☐ Predictive Model Report - E-Commerce Customer Purchase Prediction

📝 1. Methodology

- The dataset was carefully preprocessed to ensure optimal performance for machine learning models. The steps included:
 - Handling missing values in **Annual_Income** by imputing with median values.
 - Transforming **Birth_Year** into **Age** for better feature representation.
 - Encoding categorical variables like Education Level and Family Status using One-Hot Encoding.
 - Normalizing numerical features for consistent scaling across inputs.
 - Splitting the dataset into training (80%) and validation (20%) sets.

in 2. Model & Performance Metrics

• A **Random Forest Classifier** was trained to predict whether a customer will make their next purchase.

Performance Metrics:

✓ Accuracy: 86.14% ✓ F1-Score: 0.53 (indicating room for improvement in predicting class 1) ✓ Precision & Recall: The model performs well in classifying non-buyers but struggles with correctly predicting buyers.

Model Accuracy: 86.14%

Classification Report:

	precision	recall	f1-score	support
0	0.88	0.97	0.92	344
1	0.58	0.23	0.33	60
accuracy			0.86	404
macro avg	0.73	0.60	0.63	404
weighted avg	0.84	0.86	0.84	404

Model training completed!

New XGBoost F1 Score: 0.5612

X Confusion Matrix

• The model correctly identifies most non-buyers but has **higher false negatives** for buyers.

- The **ROC Curve** demonstrates the model's ability to distinguish between classes.
- AUC Score: Suggests moderate performance, but further improvements can be made.

Feature Importance

 Key influencing factors include spending habits, promotional campaigns, and past purchases.

💡 3. Business Insights & Recommendations

- Based on model analysis, key insights include:
 - Customers who have purchased before are more likely to buy again.
 - Promotional campaigns play a crucial role in driving repeat purchases.
 - High-income customers tend to purchase more frequently.
 - The model struggles with predicting **rare buyers (class 1)**, suggesting a need for **data balancing**.

- Balance the dataset using SMOTE to improve prediction accuracy for rare buyers. Hyperparameter tuning (adjusting n_estimators, max_depth) can refine performance.
- Explore alternative models like XGBoost or Neural Networks for better accuracy. Optimize promotional campaigns by targeting customers with higher likelihood of purchasing.

★ Final Thoughts

This predictive model provides valuable insights for improving marketing strategies and boosting customer engagement. Implementing further enhancements will lead to **higher** accuracy, better F1-score, and more effective business decisions.