ML & LinAlg Math Cheat Sheet

October 24, 2017

Contents

1	Notation	1
2	Derivative 2.a Vector Gradient	1
3	Determinant Operator 3.a Random Properties	2
4	Trace Operator 4.a Derivatives	2 2 2 2
A	Proofs A.a. Trace	2 2 2

1 Notation

Vectors are column vectors denoted by lower-case bolded variables, such that

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ dots \ x_N \end{array}
ight].$$

A row vector is denoted $\mathbf{x}^{\top} = [x_1 \dots x_N]$. A matrix is indicated by a bolded upper-case variable, such that an $N \times M$ matrix is

$$m{A} = \{a_{ij}\} = [m{a}_1 \cdots m{a}_M] = \left[egin{array}{c} m{a}_1^{ op} \ dots \ m{a}_N^{ op} \end{array}
ight] = \left[egin{array}{ccc} a_{1,1}^{ op} & \cdots & a_{1,M} \ dots & \ddots & dots \ a_N^{ op} & \cdots & a_{N,M} \end{array}
ight].$$

2 Derivative

2.a Vector Gradient

$$\nabla_{\boldsymbol{x}} \boldsymbol{y} = \left[\frac{\partial \boldsymbol{y}}{\partial x_1}, \dots, \frac{\partial \boldsymbol{y}}{\partial x_N}\right] \tag{1}$$

3 Determinant Operator

3.a Random Properties

For scalar c and $N \times N$ identity matrix I,

$$\det(cI) = c^N.$$

4 Trace Operator

4.a Derivatives

4.a.i
$$\nabla_{\boldsymbol{x}}\operatorname{tr}(\boldsymbol{x}\boldsymbol{x}^{\top}\boldsymbol{A}) = \boldsymbol{x}^{\top}(\boldsymbol{A} + \boldsymbol{A}^{\top})$$

For square matrix \boldsymbol{A} . Note that $\boldsymbol{x}^{\top}(\boldsymbol{A} + \boldsymbol{A}^{\top}) = 2\boldsymbol{x}^{\top}\boldsymbol{A}$ for symmetric \boldsymbol{A} . See appendix \boldsymbol{A} .a.i for proof.

4.b Relation to Determinant

A Proofs

A.a Trace

A.a.i
$$\nabla_{\boldsymbol{x}}\operatorname{tr}(\boldsymbol{x}\boldsymbol{x}^{\top}\boldsymbol{A}) = \boldsymbol{x}^{\top}(\boldsymbol{A} + \boldsymbol{A}^{\top})$$

This proof can likely be generalized to non-square matrixes (and possibly some communicativeness, given the flexibility afforded by the trace), but the restricted case is presented here.

For square $N \times N$ matrix \boldsymbol{A} ,

$$\nabla_{\boldsymbol{x}}\operatorname{tr}(\boldsymbol{x}\boldsymbol{x}^{\top}\boldsymbol{A}) = \frac{d}{d\boldsymbol{x}}\operatorname{tr}(\boldsymbol{x}\boldsymbol{x}^{\top}\boldsymbol{A}) = \frac{d}{d\boldsymbol{x}}\sum_{i}^{N}\sum_{k}^{N}x_{i}x_{k}a_{ik}.$$

Recall eq. (1), and consider for any $j \in \{1, ..., N\}$:

$$\frac{\partial}{\partial x_j} \sum_{i}^{N} \sum_{k}^{N} x_i x_k a_{ik} = [x_1 a_{1,j} + x_2 a_{2,j} + \dots + x_{j-1} a_{j-1,j} + x_{j+1} a_{j+1,j} + \dots + x_N a_{N,j}]$$

$$+ \frac{\partial}{\partial x_j} \sum_{k}^{N} x_j x_k a_{jk}$$

$$= \left[\sum_{i}^{N} x_i a_{ij} - x_j a_{jj} \right] + \sum_{k}^{N} x_k a_{jk} - x_j a_{jj} + \frac{\partial}{\partial x_j} x_j x_j a_{jj}$$

$$= \sum_{i}^{N} x_i a_{ij} + \sum_{k}^{N} x_k a_{jk} - 2x_j a_{jj} + 2x_j a_{jj}$$

$$= \mathbf{x}^{\top} \mathbf{a}_j + \mathbf{x}^{\top} [\mathbf{a}^{\top}]_j,$$

where $[\boldsymbol{a}^{\top}]_{j}$ is the *j*th column of A^{\top} .

This equally applies for any j in $1 \dots N$, and so for the full gradient:

$$\nabla_{\boldsymbol{x}}\operatorname{tr}(\boldsymbol{x}\boldsymbol{x}^{\top}\boldsymbol{A}) = \frac{d}{d\boldsymbol{x}}\sum_{i}^{N}\sum_{k}^{N}x_{i}x_{k}a_{ik} = [\boldsymbol{x}^{\top}\boldsymbol{a}_{1}\cdots\boldsymbol{x}^{\top}\boldsymbol{a}_{N}] + [\boldsymbol{x}^{\top}[\boldsymbol{a}^{\top}]_{1}\cdots\boldsymbol{x}^{\top}[\boldsymbol{a}^{\top}]_{N}]$$
$$= \boldsymbol{x}^{\top}(\boldsymbol{A} + \boldsymbol{A}^{\top}).$$