Data Platforms for the Cloud +Big Data World: What's New?

Surajit Chaudhuri

surajitc@microsoft.com

Microsoft Research

A Few Implications of Cloud and Big Data

- Invariant: SQL or Relational Algebra variants rule as primary workload over all Data Analytic Systems
 - Even for MR, Spark, or NoSQL ecosystems
 - Why? Programmer productivity is paramount
 - Challenge: Query Optimization Technology stuck in 1980s with poor support for user-defined functions
- New: Elasticity is the defining attraction of Cloud
 - Challenge: Compute-Storage separation (across the network) for data analytic systems
 - Challenge: Enable "On-the-fly" light predicate evaluation for Storage Service
 - Challenge: Resource Governance for Multi-Tenant Data Services
 - Challenge: Provisioning to support Serverless for Data Services (aka "Extreme Elasticity")

Two Opportunities

- Data Transformation: Crucial for data analytics (OLAP or ML)
 - A field that has not advanced as much
 - Can we take a leap in reducing the cost to programmers?
- Approximate Query processing: Potential to lower Cost
 - Why run analytics on Petabytes/Exabytes of data all the time?
 - Can we support approximation for SQL queries?
- Language abstractions are vital for both Data Transformation DSL and injection of Approximation in Query processing and we need the help of the PL community
- More on these two now ...

Transform-Data-By-Example

Yeye He (Lead) and Collaborators

By-Example Transformation

- Users only need to give a few inputoutput examples
- Algorithm searches programs in predefined string operators:
 - E.g. substring, concat, split

• But, falls short in many domain-specific transformation tasks ...

Domain-Specific Transformation: Names

Input	Output
John K. Doe Jr.	Doe, John
Mr. Doe , John	Doe, John
Jane A. Smith	Smith, Jane
MS. Jane Smith	
Smith, Jane	
Dr Anthony R Von Fange III	
Peter Tyson	
Dan E. Williams	
James Davis Sr.	
James J. Davis	
Mr. Donald Edward Miller	
Miller, Donald	
Rajesh Krishnan	
Daniel Chen	

Many More Domain-Specific Transformations ...

- Many head and tail domains:
 - Name, date, phone, email, url, address, unit, ip, number-encoding, color, string-casing, math-expressions, html, isbn, ...
- Proprietary, enterprise domains

• FlashFill-like approach: one-domain-at-a-time, would not scale

Using Code for Domain-Specific Transformations

- Rich transformation logic locked up in code repositories
- Systematically **collect**, and **compose** them for user tasks
- Extensible to many domains

Leveraging Functions

Input	Output	
John K. Doe Jr.	Doe, John	
Mr. Doe , John	Doe, John	
Jane A. Smith	Smith, Jane	
MS. Jane Smith		
Smith, Jane		
Dr Anthony R Von Fange III		
Peter Tyson		
Dan E. Williams		
James Davis Sr.		
James J. Davis		
Mr. Donald Edward Miller		
Miller, Donald		
Rajesh Krishnan		
Daniel Chen		

Github: NameParser Function (Apache-license)

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Text.RegularExpressions;
namespace CSharpNameParser
    public class NameParser
        public Name Parse(string fullName)
            string salutation = null;
            string firstName = null;
            string initials = null;
            string lastName = null;
            string suffix = null;
            // Parse the name
            // The logic to parse the name
            return new Name()
                Salutation = salutation,
                FirstName = firstName,
                MiddleInitials = initials,
                LastName = lastName,
                Suffix = suffix
            };
```

Synthesis using Existing Function

Github: NameParser Function (Apache-license)

```
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Text.RegularExpressions;
namespace CSharpNameParser
    public class NameParser
                                               Input
        public Name Parse(string fullName)
            string salutation = null;
            string firstName = null;
                                               Initialize
            string initials = null;
            string lastName = null;
            string suffix = null:
            // Parse the name
                                               Domain-
            // The logic to parse the name
                                              specific
                                               parsing logic
          return new Name()
                Salutation = salutation,
                FirstName = firstName,
                                              Return
                MiddleInitials = initials,
                LastName = lastName,
                Suffix = Suffix
```

Surajit Chaudhuri - Dagstuhl 2019

Transform-Data-by-Example (TDE): Highlights

• Search by-example interactively

• Synthesized complex programs on-the-fly

• Out-of-box support for many head and tail domains

• Extensible to new code, DLL, services and tables

TDE: Product Impact and Technical Reference

- Technical reference
 - Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek R. Narasayya, Surajit Chaudhuri: Transform-Data-by-Example (TDE): An Extensible Search Engine for Data Transformations. PVLDB 11(10): 1165-1177 (2018)
- June 2017: Released as Excel Add-in in Office Store (via Garage)
 - Since release: 455K user transformation queries [as of 6 months ago]

• May 2018: Synthesis technology ships in Microsoft Power Query

Approximating Queries in Microsoft's Big-Data Clusters

Srikanth Kandula (Lead)

Approximating complex queries is challenging

If not careful, an approximate answer may

- miss rows in answer ("groups")
- mis-estimate aggregates

Gains are large only if "work" is skipped

⇒ Must reduce input *before* costly operations

Solution space for AQP

Query-time Sampling

Samplers are streaming operators

1. <u>Uniform (*p*)</u>

- Each row passes with probability p.
- 2. <u>Distinct (*C*, *f*, *p*)</u>

When used before group-by, can ensure no group miss

Per unique value of columns in C, pass f rows and the rest with probability p.

Samplers are streaming operators

1. <u>Uniform (*p*)</u>

- Each row passes with probability p.
- 2. <u>Distinct (*C*, *f*, *p*)</u>
- When used before group-by, can ensure no group miss
- 3. <u>Universe</u> (*C*, *p*)
- When used before join, can ensure join \leftarrow {sample} \equiv sample \leftarrow join

Pick a random p fraction of values of C

```
i_color, d_year, SUM(ss_profit)/ p, COUNT(DISTINCT customer_sk)/ p
```


Sampler pushdown rules in production

		Transformation	Condition
Sampler below project	Rule-U1	$\Gamma_p^{U}(\pi(R)) \stackrel{*}{\Leftrightarrow} \pi(\Gamma_p^{U}(R))$	
	Rule-V1	$\Gamma_{p,\mathcal{D}}^{V}(\pi(R)) \stackrel{*}{\Leftrightarrow} \pi(\Gamma_{p,\mathcal{D}_{\mathcal{C}_b \to \mathcal{C}_a}}^{V}(R))$	if $c \notin \mathcal{D}$
	Rule-D1	$\Gamma_{p,\mathcal{D},f}^{D}(\pi(R)) \stackrel{*}{\Leftrightarrow} \pi(\Gamma_{p,\mathcal{D}_{\mathcal{C}_b}\to\mathcal{C}_a}^{D},f}(R))$	if $c \notin \mathcal{D}$ or $\mathcal{C}_c \subseteq \mathcal{D}$
Sampler	Rule-U2	$\Gamma_p^{U}(\sigma_{\mathcal{C}}(R)) \stackrel{*}{\Leftrightarrow} \sigma_{\mathcal{C}}(\Gamma_p^{U}(R))$	
below select	Rule-V2	$\Gamma_{p,\mathcal{D}}^{V}(\sigma_{\mathcal{C}}(R)) \stackrel{*}{\Leftrightarrow} \sigma_{\mathcal{C}}(\Gamma_{p,\mathcal{D}}^{V}(R))$	
	Rule-D2	$\Gamma_{p,\mathcal{D},f}^{D}(\sigma_{\mathcal{C}}(R)) \stackrel{*}{\Leftrightarrow} \sigma_{\mathcal{C}}(\Gamma_{p,\mathcal{D},f}^{D}(R))$	\mid if $\mathcal{C}\subseteq\mathcal{D}$
	Rule-U3	$\Gamma_p^{U}(R\bowtie_{\mathcal{C}} S) \stackrel{*}{\Leftrightarrow} \Gamma_p^{U}(R)\bowtie_{\mathcal{C}} S$	if \mathcal{C} is a primary-key in S
Sampler	Rule-V3a	$\Gamma_{p,\mathcal{D}}^{V}(R\bowtie_{\mathcal{C}}S) \stackrel{*}{\Leftrightarrow} \Gamma_{p,\mathcal{D}_{S\to R}}^{V}(R)\bowtie_{\mathcal{C}}S$	if $\mathcal{D}_{S\to R}\subseteq R_c$ and \mathcal{C} is a primary-key in S
below join	Rule-V3b	$\Gamma_{p,\mathcal{D}}^{V}(R\bowtie_{\mathcal{C}} S) \stackrel{*}{\Leftrightarrow} \Gamma_{p,\mathcal{C}}^{V}(R)\bowtie_{\mathcal{C}} \Gamma_{p,\mathcal{C}}^{V}(S)$	$\text{if } \mathcal{C} = \mathcal{D}$
	Rule-D3	$\Gamma_{p,\mathcal{D},f}^{D}(R\bowtie_{\mathcal{C}} S) \stackrel{*}{\Leftrightarrow} \Gamma_{p,\mathcal{D}_{S\to R},f}^{D}(R)\bowtie_{\mathcal{C}} S$	if $C \subseteq \mathcal{D}_{S \to R} \subseteq R_c$ and C is a primary-key in S .

All sampler types move

Production exclusively uses substitution rules

- For faster QO
- Exploration rules need statistics (e.g., dv estimates) that are not broadly available

An example recurring job that switched to using samplers

metric	Orig.	Sampled	Change%
Duration (hours)	10.2	6.9	-32
Tot. compute hours	5118	3183	-37
Bytes read (TB)	340	340	0
Bytes written (TB)	172	170	-1.0
# Tasks (x 10 ³)	85.5	85.4	-0.1

# Groups	650583
${\tt MissedGroupFract}.$	0.00
# Aggregates	24
AvgAvgAbsOverAvgTrueV	1.30%
AvgAvgRelErr	17.7%

More examples of recurring jobs that now use samplers

	Runtime reduction	Resource Usage reduction	Accuracy: aggr. error μ_{RelE} (median), $\frac{\mu_{AbsE}}{\mu_{TrueV}}$	Accuracy: row miss
Job1	68% (7Hr→ 2Hr)	67% (4907Hr → 1594Hr)	1.7% (0.6%), 0.5% (well within natural variation)	0
Job2		62% (7595Hr > 2912Hr)	8% (5%), 2%	0
Job3	40% (11Hr→ 6Hr)	41% (4237Hr→ 2516Hr)	19% (7%), 0.2% (small values)	0

Barriers to Adoption

- "Cannot tolerate any error."
 - Each log entry can be thought of as a measurement sample; analytic answers inherently variable
 - Sampling okay iff additional variability due to sampling ≈ natural variation
- "Why change?"
 - Inertia and risk to change queries esp: legacy complex queries
 - Top-down push to reduce cost can help
- No guarantee on error for unseen inputs: open issue
- Cognitive overhead in deciding how to sample

Summary and References

- Approximate query processing can be a very effective tool in cost-accuracy tradeoff in Big data systems
- Automated approximation and guarantees are hard, if not impossible, for the complete surface of SQL
- Programmer-guided approximation for SQL as well as pre-computation based approximation for narrow DSL-s are viable

• References

- Surajit Chaudhuri, Bolin Ding, Srikanth Kandula: Approximate Query Processing: No Silver Bullet. SIGMOD Conference 2017: 511-519
- Srikanth Kandula, Kukjin Lee, Surajit Chaudhuri, Marc : with Approximating Queries in Microsoft's Production Big-Data Clusters. PVLDB 12(12): 2131-2142 (2019)
- Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert Grandl, Surajit Chaudhuri, Bolin Ding: Quickr: Lazily Approximating Complex AdHoc Queries in BigData Clusters. SIGMOD Conference 2016: 631-646