Испит Јануари 2013 Дискретна математика 1 1 група

1. Задача 1: (4+1+

а) Дополни да се добие точна формула

$$p \ \land T \equiv \qquad \qquad p \lor (q \land r) \equiv \qquad \qquad \neg p \lor \neg q \equiv \qquad \qquad \neg (\neg p {\rightarrow} q) \equiv$$

б) Дополни да се биде точно правилото

 $\stackrel{p}{\xrightarrow{}_{c}}$

в) Со метод на доведување до противречност или со користење на еквивалентни формули да се провери дали следнава формула е тавтологија: $((p\Rightarrow q)\Lambda(p\Rightarrow q))\Rightarrow q$

Задача 2: (8) Да се запишат со исказни формули следните аргументи и да се докаже:

Ќе го положам испитот ако учам. Ако одам на забава ќе го потрошам времето. Ќе учам или ќе одам на забава.

Последица: Ќе го потрошам времето или ќе положам.

Задача 3: (8) Користејќи предикати и квантификатори запишете ја реченицата и направете нејзина негација:

Секој човек има точно 2 биолошки родители.

Задача 4. (6+8)

- а) Да се дефинира со користење на квантификатори, предикати и исказни променливи кога придружувањето $f:M \to N$ е пресликување односно функција. Да се направи негација на исказот односно кога придружувањето не е пресликување.
- б) Нека f е пресликување дефинирано како f: $A \rightarrow B$. Нека S и T се подмножества од множеството A. Покажи дека: $f(S \cup T) = f(S) \cup f(T)$

Задача 5. (2+2+6) Да се дефинира:

- а) А-В (разлика)
- б) АхВ
- в) Да се докаже $(A \cup B)xC = (AxC) \cup (BxC)$

Задача 6. (10) Пресметај: $101_2^{7DE_{16}} (mod 37_8)$

Задача 7. (10) Со помош на принципот на математичка индукција докажи дека за секој природен број n≥1 важи

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{n(3n - 1)}{2}$$

Задача 8. (2+5+6+5)

а) Да се дефинира рефлексивна релација на произволно непразно множество М.

Нека A= $\{1, 2, 3, 4, 5\}$ и α е релација на A дефинирана со: $x \alpha y \Leftrightarrow x \in \{1,2\} \land y > x + 2$

- б) Заокружи го точниот одговор
- 1. α∈R
- 2. α∈S
- 3. α∈T
- 4. α ∈AS
- 5. α ∈AR
- в) Релацијата α проширија до еквиваленција α*
- г) Најди го Α/α*

Задача 9. (4+2+6)

а) Да се докаже дека релацијата α дефинирана на множеството природни броеви $N=\{1,2,3..\}$ со $x\alpha y$ акко x|y е релација за подредување.

На множеството $M=\{2, 3, 4, 5, 6, 8, 9, 10, 12\}$ и релацијата α од a):

в) Пополни:	
најмал елемент е	
најголем елемент е	
максимални елементи се	
минимални елементи се	_
г) Пополни:	
Ако $B=\{3,4\}$	
B*=	
infB=	

Испит Јануари 2013 Дискретна математика 1 2 група

1.	Задача	1:	(4+1+5))

 $p = ((q \Rightarrow q) \land (q \Rightarrow q)) \Rightarrow q$

а) Дополни да се добие точ	на формула		
$p \lor \bot \equiv$	$p \wedge (q \vee r) \equiv$	¬p∧¬q≡	$\neg(p \rightarrow \neg q) \equiv$
б) Дополни да се биде точн	ю правилото		
$\neg q$			
<u>p→q</u> ∴			
в) Со метод на доведување формули да се провери дал		_	вивалентни

Задача 2: (8) Да се запишат со исказни формули следните аргументи и да се докаже:

Ќе има инфлација ако се зголемат цените. Ако падне производството ќе се намалат платите. Ќе се зголемат цените или ќе падне производството.

Последица: Ќе се намалат платите или ќе има инфлација.

Задача 3: (8) Користејќи предикати и квантификатори запишете ја реченицата и направете нејзина негација:

Секој студент има точно 2 омилени професори.

Задача 4. (6+8)

- а) Да се дефинира со користење на квантигикатори,предикати и исказни променливи кога пресликување (функција) f:M→N е инјекција. Да се направи негација на исказот односно кога пресликувањето не е инјекција.
- б) Нека f е пресликување дефинирано како f: A \to B. Нека S и T се подмножества од множеството A. Покажи дека: $f(S \cap T) \subset f(S) \cap f(T)$

Задача 5. (2+2+6) Да се дефинира:

- а) А+В (симетрична разлика)
- б) В(А) (булеан или партитивно множество)
- в) Да се докаже $(A \cap B)xC = (AxC) \cap (BxC)$

Задача 6. (10) Пресметај: $111_2^{BB6_{16}} (mod 23_8)$

Задача 7. (10) Со помош на принципот на математичка индукција докажи дека за секој природен број п≥1 важи

$$1^{2} + 2^{2} + 3^{2} + \dots + (2n)^{2} = \frac{n(2n+1)(4n+1)}{3}$$

Задача 8. (2+5+6+5)

а) Да се дефинира симетрична релација на произволно непразно множество М.

Нека A={2, 4, 5, 6, 8} и α е релација на A дефинирана со: $x \alpha y \Leftrightarrow x = y \lor x = 2*y$

- б) Заокружи го точниот одговор
- 1. $\alpha \in R$
- 2. α∈S
- 3. $\alpha \in T$
- 4. α ∈AS
- 5. α ∈AR
- в) Релацијата α проширија до еквиваленција α*
- г) Најди го Α/α*

Задача 9. (4+2+6)
а) Да се докаже дека релацијата α дефинирана на множеството природни броеви $N=\{1,2,3\}$ со $x\alpha y$ акко $x y\>$ е релација за подредување.
На множеството $M=\{3, 4, 5, 6, 8, 9, 10, 12, 15\}$ и релацијата α од a):
б) Да се нацрта Хасеовиот дијаграм
в) Пополни:
најмал елемент е
најголем елемент е
максимални елементи се
минимални елементи се
г) Пополни:
Ако $B=\{3, 6\}$
B*=
infB=

Испит Јануари 2013 Дискретна математика 1 3 група

1	Задача	1.	$(4 \pm 1 \pm 5)$	١
1.	Ј адача	1.	(4+1+3)	,

а) Д	(ополни да	а се добие	точна (рормула	
------	------------	------------	---------	---------	--

$$p \vee T \equiv \qquad \qquad (p \wedge q) \vee (p \wedge r) \equiv \qquad \qquad \neg (p \wedge q) \equiv \qquad \qquad \neg (p \rightarrow q) \equiv$$

б) Дополни да се биде точно правилото (3x1+2)

p∨q

<u>¬p</u>

:.

в) Со метод на доведување до противречност или со користење на еквивалентни формули да се провери дали следнава формула е тавтологија $(p\Lambda(p\Rightarrow q))\Rightarrow q$

Задача 2: (8) Да се запишат со исказни формули следните аргументи и да се докаже:

Ако е инсталиран софтверот лабораторијата ќе работи. Ако имаме лабораториски ќе ги завршиме проектите. Софтверот ќе биде инсталиран или ќе имаме лабораториски вежби.

Последица: Ќе ги завршиме проектите или лабораторијата ќе работи.

Задача 3: (8) Користејќи предикати и квантификатори запишете ја реченицата и направете нејзина негација:

На секој предмет има точно двајца наставници.

Задача 4. (6+8)

- а) Да се дефинира со користење на квантификатори,предикати и исказни променливи кога пресликување (функција) f:M→N е сурјекција. Да се направи негација на исказот односно кога пресликувањето не е сурјекција.
- б) Нека f е пресликување дефинирано како f: $A \rightarrow B$. Нека S и T се подмножества од множеството B. Покажи дека: $f^1(S \cup T) = f^1(S) \cup f^1(T)$

Задача 5. (2+2+6) Да се дефинира:

- a) AxB
- б) А+В (симетрична разлика)
- в) Да се докаже $Mx(N \cup K) = (MxN) \cup (MxK)$

Задача 6. (10) Пресметај: $1011_2^{83F_{16}} (mod 10_8)$

Задача 7. (10) Со помош на принципот на математичка индукција докажи дека за секој природен број $n \ge 1$ важи $1 * 1! + 2 * 2! + 3 * 3! + \cdots + n * n! = (n + 1)! - 1$

Задача 8. (2+5+6+5)

a) Да се дефинира транзитивна релација на произволно непразно множество M.

Нека $A=\{1, 2, 4, 5, 8\}$ и α е релација на A дефинирана со: $x \alpha y \Leftrightarrow x + x = y \vee 2*y = x$

- б) Заокружи го точниот одговор
- 1. $\alpha \in R$
- **2**. α∈S
- 3. α∈T
- 4. α ∈AS
- 5. α ∈AR
- в) Релацијата α проширија до еквиваленција α*
- г) Најди го Α/α*

Задача 9. (4+2+6)

а) Да се докаже дека релацијата α дефинирана на множеството природн	и броеви
$N=\{1,2,3\}$ со х α у акко х $ $ у е релација за подредување.	

На множеството $M=\{4, 5, 6, 8, 9, 10, 12, 15, 16\}$ и релацијата α од a):

в) Пополни:
најмал елемент е
најголем елемент е
максимални елементи се
минимални елементи се
г) Пополни: Ако B={4, 6} В*=

б) Да се нацрта Хасеовиот дијаграм

Испит Јануари 2013 Дискретна математика 1 4 група

1	Задача	1.	(1)	1 (5)	
1.	эадача	1:	(4 +	1+31	١

а) Дополни да се добие точна формула

$$p \land \bot \equiv \qquad (p \lor q) \land (p \lor r) \equiv \qquad \neg (p \lor q) \equiv \qquad \neg (p \hookleftarrow q) \equiv$$

б) Дополни да се биде точно правилото

 $\frac{p \lor q}{\neg p \lor r}$

в) Со метод на доведување до противречност или со користење на еквивалентни формули да се провери дали следнава формула е тавтологија $((p\Rightarrow q) \land \exists p) \Rightarrow q$

Задача 2: (8) Да се запишат со исказни формули следните аргументи и да се докаже:

Ќе има предвремени избори ако пратениците ги вратат мандатите. Ако го промениме името ќе не примат во Еврпска унија. Пратениците ги вратат мандатите или ќе го промениме името.

Последица: Ќе не примат во Европска унија или ќе има предвремени избори.

Задача 3: (8) Користејќи предикати и квантификатори запишете ја реченицата и направете нејзина негација:

Секој студент има точно два омилени предмети.

Задача 4. (6+8)

- а) Да се дефинира со користење на квантигикатори,предикати и исказни променливи кога придружувањето $f:M \to N$ е пресликување односно функција. Да се направи негација на исказот односно кога придружувањето не е пресликување.
- б) Нека f е пресликување дефинирано како f: $A \rightarrow B$. Нека S и T се подмножества од множеството B. Покажи дека: $f^1(S \cap T) = f^1(S) \cap f^1(T)$

Задача 5. (2+2+6) Да се дефинира:

- a) A^C
- б) В(А) (булеан или партитивно множество)
- в) Да се докаже $Mx(N \cap K) = (MxN) \cap (MxK)$

Задача 6. (10) Пресметај: $1101_2^{3E7_{16}} (mod 14_8)$

Задача 7. (10) Со помош на принципот на математичка индукција докажи дека за секој природен број n \geq 1 важи: $1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \leq 2 - \frac{1}{n}$

Задача 8. (2+5+6+5)

а) Да се дефинира антисиметрична релација на произволно непразно множество М.

Нека A= $\{1, 3, 5, 6, 8\}$ и α е релација на A дефинирана со: x α y \Leftrightarrow x<5 \wedge y>5

- б) Заокружи го точниот одговор
- 1. $\alpha \in R$
- 2. α∈S
- 3. α ∈T
- 4. α∈AS
- 5. $\alpha \in AR$
- в) Релацијата α проширија до еквиваленција α*
- г) Најди го Α/α*

Задача 9. (4+2+6)

а) Да се докаже дека релацијата α дефинирана на множеството природни броеви $N=\{1,2,3..\}$ со $x\alpha y$ акко x|y е релација за подредување.

На множеството $M=\{5, 6, 7, 8, 9, 10, 12, 15, 16, 18, 20\}$ и релацијата α од a):

б) Да се нацрта Хасеовиот дијаграм
в) Пополни:
најмал елемент е
најголем елемент е
максимални елементи се
минимални елементи се
г) Пополни:
Ако $B=\{4, 6\}$
B*=
supB=