The 8051 Architecture and Programming

Supratim Gupta

DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Programming Issues

- Hardware Information
 - Architecture of the processor

- Software Instructions
 - Complex Instruction Set Computer (CISC)
 - 135 Instructions for 8051

8051 Architecture

Specific Features

- 1. 8-bit CPU with registers A (accumulator) and B
- 2. 16-bit program counter (PC) and data pointer (DPTR)
- 3. 8-bit program status word (PSW)
- 4. 8-bit stack pointer (SP)
- 5. Internal ROM or EPROM of 4k (8051)
- 6. Internal RAM of 128 bytes
 - 4 register banks each containing 8 registers of 8-bit
 - 16-bytes bit addressable registers
 - 80 bytes general purpose data memory

8051 Architecture

Specific Features

- 7. 32 input-output pins arranged as 4 eight-bit ports (P0 P3)
- 8. Two 16 bit timer/counters: T0 and T1
- 9. Full duplex serial data receiver/transmitter
- 10. Control registers: TCON, TMOD, SCON, PCON, IP, and IE
- 11. 2 external and 3 internal interrupt sources
- 12. Oscillator and clock circuit

8051 Architecture

Block Diagram

8051 Programming Model

Pin Description of the 8051

A Pin of Port 1

A Pin of Port 0

Crystal Oscillator connection

- Using a quartz crystal oscillator
- > We can observe the frequency on the XTAL2 pin.

Port 3 Alternate Functions

P3 Bit	Function	Pin
18 18		
P3.0	RxD	10
P3.1	TxD	11
P3.2	INTO	12
P3.3	INT1	13
P3.4	T0	14
P3.5	T1	15
P3.6	WR	16
P3.7	$\overline{\text{RD}}$	17

RESET Value of Some 8051 Registers

Register	Reset Value
PC	0000
ACC	0000
В	0000
PSW	0000
SP	0007
DPTR	0000

RAM are all zero.

TMOD Register

- Gate: When set, timer only runs while INT(0,1) is high.
- C/T: Counter/Timer select bit. 0 to set it in timer mode
- M1: Mode bit 1.
- M0: Mode bit 0.

M1	M0	MODE
0	0	13-bit timer mode
0	1	16-bit timer mode
1	0	8-bit auto-reload mode
1	1	split mode
	ı	l

TCON Register

TF1 TR1 TF0 TR0 IE1 IT	1 IEO ITO
------------------------	-----------

- TF1: Timer 1 overflow flag.
- TR1: Timer 1 run control bit.
- **TF0:** Timer 0 overflag.
- **TR0:** Timer 0 run control bit.
- IE1: External interrupt 1 edge flag.
- IT1: External interrupt 1 type flag.
- IE0: External interrupt 0 edge flag.
- IT0: External interrupt 0 type flag.

Interrupt Enable Register

EA _ ET2 ES ET1 EX1 ET0 EX0

- EA : Global enable/disable.
- : Undefined.
- ET2 :Enable Timer 2 interrupt.
- ES :Enable Serial port interrupt.
- ET1:Enable Timer 1 interrupt.
- **EX1**: Enable External 1 interrupt.
- **ET0**: Enable Timer 0 interrupt.
- **EX0**: Enable External 0 interrupt.

Timer Interrupt Generation

Interrupt Interval:

$$t = \left[R_{\text{max}} + 1 - R_{\text{min}}\right]_d \times \frac{12_d}{f_{osc}}$$

$$R_{max} = FFFF$$
 (for 16-bit mode)
= FF (for 8-bit mode)

$$R_{min} =$$
User settable

Interrupt Vector Address

Type of Interrupt	Address
IEO	0003H
TF0	000BH
IE1	0013H
TF1	001BH
SERIAL	0023H

Assignment

Generate Square wave of two frequencies at one port pin of microcontroller on the basis of status of a toggle switch.

• Design the hardware and explain the scheme.

Programming the 8051

Modules:

- Initialization module
 - Data Initializations (for RAM or SFRs)
 - Configuration of Control registers
 - Address Vectoring
- * Run Module
 - Main program for performing a specific task or group of tasks

Programming the 8051

Problem Statement:

State and Explain an algorithm for square wave generation

Programming the 8051

One Simple Solution:

Step 1: Make a port pin low

Step 2: Give necessary delay

Step 3: Toggle the port pin

Step 4: Go to Step 2.

Note: Multi-task is not possible with this algorithm

Concept:

All the tasks are time-multiplexed

Requirements:

- > Specified Time interval generation
- > Overall tasks divided into two broad categories
 - Background tasks (Time critical job)
 - Foreground tasks (Non time critical job)

Interrupt

Program execution without intrrupts:

Program execution with intrrupts:

ISR: Intrrupt Service Routin

Initialization Module

Resource for time interval generation:

Timer0 or Timer1

Design Issues:

➤ Mode of timer (16 or 8-bit)

tim_mod .equal 02h

mov TMOD, #tim_mod

Computation of content to be used for initialization of timer

Design Issues:

> Generation of different time intervals using same timer interrupt

```
Use of multiplying factor with basic timer interrupt interval
TM0:
       push ACC
        push PSW
;-----Basic time interval----
tm_0: mov A,tickN
        cjne A,#1,tm_1
-----Basic time interval*tickN------
       sjmp back
tm_1: dec ACC
       mov tick10,A
back: pop PSW
       pop ACC
```

reti

Design Issues:

> Configuration of ports as input or output

```
mov P0, #FFh; Set port0 as input port mov P1, #00h; Set port1 as output
```

Address Vectoring

```
.org 0 ajmp main
```

.org 000bh ajmp TM0

;jump to timer0 routine

Run Module

Consists of infinite loop

main: acall level1 ;jump to service routine for foreground task sjmp main

Assignment Revisited

Generate Square wave of two frequencies at one port pin of microcontroller on the basis of status of a toggle switch.

• Write the code in assembly language for above problem

Implementation

Required Tools:

- * Hardware: Universal Microcontroller Programmer
- **Software:**
 - Assembler for 8051
 - Convert *.asm file to *.obj
 - Linker for 8051
 - Links several *.obj files and converts the whole to *.hex
 - Hex code downloader application program
 - Provided with universal programmer
 - Download the hex code into the microcontroller

