

Same Same or Different?

Finding duplicate products from Shopee listings

Background

E-commerce sites such as **Shopee** receive multiple product listings daily. To improve recommendations, there is a need to identify listings which represent the same products.

This will assist:

Sellers – with category recommendations to list products **Buyers** – through recommendations of the same products (possibly cheaper) from other shops

Goal

With a given set of **product images**, determine which are the <u>same product</u>.

Product A

Which are the same as product A?

What is our Evaluation Metric?

Mean F1 Score

- Obtain F1 score for each product
- Get the mean F1 score for all the products in the dataset

F1 Score = Precision x Sensitivity
Precision + Sensitivity

*range: 0 to 1

Contents

- 1) How to solve such problems?
- 2) Exploratory Data Analysis
- 3) Modelling
- 4) Error Analysis
- 5) Conclusion and Recommendations

Typical multiclass classification

- 1. Model to pick up relevant features
- 2. Identify such features in new images

1. Model to pick up relevant features

1. Model to pick up relevant features

1. Model to pick up relevant features

2. Identify such features in new images

1. Model to pick up relevant features

2. Identify such features in new images

Bottle

Exploratory Data

————— Analysis

Frequency distribution of classes

Sample Size = 34,250 Number of Classes = 11,014

Number of products in the class	Number of classes
2	6979
3	1779
4	862
5	468
45	1
46	2

More than 99% of images are square shaped

Reading images into the model with square dimensions will not distort most images

What do the images look like?

Group A

Group B

— Modelling

Base Model

What is a Perceptual Hash?

A mathematical algorithm analyzes an image's content and represents it using a 64-bit number fingerprint.

Base Model (Phash)

Similar items, small phash difference

Dissimilar items, large phash difference

Base Model (Phash)

Similar items, small phash difference

= 2*

Model	Train (Mean F1)	Test (Mean F1)
phash	0.596	0.613

Dissimilar items, large phash difference

20*

Choosing a pre-trained CNN

Transfer Learning

If a model is trained on a large and general enough dataset, this model will effectively serve as a generic model of the visual world

Choosing a pre-trained CNN

Transfer Learning

If a model is trained on a large and general enough dataset, this model will effectively serve as a generic model of the visual world

Model	Sample (Mean F1)
VGG16	0.588
ResNet50	0.628
InceptionV3	0.543
EfficientNetB0	0.649

Choosing a pre-trained CNN

Transfer Learning

If a model is trained on a large and general enough dataset, this model will effectively serve as a generic model of the visual world

Model	Sample (Mean F1)
VGG16	0.588
ResNet50	0.628
InceptionV3	0.543
EfficientNetB0	0.649

Model	Train (Mean F1)	Test (Mean F1)
phash	0.596	0.613
ENetB0_TL	0.649	0.671

Fine Tuning

"fine-tune" the higher-order feature representations in the base model in order to make them more relevant for the specific task

Unfreeze 1 layer

- Train 3 epochs
- Train 6 epochs

Unfreeze 1 module (several layers)

- Train 3 epochs
- Train 6 epochs
- Train 9 epochs

- Fine Tuning

Model	Epochs	Train (Mean F1)	Test (Mean F1)
phash	-	0.596	0.613
ENetB0_TL	-	0.649	0.671
ENetB0_FT (1 Layer)	3	0.664	0.686
ENetB0_FT (1 Layer)	6	0.664	0.688
ENetB0_FT (1 Module)	3	0.681	0.696
ENetB0_FT (1 Module)	6	0.686	0.701
ENetB0_FT (1 Module)	9	0.686	0.701

Fine Tuning

Model	Epochs	Train (Mean F1)	Test (Mean F1)
phash	-	0.596	0.613
ENetB0_TL	-	0.649	0.671
ENetB0_FT (1 Layer)	3	0.664	0.686
ENetB0_FT (1 Layer)	6	0.664	0.688
ENetB0_FT (1 Module)	3	0.681	0.696
ENetB0_FT (1 Module)	6	0.686	0.701
ENetB0_FT (1 Module)	9	0.686	0.701

Alternative Metrics

Euclidean Distance

Alternative Metrics

Euclidean Distance

Cosine Distance

Alternative Metric

Cosine Distance

Model	Epochs/ (Metric)	Train (Mean F1)	Test (Mean F1)
phash	-	0.596	0.613
ENetB0_TL	-	0.649	0.671
ENetB0_FT (1 Layer)	6 (eucli)	0.664	0.688
ENetB0_FT (1 Module)	6 (eucli)	0.686	0.701
ENetB0_FT (1 Module)	6 (cosine)	0.716	0.724

———— Error Analysis

Product

y_true

Product

y_true

Product

y_true

Product

y_true

Product

y_true

Product

y_true

y_pred

Error Analysis Notes

Model can only identify products with similar shape and form

False Positives

False Negatives

Model is unable to account for semantics of product
 Missing out on important recommendations

Conclusion and Recommendations

Conclusion

The model does well in predicting products that belong to the same category with a mean F1 score of 0.716 on the train data and 0.724 on the test data

Model can be improved by including other features which capture the product semantics

- 1. Product Title
- 2. Product Categories

Thank You!