Analog IC Design – Xschem and Master Micro Tools

Lab 06

Differential Amplifier

Part 1: Differential Amplifier Design

Parameter		
Supply (V_{DD})	1.8V	
Bias current (I_{SS})	40μΑ	
Differential gain	8	
CM output level ¹	$V_{DD}/3$	
Load capacitance	1pF	

 $ID = 20\mu A$.

CM output level1 = VDD/3 =1.8/3=0.6 v

$$RD = (2Vout - CM) / iss = 1.2 / 40u = 30k$$

Differential gain = 8

V* = 1.82 * ID*RD / |Av| = (1.82*20u*30k)/8 = 136.5 mv

	_		3	L	350n	16 gm	286.7u
ID	*	20u	4	w	30.79u	17 gmb	93.21u
Vstar	_	136m		100		18 gds	3.193u
vstar		130m	5	VGS	939.3m	19 ro	313.2k
ro	~	30*10k	6	VDS	900m	20 VTH	870.2m
			7	VSB	300m	21 VDSAT	121.4m
VDS	*	0.9				22 cgg	41.72f
			8	gm/ID	14.33	23 cgs	29.49f
VSB	*	0.3	9	Vstar	139.5m	24 cgd	4.667f

L1= 449.8n W1=44.66u

L2= 518n W2=18u

VICM = min+max/2 = 560mv

Part 2: Differential Amplifier Simulation

1) OP simulation.

Check that all transistors operate in saturation.

All Transistors operate in saturation.

2) Diff small signal ccs:

```
No. of Data Rows : 101
gain = 8.113316e+00 at= 1.000000e+00
bw = 5.368121e+06
binary raw file "lab6_ac.raw"
```

Analytical solution:

BW = 1 /
$$(2\pi (RD||ro) *CL)$$
 = 5.81 *MHz*
Gain = $gm(RD||ro)$ = 7.84 = 17.89 *dB*

	Analytical	Simulation	
BW	5.81 <i>MHz</i>	5.36M	
GAIN 7.84		8.11	

3) CM small signal ccs:

```
No. of Data Rows : 101
cmgain = 6.132381e-05 at= 1.258925e+01
binary raw file "lab6_ac.raw"
```

Every time I do a simulation the result changes a lot.

$$AVCM = \frac{gm(RD|ro)}{1 + 2gmRSS} = 0.67$$

	Analytical	Simulation	
CM, GAIN 0.67		0.613	

Yes, it is less than 1 because it is degraded by a large resistance 2RSS.

No. of Bata Rows: 91
cmgain = 7.008391e-02 at= 1.000000e+00
to=1meg: no such command available in ngspice
diffgain = 8.329921e+00 at= 1.000000e+00
to=1meg: no such command available in ngspice
cmrr_val = 1.188564e+02
binary raw file "lab6_ac_CM.raw"

Initially, AVCM decreases because RD is converted with CL which reduces the impedance and gain, at higher frequencies, AVCM increases slightly which means that RSS is converted with the capacitance of M0 and M3 which reduces the total impedance.

CMRR = Vdiff/vcm

CMRR varies with the variations of VCM at high frequencies.

4) Diff large signal ccs:

Report diff large signal ccs (VODIFF vs VIDIFF). Compare the extreme values with hand analysis in a table.

- At $Vdiff \gg 0$, Vdiff = ISS * RD = 1.2V
- At $Vdiff \ll 0$, Vdiff = -ISS * RD = -1.2V

	Analytical	Simulation	
$Vdiff \gg 0$	1.2V	1.145V	

 $Vdiff \ll 0$ -1.145V

5) CM large signal ccs (GBW vs Vicm):

```
binary raw file "Lab6_param.raw"
vicmmax = 7.500000e-01
vicmmin = -4.70000e-01
ngspice 1 ->
```


CMIR = Vmax - Vmin =
$$(7.5e-1)$$
 - $(-4.7e-1)$ = $1.22v$
(VDD - Vov - VGS) > $Vicm$ > ([ISS/2] *RD -VTH)
 $0.808 > Vicm > -0.27$

	Analytical	Simulation
VMIR 1.07V		1.22v

(OPTINAL)

Wide Swing_Current Mirror

1. OP Analysis

```
o. of Data Rows : 1
BSIM4v5: Berkeley Short Channel IGFET Model-4
                         0m.8mx.m
                                                 m_* \times m7_* m0
    device
                                                                        m_* \times m6_* m0
                                              pmos_3p3,13
     model
                      pmos_3p3.14
                                                                     pmos_3p3.13
                                              9.38471e-06
                       9.3927e-06
                                                                     1,92893e-05
        id
                          1,09229
                                                 0.94625
                                                                        0.946199
       vgs
       vds
                          1,09229
                                                 0.738716
                                                                        0.753905
                         0.244223
                                                                        0.117704
     vdsat
                                                 0.116442
                         0.768938
                                                 0.852158
                                                                        0.850091
       vth
                      5.34798e-05
                                              0.000124199
                                                                     0.000253065
        911
                      3.47672e-08
                                                                      5.3612e-07
       9ds
                                               2.6492e-07
                      2.61796e-05
                                              5.43524e-05
                                                                     0.000110739
      gmbs.
BSIM4v5: Berkeley Short Channel IGFET Model-4
                         m.×m5.m0
                                                m.×m10.m0
    device
                                                                       m.×m11.m0
                                                                      nmos_3p3.9
     mode1
                      pmos_3p3.13
                                              pmos_3p3.13
                                              9.38471e-06
                      1,92893e-05
        id
                                                                           1e-05
                          0.88476
                                                 0.88476
                                                                        0.769232
       vgs
       vds
                         0.146094
                                                 0.146043
                                                                         0.76923
                         0.117489
                                                                        0.128757
     vdsat
                                                 0.116163
                         0.783634
                                                 0.785783
                                                                        0.684503
       vth
                                                                     0.000130185
                      0.000240692
                                             0.000118348
        gm
       gds
                      1.57685e-05
                                               7.4542e-06
                                                                     3.95678e-07
      gmbs
                      0.000114154
                                              5.61279e-05
                                                                     4.98495e-05
BSIM4v5: Berkeley Short Channel IGFET Model-4
                         m.xm9.m0
                                                m_* \times m4_* m0
                                                                        m.×m3.m0
    device
                       nmos_3p3.9
     model
                                               nmos_3p3.9
                                                                     nmos_3p3.9
                                              9,38471e-06
        id
                            1e-05
                                                                      9.3927e-06
                                                 1.02354
                                                                         1,11827
                          1,02103
       vgs
                          1,02102
       vds
                                                 0.148517
                                                                       0.0357127
                                                                        0.227753
     vdsat
                         0.135345
                                                 0.135452
                                                                        0.910949
                         0.935741
                                                 0.938082
       vth
                      0.000130652
                                                                    4.55458e-05
                                              0.000118647
        911
       9ds
                      3.25778e-07
                                              8.44878e-06
                                                                     0.000239683
                      3.67723e-05
                                               3.3431e-05
                                                                     1.36062e-05
BSIM4v5: Berkeley Short Channel IGFET Model-4
                         m.×m2.m0
    device
                                                 m.\times m1.m0
     mode1
                       nmos_3p3.9
                                               nmos_3p3.9
                                               9.3927e-06
        id
                      9.38471e-06
                         0.769232
                                                 0.769232
       vgs
                                                 0.671988
                         0.766717
       vds
                                                 0.125851
     vdsat
                          0.12562
       uth
                         0.689268
                                                 0.688914
                      0.000124736
                                             0.000124781
        gm
       9ds
                      3.78272e-07
                                              3.96337e-07
                      4.77682e-05
                                              4.77808e-05
      gmbs
```

2. DC Sweep (*I out* vs VOUT)

