ÁLGEBRA SUPERIOR I Grupo 4020

Tarea Exámen: Relaciones de Equivalencia

ALUMNO:

Rosas Hernandez Oscar Andres PROFESOR:

Rodrígo Domínguez López

Tarea Exámen

Lunes 30 de Octubre

ÍNDICE

_			
T	1	•	
110	$\boldsymbol{\alpha}$	100	
	u	ice	

1.	Ejercicio 5	2
2.	Ejercicio 7	3
3.	Ejercicio 8	4

1. Ejercicio 5

Ya se demostro que la relación: $R: \mathbb{N}^2 \times \mathbb{N}^2$ que esta dada por la regla (a,b) R (c,d) si y solo si a+d=b+c es de equivalencia

Además es la forma en la que construimos a los enteros desde un punto de vista conjuntivista.

Demuestra que: Existe un representante de la forma (n,0) o (0,n) o (n,n) en cada clase de equivalencia

Demostración:

Antes que nada recuerda que la resta en los naturales del estilo m-n solo esta definida para $m \ge n$ y se define como el m-n=k donde $k \in \mathbb{N}$ tal que k+n=m.

Considera la clase de equivalencia $[(a,b)]_R$ esta contiene por definición a (a,b).

Ahora veamos por casos, considera primero que el caso en que a=b, si esto pasa esta clase de equivalencia contienen al famoso (0,0) pues a+0=b+0. En esta clase estará cualquier elemento del estilo (n,n) pues a+n=b+n es equivalente a a+n=a+n que es equivalente a n=n. A este algun día lo llamaremos el cero de los enteros.

Ahora considera el par (a,b) donde a < b, entonces podemos pensar en el natural b-a, considera entonces el par ordenado (0,b-a), vemos que esta dentro de la misma clase de equivalencia pues a+b-a=b+0 se puede reducir a b=b lo cual es claramente siempre cierto, por lo tanto para la clase de equivalencia arbitraria $[(a,b)]_R$ con a < b tenemos que existe el representante (0,n) con n definida como el natural b-a. A este algún lo llamaremos el -n en los enteros.

Ahora considera el par (a,b) donde a>b, entonces podemos pensar en el natural a-b, considera entonces el par ordenado (a-b,0), vemos que esta dentro de la misma clase de equivalencia pues a+0=b+a-b se puede reducir a a=a lo cual es claramente siempre cierto, por lo tanto para la clase de equivalencia arbitraria $[(a,b)]_R$ con a>b tenemos que existe el representante (0,n) con n definida como el natural a-b. A este algún lo llamaremos el n en los enteros.

2. Ejercicio 7

Ya se demostro que la relación: $R : \mathbb{R} \times \mathbb{R}$ que esta dada por la regla $a \ R \ b$ si y solo si $a - b \in \mathbb{Z}$ es una relación de equivalencia, además [0, 1) es un conjunto de todos los represetantes de las clases de equivalencia

Demostración:

Es Reflexiva pues dado cualquier real a tenemos que a-a=0 y $0\in\mathbb{Z}$, por lo tanto $\forall a\in\mathbb{R}\ (a,a)\in R$.

Es Simetrica pues si $(a,b) \in R$ entonces $a-b \in \mathbb{Z}$, pero sea n=a-b entonces tanto $n \in \mathbb{Z}$ como $-n \in \mathbb{Z}$, por lo tanto $b-a \in \mathbb{Z}$, por lo tanto $(b,a) \in R$, es decir de forma general $\forall (a,b) \in R$ $(b,a) \in R$.

Finalmente podemos ver que para $(a,b) \in R$ y $(b,c) \in R$ tenemos por la definición de la misma relación $a-b \in \mathbb{Z}$ y $b-c \in \mathbb{Z}$ por lo tanto sea n=a-b y m=b-c entonces veamos al entero n+m este se puede ver como a-b+b-c es decir m+n=a-c y para cualquiera dos enteros, su suma sigue en los enteros, por lo tanto $a-c \in \mathbb{Z}$, por lo tanto $(a,c) \in R$, es decir de forma general $\forall (a,b) \in R$ y $(b,c) \in R$ tenemos que $(a,c) \in R$.

Finalmente para ver que [0,1) es un conjunto de todos los represetantes de las clases de equivalencia basta con ver que para un entero arbitrario a existe un elemento en $b \in [0,1)$ tal que a R b

Esto lo podemos demostrar por casos, sea $a \in \mathbb{R}$:

- Si $a \in \mathbb{Z}$ entonces a R 0 pues $a-0 \in \mathbb{Z}$, y ya que $0 \in [0,1)$ logramos encontrar un representante dentro del conjunto.
- Si a no esta en los enteros, podemos describirla como a=b+k con $b\in\mathbb{Z}$ y $k\in\mathbb{R}$ donde b es el entero inmediatamente anterior, ya que la separacióne entre enteros es de un real, 0< k<1. Finalmente podemos ver que a R k pues $a=b+k-k\in\mathbb{Z}$ por lo tanto encotramos una k tal que 0< k<1 y que esta en la misma clase de equivalencia, por lo tanto es un representante de la misma

Entonces sin importar si a es un entero o no, podemos encontrar un elemento dentro de [0,1) para cada clase de equivalencia, por lo tanto ese conjunto es un conjunto de representantes.

3. Ejercicio 8

Sea X y Y conjuntos ajenos. Si $\{X_i\}_{i\in I}$ es una partición de X y $\{Y_j\}_{j\in J}$ es una partición de Y, entonces $\{X_i\}_{i\in I}\cup\{Y_j\}_{j\in J}$ es una partición de $X\cup Y$.

Demostración:

Ya que son con conjuntos disconjuntos $X \cap Y = \emptyset$.

Sea
$$Z_k \in \{X_i\}_{i \in I} \cup \{Y_j\}_{j \in J}$$

Ahora para podemos decir que $\{X_i\}_{i\in I}\cup\{Y_j\}_{j\in J}$ es una partición de $X\cup Y$ si y solo si:

 $\forall k \in I \cup J \ Z_k \subseteq \{ \ X_i \ \}_{i \in I} \cup \{ \ Y_j \ \}_{i \in J}$

Este sale directo, pues sea $Z_k \in \{X_i\}_{i \in I} \cup \{Y_j\}_{j \in J}$ entonces o bien $Z_k \subseteq X$ o $Z_k \subseteq Y$, vayamos por casos:

Si $Z_k \in \{X_i\}_{i \in I}$ entonces por definición de partición sobre $X_i \subseteq X \subseteq X \cup Y$ por lo tanto $Z_k \in X \cup Y$

Si $Z_k \in \{Y_j\}_{j \in J}$ entonces por definición de partición sobre Y $Z_k \subseteq Y \subseteq Y \cup X = X \cup Y$ por lo tanto $Z_k \in X \cup Y$

 $\forall k \in I \cup J \ Z_k \neq \emptyset$

Si $Z_k \in \{X_i\}_{i \in I}$ por definición de partición niguna de las X_i puede ser vacia, por lo tanto Z_k no será vacía.

O bien $Z_k \in \{Y_j\}_{j \in J}$ por definición de partición niguna de las Y_i puede ser vacia, por lo tanto Z_k no será vacía.

■ Si $z \in Z_k$ entonces z no pertenece a $Z_{k'} \forall k' \in I \cup J$ donde $k' \neq k$

Esta proposición nos dice que no existen elementos que pertenz
can a más de una partición. Sea $z \in Z_k$ un elemento cualquiera de
ntro de $X \cup Y$.

Si $Z_k \in \{X_i\}_{i \in I}$ entonces por definición de partición sobre X si $i \neq j$ entonces $X_i \cap X_j = \emptyset$, por lo tanto z no esta en nigun otro subconjunto de X además de Z_k y ya que X y Y son ajenos no existe elementos de X en Y, por lo tanto si $z \in Z_k$, z no pertenecerá a ninguna $Z_{k'}$ con $k' \neq k$.

Si $Z_k \in \{X_j\}_{j \in J}$ entonces por definición de partición sobre Y si $i \neq j$ entonces $Y_i \cap Y_j = \emptyset$, por lo tanto z no esta en nigun otro subconjunto de Y además de Z_k y ya que X y Y son ajenos no existe elementos de Y en X, por lo tanto si $z \in Z_k$, z no pertenecerá a ninguna $Z_{k'}$ con $k' \neq k$.

 $\bullet \cup_{k \in I \cup J} Z_k = X \cup Y$

Sea
$$Z_k \in \{X_i\}_{i \in I} \cup \{Y_j\}_{j \in J}$$

$$\bigcup_{k \in I \cup J} Z_k = \bigcup_{i \in I} \left\{ X_i \right\} \cup \bigcup_{j \in J} \left\{ Y_i \right\}$$
$$= X \cup Y$$