CONSTANTES DE ALGUNOS MATERIALES COMUNES

Tabla B-1: PERMITIVIDAD RELATIVA ε_r DE MATERIALES COMUNES ^a

 $\varepsilon = \varepsilon_r \varepsilon_0$ y $\varepsilon_0 = 8.854 \times 10^{-12}$ F/m.

Material P	'ermitividad relativa, ε _r	Material	Permitividad relativa, $\varepsilon_{\rm r}$	
Vacío	1	Tierra seca	2.5-3.5	
Aire (al nivel del ma	r) 1.0006	Plexiglás	3.4	
Espuma de estireno	1.03	Vidrio	4.5-10	
Teflón	2.1	Cuarzo	3.8-5	
Petróleo	2.1	Baquelita	5	
Madera (seca)	1.5-4	Porcelana	5.7	
Parafina	2.2	Formica	6	
Polietileno	2.25	Mica	5.4-6	
Poliestireno	2.6	Amoniaco	22	
Papel	2-4	Agua de mar	72-80	
Hule	2.2-4.1	Agua destilada	81	
^a Éstos son valores a baja frecuencia y a temperatura ambiente (20°C).				

Nota: Para la mayoría de los metales, $\varepsilon_r \approx 1$.

Tabla B-2: CONDUCTIVIDAD σ DE ALGUNOS MATERIALES ^a

Material	Conductividad, σ (S/m)	Material	Conductividad, \(\sigma \) (S/m)
Conductores		Semiconductores	
Plata	6.2×10^{7}	Germanio puro	2.2
Cobre	5.8×10^{7}	Silicio puro	4.4×10^{-4}
Oro	4.1×10^{7}	Aislantes	
Aluminio	3.5×10^{7}	Tierra húmeda	$\sim 10^{-2}$
Tungsteno	1.8×10^{7}	Agua fresca	$\sim 10^{-3}$
Zinc	1.7×10^{7}	Agua destilada	$\sim 10^{-4}$
Latón	1.5×10^{7}	Tierra seca	$\sim 10^{-4}$
Hierro	10 ⁷	Vidrio	10^{-12}
Bronce	10 ⁷	Hule duro	10^{-15}
Estaño	9×10^{6}	Parafina	10^{-15}
Plomo	5×10^{6}	Mica	10^{-15}
Mercurio	10 ⁶	Cuarzo fundido	10^{-17}
Carbono	3×10^4	Cera	10^{-17}
Agua de mar	4		•
Cuerpo animal	0.3		
(promedio)	(conductor deficiente)		

Tabla B-3: PERMEABILIDAD RELATIVA $\mu_{\rm T}$ DE ALGUNOS MATERIALES COMUNES^a

 $\mu = \mu_r \mu_0 \text{ y } \mu_0 = 4\pi \times 10^{-7} \text{H/m}.$

Permeabilidad				
Material	relativa, μ r			
Diamagnéticos				
Bismuto	$0.99983 \simeq 1$			
Oro	$0.99996 \approx 1$			
Mercurio	$0.99997 \simeq 1$			
Plata	$0.99998 \simeq 1$			
Cobre	$0.99999 \simeq 1$			
Agua	$0.99999 \simeq 1$			
Paramagnéticos				
Aire	$1.000004 \approx 1$			
Aluminio	$1.00002 \approx 1$			
Tungsteno	$1.00008 \approx 1$			
Titanio	$1.0002 \approx 1$			
Platino	$1.0003 \approx 1$			
Ferromagnéticos (no lineales)				
Cobalto	250			
Níquel	600			
Acero suave	2,000			
Hierro (puro)	4,000-5,000			
Hierro al silicio	7,000			
Mumetal	~ 100,000			
Hierro purificado	~ 200,000			
^a Éstos son valores típicos; los valores reales dependen de la variedad del material.				

Nota: Excepto para materiales ferromagnéticos, $\mu_r \approx 1$ para todos los dieléctricos y conductores.