

Exercício

Escreva um código para rodar amostragem aleatória com 1.000 repetições, para prever X19 em função de X9

Exercício

```
# Variável independente
X = pd.DataFrame(dados["x9"])
# Variável dependente
y = pd.DataFrame(dados["x19"])
model = []
mae = []
mse = []
rmse = []
for i in range (1,10):
    X train, X test, y train, y test = train test split(X, y, test size=0.2)
    linearRegressor = LinearRegression()
    linearRegressor.fit(X train, y train)
    linearRegressor.intercept
    linearRegressor.coef
    y pred = linearRegressor.predict(X test)
    mae.append(metrics.mean absolute error(y test, y pred))
    mse.append(metrics.mean squared error(y test, y pred) )
    rmse.append(np.sqrt(metrics.mean squared error(y test, y pred)))
```

Exercício

```
print("MAE")
print("MAE médio: ", round(statistics.mean(mae),2))
print("MAE desvio padrão: ", round(np.std(mae),2))
print("MSE")
print("MSE médio: ", round(statistics.mean(mse),2))
print("MSE desvio padrão: ", round(np.std(mse),2))
print("RMSE")
print("RMSE médio: ", round(statistics.mean(rmse),2))
print("RMSE desvio padrão: ", round(np.std(rmse),2))
MAE
MAE médio: 0.76
MAE desvio padrão: 0.05
MSE
MSE médio: 0.92
MSE desvio padrão: 0.22
RMSE
RMSE médio: 0.95
RMSE desvio padrão: 0.11
```


Regressão Múltipla

```
import statsmodels.api as sm
os.chdir("D:\Dropbox\Fund Prog e Estatistica\db")
dados = pd.read csv("HBAT.csv")
# Variável independente
X = dados.iloc[:,10:20]
# Variável dependente
y = dados["x19"]
X = sm.add constant(X)
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
model.summary()
```


Dep. Variable:	x19	R-squared:	0.656
Model:	OLS	Adj. R-squared:	0.617
Method:	Least Squares	F-statistic:	16.98
Date:	Fri, 06 Dec 2019	Prob (F-statistic):	9.32e-17
Time:	21:40:47	Log-Likelihood:	-105.58
No. Observations:	100	AIC:	233.2
Df Residuals:	89	BIC:	261.8
Df Model:	10		
Covariance Type:	nonrobust		

std err t P>|t| [95.0% Conf. Int.] coef const | 2.0075 1.296 1.550 0.125 -0.567 4.582 0.2708 0.132 2.053 х9 0.043 | 0.009 0.533 0.0202 0.081 0.249 0.804 -0.141 0.181 x10 0.342 0.2459 0.719 0.474 -0.434 0.926 x11 x12 0.5622 0.090 6.228 0.000 | 0.383 0.742 -0.0739 0.062 -1.189 0.238 x13 -0.197 0.050 -0.1120 0.099 -1.136 0.259 x14 -0.308 0.084 0.0280 0.051 0.555 0.580 -0.072 0.128 x15 x16 0.2371 0.131 1.804 0.075 -0.024 0.498 0.348 x17 -0.1672 -0.481 0.632 -0.858 0.524 -0.0381 0.663 -0.057 0.954 x18 -1.355 1.279

Regressão Múltipla

Omnibus:	3.312	Durbin-Watson:	2.341
Prob(Omnibus):	0.191	Jarque-Bera (JB):	2.548
Skew:	-0.251	Prob(JB):	0.280
Kurtosis:	2.400	Cond. No.	324.

Estratégias: Leave-one-out

- Bom para entender o impacto de uma observação em todo o modelo.
- Se o resultado desse modelo for diferente dos demais, então a observação retirada é considerada um outlier (observação extrema)
- Para isso, podemos fazer um teste de hipótese, comparando a métrica de qualidade do modelo (MAE, MSE, RMSE) com os demais

→ Comparação da média dos resultados de MAE (MSE ou RMSE), com o respectivo do modelo sem a observação outlier.

```
from scipy import stats
stats.ttest_1samp(mae_demais,const_mae)
```


ANÁLISE DE VARIÂNCIA (ANOVA)

Análise de Variância (ANOVA)

- Detecção e estimação de relações entre médias
- Detecção e estimação entre componentes de variabilidade
- Variabilidade associada a "m" fontes de variação
- Propriedade aditiva da variância:
 - Variância total = dentre amostras + entre amostras
 - total: variação de todas as medidas em relação à média geral
 - dentre: variação de cada amostra em relação à sua média
 - entre: variação das "n" médias em relação à média geral

Análise de Variância (ANOVA)

OBSERVAÇÕES

- A ANOVA não considera que os tratamentos tenham algum ordenamento específico
 Para agregar esta informação na análise, usa-se a Análise de Regressão
- ANOVA com 2 tratamentos (r = 2) n\u00e3o deve ser realizada, uma vez que corresponde a um teste t homoced\u00e1stico bilateral
- ANOVA pode ter mais do que 2 fatores avaliados (ANOVA multivariada)

	TA1	TA2	TA3	TA4
	10	9	9	14
TB1	11	9	15	10
	15	10	13	
	20	23	21	29
TB2	21	23	22	28
	18	21		25

Análise de Variância (ANOVA)

PRESSUPOSIÇÕES:

- Cada observação deve ser independente das demais;
 condição garantida pelo processo de amostragem
- Cada tratamento deve ter distribuição normal;

Teste alternativo: Kruskal-Wallis (teste não paramétrico)

ANOVA - Python

```
from scipy import stats
dados['x1'] = dados['x1'].astype('category')
dados["x1 cat"] = dados["x1"].cat.codes
f, p = stats.f oneway(dados['x19'],
                      dados['x1 cat'])
print ('One-way ANOVA')
print ('=======')
print ('F value:', f)
print ('p value:', p, '\n')
```


ANOVA - Tabela

```
from statsmodels.formula.api import ols
model = ols('x19 ~ C(x1_cat)', dados).fit()
res = sm.stats.anova_lm(model, typ= 2)
res
```

	sum_sq	df	F	PR(>F)
C(x1_cat)	68.942925	2.0	46.645002	6.408468e-15
Residual	71.684675	97.0	NaN	NaN

Database

Variáveis Independentes	
X ₁ Tipo de Cliente	X ₄ Região
X ₂ Tipo de Indústria	X ₅ Sistema de Distribuição
X ₃ Tamanho da Empresa	

Variável Dependente

X₁₉ Satisfação

X₂₀ Probabilidade de Recomendar

X₂₁ Probabilidade de Comprar

Análise de Variância

Quando a ANOVA indica a aceitação de H₀, conclui-se que todas as médias dos tratamentos são iguais entre si, ou melhor, que não há diferenças significativas entre as médias dos tratamentos.

Neste caso, encerra-se a análise.

No entanto, quando H_0 é rejeitada, a ANOVA não é capaz de identificar quais as médias são diferentes entre si.

Basta que apenas uma média seja diferente para que a ANOVA indique a rejeição da H_0 .

Como descobrir quais médias são diferentes?

Através de um Teste de Comparação Múltipla

Teste de Tukey

Exemplos: Teste de Duncan

Teste de Dunnet Teste de Scheffe Teste de Bonferroni

Teste de Fisher

Teste de Tukey

```
from statsmodels.stats.multicomp import pairwise_tukeyhsd
from statsmodels.stats.multicomp import MultiComparison

mc = MultiComparison(dados['x19'], dados['x1_cat'])

result = mc.tukeyhsd()

print(result)
print(mc.groupsunique)
```

Multip	Le Compa	arison of	Means -	Tukey H	SD,FWER=0.05
group1	group2	meandiff	lower	upper	reject
0 0	1 2	-1.5893 0.3403	-2.0898 -0.1563		
1	2		1.4219		

Teste de Tukey

import matplotlib.pyplot as plt
dados.boxplot(column="x19", by="x1_cat", grid=False)
plt.show()

Teste de Kruskal-Wallis

print ('======"')

print ('KW value:', kw)

print ('p value:', p, '\n')

Teste de Dunn

ANOVA two-way – 2 Variáveis Independentes

```
def anova table (aov):
    aov['mean sq'] = aov[:]['sum sq']/aov[:]['df']
    aov['eta sq'] = aov[:-1]['sum sq']/sum(aov['sum sq'])
    aov['omega sq'] = (aov[:-1]['sum sq']-(aov[:-1]['df']*aov['mean sq'][-
1]))/(sum(aov[\overline{\text{sum}} \text{ sq'}])+aov['mean \overline{\text{sq'}}][-1])
    cols = ['sum sq', 'mean sq', 'df', 'F', 'PR(>F)', 'eta sq', 'omega sq']
    aov = aov[cols]
    return aov
from statsmodels.formula.api import ols
model2 = ols('x19 \sim x1 cat + x5 cat', dados).fit()
res2 = sm.stats.anova lm(model2, typ= 2)
res2
anova table(res2)
```


ANOVA two-way – Tukey

```
mc = MultiComparison(dados['x19'], dados['x1 cat'])
result = mc.tukeyhsd()
                             Multiple Comparison of Means - Tukey HSD, FWER=0.05
print(result)
#print(mc.groupsunique)
                             group1 group2 meandiff lower upper reject
                                1 -1,5893 -2,0898 -1,0888 True
                              0 2 0.3403 -0.1563 0.8368 False
                              1 2 1.9295 1.4219 2.4372 True
mc = MultiComparison(dados['x19'], dados['x5 cat'])
result = mc.tukeyhsd()
print(result)
```

Multiple Comparison of Means - Tukey HSD, FWER=0.05

group1 group2 meandiff lower upper reject

0 1 -1.2455 -1.6556 -0.8353 True

ANOVA two-way – 2 Variáveis Independentes

Kruskal-Wallis – 2 ou mais Variáveis Independentes

Roteiro Regressão Linear

- correlação
- R²
- R² ajustado

Roteiro de Pesquisa

- Obter base de dados
- Pergunta da Pesquisa / Objetivo
- Estatística Descritiva

- Limpeza de Dados
- Análise / Inferência Estatística
 - Regressão Linear
 - Treinamento / Teste
 - ANOVA / Kruskal-Wallis

média 3º quartil desvio padrão máximo mínimo boxplot 1º quartil histograma 2º quartil distribuição

