WHAT IS CLAIMED IS:

1. A compound of formula I:

$$R_4$$
 R_5
 R_1
 R_3
 R_7
 R_{6a}
 R_{6c}
 R_{6c}
 R_{6c}

5

wherein

X and Y are each CH, or one is CH and the other is N;

 R_1 and R_2 are independently selected from

(1) hydrogen and

10

20

(2) C₁₋₄ alkyl;

R₃ is selected from

- (1) hydrogen, and
- (2) C₁₋₄ alkyl optionally substituted with 1 to 4 groups selected

from halogen, CO₂Ra, ORa, CORa and cyano;

- 15 R4 is selected from
 - (1) hydrogen,
 - (2) nitro,
 - (3) halogen,
 - (4) $(CH_2)_nORa$,
 - (5) $(CH_2)_nCO_2Ra$,
 - (6) $(CH_2)_n CN$,
 - (7) $(CH_2)_nNR^bR^c$,
 - (8) $(CH_2)_nNHC(O)CH_2CN$,
 - (9) CONRbRc, and

25 (10) C_{1-4} alkyl;

R5 is selected from

	(1)	C ₁₋₆ alkyl,
	(2)	methyl substituted with C3-6cycloalkyl, CO2Ra, SO2Ra,
	CONRbRc, ORa, NR	RbRc, NO2, N3 or aryl,
	(3)	C ₃₋₆ cycloalkyl,
5	(4)	C ₂₋₆ alkenyl,
	(5)	CONR ^b R ^c ,
	(6)	ORa', wherein Ra' is a non-hydrogen group selected from Ra,
	(7)	CORa, and
	(8)	NRbRc;
10	with the proviso that	when R5 is n-propyl, n-butyl or cyclopropyl, R4 is 4-methyl, and
	R6b and R6c are each	h H, then R _{6a} is not 2-(4,4-dimethyl-4,5-dihydro-1,3-oxazole), 2-
	CN or 2-CO ₂ Me;	
	R _{6a} is selected from	
	(1)	C ₁₋₈ alkyl, optionally substituted with 1 to 5 groups
15	independently selected	ed from halogen, nitro, cyano, CORa, SO2Rd, CO2Ra, NRbRc,
	NRbC(O)Ra, NHSO	$_{2}$ R d , OR a , OC(O)R a , CONR b R c ,
	(2)	C ₃₋₈ cycloalkyl,
	(3)	C ₂₋₈ alkenyl optionally substituted with CO ₂ Ra;
	(4)	halogen,
20	(5)	OCF ₃ ,
	(6)	cyano,
	(7)	nitro,
	(8)	NRbRc,
	(9)	NRbC(O)Ra,
25	(10)	NRbCO ₂ Ra', wherein Ra' is a non-hydrogen group selected
		from Ra,
	(11)	CO ₂ R ^a ,
	(12)	CORa,
	(13)	C(O)NRbRc,
30	(14)	C(O)NHORa,
	(15)	ORa,
	(16)	OC(O)Ra,
	(17)	S(O) _n Ra', wherein Ra' is a non-hydrogen group selected from
		Ra

	· · ·	
	(19)	NHSO2Rd,
	(20)	C(=NORa)NRbRc,
	(21)	C(=NORa)Ra, and
5	(22)	substituted or unsubstituted heterocycle where the heterocycle
	is selected from oxad	liazole, tetrazole, triazole, pyrazole, oxazole, isoxazole, thiazole,
	4,5-dihydro-oxazole,	4,5-dihydro-1,2,4-oxadiazol-5-one, and wherein said substituent
	is 1 to 3 groups indep	pendently selected from C ₁₋₄ alkyl optionally substituted with 1
	to 5 halogen atoms, C	ORa, or OC(O)Ra;
10	R _{6b} and R _{6c} are inde	ependently selected from
	(1)	hydrogen, and
	(2)	a group from R _{6a} ; with the proviso that not more than one of
	R _{6a} , R _{6b} , and R _{6c} is	a heterocycle;
	R7 is selected from	
15	(1)	hydrogen,
	(2)	cyano,
	(3)	nitro,
	(4)	halogen,
	(5)	ORa,
20	(6)	CO_2R^a ,
	(7)	CONR ^b R ^c , and
	(8)	C ₁₋₄ alkyl;
	Ra is selected from	
	(1)	hydrogen,
25	(2)	C ₁₋₄ alkyl,
	(3)	C ₃₋₆ cycloalkyl,
	(4)	aryl, and
	(5)	aryl-C ₁₋₄ alkyl;
		ndently selected from
30	(1)	hydrogen,
	(2)	C ₁₋₄ alkyl optionally substituted with OR ^a ,
	(3)	C ₃₋₆ cycloalkyl,
	(4)	aryl, and
	(5)	aryl-C ₁₋₄ alkyl; or

(18) SO₂NHRc,

5

10

15

20

25

30

Rb and Rc together with the nitrogen atom to which they are attached form a 5- or 6membered ring optionally containing a heteroatom selected from NRa, O and S; Rd is selected from (1) C₁₋₄ alkyl, optionally substituted with 1 to 3 halogen atoms, (2) aryl, (3) aryl-C₁₋₄ alkyl, and NRbRc; (4) n is 0, 1 or 2 a pharmaceutically acceptable salt thereof. 2. A compound of Claim 1 wherein R3 is hydrogen. 3. A compound of Claim 1 wherein R₃ is C₁₋₄ alkyl. 4. A compound of Claim 1 wherein R4 is H or a 4-substituent. 5. A compound of Claim 1 wherein R4 is H or a 4-substituent selected from C₁₋₄ alkyl and halogen. 6. A compound of Claim 1 wherein R4 is 4-chloro or 4-methyl. 7. A compound of Claim 1 wherein R5 is selected from ethyl, npropyl, isopropyl, n-butyl, isobutyl, cyclopropyl and cyclopentylmethyl. 8. A compound of Claim 1 wherein R5 is selected from C3-6alkenyl and methyl substituted with CO2Ra, SO2Ra, CONRbRc, ORa, NRbRc, N3. 9. A compound of Claim 1 wherein X and Y are both CH. 10. A compound of Claim 1 wherein one of X and Y is CH and the other is N.

5

10

25

- 11. A compound of Claim 1 wherein R_{6a} is a 2- (or ortho-) substituent selected from CO_2R^a , $CONR^bR^c$, $CONHOR^a$, C_{1-8} alkyl substituted with 1 to 5 halogen atoms, cyano, SO_2NHR^c , and 1,2,4-oxadiazolyl optionally substituted with C1-4alkyl optionally substituted with 1-5 halogen atoms, OR^a or $OC(O)R^a$.
- 12. A compound of Claim 11 wherein R_{6a} is selected from 1,2,4-oxadiazolyl optionally substituted with C1-4alkyl optionally substituted with 1-5 halogen atoms, OR^a or $OC(O)R^a$.
- 13. A compound of Claim 1 wherein R_{6b} is selected from hydrogen, C₁₋₈ alkyl optionally substituted with OH or 1 to 5 halogen atoms, NR^bR^c, OR^a, and nitro, and R_{6c} is hydrogen.
- 15 14. A compound of Claim 13 wherein R6b is hydrogen, amino, nitro, methyl carboxylate, chloro, or methyl.
 - 15. A compound of Claim 1 represented by formula Ia:

- Ia wherein R3, R4, R5, R6a, R6b, R7, X and Y are as defined in Claim 1.
 - 16. A compound of Claim 15 wherein at least one of R3, R4 and R_{6b} is non-hydrogen.
 - 17. A compound of Claim 15 wherein at least two of R3, R4 and R6b are non-hydrogen.

18.	A compound of Claim 15 wherein R6a is selected from
CO ₂ Ra, CONRbR	c, CONHORa, C ₁₋₈ alkyl substituted with 1 to 5 halogen atoms,
cyano, SO2NHRc,	1,2,4-oxadiazolyl optionally substituted with C_{1-4} alkyl optionally
substituted with 1-	5 halogen atoms, OR ^a or OC(O)R ^a .

19. A compound of Claim 18 wherein R_{6a} is selected from 1,2,4-oxadiazolyl optionally substituted with C_{1-4} alkyl optionally substituted with 1-5 halogen atoms, OR^a or $OC(O)R^a$.

10

5

- 20. A compound of Claim 19 wherein R6b is hydrogen.
- 21. A compound of Claim 15 wherein R5 is n-propyl.
- 15 22. A compound of Claim 15 wherein R5 is selected from methyl substituted with CO₂Ra, SO₂Ra, CONRbRc.
 - 23. A compound of Claim 15 wherein

R3 is $H \text{ or } C_{1-4} \text{ alkyl};$

20 R4 is H, C₁₋₄ alkyl or halogen;

R5 is R5 is selected from ethyl, n-propyl, isopropyl, n-butyl, isobutyl, cyclopropyl, cyclopentylmethyl, C3₋₆alkenyl and methyl substituted with CO₂Ra, SO₂Ra, CONRbRc, ORa, NRbRc, N3;

R6a CO₂R^a, CONR^bR^c, CONHOR^a, C₁₋₈ alkyl substituted with 1 to 5 halogen atoms, cyano, SO₂NHR^c, 1,2,4-oxadiazolyl optionally substituted with C₁₋₄alkyl optionally substituted with 1-5 halogen atoms, OR^a or OC(O)R^a; R6b hydrogen; and

R_{6c} is hydrogen; with the proviso that at least one of R₃, R₄ and R_{6b} is nonhydrogen.

30 24. A compound of Claim 1 represented by the formula Ib:

$$R_4$$
 N
 R_1
 R_3
 R_7
 R_{6a}
 R_{6a}
 R_{6c}
 R_{6c}

wherein all the variables are as defined in Claim 1, except R3' is C₁₋₄ alkyl optionally substituted with 1 to 4 groups selected from halogen, CO₂Ra, ORa, CORa and cyano.

25. A compound selected from:

10

R _{6a}	R5
3'-СНО	nBu
4'-CH₂OH	nBu
3'-CN	nBu
5'-CN	nBu
4'-CHO	nBu

R _{6a}	R ₅
3'-COMe	nBu
4-COMe	nBu
3'-CH₂OH	nBu
3'-CH(OH)CH ₃	nBu
4'-CH(OH)CH ₃	nBu
4'-CO ₂ Me	nPr
3'-CO ₂ Me	nPr
3'-NH ₂	nBu
4'-OMe	nPr
4'-Cl	nPr
3'-OCH ₃	nBu
4'-CF ₃	nBu
4'-OCF ₃	nBu
4'-OEt	nBu
4'-NO ₂	nBu
4'-SMe	nBu
3'-NO ₂	nBu

R _{6a}	R _{6b}	R ₃	R4	R ₅
CO₂Me	5'-Me	Me(R)	Me	n-Pr
CO₂Me	6'-Me	Me(R)	Me	nPr

R _{6a}	R _{6b}	R ₃	R ₄	R ₅
3-Me-1,2,4-oxadiazol-5-yl	Н	Н	Н	nPr
CONHOMe	Н	H	Н	nPr
5-Me-1,2,4-oxadiazol-3-yl	Н	Н	Н	nPr
5-(CH ₂ OH)-1,2,4-oxadiazol-3-yl	Н	Н	Н	nPr
3-(acetoxymethyl)-1,2,4-oxadiazolyl	Н	Н	Н	nPr
CO ₂ Me	Н	Н	Н	nPr
CO ₂ Et	Н	Н	Н	nPr
SO ₂ NHCH ₃	Н	H	Н	nPr
CF ₃	Н	Me	Н	nPr
CO ₂ Me	6'-NH ₂	н	Н	nPr
1 and 2-Me-tetrazol-5-yl (mixture)	Н	Н	Н	nPr
CO ₂ Me	Н	Н	Н	Et
5-(CH ₂ F)-1,2,4-oxadiazol-3-yl	Н	н	Н	nPr
1,3,4-oxadiazol-2-yl	Н	Н	Н	nPr
CO ₂ Me	Н	H	Н	iBu
4,5-dihydro-2-oxazolyl	Н	H	Н	nPr
NHCO ₂ Me	Н	Н	Н	nPr
CH₂CN	Н	н	Н	nPr
CH ₂ NHSO ₂ Me	Н	Н	Н	nPr
CO ₂ Me	Н	н	H	cPr
CO₂Me	4'-CO ₂ Me	Н	H	nPr
CO₂Me	Н	Н	Н	n-Bu
2-oxazolyl	Н	н	Н	nPr
CF ₃	Н	H	Н	nPr
CO₂Me	Н	н	Н	i-Pr
1N-tetrazole	Н	н	Н	nPr
NO ₂	Н	Н	H	nPr
СНО	Н	Н	Н	nPr
5-Me-1,3,4-oxadiazol-2-yl	Н	H	Н	nPr
3-(methyl (2E)-3-prop-2-enoate)	Н	Н	Н	nBu
CO₂Me	Н	Н	Н	CH ₂ -cPen

R _{6a}	R _{6b}	R ₃	R ₄	R ₅
CN	Н	Н	Н	nPr
CONHCH ₃	Н	H	Н	nBu
CO ₂ -cPen	Н	Н	Н	nPr
CH ₂ NHSO ₂ Et	Н	Н	Н	nPr
SO ₂ NHtBu	Н	Me	Н	nPr
CH ₂ CO ₂ Me	Н	Н	Н	nPr
СНО	Н	Н	Н	n-Bu
NHAc	Н	Н	Н	nPr
Cl	H	H	Н	nPr
CO ₂ Me	6'-NO ₂	Н	Н	nPr
5-Me-4,5-dihydro-2-oxazolyl	Н	H	Н	nPr
COMe	H	H	Н	nPr
Me 3-propanoate	H	H	Н	nBu
CO ₂ Me	4'-Cl	H	Н	nPr
SO₂NH-t-Bu	Н	H	Н	nPr
C(=NOH)Me	H	Н	Н	nBu
CONH(CH ₂) ₂ OH	Н	Н	Н	nPr
CH ₂ NHSO ₂ N(Me) ₂	Н	Н	Н	nPr
CH ₃	Н	Н	Н	nPr
COMe	Н	Н	Н	nBu
CONH ₂	Н	н	Н	nBu
СН(ОН)СН₃	Н	H	Н	nBu
CH₂OH	Н	н	Н	nBu
OEt	Н	н	Н	nBu
NH ₂	Н	Н	Н	nPr
CH ₂ NH ₂	Н	H	Н	nPr
OMe	Н	Н	Н	nBu
SMe	Н	Н	Н	nPr
C(=NOH)NH ₂	Н	H	Н	nPr
lH-tetrazol-5-yl	Н	H	Н	nPr
CH₂NHAc	Н	H	Н	nPr

R _{6a}	R _{6b}	R ₃	R4	R ₅
CO₂Me	4'-NH ₂	Н	Н	nPr
ОМе	5'-OMe	Н	Н	nBu
SO ₂ Me	Н	Н	Н	nPr
4-Me-4,5-dihydro-2-oxazolyl	Н	н	Н	nPr
Cf(=NOMe)Me	Н	Н	Н	пВи
CO₂Me	4'-OMe	Н	Н	nPr
4,4-dimethyl-4,5-dihydro-2-oxazolyl)	Н	Н	Н	nPr
CH₂NHC(O)-cPr	Н	Н	Н	nPr
4-Me-2-thiazolyl	Н	Н	Н	nPr
4-Me-2-thiazolyl	Н	H	Н	nPr
CONHCH(OH)CH ₂ OH	Н	H	Н	nPr
CONHCH ₂ CH(OH)CH ₃	Н	Н	Н	nPr
CO₂Me	4'-CO ₂ H	H	Н	nPr
CO ₂ Me	4'-NO ₂	H	Н	nPr
4,5-dimethyl-2-thiazolyl	Н	Н	Н	nPr
4,5-dimethyl-2-thiazolyl	Н	Н	Н	nPr
2-OH-1,1-dimethylethanecarboxamide	Н	Н	Н	nPr

$$R_4$$
 R_5 R_{6a} R_{6b}

	}		1	
R _{6a}	R _{6b}	R ₃	R4	R ₅
CO ₂ Me	3'-F	Me (R)	Cl	CH ₂ CO ₂ Me
CO₂Me	5'-Me	Me (R)	Me	CH ₂ SO ₂ Me
SO ₂ NHMe	Н	Me (R)	Me	CH₂CONH₂
CO ₂ Me	Н	Н	Н	CH ₂ SO ₂ Me

26. A pharmaceutical composition comprising a compound according to Claim 1 or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier.

5

27. A method of treatment or prevention of pain and inflammation comprising a step of administering, to a subject in need of such treatment or prevention, an effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt thereof.

10

15

28. A method of treatment of osteoarthritis, repetitive motion pain, dental pain, cancer pain, myofascial pain, muscular injury pain, fibromyalgia pain, perioperative pain comprising a step of administering, to a subject in need of such treatment, an effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt thereof.

20

29. A method of treatment or prevention of inflammatory pain caused by chronic obstructive pulmonary disease, asthma, inflammatory bowel disease, rhinitis, pancreatitis, cystitis (interstitial cystitis), uveitis, inflammatory skin disorders, rheumatoid arthritis, edema resulting from trauma associated with burns, sprains or fracture, postsurgical intervention, osteoarthritis, rheumatic disease, teno-synovitis, or gout comprising a step of administering, to a subject in need of such treatment or

prevention, an effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt thereof.

- 30. A method of treatment or prevention of pain associated with
 angina, menstruation or cancer comprising a step of administering, to a subject in need of such treatment or prevention, an effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt thereof.
- 31. A method of treatment of diabetic vasculopathy, post capillary resistance, diabetic symptoms associated with insulitis, psoriasis, eczema, spasms of the gastrointestinal tract or uterus, Crohn's disease, ulcerative colitis, or pancreatitis comprising a step of administering, to a subject in need of such treatment, an effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt thereof.

15

20

32. A method of treatment or prevention of pain caused by pneumoconiosis, including aluminosis, anthracosis, asbestosis, chalicosis, ptilosis, siderosis, silicosis, tabacosis, byssinosis, adult respiratory distress syndrome, bronchitis, allergic rhinitis, vasomotor rhinitis, liver disease, multiple sclerosis, atherosclerosis, Alzheimer's disease, septic shock, cerebral edema, headache, migraine, closed head trauma, irritable bowel syndrome, or nephritis comprising a step of administering, to a subject in need of such treatment or prevention of pain, an effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt thereof.