Pontificia Universidad Católica de Chile Facultad de Matemáticas <u>Departamento de Matemática</u>

Segundo Semestre de 2016

MAT 1620 – Cálculo II Solución Interrogación 1

1. Evalúe la integral $\int_2^\infty \frac{1}{x\sqrt{x^2-4}} dx$.

Solución. Observe que la integral es impropia de tipo I y II, entonces la separamos de la siguiente manera:

$$\int_{2}^{\infty} \frac{dx}{x\sqrt{x^2 - 4}} = \int_{2}^{3} \frac{dx}{x\sqrt{x^2 - 4}} + \int_{3}^{\infty} \frac{dx}{x\sqrt{x^2 - 4}}.$$
 (1)

Ahora bien, observe que haciendo el cambio de variables $x=2\sec\theta$ tenemos $dx/d\theta=2\sec\theta\tan\theta$ por lo que la integral indefinida tiene primitiva

$$\int \frac{dx}{x\sqrt{x^2 - 4}} = \int \frac{2 \sec \theta \tan \theta}{2 \sec \theta 2 \tan \theta} d\theta = \frac{1}{2}\theta + C = \frac{1}{2} \arccos \left(\frac{2}{x}\right) + C.$$

Entonces, obtenemos que el valor de la integral es:

$$\int_{2}^{\infty} \frac{dx}{x\sqrt{x^{2}-4}} = \int_{2}^{3} \frac{dx}{x\sqrt{x^{2}-4}} + \int_{3}^{\infty} \frac{dx}{x\sqrt{x^{2}-4}}$$

$$= \lim_{a \to 2} \int_{a}^{3} \frac{dx}{x\sqrt{x^{2}-1}} + \lim_{b \to +\infty} \int_{3}^{b} \frac{dx}{x\sqrt{x^{2}-4}}$$

$$= \lim_{a \to 2} \frac{1}{2} \arccos\left(\frac{2}{x}\right) \Big|_{a}^{3} + \lim_{b \to +\infty} \frac{1}{2} \arccos\left(\frac{2}{x}\right) \Big|_{3}^{b}$$

$$= \frac{1}{2} \cdot \left(\arccos\left(\frac{2}{3}\right) - 0\right) + \frac{1}{2} \left(\frac{\pi}{2} - \arccos\left(\frac{2}{3}\right)\right)$$

$$= \frac{\pi}{4}.$$

Puntaje Pregunta 1

- (i) **2 puntos** por separar la integral como en (1).
- (ii) **2 puntos** por determinar la primitiva de $\int \frac{dx}{x\sqrt{x^2-4}}$.
- (iii) 2 puntos por calcular los límites y obtener el valor de la integral.

- 2. Suponga que $a_n > 0$ y $\sum_{n=1}^{\infty} a_n$ es convergente.
 - a) Calcule el límite $\lim_{n\to\infty} \frac{\ln(1+a_n)}{a_n}$.
 - b) Demuestre que $\sum_{n=1}^{\infty} \ln(1+a_n)$ es convergente.

Solución.

a) Como $\sum_{n=1}^{\infty} a_n$ es convergente entonces $\lim_{n\to\infty} a_n = 0$.

Haciendo el cambio de variables $x = a_n$ y usando la regla de L'Hospital vemos que

$$\lim_{n \to \infty} \frac{\ln(1 + a_n)}{a_n} = \lim_{x \to 0} \frac{\ln(1 + x)}{x} = \lim_{x \to 0} \frac{1}{1 + x} = 1.$$

b) Notemos que $\sum a_n$ y $\sum \ln(1+a_n)$ son series con términos positivos y

$$\lim_{n \to \infty} \frac{\ln(1 + a_n)}{a_n} = 1 > 0.$$

Como $\sum a_n$ es convergente entonces $\sum \ln(1+a_n)$ es convergente por la prueba de comparación en el límite.

Puntaje Pregunta 2a)

- (i) **1 punto** por indicar que lím $a_n = 0$.
- (ii) 1 punto por realizar el cambio de variables $x = a_n$
- (iii) 1 punto por calcular correctamente el límite usando la regla de L'Hospital.

Puntaje Pregunta 2b)

- (i) **3 puntos** por utilizar la prueba de comparación en el límite, indicando las hipótesis de este resultado:
 - 1) Ambas series con términos positivos.
 - 2) $\lim a_n/b_n = 1 > 0$.
 - 3) $\sum a_n$ convergente.

Descontar 1 punto por cada hipótesis no mencionada.

3. Sea
$$(a_n)$$
 una sucesión tal que $a_n \neq 0$ para todo $n \in \mathbb{N}$.

Demuestre que si $\sum_{n=1}^{\infty} a_n$ converge entonces $\sum_{n=1}^{\infty} \frac{1}{a_n}$ diverge.

Solución. Si
$$\sum_{n=1}^{\infty} a_n$$
 es convergente entonces $\lim_{n\to\infty} a_n = 0$.

Se sigue que
$$\lim_{n\to\infty} \frac{1}{a_n} \neq 0$$
 y luego $\sum_{n=1}^{\infty} \frac{1}{a_n}$ es divergente por la prueba de la divergencia.

Puntaje Pregunta 3

- (i) 6 puntos por usar correctamente el criterio de divergencia.
- (ii) No otorgar puntaje si no se justifica correctamente que lím $1/a_n \neq 0$.

4. Para cada una de las siguientes series, determine si ella es convergente o divergente:

$$a) \sum_{n=3}^{\infty} \frac{n^2}{e^n}.$$

$$b) \sum_{n=1}^{\infty} \frac{n!}{n^n}.$$

Solución.

a) Si $f(x) = \frac{x^2}{e^x}$ entonces $f'(x) = \frac{x(2-x)}{e^x} < 0$ para x > 2, por lo que f es una función continua, positiva y decreciente en $[3, +\infty)$ y aplicando la prueba de la integral

$$\int_3^\infty f(x) \, dx = \lim_{b \to +\infty} \int_3^b \frac{x^2}{e^x} \, dx = \lim_{b \to +\infty} [-e^{-x}(x^2 + 2x + 2)]_3^b = \frac{17}{e^3} \, .$$

obtenemos que la serie $\sum_{n=3}^{\infty} \frac{n^2}{e^n}$ es convergente.

Otra forma: Usar el criterio del cociente para mostrar que lím $|a_{n+1}/a_n| = 1/e < 1$.

b)Notemos que, para $n\geqslant 3$ se cumple

$$\frac{n!}{n^n} = \frac{1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n}{n \cdot n \cdot n \cdots n \cdot n} = \frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{n-1}{n} \cdot \frac{n}{n} \leqslant \frac{1}{n} \cdot 1 \cdots 1 \cdot 1 = \frac{2}{n^2}.$$

Como la serie $\sum_{n=3}^{\infty} \frac{2}{n^2}$ es convergente, usando el criterio de comparación, se concluye que $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ es convergente.

Puntaje Pregunta 4a)

- (i) **1,5 puntos** por verificar que la función f(x) es continua, positiva y decreciente para todo x > 2.
- (ii) 1,5 puntos por calcular la integral impropia y deducir que la serie es convergente.

Puntaje Pregunta 4b)

- (i) 1,5 puntos por obtener una cota superior para $n!/n^n$.
- (ii) 1,5 puntos por utilizar el criterio de comparación.

5. Para cada una de las siguientes series, determine si ella es convergente o divergente. En caso de que la serie sea convergente, indique si la convergencia es absoluta o condicional:

$$a) \sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}.$$

$$b) \sum_{n=1}^{\infty} \left(\frac{-2n}{n+1} \right)^{5n}.$$

Solución.

a) La sucesión $a_n = \frac{1}{\ln(n)}$ es decreciente y $\lim_{n \to \infty} a_n = 0$ luego usando el criterio de la serie alternante, se concluye que $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}$ es convergente.

Ahora bien, para todo $n \in \mathbb{N}$ se tiene $\ln(n) < n$ entonces $\frac{1}{n} < \frac{1}{\ln(n)}$ para $n \ge 2$ y como

 $\sum_{n=2}^{\infty} \frac{1}{n} \text{ es divergente, usando el criterio de comparación, obtenemos que la serie } \sum_{n=2}^{\infty} \frac{1}{\ln(n)} \text{ es divergente. Por lo tanto, la serie } \sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)} \text{ es condicionalmente convergente.}$

b) Usando el criterio de la raíz, vemos que

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left(\frac{2n}{n+1}\right)^5 = 2^5 > 1 ,$$

entonces la serie $\sum_{n=1}^{\infty} \left(\frac{-2n}{n+1}\right)^{5n}$ es divergente.

Puntaje Pregunta 5a)

- (i) **1,5 puntos** por verificar que la serie alternate es convergente.
- (ii) 1,5 puntos por usar el criterio de comparación para mostrar que la serie es condicionalmente convergente.

Puntaje Pregunta 5b)

(i) 3 puntos por utilizar correctamente el criterio de la raíz.

6. ¿Para qué valores de p es convergente la serie $\sum_{n=1}^{\infty} n(1+n^2)^p$?

Solución. Observe que $f(x) = x(1+x^2)^p$ es continua, positiva y es decreciente en el intervalo $[1,+\infty)$ para todo p<-1/2.

En efecto, se tiene que

$$f'(x) = (1+x^2)^p + 2px^2(1+x^2)^{p-1} = (1+x^2)^{p-1}[1+(1+2p)x^2] < 0$$

para $x \ge 1$ si $1 + 2p < 0 \iff p < -1/2$.

Entonces, usando el criterio integral

$$\int_{1}^{\infty} x(1+x^2)^p dx = \lim_{b \to \infty} \left[\frac{1}{2} \frac{(1+x^2)^{p+1}}{p+1} \right]_{1}^{b} = \frac{1}{2(p+1)} \lim_{b \to \infty} [(1+b^2)^{p+1} - 2^{p+1}].$$

Este último límite existe y es finito si y sólo si $p+1 < 0 \iff p < -1$, luego la serie $\sum_{n=1}^{\infty} n(1+n^2)^p$ converge cuando p < -1.

Puntaje Pregunta 6)

- (i) 2 puntos por verificar que la función f(x) es continua, positiva y decreciente.
- (ii) **2 puntos** por calcular la integral $\int_{1}^{\infty} f(x) dx$.
- (iii) 2 puntos por determinar cuando el límite existe y concluir.

7. Determine el radio de convergencia y el intervalo de convergencia de la serie $\sum_{n=1}^{\infty} \frac{n(x-4)^n}{n^3+1}$.

Solución. Sea
$$a_n = \frac{n(x-4)^n}{n^3+1}$$
. Entonces

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)|x-4|^{n+1}}{(n+1)^3+1} \cdot \frac{n^3+1}{n|x-4|^n} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) \frac{n^3+1}{n^3+3n^2+3n+2} |x-4| = |x-4|.$$

Usando el criterio del cociente, la serie converge cuando |x-4| < 1 y por lo tanto el radio de

convergencia es R=1. Además, $|x-4|<1 \Longrightarrow -1 < x-4 < 1 \Longrightarrow 3 < x < 5$. Ahora bien, si x=3 entonces $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^3+1}$ la cual es convergente por el criterio de las series

Si x=5 obtenemos $\sum_{n=1}^{\infty} \frac{n}{n^3+1}$ la cual es convergente por el criterio de comparación ya que $\frac{n}{n^3+1} \leqslant \frac{n}{n^3} = \frac{1}{n^2}$. Por lo tanto, el intervalo de convergencia es I = [3,5].

Puntaje Pregunta 7)

- (i) **2 puntos** por calcular correctamente el límite lím $|a_{n+1}/a_n|$.
- (ii) 1 puntos por concluir que el radio de convergencia es R = 1.
- (iii) 1 puntos por verificar la convergencia de la serie para x=3.
- (iv) 1 puntos por verificar la convergencia de la serie para x = 5.
- (v) 1 puntos por concluir que el intervalo de convergencia es I = [3, 5].

8. Exprese la función $f(x) = \frac{3}{x^2 - x - 2}$ como la suma de una serie de potencias usando primero fracciones parciales, y encuentre su radio de convergencia.

Solución. Tenemos que

$$f(x) = \frac{3}{x^2 - x - 2} = \frac{3}{(x - 2)(x + 1)} = \frac{A}{x - 2} + \frac{B}{x + 1}$$

de donde A=1 y B=-1. Entonces, usando la serie geométrica obtenemos

$$f(x) = \frac{1}{x-2} - \frac{1}{x+1} = -\frac{1}{2} \left(\frac{1}{1-(x/2)} \right) - \frac{1}{1-(-x)} = -\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x}{2} \right)^n - \sum_{n=0}^{\infty} (-x)^n$$
$$= \sum_{n=0}^{\infty} \left[-\frac{1}{2} \cdot \frac{1}{2^n} - (-1)^n \right] x^n = \sum_{n=1}^{\infty} \left[(-1)^{n+1} - \frac{1}{2^{n+1}} \right] x^n.$$

Como hemos representado a f como la suma de dos series geométricas, la primera con radio de convergencia R=2 y la segunda con radio de convergencia R=1, entonces la suma tiene radio de convergencia R=1.

Puntaje Pregunta 8)

- (i) 2 puntos por determinar la descomposición en fracciones parciales.
- (ii) 3 puntos por obtener la representación en serie para f
- (iii) 1 puntos por concluir que el radio de convergencia es R = 1.