Lecture 8 (14/08/25)

ME512/ME6106: Mobile Robotics

Robotics Terminology

Dr. Karali Patra

Professor

Department of Mechanical Engineering

IIT Patna

Room no. 111, Block 3

Email: kpatra@iitp.ac.in

Whatsapp: 7295834306

Parts of Stationary Robot

- Mechanisms (Mechanical Structure)
- End Effecters
- **❖** Tools
- Controllers
- Actuators
- Sensors
- Programming Interface

A typical task

What do we need?

- ❖ How to move the robot through space to complete the specified task
- What torques and forces to apply on the joints?

Modeling

- □ The underlying mathematical model that describes the robot behavior
- ✓ Will be needed to support off line programming
- ✓ Will be needed to design robots
- Selecting motors, link lengths and cross sections

Forward Kinematics

☐ Given joint parameters, determine the final end effecter location

Inverse Kinematics

☐ Given desired end effecter position and orientation determine the joint parameters

Inverse Kinematics Solutions

- ☐ Inverse kinematics may produce
- One solution
- Multiple solution
- No solution

Multiple Solution Case

No Solution Case

The selected location is outside the robot workspace

Workspace

The set of locations that can be reached by the robot

Example

$$x = a_1 \cos \theta_1 + a_2 \cos(\theta_1 + \theta_2)$$
$$y = a_1 \sin \theta_1 + a_2 \sin(\theta_1 + \theta_2)$$

Lecture 8

Jacobian: Relating Velocities with Joint Velocities

☐ Given joint velocities determine the desired end effecter velocities

Example

$$x = a_1 \cos \theta_1 + a_2 \cos(\theta_1 + \theta_2)$$
$$y = a_1 \sin \theta_1 + a_2 \sin(\theta_1 + \theta_2)$$

$$\Rightarrow \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -a_1 \sin \theta_1 - a_2 \sin(\theta_1 + \theta_2) & -a_2 \sin(\theta_1 + \theta_2) \\ a_1 \cos \theta_1 + a_2 \cos(\theta_1 + \theta_2) & a_2 \cos(\theta_1 + \theta_2) \end{pmatrix} \begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{pmatrix}$$

$$\dot{x} = J\dot{\Theta}$$
Jacobian

Achieving Desired End Effecter Velocities

- ☐ Jacobian matrix needs to be inverted to determine the joint velocities to achieve the desired end effecter velocity
- This is not always possible
- Matrix may not be invertible

$$\dot{\Theta} = J^{-1}\dot{x}$$

Singularity

$$\dot{\Theta} = J^{-1}\dot{x}$$

Can it be guaranteed that J is always invertible?

$$\det(J) = a_1 a_2 \sin(\theta_2)$$

At θ_2 =0 or 180 degrees *J* can't be inverted

Dynamics

What forces and torque need to be applied to joints to achieve the desired velocities and accelerations?

Trajectory Generation

How to trace a path through the space at the specified velocities

Open Loop vs Closed Loop Control

- If we have a perfect model, then we can just position motors at the desired location with no feedback
- But this does not work in practice

Position Control

☐ How to compensate for errors and inaccuracies

Force Control

☐ Control force to ensure that robot can handle delicate objects and move more constrained surfaces

Description of position and orientation

- Concerned with the location of the objects in three dimensional space
- ❖Objects: links, joints, end effector/tool and job/workpiece

How to describe and manipulate position and orientation mathematically?

Mathematical fundamentals for robot kinematics

Mapping:

Changing the description of a point (or value) in space from one frame to another frame.

Different cases of mapping

- (1) Second frame is rotated w.r.t the first, origin of both frames is same (changing of orientation)
- (2) Second frame is moved away from the first. Axes of both frames remain parallel (change of position)
- (3) Second frame is rotated w.r.t the first and move away from it (change of position and orientation)

Mapping:

(1) Second frame is rotated w.r.t the first, origin of both frames is same (changing of orientation)

$$= \hat{\lambda} \cdot \left(\frac{2}{4}\hat{u} + \frac{2}{4}\hat{v} + \frac{2}{4}\hat{u} \right)$$

$$= \hat{\lambda} \cdot \left(\frac{2}{4}\hat{u} + \frac{2}{4}\hat{v} + \frac{2}{4}\hat{u} \right)$$

$$| P_{y} = \hat{\lambda} \cdot \left(\frac{2}{4}\hat{u} + \frac{2}{4}\hat{v} + \frac{2}{4}\hat{v} + \frac{2}{4}\hat{u} \right)$$

$$| P_{z} = \hat{\lambda} \cdot \left(\frac{2}{4}\hat{u} + \frac{2}{4}\hat{v} + \frac{2}{4}\hat{v} + \frac{2}{4}\hat{u} \right)$$

Mapping:

Relation of rotation matrix

Mapping:

(2) Second frame is moved away from the first. Axes of both frames remain parallel (change of position)

Mathematical fundamentals for robot kinematics

Mapping:

(3) Second frame is rotated w.r.t the first and move away from it (change of position and orientation)

Mapping:

(3) Second frame is rotated w.r.t the first and move away from it (change of position and orientation)

Rotation matrix:

Fundamental rotation matrices

(1) Rotation about z axis

Fundamental rotation matrices

(1) Rotation about x axis

$$R_x =$$

Problem#1

Frame {2} in rulated wirt frame {19 about the reason by angle of 60°. The position of the origin of frame {29 as shown seen for frame {19 in 102 = {7.0, 5.0, 7.0} Obtain the transferonation matrin 17 wit 23.

Alw find the description of point P in frame { 15 if 2p = [2:0, 4:0, 6:0] T

solution

Lecture 8 athematical fundamentals for robot kinematics

Where,

Compound or composite transformation

❖The point P is defined w.r.t frame 3, obtain the transformation matrix between frame 1 and 3.

Compound or composite transformation

❖The point P is defined w.r.t frame 3, obtain the transformation matrix between frame 1 and 3.

Composite transformation in manipulator

❖To find the position and orientation of manipulator end effector w.r.t. object.

Composite transformation in manipulator

❖To find the position and orientation of manipulator end effector w.r.t. object.

Composite transformation in manipulator

❖To find the position and orientation of manipulator end effector w.r.t. object.

