To solve the circuit, use the node method:

unknown nodes, which simplifies things!

To find X, = di,/d+, need Vi:

$$\dot{x}_{1} = \frac{di_{1}}{dt} = \frac{1}{L} \left[\left(u + v_{2} \right) - u \right]$$

$$= \frac{1}{L} \left[\left(u + v_{2} \right) - u \right]$$

$$= \frac{1}{L} v_{2}$$

$$= \frac{1}{L} v_{2}$$

To find $\dot{\chi}_2 = dv_2/dt_3$ need \dot{c}_2 . To find \dot{c}_2 , apply KCL at $u+v_2$ node: $\frac{u+v_2-o}{R} + \dot{c}_1+\dot{c}_2=o$

Therefore,

and

$$\dot{x}_2 = \frac{dv_2}{dt} = \frac{1}{c}z$$

$$= -\frac{1}{c}i_1 - \frac{1}{RC}v_2 - \frac{1}{RC}u$$

Therefore, the state equation is given by

$$\frac{\dot{x}}{A} = \begin{bmatrix} 0 & 1/L \\ -1/c & -1/Rc \end{bmatrix} \times + \begin{bmatrix} 0 \\ -1/Rc \end{bmatrix} u$$

$$B$$

To find the measurement equation, note that

$$y(t) = v_2 + u = x_2 + u$$

The refore,

N.B.:

There are other possible labellings for Vz and i, . If you used a different labelling, some of the signs may be different

In particular,

1) If
$$V_2$$
 labelled opposite mine,
 $C = [o - i]$

2) If vz or in labelled opposite mine (but not both),

$$A = \begin{bmatrix} 0 & -1/L \\ 1/c & -1/Rc \end{bmatrix}$$

3) If both v_z and i, lubelled opposite mine, A remains the same.