

# Opening Session

Day 1: 945AM

Yogesh Simmhan & Swami Manohar





### IoT Architectural View



Analytics & Decision Making

Big Data Processing

Communication

Sensing & Actuation



## IoT Functional View



OODA loop at the heart of meaningful IoT applications



## IoT Fabric





## IoT Fabric

- IoT Fabric helps integrate these functions together, and maps them to the architecture
- Helps leverage infrastructure for multiple domains
  - Reusable platform as a service
  - Horizontal layers rather than vertical silos
- Spans physical and logical domains
  - Edge devices & Cloud
  - Public & private networks
  - Heterogeneous applications & analytics



## W3C Web of Things Framework





## **AWS IoT Platform**





# IoT in Action

IISc Smart Campus Water Management Project

smartx.cds.iisc.ac.in



# Objectives

- 1. Can we use IoT & Big Data technologies to make campus infrastructure "smarter"?
  - Efficient, reliable, safe, sustainable delivery & management of resources
  - Initial Case Study: Water management
- 2. And in the process, understand technology for smart townships and improve on it?
  - For the Indian context



## Smart Water Management

- Plan pumping operations for reliability
  - Avoid underflow/overflow of water
  - ▶ 12 hrs to fill a large OHT, scarcity in summer weeks
- Provide safer water
  - Leakages, contamination from decades old network
- Reduce water usage for sustainability
  - IISc average: 400 Lit/day, Global standard: 135 Lit/day
  - Lack of visibility on usage footprint, sources
  - Opportunities for water harvesting, recycling
- Lower the cost
  - Reduce cost for water use & electricity for pumping

#### **IISc Campus**

- 440 Acres, 8 Km Perimeter
- 50 buildings: Office, Hotel, Residence, Stores
- 10,000 people
- Water Use: 40 Lakh Lit/Day
- 10MW Power Consumed

| OHT   | 8   |
|-------|-----|
| GLR   | 13  |
| Inlet | 4+3 |







#### Over Head Tanks (OHT)



TPH (near Mechanical)



JNT Auditorium



**Chemical Stores** 



Opposite to CENSE



Opposite to NESARA



Behind old C-Mess



Opposite to lot Summer Sthool Cense (new)



E Type Quarters



#### **Ground Level Reservoirs (GLR)**



TPS 1



TPS 2



TPS 3



JNT Auditorium



Opposite to CENSE



**Boys Hostel** 



Near C Mess



Near R Block



E Type Quaters



Main Pumping Station



Old Aerospace IoT Summer School



Near Janata Bazaar



## IoT Technology Stack

An open, integrated & extensible platform for Smart Campus Resource Management





Custom Level + Quality

Sensor





### Installation of Flowmeters

- Operate on different principles
  - Differential pressure, Positive displacement, Velocity, Mass flow
- Electromagnetic flowmeters operate on Faraday's law of electromagnetic induction
  - Voltage induced when a conductor moves through a magnetic field.
- EM flowmeters have many advantages
  - Accuracy, repeatability, longevity, flow range, no abstraction to flow, no moving parts and minimal maintenance.
  - But are costly
- Image capture of existing BWSSB meters
  - Cheaper (4x), but intermittent, maintenance overheads



Electro magnetic flow meter



Image capturing device for existing turbine type flow meters



### Crowd-sourced Quality Sensing









- Cost-effective quality sensing thru' Crowd Sourcing
  - Paper-based design allows diverse users to test water
  - Report via photo of card & Smart Phone App
  - A simple colorimetric, diagnostic developed by MIT to test *pH*, calcium (Ca2+), magnesium (Mg2+), carbonates (CO32-), bicarbonates (HCO-3), and nitrites (NO-2 and NO-3)
- Other ideas: App-based OCR Sensing for water meter



## SmartCampus Network Deployment

- Efficient, reliable & manageable IoT network infrastructure
  - Connect water sensors to border router over wireless relay network
- ZigBee+SubGHz using RE-Mote
  - 2.4GHz IEEE 802.15.4 and CC1200 868/915MHz
  - 512KB of program flash and 32KB of RAM
  - Supported on Contiki/6LoWPAN





## SmartCampus Network Deployment

- ECE Pilot
  - ▶ Two water tanks, 5-node 6LoWPAN multi-hop network
  - Publish sensor and network health data to Cloud





## Network Design Experiments



| Range measurements  |                              |           |         |
|---------------------|------------------------------|-----------|---------|
| Source/Sensor node  | Destination node             | RSSI(dBm) | PER (%) |
| GLR - D Gate        | New Biological Sciences(NBS) | -69.5     | 0       |
| 300mm main D Gate-1 | NBS                          | -67       | 0       |
| 300mm main D Gate-2 | NBS                          | -69       | 0       |
| CeNSe - OHT - new   | ECE Roof Top                 | -75       | 3       |
| CeNSe - OHT - new   | NBS                          | -82       | 7       |
| GLR - Janata Bazaar | CNS                          | -71       | 0       |
| CNS                 | ECE Roof Top                 | -73       | 0       |
| SP-building         | ECE Roof Top                 | -67       | 0       |
| ECE Roof Top        | GLR-Janata Bazaar            | -100      | 13      |



# Crowd-sourced Communication using BLE

- Custom network deployment, management is costly
  - Deep inside buildings, in far off locations, etc.
- Can we use users as "data sherpas"?
  - Use Bluetooth Low Energy (BLE) to pass data from sensor to smart phone,
  - Use phone's data connection (WiFi, 2/3G) when available to transmit the data to Cloud.
- Understand the environment conditions under which data communication can be effectively crowdsourced using BLE, for specific application domains.
  - Cost for alternate solution is high for location
  - QoS of BLE solution acceptable for domain



# Big Data Analytics on Clouds

- Velocity of Big Data critical for IoT apps
  - Scalable ingest from K's of streams
  - Low-latency analytics for rapid response
- Volume support for offline analytics
  - Mining for interesting events
  - Building offline models, optimizers
- Clouds offer scalable & elastic platform
  - But not exclusively...latency, privacy, bandwidth!
  - Edge devices as first-class analytics platforms



# Backend Design





## Crowdsourcing & Visualization

- SmartPhone app as a means to engage the community
  - Offer realtime information on water alerts
  - Allows users to report water issues from map interface
  - Later: Water quality cards, BLE Sherpas
- Water Portal
  - Map interface on water network, IoT infrastructure
  - Visualize realtime water usage patterns, NW health
  - Analytics over historic data, comparisons, trends





# Now, its your turn...



### **Tutorials**

- Learn the standards, tools, technologies in an IoT fabric
  - Sensors
  - Communication
  - Data processing & Analytics
  - Cloud & Edge devices
- Start from first principles in designing your own IoT environment
- Learn about existing integrated platforms
- Two tracks over Day 1 & 2 afternoons
  - 1. Sensors & Communication
  - 2. Software & Analytics



## IoT Hackaton

- Monday PM Saturday AM
- Apply the learning to a practical IoT application
  - Come up with ideas using IoT technology for societal benefit. Bootstrapping ideas provided.
  - Use sensors & communication devices provided to design your hardware solution
  - Use edge devices & Cloud along with Big Data platforms for analytics and visualization
- Work as a team across disciplines
- Mentors to guide you, mailing list for technology support
- Publish your solution on GitHub for broader impact
- Present your work & compete for top honors!



# Sensing & Communication Track [Room 202]

#### Day 1, Mon 20 June from 3-630PM

- Joint session of both tracks: Introduction to the Tutorials (Yogesh, CDS)
  [15mins]
- Practical Sensing (Ashish, RBCCPS) [60mins]
  - Types of sensors, properties, interfacing techniques, protocols
- Acquiring sensor data (Akshay and Anand, ECE) [40 mins]
  - Getting data from Sensor to Pi, and Sensor to Contiki to Pi
  - Hands on: Read data from sensor thru Laptop/Pi and Contiki
- Android and BLE (Vasant, RBCCPS) [20mins]
- JouleJotter Power Metering (Abhirami & Yashaswini, ESE) [15mins]
- jPLug Power Metering and Nebula Sensor kits (Tanuja, Data Glen) [30mins]
- Joint session for tracks: Team formation, project idea discussion (Yogesh, CDS) [30mins]



# Sensing & Communication Track [Room 202]

#### Day 2, Tue 21 June from 330-630PM

- Joint session of both tracks: Using Pi & Azure VM by teams (Anshu & Vyshak, CDS) [30mins]
- Wireless Networking and Communication standards (Akshay and Anand, ECE) [150mins]
  - Power, standards, motes/WSN, 6lowpan, mesh NW
  - ► IPv6, routing, RPL, CoAP, MQTT
  - Hands on: Transmitting data through sensor network to border router (Pi)



# Software & Analytics Track [Room 102]

#### Day 1, Mon 20 June from 3-630PM

- Joint session of both tracks: Introduction to the Tutorials (Yogesh, CDS) [15mins]
- Connecting to Azure VM & accessing GitHub (Anshu, CDS)
   [30mins]
- IoT Software Fabric & Event-based Architecture (Vyshak, CDS) [75mins]
  - COAP, Publish-Subcribe, MQTT & SenML
  - Hands on: Run MQTT Pub-Sub samples from personal laptop or Azure VM
- Complex Event Processing (Rajrup, CDS) [60mins]
  - Hands on: Run Siddhi CEP engine samples from personal laptop or Azure VM
- Joint session for tracks: Team formation, project idea discussion (Yogesh, CDS) [30mins]



# Software & Analytics Track [Room 102]

### Day 2, Tue 21 June from 330-630PM

- Joint session of both tracks: Using Pi & Azure VM by teams (Anshu & Vyshak, CDS) [30mins]
- Stream processing using Apache Storm (Anshu, CDS) [60 mins]
  - Hands on: Run Apache Storm IoT topology from Azure VM
- Pub-Sub on Android using IISc Notification Platform (Abhilash, CDS) [30mins]
  - Hands on: Run chat app from personal Android phone
- Analytics & Visualization Tools (Rajrup, CDS) [30mins]
  - R Analytics, Weka, Rickshaw
- Data Glen IoT Platform (Tanuja, Data Glen) [30mins]



# Tasks for Participants

#### By this morning

- Subscribe to Mailing list
  - https://groups.google.com/forum/#!forum/iot\_summer\_school\_2016
- Get connected to guest WiFi at IISc
- Have your Laptop with following software installed
  - Git or GitHub client & SSH Client
  - SW&A track
    - Java IDE such as Eclipse, IntelliJ, Java JDK 7 or later, Apache Maven
    - Python, R Studio, Android Studio (optional)
  - S&C Track
    - Ubuntu OS prefered
- GitHub
  - Request commit access to summer school GitHub site
  - https://github.com/dream-lab/iot-school
  - Clone the GitHub common folder to your laptop
  - https://github.com/dream-lab/iot-school/tree/master/common



# Tasks for Participants

#### By start of Day 2

- Pick a team (2 from Sensing/Comm, 2 from SW/Analytics) and a team name.
- Create a folder with your team name on GitHub under https://github.com/dream-lab/iotschool/tree/master/teams. Create a file "members.txt" in your team folder with the name, affiliation and email address of your team members.
- Pick up Raspberry Pi and Azure VM account information for your team

### By end of Day 2

 Pick a project topic to work on. Pick up sensors required for your project. Identify mentor for your project.



# Thank you!

github.com/dream-lab/iot-school

