# Krótkie wprowadzenie do uczenia maszynowego

Robert Różański

### tradycyjne programowanie:

tworzymy instrukcje mówiące komputerowy co robić, krok po kroku

uczenie maszynowe:

trenujemy program, żeby mógł wykonywać określone zadanie









## 1. Przygotowanie danych



2. Uczenie



3. Ewaluacja



4. Użycie





















$$a_nx^n + a_{n-1}x^{n-1} + \dots$$









true positive rate (recall, sensitivity)

$$TP / (TP + FN)$$

true negative rate (specificity)

$$TN/(TN + FP)$$











parameter value









### Główne lekcje:

złożone modele pozwalają na uchwycenie złożonych zależności, ale wymagają więcej danych treningowych i sprawiają większe problemy z uogólnianiem

bardziej ogólne metody łatwiej zastosować do nowych problemów, ale bardziej wyspecjalizowane działają lepiej

podchodząc do nowego problemu warto użyć kilku prostych metod i zobaczyć czy/jak działają

#### Co pominąłem:

skupiłem się tylko na "supervised learning"

istnieją problemy inne niż regresja i klasyfikacja

preprocessing danych

algorytmy uczące