Universidade Federal de Pernambuco (UFPE) Centro de Informática (CIn) - Graduação em Engenharia da Computação

$L\'ogica~para~Computa\~c\~ao$ 1° Semestre de 2015 - 1° Prova - 28 de Maio de 2015

 $\bf 1.~(3,0)$ Verifique, usando $\bf a)$ o método dos tableaux analíticos; $\bf b)$ dedução natural e $\bf c)$ o método da resolução se

$$\vdash (A \to B) \to ((\neg A \lor \neg B) \to A)$$

OBS: Em cada passo da dedução natural coloque a regra utilizada.

- 2. (1,0) A lei de Peirce no cálculo proposicional diz que $((A \to B) \to A) \to A)$. Em outras palavras, essa lei diz que A deve ser verdade se você pode demonstrar que A implicando em B obriga A a ser verdade. Foi proposta pelo filósofo e lógico Charles Sanders Peirce. Determine, usando cálculo de sequentes se essa lei é aceita pela lógica intuicionista e qual o motivo. Em cada passo da dedução coloque a regra utilizada.
- 3. (1,0) Construa um exemplo de uma derivação no sistema de dedução natural, que não esteja na forma normal, seja diferente dos exemplos das questões 1 e 2, e tenha no mínimo 4 passos. Identifique a(s) fórmula(s) máxima(s) e use a normalizção para transformá-la numa derivação normal.
- **4.** (2,0) O tamanho de uma fórmula ϕ da lógica proposicional é definido recursivamente pela seguinte funcção t: (i) se ϕ for atômica, $t(\phi) = 1$; (ii) se ϕ for da forma $(\neg \psi)$ então $t((\neg \psi)) = 1 + t(\psi)$; e (iii) se ϕ for da forma $(\alpha \Box \psi)$, onde \Box é \wedge , \vee ou \rightarrow , então $t((\alpha \Box \psi)) = 1 + t(\alpha) + t(\psi)$.
 - a) Calcule o valor de $t((\neg(\alpha \land (\neg \phi)) \rightarrow \psi))$
 - b) Prove por indução que para toda fórmula ϕ da lógica proposicional, o posto de ϕ é menor que o tamanho de ϕ . Defina formalmente as função que calcula o posto.
- 5. (2,0) Defina indutivamente o conjunto de todas as cadeias sobre o alfabeto $\Sigma = \{a, b, c\}$ que são palíndromos de tamanho par. Identifique : (i) a base da indução; (ii) as funções geradoras e (iii) o maior conjunto indutivo. Prove se esse conjunto é ou não livremente gerado.
- 6. (1,0) Defina precisamente as propriedades que todo sistema dedutivo deve ter e explique o significado dos símbolos \vdash e \models .

(1,0) (SOMENTE PARA QUEM FALTOU UMA MINI-PROVA)

Defina conjunto indutivo, menor conjunto indutivo, e fecho indutivo, dê um esboço da demonstração de que o menor conjunto indutivo é igual ao fecho indutivo.