### **Aashutosh Joshi**

22AG10003

MI60227: APPLIED AI, ML & DL TECHNIQUES

## An LSTM Approach for SAG Mill Operational Relative-Hardness Prediction



### Introduction

Optimization of ore processing equipment in mining, especially comminution, is an important task. Since too much of the energy goes toward comminution in the whole mining process, this increases its importance. One such process wherein the efficiency of semi-autogenous grinding (SAG) mills goes a long way is the extraction of minerals from ore. SAG mills are located at the front end of grinding circuits and represent grinding by impact, abrasion, and attrition combined, which makes up more than half of the energy consumed in any mine. These are very big (12.8 m by 7.6 m are typical dimensions) and energy-hungry machines-potentially ranging from 8.2 to 26 MW-and are central to any mining operation.

#### Methodology

The concept of ORH and the architecture of the neural network are discussed here.

• ORH Framework: ORH is a qualitative measure whereas other measures of hardness are inherently quantitative measures relying on a number of attributes of an ore sample. In the context of the SAG mill, ORH could be driven simply by variations in energy consumption (EC) and feed tonnage (FT). ORH categorization occurs in three forms—soft, hard, and undefined—and is established based on the deviations of energy and tonnage over time.

#### For instance:

- 1. If energy increases with stable tonnage, then the ORH is probably "hard."
- 2. If energy drops with stable tonnage, it might be called "soft."
- 3. If both variables change in parallel, which is both increase or decrease, then the ORH is considered "undefined," because such trends may simply indicate changes in mill filling rather than hardness.
- LSTM Network: An LSTM is a specific type of RNN designed specifically for time-series prediction. The beauty of LSTM lies in its ability to learn long-term dependencies among data sequences. For ORH predictions, past operational data sequences are important in determining the future properties of ore.

Some important components of LSTM are as follows:

- Forget Gate: It determines what information should be preserved from previous states.
- 2. Input Gate: It brings in essential new information.

3. Output Gate: Outputs the final prediction for the timestep.

The LSTM model employs historical half-hour data intervals to predict ORH at various time horizons forward such as 0.5, 2, and 8 hours.

### **Dataset and Experimental Setup**

The dataset for this work was sourced from SAG mill operations at half-hourly resolutions covering nearly a year long term. Each entry in the data has provided critical information on operational parameters:

- Feed Tonnage (FT): The ore feeds into the mill in tons per hour.
- Energy Consumption (EC): Kilowatt-hours that vary with hardness of the ore
- Bearing Pressure (BPr) and Spindle Speed (SSp): Indicators of the internal states of the mill, providing some feeling of the state of the operation of the mill.

For performance stability across various conditions, the dataset was split between training and testing sets, approximately about half each.

Preprocessing: Normalization was achieved for each through calculation of mean
and standard deviation on the training data set. The model further utilized trend
features which calculated differences of EC and FT from one point to another to
denote dynamic changes going on in ORH. Each and every instance of each
category under the term "ORH" was described in one-hot encoding, converting
"soft," "hard," or "undefined" into more streamlined forms for the model to
interpret.

Experiment Configuration: The model was run at a number of time supports,
 including 0.5, 2, and 8 hours, while different sensitivities in the classification of
 ORH are controlled by varying lambda (λ) values. The purpose of this experiment is to find an appropriate trade-off between sensitivity and prediction accuracy.

#### **Model Design and Parameters**

The architecture as well as the input structure of the LSTM model, along with parameters optimized for best prediction of ORH, is discussed in this section.

- Feature Selection: Five input variables were selected: feed tonnage (FT), bearing pressure (BPr), spindle speed (SSp), and the incremental changes in FT and SSp. While including absolute and differential values allows the model to spot current states and recent trends, it also shows accuracy in predictions.
- Temporal Window: Since it is four hours with equivalent eight data points, a model can
  recognize temporal dependencies. This window size gives the LSTM the ability to learn
  effects both in short-term and long-term influences that are necessary for actually making
  ORH predictions.
- Hyperparameters: With the results of past studies and some experimental optimizations,
   the LSTM model applies between 240 and 596 hidden units depending on the dataset and

time support. Further, the Adam optimizer is used in the optimization process to learn the best of the models with a set of hyperparameters tuned for this dataset.

#### **Observations and Results**

The results will illustrate the accuracy achieved by the model at various values of  $\lambda$  and time supports.

- Accuracy and  $\lambda$  Sensitivity: When  $\lambda$  was increased, the precision of ORH predictions got better. This also opened up the range for "constant" classification and lessened both hard and soft labels. For example, When  $\lambda = 0.5$ , it managed to have 77% accuracy in predicting 0.5 hours, whereas it dropped to 52% at 8 hours. When  $\lambda$  is risen to 1.5, then it is further enhanced up to 93% for 0.5 hour predictions, and close to 80% for 8-hour predictions.
- Confusion Matrices: The confusion matrices demonstrate the ability of the model to
  avoid extreme misclassifications, such as marking a "soft" as "hard". The extreme
  misclassification rates at 0.5 hours time support remain near 1% for both of the SAG
  mills, showing that the LSTM model is able to distinguish between the "soft" and "hard"
  categories of the ORH.
- Time Horizon: The model works best at the shortest time horizon (.5-hour). Accuracy
  falls off with longer time horizons since it is much harder to generalize over longer
  periods. This trade-off may still meet operational objectives for short-time and long-time
  planning.

 Below is the image showing the generated dataset for SAG mill 1. It has both the training and test dataset.

| Training Data Sample: |                      |                    |                  |               |  |  |  |
|-----------------------|----------------------|--------------------|------------------|---------------|--|--|--|
|                       | Feed Tonnage         | Energy Consumption | Bearing Pressure | Spindle Speed |  |  |  |
| 0                     | 1157.866934          | 9250.441565        | 12.373984        | 9.945931      |  |  |  |
| 1                     | 842.282642           | 11500.500644       | 13.700000        | 8.381895      |  |  |  |
| 2                     | 1232.901203          | 10253.816099       | 11.717923        | 9.399841      |  |  |  |
| 3                     | 1667.945839          | 8950.715996        | 13.700000        | 8.129689      |  |  |  |
| 4                     | 794.625773           | 9340.909902        | 10.926071        | 9.505450      |  |  |  |
|                       |                      |                    |                  |               |  |  |  |
| Te                    | Testing Data Sample: |                    |                  |               |  |  |  |
|                       | Feed Tonnage         | Energy Consumption | Bearing Pressure | Spindle Speed |  |  |  |
| 0                     | 728.189816           | 9530.216204        | 11.759309        | 10.700000     |  |  |  |
| 1                     | 896.290954           | 9382.970278        | 11.692695        | 9.631884      |  |  |  |
| 2                     | 1401.492867          | 8574.693587        | 11.155849        | 8.756315      |  |  |  |
| 3                     | 1617.965536          | 10737.814139       | 12.381456        | 9.403334      |  |  |  |
| 4                     | 957.479483           | 8447.013159        | 13.700000        | 9.412891      |  |  |  |
|                       |                      |                    |                  |               |  |  |  |

Training for 20 epochs and the corresponding RMSE for SAG mill 1 is as follows

```
Epoch 1/20
                             25s 81ms/step - loss: 0.0635 - val_loss: 0.0485
254/254
Epoch 2/20
254/254
                             20s 78ms/step - loss: 0.0539 - val_loss: 0.0480
Epoch 3/20
254/254
                             19s 74ms/step - loss: 0.0533 - val_loss: 0.0478
Epoch 4/20
254/254
                             21s 78ms/step - loss: 0.0536 - val_loss: 0.0476
Epoch 5/20
254/254
                             20s 76ms/step - loss: 0.0528 - val_loss: 0.0476
Epoch 6/20
                             20s 74ms/step - loss: 0.0546 - val_loss: 0.0476
254/254
Epoch 7/20
254/254
                             20s 77ms/step - loss: 0.0538 - val_loss: 0.0478
Epoch 8/20
254/254
                             18s 72ms/step - loss: 0.0543 - val_loss: 0.0475
Epoch 9/20
                             22s 77ms/step - loss: 0.0523 - val_loss: 0.0476
254/254
Epoch 10/20
254/254 -
                             20s 74ms/step - loss: 0.0528 - val_loss: 0.0475
Epoch 11/20
                             21s 77ms/step - loss: 0.0520 - val loss: 0.0537
254/254 -
Epoch 12/20
                             19s 75ms/step - loss: 0.0534 - val_loss: 0.0476
254/254 -
Epoch 13/20
                             22s 81ms/step - loss: 0.0513 - val_loss: 0.0475
254/254
Epoch 14/20
254/254
                             39s 73ms/step - loss: 0.0526 - val_loss: 0.0495
Epoch 15/20
254/254
                             20s 79ms/step - loss: 0.0514 - val_loss: 0.0476
Epoch 16/20
254/254
                             18s 73ms/step - loss: 0.0520 - val_loss: 0.0480
Epoch 17/20
254/254
                             19s 75ms/step - loss: 0.0526 - val_loss: 0.0480
Epoch 18/20
                             20s 73ms/step - loss: 0.0533 - val_loss: 0.0475
254/254
Epoch 19/20
                             19s 73ms/step - loss: 0.0526 - val_loss: 0.0475
254/254
Epoch 20/20
                            21s 76ms/step - loss: 0.0532 - val_loss: 0.0480
254/254 -
254/254
                            5s 17ms/step
Root Mean Squared Error: 462.3408027459843
```

• Below is the image showing the generated dataset for SAG mill 2. It has both the training and test dataset.

| Tr | Training Data Sample: |                    |                  |               |  |  |  |
|----|-----------------------|--------------------|------------------|---------------|--|--|--|
|    | Feed Tonnage          | Energy Consumption | Bearing Pressure | Spindle Speed |  |  |  |
| 0  | 2641.267278           | 14618.770665       | 18.300000        | 9.134790      |  |  |  |
| 1  | 1919.931754           | 18742.467206       | 13.088456        | 8.372371      |  |  |  |
| 2  | 2812.774179           | 19688.000000       | 17.956571        | 9.640519      |  |  |  |
| 3  | 3477.000000           | 16646.962814       | 13.276117        | 9.027734      |  |  |  |
| 4  | 1811.001766           | 19688.000000       | 10.413203        | 9.314693      |  |  |  |
|    |                       |                    |                  |               |  |  |  |
| Te | Testing Data Sample:  |                    |                  |               |  |  |  |
|    | Feed Tonnage          | Energy Consumption | Bearing Pressure | Spindle Speed |  |  |  |
| 0  | 2049.582320           | 17496.794775       | 17.502233        | 9.069949      |  |  |  |
| 1  | 2224.663916           | 19064.733808       | 9.518411         | 8.189657      |  |  |  |
| 2  | 2271.120742           | 15560.776572       | 10.104824        | 9.312769      |  |  |  |
| 3  | 2450.534370           | 19489.601785       | 12.921962        | 8.942867      |  |  |  |
| 4  | 985.443336            | 19224.523348       | 17.868701        | 8.954133      |  |  |  |
|    |                       |                    | _                |               |  |  |  |

• Training for 20 epochs and the corresponding RMSE for SAG mill 2 is as follows

| 247/247                      | 34s 106ms/step - loss: 0.1053 - val loss: 0.0831 |
|------------------------------|--------------------------------------------------|
| Epoch 2/20                   |                                                  |
| 247/247                      | 33s 75ms/step - loss: 0.0856 - val_loss: 0.0849  |
| Epoch 3/20                   |                                                  |
| 247/247                      | 19s 77ms/step - loss: 0.0856 - val_loss: 0.0824  |
| Epoch 4/20                   |                                                  |
| 247/247                      | 20s 79ms/step - loss: 0.0828 - val_loss: 0.0868  |
| Epoch 5/20                   |                                                  |
| 247/247                      | 19s 76ms/step - loss: 0.0831 - val_loss: 0.0837  |
| Epoch 6/20                   |                                                  |
| 247/247                      | 21s 84ms/step - loss: 0.0856 - val_loss: 0.0829  |
| Epoch 7/20                   |                                                  |
| 247/247                      | 19s 75ms/step - loss: 0.0859 - val_loss: 0.0829  |
| Epoch 8/20                   |                                                  |
| 247/247                      | 21s 84ms/step - loss: 0.0826 - val_loss: 0.0823  |
| Epoch 9/20                   |                                                  |
| 247/247                      | 20s 80ms/step - loss: 0.0848 - val_loss: 0.0826  |
| Epoch 10/20                  |                                                  |
| 247/247                      | 19s 74ms/step - loss: 0.0826 - val_loss: 0.0823  |
| Epoch 11/20                  |                                                  |
| 247/247                      | 21s 75ms/step - loss: 0.0831 - val_loss: 0.0823  |
| Epoch 12/20                  |                                                  |
| 247/247                      | 20s 74ms/step - loss: 0.0835 - val_loss: 0.0823  |
| Epoch 13/20                  |                                                  |
|                              | 18s 74ms/step - loss: 0.0846 - val_loss: 0.0828  |
| Epoch 14/20                  |                                                  |
|                              | 21s 76ms/step - loss: 0.0839 - val_loss: 0.0842  |
| Epoch 15/20                  |                                                  |
|                              | 20s 74ms/step - loss: 0.0827 - val_loss: 0.0823  |
| Epoch 16/20                  |                                                  |
|                              | 20s 73ms/step - loss: 0.0834 - val_loss: 0.0825  |
| Epoch 17/20                  |                                                  |
|                              | 21s 75ms/step - loss: 0.0824 - val_loss: 0.0823  |
| Epoch 18/20                  |                                                  |
|                              | 20s 73ms/step - loss: 0.0830 - val_loss: 0.0824  |
| Epoch 19/20                  |                                                  |
| -                            | 21s 76ms/step - loss: 0.0847 - val_loss: 0.0823  |
| Epoch 20/20                  |                                                  |
|                              | 20s 74ms/step - loss: 0.0837 - val_loss: 0.0823  |
|                              | 5s 19ms/step                                     |
| Root Mean Squared Error: 997 | .2364758823867                                   |

## **Conclusion and Implications**

The study confirmed that an LSTM approach to predicting the ORH of SAG mills presents good accuracy, especially in terms of the shortening of the time supports. This method is data-driven, offering a realistic, alternative alternative for the estimation of ore hardness using only operational variables, derived from sources easier and faster to obtain than direct geological inputs.

- Key Contributions: The performances of the proposed LSTM model in real-time mining
  operations demonstrate the possibility of machine learning in accurate, dynamic real-time
  predictions for supporting better decisions in SAG mill settings. The real-time ORH
  forecasting will enable operators to adjust the mill settings proactively and optimize
  energy efficiency and overall performance.
- Broader Impact: the prediction model ORH can be integrated with monitoring digital
  platforms in order to provide on-line feedback to SAG mill operators. This method,
  considering its nature, is most probably applicable for any other grinding and crushing
  equipment when operational conditions data become available.

# Reference

- An LSTM Approach for SAG Mill Operational Relative-Hardness Prediction
- Colab Notebook