Lista 4 - Integração

Semestre 2018/2 - Prof. Ricardo M. S. Rosa

Entregar até o dia 25 de outubro de 2018

1º Questão: Dê um exemplo de uma função de variação limitada $f:[0,1] \to \mathbb{R}$, com f' integrável em [0,1], tal que a função $g:[0,1] \to \mathbb{R}$ definida por

$$g(x) = f(x) - f(0) - \int_0^x f'(s) ds$$

se anula nos pontos $x_n = \sum_{j=1}^n (1/2)^j$, $n \in \mathbb{N}$, sendo positiva nos intervalos (x_n, x_{n+1}) , quando n é impar, e negativa, quando n é par.

2º Questão: Seja f uma função contínua definida em um intervalo [a,b], a < b. Suponha que existam $u, v \in \mathbb{R}$ tais que o número de Dini D^+f satisfaça $u \leq D^+f(x) \leq v$, para todo $x \in [a,b]$. Mostre que

$$uh \le f(x+h) - f(x) \le vh,$$

para todo $a \le x < x + h \le b$.

- **3º** Questão: Nos itens abaixo, $f'_{+} = \max\{0, f'\}$ e $f'_{-} = \max\{0, -f'\}$ são as partes positiva e negativa da derivada f' de uma função f.
 - (1) Dê um exemplo de uma função de variação limitada f e de uma decomposição f=g-h, com g,h não-decrescentes, tais que $g'\neq f'_+$ e $h'\neq f'_-$.
 - (2) Supondo f absolutamente contínua, mostre que existe uma decomposição f=g-h com g,h absolutamente contínuas não-decrescentes e tais que $g'=f'_+, h'=f'_-$, e que essa decomposição é única a menos de uma constante, i.e. se g,h e \tilde{g} , \tilde{h} são duas tais decomposições, então existe $C \in \mathbb{R}$ tal que $g-\tilde{g}=h-\tilde{h}=C$.
- **4ª Questão:** Mostre que se f é absolutamente contínua em um intervalo [a, b], a < b, então a sua variação $V_f = V_f(x) = V(f; a, x)$ também é absolutamente contínua no intervalo [a, b].
- 5^a Questão: Considere a função

$$g(x) = \begin{cases} x^{\alpha} \operatorname{sen}(x^{-\beta}), & x \neq 0, \\ 0, & x = 0, \end{cases}$$

onde $\alpha, \beta > 0$.

- (1) Observe que g é contínua e que g' existe e é contínua em $x \neq 0$. Mostre que g é integrável em $|x| \leq 1$ se, e somente se, $\alpha > \beta$.
- (2) Mostre que q é de variação limitada se, e somente se, $\alpha > \beta$.
- (3) Mostre que g é absolutamente contínua se, e somente se, $\alpha > \beta$.

(4) Se $\{q_n\}_{n\in\mathbb{N}}$ denote o conjunto dos racionais em [-1,1] e $\gamma_n\geq 0,\ n\in\mathbb{N},$ são tais que $\sum_n\gamma_n<\infty,$ mostre que a função

$$f(x) = \sum_{n} \gamma_n g(x - q_n), \quad x \in \mathbb{R}$$

é absolutamente contínua no intervalo [-1,1].

6º Questão: Sejam $f,g:[a,b]\to\mathbb{R}$ duas funções absolutamente contínuas no intervalo $[a,b],\ a< b.$ Mostre que o produto fg também é absolutamente contínuo e que vale a fórmula de integração por partes

$$f(b)g(b) - f(a)g(a) = \int_a^b f'(x)g(x) dx + \int_a^b f(x)g'(x) dx.$$