# Models for synchrophasor with step discontinuities in magnitude and phase: estimation and performance

- Motivation
- Proposed mathematical models
  - Magnitude Step
  - Phase Step
- Estimation of model parameters from discrete-time signals
  - Hilbert transform
  - Non-linear least-squares estimator
- Numerical simulations: computation errors
- Lab prototype system assessment

PMU calibrators do need to perform magnitude or phase tests.



- a) We should be able to measure frequency and phase
- b) We should be able to measure frequency and magnitude

Moreover,  $V_e$  can be used as a reference value as an intermediate phasor.

$$y(t) = x_1[1 + x_2u(t - \tau)]\cos(\omega t + \varphi) + \eta(t)$$



Phase Step

$$y(t) = x_1 \cos(\omega t + \varphi + x_3 u(t - \tau)) + \eta(t)$$



Additive white gaussian noise

Noise variance

$$\eta_0 = \left(\frac{\sigma_y}{10^{\frac{SNR}{20}}}\right)^2,$$

$$y(t) = x_1[1 + x_2u(t - \tau)]\cos(\omega t + \varphi) + \eta(t)$$



Phase Step

$$y(t) = x_1 \cos(\omega t + \varphi + x_3 u(t - \tau)) + \eta(t)$$



Additive white gaussian noise

Noise variance

$$\eta_0 = \left(\frac{\sigma_y}{10^{\frac{SNR}{20}}}\right)^2,$$

$$y(t) = x_1[1 + x_2u(t - \tau)]\cos(\omega t + \varphi) + \eta(t)$$

Phase Step

$$y(t) = x_1 \cos(\omega t + \varphi + x_3 u(t - \tau)) + \eta(t)$$



$$\widehat{V}_e = \widehat{X}_e \angle \widehat{\varphi} = \frac{\widehat{x}_1 \widehat{\tau} + \widehat{x}_1 (1 + \widehat{x}_2) (T - \widehat{\tau})}{T} \angle \widehat{\varphi}$$

$$V_1$$
  $V_2$   $V_e$ 

$$\widehat{V}_e = \widehat{X} \angle \widehat{\varphi}_e = \widehat{X} \angle \frac{\widehat{\varphi} \widehat{\tau} + (\widehat{\varphi} + \widehat{x}_3)(T - \widehat{\tau})}{T}$$
<sub>b)</sub>



$$y(t) = x_1[1 + x_2u(t - \tau)]\cos(\omega t + \varphi) + \eta(t)$$

Phase Step

$$y(t) = x_1 \cos(\omega t + \varphi + x_3 u(t - \tau)) + \eta(t)$$

Given a real narrowband monocomponent signal x(t),  $-\infty < t < \infty$ , let z(t) be called the analytic signal associated to x(t), defined as

$$z(t) = x(t) + j\tilde{x}(t), \tag{7}$$

where

$$\tilde{x}(t) = H(x(t)) = \int_{-\infty}^{\infty} \frac{x(u)}{\pi(t-u)} du, \tag{8}$$

is the Hilbert transform of x(t). If z(t) is expressed in the polar form

$$z(t) = A(t)e^{j\theta(t)}, (9)$$

$$A(t) = \sqrt{x^2(t) + \tilde{x}^2(t)},$$
 (10)

$$\theta(t) = \tan^{-1}(x(t)/\tilde{x}(t)), \tag{11}$$

the instantaneous frequency (IF) can be defined as

$$f_i(t) = \frac{1}{2\pi} \left( \frac{d\theta(t)}{dt} \right). \tag{12}$$

$$z[n] = x[n] + jH(x[n])$$

$$d[n] = |f_i[n]| - m(f_i[n])$$



Fig. 2 Detection signal d[n] (top plot) associated with a phasor waveform with magnitude step (bottom plot). ( $\tau = 70\%$  of window duration).



Fig. 3 Detection signal d[n] (top plot) associated with a phasor waveform with phase step (bottom plot). ( $\tau = 60\%$  of window duration).

$$y(t) = x_1[1 + x_2u(t - \tau)]\cos(\omega t + \varphi) + \eta(t)$$

Phase Step

$$y(t) = x_1 \cos(\omega t + \varphi + x_3 u(t - \tau)) + \eta(t)$$

$$\varepsilon(\mathcal{P}) = \frac{1}{2} \sum_{k=1}^{N} (y(k) - \hat{y}(k\Delta t))^{2}$$
$$\min_{\mathcal{P}} \varepsilon(\mathcal{P})$$

Non-linear least-squares estimator: Levenberg-Marquardt

- Non-linear functions w.r.t parameters
- Iterative
- Gauss-Newton + steepest descent
- Numerical approximation of Jacobian
- Local minima, needs convex function

| Parameter | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $\omega/2\pi$ | φ           |
|-----------|-----------------------|-----------------------|-----------------------|---------------|-------------|
| Nominal   | 1 V <sub>p</sub>      | ± 0.1                 | ± 10°                 | 60 Hz         | 360°, ±120° |
| U[%]      | 1                     | 1                     | 1                     | 0.05          | 1           |



Fig. 4 Histogram of errors in step instant estimation.

GOVERNO FEDERAL

TABLE I NOMINAL VALUES AND UNCERTAINTIES USED IN THE SIMULATIONS

| Parameter | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $\omega/2\pi$ | φ           |
|-----------|-----------------------|-----------------------|-----------------------|---------------|-------------|
| Nominal   | 1 V <sub>p</sub>      | ± 0.1                 | ± 10°                 | 60 Hz         | 360°, ±120° |
| U[%]      | 1                     | 1                     | 1                     | 0.05          | 1           |

TABLE II STANDARD DEVIATION OF NUMERICAL ERRORS FOR MAGNITUDE STEPS

| SNR [dB]                | 90   | 93  | 97   |
|-------------------------|------|-----|------|
| Frequency $[\mu Hz/Hz]$ | 0.14 | 0.1 | 0.06 |
| Magnitude [ $\mu V/V$ ] | 1.5  | 1.0 | 0.6  |
| Phase [m °]             | 0.4  | 0.1 | 0.06 |

TABLE III
STANDARD DEVIATION OF NUMERICAL ERRORS FOR PHASE STEPS

| SNR [dB]                | 90   | 93   | 97   |
|-------------------------|------|------|------|
| Frequency $[\mu Hz/Hz]$ | 0.26 | 0.19 | 0.1  |
| Magnitude $[\mu V/V]$   | 1.5  | 1.0  | 0.7  |
| Phase [m °]             | 0.17 | 0.11 | 0.07 |

GOVERNO FEDERAL











Standard deviation from  $F_{nom} = 60 \ Hz$ 

Steady State:  $9 \mu Hz/Hz$  (0.5 mHz)

**Magnitude Step:** 70  $\mu$ Hz/Hz (4 mHz)

**Phase Step:** 40  $\mu Hz/Hz$  (2 mHz) to 280  $\mu Hz/Hz$  (17 mHz)

# **Magnitude Step Phasor**

GOVERNO FEDERAL





Phase (difference from the average values)

Standard deviations

Steady State:  $1.7 m^{\circ}$ 

**Magnitude Step:**  $10 m^o$  to  $70 m^o$ 





Magnitude (difference from the Steady State average values)

Standard deviations

Steady State:  $160 \mu V/V$ 

**Magnitude Step:**  $200 \mu V/V$ 

### **Questions?**

## Thank you!



- **Ouvidoria:** 0800 285 1818
- inmetro.gov.br
- f facebook.com/Inmetro
- witter.com/Inmetro
- youtube.com/tvinmetro

