Для реализации алгоритма потребуется дополнительная реализация операций над векторами, включая псевдоскалярное произведение.

Алгоритм 1 (Алгоритм Сазерленда—Ходгмана отсечения многоугольника относительно прямоугольной области).

Вход: $P = \{(x_i, y_i) \mid 1 \leq i \leq n\}$ — набор вершин отсекаемого многоугольника в порядке их обхода по часовой стрелке, $(x_{\min}, y_{\min}), (x_{\max}, y_{\max})$ — координаты левого нижнего и правого верхнего углов окна отсечения соответственно

Выход: n_1 — количество вершин в многоугольнике после отсечения, $P_1 = \{(x_i', y_i') \mid 1 \leqslant i \leqslant n_1\}$ — набор вершин видимой части многоугольника в порядке их обхода по часовой стрелке

- 1. i=1 (номер текущей границы области видимости), $n_1=n$ (количество вершин в имеющемся многоугольнике), $P_1=P, \ \bar{f}_0=(x_{\max},y_{\min}).$
- 2. Если i > 4, закончить алгоритм, а иначе переход к шагу 3.
- 3. k=1 (номер текущего ребра отсекаемого многоугольника), $Q(0)=(P_1[n_1]-F_i)\times (\bar{f}_0-F_i),$ $\bar{p}_0=P_1[n_1],$

 $n_2 = 0$ (количество ребер в результате отсечения относительно текущей границы области видимости),

 $P_2 = \{\}$ (многоугольник — результат отсечения относительно текущей границы области видимости), где

- (a) Если $i = 1, F_i = (x_{\min}, y_{\min});$
- (b) Если $i = 2, F_i = (x_{\min}, y_{\max});$
- (c) Если i = 3, $F_i = (x_{\text{max}}, y_{\text{max}})$;
- (d) Если i = 4, $F_i = (x_{\text{max}}, y_{\text{min}})$.
- 4. Если $k > n_1$, переход к шагу 5, иначе к шагу 7;
- 5. $P_1 = P_2$, $n_1 = n_2$, $\bar{f}_0 = F_i$;
- 6. Если $n_1 = 0$, то многоугольник полностью невидим: закончить алгоритм. Иначе присвоить i = i + 1 и перейти к шагу 2;
- 7. $Q(1) = (P_1[k] F_i) \times (\bar{f}_0 F_i)$.
- 8. Если $Q(0) \cdot Q(1) < 0$ вычислить

$$t = \frac{Q(0)}{Q(0) - Q(1)},$$

$$n_2 = n_2 + 1$$
, $P_2[n_2] = \bar{p}_0 - (\bar{p}_0 - P_1[k])t$.

- 9. Если $Q(1) \leqslant 0$, $n_2 = n_2 + 1$, $P_2[n_2] = P_1[k]$.
- 10. Присвоить $Q(0)=Q(1), \, \bar{p}_0=P_1[k], \, k=k+1$ и перейти к шагу 4.