DM 6 Année 201920-2021

Corrigé du devoir à rendre le 14/12/2020

Exercice 1:

Soient A et B deux parties non vides de \mathbb{R} telles que $\forall (a,b) \in A \times B, a \leq b$.

1. Montrer que A admet une borne supérieure.

Comme B est non vide, il existe $b \in B$ et $\forall a \in A, a \leq b$ donc A est une partie de \mathbb{R} non vide et majorée. Elle admet donc une borne supérieure.

2. Montrer que B admet une borne inférieure.

Comme A est non vide, il existe $a \in A$ et $\forall b \in B$, $a \leq b$ donc B est une partie de \mathbb{R} non vide et minorée. Elle admet donc une borne inférieure.

3. Prouver que $SupA \leq InfB$.

Soit $a \in A$ alors, d'après la question précédente, a est un minorant de B donc $a \leq \operatorname{Inf} B$. On a donc : $\forall a \in A$, $a \leq \operatorname{Inf} B$; ce qui prouve que $\operatorname{Inf} B$ est un majorant de A donc $\left\lceil \operatorname{Sup} A \leq \operatorname{Inf} B \right\rceil$

Exercice 2:

Soit $a \in \mathbb{R}$. On considère la suite u définie par $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = 1 + u_n^2/4$.

1. Représenter graphiquement les premiers termes de la suite avec plusieurs valeurs de a.

On trace le graphe de la fonction $f:x\mapsto 1+x^2/4$. Pour le positionner par rapport à la première bissectrice, on remarque que pour tout réel x, on a :

$$f(x) \ge x \Leftrightarrow x^2 - 4x + 4 \ge 0 \Leftrightarrow (x - 2) \ge 0.$$

Ainsi, le graphe de f est situé au-dessus de la première bissectrice et l'intersecte au point de coordonnées (2,2).

 $2. \ \, \textit{Intuiter le comportement de la suite u en fonction de a}.$

Il semble que si $a \in [-2, 2]$, alors u converge vers 2 et que sinon elle diverge vers $+\infty$.

3. Prouver votre conjecture.

Comme on a $\forall x \in \mathbb{R}$, $f(x) \geq x$, on a pour tout entier n, $u_{n+1} = f(u_n) \geq u_n$. La suite u est donc croissante quelle que soit la valeur de a.

De plus, d'après le théorème de la limite monotone, soit elle converge, soit elle diverge vers $+\infty$.

Enfin, si la suite u converge vers ℓ , alors en passant à la limite dans la relation $u_{n+1} = 1 + u_n^2/4$, on obtient $\ell = 1 + \ell^2/4$ donc $\ell = 2$.

• Supposons $a \in [-2, 2]$.

Le segment [-2,2] est stable par f car pour tout $x \in [-2,2]$, $0 \le x^2 \le 4$ donc $1 \le 1 + x^2/4 \le 2$ soit $f(x) \in [-2,2]$. Par conséquent, comme $u_0 \in [-2,2]$, on a $u_n \in [-2,2]$ pour tout entier n.

La suite u est donc majorée puis convergente grâce au théorème de la limite monotone. La suite u converge donc vers 2.

• Supposons $a \notin [-2, 2]$.

et la suite u est croissante donc $\forall n \in \mathbb{N}^*, u_n \geq u_1$.

Si la suite était convergente elle convergerait vers 2. Comme la suite u est croissante, on obtiendrait alors $2 \ge u_1$. Or $|u_0| > 2$ donc $u_1 = 1 + u_0^2/4 > 2$; ce qui est absurde. Par conséquent, la suite diverge vers $+\infty$.

Exercice 3: Soit $f:[0,1] \to [0,1]$ une fonction croissante.

1. Soit $E = \{x \in [0,1] : x \leq f(x)\}$. Montrer que E admet une borne supérieure. Comme $f(0) \in [0,1]$, $0 \in E$ donc E est une partie de $\mathbb R$ non vide. De plus, E est majorée par 1. Par suite, E admet une borne supérieure.

Comme E est minorée par 0 et majorée par 1, on a $s \in [0,1]$. La quantité f(s) est donc définie.

- 2. On pose s = SupE et on va montrer que f(s) = s.
 - (a) On suppose (par l'absurde) que f(s) > s. En déduire que $f(s) \in E$ et conclure à une absurdité.

Si f(s) > s alors la croissance de f implique que f(f(s)) > f(s) donc $f(s) \in E$. En particulier, $f(s) \leq \operatorname{Sup} E = s$. On aboutit à une contradiction.

(b) On suppose (par l'absurde) que f(s) < s. En déduire qu'il existe $x \in E$ tel que $f(s) < x \le s$ et conclure à une absurdité.

Si $f(s) < s = \operatorname{Sup} E$ alors f(s) n'est pas un majorant de E donc il existe $x \in E$ tel que f(s) < x. Comme $x \in E$, on a donc : $f(s) < x \le s$.

Par croissance de f, on en déduit que $f(x) \leq f(s)$. Mais $x \in E$ donc $x \leq f(x)$ puis $x \leq f(x) \leq f(s) < x$; ce qui est absurde

(c) Conclure.

Les hypothèses f(s) < s et f(s) > s conduisent à des absurdité donc

$$f(s) = s$$

On a donc montré que toute fonction de [0,1] à valeurs dans [0,1] possède un point fixe.