Wędrujące Krople

Seminarium Fizyki Technicznej

Amadeusz Filipek

18.11.2016

Spis treści

- 1) Układ doświadczalny
- 2) Zakres drgań
- 3) Mechanizm skakania kropli
- 4) Wędrująca kropla
- 5) Doświadczenia z wędrującą kroplą
- 6) Porównanie z mechaniką kwantową
- 7) Bibliografia

Układ doświadczalny

Naczynie z cieczą poddane jest pionowym dragniom o przyspieszeniu:

$$\gamma(t) = \gamma \cos \omega t$$

- Ciecz może stanowić olej silikonowy ($\nu \approx 20 \nu_w \approx 20 cSt$)
- Głębokość naczynia: 4 10 mm
- Częstotliwość drań f: 20 150 Hz
- ▶ Średnica kropli D: 0.5 1 mm

Zakres drgań

Trzy zakresy drgań wymuszonych cieczy:

- - Krople łączą się z cieczą
- - Krople odbijają się od powierzchni cieczy
- $\gamma > 4.5 g$
 - Powierzchnia cieczy tworzy fale stojące o częstotliwościach subharmonicznych (niestabilność Faraday'a)

Mechanizm skakania kropli

- Wyjaśnienie podał Reynolds w swej teorii (Lubrication theory 1833)
- Cienka powłoka powietrza powstrzymuje krople przed połączniem z cieczą (tarcie płynne)

 $V_i = \omega \sqrt{\rho D^3/8\sigma}$

Kropla w fazie $(m,n)^i$ podskakuje n razy w czasie m okresów drgań wymuszających, indeks i numeruje stany względem całkowitej energi mechanicznej. [2]

Wędrująca kropla

- $lackbox{W}$ pobliżu zakresu γ^F kropla podskakuje jednocześnie przemieszczając się w określonym kierunku
- Kropla podczas każdego zderzenia z taflą emituje falę
- Kropla odbija się od tafli zniekształconej przez poprzednie odbicia
- Za wypadkowy poziomy ruch kropli odpowiedzialne są zderzenia kropli z falą
- Wędrująca kropla jest sprzężona z emitowanymi przez siebie falami na powierzchni cieczy
- Układ ten posiada pamięć
- Kropla wykazuje oddziaływania dalekiego zasięgu

Zderzenie ze ścianą

- Kropla zderza się z ścianą zachowując od niej odległość
- Tor ruchu jest gładko zakrzywiony
- Kropla wykazuje echolokację

Kropla w okrągłej studni

- Kropla błądzi losowo po obszarze naczynia
- Po dłuższym czasie obserwacji toru ruchu obraz zaczyna przypominać falę stojącą

Rzeźba na podstawie danych doświadczalnych okrągłej studni kwantowej złożonej z atomów żelaza na podłożu miedzi. Dane uzyskane za pomocą skaningowego mikroskopu tunelowego.

Tunelowanie przez barierę

- Kropla ma szansę przejść przez barierę
- Zjawisko ma charakter statystyczny
- Im ścianka jest cieńsza tym zjawisko zachodzi częściej

Dyfrakcja na pojedynczej szczelinie

- Kropla podczas przejścia wykazuje losowy charakter trajektorii
- Fala sprzężona z kroplą podlega dyfrakcji na szczelinie
- Zjawisko nie wykazuje zależności od parametru zderzenia Y = (H O)/L
- Dyfrakcja kropli wykazuje falowy charakter

Układ dwóch kropli

- Krople wykazują oddziaływania dalekiego zasięgu
- W zależności od parametru kolizji d oddziaływania mają charakter przyciągający lub odpychający
- Trajektorie odpychające mają kształt hiperboliczny
- Stany związane kropel wykazują kwantyzację:

$$\begin{cases} d_n^{orb} = (n-0.2)\lambda_F & n=1,2,3 \dots \\ d_n^{orb} = (n-0.2)\lambda_F & n=\frac{1}{2},\frac{3}{2},\frac{5}{2} \dots \end{cases}$$
 krople w fazie krople w przeciwfazie

Oddziaływania są efektem nakładania się fal obu kropli

Różnice

Podobieństwa

Wysoka dysypatywność układu.

Falowy charakter oddziaływań.

Fala jest emitowana przez kroplę.

Oddziaływania falowe indukują kwantyzację stanów orbitalnych.

Układ jest dwówymiarowy.

Układ wykazuje determinizm w sensie statystycznym.

Pomiar nie zakłóca zachowania układu.

Cząstka ma szansę przetunelować przez barierę.

Dziękuję za uwagę!

Bibliografia:

- 1. D. Terwagne, "Bouncing droplets, the role of deformations", Universite de Liege, 2012
- 2. J.W.M. Bush, "Pilot-Wave Hydrodynamics", Annual Rev., Fluid Mech., 2015
- 3. G. Pucci, P. J. Saenz, L. M. Faria, J. W. M. Bush, "Non-specular reflection of walking droplets", J. Fluid Mech., vol. 804, 2016
- 4. D. M. Harris, J. Moukhtar, E. Fort, Y. Couder, J. W. M. Bush, "Wavelike statistics from pilot-wave dynamics in a circular corral", Phys. Rev., 2013
- 5. A. Eddi, E. Fort, F. Moisy, Y. Couder, "Unpredictable Tunneling of a Classical Wave-Particle Association", Phys. Rev. Lett., 2009
- 6. Y. Couder, A. Boudaoud, S. Protiere, E. Fort, "Walking droplets", Reflets de la Physique 5, 2007