

PROPOSAL PROGRAM KREATIVITAS MAHASISWA

Perancangan dan Realisasi Sistem Pemberi Makan Kucing Otomatis Menggunakan Deteksi *Cat Recognition*

BIDANG KEGIATAN: PKM - KARSA CIPTA

Diusulkan oleh:

Ketua : Muhamad Ismail (151344019) / Angkatan 2015

Anggota: Muhammad Urfan Nafis (151344020) / Angkatan 2015

Hasna Azhar Fauziyyah Amani (161344013) / Angkatan 2016

POLITEKNIK NEGERI BANDUNG BANDUNG

2018

PENGESAHAN PKM – KARSA CIPTA

1. Judul Kegiatan : Sistem Pemberi Makan Kucing

Otomatis Menggunakan Deteksi

Cat Recognition

2. Bidang Kegiatan : PKM-KC

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap : Muhamad Ismail
b. NIM : 151344019
c. Jurusan : Teknik Elektro

d. Universitas/Institut/Politeknik : Politeknik Negeri Bandung

e. Alamat Rumah dan No Tel./HP : Komp. Bumi Pakusarakan D4/13

RT 02 RW 19, Kec. Ngamprah,

Kab. Bandung Barat 40552

f. Email : mail.muhismail@gmail.com

4. Anggota Pelaksana Kegiatan/Penulis : 2 Orang

5. Dosen Pendamping

a. Nama Lengkap dan Gelar : Ir. Hertog Nugroho, M.Sc., Ph.D.

b. NIDN : 0015055908

c. Alamat Rumah dan No Tel./HP : Jalan Parasitologi No. 4, Bandung

HP. 08156062208

6. Biaya Kegiatan Total

a. DIPA Polban : Rp8.478.000,00 7. JangkaWaktu Pelaksanaan : 5 (lima) Bulan

Bandung, 28 Mei 2018

Menyetujui,

Dosen Pendamping Ketua Pelaksana Kegiatan,

(Ir. Hertog Nugroho, M.Sc., Ph.D.)

NIDN. 0015055908

(Muhamad Ismail) NIM. 151344019

Mengetahui,

Ketua UPPM,

Ketua Jurusan

(Dr. Ir. Ediana Sutjiredjeki, M.Sc.) NIP. 19810425 200501 1002

(Malayusfi, BSEE,MT.) NIP. 19540101 198403 1001

DAFTAR ISI

PENGESAH	AN PKM – KARSA CIPTA
DAFTAR IS	Ii
BAB I PEND	DAHULUAN 1
BAB II TINJ	AUAN PUSTAKA3
BAB III ME	TODE PELAKSANAAN6
3.1 Po	erancangan ϵ
3.2 In	mplementasi ϵ
3.3 Po	engujian ϵ
3.4 A	nalisis
BAB IV BIA	YA DAN JADWAL KEGIATAN 8
4.1 A	nggaran Biaya 8
4.2 Ja	adwal Kegiatan 8
DAFTAR PU	JSTAKA
LAMPIRAN	-LAMPIRAN11
Lampir	ran 1. Biodata Ketua dan Anggota serta Dosen Pembimbing 11
Lampir	ran 2. Justifikasi Anggaran Kegiatan
Lampir	ran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas . 20
Lampir	ran 4. Surat Pernyataan Ketua Pelaksana
Lampir	an 5. Gambaran Teknologi yang Hendak Diterapkembangkan 23

BAB I PENDAHULUAN

Kucing merupakan hewan peliharaan terpopuler ke dua setelah anjing dengan kepemilikan sebesar 23% dari 27.000 lebih responden dari berbagai negara (GfK SE survey, 2016). Namun faktanya, banyak dari pemilik kucing salah dalam merawatnya. Salah satunya dalam hal pola makan. Jam dan jumlah pakan yang tidak jelas cenderung membuat kucing akan makan terus menerus, bermalas malasan, hingga menggemuk. Kucing obesitas berpotensi besar mengalami radang sendi (*arthritis*), diabetes dan jantung (Pertiwi, 2016). Masalah dalam hal lainnya adalah pemilik memiliki lebih dari 2 kucing, kucing cenderung untuk saling berebut makanan jika wadah makannya tidak dipisahkan (ASPCA, 2016).

Berikut adalah solusi yang telah diusulkan untuk permasalahan tersebut:

- 1. *Programmable Pet Feeder* (pemberi makan peliharaan terprogram) (Berhan, Ahemed, & Birhan, 2015).
- 2. Alat pemberi makan dan minum kucing terjadwal otomatis berbasis mikrokontroller (Ayunita, 2016).
- 3. Alat pemberi makan kucing otomatis dengan kontrol sms (Susanto, Dharma, & Iqbal, 2013)(Singh, Sharma, Sood, & Singh, 2015).
- 4. Sistem monitoring dan memberi makan peliharaan otomatis menggunakan IoT (Subaashri, Sowndarya, Sowmiyalaxmi, Sivassan, & Rajasekaran, 2017)(Seungcheon, 2016).
- 5. Alat pemberi makan kucing otomatis menggunakan RFID (Badmus, 2015).

Untuk solusi pertama, kelemahan dari sistem ini adalah alat yang digunakan masih bersifat mekanik dan untuk merubah porsi alat tersebut perlu memprogram ulang alat setiap kali ingin merubah porsi makanan. Untuk alat pemberi makan dan minum kucing terjadwal otomatis berbasis mikrokontroller, sistem ini dikhususkan untuk pemilik yang memiliki hanya 1 peliharaan dan kucing dewasa. Karena sistem hanya akan membuka pada waktu tersebut dan porsi nya tidak dapat dirubah yaitu tetap 50 gram setiap membuka. Sedangkan untuk sistem otomatis dengan kontrol sms, format SMS yang digunakan besifat *case sensitive* sehingga jika salah penulisan huruf besarnya akan direspon salah oleh program dan porsi nya juga tetap. Untuk pemilik dengan kucing peliharaan lebih dari dua, alat-alat tersebut kurang direkomendasikan. Pada sistem monitoring dan otomatis berbasis IoT, sistem memberikan kucing akses penuh pada penyimpanan makanannya sehingga kita tidak dapat mengontrol kucing untuk makan karena setiap kucing yang memiliki tag dan ada pada area sensor IR akan membuka tempat penyimpanan

makanan. Dalam pengembangannya, sensor IR ini dapat diganti dengan RFID sehingga dapat lebih akurat dan cepat dalam proses identifikasi, namun tetap tidak menyelesaikan masalah dalam pemberian control makanan kepada kucing.

Untuk hal tersebut, diusulkan sebuah sistem pemberi makan kucing otomatis dengan menggukan *cat recognition*. Kamera akan mendeteksi wajah kucing dan akan mencocokannya dengan database atau profil kucing yang ada. Saat data *valid* dan memenuhi kondisi, penutup makanan akan keluar mengisi tempat makan kucing.

Secara umum cara kerja dari sistem ini adalah saat kucing terdeteksi oleh cat recognition, sistem akan secara otomatis mengeluarkan jumlah makanan sesuai dengan profil yang diatur oleh pemilik untuk kucing tersebut. Pemilik dapat mengatur profil kucing dan menerima setiap pemberitahuan pada smartphone dengan sistem operasi Android. Selain itu, Pemilik juga dapat mengatur jadwal waktu bagi kucing untuk makan sehingga jika kucing datang tidak pada waktu makan, sistem tidak akan mengeluarkan makanan. Sistem ini juga dilengkapi dengan monitoring berat badan kucing sehingga pemilik dapat memiliki referensi jumlah makanan yang akan diberikan kepada kucing.

Target yang ingin dicapai dari alat ini adalah pendeteksian wajah kucing memiliki akurasi 100% dan akurasi takaran porsi yang tepat sesuai dengan setiap profil.

BAB II TINJAUAN PUSTAKA

Berbagai macam metode untuk mengatasi masalah pemberian makan kucing peliharaan telah banyak diajukan. Salah satu solusi yang dapat dilakukan adalah dengan sistem pemberi makan peliharaan terprogram (Berhan et al., 2015). Lebih jauh, efisiensi pemberian makan kucing dapat ditingkatkan dengan alat pemberi makan dan minum kucing terjadwal otomatis berbasis mikrokontroller (Ayunita, 2016). Seiring dengan berjalannya waktu sistem ini berkembang dengan fitur kontrol *sms gateway* sehingga dapat mengontrol pemberian makan dari jarak jauh (Susanto et al., 2013)(Singh et al., 2015). Dalam perkembangannya sistem ini dapat digunakan untuk pemilik dengan jumlah kucing peliharaannya lebih dari satu dengan menggunakan fitur sensor berbasis IoT sehingga sistem ini jauh lebih modern dibandingkan dengan sistem *sms gateway* (Subaashri et al., 2017)(Seungcheon, 2016). Sensor IR yang digunakan dapat diganti dengan RFID agar dapat lebih akurat dan cepat dalam proses identifikasi (Badmus, 2015).

Solusi pertama adalah sistem pemberi makan peliharan terprogram. Alat ini merupakan Alat pemberi makan untuk hewan peliharaan berbasis *microcontroller*. Alat ini memiliki 4 tipe makanan yang dapat dipilih menggunakan *rotary switch* 4 mode (Berhan et al., 2015). Jumlah porsi yang keluar dapat diatur melalui program. Saat kucing hendak makan, pemilik akan memutar *switch* tersebut sesuai dengan makanan yang diinginkan. Hal tersebut membuat alat ini tidak otomatis sehingga perlu adanya orang setiap saat hewan peliharaan akan makan.

Selanjutnya adalah alat pemberi makan dan minum kucing terjadwal otomatis berbasis *mikrocontroller*. Pada alat pemberi makan dan minum hewan kucing terjadwal otomatis ini, digunakan RTC (*Real Time Clock*) seri DS1307 sebagai acuan waktu utama yang dapat diatur sesuai dengan keperluan serta memiliki ketepatan waktu yang baik sehingga alat dapat berfungsi secara *real-time* (Ayunita, 2016). Jadwal dapat diatur berbeda sehingga jadwal dapat diatur untuk pagi dan sore. Selain itu, jadwal juga dapat diatur hingga hari yang ditentukan. Sistem ini dikhususkan untuk pemilik yang hanya memiliki 1 peliharaan kucing dewasa. Hal ini karena sistem hanya akan membuka pada waktu tersebut dan porsi nya tidak dapat dirubah, yaitu tetap 50 gram setiap membuka.

Teknologi ini kemudian dikembangkan dengan penambahan *gateway SMS* sebagai kontrol jarak jauh bagi alat pemberi makan kucing otomatis. Teknologi ini pada dasarnya mirip dengan yang sebelumnya, namun memiliki kontrol jarak jauh melalui *SMS gateway*. Pada saat alat mengidentifikasi adanya pesan masuk, alat akan langsung menjalankan program pengecekan nomor telepon yang masuk. Jika nomor telepon dinyatakan benar atau sesuai dengan database yang ada, alat akan kembali menguji isi pesan yang diterimanya. Jika isi pesan sesuai dengan format isi

pesan yang disediakan, alat akan langsung memproses permintaan tersebut dan memberikan respon ke nomor pengirim tadi. Jika alat tidak menemukan kecocokan isi pesan yang diterimnya dengan database yang tersedia, alat akan langsung mengirim pesan ke nomor pengirim bahwa format pesan yang dikirimkannya salah. Makanan akan keluar seketika ketika pesan "Beri Makan" diterima. (Susanto et al., 2013)

Format SMS yang digunakan besifat case sensitive sehingga jika salah penulisan huruf besarnya akan direspon salah oleh program. Selanjutnya kekurangan dari alat ini adalah jumlah makanan yang keluar dari alat tidak dapat diubah dan hanya cocok untuk kucing dewasa atau kucing tertentu. Saat jarak jauh pemilik yang memiliki lebih dari 1 kucing sulit untuk mengontrol kucing mana yang sudah makan dan belum.

Terakhir, sebuah sistem monitoring dan memberi makan peliharaan otomatis menggunakan IoT Sistem ini adalah pemantauan hewan peliharaan otomatis dan sistem pemberian makan menggunakan Internet of Things. Sistem perawatan hewan peliharaan ini adalah sistem lengkap untuk memantau aktivitas hewan (Subaashri et al., 2017). Dari segi pemberian makanannya, alat ini memiliki penutup mangkuk yang terbuka dan menutup secara otomatis. Penutup mangkuk digerakkan oleh sensor jarak inframerah dan motor listrik yang dioperasikan dengan baterai. Sensor IR mendeteksi keberadaan hewan peliharaan dan kemudian membuka penutup, memungkinkan hanya hewan peliharaan yang memiliki akses ke makanan. Ketika hewan peliharaan keluar dari jangkauan sensor, penutup mangkuk menutup secara otomatis. Ini membuat debu, kotoran, lalat atau serangga lainnya mencapai makanan dan membuat makanan tetap segar. Sistem pengumpan hewan peliharaan terdiri dari server kontrol, satu pengumpan hewan peliharaan pintar, dan tag pada kalung kucing.

Sistem ini memberikan kucing akses penuh pada penyimpanan makanan nya. Kita tidak dapat mengotrol kucing untuk makan. Karena setiap kucing yang memiliki tag dan ada pada area sensor IR maka tempat penyimpanan makan akan terbuka.

Dalam pengembangan nya sensor IR ini dapat diganti dengan RFID sehingga dapat lebih akurat dan cepat dalam proses identifikasi, namun tetap tidak menyelesaikan masalah dalam pemberian control makanan kepada kucing.

Untuk hal tersebut, diusulkan sebuah sistem pemberi makan kucing otomatis dengan menggukan *cat recognition*. Kamera akan mendeteksi wajah kucing dan akan mencocokannya dengan database atau profil kucing yang ada. Sistem akan secara akurat memberikan makanan kepada kucing sesuai dengan profil kucingnya. Jika pemilik memiliki lebih dari 1 kucing, setiap kucing akan memiliki porsi makan masing-masing dan tidak akan tertukar porsinya.

Saat kucing terdeteksi oleh *cat recognition*, sistem akan secara otomatis mengeluarkan jumlah makanan sesuai dengan profil yang diatur oleh pemilik untuk kucing tersebut dan memberikan pemberitahuan ke *smartphone* pemilik. Pemilik dapat mengatur profil dari setiap kucing pada telepon genggam dengan sistem operasi android. Selain itu, Pemilik juga dapat mengatur jadwal waktu bagi kucing untuk makan, sehingga jika kucing datang tidak pada waktu makan, sistem tidak akan mengeluarkan makanan. Sistem ini juga dilengkapi dengan monitoring berat badan kucing sehingga pemilik dapat memiliki referensi jumlah makanan yang akan diberikan kepada kucing.

BAB III METODE PELAKSANAAN

3.1 Perancangan

Tahap awal dalam pengerjaan adalah membuat perancangan sistem. Sistem terdiri dari bagian perangkat lunak (software) dan perangkat keras (hardware). Pada sistem ini, terdapat dua bagian software: software pada smartphone android untuk konfigurasi dan monitoring sistem dan software pada alat sebagai pendeteksi kucing. Sedangkan hardware digunakan untuk pengontrol kerja alat. Pendeteksian kucing dirancang dengan mempertimbangkan efektifitas dan akurasi dari metode yang akan digunakan. Rancangan ukuran alat ditentukan dengan mempertimbangkan ukuran komponen-komponen yang akan ditempatkan didalam alat dan volume makanan yang akan disimpan pada alat.

3.2 Implementasi

Beberapa bagian sub-sistem direalisasikan secara paralel. Pembuatan hardware dan software dapat dilakukan secara parallel. Pembuatan software pendeteksian kucing menggunakan image processing ataupun neural network. Pendeteksi kucing ini dibuat sesuai dengan metode atau algoritma yang telah ditentukan dalam perancangan. Case alat dibuat berdasarkan rancangan yang telah ditentukan menggunakan bahan akrilik. Pada case, terdapat tempat untuk penempatan komponen-komponen yang digunakan. Sistem basis data dibuat sebagai tempat penyimpanan data-data kucing dan konfigurasi dari alat-alat. Semua sub-bagian kemudian diintegrasikan untuk menjadi sistem yang utuh.

3.3 Pengujian

Software pengatur alat pada *smartphone* android diuji dengan pertama-tama, memastikan *smartphone* dapat terhubung dengan alat melalui internet. Setelah terhubung melalui internet, alat dapat dikonfigurasikan menggunakan *smartphone* melalui internet. Pengguna dapat memonitor alat melalui *smartphone*-nya dan menerima notifikasi saat kucing sedang makan.

Pendeteksi kucing diuji berdasarkan akurasinya dalam mendeteksi kucing yang valid. Pendeteksi kucing harus mampu membedakan antara satu kucing dengan kucing lain dan mampu mengenali "identitas" dari kucing yang terdaftar pada *database*.

Alat pemberi makan diuji berdasarkan ketepatannya dalam memberikan jumlah makanan sesuai dengan data kebutuhan makanan kucing tertentu. Kemudian komponen pengukur beban/massa makanan dan kucing diuji berdasarkan ketepatannya dalam mengukur nilai massa. Pada tempat penyimpan makanan, komponen pengukur beban ini harus mampu memberikan informasi mengenai

ketersediaan makanan kepada pemilik kucing. Pada saat persediaan makanan telah habis, indikator pada alat harus menyala dan pengguna menerima notifikasi melaui *smartphone*.

3.4 Analisis

Pada tahap ini akan dianalisis hasil kinerja dari Pendeteksi kucing yaitu akurasi dan kecepatan sensor dalam mendeteksi kucing. Analisis juga dilakukan pada sensor berat yaitu, keakuratan sensor dalam menuangkan jumlah porsi yang telah diatur. Kemudian akan dianalisis pula pengujian mengenai ketepatan sistem dari segi *software* dalam pengiriman data pada *database* maupun *smartphone*.

BAB IV BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Tabel IV.1 Ringkasan Anggaran Biaya PKM-KC

No.	Jenis Pengeluaran	Biaya (Rp)
1	Peralatan Penunjang	3.369.000
2	Bahan Habis Pakai	3.441.000
3	Lain - lain	1.668.000
Jumlah		8.478.000

4.2 Jadwal Kegiatan

Tabel IV.2 Jadwal Kegiatan

NT.	To della della della	Bulan Ke-				
No	Jenis kegiatan		2	3	4	5
1	Perancangan					
	Sistem Design					
	Sistem Breakdown					
	Software Design					
2	Persiapan					
	Studi Data Sheet					
	Studi Pasar					
	Pembelian Alat dan Komponen					
3	3 Realisasi/Implementasi					
	Perancangan dan Realiasi Rangka Mekanik					
	Pembuatan Sistem Pendeteksi Beban					
	Perancangan Software Pendeteksi Kucing					
	Pembuatan Database dan PC Server					
	Pembuatan Aplikasi pada Android					

	Integrasi Subsistem dengan Mikrokontroller		l.	
4	Pengujian			
	Pengujian Pendeteksi Beban			
	Uji Coba Akurasi Pendeteksi Kucing			
	Uji Coba Sistem			
	Evaluasi			
5	Pembuatan Laporan			

DAFTAR PUSTAKA

- ASPCA. (2016). Aggression Between Cats in Your Household. Diambil dari https://www.aspca.org/pet-care/cat-care/common-cat-behavior-issues/aggression-between-cats-your-household
- Ayunita, R. (2016). ALAT PEMBERI MAKAN DAN MINUM KUCING TERJADWAL OTOMATIS BERBASIS MIKROKONTROLLER. Universitas Gajah Mada.
- Badmus, I. (2015). DESIGN AND CONSTRUCTION OF AN AUTOMATIC PET FEEDER USING RFID. Tallinn University of Technology.
- Berhan, T. G., Ahemed, W. T., & Birhan, T. Z. (2015). Programmable Pet Feeder. International Journal of Scientific Engineering and Research(IJSER), 3(11), 99–104.
- GfK SE survey. (2016). INFOGRAPHIC: Most of world owns pets; Dogs are tops.
- Pertiwi, H. (2016). Beberapa Hal yang Harus Dihindarkan Kucing Kesayangan Anda. Diambil dari http://pecintasatwa.com/beberapa-hal-yang-harus-dihindarkan-kucing-kesayangan-anda/
- Seungcheon, K. (2016). Smart pet care system using internet of things. *International Journal of Smart Home*, 10(3), 211–218.
- Singh, P., Sharma, A. K., Sood, P., & Singh, P. (2015). Remote Controlled and Gsm Based Automated Pet Feeder. *International Journal of Electronics and Electrical Engineering (IJEEE)*, 2(2), 14–18.
- Subaashri, S., Sowndarya, M., Sowmiyalaxmi, D. K. S., Sivassan, S. V, & Rajasekaran, C. (2017). Automatic Pet Monitoring and Feeding System Using IoT. *International Journal of ChemTech Research*, *10*(14), 253–258.
- Susanto, E., Dharma, D. N. P., & Iqbal, M. (2013). Rancang Bangun Alat Pemberi Makan Anjing / Kucing Otomatis dengan Kontrol SMS. In *Seminar Nasional Aplikasi Teknologi Informasi* (hal. 22–26).

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pembimbing

Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Muhamad Ismail
2	Jenis Kelamin	Laki-laki
3	Program Studi	D4 Teknik Telekomunikasi
4	NIM	151344019
5	Tempat dan Tanggal Lahir	Bandung, 4 Februari 1997
6	E-mail	mail.muhismail@gmail.com
7	Nomor Telepon/HP	085871288400

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN Sukajadi 8	SMPN 2 Bandung	SMAN 2 Bandung
Jurusan	-	-	IPA
Tahun Masuk-Lulus	2003-2009	2009-2012	2012-2015

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM Bidang Karsa Cipta.

Bandung, 28 Mei 2018 Pengusul,

Muhamad Ismail

Biodata Anggota 1

A. Identitas Diri

1	Nama Lengkap	Muhammad Urfan Nafis
2	Jenis Kelamin	Laki-laki
3	Program Studi	D4 Teknik Telekomunikasi
4	NIM	151344020
5	Tempat dan Tanggal Lahir	Bandung, 20 Maret 1997
6	E-mail	urfanafis@gmail.com
7	Nomor Telepon/HP	085722363716

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN Sukarasa 3	SMPN 12 Bandung	SMAN 15 Bandung
Jurusan	-	-	IPA
Tahun Masuk-Lulus	2003-2009	2009-2012	2012-2015

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM Bidang Karsa Cipta.

Bandung, 28 Mei 2018 Pengusul,

Muhammad Urfan Nafis

Biodata Anggota 2

A. Identitas Diri

1	Nama Lengkap	Hasna Azhar Fauziyyah Amani
2	Jenis Kelamin	Perempuan
3	Program Studi	D4 – Teknik Telekomunikasi
4	NIM	161344013
5	Tempat dan Tanggal Lahir	Bekasi, 10 Desember 1998
6	E-mail	azhar.hasna@yahoo.com
7	Nomor Telepon/HP	08561086636

B. Riwayat Pendidikan

	SD	SMP	SMA	
Nama Institusi	SDIT Al Muslim	SMPN 1	SMAN 1	
Ivama msutusi	SDIT AI WUSIIII	Tambun Selatan	Tambun Selatan	
Jurusan	-	-	IPA	
Tahun Masuk-Lulus	2004-2010	2010-2013	2013-2016	

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	Workshop Fiber Optic	-	Tahun 2017 Politeknik Negeri Bandung

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM Bidang Karsa Cipta.

Bandung, 28 Mei 2018 Pengusul,

Hasna Azhar Fauziyyah Amani

Biodata Dosen Pembimbing

A. Identitas Diri

1	Nama Lengkap	Ir. Hertog Nugroho, M.Sc., Ph.D.
2	Jenis Kelamin	Laki – laki
3	Program Studi	Teknik Telekomunikasi
4	NIDN	0015055908
5	Tempat dan Tanggal Lahir	Jakarta, 15 Mei 1959
6	E-mail	hertog@melsa.net.id
7	Nomor Telepon/HP	08156062208

B. Riwayat Pendidikan

	Sarjana	S2/Magister	S3/Doktor
Nama Institusi	Institut Teknologi Bandung	Universitas Keio, Japan	Universitas Keio, Japan
Jurusan	Teknik Elektro	Teknik Elektro	Teknik Elektro
Tahun Masuk-Lulus	1978-1984	1993-1995	1995-1999

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	The IEEE 20th International Conference on Industrial Electronics Control and Instrumentation	Tracking Human Motion in a Complex Scene Using Textural Analysis	September 5- 9, 1994 di Bologna, Italia
2	The 3rd Korea-Japan Joint Workshop on Computer Vision (Frontiers of Computer Vision)	Tracking Multiple Moving Objects from Monocular Image Sequences	Jan. 20-22, 1997, di Korea Selatan
3	The IEEE 1997 International Conference on Acoustics, Speech, and Signal Processing	Detecting Human Face from Monocular Image Sequences by Genetic Algorithms	April 21-24, 1997 di Munich, Germany
4	The 1998 Joint Conference of Information Science	Tracking Pedestrians from Monocular Image sequences	Oct. 23-28, 1998, North Carolina, USA
5	Industrial Electronics Seminar	Measurement of Aeroelastic response of a Bridge Model Under Wnd Tunnel	2000, Graha ITS Surabaya

			by Image Processing Method	
6	Conference on Information Technology	Applied	Pengembangan Algoritma Klasifikasi Sidik Jari menggunakan Pendekatan Struktural	POLBAN, 24 Oktober 2007

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM Bidang Karsa Cipta.

Bandung, 28 Mei 2018 Pendamping,

Ir. Hertog Nugroho, M.Sc., Ph.D.

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Peralatan Penunjang

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Toolset elektronik	Alat perakit	1 set	500.000	500.000
Obeng instrument	Alat perakit	1 set	170.000	170.000
Timah	Alat penunjang perakitan	1 roll	40.000	40.000
Lem tembak	Alat penunjang perakitan	1 buah	85.000	85.000
Lem akrilik	Alat penunjang perakitan	2 buah	40.000	80.000
Isi lem tembak	Alat penunjang perakitan	5 buah	5.000	25.000
Amplas	Alat penunjang perakitan	1 lembar	15.000	15.000
Sekrup	Alat penunjang perakitan	1 bungkus	15.000	15.000
Papan Akrilik 100 x 200 cm x 2mm	Alat penunjang perakitan	2 buah	320.000	640.000
Protoboard	Alat Perakitan prototype	2 buah	40.000	80.000
Raspberry Pi 3	Untuk pengujian dalam tahap pengembangan (prototipe)	1 buah	784.000	784.000
Adaptor 5V 2A Mini-USB	Sebagai sumber daya Raspberry PI	1 buah	115.000	115.000
Raspberry Pi Compute Module IO	Development Kit Untuk Raspberry Pi Compute Module 3	1 buah	820.000	820.000

Subtotal	Rp3.369.000	
----------	-------------	--

2. Bahan Habis Pakai

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Raspberry Pi Compute Module 3	Sebagai pengolah data dari kamera untuk melakukan proses pengenalan kucing dan sebagai tempat penyimpanan data pada tahap integrasi sistem.	1 buah	1.200.000	1.200.000
Arduino Uno R3 Full Kit	Pengontrol alatalat mekanik	1 set	450.000	450.000
Raspberry Pi Camera Module V2	Penangkap gambar untuk diolah pada pendeteksi kucing	1 buah	675.000	675.000
Heatsink Raspberry PI 3	Sebagai pendingin mikrokontroller	1 buah	38.000	38.000
Case Raspberry Pi	Pelindung Raspberry PI	1 buah	86.000	86.000
Motor Servo	Pengatur pintu makanan	1 buah	70.000	70.000
Digital Portable Electronic Scale Load Cell Weight Weighing Sensor 5kg	Sebagai sensor persediaan makanan	1 buah	115.000	115.000
Digital Portable Electronic Scale Load Cell Weight	Pendeteksi adanya objek (kucing) di tempat makan	1 buah	79.000	79.000

Weighing Sensor 10kg	dan sebagai pengukur beban kucing			
Digital Portable Electronic Scale Load Cell Weight Weighing Sensor 1kg	Sebagai sensor berat pada wadah makan kucing	1 buah	50.000	50.000
Micro-SD Sandisk Ultra 16 GB	Data storage	1 buah	90.000	90.000
Spacer	Pengokoh PCB	20 buah	1.000	20.000
PCB Board Fiber	Alas komponen	8 buah	20.000	160.000
Kabel Jumper	Bahan perakitan	5 set	20.000	100.000
Dioda LED	Sebagai indikator alat	5 buah	400	2.000
Motor DC	Sebagai motor penggerak	1 buah	15.000	15.000
Switch Limiter	Sebagai pelengkap rangkaian penggerak	2 buah	500	1.000
LCD 16x2 + Module 12C	Sebagai indikator berat dan kalibrasi saat perancangan	1 buah	45.000	45.000
Jumper Male to Male	Sebagai penghubung rangkaian	15 set	1.500	22.500
Jumper Male to Female	Sebagai penghubung rangkaian	15 set	1.500	22.500
Pembuatan PCB	Sebagai peng- integrasi semua komponen	1 buah	200.000	200.000
	,		Subtotal	3.441.000

3. Lain-lain

Material	Justifikasi	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Pencetakan laporan progress (3 untuk UPPM, 3 untuk mahasiswa, dan 1 untuk dosen pembimbing)	Pencetakan Laporan	7 buah	30.000	210.000
Pencetakan dan penjilidan laporan akhir (3 untuk UPPM, 3 untuk mahasiswa, dan 1 untuk dosen pembimbing)	Pencetakan Laporan	7 buah	50.000	350.000
Bensin	Bahan bakar mobilitas	20 liter	8.900	178.000
Administrasi	Untuk pembelian Materai	5 lembar	6.000	30.000
Seminar hasil PKM	Publikasi Ilmiah	-	900.000	900.000
	1.668.000			
Total (keseluruhan)				8.478.000

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (Minggu)	Uraian Tugas
1	Muhamad Ismail 151344019	D4 Teknik Telekomunikasi	Teknik Elektro	16	Melakukan studi literatur, perancangan pendeteksi kucing menggunakan metode mechine learning, integrasi subsistem mekanik dan software, integrasi seluruh sistem, dan analisa serta pembuatan laporan.
2	Muhammad Urfan Nafis 151344020	D4 Teknik Telekomunikasi	Teknik Elektro	16	Melakukan studi literatur, pembuatan sistem katup otomatis, pembuatan sistem pendeteksi berat, integrasi subsistem mekanik dan software, integrasi seluruh sistem, dan analisa serta pembuatan laporan.
3	Hasna Azhar Fauziyyah Amani 161344013	D4 Teknik Telekomunikasi	Teknik Elektro	16	Melakukan studi literatur, perancangan database sistem, perancangan aplikasi android, integrasi dengan

		smartphone dan database, integrasi seluruh
		sistem, dan
		analisa serta pembuatan
		laporan.

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA PELAKSANA

Yang bertanda tangan di bawah ini:

Nama : Muhamad Ismail

NIM : 151344019

Program Studi : D4 – Teknik Telekomunikasi

Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa proposal usulan **PKM-KC** saya dengan judul: "Perancangan dan Realisasi Sistem Pemberi Makan Kucing Otomatis Menggunakan Deteksi *Cat Recognition*" untuk tahun anggaran 2018 **bersifat original dan belum pernah dibiayai oleh lembaga atau sumber dana lain**.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Bandung, 28 Mei 2018

Mengetahui, Yang Menyatakan, Ketua UPPM

Materai 6000

 (Dr. Ir. Ediana Sutjiredjeki, M.Sc.)
 (Muhamad Ismail)

 NIP. 19810425 200501 1002
 NIM. 151344019

Lampiran 5. Gambaran Teknologi yang Hendak Diterapkembangkan

1. Ilustrasi Sistem

Kucing datang ke "Alat Pemberi Makan Kucing" (1). Sebelum mendekati alat, kucing akan melewati sensor beban yang akan mengukur massa dari kucing tersebut (2). Kamera pada alat pemberi makan kucing akan mendeteksi kedatangan kucing dan akan melakukan pengolahan citra untuk mengetahui apakah kucing tersebut merupakan kucing yang *valid* (3). Apabila kucing yang datang untuk makan tersebut *valid* dan sesuai pada jadwal profilnya, alat akan membuka penutup tempat keluarnya makanan (4). Makanan yang dikeluarkan akan ditempatkan pada tempat makan yang dibawahnya terdapat sensor beban makanan (5). Sensor tersebut akan mengukur massa makanan yang dikeluarkan oleh alat, sehingga jumlah makanan yang dikeluarkan sesuai dengan kebutuhan kucing.

Komponen-komponen pendukung alat, seperti rangkaian motor, dan sensor-sensor berat terhubung pada arduino sebagai mikrokontroller sedangkan kamera akan terhubung ke mini-PC Raspberry Pi sebagai *image prossessing*, server, dan juga database. Seluruh komponen ini ditempatkan didalam casing persis dibawah tempat kontainer makanan (6). Meskipun Raspberry PI dapat digunakan sebagai mikrokontroller, penggunaan arduino diperuntukan karena Raspberry PI sudah sangat terbebani dengan kamera dan *server* sehingga perlu adanya arduino untuk membagi tugas sehingga meminimalisir terjadinya *overheat*.

Alat dapat dikonfigurasikan menggunakan *smartphone* yang terhubung melalui jaringan internet (8). Pemilik dapat mengatur profil setiap kucing seperti mengatur jadwal makan atau jumlah makanan yang diberikan pada setiap kucing peliharaannya.

2. Blok Diagram Sistem

Komponen utama pada "Alat Pemberi Makan Kucing" ini adalah mikrokontroler/mini-PC yang terhubung dengan komponen-komponen lainnya. Mini-PC Raspberry Pi ini akan menerima data dari tiga buah komponen sensor beban. Fungsi dari masing-masing sensor beban tersebut adalah untuk mendeteksi dan mengetahui massa dari kucing, mendeteksi massa makanan yang ada pada tempat makan, sehingga pemilik dapat mengetahui apakah makanan yang dikeluarkan oleh alat telah habis dimakan oleh kucing, dan juga untuk mengetahui ketersediaan makanan pada kontainer makanan alat tersebut. Data-data ini akan diolah pada Raspberry Pi dan datanya dapat diakses oleh pemilik hewan melalui *smartphone*-nya.

Kamera berfungsi untuk mengambil gambar secara *real-time* (mengambil video) yang kemudian akan dikirimkan ke *mini-pc* untuk dilakukan proses pengolahan gambar. Hasilnya, alat akan mengenali kucing yang akan makan pada alat ini, sehingga alat hanya memberikan makan pada kucing tertentu sesuai dengan jadwalnya dan jumlah makanan yang telah ditentukan oleh pemilik kucing. Kemudian, motor akan membuka penutup keluarnya makanan dan masuk ke tempat makan kucing yang dibawahnya terdapat sensor beban.

Alat ini akan terhubung dengan *smartphone* pemilik hewan melalui internet. Pemilik hewan dapat mengakses data pada alat pemberi makan kucing ini untuk mengetahui jumlah persediaan makanan, informasi mengenai berat kucing, apakah makanan telah dimakan habis, atau kucing mana yang tengah makan.

3. Flow Chart Sistem

Alat akan menerima data dari sensor beban (untuk kucing) untuk mendeteksi apakah ada kucing atau objek lain di dekat alat. Apabila terukur suatu massa, ada kemungkinan adanya suatu objek tertentu, sehingga gambar yang diambil dari kamera dikirimkan ke mini-PC untuk dilakukan identifikasi. Bila yang teridentifikasi adalah kucing dan kucing yang teridentifikasi adalah kucing yang valid, dilakukan pengecekan jadwal makan dari kucing yang teridentifikasi

tersebut. Jika bukan jadwal makannya, notifikasi akan dikirimkan ke pemilik bahwa kucing meminta makan. Setelah itu, tergantung dari keputusan pemilik, pemilik kucing dapat memberikan makan atau tidak pada kucing tersebut.

Kemudian dilakukan pengecekan ketersediaan makanan kucing pada alat. Jika tidak tersedia makanan, pemilik akan menerima notifikasi bahwa makanan kucing tidak tersedia dan perlu dilakukan pengisian ulang. Sebailknya, jika tersedia makanan kucing, makanan akan dikeluarkan. Alat akan men-delay selama beberapa waktu tertentu. Setelah delay habis, dilakukan pengecekan apakah makanan telah habis dimakan menggunakan sensor beban. Saat makanan terdeteksi tidak habis, massa sisa makanan akan diterima pada notifikasi pemilik.