SF modelling of gravitainoal capture by PBHs

蔡文韬

东北大学 理学院 应用物理学 2001

August 31, 2023

Contents

- Modelling Objects
- **Assumptions**
- lacksquare Evolution Equation of n_M in SF Modelling
- lacktriangle Cross section σ_q and Monopoles Velocity v_M
 - Equation of monopole motion
 - Effective potential U
 - Impact parameters b

Modelling Objects

Modelling Objects

Promodial Black Holes

- \bullet mass: m_{bh}
- Schwarzschild radius: $R_{bh}=rac{2m_{bh}}{M_{Pl}^2}$
- number density: n_{bb}

Magnetic monopoles

- velocity: v_M
- number density: n_M

Assumptions

5/17

random walk model:

$$v_M = \frac{v_T}{\sqrt{N}}$$

N is the number of steps in the random walk and v_T is the thermal velocity

• non-relativistic approximation $(v_M \ll 1)$ giving the gravitainoal capture cross section:

$$\sigma_g = \frac{4\pi R_{bh}^2}{v_M^2}$$

Justification: "Monopoles move with non-relativistic velocities $v_M \ll c$ in the early universe, since they are magnetically charged and their velocity is damped due to interaction with surrounding plasma."

Evolution Equation of n_M in SF Modelling

Evolution Equation of n_M in SF Modelling

• Evolution equation of n_M without considering the gravitational capture by PBHs:

$$\dot{n}_M = -Dn_M^2 - 3\frac{\dot{a}}{a}n_M$$

Adding a new term for gravitational capture

$$\dot{n}_M = -Dn_M^2 - F_{SF}n_M - 3\frac{\dot{a}}{a}n_M$$
$$F_{SF} \equiv n_{bh}\sigma_g v_M$$

Cross section σ_q and number density

Number of particles captured within $\mathrm{d}t \colon -\mathrm{d}n_{gc} \cdot d_H^3$

$$\sigma_g = \frac{-\mathrm{d}n_{gc} \cdot d_H^3}{n_{bb} d_H n_M (v_M \cdot \mathrm{d}t) d_H^2} \quad \Rightarrow \quad \dot{n}_{gc} = \frac{\mathrm{d}n_{gc}}{\mathrm{d}t} = -n_{bh} \sigma_g v_M n_M = -F_{\mathrm{SF}} n_M$$

ross section σ_q and Monopoles Velocity v_M

Cross section σ_g and Monopoles Velocity v_M

Equation of monopole motion

- Schwarzschild metric: spherically symmetric vaccum solution of the Einstein field equations under Schwarzschild coordinates (t, r, θ, ϕ)
- All the orbits are planar
- consider the equatorial plane $\theta=\frac{\pi}{2}$, the geodesics of the particle and light exterior to a black hole are described by

$$ds^{2} = -gdt^{2} + g^{-1}dr^{2} + r^{2}d\phi^{2}, \quad g = 1 - \frac{R_{bh}}{r}$$

Particle motion equation around a black hole

$$ds^{2} = -gdt^{2} + g^{-1}dr^{2} + r^{2}d\phi^{2}, \quad g = 1 - \frac{R_{bh}}{r}$$

- Divide $\mathrm{d}\lambda$ (= $\frac{\mathrm{d}\tau}{m}$ for massive particles) on both sides of the above equation
- \bullet Use on-shell condition $p^\mu p_\mu = p^2 = -m^2$ with signature convention (-,+,+,+)

$$-g\dot{t}^2 + g^{-1}\dot{r}^2 + r^2\dot{\phi}^2 = \frac{\mathrm{d}s^2}{\mathrm{d}\lambda^2} = p^2 = -m^2$$

Killing vectors and conserved quantities

$$-g\dot{t}^2 + g^{-1}\dot{r}^2 + r^2\dot{\phi}^2 = -m^2$$

• The spacetime have two Killing vectors $\boldsymbol{\xi}_{(t)} = \partial_t, \boldsymbol{\xi}_{(\phi)} = \partial_{\phi}$, correspondingly two conserved quantities: energy E and angular momentum L

$$E \equiv -\xi^{\mu}_{(t)}p_{\mu} = g\dot{t}$$

$$L \equiv \xi^{\mu}_{(\phi)}p_{\mu} = r^2\dot{\phi}$$

$$-E^2 + \dot{r}^2 + g\frac{L^2}{r^2} = -gm^2$$

Effective potential

$$-E^2 + \dot{r}^2 + g\frac{L^2}{r^2} = -gm^2$$

Introducing three dimensionless quantities:

$$\zeta = \frac{R_{bh}}{r}, \quad \ell = \frac{L}{mR_{bh}}, \quad \mathcal{E} = \frac{E}{m}$$

$$\mathcal{E}^2 = \frac{\dot{r}^2}{m^2} + g(1 + \ell^2 \zeta^2)$$

ullet Effective potential energy U is following

$$U = g(1 + \ell^2 \zeta^2) = (1 - \zeta)(1 + \ell^2 \zeta^2)$$

Effective potential for a given ℓ

$$U = (1 - \zeta)(1 + \ell^2 \zeta^2)$$

 \bullet For a given $\ell,\,U$ has a maximum value U_+ and a minimum value U_-

$$U_{+}(\ell) = U(\zeta_{+}, \ell): \quad \frac{\partial U}{\partial \zeta} = 0, \quad \frac{\partial^{2} U}{\partial \zeta^{2}} < 0$$

$$\Rightarrow U_{+}(\ell) = \frac{2[\ell(\ell^{2} + 9) + (\ell^{2} - 3)^{3/2}]}{27\ell}$$

• When $\mathcal{E}^2 > U_+$, monopoles captured by gravity.

Effective potential U for $\ell=2.2$

Impact parameter b

$$\begin{cases} U_{+}(\ell) = \frac{2[\ell(\ell^{2} + 9) + (\ell^{2} - 3)^{3/2}]}{27\ell} = \mathcal{E}^{2} \\ L = bp = mR_{bh}\ell \\ E^{2} = (m\mathcal{E})^{2} = p^{2} + m^{2} \end{cases}$$

• Non-relativistically approximation: $p \ll m \to \mathcal{E}^2 = 1$, p = mv

$$U_{+}(\ell) = \frac{2[\ell(\ell^{2} + 9) + (\ell^{2} - 3)^{3/2}]}{27\ell} = 1 \quad \Rightarrow \quad \ell = 2$$
$$b = \frac{2R_{bh}}{v} \quad \sigma_{g} = \pi b^{2} = \frac{4\pi R_{bh}^{2}}{v_{M}^{2}}$$

Monopole Velocity v_M and Thermal Velocity v_T

Thank you!