Concepts and Concept Location

Roberto A. Bittencourt Based on Rajlich's slides

Concepts and concept location

Role of concept location

- Concept location finds code snippet where a change is to be made
- Change requests are most often formulated in terms of domain concepts
 - Example: "Correct error that arises when trying to paste a text"
 - the programmer must find in the code the locations where concept "paste" is located
 - this is the start of the change

Partial comprehension of a code

- Large programs cannot be completely comprehended
 - programmers seek the minimum essential understanding for the particular software task
 - they use an as-needed strategy
 - they attempt to understand how certain specific concepts are reflected in the code
- Analogy: visiting a large city

Concept triangle

Spelling corner (Merriam-Webster)

- ► <u>Intension</u> \in-'ten(t)-shən\
 - synonym CONNOTATION
 - ▶ the suggesting of a meaning by a word apart from the thing it explicitly names or describes b: something suggested by a word or thing W. R. Inge> an essential property or group of properties of a thing named by a term in logic
- ▶ Intention \in-'ten(t)-shən\
 - > synonyms INTENT, PURPOSE, DESIGN, AIM, END, OBJECT, OBJECTIVE, GOAL mean what one intends to accomplish or attain.
 - ▶ INTENTION implies little more than what one has in mind to do or bring about <announced his intention to marry>. . .

<<extensions >>

Dog as an example <<name>>

Dog / Pes / Hund

<<intension >>

Hairy animal with teeth...

Fido

Lassie

Buck (in "Call of the wild" by Jack London)

Concept location

- Concept extensions are implemented as code fragments
 - variables, classes, methods, or other
- Programmers finds these code fragments
 - easy in small programs or in the programs that the programmer knows well
 - hard in large programs or programs that the programmer does not know
 - Watchmaker anecdote

Search in the unknown parts of system

Formulating a query

- Extract the set of concepts used in the change request
- Delete the concepts intended for the communication with the programmers
- Delete the concepts that are unlikely to be implemented in the code
 - concepts related to the things that are outside of the scope of the program
 - concepts that are to be implemented in the future.
- Rank the remaining concepts by the likelihood that they can be easily located

- Point of Sale system
- Change request is "Implement a credit card payment"
- Identify the concepts
 - · "Implement"
 - "Credit card"
 - "Payment"

- Point of Sale system
- Change request is "Implement a credit card payment"
- Identify the concepts
 - "Implement" ... communication with programmer
 - "Credit card"
 - "Payment"

- Point of Sale system
- Change request is "Implement a credit card payment"
- Identify the concepts
 - "Implement" ... communication with programmer
 - "Credit card" ... to be implemented, not in the old code
 - "Payment"

- Point of Sale system
- Change request is "Implement a credit card payment"
- Identify the concepts
 - "Implement" ... communication with programmer
 - "Credit card" ... to be implemented,
 not in the old code
 - "Payment" !!! Significant concept,
 find it in the code

Recognize concept

Reading code

- Comments and identifiers
- Characteristic algorithm (plan)

Small modification

- Change the code slightly, execute
- Throw away this modification!

Concept location methodologies

- Human knowledge
- Traceability tools
- Dynamic search (execution traces)
- Static search
 - dependency search
 - "grep" (pattern matching)
 - information retrieval techniques

GREP Search Technique

- ▶ GREP is an acronym for "global regular expression print".
 - GREP prints out the lines that contain a match for a regular expression.
 - Programmer iteratively formulates search query and then investigates the results.
 - If the results are too big to review, programmer either performs further search within these results or reformulates the search query.

Example: Art of Illusion

- ▶ 3D modeling studio, written in Java
- More than 600 classes, 100,838 LOC.
- Implement a zooming control
 - currently, the only way to zoom is to enter the zooming value into the specific text box
 - a value of the zoom has to be typed in by the user
 - the default value is 100%.
 - implement zooming control that uses arrow keys

GREP example

- First search: "zoom"
 - The query produced irrelevant 6 lines
- Second search: "scale"
 - returned in 1,544 lines, too large for inspection.
- ▶ Third search: "100"
 - default scaling value is 100
 - search within the results of the previous search
 - returned 4 lines from the Viewer Canvas. java file.
- Inspection
 - one of the lines is the location

Dependency Search Technique

- Uses Class Dependency Graphs (CDG)
 - extracted form the existing code
- Local functionality
 - consists of concepts that are actually implemented in the module and are not delegated to others.
- Composite functionality
 - as the complete functionality of a module combined with all its supporting modules.
- Determined by reading code and documentation

Functionalities of component X

Concept location by dependency search

Progress of the search

Dependency search part 1

- Start at the ModelingApp class
 - concept not contained within its local responsibility
- ▶ The next step: inspect LayoutWindow
 - responsible for constructing the main AOI window
 - composite responsibility contains the concept, but the local responsibility does not.
- There were clues to search ValueField
 - It implements the text box.
 - concept is not present in the composite responsibility
 - backtrack to the LayoutWindow class

Dependency search part 2

The SceneViewer class

- several functions are responsible for responding to events from the user
- function updateImage() was responsible for repainting the screen
- we determined that the composite responsibility of this function contained the concept.
- local responsibility of SceneViewer still did not contain the concept

ViewerCanvas class

Contains the concept

Comparison of the Techniques

The grep-based

- depend on the use of naming conventions
- independent of class structure
 - ▶ GREP tools provide just the list of search results
- suitable for explicit concepts only

▶ The static dependency search technique

- utilizes the class structure
- needs correct understanding of composite and local functionality
- Suitable for both explicit and implicit concepts

Example Violet

- Violet
 - Open source UML editor
- Supports drawing UML Diagrams
 - Class diagram, Sequence diagram, State diagram, Object diagram, Use case diagram
- ▶ 60 classes and 10,000 lines of code
 - http://sourceforge.net/projects/violet/

GUI of Violet

Change Request

- Record the author for each figure
- This change will make Violet more versatile
 - Support for cooperative work
 - ▶ The author created a figure
 - Author knows the semantics of the figure
- Name of concept: "author"
 - Implicit concept extension
 - ▶ The extension is not present in the current code
 - Belongs to the set of the figure properties

Locating figure properties: Start

Classes to inspect

Most likely supplier

Next classes to inspect

Wrong way

Backtrack

Concept location found

Possible extension of the search

Another location found

Example 2: Eclipse 3.3

- Eclipse Integrated Development Environment for Java
- ▶ 15,479 classes, 156,334 functions
- Change request: BugID 172261*: [Actions] When rename a file in one project's navigator, the other selected file's name is renamed
- Concept location technique: CLDS

^{*}https://bugs.eclipse.org/bugs/show_bug.cgi?id=172261

CLDS - results

Main class: Launcher

Minimum possible number of classesvisited = 4

Number of classes proposed to be visited = 1076 (1+8+1035+32)

Programmers can easily get lost when JRipples requires them to visit a large number of suppliers for a class

Interactive tool for concept location

Concept location by grep

- Classical technique for concept location
 - based on pattern matching
- Programmer formulates a query
 - based on concept name(s)
- Grep searches the files
 - finds corresponding lines of code ("hits")
 - programmer investigates the hits
- If a search fails, new query is tried
 - programmer learns from failed search

Example: "Anchors" bug in Mozilla*

Change request

Anchors in e-mails are broken (Clicking Anchor doesn't go to target in e-mail)

Initial knowledge

^{*}M. Petrenko, V. Rajlich, R. Vanciu, "Partial Domain Comprehension in Software Evolution and Maintenance", ICPC 2008, 13-22

Knowledge after learning

Result of repeated search

