MTCAIC3_FEEG - Combined EEG Classification Project

Welcome to the main repository for the MTCAIC3 FEEG classification project. This project integrates two advanced EEG classification systems: one for Steady-State Visually Evoked Potential (SSVEP) tasks and another for Motor Imagery (MI) tasks. This central README provides a high-level guide to navigate the sub-projects and generate a final, combined submission file.

Project Structure

The repository is organized into two main components, each addressing a specific EEG classification task, along with a script to merge their outputs.

Complete Workflow to Generate Final Submission

Follow these steps in order to produce the final predictions. The process involves running the inference script for each sub-project and then merging the results.

Step 1: Generate Predictions for the SSVEP Task

The SSVEP model handles the classification of trials with IDs from 4901 to 5100.

1. Navigate to the SSVEP directory:

```
cd SSVEP
```

- 2. **Follow the instructions:** The README.md file in this directory contains detailed instructions for setting up the environment, installing dependencies, training the model, and running inference. The provided SSVEP/README.md file has all the necessary steps.
- 3. **Run inference:** Execute the inference.py script as instructed in its README.

```
python inference.py
```

4. **Confirm the output:** This process will generate a submission.csv file inside the SSVEP/ directory, containing predictions for its designated test trials.

Step 2: Generate Predictions for the Motor Imagery (MI) Task

The MI model is responsible for classifying trials with IDs from 4901 to 5000.

1. Navigate to the MI directory: From the root directory, run:

cd MI

- 2. **Follow the instructions:** This directory also contains a README.md file. Follow its guide to set up the environment and run inference.
- 3. Run inference: Execute the inference.py script.

```
python inference.py
```

4. **Confirm the output:** This will create an inference_submission.csv file within the MI/ directory, containing predictions for its specific set of trials.

Step 3: Merge Submissions for the Final Result

After generating predictions from both models, you need to combine them into a single, final submission file. The merge_submissions.py script is designed for this purpose. It takes the predictions from the MI model (MI/inference_submission.csv) and updates the corresponding entries in the submission file from the SSVEP model (SSVEP/submission.csv).

1. Return to the root directory:

```
cd ..
```

2. Run the merge script:

```
python merge_submissions.py
```

3. **Final Output:** The script will create a final_submission.csv file in the root directory. This file represents the complete and final set of predictions, ready for submission.

Documentation

For a detailed technical description of the methodologies, models, and features used in this project, please refer to the paper located in the <code>Documentation/</code> directory:

• Documentation/System_description_paper.pdf