

第7讲-Herbrand定理

Herbrand定理 是数理逻辑的基本定理之一,它由法国 Jacques Herbrand博士(1908-1931)于1930年给出,此定理的表现形式有若干种(参见文献[6]),它提供了

- 1. 从一阶逻辑化归(reduce)到命题逻辑的一种形式;
- 2. 一阶逻辑中公式不可满足性问题的半可判定算法。

定义7.1. 设A为一阶语言 \mathcal{L} 的公式,A为前束形范式指A呈形于

$$Q_1x_1.(Q_2x_2.(...Q_nx_n.(B)...)),$$

这里 $Q_i \in \{\forall,\exists\}(i \leq n)$ 且 B 中无量词。

约定7.2.

- (1) 将 $Q_1x_1.(Q_2x_2.(...Q_nx_n.(B)...))$ 简记为 $Q_1x_1...Q_nx_n.B$,且当n = 0时,以上公式为B。
- (2) 将 $(A \to B) \land (B \to A)$ 简记为 $A \leftrightarrow B$ 。
- (3) Qx.A指 $\forall x.A$ 或 $\exists x.A.$ Q^* 为Q的对偶,即若Q为 \forall ,则 Q^* 为 \exists ;若Q为 \exists ,则 Q^* 为 \forall 。

命题7.3. 在一阶逻辑中, 我们有

- (1) 若 $x \notin FV(B)$, 则 $\vdash Qx.B \leftrightarrow B$;
- (2) 若y为新变元,则 $\vdash Qx.B \leftrightarrow Qy.B[\frac{y}{x}]$ 。

命题7.4. 在一阶逻辑中,我们有

$$(1) \vdash \neg \forall x.A \leftrightarrow \exists x. \neg A;$$

$$(2) \vdash \neg \exists x. A \leftrightarrow \forall x. \neg A;$$

以下(3)-(8),满足条件 $x \notin FV(B)$ 。

$$(3) \vdash (\forall x.A \land B) \leftrightarrow \forall x.(A \land B);$$

$$(4) \vdash (\exists x.A \lor B) \leftrightarrow \exists x.(A \lor B);$$

$$(5) \vdash (\forall x.A \rightarrow B) \leftrightarrow \exists x.(A \rightarrow B);$$

$$(6) \vdash (\exists x.A \rightarrow B) \leftrightarrow \forall x.(A \rightarrow B);$$

$$(7) \vdash (B \rightarrow \forall x.A) \leftrightarrow \forall x.(B \rightarrow A);$$

$$(8) \vdash (B \to \exists x.A) \leftrightarrow \exists x.(B \to A);$$

命题 7.3 和 7.4 的证明留作习题。

定理7.5. 对任何一阶语言 \mathcal{L} 的公式A,存在 \mathcal{L} 的公式B,使得 $\vdash A \leftrightarrow Q_1 x_1 ... Q_n x_n .B$,这里 $x_1, ..., x_n$ 互异且B中无量词。此定理说明任何公式皆有一个前束形范式与其等价。

证明:对 A 的结构作归纳证明存在 B 使

$$\vdash A \leftrightarrow Q_1 x_1 ... Q_n x_n .B ... (*),$$

这里 $x_1, ..., x_n$ 互异,且 B 无量词。

情况1. A为原子公式,(*)当然成立。

情况2. A为¬C,由I.H.知,有D使⊢ $C \leftrightarrow Q_1x_1...Q_mx_m.D$,这里 $x_1,...,x_m$ 互异且D中无量词,从而由命题7.4(1)知 ⊢ $A \leftrightarrow {Q_1}^*x_1...{Q_m}^*x_m.¬D$,故(*)成立。

情况3. A为 $E \wedge F$.

由I.H.知有 B,C 使

$$\vdash E \leftrightarrow Q_1 x_1 ... Q_m x_m .B$$

$$\vdash F \leftrightarrow Q_{m+1}x_{m+1}...Q_{m+l}x_{m+l}.C$$

这里 B,C 中无量词。从而有互异的新变元 $z_1,...,z_l$

使
$$\vdash F \leftrightarrow Q_{m+1}z_1...Q_{m+l}z_l.D$$

这里
$$D$$
为 $C[\frac{z_1}{x_{m+1}}]...[\frac{z_l}{x_{m+l}}]$ 。

故
$$\vdash A \leftrightarrow Q_1 x_1 ... Q_m x_m Q_{m+1} z_1 ... Q_{m+l} z_l .(B \land D)$$
。

情况4. A为 $E \rightarrow F$ 或A为 $E \vee F$.与上同理可证。

情况5. A为Qx.C.

由I.H.知有
$$B$$
使 $\vdash C \leftrightarrow Q_1x_1...Q_mx_m.B$,从而

下面我们引入Skolem范式的概念。

定义7.6. 设公式A呈前束形,A的Skolem范式A^s归纳定义如下:

- (1) 若A中无量词,则 A^s 为A;
- (2) ($\forall x.A$)^s为 $\forall x.(A^s)$;
- (3) 对于 $(\exists x.A)^s$ 分情况定义:
 - (a) 若 $FV(\exists x.A) = \emptyset$,则($\exists x.A$)^s为($A[\frac{c}{x}]$)^s,这里c为新常元;
 - (b) 若 $FV(\exists x.A) \neq \emptyset$, 设 $FV(\exists x.A) = \{x_1, x_2, ..., x_n\}$ 则 $(\exists x.A)^s$ 为 $(A[\frac{f(x_1, ..., x_n)}{x}])^s$, 这里 f 为 n 元新函数。

易见A的Skolem范式中无量词 \exists ,其呈形于 $\forall x_1 \forall x_2... \forall x_n.B$,B中无量词,它通过引入新常元或函数来消除前束范式中的量词 \exists 。

例7.1. 设A为 $\forall x$ 3y.P(x,y)且P为谓词,从而 A^s 为 $\forall x$.P(x,f(x)),这里f为函数。不难证明:

- $(1) \models \forall x. P(x, f(x)) \rightarrow \forall x \exists y. P(x, y)$
- (2) $\not\models \forall x \exists y . P(x, y) \rightarrow \forall x . P(x, f(x))$
- (3) $\forall x.P(x,f(x))$ 可满足 $\Leftrightarrow \forall x\exists y.P(x,y)$ 可满足。

这说明A与A^s同可满足,但A与A^s不一定同真假。

更一般地, 我们有

命题7.7. 设A为闭前束范式,A可满足↔ A^s可满足。

证明:设A为闭前束范式,以下对A中的量词3的个数n作归纳证明 A可满足 $\leftrightarrow A^s$ 可满足.....(*).

奠基: 当n = 0时,这时A中无量词∃,从而 A^s 为A,故(*)成立。 归纳假设(I.H.):当n = k时,(*)成立。

归纳步骤: 当n = k + 1时,设A呈形于 $\forall x_1...\forall x_n \exists y.B$ 且B为前束范式,其中有k个 \exists ,从而 A^s 为 $\forall x_1...\forall x_n.(B[\frac{f(y_1,...,y_m)}{y}])^s$,这里 $FV(\exists y.B) = \{y_1,...,y_m\}$,从而由I.H.知

 $B\left[\frac{f(y_1,\dots,y_m)}{y}\right]$ 与 $\left(B\left[\frac{f(y_1,\dots,y_m)}{y}\right]\right)^s$ 同可满足。

余下只需证 $\forall \vec{x} \exists y.B = \forall \vec{x}B\left[\frac{f(y_1,...,y_m)}{y}\right]$ 同可满足,

从而A与A^s同可满足。

不妨设 $FV(\exists y.B) = \{x_1, ...x_n\}$ 且 $y \in FV(B)$,

从而我们需证 $\forall \vec{x} \exists y. B$ 可满足 $\Leftrightarrow \forall \vec{x}. B[\frac{f(\vec{x})}{y}]$ 可满足。

"←": 易见。

"⇒": 设 $(M,I) \models \forall \vec{x} \exists y.B$,从而对 $\vec{a} \in M^n$ 存在 $b \in M$ 使对任何 σ 有 $(M,I) \models \sigma[\vec{x} \coloneqq \vec{a}, y \coloneqq b]B.....(**),$

 $\diamondsuit S_{\vec{a}} = \{b | (**) 成立\}, :: S_{\vec{a}} \neq \emptyset \coprod S_{\vec{a}} \in \mathcal{P}(M),$

::由选择公理AC知,有 $\rho: \mathcal{P}(M) \to M$ 使 $\rho(S_{\vec{a}}) \in S_{\vec{a}}$ 。 因此 $(M, I) \models \sigma[\vec{x} \coloneqq \vec{a}, y \coloneqq \rho(S_{\vec{a}})]B,$

令 $F: M^n \to M$ 如下: $F(\vec{a}) = \rho(S_{\vec{a}})(\vec{a} \in M^n)$,

又令I′为I的扩展使I′(f) = F。

从而 $(M, I') \models \sigma[\vec{x} \coloneqq \vec{a}, y \coloneqq F(\vec{a})]B$

因此 $(M, I') \models \sigma[\vec{x} \coloneqq \vec{a}]B[\frac{f(\vec{x})}{y}]$

从而 $(M, I') \models \forall \vec{x}.B[\frac{f(\vec{x})}{y}]$,这样(*)成立。

定义7.8. 设 \mathcal{L} -公式A为Skolem范式,以下归纳定义 \mathcal{L} -项的集合 H_n :

- (1) 若A中无常元出现,则 $H_0 = \{c_0\}$,这里 c_0 为 \mathcal{L} 中某个常元;
- (2) 若A中有常元出现,则 $H_0 = \{c | c$ 为常元且出现在A中 $\}$ 。
- (3) $H_{n+1} = H_n \cup \{f(t_1, ..., t_m) | f 为 A 中的 m 元函数且 t_1, ..., t_m \in H_n\}$ 。
- (4) $\diamondsuit H_A = \cup \{H_n | n \in \mathbb{N}\}$ 被称为A的Herbrand域。

易见 H_A 中元素皆为 \mathcal{L} -闭项其由A中常元(或某个常元 c_0)和A中函数组成。

(1) 对于常元c,

- (2) 对于m元函数f,定义 $I_A(f): H_A{}^m \to H_A$ 如下: $I_A(f)(t_1,...,t_m) = \begin{cases} f(t_1,...,t_m), & \text{若} f \text{出现于} A;\\ c_0, & \text{否则}. \end{cases}$
- (3) 对于m元谓词P,定义 $I_A(P) \subseteq H_A{}^m$ 如下: $I_A(P) = H_A{}^m \cap I(P)$,从而 $I_A(P) = \{\langle t_1, ..., t_m \rangle \in H_A{}^m | \mathbb{M} \models P(t_1, ..., t_m) \}$ 。

易见

命题7.10.

- (1) 若 $c \in H_A$,则 $I_A(c) = c$;
- (2) 若f出现于A,则 $I_A(f)(t_1,...,t_m) = f(t_1,...,t_m)$;
- (3) 若项 $t \in H_A$,则 $t_{H_A} = t$;
- (4) 若谓词P为m元且 $t_1,...,t_m \in H_A$,则 $\mathbb{H}_A \models P(t_1,...,t_m) \Leftrightarrow \mathbb{M} \models P(t_1,...,t_m)$ 。

命题7.11. 设 \mathcal{L} -闭公式A为Skolem范式, $\mathbb{M} = (M, I)$ 为 \mathcal{L} -结构, $\mathbb{H}_A = (H_A, I_A)$ 为A对应于 \mathbb{M} 的Herbrand 结构,若 $\mathbb{M} \models A$ 则 $\mathbb{H}_A \models A$ 。

证明: 不妨设 A 为 $\forall x_1, ..., \forall x_n.B$,这里 $x_1, ..., x_n$ 互异且 $FV(B) = \{x_1, ..., x_n\}$, B中无量词。 对n作归纳证明 $\mathbb{M} \models A \Rightarrow \mathbb{H}_A \models A......(*).$

奠基: 当 n = 0时,欲证M $\models B \Leftrightarrow \mathbb{H}_A \models B......(**)$ 对B的结构归纳来证明(**)如下:

情况1. 设B的原子公式 $P(t_1,...,t_m)$,这里 t_i 为项且 $t_i \in H_A$,从而由命题 7.10(4)知(**)成立。

情况2. 设B呈¬C,C ∧ D,C ∨ D或C → D形时易见(**)成立。 因此当n = 0时,(*)成立。

归纳假设(I.H.): 当 n = k 时, (*)成立。

归纳步骤: 设 n = k + 1 时,这时A呈形 $\forall x.C$,其中C为 含n个 \forall 的Skolem范式且只含自由变元x。因为

 $\mathbb{M} \models \forall x.C$

- \Rightarrow 对任何 $\sigma: V \to M$, $\mathbb{M} \models_{\sigma} \forall x.C$
- ⇒ 对任何 $\sigma: V \to M$, $\forall a \in M$. $\mathbb{M} \models_{\sigma[x:=a]} C$ (若 $t \in H_A$, $\mathbb{M} t_M \in M$)
- ⇒ 对任何 $\sigma: V \to M$, $\forall t \in H_A$. $\mathbb{M} \models_{\sigma[x:=t_M]} C$ (替换引理)
- ⇒ 对任何 $\sigma: V \to M$, $\forall t \in H_A$. $\mathbb{M} \models_{\sigma} C[\frac{t}{x}]$ ($C[\frac{t}{x}]$ 为闭项)
- ⇒ $\forall t \in H_A.\mathbb{M} \models C\left[\frac{t}{x}\right]$ ($C\left[\frac{t}{x}\right]$ 只含k个∀且由I.H.)

$$\Rightarrow \forall t \in H_A. \mathbb{H}_{C\left[\frac{t}{x}\right]} \vDash C\left[\frac{t}{x}\right]$$

$$(H_{C\left[\frac{t}{x}\right]} = H_A)$$

⇒
$$\forall t \in H_A.H_A \models C\left[\frac{t}{x}\right]$$
 (替换引理)

⇒ 対任何
$$\sigma: V \to H_A, \forall t \in H_A. \mathbb{H}_A \vDash_{\sigma[x:=t_{H_A}]} C$$

(:: $t \in H_A$:: $t_{H_A} = t$)

$$\Rightarrow$$
 对任何 $\sigma: V \to H_A, \forall t \in H_A. \mathbb{H}_A \models_{\sigma[x:=t]} C$

$$\Rightarrow$$
 对任何 $\sigma: V \to H_A, \mathbb{H}_A \models_{\sigma} \forall x. C$

$$\Rightarrow \mathbb{H}_A \vDash A \circ$$

因此(**)成立,归纳完成。

推论7.12. 设 \mathcal{L} -闭公式 A 为Skolem 范式,

A可满足 $\leftrightarrow A$ 在某个Herbrand 结构中可满足。

证明:

"←": 显然。

" \rightarrow ": A可满足 $\rightarrow A$ 在某个M = (M,I)结构中可满足 $\rightarrow A$ 在 $\coprod_A = (H_A,I_A)$ 中可满足。

定理7.13 (Herbrand定理). 设 \mathcal{L} -闭公式A为Skolem范式 $\forall x_1...\forall x_n.B$ 且B中无量词,令 $\Gamma = \{B[\frac{t_1}{x_1}]...[\frac{t_n}{x_n}]|t_1,...,t_n \in H_A\}$,我们有 A可满足 $\Leftrightarrow \Gamma$ 可满足。

证明:

"⇒": 设 $B_1,...,B_m \in \Gamma$, 从而 $\vdash A \to B_i (i \le m)$, 因此 $\vdash A \to (B_1 \land B_2 \land ... \land B_m)$, 当A可满足时, $\{B_1,...,B_m\}$ 可满足, 而 $B_1,...,B_m$ 可从 Γ 中任意选取,故由紧性定理知 Γ 可满足。

" \leftarrow ": 当 Γ 可满足时,有 \mathcal{L} -结构 $\mathbb{M} = (M, I)$ 使 $\mathbb{M} \models \Gamma$ 。 令 $\mathbb{H}_A = (H_A, I_A)$ 为A的对应于M 的Herbrand结构,以下证明 对任何 $C \in \Gamma$, $\mathbb{M} \models C \Leftrightarrow \mathbb{H}_A \models C$ 。

为了方便,不妨设A为 $\forall x.B$,以下对B的结构归纳证明对任何 $t \in H_A$, $\mathbb{M} \models B\left[\frac{t}{x}\right] \Leftrightarrow \mathbb{H}_A \models B\left[\frac{t}{x}\right].....(*)$

情况1. B为原子公式 $P(S_1,...,S_m)$,

对于 $t \in H_A$, $\diamondsuit S_i' \equiv S_i[\frac{t}{x}]$, 从而 $B[\frac{t}{x}] \equiv P(S_1', ..., S_m')$,

易见 $S_i' \in H_A$,从而M $\models B\left[\frac{t}{x}\right] \Leftrightarrow \mathbb{M} \models P(S_1', ..., S_m')$

$$\Leftrightarrow \mathbb{H}_A \vDash P(S_1', ..., S_m') \Leftrightarrow \mathbb{H}_A \vDash B\left[\frac{t}{x}\right] \circ$$

情况2. B呈形 $\neg C$, $C \land D$, $C \lor D$, $C \to D$ 时,由I.H.知(*)成立。

这样: $M \models \Gamma$, : 对任何 $t \in H_A$, $M \models B\left[\frac{t}{x}\right]$

由(*)知对任何 $t \in H_A$, $\mathbb{H}_A \models B\left[\frac{t}{x}\right]$, 再由替换引理知,

对 H_A 上的任意赋值 $\sigma: V \to H_A$ 有 $\Pi_A \vDash_{\sigma} B\left[\frac{t}{x}\right]$,

从而 $\mathbb{H}_A \vDash_{\sigma[:=t_{H_A}]} B$, :: $t_{H_A} = t$, :. 对任何 $t \in H_A$. $\mathbb{H}_A \vDash_{\sigma[x:=t]} B$

故 $\Pi_A \vDash \forall x.B$,从而A可满足。

例7.2. 设A为 $\exists x \forall y. P(x,y)$ 其中P为二元谓词,从而¬A的 前束范式为 $B \equiv \forall x \exists y. \neg P(x,y), B$ 的Skolem范式为 $\forall x \neg P(x,f(x))$ 。

令c为个体常元,

$$H = H_B = \{c, f(c), ..., f^n(c), ...\}$$
.因此

$$\Gamma_B = \{ \neg P(t, f(t)) | t \in H \} = \{ \neg P(f^n(c), f^{n+1}(c)) | n \in \mathbb{N} \}$$

 $\vdash \exists x \forall y . P(x,y)$

- $\Leftrightarrow \vDash A$
- ⇔ B不可满足
- $⇔ \Gamma_B$ 不可满足
- ⇔存在Γ_B的一个有穷子集不可满足
- ⇒存在有穷个 $t_1,...,t_m$ ∈ H使{¬ $P(t_1,f(t_1)),...,¬P(t_m,f(t_m)))$ }不可满足
- ⇔存在有穷个 $t_1,...,t_m$ ∈ H使¬(¬ $P(t_1,f(t_1)) \land ... \land ¬P(t_m,f(t_m)))$ 永真
- ⇒存在 $t_1,...,t_m \in H$ 使⊢ $P(t_1,f(t_1)),...,P(t_m,f(t_m))$ 可证。

The End of Lecture 7