In the claims:

9

1	1.	(Currently	Amended)	A method	comprising:
---	----	------------	----------	----------	-------------

- using a data accèss primitive to model addressability for a memory-mapped device,

 addressability comprising an address matching function, a lane matching

 function and one or more bus connections,

 specifying a first starting address for the memory-mapped device; and

 [converting] replacing the data access primitive [to] with logic components that

 implement a first set of addressing matching function, lane matching function

 and one or more bus connections for the memory-mapped device based upon
- 2. (Currently Amended) The method of claim 1, further comprising [converting]
 replacing the data access primitive [to] with logic components that implement a
 second set of addressing matching function, lane matching function and one or
 more bus connections for the memory-mapped device based upon the data access
 primitive and a second starting address.

the data access primitive and the first starting address.

- 1 3. (Original) The method of claim 1, further comprising:
 2 coupling the data access primitive to the memory-mapped device; and
 3 coupling an address bus to the data access primitive.
- 1 4. (Original) The method of claim 3, wherein the addressing matching function
 2 compares an address from the address bus with the first starting address for the
 3 memory-mapped device.

1	5.	(Original)	The method of claim 4, wherein the first starting address is
2		specified by a	user.
1	6.	(Original)	The method of claim 4, wherein the first starting address is
2		generated auto	matically.
1	7.	(Original)	The method of claim 6, wherein the first starting address is
2		generated auto	matically using a set of address constraints.
1	8.	(Original)	The method of claim 1, wherein the data access primitive is
2		selected to allo	w addressability for a minimum size transaction supported by the
3		memory-mapp	ed device.
1	9.	(Original)The r	nethod of claim 8, wherein the memory-mapped device is a register.
1	10.	(Currently Am	ended) A computer readable medium containing executable
2		instructions wh	nich, when executed in a processing system, causes the processing
3		system to perfo	orm a method comprising:
4		using a data ac	cess primitive to model addressability for a memory-mapped device,
5		addressal	pility comprising an address matching function, a lane matching
6		function	and one or more bus connections,
7		specifying a fir	st starting address for the memory-mapped device; and
8		[converting] re	placing the data access primitive [to] with logic components that
9		impleme	nt a first set of addressing matching function, lane matching function
10		and one o	or more bus connections for the memory-mapped device based upon

11

the data access primitive and the first starting address.

- 1 11. (Currently Amended) The computer readable medium of claim 10, further

 comprising [converting] replacing the data access primitive logic components that

 implement a second set of addressing matching function, lane matching function

 and one or more bus connections for the memory-mapped device based upon the

 data access primitive and a second starting address.
- 1 12. (Original) The computer readable medium of claim 10, further comprising:
 2 coupling the data access primitive to the memory-mapped device; and
 3 coupling an address bus to the data access primitive.
- 13. (Original) The computer readable medium of claim 12, wherein the
 2 addressing matching function compares an address from the address bus with the
 3 first starting address for the memory-mapped device.
- 1 14. (Original) The computer readable medium of claim 13, wherein the first starting address is specified by a user.
- 1 15. (Original) The computer readable medium of claim 13, wherein the first starting address is generated automatically.
- 1 16. (Original) The computer readable medium of claim 15, wherein the first 2 starting address is generated automatically using a set of address constraints.
- 1 17. (Original) The computer readable medium of claim 10, wherein the memory-2 mapped device is selected to allow addressability for a minimum size transaction
- 3 supported by the memory-mapped device.

1	18.	(Previously A	imended) A method, comprising:
2	·	selecting a da	ta access primitive to provide data access of a desired transaction
3		size, an	d to indicate an addressing matching function, a lane matching
4		function	and one or more bus connections for a memory-mapped device;
5		specifying an	address constraint for the memory-mapped device;
6		instantiating	a logic for the memory-mapped device, comprising:
7		generati	ng a starting address for the memory mapped device using the
8		ad	dress constraint;
9		using th	e selected data access primitive and the starting address to map the
10		lo	gic for the memory mapped device capable of being accessed at the
11		d€	sired transaction size, comprising:
12		ge	nerating first logic components that implement the address matching
13			function, and
14		ge	nerating second logic components that implement the lane matching
J 15			function and the one or more bus connections.
1	19.	(Original)	The method of claim 18, wherein the address constraint is
2		specified by	user, and wherein the starting address for the memory mapped
3		device is gen	erated automatically.
1	20.	(Original)	The method of claim 18, wherein the transaction size is one in a

group comprising a byte, a halfword and a word.

Docket No.: 003242.P017 Application No.: 09/649,437

2

1	21.	(Original)	The method of claim 18, further comprising using a new starting
2		address for the	memory-mapped device without having to specify changes to the
3		addressing func	tion, the lane matching function and the one or more bus
4		connections.	
1	22.	(Original)	The method of claim 21, wherein different logic for the memory
2		mapped device	is instantiated automatically using the same data access primitive
3		and the new sta	rting address.
1	23.	(Unchanged)	The method of claim 18, wherein the addressing matching
2		function compa	res an address from an address bus coupled with the data access
3		primitive with t	he starting address, and wherein when there is match, the lane
4		matching functi	on matching the transaction size of a transaction to a respective
5		section of the m	nemory-mapped device.
1	24.	(Previously Am	ended) A computer readable medium containing executable
2	۷٦.		ich, when executed in a processing system, causes the processing
3			rm a method, comprising:
4		•	access primitive to provide data access of a desired transaction
5			o indicate an addressing matching function, alane matching
6			nd one or more bus connections for a memory-mapped device;
7			Idress constraint for the memory-mapped device;
			ogic for the memory-mapped device, comprising:
8			
9		generanng	g a starting address for the memory mapped device using the

address constraint;

10

11		using the selected data access primitive and the starting address to map the
12		logic for the memory mapped device capable of being accessed at the
13		desired transaction size, comprising:
14		generating first logic components that implement the address matching
15		function, and
16		generating second logic components that implement the lane matching
17		function and the one or more bus connections.
1	25.	(Original) The computer readable medium of claim 24, wherein the address
2		constraint is specified by a user, and wherein the starting address for the memory
3		mapped device is generated automatically.
1	26.	(Original) The computer readable medium of claim 24, wherein the
2		transaction size is one in a group comprising a byte, a halfword and a word.
1	27.	(Original) The computer readable medium of claim 24, further comprising
2		using a new starting address for the memory mapped device without having to
3		specify changes to the addressing function, the lane matching function and the one
4		or more bus connections.
1	28.	(Previously Amended) The computer readable medium of claim 27, wherein
2		different logic for the memory mapped device is instantiated automatically using
3		the same data access primitive and the new starting address.
1	29.	(Original) The computer readable medium of claim 24, wherein the
2		addressing matching function compares an address from an address bus coupled
3		with the data access primitive with the starting address, and wherein when there is

3 dcl

match, the lane matching function matching the transaction size of a transaction to a respective section of the memory-mapped device.