PRENOM: GROUPE:

Partiel 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

> **OCM** (4 points)

Entourer la bonne réponse

NOM :

1- La valeur algébrique du moment du poids \vec{P} de la poutre par rapport au point d'appui du triangle

- a) -P.L/2
- b) P.L/4
- c) nulle (d) P.L/4

2- La valeur algébrique du moment de la force \vec{F}_2 par rapport à l'axe de rotation (Δ) passant par O et perpendiculaire à la feuille (figure 1) est

- a) $-F_2.L/2$ (b) $-F_2.\frac{L}{2}\cos(\alpha)$ c) $-F_2.\frac{L}{2}\sin(\alpha)$

- 3- La valeur algébrique du moment du poids par rapport à l'axe (Δ) (schéma de la question 2) est
 - a) -P.L/2 b) P.L/2 c) nulle

- 4- Le travail d'une force \vec{f} variable qui fait un angle α avec le vecteur déplacement $d\vec{l}$ sur le trajet

- 1 -

- a) $W_{AB}(\vec{f}) = \int_{A}^{B} f \cdot dl \cdot \sin(\alpha)$ b) $W_{AB}(\vec{f}) = f \cdot AB \cdot \cos(\alpha)$ c) $W_{AB}(\vec{f}) = \int_{A}^{B} f \cdot dl \cdot \cos(\alpha)$
- 5- Le théorème d'énergie cinétique est donné par :

b) $\Delta E_c = W(\vec{f})$ Où \vec{f} est la force de frottement .

A. Zellagui

6- En présence des frottements (seule force non conservative), le théorème d'énergie mécanique s'écrit

a)
$$\Delta E_m = 0$$

a)
$$\Delta E_m = 0$$
 (b) $\Delta E_m = W(\vec{f}_{frotts})$ c) $\Delta E_m = \Delta E_c$

c)
$$\Delta E_m = \Delta E$$

7- Le travail d'une force \vec{F} perpendiculaire au déplacement est :

a) strictement positif

- c) strictement négatif
- c) dépendant de la vitesse

$$(OA = OB = R)$$

Le travail du poids sur le trajet AB est

a)
$$W(\vec{P}) = -mgR(1 - \cos(\theta))$$

b)
$$W(\vec{P}) = mgR.\cos(\theta)$$

$$(\vec{c})W(\vec{P}) = mgR(1 - \cos(\theta))$$

Exercice 1 (6 points)

Une poutre dont le poids est P = 100 N et dont la longueur est L = 1m supporte une charge dont le poids est $P_1 = 300 \text{ N}$ à son extrémité droite. Un câble relié à un mur maintient la poutre en équilibre. (figure 2)

1- Représenter les forces extérieures qui s'exercent sur la poutre.

2- Calculer la tension du câble pour assurer l'équilibre de la poutre.

On utilise la condition d'équilibre de robetin
par rapport au point
$$O$$

 $2 \frac{16}{6} (Fext) = 0 = \frac{16}{6} (R_{MM}) + \frac{16}{6} (F) + \frac{16}{$

3- Calculer les composantes (horizontale R_x et verticale R_y) de la réaction exercée par le mur sur la poutre.

on utilise la candition d'équilibre de translation
$$2F_{at} = 0$$
 $R_{mu} + P + T + T_{m} = 0$

projection dans $(0\pi l, 0y)$
 $R_{x} - T \cos(30^{\circ}) = 0$
 $R_{x} - T \cos(30^{\circ}) + R_{y} - P - T_{y} = 0$
 $R_{x} = T \cos(30^{\circ})$
 $R_{x} = T \cos(30^{\circ})$
 $R_{x} = T \cos(30^{\circ})$
 $R_{y} = P + T_{y} - T_{xim}(30^{\circ})$
 $R_{y} = 137,5$ N

Exercice 2 (5 points)

Une bille de masse m est lâchée sans vitesse initiale du point A d'une sphère de rayon OM= r et de centre O. Les frottements sont négligés. On étudie le mouvement pendant que la bille est encore en contact avec la sphère.

1- Donner les composantes du vecteur accélération de la bille dans la base de Frenet (\vec{t}, \vec{n}) , en fonction de (θ, θ, r) .

$$\vec{a} = \begin{pmatrix} a_T = \frac{dN}{dt} \\ a_N = \frac{N^2}{R} \end{pmatrix}$$
 avec $N = R^{\circ}$

$$\vec{a} = \begin{pmatrix} a_T = \frac{d}{dt}(R^{\circ}) \\ a_N = \frac{R^{\circ}}{R} \end{pmatrix} = \begin{pmatrix} R^{\circ} \\ R^{\circ} \end{pmatrix} \vec{u}_T, \vec{u}_N$$

2- a) Ecrire la deuxième loi de Newton dans la base de Frenet (\vec{t}, \vec{n}) .

b) En déduire l'équation différentielle du mouvement ainsi que la norme de la réaction R.

Exercice 3 (5 points)

Un objet ponctuel de masse m = 10 g est lâché du point A sans vitesse initiale. Le guide hémicylindrique de rayon R est immobile dans le référentiel terrestre. Lorsque l'objet passe pour la première fois par le point B le plus bas du guide, sa vitesse est $V_B = 4$ m/s.

On note \vec{f} : la force de frottement agissant sur m et qui est de norme constante.

1- Représenter les forces extérieures exercées sur la masse en un point M quelconque entre A et B.

2- Calculer la variation d'énergie cinétique ΔE_c et la variation d'énergie potentielle de pesanteur ΔE_p entre les points A et B. En déduire la variation d'énergie mécanique ΔE_m .

On donne R = 1m et g=10 m/s².

On donne
$$R = 1 \text{m et } g = 10 \text{ m/s}^2$$
.

$$\Delta E_C = \frac{1}{2} \text{ m} \vartheta B^2 - \frac{1}{2} \text{ m} \vartheta A^2 = \frac{m}{2} \left(\vartheta B^2 - \vartheta A^2 \right) .$$

$$AB$$

$$AN: \quad \Delta E_C = 10.10^{-3} \left(16 - 0 \right) = 8.10^{-2} \text{ T}$$

$$\Delta E_P = 10^{-3} \cdot 10 . 10 . 1 = -10^{-1} \text{ T}$$

$$\Delta E_{PM} = 10^{-3} \cdot 10 . 10 . 1 = -10^{-1} \text{ T}$$

$$\Delta E_{PM} = 10^{-3} \cdot 10 . 10 . 1 = -10^{-1} \text{ T}$$

$$\Delta E_{PM} = 10^{-3} \cdot 10 . 10 . 1 = -10^{-1} \text{ T}$$

$$\Delta E_{PM} = 10^{-3} \cdot 10 . 10 . 1 = -10^{-1} \text{ T}$$

$$\Delta E_{PM} = 10^{-3} \cdot 10 . 10 . 1 = -10^{-1} \text{ T}$$

$$\Delta E_{PM} = 10^{-3} \cdot 10 . 10 . 1 = -2 . 10^{-2} \cdot 10 . 10$$

3- Déterminer le travail de la force de frottement entre A et B en utilisant le théorème d'énergie mécanique. En déduire la norme de cette force supposée constante.

ana le the d'énergie mécanique.

$$\Delta E_{m} = \chi_{B}(f) \quad (f \in \text{fant la folle de})$$

$$\Delta E_{m} = \chi_{B}(f) \quad (f \in \text{fant la folle de})$$

$$\Delta E_{m} = \chi_{B}(f) \quad (f \in \text{fant la folle de})$$

$$\Delta E_{m} = \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la folle de})$$

$$= \int_{A}^{B} \int_{A}^{B} dl \quad (f \in \text{fant la$$