# **Grid Security**

#### **Grid Security Concerns**

- Control access to shared services
  - Address autonomous management, e.g.,
     different policy in different work groups
- Support multi-user collaborations
  - Federate through mutually trusted services
  - Local policy authorities rule
- Allow users and application communities to set up dynamic trust domains
  - Personal/VO collection of resources working together based on trust of user/VO

## Virtual Organization (VO) Concept

- VO for each application or workload
- Carve out and configure resources for a particular use and set of users



#### **Security Basics**

#### Privacy

 Only the sender and receiver should be able to understand the conversation

#### Integrity

 Receiving end must know that the received message was the one from the sender

#### Authentication

 Users are who they say they are (authentic)

#### Authorization

Is user allowed to perform the action

#### **Encryption**

- Encryption is the process of taking some data and a key and feeding it into a function and getting encrypted data out
- Encrypted data is, in principal, unreadable unless decrypted



#### **Decryption**

- Decryption is the process of taking encrypted data and a key and feeding it into a function and getting out the original data
  - Encryption and decryption functions are linked



## **Asymmetric Encryption**

- Encryption and decryption functions that use a <u>key pair</u> are called asymmetric
  - Keys are mathematically linked



#### **Authentication**

Private Key - known only by owner

Public Key- known to everyone

What one key encrypts, the other deleter



# **Authentication using Digital Certificates**

 Digital document that certifies a public key is owned by a particular user

Signed by 3<sup>rd</sup> party – the Certificate

Authority (CA)

I, <u>Certificate Authority XYZ</u>, do hereby **certify** that <u>Borja Sotomayor</u> is who he/she claims to be and that his/her public key is <u>49E51A3EF1C</u>



Certificate Authority XYZ.

CA's Signature

To know if you should trust the certificate, you have to trust the CA

#### **Certificates**

• Similar to passport or driver's license



#### **Globus Security**

- Globus security is based on the Grid Security Infrastructure (GSI)
  - Set of IETF standards for security interaction
- Public-key-based authentication using X509 certificates

#### Requesting a Certificate

 To request a certificate a user starts by generating a key pair



#### **Certificate Request**

- The user signs their own public key to form what is called a Certificate Request
- Email/Web upload
- Note private key is never sent anywhere



# Registration Authority (RA)

- The user then takes the certificate to a Registration Authority (RA)
- Vetting of user's identity
- Often the RA
   coexists with the CA
   and is not apparent
   to the user



#### **Certificate Issuance**

- The CA then takes the identity from the RA and the public key from the certificate request
- It then creates, signs and issues a certificate for the user



#### **GridMap File**

- Maps distinguished names (found in certificates) to local names (such as login accounts)
  - schopf@mcs.anl.gov
  - jms@nesc.ed.ac.uk
  - u11270@sdsc.edu
- Can also serve as a access control list for GSI enabled services

Transfer a file from Resource B to Resource C

Resource



Resource C







#### **Proxy Certificate**

- Proxy Certificate allows another user to act upon their behalf
  - Credential delegation



#### **Proxy Certificate**

- Proxy empowers 3<sup>rd</sup> party to act upon your behalf
- Proxy certificate is signed by the end user, not a CA
- Proxy cert's public key is a new one from the private-public key pair generated specifically for the proxy certificate
- Proxy also allows you to do single sign-on
  - Setup a proxy for a time period and you don't need to sign in again

#### **Benefits of Single Sign-on**

- Don't need to remember (or even know)
   ID/passwords for each resource.
- Automatically get a Grid proxy certificate for use with other Grid tools
- More secure
  - No ID/password is sent over the wire: not even in encrypted form
  - Proxy certificate expires in a few hours and then is useless to anyone else
  - Don't need to write down 10 passwords
- It's <u>fast</u> and it's <u>easy</u>!

#### **Proxy Certificate Chain**

I,\_\_\_\_\_\_, do hereby **certify** that that this document entitles its holder to act on my behalf using this public key: \_93EA61BC23E.

This document void after 04/11/2005 00:00:00

Alice

Alice

User's Signature

Alice signs her proxy certificate

I, <u>Certificate Authority BAR</u>, do hereby **certify** that \_\_\_\_\_ is who he/she claims to be and that his/her public key is <u>\_\_\_\_\_ 87B723CF18</u>\_



Certificate Authority BAR.
CA's Signature

- Can delegate as part of protocol
- Extra round trip with delegation
- Types: Full or Limited delegation
- Single sign-on
  - one password for the whole grid
- Let services (eg RFT) act on your behalf

#### **VOMS**



- A community-level group membership system
- Database of user roles
  - Administrative tools
  - Client interface
- voms-proxy-init
  - Uses client interface to produce an attribute certificate (instead of proxy) that includes roles & capabilities signed by VOMS server
  - Works with non-VOMS services, but gives more info to VOMSaware services
- Allows VOs to centrally manage user roles

# **Enabling Private Communication**

#### GSI enables security at 2 levels

#### Transport-level Security (https)



#### Message-level Security



# **Globus's Use of Security Standards**

Message-level Security w/X.509 Credentials Message-level Security w/Usernames and Passwords

Transport-level Security w/X.509 Credentials

Authorization

Delegation

Authentication

Message Protection

Message format

| SAML and grid-mapfile                |                                           |
|--------------------------------------|-------------------------------------------|
|                                      | X.509 Proxy<br>Certificates/ WS-<br>Trust |
|                                      | X.509 End Entity<br>Certificates          |
| WS-Security<br>WS-SecureConversation |                                           |

grid-mapfile

Username/
Password

WS-Security

SOAP

SAML and grid-mapfile

X.509 Proxy
Certificates/ WSTrust

X.509 End Entity
Certificates

TLS

SOAP

Supported, but slow

SOAP

Supported, but insecure

Fastest, so default

#### **Globus Security**

- Extensible authorization framework based on Web services standards
  - SAML-based authorization callout
    - Security Assertion Markup Language, OASIS standard
    - > Used for Web Browers authentication often
    - > Very short-lived bearer credentials
  - Integrated policy decision engine
    - > XACML (eXtensible Access Control Markup Language) policy language, per-operation policies, pluggable

## **Globus-XACML Integration**

- eXtensible Access Control Markup Language
  - OASIS standard, open source implementations
- XACML: sophisticated policy language
- Globus Toolkit ships with XACML runtime
  - Included in every client and server built on Globus core
  - Turned-on through configuration
- ... that can be called transparently from runtime and/or explicitly from application ...
- ... and we use the XACML-"model" for our Authz Processing Framework

#### **Globus Authorization Framework**



#### **Globus Security**













#### **A Cautionary Note**

- Grid security mechanisms are tedious to set up
  - If exposed to users, hand-holding is usually required
  - These mechanisms can be hidden entirely from end users, but still used behind the scenes
- These mechanisms exist for good reasons.
  - Many useful things can't be done without Grid security
  - It is unlikely that an ambitious project could go into production operation without security like this
  - Most successful projects end up using Grid security,
     but using it in ways that end users don't see much