ECE 2534

Bit manipulation in C

Integer representation

On our system, integers are (typically) represented using 32 bits

☐ For signed values, we (typically) assume 2's-complement representation

Integer representation

■ Example:

$$int i = 17;$$

□Example:

int
$$j = -2;$$

Integer representation

■ Example:

int
$$i = 0x23$$
;

int
$$j = 0xf00d;$$

☐ Problem: Set bit 12 to 1, and clear all other bits to 0

□ Problem: Set bit 12 to 1, and leave all other bits unchanged

□ Problem: Set bits 12 through 14 to 1, and leave all other bits unchanged

3.	1 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

□ Problem: Clear bit 12 to 0, and leave all other bits unchanged

□ Problem: Complement bit 12, and leave all other bits unchanged

Conditional expressions

■ What does this do?

■ What does this do?

```
if (n & 0x1000)
```

Summary

- ☐ Bit manipulation will be needed through this course
- Examples:

```
int ioReg, n;
. . . .

ioReg = ioReg | (1 << n);  // sets bit n
ioReg = ioReg & ~(1 << n); // clears bit n
ioReg = ioReg ^ (1 << n);  // toggles bit n

if (ioReg & (1 << n))  // tests bit n</pre>
```