Math	252 -	§5.5	Question	4
------	--------------	------	----------	---

$f(x_0)$	f(0)		0
$f(x_1)$	f(1)	A	3.1
$f(x_2)$	f(2)	B	4.5
$f(x_3)$	f(3)	C	4.3
$f(x_4)$	f(4)	D	6.7
$f(x_5)$	f(5)	E	6.0
$f(x_6)$	f(6)		0

Figure 1: *
Distances across the region
at 1 cm intervals

Figure 2: *
Vertical distances measured across the intervals

Interpreting the Table and Applying Simpson's Rule:

The table provides measurements across the region. To apply Simpson's Rule, we must identify our interval and parameters:

$$a = 0, \quad b = 6, \quad n = 6 \text{ (even, as required)}$$

$$\Delta x = \frac{b - a}{n} = \frac{6 - 0}{6} = 1 \text{ cm}$$

$$x_k = a + k\Delta x = 0, 1, 2, 3, 4, 5, 6 \quad \text{for } k = 0, 1, \dots, 6$$

The table gives us the values A, B, C, D, E which represent f(1) = 3.1, f(2) = 4.5, f(3) = 4.3, f(4) = 6.7, f(5) = 6.0. The endpoints are f(0) = 0 and f(6) = 0 (region touches the x-axis at both ends).

$$\int_0^6 f(x) dx \approx \frac{\Delta x}{3} \Big[f(0) + 4f(1) + 2f(2) + 4f(3) + 2f(4) + 4f(5) + f(6) \Big]$$

$$= \frac{1}{3} \Big[0 + 4(3.1) + 2(4.5) + 4(4.3) + 2(6.7) + 4(6.0) + 0 \Big]$$

$$= \frac{1}{3} (12.4 + 9.0 + 17.2 + 13.4 + 24.0) = \frac{76.0}{3} = 25.33 \text{ cm}^2$$

Figure 3: *

Three parabolas (each spanning two sub-intervals) illustrating Simpson's Rule approximation. Interactive version available at desmos.com/calculator/zeb7iuxly2.