Written Assignment 8 Math 290, Dr. Walnut

Lucas Bouck

12/7/15

1 Problem 1a

Let R be a relation on the set A. Suppose that R is a partial order. Prove that if every nonempty subset of A has a smallest element, then R is a well ordering.

Proof:

Let R be a partial order on A. Assume that every nonempty subset of A has a smallest element. We want to show that R is a well ordering. Let x and y be distinct elements in A. Consider the set $B = \{x, y\}$. Since $x, y \in A$, then $B \subseteq A$. Since $x, y \in B$, B is nonempty. From our first assumption, it follows that B has a smallest element. This means there is an element in B such that this element is the greatest lower bound of B. There are now two cases to consider. If x is the smallest element of B, then x relates by B to every element in B, which means xRy. If y is the smallest element of B, then y relates by B to every element in B, which means yRx. In both cases, either xRy or yRx. Because B is a partial order on B, and for any two distinct elements, $x, y \in A$ either xRy or yRx, B is a linear order of B. Since B is a linear order of B and every nonempty subset of B has a smallest element, B is a well ordering.

2 Problem 1b

Let R be a relation on A. Suppose that R is a partial order on A. Prove that if every nonempty subset B of A contains a unique element that is related by R to every element of B, then R is a well ordering.

Proof:

Let R be a relation on the set A. Assume that every nonempty subset B of A contains a unique element that is related by R to every element of B. We want to show that R is a well ordering on A.

We need to show that R is a partial order. First, we will show that R is reflexive. Let $x \in A$. Consider the set $B = \{x\}$. Since $x \in A$, $B \subseteq A$. Also, since $x \in B$, B is nonempty.

Then, there exists an unique element in B such that this element relates by R to every element in B. Since x is the only element in B, xRx. Thus, R is reflexive.

Next, we must show that R is antisymmetric. We will do this by contradiction. Suppose that R is not antisymmetric. This means that there exists $x, y \in A$ such that xRy, yRx, and $x \neq y$. Next consider the set $C = \{x, y\}$. Since R is reflexive, xRx, and yRy. Then, xRy, xRx, yRx and yRy. This means that x relates by R to all the elements in C, y relates to all the elements in C. Since $x, y \in C$, $C \subseteq A$. Additionally, since $x, y \in C$, C is nonempty. Then, there exists a unique element in C such that this element relates by R to every element in C. The elements x and y relate to every element in C, so this contradicts the fact that C has a unique element such that this element relates by R to every element in C. Therefore, by contradiction, R is symmetric.

Finally we must show that R is transitive. Let x, y, z be distinct elements in A, and let xRy and yRz. We want to show that xRz. Consider the set $D = \{x, y, z\}$. Since $x, y, z \in A$, $D \subseteq A$. Also, since $x, y, z \in D$, D is nonempty. Therefore, D contains a unique element such that this element relates by R to every element in D. Since xRy and R is antisymmetric, y does not relate by R to x, and y cannot be the unique element that relates by R to all the elements in R. Since R is antisymmetric, R does not relate by R to R to R to R to all the elements in R to all the elements in R to all the elements in R such that the unique element relates by R to all elements in R is the unique element in R such that R relates by R to all elements in R. Since R is reflexive, antisymmetric, and transitive, R is a partial order.

We need to show that every nonempty subset of A has a smallest element. Let B be a nonempty subset of A. From our assumptions, there exists a unique element $x \in B$ such that xRb for all $b \in B$. We want to show that B has a smallest element. Since $x \in B$ and $B \subseteq A$, $x \in A$. Since xRb for all $b \in B$, x is a lower bound of B. Consider the lower bound of B called $y \in A$. By the definition of lower bound, yRb for all $b \in B$. Since $x \in B$, yRx. Therefore, if $y \in A$ is a lower bound of B, yRx. Thus, x is the greatest lower bound of B. Since $x \in B$ and x is the greatest lower bound of B, x is the smallest element of x. Therefore, if every nonempty subset x of x on a smallest element that is related by x to every element of x, then every nonempty subset of x has a smallest element.

Since every nonempty subset of A has a smallest element and R is a partial order on A, by the last result that we proved, R is a well ordering on A.

3 Problem 2a

Let A, B, and C be sets. Suppose that $f: A \to B$ and $g: B \to C$. Prove that if $g \circ f$ is injective, then f is injective.

Proof:

Let A, B, and C be sets. Suppose that $f: A \to B$ and $g: B \to C$. Assume that $g \circ f$

is injective. We want to show that f is injective, which means we want to show that if f(x) = f(y), then x = y. Let $x, y \in A$ and assume f(x) = f(y). Since f(x) = f(y) and g is a function, g(f(x)) = g(f(y)). Since $g \circ f$ is injective and g(f(x)) = g(f(y)), then x = y. Therefore, f is injective.

4 Problem 2b

Let A, B, and C be sets. Suppose that $f: A \to B$ and $g: B \to C$. Prove that if $g \circ f$ is surjective, then g is surjective.

Proof:

Let A, B, and C be sets. Suppose that $f: A \to B$ and $g: B \to C$. Assume that $g \circ f$ is surjective. We want to show that f is surjective, which means we want to show that if $c \in C$, then there exists a $b \in B$ such that g(b) = c. Let $c \in C$. Since $g \circ f$ is surjective, there exists an $a \in A$ such that g(f(a)) = c. Let b = f(a). Since f's codomain is B, $f(a) \in B$. Then, $b \in B$. Since g(f(a)) = c, then g(b) = c. Therefore, for all $c \in C$, there exists a $b \in B$ such that g(b) = c. Therefore, g is surjective.