Fully Bayesian Benchmarking of Small Area Estimation Models

STAT 563 - Term Paper Presentation
Spencer Pease

Background:

Overview

- Obtaining estimates for small geographic/social/demographic areas presents challenges when there are few observations per area
 - Direct methods (i.e. counting events and exposure) lack credibility
 - Modeled estimates are not consistent with aggregate area estimates (found using direct methods)
- Discrepancies present issues, political and otherwise, so small area estimates are adjusted to match aggregate estimates
- Current adjustment methods focus on providing point estimates, not distributions

Background:

Terms

- Benchmarks:
 - Aggregate area estimates, generally obtained using direct methods
 - What you compare your small area estimates to
 - Internal benchmarks: calculated from small area data sources
 - External benchmarks: calculated from other data sources
- Benchmarking:
 - Techniques for forcing small area estimates to agree with benchmarks
 - How you reconcile discrepancies between small area estimates and aggregate estimates
 - Exact benchmarking: Making estimates exactly agree with benchmarks
 - Inexact benchmarking: Allowing discrepancy between estimates and benchmarks

Summary

- Published in 2020 by Junni L. Zhang and John Bryant
- Present a fully Bayesian approach to small area benchmarking
 - Benchmarks are estimates for underlying aggregate parameters
 - Benchmark agreement is a distribution conditional on the aggregate parameters
 - The original likelihood is multiplied by the probability distribution of the benchmarks
 - A "compromise" between the original likelihood and requirement to meet the benchmark
 - The revised likelihood and prior together yield the benchmarked posterior distribution

Advantages

- Include multiple benchmarks
- Benchmarks can be nonlinearly related to small area estimates (i.e. age specific mortality benchmarked against life expectancy)
- Specify allowable discrepancy

Bayesian estimation of area-level models

Given:

- n areas (e.g. defined by age, sex, region)
- Area-level parameters: $\boldsymbol{\gamma} = \{\gamma_1, ..., \gamma_n\}^T$
- Area-level data: $\mathbf{y} = \{y_1, \dots, y_n\}^T$
- Vector of hyperparameters $oldsymbol{\phi}$

$$p(\gamma, \phi | y) \propto p(\phi) p(\gamma | \phi) p(y | \gamma)$$

Bayesian estimation of area-level models with benchmarked posterior

- Benchmarks: $oldsymbol{m} = \{m_1, ..., m_d\}^T$ with $d \ll n$
- Underlying benchmark parameters: $oldsymbol{\psi} = \{\psi_1, ..., \psi_d\}^T$
- $\psi = f(\gamma)$ through deterministic benchmarking function f

$$p(\gamma, \phi \mid y, m) \propto p(\phi) p(\gamma \mid \phi) p(y \mid \gamma)^{\left[\frac{m}{\psi}\right]} (m \mid f(\gamma))$$

Where $p(y \mid \gamma)^{\left[\frac{m}{\psi}\right]}(m \mid f(\gamma))$ is a probability distribution of the benchmarks conditional on the aggregate parameters

Proposal

- Recreate the authors' application of their methods to age-sex specific mortality rates in local authority districts of England and Wales
- Apply these method in the Philippines -- another location with small subnational units and available data

Note: the authors have released code alongside their article, which was used to re-evaluate their methods

Estimating age-sex-specific mortality rates in England and Wales

 Data: death counts and at-risk populations in 2014, for 20 age groups 0 to 90+, males and females, in 348 local authority districts (belonging to 10 regions)

Total deaths: 500,3134

• Total population: 57,408,654

Variable	Min	25%	Median	Mean	75%	Max
Deaths	0.00	1.00	8.00	36.05	48.00	1004.00
Population	17	1985	3211	4136	5,033	50,381

Estimating age-sex-specific mortality rates in England and Wales

Sample of mortality rates using direct estimation:

Estimating age-sex-specific mortality rates in England and Wales

- Method: MCMC Metropolis-Hastings algorithm
 - 4 chains each with 40,000 burn-in + 40,000 iteration and n-thinning = 80
- District-level estimates benchmarked against region-level life expectancy at birth
- Death counts modeled as:

$$y_{asd} \sim Poisson(w_{asd} \gamma_{asd})$$

Where w_{asd} is population and γ_{asd} is mortality rate (age effects are assumed to follow a random walk with drift)

Estimating age-sex-specific mortality rates in England and Wales

Point estimates of life expectancy by region for benchmarked and nonbenchmarked models

Estimating age-sex-specific mortality rates in England and Wales

Percent difference between district mortality rates for benchmarked and non-benchmarked models

Estimating age-sex-specific mortality rates in England and Wales

Percent difference between district mortality rates for benchmarked and non-benchmarked models

Philippines

 Currently in the process of extending the authors' methods to new data