Background

Data Analytics is a very crucial component for robust performance of any Semiconductor Fabrication Industry. And Semiconductor Laboratory (SCL) is no different in this regard. Better Data Analytics would help in pre-determining of any faulty equipment part by visualizing at the parameter(s)' drifts in process charts.

This document illustrates the Data Analytics on "<u>Average Product Lot yield with Device's Effective</u> <u>Area"</u> for year-2020.

The data visualization chart:

- shows the trend of 'Lot Yield' with Device's Effective Area
- shows the yield of lot ids for any 'Device' like Vikram 1601, etc.., independently.
- visualizes the zone where device(s) has maximum 'Lot Yield'.
- features interactiveness (zoom-in/out, hover, 360° rotation) with portability (in .html format) via mails, etc...

Analytics

Data Analytics is comprised of 3 main modules:

1. Data Acquisition:

- The data is available in form of excel file (in .xlsx format).
- Each device has min. 1 lot ID.
- There are total **40** device names.
- The effective area varies from **0.89 mm²** to **203.08 mm²**.

	A	В	C	D	E	
1	Aeff (mm2)	Device_ID	Device_Name	LotID	Lot Yield (%)	
2	0.89	SC1408-0	First Order Bandgap Ref	F19040002.F1	95.6	
3	1.04	SC9015_0	Standard 8 bit counter	F16320004.F1	98.0	
4	1.04	SC9007-0	RADHARD 8 Bit Counter	F15080001.F1	88.3	
5	1.13	SC9005-0	RADHARD 8 Bit Shift Register	F15080001.F1	79.8	
6	1.54	SC1009-0	8 Channel Analog Mux/Demux (5V)	F16350002.F1	98.0	
7	1.61	SC1118-0	CD4093_33	F16320003.F1	76.0	
8	1.85	SC1117-0	CD4093_5	F16350002.F1	98.0	
9	2.24	SC1005_1	Octal Buffer	F15220002.F1	87.5	
10	3.19	SC1002-1	QLVDS Driver	F15080001.F1	75.3	
11	3.19	SC1002-1	QLVDS Driver	F16320003.F1	84.3	
12	3.4	SC1001-0	QUAD LVDS Transmitter	F15080001.F1	75.3	
13	3.71	SC1402-0	LVR	F15080001.F1	79.7	
14	4.24	SC1023-0	LDO 32 Bit Processor	F18220001.F1	94.3	
15	4.24	SC1023-0	LDO 32 Bit Processor	F18220002.F1	93.7	
16	5.12	SC1004-2	16 BIT BUFFER	F15220002.F1	94.0	
17	5.12	SC1004-2	16 BIT BUFFER	F15220002.F3	68.8	
18	5.12	SC1004-2	16 BIT BUFFER	F17400004.F1	89.0	
19	5.79	SC1106	BEXM	F16320003.F2	83.6	
20	5.91	SC1012-0	HC4050 Hex Buffer (5V)	F16350002.F1	98.0	
21	5.91	SC1013-0	HC4050 RH Hex Buffer (5V)	F16350002.F1	98.0	
22	5.91	SC1013-0	HC4050 RH Hex Buffer (5V)	F16430006.F1	95.4	
23	5.91	SC1013-0	HC4050 RH Hex Buffer (5V)	F19080001.F1	92.6	
24	11.32	SC1506_0	FFT-1K	F17180001.F1	88.9	
25	13.18	SC1218	Sigma Delta ADC RH	F16320004.F2	66.7	
26	13.18	SC1218	Sigma Delta ADC RH	F17020001.F1	85.5	
27	13.6	SC1703_0	RADHARD 8k x 8k SRAM	F17180001.F1	88.9	
28	13.76	SC1124_0	Transreceiver	F17180001.F1	88.9	
29	100000000000000000000000000000000000000	SC1507_0	FFT-4K	F17180001.F1	88.9	
30	a la	SC1216_0	CMOS Cam V2 RH	F16320004.F1	85.5	
31		-	14 Bit Pipeline ADC	F15080001.F1	40.0	
32			14 Bit Pineline ADC	F15080002.F1	65.4	

Fig. Data of Avg. Product Yield with Effective Area in Excel format

• For this, the coding script is written as:

2. Data Wrangling

- This module is for cleansing of acquired data and converts it as palette for data visualization.
- It converts the acquired data into "structured & filtered" format.

Fig. Filtered Excel data e.g. 'Vikram 1601' device

3. Data Visualization

• The chart can be visualized for devices independently like Vikram 1601, etc... Here, please note that the data points are lying in a straight line, as the y-value (i.e. device name) is same for all these data points.

Fig. Charts Visualization for a device e.g. 'Vikram 1601'

Inference

The

• Fab-out dates can be added in one of the axes in charts. This would give the information about "whether the lot_id (pointed at) is recent or not in terms of Fab-out".

Appendix

Disclaimer

TODO

• Add no.s to the figures