Model accuracy metrics

V

Model accuracy refers to how well a model is able to accurately predict values.

Residuals

A residual is the **difference between the observed value and the predicted value** for a data point.

What we want:

Residuals are randomly scattered around zero, with no discernible pattern.

What we don't want:

Clear patterns or trends in the residuals, suggesting bias or shortcomings in the model.

Mean absolute error

The **average** of the **absolute values of the residuals**.

$$MAE = \sum_{i=1}^{n} \frac{|y_i - x_i|}{n}$$

y_i = predicted value

- x_i = true value
- n = number of data points

Mean squared error

The average of the squared residuals.

$$MSE = \sum_{i=1}^{n} \frac{(y_i x_i)^2}{n}$$

y_i = predicted value

- x = true value
- n = number of data points

Root mean squared error

The **square root** of the **average** of the **squared residuals**, i.e. the **square root of MSE**.

RMSE =
$$\sqrt{\sum_{i=1}^{n} \frac{(y_i x_i)^2}{n}}$$

y, = predicted value

x_i = true value

n = number of data points

Model accuracy challenges

V

The **challenges** encountered in achieving **precise** and **reliable predictions**.

Bias

The **error** introduced by the **model's assumptions or simplifications**, causing it to consistently miss the mark when making predictions.

A model with **high bias oversimplifies the underlying relationships** in the data and **fails to capture the true patterns**.

High bias leads to underfitting.

Variance

The model's sensitivity to fluctuations in the training data. It measures how much the predictions of the model vary when trained on different subsets of the data.

A model with **high variance overfits the training data** by memorising the training data **instead of learning the underlying patterns**.

High variance leads to overfitting.

Heteroskedasticity

The variability of the error terms are not constant across the range of independent variables. Instead, we want homoskedasticity which means the variability of the error terms are constant.

Heteroskedasticity is present if our residuals have a fan or cone shape.

Homoskedasticity is present if the spread of the residuals are relatively constant.

Poly-n trend line

A poly-n trend line is an extension of a linear equation that includes polynomial terms to increase flexibility and better fit the data.

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_n x^n$$

x = independent variables

n = the powers

 β = the coefficients

n = 2

n = 3

n = 4

