5. Maquinas de Turing

5.1 Introdução

As maquinas de Turing são uma proposta de formalização da noção de procedimento efetivo (programa executado num computador que sempre fornece uma resposta)

A maquina de Turing não é nada mais do que um autômato finito determinístico com uma fita, onde será escrita a palavra a processar, e uma cabeça de leitura que pode se movimentar tanto a direita quanto a esquerda. Com a cabeça de leitura podemos então ler e escrever símbolos do alfabeto de fita.

5.2 Definição

Uma maquina de Turing é formalmente descrita pela tupla de 7 valores:

$$M = (Q, \Gamma, \Sigma, \delta, s, B, F)$$
 onde:

- Q é um conjunto finito de estados
- Γ é o alfabeto de fita
- $\Sigma \subseteq \Gamma$ é o alfabeto de entrada
- $-s \in Q$ é o estado inicial
- F ⊆ Q é o conjunto dos estados de aceitação
- B $\in \Gamma$ - Σ é o símbolo branco (geralmente anotado #)
- δ : Qx $\Gamma \rightarrow$ Qx Γ x{L,R} é a função de transição (L=Left e R=Right)

A configuração de uma maquina de Turing é um elemento que pertence a:

$$Q \times \Gamma^* \times (\epsilon \cup \Gamma^*.(\Gamma - \{B\}))$$

onde $\varepsilon \cup \Gamma^*$.(Γ -{B}) representa a palavra vazia ou o conjunto de todas as palavras que podem ser definidas pelos símbolos do alfabeto Γ menos o símbolo branco.

Informalmente, a configuração será dada pelo estado do autômato finito, pela palavra que aparece na fita e pela posição da cabeça de leitura.

Uma forma de definir a posição da cabeça de leitura é de considerar a palavra que aparece antes da cabeça de leitura e a palavra que se encontra entre a posição da cabeça e o último símbolo não branco na fita.

$$CONFIG = (9, 41, 42)$$

Ex2:

(ONFIG= (9, d1, E)

Definição: uma configuração C' é derivável em variais etapas a partir da configuração C pela maquina M se existe $k \ge 0$ e as configurações intermediárias C0, C1, ..., Ck tais que:

Uma palavra é então aceita por uma maquina de Turing se a execução da maquina leva uma configuração cujo estado é de aceitação.

Definição: A linguagem L(M) aceita por uma maquina de Turing é o conjunto de palavras w tais que:

$$(S, E, W) \vdash_{M}^{*} (P, d_1, d_2)$$
com $P \in F$

Exercício: Construir a maquina que aceita a linguagem a(n)b(n) para n > 0. Testar a maquina com a palavra de entrada aaabbb

Dica: $\Gamma = \{a, b, X, Y, \#\} \ e \Sigma = \{a, b\}$

5.3 Linguagens aceitas e decididas

Consideremos as configurações derivadas a partir de uma configuração qualquer (s,ɛ,w). Varias situações podem ocorrer:

- 1) na sequência de configurações aparece um estado de aceitação e a palavra é então aceita;
- 2) a sequência de configuração atinge um estado de parada (função de transição não definida para a configuração atingida) e a palavra não é aceita;
- 3) a sequência de configuração não passa por um estado de aceitação e é infinita

Podemos dizer que uma maquina de Turing que aceita uma linguagem não define um procedimento efetivo: teremos a garantia neste caso que a maquina sempre parará para as palavras aceitas. Eventualmente, para certas palavras não aceitas, a maquina poderá produzir uma seqüência de configuração infinita e não existe um procedimento que identifica as sequências infinitas...

Definição: a execução de uma maquina de Turing numa palavra w é a seqüência de configurações :

máxima tal que:

- ela seja infinita,
- ou ela atinge um estado de aceitação,
- ou ela atinge um estado de parada (diferente de um estado de aceitação)

Definição: uma linguagem L é decidida por uma maquina de Turing M se:

- M aceita L
- M não tem nenhuma execução infinita.

Definição: uma linguagem é recursiva se ela é decidida por uma maquina de Turing

Definição: uma linguagem é recursivamente enumerável se ela é aceita por uma maquina de Turing

Vocabulário que tem como origem os formalismos computacionais anteriores às Máquinas de Turing (as funções recursivas particularmente)

Podemos de fato definir a noção de procedimento efetivo no contexto das funções recursivas sem utilizar o conceito de Máquina de Turing!

5.4 Tese de Church-Turing

Tese (hipótese): as linguagem reconhecidas por um procedimento efetivo são as linguagens decididas por uma maquina de Turing.

Uma tese não é um teorema. Ela não pode ser provada!

De acordo com a TESE, qualquer programa que pode ser executada num computador pode ser representado então por uma maquina de Turing

É fácil mostrar que qualquer máquina de Turing que decide uma linguagem pode ser simulada num computador (encontrar na web simuladores de Máquinas de Turing)

É mais difícil verificar que qualquer programa pode ser representado por uma máquina de Turing Uma abordagem para se convencer que qualquer programa pode ser representado por uma MT é mostrar que qualquer outro modelo computacional sempre será equivalente a uma MT clássica : isso não vai constituir uma prova mas pode ser vista como uma justificativa do uso das MT através de um tipo de experimento.

Exemplo 1: Estudo de uma MT de fita infinita a direita e a esquerda.

Parece que se trata de um modelo mais genérico que a MT com finta infinita somente a direita.

Mostrar que toda linguagem aceita ou decidida por este tipo de máquina será também aceita ou decidida por uma MT tradicional!

Prova ? Mostrar que existe um TM tradicional (infinita a direita somente) que consegue simular uma TM 2∞

Para simular uma etapa de execução da máquina de fita infinita dupla, a máquina de uma fita infinita a direita deve:

- a partir da primeira leitura, se a função de transição indica um movimento para direita na TM 2 ∞, aplicar 2 movimentos seguidos para a direita; em seguido toda movimentação a direita ou à esquerda será módulo 2;
- a partir da primeira leitura, se a função de transição indica um movimento para a esquerda na TM 2 ∞, aplicar 3 movimentos seguidos para a direita; em seguida toda movimentação a direita ou à esquerda será módulo 2
- o símbolo \$ será importante para indicar o momento em que a cabeça volta para o centro da fita (ele será detectado somente nos movimentos à esquerda)

A definição formal da TM que simula a TM 2∞ é complexo, mas o importante é de se convencer que tal máquina pode ser construída e simular o comportamento da TM 2∞ !

Exemplo 2: Estudo de uma MT de 2 fitas

A configuração da máquina é caracterizada por um um estado discreto (de um grafo dos estados), pelo conteúdo de cada fita, e pela posição das cabeças de leitura.

Prova ? Mostrar que existe um TM tradicional (infinita a direita somente) que consegue simular uma TM 2 fitas

Para simular uma etapa de execução da máquina de 2 fitas, a máquina de 1 fita deve:

- encontrar as posições das cabeças e determinar os símbolos lidos;
- modificar os símbolos, movimentar as cabeças de acordo com o movimento previsto na função de transição, e modificar o estado.

A definição formal da máquina de fita única que simula a máquina de 2 fitas é bastante complexa mas é fácil de se convencer que ela pode ser construída.

Exemplo 3: PC (máquina a memória de acesso direto)

Um computador é composto por uma memória de acesso direto (RAM- Random Access Memory) e um certo número de registradores (em particular um contador de instrução - PC : Program Counter)

Prova ? Mostrar que existe um TM tradicional (infinita a direita somente) que consegue simular um PC

Um PC pode ser simulado por uma TM de várias fitas: 1 fita para a memória e 1 fita para cada registrador.

O conteúdo da memória é representado por pares de palavras (endereço + conteúdo).

Os elementos do par são separados por * e os pares são separados por #

Para simular o PC, a TM de fita simples faz:

- 1) Percorrer a fita da RAM até encontrar o endereço que se encontra na cabeça da fita PC
- 2) Ler e decodificar (com o autômato correspondente) a instrução que se encontra no endereço lido.
- 3)Eventualmente encontrar na RAM os argumentos da instrução.
- 4) Executar a instrução, o que implica eventualmente a modificação da RAM e/ou dos registradores.
- 5) Incrementar o contador de programa (ao menos de encontrar uma instrução do tipo GOTO que manda a cabeça da fita PC no endereço correspondente.
- 6) Repetir o ciclo.

É o óbvio que a formalização de um PC por uma TM de fita simples é extremamente complexa; mas é evidente que com muita paciência poderíamos construir tal máquina. Observação sobre a complexidade da TM:

Poderíamos mostrar que para simular n movimentos de uma máquina de várias fitas, no máximo, precisaríamos de n^2 movimentos com uma TM de 1 fita, o que corresponde a uma complexidade de tipo polinomial e não exponencial (exponencial seria por exemplo 2^n)

Se n=10 então n^2=100, enquanto que 2^10=?

Veremos na parte sobre a complexidade que em particular, os processamentos em paralelo só permitem reduzir em tempo problemas polinomiais mas não exponenciais!

Na pratica isso significa que um problema exponencial com n grande não será tratável mesmo usando em paralelo vários processadores.

5.5 Máquinas de Turing não deterministicas

Diferença na definição da função de transição.

Para uma configuração dada, a função de transição define um conjunto de triplas (Q x Γ x {L,R}). Cada elemento do conjunto deriva então uma configuração distinta.

Na pratica, significa que a partir de uma configuração dada, várias evoluções são possíveis. No caso de uma TM determinístico, considerando a função de transição, uma única configuração será derivada!

Se uma das execuções possíveis da TM não determinístico contém uma configuração onde aparece um estado de aceitação, então a máquina aceita a palavra de entrada da fita. Eventualmente outras sequências de configurações para a mesma palavra de entrada poderão levar a máquina a estados que não são de aceitação ou a sequências de configuração infinitas.

No caso de TM não deterministas, que não correspondem à noção clássica de procedimento efetivo (existem programas de computadores não determinístico?), só se fala em linguagens aceitas.

O conceito de linguagem decidida não faz sentido no caso não determinístico: para uma mesma palavra de entrada, algumas configurações aceitam a palavra e outras não, então o que se pode deduzir sobre a decidibilidade da máquina em relação à palavra?

Só pode se dizer então que a TM não determinista aceita a palavra através de uma das sequências de configurações possível!

Teorema: Toda linguagem aceita por uma TM não determinista é também aceita por uma TM determinista.

Isso significa que o não determinismo não aumenta o poder computacional das TM : mais uma comprovação da tese de Church-Turing!

O estudo das TM não deterministas parece não ter interesso no caso da formalização da noção de procedimento efetivo!

Será que tais Máquinas existem (ou existirão) ?

Mas elas são necessárias para definir o conceito de problema NP (e NP-completo / NP-Hard)!

Prova do teorema?

Devemos provar que a TM det simula todas as execução da TM não det que levam à aceitação das palavras.

Uma solução seria de simular cada execução possível da TM não det: o problema é que certas execuções possíveis podem ser infinitas; entrando numa destas execuções, a gente não vai poder encontrar execuções possíveis que aceitam a palavra

Uma possível representação do funcionamento da TM não det é através de uma árvore: cada ramo da árvore representa então uma sequência de configuração possível. Caso um dos ramos leva a um estado de aceitação, então a máquina aceita a palavra.

Como garantir que a simulação da TM det vai encontrar todos os ramos de aceitação ?

Uma ideia tentadora seria de explorar a árvore usando um mecanismo de busca em profundidade: o problema é a possibilidade de explorar um ramo infinito.

A solução para não perder nenhum ramo de aceitação é utilizar um percurso em largura ! Porque ?

A realização da TM det seria dada por uma máquina de 3 fitas (equivalente também a uma máquina de fita simples):

- 1 fita para receber a palavra (o conteúdo desta fita não sera alterado);
- 1 fita que simula uma execução possível;
- 1 fita que mantém o registo das posições na árvore (fita da busca em largura que contém o conjunto das configurações a serem exploradas ainda).

5.6 Máquina de Turing universal

Existe uma TM que pode simular qualquer TM!

Tal máquina M recebe como entrada na fita a palavra w que corresponde à descrição de uma TM M' qualquer assim como a palavra de entrada w' que M' deve processar.

Tal máquina será então um interpretador de máquina de Turing e é chamada de TM universal.

Na pratica, podemos encontrar na internet numerosos simuladores de TM. Tais simuladores executam qualquer máquina de Turing e são executados num PC que pode ser representado também por uma máquina de 1 fita!

É claro que na pratica tal máquina será complexa demais para ser modelada.

5.7 Função calculável por uma TM

Até agora, as máquinas apresentadas só servem para tratar problemas de tipo booleano (uma palavra que pertence ou não a uma certa linguagem)

Na pratica, em computação, calculamos, na maior parte do tempo, funções que dependem de argumentos que seriam as palavras de entrada das TM:

Definição: uma TM que calcula uma função f: $\Sigma^* \to \Sigma^*$

se para toda palavra de entrada w, ela para numa configuração onde o resultado f(w) se encontra na fita no lugar de w.

Versão alternativa da tese de Church-Turing (não é um teorema!):

Uma função é calculável se e somente se existe uma TM que a calcula.

Enunciado alternativo da tese de Church-Turing: As funções calculáveis por um procedimento efetivo (algoritmo) são as funções calculáveis por uma TM.

Decidir uma linguagem é um tipo de calculo de função cujo domínio de resposta é : {0,1}

Existem versões alternativas das TM sem a noção de estado de aceitação mas onde os valores 0 ou 1 aparecem na fita quando é atingido um estado de parada.

Na pratica, o calculo de funções por TM não constitua a forma mais adequada de formalização do conceito de procedimento efetivo.

Outros modelos computacionais baseados na definição de funções recursivas (como as funções μ -recursivas ou o λ -calculo) são mais adaptados ao calculo de funções.

Mas para todos estes formalismos computacionais, existem teoremas que mostram a equivalência com as TM, mantendo válida a tese de Church-Turing.