Input/Output

Operating Systems Kartik Gopalan

Chapter 5, Modern Operating Systems — Tanenbaum Chapter 13, OS Concepts — Silberschatz (optional)

Layering in the I/O subsystem

How CPU and I/O devices communicate

A single-bus architecture

A dual-bus memory architecture

Device Controllers

- I/O devices may have
 - mechanical components
 - electronic components
- Device controller is the electronic component
 - may be able to handle multiple devices
- Controller's tasks
 - Intermediary between I/O devices, CPU, and memory
 - convert serial bit stream to block of bytes
 - perform error correction as necessary

Programmed I/O

Printing a string: CPU transfers one byte at a time to device

Interrupts

Example: Intel Pentium Interrupt Vector Table

vector number	description
0	divide error
1	debug exception
2	null interrupt
3	breakpoint
4	INTO-detected overflow
5	bound range exception
6	invalid opcode
7	device not available
8	double fault
9	coprocessor segment overrun (reserved)
10	invalid task state segment
11	segment not present
12	stack fault
13	general protection
14	page fault
15	(Intel reserved, do not use)
16	floating-point error
17	alignment check
18	machine check
19–31	(Intel reserved, do not use)
32–255	maskable interrupts

Interrupt-Driven I/O

Writing a string to the printer using interrupt-driven I/O

- (a) Code executed when print system call is made
 - Starts off by printing the first character
- (b) Interrupt service procedure
 - called every time the printer completes printing one character and generates an interrupt

Direct Memory Access (DMA)

- to directly transfer data to/from the main memory.
- Frees up the CPU for other tasks

```
copy_from_user(buffer, p, count);
set_up_DMA_controller();
scheduler();
```

(a)

Code executed by print system call

```
acknowledge_interrupt();
unblock_user();
return_from_interrupt();
```

(b)

Interrupt service routine (ISR) called when the entire print job is completed

Device Classification

- Character (char) devices
 - byte-stream abstraction
 - E.g. keyboard, mouse
- block devices
 - reads/writes in fixed block granularity
 - E.g. hard disks, CD drives
- network devices
 - message abstraction
 - send/receive packets of varying sizes
 - E.g. network interface cards
- others
 - USB, SCSI, Firewire, I2O
 - Can (mostly) be used to implement one or more of the above three classes

Hard Disks

Hard disk organizes data in tracks and sectors

- Seeking: Disk head moves across tracks
- Rotation: Disk rotates to bring the correct sector under disk head

Figure 5-18. (a) Physical geometry of a disk with two zones. (b) A possible virtual geometry for this disk.

Factors affecting read/write latency

- Seek time
 - Time to move magnetic head from one track to next.
 - Average 5 to 10 milliseconds.
- Rotational delay
 - Time to rotate the disk to reach the sector containing the data
 - Depends on the rotational speed of the disk
 - E.g. A disk with 15,000 rotations per minute (rpm) will have 1 rotation every 4 milliseconds, or an average of 2 millisecond rotational latency (assuming that average latency is one-half of a rotational period).
- Actual transfer time
 - Time to transfer data from the disk sector to memory
 - In microseconds
- Seek time dominates
 - For most practical purposes, rotational and transfer times are ignored.

Disk Arm Scheduling Algorithms

Shortest Seek First (SSF) disk scheduling algorithm

• High I/O throughput, but some I/O requests may starve

Reasonable I/O throughput and No starvation

Disk I/O Throughput

Seek Latency dominates

- Sequential I/O throughput is much higher than random I/O throughput
 - Sequential access involves fewer seeks

- I/O Operations per second (IOPS)
 - Better measure of disk throughput
 - Ignores the number of bytes in each I/O operation.

https://en.wikipedia.org/wiki/IOPS

Disk Buffer

- Hard disk controllers have a small amount of buffer memory (RAM)
 - 8MB to 128MB
- Used to stage data moving between the physical disk and main memory
- Hides seek latency in two ways:
 - Read-ahead
 - Read extra data near the requested sector and store in disk buffer. Return from disk buffer when OS requests the extra data.
 - Write Acceleration:
 - When OS writes data, store data in disk buffer and return completion interrupt. Commit the data to physical disk "later".
 - If power fails, data in disk buffer could be lost!
- https://en.wikipedia.org/wiki/Disk_buffer

Solid State Drives (SSD)

https://en.wikipedia.org/wiki/Solid-state_drive

SSD

- NAND-based flash memory to store persistent data
 - Plus a controller performs Error Correction, Wear Leveling, Caching, etc.
- No mechanical components
- Works with various interfaces
 - SATA, SAS, PCI, USB, Fibre Channel, IDE
- Disks in various form factors
 - Regular, Thumb, embedded
- SSDs may also be used as buffer in Hard disks to improve reliability
- Or DRAM could be used as buffer to improve SSD access latencies

- SSD vs Hard Disks
 - Lower Access Latencies
 - Random access ~ 0.1ms
 - Higher throughput
 - Reliability
 - No moving parts
 - But repeated writes to the same cell makes the cell unreliable.
 - Wear leveling: write to a different cell each time
 - Silent operation
 - Low power consumption
 - Smaller capacities
 - More expensive

Network Attached Storage (NAS)

 A storage server accessed over a Local Area Network (LAN)

Storage Area Network (SAN)

- A dedicated network to access a collection of storage media
 - High speed network interconnect
 - Fiber Channel, iSCSI, AoE etc
 - Virtualized storage
 - Consolidated block-level access

