Poisson Inverse Problems by the Plug-and-Play scheme

Jayesh Singla Gauray

Deblurring using the P4IP

- Main difference : First ADMM step is not separable
- Will use an optimization method called L-BFGS to solve the optimization problem

Hyperparameters

Similar to denoising, here we also have to tune hyper-parameters to get good results

We will tune Lambda and Beta both in two stages as before-

- Rough tuning
- Fine tuning

Lambda Tuning (Rough)

• Peak at lambda = 1

Lambda Tuning (Fine)

- Had to do fine tuning in three stages to get best PSNR
- Decreased epsilon as I fine tuned lambda
- Final lambda around 430-440 for peak noise = 1

Beta Tuning (Rough)

- Checked for multiple lambdas around optimal lambda to see trend
- Peak at around $\beta = 1$

Beta Tuning (Fine)

- Best lambda found to be 440-450
- Best beta found at 0.6

Results

- Blur kernels used
 - \circ 25 X 25 Gaussian kernel with σ = 1.6
 - 9 X 9 Uniform Kernel
 - 0 15 X 15 Custom kernel with entries generated as $1/(i^2 + j^2 + 1)$ for i,j = -7,-6...0..6,7
- We will show results on standard images like Peppers, Cameraman, Ridges etc

Custom blur with peak = 1

PSNR 16.1 dB

PSNR 22.62 dB

Custom blur with peak = 1 with BM3D only

PSNR 19.71 dB

This is worse than our reconstruction

Gaussian blur with peak = 2

PSNR 7.364 dB

PSNR 19.59 dB

Uniform blur with peak = 1

PSNR 6.86 dB

PSNR 18.45 dB

Bad Initial Guess vs Good Initial Guess

PSNR 22.919 dB

Reconstruction at peak = 1

Kernel	Image	PSNR
	Saturn	19.625283
	Pepper	17.967657
	Cameraman	17.929531
	Ridges	26.439523
	House	17.326899
Gaussian	Curve	14.886446
	Saturn	20.50723
	Pepper	18.194646
	Cameraman	16.039723
	Ridges	19.649932
	House	18.006444
Custom	Curve	19.273641
	Saturn	22.919237
	Pepper	18.001448
	Cameraman	16.402292
	Ridges	20.627435
	House	17.850388
Average	Curve	19.067032

Observations/Inferences

- The hyperparameter values mentioned in the thesis of the authors do not work. It may be the case that their image representation (pixel value range) may be different which leads to different hyperparameters for us.
- As the ADMM step is not deterministic in this case, the reconstruction quality and number of iterations taken to converge is heavily dependent on the initial guess.

Improvements

- Get optimal beta, lambda values for different peaks and fit a curve to get a best general formula for the hyperparameters
- Try to derive an approximate closed form solution for the ADMM step to provide as an initial guess to L-BFGS