

SEQUENCE LISTING

<110> Protein Design Labs, Inc.
Afar, et al.

<120> Methods of Prognosis of Prostate Cancer

<130> 05882.0132.NPUS01

<140> 10/603,505
<141> 2003-06-24

<160> 2

<170> PatentIn version 3.2

<210> 1
<211> 1104
<212> PRT
<213> Homo sapiens

<400> 1

Met Ser Phe Arg Ala Ala Arg Leu Ser Met Arg Asn Arg Arg Asn Asp
1 5 10 15

Thr Leu Asp Ser Thr Arg Thr Leu Tyr Ser Ser Ala Ser Arg Ser Thr
20 25 30

Asp Leu Ser Tyr Ser Glu Ser Asp Leu Val Asn Phe Ile Gln Ala Asn
35 40 45

Phe Lys Lys Arg Glu Cys Val Phe Phe Thr Lys Asp Ser Lys Ala Thr
50 55 60

Glu Asn Val Cys Lys Cys Gly Tyr Ala Gln Ser Gln His Met Glu Gly
65 70 75 80

Thr Gln Ile Asn Gln Ser Glu Lys Trp Asn Tyr Lys Lys His Thr Lys
85 90 95

Glu Phe Pro Thr Asp Ala Phe Gly Asp Ile Gln Phe Glu Thr Leu Gly
100 105 110

Lys Lys Gly Lys Tyr Ile Arg Leu Ser Cys Asp Thr Asp Ala Glu Ile
115 120 125

Leu Tyr Glu Leu Leu Thr Gln His Trp His Leu Lys Thr Pro Asn Leu
130 135 140

Val Ile Ser Val Thr Gly Gly Ala Lys Asn Phe Ala Leu Lys Pro Arg

145 150 155 160

Met Arg Lys Ile Phe Ser Arg Leu Ile Tyr Ile Ala Gln Ser Lys Gly
165 170 175

Ala Trp Ile Leu Thr Gly Gly Thr His Tyr Gly Leu Met Lys Tyr Ile
180 185 190

Gly Glu Val Val Arg Asp Asn Thr Ile Ser Arg Ser Ser Glu Glu Asn
195 200 205

Ile Val Ala Ile Gly Ile Ala Ala Trp Gly Met Val Ser Asn Arg Asp
210 215 220

Thr Leu Ile Arg Asn Cys Asp Ala Glu Gly Tyr Phe Leu Ala Gln Tyr
225 230 235 240

Leu Met Asp Asp Phe Thr Arg Asp Pro Leu Tyr Ile Leu Asp Asn Asn
245 250 255

His Thr His Leu Leu Leu Val Asp Asn Gly Cys His Gly His Pro Thr
260 265 270

Val Glu Ala Lys Leu Arg Asn Gln Leu Glu Lys Tyr Ile Ser Glu Arg
275 280 285

Thr Ile Gln Asp Ser Asn Tyr Gly Gly Lys Ile Pro Ile Val Cys Phe
290 295 300

Ala Gln Gly Gly Lys Glu Thr Leu Lys Ala Ile Asn Thr Ser Ile
305 310 315 320

Lys Asn Lys Ile Pro Cys Val Val Glu Gly Ser Gly Gln Ile Ala
325 330 335

Asp Val Ile Ala Ser Leu Val Glu Val Glu Asp Ala Leu Thr Ser Ser
340 345 350

Ala Val Lys Glu Lys Leu Val Arg Phe Leu Pro Arg Thr Val Ser Arg
355 360 365

Leu Pro Glu Glu Glu Thr Glu Ser Trp Ile Lys Trp Leu Lys Glu Ile
370 375 380

Leu Glu Cys Ser His Leu Leu Thr Val Ile Lys Met Glu Glu Ala Gly

385 390 395 400
Asp Glu Ile Val Ser Asn Ala Ile Ser Tyr Ala Leu Tyr Lys Ala Phe
405 410 415

Ser Thr Ser Glu Gln Asp Lys Asp Asn Trp Asn Gly Gln Leu Lys Leu
420 425 430

Leu Leu Glu Trp Asn Gln Leu Asp Leu Ala Asn Asp Glu Ile Phe Thr
435 440 445

Asn Asp Arg Arg Trp Glu Ser Ala Asp Leu Gln Glu Val Met Phe Thr
450 455 460

Ala Leu Ile Lys Asp Arg Pro Lys Phe Val Arg Leu Phe Leu Glu Asn
465 470 475 480

Gly Leu Asn Leu Arg Lys Phe Leu Thr His Asp Val Leu Thr Glu Leu
485 490 495

Phe Ser Asn His Phe Ser Thr Leu Val Tyr Arg Asn Leu Gln Ile Ala
500 505 510

Lys Asn Ser Tyr Asn Asp Ala Leu Leu Thr Phe Val Trp Lys Leu Val
515 520 525

Ala Asn Phe Arg Arg Gly Phe Arg Lys Glu Asp Arg Asn Gly Arg Asp
530 535 540

Glu Met Asp Ile Glu Leu His Asp Val Ser Pro Ile Thr Arg His Pro
545 550 555 560

Leu Gln Ala Leu Phe Ile Trp Ala Ile Leu Gln Asn Lys Lys Glu Leu
565 570 575

Ser Lys Val Ile Trp Glu Gln Thr Arg Gly Cys Thr Leu Ala Ala Leu
580 585 590

Gly Ala Ser Lys Leu Leu Lys Thr Leu Ala Lys Val Lys Asn Asp Ile
595 600 605

Asn Ala Ala Gly Glu Ser Glu Glu Leu Ala Asn Glu Tyr Glu Thr Arg
610 615 620

Ala Val Glu Leu Phe Thr Glu Cys Tyr Ser Ser Asp Glu Asp Leu Ala

625 630 635 640

Glu Gln Leu Leu Val Tyr Ser Cys Glu Ala Trp Gly Gly Ser Asn Cys
645 650 655

Leu Glu Leu Ala Val Glu Ala Thr Asp Gln His Phe Ile Ala Gln Pro
660 665 670

Gly Val Gln Asn Phe Leu Ser Lys Gln Trp Tyr Gly Glu Ile Ser Arg
675 680 685

Asp Thr Lys Asn Trp Lys Ile Ile Leu Cys Leu Phe Ile Ile Pro Leu
690 695 700

Val Gly Cys Gly Phe Val Ser Phe Arg Lys Lys Pro Val Asp Lys His
705 710 715 720

Lys Lys Leu Leu Trp Tyr Tyr Val Ala Phe Phe Thr Ser Pro Phe Val
725 730 735

Val Phe Ser Trp Asn Val Val Phe Tyr Ile Ala Phe Leu Leu Phe
740 745 750

Ala Tyr Val Leu Leu Met Asp Phe His Ser Val Pro His Pro Pro Glu
755 760 765

Leu Val Leu Tyr Ser Leu Val Phe Val Leu Phe Cys Asp Glu Val Arg
770 775 780

Gln Trp Tyr Val Asn Gly Val Asn Tyr Phe Thr Asp Leu Trp Asn Val
785 790 795 800

Met Asp Thr Leu Gly Leu Phe Tyr Phe Ile Ala Gly Ile Val Phe Arg
805 810 815

Leu His Ser Ser Asn Lys Ser Ser Leu Tyr Ser Gly Arg Val Ile Phe
820 825 830

Cys Leu Asp Tyr Ile Ile Phe Thr Leu Arg Leu Ile His Ile Phe Thr
835 840 845

Val Ser Arg Asn Leu Gly Pro Lys Ile Ile Met Leu Gln Arg Met Leu
850 855 860

Ile Asp Val Phe Phe Leu Phe Leu Phe Ala Val Trp Met Val Ala

865 870 875 880

Phe Gly Val Ala Arg Gln Gly Ile Leu Arg Gln Asn Glu Gln Arg Trp
885 890 895

Arg Trp Ile Phe Arg Ser Val Ile Tyr Glu Pro Tyr Leu Ala Met Phe
900 905 910

Gly Gln Val Pro Ser Asp Val Asp Gly Thr Thr Tyr Asp Phe Ala His
915 920 925

Cys Thr Phe Thr Gly Asn Glu Ser Lys Pro Leu Cys Val Glu Leu Asp
930 935 940

Glu His Asn Leu Pro Arg Phe Pro Glu Trp Ile Thr Ile Pro Leu Val
945 950 955 960

Cys Ile Tyr Met Leu Ser Thr Asn Ile Leu Leu Val Asn Leu Leu Val
965 970 975

Ala Met Phe Gly Tyr Thr Val Gly Thr Val Gln Glu Asn Asn Asp Gln
980 985 990

Val Trp Lys Phe Gln Arg Tyr Phe Leu Val Gln Glu Tyr Cys Ser Arg
995 1000 1005

Leu Asn Ile Pro Phe Pro Phe Ile Val Phe Ala Tyr Phe Tyr Met
1010 1015 1020

Val Val Lys Lys Cys Phe Lys Cys Cys Cys Lys Glu Lys Asn Met
1025 1030 1035

Glu Ser Ser Val Cys Cys Phe Lys Asn Glu Asp Asn Glu Thr Leu
1040 1045 1050

Ala Trp Glu Gly Val Met Lys Glu Asn Tyr Leu Val Lys Ile Asn
1055 1060 1065

Thr Lys Ala Asn Asp Thr Ser Glu Glu Met Arg His Arg Phe Arg
1070 1075 1080

Gln Leu Asp Thr Lys Leu Asn Asp Leu Lys Gly Leu Leu Lys Glu
1085 1090 1095

Ile Ala Asn Lys Ile Lys

1100

<210> 2
<211> 3315
<212> DNA
<213> Homo sapiens

<400> 2
atgtccttc gggcagccag gctcagcatg aggaacagaa ggaatgacac tctggacagc 60
acccggaccc tgtactccag cgcgctcgg agcacagact tgtcttacag taaaagcgac 120
tttgtaatt ttatcaagc aaatttaag aaacgagaat gtgtcttctt taccaaagat 180
tccaaggcca cggagaatgt gtgcaagtgt ggctatgcc agagccagca catggaaggc 240
acccagatca accaaagtga gaaatgAAC tacaagaaAC acaccaagGA atttcctacc 300
gacgccttg gggatattca gtttgagaca ctggggaga aaggaaagta tatacgctg 360
tcctgcaca cggacgcgga aatccttac gagctgctga cccagcactg gcacctgaaa 420
acacccaacc tggtcatttc tgtgaccggg ggcgccaaga acttcgcctt gaagccgcgc 480
atgcgcaaga tcttcagccg gctcatctac atcgcgagt ccaaagggtgc ttggattctc 540
acgggaggca cccattatgg cctgatgaag tacatgggg aggtggtgag agataacacc 600
atcagcagga gttcagagga gaatatttg gccattggca tagcagctt gggcatggc 660
tccaaccggg acaccctcat caggaattgc gatgctgagg gctatTTTT agcccagtac 720
cttatggatg acttcacaag agatccactg tatatcctgg acaacaacca cacacattt 780
ctgctcggtt acaatggctg tcatggacat cccactgtcg aagcaaagct ccggaatcag 840
ctagagaagt atatctctga gcgcactatt caagattcca actatggtg caagatcccc 900
attgtgttt ttgccaagg aggtggaaaa gagacttga aagccatcaa tacctccatc 960
aaaaataaaa ttccctgtgt ggtggggaa ggctcgcc agatcgctga tgtgatcgct 1020
agcctggatg aggtggagga tgccctgaca tcttctgccc tcaaggagaa gctggcg 1080
tttttacccc gcacgggtgc ccggctgcct gaggaggaga ctgagagttt gatcaaattt 1140
ctcaaagaaa ttctcgaatg ttctcaccta ttaacagtta taaaatggaa agaagctggg 1200
gatgaaattt tgagaatgc catctcctac gctctataca aagccttcag caccagttag 1260
caagacaagg ataactggaa tggcagctg aagcttctgc tggagtggaa ccagctggac 1320
ttagccaatg atgagattt caccaatgac cggcgatggg agtctgctga cttcaagaa 1380
gtcatgtttt cggctctcat aaaggacaga cccaaagtgg tccgcctt tctggagaat 1440
ggcttgaacc tacggaaatgtt tctcacccat gatgtcctca ctgaacttctt ctccaaccac 1500
ttcagcacgc ttgtgttaccg gaatctgcag atcgccaaAGG attcctataa tggatgcctc 1560

ctcacgttg tctgaaact gggtgcgaac ttccgaagag gcttccggaa ggaagacaga	1620
aatggccggg acgagatgga catagaactc cacgacgtgt ctcctattac tcggcacccc	1680
ctgcaagctc tcttcatctg ggccatttt cagaataaga aggaactctc caaagtctt	1740
tgggagcaga ccagggctg cactctggca gccctggag ccagcaagct tctgaagact	1800
ctggccaaag tgaagaacga catcaatgct gctggggagt ccgaggagct ggtaatgag	1860
tacgagaccc gggctgtga gctgttact gagtgttaca gcagcgatga agacttggca	1920
gaacagctgc tggcttattc ctgtgaagct tgggtggaa gcaactgtct ggagctggcg	1980
gtggaggcca cagaccagca tttcatcgcc cagcctgggg tccagaattt tcttctaag	2040
caatggatg gagagatttcc cgagacacc aagaactgga agattatcct gtgtctgtt	2100
attataccct tggggctg tggctttgtt tcatttagga agaaacctgt cgacaagcac	2160
aagaagctgc ttttgtacta tgtggcggtt ttcacccccc cttcgttgt ctctccctgg	2220
aatgtggtct tctacatcgcc ctccctcctg ctgtttgcct acgtgctgct catggatttc	2280
cattcggtgc cacacccccc cgagctggc ctgtactcgcc tggctttgtt cctcttctgt	2340
gatgaagtga gacagtggta cgtaaatggg gtgaattatt ttactgaccc gtggatgtg	2400
atggacacgc tggggctttt ttacttcata gcaggaattt tatttcggct ccactcttct	2460
aataaaagct ctttgttattc tggacgagtc atttctgtc tggactacat tattttcaact	2520
ctaagattga tccacattt tactgtaagc agaaacttag gaccaagat tataatgctg	2580
cagaggatgc tgatcgatgt gttcttcctc ctgtttccctt ttgcgggtgt gatggggcc	2640
tttggcgtgg ccaggcaagg gatccttagg cagaatgagc agcgctggag gtggatattc	2700
cgttcggtca tctacgagcc ctacctggcc atttcggcc aggtgcccag tgacgtggat	2760
ggtaccacgt atgactttgc ccactgacc ttcactggga atgagtccaa gccactgtgt	2820
gtggagctgg atgagcacaa cctgccccgg ttccccggat ggatcaccat cccccctgggt	2880
tgcatctaca tggatccac caacatcctg ctggtaacc tgctggcgc catgtttggc	2940
tacacggtgg gcaccgtcca ggagaacaat gaccaggctt ggaagttcca gaggtacttc	3000
ctggcgtcagg agtactgcag ccgcctcaat atcccttcc ctttcattcgt ctgcgttac	3060
ttctacatgg tggtaagaa gtgcgttcaag tggctgtca aggaaaaaaa catggagtct	3120
tctgtctgt gttcaaaaaa tgaagacaat gagactctgg catggggaggg tgtcatgaag	3180
aaaaactacc ttgtcaagat caacacaaaa gccaacgaca cctcagagga aatgaggcat	3240
cgattnagac aactggatac aaagcttaat gatctcaagg gtcttctgaa agagattgct	3300
aataaaatca aatga	3315