Quiz: Decision Trees

Lecture series "Machine Learning"

Niels Landwehr

Research Group "Data Science" Institute of Computer Science University of Hildesheim

Quiz: Tree Partitions

• Assume a classification problem with two input attributes $x_1, x_2 \in \mathbb{R}$ and classes $\{1, 2\}$. The following decision tree implements a function $f : \mathbb{R}^2 \to \{1, 2\}$:

• Question: which of the following partitions is the one represented by the tree?

1	Α			
1	1	2		
x_1		1		
	2	1	2	
0	0	X_2		1

Solution: Tree Partitions

• **Solution**: Partition D

Quiz: Gini Index

• Consider the following split for a decision tree for a binary classification problem:

- What is the Gini index for this split?
 - It is 0
 - It is 0.05
 - It is 0.12
 - It is 0.43
 - It is 0.67

Solution: Gini Index

- Solution: The Gini index is 0.12
 - We first compute the Gini impurity of the root data set \mathcal{D} :

$$G(\mathcal{D}) = 1 - \sum_{t=1}^{T} p_t^2 = 1 - 0.7^2 - 0.3^2 = 0.42$$

- Then we need the Gini impurities of \mathcal{D}_1 and \mathcal{D}_2 : these are 0 and 0.5
- The Gini index is then

$$GI(\mathcal{D}, \mathcal{D}_1, \mathcal{D}_2) = G(\mathcal{D}) - \sum_{r=1}^{2} \frac{|\mathcal{D}_r|}{|\mathcal{D}|} G(\mathcal{D}_r) = 0.42 - \frac{4}{10} 0 - \frac{6}{10} 0.5 = 0.12$$

Quiz: Decision Tree and Linear Regression

- Assume a regression problem with two input attributes $x_1, x_2 \in \mathbb{R}$
- Assume a linear regression model $f_{\theta}: \mathbb{R}^2 \to \mathbb{R}$ given by $f_{\theta}(\mathbf{x}) = \theta_1 x_1 + \theta_2 x_2$
- Question: Is there a regression tree $f: \mathbb{R}^2 \to \mathbb{R}$ with univariate splits of the form $x_i < C$ that implements the same function?
 - Yes, always
 - Yes, but only if we limit the input to a finite (multi-dimensional) interval
 - That depends on the θ : for some there is an equivalent tree, for some not
 - An equivalent tree only exists for the trivial case $\theta=0$
 - No, never

Solution: Decision Tree and Linear Regression

- **Solution**: only for the trivial case $\theta = 0$
 - If $\theta \neq 0$, the output domain of the linear model $f_{\theta}(\mathbf{x})$ is continuous: the set $\{f_{\theta}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^2\}$ is not finite
 - For a (finite) regression tree $f(\mathbf{x})$, the number of possible outputs $|\{f(\mathbf{x}) | \mathbf{x} \in \mathbb{R}^2\}|$ is bounded by the number of leaves
 - This holds even when we restrict the input to a finite interval
 - However, on a finite interval the tree can approximate the linear model arbitrarily closely, if the tree is large enough

Quiz: Decision Tree and Logistic Regression

- Assume a classification problem with two inputs $x_1, x_2 \in \mathbb{R}$ and two classes $\{0,1\}$
- Assume a logistic regression model $f_{\theta}: \mathbb{R}^2 \to \{0,1\}$ given by

$$f_{\theta}(\mathbf{x}) = \begin{cases} 1: & \sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \ge 0.5 \\ 0: & \sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2) < 0.5 \end{cases}$$

- Question: Is there a decision tree $f: \mathbb{R}^2 \to \mathbb{R}$ with univariate splits of the form $x_i < C$ that implements the same classifier?
 - Yes, always
 - Yes, but only if we limit the input to a finite (multi-dimensional) interval
 - That depends on the θ : for some there is an equivalent tree, for some not
 - An equivalent tree only exists for the trivial case $\theta = 0$
 - No, never

Solution: Decision Tree and Linear Regression

- **Solution**: that depends on the θ
 - A decision tree with splits $x_i < C$ can only represents axis-parallel decision boundaries
 - The logistic regression model has an axis-parallel decision boundary if and only if either $\theta_1=0$ or $\theta_2=0$
 - So for most logistic regression models it does not work, but for example it works for $\theta = (2,0,1)$: class one is predicted if

$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 > 0$$
 $2 + x_2 > 0$
 $x_2 > -2$

Equivalent tree would be

