# AC5715A Datasheet

# Zhuhai Jieli Technology Co., LTD

Version: 1.0

Date: 2023.02.13

#### **AC5715A Features**

#### **CPU Core**

- Dual-core 32-bit CPU
- 32KB I-Cache
- 24KB D-Cache
- 96K On-chip SRAM
- The maximum operating frequency is 240MHz
- Peripherals can access external memory through cache
- Support IEEE-754 standard single-precision floating point

#### **Interrupts**

- 256 interrupt sources with 8 levels of programmable priority
- Support external I/O interrupt
- With soft interrupt (virtual interrupt) function, priority can be configured

#### Video Codec

- H.264 codec, encoding maximum support:
  - Single mode: 1920×1080@60fps
  - Dual mode: 1920×1080@30fps + 1280×720@30fps
- M-JPEG codec

#### **Image Signal Processor**

- Support maximum size: 2304×1296
- Support 8-bit / 10-bit / 12-bit RAW data
- Support 16-bit YUV / 24-bit RGB data
- Support RGBIR sensor
- Support AE / AWB
- Support WDR technology
- Support advanced color enhance
- Support 2D/3D noise reduction
- Support sharpness process
- Support video scaling and digital zoom
- Support video deinterlacing
- Support real time recording OSD
- Support true color logo OSD

#### Video input interface

- One MIPI CSI interface
  - Support 8-bit / 10-bit / 12-bit RAW data
  - Support 16-bit YUV / 24-bit RGB data
  - Support 1/2lane mode
  - Support DSI mode

#### Audio codec

- 2 PGA for MIC in
- 1 channels delta-sigma audio ADC with SNR > 85 dB
- 1 channels delta-sigma audio DAC with SNR > 95 dB
- Support 8/11.025/12/16/22.05/24/32/44.1/48KHz Sample Rate

#### Peripheral interface

- Peripheral pin select function
- Up to 22 programmable digital I/O pins
- Support 3 IO port wake-up MCU
- Support peripheral wake-up MCU
- 2 32-bit reloadable timers for timing / capture and PWM
- 1 SPI host controllers, support DMA
- 1 SDIO 2.0 interfaces, support DMA
- 2 I<sup>2</sup>C controllers, support master and slave modes
- 1 UARTs, 2 of which support DMA loop buffer
- 4 channels motor PWM
- 1 high speed USB SIE, support HUB
- RTC, with alarm clock and time base to wake up the chip
- Support programable pipeline DMA copy
- Watchdog
- CRC check

#### **Memory Interface**

- DDRX controller, support DDR1
  - 16-bit data width
  - Support DDR1@200MHz
  - Maximum support 32×16Mbit
- 1 high-speed SPI flash interface
  - Support standard, dual and quad modes
  - Maximum support 16MB, 80MHz

#### **Analog Peripheral Features**

- 2 clock oscillation circuits
- One high speed USB 2.0 PHY
- 4 clock generators (PLLs), provide various system frequencies
- 5 channels 10-bit key general ADC
- 3 lanes MIPI CSI PHY
- 8-level low voltage detector
- Power-on reset

#### Package type

- AC5715A4: 16×16Mbit/DDR1
- QFN52(6mm×6mm)

### 1. Pin Defintion

#### 1.1 Pin Assignment



Figure 1-1 AC5715A QFN52 Pin Assignment

★Note: SVDD2 is the power supply for IO(PB0, PB1, PA7, PA8)
SVDD3 is the power supply for IO(PG2-PG4, PG6, PG7, PG14, PG15)

### 1.2 Pin Description

Table 1-1 AC5715A\_QFN52 Pin Description

| No. | Name    | I/O type | Function      | Other Function                                                                                     |
|-----|---------|----------|---------------|----------------------------------------------------------------------------------------------------|
| 1   | VDDIO   | P        | IO Power      |                                                                                                    |
| 2   | AVDD15  | P        | AVDD15        |                                                                                                    |
| 3   | AVDDR   | P        | Power         |                                                                                                    |
| 4   | PE2     | I/O      | 100           | VPP CLKOUT0: Clock Out0 PWM4: Timer4 PWM Output                                                    |
| 5   | PE3     | I/O      | GPIO          | ADC5: ADC Input Channel 5                                                                          |
| 6   | DRVREF  | P        | DDR REF       |                                                                                                    |
| 7   | DRVDD   | P        | DDR Power     |                                                                                                    |
| 8   | PB0     | I/O      | GPIO          | ADC1: ADC Input Channel 1 IIC_SCL1_A: IIC SCLK(A)                                                  |
| 9   | PB1     | I/O      | (FPIC)        | PWM0: Timer0 PWM Output IIC_SDA1_A: IIC Data1(A)                                                   |
| 10  | SVDD2   | P        | IO Power2     |                                                                                                    |
| 11  | PA8     | I/O      | GPIO          | U <mark>ART0_RXA: U</mark> ART0 Data In(A)                                                         |
| 12  | PA7     | I/O      | GPIO          | UART0_TXA: UART0 Data Out(A)                                                                       |
| 13  | USBVSS  | P        | USB<br>Ground |                                                                                                    |
| 14  | USBVDD  | P        | USB Power     |                                                                                                    |
| 15  | USB0DM  | I/O      | USB0DM        |                                                                                                    |
| 16  | USB0DP  | I/O      | USB0DP        |                                                                                                    |
| 17  | RTCOSCO | I/O      | RTC OSCO      |                                                                                                    |
| 18  | RTCOSCI | I/O      | RTC OSCI      |                                                                                                    |
| 19  | PA4     | I/O      | GPIO          | SPI0_CLKA: SPI0 CLK(A) SD0_DAT0A: SD0 Data0(A)                                                     |
| 20  | PA3     | I/O      | GPIO          | SPI0_DOA(0): SPI0 Data Out(A)<br>SD0_DAT2A: SD0 Data2(A)                                           |
| 21  | PA2     | I/O      | GPIO          | SPI0_DAT2A(2): SPI0 Data2(A) SD0_CLKA: SD0 CLK(A) IIC_SCL1_B: IIC CLK(B) ADC0: ADC Input Channel 0 |
| 22  | PA1     | I/O      | GPIO          | SPI0_DIA(1): SPI0 Data In(A) SD0_CMDA: SD0 CMD(A) IIC_SDA1_B: IIC Data1(B)                         |
| 23  | PA0     | I/O      | GPIO          | SPI0_CSA: SPI0 Chip Select(A)                                                                      |

#### 4

| No. | Name       | I/O type | Function            | Other Function                                                                                    |
|-----|------------|----------|---------------------|---------------------------------------------------------------------------------------------------|
| 24  | PH15       | I/O      | GPIO                | SPI0_DAT3A(3): SPI0 Data3(A) SD0_DAT1A: SD0 Data1(A) CLKOUT2: Clock Out2 Wakeup15: Port Wakeup 15 |
| 25  | DACVDD     | P        | DAC Power           |                                                                                                   |
| 26  | VCM        | P        | VCM                 |                                                                                                   |
| 27  | AVSSHP     | P        | HP Ground           |                                                                                                   |
| 20  | AVDDHP     | P        | HP Power            |                                                                                                   |
| 28  | VDDIO      | P        | IO Power            |                                                                                                   |
| 29  | DACL       | О        | DAC Left<br>Channel |                                                                                                   |
| 30  | PH6        | I/O      | GPIO                | MICL: MIC Left                                                                                    |
| 31  | PE5        | I/O      | GPIO                | ADC8: ADC Input Channel 8 IIC_SDA1_D: IIC1 Data(D) Wakeup11: Port Wakeup 11 MOTOR PWM_H4_B        |
| 32  | PE4        | I/O      | GPIO                | IIC_SCL1_D: IIC1 SCL(D) Wakeup10: Port Wakeup 10 MOTOR PWM_L4_B                                   |
| 33  | DRVDD      | P        | DDR Power           |                                                                                                   |
| 34  | DVDD       | P        | Core Power          | <u></u>                                                                                           |
| 35  | SVDD3      | P        | IO Power3           |                                                                                                   |
| 36  | PG15       | I/O      | GPIO                | OSCO0<br>MOTOR PWM_H4_A                                                                           |
| 37  | PG14       | I/O      | GPIO                | OSCI0<br>MOTOR PWM_L4_A                                                                           |
| 38  | PG7        | I/O      | GPIO                | UART0_RXB: Uart0 Data In(B) ADC7: ADC Input Channel 7 IIC_SDA0_A: IIC0 Data(A)                    |
| 39  | PG6        | I/O      | GPIO                | UART0_TXB: Uart0 Data Out(B) IIC_SCL0_A: IIC0 SCLK(A)                                             |
| 40  | PG4        | I/O      | GPIO                | SD0_DAT0C: SD0 Data0(C)                                                                           |
| 41  | PG3        | I/O      | GPIO                | SD0_CLKC: SD0 CLK(C)                                                                              |
| 42  | PG2        | I/O      | GPIO                | SD0_CMDC: SD0 CMD(C)                                                                              |
| 43  | MIPIAVDD12 | P        | MIPI AVDD           |                                                                                                   |
| 44  | MIPIAVSS   | P        | MIPI<br>Ground      |                                                                                                   |
| 45  | MIPIAVDD33 | P        | MIPI Power          |                                                                                                   |

#### Confidential

| No. | Name    | I/O type | Function | Other Function               |
|-----|---------|----------|----------|------------------------------|
| 46  | CSI D2N | Ţ        | MIPI CSI | MIPI CSI data(0/1) lane(P/N) |
| 40  | CSI_D2N | 1        | Lane     | MIPI CSI clock lane(P/N)     |
| 47  | CSI D2P | T        | MIPI CSI | MIPI CSI data(0/1) lane(P/N) |
| 4/  | CSI_D2F | 1        | Lane     | MIPI CSI clock lane(P/N)     |
| 48  | CSI D3N | Ţ        | MIPI CSI | MIPI CSI data(0/1) lane(P/N) |
| 40  | CSI_D3N | 1        | Lane     | MIPI CSI clock lane(P/N)     |
| 49  | CCI D2D | T        | MIPI CSI | MIPI CSI data(0/1) lane(P/N) |
| 49  | CSI_D3P | 1        | Lane     | MIPI CSI clock lane(P/N)     |
| 50  | CCL DAN | T        | MIPI CSI | MIPI CSI data(0/1) lane(P/N) |
| 50  | CSI_D4N | 1        | Lane     | MIPI CSI clock lane(P/N)     |
| 51  | CCI DAD | T        | MIPI CSI | MIPI CSI data(0/1) lane(P/N) |
| 31  | CSI_D4P | 1        | Lane     | MIPI CSI clock lane(P/N)     |
| 52  | AVDD28  | P        | AVDD28   |                              |

(★Note: 1. P----Power Supply 2. I----Input 3. I/O----Bi-direction)

### 2. Electrical Characteristics

### 2.1 Absolute Maximum Ratings

Table 2-1

| Symbol                      | Item                           | Range                  | Unit | Remarks            |
|-----------------------------|--------------------------------|------------------------|------|--------------------|
| SVDD2/SVDD3                 | Special IO Logic Voltage       | -0.3 to 3.6            | V    |                    |
| VDDIO/USBVDD<br>/MIPIAVDD33 | Digital Vo <mark>ltage</mark>  | -0.3 to 3.6            | V    | <u></u>            |
| AVDDHP                      | Analog <mark>Voltage</mark>    | -0.3 to 3.6            | V    |                    |
| DVDD/MIPIAVDD12             | Core Voltage                   | -0.3 to 1.3            | V    |                    |
| DRVDD                       | DDR1 Voltage                   | -0.3 to 2.7            | V    |                    |
| AVDDR                       | Digital Voltage                | -0.3 to 3.3            | V    |                    |
| Vioi                        | Voltage applied on normal pin  | -0.3 to<br>VDDIO+0.3   | V    | Relative to ground |
| V102                        | Voltage applied on special pin | -0.3 to<br>SVDD2/3+0.3 | V    | Relative to ground |
| Торе                        | Operating Temperature          | -40 to 85              | °C   |                    |
| Тѕтб                        | Storage Temperature            | -65 to 150             | °C   |                    |

### 2.2 Recommended Operating Conditions

Table 2-2

| Symbol                      | Item               | Min | Тур | Max | Unit |
|-----------------------------|--------------------|-----|-----|-----|------|
| SVDD2/SVDD3                 | 1.8V Logic Voltage | 1.7 | 1.8 | 1.9 | V    |
| 31002/31003                 | 3.3V Logic Voltage | 3.0 | 3.3 | 3.6 | V    |
| VDDIO/USBVDD<br>/MIPIAVDD33 | Digital Voltage    | 3.0 | 3.3 | 3.6 | V    |
| AVDDHP                      | Analog Voltage     | 3.0 | 3.3 | 3.6 | V    |
| DVDD/MIPIAVDD12             | Core Voltage       | 1.0 | 1.1 | 1.2 | V    |
| DRVDD                       | DDR1 Voltage       | 2.3 | 2.5 | 2.7 | V    |
| AVDDR                       | Digital Voltage    | 1.7 | 2.5 | 2.7 | V    |

### 2.3 IO Input/Output Electrical Characteristics

Table 2-3

| Input Characteristics |                               |            |     |            |      |                 |
|-----------------------|-------------------------------|------------|-----|------------|------|-----------------|
| Symbol                | Parameter                     | Min        | Тур | Max        | Unit | Test Conditions |
| $V_{\rm IL}$          | Input low ( logic 0) voltage  | -0.3       | 1   | 0.3* VDDIO | V    | VDDIO = 3.3V    |
| $V_{\mathrm{IH}}$     | Input high (logic 1) voltage  | 0.7* VDDIO | -   | VDDIO+0.3  | V    | VDDIO = 3.3V    |
|                       | Output Characteristics        |            |     |            |      |                 |
| $V_{OL}$              | Output low (logic 0) voltage  | -          | -/  | 0.1* VDDIO | V    | VDDIO = 3.3V    |
| $V_{\mathrm{OH}}$     | Output high (logic 1) voltage | 0.9* VDDIO | +   | -          | V    | VDDIO = 3.3V    |

### 2.4 IO Output Drive Strength Pull Up/Down Characteristics

Table 2-4

| Port                                                                              | Drive S <mark>trength</mark>                       | Pull Up<br>Resistance | Pull Down<br>Resistance | Note                                                             |
|-----------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|-------------------------|------------------------------------------------------------------|
| PA0 - PA4 PA7, PA8 PB0, PB1 PE3, PE4, PE5 PG2 - PG4 PG6, PG7 PG14, PG15 PH6, PH15 | Strong drive: 16mA / 21mA<br>Weak drive: 2mA / 7mA | 10K                   | 10K                     | Test Conditions:<br>VDDIO = 3.3V<br>SVDD2 = 3.3V<br>SVDD3 = 3.3V |
| PE2                                                                               | 7mA                                                | 10K                   | 10K                     |                                                                  |
| USB_DP                                                                            | 10mA                                               | 1.5K                  | 15K                     | Use as normal IO                                                 |
| USB_DM                                                                            | 10mA                                               |                       | 15K                     | Use as normal IO                                                 |

(★NOTE: precision of pull-up and pull-down resistor is ±20%)

### 2.5 LDO Characteristics

Table 2-5

| Internal LDO | Output Voltage Range | Drive Stength | Test Conditions |
|--------------|----------------------|---------------|-----------------|
| AVDD15       | 1.3V-2.0V            | ~50 mA        | AVDDR=2.5V      |
| AVDD28       | 2.5V-3.2V            | ~100 mA       | VDDIO=3.3V      |

### 2.6 Audio DAC Characteristics

Table 2-6

| Symbol | Parameters            | Min | Тур | Max | Unit | Test Conditions          |
|--------|-----------------------|-----|-----|-----|------|--------------------------|
|        |                       |     |     |     |      | 1KHz, SR=44.1K,          |
| SNR    | Signal to Noise Ratio | -   | 95  | -   | dB   | Mute File,               |
|        |                       |     |     |     |      | CR=192Kbps               |
| THEAN  | Total Harmonic        |     | 72  |     | JD.  | (-1.5dB) 1KHz, SR=44.1K, |
| THD+N  | Distortion + Noise    | -   | -73 | -   | dB   | CR=192Kbps               |

#### 2.7 Audio ADC Characteristics

Table 2-7

| Symbol | Parameters            | Min | Тур | Max | Unit | Test Conditions          |
|--------|-----------------------|-----|-----|-----|------|--------------------------|
| CNID   | C' 1. N. D.           |     | 0.5 |     | 1D   | 1KHz, SR=44.1K,          |
| SNR    | Signal to Noise Ratio | -   | 85  |     | dB   | Mute File,<br>CR=192Kbps |
| THD+N  | Total Harmonic        |     | -75 |     | dB   | (-1.5dB) 1KHz, SR=44.1K, |
| I HD+N | Distortion + Noise    | -   | -/3 |     | uВ   | CR=192Kbps               |

# 3. Package

### 3.1 QFN\_52PIN Package Diagram



Figure 3-1 AC5715A\_QFN52 Package Diagram

## 4. Package Type Specification



- ① 0 represents DDR2 and 1 represents DDR1
- 2 Different numbers and letters represent different packages
- (3) Represents the sdram size of the chip, 8 represents 512M, 4 represents 256M, 2 represents 128M and 1 represents 64M.

## 5. Version Information

| Date       | Version Number | Description   |
|------------|----------------|---------------|
| 2023.02.13 | V1.0           | Initial draft |
|            |                |               |
|            |                |               |

