

Object Recognition Practical Sessions

Meysam Madadi

Date	Theory title	teacher	Practical session)	
02/22	Presentation and CNN basics	Sergio	CNN basics I		
03/01	Backbone architectures	Meysam	CNN basics II		
03/08/2022	Recurrent architectures	Sergio	CNN advanced architectures		
03/15/2022	Object detection and segmentation	Meysam	Object detection I		
03/22/2022	Human pose estimation	Meysam	Object detection II		8 sessions
03/29/2022	Human behaviour	Sergio	Human pose I		3 blocks
04/05/2022	Exams week (31/03 - 06/04)	-	-		
04/12/2022	Easter holidays (11/04 - 18/04)	-27	-		
04/19/2022	Presentation I	Sergio			
04/26/2022	Transformers	Meysam	Human pose II		
05/03/2022	Graph neural networks	Meysam	Object recognition		
05/10/2022	Master seminar (09/05 - 13/05)		-		
05/17/2022	Presentation II	Sergio			
05/24/2022	Exam				

Deliverables

- 1. Contextual data augmentation, deadline 21/03/2022 23:59
- 2. Fashion parsing (segmentation), deadline 25/04/2022 23:59
- 3. Body and clothes depth estimation, deadline 29/05/2022 23:59

Contextual data augmentation

- 1. Select one of the networks studied in the class,
- 2. Train the network on Pascal VOC dataset for multi-label classification,
- 3. During the training corrupt the training images with contextual data augmentation,
 - a. Select random objects and put them on random locations in the training image.
- 4. Study the results. What happens if
 - a. No contextual data augmentation is applied,
 - b. objects overlap vs no overlapping,
 - c. objects appear in random scales and orientation,
 - d. objects are selected such that the whole dataset is balanced, i.e. the number of labels in the whole dataset is equal,

Contextual data augmentation

- The report and code/s must be uploaded to the virtual campus before the deadline.
- The report must be short. Maximum 2 pages with font size 11.
- The report must at least contain the following information:
 - Which network has been used and why,
 - How the network has been trained: hyperparameters, optimizer, loss, training strategy, etc,
 - A thorough discussion of the results.

It can be defined as one of these problems:

- Fashion attributes classification,
- Fashion description by caption,
- Semantic segmentation,
- Hierarchical segmentation and attribute detection

Fashion attributes classification

Fashion description by caption

LOS ANGELES, CA

466 FANS 288 VOTES 62 FAVOURITES

TAGS

CHIC EVERDAY FALL

COLOURS

WHITE-BOOTS

NOVEMBER 10, 2014

GARMENTS

White Cheap Monday Boots Chilli Beans Sunglasses Missguided Romper

Daniel Wellington Watch

COMMENTS

Nice!!

Love the top!

cute

. . .

Fashion parsing Semantic segmentation

Fashion parsing Hierarchical segmentation and attribute detection

What do you need to do in this task?

Fashion semantic segmentation

On which dataset?

Fashionpedia: https://fashionpedia.github.io/home/

How?

 Select a segmentation algorithm from <u>https://paperswithcode.com/task/semantic-segmentation</u>

- The report and code/s must be uploaded to the virtual campus before the deadline.
- Students must confirm the selected algorithm by email before APR 5th. It is recommended to assure the code is stable and works properly before this date.
- The report must be short. Maximum 3 pages with font size 11.
- The report must at least contain the following information:
 - A short summary of the selected algorithm and justification why it is selected,
 - How the network has been trained: hyperparameters, optimizer, loss, training strategy, etc,
 - A short summary and statistics of the dataset,
 - A thorough discussion of the results.