Lecture 1: Local Theory of curves

lote Title 12/29/2016

A map $\alpha: (a,b) \rightarrow \mathbb{R}^n$ is called a parameterized (or parametric) curve.

Depending on the application, we may

O think of the map x: I→Rⁿ as describing the motion of a point object, x'(t) is then the instantaneous velocity vector of the object at time t. (Time is a big deal, isn't it?)

2) be only interested in the shape of 2(I). E.g. if you are a graphics designer

In this case, what exactly the parameter 't' is isvit a big deal.

In particular, one is free to reparameterize
From now on, we are interested in the
From now on, we are interested in the latter case.
A parameterized curve α is said to be regular if $\alpha = \alpha =$
regular if
$ \alpha$ is C^{\perp}
$-\alpha'(t) \neq 0 \forall t \in (a,b)$
Recall the length of the curve is $Arc lengt = \sqrt{\alpha'(t)^2 + \cdots + \alpha'(t)^2} dt$
ф
Dre lengt = 1 dilet + Nilly dt
(Why? Integration + Pythagorean theorem + differentiation)
THE STATE OF THE S
HW#O + aifferentiation)
or So V(x(t),x(t)) dt
or Sa 112'(4) 11 dt
In particular,
s(t):=length of $\chi([a,t))=\int_a^t \chi(s) ds$
$\alpha(b)$
a t b das dus
of in months of the col
α is regular \Longrightarrow S is C^{1} , S^{1} also C^{1} (see HW#1)
csee nw # 1)
3
For latter purpose, we assume of (t) is C3

smooth.

	Recall the inner product of Rn is
	$\langle x, y \rangle := \sum_{i=1}^{n} x_i y_i x_i y \in \mathbb{R}^n$
	$ = y^{T}x $
	$ x ^2 = \sum_{i=1}^{2} xi^2 = \langle x, x \rangle_{x_2} + \sum_{i=1}^{2} x_i ^2 = x_i $
	Cauchy-Schwartz inequality 71 (21,475 \ \x 1 1 4
	$ \langle x,y\rangle = x y \cos\theta$
	Note:
	x'(t) = 1 ∀t
	$\Rightarrow s(t) = \int_{a}^{t} \alpha'(t) dt = t-a$
	So the parameter value to is
0 0	the arc length of x "measured from some point!"
	Jone Jone Jone.
	(easiest if you simply think a=0) It's just a shift in the parameter line anyway.)
	line anyway.)

Conversely, if t-a = (ength(x [a,t))then $\int_a^t \|x'(s)\| ds = t-a$, $\forall t$ $\int_a^t \|x'(s)\| ds = t-a$, $\forall t$ $\int_a^t \|x'(s)\| ds = t-a$, $\forall t$ $\int_a^t \|x'(s)\| ds = t-a$, $\int_$

In this case, we say $\angle : (a,b) \rightarrow \mathbb{R}$ is a curve parametrized by an length

Recap: if you only care about the shape of a cure, you may as well (re-) parameterize it by arclength.

why bother? Because it will help us to describe other geometrically meaningful quantities of the curve.

L'(S) = velocity vector of a at s

velocity, but just the tangent direction, so we may as well normalize this vector.

But this vector is already normalized.

NICE !

Next:

On the one hand, Kis) is meaningful already for planar curve, i.e. $\alpha: I \to IR^2$ (or a planar curve is disquise, ie. x: I → Rⁿ n≥3, but X(I) C a two-dimensional plane On the other hand, if a space (say) curve, truly a space curve, then 以(s), 以(s), K(s)= ll以(s)11 do not completely describe the shape of the curve, at least not locally. X(S) = (x,(S)) parar curve in disquise or $R[\alpha_1(S)] = [*]$ a is you want to rotation disquise it better, matrix Consider $\mathcal{Z}(s) = \mathcal{L}(s) + s^3$ Then $\chi(0) = \chi(0)$ these "measurements" alove $\mathcal{Z}(0) = \mathcal{L}'(0)$ cannot tell & is $\alpha''(0) = \lambda''(0)$ (slowly) leaving the

K(0) = K(0)

x-xz plane near S=0.

Ambitions Question: How many more "measurement (s)"

Should we introduce in order to
"Characterize the shape of the curve"? The answer appears to depend on the co-dimension (i.e. n) For n=3, seems like it will be good enough to introduce just 3-2=1 quantity. For n=3 (space curve), this lask quantity is called the torsion From now on, n=3. Write: $d'(s) = : t(s) \quad \text{unit rangent}$ vector (a) s''normal $n(s) := \underline{\mathcal{A}''(s)}$ vector@s" $||\alpha''(s)||$ $||\alpha''(s)|| \leftarrow K(s)$ assumed $\neq 0$ or $\alpha''(s) = K(s) \cdot n(s)$ Span(t(s), n(s)) = "Osculating plane@s" Define b(s) := E(s) x n(s) a unit vector normal to the osculating plane @ S "binormal vector @s"

change wr.t. are length? b'(s) = ?as b(s) = as t(s) x n(s) = $t'(s) \times n(s) + t(s) \times n'(s)$ (same trick as before: <bis), b(s) = 1 Since there are only 3 dimensions, MS') DYS) 2(5) b'(s) // n(s) 7 t(5) so we may write b'(s) = (c(s)) n(s)a scalar-valued Recap: function that we call the torsion @5, $\angle(s) \neq 0$ means tangent well-defined when vector exists $\alpha''(s) \pm 0$ $\Delta''(s) \neq 0$ means osculating plane exists.

How fast does the binormal vector

Note:

· if & is a "plane curve in disquise" (as defined earlier), then

Span($\alpha'(s)$, $\alpha''(s)$) = the same plane for all s

Hence, $\gamma(s) \equiv 0$

• conversely, if $r(s) \equiv 0$ (and $K(s) \neq 0$)

we have $b'(s) \equiv 0$

 $\frac{d}{ds} \langle \alpha(s), b(0) \rangle = \langle \alpha'(s), b(0) \rangle$

so $\langle x(s), b(0) \rangle = 0$

& a constant unit vector

so $\alpha(s) \in \text{the plane } \bot b(0)$.

We can reverse the orientation of a parameterzed curve, and, in particular, that of an arc length parameterzed curve Note:

 $\alpha:(a,b)\rightarrow \mathbb{R}^n$ satisfies $|\alpha(s)|=1$

 $(a,b) \rightarrow \mathbb{R}^{n}$, $(3) := \alpha(a+b-5)$ $(3) := \alpha(a+b-5)$ $(3) := \alpha(a+b-5)$ $(3) := \alpha(a+b-5)$

a "b

When we reverse orientation:

•
$$\mathcal{L}(\tilde{s}) = -t(s)$$

(check $\mathcal{L}(\tilde{s}) = \mathcal{L}(a+b-\tilde{s})$

$$\Rightarrow$$
 $\mathcal{L}(s) = \mathcal{L}'(s) = -\mathcal{L}'(a+b-s) = -\mathcal{L}(s)$

•
$$\widetilde{r}(\widetilde{s}) = r(s)$$
 (check the same way)
• $b(\widetilde{s}) = -b(s)$

$$b(\widetilde{s}) = -b(s)$$

$$\mathcal{L}(s) = \mathcal{L}(s) \times n(s) = -t(s) \times n(s) = -b(s)$$

It follows
$$b(\S) = b(s)$$
 and $\mathcal{H}(\S) = \mathcal{H}(s)$.

Note:

- curvature k is always non-negative
- torsion t has a sign (which has a geometric meaning)
- · Both K, & remain invariant under a Change of orientation.

```
So for, we have
      t'(s) = K(s) n(s) 7 by definition of
      b'(s) = \gamma(s) \gamma(s)
 Tempting to ask n'(s) = 0
  b= t×n ⇒ n=b×t
 n'(s) = b'(s) \times t(s) + b(s) \times t'(s)
      = \gamma(s) n(s) \times \xi(s) + b(s) \times k(s) n(s)
                -bls) - kls) b(s)x rus)
                                -七(s)
      = -k(s) + (s) - r(s) + b(s)
 Now, write
t(s) n(s) b(s) = |t(s) n(s) b(s)|
 These are called the Trenet formula
  It can be viewed as a system of ODE:
        first order -linear, but
              - variable coefficient
 Basic
       ODE theory would tell us
```

that K(s), C(s) together with initial data [t(0), n(0), b(0)]would determine the curve uniquely.

BUT:

If we solve the system of ODEs (F), of which a solution is guaranteed by standard ODE theory by merely assuming

assuming Kis), T(s) are <u>continuous</u>, would the solution necessarily satisfy:

$$\begin{bmatrix} t(s) & n(s) & b(s) \end{bmatrix}^T \begin{bmatrix} t(s) & n(s) & b(s) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{?}$$

If SO, when we try to recover the curve by

$$\alpha(s) = \alpha(a) + \int_{0}^{s} t(s')ds' \quad (= \alpha'(s) = t(s))$$

would this d(s) correspond to an arc-length parameterized curve with the prescribed curvature and torsion functions K(s) and r(s)?

[see my computer demos / examples]

· For instance, we can make up a Kis) with <u>negative values</u>, there is nothing from the view of standard ODE theory to deny a solution of (F) in 189 But sure enough, there is no curve with such a (negative-valued) curvature function • If we merely assume k(s), r(s) are continuous, the resulted t(s) may only be $C^{\frac{1}{2}}$, $d(s) := \int_{a}^{S} t(s) ds$ only C^{2} . With Standard ODE theory + extra arguments (addressing the above issues): Fundamental Theorem: Given C¹ functions

K(s) > 0, $\gamma(s)$, $s \in I$,

I a C³ regular parameterized cure $\alpha: I \to \mathbb{R}^3$ such that S = arclength, K(s) = curvature $^{\prime}$ C(s) = torsion of ∞ . This & is unique up to rigid motion. any other & satisfying the same conditions is related to & by X = AOX + C for some AGSO(3), CER?.)

$$Def: SO(3) := \{A \in \mathbb{R}^{3\times 3} : A^TA = I, det(A) = I\}$$

 $SO(3) := \{A \in \mathbb{R}^{3\times 3} : A = -A^T\}$

As we have seen, the Frenet frame ODE is not any ODE system in \mathbb{R}^q , it has additional structure.

we shall see that the appearance of a skew-symmetric matrix function is not an accident.

The local canonical form.

High level remark:

it is often effective to find a coordinate system / representation adpated to the problem.

In this case, to understand the behavior of a curve locally, it is best to represent the cure in "t-b-n" coordinates.

Assuming $x \in C^{5}$ $x(s) = x(0) + 5x'(0) + \frac{5^{2}}{2}x''(0) + \frac{5^{3}}{6}x''(0)$ where $\lim_{s \to 0} \frac{R(s)}{s^{3}} = 0$ $o(s^{3})$

> > -Kt-7b

So

Dominant "2nd"

Of course, we know that the tangent direction provides the (DORMINANT!) local linear approximation,

the two remaining (subdominant) directions.

There are more details to work out.
For example, in practice one may use
For example, in practice one may use specific functions (notably splines)
to model cures parametrically. There
is no reason that such a parameterization
is an arc length parameterization.
would be useful to have formulas
for curvature and torsion.
It can be shown:
If $d: I \to \mathbb{R}^3$ is regular (but not necessarily by arc length)
not necessarily by arc length)
$(k(t) = \ \alpha'(t) \times \alpha''(t)\ /\ \alpha'(t)\ ^3$
$\gamma_{C(S)} = -\frac{(\alpha'(t_{c}) \times \alpha''(t_{c}) \cdot \alpha'''(t_{c})}{11\alpha''(t_{c}) \cdot \alpha'''(t_{c})}$
1(x'(t) x x"(t) ²

Final remark: The fundamental theorem also means: we can think of a curve in IR's as being obtained from a straight line by bending (curvature) and twisting (torsion), but without any Stretching As we shall see (but not so soon), the same is not true for surfaces. Eg. Impossible to map a part of the Sphere to the plane virtual distorting distance / area. Understanding this phenomenon is a big part of classical differential geometry (Gauss' Theorema Egregium) It is also what stimulates the modern theory of Riemannian manifold.

Now, I have written 18 pages or 80 telling you that "cures have curvatures".

Confusingly, because of , in the modern theory of Riemannian manifold:

" curves (= a 1-D Riemannian manifold)
always have zero curvature "

But this latter 'curvature' refers to a kind of 'intrinsic Curvature' that we can only begin to understand through a careful study of Surfaces.

Gauss

Riemann