7주차(3/3)

Adaline Gradient Descent

파이썬으로배우는기계학습

한동대학교 김영섭교수

Adaline and Gradient Descent

Objectives

- Differences between Adaline and Perceptron Algorithm
- Minimizing Error Using Cost Function
- Finding Minimal Using Gradient Descent

Contents

- Adaline Algorithm
- Cost Function
- Gradient Descent

- Adaline Algorithm
 - Adaptive <u>Linear Neuron</u>
 - Adaline

Bernard Widrow

- Adaline Algorithm
 - Perceptron

Adaline

- Adaline Algorithm
 - Perceptron

Adaline

Adaline Algorithm

- Perceptron
 - Activation Function :Step Function

- Adaline
 - Activation Function : Identity Function

Adaline Algorithm

- Perceptron
 - Activation Function :Step Function
 - Delta W : Every Sample

Adaline

- Activation Function : Identity Function
- Delta W : All Samples Once

Adaline Algorithm

- Perceptron
 - Activation Function :Step Function
 - Delta W : Every Sample
 - Error: (-2, 0, -2)

Adaline

- Activation Function : Identity Function
- Delta W : All Samples Once
- Error : Quantized Error

Sum of Squared Error (SSE)

Sum of Squared Error (SSE)

Sum of Squared Error (SSE)

$$E(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2}$$

$$E(a,b) = \sum_{i=1}^{n} (y_{i} - (ax_{i} + b))^{2}$$

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2$$

$$J(w) = \frac{1}{2} \left[\sum_{i=1}^{m} \left(y^{(i)} - \hat{y}^{(i)} \right)^{2} \right]$$

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2}$$

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - h(z^{(i)}))^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - z^{(i)})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - z^{(i)})^{2}$$

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - h(z^{(i)}))^{2} \qquad \qquad (1)$$

$$= \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - z^{(i)})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \sum_{j=1}^{n} (w_{j} x_{j}^{(i)}))^{2} \qquad \qquad (2)$$

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - h(z^{(i)}))^{2} \qquad \qquad (1)$$

$$= \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - z^{(i)})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \sum_{j=1}^{n} (w_{j} x_{j}^{(i)}))^{2} \qquad \qquad (2)$$

- Cost Function Using Mean Squared
- Minimum in Cost Function?

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} \left(y^{(i)} - \sum_{j=1}^{n} \left(w_j x_j^{(i)} \right) \right)^2$$

Gradient Descent

- Derivative of 2nd order function
- $f(x) = x^2 2x$

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - h(z^{(i)}))^{2} \qquad \qquad \triangle (1)$$

$$= \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - z^{(i)})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \sum_{j=1}^{n} (w_{j} x_{j}^{(i)}))^{2} \qquad \qquad \triangle (2)$$

Numerical method, not Algebraic method

• Step Direction : $-\frac{dJ(w)}{dw}$

- Step Direction : $-\frac{dJ(w)}{dw}$
- Step Size : $-\eta \cdot \frac{dJ(w)}{dw}$

Adaline and Gradient Descent

Summary

- Adaline Algorithm
- Adaline and Perceptron Algorithm Difference
- Cost Function
- Gradient Descent

Next

8.1 Adaline Gradient Descent Implementation

7주차(3/3)

Adaline and Gradient Descent

파이썬으로배우는기계학습

한동대학교 김영섭교수

