Clusters and Communities

Internet Analytics (COM-308)

Prof. Matthias Grossglauser School of Computer and Communication Sciences

Overview

Clustering:

- Given: set of points with a distance metric
- Find sets of points that are close to each other, but far from other points
- Community detection:
 - Given: network
 - Find sets of nodes that are highly interconnected, but poorly connected to other nodes
- Many important applications:
 - Data analysis: finding structure, modes in data distribution
 - Problem decomposition and resource allocation: where to put warehouses; group formation in social networks

• • • •

Clustering: goal and definition

Definition:

- Given: set of points (vectors) with a distance function (metric space)
- Find: partition (hard or soft) of points into clusters; plus potentially more information (characterization of clusters)
- Find organization in data:

 Image compression: each pixel has a color → find small set of colors so that each pixel is close to one color

Clustering: goal and definition

- Find organization in data:
 - Mobility: point = GPS trace with noise → find representative set of trajectories

K-means clustering algorithm

- Input:
 - N data points $x_1, ..., x_N$
 - K: number of clusters
- Output:
 - K cluster centers μ_k
 - r_{nk} : point-cluster assignment indicator
 - $r_{nk} = 1$ means point x_n is in cluster k
- Cost function:
 - $J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} || \mathbf{x}_n \mathbf{\mu}_k ||^2$
- Optimal K-means: NP-hard
- Solution: iterative heuristic to approximate solution

K-means: iterative approximation

- Initialize $\mu = (\mu_1, ..., \mu_K)$
- Until convergence (J does not decrease):
 - Minimize J w.r.t. $\{r_{nk}\}$:
 - $r_{nk} = 1$ only for $k = \operatorname{argmin} \|x_n \mu_k\|$
 - Minimize J w.r.t. μ:
 - Set gradient of J w.r.t. μ_k to zero
 - $2\sum_{n} r_{nk}(\mathbf{x}_n \boldsymbol{\mu}_k) = 0$ (for each k) M-step:
 - Solve for μ : $\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$

E-step:

Attribute each x_n to closest center

New cluster center μ_k = center of mass of points of cluster k

Voronoi tessellation

K-means converges in finite # steps

Proof:

- J non-increasing in both steps
 - First step: each $\|x_n \mu_k\|^2$ either stays the same or decreases if r_{nk} changes
 - Second step: convex \rightarrow new J global min as function of $\{\mu_k\}$
- There are finitely many configurations $r_{nk} \rightarrow$ if we ever returned to a configuration of $\{r_{nk}\}$ already visited (in a finite # of steps), we'd end up with the same J in step 2 as last time in step 2 \rightarrow must have already converged
- But: there is no guarantee of convergence to globally minimal J over both $\{r_{nk}\}, \{\mu_k\}$

K-means: example

From K-means to Mixtures of Gaussians

- K-Means: Can be generalized to non-Euclidean distance functions
- Limitations:
 - Each point attributed to exactly one cluster
 - Not a generative model: cannot "simulate" data based on learned $\{r_{nk}\}, \{\mu_k\}$ (no distribution for new values)
- Improvement:
 - Soft attribution: a point can belong to several clusters
 - Generative model: distribution over points

Gaussian mixture model (GMM)

GMM: distribution of single data point

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x}; \mu_k, \Sigma_k)$$

- Random variable Z_{nk} : point n belongs to cluster k
 - $p(Z_{nk} = 1) = \pi_k$: mixing coefficients

GMM is a generative model

GMM

- Latent variable $Z_n = (Z_{n1}, Z_{n2}, ..., Z_{nk}, ..., Z_{nK})$:
 - $p(\mathbf{Z}_n) = \prod_k \pi_k^{Z_{nk}}$
 - "One-hot": $Z_n = (0,0,0,...,1,...,0,0)$
- Conditional distribution of data point:
 - $p(X_n|Z_{nk}=1)=N(X_n;\mu_k,\Sigma_k)$, or equivalently
 - $p(X_n|Z_n) = \prod_k N(X_n; \mu_k, \Sigma_k)^{Z_{nk}}$
- Data distribution (unconditional):
 - $p(X_n) = \sum_{\mathbf{Z}_n} p(\mathbf{Z}_n) p(X_n | \mathbf{Z}_n) =$
 - $= \sum_{\mathbf{Z}_n} \Pi_k(\pi_k N(\mathbf{X}_n; \mu_k, \Sigma_k))^{\mathbf{Z}_{nk}} = \sum_k \pi_k N(\mathbf{X}_n; \mu_k, \Sigma_k)$
- Conclusion:
 - Gaussian mixture can be viewed as follows: choose a cluster k with distribution π ; then generate a point according to Gaussian $N(X|\mu_k, \Sigma_k)$ of the chosen cluster

Fitting single Gaussian to data

- Data vectors *X*₁, ..., *X*_N
- Model as $N(\mu, \Sigma)$
- Maximum likelihood:
 - $\mu = \frac{1}{N} \sum_{n} X_{n}$: empirical mean
 - $\Sigma = \frac{1}{N} \sum_{n} (X_n \mu)(X_n \mu)^T$: empirical covariance

GMM: posterior

- Finding clusters = computing posterior, ie, distribution of \mathbb{Z}_n given data \mathbb{X}_n
- Def: $\gamma_{nk} = p(Z_{nk} = 1 | X_n)$
- Bayes' theorem:

•
$$\gamma_{nk} = \frac{p(Z_{nk}=1)p(X_n|Z_{nk}=1)}{\sum_j p(Z_{nj}=1)p(X_n|Z_{nj}=1)} = \frac{\pi_k N(X_n; \mu_k, \Sigma_k)}{\sum_j \pi_j N(X_n; \mu_j, \Sigma_j)}$$

- Interpretation:
 - For fixed $\{\mu_k, \Sigma_k\}$, π is the prior for the cluster Z_n of point X_n , and γ_n is its posterior

GMM: ML estimator for μ

- Log-likelihood for n data points $(X_1, ..., X_N)$:
 - $L = \log p(X_1, ..., X_N | \boldsymbol{\pi}, \mu, \Sigma) = \sum_n \log \sum_k \pi_k N(\boldsymbol{x}_n; \boldsymbol{\mu}_k, \Sigma_k)$
- Maximizing w.r.t. μ:
 - $\nabla_{\mu\nu}L=0 \Rightarrow$

$$\sum_{n}^{K} \frac{\pi_k N(X_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j} \pi_j N(X_n; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \boldsymbol{\Sigma}_k^{-1} (X_n - \boldsymbol{\mu}_k) = 0$$

- Solution:
- = γ_{nk} : posterior of Z_{nk} given X_n
- $\mu_k = \frac{1}{N_k} \sum_n \gamma_{nk} X_n$ (roughly, weighted center of mass)
- with $N_k = \sum_n \gamma_{nk}$ (roughly, # of points in class k)

GMM: ML estimator for Σ and π

- Maximizing w.r.t. Σ:
 - $\Sigma_k = \frac{1}{N_k} \sum_n \gamma_{nk} (X_n \mu_k) (X_n \mu_k)^T$
 - (roughly, weighted empirical covariance matrix within class k)
- Maximizing w.r.t. π :
 - $\bullet \quad \pi_k = \frac{N_k}{N}$
 - (roughly, number of points attributed to cluster *k*)

EM algorithm for GMM

E-step:

Compute posterior of latent variables Z given parameters from

M-step:

$$\gamma_{nk} = \frac{\pi_k N(X_n; \mu_k, \Sigma_k)}{\sum_j \pi_j N(X_n; \mu_j, \Sigma_j)}$$

E-step 2

M-step:

Compute new parameters using distribution of latent variables from E-step:

$$\mu_k = \frac{1}{N_k} \sum_n \gamma_{nk} X_n$$

$$\sum_k = \frac{1}{N_k} \sum_n \gamma_{nk} (X_n - \mu_k) (X_n - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N}$$

E-step 3

M-step 2

Until convergence of likelihood $L = \log p(X_1, ..., X_n | \pi, \mu, \Sigma)$

EM for GMM: example

E-step

M-step

Iter 1

Iter 2

K-means vs GMM

	K-Means	GMM
Membership	Hard	Soft
Generative	No	Yes
E-step updates	$r_{nk} = { m closest}$ center	$\gamma_{nk} = P(Z_{nk} X_n)$
M-step updates	μ_k	μ_k , Σ_k , π_k
Convergence	Guaranteed	Guaranteed
Optimal	Not guaranteed	Not guaranteed
Characterization	Centers, membership	Centers, weights, shapes

Community detection: goal and def

- Find organization in graphs:
 - Email or phone graph → find organizational units
 - Citation networks → scientific topics and their relationships
 - Social networks → groups with shared interests (language, etc.)
- Definition:
 - Given: a network G(V, E)
 - Find: a partition (hard or soft), or a hierarchy, such that node in same community are more "meshed" than other nodes

Modularity: strength of communities

- Def:
 - Partitioning of nodes into communities: $\{C_i\}$

•
$$Q = \frac{1}{2m} \sum_{C_i \in C} \sum_{u,v \in C_i} \left(\mathbb{1}_{uv} - \frac{d_u d_v}{2m} \right)$$

Note: inner sum is over all *ordered* (u, v), and includes (u, u)

Modularity: interpretation

- Number of stubs: 2*m*

$$\frac{1}{2}\sum_{u,v\in C_i}\frac{d_ud_v}{2m}=e_i$$

 Actual # edges in community C_i:

$$\frac{1}{2} \sum_{u,v \in C_i} \mathbb{1}_{uv} = m_i$$

 Modularity: compares actual graph with unstructured graph with same node

weights

$$Q = \frac{\sum_{C_i} (m_i - e_i)}{m}$$

- m_i : # edges in community C_i
- e_i : expected # edges in community C_i in random graph with same degrees

Modularity: example

Modularity: example

$$C_1$$
:

$$-m_1=15$$

$$-e_1 = 11.56$$

*C*₂:

$$-m_2=6$$

$$-e_2 = 2.56$$

$$m = 25$$

• Edge (4,8):

•
$$d_4 = 5$$
; $d_8 = 3$

• Expected
$$\# = \frac{15}{50} \sim 0.3$$

$$Q = \frac{(15+6)-(11.56+2.56)}{25} =$$

0.275

Modularity: example

- Max-modularity is NPhard
- Need efficient heuristics

Louvain method

Idea:

- Building hierarchy of communities
- Bottom-up: start with each node a separate community, then coalesce communities
- For every node *u*:
 - Compare modularity if \boldsymbol{u} is added to the community of a neighbor \boldsymbol{v}
 - Choose neighbor v that increases modularity most; if none, leave u in current community

Louvain method

- Iterate through all nodes u
 (possibly several times)
 until no more modularity
 increases possible
 - Local maximum
- Form a new graph capturing the network of communities
 - Link weights = # edges
 between communities
 - Self-loops: internal edges
 - Repeat the procedure until convergence

Louvain method in LinkedIn Labs

Summary

- Unsupervised techniques for grouping data
- Clusters: set of points close in distance, far from other clusters
 - Criteria: distances to center (K-means), likelihood (GMM)
 - GMM: Gaussian parameters characterize cluster
- Community: set of nodes with high edge density, low edge density to other communities
 - Criterion = modularity
- In general, no optimal solutions
 - Exponential computational cost
- Heuristics:
 - Expectation Maximization for mixture models
 - Louvain method: build hierarchy bottom-up

References

- [Ch. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006 (chapter 9)]
- [V. Blondel, lecture notes on community detection, 2013]
- [M. Newman, Networks, Oxford UP, 2010]