Álgebra Linear

A inversa de uma matriz

Graciela Moro

Inversa de uma matriz

Definição: Uma matriz A de ordem $n \times n$ é invertível (ou não-singular) quando existir uma matriz B, de ordem $n \times n$, tal que

$$AB = BA = I_n$$
,

onde I_n é a matriz identidade de ordem n imes n .

 \bigcap A matriz B é dita a **inversa** de A e é denotada por $B = A^{-1}$.

 \blacksquare Se A não tem inversa, dizemos que A é não invertível (ou singular).

Observação: Somente matrizes quadradas (ordem $n \times n$) têm chances de ser inversível.

Exemplo: Sejam
$$A = \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}$. Verifique se B é a inversa de A.

Solução: Vamos verificar se a definição é satisfeita ou não. Como

$$AB = \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -1.1 + 2.1 & (-1).(-2) + 2.(-1) \\ (-1).1 + 1.1 & (-1).(-2) + 1.(-1) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

e

$$BA = \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) + (-2) \cdot (-1) & 1 \cdot 2 + (-2) \cdot 1 \\ 1 \cdot (-1) + (-1) \cdot (-1) & 1 \cdot 2 + (-1) \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I.$$

Unicidade da matriz inversa

Como verificamos que A.B=B.A=I, a definição está satisfeita e $B=A^{-1}$ é a inversa de A.

Teorema: Se $A_{n \times n}$ admite inversa, então sua inversa é única.

Justificativa: Suponhamos que A admita inversa, denotada por A^{-1} . Logo

$$A.A^{-1} = A^{-1}.A = I$$

Suponhamos, por absurdo, que A admita outra inversa, digamos C, com $C \neq A^{-1}$ e

$$A.C = C.A = I$$

Assim, temos que

$$C = C.I = C.(A.A^{-1}) = (C.A).A^{-1} = I.A^{-1} = A^{-1}$$

E portanto

$$C = A^{-1}$$

o que é uma contradição, pois por hipótese $C \neq A^{-1}$.

Portanto, A admite uma única inversa.

Determinação da inversa

Exemplo: Encontre a inversa da matriz $A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$

Solução:

Para encontrar a inversa de A, basta resolver a equação AB=I para determinar $B = A^{-1}$

$$\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2a+c & 2b+d \\ 5a+3c & 5b+3d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Da igualdade matricial obtemos os sistemas:

$$\begin{cases} 2a + c = 1 \\ 5a + 3c = 0 \end{cases} e \begin{cases} 2b + d = 0 \\ 5b + 3d = 0 \end{cases}$$

Resolvendo os sistemas obtemos: a=3, b=-1, c=-5 e d=2, ou seja, $A^{-1} = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$

Agora, observe a forma matricial dos dois sistemas
$$\begin{cases} 2a+c=1\\ 5a+3c=0 \end{cases}$$
 e
$$\begin{cases} 2b+d=0\\ 5b+3d=0 \end{cases}$$
:
$$\begin{bmatrix} 2 & 1\\ 5 & 3 \end{bmatrix} \begin{bmatrix} a\\ c \end{bmatrix} = \begin{bmatrix} 1\\ 0 \end{bmatrix} \text{ e } \begin{bmatrix} 2 & 1\\ 5 & 3 \end{bmatrix} \begin{bmatrix} b\\ d \end{bmatrix} = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

Veja que as matrizes dos coeficientes são as mesmas, então em vez de resolver dois sistemas separadamente

$$\begin{bmatrix} 2 & 1 & 1 \\ 5 & 3 & 0 \end{bmatrix} e \begin{bmatrix} 2 & 1 & 0 \\ 5 & 3 & 1 \end{bmatrix}$$

podemos resolvê-los simultaneamente em um único processo de escalonamento:

$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 5 & 3 & 0 & 1 \end{bmatrix}$	$L_1 \leftarrow rac{1}{2}L_1$	$\begin{bmatrix} 1 & 1/2 & 1/2 & 0 \\ 0 & 1 & -5 & 2 \end{bmatrix}$	$L_1 \leftarrow L_1 - \frac{1}{2}L_2$
$\begin{bmatrix} 1 & 1/2 & 1/2 & 0 \\ 5 & 3 & 0 & 1 \end{bmatrix}$	$L_2 \leftarrow L_2$ -5 L_1	$\begin{bmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & -5 & 2 \end{bmatrix}$	
$\begin{bmatrix} 1 & 1/2 & 1/2 & 0 \\ 0 & 1/2 & -5/2 & 1 \end{bmatrix}$	$L_2 \leftarrow 2L_2$	A^{-1}	

Encontrando a inversa utilizando o escalonamento

$$[A : I] \xrightarrow{\text{escalonamento}} [I : A^{-1}]$$

Exemplo: Encontre a inversa da matriz
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -6 & 2 & 3 \end{bmatrix}$$

Propriedades da inversa de uma matriz

Sejam A e B matrizes quadradas de ordem n.

- i. A é inversível se $det(A) \neq 0$. A é não-invertível se det(A) = 0;
- ii. Se A é inversível, sua inversa A^{-1} também é inversível e a inversa de A^{-1} é A, ou seja, $(A^{-1})^{-1} = A$;
- iii. Se a matriz A é invertível, sua transposta A^T também é inversível. A matriz inversa de A^T é $(A^T)^{-1}$, ou seja, $(A^T)^{-1} = (A^{-1})^T$;
- iv. Se as matrizes A e B são invertíveis e de mesma ordem, o produto AB é uma matriz invertível e a inversa de AB é o produto $B^{-1}A^{-1}$, ou seja, $(AB)^{-1} = B^{-1}A^{-1}$;
 - v. Se A é invertível, então kA ($k \in \mathbb{R}^*$) também é invertível e a inversa de kA é $\frac{1}{k}A^{-1}$, ou seja, $(kA)^{-1} = \frac{1}{k}A^{-1}$;
- vi. Se $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, tal que $\det(A) \neq 0$, então $A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.
 - vii. Se Se *A* é inversível então $(A^k)^{-1} = A^{-1}A^{-1} \cdots A^{-1} = (A^{-1})^k$.

Exercícios propostos:

1. Sabendo que
$$A = \begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix}$$
, obtenha: a) $(2A^T)^{-1}$ b) $(I - 3A^T)^{-1}$

2. Sabendo que
$$(2I - 3A^T)^{-1} = \begin{bmatrix} 3 & -1 \\ 5 & 4 \end{bmatrix}$$
, encontre a matriz A .

3. Simplifique
$$(AB)^{-1}(AC^{-1})(D^{-1}C^{-1})^{-1}D^{-1}$$

- 4. Supondo que todas as matrizes sejam $n \times n$ e inversíveis, resolva para D a equação matricial: $C^TB^{-1}A^2BAC^{-1}DA^{-2}B^TC^{-2} = C^T$
- 5. Resolva a seguinte equação matricial em X: $(A^{-1}X)^{-1} = A(B^{-2}A)^{-1}$.
- 6. Quais são as matrizes Q de ordem 2×2 que satisfazem a equação $(Q+3Q^T)^{-1}=\frac{1}{4}Q^{-1}$? Descreva esse conjunto de matrizes explicitamente, e justifique sua resposta.

Método da inversa para resolver sistemas lineares

<u>Teorema</u>: Se A é inversível, então o sistema de n equações e n variáveis AX = B é sempre possível e determinado (SPD) e sua única solução é dada por $X = A^{-1}B$.

Justificativa:

Exemplo: Resolva os sistemas abaixo:

$$\begin{cases} 2x + 3y + z = -1 \\ 3x + 3y + z = 1 \\ 2x + 4y + z = -2 \end{cases}$$

$$\begin{cases} 2x + 3y + z = 4 \\ 3x + 3y + z = 8 \\ 2x + 4y + z = 5 \end{cases}$$

$$\begin{cases} 2x + 3y + z = 0 \\ 2x + 4y + z = 0 \\ 2x + 4y + z = 0 \end{cases}$$

$$\begin{cases} 2x + 3y + z = 0 \\ 2x + 4y + z = 0 \end{cases}$$