Curs 7

Cuprins

- Forma normală conjunctivă și forma clauzală
- 2 Literali, clauze, mulțimi de clauze
- Rezoluția în calculul propozițional (recap.)
- Rezoluţia în logica de ordinul I

Forma normală conjunctivă și forma clauzală

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

 $literal := p \mid \neg p$ unde p este variabilă propozițională

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul I un literal este o formulă atomică sau negația unei formule atomice.

$$\textit{literal} := P(t_1, \dots, t_n) \mid \neg P(t_1, \dots, t_n)$$
 unde $P \in \mathbf{R}, \textit{ari}(P) = n$, și t_1, \dots, t_n sunt termeni.

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul l un literal este o formulă atomică sau negația unei formule atomice.

$$\textit{literal} := P(t_1, \dots, t_n) \mid \neg P(t_1, \dots, t_n)$$

unde $P \in \mathbf{R}$, ari(P) = n, și t_1, \ldots, t_n sunt termeni.

 \square Pentru un literal L vom nota cu L^c literalul complement.

De exemplu, dacă $L = \neg P(x)$ atunci $L^c = P(x)$ și invers.

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul l un literal este o formulă atomică sau negația unei formule atomice.

$$\textit{literal} := P(t_1, \dots, t_n) \mid \neg P(t_1, \dots, t_n)$$

unde $P \in \mathbf{R}$, ari(P) = n, și t_1, \ldots, t_n sunt termeni.

 \square Pentru un literal L vom nota cu L^c literalul complement.

De exemplu, dacă $L = \neg P(x)$ atunci $L^c = P(x)$ și invers.

O formulă este în formă normală conjunctivă (FNC) dacă este o conjuncție de disjuncții de literali.

 $\hfill\Box$ Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \vDash \alpha^{\mathit{fc}}.$

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \vDash \alpha^{\mathit{fc}}$.
- □ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{fc}$.
- □ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\varphi \to \psi \quad \exists \quad \neg \varphi \lor \psi$$
$$\varphi \leftrightarrow \psi \quad \exists \quad (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$$

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \vDash \alpha^{fc}$.
- □ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\begin{array}{cccc} \varphi \to \psi & \exists & \neg \varphi \lor \psi \\ \varphi \leftrightarrow \psi & \exists & (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi) \end{array}$$

regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \exists \quad \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \quad \exists \quad \neg\varphi \lor \neg\psi$$

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{\mathit{fc}}$.
- □ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\begin{array}{cccc} \varphi \to \psi & \exists & \neg \varphi \lor \psi \\ \varphi \leftrightarrow \psi & \exists & \left(\neg \varphi \lor \psi\right) \land \left(\neg \psi \lor \varphi\right) \end{array}$$

regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \exists \quad \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \quad \exists \quad \neg\varphi \lor \neg\psi$$

principiului dublei negaţii

$$\neg\neg\psi$$
 \forall ψ

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \vDash \alpha^{fc}$.
- ☐ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\begin{array}{cccc} \varphi \rightarrow \psi & \exists & \neg \varphi \lor \psi \\ \varphi \leftrightarrow \psi & \exists & \left(\neg \varphi \lor \psi\right) \land \left(\neg \psi \lor \varphi\right) \end{array}$$

regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \exists \quad \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \quad \exists \quad \neg\varphi \lor \neg\psi$$

3 principiului dublei negații

$$\neg\neg\psi$$
 \forall

4 distributivitatea

$$\varphi \lor (\psi \land \chi) \quad \exists \quad (\varphi \lor \psi) \land (\varphi \lor \chi)$$
$$(\psi \land \chi) \lor \varphi \quad \exists \quad (\psi \lor \varphi) \land (\chi \lor \varphi)$$

Exemplu

$$(\neg p \to \neg q) \to (p \to q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg(\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg(\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

$$\boxminus \neg (p \lor \neg q) \lor (\neg p \lor q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg(\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

$$\boxminus \neg (p \lor \neg q) \lor (\neg p \lor q)$$

$$\boxminus (\neg p \land q) \lor (\neg p \lor q)$$

Exemplu

$$(\neg p
ightarrow \neg q)
ightarrow (p
ightarrow q)$$

$$\boxminus \neg (\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

$$\boxminus \neg (p \lor \neg q) \lor (\neg p \lor q)$$

$$\exists (\neg p \land q) \lor (\neg p \lor q)$$

$$\exists \; (\neg p \vee \neg p \vee q) \wedge (q \vee \neg p \vee q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

 $\exists \neg (\neg p \rightarrow \neg q) \lor (p \rightarrow q)$

$$\boxminus \neg (p \lor \neg q) \lor (\neg p \lor q)$$

$$\exists \ (\neg p \land q) \lor (\neg p \lor q)$$

$$\boxminus \left(\neg p \lor \neg p \lor q \right) \land \left(q \lor \neg p \lor q \right)$$

$$\boxminus (\lnot p \lor q) \land (q \lor \lnot p)$$

□ O formulă este formă normală conjunctivă prenex (FNCP) dacă □ este în formă prenex $Q_1x_1\dots Q_nx_n\psi$ ($Q_i\in\{\forall,\exists\}$ oricare i) □ ψ este FNC

O formulă este formă normală conjunctivă prenex (FNCP) dacă
 □ este în formă prenex Q₁x₁...Q_nx_nψ (Q_i ∈ {∀,∃} oricare i)
 □ ψ este FNC
 □ O formulă este formă clauzală dacă este enunț universal și FNCP:
 ∀x₁...∀x_nψ unde ψ este FNC

- □ O formulă este formă normală conjunctivă prenex (FNCP) dacă
 - este în formă prenex $Q_1x_1 \dots Q_nx_n\psi$ ($Q_i \in \{\forall, \exists\}$ oricare i)
 - \square ψ este FNC
- □ O formulă este formă clauzală dacă este enunț universal și FNCP:

$$\forall x_1 \dots \forall x_n \psi$$
 unde ψ este FNC

Exempli

- □ O formulă este formă normală conjunctivă prenex (FNCP) dacă
 - este în formă prenex $Q_1x_1 \dots Q_nx_n\psi$ ($Q_i \in \{\forall, \exists\}$ oricare i)
 - \square ψ este FNC
- □ O formulă este formă clauzală dacă este enunț universal și FNCP:

$$\forall x_1 \dots \forall x_n \psi$$
 unde ψ este FNC

Exemplu

 \square Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\it fc}$ astfel încât

arphi este satisfiabilă dacă și numai dacă $arphi^{\mathit{fc}}$ este satisfiabilă

- \Box Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\it fc}$ astfel încât
 - φ este satisfiabilă dacă și numai dacă φ^{fc} este satisfiabilă
- \square Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - se determină forma rectificată
 - 2 se cuantifică universal variabilele libere
 - se determină forma prenex
 - se determină forma Skolem

Forma clauzală în logica de ordinul l

 \square Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\it fc}$ astfel încât

 φ este satisfiabilă dacă și numai dacă φ^{fc} este satisfiabilă

- \square Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - se determină forma rectificată
 - se cuantifică universal variabilele libere
 - 3 se determină forma prenex
 - 4 se determină forma Skolem

în acest moment am obținut o formă Skolem $\forall x_1 \ldots \forall x_n \psi$

 \square Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\it fc}$ astfel încât

arphi este satisfiabilă dacă și numai dacă $arphi^{\mathit{fc}}$ este satisfiabilă

- \square Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - se determină forma rectificată
 - 2 se cuantifică universal variabilele libere
 - 3 se determină forma prenex
 - 4 se determină forma Skolem

în acest moment am obținut o formă Skolem $\forall x_1 \dots \forall x_n \psi$

5 se determină o FNC ψ' astfel încât $\psi \vDash \psi'$

 \square Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\it fc}$ astfel încât

arphi este satisfiabilă dacă și numai dacă $arphi^{\mathit{fc}}$ este satisfiabilă

- \square Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - se determină forma rectificată
 - se cuantifică universal variabilele libere
 - se determină forma prenex
 - 4 se determină forma Skolem

în acest moment am obținut o formă Skolem $\forall x_1 \dots \forall x_n \psi$

- 5 se determină o FNC ψ' astfel încât $\psi \vDash \psi'$
- 6 φ^{fc} este $\forall x_1 \dots \forall x_n \psi'$

Literali, clauze, mulțimi de clauze

□ O clauză este o disjuncție de literali.

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

clauză = mulțime de literali

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

clauză = mulțime de literali

□ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

clauză = mulțime de literali

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- □ O clauză *C* este trivială dacă conține un literal și complementul lui.

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

clauză = mulțime de literali

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- O clauză C este trivială dacă conține un literal și complementul lui.
- \square Când n = 0 obținem clauza vidă, care se notează \square

□ O clauză este o disjuncție de literali. \square Dacă L_1, \ldots, L_n sunt literali atunci clauza $L_1 \vee \ldots \vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$ clauză = mulțime de literali \square Clauza $C = \{L_1, \ldots, L_n\}$ este satisfiabilă dacă $L_1 \vee \ldots \vee L_n$ este satisfiabilă. □ O clauză *C* este trivială dacă conține un literal și complementul lui. Când n=0 obținem clauza vidă, care se notează □ Prin definiție, clauza □ nu este satisfiabilă.

Forma clauzală

□ Observăm că o FNC este o conjuncție de clauze.

- ☐ Observăm că o FNC este o conjuncție de clauze.
- \square Dacă C_1,\ldots,C_k sunt clauze atunci $C_1\wedge\ldots\wedge C_k$ o vom scrie ca mulțimea $\{C_1,\ldots,C_k\}$

- ☐ Observăm că o FNC este o conjuncție de clauze.
- \square Dacă C_1,\ldots,C_k sunt clauze atunci $C_1\wedge\ldots\wedge C_k$ o vom scrie ca mulțimea $\{C_1,\ldots,C_k\}$

FNC = mulțime de clauze

 \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă

- Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulţimea $\{C_1, \ldots, C_k\}$

- \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă
- \square Când k = 0 obținem mulțimea de clauze vidă, pe care o notăm $\{\}$

- Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulţimea $\{C_1, \ldots, C_k\}$

- \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă
- \square Când k=0 obținem mulțimea de clauze vidă, pe care o notăm $\{\}$
- □ Prin definiție, mulțimea de clauze vidă {} este satisfiabilă.

- ☐ Observăm că o FNC este o conjuncție de clauze.
- □ Dacă $C_1, ..., C_k$ sunt clauze atunci $C_1 \land ... \land C_k$ o vom scrie ca mulțimea $\{C_1, ..., C_k\}$

- \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă
- \square Când k=0 obținem mulțimea de clauze vidă, pe care o notăm $\{\}$
- □ Prin definiție, mulțimea de clauze vidă {} este satisfiabilă.
 - $\{\}$ este satisfiabilă, dar $\{\Box\}$ nu este satisfiabilă

 \square Dacă φ este o formulă în calculul propozițional, atunci $\varphi^{\mathit{fc}} = \bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij} \text{ unde } L_{ij} \text{ sunt literali}$

 \square Dacă φ este o formulă în calculul propozițional, atunci

$$arphi^{ extit{fc}} = igwedge_{i=1}^k igvee_{j=1}^{n_i} L_{ij}$$
 unde L_{ij} sunt literali

 \square Dacă arphi o formulă în logica de ordinul I, atunci

$$\varphi^{fc} = \forall x_1 \dots \forall x_n \left(\bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij} \right)$$
 unde L_{ij} sunt literali

Dacă φ este o formulă în calculul propozițional, atunci $\varphi^{fc} = \bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij} \text{ unde } L_{ij} \text{ sunt literali}$

 \square Dacă φ o formulă în logica de ordinul I, atunci $\varphi^{fc} = \forall x_1 \dots \forall x_n \left(\bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij} \right) \text{ unde } L_{ij} \text{ sunt literali}$

arphi este satisfiabilă dacă și numai dacă $arphi^{fc} \text{ este satisfiabilă dacă și numai dacă} \{\{L_{11},\ldots,L_{1n_1}\},\ldots,\{L_{k1},\ldots,L_{kn_k}\}\} \text{ este satisfiabilă}$

Exemplu

☐ În calculul propozițional:

pentru a verifica satisfiabilitatea lui $\varphi:=(\neg p \to \neg q) \to (p \to q)$

Exempli

☐ În calculul propozițional:

pentru a verifica satisfiabilitatea lui
$$\varphi:=(\neg p \to \neg q) \to (p \to q)$$
 determinăm $\varphi^{\mathit{fc}}:=(\neg p \lor q) \land (q \lor \neg p)$

Exempli

Exempli

- ☐ În calculul propozițional:
 - pentru a verifica satisfiabilitatea lui $\varphi:=(\neg p \to \neg q) \to (p \to q)$ determinăm $\varphi^{fc}:=(\neg p \lor q) \land (q \lor \neg p)$ și analizăm mulțimea de clauze $\{\{\neg p,q\},\{q,\neg p\}\}.$
- □ În logica de ordinul I: pentru a verifica satisfiabilitatea formulei $\varphi := \forall v \forall z ((P(f(v)) \lor Q(z)) \land (Q(z) \to (\neg P(g(z)) \lor Q(v))))$

Exempli

- ☐ În calculul propozițional:
 - pentru a verifica satisfiabilitatea lui $\varphi:=(\neg p \to \neg q) \to (p \to q)$ determinăm $\varphi^{fc}:=(\neg p \lor q) \land (q \lor \neg p)$ și analizăm mulțimea de clauze $\{\{\neg p,q\},\{q,\neg p\}\}.$
- ☐ În logica de ordinul I:

```
pentru a verifica satisfiabilitatea formulei \varphi := \forall y \forall z ((P(f(y)) \lor Q(z)) \land (Q(z) \to (\neg P(g(z)) \lor Q(y)))) determinăm \varphi^{fc} := \forall v \forall z ((P(f(v)) \lor Q(z)) \land (\neg Q(z) \lor \neg P(g(z)) \lor Q(v)))
```

Exemple

- ☐ În calculul propozițional:
 - pentru a verifica satisfiabilitatea lui $\varphi:=(\neg p \to \neg q) \to (p \to q)$ determinăm $\varphi^{fc}:=(\neg p \lor q) \land (q \lor \neg p)$ și analizăm mulțimea de clauze $\{\{\neg p,q\},\{q,\neg p\}\}.$
- ☐ În logica de ordinul I:

```
pentru a verifica satisfiabilitatea formulei \varphi := \forall y \forall z ((P(f(y)) \lor Q(z)) \land (Q(z) \to (\neg P(g(z)) \lor Q(y)))) determinăm \varphi^{fc} := \forall y \forall z ((P(f(y)) \lor Q(z)) \land (\neg Q(z) \lor \neg P(g(z)) \lor Q(y))) și analizăm mulțimea de clauze \{\{P(f(y)), Q(z)\}, \{\neg Q(z), \neg P(g(z)), Q(y)\}\}
```

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_n\} \vDash \varphi$$
 este echivalent cu

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_n\} \vDash \varphi$$
 este echivalent cu

$$\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \varphi$$
 este echivalent cu

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_n\} \vDash \varphi$$
 este echivalent cu

$$\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \varphi$$
 este echivalent cu

$$\vDash \neg \varphi_1 \lor \ldots \neg \varphi_n \lor \varphi$$
 este echivalent cu

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_n\} \vDash \varphi$$
 este echivalent cu

$$\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \varphi$$
 este echivalent cu

$$\models \neg \varphi_1 \lor \ldots \neg \varphi_n \lor \varphi$$
 este echivalent cu

$$\varphi_1 \wedge \ldots \wedge \varphi_n \wedge \neg \varphi$$
 este satisfiabilă

Pentru a cerceta satisfiabilitatea este suficient să studiem forme clauzale

$$\{\{L_{11},\ldots,L_{1n_1}\},\ldots,\{L_{k1},\ldots,L_{kn_k}\}\}$$

atât în logica propozițională, cât și în calculul cu predicate.

Rezoluție

Rezoluția este o metodă de verificare a satisfiabilității formelor clauzale.

Rezoluție

Rezoluția este o metodă de verificare a satisfiabilității formelor clauzale.

- □ Rezoluția în calculul propozițional (recap.)
- □ Rezoluția în logica de ordinul I
 - cazul clauzelor fără variabile
 - cazul general

Rezoluția în calculul propozițional (recap.)

$$Rez \ \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p,\neg p\}\cap C_1=\emptyset$ și $\{p,\neg p\}\cap C_2=\emptyset$.

Rez
$$\frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p,\neg p\}\cap C_1=\emptyset$ și $\{p,\neg p\}\cap C_2=\emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

$$Rez \ \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p,\neg p\}\cap C_1=\emptyset$ și $\{p,\neg p\}\cap C_2=\emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

Exemplu

$$\frac{\{p,\neg q\},\{\neg p,q\}}{\{q,\neg q\}}$$

$$Rez \ \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p,\neg p\}\cap C_1=\emptyset$ și $\{p,\neg p\}\cap C_2=\emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}$ este satisfiabilă,
- □ clauza $C_1 \cup C_2$ este satisfiabilă.

Exemplu

$$\frac{\{p,\neg q\},\{\neg p,q\}}{\{q,\neg q\}}$$

Este mulțimea de clauze $\{\{p, \neg q\}, \{\neg p, q\}\}$ satisfiabilă?

Derivare prin rezoluție

Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal C$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal C$ sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Derivare prin rezoluție

Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal C$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal C$ sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Exemplu

```
Fie \mathcal{C}=\{\{\neg q, \neg p\}, \{q\}, \{p\}\}\} o mulțime de clauze. O derivare prin rezoluție pentru \square din \mathcal{C} este C_1=\{\neg q, \neg p\} C_2=\{q\} C_3=\{\neg p\} (Rez, C_1, C_2) C_4=\{p\} C_5=\square (Rez, C_3, C_4)
```

Derivare prin rezoluție

Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal C$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal C$ sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Exemplu

 $C_5 = \square$

Fie
$$\mathcal{C}=\{\{\neg q, \neg p\}, \{q\}, \{p\}\}\}$$
 o mulțime de clauze. O derivare prin rezoluție pentru \square din \mathcal{C} este $C_1=\{\neg q, \neg p\}$ $C_2=\{q\}$ $C_3=\{\neg p\}$ (Rez, C_1, C_2) $C_4=\{p\}$

 (Rez, C_3, C_4)

Teorema de completitudine

 $\models \varphi$ dacă și numai dacă există o derivare prin rezoluție a lui \square din $(\neg \varphi)^{fc}$.

Procedura Davis-Putnam DPP (informal)

$\textbf{Intrare:} \ \ o \ \ mul \\ time \ \mathcal{C} \ \ de \ clauze$
Se repetă următorii pași:
□ se elimină clauzele triviale
□ se alege o variabilă <i>p</i>
\square se adaugă la mulțimea de clauze toți rezolvenții obținuti prin aplicarea Rez pe variabila p
\square se șterg toate clauzele care conțin p sau $\neg p$
leșire: dacă la un pas s-a obținut \square , mulțimea $\mathcal C$ nu este satisfiabilă altfel $\mathcal C$ este satisfiabilă.

Exemplu

 $\underline{\mathsf{Este}}\ \mathcal{C}_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\}\ \underline{\mathsf{satisfiabil}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{a}}\underline{\mathsf{c}}}\underline{\mathsf{c}}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{\mathsf{c}}}\underline{\mathsf{c}}\underline{\mathsf{c}}\underline{$

Exemplu

```
Este \mathcal{C}_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\} satisfiabilă?

Alegem variabila r și selectăm \mathcal{C}_0^r := \{\{q, \neg p, r\}\}, \mathcal{C}_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}.

Mulțimea rezolvenților posibili este \mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\};
Se observă că p, \neg p \in \{q, \neg p, p\} deci \mathcal{R}_0 := \{\{q, \neg p\}\}
```

Exempli

 $C_1 := \{\{q, p\}, \{q, \neg p\}\}$

```
Este C_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\} satisfiabilă?

Alegem variabila r și selectăm C_0^r := \{\{q, \neg p, r\}\}, C_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}.

Mulțimea rezolvenților posibili este \mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\};
Se observă că p, \neg p \in \{q, \neg p, p\} deci \mathcal{R}_0 := \{\{q, \neg p\}\}
Se elimină clauzele în care apare r si se adaugă noii rezolvenți
```

Exemplu

Este
$$\mathcal{C}_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\}$$
 satisfiabilă? Alegem variabila r și selectăm $\mathcal{C}_0^r := \{\{q, \neg p, r\}\}, \mathcal{C}_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}.$ Mulțimea rezolvenților posibili este $\mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\};$ Se observă că $p, \neg p \in \{q, \neg p, p\}$ deci $\mathcal{R}_0 := \{\{q, \neg p\}\}$ Se elimină clauzele în care apare r și se adaugă noii rezolvenți $\mathcal{C}_1 := \{\{q, p\}, \{q, \neg p\}\}$

Alegem variabila q și selectăm $C_1^q := \{\{q, p\}, \{q, \neg p\}\}, C_1^{\neg q} := \emptyset$. Mulțimea rezolvenților posibili este vidă $\mathcal{R}_1 := \emptyset$.

Exemplu

Este
$$C_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\}\$$
 satisfiabilă?

Alegem variabila
$$r$$
 și selectăm $C_0^r := \{\{q, \neg p, r\}\}, C_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}.$

Mulţimea rezolvenţilor posibili este $\mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\};$ Se observă că $p, \neg p \in \{q, \neg p, p\}$ deci $\mathcal{R}_0 := \{\{q, \neg p\}\}$

Se elimină clauzele în care apare r și se adaugă noii rezolvenți $\mathcal{C}_1 := \{\{q,p\},\{q,\neg p\}\}$

Alegem variabila q și selectăm $C_1^q := \{\{q, p\}, \{q, \neg p\}\}, C_1^{\neg q} := \emptyset$. Mulțimea rezolvenților posibili este vidă $\mathcal{R}_1 := \emptyset$.

Se elimină clauzele în care apare q și se adaugă noii rezolvenți $\mathcal{C}_2:=\{\}$ mulțimea de clauze vidă

Exemplu

Este
$$C_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\}\$$
 satisfiabilă?

Alegem variabila
$$r$$
 și selectăm $C_0^r := \{\{q, \neg p, r\}\}, C_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}.$

$$C_0^{-r} := \{\{p, \neg r\}, \{q, \neg r\}\}.$$

Mulţimea rezolvenţilor posibili este $\mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\};$ Se observă că $p, \neg p \in \{q, \neg p, p\}$ deci $\mathcal{R}_0 := \{\{q, \neg p\}\}$

Se elimină clauzele în care apare r și se adaugă noii rezolvenți $\mathcal{C}_1 := \{\{q,p\},\{q,\neg p\}\}$

Alegem variabila q și selectăm $C_1^q := \{\{q, p\}, \{q, \neg p\}\}, C_1^{\neg q} := \emptyset$. Mulțimea rezolvenților posibili este vidă $\mathcal{R}_1 := \emptyset$.

Se elimină clauzele în care apare q și se adaugă noii rezolvenți $\mathcal{C}_2:=\{\}$ mulțimea de clauze vidă

Deoarece $\{\}$ este satisfiabilă, rezultă că \mathcal{C}_0 este satisfiabilă.

Exempli

Este
$$C_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\}$$
 satisfiabilă?

Alegem variabila r și selectăm $C_0^r := \{\{q, \neg p, r\}\},$

$$C_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}.$$
Alegem variabila paribili sata T_0 in $\{\{q, \neg p, r\}\}$.

Mulţimea rezolvenţilor posibili este $\mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\};$ Se observă că $p, \neg p \in \{q, \neg p, p\}$ deci $\mathcal{R}_0 := \{\{q, \neg p\}\}$

Se elimină clauzele în care apare r și se adaugă noii rezolvenți $C_1 := \{\{q, p\}, \{q, \neg p\}\}$

Alegem variabila q și selectăm $\mathcal{C}_1^q := \{\{q,p\}, \{q,\neg p\}\}, \mathcal{C}_1^{\neg q} := \emptyset$. Mulțimea rezolvenților posibili este vidă $\mathcal{R}_1 := \emptyset$.

Se elimină clauzele în care apare q și se adaugă noii rezolvenți $\mathcal{C}_2:=\{\}$ mulțimea de clauze vidă

Deoarece $\{\}$ este satisfiabilă, rezultă că \mathcal{C}_0 este satisfiabilă.

Atenție! La fiecare pas se alege pentru prelucrare o singură variabilă.

□ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to Trm_{\mathcal{L}}$ astfel încât $C' = \theta(C)$.

□ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to Trm_{\mathcal{L}}$ astfel încât $C' = \theta(C)$.

Spunem că C' este o instanță închisă a lui C dacă există o substituție $\theta: V \to T_{\mathcal{L}}$ such that $C' = \theta(C)$ (C' se obține din C înlocuind variabilele cu termeni din universul Herbrand)

□ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to Trm_{\mathcal{L}}$ astfel încât $C' = \theta(C)$.

Spunem că C' este o instanță închisă a lui C dacă există o substituție $\theta: V \to T_{\mathcal{L}}$ such that $C' = \theta(C)$ (C' se obține din C înlocuind variabilele cu termeni din universul Herbrand)

 \square Fie $\mathcal C$ o mulțime de clauze. Definim

$$\mathcal{H}(\mathcal{C}) := \{ \theta(C) \mid C \in \mathcal{C}, \theta : V \to T_{\mathcal{L}} \}$$

 $\mathcal{H}(\mathcal{C})$ este mulțimea instanțelor închise ale clauzelor din \mathcal{C} .

- □ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to Trm_{\mathcal{L}}$ astfel încât $C' = \theta(C)$.
 - Spunem că C' este o instanță închisă a lui C dacă există o substituție $\theta: V \to T_{\mathcal{L}}$ such that $C' = \theta(C)$ (C' se obține din C înlocuind variabilele cu termeni din universul Herbrand)
- \square Fie $\mathcal C$ o mulțime de clauze. Definim

$$\mathcal{H}(\mathcal{C}) := \{ \theta(C) \mid C \in \mathcal{C}, \theta : V \to T_{\mathcal{L}} \}$$

 $\mathcal{H}(\mathcal{C})$ este mulțimea instanțelor închise ale clauzelor din \mathcal{C} .

Teoremă

O mulțime de clauze $\mathcal C$ este satisfiabilă dacă și numai dacă $\mathcal H(\mathcal C)$ este satisfiabilă. O mulțime de clauze $\mathcal C$ este nesatisfiabilă dacă și numai dacă există o submulțime finită a lui $\mathcal H(\mathcal C)$ care este nesatisfiabilă.

Exempli

Cercetați satisfiabilitatea mulțimii de clauze

$$C = \{ \{ \neg P(x), Q(x) \}, \{ P(y) \}, \{ \neg Q(z) \} \}$$

Dacă c este constantă atunci $\{\{\neg P(c), Q(c)\}, \{P(c)\}, \{\neg Q(c)\}\}\subseteq \mathcal{H}(\mathcal{C}).$

Exemplu

Cercetați satisfiabilitatea mulțimii de clauze

$$C = \{ \{ \neg P(x), Q(x) \}, \{ P(y) \}, \{ \neg Q(z) \} \}$$

Dacă c este constantă atunci $\{\{\neg P(c), Q(c)\}, \{P(c)\}, \{\neg Q(c)\}\}\subseteq \mathcal{H}(\mathcal{C}).$ Considerăm toate valorile de adevăr pentru P(c) și Q(c):

P(c)	Q(c)	$(\neg P(c) \lor Q(c)) \land P(c) \land \neg Q(c)$
0	0	0
0	1	0
1	0	0
1	1	0

Exemplu

Cercetați satisfiabilitatea mulțimii de clauze

$$C = \{ \{ \neg P(x), Q(x) \}, \{ P(y) \}, \{ \neg Q(z) \} \}$$

Dacă c este constantă atunci $\{\{\neg P(c), Q(c)\}, \{P(c)\}, \{\neg Q(c)\}\}\subseteq \mathcal{H}(\mathcal{C}).$ Considerăm toate valorile de adevăr pentru P(c) și Q(c):

 $\{\{\neg P(c), Q(c)\}, \{P(c)\}, \{\neg Q(c)\}\}\$ este nesatisfiabilă, deci \mathcal{C} este nesatisfiabilă.

Putem gândi formulele atomice închise ca variabile propoziționale.

$$Rez \ \frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze închise, iar L este o formulă atomică închisă astfel încât $\{L, \neg L\} \cap C_1 = \emptyset$ și $\{L, \neg L\} \cap C_2 = \emptyset$.

$$Rez \ \frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze închise, iar L este o formulă atomică închisă astfel încât $\{L, \neg L\} \cap C_1 = \emptyset$ și $\{L, \neg L\} \cap C_2 = \emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{L\}, C_2 \cup \{\neg L\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

$$Rez \ \frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze închise, iar L este o formulă atomică închisă astfel încât $\{L, \neg L\} \cap C_1 = \emptyset$ și $\{L, \neg L\} \cap C_2 = \emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{L\}, C_2 \cup \{\neg L\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

Teoremă

Fie φ o formulă arbitrară în logica de ordinul I. Atunci $\models \varphi$ dacă și numai dacă există o derivare pentru \square din $\mathcal{H}(\mathcal{C})$ folosind Rez , unde \mathcal{C} este mulțimea de clauze asociată lui $(\neg \varphi)^{\mathit{fc}}$.

Exemplu

Fie f, g simboluri de funcții unare, P, Q simboluri de predicate unare. Cercetați satisfiabilitatea formulei:

$$\varphi = \forall x ((\neg P(x) \lor Q(f(x))) \land P(g(x)) \land \neg Q(x))$$

Exemplu

Fie f, g simboluri de funcții unare, P, Q simboluri de predicate unare. Cercetați satisfiabilitatea formulei:

$$\varphi = \forall x ((\neg P(x) \lor Q(f(x))) \land P(g(x)) \land \neg Q(x))$$

Determinăm forma clauzală:

$$C = \{ \{ \neg P(x), Q(f(x)) \}, \{ P(g(x)) \}, \{ \neg Q(x) \} \}$$

Exemplu

Fie f, g simboluri de funcții unare, P, Q simboluri de predicate unare. Cercetați satisfiabilitatea formulei:

$$\varphi = \forall x ((\neg P(x) \lor Q(f(x))) \land P(g(x)) \land \neg Q(x))$$

Determinăm forma clauzală:

$$C = \{ \{ \neg P(x), Q(f(x)) \}, \{ P(g(x)) \}, \{ \neg Q(x) \} \}$$

Pentru *c* o constantă obținem următoarea derivare:

$$\begin{array}{lll} C_1 = & \{\neg P(g(c)), \, Q(f(g(c)))\} \\ C_2 = & \{P(g(c))\} \\ C_3 = & \{Q(f(g(c)))\} \\ C_4 = & \{\neg Q(f(g(c)))\} \\ C_5 = & \Box \end{array} \qquad \begin{array}{ll} \textit{Rez}, \, C_1, \, C_2 \\ \textit{Rez}, \, C_3, \, C_4 \end{array}$$

Rezoluția pe clauze arbitrare

Observații:

☐ Unificarea literalilor revine la unificarea argumentelor

Dacă $\sigma:V o \mathit{Trm}_{\mathcal{L}}$ o substituție, atunci sunt echivalente

- $\square \ \sigma(t_1) = \sigma(t'_1), \ldots, \sigma(t_n) = \sigma(t'_n)$

Rezoluția pe clauze arbitrare

Observații:

Unificarea literalilor revine la unificarea argumentelor

Dacă $\sigma:V \to \mathit{Trm}_{\mathcal{L}}$ o substituție, atunci sunt echivalente

- □ Redenumirea variabilelor în clauze păstrează validitatea

Deoarece
$$\forall x(\varphi \wedge \psi) \exists (\forall x\varphi) \wedge (\forall x\psi)$$
 obţinem

$$\forall x ((P_1(x) \vee P_2(x)) \wedge (Q_1(x) \vee Q_2(x)))$$

$$\exists \ (\forall x (P_1(x) \vee P_2(x))) \wedge (\forall x (Q_1(x) \vee Q_2(x)))$$

$$\exists \ (\forall x (P_1(x) \lor P_2(x))) \land (\forall y (Q_1(y) \lor Q_2(y)))$$

$$\exists \forall x \forall y (P_1(x) \vee P_2(x)) \wedge (Q_1(y) \vee Q_2(y))$$

Rezoluția pe clauze arbitrare

Regula rezoluției pentru clauze arbitrare

Rez
$$\frac{C_1, C_2}{(\sigma C_1 \setminus \sigma Lit_1) \cup (\sigma C_2 \setminus \sigma Lit_2)}$$

dacă următoarele condiții sunt satisfăcute:

- 2 $Lit_1 \subseteq C_1$ și $Lit_2 \subseteq C_2$ sunt mulțimi de literali,
- σ este un cgu pentru Lit_1 și Lit_2^c , adică σ unifică toți literalii din Lit_1 și Lit_2^c .

O clauză C se numește rezolvent pentru C_1 și C_2 dacă există o redenumire de variabile $\theta: V \to V$ astfel încât C_1 și θC_2 nu au variabile comune și C se obține din C_1 și θC_2 prin Rez.

Exemplu

Găsiți un rezolvent pentru clauzele:

$$C_1 = \{ P(f(x), g(y)), Q(x, y) \}$$
 \$\times C_2 = \{ \forall P(f(f(a)), g(y)), Q(f(a), g(y)) \}

redenumim variabilele pentru a satisface condițiile din Rez $\theta C_2 = \{\neg P(f(f(a)), g(z)), Q(f(a), g(z))\}$ unde $\theta = \{y \leftarrow z\}$

Exemplu

Găsiți un rezolvent pentru clauzele:

$$C_1 = \{ P(f(x), g(y)), Q(x, y) \}$$
 \$\times C_2 = \{ \forall P(f(f(a)), g(y)), Q(f(a), g(y)) \}\$

- redenumim variabilele pentru a satisface condițiile din *Rez* $\theta C_2 = \{ \neg P(f(f(a)), g(z)), Q(f(a), g(z)) \}$ unde $\theta = \{ y \leftarrow z \}$
- □ determinăm Lit₁ și Lit₂

$$Lit_1 = \{ P(f(x), g(y)) \}$$
 și $Lit_2 = \{ \neg P(f(f(a)), g(z)) \}$

Exemplu

Găsiți un rezolvent pentru clauzele:

$$C_1 = \{ P(f(x), g(y)), Q(x, y) \}$$
 și $C_2 = \{ \neg P(f(f(a)), g(y)), Q(f(a), g(y)) \}$

- redenumim variabilele pentru a satisface condițiile din Rez $\theta C_2 = \{ \neg P(f(f(a)), g(z)), Q(f(a), g(z)) \} \text{ unde } \theta = \{ y \leftarrow z \}$
- □ determinăm Lit₁ și Lit₂

$$Lit_1 = \{ P(f(x), g(y)) \} \text{ si } Lit_2 = \{ \neg P(f(f(a)), g(z)) \}$$

 \square găsim un cgu σ care este unificator pentru

Lit₁ = {
$$P(f(x), g(y))$$
} și Lit₂ = { $P(f(f(a)), g(z))$ }
 $\sigma = \{x \leftarrow f(a), y \leftarrow z\}$

Exemplu

Găsiți un rezolvent pentru clauzele:

$$C_1 = \{ P(f(x), g(y)), Q(x, y) \}$$
 \$\times C_2 = \{ \forall P(f(f(a)), g(y)), Q(f(a), g(y)) \}

- □ redenumim variabilele pentru a satisface condițiile din Rez $\theta C_2 = \{ \neg P(f(f(a)), g(z)), Q(f(a), g(z)) \}$ unde $\theta = \{ y \leftarrow z \}$
- □ determinăm Lit₁ și Lit₂

$$Lit_1 = \{ P(f(x), g(y)) \}$$
 și $Lit_2 = \{ \neg P(f(f(a)), g(z)) \}$

 \square găsim un cgu σ care este unificator pentru

$$Lit_1 = \{ P(f(x), g(y)) \}$$
 și $Lit_2^c = \{ P(f(f(a)), g(z)) \}$
 $\sigma = \{ x \leftarrow f(a), y \leftarrow z \}$

□ Rezolventul este $C = (\sigma C_1 \setminus \sigma Lit_1) \cup (\sigma(\theta C_2) \setminus \sigma Lit_2)$ $C = \{Q(f(a), z), Q(f(a), g(z))\}$

□ Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din mulțimea $\mathcal C$ pentru o clauză $\mathcal C$ este o secvență $\mathcal C_1,\ldots,\mathcal C_n$ astfel încât $\mathcal C_n=\mathcal C$ și, pentru fiecare $i\in\{1,\ldots,n\},\ \mathcal C_i\in\mathcal C$ sau $\mathcal C_i$ este un rezolvent pentru două cauze $\mathcal C_i,\mathcal C_k$ cu j,k< i.

□ Fie \mathcal{C} o mulțime de clauze. O derivare prin rezoluție din mulțimea \mathcal{C} pentru o clauză \mathcal{C} este o secvență $\mathcal{C}_1, \ldots, \mathcal{C}_n$ astfel încât $\mathcal{C}_n = \mathcal{C}$ și, pentru fiecare $i \in \{1, \ldots, n\}$, $\mathcal{C}_i \in \mathcal{C}$ sau \mathcal{C}_i este un rezolvent pentru două cauze \mathcal{C}_i , \mathcal{C}_k cu j, k < i.

Teoremă

O mulțime de clauze $\mathcal C$ este nesatisfiabilă dacă și numai dacă există o derivare a clauzei vide \square din $\mathcal C$ prin Rez.

Rezoluția este corectă și completă în calculul cu predicate, dar nu este procedură de decizie.

```
Găsiți o derivare a \Box din C = \{C_1, C_2, C_3, C_4\} unde: C_1 = \{ \neg P(x, y), P(y, x) \} C_2 = \{ \neg P(x, y), \neg P(y, z), P(x, z) \} C_3 = \{ P(x, f(x)) \} C_4 = \{ \neg P(x, x) \}
```

```
Găsiți o derivare a \square din C = \{C_1, C_2, C_3, C_4\} unde: C_1 = \{\neg P(x, y), P(y, x)\}
C_2 = \{\neg P(x, y), \neg P(y, z), P(x, z)\}
C_3 = \{P(x, f(x))\}
C_4 = \{\neg P(x, x)\}
C_3' = \{P(x_1, f(x_1))\}
C_5 = \{P(f(x), x)\}
redenumire în C_3
Rez, \sigma = \{x_1 \leftarrow x, y \leftarrow f(x)\}, C_1, C_3'
```

```
Găsiți o derivare a \square din C = \{C_1, C_2, C_3, C_4\} unde: C_1 = \{ \neg P(x, y), P(y, x) \} C_2 = \{ \neg P(x, y), \neg P(y, z), P(x, z) \} C_3 = \{ P(x, f(x)) \} C_4 = \{ \neg P(x, x) \} redenumire în C_3 C_5 = \{ P(f(x), x) \} C_5 = \{ P(f(x), x) \} C_7 = \{ P(x_1, f(x_2)) \} redenumire în C_3 C_7 = \{ P(x_1, f(x_2)) \} redenumire în C_3 C_7 = \{ P(x_1, f(x_2)) \} redenumire în C_3 C_7 = \{ P(x_1, f(x_2)) \} C_7 = \{ P(x
```

```
Găsiți o derivare a \square din \mathcal{C} = \{C_1, C_2, C_3, C_4\} unde:
C_1 = \{ \neg P(x, y), P(y, x) \}
C_2 = \{ \neg P(x, y), \neg P(y, z), P(x, z) \}
C_3 = \{ P(x, f(x)) \}
C_4 = \{ \neg P(x, x) \}
  C'_{3} = \{ P(x_{1}, f(x_{1})) \}
                                               redenumire în C_3
  C_5 = \{ P(f(x), x) \}
                                               Rez. \sigma = \{x_1 \leftarrow x, y \leftarrow f(x)\}, C_1, C_2'
  C_2'' = \{ P(x_2, f(x_2)) \}
                                               redenumire în C_3
  C_6 = \{ \neg P(f(x), z), P(x, z) \}
                                               Rez. \sigma = \{x_2 \leftarrow x, y \leftarrow f(x)\}, C_2, C_2''
  C_{\rm E}' = \{ P(f(x_3), x_3) \}
                                               redenumire în C<sub>5</sub>
  C_7 = \{ P(x, x) \}
                                               Rez. \sigma = \{x_3 \leftarrow x, z \leftarrow x\}, C_6, C'_5
```

```
Găsiți o derivare a \square din \mathcal{C} = \{C_1, C_2, C_3, C_4\} unde:
C_1 = \{ \neg P(x, y), P(y, x) \}
C_2 = \{ \neg P(x, y), \neg P(y, z), P(x, z) \}
C_3 = \{ P(x, f(x)) \}
C_4 = \{ \neg P(x, x) \}
  C'_{3} = \{ P(x_{1}, f(x_{1})) \}
                                               redenumire în C_3
  C_5 = \{ P(f(x), x) \}
                                               Rez. \sigma = \{x_1 \leftarrow x, y \leftarrow f(x)\}, C_1, C_2'
  C_2'' = \{ P(x_2, f(x_2)) \}
                                               redenumire în C_3
  C_6 = \{ \neg P(f(x), z), P(x, z) \}
                                               Rez. \sigma = \{x_2 \leftarrow x, y \leftarrow f(x)\}, C_2, C_2''
  C_5' = \{ P(f(x_3), x_3) \}
                                               redenumire în C<sub>5</sub>
  C_7 = \{ P(x, x) \}
                                               Rez, \sigma = \{x_3 \leftarrow x, z \leftarrow x\}, C_6, C'_5
  C'_{4} = \{ \neg P(x_{4}, x_{4}) \}
                                               redenumire în C₄
                                               Rez, \sigma = \{x_4 \leftarrow x\}, C_7, C_4'
  C_5 = \square
```

Pe săptămâna viitoare!