior e injetam diretamente, por gravidade, na zona inferior. A operação desse tipo de poço é muito simples, mas o acompanhamento somente é possível através de perfilagens periódicas com o chamado medidor de fluxo contínuo ("continuous flow meter") ou com perfilagem radiativa.

2.2.5.3 Controle e Acompanhamento

De maneira a se acompanhar satisfatoriamente um projeto de injeção de água, não se deve apenas controlar os valores de vazão, mantendo-as nas cotas estabelecidas; tal controle, segundo Rosa, seria suficiente se as formações fossem homogêneas e as suas condições de permeabilidade e pressão se mantivessem inalteradas ao longo do tempo. Sabe-se, contudo, que isso é praticamente impossível de ocorrer, devendo-se portanto realizar testes periódicos para que possam ser identificadas situa-ções indesejadas como, por exemplo, dano à formação e má distribuição da água (ROSA, 2006, p. 659). Algumas estratégias de controle e acompanhamento são apresentadas a seguir⁷:

1. **Testes:** Há vários tipos de testes para acompanhamento dos poços de injeção de água; entre eles o teste de injeção, que busca acompanhar a vazão e a pressão de injeção, fornecendo uma primeira ideia do comportamento do poço; o teste de *fall-off*, que avalia se a formação está danificada, estimulada ou se está em sua condição original; e o teste *step rate*, que, ao realizar a injeção com pressões variadas, obtém valores distintos de vazões; com esses dados, é possível construir um gráfico da vazão em função da pressão, conforme ilustra a Figura 2.13.

Figura 2.13: Teste step rate (ROSA, 2006, p. 660).

2. **Índice de injetividade:** Similar ao índice de produtividade para poços produtores, esse índice pode indicar, se calculado periodicamente, a causa do decréscimo de vazão durante os primeiros estágios

⁷Ver (ROSA, 2006, pp. 660-662)

de injeção de um poço; esse índice pode ser estimado a partir de testes de injeção, *fall-off* ou *step rate*.

3. **Perfil de Injetividade:** Destina-se à investigação da distribuição de água através da formação, uma vez que a presença de fraturas naturais ou induzidas, zonas de alta permeabilidade devidas à heterogeneidade do reservatório, etc., podem provocar uma erupção precoce de água de injeção nos poços produtores, prejudicando a eficiência de varrido e, consequentemente, a produção. Deste modo, com a correção de eventuais anomalias, consegue-se aumentar a recuperação de óleo e reduzir a produção de água, logo reduzindo-se os gastos com tratamento químico, principalmente.

2.2.5.4 Principais Problemas

Alguns dos principais problemas envolvendo a injeção de água são relacionados, além do aspecto econômico, também aos aspectos físico-químicos do fluido injetado e do reservatório. Um problema notável é a corrosão metálica em sistemas de injeção, particularmente em casos de águas com elevada salinidade e gases dissolvidos como oxigênio, sulfeto de hidrogênio e dióxido de carbono. Rosa apresenta alguns efeitos físicos-químicos diretamente relacionados ao fenômeno da corrosão metálica (ROSA, 2006, pp. 662-663):

- 1. **Efeitos da composição da água:** Além da presença de gases dissolvidos ser um importante fator na corrosão metálica, a própria condutividade da água é diretamente proporcional à sua corrosividade.
- 2. Efeitos de variáveis físicas: A temperatura, a pressão e a velocidade da água são fatores determinantes para sua corrosividade; a temperatura, por exemplo, aumenta drasticamente a corrosão quando elevada em sistemas fechados. Porém, em sistemas abertos, a corrosão aumenta com a temperatura aumenta até certo ponto, passando a diminuir por conta da liberação rápida dos gases dissolvidos. A pressão é determinante para alterar reações químicas; nos sistemas de injeção de água, ela influi diretamente na solubilidade dos gases em solução, variando a taxa de corrosão. Por fim, a velocidade da água, ao ser elevada, acarreta em uma taxa de corrosão maior; porém, águas paradas ou de baixa vazão podem provocar a decantação de sólidos em suspensão nos equipamentos de injeção.

Um outro problema relevante em sistemas de injeção de água tem a ver com a formação, devido aos componentes dissolvidos na água e outros fatores, de depósitos salinos nos equipamentos. Em quase todas as águas, por exemplo, há a presença de sais de cálcio e magnésio, cuja deposição é a menos danosa, por ser facilmente remediada. Já a presença de compostos ferrosos conduzem à corrosão galvânica; a presença de sulfetos é a mais danosa, pois, além da corrosão, provoca abrasão por atrito nas tubulações. Um outro efeito danoso dos sulfetos é a ocorrência de sérios danos à formação, podendo ocasionar o tamponamento total da mesma.

Outros tipos de sais que se depositam nos sistemas de injeção de água e reservatórios são os sais de bário. Estes causam danos à formação irreversíveis, pois o sulfato de bário, por exemplo, é insolúvel em ácidos, que normalmente são utilizados para lidar com depósitos salinos; neste caso, uma das medidas para evitar essa deposição é impedir a formação do sulfato de bário a partir do uso de inibidores químicos. Por fim, outro tipo de deposição em sistemas de injeção é a sílica, que, além de formar deposições, pode

auxiliar no tamponamento de linhas por outros precipitados ou até mesmo ser aglutinada pelo óleo residual da água produzida. Neste caso, é empregado ácido fluorídrico para dissolvê-la⁸.

2.3 SimulaÃğÃčo NumÃl'rica de ReservatÃşrios

A simulaÃĕÃčo numÃl'rica de um reservatÃşrio Ãl', segundo Peaceman, Ãl' o processo de inferÃłncia do comportamento do reservatÃşrio real dada a performance obtida de um modelo do mesmo, matemÃątico ou fÃ∎sico (em escala laboratorial). Um modelo matemÃątico de reservatÃşrio pode ser enxergado como um conjunto de equaÃĕÃţes diferenciais parciais, juntamente com as condiÃĕÃţes de contorno adequadas, que podem ser utilizadas para descrever satisfatoriamente os processos fÃ∎sicos importantes que ocorrem no sistema real.

Os processos que ocorrem em um reservatÃşrio sÃčo basicamente transporte de fluidos e transferÃłncia de massa; atÃl' trÃłs fases imiscÃ∎veis (Ãşleo, gÃąs e Ãągua) fluem simultaneamente, enquanto que o transporte de massa se dÃą entre as fases (notadamente entre o Ãşleo e o gÃąs). A gravidade, a capilaridade e as forÃğas viscosas sÃčo tambÃl'm importantes no processo de vazÃčo dos fluidos (PEACEMAN, 1977).

Segundo Rosa, a primeira etapa de uma simulaÃgÃčo numÃl'rica Ãl' formular o problema fÃsico a ser representado matematicamente; em seguida sÃčo feitas suposiÃgÃţes e simplificaÃgÃţes compatÃsicos com o grau de sofisticaÃgÃčo esperado do modelo, levando-se Ãa formulaÃgÃčo das equaÃgÃţes matemÃaţicas que descrevem o problema desejado, considerando-se as hipÃşteses adotadas. O passo seguinte Ãl' a resoluÃgÃčo das equaÃgÃţes e anÃaţlise da soluÃgÃčo obtida; posteriormente, a validade do simulador Ãl' verificada atravÃl's da calibraÃgÃčo com uma soluÃgÃčo existente — por exemplo, comparam-se os resultados obtidos do simulador numÃl'rico com soluÃgÃţes analÃsticas, resultados reais ou com resultados obtidos de modelos fÃsicos de laboratÃşrio (dados experimentais). Caso o simulador seja considerado vÃaţlido, o mesmo estarÃa pronto para ser utilizado na simulaÃgÃčo do fenÃt'meno desejado; caso contrÃario, volta-se para um novo ciclo em que sÃčo revistas as hipÃşteses adotadas ou atÃl' a conceituaÃgÃčo do modelo fÃsico (ROSA, 2006, p. 520). A Figura 2.14 esquematiza um desenvolvimento bÃasico de um simulador numÃl'rico qualquer, enquanto que a Figura 2.15 mostra uma comparaÃgÃčo de resultados entre diferentes simuladores existentes, exemplificando o uso da calibraÃgÃčo com soluÃgÃţes jÃa obtidas para se validar um simulador de reservatÃşrio.

2.3.1 Leis FÃ sicas Consideradas

No caso de um simulador de reservat \tilde{A} srios, as seguintes leis f \tilde{A} sricas b \tilde{A} asicas normalmente s \tilde{A} čo consideradas, dependendo do tipo de simulador 9 :

- Lei da conservaÃğÃčo de massa;
- Lei da conservaÃğÃčo de energia;

⁸Todos esses problemas de deposição de sais são explicados em (ROSA, 2006, p. 664).

⁹Ver (ROSA, 2006, p. 520)

Figura 2.14: Esquema bÃasico de desenvolvimento de um simulador numÃl'rico de reservatÃsrio (ROSA, 2006, p. 519).

Figura 2.15: Exemplo de comparaÃgÃčo de dados entre simuladores de vazÃčo de Ãagua e de Ãşleo de um modelo (JANSEN et al., 2014).

• Lei da conservaÃĕÃco de "momentum" (Segunda Lei de Newton):

$$\sum F = \frac{\partial M}{\partial t},\tag{2.3.1}$$

onde F representa uma for Ã
ğa e M=mv o "momentum", com m sendo a massa e v a velocidade.

AlÃl'm das leis bÃąsicas da fÃ∎sica, faz-se necessÃąrio o uso de vÃąrias leis, dependendo do simulador, que governam o comportamento dos fluidos envolvidos e a propriedade do reservatÃşrio estudado,

apresentadas nas subseÃǧÃţes a seguir¹0. Combinado-se as equaÃǧÃţes correspondentes Ãăs leis bÃą-sicas, obtÃl'm-se uma equaÃǧÃčo diferencial parcial que rege o comportamento das variÃąveis dependentes em funÃǧÃčo das variÃąveis independentes e dos parÃćmetros do sistema. Como normalmente a equaÃǧÃčo obtida Ãl' nÃčo-linear, ela Ãl', consequentemente, Ãl' resolvida por mÃl'todos nÞmericos; daÃ∎ a nomenclatura simulaÃǧÃčo numÃl'rica de reservatÃşrios.

2.3.1.1 FenÃt'menos de Transporte

Teorema 2.3.1.1 (Lei de Darcy) Na Lei de Darcy, ou lei do fluxo "laminar" ou Darcyano, a velocidade do fluxo viscoso de um fluido em meio poroso Ãl' dada por

$$v_s = -\frac{k_s}{\mu} \frac{\partial \Phi}{\partial s},\tag{2.3.2}$$

onde k $\tilde{A}l'$ a permeabilidade efetiva do meio ao fluido considerado, μ $\tilde{A}l'$ a viscosidade do fluido, Φ $\tilde{A}l'$ o potencial de fluxo e s $\tilde{A}l'$ a trajet \tilde{A} sria de fluxo.

Teorema 2.3.1.2 (Lei de Forchheimer) TambÃl'm conhecida como lei do fluxo "turbulento" ou nÃčo-Darcyano, Ãl' utilizada para fluxos turbulentos, notadamente de gÃąs; o gradiente de pressÃčo Ãl' dado por

$$-\frac{dp}{ds} = \frac{\mu}{k_s} v_s - \beta \rho v_s^2, \tag{2.3.3}$$

onde ρ $\tilde{A}l'$ a massa espec \tilde{A} \blacksquare fica do fluido e β $\tilde{A}l'$ o coeficiente de resist $\tilde{A}l$ ncia inercial ou de fluxo n \tilde{A} čo-Darcyano.

Teorema 2.3.1.3 (Lei de Fourier) Durante um fenÃt'meno de transporte de calor por conduÃǧÃčo, o fluxo de calor Ãl' dado por

$$q_s = -k' \frac{\partial T}{\partial s},\tag{2.3.4}$$

em que k' $\tilde{A}l'$ a condutividade $t\tilde{A}l'$ rmica do meio e T $\tilde{A}l'$ a temperatura.

Teorema 2.3.1.4 (ConvecÃgÃčo) O fluxo de calor no caso de tranporte por convecÃgÃčo Ãl' dado por

$$q_s = c_p v_s (T - T_0), (2.3.5)$$

onde c_p \tilde{A} l' a capacidade calor \tilde{A} \blacksquare fica do fluido \tilde{A} \check{a} press \tilde{A} \check{c} o constante, v a velocidade do fluido e T_0 uma temperatura de refer \tilde{A} lncia.

2.3.1.2 EquaÃğÃtes de Estado

As principais equaÃğÃţes de estado envolvidas na simulaÃğÃčo do comportamento de um reservatÃşrio de petrÃşleo sÃčo as que lidam com fluidos (lÃ∎quidos ou gasosos) e rochas porosas. No caso de fluidos lÃ∎quidos, tem-se a seguinte definiÃğÃčo:

¹⁰Os teoremas apresentados se encontram em (ROSA, 2006, pp. 520-522)

Definição 2.3.1.5 A compressibilidade isotÃl'rmica de um fluido Ãl' dada por

$$c = -\frac{1}{V}\frac{\partial V}{\partial p} = \frac{1}{\rho}\frac{\partial \rho}{\partial p},\tag{2.3.6}$$

em que V $\tilde{A}l'$ o volume, p $\tilde{A}l'$ a press \tilde{A} čo e ρ $\tilde{A}l'$ a massa espec \tilde{A} \blacksquare fica do fluido. H \tilde{A} q algumas rela \tilde{A} g \tilde{A} Įes especiais para situa \tilde{A} g \tilde{A} Įes particulares:

- $L\tilde{A}$ quidos de compressibilidade constante: $\rho = \rho_0 e^{c(p-p_0)}$.
- $L\tilde{A}$ aquidos de compressibilidade constante e pequena: $\rho = \rho_0 [1 + c(p p_0)]$.

Quando se trata de estudar o estado de um gÃas, se aplica a lei dos gases:

$$\rho = \frac{pM}{ZRT}. (2.3.7)$$

A EquaçÃčo (2.3.7) pode ser aplicada tanto no caso de um gÃąs real quanto de um gaÅŻ ideal; nela, ρ Ãl' a massa especÃ \blacksquare fica do gÃąs, p Ãl' a pressÃčo, M Ãl' a massa molecular, R Ãl' a constante universal dos gases, T Ãl' a temperatura e Z Ãl' o fator de compressibilidade do gÃąs; no caso de um gÃąs ideal, tem-se Z=1.

Por fim, para se representar o comportamento da rocha, utiliza-se a equaÃğÃčo da chamada compressibilidade efetiva:

$$c_f = \frac{1}{\phi} \frac{\partial \phi}{\partial p},\tag{2.3.8}$$

onde c_f Ãl' a compressibilidade efetiva efetiva da formaÃğÃčo e ϕ , sua porosidade.

AlÃl'm das leis atÃl' aqui citadas, cabe ressaltar que outras podem ser utilizadas em caso de simulaÃgÃţes de fenÃt'menos especÃ∎ficos, como injeÃgÃčo de vapor, injeÃgÃčo de polÃ∎meros, alÃl'm de outros mÃl'todos empregados na produÃgÃčo de petrÃşleo.

2.3.2 Tipos de Simuladores

Segundo Rosa, os simuladores de reservatÃşrios podem ser classificados em funÃğÃčo de trÃłs critÃl'rios bÃąsicos: o tratamento matemÃątico utilizado, o nÞmero de dimensÃţes consideradas e o nÞmero de fases admitidas. Em relaÃgÃčo Ãă matemÃątica do simulador, os simuladores podem ser classificados em:

- Modelo Beta ou volumÃl'trico: ÃL' tambÃl'm conhecido como black oil; nesse modelo, sÃčo consideradas as funÃğÃţes de pressÃčo e da temperatura do reservatÃşrio. AlÃl'm disso, cada fase presente no reservatÃşrio (Ãągua, Ãşleo e/ou gÃąs) Ãl' admitida como constituÃ∎da por apenas um componente, mesmo que, na prÃątica, o Ãşleo seja composto por vÃąrios hidrocarbonetos, alÃl'm de impurezas.
- Modelo composicional: AlÃl'm de considerar a pressÃčo e a temperatura do reservatÃşrio, tambÃl'm se admite as composiÃğÃţes das diversas fases que estejam presentes no meio poroso. Ao

contrÃario do *black oil*, por exemplo, o Ãşleo passa a ser tratado pelos seus vÃarios hidrocarbonetos de que Ãl' composto, tais como C_1 , C_2 , C_3 , etc. PorÃl'm, como o nÞmero de componentes no Ãşleo Ãl' grande, alguns hidrocarbonetos sÃčo agrupados nos chamados *pseudocomponentes*; a utilizaÃğÃčo dessa abordagem reduz o tempo computacional necessÃario ao modelo, uma vez que um tratamento mais rigoroso poderia tornar impraticÃavel a simulaÃğÃčo composicional.

• Modelo tÃl'rmico: ÃL' utilizado quando Ãl' necessÃario considerar os efeitos de variaÃgÃţes tÃl'rmica no interior do reservatÃşrio — por exemplo, quando se estuda a aplicaÃgÃčo de mÃl'-todos tÃl'rmicos de recuperaÃgÃčo secundÃaria, como injeÃgÃčo de vapor, injeÃgÃčo de Ãagua quente ou combustÃčo in situ. Como os modelos tÃl'rmicos tratam situaÃgÃţes complexas, eles sÃčo necessariamente composicionais.

Quanto ao nÞmero de dimensÃţes, os simuladores sÃčo classificados de acordo com o nÞmero de dimensÃţes nas quais se admite fluxo. Neste sentido, eles podem ser classificados em *unidimensionais* (Figura ...), *bidimensionais* (Figura ...) e *tridimensionais* (Figura ...). Por fim, os simuladores numÃl'ricos podem ser classificados de acordo com o nÞmero de fases: *monofÃqsicos*, caso haja apenas uma fase (no caso de Ãągua, se trata de um aquÃmero); *bifÃqsicos*, quando hÃą duas fases presentes (Ãągua e Ãşleo, no caso de reservatÃşrios de Ãşleo, ou Ãągua e gÃąs, nos reservatÃşrios de gÃąs); e *trifÃqsicos*, no caso da existÃłncia de trÃłs fases (Ãągua, Ãşleo e gas)¹¹.

ÃL' importante que, ao se escolher um simulador numÃl'rico para se resolver problemas de engenharia de reservatÃşrio, se considere vÃąrios fatores, a saber: o tipo de estudo a ser feito, tipo e caracterÃ∎sticas do reservatÃşrio e dos fluidos presentes, quantidade e qualidade dos dados, o detalhamento necessÃąrio do estudo e os recursos computacionais disponÃ∎veis (ROSA, 2006, p. 519). Por exemplo, Ãl' impraticÃąvel o uso de modelos composicionais em computadores cuja capacidade seja comparÃąvel a um computador pessoal de alto desempenho, devido Ãă complexidade dos cÃąlculos envolvidos. Por outro lado, por sua simplicidade, um modelo *black oil* poderia ser considerado, respeitando-se ao mÃąximo as caracterÃ∎sticas do reservatÃşrio estudado.

2.3.3 Uso de Simuladores NumÃl'ricos para Estudos de ReservatÃşrios

O uso de simuladores numÃl'ricos torna possÃ∎vel analisar o comportamento de um reservatÃşrio ao longo do tempo, dado um esquema de produÃğÃčo. Dessa forma, pode-se obter, por exemplo, as condiÃgÃţes Ãştimas de produÃgÃčo, alÃl'm de se determinar como a injeÃgÃčo de diferentes tipos de fluidos ou outros mÃl'todos de EOR afetam o sistema simulado, determinar o efeito da localizaÃgÃčo dos poÃgos na recuperaÃgÃčo de Ãşleo e/ou gÃąs e analisar a influÃłncia de diferentes vazÃţes de produÃgÃčo e/ou injeÃgÃčo. O simulador obtÃl'm seus resultados de informaÃgÃţes de natureza geolÃşgica, propriedades da rocha e dos fluidos presentes no meio poroso, histÃşricos de produÃgÃčo (vazÃţes e/ou produÃgÃţes acumuladas de Ãşleo e Ãągua) e de pressÃčo, e outras informaÃgÃţes a respeito dos poÃgos de petrÃşleo, assim como as caracterÃ∎sticas de completaÃgÃčo (ROSA, 2006, pp. 522–523). A Figura 2.16 ilustra a aplicaÃgÃčo de simuladores numÃl'ricos para engenharia de reservatÃşrios.

¹¹A classificaÃğÃčo dos modelos de simulaÃğÃčo podem ser encontradas em (ROSA, 2006, pp. 517–519)

Figura 2.16: AplicaÃğÃčo de simuladores numÃl'ricos em reservatÃşrios (ROSA, 2006, p. 522)

2.4 Conceitos de Otimização

2.4.1 Definições e Fatos Básicos

Antes de se proceder à análise do problema estudado, fazem-se necessários alguns conceitos básicos da área de otimização e álgebra linear. A presente seção apresenta algumas definições que serão importantes ao descorrer da análise de convexidade e de problemas de otimização. Primeiramente, são dadas algumas definições sobre vetores e matrizes, conforme Aguirre (AGUIRRE, 2015):

Definição 2.4.1.1 Dadas duas variáveis $\mathbf{x} \in \mathbb{R}^n$ e $\mathbf{y} \in \mathbb{R}^n$, o produto interno entre \mathbf{x} e \mathbf{y} é dado por $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x}$. Caso este produto seja nulo, os vetores são ditos ortogonais.

Definição 2.4.1.2 Uma matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ é dita semidefinida positiva se $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq \mathbf{0}, \forall \mathbf{x} \neq \mathbf{0}, \mathbf{x} \in \mathbb{R}^n$. No caso de desigualdade estrita, a matriz \mathbf{A} é dita definida positiva.

Definição 2.4.1.3 Uma matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ é dita semidefinida negativa se $\mathbf{x}^T \mathbf{A} \mathbf{x} \leq \mathbf{0}, \forall \mathbf{x} \neq \mathbf{0}, \mathbf{x} \in \mathbb{R}^n$. No caso de desigualdade estrita, a matriz \mathbf{A} é dita definida negativa.

Definição 2.4.1.4 *Uma matriz* $\mathbf{A} \in \mathbb{R}^{n \times n}$ *é dita indefinida se ela não for semidefinida positiva nem semidefinida negativa.*

Uma última definição básica de álgebra linear se refere ao conceito de normas de vetores e matrizes, de acordo com Yang (YANG, 2010):

Definição 2.4.1.5 Seja $\mathbf{v} \in \mathbb{R}^n$. A p-norma ou ℓ_p -norma de v é dada por

$$\|\mathbf{v}\|_{p} = \left(\sum_{i=1}^{n} |v_{i}|^{p}\right)^{\frac{1}{p}}, \ p \in \mathbb{Z}_{+} - \{0\}.$$
 (2.4.1)

Algumas propriedades elementares da norma vetorial devem ser satisfeitas para todo valor de p, entre as quais:

- (a) $\|\mathbf{v}\| \geq 0$, $\forall \mathbf{v}$;
- (b) $\|\mathbf{v}\| = 0 \Rightarrow \mathbf{v} = \mathbf{0}$;
- (c) $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|, \ \forall \alpha \in \mathbb{R};$
- (d) $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (Designaldade triangular).

Algumas normas vetoriais comuns são calculadas tomando-se (2.4.1) com p=1 e p=2, sendo a 2-norma de \mathbf{v} também conhecida como norma euclidiana, ou comprimento de \mathbf{v} . Neste caso, a norma de v também pode ser escrita como

$$\|\mathbf{v}\|_2 = \sqrt{\mathbf{v}^T \mathbf{v}}.\tag{2.4.2}$$

Um caso especial de norma vetorial ocorre quando $p=\infty$; a ℓ_∞ -norma, ou *norma de Chebyshev* de \mathbf{v} , é dada por

$$\|\mathbf{v}\|_p = v_{max} = \max_{1 \le i \le n} |v_i|.$$
 (2.4.3)

Definição 2.4.1.6 Dada uma matriz $\mathbf{A} \in \mathbb{R}^{m \times n}$ qualquer, a sua p-norma, analogamente à Definição 2.4.1.5, pode ser escrita como

$$\|\mathbf{A}\|_{p} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{p}\right)^{\frac{1}{p}}, \ p \in \mathbb{Z}_{+} - \{0\}.$$
 (2.4.4)

Um caso especial da norma matricial ocorre quando se aplica a Equação (2.4.4) com p=2; tal norma é denominada norma de Frobenius de A. Outras normas matriciais populares são tidas como a máxima soma de linhas ou de colunas da matriz ($\|\mathbf{A}\|_1$ e $\|\mathbf{A}\|_{\infty}$, respectivamente). Deve-se destacar também que todas as propriedades básicas satisfeitas para a norma vetorial devem ser verdadeiras também para a norma matricial.

Outros conceitos básicos a serem apresentados são pertencentes à área de otimização. Izmailov e Solodov (IZMAILOV; SOLODOV, 2005) trazem o conceito elementar de problema de otimização e mínimo (ou máximo) de uma função:

Definição 2.4.1.7 Sejam um conjunto $D \subset \mathbb{R}^n$ e uma função $f: D \to \mathbb{R}$. O problema de se encontrar uma minimizador de f em D é escrito como

$$\min f(\mathbf{x}) \text{ sujeito } a \mathbf{x} \in D. \tag{2.4.5}$$

A função f é denominada função objetivo; o conjunto D é o conjunto viável do problema, ou conjunto de restrições — seus pontos serão chamados de pontos viáveis. Normalmente, o conjunto de restrições D pode ser definido como

$$D = \{ \mathbf{x} \in \Omega \mid h(\mathbf{x}) = 0, g(\mathbf{x}) < 0 \}$$

$$(2.4.6)$$

em que Ω é o conjunto de restrições diretas do problema ($\Omega \subset \mathbb{R}^n$), $h: \Omega \to \mathbb{R}^l$ e $g: \Omega \to \mathbb{R}^m$ são as $l \in \mathbb{Z}_+$ restrições de igualdade e $m \in \mathbb{Z}_+$ restrições de desigualdade (também denomiadas restrições funcionais). Caso $D = \mathbb{R}^n$, o problema é dito de otimização irrestrita; em caso contrário, se trata de problema com restrições.

Definição 2.4.1.8 Um problema de maximização pode ser escrito como

$$\max f(\mathbf{x}) \text{ sujeito } a \mathbf{x} \in D. \tag{2.4.7}$$

Nota-se que o problema (2.4.7) pode ser reescrito como um problema de minimização equivalente:

$$\min -f(\mathbf{x})$$
 sujeito $a \mathbf{x} \in D$.

Visto que resolver um problema de maximização não exige técnicas substancialmente diferentes de um problema de minimização, uma vez que um pode ser reescrito como o outro, serão considerados a partir dessa seção problemas de minimização.

Antes de se prosseguir com os conceitos de minimizador e valor ótimo, são necessários os conceitos de supremo, ínfimo, máximos e mínimos de um conjunto. A definição a seguir é encontrada em Yang (YANG, 2010):

Definição 2.4.1.9 Dado um conjunto $S \in \mathbb{R}$, o número u é denominado limite superior de S se $u \ge x$, $\forall x \in S$. Por consequência, o número β é denominado supremo de S se β é o menor dos limites superiores u de S ($\beta \le u$, $\forall u$). O supremo de S pode ser denotado por

$$\beta \equiv \sup_{x \in S} x \equiv \sup S \equiv \sup(S). \tag{2.4.8}$$

Caso $\beta \in S$, pode-se dizer que β é o valor máximo de S, ou seja,

$$\beta \equiv \max S \equiv \max(S). \tag{2.4.9}$$

De maneira análoga, o número l é denominado limite inferior de S se $l \le x, \forall x \in S$. Por consequência, o número α é denominado ínfimo de S se α é o maior dos limites inferiores l de S ($\alpha \ge l, \forall l$). O ínfimo de S pode ser denotado por

$$\alpha \equiv \inf_{x \in S} x \equiv \inf S \equiv \inf(S).$$
 (2.4.10)

Caso $\alpha \in S$, pode-se dizer que α é o valor mínimo de S, ou seja,

$$\alpha \equiv \min S \equiv \min(S). \tag{2.4.11}$$

Algumas propriedades básicas sobre ínfimos e supremos são apresentadas a seguir, de acordo com Yang (YANG, 2010):

$$\inf Q = -\sup(-Q),\tag{2.4.12}$$

$$\sup_{p \in P, q \in Q} (p+q) = \sup(P) + \sup(Q), \tag{2.4.13}$$

$$\sup_{x \in S} (f(x) + g(x)) \le \sup_{x \in S} (f(x)) + \sup_{x \in S} (g(x)). \tag{2.4.14}$$

Vale notar que os conceitos de supremo e ínfimo apresentados não extendem a conjuntos não-limitados; por exemplo, seja o conjunto $S=[2,+\infty)$. Verifica-se que, de acordo com a Definição 2.4.1.9, $\inf S=2$, mas o supremo não existe, ou seja, $\sup S \to +\infty$. Por este exemplo, conclui-se que ínfimos ou supremos podem não existir em conjuntos não limitados; portanto, para contornar este fato, faz-se a definição de uma extensão dos números reais (YANG, 2010):

$$\bar{\mathbb{R}} = \mathbb{R} \cup \{ \pm \infty \} \,. \tag{2.4.15}$$

Considerando-se a Equação (2.4.15) e que $\sup(\emptyset) = -\infty$, para qualquer subconjunto de \mathbb{R} , o supremo e ínfimo sempre existirão, supondo-se $\sup \mathbb{R} = +\infty$ e $\inf \mathbb{R} = -\infty$.

De posse das definições até aqui dadas, é possível definir os conceitos de minimizador e valor ótimo de uma função. As definições a seguir são dadas por Izmailov e Solodov (IZMAILOV; SOLODOV, 2005):

Definição 2.4.1.10 Dado o problema (2.4.5), diz-se que um ponto $\bar{\mathbf{x}} \in D$ é

(a) minimizador global de (2.4.5), se

$$f(\bar{\mathbf{x}}) \le f(\mathbf{x}) \ \forall \mathbf{x} \in D; \tag{2.4.16}$$

(b) minimizador local de (2.4.5), se existe uma vizinhança U de $\bar{\mathbf{x}}$ tal que

$$f(\bar{\mathbf{x}}) \le f(\mathbf{x}) \ \forall \mathbf{x} \in D \cap U, \tag{2.4.17}$$

ou, de forma análoga,

$$\exists \epsilon > 0 \bullet f(\bar{\mathbf{x}}) < f(\mathbf{x}) \ \forall \mathbf{x} \in \{\mathbf{x} \in D \mid ||\mathbf{x} - \bar{\mathbf{x}}|| < \epsilon\}. \tag{2.4.18}$$

Observa-se que todo minimizador global é também local, mas não de forma recíproca. Se, para $\mathbf{x} \neq \bar{\mathbf{x}}$, a desigualdade (2.4.16) ou (2.4.17) é estrita, $\bar{\mathbf{x}}$ é chamado de *minimizador estrito* (global ou local, respectivamente).

Definição 2.4.1.11 *Seja* $\bar{\mathbf{v}} \in [-\infty, +\infty)$ *definido por*

$$\bar{\mathbf{v}} = \inf_{\mathbf{x} \in D} f(\mathbf{x}); \tag{2.4.19}$$

neste caso, $\bar{\mathbf{v}}$ é denominado valor ótimo do problema (2.4.5).

2.4.2 Diferenciabilidade de Funções Escalares

A maioria dos algoritmos de otimização e conceitos associados empregam conceitos de diferenciação de funções. Esses conceitos aparecem principalmente no estudo de condições de otimalidade, visto que a

análise das derivadas de uma função em um ponto pode, por exemplo, confirmar ou não sua natureza como minimizador (ou maximizador) de uma função.

Inicialmente, serão apresentados conceitos de continuidade e diferenciação básicos para uma função escalar (monovariável), isto é, $f:D\to\mathbb{R},\ D\subset\mathbb{R}$.

Definição 2.4.2.1 12 Uma função escalar f(x) é considerada contínua em um ponto $c \in \mathbb{R}$ se:

- (a) $f \notin definida \ em \ c \ (\exists f(c));$
- (b) $\exists \lim_{x\to c} f(x)$;
- (c) $\lim_{x\to c} f(x) = f(c)$.

Diz-se que f(x) é contínua se ela satisfaz as propriedades da Definição 2.4.2.1 em todos os pontos de seu domínio. Caso ela seja conínua em intervalos separados do seu domínio, diz-se que f(x) é contínua por partes.

Definição 2.4.2.2 13 Dizemos que a derivada de f(x) escalar em relação a x é equivalente ao limite

$$\frac{d}{dx}f(x) \equiv \frac{df}{dx} \equiv f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},\tag{2.4.20}$$

desde que tal limite exista.

Caso f possua derivada no ponto x, diz-se que f é diferenciável em x; se f possui derivada em todos os pontos de seu domínio, diz-se simplesmente que f é diferenciável.

Vale ressaltar que a derivada possui algumas propriedades elementares, mostradas a seguir (será utilizada simplesmente a notação f' como redução de f'(x)):

- (a) $(f \pm g)' = f' \pm g';$
- (b) (fg)' = fg' + f'g;
- (c) $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$;
- (d) (Regra da Cadeia) $(f \circ g)' \equiv f'(g) = f'(g)g' \equiv (f' \circ g)g'^{14}$

Em cursos introdutórios de cálculo, geralmente são apresentados conceitos relativos a testes de sinais de derivadas de uma função f(x) qualquer de maneira a se encontrar pontos especiais, os *pontos críticos* ou *estacionáros* e sua natureza. Será visto nas Seções seguintes que esse estudo no fundo é uma aplicação específica das condições de otimalidade em problemas sem restrição; a seguir, os conceitos de continuidade e diferenciação serão extendidos de forma a abranger funções de várias variáveis e também funções multiobjetivo, ou campos vetoriais.

¹²Ver (THOMAS, 2009a), p. 120

¹³*Ibid.*, p. 145

¹⁴Uma prova dessa regra se encontra em (THOMAS, 2009a), p. 246

2.4.3 Diferenciabilidade de Funções Multivariáveis e Campos Vetoriais

Antes de se proceder à análise de funções que possuem domínio ou contradomínio (ou ambos) multidimensionais, será feita uma diferenciação conceitual entre funções multivariáveis e campos vetoriais (funções multiobjetivo):

Definição 2.4.3.1 Uma aplicação $f(\mathbf{x}): A \to B, \ A \subset \mathbb{R}^n$ é denominada função multivariável se seu contradomínio é subconjunto dos números reais, isto é, $B \subset \mathbb{R}$.

Definição 2.4.3.2 Uma aplicação $\mathbf{F}(\mathbf{x}): A \to B, \ A \subset \mathbb{R}^n$ é denominada campo vetorial (ou função multiobjetivo) se seu contradomínio é subconjunto de um espaço euclidiano de dimensão m > 1, isto é, $B \subset \mathbb{R}^m$.

O conceito de continuidade, nesses casos, pode ser visto como uma extensão da Definição $2.4.2.1^{15}$; porém, o conceito de diferenciabilidade deve ser largamente extendido, pois agora, ao contrário do caso escalar, o número de direções possíveis é infinito. Em casos em que essas direções correspondem aos vetores da base canônica do espaço do domínio ($\mathbf{e_i} = (0, ..., 1, ..., 0$) com o elemento não-nulo na *i*-ésima posição), as derivadas de uma função vetorial nessas direções são conhecidas como *derivadas parciais*.

Definição 2.4.3.3 ¹⁶ Dizemos que a derivada parcial de $f(\mathbf{x})$ em relação à componente x_i é equivalente ao limite

$$\frac{\partial}{\partial x_i} f(\mathbf{x}) \equiv \frac{\partial f}{\partial x} \equiv f_{x_i}(\mathbf{x}) = \lim_{h \to 0} \frac{f(x_1, ..., x_i + h, ..., x_n) - f(\mathbf{x})}{h}, \tag{2.4.21}$$

desde que tal limite exista.

Quando todas as derivadas parciais de uma função $f(\mathbf{x})$ existem, o *gradiente* de f é dado, por definição, como

$$\nabla f := \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right) \tag{2.4.22}$$

A principal diferença entre funções com domínio multidimensional e as escalares reside no fato de que o número de direções possíveis não é finito; como as derivadas parciais apenas consideram as direções da base do espaço, um novo conceito de derivada é necessário. Para tanto, seja o vetor $\mathbf{d} \in \mathbb{R}^n$ definido como

$$\mathbf{d} = (d_1, d_2, ..., d_n) = \sum_{i=1}^{n} d_i \mathbf{e_i}$$

com e_i sendo o *i*-ésimo vetor de coordenadas, conceito já discutido anteriormente. Esse vetor d pode ser entendido como uma *direção* em \mathbb{R}^n . A definição a seguir de derivada direcional se encontra em Guller (GULLER, 2010):

Definição 2.4.3.4 A derivada direcional de f em um ponto \mathbf{x} de seu domínio na direção $\mathbf{d} \in \mathbb{R}^n$ é dada por

$$f'(\mathbf{x}; \mathbf{d}) = \lim_{t \searrow 0} \frac{f(\mathbf{x} + t\mathbf{d}) - f(\mathbf{x})}{t},$$
(2.4.23)

desde que o limite exista à medida que $t \ge 0$ se aproxima de 0.

¹⁵Ver (THOMAS, 2009b), p. 301

¹⁶Adaptado de (THOMAS, 2009b), p. 308

Guller ainda destaca que, além do fato de que $f'(\mathbf{x}; \alpha \mathbf{d}) = \alpha f'(\mathbf{x}; \mathbf{d})$ para $\alpha \geq 0$, a derivada direcional pode ser calculada como mostrado a seguir, se $f'(\mathbf{x}; -\mathbf{d}) = -f'(\mathbf{x}; \mathbf{d})$:

$$f'(\mathbf{x}; \mathbf{d}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{d}) - f(\mathbf{x})}{t}.$$

Fica claro que, quando a direção d equivale a algum vetor de coordenadas de \mathbb{R}^n , como $\mathbf{e_i}$, aplicar a Definição 2.4.3.4 implica em calcular a derivada parcial de f na coordenada x_i , ou seja,

$$f'(\mathbf{x}; \mathbf{e_i}) \equiv \frac{\partial f}{\partial x_i}$$
.

Com isso, permite-se concluir que a noção de derivada direcional é uma generalização da derivada parcial para qualquer direção.

Antes de se prosseguir com a análise de diferenciação de funções multivariáveis e campos vetoriais, faz-se necessário apresentar uma notação que será utilizada posteriormente, a *notação de Landau* ("o" *pequeno*):

Definição 2.4.3.5 (Notação de Landau) ¹⁷ Segundo a notação de Landau, um vetor pode ser chamado $o(\mathbf{h}) \in \mathbb{R}^n$ se

$$\lim_{\mathbf{h} \to \mathbf{0}} \frac{\|o(\mathbf{h})\|}{\|\mathbf{h}\|} = 0.$$

Definição 2.4.3.6 18 Uma função $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ é dita Gâteaux diferenciável em $\mathbf{x} \in U$ se a derivada direcional $f'(\mathbf{x}; \mathbf{d})$ existe para toda direção $\mathbf{d} \in \mathbb{R}^n$ e é uma função linear de \mathbf{d} .

Pela definção de diferenciabilidade de Gâteaux e utilizando a definição de direção, a derivada de Gâteaux pode ser calculada como

$$f'(\mathbf{x}; \mathbf{d}) = f'(\mathbf{x}; \sum_{i=1}^{n} d_i \mathbf{e_i}) = \sum_{i=1}^{n} d_i f'(\mathbf{x}; \mathbf{e_i}) = \sum_{i=1}^{n} d_i \frac{\partial f}{\partial x_i} = \langle \mathbf{d}, \nabla f \rangle = \mathbf{d}^T \nabla f.$$
 (2.4.24)

Definição 2.4.3.7 19 Uma função $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ é dita Fréchet diferenciável em $\mathbf{x} \in U$ se existe uma função linear $\ell: \mathbb{R}^n \to \mathbb{R}$, $\ell(\mathbf{x}) = \mathbf{l}^T \mathbf{x}$, tal que

$$\lim_{\|\mathbf{h}\| \to 0} \frac{f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - \mathbf{h}^T \mathbf{h}}{\|\mathbf{h}\|} = 0.$$

Dizer que uma função f é Fréchet diferenciável em x equivale a dizer que

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \mathbf{l}^T \mathbf{h} + o(\mathbf{h})$$
 (2.4.25)

Dois fatos importantes podem ser retirados da Equação (2.4.25); o primeiro é que, se tomarmos o limite quando $h \to 0$, tem-se que $\lim_{h\to 0} f(\mathbf{x}+\mathbf{h}) = f(\mathbf{x})$; isto equivale a dizer que, se f é Fréchet diferenciável

¹⁷Ver (GULLER, 2010), p. 6

 $^{^{18}}Ibid.$

¹⁹Ibid.

em x, ela é contínua nesse ponto. O outro fato a ser analisado pressupõe que 1 pode ser escolhido como ∇f ; neste caso, aplicando-se também a Definição 2.4.1.1, (2.4.25) se torna

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \mathbf{h}^T \nabla f + o(\mathbf{h}). \tag{2.4.26}$$

Claramente, de acordo com a Equação 2.4.24, o segundo termo é a derivada de Gâteaux de f em \mathbf{x} na direção \mathbf{h} . Portanto, f Fréchet diferenciável em \mathbf{x} implica em f Gâteaux diferenciável em \mathbf{x} .

A segunda derivada de uma função multivariável requer atenção especial: uma vez que a primeira derivada, ou gradiente, é um vetor, a segunda derivada de uma função $f:U\subseteq\mathbb{R}^n\to\mathbb{R}$ é uma matriz quadrada de ordem n. Essa matriz é conhecida como Hessiana.

Definição 2.4.3.8 ²⁰ A segunda derivada de uma função $f:U\subseteq\mathbb{R}^n\to\mathbb{R}$, também conhecida como Hessiana de f, \acute{e} dada por

$$H(f) \equiv \nabla^2 f \equiv f''(\mathbf{x}) = [h_{ij}], \ h_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$
 (2.4.27)

Um fato interessante sobre a Hessiana é que, se as segundas derivadas parciais de f existem e são contínuas, tem-se que $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$; neste caso, temos que $H(f) = H^T(f)$, ou seja, tem-se H(f) simétrica. Este fato é largamente utilizado em alguns algoritmos de otimização, particularmente em problemas de programação quadrática.

Todos os conceitos vistos até aqui para funções $f:\mathbb{R}^n\to\mathbb{R}$ podem ser também aplicados a campos vetoriais $\mathbf{F}:\mathbb{R}^n\to\mathbb{R}^m$. Os conceitos de diferenciabilidade segundo Gâteaux e Fréchet são análogos aos presentes nas Definições 2.4.3.6 e 2.4.3.7 ²¹. Guller ainda afirma que, se um campo $\mathbf{F}(\mathbf{x})$ é Gâteaux (ou Fréchet) diferenciável em \mathbf{x} , então suas funções componentes $f_i(\mathbf{x})$ são Gâteaux (ou Fréchet) diferenciáveis em \mathbf{x} . A mudança aqui é o cálculo da derivada de \mathbf{F} , agora uma matriz.

Definição 2.4.3.9 ²² *Dado um campo vetorial* $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^m$, sua derivada, denominada Jacobiana de \mathbf{F} , é dada por

$$J(\mathbf{F}) = \left[\frac{\partial f_i}{\partial x_j}\right]. \tag{2.4.28}$$

Nota-se, pela definição de Jacobiana, que o conceito de gradiente de uma função multivariável é um caso específico de Jacobiana, assim como uma função multivariável é um tipo especial de campo vetorial, em que o contradomínio é unidimensional.

2.4.4 Convexidade

Segundo Izmailov e Solodov (IZMAILOV; SOLODOV, 2005), o conceito de convexidade é muito importante na teoria de otimização; com noções de convexidade, condições de otimalidade necessárias passam a ser suficientes, ou seja, basta encontrar um ponto estacionário para o problema. Em particular, sob

²⁰Adaptado de (YANG, 2010), p. 51

²¹Ver (GULLER, 2010), pp. 8-9

²²Adaptado de (GULLER, 2010), p. 9

condições de convexidade, todo minimizador local torna-se global. Outra possibilidade possível utilizando convexidade é o uso da teoria da dualidade na sua forma mais completa, ou seja, é possível associar o problema original (primal) a um problema alternativo (dual) que é, em determinadas condições, equivalente ao original e às vezes de mais fácil resolução. Por fim, o conceito de convexidade possibilita o uso de uma das condições de otimalidade mais poderosas aplicadas a problemas com restrições: as condições KKT.

Definição 2.4.4.1 Um conjunto $D \subset \mathbb{R}^n$ é dito convexo se, para quaisquer $\mathbf{x} \in D$, $\mathbf{y} \in D$ e $\alpha \in [0,1]$, tem-se $\alpha \mathbf{x} + (1-\alpha)\mathbf{y} \in D$.

O ponto $\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}, \ \alpha \in [0, 1]$, é conhecido como a *combinação convexa* de \mathbf{x} e \mathbf{y} , com parâmetro α .

Em termos de convexidade de uma função, as definições a seguir são adptadas de Izmailov e Solodov²³. Supõe-se, para todas as definições, que o conjunto $D \subset \mathbb{R}^n$ presente nelas é convexo.

Definição 2.4.4.2 Uma função $f: D \to \mathbb{R}$ é convexa em D se, para quaisquer $\mathbf{x} \in D$, $\mathbf{y} \in D$ e $\alpha \in [0, 1]$, tem-se

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}). \tag{2.4.29}$$

Definição 2.4.4.3 *Uma função* $f: D \to \mathbb{R}$ é estritamente convexa em D se, para quaisquer $\mathbf{x} \in D$, $\mathbf{y} \in D$, $\mathbf{x} \neq \mathbf{y}$ e $\alpha \in (0,1)$, tem-se

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) < \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}). \tag{2.4.30}$$

Definição 2.4.4.4 Uma função $f: D \to \mathbb{R}$ é fortemente convexa em D, com módulo $\gamma > 0$ se, para quaisquer $\mathbf{x} \in D$, $\mathbf{y} \in D$ e $\alpha \in [0,1]$, tem-se

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) - \gamma \alpha (1 - \alpha)\|\mathbf{x} - \mathbf{y}\|^{2}.$$
 (2.4.31)

Vale notar que uma função fortemente convexa é estritamente convexa, e que uma função estritamente convexa é uma função convexa; a recíproca, porém, nem sempre é verdadeira.

Definição 2.4.4.5 *Uma função* $f: D \to \mathbb{R}$ é côncava em D se -f for convexa em D.

Definição 2.4.4.6 O problema de otimização (2.4.5) é um problema de minimização convexo quando D é um conjunto convexo e f é uma função convexa.

Uma vez que a função e o conjunto de restrições são convexos, resolver um problema de otimização torna-se menos tortuoso; encontrar um minimizador é garantido. A importância desse fato pode ser vista no teorema a seguir, retirado de Izmailov e Solodov ²⁴.

Teorema 2.4.4.7 (**Teorema de minimização convexa**) *Todo minimizador local de um problema convexo é um minimizador global, e o conjunto de minimizadores é convexo. Além disso, se a função objetivo for estritamente convexa, só há no máximo um minimizador.*

²³Ver (IZMAILOV; SOLODOV, 2005), pp. 66-70

²⁴*Ibid.*, p. 69. Ver prova em *Ibid.*, pp. 69-70.

Uma vez que resolver um problema de maximização é análogo a resolver um problema de minimização, o teorema acima pode ser adaptado com o conceito de concavidade visto na Definição 2.4.4.6: o problema a ser resolvido neste caso se trata de maximização de uma função côncava num conjunto convexo.

Tentar determinar a convexidade de uma função por meio da Definição 2.4.4.2 pode-se tornar um trabalho árduo; Yang apresenta uma alternativa para se determinar a convexidade de uma função, dada a seguir.

Teorema 2.4.4.8 ²⁵ *Uma função* $f:D\subset\mathbb{R}^n\to\mathbb{R}$ é convexa se sua matriz Hessiana é semidefinida positiva em todos os pontos de D.

Guller destaca, porém, que o teorema acima é válido apenas se a função f é duas vezes Fréchet diferenciável; além disso, afirma que, se a Hessiana é definida positiva, a função f é estritamente convexa²⁶.

Um outro resultado importante obtido com análise convexa se refere aos conceitos de diferenciabilidade de Gâteaux e Fréchet. O teorema a seguir destaca essa relação.

Teorema 2.4.4.9 ²⁷ Seja $C \subset \mathbb{R}^n$ convexo com interior não-vazio $(int(C) \neq \emptyset)$ e $f: C \to \mathbb{R}$ uma função convexa. Se todas as derivadas parciais de f existem para um ponto \mathbf{x} no interior de C, f é Fréchet diferenciável em \mathbf{x} . Mais ainda, se f é Gâteaux diferenciável em \mathbf{x} , f é Fréchet diferenciável em \mathbf{x} .

Nota-se que a convexidade suprime a distinção entre os conceitos de diferenciabilidade de Gâteaux e Fréchet vistos anteriormente; isso resulta em uma melhor análise de derivadas da função atingida, visto que obter derivadas de Fréchet normalmente é um processo mais difícil que a diferenciação segundo Gâteaux.

A presente Seção se dedicou a abordar os conceitos mais elementares de análise convexa, que foram analisados no presente estudo; Guller, Izmailov e Solodov apresentam outros elementos dessa análise, como os teoremas de separação, que são aplicados à noção de dualidade. Tendo em vista este fato, algumas condições de otimalidade foram reunidas, considerando ou não análise convexa. As semelhanças e diferenças entre tais condições serão vistas na Seção a seguir.

2.4.5 Condições de Otimalidade

As condições de otimalidade podem ser vistas como condições que devem ser satisfeitas para que um ponto dado seja minimizador de uma função, ou condições que garantem que um ponto é minimizador da função; tais condições são denominadas, respectivamente, *condições necessárias de otimalidade* e *condições suficientes de otimalidade*. Existem várias maneiras de apresentar essas condições; contudo, para efeitos deste estudo, serão apresentadas somente condições para problemas irrestritos e problemas com restrições de igualdade e desigualdade.

Definição 2.4.5.1 Um problema de minimização irrestrita é aquele cuja forma é

$$\min f(\mathbf{x}), \ \mathbf{x} \in \mathbb{R}^n. \tag{2.4.32}$$

²⁵Adaptado de (YANG, 2010), pp. 56-57.

²⁶Ver Teorema 4.28 em (GULLER, 2010), p. 99.

²⁷Ver escrita original e prova em (GULLER, 2010), p. 101.

Analogamente, um problema de maximização irrestrita pode ser escrito como

$$\max f(\mathbf{x}), \ \mathbf{x} \in \mathbb{R}^n. \tag{2.4.33}$$

Um fato importante sobre a existência de um minimizador global de um problema pode ser mostrado pelo teorema a seguir:

Teorema 2.4.5.2 (Teorema de Weierstrass) ²⁸ Seja $f: K \to \mathbb{R}$ uma função contínua e K um espaço de medida compacto. Logo, existe um ponto $\bar{\mathbf{x}} \in K$ que é minimizador global de f em K, isto é,

$$f(\bar{\mathbf{x}}) \le f(\mathbf{x}), \ \forall \mathbf{x} \in K.$$

As condições de otimalidade a serem apresentadas a seguir são relevantes para o problema irrestrito $(2.4.32)^{29}$:

Teorema 2.4.5.3 (Condição Necessária de Primeira Ordem) Seja uma função $f: U \to \mathbb{R}$ Gâteaux diferenciável em um conjunto aberto $U \subseteq \mathbb{R}^n$. Um mínimo local é também ponto crítico de f, ou seja,

$$\mathbf{x} \notin minimo local \Rightarrow \nabla f(\mathbf{x}) = 0.$$

Corolário 2.4.5.4 Seja uma função $f: U \to \mathbb{R}$ definida em um conjunto aberto $U \subseteq \mathbb{R}^n$. Se $\mathbf{x} \in U$ é um minimizador local de f e existe a derivada directional $f'(\mathbf{x}; \mathbf{d})$ para alguma direção $\mathbf{d} \in \mathbb{R}^n$, então $f'(\mathbf{x}; \mathbf{d}) \geq 0$.

Teorema 2.4.5.5 (Condição Necessária de Segunda Ordem) Seja uma função $f: U \to \mathbb{R}$ duas vezes Gâteaux diferenciável em um conjunto aberto $U \subseteq \mathbb{R}^n$, e com segundas derivadas parciais contínuas $(f \in C^2)$. Se $\mathbf{x} \in U$ é um minimizador local de f, então sua Hessiana $H(f(\mathbf{x}))$ é semidefinida positiva.

Teorema 2.4.5.6 (Condições Suficientes de Segunda Ordem) Seja uma função $f: U \to \mathbb{R}$ tal que $f \in C^2$ em um conjunto aberto $U \subseteq \mathbb{R}^n$. Portanto:

- (a) Se $\nabla f(\mathbf{x}) = 0$ e $H(f(\mathbf{x}))$ é definida positiva para $\mathbf{x} \in U$, então \mathbf{x} é minimizador local estrito de f;
- (b) Se o conjunto U é convexo, H(f) é semidefinida positiva em U e $\nabla f(\mathbf{x}) = 0$, então \mathbf{x} é minimizador global de f;
- (c) Se $\nabla f(\mathbf{x}) = 0$ e $H(f(\mathbf{x}))$ é indefinida para $\mathbf{x} \in U$, então \mathbf{x} é um ponto de sela de f.

Agora, seja um problema de otimização em sua forma geral

min
$$f(\mathbf{x})$$

s. a. $g_i(\mathbf{x}) \le 0, \quad i = 1, ..., r$. (2.4.34)
 $h_j(\mathbf{x}) = 0, \quad j = 1, ..., m$

Tal problema é também conhecido como *programa não-linear* ou *matemático*. Ele será denotado por P.

²⁸Ver teorema e prova em (GULLER, 2010), p. 33

²⁹Essas condições, juntamente com suas provas, se encontram em (GULLER, 2010), pp. 35-39.

Definição 2.4.5.7 O conjunto

$$\mathcal{F}(\mathbb{P}) = \{ \mathbf{x} \in \mathbb{R}^n \mid g_i(\mathbf{x}) \le 0, h_j(\mathbf{x}) = 0, 1 \le i \le r, 1 \le j \le m \}$$

é denominado conjunto factível de \mathbb{P} .

Deve-se ressaltar que se $g_i(\bar{\mathbf{x}}) < 0$ implica que essa *i*-ésima condição de desigualdade não influi na determinação da condição de minizador local de $\bar{\mathbf{x}}$; tal condição é denominada *inativa*. Sendo assim, a Definição a seguir trata das restrições de desigualdade *ativas* do problema \mathbb{P} .

Definição 2.4.5.8 Uma restrição $g_i(\mathbf{x})$ é dita ativa se $g_i(\mathbf{x}) = 0$, $\mathbf{x} \in \mathcal{F}(\mathbb{P})$. O conjunto

$$\mathcal{I}(\mathbf{x}) := \{ i \mid g_i(\mathbf{x}) = 0 \}$$

é chamado de conjunto de índices das restrições ativas de \mathbb{P} .

Definição 2.4.5.9 *Um ponto factível* $\bar{\mathbf{x}} \in \mathcal{F}(\mathbb{P})$ *é minimizador local do problema* \mathbb{P} *se for minimizador de f numa vizinhança factível de* $\bar{\mathbf{x}}$, *ou seja*,

$$\exists \epsilon > 0 \bullet f(\bar{\mathbf{x}}) \le f(\mathbf{x}), \ \forall \mathbf{x} \in \mathcal{F}(\mathbb{P}) \cap \bar{B}_{\epsilon}(\bar{\mathbf{x}}), \tag{2.4.35}$$

em que $\bar{B}_{\epsilon}(\bar{\mathbf{x}})$ é uma bola aberta de centro $\bar{\mathbf{x}}$ e raio ϵ . Caso $\bar{\mathbf{x}}$ satisfaça

$$f(\bar{\mathbf{x}}) \le f(\mathbf{x}), \ \forall \mathbf{x} \in \mathcal{F}(\mathbb{P}),$$
 (2.4.36)

o ponto é um minimizador global do problema \mathbb{P} .

Vale ressaltar que, utilizando os sinais de desigualdade apropriados, as definições de minimizadores podem ser modificadas para o caso de maximizadores.

Para se dar prosseguimento à análise de condições de otimalidade sobre o problema (2.4.34), será definido o operador *Lagrangiano* do problema (também conhecido como multiplicadores de Lagrange):

Definição 2.4.5.10 A função

$$\mathcal{L}(\mathbf{x}, \lambda, \mu) := \lambda_0 f(\mathbf{x}) + \sum_{i=1}^r \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^m \mu_j h_j(\mathbf{x}) \quad (\lambda_i \ge 0, 0 \le i \le r)$$
(2.4.37)

é chamada de Lagrangiana fraca do problema \mathbb{P} . Caso $\lambda_0=1$, a função é simplesmente chamada de Lagrangiana.

A Lagrangiana é utilizada como base para as condições a seguir:

Teorema 2.4.5.11 (Condições de Fritz-John) Se $\bar{\mathbf{x}}$ é minimizador local de (2.4.34), então existem multiplicadores $(\lambda, \mu) := (\lambda_0, lambda_1, ..., \lambda_r, \mu_1, \mu_2, ..., \mu_m)$, não todos nulos, com $(\lambda_0, ..., \lambda_r) \geq 0$, em que

$$\nabla_{\mathbf{x}} \mathcal{L}(\bar{\mathbf{x}}, \lambda, \mu) = 0, \tag{2.4.38}$$

$$\lambda_i > 0, \ q_i(\bar{\mathbf{x}}) < 0, \ \lambda_i q_i(\bar{\mathbf{x}}) = 0, \ i = 1, 2, ..., r.$$
 (2.4.39)

Ressalta-se que a Lagrangiana nessas condições está em sua versão fraca.

Utilizando-se a noção de $\mathcal{I}(\mathbf{x})$, vista na Definição 2.4.5.8, e utilizando-se o gradiente do Lagrangiano, pode-se reescrever (2.4.38) na forma

$$\lambda_0 \nabla f(\bar{\mathbf{x}}) + \sum_{j \in \mathcal{I}(\bar{\mathbf{x}})} \lambda_j \nabla g_j(\bar{\mathbf{x}}) + \sum_{j=1}^m \mu_j \nabla h_j(\bar{\mathbf{x}}) = 0.$$
 (2.4.40)

Uma aplicação interessante das condições FJ reside no fato de que agora é possível escrever *condições* suficientes de primeira ordem de otimalidade:

Teorema 2.4.5.12 (Condições Suficientes de Primeira Ordem) Seja $\bar{\mathbf{x}}$ uma solução viável para o problema \mathbb{P} em (2.4.34), satisfazendo as condições FJ, em que a primeira condição é usada conforme (2.4.40). Se a totalidade dos vetores

$$\lambda_0 \nabla f(\bar{\mathbf{x}}), \ \{\lambda_i \nabla g_i(\bar{\mathbf{x}})\}_{i \in \mathcal{I}(\bar{\mathbf{x}})}, \ \{\nabla h_j(\bar{\mathbf{x}})\}_1^m$$

formam uma base de \mathbb{R}^n , então $\bar{\mathbf{x}}$ é minimizador local de \mathbb{P} .

A importância do teorema de Fritz-John reside no fato de que ele sempre é aplicável nos pontos minimizadores locais. Porém, há casos em que λ_0 pode ser 0, um fato estranho visto que significa que a função objetivo não teria influência nas condições de otimalidade de primeira ordem. Portanto, são necessárias suposições adicionais sobre o problema $\mathbb P$ de maneira que essa possibilidade não seja alcançada. Tais suposições que garantem $\lambda_0 > 0$ ($\lambda_0 = 1$, de fato) são denominadas *qualificação das restrições*, e as condições de otimalidade resultantes são chamadas *condições de Karush-Kuhn-Tucker* (*KKT*).

Corolário 2.4.5.13 (Condições de Karush-Kuhn-Tucker) Se os vetores

$$\{\nabla g_i(\bar{\mathbf{x}}), i \in \mathcal{I}(\bar{\mathbf{x}}), \nabla h_j(\bar{\mathbf{x}}), j = 1, ..., m\}$$

são linearmente independentes, então $\lambda_0 > 0$ e, portanto, utilizando a função Lagrangiana não-fraca,

$$\nabla_{\mathbf{x}} \mathcal{L}(\bar{\mathbf{x}}, \lambda, \mu) = 0, \tag{2.4.41}$$

$$\lambda_i \ge 0, \ g_i(\bar{\mathbf{x}}) \le 0, \ \lambda_i g_i(\bar{\mathbf{x}}) = 0, \ i = 1, 2, ..., r,$$
 (2.4.42)

$$h_j(\bar{\mathbf{x}}) = 0, \ j = 1, 2, \dots m.$$
 (2.4.43)

O problema das condições KKT reside no fato de que elas falham em pontos que, ao se aplicar as condições FJ, tem-se $\lambda_0=0$, o que significa que a função objetivo não entra nas condições de otimalidade, o contrário do que é esperado. É importante então, ao se considerar as condições KKT, identificar, dado o problema \mathbb{P} em (2.4.34), condições adicionais sobre a função objetivo f e principalmente sobre as restrições de desigualdade g_i e de igualdade h_j . Serão apresentadas, a seguir, condições e necessárias para a existência das condições KKT:

Teorema 2.4.5.14 Seja um ponto $\bar{\mathbf{x}}$ FJ para o problema \mathbb{P} . As condições KKT se aplicam a $\bar{\mathbf{x}}$ se e somente se

$$\{\mathbf{d} \mid \langle \nabla f(\bar{\mathbf{x}}), \mathbf{d} \rangle < 0\} \cap \{\mathbf{d} \mid \langle \nabla g_i(\bar{\mathbf{x}}), \mathbf{d} \rangle \le 0, \ i \in \mathcal{I}(\bar{\mathbf{x}})\}$$

$$\cap \{\mathbf{d} \mid \langle \nabla h_j(\bar{\mathbf{x}}), \mathbf{d} \rangle = 0, \ j = 1, ..., m\} = \emptyset.$$

$$(2.4.44)$$

Corolário 2.4.5.15 (Restrições Lineares e Côncavas) Seja $\bar{\mathbf{x}}$ minimizador local de \mathbb{P} . As condições KKT se aplicam a $\bar{\mathbf{x}}$ se as restrições ativas $\{g_i\}_{i\in\mathcal{I}(\bar{\mathbf{x}})}$ forem funções côncavas numa vizinhança convexa de $\bar{\mathbf{x}}$ e as restrições de igualdade $\{h_j\}_1^m$ forem funções afins em \mathbb{R}^n .

Em particular, as condições KKT se aplicam a todos os minimizadores locais se todas as restrições g_i e h_j forem funções afins, ou seja,

$$g_i(\mathbf{x}) = \langle a_i, \mathbf{x} \rangle + \alpha_i, \ h_i(\mathbf{x}) = \langle b_i, \mathbf{x} \rangle + \beta_i.$$

Teorema 2.4.5.16 (Mangasarian-Fromovitz) Seja um ponto $\bar{\mathbf{x}}$ FJ para o problema \mathbb{P} . Se os gradientes das restrições de igualdade $\{\nabla h_j(\bar{\mathbf{x}})\}_1^m$ forem linearmente independentes e se existir uma direção \mathbf{d} tal que

$$\langle \nabla g_i(\bar{\mathbf{x}}), \mathbf{d} \rangle < 0, \ i \in \mathcal{I}(\bar{\mathbf{x}}), \ \langle \nabla h_i(\bar{\mathbf{x}}), \mathbf{d} \rangle = 0, \ j = 1, ..., m,$$
 (2.4.45)

então as condições KKT são satisfeitas em x

Uma das qualificações de restrições mais antigas e conhecidas é a *qualificação de restrições de Slater*, quando as restrições são convexas.

Corolário 2.4.5.17 (Slater) Seja o problema \mathbb{P} em (2.4.34), com as restrições de desigualdade convexas, as restrições de desigualdade afins e um minimizador local $\bar{\mathbf{x}}$. Se existe um ponto viável \mathbf{x}_0 tal que $g_i(\mathbf{x}_0) < 0$, $i \in \mathcal{I}(\bar{\mathbf{x}})$, então as condições KKT são satisfeitas em $\bar{\mathbf{x}}$.

Todas as condições apresentadas até aqui são condições de otimalidade de primeira ordem para o problema (2.4.34)³⁰. A seguir, serão apresentadas as condições de segunda ordem para (2.4.34).

Primeiramente, denota-se por $\nabla^2_{\mathbf{x}} \mathcal{L}(\bar{\mathbf{x}}, \lambda, \mu)$ a Hessiana do Lagrangiano em relação a \mathbf{x} do problema \mathbb{P} :

$$\nabla_{\mathbf{x}}^2 \mathcal{L}(\bar{\mathbf{x}}, \lambda, \mu) = \nabla^2 f(\mathbf{x}) \sum_{i=1}^r \lambda_i \nabla^2 g_i(\mathbf{x}) + \sum_{j=1}^m \mu_j \nabla^2 h_j(\mathbf{x}).$$

Teorema 2.4.5.18 (Condições Necessárias de Segunda Ordem) Seja $\bar{\mathbf{x}}$ um minimizador local do problema \mathbb{P} satisfazendo as condições KKT com multiplicadores $\bar{\lambda}$ e $\bar{\mu}$. Se os gradientes das condições ativas

$$\nabla g_i(\bar{\mathbf{x}}), i \in \mathcal{I}(\bar{\mathbf{x}}), \nabla h_j(\bar{\mathbf{x}}), j = 1, ..., m$$

são linearmente independentes, então $\nabla^2_{\mathbf{x}} \mathcal{L}(\bar{\mathbf{x}}, \bar{\lambda}, \bar{\mu})$ deve ser semidefinida positiva no subespaço linear dado por

$$M = (span \{ \nabla g_i(\bar{\mathbf{x}}), i \in \mathcal{I}(\bar{\mathbf{x}}), \nabla h_j(\bar{\mathbf{x}}), j = 1, ..., m \})^{\perp},$$

³⁰Mais detalhes e provas dessas condições se encontram em (GULLER, 2010), pp. 211-220.

isto é, se uma direção d satisfaz

$$\langle \mathbf{d}, \nabla g_i(\bar{\mathbf{x}}) \rangle = 0, \ i \in \mathcal{I}(\bar{\mathbf{x}}), \ \langle \mathbf{d}, \nabla h_j(\bar{\mathbf{x}}) \rangle = 0, \ j = 1, ..., m,$$

então $\langle \nabla_{\mathbf{x}}^2 \mathcal{L}(\bar{\mathbf{x}}, \bar{\lambda}, \bar{\mu}) \mathbf{d}, \mathbf{d} \rangle \geq 0.$

Teorema 2.4.5.19 (Condições Suficientes de Segunda Ordem) Seja $\bar{\mathbf{x}}$ um minimizador local do problema \mathbb{P} satisfazendo as condições KKT com multiplicadores $\bar{\lambda}$ e $\bar{\mu}$. Se

$$\langle \nabla_{\mathbf{x}}^2 \mathcal{L}(\bar{\mathbf{x}}, \bar{\lambda}, \bar{\mu}) \mathbf{d}, \mathbf{d} \rangle > 0$$
 (2.4.46)

para todo $\mathbf{d} \neq \mathbf{0}$ tal que

$$\langle \mathbf{d}, \nabla g_i(\bar{\mathbf{x}}) \rangle \leq 0, \ i \in \mathcal{I}(\bar{\mathbf{x}}),$$

$$\langle \mathbf{d}, \nabla g_i(\bar{\mathbf{x}}) \rangle = 0, \ i \in \mathcal{I}(\bar{\mathbf{x}}) \ e \ \bar{\lambda}_i > 0,$$

$$\langle \mathbf{d}, \nabla h_j(\bar{\mathbf{x}}) \rangle = 0, \ j = 1, ..., m,$$

$$(2.4.47)$$

então $\bar{\mathbf{x}}$ é minimizador local estrito de \mathbb{P} e existem uma constante c>0 e uma bola $\bar{B}_{\epsilon}(\bar{\mathbf{x}})$ tal que

$$f(\mathbf{x}) \ge f(\bar{\mathbf{x}}) + c \|\mathbf{x} - \bar{\mathbf{x}}\|^2, \ \forall \mathbf{x} \in \bar{B}_{\epsilon}(\bar{\mathbf{x}}) \ vi\'{a}vel.$$
 (2.4.48)

Corolário 2.4.5.20 Seja $\bar{\mathbf{x}}$ um minimizador local do problema \mathbb{P} satisfazendo as condições KKT com multiplicadores $\bar{\lambda}$ e $\bar{\mu}$. Se $\bar{\lambda}_i > 0$, $\forall i \in \mathcal{I}(\bar{\mathbf{x}})$ e a Hessiana $\nabla^2_{\mathbf{x}} \mathcal{L}(\bar{\mathbf{x}}, \bar{\lambda}, \bar{\mu})$ for definida positiva no subespaço

$$\{\mathbf{d} \mid \langle \mathbf{d}, \nabla g_i(\bar{\mathbf{x}}) \rangle = 0, \ i \in \mathcal{I}(\bar{\mathbf{x}}), \ \langle \mathbf{d}, \nabla h_j(\bar{\mathbf{x}}) \rangle = 0, \ j = 1, ..., m \},$$

então $\bar{\mathbf{x}}$ é minimizador local estrito de \mathbb{P} .

As condições de otimalidade até aqui apresentadas foram além daquelas para problemas irrestritos; agora, além de procurar minimizar a função objetivo, deve-se ter cuidado com as restrições. Nota-se que é conveniente que essas restrições sejam de natureza específica, de maneira a tornar o problema $\mathbb P$ viável em termos de resolução³¹.

2.4.6 Principais Algoritmos de Otimização

O propósito desta Seção é oferecer uma visão geral dos principais algoritmos de otimização vistos na literatura; uma análise detalhada dos mesmos é excessiva do ponto de vista deste relatório de estudo dirigido; tal análise demanda até várias produções literárias, conforme destaca Yang (YANG, 2010).

Segundo Yang, resolver um problema de otimização pode ser comparado a uma caça ao tesouro: imaginemos que estamos caçando um tesouro em uma cordilheira, com limite de tempo. Em um extremo, não temos ideia de onde começar a procurar e estamos de olhos vendados; isto resulta em uma busca aleatória, que não é tão eficiente quanto poderíamos esperar. Por outro lado, temos ideia de que o tesouro se encontra no ponto mais alto da cordilheira; isto nos leva a buscar um caminho direto. Na maioria dos casos, estamos entre os dois extremos: não estamos de olhos vendados, mas não sabemos por onde começar a

³¹Todas as condições até aqui e suas provas se encontram em (GULLER, 2010), pp. 230-235.

procurar. Uma vez que é ineficiente andar em passos aleatórios, na prática andamos seguindo algumas pistas, olhando de forma razoavelmente aleatória, mas com um propósito por trás; esta é a essência de vários algoritmos de otimização modernos.

De maneira geral, algoritmos de otimização podem ser classificados como *determinísticos* ou *estocás-ticos*. Em alguns algoritmos determinísticos, a noção de gradiente é utilizada; são os algoritmos *baseados em gradiente*. Quando a função objetivo apresenta descontinuidades, tais algoritmos tendem a falhar; sendo assim, há algoritmos determinísticos que não utilizam gradiente; são os algoritmos *livres de gradiente*.

Os algoritmos estocásticos são divididos em dois tipos, geralmente: *heurísticos* e *meta-heurísticos*; embora a diferença entre esses tipos seja pequena. De maneira geral, *heurística* significa "descoberta ou busca por tentativa e erro". Boas soluções podem ser encontradas deste modo em tempo razoável; não é garantido, porém, que a solução ótima seja encontrada. Isso é vantajoso quando se quer não uma solução ótima dificilmente atingível, mas uma boa solução que possa ser encontrada com razoável facilidade.

Na linha dos algoritmos heurísticos, a adição de aleatorização e buscas locais gera a classe dos chamados algoritmos *meta-heurísticos* — "*meta-*" aqui quer dizer "além de". De forma geral, os algoritmos meta-heurísticos possuem melhor desempenho do que seus equivalentes heurísticos.

Antes de se proceder à descrição dos principais algoritmos de otimização, revisitaremos a definição de um problema de otimização com restrições, apresentado como \mathbb{P} :

Duas classes de problemas especiais devem ser mencionadas a respeito do poblema P:

$$f(\mathbf{x}) = \mathbf{q}^T \mathbf{x} + c;$$

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{q}^T \mathbf{x} + c,$$

Com H simétrica. Em caso contrário, faz se a aproximação

$$\tilde{\mathbf{H}} := \frac{1}{2}(\mathbf{H} + \mathbf{H}^T),$$

que é sempre simétrica.

Ressalta-se que esses casos especiais são facilmente resolvidos sob dadas condições — por exemplo, a mtriz \mathbf{H} (ou $\tilde{\mathbf{H}}$) ser semidefinida positiva. Para outras classes de problemas, serão apresentados vários algoritmos. Tais algoritmos podem ser encontrados alguns em (GULLER, 2010) e outros em (YANG, 2010):

$$\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} - H^{-1}(f(\mathbf{x}^{(n)}))f(\mathbf{x}^{(n)}), \tag{2.4.50}$$

tomando-se um ponto viável inicial $\mathbf{x}^{(0)}$. H^{-1} é a matriz Hessiana inversa da função objetivo; uma dificuldade desse algoritmo reside no condicionamento numérico resultante da aplicação de sucessivas inversões dessa matriz, além do cálculo dessas inversões em si.

• Método do Gradiente Descendente: Busca obter o menor valor da função objetivo a partir de um ponto $\mathbf{x}^{(0)}$. Toma-se um passo $\alpha(i) > 0$ para cada iteração, com o cuidado de situá-lo em casos que as iterações aproximem-se adequadamente do ponto desejado. Cada iteração é dada por

$$\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} - \alpha^{(n)} \left\| \nabla f(\mathbf{x}^{(n)}) \right\|_{2}^{2}.$$

- Método Simplex: Utilizado em problemas de programação linear, foi introduzido por George Dantzig em 1947. Funciona da seguinte forma: assume-se que os pontos extremos do problema são conhecidos, ou se determina esses pontos para se checar a existência de solução viável. Com esses pontos conhecidos, é trivial determinar o ponto de ótimo utilizado relações algébricas e a função objetivo. Se o teste de otimalidade falha, um ponto extremo adjacente é testado. O algoritmo para em caso de encontro de uma solução viável ou quando se trata de um problema ilimitado³².
- **Método de Penalidade**: Utilizado em problemas de forma geral, como (2.4.49). A ideia é definir uma função de penalidade a ser minimizada de maneira que o problema de otimização sobre ela seja irrestrito. Normalmente, essa função de penalização é dada por

$$\Pi(\mathbf{x}, \mu_i, \nu_j) = f(\mathbf{x}) + \sum_{i=1}^r \mu_i g_i(\mathbf{x}) + \sum_{j=1}^m \nu_j h_j(\mathbf{x}),$$
 (2.4.51)

em que $\mu_i \gg 1$ e $\nu_j \geq 0$ grandes o suficiente para se garantir uma boa qualidade da solução a ser encontrada. Porém, um método mais geral para transformar um problema com restrições num problema irrestrito é utilizar ferramentas como as condições FJ e KKT.

 Algoritmo BFGS: É um tipo de algoritmo quase-Newton utilizado na resolução de problemas de otimização irrestritos com função objetivo não-linear. A ideia é aproximar a Hessiana da função por uma matriz B⁽ⁿ⁾. A ideia geral se resume em utilizar as equações

$$\begin{split} \mathbf{x}^{(k+1)} &= \mathbf{x}^{(k)} + \beta^{(k)} \mathbf{s}^{(k)}, \\ \mathbf{u}^{(k)} &= \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}, \quad \mathbf{v}^{(k)} &= \nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)}), \\ \mathbf{B}^{(k+1)} &= \mathbf{B}^{(k)} + \frac{\mathbf{v}^{(k)} \mathbf{v}^{(k)T}}{\mathbf{v}^{(k)T} \mathbf{v}^{(k)}} - \frac{\left(\mathbf{B}^{(k)} \mathbf{u}^{(k)}\right) \left(\mathbf{B}^{(k)} \mathbf{u}^{(k)}\right)^{T}}{\mathbf{u}^{(k)T} \mathbf{B}^{(k)} \mathbf{u}^{(k)}}, \end{split}$$

para iterar a matriz B de maneira a se buscar o ótimo desejado.

³²Ver algoritmo detalhado em (YANG, 2010),pp 70-75.

- Algoritmo Nelder-Mead: Desenvolvido por J. A. Nelder e R. Mead em 1965, possui a ideia de se buscar a solução de um problema de otimização por meio de operações sobre figuras n-dimensionais conhecidas como simplex. Um simplex nada mais é do que uma generalização do triângulo para todas dimensionais; ou seja, um simplex n-dimensional é definido pelo fecho convexo (o menor conjunto convexo contendo todos os pontos dados) de n + 1 pontos distintos. Tal simplex pode ser refletido, expandido, contraído ou reduzido de forma a conter, eventualmente, a solução do problema. Este fato deu o apelido de "Algoritmo da Ameba" para este método.
- Programação Quadrática Sequencial (SQP): É outro método bastante difundido na literatura.
 Consiste em utilizar sucessivas aplicações de Programação Quadrática para se encontrar a solução do problema original, considerando-se que a função objetivo pode ser aproximada por uma expansão de Taylor de 2ª ordem. O problema a ser resolvido em cada iteração se torna

$$\min \frac{1}{2} \mathbf{s}^{T} \nabla^{2} \mathcal{L}(\mathbf{x}^{(k)}) \mathbf{s} + \nabla f(\mathbf{x}^{(k)})^{T} \mathbf{s} + f(\mathbf{x}^{(k)}) \qquad \text{s. a.}$$

$$\nabla g_{i}(\mathbf{x}^{(k)}) \mathbf{s} + g_{i}(\mathbf{x}^{(k)}) \leq 0, \qquad i = 1, ..., r \qquad (\mathbb{P}^{*}),$$

$$\nabla h_{j}(\mathbf{x}^{(k)}) \mathbf{s} + h_{j}(\mathbf{x}^{(k)}) = 0, \qquad j = 1, ..., m$$

$$(2.4.52)$$

em que $\nabla^2 \mathcal{L}(\mathbf{x}^{(k)})$ é a Hessiana do Lagrangiano da função objetivo aplicada em $\mathbf{x}^{(k)}$. Nota-se que, em s, as restrições do problema \mathbb{P}^* são todas afins; portanto vale o Corolário 2.4.5.15, ou seja, as condições KKT se aplicam a todos os minimizadores locais de \mathbb{P}^* . Ao se resolver \mathbb{P}^* , o ponto $\bar{\mathbf{s}}^{(k)}$ encontrado é então utilizado para atualizar a solução do problema original, utilizando-se um fator de correção α :

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha \bar{\mathbf{s}}^{(k)}. \tag{2.4.53}$$

Uma vez que é dispendioso calcular a Hessiana do Lagrangiano a cada iteração, uma alternativa é aproximá-la utilizando uma aproximação BFGS, já discutida anteriormente. É de interesse que, a cada iteração, a função objetivo de \mathbb{P}^* tenha Hessiana semidefinida positiva, o que garante sua convexidade e existência de solução para o problema de otimização a cada iteração.

Algoritmos meta-heurísticos: Como discutido anteriormente, são algoritmos de tentativa e erro que
utilizam buscas aleatórias, mas com uma predição de passos inerente à estrutura do algoritmo para
evitar o uso da chamada "força bruta". Normalmente, esses algoritmos se baseiam em fenômenos
naturais, visto que já foi observada a eficiência de fatos naturais em resultados considerados ótimos.
Alguns algoritmos nessa classe são³³:

Algoritmos Genéticos: Se baseiam em princípios da genética, notadamente a teoria da seleção natural de Charles Darwin;

Simulated Annealing: É baseado em uma mimetização do processo de recozimento de um material em que um metal resfria e é congelado em um estado cristalino de energia mínima e maoir tamanho dos cristais de maneira a reduzir defeitos em estruturas metálicas;

Algoritmo das Formigas: Simula o comportamento geral de uma colônia de formigas na natureza. Particularmente, é uma analogia à comunicação desses animais por meio de feromônios, em casos de busca e encontro de comida, por exemplo;

³³Todos os algoritmos se encontram em (YANG, 2010), pp. 173-229.

Algoritmo das Abelhas: Bem similar ao Algoritmo das Formigas, tomando-se por base colônias de abelhas; além da análise de feromônios, há a análise de "danças sinalizadoras" desses animais sinalizando alguns tipos de ocorrências;

Particle Swarm (**PSO**): Utiliza o comportamento de grandes grupos de animais como peixes e aves. É mais simples que algoritmos genéticos e os de abelhas e formigas por não utilizar noções como *crossover* genético ou feromônios; usa apenas randomização e comunicação geral entre os elementos considerados;

Harmony Search: Baseado na música, e sua tentativa de se encontrar um estado de harmonia; a harmonia musical pode ser comparada ao ótimo em um problema de otimização. Os passos podem ser entendidos como um refinamento do musicista;

Algoritmo dos Vaga-Lumes: Assim como os Algoritmos das Formigas e das Abelhas, utiliza um comportamento animal como base de seus passos. Neste caso, utiliza o fato de que vaga-lumes usam sinais luminosos distintos para várias formas de comunicação, como busca de parceiros, encontro de presas e fuga de predadores.

2.4.7 Tratamento de Problemas de Otimização

Segundo Reklaitis (REKLAITIS, 1983), para que seja possível se aplicar as técnicas e algoritmos de otimização descritos até aqui em problemas concretos de engenharia, é necessário:

- Definir os limites do sistema a ser otimizado;
- Definir um critério de classificação das soluções candidatas para se determinar qual a "melhor";
- Selecionar as variáveis do sistema que serão utilizadas para caracterizar ou identificar pontos candidatos;
- Definir um modelo que expressará o modo com que as variáveis relacionadas se relacionam.

Definir os limites do sistema significa que definir os limites que separam o sistema estudado do resto do universo. Esses limites servem para isolar o sistema da sua vizinhança, pois, para fins de análise, todas as interações entre sistema e vizinhança são consideradas inativas em determinados níveis. Como essas interações sempre existem, definir os limites do sistema é um passo na aproximação de um sistema real.

Uma vez que o sistema tenha sido identificado e limitado, é necessário estabelecer um critério no qual um ponto candidato pode ser selecionado de modo a se obter o melhor desempenho possível; por exemplo, em muitos problemas de engenharia (este problema inclusive), o critério econômico é utilizado. O problema é que definir múltiplos critérios para um problema pode resultar no fato de que alguns entram em conflito; normalmente, na engenharia, custo e desempenho caminham em direções opostas, por exemplo. Dessa maneira, normalmente toma-se um critério como primário e todos os outros se tornam critérios secundários.

O terceiro elemento na concepção de um problema de otimização é a escolha de variáveis independentes que possam caracterizar possíveis soluções para o sistema. Primeiramente, é necessário distinguir variáveis que podem mudar daquelas cujos valores são fixos devido a fatores externos, estando além dos limites dados do sistema em questão. Além disso, é importante diferenciar parâmetros fixos do sistema daqueles que são sujeitos a flutuações influenciadas por fatores externos não-controláveis. Segundamente, é importante incluir todas as variáveis importantes que influenciam o desempenho do sistema ou afetam a definição do modelo. Finalmente, é necessário se considerar o nível de detalhamento no qual o sistema se encontra; embora seja importante tratar todas as variáveis independentes importantes, também é necessário que o problema não seja dificultado devido à inclusão de um número muito grande de detalhes de importância menor. Uma boa regra nesse último quesito é selecionar apenas variáveis que tenham impacto significativo no critério de desempenho do sistema estudado.

Por fim, o próximo passo na formulação de um problema de otimização para engenharia é construir o modelo que descreve como as variáveis do problema se relacionam e de que modo o critério de desempenho é afetado pelas variáveis independentes. Modelos são utilizados por que é caro, demorado ou arriscado usar o sistema real no estudo; logo, modelos são usados por oferecerem a maneira mais rápida e barata de se estudar os efeitos de mudanças das variáveis essenciais no desempenho geral do sistema. No geral, o modelo é composto de equações básicas de conservação de matéria e energia, relações de engenharia e equações de propriedades físicas que descrevem fenômenos físicos presentes no sistema estudado; essas equações são suplementadas por inequações que definem regiões de operação, especificam restrições de desempenho máximas ou mínimas, ou estabelecem limites de disponibilidade de recursos. Portanto, o modelo consiste de todos os elementos que devem ser considerados ao se prever o desempenho de um sistema de engenharia.

2.5 Otimização e Engenharia de Reservatório

- 2.5.1 Contexto
- 2.5.2 Algoritmos de Gradiente Descendente
- 2.5.3 Algoritmos Meta-heurísticos

Capítulo 3

Construção do Algoritmo *Smart Reservoir* com Utilização do MRST

3.1 Introdução

Este capítulo apresenta as ferramentas empregadas nesta dissertação, além da construção do algoritmo *Smart Reservoir*. Inicialmente, é apresentada a *toolbox* para simulação numérica de reservatórios no *software* MATLAB, o MRST; além da *toolbox*, são apresentados alguns dos modelos numéricos de reservatórios mais utilizados para testes na literatura, e que serão aproveitados para os testes com o algoritmo aqui proposto; como esse algoritmo é destinado a resolver um problema de otimização na produção de petróleo, é apresentada uma função de custo econômico que vai ser o objeto da busca pela solução desejada; esta função, denominada NPV, será apresentada e sua utilização discutida. Posteriormente, será feita uma construção do algoritmo *Smart Reservoir*, desde sua fundamentação inicial até os passos que ele realiza em busca da solução do problema proposto; por fim, é discutido o uso de técnicas de programação paralela para se tentar incrementar o desempenho do *Smart Reservoir*.

3.2 MATLAB Reservoir Simulation Toolbox

O MRST — *MATLAB Reservoir Simulation Toolbox* — é um conjunto de ferramentas programadas para utilização em conjunto com o *software* MATLAB; trata-se de um conjunto de códigos e definições *open-source* destinados à simulação numérica de reservatórios. Embora não seja primordialmente um simulador, o MRST oferece uma vasta quantidade de estruturas de dados e métodos computacionais de modo que o usuário possa combinar para gerar modelos e ferramentas de simulação em si. O MRST se encontra organizado em duas partes principais¹:

- Um módulo *core*, em que estão presentes estruturas de dados e funcionalidades básicas;
- Vários módulos adicionais (add-ons), oferecendo discretizações, modelos físicos, simuladores, sol-

¹Ver (SINTEF, 2018).

vers, entre outros.

Algumas das principais funcionalidades oferecidas pelo MRST se encontram reunidas a seguir²:

- *Grids*: São estruturas de dados básicas do MRST, com suporte para malhas geométricas básicas, como triangulares, tetraédricas, entre outras.
- Entradas e Saídas: O MRST possui suporte para entrada de modelos industriais prontos, parâmetros petroquímicos, modelos de fluidos, poços, condições de contorno, parâmetros de simulação, etc.
- Parâmetros: São estruturas de dados de parâmetros petroquímicos; o MRST possui interface para modelos de fluidos, rotinas para configurar e manipular condições iniciais e de contorno, poços, entre outros.
- Unidades: O MRST trabalha primariamente com o sistema SI; porém, o mesmo oferece suporte para outras unidades comumente usadas no campo (como o barril); a responsabilidade explícita pela conversão e consistência das unidades é do usuário, normalmente.
- Estado do Reservatório: O MRST dispõe de estruturas de dados que mostram o estado do reservatório durante a simulação; são mostrados os estados dos poços, pressões, fluxos de fluidos, saturações, entre outros.
- **Pós-processamento:** Além das ferramentas de simulação, o MRST possui várias funções de visualização dos resultados alcançados, dados das células e faces, entre outros.
- *Solvers*: O MRST possui funções que solucionam problemas de fluxo e de transporte de massa, que podem ser combinadas conforme a necessidade.
- Álgebra Linear: O MRST se aproveita de funções lineares do MATLAB; contudo, outros tipos de *solvers* podem ser utilizados, respeitando-se as convenções do MATLAB.

3.3 Modelos de Reservatório Utilizados

Segundo Stags e Herbeck, um modelo de reservatório trata o reservatório real como um composto de vários segmentos individuais (normalmente denominados células), devido à matemática que rege o modelo. De forma simples, um modelo multicelular de reservatório simula a vazão de fluidos de um reservatório de óleo ou gás; embora não possam descrever exatamente o comportamento dos fluidos no ambiente estudado, os modelos de reservatórios produzem aproximações boas e válidas; além disso, os modelos são feitos para representar a vazão intercelular de fluidos em uma, duas ou até três dimensões. Cada célula, em um modelo de reservatório, possui informações próprias de propriedades do conjunto como tamanho, porosidade, permeabilidade, elevação, pressão e saturação dos fluidos presentes. Além disso, são necessários para um modelo os dados de cada poço presente, como localização, índice do poço, tipo do poço, vazões de produção/injeção, limites econômicos, de BHP, entre outros (STAGS; HERBECK, 1971).

²Ver (LIE et al., 2012).

No presente trabalho, dentre os vários modelos de reservatório existentes na literatura, dois modelos foram selecionados para a aplicação do *Smart Reservoir*. A escolha foi pautada principalmente pelo tamanho dos modelos, tendo em vista o equipamento disponível para a implementação e a simulação do algoritmo proposto. Além disso, são considerados modelos bifásicos, de apenas óleo e agua. Os modelos selecionados foram o *Egg Model* e o SAIGUP (*Sensistivity Analysis of the Impact of Geological Uncertainties on Production*), apresentados a seguir.

3.3.1 Egg Model

Dos modelos selecionados para este estudo, o Egg Model é o mais simples. De acordo com Jansen et al., o modelo foi desenvolvido como parte da tese de PHD de Maarten Zandvliet and Gijs van Essen; a primeira referência do Egg Model data de 2007, por Zandvliet et al., contendo apenas uma realização determinística do modelo. Em 2009, Van Essen et al. utilizam um conjunto de vários modelos Egg Model. O modelo original "estocástico" consiste de 100 realizações de um reservatório canalizado na forma de campos de permeabilidade discreta modelados com $60 \times 60 \times 7 = 25.200$ células, das quais 18.553 são ativas, dando o formato de um ovo ao modelo, justificando seu nome (JANSEN et al., 2014). A Tabela 3.1 mostra alguns parâmetros utilizados para o Egg Model, enquanto que as Figuras 3.1 e 3.2 apresentam, respectivamente, um exemplo de realização do Egg Model e uma visão de topo do mesmo obtida pelo MRST, destacando os poços existentes.

Tabela 3.1: Propriedades de rocha e fluidos do *Egg Model* (JANSEN et al., 2014).

Símbolo	Variável	Valor
h	Altura da malha do modelo	4 m
$\Delta x, \Delta y$	Comprimento/Largura da malha do modelo	8 m
φ	Porosidade	0.2
c_o	Compressibilidade do óleo	$1.0 \times 10^{-10} \mathrm{Pa^{-1}}$
c_r	Compressibilidade da rocha	$0 \mathrm{Pa^{-1}}$
c_w	Compressibilidade da água	$1.0 \times 10^{-10} \mathrm{Pa^{-1}}$
μ_o	Viscosidade dinâmica do óleo	$5.0 \times 10^{-3} \text{Pa s}$
μ_w	Viscosidade dinâmica da água	$1.0 \times 10^{-3} \mathrm{Pas}$
k_{ro}^0	Permeabilidade relativa end-point do óleo	0.8
k_{rw}^0	Permeabilidade relativa end-point da água	0.75
n_o	Expoente de Corey do óleo	4.0
n_w	Expoente de Corey da água	3.0
s_{or}	Saturação do óleo residual	0.1
s_{wc}	Saturação da água conata	0.2
p_c	Pressão Capilar	0.0 Pa
$reve{p_r}$	Pressão de Reservatório inicial (camada de topo)	$40 \times 10^6 \mathrm{Pa}$
$s_{w,0}$	Saturação inicial da água	0.1
q_{w1}	Vazões de injeção de água, por poço	$79.5 \mathrm{m}^3/\mathrm{day}$
p_{bh}	BHPs dos poços produtores	$39.5 \times 10^{6} \mathrm{Pa}$
r_{well}	Raio do furo dos poços	0.1 m
T	Tempo de simulação	3600 days

Figura 3.1: Exemplo de realização do Egg Model (JANSEN et al., 2014).

Figura 3.2: Vista de topo do Egg Model, evidenciando o posicionamento dos poços.

3.3.2 Modelo SAIGUP

O SAIGUP é, na realidade, um projeto concentrado em reservatórios na costa marítima. De acordo com Carter e Matthews, o projeto SAIGUP envolveu a criação de 400 modelos sedimentológicos que, ao serem acrescidos de falhas geológicas, geram aproximadamente 12000 reservatórios fragmentários sintéticos (CARTER; MATTHEWS, 2008).

3.4 Função de Custo: NPV

Como o presente estudo é um problema de otimização relacionado à produção de petróleo, e há o envolvimento de aspectos econômicos, é necessário se estabelecer uma função que seja objeto da otimização: a função objetivo.

Dos vários métodos de análise de rentabilidade e sucesso de inovações tecnológicas, um dos mais utilizados, provavelmente o mais popular e o mais sofisticado, segundo Žižlavský, é o Valor de Rede Presente, conhecido como **NPV** (*Net-Present Value*) (ŽIŽLAVSKÝ, 2014). Segundo Gallo, para se avaliar

a viabilidade de um projeto, deve-se estimar o quanto é esperado de lucro a partir de investimento, em valores atuais. O NPV é um método largamente utilizado pelos seguintes motivos (GALLO, 2014):

- O NPV considera o valor temporal do dinheiro, isto é, o quanto uma eventual movimentação financeira futura equivale nos dias atuais;
- O NPV provê um número concreto que os administradores financeiros podem utilizar facilmente para comparar um desembolso inicial com valor de retorno presente.

Porém, Žižlavský destaca algumas limitações, muitas vezes subestimadas, do NPV como ferramenta de análise de oportunidades de inovação³:

- O fator de desconto em projetos de inovação deve ser composto de dois elementos: uma taxa livre
 de riscos que é normalmente considerada como a taxa de juros ofertada por laços governamentais de
 curto prazo, e uma taxa de risco *premium* que considera os riscos identificados, sejam eles financeiros, técnicos ou comerciais, associados ao projeto específico.
- A definição de fluxo de caixa num horizonte de longo prazo o cálculo do NPV requer uma definição exata do fluxo de caixa a ser descontado para cada período de tempo considerado na avaliação; tal valor pode ser difícil, se não impossível, de ser determinado em projetos inovadores que possuam grande potencial a longo prazo, mas para os quais os administradores sejam impossibilitados de fazer uma análise adequada. Isso mostra que o NPV, aparentemente, discrimina injustificadamente projetos de longo prazo e mais arriscados.

A questão a ser discutida agora é: como se calcula o NPV? Gallo cita que, por mais que não se calcule essa função na mão, é útil entender a matemática por trás dela; a Definição 3.4.0.1 é um esboço matemático dos princípios que regem o NPV⁴.

Definição 3.4.0.1 A função NPV pode ser representada em sua forma básica pela expressão

$$NPV = \sum \frac{FC^{(n)}}{(1+b)^n},$$
(3.4.1)

em que FC é o fluxo de caixa total no período de tempo n e b o fator de desconto.

Dentre os projetos em que o NPV pode ser aplicado para análise a longo prazo, se situa a perspectiva econômica da produção de petróleo. Considerando a Definição 3.4.0.1, a variável fluxo de caixa pode ser entendida como uma relação entre a rentabilidade dos produtos obtidos, como petróleo e o gás natural, e os custos envolvidos com a produção e tratamento de materiais indesejáveis e com a adoção de métodos de recuperação secundária, como a injeção de água. Utilizando-se a abordagem proposta por Fonseca *et al.*, o NPV pode ser calculado com a expressão

$$NPV = \sum_{n=1}^{N_t} \left\{ \frac{\Delta t_n}{(1+b)^{\frac{t_n}{365}}} \left[\sum_{j=1}^{N_P} \left(r_o \overline{q_{o,j}^{(n)}} - c_w \overline{q_{w,j}^{(n)}} \right) - \sum_{k=1}^{N_I} \left(c_{wi} \overline{q_{wi,k}^{(n)}} - c_{gi} \overline{q_{gi,k}^{(n)}} \right) \right] \right\}, \tag{3.4.2}$$

³Ver (ŽIŽLAVSKÝ, 2014)

⁴Ver (GALLO, 2014)

em que N_t é o número de passos de tempo do projeto; N_P é o número de poços produtores e N_I , o número de poços injetores; r_o é a rentabilidade do óleo (em \$/STB)⁵, c_w e c_{wi} são, respectivamente, o custo de água produzida e injetada (em \$/STB) e $c_g i$ é o custo de gás injetado (em \$/Mscf)⁶; t_n é a medida de tempo ao final de cada passo de simulação e Δt_n é o comprimento do passo; $\overline{q_{o,j}^{(n)}}$ e $\overline{q_{w,j}^{(n)}}$ são, respectivamente, as vazões médias de água e óleo no poço produtor j no n-ésimo passo de tempo; por fim, $\overline{q_{wi,k}^{(n)}}$ e $\overline{q_{gi,k}^{(n)}}$ representam as vazões médias de água e de gás injetados no poço injetor k no n-ésimo passo de tempo — todas as vazões médias são dadas na unidade $STB/{\rm dia}$. Ainda se considera, para efeitos de simplificação em problemas de otimização envolvendo engenharia de reservatório e cálculo do NPV, que não há fator de desconto (b=0) (FONSECA et al., 2017). Por fim, como os modelos considerados para este trabalho adotam exclusivamente o método de recuperação secundária por injeção de água, considera-se também que não há vazão de gás injetado; portanto, tem-se que $\overline{q_{gi,k}^{(n)}}=0, \ \forall k,n.$

3.5 Algoritmo Smart Reservoir

- 3.5.0.1 Núcleo do Algoritmo
- 3.5.0.2 Métodos Adicionais

3.6 Utilização da Programação Paralela

⁵ A unidade STB, conhecida como Stock Tank Barrel, equivale a 5.61 pés cúbicos a 60F de temperatura e 14.7 psi de pressão.

 $^{^6}Mscf$: Milhares de pés cúbicos padrão, isto é, a 60F de temperatura e 14.7 psi de pressão.

Capítulo 4

Execução e Resultados do Algoritmo *Smart Reservoir*

4.1 Introdução

Este capítulo é destinado à apresentação e discussão dos resultados da implementação do algoritmo *Smart Reservoir* no MRST. Primeiramente, são apresentados os resultados dos testes utilizando o modelo *Egg Model*; vários resultados são propostos de acordo com a construção do algoritmo vista no Capítulo 3. Em seguida, o mesmo *Smart Reservoir* é testado com um modelo SAIGUP, e seus resultados coletados. Por fim, é feita uma discussão dos dados obtidos, tomando-se por base simulações dos modelos sem a estratégia de otimização e, no caso do *Egg Model*, alguns resultados encontrados na literatura.

- 4.2 Execução Utilizando o Egg Model
- 4.3 Execução Utilizando o Modelo SAIGUP
- 4.4 Discussão dos Resultados

Capítulo 5

Conclusões

- 5.1 Conclusões do Trabalho
- **5.2** Sugestões para Trabalhos Futuros

REFERÊNCIAS BIBLIOGRÁFICAS

AGUIRRE, L. A. *Introdução à identificação de sistemas: técnicas lineares e não lineares: teoria e aplicação.* Belo Horizonte, MG: Editora UFMG, 2015.

CARTER, J. N.; MATTHEWS, J. D. Optimization of a reservoir development plan using a parallel genetic algorithm. *Petroleum Geoscience*, v. 14, p. 85–90, 2008.

EREMIN, N.; NAZAROVA, L. N. Enhanced Oil Recovery Methods. [S.l.: s.n.], 2003.

FONSECA, R. R.-M. et al. A stochastic simplex approximate gradient (StoSAG) for optimization under uncertainty. *International Journal for Numerical Methods in Engineering*, v. 109, n. 13, p. 1756–1776, 2017. ISSN 1097-0207. Nme.5342. Disponível em: http://dx.doi.org/10.1002/nme.5342.

GALLO, A. *A Refresher on Net Present Value*. 2014. Accesso em: 14 de Junho de 2018. Disponível em: https://hbr.org/2014/11/a-refresher-on-net-present-value.

GULLER, O. Foundations of Optimization. New York: Springer Science & Business Media, 2010. ISBN 978-0-387-68407-9.

IZMAILOV, A.; SOLODOV, M. *Otimização volume 1. Condições de otimalidade, elementos de análise convexa e de dualidade.* Rio de Janeiro, RJ: IMPA, 2005. ISBN 85-244-0238-5.

JANSEN, J. D. et al. The egg model - a geological ensemble for reservoir simulation. *Geoscience Data Journal*, v. 1, n. 2, p. 192–195, 2014. ISSN 2049-6060.

LATIL, M. Enhanced Oil Recovery. [S.l.]: Editions OPHRYS, 1980. 36 p. ISBN 9782710810506.

LIE, K.-A. et al. Open-source matlab implementation of consistent discretisations on complex grids. *Computational Geosciences*, v. 16, n. 2, p. 297–322, Mar 2012. ISSN 1573-1499. Disponível em: https://doi.org/10.1007/s10596-011-9244-4.

PEACEMAN, D. W. Fundamentals of Numerical Reservoir Simulation. Amsterdam: Elsevier, 1977. v. 6. ISBN 0-444-41578-5.

REKLAITIS, G. V. Engineering Optimization: Methods and Applications. New York: John Wiley, 1983. ISBN 0-471-05579-4.

ROSA, A. J. *Engenharia de Reservatórios de Petróleo*. Rio de Janeiro: Interciência: PETROBRAS, 2006. ISBN 85-7193-135-6.

SINTEF. *MRST - MATLAB Reservoir Simulation Toolbox*. 2018. Acesso em: 01 de Junho de 2018. Disponível em: https://www.sintef.no/projectweb/mrst/>.

STAGS, H. M.; HERBECK, E. F. Reservoir simulation models an engineering overview. Society of Petroleum Engineers, Dec 1971.

THOMAS, G. Cálculo, volume 1. 11th. ed. São Paulo, SP: Addison Wesley, 2009. ISBN 978-85-88639-31-7.

THOMAS, G. Cálculo, volume 2. 11th. ed. São Paulo, SP: Addison Wesley, 2009. ISBN 978-85-88639-36-2.

THOMAS, J. E. *Fundamentos de Engenharia de Petróleo*. 2. ed. Rio de Janeiro: Interciência: PETROBRAS, 2004. ISBN 85-7193-099-6.

YANG, X.-S. *Engineering optimization: an introduction with metaheuristic applications*. New York: Wiley, 2010. ISBN 978-0-470-58246-6.

ŽIŽLAVSKÝ, O. Net present value approach: Method for economic assessment of innovation projects. *Procedia - Social and Behavioral Sciences*, v. 156, p. 506 – 512, 2014. ISSN 1877-0428. 19th International Scientific Conference "Economics and Management 2014 (ICEM-2014)". Disponível em: http://www.sciencedirect.com/science/article/pii/S1877042814060509>.

APÊNDICES

A. SIMULAÇÕES DOS POÇOS NO EGG MODEL, FASE 1

Figura A.1: Vazões de óleo nos poços produtores do Egg Model, simulação 1

Figura A.2: Vazões de água nos poços produtores do Egg Model, simulação 1

B. SIMULAÇÕES DOS POÇOS NO EGG MODEL, FASE 2

Figura B.1: Vazões de óleo nos poços produtores do Egg Model, simulação 2

Figura B.2: Vazões de água nos poços produtores do Egg Model, simulação 2

C. SIMULAÇÕES DOS POÇOS NO EGG MODEL, FASE 3

Figura C.1: Vazões de óleo nos poços produtores do Egg Model, simulação 3

Figura C.2: Vazões de água nos poços produtores do Egg Model, simulação 3

	~		
		POÇOS NO EGG MODEL,	
			$H \wedge H \wedge H$
D.			

E. SIMULAÇÕES DOS POÇOS NO EGG MODEL, FASE 5

Figura E.1: Vazões de óleo nos poços produtores do Egg Model, simulação 5

Figura E.2: Vazões de água nos poços produtores do Egg Model, simulação 5

F. SIMULAÇÕES DOS POÇOS NO SAIGUP DE CURTO PRAZO

Figura F.1: Vazões de óleo nos poços produtores do SAIGUP, curto prazo

Figura F.2: Vazões de água nos poços produtores do SAIGUP, curto prazo

G. SIMULAÇÕES DOS POÇOS NO SAIGUP DE LONGO PRAZO

Figura G.1: Vazões de óleo nos poços produtores do SAIGUP, longo prazo

Figura G.2: Vazões de água nos poços produtores do SAIGUP, longo prazo