1. Wprowadzenie – opis wybranego szeregu czasowego

Belgia to państwo federacyjne w zachodniej Europie, w południowych Niderlandach. Graniczy od południa z Francją i z Luksemburgiem, od wschodu z Niemcami i od północy z Holandią. Belgia jest monarchią konstytucyjną. Na czele państwa stoi król, a na czele wielopartyjnego rządu – premier. Uprawnienia do podejmowania decyzji nie są scentralizowane, lecz podzielone między trzy szczeble administracji rządowej: rząd federalny, trzy wspólnoty językowe (flamandzka, francuska oraz niemiecka) i trzy regiony (Flandria, region stołeczny Brukseli i Walonia). Belgia od 1 stycznia 1958 roku jest członkiem Unii Europejskiej. Walutą narodową państwa od 1 stycznia 1999 roku jest euro, uprzednio był nią frank belgijski.

Wartość dodana brutto (WDB) mierzy wartość nowo wytworzoną w wyniku działalności produkcyjnej krajowych jednostek instytucjonalnych. Stanowi ona różnicę między produkcją globalną a zużyciem pośrednim i jest wyrażona w cenach bazowych.

Przedmiotem pracy semestralnej jest wartość dodana brutto Belgii w ujęciu kwartalnym, począwszy od pierwszego kwartału 1995 roku do czwartego kwartału 2021 roku. Dane szeregu czasowego wyrażone są w jednej walucie – milionach euro. Poniżej został przedstawiony wykres szeregu czasowego z zaznaczoną linią trendu. Można zauważyć, że cechuje się on tendencją wzrostową z wyjątkiem roku 2020, gdzie ma miejsce zauważalnie duży spadek, który został zapewne spowodowany pandemią wirusa COVID-19. WDB charakteryzuje się niewielkimi sezonowymi wahaniami. Szereg czasowy zmiennej jest niestacjonarny ze względu na niestałość wartości oczekiwanej – trend rosnący.

2. Statystyki opisowe szeregu

Poniżej został przedstawiony wydruk z programu gretl przedstawiający statystyki opisowe szeregu czasowego wartości dodanej brutto Belgii.

Statystyki opisowe, wykorzystane obserwacje 1995:1 - 2021:4 dla zmiennej 'gva' (108 prawidłowych obserwacji)

Średnia	76871,
Mediana	77178,
Minimalna	46420,
Maksymalna	1,2310e+005
Odchylenie standardowe	19544,
Wsp. zmienności	0,25425
Skośność	0,14588
Kurtoza	-1,0289
Percentyl 5%	48242,
Percentyl 95%	1,0899e+005
Zakres Q3-Q1	32734,
Brakujące obs.	0

Średnia wartość WDB w badanym okresie wyniosła 76871 mln euro. Wartość WDB odchyla się od średniej o 19544 mln euro. Wartość środkowa szeregu wyniosła 77178 mln euro. Wartość minimalna wyniosła 46420 mln euro, natomiast wartość maksymalna 123100 mln euro. Współczynnik zmienności jest równy 0,25425 (25,43%), co wskazuje na małą zmienność. Współczynnik skośności przyjął wartość bliską 0 (0,14588), co oznacza, że zmienna ma rozkład o prawostronnej asymetrii. Kurtoza ma rozkład lekko platykurtyczny – wartość = -1,0289, co wskazuje na rozproszenie wyników wokół średniej. Percentyl 5% wskazuje na to, że 5% obserwacji jest mniejszych niż 48242 mln euro, a 95% przyjęło wartość większą. Percentyl 95% wskazuje na to, że 95% obserwacji jest mniejszych niż wartość równa 108990 mln euro, a 5% przyjęło wartość większą.

3. Test ADF

Test ADF weryfikuje obecność pierwiastka jednostkowego. Poniżej zostało przedstawione równanie pomocnicze wykorzystywane w teście ADF.

$$\Delta y_{t} = \beta_{0} + \beta_{1} + \beta_{1}t + \beta_{2}t^{2} + \rho y_{t-1} + \gamma_{1}\Delta y_{t-1} + \gamma_{2}\Delta y_{t-2} + \gamma_{k}\Delta y_{t-k} + e_{t}$$

$$H_{0}: \rho = 0 \quad \rightarrow y_{t} \ jest \ niestacjonarny$$

$$H_{A}: \rho < 0 \quad \rightarrow y_{t} \ jest \ stacjonarny \rightarrow I(1)$$

3.1. Test ADF dla szeregu czasowego zmiennej

```
Rozszerzony test Dickeya-Fullera dla procesu gva
testowano istotność opóźnienia od rzędu 8, dla kryterium AIC
liczebność próby 99
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)

z wyrazem wolnym i trendem liniowym
dla opóźnienia rzędu 8 procesu (1-L)gva
model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e
estymowana wartość (a-1) wynosi: -0,637247
Statystyka testu: tau_ct(1) = -3,32314
asymptotyczna wartość p = 0,06247
Autokorelacja reszt rzędu pierwszego: 0,001
opóźnione różnice: F(8, 88) = 29,289 [0,0000]
```

Autokorelacja reszt pierwszego rzędu

```
H_0: r_1 = 0
```

 H_A : $r_1 \neq 0$

 $r_1 = 0.001$

Wniosek: Autokorelacja reszt rzędu pierwszego wynosi 0,001. W związku z tym, że 0,001 < 0,05, to zgodnie z założeniem brak autokorelacji składnika zakłócającego w modelu pomocniczym testu ADF.

Opóźnione różnice - statystyka F

$$H_0: \gamma_1 = \gamma_2 = \cdots = \gamma_8 = 0$$

 $H_A: \gamma_i \neq 0$

Statystyka F = 29,289 z prawdopodobieństwem równym 0,0000.

Wniosek: Odrzucamy H_0 na rzecz H_A . Argumentacje są statystycznie istotne. Opóźnienia są dobrane prawidłowo.

Test pierwiastka jednostkowego

 $H_0: \rho_1 = 0 \rightarrow niestacjonarność zmiennej$

 H_A : $\rho_1 < 0 \rightarrow stacjonarność zmiennej$

Statystyka $\tau = -3.32314$

Asymptomatyczna wartość p-value = 0,06247

Poziom istotności $\alpha = 0.05$

Wniosek: Ponieważ 0,06247 > 0,05 nie ma podstaw do odrzucenia H_0 . Wartość dodana brutto Belgii jest zmienną niestacjonarną.

3.2. Analiza i interpretacja pierwszego różnicowania zmiennej

Na wykresie widoczna jest sezonowość zmiennej. Wartość oczekiwana jest stała, wariancja jest stabilna, z wyjątkiem roku 2020. W celu sprawdzenia, czy dany szereg jest stacjonarny, zintegrowany rzędu pierwszego ~I(1) wykonano ponownie test ADF dla pierwszej różnicy zmiennej WDB Belgii.

3.3. Test ADF dla pierwszej różnicy zmiennej wartości dodanej brutto

```
Rozszerzony test Dickeya-Fullera dla procesu d_gva
testowano istotność opóźnienia od rzędu 8, dla kryterium AIC
liczebność próby 99
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)

test z wyrazem wolnym (const)
dla opóźnienia rzędu 7 procesu (1-L)d_gva
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
estymowana wartość (a-1) wynosi: -2,93472
Statystyka testu: tau_c(1) = -4,16235
asymptotyczna wartość p = 0,0007609
Autokorelacja reszt rzędu pierwszego: 0,031
opóźnione różnice: F(7, 90) = 24,763 [0,0000]
```

Autokorelacja reszt pierwszego rzędu

$$H_0: r_1 = 0$$

$$H_A$$
: $r_1 \neq 0$

$$r_1 = 0.031$$

Wniosek: Autokorelacja reszt rzędu pierwszego wynosi 0,031. W związku z tym, że 0,031 < 0,05, to zgodnie z założeniem brak autokorelacji składnika zakłócającego w modelu pomocniczym testu ADF.

Opóźnione różnice - statystyka F

$$H_0$$
: $\gamma_1 = \gamma_2 = \cdots = \gamma_8 = 0$

$$H_A: \gamma_i \neq 0$$

Statystyka F = 24,763z prawdopodobieństwem równym 0,0000.

Wniosek: Odrzucamy H_0 na rzecz H_A . Argumentacje są statystycznie istotne. Opóźnienia są dobrane prawidłowo.

Test pierwiastka jednostkowego

 H_0 : $\rho_1 = 0 \rightarrow niestacjonarność zmiennej$

 H_A : $\rho_1 < 0 \rightarrow stacjonarność zmiennej$

Statystyka $\tau = -4,16235$

Asymptomatyczna wartość p-value = 0,0007609

Poziom istotności $\alpha = 0.05$

Wniosek:

Ponieważ 0,0007609 < 0,05 odrzucamy H_0 na rzecz H_A . Pierwszy przyrost wartości dodanej brutto jest szeregiem stacjonarnym, zatem szereg wartości dodanej brutto jest szeregiem zintegrowanym stopnia I (~I(1)), **d=1**.

4. Test HEGY

4.1. Badanie integracji sezonowej – regresja testu HEGY

The HEGY regression is

$$y_{4t} = \mu_t + \pi_1 y_{1,t-1} + \pi_2 y_{2,t-1} + \pi_3 y_{3,t-2} + \pi_4 y_{3,t-1} + (\text{lags of } y_{4t}) + \varepsilon_t$$

Oszacowany model relacji pomocniczej:

Model 1: Estymacja KMNK, wykorzystane obserwacje 1998:1-2021:4 (N = 96) Zmienna zależna (Y): y4

	współczynni	k błąd st	andardowy	t-Studenta	wartość p	
const	1993,02	939,9	75	2,120	0,0370	**
yl 1	0,001727	40 0,0	0280991	0,6148	0,5404	
y2_1	-0,002125	74 0,0	260055	-0,08174	0,9350	
y3 1	-0,324695	0,1	49007	-2,179	0,0322	**
y3 2	-0,123306	0,1	49556	-0,8245	0,4120	
y4_1	0,895456	0,1	91982	4,664	1,17e-05	***
y4 2	0,326284	0,2	20132	1,482	0,1421	
у4 3	-0,411628	0,2	23297	-1,843	0,0688	*
y4_4	-1,19752	0,2	21935	-5,396	6,33e-07	***
y4_5	0,871909	0,2	56102	3,405	0,0010	***
у4 6	0,098687	5 0,3	02842	0,3259	0,7453	
y4_7	-0,319087	0,4	76086	-0,6702	0,5046	
y4_8	-0,073543	6 0,3	56744	-0,2062	0,8372	
redn.aryt	.zm.zależnej	2630,990	Odch.star	nd.zm.zależne	j 2962,20	7
uma kwadi	ratów reszt	2,53e+08	Błąd star	ndardowy resz	t 1745,65	4
sp. deter	rm. R-kwadrat	0,696583	Skorygowa	any R-kwadrat	0,65271	5
(12, 83)		15,87922	Wartość p	dla testu F	8,01e-1	7
ogarytm v	viarygodności -	-845,8627	Kryt. inf	form. Akaike'	a 1717,72	5
ryt. baye	es. Schwarza	1751,062	Kryt. Har	nana-Quinna	1731,20	0
_			_			_

Wyłączając stałą, największa wartość p jest dla zmiennej 8 (y2_1)

Autokorel.reszt - rhol 0,000111 Statystyka Durbina h

0,000111 < 0,05 -> podejrzenie o braku autokorelacji reszt

4.2. Test autokorelacji

Ljung-Box Q' = 1,25053,

Test Breuscha-Godfreya na autokorelację do rzędu 4 Estymacja KMNK, wykorzystane obserwacje 1997:2-2021:4 (N = 99) Zmienna zależna (Y): uhat

	współczynnik	błąd standardowy	t-Studenta	wartość p
const	-288,885	2212,19	-0,1306	0,8964
yl l	0,000689764	0,00316651	0,2178	0,8281
y2 1	0,00456625	0,0274505	0,1663	0,8683
у3_1	-0,00269809	0,153208	-0,01761	0,9860
у3_2	-0,0440928	0,144218	-0,3057	0,7606
y4_1	-0,0492583	0,703688	-0,07000	0,9444
y4_2	0,00228474	0,175732	0,01300	0,9897
y4_3	0,109000	0,481919	0,2262	0,8216
y4_4	0,234851	0,494627	0,4748	0,6361
y4_5	-0,230978	0,620459	-0,3723	0,7106
uhat_1	0,0650772	0,619412	0,1051	0,9166
uhat_2	0,0932580	0,448348	0,2080	0,8357
uhat_3	-0,0851945	0,395973	-0,2152	0,8302
uhat_4	-0,367828	0,358158	-1,027	0,3073
Wsp. det	erm. R-kwadrat =	0,040998		
	testu: LMF = 0,9 a p = P(F(4,85) >	008443, 0,908443) = 0,463		
	testu: TR^2 = 4, ą p = P(Chi-kwadr	058761, at(4) > 4,05876) =	0,398	

Statystyka Ljunga-Boxa = 1,25053 z wartością p-value = 0,87.

z wartością p = P(Chi-kwadrat(4) > 1,25053) = 0,87

Wniosek: Na poziomie istotności $\alpha=0.05$ nie ma podstaw do odrzucenia H_0 . Autokorelacja składnika zakłócającego jest statystycznie nieistotna.

4.3. Wnioskowanie o pierwiastkach sezonowych

Poniżej przedstawiony jest model, z którego zostały usunięte statystycznie nieistotne opóźnienia.

Model 2: Estymacja KMNK, wykorzystane obserwacje 1997:2-2021:4 (N = 99) Zmienna zależna (Y): y4

	współczynnik	błąd standardowy	7 t-Studenta	wartość p
const	1613,58	845,210	1,909	0,0595
yl 1	0,000608716	0,00253905	0,2397	0,8111
y2_1	7,74660e-05	0,0235603	0,003288	0,9974
у3 1	-0,221237	0,123253	-1,795	0,0760
y3 2	-0,0941147	0,0909809	-1,034	0,3037
y4 1	0,792032	0,160462	4,936	3,70e-06
y4_2	0,281922	0,102343	2,755	0,0071
y4 3	-0,252138	0,181696	-1,388	0,1687
y4_4	-1,12527	0,149192	-7,542	3,73e-011
y4_5	0,719998	0,193426	3,722	0,0003
edn.ary	t.zm.zależnej 26	21,465 Odch.star	nd.zm.zależnej	2917,246
ma kwadi	ratów reszt 2,	64e+08 Błąd star	ndardowy reszt	1721,647
p. deter	rm. R-kwadrat 0,	683695 Skorygowa	ny R-kwadrat	0,651709
9, 89)	21	.,37491 Wartość p	dla testu F	9,34e-19
garytm v	wiarygodności -87	2,8566 Kryt. inf	form. Akaike'a	1765,713
yt. bay	es. Schwarza 17	91,664 Kryt. Har	nana-Quinna	1776,213
tokorel	.reszt - rhol 0,	031896 Statystyk	a Durbina h	NA

Wyłączając stałą, największa wartość p jest dla zmiennej 8 (y2_1)

Only Intercept

	H_A : t -test $\pi_1 = 0$		H_B : t -test $\pi_2 = 0$			H _C : F -test $\pi_3 = \pi_4 = 0$			
n	1%	5%	10%	1%	5%	10%	1%	5%	10%
48	-3.66	-2.96	-2.62	-2.68	-1.95	-1.60	4.78	3.04	2.32
100	-3.47	-2.88	-2.58	-2.61	-1.95	-1.60	4.77	3.08	2.35
136	-3.51	-2.89	-2.58	-2.60	-1.91	-1.58	4.73	3.00	2.36
200	-3.48	-2.87	-2.57	-2.58	-1.92	-1.59	4.76	3.12	2.37

 $H_A: \pi_1 = 0 \Rightarrow$ nonseasonal unit root.

Statystyka t-studenta = 0,2397

Wartość krytyczna dla N=99 oraz 5% poziomu istotności wynosi -2,88.

Wniosek: Statystyka t-studenta nie znajduje się na obszarze krytycznym. Brak podstaw do odrzucenia Ha.

 $H_B: \pi_2 = 0 \Rightarrow$ biannual unit root.

Statystyka t-studenta = 0,003288

Wartość krytyczna dla N=99 oraz 5% poziomu istotności wynosi -1,95.

Wniosek: Statystyka t-studenta nie znajduje się na obszarze krytycznym. Brak podstaw do odrzucenia H_b.

 $H_C: \pi_3 = \pi_4 = 0 \Rightarrow$ annual unit root.

Zbiór restrykcji
1: b[y3_1] = 0
2: b[y3_2] = 0

Statystyka testu: F(2, 89) = 2,09341, z wartością p = 0,129295

Estymacja z ograniczeniami:

	współczynnik	błąd standardowy	t-Studenta	wartość p	
const	1547,92	851,705	1,817	0,0724	*
yl l	0,00150947	0,00252520	0,5978	0,5515	
y2 ¹	-0,00163373	0,0238177	-0,06859	0,9455	
у3 1	0,000000	0,000000	NA	NA	
y3_2	0,000000	0,000000	NA	NA	
y4 1	0,558372	0,101681	5,491	3,58e-07	***
y4 2	0,205857	0,0912999	2,255	0,0265	**
y4 3	-0,0333806	0,121166	-0,2755	0,7836	
y4 4	-1,00933	0,121447	-8,311	8,67e-013	***
y4_5	0,454659	0,140135	3,244	0,0016	***

Błąd standardowy reszt = 1742,21

Statystyka testu: F = 2,09341

Wartość krytyczna dla N=99 oraz 5% poziomu istotności wynosi 3,08.

p-value = 0,129295

Wniosek: Ponieważ 0,129295 > 0,05 nie ma podstaw do odrzucenia H_c.

These hypotheses aren't rejected	These hypotheses are rejected	Stationary variable
H_A, H_B, H_C	_	$\Delta_4 y_t \ (= y_{4t})$
H_A, H_B	H_{C}	$\Delta_2 y_t \ (= y_{3t})$
H_A, H_C	H _B	$(I-L)(I+L^2)y_t \ (=y_{2t})$
H_B, H_C	H _A	$(I+L)(I+L^2)y_t \ (=y_{1t})$
H _A	H_B, H_C	$\Delta_1 y_t$
H _B	H_A, H_C	$(I+L)y_t$
H _C	H_A, H_B	$(I+L^2)y_t$
_	H_A, H_B, H_C	\mathcal{Y}_t

$$\begin{split} y_{1t} &\equiv (I+L)(I+L^2)y_t = y_t + y_{t-1} + y_{y-2} + y_{t-3} \\ y_{2t} &\equiv -(I-L)(I+L^2)y_t = -(y_t - y_{t-1} + y_{y-2} - y_{t-3}) \\ y_{3t} &\equiv (I-L)(I+L)y_t = (I-L^2)y_t = y_t - y_{y-2} \ , \text{ and } \\ y_{4t} &\equiv \Delta_4 y_t = y_t - y_{y-4} \end{split}$$

Wniosek:

Nie ma podstaw do odrzucenia H_A , H_B i H_C . Stosuję filtr Δ_4 y_t (= y_{4t}). Występuje jednookresowa sezonowość. Parametr D wynosi 1.

5. Wybór modelu SARIMA

Poniżej zostały przedstawione konfiguracje modelu SARIMA. Kolorem zielonym został zaznaczony wybrany model, który odznacza się najmniejszą wartością według kryterium Akaike'a.

р	d	q	Р	D	Q	AIC
2	1	0	2	1	2	1858,125
2	1	0	0	1	0	1911,093
1	1	2	2	1	2	1860,097
1	1	2	2	1	1	1858,114
1	1	2	1	1	1	1856,373
1	1	2	1	1	1	1856,373
1	1	1	2	1	2	1858,097
0	1	0	0	1	0	1912,481
1	1	0	0	1	0	1889,674
0	1	1	0	1	0	1909,779
0	1	0	1	1	0	1857,843
0	1	0	0	1	1	1858,159
1	1	1	0	1	0	1911,168
1	1	0	1	1	0	1855,751
1	1	0	0	1	1	1857,668

Oszacowano model SARIMA (1,1,0) x (1,1,0) dla szeregu wartości dodanej brutto Belgii. Na podstawie kryterium AIC stwierdzono, że jest to najlepszy model.

Oceny funkcji: 96 Ocena gradientu: 49

Model 5: Estymacja ARIMA, wykorzystane obserwacje 1996:2-2021:4 (N = 103)

Estymacja z wykorzystaniem metody AS 197 (właściwa ML)

Zmienna zależna (Y): (1-L)(1-Ls) gva Błędy standardowe na bazie Hessian

	współczynnik	błąd s	tandardowy	z	wartość p	
const	47,7896	85,	0300	0,5620	0,5741	
phi l	-0,199938	0,	0978814	-2,043	0,0411	**
Phi_1	-0,832467	0,	0786695	-10,58	3,62e-026	**
Średn.aryt.z	m.zależnej l	.25,0680	Odch.stan	d.zm.zależnej	2566,790	
Średnia zabu	rzeń los. 5	,182286	Odch.st.	zaburzeń los.	1858,656	
Wsp. determ.	R-kwadrat 0	,990199	Skorygowa	ny R-kwadrat	0,990102	
Logarytm wia	rygodności -9	23,8753	Kryt. inf	orm. Akaike'a	1855,751	
Kryt. bayes.	Schwarza 1	.866,289	Kryt. Han	nana-Quinna	1860,019	
cz	ęść Rzeczywi	.sta Ur	ojona	Moduł Częs	tość	
AR						
Pierwiastek	1 -	5,0015	0,0000	5,0015	0,5000	
AR (sezono	we)					
Pierwiastek	1 -	1,2012	0,0000	1,2012	0,5000	

6. Prognoza i interpretacja modelu

6.1. Prognoza - wykres

6.2. Interpretacja miar dopasowania uzyskanych podczas prognozy ex ante

```
2022:1 115346,01 1858,656 111703,11 - 118988,91
```

- 115346,01 wartość prognozy ex ante w mln euro
- 1858,656 błąd prognozy ex ante w mln euro
- 111703,11 118988,91 przedział ufności

Prognoza wartości dodanej brutto na Q1 roku 2022 wynosi **115346,01 mln euro**, przy czym prognoza ta odchyla się średnio od wartości prognozowanej o +- **1858,66 mln euro**, co stanowi **2,42%** średniej arytmetycznej zmiennej prognozowanej, co świadczy o dopuszczalności prognoz, jednocześnie średni błąd prognozy ex ante stanowi **1,61%** prognozy na Q1 roku 2022, co świadczy o dopuszczalności prognozy.

Przedział ufności dla prognozy **<111703,11 , 118988,91>** mln euro z 95% prawdopodobieństwem pokrywa nieznaną prognozowaną wartość dodaną brutto za Q1 roku 2022.

6.3. Interpretacja miar dopasowania uzyskanych podczas prognozy ex-post

Miary dokładności prognoz ex post wykorzystano 103 obserwacji

```
ME =
Średni błąd predykcji
                                          5.1823
Pierwiastek błędu średniokwadr. RMSE = 1858,7
                         MAE = 854,58
MPE = -0,029351
Średni błąd absolutny
Średni błąd procentowy
                                          0,99873
Średni absolutny błąd procentowy MAPE =
Współczynnik Theila (w procentach) U2 =
                                            0,36708
Udział obciążoności predykcji UM =
                                            7,774e-006
                                   UR = 5,1194e-005
Udział niedost. elastyczności
Udział niedost. elastyczności UR = 5,1194e
Udział niezgodności kierunku UD = 0,99994
```

1) ME = 5,1823 mln euro

Średnia arytmetyczna błędu prognozy wynosi **5,1823 mln euro**, co stanowi **0,007**% średniej arytmetycznej zmiennej prognozowanej, co świadczy o nieobciążoności prognoz. Błędy prognoz średnio stanowią **0,03**% wartości zmiennej prognozowanej, co świadczy o nieobciążoności prognoz.

MPE – służy do procentowej oceny obciążenia prognozy = 0,03%

2) RMSE = 1858,7 mln euro

Średni błąd prognozy wynosi **1858,7 mln euro**, co oznacza, że prognozy odchylają się średnio o wartości zmiennej prognozowanej o +- **1858,7 mln euro**, co stanowi średnio **2,42**% średniej arytmetycznej zmiennej prognozowanej, co świadczy o dopuszczalności prognoz.

3) MAE = 854,58 mln euro

MAPE = 0,99873 %

Prognozy odchylają się od zmiennej prognozowanej o średnio +- **854,58 mln euro**, co stanowi średnio **0,99%** wartości zmiennej prognozowanej, co świadczy o dopuszczalności prognoz.

MAE – średnia arytmetyczna błędu bezwzględnego

MAPE – średnia arytmetyczna błędu bezwzględnego [%]

4) U2 = 0,36708 = 36,71%

UM = 0,005% - błąd prognozy powodowany obciążeniem prognozy

UR = 0,0008% - błąd prognozy powodowany nieprawidłową elastycznością prognoz

UD = 99,994% - błąd prognozy powodowany niezgodnością realizacji prognoz w porównaniu do zmiennej prognozowanej

Współczynnik Theila wynosi **0,36708**, co oznacza, że błędy "naszych" prognoz stanowią średnio **36,71%** wartości błędów uzyskanych z prognozy naiwnej, ponadto błąd prognozy w **0,005%** powodowany jest obciążeniem prognozy, w **0,0008%** powodowany jest niewłaściwą estetycznością prognoz, a w 99,994% powodowany jest niezgodnością kierunku prognoz w stosunku do obserwowalnych wartości zmiennej prognozowanej.

6.4. Testowanie czy model nadaje się do prognozowania

Żeby sprawdzić czy model nadaje się do prognozowania należy wykonać test stabilności parametrów modelu QLR, CUSUM oraz CUSUMSQ. W tym celu stworzono zmienną **y=y01-y01(-4)**, gdzie **y01=gva-gva(-1)**, aby móc przeprowadzić powyższe testy. Poniżej przedstawiono wykres szeregu czasowego zmiennej **y3**, z której zostały usunięte wahania sezonowe i wszystkie wahania prowadzące do niestacjonarności. Powinien być on zbliżony do białego szumu – do początku 2020 roku tak faktycznie jest. zmienna y3 była jednokrotnie poddana różnicowaniu zwykłemu i jeden raz różnicowaniu sezonowemu.

Następnym krokiem jest szacowanie modelu zmiennej y3 metodą KMNK:

Model 11: Estymacja KMNK, wykorzystane obserwacje 1997:2-2021:4 (N = 99) Zmienna zależna (Y): y3

	współczynni	k błąd st	andardov	yy t-Stud	lenta wa	rtość p	
const	103,287	193,6	18	0,53	35 0,	5949	
y3 1	-0,122538	0,0	757740	-1,61	7 0,	1091	
y3_4	-0,926808	0,1	06202	-8,72	8,	05e-014	**
średn.aryt.	zm.zależnej	122,2929	Odch.	stand.zm.z	ależnej	2617,8	16
Suma kwadra	tów reszt	3,56e+08	Błąd s	standardov	y reszt	1924,6	24
Wsp. determ	. R-kwadrat	0,470509	Skory	gowany R-k	wadrat	0,4594	78
F(2, 96)		42,65312	Wartos	ść p dla t	estu F	5,56e-	14
Logarytm wi	arygodności	-887,6378	Kryt.	inform. A	kaike'a	1781,2	76
Kryt. bayes	. Schwarza	1789,061	Kryt.	Hannana-C	uinna	1784,4	26
Autokorel.r	eszt - rhol	-0,051524	Statys	styka Durk	ina h	-0,7803	74
Test CUSUM	na stabilnoś	ć parametr	ów model	lu -			
Hipoteza	zerowa: brak	zmian w p	arametra	ach			
Statystyk	a testu: Har	vey-Collie	r t (95)	= 0,70107	3		
z wartośc	ią p = P(t(9	5) > 0,701	.073) = (,484971			
	załamanie s zerowa: brak			_	n momenci	.e -	
	a testu: Ch- czna wartość			08 dla ok	serwacji	2017:4	

Test stabilności parametrów modelu CUSUM – testowanie przeciętnego poziomu błędu

Wniosek: Ponieważ rekursywne reszty nie wychodzą poza przedział ufności, to znaczy, że nie nastąpiło załamanie struktury. Model jest stabilny. Prognozy są wiarygodne. Parametry strukturalne modelu są stabilne w czasie.

Test stabilności parametrów modelu CUSUMSQ – sprawdzenie czy zmienia się w czasie precyzja modelu (wykres skumulowanych reszt kwadratowych)

Wniosek: Precyzja modelu zmieniała się w czasie. Do drugiego kwartału 2002 roku model był precyzyjny, potem od trzeciego kwartału 2002 roku stracił precyzje i ponownie zaczął być precyzyjny od trzeciego kwartału 2020 roku. Model charakteryzuje się niestałą wariancją – model dostarcza prognoz, które mają niestabilną precyzję. Precyzja modelu zmieniała się w czasie - taki model nie powinien być wykorzystywany do prognozowania.

Test stabilności QLR – testowanie załamania struktury

Test ilorazu wiarygodności Quandta na występowanie załamania strukturalnego w nieokreślonym momencie, z 15 procentowym błędem oceny:

Maksymalne F(3, 93) = 2,12169 dla obserwacji 2017:4

Asymptotyczna wartość p = 0,616067 dla chi-kwadrat(3) = 6,36508

H₀: Nie wystąpiło załamanie struktury

H_A: Załamanie struktury wystąpiło

Wniosek: ponieważ p-value > 0,05 to nie ma podstaw do odrzucenia H_0 – nie wystąpiło załamanie struktury, które wyraźnie było zauważalne w teście CUSUMSQ, lecz test QLR go nie wykrył.

7. Podsumowanie

Na podstawie szeregu czasowego wartości dodanej brutto Belgii oszacowano model SARIMA (1,1,0) x (1,1,0) – na podstawie kryterium AIC stwierdzono, że jest to najlepszy model, na którym przeprowadzono prognozy ex ante i ex post. Oszacowano przedział ufności dla prognozy, który z 95% prawdopodobieństwem pokrywa się z nieznaną prognozowaną wartości dodanej brutto za Q1 roku 2022. Finalnie przeprowadzono testy stabilności modelu. Test stabilności CUSUM wykazał, że model jest stabilny, a prognozy są wiarygodne. Test stabilności CUSUMSQ wykazał, że precyzja modelu zmieniała się w czasie, więc taki model nie powinien być wykorzystywany do prognozowania, a z kolei test stabilności QLR wykazał, że nie wystąpiło załamanie struktury.