RCP211 – Modèles génératifs

Motivations – lien avec l'estimation de densité – autoencodeurs

Nicolas Audebert nicolas.audebert@lecnam.net

Conservatoire national des arts & métiers

9 novembre 2021

Motivations 1/35

Plan du cours

- 1 Motivations
- 2 Lien avec l'estimation de densité
- 3 Chaînes de Markov
- 4 Auto-encodeurs

Motivations 2 / 35

Génération de texte

Produire du texte qui *ressemble à*, produire du texte à partir d'une *accroche*

- Agents conversationnels
- Traduction automatique
- Reporting
- Marketing
- Propagande
- Désinformation

Motivations 3 / 35

Synthèse vocale

Produire un son, généralement conditionné à du texte

Applications

- Text-to-speech
- Robots "parlants"
- Doublage
- Jeux vidéo
- Usurpation d'identité

Motivations 4/35

Synthèse d'image

Produire une image qui ressemble à, qui contient X

Applications

- Effets spéciaux
- Simulations
- Retouche d'image
- Usurpation d'identité

https:

//thispersondoesnotexist.com/

TEXT PROMPT

an armchair in the shape of an avocado [...]

AI-GENERATED IMAGES

Motivations 5 / 35

Cadre formel de la modélisation générative

Considérons deux variables aléatoires X et Y:

- X est la variable explicative (l'observation),
- Y est la variable à expliquer (la classe).

Modèle discriminatif

On cherche à déterminer les valeurs que peut prendre Y en fonction de X, c'est-à-dire la probabilité conditionnelle :

 $\mathbb{P}(Y|X)$

En pratique

X et Y sont généralements à valeurs dans un ensemble discret (mais de grande dimension).

Motivations 5 / 35

Cadre formel de la modélisation générative

Considérons deux variables aléatoires X et Y:

- X est la variable explicative (l'observation),
- Y est la variable à expliquer (la classe).

Modèle discriminatif

On cherche à déterminer les valeurs que peut prendre Y en fonction de X, c'est-à-dire la probabilité conditionnelle :

 $\mathbb{P}(Y|X)$

En pratique

X et Y sont généralements à valeurs dans un ensemble discret (mais de grande dimension).

Motivations 5 / 35

Cadre formel de la modélisation générative

Considérons deux variables aléatoires X et Y:

- X est la variable explicative (l'observation),
- Y est la variable à expliquer (la classe).

Modèle discriminatif

On cherche à déterminer les valeurs que peut prendre Y en fonction de X, c'est-à-dire la probabilité conditionnelle :

$$\mathbb{P}(Y|X)$$

En pratique

X et Y sont généralements à valeurs dans un ensemble discret (mais de grande dimension).

Un exemple

Considérons le jeu de données suivant :

)
)

Probabilités conditionelles

<i>x</i> ₁	x_2	$\mid \mathbb{P}(y=1 x_1,x_2)$	$\mathbb{P}(y=0 x_1,x_2)$
0.5	-1.	0.0	1.0
0.0	-1.2	0.0	1.0
-0.5	-1. -1.2 0.0	1.0	0.0

Modèle discriminatif paramétrisé par θ

 \blacksquare minimisation de la KL entre les prédictions $\mathbb{P}_{\theta}(Y|X)$ et $\mathbb{P}(Y|X)$

$$D_{\mathrm{KL}}(\mathbb{P}||Q) = \mathbb{P}(y=0|X)\log\frac{\mathbb{P}(y=0|X)}{\mathbb{P}(\hat{y}=0|X)} + \mathbb{P}(y=1|X)\log\frac{\mathbb{P}(y=1|X)}{\mathbb{P}(\hat{y}=1|X)}$$

Motivations 7 / 35

Limites des modèles discriminatifs

- Le modèle discriminatif apprend directement $\mathbb{P}(Y|X)$
- On classe le signal sans savoir "pourquoi"

Limite

Avec un modèle discriminatif, il est impossible de répondre à la question : à quoi ressemble une observation de la classe y? Le modèle discriminatif apprend les frontières entre classes, mais **pas** la forme des classes.

Motivations 8 / 35

Modèle génératif

Considérons deux variables aléatoires X et Y:

- X est la variable explicative (l'observation),
- Y est la variable à expliquer (la classe).

Modèle génératif

On cherche à déterminer quelles valeurs X sont susceptibles d'avoir provoqué Y, c'est-à-dire :

$$\mathbb{P}(X|Y)$$

ou la probabilité conjointe d'avoir X et Y

$$\mathbb{P}(X, Y) = \mathbb{P}(X|Y) \cdot \mathbb{P}(X) = \mathbb{P}(Y|X) \cdot \mathbb{P}(Y|X)$$

Motivations 8 / 35

Modèle génératif

Considérons deux variables aléatoires X et Y:

- X est la variable explicative (l'observation),
- Y est la variable à expliquer (la classe).

Modèle génératif

On cherche à déterminer quelles valeurs X sont susceptibles d'avoir provoqué Y, c'est-à-dire :

$$\mathbb{P}(X|Y)$$

ou la probabilité conjointe d'avoir X et Y:

$$\mathbb{P}(X, Y) = \mathbb{P}(X|Y) \cdot \mathbb{P}(X) = \mathbb{P}(Y|X) \cdot \mathbb{P}(Y)$$

Motivations 9/3

Lien entre modèle discriminatif et modèle génératif

On peut transformer un modèle génératif en modèle discriminatif en utilisant le **théorème de Bayes** :

Formule de Bayes

$$\mathbb{P}(Y|X) = \frac{\mathbb{P}(X|Y) \cdot \mathbb{P}(Y)}{\mathbb{P}(X)}$$

 $\mathbb{P}(Y)$ est l'a priori bayésien

Transformation

Si je connais une approximation de $\mathbb{P}(X|Y)$ alors je peux construire le classifieur :

$$\arg\max_{i} \mathbb{P}(Y = y_i | X) = \mathbb{P}(X | Y = y_i) \cdot \mathbb{P}(Y = y_i)$$

 $\mathbb{P}(X)$ ne dépend pas de y_i et n'intervient pas dans l' $rg \max$

Lien entre modèle discriminatif et modèle génératif

On peut transformer un modèle génératif en modèle discriminatif en utilisant le **théorème de Bayes** :

Formule de Bayes

$$\mathbb{P}(Y|X) = \frac{\mathbb{P}(X|Y) \cdot \mathbb{P}(Y)}{\mathbb{P}(X)}$$

 $\mathbb{P}(\mathbf{Y})$ est l'a priori bayésien

Transformation

Si je connais une approximation de $\mathbb{P}(X|Y)$ alors je peux construire le classifieur :

$$rg \max_{i} \mathbb{P}(Y = y_i | X) = \mathbb{P}(X | Y = y_i) \cdot \mathbb{P}(Y = y_i)$$

 $\mathbb{P}(X)$ ne dépend pas de y_i et n'intervient pas dans l' $\arg \max$.

Un exemple

Probabilité d'appartenir à la classe y sachant $x : \mathbb{P}(Y|X)$

$$| y = 0 | y = 1$$

$$| x = 1.0 | 1. 0.$$

$$| x = 2.0 | 0.5 0.5$$

Probabilité d'avoir x et $y : \mathbb{P}(X, Y) = \mathbb{P}(Y|X)\mathbb{P}(X)$

$$\begin{vmatrix} y = 0 & y = 1 \\ x = 1.0 & 0.5 & 0. \\ x = 2.0 & 0.25 & 0.25 \end{vmatrix}$$

Motivations 11 / 35

Avantages des modèles génératifs

Génération

La connaissance de $\mathbb{P}(X,Y)$ permet de produire de nouvelles données en échantillonnant dans la distribution jointe.

Compréhension

La connaissance de $\mathbb{P}(X|Y)$ permet de comprendre quelles données x sont les plus plausibles pour une catégorie y donnée.

Combinaison

Si j'ajoute une classe y_{n+1} , il me suffit d'estimer $\mathbb{P}(X|Y=y_{n+1})$ pour avoir la connaissance de $\mathbb{P}(X|Y\cup\{y_{n+1}\})$. Autrement dit, il est facile d'enrichir le modèle a posteriori.

Motivations 11 / 35

Avantages des modèles génératifs

Génération

La connaissance de $\mathbb{P}(X,Y)$ permet de produire de nouvelles données en échantillonnant dans la distribution jointe.

Compréhension

La connaissance de $\mathbb{P}(X|Y)$ permet de comprendre quelles données x sont les plus plausibles pour une catégorie y donnée.

Combinaison

Si j'ajoute une classe y_{n+1} , il me suffit d'estimer $\mathbb{P}(X|Y=y_{n+1})$ pour avoir la connaissance de $\mathbb{P}(X|Y\cup\{y_{n+1}\})$. Autrement dit, il est facile d'enrichir le modèle a posteriori.

Motivations 11 / 35

Avantages des modèles génératifs

Génération

La connaissance de $\mathbb{P}(X,Y)$ permet de produire de nouvelles données en échantillonnant dans la distribution jointe.

Compréhension

La connaissance de $\mathbb{P}(X|Y)$ permet de comprendre quelles données x sont les plus plausibles pour une catégorie y donnée.

Combinaison

Si j'ajoute une classe y_{n+1} , il me suffit d'estimer $\mathbb{P}(X|Y=y_{n+1})$ pour avoir la connaissance de $\mathbb{P}(X|Y\cup\{y_{n+1}\})$. Autrement dit, il est facile d'enrichir le modèle a posteriori.

Motivations 12 / 35

Points de difficultés

Performance des modèles discriminatifs

Un modèle discriminatif estime directement $\mathbb{P}(Y|X)$. Cette approche directe tend en pratique à être plus simple et plus performante en classification.

Dimensionalité

En général, X est de grande dimension. Par conséquent, $\mathbb{P}(X|Y)$ peut être difficile à estimer dans un modèle génératif.

Motivations 13 / 35

Quiz

Un modèle \mathcal{M} renvoie pour une donnée une probabilité p. Ce modèle est-il génératif ou discriminatif?

- 1. Discriminatif
- 2 2. Génératif
- 3. On ne peut pas savoir.

Plan du cours

- 1 Motivations
- 2 Lien avec l'estimation de densité
- 3 Chaînes de Markov
- 4 Auto-encodeurs

Estimation de densité

Densité de probabilité

On appelle **densité de probabilité** de la variable aléatoire X à valeurs dans \mathbb{R}^d une fonction f telle que, pour tout pavé $A \subset \mathbb{R}^d$:

$$\mathbb{P}(X \in A) = \int_A f(x) \mathrm{d}x$$

Estimation de densité

À partir de (x_1, \ldots, x_n) observations de X, on cherche \hat{f} :

$$\|\hat{f} - f\| \le \epsilon .$$

- \rightarrow on modélise $\mathbb{P}(X)$
- ightarrow idem à un modèle génératif (sans l'aspect conditionnel)

Méthode des noyaux

Méthode des noyaux

Soient x_1, \ldots, x_n des observations de X et Φ une fonction noyau. On définit la densité approchée par :

$$x \rightarrow \hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \Phi(x, x_i)$$

c'est-à-dire la somme des noyaux centrés sur chaque observation.

La méthode des noyaux est une non-paramétrique d'estimation de densité :

ightarrow nombre de "paramètres" augmente avec la quantité de données

Le modèle de mélange gaussien : un modèle génératif

Hypothèse : la densité f recherchée est une somme de gaussiennes.

Modèle de mélange gaussien

On cherche une densité de la forme :

$$\hat{f}_{\alpha,\theta}(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i \Phi_i(\mathbf{x}|\theta_i)$$

- \blacksquare Φ_i une loi normale paramétrisée par θ_i ,
- lacktriangledown α_i le poids de la composante i,
- *m* le nombre de **composantes** du mélange.

Modèle paramétrique : on cherche les paramètres θ_i des gaussiennes qui minimisent l'erreur. Leur nombre ne dépend pas du nombre d'observations.

Mélange gaussien : génération

Une fois les paramètres du mélange fixés, on peut échantillonner la nouvelle variable aléatoire \hat{X} de probabilité :

$$\mathbb{P}(\hat{X}) = \sum_{i=1}^{m} \alpha_i \mathcal{N}(\mu_i, \sigma_i)$$

Il est également possible d'échantillonner sur une composante (= une classe) spécifique suivant la loi :

$$\mathbb{P}(X|Y=i) = \mathcal{N}(\mu_i, \sigma_i)$$

Mélange gaussien : classification

La classe de x est la valeur de i pour laquelle $\mathbb{P}(Y=i|X=x)$ est la plus élevée. Par le théorème de Bayes :

$$\arg \max_{i} \left[\log \mathbb{P}(Y=i|X=x) \right] = \arg \max_{i} \left[\log \frac{\mathbb{P}(X=x|Y=i) \cdot \mathbb{P}(Y=i)}{\mathbb{P}(X=x)} \right]$$

$$= \arg \max_{i} \left[\log \mathbb{P}(X=x|Y=i) + \log \mathbb{P}(Y=i) \right]$$

$$= \arg \max_{i} \left[\log f_{i}(x|\theta_{i}) + \log \alpha_{i} \right]$$
(1)

où α_i et θ_i sont respectivement le poids et les paramètres de la ℓ^{e} composante du mélange.

Interprétation

La classe de x est la composante pour laquelle x a la plus haute (log) vraisemblance.

Plan du cours

- 1 Motivations
- 2 Lien avec l'estimation de densité
- 3 Chaînes de Markov
- 4 Auto-encodeurs

19 / 35

Chaîne de Markov

Définition

Un **processus de Markov** (à temps discret) est une séquence $(X_i)_{1 \le i \le ...}$ où X est une variable aléatoire qui prend ses valeurs dans un espace d'états E. On dit que X_n est l'état du processus à l'instant n. Si |E| est fini, on parle de **chaîne de Markov**.

Propriété de Markov

La prédiction du futur ne nécessite pas de connaître le passé, seulement le présent :

$$\mathbb{P}(X_{n+1}=j|X_0=i_0,X_1=i_1,\ldots,X_n=i)=\mathbb{P}(X_{n+1}=j|X_n=i)$$

Modèle autorégressif analogue à AR(1)

Chaîne de Markov

Définition

Un **processus de Markov** (à temps discret) est une séquence $(X_i)_{1 \le i \le ...}$ où X est une variable aléatoire qui prend ses valeurs dans un espace d'états E. On dit que X_n est l'état du processus à l'instant n. Si |E| est fini, on parle de **chaîne de Markov**.

Propriété de Markov

La prédiction du futur ne nécessite pas de connaître le passé, seulement le présent :

$$\mathbb{P}(X_{n+1} = j | X_0 = i_0, X_1 = i_1, \dots, X_n = i) = \mathbb{P}(X_{n+1} = j | X_n = i)$$

Modèle autorégressif analogue à AR(1)

Probabilités de transition

Homogénéité

Généralement, on suppose que la probabilité de passer d'un état i à un état j ne dépend pas du temps :

$$\mathbb{P}(X_{n+1} = j | X_n = i) = \mathbb{P}(X_n = j | X_{n-1} = i)$$

On note

$$p_{i,i} := \mathbb{P}(X_1 = i | X_0 = i)$$

la **probabilité de transition** de l'état *i* à l'état *j*.

Si n est entier, on peut construire $M=(p_{i,j})_{1\leq i\leq n,1\leq j\leq n}$ la matrice de transition.

La chaîne de Markov comme modèle génératif

Estimation de la matrice de transition

À partir de séquences observées, on peut estimer la matrice de transition $\mathbb{P}(X_t = j | X_{t-1} = i)$.

- Approche fréquentiste
 - \blacksquare on compte les nombres d'occurrences des paires d'états (i,j)

Échantillonnage

Connaissant X_0 et M, on peut générer la séquence X_1, X_2, \ldots, X_n la plus probable :

- $X_t = i$
- lacksquare à chaque t, $X_{t+1} = \operatorname{arg} \max_{j} p_{i,j}$

Chaîne de Markov d'ordre k

On parle de chaîne de Markov d'ordre k lorsque la prédiction du futur ne nécessite pas de connaître plus de k pas de temps dans le passé :

$$\mathbb{P}(X_{n+1} = j | X_0 = i_0, \dots, X_n = i) = \mathbb{P}(X_{n+1} = j | X_n = i, \dots, X_{n-k} = i_{n-k})$$

Dans ce cas, la matrice de transition est multidimensionnelle et on cherche à estimer

$$p_{i_1,i_2,...,i_k} = \mathbb{P}(X_t = i_k | X_{t-1} = i_{k-1}, X_{t-2} = i_{k-2},..., X_{t-k} = i_1)$$

Attention

La complexité du problème est exponentielle selon k. Si le cardinal de l'espace d'états E est grand, la matrice de transition complète est énorme (on peut parfois s'en sortir si beaucoup de transitions sont impossibles, i.e. $p_{i,i}=0$).

Chaînes de Markov 23 / 35

Génération de texte

 X_i : le i^e mot de la phrase

E: n mots du dictionnaire

M: matrice de transition $n \times n$

Modélisation par une chaîne de Markov

On suppose que l'occurrence d'un mot ne dépend que des k mots qui le précèdent.

 \Rightarrow chaîne de Markov d'ordre k

Exemple

Jeu de données (4 phrases) :

- "Ali est ici."
- "Ali aime le bleu."
- "Le vélo d'Ali est bleu."
- "Qui est Ali?"

Vocabulaire : $E = \{ Ali, est, ici, ".", aime, le, bleu, vélo, d', qui, "?" \} Bi-grammes commençant par <math>Ali$: "Ali, est" (2 fois), "Ali, aime" (1 fois), "Ali, ?" (1 fois).

$p_{i,j}$	AÌi	est	ici	""	aime	le	bleu	vélo	ď	qui	" ?"
Ali	0	0.5	0	0	0.25	0	0	0	0	0	0.25

Chaînes de Markov 25 / 35

Quiz

Considérons un corpus où les suites de mots :

- (1) " j'aime l'intelligence artificielle "
- (2) "machine learning"

n'apparaîssent jamais.

En utilisant une chaîne de Markov (d'ordre 1), laquelle de ces propositions est vrai :

- 1. Je peux générer (1) et (2)
- 2 2. Je peux générer (1) mais pas (2)
- 3. Je peux générer (2) mais pas (1)
- 4. Je ne peux générer ni (1), ni (2)

Auto-encodeurs 25 / 35

Plan du cours

- 1 Motivations
- 2 Lien avec l'estimation de densité
- 3 Chaînes de Markov
- 4 Auto-encodeurs

Définition

Soit une variable aléatoire X à valeurs dans \mathbb{R}^n . Un réseau de neurones artificiels **auto-encodeur** modélise une fonction \mathcal{H} telle que :

$$\|\mathcal{H}(x) - x\| \le \epsilon$$

L'auto-encodeur se décompose en deux parties :

- lacksquare un encodeur, i.e. une fonction $\mathcal{E}: \mathbb{R}^n \to \mathbb{R}^d$,
- lacksquare un décodeur, i.e. une fonction $\mathcal{D}: \mathbb{R}^d \to \mathbb{R}^n$.

avec $\mathcal{H} = \mathcal{D} \circ \mathcal{E}$.

En principe, $d \le n$: l'encodeur **réduit la dimension** de x.

On note $z = \mathcal{E}(x)$ le **code** associé à x.

Auto-encodeurs 27 / 35

Apprentissage

L'auto-encodeur $\mathcal H$ apprend à **reconstruire** l'entrée x. On cherche donc les poids θ tels que :

$$\theta^* = \arg\min_{\theta} \mathcal{L}(x, \hat{x}) = \|\mathcal{D}(\mathcal{E}(x)) - x\|$$

où $\mathcal L$ est une fonction de coût de régression (typiquement, erreur quadratique moyenne ou erreur absolue).

Encodeur

L'encodeur réduit la dimension de x.

Décodeur

Le décodeur reconstruit x à partir du code réduit z.

Auto-encodeurs 28 / 35

Structure visuelle

Auto-encodeurs 29 / 35

Auto-encodeur entièrement connecté à une couche

Le perceptron à une seule couche cachée forme un auto-encodeur simple :

$$\mathbf{z} = \sigma(\mathbf{W}x + \mathbf{b})$$

$$\widehat{\mathbf{x}} = \sigma'(\mathbf{W}'z + \mathbf{b}')$$

avec W, W' les matrices de poids, b, b' les vecteurs de biais et σ la non-linéarité.

Lien avec l'analyse en composantes principales

Dans le cas où $\sigma=\mathrm{Id}$, alors l'auto-encodeur réalise une opération analogue à l'analyse en composantes principales (sans l'orthogonalité).

Intérêt des auto-encodeurs

Les auto-encodeurs réalisent une **réduction de dimension avec perte minimale d'information**.

Comparaison avec l'analyse en composantes principales

- Si $\sigma = \mathrm{Id}$, AE \approx ACP,
- \blacksquare Sinon, AE \approx kernel-ACP où le noyau est appris automatiquement.

L'AE non-linéaire est plus riche que l'ACP.

Auto-encodeurs et modèles génératifs

L'espace des codes $\mathcal{Z} = \mathbb{R}^d$ est appelé **espace latent**.

Génération

Le décodeur \mathcal{D} est un modèle génératif $\mathbb{P}(X|z)$.

Échantillonner dans \mathcal{Z} permet de produire des observations $x \in \mathbb{R}^n$.

Espace latent

Définition

Un **espace latent** est un espace caché qui explique bien les données. Des différences importantes dans l'espace des observations peuvent être expliquée par de faibles variations dans l'espace latent du fait de régularités (par exemple, même sémantique).

Exemples

Plongements lexicaux (*Word2Vec...*), *feature maps* d'un CNN, espace intermédiaire d'un auto-encodeur, projection par t-SNE.

Mélanges

Le jeu d'apprentissage (x_1, \ldots, x_n) permet de connaître les codes (z_1, \ldots, z_n) .

Interpolation dans l'espace latent

Considérons deux observations x_1 et x_2 et leurs codes z_1 et z_2 . Elles peuvent être par exemple de classes différentes y_1 et y_2 . Il est possible de "reconstruire" une observation x à mi-chemin en reconstruisant le code moyen :

$$x_{\mathsf{moy}} = \mathcal{D}\left(\frac{\mathsf{z}_1 + \mathsf{z}_2}{2}\right)$$

Plus généralement, il est possible d'interpoler linéairement entre x_1 et x_2 :

$$\mathbf{x}_{\alpha} = \mathcal{D}\left(\alpha \cdot \mathbf{z}_1 + (1 - \alpha) \cdot \mathbf{z}_2\right)$$

- lacksquare On ne connaît pas la distribution qui sous-tend l'espace latent $\mathcal Z$
 - (on pourrait l'estimer)
- L'encodeur n'est généralement pas injectif : deux observations x_1, x_2 peuvent avoir des projections $z_1 \approx z_2$
- \blacksquare Quelle dimension d donner à \mathbb{Z} ?
- Aucune garantie que les codes z se situant dans des "trous" dans \mathcal{Z} (zones de faible densité) aient du sens une fois décodés.

- lacksquare On ne connaît pas la distribution qui sous-tend l'espace latent ${\mathcal Z}$
 - (on pourrait l'estimer)
- L'encodeur n'est généralement pas injectif : deux observations x_1, x_2 peuvent avoir des projections $z_1 \approx z_2$
- **Quelle dimension** d donner à Z
- Aucune garantie que les codes z se situant dans des "trous" dans 2 (zones de faible densité) aient du sens une fois décodés.

- lacksquare On ne connaît pas la distribution qui sous-tend l'espace latent $\mathcal Z$
 - (on pourrait l'estimer)
- L'encodeur n'est généralement pas injectif : deux observations x_1, x_2 peuvent avoir des projections $z_1 \approx z_2$
- **Quelle dimension** d donner à \mathbb{Z} ?
- Aucune garantie que les codes z se situant dans des "trous" dans 2 (zones de faible densité) aient du sens une fois décodés.

- On ne connaît pas la distribution qui sous-tend l'espace latent Z
 (on pourrait l'estimer)
- L'encodeur n'est généralement pas injectif : deux observations x_1, x_2 peuvent avoir des projections $z_1 \approx z_2$
- **Q**uelle dimension d donner à \mathbb{Z} ?
- Aucune garantie que les codes z se situant dans des "trous" dans \mathcal{Z} (zones de faible densité) aient du sens une fois décodés.

Quiz

Quel est l'avantage principal d'un auto-encodeur par rapport à une analyse en composantes principales?

- 1. L'auto-encodeur est plus rapide
- 2 2. L'auto-encodeur a une plus grande capacité
- 3. L'auto-encodeur a moins de paramètres
- 4 4. L'auto-encodeur a une meilleure reconstruction