1. Minimization

- a. Did the 7-state Moore model edge detector earlier
- b. Can minimize this down to 5 states (as shown below) and still have functional equivalency

2. Some definitions

- a. Two states S_i and S_j are *equivalent* if and only if for every possible input sequence, the same output sequence will be produced, regardless of whether S_i or S_j is the initial state
- b. A successor to state S_i is a state that it transitions to, based on its input
 - i. S_0 in the unminimized FSM has S_{00} and S_{01} as its successors
 - ii. Differentiate successors based on input
 - 1. S_{00} is the *O-successor* of S_0
 - 2. S_{01} is the *1-successor* of S_0
 - 3. Collectively, all immediate successors of a state form the k-successors of the state
- c. A block is a subset of states that may be equivalent
- d. A *partition* is a set of blocks where the states in each block are not equivalent to the states in the other blocks

- 3. Partition Minimization Procedure
 - a. Will use the unminimized edge detector FSM for the rest of this example
 - b. Start with all states in one partition and in same block
 - i. $P_1 = (S_i, S_0, S_1, S_{00}, S_{01}, S_{10}, S_{11})$
 - c. Create P₂ by dividing states in P₁ that have same outputs
 - i. From definition of equivalent, states that have different outputs cannot be equivalent
 - ii. $P_2 = (S_i, S_0, S_1, S_{00}, S_{11}) (S_{01}, S_{10})$
 - d. Create P₃ by looking at k-successors of each state
 - i. States of a block that have k-successors that in are different blocks from others in the block must be placed in new blocks, grouped by their shared k-successors
 - ii. Look at first block (S_i , S_0 , S_1 , S_{00} , S_{11})
 - 1. 0-successors for the $(S_i, S_0, S_1, S_{00}, S_{11})$ block of P_2 are $S_0, S_{00}, S_{10}, S_{00}, S_{10}$, respectively
 - a. Need to divide states into those that stay in the block, and those that move to the (S_{01}, S_{10}) of P_2
 - b. Thus, we get (S_i, S_0, S_{00}) and (S_1, S_{11})
 - 2. 1-successors for (S_i, S_0, S_{00}) are S_1, S_{01}, S_{01} , respectively
 - a. So, we divide into (S_i) and (S_0, S_{00})
 - 3. 1-succesors for (S_1, S_{11}) are S_{11}, S_{11} , so it will not need to be divided
 - 4. First block of P_2 will be divided into the three blocks (S_i) , (S_1, S_{11}) and (S_0, S_{00}) in P_3
 - iii. Now look at second block (S_{01} , S_{10})
 - 1. O-successors for the (S_{01}, S_{10}) block of P_2 are S_{10} , S_{00} , respectively
 - a. These are in different blocks from each other in P_2
 - 2. Will have to divide into two separate blocks (S_{01}), and (S_{10})
 - iv. So $P_3 = (S_i)(S_1, S_{11})(S_0, S_{00})(S_{01})(S_{10})$
 - e. Further partitions
 - i. Once a block has one state in it, don't need to partition it further
 - 1. Will still need to use it to determine k-successors, though
 - ii. P₄ and further partitions look at each multiple-element block of the previous partition to see if the k-successors of its elements lead to the same blocks of the previous partition
 - 1. If not, the block must be further divided
 - 2. If any block splits, then we must continue to another step of partitioning
 - 3. If no block splits, then we are done
 - iii. Look at P4 now
 - 1. 0-successors of (S_1, S_{11}) are both block (S_{10}) , so that will not cause the block to split
 - 2. 1-successors are both (S_1 , S_{11}), so there is no need to separate the block further during this partitioning step
 - 3. O-successors of (S_0, S_{00}) are both block (S_0, S_{00}) , so that will not cause the block to split
 - 4. 1-successors are both (S_{01}) , so there is no need to separate the block further during this partitioning step
 - iv. Since no block split, the final minimized partition is $P_4 = (S_i)(S_1, S_{11})(S_0, S_{00})(S_{01})(S_{10})$
 - 1. This matches the five-state minimized state diagram

- f. Now use this to create minimized state diagram
 - i. K-successors are the same for the multiple-state blocks, use that to combine them together
 - ii. Use names of states 0 and 1 as new names for those combined states

- 4. Implementing the minimized FSM
 - a. From our minimized (equivalent) FSM we get the following state table

Present State	Next	State	Output
Present State	<i>x</i> = 0	x = 1	Z
i	0	1	0
0	00	01	0
1	10	11	0
00	00	01	0
01	10	01	1
10	00	01	1
11	10	11	0

Present State	Next	State	Output
Present State	<i>x</i> = 0	x = 1	Z
i	0	1	0
0	0	01	0
1	10	1	0
01	10	1	1
10	0	01	1

Original state table

Minimized state table

- b. Next, assign binary codes in state transition table
 - i. Will need 3 flip flops to represent 5 states, call these A, B, and C
 - ii. Again, have done assignment in order here, but not necessarily optimal
 - 1. Will talk about how to determine optimal state binary code placement later

Present State	Binary	Pres	ent S	tate	Input	Ne	xt St	ate	Output
Present State	Code	Α	В	С	х	Α'	B'	C'	Z
i	000	0	0	0	0	0	0	1	0
i	000	0	0	0	1	0	1	0	0
0	001	0	0	1	0	0	0	1	0
0	001	0	0	1	1	0	1	1	0
1	010	0	1	0	0	1	0	0	0
1	010	0	1	0	1	0	1	0	0
01	011	0	1	1	0	1	0	0	1
01	011	0	1	1	1	0	1	0	1
10	100	1	0	0	0	0	0	1	1
10	100	1	0	0	1	0	1	1	1

15 Moore model FSM minimization

- c. Create K-maps for each flip flop based on input and present state
 - i. States that weren't assigned form don't cares, like in original FSM

A'		AB				
		00	01	11	10	
C	00	0	1	d	0	
	01	0	o	a	0	
Cx	11	0	0	d	d	
	10	0	1	d	d	

		_
A'	=	$B\bar{x}$

B'		AB					
		00	01	11	10		
Сх	00	0	0	d	0		
	01	1	1	d	1		
	11	1	1	d	d		
	10	0	0	d	d		

$$B' = x$$

C'		AB						
		00	00 01 11					
	00	1	0	Ь	E			
Сх	01	၂ဝ	0	d	1			
	11	1	0	d	d			
	10	A	0	g				

$$C' = A + \overline{Bx} + \overline{B}C$$

- d. Use derivations from these K-maps to design initial combinational circuit
- e. Create a K-Map based on flip-flops to determine the output combinational circuit
 - i. Assign don't cares for the same reason as above

\boldsymbol{z}		AB					
		00	01	11	10		
C	0	0	0	q	1		
С	1	0	1	Q	ď		

$$z = A + BC$$