Espaços \mathcal{L}^p (continuação)

Agora, vmos provar que $(\mathcal{L}^p, \|\cdot\|_p)$ é um espaço vetorial normado para $1 \leq p < \infty$.

Proposição 1. A aplicação $\|\cdot\|_p:\mathcal{L}^p\to\mathbb{R}$ dada por

$$||f||_p = \left(\int |f|^p \, d\mu\right)^{\frac{1}{p}}$$

é uma norma

Demonstração. Note que

1.
$$||f||_p = \left(\int |f|^p d\mu\right)^{\frac{1}{p}} \ge 0 \text{ pois } |f| \ge 0.$$

$$2. \|\lambda f\|_{p} = \left(\int |\lambda f|^{p} d\mu\right)^{\frac{1}{p}} = \left(\int |\lambda|^{p} |f|^{p} d\mu\right)^{\frac{1}{p}} = \left(|\lambda|^{p} \int |f|^{p} d\mu\right)^{\frac{1}{p}} = |\lambda| \left(\int |f|^{p} d\mu\right)^{\frac{1}{p}} = |\mu|^{p} \left(\int |f|^{p} d\mu\right)^{\frac{1}{p}} = |\mu|^{p} \left(\int |f|^{p} d\mu\right)^{\frac{1}{p}} = |\mu$$

3. $||f+g||_p \leq ||f||_p + ||g||_p$ pela Desigualdade de Minkowski.

Portanto $\|\cdot\|_p$ é uma norma.

Agora, nosso objetivo é mostrar que \mathcal{L}^p com $1 \leq p < \infty$ é um espaço de Banach, isto é, um espaço vetorial normado completo. Para isso precisamos das seguintes definições

Definição 1. Seja (f_n) uma sequência em \mathcal{L}^p com $1 \leq p < \infty$. Dizemos que (f_n) é de Cauchy se dado $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que

$$||f_n - f_m|| < \varepsilon$$

para todo $n, m \ge n_0$

Definição 2. Sejam (f_n) uma sequência em \mathcal{L}^p e $f \in \mathcal{L}^p$ com $1 \leq p < \infty$. Dizemos que (f_n) é convergente e converge para f se dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$||f_n - f||_p \leqslant \varepsilon$$

para todo $n \ge n_0$. Equivalentemente

$$\lim \|f_n - f\|_p = 0$$

Definição 3. Um espaço métrico (X,d) é completo se toda sequência de Cauchy é convergente.

Teorema 1 (Teorema de Riesz-Fischer). \mathcal{L}^p com $1 \leq p < \infty$ é um espaço de Banach.

Demonstração. Seja (f_n) uma sequência de Cauchy em \mathcal{L}^p . Mostremos que (f_n) é convergente. Com efeito, sabemos que dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$||f_n - f_m|| < \varepsilon$$

para todo $n, m \ge n_0$. Esscolhendo ε de forma adequada e passando a uma subsequência se necessário, temos que

$$||f_{n+1} - f_n|| < 2^{-n} \tag{1}$$

Defina $g: X \to \overline{\mathbb{R}}$ por

$$g(x) = |f_1(x)| + \sum_{n=1}^{\infty} |f_{n+1}(x) - f_n(x)|.$$

Observe que $g \in \mathcal{M}^+(X,\eth)$, pois $g \geqslant 0$ e

$$g = |f_1| + \lim_{k \to \infty} \sum_{n=1}^{k} |f_{n+1} - f_n|$$

isto é, g é formado pela soma e pelo limite de funções mensuráveis (f_n é integrável, em particular, mensurável). Queremos mostrar que $g \in \mathcal{L}^p$. De fato

$$\int |g|^{p} d\mu = \int \left(|f_{1}| + \lim_{k \to \infty} \sum_{n=1}^{k} |f_{n+1} - f_{n}| \right)^{p} d\mu$$

$$= \int \liminf_{k \to \infty} \left(|f_{1}| + \sum_{n=1}^{k} |f_{n+1} - f_{n}| \right)^{p} d\mu$$

$$\leqslant \liminf_{k \to \infty} \int \left(|f_{1}| + \sum_{n=1}^{k} |f_{n+1} - f_{n}| \right)^{p} d\mu$$

$$= \liminf_{k \to \infty} \left\| |f_{1}| + \sum_{n=1}^{k} |f_{n+1} - f_{n}| \right\|_{p}^{p}$$

$$\leqslant \liminf_{k \to \infty} \left(||f_{1}|| + \sum_{n=1}^{k} ||f_{n+1} - f_{n}||_{p} \right)^{p}$$

$$\leqslant \left(||f_{1}||_{p} + \sum_{n=1}^{k} ||f_{n+1} - f_{n}||_{p} \right)^{p}$$

$$\leqslant \left(||f_{1}||_{p} + \sum_{n=1}^{\infty} 2^{-n} \right)$$

Portanto, $g \in \mathcal{L}^p$. Agora seja, $E = \{x \in X : g(x) < \infty\} \in \eth$. Dito isso, $N = X \setminus E = \{x \in X : g(x) = \infty\} \in \eth$. Mostremos que N tem medida nula. Com efeito, suponha que $\mu(N) > 0$, dessa forma

$$\int_X |g|^p \geqslant \int_N |g|^p = \infty \int d\mu = \infty \mu(N) = \infty,$$

o que implicaria em

$$\int |g|^p = \infty$$

que é uma contradição pois $g \in \mathcal{L}^p$. Dessa forma $\mu(N) = 0$, isto é, $g < \infty$ em quase toda parte em X. Sendo assim, defina $f: X \to \mathbb{R}$ por

$$f(x) = \begin{cases} f_1(x) + \sum_{n=1}^{\infty} (f_{n+1}(x) - f_n(x)) & \text{se } x \in X \\ 0 & \text{se } x \notin X. \end{cases}$$

Mostremos que $f \in \mathcal{L}^p$. Note que

$$f(x) = \left(f_1(x) + \sum_{n=1}^{\infty} (f_{n+1}(x) - f_n(x))\right) \chi_E.$$

Daí

$$|f| = \left| f_1 + \sum_{n=1}^{\infty} (f_{n+1} - f_n) \right| |\chi_E| \le |f_1| + \sum_{n=1}^{\infty} |f_{n+1} - f_n| = g.$$

Consequentemente, $|f|^p < g^p$. Logo

$$\int |f|^p d\mu \leqslant \int g^p d\mu < \infty.$$

Portanto, $f \in \mathcal{L}^p$. Por outro lado, para todo $x \in E$

$$f(x) = f_1(x) + \sum_{n=1}^{\infty} (f_{n+1}(x) - f_n(x))$$

$$= f_1(x) + \lim_{k \to \infty} \sum_{n=1}^{k} (f_{n+1}(x) - f_n(x))$$

$$= \lim_{k \to \infty} (f_1(x) + f_2(x) - f_1(x) + f_3(x) - f_2(x) + \dots + f_{k+1}(x) - f_k(x))$$

$$= \lim_{k \to \infty} f_{k+1}(x) = \lim_{k \to \infty} f_k(x).$$

Como $\mu(N) = 0$, então $\lim f_n = f$ em quase toda parte em X. É fácil ver que

$$|f_k| = \left| f_1 + \sum_{n=1}^{k-1} (f_{n+1} - f_n) \right| \le |f_1| + \sum_{n=1}^{k-1} |f_{n+1} - f_n| \le \sum_{n=1}^{\infty} |f_{n+1} - f_n| = g.$$
 (2)

Por isso

$$|f_n - f|^p \le (|f_n| + |f|)^p \le (2g)^p = 2^p g^p$$

para todo $n \in \mathbb{N}$. Como $g \in \mathcal{L}^p$, então $2^p g^p \in \mathcal{L}^1$. Dessa forma, pelo Teorema da Convergência Dominada, chegamos a

$$\lim ||f_n - f||_p = \lim \left(\int |f_n - f|^p \, d\mu \right)^{\frac{1}{p}} = \int \lim |f_n - f|^p \, d\mu = 0$$

Isto prova que \mathcal{L}^p é completo.

Definição 4. Seja (X, \eth, μ) um espaço de medida. O espaço

$$\mathcal{L}^{\infty} = \mathcal{L}^{\infty}(X,\eth,\mu) = \{f: X \to \mathbb{R} \, ; f \text{ \'e mensur\'avel e limitada qtp em } X\}$$

é chamado Espaço de Lebesgue $\mathcal{L}^{\infty}.$ Para cada $f\in\mathcal{L}^{\infty},$ definimos

$$||f||_{\infty} = \inf\{M \geqslant 0 : |f(x)| \leqslant M \text{ qtp em } X\}$$

Por fim, dizemos que f é uma função essencialmente limitada.

Observação: Note que

$$||f||_{\infty} = \inf\{M \ge 0 : \mu(\{x \in X : |f(x)| > M\} = 0)\}.$$

Isto segue da seguinte equivalência

$$|f(x)| \leq M$$
 qtp em $X \iff \mu(\{x \in X : |f(x)| > M\}) = 0.$

De fato, $|f(x)| \leq M$ em quase toda parte em X se, e somente se, existe $N \in \eth$ tal que $\mu(N) = 0$ e $|f(x)| \leq M$ para todo $x \in N^{\mathcal{C}}$. Note que $\{x \in X : |f(x)| > M\} \subseteq N$, dessa forma

$$\mu(\{x\in X\,;|f(x)|>M\})\leqslant\mu(N)=0$$

Portanto, $\mu(\{x \in X ; |f(x)| > M\}) = 0.$

Reciprocamente, se $\mu(\{x \in X; |f(x)| > M\}) = 0$, então $|f(x)| \leq M$ para todo $x \in \{x \in X; |f(x)| > M\}$, isto é, $|f(x)| \leq M$ em quase toda parte em X.

Proposição 2. Seja (X, \eth, μ) um espaço de medida. Então

$$|f(x)| \leq ||f||_{\infty}$$
 qtp em X

para todo $f \in \mathcal{L}^{\infty}$

Demonstração. Se $f \in \mathcal{L}^{\infty}$, então existe $M \geqslant 0$ tal que $|f(x)| \leqslant M$ em quase toda parte em X. Daí, como $||f||_{\infty} = \inf\{M_0 \geqslant 0; |f(x)| \leqslant M_0$ qtp em $X\}$, temos que dado $\varepsilon > 0$ conseguimos encontrar $M_{\varepsilon} \geqslant 0$ tal que $|f(x)| \leqslant M_{\varepsilon}$ em quase toda parte em X,

$$\begin{array}{c|c} & M_{\varepsilon} \\ \hline & ||f||_{\infty} & ||f||_{\infty} + \varepsilon \end{array}$$

como $M_{\varepsilon} < ||f||_{\infty} + \varepsilon$, então

$$|f(x)| \leq M_{\varepsilon} < ||f||_{\infty} + \varepsilon.$$

Fazendo $\varepsilon \to 0$ chegamos a

$$|f(x)| \leq ||f||_{\infty}$$
 qtp em X

Agora mostremos que \mathcal{L}^{∞} é um espaço vetorial normado

Proposição 3. A aplicação $\|\cdot\|_{\infty}:\mathcal{L}^{\infty}\to\mathbb{R}$ dada por

$$||f||_{\infty} = \inf\{M \geqslant 0; |f(x)| \leqslant M \text{ qtp em } X\}$$

é uma norma

Demonstração. Note que

- 1. $||f||_{\infty} \ge 0$ pois 0 é cota inferior de $\{M \ge 0; |f(x)| \le M \text{ qtp em } X\}$.
- 2. $||f||_{\infty} = 0$, assim dado $\varepsilon > 0$ existe $M_{\varepsilon} \ge 0$ tal que $|f(x)| \le M_{\varepsilon}$ em quase toda parte em X, com $M_{\varepsilon} < \varepsilon$. Daí, $|f(x)| < \varepsilon$ em quase toda parte em X. Fazendo $\varepsilon \to 0$, encontramos

$$|f(x)| \leq 0$$
 qtp em X

Dessa forma, f(x) = 0 em quase toda parte em X.

Reciprocamente, $||0||_{\infty} = \inf\{M \ge 0; 0 \le M \text{ qtp em } X\} = \inf[0, \infty) = 0$

3. (Desigualdade de Minkowski em \mathcal{L}^{∞}) Se $f, g \in \mathcal{L}^{\infty}$ então as funções são limitadas em quase toda parte em X, dito isso, f+g também é limitada em quase toda parte em X. Logo $f+g \in \mathcal{L}^{\infty}$.

Por outro lado, como $f, g \in \mathcal{L}^{\infty}$, então existem $M, \hat{M} \in \eth$ tais que $\mu(M) = \mu(\hat{M}) = 0$ e $|f(x)| \leq ||f||_{\infty}$ para todo $x \notin M$ e $|g(x)| \leq ||g||_{\infty}$ para todo $x \notin \hat{M}$. Seja $N = M \cup \hat{M} \in \eth$. Daí $\mu(N) = \mu(M \cup \hat{M}) \leq \mu(M) + \mu(\hat{M}) = 0 + 0 = 0$. Além disso

$$f(x) + g(x) \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty} \text{ qtp em } X$$

para todo $x \notin N$, com $\mu(N) = 0$. Dessa forma

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$$

Portanto, $\|\cdot\|_{\infty}$ é uma norma.

Proposição 4 (Desigualdade de Hölder em \mathcal{L}^{∞}). Seja (X, \eth, μ) um espaço de medida. Se $f \in \mathcal{L}^1$ e $g \in \mathcal{L}^{\infty}$, então $fg \in \mathcal{L}^1$ e

$$||fg||_1 \le ||f||_1 ||g||_{\infty}$$

Demonstração. Note que se $g \in \mathcal{L}^{\infty}$ então $|g| \leq ||g||_{\infty}$ em quase toda parte em X. Consequentemente

$$||fg||_1 = \int |fg| \, d\mu = \int |f| \, |g| \, d\mu \leqslant \int |f| ||g||_{\infty} \, d\mu = ||g||_{\infty} \int |f| \, d\mu = ||g||_{\infty} ||f||_1$$

5