Inference 1: Hypothesis testing (cont)

Last updated: September 18, 2017

Which test to use

- ▶ Depends on data
- \triangleright S (test stat) depends on H_A (alternative)
- justifying the assumptions = CRUCIAL.

Tests we learn	num	cat	cat. vs cat.	num. vs cat.
Fisher's exact			✓	
permutation (randomization)	\checkmark	\checkmark	\checkmark	\checkmark
chi-square			\checkmark	
z-test for proportions		\checkmark		
t-test	\checkmark			
two-sample t-test				\checkmark
ANOVA				\checkmark

Permutation test: computability > precision

Fisher's exact test failed to compute on class vs survived. What to do? **Permutation test**: puts computability first.

Key ideas:

- ▶ Approximate $\mathbb{P}(S \ge s|H_0)$ by simulating the distribution of S under H_0 .
- \triangleright Simulate S under H_0 by resampling the data without replacement.

Data example: see code.

Advantages?

Disadvantages?

Permutation test: computability > precision

Fisher's exact test failed to compute on class vs survived. What to do? **Permutation test**: puts computability first.

Key ideas:

- ▶ Approximate $\mathbb{P}(S \ge s | H_0)$ by simulating the distribution of S under H_0 .
- \triangleright Simulate S under H_0 by resampling the data without replacement.

Data example: see code.

Advantages?

- Replace math (thinking) by simulation (brute force)
- Always return an answer
- ▶ Apply to basically any situation (any data type, any H_0/H_A , any test statistic)

Disadvantages?

Permutation test: computability > precision

Fisher's exact test failed to compute on class vs survived. What to do? **Permutation test**: puts computability first.

Key ideas:

- ▶ Approximate $\mathbb{P}(S \ge s | H_0)$ by simulating the distribution of S under H_0 .
- \triangleright Simulate S under H_0 by resampling the data without replacement.

Data example: see code.

Advantages?

- Replace math (thinking) by simulation (brute force)
- Always return an answer
- ▶ Apply to basically any situation (any data type, any H_0/H_A , any test statistic)

Disadvantages?

- ▶ May not have nice theoretical properties (eg: not maximal power etc)
- ▶ If distribution is complicated, must sample for a long time
- May not be reproduceable exactly: different simulation could give slightly different p-values