Objetivos de aprendizaje Tema 8

Análisis Matemático I

Javier Gómez López

6 de febrero de 2022

1. Conocer y comprender la definición de vector gradiente, así como su relación con la diferencial

Antes de todo, es necesario conocer algunos conceptos previos.

Sean pues X, Y espacios normados, Ω un subconjunto abierto de X y $f: \Omega \to Y$ una función diferenciable en un punto $a \in \Omega$. Denotaremos por S al conjunto de todas las direcciones en X, es decir, $S = \{u \in X : ||u|| = 1\}$.

Fijemos ahora $r \in \mathbb{R}^+$ tal que $B(a,r) \subset \Omega$ y, para cada $u \in S$, consideremos la función φ_u , definida de la siguiente forma:

$$\varphi_u:]-r, r[\to Y, \qquad \varphi_u(t) = f(a+tu) \quad \forall t \in]-r, r[$$

Pues bien, dado $u \in S$, decimos que f es **derivable en la dirección** u, en el punto a, cuando la función φ_u es derivable en 0, en cuyo caso, al vector derivada $\varphi'_u(0)$ lo llamamos **derivada direccional** de f en a, según la dirección u, y lo denotamos por $f'_u(a)$. Así pues,

$$f'_u(a) = \varphi'_u(0) = \lim_{t \to 0} \frac{\varphi_u(t) - \varphi_u(0)}{t} = \lim_{t \to 0} \frac{f(a + tu) - f(a)}{t}$$

Decimos que f es direccionalmente derivable en el punto a cuando es derivable en todas las direcciones $u \in S$.

■ Sean X, Y espacios normados, Ω un abierto de X y $f:\Omega \to Y$ una función. Si f es diferenciable en un punto $a \in \Omega$, entonces f es direccionalmente derivable en a con

$$f'_u(a) = Df(a)(u) \quad \forall u \in S$$

A partir de ahora trabajamos en el caso $X = \mathbb{R}^N$, mientras que de momento Y sigue siendo un espacio normado arbitrario. Fijamos un abierto Ω de \mathbb{R}^N , una función $f: \Omega \to Y$ y un punto $a \in \Omega$, y usaremos la norma euclídea.

Pues bien, dado $k \in \Delta_N$, cuando f es deriable en el punto a, en la dirección e_k , decimos que f es **parcialmente derivable con respecto a la** k-ésima variable en el punto a. Entonces la derivada direccional de f en a, según la dirección e_k , se denomina **derivada parcial de** f **con respecto a la** k-ésima variable en el punto a, y se denota por $\frac{\partial f}{\partial x_k}(a)$, es decir,

$$\frac{\partial f}{\partial x_k}(a) = f'_{e_k}(a) = \lim_{t \to 0} \frac{f(a + te_k) - f(a)}{t} \tag{1}$$

Cuando esto ocurre para todo $k \in \Delta_N$, decimos que f es **parcialmente derivable** en a, y entonces tenemos N derivadas parciales, $\frac{\partial f}{\partial x_k}(a)$ con $k \in \Delta_N$.

• Si f es diferenciable en a, entonces f es particalmente derivable en a con:

$$\frac{\partial f}{\partial x_k}(a) = Df(a)(e_k) \qquad \forall j \in \Delta_N$$
 (2)

Calculemos ahora la diferencial de un campo escalar, a partir de sus derivadas parciales. Mantenemos la notación anterior.

Si f es diferenciable en a, usando que Df(a) es lineal, junto con la igualdad (2), para todo $x = (x_1, x_2, \dots, x_N) \in \mathbb{R}^N$ tenemos

$$Df(a)(x) = Df(a)\left(\sum_{k=1}^{N} x_k e_k\right) = \sum_{k=1}^{N} x_k Df(a)(e_k) = \sum_{k=1}^{N} x_k \frac{\partial f}{\partial x_k}(a)$$

Cuando el campo f es parcialmente deriable en a, el **gradiente** de f en a es, por definición, el vector $\nabla f(a) \in \mathbb{R}^N$ dado por

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), \dots, \frac{\partial f}{\partial x_N}(a)\right) = \sum_{k=1}^N \frac{\partial f}{\partial x_k}(a)e_k$$

Reciprocamente, obtenemos que la aplicación lineal $T: \mathbb{R}^N \to \mathbb{R}$ dada por

$$T(x) = (\nabla f(a)|x)$$

es la única posible diferencial de f en a, luego f será diferenciable en a si, y sólo si, T cumple la condición que caracteriza a la diferencial. En resumen, tenemos el siguiente resultado.

- Para un campo escalar $f: \Omega \to \mathbb{R}$, donde Ω es un abierto de \mathbb{R}^N , y punto $a \in \Omega$, las siguientes afirmaciones son equivalentes:
 - (i) f es diferenciable en a.
 - (ii) f es parcialmente derivable en a y se verifica que:

$$\lim_{x \to a} \frac{f(x) - f(a) - (\nabla f(a)|x - a)}{||x - a||} = 0$$
(3)

En caso de que se cumplan (i) y (ii) se tiene:

$$Df(a)(x) = (\nabla f(a)|x) \qquad \forall x \in \mathbb{R}^N$$
 (4)

2. Conocer y comprender el significado físico del vector gradiente y su relación con el plano tangente a una superficie explícita

Fijada una dirección $u \in S$, al desplazarnos una distancia t > 0 desde el punto a, en la dirección y sentido del vector u, el campo f experimenta una variación de f(a+tu)-f(a) unidades. Podemos decir por tanto que la derivada direccional $f'_u(a)$ es la tasa de variación del campo en el punto a y en la dirección u.

Si f es diferenciable en $a \in \Omega$, se tiene $f'_u(a) = (\nabla f(a)|u)$ para todo $u \in S$. Supongamos que $\nabla f(a) \neq 0$ y consideramos la dirección $v = \nabla f(a)/||\nabla f(a)||$. Para toda dirección $u \in S$, la desigualdad de Cauchy-Schwartz nos dice que

$$f'_u(a) = (\nabla f(a)|u) \le ||\nabla f(a)|| = (\nabla f(a)|v) = f'_v(a)$$

de donde deducimos que

$$f'_v(a) = \max\{f'_u(a) : u \in S\} > 0$$

Tenemos así una caracterización del vector gradiente normalizado: $v = \nabla f(a)/||\nabla f(a)||$ es la única dirección $v \in S$ que hace que la derivada direccional $f'_v(a)$ sea máxima.

El significado físico de esta caracterización es claro, y se facilita si tenemos en cuenta que el vector $v = \nabla f(a)/||\nabla f(a)||$ tiene la misma dirección y sentido que $\nabla f(a)$. Por tanto, al desplazarnos desde el punto a en la dirección y el sentido del vector gradiente, conseguimos la máxima tasa de aumento de del campo por unidad de longitud. Dicho más intuitivamente, un "pequeño" desplazamiento en la dirección y sentido del vector gradiente, hace que el campo aumente .ªproximadamente.ª razón de $||\nabla f(a)||$ unidades.

Resaltamos que lo dicho es válido cuando f es diferenciable en a, no basta con que f sea parcialmente derivable en a, suponiendo además que $\nabla f(a) \neq 0$. Cuando $\nabla f(a) = 0$, se dice que a es un punto crítico o un punto estacionario del campo f.

Por otro lado, llamamos **superficie explícita** en \mathbb{R}^3 a la gráfica de una función continua $f: \Omega \to \mathbb{R}$, donde Ω es un subconjunto no vacío, abierto y conexo, de \mathbb{R}^2 . Se trata por tanto del conjunto

$$\Sigma = \operatorname{Gr} f = \{(x, y, f(x, y)) : (x, y) \in \Omega\} \subset \mathbb{R}^3$$

Se dice que la igualdad

$$z = f(x, y)$$
 $(x, y) \in \Omega$

es la ecuación explícita de la superfice Σ .

Cuando f es diferenciable en un punto $(x_0, y_0) \in \Omega$, veamos la relación entre el vector gradiente $\nabla f(x_0, y_0)$ y la superfice Σ . Para abreviar escribimos

$$z_0 = f(x_0, y_0),$$
 $\alpha_0 = \frac{\partial f}{\partial x}(x_0, y_0)$ $\beta_0 = \frac{\partial f}{\partial y}(x_0, y_0)$

y consideramos el plano afín Π definido por la ecuación

$$z - z_0 = \alpha_0(x - x_0) + \beta_0(y - y_0)$$

que también es una superficie explícita, concretamente $\Pi=\mathrm{Gr} g$ donde $g:\mathbb{R}^2\to\mathbb{R}$ es la función definida por

$$g(x,y) = z_0 + \alpha_0(x - x_0) + \beta_0(y - y_0) \quad \forall (x,y) \in \mathbb{R}^2$$

Usando la relación entre la diferencial y su gradiente, vemos que g es una función afín, cuyo significado analítico nos da una buena aproximación de f cerca del punto (x_0, y_0) . Geométricamente, esto significa que la distancia (vertical) entre el punto (x, y, f(x, y)) de la superficie Σ y el correspondiente punto (x, y, g(x, y)) del plano Π , tiende a cero cuando ambos puntos se acercan a (x_0, y_0, z_0) , "mucho más rápidamente" que $||(x, y) - (x_0, y_0)||$.

Sea $\Sigma = \operatorname{Gr} f$ una superficie explícita en \mathbb{R}^3 , donde $f : \Omega \to \mathbb{R}$ es una función continua en un abierto conexo $\Omega \in \mathbb{R}^2$. Si f es diferenciable en un punto (x_0, y_0) y $z_0 = f(x_0, y_0)$, se dice que el plano Π de ecuación explícita

$$z - z_0 = (x - x_0) \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(x_0, y_0)$$

es el **plano tangente** a la superficie Σ en el punto (x_0, y_0, z_0) .

Decimos también que el vector

$$\left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), -1\right) \in \mathbb{R}^3$$

es el **vector normal** a la superficie Σ en el punto (x_0, y_0, z_0) .

3. Conocer y comprender la condición suficiente para que un campo escalar sea diferenciable, en términos de sus derivadas parciales, incluyendo su demostración

Teorema 1. Sea Ω un abierto de \mathbb{R}^N , $f:\Omega\to\mathbb{R}$ un campo escalar, $a\in\Omega$ y $k\in\Delta_N$. Supongamos que se verifican las dos condiciones siguientes:

- (i) f es parcialmente derivable con respecto a la k-ésima variable en el punto a
- (ii) Para $j \in \Delta_N \setminus \{k\}$, f es parcialmente derivable con respecto a la j-ésima variable en todo punto $x \in \Omega$ y la función derivada parcial $\frac{\partial f}{\partial x_j} : \Omega \to \mathbb{R}$ es continua en a.

Entonces f es diferenciable en el punto a.

Demostración. Podemos suponer que k=N, es decir, que la derivada parcial para la que sólo se supone su existencia en el punto a, es la última. Tomamos $r \in \mathbb{R}^+$ tal que $B(a,r) \subset \Omega$, y se trata de probar

$$\lim_{x \to a} \frac{f(x) - f(a) - (\nabla f(a)|x - a)}{||x - a||} = 0$$

Para que se comprenda mejor el razonamiento, conviene destacar una igualdad evidente.

Si escribimos $a=(a_1,a_2,\ldots,a_N)$, para $x=(x_1,x_2,\ldots,x_N)\in B(a,r)$ se tiene:

$$f(x) - f(a) = (f(x) - f(a_1, x_2, \dots, x_N)) + (f(a_1, x_2, \dots, x_N) - f(a_1, a_2, x_3, \dots, x_N)) + \dots + (f(a_1, \dots, a_{N-1}, x_N) - f(a)) = \sum_{j=1}^{N} (f(a_1, \dots, a_{j-1}, x_j, \dots, x_N) - f(a_1, \dots, a_j, x_{j+1}, \dots, x_N))$$

De la anterior igualdad se deduce claramente:

$$f(x) - f(a) - (\nabla f(a)|x - a) = \sum_{j=1}^{N} R_j(x) \quad \forall x \in B(a, r)$$
 (5)

donde, para cada $j \in \Delta_N$ hemos escrito:

$$R_j(x) = f(a_1, \dots, a_{j-1}, x_j, \dots, x_N) - f(a_1, \dots, a_j, x_{j+1}, \dots, x_N) - (x_j - a_j) \frac{\partial f}{\partial x_j}(a)$$
 (6)

Trabajaremos ahora por separado con cada uno de los sumandos que han aparecido.

Dado $\varepsilon > 0$, de (i) obtenemos $\delta \in]0, r[$ tal que, para $x_N \in \mathbb{R}$ con $|x_N - a_N| < \delta$, se tiene

$$\left| f(a_1, \dots, a_{N-1}, x_N) - f(a) - (x_N - a_N) \frac{\partial f}{\partial x_N}(a) \right| \le \frac{\varepsilon}{N} |x_N - a_N| \tag{7}$$

Por otra parte, la hipótesis (ii) nos permite conseguir que el mismo δ verifique además que, para todo $w \in B(x, \delta)$ se tenga

$$\left| \frac{\partial f}{\partial x_j}(w) - \frac{\partial f}{\partial x_j}(a) \right| \le \frac{\varepsilon}{N} \qquad \forall j \in \Delta_{N-1}$$
 (8)

Fijamos $x = (x_1, x_2, \dots, x_N) \in B(a, \delta)$, y es importante tener en cuenta que, a partir de este momento, el vector x, y por tanto todas sus componentes, estarán fijos.

Por una parte tenemos que $|x_N - a_N| \le ||x - a|| < \delta$, luego (7) nos dice

$$|R_N(x)| \le (\varepsilon/N)|x_N - a_N| \le (\varepsilon/N)||x - a|| \tag{9}$$

Por otra parte, fijamos $j \in \Delta_{N-1}$ para trabajar en el intervalo $J =]a_j - \delta, a_j + \delta[$ con la función $\Psi: J \to \mathbb{R}$ definida por

$$\Psi(t) = f(a_1, \dots, a_{i-1}, t, x_{i+1}, \dots, x_N) \qquad \forall t \in J$$

Para cada $t \in J$, que f sea parcialmente derivable con respecto a la j-ésima variable en el punto $(a_1, \ldots, a_{j-1}, t, x_{j+1}, \ldots, x_N) \in \Omega$, significa que Ψ es derivable en el punto t con

$$\Psi'(t) = \frac{\partial f}{\partial x_j}(a_1, \dots, a_{j-1}, t, x_{j+1}, \dots, x_N)$$

Usando el teorema del valor intermedio, obtenemos $u \in \mathbb{R}$, con $|u - a_j| \leq |x_j - a_j|$, tal que

$$\Psi(x_j) - \Psi(a_j) = (x_j - a_j)\Psi'(u) = (x_j - a_j)\frac{\partial f}{\partial x_j}(a_1, \dots, a_{j-1}, u, x_{j+1}, \dots, x_N)$$

Tomando $w = (a_1, \dots, a_{j-1}, u, x_{j+1}, \dots, x_N)$, de la igualdad anterior deducimos que

$$R_j(x) = \Psi(x_j) - \Psi(a_j) - (x_j - a_j) - \frac{\partial f}{\partial x_j}(a) = (x_j - a_j) \left(\frac{\partial f}{\partial x_j}(w) - \frac{\partial f}{\partial x_j}(a)\right)$$

Es claro que $||w-a|| \leq ||x-a|| < \delta,$ luego podemos usar (8) para obtener que

$$|R_j(x)| \le (\varepsilon/N)|x_j - a_j| \le (\varepsilon/N)||x - a||| \quad \forall j \in \Delta_{N-1}$$
 (10)

Teniendo en cuenta (5), de (9) y (10), deducimos finalmente que

$$|f(x) - f(a) - (\nabla f(a)|(x - a))| \le \sum_{j=1}^{N} |R_j(x_j, x_{j+1}, \dots, x_N)| \le \varepsilon ||x - a||$$

Esto prueba que se verifica que el límite buscado, así que f es diferenciable en el punto a.