Some Remark on Parallel Operators

L. Ceragioli

Interleaving Commutativity

Given $\mathcal{T}_1, \mathcal{T}_2$ transition systems, is the following true?

$$\mathcal{T}_1 \parallel \mathcal{T}_2 = \mathcal{T}_2 \parallel \mathcal{T}_1$$

Interleaving Commutativity

Given $\mathcal{T}_1, \mathcal{T}_2$ transition systems, is the following true?

$$\mathcal{T}_1 \parallel \mathcal{T}_2 = \mathcal{T}_2 \parallel \mathcal{T}_1$$

Interleaving Commutativity

Given $\mathcal{T}_1, \mathcal{T}_2$ transition systems, is the following true?

$$\mathcal{T}_1 \parallel \mathcal{T}_2 = \mathcal{T}_2 \parallel \mathcal{T}_1$$

(A little detail, it holds if
$$(s_1, s_2) = (s_2, s_1)$$
)

Interleaving Associativity

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, is the following true?

$$(\mathcal{T}_1 \parallel \mid \mathcal{T}_2) \parallel \mid \mathcal{T}_3 = \mathcal{T}_1 \parallel (\mathcal{T}_2 \parallel \mid \mathcal{T}_3)$$

Interleaving Associativity

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, is the following true?

$$(\mathcal{T}_1 \parallel \mid \mathcal{T}_2) \parallel \mid \mathcal{T}_3 = \mathcal{T}_1 \parallel (\mathcal{T}_2 \parallel \mid \mathcal{T}_3)$$

Interleaving Associativity

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, is the following true?

$$(\mathcal{T}_1 \parallel \mid \mathcal{T}_2) \parallel \mid \mathcal{T}_3 = \mathcal{T}_1 \parallel (\mathcal{T}_2 \parallel \mid \mathcal{T}_3)$$

(A little detail, it holds if
$$((s_1, s_2), s_3) = (s_1, (s_2, s_3)))$$

Synchronized Composition Associativity

Given $\mathcal{T}_1,\mathcal{T}_2,\mathcal{T}_3$ transition systems, and Syn_1 , Syn_2 sets of actions, is the following true?

$$\left(\mathcal{T}_{1}\parallel_{\textit{Syn}_{1}}\mathcal{T}_{2}\right)\parallel_{\textit{Syn}_{2}}\mathcal{T}_{3}=\mathcal{T}_{1}\parallel_{\textit{Syn}_{1}}\left(\mathcal{T}_{2}\parallel_{\textit{Syn}_{2}}\mathcal{T}_{3}\right)$$

Synchronized Composition Associativity

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, and Syn_1 , Syn_2 sets of actions, is the following true?

$$(\mathcal{T}_1 \parallel_{\mathit{Syn}_1} \mathcal{T}_2) \parallel_{\mathit{Syn}_2} \mathcal{T}_3 = \mathcal{T}_1 \parallel_{\mathit{Syn}_1} (\mathcal{T}_2 \parallel_{\mathit{Syn}_2} \mathcal{T}_3)$$

No!

Transition System
$$\mathcal{T}_1 \parallel_{\{\alpha\}} \mathcal{T}_2$$

$$(i_1, i_2)$$

Transition System $\mathcal{T}_2 \parallel_{\emptyset} \mathcal{T}_3$

Transition System
$$\mathcal{T}_2 \parallel_{\emptyset} \mathcal{T}_3$$

$$(i_2, i_3)$$

$$\alpha$$

$$(i_2, f_3)$$

Transition System $\mathcal{T}_1 \parallel_{\{\alpha\}} (\mathcal{T}_2 \parallel_{\emptyset} \mathcal{T}_3)$

Transition System

$$(\mathcal{T}_{1} \parallel_{\{\alpha\}} \mathcal{T}_{2}) \parallel_{\emptyset} \mathcal{T}_{3}$$

$$(i_{1}, i_{2}, i_{3})$$

$$\alpha \downarrow$$

$$(i_{1}, i_{2}, f_{3})$$

Transition System

$$\mathcal{T}_1 \parallel_{\{lpha\}} (\mathcal{T}_2 \parallel_{\emptyset} \mathcal{T}_3)$$

$$\begin{array}{c} (i_1, i_2, i_3) \\ \alpha \downarrow \\ (f_1, i_2, f_3) \end{array}$$

Synchronized Associativity: a special case

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, and Syn a set of actions, is the following true?

$$\left(\mathcal{T}_{1}\parallel_{\textit{Syn}}\mathcal{T}_{2}\right)\parallel_{\textit{Syn}}\mathcal{T}_{3}=\mathcal{T}_{1}\parallel_{\textit{Syn}}\left(\mathcal{T}_{2}\parallel_{\textit{Syn}}\mathcal{T}_{3}\right)$$

Synchronized Associativity: a special case

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, and Syn a set of actions, is the following true?

$$(\mathcal{T}_1 \parallel_{\textit{Syn}} \mathcal{T}_2) \parallel_{\textit{Syn}} \mathcal{T}_3 = \mathcal{T}_1 \parallel_{\textit{Syn}} (\mathcal{T}_2 \parallel_{\textit{Syn}} \mathcal{T}_3)$$

Synchronized Associativity: another special case

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, is the following true?

$$(\mathcal{T}_1 \parallel \mathcal{T}_2) \parallel \mathcal{T}_3 = \mathcal{T}_1 \parallel (\mathcal{T}_2 \parallel \mathcal{T}_3)$$

(recall that $Syn = Act_1 \cap Act_2$ is the implicit synchronization set of $\mathcal{T}_1 \parallel \mathcal{T}_2$, with Act_1 the actions of \mathcal{T}_1 and Act_2 the actions of \mathcal{T}_2)

Synchronized Associativity: another special case

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, is the following true?

$$(\mathcal{T}_1 \parallel \mathcal{T}_2) \parallel \mathcal{T}_3 = \mathcal{T}_1 \parallel (\mathcal{T}_2 \parallel \mathcal{T}_3)$$

(recall that $Syn = Act_1 \cap Act_2$ is the implicit synchronization set of $\mathcal{T}_1 \parallel \mathcal{T}_2$, with Act_1 the actions of \mathcal{T}_1 and Act_2 the actions of \mathcal{T}_2)

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, it holds that:

$$(\mathcal{T}_1 \parallel \mathcal{T}_2) \parallel \mathcal{T}_3 = \mathcal{T}_1 \parallel (\mathcal{T}_2 \parallel \mathcal{T}_3) = \mathcal{T}_1 \parallel \mathcal{T}_2 \parallel \mathcal{T}_3$$

Given $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ transition systems, it holds that:

$$\left(\mathcal{T}_{1} \parallel \mathcal{T}_{2}\right) \parallel \mathcal{T}_{3} = \mathcal{T}_{1} \parallel \left(\mathcal{T}_{2} \parallel \mathcal{T}_{3}\right) = \mathcal{T}_{1} \parallel \mathcal{T}_{2} \parallel \mathcal{T}_{3}$$

Moreover:

$$\mathcal{T}_1 \parallel \mathcal{T}_2 \parallel \mathcal{T}_3 = \mathcal{T}_1 \parallel \mathcal{T}_3 \parallel \mathcal{T}_2 =$$

$$\mathcal{T}_2 \parallel \mathcal{T}_1 \parallel \mathcal{T}_3 = \mathcal{T}_2 \parallel \mathcal{T}_3 \parallel \mathcal{T}_1 =$$

$$\mathcal{T}_3 \parallel \mathcal{T}_1 \parallel \mathcal{T}_2 = \mathcal{T}_3 \parallel \mathcal{T}_2 \parallel \mathcal{T}_1$$

Composing the systems $\mathcal{T}_1, \dots \mathcal{T}_n$ means that

- P_i can evolve independently with actions that are **only** in Act_i
- P_i, P_j can evolve by synchronizing with an action that is only
 in Act_i and in Act_j
- P_i, P_j, P_k can evolve by synchronizing with an action that is
 only in Act_i, Act_j and in Act_k
- ...

The composed system of $\mathcal{T}_1, \ldots \mathcal{T}_n$ is such that, for each action α , a state of the obtained transition system can perform an α action if and only if all the processes P_i with $\alpha \in Act_i$ perform the α action.