天文物理导论笔记

GasinAn

2021年11月15日

Copyright © 2021 by GasinAn

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher, except by a BNUer.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories, technologies and programs to determine their effectiveness. The author and publisher make no warranty of any kind, express or implied, with regard to these techniques or programs contained in this book. The author and publisher shall not be liable in any event of incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these techniques or programs.

Printed in China

目录

天球 Celestial Sphere	5
天体力学 estial Mechanics	7
光的连续谱 Continuous Spectrum ight	9
狭义相对论 Theory of Special Rel- ity	11
光与物质的相互作用 Interaction of Light Matter	13
	Celestial Sphere 天体力学 estial Mechanics 光的连续谱 Continuous Spectrum ight 狭义相对论 Theory of Special Rel- ity 光与物质的相互作用

第一章 天球 The Celestial Sphere

会合周期 (synodic period) S.

$$1/S = |1/P - 1/P_{\oplus}|$$
.

通过定义自己推推就推出来了嘛~

赤经 (right ascension) α , 赤纬 (declination) δ .

$$(\Delta\theta)^2 = (\Delta\alpha\cos\delta)^2 + (\Delta\delta)^2$$

记忆方法: 当成勾股定理. 懒得写了, 自己想.

北天极的高度角等于地理纬度,由此自己推算在天体上中天时刻,天体 赤纬,天体天顶距和地理纬度的关系¹.

¹这是本宝宝留给你们的作业题! 哼!

第二章 天体力学

Celestial Mechanics

看我 PPT.

圆锥曲线 (conic section) 统一方程

$$r = \frac{ed}{1 + e\cos\theta}.$$

椭圆 (ellipse), $ed = a(1 - e^2)$. 抛物线 (parabola), ed = 2p. 双曲线 (hyperbola), $ed = a(1 + e^2)$.

半长轴长 (semimajor axis) a, 半短轴长 (semimajor axis) b, 离心率 (eccentricity) e.

焦点 (focal point), 近??点 (perhelion), 远??点 (aphelion).

椭圆面积 $A = \pi ab$. 证明: 把单位圆横轴方向拉长 a 倍, 纵轴方向拉长 b 倍.

逃逸速度 (escape velocity) $v_{\rm esc}$.

$$v_{\rm esc} = \sqrt{2GM/r}$$
.

第二宇宙速度 11.2 km/s.

质心 (center of mass) R.

$$\boldsymbol{R} = \frac{\sum_{i=1}^{n} m_i \boldsymbol{r}_i}{\sum_{i=1}^{n} m_i}.$$

折合质量 (reduced mass) μ .

$$\mu = \frac{m_1 m_2}{m_1 + m_2}.$$

二体问题, 把坐标系建在其中一个天体上, 将其质量强行定为 $M = m_1 + m_2$, 另一天体质量强行定为 μ , 把日地系统的 Kepler 三定律, 和日地系统中地球

的机械能和角动量的表达式中的 M_{\odot} 都换成 M,M_{\oplus} 都换成 $\mu,$ 就能得到二体问题的 Kepler 三定律和两天体的总机械能和角动量.

一些有用的表达式.

$$ed = \frac{1}{GM} \frac{L^2}{\mu^2}.$$

$$dA = \frac{1}{2} \frac{L}{\mu} dt$$

$$k = \frac{4\pi^2}{GM}.$$

完蛋了, 把 Kepler 三定律直接给出来了... 第一式推导: 计算 perhelion 处的 L, r 有了, v 用机械能的表达式算. 第二式推导: 三角形面积是两条边的叉乘的长度的二分之一. 第三式推导: 假装轨道是圆的.

(老师没讲但很重要!) 总机械能 E.

$$E = \begin{cases} -\frac{GM}{2a} & \text{椭 } \mathbb{B}, \\ 0 & \text{抛 } \text{物}, \\ \frac{GM}{2a} & \text{双 } \text{曲}. \end{cases}$$

维里定理 (virial theorem): 系统, 平均总动能 $\langle T \rangle$, 平均总势能 $\langle V \rangle$, 平均总机械能 $\langle E \rangle$,

$$\begin{split} 2\left\langle T\right\rangle +\left\langle V\right\rangle &=0,\\ \left\langle E\right\rangle &=\frac{1}{2}\left\langle V\right\rangle . \end{split}$$

推论: 系统稳定, 平均总机械能必小于 0.

第三章 光的连续谱

The Continuous Spectrum of Light

视差 (parallax angle): 从天体上看, 地球和太阳的最大角距离.

 $1 \text{rad} \simeq 206265''$, $1 \text{pc} \simeq 206265 \text{AU} \simeq 3.26 \text{ly}$.

视星等 (apparent magnitude) m. 辐射流量 (radiant flux) F: 仪器单位面积每秒接收到的能量. 光度 (luminosity) L: 天体每秒辐射的总能量.

$$m - m_0 = -2.5 \lg \frac{F}{F_0}, F = 100^{-(m - m_0)/5} F_0.$$

记忆法: 视星等五等, 亮度一百倍; 视星等越小越亮.

$$F = \frac{L}{4\pi r^2}.$$

绝对星等 (absolute magnitude) M: 10pc 处视星等. 距离模数 (distance modulus) m-M. 自己推距离模数公式¹.

Stefan-Boltzmann 律: $F = \sigma T^4$. $B(T) = \sigma T^4/\pi$: 黑体垂直于单位面元方向单位立体角内单位时间辐射的能量.

$$F = \int_{\theta \in [0,\pi]} B \cos \theta \, \mathrm{d}\Omega.$$

Wien 位移²律: $\lambda_{\text{max}}T = (500\text{nm})(6000\text{K})$.

色指数 (color index) X-Y: 不同"波段"视星等的差, 等于不同"波段"绝对星等的差. 热星等 (bolometric magnitude) $m_{\rm bol}$ 和 $M_{\rm bol}$: 全波段星等. 热改正 (bolometric correction) $BC=m_{\rm bol}-V=M_{\rm bol}-M_V$.

¹第二个作业!

² "位移" 的英文是 displacement.

颜色-颜色图 3 (color-color diagram): 横轴某色指数, 纵轴另一个. 黑体一条直线, 恒星线在黑体线下.

³不是色色图! 不是!

第四章 狭义相对论 The Theory of Special Relativity

太简单了, 没啥好记的.

第五章 光与物质的相互作用 The Interaction of Light and Matter

Kirchhoff 律:

- 1. 热致密气体或热固体产生连续谱, 无吸收线.
- 2. 热弥漫气体带发射线.
- 3. 冷弥漫气体在连续谱源前, 连续谱带吸收线.

刻线间距 d, 反射光与光栅法线夹角 θ , 光谱阶数 n, 波长 λ , $d\sin\theta = n\lambda$. 波长 λ , 可分辨的最小波长差 $\Delta\lambda$, 光谱阶数 n, 刻线总数 N, 分辨本领 (resolving power) $R = \lambda/\Delta\lambda = nN$.

Compton 效应¹: 高能光子打低能 (静止) 电子, 光子波长变长. 逆 Compton 效应: 低能光子打高能电子, 光子波长变短. $\Delta \lambda = 1 - \cos \theta$.

 $E_n = E_1/n^2$, $r_n = n^2 r_1$. $E_1 \simeq -13.6 \text{eV}$, $r_1 \simeq 0.05 \text{nm}$.

HI 量子数 (n, l, m_l, m_s) . 主量子数 $n \in \mathbb{N}_+$, 轨道量子数 $l = 0, \ldots, n-1$, 轨道磁量子数 $m_l = -l, \ldots, l$, 自旋磁量子数 $m_s = -1/2, 1/2$ (s = 1/2). 磁场方向为 z 方向, 轨道角动量 $L = \sqrt{l(l+1)}\hbar$, z 方向轨道角动量 $L_z = m_l\hbar$, 自旋角动量 $S = \sqrt{s(s+1)}\hbar = (\sqrt{3}/2)\hbar$, z 方向自旋角动量 $S_z = m_s\hbar$.

选择定则: $\Delta l = \pm 1$, $\Delta m_l = 0$ 或 ± 1 ($0 \rightarrow 0$ 禁戒).

¹英文对应词是 "effect".