HEMOSTASIA

CBCC-6 2016

Depto. Básico de Medicina Cátedra de Hematología

Introducción

• El conocimiento de la fisiopatología de la coagulación es clave para la comprensión de la clínica y biología de las enfermedades hemorrágicas y trombóticas.

• Delicado equilibrio para evitar sangrados y trombosis.

- Se subdividen en:
 - Hemostasia primaria.
 - Hemostasia secundaria.
 - Fibrinólisis.

Hemostasia

A

 \mathbf{C}

 \mathbf{T}

I

V

A

D

0

R

E

S

Componente vascular

Componente perivascular

Componente plaquetario

Sistema de coagulación

Sistema fibrinolítico

I

N

H

1

B

Ι

ע ^

R

E

S

FASES DE LA HEMOSTASIA

- Fase vascular
 - Vasoconstricción
 - Endotelio
- Fase plaquetaria
- Fase de la coagulación

HEMOSTASIA

• Componentes:

- Vascular.
- Celular.
- Proteínas de la coagulación.

DEFINICIONES

- Hemostasia primaria:
 - Formación de tapón plaquetario primario o tapón hemostático primario frente al daño vascular. Las plaquetas se unen al subendotelio expuesto.

- Hemostasia secundaria:
 - Formación del tapón hemostático secundario, al desencadenarse la cascada de la coagulación formándose una malla de fibrina y completando el tapón hemostático.

VASOCONSTRICCIÓN

HEMOSTASIA

INJURY TO VESSEL

HEMOSTASIA PRIMARIA

• Componente vascular:

- Tejido de soporte.
- Pared del vaso.
- Endotelio.

• Trombo-resistencia.

- Carga negativa.
- ADPasa (transforma el ADP en AMP: antiagregante plaquetario).
- Producción de Oxido Nítrico (NO) y prostaciclina; inhibidores de la agregación plaquetaria.

PLAQUETAS

o Membrana:

• Glicoproteínas; forman complejos: GPI/IX y GPIIb/IIIa.

• Contenido:

- <u>Gránulos alfa</u>: factor-4-plaquetario, betatromboglobulina, FV, F Von Willebrand (FVW), FI (fibrinógeno) y factor de crecimiento plaquetario (PDGF).
- <u>Gránulos delta o cuerpos densos</u>: ATP, ADP, Calcio y serotonina.
- <u>Sistema tubular denso</u>: calcio y producción de ácido Araquidónico (PG y TXA2).

• Atmósfera periplaquetaria:

• Factor-3-plaquetario (soporte PL).

PLAQUETAS

Zona periférica

- Glicocálix (Cubierta exterior)
- Membrana celular
- Región submembranosa

Zona estructural

- Citoesqueleto
- Sistema canalicular abierto
- Sistema tubular denso
- Gránulos
- Otras: vesículas, mitocondrias, glucógeno

•Glicocalix (o cubierta exterior)

- Consiste en glucoproteínas, proteínas y mucopolisacáridos
- Confiere carga neta negativa a la plaqueta por residuos de acido siálico.
- Interacción con activadores plaquetarios para facilitar la adhesión.
- Es mediador de transferencia de señales para agentes estimulantes.

• Membrana celular

- Mantiene homeostasis iónica mediante bombas: sodio y calcio
- Aporta:
- Superficie y el factor 3 plaquetario (fosfolípido)
- Glucoproteinas que soportan las funciones plaquetarias.

• Integrinas

• Glicoproteína Ib: receptor para el factor von Willebrand, Glucoproteína IX

• Glucoproteína IIb — IIIa: receptor para el fibrinógeno, el factor vW, trombospondina, vitronectina y

fibronectina

• Sistema canalicular abierto

• Estiramiento y expansión de la plaqueta

• Sistema tubular denso

- Regulación del calcio
- Síntesis de protaglandina y tromboxanos

• Citoesqueleto

 Cambios morfológicos de las plaquetas

REACCIONES BÁSICAS PLAQUETARIAS

• Adhesión.

• Liberación del contenido granular.

• Agregación.

ADHESIÓN

 Adhesión plaquetaria al subendotelio a través de la GPI/IX; el FVW (FVW/FVIII) actúa como

puente.

LIBERACIÓN

- Serie de <u>cambios bioquímicos</u> encaminados a la liberación del contenido de los gránulos a través del TXA2 que activa la bomba de Calcio y al sistema contráctil para la expulsión del contenido de los gránulos.
- <u>Cambios morfológicos</u>: los gránulos se colocan en el centro (contracción del sistema actina-miosina) con comunicaciones entre los gránulos y el sistema canalicular abierto, las plaquetas pasan de ser discoides a esféricas.

PLATELET PLUG FORMATION—PRIMARY HEMOSTASIS

AGREGACIÓN

- Las plaquetas exponen la GPIIb/IIIa y el fibrinógeno actúa como puente entre este y las plaquetas adyacentes.
- La agregación es estimulada por el contenido liberado de los gránulos (ADP, serotonina, FVW), por componentes subendoteliales (s/t colágeno) o del entorno periplaquetario (PAF-factor de activación plaquetario liberado por los macrófagos y neutrófilos) y otras sustancias como la trombina o la adrenalina.

AGREGACIÓN

RECEPTORES DE MEMBRANA DE LAS PLAQUETAS

HEMOSTASIA PRIMARIA

FISIOLOGÍA

- Circulan sin adherirse entre sí ni con otras
- Adhesión de plaquetas al colágeno por FvW y GP lb
- Activación cambio de forma
- Agregación por liberación de ADP, GP IIb-IIIa
- <u>Secreción</u> de sustancias de gránulos alfa y densos

TAPÓN HEMOSTÁTICO PRIMARIO

HEMOSTASIA SECUNDARIA

• Proteínas de la coagulación:

- Zimógenos o proenzimas: precursores inactivos de los factores II,VII, IX, X, XI, XII y precalicreína.
- Cofactores: factores V, VIII y quininógeno de APM, que aceleran la activación de las proenzimas, y el factor XIII estabilizante de la fibrina.
- Fibrinógeno (FI): es el sustrato final a partir del cual se produce el coágulo.

CASCADA DE LA COAGULACIÓN

> MODELO CLÁSICO

CASCADA DE LA COAGULACIÓN

• Modelo clásico:

- Vía extrínseca
- Vía intrínseca
- Vía final común

CASCADA DE LA COAGULACIÓN

A Initiation

TF complexes with factor VIIa formed at the site of tissue injury; the subsequent activation of factor X and factor IX generate small amounts of thrombin

B Amplification

Thrombin activates platelets and cofactors (V, VII); coagulation factors and cofactors assemble on surface of activated platelets (VIIIa, Va, IXa); multiple feedback loops amplify the process

C Propagation

Assembled complexes continue cascade on surface of activated platelets; the prothrombinase complex converts prothrombin to thrombin which then converts fibrinogen to fibrin; this is followed by clot stabilization

• Modelo moderno: basado en las células

- Fase de iniciación
- Fase de amplificación
- Fase de propagación

HISTORIA CLÍNICA

- Edad
- Sexo
- Antecedentes personales
- Tratamiento
- Problemas hemorrágicos
- Operaciones
- Extracciones dentarias
- Procesos infecciosos
- Antecedentes familiares

EXAMEN FISICO

- Petequias
- Equimosis
- Epistaxis
- Hemorragias gastrointestinales
- Hemorragias genitourinarias
- Lesiones purpúricas

	DEFECTO VASCULO- PLAQUETARIO	DEFECTO DE LA COAGULACION
LOCALIZACIÓN	PIEL Y MUCOSAS	TEJIDOS BLANDOS PROFUNDOS
APARICION DEL SANGRADO	<u>INMEDIATO</u>	<u>HORAS-DIAS</u>
SANGRADO CON PEQUEÑOS TRAUMAS	SI	POCO FRECUENTE
PETEQUIAS	SI	NO
EQUIMOSIS	PEQUEÑAS	GRANDES
	SUPERFICIALES	PROFUNDAS
HEMARTROSIS Y	POCO PROFUNDAS	FRECUENTES
HEMATOMAS		
MUSCULARES		
HEMORRAGIA TRAS CIRUGIA	INMEDIATA Y LEVE	DIFERIDA Y SEVERA

INTERPRETACION DE LAS PRUEBAS DE LABORATORIO PARA EL ESTUDIO DE LA COAGULACIÓN

- El estudio inicial de un paciente con sangrado requiere la realización de una sencilla batería de pruebas analíticas cuyos resultados deben interpretarse en el contexto clínico
- Disponemos de pruebas que evalúan la hemostasis primaria y la secundaria

ESTUDIOS DE LABORATORIO HEMOSTASIA PRIMARIA

 Hemograma con Recuento de plaquetas Lamina Periférica

o Tiempo de sangría

- Adhesividad y Agregación plaquetaria
- o Prueba de retracción del coágulo

ESTUDIOS DE LABORATORIO HEMOSTASIA SECUNDARIA Y FIBRINOLISIS

• aPTT

• TP

• FIBRINÓGENO

o D-DÍMERO

• PDF

• Más específicas: dosificación factores coagulación

"KEEPING ON CENTER": MOVING TOWARD NORMAL HEMOSTASIS

: RESULTADOS DE LAS PRUEBAS BÁSICAS DE LA COAGULACIÓN Y ORIENTACIÓN DIAGNÓSTICA.

TP	TTPA	TT	DIAGNÓSTICO
Normal	Normal	Normal	Coagulación conservada.
			Si síntomas hemorrágicos: Cuantificar Factor XIII, Factor von
			Willebrand, Pruebas de función plaquetaria,
Aumentado	Normal	Normal	Tratamiento con anticoagulantes orales
			Déficit de <u>factor VII</u> .
			Déficit moderado de factores de la vía extrínseca: II, V, VII, X.
Normal	Aumentado	Normal	Muestra con Heparina /Tratamiento con Heparina.
			Anticoagulante lúpico.
			Alteración <u>vía intrínseca</u> : VIII, IX, XI, XII, precalicreína,
			cininógeno.
			Enf. Von Willebrand.
			Inhibidor específico
Aumentado	Aumentado	Normal	Déficit aislado de II, V, o X (vía común) ó inhibidor específico.
			Déficit de vitamina K, Hepatópatas, Anticoagulantes orales.
			Síndrome hemorrágico del Recién Nacido.
Aumentado Aui	Aumontado	nentado Aumentado	Hepatopatía severa, CID, Fibrinolisis sistémica, Hipo o
	Aumentauo		disfibrinogenemia.