בעיית המחרוזות

- $.W = \{w_1, ..., w_n\}$,3 מופע: קבוצת מילים שונות באורך 1.
- בדיוק T הן באורך 2 של המחרוזות באורך 3 באורך 2 באורך n+2 באורך T הן בדיוק 2. (כן / לא) T

אלגוריתם: רדוקציה למסלול המילטון

נתאר אלגוריתם מבוסס רדוקציה למסלול המילטון:

1. <u>ממיר קלט</u>:

$$:G=(V,E)$$
 נבנה גרף

- V=W : ס קדקודים
- . y = bcd י א קשתות: יש קשת בין כל זוג מילים x, y מהצורה x = abc
 - (מימוש: קופסה שחורה) G ביפעיל אלגוריתם למציאת מסלול המילטון ב- 2
 - 3. <u>ממיר פלט</u>: נחזיר "כן" אם הקופסה השחורה מצאה מסלול, וְ-"לא", אחרת.

הוכחת נכונות

- W עבור T עבור חוקית מחרוזת משפט: האלגוריתם מחזיר "כן" אם"ם קיימת T
- .ש מסלול המילטון. G יש מסלול המילטון עבור W עבור T יש מסלול המילטון.
 - W עבור T עבור חוקית מחרוזת מסלול המילטון אזי קיימת מחרוזת בגרף ש מסלול המילטון אזי קיימת עבור

הוכחת המשפט (על סמך טענות העזר)

:⇐ .1

. G -אם האלגוריתם מחזיר "כן" אז לפי ממיר הפלט יש מסלול המילטון ב- אם האלגוריתם מחרוזת חוקית T עבור W

:⇒ .2

אם יש מחרוזת חוקית $\,T\,$ עבור $\,W\,$ אזי מטענה 1 יש מסלול המילטון ב- $\,G\,$, ואז לפי ממיר הפלט, האלגוריתם מחזיר "כן".

1 הוכחת טענת עזר

יי: T ע"י:

$$T = a_1 a_2 \cdots a_n a_{n+1} a_{n+2}$$

[יש במחרוזת a_i אותיות; כל אחת מהאותיות אנו מסמנים ע"י n+2 אותיות; כל אחת מהאותיות אנו מסמנים ע"י

 $a_i a_{i+1} a_{i+2}$ נגדיר את להיות תת-המחרוזת x_i לכל $1 \le i \le n$

. G -טענה: הסדרה $\left(x_1, x_2, ..., x_n\right)$ היא מסלול המילטון ב

נוכיח ראשית שהיא מסלול ב-G, ואז שהיא מסלול המילטון.

1. מסלול:

4.3.2014

צאה 2

V -ם קדקוד x_i קדקוד ב- לפי ממיר הקלט, היא מילה ב- W היא מילה ב- T מתקיים: x_i, x_{i+1} עוקבים עוקבים עוקבים

$$x_i = a_i \quad a_{i+1} \quad a_{i+2}$$
 $x_{i+1} = a_{i+1} \quad a_{i+2} \quad a_{i+3}$

.G קשת בגרף $\left(x_i,x_{i+1}
ight)$, לומר הסיפא של x_{i+1} של של x_{i+1} ולכן, לפי ממיר הקלט, x_i,\dots,x_n מסלול מכוון ב- G .

2. <u>המילטון</u>:

T מחרוזת חוקית, לכן כל מילה ב- W מופיעה כתת-מחרוזת x_i כלומר, כל מילה ב- W מופיעה כקדקוד במסלול [[אותו המסלול שדיברנו עליו עד עכשיו][. זה אומר שכל הקדקודים ב- V מופיעים במסלול, לכן מכך שיש n מילים שונות v קדקודים ב- v, ויש בדיוק v קדקודים מסלול v ב- v, ויש בדיוק v קדקודים מסלול v בובע שכל קדקוד מופיע בדיוק פעם אחת במסלול.

T מילים שונות ב-W, וכולן מופיעות כתתי-מילים ב-T. לכן יש ב-T לפחות n תתי-מילים שונות. אבל ב-T יש **בדיוק** n מילים, לכן כל תת-מילה מופיעה בדיוק פעם אחת. כל תת-מילה של T מופיעה כקדקוד במסלול, שגם הוא באורך T, לכן יש לפחות T

קדקודים שונים במסלול, ואז כל קדקוד מופיע בדיוק פעם אחת.

2 הוכחת טענת עזר

נסמן את מסלול ההמילטון ע"י:

$$P = \langle y_1, y_2, ..., y_n \rangle$$

 $y_{_{\! 1}} = abc_{_{\! 1}}$ נסמן את המילה [[W - "ו" שמתאימה ל $y_{_{\! 1}}$ שמתאימה ([W - "ו" שמתאימה (" ב

 $y_i = **c_i$ כלומר: האחרת, נסמן את האות האחרונה ב- $y_i = **c_i$ כלומר:

.W טענה: המילה $T = \underbrace{abc_1c_2\cdots c_n}_{n+2 \; \text{letters}}$ היא מחרוזת טענה:

 $: \left\{ y_1, \ldots, y_n
ight\}$ הן בדיוק – תת-המחרוזות של - תת-המחרוזות של - 1

. $y_1 = abc_1$ תת-המחרוזת הראשונה היא

. y_{i+1} של 2 באורך הרישא באורך של באורך של פיזכר שלפי ממיר הקלט, הסיפא באורך של

. y_2 תת-המחרוזת השנייה היא ב $\mathbf{y}_2 = b c_1 \mathbf{c_2}$

. $y_i = c_{i-2}c_{i-1}c_i$ היא בדיוק i-ה המחרוזת שתת-המחרוזת ולהמשיך באינדוקציה ולהוכיח שתת-המחרוזת היא

:W הן בדיוק $\left\{ y_{1},...,y_{n}
ight\}$ המילים – <u>II שלב</u> .2

. y_1, \dots, y_n מסלול המילטון, לכן כל קדקוד מופיע בדיוק פעם אחת בP

לפי ממיר הקלט, הקדקודים הם המילים W, ולכן כל מילה ב-W מופיעה בדיוק פעם אחת לפי ממיר הקלט, הקדקודים הם המילים $\{y_{\scriptscriptstyle 1},\ldots,y_{\scriptscriptstyle n}\}$

. שלב $T \Leftarrow W$ מחרוזת מחרוזות באורך $T \Leftrightarrow T$ שלב + I שלב + I שלב + I שלב + I שלב

ניתוח זמן ריצה

- 3. ממיר קלט:
- $O(n^2)$ בניית הגרף n (G קדקודים וְ- n^2 בדיקת קשתות n
 - 4. מימוש של הקופסה השחורה:

[כיום מאמינים שהבעיה של מציאת מסלול המילטון היא בעיה קשה מאוד [[זה עוד לא הוכח חד-משמעית]], אשר ע"מ לפתור אותה דרוש אלגוריתם הפועל בזמן אקספוננציאלי לכל הפחות.]

במקרה הכי גרוע. $O(2^n)$

- .5 <u>ממיר פלט</u>: <mark>O(1)</mark>.
 - . $O(2^n)$: <u>סה"כ</u>

בהוכחה זו ראינו כי:

המילטון ≥ מחרוזות

בעיית מסלול אוילר

הגדרה [מסלול אוילר]

מסלול אוילר בגרף G = (V,E) הינו מסלול המשתמש בכל קשת בגרף בדיוק פעם אחת (מסלול עם G

.(קשתות שעובר בכל הקשתות). $\left|E\right|$

תזכורת [מתי יש מסלול אוילר]

בגרף מכוון $s,t\in V$ קיים מסלול אוילר אם"ם קיימים קדקודים G=ig(V,Eig) כך ש

- v ברגת היציאה של , $v \in V \setminus \{s,t\}$ לכל לכל , דרגת הכניסה של
 - 1 + דרגת הכניסה דרגת היציאה דרגת הכניסה 1.8
 - 1 + עבור t: דרגת הכניסה דרגת היציאה 1

4.3.2014

(בגרף לא מכוון התנאים הם שיהיו בדיוק |V|-2 קדקודים בעלי דרגה אי-זוגית.)

[[הערה: אם דרגת הכניסה = דרגת היציאה עבור **כל** הקדקודים בגרף (בלי 2 קדקודים מיוחדים) אז יש **מעגל אוילר**; בקורס זה אנו כנראה מבדילים בין מסלול למעגל, וכאשר אנו אומרים "מסלול" אנו מתכוונים למסלול שאינו מעגל.]]

רדוקציה מבעיית המחרוזות לבעיית מסלול אוילר

1. נפעיל ממיר קלט:

(בעה גרף מכוון G = (V, E) נבנה גרף מכוון

- $E = W \circ$
- אם הם עוד לא קיימים), וקשת (אם הם עוד לא קיימים), וקשת נוסיף קדקודים $a_1a_2,a_2a_3\in W$ לכל מילה כה לכל a_1a_2 ם לכל a_1a_2 ם לכל מילה $a_1a_2a_3$

 $W = \{\text{ate, eat, tea, eam, the, hea}\}$ דוגמה:

נמספר את הקשתות כדי להראות בגרף מסלול אוילר:

ואם נחבר את המילים של הקשתות לפי הסדר נקבל:

T =theateam

[[The fool has been pitied :הערה]]

4.3.2014 עמוד 4 מתוך 6 אוניברסיטת בן-גוריון 4.3.2014 עמוד 5, עדן כלמטץ'

- 2. נפעיל אלגוריתם לבדיקת קיום מסלול אוילר (מימוש הקופסה השחורה).
 - 3. נפעיל ממיר פלט:

נחזיר אותה תשובה (כן / לא) כמו הקופסה השחורה.

הוכחת נכונות

- W עבור T עבור חוקית מחרוזת משפט: האלגוריתם מחזיר "כן" אם"ם T
- G = (V, E) , טענה 1: אם קיימת מחרוזת חוקית T אזי יש מסלול אוילר בגרף שבנינו0: \bullet
 - W עבור T אזי יש מחרוזת חוקית וש מסלול אוילר ב- G אזי יש מסלול אוילר ב- G

הוכחת המשפט

זהה כמעט לחלוטין להוכחת המשפט ברדוקציה הקודמת. אתם מוזמנים לנסות את זה בבית [[אם אפשר, אז בלי לשרוף שום דבר]].

1 הוכחת טענת עזר

 $T=a_1a_2\cdots a_na_{n+1}a_{n+2}$:תהי מחרוזת חוקית; נסמנה ממנה T

. $y_i = a_i a_{i+1}$ את המילה i = 1, ..., n+1 נגדיר לכל

G -ם טענה: הסדרה $\langle y_1, y_2, ..., y_{n+1} \rangle$ היא מסלול אוילר

לשם ההוכחה יש להראות שהסדרה היא מסלול, וכן שהסדרה היא מסלול אוילר.

• הסדרה היא מסלול:

.W -ם היא מילה ב- $a_{i}a_{i+1}a_{i+2}$ מחרוזת חוקית, לכן כל תת-מחרוזת T

. מכיל קדקודים a_ia_{i+1} , $\overbrace{a_{i+1}a_{i+2}}^{y_i}$ מכיל קדקודים מכיל מכיל ממיר הקלט, הגרף G מכיל מכיל קדקודים ב- V והזוג (y_i,y_{i+1}) הוא קשת ב- y_i,y_{i+1}

<u>הסדרה היא מסלול אוילר:</u>

המחרוזת T היא חוקית, לכן אוסף תתי-המחרוזות $a_ia_{i+1}a_{i+2}$ הוא בדיוק W, ולפי מה M שנאמר [בהוכחה הקודמת], זה אומר שאוסף הקשתות M הוא בדיוק M קשתות במסלול, וכיוון שכל המילים שונות, זה אומר שהשתמשנו בכל קשת בגרף (שמתאימה למילה ב-M) בדיוק פעם אחת.

.G -דהיינו, זהו מסלול אוילר ב

2 אוכחת טענת עזר

[הסבר רעיוני]

 x_i נסמן $x_i=ab_1$ ואת האות השנייה של $P=\left\langle x_1,...,x_{n+1}
ight
angle$ ואת האות השנייה של כדי לעבור ממסלול אוילר $P=\left\langle x_1,...,x_{n+1}
ight
angle$ ואת האות השנייה של כדי לעבור ממסלול אוילר $P=\left\langle x_1,...,x_{n+1}
ight
angle$ ואת האות השנייה של כדי לעבור ממסלול אוילר $P=\left\langle x_1,...,x_{n+1}
ight
angle$ ואת האות השנייה של כדי לעבור ממסלול אוילר $P=\left\langle x_1,...,x_{n+1}
ight
angle$ ואת האות השנייה של $P=\left\langle x_1,...,x_{n+1}
ight
angle$

4.3.2014

צ"ל ש- $ab_{
m l}b_2\cdots b_{n+1}$ מחרוזת חוקית [וזאת עושים באופן מאוד דומה להוכחה המקבילה מהרדוקציה מהודמת].

ניתוח זמן ריצה

1. <u>ממיר הקלט</u>:

ע"מ להימנע מבניית עותקים מרובים של אותו הקדקוד, ניתן להשתמש ב-hash table [[נשמור בטבלה את כל המחרוזות שעבורם בנינו קדקוד, ונבדוק בעזרתה אם קדקוד קיים לפני שנבנה אותו]]. סיבוכיות: $\mathrm{O}(n)$.

- . O(|E|) = O(n) בדיקת מסלול אוילר: .2
 - .O(1) :ממיר הפלט. 3

הערה חשובה

כאשר בודקים את זמן הריצה של הפעלת הקופסה השחורה, <u>יש לשים לב</u> לגודל הקלט אותו מכניסים לקופסה השחורה – זה לא תמיד יהיה באותו הגודל כמו הקלט המתקבל עבור הבעיה המקורית!

ע"מ להמחיש, נעשה ניסוי מחשבתי (Gedankenexperiment)

- n^2 נניח שגודל הגרף ברדוקציה הוא •
- $\mathrm{O}\!\left(\left|E
 ight|^{rac{3}{2}}
 ight)$ נניח שלבדוק אם קיים מסלול אוילר לוקח זמן ullet
- $O\!\!\left(\!\left(n^2\right)^{\!\!\!\!\frac{3}{2}}\!\right)\!\!=\!O\!\!\left(n^3\right)$ במקרה זה, סיבוכיות הפעלת הקופסה השחורה היא \bullet
- $\left[\left[O\left(n^{\frac{3}{2}}\right) \right]$ בסיבוכיות של הקופסה השחורה, היינו מקבלים "n" בסיבוכיות של הקופסה השחורה, היינו מקבלים •