Laborator 2 – Rezolvare

II) Criptare

- 1. C = MECHANISATION OF SECRECY
 - a. MECHANISATIONXOFXSECRECY (X pentru spațiile libere)
 - b. Link Maşină Enigma Virtuală sau Aici

c. DOPDOP → CYNLS W

${\tt MECHANISATIONXOFXSECRECY} \rightarrow {\tt USUIE\ GZEVL\ UVDFR\ QEUBB\ XRDF}$

Mesaj Final: CYNLS WUSUI EGZEV LUVDF RQEUB BXRDF

2. Mod Funcționare Enigma:

Enigma How the machine worked

III) Decriptare

M = RPVLU JHNBT NLQMN OCAA

→ WORLD XWARX TWO

K = RPVLU J → ABCAB C (Setăm ABC drept cheie de criptare și acum descifrăm mesajul)

IV) Criptanaliza Poloneză (Marian Rejewski)

1. Slăbiciunea pe care a exploatat-o Rejewski face referire la faptul că germanii trimiteau codul de criptare împreună cu mesajul propriu-zis. De asemenea, alegeau un grup de 3 litere, pe care le încriptau de două ori, deci acest lucru ne poate oferi un indiciu asupra identității literelor criptate inițial (primele 6 litere din mesaj erau cifrul).

Pentru *Litera I*:

Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
V	*	M	N	T	G	P	I	Y	*	Z	A	S	Q	J	*	X	*	O	F	R	C	U	В	Е	L

Cicluri: (AVCMSOJ) \rightarrow 7; (DNQXB) \rightarrow 5; (ETFGP) \rightarrow 5; (HIYETFGP) \rightarrow 8; (KZLAVCMSOJ) \rightarrow 10; (UR) \rightarrow 2; (WUR) \rightarrow 3; (YETFGP) \rightarrow 6.

Iau: (KZLAVCMSOJ) \rightarrow 10; (HIYETFGP) \rightarrow 8; (WUR) \rightarrow 3; (DNQXB) \rightarrow 5.

Grupez și obțin caracteristica zilei (trebuie să am cicluri de lungime egală): (KZLAVCMSOJ WUR) → 13; (HIYETFGP DNQXB) → 13.

Pentru *Litera II*:

	A	В	C	D	Е	F	G	Η	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z
	O	Е	Z	В	R	*	C	P	*	Y	L	X	J	*	F	I	*	*	D	A	K	G	U	V	M	W
(Cic	luri:	(C	ZW	'UK	LX	VC	() -	9	; (H	PI)	\rightarrow	3; (.	IYN	<u>(I)</u>	→ 3	; (N	1) -	→ 1;	(Q	\rightarrow	1;	(SD	BEI	R) -	→ 5;

 $(TAOF) \rightarrow 4$.

Grupez și obțin: (N) \rightarrow 1; (Q) \rightarrow 1; || (HPI) \rightarrow 3; (JYM) \rightarrow 3; || (CZWUKLXVG) \rightarrow 9; (SDBER TAOF) \rightarrow 9.

Pentru Litera III:

																						W			
J	*	V	Е	O	Y	N	*	D	M	W	U	*	S	Η	L	*	*	A	F	Q	C	Z	K	X	*

Cicluri: (B) \rightarrow 1; (CV) \rightarrow 2; (GNSAJM) \rightarrow 6; (IDEOH) \rightarrow 5; (PLUQ) \rightarrow 4; (R) \rightarrow 1; (TFYXKWZ) \rightarrow 7.

Grupez și obțin: (BR) \rightarrow 2; (CV) \rightarrow 2; || (TFYXKWZ PLUQ) \rightarrow 11; (GNSAJM IDEOH) \rightarrow 11.

2. LOC \rightarrow AFV (ne-am uitat în tabel) \rightarrow LOCAFV (cheia de criptare)

- 3. Pt *Litera III*, caracteristica este <u>11, 11, 2, 2</u> și în tabel avem o singură linie care satisface aceaste valori și anume **BIX**. Dacă presupunerea noastră este corectă, știm că primul rotor se învârte pentru fiecare literă apăsată, deci, pentru a doua literă, ar trebui să obținem **BIW** și pentru prima literă **BIV**. Să verificăm; pentru *litera II* caracteristica este <u>9, 9, 3, 3, 1, 1</u> și în tabel avem o singură valoare care satisface condiția → **BIW**; iar pentru *litera I* caracteristica este <u>13, 13</u>, dar am 4 poziții cu această caracteristică, deci numai **BIV** este corectă. Concluzionăm că poziția inițială a rotorilor este **BIV**.
- 4. Pentru a descoperi prizele, comparăm permutările din tabel, cu ce am obținut noi:

Noi: KZLAVCMSOJWUR HIYETFGPDNQXB

Tabelă: AVRMSTJWUCKZL BHIPEOFGYDNQX

A V C M S O J W U R K Z L * B H I Y E T F G P D N Q X A V D M S T I W II G K Z I * B H I D F G F G M D N Q X

Prizele sunt simetrice. Deci, avem: C - R; O - T; Y - P.

5. Mesaj Criptat: BLGH XNST PVBX WMUZ P.

BLGHXN → KEYKEY

Ciphertext: BLGHX N Plaintext: KEYKE Y

ST PVBX WMUZ P \rightarrow NEXTX ATTAC K

Mesajul decriptat este: Next attack.

V) Criptanaliza Britanică (Alan Turing)

Alan Turing a remarcat o slăbiciune importantă a mașinii Enigma, iar acest lucru a ajutat la spargerea ei: să presupunem că vrem să criptăm litera *A*. Enigma nu va cripta niciodată litera *A* în ea însăși. (Mașina <u>Type X</u>, descendentul Enigmei, folosită de britanici, nu mai prezenta această slăbiciune, printre alte îmbunătățiri.)

Astfel, Alan Turing, împreună cu Gordon Welchman, au construit <u>Bombe</u>, mașina de spart cifruri Enigma, care reușea să spargă codurile în mai puțin de 20 de minute, folosind, la bază procesul de eliminare.

M = CETINFWUTYPED...

Avem următoarele cribs: WEATHERXREPORT, BATTLEXREPORT, ATTACKXREPORT Deci, obținem următoarele comparații:

Cipher text: Plain crib:	C W	E E	T A	I T	N H	F E	W R	U X	T R	Y E	P P	E O	D R	Invalid Crib
Cipher text: Plain crib:	C E	E A	T T	I H	N E	F R	W	U R	T E	Y P	P O	E R	D T	Invalid Crib
Cipher text: Plain crib:	C B	E A	T T	I T	N L	F E	W	U R	T E	Y P	P O	E R	D T	Invalid Crib
Cipher text: Plain crib:	C A	E T	T	I A	N C	F K	W	U R	T E	Y P	P	E R	D T	Invalid Crib

Concluzie: Folosindu-ne doar de aceste informații, nu putem determina o criptare corectă.

Suplimentar: Cu toate acestea, putem avea o criptare în acest fel:

Și am putea folosi un simulator **Bombe** pentru a găsi o posibilă spargere.

