

IIC2223 - Teoría de autómatas y lenguajes formales - 2' 2024

IIC2224 – Autómatas y Compiladores

TAREA 4

Publicación: Viernes 18 de octubre.

Entrega: Jueves 24 de octubre hasta las 23:59 horas.

Indicaciones

• Debe entregar una solución para cada pregunta (sin importar si está en blanco).

• Cada solución debe estar escrita en LATEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.

• Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.

• Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.

• Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.

• La tarea es individual.

Pregunta 1

Un transductor $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ se dice *síncrono* si $\Delta \subseteq Q \times \Sigma \times \Omega \times Q$. En otras palabras, no tiene ϵ -transiciones, ni transiciones que producen ϵ al leer una letra. En particular, es fácil ver que si \mathcal{T} es síncrono y $(u, v) \in [\mathcal{T}]$, entonces |u| = |v|. Por último, para todo $u = a_1 \dots a_n \in \Sigma^*$ y $v = b_1 \dots b_n \in \Omega^*$ se define la palabra $u \times v = (a_1, b_1) \dots (a_n, b_n)$ sobre el alfabeto $\Sigma \times \Omega$.

1. Para una relación $R \subseteq \Sigma^* \times \Omega^*$ tal que |u| = |v| para todo $(u, v) \in R$, se define el lenguaje:

$$R^{\times} = \{u \times v \mid (u, v) \in R\}.$$

Demuestre que para todo transductor síncrono \mathcal{T} se tiene que $\llbracket \mathcal{T} \rrbracket^{\times}$ es un lenguaje regular.

2. Para una palabra $w = a_1 \dots a_{n-1} a_n$, se define la palabra reversa de w como $w^{\text{rev}} = a_n a_{n-1} \dots a_1$. Considere la relación Rev = $\{(w, w^{\text{rev}}) \mid w \in \Sigma^*\}$. Demuestre que NO existe un transductor síncrono \mathcal{T} tal que Rev = $[\mathcal{T}]$.

Pregunta 2

Para cada uno de los siguientes lenguajes, muestre una gramática libre de contexto que lo defina y explique su correctitud. No es necesario demostrar su correctitud, pero si explicar de manera precisa porque la gramática propuesta cumple con lo solicitado.

- 1. Todas las formulas proposicionales con una variable p y constantes 0 (false) y 1 (true).
- 2. Todas las formulas proposicionales con una variable p y constantes 0 y 1 que son tautologías.

Notar que el alfabeto de ambos lenguajes es $\{p, 0, 1, \neg, \wedge, \vee, (,)\}$. Por ejemplo, $(\neg(p) \land 1)$ y $((1 \land \neg(p)) \lor p)$ son palabras en el primer lenguaje. En cambio, $(\neg p \land 1)$ o $0 \land \neg p \lor p$ no lo son. Notar que cada operación \neg , \wedge , o \vee de la formula tiene que estar entre paréntesis.

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de 0, 1, 2, 3 o 4 puntos. Todas las preguntas tienen la misma ponderación en la nota final y cada item tiene la misma ponderación en cada pregunta.