A2_solution

Reinforcement Learning Study

2021-01-02

Contents

\mathbf{E}	xercise	2
	Exercise 1	2
	Exercise 2	3
	Exercise 3	4
	Exercise 4	5
	Exercise 5	6
	Exercise 6	7
	Exercise 7	8
	Exercise 8	9
	Exercise 9	10
	Exercise 10	11
	Exercise 11	12
	Exercise 12	13

Exercise 1

Show that $\mathbb{P}(A \mid B \cap C)\mathbb{P}(B \mid C) = \mathbb{P}(A \cap B \mid C)$

$$\begin{split} \mathbb{P}(A \mid B \cap C) \mathbb{P}(B \mid C) &= \frac{\mathbb{P}(A \cap (B \cap C))}{\mathbb{P}(B \cap C)} \times \frac{\mathbb{P}(B \cap C)}{\mathbb{P}(C)} \\ &= \frac{\mathbb{P}(A \cap B \cap C)}{\mathbb{P}(C)} \\ &= \frac{\mathbb{P}((A \cap B) \cap C)}{\mathbb{P}(C)} \\ &= \mathbb{P}(A \cap B \mid C) \end{split}$$

$$\therefore \ \mathbb{P}(A \mid B \cap C) \mathbb{P}(B \mid C) = \mathbb{P}(A \cap B \mid C)$$

 $X \sim U(10,20)$, then what is F(10)? and F(15)?

X~U(10,20)

$$f(x) = \begin{cases} \frac{1}{10} \ (10 \le x \le 20) \\ 0 \quad otherwise \end{cases}$$

$$F(x) = \begin{cases} 0 & (10 \le x) \\ \frac{x-10}{10} & (10 \le x \le 20) \\ 1 & (x > 20) \end{cases}$$

Figure 1: F(x) graph

$$F(10) = 0$$

$$F(15) = \frac{15-10}{10}$$
$$= \frac{1}{2}$$

$$\div F(10) = 0, \ F(15) = \frac{1}{2}$$

Prove that $pdf \rightarrow cdf$

$$F(x) = \int_{-\infty}^{x} f(x) \ dx$$

i) if
$$x < 0$$
, then $f(x) = 0$, so $F(x) = 0$

ii) if
$$x \ge 0$$
, then $F(x) = \int_{-\infty}^x f(x) \ dx$
$$= \int_{-\infty}^0 0 \ dx + \int_0^x \lambda e^{-\lambda x} \ dx$$

$$= [-e^{\lambda x}]_0^x$$

$$= -e^{-\lambda x} + 1$$

$$\div \ F(x) = 1 - e^{-\lambda x}$$

Show that $EX=1/\lambda$

$$\begin{split} \mathbb{E}X &= \int_{-\infty}^{\infty} x f(x) \ dx = \int_{-\infty}^{0} x f(x) \ dx + \int_{0}^{\infty} x f(x) \ dx \\ &= \int_{0}^{\infty} x \lambda e^{-\lambda x} \ dx \\ &= \int_{0}^{\infty} \lambda x e^{-\lambda x} \ dx \\ &= [x e^{-\lambda x}]_{0}^{\infty} - \int_{0}^{\infty} -e^{-\lambda x} \ dx \\ &= (0 - 0) + \int_{0}^{\infty} e^{-\lambda x} \ dx \\ &= [-\frac{e^{-\lambda x}}{\lambda}]_{0}^{\infty} \\ &= (0 - (-\frac{1}{\lambda})) \\ &= \frac{1}{\lambda} \end{split}$$

$$::\! \mathbb{E} X = \tfrac{1}{\lambda}$$

Show that $Var(X)=1/\lambda^2$. (Hint: need to do EX^2 first)

$$Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

$$\begin{split} \mathbb{E}(X^2) &= \int_{-\infty}^{\infty} x^2 f(x) \ dx = \int_{-\infty}^{0} x^2 f(x) \ dx + \int_{0}^{\infty} x^2 f(x) \ dx \\ &= \int_{0}^{\infty} x^2 \lambda e^{-\lambda x} \ dx \\ &= \int_{0}^{\infty} \lambda x^2 e^{-\lambda x} \ dx \\ &= [-x^2 e^{-\lambda x}]_{0}^{\infty} - \int_{0}^{\infty} -2x e^{-\lambda x} \ dx \\ &= (0-0) + \int_{0}^{\infty} 2x e^{-\lambda x} \ dx \\ &= 2 \int_{0}^{\infty} x e^{-\lambda x} \ dx \\ &= 2 \{ [-\frac{x e^{-\lambda x}}{\lambda}]_{0}^{\infty} - \int_{0}^{\infty} \frac{e^{-\lambda x}}{\lambda} \ dx \} \\ &= 2 \{ (0-0) - \int_{0}^{\infty} \frac{e^{-\lambda x}}{\lambda} \ dx \} \\ &= 2 (-[\frac{e^{-\lambda x}}{\lambda^2}]_{0}^{\infty}) \\ &= 2 \times (0 - (-\frac{1}{\lambda^2})) \\ &= \frac{2}{\lambda^2} \end{split}$$

$$Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{2}{\lambda^2} - (\frac{1}{\lambda})^2 = \frac{1}{\lambda^2}$$

$$\therefore Var(X) = \frac{1}{\lambda^2}$$

Prove the previous theorem

$$Claim, \ \mathbb{P}(X>s+t \mid X>t) = \mathbb{P}(X>s)$$

$$\begin{split} \mathbb{P}(X>s+t\mid X>t) &= \frac{\mathbb{P}(X>s+t,X>t)}{\mathbb{P}(X>t)} \\ &= \frac{\mathbb{P}(X>s+t)}{\mathbb{P}(X>t)} \\ &= \frac{1-\mathbb{P}(X\leq s+t)}{1-\mathbb{P}(X\leq t)} \\ &= \frac{1-F(s+t)}{1-F(t)} \\ &= \frac{1-(1-e^{-\lambda(s+t)})}{1-(1-e^{-\lambda(t)})} \\ &= e^{-\lambda s} \\ &= 1-(1-e^{-\lambda s}) = 1-F(s) \\ &= 1-\mathbb{P}(X\leq s) \\ &= \mathbb{P}(X>s) \end{split}$$

$$\therefore \mathbb{P}(X > s + t \mid X > t) = \mathbb{P}(X > s)$$

For $X \sim poi(\lambda)$, prove that $\mathbb{E}X = \lambda$.

$$\begin{split} \mathbb{E}X &= \sum_{x=-\infty}^{\infty} xp(x) \ (\textit{this is common for all discrete r.v.}) \\ &= \sum_{x=-\infty}^{\infty} \frac{x \times \lambda^x e^{-\lambda}}{x!} \\ &= \lambda \sum_{x=-\infty}^{\infty} \frac{\lambda^{x-1} e^{-\lambda}}{(x-1)!} \qquad \qquad Let, \ k = x-1 \qquad (x:1->\infty, \quad k:0->\infty) \\ &= \lambda \sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} \\ &= \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \qquad \qquad \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda} \\ &= \lambda e^{-\lambda} \times e^{\lambda} \\ &= \lambda \end{split}$$

$$\therefore \; \mathbb{E} X = \lambda$$

 $For \ X \sim U(20,\!40), \ evaluate \mathbb{E}[X \wedge 25] and \mathbb{E}[(25-X)^+].$

$$f(x) = \begin{cases} \frac{1}{20} \ (20 \le x \le 40) \\ 0 \quad otherwise \end{cases}$$

1.
$$\mathbb{E}[X \wedge 25] = \int_{-\infty}^{\infty} (X \wedge 25) \frac{1}{20} dx$$

$$= \int_{20}^{25} \frac{1}{20} x dx + \int_{25}^{40} 25 \times \frac{1}{20} dx$$

$$= \left[\frac{1}{40} x^2\right]_{20}^{25} + \left[\frac{5}{4} x\right]_{25}^{40}$$

$$= \frac{25}{40} + \frac{75}{4}$$

$$= \frac{195}{8}$$

$$\begin{split} 2. \ \ \mathbb{E}[(25-X)^+] &= \int_{-\infty}^{\infty} (25-X)^+ \tfrac{1}{20} \ dx \\ &= \int_{20}^{25} (25-X) \tfrac{1}{20} \ dx + \int_{25}^{40} 0 \times \tfrac{1}{20} \ dx \\ &= [\tfrac{5}{4}x - \tfrac{1}{40}x^2]_{20}^{25} + 0 \\ &= \tfrac{25}{4} - \tfrac{225}{40} \\ &= \tfrac{5}{8} \end{split}$$

$$\mathbb{E}[x \wedge 25] = \frac{195}{8}, \ \mathbb{E}[(25 - X)^+] = \frac{5}{8}$$

For X~Poi(8)

- 1. P(X = 0)
- 2. $\mathbb{P}(2 \le X \le 4)$
- 3. P(X > 2)
- $\ast \; \mathbb{P}(X) = \tfrac{8^x e^{-8}}{x!} \; \ast$
 - 1. $\mathbb{P}(X=0) = \frac{8^0 e^{-8}}{0!}$
 - $$\begin{split} 2. \ \ \mathbb{P}(2 \leq X \leq 4) &= \mathbb{P}(X \leq 4) \mathbb{P}(X < 2) \\ &= \mathbb{P}(X = 2) + \mathbb{P}(X = 3) + \mathbb{P}(X = 4) \\ &= \frac{8^2 e^{-8}}{2!} + \frac{8^3 e^{-8}}{3!} + \frac{8^4 e^{-8}}{4!} \\ &= 288 e^{-8} \end{split}$$
 - $$\begin{split} 3. \ \ \mathbb{P}(X>2) &= 1 (\mathbb{P}(X=0) + \mathbb{P}(X=1) + \mathbb{P}(X=2)) \\ &= 1 (\frac{8^0 e^{-8}}{0!} + \frac{8^1 e^{-8}}{1!} + \frac{8^2 e^{-8}}{2!}) \\ &= 1 41 e^{-8} \end{split}$$

$$\text{$:$Answer : } \left\{ \begin{aligned} \mathbb{P}(X=0) &= e^{-8} \\ \mathbb{P}(2 \leq X \leq 4) &= 288e^{-8} \\ \mathbb{P}(X>2) &= 1-41e^{-8} \end{aligned} \right\}$$

 $For \ X \!\!\sim\!\! exp(7), \ evaluate \mathbb{E}[max(X,7)].$

$$* \ f(x) = 7e^{-7x}$$

$$\begin{split} \mathbb{E}[\max(X,7)] &= \int_{-\infty}^{\infty} x f(x) \ dx \\ &= \int_{-\infty}^{7} 7 \times 7 e^{-7x} \ dx + \int_{7}^{\infty} x \times 7 e^{-7x} \ dx \\ &= \int_{0}^{7} 49 e^{-7x} \ dx + \int_{7}^{\infty} 7x e^{-7x} \ dx \\ &= [-7 e^{-7x}]_{0}^{7} + [-x e^{-7x}]_{7}^{\infty} - \int_{7}^{\infty} -e^{-7x} \ dx \\ &= (-7 e^{-49} - (-7)) + (0 - (-7 e^{-49})) + \int_{7}^{\infty} e^{-7x} \ dx \\ &= 7 + [-\frac{e^{-7x}}{7}]_{7}^{\infty} \\ &= 7 + (0 - (-\frac{e^{-49}}{7})) \\ &= 7 + \frac{e^{-49}}{7} \end{split}$$

$$\div \ \mathbb{E}[\max(X,7)] = 7 + \tfrac{e^{-49}}{7}$$

For $X \sim exp(8)$, $findx^*$ such that $F(x^*) = 0.6$.

$$f(x) = \begin{cases} 8e^{-8x} & (x \le 0) \\ 0 & otherwise \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-8x} & (x \le 0) \\ 0 & otherwise \end{cases}$$

$$\begin{split} F(x^*) &= 1 - e^{-8x} = 0.6 \\ e^{-8x^*} &= 0.4 \\ \frac{1}{e^{8x^*}} &= \frac{2}{5} \\ e^{8x^*} &= \frac{5}{2} \end{split}$$

Taking the ln(x) on both side

$$8x^* = ln(\frac{5}{2}) = ln5 - ln2$$

$$x^* = \frac{\ln 5 - \ln 2}{8}$$

For $X \sim U(10,20)$, find x^* such that $F(x^*) = 0.7$.

$$F(x) = \begin{cases} 0 & (10 \le x) \\ \frac{x-10}{10} & (10 \le x \le 20) \\ 1 & (x > 20) \end{cases}$$

$$*F(x^*) = 0.7$$

For getting the value 0.7,x*should be between 10 and 20, Because the other ranges have value only 0 or 1

$$F(x^*) = \frac{x^* - 10}{10} = 0.7$$

$$x^* - 10 = 7$$

$$\therefore x^* = 17$$