Arranging Shoes

Pogi posjeduje najveću prodavaonicu cipela u svom rodnom Varaždinu. Kutija od n parova cipela upravo je pristigla. Svaki par sastoji se od dvije cipele iste veličine: lijeve i točne desne. Pogi je stavio svih 2n cipela u red koji se sastoji od 2n **pozicija** označenih brojevima od 0 do 2n-1 s lijeva na desno.

Pogi želi promijeniti poredak cipela da postigne **dobar poredak**. Poredak je dobar ako i samo ako za svaki i ($0 \le i \le n-1$), vrijedi sljedeće:

- ullet Cipele na pozicijama 2i i 2i+1 su iste veličine.
- Cipela na poziciji 2i je lijeva cipela.
- Cipela na poziciji 2i + 1 je desna cipela.

Imajući to na umu Pogi čini niz zamjena. U svakoj zamjeni odabere dvije **susjedne** cipele u tom trenutku i zamijeni njihove pozicije (stavi jednu na poziciju druge i vice versa). Dvije cipele su susjedne ako se njihove pozicije razlikuju za točno jedan.

Odredi minimalan broj zamjena koje Pogi treba napraviti da bi dobio dobar poredak cipela.

Implementacijski detalji

Trebaš implementirati sljedeće:

int64 count swaps(int[] S)

- S: niz 2n cijelih brojeva. Za svaki i ($0 \le i \le 2n-1$), $S[i] \ne 0$ je broj koji opisuje cipelu koja se na početku nalazi na poziciji i. Apsolutna vrijednost broja S[i] je veličina cipele. Veličina cipele ne prelazi n. Ako je S[i] < 0, cipela na poziciji i je lijeva cipela; inače je desna.
- Ova funkcija treba vraćati minimalan broj zamjena (susjednih cipela) koje treba napraviti da se dobije dobar poredak.

Ogledni test podaci

Test podatak 1

Pogledaj sljedći primjer:

Pogi može dobiti dobar poredak u 4 zamjene.

Opisat ćemo jedan od načina. Prvo može zamjeniti cipele 1 i -1, potom 1 i -2, zatim -1 i -2 te naposljetku 2 i -2. Nakon spomenutih zamjena dobit će poredak: [-2,2,-1,1]. Nije moguće dobiti dobar poredak u manje od 4 zamjene. Stoga, funkcija treba vratiti 4.

Test podatak 2

U sljedećem primjeru sve cipele su iste veličine:

Pogi može zamjeniti cipele na pozicijama 2 i 3 te dobiti poredak [-2, 2, -2, 2, -2, 2]. Dakle, funkcija treba vratiti 1.

Ograničenja

- $1 \le n \le 100000$
- Za svaki i ($0 \le i \le 2n-1$), $1 \le |S[i]| \le n$. Ovdje, |x| označava apsolutnu vrijednost od x.
- Uvijek će biti moguće dobiti neki dobar poredak cipela.

Podzadaci

- 1. (10 bodova) n = 1
- 2. (20 bodova) $n \leq 8$
- 3. (20 bodova) Sve cipele su iste veličine.
- 4. (15 bodova) Sve cipele na pozicijama $0, \ldots, n-1$ su lijeve cipele te su sve cipele na pozicijama $n, \ldots, 2n-1$ desne cipele. Također, za svaki i i ($0 \le i \le n-1$), cipele na pozicijama i and i+n su iste veličine.
- 5. (20 bodova) $n \le 1000$
- 6. (15 bodova) Bez dodatnih ograničenja.

Ogledni ocjenjivač

Ogledni ocjenjivač čita ulaz u sljedećem formatu:

- redak 1: n
- redak 2: S[0] S[1] S[2] ... S[2n-1]

Ogledni ocjenjivač ispisuje jednu liniju koja sadrži broj koji vraća funkcija count swaps.