Self-Attention Graph Pooling

ICML 2019

Junhyun Lee, Inyeop Lee, Jaewoo Kang

Introduction

- · Convolutional neural networks in graph
 - Convolution
 - Downsampling (pooling)
- Previous researches
 - Only graph topology
 - Diffpool: quadratic storage complexity; many parameters
 - ► gPool: no topology

Introduction

- > Self-Attention Graph Pooling
 - hierarchical
 - ► end-to-end
 - few parameters
 - both node features and graph topology

Related Work

- Topology based pooling
 - Eigendecomposition
- Global pooling: consider graph features
 - Set2Set
 - ► SortPool
- ► Hierarchical pooling: capture structural information
 - Diffpool
 - ► gPool

The key point of SAGPool is that it uses a GNN to provide self-attention scores.

Figure 1. An illustration of the SAGPool layer.

- ► Self-attention mask
 - the self-attention score $Z \in \mathbb{R}^{N \times 1}$ is calculated as follows.

$$Z = \sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta_{att}) \tag{3}$$

 $\Theta_{att} \in \mathbb{R}^{F \times 1}$ is the only parameters

- The result is based on both graph features and topology.
- Node selection $idx = top-rank(Z, \lceil kN \rceil), \quad Z_{mask} = Z_{idx}$
- Graph pooling $X' = X_{\text{idx,:}}, X_{out} = X' \odot Z_{mask}, A_{out} = A_{\text{idx,idx}}$

- Variation of SAGPool
 - The generalized equatio $Z = \sigma(GNN(X, A))$
 - Variation 1 $Z = \sigma(GNN(X, A + A^2))$
 - Variation 2 $Z = \sigma(GNN_2(\sigma(GNN_1(X, A)), A))$
 - Variation $Z = \frac{1}{M} \sum_{m} \sigma(\text{GNN}_{m}(X, A))$

- Model Architecture
 - ► Convolution layer

$$h^{(l+1)} = \sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}h^{(l)}\Theta)$$

Readout

$$s = \frac{1}{N} \sum_{i=1}^{N} x_i \parallel \max_{i=1}^{N} x_i$$

$$= \frac{1}{N} \sum_{i=1}^{N} x_i \parallel \max_{i=1}^{N} x_i \parallel \min_{i=1}^{N} x_i \parallel \min_{i=$$

- Hierarchical pooling architecture

Figure 2. The global pooling architecture (left) and the hierarchical pooling architecture (right). These architectures are applied to all the baselines and SAGPool for a fair comparison. In this paper, the architecture on the left side is referred to as $POOL_g$ and the architecture on the right side is referred to as $POOL_h$ with the POOL method (e.g. $SAGPool_q$, $gPool_h$).

Experiments

Table 4. Experimental results of SAGPool_h variants. We compare ChebConv(K=2) (Defferrard et al., 2016), GCNConv (Kipf & Welling, 2016), SAGEConv (Hamilton et al., 2017), and GATConv(heads=6) (Velikovi et al., 2018). GCNConv is applied to SAGPool_h, SAGPool_h, augmentation, SAGPool_h, serial, and SAGPool_h, parallel.

Graph Convolution	D&D	PROTEINS
$SAGPool_h$	76.45 ± 0.97	71.86 ± 0.97
$egin{aligned} SAGPool_h,_{Cheb} \ SAGPool_h,_{SAGE} \ SAGPool_h,_{GAT} \end{aligned}$	75.82 ± 0.79 76.28 ± 1.06 75.49 ± 0.93	71.98 ± 0.93 71.93 ± 0.82 71.98 ± 1.01
$SAGPool_h$, augmentation $SAGPool_h$, serial, 2 layers	77.07 ± 0.82 76.68 ± 0.96	$71.82 \pm 0.81 \\ 72.17 \pm 0.87$
$SAGPool_h,_{parallel,M=2}$ $SAGPool_h,_{parallel,M=4}$	75.79 ± 0.96 76.77 ± 0.61	72.05 ± 0.43 71.66 ± 0.98

Figure 3. The increase in the number of parameters according to the number of graph nodes. The x-axis label denotes the number of input graph nodes and the y-axis label denotes the number of parameters of the hierarchical pooling models: the number of input node features is 128, the hidden feature size is 128, and the number of classes is 2. Equation (3) is used as a graph convolution of SAGPool. k denotes the pooling ratio and k = 1.0 indicates that the entire node is preserved after pooling. gPool and SAGPool have a consistent number of parameters regardless of the input graph size and the pooling ratio.

Experiments

- Analysis
 - ► 比较global and hierarchical pooling
 - ► 解释SAGPool方法如何解决gPool方法的缺点
 - ▶ 比较SAGPool与DiffPool的效率
 - ► 分析SAGPool变体
- Limitation
 - · Cannot parameterize the pooling ratio k