TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P02B, 22 jul 2022

0

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

NÃO ESCREVA NA CARTEIRA.

Prof. Nelson Luís Dias

```
1 [25] Dado o programa a seguir escrito em Python,
```

```
#!/usr/bin/python3
from numpy import array
h = 0.1
                               # passo em x
x = [0.0]
                               # x inicial
y = [array([1.0,0.0])]
                               # y inicial
n = int(10/h)
                               # número de passos
def ff(x,y):
    return array([-y[0]+y[1],y[0]-y[1]])
def rk4(x,y,h,ff):
  k1 = h*ff(x,y)
   k2 = h*ff(x+h/2,y+k1/2)
   k3 = h*ff(x+h/2,y+k2/2)
   k4 = h*ff(x+h,y+k3)
  yn = y + k1/6.0 + k2/3.0 + k3/3.0 + k4/6.0
  return yn
for i in range(0,n):
                              # loop da solução numérica
  xn = (i+1)*h
   yn = rk4(x[i],y[i],h,ff)
   x.append(xn)
  y.append(yn)
fou = open('ruk.out','wt')
for i in range(0,n+1):
                              # imprime o arquivo de saída
   fou.write( '%12.6f %12.6f %12.6f\n' % (x[i],y[i][0],y[i][1]) )
fou.close()
```

qual é o problema que ele resolve? Escreva todas as equações que especificam completamente o problema.

SOLUÇÃO DA QUESTÃO:

$$\frac{\mathrm{d}}{\mathrm{d}x} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} -1 & +1 \\ +1 & -1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \qquad y_1(0) = 1, \qquad y_2(0) = 0 \blacksquare$$

$$[a \times [b \times c]]$$

em termos de produtos escalares entre pares de a,b e c, multiplicados por b e c.

SOLUÇÃO DA QUESTÃO:

Faça

$$b \times c = d$$
;

então,

$$a \times [b \times c] = a \times d = \epsilon_{ijk} a_i d_j e_k;$$

$$d = \underbrace{\epsilon_{lmj} b_l c_m}_{d_j} e_j;$$

$$a \times [b \times c] = \epsilon_{ijk} a_i \epsilon_{lmj} b_l c_m e_k$$

$$= \epsilon_{kij} \epsilon_{lmj} (a_i b_l c_m) e_k$$

$$= [\delta_{kl} \delta_{im} - \delta_{km} \delta_{il}] a_i b_l c_m e_k$$

$$= (a_i b_k c_i) e_k - (a_i b_i c_k) e_k$$

$$= (a_i c_i) b_k e_k - (a_i b_i) c_k e_k$$

$$= (a \cdot c) b - (a \cdot b) c \blacksquare$$

$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.$$

SOLUÇÃO DA QUESTÃO:

$$\begin{vmatrix} 1 - \lambda & 2 \\ 1 & 1 - \lambda \end{vmatrix} = 0$$

$$(1 - \lambda)^{2} - 2 = 0,$$

$$1 - 2\lambda + \lambda^{2} - 2 = 0,$$

$$\lambda^{2} - 2\lambda - 1 = 0,$$

$$\lambda = \frac{2 \pm \sqrt{4 + 4}}{2} = 1 \pm \sqrt{2}.$$

Para $\lambda_1 = 1 + \sqrt{2}$, $v_1 = (x_1, x_2)$ é o autovalor associado a λ_1 e

$$x_1 + 2x_2 = (1 + \sqrt{2})x_1,$$

 $x_1 + x_2 = (1 + \sqrt{2})x_2,$

e ambas as equações produzem $x_1 = \sqrt{2}x_2$. Um possível autovetor é

$$v_1 = (\sqrt{2}, 1).$$

Para $\lambda_2 = 1 - \sqrt{2}$, $v_2 = (x_1, x_2)$ é o autovalor associado a λ_2 e

$$x_1 + 2x_2 = (1 - \sqrt{2})x_1,$$

$$x_1 + x_2 = (1 - \sqrt{2})x_2,$$

e ambas as equações produzem $x_1 = -\sqrt{2}x_2$. Um possível autovetor é

$$v_2 = (-\sqrt{2}, 1) \blacksquare$$

4 [25] A matriz

$$[A] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

possui 5 autovalores iguais a 1 (ou, o que dá no mesmo: possui autovalor $\lambda = 1$ com multiplicidade 5). Quanto vale seu determinante? Sugestão: lembre-se dos invariantes de uma transformação linear. Justifique sua resposta.

SOLUÇÃO DA QUESTÃO:

$$\det [A] = \lambda_1 \times \cdots \times \lambda_5;$$

$$\det [A] = 1 \times 1 \times 1 \times 1 \times 1 = 1 \blacksquare$$