

رمزنگاری پیشرفته

هادی سلیمانی

پژوهشکده فضای مجازی دانشگاه شهید بهشتی

■ مجوز استفاده و نشر

- اجازه ی ایجاد نسخههای دیجیتالی جدید براساس بخشی یا تمام مطالب این اسلاید بدون پرداخت هزینه اعطا می شود، مشروط بر این که:
- فقط بهمنظور و در راستای استفاده ی آموزشی (شخصی و یا کلاسی) ساخته شده باشند و برای کسب هرگونه سود و یا مزیت تجاری استفاده نشوند.
- نسخههای جدید حاوی ارجاع مستقیم به نام تهیه کننده اسلاید (هادی سلیمانی) و محل کار وی (پژوهشکده فضای مجازی دانشگاه شهید بهشتی) باشند.
- مجموعهی حاضر براساس نظرات ارزشمند دانشجویان (سابق) دانشگاه شهید بهشتی و همکاران محترم تهیه شده است که از تمام آنها قدردانی میشود؛
- (به خصوص خانمها سارا زارعی و فاطمه عزیزی نقش مهمی را در تهیه نسخه ی نهایی بر عهده داشته اند. خانم مهندس زارعی علاوه بر کمک در آماده سازی نسخه ی فعلی اسلایدها، در تصحیح اشتباهات نسخه ی قبلی و همچنین تکمیل و باز تعریف محتوای درسها بسیار تاثیر گذار بوده اند).
 - برای مشاهده ی اسلایدها و ویدئوهای تدریس این درس به آدرس زیر مراجعه فرمایید:

http://facultymembers.sbu.ac.ir/h_soleimany/advanced-cryptography-course/

درس صفرم مقدمهای بر درس رمزنگاری پیشرفته

■ فهرست عناوین درس

مقدمهای بر درس رمزنگاری پیشرفته

- اطلاعات کلی درس
- آشنایی با مدلهای امنیتی
- مقایسهی حملات با یکدیگر
- اهداف و سرفصلهای درس
 - معرفی مراجع
 - تریبون آزاد دانشجویی :)

رمزنگاری پیشرفته

پاییز سال ۱۴۰۰

پیش نیازهای درس

- 1. آشنایی با مفاهیم ابتدایی رمزنگاری
 - گذراندن درس اصول رمزنگاری.
 - 2. آشنایی مقدماتی با برنامهنویسی!

■ شیوهی ارزیابی (تقریبی)

- 1. کار عملی (۳ پروژه برای درس در نظر گرفته شده است): ۲ نمره
- 2. میان ترم (شامل تحلیلهای مدل جعبه سیاه): ۲ نمره و به صورت حذفی
 - 3. پایان ترم (شامل حملات مدل جعبه خاکستری): **۸ نمره**
 - زمان: براساس اعلام دانشگاه (سیستم گلستان)

■ ساعتهای مراجعهی دانشجویان

• از طریق هماهنگی قبلی:

hadi.soleimany@gmail.com

رمزنگاری پیشرفته

پاییز سال ۱۴۰۰

■ دستهبندی حملات از منظر دسترسی مهاجم

مدل جعبهسفید

مهاجم درون سیستم است و به مقادیر میانی و ... دسترسی دارد!

مدل جعبه خاکستری

مهاجم به ابزاری که رمزنگاری را انجام میدهد دسترسی (بعضا فیزیکی) دارد.

مدل جعبهسیاه

مهاجم به مجموعهای از متون اصلی و معادل رمزشده ی آنها دسترسی دارد.

• ممكن است الگوريتمي در مدل جعبهسياه امن باشد اما در مدلهاي جعبه خاكستري يا سفيد امن نباشد!

تمرکز ما در این درس بر روی حملات مدلهای جعبهسیاه و جعبهخاکستری است.

■ اهداف تحلیلهای مدل جعبه سیاه

- بازیابی کلید (Key Recovery):
- حملاتی که منجر به پیدا کردن کلید میشوند.
 - استنتاج کلی (Global Deduction):
- بدون بهدستآوردن کلید، رابطهای ارائه میشود که میتوان به کمک آن با داشتن متن رمزشده، متن اصلی معادل را پیدا کرد.
 - استنتاج نمونهای (Instance Deduction):
- بدون بهدستآوردن کلید، رابطهای ارائه میشود که میتوان به کمک آن با داشتن بخشی از متن رمزشده، بخشی از متن اصلی معادل را پیدا کرد.
 - تمایزگر (Distinguisher):
- حملاتی که به پیدا کردن کلید منجر نمیشوند، اما یک ویژگی غیرتصادفی را معرفی میکنند که با استفاده از آن و با پیچیدگی کمتر از پیچیدگی جستوجوی کامل، میتوان الگوریتم رمز را از یک جایگشت تصادفی ایده آل تشخیص داد.

■ تحلیلهای مدل جعبه سیاه: تحلیلهای آماری – ساختاری

- تحلیلهای مدل جعبه سیاه معمولا از مشخصات آماری و یا ساختاری الگوریتمهای رمزنگاری استفاده می کنند.
 - روند ارائهی این حملات معمولا بدین گونه است:
- ابتدا تلاش می شود برای الگوریتمهای رمزنگاری هدف، یک تمایزگر ارائه شود که براساس آن، بتوان الگوریتم را از جایگشت ایده آل (Random Permutation) تشخیص داد.
 - سپس تلاش می شود که براساس مشخصه ی غیرتصادفی، اطلاعاتی درباره ی کلید به دست آید.
 - براساس همان مشخصهی غیرتصادفی، راه کارهایی نیز به منظور جلوگیری از حملات ارائه می شود.
 - الگوریتمهای جدید براساس معیارهای کشفشده بهروزرسانی و بازطراحی میشوند.
- بنابراین، الگوریتمها معمولا در مقابل حملات شناخته شده امن هستند، اما نمی توان ادعا کرد که در مقابل تمامی مهاجمها امنیت قابل اثبات دارند!

رمزنگاری پیشرفته پاییز سال ۱۴۰۰

طبقهبندی حملات جعبه خاکستری

- منظر ١:
- حملات فعال (Active): مهاجم با تغییر عواملی نظیر دما، کلاک، ولتاژ، تابش لیزر و ...، شرایط کاری سیستم را تغییر میدهد.
 - حملات غيرفعال (Passive): مهاجم صرفا از اطلاعات نشت يافته توسط سيستم استفاده مي كند.
 - منظر ۲:
 - حملات تهاجهی (Invasive):
 - مهاجم به اجزای داخلی سیستم دسترسی دارد؛ مثلا از طریق لایهبرداری یا ایجاد حفره در لایهی محافظ!
 - پیچیده، هزینهی بالا و زمانبر.
 - حملات نیمه تهاجمی (Semi-invasive):
 - مهاجم بدون آسیب رساندن به اجزای داخلی سیستم دسترسی دارد.
 - حملات غيرتهاجمي (Non-invasive):
 - مهاجم به ابزار دسترسی دارد ولی تنها رفتار کلی سیستم را (از نزدیک) بررسی می کند.
 - مزایا: حضور مهاجم را کسی متوجه نمی شود! ارزان و قابل تکرار هستند.

طبقهبندی حملات جعبه خاکستری

... ادامه گران تر و موثر تر

		فعال	غيرفعال
	تهاجمي	Permanent Faults	Probing
	نیمه تهاجمی	Radiation Attack	Optical Inspection
	غيرتهاجمي	Fault Attacks	Side-channel Attacks

ارزان تر، قابلیت اجرا در کابردهای بیشتر

تفاوت تعریف در برخی از متون دیده می شود:

• در مواردی، حملات فعال را به صورت کلی حملات القاء خطا نام گذاری می کنند (فلسفه: حملات فعال معمولا منجر به اعمال خطا می شوند).

تمرکز ما در این درس بر روی حملات غیرتهاجمی است.

رمزنگاری پیشرفته پاییز سال ۱۴۰۰

■ برخی از انواع مهم روشهای القاء خطا

■ برخی از انواع مهم کانالهای جانبی

رمزنگاری پیشرفته

پاییز سال ۱۴۰۰

■ مقایسهی حملات با یکدیگر

- دو دیدگاه متداولی که برای مقایسهی حملات مختلف وجود دارد:
 - 1. از نظر نوع دادهای که مهاجم برای حمله در اختیار دارد
 - 2. از نظر میزان موفقیت هر حمله

سناريوهاي مختلف حمله

معیارهای سنجش موفقیت؟

سناریوهای مختلف حمله به الگوریتم های رمزنگاری

- 1. حمله ی متن رمز تنها (Ciphertext-only Attack):
 - تحلیل گر تنها متن رمزشده را در اختیار دارد.
- 2. حملهی متن اصلی معلوم (Known-plaintext Attack):
- تعدادی متن رمزشده و متن اصلی معادل آنها در اختیار تحلیل گر است، اما در انتخاب آنها اختیاری برای تحلیل گر وجود ندارد.
 - 3. حملهی متن اصلی منتخب (Chosen-plaintext Attack):
- متن رمزشدهی متناظر با هر متن اصلی دلخواهی برای تحلیل گر دردسترس است. به عنوان مثال، یک دستگاه رمزکننده با کلیدی نامعلوم در اختیار تحلیل گر است و هدف به دست آوردن کلید است.
 - 4. حملهی متن رمزشده منتخب (Chosen-ciphertext Attack):
 - تحلیل گر قادر است متن اصلی متناظر با هر متن رمزشده ی دلخواهی را به دست آورد.
 - به عنوان مثال، یک دستگاه رمزگشایی با کلیدی نامعلومی در اختیار تحلیل گر است و هدف به دست آوردن کلید است.
 - 5. حمله ی متن اصلی منتخب وفقی (Adaptive Chosen-plaintext Attack):
 - مهاجم در زمان اجرای حمله درخواست می کند که معادل متن اصلی برخی متون را در اختیار او قرار دهند.

19

■ معیارهای سنجش موفقیت حملات مختلف

- 1. نوع دادهی مورد نیاز: هرقدر مفروضات یک حمله ضعیفتر باشند، در کاربردهای بیشتری امکان اجرا دارد!
- 2. پیچیدگی داده (data complexity): تعداد متن اصلی یا متن رمزشده ی مورد نیاز برای اجرای یک حمله.
- 3. پیچیدگی حافظه (memory complexity): میزان حافظهی مورد نیاز برای نگهداری داده در طول یک حمله.
- 4. پیچیدگی زمانی (time complexity): مدت زمان لازم برای اجرای یک حمله؛ که معمولاً از طریق شمارش تعداد عملیاتهای رمزنگاری و رمزگشایی الگوریتم مورد نظر برای اجرای حمله صورت می گیرد.
 - 5. احتمال موفقیت (success rate): احتمال موفقیت یک حمله از نظر آماری.
- اکثر حملات انجام شده به سیستمهای رمز حملات احتمالاتی هستند. به همین دلیل، احتمال اجرای موفق یک حمله از معیارهای مهم اندازه گیری کارآیی و میزان عملی بودن یک حمله است.

■ اهداف و سرفصلهای درس

- هدف ما بررسی تحلیلها و حملاتی است که نقشی پایهای و مهم در فهم و اجرای سایر تحلیلها و حملات دارند.
 - سرفصلهای درس در مدل امنیتی جعبهسیاه:
 - تحلیل تفاضلی به رمزهای قالبی (درس ۱).
 - تحلیل خطی به رمزهای قالبی (درس ۲).
 - تحلیل همبستگی (سریع) به رمزهای جریانی (درس ۳).
 - سرفصلهای درس در مدل امنیتی جعبه خاکستری:
 - حملات القاء خطا (درس ۴).
 - حملات كانال جانبى:
 - حملات تحلیل توان (درسهای ۵، ۶، ۷ و ۸).
 - حملات زمانی یا ریزمعماری (درس ۹).

رمزنگاری پیشرفته

پاییز سال ۱۴۰۰

■ معرفی مراجع (اصلی) درس بخش حملات جعبهسیاه

- 1. Knudsen, L. R., & Robshaw, M. (2011). The block cipher companion. Springer Science & Business Media.
- 2. Heys, H. M. (2002). A tutorial on linear and differential cryptanalysis. Cryptologia, 26(3), 189-221.
- 3. T. Siegenthaler. "Decrypting a class of stream ciphers using ciphertext only". IEEE Trans. Comput., 34:81-85, 1985.
- 4. W. Meier and O. Staffelbach, "Fast Correlation Attacks on Certain Stream Ciphers". J. Cryptology, vol 1, number 3, pages 159-176, 1989.

فصلهای ششم و هفتم به ترتیب برای تحلیل تفاضلی و تحلیل خطی

■ معرفی مراجع (اصلی) درس

بخش حملات جعبه خاكسترى – حملات القاء خطا

Joye, M., & Tunstall, M. (Eds.). (2012). Fault analysis in cryptography (Vol. 147). Heidelberg: Springer.

- تمرکز ما در بخش حملات القاء خطا بر روی رمزهای متقارن است.
- فصلهای دوم تا ششم این کتاب (با فرض فهم مباحث ارائه شده در بخش تحلیل تفاضلی).

■ معرفی مراجع (اصلی) درس

بخش حملات جعبه خاکستری – حملات تحلیل توان

Mangard, S., Oswald, E., & Popp, T. (2008). Power analysis attacks: Revealing the secrets of smart cards (Vol. 31). Springer Science & Business Media.

- فصلهای دوم تا ششم به صورت تقریبا کامل (مفاهیم پایه، تحلیل توان ساده و تحلیل توان تفاضلی).
 - مقدمهای کوتاه از فصلهای هفتم (مخفیسازی) و نهم (نقابگذاری).
 - خواندن این کتاب به طور جدی توصیه می شود!

26

■ معرفی مراجع (اصلی) درس بخش حملات جعبه خاکستری – حملات زمانی

- 1. Rebeiro, C., Mukhopadhyay, D., & Bhattacharya, S. (2014). Timing channels in cryptography: a micro-architectural perspective. Springer.
- 2. Mukhopadhyay, D., & Chakraborty, R. S. (2014). Hardware security: design, threats, and safeguards. CRC Press.

مرجع اول: فصل های سوم، چهارم، هفتم و هشتم

مرجع دوم: فصل نهم

■ نوبت شماست!

- به چه موضوعاتی در حوزهی رمزنگاری علاقهمند هستید؟
 - برای موضوع پایاننامه تصمیم گرفتهاید؟
 - از این درس چه انتظاراتی دارید؟

