Math 415 - Lecture 23

Projections on subspaces

Monday October 19th 2015

Textbook reading: Chapter 3.2, 3.3, 3.4

Suggested practice exercises: Chapter 3.2 Exercise 17, 18, 24, Chapter 3.4 Exercise 2, 3 and see exercise at the end of this notes

Khan Academy video: Projections onto subspaces, Visualizing a projection onto a plane, Projection is closest vector in subspace

1 Review

Last time

• Orthogonal projection of x onto y:

$$\hat{\mathbf{x}} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}$$

Let $\mathbf{x}^{\perp} = \mathbf{x} - \hat{\mathbf{x}}$ is orthogonal to \mathbf{y} .

• If $\mathbf{y}_1, \dots, \mathbf{y}_n$ is an **orthogonal basis** of V, and \mathbf{x} is in V, then $\mathbf{x} = c_1 \mathbf{y}_1 + \dots + c_n \mathbf{y}_n$ with $c_j = \frac{\mathbf{x} \cdot \mathbf{y}_j}{\mathbf{y}_j \cdot \mathbf{y}_j}$.

nark. \mathbf{x} decomposes as the sum of ogonal basis.

Remark. x decomposes as the sum of its projections onto each vector in the orthogonal basis.

Remark. The formulas simplify when you project on *unit* vectors: all denominators are then 1.

1

Example 1. Express $\begin{bmatrix} 2\\1\\1 \end{bmatrix}$ in terms of the basis $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$

Solution.

Notice that $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3$ is an orthogonal basis of \mathbb{R}^3 .

$$\begin{bmatrix} 2\\1\\1 \end{bmatrix} = c_1 \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_3 \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} 2\\1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}}_{\text{projection of } \mathbf{x} \text{ onto } \mathbf{y}_1} \underbrace{\begin{bmatrix} 2\\1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}}_{\text{projection of } \mathbf{x} \text{ onto } \mathbf{y}_2} \underbrace{\begin{bmatrix} 2\\1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}}_{\text{projection of } \mathbf{x} \text{ onto } \mathbf{y}_3}$$

$$= \frac{1}{2} \begin{bmatrix} 2\\1\\1 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} 1\\1\\0 \end{bmatrix} + \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

2 Orthogonal projection on subspaces

2.1 Projecting onto a subspace

Theorem 2. Let W be a subspace of \mathbb{R}^n . Then, each \mathbf{x} in \mathbb{R}^n can be uniquely written as

$$\mathbf{x} = \underbrace{\hat{\mathbf{x}}}_{\text{in } W} + \underbrace{\mathbf{x}^{\perp}}_{\text{in } W^{\perp}}$$

 $\hat{\mathbf{x}}$ is the **orthogonal projection** of \mathbf{x} onto W.

- $\hat{\mathbf{x}}$ is the point in W closest to \mathbf{x} . For any other \mathbf{y} in W, $\operatorname{dist}(\mathbf{x}, \hat{\mathbf{x}}) < \operatorname{dist}(\mathbf{x}, \mathbf{y})$.
- If $\mathbf{v}_1, \dots, \mathbf{v}_m$ is an orthogonal basis of W, then

$$\hat{\mathbf{x}} = \left(\frac{\mathbf{x} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 + \ldots + \left(\frac{\mathbf{x} \cdot \mathbf{v}_m}{\mathbf{v}_m \cdot \mathbf{v}_m}\right) \mathbf{v}_m$$

Once $\hat{\mathbf{x}}$ is determined, $\mathbf{x}^{\perp} = \mathbf{x} - \hat{\mathbf{x}}$.

(This is also the orthogonal projection of \mathbf{x} onto W^{\perp} .)

Example 3. Let
$$W = span \left\{ \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$
, and $\mathbf{x} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix}$.

- Find the orthogonal projection of \mathbf{x} onto W. (Or: find the vector in W which is closest to \mathbf{x})
- Write \mathbf{x} as a vector in W plus a vector orthogonal to W.

Solution.

Note that
$$\mathbf{w}_1 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$
 and $\mathbf{w}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ are an orthogonal basis for W .

(We will soon learn how to construct orthogonal bases ourselves). Hence, the orthogonal projection of \mathbf{x} onto W is:

$$\hat{\mathbf{x}} = \frac{\mathbf{x} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 + \frac{\mathbf{x} \cdot \mathbf{w}_2}{\mathbf{w}_2 \cdot \mathbf{w}_2} w_2$$

$$= \frac{\begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}}{\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + \frac{\begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}}{\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \frac{10}{10} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$$

Warning

This calculation only works for *orthogonal* $\mathbf{w_1}$, $\mathbf{w_2}$!

 $\hat{\mathbf{x}}$ is the vector in W which best approximates \mathbf{x} .

Orthogonal projection of \mathbf{x} onto the orthogonal complement of W:

$$\mathbf{x}^{\perp} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 9 \end{bmatrix}$$

Hence,

$$\mathbf{x} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} = \underbrace{\begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}}_{\text{in } W} + \underbrace{\begin{bmatrix} -3 \\ 0 \\ 9 \end{bmatrix}}_{\text{in } W^{\perp}}$$

Indeed,
$$\begin{bmatrix} -3\\0\\9 \end{bmatrix}$$
 is orthogonal to $\mathbf{w}_1 = \begin{bmatrix} 3\\0\\1 \end{bmatrix}$ and $\mathbf{w}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$.

2.2 The matrix of a projection

Definition 4. Let $\mathbf{v}_1, \dots, \mathbf{v}_m$ be an orthogonal basis of W, a subspace of \mathbb{R}^n . Note that the projection map $\pi_W : \mathbb{R}^n \to \mathbb{R}^n$ that sends \mathbf{x} to

$$\hat{\mathbf{x}} = \left(\frac{\mathbf{x} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 + \ldots + \left(\frac{\mathbf{x} \cdot \mathbf{v}_m}{\mathbf{v}_m \cdot \mathbf{v}_m}\right) \mathbf{v}_m$$

is a linear map. The matrix P representing π_W with respect to the standard basis is the **projection matrix**.

Example 5. Find the projection matrix P for the orthogonal projection onto

$$W = span \left\{ \begin{bmatrix} 3\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

in \mathbb{R}^3 .

Solution. Standard basis: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

The first column of P encodes the projection of $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$:

$$\frac{\begin{bmatrix} 1\\0\\0\end{bmatrix} \cdot \begin{bmatrix} 3\\0\\1\end{bmatrix}}{\begin{bmatrix} 3\\0\\1\end{bmatrix} \cdot \begin{bmatrix} 3\\0\\1\end{bmatrix}} = \begin{bmatrix} 3\\0\\1\end{bmatrix} + \frac{\begin{bmatrix} 1\\0\\0\end{bmatrix} \cdot \begin{bmatrix} 0\\1\\0\end{bmatrix}}{\begin{bmatrix} 0\\1\\0\end{bmatrix} \cdot \begin{bmatrix} 0\\1\\0\end{bmatrix}} = \frac{3}{10} \begin{bmatrix} 3\\0\\1\end{bmatrix}.$$

Hence
$$P = \begin{bmatrix} \frac{9}{10} & * & * \\ 0 & * & * \\ \frac{3}{10} & * & * \end{bmatrix}$$
.

The second column of P encodes the projection of $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$:

$$\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} \cdot \begin{bmatrix}
3 \\
0 \\
1
\end{bmatrix}$$

$$\begin{bmatrix}
3 \\
0 \\
1
\end{bmatrix} + \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} \cdot \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}$$

Hence
$$P = \begin{bmatrix} \frac{9}{10} & 0 & * \\ 0 & 1 & * \\ \frac{3}{10} & 0 & * \end{bmatrix}$$
.

The third column of P encodes the projection of $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$:

$$\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \cdot \begin{bmatrix}
3 \\
0 \\
1
\end{bmatrix} \cdot \begin{bmatrix}
3 \\
0 \\
1
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \cdot \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} \cdot \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} \cdot \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} = \frac{1}{10} \begin{bmatrix}
3 \\
0 \\
1
\end{bmatrix}.$$

Hence
$$P=egin{bmatrix} \frac{9}{10} & 0 & \frac{3}{10} \\ 0 & 1 & 0 \\ \frac{3}{10} & 0 & \frac{1}{10} \end{bmatrix}$$
. Let's do the earlier example again using the matrix P .

Example 6. Let
$$W = span \left\{ \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$
, and $\mathbf{x} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix}$. Find the orthogonal projection of \mathbf{x} onto W .

Solution.

$$\hat{\mathbf{x}} = P\mathbf{x} = \begin{bmatrix} \frac{9}{10} & 0 & \frac{3}{10} \\ 0 & 1 & 0 \\ \frac{3}{10} & 0 & \frac{1}{10} \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix},$$

as in the previous example.

Example 7. Compute P^2 when

$$P = \begin{bmatrix} \frac{9}{10} & 0 & \frac{3}{10} \\ 0 & 1 & 0 \\ \frac{3}{10} & 0 & \frac{1}{10} \end{bmatrix}.$$

Explain why the answer makes sense.

Solution.

$$\begin{bmatrix} \frac{9}{10} & 0 & \frac{3}{10} \\ 0 & 1 & 0 \\ \frac{3}{10} & 0 & \frac{1}{10} \end{bmatrix} \begin{bmatrix} \frac{9}{10} & 0 & \frac{3}{10} \\ 0 & 1 & 0 \\ \frac{3}{10} & 0 & \frac{1}{10} \end{bmatrix} = \begin{bmatrix} \frac{9}{10} & 0 & \frac{3}{10} \\ 0 & 1 & 0 \\ \frac{3}{10} & 0 & \frac{1}{10} \end{bmatrix}$$

$$P^{2} = P$$

Once we have projected down onto W, projecting onto W again does not change anything!

3 Practice problems

3.1 Practice problems

Example 8. Find the closest point to \mathbf{x} in $span\{\mathbf{v}_1,\mathbf{v}_2\}$ where

$$\mathbf{x} = \begin{bmatrix} 2\\4\\0\\-2 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$

Solution.

$$\hat{\mathbf{x}} = \frac{6}{2} \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} + \frac{-2}{2} \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} = \begin{bmatrix} 3\\3\\-1\\-1 \end{bmatrix}$$

Example 9. If P is the projection matrix for projecting on W, what is the projection matrix Q for projecting on W^{\perp} ?

Solution.
$$Q = 1 - P!$$

Example 10. Let P be the projection matrix for projecting on W, and let \mathbf{x} be some vector.

- Suppose $P\mathbf{x} = \mathbf{x}$. What can you say about \mathbf{x} ?
- Suppose $P\mathbf{x} = 0$. What can you say about \mathbf{x} ?