

Lahore University of Management Sciences BIO100 - Experimental Biology lab

Spring 2016

Instructor	Muhammad Tariq (lead), Aziz Mithani
Room No.	9-415A
Office Hours	-
Email	m.tariq@lums.edu.pk
Telephone	8218
Secretary/TA	Najma, Abubakar, Aysha, Anum, Khalida, Zain,
TA Office Hours	
Course URL (if any)	

Course Basics				
Credit Hours	1			
Lecture(s)	Nbr of Lec(s) Per Week	-	Duration	-
Recitation (per week)	Nbr of Rec (s) Per Week	-	Duration	-
Lab (if any) per week	Nbr of Session(s) Per Week	1	Duration	4 hrs
Tutorial (per week)	Nbr of Tut(s) Per Week	-	Duration	-

Course Distribution		
Core	SSE Core	
Elective	NA	
Open for Student Category	SSE Freshmen and Others	
Closed for Student Category	Non SSE students	

COURSE DESCRIPTION

This laboratory based course will introduce students to basic concepts in molecular biology and genetic engineering. The major emphasis will be on lab based experiments designed to give hands on training in different techniques used in a molecular biology lab to amplify and clone a gene as well as use of these tools in forensic analysis. In addition, students will visualize various stages of dividing cells under microscope and will be exposed to cell culture used in cell biology. Students will also be exposed to bioinformatics (*in silico* biology) and its use in big data analysis and computation. The major goal is to give a clear understanding of experimental design and how data must be analyzed with all minor details visible in an experimental picture. Reading material and lab manual will be available on LMS. Introduction to each module and experimental protocol will be provided in the beginning of each module in the form of a short pre-lab lecture.

COURSE PREREQUISITE(S)				
•	None			

COURSE OBJECTIVES The basic objective of this lab based course is to introduce students to: Molecular tools used in gene cloning and gene expression in a very basic cloning module. Bioinformatics (in silico biology) which should enable an independent analysis. Molecular tools used in modern day disease diagnostics and forensic analysis. Detailed data recording, analysis and interpretation as well as ethical behavior while handling data or working in a laboratory.

Lahore University of Management Sciences

Course Learning Outcomes

At the end of the lab students must have clear understanding of following concepts, tools and their use in the lab:

CLO1: Ethical behavior and responsibilities of a scientist in particular working in a bio lab

CLO2: How to amplify a gene and clone in a vector, transformation and selection of transformants.

CLO3: How to isolate plasmid DNA and analyze using RFLP.

CLO4: Simple and fluorescent microscopes: How proteins can be visualized using fluorescent microscopes

CLO5: Bioinformatics: in silico analysis of genomes and their application in medicine

CLO6: How molecular biology is being used in forensic studies

CLO7: Need to maintain lab notebook, detailed data recording, analysis and interpretation.

Grading Breakup and Policy

Evaluation:

• Every student must maintain a proper hard-bind lab note book, which includes all the experiments performed by him/her in the lab. Students must prepare a lab report for each experiment they conduct in a week. These note books are to be marked by student's respective instructor weekly.

Lab notebook, attendance and a test altogether accounts for passing this introductory lab course.

Assignment(s): 20%

Home Work/Lab Notebook: 30%

Quiz(s):

Lab performance: 20%

Attendance:

Midterm Examination:

Project:

Final Examination: 30%

Examination Detail			
Midterm Exam	Yes/No: No Combine Separate: Duration: Preferred Date: Exam Specifications:		
Final Exam	Yes/No: Yes Combine Separate: Combine Duration: 1 hour Exam Specifications: Will conduct by us, RO does not need to schedule		

COURSE OVERVIEW	1		
Week/ Lecture/	Topics	Recommended	Objectives/
Module	Topics	Readings	Application
Week1: Introduction to the lab	 Introduction to biology lab & its objectives (Course contents, good lab practices, writing lab report & maintaining notebooks. why are we doing this Lab?) (40min) 		CLO1, CLO7

Lahore University of Management Sciences

	2. Media prep (LB media & agar) (30min)	
	 Students will prepare media by mixing 	
	the ingredients & maintaining pH.	
	 Set the media & agar for Autoclaving 	
	3. Agrose gel preparation (letting the gel solidify)	
	(20min)	
	4. Pipetting exercise (40min)	
	5. Gel loading exercise (10min)	
	6. Thumb prints on LB agar plates (Concept of	
	contamination). (10min)	CLO2 CLO7
	1. PCR for cloning (gene/plasmid) (45min)	CLO2, CLO7
	Students will be given the amplified	
	product after setting up PCR.	
	Agrose Gel Electrophoresis of PCR product	
	(30min)	
	3. Ligation (30min)	
	 During incubation students will prepare 	
W1-2-	theie bench for the transformation &	
Week2:	spreading.	
Molecular	4. Transformation of bacterial cells (60min)	
biology and	During the incubation, instructors will	
genetic	discuss more about the gel (in details).	
engineering-I	Will inform them about the blue white	
	screening that they will be doing with the	
	transformed cells.	
	5. Spreading of transformed bacteria &	
	incubating the plates at 37°C over night.	
	(15min)	
	Plasmid Isolation (mini Prep) from the day 4's	CLO2, CLO3, CLO7
	inoculums. (1.30hr)	
	TAs will inoculate the white colonies for	
	students for mini prep.	
Week3:	Restriction digest for confirmation of cloned	
Molecular	gene (60min)	
biology and	During incubation, will give students a	
genetic	problem set related to restriction.	
engineering-II	Agrose gel electrophoresis for isolated plasmid	
engineering-ii		
	DNA (uncut) & restricted DNA. (60min)	
	During the time while gel runs, discuss in	
	details about the whole process by cross	
	questioning & problem solving.	
		CLO3, CLO4, CLO7
	1. Expression of cloned gene in bacteria	
Week4:	2. Prepare SDS gel, use already prepared gels to	
Expression of	run sample	
protein in	3. Samples will include IPTG induced and	
bacteria	uninduced samples.	
	4. Coomassie stain and destain gel	
	5. Transfection of EGFP tagged Gene in a	
	1	1

Lahore University of Management Sciences

	Lanore University of Iviana	icinent beienees
	mammalian cell line. (90min)	
Week5: Imaging (simple and fluorescent microscopes)	1. Fluorescent Microscopy & Visualization of Transfected cells. (60min) 2. Simple Microscopy & Slide Preparation; • Onion root tips & anthers (mitosis & meiosis) (120min) • Preparation of slides (yeast, pond water, bacteria, etc) (60min) • Students will be divided within each group so that half of the group will prepare slides by yeast, pond water,	CLO4, CLO7
	bacteria, etc while other half will prepare the mitosis/meiosis slides.	
	 How molecular biology helps solve forensic mystries. 	CLO6, CLO7
	A case will be presented to students and they	
	have to do the following 2 steps to identify the murderer.	
Week6:	DNA extraction from cheek cells (60min)	
Forensic DNA	2. PCR (60min)	
analysis	3. Agrose gel electrophoresis from day 9's PCR	
(solving a	product. (60min)	
murder mystery)	 a. During gel running, will discuss the whole 6 day lab to give them the final words about what they have done & how will it benefit them? b. Will tell them about the lab test (what 	
	& when).	
	4. Gel results and discussion (documentation).	
	Bioinformatics (BLAST & Concept of homology	CLO5, CLO7
Week7:	modelling)	
Bioinformatics	Computer lab above Library.	

Textbook(s)/Supplementary Readings

Reading material and lab manual will be available on LMS. Introduction to each module and experimental protocol will be provided in the beginning of each module.