## TFM - DATA SCIENCE KSCHOOL

#### **HOUSE PRICE PREDICTOR**

CARMEN MUÑOZ

#### **DAR RESPUESTA A**

- ¿Cuáles son las viviendas más rentables de Churriana?
- ¿Qué precio estimado debería tener mi vivienda si quiero ponerla a la venta?

#### ¿CÓMO?

Modelo predictivo para predecir el precio de la vivienda a partir de técnicas de aprendizaje supervisado.

Variable objetivo: Precio de las viviendas

Zona de estudio: Churriana, Málaga.





#### PASOS LLEVADOS A CABO

- Extracción de datos
- Análisis EDA y Limpieza de datos
- Preparación de datos para el modelo
- Evaluación de modelos
- Aplicación del modelo final
- Visualización Front-end
- Conclusiones y mejoras

## EXTRACCIÓN DE DATOS

Portal Idealista Web Scraping

Zona: Churriana



#### Características Extraídas

- Título
- Localización
- Latitud
- Longitud
- Price (variable a predecir)
- Certificado energético
- Número de habitaciones
- Número de baños
- Si dispone o no de jardín
- Si dispone o no de terraza
- Si dispone o no de parking
- Si dispone o no de piscina
- Si dispone o no de ascensor
- Metros cuadrados construidos
- Si es de nueva construcción
- Si necesita ser renovado
- Si está en buenas condiciones

De un total de 342 viviendas localizadas se consigue extraer información de 186 viviendas con 17 variables. Un 55% del total.

#### Análisis EDA y Limpieza de datos



```
Nan_numbers = properties_churriana.isnull().sum(axis = 0).sum()

print(f"Se encuentran {Nan_numbers} Nan numbers")

Se encuentran 193 Nan numbers

has_garden
has_terrace
has_parking
has_swimmingpool
has_lift

106
```

- → Eliminamos columnas innecesarias.
- → Análisis estadístico y descriptivo de los datos

Grandes diferencias entre los valores mínimos y máximos de algunas de las características del dataset.

| #  | Column                | Non-Null Count | Dtype   |
|----|-----------------------|----------------|---------|
| 0  | titulo                | 187 non-null   | object  |
| 1  | localizacion          | 187 non-null   | object  |
| 2  | latitude              | 187 non-null   | float64 |
| 3  | longitude             | 187 non-null   | float64 |
| 4  | price                 | 187 non-null   | int64   |
| 5  | energy_certification  | 187 non-null   | object  |
| 6  | basic_characteristics | 187 non-null   | object  |
| 7  | room_number           | 187 non-null   | int64   |
| 8  | bath_number           | 187 non-null   | int64   |
| 9  | has_garden            | 164 non-null   | float64 |
| 10 | has_terrace           | 170 non-null   | float64 |
| 11 | has_parking           | 169 non-null   | float64 |
| 12 | has_swimmingpool      | 158 non-null   | float64 |
| 13 | has_lift              | 81 non-null    | float64 |
| 14 | constructed_area      | 187 non-null   | int64   |
| 15 | is_new_development    | 187 non-null   | int64   |
| 16 | is_needs_renovating   | 187 non-null   | int64   |
| 17 | is goog condition     | 187 non-null   | int64   |

|                     | count | mean          | std           | min          | 25%           | 50%           | 75%           | max           |
|---------------------|-------|---------------|---------------|--------------|---------------|---------------|---------------|---------------|
| latitude            | 187.0 | 36.692094     | 0.113276      | 36.610730    | 36.659499     | 36.663815     | 36.671115     | 3.714505e+01  |
| longitude           | 187.0 | -4.449519     | 0.202287      | -4.686328    | -4.506868     | -4.501821     | -4.490153     | -3.641632e+00 |
| price               | 187.0 | 482993.689840 | 512781.940307 | 54900.000000 | 249900.000000 | 299990.000000 | 567000.000000 | 5.000000e+06  |
| room_number         | 187.0 | 3.625668      | 1.629362      | 1.000000     | 3.000000      | 3.000000      | 4.000000      | 1.400000e+01  |
| bath_number         | 187.0 | 2.556150      | 1.395385      | 1.000000     | 2.000000      | 2.000000      | 3.000000      | 8.000000e+00  |
| has_garden          | 164.0 | 0.695122      | 0.461766      | 0.000000     | 0.000000      | 1.000000      | 1.000000      | 1.000000e+00  |
| has_terrace         | 170.0 | 0.947059      | 0.224578      | 0.000000     | 1.000000      | 1.000000      | 1.000000      | 1.000000e+00  |
| has_parking         | 169.0 | 0.899408      | 0.301681      | 0.000000     | 1.000000      | 1.000000      | 1.000000      | 1.000000e+00  |
| has_swimmingpool    | 158.0 | 0.867089      | 0.340558      | 0.000000     | 1.000000      | 1.000000      | 1.000000      | 1.000000e+00  |
| has_lift            | 81.0  | 0.975309      | 0.156150      | 0.000000     | 1.000000      | 1.000000      | 1.000000      | 1.000000e+00  |
| constructed_area    | 187.0 | 243.433155    | 270.325987    | 50.000000    | 108.500000    | 152.000000    | 256.000000    | 2.500000e+03  |
| is_new_development  | 187.0 | 0.229947      | 0.421928      | 0.000000     | 0.000000      | 0.000000      | 0.000000      | 1.000000e+00  |
| is_needs_renovating | 187.0 | 0.053476      | 0.225585      | 0.000000     | 0.000000      | 0.000000      | 0.000000      | 1.000000e+00  |
| is_goog_condition   | 187.0 | 0.716578      | 0.451870      | 0.000000     | 0.000000      | 1.000000      | 1.000000      | 1.000000e+00  |
|                     |       |               |               |              |               |               |               |               |

**HeatMap** 

#### Correlaciones entre las variables















Se afirma la existencia de Outliers, pero no corresponden con valores atípicos sino que corresponde con valores extremos ya que son viviendas mucho más grandes en m2 y con mayor volumen de habitaciones (podría corresponder con una mansión o cortijo).

#### **Exclusión de Outliers**

Se calcula el valor intercuartílico **IQR** para poder delimitar el **extremo inferior** y **superior** en función de la variable precio.

```
q1 = np.percentile(data clean["price"], 25)
q3 = np.percentile(data clean["price"], 75)
iqr = q3 - q1
# calculamos los límites inferior y superior del precio
upper limit = q3 + 1.5 * iqr
lower limit = q1 - 1.5 * iqr
print(f"Todas las viviendas con precios superiores a: {upper limit}€ serán excluidas")
print(f"Todas las viviendas con precios inferiores a: {lower limit}€ serán excluidas")
Todas las viviendas con precios superiores a: 1042650.0€ serán excluidas
Todas las viviendas con precios inferiores a: -225750.0€ serán excluidas
data outliers = data clean[data clean["price"] > upper limit].shape[0]
print(f"Excluiríamos {data outliers} viviendas")
Excluiríamos 17 viviendas
```

# Preparación datos para el modelo

Transformación de variables categóricas a numéricas usando LabelEncoder()

```
#tipo de variables

obj = (data_clean.dtypes == 'object')
object_cols = list(obj[obj].index)
print("Categorical variables:",len(object_cols))

int_ = (data_clean.dtypes == 'int')
num_cols = list(int_[int_].index)
print("Integer variables:",len(num_cols))

fl = (data_clean.dtypes == 'float')
fl_cols = list(fl[fl].index)
print("Float variables:",len(fl_cols))

Categorical variables: 3
Integer variables: 7
Float variables: 7
```



# Evaluación de modelos

Datos sin procesar y escalados

- Regresión Lineal
- Regresión Bridge
- SVM-Support Vector Machine
- XgBoost Regresion
- Gradient Boosting Regressor
- Arbol de Regresión

#### **Datos completos**

|    | Modelo                      | Detalles        | R2 train | R2 test | MAE train     | MAE test      |
|----|-----------------------------|-----------------|----------|---------|---------------|---------------|
| 16 | Árbol de regresión          | Sin procesar    | 0.5774   | 0.7596  | 95455.722670  | 172703.538059 |
| 4  | SVM linear                  | Sin procesar    | 0.7639   | 0.6973  | 107439.937805 | 138592.268673 |
| 1  | Regresión Lineal            | Datos escalados | 0.8226   | 0.5991  | 111651.180321 | 241667.780677 |
| 17 | Árbol de regresión          | Datos sscalados | 0.5774   | 0.5314  | 95455.722670  | 261597.541502 |
| 14 | Gradient Boosting Regressor | Sin procesar    | 0.9958   | 0.5268  | 21729.779228  | 167876.985202 |

#### **Datos Sin Outliers**

|    | Modelo                      | Detalles                  | R2 train | R2 test | MAE train    | MAE test     |
|----|-----------------------------|---------------------------|----------|---------|--------------|--------------|
| 0  | Regresión Lineal            | Sin procesar/Sin outliers | 0.7928   | 0.7354  | 61043.839656 | 75237.052916 |
| 12 | xgboost Regresion           | Sin procesar/Sin outliers | 1.0000   | 0.7013  | 218.786305   | 68433.148438 |
| 2  | Regresión Bridge            | Sin procesar/Sin outliers | 0.7402   | 0.7010  | 69056.248992 | 75928.876317 |
| 14 | Gradient Boosting Regressor | Sin procesar/Sin outliers | 0.9925   | 0.6748  | 12069.541356 | 66372.415119 |
| 4  | SVM linear                  | Sin procesar/Sin outliers | 0.6527   | 0.6331  | 74947.345882 | 84178.377877 |

#### Modelo aplicado

Nuevos datos de entrada

Aplicamos el modelo para nuevos datos de entrada. En este caso usamos los datos completos de Churriana y le aplicamos el modelo entrenado.

#### Creamos las siguientes columnas:

- Precio predicho.
- Variación entre precio predicho y real.
- % de rentabilidad.

Además, se usa pd.concat para volver a incluir en el dataset las columnas título y localización.

Finalmente tenemos una BBDD con 169 viviendas a la venta de Churriana con un total de 20 variables.

```
data final.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 170 entries, 0 to 169
Data columns (total 20 columns):
     Column
                            Non-Null Count
     titulo
                            170 non-null
                                            object
     localizacion
                            170 non-null
                                            object
     latitude
                                            float64
                            170 non-null
     longitude
                            170 non-null
                                            float64
     price
                            170 non-null
                                            int64
     energy certification
                           170 non-null
                                            int64
     room number
                            170 non-null
                                            int64
     bath number
                            170 non-null
                                            int64
     has garden
                            170 non-null
                                            float64
     has terrace
                            170 non-null
                                            float64
     has parking
                            170 non-null
                                            float64
                                            float64
     has swimmingpool
                            170 non-null
     has lift
                            170 non-null
                                            float64
     constructed area
                                            int64
                            170 non-null
    is new development
                            170 non-null
                                            int64
    is needs renovating
                           170 non-null
                                            int64
    is goog condition
                            170 non-null
                                            int64
17 Price predict
                            170 non-null
                                            float64
 18 Var Prices
                                            float64
                            170 non-null
19 % rentabilidad
                           170 non-null
                                            float64
dtypes: float64(10), int64(8), object(2)
memory usage: 26.7+ KB
```

#### Visualización Front end

- Buscador de viviendas rentables
- ¿Cuál es el precio de mi vivienda?

# BUSCADOR DE VIVIENDAS CON RENTABILIDAD

BARRIO DE CHURRIANA, MÁLAGA

Buscardor de viviendas rentables ¿Cuál es el precio de mi vivienda?

### ₱ BUSCADOR DE VIVIENDAS CON RENTABILIDAD

BARRIO DE CHURRIANA, MÁLAGA



Ejemplo seleccionando mostrar las viviendas en venta que necesitan reforma y tienen rentabilidad positiva.



#### BUSCADOR DE VIVIENDAS CON RENTABILIDAD

BARRIO DE CHURRIANA, MÁLAGA



Vídeo

# Ejemplo Calculado

| Latitud                              | Longitud             | Cert. energética    | ·                  |  |  |  |
|--------------------------------------|----------------------|---------------------|--------------------|--|--|--|
| 36.66970                             | - + -4.50340         | - + a               | V[deo ◆            |  |  |  |
| Habitaciones                         | Baños                | Área construida     |                    |  |  |  |
| 4                                    | - + 3                | - + 120             | - +                |  |  |  |
| Terraza                              | Parking              | Piscina             | ☐ Ascensor         |  |  |  |
| ☑ Jardin                             | ☐ Nueva construcción | ☐ Necesita reformas | Buenas condiciones |  |  |  |
| Calcular                             |                      |                     |                    |  |  |  |
| El precio estimado de tu vivienda es |                      |                     |                    |  |  |  |
| 334,652 €                            |                      |                     |                    |  |  |  |





#### **Conclusiones:**

- Modelo de uso para el proyecto pero no aplicable a la vida real. Falta de datos, datos insuficientes para un buen entrenamiento de los modelos. Resultados poco precisos y realistas.
- Bloqueo de las consultas en Idealista que paraba la extracción de información.
- A pesar de que los resultados obtenidos no son lo mejor que se podría, estoy muy satisfecha y contenta con el trabajo realizado.

#### Mejoras:

- Mayor volumen de datos probando otras técnicas de scraping como Selenium.
- Más variables y características de la vivienda.
- Extraer datos de forma automática a diario.
- Sería interesante incluir datos externos de la zona para nutrir el estudio y la predicción.
- Aplicar el modelo a otras zonas para poder hacer comparativas de precios y rentabilidad.
- Automatizar con funciones ciertas partes del proyecto para facilitar su aplicación a nuevos datos y análisis de zonas.
- Incluir las urls de los inmuebles y los datos de contacto del propietario en la parte de visualización para mejorar la usabilidad.
- Incluir un buscador en la app para que el usuario pudiera elegir la zona deseada y obtener datos en tiempo real.

# ¡Muchas Gracias!