

Encryption

Session 4

A cybersecurity boot camp organized by YELLOW

Introductions

Instructors

- Name
- Job / Company
- Industry Experience
- Something interesting

Volunteers

- Name
- Job / School
- Something interesting

Session Overview

Encryption

- What is encryption?
- Why do we need encryption?
- When is data encrypted?
- How is it encrypted?
- Encoded vs Decoded

Student Activity

Simple encryption with Binary

- Pass binary encryption worksheets
- Create a secret word using binary
- Pass the sheet to someone else
- Time to decrypt the word
- Use table to decrypt
- Keep your words respectable

	A	1000001
Although it is not very secret, binary numbers are a code. (Why	В	1000010
do you think they call it 'coding'?). To give you practice encoding	С	1000011
and decoding a message, use this Unicode chart for the upper	D	1000100
case letters as a cipher strip. For example, the word "HELLO" can	Е	1000101
be coded as:	F	1000110
10010001000101100110010011001001111	G	1000111
	Н	1001000
Decoding:	I	1001001
Each letter above uses seven digits. Circle the digits for each	J	1001010
letter, look up the number in the chart, and write the letter	K	1001011
beneath the number.	L	1001100
Encoding:	M	1001101
andooning. Write a word here that is at least 5 and no more than 8 characters	N	1001110
	0	1001111
	P	1010000
	Q	1010001
	R	1010010
	S	1010011
Using the table, write out the word on a separate piece of paper.	T	1010100
Have your partner check that you correctly encoded your work.	U	1010101
	V	1010110
Give your paper to another member of your class. Challenge	W	1010111
them to decode it.	X	1011000
	Y	1011001
	Z	1011010

Encryption as Fast As Possible

- Discuss: Codes (ciphers) are used to keep messages secret
- Lets watch it:
 - https://www.youtube.com/watch?v=dut9EnbFym0
 - Teacher materials: video-4.1
- Discuss with students

Student Activity

Secret Messages

- Messages are encrypted using a key
- Key is needed to read the message
- https://codemoji.org

Types of Encryption

Different ways

- Goal is to go from plaintext to ciphertext
- Encryption algorithms
- Encryption keys
- Symmetric Encryption
- Asymmetric Encryption

Symmetric Key and Public Key Encryption

- Different forms of Encryption
- Lets watch it:
 - https://www.youtube.com/watch?v=ERp8420ucGs
 - Teacher materials: video-4.2

Student Activity

Cipher Strips

- Pass cipher strips sheets / worksheet
- Creating keys by moving characters
- Make a harder key
- Write down key method
- Encrypt a simple sentence

What is Public Key Infrastructure (PKI)

- How PKI works to securely send and receive messages
- Lets watch it:
 - https://www.youtube.com/watch?v=i-rtxrEz_E8
 - Teacher materials: video-4.2

Public Key / Private Key

Public Key / Private Key Demo

- Public key to encrypt
- Private key to decrypt

Public Key / Private Key

Modern Encryption

- Using PKI
- How are keys exchanged
- Private key to decrypt
- Public key to encrypt

Closing / Wrap-up

What we learned...

- Encryption / Decryption
- Ciphers / Codes / Keys
- Protecting data / documents

Session Feedback

How are we doing?

- Pass survey sheet
- Students:
 - Fill in Session #
 - Fill in Room #
 - Answer questions
- Volunteers to collect surveys

What's next...

This is end of session 4

- This is end of day one of boot camp
- Don't forget to bring:
 - Backpack
 - Badge / Name Tag
 - Raffle Tickets
- Meet in Cafeteria at 8:30 am tomorrow
- Prizes, giveaways: tomorrow at 3:15pm

