Ngôn ngữ hình thức và ôtômát Chương 1. Ngôn ngữ và văn phạm hình thức

Nguyễn Thị Minh Huyền

Khoa Toán - Cơ - Tin học Trường Đại học Khoa học Tự nhiên Hà Nội

- 1. Bảng chữ cái Từ Ngôn ngữ
- 2. Các phép toán trên tù
- 3. Các phép toán trên ngôn ngữ
- Văn phạm hình thức
- Hai bài toán cơ bản về văn phạm
 - Bài toán phân tích
 - Bài toán tổng hợp

- 1. Bảng chữ cái Từ Ngôn ngữ
- 2. Các phép toán trên từ
- 3. Các phép toán trên ngôn ngữ
- Văn phạm hình thức
- Hai bài toán cơ bản về văn phạm
 - Bài toán phân tích
 - Bài toán tổng hợp

- 1. Bảng chữ cái Từ Ngôn ngữ
- 2. Các phép toán trên từ
- 3. Các phép toán trên ngôn ngữ
- 4. Văn phạm hình thức
- 5. Hai bài toán cơ bản về văn phạm
 - Bài toán phân tích
 - Bài toán tổng hợp

- 1. Bảng chữ cái Từ Ngôn ngữ
- 2. Các phép toán trên từ
- 3. Các phép toán trên ngôn ngữ
- 4. Văn phạm hình thức
- 5. Hai bài toán cơ bản về văn phạm
 - Bài toán phân tích
 - Bài toán tổng hợp

- 1. Bảng chữ cái Từ Ngôn ngữ
- 2. Các phép toán trên từ
- 3. Các phép toán trên ngôn ngữ
- 4. Văn phạm hình thức
- 5. Hai bài toán cơ bản về văn phạm
 - Bài toán phân tích
 - Bài toán tổng hợp

- 1. Bảng chữ cái Từ Ngôn ngữ
- 2. Các phép toán trên tù
- 3. Các phép toán trên ngôn ngữ
- 4. Văn phạm hình thức
- 5. Hai bài toán cơ bản về văn phạm
 - Bài toán phân tích
 - Bài toán tổng hợp

Bảng chữ cái

- Định nghĩa: tập hữu hạn các phần tử, mỗi phần tử gọi là một kí hiệu hay một chữ cái
- Kí hiệu Σ

```
■ Ví du:
```

```
\Sigma_1 = \{0, 1\}
```

- $\Sigma_2 = \{a, b, c, ..., z\}$
- $\Sigma_3 = \{0, 1, ..., 9, +, -, *, /, (,)\}$
- $\Sigma_4 = \{a, am, l, student, teacher\}$

Bảng chữ cái

- Định nghĩa: tập hữu hạn các phần tử, mỗi phần tử gọi là một kí hiệu hay một chữ cái
- Kí hiệu Σ
- Ví dụ:
 - lacksquare $\Sigma_1 = \{0, 1\}$
 - $\Sigma_2 = \{a, b, c, ..., z\}$
 - ${\color{red} \blacksquare} \ \Sigma_3 = \{0,1,...,9,+,-,*,/,(,)\}$
 - \blacksquare $\Sigma_4 = \{a, am, I, student, teacher\}$

- Từ w: chuỗi hữu hạn các chữ cái w_1, w_2, \dots, w_n trên bảng chữ cái Σ , kí hiệu $w = w_1 w_2 \cdots w_n$.
- n được gọi là độ dài của từ w, kí hiệu |w|. |w|a là số chữ cái a xuất hiện trong từ w.
- Từ có độ dài bằng 0 gọi là từ rỗng, kí hiệu ϵ .
- lacksquare Σ^* = Tập tất cả các từ trên bảng chữ cái Σ , kể cả từ rỗng
- $\ \ \, \mathbf{\Sigma}^+ = \mathbf{\Sigma}^* \backslash \{\epsilon\}$
- Ví dụ
 - $w_1 = 010, w_2 = student, w_3 = 4 + 5, w_4 = 1 \text{ am a student}$
 - - $\Sigma_{+}^{+} = \{0, 1, 00, 01, 10, 11, 000, 001, \cdots \}$

- Từ w: chuỗi hữu hạn các chữ cái w_1, w_2, \dots, w_n trên bảng chữ cái Σ , kí hiệu $w = w_1 w_2 \cdots w_n$.
- n được gọi là độ dài của từ w, kí hiệu |w|. |w|_a là số chữ cái a xuất hiện trong từ w.
- Từ có độ dài bằng 0 gọi là từ rỗng, kí hiệu ϵ .
- lacksquare Σ^* = Tập tất cả các từ trên bảng chữ cái Σ , kể cả từ rỗng
- $\Sigma^+ = \Sigma^* \setminus \{\epsilon\}$
- Ví dụ
 - $w_1 = 010, w_2 = student, w_3 = 4 + 5, w_4 = 1 \text{ am a student}$
 - - $\Sigma_{+}^{+} = \{0, 1, 00, 01, 10, 11, 000, 001, \cdots\}$

- Từ w: chuỗi hữu hạn các chữ cái w_1, w_2, \dots, w_n trên bảng chữ cái Σ , kí hiệu $w = w_1 w_2 \cdots w_n$.
- n được gọi là độ dài của từ w, kí hiệu |w|. |w|_a là số chữ cái a xuất hiện trong từ w.
- Từ có độ dài bằng 0 gọi là từ rỗng, kí hiệu ϵ .
- lacksquare Σ^* = Tập tất cả các từ trên bảng chữ cái Σ , kể cả từ rỗng
- $\Sigma^+ = \Sigma^* \setminus \{\epsilon\}$
- Ví dụ
 - $w_1 = 010, w_2 = student, w_3 = 4 + 5, w_4 = I \text{ am a student}$
 - - $\Sigma^{\ddagger} = \{0, 1, 00, 01, 10, 11, 000, 001, \cdots\}$

Từ trên bảng chữ cái Σ

- Từ w: chuỗi hữu hạn các chữ cái w_1, w_2, \dots, w_n trên bảng chữ cái Σ , kí hiệu $w = w_1 w_2 \cdots w_n$.
- n được gọi là độ dài của từ w, kí hiệu |w|. |w|_a là số chữ cái a xuất hiện trong từ w.
- Từ có độ dài bằng 0 gọi là từ rỗng, kí hiệu ϵ .
- Σ* = Tập tất cả các từ trên bảng chữ cái Σ, kể cả từ rỗng
- $\Sigma^+ = \Sigma^* \setminus \{\epsilon\}$
- Ví dụ
 - $\mathbf{w}_1 = 010, w_2 = student, w_3 = 4 + 5, w_4 = I \text{ am a student}$
 - $\Sigma_1^* = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \cdots \}$
 - $\Sigma_1^+ = \{0, 1, 00, 01, 10, 11, 000, 001, \cdots \}$

Từ trên bảng chữ cái Σ

- Từ w: chuỗi hữu hạn các chữ cái w_1, w_2, \dots, w_n trên bảng chữ cái Σ , kí hiệu $w = w_1 w_2 \cdots w_n$.
- n được gọi là độ dài của từ w, kí hiệu |w|. |w|_a là số chữ cái a xuất hiện trong từ w.
- Từ có độ dài bằng 0 gọi là từ rỗng, kí hiệu ϵ .
- Σ* = Tập tất cả các từ trên bảng chữ cái Σ, kể cả từ rỗng
- $\mathbf{L}^+ = \mathbf{\Sigma}^* \backslash \{\epsilon\}$
- Ví dụ
 - $w_1 = 010, w_2 = student, w_3 = 4 + 5, w_4 = 1 \text{ am a student}$
 - $\Sigma_1^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \cdots \}$

Ch1. NN&VP hình thức

- Từ w: chuỗi hữu hạn các chữ cái w_1, w_2, \dots, w_n trên bảng chữ cái Σ , kí hiệu $w = w_1 w_2 \cdots w_n$.
- n được gọi là độ dài của từ w, kí hiệu |w|. |w|_a là số chữ cái a xuất hiện trong từ w.
- Từ có độ dài bằng 0 gọi là từ rỗng, kí hiệu ϵ .
- Σ* = Tập tất cả các từ trên bảng chữ cái Σ, kể cả từ rỗng
- $\ \ \, \mathbf{\Sigma}^+ = \mathbf{\Sigma}^* \backslash \{\epsilon\}$
- Ví dụ
 - $w_1 = 010$, $w_2 = student$, $w_3 = 4 + 5$, $w_4 = I$ am a student
 - $\begin{array}{l} \blacksquare \ \Sigma_1^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \cdots\} \\ \Sigma_1^+ = \{0, 1, 00, 01, 10, 11, 000, 001, \cdots\} \end{array}$

- Tập con bất kì của Σ*
- Ngôn ngữ rỗng: tập rỗng \emptyset ⇒ phân biệt với $\{\epsilon\}$
- Ví dụ
 - $L_1 = \{ w \in \Sigma_1^* || w | = 2 \}$
 - $L_2 = \{w \in \Sigma_2^* | |w| \le 80\}$
 - $L_3 = \{ w \in \Sigma_3^* | w \text{ biểu diễn biểu thức số học} \}$
 - $L_4 = \{w \in \Sigma_4^* | w = I \text{ am a student hoặc } w = I \text{ am a teacher} \}$

- Tập con bất kì của Σ*
- Ngôn ngữ rỗng: tập rỗng \emptyset ⇒ phân biệt với $\{\epsilon\}$
- Ví dụ
 - $L_1 = \{ w \in \Sigma_1^* | |w| = 2 \}$
 - $L_2 = \{ w \in \Sigma_2^* | |w| \le 80 \}$
 - $L_3 = \{ w \in \Sigma_3^* | w \text{ biểu diên biểu thức sô học } \}$
 - $L_4 = \{ w \in \Sigma_4^* | w = I \text{ am a student hoặc } w = I \text{ am a teacher} \}$

- Tập con bất kì của Σ*
- Ngôn ngữ rỗng: tập rỗng \emptyset ⇒ phân biệt với $\{\epsilon\}$
- Ví dụ
 - $L_1 = \{ w \in \Sigma_1^* || w | = 2 \}$
 - $L_2 = \{w \in \Sigma_2^* ||w| \le 80\}$
 - $L_3 = \{ w \in \Sigma_3^* | w \text{ biểu diễn biểu thức số học } \}$
 - $L_4 = \{ w \in \Sigma_4^* | w = I \text{ am a student hoặc } w = I \text{ am a teacher} \}$

- Tập con bất kì của Σ*
- Ngôn ngữ rỗng: tập rỗng \emptyset ⇒ phân biệt với $\{\epsilon\}$
- Ví dụ
 - $L_1 = \{ w \in \Sigma_1^* ||w| = 2 \}$
 - $L_2 = \{w \in \Sigma_2^* ||w| \le 80\}$
 - $L_3 = \{ w \in \Sigma_3^* | w \text{ biểu diễn biểu thức số học } \}$
 - $L_4 = \{ w \in \Sigma_4^* | w = I \text{ am a student hoặc } w = I \text{ am a teacher} \}$

- Tập con bất kì của Σ*
- Ngôn ngữ rỗng: tập rỗng \emptyset ⇒ phân biệt với $\{\epsilon\}$
- Ví dụ
 - $L_1 = \{ w \in \Sigma_1^* ||w| = 2 \}$
 - $L_2 = \{w \in \Sigma_2^* | |w| \le 80\}$
 - $L_3 = \{ w \in \Sigma_3^* | w \text{ biểu diễn biểu thức số học } \}$
 - $L_4 = \{ w \in \Sigma_4^* | w = I \text{ am a student hoặc } w = I \text{ am a teacher} \}$

- Tập con bất kì của Σ*
- Ngôn ngữ rỗng: tập rỗng \emptyset ⇒ phân biệt với $\{\epsilon\}$
- Ví dụ
 - $L_1 = \{ w \in \Sigma_1^* ||w| = 2 \}$
 - $L_2 = \{w \in \Sigma_2^* | |w| \le 80\}$
 - $L_3 = \{ w \in \Sigma_3^* | w \text{ biểu diễn biểu thức số học } \}$
 - $L_4 = \{ w \in \Sigma_4^* | w = I \text{ am a student hoặc } w = I \text{ am a teacher} \}$

- Tập con bất kì của Σ*
- Ngôn ngữ rỗng: tập rỗng \emptyset ⇒ phân biệt với $\{\epsilon\}$
- Ví dụ
 - $L_1 = \{ w \in \Sigma_1^* ||w| = 2 \}$
 - $L_2 = \{w \in \Sigma_2^* | |w| \le 80\}$
 - $L_3 = \{ w \in \Sigma_3^* | w \text{ biểu diễn biểu thức số học } \}$
 - $L_4 = \{ w \in \Sigma_4^* | w = I \text{ am a student hoặc } w = I \text{ am a teacher} \}$

- 1. Bảng chữ cái Từ Ngôn ngữ
- 2. Các phép toán trên từ
- 3. Các phép toán trên ngôn ngữ
- 4. Văn phạm hình thức
- 5. Hai bài toán cơ bản về văn phạm
 - Bài toán phân tích
 - Bài toán tổng hợp

- Định nghĩa: Cho 2 từ $u = u_1 \cdots u_m$, $v = v_1 \cdots v_n$ trên bảng chữ cái Σ . Tích ghép của 2 từ $w = u \cdot v = uv$ là phép kết nối các chữ cái trong từ v vào ngay sau các chữ cái trong từ u: $w = u_1 \cdots u_m v_1 \cdots v_n$.
- Tính chất:
 - Từ rông là phân tử đơn vị: $w = \epsilon \cdot w = w \cdot \epsilon \ \forall w \in \Sigma^*$
 - Không giao hoán
 - \blacksquare Kêt hợp: u(wv) = (uw)v
 - |uv| = |u| + |v|
- Luỹ thừa: Kí hiệu $u^0 = \epsilon$, $u^1 = u$, $u^n = u^{n-1} \cdot u$ với n là số tư nhiên > 1
- Từ con (nhân tử): x là từ con của y trên bảng chữ cái Σ nếu $\exists u, v \in \Sigma^* : y = u \cdot x \cdot v$.
- Phần đầu (tiền tố), phần cuối (hậu tố): x là tiền tố (hậu tố) của y trên bảng chữ cái Σ nếu
 ∃v(u) ∈ Σ*: y = x ⋅ v(y = u ⋅ x).

- Định nghĩa: Cho 2 từ $u = u_1 \cdots u_m$, $v = v_1 \cdots v_n$ trên bảng chữ cái Σ . Tích ghép của 2 từ $w = u \cdot v = uv$ là phép kết nối các chữ cái trong từ v vào ngay sau các chữ cái trong từ u: $w = u_1 \cdots u_m v_1 \cdots v_n$.
- Tính chất:
 - Từ rỗng là phần tử đơn vị: $w = \epsilon \cdot w = w \cdot \epsilon \ \forall w \in \Sigma^*$
 - Không giao hoán
 - Kết hợp: u(wv) = (uw)v
 - |uv| = |u| + |v|
- Luỹ thừa: Kí hiệu $u^0 = \epsilon$, $u^1 = u$, $u^n = u^{n-1} \cdot u$ với n là số tư nhiên > 1
- Từ con (nhân tử): x là từ con của y trên bảng chữ cái Σ nếu $\exists u, v \in \Sigma^* : y = u \cdot x \cdot v$.
- Phần đầu (tiền tố), phần cuối (hậu tố): x là tiền tố (hậu tố) của y trên bảng chữ cái Σ nếu
 ∃v(u) ∈ Σ*: y = x ⋅ v(y = u ⋅ x).

- Định nghĩa: Cho 2 từ $u = u_1 \cdots u_m$, $v = v_1 \cdots v_n$ trên bảng chữ cái Σ . Tích ghép của 2 từ $w = u \cdot v = uv$ là phép kết nối các chữ cái trong từ v vào ngay sau các chữ cái trong từ u: $w = u_1 \cdots u_m v_1 \cdots v_n$.
- Tính chất:
 - Từ rỗng là phần tử đơn vị: $w = \epsilon \cdot w = w \cdot \epsilon \ \forall w \in \Sigma^*$
 - Không giao hoán
 - Kết hợp: u(wv) = (uw)v
 - |uv| = |u| + |v|
- Luỹ thừa: Kí hiệu $u^0 = \epsilon$, $u^1 = u$, $u^n = u^{n-1} \cdot u$ với n là số tự nhiên > 1
- Từ con (nhân tử): x là từ con của y trên bảng chữ cái Σ nếu $\exists u, v \in \Sigma^* : y = u \cdot x \cdot v$.
- Phần đầu (tiền tố), phần cuối (hậu tố): x là tiền tố (hậu tố) của y trên bảng chữ cái Σ nếu
 ∃v(u) ∈ Σ*: y = x ⋅ v(y = u ⋅ x).

- Định nghĩa: Cho 2 từ $u = u_1 \cdots u_m$, $v = v_1 \cdots v_n$ trên bảng chữ cái Σ . Tích ghép của 2 từ $w = u \cdot v = uv$ là phép kết nối các chữ cái trong từ v vào ngay sau các chữ cái trong từ u: $w = u_1 \cdots u_m v_1 \cdots v_n$.
- Tính chất:
 - Từ rỗng là phần tử đơn vị: $w = \epsilon \cdot w = w \cdot \epsilon \ \forall w \in \Sigma^*$
 - Không giao hoán
 - Kết hợp: u(wv) = (uw)v
 - |uv| = |u| + |v|
- Luỹ thừa: Kí hiệu $u^0 = \epsilon$, $u^1 = u$, $u^n = u^{n-1} \cdot u$ với n là số tự nhiên > 1
- Từ con (nhân tử): x là từ con của y trên bảng chữ cái Σ nếu $\exists u, v \in \Sigma^* : y = u \cdot x \cdot v$.
- Phần đầu (tiền tố), phần cuối (hậu tố): x là tiền tố (hậu tố) của y trên bảng chữ cái Σ nếu
 ∃v(u) ∈ Σ*: y = x ⋅ v(y = u ⋅ x).

- Định nghĩa: Cho 2 từ $u = u_1 \cdots u_m$, $v = v_1 \cdots v_n$ trên bảng chữ cái Σ . Tích ghép của 2 từ $w = u \cdot v = uv$ là phép kết nối các chữ cái trong từ v vào ngay sau các chữ cái trong từ u: $w = u_1 \cdots u_m v_1 \cdots v_n$.
- Tính chất:
 - Từ rỗng là phần tử đơn vị: $w = \epsilon \cdot w = w \cdot \epsilon \ \forall w \in \Sigma^*$
 - Không giao hoán
 - Kết hợp: u(wv) = (uw)v
 - $\blacksquare |uv| = |u| + |v|$
- Luỹ thừa: Kí hiệu $u^0 = \epsilon$, $u^1 = u$, $u^n = u^{n-1} \cdot u$ với n là số tư nhiên > 1
- Từ con (nhân tử): x là từ con của y trên bảng chữ cái Σ nếu $\exists u, v \in \Sigma^* : y = u \cdot x \cdot v$.
- Phần đầu (tiền tố), phần cuối (hậu tố): x là tiền tố (hậu tố) của y trên bảng chữ cái Σ nếu
 ∃v(u) ∈ Σ*: y = x ⋅ v(y = u ⋅ x).

- Định nghĩa: Cho 2 từ $u = u_1 \cdots u_m$, $v = v_1 \cdots v_n$ trên bảng chữ cái Σ . Tích ghép của 2 từ $w = u \cdot v = uv$ là phép kết nối các chữ cái trong từ v vào ngay sau các chữ cái trong từ u: $w = u_1 \cdots u_m v_1 \cdots v_n$.
- Tính chất:
 - Từ rỗng là phần tử đơn vị: $w = \epsilon \cdot w = w \cdot \epsilon \ \forall w \in \Sigma^*$
 - Không giao hoán
 - Kết hợp: u(wv) = (uw)v
 - |uv| = |u| + |v|
- Luỹ thừa: Kí hiệu $u^0 = \epsilon$, $u^1 = u$, $u^n = u^{n-1} \cdot u$ với n là số tự nhiên > 1
- Từ con (nhân tử): x là từ con của y trên bảng chữ cái Σ nếu $\exists u, v \in \Sigma^* : y = u \cdot x \cdot v$.
- Phần đầu (tiền tố), phần cuối (hậu tố): x là tiền tố (hậu tố) của y trên bảng chữ cái Σ nếu
 ∃v(u) ∈ Σ*: y = x ⋅ v(y = u ⋅ x).

- Định nghĩa: Cho 2 từ $u = u_1 \cdots u_m$, $v = v_1 \cdots v_n$ trên bảng chữ cái Σ . Tích ghép của 2 từ $w = u \cdot v = uv$ là phép kết nối các chữ cái trong từ v vào ngay sau các chữ cái trong từ u: $w = u_1 \cdots u_m v_1 \cdots v_n$.
- Tính chất:
 - Từ rỗng là phần tử đơn vị: $w = \epsilon \cdot w = w \cdot \epsilon \ \forall w \in \Sigma^*$
 - Không giao hoán
 - Kết hợp: u(wv) = (uw)v
 - |uv| = |u| + |v|
- Luỹ thừa: Kí hiệu $u^0 = \epsilon$, $u^1 = u$, $u^n = u^{n-1} \cdot u$ với n là số tự nhiên > 1
- Từ con (nhân tử): x là từ con của y trên bảng chữ cái Σ nếu $\exists u, v \in \Sigma^* : y = u \cdot x \cdot v$.
- Phần đầu (tiền tố), phần cuối (hậu tố): x là tiền tố (hậu tố) của y trên bảng chữ cái Σ nếu
 ∃v(u) ∈ Σ*: y = x ⋅ v(y = u ⋅ x).

- Định nghĩa: Cho 2 từ $u = u_1 \cdots u_m$, $v = v_1 \cdots v_n$ trên bảng chữ cái Σ . Tích ghép của 2 từ $w = u \cdot v = uv$ là phép kết nối các chữ cái trong từ v vào ngay sau các chữ cái trong từ u: $w = u_1 \cdots u_m v_1 \cdots v_n$.
- Tính chất:
 - Từ rỗng là phần tử đơn vị: $w = \epsilon \cdot w = w \cdot \epsilon \ \forall w \in \Sigma^*$
 - Không giao hoán
 - Kết hợp: u(wv) = (uw)v
 - |uv| = |u| + |v|
- Luỹ thừa: Kí hiệu $u^0 = \epsilon$, $u^1 = u$, $u^n = u^{n-1} \cdot u$ với n là số tự nhiên > 1
- Từ con (nhân tử): x là từ con của y trên bảng chữ cái Σ nếu $\exists u, v \in \Sigma^* : y = u \cdot x \cdot v$.
- Phần đầu (tiền tố), phần cuối (hậu tố): x là tiền tố (hậu tố) của y trên bảng chữ cái Σ nếu
 ∃v(u) ∈ Σ*: y = x ⋅ v(y = u ⋅ x).

- Định nghĩa: Cho 2 từ $u = u_1 \cdots u_m$, $v = v_1 \cdots v_n$ trên bảng chữ cái Σ . Tích ghép của 2 từ $w = u \cdot v = uv$ là phép kết nối các chữ cái trong từ v vào ngay sau các chữ cái trong từ u: $w = u_1 \cdots u_m v_1 \cdots v_n$.
- Tính chất:
 - Từ rỗng là phần tử đơn vị: $w = \epsilon \cdot w = w \cdot \epsilon \ \forall w \in \Sigma^*$
 - Không giao hoán
 - Kết hợp: u(wv) = (uw)v
 - |uv| = |u| + |v|
- Luỹ thừa: Kí hiệu $u^0 = \epsilon$, $u^1 = u$, $u^n = u^{n-1} \cdot u$ với n là số tự nhiên > 1
- Từ con (nhân tử): x là từ con của y trên bảng chữ cái Σ nếu $\exists u, v \in \Sigma^* : y = u \cdot x \cdot v$.
- Phần đầu (tiền tố), phần cuối (hậu tố): x là tiền tố (hậu tố) của y trên bảng chữ cái Σ nếu
 ∃v(u) ∈ Σ*: y = x ⋅ v(y = u ⋅ x).

■ Định nghĩa

- Chia trái (\): $w \setminus u = u^{-1}w = v$ nếu $\exists v : w = uv$
- Chia phải (/): $w/v = wv^{-1} = u$ nếu $\exists u : w = uv$

Tính chất

- Phép chia trái (phải) vô nghĩa khi u (v) không phải là tiền tố (hâu tố) của từ w
- Chia cho từ rỗng: $w \setminus \epsilon = w / \epsilon = w$
- Chia cho bản thân của từ: $w \mid w = w / w = \epsilon$
- Độ dài của thương: $|w \setminus u| + |u| = |w|$, $|w \setminus v| + |v| = |w|$

■ Định nghĩa

- Chia trái (\): $w \setminus u = u^{-1}w = v$ nếu $\exists v : w = uv$
- Chia phải (/): $w/v = wv^{-1} = u$ nếu $\exists u : w = uv$

Tính chất

- Phép chia trái (phải) vô nghĩa khi u (v) không phải là tiến tô (hâu tố) của từ w
- Chia cho từ rỗng: $w \setminus \epsilon = w / \epsilon = w$
- Chia cho bản thân của từ: $w \mid w = w \mid w = \epsilon$
- Đô dài của thương: $|w \setminus u| + |u| = |w|$, |w/v| + |v| = |w|

■ Định nghĩa

- Chia trái (\): $w \setminus u = u^{-1}w = v$ nếu $\exists v : w = uv$
- Chia phải (/): $w/v = wv^{-1} = u$ nếu $\exists u : w = uv$
- Tính chất
 - Phép chia trái (phải) vô nghĩa khi u (v) không phải là tiến tổ (hâu tố) của từ w
 - Chia cho từ rỗng: $w \setminus \epsilon = w / \epsilon = w$
 - Chia cho bản thân của từ: $w \mid w = w \mid w = \epsilon$
 - Đô dài của thương: $|w \setminus u| + |u| = |w|$, |w / v| + |v| = |w|

■ Định nghĩa

- Chia trái (\): $w \setminus u = u^{-1}w = v$ nếu $\exists v : w = uv$
- Chia phải (/): $w/v = wv^{-1} = u$ nếu $\exists u : w = uv$

■ Tính chất

- Phép chia trái (phải) vô nghĩa khi u (v) không phải là tiền tố (hậu tố) của từ w
- Chia cho từ rỗng: $w \setminus \epsilon = w / \epsilon = w$
- Chia cho bản thân của từ: $w \mid w = w / w = \epsilon$
- Độ dài của thương: $|w \setminus u| + |u| = |w|$, |w/v| + |v| = |w|

- Định nghĩa
 - Chia trái (\): $w \setminus u = u^{-1}w = v$ nếu $\exists v : w = uv$
 - Chia phải (/): $w/v = wv^{-1} = u$ nếu $\exists u : w = uv$
- Tính chất
 - Phép chia trái (phải) vô nghĩa khi u (v) không phải là tiền tố (hậu tố) của từ w
 - Chia cho từ rỗng: $w \setminus \epsilon = w/\epsilon = w$
 - Chia cho bản thân của từ: $w \mid w = w \mid w = \epsilon$
 - Độ dài của thương: $|w \setminus u| + |u| = |w|$, |w/v| + |v| = |w|

- Định nghĩa
 - Chia trái (\): $w \setminus u = u^{-1}w = v$ nếu $\exists v : w = uv$
 - Chia phải (/): $w/v = wv^{-1} = u$ nếu $\exists u : w = uv$
- Tính chất
 - Phép chia trái (phải) vô nghĩa khi u (v) không phải là tiền tố (hậu tố) của từ w
 - Chia cho từ rỗng: $w \setminus \epsilon = w/\epsilon = w$
 - Chia cho bản thân của từ: $w \setminus w = w/w = \epsilon$
 - Độ dài của thương: $|w \setminus u| + |u| = |w|$, |w/v| + |v| = |w|

- Định nghĩa
 - Chia trái (\): $w \setminus u = u^{-1}w = v$ nếu $\exists v : w = uv$
 - Chia phải (/): $w/v = wv^{-1} = u$ nếu $\exists u : w = uv$
- Tính chất
 - Phép chia trái (phải) vô nghĩa khi u (v) không phải là tiền tố (hậu tố) của từ w
 - Chia cho từ rỗng: $w \setminus \epsilon = w/\epsilon = w$
 - Chia cho bản thân của từ: $w \setminus w = w/w = \epsilon$
 - Độ dài của thương: $|w \setminus u| + |u| = |w|$, |w/v| + |v| = |w|

- Định nghĩa
 - Chia trái (\): $w \setminus u = u^{-1}w = v$ nếu $\exists v : w = uv$
 - Chia phải (/): $w/v = wv^{-1} = u$ nếu $\exists u : w = uv$
- Tính chất
 - Phép chia trái (phải) vô nghĩa khi u (v) không phải là tiền tố (hậu tố) của từ w
 - Chia cho từ rỗng: $w \setminus \epsilon = w/\epsilon = w$
 - Chia cho bản thân của từ: $w \setminus w = w/w = \epsilon$
 - Độ dài của thương: $|w \setminus u| + |u| = |w|$, |w/v| + |v| = |w|

Phép soi gương (lấy từ ngược)

- Định nghĩa: $w = w_1 w_2 \cdots w_n$, từ ngược (soi gương) của w là $\widetilde{w} = w^R = w_n \cdots w_2 w_1$
- Tính chất
 - Liên hê giữa phép soi gương và phép chia

■ Chứng minh (yêu cầu sinh viên)

Phép soi gương (lấy từ ngược)

- Định nghĩa: $w = w_1 w_2 \cdots w_n$, từ ngược (soi gương) của w là $\widetilde{w} = w^R = w_n \cdots w_2 w_1$
- Tính chất
 - Liên hệ giữa phép soi gương và phép chia:
 - $\blacksquare \ \widetilde{u \backslash v} = \widetilde{u} / \widetilde{v}$
 - $\blacksquare \ \widetilde{u/v} = \widetilde{u} \backslash \widetilde{v}$
 - Chứng minh (yêu cầu sinh viên)

Phép soi gương (lấy từ ngược)

- Định nghĩa: $w = w_1 w_2 \cdots w_n$, từ ngược (soi gương) của w là $\widetilde{w} = w^R = w_n \cdots w_2 w_1$
- Tính chất
 - Liên hệ giữa phép soi gương và phép chia:

 - $\blacksquare \ \widetilde{u/v} = \widetilde{u} \backslash \widetilde{v}$
 - Chứng minh (yêu cầu sinh viên)

Nội dung

- 1. Bảng chữ cái Từ Ngôn ngữ
- 2. Các phép toán trên tù
- 3. Các phép toán trên ngôn ngữ
- 4. Văn phạm hình thức
- 5. Hai bài toán cơ bản về văn phạm
 - Bài toán phân tích
 - Bài toán tổng hợp

- Hợp: $L_1, L_2 \subseteq \Sigma^*$, $L = L_1 \cup L_2 = L_1 \lor L_2 = \{w \in \Sigma^* | w \in L_1 \lor w \in L_2\}$
- Giao: $L_1, L_2 \subseteq \Sigma^*$, $L = L_1 \cap L_2 = L_1 \wedge L_2 = \{ w \in \Sigma^* | w \in L_1 \wedge w \in L_2 \}$
- Hiệu: $L_1, L_2 \subseteq \Sigma^*, L = L_1 \setminus L_2 = \{w \in \Sigma^* | w \in L_1 \land w \notin L_2\}$
- Phần bù: $L \subseteq \Sigma^*$, $C_{\Sigma}L = \{w \in \Sigma^* | w \notin L\}$

- Hợp: $L_1, L_2 \subseteq \Sigma^*$, $L = L_1 \cup L_2 = L_1 \lor L_2 = \{w \in \Sigma^* | w \in L_1 \lor w \in L_2\}$
- Giao: $L_1, L_2 \subseteq \Sigma^*$, $L = L_1 \cap L_2 = L_1 \wedge L_2 = \{ w \in \Sigma^* | w \in L_1 \wedge w \in L_2 \}$
- Hiệu: $L_1, L_2 \subseteq \Sigma^*, L = L_1 \setminus L_2 = \{w \in \Sigma^* | w \in L_1 \land w \notin L_2\}$
- Phần bù: $L \subseteq \Sigma^*$, $C_{\Sigma}L = \{w \in \Sigma^* | w \notin L\}$

- Hợp: $L_1, L_2 \subseteq \Sigma^*$, $L = L_1 \cup L_2 = L_1 \lor L_2 = \{w \in \Sigma^* | w \in L_1 \lor w \in L_2\}$
- Giao: $L_1, L_2 \subseteq \Sigma^*$, $L = L_1 \cap L_2 = L_1 \wedge L_2 = \{w \in \Sigma^* | w \in L_1 \wedge w \in L_2\}$
- Hiệu: $L_1, L_2 \subseteq \Sigma^*, L = L_1 \setminus L_2 = \{w \in \Sigma^* | w \in L_1 \land w \notin L_2\}$
- Phần bù: $L \subseteq \Sigma^*$, $C_{\Sigma}L = \{w \in \Sigma^* | w \notin L\}$

- Hợp: $L_1, L_2 \subseteq \Sigma^*$, $L = L_1 \cup L_2 = L_1 \lor L_2 = \{w \in \Sigma^* | w \in L_1 \lor w \in L_2\}$
- Giao: $L_1, L_2 \subseteq \Sigma^*$, $L = L_1 \cap L_2 = L_1 \wedge L_2 = \{ w \in \Sigma^* | w \in L_1 \wedge w \in L_2 \}$
- Hiệu: $L_1, L_2 \subseteq \Sigma^*, L = L_1 \setminus L_2 = \{w \in \Sigma^* | w \in L_1 \land w \notin L_2\}$
- Phần bù: $L \subseteq \Sigma^*$, $C_{\Sigma}L = \{w \in \Sigma^* | w \notin L\}$

- Định nghĩa: Cho $L_1, L_2 \subseteq \Sigma^*$, tích ghép $L = L_1 \cdot L_2 = L_1 L_2 = \{ w \in \Sigma^* | \exists u \in L_1, v \in L_2 : w = u \cdot v \}$
- Tính chất:
 - $L\{\epsilon\} = \{\epsilon\}L = L, L\emptyset = \emptyset L = \emptyset$
 - Không giao hoán
 - \blacksquare Kết hợp $L_1(L_2L_3) = (L_1L_2)L_3$
 - Phân phôi đôi với phép hợp $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$, $(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$
 - $|L_1L_2| \leq |L_1| |L_2| \Rightarrow \text{hiện tượng nhập nhằng}$
- Luỹ thừa: Cho $L \subseteq \Sigma^*$, $L^0 = \{\epsilon\}$, $L^1 = L$, $L^n = L^{n-1}L$ với n là số tự nhiên > 1.

- Định nghĩa: Cho $L_1, L_2 \subseteq \Sigma^*$, tích ghép $L = L_1 \cdot L_2 = L_1 L_2 = \{ w \in \Sigma^* | \exists u \in L_1, v \in L_2 : w = u \cdot v \}$
- Tính chất:

 - Không giao hoán
 - Kết hợp $L_1(L_2L_3) = (L_1L_2)L_3$
 - Phân phối đối với phép hợp $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$, $(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$
 - $|L_1L_2| \le |L_1|.|L_2| \Rightarrow$ hiện tượng nhập nhằng
- Luỹ thừa: Cho $L \subseteq \Sigma^*$, $L^0 = \{\epsilon\}$, $L^1 = L$, $L^n = L^{n-1}L$ với n là số tự nhiên > 1.

- Định nghĩa: Cho $L_1, L_2 \subseteq \Sigma^*$, tích ghép $L = L_1 \cdot L_2 = L_1 L_2 = \{ w \in \Sigma^* | \exists u \in L_1, v \in L_2 : w = u \cdot v \}$
- Tính chất:

$$L\{\epsilon\} = \{\epsilon\}L = L, L\emptyset = \emptyset L = \emptyset$$

- Không giao hoán
- Kết hợp $L_1(L_2L_3) = (L_1L_2)L_3$
- Phân phối đối với phép hợp $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$, $(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$
- $|L_1L_2| \le |L_1|.|L_2| \Rightarrow$ hiện tượng nhập nhằng
- Luỹ thừa: Cho $L \subseteq \Sigma^*$, $L^0 = \{\epsilon\}$, $L^1 = L$, $L^n = L^{n-1}L$ với n là số tư nhiên > 1.

- Định nghĩa: Cho $L_1, L_2 \subseteq \Sigma^*$, tích ghép $L = L_1 \cdot L_2 = L_1 L_2 = \{ w \in \Sigma^* | \exists u \in L_1, v \in L_2 : w = u \cdot v \}$
- Tính chất:

 - Không giao hoán
 - Kết hợp $L_1(L_2L_3) = (L_1L_2)L_3$
 - Phân phối đối với phép hợp $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$, $(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$
 - $|L_1L_2| \le |L_1|.|L_2| \Rightarrow$ hiện tượng nhập nhằng
- Luỹ thừa: Cho $L \subseteq \Sigma^*$, $L^0 = \{\epsilon\}$, $L^1 = L$, $L^n = L^{n-1}L$ với n là số tư nhiên > 1.

- Định nghĩa: Cho $L_1, L_2 \subseteq \Sigma^*$, tích ghép $L = L_1 \cdot L_2 = L_1 L_2 = \{ w \in \Sigma^* | \exists u \in L_1, v \in L_2 : w = u \cdot v \}$
- Tính chất:

 - Không giao hoán
 - Kết hợp $L_1(L_2L_3) = (L_1L_2)L_3$
 - Phân phối đối với phép hợp $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$, $(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$
 - $|L_1L_2| \le |L_1|.|L_2| \Rightarrow$ hiện tượng nhập nhằng
- Luỹ thừa: Cho $L \subseteq \Sigma^*$, $L^0 = \{\epsilon\}$, $L^1 = L$, $L^n = L^{n-1}L$ với n là số tự nhiên > 1.

- Định nghĩa: Cho $L_1, L_2 \subseteq \Sigma^*$, tích ghép $L = L_1 \cdot L_2 = L_1 L_2 = \{ w \in \Sigma^* | \exists u \in L_1, v \in L_2 : w = u \cdot v \}$
- Tính chất:
 - $L\{\epsilon\} = \{\epsilon\}L = L, L\emptyset = \emptyset L = \emptyset$
 - Không giao hoán
 - Kết hợp $L_1(L_2L_3) = (L_1L_2)L_3$
 - Phân phối đối với phép hợp $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$, $(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$
 - $|L_1L_2| \le |L_1|.|L_2| \Rightarrow$ hiện tượng nhập nhằng
- Luỹ thừa: Cho $L \subseteq \Sigma^*$, $L^0 = \{\epsilon\}$, $L^1 = L$, $L^n = L^{n-1}L$ với n là số tự nhiên > 1.

- Định nghĩa: Cho $L_1, L_2 \subseteq \Sigma^*$, tích ghép $L = L_1 \cdot L_2 = L_1 L_2 = \{ w \in \Sigma^* | \exists u \in L_1, v \in L_2 : w = u \cdot v \}$
- Tính chất:
 - $L\{\epsilon\} = \{\epsilon\}L = L, L\emptyset = \emptyset L = \emptyset$
 - Không giao hoán
 - Kết hợp $L_1(L_2L_3) = (L_1L_2)L_3$
 - Phân phối đối với phép hợp $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$, $(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$
 - $|L_1L_2| \le |L_1| \cdot |L_2| \Rightarrow$ hiện tượng nhập nhằng
- Luỹ thừa: Cho $L \subseteq \Sigma^*$, $L^0 = \{\epsilon\}$, $L^1 = L$, $L^n = L^{n-1}L$ với n là số tư nhiên > 1.

- Định nghĩa: Cho $L_1, L_2 \subseteq \Sigma^*$, tích ghép $L = L_1 \cdot L_2 = L_1 L_2 = \{ w \in \Sigma^* | \exists u \in L_1, v \in L_2 : w = u \cdot v \}$
- Tính chất:
 - $L\{\epsilon\} = \{\epsilon\}L = L, L\emptyset = \emptyset L = \emptyset$
 - Không giao hoán
 - Kết hợp $L_1(L_2L_3) = (L_1L_2)L_3$
 - Phân phối đối với phép hợp $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$, $(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$
 - $|L_1L_2| \le |L_1|.|L_2| \Rightarrow$ hiện tượng nhập nhằng
- Luỹ thừa: Cho $L \subseteq \Sigma^*$, $L^0 = \{\epsilon\}$, $L^1 = L$, $L^n = L^{n-1}L$ với n là số tư nhiên > 1.

- Cho $L \subseteq \Sigma^*$
- Ngôn ngữ lặp (hay bao đóng ghép) của L là $L^* = \bigcup_{n=0}^{\infty} L^n$
- Ngôn ngữ lặp cắt của L là $L^+ = \bigcup_{n=1}^{\infty} L^n$
- Ví dụ: $L = \{0, 1\}$ trên bảng chữ cái $\Sigma = \{0, 1\}, (\Sigma^2)^*$
- So sánh L* và L+

- Cho $L \subseteq \Sigma^*$
- Ngôn ngữ lặp (hay bao đóng ghép) của L là $L^* = \bigcup_{n=0}^{\infty} L^n$
- Ngôn ngữ lặp cắt của L là $L^+ = \bigcup_{n=1}^{\infty} L^n$
- Ví dụ: $L = \{0, 1\}$ trên bảng chữ cái $\Sigma = \{0, 1\}, (\Sigma^2)^*$
- So sánh L* và L+

- Cho $L \subseteq \Sigma^*$
- Ngôn ngữ lặp (hay bao đóng ghép) của L là $L^* = \bigcup_{n=0}^{\infty} L^n$
- Ngôn ngữ lặp cắt của L là $L^+ = \bigcup_{n=1}^{\infty} L^n$
- Ví dụ: $L = \{0, 1\}$ trên bảng chữ cái $\Sigma = \{0, 1\}, (\Sigma^2)^*$
- So sánh L* và L+

- Cho $L \subseteq \Sigma^*$
- Ngôn ngữ lặp (hay bao đóng ghép) của L là $L^* = \bigcup_{n=0}^{\infty} L^n$
- Ngôn ngữ lặp cắt của L là $L^+ = \bigcup_{n=1}^{\infty} L^n$
- Ví dụ: $L = \{0, 1\}$ trên bảng chữ cái $\Sigma = \{0, 1\}, (\Sigma^2)^*$
- So sánh L* và L+

- Cho $L \subseteq \Sigma^*$
- Ngôn ngữ lặp (hay bao đóng ghép) của L là $L^* = \bigcup_{n=0}^{\infty} L^n$
- Ngôn ngữ lặp cắt của L là $L^+ = \bigcup_{n=1}^{\infty} L^n$
- Ví dụ: $L = \{0, 1\}$ trên bảng chữ cái $\Sigma = \{0, 1\}, (\Sigma^2)^*$
- So sánh L* và L+

- Định nghĩa: Cho $K, L \subseteq \Sigma^*$
 - Chia trái (\): $L \setminus K = K^{-1}L = \{v \in \Sigma^* | \exists u \in K, u \cdot v \in L\}$
 - Chia phải (/): $L/K = LK^{-1} = \{u \in \Sigma^* | \exists v \in K, u \cdot v \in L\}$
- Ví dụ: $L = \{a, b, abc, cab, bcaa\}, K = \{\epsilon, c, ab\}$
- Tính chất
 - $L \setminus \{\epsilon\} = L/\{\epsilon\} = L$
 - $L \setminus \emptyset = L/\emptyset = \emptyset$
 - $\Sigma^* \setminus L = \Sigma^* / L = \Sigma^*$
 - $\Sigma^+ \setminus L = \Sigma^+ / L = \Sigma^* (L \neq \{\epsilon\}, L \neq \emptyset)$

- Định nghĩa: Cho $K, L \subseteq \Sigma^*$
 - Chia trái (\): $L \setminus K = K^{-1}L = \{v \in \Sigma^* | \exists u \in K, u \cdot v \in L\}$
 - Chia phải (/): $L/K = LK^{-1} = \{u \in \Sigma^* | \exists v \in K, u \cdot v \in L\}$
- Ví dụ: $L = \{a, b, abc, cab, bcaa\}, K = \{\epsilon, c, ab\}$
- Tính chất
 - $L \setminus \{\epsilon\} = L/\{\epsilon\} = L$
 - $\blacksquare L \setminus \emptyset = L/\emptyset = \emptyset$
 - $\Sigma^* \setminus L = \Sigma^* / L = \Sigma^*$
 - $\Sigma^+ \setminus L = \Sigma^+ / L = \Sigma^* (L \neq \{\epsilon\}, L \neq \emptyset)$

- Định nghĩa: Cho $K, L \subseteq \Sigma^*$
 - Chia trái (\): $L \setminus K = K^{-1}L = \{v \in \Sigma^* | \exists u \in K, u \cdot v \in L\}$
 - Chia phải (/): $L/K = LK^{-1} = \{u \in \Sigma^* | \exists v \in K, u \cdot v \in L\}$
- Ví dụ: $L = \{a, b, abc, cab, bcaa\}, K = \{\epsilon, c, ab\}$
- Tính chất
 - $L \setminus \{\epsilon\} = L/\{\epsilon\} = L$
 - $L \setminus \emptyset = L/\emptyset = \emptyset$
 - $\Sigma^* \setminus L = \Sigma^* / L = \Sigma^*$
 - $\Sigma^+ \setminus L = \Sigma^+ / L = \Sigma^* (L \neq \{\epsilon\}, L \neq \emptyset)$

- Định nghĩa: Cho $K, L \subseteq \Sigma^*$
 - Chia trái (\): $L \setminus K = K^{-1}L = \{v \in \Sigma^* | \exists u \in K, u \cdot v \in L\}$
 - Chia phải (/): $L/K = LK^{-1} = \{u \in \Sigma^* | \exists v \in K, u \cdot v \in L\}$
- Ví dụ: $L = \{a, b, abc, cab, bcaa\}, K = \{\epsilon, c, ab\}$
- Tính chất
 - $L \setminus \{\epsilon\} = L/\{\epsilon\} = L$
 - $\blacksquare L \setminus \emptyset = L/\emptyset = \emptyset$
 - $\Sigma^* \setminus L = \Sigma^* / L = \Sigma^*$

- Định nghĩa: Cho $K, L \subseteq \Sigma^*$
 - Chia trái (\): $L \setminus K = K^{-1}L = \{v \in \Sigma^* | \exists u \in K, u \cdot v \in L\}$
 - Chia phải (/): $L/K = LK^{-1} = \{u \in \Sigma^* | \exists v \in K, u \cdot v \in L\}$
- Ví dụ: $L = \{a, b, abc, cab, bcaa\}, K = \{\epsilon, c, ab\}$
- Tính chất

 - $L \setminus \emptyset = L/\emptyset = \emptyset$
 - $\Sigma^* \setminus L = \Sigma^* / L = \Sigma^*$

- Định nghĩa: Cho $K, L \subseteq \Sigma^*$
 - Chia trái (\): $L \setminus K = K^{-1}L = \{v \in \Sigma^* | \exists u \in K, u \cdot v \in L\}$
 - Chia phải (/): $L/K = LK^{-1} = \{u \in \Sigma^* | \exists v \in K, u \cdot v \in L\}$
- Ví dụ: $L = \{a, b, abc, cab, bcaa\}, K = \{\epsilon, c, ab\}$
- Tính chất
 - $L \setminus \{\epsilon\} = L/\{\epsilon\} = L$
 - $L \setminus \emptyset = L/\emptyset = \emptyset$
 - $\Sigma^* \setminus L = \Sigma^* / L = \Sigma^*$

- Định nghĩa: Cho $K, L \subseteq \Sigma^*$
 - Chia trái (\): $L \setminus K = K^{-1}L = \{v \in \Sigma^* | \exists u \in K, u \cdot v \in L\}$
 - Chia phải (/): $L/K = LK^{-1} = \{u \in \Sigma^* | \exists v \in K, u \cdot v \in L\}$
- Ví dụ: $L = \{a, b, abc, cab, bcaa\}, K = \{\epsilon, c, ab\}$
- Tính chất
 - $L \setminus \{\epsilon\} = L/\{\epsilon\} = L$
 - $L \setminus \emptyset = L/\emptyset = \emptyset$
 - $\Sigma^* \setminus L = \Sigma^* / L = \Sigma^*$

- Định nghĩa: Cho $K, L \subseteq \Sigma^*$
 - Chia trái (\): $L \setminus K = K^{-1}L = \{v \in \Sigma^* | \exists u \in K, u \cdot v \in L\}$
 - Chia phải (/): $L/K = LK^{-1} = \{u \in \Sigma^* | \exists v \in K, u \cdot v \in L\}$
- Ví dụ: $L = \{a, b, abc, cab, bcaa\}, K = \{\epsilon, c, ab\}$
- Tính chất
 - $L \setminus \{\epsilon\} = L/\{\epsilon\} = L$
 - $L \setminus \emptyset = L/\emptyset = \emptyset$
 - $\Sigma^* \setminus L = \Sigma^* / L = \Sigma^*$

Soi gương (lấy ngôn ngữ ngược)

- Cho $L \subseteq \Sigma^*$, ngôn ngữ soi gương (ngôn ngữ ngược) của L là $\widetilde{L} = L^R = \{ w \in \Sigma^* | \widetilde{w} \in L \}$
- Tính chất
 - $(L^R)^R = L$
 - $\blacksquare \{\epsilon\}^H = \{\epsilon\}$
 - \square \emptyset $R = \emptyset$
 - Liên hê với phép chia:

Soi gương (lấy ngôn ngữ ngược)

- Cho $L \subseteq \Sigma^*$, ngôn ngữ soi gương (ngôn ngữ ngược) của L là $\widetilde{L} = L^R = \{ w \in \Sigma^* | \widetilde{w} \in L \}$
- Tính chất
 - $(L^R)^R = L$

 - \blacksquare $\emptyset^R = \emptyset$
 - Liên hệ với phép chia:
 - $(L \backslash K)^R = L^R / K^R$
 - $(L/K)^R = L^R \backslash K^F$

Soi gương (lấy ngôn ngữ ngược)

- Cho $L \subseteq \Sigma^*$, ngôn ngữ soi gương (ngôn ngữ ngược) của L là $\widetilde{L} = L^R = \{ w \in \Sigma^* | \widetilde{w} \in L \}$
- Tính chất
 - $(L^R)^R = L$

 - $\blacksquare \emptyset^R = \emptyset$
 - Liên hệ với phép chia:
 - $(L \backslash K)^R = L^R / K^R$
 - $(L/K)^R = L^R \backslash K^R$

- Cho $L \subseteq \Sigma^*$, ngôn ngữ soi gương (ngôn ngữ ngược) của L là $\widetilde{L} = L^R = \{ w \in \Sigma^* | \widetilde{w} \in L \}$
- Tính chất
 - $(L^R)^R = L$

 - \blacksquare $\emptyset^R = \emptyset$
 - Liên hê với phép chia:
 - $(L \backslash K)^{H} = L^{R} / K^{R}$
 - $(L/K)^R = L^R \backslash K^R$

- Cho $L \subseteq \Sigma^*$, ngôn ngữ soi gương (ngôn ngữ ngược) của L là $\widetilde{L} = L^R = \{ w \in \Sigma^* | \widetilde{w} \in L \}$
- Tính chất

$$(L^R)^R = L$$

$$\blacksquare$$
 $\emptyset^R = \emptyset$

- Liên hệ với phép chia:
 - $(L\backslash K)^R = L^R/K^R$
 - $(L/K)^R = L^R \backslash K^R$

- Cho $L \subseteq \Sigma^*$, ngôn ngữ soi gương (ngôn ngữ ngược) của L là $\widetilde{L} = L^R = \{ w \in \Sigma^* | \widetilde{w} \in L \}$
- Tính chất
 - $(L^R)^R = L$

 - \blacksquare $\emptyset^R = \emptyset$
 - Liên hệ với phép chia:
 - $(L \backslash K)^R = L^R / K^R$
 - $(L/K)^R = L^R \backslash K^R$

- Cho $L \subseteq \Sigma^*$, ngôn ngữ soi gương (ngôn ngữ ngược) của L là $\widetilde{L} = L^R = \{ w \in \Sigma^* | \widetilde{w} \in L \}$
- Tính chất

$$(L^R)^R = L$$

$$\blacksquare$$
 $\emptyset^R = \emptyset$

- Liên hệ với phép chia:
 - $(L \backslash K)^R = L^R / K^R$
 - $(L/K)^R = L^R \backslash K^R$

Nội dung

- 1. Bảng chữ cái Từ Ngôn ngữ
- 2. Các phép toán trên tù
- 3. Các phép toán trên ngôn ngữ
- 4. Văn phạm hình thức
- 5. Hai bài toán cơ bản về văn phạm
 - Bài toán phân tích
 - Bài toán tổng hợp

- Ngôn ngữ hữu hạn: cách hiển nhiên nhất là liệt kê tập hợp các từ
- Ngôn ngữ vô hạn:
 - Xây dựng tử các ngôn ngữ đơn gián nhờ các phép toán trên ngôn ngữ
 - Mô tả bằng văn phạm hình thức
 - Một số ngôn ngữ không xây dựng được bằng 2 phương pháp trên: ngôn ngữ không quyết đinh được

- Ngôn ngữ hữu hạn: cách hiển nhiên nhất là liệt kê tập hợp các từ
- Ngôn ngữ vô hạn:
 - Xây dựng từ các ngôn ngữ đơn giản nhờ các phép toán trên ngôn ngữ
 - Mô tả bằng văn phạm hình thức
 - Một số ngôn ngữ không xây dựng được bằng 2 phương pháp trên: ngôn ngữ không quyết định được

- Ngôn ngữ hữu hạn: cách hiển nhiên nhất là liệt kê tập hợp các từ
- Ngôn ngữ vô hạn:
 - Xây dựng từ các ngôn ngữ đơn giản nhờ các phép toán trên ngôn ngữ
 - Mô tả bằng văn phạm hình thức
 - Một số ngôn ngữ không xây dựng được bằng 2 phương pháp trên: ngôn ngữ không quyết định được

- Ngôn ngữ hữu hạn: cách hiển nhiên nhất là liệt kê tập hợp các từ
- Ngôn ngữ vô hạn:
 - Xây dựng từ các ngôn ngữ đơn giản nhờ các phép toán trên ngôn ngữ
 - Mô tả bằng văn phạm hình thức
 - Một số ngôn ngữ không xây dựng được bằng 2 phương pháp trên: ngôn ngữ không quyết định được

- Ngôn ngữ hữu hạn: cách hiển nhiên nhất là liệt kê tập hợp các từ
- Ngôn ngữ vô hạn:
 - Xây dựng từ các ngôn ngữ đơn giản nhờ các phép toán trên ngôn ngữ
 - Mô tả bằng văn phạm hình thức
 - Một số ngôn ngữ không xây dựng được bằng 2 phương pháp trên: ngôn ngữ không quyết định được

- Ý nghĩa: Mô tả một ngôn ngữ bằng cách liệt kê tập từ vựng, tập các quy tắc cú pháp để tạo ra câu
- Định nghĩa hình thức: Văn phạm là một bộ bốn $G = (\Sigma, V, \sigma, P)$, trong đó:
 - Σ là bảng chữ cái chính, còn gọi là tập kí hiệu kết thúc
 - V là bảng chữ cái phụ, còn gọi là tập kí hiệu không kết hay tập biến, V ∩ Σ = ∅
 - $\sigma \in V$ là tiên để (biến khởi tạo)
 - P là tập các quy tặc sinh có dạng $\alpha \to \beta$, $\to \notin \Sigma \cup V$, $\alpha, \beta \in (\Sigma \cup V)^*$, $\alpha \notin \Sigma^*$

- Ý nghĩa: Mô tả một ngôn ngữ bằng cách liệt kê tập từ vựng, tập các quy tắc cú pháp để tạo ra câu
- Định nghĩa hình thức: Văn phạm là một bộ bốn
 G = (Σ, V, σ, P), trong đó:
 - Σ là bảng chữ cái chính, còn gọi là tập kí hiệu kết thúc
 - V là bảng chữ cái phụ, còn gọi là tập kí hiệu không kết hay tập biến, $V \cap \Sigma = \emptyset$
 - $\sigma \in V$ là tiên đề (biến khởi tạo)
 - *P* là tập các quy tắc sinh có dạng $\alpha \to \beta$, $\to \notin \Sigma \cup V$, $\alpha, \beta \in (\Sigma \cup V)^*$, $\alpha \notin \Sigma^*$

- Ý nghĩa: Mô tả một ngôn ngữ bằng cách liệt kê tập từ vựng, tập các quy tắc cú pháp để tạo ra câu
- Định nghĩa hình thức: Văn phạm là một bộ bốn
 G = (Σ, V, σ, P), trong đó:
 - Σ là bảng chữ cái chính, còn gọi là tập kí hiệu kết thúc
 - V là bảng chữ cái phụ, còn gọi là tập kí hiệu không kết hay tập biến, $V \cap \Sigma = \emptyset$
 - $\sigma \in V$ là tiên đề (biến khởi tạo)
 - *P* là tập các quy tắc sinh có dạng $\alpha \to \beta$, $\to \notin \Sigma \cup V$, $\alpha, \beta \in (\Sigma \cup V)^*$, $\alpha \notin \Sigma^*$

- Ý nghĩa: Mô tả một ngôn ngữ bằng cách liệt kê tập từ vựng, tập các quy tắc cú pháp để tạo ra câu
- Định nghĩa hình thức: Văn phạm là một bộ bốn
 G = (Σ, V, σ, P), trong đó:
 - Σ là bảng chữ cái chính, còn gọi là tập kí hiệu kết thúc
 - V là bảng chữ cái phụ, còn gọi là tập kí hiệu không kết hay tập biến, $V \cap \Sigma = \emptyset$
 - $\sigma \in V$ là tiên đề (biến khởi tạo)
 - *P* là tập các quy tắc sinh có dạng $\alpha \to \beta$, $\to \notin \Sigma \cup V$, $\alpha, \beta \in (\Sigma \cup V)^*$, $\alpha \notin \Sigma^*$

- Ý nghĩa: Mô tả một ngôn ngữ bằng cách liệt kê tập từ vựng, tập các quy tắc cú pháp để tạo ra câu
- Định nghĩa hình thức: Văn phạm là một bộ bốn
 G = (Σ, V, σ, P), trong đó:
 - Σ là bảng chữ cái chính, còn gọi là tập kí hiệu kết thúc
 - V là bảng chữ cái phụ, còn gọi là tập kí hiệu không kết hay tập biến, $V \cap \Sigma = \emptyset$
 - $\sigma \in V$ là tiên đề (biến khởi tạo)
 - *P* là tập các quy tắc sinh có dạng $\alpha \to \beta$, $\to \notin \Sigma \cup V$, $\alpha, \beta \in (\Sigma \cup V)^*$, $\alpha \notin \Sigma^*$

- Ý nghĩa: Mô tả một ngôn ngữ bằng cách liệt kê tập từ vựng, tập các quy tắc cú pháp để tạo ra câu
- Định nghĩa hình thức: Văn phạm là một bộ bốn
 G = (Σ, V, σ, P), trong đó:
 - Σ là bảng chữ cái chính, còn gọi là tập kí hiệu kết thúc
 - V là bảng chữ cái phụ, còn gọi là tập kí hiệu không kết hay tập biến, $V \cap \Sigma = \emptyset$
 - $\sigma \in V$ là tiên đề (biến khởi tạo)
 - P là tập các quy tắc sinh có dạng $\alpha \to \beta$, $\to \notin \Sigma \cup V$, $\alpha, \beta \in (\Sigma \cup V)^*$, $\alpha \notin \Sigma^*$

Ví dụ

- \blacksquare $G = (\Sigma, \mathcal{V}, \sigma, \mathcal{P})$
- \blacksquare $\Sigma = \{a, am, I, student, teacher\}$
- $\mathbf{V} = \{S, NP, VP, N, Det, V, P\}$
- $\sigma = S$
- Tập quy tắc P:
 - 1. $S \rightarrow NP VP$
 - 2. $NP \rightarrow Det \ N \mid P$
 - 3. $VP \rightarrow V NP$
 - **4.** Det \rightarrow a
 - 5. $P \rightarrow I$
 - 6. $V \rightarrow am$
 - 7. N → student | teacher

Dẫn xuất

- Quan hệ dẫn trực tiếp: $\alpha \in (\Sigma \cup V)^*$ được gọi là dẫn (trực tiếp) ra $\beta \in (\Sigma \cup V)^*$, kí hiệu $\alpha \Rightarrow \beta$, nếu tồn tại quy tắc $x \to \gamma \in P$ sao cho $\alpha = uxv$ và $\beta = u\gamma v$.
- Quan hệ dẫn ⇒* là bao đóng bắc cầu của quan hệ dẫn trực tiếp ⇒.
- Dẫn xuất *n* bước: $\alpha_0 \Rightarrow \alpha_1 \Rightarrow ... \Rightarrow \alpha_n$

Dẫn xuất

- Quan hệ dẫn trực tiếp: $\alpha \in (\Sigma \cup V)^*$ được gọi là dẫn (trực tiếp) ra $\beta \in (\Sigma \cup V)^*$, kí hiệu $\alpha \Rightarrow \beta$, nếu tồn tại quy tắc $x \to \gamma \in P$ sao cho $\alpha = uxv$ và $\beta = u\gamma v$.
- Quan hệ dẫn ⇒* là bao đóng bắc cầu của quan hệ dẫn trực tiếp ⇒.
- Dẫn xuất *n* bước: $\alpha_0 \Rightarrow \alpha_1 \Rightarrow ... \Rightarrow \alpha_n$

Dẫn xuất

- Quan hệ dẫn trực tiếp: $\alpha \in (\Sigma \cup V)^*$ được gọi là dẫn (trực tiếp) ra $\beta \in (\Sigma \cup V)^*$, kí hiệu $\alpha \Rightarrow \beta$, nếu tồn tại quy tắc $x \to \gamma \in P$ sao cho $\alpha = uxv$ và $\beta = u\gamma v$.
- Quan hệ dẫn ⇒* là bao đóng bắc cầu của quan hệ dẫn trực tiếp ⇒.
- Dẫn xuất *n* bước: $\alpha_0 \Rightarrow \alpha_1 \Rightarrow ... \Rightarrow \alpha_n$

Ngôn ngữ sinh bởi văn phạm

- Cho văn phạm $G = (\Sigma, V, \sigma, P)$. Ngôn ngữ L sinh bởi văn phạm G là tập tất cả các từ trên bảng chữ cái Σ dẫn được từ tiên đề σ : $L(G) = \{w \in \Sigma^* | \sigma \Rightarrow^* w\}$
- Ví dụ: Ngôn ngữ sinh bởi văn phạm đã cho trong ví dụ ở trên?
- Hai văn phạm G_1 và G_2 gọi là tương đương nếu $L(G_1) = L(G_2)$.

Ngôn ngữ sinh bởi văn phạm

- Cho văn phạm $G = (\Sigma, V, \sigma, P)$. Ngôn ngữ L sinh bởi văn phạm G là tập tất cả các từ trên bảng chữ cái Σ dẫn được từ tiên đề σ : $L(G) = \{w \in \Sigma^* | \sigma \Rightarrow^* w\}$
- Ví dụ: Ngôn ngữ sinh bởi văn phạm đã cho trong ví dụ ở trên?
- Hai văn phạm G_1 và G_2 gọi là tương đương nếu $L(G_1) = L(G_2)$.

Ngôn ngữ sinh bởi văn phạm

- Cho văn phạm $G = (\Sigma, V, \sigma, P)$. Ngôn ngữ L sinh bởi văn phạm G là tập tất cả các từ trên bảng chữ cái Σ dẫn được từ tiên đề σ : $L(G) = \{w \in \Sigma^* | \sigma \Rightarrow^* w\}$
- Ví dụ: Ngôn ngữ sinh bởi văn phạm đã cho trong ví dụ ở trên?
- Hai văn phạm G_1 và G_2 gọi là tương đương nếu $L(G_1) = L(G_2)$.

- Quy tắc tổng quát: không có ràng buộc về vế trái cũng như vế phải
- Quy tắc cảm ngữ cảnh: có dạng $\alpha A\beta \to \alpha\gamma\beta$, $A \in V$, $\alpha, \beta \in (\Sigma \cup V)^*$, $\gamma \in (\Sigma \cup V)^+$ Định nghĩa khác: $\alpha \to \beta$, $|\alpha| \le |\beta|$
- **Q**uy tắc phi ngữ cảnh: có dạng $A \rightarrow \alpha$, $A \in V$, $\alpha \in (\Sigma \cup V)^*$
- Quy tắc tuyến tính: có dạng $A \rightarrow x$ hoặc $A \rightarrow xBy$, $A, B \in V, x, y \in \Sigma^*$
- Quy tắc tuyến tính trái (phải): có dạng $A \rightarrow a$ hoặc $A \rightarrow \epsilon$ hoặc $A \rightarrow Ba$ ($A \rightarrow aB$), $A, B \in V$, $a \in \Sigma$

- Quy tắc tổng quát: không có ràng buộc về vế trái cũng như vế phải
- Quy tắc cảm ngữ cảnh: có dạng $\alpha A\beta \rightarrow \alpha\gamma\beta$, $A \in V$, $\alpha, \beta \in (\Sigma \cup V)^*$, $\gamma \in (\Sigma \cup V)^+$ Định nghĩa khác: $\alpha \rightarrow \beta$, $|\alpha| \leq |\beta|$
- **Q**uy tắc phi ngữ cảnh: có dạng $A \rightarrow \alpha$, $A \in V$, $\alpha \in (\Sigma \cup V)^*$
- Quy tắc tuyến tính: có dạng $A \rightarrow x$ hoặc $A \rightarrow xBy$, $A, B \in V, x, y \in \Sigma^*$
- Quy tắc tuyến tính trái (phải): có dạng $A \rightarrow a$ hoặc $A \rightarrow \epsilon$ hoặc $A \rightarrow Ba$ ($A \rightarrow aB$), $A, B \in V$, $a \in \Sigma$

- Quy tắc tổng quát: không có ràng buộc về vế trái cũng như vế phải
- Quy tắc cảm ngữ cảnh: có dạng $\alpha A\beta \rightarrow \alpha\gamma\beta$, $A \in V$, $\alpha, \beta \in (\Sigma \cup V)^*$, $\gamma \in (\Sigma \cup V)^+$ Định nghĩa khác: $\alpha \rightarrow \beta$, $|\alpha| \leq |\beta|$
- Quy tắc phi ngữ cảnh: có dạng $A \rightarrow \alpha$, $A \in V$, $\alpha \in (\Sigma \cup V)^*$
- Quy tắc tuyến tính: có dạng $A \rightarrow x$ hoặc $A \rightarrow xBy$, $A, B \in V, x, y \in \Sigma^*$
- Quy tắc tuyến tính trái (phải): có dạng $A \to a$ hoặc $A \to \epsilon$ hoặc $A \to Ba$ ($A \to aB$), $A, B \in V$, $a \in \Sigma$

- Quy tắc tổng quát: không có ràng buộc về vế trái cũng như vế phải
- Quy tắc cảm ngữ cảnh: có dạng $\alpha A\beta \rightarrow \alpha\gamma\beta$, $A \in V$, $\alpha, \beta \in (\Sigma \cup V)^*$, $\gamma \in (\Sigma \cup V)^+$ Định nghĩa khác: $\alpha \rightarrow \beta$, $|\alpha| \leq |\beta|$
- Quy tắc phi ngữ cảnh: có dạng $A \rightarrow \alpha$, $A \in V$, $\alpha \in (\Sigma \cup V)^*$
- Quy tắc tuyến tính: có dạng $A \rightarrow x$ hoặc $A \rightarrow xBy$, $A, B \in V, x, y \in \Sigma^*$
- Quy tắc tuyến tính trái (phải): có dạng $A \to a$ hoặc $A \to \epsilon$ hoặc $A \to Ba$ ($A \to aB$), $A, B \in V$, $a \in \Sigma$

- Quy tắc tổng quát: không có ràng buộc về vế trái cũng như vế phải
- Quy tắc cảm ngữ cảnh: có dạng $\alpha A\beta \rightarrow \alpha\gamma\beta$, $A \in V$, $\alpha, \beta \in (\Sigma \cup V)^*$, $\gamma \in (\Sigma \cup V)^+$ Định nghĩa khác: $\alpha \rightarrow \beta$, $|\alpha| \leq |\beta|$
- Quy tắc phi ngữ cảnh: có dạng $A \rightarrow \alpha$, $A \in V$, $\alpha \in (\Sigma \cup V)^*$
- Quy tắc tuyến tính: có dạng $A \rightarrow x$ hoặc $A \rightarrow xBy$, $A, B \in V, x, y \in \Sigma^*$
- Quy tắc tuyến tính trái (phải): có dạng $A \rightarrow a$ hoặc $A \rightarrow \epsilon$ hoặc $A \rightarrow Ba$ ($A \rightarrow aB$), $A, B \in V$, $a \in \Sigma$

- Kiểu 3: Văn phạm chính quy các quy tắc là quy tắc tuyến tính phải ⇒ sinh ngôn ngữ chính quy
- Kiểu 2: Văn phạm phi ngữ cảnh các quy tắc là quy tắc phi ngữ cảnh ⇒ sinh ngôn ngữ phi ngữ cảnh
- Kiểu 1: Văn phạm cảm ngữ cảnh các quy tắc là quy tắc cảm ngữ cảnh ⇒ sinh ngôn ngữ cảm ngữ cảnh
- Kiểu 0: Văn phạm không hạn chế/tổng quát các quy tắc là quy tắc tổng quát ⇒ sinh ngôn ngữ tổng quát
- $\blacksquare \ \mathcal{L}_0 \supset \mathcal{L}_1 \supset \mathcal{L}_2 \supset \mathcal{L}_3$

- Kiểu 3: Văn phạm chính quy các quy tắc là quy tắc tuyến tính phải ⇒ sinh ngôn ngữ chính quy
- Kiểu 2: Văn phạm phi ngữ cảnh các quy tắc là quy tắc phi ngữ cảnh ⇒ sinh ngôn ngữ phi ngữ cảnh
- Kiểu 1: Văn phạm cảm ngữ cảnh các quy tắc là quy tắc cảm ngữ cảnh ⇒ sinh ngôn ngữ cảm ngữ cảnh
- Kiểu 0: Văn phạm không hạn chế/tổng quát các quy tắc là quy tắc tổng quát ⇒ sinh ngôn ngữ tổng quát
- $\blacksquare \mathcal{L}_0 \supset \mathcal{L}_1 \supset \mathcal{L}_2 \supset \mathcal{L}_3$

- Kiểu 3: Văn phạm chính quy các quy tắc là quy tắc tuyến tính phải ⇒ sinh ngôn ngữ chính quy
- Kiểu 2: Văn phạm phi ngữ cảnh các quy tắc là quy tắc phi ngữ cảnh ⇒ sinh ngôn ngữ phi ngữ cảnh
- Kiểu 1: Văn phạm cảm ngữ cảnh các quy tắc là quy tắc cảm ngữ cảnh ⇒ sinh ngôn ngữ cảm ngữ cảnh
- Kiểu 0: Văn phạm không hạn chế/tổng quát các quy tắc là quy tắc tổng quát ⇒ sinh ngôn ngữ tổng quát
- $\blacksquare \mathcal{L}_0 \supset \mathcal{L}_1 \supset \mathcal{L}_2 \supset \mathcal{L}_3$

- Kiểu 3: Văn phạm chính quy các quy tắc là quy tắc tuyến tính phải ⇒ sinh ngôn ngữ chính quy
- Kiểu 2: Văn phạm phi ngữ cảnh các quy tắc là quy tắc phi ngữ cảnh ⇒ sinh ngôn ngữ phi ngữ cảnh
- Kiểu 1: Văn phạm cảm ngữ cảnh các quy tắc là quy tắc cảm ngữ cảnh ⇒ sinh ngôn ngữ cảm ngữ cảnh
- Kiểu 0: Văn phạm không hạn chế/tổng quát các quy tắc là quy tắc tổng quát ⇒ sinh ngôn ngữ tổng quát
- $\blacksquare \mathcal{L}_0 \supset \mathcal{L}_1 \supset \mathcal{L}_2 \supset \mathcal{L}_3$

- Kiểu 3: Văn phạm chính quy các quy tắc là quy tắc tuyến tính phải ⇒ sinh ngôn ngữ chính quy
- Kiểu 2: Văn phạm phi ngữ cảnh các quy tắc là quy tắc phi ngữ cảnh ⇒ sinh ngôn ngữ phi ngữ cảnh
- Kiểu 1: Văn phạm cảm ngữ cảnh các quy tắc là quy tắc cảm ngữ cảnh ⇒ sinh ngôn ngữ cảm ngữ cảnh
- Kiểu 0: Văn phạm không hạn chế/tổng quát các quy tắc là quy tắc tổng quát ⇒ sinh ngôn ngữ tổng quát
- lacksquare $\mathcal{L}_0 \supset \mathcal{L}_1 \supset \mathcal{L}_2 \supset \mathcal{L}_3$

Nội dung

- 1. Bảng chữ cái Từ Ngôn ngũ
- 2. Các phép toán trên tù
- Các phép toán trên ngôn ngữ
- 4. Văn phạm hình thức
- 5. Hai bài toán cơ bản về văn phạm
 - Bài toán phân tích
 - Bài toán tổng hợp

Bài toán phân tích

Cho một văn phạm hình thức. Xác định ngôn ngữ sinh bởi văn phạm đó.

Bài tập

Tìm các ngôn ngữ sinh bởi các văn phạm có tập quy tắc như sau

- 1. $S \rightarrow aA$ (1), $A \rightarrow aA$ (2), $A \rightarrow bB$ (3), $B \rightarrow bB$ (4), $B \rightarrow cC$ (5), $B \rightarrow c$ (6), $C \rightarrow cC$ (7), $C \rightarrow c$ (8)
- 2. $S \rightarrow aSb$ (1), $S \rightarrow ab$ (2)
- 3. $S \rightarrow aSBC$ (1), $S \rightarrow aBC$ (2), $aB \rightarrow ab$ (3), $bB \rightarrow bb$ (4), $CB \rightarrow BC$ (5), $bC \rightarrow bc$ (6), $cC \rightarrow cc$ (7)

Tìm các ngôn ngữ sinh bởi các văn phạm có tập quy tắc như sau

- 1. $S \rightarrow aA$ (1), $A \rightarrow aA$ (2), $A \rightarrow bB$ (3), $B \rightarrow bB$ (4), $B \rightarrow cC$ (5), $B \rightarrow c$ (6), $C \rightarrow cC$ (7), $C \rightarrow c$ (8)
- **2**. $S \to aSb$ (1), $S \to ab$ (2)
- 3. $S \rightarrow aSBC$ (1), $S \rightarrow aBC$ (2), $aB \rightarrow ab$ (3), $bB \rightarrow bb$ (4), $CB \rightarrow BC$ (5), $bC \rightarrow bc$ (6), $cC \rightarrow cc$ (7)

Tìm các ngôn ngữ sinh bởi các văn phạm có tập quy tắc như sau

- 1. $S \rightarrow aA$ (1), $A \rightarrow aA$ (2), $A \rightarrow bB$ (3), $B \rightarrow bB$ (4), $B \rightarrow cC$ (5), $B \rightarrow c$ (6), $C \rightarrow cC$ (7), $C \rightarrow c$ (8)
- **2**. $S \to aSb$ (1), $S \to ab$ (2)
- 3. $S \rightarrow aSBC$ (1), $S \rightarrow aBC$ (2), $aB \rightarrow ab$ (3), $bB \rightarrow bb$ (4), $CB \rightarrow BC$ (5), $bC \rightarrow bc$ (6), $cC \rightarrow cc$ (7)

Bài toán tổng hợp

■ Cho một ngôn ngữ. Xây dựng văn phạm sinh ngôn ngữ đó.

- 1. $\{a^nb^mc^pd^q \mid n, m \ge 0, p \ge 1, q \ge 2\}$
- 2. $\{0,1\}^+$ và $\{0,1\}^*$
- 3. $\{x\widetilde{x} \mid x \in \{a, b, c\}^*\}$
- 4. $\{a^nb^mc^{2n}xd^p\widetilde{x} \mid n, m \geq 0, p \geq 2, x \in \{a, b, c\}^+\}$
- 5. Tập các tên (identifier) trong ngôn ngữ lập trình
- 6. Tập các số tự nhiên. Tập các số nguyêr
- 7. Tập các biểu thức số học trên tập số thực

- 1. $\{a^nb^mc^pd^q \mid n, m \geq 0, p \geq 1, q \geq 2\}$
- 2. $\{0,1\}^+$ và $\{0,1\}^*$
- 3. $\{x\widetilde{x} \mid x \in \{a, b, c\}^*\}$
- **4.** $\{a^nb^mc^{2n}xd^p\widetilde{x} \mid n, m \ge 0, p \ge 2, x \in \{a, b, c\}^+\}$
- 5. Tập các tên (identifier) trong ngôn ngữ lập trình
- 6. Tập các số tự nhiên. Tập các số nguyêr
- Tập các biểu thức số học trên tập số thực

- 1. $\{a^nb^mc^pd^q \mid n, m \geq 0, p \geq 1, q \geq 2\}$
- 2. $\{0,1\}^+$ và $\{0,1\}^*$
- 3. $\{x\widetilde{x} \mid x \in \{a, b, c\}^*\}$
- **4.** $\{a^nb^mc^{2n}xd^p\widetilde{x} \mid n, m \ge 0, p \ge 2, x \in \{a, b, c\}^+\}$
- 5. Tập các tên (identifier) trong ngôn ngữ lập trình
- 6. Tập các số tự nhiên. Tập các số nguyêr
- 7. Tập các biểu thức số học trên tập số thực

- 1. $\{a^nb^mc^pd^q \mid n, m \ge 0, p \ge 1, q \ge 2\}$
- 2. $\{0,1\}^+$ và $\{0,1\}^*$
- 3. $\{x\widetilde{x} \mid x \in \{a, b, c\}^*\}$
- **4.** $\{a^nb^mc^{2n}xd^p\widetilde{x}\mid n,m\geq 0,p\geq 2,x\in \{a,b,c\}^+\}$
- 5. Tập các tên (identifier) trong ngôn ngữ lập trình
- 6. Tập các số tự nhiên. Tập các số nguyêr
- Tập các biểu thức số học trên tập số thực

- 1. $\{a^nb^mc^pd^q \mid n, m \geq 0, p \geq 1, q \geq 2\}$
- 2. $\{0,1\}^+$ và $\{0,1\}^*$
- 3. $\{x\widetilde{x} \mid x \in \{a, b, c\}^*\}$
- **4.** $\{a^nb^mc^{2n}xd^p\widetilde{x}\mid n,m\geq 0,p\geq 2,x\in \{a,b,c\}^+\}$
- 5. Tập các tên (identifier) trong ngôn ngữ lập trình
- 6. Tập các số tư nhiên. Tập các số nguyêr
- Tập các biểu thức số học trên tập số thực

- 1. $\{a^nb^mc^pd^q \mid n, m \geq 0, p \geq 1, q \geq 2\}$
- 2. $\{0,1\}^+$ và $\{0,1\}^*$
- 3. $\{x\widetilde{x} \mid x \in \{a, b, c\}^*\}$
- **4.** $\{a^nb^mc^{2n}xd^p\widetilde{x} \mid n, m \geq 0, p \geq 2, x \in \{a, b, c\}^+\}$
- 5. Tập các tên (identifier) trong ngôn ngữ lập trình
- 6. Tập các số tự nhiên. Tập các số nguyên
- Tập các biểu thức số học trên tập số thực

- 1. $\{a^nb^mc^pd^q \mid n, m \geq 0, p \geq 1, q \geq 2\}$
- 2. $\{0,1\}^+$ và $\{0,1\}^*$
- 3. $\{x\widetilde{x} \mid x \in \{a, b, c\}^*\}$
- **4**. $\{a^nb^mc^{2n}xd^p\widetilde{x}\mid n, m\geq 0, p\geq 2, x\in \{a,b,c\}^+\}$
- 5. Tập các tên (identifier) trong ngôn ngữ lập trình
- 6. Tập các số tự nhiên. Tập các số nguyên
- 7. Tập các biểu thức số học trên tập số thực

Tính nhập nhằng của văn phạm

So sánh 2 văn phạm sinh biểu thức số học

- $E \rightarrow N \mid E + E \mid E E \mid E * E \mid E/E \mid (E)$ $N \rightarrow 1 \mid 2 \mid 3$
- $E \to T \mid E + T \mid E T$ $T \to F \mid T * F \mid T/F$ $F \to N \mid (E)$ $N \to 1 \mid 2 \mid 3$
- Dẫn xuất cho 1 + 2 * 3 ??? Cây dẫn xuất

Tính nhập nhằng của văn phạm

So sánh 2 văn phạm sinh biểu thức số học

- $E \rightarrow N \mid E + E \mid E E \mid E * E \mid E/E \mid (E)$ $N \rightarrow 1 \mid 2 \mid 3$
- $E \to T \mid E + T \mid E T$ $T \to F \mid T * F \mid T/F$ $F \to N \mid (E)$ $N \to 1 \mid 2 \mid 3$
- Dẫn xuất cho 1 + 2 * 3 ??? Cây dẫn xuất

Tính nhập nhằng của văn phạm

So sánh 2 văn phạm sinh biểu thức số học

- $E \rightarrow N \mid E + E \mid E E \mid E * E \mid E/E \mid (E)$ $N \rightarrow 1 \mid 2 \mid 3$
- $E \to T \mid E + T \mid E T$ $T \to F \mid T * F \mid T/F$ $F \to N \mid (E)$ $N \to 1 \mid 2 \mid 3$
- Dẫn xuất cho 1 + 2 * 3 ??? Cây dẫn xuất

Ε

Ν

Ν

Cây dẫn xuất (1)

Sử dụng G₁ Cách 1: Cách 2: Ν Ν

Cây dẫn xuất (2)

Sử dụng G₂

Bài tập bổ sung

■ Xây dựng văn phạm tuyến tính trái sinh tập các tên