

物理学原理及工程应用

迈克尔逊-莫雷实验

实验的基本思想:地球以30km/s的速度相对以太运动,地面上的观察者将会感到"以太风"

实验时,先使干涉仪的一臂与地球的运动方向平行,另一臂与地球的运动方向垂直

按照经典的理论,在运动的系统中, 光速应该各向不同,因而可看到干 涉条纹;再使整个仪器转过π/2,就 应该发现条纹的移动,由条纹移动 的总数,就可算出地球运动的速度v 当地球相对于以太的速度为v运动时,可看出光线 MM_1 和 M_1 M间犹为如顺水和逆水行舟,它相对于仪器的速度应各自为(c-v)和(c+v),如果 MM_1 的长度为l时,那么光通过距离 MM_1+M_1 M所需的时间为:

$$t_{1} = \frac{l}{c - \upsilon} + \frac{l}{c + \upsilon} = \frac{2cl}{c^{2} - \upsilon^{2}}$$

$$= \frac{2l}{c} \frac{1}{1 - \frac{\upsilon^{2}}{c^{2}}} = \frac{2l}{c} (1 - \frac{\upsilon^{2}}{c^{2}})^{-1}$$

光往返于 MM_2MM_2M 间类似横渡流水,在以太系看来光所走路经为 $M'M_2M''$,当 MM_2 的长度为l时,光通过距离 $M'M_2+M_2M''$ 所需的时间是 t_2

$$l^2 + (\upsilon \frac{t_2}{2})^2 = (c \frac{t_2}{2})^2$$

$$t_2 = \frac{2l}{\sqrt{c^2 - v^2}} = \frac{2l}{c} (1 - \frac{v^2}{c^2})^{-\frac{1}{2}}$$

因为
$$\frac{v^2}{c^2}$$
 $\ll 1$,故作二项式展开,得

所以两東光到达的时间不同
$$t_1 = \frac{2l}{c}(1 + \frac{\upsilon^2}{c^2})$$

$$t_2 = \frac{2l}{c}(1 + \frac{\upsilon^2}{2c^2})$$

09_03 迈克尔逊干涉仪

—— 平行单色光入射分光板G₁在镀膜面分为光束1和2

—— 光束1和2是相干光

光路示意动画

- —— 光束1经M₁反射__经G₁透射传播到光屏
- —— 光東2经过补偿板 G_2 M_2 反射 G_2 透射 G_1 镀膜面反射传播到光屏
- ——明暗相间的圆条纹

——干涉相当于 M_1 反射镜和 M_2 通过 G_1 成的像 M'_2 构成的薄膜空气层的干涉

 G_2 的作用 —— 补偿光束1在 G_1 中多走的光程

等厚干涉条纹

——如果M₁和M₂不是严格垂直 则会产生等厚干涉直条纹或弯曲条纹

迈克耳孙干涉条纹特点

1) 条纹内疏外密___中央干涉条纹的级数最高 $\delta = 2h = k\lambda$

2) h增大__减小 —— 中央视场冒出__沦陷条纹 h=0 时 —— 视场只有一个亮条纹

3) 中央视场冒出N个条纹或沦陷N个条纹和h的变化的关系

$$\delta = 2h = k\lambda$$

$$\delta' = 2(h + \Delta h) = (k + N)\lambda$$

$$\Delta h = N\frac{\lambda}{2}$$

迈克尔逊干涉仪应用 —— 光波波长的测量

中央亮条纹 $2h = k\lambda$ $2\Delta h = N\lambda$

$$\lambda = \frac{2\Delta h}{N}$$

——透明物质长度的微小变化 折射率

中央亮条纹 $\delta = k\lambda$

$$\Delta \delta = \Delta k \lambda$$

开放光路 —— 精确测量透明介质折射率__长度的变化

例题 在迈克尔孙干涉一支光路中放入厚度d的玻璃管管内充有某种气体,然后将玻璃管中的气体抽净观测到中心漂过10个亮条纹,计算气体的折射率

一 充有气体时中心亮条纹光程差 $\delta = k\lambda$ 抽净气体后中心亮条纹的光程差 $\delta' = k'\lambda$ 光程差的变化 $\Delta \delta = \delta - \delta' = N\lambda$

 $\Delta \delta = 2(n-1)d$

因子2 —— 光通过气体2次

气体折射率
$$n=1+\frac{N\lambda}{2d}=1+\frac{100\lambda}{d}$$

如果d = 100mm,

 $\lambda = 585 \text{nm}$

则 n = 1.0002925