The Two Phase Simplex Algorithm

Solve the following LPs using the two phase simplex algorithm.

1.

maximize
$$3x_1 + x_2$$

subject to $x_1 - x_2 \le -1$
 $-x_1 - x_2 \le -3$
 $2x_1 + x_2 \le 4$
 $0 \le x_1, x_2$

Solution: (1,2)

2.

maximize
$$3x_2 + x_3$$
 subject to
$$x_1 + 2x_2 + x_3 \leq 2$$

$$2x_1 + x_2 - x_3 \leq -1$$

$$3x_1 + 2x_2 + x_3 \leq 3$$

$$0 \leq x_1, x_2, x_3$$

Solution: (0, 1/3, 4/3)

3.

maximize
$$-2x_1 - 2x_2 - x_3$$

subject to $x_1 - 2x_2 + x_3 \le -2$
 $2x_1 - 2x_3 \le 0$
 $-x_1 + x_2 \le -1$
 $0 \le x_1, x_2, x_3$.

Solution: infeasible

4.

maximize
$$x_1 + x_2 + x_3$$

subject to $-2x_1 + 3x_2 + x_3 \le -1$
 $x_1 + 3x_2 - x_3 \le -1$
 $2x_1 - x_2 - 3x_3 \le -6$
 $0 < x_1, x_2, x_3$

Solution: This problem is feasible, but unbounded.

5.

maximize
$$-x_1 + x_2 + x_3 + 4x_4$$

subject to $2x_1 + x_2 + x_3 + 4x_4 \le 3$
 $-2x_1 - x_2 + x_3 + 4x_4 \le -2$
 $2x_1 - 2x_2 + x_3 + x_4 \le -4$
 $0 \le x_1, x_2, x_3, x_4.$

Solution: (0, 3, 1, 0)

6. maximize
$$2x_1$$
 $-x_3 + x_4$ subject to $x_1 + x_2 - x_4 \le 7$ $x_1 - x_2 + x_3 + x_4 \le -2$ $0 \le x_1, x_2, x_3, x_4.$

Solution: The LP is unbounded.

Solution: (1, 0, 4, 0).