Multiple Linear Regression

Author: Rose Ellison

I will be building a multiple linear regression model based off the '50_Startups' data and using the forward elimination model. In this dataset there are five columns *Profit*, *R. D. Spend*, *Administration*, *Marketing*, and *State*. Profit is our dependent variable while the other four are our independent variables. We want to determine if there are any correlations between the profit and expenditures, such as r&d, admin, and marketing. Additionally, is there any correlation between profit and which state the company is operating?

MultipleLinearRegressionFormula:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4$$

Preparing the data

For this step, I need to read in the csv file, deal with categorical data, and then split the data into training and test sets.

Fitting Multiple Linear Regression to the Training Set

The Independent variable, Profit, is going to be a linear combination of all the dependent variables.

```
# Regressor with all dependent variables
regressor <- lm(Profit ~ ., training.set)
summary(regressor)</pre>
```

```
##
## Call:
## lm(formula = Profit ~ ., data = training.set)
##
## Residuals:
       Min
##
                 1Q Median
                                   3Q
                                          Max
## -30230.1 -3255.0
                       606.6
                               6683.7 13424.8
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   5.203e+04 7.535e+03 6.905 5.9e-08 ***
## R.D.Spend
                   8.612e-01 5.468e-02 15.749 < 2e-16 ***
## Administration -7.261e-02 5.923e-02 -1.226
                                                  0.229
## Marketing.Spend 1.893e-02 1.926e-02 0.983
                                                0.332
## State2
                   5.173e+02 3.688e+03 0.140
                                                0.889
## State3
                  -1.967e+02 3.728e+03 -0.053
                                                  0.958
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9365 on 34 degrees of freedom
## Multiple R-squared: 0.955, Adjusted R-squared: 0.9483
## F-statistic: 144.2 on 5 and 34 DF, p-value: < 2.2e-16
```

According to the data, the only strong predictor in profit is the r&d spend. Due to this, we could rewrite our regressor with only one dependent variable and we should still get the same results.

```
# Regressor with only the R.D.Spend dependent variable
regressor <- lm(Profit ~ R.D.Spend, training.set)
summary(regressor)</pre>
```

```
##
## Call:
## lm(formula = Profit ~ R.D.Spend, data = training.set)
##
## Residuals:
##
        Min
                  1Q Median
                                    3Q
                                           Max
  -31194.8 -4500.5
                        58.8
##
                               5638.2 17478.7
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.588e+04 2.823e+03
                                    16.25 <2e-16 ***
## R.D.Spend
               8.836e-01 3.283e-02
                                     26.91
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9318 on 38 degrees of freedom
## Multiple R-squared: 0.9502, Adjusted R-squared: 0.9488
## F-statistic: 724.4 on 1 and 38 DF, p-value: < 2.2e-16
```

Although we changed the regressor to only using the R.D.Spend variable, the p-value remains the same. This is another indication that R.D.Spend is the only strong dependent variable predictor.

Predicting the Test Set Results

```
y.pred <- predict(regressor, newdata = test.set)</pre>
```

Visualizing the training set

```
# Visualizing the training set results
ggplot() +
    geom_point(aes(x = training.set$R.D.Spend, y = training.set$Profit), col = 'lightblue') +
    geom_line(aes(x = training.set$R.D.Spend, y = predict(regressor, newdata = training.set)), c
    ol = 'darkblue') +
    theme_bw() +
    ggtitle('Profit VS R.D.Spend (Training Set)') +
    xlab('Research and Development Spend') +
    ylab('Profit')
```


Visualizing the test set results

```
ggplot() +
  geom_point(aes(x = test.set$R.D.Spend, y = test.set$Profit), col = 'lightblue') +
  geom_line(aes(x = training.set$R.D.Spend, y = predict(regressor, newdata = training.set)), c
  ol = 'darkblue') +
  theme_bw() +
  ggtitle('Profit VS R.D.Spend (Test Set)') +
  xlab('Research and Development Spend') +
  ylab('Profit')
```

Research and Development Spend

Profit VS R.D.Spend (Test Set)

