Théorie des langages

Automates à pile

Jérôme Delobelle jerome.delobelle@u-paris.fr

LIPADE - Université de Paris

- 1. Introduction
- 2. Rappels sur les piles
- 3. Automates à pile : définition
- 4. Automates à pile : configurations
- 5. Les critères d'acceptation
- 6. Automates à pile déterministes

• Grammaires hors contexte : génèrent des langages algébriques

- Grammaires hors contexte : génèrent des langages algébriques
- Les automates finis acceptent (exactement) les langages réguliers

- Grammaires hors contexte : génèrent des langages algébriques
- Les automates finis acceptent (exactement) les langages réguliers
- Langages réguliers : sous-ensemble strict des langages algébriques

- Grammaires hors contexte : génèrent des langages algébriques
- Les automates finis acceptent (exactement) les langages réguliers
- Langages réguliers : sous-ensemble strict des langages algébriques
- Comment obtenir des automates qui acceptent les langages algébriques non réguliers ?
 - Un automate fini dispose par définition d'une mémoire finie

- Grammaires hors contexte : génèrent des langages algébriques
- Les automates finis acceptent (exactement) les langages réguliers
- Langages réguliers : sous-ensemble strict des langages algébriques
- Comment obtenir des automates qui acceptent les langages algébriques non réguliers ?
 - Un automate fini dispose par définition d'une mémoire finie
 - ⇒ Ajouter une pile permet d'étendre les possibilités de mémorisation
 - → Garder en mémoire les étapes de calculs passées
 - → Conditionner les étapes de calculs à venir

- Automate fini : défini principalement à partir de sa fonction de transition
- Automate à pile : enrichit la fonction de transition par :

- Automate fini : défini principalement à partir de sa fonction de transition
- Automate à pile : enrichit la fonction de transition par :
 - 1. un nouvel alphabet fini qui contient les symboles qui peuvent être empilés et dépilés

- Automate fini : défini principalement à partir de sa fonction de transition
- Automate à pile : enrichit la fonction de transition par :
 - un nouvel alphabet fini qui contient les symboles qui peuvent être empilés et dépilés
 - 2. des transitions conditionnées par le symbole en haut de la pile

- Automate fini : défini principalement à partir de sa fonction de transition
- Automate à pile : enrichit la fonction de transition par :
 - un nouvel alphabet fini qui contient les symboles qui peuvent être empilés et dépilés
 - 2. des transitions conditionnées par le symbole en haut de la pile
 - 3. lors d'une transition dans l'automate, il est possible d'empiler ou de dépiler un symbole dans la pile

• Soit l'automate suivant qui reconnaît le langage $\{a^n b^m | n, m > 0\}$

• Soit l'automate suivant qui reconnaît le langage $\{a^n b^m | n, m > 0\}$

• Cet automate ne peut pas reconnaître le langage $\{a^nb^m|n=m>0\}$: il est impossible de compter le nombre de a vus, et donc s'assurer de lire le même nombre de b.

• Soit l'automate suivant qui reconnaît le langage $\{a^n b^m | n, m > 0\}$

Cet automate ne peut pas reconnaitre le langage {aⁿb^m|n = m > 0} :
 il est impossible de compter le nombre de a vus, et donc s'assurer de lire le même nombre de b.

⇒ Automate à pile :

- Empiler un symbole (T) à chaque lecture d'un symbole a
- Dépiler un symbole à chaque lecture d'un symbole b
- Calcul réussi : la pile est vide on a lu alors autant de *a* que de *b*

Trace du calcul pour w = aaabbb

Entrée	Etat	Pile
--------	------	------

Trace du calcul pour w = aaabbb

Entrée	Etat	Pile	
aaabbb	0	Pile vide	on commence à l'état initial avec la pile vide

Trace du calcul pour w = aaabbb

Entrée	Etat	Pile
aaabbb	0	Pile vide
aabbb	1	T

on commence à l'état initial avec la pile vide on lit un a, on empile T

Trace du calcul pour w = aaabbb

Entrée	Etat	Pile
aaabbb	0	Pile vide
aabbb	1	T
abbb	1	TT

on commence à l'état initial avec la pile vide on lit un a, on empile T on lit un a, on empile T

Trace du calcul pour w = aaabbb

Entrée	Etat	Pile
aaabbb	0	Pile vide
aabbb	1	T
abbb	1	TT
bbb	1	TTT
		•

on commence à l'état initial avec la pile vide on lit un a, on empile T on lit un a, on empile T on lit un a, on empile T

Trace du calcul pour w = aaabbb

Entrée	Etat	Pile
aaabbb	0	Pile vide
aabbb	1	T
abbb	1	TT
bbb	1	TTT
bb	2	TT

on commence à l'état initial avec la pile vide on lit un a, on empile T on lit un a, on empile T on lit un a, on empile T on lit un b, on dépile T

Trace du calcul pour w = aaabbb

Entrée	Etat	Pile
aaabbb	0	Pile vide
aabbb	1	T
abbb	1	TT
bbb	1	TTT
bb	2	TT
Ь	2	T

on commence à l'état initial avec la pile vide on lit un a, on empile T on lit un a, on empile T on lit un a, on empile T on lit un b, on dépile T on lit un b, on dépile T

Trace du calcul pour w = aaabbb

Entrée	Etat	Pile
aaabbb	0	Pile vide
aabbb	1	T
abbb	1	TT
bbb	1	TTT
bb	2	TT
Ь	2	T
ϵ	2	Pile vide

on commence à l'état initial avec la pile vide on lit un a, on empile T on lit un a, on empile T on lit un a, on empile T on lit un b, on dépile T on lit un b, on dépile T on lit un b, on dépile T

Trace du calcul pour w = aaabbb

Entrée	Etat	Pile
aaabbb	0	Pile vide
aabbb	1	T
abbb	1	TT
bbb	1	TTT
bb	2	TT
Ь	2	T
ϵ	2	Pile vide

on commence à l'état initial avec la pile vide on lit un a, on empile T on lit un a, on empile T on lit un a, on empile T on lit un b, on dépile T on lit un b, on dépile T on lit un b, on dépile T

Le mot est lu entièrement, on est dans un état final, la pile est vide, le mot est accepté par l'automate.

Définition informelle

Un automate à pile est un automate fini asynchrone (i.e. un AFD avec ϵ -transition) auquel on a ajouté une pile de capacité illimitée initialement vide.

Vérifier si un mot est accepté par un automate à pile est globalement semblable à celle d'un automate fini.

- 🛕 Deux conditions supplémentaires 🛕
 - à chaque étape, l'automate à pile consulte le sommet de sa pile et le remplace éventuellement par une suite de symboles
 - la condition d'acceptation (pile vide? état final? les deux?)

Rappels sur les piles

Rappels sur les piles

- **Pile** : Type *P*
- LIFO (Last In First Out)
 - constante pilevide $\in P$
 - empiler: $E \times P \rightarrow P$
 - depiler: $P \setminus \{\text{pilevide}\} \rightarrow P$
 - sommet: $P \setminus \{\text{pilevide}\} \rightarrow E$
 - est_vide: $P \to \mathbb{B}$

Applications en mathématique/informatique :

- résursivité
- backtracking utilisé par exemple dans l'algorithme de recherche en profondeur
- notation post-fixée
- . . .

Piles et automates à pile

- On introduit un alphabet de pile Γ
- Une pile p est un mot $p \in \Gamma^*$
- Opérations sur les piles :
 - Tester si la pile est vide : déterminer si $p = \epsilon$
 - Empiler un élément $x \in \Gamma$ dans une pile $p \in \Gamma^*$: $p \to xp$
 - Si la pile est non vide, elle est de la forme xp, où x ∈ Γ et p ∈ Γ*.
 Dépiler l'élément x : xp → p
 - On peut étendre ces notions à des mots. Ainsi, empiler un mot $u=u_1u_2...u_l$ revient à empiler successivement les lettres $u_1,...,u_l \in \Gamma$. Partant de la pile $p \in \Gamma^*$, on obtient

$$p \rightarrow u_1 p \rightarrow u_2 u_1 p \rightarrow \dots \rightarrow u_I \dots u_2 u_1 p = u^R p$$

• Attention : On obtient le miroir du mot u dans la pile

Automates à pile : définition

Automate à pile

Un automate à pile (AP) non déterministe (en anglais pushdown automaton) est un septuplet $M = (\Sigma, \Gamma, Z_0, Q, q_0, F, \delta)$, où

- Σ est l'alphabet d'entrée
- Γ est l'alphabet de pile
- $Z_0 \in \Gamma$ est le symbole initial de la pile
- Q est un ensemble fini d'états
- $q_0 \in Q$ est l'état initial de l'automate
- $F \subseteq Q$ est l'ensemble des état finaux (on peut avoir $F = \emptyset$)
- δ est une fonction de $Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\})$ vers l'ensemble des parties de $Q \times (\Gamma \cup \{\epsilon\})$

Automate à pile

Un automate à pile (AP) non déterministe (en anglais pushdown automaton) est un septuplet $M = (\Sigma, \Gamma, Z_0, Q, q_0, F, \delta)$, où

- Σ est l'alphabet d'entrée
- Γ est l'alphabet de pile
- $Z_0 \in \Gamma$ est le symbole initial de la pile
- Q est un ensemble fini d'états
- $q_0 \in Q$ est l'état initial de l'automate
- $F \subseteq Q$ est l'ensemble des état finaux (on peut avoir $F = \emptyset$)
- δ est une fonction de $Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\})$ vers l'ensemble des parties de $Q \times (\Gamma \cup \{\epsilon\})$

Généralisation possible de δ en $Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\})^* \to Q \times (\Gamma \cup \{\epsilon\})^*$

Automate à pile : automate fini non-déterministe, à la différence près que la fonction de transition δ comporte trois arguments en entrée :

- l'état courant $q \in Q$
- le symbole d'entrée courant $a \in \Sigma \cup \{\epsilon\}$
- le symbole courant en haut de la pile $Y \in \Gamma \cup \{\epsilon\}$

Et un tuple en sortie composé de :

- l'état de sortie $r \in Q$
- le symbole à remplacer en haut de la pile $T \in \Gamma \cup \{\epsilon\}$

L'utilisation de la transition $(q, a, Y) \rightarrow (r, T)$ conduira à :

- 1. lire le symbole *a*
- 2. dépiler Y
- 3. empiler T
- 4. transiter de l'état q vers l'état r

L'utilisation de la transition $(q, a, Y) \rightarrow (r, T)$ conduira à :

- 1. lire le symbole *a*
- 2. dépiler Y
- 3. empiler *T*
- 4. transiter de l'état q vers l'état r

 On part de l'état q, on lit a, on dépile Y, on empile T, on arrive à l'état r

L'utilisation de la transition $(q, a, Y) \rightarrow (r, T)$ conduira à :

- 1. lire le symbole a
- 2. dépiler Y
- 3. empiler T
- 4. transiter de l'état q vers l'état r

- On part de l'état q, on lit a, on dépile Y, on empile T, on arrive à l'état r
- Pour pouvoir passer par cette transition, il faut donc être dans l'état
 q, que a soit la prochaine lettre à lire, et que Y soit en sommet de
 la pile

Règles de transition

- Chaque transition a, Y/T précise la lettre a qui doit être lu, le symbole de pile Y que l'on doit trouver en haut de la pile et le symbole T par lequel on doit le remplacer.
 - si en haut de la pile ce n'est pas le bon symbole, alors on ne peut pas emprunter cette transition;
 - si c'est le bon symbole de pile, on effectue l'opération sur la pile.
- ullet Y et T peuvent être égaux à ϵ
 - Si c'est Y alors on ne se soucis pas du symbole en haut de la pile et qu'on ne dépile rien
 - Si c'est T alors on n'empile rien
- La lettre a peut aussi être ε: dans ce cas cela se passe comme pour les ε-transitions dans les automates finis (mais on effectue quand même les opérations de pile).

Automate à pile : exemple

Deux automates à pile reconnaîssant le langage $\{a^nb^n|n>0\}$

Automate à pile : exemple 2

Soit l'automate à pile suivant qui reconnaît le langage $\{w \in \Sigma^* | w \text{ est un palindrome}\}$

Lien entre AFD et AP

Un automate fini "traditionnel" est un automate à pile particulier, défini sur un alphabet de pile vide $(\Gamma = \emptyset)$ et dont toutes les transitions laissent la pile inchangée.

ΑP

Automates à pile : configurations

Exécution et configurations

• Une exécution est une suite de configurations.

Exécution et configurations

- Une exécution est une suite de configurations.
- Pour un automate fini, une configuration est :
 - mot restant à lire $m \in \Sigma^*$
 - état courant $q \in Q$
 - Exemple : (q, abbb)

Exécution et configurations

- Une exécution est une suite de configurations.
- Pour un automate fini, une configuration est :
 - mot restant à lire $m \in \Sigma^*$
 - état courant $q \in Q$
 - Exemple : (q, abbb)
- Pour un automate à pile, une configuration est définie par :
 - le mot restant à lire $m \in \Sigma^*$
 - l'état courant $q \in Q$
 - le contenu de la pile, l'élément le plus à gauche étant le sommet de pile
 - Exemple : $(q, abbb, ABBZ_0)$

Configurations

Configuration

La pile contient, à tout moment, un mot h sur Γ^* . L'automate se trouve dans un état q, et doit lire encore le mot $m \in \Sigma^*$

- Le couple (q, m, h) est appelé une configuration de l'automate.
- L'ensemble des configurations est $Q \times \Sigma^* \times \Gamma^*$.
- La configuration initiale (q₀, m, Z₀) ∈ Q × Σ* × Γ est formée de l'état initial et du symbole initial de la pile

Configurations

Configuration

La pile contient, à tout moment, un mot h sur Γ^* . L'automate se trouve dans un état q, et doit lire encore le mot $m \in \Sigma^*$

- Le couple (q, m, h) est appelé une configuration de l'automate.
- L'ensemble des configurations est $Q \times \Sigma^* \times \Gamma^*$.
- La configuration initiale (q₀, m, Z₀) ∈ Q × Σ* × Γ est formée de l'état initial et du symbole initial de la pile

Un **mouvement** de l'automate représente le passage d'une configuration à une autre.

Configurations

Configuration

La pile contient, à tout moment, un mot h sur Γ^* . L'automate se trouve dans un état q, et doit lire encore le mot $m \in \Sigma^*$

- Le couple (q, m, h) est appelé une configuration de l'automate.
- L'ensemble des configurations est $Q \times \Sigma^* \times \Gamma^*$.
- La configuration initiale (q₀, m, Z₀) ∈ Q × Σ* × Γ est formée de l'état initial et du symbole initial de la pile

Un **mouvement** de l'automate représente le passage d'une configuration à une autre.

On note indifféremment une configuration $(q_0, m, Z_0) \in Q \times \Sigma^* \times \Gamma$ ou $(m, q_0, Z_0) \in \Sigma^* \times Q \times \Gamma$

Passage d'une configuration à une autre

 Le passage d'une configuration c₁ à une configuration c₂ dans un automate M s'écrit :

$$c_1 \vdash_M c_2$$

- ullet On note $dash_M^*$ la clôture réflexive et transitive de $dash_M$
- Il y a deux modes de transition pour changer de configuration :
 - Sur une Σ-transition
 - Sur une ϵ -transition

Σ -transition : exemple

• Transition $(q_1, b, A) \rightarrow (q_2, B)$

- Configuration (q_1, bba, AZ_0)
- On aura alors:

$$(q_1, bba, AZ_0) \vdash_M (q_2, ba, BZ_0)$$

On part de l'état q_1 , on lit b, on dépile A, on empile B, on arrive à l'état q_2

ϵ -transition : exemple

• Transition $(q_1, \epsilon, A) \rightarrow (q_2, B)$

- Configuration (q_1, bba, AZ_0)
- On aura alors:

$$(q_1, bba, AZ_0) \vdash_M (q_2, bba, BZ_0)$$

On ne touche pas à la tête de lecture
 On part de l'état q₁, on ne lit rien, on dépile A, on empile B, on arrive à l'état q₂

Soit l'automate à pile suivant qui reconnaît le langage $\{a^nb^n|n>0\}$

Soit l'automate à pile suivant qui reconnaît le langage $\{a^n b^n | n > 0\}$

 $(aabb,0,Z_0)$ \vdash_M $(abb,1,Z_0)$ on lit a, on ne dépile rien, on empile rien

Soit l'automate à pile suivant qui reconnaît le langage $\{a^nb^n|n>0\}$

$$(aabb,0,Z_0)$$
 \vdash_M $(abb,1,Z_0)$ on lit a , on ne dépile rien, on empile rien \vdash_M $(bb,1,TZ_0)$ on lit a , on ne dépile rien, on empile T

Soit l'automate à pile suivant qui reconnaît le langage $\{a^nb^n|n>0\}$

$$(aabb,0,Z_0)$$
 \vdash_M $(abb,1,Z_0)$ on lit a , on ne dépile rien, on empile rien \vdash_M $(bb,1,TZ_0)$ on lit a , on ne dépile rien, on empile T \vdash_M $(b,2,TZ_0)$ on lit b , on ne dépile rien, on empile rien

Soit l'automate à pile suivant qui reconnaît le langage $\{a^nb^n|n>0\}$

$$(aabb,0,Z_0) \vdash_{M} (abb,1,Z_0)$$

$$\vdash_{M} (bb,1,TZ_0)$$

$$\vdash_{M} ({}^{\textbf{b}},2,TZ_0)$$

$$\vdash_{M} (\epsilon,2,Z_0)$$

on lit a, on ne dépile rien, on empile rien \vdash_M (bb, 1, TZ_0) on lit a, on ne dépile rien, on empile T \vdash_M (b, 2, TZ_0) on lit b, on ne dépile rien, on empile rien on lit b, on dépile T, on empile rien

Soit l'automate à pile suivant qui reconnaît le langage $\{w \in \Sigma^* | w \text{ est un palindrome}\}$

 $(baaab, 0, Z_0)$

Soit l'automate à pile suivant qui reconnaît le langage $\{w \in \Sigma^* | w \text{ est un palindrome}\}$

 $(baaab,0,Z_0)$ \vdash_M $(aaab,0,BZ_0)$ on lit b, on ne dépile rien, on empile B

Soit l'automate à pile suivant qui reconnaît le langage $\{w \in \Sigma^* | w \text{ est un palindrome}\}$

 $(baaab,0,Z_0)$ \vdash_M $(aaab,0,BZ_0)$ on lit b, on ne dépile rien, on empile B \vdash_M $(aab,0,ABZ_0)$ on lit a, on ne dépile rien, on empile A

Soit l'automate à pile suivant qui reconnaît le langage $\{w \in \Sigma^* | w \text{ est un palindrome}\}$

Soit l'automate à pile suivant qui reconnaît le langage $\{w \in \Sigma^* | w \text{ est un palindrome}\}$

$$\begin{array}{cccc} (baaab, 0, Z_0) & \vdash_{M} & (aaab, 0, BZ_0) \\ & \vdash_{M} & (aab, 0, ABZ_0) \\ & \vdash_{M} & (ab, 1, ABZ_0) \\ & \vdash_{M} & (b, 1, BZ_0) \end{array}$$

on lit *b*, on ne dépile rien, on empile *B* on lit *a*, on ne dépile rien, on empile *A* on lit *a*, on ne dépile rien, on empile rien on lit *a*, on dépile *A*, on empile rien

Soit l'automate à pile suivant qui reconnaît le langage $\{w \in \Sigma^* | w \text{ est un palindrome}\}$

$$\begin{array}{lll} (baaab,0,Z_0) & \vdash_M & (aaab,0,BZ_0) & \text{on lit } b, \text{ on ne dépile rien, on empile } B \\ & \vdash_M & (aab,0,ABZ_0) & \text{on lit } a, \text{ on ne dépile rien, on empile } A \\ & \vdash_M & (ab,1,ABZ_0) & \text{on lit } a, \text{ on ne dépile rien, on empile rien} \\ & \vdash_M & (b,1,BZ_0) & \text{on lit } a, \text{ on dépile } A, \text{ on empile rien} \\ & \vdash_M & (\varepsilon,1,Z_0) & \text{on lit } b, \text{ on dépile } B, \text{ on empile rien} \end{array}$$

Les critères d'acceptation

Les critères d'acceptation

- Dans nos exemples, on accepte un mot si le ruban est vide, on est sur l'état final et la pile est vide
- Ce sont des cas particuliers
- Il y a deux critères d'acceptation possibles :
 - Acceptation par état final (quelle que soit la pile quand on s'arrête)
 - Acceptation par pile vide (quel que soit l'état dans lequel on s'arrête)
- Mais le ruban doit toujours être vide!
- Ces deux critères sont équivalents

Acceptation par état final

Acceptation par état final

Un mot $m \in \Sigma^*$ est accepté par état final par un automate à pile $M = (\Sigma, \Gamma, Z_0, Q, q_0, F, \delta)$ si pour la configuration initiale (m, q_0, Z_0) , il existe un état $q_f \in F$ et un mot $z \in \Gamma^*$ tel que

$$(m,q_0,Z_0)\vdash_M^* (\varepsilon,q_f,z)$$

Acceptation par état final

Acceptation par état final

Un mot $m \in \Sigma^*$ est accepté par état final par un automate à pile $M = (\Sigma, \Gamma, Z_0, Q, q_0, F, \delta)$ si pour la configuration initiale (m, q_0, Z_0) , il existe un état $q_f \in F$ et un mot $z \in \Gamma^*$ tel que

$$(m,q_0,Z_0)\vdash_M^* (\epsilon,q_f,z)$$

Langage accepté par état final

Le langage accepté par état final par un automate à pile est l'ensemble des mots acceptés par cet automate.

$$L^{F}(M) = \{ m \in \Sigma^{*} | (m, q_{0}, Z_{0}) \vdash_{M}^{*} (\epsilon, q_{f}, z) \}$$

Soit l'automate à pile avec acceptation par état final qui reconnaît le langage $\{a^nb^n|n\geq 0\}$

Soit l'automate à pile avec acceptation par état final qui reconnaît le langage $\{a^nb^n|n\geq 0\}$

On obtient le mot vide dans un état final, quel que soit l'état de la pile. aabb est accepté par l'automate.

26

Soit l'automate à pile avec acceptation par état final qui reconnaît le langage $\{a^nb^n|n\geq 0\}$

$$(aab,0,Z_0)$$
 \vdash_M $(ab,0,TZ_0)$ on lit a , on ne dépile rien, on empile T \vdash_M $(b,0,TTZ_0)$ on lit a , on ne dépile rien, on empile T \vdash_M $(\varepsilon,1,TZ_0)$ on lit b , on dépile T , on empile rien

Echec : On est bloqué : on ne pas dépiler T (pas de b à lire); on ne peut pas aller dans l'état final (on ne peut pas dépiler Z_0 qui n'est pas en sommet de la pile). aab n'est pas accepté par l'automate.

Soit l'automate à pile avec acceptation par état final qui reconnaît le langage $\{a^nb^n|n\geq 0\}$

Echec: à l'étape (*), on ne peut pas lire b car on ne peut pas dépiler T. On finit bien dans l'état final, mais le mot n'est pas vide. abb n'est pas accepté par l'automate.

Soit l'automate à pile avec acceptation par état final qui reconnaît le langage $\{a^nb^n|n\geq 0\}$

$$(\epsilon,0,Z_0)$$
 \vdash_M (ϵ,F,Z_0) on ne lit rien, on dépile Z_0 , on empile Z_0

On obtient le mot vide dans un état final, quel que soit l'état de la pile. ϵ est accepté par l'automate.

Acceptation par pile vide

Acceptation par pile vide

Un mot $m \in \Sigma^*$ est accepté par pile vide par un automate à pile $M = (\Sigma, \Gamma, Z_0, Q, q_0, F, \delta)$ si pour la configuration (m, q_0, Z_0) , il existe un état $q \in Q$ tel que

$$(m,q_0,Z_0)\vdash_M^* (\epsilon,q,\epsilon)$$

Attention, la pile vide ne contient plus Z_0 !

Acceptation par pile vide

Acceptation par pile vide

Un mot $m \in \Sigma^*$ est accepté par pile vide par un automate à pile $M = (\Sigma, \Gamma, Z_0, Q, q_0, F, \delta)$ si pour la configuration (m, q_0, Z_0) , il existe un état $q \in Q$ tel que

$$\left(m,q_{0},Z_{0}\right)\vdash_{M}^{*}\left(\epsilon,q,\epsilon\right)$$

Attention, la pile vide ne contient plus Z_0 !

Langage accepté par pile vide

Le langage accepté par pile vide par un automate à pile est l'ensemble des mots acceptés par cet automate.

$$L^{V}(M) = \{ m \in \Sigma^{*} | (m, q_{0}, Z_{0}) \vdash_{M}^{*} (\epsilon, q, \epsilon) \}$$

Acceptation par pile vide : exemple

Soit l'automate à pile avec acceptation par pile vide suivant qui reconnaît le langage $\{a^nb^n|n\geq 0\}$

Soit l'automate à pile avec acceptation par pile vide suivant qui reconnaît le langage $\{a^nb^n|n\geq 0\}$

On obtient le mot vide et une pile vide, *quel que soit l'état dans lequel on se trouve. aabb* est accepté par l'automate.

Soit l'automate à pile avec acceptation par pile vide suivant qui reconnaît le langage $\{a^nb^n|n\geq 0\}$

Echec : le mot est vide, mais la pile ne l'est pas. On ne peut suivre aucune autre transition. *aab* n'est pas accepté par l'automate.

Soit l'automate à pile avec acceptation par pile vide suivant qui reconnaît le langage $\{a^nb^n|n\geq 0\}$

$$(abb,0,Z_0)$$
 \vdash_M $(bb,0,T)$ on lit a , on dépile Z_0 , on empile T \vdash_M $(b,1,\epsilon)$ on lit b , on dépile T , on empile rien

Echec : on ne peut pas lire b car on ne peut pas dépiler T. On a bien une pile vide, mais le mot n'est lui pas vide. abb n'est pas accepté par l'automate.

Soit l'automate à pile avec acceptation par pile vide suivant qui reconnaît le langage $\{a^nb^n|n\geq 0\}$

$$(\epsilon,0,Z_0)$$
 \vdash_M $(\epsilon,0,\epsilon)$ on ne lit rien, on dépile Z_0 , on empile rien

On obtient le mot vide et la pile vide, quel que soit l'état dans lequel on se trouve. ϵ est accepté par l'automate.

Critères d'acceptation

 Les deux critères d'acceptation (par état final et par pile vide) sont équivalents

Théorème

Un langage est accepté par un automate à pile avec le critère d'acceptation sur pile vide si et seulement si il est accepté par un automate à pile avec acceptation par état final.

Critères d'acceptation

• Les deux critères d'acceptation (par état final et par pile vide) sont équivalents

Théorème

Un langage est accepté par un automate à pile avec le critère d'acceptation sur pile vide si et seulement si il est accepté par un automate à pile avec acceptation par état final.

- \Rightarrow Chaque transition dans laquelle Z_0 est dépilé est remplacée par une transition vers un **nouvel** état final
- ← Après avoir atteint un état final, on vide entièrement la pile

Soit l'automate à pile avec acceptation par pile vide suivant :

Soit l'automate à pile avec acceptation par pile vide suivant :

Cet automate accepte le langage $\{a(a+b)^{n-1}c^n|n>0\}$:

Soit l'automate à pile avec acceptation par pile vide suivant :

Cet automate accepte le langage $\{a(a+b)^{n-1}c^n|n>0\}$:

• On doit lire a en premier (Z_0 en sommet de pile)

Soit l'automate à pile avec acceptation par pile vide suivant :

Cet automate accepte le langage $\{a(a+b)^{n-1}c^n|n>0\}$:

- On doit lire a en premier (Z_0 en sommet de pile)
- On lit ensuite autant de a et de b que l'on veut (on dépile un T et empile deux T à chaque fois)
 - \rightarrow il y a autant de T dans la pile que de a et b lus

Soit l'automate à pile avec acceptation par pile vide suivant :

Cet automate accepte le langage $\{a(a+b)^{n-1}c^n|n>0\}$:

- On doit lire a en premier (Z_0 en sommet de pile)
- On lit ensuite autant de a et de b que l'on veut (on dépile un T et empile deux T à chaque fois)
 - \rightarrow il y a autant de T dans la pile que de a et b lus
- On doit ensuite lire autant de c que de a et b lu (pour dépiler tous les T et avoir une pile vide)

Soit l'automate à pile avec acceptation par pile vide suivant :

Cet automate accepte le langage $\{a(a+b)^{n-1}c^n|n>0\}$:

- On doit lire a en premier (Z_0 en sommet de pile)
- On lit ensuite autant de a et de b que l'on veut (on dépile un T et empile deux T à chaque fois)
 - \rightarrow il y a autant de T dans la pile que de a et b lus
- On doit ensuite lire autant de c que de a et b lu (pour dépiler tous les T et avoir une pile vide)
- Le mot vide n'est pas accepté : il faut lire a pour dépiler Z_0

Acceptation par pile vide → acceptation par état final

Soit l'automate à pile avec acceptation par pile vide suivant :

Construction de l'aut. à pile avec acceptation par état final équivalent :

Acceptation par pile vide → acceptation par état final

Soit l'automate à pile avec acceptation par pile vide suivant :

Construction de l'aut. à pile avec acceptation par état final équivalent :

 Mot le plus court : ac. On peut donc aller à l'état final uniquement à partir de l'état 1

Acceptation par pile vide → acceptation par état final

Soit l'automate à pile avec acceptation par pile vide suivant :

Construction de l'aut. à pile avec acceptation par état final équivalent :

- Il faut avoir dépilé tous les $T: Z_0$ doit être en sommet de pile
- Il faut donc que Z₀ ne soit pas dépilé à l'état 0

Soit l'automate à pile avec acceptation par état final suivant :

Soit l'automate à pile avec acceptation par état final suivant :

Soit l'automate à pile avec acceptation par état final suivant :

Cet automate accepte le langage $\{a(a+b)^nc^m|n\geq 0, m>0, m\leq n\}$:

• On doit lire a en premier (Z_0 en sommet de pile)

Soit l'automate à pile avec acceptation par état final suivant :

- On doit lire a en premier (Z_0 en sommet de pile)
- On lit ensuite autant de a et de b que l'on veut (on dépile un T et empile deux T à chaque fois)

Soit l'automate à pile avec acceptation par état final suivant :

- On doit lire a en premier (Z_0 en sommet de pile)
- On lit ensuite autant de a et de b que l'on veut (on dépile un T et empile deux T à chaque fois)
- On doit ensuite lire au moins un c pour arriver dans l'état final

Soit l'automate à pile avec acceptation par état final suivant :

- On doit lire a en premier (Z_0 en sommet de pile)
- On lit ensuite autant de a et de b que l'on veut (on dépile un T et empile deux T à chaque fois)
- On doit ensuite lire au moins un c pour arriver dans l'état final
- On peut s'arreter quand on veut, et on ne peux pas lire plus de c que de a et de b

Soit l'automate à pile avec acceptation par état final suivant :

- On doit lire a en premier (Z_0 en sommet de pile)
- On lit ensuite autant de a et de b que l'on veut (on dépile un T et empile deux T à chaque fois)
- On doit ensuite lire au moins un c pour arriver dans l'état final
- On peut s'arreter quand on veut, et on ne peux pas lire plus de c que de a et de b
- Le mot vide n'est pas accepté : il faut avoir un *T* dans la pile pour arriver dans l'état final

Acceptation par état final → acceptation par pile vide

Soit l'automate à pile avec acceptation par état final suivant :

Construction de l'aut. à pile avec acceptation par pile vide équivalent :

Acceptation par état final → acceptation par pile vide

Soit l'automate à pile avec acceptation par état final suivant :

Construction de l'aut. à pile avec acceptation par pile vide équivalent :

• Il suffit de vider la pile dans l'ancien état final

Acceptation par état final → acceptation par pile vide

Soit l'automate à pile avec acceptation par état final suivant :

Construction de l'aut. à pile avec acceptation par pile vide équivalent :

- Il suffit de vider la pile dans l'ancien état final
- Seuls des T peuvent être présents encore dans la pile

Automates à pile déterministes

- Les automates à pile que nous avons défini jusqu'à maintenant sont indéterministes
 - Un mot est accepté s'il existe au moins une suite de configurations qui conduit à l'acceptation
 - Mais il peut y en avoir plusieurs
 - Et il peut il y avoir plusieurs suites de configuration qui mènent à l'échec
- ⇒ Automate à pile déterministe?

• Un automate à pile *M* est déterministe à 2 conditions :

- Un automate à pile *M* est déterministe à 2 conditions :
- Première condition
 - pour un état q donné
 - pour un symbole d'entrée x donné
 - pour un sommet de pile Z donné

il existe au plus une transition partant de (q, x, Z)

- Un automate à pile *M* est déterministe à 2 conditions :
- Première condition
 - pour un état q donné
 - pour un symbole d'entrée x donné
 - pour un sommet de pile Z donné

il existe au plus une transition partant de (q, x, Z)

- Seconde condition
 - pour un état q donné
 - pour un sommet de pile Z donné

s'il existe une transition partant de (q, ε, Z) , elle est unique et pour toute lettre x, il n'en existe pas partant de (q, x, Z).

- Un automate à pile *M* est déterministe à 2 conditions :
- Première condition
 - pour un état q donné
 - pour un symbole d'entrée x donné
 - pour un sommet de pile Z donné

il existe au plus une transition partant de (q, x, Z)

- Seconde condition
 - pour un état q donné
 - pour un sommet de pile Z donné

s'il existe une transition partant de (q, ϵ, Z) , elle est unique et pour toute lettre x, il n'en existe pas partant de (q, x, Z).

⇒ Dans une configuration donnée, on ne peut pas avoir le choix sur la transition à appliquer

Soit l'automate à pile avec acceptation par pile vide suivant qui reconnaît le langage $\{a^nb^n|n\geq 0\}$

Soit l'automate à pile avec acceptation par pile vide suivant qui reconnaît le langage $\{a^nb^n|n\geq 0\}$

Cet automate n'est pas déterministe (condition 2) :

$$(aabb,0,Z_0)$$
 \vdash_M $(abb,0,T)$ on lit a , on dépile Z_0 , on empile T $(aabb,0,Z_0)$ \vdash_M $(aabb,0,\epsilon)$ on ne lit rien, on dépile Z_0 , on empile rien

Il y a le choix entre 2 transitions.

Soit l'automate à pile avec acceptation par état final suivant qui reconnaît le langage $\{a^n(a+b)^n|n\geq 0\}$

Soit l'automate à pile avec acceptation par état final suivant qui reconnaît le langage $\{a^n(a+b)^n|n\geq 0\}$

Cet automate n'est pas déterministe (condition 1) :

$$(aba,0,TZ_0)$$
 \vdash_M $(ba,0,TTZ_0)$ on lit a , on ne dépile rien, on empile T $(aba,0,TZ_0)$ \vdash_M $(ba,1,Z_0)$ on lit a , on dépile T , on empile rien

Il y a le choix entre 2 transitions.

Soit l'automate à pile avec acceptation par pile vide suivant qui reconnaît le langage $\{a^nb^m|n>0, m=n \text{ ou } m=n+1\}$

Soit l'automate à pile avec acceptation par pile vide suivant qui reconnaît le langage $\{a^nb^m|n>0, m=n \text{ ou } m=n+1\}$

Cet automate n'est pas déterministe (condition 1) :

$$(abb,0,Z_0)$$
 \vdash_M $(bb,0,T)$ on lit a , on dépile Z_0 , on empile T $(abb,0,Z_0)$ \vdash_M $(bb,0,TT)$ on lit a , on dépile Z_0 , on empile TT

Il y a le choix entre 2 transitions.

Soit l'automate à pile par acceptation par pile vide suivant qui reconnaît le langage $\{ca^{n-1}b^n|n>0\}$

Soit l'automate à pile par acceptation par pile vide suivant qui reconnaît le langage $\{ca^{n-1}b^n|n>0\}$

Cet automate est déterministe :

Soit l'automate à pile par acceptation par pile vide suivant qui reconnaît le langage $\{ca^{n-1}b^n|n>0\}$

Cet automate est déterministe :

• Transitions à partir de l'état 0 : pas le choix sur la lettre à lire

Soit l'automate à pile par acceptation par pile vide suivant qui reconnaît le langage $\{ca^{n-1}b^n|n>0\}$

Cet automate est déterministe :

- Transitions à partir de l'état 0 : pas le choix sur la lettre à lire
- Transitions à partir de l'état 1 : pas le choix sur le symbole à dépiler