

SÍLABO R**ESISTENCIA DE MATERIALES I**

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: V CURSO DE VERANO 2019

I. CÓDIGO DEL CURSO : 09026005050

II. CRÉDITOS : 05

III. REQUISITOS : 09025404040 Estática

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso es parte del área curricular de tecnología, es parte de la formación especializada; tiene carácter teórico-práctico. Su propósito es brindar al estudiante los conceptos básicos de las propiedades de los materiales utilizados en la construcción.

El desarrollo del curso comprende: I. Esfuerzo y transformación de esfuerzos y elementos cargados axialmente. II. Torsión. III. Esfuerzos en vigas. IV. Deflexiones de vigas.

VI. FUENTE DE CONSULTA

Bibliográficas

- . Beer, Ferdinand y Johnston, Russell (2012). *Mecánica de Materiales*. México: McGraw Hill Interamericana.
- . Hibbeler, R.C. (2014). Mechanics of Materials. EE.UU: Pearson Prentice-Hall.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: ESFUERZO. TRANSFORMACIÓN DE ESFUERZOS. ELEMENTOS CARGADOS AXIALMENTE.

OBJETIVOS DE APRENDIZAJE

- Aplicar los principios básicos del análisis de esfuerzos, deformaciones y deformaciones unitarias.
- Emplear el método de secciones para obtener las fuerzas internas.
- Aplicar los principios básicos del análisis de esfuerzos, deformaciones y deformaciones unitarias.
- Emplear el método de secciones para obtener las fuerzas internas.

PRIMERA SEMANA

Primera sesión:

Fuerzas exteriores e interiores. Relaciones del esfuerzo con las fuerzas internas. Tensor esfuerzo.

Segunda sesión:

Práctica dirigida

SEGUNDA SEMANA

Primera sesión:

Esfuerzos en un punto. Círculo de esfuerzos de Mohr. Estado de esfuerzos espacial.

Segunda sesión:

Práctica dirigida.

TERCERA SEMANA

Primera sesión:

Esfuerzo cortante máximo. Estado de esfuerzo espacial. Deslizamiento: esfuerzo cortante.

Segunda sesión:

Práctica calificada 1

CUARTA SEMANA

Primera sesión:

Diagrama esfuerzo - deformación. Ley de Hooke. Razón de Poisson. Ley generalizada de Hooke.

Segunda sesión:

Práctica dirigida

QUINTA SEMANA

Primera sesión:

Deformaciones en el estado de esfuerzos plano. Deformaciones en el estado de esfuerzos espacial.

Segunda sesión:

Práctica dirigida

SEXTA SEMANA

Primera sesión:

Deformación volumétrica. Deformación volumétrica para esfuerzos desiguales. Constantes de Lamé.

Segunda sesión:

Práctica calificada 2.

SÉPTIMA SEMANA

Primera sesión:

Deformación elástica de un elemento cargado axialmente.

Segunda sesión:

Práctica dirigida

OCTAVA SEMANA

Examen Parcial

NOVENA SEMANA

Primera sesión:

Esfuerzos, esféricos. Esfuerzos en elementos de doble curvatura y en recipientes de pared delgada.

Segunda sesión:

Práctica dirigida

UNIDAD II: TORSIÓN

OBJETIVOS DE APRENDIZAJE

- Representar analítica y gráficamente la torsión sobre ejes circulares.
- Aplicarlos principios básicos de la teoría de la torsión para resolver problemas.

DÉCIMA SEMANA

Primera sesión:

Deformación por torsión de un eje circular. Acoples de ejes. Miembros estáticamente indeterminados sujetos a torsión.

Segunda sesión:

Práctica dirigida

UNIDAD III: ESFUERZOS EN VIGAS

OBJETIVOS DE APREDIZAJE

- Representar analítica y gráficamente los esfuerzos en una viga generados por la flexión.
- Aplicar los principios básicos del equilibrio para resolver problemas.
- Determinarlos esfuerzos normal t cortante

UNDÉCIMA SEMANA

Primera sesión:

Fuerza cortante y momento de flexión por funciones de singularidad. Deformación por flexión.

Segunda sesión:

Práctica calificada 3.

DUODÉCIMA SEMANA

Primera sesión:

Esfuerzo cortante. La fórmula del esfuerzo cortante. Flujo cortante.

Segunda sesión: Práctica dirigida

DECIMOTERCERA SEMANA

Primera sesión:

Esfuerzos máximos en vigas por efecto de cargas combinadas. Diseño de ejes de transmisión.

Segunda sesión:

Práctica dirigida

UNIDAD IV: DEFLEXIONES EN VIGAS

OBJETIVOS DE APRENDIZAJE

- Representar analítica y gráficamente las deflexiones en una viga generados por cargas externas.
- Aplicar los principios básicos del equilibrio para resolver problemas.
- Expresar resultados analítica y gráficamente.
- Participaren la resolución analítica y gráfica de los problemas.

DECIMOCUARTA SEMANA

Primera sesión:

Ecuación diferencial gobernante. Deducción alternativa de la ecuación gobernante. Soluciones por integración directa. Funciones de singularidad para vigas.

Segunda sesión:

Práctica calificada 4.

DECIMOQUINTA SEMANA

Primera sesión:

Deflexiones de vigas por el principio de superposición.

Segunda sesión:

Práctica dirigida

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemáticas y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

Método expositivo-interactivo. Disertación docente y exposición del estudiante.

Método de discusión guiada. Conducción de grupo para abordar situaciones y arribar a conclusiones y recomendaciones.

Método de demostración-Ejecución. El docente ejecuta para demostrar cómo y con qué se hace, y el estudiante ejecuta para demostrar qué aprendió.

X. EQUIPOS Y MATERIALES

Equipos: Una computadora personal para el profesor una para cada estudiante del curso, ecran, proyector de multimedia.

Materiales: Manual universitario. Programa CAD (AutoCAD 2009). Aplicaciones multimedia.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente

PF= 0.30*PE+0.30*EP+0.40*EF PE= (P1+P2+P3+P4)/4

PF: Promedio Final

PE: Promedio de Evaluaciones

EP: Examen Parcial EF: Examen final

P1,...P4: Prácticas calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes) para la carrera Profesional de Ingeniería Civil, se establece en la siguiente tabla:

Siendo K=clave R=relacionado vacío= no aplica Habilidad para aplicar conocimientos de matemática, ciencias, computación e (a) ingeniería Diseñar y conducir experimentos, así como analizar e interpretar los datos R (b) Habilidad para analizar problemas y definir los requerimientos apropiados para la (c) solución Habilidad para diseñar, implementar y evaluar sistemas de información, (d) componentes o procesos que satisfagan las necesidades requeridas Habilidad para trabajar adecuadamente en un equipo multidisciplinario (e) Comprensión de lo que es la responsabilidad profesional y temas éticos, legales, (f) seguridad y sociales Habilidad para comunicarse con efectividad (g) Una educación amplia necesaria para entender el impacto que tienen las (h) soluciones de sistemas de información dentro de un contexto social y global Reconocer la necesidad y tener la habilidad de seguir aprendiendo y R (i) capacitándose a lo largo de su vida (j) Conocimiento de los principales temas contemporáneos Habilidad para usar técnicas y herramientas modernas necesarias en el (k) desarrollo de sistemas de información Comprensión de los procesos que soportan la entrega y la administración de los (I) sistemas de información dentro de un entorno específico

XIII. HORARIO, SESIONES, DURACIÓN

a)	Horas de clase:	Teoría	Práctica	Laboratorio
,		4	2	0

- b) Número de sesiones por semana: Dos sesiones.
- c) **Duración**: 6 horas académicas de 45 minutos

XIV. DOCENTE DEL CURSO

Ing. Enoch Aurelio Maguiña Rodríguez

XV. FECHA:

La Molina, enero de 2019.