01204211 Discrete Mathematics Lecture 7b: Binomial Coefficients (2)

Jittat Fakcharoenphol

August 7, 2021

The binomial coefficients¹

There is a reason why the term $\binom{n}{k}$ is called the binomial coefficients. In this lecture, we will discuss

identities on binomial coefficients.

Identities in the Triangle

Odd and even subsets

Let's try to prove this identity with the Pascal's triangle

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} + \dots + (-1)^n \binom{n}{n} = 0.$$

A more formal proof

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} + \dots + (-1)^n \binom{n}{n} = 0.$$

प्रमार्थिकार्य भी सके र.

$$1^2 = 1$$

$$1^2 = 1$$
$$1^2 + 1^2 = 2$$

$$1^{2} = 1$$

$$1^{2} + 1^{2} = 2$$

$$1^{2} + 2^{2} + 1^{2} = 6$$

$$1^{2} = 1$$

$$1^{2} + 1^{2} = 2$$

$$1^{2} + 2^{2} + 1^{2} = 6$$

$$1^{2} + 3^{2} + 3^{2} + 1^{2} = 20$$

$$\begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$$

```
1
1 1
1 2 1
1 3 3 3 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
```

Theorem:

 $\binom{h}{k} = \binom{h}{h-k}$

au n-subset to A A Jantal Ba=imo > LHS AVALL M-Subsels YOA

Another identity

Another identity

This suggests

$$\binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \dots + \binom{n+k}{k} = \binom{n+k+1}{k}.$$

Theorem:

Purf: by induction with Morror in the poise case:
$$k=0$$
 $\binom{n}{0}+\binom{n+1}{1}+\binom{n+2}{2}+\cdots+\binom{n+k}{k}=\binom{n+k+1}{k}$.

Plurf: by induction with Morror in the poise case: $k=0$ $\binom{n}{0}=1$ $\binom{n+0+1}{0}=1$ $\binom{n+0+1}{0}=1$ $\binom{n+0+1}{0}+\binom{n+1}{1}+\cdots+\binom{n+m}{m}=\binom{n+m+1}{m}$

Albisons $P(m+1)$

Albisons $P(m+1)$

Albisons $P(m+1)$
 $\binom{n}{0}+\binom{n+1}{1}+\cdots+\binom{n+m}{m}+\binom{n+m+1}{m+1}$
 $\binom{n+m+1}{m}+\binom{n+m+1}{m+1}=\binom{n+m+2}{m+1}$

An Pomple of Moth Industria Victor D'only k >0