

1、VOLTE 概述和基本特征

VOLTE 是什么? 最直接简单的理解就是 VOIP, 因为 LTE 没有电路域, 需要基于分组域提供 IP 语音业务, 即 VoLTE (Voice over LTE)。

特征 1: VoLTE 由 IMS 提供呼叫控制和业务逻辑。VoLTE 的信令和媒体经 EPC 路由至 IMS 网络,由 IMS 提供会话控制和业务逻辑。

特征 2: Volte 由 EPC 提供高质量的分组域承载。在 Volte 中 EPC 作为 IMS 的接入网,通过全球统一的专用 APN('IMS' APN) 及独立承载为用户提供区别于普通数据业务的 QoS 保障。特征 3: 连续覆盖前 Volte 可通过 eSRVCC 保障呼叫连续性。Volte 终端在通话过程中漫游至无 LTE 覆盖的区域时,通过 eSRVCC 将当前呼叫切换至 2G/3G 电路域,此时 2G/3G 网络作为 IMS 的接入网。

2、VolTE 竞争力

体验特性	Volte	2G/3G		
呼叫时延	0.5-2 秒	5-8 秒		
视频质量	典型分辨率: 480*640 可选 720P/1080P	分辨率: 176*144		
话音质量	AMR-WB 频率: 50~7000Hz 编解码: AMR-WB 23.85Kbps 抽样: 16KHz	AMR-NB 频率: 300~3400Hz 编解码: AMR-NB 12.2Kbps 抽样: 8KHz		

3、终端开机的 IMS 注册过程

用户开机以后,首先完成 EPC 附着过程,建立 QCI=9 默认承载,附着完成以后,发起 IMS 注册过程和鉴权。在 IMS 注册流程中,先建立 QCI=5 的 SIP 信令承载。然后进行 SIP 的 注册过程,当完成注册过程以后,就可以进行 VoLTE 呼叫了。SIP 信令的注册过程如下图所示。

SIP 注册过程:

序号	消息解释
1	用户首次试呼时,终端向代理服务器发送 REGISTER 注册请求
2	IMS 认证/计费中心获知用户信息不在数据库中,向终端回 401 Unauthorized 质询信息,其中包含安全认证所需的令牌

3	终端将用户标识和密码根据安全认证令牌加密后,再次用 REGISTER 消			
3	息报告给 IMS 服务器			
4	IMS 服务器将 REGISTER 消息中的用户信息解密,认证合法后,将该用			
4	户信息登记到数据库中,并向终端返回 响应消息 200 OK。			
5	用户订阅注册事件包,			
6	服务器应答订阅成功。			
7	IMS 服务器发送 notify 消息,由于订阅的用户已经注册,所以 IMS 服			
1	务器回应 Notify 消息中,状态为 active,同事携带 XML 信息。			
8	终端发送 Notify 200 表示接收成功。			

4、VoLTE 呼叫 VoLTE 的信令呼叫流程

主叫信令流程

对关键流程的解释如下表所示:

序号	消息解释				
4	主叫发 INVITE 消息,触发主叫 RRC 建立过程, INVITE 消息中包含				
1	被叫方的号码,主叫方支持的媒体类型和编码等。				
	主叫建立 SRB2 信令无线承载, QCI9 默认承载和 QCI5 SIP 信令无				
2	线承载。例如在本例中,信令无线承载 SRB-ID=2;QCI=9 的默认承				
2	载的 eps-BearerID=5, DRB-ID=3; QCI=5 的 SIP 信令承载的				
	eps-BearerID=6, DRB-ID=4				
3	核心网侧收到主叫的 INVITE 消息以后,给主叫发送 INVITE 的应答				
3	消息, INVITE 100. 表示正在处理中。				
4	核心网向处于空闲态的被叫发 INVITE 消息,由于被叫处于空闲态,				
4	所以核心网侧触发寻呼消息,寻呼处于空闲态的被叫用户				
5	被叫建立 SRB2 信令无线承载, QCI9 默认承载和 QCI5 SIP 信令无				
5	线承载				
6	核心网在 QCI5 RB 承载上,给被叫用户发送 INVITE 消息				
7	被叫对 INVITE 消息的响应				
8	被叫方通知主叫方,自己所支持的媒体类型和编码。				
	主叫建立 QCI1 的数据无线承载,用于承载语音数据,使用 UM 方式。				
9	例如本例中,eps-BearerID=7,DRB-ID=5。关键参数包括头压缩参				
9	数, TTI Bundling, SPS。DRX 参数也会按照语音业务的要求进行				
	重新配置。				
10	被叫建立 QCI1 的数据无线承载。例如本例中 QCI1 承载的				
10	eps-BearerID=7, DRB-ID=5。				
11	核心网通知主叫终端的 SM 层,建立 qci=1 的承载,例如:				
11	eps-BearerID=7				
12	主叫收到被叫的 INVITE 183 消息				
13	核心网通知被叫终端的 SM 层,建立 qci=1 的承载				
14	主叫收到 INVITE 183 消息以后,发送确认消息 PRACK, 启动资源				

	预留过程,		
15	被叫收到主叫的 PRACK 以后,返回 PRACK 200 响应,启动资源预留过程,		
16	主叫收到被叫的 PRACK 200 以后,发送 UPDATE 消息,标明资源预留成功。		
17	被叫收到主叫的 UPDATE 消息后,得知主叫 UE 的资源预留成功。被叫发送 UPDATE 200,标明被叫资源预留成功,		
18	被叫发送 INVITE 180,被叫振铃,主叫放回铃音		
19	被叫摘机,被叫向主叫发送 INVITE 200.		
20	主叫给 IMS 服务器发 ACK, 证实已经收到 IMS 对于 INVITE 请求的最终响应。核心网 IMS 服务器发 ACK 消息给被叫,证实对于 INVITE 请求的最终响应。		
21	主叫挂机,发BYE,请求结束本次会话。IMS服务器给被叫发送BYE,请求结束本次会话。		
22	被叫挂机,回 BYE 200 消息,核心网 IMS 服务器给主叫发 BYE 200,标明会话结束。		
23	通过 RRCConntctionReconfiguration 消息和去激活 EPS 专用承载消息,主叫删除 QCI=1 的数据无线承载。		
24	被叫删除 QCI=1 的数据无线承载。		

5、Volte 呼叫 volte 的 AMR-WB 12.65K 的确 定

1) AMR-WB 的 9 种速率索引表

Frame Type	Mode	Mode	Frame content (AMR-WB mode, comfort
Index	Indication	Request	noise, or other)
0	0	0	AMR-WB 6.60 kbit/s
1	1	1	AMR-WB 8.85 kbit/s
2	2	2	AMR-WB 12.65 kbit/s
3	3	3	AMR-WB 14.25 kbit/s
4	4	4	AMR-WB 15.85 kbit/s
5	5	5	AMR-WB 18.25 kbit/s
6	6	6	AMR-WB 19.85 kbit/s
7	7	7	AMR-WB 23.05 kbit/s
8	8	8	AMR-WB 23.85 kbit/s
9	_	_	AMR-WB SID (Comfort Noise Frame)
11~13	_	_	For future use
14	_	_	speech lost
15	_	_	No Data (No transmission/No reception)
	_	_	

2) volte 呼叫过程中,Invite 消息中携带的媒体类型和编码 格式

3)主被叫协商以后,在 UPDATE 消息中确定的媒体类型和 编码格式

AMR-WB 采样频率为 16kHz, AMR 的采用频率为 8kHZ。AMR-WB 总共支持 8 种模式,在上图中就是 mode-set=2,表示 AMR-WB 只适应 12.65kbps 编码方式。

6、Volte 呼叫 vollte 的 AMR-WB 23.85k 的确 定

1) Invite 消息中的 AMR-23.85k 的编码方法

2) update 消息中协商以后的媒体类型和编码方式

下图中:媒体类型为 AMR-WB,采样频率为 16k,单通道。采用的模式为 AMR-WB 的 mode 8。mode8 对应的编码速率为 23.85kbps。

7、Volte 语音呼叫 2G

上图是 VoLTE 呼叫 2G 信令流程。流程和 VoLTE 呼叫 VoLTE 是相同的。区别是如果 VoLTE

使用 AMR-WB 语音,在协商之后,会变为 AMR12.2。

下图中,主要使用 AMR-WB 语音,被叫为 GSM 语音是的语音编码协商结果。语音采用采样频率为 8k 的 AMR 语音,mode-set=7,表示使用 AMR 12.2 kbit/s(GSM-EFR)。

INVITE 消息中, VoLTE 终端支持的语音编码方案:

协商后的语音编码方案:

8、Volte 视频呼叫 2G

流程如下所示:

被叫流程

Time	🎤 Messages 🔍 🗓	Туре
10:44:33.062	♣ Paging Request Type 1 (3)	GSM RR
10:44:34.014	Paging Request Type 1	GSM RR
10:44:34.014	↑ Paging Response	GSM RR
10:44:34.014	↑ Channel Request	GSM RR
10:44:34.014	↑ Channel Request	GSM RR
10:44:34.030	♣ Immediate Assignment	GSM RR
10:44:34.030	Paging Request Type 1	GSM RR
10:44:34.076	Immediate Assignment	GSM RR
10:44:34.076	↑ Paging Response	GSM RR
10:44:34.217	System Information Type 5	GSM RR
0:44:34.420	TClassmark Change	GSM RR
0:44:34.420	↑ GPRS Suspension Request	GSM RR
10:44:34.638	↓ Setup (4)	NAS CC
0:44:34.654	The Call Confirmed (5)	NAS CC
0:44:34.654	System Information Type 6	GSM RR
0:44:34.654	↑ Measurement Report	GSM RR
0:44:35.090	System Information Type 5	GSM RR
0:44:35.090	↑ Measurement Report	GSM RR
0:44:35.527	System Information Type 6	GSM RR
0:44:35.714	↑ Measurement Report	GSM RR
10:44:36.136	System Information Type 5ter	GSM RR
0:44:36.136	↑ Measurement Report	GSM RR
0:44:36.136	Assignment Command (12)	GSM RR
0:44:36.276	↑ Assignment Complete	GSM RR
0:44:36.479	Alerting (14)	NAS CC
0:44:36.541	↑ Measurement Report	GSM RR
0:44:36.541	+ Connect (16)	NAS CC
10:44:36.947	♣ Connect Acknowledge (19)	NAS CC
0:47:32.790	♣ Disconnect (21)	NAS CC
0:47:32.790	PRelease (22)	NAS CC
10:47:33.087	♣ Release Complete	NAS CC
10:47:33.133	🕹 System Information Type 5	GSM RR
10:47:33.133	- Channel Release	GSM RR

序号	消息解释		
1	主叫发 INVITE 消息,触发主叫 RRC 建立过程, INVITE 消息中包含被叫方的号		
1	码,主叫方支持的媒体类型和编码等。例如支持的音频和视频等。		
2	核心网侧收到主叫的 INVITE 消息以后,给主叫发送 INVITE 的应答消息, INVITE		
2	100. 表示正在处理中。		
3	核心网向处于空闲态的被叫发送寻呼消息。		
4	核心网向被叫 GSM 手机发送 setup 消息,消息中包含语音承载能力和主叫号码		
5	GSM 被叫给核心网发送 call confirmed 消息,包含语音编码能力相关信息。		
6	主叫 LTE 手机,建立 qci=1 的语音承载。由于被叫不支持视频,所以没有建立		
0	qci=2 的承载。		
7	核心网 IMS 服务器发送 INVITE 183,表示会话正在处理中,其中包含了被叫支		
1	持的语音编码类型和媒体格式等信息。		
8 [~] 11	进行媒体格式协商和资源预留。由于被叫为 GSM 手机, 所以只支持 12.2 语音		
12	被叫 GSM 建立业务承载		
13	核心网发送 INVITE 183,表示会话在处理中		
14	被叫振铃		
15	核心网发送 INVITE 180, 主叫放回铃音。		
16	被叫摘机		
17	核心网给主叫发送 Invite 200,表示 ok		
18	主叫发 ACK, 表示呼叫建立成功,		
19	被叫收到 connect acknowledge,表示呼叫连接建立成功		
20	主叫挂机,发 BYE 消息,删除建立的语音业务承载。		
21	核心网给 GSM 被叫发送 disconnect 消息		
22	gsm 被叫收到后,发送 RELEASE		
23	核心网删除建立的语音业务承载,同时给主叫发 BYE 200,表示成功		
24	核心网收到被叫的 RELEASE 消息以后,发送 release complete,表示释放成功		

9 eSRVCC

SRVCC (Single Radio Voice Call Continuity) 存在切换性能问题,无法达到语音中断时长小于 300ms 的部署要求,会严重影响 VoLTE 用户体验

- 1. SRVCC 终端发起向另一 IMS 终端的语音呼叫
- 2. 呼叫成功, 媒体连接建立, 双方进行通话
- 3. 用户离开 LTE 覆盖, eNodeB 触发 SRVCC 切换, MME 通知 SRVCC MSC 准备切换, MSC 完成 预留资源
 - 4. MME 通知终端切换到 2G/TD, 切换过程中语音发生中断, 中断时间 T1 约为 200ms
 - 5. SRVCC MSC 发起远端媒体更新,通知远端 IMS 终端通过 SRVCC MSC 接收和发送语音
 - 6. 远端 IMS 终端将媒体连接切换至 SRVCC MSC
 - 7. 从 SRVCC 终端切换到 2G/TD 到远端 IMS 终端切换媒体连接完成,这段时间语音将发生中断,中断时间 T2 约为 800ms 左右(如果远端终端处于漫游中,这段时间还会更长)eSRVCC:在 SRVCC 基础上,通过在拜访地引入 ATCF 作为媒体锚定点,节省远端媒体更新时间,可将切换时延减低至 300ms 以内。(注: ATCF 功能集成在 SBC 内实现)
 - 一. 终端不区分 SRVCC 和 eSRVCC,均看做 SRVCC,附着过程中终端上报 SRVCC 能力,并存储在 HSS 中;
 - 二. 是否支持 eSRVCC 是由拜访地和归属地的网络部署决定的,只有当拜访地和归属地 均支持 eSRVCC 时,终端才能进行 eSRVCC 切换,否则执行 SRVCC 切换:

eSRVCC 与 SRVCC 方案区别点在于前者 在 IMS 系 统 中 新 增 了 一 对 功 能 实体: ATCF (Acess Transfer Control Functionality, 接入 转 移 控制 功 能)和 ATGW (Access Transfer Gateway,接入 转 移网关),分别作为 VoIP 呼叫 在控制平面和用户平面的锚定点。两者对比如下图所示:

图 1 SRVCC 和 eSRVCC 的区别

10、头压缩 RoHC

▶ 减少报头开销

- 语音包头开销: RTP 开销占 12Byte, UDP 头开销占 8Byte, IP 层的 IP 头开销占 20Byte (IPv4) /40Byte (IPv6)。
- ROHC 头压缩后 IP+UDP+RTP 头开销 4Byte 左右。
- 以 12. 2k 语音为例,头压缩前 60+32=92 字节,压缩后 4+32=36 字节,压缩率为 60%。

> 实现策略

- 只对用户面的数据执行头压缩;
- 可以分承载配置是否打开头压缩:
 - □ 默认头压缩仅针对 QCI=1 语音承载开启;
 - □ 对于视频通话业务中 QCI=2 的视频承载默认不开启;

确认头压缩打开,通过查看 RRCConnectionReconfiguration 消息确认。

11、TTI 捆绑说明

TTI bundling 就是把上行的连续 TTI 进行绑定,在多个连续的子帧上多次发送同一个 TB (Transport Block)。

- 提高数据解码成功的概率,提高上行 $3^{\sim}4dB$ 的 SINR
- 提升 30%上行覆盖范围

TD-LTE 的 TTI Bundling 仅适用于子帧配置 0、1、6,中移动使用子帧配置 2,所以 TTI Bundling 为关闭状态,同时 TTI Bundling 和 SPS 不能同时配置。

使用 8 天线可以有效提升上行性能,可以满足 VoLTE 的要求,因此基本不需要开启 TTI bundling。主要应用于 FDD 2 天线。

参数位置: TD-LTE 业务→TD-LTE 小区→信道及过程配置→PUSCH 信道

通过查看 qci=1 语音承载 RRCConnectionReconfiguration 消息,有没有相关 ie。

12、9种 QCI 值索引

VoLTE 使用 QCI=5、QCI=1、QCI=2 这三种!

语音业务: QCI=5 +QCI=1

视频电话: QCI=5+QCI=1+QCI=2

QCI	Resource Type(资源 类型)	Priority (优先权)	Packet Delay Budget (NOTE 1)信息 包延迟	Example Services (服务例子)
(NOTE 3)		2	100 ms	Conversational Voice(语音会 话)
2		4	150 ms	Conversational Video (Live

(NOTE 3)	GBR			Streaming) (视频会话)
3		3	50 ms	Real Time Gaming(实际活动时
(NOTE 3)		J		间)
4		5	300 ms	Non-Conversational Video
(NOTE 3)		0	300 1115	(Buffered Streaming)
5		1	100 ms	IMS Signalling (IMS 信号)
(NOTE 3)		1	100 ms	Imb Signalling (Imb 47)
6				Video (Buffered Streaming)
				TCP-based (e.g., www, e-mail,
(NOTE 4)		6	300 ms	chat, ftp, p2p file sharing,
(NOIL 4)				progressive video, etc.) (TCP
				基础)
7				Voice,
(NOTE 3)	Non-GBR	7	100 ms	Video (Live Streaming)
	NOII GDK			Interactive Gaming(组合业务
				互动)
8				
(NOTE 5)		8		Video (Buffered Streaming)
			300 ms	TCP-based (e.g., www, e-mail,
			300 1115	chat, ftp, p2p file
9		9		sharing, progressive video,
(NOTE 6)		<i>J</i>		etc.)(数据承载)

微信扫描以下二维码,免费加入【5G 俱乐部】,还赠送整套:5G 前沿、NB-loT、4G+(Vol.TE)资料。

