محاضرات في الإقتصاد القياسي ECON382

الدكتور محيي الدين ياسين أيوب

الإقتصاد القياسي

- الإقتصاد القياسي يعني بتطبيق وإستخدام:
 - النظرية الإقتصادية.
 - الرياضيات.
 - الأساليب الإحصائية.
 - أجل ■
 - إختبار الفرضيات
 - وإجراء التنبؤءات
 - عن ظواهر إقتصادية .

الإقتصاد القياسي والإنحدار

- إرتبط الإقتصاد القياسي بالإنحدار .
 - الإنحدار:

3

- یربط متغیر تابع
- بمتغیراو متغیرات مستقلة
- بما أن العلاقة بين المتغيرات الإقتصادية ليست مضبوطة او تامة
 - فلابد من إدراج عنصر خطأ في المعادلة ويسمى عنصر الإقلاق
 - هذا العنصر ذو خصائص إحتمالية.

مثال:نموذج إقتصاد قياسي

- دالة الطلب يمكن أن تمثل نموذج إقتصاد القياسي .
- في النموذج بربط الطلب على سلعة ما بمحددات الطلب
 - مثال ذلك:
 - \blacksquare Q= α + β_1 P+ β_2 Y+ μ

د. محيي أيوب

4

مثال:نموذج إقتصاد قياسي

- حيث يمثل الطلب على السلعة
- هي توابت مجهولة ينبغي تقديرها وتسمى معلمات β_1, β_2, α
 - م ، يمثل المقطع ، الكميات المطلوبة Q عند الثمن صفر.
- β₁ عندما β₂ بمثل الميل، هو مقدار التغير في الكميات المطلوبة Q عندما يتغير الثمن بوحدة واحدة، ويفترض أن تكون الإشارة هنا سالبة بحكم العلاقة السلبية بين الثمن و الكميات المطلوبة .
 - ◄ بما أن محددات الطلب لا تنحصر في الثمن فقط، فإنه يجب إدراج عنصر الخطأ µ ذو الخصائص الإحتمالية.

مراحل بحوث الإقتصاد القياسي

- تتضمن المراحل التالية:
- تحديد النموذج في شكل معادلة إحتمالية واضحة.
- تحديد التوقعات النظرية عن إشارات وأحجام معلمات الدالة.
 - جمع بيانات متغيرات النموذج.
- إجراء التقديرات بإستخدام أسلوب الإقتصاد القياسي المناسب.
 - تقييم معلمات الدالة المقدرة باستخدام المعايير الإقتصادية والإحصائية والقياسية المناسبة.

د. محيى أيوب

6

تحليل الإنحدار البسيط

- تحليل الإنحدار البسيط ، سمي بذلك لإحتوائه على متغير مستقل واحد فقط، بينما يتضمن الإنحدار المتعدد متغيرات مستقلة متعددة.
- نموذج خطي لدراسة العلاقة بين متغير تابع Y ومتغير مستقل $Y = \alpha + \beta X + \mu$
 - يتم إستخدام أسلوب المربعات الصغرى لتقدير قيمةالمعلمات

متغير مستقل

متغير تابع

تحليل الإنحدار البسيط

■ يمكن كتابة معادلة الإنحدار بالشكل الأملي:

$$\hat{Y} = \hat{\alpha} + \hat{\beta}X$$

- المعلمات α و β ثوابت مجهولة ينبغي تقديرها، α المقطع ، β الميل يعني التغير في المتغير التابع بناءا على التغير في المتغير المستقل.
 - يمكن حساب تقديرات المعلمات بالمعادالات التالية:

$$\hat{\beta} = \frac{\sum XY - n\overline{X}\overline{Y}}{\sum X^2 - n\overline{X}^2}$$

مكن بعد ذلك إجراء تققييم شامل كاختبار الفرضيات على معنويات المعلمات كما سيأتي في المثال.

مثال:

Y2	X ²	XY	الإعلانات X	المبيعات ٢
961	25	155	5	31
1600	121	440	11	40
900	16	120	4	30
1156	25	170	5	34
625	9	75	3	25
400	4	40	2	20
5642	200	1000	30	180

مثال في الإنحدار وإختبار فرضيات المعنويات:

- باستخدام الجدول في المثال السابق عن المبيعات والإعلانات، إحسب تقديرات معادلة الإنحدار ومن ثم إختبر الفرضيات عن معنويات المعلمات.
 - الحل:المعطيات من الجدول:

$$\sum XY = 1000..\sum X^2 = 200.\overline{X} = 5..\overline{Y} = 30..n = 6$$

■ بناءا على ذلك فإن المعلمات المقدرة:

$$\hat{\beta} = \frac{\sum XY - n\overline{X}\overline{Y}}{\sum X^2 - n\overline{X}^2} = \frac{1000 - 6 * 5 * 30}{200 - 6 * 5^2} = 2$$

$$\hat{\alpha} = \overline{Y} - \hat{\beta}\overline{X} = 30 - 2 * 5 = 20$$

تابع الحل:

■ المعادلة المقدرة:

$$\hat{Y} = 20 + 2X$$

- المعادلة تعني بأن إجمالي المبيعات سيتغير بمقدار وحدتين كلما تغيرت الإعلانات بوحدة واحدة.
- كما أن قيمة المتغير التابع يساوي 20 إذا كان المتغير المستقل مساويا للصفر.

تقييم معادلة الإنحدار:إختبار الفرضيات لمعنويات المقطع والميل وجودة التوفيق.

- بعد الحصول على معادلة الإنحدار المقدرة يجب تقييمها بإجراء الآتى:
 - 1. إختبار الفرضيات لمعنويات كل من المقطع والميل.
 - 2. الحصول على معامل جودة التوفيق R².

β والميل α والميل المعنويات المقطع

- يتم إجراء إختبار الفرضيات على النحو التالي:
 - صياغة الفرضية:

$$.H_{0}; \beta = 0$$

 $H_{1}:\beta \neq 0$

- تحديد منطقتي القبول والرفض بتحديد درجة الحرية df=n- 2 وإستخراج قيمة t الجدولية عند درجة الأهمية المحددة
 - $=\frac{\hat{\beta}}{S_{0}}$ Il desired in the second of the second

الخطأ المعياري

د. محيى أيوب

13

β والميل α والميل المعنويات المقطع

- الخطوة السابقة تتطلب الحصول على الخطأ المعياري لكل من المقطع α والميل β .
 - المقارنة بين قيمة المحسوبة fوقيمة f الجدولية.
- القرار: إقبل فرضية العدم H_0 إذا كانت قيمة المحسوبة t أصغر من قيمة t الجدولية بمستوى الأهمية المحدد.

د. محیی أیوب

مثال لإختبار الفرضيات

المعلمات المعلمية المعلمات المعلمات المعلمية المعلمات المعلمين α والميل β .

■ إ**ختبار الفرضية** لمعنوية المقطع α

ا صياغة الفرضية

 $H_0: \alpha=0$

 H_1 ; $\alpha \neq 0$

■ حساب قيمة t الجدولية وتحديد منطقة القبول والرفض:

قيمة t الجدولية عند مستوى أهمية 5%، t=2.776

الخطأ المعياري للمقطع والميل:

■ ويمكن إستخراج قيمة الخطأ المعياري لكل من المقطع والميل β على النحو التالي بإستخدام الجدول الأخير والمعادلات التالية:

$$S_{\beta} = \sqrt{\frac{\sum e^2}{n - 2\sum x^2}}$$

$$S_{\alpha} = \sqrt{\frac{\sum e^2}{n - 2\sum x^2}}$$

$$\sum X^2$$

تابع الحل:

e ²	е	\hat{Y}	ху	X ²	X	y ²	у	Y 2	X ²	XY	X	Υ
1	1	30	0	0	0	1	1	961	25	155	5	31
4	-2	42	60	36	6	100	10	1600	121	440	11	40
				44	•				10	100	_	
4	2	28	0	11		0	0	900	16	120	4	30
16	4	30	0	0	0	16	4	1156	25	170	5	34
					-							
1	-1	26	10	42		25	-5	625	9	75	3	25
					-							
16	-4	24	30	93		100	-10	400	4	40	2	20
42	0	180	100	50	0	242	0	5642	200	1000	30	180
							حيي أيوب	د. م			5	30

ملاحظات على الجدول

■ الحرف الإنجليزي الصغير يعنى الفرق بين قيمة المتغير ومتوسطه أي:

$$x = X - \overline{X} = 5 - 5 = 0$$

 $y = Y - \overline{Y} = 31 - 30 = 1$

■ الفرق ما بين Y و المعادلة المقدرة ، كمثال:

$$e_1 = Y - \hat{Y} = 31 - (20 + 2 * 5) = 1$$

 $e_2 = Y - \hat{Y} = 40 - (20 + 2 * 11) = -2$

تابع المثال:

الخطأ المعياري للمقطع:

$$S_{\alpha} = \sqrt{\frac{\Sigma e^2}{n-2} \frac{\Sigma X^2}{n \sum x^2}} = \sqrt{\frac{42}{4} * \frac{200}{6*50}} = 2.64$$

$$= 2.64$$
Label t änger the sign of the sign

$$t = \frac{\alpha}{S_{\alpha}} = \frac{20}{2.64} = 7.559$$

■ بما أن قيمة f المحسوبة أكبر من قيمة f الجدولية فإننا نرفض فرضية العدم f ونقبل الفرضية البديلة f ونقرر بأن المقطع f مختلف تماما عن الصفر بأهمية مقدار ها 5%.

مثال لإختبار الفرضيات

- إختبار الفرضية لمعنوية الميل β
 - H₀; β =0 : الفرضية الفرضية Η₀; β
 - H_1 ; $\beta \neq 0$
- حساب قيمة t الجدولية وتحديد منطقة القبول والرفض: t=2.776 ، %5

تابع حل إختبار الفرضية لمعنوية الميل β

■ قيمة † المحسوبة والخطأ المعياري: الخطأ المعياري

$$S_{\beta} = \sqrt{\frac{\sum e^2}{n - 2\sum x^2}} = \sqrt{\frac{42}{4*50}} = 0.4583$$

حساب قيمة t للميل:

 $t = \frac{\beta}{S_{\beta}} = \frac{2}{0.4583} = 4.364$

بما أن قيمة t المحسوبة أكبر من قيمة t الجدولية فإننا نرفض فرضية العدم H_0 نقبل الفرضية البديلة H_1 ، ونقرر بأن المقطع مختلف تماما عن الصفر بأهمية مقدارها 5%.

R^2 معامل جودة التوفيق

- معامل جودة التوفيق R² يشرح جودة المعادلة ، يظهر النسبة المفسرة من التغيرات في المتغير التابع .
 - تتراوح قمته ما بين الواحد الصحيح والصفر أي أن $0 \le \mathbb{R}^2 \le 1$

ويمكن حساب R² بالمعادلة:

$$R^{2} = \frac{\alpha \sum Y + \beta \sum XY - n\overline{Y}^{2}}{\sum Y^{2} - n\overline{Y}^{2}}$$

مثال :معامل جودة التوفيق:

- إحسب معامل جودة التوفيق لمعادلة الإنحدار السابقة:
- الحل باستخدام نتائج الجدول الأول ومعادلة الإنحدار المقدرة، نجد أن:

$$R^{2} = \frac{\alpha \sum Y + \beta \sum XY - n\overline{Y}^{2}}{\sum Y^{2} - n\overline{Y}^{2}} = \frac{20*180 + 2*1000 - 6*30^{2}}{5642 - 6*30^{2}} = 0.8264$$

■ أي أن المعادلة تفسر ما نسبته 82.64% من التغيرات الحاصلة في المبيعات.

اسلوب المربعات الصغرى Ordinary Least Squares "OLS"

- من أهم أساليب الإنحدار ومن أهم وسائل الإقتصاد القياسي.
- وهو أسلوب يستخدم لإيجاد أفضل وضع لخط مستقيم لعينة من XY من المشاهدات.
- يتطلب ذلك أدنى مجموع قيم من الإختلافات "الرأسية المربعة" عن نقاط الخط المستقيم:

$$Min \Sigma (Y_i - \hat{Y_i})$$

هنا Y_i يعني القيم الأصلية للمشاهدات، و Y_i تعني القيم المقدرة المقابلة لها، بحيث أن الفرق بينهما تعطى البقايا أو عنصر الخطأ:

$$(Y_i - \hat{Y_i}) = e_i$$

اسلوب المربعات الصغرى Ordinary Least Squares "OLS"

وذلك يعطى المعادلتين الطبيعيتين:

$$\sum Y_i = n\hat{\alpha} + \hat{\beta}\sum Xi$$

$$\sum X_i Y_i = \hat{\alpha} \sum X_i + \hat{\beta} \sum X_i^2$$

حيث n عدد المشاهدات، و α و β المقدرات للمعلمات الحقيقية .

بحل المعادلتين الطبيعيتين نحصل على كل من

$$\hat{\beta} = \frac{n \sum X_i Y_i - \sum X_i \sum Y_i}{n \sum X_i^2 - (\sum X_i)^2}$$

$$\hat{\alpha} = \overline{Y} - \hat{\beta} \overline{X}$$

كما أنه يمكن الحصول على تقدير بالمعادلة التالية:

$$\hat{\beta} = \frac{\sum x_i y_i}{\sum x_i^2}$$

$$y_i = Y_i - \bar{Y}$$
 و $x_i = X_i - \bar{X}$ حيث

اسلوب المربعات الصغرى Ordinary Least Squares "OLS"

■ وتكون معادلة المربعات الصغرى المقدرة للإنحدار:

$$\hat{Y} = \hat{\alpha} + \hat{\beta}X_i$$

■ للمثال السابق يمكن إستخدام معادلة الفروق للحصول على نفس النتيجة:

$$\hat{\beta} = \frac{\sum x_i y_i}{\sum x_i^2} = \frac{100}{50} = 2$$

خصائص المربعات الصغرى

- يمكن تلخيص تلك الخصائص في عبارة واحدة:
- "مقدرات المربعات الصغري تعتبر أفضل مقدرات خطية نزيهة"
 - أو:
 - **BLUE**
 - BEST LINEAR UNBAISED ESTIMATORS
 - ذلك يعني:
 - المقدرات نزيهة
 - أفضل مقدرات نزيهة أي أنها فعالة.

خصائص المربعات الصغرى

- أولا: النزاهة تعني:
- القيمة المتوقعة للمعلمة المقدرة تساوي المعلمة الأصلية. أي:

$$E(\hat{eta}) = eta$$
 $E(\hat{eta}) - eta = \lambda$
التحيير

- الفعالية: تعني بأن المقدرات ذات أدنى تباين.
- وعليه فإن أسلوب المربعات الصغرى يعطي أفضل مقدرات خطية نزيهة مقارنة بالأساليب الأخرى.
- مقدرات المربعات الصغرى متناسقة ، لأنها مع تزايد حجم العينة وإقترابها من اللانهاية ، فإن قيمها تقترب من القيم الحقيقة للمعلمة.

مثال آخر

- من كتاب الدكتور سلفاتور:
- الجدول التالي يظهر بيانات المحصول الزراعي للهكتار الواحد والكميات المختلفة بالرطل من السماد لكل هكتار.
 - المطلوب:
 - حساب معادلة الإنحدار المقدرة.
 - تقديم التقييم اللازم للمعادلة.
- المحصول المتوقع إذا تم إستخدام 35 رطل من السماد للهكتار مع تقديم مجال الثقة اللازم الذي يمكن أن يحوي ذلك المحصول المتوقع.

مثال

Year	n	Y	X
1971	1	40	6
1972	2	44	10
1973	3	46	12
1974	4	48	14
1975	5	52	16
1976	6	58	18
1977	7	60	22
1978	8	68	24
1979	9	74	26
1980	د. محيي أيوب-10	80	32 30

حل المثال

■ يمكن تقدير المعلمات بالمعادلتين:

$$\widehat{\beta} = \frac{n \sum XY - \sum X \sum Y}{n \sum X^2 - (\sum X)^2}$$

$$\widehat{\alpha} = \overline{Y} - \widehat{\beta}X$$

■ وعليه يجب إضافة بعض الأعمدة إلى الجدول السابق للحصول المجاميع المختلفة اللازمة لحل المعادلة

تابع حل المثال

Year	n	Y	X	X^2	XY
1971	1	40	6	36	240
1972	2	44	10	100	440
1973	3	46	12	144	552
1974	4	48	14	196	672
1975	5	52	16	256	832
1976	6	58	18	324	1044
1977	7	60	22	484	1320
1978	8	68	24	576	1632
1979	9	74	26	676	1924
1980	10	80	32	1024	2560
Σ		570	180 د. محيي أيوب	3816	11216

تابع الحل

■ وعليه وبالتعويض في المعادلتين، فإن معادلة الإنحدار المقدرة:

$$\widehat{\beta} = \frac{10(11216) - (570)(180)}{10(3816) - (180)^2} = 1.6597$$

$$\widehat{\alpha} = 57 - (1.66)(18) = 27.12$$

$$\widehat{Y} = 27.12 + 1.66X$$

تابع الحل: إختبار الفرضيات لمعنويات المقطعα β والميل

- يتم إجراء إختبار الفرضيات على النحو التالى:
 - صياغة الفرضية:

$$.H_{0}; \beta = 0$$

$$H_{1}:\beta \neq 0$$

- تحديد منطقتى القبول والرفض بتحديد درجة الحرية df=n- 2وإستخراج قيمة t الجدولية عند درجة الأهمية المحددة .
 - حساب قيمة إ

$$t = \frac{\hat{\beta}}{S_{\beta}} = \frac{1.65}{S_{\beta}}$$
 الخطأ المعياري الخطأ المعياري

تابع الحل: تقييم المعادلة

■ أولا: إختبارات الفروض لمعنوية المعلمات، يتطلب الأمر الحصول على الخطأ المعياري للمعلمتين.

$$S_{\beta} = \sqrt{\frac{\sum e^2}{n - k} * \frac{1}{\sum x^2}}$$

$$S_{\alpha} = \sqrt{\frac{\sum e^2}{n - k} * \frac{\sum X^2}{n \sum x^2}}$$

■ وهذا يتطلب إضافة اعمدة جديدة لمكونات المعادلتين السابقتين.

تابع الحل

\hat{Y}	$e=Y-\hat{Y}$	e^2	$x^2 = \left(X - \overline{X}\right)^2$	y^2
37.08	2.92	8.526	144	289
43.72	0.28	0.078	64	189
47.04	-1.04	1.0816	36	121
50.36	-2.36	5.5696	16	81
53.68	-1.68	2.822	4	25
57	1	1	0	1
63.64	-3.64	513.2	16	9
66.96	1.04	1.0816	36	121
70.28	3.72	13.838	64	289
80.24	-0.24	0.0576	196	529
	0	47.31	576 د. محيي أيون	1634

تابع الحل:إختبار الفرضيات

■ حساب قيمة t الجدولية وتحديد منطقة القبول والرفض: t=2.306 ،%5 قيمة tالجدولية عند مستوى أهمية 5%،

تابع الحل:إختبار الفرضيات

■ وبحساب قيم الخطأ المعياري وقيم المحسوبة:

$$S_{\alpha} = \sqrt{\frac{43.3056}{10-2} * \frac{3816}{10(576)}} \cong \sqrt{3.92} \cong 1.98$$

$$t_{\alpha} = \frac{\widehat{\alpha}}{S_{\alpha}} \cong \frac{27.12}{1.98} = 13.697$$

وبما أن قيمة f المحسوبة أكبر من الجدولية فإننا نرفض فرضية العدم ونقبل الفرضية البديل، مما يعني بأن المقطع مختلف تماما عن الصفر.

تابع الحل: إختبار الفرضيات

- ا إختبار الفرضية لمعنوية الميل β
 - H_0 ; $\beta = 0$ الفرضية: $\beta = 0$
 - H_1 ; $\beta \neq 0$
- حساب قيمة t الجدولية وتحديد منطقة القبول والرفض: t=2.306 %، 5 همية 5%، ويمة t=2.306

تابع الحل:إختبار الفرضيات

■ وبحساب قيم الخطأ المعياري وقيمt المحسوبة:

$$S_{\beta} = \sqrt{\frac{47.3056}{(10-2)576}} \cong \sqrt{.01} \cong 0.1$$

$$t_{\beta} \cong \frac{\widehat{\beta}}{S_{\beta}} \cong \frac{1.66}{0.1} \cong 16.6$$

■ وبما أن قيمة † المحسوبة أكبر من الجدولية فإننا نرفض فرضية العدم ونقبل الفرضية البديل، مما يعني بأن الميل مختلف تماما عن الصفر.

تابع الحل: جودة التوفيق

■ ويمكن الحصول على معامل جودة التوفيق باشتخدام الجدول السابق على النحو التالى:

$$R^{2} = 1 - \frac{\sum e^{2}}{\sum y^{2}} = 1 - \frac{47.31}{1634} = 0.9710$$

■ وعلى ذلك يمكن القول بأن المعادلة أمكنها أن تفسر أكثر من 97% من التغيرات في المتغير التابع.

الصياغة النهائية للمعادلة المقدرة.

■ يمكن صياغة النتائج على النحو التالي:

$$\hat{Y} = 27.12 + 1.66X$$

Se

1.98

0.01

t

13.697

16.6

 R^2

0.97

حسابات التوقعات والتنبؤات

- حسابات التوقع:
- تقدير قيمة المتغير التابع Y_f عندما تُعطى القيمة الفعلية أو المُخططة للمتغير المستقل X_f .
 - ويمكن أن تكون معادلة الإنحدار المقدرة بالنسبة للمخطط والمتوقع:

$$\hat{Y_f} = \hat{\alpha} + \hat{\beta}X_f$$

حسابات التوقعات والتنبؤات

- وينبغي عمل مجال ثقة للقيمة المخططة للمستقبل
 - ويمكن تقدير تباين خطأ التنبؤ ب: S²f

$$S_f^2 = S^2 \left[1 + \frac{1}{n} + \frac{\left(X_f - \overline{X} \right)^2}{\sum x^2} \right]$$

$$S^2 = \frac{\sum e^2}{n - k}$$

ا حيث:

مثال: حسابات التوقعات والتنبؤات

- المثال السابق للمحصول الزراعي وكميات المحصول.
- اذا كان مخططا استخدام ما مقداره 35 رطلا للهكتار في عام 1981 أي: $X_f = 35$

$$\hat{Y}_f = 27.12 + 1.66(35) = 45.38$$

- ,ويمكن عمل مجال ثقة بمستوى يحتوي بين حديه القيمة الفعلية للمحصول الزراعي على النحو التالي:
 - $\hat{Y_f} \pm t_{0.025} S_f$
- وعليه ينبغي حساب تباين التنبؤ م52ومن ثم حساب الخطأ المعياري للتنبؤ على النحو التالي.

مثال: حسابات التوقعات والتنبؤات

■ تباين التنبؤ للمثال، والخطأ المعياري على التوالي:

$$S_f^2 = 5.91 \left[1 + \frac{1}{10} + \frac{(35 - 18)^2}{576} \right] = 9.46$$

$$S = 3.08$$

■ ومجال الثقة للمحصول الزراعي للعام القادم:

$$45.38\pm(2.31)(3.08)$$

■ أي مابين 38.27 و 52.49 وذلك بثقة مقدار ها 95%.

- 1. عنصر الخطأ uذو توزيع طبيعي:
- نتيجة لذلك فإن المتغير التابع وتوزيع المعاينة للمعلمات الخاصة بالإنحدار أيضا تتبع التوزيع الطبيعي، وعليه يمكن إجراء إختبارات المعنوية للمعلمات.
 - 2. القيمة المتوقعة لعنصر الخطأ تساوي الصفرأي أن:
 - E(u)=0
 - $\mathbf{Y}=\alpha+\beta$ (وهي تعطي القيمة المتوسطة لـ $\mathbf{Y}=\alpha+\beta$
 - بما أن قيم X يفترض بأنها ثابتة، فإن قيمة Y تتراوح بين أعلى من وأدنى $Y=\alpha+\beta X+u$ من متوسطه عندما تزيد قيمة عن الصفر أو تنقص في X
 - وبماأن E(u)=0 فإن المعادلة الأولى تعطي القيمة المتوسطة لـY.

- $E(u)^2 = \sigma_u^2 \quad .3$
- أي أن تباين µ ثابت في كل فترة ولكل قيمة.
- هذه الفرضية تؤكد ان كل مشاهدة يمكن الإعتماد عليها بشكل متساوي.
- اي أن معلمات الإنحدار فعالة وأن اختبارات الفرضيات غير متحيزة ويمكن الإعتماد عليها.
 - الفرضيات الثلاثة السابقة تقرر:

 $u\sim N(0,\sigma_u^2)$

$i \neq j \quad E(u_i, u_i) = 0 \quad .4$

- ا أي أن عنصر الخطأ µ لفترة ما غير متعالقة ومستقلة عن عنصر الخطأ في فترة أخرى.
- هذا يؤكد أن متوسط قيمة Y يعتمد فقط على X وليس على µ.
 - هذا مطلوب من أجل الحصول على تقديرات فعالة لمعلمات الإنحدار، ولأختبارات نزيهة لمعنوياتها

$E(X,u_i) = 0 ..5$

المتغير المستقل يفترض قيم ثابتة يمكن الحصول عليها في العينات المتكررة، ولذا فإنه غير مرتبط بعنصر الخطا u.

- 5. إنعدام الإرتباط بين المتغيرات المستقلة.
- $X_1, X_2, X_3, \dots X_k$ عدم وجود إرتباط خطي تام بين
- $X_1, X_2,$ الهدف من ذلك الحصول على الأثر المستقل ل X_1, X_2, X_1 على Y على $X_3, \dots X_k$
 - 6. عدم وجود تحيز تحديدي:
 - اي أن النموذج تم تحديده بشكل صحيح.

تحليل الإنحدار المتعدد

- النموذج ذو المتغيرين قد يعجز عن تقديم التفسير الدقيق لتغيرات المتغير التابع.
 - الدخل ليس المتغير الوحيد المؤثر في الإستهلاك،
- هناك الكثير من الأمثلة التي تستدعي تطوير نموذج يشمل أكثر من متغيرين، متغيرين، متغيران مستقلان أو أكثر ومتغير تابع.
 - أبسط نموذج يمكن أخذه، نموذج ذو ثلاث متغيرات:

$$Y_i = \alpha + \beta_1 X_1 + \beta_2 X_2 + u_i$$

- المقطع، α، يعطي متوسط اثر كل المتغيرات الغير مدرجة في النموذج،
 متوسط أثر ها على Υ
 - التفسير الميكانيكي للمقطع أنه متوسط قيمة Y عندما تكون قيمة كل من X_{1}, X_{2} مساوية للصفر

تفسير معادلة الإنحدار المتعدد

- بوجود الفرضيات السابقة لنموذج الإنحدار .
- وبأخذ التوقع الشرطي لنموذج الإنحدار المتعدد، نحصل علي:

$$Y_i = \alpha + \beta_1 X_1 + \beta_2 X_2 + u_i$$

 $E(Y|X_1, X_2) = \alpha + \beta_1 X_1 + \beta_2 X_2$

- أي ان تحليل الإنحدار مشروط بقيم ثابتة للمتغيرات المستقلة.
- ما نحصل عليه هو متوسط قيمة Y أو متوسط إستجابة Y لقيم ثابتة للمتغيرات المستقلة X.

معنى المعلمات الجزئية في الإنحدار المتعدد

- المقطع، α، يعطي متوسط اثر كل المتغيرات الغير مدرجة في النموذج، متوسط أثرها على ٢
- التفسير الميكانيكي للمقطع أنه متوسط قيمة Y عندما تكون قيمة كل من X_1, X_2 مساوية للصفر.
- **E**(Y| X₁, X₂) , Y is a nigure of the line of $β_1$ is a line of $β_2$ is a line of $β_1$ is a line of $β_2$ is a line of $β_1$ is a line of $β_2$ is a line of $β_1$ is a line of $β_2$ is a line of $β_1$ is a line of $β_2$ is a line of $β_1$ is a line of $β_2$ is a line of $β_1$ is a line of $β_2$ is a line of $β_2$ is a line of $β_2$ is a line of $β_1$ is a line of $β_2$ is a line o

معنى المعلمات الجزئية في الإنحدار المتعدد

- X_2 تعطي ميل X_1 بالنسبة ل X_1 بالنسبة ل X_1 عطي ميل الفريد B_1
- X_{1} تعطي التأثير المباشر أو التأثير الصافي لكل وحدة تغير في X_{1} على القيمة المتوسطة لـ Y بدون المتغير المستقل الآخر X_{2}
- تقییس التغیر في القیمة المتوسطة لـ \mathbf{Y} لكل وحدة تغیر في \mathbf{X}_1 مع تثبیت \mathbf{X}_1 .
- اني التاثير المباشر أو الصافي لتغير وحدة من X_2 على القيمة المتوسطة لـ Y بدون X_1 .

تقدير معلمات الإنحدار المتعدد

■ يمكن تقدير معادلة الإنحدار ذات الثلاث متغيرات على النحو التالى:

$$\hat{\beta}_{1} = \frac{(\sum x_{1}y)(\sum x_{2}^{2}) - (\sum x_{2}y)(\sum x_{1}x_{2})}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}}$$

$$\hat{\beta}_{1} = \frac{(\sum x_{2}y)(\sum x_{1}^{2}) - (\sum x_{1}y)(\sum x_{1}x_{2})}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}}$$

$$\hat{\alpha} = Y - \hat{\beta}_{1}X_{1} - \hat{\beta}_{2}X_{2}$$

\mathbb{R}^2 معامل جودة التوفيق المتعدد

- سيفسر معامل جودة التوفيق المتعدد \mathbb{R}^2 نسبة من التغيرات الكلية في المتغير التابع، وذلك بتحدير X_2 على X_1 و X_2 .
 - يمكن حساب المعامل كما يلي:

$$R^{2} = \frac{\sum \hat{y}^{2}}{\sum y^{2}} = 1 - \frac{\sum e^{2}}{\sum y^{2}} = \frac{\hat{\beta}_{1} \sum yx_{1} + \hat{\beta}_{2} \sum yx_{2}}{\sum y^{2}}$$

- من المتوقع أن تتزايد قيمة R² مع تزايد عدد المتغيرات المستقلة.
- ومن إجل الأخذ في الحسبان تناقص درجات الحرية مع تزايد عدد \overline{R}^2 المتغيرات المستقلة يمكن إستخدام معامل جودة التوفيق المعدل

$$\bar{R}^2 = 1 - (1 - R^2) \frac{n - 1}{n - k}$$

معنوية المعادلة ككل

■ يمكن إختبار معنوية معادلة الإنحدار بإستخدام توزيع F على النحو التالي:

$$F_{k-1,n-k} = \frac{\sum \hat{y}^2 / (k-1)}{\sum e^2 / (n-k)} = \frac{R^2 / (k-1)}{(1-R^2) / (n-k)}$$

■ وتتم صياغة الفرضية على النحو التالي

$$H_o: \alpha = \beta_1 = \beta_2 = 0$$

$$H_1$$
: $\alpha \neq \beta_1 \neq \beta_2 \neq 0$

■ ويتم قبول الفرضية البديلة إذا كانت القيمة الجدولية لـ F أصغر من المحسوبة عند درجة الحرية k-1,n-k ومستوى الأهمية المحدد، والعكس.

مثال

X2	X1	Υ
8	9	6
13	10	8
11	8	8
10	7	7
12	10	7
16	4	12
10	5	9
10	5	8
12	6	9
14	8	10
12	7	10
16	4	11
14	9	9
10	5	10
12	8	11
180	105	135

- الجدول يوضح دخل الفرد بآلآف الدو لارات ونسبة العمالة في القطاع الزراعي وسنوات التعليم للسكان .
- المطلوب دراسة ذلك، وتقدير دالة الإنحدار التي تفسر العلاقة ما بين دخل الفرد وأثر كل من نسبة العمالة في القطاع الزراعي وسنوات التعليم للسكان فوق 25 سنة.
 - تقديم التحليل اللازم والتقييم للنتائج.

النتائج

- لقد تم تقدير معادلة الدخل التي تم تحديدها على أنها دالة النسبة المئوية العاملة في القطاع الزراعي ومتوسط عدد سنوات التعليم للسكان الذين تزيد أعمارهم على ال25 عام ،
- وقد تم إستخدام برنامج الحاسب الآلي للحصول على التقديرات اللازمة. فكانت النتائج التي يمكن تلخيصها في الجدول التالي:

نتائج الإنحدار

				SUMMARY OUTPUT
			0.832588	Multiple R
			0.693203	R Square
			0.64207	Adjusted R Square
			15	Observations
F	MS	SS	df	
13.5569	13.86406	27.72812	2	Regression
	1.022657	12.27188	12	Residual
		40	14	Total
P-value	t Stat	Stndard Error	Coefficients	
0.00598	3.3309	1.862253	6.20298	Intercept
0.01505	-2.83419	0.132724	-0.37616	X1
0.00259	3.786374	0.119511	0.452514 _{د. محيى أيوب}	X2 ₆₀

النتائج

ويمكن تلخيص ذلك كما يلي:

$$\hat{Y} = 6.203 - 0.38X_1 + 0.45X_2$$

SE 1.86 0.14 0.10

t 3.33 -2.834 3.786

 $R^2 = 0.693203$

Adj $R^2 = 0.64$

 $F_{2.12} = 13.56$

تفسير معادلة الإنحدار:

- تشير النتائج السابقة على العلاقة العكسية ما بين دخل الفرد X_1 ونسبة العمالة في القطاع الزراعي، X_1 ،
- تفيد المعلمة β_1 على ان زيادة 1% في نسبة العمالة في القطاع الزراعي يرافقه نقص في الدخل القومي بما مقداره 380 دولار، مع بقاء X_2 ثابتا.
- كما ان نتيجة الإنحدار توضح بأن العلاقة ما بين سنوات الدراسة للسكان فوق 25 سنة ودخل الفرد علاقة مباشرة" كما هو متوقع".

تفسير معادلة الإنحدار:

- وتفيد المعلمة β2، على أن زيادة سنوات التعليم بسنة واحدة للسكان فوق 25 سنة ترافق زيادة بمقدار 450 دو لار، مع إبقاء المتغير المستقل الآخر ثابتا.
- على أنه عند غياب كلا من المتغيرين X₁, X₂ ومساواتهما للصفر، فأن دخل الفرد يكون مساويا ل 6203 دو لار كما يشير المقطع α،
- ويمكن القول هنا على أن متوسط اثر كل المتغيرات الغير مدرجة في النموذج، متوسط أثرها على Y، هو ماقيمته 6203 دولار.

تحليل مصداقية معادلة الأنحدار المقدرة:

- من أجل الحصول على نتائج يمكن الإعتماد عليها ومن أجل الحصول على إستنتاجات نزيهة عن التغيرات في دخل الفرد يمكن الوثوق بها، كان لا بد من إجراء بعض الإختبارات:
 - معنويات المعلمات ومصداقية وجودة المعادلة.
 - معامل جودة التوفيق2 : R²
 - إختبار معنوية معادلة الإنحدار بإستخدام توزيع F:

إختبارات الفرضية عن المعلمات ومعنوياتها

تقدم النتائج السابقة ما توصلت إليه إختبارات الفروض عن مصداقية المعادلة وجودتها.

- قيم † الإحصائية تشير إلى معنوية جميع المعلمات السابقة. حيث أن القيمة الجدولية هي 179 و هي اصغر من جميع قيم † الإحصائية المحسوبة عند إجراء إختبارات الفرضيات.
- أثبت إختبار الفرضية بأن المقطعα، مختلف تماما عن الصفر عند مستوى الأهمية 5%. ويدل ذلك على وجود مؤثرات أخرى غير المتغيرين المستقلين تؤثر في دخل الفرد بثقة مقدار ها 95%.

معنويات المعلمات

- لقد أثبت إختبار الفرضية معنوية المعلمة β1 ، وأنها مختلفة بشكل كبير عن الصفر عند مستوى الأهمية 5%. ذلك يؤكد أثر نسبة العمالة في القطاع الزراعي X1 على دخل الفرد، بثقة مقدارها 95%.
 - حما أن النتائج تشير إلى معنوية β_2 ، حيث برهنت إختبارات الفروض على أن المعلمة مختلفة بشكل كبير عن الصفر عند مستوى الأهمية 5%.
- الفرد بثقة X_2 خلك يؤكد أثر نسبة سنوات التعليم نقل على دخل الفرد بثقة مقدار ها 95%.

معامل جودة التوفيق: R²

- يظهر R²على أن المعادلة إستطاعت أن تفسر حوالي 69% من التغيرات في الدخل، وأن حوالي 30% من التغيرات في الدخل قد تكون بسبب عوامل أخرى.
 - ويشير معامل جودة التوفيق المعدل ($\overline{R}^2 = 0.64$) على إنخفاض النسبة المفسرة من التغيرات في الدخل إلى حوالي والخدما نأخذ درجات الحرية في الحسبان.

إختبار معنوية المعادلة

■ لقد تم إجراء إختبار فرضية لمعنوية المعادلة إجمالا، بأن جميع معلمات المعادلة مختلفة تماما عن الصفر، وذلك باستخدم الفرضية:

Ho: α = β1=β2=0

H1: $\alpha \neq \beta 1 \neq \beta 2 \neq 0$

وقد تم الحصول على قيمة F الإحصائية:

$$F_{k-1,n-k} = \frac{\sum \hat{y}^2 / (k-1)}{\sum e^2 / (n-k)} = \frac{R^2 / (k-1)}{(1-R^2) / (n-k)} = 1356$$

وبمقارنتها F الجدولية 3.88، تم رفض فرضية العدم وقبول الفرضية البديلة وأن معلمات المعادلة مختلفة تماما عن الصفر

معامل الإرتباط الجزئي

- يقيس الإرتباط الصافي بين المتغير التابع ومتغير مستقل واحد بع إستبعاد تأثير المتغير المستقل الآخر، أي بتأثير الآخر.
- Y,X_1 هو الإرتباط الجزئي بعد إستبعاد أثر X_2 من بين كل من r_{YX_1,X_2}

$$r_{YX_1 \cdot X_2} = \frac{r_{YX_1} - r_{YX_2} r_{X_1 X_2}}{\sqrt{1 - r_{X_1 X_2}^2} \sqrt{1 - r_{X_2 Y}^2}}$$

$$r_{YX_2} \cdot_{X_1} = \frac{r_{YX_2} - r_{YX_1} r_{X_1 X_2}}{\sqrt{1 - r_{X_1 X_2}^2} \sqrt{1 - r_{X_1 Y_2}^2}}$$

معامل الإرتباط الجزئي

- Y,X_1 معامل الإرتباط البسيط بين r_{YX1}
- Y, X_2 معامل الإرتباط البسيط بين r_{YX2}
- X_{1}, X_{2} معامل الإرتباط البسيط بين r_{X1X2}
 - 1- ≤ r ≤1+ الجزئي +1≥ r ≥ -1
 - له إشارات المعامل المقدر.
- يستخدم لتحديد الأهمية النسبية لمختلف المتغيرات المستقلة في معادلة الإنحدار المتعدد.
 - معامل الإرتباط الجزئي يعطي الإرتباط الصافي الترتيبي .

مثال

■ لحساب معامل الإرتباط الجزئي للمثال السابق ينبغي حساب معاملات الإرتباطات بين مختلف المتغيرات على النحو التالى:

$$r_{YX_1} = \frac{\sum x_1 y}{\sqrt{\sum x_1^2} \sqrt{\sum y^2}} = -0.5715$$

$$r_{YX_2} = \frac{\sum x_2 y}{\sqrt{\sum x_2^2} \sqrt{\sum y^2}} = 0.6984$$

$$r_{x_1 x_2} = \frac{\sum x_1 x_2}{\sqrt{\sum x_1^2} \sqrt{\sum x_2^2}} = -0.1801$$

د. محیی أیوب

تابع المثال

■ وعليه يمكن حساب الإرتباط الجزئي الصافي بين المتغير التابع وكل متغير من المتغيرات المستقلة على النحو التالى:

$$r_{YX_1 \cdot X_2} = \frac{r_{YX_1} - r_{YX_2} r_{X_1 X_2}}{\sqrt{1 - r_{X_1 X_2}^2} \sqrt{1 - r_{YX_2}^2}} = -0.6331$$

$$r_{YX_2 \cdot X_1} = \frac{r_{YX_2} - r_{YX_1} r_{X_1 X_2}}{\sqrt{1 - r_{X_1 X_2}^2} \sqrt{1 - r_{YX_1}^2}} = 0.8072$$

■ وعليه يمكن القول بأن إسهام المتغير المستقل الثاني أكبر من إسهام المتغير الأول إلى النموذج.

د. محيى أيوب

72

جدول

	Υ	1X	الدخلX	у	уу	x1	x1*x1	x2	x2x2	yx1	yx2
	6	9	8	-3	9	2	4	-4	16	-6	12
	8	10	13	-1	1	3	9	1	1	-3	-1
	8	8	11	-1	1	1	1	-1	1	-1	1
	7	7	10	-2	4	0	0	-2	4	0	4
	7	10	12	-2	4	3	9	0	0	-6	0
	12	4	16	3	9	-3	9	4	16	-9	12
	9	5	10	0	0	-2	4	-2	4	0	0
	8	5	10	-1	1	-2	4	-2	4	2	2
	9	6	12	0	0	-1	1	0	0	0	0
	10	8	14	1	1	1	1	2	4	1	2
	10	7	12	1	1	0	0	0	0	0	0
	11	4	16	2	4	-3	9	4	16	-6	8
	9	9	14	0	0	2	4	2	4	0	0
	10	5	10	1	1	-2	4	-2	4	-2	-2
	11	8	12	2	يي 🕰 وب	1 د. مح	1	0	0	2	0 3
الجموع	135	105	180	0	40	0	60	0	74	-28	38

الأشكال الدالية للإنحدار

- قد يتطلب الأمر في كثير من الأحيان إستخدام نماذج غير خطية.
 - نظرية الإنتاج مثلا تستدعي إستخدام جميع عناصر الإنتاج، مثل العمل ورأس المال، وعدم تواجد أي منهما يعني إنتفاء الإنتاج.
 - الدالة الخطية لا تشترط تواجد جميع المدخلات معا.
 - لذلك كان لا بد من اللجوء إلى أشكال غير خطية للوفاء بخصائص الإنتاج.

الأشكال الدالية للإنحدار

- المعادلات يمكن أن تكون غير خطية كليا أو جزئيا.
- المعادلات الغير خطية يمكن تحويلها إلى خطية لوغاريتمية ثم تقديرها بإستخدام أسلوب المربعات الصغرى.
 - معلمات المعادلات المحولة لها خصائص مفيدة للغاية.

الأشكال الدالية للانحدار

- فيما يلي بعض الأشكال الدالية التي يمكن تحويلها:
- الشكل اللوغاريتمي المزدوج ، التي تكون في الأصل:

$$Y = \alpha X_1^{\beta_1} X_2^{\beta_2} e^{\mu}$$

■ وبعد التحويل إلى لوغاريتم طبيعي تصبح الدالة:

 $\ln Y = \ln \alpha + \ln \beta_1 X_1 + \ln \beta_2 X_2 + \ln e^{\mu}$

- المعلمات بعد التحويل هي مرونات المتغير التابع بالنسبة للمتغيرات المستقلة.
- هذه المعلمات يمكن تفسيرها على مقدار التغير النسبي في المتغير التابع المصاحب لتغير نسبي في المتغير المستقل.

الأشكال الدالية للانحدار

■ الشكل الشبه **اللوغاريتمي**:

$$InY=\alpha+\beta X+u$$

■ تشير المعلمة هنا إلى التغير النسبي في المتغير التابع لتغير وحدة واحدة في المتغير المستقل

$$Y=\alpha+\ln\beta X+u$$

- تشير المعلمة هنا إلى مقدار التغير في المتغير التابع لكل تغير نسبى في المتغير المستقل
 - الشكل المعكوس

 $Y=\alpha+\beta_1X+\beta_2X^2+u$

 $Y = \alpha + \beta / X + u$

■ شكل الق*وى*: أ**و**

مثال:

Q	L	K
240	1480	410
400	1660	450
110	1150	380
530	1790	430
590	1880	480
470	1860	450
450	1940	490
160	1240	395
290	1240	430
490	1850	460
350	1570	435
550	1700	470
560	2000	480
430	1850	440

- المثال التالي من كتاب الدكتور دومنك سلفاتور عن إنتاجيات 14 منشأة, والكميات المستخدمة من المدخلات، عمل لا ورأسمال المدخلات، عمل المدخلات، ع
- المطلوب: تقدير دالة الإنتاج لتلك المنشأءآت باستخدام دالة كوب- دجلاس، وتقديم شرح عن دلالات المعلمات.
 - تكلم بإيجاز عن وضع الصناعة.

الحل

■ دالة : كوب- دجلاس الإنتاجية:

$$Y = \alpha X_1^{\beta_1} X_2^{\beta_2} e^{\mu}$$

- الدالة نحتم وجود جميع المتغيرات المستفلة، المدخلات، وإلا فإن الدالة تصبح صفرا.
 - وبعد التحويل إلى لوغاريتم طبيعي تصبح الدالة:

$$\ln Y = \ln \alpha + \beta_1 \ln X_1 + \beta_2 \ln X_2 + \ln u$$

■ وعليه يجب تحويل بيانات الجدول إلى بيانات لو غاريتمية ثم القيام بالتحدير.

الجدول اللوغاريتمي الطبيعي

InQ	InL	InK		
5.480639	7.299797	6.016157		
5.991465	7.414573	6.109248		
4.70048	7.047517	5.940171		
6.272877	7.489971	6.063785		
6.380123	7.539027	6.173786		
6.152733	7.528332	6.109248		
6.109248	7.570443	6.194405		
5.075174	7.122867	5.978886		
5.669881	7.122867	6.063785		
6.194405	7.522941	6.131226		
5.857933	7.358831	6.075346		
6.309918	7.438384	6.152733		
6.327937	7.60 0902 .3	6.173786		
6.063785	7.522941	6.086775		

80

نتائج الإنحدار

Multiple R	0.937039			
R Square	0.878041			
Adjusted R Square	0.855867			
Standard Error	0.191279			
Observations	14			
	df	SS	MS	F
Regression	2	2.897539	1.448769	39.5972
Residual	11	0.402464	0.036588	
Total	13	3.300003		
	Coefficients	Standard Error	t Stat	
Intercept	-23.2312	5.236462	-4.43643	
InL	1.430253	0.560843	2.550183	
InK	3.045391	1.367235 د. محيي أيوب	2.227409	81

النتائج

```
InQ=-23.23+1.43InL+3.05InK

t (-4.44) (2.55) (2.23)

R^2=0.878

Adj R^2=0.856

F= 39.597
```

شرح النتائج

- تشير النتائج على أن مرونة الإنتاج بالنسبة للعمل هي 1.43 ،
 كما أن مرونة الإنتاج بالنسبة لرأس المال هي 3.05 .
- اي أنه عندما يتغير العمل بنسبة 1% فذلك يؤدي إلى تغير في الإنتاج بنسبة 1.43%.
- عندما تتغير المدخلات الرأسمالية بنسبة 1%، فإن الإنتاج سيتغير بنسبة 3.05%.
 - ان $\beta_2 + \beta_2$ أكبر من الواحد الصحيح فذلك يعني أن الصناعة تتمتع بعائد غلة نسبي متزايد .
 - أي أن زيادة 10% من كلا المدخلين تؤدي إلى زيادة أكثر من 10% في المخرجات.

شرح النتائج

- ما أن $\beta_2 + \beta_2 + \beta_3$ فإن ذلك يعني بأن هذه الصناعة تتمتع بخاصية تزايد الغلة النسبي.
- بناءاً على النتيجة السابقة، فإن زيادة المدخلات بنسبة 10% تؤدي إلى زيادة إجمالي الإنتاج بنسبة 44.8%.
- النتائج تشير إلى أن قيم † الإحصائية لكل المعلمات أكبر من قيم † الجدولية.
 - وعليه فإن إختبارات الفرضيات عن المعلمات تشير إلى معنوية المعلمات كل على حدة.
 - أي أن كل معلمة من المعلمات مختلف بشكل كبير عن الصفر.

شرح النتائج

- ذلك يؤكد على أهمية ودور المتغيرات المستقلة في شرح سلوك المتغير التابع، الإنتاج.
- يشير معامل جودة التوفيق R² إلى أن المعادلة تمكنت من شرح حوالي 88% من التغيرات في الإنتاج.
- 12% من التغيرات في كميات الإنتاج قد تكون بسبب متغيرات أخرى لم يتم إدراجها في المعادلة.
 - الدالة بشكلها الكلي ذات معنوية ، حيث أن فيمة F ألإحصائية أكبر من F الجدولية.

- في تحليل الإنحدار يتأثر المتغير التابع بالمتغيرات المستقلة الكمية، مثل:
 - الدخل، الأسعار، المخرجات، ...
 - ويتأثر أيضا بالمتغيرات المستقلة النوعية ، مثل:
 - الجنس ، الحروب، الجنسية، اللون، الديانة...
- مع تثبيت جميع الأمور الأخرى، فقد وجد أن الجنسية تلعب دورا في مرتبات الموظفين.
 - في بعض الدول الغربية، وجد أن:
 - الذكورمرتباتهم أعلى من الإناث،
 - وأن البيض يحصلون على مرتبات أعلى ممن سواهم.

د. محيى أيوب

86

- المتغيرات النوعية لها دور أساسي في التأثير على المتغير التابع.
 - لذا يجب إدراج المتغيرات النوعية بشكل مناسب.
 - المتغيرات النوعية تشير إلى وجود أو عدم وجود نوع أو صفة ما، مثل:
 - ذكر أو أنثى، متعلم أو أمي، سعودي أو غير سعودي.
 - أحد أساليب إستخدام المتغيرات النوعية في الإنحدار هو وضع متغيرات صورية.

- في المتغيرات الصورية يتم إستخدام الرقم 1 أو صفر.
 - صفر يشير إلى غياب الصفة ، و1 إلى وجودها.
- 1 يمكن أن يشير على ان الشخص ذكر وصفر يعطي للأنثى.
- 1 يمكن أن يشير على ان الشخص جامعي وصفر يعطي لغير الجامعي.
 - مثل تلك المتغيرات 1 و 0، تسمى بالمتغيرات الصورية.
- تلك المتغيرات يمكن أن تسمى بالمتغيرات المشيرة، المتغيرات النوعية، المتغيرات الفئة.
- يمكن إستخدام المتغيرات الصورية ، في الانحدار بنفس السهولة التي يمكن بها إستخدام المتغيرات الكمية.
 - ويمكن أن يتضمن نموذج الإنحدار متغيرات صورية فقط.

على سبيل المثال رواتب الموظفين والموظفات:

$$Y = \alpha + \beta D + u \tag{1}$$

حيث:

$$D=1$$

■ هذا النموذج من نماذج الإنحدار ذات المتغيرين.

■ النموذج بدلا من ان يحوي على متغير كمي Xفهو يحوي على متغير صوري D.

■ النموذج يمكننا من معرفة عما إذا كان الجنس يكون سببا في التفرقة في مرتبات الموظفين، مع ثبات العوامل الأخرى مثل التحصيل العلمي، الخبرة، السن.

■ للنموذج السابق يمكن أن نحصل على:

$$E(Y|D=0)=\alpha$$
 متوسط مرتبات الموظفات:

د. محيي أيوب

89

 $E(Y|D=1)=\alpha+\beta$ متوسط مرتبات الموظفين:

- أي المقطع الراسي a يمكن أن يعطي متوسط مرتبات الموظفات.
- معامل الميل β يبين المقدار الذي يختلف فيه متوسط مرتبات الموظفين عن متوسط مرتبات الموظفات.
 - و يمثل $\alpha+\beta$ متوسط مرتبات الموظفين.
- ويمكن إجراء إخبارات الفرصية بعدم وجود فروق أو تمميز بسبب الجنس أي

 $(H_0 : \beta = 0)$

وحساب المعادلة بالأسلوب المعتاد والتأكد من الأهمية الإحصائية ل β على ضوء إختبار † .

- النموذج السابق يستخدم بكثرة في أبحاث التسويق ويعض العلوم الإجتماعية.
 - الأبحاث الإقتصادية تستخدم نماذج بمتغيرات مفسرة كمية وبعضها نوعية.
 - نماذج الإنحدار التي تحوي على خليط من المتغيرات الكمية والنوعية تسمى نماذج تحليل التباين المشترك (ACOVA).
 - دراستنا ستترکز علی مثل هذه النماذج

مثال لنموذج ACOVA المعادلة التالية:

$$Y = \alpha_0 + \alpha_1 D_i + \beta X_i + u \qquad (2)$$

وفيها:

راتب الموظف =Y

D=1 إذا كان ذكر أ

D=0 إذا كانت أنثى

عدد سنوات الخبرة = X

- هذا النموذج يحوي:
- 1. متغير كمي واحد "سنوات الخبرة في مجال العمل".
- 2. متغير نوعي واحد" الجنس" الذي له طبقتان أو صنفان من حيث التصنيف ذكر او انثى.

- شرح النموذج: بافتراض : E(u)=0، يمكن القول :
 - متوسط مرتبات الموظفة:

$$E(Y|Xi, D=0) = \alpha_0 + \beta X_i$$
 (3)

■ متوسط مرتبات الموظف:

$$E(Y|Xi, D=1)=(\alpha_0 + \alpha_1) + \beta X_i$$
 (4)

■ هندسیا، سیکون لدینا الشکل:

- النموذج يبين بان مرتبات الموظفين والموظفات:
- تتناسب مع العلاقة مع عدد سنوات الخبرة في مجال العمل ،
 - ولها نفس المعامل β
 - لها مقاطع مختلفة.
- مستوى متوسط مرتبات الذكور يختلف عن متوسط مرتبات الإناث ويري في α_0 .

الإنحدار على متغير كمي واحد ومتغير نوعي والحد ومتغير نوعي واحد بصنفين أوطبقتين.

- معدل التغير في متوسط المرتبات السنوية المرتبط بسنوات الخبرة هو نفسه لكلا الجنسين.
 - يمكن إجراء إختبار الفرضية بأن المعادلتين (3)و(4) لهما نفس المقطع، أي عدم وجود تمييز جنسين،
- وذلك بإجراء الإنحدار على (4) وملاحظة الأهمية الإحصائية ل α_1 المقدرة على اساس إمتحان α_1
 - المقدرة له أهمية إحصائية ، فيتم وفض فرضية تساوي مرتبات الموظفات والموظفين.

بعض القواعد للمتغيرات الصورية.

أولا: للتفريق بين صنفين، ذكر وانثى مثلا، يتم تقديم متغير صوري واحد.

■ لايمكن تقديم نموذج مثل:

$$Y = \alpha_0 + \alpha_1 D_i + \alpha_2 D_2 + \beta X_i + u$$
 (5)

بعض القواعد للمتغيرات الصورية.

وفيه

 D_1, D_2 ذلك النموذج لا يمكن تقديره بسبب الإرتباط التام بين D_1, D_2

■ قاعدة : إذا كان عدد المتغيرات النوعية m = m من الأصناف، فسيتم تقديم m-1

بعض القواعد للمتغيرات الصورية.

ثانيا: تخصيص 1 و 0 للصنفين مثل الذكر والأنثى هو إعتباطي فيمكننا تخصيص: D=1 للأنثى و D=0 للذكر.

ثالثا: المجموعة أو الصنف الذي أخذ القيمة 0 يسمى دائما الأساس.

الإنحدار على متغير كمي واحد ومتغير نوعي بأكثر من طبقة.

- إذا أردنا عمل إنحدار على بيانات متقاطعة للإنفاق السنوي على الرعاية الصحية من قبل الأفراد كدالة للدخل والمستوى التعليمي.
 - المتغير التعليمي هو متغير نوعي بطبيعته، فيمكن النظر إلى 3 مستويات تعليمية:
 - أقل من التعليم الثانوي.
 - تعليم ثانوي.
 - تعليم جامعي.
 - لدينا أكثر من صنفين من المتغير النوعي.

الإنحدار على متغير كمي واحد ومتغير نوعي بأكثر من طبقة.

- بإتباع القاعدة ، يكون عدد المتغيرات الصورية أقل بواحد من عدد أصناف المتغير النوعي، أي متغيرين صوريين إثنين .
 - النموذج الذي يمكن تقديمه:

$$Y = \alpha_0 + \alpha_1 D_1 + \alpha_2 D_2 + \beta X_i + u$$
 (2)

■ وفيه:

$$Y=$$
 الإنفاق السنوي على الرعاية الصحية $X=$ الدخل السنوي $D_1=1$ $D_1=0$ عير ذلك

$$D_2 = 1$$

$$D_2 = 0$$
 غير ذلك

- شرح النموذج: بافتراض : E(u)=0، يمكن القول :
 - متوسط الإنفاق على الرعاية لما دون الثانوي:

$$E(Y|Xi, D_1 = 0 D_2 = 0) = \alpha_0 + \beta X_i$$

- متوسط الإنفاق على الرعاية لمستوى الثانوي :
- $E(Y|Xi, D_1 = 1, D_2 = 0) = (\alpha_0 + \alpha_1) + \beta X_i$
 - متوسط الإنفاق على الرعاية لمستوى الجامعي :
- $E(Y|Xi, D_1 = 0, D_2 = 1) = (\alpha_0 + \alpha_2) + \beta X_i$

■ هندسیا، سیکون لدینا الشکل:

103

الإنحدار بمتغير كمي واحد ومتغيرين نوعيين

- يمكن التوسع فس إستخدام أسلوب المتغيرات الصورية ليعالج أكثر من متغير نوعي.
- لندرس حالة المدرسين ورواتبهم في أحد المجتمعات حيث يؤثر في الرواتب عدد سنوات الخبرة والجنس واللون .
 - وعليه يمكن تحديد النموذج على النحو التالي:

$$Y=\alpha_0+\alpha_1 D_1+\alpha_2 D_2 +\beta X_i+u$$

- وفیه:
- 1. الراتب =Y
- X = $\sum_{i=1}^{n} x_i = 1$
- $D_1 = 1$ ذكر 3
- $D_1 = 0$ diff.
- $D_2 = 1$, i.e., $D_2 = 1$
- $D_2 = 0$ غير ذلك 6.

الإنحدار بمتغير كمى واحد ومتغيرين نوعيين

- لاحظ أن كلا المتغيرين النوعيين، الجنس واللون، له صنفين، فنستخدم متغير صوري واحد لكل منهما.
 - الصنف المحذوف ، أو الأساس، هو المدرسة السوداء.
 - بافتراض E(u)=0
 - متوسط راتب المدرسة السوداء:

$$E(Y|Xi, D_1 = 0 D_2 = 0) = \alpha_0 + \beta X_i$$

■ متوسط راتب المدرس الأسود:

$$E(Y|Xi, D_1 = 1, D_2 = 0) = (\alpha_0 + \alpha_1) + \beta X_i$$

متوسط راتب المدرسة البيضاء.

$$E(Y|Xi, D_1 = 0, D_2 = 1) = (\alpha_0 + \alpha_2) + \beta X_i$$

متوسط راتب المدرس الأبيض:

$$E(Y|Xi, D_1 = 1, D_2 = 1) = (\alpha_0 + \alpha_1 + \alpha_2) + \beta X_i$$

مشاكل في تحليل الإنحدار

- أولا: الإرتباط الخطي المتعدد بين المتغيرات المفسرة: Multicollinearity
- الحالة التي يكون فيها متغيران مستقلان أو أكثر في نموذج الإنحدار بينها إرتباط عالي.
- هذا الأمر يجعل عزل تاثير كل عامل أو متغير على المتغير التابع صعبا أو مستحيلا.
- يكون المتغيران المستقلان مترابطان خطيا بصورة تامة إذا كان أحد المتغيرات أو اكثر يمكن التعبير عنه كإتحاد خطي مع المتغير الآخر أو المتغيرات الأخرى.

مشاكل في تحليل الإنحدار

- مثال: یکون هناك إرتباط خطي تام بین X_1 ، X_2 إذا كان X_1 ، X_2 الله عنام بین X_1 ، أو X_1 = 2 X_2 .
- عندما يكون متغيران أو أكثر من المتغيرات المستقلة مرتبطان إرتباط تام ، سيكون مستحيلا حساب تقديرات OLS للمعلمات ، لأن هيكل المعادلات سيكون محتويا على معادلتين او أكثر غير مستقلة.

مشاكل في تحليل الإنحدار

- إذا كان الإرتباط عاليا وليس تاما، فإن Multicollinearity الإرتباط عاليا وليس تاما، فإن عال عال. يعني حالة المتغيرات المستقلة التي تكون مرتبطة بشكل عال.
- هذا الأمر يجعل عزل أو فصل تاثيرات كل متغير من المتغيرات المستقلة على المتغير التابع صعبا أو مستحيلاً.
 - معلمات OLS نزیهة إذا تم تحدید النموذج بشکل جید.
 - لا يشكل لإرتباط الخطي المتعدد Multicollinearity مشكلة للتنبؤ إذا كان نفس الإرتباط موجودا خلال فترة التنبؤ.

مشاكل في تحليل الإنحدار

إكتشاف لإرتباط الخطي المتعدد Multicollinearity:

- يبدو ظاهرا عندما لا يكون أي من المتغيرات المستقلة في الـ OLS الهمية إحصائية. حتى أن بعضه يكون له إشارات غير صحيحة على الرغم من كون R²عاليا حوالي 1.
- يمكن إستخدام معاملات الإرتباط الجزئي أو البسيط كمقاييس ل Multicollinearity.
- الإرتباط الخطي المتعدد Multicollinearity يمكن ان يكون موجودا حتى لو كان معامل الإرتباط الجزئي او البسيط منخفضان اقل من 0.5.

مشاكل في تحليل الإنحدار

التصحيح:

- التوسع في حجم بيانات العينة .
- إستخدام معلومات مسبقة كأن نعلم بأن B2=0.3B1
 - تحويل العلاقات الدالية.
- إلغاء المتغير ذو الإرتباط العالي، لكن قد يؤدي ذلك غلى إخطاء او عدم نزاهة، إذا كانت النظرية تتضمن وجوب شمول النموذج للمتغير الذي جرى حذفه.

- هو العلاقة بين أعضاء القراءات المتسلسلة في الإنحدار مرتبة:
 - 1. في الزمن "في السلاسل الزمنية".
 - أو في المكان " البيانات المقطعية".
 - الإنحدار التقليدي يفترض عدم وجود مثل هذا الارتباط بين عناصر الخطأ، رمزيا:

$$E(\varepsilon_i, \varepsilon_j)=0$$

 $i\neq j$

- النموذج التقليدي يفترض عدم تأثر عنصر الخطأ لأي قراءة بعنصر الخطأ في أي قراءة أخرى.
- على سبيل المثال إذا حدث عطل في إحدى آلات الإنتاج في أحد أرباع السنة ، ليس هناك ما يدعو للإعتقاد بأن هذا الخلل سيتواصل أثره ألى الربع التالى من السنة.
- إذا إنخفض الإنتاج في الربع الذي حصل فيه الخلل، فلا يوجد مايدعو للإعتقاد بأن الإنتاج سينخفض في الربع التالي.

- عند التعامل مع بيانات مقطعية لدخول أسر، وزاد دخل إحدى الأسر، فلا مبرر للإعتقاد بزيادة الإنفاق في الأسر الأخرى.
- ا إذا حدث مثل ذلك الإرتباط، فذلك يعني حدوث إرتباط تسلسلي، أي:

$$E(\varepsilon_i, \varepsilon_j)=0$$

 $i\neq j$

- في مثل هذه الحالة:
- فإن الخلل الذي يحدث في نظام الإنتاج، يمكن أن يمتد إلى فترة لاحقة، ويؤثر في الإنتاج فيها.
 - وإستهلاك أسرة ما ، يمكن أن يؤثر في إستهلاك أسرة أخرى حتى تكون في نفس المستوى.
- وهكذا فإن الإرتباط التسلسلي يقصد به أن عامل الخطأ في فترة ما مرتبط بعامل الخطأ في فترة أخرى.

- إذا كان عامل الخطأ في فترة ما مرتبط بعامل الخطأ في فترة سابقة فهذا ما يسمى بالإرتباط التسلسلى من الدرجة الأولى.
- في الإقتصاد القياسي فإن معظم التطبيقات على الدرجة الأولى.
 - على أن الإرتباط السلبي يمكن حصوله.
 - في معظم حالات السلاسل الزمنية الاقتصادية نجد الإرتباط التسلسلي الموجب من الدرجة الأولى.

- الإرتباط التسلسلي الموجب:
- يكون عندما تكون إشارة عوامل الخطأ متسلسلة في نفس الإتجاه كما في الشكل:

يمكن إختبار وجود الإرتباط التسلسلي بحساب إحصاء دوربن — واطسون, Durbin-Watson, d خطوات إختبار وجود الإرتباط الذاتي:

عطوات إحتبار وجود الإرتباط الدائي.

- 1. أجري التحدير واحصل على قيم e
 - 2. احصل على قيمة المحسوبة:

$$d = \frac{\sum (e_t - e_{t-1})^2}{\sum e_t^2}$$

ويمكن الحصول عليها من الحاسب الآلي بسهولة.

$$d_L \le d \le d_U$$

- 1. هذه القيمة تتراوح بين 0 و 4
- 2. لا يكون هناك إرتباط عندما d حوالي 2
- 3. ويتم إختبار d عند مستوى أهمية 5% و 1% لعدد n من القراءات و k من المتغيرات المستقلة.
- 4. إذا كان d المحسوب أقل من d " الحد الأدنى " المجدول فإن فرضية وجود إرتباط تسلسلي موجب تقبل.
 - ون الفرضية ترفض، لفرضية $d > d_u$ أذا كان $d > d_u$ أذا كان $d < d_u$ أ

$$d_L \leq d \leq d_U$$
 لا يمكن الحسم إذا كان $d \leq d_U$

- 2. أدنى عدد للقراءات يجب أن يكون 15 قراءة.
- 3. يمكن إختبار وجود الإرتباط التسلسلي بإجراء إختبار الفرضية لذلك على النحو التالي:

 $H_0: \rho=0$ عدم وجود إرتباط تسلسلي موجب

 $H_1: \rho \neq 0$ وجود إرتباط تسلسلي موجب

وبجعل

$$\rho = \frac{\sum e_t e_{t-1}}{\sum e^2}$$

كمعلمة للإرتباط التسلسلي من الدرجة الأولى، وبالإبطاء ب 1

ويمكن التعبير عن d بما يلي:

d=2(1-p)

إذا كان p=0 و d=2 فلا وجود للإرتباط التسلسلي.

ويتوقع أن يكون حوالي 2

كلما إقترب من 0 زادت دلائل وجود الإرتباط التسلسلي الموجب.

ويمكن تلخيص الخطوات فيما يلي:

- e_s إجراء الإنحدار والحصول على e_s
 - 2. الحصول على d
 - $d_{IJ} = d_{IJ} = d_{IJ}$ d.
- التسلسلي. $d < d_L$ عدم وجود الإرتباط التسلسلي. $d < d_L$
- ا عدم وجود الإرتباط التسلسلي. $d > d_u$ الأرتباط التسلسلي.

120

Autocorelation

الب الفرضية الأولى Ho عدم وجود إرتباط تسلسلي سالب الفرضية الأولى $+d_{IJ} \leq d \leq d \leq d$ عندئذ:

$$d>4 - d_L$$
 ارفض الحان الخاط 12. ارفض 2

4. لا يمكن التقرير إذا كان

$$d_L \le d \le d_U$$

Autocorelation $4-d_U \le d \le 4-d_L$

إذا كانت الفرضية الأولى Ho ذات جانبين عدم وجود إرتباط تسلسلي سالب أو موجب ، عندئذ:

$$d_L \le d \le d_U$$

$$d>4 - d_L$$
 ارفض الخان الخان الخاص 2.

$$4-d_U \le d \le 4-d_L$$

$4-d_U \le d \le 4-d_L$ Autocorelation

- $d_{U} < d < 4 d_{U}$ اإذا كان Ho
- 5. لا يمكن التقرير بوجود أو عدم وجود الإرتباط التسلسلي إذا وقع d في المنطقة الغير حاسمة.
 - 6. عند هذه الحالة ينبغي الحصول على بيانات إضافية أو عينة أخرى.
 - 7. مع ملاحظة أن

■ هي الحالة التي يكون فيها تباين عامل الخطأ غير ثابت لكل قيم المتغير المستقل:

E(Xi, εi)≠0

ا أي

 $E(\epsilon_i)^2 \neq \sigma^2$

■ وهذا يخالف الفرضية الثالثة لنموذج إنحدار OLS .

- وهذا يحدث بشكل رئيسي في البيانات المقطعية.
- مثال ذلك: تباين الخطأ المرافق لإنفاق أسر الدخول المنفقة أصغر من تباين بالنسبة للأسر ذوي الدخول المرتفعة ، حيث أن معظم إنفاق الأسر الفقيرة على الضروريات مع إمكانية محدودة للإختيار.
- عدم وجود تغير تباين عامل الخطأ هو Homoscedasticity الخطأ هو أي ثبات التباين

- وجود المشكلة لا يلغي النزاهة للمعلمات ،
- تقديرات معلمات المربعات الصغرى تصبح غير فعالة، أي لها تباينات أكبر من أدنى التباينات.
 - وجود المشكلة يجعل تباينات المعلمات غير نزيهة الأمر الذي يقود إلى إختبارات غير صحيحة للمعلمات ، ومجالات ثقة غير نزيهة.

إختبار وجود المشكلة:

يمكن إختبار وجود المشكلة بإجراء إختبار Gold Feld-Quandtعلى النحو التالي

- 1. ترتيب البيانات من القيم الصغيرة إلى الكبيرة للمتغيرات المستقلة.
 - 2. عمل إنحدارين:

127

- 1. الأول للقيم الصغيرة لـ X
 - الثاني للقيم الكبيرة لـ X
- 3. الغاء المنتصف الخمس- من القراءات.
- 4. عمل نسبة: إجمالي مربعات الأخطاء للإنحدار الثاني/إجمالي مربعات الأخطاء للإنحدار الأول للإنحدار الأول

$$\frac{ESS_2}{ESS_1}$$

5. إختبار النسبة لإيجاد مدى إختلافها عن الصفر بصورة كبيرة.

5. إستخدام توزيع F لهذا الإختبار مع درجة حرية .

$$\frac{(n-d-2k)}{2}$$

d عدد القرءات المحذوفة k عدد

وفيها n =عدد القراءات المعلمات

- 6. يكون الإختبار أكثر فعالية مع العينات الكبيرة ، 30 أو أكبر.
- 7. إذا لم تحذف البيانات الوسطى ، فغن الإختبار يظل صحيحا، ولكن تضعف قوته في إظهار المشكلة.

■ تصحيح المشكلة:

■ يمكن تصحيح المشكلة بقسمة كل عنصر من عناصر النموذج على X ثم إعادة تقدير الإنحدار باستخدام المتغيرات المحولة.

■ في حالة الإنحدار البسيط لنموذج مثل

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

■ نحصل على :

$$\frac{Y}{X} = \frac{\beta_0}{X} + \beta_1 + \frac{\varepsilon}{X}$$

- فيكون عنصر الخطأ المحول الآن ذو تباين ثابت
- يلاحظ في النموذج بأن المقطع قد أصبح الآن متغيرا، بينما معامل الميل قد أصبح مقطعا.

■ نتائج التصحيح:

- يجب الجذر في تفسير نتائج الإنحدار.
- وبما أن الإنحدار الجديد فيه ذو تباين ثابت فإن تقديرات OLS ليست فقط نزيهة ومترابطة ولكن فعالة أيضا.
 - المتعدد، نقسم كل عامل في الإنحدار على المتغير X_2 المستقل الذي يظن بأنه سبب المشكلة ، فلنقل X_2
 - فيكون لدينا

$$\frac{Y}{X_{2}} = \frac{\beta_{0}}{X_{2}} + \beta_{1} \frac{X_{1}}{X_{2}} + \beta_{2} + \frac{\varepsilon}{X_{2}}$$