8.
$$B(p,q) = \int_{0}^{1} t^{p-1} (1-t)^{q-1} dt \quad p > 0$$

a)
$$B(p,q+1) = \int_{0}^{1} t^{p-1} (1-t)^{q-1} dt \quad p > 0$$

$$B(p,q+1) = \int_{0}^{1} t^{p-1} (1-t)^{q-1} dt \quad p = \frac{q}{p} \int_{0}^{1} (4-t)^{q-1} t^{p} dt = \frac{q}{p} \int_{0}^{1} (4-t)^{q-1} dt \quad p = \frac{q}{p} \int_{0}^{1} (4-t)^{q-1} dt \quad q = \frac{q}{p}$$

Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 2. Tydzień rozpoczynający się 9. marca

- 1. Niech Σ będzie σ -ciałem zbiorów.
 - (a) Sprawdzić, że $\emptyset \in \Sigma$.
- (b) Zalóżmy, że $A_k \in \Sigma$, dla $k=1,2,3,\ldots$ Wykazać, że $\bigcap A_k \in \Sigma$
- (a) Opisać σ -ciała zbiorów tej przestrzeni zdarzeń.
- (b) Podać przykład funkcji X,Y takich, że X jest zmienną losową, a Y nie jest zmienną losową.
- 3. Niech $\Omega = \{1,2,3,4,5\}$ oraz $S = \{1,4\}$. Wyznaczyć najmniejsze σ -ciało zbiorów zawierające S

5. Dystrybuanta ${\cal F}$ zmiennej losowej ${\cal X}$ określona jest następująco:

- 6. Niech Xbędzie zmienną losową typu dyskretnego. Udowodnić, że $\mathrm{E}(aX+b)=a\;\mathrm{E}(X)+b.$
- 7. Niech X będzie zmienną losową typu ciągłego. Udowodnić, że $\mathrm{E}(aX+b)=a\,\mathrm{E}(X)+b.$

- (a) $B(p, q + 1) = B(p, q) \frac{q}{p+q}$, (b) B(p, q) = B(p, q + 1) + B(p+1, q).
- 9. 2p. Udowodnić, że $\Gamma(p)$ $\Gamma(q)=\Gamma(p+q)$ B(p,q), gdzie $p,q\in\mathbb{R}^+$ (czyli wszystkie potrzebne całki

DEF. Funkcją beta nazywamy wartość calki

$$B(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt, \quad p > 0, \quad q > 0.$$

Witold Karcsewsk

