Education and American's Attitudes Towards

Immigration

Juliet Yue

EC 15 Final Paper December 14 2018

Abstract

This paper examines the effect of education on a person's attitudes towards immigration in the United States using survey data collected in the year of 2000. Two stage least squares (2SLS) methodology is applied, and father's highest degree is selected as the instrumental variable. The result indicated that for the population in the United States, there is a strong correlation between having a more open attitudes towards immigrants and participant's education attainment. The higher the degree individual has, the more likely for the individual to have a positive attitude towards immigrants. Secondly, the higher the degree is, the more positive impact it has on the individual's attitude.

1 Introduction

In the past decade, there has been a wave of anti-immigration sentiment growing in the US and across Europe (Grigorieff, Roth, and Ubfal 2018). We have witnessed the rise of far-right groups in Europe which manipulate and use the sentiment for their own benefits. Ever since Trump's presidential campaign, the wave has been hitting hard on Americans, affecting not only life of millions of immigrants, but also widen the divide between people in the United States. Thus, it is important for us to understand the factors play behind such a sentiment and identify key characteristics of the cause in order to device better public policies to ease the growing divide in America and Europe.

Education has long been identified as one of the key factors correlated with individual's attitudes towards immigration. Government agencies like the British Department of Business & Skills has conducted research studying the effect of higher education on graduates' attitudes over six major aspects, among which is graduates' attitudes towards immigration in the UK (Brennan et al. 2015). They found strong evidence supporting that people who have received a higher degree have a warmer attitudes towards immigration. It will be of our interest to see if such a trend is also applicable to the United States. To study the question, I obtain data from General Social Survey conducted in the United States, and choose Two stage least squares as my research methodology as there are some potential issues with conducting only ordinary least square regression. For example, a person's education attainment may be affected by his/her parent's education attainment. A person may obtain a warmer attitude towards immigration if his/her father have a higher degree because father's higher degree suggests that the father may have take a more welcoming stand on immigration and pass that attitude down on his children. Omitting father's degree level may result in an upward bias on the coefficient on education attainment. One thing to note about this research is that the data used in this study comes from only the year 2000. So the exact magnitude of the coefficients may not be representative anymore; however the general trend is expected to have remained the same.

2 Literature Review

There have been many published economics research papers on the effect of education on individual's attitude towards immigration and all three papers discussed in this section studied (at least partially) the same question as this paper. In 2012, Melgar conducted a study to understand the impact of education on attitudes towards immigrants and free-Trade. The research methodology used is Difference in Difference with interaction terms between education level and respondent's country's GDP per capita. Melgar hypothesized that high educated people in richer countries are more likely to support immigrants. While the result confirmed that the educational level has a positive impact on attitude towards immigration, it also indicated that high educated people in richer countries could also be against immigration if their overall attitude to these issues is bad (if their nationalism propensity is high) (Melgar 2012). Melgar included variable indicating a person's attitude on nationalism, which is not an observable factor in my study. Thus, there may be omitted variable bias in the result I present because of this.

Hainmueller and Hiscox conducted study in Europe with the main interest to see whether "labor-market competition was a potent source of anti-immigrant sentiment, in particular among less-educated or less-skilled citizens who fear being forced to compete for jobs with low-skilled immigrants willing to work for much lower wages" (Hainmueller and Hiscox 2007). Result showed that people with higher levels of education were more likely to favor immigration regardless of the skill attributes of the immigrants. The average occupational skill set or education level of immigrants in a country did not have a significant impact on non-immigrant's attitudes on the matter, and whether individual was competing for work in the labor market has no significant impact on individual's attitude towards immigration holding all else equal.

The third paper by Scheve and Slaughter used data from National Election Studies surveys conducted in the United States. They studied the impact on individual's preferences over immigration policy by regressing attitudes on years of education and occupation wage respectively using data from 1992, 1994, and 1996. They also used

difference in difference to test the impact of respondent's geographical region interacting with both independent variables of interest. Result suggested that "workers with less years of education are significantly more likely to prefer limiting immigrant inflows into the United States" and there was no evidence suggesting that the relationship between years of education and immigration opinions is stronger in high immigration communities (Scheve and Slaughter 2001).

3 Data Description and Summary Statistics

Data used in this research come exclusively from General Survey Data conducted in the year 2000. Observations with missing critical data (education levels) are dropped from the data set so that missing data does not interfere with the result. I create a variable to represent a person's attitude towards immigration using the LETIN variable from GSS. The question asks the respondent's opinion on if they think more foreign citizens should be permitted to work in the United states. LETIN takes the value of 1-5 where 1 being the number should increase a lot and 5 being the number should decrease a lot. Before conducting further tests on the data set, I first conduct a simple balance test to compare respondent who has answered the question and respondent who has a missing value on the question due the worry that there may be unobserved selection bias on people who choose to answer the question and those who choose not to answer the question. I create a variable to indicate female respondents, a variable to represent if respondent indicates that he/she is working full-time/part-time. The result of the preliminary balance test is presented in Table 1 and from the t-test, no coefficient is statistically significant so I can be certain that there is not selection bias on this set of data with people with non-missing value for LETIN. All observations with missing value are then dropped, which leaves us in total 972 observations as our testing data set.

Reviewing the history of immigration policy in the United States, I find that around the year 2000, the government had a relatively open attitudes towards immigration. Thus, I define the dummy variable welcome as 1 when respondent chooses options 1-3 where 3 is remain the same level as now; welcome takes a value 0 when respondent chooses options

4 and 5.

I also create a few more variables: a variable to indicate if a respondent has a bachelor or higher degree, a variable to indicate if a respondent has a graduate or higher degree, and categorize regions where respondent was at at the age 16 into 4 major areas in the US and foreign country. Descriptive statistics is shown in Table 2. From the table, there is no significant increase for the means of years of education between the two groups. While on means of degree levels, including respondent's degree, respondent's father's degree, respondent who has a bachelor degree or higher and respondent who has a graduate degree or higher, I observe that there is a more significant increase. For example, on the variable bachelor degree or higher, the mean for respondent who is positive about immigrants is twice in number than those who is negative about immigrants. On the variable graduate degree or higher, the mean for respondent who is positive about immigrants is 4 times larger than that of the group of respondents who do not welcome immigrants. One surprising thing is that the total family income level as well as respondent's work status seem to have no difference between the two groups, both of which I assumed may affect individual's attitude towards immigration.

4 Model

In order to understand the effect of education on attitude towards immigration I choose the two stage least square methodology because ordinary least square test may be affected by omitted variable bias as discussed in the introduction section. The dependent variable(Y) I want to study is the attitude towards immigration. Because there are many ways to manipulate data on education, I select 4 different critical independent variables all representing respondent's education level (years of education, degree level, if respondent has a bachelor degree or more, if a respondent has a graduate degree or more) to have a comprehensive understanding of the matter. I choose respondent's father's degree level as instrumental in all tests. The general OLS (naive) regression is represented as below:

welcome =
$$\beta_0^{naive} + \beta_1^{naive}$$
Education level + $\delta Region_i + \tau X + \mu$ (1)

I include geographic region where respondent grow up in to account for region fixed effect. I also include age, female, work status, and total family income level as my covariates represented by X in the equation. These are the variables that I think will control the permanent difference among individuals. For example, respondent who grows up in a region that has larger immigrant population may have a more open attitude towards immigration. Older people may have a more negative attitude towards immigration.

For 2SLS tests, the general equations for first stage regression, reduced form, and 2SLS regression are shown below:

Reduced form: (same across all four tests)

welcome =
$$\beta_0^{RF} + \beta_1^{RF}$$
Father's Degree + $\Phi Region_i + \omega X + \epsilon$ (2)

First Stage:

Education level =
$$\Pi_0 + \Pi_1$$
Father's Degree + $\gamma Region_i + \alpha X + \varepsilon$ (3)

2SLS:

welcome =
$$\beta_0^{2SLS} + \beta_1^{2SLS}$$
Education level + $\delta' Region_i + \tau' X + \mu'$ (4)

Dependent variable welcome takes a value of 1 if respondent report positive attitude on immigration and 0 if negative. Positive Coefficient estimate suggests that the variables have a positive impact on person's attitude on immigration and vice versa.

The first test takes respondent's years of education to represent individual's education level. The second test uses respondent's highest degree as the endogenous variable. The advantage of using degree over years of education is that one additional year of education may has less impact on individual's overall life comparatively. For example, we often observe a huge jump on college student's income before and after the student graduates whereas it is very common for a college freshman to earn about the same as a college sophomore or junior.

Another way to represent individual's education level is to use dummy variables. I separate the group in to those who have obtained higher education (=1 if bachelor degree or above/graduate degree or above) and those who have not correspondingly with the

dummy variables created. The third test takes bachelor degree or more as endogenous variable, and the fourth test takes graduate or more as endogenous variable. The results can give us a closer look into the effect of higher education on respondent's attitude towards immigration.

For all of the tests above, I expect to see a positive coefficient estimates on respective endogenous variable. I also expect that the coefficient estimate on degree to be larger than that of years of education. One additional degree should have a larger impact than one additional year of education for the respondent. The coefficient estimate on graduate or more is expected to be larger than that of bachelor or more. The higher the respondent's education level is, the more likely that the respondent welcomes immigrants compare to the rest of the population.

5 Empirical Analysis

With the models explained above, the result on main variable of interest is presented in Table 3. All coefficients estimates in First Stage regressions are statistically significant at 1 percent level. This means that the instrumental variables are highly correlated with the endogenous variables, which satisfies the first assumption for instrumental variable. In terms of the independence assumption, some compromise may need to be made here as father's education level may be correlated with omitted factors like race. Lastly, of all the covariates I have included in the model, I assume that father's education level has the most direct impact on respondent's education level and have little or no impact to respondent's attitude towards immigration through other channels. The selection of instrumental variable is certainly not perfect, but at least given the result from first stage regression, we know that the instruments all have strong casual effects on the endogenous variables.

The 2SLS test on the effect of individual's years of education shows that the coefficient estimate is statistically significant at 5 percent level. One additional year of education increases individual's attitude towards immigration by 3.6 percentage point holding all else equal. It is about on par with the OLS regression (3.4 percentage point

increase).

In the second 2SLS regression on attitude towards immigration and individual's degree level, using father's degree level as instrument, the result indicates a statistically significant coefficient estimates on degree. One additional degree obtained increases individual's attitude towards immigration by 8.1 percentage point (significant at 5 percent level), which is roughly the same as the result (7.6 percentage point) indicated by OLS (significant at 1 percent level), holding all else equal.

The third row shows the regression on whether respondent has a degree of bachelor or more with father's degree as instrument. On average, from 2SLS, one additional degree warms up respondent's attitude towards immigration by 23.9 percentage point (significant at 5 percent level), up from 18.7 percentage point indicated by OLS regression (significant at 1 percent level), holding all else equal.

The fourth row shows the regression on whether respondent has a degree of graduate or more with father's degree as instrument. One additional degree increases the likely-hood for respondent to welcome immigration by 49.3 percentage point (significant at 5 percent level), which is up from 30.0 percentage point indicated by OLS regression (significant at 1 percent level), holding all else equal.

Table 4 shows the coefficient estimates on all covariates in each stage of the 2SLS test when degree is the endogenous variable. The omitted variable here is foreign, indicating that the respondent resided in a foreign country at the age of 16, a group which I expect to have the highest acceptance of immigration and the result indeed proves so (constant term has a value as high as 0.938). I use this table to illustrate the general effect of the covariates. Compare to respondents who resided in a foreign country at the age of 16, respondents who resided in all regions in the US has a less welcoming attitude towards immigration (all coefficients significant at 1 percent level except for northeast). Family total income level (significant at 10 percent level) has a slight negative effect on attitude towards immigration which is a bit counter intuitive, and I am interested in learning more about the possible explanations to it. Age, gender and work status has no

significant effect on individual's attitude towards immigration.

The result is what I have expected – education level is positively correlated with individual's attitude towards immigration. Moreover, given the disparities of the 2SLS coefficient estimates from the three regressions based on respondent's degree level, it also shows that the effect of degree level is not evenly distributed. The higher the degree is, the more impact it has on a attitude towards immigration. One possible explanation is that higher education level makes people more informed of the benefits immigrants bring to the country, the actual impact of immigration policy to the country, and have a generally more open attitudes towards other cultures. With all these factors combined, the higher the person's education level is, the more open attitudes this person will hold towards immigration.

6 Conclusion

From the result of my statistical analysis, it is safe to conclude that the higher the person's education level is, the more open attitudes this person will hold towards immigration. Such a result coincides with the findings from all three papers mentioned in the literature review section. I can also conclude that the higher the degree level is, the more impact one additional degree has on individual's attitude towards immigration. Additionally, like Hainmueller and Hiscox, my result also shows that the work status of an individual has no significant impact on respondent's attitude towards immigration.

Scheve and Slaughter found that there was no evidence suggesting that the relationship between years of education and immigration opinions is stronger in high immigration communities (2001). In my research, I account for region fixed effect by controlling the region respondent was at at age of 16, and have observed statistically significant difference across different regions on the impact towards respondent's attitude. Such a contradictory finding is perhaps due to the difference methodologies in categorizing region. Scheve and Slaughter isolated specifically metropolitan statistical areas that have high immigrant populations as the geographic control whereas I only categorize geographical locations into 5 categories and there may be a lot of variations within each region and other permanent differences are absorbed by it. It is still valid to say that there is permanent difference on attitudes towards immigration across each region but I cannot know if such difference is caused by the percentage of immigrant population in each region.

The study can be improved by incorporating race factors into the regression as race may be an important factor that impact individual's attitude over immigrants. Additionally, individual's nationalism propensity is not included in the study, which, according to the study conducted by Melgar, can also result in omitted variable bias. More recent data, and data from multiple years can be included to further our understanding on the topic.

Moving forward, from the result of the study as well as previous research on the subject matter, I believe the the reason why we can repeatedly observe a strong correlation between higher education and attitude towards immigration is because education makes people more informed of the benefits immigrants bring to the country, the actual impact of immigration policy to the country, and have a generally more open attitudes towards other cultures. It is hard to solve the problem of education resource disparity in one day, but we can start putting more effort in informing the overall population on the actual impact of immigration on the country as a whole. We should also advocate for cultural diversity in our society, encourage communications and interactions between immigrant population and non-immigrant population in order to reduce xenophobia in the country.

References

- Brennan, John, Jenny Chanfreau, Jerome Finnegan, Julia Griggs, Zsolt Kiss, and Alison Park. 2015. "The effect of higher education on graduates' attitudes: Secondary Analysis of the British Social Attitudes Survey." BIS RESEARCH PAPER NO. 200.
- Grigorieff, Alexis, Christopher Roth, and Diego Ubfal. 2018. "Does Information Change Attitudes Towards Immigrants? Representative Evidence from Survey Experiments." Working paper, March.
- Hainmueller, Jens, and Michael J. Hiscox. 2007. "Educated Preferences: Explaining Attitudes Toward Immigration in Europe." *International Organization* 61 (2): 399–442.
- Melgar, Natalia. 2012. "Interaction Effects in Probit Models, Reinterpreting the Impact of Education on Attitudes Towards Immigrants and Free-Trade." Journal of Reviews on Global Economics 1:82–88.
- Scheve, Kenneth F., and Matthew J. Slaughter. 2001. "Educated Preferences: Explaining Attitudes Toward Immigration in Europe." *The Review of Economics and Statistics* 83 (1): 133–145.

Tables

Table 1: Balance test on Respondents who answered the question LETIN

	Respondent who answer the question on LETIN (1)	Respondent who does not answer the question on LETIN (2)	t-test
	1.47	1.45	0.02
R's highest degree level	(1.14)	(1.17)	(0.04)
	1310	1489	2799
D2- f-412-	1.01	1.04	-0.03
R's father's	(1.18)	(1.23)	(0.05)
highest degree level	978	1087	2065
Group in which	10.73	10.69	0.04
R's total family	(2.41)	(2.33)	(0.10)
income level belongs	1172	1284	2456
	45.41	46.56	-1.15
age	(17.35)	(17.37)	(0.66)
	1313	1496	2809
	0.56	0.57	-0.01
female	(0.50)	(0.50)	(0.02)
	1318	1499	2817
Dagian whom D	4.45	4.29	0.15
Region where R	(2.63)	(2.60)	(0.10)
was at at age 16	1318	1499	2817
Work Status	0.35	0.36	-0.01
(=1 if R is)	(0.48)	(0.48)	(0.02)
working full/part time)	1318	1499	2817

Column 1 is the statistic summary for respondents who answered the question on LETIN, column 2 is the statistic summary for respondents who has missing value on the question on LETIN, column 3 contains the t-test value on each variable's coefficient when regress the variable on notmissing, which indicates whether LETIN is missing or not. In column 1 and 2, the first row indicates the mean, standard deviation is in parenthesis on the second row, and number of observations is on the third row. Asterisks are used to note statistical significance and no asterisk is present in this table.

Table 2: Descriptive Statistics

	Welcome immigrants	Do not welcome immigrants	
	12.73	12.79	
Years of education	(2.96)	(2.53)	
	555	580	
	1.63	1.27	
Highest Degree	(1.24)	(0.96)	
	555	575	
Fathor's Highest	1.11	0.88	
Father's Highest	(1.25)	(1.06)	
Degree	555	423	
Deal de Deserv	0.28	0.15	
Bachelor Degree	(0.45)	(0.36)	
or More	555	417	
	0.122	0.03	
Graduate Degree	(0.33)	(0.17)	
or More	555	417	
(T) (1 D) (1	10.71	10.77	
Total Family	(2.42)	(2.39)	
Income Level	498	372	
	44.77	0.56	
Age	(16.89)	(0.50)	
	554	414	
	0.55	0.56	
Female	(0.50)	(0.50)	
	555	417	

Table 2 continued from previous page

	Welcome immigrants	Do not welcome immigrants
	0.34	0.35
Has work	(0.47)	(0.48)
	555	417
	0.22	0.18
Northeast	(0.41)	(0.38)
	555	417
	0.10	0.02
Foreign	(0.30)	(0.12)
	555	417
	0.25	0.26
Midwest	(0.44)	(0.44)
	555	417
	0.26	0.39
South	(0.44)	(0.36)
	555	417
	0.17	0.15
West	(0.37)	(0.36)
	555	417

Column 1 gives summary statistics on each variables for respondents who welcome immigrants. Column 2 also gives summary statistics on each variables but for respondents who do not welcome immigrants. In each cell, the first row indicates the mean, standard deviation is in parenthesis on the second row, and number of observations is on the third row.

Table 3: Effect of education on participants attitudes towards immigration

			All Participa	ints	
	Controls	First stage (1)	Reduced form (2)	2SLS (3)	OLS . (4)
Welcome	Years of education	0.885*** (0.075)	0.032** (0.015)	0.036** (0.016)	0.032*** (0.005)
Immigrants (=1)	All Degrees	0.376*** (0.031)	0.032** (0.015)	0.081** (0.038)	0.076*** (0.013)
	Bachelor or more	0.133*** (0.012)	0.032** (0.015)	0.239** (0.109)	0.187*** (0.034)
	Graduate or more	0.065**** (0.008)	0.032** (0.015)	0.493** (0.226)	0.300*** (0.051)
Total observations			868		

Notes: (1)-(4) shows the result from First Stage, Reduced Form, 2SLS, and OLS regressions. In each cell, the first row indicates the coefficient estimates on the variable, standard deviation is in parenthesis on the second row. The number of observations in all regressions is shown on the bottom row.

^{*}Significant at 10 percent; **significant at 5 percent; ***significant at 1 percent.

Table 4: Regression outcome using degree including all covariates

	First Stage	Reduced form	OLS	2SLS
degree			0.076***	0.081**
degree			(0.013)	(0,038)
father degree	0.376^{***}	0.032^{**}		
rather degree	(0.253)	(0.015)		
200	0.0063^{***}	-0.0002	-0.001	-0.001
age	(0.0024)	(0.0011)	(0.001)	(0.001)
total income level	0.090***	-0.009	-0.011*	-0.012*
totai ilicollie level	(0.017)	(0.077)	(0.006)	(0.009)
northeast	-0.038	-0.199^*	-0.219***	-0.192
normeast	(0.166)	(0.078)	(0.064)	(0.077)
midwest	-0.273*	-0.348***	-0.312***	-0.326***
illidwest	(0.159)	(0.074)	(0.062)	(0.074)
south	-0.319*	-0.475***	-0.416***	-0.448***
South	(0.157)	(0.073)	(0.061)	(0.075)
west	-0.366**	-0.355***	-0.294***	-0.318***
west	(0.167)	(0.078)	(0.065)	(0.078)
female	0.095	-0.012	-0.028	-0.020
Temale	(0.716)	(0.033)	(0.029)	(0.033)
haswork	-0.299***	0.009	0.051	0.033
Haswork	(0.085)	(0.040)	(0.034)	(0.040)
constant	0.230	0.992***	0.938***	0.977***
Constant	(0.253)	(0.118)	(0.096)	0.112
Observations	868	868	868	868

Notes: Column 1-4 shows the result from First Stage, Reduced Form, 2SLS, and OLS regressions for each variables. In each cell, the first row indicates the coefficient estimates on the variable, standard deviation is in parenthesis on the second row. Total number of observations in each regression is indicated on the last row.

^{*}Significant at 10 percent; **significant at 5 percent; ***significant at 1 percent.

Stata Output and log file

```
* Juliet Yue
* EC 15 final project
* Prof. McInerney
* Set up the environment
clear all
capture log close
log using C:\Users\qyue01\Box\final.log, replace
use C:\Users\qyue01\Box\gss.dta
 * variables that need to take into considerations
 * Y = attitude towards immigration (letin)
 * X = individual highest education achievement (degree/educ/bachmore/gradmore)
 * Z = father's education achievement (padeg)
 * Survey on Y is only conducted in the year 2000
keep if year == 2000
\boldsymbol{\ast} Respondents who has non-missing data on the varibale letin
gen notmissing = letin <= 5
*dummy variable for female
gen female = sex==2
* Identify respondents who has part-time/full-time work (=1)
gen haswork = hrs1 >89
* Balance test.
* Check if there is selection bias on those who has data on letin
summ degree padeg income age female reg16 haswork if notmissing == 1
summ degree padeg income age female reg16 haswork if notmissing == 0
reg degree notmissing
reg padeg notmissing
reg income notmissing
reg age notmissing
reg female notmissing
reg reg16 notmissing
```

```
reg haswork notmissing
* Drop observation with missing data on letin
drop if notmissing == 0
count if notmissing == 1
* Dummy variable for R's attitude towards immigration (=1 welcome)
gen welcome = letin <= 3
* Dummy variables for different regions in America
gen northeast = reg16==1 | reg16==2
gen midwest = reg16==3 | reg16 == 4
gen south = reg16==6 | reg16==7 | reg16==5
gen west = reg16==8 | reg16 == 9
gen foreign = reg16==0
* Drop observations with missing education data
drop if degree > 4
drop if padeg > 4
* Count all valid obervations
count if notmissing == 1
gen bachmore = degree==3 | degree==4
gen grad = degree==4
*Descriptive Stats
summ educ degree padeg bachmore grad age income northeast foreign midwest south west female haswork if welcome == 1
summ educ degree padeg bachmore grad age income northeast foreign midwest south west female haswork if welcome == 0
*Years of education
* Naive regression
reg welcome educ age income northeast midwest south west female haswork
* Reduced form
reg welcome padeg age income northeast midwest south west female haswork
* 2SLS
ivreg welcome (educ=padeg) age northeast midwest south west female haswork income, first
* Degree
* Naive regression
reg welcome degree age income northeast midwest south west female haswork
* Reduced form is the same as above
```

```
* 2SLS
ivreg welcome (degree=padeg) age northeast midwest south west female haswork income, first
* Bachelor or more
* Naive regression
reg welcome bachmore age income northeast midwest south west female haswork
* Reduced form is the same as above
* 2SLS
ivreg welcome (bachmore=padeg) age northeast midwest south west female haswork income, first
* Grad level or more
reg welcome grad age income northeast midwest south west female haswork
* Reduced form is the same as above
* 2SLS
ivreg welcome (grad-padeg) age northeast midwest south west female haswork income, first
log close
      name: <unnamed>
      log: C:\Users\qyue01\Box\final.log
 log type: text
 opened on: 14 Dec 2018, 16:58:21
. use C:\Users\qyue01\Box\gss.dta
. /*
> * variables that need to take into considerations
> * Y = attitude towards immigration (letin)
> * X = individual highest education achievement (degree/educ/bachmore/gradmor
> e)
> * Z = father's education achievement (padeg)
```

. keep if year == 2000

(21,533 observations deleted)

> * Survey on Y is only conducted in the year 2000

. * Respondents who has non-missing data on the varibale letin

. gen notmissing = letin <= 5

. *dummy variable for female

. gen female = sex==2

. * Identify respondents who has part-time/full-time work (=1)

. gen haswork = hrs1 >89

. * Balance test.

. * Check if there is selection bias on those who has data on letin

. summ degree padeg income age female reg16 haswork if notmissing == 1

Variable	Obs	Mean	Std. Dev.	Min	Max
degree	1,310	1.471756	1.139758	0	4
padeg	978	1.01227	1.179774	0	4
income	1,172	10.73464	2.405245	1	12
age	1,313	45.40899	17.35008	18	89
female	1,318	.5569044	.4969399	0	1
	+				
reg16	1,318	4.446131	2.62655	0	9
haswork	1,318	.3467375	.476112	0	1

. summ degree padeg income age female reg16 haswork if notmissing == 0

Variable	1	0bs	Mean	Std. Dev.	Min	Max
	-					
degree	I	1,489	1.451981	1.173983	0	4
padeg	I	1,087	1.039558	1.227861	0	4
income	I	1,284	10.6947	2.332849	1	12
age	I	1,496	46.56083	17.36757	18	89
female	I	1,499	.5697131	.4952815	0	1
	+					
4.0		4 400	4 000500	0 404507		•
reg16	ı	1,499	4.293529	2.601587	0	9
haswork	1	1,499	.3615744	.4806167	0	1

. reg degree notmissing

Source	SS	df	MS	Number of obs	=	2,799
				F(1, 2797)	=	0.20
Model	.272505595	1	. 272505595	Prob > F	=	0.6522
Residual	3751.27162	2,797	1.34117684	R-squared	=	0.0001
				Adj R-squared	=	-0.0003
Total	3751.54412	2,798	1.3407949	Root MSE	=	1.1581
degree	Coef.	Std. Err.	t	P> t [95% Co	nf.	Interval]
notmissing	.0197745	.0438694	0.45	0.652066245	51	.1057942
_cons	1.451981	.0300121	48.38	0.000 1.39313	33	1.510829
. reg padeg no	otmissing					
Source	SS	df	MS	Number of obs	=	2,065
				F(1, 2063)	=	0.26
Model	.383360182	1	.383360182	Prob > F	=	0.6075
Residual	2997.15175	2,063	1.45281229	R-squared	=	0.0001
				Adj R-squared	=	-0.0004
Total	2997.53511	2,064	1.45229414	Root MSE	=	1.2053
padeg	Coef.	Std. Err.	t	P> t [95% Co	onf.	Interval]
notmissing	0272885	.0531228	-0.51	0.608131468	33	.0768913
_cons	1.039558	.0365586	28.44	0.000 .967862	27	1.111254
. reg income n	notmissing					
Source	SS	df	MS	Number of obs	=	2,456
				F(1, 2454)	=	0.17
Model	.977300107	1	.977300107	Prob > F	=	0.6763
Residual	13756.7975	2,454	5.60586697	R-squared	=	0.0001
				Adj R-squared	=	-0.0003
Total	13757.7748	2,455	5.6039816	Root MSE	=	2.3677

					[95% Conf.	
notmissing						
_cons	10.6947	.0660753	161.86	0.000	10.56514	10.82427
. reg age notmi	ssing					
Source	SS	df	MS	Numbe	er of obs =	2,809
				F(1,	2807) =	3.08
Model	927.748517	1	927.748517	7 Prob	> F =	0.0794
Residual	845885.839	2,807	301.348713	R-sq	uared =	0.0011
				- Adj 1	R-squared =	0.0007
Total	846813.587	2,808	301.57179	Root	MSE =	17.359
	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
notmissing						
_cons	46.56083	.4488166	103.74	0.000	45.68079	47.44087
. reg female no		df	MS	Numb	er of obs =	2,817
Source	SS				er of obs = 2815) =	
Source	SS			F(1,	er of obs = 2815) = > F =	0.47
Source + Model	SS .115064967	1	.115064967	F(1,	2815) =	0.47
Source + Model	SS .115064967	1 2,815	.115064967 .246073587	F(1, 7 Prob 7 R-sq	2815) = > F = uared =	0.47 0.4941 0.0002
Source + Model Residual	SS .115064967 692.697147	1 2,815	.115064967	F(1, Prob R-squ	2815) =	0.47 0.4941 0.0002 -0.0002
Source	SS .115064967 692.697147 692.812212 Coef.	2,815 	.115064967 .246073587 .246027064	F(1, 7 Prob 7 R-sqi 1 Root P> t	2815) = > F = uared = R-squared = MSE = [95% Conf.	0.47 0.4941 0.0002 -0.0002 49606
Source	SS .115064967 692.697147	2,815 	.115064967 .246073587 .246027064	F(1, 7 Prob 7 R-squ Adj 1 Root	2815) = > F = uared = R-squared = MSE = [95% Conf.	0.47 0.4941 0.0002 -0.0002 .49606
Source Model Residual Total female notmissing	SS .115064967 692.697147 692.812212 Coef0128087	1 2,815 2,816 Std. Err.	.115064967 .246073587 .246027064	F(1, 7 Prob 7 R-sqr Adj 1 Root P> t	2815) = > F = uared = R-squared = MSE = [95% Conf.	0.47 0.4941 0.0002 -0.0002 .49606 Interval]
Source	SS .115064967 692.697147 692.812212 Coef0128087 .5697131	1 2,815	.115064967 .246073587 .246027064 t	F(1, 7 Prob 7 R-sqr - Adj 1 Root P> t 0.494	2815) = > F = uared = R-squared = MSE = [95% Conf. 0495372	0.47 0.4941 0.0002 -0.0002 .49606 Interval] .0239197 .5948359
Source	SS .115064967 692.697147	1 2,815 2,816 Std. Err0187313 .0128124	t -0.68	F(1, 7 Prob 7 R-squ - Adj 1 Root P> t 0.494 0.000	2815) = > F	0.47 0.4941 0.0002 -0.0002 .49606 Interval] .0239197 .5948359

```
Model | 16.332313 1 16.332313 Prob > F = 0.1221
  Residual | 19224.5225 2,815 6.82931527 R-squared = 0.0008
------ Adj R-squared = 0.0005
   Total | 19240.8548 2,816 6.83268992 Root MSE
                                          2.6133
_____
          Coef. Std. Err. t P>|t| [95% Conf. Interval]
   reg16 |
______
notmissing | .1526015 .0986787 1.55 0.122 -.0408884 .3460914
   _cons | 4.293529 .0674975 63.61 0.000 4.161179 4.425879
______
. reg haswork notmissing
   Source |
          SS df MS Number of obs = 2,817
------ F(1, 2815) =
                                          0.67
   = 0.4116
  Residual | 644.567656 2,815 .228976077 R-squared
                                      = 0.0002
------ Adj R-squared = -0.0001
   Total | 644.722045 2,816 .22894959 Root MSE
                                     = .47851
  haswork |
          Coef. Std. Err.
                        t P>|t| [95% Conf. Interval]
______
notmissing | -.0148369 .0180688 -0.82 0.412 -.0502664 .0205926
   _cons | .3615744 .0123593 29.26 0.000 .3373402 .3858086
. * Drop observation with missing data on letin
. drop if notmissing == 0
(1,499 observations deleted)
. count if notmissing == 1
1,318
. * Dummy variable for R's attitude towards immigration (=1 welcome)
. gen welcome = letin <= 3
```

[.] * Dummy variables for different regions in America

```
. gen northeast = reg16==1 | reg16==2
```

. * Drop observations with missing education data

. drop if degree > 4

(8 observations deleted)

. drop if padeg > 4

(338 observations deleted)

. * Count all valid obervations

. count if notmissing == 1 972

. gen bachmore = degree==3 | degree==4

. gen grad = degree==4

. *Descriptive Stats

. summ educ degree padeg bachmore grad age income northeast foreign midwest sou

> th west female haswork if welcome == 1

Variable	l Ot	os Mean	n Std. Dev	. Min	Max
	+				
educ	55	13.9441	2.953695	2	20
degree	55	55 1.72072	1.255825	0	4
padeg	J 55	55 1.11171	2 1.252488	0	4
bachmore	J 55	.311711	7 .4636106	0	1
grad	55	.135135	1 .3421763	0	1
	+				
age	55	44.7725	6 16.89213	18	89

income	I	498	10.84337	2.353893	1	12
northeast	I	555	.2198198	.414498	0	1
foreign	I	555	.0972973	. 2966295	0	1
midwest	I	555	.2648649	.4416593	0	1
	+					
south	·+ 	555	.2504505	.4336633	0	1
south west	•	555 555	.2504505	.4336633	0	1 1
	1				_	_

[.] summ educ degree padeg bachmore grad age income northeast foreign midwest sou

> th west female haswork if welcome == 0

Variable					ev. M		lax (
educ	4					3	20
degree	4	117 1.	354916	.98482	77	0	4
padeg	4	.8	872902	1.0693	53	0	4
bachmore	4	17 .1	702638	.37631	59	0	1
grad	4	117 .03	383693	.19231	69	0	1
	-+						
age	4	114 46	.76329	17.683	17	19	89
income	3	372 10	.95968	2.1596	62	1	12
northeast	4	117 .1	558753	.36317	28	0	1
foreign	4	17 .0	095923	.09758	66	0	1
midwest	4	117 .2	781775	.44863	95	0	1
	-+						
south	4	.4	028777	.49106	57	0	1
west	4	117 .1	534772	.36087	99	0	1
female	4	17 .5	443645	.49862	61	0	1
haswork	4	117 .:	352518	.47832	81	0	1

^{. *}Years of education

[.] reg welcome educ age income northeast midwest south west female haswork $% \left(1\right) =\left(1\right) \left(1\right)$

	Source	SS	df	MS	Number of obs	=	868
-	+-		F(9, 858)	=	10.01		
	Model	20.1671607	9	2.24079564	Prob > F	=	0.0000
	Residual	192.113945	858	.223909027	R-squared	=	0.0950
_	+-				Adj R-squared	=	0.0855

25

^{. *} Naive regression

Total 212	. 281106	867	. 244845566	Root	MSE	=	.47319
-------------	----------	-----	-------------	------	-----	---	--------

welcome		Std. Err.		P> t	[95% Conf.	Interval]
+-						
educ	.0291219	.0061205	4.76	0.000	.0171089	.0411348
age	0004861	.0010487	-0.46	0.643	0025443	.0015722
income	0158029	.0077854	-2.03	0.043	0310835	0005222
northeast	1944783	.0766713	-2.54	0.011	3449636	0439931
midwest	3348486	.0732704	-4.57	0.000	4786587	1910384
south	4507028	.0727111	-6.20	0.000	5934154	3079903
west	3333631	.0770299	-4.33	0.000	4845521	1821741
female	019586	.0330225	-0.59	0.553	0844004	.0452284
haswork	.030565	.0393235	0.78	0.437	0466167	.1077466
_cons	.6982884	.1352286	5.16	0.000	.4328708	.9637061

^{. *} Reduced form

[.] reg welcome padeg age income northeast midwest south west female haswork $% \left(1\right) =\left(1\right) \left(1\right)$

Source	SS	df	MS	Numbe	er of obs	=	868
				- F(9,	858)	=	7.82
Model	16.0865411	9	1.7873934	5 Prob	> F	=	0.0000
Residual	196.194565	858	.228664994	4 R-sqı	ıared	=	0.0758
				- Adj F	R-squared	-	0.0661
Total	212.281106	867	.244845566	6 Root	MSE	=	.47819
welcome	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
padeg	.0303511	.0145977	2.08	0.038	.00169	98	.0590024
age	0003694	.0010989	-0.34	0.737	00252	62	.0017875
income	0085293	.0076771	-1.11	0.267	02359	74	.0065387
northeast	194673	.0774985	-2.51	0.012	34678	18	0425642
midwest	3479995	.0739803	-4.70	0.000	4932	03	2027961
south	4733768	.0733317	-6.46	0.000	61730	73	3294464
west	3476202	.07778	-4.47	0.000	50028	16	1949588
female	0119843	.0333557	-0.36	0.719	07745	27	.0534841
haswork	.0090215	.0395561	0.23	0.820	06861	66	.0866596
_cons	.9952361	.1177552	8.45	0.000	.76411	42	1.226358

- . * 2SLS
- . ivreg welcome (educ-padeg) age northeast midwest south west female haswork in
- > come, first

First-stage regressions

Source	SS	df	MS	Number	of obs =	868
				F(9, 8	58) =	33.04
Model	1781.14434	9	197.904927	Prob >	F =	0.0000
Residual	5139.67593	858	5.99029829	R-squa	red =	0.2574
+-				Adj R-	squared =	0.2496
Total	6920.82028	867	7.98249167	Root M	SE =	2.4475
educ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
age	.0006152	.0056245	0.11	0.913	0104242	.0116546
northeast	0267189	.3966592	-0.07	0.946	8052548	.751817
midwest	4629517	.378652	-1.22	0.222	-1.206144	.280241
south	8397025	.3753322	-2.24	0.026	-1.576379	1030257
west	4928281	.3981003	-1.24	0.216	-1.274193	. 2885363
female	.2527089	.1707242	1.48	0.139	082377	.5877948
haswork	7259447	.2024595	-3.59	0.000	-1.123319	3285709
income	.2595244	.0392934	6.60	0.000	.1824019	.3366468
padeg	.8834287	.074715	11.82	0.000	.7367831	1.030074
_cons	10.43361	.6027044	17.31	0.000	9.250659	11.61655

Instrumental variables (2SLS) regression

Source	SS	df	MS	Number of obs	=	868
+				- F(9, 858)	-	7.98
Model	20.003408	9	2.22260089	Prob > F	=	0.0000
Residual	192.277698	858	.22409988	1 R-squared	=	0.0942
+				- Adj R-squared	-	0.0847
Total	212.281106	867	. 244845566	Root MSE	=	.47339
welcome	Coef.	Std. Err.	t	P> t [95% Co	onf.	Interval]
+						

educ	I	.034356	.0163581	2.10	0.036	.0022494	.0664626
age	I	0003905	.0010851	-0.36	0.719	0025202	.0017392
northeast	I	193755	.0767326	-2.53	0.012	3443606	0431495
midwest	I	3320943	.0737349	-4.50	0.000	4768162	1873725
south	I	444528	.0749109	-5.93	0.000	5915581	2974978
west	I	3306886	.0774515	-4.27	0.000	4827051	1786721
female	I	0206664	.0331846	-0.62	0.534	085799	.0444662
haswork	I	.0339621	.0405535	0.84	0.403	0456336	.1135577
income	I	0174456	.0091284	-1.91	0.056	0353621	.000471
_cons	I	.6367787	.2237823	2.85	0.005	.1975538	1.076003

Instrumented: educ

 $Instruments: \quad \hbox{age northeast midwest south west female has work income padeg} \\$

. * Degree

. * Naive regression

. reg welcome degree age income northeast midwest south west female haswork

Source	SS	df	MS	Number of obs	=	868
+-				F(9, 858)	=	10.04
Model	20.2303516	9	2.24781684	Prob > F	=	0.0000
Residual	192.050754	858	.223835378	R-squared	=	0.0953
+-				Adj R-squared	=	0.0858
Total	212.281106	867	.244845566	Root MSE	=	.47311

welcome		Std. Err.		, , ,	[95% Conf.	Interval]
degree	.069716	.0145593	4.79	0.000	.04114	.098292
age	0008963	.0010428	-0.86	0.390	0029431	.0011505
income	0145172	.0077197	-1.88	0.060	0296689	.0006346
northeast	1925321	.0766642	-2.51	0.012	3430034	0420609
midwest	3292728	.0733176	-4.49	0.000	4731756	1853701
south	4527295	.0726542	-6.23	0.000	5953303	3101287
west	322218	.0771454	-4.18	0.000	4736337	1708022
female	0188291	.0330112	-0.57	0.569	0836212	.045963
haswork	.0302061	.0393072	0.77	0.442	0469433	.1073555
_cons	.9852923	.1150745	8.56	0.000	.7594318	1.211153

- . * Reduced form is the same as above
- . * 2SLS
- . ivreg welcome (degree=padeg) age northeast midwest south west female haswork
- > income, first

First-stage regressions

Source	SS	df	MS	Numk	er of obs	=	868
+-				F(9,	858)	=	27.74
Model	262.984058	9	29.2204509	Prob	> F	=	0.0000
Residual	903.876541	858	1.05346916 R		quared	=	0.2254
				Adj	R-squared	=	0.2173
Total	1166.8606	867	1.34585998	Root	MSE	=	1.0264
degree	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
+-							
age	.0063004	.0023587	2.67	0.008	.001670	9	.0109299
northeast	0381379	.1663429	-0.23	0.819	364624	1 5	.2883487
midwest	27283	.1587914	-1.72	0.086	58449	95	.0388351
south	3188269	.1573992	-2.03	0.043	627759	94	0098943
west	3655764	.1669472	-2.19	0.029	693249	92	0379037
female	.0950955	.0715948	1.33	0.184	045426	31	.235617
haswork	2987434	.0849033	-3.52	0.000	46538	36	1321009
income	.0895094	.0164781	5.43	0.000	.057167	74	.1218515
padeg	.3764698	.0313325	12.02	0.000	.314972	25	. 437967
_cons	.2304822	.2527499	0.91	0.362	265598	34	.7265627

${\tt Instrumental\ variables\ (2SLS)\ regression}$

Source	SS	df	MS	Number of obs	5 =	868
				F(9, 858)	=	7.98
Model	20.1047931	9	2.2338659	Prob > F	=	0.0000
Residual	192.176313	858	.223981717	7 R-squared	=	0.0947
				- Adj R-squared	i =	0.0852
Total	212.281106	867	.244845566	Root MSE	=	.47327
welcome	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]

+						
degree	.0806203	.038376	2.10	0.036	.0052984	.1559422
age	0008773	.001045	-0.84	0.401	0029284	.0011738
northeast	1915983	.0767495	-2.50	0.013	342237	0409596
midwest	3260039	.0741098	-4.40	0.000	4714617	1805461
south	4476729	.0745196	-6.01	0.000	5939349	3014109
west	3181473	.0783005	-4.06	0.000	4718304	1644643
female	019651	.0331302	-0.59	0.553	0846767	.0453748
haswork	.0331063	.040438	0.82	0.413	0462628	.1124753
income	0157456	.0086966	-1.81	0.071	0328148	.0013236
_cons	.9766545	.1184981	8.24	0.000	.7440743	1.209235

Instrumented: degree

Instruments: age northeast midwest south west female haswork income padeg

.

- . * Bachelor or more
- . * Naive regression
- . reg welcome bachmore age income northeast midwest south west female haswork

Source	SS	df	MS	Number of obs	=	868
 				F(9, 858)	=	10.05
Model	20.2506268	9	2.25006965	Prob > F	=	0.0000
Residual	192.030479	858	.223811747	R-squared	=	0.0954
 				Adj R-squared	=	0.0859
Total	212.281106	867	.244845566	Root MSE	=	.47309

welcome	Coef.				[95% Conf.	_
bachmore	.180604	.0376405	4.80	0.000	.1067257	.2544824
age	0010094	.0010425	-0.97	0.333	0030555	.0010367
income	0119683	.0076237	-1.57	0.117	0269315	.002995
northeast	1986287	.07665	-2.59	0.010	3490721	0481853
midwest	3295865	.0733093	-4.50	0.000	4734731	1856999
south	4597127	.0725286	-6.34	0.000	6020671	3173584
west	3223567	.0771385	-4.18	0.000	473759	1709544
female	0162441	.0329959	-0.49	0.623	0810062	.048518
haswork	.0208553	.0391608	0.53	0.594	0560068	.0977174
_cons	1.031603	.1145041	9.01	0.000	.8068622	1.256344

- . * Reduced form is the same as above
- . * 2SLS
- . ivreg welcome (bachmore=padeg) age northeast midwest south west female haswor
- > k income, first

${\tt First-stage \ regressions}$

So	urce	SS	df	MS	Num	ber of obs	=	868
	+-				- F(9	, 858)	=	18.58
M	odel	27.1072358	9	3.01191509	9 Pro	b > F	=	0.0000
Resi	dual	139.086313	858	.162105259	9 R-s	quared	=	0.1631
	+-				- Adj	R-squared	=	0.1543
Т	otal	166.193548	867	.19168806	6 Roo	t MSE	=	.40262
bach	more	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
	+-							
	age	.0027875	.0009252	3.01	0.003	.000971	L4	.0046035
north	east	.0174361	.0652517	0.27	0.789	110635	56	.1455077
mid	west	1044873	.0622895	-1.68	0.094	226744	19	.0177703
s	outh	0892832	.0617433	-1.45	0.149	210468	39	.0319025
	west	1406104	.0654888	-2.15	0.032	269147	73	0120734
fe	male	.0217309	.0280847	0.77	0.439	033391	18	.0768536
has	work	0624411	.0333052	-1.87	0.061	127810)4	.0029281

income | .0212178 .0064639 3.28 0.001 .0085309 .0339047

padeg | .1326518 .0122909 10.79 0.000 .1085281 .1567755

_cons | -.148548 .0991468 -1.50 0.134 -.3431467 .0460506

Instrumental variables (2SLS) regression

Source	SS	df	MS	Number of obs	=	868
				F(9, 858)	=	7.97
Model	19.8836451	9	2.2092939	Prob > F	=	0.0000
Residual	192.397461	858	.224239465	R-squared	-	0.0937
+				Adj R-squared	=	0.0842
Total	212.281106	867	.244845566	Root MSE	=	.47354

welcome	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
bachmore	.2288029	.1089749	2.10	0.036	.0149142	.4426916
age	0010071	.0010435	-0.97	0.335	0030552	.001041
northeast	1986624	.0767232	-2.59	0.010	3492496	0480753
midwest	3240925	.0742992	-4.36	0.000	4699221	178263
south	4529486	.0740026	-6.12	0.000	5981959	3077012
west	3154482	.0785909	-4.01	0.000	4697012	1611951
female	0169564	.033062	-0.51	0.608	0818482	.0479353
haswork	.0233082	.0395421	0.59	0.556	0543024	.1009188
income	013384	.0082008	-1.63	0.103	02948	.0027119
_cons	1.029224	.1147246	8.97	0.000	.8040506	1.254398

Instrumented: bachmore

Instruments: age northeast midwest south west female haswork income padeg

. * Grad level or more

. reg welcome grad age income northeast midwest south west female haswork

Source	SS	df	MS	Numbe	r of obs =	868
				F(9,	858) =	9.88
Model	19.9371733	9	2.21524147	7 Prob	> F =	0.0000
Residual	192.343933	858	.224177078	R-squ	ared =	0.0939
+				- Adj R	-squared =	0.0844
Total	212.281106	867	. 244845566	6 Root	MSE =	.47347
welcome	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
grad	.2614784	.0562791	4.65	0.000	.1510176	.3719392
· ·	0016042				0036669	
0	0090316			0.233	0238825	
northeast	1661351	.0770282	-2.16	0.031	3173209	0149494
midwest	3088471	.0737815	-4.19	0.000	4536604	1640338
south	4398096	.0730472	-6.02	0.000	5831817	2964375
west	3087652	.0774797	-3.99	0.000	4608372	1566932
female	0079452	.0330403	-0.24	0.810	0727946	.0569041
haswork	.0267746	.0392807	0.68	0.496	0503228	.1038721

_cons | 1.02196 .1146521 8.91 0.000 .7969287 1.246991

- . * Reduced form is the same as above
- . * 2SLS
- . ivreg welcome (grad=padeg) age northeast midwest south west female haswork in
- > come, first

${\tt First-stage \ regressions}$

Source	SS	df	MS	Number of obs	=	868
+-				F(9, 858)	=	11.39
Model	7.92536569	9	.880596188	Prob > F	=	0.0000
Residual	66.3280905	858	.077305467	R-squared	=	0.1067
+-				Adj R-squared	=	0.0974
Total	74.2534562	867	.085644125	Root MSE	=	.27804
•				P> t [95% Co		
+-						
age	.0036185	.0006389	5.66 (0.000 .002364	14	.0048726
northeast	115661	.0450607	-2.57	0.010204103	32 -	0272189
midwest	153435	.0430151	-3.57	0.000237862	22 -	0690078
south	1482657	.042638	-3.48	0.001231952	27 -	0645787
west	1496585	.0452245	-3.31	0.00123842	22 -	0608949
female	0181553	.0193944	-0.94	0.349056221	13	.0199107
haswork	0633957	.0229995	-2.76	0.006108537	'6 -	0182537
income	.0050983	.0044638	1.14	0.254003662	29	.0138595
padeg	.0643945	.0084877	7.59	0.000 .047735	54	.0810535

_cons | -.0251006 .0684676 -0.37 0.714 -.1594843 .109283

Instrumental variables (2SLS) regression

Source	SS	df	MS	Number of obs	=	868
				F(9, 858)	-	7.85
Model	16.8202526	9	1.86891695	Prob > F	=	0.0000
Residual	195.460853	858	.227809852	R-squared	-	0.0792
+-				Adj R-squared	=	0.0696
Total	212.281106	867	.244845566	Root MSE	=	.47729

welcome	I	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	-+-						
grad	I	.471331	.2262671	2.08	0.038	.0272292	.9154328
age	I	0020749	.0011678	-1.78	0.076	0043669	.0002172
northeast	I	1401584	.0822475	-1.70	0.089	3015883	.0212716
midwest	I	2756809	.0820386	-3.36	0.001	4367008	114661
south	I	4034946	.0828198	-4.87	0.000	5660478	2409414
west	I	2770816	.0848178	-3.27	0.001	4435562	1106069
female	I	0034272	.0336392	-0.10	0.919	0694519	.0625975
haswork	I	.0389018	.0415716	0.94	0.350	0426922	.1204959
income	I	0109323	.0078813	-1.39	0.166	0264011	.0045365
_cons	I	1.007067	.116618	8.64	0.000	.7781768	1.235957

Instrumented: grad

Instruments: age northeast midwest south west female haswork income padeg

•

. log close

name: <unnamed>

log: C:\Users\qyue01\Box\final.log

log type: text

closed on: 14 Dec 2018, 16:58:22
