

DEPARTMENT OF

SOFTWARE TECHNOLOGY

CCDSTRU Project Specifications

Term 2, AY 2024-2025

Due: April 1, 2025 (T) 0800

Implement a computer program (either in C or Java) following the specifications of the system given below.

Applicable Sets

- **A** : $\{x \in \mathbb{Z}^+ \mid x < 5\}$
- $P : A \times A$
- **B** : {true, false}
- \mathbf{C} : { {(1,1),(1,2),(1,3),(1,4)}, {(1,1),(2,2),(3,3),(4,4)}, {(1,4),(2,3),(3,2),(4,1)}, {(4,1),(4,2),(4,3),(4,4)} }
- T is a relation on A that is reflexive, symmetric, antisymmetric, and transitive

System Variables

• Uno, Dos, Tres, $F \subseteq P$

go ∈ B

• *turn* ∈ **B**

over ∈ B

System Facts

- $F = P (Uno \cup Tres)$
- W = C T
- $over \leftrightarrow (Uno \in W \lor Tres \in W \lor F = \emptyset)$

System Initialization

• Uno = Ø

• turn = true

• **Dos** = Ø

• go = false

• Tres = Ø

System States and Behavior

NextPlayerMove $(pos \in P)$

$$(turn \land go \land pos \in \mathbf{F}) \rightarrow \mathbf{Uno} = \mathbf{Uno} \cup \{pos\}$$

$$\land turn = \neg turn$$

$$\land go = \neg go$$

$$(\neg turn \land pos \in \mathbf{Uno} \cup \mathbf{Tres}) \rightarrow \mathbf{Uno} = \mathbf{Uno} - \{pos\}$$

$$\land \mathbf{Tres} = \mathbf{Tres} - \{pos\}$$

$$\land turn = \neg turn$$

$$(turn \land \neg go \land pos \in \mathbf{F}) \rightarrow \mathbf{Tres} = \mathbf{Tres} \cup \{pos\}$$

$$\land go = \neg go$$

GameOver(over)

result ∈ {Uno Wins, Dos Wins, Tres Wins}

$Uno \in W$	\rightarrow	result = Uno Wins
$\mathbf{F} = \emptyset$	\rightarrow	result = Dos Wins
$\mathbf{Tres} \in \mathbf{W}$	\rightarrow	result = Tres Wins