$$\pm T(n) = 3T(n) + n^2$$
 $T(n) = aT(n) + f(n)$

On compains
$$a = 3, b = 2, f(n) = n^2$$

$$a=1$$
 $b=2$
 $f(n)=0^n$
 $c=\log_0 a=\log_0 c=0$
 $n^c=n^0=1$
 $f(n)>n^c$
 $f(n)=0$ (2^n)

$$f(n^{\circ}) > n^{\circ}$$

 $f(n) = (n^{\circ}) > n^{\circ}$

1.589

$$y, T(n) = 2^{n}T(\frac{ny}{y}) + h^{n}$$

 $soln: a = 2^{n}$
 $b = 2, \{(n) = h^{n}\}$

$$e = \log_b a = \log_2 2^h$$

2.
$$T(n) = 4T(\frac{n}{2})t n^2$$

801 $n = 4$, $b \ge 1$
 $\alpha = 4$, $b = 2$, $f(n) = n^2$

$$a = 4, b = 2, f(n) = n$$

$$e = log_2 y = 2$$

 $h^c = n^2 = f^h = n^2$

$$\therefore T(n) = O(n^2 \log_2 n)$$

5.
$$T(n) = 16T(\frac{r_4}{r_4}) + n$$

801 $a = 16$, $b = \frac{r_4}{r_4}$
 $f(n) = n$, $n = n^2$
 \vdots $f(n) < n \in [T(n) = 0(n^2)]$

$$h_{=}^{C} n^{n}$$

$$\therefore f(n) = n^{C}$$

$$T(n) = \theta(n^{2} \log_{2} n)$$

6.
$$T(n) = 2T(\frac{n}{2}) + n \log n$$

 $a = 2, b = 2$
 $f(n) = n \log n$
 $c = \log_2 2 = 1$
 $\therefore n^c = n \cdot \frac{1}{2} = n$
Since, $n \log n > n$
 $\therefore n \log n > n$

nce,
$$nlogn > n$$

 $\therefore nlogn > n$
 $\downarrow(n) > n^{c}$
 $\therefore \Gamma(n) = o(nlogn)$

8:
$$T(n) = 2T(\frac{h}{4}) + h^{0.1}$$

Soln $a = 2 b = 4$, $f(h) = h^{0.1}$
 $C = log_b a = log_4 2 = 0.5$
 $\therefore n^c = n^{0.5}$
 $\therefore n^c = n^{0.5}$
Since, $n^{0.5} < n^{0.5}$
 $f(n) > h^c$
 $\therefore T(n) = O(n^{0.51})$

7:
$$T(n)=2T(\frac{n}{2})+\frac{n}{\log n}$$

Solh $a=2,b=2$, $f(n)=\frac{n}{\log n}$
 $C=\log_2 2=1$
 $\therefore n^c=n^4=n$
Since $\frac{n}{\log n}$
 $\therefore f(n) < n^c$

T(n) = O(n)

$$4T(\frac{n_2}{2}) + logn$$
 $a = 4, b = 2, |(n) = log n$
 $c = log_2 = 2$
 $f(n) = log n$
 $f(n) = log n$
 $f(n) = log n < n^2$
 $f(n) = 0 (n^2)$

$$T(h) = sqrt(n) T(h') T(h') T(h')$$

$$a = \sqrt{n}, b = R$$

$$c = log_b a = log_2 \sqrt{n} = \frac{1}{3} log_n$$

$$= \frac{1}{3} log_2 n clog(n)$$

$$f(n) > n^c$$

$$T(n) = o(f(n))$$

$$o(log(n))$$

13:
$$T(n) = 3T(n/2) + n$$
 $SOI^{n} = 3 = 3, b = 2, f(n) = n$
 $C = \log_{b} a = \log_{2} 3 = 1.5849$
 $e = n^{1.5849}$
 $e = n^{1.5849}$
 $f(n) < n^{c}$
 $f(n) < n^{c}$
 $f(n) = 0 + (n^{1.5849})$
 $f(n) = 0 + (n^{1.5849})$

17.
$$T(n) = 3T(\frac{n}{3}) + sqrt(\frac{n}{2})$$

 $a=3$, $b=3$
 $c=logba=logba=1$
 $n^{c}=n^{l}=n$
 $n^{c}=n^{l}=n$
As $sqrt(n) < n$
 $f(n) = o(n)$
 $f(n) = o(n)$

15.
$$T(n) = 4T(n/2) + (n$$

 $506^n = 4, b = 2$
 $c = log_b = log_2 = 2$
 $n^c = n^2$

$$n^{c} = n^{2}$$

$$c^{n} < n^{2}$$

$$f(n) < n^{c}$$

$$T(n) = o(n^{2})$$

$$\frac{17.}{801} T(n) = 3T(n_3) + n_2$$

$$801. a=3, b=3$$

$$c = log_b a = log_3 = 1$$

$$f(n) = n = n$$

$$\vdots n = n$$

$$A^{\beta} = \frac{n}{2} < n$$

$$f(n) = \frac{n}{2}$$

$$\begin{array}{ll}
 & n & < \\
 & n & <$$

$$16 - T(n) = 3T(\frac{y}{y}) + h$$

 $50 \le n = 3, b = 4, f(n) = nu$
 $C = 109 = 609$

$$T(n) = O(n \log n)$$

$$\frac{18. T(n) = 67/n}{3} + n^{2} \log n$$

$$\alpha = 1, b = 3$$

$$C = \log_{3} 6 = 1.69$$

$$n' = h$$
As $n^{1.6309} < n^{2} \log n$

$$\therefore T(n) = \phi(n^{2} \log n)$$

$$a = 4T(n_2)$$
 though
 $a = 4, b = 2, f(n) = h$
 $c = (09)$ $a = 1092$ $4 = 2$
 $n = n^2$

$$\frac{1}{\log n} < n^2$$

21.
$$T(n) = 7T(n_3) + n^2$$

 $a = 7, b = 3, f(n) = n^2$

$$c = \log_3 n = \log_3 7 = 1.7712$$

20.
$$T(n) = 64T(n) - n^{2} \log n$$
 $Sol^{n}: a = 64, b = 8$
 $(= \log_{5} a = \log_{8} 64)$
 $\log_{8}(8)$
 $C = 2$
 $n^{2} \log_{n} > n^{2}$
 $T(n) = O(n \log_{n})$

$$2L = T(n) = T(n) + n(2-605n)$$

$$60L^{n} = a = 1, b = 2$$

$$c = log_{b} = c = log_{2} = 0$$

$$n^{c} = h^{o} = 1$$

(n)

:.
$$h(2-cosn) > ne$$

:. $T(n) = O(n(2-cosn))$