SAMB for "Te"

Generated on 2023-06-18 17:25 by MultiPie 1.1.10

- Group: No. 152 D_3^4 $P3_121$ [trigonal]
- Associated point group: No. 18 $D_3 1$ 321 (321 setting) [trigonal]
- Generation condition
 - model type: phonon
 - time-reversal type: electric
 - irrep: [A1]
 - spinless
- Unit cell:

$$a=4.458,\ b=4.458,\ c=5.925,\ \alpha=90.0,\ \beta=90.0,\ \gamma=120.0$$

• Lattice vectors:

$$a_1 = \begin{pmatrix} 4.458 & 0 & 0 \end{pmatrix}$$

 $a_2 = \begin{pmatrix} -2.229 & 3.86074125007103 & 0 \end{pmatrix}$
 $a_3 = \begin{pmatrix} 0 & 0 & 5.925 \end{pmatrix}$

Table 1: High-symmetry line: A- Γ -H-A-L-H-K- Γ -M-K.

symbol	position		symbol	po	ositi	on	symbol	po	ositio	on		
Γ	(0	0	0)	A	(0	0	$\frac{1}{2}$	M	$\left(\frac{1}{2}\right)$	0	0)
K	$\left(\frac{1}{3}\right)$	$\frac{1}{3}$	0)	Н	$\left(\frac{1}{3}\right)$	$\frac{1}{3}$	$\frac{1}{2}$	L	$\left(\frac{1}{2}\right)$	0	$\frac{1}{2}$

• Kets: dimension = 9

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
 1	$p_x@A_1$	2	$p_y@A_1$	3	$p_z@A_1$	4	$p_x@A_2$	5	p_y @A ₂
6	$p_z@\mathrm{A}_2$	7	$p_x@A_3$	8	$p_y@A_3$	9	$p_z@A_3$		

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S_1 [3a: .2.]	A_1	$\begin{pmatrix} 0.274 & 0 & \frac{1}{3} \end{pmatrix}$	[1,2]
	A_2	(0.726 0.726 0)	[3,6]
	A_3	$\left(0 0.274 \frac{2}{3}\right)'$	[4,5]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B_1 [3b: .2.]	b_1	A_2	A_1	1	1	$\begin{pmatrix} -0.548 & -0.274 & -\frac{1}{3} \end{pmatrix}$ @ $\begin{pmatrix} 0 & 0.863 & \frac{1}{6} \end{pmatrix}$	[1,-3]
	b_2	A_3	A_1	1	1	$\left(-0.274 0.274 \frac{1}{3}\right)$ @ $\left(0.137 0.137 \frac{1}{2}\right)$	[2,-5]
	b_3	A_3	A_2	1	1	$\left(0.274 0.548 -\frac{1}{3}\right) @ \left(0.863 0 \frac{5}{6}\right)$	[-4,6]

• SAMB:

$$\hat{\mathbb{Z}}_1(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 2
$$\hat{\mathbb{Q}}_2^{(A_1)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_2(\mathbf{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 3
$$\hat{\mathbb{G}}_{2}^{(A_1)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_3 = -\frac{\sqrt{2}\mathbb{X}_3[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{1,0}^{(s,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_4[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

$$\hat{\mathbb{Z}}_{3}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{1,0}^{(s,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 4
$$\hat{\mathbb{Q}}_{3}^{(A_1)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_4 = \frac{\sqrt{2}\mathbb{X}_5[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{1,0}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_6[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

$$\hat{\mathbb{Z}}_4(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_5[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_2[\mathbb{Q}_{1,0}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_6[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_3[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_5 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{5}(\boldsymbol{k}) = \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{5}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,0}^{(k,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,1}^{(k,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,E)}] \otimes \mathbb{T}_{9}[\mathbb{Q}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,E)}] \otimes \mathbb{T}_{9}[\mathbb{Q}_{1,1}^$$

No. 6
$$\hat{\mathbb{Q}}_2^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_6 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{Z}_{0}(k) &= \frac{\sqrt{6X_{2}[Q_{2}^{(a,A_{1})}]} \otimes U_{1}[Q_{1}^{(a,A_{2})}]}{6} \otimes V_{1}[T_{1}^{(a,A_{2})}]} \otimes V_{1}[T_{1}^{(a,A_{2})}]}{6} \otimes V_{1}[T_{1}^{(a,A_{2})}]} &+ \frac{\sqrt{6X_{2}[Q_{2}^{(a,A_{1})}]} \otimes U_{5}[C_{1,0}^{(a,B_{1})}]}{6} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} &+ \frac{\sqrt{6X_{2}[Q_{2}^{(a,A_{1})}]}}{6} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]}{6} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} &+ \frac{\sqrt{6X_{2}[Q_{2}^{(a,A_{1})}]}}{6} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} &+ \frac{\sqrt{6X_{2}[Q_{2}^{(a,B_{1})}]}}{6} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} &+ \frac{\sqrt{6X_{2}[Q_{2}^{(a,B_{1})}]}}{6} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} &+ \frac{\sqrt{6X_{2}[Q_{2}^{(a,B_{1})}]}}{2} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} &+ \frac{\sqrt{6X_{2}[Q_{2}^{(a,B_{1})}]}}{2} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} &+ \frac{\sqrt{6X_{2}[Q_{2}^{(a,B_{1})}]}}{2} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} &+ \frac{\sqrt{6X_{2}[Q_{2}^{(a,B_{1})}]}}}{2} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} &+ \frac{\sqrt{6X_{2}[Q_{2}^{(a,B_{1})}]}}{2} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} &+ \frac{\sqrt{6X_{2}[Q_{2}^{(a,B_{1})}]}}{2} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} &+ \frac{\sqrt{6X_{2}[Q_{2}^{(a,B_{1})}]}}}{2} \otimes V_{5}[T_{1,0}^{(a,B_{1})}]} &+ \frac{$$

 $+\frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,2)}]\otimes\mathbb{U}_{8}[\mathbb{T}_{1,0}^{(u,E)}]\otimes\mathbb{F}_{4}[\mathbb{T}_{1}^{(k,A_{2})}]}{6}+\frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,2)}]\otimes\mathbb{U}_{8}[\mathbb{T}_{1,0}^{(u,E)}]\otimes\mathbb{F}_{6}[\mathbb{T}_{1,1}^{(k,E)}]}{12}+\frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,2)}]\otimes\mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,E)}]\otimes\mathbb{F}_{5}[\mathbb{T}_{1,0}^{(k,E)}]}{12}+\frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,2)}]\otimes\mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,E)}]\otimes\mathbb{F}_{5}[\mathbb{T}_{1,0}^{(k,E)}]}{12}+\frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,2)}]\otimes\mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,E)}]\otimes\mathbb{F}_{5}[\mathbb{T}_{1,0}^{(k,E)}]}{12}+\frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,2)}]\otimes\mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,E)}]\otimes\mathbb{F}_{9}[\mathbb{T}_{1,0}^{(u,E)$

Table 5: Atomic SAMB group.

group	bra	ket		
M_1	p_x, p_y, p_z	p_x, p_y, p_z		

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_1)}$	$ m M_1$	$\begin{pmatrix} \frac{\sqrt{3}}{3} & 0 & 0\\ 0 & \frac{\sqrt{3}}{3} & 0\\ 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{Q}_2^{(a,A_1)}$	$ m M_1$	$ \begin{bmatrix} -\frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & \frac{\sqrt{6}}{3} \end{bmatrix} $
\mathbb{X}_3	$\mathbb{Q}_{2,0}^{(a,E,1)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$
\mathbb{X}_4	$\mathbb{Q}_{2,1}^{(a,E,1)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_5	$\mathbb{Q}_{2,0}^{(a,E,2)}$	$ m M_1$	$ \begin{pmatrix} -\frac{\sqrt{2}}{2} & 0 & 0\\ \frac{\sqrt{2}}{2} & 0 & 0\\ 0 & -\frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_6	$\mathbb{Q}_{2,1}^{(a,E,2)}$	$ m M_1$	$ \begin{pmatrix} 0 & -\frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	$\left(\begin{array}{ccc} \sqrt{3} & \sqrt{3} & \sqrt{3} \\ 3 & 3 \end{array}\right)$
\mathbb{Y}_2	$\mathbb{Q}_{1,0}^{(s,E)}$	S_1	$\left(\begin{array}{ccc} \frac{\sqrt{6}}{3} & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} \end{array}\right)$
\mathbb{Y}_3	$\mathbb{Q}_{1,1}^{(s,E)}$	S_1	$\left[\begin{array}{ccc} \left(0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \right) \end{array} \right]$
\mathbb{Y}_4	$\mathbb{Q}_0^{(b,A_1)}$	B_1	$\begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{Y}_5	$\mathbb{Q}_{1,0}^{(b,E)}$	B_1	$\left(\begin{array}{ccc} \sqrt{6} & \sqrt{6} & -\sqrt{6} \\ 6 & 6 & -\end{array}\right)$
\mathbb{Y}_6	$\mathbb{Q}_{1,1}^{(b,E)}$	B_1	$\left(-\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} 0\right)$

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	$\begin{pmatrix} \frac{\sqrt{3}}{3} & 0 & 0\\ 0 & \frac{\sqrt{3}}{3} & 0\\ 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{U}_2	$\mathbb{Q}_{1,0}^{(s,E)}$	S_1	$ \begin{pmatrix} \frac{\sqrt{6}}{3} & 0 & 0\\ 0 & -\frac{\sqrt{6}}{6} & 0\\ 0 & 0 & -\frac{\sqrt{6}}{6} \end{pmatrix} $
\mathbb{U}_3	$\mathbb{Q}_{1,1}^{(s,E)}$	S_1	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$
\mathbb{U}_4	$\mathbb{Q}_0^{(u,A_1)}$	В1	$ \begin{pmatrix} 0 & -\frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} \end{pmatrix} $ $ \begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6} & 0 & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} \\ \frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{3} & 0 \end{pmatrix} $
\mathbb{U}_5	$\mathbb{Q}_{1,0}^{(u,E)}$	В1	$ \begin{pmatrix} 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} \\ \frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{3} & 0 \end{pmatrix} $

 $continued\ \dots$

Table 8

symbol	type	cluster	form
\mathbb{U}_6	$\mathbb{Q}_{1,1}^{(u,E)}$	В1	$\begin{pmatrix} 0 & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix}$
\mathbb{U}_7	$\mathbb{T}_1^{(u,A_2)}$	В1	$ \begin{bmatrix} 0 & -\frac{\sqrt{6}i}{6} & \frac{\sqrt{6}i}{6} \\ \frac{\sqrt{6}i}{6} & 0 & -\frac{\sqrt{6}i}{6} \\ -\frac{\sqrt{6}i}{6} & \frac{\sqrt{6}i}{6} & 0 \end{bmatrix} $
\mathbb{U}_8	$\mathbb{T}_{1,0}^{(u,E)}$	B_1	$\begin{pmatrix} 0 & -\frac{i}{2} & -\frac{i}{2} \\ \frac{i}{2} & 0 & 0 \\ \frac{i}{2} & 0 & 0 \end{pmatrix}$
\mathbb{U}_9	$\mathbb{T}_{1,1}^{(u,E)}$	В1	$ \begin{pmatrix} 0 & -\frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{6} \\ \frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}i}{3} \\ -\frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{3} & 0 \end{pmatrix} $

Table 9: Structure SAMB.

symbol	type	cluster	form			
\mathbb{F}_1	$\mathbb{Q}_0^{(k,A_1)}$	B_1	$\frac{\sqrt{6}c_{001}}{3} + \frac{\sqrt{6}c_{002}}{3} + \frac{\sqrt{6}c_{003}}{3}$			
\mathbb{F}_2	$\mathbb{Q}_{1,0}^{(k,E)}$	B_1	$\frac{\sqrt{3}c_{001}}{3} + \frac{\sqrt{3}c_{002}}{3} - \frac{2\sqrt{3}c_{003}}{3}$			
\mathbb{F}_3	\mathbb{F}_3 $\mathbb{Q}_{1,1}^{(k,E)}$ \mathbb{F}_4 $\mathbb{T}_1^{(k,A_2)}$		$-c_{001} + c_{002}$			
\mathbb{F}_4			$\frac{\sqrt{6}s_{001}}{3} - \frac{\sqrt{6}s_{002}}{3} + \frac{\sqrt{6}s_{003}}{3}$			
\mathbb{F}_5	$\mathbb{T}_{1,0}^{(k,E)}$	B_1	$s_{001} + s_{002}$			
\mathbb{F}_6	\mathbb{F}_6 $\mathbb{T}_{1,1}^{(k,E)}$		$\frac{\sqrt{3}s_{001}}{3} - \frac{\sqrt{3}s_{002}}{3} - \frac{2\sqrt{3}s_{003}}{3}$			

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_1)}$	0	A_1	_	_	1
2	$\mathbb{Q}_1^{(A_2)}$	1	A_2	_	_	\overline{z}
3	$\mathbb{Q}_{1,0}^{(E)}$	1	E	_	0	x
4	$\mathbb{Q}_{1,1}^{(E)}$	1	E	_	1	y
5	$\mathbb{Q}_2^{(A_1)}$	2	A_1	_	_	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
6	$\mathbb{Q}_{2,0}^{(E,1)}$	2	E	1	0	$\sqrt{3}yz$
7	$\mathbb{Q}_{2,1}^{(E,1)}$	2	E	1	1	$ \begin{array}{c} -\sqrt{3}xz\\ \underline{\sqrt{3}(x-y)(x+y)} \end{array} $
8	$\mathbb{Q}_{2,0}^{(E,2)}$	2	E	2	0	$\frac{\sqrt{3}(x-y)(x+y)}{2}$
9	$\mathbb{Q}_{2,1}^{(E,2)}$	2	E	2	1	$-\sqrt{3}xy$

 \bullet Group info.: Generator = $\{3^{+}_{\ 001}|00\frac{1}{3}\},\ \{2_{110}|0\}$

Table 11: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{100} 00\frac{2}{3}\}$	$\{2_{100} 00\frac{2}{3}\}, \{2_{010} 00\frac{1}{3}\}, \{2_{110} 0\}$
$\{3^{+}_{001} 00\frac{1}{3}\}$	$\{3^{+}_{001} 00\frac{1}{3}\}, \{3^{-}_{001} 00\frac{2}{3}\}$

Table 12: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
 1	$\{1 0\}$	2	$\{2_{100} 00\frac{2}{3}\}$	3	$\{2_{010} 00\frac{1}{3}\}$	4	$\{2_{110} 0\}$	5	$\{3^{+}_{001} 00^{\frac{1}{3}}\}$
6	$\{3^{-}_{001} 00\frac{2}{3}\}$								

Table 13: Character table (point-group part).

	1	2100	3 ⁺ ₀₀₁
A_1	1	1	1
A_2	1	-1	1
E	2	0	-1

Table 14: Parity conversion.

\longleftrightarrow	\leftrightarrow	\leftrightarrow
$A_1 (A_1)$	$A_2 (A_2)$	E(E)

Table 15: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_1	A_2	E
A_1	A_1	A_2	E
A_2		A_1	E
E			$A_1 + E$

Table 16: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-.$

Table 17: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$	2	$\begin{pmatrix} 2 & 1 & -1 \end{pmatrix}$	3	$\begin{pmatrix} -1 & -2 & -1 \end{pmatrix}$	4	(-1 1 -
5	$\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$	6	$\begin{pmatrix} -2 & -1 & 1 \end{pmatrix}$				

Table 18: Virtual-cluster basis.

symbol	1	2	3	4	5	6
$\mathbb{Q}_0^{(A_1)}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$
$\mathbb{Q}_1^{(A_2)}$	$\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$
$\mathbb{Q}_{1,0}^{(E)}$	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	$-\frac{1}{2}$
$\mathbb{Q}_{1,1}^{(E)}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$
$\mathbb{Q}_{2,0}^{(E,1)}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$
$\mathbb{Q}_{2,1}^{(E,1)}$	$-\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$