Mathematical Thinking. Test Flight Assignment Solutions.

Okon Samuel

Question 10

Lemma 1. If n is any natural number and $A_n := \{x : 0 \le x < \frac{1}{n}\}$, then $A_{n+1} \subset A_n$.

Proof. Let n be any natural number and

$$A_n := \{x : 0 \le x < \frac{1}{n}\}, \text{ then } A_{n+1} := \{x : 0 \le x < \frac{1}{n+1}\}.$$

For every $x \in A_{n+1}$, $0 \le x < \frac{1}{n+1}$

$$\Rightarrow (0 \le x) \land (x < \frac{1}{n+1})$$

$$\Rightarrow (0 \le x) \land (x < \frac{1}{n})$$

$$\Rightarrow 0 \le x < \frac{1}{n}$$

$$\Rightarrow x \in A_n.$$
(Since $\frac{1}{n+1} < \frac{1}{n}$)

Hence for any natural number $n, A_{n+1} \subset A_n$.

Lemma 2. For every $x \in (\mathbb{R}^+ \cup \mathbb{R}^-)$, there exists a $n \in \mathbb{N}$ such that $x \notin A_n$ where $A_n := \{y : 0 \leqslant y < \frac{1}{n}\}.$

Proof. (By Cases)

Let x be any non-zero real number (i.e $x \in (\mathbb{R}^+ \cup \mathbb{R}^-)$).

Case 1: (x < 0)

Let n be any natural number and $A_n := \{x : 0 \le x < \frac{1}{n}\}.$

$$\Rightarrow x \notin A_n$$
 (Since $x < 0$).

Case 2: (x > 0)

Let n be any natural number such that $n \ge \frac{1}{x}$ and $A_n := \{x : 0 \le x < \frac{1}{n}\}.$

$$\Rightarrow x \leqslant \frac{1}{n} \\ \Rightarrow x \notin A_n.$$

$$\Rightarrow x \notin A_n$$
.

Hence for every non-zero real number, there exists a $n \in \mathbb{N}$ such that $x \notin A_n$, where $A_n := \{x : 0 \leqslant x < \frac{1}{n}\}.$

Lemma 3. If $A_n := \{x : 0 \leqslant x < \frac{1}{n}\}$ for every $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} = \{0\}$.

Proof. From Definition 1,

$$\bigcap_{n=1}^{\infty} = \{0\} \text{ if } (\forall x \in \mathbb{R})((\forall n \in \mathbb{N})(x \in A_n) \Rightarrow x = 0)$$

 $\bigcap_{n=1}^{\infty} = \{0\} \text{ if } (\forall x \in \mathbb{R})((\forall n \in \mathbb{N})(x \in A_n) \Rightarrow x = 0)$ But $(\forall x \in \mathbb{R})((\forall n \in \mathbb{N})(x \in A_n) \Rightarrow x = 0) \Leftrightarrow (\forall x \in \mathbb{R})(x \neq 0 \Rightarrow (\exists n \in \mathbb{N})(x \notin A_n)).$

Hence

$$\bigcap_{n=1}^{\infty} = \{0\} \text{ if } (\forall x \in \mathbb{R})(x \neq 0 \Rightarrow (\exists n \in \mathbb{N})(x \notin A_n)).$$

By Lemma 2,
$$(\forall x \in \mathbb{R})(x \neq 0 \Rightarrow (\exists n \in \mathbb{N})(x \notin A_n))$$
 is true. Hence $\bigcap_{n=1}^{\infty} = \{0\}$ is true.

Proposition 1. If $A_n := \{x : 0 \le x < \frac{1}{n}\}$ for every $n \in \mathbb{N}$, then:

- 1. $A_{n+1} \subset A_n$ for every $n \in \mathbb{N}$
- 2. $\bigcap_{n=1}^{\infty} = \{0\}.$

Proof. Let $A_n := \{x : 0 \le x < \frac{1}{n}\}$ for every $n \in \mathbb{N}$. Then property (1) is true by Lemma 1 and property (2) is true by Lemma 3.