Roteiro Minicurso Instrumentação

Parte 1: Conversor Digital-Analógico

1. Monte o circuito da Figura 1, com os componentes especificados: $R_1=1\mathrm{M}\Omega$ e $C=100\mathrm{nF}$.

Figura 1: Circuito para implementação de um conversor digital-analógico com Arduino.

2. Desenvolva um código em Arduino que aplique um sinal PWM de 0 a 255 na porta digital 9 e leia o valor da porta analógica A0. Verifique se a leitura da porta analógica cobre a faixa de 0 a 5V, garantindo que o sinal PWM gerado esteja dentro do intervalo esperado.

Parte 2: Amplificador de Transimpedância

1. Monte o circuito da Figura 2 com os parâmetros: $R_2=470\Omega.$

Figura 2: Circuito do amplificador de transimpedância.

2. Utilizando os circuitos da Figura 1 e Figura 2, implemente o circuito mostrado na Figura 3. No lugar do dispositivo em teste, conecte um resistor de $1k\Omega$.

Figura 3: Circuito combinando o conversor digital-analógico e o amplificador de transimpedância.

3. Com o código já em funcionamento, adicione a leitura da porta analógica A1. Com essa leitura, calcule a corrente através do dispositivo em teste, utilizando a relação entre a tensão medida e a resistência conhecida no circuito.

Parte 3: Traçador de Curva I-V Completo

1. Com base no circuito anterior, modifique-o de acordo com a Figura 4, utilizando $R_3=5,1$ k Ω , R_4 =33 Ω , R_5 =10k Ω e R_6 =10k Ω . Desta forma será possível a seleção de mais de um ganho no transimpedância e também a inversão do sinal, já que a resposta do amplificador do transimpedância é negativo. Obs.: alimente os relés com o 5V do próprio Arduino.

Figura 4: Circuito que combina o conversor digital-analógico com o amplificador de transimpedância e a seleção automática de ganho.

2. Atualize o código em Arduino para controlar o relé, permitindo a troca automática de resistência de ganho do amplificador de transimpedância conforme a saturação do sinal de saída.

Material de apoio

Pinos do amplificador operacional LM324.

