Characterizing realizability triposes over PCAs

Jonas Frey (LIPN, Paris 13)

Luminy

6 April, 2025

In memoriam: Thomas Streicher (1958-2025)

 Memorial colloquium in Darmstadt organized by Kohlenbach: April 23 2025, with talks by van Oosten (on Krivine realizability) and Hyland (on Dialectica)

https://www.mathematik.tu-darmstadt.de/fb/aktuelles/veranstaltungen/veranstaltung_details_194629.en.jsp

Characterization of realizability triposes over PCAs

Theorem $(F)^1$

A tripos $\mathcal{P}: \mathsf{Set}^{\mathsf{op}} \to \mathsf{Pos}$ is a realizability tripos over a PCA, iff :

- 1. ₱ has enough ∃-prime predicates.
- 2. The full indexed sub-poset $A = \text{prim}(P) \subseteq P$ of \exists -prime predicates has finite meets.
- 3. A has a **discrete** generic predicate.
- 4. A is shallow, i.e. A(1) = 1

In the following we explain what the words in the statement mean.

¹ Frey. "A fibrational study of realizability toposes". PhD thesis. Paris 7 University, 2013 Frey. *Uniform Preorders and Partial Combinatory Algebras*. arxiv 2024, accepted in TAC

Triposes

Definition

A Set-tripos is an indexed poset $\mathcal{P}: \mathsf{Set}^{\mathsf{op}} \to \mathsf{Pos}$ such that:

- For all sets I, the poset $\mathfrak{P}(I)$ is a **Heyting algebra**.
- For all functions $f: I \to J$, the reindexing map $f^*: \mathcal{P}(J) \to \mathcal{P}(I)$ is a **Heyting algebra morphism** and has left and right adjoints $\exists_f \dashv f^* \dashv \forall_f$ satisfying the **Beck-Chevalley condition**:

(BCC) For all pullback squares
$$A \xrightarrow{h} B \atop k \downarrow \ \ \, \downarrow g$$
 in Set, we have $g^* \circ \exists_f = \exists_h \circ k^*$ and $g^* \circ \forall_f = \forall_h \circ k^*$. $C \xrightarrow{f} D$

• There exists a **generic predicate**, i.e. a set Σ and a predicate $\mathsf{tr} \in \mathcal{P}(\Sigma)$ such that for all sets A and elements $\phi \in \mathcal{P}(A)$ there exists an $f : A \to \Sigma$ with $f^*(\mathsf{tr}) = \phi$.

Remarks

- Triposes where introduced in 1980 by Hyland, Johnstone and Pitts to construct realizability toposes, notably the effective topos.
 - HJP used indexed **preorders** instead of indexed posets. I'm being sloppy about the distinction.
 - On the one hand, definitions are easier to state for indexed posets.
 On the other hand, examples are typically indexed preorders.
 - Fortunately, we can always quotient out indexed preorders to get equivalent indexed posets.

D C :::

Realizability triposes

Definition

The **effective tripos eff** : $Set^{op} \rightarrow Preord$ is given by

$$\mathsf{eff}(I) = (P(\mathbb{N})^I, \leq)$$

where

$$(\phi: I \to P(\mathbb{N})) \leq (\psi: I \to P(\mathbb{N})) \quad \text{iff} \quad \exists (f: \mathbb{N} \xrightarrow{\mathsf{part. rec.}} \mathbb{N}) \ \forall (i \in I) \ \forall (n \in \phi(i)) \ . \ f(n) \in \psi(i)$$

More generally:

Definition

Let \mathcal{A} be a partial combinatory algebra (PCA). The realizability tripos $rt(\mathcal{A})$: Set^{op} \rightarrow Preord is given by

$$rt(I) = (P(A)^I, <)$$

where

$$(\phi:I\to P(\mathcal{A}))\leq (\psi:I\to P(\mathcal{A}))\quad \text{iff}\quad \exists (e\in\mathcal{A})\ \forall (i\in I)\ \forall (a\in\phi(i))\ .\ e\cdot a\in\psi(i)$$

Remark: There are also tripos accounts of modified realizability and dialectica. A good source is van Oosten's book (except for dialectica).

$Characterization\ of\ realizability\ triposes$

Theorem

A tripos $\mathcal{P}: \mathsf{Set}^\mathsf{op} \to \mathsf{Pos}$ is a realizability tripos over a PCA, iff :

- 1. ₱ has enough ∃-prime predicates.
- 2. The full indexed sub-poset $A = \text{prim}(P) \subseteq P$ of \exists -prime predicates has finite meets.
- 3. A has a **discrete** generic predicate.
- 4. A is **shallow**, i.e. A(1) = 1

\exists -prime predicates

Definition

Let C be a category with finite limits.

- 1. $\mathsf{IPos}(\mathbb{C}) = [\mathbb{C}^{\mathsf{op}}, \mathsf{Pos}]$ is the locally ordered category of indexed posets on \mathbb{C} .
- 2. Say that $A \in IPos(\mathbb{C})$ has existential quantification, if all reindexing maps f^* have left adjoints subject to the Beck–Chevalley condition.
- 3. $\exists -\mathsf{IPos}(\mathbb{C}) \subseteq \mathsf{IPos}(\mathbb{C})$ is the category of indexed posets having existential quantification, and indexed monotone maps preserving existential quantification.
- 4. For $\mathfrak{H} \in \exists \operatorname{-IPos}(\mathbb{C})$, a predicate $\pi \in \mathfrak{H}(I)$ is called $\exists \operatorname{-prime}$ if for all maps $K \xrightarrow{g} J \xrightarrow{f} I$ and objects $\phi \in \mathfrak{H}(K)$ we have

$$f^*\pi \leq \exists_g \phi \quad \Rightarrow \quad \text{ there exists } s: J \to K \text{ with } gs = \mathrm{id}_J \text{ and } f^*\pi \leq s^*\psi.$$

5. We say that $\mathcal{H} \in \exists -\mathsf{IPos}(\mathbb{C})$ has enough $\exists -\mathsf{prime}$ predicates, if for all predicates $\phi \in \mathcal{H}(I)$ there exists a map $f: J \to I$ and an $\exists -\mathsf{prime}$ $\pi \in \mathcal{H}(J)$ with $\phi = \exists_f \pi$.

\exists -completion

Theorem

Let \mathbb{C} be a **small** category with finite limits.

- 1. The inclusion functor $\exists -\mathsf{IPos}(\mathbb{C}) \hookrightarrow \mathsf{IPos}(\mathbb{C})$ has a a left adjoint $D : \mathsf{IPos}(\mathbb{C}) \to \exists -\mathsf{IPos}(\mathbb{C})$.
- 2. $\mathcal{H} \in \exists -\mathsf{IPos}(\mathbb{C})$ is an \exists -completion, i.e. of the form $D(\mathcal{A})$ for some $\mathcal{A} \in \mathsf{IPos}(\mathbb{C})$ iff it has enough \exists -prime predicates.

In this case we have $A \cong \operatorname{prim}(\mathcal{H})$.

Remarks

- 1. Analogy: a sup-lattice L is a free cocompletion iff it has enough **completely join prime elements**.
- 2. Free ∃-completion of indexed posets as well as free join-completion of posets are instances of lax idempotent monads for such such monads it is often possible to reconstruct 'starting data' from the cocompletion by some kind of atomicity/primality/compactness condition.
- 3. All this over a small base category, i.e. not over Set.
- 4. Over Set, we have to impose an additional smallness condition, e.g. existence of a generic predicate. This brings us to uniform preorders.

Uniform preorders

Definition

A uniform preorder is a pair (A, R) where A is a set and $R \subseteq P(A \times A)$ is a set of binary relations such that:

- 1. R contains 1_{4} and is closed under composition.
- 2. R is downward closed, i.e. $r \in R$ and $s \subseteq r$ implies $s \in R$.

A morphism of uniform preorders between uniform preorders (A, R) and (B, S) is a function $f : A \to B$ such that $(f \times f)(r) \in S$ for all $r \in R$.

UOrd is the category of uniform preorders and their morphisms. This category is locally ordered: given morphisms of uniform preorders $f, g: (A, R) \to (B, S)$, we set $f \le g$ iff $(f \times g)(\mathrm{id}_A) \in B$.

Remark: uniform preorders are related to evidenced frames².

²Cohen, Miquey, and Tate: "Evidenced frames: A unifying framework broadening realizability models" (LICS 2021)

Uniform preorders vs indexed preorders

- Every uniform preorder (A, R) induces an indexed preorder fam(A, R): $Set^{op} \to Preord$ given by $fam(A, R)(I) = (A^I, \leq)$ with $(\phi : I \to A) \leq (\psi : I \to A)$ iff $(\phi \times \psi)(id_I) \in P(A \times A)$.
- Taking fiberwise poset reflections gives a functor

 $\mathsf{fam}:\mathsf{UOrd}\to\mathsf{IPos}(\mathsf{Set}).$

Proposition

The functor fam is a local equivalence. Its essential image comprises precisely the indexed posetes with generic predicates.

• The uniform preorder corresponding to an indexed poset $A : Set^{op} \to Pos$ with generic predicate $tr \in A(A)$ is given by (A, R) with

$$R = \{ r \subseteq R \times R \mid p^* \mathsf{tr} \leq q^* \mathsf{tr} \} \qquad A \stackrel{p}{\longleftarrow} A \times A \stackrel{\pi_2}{\longrightarrow} A \qquad .$$

\exists -completion of uniform preorders

- Problem: ∃-completion of Set-indexed preorders does not exist in general.
- However, ∃-completion of Set-indexed preorders with generic predicate does exist and admits a nice representation on the level of uniform preorders.
- Concretely, the \exists -completion of a uniform preorder (A, R) is given by (PA, DR), where DR is the uniform preorder structure on PA generated by relations

$$[r] = \{(U, V) \in PA \times PA \mid \forall a \in U \ \exists b \in V \ . \ (a, b) \in R\}$$

for $r \in R$.

- More generally, \exists -completions exist of many-sorted uniform preorders, representing Set-indexed preorders with a generic family of predicates.
- The category of many-sorted uniform preorders has the advantage that it's cartesian closed.

Let's revisit the theorem:

Theorem

A tripos $\mathcal{P}: \mathsf{Set}^{\mathsf{op}} \to \mathsf{Pos}$ is a realizability tripos over a PCA, iff :

- 1. \mathcal{P} has enough \exists -prime predicates.
- 2. The full indexed sub-poset $A = \operatorname{prim}(\mathcal{P}) \subseteq \mathcal{P}$ of \exists -prime predicates has finite meets.
- 3. A has a **discrete** generic predicate.
- 4. A is shallow, i.e. A(1) = 1
- For rt(A): Set^{op} \to Ord, prime predicates are singleton valued predicates.
- Finite meets in $sing(A) \cong prim(rt(A))$ come from pairing and projection operators.
- Applying Grothendieck construction gives $\int sing(A) = PAsm(A)$ (cat. of partitioned assemblies).
- Equation $D(\operatorname{sing}(A)) = \operatorname{rt}(A)$ is analogous to $\operatorname{PAsm}(A)_{\operatorname{ex/lex}} = \operatorname{RT}(A)$.
- The observation that realizability triposes are ∃-completions of their indexed sub-preorders of singletons is originally due to Pieter Hofstra³.

³ Hofstra. "Relative completions". In: Journal of Pure and Applied Algebra (2004).

Conditions 3 and 4

- Omitting condition 4 gives a characterization of **relative realizability triposes** these are defined w.r.t. an **inclusion** $\mathcal{A}_{\#} \subseteq \mathcal{A}$ **of PCAs**⁴.
- So what's the discreteness in condition 3 about? It is related to functionality.

Definition

Let $\mathcal{A}: \mathsf{Set}^\mathsf{op} \to \mathsf{Pos}$ be an indexed poset. A predicate $\delta \in \mathcal{A}(A)$ is called **discrete**, if for all spans $I \overset{e}{\leftarrow} J \overset{f}{\to} A$ with e surjective and predicates $\phi \in \mathcal{A}(I)$ with $e^*\phi \leq f^*\delta$, there exists $g: I \to A$ with eg = f (and $g^*\pi \leq \psi$).

- Exercise: given an indexed poset A with generic predicate $tr \in A(A)$, tr is discrete iff for the associated uniform preorder (A, R), all the relations $r \in R$ are functional.
- Omitting discreteness condition from the theorem characterizes a class of triposes corresponding to relationally complete uniform preorders.
- Before introducing those, we have to introduce cartesian uniform preorders

⁴ Birkedal and Oosten. "Relative and modified relative realizability". In: Ann. Pure Appl. Logic (2002).

Cartesian uniform preorders

Definition / Lemma

A uniform preorder (A, R) is called **cartesian**, if one/any of the following equivalent conditions are satisfied:

2. $(A, R) \rightarrow 1$ and $(A, R) \rightarrow (A, R) \times (A, R)$ have right adjoints in UOrd.

1. $fam(A, R) : Set^{op} \rightarrow Pos$ is an indexed meet-semilattice

3. There exists a function $\wedge: A \times A \to A$ and an element $\top \in A$ such that the relations

$$\tau = \{(a, \top) \mid a \in A\} \qquad \lambda = \{(a \land b, a) \mid a, b \in A\} \qquad \rho = \{(a \land b, b) \mid a, b \in A\}$$

are in R, and for all $r, s \in R$ the relation

$$\langle r,s\rangle := \wedge \circ (r \times s) \circ \delta_A = \{(a,b \wedge c) \mid (a,b) \in r, (a,c) \in s\}$$

is in R.

Relationally complete uniform preorders

Definition

A cartesian uniform preorder (A, R) is called **relationally complete**, if there exists a relation $0 \in R$ (called 'universal relation'), such that for every relation $r \in R$ there exists a *function* (i.e. a single-valued and entire relation) $\tilde{r} \in R$ with

$$r \circ \wedge \subseteq @ \circ \wedge \circ (\tilde{r} \times id_A),$$

in other words

$$\forall a \, b \, c \in A \, . \, (a \wedge b, c) \in r \ \Rightarrow \ (\tilde{r}(a) \wedge b, c) \in \mathbb{Q}.$$

Remark: Relationally complete uniform preorders can be viewed as a kind of relational PCAs.

Theorem

TFAE for a cartesian uniform preorder (A, R).

- 1. (A, R) is relationally complete.
- 2. fam(D(A, R)) is a tripos.

Besides PCAs, relationally complete uniform preorders comprise **ordered PCAs** (with filters). Open question: are there any others?

Mono-fibered concrete categories

Observation

Let $A \in \exists$ -IPos(\mathbb{C}) for \mathbb{C} with finite limits, and $\phi \in A(I)$.

- ϕ is \exists -prime iff all its reindexings have the **left lifting property** w.r.t. **cocartesian arrows**.
- ϕ is discrete, if it has the right lifting property w.r.t. cartesian arrows over surjections.

We saw that ∃-primality is related to ∃-completion. It turns out that discreteness is also related to a completion operation!

Definition

For $\mathbb C$ a category, a **mono-fibered concrete category** over $\mathbb C$ is a faithful functor $\mathbb X \to \mathbb C$ which admits **cartesian liftings along monomorphisms**.

Proposition

For small \mathbb{C} , the functor $\int : \mathsf{IPos}(\mathbb{C}) \to \mathsf{MFConc}(\mathbb{C})$ sending indexed posets to their Grothendieck construction has a left adjoint.

The indexed posets in the image of this left adjoint are precisely those with **enough discrete predicates**.

Thank you for your attention!