Análisis Multivariado

Felipe Morales Apablaza

Universidad Adolfo Ibañez

October 9, 2019

Introducción

• ¿Qué harían si supieran que el dólar el día de mañana aumentará en 20 pesos su precio?

Introducción

• ¿Y si supieran que el día de mañana va a llover?

Introducción

- Si supiésemos el futuro podríamos tomar mejores decisiones el día de hoy.
- Es por esto que académicos y cientistas de datos, a través de teorías y/o algoritmos, han dedicado esfuerzos por predecir eventos futuros de interés.

Pronosticando en la práctica: Ventas

University of Rhode Island
DigitalCommons@URI

Open Access Master's Theses

1968

Sales Forecasting Using Exponential Smoothing

Bruce Nicholas Anez University of Rhode Island

Pronosticando en la práctica: Cambio Climático

Ahora o nunca: nueva predicción sobre el cambio climático

El nuevo informe de la ONU modificó el pronóstico del cambio climático. Si antes la meta era no aumentar 2 grados centígrados, ahora es no pasar de 1,5. Las consecuencias están a la vuelta de la esquina. Los expertos explican por qué medio grado en la temperatura sí importa.

Pero... ¿Cómo pronosticamos?

En extremo, podemos distinguir entre dos tipos de enfoques:

- Modelos teóricos: conjunto organizado de ideas que explican un fenómeno, deducidas a partir de la observación, la experencia o el razonamiento lógico.
- Inteligencia Artificial: uso de algoritmos que, sin necesariamente explicar los mecanismos, buscan pronosticar.

Modelos teóricos: Ecuación de Mincer

- En Microeconomía I les enseñaron que el salario de los trabajadores es igual a PMgL (recuerde que PMgL = w).
- Si las personas son más productivas, entonces su salario más alto.
- Entonces, si la educación nos vuelve más productivos, podríamos pronosticar salarios con la información educacional de las personas.

Inteligencia Artificial: Pronosticando ventas de hamburguesas

En lugar de preocuparnos de la teoría que explica las ventas de hamburguesas podríamos preocuparnos de otras cosas para pronosticar:

- ¿Las ventas del mes pasado?
- ¿El promedio de ventas del año pasado?
- ¿Las ventas de la semana pasada?
- ¿Existe algún patrón que siguen las ventas? Quizás podríamos utilizar algoritmos para pronosticar.

Y... ¿Entonces?

- En la práctica, obviamente, se pueden realizar pronósticos utilizando una mezcla de ambos enfoques.
- En este tópico del curso se comenzará la discusión sobre métodos de pronóstico.

- Supongamos que se nos ha asignado la tarea de entrevistar a los nuevos postulantes de un magíster de la UAI que nos esperan en la sala del lado.
- Si tuviesemos que pronosticar la edad del primer entrevistado cómo lo harían?
- Una alternativa razonable podría ser el promedio de los actuales estudiantes del magíster...

- Supongamos que se nos ha asignado la tarea de entrevistar a los nuevos postulantes de un magíster de la UAI que nos esperan en la sala del lado.
- Si tuviesemos que pronosticar la edad del primer entrevistado cómo lo harían?
- Una alternativa razonable podría ser el promedio de los actuales estudiantes del magíster...

• ¿Y si además les digo que escucha Marco Antonio Solis por las tardes?

• ¿Y si también les digo que es calvo?

- Si tenemos información de estas tres variables, quizás, puede que nuestro mejor pronosticador es el promedio de edad de los estudiantes del magíster de este año condicionado a que estamos hablando de estudiantes calvos fanáticos de Marco Antonio Solis.
- ¿Y si incluímos más variables? Deberíamos condicionar por estas variables extras a la hora de calcular el promedio

- ¿Y si a la hora de condicionar por tantas variables a la hora de calcular un promedio no existen datos?
- Hay un método que incluso nos permite hacer este cálculo con individuos de características inexistentes
- A este método lo llamaremos Mínimos Cuadrados Ordinarios (MCO).
- ¡Este método nos permitirá utilizar toda la información disponible para calcular promedios incluso para individuos que no existen!

- Denotaremos como Y nuestra variable de interés a pronosticar
- X corresponderá al vector de predictores que tenemos disponibles donde $X=(X_1X_2...X_k)$
- u corresponderá a nuestro término del error y corresponderá a todos lo factores que afectan a Y que no son $X_1, X_2, ..., X_k$

Vamos a suponer que la relación entre X y Y puede ser representada de la siguiente forma:

$$Y = f(X) + u$$

- \bullet Donde f es una función desconocida dependiente de $X_1, X_2, ..., X_k$
- En esta representación f representa la información sistemática que entrega X sobre Y.

Ejemplo práctico: simulemos datos

```
# Creando variables de forma aleatoria:
```

```
x1<- rnorm(100, mean=200, sd=20)
x2<- rnorm(100, mean=30, sd=15)
u<- rnorm(100, mean=0, sd=1)
# ¿Qué va a ser "Y"?
y<- 0.4 + 0.5*x1 + 0.2*x2 + u
```

Ejemplo práctico: simulemos datos

```
# Pegando los datos:
datos<- data.frame(cbind(y,x1,x2,u))
colnames(datos)<- c("y","x1","x2","u")
plot(x=x1 , y=y , data=datos)</pre>
```

Ejemplo práctico: simulemos datos

¿Y si ploteamos esto en términos tridimensionales?

Con el paquete *plotly* podemos graficar tridimensionalmente de forma sencilla.

```
# ¿Podemos incluir más?
library(plotly)
plot_ly(data=datos, x = x1, z = x2, y = y)
```

¿Y si ploteamos esto en términos tridimensionales?

- Dado que la función f que relaciona a X con Y generalmente es una función desconocida, debemos estimarla con información observable.
- A la estimación de f la denotaremos como \hat{f}
- Por ejemplo, podríamos realizar una encuesta a 30 individuos y preguntarles su ingreso (income) y los años de educación.

• Nuestro objetivo será encontrar la curva f que nos identifica la relación entre ambas variables:

 Para simplificar la discusión sobre f, vamos a suponer que f está dado por la siguiente forma funcional:

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k \tag{1}$$

- donde β_0 , β_1 , ..., β_k corresponden a parámetros desconocidos de interés.
- Nuestro interés será estimar los β para encontrar una estimación sobre f
- Como verán más adelante el suponer linealidad en f no es tan restrictivo a la hora de realizar pronósticos.

- Definiremos a nuestra función de predicciones estimada, $\hat{f}(X)$, como $\hat{f}(X) = \hat{y}$.
- Las predicciones de nuestro modelo se definirán como:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{i1} + \hat{\beta}_2 X_{i2} + ... + \hat{\beta}_k X_{ik}$$

Nuestro error de predicción, \hat{u}_i , se definirá como:

$$\hat{u}_i = y_i - \hat{y}_i$$

• \hat{u}_i medirá la diferencia entre los valores originales de la variable y_i con los pronósticos que realizamos, \hat{y}_i

- ullet Utilizaremos una muestra de N datos para estimar f
- Definiremos una función de pérdida para medir cuánto nos equivocamos realizando las predicciones para los N individuos.
- A esta función la denominaremos Suma de Cuadrado de Residuos (SCR) y estará definida como:

$$SCR = \sum_{i=1}^{N} \hat{u}_i^2 = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
 (2)

$$SCR = \sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{i1} - \hat{\beta}_2 X_{i2} - \dots - \hat{\beta}_2 X_{ik})^2$$
 (3)

ullet El objetivo de MCO será elegir los \hat{eta} que minimizan la SCR.

• Matemáticamente es posible demostrar que:

$$\hat{\beta} = (X^T X)^{-1} (X^T y) \tag{4}$$

donde $\hat{\beta}$ es un vector de (K+1)*1.

 Si bien la estimación puede ser matemáticamente desafiante, el cálculo se puede realizar en R de forma muy sencilla.

Im {stats} R Documentation

Fitting Linear Models

Description

1m is used to fit linear models. It can be used to carry out regression, single stratum analysis of variance and analysis of covariance (although aov may provide a more convenient interface for these).

Usage

```
lm(formula, data, subset, weights, na.action,
  method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
  singular.ok = TRUE, contrasts = NULL, offset, ...)
```

Arguments

formula

an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.

Cargaremos dos paquetes de trabajo:

library(AER)
library(scales)

Y cargaremos la base de datos *CASchools*:

```
# load the `CASchools` dataset
data(CASchools)
```

 Esta base de datos contiene información de colegios en múltiples aspectos: número de profesores, estudiantes, precio del colegio, entre otras variables.

district	school	county	grades [‡]	students +	teachers ÷	calworks	lunch [‡]
75119	Sunol Glen Unified	Alameda	KK-08	195	10.900	0.5102	2.0408
61499	Manzanita Elementary	Butte	KK-08	240	11.150	15.4167	47.9167
61549	Thermalito Union Elementary	Butte	KK-08	1550	82.900	55.0323	76.3226
61457	Golden Feather Union Elementary	Butte	KK-08	243	14.000	36.4754	77.0492
61523	Palermo Union Elementary	Butte	KK-08	1335	71.500	33.1086	78.4270
62042	Burrel Union Elementary	Fresno	KK-08	137	6.400	12.3188	86.9565
68536	Holt Union Elementary	San Joaquin	KK-08	195	10.000	12.9032	94.6237
63834	Vineland Elementary	Kern	KK-08	888	42.500	18.8063	100.0000
62331	Orange Center Elementary	Fresno	KK-08	379	19.000	32.1900	93.1398
67306	Del Paso Heights Elementary	Sacramento	KK-06	2247	108.000	78.9942	87.3164
65722	Le Grand Union Elementary	Merced	KK-08	446	21.000	18.6099	85.8744
62174	West Fresno Elementary	Fresno	KK-08	987	47.000	71.7131	98.6056

Generaremos dos variables:

- STR: ratio de estudiantes por cada profesor.
- score: puntaje promedio del curso entre matemática y lectura.

```
# add student-teacher ratio
CASchools$STR <- CASchools$students/CASchools$teachers
# add average test-score
CASchools$score <- (CASchools$read + CASchools$math)/2</pre>
```

• Podemos predecir la relación entre el puntaje (score) y el ratio de estudiantes/profesores (STR):

$$score_i = \beta_0 + \beta_1 STR_i + u_i \tag{5}$$

• En R lo podemos hacer con la siguiente codificación:

linear_model <- lm(score ~ STR, data = CASchools)</pre>

Resultados de regresión

```
call:
lm(formula = score ~ STR, data = CASchools)
Residuals:
   Min 10 Median 30
                                 Max
-47.727 -14.251 0.483 12.822 48.540
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 698.9329 9.4675 73.825 < 2e-16 ***
      -2.2798 0.4798 -4.751 2.78e-06 ***
STR
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 18.58 on 418 degrees of freedom
Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
```

Interpretación

Notemos los siguientes resultados:

- $\hat{\beta}_0 = 698.9$: el $score_i$ predicho para un colegio con STR = 0 es de 698.
- $\hat{\beta}_1 = -2.2798$: por cada aumento en una unidad de STR disminuirá en 2.2798 el score.

Predicciones

- Con la función *predict()* podemos utilizar nuestras estimaciones para realizar predicciones con el modelo.
- Generaremos una variable predicciones que será la predicción para cada observación con la que se realiza la muestra.

CASchools\$predicciones<- predict(linear_model)

¿Cómo se ve esto gráficamente?

```
# Estimaciones:
ggplot(CASchools, aes(x= STR, y=score)) + geom_point() + stat_smooth(method = lm)
```

¿Cómo se ve esto gráficamente?

¿Cuánto nos equivocamos?

También podemos calcular nuestros errores de predicción o residuos con la función resid():

```
# Residuos:
CASchools$residual<- resid(linear_model)</pre>
```

¿Y si incluimos más variables?

Podemos pronosticar con más variables que STR, por ejemplo, incluir variables como *income* y *expenditure*. Es decir, vamos a proponer un modelo como:

$$score_i = \beta_0 + \beta_1 STR_i + \beta_2 income_i + \beta_3 expenditure_i + u_i$$
 (6)

• En R esta estimación la podemos hacer de forma sencilla:

linear_model2<- lm(score ~ STR + income + expenditure , data= CASchools)</pre>

¿Y si incluimos más variables?

```
Call:
lm(formula = score ~ STR + income + expenditure, data = CASchools)
Residuals:
   Min
          10 Median 30
                                  Max
-42.926 -8.805 0.106 9.083 32.567
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 669.745072 13.973921 47.928 < 2e-16
            -1.325765 0.436846 -3.035 0.00256
STR
         1.894375 0.094534 20.039 < 2e-16
income
expenditure -0.003495  0.001336 -2.616  0.00922
(Intercept) ***
STR
           ***
income
expenditure **
Signif. codes:
0 **** 0.001 *** 0.01 ** 0.05 *. 0.1 * 1
Residual standard error: 13.26 on 416 degrees of freedom
Multiple R-squared: 0.5194, Adjusted R-squared: 0.5159
F-statistic: 149.9 on 3 and 416 DF. p-value: < 2.2e-16
```

¿Y si incluimos más variables?

- ¿Cómo podemos pronosticar? Con la función predict() como lo hicimos anteriormente
- ¿La interpretación? Veamos...

Análisis Multivariado

Felipe Morales Apablaza

Universidad Adolfo Ibañez

October 9, 2019