Importing Required Librarires

In [1]:

```
import numpy as np
   import pandas as pd
 3 import matplotlib.pyplot as plt
4 import seaborn as sns
 5 from warnings import filterwarnings
6 filterwarnings('ignore')
7 from sklearn.cluster import KMeans
8 from scipy import stats
9 from sklearn.model selection import train test split
10 | from category_encoders import CatBoostEncoder, TargetEncoder
11 from sklearn.preprocessing import PowerTransformer
12 from sklearn.preprocessing import StandardScaler
13 | from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_percentage_error
14 import statsmodels.api as sma
15 from sklearn.tree import DecisionTreeRegressor
16 from sklearn.ensemble import RandomForestRegressor
17 from sklearn.neighbors import KNeighborsRegressor
18 from sklearn.ensemble import AdaBoostRegressor
19 from sklearn.ensemble import GradientBoostingRegressor
20 from xgboost import XGBRegressor
21 from catboost import CatBoostRegressor
22 from sklearn.neural network import MLPRegressor
```

In [2]:

Reading the dataset and viewing first five rows

In [3]:

```
pd.set_option('display.max_columns',22)
```

```
In [4]:

1   df = pd.read_csv('Airbnb_Price.csv')
2   df.head()
```

Out[4]:

	City	Day	realSum	room_type	room_shared	room_private	person_capacity	host_is_supe
0	Amsterdam	Weekday	194.033698	Private room	False	True	2	
1	Amsterdam	Weekday	344.245776	Private room	False	True	4	
2	Amsterdam	Weekday	264.101422	Private room	False	True	2	
3	Amsterdam	Weekday	433.529398	Private room	False	True	4	
4	Amsterdam	Weekday	485.552926	Private room	False	True	2	
4								•

Checking the shape and dimension of dataset

```
In [5]:
```

```
1 print(f'The dataset has {df.shape[0]} rows and {df.shape[1]} columns')
```

The dataset has 51707 rows and 21 columns

In [6]:

```
print(f'The dimension of the dataset is {df.ndim}')
```

The dimension of the dataset is 2

Checking the datatype, number of non null values and name of each variable in the dataset

```
In [7]:
```

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51707 entries, 0 to 51706
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	City	51707 non-null	object
1	Day	51707 non-null	object
2	realSum	51707 non-null	float64
3	room_type	51707 non-null	object
4	room_shared	51707 non-null	bool
5	room_private	51707 non-null	bool
6	person_capacity	51707 non-null	int64
7	host_is_superhost	51707 non-null	bool
8	multi	51707 non-null	int64
9	biz	51707 non-null	int64
10	cleanliness_rating	51707 non-null	int64
11	<pre>guest_satisfaction_overall</pre>	51707 non-null	int64
12	bedrooms	51707 non-null	int64
13	dist	51707 non-null	float64
14	metro_dist	51707 non-null	float64
15	attr_index	51707 non-null	float64
16	attr_index_norm	51707 non-null	float64
17	rest_index	51707 non-null	float64
18	rest_index_norm	51707 non-null	float64
19	lng	51707 non-null	float64
20	lat	51707 non-null	float64
	1 1/2) 51 (51/2) 1 (

dtypes: bool(3), float64(9), int64(6), object(3)

memory usage: 7.2+ MB

Checking for the missing values. Displaying number of missing values per column

In [8]:

Out[8]:

	Number of missing values	Percentage of missing values
City	0	0.0
Day	0	0.0
realSum	0	0.0
room_type	0	0.0
room_shared	0	0.0
room_private	0	0.0
person_capacity	0	0.0
host_is_superhost	0	0.0
multi	0	0.0
biz	0	0.0
cleanliness_rating	0	0.0
guest_satisfaction_overall	0	0.0
bedrooms	0	0.0
dist	0	0.0
metro_dist	0	0.0
attr_index	0	0.0
attr_index_norm	0	0.0
rest_index	0	0.0
rest_index_norm	0	0.0
Ing	0	0.0
lat	0	0.0

From above dataframe we can see that there are no missing values present in the dataset

Dropping of irrelevant columns from the dataset

We can drop room_shared and room_private columns as they are subset of room_type column and attr_index , rest_index as there is normalised values of those columns is already there.

```
In [9]:
```

```
1 df.drop(columns = ['room_shared','room_private'] , inplace = True)
```

Checking for the descriptive statistics of the dataset

In [10]:

```
1 df.describe(include = 'object').T
```

Out[10]:

	count	unique	top	freq
City	51707	10	London	9993
Day	51707	2	Weekend	26207
room_type	51707	3	Entire home/apt	32648

From above report we could infer that :-

- 1) There are 10 unique cities listed and majority of the properties are listed from the city London with frequency of 9993
- 2) Majority of the bookings was made on weekends than weekdays
- 3) For room type most customers preferred entire home or apartment

In [11]:

```
1 df.describe().T
```

Out[11]:

	count	mean	std	min	25%	50%	75%
realSum	51707.0	279.879591	327.948386	34.779339	148.752174	211.343089	319.694286
person_capacity	51707.0	3.161661	1.298545	2.000000	2.000000	3.000000	4.000000
multi	51707.0	0.291353	0.454390	0.000000	0.000000	0.000000	1.000000
biz	51707.0	0.350204	0.477038	0.000000	0.000000	0.000000	1.000000
cleanliness_rating	51707.0	9.390624	0.954868	2.000000	9.000000	10.000000	10.000000
guest_satisfaction_overall	51707.0	92.628232	8.945531	20.000000	90.000000	95.000000	99.000000
bedrooms	51707.0	1.158760	0.627410	0.000000	1.000000	1.000000	1.000000
dist	51707.0	3.191285	2.393803	0.015045	1.453142	2.613538	4.263077
metro_dist	51707.0	0.681540	0.858023	0.002301	0.248480	0.413269	0.737840
attr_index	51707.0	294.204105	224.754123	15.152201	136.797385	234.331748	385.756381
attr_index_norm	51707.0	13.423792	9.807985	0.926301	6.380926	11.468305	17.415082
rest_index	51707.0	626.856696	497.920226	19.576924	250.854114	522.052783	832.628988
rest_index_norm	51707.0	22.786177	17.804096	0.592757	8.751480	17.542238	32.964603
Ing	51707.0	7.426068	9.799725	-9.226340	-0.072500	4.873000	13.518825
lat	51707.0	45.671128	5.249263	37.953000	41.399510	47.506690	51.471885
4							•

In []:

1

Univariate Analysis

```
In [12]:
```

```
1 df.columns
```

Out[12]:

City

In [13]:

```
sns.countplot(df['City'].sort_values() , palette = colors )

for i,v in enumerate(df['City'].value_counts().sort_index()):
    plt.text(x = i , y = v + 100, s = v , ha = 'center')
```


Day

In [14]:

```
sns.countplot(df['Day'] , palette = colors)

for i,v in enumerate(df['Day'].value_counts()):
    plt.text(x = i , y = v , s = v , ha = 'center')
```


Room_type

In [15]:

```
sns.countplot(df['room_type'].sort_values(), palette = colors)

for i,v in enumerate(df['room_type'].value_counts().sort_index()):
    plt.text(x = i , y = v + 300, s = v , ha = 'center')
```


host_is_superhost

In [16]:

```
sns.countplot(df['host_is_superhost'].sort_values() , palette = colors)

for i,v in enumerate(df['host_is_superhost'].value_counts().sort_index()):
    plt.text(x = i , y = v + 100, s= v , ha = 'center')
```


cleanliness_rating

In [17]:

```
1 sns.histplot(df['cleanliness_rating'] , color = '#97C1A9')
2 plt.show()
```


Guest_satisfaction_overall

In [18]:

```
sns.histplot(df['guest_satisfaction_overall'] , color = '#97C1A9')
plt.show()
```


Bedrooms

In [19]:

```
1 sns.histplot(df['bedrooms'] , color = '#97C1A9')
2 plt.show()
```


Bivariate Analysis

City vs Price

In [20]:

```
sns.barplot(df['City'].sort_values(),df['realSum'] , palette = colors)

for i,v in enumerate(df.groupby(by = 'City')['realSum'].mean()):
    plt.text(x = i, y = v + 20, s= round(v,2) , ha = 'center')
```


Day vs Price

In [21]:

```
sns.barplot(df['Day'].sort_values(),df['realSum'],palette = colors)

for i,v in enumerate(df.groupby('Day')['realSum'].mean()):
   plt.text(x =i , y = v+10, s=round(v,2) , ha ='center')
```


Room_type vs Price

In [22]:

```
sns.barplot(df['room_type'].sort_values(),df['realSum'],palette=colors)

for i,v in enumerate(df.groupby('room_type')['realSum'].mean()):
    plt.text(x=i , y=v + 10, s= round(v,2) , ha='center')
```


Host_is_superhost vs Price

In [23]:

```
sns.barplot(df['host_is_superhost'],df['realSum'],palette=colors)

for i,v in enumerate(df.groupby('host_is_superhost')['realSum'].mean()):
    plt.text(x=i , y=v + 10 , s=round(v,2) , ha='center')
```


Cleanliness_rating vs Price

In [24]:

```
sns.barplot(df['cleanliness_rating'],df['realSum'],palette = colors)

for i,v in enumerate(df.groupby('cleanliness_rating')['realSum'].mean()):
   plt.text(x=i , y=v + 15, s=round(v,2), ha= 'center')
```


Bedrooms vs Price

In [25]:

```
sns.barplot(df['bedrooms'],df['realSum'],palette=colors)

for i,v in enumerate(df.groupby('bedrooms')['realSum'].mean()):
   plt.text(x=i , y=v + 100, s=round(v) , ha='center')
```


Mutivariate Analysis

```
In [26]:
```

```
sns.heatmap(df.corr() , cmap = colors , mask = np.triu(df.corr()) , linewidth=0.5, annot = True
      plt.show()
              realSum -
        person_capacity -
      host_is_superhost - -0.045
                               0.031
                 multi - -0.053
                                -0.054 0.098
                                        -0.11
                                               -0.47
                   biz - 0.037
                                              0.041
                                                                                                                                                         0.4
      cleanliness_rating --0.0061
guest_satisfaction_overall --0.0019 0.0052
                                              0.054
                                                      -0.21
             bedrooms -
                                0.56
                                       0.024 -0.00066 -0.027 0.033
                                                                    0.048
                                                                                                                                                         0.2
                                                                    -0.0042 -0.0063
                   dist - -0.045
                                -0.13
                                       -0.056
                                              0.033
                                                      -0.16
                                                             -0.03
                                -0.037 -0.00072 0.043
                                                      -0.11
                                                                     0.03 0.044
                                                                                    0.56
            metro dist - -0.061
                                                             0.01
                                                                                                                                                         0.0
                                                                                           -0.17
                                                      0.11
                                                                    -0.051 -0.012
                                                                                    -0.36
             attr index -
                        0.18
                                0.028
                                      -0.026 0.0063
                                                             -0.025
                                                                                           -0.22
                                -0.05
                                       -0.089
                                              -0.041
                                                      0.094
                                                             -0.075
                                                                     -0.074 -0.064
                                                                                    -0.24
        attr index norm -
             rest_index - 0.13
                                0.037
                                       -0.035 0.0071
                                                      0.14
                                                                     -0.069 -0.014
                                                                                    -0.35
                                                                                           -0.14
                                                                                                                                                          -0.2
                                                                                                  0.54
        rest_index_norm -
                        0.14
                                       -0.018
                                              -0.037
                                                      0.084
                                                                    -0.0088
                                                                            -0.058
                                                                                    -0.47
                        -0.17
                                              0.041
                                                      -0.089
                                                                            0.014
                                                                                                                 -0.18
                                              -0.034
                                                multi
                                                        biz
                                                                      satisfaction_overall
                                                                                                                                 lng
                                 capacity
                                                                                                                          rest_index_norm
```

Feature Engineering

A new column named "Region" will be created by leveraging the latitude and longitude values of each city.

```
In [27]:
```

10 df_vienna = df[df['City'] == 'Vienna']

In [29]:

```
#Amsterdam
km=KMeans(n_clusters=4, init='k-means++',random_state=20)
kmod=km.fit(df_amsterdam[['lat','lng']])
lab=kmod.labels_
df_amsterdam['Region']=lab
sns.scatterplot(df_amsterdam['lat'],df_amsterdam['lng'],hue=df_amsterdam['Region'])
df_amsterdam['Region']=df_amsterdam['Region'].map({0:'West',1:'North',2:'South',3:'East'})
```


In [30]:

```
#Athens
km=KMeans(n_clusters=4, init='k-means++',random_state=20)
kmod=km.fit(df_athens[['lat','lng']])
lab=kmod.labels_
df_athens['Region']=lab
sns.scatterplot(df_athens['lat'],df_athens['lng'],hue=df_athens['Region'])
df_athens['Region']=df_athens['Region'].map({0:'West',1:'North',2:'South',3:'East'})
```


In [31]:

```
#BarceLona
km=KMeans(n_clusters=4, init='k-means++',random_state=20)
kmod=km.fit(df_barcelona[['lat','lng']])
lab=kmod.labels_
df_barcelona['Region']=lab
sns.scatterplot(df_barcelona['lat'],df_barcelona['lng'],hue=df_barcelona['Region'])
df_barcelona['Region']=df_barcelona['Region'].map({0:'West',1:'North',2:'South',3:'East'})
```


In [32]:

```
#Berlin
km=KMeans(n_clusters=4, init='k-means++',random_state=20)
kmod=km.fit(df_berlin[['lat','lng']])
lab=kmod.labels_
df_berlin['Region']=lab
sns.scatterplot(df_berlin['lat'],df_berlin['lng'],hue=df_berlin['Region'])
df_berlin['Region']=df_berlin['Region'].map({0:'West',1:'North',2:'South',3:'East'})
```


In [33]:

```
#Budapest
km=KMeans(n_clusters=4, init='k-means++',random_state=20)
kmod=km.fit(df_budapest[['lat','lng']])
lab=kmod.labels_
df_budapest['Region']=lab
sns.scatterplot(df_budapest['lat'],df_budapest['lng'],hue=df_budapest['Region'])
df_budapest['Region']=df_budapest['Region'].map({0:'West',1:'North',2:'South',3:'East'})
```


In [34]:

```
#London
km=KMeans(n_clusters=4, init='k-means++',random_state=20)
kmod=km.fit(df_london[['lat','lng']])
lab=kmod.labels_
df_london['Region']=lab
sns.scatterplot(df_london['lat'],df_london['lng'],hue=df_london['Region'])
df_london['Region']=df_london['Region'].map({0:'West',1:'North',2:'South',3:'East'})
```


In [35]:

```
#Paris
km=KMeans(n_clusters=4, init='k-means++',random_state=20)
kmod=km.fit(df_paris[['lat','lng']])
lab=kmod.labels_
df_paris['Region']=lab
sns.scatterplot(df_paris['lat'],df_paris['lng'],hue=df_paris['Region'])
df_paris['Region']=df_paris['Region'].map({0:'West',1:'North',2:'South',3:'East'})
```


In [36]:

```
#Rome
km=KMeans(n_clusters=4, init='k-means++',random_state=20)
kmod=km.fit(df_rome[['lat','lng']])
lab=kmod.labels_
df_rome['Region']=lab
sns.scatterplot(df_rome['lat'],df_rome['lng'],hue=df_rome['Region'])
df_rome['Region']=df_rome['Region'].map({0:'West',1:'North',2:'South',3:'East'})
```


In [37]:

```
#Vienna
km=KMeans(n_clusters=4, init='k-means++',random_state=20)
kmod=km.fit(df_vienna[['lat','lng']])
lab=kmod.labels_
df_vienna['Region']=lab
sns.scatterplot(df_vienna['lat'],df_vienna['lng'],hue=df_vienna['Region'])
df_vienna['Region']=df_vienna['Region'].map({0:'West',1:'North',2:'South',3:'East'})
```


In [38]:

```
#Lisbon
km=KMeans(n_clusters=4, init='k-means++',random_state=20)
kmod=km.fit(df_lisbon[['lat','lng']])
lab=kmod.labels_
df_lisbon['Region']=lab
sns.scatterplot(df_lisbon['lat'],df_lisbon['lng'],hue=df_lisbon['Region'])
df_lisbon['Region']=df_lisbon['Region'].map({0:'West',1:'North',2:'South',3:'East'})
```



```
In [39]:
```

```
df = pd.concat([df_amsterdam,df_athens,df_barcelona,df_berlin,df_budapest,df_lisbon,df_london,d-
df.head()
```

Out[39]:

	City	Day	realSum	room_type	person_capacity	host_is_superhost	multi	biz	cleanliness
0	Amsterdam	Weekday	194.033698	Private room	2	False	1	0	
1	Amsterdam	Weekday	344.245776	Private room	4	False	0	0	
2	Amsterdam	Weekday	264.101422	Private room	2	False	0	1	
3	Amsterdam	Weekday	433.529398	Private room	4	False	0	1	
4	Amsterdam	Weekday	485.552926	Private room	2	True	0	0	
4									•

In [40]:

```
1 df['Region'].isnull().sum()
```

Out[40]:

0

Dropping of individual latitude and longitude columns

In [41]:

```
1 df.drop(columns = ['lat','lng'],inplace = True)
```

Performing bining for guest satisfaction column. Creating 3 discrete bins namely score between 0-35 as poor, 36 - 70 as average and 71 - 100 as high

In [42]:

```
def binning(1):
    if 1 > 0 and 1 <= 35 :
        return 'Poor'
    elif 1 > 36 and 1 <= 70:
        return 'Average'
    else:
        return 'High'

df['guest_satisfaction_overall'] = df['guest_satisfaction_overall'].apply(binning)</pre>
```

Performing hypothesis testing to find the significant variables

Hypothesis:

H0: There is no significant relationship between the dependent and independent variable

Ha: There is significant relationship between the dependent and independent variable

Significance level:

Considering significance level as 0.05

In [43]:

```
# Creating a dataframe to store the results of statistical results
statistical_result = pd.DataFrame(columns = ['Column', 'Pvalue', 'Remarks'])
```

In [44]:

```
num_cols = ['dist', 'metro_dist', 'attr_index_norm', 'rest_index_norm','attr_index','rest_index
cat_cols = ['City', 'Day', 'room_type', 'person_capacity','host_is_superhost', 'cleanliness_rate
guest_satisfaction_overall','bedrooms','Region']
```

In [45]:

```
# Numerical vs Categorical - f oneway test
 3
   for i in cat cols:
       groups = [df.loc[df[i] == subclass , 'realSum'] for subclass
4
 5
                  in df[i].unique()]
 6
 7
       stat , pval = stats.f_oneway(*groups)
 8
       statistical_result = statistical_result.append({'Column':i , 'Pvalue':pval,
 9
10
                                                        'Remarks':'Reject H0' if pval <= 0.05 else '
                                                       ignore_index=True)
11
```

In [46]:

```
In [47]:
```

```
1 statistical_result
```

Out[47]:

	Column	Pvalue	Remarks
0	City	0.000000e+00	Reject H0
1	Day	4.090175e-03	Reject H0
2	room_type	0.000000e+00	Reject H0
3	person_capacity	0.000000e+00	Reject H0
4	host_is_superhost	4.345181e-25	Reject H0
5	cleanliness_rating	9.461615e-04	Reject H0
6	guest_satisfaction_overall	5.707492e-04	Reject H0
7	bedrooms	0.000000e+00	Reject H0
8	Region	3.958731e-33	Reject H0
9	dist	2.563113e-24	Reject H0
10	metro_dist	7.376494e-44	Reject H0
11	attr_index_norm	0.000000e+00	Reject H0
12	rest_index_norm	6.507204e-238	Reject H0
13	attr_index	0.000000e+00	Reject H0
14	rest_index	5.763826e-208	Reject H0

Insights from statistical test

After performing statistical tests, all variables were found to be statistically significant. This suggests that each variable examined in the study has a meaningful relationship with the outcome. These findings indicate the importance of all variables in influencing the price variable.

Splitting the dataset randomly into train and test dataset using ratio of 70:30

In [48]:

```
1  x = df.drop(columns = 'realSum')
2  y = df['realSum']
3
4  xtrain , xtest , ytrain , ytest = train_test_split(x,y,test_size = 0.30 , random_state = 24)
```

Transforming of target variable

```
In [49]:
```

```
1 ytrain = np.array(ytrain).reshape(-1, 1)
2 ytest = np.array(ytest).reshape(-1, 1)
```

In [50]:

```
pt = PowerTransformer()

var = pt.fit(ytrain)

ytrain = var.transform(ytrain)

ytest = var.transform(ytest)
```

Encoding of Categorical variables

For columns like city, room_type, region CatBoost Encoding technique can be used

In [51]:

```
catboost_columns = ['City','room_type','Region']

for i in catboost_columns:

var_city = CatBoostEncoder().fit(xtrain[i],ytrain)

xtrain[i] = var_city.transform(xtrain[i])

xtest[i] = var_city.transform(xtest[i])
```

For columns like day, host is superhost and guest satisfaction we can replace with 0 and 1

In [52]:

```
xtrain['Day'].replace({'Weekend':1,'Weekday':0},inplace=True)
xtest['Day'].replace({'Weekend':1,'Weekday':0},inplace=True)

xtrain['host_is_superhost'].replace({True:1,False:0},inplace=True)
xtest['host_is_superhost'].replace({True:1,False:0},inplace=True)

xtrain['guest_satisfaction_overall'].replace({'High':2,'Average':1,'Poor':0},inplace = True)
xtest['guest_satisfaction_overall'].replace({'High':2,'Average':1,'Poor':0},inplace = True)
```

Checking and treating of outliers

For training data

In [53]:

```
f,ax = plt.subplots(2,3)

for i,v in zip(num_cols,ax.flatten()):
    sns.boxplot(y = xtrain[i] , ax = v , palette = colors)

plt.tight_layout()
plt.show()
```


For testing data

In [54]:

From above box plots it is clearly evident that there are outliers . By doing IQR method we tend lose data. Hence we go forward by doing transformation technique

In [55]:

```
pt = PowerTransformer()

for i in num_cols:
    var = pt.fit(xtrain[[i]])

xtrain[i] = var.transform(xtrain[[i]])

xtest[i] = var.transform(xtest[[i]])
```

After treating outliers

In [56]:

```
f,ax = plt.subplots(2,3)

for i,v in zip(num_cols,ax.flatten()):
    sns.boxplot(y = xtrain[i] , ax = v , palette = colors)

plt.tight_layout()
plt.show()
```


Building a Base Model

Building a base model using Linear Regression as it is having the highest explanatory power compared to other models

In [57]:

1 xtrain

Out[57]:

	City	Day	room_type	person_capacity	host_is_superhost	multi	biz	cleanliness_rating	gues
31733	0.370252	1	0.255588	2	0	0	0	8	
6108	-0.974896	1	0.255588	3	1	1	0	10	
50254	-0.058587	1	0.255588	4	1	0	0	10	
17082	-0.019765	0	0.255588	4	0	0	1	9	
26349	0.370252	0	0.255588	4	0	0	1	7	
21633	-0.019765	1	0.255588	4	0	0	1	10	
19857	-0.019765	1	0.255588	3	0	0	1	10	
14528	-0.612586	0	0.255588	4	1	0	1	10	
899	1.185099	0	0.255588	4	0	0	0	10	
45474	-0.315801	1	0.255588	4	0	0	1	9	
36194 rows × 17 columns									
4									•

In [58]:

```
1 model_lr = sma.OLS(ytrain,sma.add_constant(xtrain)).fit()
  model_lr.summary()
```

Out[58]:

OLS Regression Results

Dep. Variable: У R-squared: 0.662 OLS Model: Adj. R-squared: 0.662 Method: Least Squares F-statistic: 4170. **Date:** Sun, 30 Jul 2023 Prob (F-statistic): 0.00 Time: 01:53:31 Log-Likelihood: -31721. No. Observations: 36194 AIC: 6.348e+04 Df Residuals: BIC: 6.363e+04 36176 Df Model: 17 **Covariance Type:** nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-1.2840	0.039	-33.172	0.000	-1.360	-1.208
City	1.0144	0.008	135.069	0.000	1.000	1.029
Day	0.0417	0.006	6.766	0.000	0.030	0.054
room_type	0.9831	0.011	91.493	0.000	0.962	1.004
person_capacity	0.1440	0.003	43.655	0.000	0.138	0.150
host_is_superhost	0.0347	0.007	4.658	0.000	0.020	0.049
multi	0.0760	0.008	9.707	0.000	0.061	0.091
biz	0.1838	0.008	23.842	0.000	0.169	0.199
cleanliness_rating	0.1089	0.004	28.447	0.000	0.101	0.116
guest_satisfaction_overall	-0.3027	0.019	-15.892	0.000	-0.340	-0.265
bedrooms	0.2466	0.006	40.590	0.000	0.235	0.258
dist	-0.0403	0.004	-9.021	0.000	-0.049	-0.032
metro_dist	0.0144	0.003	4.229	0.000	0.008	0.021
attr_index	-0.0166	0.012	-1.376	0.169	-0.040	0.007
attr_index_norm	0.3034	0.006	49.206	0.000	0.291	0.315
rest_index	0.0380	0.010	3.705	0.000	0.018	0.058
rest_index_norm	-0.0211	0.005	-4.208	0.000	-0.031	-0.011
Region	-0.1426	0.036	-3.918	0.000	-0.214	-0.071

Omnibus: 2811.223 **Durbin-Watson:** 1.995 Prob(Omnibus): 0.000 Jarque-Bera (JB): 7807.113 Skew: 0.433 Prob(JB): 0.00 Kurtosis: 5.104 Cond. No. 136.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [59]:

```
pred_train = model_lr.predict(sma.add_constant(xtrain))
pred_test = model_lr.predict(sma.add_constant(xtest))

r2_train = r2_score(ytrain,pred_train)
r2_test = r2_score(ytest,pred_test)
rmse_train = np.sqrt(mean_squared_error(ytrain,pred_train))
rmse_test = np.sqrt(mean_squared_error(ytest,pred_test))
mape_train = mean_absolute_percentage_error(ytrain,pred_train)
mape_test = mean_absolute_percentage_error(ytest,pred_test)
```

In [60]:

```
# Creating a dataframe to store values of metrics of both train and test data
performance_df = pd.DataFrame(columns = ['Model_Name','Train R2','Test R2','Train RMSE','Test R1
,'Train MAPE','Test MAPE','Remarks'])
performance_df
```

Out[60]:

Model Name Train R2 Test R2 Train RMSE Test RMSE Train MAPE Test MAPE Remarks

In [61]:

Out[61]:

	Model_Name	Train R2	Test R2	Train RMSE	Test RMSE	Train MAPE	Test MAPE	Remarks	
0	Base Model	0.66211	0.653968	0.581283	0.584654	56.088907	18.944154	Base	

Building different models and evaluating using appropriate technique

In [62]:

```
# Creating a user defined function to store values of metrics to the dataframe
   def model_performance(model , name):
 3
4
       global performance df
 5
       pred_train = model.predict(xtrain)
       pred test = model.predict(xtest)
 6
 7
 8
       r2 train = r2 score(ytrain, pred train)
 9
       r2 test = r2 score(ytest,pred test)
10
       rmse_train = np.sqrt(mean_squared_error(ytrain,pred_train))
       rmse_test = np.sqrt(mean_squared_error(ytest,pred_test))
11
12
       mape_train = mean_absolute_percentage_error(ytrain,pred_train)
       mape_test = mean_absolute_percentage_error(ytest,pred_test)
13
14
15
       # Defining a function for remarks
16
17
       def remarks(train,test):
            if abs(train - test) > 0.1 or train > 0.90:
18
                return 'Over Fit'
19
20
            elif train > 0.5 and test > 0.5:
                return 'Good Fit'
21
22
            else:
23
                return 'Under Fit'
24
        performance_df = performance_df.append({'Model_Name':name,'Train R2':r2_train,'Test R2':r2_
25
                                               'Test RMSE':rmse_test,'Train MAPE':mape_train,'Test M
26
27
                                                'Remarks':remarks(r2_train,r2_test)},ignore_index =
```

In [63]:

```
# Creating a user defined function to highlight the rows which are good fit
 2
   def highlight row(df):
 3
       color_green = ['background-color : #97C1A9']*len(df)
4
        color_white = ['background-color : white']*len(df)
 5
 6
 7
        if df['Remarks'] == 'Good Fit':
 8
            return color_green
9
       else:
10
            return color_white
```

Decision Tree Model

In [64]:

```
model_dt = DecisionTreeRegressor().fit(xtrain,ytrain)
model_performance(model_dt,'Decision Tree')
```

Random Forest Model

In [65]:

```
model_rf = RandomForestRegressor().fit(xtrain,ytrain)
model_performance(model_rf,'Random Forest')
```

KNN

In [66]:

```
model_knn = KNeighborsRegressor().fit(xtrain,ytrain)
model_performance(model_knn, 'KNN')
```

AdaBoost

In [67]:

```
model_ab = AdaBoostRegressor().fit(xtrain,ytrain)
model_performance(model_ab,'AdaBoost')
```

Gradient Boosting

In [68]:

```
model_gb = GradientBoostingRegressor().fit(xtrain,ytrain)
model_performance(model_gb , 'Gradient Boosting')
```

XGBoost

In [69]:

```
model_xgb = XGBRegressor().fit(xtrain,ytrain)
model_performance(model_xgb, 'XGBoost')
```

Neural Network

In [70]:

```
model_nn = MLPRegressor().fit(xtrain,ytrain)
model_performance(model_nn, 'Neural Network')
```

CatBoost

```
In [71]:
```

```
1 | model_cb = CatBoostRegressor().fit(xtrain,ytrain)
  2
    model_performance(model_cb, 'CatBoost')
Learning rate set to 0.072185
        learn: 0.9579867
                                 total: 154ms
                                                 remaining: 2m 33s
0:
        learn: 0.9195192
                                 total: 159ms
1:
                                                 remaining: 1m 19s
                                 total: 164ms
2:
        learn: 0.8860296
                                                 remaining: 54.5s
3:
        learn: 0.8552237
                                 total: 169ms
                                                 remaining: 42.1s
                                                 remaining: 34.6s
4:
        learn: 0.8262818
                                 total: 174ms
5:
        learn: 0.7995746
                                 total: 179ms
                                                 remaining: 29.6s
        learn: 0.7765343
                                 total: 185ms
                                                 remaining: 26.3s
6:
7:
        learn: 0.7544273
                                 total: 191ms
                                                 remaining: 23.7s
                                 total: 197ms
                                                 remaining: 21.7s
8:
        learn: 0.7358304
9:
        learn: 0.7183826
                                 total: 203ms
                                                 remaining: 20.1s
        learn: 0.7019796
                                 total: 209ms
                                                 remaining: 18.8s
10:
11:
        learn: 0.6875885
                                 total: 214ms
                                                 remaining: 17.6s
12:
        learn: 0.6750950
                                 total: 220ms
                                                 remaining: 16.7s
        learn: 0.6638052
13:
                                 total: 226ms
                                                 remaining: 15.9s
        learn: 0.6535420
                                 total: 231ms
14:
                                                 remaining: 15.2s
15:
        learn: 0.6444852
                                 total: 236ms
                                                 remaining: 14.5s
        learn: 0.6363529
                                 total: 241ms
                                                 remaining: 13.9s
16:
17:
        learn: 0.6284220
                                 total: 246ms
                                                 remaining: 13.4s
In [72]:
```

```
performance_df.style.apply(highlight_row,axis=1)
```

Out[72]:

	Model_Name	Train R2	Test R2	Train RMSE	Test RMSE	Train MAPE	Test MAPE	Remarks
0	Base Model	0.662110	0.653968	0.581283	0.584654	56.088907	18.944154	Base
1	Decision Tree	1.000000	0.690968	0.000000	0.552513	0.000000	18.530725	Over Fit
2	Random Forest	0.975647	0.819986	0.156056	0.421690	15.027987	6.076583	Over Fit
3	KNN	0.790124	0.669001	0.458122	0.571813	33.911501	11.833031	Over Fit
4	AdaBoost	0.478345	0.467755	0.722257	0.725098	80.480491	39.119074	Under Fit
5	Gradient Boosting	0.714418	0.702631	0.534399	0.541987	45.032207	13.096748	Good Fit
6	XGBoost	0.822820	0.753535	0.420927	0.493422	36.876970	14.070904	Good Fit
7	Neural Network	0.731129	0.709337	0.518527	0.535841	38.427753	8.117910	Good Fit
8	CatBoost	0.800137	0.753808	0.447060	0.493149	37.972769	10.085537	Good Fit

After assessing various models, it was observed that some models exhibited a significant drop in performance when applied to unseen data, indicating overfitting. However, there were models that consistently performed well on both training and unseen data. Notably, the XGB model outperformed other models in terms of performance. Hence, based on its superior performance and generalization ability, we can confidently consider the XGB model as our final choice.