Localization (15.4)

Two made examples: (Mult. set D)

(1) For f=k[V] let $D=Ef^{-n}: n\in\mathbb{N}$. Then $k[V]_f:=D^{-1}k[V]$ is the rang of regular functions

on $D(f)=V\setminus Z(f)$.

(2) For pck(V) prime ideal let D=K(V)(p). Then

k[V]_(p):= D'K(V) is the localization at (p).

This wing has a unique maximal ideal

(p)k(V)_(p) and k(V)_{p)} contains into about the

local structure around the subset corresp. to (p).

For ex. k(x) = Frac(k(x)) = k(x)_(a) and k(x)_(a) = k(x).

Remark: If $p \subseteq A$ is a proble odeal ne always have a map $A \longrightarrow Ap$ $a \longmapsto \frac{a}{1}$

but this nap need not be tryjective:

For ex. take A = k(x,y)/(xy). New $A \longrightarrow A_{(x)}$ sends X to $\frac{x}{i} = \frac{xy}{y} = 0$.

21.
$$4: R \longrightarrow S$$
 ring home. and D' multiplicable set. Define $D = (P'(D'))$ and show that $D'R \longrightarrow (D')'S$ $\frac{r}{d}$ $\frac{e(r)}{e(d)}$

is a nell-det. rong homo.

Solution: we have
$$e(d) \in D'$$
 $\forall d \in D$. \vee

we have $a + r' = rd' + r'd$ $e(r) \cdot e(d)$

$$e(d) \cdot e(d')$$

$$= e(r) \cdot e(r')$$

$$= e(d) \cdot e(d')$$

22. Let pag be prine ideals of R. Prove that Rp is isomorphic to the localization of Rg at pRg.

and $Q^{-1}(pR_p) = pR_{qq}$ and pR_p is the unique maximal ideal in R_p . From the previous exercise we have a ring map $Y: (R_q)_{pR_q} \longrightarrow (R_p)_{pR_p}$.

But Fe Rp is a unit iff F&pRp so i:(Rp)pRp = Rp. ıf

$$\vec{c}$$
 or $\left(\frac{r/d}{r'/d'}\right) = \vec{i}\left(\frac{r/d}{r'/d'}\right) = \left(\frac{r'}{d'}\right)^{-1}\frac{r}{d} = 0$

then $\frac{r}{d} = 0$ In R_p so $\exists e \in R \setminus p$: e = e = 0. But then $\frac{e}{1} \in R_q \setminus pR_q$ and $\frac{e \cdot r}{d} = 0$ so $\frac{r \cdot l \cdot d}{r \cdot l \cdot d} = 0$

and bot is lyecture.

To ston that i'm is sunjective, take any $\frac{r}{d} \in \mathbb{R}_p$, then $\frac{r/l}{d/l}$ is an elem. of $(\mathbb{R}_q)_{p\mathbb{R}_q}$ with image $\frac{r}{d}$. Hence i'm, i's an isomorphism.

If m is an R-mod. Then

Supp (M) = E PESpeck: Mp # 03 (ble support

of M).

the what is the support of the ruly k(x,y)/I would as a module over k(x,y)?

<u>Solutoron</u>: Let p∈kligt be a prone Ideal.

(k[xy]/I)p + 0
if I&p Dien Glere

Is an SET \p and bence $\frac{1}{1} = \frac{9}{5} = \frac{0}{5} = 0.$

If I=p then (k(x,y)/I)p = k(x,y)p/Ip and
Ip has no units.