Advance Stochastic Gradient with Variance Reduction

Jingchang Liu

December 7, 2017

University of Science and Technology of China

Table of Contents

Introductions

Control Variates

Antithetic Sampling

Stratified Sampling

Important Sampling

Experiments

Conclusions

Q & A

Introductions

Formulations

Optimization problems

$$\min f(w), \qquad f(w) := \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$

Stochastic gradient descent

At each iteration $t=1,2,\cdots$, draw i_t randomly from $\{1,\cdots,n\}$

$$w^{t} = w^{t} - \eta_{t} \nabla f_{i_{t}} \left(w^{t} \right)$$

Unified formulation

 ζ is a random variable.

$$w^{t+1} = w^t - \eta_t g(w^t, \zeta_t)$$

3

Estimation

Stochastic gradient

$$\nabla f_{i_t}(w^t) \to \frac{1}{n} \sum_{i=1}^n f_i(w^t)$$

Unbiased

$$\mathbb{E}\left\{\nabla f_{i_t}(w^t)\right\} = \frac{1}{n}\sum_{i=1}^n f_i(w^t)$$

Variance Reduce(VR)

control variates	antithetic variates	
important sampling	stratified sampling	

4

Control Variates

Control variates

Introduction

Unknown parameter μ , assume we have a static X: $\mathbb{E}X = \mu$, another r.v. Y, such that $\mathbb{E}Y = \tau$ is a known value, define a new r.v.

$$\bar{X} = X + c(Y - \tau)$$

Properties

- Unbias: $\mathbb{E}\bar{X} = \mathbb{E}X = \mu$
- Variance: $Var(\bar{X}) = Var(X) + c^2 Var(Y) + 2cCov(X, Y)$ Optimal coefficient: $c^* = -\frac{Cov(X, Y)}{Var(Y)}$
- Simply:
 - $\bar{X} = X Y + \tau$, if cov(X, Y) > 0
 - $\bar{X} = X + Y \tau$, if cov(X, Y) < 0

Control variates for stochastic gradient

VR gradient

- Former: $v_k = \nabla f_{i_k}(w_{k-1})$
- Case 1: $v_k = \nabla f_{i_k}(w_{k-1}) \nabla h_{i_k}(w_{k-1}) + \mathbb{E} \nabla h_{i_k}(w_{k-1})$
- Case 2: $v_k = \nabla f_{i_k}(w_{k-1}) \nabla f_{i_k}(\tilde{w}) + \tilde{v}$

Methods

- SAGA: $\nabla f_{ik}(\tilde{w})$ is stored in the table.
- SVRG: $\nabla f_{i_k}(\tilde{w})$ is calculated after a specific number of iterations.
- $\bullet \lim_{k\to 0} \mathbb{E} \|v_k\|^2 = 0$
- SAGA. SVRG will convergence under fixed stepsize.

Antithetic Sampling

antithetic variates

Two r.v.
$$X_i, X_j$$
 id, $\mathbb{E} X_i = \mu, \mathbb{E} X_j = \mu$.
As $\mathbb{E} \left\{ \frac{1}{2} (X_i + X_j) \right\} = \mu$ use $\frac{1}{2} (X_i + X_j)$ to estimate μ

Formulations

• if X and Y are independent,

$$Var(\frac{1}{2}(X_i + X_j)) = \frac{1}{4}Var(X_i + X_j) = \frac{1}{4}\{Var(X_i) + Var(X_j)\}$$
$$= \frac{1}{4} \times 2Var(X_i) = \frac{1}{2}Var(X_i)$$

• if X and Y are negative correlation,

$$Var(\frac{1}{2}(X_i + X_j)) = \frac{1}{4}\{Var(X_i) + Var(X_j) + 2Cov(X_i, X_j)\} \leq \frac{1}{2}Var(X_i)$$

• if $X_j = 2\mu - X_i$, then $Var(\frac{1}{2}(X_i + X_j)) = Var(\mu) = 0$

7

antithetic variates for stochastic gradient

logistic regression

$$\nabla f_i(w) = \frac{e^{-y_i \cdot x_i' w}}{1 + e^{-y_i \cdot x_i' w}} y_i x_i'$$

Formulations

$$\mathbb{E} \left\| \nabla f_i(w) + \nabla f_j(w) \right\|^2 = \mathbb{E} \left\| \nabla f_i(w) \right\|^2 + \mathbb{E} \left\| \nabla f_j(w) \right\|^2 + 2\mathbb{E} \left\langle \nabla f_i(w), \nabla f_j(w) \right\rangle$$

$$\begin{split} \mathbb{E} \left\langle \nabla f_i(w), \nabla f_j(w) \right\rangle &= \mathbb{E} \left\langle \frac{e^{-y_i \cdot x_i^{'} w}}{1 + e^{-y_i \cdot x_i^{'} w}} y_i x_i^{'}, \frac{e^{-y_i \cdot x_j^{'} w}}{1 + e^{-y_j \cdot x_j^{'} w}} y_j x_j^{'} \right\rangle \\ &\geq -\mathbb{E} \left\| \frac{e^{-y_i \cdot x_i^{'} w}}{1 + e^{-y_i \cdot x_i^{'} w}} y_i x_i^{'} \right\| \left\| \frac{e^{-y_j \cdot x_j^{'} w}}{1 + e^{-y_j \cdot x_j^{'} w}} y_j x_j^{'} \right\| \end{split}$$

if and only if $y_i x_i^{'} \parallel y_j x_i^{'}$, equal hold.

SDCA

Derivation

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w) + \frac{\lambda}{2} \|w\|^2$$
 equals to

$$P(y,z) = \frac{1}{n} \sum_{i=1}^{n} f_i(z_i) + \frac{\lambda}{2} ||y||^2$$

s.t. $y = z_i, i = 1, 2, \dots, n$

$$L(y, z, \alpha) = P(y, z) + \frac{1}{n} \sum_{i=1}^{n} \alpha_{i} (y - z_{i})$$

$$D(\alpha) = \inf_{y, z} L(y, z, \alpha)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \inf_{z_{i}} \{f_{i}(z_{i}) - \alpha_{i} z_{i}\} + \inf_{y} \left\{ \frac{\lambda}{2} \|y\|^{2} + \frac{1}{n} \sum_{i=1}^{n} \alpha_{i} y \right\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} -f_{i}^{*} (-\alpha_{i}) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} \right\|^{2}$$

Formulation and relationships

$$\min f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w) + 0.5 \lambda w' w$$

$$\alpha_i^* = -\frac{1}{\lambda n} \nabla f_i(w^*) \qquad w^t = \sum_{i=1}^n \alpha_i^t$$

Update

$$\alpha_I^t = \begin{cases} \alpha_I^{t-1} - \eta_t(\nabla f_i(w^{t-1}) + \lambda n \alpha_I^{t-1}) & I = i \\ \alpha_I^{t-1} & I \neq i \end{cases}$$

$$w^{t} = w^{t-1} + (\alpha_{i}^{t} - \alpha_{i}^{t-1})$$

= $w^{t-1} - \eta_{t}(\nabla f_{i}(w^{t-1}) + \lambda n \alpha_{i}^{t-1})$

 $\lambda n\alpha_l^{t-1}$ is antithetic to $\nabla f_i(w^{t-1})$, $\nabla f_i(w^{t-1}) + \lambda n\alpha_l^{t-1} \to 0$ as $t \to \inf$

Stratified Sampling

Stratified sampling

Figure 1: Stratified sampling

Group 1	Group 2	Group 3	Group 4
$\nabla f_{11}, \cdots, \nabla f_{1n_1}$	$\nabla f_{21}, \cdots, \nabla f_{2n_2}$		$\nabla f_{L1}, \cdots, \nabla f_{Ln_L}$

Stratified sampling

Principles

- homogenous within-groups.
- heterogenous between the groups.

Stratified sample size

- Proportional: $\frac{b_h}{b} = \frac{n_h}{n} = W_h$
- Neyman: $b_h = b \frac{W_h S_h}{L} = b \frac{N_h S_h}{\sum\limits_{h=1}^L W_h S_h} = \sum\limits_{h=1}^{N_h S_h} N_h S_h$

Apply to stochastic gradient

- for the same labels y, cluster x, to stratify.
- $(x_i, y_i) \rightarrow \nabla f_i(w; x_i, y_i)$

Important Sampling

Important Sampling

- Uniform sampling: $\nabla f(w^t) = \sum_{i=1}^n \left[\frac{1}{n} \right] \nabla f_i(w^t)$
- Important sampling: $\nabla f(w^t) = \sum_{i=1}^n \frac{\nabla f_i(w)}{np_i^t} \left[p_i^t \right],$ $\sum_{i=1}^n p_i^t = 1 \quad t = 1, 2, \cdots$

Figure 2: Important sampling

Important Sampling for Stochastic Gradient

$$\min_{p^t} E \left\| \frac{\nabla f_{i_t}(w^t)}{np_{i_t}^t} \right\|^2 = \min_{p^t} \frac{1}{n^2} \sum_{i=1}^n \frac{\left\| \nabla f_i(w^t) \right\|^2}{p_i^t} \ge \frac{1}{n^2} \left(\sum_{i=1}^n \left\| \nabla f_i(w^t) \right\| \right)^2$$

$$p_i^t = \frac{\left\| \nabla f_i(w^t) \right\|}{\sum_{j=1}^n \left\| \nabla f_j(w^t) \right\|}$$
if $f_i(w)$ is L_i -Lipschitz, then $\| \nabla f_i(w) \| \le L_i$,
$$p_i^t = \frac{L_i}{\sum_{i=1}^n L_i}$$

Experiments

Stratified Sampling

Figure 3: multi-class logistic regression (convex) on letter, mnist, pendigits, and usps.

Important sampling

Figure 4: SVM on several datasets

Conclusions

conclusions

- VR base on optimize variables, such as SDCA. SVRG, can make the variance convergence to 0.
- VR base on samples, can significantly reduce the variance.
- Constructing related variates is crucial.
- Different VR methods can be combined, but how to need our efforts.

Q & A