CS 346 Class Notes

Mark Lindberg

Apr 13, 2016

This Time:

Exam be done.

Prime order subgroup of \mathbb{Z}_p^* (p prime).

p = rq + 1. p, q prime. Order q subgroup of \mathbb{Z}_p^* . $\{h^r \mod p \mid h \in \mathbb{Z}_p^*\}$. These are called the rth residuals modulo p.

It's very easy to show that this is a subgroup.

It is a bit more challenging to prove that the subgroup is order q.

Note that p-1=rq.

Idea of proof: Show that $f(h) = h^r \mod p$ is "r-to-1".

We need to show that groups of r elements each map to 1 element in our new group.

A result from last time, which now becomes useful: Proposition 8.53. Let G be a finite group, $g \in G$ an element of order i. Then $g^x = g^y \Leftrightarrow x \equiv y \pmod(i)$.

Corollary: If g is a generator, $g^x = g^y \Leftrightarrow x \equiv y \pmod{|G|}$.

Back to the proof: Let g be a generator of \mathbb{Z}_p^* . Therefore, g has order p-1 by theorem 8.56. The $g^0, g^1, \ldots, g^{p-2}$ are all of the elements of \mathbb{Z}_p^* .

Let $i, j \in \mathbb{Z}_{p-1}$.

Claim 1: g^i and g^j have the same rth residue mod p if and only if $q \mid (i-j)$.

Proof: Corollary above implies that $g^{ri} \equiv g^{rj}$, working in \mathbb{Z}_p^* , if and only if $ri \equiv rj \pmod{p-1}$ if and only if r(i-j) is a multiple of p-1=qr, if and only if i-j is a multiple of q.

Claim 2: $(g^0)^r, (g^1)^r, ..., (g^{q-1})^r$ are distinct.

Proof: Immediate from previous claim.

Claim 3: Let $\ell \in \mathbb{Z}_q$.

Then $g^{\ell}, g^{\ell+q}, g^{\ell+2q}, \dots, g^{\ell+(r-1)q}$ all have the same rth residual modulo p.

Proof: Immediate from claim 1.

Advantages of this type of group G, the prime order subgroup:

1. We can generate a uniform random element of G: Choose h in \mathbb{Z}_p^* uniformly at random. Take $h^r \mod p$.

- 2. We can identify a generator for G efficiently: Repeat 1) until we get an element \neq identity.
- 3. We can efficiently test whether $h \in \mathbb{Z}_p^*$ belongs to G. Claim: $h \in G \Leftrightarrow h^g = 1$.

Proof of 3): Let $h = g^i$ where g is a generator of \mathbb{Z}_p^* . $i \in \mathbb{Z}_{p-1}$.

Claim 1: $h \in G \Leftrightarrow r \mid i$.

Proof: (IF) Assume $r \mid i$. Then i = cr, $h = g^{c^r} \Rightarrow h \in G$.

(ONLY IF) Assume $h \in G$. Then $h = (g^j)^r = g^{j^r}$ for some $j \in \mathbb{Z}_{p-1}$. By the corollary from the beginning of class, $i \equiv jr \pmod{p-1}$. Thus, $qr \mid (i-jr) \Rightarrow r \mid (i-jr) \Rightarrow r \mid i$. Claim 2: $h^q = 1 \iff r \mid i$.

$$h^{q} = 1$$

$$\iff g^{qi} = 1 = j^{0}$$

$$\iff (p - 1) \mid qi$$

$$\iff rq \mid qi$$

$$\iff r \mid i$$

"Discrete Log" Problem.

New experiment. $\mathsf{DLog}_{\mathcal{A},G}(n)$. We have G as a group generation algorithm. It generates (\mathbb{G},q,g) , where \mathbb{G} is a cyclic group of order q, and g is a generator of \mathbb{G} . Our security parameter is ||q|| = n, the number of bits in the binary representation of q.

 $\mathsf{DLog}_{\mathcal{A},G}(n)$:

- Run $G(1^n)$ to get (\mathbb{G}, q, g) .
- Pick h uniformly at random from G.
- \mathcal{A} is given G, q, g, h, \mathcal{A} outputs x.
- \mathcal{A} succeeds if and only if $g^x = h$.

Definition 8.6.7: Discrete log is hard relative to G if \forall PPT \mathcal{A} , $\Pr[\mathsf{DLog}_{\mathcal{A},G}(n) = 1] \leq \mathsf{negl}(n)$.

"Discrete log problem is hard" $\exists G...$

Section 8.4.2: Construction collision resistant hash functions given that we assume the discrete log problem is hard.

Construction 8.78. That's a lot of numbers. There is an explanation of this in the text. (I tend to space out at the end of classes, sorry. 2 classes in a row does that to me.)

Claim: Construction 8.78 gives a collision resistant hash function assuming the discrete-log problem is hard relative to G.

Idea of proof: Show that a collision enables us to compute the discrete $\log of h$.