

Diseño de pruebas en un entorno aleatorio para exploración por medio de drones con inteligencia de enjambre

### Jose Ignacio Granados Marín

Contraparte: MSc. Luis Alberto Chavarría Zamora Institución: Instituto Tecnológico de Costa Rica

#### Tabla de Contenidos



**Planteamiento** del problema





**Objetivos general** y específicos



Avance del proyecto



03

Descripción de la propuesta de solución y resultados esperados



Conclusiones

## Planteamiento del problema



La exploración de un territorio aleatorio mediante un único drone es una actividad que puede llegar a tomar más tiempo de lo necesario y consumir más recursos que pueden ser limitados. Por lo que, para obtener la mayor eficiencia y eficacia de los drones a disposición, se implementarán métodos de exploración coordinada para observar y analizar su respectivo comportamiento ante entornos aleatorios.









| Objetivo<br>general      | Validar un determinado algoritmo de inteligencia de enjambre mediante la implementación de pruebas simuladas en un entorno aleatorio controlado.                                                                             |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objetivos<br>específicos | Seleccionar una solución de algoritmo de enjambre que sea viable para explorar un territorio en vista de las capacidades de hardware.                                                                                        |
|                          | Diseñar la solución seleccionada a través del uso de Python y la biblioteca Pybullet para analizar el comportamiento de la misma en un determinado entorno aleatorio utilizando drones Crazyflie.                            |
|                          | Analizar la solución escogida mediante el uso del Firmware del drone Crazyflie para determinar la factibilidad y confiabilidad de los resultados.                                                                            |
|                          | Evaluar las ventajas del algoritmo implementado y su respectiva simulación con base en una futura etapa del proyecto, para realizar un análisis previo de un posible escenario real mediante el uso de más drones Crazyflie. |

# Propuesta de solución: algoritmo de enjambre





# Optimización de enjambres de partículas (PSO)

Inicializa un enjambre de partículas el cual atraviesa el espacio de aleatorio en busca de la mejor posición global óptima



# Optimización de colonias de hormigas (ACO)

Actualiza los rastros de feromonas y la orientación de las hormigas alrededor del espacio de búsqueda



# Colonias de abejas artificiales (ABC)

Emplea un conjunto de abejas igual al número de fuentes de alimento alrededor de la colmena. Las abejas respectivas buscan su fuente de alimento y regresan a la colmena

## Propuesta de solución: Motor de física





#### **Pybullet**

Módulo de Python que es utilizado para realizar simulaciones de física, robótica y aprendizaje de refuerzo profundo



#### Gazebo

Colección de bibliotecas de software de código abierto diseñadas para simplificar el desarrollo de aplicaciones de alto rendimiento como codificación de vídeo, simulación y gestión de procesos



#### Webots

Aplicación de escritorio de código abierto y multiplataforma que se utiliza para simular diversos tipos de robots

## Resultados esperados













Avance del proyecto





Pruebas en Pybullet

**Algoritmo PSO** 



### Conclusiones

Evaluación objetiva del trabajo desarrollado

Aporte a la resolución del problema planteado

Trabajo a realizar en la segunda mitad del proyecto



## Bibliografía

#### Algoritmos de enjambre

- Lutkevich, B., Earls, A. R. (2021, 7 diciembre). drone (UAV). IoT Agenda. <a href="https://www.techtarget.com/iotagenda/definition/drone">https://www.techtarget.com/iotagenda/definition/drone</a>
- Sun, W., Tang, M., Zhang, L., Huo, Z., Shu, L.
   (2020). A survey of using swarm intelligence algorithms in IoT. Sensors, 20(5), 1420.
   <a href="https://www.mdpi.com/1424-8220/20/5/1420">https://www.mdpi.com/1424-8220/20/5/1420</a>



#### Motores de física

- Pybullet. (2022, 20 mayo). PyPI.
   <a href="https://pypi.org/project/pybullet/">https://pypi.org/project/pybullet/</a>
- Gazebo. (s. f.).
   <a href="https://gazebosim.org/home">https://gazebosim.org/home</a>
- Webots: robot simulator. (s. f.).
   <a href="https://cyberbotics.com/">https://cyberbotics.com/</a>

# Muchas gracias Tienen alguna pregunta?

Jose Ignacio Granados Marín Ingeniería en Computadores No. Carné: 2018319698



