Modelling and simulation

Lecture: Michel Kana

Practice: Daniela Müllerová

Malthus model

- The population is expressed by its size (number of individuals, X)
- Difference decrease and increase in the population is stable in time
- Effect of environment isn't changed at the time
- The birth rate is marked by symbol $r \approx \rho$

$$\dot{x}(t) = r x(t)$$

Analytical solution

$$x(t) = x_0 e^{rt}$$

Practice 1– assignment

- Model city's population
 - \square at time t = 8 years has 39 individuals
 - \square at time t = 12 years has 60 individuals
 - implement in Simulink model with exponential population growth
 - analytically determine the coefficient (measure)
 population growth
 - □ analytically determine the population size at time t = 20 years
 - verify the calculation with simulation

Practice 1— solution

Determination of the growth coefficient r

based on:
$$x(t) = x_0 e^{rt}$$

substituting: $39 = x_0 e^{r8}$
 $60 = x_0 e^{r/2}$

substituting:
$$39 = x_0 e^{r\delta}$$

$$60 = x_0 e^{r/2}$$

mathematically adjust:
$$\frac{39}{e^{r8}} = \frac{60}{e^{r12}}$$

next:
$$r = \frac{1}{4} \ln \frac{60}{39} \approx 0.1076$$

Příklad 1 – solution

- Determination of the population size at time t = 20 years
 - \Box calculating the population at time t = 0

based on:
$$x(t) = x_0 e^{rt}$$

substituting:
$$39 = x_0 e^{0,1076.8}$$

$$x_0 = 16.4775$$

 \square calculating the population at time t = 20

substituting:
$$x(20) = 16,4775 e^{0,1076 \cdot 20} \approx 141$$

Logistic model

- Real growth can't be unlimited
- The logistic model or the Verhulst model is a slight modification of Malthus model with the second parameter.
- parameter K is the capacity of the environment of the study population.

$$x'(t) = \rho \left(1 - \frac{x(t)}{K}\right). x(t)$$

Analytical solution

$$x(t) = \frac{K x_0 e^{\rho t}}{K + x_0 (e^{\rho t} - 1)}$$

Logistic model- modification

LM with variable parameters

$$x'(t) = \rho(t) \cdot \left(1 - \frac{x(t)}{K(t)}\right) \cdot x(t)$$

LM with harvesting

$$x'(t) = \rho \cdot \left(1 - \frac{x(t)}{K}\right) \cdot x(t) - cx(t)$$

LM with delay

$$x'(t) = \rho. x(t). \left[1 - \frac{x(t-\tau)}{K}\right]$$

- Hutchinson's equation
- Analytical solution does not exist

Practice 2–1. part - assignment

- Logistic model of forest biomass
 - \square capacity of the environment K = 54 * 10⁴ individuals
 - \square initial biomass is equal to $\frac{1}{4}$ of the total capacity
 - \square growth rate $\rho = 0.71$ za rok
 - analytically specify how large the population after the first year
 - analytically specify for how long the population reaches half capacity of the environment
 - create a logistic model of forest biomass in Simulink
 - verify the calculations by simulation

Practice 2–2. part - assignment

- Logistic model of forest biomass
 - implement to the model time delay τ, τ is 2 months
 (block variable time delay)
 - \Box create a subsystem, which is a variable parameter ρ, $\rho = arctg(1/t) + 1$ (block Trigonometric function and Clock)
 - □ implement to the model capture c, c is 10% the size of the population

Practice 2— desired output

- Model file *. mdl with correctly described blocks
- Short paper in *. pdf containing
 - □ The differential equation model
 - analytically calculation of population size after the first year
 - analytically calculation of time when the population reaches half capacity of the environment
 - Table of all model parameters with columns: symbol, importance, value, unit
 - □ Table of all state variables of the model with columns: symbol, meaning the initial value, unit

Practice 2 – desired output

- Short paper in *. pdf containing
 - Simulation output according to set parameters
 - Simulation output according to set parameters with time delay
 - Simulation output according to set parameters with variable parameter ρ
 - Simulation output according to set parameters with capture c