WEIGHTED SEMIGROUP MEASURE ALGEBRA AS A WAP-ALGEBRA

H.R. Ebrahimi Vishki, B. Khodsiani and A. Rejali

A Banach algebra $\mathfrak A$ for which the natural embedding $x \mapsto \hat x$ of $\mathfrak A$ into $WAP(\mathfrak A)^*$ is bounded below; that is, for some $m \in \mathbb R$ with m > 0 we have $||\hat x|| \ge m||x||$, is called a WAP-algebra. Through we mainly concern with weighted measure algebra $M_b(S,\omega)$, where ω is a weight on a semi-topological semigroup S. We study those conditions under which $M_b(S,\omega)$ is a WAP-algebra (respectively dual Banach algebra). In particular, $M_b(S)$ is a WAP-algebra (respectively dual Banach algebra) if and only if wap(S) separates the points of S (respectively S is compactly cancellative semigroup). We apply our results for improving some older results in the case where S is discrete.

Keywords: WAP-algebra, dual Banach algebra, Arens regularity, weak almost periodicity.

MSC2010: 43A10, 43A20, 46H15, 46H25.

1. Introduction and Preliminaries

Throughout this paper, we study those conditions under which $M_b(S,\omega)$ is either a WAP-algebra or a dual Banach algebra. Our main result in section 2 is that for a locally compact topological semigroup and a continuous weight ω on S, the measure algebra $M_b(S,\omega)$ is a dual Banach algebra with respect to $C_0(S,1/\omega)$ if and only if for all compact subsets F and K of S, the maps $\frac{\chi_{F^{-1}K}}{\omega}$ and $\frac{\chi_{KF^{-1}}}{\omega}$ vanishes at infinity. This improved the result of Abolghasemi, Rejali, and Ebrahimi Vishki [1] to include the case where S is not necessarily discrete. As a consequence in non-weighted case, we conclude for a locally compact topological semigroup S, the measure algebra $M_b(S)$ is a dual Banach algebra with respect to $C_0(S)$ if and only if S is a compactly cancellative semigroup. The

¹Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, IRAN, e-mail: vishki@um.ac.ir

² Corresponding author, Department of Mathematics, University of Isfahan, Isfahan, IRAN. e-mail: b_khodsiani@sci.ui.ac.ir

³Department of Mathematics, University of Isfahan, Isfahan, IRAN. e-mail: rejali@sci.ui.ac.ir

later result improved the well known result of Dales, Lau and Strauss [7, Theorem4.6], $\ell_1(S)$ is dual Banach algebra with respect to $c_0(S)$ if and only if S is weakly cancellative semigroup.

Section 3 is devoted to study WAP-algebras on a semigroup S. For every weighted locally compact semi-topological semigroup (S, ω) , $M_b(S, \omega)$ is a WAP-algebra if and only if the evaluation map $\epsilon: S \longrightarrow \tilde{X}$ is one to one, where $\tilde{X} = MM(wap(S, 1/\omega))$. Our main result of this section is that $M_b(S)$ is WAP-algebra if and only if wap(S) separate the points of S. If $C_0(S, 1/\omega) \subseteq wap(S, 1/\omega)$ then $wap(S, 1/\omega)$ separate the points of S. Thus $M_b(S, \omega)$ is a WAP-algebra. We may ask whether, if $M_b(S, \omega)$ is a WAP-algebra then $C_0(S, 1/\omega) \subseteq wap(S, 1/\omega)$. We answer to this question negatively by a counter example. Then we exhibit some necessary and sufficient condition for $c_0(S) \subseteq wap(S)$, we end the paper by some examples which show that our results cannot be improved.

The dual \mathfrak{A}^* of a Banach algebra \mathfrak{A} can be turned into a Banach \mathfrak{A} —module in a natural way, by setting

$$\langle f \cdot a, b \rangle = \langle f, ab \rangle$$
 and $\langle a \cdot f, b \rangle = \langle f, ba \rangle$ $(a, b \in \mathfrak{A}, f \in \mathfrak{A}^*).$

A dual Banach algebra is a Banach algebra \mathfrak{A} such that $\mathfrak{A} = (\mathfrak{A}_*)^*$, as a Banach space, for some Banach space \mathfrak{A}_* , and such that \mathfrak{A}_* is a closed \mathfrak{A} —submodule of \mathfrak{A}^* ; or equivalently, the multiplication on \mathfrak{A} is separately weak*-continuous. We call \mathfrak{A}_* the predual of \mathfrak{A} . It should be remarked that the predual of a dual Banach algebra need not be unique, in general (see [5, 10]); so we usually point to the involved predual of a dual Banach algebra.

A functional $f \in \mathfrak{A}^*$ is said to be weakly almost periodic if $\{f \cdot a : ||a|| \leq 1\}$ is relatively weakly compact in \mathfrak{A}^* . We denote by $WAP(\mathfrak{A})$ the set of all weakly almost periodic elements of \mathfrak{A}^* . It is easy to verify that, $WAP(\mathfrak{A})$ is a (norm) closed subspace of \mathfrak{A}^* .

It is known that the multiplication of a Banach algebra \mathfrak{A} has two natural but, in general, different extensions (called Arens products) to the second dual \mathfrak{A}^{**} each turning \mathfrak{A}^{**} into a Banach algebra. When these extensions are equal, \mathfrak{A} is said to be (Arens) regular. It can be verified that \mathfrak{A} is Arens regular if and only if $WAP(\mathfrak{A}) = \mathfrak{A}^*$. Further information for the Arens regularity of Banach algebras can be found in [5, 6].

WAP-algebras, as a generalization of the Arens regular algebras, has been introduced and intensively studied in [9]. A Banach algebra \mathfrak{A} for which the natural embedding $x \mapsto \hat{x}$ of \mathfrak{A} into $WAP(\mathfrak{A})^*$ where $\hat{x}(\gamma) = \gamma(x)$ for $\gamma \in WAP(\mathfrak{A})$, is bounded below; that is, for some $m \in \mathbb{R}$ with m > 0 we have $||\hat{x}|| \geq m||x||$, is called a WAP-algebra. When \mathfrak{A} is Arens regular or dual Banach algebra, the natural embedding of \mathfrak{A} into $WAP(\mathfrak{A})^*$ is isometric [16, Corollary4.6]. Also Theorem 3.1 shows that $M_b(S,\omega)$ is a WAP-algebra if and only if this embedding is isometric and of course bounded below, however in general $M_b(S,\omega)$ is neither Arens regular nor dual Banach algebra. It has also known that \mathfrak{A} is a WAP-algebra if and only if it admits an isometric representation on a reflexive Banach space.

Moreover, group algebras are also always WAP-algebras, however; they are neither dual Banach algebras, nor Arens regular in the case where the underlying group is not discrete, see [17]. Ample information about WAP-algebras with further details can be found in the impressive paper [9].

A character on an ablian algebra $\mathfrak A$ is a non-zero homomorphism $\tau:\mathfrak A\to\mathbb C$. The set of all characters on $\mathfrak A$ endowed with relative weak*- topology is called character space of $\mathfrak A$.

Following [3], a semi-topological semigroup is a semigroup S equipped with a Hausdorff topology under which the multiplication of S is separately continuous. If the multiplication of S is jointly continuous, then S is said to be a topological semigroup. We write $\ell^{\infty}(S)$ for the commutative C^* -algebra of all bounded complex-valued functions on S. In the case where S is locally compact we also write C(S) and $C_0(S)$ for the C^* -subalgebras of $\ell_{\infty}(S)$ consist of continuous elements and continuous elements which vanish at infinity, respectively. We also denote the space of all weakly almost periodic functions on S by wap(S) which is defined by

$$wap(S) = \{ f \in C(S) : \{ R_s f : s \in S \} \text{ is relatively weakly compact} \},$$

where $R_s f(t) = f(ts)$, $(s, t \in S)$. Then wap(S) is a C^* -subalgebra of C(S) and its character space S^{wap} , endowed with the Gelfand topology, enjoys a (Arens type) multiplication that turns it into a compact semi-topological semigroup. The evaluation mapping $\epsilon: S \to S^{wap}$ is a homomorphism with dense image and it induces an isometric *-isomorphism from $C(S^{wap})$ onto wap(S). Many other properties of wap(S) and its inclusion relations among other function algebras are completely explored in [3].

Let $M_b(S)$ be the Banach space of all complex regular Borel measures on S, which is known as a Banach algebra with the total variation norm and under the convolution product * defined by the equation

$$\langle \mu * \nu, g \rangle = \int_{S} \int_{S} g(xy) d\mu(x) d\nu(y) \quad (g \in C_0(S))$$

4

and as dual of $C_0(S)$.

Throughout, a weight on S is a Borel measurable function $\omega: S \to (0, \infty)$ such that

$$\omega(st) \le \omega(s)\omega(t), \quad (s, t \in S).$$

For $\mu \in M_b(S)$ we define $(\mu \omega)(E) = \int_E \omega d\mu$, $(E \subseteq S \text{ is Borel set})$. If $\omega \ge 1$, then

$$M_b(S,\omega) = \{ \mu \in M_b(S) : \mu\omega \in M_b(S) \}$$

is known as a Banach algebra which is called the weighted semigroup measure algebra (see [6, 12, 13, 14] for further details about such algebras and arbitrary weight functions). Let S be a locally compact semigroup, and let B(S) denote the space of all Borel measurable and bounded functions on S. Set $B(S, 1/\omega) = \{f : S \to \mathbb{C} : f/\omega \in B(S)\}$. A standard predual for $M_b(S, \omega)$ is

$$C_0(S, 1/\omega) = \{ f \in B(S, 1/\omega) : f/\omega \in C_0(S) \}.$$

Let $f \in C(S, 1/\omega)$ then f is called ω -weakly almost periodic if the set $\{\frac{R_s f}{\omega(s)\omega} : s \in S\}$ is relatively weakly compact in C(S), where R_s is defined as above. The set of all ω -weakly almost periodic functions on S is denoted by $wap(S, 1/\omega)$.

In the case where S is discrete we write $\ell_1(S,\omega)$ instead of $M_b(S,\omega)$ and $c_0(S,\frac{1}{\omega})$ instead of $C_0(S,\frac{1}{\omega})$. Then the space

$$\ell_1(S,\omega) = \{ f : f = \sum_{s \in S} f(s)\delta_s, \quad ||f||_{1,\omega} = \sum_{s \in S} |f(s)|\omega(s) < \infty \}$$

(where, $\delta_s \in \ell_1(S, \omega)$ be the point mass at s which can be thought as the vector basis element of $\ell_1(S, \omega)$) equipped with the multiplication

$$f * g = \sum_{r \in S} \sum_{st=r} f(s)g(t)\delta_r$$

(and also define f * g = 0 if for each $r \in S$ the equation st = r has no solution;) is a Banach algebra which will be called weighted semigroup algebra. We also suppress 1 from the notation whenever w = 1.

2. Semigroup Measure Algebras as Dual Banach Algebras

It is known that the semigroup algebra $\ell_1(S)$ is a dual Banach algebra with respect to $c_0(S)$ if and only if S is weakly cancellative semigroup, see [7, Theorem4.6]. Throughout this section ω is a continuous weight on S. This result has been extended for the weighted

semigroup algebras $\ell_1(S,\omega)$; [1, 8]. In this section we extend this results to the nondiscrete case. We provide some necessary and sufficient conditions that the measure algebra $M_b(S,\omega)$ becomes a dual Banach algebra with respect to the predual $C_0(S,1/\omega)$.

Let F and K be nonempty subsets of a semigroup S and $s \in S$. We put

$$s^{-1}F = \{t \in S : st \in F\}, \text{ and } Fs^{-1} = \{t \in S : ts \in F\}$$

and we also write $s^{-1}t$ for the set $s^{-1}\{t\}$, FK^{-1} for $\cup \{Fs^{-1}: s \in K\}$ and $K^{-1}F$ for $\cup \{s^{-1}F: s \in K\}$.

A semigroup S is called left (respectively, right) zero semigroup if xy = x (respectively, xy = y), for all $x, y \in S$. A semigroup S is called zero semigroup if there exist $z \in S$ such that xy = z for all $x, y \in S$. A semigroup S is said to be *left (respectively, right) weakly cancellative semigroup* if $s^{-1}F$ (respectively, Fs^{-1}) is finite for each $s \in S$ and each finite subset F of S. A semigroup S is said to be *weakly cancellative semigroup* if it is both left and right weakly cancellative semigroup.

A semi-topological semigroup S is said to be *compactly cancellative semigroup* if for every compact subsets F and K of S the sets $F^{-1}K$ and KF^{-1} are compact set.

Lemma 2.1. Let S be a topological semigroup. For every compact subsets F and K of S the sets $F^{-1}K$ and KF^{-1} are closed.

Proof. If $F^{-1}K$ is empty, then it is closed. Let x be in the closure of $F^{-1}K$. Then there is a net (x_{α}) in $F^{-1}K$ such that $x_{\alpha} \to x$. Since $x_{\alpha} \in F^{-1}K$ there is a net (f_{α}) in F such that $f_{\alpha}x_{\alpha} \in K$. Using the compactness of F and K, by passing to a subnet, if necessary, we may suppose that $f_{\alpha}x_{\alpha} \to k$ and $f_{\alpha} \to f$, for some $f \in F$ and $k \in K$. So $fx = k \in K$, that is $x \in F^{-1}K$. Therefore $F^{-1}K$ is closed. A similar argument shows that KF^{-1} is also closed.

In the next result we study $M_b(S,\omega)$ from the dual Banach algebra point of view.

Theorem 2.1. Let S be a locally compact topological semigroup and ω be a continuous weight on S. Then the measure algebra $M_b(S,\omega)$ is a dual Banach algebra with respect to the predual $C_0(S,1/\omega)$ if and only if for all compact subsets F and K of S, the maps $\frac{\chi_{F^{-1}K}}{\omega}$ and $\frac{\chi_{KF^{-1}}}{\omega}$ vanishes at infinity.

Proof. Suppose that $M_b(S,\omega)$ is a dual Banach algebra with respect to $C_0(S,1/\omega)$ and let K,F be nonempty compact subsets of S with a net (x_α) in $F^{-1}K$. Let $C_{00}^+(S)$ denote the non-negative continuous functions with compact support on S and set $C_{00}^+(S,\frac{1}{\omega}) = \{f \in C_0(S,\frac{1}{\omega}) : f/\omega \in C_{00}^+(S)\}$. Since ω is continuous we may choose $f \in C_{00}^+(S,\frac{1}{\omega})$

with f(K) = 1. There is a net $(t_{\alpha}) \in F$ such that $t_{\alpha}x_{\alpha} \in K$ and the compactness of F guaranties the existence of a subnet (t_{γ}) of (t_{α}) such that $t_{\gamma} \to t_0$ for some t_0 in S. Indeed, for $s \in S$,

$$\lim_{\gamma} \left(\frac{\delta_{t_{\gamma}} \cdot f}{\omega} \right)(s) = \lim_{\gamma} \frac{f(t_{\gamma}s)}{\omega(s)} = \frac{f(t_{0}s)}{\omega(s)} = \frac{\delta_{t_{0}} \cdot f}{\omega}(s)$$

there is a γ_0 such that

$$\bigcup_{\gamma \geq \gamma_0} t_{\gamma}^{-1} K \subseteq \bigcup_{\gamma \geq \gamma_0} \{ s \in S : (\frac{\delta_{t_{\gamma}} \cdot f}{\omega})(s) \geq 1 \} \subseteq \{ s \in S : (\frac{\delta_{t_0} \cdot f}{\omega})(s) \geq \frac{1}{2} \}.$$

Let $H = \{t_{\gamma} : \gamma \geq \gamma_0\} \cup \{t_0\}$. Then

$$H^{-1}K = \bigcup_{\gamma \ge \gamma_0} t_{\gamma}^{-1}K \cup t_0^{-1}K \subseteq \{ s \in S : (\frac{\delta_{t_0} \cdot f}{\omega})(s) \ge \frac{1}{2} \}$$

and so $H^{-1}K$ is compact. Furthermore, $t_{\gamma}x_{\gamma} \in K$, that is (x_{γ}) is a net in compact set $H^{-1}K$. This means that (x_{α}) has a convergent subnet and this is the proof of necessity.

The sufficiency can be adopted from [1, Proposition 3.1] with some modifications. Let $f \in C_0(S, 1/\omega)$, $\mu \in M_b(S, \omega)$ and $\varepsilon > 0$ be arbitrary. There exist compact subsets F and K of S such that $|\frac{f}{\omega}(s)| < \varepsilon$ for all $s \notin K$ and $|(\mu \omega)|(S \setminus F) < \varepsilon$.

Let $s \notin \{t \in F^{-1}K : \omega(t) \leq \frac{1}{\varepsilon}\}$, which is compact by hypothesis. Then

$$\begin{aligned} |\frac{\mu.f}{\omega}(s)| &= |\int_{S} \frac{f(ts)}{\omega(s)} d\mu(t)| \\ &\leq |\int_{F} \frac{f(ts)}{\omega(s)} d\mu(t)| + |\int_{S\backslash F} \frac{f(ts)}{\omega(s)} d\mu(t)| \\ &\leq \int_{F} |\frac{f(ts)}{\omega(ts)} |\omega(t) d| \mu|(t) + \int_{S\backslash F} |\frac{f(ts)}{\omega(ts)} |\omega(t) d| \mu|(t) \\ &\leq \varepsilon \int_{S} \omega(t) d|\mu|(t) + ||f||_{\omega,\infty} \int_{S\backslash F} \omega(t) d|\mu|(t) \\ &\leq \varepsilon ||\mu||_{\omega} + \varepsilon ||f||_{\omega,\infty} \end{aligned}$$

That is, $\mu.f \in C_0(S, 1/\omega)$. Therefore $M_b(S, \omega)$ is a dual Banach algebra with respect to $C_0(S, 1/\omega)$.

The next Corollaries are immediate consequences of Theorem 2.1.

Corollary 2.1. Let S be a locally compact topological semigroup. Then the measure algebra $M_b(S)$ is a dual Banach algebra with respect to $C_0(S)$ if and only if S is a compactly cancellative semigroup.

Corollary 2.2. [1, Theorem 2.2] For a semigroup S the semigroup algebra $\ell_1(S,\omega)$ is a dual Banach algebra with respect to the predual $c_0(S, 1/\omega)$ if and only if for all $s, t \in S$, the maps $\frac{\chi_{t-1_s}}{\omega}$ and $\frac{\chi_{st-1}}{\omega}$ are in $c_0(S)$.

Corollary 2.3. For a locally compact topological semigroup S, if $M_b(S)$ is a dual Banach algebra with respect to $C_0(S)$ then $M_b(S,\omega)$ is a dual Banach algebra with respect to $C_0(S, 1/\omega)$.

Corollary 2.4. Let S be either a left zero (right zero) or a zero locally compact semigroup. There is a weight ω such that $M_b(S,\omega)$ is a dual Banach algebra with respect to $C_0(S,\frac{1}{\omega})$ if and only if S is σ -compact.

Proof. Let K and F be compact subsets of S. It can be readily verified that in either cases (being left zero, right zero or zero) the sets $F^{-1}K$ and KF^{-1} are equal to either empty or S. Put

$$S_m = \{ t \in F^{-1}K : \omega(t) \le m \} = \{ t \in S : \omega(t) \le m \} \ (m \in \mathbb{N}).$$

Then $S = \bigcup_{m \in \mathbb{N}} S_m$ and so S is σ -compact. For the converse let $S = \bigcup_{n \in \mathbb{N}} S_n$ as a disjoint union of compact sets and let z be a (left or right) zero for S. Define $\omega(z)=1$ and $\omega(x) = 1 + n$ for $x \in S_n$ then ω is a weight on S and $M_b(S, \omega)$ is a dual Banach algebra.

(1) The set $S = \mathbb{R}^+ \times \mathbb{R}$ equipped with the multiplication Examples 2.1.

$$(x,y).(x',y') = (x+x',y') \quad ((x,y),(x',y') \in S)$$

and the weight $\omega(x,y) = e^{-x}(1+|y|)$ is a weighted semigroup. In this example [a,b]denotes a closed interval. As for $F = [a, b] \times [c, d]$ and $K = [e, f] \times [g, h]$, with $[c,d] \cap [g,h] \neq \emptyset$

$$F^{-1}K = \bigcup_{(x,y)\in F} (x,y)^{-1}K$$

$$= \bigcup_{(x,y)\in F} \{(s,t)\in S: (x,y)(s,t)\in K\}$$

$$= \bigcup_{(x,y)\in F} \{(s,t)\in S: (x+s,t)\in K\}$$

$$= \bigcup_{(x,y)\in F} [e-x,f-x]\times [g,h] = [e-b,f-a]\times [g,h]$$

and

$$KF^{-1} = \bigcup_{(x,y)\in F} K(x,y)^{-1}$$

$$= \bigcup_{(x,y)\in F} \{(s,t)\in S: (s,t)(x,y)\in K\}$$

$$= \bigcup_{(x,y)\in F} \{(s,t)\in S: (x+s,y)\in K\}$$

$$= \bigcup_{(x,y)\in F} [e-x,f-x] \times \mathbb{R} = [e-b,f-a] \times \mathbb{R}$$

Thus

$$F^{-1}K = [e-b, f-a] \times [g, h] \quad and \quad KF^{-1} = \left\{ \begin{array}{ll} [e-b, f-a] \times \mathbb{R} & if \quad [c, d] \cap [g, h] \neq \emptyset \\ \emptyset & if \quad [c, d] \cap [g, h] = \emptyset \end{array} \right.$$

 $M_b(S)$ is not a dual Banach algebra by Corollary 2.1. However, for all compact subsets F and K of S, the maps $\frac{\chi_{F^{-1}K}}{\omega}$ and $\frac{\chi_{KF^{-1}}}{\omega}$ vanishes at infinity. So $M_b(S,\omega)$ is a dual Banach algebra with respect to $C_0(S,1/\omega)$. This shows that the converse of Corollary 2.3 may not be valid.

(2) For the semigroup $S = [0, \infty)$ endowed with the zero multiplication, neither $M_b(S)$ nor $\ell_1(S)$ is a dual Banach algebra. In fact, S is neither compactly nor weakly cancellative semigroup.

3. Semigroup Measure Algebras as WAP-Algebras

In this section, for a weighted locally compact semi-topological semigroup (S, ω) , we investigate some necessary and sufficient condition for $M_b(S, \omega)$ being WAP-algebra. First, we provide some preliminaries.

Definition 3.1. Let $\tilde{\mathcal{F}}$ be a linear subspace of $B(S, 1/\omega)$, and let $\tilde{\mathcal{F}}_r$ denote the set of all real-valued members of $\tilde{\mathcal{F}}$. A mean on $\tilde{\mathcal{F}}$ is a linear functional $\tilde{\mu}$ on $\tilde{\mathcal{F}}$ with the property that

$$\inf_{s \in S} \frac{f}{\omega}(s) \le \tilde{\mu}(f) \le \sup_{s \in S} \frac{f}{\omega}(s) \quad (f \in \tilde{\mathcal{F}}_r).$$

The set of all means on $\tilde{\mathcal{F}}$ is denoted by $M(\tilde{\mathcal{F}})$. If $\tilde{\mathcal{F}}$ is also an algebra with the multiplication given by $f \odot g := (f.g)/\omega$ $(f,g \in \tilde{\mathcal{F}})$ and if $\tilde{\mu} \in M(\tilde{\mathcal{F}})$ satisfies

$$\tilde{\mu}(f \odot g) = \tilde{\mu}(f)\tilde{\mu}(g) \quad (f, g \in \tilde{\mathfrak{F}}),$$

then $\tilde{\mu}$ is said to be multiplicative. The set of all multiplicative means on $\tilde{\mathcal{F}}$ will be denoted by $MM(\tilde{\mathcal{F}})$.

Let $\tilde{\mathcal{F}}$ be a conjugate closed, linear subspace of $B(S, 1/\omega)$ such that $\omega \in \tilde{\mathcal{F}}$.

- (i) For each $s \in S$ define $\epsilon(s) \in M(\tilde{\mathcal{F}})$ by $\epsilon(s)(f) = (f/\omega)(s)$ $(f \in \tilde{\mathcal{F}})$. The mapping $\epsilon: S \longrightarrow M(\tilde{\mathcal{F}})$ is called the evaluation mapping. If $\tilde{\mathcal{F}}$ is also an algebra, then $\epsilon(S) \subseteq MM(\tilde{\mathcal{F}})$.
- (ii) Let $\tilde{X} = M(\tilde{\mathcal{F}})$ (resp. $\tilde{X} = MM(\tilde{\mathcal{F}})$, if $\tilde{\mathcal{F}}$ is a subalgebra) be endowed with the relative weak* topology. For each $f \in \tilde{\mathcal{F}}$ the function $\hat{f} \in C(\tilde{X})$ is defined by

$$\hat{f}(\tilde{\mu}) := \tilde{\mu}(f) \quad (\tilde{\mu} \in \tilde{X}).$$

Furthermore, we define $\hat{\tilde{\mathcal{F}}} := \{\hat{f} : f \in \tilde{\mathcal{F}}\}\$

Remark 3.1. (i) The mapping $f \longrightarrow \hat{f} : \tilde{\mathbb{F}} \longrightarrow C(\tilde{X})$ is clearly linear and multiplicative if $\tilde{\mathbb{F}}$ is an algebra and $\tilde{X} = MM(\tilde{\mathbb{F}})$. Also it preserves complex conjugation, and is an isometry, since for any $f \in \tilde{\mathbb{F}}$

$$\begin{split} ||\hat{f}|| &= \sup\{|\hat{f}(\tilde{\mu})| : \tilde{\mu} \in \tilde{X}\} = \sup\{|\tilde{\mu}(f)| : \tilde{\mu} \in \tilde{X}\} \\ &= \sup\{|\mu(\frac{f}{\omega})| : \mu \in X\} \le \sup\{|\mu(\frac{f}{\omega})| : \mu \in C(X)^*, ||\mu|| \le 1\} \\ &= ||\frac{f}{\omega}|| = ||f||_{\omega} = \sup\{|\frac{f}{\omega}(s)| : s \in S\} = \sup\{|\epsilon(s)(f)| : s \in S\} \\ &= \sup\{|\hat{f}(\epsilon(s))| : s \in S\} \le ||\hat{f}||, \end{split}$$

where $X = M(\mathfrak{F})$ and $\mathfrak{F} = \{f/\omega : f \in \tilde{\mathfrak{F}}\}$. Note that $\hat{f}(\epsilon(s)) = \epsilon(s)(f) = (\frac{f}{\omega})(s)(f \in \tilde{F}, s \in S)$. This identity may be written in terms of dual map $\tilde{\epsilon}^* : C(\tilde{X}) \longrightarrow C(S, \omega)$ as $\epsilon^*(\hat{f}) = f$ for $f \in \tilde{F}$.

- (ii) Let $\tilde{\mathfrak{F}}$ be a conjugate closed linear subspace of $B(S,1/\omega)$, containing ω . Then $M(\tilde{\mathfrak{F}})$ is convex and weak* compact, $co(\epsilon(S))$ is weak* dense in $M(\tilde{\mathfrak{F}})$, $\tilde{\mathfrak{F}}^*$ is the weak* closed linear span of $\epsilon(S)$, $\epsilon: S \longrightarrow M(\tilde{\mathfrak{F}})$ is weak* continuous, and if $\tilde{\mathfrak{F}}$ is also an algebra, then $MM(\tilde{\mathfrak{F}})$ is weak* compact and $\epsilon(S)$ is weak* dense in $MM(\tilde{\mathfrak{F}})$.
- (iii) Let $\tilde{\mathbb{F}}$ be a C^* -subalgebra of $B(S,1/\omega)$, containing ω . If \tilde{X} denotes the space $MM(\tilde{\mathbb{F}})$ with the relative weak* topology, and if $\epsilon: S \longrightarrow \tilde{X}$ denotes the evaluation mapping, then the mapping $f \longrightarrow \hat{f}: \tilde{\mathbb{F}} \longrightarrow C(\tilde{X})$ is an isometric isomorphism with the inverse $\epsilon^*: C(\tilde{X}) \longrightarrow \tilde{\mathbb{F}}$.

Let $\tilde{\mathcal{F}} = wap(S, 1/\omega)$. Then $\tilde{\mathcal{F}}$ is a C^* -algebra and a subspace of $WAP(M_b(S, \omega))$, see [11, Theorem1.6, Theorem3.3]. Set $\tilde{X} = MM(\tilde{\mathcal{F}})$. By the above remark $wap(S, 1/\omega) \cong$

 $C(\tilde{X})$ and so

$$M_b(\tilde{X}) \cong C(\tilde{X})^* \cong wap(S, 1/\omega)^* \subseteq WAP(M_b(S, \omega))^*.$$

Let $\epsilon: S \longrightarrow \tilde{X}$ be the evaluation mapping. We also define $\bar{\epsilon}: M_b(S, \omega) \longrightarrow M_b(\tilde{X})$, by $\langle \bar{\epsilon}(\mu), f \rangle = \int_S f \omega d\mu$ for $f \in wap(S, 1/\omega) \cong C(\tilde{X})$. Then for every Borel set B in \tilde{X} ,

$$\bar{\epsilon}(\mu)(B) = (\mu\omega)(\epsilon^{-1}(B)).$$

In particular, $\bar{\epsilon}(\frac{\delta_x}{\omega(x)}) = \delta_{\epsilon(x)}$.

The next theorem is the main result of this section.

Theorem 3.1. For every weighted locally compact semi-topological semigroup (S, ω) the following statements are equivalent:

- (1) The evaluation map $\epsilon: S \longrightarrow \tilde{X}$ is one to one, where $\tilde{X} = MM(wap(S, 1/\omega))$;
- (2) $\bar{\epsilon}: M_b(S, \omega) \longrightarrow M_b(\tilde{X})$ is an isometric isomorphism;
- (3) $M_b(S, \omega)$ is a WAP-algebra.

Proof. (1) \Rightarrow (2). Take $\mu \in M_b(S, \omega)$, say $\mu = \mu_1 - \mu_2 + i(\mu_3 - \mu_4)$, where $\mu_j \in M_b(S, \omega)^+$. Set $\nu_j = \bar{\epsilon}(\mu_j) \in M_b(\tilde{X})^+$ for j = 1, 2, 3, 4, and set

$$\nu = \bar{\epsilon}(\mu) = \nu_1 - \nu_2 + i(\nu_3 - \nu_4).$$

Take $\delta > 0$. For each j, there exists Borel set B_j in \tilde{X} such that $\nu_j(B) \geq 0$ for each Borel subset B of B_j and $\sum_{j=1}^4 \nu_j(B_j) > ||\nu|| - \delta$. In fact, by Hahn decomposition theorem for signed measures $\lambda_1 = \nu_1 - \nu_2$ and $\lambda_2 = \nu_3 - \nu_4$ there exist four Borel sets P_1 , P_2 , N_1 and N_2 in \tilde{X} such that

$$P_1 \cup N_1 = \tilde{X}, \quad P_1 \cap N_1 = \emptyset, \quad P_2 \cup N_2 = \tilde{X}, \quad P_2 \cap N_2 = \emptyset$$

and for every Borel set E of \tilde{X} we have,

$$\nu_1(E) = \lambda_1(P_1 \cap E), \ \nu_2(E) = -\lambda_1(N_1 \cap E), \ \nu_3(E) = \lambda_2(P_2 \cap E), \ \nu_4(E) = -\lambda_2(N_2 \cap E).$$

that is $\nu_1, \nu_2, \nu_3, \nu_4$ are concentrated respectively on P_1, N_1, P_2, N_2 .

Set $D_1 := P_1 \cap N_2, D_2 := N_1 \cap P_2, D_3 := P_2 \cap P_1, D_4 := N_2 \cap N_1$. Then the family $\{D_1, D_2, D_3, D_4\}$ is a partition of \tilde{X} . Also for $\delta > 0$ there is a compact set K for which

$$||\nu|| - \delta \le \sum_{j=1}^{4} ||\nu_{j}|| - \delta \le \sum_{j=1}^{4} |\nu_{j}||_{D_{j}}(K) = \sum_{j=1}^{4} |\nu_{j}||_{D_{j}}(K) = \sum_{j=1}^{4} |\nu_{j}||_{D_{j}}(K)$$

Set $B_j = D_j \cap K$. Then the sets B_1, B_2, B_3, B_4 are pairwise disjoint.

Set $C_j = (\epsilon)^{-1}(B_j)$, a Borel set in S. Then $(\mu_j \omega)(C_j) = \nu_j(B_j)$. Since ϵ is injection, the sets C_1, C_2, C_3, C_4 are pairwise disjoint, and so

$$||\mu||_{\omega} \ge \sum_{j=1}^{4} |\mu\omega(C_j)| \ge \sum_{j=1}^{4} (\mu_j\omega)(C_j) = \sum_{j=1}^{4} \nu_j(B_j) > ||\nu|| - \delta$$

This holds for each $\delta > 0$, so $||\mu||_{\omega} \ge ||\nu||$. A similar argument shows that $||\mu||_{\omega} \le ||\nu||$. Thus $||\mu||_{\omega} = ||\nu||$.

 $(2)\Rightarrow(1)$. Let $P(S,\omega)$ denote the subspace of all probability measures of $M_b(S,\omega)$ and $ext(P(S,\omega))$ the extreme points of unit ball of $P(S,\omega)$. Then $ext(P(S,\omega)) = \{\frac{\delta_x}{\omega(x)} : x \in S\} \cong S$ and $ext(P(\tilde{X}) \cong \tilde{X}$, see [4, p.151]. By injectivity of $\bar{\epsilon}$, it maps the extreme points of the unit ball onto the extreme points of the unit ball, thus $\epsilon : S \longrightarrow \tilde{X}$ is a one to one map.

 $(2)\Rightarrow(3)$. Since \tilde{X} is compact, $M_b(\tilde{X})$ is a dual Banach algebra with respect to $C(\tilde{X})$, so it has an isometric representation ψ on a reflexive Banach space E, see [9]. In the following commutative diagram,

If $\bar{\epsilon}$ is isometric, then so is ϕ .

Thus $M_b(S, \omega)$ has an isometric representation on a reflexive Banach space E if $\bar{\epsilon}$ is an isometric isomorphism. So $M_b(S, \omega)$ is a WAP-algebra if $\bar{\epsilon}$ is an isometric isomorphism.

 $(3)\Rightarrow(1)$. Let $M_b(S,\omega)$ be a WAP-algebra. Since $\ell_1(S,\omega)$ is a norm closed subalgebra of $M_b(S,\omega)$, then $\ell_1(S,\omega)$ is a WAP-algebra. Using the double limit criterion, it is a simple matter to check that $wap(S,1/\omega)=WAP(\ell_1(S,\omega))$ (see also [11, Theorem3.7]) where we treat $\ell^{\infty}(S,1/\omega)$ as an $\ell_1(S,\omega)$ -bimodule. Then $\bar{\epsilon}:\ell_1(S,\omega)\longrightarrow wap(S,1/\omega)^*$ is an isometric isomorphism. Since $wap(S,1/\omega)$ is a C^* -algebra, as $(2)\Rightarrow(1)$, $\epsilon:S\longrightarrow \tilde{X}$ is one to one.

Corollary 3.1. The following statement are equivalent.

- (1) $\ell_1(S,\omega)$ is a WAP-algebra;
- (2) $M_b(S, \omega)$ is a WAP-algebra.

For $\omega = 1$, it is clear that $\tilde{X} = S^{wap}$, and the map $\epsilon : S \longrightarrow S^{wap}$ is one to one if and only if wap(S) separates the points of S, see [3].

Corollary 3.2. For a locally compact semi-topological semigroup S, the following statements are equivalent:

- (1) $M_b(S)$ is a WAP-algebra;
- (2) $\ell_1(S)$ is a WAP-algebra;
- (3) The evaluation map $\epsilon: S \longrightarrow S^{wap}$ is one to one;
- (4) wap(S) separates the points of S.

Definition 3.2. Let X, Y be sets and f be a complex-valued function on $X \times Y$.

(1) We say that f is a cluster on $X \times Y$ if for each pair of sequences (x_n) , (y_m) of distinct elements of X, Y, respectively

$$\lim_{n} \lim_{m} f(x_n, y_m) = \lim_{m} \lim_{n} f(x_n, y_m) \tag{1}$$

whenever both sides of (1) exist.

(2) If f is cluster and both sides of 1 are zero (respectively positive) in all cases, we say that f is 0-cluster(respectively positive cluster).

In general $\{f\omega: f\in wap(S)\} \neq wap(S,1/\omega)$. By using [2, Lemma1.4] the following is immediate.

Lemma 3.1. Let $\Omega(x,y) = \frac{\omega(xy)}{\omega(x)\omega(y)}$, for $x,y \in S$. Then

- (1) If Ω is cluster, then $\{f\omega: f \in wap(S)\} \subseteq wap(S, 1/\omega);$
- (2) If Ω is positive cluster, then $wap(S, 1/\omega) = \{f\omega : f \in wap(S)\}.$

It should be noted that if $M_b(S)$ is Arens regular (resp. dual Banach algebra) then $M_b(S,\omega)$ is so. We don't know that if $M_b(S)$ is WAP-algebra, then $M_b(S,\omega)$ is so. The following Lemma give a partial answer to this question.

Corollary 3.3. Let S be a locally compact topological semigroup with a Borel measurable weight function ω such that Ω is cluster on $S \times S$.

- (1) If $M_b(S)$ is a WAP-algebra, then so is $M_b(S, \omega)$;
- (2) If $\ell_1(S)$ is a WAP-algebra, then so is $\ell_1(S,\omega)$.

Proof. (1) Suppose that $M_b(S)$ is a WAP-algebra so wap(S) separates the points of S. By lemma 3.1 for every $f \in wap(S)$, $f\omega \in wap(S, 1/\omega)$. Thus the evaluation map $\epsilon : S \longrightarrow \tilde{X}$ is one to one.

(2) follows from (1).
$$\Box$$

Corollary 3.4. For a locally compact semi-topological semigroup S,

- (1) If $C_0(S) \subseteq wap(S)$, then the measure algebra $M_b(S)$ is a WAP-algebra.
- (2) If S is discrete and $c_0(S) \subseteq wap(S)$, then $\ell_1(S)$ is a WAP-algebra.

Proof. (1) By [3, Corollary 4.2.13] the map $\epsilon: S \longrightarrow S^{wap}$ is one to one, thus $M_b(S)$ is a WAP-algebra.

(2) follows from (1).
$$\Box$$

Dales, Lau and Strauss [7, Theorem 4.6, Proposition 8.3] showed that for a semi-group S, $\ell^1(S)$ is a dual Banach algebra with respect to $c_0(S)$ if and only if S is weakly cancellative. If S is left or right weakly cancellative semigroup, then $\ell^1(S)$ is a WAP-algebra. The next example shows that the converse is not true, in general.

Example 3.1. Let $S = (\mathbb{N}, \min)$ then $wap(S) = c_0(S) \oplus \mathbb{C}$. So $\ell^1(S)$ is a WAP-algebra but S is neither left nor right weakly cancellative. In fact, for $f \in wap(S)$ and all sequences $\{a_n\}$, $\{b_m\}$ with distinct element in S, we have $\lim_m f(b_m) = \lim_m \lim_n f(a_nb_m) = \lambda = \lim_n \lim_m f(a_nb_m) = \lim_n f(a_n)$, for some $\lambda \in \mathbb{C}$. This means $f - \lambda \in c_0(S)$ and $wap(S) \subseteq c_0(S) \oplus \mathbb{C}$. The other inclusion is clear.

If $\{x_n\}$ and $\{y_m\}$ are sequences in S we obtain an infinite matrix $\{x_ny_m\}$ which has x_ny_m as its entry in the mth row and nth column. As in [2], a matrix is said to be of row type C (resp. column type C) if the rows (resp. columns) of the matrix are all constant and distinct. A matrix is of type C if it is constant or of row or column type C.

J.W.Baker and A. Rejali in [2, Theorem 2.7(v)] showed that $\ell^1(S)$ is Arens regular if and only if for each pair of sequences $\{x_n\}$, $\{y_m\}$ with distinct elements in S there is a submatrix of $\{x_ny_m\}$ of type C.

A matrix $\{x_n y_m\}$ is said to be upper triangular constant if $x_n y_m = s$ if and only if $m \ge n$ and it is lower triangular constant if $x_n y_m = s$ if and only if $m \le n$. A matrix $\{x_n y_m\}$ is said to be W-type if every submtrix of $\{x_n y_m\}$ is neither upper triangular constant nor lower triangular constant.

Theorem 3.2. Let S be a semigroup. The following statements are equivalent:

- (1) $c_0(S) \subseteq wap(S)$.
- (2) For each $s \in S$ and each pair $\{x_n\}$, $\{y_m\}$ of sequences in S,

$$\{\chi_s(x_n y_m) : n < m\} \cap \{\chi_s(x_n y_m) : n > m\} \neq \emptyset;$$

(3) For each pair $\{x_n\}$, $\{y_m\}$ of sequences in S with distinct elements, $\{x_ny_m\}$ is a W-type matrix;

(4) For every $s \in S$, every infinite set $B \subset S$ contains a finite subset F such that $\cap \{sb^{-1} : b \in F\} \setminus (\cap \{sb^{-1} : b \in B \setminus F\})$ and $\cap \{b^{-1}s : b \in F\} \setminus (\cap \{b^{-1}s : b \in B \setminus F\})$ are finite.

Proof. (1) \Leftrightarrow (2). For all $s \in S$, $\chi_s \in wap(S)$ if and only if

$$\{\chi_s(x_n y_m) : n < m\} \cap \{\chi_s(x_n y_m) : n > m\} \neq \emptyset.$$

 $(3) \Rightarrow (1)$ Let $c_0(S) \not\subseteq wap(S)$ then there are sequences $\{x_n\}$, $\{y_m\}$ in S with distinct elements such that for some $s \in S$,

$$1 = \lim_{m} \lim_{n} \chi_s(x_n y_m) \neq \lim_{n} \lim_{m} \chi_s(x_n y_m) = 0.$$

Since $\lim_n \lim_m \chi_s(x_n y_m) = 0$, for $1 > \varepsilon > 0$ there is a $N \in \mathbb{N}$ such that for all $n \geq N$, $\lim_m \chi_s(x_m y_n) < \varepsilon$. This implies for all $n \geq N$, $\lim_m \chi_s(x_m y_n) = 0$. Then for $n \geq N$, $1 > \varepsilon > 0$ there is a $M_n \in \mathbb{N}$ such that for all $m \geq M_n$ we have $\chi_s(x_m y_n) < \varepsilon$. So if we omit finitely many terms, for all $n \in \mathbb{N}$ there is $M_n \in \mathbb{N}$ such that for all $m \geq M_n$ we have $x_m y_n \neq s$. As a similar argument, for all $m \in \mathbb{N}$ there is $N_m \in \mathbb{N}$ such that for all $n \geq N_m$, $x_m y_n = s$.

Let $a_1 = x_1$, b_1 be the first y_n such that $a_1y_n = s$. Suppose a_m , b_n have been chosen for $1 \le m$, n < r, so that $a_nb_m = s$ if and only if $n \ge m$. Pick a_r to be the first x_m not belonging to the finite set $\bigcup_{1 \le n \le r} \{x_m : x_my_n = s\}$. Then $a_rb_n \ne s$ for n < r. Pick b_r to be the first y_n belonging to the cofinite set $\bigcap_{1 \le n \le r} \{y_n : x_my_n = s\}$. Then $a_nb_m = s$ if and only if $n \ge m$. The sequences (a_m) , (b_n) so constructed satisfy $a_mb_n = s$ if and only if $n \ge m$. That is, $\{a_nb_m\}$ is not of W-type and this is a contradiction.

(1) \Rightarrow (3). Let there are sequences $\{x_n\}$, $\{y_m\}$ in S such that $\{x_ny_m\}$ is not a W-type matrix, (say) $x_ny_m = s$ if and only if $m \le n$. Then

$$1 = \lim_{m} \lim_{n} \chi_s(x_n y_m) \neq \lim_{n} \lim_{m} \chi_s(x_n y_m) = 0.$$

So $\chi_s \not\in wap(S)$. Thus $c_0(S) \not\subseteq wap(S)$.

(4) \Leftrightarrow (1)This is Ruppert criterion for $\chi_s \in wap(S)$, see [15, Theorem 4].

We conclude with some examples which show that some of the above results cannot be improved.

Examples 3.1.

(i) Let $S = \mathbb{N}$. Then for S equipped with min multiplication, the semigroup algebra $\ell_1(S)$ is a WAP-algebra but is not neither Arens regular nor a dual Banach algebra. While,

if we replace the min multiplication with max then $\ell_1(S)$ is a dual Banach algebra (so a WAP-algebra) which is not Arens regular. If we change the multiplication of S to the zero multiplication then the resulted semigroup algebra is Arens regular (so a WAP-algebra) which is not a dual Banach algebra. This describes the interrelation between the concepts of being Arens regular algebra, dual Banach algebra and WAP-algebra.

(ii) Let S be the set of all sequences with 0,1 values. We equip S with coordinate wise multiplication. We denote by e_n the sequence with all zero unless a 1 in the n-th place. Let $s = \{x_n\} \in S$, and let $F_w(S)$ be the set of all elements of S such that $x_i = 0$ for only finitely index i. It is easy to see that $F_w(S)$ is countable. Let $F_w(S) = \{s_1, s_2, \cdots\}$. Recall that, every element $g \in \ell^{\infty}(S)$ can be denoted by $g = \sum_{s \in S} g(s)\chi_s$, see [6, p.65]. Suppose

$$g = \sum_{s \in S \setminus F_w(S)} g(s) \chi_s$$

be in wap(S), we show that g = 0. Let $s = \{x_n\} \in S$, and $\{k \in \mathbb{N} : x_k = 0\} = \{k_1, k_2, \dots\}$ be an infinite set. Put $a_n = s + \sum_{j=1}^n e_{k_j}$ and $b_m = s + \sum_{i=m}^\infty e_{k_i}$. Then

$$a_n b_m = \begin{cases} \sum_{j=m}^n e_{k_j} + s & if \quad m \le n \\ s & if \quad m > n \end{cases}$$

Thus $g(s) = \lim_n \lim_m g(a_n b_m) = \lim_m \lim_n g(a_n b_m) = \lim_m g(s + \sum_{i=m}^{\infty} e_{k_i}) = 0.$ In fact,

$$wap(S) = \{ f \in \ell^{\infty}(S) : f = \sum_{i=1}^{\infty} f(s_i)\chi_{s_i}, \quad s_i \in F_w(S) \} \oplus \mathbb{C}$$

It is clear that $F_w(S)$ is the subsemigroup of S and $wap(F_w(S)) = \ell^{\infty}(F_w(S))$. So $\ell^1(F_w(S))$ is Arens regular. Let T consists of those sequences $s = \{x_n\} \in S$ such that $x_i = 0$ for infinitely index i, then T is a subsemigroup of S and $wap(T) = \mathbb{C}$. Since $\epsilon_{|T}: T \longrightarrow S^{wap}$ isn't one to one, $\ell^1(S)$ is not a WAP-algebra. This shows that in general $\ell^1(S)$ need not be a WAP-algebra.

(iii) If we equip $S = \mathbb{R}^2$ with the multiplication (x, y).(x', y') = (xx', x'y + y'), then $M_b(S)$ is not a WAP-algebra. Indeed, every non-constant function f over x-axis is not in wap(S). Let $f(0, z_1) \neq f(0, z_2)$ and $\{x_m\}, \{y_m\}, \{\beta_n\}$ be sequences with distinct elements satisfying the recursive equation

$$\beta_n x_m + y_m = \frac{mz_1 + nz_2}{m+n}$$

Then

$$\lim_{n} \lim_{m} f((0, \beta_{n}).(x_{m}, y_{m})) = \lim_{n} \lim_{m} f(0, \beta_{n}x_{m} + y_{m})$$

$$= \lim_{n} \lim_{m} f(0, \frac{mz_{1} + nz_{2}}{m + n})$$

$$= f(0, z_{1})$$

and similarly

$$\lim_{m} \lim_{n} f((0, \beta_n).(x_m, y_m)) = f(0, z_2).$$

Thus the map $\epsilon: S \longrightarrow S^{wap}$ isn't one to one, so $M_b(S)$ is not a WAP-algebra. This shows that in general $M_b(S)$ need not be a WAP-algebra.

(iv) Let S be the interval $[\frac{1}{2}, 1]$ with multiplication $x.y = \max\{\frac{1}{2}, xy\}$, where xy is the ordinary multiplication on \mathbb{R} . Then for all $s \in S \setminus \{\frac{1}{2}\}$, $x \in S$, $x^{-1}s$ is finite. But $x^{-1}\frac{1}{2} = [\frac{1}{2}, \frac{1}{2x}]$. Let $B = [\frac{1}{2}, \frac{3}{4})$. Then for all finite subset F of B,

$$\bigcap_{x \in F} x^{-1} \frac{1}{2} \setminus \bigcap_{x \in B \setminus F} x^{-1} \frac{1}{2} = \left[\frac{2}{3}, \frac{1}{2x_F} \right]$$

where $x_F = \max F$. By [15, Theorem 4] $\chi_{\frac{1}{2}} \not\in wap(S)$. So $c_0(S \setminus \{\frac{1}{2}\}) \oplus \mathbb{C} \subsetneq wap(S)$. It can be readily verified that $\epsilon : S \longrightarrow S^{wap}$ is one to one, so $\ell_1(S)$ is a WAP-algebra but $c_0(S) \not\subseteq wap(S)$. This is a counter example for the converse of Corollary 3.4.

(v) Take $T = (\mathbb{N} \cup \{0\}, .)$ with 0 as zero of T and the multiplication defined by

$$n.m = \begin{cases} n & if \quad n = m \\ 0 & otherwise. \end{cases}$$

Then $S = T \times T$ is a semigroup with coordinate wise multiplication. Now let $X = \{(k,0) : k \in T\}$, $Y = \{(0,k) : k \in T\}$ and $Z = X \cup Y$. We use the Ruppert criterion [15] to show that $\chi_z \notin wap(S)$, for each $z \in Z$. Let $B = \{(k,n) : k,n \in T\}$, then $(k,n)^{-1}(k,0) = \{(k,m) : m \neq n\} = B \setminus \{(k,n)\}$. Thus for all finite subsets F of B,

$$\left(\cap \{ (k,n)^{-1}(k,0) : (k,n) \in F \} \right) \quad \setminus \quad \left(\cap \{ (k,n)^{-1}(k,0) : (k,n) \in B \setminus F \} \right)$$

$$= \quad \left(\cap \{ (k,0)(k,n)^{-1} : (k,n) \in F \} \right)$$

$$\quad \setminus \quad \left(\cap \{ (k,n)^{-1}(k,0) : (k,n) \in B \setminus F \} \right)$$

$$= \quad (B \setminus F) \setminus F = B \setminus F$$

and the last set is infinite. This means $\chi_{(k,0)} \notin wap(S)$. Similarly $\chi_{(0,k)} \notin wap(S)$. Let $f = \sum_{n=0}^{\infty} f(0,n)\chi_{(0,n)} + \sum_{m=1}^{\infty} f(m,0)\chi_{(m,0)}$ be in wap(S). For arbitrary fixed n and sequence $\{(n,k)\}$ in S, we have $\lim_k f(n,k) = \lim_k \lim_l f(n,l,k) =$ $\lim_{l}\lim_{k} f(n,l,k) = f(n,0)$ implies f(n,0) = 0. Similarly f(0,n) = 0 and f(0,0) = 00. Thus f = 0. In fact $wap(S) \subseteq \ell^{\infty}(\mathbb{N} \times \mathbb{N})$. Since wap(S) can not separate the points of S so $\ell_1(S)$ is not a WAP-algebra. Let $\omega(n,m)=2^n3^m$ for $(n,m) \in S$. Then ω is a weight on S such that $\omega \in wap(S,1/\omega)$, so the evaluation $map \ \epsilon: S \longrightarrow \tilde{X}$ is one to one. This means $\ell_1(S, \omega)$ is a WAP-algebra but $\ell_1(S)$ is not a WAP-algebra. This is a counter example for the converse of Corollary 3.3.

Acknowledgments. This research was supported by the Center of Excellence for Mathematics at Isfahan university.

REFERENCES

- [1] M. Abolghasemi, A. Rejali, and H.R. Ebrahimi Vishki, Weighted semigroup algebras as dual Banach algebras, arXiv:0808.1404 [math.FA].
- [2] J.W. Baker and A. Rejali, On the Arens regularity of weighted convolution algebras, J. London Math. Soc. (2) **40**, 535-546, (1989).
- [3] J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on Semigroups, Wiley, New York, (1989).
- [4] J. B. Conway, A Course in Functional Analysis, Springer-Verlag, Berlin, 1985.
- [5] H.G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.
- [6] H.G. Dales and A.T.-M. Lau, The Second Dual of Beurling Algebras, Mem. Amer. Math. Soc. 177 (2005), no. 836.
- [7] H.G. Dales, A.T.-M. Lau, and D. Strauss, Banach algebras on semigroups and on their compactification, Mem. Amer. Math. Soc. 205 (2010), 1-165.
- [8] M. Daws, Connes-amenability of bidual and weighted semigroup algebras, Math. Scand. 99 (2006) no. 2, 217-246.
- [9] M. Daws, Dual Banach algebras: Representation and injectivity, Studia Math, 178 (2007), 231-275.
- [10] M. Daws, H.L. Pham and S. White, Conditions implying the uniqueness of the weak*-topology on certain group algebras, Houston J. Math. 35 (2009), no. 1, 253276.
- [11] M. Lashkarizadeh Bami, Function algebras on weighted topological semigroups, Math. Japonica 47, no.2 (1998), 217-227.
- [12] A. Rejali, The analogue of weighted group algebra for semitopological semigroups, J. Sci, I.R. Iran, **6**, no. 2,(1995) 113-120.
- [13] A. Rejali, The Arens regularity of weighted semigroup algebras, Sci. Math. Japon, 60, no.1 (2004), 129-137.
- [14] A. Rejali and H.R.E. Vishki, Weighted convolution measure algebras characterized by convolution algebras, J. Sci. I. Iran, 18 (4), (2007) 345-349.
- [15] W.A.F. Ruppert, On weakly almost periodic sets, Semigroup Fourm 32, no.3, (1985), 267-281.
- [16] V.Runde, Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule, Math. Scand. **95** (2004), 124-144.
- [17] N.J. Young, Periodicity of functionals and representations of normed algebras on reflexive spaces, Proc. Edinburgh Math. Soc.(2)20 (1976/77), 99-120.