- 3.1 Since the reaction order, hence concentration dependency, is not known we are not given enough information to find the rate of reaction at the higher concentration
- 3.3 For the 2nd order disappearance of a single reactant Eq. 16, pq. 49 gives $kt = \frac{1}{C_{AO}} \left(\frac{X_A}{1-X_A} \right) or - t = \frac{1}{kC_{AO}} \left(\frac{X_A}{1-X_A} \right)$

Now for 50% conversion: $t_{50} = \frac{1}{kC_{A0}} \left(\frac{1/2}{1-1/2} \right) = \frac{1}{kC_{A0}} = 5 \text{ min}$

For 75% conversion: $t_{75} = \frac{1}{kC_{A0}} \left(\frac{3/4}{1-3/4} \right) = \frac{3}{kC_{A0}} = 15 \text{ min}$

: the extra time needed is 10 minutes

3.5 Since the fractional disappearance is independent of initial concentration we have a first order rate, or $\frac{dC}{dt} = kC - or - ln \frac{Co}{C} = kt - where C = monomer concentration$

We also can find the rate constant. Thus replacing values $ln \frac{Co}{n\alpha r} = k(34 min)$ -- or $k = \frac{-ln \cdot 0.8}{34 min} = 0.00657 min^{-1}$

Hence the rate of disappearance of monomer is given by $-\Gamma = -\frac{dC}{dt} = (0.00657 \, \text{min}^{-1}) \, C$

3.7 Magao's betting habits, and his losses, can be described by $-\frac{d\$}{dt} = k\$ - \text{or } \ln \frac{\$}{\$} = kt - \text{where } \$ = \text{money at hand}$

Now at t=0 -- \$ = 180 } from which we can find his "paupacity" constant t=2hrs-- \$ = 135 }

3.7 After his raise we have t=0 - $\#_0=?$ from this find (Continued) t=3 hrs #=135 $\#_0$

For Unchanged betting habits $\ln \frac{$b_0$}{135} = (0.144)(3) --- \text{ or } b_0 = 208$

Hence his raise is 208-180 -- or \$28

3.9 For a first order reversible reaction

$$A \stackrel{k_1}{\rightleftharpoons} R \begin{cases} C_{A0} = 0.5 \text{ mol/lit} \\ C_{R0} = 0 \end{cases}$$

$$X_{Ae} = 0.667$$

the integrated conversion equation in a batch reactor (constant volume because it is a liquid) is given by

$$-\ln\left(1-\frac{X_A}{X_{Ae}}\right) = \left(k_1 + k_2\right)t$$

Replacing values we then find

$$-\ln\left(1-\frac{1/3}{2/3}\right)=\left(k_1+k_2\right)$$
 8 min --- : $k_1+k_2=\frac{\ln 2}{8}=0.086625$ min -- (i)

Now from thermodynamics we know that

$$K = \frac{C_{Re}}{C_{Ae}} = \frac{k_1}{k_2} = \frac{0.5 \times \frac{2}{3}}{0.5 \times \frac{1}{3}} = 2$$
equilibrium

Thus $k_1 = 2k_2$ (ii) Solving (i) gines $k_2 = 0.086625 = 0.028875$ $<math>k_3 = 0.057750$

Thus the rate expression for the disappearance of A.

Thus

3.13

From the problem statement we can find ky from (i), kg from (ii). We then use these in (iii) to see how long he can play both games simultaneously. This is our strategy

Integrating (i) we get
$$\ln \frac{\$_0}{\$} = k_A t$$
 or $-k_A = \frac{1}{t} \ln \frac{\$_0}{\$}$
and with the data given $k_A = \frac{1}{4} \ln 2$ (iv

Similarly with (ii)

$$k_B = \frac{1}{2} \ln 2$$
 (v

Integrating (iii) gives $\ln \frac{\$_0}{\$} = (k_A + k_B)t - \text{or} = t = \frac{1}{k_A + k_B} \ln \frac{\$_0}{\$}$

and with (iv) & (v)

Note: This is simply a case of two "1st order reactions" in parallel, see pg.49.

3.15 We can test the fit of the Michaelis-Menten type equation in many ways, integral or differential We will sketch these different solutions in turn. But first let us transform the M-M equation into the following useful form

$$-T_A = \frac{k_3 C_{EO} C_A}{C_A + M} = \frac{k_4 C_A}{1 + k_5 C_A} - \text{where} \begin{cases} k_4 = \frac{k_3 C_{EO}}{M} \\ k_5 = \frac{1}{M} \end{cases}$$
Use this form

Integral method Integrating (i) gives
$$\frac{\ln C_{AO}/C_{A}}{C_{AO}-C_{A}} = -k_{S} + \frac{k_{4}t}{C_{AO}-C_{A}} \quad \begin{cases} \text{slope: } k_{4} = \frac{k_{3}C_{EO}}{M} \end{cases}$$
(i)
$$\frac{\ln C_{AO}/C_{A}}{C_{AO}-C_{A}} = -k_{S} + \frac{k_{4}t}{C_{AO}-C_{A}} \quad \begin{cases} \text{intercept: } -k_{S} = \frac{1}{M} \end{cases}$$

From this figure the constants in Eq. (1) are

3.	15	
(cont	timued)	>

t	CA	An CAO/CA CAO-CA	t Go-G	•
	0.84	1.09	6.25	larenthiosa e consistento
2	0.68	1.2	6.25	
3	0.53	1,35	6.39	
4	0.38	1.56	6.45	
East Section of the Contract o	0.27	1.80	6.85	
6	0.16	2.18	7.15	
7	0.09	2.65	7.7	
7	0.04	3.36	8,34	
9	0,018	4,08	9.17	
10	0.006	5.15	10.1	
	0.0025	6.01	11.0	
The second secon	given	Spo	nitegral above	methoc

3.17 For first order processes

$$k = \frac{0.6931}{t_{12}} = \frac{0.6931}{76 \text{ min}} = 9.12 \times 10^{-3} \text{ min}$$

After one day

$$\frac{C_A}{C_{t0}} = e^{-kt} = e^{-(9.12 \times 10^{-3})(24 \times 60)} = 1.98 \times 10^{-6}$$

Thus the radioactivity drops to 2×106 of the original value.

3.19 The time for complete conversion of an nt order reaction from Eq. 29, is

$$t = \frac{C_{AO}^{1-n}}{(1-n)k} = \frac{(1)^{1-1/2}}{(1-1/2)^3} = \frac{z}{3} hr$$

Therefore after 1 hr XA=1, or CA=0

9 T =	$1 \text{ atm} \left(\frac{373}{298}\right) = 1.252 \text{ atm}$	Λ
	2A-B	

equation.				**************************************
Tabulate	1	2	(3)	(4)
	time (min)	TT (atm)	PA(atm)	1/PA (atm-1)
	0	(1.252)	(1,252)	(0,800)
	dependent.	1.14	1.028	0,975
	2	1.04	0.828	1,208
	3	0.982	0.712	1, 40h
	4	0.940	0,628	1.592
	5	0.905	0,558	1.792
	6	0,870	0,488	2.049
	and a	0.850	0,448	2232
	8	0,832	0.412	2,427
	9	0.815	0,378	2.646
	10	0,800	0.348	2.873
	15	0.754	0,256	3.90
	20	0.728	0,204	4.90
	N.	All months	interiorations for economical	reconstruction Ph. escription and a second

Column 3) is obtained from Eq 5, or

$$p_A = p_{A0} - \frac{\alpha}{\Delta n} (\pi - \pi_0) = 1.25z - \frac{2}{60} (\pi - 1.25z) = 2p_A - 1.25z$$

Try first order kinetics. For this plot as shown

we do not get a straught line so the reaction is not first order

Try second order kinetics. For this plot as shown

This is a good fit so find the slope $\frac{dC_A}{dT} = \frac{kC_A^2}{dT} \quad \text{or} \quad \frac{dP_A}{dT} = \frac{kc}{RT} PT^2 - \text{or} \quad \frac{1}{P} = \frac{kc}{RT} PT + \frac{1}{P_0}$ $\frac{dO_A}{dT} = \frac{kC_A^2}{RT} \quad \text{or} \quad \frac{dP_A}{dT} = \frac{kc}{RT} PT^2 - \text{or} \quad \frac{1}{P_0} = \frac{kc}{RT} + \frac{1}{P_0}$ $\frac{dO_A}{dT} = \frac{kC_A}{RT} = \frac{4.92 - 0.8}{20} = 0.206 \text{ atm}^{-1} \text{ min}^{-1}$ $\frac{dO_A}{dT} = \frac{kc}{RT} = \frac{4.92 - 0.8}{20} = 0.206 \text{ atm}^{-1} \text{ min}^{-1}$ $\frac{dO_A}{dT} = \frac{kc}{RT} = \frac{4.92 - 0.8}{20} = 0.206 \text{ atm}^{-1} \text{ min}^{-1}$ $\frac{dO_A}{dT} = \frac{kc}{RT} = \frac{4.92 - 0.8}{20} = 0.206 \text{ atm}^{-1} \text{ min}^{-1}$ $\frac{dO_A}{dT} = \frac{kc}{RT} = \frac{4.92 - 0.8}{20} = 0.206 \text{ atm}^{-1} \text{ min}^{-1}$ $\frac{dO_A}{dT} = \frac{kc}{RT} = \frac{4.92 - 0.8}{20} = 0.206 \text{ atm}^{-1} \text{ min}^{-1}$ $\frac{dO_A}{dT} = \frac{kc}{RT} = \frac{4.92 - 0.8}{20} = 0.206 \text{ atm}^{-1} \text{ min}^{-1}$ $\frac{dO_A}{dT} = \frac{kc}{RT} = \frac{4.92 - 0.8}{20} = 0.206 \text{ atm}^{-1} \text{ min}^{-1}$ $\frac{dO_A}{dT} = \frac{kc}{RT} = \frac{4.92 - 0.8}{20} = 0.206 \text{ atm}^{-1} \text{ min}^{-1}$ $\frac{dO_A}{dT} = \frac{kc}{RT} = \frac{4.92 - 0.8}{20} = 0.206 \text{ atm}^{-1} \text{ min}^{-1}$ $\frac{dO_A}{dT} = \frac{kc}{RT} = \frac{4.92 - 0.8}{20} = 0.206 \text{ atm}^{-1} \text{ min}^{-1}$ $\frac{dO_A}{dT} = \frac{kc}{RT} = \frac{4.92 - 0.8}{20} = 0.206 \text{ atm}^{-1} \text{ min}^{-1}$

3:23 Let us try nth order kinetics. Then from Eq 33a, taking ratios, we get

$$\frac{(n-0)kt_2}{(n-0)kt_1} = \frac{C_{AO}\left(\frac{C_{A2}}{C_{AO}}\right)^{1-n}}{C_{AO}\left(\frac{C_{A1}}{C_{AO}}\right)^{1-n}}$$

Replacing values give.

$$2 = \frac{-1}{(\frac{1}{4})^{1-n}-1}$$
 -- or $n = \frac{1}{2}$

Replacing in Eq 33a gives

$$(\frac{1}{2}-1)kt_2 = 1^{1-1/2} (\frac{mol}{M})^{1-1/2} [0-1]$$

OV

- 3.25 Here we are given prost data, so we have two possible approaches
 - cas we could first transform at pressure readings into concentrations and then solve, or
 - (b) We could stay with pressure readings and then transform our final equation into concentration units.

Let us stick with pressure units, and let us start by guessing first order reversible kinetics. Why reversible? Because at t=00 there is still some unreacted pA. so the rate equation we will test is

On integration we get

$$ln\left(1-\frac{X_A}{X_{Ae}}\right) = \frac{k_1 t}{X_{Ae}}$$
 --- (54)

(continued)

In pressure units this integrated expression becomes

Let us see whether this equation fits the facts. So tabulate &

5 min	PA	PA-PAR PAO-PAR	In PAO-PAR	pler
02468101214	760 600 475 390 320 275 240 215	1 450/610 325/610 240/610 170/610 125/610 90/610 05/610	0 -0.3042 -0.6296 -0.9328 -1.2777 -1.5951 -1.9136 -2.2391	Note: For 1st order rxs kc and kp have the some value, time-1

what this shows is that if we have isothermal 1st order kinetics we can use pro CA without changing the rate constants

3.27 Since we are told that the reaction is elementary the stoichiometric equation shows that the reaction is 2nd order. So for a small relative concentration change we can write

$$-\frac{\Delta C_A}{\Delta E} = E \overline{C_A}^2$$

or
$$k = -\frac{\Delta C_A}{\Delta t} \frac{1}{C_A^2} = \frac{-0.2 \text{ mol/hit}}{7\frac{2}{3} \text{ hr}} \cdot \frac{1}{(19.9 \text{ mol/hr})^2} = 6.6 \times 10^{-5} \text{ lit/mol/hr}$$

3,29

Amount of A or B:
$$0.8 \times 0.4$$
 V_0

Amount of west: 0.2×0.2
 V_0

Amount of west: 0.2×0.2
 V_0

Total: 0.6×0.4

For a first order reaction in a variable volume set-up, we have from Eq.79:

$$-\ln\left(\frac{\varepsilon_{A}+1-\sqrt{v_{o}}}{\varepsilon_{A}}\right) = kt - or - -\ln\left(\frac{-0.4+1-0.8}{-0.4}\right) = k.3 \text{ min}$$

$$0. k = \frac{\ln 2}{3} = 0.231 \text{ min}^{-1}$$

3.31 The units of the rate constant tells that this is a 2nd order reaction

Thus

01

So to find the value of the rate constant, or ko and F/Rs we must plot in k ors /T. The slope gives E/R and the intercept gives ko. Let us follow this procedure

3.31 (continued)

First let us tabulate

and the second	eminimum K	Tendenia K. per /	k	Ink
508	781	0,00128	0.1059	-1.6974
427	700	0,00143	0.0031	-5.7764
393	666	0,001502	0.000598	-7.4388
356	629	0,001590	80,9 × 10 ⁻⁶	-9.4223
273	546	0,001832	0.942 × 10 ⁻⁶	+13.8753

Next plot as shown below

To find the value of ko take the second data point. From Equi

$$\ln k_0 = \ln k - \frac{E}{R} \left(\frac{1}{T} \right)$$

$$= 5.7764 - 22727 \left(\frac{1}{700} \right) = 38.2439$$

$$4 k_0 = e^{38.2439} = 4.06 \times 10^{16}$$

So for the temperature range covered in the reported data $-\Gamma_{HT} = 4.06 \times 10^{16} \, e^{-22.727/T} \, c_A^2, \, \frac{\text{mol}}{\text{cm}^3.\text{s}} = \frac{1}{2} \, e^{-22.727/T} \, c_A^2 \, e^{-22.727/T} \, c_A^2 \, e^{-22.727/T} \, e^{-22.727$