STAT3032 SURVIVAL MODELS

TUTORIAL WEEK ELEVEN

Question One

		Normal Kernal b =1				Triange Kernal b =2			
Х	У	t	k(t)	W	wy	t	k(t)	W	wy
0	4	2	0.02155	0.02062	0.082479	1	0	0	0
2.1	6	0.1	0.158441	0.1516	0.909601	0.05	1.8	0.236842	1.421053
0.5	2	1.5	0.051696	0.049464	0.098928	0.75	0	0	0
1	4.5	1	0.096581	0.092411	0.41585	0.5	0	0	0
4	7	2	0.02155	0.02062	0.144338	1	0	0	0
1.5	3	0.5	0.140525	0.134457	0.403372	0.25	1	0.131579	0.394737
1.9	8	0.1	0.158441	0.1516	1.212801	0.05	1.8	0.236842	1.894737
2	4	0	0.159236	0.15236	0.60944	0	2	0.263158	1.052632
2.5	6	0.5	0.140525	0.134457	0.806743	0.25	1	0.131579	0.789474
3	5	1	0.096581	0.092411	0.462055	0.5	0	0	0
		_		smooth	5.145605			smooth	5.552632

Question Two

#question 2 #run the R code to produce plots

set.seed(123)

x < -seq(0,4,by=0.05)

 $y < -\sin(4*x) + \operatorname{rnorm}(\operatorname{length}(x), 0, 1/3)$

par(mfrow=c(2,1))

plot(x,y)

#Kernel Smoothing

fit < -ksmooth(x,y,kernel = "normal",bandwidth = 0.25)

lines(fit\$x,fit\$y,col="red")

#using different values of bandwidth suggets that a value around 0.25 is OK.

plot(x,y)

#Spline Smoothing

library(splines)

 $fit < -lm(y \sim ns(x, df=12))$

values < -seq(0,4,0.01)

temp<-data.frame("x"=values)</pre>

fit<-predict(fit,temp)</pre>

lines(values,fit,col="red")

#Using different values of df suggets that a value around 12 is OK.

Question Three (You won't be required to write R functions under exam conditions)

```
#question 3
#run the R code to produce plots
smoother<-function(x,y,b) {</pre>
values < -seq(min(x),max(x),by=0.01)
fitted<-rep(0,length(values))</pre>
for(i in 1:length(values)) {
t<-abs(x-values[i])/b
kt < -2-4*abs(t)
kt<-ifelse(t<=0.5,kt,0)
w<-kt/sum(kt)
fitted[i] < -sum(y*w)
}
return(list(values=values,fitted=fitted))
}
#example of use
fit < -smoother(x,y,b=0.3)
plot(x,y)
lines(fit$values,fit$fitted,col="red")
```