## t-test

- Given by W.S. Gosset in 1908 under the pen name of student's test
- t-test can be applied when:
- When a researcher draws a small random sample (n<30) to estimate the population (μ);</li>
- When the population standard deviation (σ) is unknown;
- 3. The population is normally distributed

Q: Royal tyre has launched a new brand of tyres for tractors & claims that under normal circumstances the average life of tyres is 40000 km. a retailer wants to test this claim & has taken a random sample of 8 tyres. He tests the life of tyres under normal circumstances. The results obtained are:

| Tyres | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| Km    | 35 000 | 38 000 | 42 000 | 41 000 | 39 000 | 41 500 | 43 000 | 38 500 |

Use  $\alpha = 0.05$  for testing the hypothesis

Step1: Set null & alternative hypothesis

Null hypothesis: Ho:  $\mu$  = 40 000

Alternative hypothesis: Ho: µ ≠ 40 000

Step2: Determine the appropriate statistical test

The sample size is less than 30, so t test will be an appropriate test

Step3: Set the level of significance

The level of significance, i.e.  $\alpha = 0.05$ 

Step4: Set the decision rule

The t distribution value for a two-tailed test is  $t_{0.025} = 2.365$  for degrees of freedom 7. so if computed t value is outside the  $\pm 2.365$  range, the null hypothesis will be rejected otherwise accepted.

Step 5: Collect the sample data:

0.025,7

t = <u>x - μ</u> =<u>39750-40000</u>

| es | 2.5              | 120   | 3             | 4     | 5     | 9      | 1      | •     |
|----|------------------|-------|---------------|-------|-------|--------|--------|-------|
| 1  | 350000           | 38000 | 42000         | 41000 | 39000 | 41500  | 43000  | 38500 |
|    | Step (<br>=39750 |       | of the second |       |       | =8; df | =n-1=7 | 7 ;   |
|    | ableva           |       |               |       |       |        |        |       |

= -0.27

Km

The observed t value is -0.27 which falls within the acceptance region & hence null hypothesis is accepted i.e. Ho:  $\mu$  = 40 000

## **Z-test**

- Hypothesis testing for large samples i.e. n>= 30;
- Based on the assumption that the population, from which the sample is drawn, has a normal distribution;
- As a result, the sampling distribution of mean is also normally distributed;

## Application:

- For testing hypothesis about a single population mean;
- Hypothesis testing for the difference between two population means;
- Hypothesis testing for attributes.

## Formula for single population mean (finite population)

$$\sigma$$
 $\sqrt{n}$ 
Where,
 $\mu$  = population mean
 $\overline{x}$  = sample mean
 $\sigma$  = population standard deviation
 $\sigma$  = sample size

 $\blacksquare Z = \underline{x} - \mu$ 

 ${f Q}$  A marketing research firm conducted a survey 10 yrs ago & found that an average household income of a particular geographic is Rs 10000. Mr. gupta who recently joined the firm a VP expresses doubts. For verifying the data, firm decides to take a random sample of 200 households that yield a sample mean of Rs 11000. assume that the population S.D is Rs 1200. verify Mr. Gupta's doubts using  $\alpha$ =0.05?

Step 1: set null & alternative hypothesis

Ho: μ=10000

H1: µ≠10000

Step2: Determine the appropriate statistical test

Since sample size >=30, so z-test can be used for hypothesis testing

Step3: set the level of significance

The level of significance is known ( $\alpha$ =0.05)

Step4: Set the decision rule

Acceptance region covers 95% of the area & rejection region 5% Critical area can be calculated from the table ( $\pm 1.96$ )

Step5: collect the sample data

A sample of 200 respondents yield a sample mean of Rs 11000

= 11.79

$$\bar{x}$$
=11000  $\sigma$ =1200  
 $\bar{x}$   $Z = \bar{x} - \mu$  = 11000-10000

$$\frac{\sigma}{\sqrt{n}}$$
  $\frac{1200}{\sqrt{200}}$ 

 Step7: Arrive at a statistical conclusion & business implication

Z value is 11.79 which is greater than +1.96, hence null hypothesis is rejected and alternative hypothesis is accepted. Hence Mr. Gupta's doubt about household income was right.