O3. Creating the Target Variable (SLAFail)

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib
from matplotlib import pyplot as plt
from pandas_profiling import ProfileReport
from pathlib import Path
```

```
[2] df = pd.read_csv("data/02.a.Detail_Incident.csv", parse_dates=
['Open_Time', 'Resolved_Time','Close_Time'])
```

[3] df.dtypes

```
CI_Name_aff
                                       object
CI_Type_aff
                                       object
CI_Subtype_aff
                                       object
Service_Component_WBS_aff
                                       object
Incident_ID
                                       object
Impact
                                        int64
                                        int64
Urgency
Priority
                                        int64
KM_number
                                       object
Count_Reassignments
                                      float64
Open_Time
                               datetime64[ns]
Resolved_Time
                               datetime64[ns]
Close_Time
                               datetime64[ns]
Handle_Time_Hours
                                      float64
Closure_Code
                                       object
Count_Related_Interactions
                                      float64
Related_Interaction
                                       object
Count_Related_Incidents
                                      float64
                                      float64
Count_Related_Changes
Related_Change
                                       object
CI_Name_CBy
                                       object
CI_Type_CBy
                                       object
CI_Subtype_CBy
                                       object
ServiceComp_WBS_CBy
                                       object
ReopenedFlag
                                        int64
dtype: object
```

[4] df.head()

	CI_Name_aff	CI_Type_aff	CI_Subtype_aff	Service_Component_WBS	
0	APP000005	application	Citrix	WBS000292	
1	DSK000457	computer	Desktop	WBS000187	
2	SBA000263	application	Server Based Application	WBS000072	
3	SBA000154	application	Server Based Application	WBS000027	
4	LAP000019	computer	Laptop	WBS000091	

5 rows × 25 columns

[5] df['TimeToResolve'] = df.Resolved_Time - df.Open_Time

[6] df.TimeToResolve.describe()

```
35208
count
mean
        3 days 16:21:45.273148
        10 days 08:24:08.475153
std
min
                 0 days 00:00:17
         0 days 01:12:33.250000
25%
         0 days 16:20:28.500000
50%
75%
          3 days 02:57:33.500000
max
               175 days 06:40:30
Name: TimeToResolve, dtype: object
```

[7] df.TimeToResolve.mode()

0 00:08:22

dtype: timedelta64[ns]

[8] df.head()

	CI_Name_aff	CI_Type_aff	CI_Subtype_aff	Service_Component_WBS
0	APP000005	application	Citrix	WBS000292

	CI_Name_aff	CI_Type_aff	CI_Subtype_aff	Service_Component_WBS	
1	DSK000457	computer	Desktop	WBS000187	
2	SBA000263	application	Server Based Application	WBS000072	
3	SBA000154	application	Server Based Application	WBS000027	
4	LAP000019	computer	Laptop	WBS000091	

5 rows × 26 columns

[9] sns.countplot(x='Priority', data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x1a2c3d5d90>


```
[10] df['TimeToResolve_Minutes'] = df.TimeToResolve.dt.total_seconds()
/ 60
```

[11] df.head()

	CI_Name_aff	CI_Type_aff	CI_Subtype_aff	Service_Component_WBS	
0	APP000005	application	Citrix	WBS000292	
1	DSK000457	computer	Desktop	WBS000187	
2	SBA000263	application	Server Based Application	WBS000072	
3	SBA000154	application	Server Based Application	WBS000027	
4	LAP000019	computer	Laptop	WBS000091	

5 rows × 27 columns

SLA Business Rule

Priority	SLA in Minutes	SLA in Hours	SLA in Days
1 Very High	240	4	0.16
2 High	480	8	0.3
3 Medium	1440	24	1
4 Low	2880	48	2
5 Very Low	5760	96	4

 $SLAFail = (Priority == 1 \& TimeToResolve_Minutes > 240) | (Priority == 2 \& TimeToResolve_Minutes > 480) | (Priority == 3 \& TimeToResolve_Minutes > 1440) | (Priority == 4 \& TimeToResolve_Minutes > 2880) | (Priority == 5 \& TimeToResolve_Minutes > 5760) | (Priority == 5 & TimeToResolve_Minutes > 5760$

```
[12] df['SLAFail'] = ( (df['Priority'] == 1) &
        (df['TimeToResolve_Minutes'] > 240) ) | ( (df['Priority'] == 2) &
        (df['TimeToResolve_Minutes'] > 480) ) | ( (df['Priority'] == 3) &
        (df['TimeToResolve_Minutes'] > 1440) ) | ( (df['Priority'] == 4)
        & (df['TimeToResolve_Minutes'] > 2880) ) | ( (df['Priority'] ==
        5) & (df['TimeToResolve_Minutes'] > 5760) )
```

```
[13] df.SLAFail = df.SLAFail.astype(int)
```

```
[14] df.SLAFail.value_counts(normalize=True)
```

```
0 0.701261
1 0.298739
```

Name: SLAFail, dtype: float64

```
[15] sns.countplot(x='SLAFail', data=df)
```

<matplotlib.axes._subplots.AxesSubplot at 0x1a273d6450>


```
[16] #
    df = df.drop(['TimeToResolve'], axis='columns')
```

END and OUTPUT

```
df.reset_index(drop=True, inplace=True)
profile = ProfileReport(df, title="Profile of BPIC 2014
Detail_Incident Data after Adding SLAFail", html={'style':
    {'full_width': True}})
```

```
profile.to_file(Path(str("reports/03.b.Detail_Incident_Profile.ht
    ml")))
```

[]