Divide and Conquer-1

Department of Computer Science, Tsinghua University

Review

Incremental Approach

Solving the problem by incrementally growing the solution.

Correctness

Setup loop invariant (mathematical induction).

Efficiency

Determined by loops, easy to be optimized by compilers.

Design

- Pre-condition, Post-condition
- Loop invariant inspired by post-condition can help your algorithm design as well.

Design Paradigm

Pro.:

- D&C is another powerful technique for algorithm design.
- ▶ D&C algorithms are *recursive* in nature, and can be analyzed using recurrences and the master method.

Paradigm:

- 1. **Divide** the problem (instance) into smaller problems of the **same** problem.
- 2. Conquer the subproblems by solving them recursively and solve them directly if they are small enough.
- 3. Combine subproblem solutions to solve the problem.

Design Paradigm

Paradigm:

- 1. Divide the problem (instance) into subproblems.
- 2. Conquer the subproblems by solving them recursively.
- 3. Combine subproblem solutions to solve the problem.

```
DC (P)

1 if P is not small enough

2 Divide P into subproblems P_1, P_2, ..., P_m;

3 S_1 = DC(P_1); S_2 = DC(P_2);...; S_m = DC(P_m);

4 Combine solutions S_1, S_2, ... S_m to S;

5 else S=solve(P);

6 return S;

T(n) = \sum_{i=1}^{m} T(|P_i|) + D(n) + C(n)
```


Example 1: Merge Sort

- 1. Divide: equally partition the array into two sub-arrays. (trivial)
- 2. Conquer: recursively sort two sub-arrays.
- 3. Combine: merge two sorted sub-arrays into one sorted array. (linear time)

Merge

(d)

Merge

```
MERGE (A, p, q, r)
1 n_1 = q - p + 1
2 n_2 = r - q
3 //create arrays L[1..n_1 + 1]
and R[1...n_2 + 1]
                                   10 i = 1
4 for i=1 to n_1
                                   11 j = 1
5 	 L[i] = A[p+i-1]
                                   12 for k = p to r
6 for j=1 to n_2
                                          if L[i] \leq R[j]
                                   13
  R[j] = A[q+j]
                                                  A[k] = L[i]
                                   14
8 L[n_1 + 1] = \infty
                                                  i = i + 1
                                   15
9 R[n_2 + 1] = \infty
                                   16 else A[k] = R[j]
                                   17
                                                  j = j + 1
```

D&C Algorithm

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```


D&C Algorithm

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```


D&C Algorithm

In-class Exercise

Inversion:

- Let A[1..n] be an array of n distinct numbers.
 If i < j and A[i] > A[j], then the pair (i, j) is called an inversion of A.
- Use global variable count to denote the number of inversions. How to modify function MERGE to compute count?

```
MERGE (A, p, q, r)
1 n_1 = q - p + 1
2 n_2 = r - q
3 //create arrays L[1..n_1+1]
and R[1...n_2 + 1]
                                   10 i = 1
4 for i=1 to n_1
                                  11 j = 1
       L[i] = A[p+i-1]
                                  12 for k = p to r
6 for j=1 to n_2
                                          if L[i] \leq R[j]
                                   13
       R[j] = A[q+j]
                                                  A[k] = L[i]
                                   14
8 L[n_1 + 1] = \infty
                                                  i = i + 1
                                   15
9 R[n_2 + 1] = \infty
                                          else A[k] = R[j]
                                   16
                                                 j = j + 1
                                   17
```


Design Points

Correctness:

- ▶ Tip1: the divide step: subproblems must be the SAME problem.
- ► *Tip2:* the divide and combine steps (incremental): can be verified by loop invariant analysis.
- ► Tip3: the whole D&C algorithm: mathematical induction on the recursive structure.

Efficiency:

- number of subproblems
- size of subproblems
- time for the divide and combine steps.

Order Statistics

- Find the *i*th order statistic
- ▶ Input: Given an array A of n distinct numbers and an integer i, with $1 \le i \le n$.
- ▶ Output: The element $x \in A$ that is larger than exactly i 1 other elements of A.
- Partition the input array differently!

Example 2: SELECT

Suppose S_1 has 4 elements, S_2 has 6 elements:

If i = 3, we look here. If i = 7, we look here.

Partition

```
PARTITION (A, p, r) \triangleright A[p..r]

1  x = A[p] \triangleright \text{pivot} = A[p]

2  i = p

3  \text{for } j = p + 1 \text{ to } r

4  \text{if } A[j] < x

5  i = i + 1

6  \text{exchange}(A[i], A[j])

7  \text{exchange}(A[p], A[i])
```

i: pointing to the last value that is smaller than A[p].

invariant:

Exercise

SELECT

```
SELECT (A, p, r, i)
 if p == r
        return A[p]
q = PARTITION(A, p, r)
                                             A[q+1,r]
                                A[p, q - 1]
  k = q - p + 1
5 if i == k
        return A[q]
6
   elseif i < k
        return SELECT (A, p, q - 1, i)
8
   else return SELECT (A, q + 1, r, i - k)
9
```

Initial call: SELECT(A, 1, n, i)

Worst-case

- The input array is sorted.
- Partition around the min or max element.
- One side of the partition always has no elements.

```
T(n) = T(n-1) + cn
= T(n-2) + c(n-1) + cn
= \cdots
= c \sum_{i=1}^{n} i
= \theta(n^2)
(arithmetic series)
```


I.I Divide the n elements into groups of 5.

I.2 Divide the n elements into groups of 5. Find the median of each 5-element group by insertion sort and picking the median (yellow) from the sorted list.

2. Recursively **SELECT** the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.

Linear-time SELECT

SELECT (A, p, r, i)

- 1. if (r-p+1) < 100 return DirectSelect (A, p, r, i)
- 2. Divide the elements in A[p...r] into groups of 5. Find the median (group medians) of each 5-element group by insertion sort and save them in B.
- 3. $x = SELECT(B, 1, \lfloor \frac{n}{5} \rfloor, \lfloor \frac{n}{10} \rfloor)$
- 4. q = PARTITION(A, p, r, x)
- $5. \quad k = q p + 1$
- 6. if i == k
- 7. return A[q]
- 8. else i < k
- 9. return SELECT (A, p, q 1, i)
- 10. else return SELECT (A, q + 1, r, i k)

Analysis

Partition the input array around x into S_1 , S_2 , whose sizes are at most 7|n/10|.

Recurrence

 $T(n) \leq$

SELECT (A, p, r, i)

O(n)

1. Divide the elements in A[p..r] into groups of 5. Find the median (group medians) of each 5-element group by insertion sort and save them in B.

$$\frac{T(n/5)}{O(n)}$$

2. $x = SELECT(B, 1, \lfloor \frac{n}{5} \rfloor, \lfloor \frac{n}{10} \rfloor)$

3. q = PARTITION(A, p, r, x)

4. if i == k return A[q]

else i < k

return SELECT (A, p, q - 1, i)

else return SELECT (A, q + 1, r, i - k)

Group Discussion

- Q1: Implementation: When can D&C algorithms be implemented iteratively? And when recursively?
- Q2: Efficiency: How to design D&C algorithms in order to achieve linear algorithms?

Summary

- D&C is another powerful technique for algorithm design.
- D&C algorithms are recursive in nature, and can be analyzed using recurrences and the master method.
- D&C algorithms can be implemented iteratively or recursively.
- The efficiency of D&C algorithms depends on the number of subproblems, the size of subproblems, and time for the divide and combine steps.

