

Análise e Síntese de Algoritmos Programação Linear.

Prof. Pedro T. Monteiro

IST - Universidade de Lisboa

2024/2025

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Contexto

Revisão [CLRS, Cap.1-13]

Fundamentos; notação; exemplos

Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]

Programação dinâmica [CLRS, Cap.15]

Algoritmos greedy [CLRS, Cap.16]

Algoritmos em Grafos [CLRS, Cap.21-26]

Algoritmos elementares

Caminhos mais curtos [CLRS, Cap.22,24-25]

Árvores abrangentes [CLRS, Cap.23]

Fluxos máximos [CLRS, Cap.26]

Programação Linear [CLRS, Cap.29]

Algoritmos e modelação de problemas com restrições lineares

Tópicos Adicionais

Complexidade Computacional [CLRS, Cap.34]

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Resumo

Motivação - Exemplo 1

Motivação

Formulações

Reduções para Programação Linear

Como ganhar uma eleição?

Comprando-a, gastando dinheiro em campanhas :)

No entanto, um político quer minimizar os seus custos

Necessário fazer chegar a mensagem certa à demografia certa

P.T. Monteiro ASA @ LEIC-T 2024/2025 3/39 P.T. Monteiro ASA @ LEIC-T 2024/2025 4/3

Motivação - Exemplo 1

Motivação - Exemplo 1

Existem três regiões principais (demografia):

Urbanos - 100.000 votantes registados

Suburbanos - 200.000 votantes registados

Rurais - 50.000 votantes registados

É preciso estimar o número de votos obtido por cada € gasto nas campanhas em cada tema

	Urbanos	Suburbanos	Rurais
Estradas	-2	5	3
Liberalização da Droga	8	2	-5
Subsídios Agricultura	0	0	10
Imposto sobre Gasolina	10	0	-2

Cada entrada representa o número de (milhares) votos ganhos por cada 1.000€ gastos em campanhas

Valores negativos indicam votos perdidos

Objectivo

Queremos ganhar pelo menos 50% dos votos (100.000 urbanos, 200.000 suburbanos e 50.000 rurais)

Minimizar o total a gastar nas campanhas

P.T. Monteiro ASA @ LEIC-T 2024/2025 5/39

P.T. Monteiro

ASA @ LEIC-T 2024/202

Motivação - Exemplo 1

Motivação - Exemplo 1

Urbanos Suburbanos Rurais Estradas -2 3 8 2 -5 Liberalização da Droga Subsídios Agricultura 0 0 10 Imposto sobre Gasolina 10 0 -2

Definição do problema

variáveis denotam quantia a gastar em campanha nos diferentes temas: x_1 = estradas; x_2 = droga; x_3 = subsídios; x_4 = imposto

$$-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50 \quad (50\% \ 100.000)$$

$$5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100 \quad (50\% \ 200.000)$$

$$3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25 \quad (50\% \ 50.000)$$

Programa Linear

Combinação da função objectivo com as restrições lineares

Exemplo

minimizar
$$x_1 + x_2 + x_3 + x_4$$

sujeito a
$$-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$$

 $5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$

$$3x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$$

 $3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25$

$$x_1, x_2, x_3, x_4 \ge 0$$

Solução do programa linear \Rightarrow estratégia óptima

Motivação - Exemplo 2

Motivação - Exemplo 2

Uma pessoa tem insuficiências nos nutrientes N_a, N_b, N_c .

No entanto, estes nutrientes podem ser encontrados em diferentes tipos de comida. Considere a seguinte tabela que mostra a quantidade de cada nutriente N_a , N_b , N_c por cada dose unitária de comida x_1, x_2, x_3, x_4 .

	N_a	N_b	N_c
<i>x</i> ₁	3	10	5
<i>x</i> ₂	8	4	7
<i>X</i> 3	10	5	2
<i>X</i> ₄	0	15	10

Para suprimir as suas necessidades, deverá consumir 40 unidades do nutriente N_a e N_c , assim como 50 unidades de N_b . No entanto, o custo por cada dose unitária de comida varia da seguinte forma: $custo(x_1) = 4$, $custo(x_2) = 3$, $custo(x_3) = 2$, e $custo(x_4) = 6$.

Assumindo que pode comprar doses parciais, qual a quantidade de cada tipo de comida a consumir para ficar saudável e da forma mais barata possível?

P.T. Monteiro

ASA @ LEIC-T 2024/202

D.T. Montoire

ASA @ LEIC-T 2024/202

Motivação - Exemplo 3

TÉCNICO LISBOA

, ,

Novos horários do IST - MEPP Restrições

aulas teóricas de UCs do mesmo ano/período não se podem sobrepor um turno \boldsymbol{X} tem de poder ter acesso a pelo menos uma aula prática de cada UC desse ano/periodo

um professor não pode estar a atribuído a mais de uma aula ao mesmo tempo tem de haver um intervalo de tempo t entre aulas que mudem de campus para qualquer aluno/professor

uma sala não pode ter mais de uma aula atribuída ao mesmo tempo

Função objectivo: minimizar

intervalos sem aulas mudanças entre campus

Formulação Geral

Optimizar (minimizar ou maximizar) função linear sujeita a conjunto de restrições lineares

Função linear (função objectivo):

$$f(x_1,x_2,\ldots,x_n)=\sum_{j=1}^n c_jx_j$$

Restrições lineares:

$$g_i(x_1, x_2, \dots, x_n) = \sum_{j=1}^n a_{ij} x_j = b_i$$

$$\leq$$

Interpretação geométrica

Interpretação geométrica

Exemplo

maximizar sujeito a

$$x_1, x_2 \geq 0$$

Exemplo
maximizar
sujeito a

$$x_1, x_2 \geq 0$$

P.T. Monteiro

ASA @ LEIC-T 2024/2025

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Interpretação geométrica

Interpretação geométrica

Exemplo

maximizar sujeito a

$$4x_1 - x_2 \leq 8$$

$$x_1, x_2 \geq 0$$

Exemplo

maximizar sujeito a

$$x_1, x_2 \geq 0$$

P.T. Monteiro ASA @ LEIC-T 2024/2025

15/20

ASA @ LEIC-T 2024/2025

Interpretação geométrica

Interpretação geométrica

Exemplo

maximizar sujeito a

ASA @ LEIC-T 2024/2025

Exemplo

maximizar sujeito a

ASA @ LEIC-T 2024/2025

Interpretação geométrica

P.T. Monteiro

TÉCNICO LISBOA

Interpretação geométrica

Exemplo

maximizar sujeito a

$$x_1 + x_2$$

$$\begin{array}{cccc}
 & 2x_2 & \geq & -2 \\
x_1, x_2 & & \geq & 0
\end{array}$$

Exemplo maximizar sujeito a

$$x_1 + x_2$$

$$5x_1 - 2x_2 \ge -2$$

 $x_1, x_2 \ge 0$

ASA @ LEIC-T 2024/2025

ASA @ LEIC-T 2024/2025 P.T. Monteiro

Interpretação geométrica

Interpretação geométrica

Exemplo

P.T. Monteiro

maximizar sujeito a

$$x_1 + x_2$$

 X_1, X_2

ASA @ LEIC-T 2024/2025

Exemplo

maximizar sujeito a

$$x_1 + x_2$$

-2 x_1, x_2

ASA @ LEIC-T 2024/2025

Interpretação geométrica

21/39

Definições

Exemplo

maximizar sujeito a

$$x_1 + x_2$$

$$\begin{array}{cccc} - & 2x_2 & \geq & -2 \\ x_1, x_2 & & \geq & 0 \end{array}$$

Solução: $x_1 = 2, x_2 = 6$

Solução exequível: qualquer solução

que satisfaça o conjunto de restrições A cada solução exequível corresponde um valor (custo) da função objectivo O conjunto de soluções exequíveis é

A região exequível é um conjunto convexo no espaço *n*-dimensional

designado por região exequível

Conjunto convexo S: qualquer ponto de um segmento que liga quaisquer dois pontos em S está também em S

S é designado por simplex

ASA @ LEIC-T 2024/2025 P.T. Monteiro

ASA @ LEIC-T 2024/2025

Definições

Definições

Teorema fundamental Programação Linear

A solução óptima encontra-se num vértice do simplex

Solução: exeguível ou não exeguível

Valor da função objectivo: valor objectivo

Valor máximo/mínimo: valor objectivo óptimo

Se formulação não tem soluções exequíveis diz-se não exequível;

caso contrário diz-se exequível

Se formulação é exequível, mas sem solução óptima,

diz-se não limitado

Dois programas lineares L e L' são equivalentes se para cada solução exequível \bar{x} para L com valor objectivo z, existe uma solução exequível \bar{x}' para L' com valor objectivo z, e vice-versa

P.T. Monteiro

ASA @ LEIC-T 2024/2025

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Forma Standard

Forma Standard

maximizar
$$\sum\limits_{j=1}^n c_j x_j$$
 sujeito a $\sum\limits_{j=1}^n a_{ij} x_j \leq b_i$ $i=1,2,\ldots,m$ $x_j \geq 0$ $j=1,2,\ldots,n$

Todos os valores c_j , a_{ij} , b_i são valores reais Representação Matricial

maximizar
$$\mathbf{c}^T \mathbf{x}$$
 sujeito a $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ $\mathbf{x} > 0$

Em que
$$\mathbf{A} = (a_{ij}), \mathbf{b} = (b_i), \mathbf{c} = (c_j)$$
 e $\mathbf{x} = (x_j)$

Forma Standard

Conversão para Forma Standard

Passo 1: Se for um problema de minimização

⇒ Converter para maximização multiplicando coeficientes por -1

P.T. Monteiro

ASA @ LEIC-T 2024/2025

- 2

Forma Standard

Forma Standard

Conversão para Forma Standard

Passo 2: Variáveis sem restrição de serem não negativas

 \Rightarrow Substituir cada ocorrência de x_i por $(x_{i1} - x_{i2})$, em que x_{i1} e x_{i2} são novas variáveis

maximizar
$$2x_1 - 3x_2$$
 sujeito a

$$x_1 + x_2 = 7$$

 $x_1 - 2x_2 \le 4$
 $x_1 > 0$

maximizar
$$2x_1 - 3x_2' + 3x_2''$$
 sujeito a

$$x_1 + x'_2 - x''_1 = 7$$

 $x_1 - 2x'_2 + 2x''_1 \le 4$

Conversão para Forma Standard

Passo 3: Restrições com igualdade

 \Rightarrow Introduzir duas restrições, uma com \leq e outra com \geq

maximizar
$$2x_1 - 3x_2' + 3x_2''$$
 sujeito a

 $_{ASA} \circ x_{16} x_{29} x_{2025}$ ≥ 0

P.T. Monteiro

Forma Standard

Conversão para Forma Standard

Passo 4: Restrições com ≥

⇒ Multiplicar por -1 a restrição

Forma Slack

TÉCNICO LISBOA

Conversão para a Forma Slack

Objectivo: trabalhar apenas com igualdades

- Todas as restrições, excepto as restrições das variáveis serem não negativas, são igualdades
- Para cada restrição introduzir uma nova variável s_i (variável de slack)

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \qquad s_i + \sum_{j=1}^{n} a_{ij} x_j = b_i$$

$$s_i = b_i - \sum_{i=1}^{n} a_{ij} x_j \quad s_i \ge 0$$

Conversão da Forma Standard para Forma Slack

$$x_{n+i} = b_i - \sum_{j=1}^n a_{ij} x_j$$
$$x_{n+j} > 0$$

ASA @ LEIC-T 2024/2025

32/3

Forma Slack

Forma Slack

Conversão para a Forma Slack

Nas expressões: $x_{n+i} = b_i - \sum_{i=1}^{n} a_{ij} x_j$

- Variáveis expressas em função de outras variáveis designam-se por variáveis básicas
- As variáveis que definem as variáveis básicas designam-se por variáveis não-básicas
- A solução básica é obtida quando se colocam as variáveis não-básicas com valor 0

Na Forma Slack, a função objectivo é definida como:

$$z = \sum_{j=1}^{n} c_j x_j$$

P.T. Monteiro ASA @ LEIC-T 2024/2025

Exemplo: conversão para forma Slack

Conversão para a Forma Slack

N: Conjunto de índices das variáveis não básicas, |N| = n

B: Conjunto de índices das variáveis básicas, |B|=m

$$N \cup B = \{1, 2, \dots, n + m\}$$

Forma Slack descrita por: (N, B, A, b, c, v)

v: constante na função objectivo

$$z = v + \sum_{j=1}^{n} c_j x_j$$

 $x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j \quad i = 1, 2, ..., m$

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Forma Slack

(se já estiver na forma Standard)

maximizar
$$2x_1 - 3x_2 + 3x_3$$

$$z = 2x_1 - 3x_2 + 3x_3$$

$$x_4 = 7 - x_1 - x_2 + x_3$$

$$x_5 = -7 + x_1 + x_2 - x_3$$

$$x_6 = 4 - x_1 + 2x_2 - 2x_3$$

Forma Slack

CLRS Ex 29.1-5

Converta o programa linear para a forma Slack

Reduções para Programação Linear

Reduções para Programação Linear

Fluxo Máximo ⇒ PL

$$\begin{array}{ll} \text{maximizar} & \sum\limits_{v \in V} f(s,v) \\ \text{sujeito a} & f(u,v) \leq c(u,v) & \forall u,v \in V \\ & \sum_{v \in V} f(v,u) = \sum_{v \in V} f(u,v) & \forall u \in V \setminus \{s,t\} \end{array} \quad \text{(capacidade)}$$

Usar PL será mais eficiente do que um algoritmo de max-flow?

E se considerarmos duas entidades diferentes?

$$f_1(u,v) + f_2(u,v) \le c(u,v) \quad \forall u,v \in V$$

E se considermos restrições adicionais, etc?

P.T. Monteiro ASA @ LEIC-T 2024/20

Caminhos Mais Curtos \Rightarrow PL

Caminhos mais curtos entre s e t:

maximizar
$$d[t]$$

sujeito a $d[v] \leq d[u] + w(u, v), \ \forall (u, v) \in E$
 $d[s] = 0$

T. Monteiro ASA @ LEIC-T 2024/2025 38/39

Questões?

Dúvidas?

P.T. Monteiro ASA @ LEIC-T 2024/2025 39/