CS430 Homework 1

Due: 6pm, Sep. 7, 2023.

- 1. Compute n^{15} using 6 multiplications.
- 2. Sort 5 distinct integers using at most 7 comparisons.
- 3. Suppose $T\left(0\right)=0$ and $T\left(n\right)\leq\sqrt{n}T\left(\sqrt{n}\right)+n$ for each $n\geq1$. Show that $T\left(n\right)=O\left(n\log\log n\right)$.
- 4. The following recurrence relation arises from the average-case analysis of Quicksort: T(0) = T(1) = 0; and for each $n \ge 2$,

$$T(n) = n - 1 + \frac{1}{n} \sum_{i=1}^{n} [T(i-1) + T(n-i)]$$

Show that for each $n \geq 1$, T(n) = 2(n+1)H(n) - 4n where $H(n) = \sum_{i=1}^{n} \frac{1}{k}$ is the *n*-th harmonic number.

- 5. The Fibonacci numbers are defined by the recurrence relation: $F_0 = 0$, $F_1 = 1$; and for n > 1, $F_n = F_{n-1} + F_{n-2}$. Suppose the Euclidean algorithm for the positive integer pair a > b takes n iterations.
 - Prove by induction on n that $a \ge F_{n+2}$ and $b \ge F_{n+1}$.
 - Show that $n \leq 5 \log_{10} b$.
- 6. Given a sequence of n integers, deciding whether all integers in the sequence are unique is known as **Element Uniqueness**. Suppose any algorithm for **Element Uniqueness** requires $\Omega\left(n\log n\right)$ time. Show that computing the closest pair of n points in an Euclidean plane requires $\Omega\left(n\log n\right)$ time.