ECE 372A Fall 2015 - Lecture 3

Garrett Vanhoy

September 1, 2015

Outline

- Pin Considerations
 - Input noise
 - "Bouncing" in Circuits
 - Floating pins
- 2 Open-Drain Collector Configuration
- Change Notifications

I/O Ports

Reference Material

Section 12 in the PIC32MX Family Reference Manual Section 12 in the PIC32MX Data Sheet

Common Problems in Circuity

Non-Idealities

• Digital inputs are still analog signals. Thus, there is noise.

Common Problems in Circuity

Non-Idealities

- Digital inputs are still analog signals. Thus, there is noise.
- Some circuity does not provide "clean" outputs.

Common Problems in Circuity

Non-Idealities

- Digital inputs are still analog signals. Thus, there is noise.
- Some circuity does not provide "clean" outputs.
- Every pin is an antenna and has its own capacitance, a pin can read '1' even though it's not connected to anything at all!

Getting "rid" of Noise

Figure 12-1: Dedicated Port Structure Block Diagram

Purpose of a Schmidt Trigger

• Digital inputs may be read as '0' or '1', but how do we define these?

Purpose of a Schmidt Trigger

- Digital inputs may be read as '0' or '1', but how do we define these?
- We must "nullify" noise and other transient events to get meaningful inputs

Purpose of a Schmidt Trigger

- Digital inputs may be read as '0' or '1', but how do we define these?
- We must "nullify" noise and other transient events to get meaningful inputs
- We define a region for "logic high" and a region for "logic low"

Figure: Analog input to a pin

Figure: Digitized input read by microcontroller

Figure: Analog input to a pin

Figure: Digitized input read by microcontroller

Bouncing Circuits

Video

Debouncing

Bouncing in Circuits

Switches in circuits do not make "clean" contact right away.
 The voltage will sometimes bounce until a solid connection is made.

Debouncing

Bouncing in Circuits

- Switches in circuits do not make "clean" contact right away.
 The voltage will sometimes bounce until a solid connection is made.
- How can we correct this?

Debouncing Circuitry

Figure: Input pin configuration

Debouncing Circuitry

Figure: Hardware Debouncing by Capacitor

Pull-Up and Pull-Down Resistors

A Disconnected Pin

• If a pin is not connected to anything and is put into input mode, what value will be read if a volt meter is attached to the pin?

Pull-Up and Pull-Down Resistors

A Disconnected Pin

- If a pin is not connected to anything and is put into input mode, what value will be read if a volt meter is attached to the pin?
- This is called a "floating pin." You cannot assume it is '0' or 'ground.' It acts as an antenna and it can vary wildly.

Pull-Up and Pull-Down Resistors

A Disconnected Pin

- If a pin is not connected to anything and is put into input mode, what value will be read if a volt meter is attached to the pin?
- This is called a "floating pin." You cannot assume it is '0' or 'ground.' It acts as an antenna and it can vary wildly.
- Pull-up and Pull-down resistors make the state of the pin defined without any input.

Outline

- Pin Considerations
 - Input noise
 - "Bouncing" in Circuits
 - Floating pins
- 2 Open-Drain Collector Configuration
- Change Notifications

PIC32MX and Other Devices

 PIC32MX uses 5V as its power source. Other devices can use 3.3V, 2V, 12V, etc..

Other Device

PIC32MX and Other Devices

- PIC32MX uses 5V as its power source. Other devices can use 3.3V, 2V, 12V, etc..
- The best the PIC32MX can do is set a pin to its V_{dd} . How can it control these devices?

Open-Drain Collector

- When the switch is open, the pull-up resistor causes the output to be 5V.
- This way, 3.3V or V_{dd} is not logic high. Logic high is done with high impedance.

Open-Drain Collector

- When the switch is closed, the current flows through the microcontroller to ground. The output is then logic low.
- Logic low is done with low impedance.

Usages of ODC

One Note on ODC...

 ODC is an OUTPUT mode. It is so that the microcontroller can control another device.

Usages of ODC

One Note on ODC...

- ODC is an OUTPUT mode. It is so that the microcontroller can control another device.
- ODC is part of a serial communications protocol called I2C as well.

Outline

- Pin Considerations
 - Input noise
 - "Bouncing" in Circuits
 - Floating pins
- 2 Open-Drain Collector Configuration
- Change Notifications

Change Notification

Transient Events

• Our current way of observing change is to have an "if" statement in the code and check the status of a register.

Change Notification

Transient Events

- Our current way of observing change is to have an "if" statement in the code and check the status of a register.
- What if a device changes its output as a short pulse, too quick for the program to see?

Change Notification

Transient Events

- Our current way of observing change is to have an "if" statement in the code and check the status of a register.
- What if a device changes its output as a short pulse, too quick for the program to see?
- Create a circuit that detects this change and let the program handle it when it can.

CN interrupt if:

- CN is enabled
- ANY change takes place in the logic value of the input pin.

Pull-Up and Pull-Down

• The CN0PUE and CN0PDE act as "weak" internal pull-up and pull-down resistors respectively.

Pull-Up and Pull-Down

- The CN0PUE and CN0PDE act as "weak" internal pull-up and pull-down resistors respectively.
- When using CN in your projects, use this instead of creating an external pull-up resistor.

Pull-Up and Pull-Down

- The CN0PUE and CN0PDE act as "weak" internal pull-up and pull-down resistors respectively.
- When using CN in your projects, use this instead of creating an external pull-up resistor.
- DO NOT use both internal and external pull-up resistors.

The Circuit

• Exclusive OR gate is active only when the inputs are different

Interfacing with External LEDs

- Using CN vs non-CN
- Ploating Pin Voltage

