Pontificia Universidad Católica de Chile Facultad de Matemáticas 2° semestre 2020

Ayudantía 05

11 de Septiembre MAT2225 - Teoría de Números

- 1) Determine si los siguientes enteros se pueden escribir como suma de dos cuadrados. Si se puede, encuentre una suma:
 - a) 9!.

Solución. Notar que $9! = 2^7 \cdot 3^4 \cdot 5 \cdot 7$. Como $v_7(9!) = 1$, no se puede escribir como la suma de 2 cuadrados.

b) 29.

Solución. 29 es primo. Buscamos s tal que $s^2 \equiv_{29} -1$. Notar que 12 cumple lo pedido. Construyendo la tabla de $[x-12y]_{29}$.

$x \setminus y$	0	1	2	3	4	5
0	0	17	5	22	10	27
1	1	18	6	23	11	28
2	2	19	7	23 24	12	0
3	3	20	8	25 26	13	1
4	4					
5	5	22	10	27	15	3

Tomando los pares (5,2) y (0,4) tenemos que

$$5 - 12 \cdot 2 = -12 \cdot 4$$

Agrupando de manera conveniente, elevando al cuadrado y recordando que $(12)^2 \equiv_{29} -1$, tenemos que

$$5^2 + 2^2 \equiv_{29} 0.$$

Esto nos da los cuadrados que buscamos.

c) 2020.

Solución. Notar que $2^2 \cdot 5 \cdot 101$. Sabemos que $5 = 2^2 + 1^2$ y que $101 = 100^2 + 1^2$. Trabajando un poco la expresión, se tiene

$$2020 = 2^{2}(2+i)(2-i)(10+i)(10-i)$$

$$= 2^{2}(2+i)(10+i)(2-i)(10-i)$$

$$= 2^{2}(19+12i)(19-12i)$$

$$= 2^{2}(19^{2}+12^{2})$$

$$= 38^{2}+24^{2}.$$

Esto nos da una solución.

d) $10^9 + 7$.

Solución. Notar que $10^9 + 7 \equiv_4 3$, por lo que no puede ser escrito como suma de 2 cuadrados.

2) Encuentre 2^{2020} (mód 36).

Solución. Lo anterior es equivalente a encontrar 2^{2020} (mód 4) y 2^{2020} (mód 9). Claramente $2^{2020} \equiv_4 0$. Para encontrar 2^{2020} (mód 9), notar que $2^3 \equiv_9 -1$, por lo que

$$2^{2020} \equiv_9 2^{3.673} \cdot 2 \equiv_9 (2^3)^{673} \cdot 2 \equiv_9 (-1)^{673} \cdot 2 \equiv_9 -2 \equiv_9 7.$$

Como (4,9)=1, por teorema chino del resto sabemos que existe una única solución a $x\equiv_4 0, x\equiv_9 7$ módulo $\operatorname{mcm}(4,9)=36$. Como 16 es solución, tenemos que $2^{2020}\equiv_{36} 16$.

3) Determine si el siguiente sistema de congruencias tiene solución. En caso de tener, encuentre una:

$$x \equiv_{15} 2$$

$$x \equiv_{24} 17$$

$$x \equiv_{28} 9$$

Solución. Podemos separar cada congruencia usando teorema chino del resto, por lo que nos queda

$$x \equiv_3 2$$

$$x \equiv_5 2$$

$$x \equiv_3 17 \equiv_3 2$$

$$x \equiv_8 17 \equiv_8 1$$

$$x \equiv_4 9 \equiv_4 1$$

$$x \equiv_7 9 \equiv_7 2$$

Notar que $x \equiv_8 1 \Rightarrow x \equiv_4 1$, por lo que podemos omitir la segunda. También aparece $x \equiv_3 2$ dos veces, por lo que podemos sacar una. Haciendo esto y ordenando las congruencias un poco, se tiene

$$x \equiv_3 2$$

$$x \equiv_5 2$$

$$x \equiv_7 2$$

$$x \equiv_8 1$$

Ahora, las 3 primeras congruencias se reducen a $x\equiv 2\pmod{\max(3\cdot 5\cdot 7)}$, por lo que el sistema anterior se reduce a

$$x \equiv_{105} 2$$
$$x \equiv_{8} 1$$

Como (8, 105) = 1, hay solución. Tenemos que x = 105k + 2. Luego,

$$105k + 2 \equiv_8 1.$$

Como 105 \equiv_8 1, se tiene $k+2\equiv_8$ 1, por lo que $k\equiv_8$ 7. Luego, las soluciones son de la forma 105(8n+7)+2=840n+212.

Bonus: Sea $f: \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$ una permutación y a, b clases de $\mathbb{Z}/5\mathbb{Z}$.

- a) Muestre que la sucesión $a, f(a), f^2(a), f^3(a), \ldots$ es periódica.
- b) Determine condiciones necesarias y suficientes para que $f^k(a) = f^k(b)$ para algún $k \in \mathbb{N}$. ¿Cuál es el k más pequeño que cumple lo pedido?

- c) Sean $g,h:\mathbb{Z}/5\mathbb{Z}\to\mathbb{Z}/5\mathbb{Z}$ dos funciones. Muestre que $a,g(a),g^2(a),\ldots$ y $a,h(a),h^2(a),\ldots$ son eventualmente periódicas.
- d) Asuma que existe un k positivo tal que $h^k(a) = g^k(a)$. Encuentre una cota superior para k.
- e) Encuentre funciones g,h y tales que lo anterior no ocurra para ningún a.