DEVOIR MAISON 1

Exercice 1 – On considère les matrices suivantes

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}, \qquad L = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \qquad P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{et} \quad Q = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

- 1. Calculer PQ et QP.
- 2. Vérifier que QAP = L.
- 3. a) Montrer que pour tout entier naturel n, on a $QA^nP = L^n$.
 - b) Soit J = L I. Calculer J^2 puis J^3 .
 - c) En utilisant la formule du binôme de Newton, montrer que pour tout entier $n \ge 2$, on a

$$L^{n} = I + nJ + \frac{n(n-1)}{2}J^{2}.$$

- d) En déduire, pour $n \ge 2$, les neufs coefficients de L^n . Vérifier que votre résultat reste vrai lorsque n = 0 et n = 1.
- e) Déduire des questions précédentes que pour tout $n \in \mathbb{N}$, on a

$$A^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 2n(n-1) & 1 & 2n \\ 2n & 0 & 1 \end{pmatrix}.$$

4. On considère les trois suites $(u_n)_{n\geqslant 1}$, $(v_n)_{n\geqslant 1}$ et $(w_n)_{n\geqslant 1}$ définies par $u_1=1$, $v_1=0$ et $w_1=2$ et pour tout entier naturel $n\geqslant 1$,

$$u_{n+1} = u_n$$
, $v_{n+1} = v_n + 2w_n$ et $w_{n+1} = 2u_n + w_n$.

- a) Que pouvez-vous dire de la suite $(u_n)_{n \ge 1}$? Donner u_n pour tout entier $n \ge 1$.
- b) Pour tout entier $n \ge 1$, on pose $X_n = \begin{pmatrix} 1 \\ v_n \\ w_n \end{pmatrix}$. Montrer que $X_{n+1} = AX_n$.
- c) Établir pour tout entier $n \ge 1$ que $X_n = A^{n-1}X_1$.
- d) Déduire des questions précédentes que pour tout entier $n \ge 1$, on a

$$v_n = 2n(n-1)$$
 et $w_n = 2n$.

Exercice 2 -

Soit *g* la fonction définie sur \mathbb{R} par $g(x) = e^x - 1 + x$.

- 1. a) Montrer que g est croissante sur \mathbb{R} .
 - b) Calculer g(0). En déduire, pour tout réel x, le signe de g(x) selon les valeurs de x.

On considère la fonction f définie sur \mathbb{R} par $f(x) = x + 1 - \frac{x}{e^x}$.

On note \mathcal{C} sa représentation graphique dans un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$ d'unité 2 cm.

2. a) Calculer $\lim_{x \to +\infty} f(x)$.

- b) Montrer que la droite \mathcal{D} d'équation y = x + 1 est asymptote à \mathcal{C} en $+\infty$.
- c) Justifier que $\lim_{x \to -\infty} f(x) = +\infty$.
- 3. a) Montrer que la dérivée de f vérifie, pour tout réel x, la relation $f'(x) = \frac{g(x)}{e^x}$.
 - b) Dresser le tableau des variations de f en y faisant figurer les limites calculées en 2.
- 4. Montrer que la dérivée seconde de f vérifie, pour tout réel x, la relation $f''(x) = \frac{2-x}{e^x}$. Étudier la convexité de f.
- 5. Tracer l'allure de \mathcal{C} et de \mathcal{D} .

Exercice 3 -

- On note E(X) et V(X) respectivement, l'espérance et la variance d'une variable aléatoire X et Cov(X,Y) la covariance de deux variables aléatoires X et Y.
- On donnera tous les résultats sous forme fractionnaire.

On dispose de deux urnes \mathcal{U}_1 et \mathcal{U}_2 . L'urne \mathcal{U}_1 contient trois boules rouges et deux boules vertes, tandis que l'urne \mathcal{U}_2 contient une boule rouge et quatre boules vertes. On choisit une des deux urnes au hasard (c'est-à-dire que chacune des deux urnes a la même probabilité d'être choisie), puis on tire dans l'urne choisie une boule que l'on remet ensuite dans la même urne.

- Si la boule tirée est rouge, on effectue un second tirage d'une boule dans l'urne \mathcal{U}_1 .
- Si la boule tirée est verte, on effectue un second tirage d'une boule dans l'urne \mathcal{U}_2 .

Soient X_1 et X_2 les variables aléatoires définies par

 $X_1 = \begin{cases} 1 & \text{si la première boule tirée est rouge,} \\ 0 & \text{si la première boule tirée est verte.} \end{cases} \quad \text{et} \quad X_2 = \begin{cases} 1 & \text{si la deuxième boule tirée est rouge,} \\ 0 & \text{si la deuxième boule tirée est verte.} \end{cases}$

On pose $Z = X_1 + X_2$.

- 1. a) Montrer que $P(X_1 = 1) = \frac{2}{5}$. Quelle est la loi de la variable aléatoire X_1 ?
 - b) Donner les valeurs de $E(X_1)$ et $V(X_1)$.
- 2. a) Montrer que $P([X_2 = 0] \cap [Z = 0]) = \frac{12}{25}$.
 - b) Donner sous forme de tableau la loi du couple (X_2, Z) .
- 3. a) Déterminer la loi de X_2 ainsi que $E(X_2)$ et $V(X_2)$.
 - b) Les variables aléatoires X_1 et X_2 sont-elles indépendantes?
 - c) Déterminer la loi de Z.
 - d) Calculer E(Z). Montrer que $V(Z) = \frac{414}{625}$.
- 4. On considère l'événement "la première boule tirée est verte". Calculer la probabilité que cette boule verte provienne d'un tirage dans l'urne \mathcal{U}_1 .
- 5. On se propose dans cette question de calculer V(Z) par une autre méthode.
 - a) Calculer $E(X_2Z)$.
 - b) Montrer que $Cov(X_2, Z) = \frac{204}{625}$.
 - c) En déduire la valeur de $Cov(X_1, X_2)$.
 - d) Utiliser le résultat précédent pour calculer V(Z).