Chapter 4 - Curve Sketching

4.1 Increasing and Decreasing Functions

If $x_1 < x_2$ and $f(x_1) < f(x_2)$ then the function is increasing.

The slope is **positive**

If $x_1 < x_2$ and $f(x_1) > f(x_2)$ then the function is decreasing.

The slope is negative

For the interval $-\infty < x < a$ the function is increasing.

For the interval a < x < b the function is decreasing.

For the interval $b < x < \infty$ the function is increasing.

$$f(x) = x^2 + 2x - 3$$

$$f'(x) = 2x + 2$$

If
$$2x + 2 > 0$$

$$2x > -2$$

$$x > -1$$

slope is positive

If
$$2x + 2 < 0$$

$$x < -1$$

slope is negative

(2)
$$f(x) = -\frac{1}{3}x^3 + \frac{1}{2}x^2 + 6x$$

$$f'(x) = -x^{2} + x + 6$$
$$= -(x^{2} - x - 6)$$
$$= -(x + 2)(x - 3)$$

	<i>x</i> < - 2	-2< <i>x</i> <3	x >3
f'(x)			
f(x)	/	,	
	decreasing	increasing	decreasing

(2)

$$f(x) = -\frac{1}{3}x^3 + \frac{1}{2}x^2 + 6x$$

$$f'(x) = -x^2 + x + 6$$

$$= -(x^2 - x - 6)$$

$$= -(x + 2)(x - 3)$$

