EE3235 Analog Integrated Circuit Analysis and Design I

Homework 3 Cascade Amplifier

Due date: 2023.11.15 (Wed.) 13:20 (upload to eeclass system)

Suppose V_{DD}=1.8V, temperature=25°C, TT corner in this homework.

Please note that:

- 1. No delay allowed.
- 2. Please hand in your report using eeclass system.
- 3. Please generate your report with **pdf** format, name your report as HWX_studentID_name.pdf.
- 4. Please hand in the spice code file (.sp) for each work. Do not include output file.
- 5. Please print waveform with white background, and make sure the X, and Y labels are clear.
- 6. Please do not zip your report.

Part I – Cascade Amplifier

Fig. 1 (a) Common source amplifier. (b) Common gate amplifier (c) Cascade amplifier

All MOS should be operated in saturation region.

- (a). Design a common source amplifier with gain $A_1 > 100$ (v/v) and output DC voltage = 0.5 V (only ± 10 mV V_{out} error is permitted) as shown in Fig. 1(a). Describe how you design Vin, Vb1 and the size of MOS in detail.
- (b). Please use .tf and .op command to print out the gain and small signal parameter. Please hand-calculate the gain value using SPICE parameters and compare it with the simulation result.

- (c). Design a common gate amplifier with gain $A_2 > 15$ (v/v) and input DC voltage = 0.5 V (static current = $10\mu A$, 5% error is permitted) as shown in Fig. 1(b).
- (d). Please use .tf and .op command to print out the gain and small signal parameter. Please hand-calculate the gain value using SPICE parameters and compare it with the simulation result.
- (e). Connect two stage and add additional 10µA current source as shown in Fig. 1(c).
 - i. Whether the DC bias (Vx) stay the same? Print out the operating point from .lis file.
 - ii. Please use .tf command to print out the gain. The over all gain equals to $A_1 \times A_2$ or not? If not, why not?
- (f). Please use .pz command to plot the frequency response of the cascade amplifier. Based on the simulation result of .lis file (or .pz0), mark the **poles**, **zeros**, **unit-gain bandwidth** and **-3dB bandwidth** on the curve.
- (g). Compare the **dominate pole** with hand-calculation.
- (h). Finish the performance table.

Table I Perforamence Table

Table 1 Terroramance Table				
Work Item	Unit	Specification	Simulation	Calculation
Vdd	V	1.8		
	Common Source Amplifier			
Vin	V	-		
Vb1	V	-		
Vo	V	0.5		
$Gain(A_1)$	V/V	> 100		
	Common Gate Amplifier			
Vin	V	0.5		
Vo	V	-		
I	μΑ	10		
$Gain(A_2)$	V/V	> 15		
	Cascade Amplifier			
Vin	V	-		
Vx	V	0.5		
Vo	V	-		
$Gain (A_1 \times A_2)$	V/V	> 1		
Dominate Pole	MHz	> 40		
Unit Gain	MHz	> 70		
Bandwidth				

NTHUEE 112 Fall AICD I

(f) 題參考指令

.ac dec 10 1 100G

.pz v(vo) vi \$ find pole and zero

.probe vdb(vo) vp(vo) \$ plot ac gain and phase response

.meas ac dcgain_in_db max Vdb(vo) \$ find max ac gain .meas ac BW when Vdb(vo) = 'dcgain_in_db-3' \$ find bandwidth

.meas ac UGB when Vdb(vo)=0 \$ find UGB

(g) 題參考指令

option captab \$ list node capacitance