Implementation Checks on T-FLASH Known Factors

David Gerard 2016-04-20

Abstract

This is just an implementation check to make sure I've coded up the known factors correctly.

tflash and flash give equivalent results when the factor is known.

Simulate data and fit FLASH and T-FLASH.

```
set.seed(211)
library(flashr)
library(ggplot2)
n <- 10
p <- 100
k <- 5
q <- 1
pi_vals <- c(0.5, 0.5)
tau_seq \leftarrow c(0, 1)
X <- matrix(rnorm(n * 1), nrow = n)</pre>
beta <- succotashr::draw_beta(pi_vals = pi_vals, tau_seq = tau_seq, p = p)</pre>
E \leftarrow matrix(rnorm(n * p), nrow = n)
Y <- X %*% t(beta) + E
fout <- flash(Y = t(Y), factor_value = c(X), fix_factor = TRUE)</pre>
## [1] -1394
## [1] -1394
## [1] -1394
## [1] -1394
## [1] -1394
## [1] -1394
## [1] -1394
tout <- tflash(Y = Y, known_factors = list(X), known_modes = 1)</pre>
qplot(fout$1, tout$post_mean[[2]], main = "FLASH vs T-FLASH, Known Factors, Loadings") +
    xlab("FLASH") + ylab("T-FLASH") +
    geom_abline(slope = 1, intercept = 0)
```


qplot(beta, tout\$post_mean[[2]], xlab = "Truth", ylab = "Estimate", main = "True vs Est Loadings")

tgreedy returns known factors and results look reasonable.

First, I make sure that the input factors are correctly returned.

Now I make sure the estimates are reasonable

```
qplot(beta[, 1], tout$factor_list[[2]][, 1], xlab = "Truth", ylab = "Estimate")
```


qplot(beta[, 2], tout\$factor_list[[2]][, 2], xlab = "Truth", ylab = "Estimate")

Tensor Case

See if tensor estimates are reasonable when given two of the first mode's, one of the second, and none of the third. So three of these should be exact.

```
rm(list = ls())
set.seed(349)
p \leftarrow c(11, 13, 17)
u <- list()
pi_vals \leftarrow c(0.5, 0.3, 0.1)
tau_seq <- c(0, 1, 2)
u[[1]] <- succotashr::draw_beta(pi_vals = pi_vals, tau_seq = tau_seq, p = p[1])
u[[2]] <- succotashr::draw_beta(pi_vals = pi_vals, tau_seq = tau_seq, p = p[2])
u[[3]] <- succotashr::draw_beta(pi_vals = pi_vals, tau_seq = tau_seq, p = p[3])
v <- list()</pre>
v[[1]] <- succotashr::draw_beta(pi_vals = pi_vals, tau_seq = tau_seq, p = p[1])
v[[2]] <- succotashr::draw_beta(pi_vals = pi_vals, tau_seq = tau_seq, p = p[2])
v[[3]] <- succotashr::draw_beta(pi_vals = pi_vals, tau_seq = tau_seq, p = p[3])
w <- list()
w[[1]] <- succotashr::draw_beta(pi_vals = pi_vals, tau_seq = tau_seq, p = p[1])
w[[2]] <- succotashr::draw_beta(pi_vals = pi_vals, tau_seq = tau_seq, p = p[2])
w[[3]] <- succotashr::draw_beta(pi_vals = pi_vals, tau_seq = tau_seq, p = p[3])
Theta <- form_outer(u) + form_outer(v) + form_outer(w)
E <- array(rnorm(prod(p)), dim = p)</pre>
```

Should be exact

xlab = "True", ylab = "Est") + geom_abline(intercept = 0, slope = 1)

Should be exact

The lfdrs look really good:

```
boxplot(tback\$prob\_zero[[1]][, 3] \sim (abs(w[[1]]) < 10 ^ -6), names = c("Non-zero", "Zero"),
        main = "lfdr")
```



```
boxplot(tback\$prob\_zero[[2]][, 2] \sim (abs(v[[2]]) < 10 ^ -6), names = c("Non-zero", "Zero"), \\ main = "lfdr")
```

lfdr

 $boxplot(tback\$prob_zero[[2]][, 3] \sim (abs(w[[2]]) < 10 ^ -6), names = c("Non-zero", "Zero"), \\ main = "lfdr")$

lfdr

 $boxplot(tback\$prob_zero[[3]][, 1] \sim (abs(u[[3]]) < 10 ^ -6), names = c("Non-zero", "Zero"), \\ main = "lfdr")$

 $boxplot(tback\$prob_zero[[3]][, 2] \sim (abs(v[[3]]) < 10 ^ -6), names = c("Non-zero", "Zero"), \\ main = "lfdr")$

lfdr

But the π_0 's don't look so good for some reason. These should all be 0.5.

knitr::kable(sapply(tback\$pi0_list, c))

NA	NA	0.7874
NA	0.8492	0.7150
0.7489	0.7664	0.7722