Optimization Techniques for Data Mining

Master in Innovation and Research in Informatics

Unconstrained Optimization Lab Assignment Pattern recognition with Single Layer Neural Network (SLNN)

F.-Javier Heredia (Jordi Castro, Daniel Ramón)

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

Pattern recognition with SLNN

- 1. Presentation.
- 2. Single Layer Neural Network (SLNN).
 - Architecture and loss function.
 - Training and testing.
 - Gradient of the loss function.
 - Backtracking line search.
- 3. Pattern recognition with SLNN.
 - Problem statement and modelling.
 - Generation of training and test data sets.
 - Coding the loss function and gradient.
 - Examples.
- 3. Laboratory Assignment.
- 4. Summary of supporting codes.

Presentation

 The aim of this project is to develop an application, based on the unconstrained optimization algorithms studied in this course, that allow to recognize the numbers in a sequence of blurred digits:

Sequence=42674; Identified=42674

 The procedure to achieve that goal will be to formulate a Single Layer Neural Network that is going to be trained to recognize the different numbers with First Derivative Optimization methods.

Single layer Neural Network (SLNN): architecture

Input signal:

$$I_i = x_i, i = 1, 2, ..., n$$
; $I_{n+1} = \sum_{i=1}^n w_i \cdot O_i$

Activation function (sigmoid function) :

$$O_i = \sigma(I_i)$$
, $\sigma(x) = 1/(1 + e^{-x})$

· Output signal: assumed to be binary

$$y(x,w) = \sigma(I_{n+1}) = \sigma\left(\sum_{i=1}^{n} w_{i} O_{i}\right) = \sigma\left(\sum_{i=1}^{n} w_{i} \cdot \sigma(x_{i})\right)$$

$$= \left(1 + e^{-\left(\sum_{i=1}^{n} w_{i} \cdot \sigma(x_{i})\right)\right)^{-1}}$$

$$= \left(1 + e^{-\left(\sum_{i=1}^{n} w_{i} \cdot (1 + e^{-x_{i}})^{-1}\right)\right)^{-1}}$$

SLNN: training

Training data set, size p:

$$\underbrace{\begin{matrix} y_j^{TR} & \text{data} \\ y(x_j^{TR}, w) & \text{model} \end{matrix}}_{\begin{matrix} I_{n+1} \\ I_{n+1} \end{matrix}} \begin{bmatrix} y_j^{TR} & \text{data} \\ y(x_j^{TR}, w) & \text{model} \end{matrix} \qquad X^{TR} = \begin{bmatrix} x_1^{TR}, x_2^{TR}, \dots, x_p^{TR} \end{bmatrix} = \begin{bmatrix} x_{1,1}^{TR} & x_{1,2}^{TR} & \cdots & x_{1,p}^{TR} \\ x_{2,1}^{TR} & x_{2,2}^{TR} & \cdots & x_{2,p}^{TR} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1}^{TR} & x_{n,2}^{TR} & \cdots & x_{n,p}^{TR} \end{bmatrix}$$

$$y^{TR} = \begin{bmatrix} y_1^{TR} & y_2^{TR} & \cdots & y_p^{TR} \end{bmatrix}^T$$

• Loss function: for a given (X^{TR}, Y^{TR})

$$L(X^{TR}, y^{TR}) = \min_{w \in \mathbb{R}^n} L(w; X^{TR}, y^{TR}) = \sum_{i=1}^p (y(x_j^{TR}, w) - y_j^{TR})^2$$

Loss function with L2 regularization with param. λ:

$$\tilde{L}(X^{TR}, y^{TR}, \lambda) = \min_{w \in \mathbb{R}^n} \tilde{L}(w; X^{TR}, y^{TR}, \lambda) = L(w; X^{TR}, y^{TR}) + \lambda \cdot \frac{\|w\|^2}{2}$$

• Training accuracy (%): $w^* = \operatorname{argmin}_{w \in \mathbb{R}^n} \tilde{L}(w; X^{TR}, y^{TR}, \lambda)$

Accuracy^{TR} =
$$\frac{100}{p} \cdot \sum_{j=1}^{p} \delta_{\underbrace{\left[y\left(x_{j}^{TR}, w^{*}\right)\right]}, y_{j}^{TR}}$$

where
$$\delta_{x,y} = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$$
 (Kronecker delta).

SLNN: testing

$$X^{TE} = \begin{bmatrix} x_1^{TE}, x_2^{TE}, \dots, x_q^{TE} \end{bmatrix} = \begin{bmatrix} x_{1,1}^{TE} & x_{1,2}^{TE} & \cdots & x_{1,q}^{TE} \\ x_{2,1}^{TE} & x_{2,2}^{TE} & \cdots & x_{2,q}^{TE} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1}^{TE} & x_{n,2}^{TE} & \cdots & x_{n,q}^{TE} \end{bmatrix}^{T}$$

$$y^{TE} = \begin{bmatrix} y_1^{TE} & y_2^{TE} & \cdots & y_q^{TE} \end{bmatrix}^{T}$$

Test accuracy (%):

Accuracy^{TE} =
$$\frac{100}{p} \cdot \sum_{j=1}^{p} \delta_{\left[y\left(x_{j}^{TE}, w^{*}\right)\right], y_{j}^{TE}}$$

Overfitting: if Accuracy $^{TR} \gg \text{Accuracy}^{TE}$

SLNN: gradient (1/2)

Loss function (objective function):

$$\tilde{L}(w; X^{TR}, y^{TR}, \lambda) = \sum_{j=1}^{p} (y(x_j^{TR}, w) - y_j^{TR})^2 + \frac{\lambda}{2} \cdot \sum_{i=1}^{n} w_i^2$$

Gradient:

$$\frac{\partial \tilde{L}(w; X^{TR}, y^{TR}, \lambda)}{\partial w_i} = \sum_{j=1}^{p} 2 \cdot \left(y(x_j^{TR}, w) - y_j^{TR} \right) \cdot \frac{\partial y(x_j^{TR}, w)}{\partial w_i} + \lambda \cdot w_i \quad (1)$$

with

$$y(x_i^{TR}, w) = \left(1 + e^{-\left(\sum_{i=1}^n w_i \cdot \left(1 + e^{-x_{i,j}^{TR}}\right)^{-1}\right)\right)^{-1}}$$
(2)

SLNN: gradient (2/2)

• Let us find $\partial y(x_i^{TR}, w)/\partial w_i$:

$$\frac{\partial y(x_{j}^{TR}, w)}{\partial w_{i}} = \frac{\partial}{\partial w_{i}} \left(1 + e^{-\left(\sum_{i=1}^{n} w_{i} \cdot \left(1 + e^{-x_{i,j}^{TR}}\right)^{-1}\right)} \right)^{-1} = \frac{-y(x_{j}^{TR}, w)^{2}}{\left(1 + e^{-\left(\sum_{i=1}^{n} w_{i} \cdot \left(1 + e^{-x_{i,j}^{TR}}\right)^{-1}\right)}\right)^{-2}} \cdot e^{-\left(\sum_{i=1}^{n} w_{i} \cdot \left(1 + e^{-x_{i,j}^{TR}}\right)^{-1}\right)} = \frac{-\left(1 + e^{-\left(\sum_{i=1}^{n} w_{i} \cdot \left(1 + e^{-x_{i,j}^{TR}}\right)^{-1}\right)}\right)^{-1}}{\left(-\left(1 + e^{-x_{i,j}^{TR}}\right)^{-1}\right)} = y(x_{j}^{TR}, w)^{2} \cdot \left(y(x_{j}^{TR}, w)^{-1} - 1\right) \cdot \left(1 + e^{-x_{i,j}^{TR}}\right)^{-1} = y(x_{j}^{TR}, w) \cdot \left(1 - y(x_{j}^{TR}, w)\right) \cdot \left(1 + e^{-x_{i,j}^{TR}}\right)^{-1}$$

Therefore:

$$\frac{\left|\frac{\partial \tilde{L}\left(w;X^{TR},y^{TR},\lambda\right)}{\partial w_{i}}\right|}{\left|\frac{\partial \tilde{L}\left(w;X^{TR},w\right)-y_{j}^{TR}\right)\cdot y\left(x_{j}^{TR},w\right)\cdot \left(1-y\left(x_{j}^{TR},w\right)\right)\cdot \left(1+e^{-x_{i,j}^{TR}}\right)^{-1}}{+\lambda\cdot w_{i}}$$

SLNN: backtracking linesearch

- The backtracking linesearch algorithm Alg.BLS cannot handle conveniently the SLNN problem. We need to introduce two modifications in the computation of the linesearch:
 - 1. The maximum step length cannot be a constant for every iteration. Instead, it must be updated dynamically using information of the local behaviour of f near the iterated point at each iteration, using some of the formulas (N&W page 58):

$$\alpha_1^{max} = \alpha^{k-1} \frac{\nabla f^{k-1} d^{k-1}}{\nabla f^{k} d^k}; \quad \alpha_2^{max} = \frac{2(f^k - f^{k-1})}{\nabla f^{k} d^k}.$$

2. A BLS based on interpolations must be used (see N&W 3.4), as the one proposed in Alg 3.2 and 3.3 of N&W, implemented in function uo_BLSNW32:

```
function [alpha,iout] =
    uo BLSNW32(f,g,x,d,almax,c1,c2,kBLSmax,epsal)
```

where f,g,d,x,almax,c1,c2 are as usual, iout=0 if the procedure succeeds and:

- * kBLSmax is the maximum number of iterations of the BLS algorithm: if exceeded, the algorithm stops with iout=1.
- * epsal is the minimum variation between two consecutive reductions of α^k , meaning that the algorithm will stop with iout=2 whenever $|\alpha^{k+1} \alpha^k| < epsal$.

Pattern recognition with SLNN (1/2)

-10 10

-10

-10

-10

10 10

-10

-10

-10

-10

10

-10

-10

-10

-10

10

-10

-10

10

10 10

 We are going to use the SLNN to solve a problem of pattern recognition over a small 7x5 pixels matrix picturing the 10 digits:

To obtain the input data of the SLNN x, each white pixel is assigned with a value of 10 and each black pixel with a value of -10 then vectorized and blurred with a Gaussian noise with $\mu = 0$ and $\sigma = \sigma_{rel} \cdot 10$.

Gaussian blur $x \leftarrow x + \epsilon =$ $\epsilon \sim N(0,5)$ $\sigma_{rel} = 0.5$

12.1

-15.8

-19.0

-24.3

6.7

-15.4

-3.4

-9.1

-7.3

6.1

3.1

-18.9 -3.4

-13.5

12.5

-3.3 -7.8 -5.9

-5.3

11.1

-11.7

-5.9 -11.8

-17.3 3.2

-14.5

-10.9

-11.2

3.5 17.2

Pattern recognition with SLNN (2/2)

• The resulting vectorised and blurred digit *x* are going to be taken as the inputs of a SLNN:

Training and test data set (1/2)

- The objective of the SLNN is to recognize a set of target numbers, num_target, for instance num_target = [1 3 5 7 9] will recognize the odd numbers between 0 and 9.
- To this end, the training and test data sets:

$$X^{TR} = [x_1^{TR}, x_2^{TR}, ..., x_p^{TR}] \equiv \text{Xtr}(1:35, 1:\text{tr_p}) \text{ and } y^{TR} \equiv \text{ytr}(1:\text{tr_p})$$

 $X^{TE} = [x_1^{TE}, x_2^{TE}, ..., x_p^{TE}] \equiv \text{Xte}(1:35, 1:\text{te q}) \text{ and } y^{TE} \equiv \text{yte}(1:\text{te q})$

must be generated with the help of function

This function will generate a dataset, where:

- x,y are the generated data sets (Xtr, ytr or Xte, yte).
- **seed** is the seed for the Matlab random numbers generator. The numbers in the dataset are randomly choosed, guaranteeing a frequency of the digits in **target** close to **freq**. The value σ_{rel} for each digit is also randomly selected within the range [0.25, 1].
- size is the size of the data set (number of columns/elements of array x/y).
- target is the set of digits to be identified.
- freq is the frequency of the digits target in the data ser. For instance, if target=[1 2] and freq=0.5, the digits 1 and 2 will be, approximately, half of the total digits in the data set x.

Training and test data set (2/2)

For instance, let seed=1234, ncol=10, target=[4], freq=0.5 then:

```
>> [X,y]=uo nn dataset(1234,10,[4],0.5)
  -11.5323
                       -8.2363
                                -11.4127
                                          -31.3497
                                                      -9.9915
                                                               -10.0134
                                                                          -9.8603
              8.5784
                                                                                     -5.8843
                                                                                               -5.6767
  -11.0925
             -6.6966
                       46.1249 -11.9861
                                             2.8732 -12.0420
                                                                 8.8078
                                                                          -6.9858
                                                                                     -4.5738
                                                                                                6.4063
    3.5013
             21.9754
                       15.0901
                                   9.6655
                                            11.6102
                                                       7.1156
                                                                17.6479
                                                                          14.5913
                                                                                      9.2044
                                                                                               -1.3036
 -13.9129 -12.5358
                       5.2724
                                -7.4084
                                           -7.6072 -12.5149 -12.5704 -11.6329
                                                                                    -6.2185
                                                                                              -9.5339
y =
                                                            0
     1
```

and the graphical representation:

- function uo_nn_Xyplot(X,y,w) plots a set of vectorised digits, and the recognition brought by a vector w:
 - x an array of vectorised digits.
 - y associated output of the SLNN.
 - \mathbf{w} vector of weights w (optional).

Loss function and its gradient (1/2)

Let xtr, ytr be the training data set:

• If we define the row vector of residuals $y(X^{TR}, w)$ and the sigmoid matrix of inputs $\sigma(X^{TR})$ as

$$y(X^{TR}, w) \stackrel{\text{def}}{=} \left[y(x_1^{TR}, w), \dots, y(x_p^{TR}, w) \right]; \quad \sigma(X^{TR}) = \begin{bmatrix} \sigma(x_{11}^{TR}) & \cdots & \sigma(x_{1p}^{TR}) \\ \vdots & \ddots & \vdots \\ \sigma(x_{n1}^{TR}) & \cdots & \sigma(x_{np}^{TR}) \end{bmatrix}$$

then, the value of the loss function \tilde{L} and its gradient $\nabla \tilde{L}$ can be expressed as

$$\tilde{L}(w; X^{TR}, y^{TR}, \lambda) = \|y(X^{TR}, w) - y^{TR}\|^2 + \lambda \frac{\|w\|^2}{2}$$

$$\nabla \tilde{L}(w; X^{TR}, y^{TR}, \lambda) = 2\sigma(x^{TR}) \left((y(X^{TR}, w) - y^{TR}) \circ y(X^{TR}, w) \circ \left(1 - y(X^{TR}, w) \right) \right)^T + \lambda w$$

where • stands for the **element-wise** (o *Hadamard*) product. These expressions can be easily coded in Matlab, taking profit of the **element-wise operators** "./" and ".*":

$\sigma(X)$	()	sig = @(X) 1./(1+exp(-X));
y(X,	w)	y = @(X,w) sig(w'*sig(X));
\widetilde{L}		$L = @(w) norm(y(Xtr,w)-ytr)^2 + (la*norm(w)^2)/2;$
$\nabla \widetilde{I}$,	gL = @(w) 2*sig(Xtr)*((y(Xtr,w)-ytr).*y(Xtr,w).*(1-y(Xtr,w)))'+la*w;

Example 1: num_target=[3]

```
>> uo nn Xyplot(Xtr,ytr,wo)
[uo nn] Pattern recognition with neural networks.
[uo nn]
       高 高 高 高 高 高 高 高 高 高 高 高 高 高 高
[uo nn] Training data set generation.
          num target = 3
[uo nn]
                                           Rigth positive
          tr freq
[uo nn]
                    = 0.50
                    = 250
[uo nn]
          tr p
                                           Rigth negative
[uo nn]
          tr seed
                    = 123456
[uo nn] Optimization
[uo nn]
          L2 reg. lambda = 0.00
          epsG= 1.0e-06, kmax= 20000
[uo nn]
          ialmax= 2, kmaxBLS= 30, epsBLS= 1.0e-03,
[uo nn]
          c1=0.01, c2=0.45, isd=1
[uo nn]
[uo nn]
                   al iW
                               g'*d
                                                   Hall
[uo nn]
              1.25e-01
                           -2.45e+03
                                      6.25e+01
                                                4.95e+01
                                                 4.19e+01
[uo nn]
              9.27e-03
                           -1.76e+03
                                      5.43e+01
[uo_nn]
              2.39e-02
                        2 -1.25e+03
                                      3.94e+01
                                                3.54e+01
[uo nn] 3731
              1.98e+04
                          -1.01e-12
                                      2.94e-06
                                                1.00e-06
[uo nn] 3732
              1.10e+04
                          -1.81e-12
                                      2.93e-06
                                                1.34e-06
[uo nn] 3733
                                      2.92e-06
                                                 9.96e-07
[uo nn]
          k
                   al iW
                               a'*d
                                             f
                                                   llgll
[uo nn]
          wo=ſ
                                                                >> uo nn Xyplot(Xte,yte,wo)
[uo nn]
               -1.3e+01,+2.4e+00,-1.7e+01,-5.8e+00,-1.7e+00
[uo nn]
               +9.6e+00,-1.8e+00,+8.7e+00,-3.8e+00,-4.4e+00
[uo nn]
               -1.6e+01,-2.6e+00,-1.5e+00,-9.0e+00,+1.2e-01
               -3.3e+00,-2.1e+01,+1.2e+01,+2.5e+00,-5.1e+00
[uo nn]
               -1.6e+01,+9.1e+00,-1.6e+01,-7.1e-01,-1.3e+00
[uo nn]
               +1.3e+01,-1.3e+00,-1.0e+01,+7.7e-01,+8.6e+00
[uo nn]
[uo nn]
               +1.7e+01,-1.1e+00,+9.0e+00,+5.8e+00,-1.2e+01
[uo nn]
[uo nn] Test data set generation.
[uo nn]
          te q
                  = 250
[uo nn]
          te seed = 789101
[uo nn] tr accuracy = 100.0
[uo nn] te accuracy = 95.6
>> uo nn Xyplot(wo,0,[])
```


Example 2: num_target=[2]

```
[uo nn] Pattern recognition with neural networks.
[uo nn] Training data set generation.
          num target = 1
[uo nn]
          tr freq
[uo nn]
                    = 0.50
                    = 250
[uo nn]
          tr p
[uo nn]
          tr seed
                    = 123456
[uo nn] Optimization
[uo nn]
          L2 \text{ reg. } lambda = 0.00
          epsG= 1.0e-06, kmax= 20000
[uo nn]
          ialmax= 2, kmaxBLS= 30, epsBLS= 1.0e-03,
[uo nn]
          c1=0.01, c2=0.45, isd=1
[uo nn]
[uo nn]
                    al iW
                                g'*d
                                                    Hall
[uo nn]
              5.00e-01
                          -7.38e+03
                                      6.25e+01
                                                 8.59e+01
                          -2.90e-07
                                                 5.39e-04
[uo nn]
              8.19e+03
                                      1.00e+00
[uo nn]
              2.53e+04
                        0 -6.18e-07
                                      2.16e-04
                                                 7.86e-04
[uo nn]
                                      3.51e-12
                                                 2.67e-11
[uo nn]
          k
                   al iW
                                g'*d
                                                    Hall
[uo nn]
          wo=[
               -5.0e+00,-1.1e+01,+2.1e+00,-1.3e+01,-5.2e+00
[uo nn]
[uo nn]
               -4.7e+00,+5.1e+00,+1.5e+01,-1.8e+00,-9.0e+00
[uo nn]
               -8.7e+00,-1.8e+00,+1.4e+01,-9.0e+00,-4.4e+00
[uo nn]
               -1.0e+01,-4.9e+00,+1.3e+01,-1.1e+01,-3.8e+00
               -1.0e+01,-6.7e+00,+8.0e+00,-7.9e+00,-1.5e+01
[uo nn]
[uo nn]
               -2.1e+00,-3.6e+00,+1.4e+01,-6.8e+00,-3.4e+00
               +2.7e-01,+2.2e+00,+2.3e+00,+5.3e+00,-2.4e+00
[uo nn]
[uo nn]
[uo nn] Test data set generation.
                   = 250
[uo nn]
[uo nn]
          te seed = 789101
[uo nn] tr accuracy = 100.0
[uo nn] te accuracy = 100.0
>> uo nn Xyplot(wo,0,[])
```


Example 3: num_target=[1 3 5 7 9]

```
[uo nn] Pattern recognition with neural networks.
[uo nn]
       [uo nn] Training data set generation.
          num target = 1 3 5 7 9
[uo nn]
          tr freq
                    = 0.50
[uo nn]
                    = 250
[uo nn]
          tr p
[uo nn]
          tr seed
                    = 123456
[uo nn] Optimization
[uo nn]
          L2 reg. lambda = 1.00
          epsG= 1.0e-06, kmax= 20000
[uo nn]
          ialmax= 2, kmaxBLS= 30, epsBLS= 1.0e-03,
[uo nn]
          c1=0.01, c2=0.45, isd= 3
[uo nn]
[uo nn]
                    al iW
                                g'*d
                                                    Hall
[uo nn]
              3.13e-02
                          -1.89e+03
                                       6.25e+01
                                                 4.35e+01
                                                 8.16e+01
[uo nn]
              5.25e-03
                        2 -4.31e+03
                                      5.12e+01
[uo_nn]
              4.57e-02
                        0 -4.10e+02
                                      3.25e+01
                                                 5.41e+01
[uo nn]
              1.11e+00
                        0 -6.80e-12
                                      1.43e+01
                                                 4.99e-06
              8.52e-01
         28
                        0 -1.35e-12
                                      1.43e+01
                                                 1.64e-06
[uo nn]
[uo nn]
         29
                                      1.43e+01
                                                 4.32e-07
                   al iW
[uo nn]
          k
                                a'*d
                                             f
                                                    llgll
[uo nn]
          wo=ſ
[uo nn]
               +9.1e-01,+4.3e-01,+4.5e-01,+3.4e-02,+3.9e-01
               -1.2e-01,-9.8e-02,+8.1e-01,-3.1e-01,+4.1e-02
[uo nn]
[uo nn]
               -4.4e-01,+3.6e-01,+7.8e-01,-6.3e-02,+1.8e-01
               -1.1e+00,-3.0e-01,+1.2e+00,+1.5e-01,+7.5e-01
[uo nn]
               -1.9e+00,-1.4e-01,+9.1e-02,-3.5e-01,+4.0e-01
[uo nn]
               -3.0e-01,-3.0e-01,+5.2e-01,+1.2e-01,+3.8e-01
[uo nn]
[uo nn]
               -3.0e-01,-5.7e-01,-3.8e-01,-4.2e-01,-7.4e-01
[uo nn]
[uo nn] Test data set generation.
[uo nn]
          te q
                   = 250
          te seed = 789101
[uo nn]
[uo nn] tr accuracy = 99.2
[uo nn] te accuracy = 97.2
>> uo nn Xyplot(wo,0,[])
```


The effect of "blurring"

• It must be stressed that the "bad" results for some of the previous examples are a consequence of the heavy blurring applied to the images, with a σ_{rel} up to a 100% of the value of the pixel. Should the blurring be eliminated or reduced, the classification will be exact. For instance, for $\sigma_{rel} = 0.25$ the identification will be exact:

Assignment (1/4)

- In this assignment we want to conduct a series of computational experiments to study the dependency of the performance of the SLNN on several parameters. An instance of the SLNN problem must be solved:
 - For every one of the individual digits from 0 to 9.
 - For every value of the regularization parameter $\lambda \in \{0.0, 1.0, 10.0\}$.
 - For every one of the following optimization algorithms: GM, CGM-PR+ (IRC= $2,\nu=1$) and QM-BFGS.

That makes a total of $3 \times 3 \times 10 = 90$ instances. Every instance must be run with the following settings:

- The optimization parameters epsG=10^-06, kmax=5000, almax= α_2^{max} , c1=0.01, c2=0.45, kBLSmax=30 and epsal=10^-03.
- The parameter to generate the training and testing data sets: tr_p=tr_q=250 , tr_freq=0.5, te_freq=0.0. The seeds must be set to tr_seed=NIF1 and te_seed=NIF2 where NIF1 and NIF2 is the NIF number of the two members of the team.

Assignment (2/4)

To organize the computational experiments you can use the script uo_nn_batch.m:

```
uo nn batch.m: run a batch of SLNN instances.
clear;
tr freq = .5; tr seed = 123456; tr p = 250; te seed = 789101; te q = tr p;
% Parameters for optimization:
epsG = 10^-6; kmax = 5000;
                                                              % Stopping criterium:
ils=1; ialmax = 2; kmaxBLS=30; epsal=10^-3; c1=0.01; c2=0.45; % Linesearch:
icg = 2; irc = 2; nu = 1.0;
                                                              % Search direction:
iheader = 1; fileID = fopen('om uo nn batch.csv','w');
for num target = 1:10
    for la = [0.0, 1.0, 10.0]
        for isd = 1:3
            [Xtr,ytr,wo,tr acc,Xte,yte,te acc,niter,tex]=uo nn solve(num target,
tr freq,tr seed,tr p,te seed,te q,la,epsG,kmax,ils,ialmax,kmaxBLS,epsal,c1,c2,isd,icg,irc,nu,iheader);
            if iheader == 1 fprintf(fileID,'num target; la; isd; niter; tex; te acc;\n'); end
            fprintf(fileID,' %1i; %4.1f; %1i; %4i; %7.4f; %5.1f;\n', mod(num target,10), la,
isd, niter, tex, te acc);
            iheader=0;
        end
    end
end
fclose(fileID);
```


Assignment (3/4)

• Function uo_nn_solve solves the instance corresponding to a particular combination of parameters. The outcome of this code is the file uo_nn_batch.csv with the following content:

- Function uo_nn_solve called imside uo_nn_batch.m must solve the instance corresponding to a particular combination of parameters.
- The actions to be taken inside this function are:
 - i. To generate the training data set (X^{TR}, y^{TR}) .
 - ii. To find the value of w^* minimizing $\tilde{L}(w; X^{TR}, y^{TR}, \lambda)$ with your own optimization routines developed during the course.
 - iii. To calculate $Accuracy^{TR}$.
 - iv. To generate the test dataset (X^{TE}, y^{TE}) and to calculate $Accuracy^{TE}$.

Assignment (4/4)

- The goal of this assignment is to fulfill the following tasks:
 - a) Based on the data in file uo_nn_batch.csv, you have to determine:
 - 1) First, which is the value of the regularization parameter λ that gives the best results for the overall set of digits and optimization methods.
 - Second, for the value of λ determined in the previous section, find out which is the best optimization algorithm, GM, CGM-PR+ or QM-BFGS, based on the analysis of the variables $Accuracy^{TE}$, niter and tex. Describe how the execution-time per iteration (tex/niter) behaves for the three different methods and find an explanation.
 - b) Describe how the accuracy of the pattern recognition ($Accuracy^{TE}$) depends on the digit for the value of λ and optimization method determined in section a). For the digit with the worst value of $Accuracy^{TE}$, display the results with the help of function uo_nn_xyplot and try to guess the reasons for the bad recognition rate.
 - c) Finally, make use of the trained SLNN to develop a function that can identify series of 5 digits. This function must get an array **x** with 5 digits randomly generated with function **uo_nn_dataset** and return the list with the 5 digits identified by the SLNN (see the example in slide #3 "Presentation"). Check the function with 10 different sets of 5 digits and analyze the results.
- This assignment must be done in groups of two. Use a value of tr_seed and te_seed based on your NIF. You must upload to Atenea a file with the name surname-student-1_surname-student-2.zip containing:
 - A report (.pdf file) with your results and comments of tasks a) to c).
 - The source of all the codes used to do tasks a) to c).

Summary of supporting codes

Function/script	Page	
<pre>function [alpha,iout] = uo_BLSNW32(f,g,x,d,almax,c1,c2,kBLSmax,epsal): Algorithm 3.2 of Nocedal & Wright (backtracking line search with SWC and curve fitting).</pre>		
<pre>function [X,y] = uo_nn_dataset(seed, ncol, target, freq): generates the dataset X,y.</pre>		
function uo_nn_Xyplot(X,y,w): plots the dataset X,y. If w is not [], the plot tells right from wrong predictions of the SLNN.		
<pre>sig = @(X) 1./(1+exp(-X)); y = @(X,w) sig(w'*sig(X)); L = @(w) norm(y(Xtr,w)-ytr)^2 + (la*norm(w)^2)/2; gL = @(w) 2*sig(Xtr)*((y(Xtr,w)-ytr).*y(Xtr,w).*(1-y(Xtr,w)))'+la*w;</pre>	14	
uo_nn_batch.m: run a batch of SLNN instances.	20	

