Задача 11-2 Фотоэлемент.

Фотоэлемент – устройство, преобразующее энергию электромагнитного излучения в электрическую энергию. Простейший фотоэлемент представляет собой полупроводниковый прибор с p-n-переходом. При поглощении оптического излучения в результате внутреннего фотоэффекта увеличивается число свободных носителей заряда, которые разделяются полем перехода. В результате этого по обе стороны от перехода создается разность потенциалов – фото-ЭДС.

Часть 1. Идеальный фотоэлемент

Идеальный фотоэлемент представить в виде источника тока и диода, соединенных параллельно (рис.1). Величина фототока I_{Φ} , генерируемого определяется источником, только интенсивностью u спектральным составом света и <u>не зависит от</u> *сопротивления нагрузки*. Диод **D** является нелинейным элементом. Ток диода I_{D} и напряжение U_{n} связаны на нем соотношением:

$$I_D = CU_D^2$$
,

Рис. 1

где С – некоторая известная постоянная величина.

- 1.1 К фотоэлементу подключен резистор с сопротивлением $R_{\rm H}$. Считая известной величину фототока I_{Φ} , определите показания амперметра и вольтметра.
- 1.2 Сопротивление нагрузки $R_{\mathbb{H}}$ изменяют от нуля до очень большого значения. Как при этом зависит ток в нагрузке от напряжения $I_{\mathbb{H}}(U_{\mathbb{H}})$?
- 1.3 Чему равен ток короткого замыкания $I_{\rm KB}$ ($R_{\rm H}=0$) и напряжение холостого хода $U_{\rm XX}$ ($R_{\rm H}\to\infty$)?
 - 1.4 Изобразите график зависимости $I_{\rm H}(U_{\rm H})$.
- 1.5 Определите, при каком значении сопротивления нагрузки $R_{p_{max}}$ в ней выделяется максимальная мощность и чему она равна (P_{max}). Чему при этом равны ток и напряжение на резисторе $I_{p_{max}}$ и $U_{p_{max}}$?
- 1.6 Пусть $I_{\Phi}=1,0$ мА, $C=4,0\cdot 10^{-8}$ А/ $_{\rm B^2}$. Приведите численные значения $I_{\rm K3},\ U_{\rm XX},\ I_{\rm Pmax},\ U_{\rm Pmax},\ R_{\rm Pmax}$ и $P_{\rm max}$.

Часть 2. Потери энергии в фотоэлементе.

Более приближенная к реальности модель фотоэлемента должна учитывать омические потери внутри него (сопротивление пластины полупроводника, контактов и т.д.). При этом эквивалентная схема усложняется. В ней появляются сопротивление, подключенное параллельно источнику тока $R_{\Pi AF}$, и последовательное сопротивление $R_{\Pi OC}$ (рис.2.), значения которых считайте известными.

2.1 К фотоэлементу подключен резистор с сопротивлением $R_{\rm H}$. Считая известными величину фототока I_{Φ} , а также значения сопротивлений $R_{\Pi \Pi \Pi}$ и $R_{\Pi \Lambda \Pi}$, определите показания амперметра и вольтметра.

Рис. 2

- 2.2 Сопротивление нагрузки $R_{\rm H}$ изменяют от нуля до очень большого значения. Составьте уравнение, связывающее ток и напряжение на нагрузке.
- 2.3 Выразите величины тока короткого замыкания и напряжения холостого хода. Пусть (как и в первой части задачи) $I_{\oplus} = 1,0$ мА, $\mathbf{C} = 4,0 \cdot \mathbf{10}^{-3} \, \mathrm{A}_{/\mathrm{B}^2}$, а сопротивления равны: $R_{\Pi 0 \Pi} = 1,0 \cdot \mathbf{10}^2$ Ом, $R_{\Pi \Lambda \Pi} = 1,0 \cdot \mathbf{10}^3$.
 - 2.4 Определите численные значения I_{KE} , U_{XX} .
 - 2.5 Используя численные значения, изобразите график зависимости $I_{\rm H}(U_{\rm H})$.
- 2.6 Определите, при каком напряжении на нагрузке в ней выделяется максимальная мощность. Чему она равна?