

MOLECULAR BIOLOGY OF

THE CELL

fourth edition

Bruce Alberts

Alexander Johnson

Julian Lewis

Martin Raff

Keith Roberts

Peter Walter

 Garland Science
Taylor & Francis Group

Garland

Vice President: Denise Schanck
Managing Editor: Sarah Gibbs
Senior Editorial Assistant: Kirsten Jenner
Managing Production Editor: Emma Hunt
Proofreader and Layout: Emma Hunt
Production Assistant: Angela Bennett
Text Editors: Marjorie Singer Anderson and Betsy Dilernia
Copy Editor: Bruce Goatly
Word Processors: Fran Dependahl, Misty Landers and Carol Winter
Designer: Blink Studio, London
Illustrator: Nigel Orme
Indexer: Janine Ross and Sherry Granum
Manufacturing: Nigel Eyre and Marion Morrow

Cell Biology Interactive

Artistic and Scientific Direction: Peter Walter
Narrated by: Julie Theriot
Production, Design, and Development: Mike Morales

Bruce Alberts received his Ph.D. from Harvard University and is President of the National Academy of Sciences and Professor of Biochemistry and Biophysics at the University of California, San Francisco. Alexander Johnson received his Ph.D. from Harvard University and is a Professor of Microbiology and Immunology at the University of California, San Francisco. Julian Lewis received his D.Phil. from the University of Oxford and is a Principal Scientist at the Imperial Cancer Research Fund, London.

Martin Raff received his M.D. from McGill University and is at the Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit and in the Biology Department at University College London. Keith Roberts received his Ph.D. from the University of Cambridge and is Associate Research Director at the John Innes Centre, Norwich. Peter Walter received his Ph.D. from The Rockefeller University in New York and is Professor and Chairman of the Department of Biochemistry and Biophysics at the University of California, San Francisco, and an Investigator of the Howard Hughes Medical Institute.

© 2002 by Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter.
© 1983, 1989, 1994 by Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D. Watson.

All rights reserved. No part of this book covered by the copyright hereon may be reproduced or used in any format in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without permission of the publisher.

Library of Congress Cataloging-in-Publicaton Data
Molecular biology of the cell / Bruce Alberts ... [et al.].— 4th ed.
p. cm
Includes bibliographical references and index.
ISBN 0-8153-3218-1 (hardbound) -- ISBN 0-8153-4072-9 (pbk.)
1. Cytology. 2. Molecular biology. I. Alberts, Bruce.
[DNLM: 1. Cells. 2. Molecular Biology.]
QH581.2 .M64 2002
571.6--dc21

2001054471 CIP

Published by Garland Science, a member of the Taylor & Francis Group,
29 West 35th Street, New York, NY 10001-2299

Printed in the United States of America

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Front cover Human Genome: Reprinted by permission from *Nature*, International Human Genome Sequencing Consortium, 409:860–921, 2001 © Macmillan Magazines Ltd. Adapted from an image by Francis Collins, NHGRI; Jim Kent, UCSC; Ewan Birney, EBI; and Darryl Leja, NHGRI; showing a portion of Chromosome 1 from the initial sequencing of the human genome.

Back cover In 1967, the British artist Peter Blake created a design classic. Nearly 35 years later Nigel Orme (illustrator), Richard Denyer (photographer), and the authors have together produced an affectionate tribute to Mr Blake's image. With its gallery of icons and influences, its assembly created almost as much complexity, intrigue and mystery as the original. *Drosophila*, *Arabidopsis*, Dolly and the assembled company tempt you to dip inside where, as in the original, "a splendid time is guaranteed for all." (Gunter Blobel, courtesy of The Rockefeller University; Marie Curie, Keystone Press Agency Inc; Darwin bust, by permission of the President and Council of the Royal Society; Rosalind Franklin, courtesy of Cold Spring Harbor Laboratory Archives; Dorothy Hodgkin, © The Nobel Foundation, 1964; James Joyce, etching by Peter Blake; Robert Johnson, photo booth self-portrait early 1930s, © 1986 Delta Haze Corporation all rights reserved, used by permission; Albert L. Lehninger, (unidentified photographer) courtesy of The Alan Mason Chesney Medical Archives of The Johns Hopkins Medical Institutions; Linus Pauling, from Ava Helen and Linus Pauling Papers, Special Collections, Oregon State University; Nicholas Poussin, courtesy of ArtToday.com; Barbara McClintock, © David Micklos, 1983; Andrei Sakharov, courtesy of Elena Bonner; Frederick Sanger, © The Nobel Foundation, 1958.)

Figure 6-3 Genes can be expressed with different efficiencies. Gene A is transcribed and translated much more efficiently than gene B. This allows the amount of protein A in the cell to be much greater than that of protein B.

FROM DNA TO RNA

Transcription and translation are the means by which cells read out, or express, the genetic instructions in their genes. Because many identical RNA copies can be made from the same gene, and each RNA molecule can direct the synthesis of many identical protein molecules, cells can synthesize a large amount of protein rapidly when necessary. But each gene can also be transcribed and translated with a different efficiency, allowing the cell to make vast quantities of some proteins and tiny quantities of others (Figure 6-3). Moreover, as we see in the next chapter, a cell can change (or regulate) the expression of each of its genes according to the needs of the moment—most obviously by controlling the production of its RNA.

Portions of DNA Sequence Are Transcribed into RNA

The first step a cell takes in reading out a needed part of its genetic instructions is to copy a particular portion of its DNA nucleotide sequence—a gene—into an RNA nucleotide sequence. The information in RNA, although copied into another chemical form, is still written in essentially the same language as it is in DNA—the language of a nucleotide sequence. Hence the name **transcription**.

Like DNA, RNA is a linear polymer made of four different types of nucleotide subunits linked together by phosphodiester bonds (Figure 6-4). It differs from DNA chemically in two respects: (1) the nucleotides in RNA are *ribonucleotides*—that is, they contain the sugar ribose (hence the name *ribonucleic acid*) rather than deoxyribose; (2) although, like DNA, RNA contains the bases adenine (A), guanine (G), and cytosine (C), it contains the base uracil (U) instead of the thymine (T) in DNA. Since U, like T, can base-pair by hydrogen-bonding with A (Figure 6-5), the complementary base-pairing properties described for DNA in Chapters 4 and 5 apply also to RNA (in RNA, G pairs with C, and A pairs with U). It is not uncommon, however, to find other types of base pairs in RNA: for example, G pairing with U occasionally.

Despite these small chemical differences, DNA and RNA differ quite dramatically in overall structure. Whereas DNA always occurs in cells as a double-stranded helix, RNA is single-stranded. RNA chains therefore fold up into a variety of shapes, just as a polypeptide chain folds up to form the final shape of a protein (Figure 6-6). As we see later in this chapter, the ability to fold into complex three-dimensional shapes allows some RNA molecules to have structural and catalytic functions.

Transcription Produces RNA Complementary to One Strand of DNA

All of the RNA in a cell is made by DNA transcription, a process that has certain similarities to the process of DNA replication discussed in Chapter 5.

Figure 6–89 Protein aggregates that cause human disease. (A) Schematic illustration of the type of conformational change in a protein that produces material for a cross- β filament. (B) Diagram illustrating the self-infectious nature of the protein aggregation that is central to prion diseases. PrP is highly unusual because the misfolded version of the protein, called PrP^{*}, induces the normal PrP protein it contacts to change its conformation, as shown. Most of the human diseases caused by protein aggregation are caused by the overproduction of a variant protein that is especially prone to aggregation, but because this structure is not infectious in this way, it cannot spread from one animal to another. (C) Drawing of a cross- β filament, a common type of protease-resistant protein aggregate found in a variety of human neurological diseases. Because the hydrogen-bond interactions in a β sheet form between polypeptide backbone atoms (see Figure 3–9), a number of different abnormally folded proteins can produce this structure. (D) One of several possible models for the conversion of PrP to PrP^{*}, showing the likely change of two α -helices into four β -strands. Although the structure of the normal protein has been determined accurately, the structure of the infectious form is not yet known with certainty because the aggregation has prevented the use of standard structural techniques. (C, courtesy of Louise Serpell, adapted from M. Sunde et al., *J. Mol. Biol.* 273:729–739, 1997; D, adapted from S.B. Prusiner, *Trends Biochem. Sci.* 21:482–487, 1996.)

animals and humans. It can be dangerous to eat the tissues of animals that contain PrP^{*}, as witnessed most recently by the spread of BSE (commonly referred to as the “mad cow disease”) from cattle to humans in Great Britain.

Fortunately, in the absence of PrP^{*}, PrP is extraordinarily difficult to convert to its abnormal form. Although very few proteins have the potential to misfold into an infectious conformation, a similar transformation has been discovered to be the cause of an otherwise mysterious “protein-only inheritance” observed in yeast cells.

There Are Many Steps From DNA to Protein

We have seen so far in this chapter that many different types of chemical reactions are required to produce a properly folded protein from the information contained in a gene (Figure 6–90). The final level of a properly folded protein in a cell therefore depends upon the efficiency with which each of the many steps is performed.

We discuss in Chapter 7 that cells have the ability to change the levels of their proteins according to their needs. In principle, any or all of the steps in Fig-

Figure 6–90 The production of a protein by a eucaryotic cell. The final level of each protein in a eucaryotic cell depends upon the efficiency of each step depicted.

(Figure 6–90) could be regulated by the cell for each individual protein. However, as we shall see in Chapter 7, the initiation of transcription is the most common point for a cell to regulate the expression of each of its genes. This makes sense, inasmuch as the most efficient way to keep a gene from being expressed is to block the very first step—the transcription of its DNA sequence into an RNA molecule.

Summary

The translation of the nucleotide sequence of an mRNA molecule into protein takes place in the cytoplasm on a large ribonucleoprotein assembly called a ribosome. The amino acids used for protein synthesis are first attached to a family of tRNA molecules, each of which recognizes, by complementary base-pair interactions, particular sets of three nucleotides in the mRNA (codons). The sequence of nucleotides in the mRNA is then read from one end to the other in sets of three according to the genetic code.

To initiate translation, a small ribosomal subunit binds to the mRNA molecule at a start codon (AUG) that is recognized by a unique initiator tRNA molecule. A large ribosomal subunit binds to complete the ribosome and begin the elongation phase of protein synthesis. During this phase, aminoacyl tRNAs—each bearing a specific amino acid bind sequentially to the appropriate codon in mRNA by forming complementary base pairs with the tRNA anticodon. Each amino acid is added to the C-terminal end of the growing polypeptide by means of a cycle of three sequential

BEST AVAILABLE COPY

Figure 7-5 Six steps at which eukaryotic gene expression can be controlled. Controls that operate at steps 1 through 5 are discussed in this chapter. Step 6, the regulation of protein activity, includes reversible activation or inactivation by protein phosphorylation (discussed in Chapter 3) as well as irreversible inactivation by proteolytic degradation (discussed in Chapter 6).

Gene Expression Can Be Regulated at Many of the Steps in the Pathway from DNA to RNA to Protein

If differences among the various cell types of an organism depend on the particular genes that the cells express, at what level is the control of gene expression exercised? As we saw in the last chapter, there are many steps in the pathway leading from DNA to protein, and all of them can in principle be regulated. Thus a cell can control the proteins it makes by (1) controlling when and how often a given gene is transcribed (**transcriptional control**), (2) controlling how the RNA transcript is spliced or otherwise processed (**RNA processing control**), (3) selecting which completed mRNAs in the cell nucleus are exported to the cytosol and determining where in the cytosol they are localized (**RNA transport and localization control**), (4) selecting which mRNAs in the cytoplasm are translated by ribosomes (**translational control**), (5) selectively destabilizing certain mRNA molecules in the cytoplasm (**mRNA degradation control**), or (6) selectively activating, inactivating, degrading, or compartmentalizing specific protein molecules after they have been made (**protein activity control**) (Figure 7-5).

For most genes transcriptional controls are paramount. This makes sense because, of all the possible control points illustrated in Figure 7-5, only transcriptional control ensures that the cell will not synthesize superfluous intermediates. In the following sections we discuss the DNA and protein components that perform this function by regulating the initiation of gene transcription. We shall return at the end of the chapter to the additional ways of regulating gene expression.

Summary

The genome of a cell contains in its DNA sequence the information to make many thousands of different protein and RNA molecules. A cell typically expresses only a fraction of its genes, and the different types of cells in multicellular organisms arise because different sets of genes are expressed. Moreover, cells can change the pattern of genes they express in response to changes in their environment, such as signals from other cells. Although all of the steps involved in expressing a gene can in principle be regulated, for most genes the initiation of RNA transcription is the most important point of control.

DNA-BINDING MOTIFS IN GENE REGULATORY PROTEINS

How does a cell determine which of its thousands of genes to transcribe? As mentioned briefly in Chapters 4 and 6, the transcription of each gene is controlled by a regulatory region of DNA relatively near the site where transcription begins. Some regulatory regions are simple and act as switches that are thrown by a single signal. Many others are complex and act as tiny microprocessors, responding to a variety of signals that they interpret and integrate to switch the neighboring gene on or off. Whether complex or simple, these switching devices

occur in the germ line, the cell lineage that gives rise to sperm or eggs. Most of the DNA in vertebrate germ cells is inactive and highly methylated. Over long periods of evolutionary time, the methylated CG sequences in these inactive regions have presumably been lost through spontaneous deamination events that were not properly repaired. However promoters of genes that remain active in the germ cell lineages (including most housekeeping genes) are kept unmethylated, and therefore spontaneous deaminations of Cs that occur within them can be accurately repaired. Such regions are preserved in modern day vertebrate cells as CG islands. In addition, any mutation of a CG sequence in the genome that destroyed the function or regulation of a gene in the adult would be selected against, and some CG islands are simply the result of a higher than normal density of critical CG sequences.

The mammalian genome contains an estimated 20,000 CG islands. Most of the islands mark the 5' ends of transcription units and thus, presumably, of genes. The presence of CG islands often provides a convenient way of identifying genes in the DNA sequences of vertebrate genomes.

Summary

The many types of cells in animals and plants are created largely through mechanisms that cause different genes to be transcribed in different cells. Since many specialized animal cells can maintain their unique character through many cell division cycles and even when grown in culture, the gene regulatory mechanisms involved in creating them must be stable once established and heritable when the cell divides. These features endow the cell with a memory of its developmental history. Bacteria and yeasts provide unusually accessible model systems in which to study gene regulatory mechanisms. One such mechanism involves a competitive interaction between two gene regulatory proteins, each of which inhibits the synthesis of the other; this can create a flip-flop switch that switches a cell between two alternative patterns of gene expression. Direct or indirect positive feedback loops, which enable gene regulatory proteins to perpetuate their own synthesis, provide a general mechanism for cell memory. Negative feedback loops with programmed delays form the basis for cellular clocks.

In eucaryotes the transcription of a gene is generally controlled by combinations of gene regulatory proteins. It is thought that each type of cell in a higher eucaryotic organism contains a specific combination of gene regulatory proteins that ensures the expression of only those genes appropriate to that type of cell. A given gene regulatory protein may be active in a variety of circumstances and typically is involved in the regulation of many genes.

In addition to diffusible gene regulatory proteins, inherited states of chromatin condensation are also used by eucaryotic cells to regulate gene expression. An especially dramatic case is the inactivation of an entire X chromosome in female mammals. In vertebrates DNA methylation also functions in gene regulation, being used mainly as a device to reinforce decisions about gene expression that are made initially by other mechanisms. DNA methylation also underlies the phenomenon of genomic imprinting in mammals, in which the expression of a gene depends on whether it was inherited from the mother or the father.

POSTTRANSCRIPTIONAL CONTROLS

In principle, every step required for the process of gene expression could be controlled. Indeed, one can find examples of each type of regulation, although any one gene is likely to use only a few of them. Controls on the initiation of gene transcription are the predominant form of regulation for most genes. But other controls can act later in the pathway from DNA to protein to modulate the amount of gene product that is made. Although these posttranscriptional controls, which operate after RNA polymerase has bound to the gene's promoter and begun RNA synthesis, are less common than transcriptional control, for many genes they are crucial.

Figure 7–86 A mechanism to explain both the marked overall deficiency of CG sequences and their clustering into CG islands in vertebrate genomes. A black line marks the location of a CG dinucleotide in the DNA sequence, while a red "lollipop" indicates the presence of a methyl group on the CG dinucleotide. CG sequences that lie in regulatory sequences of genes that are transcribed in germ cells are unmethylated and therefore tend to be retained in evolution. Methylated CG sequences, on the other hand, tend to be lost through deamination of 5-methyl C to T, unless the CG sequence is critical for survival.