Approximate Bayesian Computations via Sufficient Dimension Reduction

Harris Quach

November 28, 2018

Approximate Bayesian Computation: Context

- ▶ Observed sample of size n, $y_{obs} \in \mathbb{R}^n \sim f_{\theta}$, prior $\pi(\theta)$; we want draws from posterior $\pi(\theta|y_{obs}) \propto \pi(\theta) f(y_{obs}|\theta)$
- Problem: $f(y|\theta)$ is intractable computationally expensive, no analytic form, etc. **But** we can simulate from the f_{θ} .
- ldea: To sample from posterior, find θ that generate simulations y_{sim} matching y_{obs} , i.e. $y_{sim} = y_{obs}$
- Matching y_{sim} to y_{obs} difficult if n is large, especially if y is continuous.

ABC: Role of Sufficiency

- Easier if we have a lower-dimensional summary statistic $\varphi = \varphi(y)$; ideally, $\varphi(y)$ is a sufficient statistic; $\varphi(y)$ being informative on θ also works.
- Easier if instead of matching, we settle for close enough: $\rho(\varphi(y_{sim}), \varphi(y_{obs})) < \varepsilon$ for ρ a metric, $\varepsilon > 0$

Algorithm 1: ABC

Given: proposal $g(\theta)$; a summary statistic $\varphi(\cdot)$; a metric ρ with some tolerance ε ; your acceptance rule as a function of closeness

- 1 Draw $\theta_{sim} \sim g(\theta)$ for sim = 1, ..., S
- 2 Draw $y_{\textit{sim}} \in \mathbb{R}^n \sim f_{\theta_{\textit{sim}}}$ for $\textit{sim} = 1, ..., \mathcal{S}$
- 3 Accept θ_{sim} according to your rule depending on closeness, e.g $\rho(\varphi(y_{sim}), \varphi(y_{obs})) < \varepsilon$

Result: S Draws from a posterior that approximates $\pi(\theta|y_{obs})$

$$\pi(\theta|y_{obs}) \approx \pi(\theta|\varphi_{obs}) \approx \pi_{ABC}(\theta|\varphi_{obs})$$

Sufficient Dimension Reduction: Context

- ▶ But what if we have no idea about φ ?
- ▶ We have $\theta \in \mathbb{R}^B$, $Y \in \mathbb{R}^{n \times B}$
- ▶ Objective: Find an transformation $\varphi(Y)$ such that

$$\theta \perp \!\!\! \perp Y | \varphi(Y)$$
, or $P(\theta|Y) = P(\theta|\varphi(Y))$

Finding an informative summary $\varphi = \varphi(y)$ such that $\pi(\theta|y) = \pi(\theta|\varphi(Y))$ is a sufficent dimension reduction problem!

Sufficient Dimension Reduction: Heuristics and Methods

- ightharpoonup Being informative means $\varphi(Y)$ explains variation in θ
- Nork with matrices like $\Lambda_{sdr} = E(\text{``Variation between }\theta \text{ and }Y\text{''});$
- ► The SDR methods we consider are will generally produce estimated functions of the form:

$$\hat{\varphi}(Y) = eigen.vec_d(\hat{\Lambda}_{sdr})("\widehat{VCov_Y}")^{-1}"Y"$$

Estimating Sufficient Statistic via Simulation

Algorithm 2: Estimating Sufficient Statistic for ABC via Simulation

Given: proposal $g(\theta)$;

- 1 Draw $\theta_{sim} \sim g(\theta)$ for sim = 1, ..., B
- 2 For each θ_{sim} : Draw $y_{sim}^{(r)} \in \mathbb{R}^n \sim f_{\theta_{sim}}$ for r=1,...,R
- **3 begin** For each r = 1, ..., R:
- 4 Let $\theta^{(r)}=(\theta_1^r,...,\theta_B^r)\in\mathbb{R}^B$ and $Y^{(r)}=(y_1^r,...,y_B^r)\in\mathbb{R}^{n\times B}$
- **5** Estimate $\hat{\Lambda}_{sdr}^{(r)}$
- 6 end
- 7 Construct $\hat{\Lambda}_{sdr} = \frac{1}{R} \sum_{r=1}^{R} \hat{\Lambda}_{sdr}^{(r)}$; and $\hat{\varphi}(y) = eigen.vec_d(\hat{\Lambda}_{sdr})(\text{"$\widehat{VCov_Y}$"})^{-1}\text{"y"}$

Output: $\hat{\varphi}$: an estimated sufficient statistic for θ

Example: AR(1) in Ghosh & Zhong (2016)

For t = 1, ..., n, n = 100, $\sigma = 0.5$, B = 1000;

$$y_{t+1} = heta y_t + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma^2), \quad heta \sim \mathit{Unif}(-1, 1) \implies heta | y, \sigma \sim \mathcal{N}\left(rac{\sum_2^n y_t y_{t-1}}{\sum_2^n y_{t-1}^2}, rac{\sigma^2}{\sum_2^n y_{t-1}^2}
ight)$$

Algorithm 3: ABC with SDR for AR(1)

Given: proposal $g(\theta)$; estimated summary statistic $\hat{\varphi}(\cdot)$; a metric ρ with some tolerance ε ; your acceptance rule as a function of closeness

- 1 Draw $\theta_{sim} \sim g(\theta)$ for sim = 1, ..., S
- 2 Accept θ_{sim} according to your rule depending on closeness, e.g $\rho(\hat{\varphi}(y_{sim}), \hat{\varphi}(y_{obs})) < \varepsilon$

Output: S Draws from $\pi_{ABC}(\theta|\hat{\varphi}_{obs}) \approx \pi(\theta|\varphi(y_{obs})) \approx \pi(\theta|y_{obs})$

True Posterior vs ABC via (DR, SIR, SAVE, IHT dashed), GSIR, GSAVE

-1.0

-0.5

$$g = TruncNorm; R = 100; S = 1000$$

-0.5

$$g = TruncNorm; R = 200; S = 1000$$

Conclusion

- Neveraging to estimate Λ_{sdr} enables use of SDR by speeding up computation;
- ▶ Repeated drawing for each θ_{sim} improves effectiveness of non-linear SDR;
- ► SDR provides an automated way to construct useful summary statistics for ABC;
- Need to develop better SDR implementation within an MCMC ABC framework;

Revisiting Gradient-based Meta-learning Optimization via Stochastic Composition Optimization

Huaxiu Yao

College of Information Science and Technology

28th Nov 2018

Introduction: Background (Meta-learning)

Supervised Learning

```
Input: \mathbf{x}; Output: \mathbf{y}; Data: (\mathbf{x}, \mathbf{y})_i
```

Relation: $\mathbf{y} = f(\mathbf{x}; \theta)$

Meta-Supervised Learning

```
Input: \mathcal{D}_{train}, \mathbf{x}_{test}; Output: \mathbf{y}_{test}; Data: \mathcal{D}_i = (\mathbf{x}, \mathbf{y})_i
```

Relation: $\mathbf{y} = f(\mathcal{D}_{train}, \mathbf{x}_{test}; \theta)$

Why it is so important?

Reduces the problem to the design & optimization of f.

Applications

- 1. **Learning to optimization**: learn how to design the hyperparameters (e.g., step size)
- 2. **Few-shot Learning**: learning how to classify images with a few samples.

Gradient-based Meta-learning

Key Idea: Train over many tasks, to learn parameter vector θ that transfers [Finn et al. 2017]

 θ : parameter vector being meta-learned (i.e., the learnable parameters of f)

 $\phi_{\mathbf{i}}^*$: optimal parameter vector for task i

Loss Function (one gradient as exemplarity):

$$\min_{\theta} \sum_{task,i} \mathcal{L}_{test}^{i}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{train}^{i}(\theta))$$

Figure 1: Meta-learning

How to solve this optimization problem?

Stochastic Gradient Descent (e.g., Adam)?

Simply using stochastic gradient descent may introduce biased estimation.

3 / 9

Challenge: How to Optimize the Loss Function

Loss Function:

$$\min_{\theta} \sum_{task \ i} \mathcal{L}_{test}^{i}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{train}^{i}(\theta))$$

The loss function can be regarded as a nested function, which can be revised as:

$$\min_{\theta} \sum_{task \ i} \mathcal{L}_{test}^{i}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{train}^{i}(\theta)) \Rightarrow \mathbb{E}[g_{1}(\mathbb{E}[g_{2}(\theta)])]$$

$$g_1(\theta) = \mathcal{L}_{test}(\cdot); \ g_2(\theta) = \theta - \alpha \nabla_{\theta} \mathcal{L}_{train}(\theta)$$

where $\mathcal{L}_{train}(\theta)$ is a complex function and the variable is θ . The gradient of loss function is:

$$\nabla G(\theta) = \nabla g_2(\theta) \nabla g_1(g_2(\theta))$$

Challenge: $g_2(\theta)$ is unknown with finite sample oracles (SO).

4 / 9

Solution: Stochastic Composition Optimization

Optimality condition of problem (assuming that the problem is convex) is [Wang et al. 2017]:

$$\nabla G(\theta^*)'(\theta - \theta^*) \ge 0$$

The unbiased sample of ∇G is difficult to obtain. We introduce a new function z and the optimality condition can be:

$$(\nabla g_2(\theta)\nabla g_1(z))'(\theta-\theta^*)\geq 0$$

 $z=g_2(\theta)$

For a given (θ, z) , we can get unbiased results.

Multi-level Optimization: we can also easily extend to multi-level optimization, which is (assuming there are T steps):

$$(\nabla g_T(\theta)\nabla g_{T-1}(z_{T-1})\cdots\nabla g_1(z_1))'(\theta-\theta^*)\geq 0$$
 $z_{T-1}=g_T(\theta)$
 $z_1=g_2(z_2)$

Solution: Stochastic Composition Optimization

Stochastic Composition Optimization The formulation is:

$$\min_{ heta} \mathbb{E}[g_1(\mathbb{E}[g_2(heta)])]$$

Input: SO, K, stepsize $\{\alpha_k\}_{k=1}^K$, $\{\beta_k\}_{k=1}^K$, data, z_0

- 1: **for** k = 1 to K **do**
- 2: Query the SO to obtain $\nabla g_2(\theta_k)$, $g_2(\theta_k)$, $g_1(y_{k+1})$ Update $y_{k+1} = (1 - \beta_k)y_k + \beta_k g_2(\theta_k)$ Update $x_{k+1} = x_k - \alpha \nabla g_2(\theta_k) \nabla g_1(y_{k+1})$
- 3: end for

Algorithm 1: Pseudocode for Stochastic Composition Gradient Descent

Experiments: Synthetic Dataset

Dataset Description: We generate the task from a familiy functions.

The base function is:

$$y = A_1 sin(wx + b_1) + A_2 sin(wx + b_2)$$

 $A_1 \sim U[1.0, 5.0], A_2 \sim U[-1.0, 2.0], b_1 \sim U[0, 2\pi], w \sim U[0.5, 2.0]$

Each composition represents one task. For each task, 5 samples are used for training and 15 samples for testing.

Compared Methods: We compare the results with stochastic gradient descent (SGD) and Adam.

Base model: Multiple Layer Perception with two hidden layers (each layer

has 40 neurons).

Results:

Experiments: Real-world Dataset

Dataset Description: We selected 100 class from Imagenet, 64, 16, 20 classes are used for training, validation and testing. For each task, we randomly select 5 classes (5-way), each class has 1 or 5 (1-shot or 5-shot) sample for training and 15 samples for testing.

Compared Methods: Adam.

Base model: Four layers convolutional neural network.

Results: The accuracy and training loss are shown in Table 1 and Figure 2.

Table 1: Classification Accuracy

Model	5-way 1-shot	5-way 5-shot
Adam	48.70±1.68	63.11 ± 0.92
SCO	50.01±1.65	64.02±0.83

Figure 3: Accuracy of 1-shot

Discussion & Conclusion

Theoretical Analysis: Since the meta-learning problem is non-convex case, the convergence error bound of stochastic gradient descent algorithm is $\mathcal{O}(n^{-4/(7+T)})$.

Weakness:

- 1. The computational cost of this algorithm is still high, usually take several hours to train.
- 2. Empirically, sometimes the algorithms is a little unstable.

Conclusion & Discussion:

- 1. By using stochastic composition gradient descent on gradient-based meta-learning problem, we can alleviate the effect of biased SO. Empirically, we achieve better performance on synthetic and real-world datasets.
- 2. In the future, we can apply the stochastic composition optimization to more meta-learning applications, especially reinforcement learning case. In addition, we can apply to more meta-learning frameworks (e.g., recurrent meta-learning)