Say "No" to Pass Books

पाठ्य पुस्तकों के अध्ययन के आधार पर

प्रश्न बैंक **Question Bank**

राजस्थान स्कूल शिक्षा परिषद्, जयपुर (राजस्थान)

संरक्षक

श्रीमान मदन दिलावर

कैबिनेट मंत्री, स्कूल शिक्षा, संस्कृत शिक्षा एवं पंचायती राज (राजस्थान सरकार)

संरक्षक श्री नवीन जैन (आईएएस)

सचिव, स्कूल शिक्षा, भाषा एवं पुस्तकालय विभाग, राजस्थान सरकार, जयपुर

अविचल चतुर्वेदी (आईएएस)

राज्य परियोजना निदेशक एवं आयुक्त राजस्थान स्कूल शिक्षा परिषद् जयपुर

श्री आशीष मोदी (आईएएस)

निदेशक, माध्यमिक शिक्षा बीकानेर, राजस्थान

मुख्य मार्गदर्शक

डॉ. अनिल कुमार पालीवाल

अतिरिक्त राज्य परियोजना निदेशक राजस्थान स्कूल शिक्षा परिषद् जयपुर

ज्योति ककवानी

अतिरिक्त राज्य परियोजना निदेशक राजस्थान स्कूल शिक्षा परिषद् जयपुर

संयोजक एवं मार्गदर्शक

श्रीमती उर्मिला चौधरी

उपनिदेशक, गुणवत्ता एवं प्रशिक्षण राजस्थान स्कूल शिक्षा परिषद् जयपुर

सहयोगकर्ता रमेश चंद मान

सहायक निदेशक, राजस्थान स्कूल शिक्षा परिषद् जयपुर

लेखन महावीर सिंह नटवाडिया

व्याख्याता, रा.उ.मा.वि. भावरू, विराट नगर, जयपुर (राज.)

अध्याय

1

प्र.1	निम्न में से सांन्द्रता की	कौनसी इकाई ताप पर	निर्भर नहीं करती है–			
	(अ)मोलरता	(ब)नार्मलता	(स)मोललता	(द)ग्राम प्रति लीटर	()
Я.2	शुद्ध जल की मोलरता	होती है—				
	(좌) 18.0 M	(ৰ) 10.0 M	(स) 5.5 M	(द) 55.5 M	()
Я.3	500 mL जल में 4 ग्राम	NaOH घुला हुआ है तो	विलयन की सांद्रता होर	îl—		
	(अ) 8 ग्राम प्रति लीटर	(ৰ) 0.2 M	(स) 0.2 N	(द)उपर्युक्त सभी	()
Я.4	किसका वाष्प दाब न्यून	तम होगा?				
	(अ) 0.1 M BaCl ₂ विल	यन	(ब) $0.1~{ m M}$ फीनॉल विल	यन		
	(स) 0.1 M सुक्रोस विल	यन	(द) 0.1 M सोडियम क्ल	गोराइड विलयन	()
प्र.5	जलीय विलयन में विलेर	य के पूर्ण वियोजन के लि	ाए वाण्ट हॉफ कारक का	अधिकतम मान वाला य	गौगिक	है।
	(अ) KCl	(ৰ) NaCl	(स) K₂SO₄	(द) MgSO ₄	()
Я.6	बेंजीन एवं टोलूइन का	मिश्रण है—				
	(अ)आदर्श विलयन		(ब)अनादर्श विलयन			
	(स)स्थिरक्वाथी मिश्रण		(द)उपर्युक्त में से कोई	नहीं	()
Я.7	निम्न लिखित विलयनों	में सर्वाधिक परासरण दाव	व किसका है?			
	(अ)1 M KCl	(ৰ)1 M (NH ₄) ₃ PO ₄	(स) 1 M BaCl ₂	(द) 1 M C ₆ H ₁₂ O ₆	()
प्र.8	समुद्र के लवणीय जल	से शुद्ध जल प्राप्त करने	की विधि है—			
	(अ)अपकेन्द्रण विधि		(ब)अवसादन विधि			
	(स)प्रतिलोम परासरण वि	वेधि	(द)जीव द्रव्य संकुचन वि	वेधि	()
प्र.9	किस सूत्र द्वारा मोलल	उन्नयन स्थिरांक (\mathbf{K}_b) र्क	ो गणना की जा सकती	है ?		
	(্র) $\frac{m \times T_b \times W}{1000 \times w}$	(ৰ) 10	$\frac{000\times\Delta T_b\times w}{W}$			
	$(orall) \; rac{1000w}{m imes \Delta T_b imes W}$	(द)इनग	में से कोई नहीं		()
प्र.10	निम्नलिखित में से किस	का परासरण दाब सबसे	कम होता है ?			
	(अ)पोटेशियम क्लोराइड	ਹਿਕਪੁਜ	(ब)स्तर्ण विलयन			

	(स)मैग्नीशियम क्लोराइर	ड विलयन	(द)ऐलुमिनियम फॉस्फेट	विलयन	()
प्र.11	अत्यंत तनु Al ₂ (SO ₄) ₃ ी	विलयन का वांट हॉफ गुप	गांक है—			
	(अ) 4	(ब) 3	(स) 2	(द) 5	()
प्र.12	जलीय विलयन में विले	य के पूर्ण वियोजन के ि	गए वाण्ट हॉफ कारक का	अधिकतम मान वाला यौ	गिक	हैं।
	(अ) KCl	(ৰ) NaCl	(स) K ₂ SO ₄	(ব) MgSO ₄	()
प्र.13	निम्न में से किस जलीय वि	लयन क क्वथनांक उच्चतम	है ।			
	(3) 1.0 M KCl	(ৰ) 1.0 M K ₂ SO ₄	(₹) 2.0 M KCl	(द) 2.0 M K ₂ SO ₄	()
Section	n B: रिक्त स्थान की पूर्वि	र्ते कीजिये–				
Я.14	•		मोलों की संख्या	कह्त्वाती है।		
я. 14 Я.15			की विलेयता बढ़ाने हेतु र		त ।	। यंग
я.15	किया जता है।	ઝાંહ વય વધાલા ન \mathbf{CO}_2	का विलयता बढ़ान हतु र	षातल पग पा	ष ५४	. 081
प्र.16	0.62 ग्राम Na ₂ CO ₃ .H ₂	O को 100 मिली 0.1 N I	$ m H_2SO_4$ में मिलाया गया। ि	वेलयन प्रकृति	का ह	होगा ।
Я.17	दो द्रवों के स्थिरक्वार्थ विचलन क		दोनों द्रवों से कम होता	है जब वह राउल्ट के	निय	ाम से
प्र.18	लाल रक्त कोशिकाओं	का अल्प परासरी विलयन	ों में सिकुडना	कहलाती है।		
प्र.19	विलेय के क्वथनांक बिन	दु में वृद्धि, विलयन के	से समानुपाती ह	ोती है।		
प्र.20	हिमांक में होने वाला उ कहलाता है		पशील विलेय का 1 मोल	विलायक के 1000 g मे	में घुल	ग हो,
प्र.21	वह ताप जिस पर विला	यक का वाष्प दाब और	बाहरी दाब एक समान हो	ते है, उसे क	हते है	<u>}</u>
प्र.22	विलेय पदार्थ की ग्राम प्रतिशतता (w/V%) कह		मिली लीटर	में उपस्थित हो, द्रव्यमान	I— З	ायतन
Я.23	स्थिर क्वाथी मिश्रण बिन	ना अपनेमें परिवर्तन	ा के उबलता है।			
Sectio	n C: अति लघूत्तरात्मक !	प्रश्न				
Я.24	$5\% \left(\frac{W}{V}\right)$ NaCl के 200 I	nL विलयन बनाने हेतु वि	केतने ग्राम NaCl की आव	ाश्यकता होगी ?		
Я.25	विलेय की विलयन में वि	वेयोजन की मात्रा एवं वांव	ट हॉफ गुणांक में संबंध व	ग सूत्र लिखिए।		
प्र.26	मोल अंश का सूत्र लिखिए।					

- प्र.27 ताप बढाने पर हेनरी स्थिरांक (K_H) पर क्या प्रभाव पडता है ?
- प्र.28 वाष्प दाब अवनमन के लिये रॉउल्ट का नियम लिखें।
- प्र.29 कच्चे आम को सांद्र लवणीय विलयन में रखे जाने पर क्या होता है ?
- प्र.30 अणुसंख्यक गुणधर्म क्या है? इन गुणों का एक उदाहरण दीजिए
- प्र.31 निम्नलिखित को परिभाषित कीजिए (अ)आदर्श विलयन (ब)अनादर्श विलयन
- प्र.32 विलयन की मोललता ज्ञात करने का सूत्र लिखिए
- प्र.33 100 g विलायक में विलेय का एक मोल घुला है, विलयन की मोललता ज्ञात कीजिए।
- प्र.34 सामान्यतः ताप बढाने पर गैसों की द्रवों में विलेयता घटती है, कारण दीजिए।
- प्र.35 हेनरी नियम को परिभाषित कीजिए।
- प्र.36 सर्दियों में कार के रेडिएटरों में एथिलीन ग्लाइकॉल के प्रयोग की सलाह क्यों दी जाती है ?
- प्र.37 प्रतिलोम परासरण क्या होता है ? उदाहरण सहित परिभाषित कीजिए।
- प्र.38 स्थिर क्वाथी मिश्रण को परिभाषित कीजिए।
- प्र.39 क्लोरोफॉर्म तथा एसीटोन के विलयन द्वारा राउल्ट के नियम से ऋणात्मक विचलन प्रदर्शित करने का कारण समझाइए।
- प्र.40 परासरण की परिभाषा लिखिए। समुद्री जल के विलवणीकरण में प्रयुक्त विधि का नाम लिखिए।

Section D: लघूत्तरात्मक प्रश्न

- प्र.41 मोलरता एवं मोललता को परिभाषित कीजिये, इकाई लिखिए एवं इन पर ताप के प्रभाव को बताइए।
- प्र.42 एक विलयन में बेन्जीन का 30% द्रव्यमान कार्बन टेट्राक्लोराइड में घुला हुआ हो तो बेन्जीन के मोल—अंश की गणना कीजिये।
- प्र.44 आदर्श तथा अनादर्श विलयन में अंतर लिखिए।
- प्र.45 बेंजीन का क्वथनांक $303.23~\rm K$ है। $1.80~\rm yr$ अवाष्पशील विलेय को $90~\rm yr$ बेंजीन में घोलने पर विलयन का क्वथनांक बढ़कर $354.11~\rm K$ हो जाता है तो विलेय के मोलर द्रव्यमान की गणना कीजिये। ($\rm K_{\it b}=2.53~\rm K~kg~mol^{-1}$)
- प्र.46 हेनरी के नियम के दो अनुप्रयोग लिखिए।
- प्र.47 एक पेय जल का नमूना क्लोरोफॉर्म (CHCl3) से कैंसरजन्य समझे जाने की सीमा तब बहुत अधिक संदूषित

- है। इसमें संदूषण की सीमा 15 ppm (द्रव्यमान में) है-
- (i) इसे द्रव्यमान प्रतिशत में व्यक्त कीजिए।
- (ii) जल के नमूने में क्लोरोफॉर्म की मोललता ज्ञात कीजिए।
- प्र.48 स्थिरक्वाथी मिश्रण से आप क्या समझते हैं? यह कितने प्रकार का होता है? प्रत्येक प्रकार का उदाहरण दीजिये
- प्र.49 यदि $10\% \ w/W$ जलीय H_2SO_4 का घनत्व $1.84 \ \mathrm{g \ cm^{-3}}$ है तो H_2SO_4 की मोललता की गणना कीजिए।
- प्र.50 सामान्यतः परासरण दाब का उपयोग प्रोटीन के अणुभार ज्ञात करने में किया जाता है समझाइए।
- प्र.51 एक अवाष्पशील विलेय को किसी विलायक में मिलाने से उसका वाष्प दाब कम क्यों हो जाता है ?
- प्र.52 विलयन के सान्द्रण के लिये मोलरता (molarity) की अपेक्षा मोललता (molality) क्यों ली जाती है ?
- प्र.53 क्लोरोफार्म एवं ऐसीटोन के विलयन द्वारा राउल्ट के नियम से ऋणात्मक विलयन प्रदर्शित करने का कारण समझाइए।
- प्र.54 निम्नलिखित पदों को परिभाषित कीजिए
 - (i) मोल अंश (ii) मोललता
- (iii) मोलरता
- (iv) द्रव्यमान प्रतिशत
- प्र.55 किसी पदार्थ का 1 मोल 500 mL जल में घोला गया। विलयन की मोलरता की गणना कीजिए।
- प्र.56 निम्नलिखित विलयनों को वांट हॉफ गुणांक के बढ़ते क्रम में लिखिए।
 - 0.1 M CaCl₂, 0.1 M KCl, 0.1 M Al₂(SO₄)₃, 0.1 M C₁₂H₂₂O₁₁
- प्र.57 शक्कर के 5% (द्रव्यमान) जलीय विलयन का हिमांक 271 K है। यदि शुद्ध जल का हिमांक 273.15 K है तो ग्लूकोस के 5% जलीय विलयन के हिमांक की गणना कीजिए।
- प्र.58 रॉउल्ट का वाष्प दाब अवनमन नियम लिखिए। इसकी सीमाएँ भी लिखिए।
- प्र.59 0.1 M ग्लूकोस तथा 0.1 M सोडियम क्लोराइड विलयन में किसका परासरण दाब अधिक होगा और क्यों ? कारण सिहत लिखिए।
- प्र.60 निम्नलिखित को क्वथनांक के बढ़ते क्रम में व्यवस्थित कीजिए-
 - 0.1 M Na₂SO₄, 0.1 M NaCl, 0.1 M C₁₂H₂₂O₁₁, 0.1 M Al₂(SO₄)₃,
- प्र.61 अवाष्पशील विलेय के लिए हिमांक अवनमन को वक्र द्वारा प्रदर्शित कीजिए व उसके अणुभार को ज्ञात करने का सूत्र लिखिए।
- प्र.62 एक प्रोटीन के 300~mL जलीय विलयन में 1.25~g प्रोटीन उपस्थित है। 300~K पर इस विलयन का परासरण दाब 2.50×10^{-3} bar पाया गया। प्रोटीन के मोलर द्रव्यमान की गणना कीजिए। (R=0.083~L bar mol^{-1} K^{-1})

Section E: निबंधात्मक प्रश्न

प्र.63 (अ) परासरण दाब से आप क्या समझते है ? इसे ज्ञात करने का सूत्र लिखिए।

- (ब) क्या होता है जब लाल रक्त कणिकाओं को रखा जाता है।
 - (i) जल में (ii) 1 % NaCl में (iii) 0.5 % NaCl में
- (स) प्रतिलोम परासरण क्या होता है ? इसका एक अनुप्रयोग लिखिए।
- (द) 25° C पर 10% सुक्रोस ($C_{12}H_{22}O_{11}$) के विलयन के परासरण दाब की गणना कीजिये (R=0.0821~L atm $K^{-1}~mol^{-1}$)

(iv) 0.9% NaCl में

- (य) एक प्रोटीन के 200 मिली जलीय विलयन में 1.26 ग्राम प्रोटीन है। 300 K पर इस विलयन का परासरण दाब 2.57×10^{-3} bar पाया गया, प्रोटीन के मोलर द्रव्यमान की गणना कीजिए (R=0.083 L bar K^{-1} mol $^{-1}$)
- प्र.64 (अ) हेनरी का नियम क्या है ? इसका गणितीय रूप लिखिए।
 - (ब) हेनरी के नियम की सीमाए लिखिए।
 - (स) जलीय जन्तुओं के लिए कौनसे जल में रहना अधिक सुविधाजनक है, गर्म अथवा ठन्डे ?
 - (द) सड़े हुए अंडे जैसी गंध वाली विषैली H_2S गैस गुणात्मक विश्लेषण में उपयोग की जाती है, यदि H_2S गैस की जल में विलेयता $0.195~\mathrm{m}$ हो तो हेनरी स्थिरांक (K_H) की गणना कीजिए।
- प्र.65 (अ) सामान्यतः ताप वृद्धि पर गैसों की द्रव में विलेयता घटती है क्यों ?
 - (ब) विलयन का वाष्प दाब शुद्ध विलायक की तुलना में कम होता है, क्यों?
 - (स) शर्करा के किण्वन से एथेनॉल बनाते समय हम प्रभाजी आसवन विधि से 95% से अधिक सांद्रता का एथेनॉल नहीं बना सकते है, क्यों ?
 - (द) सड़को से बर्फ हटाने के लिए सोडियम क्लोराइड या कैल्शियम क्लोराइड का प्रयोग किया जाता है क्यों?
- प्र.66 (अ) एसिटिक अम्ल, ट्राइक्लोरो ऐसीटिक अम्ल, ट्राइफ्लुओरो ऐसीटिक अम्ल की समान मात्रा से जल के हिमांक में अवनमन को बढ़ते क्रम में लिखिए एवं इसे कारण सहित समझाइये।
 - (ब) CH_3CH_2CH (Cl)COOH के $10 \, \mathrm{g}$ को $250 \, \mathrm{g}$ जल में मिलाने पर होने वाले हिमांक का अवनमन परिकलित कीजिए ($K_f = 1.86 \, \mathrm{K \, Kg \, mol^{-1}}$, $K_a = 1.4 \times 10^{-3}$)
 - (स) एस्कॉर्बिक अम्ल (विटामिन सी, $C_6H_8O_6$) के उस द्रव्यमान का परिकलन कीजिए जिसे 75 g ऐसीटिक अम्ल में घोलने पर उसके हिमांक में 1.5° C की कमी हो जाए ($K_f = 3.9 \text{ K Kg mol}^{-1}$)
- प्र.67 (अ) रूधिर में ऑक्सीजन की कम सान्द्रता से पर्वतारोही कमजोर हो जाते हैं एवं स्पष्टतया सोच नहीं पाते—
 (i) इस विशिष्ट दशा को क्या कहते हैं? नाम लिखो
 - (ii) इस स्थिति का कारण स्पष्ट करो।

- (ब) 30 g एथेनोइक अम्ल 100 g जल में है। एथेनोइक अम्ल की जल में मोललता ज्ञात करो।
- प्र.68 (अ) (i) जल वाष्प दाब का क्या होगा यदि एक चम्मच चीनी उसमें डाल दी जाये ?

 (ii) वृहद्णुओं के मोलर द्रव्यमान ज्ञात करने के लिए कौन—सा अणुसंख्यक गुणधर्म उपयुक्त है ?
 - (ब) क्या क्वथनांक का उन्नयन समान होगा यदि 0.1 मोल सोडियम क्लोराइड या 0.1 मोल चीनी को 1 लीटर जल में विलेय किया जाए ? समझाइए।
 - (स) क्या हम स्थिर क्वाथी मिश्रण के यौगिकों को प्रभाजी आसवन द्वारा पृथक् कर सकते हैं ? समझाइए।
- प्र.69 (अ) 1 M NaCl विलयन का क्वथनांक 1 M ग्लूकोस विलयन से अधिक क्यों होता है?
 - (ब) जब एक अवाष्पशील विलेय X (मोल द्रव्यमान =50 ग्राम/मोल) को $78\,\mathrm{g}$ बेंजीन में घोला जाता है तो यह इसके वाष्पदाब को $90\,\%$ तक घटा देता है। विलेय X की विलयन में घोली गई मात्रा की गणना कीजिए।
 - (स) विलयन के क्वथनांक उन्नयन की गणना कीजिए। जिसे $MgCl_2$ को पूर्ण वियोजनशील मानते हुए उसके $10~\mathrm{g}$ को $200~\mathrm{g}$ जल में घोलकर बनाया गया है।
- प्र.70 (अ) ऐथोनाइक अम्ल का बेंजीन में वॉण्ट हॉफ गुणांक का मान 0.5 क्यों होता है।
 - (ब) ${
 m K_2SO_4}$ को पूर्णतया वियोजनशील मानते हुए $2.32\times 10^{-2}~{
 m g~K_2SO_4}$ को $25^{\circ}{
 m C}$ पर घोलकर बनाये गये $2{
 m L}$ विलयन के लिए परासरण दाब की गणना कीजिए।
 - $(R = 0.082 \text{ L atm mol}^{-1} \text{ K}^{-1} \text{ K}_2 \text{SO}_4$ का मोलर द्रव्यमान = 174 g mol $^{-1}$)
 - (स) जब 25.6~g सल्फर को 1000~g बेंजीन में मिलाया जाता है तो हिमांक का 0.512~K अवनमन हो जाता है। सल्फर का आण्विक सूत्र ज्ञात कीजिए (S_x)

प्र.1	शुष्क लैक्लांशे सेल में कैथं	ोड होता है–					
	(अ)जिंक पात्र	(ৰ) MnO_2	(स)ग्रैफाइ	ट छड़	(द)NH ₄ Cl	()
प्र.2	चार क्षारीय धातुओं A, B, G	C तथा D के मानक आय	नन विभव क्रम	ाशः −3.05 V, −1	.66 V, −0.40 V ₹	ाथा -	0.80
	V है। निम्न में से कौनसी	धातु सबसे अधिक अपच	ायक होगी ?				
	(अ)A	(ब)B	(स)C		(द)D	()
Я.3	चालकता कि इकाई है–						
	(ਖ਼)ohm ⁻¹ cm ⁻¹	(ৰ)S cm ⁻¹	(स) (अ)ए	वं(ब)दोनों	(द)ohm cm ⁻¹	()
Я. 4	प्रथम कोटि अभिक्रिया के वि	लिए log k एवं 1/T में ग्र	ाफ खींचते हैं,	तो एक सरल रे	खा प्राप्त होती है।	प्राप्त	रेखा
	की प्रवणता (ढाल) होगी—						
	$(3)-\frac{E_a}{2.303}$	$\left(\overline{q}\right) - \frac{\mathrm{E_a}}{2.303\mathrm{R}}$	$\left(\mathrm{H}\right) - \frac{2.30}{\mathrm{E_a}}$	03 R	$(\mathfrak{F}) - \frac{E_a}{R}$	()
प्र. 5	1 मोल MnO ₄ से Mn ⁺² के	परिवर्तन में आवश्यक प	गैरा डे की संख्य	या है—			
	(अ)1 F	(ৰ)2F	(स)3F		(द)5F	()
Я.6	अच्छे चालकत्व विलयन वा	ले पदार्थ हैं–					
	(अ)दुर्बल विद्युत अपघट्य		(ब)प्रबल र	वैद्युत अपघट्य			
	(स)विद्युत अपघट्य		(द)उत्प्रेरव	न		()
Я.7	गैल्वेनीकरण में लोहे की स	ातह पर किसकी परत च	ढाई जाती है	?			
	(अ)Cu	(ब)C	(स)Zn		(द)Ni	()
Я.8	निम्न में से कौनसी धातु उ	म्ल से हाइड्रोजन विस्था	पित नहीं करत	ती है ?			
	(अ) M g	(ब)Na	(स)Cu		(द)Zn	()
Я.9	ईंधन सेल में						
	(अ)रासायनिक ऊर्जा, वैद्युत	। ऊर्जा में परिवर्तित होती	रिहे।				
	(ब)ईंधन की दहन ऊर्जा क	गे रासायनिक ऊर्जा में प	रिवर्तित किया	जाता है।			
	(स)ईंधन की दहन ऊर्जा व	ने वैद्युत ऊर्जा में परिवर्त	न किया जाता	है।			
	(द)वैद्युत ऊर्जा को रासार्या	नेक ऊर्जा में परिवर्तन वि	क्रेया जाता है।			()
प्र.10	साम्यावस्था पर सेल e.m.f	होगा—					
	(अ)धनात्मक	(ब)ऋणात्मक (र	स)शून्य	(द)उपर्युक्त में र	ने कोई नही	()

प्र.11	प्रबलतम अपचायक है—					
	(अ)Li	(ब)Na	(स)K	(द)Cs	()
प्र.12	ताप में थोड़ी वृद्धि करने से	। अभिक्रिया का वेग तीव्रता	से बढ़ता है, क्योंकि			
	(अ)सक्रियता अभिकारकों क्	ने संख्या में वृद्धि हो जाती	हैं			
	(ब)संघट्टों की संख्या बढ़	जाती है				
	(स)मुक्त पथ की लम्बाई ब	ढ़ जाती है				
	(द)अभिक्रिया ऊष्मा बढ़ जा	ती है			()
Я.13	गैल्वेनी सेल के लिए कौनर	मा कथन असत्य है ?				
	(अ)ऐनोड पर अपचयन होत	ग है।	(ब)कैथोड पर अपचय	न होता है		
	(स)ऐनोड ऋण आवेशित ह	ोता है।	(द)कैथोड धन आवेशि	ात होता हैं	()
प्र.14	गैल्वेनी सेल में लवण सेतु	का प्रयोग किया जाता है–				
	(अ)रासायनिक अभिक्रिया हे	तु लवण ले जाने के लिए				
	(ब)परिपथ पूर्ण करने के लि	ाए				
	(स)सेल में विद्युत प्रतिरोध	कम करने के लिए				
	(द)कैथोड को ऐनोड से पृथ	पक करने के लिए			()
Sect	ion B: रिक्त स्थान की पूर्ति	कीजिये—				
	प्रतिरोध के व्युत्क्रम को		0		^	
Я.16	किसी सेल के दो सामानांत		रा आर इलक्ट्रांड क अन्	1प्रस्थ काट क क्षत्रफल	का उ	ग् नु पात
	कोकहते		× - \	\\ .· \		
Я.17	जब सेल में कोई धारा प्रवाहि	हत नहां हाता ह उस दशा ग	न इलक्ट्रांड विभव में हार	न वाल अंतर का		•••••
	कहते है।		,			
	वैद्युत अपघटनी चालकता व					
Я.19	संगलित सोडियम क्लोराइर	ड विद्युत अपघटन करने प	र पर	र तथा	पर	मुक्त
	करता है।					
Я.20	विद्युत अपघटन में इलेक्ट्रॉ	ड पर जमा पदार्थ का भार	सीधे	समानुपाती होता है।		
Я.21	लोहे पर जंग लगना	का एक उदाहर	ण हैं।			
Я.22	NaCl के जलीय विलयन मे	में विद्युत प्रवाहित करने पर	प्राप्त विलयन की pH.	जाती	हैं।	
Я.23	लवण सेतु का विलयन दोन	नों अर्धसेलों को	रखता है।			
Я.24	जिंक का मानक अपचयन	विभव –0.76 वोल्ट है। यह	हाइड्रोजन की तुलना	में अच्छा	<u>د</u> ع	}

Section C: अति लघूत्तरात्मक प्रश्न

- प्र.25 कोलराउश का नियम व एक अनुप्रयोग लिखें।
- प्र.26 फैराडे का विद्युत अपघटन का द्वितीयक नियम लिखिए।
- प्र.27 विशिष्ट चालकत्व या चालकता से आप क्या समझते हैं ? इसकी इकाई लिखिए ?
- प्र.28 निम्नलिखित सेल में एनोड पर होने वाली क्रिया को लिखों। $Pt.\,H_2(1\,atm.)\big|HCl\,(1\,M)\big|\,Cl_2\,(1\,atm).\,Pt$
- प्र.29 क्या कारण है कि गलित कैल्शियम हाइड्राइड का विद्युत अपघटन करने पर हाइड्रोजन ऐनोड पर मुक्त होती है ? समझाइए।
- प्र.30 साम्य स्थिरांक तथा मानक गिब्स मुक्त ऊर्जा में सम्बन्ध लिखिए।
- प्र.31 किसी विलयन की चालकता तनुता के साथ क्यों घटती हैं ?
- प्र.32 मानक हाइड्रोजन इलेक्ट्रोड का नामांकित चित्र बनाइए।
- प्र.33 कम स्नाई देने वाले व्यक्ति के श्रवण यंत्र के लिए किस प्रकार का सैल प्रयुक्त होता हैं ?
- प्र.34 लेड संचायक सेल की निरावेशन अभिक्रिया लिखिए ?
- प्र.35 क्या हम CuSO₄ विलयन लि को लोहे के पात्र में भण्डारण कर सकते हैं ? समझाये।
- प्र.36 प्रतिरोधकता का SI मात्रक खए ?
- प्र.37 विद्युत अपघट्यों के चालकत्व को प्रभावित करने वाले कोई दो कारक लिखिए ?
- प्र.38 2×96500 कूलाम्ब धारा को तनु H_2SO_4 से प्रवाहित किया जाता है, N.T.P. पर कैथोड़ पर निर्गत हाइड्रोजन गैस का आयतन क्या होगा ?
- प्र.39 वैद्युत अपघटन का फैराडे का प्रथम नियम लिखिए।

Section D: लघूत्तरात्मक प्रश्न

- प्र.40 CH₃COONa, HCl, NaCl की 298 K पर अनंत तनुता पर मोलर चालकताए क्रमशः 91.0, 425.4, 126.4 S cm² mol⁻¹ हो तो CH₃COOH की अनंत तनुता पर मोलर चालकता ज्ञात कीजिये।
- प्र.41 संक्षारण एक वैद्युत रासायनिक परिघटना है। समझाइये।
- प्र.42 ईंधन सेलों का महत्व लिखिए।
- प्र.43 निम्नलिखित अभिक्रियाओं वाले गेल्वेनी सेल का मानक सेल विभव परिकलित कीजिये। $2Cr(s)+3Cd^{+2}(aq)\longrightarrow 2Cr^{+3}(aq)+3Cd(s)$

$$Fe^{+2}(aq) + Ag^{+}(aq) \longrightarrow Fe^{+3}(aq) + Ag(s)$$

दिया हैं
$$E_{Cr^{+3}/Cr}^0 = -0.74 \, V$$
; $E_{Cd^{+2}/Cd}^0 = -0.40 \, V$

$$E_{Ag^{+}/Ag}^{0} = +0.80 \text{ V}$$
; $E_{Fe^{+3}/Fe}^{0} = +0.77 \text{ V}$

- प्र.44 साम्यावस्था पर डेनियल सेल के लिए नेर्न्स्ट समीकरण लिखिए एवं ${\bf E}^0_{(\dot{\pi}\dot{e})}$ तथा साम्य स्थिरांक $({\bf K}_c)$ में सम्बन्ध व्युत्पन्न कीजिए।
- प्र.45 सक्षारण के बचाव हेतु विधियों का वर्णन कीजिए।
- प्र.46 1.5 ऐम्पियर की धारा $AgNO_3$ के एक वैद्युत अपघट्य में से अक्रिय इलेक्ट्रोड के साथ गुजरती है। जमा हुई सिल्वर का भार 1.5~g था तो ज्ञात कीजिये कि कितने समय तक धारा बहती हैं ?
- प्र.47 कॉपर सल्फेट के विलयन को 1.5 एम्पियर की धारा से 20 मिनट तक विद्युत—अपघटन किया गया। कैथोड पर निक्षेपित कॉपर का द्रव्यमान क्या होगा ? ($F = 96500 \, \mathrm{C}$)
- प्र.48 निम्नलिखित सेल के लिए e.m.f. परिकलित कीजिए-

$$Zn(s)|Zn^{2+}(0.1 M)||(0.01 M) Ag^{+}/Ag(s)$$

दिया है:
$$E_{Zn^{2+}/Zn}^0 = -0.76 \, V$$
, $E_{Ag^+/Ag}^0 = +0.80 \, V$

[दिया है: log 10 = 1]

- प्र.49 H_2 तथा O_2 का उपयोग करने वाले ईंधन सेल का स्वच्छ एवं नामांकित चित्र बनाइए। इसमें इलेक्ट्रोड अभिक्रिया के समीकरण लिखिए। ईंधन सेल का एक उपयोग भी दीजिए।
- प्र.50 Mg⁺² एवं Cl⁻ की सीमान्तर मोलर चालकताओं के मान क्रमशः 106.0 S cm² mol⁻¹तथा 76.3 S cm² mol⁻¹है तो MgCl₂ की सीमान्त मोलर चालकता ज्ञात कीजिये।
- प्र.51 $\mathrm{Na_2SO_4}$ के लिए λ_{m} की गणना कीजिए।
 - $\Lambda_{\mathrm{Na}^{+}}^{0}=50.1\,\mathrm{S\,cm^{-1}\,mol^{-1}}$ तथा $\Lambda_{\mathrm{SO}_{4}^{2}}^{0}=160.0\,\,\mathrm{S\,\,cm^{-1}mol^{-1}}$ है। इसमें प्रयुक्त नियम की परिभाषा लिखिए।
- प्र.52 $0.001~\mathrm{M}~\mathrm{KCl}$ विलयन युक्त चालकता सेल का प्रतिरोध $298~\mathrm{K}$ पर $1500~\mathrm{Si}$ सेल स्थिरांक का निर्धारण कीजिए यदि $298~\mathrm{K}$ पर $0.001~\mathrm{M}~\mathrm{KCl}$ विलयन की चालकता का मान $0.146 \times 10^{-3}~\mathrm{S}~\mathrm{cm}^{-1}$ है।
- प्र.53 समझाइए कि कैसे लोहे पर जंग लगने का कारण एक विद्युत रासायनिक सेल बनना माना जाता हैं ?
- प्र.54 0.1 mol L^{-1} KCl विलयन से भरे हुए चालकता सेल का प्रतिरोध 100 ओम है। यदि सेल का प्रतिरोध 0.02 mol L $^{-1}$ KCl विलयन भरने पर 520 ओम हो तो 0.02 M KCl विलयन की चालकता 1.29 S m^{-1} है)
- प्र.55 यदि 298 K पर CH₃COOH, HCl एवं NaCl के लिए अनन्त तनुता पर मोलर चालकताओं के मान क्रमशः 390.5, 425.4 एवं 126.4 S cm² mol⁻¹ CH₃COONa की अनन्त तनुता पर मोलर चालकता ज्ञात कीजिए।
- प्र.56 निम्न सेल का वि.वा.बल (e.m.f) 298 K ताप पर परिकलित कीजिए-

Fe | Fe²⁺ $(0.01 \text{ M}) \| H^{+}(1 \text{ M}) | H_{2}(g) (1 \text{ bar}), Pt(s)$

दिया गया हैं $-E_{Cell}^0 = 0.44V$

Section E: निबंधात्मक प्रश्न

- प्र.57 (अ)'मानक हाइड्रोजन इलैक्ट्रोड' का नामांकित चित्र बनाइए।
 - (ब)ईंधन सेल, अनय सेलों की तुलना में श्रेष्ठ होते हैं। कोई दो कारण दीजिए।
- प्र.58 (अ)डेनियल सेल का नामांकित चित्र बनाइये।
 - (ब)डेनियल सेल में इलेक्ट्रोडों पर होने वाली ऑक्सीकरण एवं अपचयन अर्द्ध अभिक्रिया लिखिए एवं इसका सेल आरेख बनाइये।
 - (स) डेनियल सेल का मानक विद्युत वाहक बल क्या होता हैं ?
 - (द) डेनियल सेल की सेल अभिक्रिया के नन्स्ट समीकरण लिखिए।
- प्र.59 (अ)मोलर चालकता क्या हैं ? इसका चालकता से क्या सम्बन्ध है ?
 - (ब)तुल्यांकी चालकता क्या है ? इसका चालकता से सम्बन्ध लिखिए।
 - (स)AlCl₃विलयन के लिए तुल्यांकी चालकता एवं मोलर चालकता में सम्बन्ध लिखिए।
 - (द)प्रबल एवं दुर्बल विद्युत अपघट्य की मोलर चालकता पर तनुता का प्रभाव लिखिए।
 - (य) 298 K पर 0.20 M KCl विलयन की विशिष्ट चालकत्व 0.0248 S cm $^{-1}$ है तो मोलर चालकता की गणना की जिए।
- प्र.60 (अ) डेनियल सेल का नामांकित चित्र बनाइये।
 - (ब)इलेक्ट्रोडों पर होने वाली ऑक्सीकरण एवं अपचयन की अर्द्ध अभिक्रियाएँ लिखिए।
 - (स)इस सेल के लिये नेर्न्स्ट समीकरण का गणितीय रूप लिखिये।
- प्र.61 (अ)ईंधन सेल का नामांकित चित्र बनाइएये।
 - (ब)ईंधन सेल से आप क्या समझते हैं किसी एक ईंधन सेल की बनवाट और क्रियाविधि का वर्णन कीजिये।
 - (स)ईंधन सेल अन्य सेलों की तुलना में श्रेष्ठ होता है, कोई दो कारण दीजिये।
 - (द)ईंधन सेल की दक्षता क्या हैं?
 - (य)अपोलो स्पेस प्रोग्राम में प्रयुक्त ईंधन सेल का नाम लिखिए।
- प्र.62 (अ)संक्षारण से आप क्या समझते हैं? उदाहरण दीजिये
 - (ब)संक्षारण को प्रभावित करने वाले दो कारक लिखिए
 - (स)संक्षारण एक विद्युत रासायनिक परिघटना है, लोहे पर जंग लगने के उदाहरण द्वारा इसे समझाइये।
 - (द)संक्षारण की रोकथाम के लिए दो उपाय लिखिए।

रासायनिक बलगतिकी

प्र.1	एक अभिक्रिया के वेग	ा स्थिरांक की इकाई ग	मोल लीटर ⁻¹ सेकंड ⁻¹	है तो इस अभिक्रिया की कोटि हो	गी —
	(अ) 1	(ब) 2	(स) 3	(द) 0	()
प्र.2	प्रथम कोटि की अभि	क्रेया की अर्द्धायु निर्भर	करती है –		
	(अ) अभिकारको की	सांद्रता पर	(ब) उत्पादों की स	गंद्रता पर	
	(स) अभिक्रिया के वेग	ा स्थिरांक पर	(द) इनमे से कोई	नहीं	()
प्र.3	प्रथम कोटि की अभि	क्रेया के 90% पूर्ण हो	ने में लगने वाला सम	य लगभग होता है–	
	(अ) अर्द्धआयु का 2.2	१ गुना	(ब) अर्द्धआयु का 4	4.4 गुना	
	(स) अर्द्धआयु का 3.3	। गुना	(द) अर्द्धआयु का	1.1 गुना	()
Я.4	किसी रासायनिक अभि	भेक्रिया के लिए सक्रिय	ण उर्जा निम्न के बरा	बर होगी	
	(अ) देहली उर्जा + 3	अभिकारको की औसत	उर्जा		
	(ब) देहली उर्जा – अ	मिकारको की औसत	उर्जा		
	(स) अभिकारको की उ	औसत उर्जा			
	(द) सक्रियण उर्जा				()
प्र.5	शून्य कोटि की अभिद्रि	क्रेया के लिए निम्नलि	खत में से कौन–सा र	मूत्र सही है ?	
	(ਖ਼) $t_{\frac{1}{2}}$ ∝ a	(ৰ) $t_{\frac{1}{2}} \propto \frac{1}{a}$	(स) $t_{\frac{1}{2}} \propto \frac{1}{a^2}$	(द) $t_{\frac{1}{2}} \propto a^0$	()
Я.6	यदि वेग स्थिरांक की	इकाई अभिक्रिया वेग	के समान हो तो अभि	क्रिया की कोटि होगी।	
	(अ) 1	(ब) 2	(स) 0	(द) 3	()
Я.7	प्रथम कोटि की अभिनि	क्रेया के लिए वेग स्थि	रांक तथा अर्द्ध आयुक	गल में सम्बन्ध है—	
	(अ) $k = \frac{0.693}{t_{\frac{1}{2}}}$		$(\bar{\mathbf{q}}) k = \frac{t_1}{2}$		
	(स) $t_{\frac{1}{2}} = 0.693k$		(द) $t_{\frac{1}{2}} = \frac{k}{0.693}$		()
प्र.8	अभिक्रिया CH₃COO	$C_2H_5+H_2O$	→ CH ₃ COOH + C	$ m C_2H_5OH$ में अभिक्रिया की कोटि एव	iं आण्विकता
	क्रमशः होगी –				
	(अ) 1, 1	(ब) 1, 2	(स) 2, 2	(द) 0, 2	()
प्र.9	प्रथम कोटि की अभिन्नि	क्रेया में अर्द्ध भाग के प	पूर्ण होने में लगा सम	य $(t_{\frac{1}{2}})$ —	
	(अ) उसकी प्रारम्भिक	सान्द्रता पर निर्भर क	रता है।		

	(ब) उसकी प्र	गरम्भिक सान्द्रता के व्युत	क्रमानुपाती है।		
	(स) उसकी प्र	गरिम्भक सान्द्रता पर निः	र्भर नहीं करता है।		
	(द) उसकी प्र	गरम्भिक सान्द्रता के वर्ग	मूल पर निर्भर करता है।		()
प्र.10	एक अभिक्रिया	· A → B में A	की सांद्रता चार गुनी ब	ाढाने पर अभिक्रिया का	वेग दुगुना हो जाता है तो
	अभिक्रिया की	कोटि होगी –			
	(अ) 2	(ब) 1	(स) 1/2	(द) 0	()
प्र.11	एक प्रथम को	टि का विशिष्ट अभिक्रिय	ा वेग 10 ⁻² S ⁻¹ है 20g अ	भिकारक के 5g तक हो	ने में कितना समय लगेगा
	(अ) 238.6s	(ब) 138.6s	(स) 346.5s	(द) 693.0s	()
Sect	ion B: रिक्त	स्थान की पूर्ति कीजिये–			
प्र.12	संतुलित अभि	क्रेया में भाग ले रहे अभि	कारक अणुओ की कुल	संख्या उस अभिक्रिया की	ोकहलाती है।
प्र.13	वह समय जब	अभिकारक की सांद्रता	प्रारंभिक सांद्रता की आध	भ्री रह जाती है	कहलाता है।
प्र.14	शून्य कोटि की	ो अभिक्रिया के वेग स्थि	रांक की इकाई	होती है।	
प्र.15	वह न्यूनतम ३	मतिरिक्त उर्जा जिसे अव	शोषित कर क्रियाकारक	अणुओ की उर्जा देहली	उर्जा के बराबर हो जाती
	है	कहलाती है।			
प्र.16	कई पदों में ह	ोने वाली अभिक्रिया में ि	जेस पद का वेग सबसे	कम होता है उसे	पद कहते है।
प्र.17		को वह समय अंतराल	कहा जाता है जिसके दं	ौरान अभिकारक / अ	भेकारकों की सांद्रता मूल
	मान की आधी	रह जाती है।			
प्र.18	वह न्यूनतम उ	कर्जा जो क्रियाकारकों की	ो क्रियाफलों के टक्कर से	उत्पन्न होती है	कहलाती है।
प्र.19	प्रतीप शर्करा	का प्रतीपन	अभिक्रिया है। जिसकी	आण्विकता	होती है।
ਸ.20	अभिक्रिया की	दर हमेशा एक	गुण होता है।		
प्र.21	अभिक्रिया का	सबसे धीमा पद	पद कहलाता है।		
प्र.22	एक अभिक्रिया	$A{ ightarrow}$ उत्पाद, जब A	की सान्द्रता को दुगना व	रु रते है तो अभिक्रिया क्	ो दर दुगनी हो जाती हैं।
	तो अभिक्रिया	कोटि की इ	होती है।		
प्र.23	हाइड्रोजन पर	क्साइड का विघटन एक	5अभिक्रिय	1 है	
Sect	ion C: अति ल	नघूत्तरात्मक प्रश्न			
प्र.24	अभिक्रिया N2((g)+ 3 H ₂ (g) —	→ 2NH ₃ (g)के लिए	अभिक्रिया की दर का र	ामीकरण लिखिए।
ਸ.25	अर्द्ध आयुकाल	किसे कहते हैं ?			
ਸ.26	अभिकारको के	पृष्ठीय क्षेत्रफल में वृद्धि	करने पर अभिक्रिया के	वेग पर क्या प्रभाव पड़	ता है ?

- प्र.27 वेग स्थिरांक पर अभिक्रियक की सान्द्रता के प्रभाव को समझाइये।
- प्र.28 निम्न अभिक्रिया की कोटि ओर वेग स्थिरांक की इकाई लिखिए-

$$H_2+Cl_2 \longrightarrow 2HCI$$

- प्र.29 अभिक्रिया के वेग पर ताप के प्रभाव को प्रदर्शित करने वाले आरेनियस समीकरण को लिखिए।
- प्र.30 अभिक्रिया $CH_3COOC_2H_5 + H_2O \xrightarrow{HCl} CH_3COOH + C_2H_5OH$ की अणुसंख्यता एवं कोटि में सम्बन्ध लिखिए।
- प्र.31 संघट्ट सिद्धांत के अनुसार किसी रासायनिक अभिक्रिया हेतु दो मुख्य अवरोधको के नाम लिखिए।
- प्र.32 आर्हेनियस समीकरण के आधार पर In k एवं 1/T के मध्य आरेख बनाईये।
- प्र.33 अभिक्रिया की आण्विकता को परिभाषित कीजिए।
- प्र.34 क्या द्वितीय कोटि की अभिक्रिया को प्रथम कोटि में बदला जा सकता है ? कैसे।
- प्र.35 शून्य कोटि की अभिक्रिया के लिए वेग स्थिरांक की इकाई लिखिए।
- प्र.36 प्राकृतिक एवं कृत्रिम नाभिकीय (रेडियोऐक्टिव) क्षय की कोटि लिखिए।
- प्र.37 समीकरण $2N_2O_5 \rightarrow 2N_2O_4 + O_2$ हेत् यदि अर्द्ध आयु काल 6.93 सेकण्ड है, तो दर नियतांक ज्ञात कीजिये।
- प्र.38 तापीय गुणांक क्या है ? अभिक्रिया के वेग से इसका सम्बन्ध बताइए।
- प्र.39 एक प्रथम कोटि की अभिक्रिया का अर्द्ध आयू काल 10s है तो इसके वेग स्थिरांक की गणना कीजिये।
- प्र.40 किसी रासायनिक अभिक्रिया के लिए अर्द्धायु की परिभाषा लिखिए।
- प्र.41 अभिक्रिया $2A + B \rightarrow \sigma$ त्पाद हेतु अवकलन वेग समीकरण लिखिए।
- प्र.42 E_1 तथा E_2 क्रमशः अभिकारक तथा उत्पाद की सिक्रयण ऊर्जाए है। यदि $E_1 > E_2$ हो तो अभिक्रिया की प्रकृति समझाइए।
- प्र.43 प्रथम कोटि अभिक्रिया की परिभाषा लिखिए।
- प्र.44 एक रासायनिक अभिक्रिया का वेग नियतांक $1.72 \times 10^{-4} \, \mathrm{s}^{-1}$ है। अभिक्रिया की कोटि ज्ञात कीजिए।
- प्र.45 वेग स्थिरांक तथा साम्य स्थिरांक में अन्तर स्पष्ट कीजिए।
- प्र.46 किसी अभिक्रिया के लिए वेग स्थिरांक की इकाई s^{-1} है। अभिक्रिया की कोटि क्या होगी ?

Section D: लघूत्तरात्मक प्रश्न

- प्र.47 ¹⁴C रेडियोएक्टिव क्षय की अर्द्धायु 5730 वर्ष है। एक पुरातत्व कलाकृति की लकड़ी में जीवित वृक्ष की तुलना में 80% ¹⁴C की मात्रा है। नमूने की आयु का परिकलन कीजिये।
- प्र.48 प्लेटिनम की सतह पर अमोनिया के अपघटन से हाइड्रोजन एवं नाइट्रोजन गैसें प्राप्त होती हैं। शून्य कोटि की इस अभिक्रिया का वेग स्थिरांक $1.5 \times 10^{-4} \, \mathrm{mol} \; \mathrm{s}^{-1}$ है तब N_2 एवं H_2 के बनने का वेग ज्ञात कीजिए।

- प्र.49 रासायनिक अभिक्रिया में $10^{\circ}C$ ताप वृद्धि से वेग स्थिरांक में लगभग दुगुनी वृद्धि होती है इसे नामांकित वितरण वक्र से समझाइये।
- प्र.50 अभिक्रिया A→B की अभिक्रिया दर दुगुनी हो जाती है जब A की सान्द्रता को चार गुना बढ़ाया जाता है। अभिक्रिया की कोटि बताइए।
- प्र.51 दर्शाइए कि प्रथम कोटि अभिक्रिया के लिए 75% पूर्ण होने में लगा समय अर्द्ध—आयु का दोगुना होता है।
- प्र.52 एथिल ऐसीटेट के जल अपघटन का उदाहरण लेकर छन्न प्रथम कोटि की अभिक्रिया को बताइए।
- प्र.53 एक प्रथम कोटि की अभिक्रिया में 20% वियोजन होने में 40 मिनट लगते हैं। $t_{\frac{1}{2}}$ की गणना कीजिए।
- प्र.54 किसी प्रथम कोटि की अभिक्रिया को 50% पूर्ण होने के लिए 300 K पर 40 मिनट लगते हैं और 320 K पर 20 मिनट लगते हैं। अभिक्रिया की सक्रियण ऊर्जा परिकलित कीजिए।
- प्र.55 दर्शाइये की एक प्रथम कोटि अभिक्रिया 99.9% पूर्ण होने में उसके 99% पूर्ण होने का तिगुना समय लगता है।
- प्र.56 अर्धायु किसे कहते हैं। प्रथम कोटि के वेग समीकरण से अर्धायु ज्ञात करने का सूत्र व्युत्पन्न कीजिए।
- प्र.57 अभिक्रिया की कोटि एवं आण्विकता में अंतर लिखिए।
- प्र.58 एक प्रथम कोटि की अभिक्रिया के लिए वेग स्थिरांक 60 s^{-1} है। अभिकारक को अपनी प्रारंभिक सांद्रता से 1/16वां भाग रह जाने में कितना समय लगेगा ?
- प्र.59 (अ) आरेख में चिन्हित (क) एवं (ख) किसे दर्शाते हैं ? नाम लिखिये।
 - (ब) आरेख में चिन्हित केवल (क) की परिभाषा दीजिये।

प्र.60 एक अभिक्रिया A के प्रति प्रथम एवं B के प्रति द्वितीय कोटि की है।

- (1) इस अभिक्रिया के लिए अवकल वेग समीकरण लिखिए।
- (2) B की सांद्रता 3 गुनी करने पर वेग पर क्या प्रभाव पड़ेगा।
- (3) A व B दोनों की सांद्रता दुगूनी करने से वेग पर क्या प्रभाव पड़ेगा।
- प्र.61 अभिक्रिया के वेग पर उत्प्रेरक की उपस्थिति का क्या प्रभाव पड़ता है ?
- प्र.62 ताप में 350 K से 400 K तक वृद्धि करने पर किसी अभिक्रिया का वेग चार गुना हो जाता है। इस अभिक्रिया के लिए सक्रियण ऊर्जा की गणना यह मान कर कीजिये कि इसका मान ताप के साथ परिवर्तित नहीं होता है।

- प्र.63 एक अभिक्रिया X के प्रति द्वितीय कोटि तथा Y के प्रति प्रथम कोटि की है। X तथा Y दोनों की सांद्रता दुगुनी करने से वेग पर क्या प्रभाव पडेगा ?
- प्र.64 $A \to B$ अभिक्रिया के लिए, अभिकारक की सांद्रता 0.05 M से 20 मिनट में परिवर्तित होकर 0.03 M हो जाती है। औसत वेग की गणना सेकंड तथा मिनट दोनों इकाइयों में कीजिए।
- प्र.65 डाइमिथाइल ईथर के अपघटन से CH_4, H_2 और CO बनती है, और अभिक्रिया की दर $Rate = k[CH_3OCH_3]^{3/2}$ से दर्शायी जाती है। अभिक्रिया की दर को एक बन्द पात्र में दाब बढ़ाकर डाइमिथाइल ईथर के आंशिक दाब के रूप में निम्न प्रकार व्यक्त किया जा सकता है।

Rate = $k[CH_3OCH_3]^{3/2}$

अगर दाब को बार व समय को मिनट में ले तो दर व वेग स्थिरांक के मात्रक क्या होंगे ?

- प्र.66 अभिक्रिया वेग एवं विशिष्ट अभिक्रिया वेग में विभेद कीजिए।
- प्र.67 NO2 और F2 से NO2 F बनाने की अभिक्रिया निम्नलिखित क्रियाविधि से होती है।

$$NO_2(g) + F_2(g) \xrightarrow{slow} NO_2F(g) + F(g)$$

$$NO_2(g) + F(g) \xrightarrow{fast} NO_2F(g)$$

उक्त अभिक्रिया का वेग व्यंजक क्या होगा।

Section E: निबंधात्मक प्रश्न

- प्र.68 (अ) उत्प्रेरक अभिक्रिया की सक्रियण ऊर्जा को किस प्रकार प्रभावित करता है ?
 - (ब) अभिक्रिया के वेग स्थिरांक पर उत्प्रेरक का क्या प्रभाव पड़ता है ?
 - (स) उत्प्रेरक की उपस्थिति में अभिक्रिया का वेग अधिक हो जाता है। इस कथन को अभिक्रिया निर्देशांक व ऊर्जा आरेख बनाकर समझाइये।
- प्र.69 (अ) शून्य कोटि अभिक्रिया के लिये समाकलित वेग व्यंजक का सूत्र स्थापित कीजिए।
 - (ब) एक शून्य कोटि अभिक्रिया के लिये अर्द्ध—आयु काल ज्ञात कीजिए जब इस अभिक्रिया का वेग स्थिरांक $k=3.7 \times 10^{-14} \, \text{mol L}^{-1} \, \text{s}^{-1}$ हो एवं अभिकारक की प्रारम्भिक सान्द्रता $0.074 \, \text{mol L}^{-1}$ हो।
- प्र.70 (अ) शून्य कोटि की अभिक्रिया हेतु समाकलित वेग समीकरण/वेग स्थिरांक का सूत्र व्युत्पन्न कीजिये।
 - (ब) शून्य कोटि की अभिक्रिया हेतु अर्द्ध आयु काल ज्ञात कीजिये।
 - (स) शून्य कोटि की अभिक्रिया के लिए अभिकारक की सांद्रता [R] एवं समय t में ग्राफ खिचिंए।
 - (द) Pt की सतह पर NH_3 का अपघटन शून्य कोटि की अभिक्रिया है। N_2 व H_2 के उत्पादन की दर क्या होगी जब $K=2.5 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$ हो $(N_2=2.5 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}, H_2=7.5 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1})$
- प्र.71 (अ) प्रथम कोटि की अभिक्रिया हेतु समाकलित वेग समीकरण व्युत्पन्न कीजिये।

- (ब) प्रथम कोटि की अभिक्रिया हेतु अर्द्धआयु काल का सूत्र व्युत्पन्न कीजिये और ये पुष्टि कीजिये कि इस अभिक्रिया की अर्द्धायु अभिक्रिया की प्रारंभिक सांद्रता पर निर्भर नहीं करती है।
- (स) 30 मिनट अर्द्धयुकाल वाली प्रथम कोटि की अभिक्रिया के लिए वेग नियतांक एवं अभिक्रिया के 75% पूर्ण होने में लगने वाले समय की गणना कीजिये।
- (द) दर्शाइये कि प्रथम कोटि की अभिक्रिया में 99.9% अभिक्रिया पूर्ण होने में लगा समय अर्द्ध अभिक्रिया पूर्ण होने में लगने वाले समय का 10 गुना होता है।
- प्र.72 (i) अभिक्रिया की कोटि को परिभाषित कीजिए।
 - (ii) वेग स्थिरांक पर अभिक्रियक की सांद्रता के प्रभाव को समझाइए।
 - (iii) एक प्रथम कोटि की अभिक्रिया के लिए $500~\rm K$ तथा $600~\rm K$ पर वेग स्थिरांक क्रमशः $0.03~\rm s^{-1}$ तथा $0.06~\rm s^{-1}$ हो, तो सिक्रयण ऊर्जा की गणना कीजिए।

 $[R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}, \log 2 = 0.3010]$

- प्र.73 (i) अभिक्रिया की आण्विकता को परिभाषित कीजिए।
 - (ii) अभिक्रिया के वेग पर उत्प्रेरक की उपस्थिति के प्रभाव को समझाइए।
 - (iii) $300~\rm K$ पर एक प्रथम कोटि की अभिक्रिया में अभिक्रियक की प्रारंभिक सांद्रता $1.0~\rm x~10^{-2}~mol~L^{-1}$ थी, जो $30~\rm H$ नट पश्चात् घटकर $0.5~\rm x~10^{-2}~mol~L^{-1}$ रह गई। $300~\rm K$ पर अभिक्रिया के वेग स्थिरांक की गणना कीजिए। $[\log~2=0.3010]$

d एवं f ब्लॉक के तत्व

Section A: वस्तुनिष्ठ प्रश्न

प्र.1	f-ब्लॉक के तत्वों की न	सामान्य ऑक्सीकरण अ	वस्था	है –				
	(अ) +5	(ब) +2	(स)	+3	(द)	+1	()
प्र.2	सर्वाधिक ऑक्सीकरण	अवस्था प्रदर्शित करने	वाला	तत्त्व है –				
	(अ) Co (कोबाल्ट)	(ब) Mn (मेंगनीज)	(स)	Cr (क्रोमियम)	(द)	Ni (निकल)	()
प्र.3	चुम्बकीय आघूर्ण निर्धाः	रण के लिए सूत्र है –						
	(अ) $\mu = n + 2$	(ৰ) $\mu = \sqrt{n+2}$	(स)	$\mu = \sqrt{n(n+1)}$)	(द) $\mu = \sqrt{n(n+2)}$	()
Я.4	Mn ²⁺ (परमाणु क्रमांक	= 25) में उपस्थित क्	उल उ	ायुग्मित इलेक्ट्रॉन	ों की	संख्या है–		
	(왜) 2	(ब) 7	(स)	3	(द)	5	()
प्र.5	Gd (गैडोलिनियम) क	। इलेक्ट्रॉनिक विन्यास	है —					
	(अ) 4f ⁷ 5d ⁰ 6s ²	(ৰ) 4f ⁸ 5d ¹ 6s ²	(स)	$4f^7 \ 5d^1 \ 6s^1$	(द)	$4f^7 5d^1 6s^2$	()
ਸ.6	मिश धातु के निर्माण मे	में मुख्य घटक के रूप	में मि	लाया जाता है –				
	(अ) लैंथेनाइड तत्त्व	(ब) संक्रमण तत्व	(स)	एक्टिनाइड तत्त्व	(द)	क्षार धातु	()
प्र.7	लैंथेनाइड तत्वों का रा	सायनिक व्यवहार निम्न	में र	ने किस तत्व के	समान	न ह ै —		
	(अ) पोटेशियम (K)	(ब) मैग्नेशियम (Mg)	(स)	ऐलुमिनियम (Al))(द)	सोडियम (Na)	()
प्र.8	निम्न में से रंगहीन आ	ायन है –						
	(अ) Cu ⁺	(ৰ) Cu ²⁺	(स)	Ni^{2+}	(द)	Fe^{3+}	()
प्र.9	निम्न में से प्रतिचुम्बर्क	ोय आयन है –						
	(अ) Cu ⁺²	(ৰ) Zn ⁺²		(स) Mn ⁺²	(द)	Fe^{+2}	()
प्र.10	लैन्थेनाइडों का सामान	य बाह्यतम इलेक्ट्रॉनिक	विन्य	ास है–				
	(왕) $4f^{1-14} 5d^0 6s^2$		(ब)	$4f^{20-14} \ 5d^{0-2} \ 6s^2$				
	$(orall 1) 4f^{0-14} 5d^1 6s^2$		(द)	$4f^{0-14} 5d^16s^2$			()
ਸ਼.11	संक्रमण तत्व संकुल य	गौगिक बनाते हैं, क्योंकि	- -					
	(अ) रिक्त कक्षकों की	उपलब्धता होती है	(ब)	धातु आयनों का	आक	ार छोटा होता है		
	(स) परिवर्तनीय ऑक्स	ोकरण अवस्था होती है	(द)	उपर्युक्त सभी			()
Sect	ion R• रिक्त स्थान की	पर्ति कीजिरो—						

प्र.12 लैंथेनम (La) से ल्युटिशियम (Lu) तक के तत्वों के परमाणु एवं आयनिक त्रिज्याओ में समग्र ह्वास कहलाता है।

प्र.21 संक्रमण तत्त्व ऑस्मियम (Os)...... उच्चतम ऑक्सीकरण अवस्था प्रदर्शित करता है।

Section C: अति लघूत्तरात्मक प्रश्न

- प्र.22 मिश धातु किन तत्वों से मिलकर बनी होती है ?
- प्र.23 संक्रमण तत्व अच्छे उत्प्रेरक क्यों होते हैं ?
- प्र.24 एक परायूरेनियम तत्त्व का नाम एवं प्रतीक लिखिए।
- प्र.25 Cr^{2+} एक प्रबल अपचायक है क्यों ? कारण दीजिए।
- प्र.26 Cr^{+2} और Fe^{+2} में से प्रबल अपचायक कौन है ?
- प्र.27 K₂Cr₂O₇ के नारंगी विलयन में NaOH मिलाने से वह पीला क्यों हो जाता है।
- प्र.28 Zr व Hf समान गुण क्यों प्रदर्शित करते हैं ?
- प्र.29 ऐसे संक्रमण तत्त्व का नाम एवं प्रतीक लिखिए, जिसमे परिवर्तनशील ऑक्सीकरण अवस्था नहीं पायी जाती है ?
- प्र.30 लेन्थेनाइडों की सामान्य ऑक्सीकरण अवस्था लिखिए।
- प्र.31 दुर्लभ मृदा धातु तत्वों का सामान्य इलेक्ट्रॉनिक विन्यास लिखिए।
- प्र.32 संक्रमण तत्व और उनके यौगिक उत्प्रेरक की भाँति कार्य करते हैं। कारण दीजिए।
- प्र.33 संक्रमण धातुओं के यौगिक सामान्यतया रंगीन क्यों होते हैं ?
- प्र.34 कॉपर की कणन एन्थेल्पी की अपेक्षा आयरन की कणन एन्थेल्पी उच्चतर होती है। कारण दीजिए।
- प्र.35 Fe³⁺ आयन के चुम्बकीय आघूर्ण का मान ज्ञात कीजिए ?
- प्र.36 Cr^{2+} अपचायक है जबिक Mn^{3+} ऑक्सीकारक, जबिक दोनों का d^4 विन्यास है, क्यों ?

Section D: लघूत्तरात्मक प्रश्न

प्र.37 निम्न तत्वों को लैंथेनाइड और एक्टिनाइड वर्ग में वर्गीकृत कीजिये। Nd, Pa, Cm, Gd, Es, Eu, Tm, No

- प्र.38 संक्रमण धातु का निम्नतम ऑक्साइड क्षारीय जबकि उच्चतम ऑक्साइड उभयधर्मी या अम्लीय होता है क्यों ?
- प्र.39 विलयन में Cu^+ आयन रंगहीन जबिक Cu^{2+} आयन रंगीन होते हैं। क्यों ?
- प्र.40 ऐक्टिनॉइड आंकुचन को समझाइए।
- प्र.41. लैंथेनाइड एवं एक्टिनाइड तत्वों में अंतर लिखिए।
- प्र.42. लैंथेनाइड संकुचन से आप क्या समझते है ?
- प्र.43. Mn³⁺ आयन की अपेक्षा Mn²⁺ आयन अधिक स्थायी होते हैं। क्यों ?
- प्र.44. (i) आयरन (II) आयन तथा (ii) टिन (II) आयन पर अम्लीकृत डाइक्रोमेट($Cr_2O_7^{2-}$) विलयन की ऑक्सीकारक क्रिया दर्शाने के लिए सन्तुलित आयनिक समीकरण लिखिए।
- प्र.45. d तथा f ब्लॉक तत्वों के चार अनुप्रयोग लिखिए।
- प्र.46. क्रोमेट आयन तथा डाइक्रोमेट आयन की संरचना लिखिए।
- प्र.47. $M_{(aa)}^{2+}$ (Z=25) के लिए 'प्रचक्रण मात्र' चुंबकीय आघूर्ण की गणना कीजिए।
- प्र.48. (i) संक्रमण तत्व अन्तराकाशी योगिक क्यों बनाते हैं ?
 - (ii) लैन्थेनाइड तत्वों में बाँयी से दायीं ओर जाने पर परमाण्विक त्रिज्याएँ घटती हैं। समझाइए।
- प्र.49. प्रथम संक्रमण श्रेणी के ऑक्सो—धातु ऋणायनों के नाम लिखिए, जिसमें धातु संक्रमण श्रेणी की वर्ग संख्या के बराबर ऑक्सीकरण अवस्था प्रदर्शित करती है।
- प्र.50. Cu धातु के लिए मानक इलेक्ट्रोड विभव का मान धनात्मक होता है क्यों ? स्पष्ट कीजिये।
- प्र.51. क्या कारण है कि Cr^{+2} अपचायक है एवं Mn^{+3} ऑक्सीकारक जबिक दोनों का d^4 विन्यास है ?
- प्र.52. कारण बताइए—
 - (i) निर्जल कॉपर सल्फेट सफेद है, परन्तु हाइड्रेटेड कॉपर सल्फेट नीला है।
 - (ii) Zn^{2+} आयनों के लवण सफेद, परन्तु Cu^{2+} के नीले होते हैं।
- प्र.53. क्या होता है जब-
 - (i) अम्लीकृत पोटैशियम परमैंगनेट आयन विलयन में एक ऑक्सेलेट आयन से अभिक्रिया करता है ?
 - (ii) एक आयोडाइड आयन का विलयन अम्लीकृत डाइक्रोमेटआयन से अभिक्रिया करता है ?
- प्र.54. धातुए अपनी उच्चतम ऑक्सीकरण अवस्था केवल ऑक्साइड अथवा फ्लोराइड में ही क्यों प्रदर्शित करती है ?
- प्र.55. M^{+3} (Z=26) आयन के लिए चुम्बकीय आघूर्ण की गणना कीजिये।
- प्र.56. अन्तराकाशी यौगिक क्या हैं ? इस प्रकार के यौगिक संक्रमण धातुओं के लिए भली प्रकार से ज्ञात क्यों हैं ?
- प्र.57. आयरन क्रोमाइट अयस्क से पोटैशियम डाइक्रोमेट बनाने की विधि का वर्णन कीजिए। पोटैशियम डाइक्रोमेट विलयन पर pH बढ़ाने से क्या प्रभाव पड़ेगा ?

Section E: निबंधात्मक प्रश्न

- प्र.58. आप निम्नलिखित को किस प्रकार से स्पष्ट करेंगे-
 - (अ) d^4 स्पीशीज में से Cr^{2+} प्रबल अपचायक है, जबिक मैंगनीज (III) प्रबल ऑक्सीकारक है।
 - (ब) जलीय विलयन में Co (II) स्थायी है, परन्तु संकुलनकारी अभिकर्मकों की उपस्थिति में यह सरलतापूर्वक ऑक्सीकृत हो जाती है।
 - (स) आयनों का d¹ विन्यास अत्यन्त अस्थायी है।
- प्र.59. निम्नलिखित को कारण सहित समझाइये—
 - (अ) संक्रमण तत्व उत्प्रेरकीय गुण प्रदर्शित करते है।
 - (ब) संक्रमण धातु रंगीन आयनों का निर्माण करते है।
 - (स) संक्रमण धातु संकुल यौगिक बनाते है।
 - (द) संक्रमण तत्व परिवर्तनशील ऑक्सीकरण अवस्था प्रदर्शित करते है।
- प्र.60. निम्नलिखित को कारण सहित समझाइए-
 - (अ) Fe^{+3} की प्रबल अनुचुम्बकीय प्रकृति
 - (ब) Ce⁺⁴ का प्रबल ऑक्सीकारक व्यवहार
 - (स) संक्रमण तत्वों की उच्च कणन एंथेल्पी
 - (द) संक्रमण धात् अंतराकाशी यौगिक बनाते है।
- प्र.61. उदाहरण देते हुए संक्रमण धातुओं के रसायन के निम्नलिखित अभिलक्षणों के कारण बताइए-
 - (अ) संक्रमण धातु का निम्नतम ऑक्साइड क्षारकीय हैं, जबिक उच्चतम ऑक्साइड उभयधर्मी या अम्लीय है।
 - (ब) संक्रमण धातु की उच्चतम ऑक्सीकरण अवस्था ऑक्साइडों तथा फ्लुओराइडों में प्रदर्शित होती है।
 - (स) धातु के ऑक्सो ऋणायनों में उच्चतम ऑक्सीकरण अवस्था प्रदर्शित होती है।
- प्र.62. (अ) Cu^{2+} आयन के लिए 'प्रचक्रण मात्र' चुम्बकीय आघूर्ण की गणना कीजिए।
 - (ब) कारण दीजिए कि Zn, Cd, Hg व Cn संक्रमण तत्व नहीं है।
 - (स) मिश्र धातु पीतल के अवयवों के नाम लिखिए।
- प्र.63. निम्नलिखित के लिए कारण दीजिए—
 - (अ) Zr और Hf लगभग समान परमाणु त्रिज्याओं वाले हैं।
 - (ब) संक्रमण धातुएँ परिवर्तनीय ऑक्सीकरण अवस्थाएँ दर्शाती हैं।
 - (स) ज़िंक की कणन एन्थैल्पी का मान सबसे कम होता है।

अध्याय <u>5</u>

उपसहसंयोजन यौगिक 🗼

प्र.1	विटामीन B ₁₂ सायनोक	गेबालऐमीन में उपस्थित	ातत्व है।		
	(अ) Co	(ৰ) Na	(स) K	(द) Li	()
प्र.2	[Co(NH ₃) ₄ Cl ₂]Br ₂	एवं [Co(NH ₃) ₄ Br ₂]C	$ ho_2$ का का युगल दश	रिगा—	
	(अ) बंधनी समावयवता	Г	(ब) हाइड्रेट समावयव	वता	
	(स) आयनन समावयव	ता	(द) उपसहसंयोजन	समावयवता	()
प्र.3	K ₄ [Fe(CN) ₆] में आय	ारन Fe की ऑक्सीकर	ण अवस्था है—		
	(왕) +3	(ৰ) +2	(स) +4	(द) +5	()
प्र.4	कौन–सा धनायन अमे	निया के साथ ऐमीन र	नंकुल नहीं बनाता है ं	?	
	(왕) Ag ⁺	(ৰ) Al ³⁺	(स) Cd ²⁺	(द) Cu ²⁺	()
प्र.5	[Co(NH ₃) ₆]Cl ₃ में ज	ल में वियोजित आयनों	की संख्या है–		
	(अ) 3	(ৰ) 4	(स) 5	(द) 1	()
प्र.6	किस उपसहसयोजक	यौगिक का उपयोग कैं	सर रोग में ट्यूमर वृश्	द्धे रोकने में किया जाता है–	
	(अ) Cis—प्लाटिन	(ब) Trans—प्लाटिन	(स) EDTA	(द) AgBr	()
प्र.7	[Pt(NH3)2Cl2] यौगिव	p के त्रिविम समावयवि	यों की संख्या है–		
	(अ) 1	(ৰ) 4	(स) 4	(द) 3	()
प्र.8	द्विदन्तुक लिगेण्ड का	उदाहरण है–			
	(अ) CN ⁻	(ৰ) en	(स) H ₂ O	(द) F ⁻	()
प्र.9	संकुल [Co(NH ₃) ₅ Cl] Cl_2 से विलयन में वि	न्तने आयन उत्पन्न हे	ोते हैं ?	
	(अ) 4	(ৰ) 3	(स) 2	(द) 5	()
Sect	ion B: रिक्त स्थान की	ं पूर्ति कीजिये—			
			TileU	<u> </u>	
	K ₃ [Co(C ₂ O ₄) ₂ Cl ₂] ¹				} ,
	_	_		के द्वारा संतुष्ट होती है	}
	[Ni(CN) ₄] ²⁻ की आव	_		यो ज्य ये ।	
	[Co(NH ₃) ₆] ³⁺ प्रतिचु		[C0F ₆] ⁵	פוחו פן	
	EDTA ⁻⁴ एक		<u>-</u>	4 .	
	पौटेशियम ट्राईऑक्जेले			2	
Я.16	हिमोग्लोबीन में केन्द्रीय	ı ધાતુ આય ન	ह।		

प्र.17 [Mn(H₂O)₆]²⁺ आयन प्रकृति का होता है।

प्र.18 उभयदन्तुक लिगेण्ड समावयवता प्रदर्शित करते है।

प्र.19 [Co(NH₃)₅SO₄]Br तथा [Co(NH₃)₅Br]SO₄ द्वारा समावयवता दर्शायी जाती है।

Section C: अति लघूत्तरात्मक प्रश्न

- प्र.20 $[Fe(C_2O_4)_3]^-$ में केन्द्रीय धात् आयन की उपसहसंयोजकता ज्ञात कीजिए।
- प्र.21 क्लोरोफिल किस धातु आयन का उपसहसंयोजक यौगिक है ?
- प्र.22 $[Fe(CN)_6]^{3-}$ में आयरन का प्रभावी परमाणु क्रमांक ज्ञात कीजिए। (Fe का परमाणु क्रमांक = 26)
- प्र.23 [Cu(NH3)4]SO4 में Cu की ऑक्सीकरण संख्या ज्ञात कीजिए।
- प्र.24 निम्नलिखित संकुल यौगिको के IUPAC में नाम दीजिये-
 - (a) $[Co(en)_3]^{3+}$
 - (b) $K_2[Zn(OH)_4]$
- प्र.25 VBT के आधार पर $[FeF_6]^{3-}$ संकुल आयन की संरचना एवं चुम्बकीय प्रकृति बताइए।
- प्र.26 एक कार्बधात्विक यौगिक का उदाहरण लिखिये।
- प्र.27 प्रभावी परमाणु क्रमांक क्या है ? उदाहरण द्वारा समझाइए।
- प्र.28 द्विदन्तुक लिगैण्ड का एक उदाहरण लिखिए।
- प्र.29 उभयदन्ती लिगैण्ड को परिभाषित कीजिए।
- प्र.30 एक वर्गसमतलीय संकुल का उदाहरण लिखिये।
- प्र.31 यदि $\Delta_0 > P$ हो तो क्रिस्टल क्षेत्र सिद्धान्त के आधार पर d^4 आयन के लिये इलेक्ट्रॉनिक विन्यास लिखिये।
- प्र.32 विलकिन्सन उत्प्रेरक का रासायनिक सूत्र बताइए।
- प्र.33 [Ni(CO)4] में Ni की ऑक्सीकरण अवस्था लिखिए।
- प्र.34 IUPAC मानदण्डों का उपयोग करते हुए निम्नलिखित संकुलों के सूत्र लिखिए—
 - (a) हेक्साएक्वाक्रोमियम (III) क्लोराइड
 - (b) सोडियम ट्राइऑक्सैलेटोफेरेट (III)
- प्र.35 $[Co(NH_3)_6][Cr(CN)_6]$ तथा $[Cr(NH_3)_6][Co(CN)_6]$ द्वारा प्रदर्शित समाव्यवता का प्रकार लिखिए।
- प्र.36 $[Fe(NH_3)_6]^{3+}$ और $[Fe(C_2O_4)_3]^{3-}$ में से कौन—सा संकुल अधिक स्थायी है और क्यों ?

Section D: लघूत्तरात्मक प्रश्न

प्र.37 संयोजकता आबन्ध सिद्धान्त के आधार पर समझाइए कि वर्ग समतलीय संरचना वाला $[Ni(CN)_4]^{2-}$ आयन प्रतिचुम्बकीय है तथा चतुष्फलकीय ज्यामिति वाला $[NiCl_4]^{2-}$ आयन अनुचुम्बकीय है।

- प्र.38 होमोलेप्टीक व हेट्रोलेप्टीक संकुल में अन्तर लिखिये।
- प्र.39 निम्नलिखित उपसहसंयोजन सत्ता में कितने ज्यामितीय समावयव सम्भव हैं ?
 - (ক) [Cr(C₂O₄)₃]³⁻ (ख) [Co(NH3)₃Cl₃]
- प्र.40 [NiCl₄]²⁻ अनुचुम्बकीय है जबकि[Ni(CO)₄] प्रतिचुम्बकीय है; यद्यपि दोनों ही चतुष्फलकीय हैं, क्यों?
- प्र.41 उपसहसंयोजक यौगिक के चार अनुप्रयोग लिखिये।
- प्र.42 (a) संकुल [Co(NH₃)₅Cl]SO₄ किस प्रकार की समावयवता प्रदर्शित करता है ?
 - (b) संकुल $[CoF_6]^{3-}$ में संकरण और अयुग्मित इलेक्ट्रॉनों की संख्या लिखिए। (Co का परमाणु क्रमांक = 27)
- प्र.43 स्पेक्ट्रमी रासायनिक श्रेणी क्या है ?
- प्र.44 निम्नांकित क`IUPAC नाम लिखिए।
 - (i) $[Cu(H_2O)_4]^{2+}$
 - (ii) $[Co(NH_3)_6]Br_3$
 - (iii) [Fe(CN)₆]³⁻
- प्र.45 [Pt(H2O)2Br2] के ज्यामितीय समावयवियों की ज्यामिति बनाकर विन्यास लिखिए।
- प्र.46 d-d संक्रमण घटना को समझाइये।
- प्र.47 निम्नलिखित संकुलों में केन्द्रीय धातु आयन की ऑक्सीकरण अवस्था एवं उपसहसंयोजन संख्या दीजिए।
 - (3) $[Co(en)_3]^{3+}$ ($\overline{4}$) $K_4[Fe(CN)_6]$
- प्र.48 पश्च आबंधन की क्रिया को चित्र द्वारा समझाइये।
- प्र.49 (a) K₃[Fe(C₂O₄)₃] संकुल का IUPAC नाम लिखिए।
- (b) संयोजकता बन्ध सिद्धान्त के आधार पर,[NiCl₄]²⁻ संकुल आयन की ज्यामिति एवं चुम्बकीय प्रकृति लिखिए। प्र.50 VBT की सीमाये लिखिये।
- प्र.51 संयोजकता बन्ध सिद्धान्त के आधार पर संकुल $[{
 m CoF_6}]^{3-}$ की ऑक्सीकरण अवस्था, संकरण, ज्यामिति एवं चुम्बकीय प्रकृति समझाइये।

Section E: निबंधात्मक प्रश्न

- प्र.52 निम्नलिखित पर टिप्पणी लिखिये।
 - (अ) उभयदन्तुक लिगेण्ड

- (ब) कीलेट संकुल
- (स) विलायक योजन समावयवता
- (द) क्रिस्टल क्षेत्र विपाटन
- प्र.53 (i) वर्नर सिद्धान्त द्वारा प्रस्तावित धातु आयनों की प्राथमिक एवं द्वितीयक संयोजकता की परिभाषा लिखिये।
 - (ii) [Co(NH₃)₆]Cl₃ में Co की प्राथमिक एवं द्वितीयक संयोजकता लिखिये।
 - (iii) [Ni(CO)4] एवं [Cr(CO)6] का संरचनात्मक सूत्र लिखिये।

प्र.54 निम्नलिखित को कारण सहित समझाइये—

- (अ) टेट्रासायनो निकिलेट (II) की वर्गसमतलीय आकृति
- (ब) $[Ti(H_2O)_6]^{3+}$ आयन के बैंगनी रंग का कारण
- (स) धातु कार्बोनिल यौगिक में पश्च आंबधन
- (द) [MnBr₄]²⁻ में चुम्बकीय आघूर्ण का मान 5.8BM

प्र.55 [Ni (CO)4] संकुल के लिए लिखिए –

(अ) IUPAC नाम

(ब) उपसहसंयोजक संख्या

(स) संकरण

(द) ज्यामिति

(य) रंग

(र) चुम्बकीय प्रकृति

-	ı		ш

अध्याय

हैलोएल्केन तथा हैलोएरीन 🔯

प्र.1	आयोडोफॉर्म औषधि में निम्न रूप में प्रयुक्त ह	होते है—	
	(अ) निश्चेतक	(ब) पूतिरोधी (ऐंटिसेप्टिक)	
	(स) दर्द निवारक	(द) उपरोक्त सभी	()
ਸ਼.2	आयोडोफॉर्म निम्न में से किससे नहीं बनाई	जा सकती ?	
	(अ) एथिल मेथिल कीटोन	(ब) आइसोप्रोपिल ऐल्कोहॉल	
	(स) २- मेथिल-२-ब्यूटेनॉन	(द) आइसोब्यूटिल ऐल्कोहॉल	()
Я.3	अभिकिया $C_2H_5OH + HX \xrightarrow{ZnCl_2} C_2H_5X$ अ	अभिक्रियाशीलता का क्रम है :	
	(अ) HCl>HBr>HI (ब) HBr>HI>HCl	(स) HI>HCl>HBr (द) HI>HBr>HCl	()
प्र.4	आयोडोफॉर्म परीक्षण किसके द्वारा दिया जात	π है ?	
	(अं) ऐसीटोन (ब) एथेनॉइक अम्ल	(स) पेन्टेन—3—ओन (द) मेथॉक्सीमेथेन	()
प्र.5	जब क्लोरोफॉर्म को वायु तथा प्रकाश में खुल	ग छोड़ा जाता है तो बनता है–	
	(अ) कार्बन टेट्रा क्लोराइंड	(ब) फास्जीन	
	(स) फॉर्मिक अम्ल	(द) मेथिल क्लोराइड	()
प्र.6	CHCl₃ ऑक्सीकरण पर देता है–		
	(अ) फॉस्जीन	(ब) फॉर्मिक अम्ल	
	(स) कार्बन टेट्रा क्लोराइड	(द) क्लोरोपिक्रिन	()
प्र.7	क्लोरो बेन्जीन दर्शाता है—		
	(अ) इलेक्ट्रान स्नेही प्रतिस्थापन	(ब) नाभिक स्नेही प्रतिस्थापन	
	(स) इलेक्ट्रान स्नेही योगात्मक	(द) नाभिक स्नेही योगात्मक	()
प्र.8	वुर्टज अभिक्रिया में प्रयुक्त होने वाला अभिकर	र्नक है—	
	(ঝ) Na (ঝ) Na / রব NH ₃	(स) Na / शुष्क ईथर (द) Na / शुष्क एल्कोहॉल	()
प्र.9	ऐल्कोहॉलीय की उपस्थिति में किस मिश्रण व	के साथ कार्बिल ऐमीन परीक्षण किया जाता है ?	
	(अ) क्लोरोफॉर्म एवं रजत चूर्ण		
	(ब) त्रि–हैलोजनीकृत मेथेन और प्राथमिक रे	ऐमीन	
	(स) एक ऐल्किल हैलाइड और एक प्राथमिव	ह ऐमीन	
	(द) एक ऐल्किल सायनाइड और एक प्रार्था	मेक ऐमीन	()
प्र.10	निम्न में से कौन SN ² तीव्रतम दर्शायेगा—		

(अ) CH₃Cl

(ৰ) C₆H₅Cl

$$\mathrm{CH_2} - \mathrm{CH} - \mathrm{Cl}$$
 (स) l $\mathrm{CH_3}$

(द) C₂H₅OH

()

Section B: रिक्त स्थान की पूर्ति कीजिये-

प्र.11 DDT का पूरा नाम है, जो कि एक कीटनाशक की तरह कार्य करता है।

प्र.13
$$+$$
 Br_2 $\xrightarrow{\text{पराबैगनी प्रकाश}}$

प्र.14 मेथेन व एथेन के क्लोरो फ्लुओरो व्युत्पन्न कहलाते है।

$$9.15 \qquad \begin{array}{c} OH \\ + SOCl_2 \longrightarrow \dots \end{array}$$

प्र.17 बेन्जिल क्लोराइड का IUPAC नाम होता है।

प्र.18
$$\stackrel{\text{Cl}}{ }$$
 $\stackrel{\text{Na}}{ }$ $\stackrel{\text{Робен}}{ }$

प्र.19 क्लोरोफॉर्म का IUPAC नाम होता है।

Section C: अति लघूत्तरात्मक प्रश्न

प्र.21 सैडमेयर अभिक्रिया की रासायनिक समीकरण दीजिये।

प्र.22 वुर्ट्ज अभिक्रिया का रासायनिक समीकरण लिखिए।

प्र.23 फ्रीऑन -12 का सूत्र लिखिए।

प्र.24 फिंकेल्स्टाइन अभिक्रिया का रासायनिक समीकरण लिखिए।

प्र.25 2-क्लोरो-3-मेथिल पेन्टेन की सरंचना दीजिए।

प्र.26 निम्नलिखित हैलोअम्लों को उनकी अम्लीयता के बढ़ते क्रम में व्यवस्थित कीजिए—

Cl₃CCOOH, Cl₂CHCOOH, CICH₂COOH

प्र.27 क्लोरो बेन्जीन का द्विध्रुव आघूर्ण साइक्लों हेक्सिल क्लोराइड की तुलना में कम होता है, क्यो ?

प्र.28 क्लोरोफॉर्म को प्रकाश एवं वायु के प्रभाव से बचाने के लिए कौन-सी सावधानियाँ बरती जाती है ?

प्र.29 क्लोरो बेन्जीन की अनुनादी संरचना बनाइये।

प्र.30 उस यंत्र का नाम बताइए जो उस कोण के मापन के लिए प्रयुक्त होता है जिस पर समतल प्रकाश ध्रुवित हो जाता है।

प्र.31 ऐलिल क्लोराइड में हैलोजन परमाणु से बंधित कार्बन की संकरित अवस्था लिखिए।

प्र.32 सेत्जेफ का नियम लिखिए।

प्र.33 बेन्जीन डाइऐजोनियम क्लोराइड़ का रासायनिक सूत्र लिखिए।

प्र.34 निम्नलिखित में (A) और (B) को पहचानिए-

$$(A) \xleftarrow{N_{A}/ {\overline{y}_{u}} to \ \xi u v} \underbrace{\qquad \qquad \qquad M_{g}/ {\overline{y}_{u}} to \ \xi u v} {\qquad \qquad M_{g}/ {\overline{y}_{u}} to \ \xi u v} \rightarrow (B$$

प्र.35 IUPAC नाम लिखए-

$$CH_3-CH=CH-C-CH_3$$

$$Br$$

प्र.36 हिन्सबर्ग अभिकर्मक का रासायनिक नाम एवं सूत्र लिखिये।

प्र.37 ध्रुवण घूर्णन से क्या तात्पर्य है ?

Section D: लघूत्तरात्मक प्रश्न

प्र.38 फिऑन- 12. DDT, आयोडोफार्म, कार्बन टेट्रा क्लोराइड का एक-एक उपयोग लिखिए।

प्र.39 कारण दीजिए:

ऑर्थो अथवा पैरा स्थिति पर $-NO_2$ समूह की उपस्थिति हैलोऐरीनों की नाभिकरागी प्रतिस्थापन अभिक्रियाओं के प्रति क्रियाशीलता बढ़ा देती है।

प्र.40 निम्न युगलों में से कौन तीव्रता से $\mathbf{S}_{\mathrm{N}}^{2}$ दर्शायेगा व क्यों ?

- प्र.41 कारण दिजिए क्लोरोफॉर्म क्लोरीन यौगिक है फिर भी यह सिल्वर नाइट्रेट विलयन के साथ कोई अवक्षेप नहीं देता है, क्यों ?
- प्र.42 निम्न की रासायनिक समीकरण दीजिये।
 - (अ) स्वार्ट अभिक्रिया

- (ब) फिंकेल्स्टाइन अभिक्रिया
- प्र.43 बेन्जीन का हैलोजन वाहक की उपस्थिति में हैलोजनीकरण किस प्रकार होता है ? सम्बन्धित समीकरण लिखिए।
- प्र.44 S_N^1 व S_N^2 क्रियाविधि में अन्तर स्पष्ट कीजिये।
- प्र.45 फ्रीडेल- क्राफ्टस अभिक्रिया पर संक्षिप्त में टिप्पणी लिखिए।
- प्र.46 प्रतिलोमन, धारण तथा रेसिमीकरण में एक-एक उदाहरण द्वारा अन्तर स्पष्ट कीजिये।
- प्र.47 निम्न युगलों में से कायरल यौगिकों को पहचानिए।

- (ब) 2- क्लोरो ब्यूटेन अथवा 1- क्लोरो ब्यूटेन
- प्र.48 एक अणुक नाभिक रनेही प्रतिस्थापन अभिक्रिया की क्रियाविधि समझाइए।
- प्र.49 निम्न युगलों में से कौन तीव्रता से $S_N^{\ 1}$ दर्शायेगा व क्यों ?

- प्र.50 ब्यूट-1-इन से ब्यूट-2-इन परिवर्तन आप कैसे करेगें ?
- प्र.51 (अ) बेंजिल क्लोराइड में हैलोजन परमाणु से बंधित कार्बन की संकरित अवस्था लिखिए।
 - (ब) द्विअणुक नाभिकरनेही प्रतिस्थापन अभिक्रिया की क्रियाविधि समझाइए।
- प्र.52 क्लोरो बेन्जीन से डाइफेनिल बनाने की रासायनिक अभिक्रिया की रासायनिक समीकरण लिखिए।
- प्र.53 स्वार्ट अभिक्रिया को एक उदाहरण देकर समझाये।

प्र.54 बेन्जीन डाइऐजोनियम क्लोराइड को KI विलयन के साथ मिलाने पर यौगिक [A] बनता है। [A] को शुष्क ईधर की उपस्थिति में सोडियम के साथ अभिक्रिया करवाने पर यौगिक [B] बनता है। [A] व [B] के नाम तथा निहित रासायनिक अभिक्रियाओं के समीकरण लिखिए।

Section E: निबंधात्मक प्रश्न

प्र.55 (अ) निम्नलिखित एल्किल हैलाइडों की \mathbf{S}_{N} 1 क्रिया के प्रति क्रियाशीलता के बढ़ते क्रम में व्यवस्थित कीजिए।

- (ब) निम्नलिखित रासायनिक क्रियाओं को पूर्ण कीजिए एवं उत्पाद लिखिए।
 - (i) CH_3 — CH_2 —Cl + KOH (एल्कोहॉली) ———
 - (ii) $R-CH=CH_2+HBr$ (परॉक्साइड) \longrightarrow

प्र.56 क्या होता है जब-

- (अ) मेथिल क्लोराइड की क्रिया RCN से करवायी जाती है।
- (ब) एथिल क्लोराइस की क्रिया जलीय KOH से करवाते है।
- (स) n-ब्यूटिल क्लोराइड को एल्कोहली KOH के साथ अभिकृत किया जाता है।
- (द) शुष्क ईथर की उपस्थिति में क्लोरो मेथेन की अभिकिया मैग्नीशियम से करवायी जाती है।
- (य) मेथिल क्लोराइड की क्रिया AgCN से करवायी जाती है।
- प्र.57 (अ) ऐरिल हैलाइड नाभिक स्नेही प्रतिस्थापन अभिक्रियाओं के प्रति कम क्रियाशील क्यों होते हैं? समझाइये।
 - (ब) निम्नलिखित ऐल्किल हैलाइडों को $\mathbf{S}_{\mathrm{N}}^2$ अभिक्रिया के प्रति उनकी अभिक्रियाशीलता के बढ़ते क्रम में व्यवस्थित कीजिए।

(स) CH3Cl का कक्षक आरेख बनाइए।

प्र.58 समझाइए, क्यों—

- (i) क्लोरोबेन्जीन का द्विध्रुव आघूर्ण साइक्लोहेक्सिल क्लोराइड की तुलना में कम होता है ?
- (ii) ऐल्किल हैलाइड ध्रुवीय होते हुए भी जल में अमिश्रणीय हैं।
- (iii) ग्रीन्यार अभिकर्मक का विरचन निर्जल अवस्थाओं में करना चाहिए।

प्र.59 निम्न अभिक्रियाएं पूर्ण कीजिये –

$$\begin{array}{c|c} CH_2-CH=CH_3 & \xrightarrow{HBr} & \\ \hline (3) & & & \\ \hline (4) & & & \\ \hline (5) & & & \\ \hline (CH_2CH_3) & & \\ \hline (CH_2CH_3)$$

- प्र.60 (अ) वुर्टज-फिटिंग अभिक्रिया का रासायनिक समीकरण लिखिए।
 - (ब) ऐल्किल क्लोराइड जलीय KOH से अभिक्रिया करके ऐल्कोहॉल बनाता है जबिक ऐल्कोहॉलिक KOH की उपस्थिति में ऐल्कीन मुख्य उत्पाद के रूप में प्राप्त होती है। समझाइए।

अध्याय 7

ऐल्कोहॉल, फीनॉल एवं ईथर

प्र.1	ध्रुवण घूर्णक यौगिक है—					
	(अ) द्वितीयक ब्यूटेनॉल	(ब) तृतीयक ब्यूटेनॉल	(स) n-प्रोपेनॉल	(द) n-ब्यूटेनॉल	()
Я.2	सान्द्र $ m H_2SO_4$ की उपस्थिति में फीनॉल को थैलिक ऐनहाइड्राइड के साथ गर्म करने पर बनता है $-$					
	(अ) थैलिक अम्ल	(ब) फीनॉल	(स) क्वीनोन	(द) फिनॉल्फ्थेलीन	()
Я.3	मेथेनॉल का व्यापारिक मात्रा में उत्पादन निम्न के भंजक आसवन द्वारा किया जाता है—					
	(अ) कोयला	(ब) तारपीन का तेल	(स) लकड़ी	(द) कच्चा तेल	()
प्र.4	H_3C CH_3 का सही IUPAC नाम है।					
	ОН					
	H₃C (अ) tert-ब्यूटिल ऐल्कोहॉल (स) 2-मेथिलब्यूटेन-2-ऑल		(ब) 2, 2-डाइमेथिलप्रोपेनॉल			
			(द) 3-मेथिलब्यूटेन-3-ऑल		()
Я.5	ऐल्कोहॉलों की जल में विलयेता का कारण है—					
	(अ) आयनिक बन्ध (स) जल के अणुओं के साथ हाइड्रोजन बन्ध		(ब) सहसंयोजक बन्ध			
			(द) उपरोक्त से कोई नहीं		()
Я.6	एल्कोहॉलिक किण्वन निम्नलिखित के द्वारा सम्पन्न होता है—					
	(अ) CO ₂		(ब) फॉस्फेट			
	(स) यीस्ट		(द) सोडियम बाई कार्बोनेट		()
Я.7	एल्कोहालों व फीनॉल में विभेद किया जा सकता है—					
	(अ) FeCl ₃	(ৰ) AlCl ₃	(स) Cu चूर्ण	(द) Na	()
प्र.8	एक ऐल्कोहॉलों व अम्ल के मध्य क्रिया कहलाती है।					
	(अ) जल अपघटन	(ब) हाइड्रोजनीकरण	(स) हाइड्रोहेलोजनीकरण	(द) एस्टरीकरण	()

प्र.9 जब ऐल्किल हैलाइड को शुष्क Ag2O के साथ गर्म करते हैं, तब यह बनाता है-

- (अ) एस्टर
- (ब) ईथर
- (स) कीटोन
- (द) ऐल्कोहॉल

()

प्र.10 एक प्राथमिक एल्कोहल का अन्तिम ऑक्सीकरण प्रतिफल है-

(अ) एक कीटोन

(ब) एक एल्डिहाइड

(स) एक हाइड्रोकार्बन

(द) एक कार्बोक्सिलिक अम्ल

()

Section B: रिक्त स्थान की पूर्ति कीजिये-

प्र.11 यशद रज (Zn चूर्ण) के साथ गर्म करने पर फीनॉल में परिवर्तित हो जाती है।

प्र.12 फीनॉल का $Na_2Cr_2O_7 + H_2SO_4$ द्वारा ऑक्सीकरण से संयुग्मित डाइकीटोन बनता है जिसे कहते है।

प्र.13 फीनॉल की अभिक्रिया ब्रोमीन जल से करवाने पर का श्वेत अवक्षेप प्राप्त होता है।

प्र.14 औद्योगिक एल्कोहलों (सामान्यता एथेनॉल) को कुछ CuSO4 (रंग प्रदान करने के लिए) एवं पिरिडीन (दुर्गन्धयुक्त तरल) मिलाकर पीने के अयोग्य बना दिया जाता है। जिसे ऐल्कोहलों का कहते है।

प्र.15 को काष्ट स्प्रिट भी कहा जाता हैं

प्र.17
$$OH$$
 + $(CH_3CO)_2O \xrightarrow{H^+}$ (ऐस्पिरिन)

 $9.18 \quad 2CH_3OH + 2Na \longrightarrow 2CH_3ONa + \dots$

Я.19
$$CH_3$$
 — CH_3 — CH_3 — CH_3 — CH_3 — CH_3

Я.20
$$CH_3$$
— CH_3 — CH_3 + HI — CH_3

Section C: अति लघूत्तरात्मक प्रश्न

प्र.21 एथेनॉल व फीनॉल में विभेद करने के लिए कोई एक परीक्षण कीजिए।

प्र.22 एथेनॉल के उपयोग लिखिए।

प्र.23 तृतीयक ब्यूटिल ऐल्कोहॉल का संरचना सूत्र लिखिए।

प्र.24 फिनॉल से सेलिसिलिक अम्ल बनाने की रासायनिक समीकरण लिखिए।

प्र.25 निम्नलिखित को अम्लीयता के बढ़ते हुए क्रम में व्यवस्थित कीजिए— फीनॉल, एथेनॉल, जल

प्र.26 राइमर टीमान अभिक्रिया का एक उदाहरण दीजिए।

प्र.27 क्या होता है जब फीनॉल CS_2 में घुली हिमशीतित ब्रोमीन से अभिक्रिया करता है ? समीकरण दें।

प्र.28 ग्लुकोस को ऐथेनॉल में परिवर्तित करने वाले एन्जाइम का नाम लिखिए।

प्र.29 ईथर एक लुईस क्षार होता है, क्यों ?

प्र.30 आइसो ब्युटिल ऐल्कोहॉल का IUPAC नाम लिखिए।

Section D: लघूत्तरात्मक प्रश्न

प्र.31 फीनॉल ऐल्कोहॉलों से अधिक अम्लीय होता है। क्यों ?

प्र.32 फीनॉक्साइड आयन की अनुनादी संरचनाएँ बनाइए।

प्र.33 ऐल्कोहॉल जल में विलेय होते है, क्यों ?

प्र.34 आइसो ब्यूटिल ऐल्कोहॉल का संरचना सूत्र लिखिए।

प्र.35 ऐल्कोहॉलो का क्वथनांक ईथर से अधिक होता है, क्यों ?

प्र.36 एथेनॉल के निर्जलीकरण से ऐथीन बनने की क्रियाविधि लिखिए।

प्र.37	t-ब्यूटिल ऐल्कोहॉल और n-ब्यूटेनॉल में से कौनसा अम्ल उत्प्रेरित निर्जलन तीव्रता से देगा और क्यों ?
Я.38	फीनॉल की अनुनादी संरचना बनाइये।
प्र.39	टिप्पणी लिखिए—
	(अ) कोल्बे अभिक्रिया (ब) एस्टरीकरण
ਸ.40	फीनॉल में –OH समूह ऑर्थो तथा पैरा निर्देषकारी होता है, क्यों?
Я.41	निम्नलिखित के लिए कारण दीजिए—
	(अ) ऐल्कोहॉल में आबन्ध कोण C H चतुष्फलकीय कोण से जरा–सा कम होता है।
	(ब) CH3OH में C—OH आबन्ध लम्बाई फीनॉल में C—OH आबन्ध लम्बाई से जरा—सी अधिक होती है।
प्र.42	एथीन के जलयोजन से एथेनॉल प्राप्त करने की क्रियाविधि लिखिए।
Я.43	निम्न से फीनॉल बनाने की रासायनिक अभिक्रिया दीजिए।
	(अ) क्यूमीन (ब) क्लोरो बेन्जीन
Я.44	हाइड्रोबोरोनन–ऑक्सीकरण अभिक्रिया का एक उदाहरण दीजिए।

Section E: निबंधात्मक प्रश्न

प्र.45	निम्नलिखित	अभिक्रियाओं	के	लिए	समीकरण	दीजिए—
--------	------------	-------------	----	-----	--------	--------

- (अ) प्रोपेन-1- ऑल का क्षारीय KMnO4 के साथ ऑक्सीकरण।
- (ब) ब्रोमीन की CS_2 में फीनॉल के साथ अभिक्रिया।
- (स) तनु HNO_3 की फीनॉल से अभिक्रिया।
- (द) फीनॉल की जलीय NaOH की उपस्थिति में क्लोरोफॉर्म के साथ अभिक्रिया।
- प्र.46 निम्न अभिक्रिया से प्राप्त उत्पादों का अनुमान लगाइये
 - (अ) फीनॉल $\xrightarrow{\overline{\text{rig HNO}_3}}$

प्र.47 निम्नलिखित को समझाइए-

- (अ) ऐल्कोहॉल का अणुभार बढ़ने पर जल में इनकी विलेयता घटती है।
- (ब) पॉवर ऐल्कोहॉल क्या है ? उसका उपयोग क्या है ?
- (द) फीनॉल अम्लीय होते है क्यों ?
- प्र.48 (अ) मेथेनॉल को एथेनॉल में परिवर्तित कैसे करेंगे? केवल रासायनिक समीकरण दीजिए।
 - (ब) ऐथनॉल को मेथेनॉल में परिवर्तित कैसे करेगें? केवल रासायनिक समीकरण दीजिए।
 - (स) पेट्रोल के स्थान पर प्रयुक्त ऐल्कोहॉल व ईथर का मिश्रण क्या कहलाता है?
 - (द) तृतीयक ब्यूटिल ऐल्कोहॉल का IUPAC नाम लिखिए।
- प्र.49 (अ) निम्नलिखित ऐल्कोहॉलों को निर्जलीकरण अभिक्रिया के प्रति उनकी बढ़ती अभिक्रियाशीलता के क्रम में व्यवस्थिति कीजिए।

 CH_3CH_2OH , $(CH_3)_2CHOH$, $(CH_3)_3COH$

- (ब) निम्नलिखित यौगिकों को उनके अम्ल सामर्थ्य के बढ़ते क्रम में व्यवस्थित कीजिये।
 - (i) फीनॉल (ii) 2, 4, 6-ट्राई नाइट्रो फीनॉल (iii) 4-मेथिल फीनॉल
- (स) निम्नलिखित को उनके क्वथनांकों के बढ़ते क्रम में व्यवस्थित कीजिये।
 - (i) मेथेनॉल (ii) एथेनॉल (iii) ब्यूटेन-2-ऑल (iv) ब्यूटेन-1-ऑल
- (द) प्रोपेनॉल की मेथिल मैग्नीशियम ब्रोमाइड के साथ अभिक्रिया तत्पश्चात् जल अपघटन से बने संभावित उत्पाद

की संरचना एवं उसका IUPAC नाम दीजिए।

प्र.50 कारण दीजिए-

- (अ) फीनॉल में उपस्थिति कार्बन-ऑक्सीजन (C O) आबंध लंबाई मेथेनॉल से कम होती है।
- (ब) ईथर में उपस्थित C O C आबंध कोण चतुष्फलकीय कोण से अधिक होता है।
- (स) समावयवी ऐल्कोहॉलों में शाखन के बढ़ने पर क्वथनांक कम हो जाता है।

प्र.51 कारण दीजिए-

- (अ) एथेनॉल का क्वथनांक मेथॉक्सीमेथेन से अधिक होता है
- (ब) एथेनॉल आसानी से जल में विलेय हो जाता हैं
- (स) फीनॉल, ऐल्कोहॉल की तुलना में प्रबल अम्ल होता है।

Section A: वस्तुनिष्ठ प्रश्न

प्र.1 निम्नलिखित में कौन-सा मिश्रित कीटोन है-

(स) दोनों

(द) दोनों नहीं

प्र.2 रजत दर्पण परीक्षण निम्नलिखित के लिए होता है-

- (अ) ऐल्डिहाइड
- (ब) अम्ल
- (स) ऐल्कोहॉल

(द) ईथर

प्र.3 कमरे के ताप पर फॉर्मएल्डिहाइड है-

(अ) द्रव

- (ब) गैस
- (स) ठोस

(द) इनमें से कोई नहीं

प्र.4 निम्न में से कौन कैनिजरों अभिक्रिया देगा –

- (अ) Me₃CCHO
- (ৰ) C₂H₅COCH₃
- (स) C₂H₅CHO

(द) CH₃ COCH₃

प्र.5 टालूइन के निम्नलिखित द्वारा ऑक्सीकरण पर बैन्जेल्डिहाइड प्राप्त होता है :--

- (अ) अम्लीय KMnO4
- (ৰ) CrO₂C1₂
- (स) K₂Cr₂O₇

(द) Cr

प्र.6 निम्न में एल्डॉल संघनन नहीं होता है-

(ब) CH₃CHO

(दं) C₂H₅CHO

प्र.7 एल्डिहाइड व कीटोन में विभेद किया जा सकता है।

- (अ) फेहलिंग विलयन
- (ब) क्षारीय KMnO₄ (स) H₂SO₄
- (द) हिन्सबर्ग अभिकर्मक

प्र.8 स्टीफन अपचयन अभिक्रिया में अपचायक होता है-

- (अ) Sn/HCl
- (ब) Zn/HCl
- (स) SnCl₂/HCl

(द) Cu/HCI

प्र.9 निम्नलिखित के द्वारा कार्बोनिल समूह का मेथिलीन समूह में परिवर्तन हो जाता है-

(अ) वुल्फ किशनर अपचयन

(स) क्लीमेन्सन अपचयन

(स) दोनों

(द) कोई नहीं

प्र.10 CH₃COCl $\xrightarrow{\text{H}_2}$ ► CH₃CHO कहलाता $\stackrel{}{\epsilon}$ -

(अ) स्टीफन अभिक्रिया द्वारा

(ब) रोजनमुण्ड अभिक्रिया

(स) वुल्फ किशनर अपचयन

(द) फ्रीडल क्राफ्ट अभिक्रिया

प्र.11 निम्न में से किसके लिए pKa मान न्यूनतम है ?

(अ) CH₃-COOH

(ब) 0_2N -CH₂-COOH

(स) Ca-CH₂-COOH

(द) HCOOH

आयोडोफॉर्म परीक्षण किसके द्वारा नहीं दिया जाता है ? प्र.12

- (अं) हेक्सेन–2–ओन
 - (ब) हेक्सेन-3-ओन (स) एथेनॉल (द) ऐथेनैल

Section B: रिक्त स्थान की पूर्ति कीजिये-

CO + HCl प्र.13

प्र.14 CO_2Cl_2

CH₃CHO <u>तन</u> NaOH प्र.15

HCHO — सान्द्र NaOH प्र.16

 $CH_{3}COOH \frac{\text{(i) }CI/\text{\'elio} \ P}{\text{(ii) }H_{2}O}$ प्र.17

 $CH_3 COOH + C_2H_5OH$ — HI प्र.18

प्र.19

ਸ਼.20 COOH सान्द्र HNO3 सान्द्र H2SO4

ਸ਼.21 CH₃CH₂CH₂CHO —

COOH Я.22 का IUPAC नाम होता है।

Section C: अति लघुत्तरात्मक प्रश्न

थैलिक अम्ल की संरचना एवं IUPAC नाम लिखिए । प्र.23

कॉस ऐल्डॉल संघनन का एक उदाहरण दीजिये। ਸ਼.24

CH3COOH व HCOOH में कौन अधिक अम्लीय होता है और क्यो ? प्र.25

बेन्जोइक अम्ल की फीडल क्राफ्ट अभिक्रिया लिखिए। ਸ਼.26

ऐथेनोइक अम्ल को P_2O_5 की उपस्थिति में गर्म करने पर क्या होता है ? प्र.27

- प्र.28 CF₃COOH, CCI₃COOH, CBr₃COOH, Cl₃COOH को उनकी बढती हुई अम्लता के आधार पर व्यवस्थित कीजिए
- प्र.29 कॉर्बोक्सिलिक अम्ल की अनुनादी संरचनाएँ बनाइए।
- प्र.30 डाईएथिल कीटोन का संरचना सूत्र लिखिए।
- प्र.31 टॉलूईन के बेन्जोइक अम्ल में रूपान्तरण कीजिए।
- प्र.32 आप बेन्जोइक अम्ल का बेन्जामाइड में कैसे परिवर्तित करेंगे ?
- प्र.33 निम्नलिखित यौगिक का आई.यू.पी.ए.सी. नाम लिखिए।

प्र.34 निम्न अभिकिया में A व B को पहचानिए –

$$+ NH_3 \longrightarrow A \longrightarrow B$$

- प्र.35 निम्नलिखित हैलोअम्लों को उनकी बढ़ती अम्लता के क्रम में व्यवस्थित कीजिए— FCH2COOH, ClCH2COOH, BrCH2COOH
- प्र.36 एस्टरीकरण अभिक्रिया में बने हुए जल को त्रन्त निकाल दिया जाता है क्यों ?
- प्र.37 कार्बोक्सिलिक अम्लों के क्वथनांक समतुल्य आण्विक द्रव्यमान वाले ऐल्डिहाइड, कीटोन, एल्कोहलों से भी उच्च होते हैं। क्यों ?
- प्र.38 कॉर्बोक्सिलिक अम्ल, फीनॉल की तुलना में अधिक अम्लीय होते है जबकि फिनॉक्साइड आयन की अनुनादी संरचनाएं कॉर्बोक्सिलिक आयन से अधिक संख्या में होती है। समझाइये ।
- प्र.39 एल्डोल संघनन की क्रिया विधि समझाइए ।

Section D: लघूत्तरात्मक प्रश्न

- प्र.40 निम्न की केवल रासायनिक समीकरण दीजिए ।
 - (अ) कैनिजारो अभिक्रिया

(ब) ऐल्डॉल संघनन

(स) विकार्बोक्सिलीकरण

- (द) हेल वोलार्ड जेलिंस्की अभिक्रिया (HVZ अभिक्रिया)
- प्र.41 प्रोपेनैल तथा प्रोपेनोन में विभेद करने के लिए प्रयुक्त टॉलेन परीक्षण को समझाइए।
- प्र.42 टॉलन अभिकर्मक किसे कहते है ? इसका क्या उपयोग है। एक उदाहरण दीजिये ।

- प्र.43 ऐसीटेल्डिहाइड बनाने की ऑक्सीकरण एवं उत्प्रेरकीय तथा विहाइड्रोजनीकरण विधियों के रासायनिक समीकरण लिखिए। ऐसीटोन की संघनन अभिक्रिया का समीकरण भी लिखिए।
- प्र.44 फेलिंग अभिकर्मक क्या होते हैं ? रासायनिक समीकरण लिखकर एक उदाहरण द्वारा समझाइये ।
- प्र.45 फॉर्मिक अम्ल बनाने की प्रयोगशाला विधि का अभिक्रिया समीकरण दीजिए। इसके दो अपचायक गुणों को लिखिए।
- प्र.46. निम्न पदों की समीकरण लिखिए ।
 - (अ) वोल्फ किशनर अपचयन

(ब) क्लीमेन्सन अपचयन

(स) इटार्ड अभिक्रिया

- (द) गाटरमान कोच अभिक्रिया
- प्र.47. (अ) कार्बोनिल यौगिक नाभिक रनेही योगात्मक अभिक्रिया प्रदर्शित करते है। क्यों ?
 - (ब) ऐल्डिहाइडो की क्रियाशीलता कीटोन से अधिक क्यों होती है ।
- प्र.48. अभिक्रिया पूर्ण कीजिए-
 - (ᢋ) CH₃CHO → ······ (ᠳ) (CH₃)₂ CO NaHSO₃ ······
- प्र.49. प्रोपेनैल एवं ब्यूटेनैल के ऐल्डोल संघनन से बनने वाले चार सम्भावित उत्पादों के नाम एवं संरचना सूत्र लिखिए। प्रत्येक में बताइए कि कौन सा ऐल्डिहाइड नाभिकरागी और कौनसा इलेक्ट्रॉनरागी होगा ?
- प्र.50. निम्न के रासायनिक समीकरण दीजिए-
 - (अ) स्टीफन अभिक्रिया

- (ब) रोजेनमुण्ड अभिक्रिया
- (स) नाभिक रनेही योगात्मक अभिक्रिया
- (द) 2,4-DNP परीक्षण
- प्र.51. निम्न युगलों में कैसे विभेद करेगें-
 - (अ) प्रोपेनॉल व प्रोपेनॉन

(ब) पेन्टेन-2-ऑन व पेन्टेन-3-ऑन

- प्र.52. निम्न में कैसे विभेद करेगें-
 - (अ) एसीटोफीनॉन व बेन्जोफीनॉन
- (ब) एथेनैल व प्रोपेनैल
- प्र.53. मेथेनॉइक अम्ल को एथेनाइक अम्ल में परिवर्तित करने के लिए आवश्यक अभिक्रियाएं लिखिए।

Section E: निबंधात्मक प्रश्न

प्र.54. एक कार्बनिक यौगिक (A) जिसका आण्विक सूत्र C_8H_8O हैं, 2,4–DNP अभिकर्मक के साथ नांरगी लाल अवक्षेप देता है। तथा NaOH की उपस्थिति में आयोडीन के साथ गर्म करने पर एक पीला रंग का अवक्षेप बनाता है। यह यौगिक टॉलन अभिकर्मक तथा फेलिंग विलयन को अपचियत नहीं करता और न ही ब्रोमीन जल अथवा बेयर अभिकर्मक को वर्णविहीन करता है। यह कोमिल अम्ल द्वारा प्रबल आक्सीकरण से एक कार्बोक्सिलिक अम्ल B बनाता है। जिसका आण्विक सूत्र $C_7H_6O_2$ है। यौगिक A व B को पहचानिए एवं प्रयुक्त अभिक्रियाओं को समझाइये।

- प्र.55. एक कार्बनिक यौगिक में 69.77% C, 11.63% H तथा शेष ऑक्सीजन है। यौगिक का आण्विक द्रव्यमान 86 है। यह टॉलेन अभिकर्मक को अपचियत नहीं करता परन्तु सोडियम हाइड्रोजन सल्फाइट के साथ योगज यौगिक देता है तथा आयोडोफॉर्म परीक्षण देता है। प्रबल ऑक्सीजन पर एथेनाइक तथा प्रोपेनॉइक अम्ल देता है। यौगिक की सम्भावित संरचना लिखिए।
- प्र.56. (अ) $CH_3MgBr + CO_2 \xrightarrow{\overline{y_{yx}}} X \xrightarrow{+H_3O^+} Y$ उपरोक्त अभिक्रिया अनुक्रम में X व Y के रासायनिक सूत्र लिखकर नाम लिखिए।
 - (ब) रोजेनमुण्ड अपचयन पर टिप्पणी लिखिए।
- प्र.57. (अ) $2CH_3CHO \xrightarrow{\pi_{\overline{1}} \text{ NaOH}} X \xrightarrow{\Delta} Y$ उपरोक्त अभिक्रिया अनुक्रम में X व Y के रासायनिक सूत्र लिखकर IUPAC नाम लिखिए।
 - (ब) गाटरमान कॉख अभिक्रिया पर टिप्पणी लिखिए।
- प्र.58. (अ) खाद्य परिरक्षक के रूप में प्रयुक्त एस्टर का नाम लिखिए।
 - (ब) निम्नलिखित पदों को समझाइए-
 - (i) रोजेनमुंड अपचयन
 - (ii) कैनिजारो अभिक्रिया
 - (स) नाभिकरागी योगज अभिक्रिया में कार्बोनिल कार्बन पर नाभिकरागी आक्रमण से बने चतुष्फलकीय मध्यवर्ती को चित्रित कीजिए।
- प्र.59. निम्नलिखित कथनों के लिए कारण दीजिए : (कोई दो)
 - (अ) नाभिकरागी योगज अभिक्रियाओं में प्रोपेनैल की तुलना में बेन्जैल्डिहाइड कम अभिक्रियाशील होता है।
 - (ब) कार्बोक्सिलिक अम्ल, कार्बोनिल समूह की अभिक्रियाएँ नहीं देता है।
 - (स) बेन्जोइक अम्ल की तुलना में 4-नाइट्रोबेन्जोइक अम्ल अधिक प्रबल अम्ल है।
- प्र.60. (अ) नाइलोन 6, 6 के निर्माण में प्रयुक्त डाइकार्बोक्सिलिक अम्ल का IUPAC नाम लिखिए ।
 - (ब) कारण समझाए
 - (i) ऐसीटिक अम्ल, फॉर्मिक अम्ल की तुलना में दुर्बल अम्ल होता है।
 - (ii) कार्बोक्सिलिक अम्लों का क्वथनांक समतुल्य आण्विक द्रव्यमानों वाले ऐल्डिहाइडों से अधिक होता है ।
 - (स) कार्बोनिल समूह के कक्षीय आरेख को चित्रित कीजिए।
- प्र.61. (अ) आपके विचार से नीचे दिए गए अम्लों के जोड़े (युगल) में से कौन सा अम्ल अधिक प्रबल होगा ? F—CH2—COOH अथवा CH3—COOH

- (ब) निम्नलिखित यौगिकों को उनके क्वथनांकों के बढ़ते क्रम में व्यवस्थित कीजिए— CH3CH2OH, CH3—CHO, CH3—COOH
- (स) बेन्जैल्डिहाइड और ऐसीटोफीनॉन में विभेद करने के लिए सरल रासायनिक परीक्षण दीजिए।
- प्र.62. निम्नलिखित यौगिकों को उनसे संबंधित गुणधर्मों के बढ़ते क्रम में व्यवस्थित कीजिए
 - (अ) CH₃CHO, CH₃CH₂CHO, CH₃-C-CH₂-CH₃, CH₃-C-CH₃ (HCN के प्रति अभिक्रियाशीलता)
 - (ब) CH₃COOH, C1–CH₂–COOH, (CH₃)₂CH–COOH (अम्लीय प्रबलता)

- प्र.63. एक कार्बनिक यौगिक 'X' जिसका अणुसूत्र $C_5H_{10}O$ है 2,4-DNP व्युत्पन्न बनाता है, टॉलेन अभिकर्मक को अपचियत नहीं करता है लेकिन NaOH की उपिथित में I_2 के साथ गर्म करने पर आयोडोफार्म परीक्षण देता है। यौगिक 'X' प्रबल ऑक्सीकरण पर एथेनॉइक तथा प्रोपेनॉइक अम्ल देता है। लिखिए-
 - (अ) यौगिक 'X' की संरचना ।
 - (ब) 2,4-DNP अभिकर्मक के साथ यौगिक 'X' की अभिक्रिया होने से प्राप्त उत्पाद की संरचना।
 - (स) यौगिक 'X' को NaOH की उपस्थिति में I_2 के साथ गर्म करने से प्राप्त उत्पादों की संरचनाएँ।

अध्याय 9

Section A: वस्तुनिष्ठ प्रश्न

प्र.1	। ऐमाइडो का ऐमीन में परिवर्तन निम्न के द्वारा किया जा सकता है–					
	(अ) हॉफमान अभिक्रिया		(ब) कार्बिल ऐमीन अभिक्रिया			
	(स) गाटरमान अभिक्रिया		(द) सेण्डमेयर अभिक्रिया		()
Я.2	नाइट्रोबेन्जीन को कहते है	I				
	(अ) कसीस का तेल		(ब) मिरवेन का तेल			
	(स) सिनेमन ऑयल		(द) विन्टरग्रीन का तेल		()
Я.3	निम्नलिखित यौगिकों में प्र	बलतम क्षार होता है				
	(왕) (CH ₃) ₃ N	(ब) (CH ₃) ₂ NH	(स) CH ₃ NH ₂	(द) NH ₃	()
Я.4	जलीय विलयन में निम्नलि	खित में से प्रबलतम क्षार	है—			
	(अ) मेथिलऐमीन	(ब) डाइमेथिलऐमीन	(स) ट्राइमेथिलऐमीन	(द) ऐनिलीन	()
ਸ.5	(C ₂ H ₅) ₃ N एक है-					
	(अ) प्राथमिक ऐमीन	(ब) द्वितीयक ऐमीन	(स) तृतीयक ऐमीन	(द) अमोनियम लवण	()
Я.6	न्यूनतम pK_b माना वाला ऐ	मीन है—				
	(अ) CH ₃ NH ₂	(ब) (CH ₃) ₂ NH	(स) (CH ₃) ₃ N	(द) C ₆ H ₅ NH ₂	()
Я.7	CH3NHCH2CH3 का IU	PAC नाम है—				
	(अ) N-मेथिल एथिल ऐमीन	Г	(ब) N-मेथिल एथेन ऐमी	न		
	(स) N-एथिल मेथिल ऐमीन	Г	(द) N-एथिल मेथेनेमीन		()
ਸ.8	किस अभिक्रिया द्वारा ऐमाइ	इड को ऐमीन में बदला ज	ा सकता है–			
	(अ) हॉफमान निम्नीकरण		(ब) अमोनी अपघटन			
	(स) कार्बिल ऐमीन		(द) डाइएजोटीकरण		()
ਸ.9	ट्राईमेथिल ऐमीन की संरच	ना होती है–				
	(अ) चतुष्फलकीय	(ब) वर्ग समतलीय	(स) कोणीय	(द) पिरैमिडी	()
प्र.10	नाइट्रोबेंजीन को एनिलिन	में बदलने के लिए निम्न ग	में से कौनसा विकल्प उपय्	<u> </u> युक्त नहीं है—		
	(अ) LiAlH4	(ৰ) H ₂ /Ni	(स) Fe व HCl	(द) Sn व HCl	()
प्र.11	नाइट्रबेन्जीन Sn+HC अथवा Fe+	<u>l</u> HCl →				
	उपरोक्त अभिक्रिया में उत्प	गदन होगा–				
	(अ) बेन्जीन	(ब) एनिलीन	(स) क्लोरो बेन्जीन	(द) बेन्जोइक अम्ल	()
प्र.12	CH ₃ CH ₂ NH ₂ व CH ₃ NH	ICH3 है।				

(अ) स्थिति समावयवी

(ब) प्रकाषिक समावयवी

(स) क्रियात्मक समावयवी

(द) ज्यामितीय समावयवी

()

प्र.13 1984 में भोपाल विभिषिका के लिए उत्तरदायी विषैला यौगिक है-

(अ) कार्बोनिल क्लोराइड

(ब) मेथिल आइसो सायनेट

(स) मेथिल आइसो सायनाइड

(द) एथिल ऐमीन

()

प्र.14 निम्न में से कौनसा कार्बिल ऐमीन परीक्षण नहीं देता है—

(अ) एथिल ऐमीन

(ब) मेथिल ऐमीन

(स) फेनिल ऐमीन

(द) डाई मेथिल ऐमीन

()

प्र.15 निम्न में से कौन सा एक ऐसीटेमाइड के साथ क्रिया करके मेथिल ऐमीन देगा—

(अ) सोडा लाइम

(ब) सान्द्र H₂SO₄

(स) PCl₅

(द) NaOH + Br₂

()

Section B: रिक्त स्थान की पूर्ति कीजिये-

Я.16
$$CH_3 - C - NH_2 \xrightarrow{\text{LiAIH}_4} \rightarrow$$

$$\forall 1.17 \quad CH_3CH_2NH_2 \xrightarrow{HNO_2} \dots \xrightarrow{PCl_5} \dots \xrightarrow{KCN}$$

प्र.18
$$\xrightarrow{NaNO_2+HCl}$$
 $\xrightarrow{NaNO_2+HCl}$ एक पीला रंजक

प्र.23 एथिल ऐमीन का IUPAC नाम होता है

प्र.24 बेन्जीनेमीन का रासायनिक सूत्र होता है।

प्र.25 $C_2H_5Cl \xrightarrow{NH_3}$ (अन्तिम उत्पाद)

Section C: अति लघूत्तरात्मक प्रश्न

प्र.26 हॉफमान ब्रोमेमाइड निम्नीकरण अभिक्रिया लिखिए।

प्र.27 हिन्सबर्ग अभिकर्मक किसे कहते हैं ?

प्र.28 ऐमीन मे उपस्थित नाइट्रोजन के लिए कक्षकों के संकरण का प्रकार लिखिए।

प्र.29 NH_3 , CH_3NH_2 , $(CH_3)_2NH$, $(CH_3)_3N$ को जलीय विलयन में बढ़ते क्षारीय सामर्थ्य के क्रम में व्यवस्थित कीजिये।

प्र.30 कारण दीजिए कि ट्राइमेथिल एमीन, मेथिल एमीन से कम क्षारीय है।

प्र.31 डाइऐजोटीकरण अभिक्रिया लिखिए।

प्र.32 ट्राइमेथिलऐमीन की पिरैमिडी आकृति को चित्रित कीजिए।

प्र.33 निम्न को जल में विलेयता के बढते क्रम में व्यवस्थित कीजिये।

$$C_2H_5NH_2$$
, $(C_2H_5)_2$, $(C_2H_5)_3N$

प्र.34 समावयवी प्राथमिक, द्वितीयक, तृतीयक ऐमीन के क्वथनांकों को घटते क्रम में व्यवस्थित कीजिए।

प्र.35 प्राथमिक ऐमीनों के लिए आइसोसायनाइड परिक्षण को समझाइए।

प्र.36 CH_3 —C— NH_2 प्राथमिक ऐमीन है अथवा द्वितीयक ऐमीन अथवा तृतीयक ऐमीन है ? CH_3

प्र.37 $(CH_3)_2NH$ तथा $(CH_3)_3N$ में आप कैसे विभेद करेगें ? एक परीक्षण दीजिये।

प्र.38 ऐलिफैटिक ऐमीन के डाइऐजोनियम लवण अस्थायी होते है जबकि ऐरोमेटिक ऐमीन के डाइऐजोनियम लवण स्थायी होते है क्यों ?

प्र.39 ऐनिलीन की क्षारीय प्रकृति ऐल्किल ऐमीन से अत्यन्त कम होती है, क्यों ?

Section D: लघूत्तरात्मक प्रश्न

प्र.40 रासायनिक समीकरण दीजिए-

(अ) गॉटरमान अभिक्रिया (ब) सेण्डमेयर अभिक्रिया

प्र.41 (अ) एल्किन ऐमीन, अमोनिया से अधिक क्षारकीय है समझाइए।

(ब) निम्नलिखित रासायनिक अभिक्रिया के क्रम में [A] तथा [B] को पहचानिए एवं रासायनिक सूत्र लिखिए—

$$\text{C}_6\text{H}_5\text{NO}_2 \xrightarrow[\text{Sn+HCl}]{6[\text{H}]} \text{[A]} \xrightarrow[\text{273-278 K}]{\text{NaNO}_2 + \text{HCl}} \text{[B]}$$

प्र.42 निम्न युग्मन अभिक्रियाओं में बने उत्पादों के रासायनिक सूत्र दीजिए-

- प्र.43 मेथिलेमीन का pk_b का मान ऐनिलीन की तुलना में कम होता है क्यों ?
- प्र.44 एथेनाइक अम्ल को मेथेनेमीन में आप कैसे परिर्वतित करेंगे ? रासायनिक अभिक्रिया दीजिए।
- प्र.45 डाइऐजोनियम लवण क्या हैं ? बेन्जीन डाइऐजोनियम क्लोराइड से क्लोरोबेन्जीन प्राप्त करने की रासायनिक अभिक्रिया लिखिए।
- प्र.46 रासायनिक समीकरण दीजिए-
 - (अ) गेब्रिल थैलिमाइड संश्लेषण (ब) कार्बिल ऐमीन अभिक्रिया
- प्र.47 कारण बताइये
 - (अ) ऐनिलीन फ्रीडल क्राफ्ट अभिक्रिया नहीं दर्शाती है क्यों ?
 - (ब) प्राथमिक ऐमीन के संष्लेषण में ग्रेबिल थैलिमाइड संश्लेषण को प्राथमिकता दी जाती है, क्यों ?
- प्र.48 (अ) निम्नलिखित अभिक्रियाओं को पूरा किजिए एवं A व B को पहचानिए-

$$C_6H_5NO_2 \xrightarrow{Sn+HCl \atop 6[H]} [A] \xrightarrow{NaNO_2+HCl} [B]$$

- (ब) एनीलीन की अनुनादी संरचनाएँ बनाइए।
- प्र.49 ऐनिलीन की अनुनादी संरचनाएँ बनाइये तथा समझाइये कि क्यों यह ऑर्थो तथा पैरा निर्देषकारी होता है।
- प्र.50 कारण बताओं
 - (अ) एथिल ऐमीन जल में विलेय है जबकि ऐनिलीन नहीं, क्यों ?
 - (ब) यद्यपि ऐमीनों समूह आर्थो तथा पैरा निर्देशकारी होता है, फिर भी नाइट्रिकरण पर अच्छी मात्रा में मेटा नाइट्रो ऐनिलीन भी बनता है, क्यों ?
- प्र.51 एथेन को प्रोपेन ऐमीन में परिवर्तन के लिए रासायनिक समीकरण दीजिये।
- प्र.52 $(CH_3)_3N$ की क्षारकता CH_3NH_2 से कम है समझाइये।
- प्र.53 कारण बताओं
 - (अ) ऐमीन का क्वथनांक एल्कोहलों से कम होता है, क्यों ?
 - (ब) ऐमीन लुईस क्षार की भांति व्यवहार करती है, क्यों ?
- प्र.54 C_3H_9N का एक समावयवी लिखिए जो क्लोरोफॉर्म और एथेनॉलिक NaOH के साथ अभिकृत करने पर दुर्गन्धयुक्त

पदाथ आइसोसायनाइड देता है।

प्र.55 (अ) व (ब) को पहचानिए-

- प्र.56 निम्नलिखित के लिए कारण लिखिए-
 - (अ) एथिलऐमीन जल में विलेय है जबिक ऐनिलीन अविलेय है।
 - (ब) ऐमीन नाभिकरागी की भाँति व्यवहार करते है।

Section E: निबंधात्मक प्रश्न

प्र.57 अभिक्रियाएं पूर्ण कीजिए-

- प्र.58 निम्नलिखित पर लघु टिप्पणी लिखिए
 - (अ) कार्बिलेमीन अभिक्रिया
 - (ब) डाइऐजोटीकरण
 - (स) हॉफमान ब्रोमैमाइड अभिक्रिया
 - (द) युग्मन अभिक्रिया
- प्र.59 (अ) निम्नलिखित यौगिकों को जलीय विलयन में उनकी क्षारकता सामर्थ्य के बढ़ते क्रम में व्यवस्थित कीजिए— CH_3NH_2 , $(CH_3)_3N$, $(CH_3)_2NH$
 - (ब) हिन्सबर्ग अभिकर्मक क्या है ?
 - (स)ऐमीनों की ऐसिलन अभिक्रिया में पिरीडीन की भूमिका क्या है ?

- प्र.60 निम्नलिखित अभिक्रियाओं से संबद्ध समीकरण लिखिए-
 - (अ) एथेनेमीन, ऐसीटल क्लोराइड के साथ अभिक्रिया करता है।
 - (ब) कक्ष ताप पर ऐनिलीन, ब्रोमीन जल के साथ अभिक्रिया करता है।
 - (स) ऐनिलीन, क्लोरोफॉर्म और एथेनॉलिक पोटेशियम हाइड्रॉक्साइड के साथ अभिक्रिया करता है।
- प्र.61 कारण दीजिए-
 - (अ) शुद्ध प्राथमिक ऐमीनों के विरचन के लिए ऐल्किल हैलाइडों का अमोनी अपघटन एक अच्छी विधि नहीं है।
 - (ब) ऐनिलीन फ्रीडेल क्राफ्टस अभिक्रिया नहीं देता है।
 - (स) यद्यपि $-NH_2$ समूह इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाओं में o/p निर्देशक होता है फिर भी ऐनिलीन के नाइट्रीकरण से m-नाइट्रोऐनिलीन की महत्वपूर्ण मात्रा बनती है।

Section A: वस्तुनिष्ठ प्रश्न

प्र.1 निम्न में से डाइ सेकेराइड शर्करा है-

	(अ) ग्लूकोस	(ब) फ्रक्टोस	(स) गेलेक्टोस	(द) सूक्रोस
ਸ਼.2	दुग्ध शर्करा कहा जाता है–			
	(अ) ग्लूकोस	(ब) सेलूलोस	(स) लेक्टोस	(द) फ्रक्टोस
प्र.3	α-हेलिक्स संरचनात्मक लक्षण	ग है−		
	(अ) सूक्रोस का		(ब) पॉलिपेप्टाइडों का	
	(स) न्यूक्लिओटाइडों का		(द) स्टार्च का	
ਸ.4	RNA की संरचना होती है-			
	(अ) एक कुंडलित	(ब) द्विकुंडलित	(स) त्रिकुंडलित	(द) इनमें से कोई नहीं
ਸ.5	प्रोटीन का मुख्य संरचनात्मक	लक्षण है—		
	(अ) ईथर बंध	(ब) पेप्टाइड बंध	(स) एस्टर बंध	(द) इनमें से कोई नहीं
Я.6	न्यूक्लियोसाइड बने होते है—			
	(अ) पेन्टोज शर्करा व फास्फो	रिक अम्ल	(ब) नाइट्रोजनी क्षार व फार	फोरिक अम्ल
	(स) नाइट्रोजनी क्षार व पेन्टो	ज शर्करा	(द) नाइट्रोजनी क्षार, पेन्टोज	न शर्करा व फास्फोरिक अम्ल
प्र.7	सूक्रोस का जल अपघटन देत	π है—		
	(अ) ग्लूकोस के दो अणु		(ब) फ्रक्टोस के दो अणु	
	(स) एक ग्लूकोस तथा एक प्र	मक्टोस अणु	(द)एक ग्लूकोस तथा एक	मेनोस अणु
ਸ਼.8	निम्न एंजाइम के उत्प्रेरकीय !	प्रभाव से स्टार्च का माल्टोस	में परिवर्तन हो जाता है-	
	(अ) माल्टोस	(ब) जाइमेज	(स) लाइपेज	(द) डायस्टेज
Я.9	एमिनो अम्ल जिनको शरीर में	नहीं बनाया जा सकता है	व उन्हें आहार लेना आवश्यव	p होता है कहलाते है—
	(अ) अम्लीय एमीनों अम्ल		(ब) आवश्यक एमीनों अम्ल	
	(स) क्षारीय एमीनों अम्ल		(द) अनावश्यक एमीनों अम्ल	7
ਸ਼.10	स्टार्च किस इकाई का बहुलव	ਨ ਵੈ –		
	(अ) β-ग्लूकोस	(ब) β-फ्रक्टोस	(स) $lpha$ -ग्लूकोस	(द) α-फ्रक्टोस
ਸ.11	प्राणी स्टार्च के रूप में जाना	जाता है–		
	(अ) सेलूलोस	(ब) प्रोटीन	(स) ग्लूकोस	(द) ग्लायकोजन
ਸ਼.12	निम्न में से किस शर्करा को	डक्स्ट्रोज के रूप में जाना ज	गता है−	
	(अ) ग्लूकोस	(ब) फ्रक्टोज	(स) राइबोस	(द) सुक्रोस

ਸ਼.13	3 निम्न में से कौनसा अमीनो अम्ल आवष्यक अमीनों अम्ल की श्रेणी में नहीं आता है					
	(अ) वैलीन	(ब) ट्रिप्टोफेन	(स) थ्रियोनीन	(द) ग्लाइसीन		
प्र .14	वसा में विलेय विटामिन नहीं	है –				
	(광) A	(ৰ) D	(स) E	(द) C		
Я.15	निम्न में से कौनसा क्षारक D	NA में उपस्थित होता है ले	किन RNA में नहीं–			
	(अ) साइटोसिन	(ब) गुआनिन	(स) ऐडिनिन	(द) थायमिन		
Sect	ion B: रिक्त स्थान की पूर्ति	कीजिये—				
प्र .16	कोशिका के नाभिक में उपस्थि	थत वे कण जो आनुवांशिकत	गा के लिए उत्तरदायी होते है	हैं कहलाते है।		
ਸ਼.17	DNA की संरचना	होती है।				
ਸ਼.18	प्रोटीन लगभग 20 विभिन्न	के बहुलक ह	<u> </u>			
Я.19	ऐमिलोपेक्टिन जल में	होते हैं।				
ਸ਼.20	ग्लूकोस की छः सदस्यीय वर	नय वाली संरचना को	संरचना कहते है	31		
ਸ਼.21	सूक्रोस का जल अपघटन क	रने पर घूर्णन चिन्ह दक्षिण (+) से वाम (–) हो जाता है।	इस उत्पाद को		
	कहा जाता है।					
ਸ਼.22	ग्लूकोस, HI के साथ लम्बे र	नमय तक गर्म करने पर	देता है।			
Я.23	लेक्टोस शर्करा को	भी कहा जाता है।				
Я.24	सेलूलोस में ग्लूकोस की	इकाई के	.तथा दूसरी ग्लूकोस इक	ाई के के मध्य		
	ग्लाइकोसिडिक बंध बनता है	1				
ਸ਼.25	विटामिन D एक जल में	वटामिन है।				
Sect	ion C: अति लघूत्तरात्मक प्रः	रन				
Я.26	प्राणी स्टार्च किसे कहा जाता	है ?				
ਸ਼.27	अपवर्त शर्करा किसे कहा जा	ता है ?				
ਸ਼.28	DNA का पूरा नाम लिखिए	I				
ਸ਼.29	थाइराइड ग्रंथि द्वारा स्त्रावित	हार्मीन का नाम लिखिए।				
Я.30	पॉली सेकेराइड शर्करा के दो	। उदाहरण दीजिये।				
у .31	मोलिश परीक्षण क्या है ?					
у .32	कार्बोहाइड्रेट का सामान्य सूत्र	न क्या हैं ?				
у .33	ज्विटर आयन की संरचना बनाइये।					

- प्र.34 विटामिन E की कमी से होने वाले रोग का नाम बताइए तथा इसके दो स्त्रोत लिखिए।
- प्र.35 रेशेदार प्रोटीन का एक उदाहरण लिखिए।
- प्र.36 बच्चों में अस्थि विकृतता किस विटामिन की कमी के कारण होती है ?
- प्र.37 सुक्रोस को हावर्थ संरचना द्वारा निरूपित कीजिए।
- प्र.38 हमारे शरीर में विटामिन C संचित क्यों नहीं होता है ?
- प्र.39 लार में पाए जाने वाले एंजाइम का नाम लिखिए।

Section D: लघूत्तरात्मक प्रश्न

- प्र.40 स्टार्च तथा सेलूलोस में मुख्य संरचनात्मक अंतर क्या है ?
- प्र.41 मानव शरीर के लिए कार्बीहाइड्रेट्स का महत्व क्या है ?
- प्र.42 न्यूक्लिक अम्ल के दो महत्वपूर्ण कार्य लिखिए।
- प्र.43 न्यूक्लिओसाइड तथा न्युक्लियोटाइड में क्या अंतर हैं ?
- प्र.44 ग्लूकोस के दो रासायनिक परीक्षण लिखिए।
- प्र.45 निम्नलिखित विटामिन को जल तथा वसा में विलेयता के आधार पर छांटिए।

A, B, C, D, E, K

- प्र.46 कोशिका में पाए जाने वाले विभिन्न प्रकार के RNA कौन कौन से हैं ?
- प्र.47 रेशेदार तथा गोलिकार प्रोटीन में अन्तर स्पष्ट कीजिए।
- प्र.48 DNA तथा RNA में तीन अंतर लिखिए।
- प्र.49 अंडे को उबालने पर उसमें उपस्थित जल कहाँ चला जाता हैं ?
- प्र.50 स्टार्च तथा ग्लूकोस में दो अन्तर बताइए।
- प्र.51 दो आवश्यक तथा दो अनावश्यक अमीनों अम्लों के उदाहरण दीजिये।
- प्र.52 लेक्टोस शर्करा का संरचनात्मक सूत्र बनाइये।
- प्र.53 ग्लूकोस का संरचना सूत्र लिखिए। उस रासायनिक समीकरण का उल्लेख कीजिए। जिससे ज्ञात होता है कि ग्लूकोस में पाँच –OH समुह उपस्थित है।
- प्र.54 सूक्रोस को प्रतीप या अपवृत्त शर्करा क्यों कहा जाता है ?
- प्र.55 ग्लूकोस को संरचना सूत्र लिखिए। उन रासायनिक अभिक्रियाओं का वर्णन कीजिए जिनसे इसके कार्बोनिल समुह और ऐल्डिहाइड का होना सिद्ध होता है।
- प्र.56 (अ) आवश्यक एवं अनावश्यक एमीनों अम्लों को उदारण सहित समझाइए।
 - (ब) प्रोटीन के विकृतिकरण को समझाइए।
- प्र.57 (अ) DNA एवं RNA में कोई दो अन्तर लिखिए।

- (ब) क्या होता है जब ग्लूकोस ब्रोमीन जल में अभिक्रिया करता है? रासायनिक समीकरण दीजिए।
- प्र.58 प्रोटीन के विकृतिकरण को समझाइए।
- प्र.59 DNA की द्विकुंडलनी संरचना को चित्रित कीजिए।

Section E: निबंधात्मक प्रश्न

- प्र.60 निम्नलिखित को अंतर सहित समझाइये।
 - (अ) फल शर्करा एंव इक्षु शर्करा
 - (ब) ओलिगोसेकेराइड एवं पोलीसेकेराइड
 - (स) रेशेदार एवं गोलिकाकार प्रोटीन
- प्र.61 ऐमीनो अम्ल क्या हैं? इनका वर्गीकरण कैसे किया जाता है। उदाहरण देकर समझाइए।
- प्र.62 क्या होता है जब D-ग्लूकोस की अभिक्रिया निम्नलिखित अभिकर्मकों के साथ की जाती है।
 - (अ) HI
 - (ब) ब्रोमीन जल
 - (स) HNO₃
 - (द) HCN
- प्र.63 निम्न प्रेक्षणों के कारण दीजिए-
 - (अ) ग्लूकोस का पेन्टा एसीटेट हाइड्रोक्सिल ऐमीन के साथ क्रिया नहीं करता।
 - (ब) एमीनो अम्ल लवण की तरह व्यवहार करते है।
 - (स) जल में विलेय विटामिनों को लगातार आहार में लेना चाहिए।
 - (द) DNA के दो रज्जू एक-दूसरे के पूरक होते है।

मॉडल प्रश्न पत्र उच्च माध्यमिक परीक्षा 2024

विषयः रसायन विज्ञान (CHEMISTRY)

कक्षा - 12

समय	: 3 घण्ट 15 ामनट			पूणाक 56
परीक्ष	र्थियों के लिए सामान्य निर्देष	:		
1. स	भी प्रश्न करने अनिवार्य है।			
2. जि	ान प्रश्नों में आन्तरिक खण्ड ह	है उन सभी के उत्तर एक र	गथ ही लिखें।	
3. प्रश	न क्रमांक 16 से 20 में आन्त	रिक विकल्प है।		
		Jal	ग्ड अ	
			$\mathbf{on} - \mathbf{A}$	
1. ব	स्तुनिष्ठ प्रश्न			$(\frac{1}{2}\times 16=8)$
N	Multiple Choice Quest	ions:		
(i)	निम्नलिखित विलयनों में सन	र्तांशिक प्रग्रंमणा टाब किस्ट	ਜ਼ ਵੇ ?	
(1)	(a) 1 M KCl	नामिक नरारारन याच विश्वा	(b) 1 M $(NH_4)_3PO_4$	
	(c) 1 M BaCl ₂		(d) 1 M $C_6H_{12}O_6$	
(ii)		लिए log k एवं 1/T में ग्राप	n खींचते हैं, तो एक सरल	रेखा प्राप्त होती है। प्राप्त रेखा की
	प्रवणता (ढाल) होगी–	E	2 202	E
	(a) $-\frac{E_a}{2.303}$	(b) $-\frac{E_a}{2.303R}$	(c) $-\frac{2.303}{E_a R}$	$(d) - \frac{E_a}{R}$
(iii)	लैन्थेनाइडों का सामान्य बाह	ग्रतम इलेक्ट्रॉनिक विन्यास ह		
	(a) $4f^{1-14}5d^06s^2$ (c) $4f^{0-14}5d^16s^2$		(b) $4f^{20-14}5d^{0-2}6s^2$ (d) $4f^{0-14}5d^16s^2$	
	(c) +j 3u 0s		(d) +j 3u 0s	
(iv)	$\mathrm{K_{4}[Fe(CN)}_{6}]$ में आयरन	ा Fe की ऑक्सीकरण अवस्थ	ग है−	
	(a) +3	(b) +2	(c) +4	(d) +5
(v)	कौन–सा धनायन अमोनिया	के साथ ऐमीन संकुल नहीं	बनाता है ?	
	(a) Ag ⁺	(b) Al ³⁺	(c) Cd ²⁺	(d) Cu ²⁺

- (vi) आयोडोफॉर्म परीक्षण किसके द्वारा दिया जाता है।
 - (a) ऐसीटोन
- (b) एथेनॉइक अम्ल
- (c) पेन्टेन-3-ओन
- (d) मेथॉक्सीमेथेन

- (vii) ईंधन सेल में-
 - (a) रासायनिक ऊर्जा, वैद्युत ऊर्जा में परिवर्तन होती है।
 - (b) ईंधन की दहन ऊर्जा को रासायनिक ऊर्जा में परिवर्तित किया जाता है।
 - (c) ईंधन की दहन ऊर्जा को वैद्युत ऊर्जा में परिवर्तन किया जाता है।
 - (d) वैद्युत ऊर्जा को रासायनिक ऊर्जा में परिवर्तन किया जाता है।
- (viii) प्रथम कोटि की अभिक्रिया के लिये In [R] एवं t के मध्य आलेख है—

क्लोरोपिक्रिन है-(ix)

(c)

- (a) CCl₃HNO₂

- (b) $CCl_3 \cdot NO_2$ (c) $CCl_2(NO_2)_2$ (d) $CCl_2H_2NO_2$
- C O H का बंध कोण ऐल्कोहल में होता है-(**x**)
 - (a) 109° 28' से कुछ ज्यादा

(b) 109° 28' से कुछ कम

(c) 120° से कुछ ज्यादा

(d) 120° से कुछ कम

- (xi) क्लोरोफॉर्म का प्रयोग होता है-
 - (a) एक कीटनाशक के रूप में

(b) एक फफूदीनाशक के रूप में

(c) औद्योगिक विलायक के रूप में

(d) अवशोषक के रूप में

- (xii) ध्रवण धूर्णक यौगिक है-
 - (a) द्वितीयक ब्यूटेनॉल
- (b) तृतीयक ब्यूटेनॉल
- (c) n-प्रोपेनॉल
- (d) n-ब्यूटेनॉल

- (xiii) नाइट्रोबेन्जीन को कहते हैं-
 - (a) कसीस का तेल
- (b) मिरवेन का तेल
- (c) सिनेमन ऑयल
- (d) विन्टरग्रीन का तेल

- (xiv) जलीय विलयन में निम्नलिखित में से प्रबलतम क्षार है।
 - (a) मेथिलऐमीन
- (b) डाइमेथिलऐमीन
- (c) टाइमेथिलऐमीन
- (d) ऐनिलीन

- (xv) α-हेलिक्स संरचनात्मक लक्षण है-
 - (a) सूक्रोस का
- (b) पॉलिपेप्टाइडों का (c) न्यूक्लिओटाइडों का (d) स्टार्च का

- (xvi) प्रोटीन का मुख्य संरचनात्मक लक्षण है-
 - (a) ईथर बंध

- (b) पेप्टाइड बंध (c) ऐस्टर बंध (d) इनमें से कोई नहीं

2. रिक्त स्थानों की पूर्ति कीजिए

 $(10 \times \frac{1}{2} = 5)$

Fill in the blanks

- $[Co(NH_3)_6]^{3+}$ प्रतिचुम्बकीय होता है जबिक $[CoF_6]^{3-}$ होता है। (i)
- शून्य कोटि की अभिक्रिया के वेग स्थिरांक की इकाई होती है। (ii)
- (iii) विद्युत अपघटन में इलेक्ट्रॉड पर जमा पदार्थ का भारसीधे समानुपाती होता है।
- मेथेन व एथेन के क्लोरो फ्लुओरो व्युत्पन्नकहलाते है।
- (vii) लाल रक्त कोशिकाओं का अल्प परासरी विलयनों में सिक्डुनाकहलाता है।
- (viii) क्लोरोफॉर्म का IUPAC नामहोता है।
- (ix) फीनॉल की अभिक्रिया ब्रोमीन जल से करवाने पर का श्वेत अवक्षेप प्राप्त होता है।
- ग्लूकोस, HI के साथ लम्बे समय तक गर्म करने पर देता है।

3. अति लघुत्तरात्मक प्रश्न

 $(8 \times 1 = 8)$

Very short answer type questions:

(i) $5\% \left(\frac{W}{V} \right)$ NaCl के 200 mL विलयन बनाने हेतु कितने ग्राम NaCl की आवश्यकता होगी ?

- (ii) $K_2Cr_2O_7$ के नारंगी विलयन में NaOH मिलाने से वह पीला क्यों हो जाता है।
- (iii) डाइऐजोटीकरण अभिक्रिया लिखए।
- (iv) अुणसंख्यक गुणधर्म क्या हैं? इन गुणों का एक उदाहरण दीजिए।
- (v) निम्नलिखित सेल में एनोड पर होने वाली क्रिया को लिखों। $Pt.H_2(1atm.)|HCl(1M)|Cl_2(1atm).Pt$
- (vi) $[Fe(CN)_6]^{3-}$ में आयरन का प्रभावी परमाणु क्रमांक ज्ञात कीजिए। (Fe an परमाणु क्रमांक = 26)
- (vii) उपसहसंयोजक यौगिक के चार अनुप्रयोग लिखिये।
- (viii) मोलिश परीक्षण क्या है ?

खण्ड ब

Section - B

लघुत्तरात्मक प्रश्न $(12 \times 1\frac{1}{2} = 18)$

Short answer type Questions:

- हेनरी के नियम के दो अनुप्रयोग लिखिए।
- 5. कारण दीजिए— ऑर्थो अथवा पैरा स्थिति पर $-NO_2$ समूह की उपस्थिति हैलोऐरीनों की नाभिकरागी प्रतिस्थापन अभिक्रियाओं के प्रति क्रियाशीलता बढा देती है।
- **6.** निम्नलिखित को क्वथनांक के बढ़ते क्रम में व्यवस्थित कीजिए— $0.1~M~Na_2SO_4, 0.1~M~NaCl, 0.1~M~C_{12}H_{22}O_{11}, 0.1~M~Al_2(SO_4)_3$
- 7. अभिक्रिया $A \to B$ की अभिक्रिया दर दुगुनी हो जाती है जब A की सान्द्रता को चार गुना बढ़ाया जाता है। अभिक्रिया की कोटि बताइए।
- 8. विलयन में Cu^+ आयन रंगहीन जबिक Cu^{2+} आयन रंगीन होते है। क्यों ?
- 9. ऐक्टिनॉइड आंकुचन को समझाइए।
- 10. निम्न की रासायनिक समीकरण दीजिए।

- (अ) स्वार्ट अभिक्रिया
- (ब) फिंकेल्स्टाइन अभिक्रिया
- 11. टिप्पणी लिखए-
 - (अ) कोल्बे अभिक्रिया
 - (ब) एस्टरीकरण
- 12. निम्न पदों की समीकरण लिखिए-
 - (अ) वोल्फ किश्नर अपचयन
 - (ब) क्लीमेन्सन अपचयन
 - (अ) इटार्ड अभिक्रिया
 - (ब) गाटरमान कोच अभिक्रिया
- 13. एल्डोल संघनन की क्रिया विधि समझाइए।
- 14. ग्लूकोस का संरचना सूत्र लिखिए। उस रासायनिक समीकरण का उल्लेख कीजिए जिससे ज्ञात होता है कि ग्लूकोस में पाँच -OH समुह उपस्थिति है।
- 15. निम्नलिखित संकुल यौगिक के IUPAC में नाम दीजिये।
 - (3) [Co(en)₃]³⁺
 - $(\overline{\mathsf{q}}) \ \mathrm{K_2}[\mathrm{Zn}(\mathrm{OH})_4]$

खण्ड स

Section - C

दीर्घ उत्तरात्मक प्रष्न (3×3=9)

Long answer type Questions:

- 16. निम्नलिखित अभिक्रियाओं के लिए समीकरण दीजिए-
 - (अ) प्रोपेन -1-ऑल का क्षारीय KMnO4 के साथ ऑक्सीकरण
 - (ब) ब्रोमीन की CS₂ में फीनॉल के साथ अभिक्रिया
 - (स) तनु HNO3 की फीनॉल से अभिक्रिया

अथवा

निम्न अभिक्रियाओं से प्राप्त उत्पादों का अनुमान लगाइये-

(अ) फीनॉल $\xrightarrow{\overline{\eta} \text{ HNO}_3}$

- 17. (अ) शून्य कोटि की अभिक्रिया हेतु समाकलित वेग समीकरण / वेग स्थिरांक का सूत्र व्युत्पन्न कीजिये।
 - (ब) शून्य कोटि की अभिक्रिया हेतु अर्द्ध आयु काल ज्ञात कीजिये
 - (स) शून्य कोटि की अभिक्रिया के लिए अभिकारक की सांद्रता [R] एवं समय t में ग्राफ खिचिये।

अथवा

- (अ) प्रथम कोटि की अभिक्रिया हेतु समाकलित वेग समीकरण व्युत्पन्न कीजिये।
- (ब) प्रथम कोटि की अभिक्रिया हेतु अर्द्ध आयुकाल का सूत्र व्युत्पन्न कीजिये और ये पुष्टि कीजिये कि इस अभिक्रिया की अर्द्धआयु अभिक्रिया की प्रारंभिक सांद्रता पर निर्भर नहीं करती है।
- (स) 30 मिनट अर्द्वआयु काल वाली प्रथम कोटि की अभिक्रिया के लिए वेग नियतांक एवं अभिक्रिया के 75% पूर्ण होने में लगने वाले समय की गणना कीजिये।
- 18. कारण दीजिए-
 - (अ) शुद्ध प्राथमिक ऐमीनों के विरचन के लिए ऐल्किल हैलाइडों का अमीनो अपघटन एक अच्छी विधि नहीं है।
 - (ब) ऐनिलीन फ्रीडेल-क्राफ्टस अभिक्रिया नहीं देता है।
 - (स) यद्यपि $-NH_2$ समूह इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रिया में o/p निर्देशी होता है फिर भी ऐनिलीन के नाइट्रीकरण से m-नाइट्रोऐनिलीन की महत्वपूर्ण मात्रा बनती है।

अथवा

निम्नलिखित पर लघु टिप्पणी लिखिए-

- (अ) कार्बिलेमीन अभिक्रिया
- (ब) डाइऐजोटीकरण
- (स) हॉफमान ब्रोमैमाइड अभिक्रिया

खण्ड द

Section - D

निबंधात्मक प्रष्न $(4 \times 2 = 8)$

Essay type Questions:

- 19. (अ) ईंधन सेल का नामांकित चित्र बनाइए।
 - (ब) ईंधन सेल से आप क्या समझते हैं किसी एक ईंधन सेल की बनावट और क्रियाविधि का वर्णन कीजिये।
 - (स) ईंधन सेल अन्य सेलों की तुलना में श्रेष्ठ होता है, कोई दो कारण दीजिये।
 - (द) ईंधन सेल की दक्षता क्या हैं ?
 - (य) अपोलो स्पेस प्रोग्राम में प्रयुक्त ईंधन सेल का नाम लिखिए।

अथवा

- (अ) मोलर चालकता क्या हैं ? इसका चालकता से क्या सम्बन्ध है ?
- (ब) तुल्यांकी चालकता क्या है ? इसका चालकता से सम्बन्ध लिखिए।
- (स) AlCl3 विलयन के लिए तुल्यांकी चालकता एवं मोलर चालकता में सम्बन्ध लिखिए।
- (द) प्रबल एवं दुर्बल विद्युत अपघट्य की मोलर चालकता पर तनुता का प्रभाव लिखिए।
- (य) 295 K पर 0.20 M KCl विलयन की विशिष्ट चालकत्व 0.0248 S cm⁻¹ है तो मोलर चालकता की गणना कीजिये।
- 20. निम्नलिखित कथनों के लिए कारण दीजिए (कोई दो)
 - (अ) नाभिकरागी योगज अभिक्रियाओं में प्रोपेनैल की तुलना में बेन्जैल्डिहाइड कम अभिक्रियाशील होता है।
 - (ब) कार्बोक्सिलिक अम्ल, कार्बोनिल समूह की अभिक्रियाएँ नहीं देता है।
 - (स) बेन्जोइक अम्ल की तुलना में 4-नाइट्रोबेन्जोइक अम्ल अधिक प्रबल अम्ल है।

अथवा

- (अ) आपके विचार से नीचे दिए गए अम्लों के जोड़े (युगल) में से कौनसा अम्ल अधिक प्रबल होगा ? $F-CH_{2}-COOH$ अथवा $CH_{3}-COOH$
- (ब) निम्नलिखित यौगिकों को उनके क्वथनांकों के बढ़ते क्रम में व्यवस्थित कीजिए— CH₃CH₂OH, CH₃ – CHO, CH₃ – COOH
- (स) बेन्जैल्डिहाइड और ऐसीटोफीनॉन में विभेद करने के लिए सरल रासायनिक परीक्षण दीजिए।

मॉडल प्रश्न पत्र उच्च माध्यमिक परीक्षा 2024

विषयः रसायन विज्ञान (CHEMISTRY)

कक्षा - 12

समय: 3 घण्टे 15 मिनट

परीक्षा	र्थियों के लिए सामान्य निर्देशः			
1. ਦਾ	ो प्रश्न करने अनिवार्य है।			
2. जি	न प्रश्नों में आन्तरिक खण्ड है	उन सभी के उत्तर एक सा	थ ही लिखें।	
3. प्रश	न क्रमांक 16 से 20 में आन्ति	रेक विकल्प है।		
		खुण	ड अ	
		Section	-	
1. ਥ	स्तुनिष्ठ प्रश्न			$(\frac{1}{2} \times 16 = 8)$
	Iultiple Choice Question	ons:		
(<u>*</u>)	$\rightarrow 0.1 M \rightarrow 0.1 M$		1 	
(i)	निम्न के 0.1 M जलीय मोल (a) पोटैशियम सल्फेट	im ।वयन म न्यूनतम ।हमाक (b) सोडियम क्लोराइड	(c) यूरिया	(d) ग्लूकोस
(ii)	प्रथम कोटि की एक अभिक्रिय (a) 36 मिनट में	या 72 मिनट में 75% पूर्ण ह (b) 48 मिनट में		•
(iii)	Mn^{2+} (परमाणु क्रमांक = 25	i) में उपस्थित कल अयग्मित	। इलेक्टॉनों की संख्या हैं –	
` '	(a) 2	(b) 7	(c) 3	(d) 5
(iv)	$[Pt(NH_3)_2Cl_2]$ यौगिक व	हे त्रिविम समावयवियों की र	iख्या है–	
	(a) 1	(b) 2	(c) 4	(d) 3
(v)	गैल्वेनी सेल के लिए कौनसा	कथन असत्य है ?		
	(a) ऐनोड पर अपचयन होता		(b) कैथोड पर अपचयन	
	(c) ऐनोड ऋण आवेशित होत	ता है	(d) कैथोड धन आवेशित	होता हैं
(vi)	$[\operatorname{Co}(\operatorname{NH}_3)_4\operatorname{Cl}_2]\operatorname{Br}_2$ एवं	[Co(NH ₃) ₄ Br ₂] Cl ₂ का	युगल दर्शाएगा–	
	(a) बंधनी समावयवता		(b) हाइड्रेट समावयवता	
	(c) आयनन समावयवता		(d) उपसहसंयोजन समावय	ग्वता

पूर्णांक 56

- (vii) फॉस्जीन है-
 - (a) PH₃
- (b) POCl₃
- (c) CS_2
- (d) COCl₂
- (viii) ताप में थोड़ी वृद्धि करने से अभिक्रिया का वेग तीव्रता से बढ़ता है, क्योंकि-
 - (a) सक्रिय अभिकारकों की संख्या में वृद्धि हो जाती हैं
 - (b) संघट्टों की संख्या बढ़ जाती है
 - (c) मुक्त पथ की लम्बाई बढ़ जाती है
 - (d) अभिक्रिया ऊष्मा बढ़ जाती है
- (ix) $CH_3CHBrCH_2 CH_3 \xrightarrow{Alc. KOH}$? का मुख्य उत्पाद है-
 - (a) प्रोपीन-1
- (b) ब्यूटीन-2
- (c) ब्यूटेन
- (d) ब्यूटाइन-1

(x) निम्नलिखित अभिक्रिया के लिए मुख्य उत्पाद होगा-

$$CH_3$$
 $-CH = CH_2 \xrightarrow{1. HBr} \frac{1. HBr}{2. aq KOH}$

(a) CH₃—CH—CH₃ | OH (b) CH_3 —CH— CH_3

(c) CH₃—CH₂—CH₂—OH

- (d) CH_3 — CH_2 — CH_2 —Br
- (xi) निम्न में से कौर S_N^2 तीव्रतम दर्शायेगा—
 - (a) CH₃Cl

(b) C_6H_5Cl

(c) CH_3 —CH—Cl CH_3

- (d) C_2H_5OH
- (xii) एल्कोहलों व फीनॉल में विभेद किया जा सकता है—
 - (a) FeCl₃
- (b) AlCl₃
- (c) Cu चूर्ण
- (d) Na

- (xiii) किस अभिक्रिया द्वारा ऐमाइड को ऐमीन में बदला जा सकता है—
 - (a) हॉफमान निम्नीकरण

(b) अमोनी अपघटन

(c) कार्बिल ऐमीन

(d) डाइएजोटीकरण

- (xiv) न्यूक्लियोसाइड बने होते है-
 - (a) पेन्टोज शर्करा व फास्फोरिक अम्ल
 - (b) नाइट्रोजनी क्षार व फास्फोरिक अम्ल
 - (c) नाइट्रोजनी क्षार व पेन्टोज शर्करा
 - (d) नाइट्रोजनी क्षार, पेन्टोज शर्करा व फास्फोरिक अम्ल

(XV)	निम्नालाखत यागिका म प्रब (a) $(CH_3)_3N$		(c) CH ₃ NH ₂	(d) NH ₃	
	स्टार्च किस इकाई का बहुल -ग्लूकोस (b) β-फ्रक्टोस		फ्रक्टोस		
	रेक्त स्थानों की पूर्ति र्क 'ill in the blanks	जिए			$(10\times\frac{1}{2}=5)$
(i)	एक्टिनाइडों में	से त	क 14 तत्व सम्मिलित है	51	
(ii)	हिमोग्लोबीन में केन्द्रीय धातु	आयन है	}		
(iii)	विलेय के क्वथनांक बिन्दु मे	वृद्धि, विलयन के	से समानुपाती	होती है।	
(iv)	DDT का पूरा नाम	है जो कि एक व	ठीटनाशक की तरह का र	र्घ करता है।	
(v)	ऐमिलोपेक्टिन जल में	होते है।			
(vi)	प्रतीप शर्करा का प्रतीपन	अभिक्रिया है	है। जिसकी आण्विकता .	होती है।	
(vii)	बेन्जिल क्लोराइड का IUP	AC नाम	होता है।		
(viii)	NaCl के जलीय विलयन मे	ां विद्युत प्रवाहित करने पर	प्राप्त विलय की pH	जाती है।	
(ix)	+ Br ₂ - परां	भेगनी प्रकाश 👉			
(x)	यशद रज (Zn चूर्ण) के सा	थ गर्म करने पर फीनॉल	में परिर्वा	र्तेत हो जाती है।	
	ाति लघुत्तरात्मक प्रश्न 'ery short answer type	questions:			$(8 \times 1 = 8)$
(i)	फैराडे का विद्युत अपघटन	का द्वितीयक नियम लिखिए	.1		
(ii)	प्रतिलोम परासरण को परिभ	ाषित कीजिए			
(iii)	Zr व Hf समान गुण क्यों !	गदर्षित करते है ?			
(iv)	$[\operatorname{Fe}(\operatorname{C_2O_4})_3]^-$ में केन्द्रीय	धातु आयन की उपसहसंय	गोजकता ज्ञात कीजिए।		

- (v) हॉफमान ब्रोमेमाइड निम्नीकरण अभिक्रिया लिखिए।
- (vi) ताप बढ़ाने पर हेनरी स्थिरांक (K_H) पर क्या प्रभाव पड़ता है ?
- (vii) VBT के आधार पर [FeF₆]³⁻ संकुल आयन की संरचना एवं चुम्बकीय प्रकृति बताइए।
- (viii) विटामिन E की कमी से होने वाले रोग का नाम बताइए तथा इसके दो स्त्रोत लिखिए।

खण्ड ब

Section - B

लघुत्तरात्मक प्रश्न $(12 \times 1\frac{1}{2} = 18)$

Short answer type Questions:

- **4.** किसी प्रथम कोटि की अभिक्रिया को 50% पूर्ण होने के लिए 300 K पर 40 मिनट लगते हैं और 320 K पर 20 मिनट लगते हैं। अभिक्रिया की सक्रियण ऊर्जा परिकलित कीजिए।
- 5. आदर्श तथा अनादर्श विलयन में अंतर लिखिए।
- **6.** $[NiCl_4]^{2-}$ अनुचुम्बकीय है जबिक $[Ni(CO)_4]$ प्रतिचुम्बकीय है। यद्यपि दोनों ही चतुष्फलकीय हैं, क्यों ?
- 7. फ्रिऑन-12, DDT आयोडोफार्म, कार्बन टेट्रा क्लोराइड का एक-एक उपयोग लिखिए।
- 8. शक्कर के 5% (द्रव्यमान) जलीय विलयन का हिमांक 271 K है। यदि शुद्ध जल का हिमांक 273.15 K है तो ग्लूकोस के 5% जलीय विलयन के हिमांक की गणना कीजिए।
- 9. Mn³⁺ आयन की अपेक्षा Mn²⁺ आयन अधिक स्थायी होते है क्यों ?
- 10. आयरन (II) आयन तथा टिन (II) आयन पर अम्लीकृत डाइडक्रोमेट $(Cr_2O_7^{2-})$ विलयन की ऑक्सीकारक क्रिया दर्शाने के लिए सन्तुलित आयनिक समीकरण लिखिए।
- 11. कारण दिजिए- क्लोरोफॉर्म क्लोरीन यौगिक है फिर भी यह नाइट्रेट विलयन के साथ कोई अवक्षेप नहीं देता है, क्यों ?
- 12. t-ब्यूटिल ऐल्कोहॉल और n-ब्यूटेनॉल में से कौनसा अम्ल उत्प्रेरित निर्जलन तीव्रता से देगा और क्यों ?
- 13. निम्न की केवल रासायनिक समीकरण दीजिए-
 - (अ) कैनिजारो अभिक्रिया
 - (ब) ऐल्डॉल संघनन

- (स) विकार्बोक्सिलीकरण
- (स) हेल वोलार्ड जेलिंस्की अभिक्रिया (HVZ अभिक्रिया)
- 14. फॉर्मिक अम्ल बनाने की प्रयोगशाला विधि का अभिक्रिया समीकरण दीजिए। इसके दो अपचायक गुणों को लिखिए।
- 15. (अ) DNA एवं RNA में कोई दो अन्तर लिखिए।
 - (ब) क्या होता है जब ग्लूकोस ब्रोमीन जल में अभिक्रिया करता है। रासायनिक समीकरण दीजिए।

खण्ड स

Section - C

दीर्घ उत्तरात्मक प्रष्न (3×3=9)

Long answer type Questions:

- 16. (अ) शून्य कोटि अभिक्रिया के लिये समाकलित वेग व्यंजक का सूत्र स्थापित कीजिए।
 - (ब) एक शून्य कोटि अभिक्रिया के लिये अर्द्ध—आयु काल ज्ञात कीजिए जब इस अभिक्रिया का वेग स्थिरांक $k=3.7 \times 10^{-14} \ \mathrm{mol} \ \mathrm{L}^{-1} \ \mathrm{s}^{-1}$ हो एवं अभिकारक की प्रारम्भिक सान्द्रता $0.074 \ \mathrm{mol} \ \mathrm{L}^{-1}$ हो।

अथवा

- (अ) उत्प्रेरक अभिक्रिया की सक्रियण ऊर्जा को किस प्रकार प्रभावित करता है ?
- (ब) अभिक्रिया के वेग स्थिरांक पर उत्प्रेरक का क्या प्रभाव पड़ता है ?
- (स) उत्प्रेरक की उपस्थिति में अभिक्रिया का वेग अधिक हो जाता है। इस कथन को अभिक्रिया निर्देषांक व ऊर्जा वक्र बनाकर समझाइये।
- 17. निम्नलिखित को समझाइए-
 - (अ) ऐल्कोहॉल का अणुभार बढ़ने पर जल में इनकी विलेयता घटती है।
 - (ब) पावर ऐल्कोहॉल क्या है ? उसका उपयोग क्या है ?
 - (स) फीनॉल अम्लीय होते हैं। क्यों ?

अथवा

- (अ) निम्नलिखित ऐल्कोहॉलों को निर्जलीकरण अभिक्रिया के प्रति बढ़ती अभिक्रियाशीलता के क्रम में व्यवस्थित कीजिए। CH_3CH_2OH , $(CH_3)_2CHOH$, $(CH_3)_3COH$
- (ब) निम्नलिखित यौगिकों को उनके अम्ल सामर्थ्य के बढ़ते क्रम में व्यवस्थित कीजिये।

- (i) फीनॉल (ii) 2, 4, 6-ट्राई नाइट्रो फीनॉल (iii) 4-मेथिल फीनॉल
- (स) निम्नलिखित को उनके क्वथनांकों के बढ़ते क्रम में व्यवस्थित कीजिये।
 - (i) मेथेनॉल (ii) एथेनॉल (iii) ब्यूटेन -2-ऑल (iv) ब्यूटेन -1-ऑल
- 18. अभिक्रियाएं पूर्ण कीजिए-

अथवा

- (अ) निम्निलिखात यौगिकों को जलीय विलयन में उनकी क्षारकता सामर्थ्य के बढ़ते क्रम में व्यवस्थित कीजिए— CH_3NH_2 , $(CH_3)_3N$, $(CH_3)_2NH$
- (ब) हिन्सबर्ग अभिकर्मक क्या है ?
- (ब) ऐमीनों की ऐसिलन अभिक्रिया में पिरीडीन की भूमिका क्या है ?

खण्ड द

Section – D

निबंधात्मक प्रश्न $(4 \times 2 = 8)$

Essay type Questions:

19. एक कार्बनिक यौगिक 'X' जिसका अणुसूत्र $C_5H_{10}O$ है 2, 4-DNP व्युत्पन्न बनाता है, टॉलेन अभिकर्मक को अपचियत नहीं करता है लेकिन NaOH की उपस्थिति में I_2 के साथ गर्म करने पर आयोडोफार्म परीक्षण देता है। यौगिक 'X' प्रबल ऑक्सीकरण पर एथेनॉइक तथा प्रोपेनॉइक अम्ल देता है।

लिखिए-

- (अ) यौगिक 'X' की संरचना
- (ब) 2, 4-DNP अभिकर्मक के साथ यौगिक 'X' की अभिक्रिया होने पर प्राप्त उत्पाद की संरचना

(स) यौगिक 'X' को NaOH की उपस्थिति में I2 के साथ गर्म करने से प्राप्त उत्पादों की संरचनाएँ

अथवा

आप निम्न परिवर्तन किस प्रकार करेंगे-

- (अ) ब्यूटेन -1- ऑल से ब्यूटेनोइक अम्ल
- (ब) 3- नाइट्रो ब्रोमोबेन्जीन से 3-नाइट्रो बेन्जोइक अम्ल
- (द) 4-मेथिल ऐसीटोफीनोन से बेन्जीन-1, 4-डाइकार्बोक्सिलिक अम्ल
- 20. (अ) डेनियल सेल का नामांकित चित्र बनाइये।
 - (ब) इलेक्ट्रोडों पर होने वाली ऑक्सीकरण एवं अपचयन की अर्द्ध अभिक्रियाएँ लिखिए।
 - (स) इस सेल के लिये नेर्न्स्ट समीकरण का गणितीय रूप लिखिये।

अथवा

- (अ) संक्षारण से आप क्या समझते है ? उदाहरण दीजिये।
- (ब) संक्षारण को प्रभावित करने वाले दो कारक लिखिए।
- (स) संक्षारण एक विद्युत रासायनिक परिघटना है, लोहे पर जंग लगने के उदाहरण द्वारा इसे समझाइये।
- (द) संक्षारण की रोकथाम के लिये दो उपाय लिखिए।

Notes

Notes

Notes

।। सतत् अभ्यास से सुदृढ़ अधिगम की ओर बढ़े ।।

केवल कुछ प्रश्नों के आधार पर पढ़ाई करने से भविष्य उज्ज्वल नहीं होता है। अतः ज्ञान पर ध्यान केन्द्रित करें।

राजस्थान स्कूल शिक्षा परिषद्

द्वितीय एवं तृतीय तल, ब्लॉक-5, डॉ. राधाकृष्णन शिक्षा संकूल परिसर जवाहर लाल नेहरू मार्ग, जयपुर (राजस्थान)