ЦМФ 2021. Bank Scoring Case, level 2 Predicting probability of default

Работу выполнил:

Медведев Виктор

Постановка задачи

Бизнес постановка:

- выборка с данными клиентов
- необходимо предсказать, произойдет ли просрочка кредита у отдельно взятого клиента

Постановка машинного обучения:

- данные в X train, X test
- известный таргет в y_train, предсказать y_test
- анализ данных и их предобработка
- тип задачи задача классификации с учителем
- тестирование моделей и выбор лучшей

Визуализация исходных и обработанных данных

Исходные данные: множество выбросов, ни один из признаков визуально не разделяет классы

Обработанные данные: нет выбросов, заметна разделяющая сила утилизации и дней просрочки

Матрица корреляции

После визуализации всех зависимостей в данных:

- Необходимо посмотреть важные зависимости между фичами и target значениями
- Определить статистическую значимость значений фичей
- Найти явные ошибки в данных
- Заполнить пропущенные значения в данных

Family members содержит пропущенные значения, для заполнения пропущенных значений использовался метод **most frequent.**

На диаграмме справа изображено количество повторяющихся значений числа членов семьи, а также отмечены квантили (50%, 75% и 99%).

Как видно, семьи с числом членов больше 4 можно удалить из данных, как статистически не значимые и таким образом мы исключим ложные зависимости в данных, как на левом графике (в его правой части).

Mortgage loans не содержит пропуски, поэтому нужно проанализировать только зависимости и их статистическую значимость. На графике слева (рис. 2) изображены значения вероятности просрочки по кредиту в зависимости от текущего количества ипотечных займов. После значения 9 наблюдается довольная странная зависимость, но после анализа выборки по правой диаграмме, становится понятно, что значения больше 6, статистически не значимы, а потому их необходимо выбросить.

После того, как они были удалены, остается только следующая зависимость в данных

Видно, что на этой диаграмме содержится значение возраста 0, которое мы тоже должны выбросить.

На левой гистограмме по **monthly income** те, кто вовремя возвращал кредит, а на правой те, кто допускал просрочки.

Как видно из гистограмм, левая медиана на значении чуть больше 5000, а правая медиана на значении чуть меньше 5000, поэтому пропущенные значения заполнялись посредством среднего значения этих двух медиан.

Простые модели

	ROC-AUC	GINI
knn	0,849	0,698
LogReg	0,848	0,696
Decision Tree	0,841	0,682

- Наилучшие модели: LogReg и knn
- B LogReg нужно избежать мультиколлинеарности, зато она стабильна, интерпретируема и преобразуема к классическим скоринговым моделям
- KNN устойчив к выбросам, достаточно прост и интерпретируем, но трудоемок и затратен в вычислительном плане
- Decision Tree обладает высокой объясняющей способностью, требует небольшой предобработки, но неустойчив к изменениям

Random Forest

Лучшие параметры:

max_depth=90, max_features=2, min_samples_leaf=40, min_samples_split=10, n_estimators=200

second tree

Результат: 0.85861

и еще 197 таких решающих деревьев...

XGBoost

Model Report

Accuracy: 0.9372 Precision: 0.5984

Recall: 0.1909

F1 score: 0.2894

AUC Score (Train): 0.8708 AUC Score (Test): 0.8656

AUC Score (Kaggle): 0.8652

Лучшие параметры модели:

learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=4, gamma=0.6, subsample=0.6, colsample_bytree=0.8, reg_alpha=1, objective= 'binary:logistic', nthread=4, scale_pos_weight=1

Анализ метрик качества

Logistic Regression:

precision - 0.8355; recall - 0.9743; f1 - 0.8996; accuracy - 0.8258; AUC-ROC - 0.8492; AUC-ROC (Kaggle) - 0.8486

Decision Tree Classifier:

precision - 0.8698; recall - 0.9724; f1 - 0.9182; accuracy - 0.8554; AUC-ROC - 0.8416; AUC-ROC (Kaggle) - 0.8344

kNN:

precision - 0.7881; recall - 0.9776; f1 - 0.8727; accuracy - 0.7853; AUC-ROC - 0.8484; AUC-ROC (Kaggle) - 0.8421

Random Forest Classifier:

precision - 0.7825; recall - 0.9808; f1 - 0.8705; accuracy - 0.7826; AUC-ROC - 0.8622; AUC-ROC (Kaggle) - 0.861