Übung zur Vorlesung Berechenbarkeit und Komplexität

Blatt 7

Tutoriumsaufgabe 7.1

Für eine gegebene CFG $G = (N, \Sigma, P, S)$ soll entschieden werden, ob L(G) ein Palindrom enthält. Zeigen Sie, dass dieses Problem unentscheidbar ist.

Tutoriumsaufgabe 7.2

Zeigen Sie, dass folgende arithmetische Befehle durch ein LOOP-Programm simuliert werden können:

- (a) $x_i := x_j 1$ (modifizierte Vorgängerfunktion mit Ergebnis 0 falls $x_j = 0$)
- (b) $x_i := x_j x_k$ (modifizierte Subtraktion mit Ergebnis 0 falls $x_j < x_k$)
- (c) $x_i := \min\{x_i, x_k\}$

Tutoriumsaufgabe 7.3

Ein LOOP-Z-Programm ist ein LOOP-Programm, das das LOOP-Konstrukt nicht verwendet. Es lässt sich zeigen, dass für jedes LOOP-Z-Programm P mit Variablen x_1, \ldots, x_n natürliche Zahlen a_1, \ldots, a_n und b existieren, sodass $f_P(x_1, \ldots, x_n) = \sum_{i=1}^n a_i x_i + b$ gilt. Zeigen Sie: Es gibt kein LOOP-Z-Programm P, das die Funktion x_1x_2 berechnet.

Tutoriumsaufgabe 7.4

Beweisen Sie, dass die Wachstumsfunktion $F_P : \mathbb{N} \to \mathbb{N}$ des folgenden LOOP-Programms P die Beziehung $F_P(n) \in \Theta(n^3)$ erfüllt:

```
LOOP x_1 DO LOOP x_2 DO LOOP x_3 DO x_4 \coloneqq x_4 + 1 ENDLOOP ENDLOOP ENDLOOP
```

Bestimmen Sie weiterhin eine natürliche Zahl m_P , sodass $F_P(n) < A(m_P, n)$ für alle $n \in \mathbb{N}$ gilt.

Hausaufgabe 7.1 (2 + 2 Punkte)

Welche der folgenden Fragen über multivariate Polynome $p: \mathbb{Z}^k \to \mathbb{Z}$ (mit ganzzahligen Koeffizienten) sind entscheidbar? Beweisen Sie die Korrektheit Ihrer Antworten.

- (a) Besitzt p eine Nullstelle, in der alle Variablen natürliche Werte annehmen?
- (b) Besitzt p eine ganzzahlige Nullstelle, in der alle Variablenwerte zwischen -10^6 und 10^6 liegen?

Hausaufgabe 7.2 (2 + 2 Punkte)

Zeigen Sie, dass folgende arithmetische Befehle durch ein LOOP-Programm simuliert werden können:

- (a) $x_i := x_j$ DIV x_k (Division ohne Rest, gegeben $x_k > 0$)
- (b) $x_i := x_i \text{ MOD } x_k \text{ (Modulo, gegeben } x_k > 0)$

Hausaufgabe 7.3 (2 Punkte)

Die Programmiersprache LOOP-WHILE ist eine Kombination der beiden Programmiersprachen LOOP und WHILE. Die syntaktischen Komponenten von LOOP-WHILE sind genau die Komponenten von LOOP zusammen mit den Komponenten von WHILE: LOOP-WHILE Programme sind Zuweisungen, die Hintereinanderausführung von zwei LOOP-WHILE-Programmen, das LOOP-Konstrukt um ein LOOP-WHILE-Programm oder das WHILE-Konstrukt um ein LOOP-WHILE-Programm. In einem LOOP-WHILE-Programm darf allerdings das WHILE-Konstrukt nur höchstens einmal benutzt werden.

Beweisen oder widerlegen Sie: Die Programmiersprache LOOP-WHILE ist Turingmächtig.

Hausaufgabe 7.4 (3 + 3 Punkte)

Bestimmen Sie die Wachstumsfunktionen $F_P:\mathbb{N}\to\mathbb{N}$ für die folgenden LOOP-Programme. Bestimmen Sie für jedes dieser LOOP-Programme P eine natürliche Zahl m_P , sodass $F_P(n) < A(m_P,n)$ für alle $n \in \mathbb{N}$ gilt. Beachten Sie, dass die folgenden LOOP-Programme Kurzschreibweisen verwenden, z. B. ist $x_2 \coloneqq x_3 + 2$ Kurzschreibweise für $x_2 \coloneqq x_3 + 1$; $x_2 \coloneqq x_2 + 1$.

- (a) $x_3 := x_2 + 3;$ $x_1 := x_2 + 1;$ $x_2 := x_3 + 2$
- (b) $x_3 := x_2$; LOOP x_1 DO LOOP x_3 DO $x_2 := x_2 + 1$ ENDLOOP ENDLOOP