Siruri de funcții

Fix X+0, the (1, da) spectif metrico, (fm) un sin de luncti, fm: X-sy, trett si f: X-sy o alta functie.

Del. Spurem cà (Am):

Obs. Daca frans f, atunci frans f. Reciproca e falso.

Prop. Fie X+¢, (la) au zin de Luncti, la: X-sIR a. 1. (Infrainginit, Harry gil: X-sIR. Atunci

for (sur | for (xex | for (x)) =0.

Teoroma lui Dini

Fie (x,76) sp top, \$\phi \text{K} \text compactà, (fa), sin mondon de fictiont, fin: K-SIR, \text{Hnext} sif: K-SIR (out. 10 cà la_-s) f, atuna fa_-s f

Cat particular al teoremei procedento: teorema lui Tolga Fie pirul de functiononotore (fam fon: [ach] -> (P. gi functio continua f:[a,b]->/R. boca for is I, where for moss I, Teorema de permutare a limitai cu derivata: Fie (fm) un zin de funcții, In: I->Ra.î. tivigram if terengopen lavretini I (1 2)] KEI a, 1. (fm(6)) a convergent 3) In derivabila In ex 4) 3g: I->kai for myng Hunai If: I-SIR derivabilà G.1 fn mys fzif=g. (i.e. (lim fm) = lim (fm)). Leorenna de permutare a limitei a integrala Fie girul de functii (Im)n, In: [9,6]-SIRAif: [9,6]-SIR a.7 1) In integrabila Pilmann + MET 2) 2/ 2/ Atunei f e integrabili Rimann gi lim I lacklet = Storot.

Cum aratam ca o fem un sindo femálio converge uniform ca tre 0 Jundie \$?

Rosul 1: Facem convergenta simplà. Sà sicem ca for 35 f.

Vom studia convergença uniforma DOAR în cazul în care ar converge uniform catro function f. (nu are sens sa conveaga simple catre cevo si uniform catre attreva).

Pasul 2: 4 Facem una din urmatoarele 3 lucruri pentru convergenda · smofine

a) calcularm supremumul ji facem apoi limita (cu tabelid de la bac) le anatam ca supremumul e mai mic decât ceva ce tinde la 0, lar din critarial destalui vom avec convergenta uniforma

c) anatamn ca sepremumul e moi mare docat ceva a NU tinche la 0, car în care sinul de funcții nu Va converge uniform.

Exercitii:

Fix In-[0,1), In(x)= 1+x+mln(1+xm) un pincle function.

Studiati comorgenta simpla di coa uniforma a sirului (fm)m.

Solupie:

Studien convergente simpla:

lim 1/4×+m hu(1+xm) =?

(alculaim, mai bine, lim (1+x+n lm(1+xy)) =

1+x+lim m ln(1+xm) = 1+x+lim m. (ln(1+xm)) xm =

1+x+mson mson (1+xm) = 1+x+lim m. (mson)

Pentru lim n. xº vom falori critoriul raportului. Calcular lim ant = lim (m+1) x nt = x < 1 = slim m x = 0. Agadon, In 3 1, unde f: [011] -3/R, f(0) = 1+x. Studiem acum convergenta uniformà. Observam cà nu putem aplica teorema lui Tolya. Facom sup | fact)-f(x) = sup | 1/1+x+nln(1+xm) - 1/1 = xe(on) > recon 2(1+x+m/n(1+xm)) x<1 2 xe(cm) 2+m/n2 = = 1. m M2 moss 2 to. Agadan for 4/2 f. 0 Determination of X sin(mx) dx. Fie fn: [0](]-SR, fm(x)= X sim(mx) +mEX. Aven ca for cont (op cu fct, cont) => for integrabila filmann the H

Studiem convergenta simplà a lui (fm). Calcular lim X sin(nx), KE [0/1] qi sin (mx)E[-1/1]] => Studiem convergenta uniformà a lui (fm) n.

Aven cà sup |fm(x)-f(x)| = sup \frac{\chi |sim(mx)|}{\chi | + m \chi + \chi } \lefter \frac{\chi}{\chi^2} \tag{n-six}0. Deafor - 31. Aspadón, putem aplica teorema de permutare a limitei cu integrala pramo cà pri lim $\int \frac{x \sin(nx)}{n^2 + nx^2 + x} dx = \int f(x) dx = \int o dx = 0. D$

Serii de funcții Fie x + 0, 1 km/m cm zinde fct, fm= X-21R, 4000, 100 fct, fm= X-31R, 4000, 100 fct, fm= X-31R, 4000, 100 fct, fm= X-31R, 4000. Berechea (An) nzp (An) se numerte gerile de fundji ji se noteaté au E fon. In general, p=osau p=1. Det. Spunen cà seria de functi & In: 1) Converge simplu, do ca (In) (In) converge simplu 2) converge uniform, da ca (On) (Onverge uniform 3) converge absolut, dans { / fr(4) a convergentà.

Def. Daci & for coverge simple, limite buil som se numerte suma seriei & for lise notoqua tota & for. legrama (Weierstrass) Presepurem a 7(Amm & [0,80) o.7. 1) Z In conv 2) | fn(x) | Edn Atunci & for converge uniform ji absolut. Exemplu: Anatalica & sin(nx) converge uniform (xelk) Alogen In= 2. Aulm | Sin (x) \le \frac{1}{u^2 + v^2} \le \frac{1}{u^2 + v^2} \le \frac{1}{u^2} \le Conform tooremei lui Weierstrass aven ra & sinhx) U.C.

Motatie: CocI) = { f: I - IR | f est de clasa cook es fe deivabilé de aice adin pe I (7 Farmula lui Taylor ou rest Lagrange;) € 5 € au viur (° Tie a eI. P.p. cā f est derivalik de m+1 où pe I. Atumai (*) x ∈ I, 1. a × m x or c or tra m x a.l. $f(x) = f(x) + \frac{f'(a)}{1!} (x-a)^{1} + \dots + \frac{f^{(m)}(a)}{m!} (x-a)^{m} + \frac{f^{(m+1)}}{(m-1)!} (x-a)^{m+1}$ palimamul Taylor de ordin m restul de ordem on al form lui Taylor Lef: Seria de puteri 2 ficar CX-a, n. seria Taylor a function of in runded a. Teauma: Seria Taylor associata functivi f în punctul a esti canuncenta în punctul $x \in I$, $x \neq a$ ni are suma f(x) lim f(x) = 0, and f(x) est restul formula f(x) = 0. Seria Taylor associata lui fûr a ox mai numest ni Deria Mac Laurin a lui f Ex: Seria Taylor log(x) pentru log(x) in a=1: $(X-1)-\frac{(x-1)}{2}+\frac{3}{(x-1)^2}$ Seria chac Lawin pt Incx+1) $\frac{x}{1} - \frac{x}{2} + \frac{x^3}{2} - \dots$

Tearma de dissipare termin au termen a sociela de putrai; Fil $\sum_{m=0}^{\infty} a_m x^m c_n R$, Alumai $\sum_{m=0}^{\infty} (a_m x^m) = \sum_{m=1}^{\infty} ma_m x^m = \sum_{m=0}^{\infty} (m+1) a_m x^m = \sum_{m=0}^{\infty} (m+1) a_{m+1} x^m a_m a_m a_m a_m R$ Bacaloon S: (-R,R), S(X) = E anx duna

Sednivability B(X) = E (anx) = E (n=1)eng xn

M=0 Teama de ite grave File Z anx ou R. Aluna & Stanx dx = $-\frac{2}{2}\frac{9m}{m-1}t^{m+1} = \frac{2}{2}\frac{am}{m-1}x^{m+1}$ ou a a lai kDace Room B; S: (-R,R)->(R, D(X)=Z amx" Sx1=Z am xm+1 M=0 mx+1 atura. Se primitiva lui s

Anatotica $e^{\kappa} = \sum_{m=1}^{\infty} \frac{x^m}{m!}$ Salutie: I=1R=(-0,00), a=0 eI $\{z \in \mathbb{Z} \rightarrow \mathbb{R}, g(x) = e^{x}, g \in \mathbb{C}^{\infty}(\mathbb{Z})\}$ $f(x) = e^{x}$ $f(x) = e^{x}$ $f(x) = e^{x}$ $\sum_{M=0}^{M} \frac{M!}{M!} = \sum_{M=0}^{M} \frac{M!}{M!} \times_{M=0}^{M=0} \frac{M!}{M!} \times_{M=0$ Canfam Formulai lui Tayla en rest Lagrange Drell (4) XEIR, X +0 J C între 0 m' X a. s. f(x) = f(0) + f(0) x+ ... + f(0) x f(0) x f(0) x x+1 RMCX) = ec xm-1 $R_{(M)}(x)$ Anatam ca lim kn(x)=0. Fie x EIR* lim | Rm(x) |= ?) 0 = | Rm(x) | = | = (m-1)! | = | = = (| X | | X | | | X | M = 1 e ûntre ogix = oceccalxl Fie Xm = (m+1) / XIM+1 lim xm+1 = lim = (m-12)! (m-1)! -= lim (X) =0 Of criterialminapatula. en termunistrict positioni => => lim kn = 0 . Dea lim (Rid = 0 Apada J(x) = \(\frac{2}{\times} \) \(\frac{1}{\times} \) \(\frac{

So a deposite in serie de putri ale lui x function of: [R-1]R

$$f(x) = min(x) = 0$$
 $f(x) = min(x) = 0$
 $f(x) = f(x) + f(x) = 0$
 $f(x) = f(x) = 0$
 $f(x$