Homework 1: fundamentals

Exercise 1: Calculus

Check the assertion from class that

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & x > 0\\ 0 & x \le 0 \end{cases}$$

is a smooth function. A more specific and helpful claim is that there is a sequence of polynomials $P_k(t)$ so that

$$f^{(k)}(x) = \begin{cases} P_k(\frac{1}{x})e^{-\frac{1}{x}} & x > 0\\ 0 & x \le 0 \end{cases}.$$

Exercise 2: de Rham cohomology with compact support

Let ω be a k-form on \mathbb{R}^n . We say that ω is <u>compactly supported</u> if there is some compact set K so that $\omega = 0$ on $\mathbb{R}^n \setminus K$. Write $\Omega_c^*(\mathbb{R}^n)$ for the set of compactly supported k-forms.

- Show that $\Omega_c^*(\mathbb{R}^n)$ is a subalgebra of $\Omega^*(\mathbb{R}^n)$.
- Show that the exterior derivative operator *d* restricts to an operation

$$d: \Omega_c^*(\mathbb{R}^n) \to \Omega_c^*(\mathbb{R}^n).$$

• Define the compactly supported de Rham cohomology of \mathbb{R}^n to be

$$H_{c,dR}^k(\mathbb{R}^n) = \frac{\ker(d|_{\Omega_c^k})}{(d|_{\Omega_c^{k-1}})}.$$

Compute $H^k_{c,dR}(\mathbb{R}^0)$ and $H^k_{c,dR}(\mathbb{R}^1)$. Compare your results and methods with the ones we used in class.

Exercise 3: Smooth function hygiene

- Let M be a smooth manifold, let $U \subset M$, and let $\phi: U \to \mathbb{R}^k$ be a chart. Let $f: U \to \mathbb{R}^m$ be a continuous function. Suppose that $f \circ \phi^{-1}$ is smooth. Let $\psi: U \to \mathbb{R}^k$ be another chart with the same domain. Show that $f \circ \phi^{-1}$ is smooth.
- A function $f: M \to \mathbb{R}^k$ is <u>smooth</u> if for every $p \in M$ there is a smooth chart (U, ϕ) with $p \in U$ so that $f \circ \phi^{-1}$ is smooth on $\phi(U)$. Show that if f is smooth, then $f \circ \psi^{-1}$ is smooth for any chart (V, ψ) around p.
- Show that the composition of smooth functions between manifolds is smooth. Show that the composition of diffeomorphisms is again a diffeomorphism.
- Write down a smooth function $\mathbb{R} \to \mathbb{R}$ which is invertible but not a diffeomorphism.

Exercise 4: Stereographic projection

In this exercise you will show that S^n is a manifold which can be covered by two charts. Think of $S^n \subset \mathbb{R}^{n+1}$ as the set

$$S^{n} = \{x_1^2 + \dots + x_{n+1}^2 = 1 : (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1}\}\$$

Write $N=(0,\dots,0,1)$ and $S=(0,\dots,0,-1)$. (These are the <u>north</u> and <u>south</u> poles.)

• Define a map $p: S^n \setminus N \to \mathbb{R}^n$ as follows. Let $x \in S^n \setminus N$. There is a unique line ℓ_x between N and X. This line intersects the plane $\{x_{n+1} = 0\}$ in one point. This point is p(x). Identify \mathbb{R}^n with the set

$$\{(x_1,\ldots,x_{n+1}):x_{n+1}=0\}$$

so that p really is a map to \mathbb{R}^n .

First, check that p(x) is well-defined: why does ℓ_x intersect $\{x_{n+1}=0\}$ in exactly one point?

- Write down a nice expression for p(x) in terms of (x_1, \ldots, x_{n+1}) . (Hint: your expression shouldn't make sense if you try to set x = N.)
- Show that *p* has an inverse and write down a nice expression for it.
- $\bullet \ p(\mathbb{R}^n)$ covers most of the sphere. Find another good chart which covers the rest
- Show that S^n cannot be covered by a single chart.

Exercise 5

Prove (not just by picture!) that the union of the x- and y-axes in \mathbb{R}^2 is not a manifold.

Exercise 6: Products and graphs

Let X and Y be smooth manifolds. Show that $X \times Y$ is a smooth manifold. Suppose that f and g are smooth functions with domains X and Y, respectively. Show that $(f \times g)(x,y) = (f(x),g(y))$ is a smooth function.

Now suppose that $h: X \to Y$. Show that the graph of h,

$$graph(h) = \{(x, h(x)) : x \in X\}$$

is a smooth manifold. (Hint: define a map $X \to X \times Y$ which restricts to a diffeomorphism on the graph.)