网格简化 实验报告

计 72 谢兴宇 2017011326

June 2019

1 基本功能

1.1 实现内容

本实验复现了 1997 年 SIGGRAPH 数字几何处理领域的经典论文。[1]

1.2 项目用法

./meshsimplifier.exe <input .obj file> <output .obj file>
<simplification ratio>

2 改进

2.1 代价函数

原论文中使用 $\bar{\mathbf{v}}^T(Q_1+Q_2)\bar{\mathbf{v}}$ 作为有效点对 $(\mathbf{v}_1,\mathbf{v}_2)$ 的 cost,从最小化 $\sum_{\mathbf{v}}\mathbf{v}^TQ\mathbf{v}$ 的角度来看, $\bar{\mathbf{v}}^T(Q_1+Q_2)\bar{\mathbf{v}}-\mathbf{v}_1^TQ\mathbf{v}_1-\mathbf{v}_2^TQ\mathbf{v}_2$ 是更合理的选择。 经过实验,此改进确实比原论文中的代价函数取得了更好的效果。

2.2 均匀立方体切分

算法中有一步是要求出 $\|\mathbf{v}_1 - \mathbf{v}_2\| < t$ 的所有 $(\mathbf{v}_1, \mathbf{v}_2)$,常规的方法是 使用 kd-tree,oc-tree 等数据结构或对空间进行分治。

这里我们采取了另一种策略:将网格所在的有限空间均匀切分成 $n^{1/3}*n^{1/3}*n^{1/3}*n^{1/3}$ 的立方体阵,每个立方体中存储落在这个立方体中的点。枚举每一个点 \mathbf{v}_1 ,再枚举与以 \mathbf{v} 为中心、t 为半径的球相交的立方体中的所有点 \mathbf{v}_2 ,判断是否有 $\|\mathbf{v}_1 - \mathbf{v}_2\| < t$ 。假设网格的所有点在空间中均匀随机分布,那么取得每一个点对 $(\mathbf{v}_1,\mathbf{v}_2)$ 的期望时间复杂度为 O(1)。

参考文献

[1] Michael Garland and Paul S Heckbert. Surface simplification using quadric error metrics. In *Proceedings of the 24th annual conference on Computer graphics and interactive techniques*, pages 209–216. ACM Press/Addison-Wesley Publishing Co., 1997.