Sprawozdanie z zadania 1

Adam Żebrowski 253929

Grupa 1 Aplikacje Internetowe

Wariant zadania: cos(x)

Do wykonania obliczeń wykorzystałem wzór:

$$\cos x = \sum_{n=0}^{\infty} rac{(-1)^n}{(2n)!} x^{2n}$$

Użyłem funkcji fabs() i cos() z biblioteki Math. Wartość błędu wyliczałem ze wzoru:

$$\Delta x = |x - x_0|$$

Objaśnienie nazw:

- cosTaylorLeft sumowanie elementów ze wzoru Taylora (od początku)
- cosTaylorRight sumowanie elementów ze wzoru Taylora (od końca)
- cosQLeft sumowanie elementów na podstawie poprzedniej wartości (od początku)
- cosQRight sumowanie elementów na podstawie poprzedniej wartości (od końca)

H1: sumowanie od końca daje dokładniejsze wyniki niż sumowanie od początku.

Odp: Prawda

Na poniższym wykresie widać, że dla obu sposobów sumy liczone od końca mają znacznie mniejsze błędy.

H2: używając rozwinięcia wokół 0 (szereg MacLaurina), przy tej samej liczbie składników szeregu dokładniejsze wyniki uzyskujemy przy małych argumentach.

Odp: Prawda

Błędy są mniejsze dla małych argumentów, widać to na poniższym wykresie.

H3: sumowanie elementów obliczanych na podstawie poprzedniego daje dokładniejsze wyniki niż obliczanych bezpośrednio ze wzoru.

Odp: Prawda

Jest to prawda, chociaż różnice te nie są kolosalne.

Dane z których sporządziłem wykres.

1	X	cosTaylor	cosTayloR	cosQLeft	cosQRight
2	0.000001	4E-17	3.6E-20	4E-17	3.6E-20
3	0.050001	4.6E-17	2.6E-19	4.6E-17	2.6E-19
4	0.100001	5.2E-17	6.9E-19	5.2E-17	6.9E-19
5	0.150001	5.1E-17	1.2E-18	5.1E-17	1.2E-18
6	0.200001	5.7E-17	1.8E-18	5.7E-17	1.8E-18
7	0.250001	5.8E-17	3.4E-18	5.8E-17	3.4E-18
8	0.300001	5.8E-17	3.5E-18	5.8E-17	3.5E-18
9	0.350001	6E-17	6.6E-18	6E-17	6.6E-18
10	0.400001	6.5E-17	7E-18	6.5E-17	7.1E-18
11	0.450001	6.4E-17	7.2E-18	6.4E-17	7.2E-18
12	0.500001	6.4E-17	1.4E-17	6.4E-17	1.4E-17
13	0.550001	6.4E-17	1.4E-17	6.4E-17	1.4E-17
14	0.600001	6.8E-17	1.4E-17	6.8E-17	1.4E-17
15	0.650001	7E-17	1.4E-17	7E-17	1.4E-17
16	0.700001	7.1E-17	2.2E-17	7.1E-17	2.2E-17
17	0.750001	7.2E-17	2.6E-17	7.2E-17	2.6E-17
18	0.800001	7.2E-17	2.6E-17	7.1E-17	2.6E-17
19	0.850001	7.3E-17	2.6E-17	7.3E-17	2.6E-17
20	0.900001	7.8E-17	2.5E-17	7.8E-17	2.5E-17
21	0.950001	7.5E-17	2.5E-17	7.4E-17	2.4E-17

Q1: Jak zależy dokładność obliczeń (błąd) od liczby sumowanych składników?

Im większa liczba sumowanych składników, tym większa dokładność obliczeń.

Użyłem funkcji logarytmicznej. Dla liczby składników większych od 3 błędy wyniosły 0 (dlatego nie ma ich na wykresie).

