Proseminar Numerische Mathematik 2 am 11. März 2025

Exercise 1

Let $(E, \|\cdot\|)$ be a Banach space (a complete normed vector space, with norm denoted by $\|\cdot\|$). Consider a mapping $\phi: E \mapsto E$ that is contractive:

$$\exists L < 1$$
, such that, $\forall (x, y) \in E^2$, $||\phi(x) - \phi(y)|| \le L||x - y||$.

Starting from a given $x_0 \in E$, we construct the recursive sequence $(x_k)_{k \in \mathbb{N}}$ defined by

$$x_{k+1} = \phi(x_k) \,\forall k \in \mathbb{N}. \tag{1}$$

- Show that the sequence $(x_k)_{k\in\mathbb{N}}$ is well-defined.
- Show that the function ϕ is continuous. Deduce that if the sequence x_k converges, then it converges to a fixed point of ϕ .
- Show that if ϕ admits a fixed point, then this fixed point is unique.
- Show that the sequence $(x_k)_{k\in\mathbb{N}}$ is a Cauchy sequence. Deduce that ϕ admits a unique fixed point, which is given by the limit of the sequence $(x_k)_{k\in\mathbb{N}}$ as k tends to $+\infty$.
- Application: Let $\phi: E \mapsto E$ be a continuous mapping such that $\phi^m = \underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{m \text{ times}} (m \in \mathbb{N}^*)$ is contractive:
 - 1. Show that ϕ^m has a unique fixed point $a \in E$.
 - 2. Show that $\phi(\phi^m(a)) = \phi(a)$. Deduce that ϕ admits a fixed point.
 - 3. Show that if a is a fixed point of ϕ , then a is a fixed point of ϕ^m .
 - 4. Using the two previous questions, show that ϕ admits a unique fixed point.

Exercise 2

- 1. Our objective is to solve the nonlinear equation $2xe^x = 1$.
 - (a) Check if the equation above can be rewritten as $x = \frac{1}{2}e^{-x}$.
 - (b) Write in Python an algorithm which calculates the 1^{st} three values x_0, x_1, x_2 and x_3 starting with $x_0 = 1$.
 - (c) Justify the convergence of your algorithm.
- 2. Now we want to solve $x^2 2 = 0$, x > 0.

- (a) Check that the previous equation can be rewritten in the fix point form x = f(x) and determine f.
- (b) Write a Python program solving the fix point problem and plot the 1^{st} values x_1, x_2, x_3 choosing $x_0 = 1$ then $x_0 = 2$ as initial guess.
- (c) In question 2.a you might have chosen $f(x) = \frac{2}{x}$. Now repeat the question 2.a by considering $x = \frac{x^2+2}{2x}$ and conclude.
- (d) For a fixed known iterate x_n , expand (Taylor series) the function $g(x) = x^2 2$ between $x^{(n)}$ and $x^{(n+1)}$, replace the equation $g(\bar{x}) = 0$ by $g(x^{n+1}) = 0$ and $g(x^{(n+1)})$ by its Taylor expansion at $x^{(n+1)}$ and deduce the approximation $x^{(n+1)} = x^{(n)} \frac{g(x^{(n)})}{g'(x^{(n)})}$.

Exercise 3

We consider the nonlinear system

$$x^2 + 2xy = 0$$
, $xy + 1 = 0$

- 1. Calculate theoretically the solution of the system above.
- 2. Solve in Python the system using Newton's method and give the conditions under which the Newton sequence is well defined.
- 3. Calculate the 1st iteration (x_1, y_1) obtained in Newton's method starting at $(x_0, y_0) = (1, -1)$.

Exercise 4

- 1. 1. We consider the application $f: \mathbb{R} \to \mathbb{R}, x \longmapsto x^2$
 - (a) Write a Newton's algorithm to find the zeros of f and prove its convergence $\forall x \in \mathbb{R}$
 - (b) Implement this in Python and recover the convergence numerically.
- 2. We consider now the application $F: \mathbb{R}^2 \to \mathbb{R}^2$ given by $F(x, y) = [x^2 y, y^2]^T$
 - (a) Determine the set of the solution to F(x, y) = (0, 0) analytically.
 - (b) Show that Newton's algorithm is well defined for all couples (x_0, y_0) such that $x_0 \neq 0$ and $y_0 > 0$.
 - (c) We choose $(x_0, y_0) = (1, 1)$ and we denote (x_k, y_k) , $k \in \mathbb{N}$ the Newton's iterations
 - i. Express y_k in terms of k and y_0 and deduce that the sequence $(y_k)_k$ converge (Note that $y_{k+1} = \frac{y_k}{2}$).
 - ii. Show that $x_k \ge 2^{-k/2}$, $\forall k \in \mathbb{N}$ and deduce that $x_{k+1} \le x_k$, $\forall k \in \mathbb{N}$.
 - iii. Deduce that Newton's method converge to a solution of F(x, y) = (0, 0).

Hint: For question 2.b use proof by induction.