Heat Engine Analysis

Wing-Ho Ko wko1@swarthmore.edu

Outline

- 1. Heat engine analysis
- 2. (?) Refrigerators and heat pump

December 6, 2019 2

1. Heat engine analysis

December 6, 2019 3

Energy-transfer diagram and relevant quantities

- T_H = temperature of hot reservoir
- T_C = temperature of cold reservoir
- Q_H = heat absorbed from hot reservoir
- Q_C = heat released to cold reservoir
- $W_{\rm out}$ = useful work output

 *Q_H , Q_C , and $W_{\rm out}$ are values **per cycle**, and are all taken to be **positive**

First law of thermodynamics and thermal efficiency

• 1st law of thermodynamics:

$$W_{\rm out} = Q_H - Q_C$$

• Thermal efficiency:

$$\eta = \frac{W_{
m out}}{Q_H}$$

Strategy for solving ideal-gas heat engine problems

- 1. Visualize the situation using a p-V diagram
- 2. Obtain p, V, n, T of the ideal gas at one point in the cycle
- 3. Use the ideal gas law and knowledge of specific processes to obtain p, V, T at the beginning and the end of each process
- 4. Compute W, Q, and ΔE_{th} for each process. Check for consistency
- 5. Combine the results to obtain Q_H , Q_C , and $W_{\rm out}$
- 6. Compute the thermal efficiency η if asked

Reminder: monoatomic ideal gas processes

Process	Definition	W	Q	$\Delta E_{ m th}$
Isochoric	V = const.	0	$\frac{3}{2} nR\Delta T$	$\frac{3}{2} nR\Delta T$
Isobaric	p = const.	$-p\Delta V (= -nR\Delta T)$	$\frac{5}{2} nR\Delta T$	$\frac{3}{2} nR\Delta T$
Isothermal	T = const.	$-nRT \ln(V_f/V_i)$	$nRT \ln(V_f/V_i)$	0
Adiabatic	Q = 0 [*]	$\frac{3}{2}(p_f V_f - p_i V_i)$	0	$\frac{3}{2}(p_f V_f - p_i V_i)$

^{*} Consequences: $pV^{\gamma} = \text{const.}$ and $TV^{\gamma-1} = \text{const.}$ $(\gamma = 5/3)$

Setup of our heat engine

1 mole of monoatomic gas is placed in a sealed container. The container is initially at $p_1=1$ atm (=101 kPa) and $T_1=300$ K. The gas works at a heat engine with the following cycle:

- i. The gas undergoes adiabatic compression until it reaches $p_2=3$ atm
- ii. The gas undergoes isobaric heating until it reaches $T_3=600~\mathrm{K}$
- iii. The gas expands isothermally until its volume returns to the initial
- iv. The gas undergoes isochoric cooling until pressure returns to 1 atm

Step 1: draw the p-V diagram that depict the cycle

Step 1: visualize with p-V diagram

Step 2: find p, V, n, T of initial state

• Given:

$$n=1$$
 mole $p_1=1$ atm $=101$ kPa $T_1=300$ K

Ideal gas law:

$$V_1 = \frac{nRT}{p} = 0.0246 \text{ m}^3$$

Step 3: find p, V, T at endpoints of processes

- $p_4/T_4 = p_1/T_1 \implies p_4 = 2$ atm
- $p_3V_3 = p_4V_4 \implies V_3 = 0.0164 \text{ m}^3$
- $p_2 V_2^{\gamma} = p_1 V_1^{\gamma} \Rightarrow V_2 = 0.0127 \text{ m}^3$
- $p_2V_2 = nRT_2 \Rightarrow T_2 = 466 \text{ K}$

Step 4: compute W, Q, and ΔE_{th}

Stage	W	Q	$\Delta E_{ m th}$
(i)	$\frac{3}{2}nR(T_2-T_1)$	0	$\frac{3}{2}nR(T_2-T_1)$
(ii)	$-nR(T_3-T_2)$	$\frac{5}{2}nR(T_3-T_2)$	$\frac{3}{2}nR(T_3-T_2)$
(iii)	$-nRT_3\ln(V_4/V_3)$	$nRT_3 \ln(V_4/V_3)$	0
(iv)	0	$\frac{3}{2}nR(T_1-T_4)$	$\frac{3}{2}nR(T_1-T_4)$

Step 4: compute W, Q, and ΔE_{th}

Stage	W	Q	$\Delta E_{ m th}$
(i)	2060 J	0	2060 J
(ii)	-1120 J	2790 J	1680 J
(iii)	-2020 J	2020 J	0
(iv)	0	—3740 J	—3740 J

Step 4': check for consistency

Stage	W	Q	$\Delta E_{ m th}$	1st law	:m) $n = 1 \text{ mol}$ $ \begin{array}{c} $
(i)	+ve	0	+ve	0	adiabat (iii) isotherm 600 K
(ii)	-ve	+ve	+ve	0	(iv) (1),300 K
(iii)	-ve	+ve	0	0	$V(m^3)$
(iv)	0	-ve	-ve	0	0.0127 0.0164 0.0246
Σ	-1080 J (< 0)	1080 J (> 0)	0		

Step 5: compute W_{out} , Q_H , and Q_C

Stage	W	Q	$\Delta E_{ m th}$
(i)	2060 J	0	2060 J
(ii)	-1120 J	2790 J	1680 J
(iii)	-2020 J	2020 J	0
(iv)	0	-3740 J	—3740 J

$$W_{\rm out} = -\sum_a W_a = 1080 \, \text{J}, \, Q_H = Q_{\rm ii} + Q_{\rm iii} = 4810 \, \text{J}, \, Q_C = -Q_{\rm iv} = 3740 \, \text{J}$$

Step 6: compute η

- $W_{\rm out} = 1080 \, \rm J$
- $Q_H = 4810 \, \text{J}$
- $Q_C = 3740 \, \text{J}$

$$\Rightarrow \eta = \frac{W_{\text{out}}}{Q_H} = 0.22$$

