

Exploring the quasi-6D structure of laser-wakefield-accelerated

electron bunches with coherent optical transition radiation

Ze Ouyang

Supervisor: Michael Downer

6th Nov, 2024

Outline

- 1 Introduction to LWFA and its diagnostics
- COTR(I) and quasi-6D structure of e- bunches
- Future directions, experimental work & conclusion

Useful abbreviations:

- LWFA: Laser-driven WakeField Accelerator
- TR: Transition Radiation
- COTR: Coherent Optical Transition Radiation
- COTRI: Coherent Optical Transition Radiation Interferometry

Introduction: Laser-driven WakeField Accelerator

LWFA ∈ plasma-based accelerator¹

	Plasma-	Conventional (SLAC)
E	100GV/m	100MV/m
Footprint	~m	~km
Max Energy	10GeV ²	50GeV
Cost	~few \$millions	114 \$millions in 1960s

Plasma-	Conventional
<100pC	~nC
$^{ au}\mu$ m	~10 μ m
<10fs	~100fs
~mrad	$^{\sim}\mu$ rad

We need new diagnostics.

- 1 Tajima et al, *Phys. Rev. Lett.* **43**, 4 (1979)
- 2 Aniculaesei et al, MRE 9, 014001 (2024)

Introduction: LWFA diagnostics

e- beams from LWFA can be:

- transversely small: 0.1 μ m< σ_r <1 μ m
- longitudinally short: 0.03 μ m< σ_z <3 μ m (0.1 fs< σ_z/c <10 fs)
- highly divergent: 1 mrad< σ_r' <10 mrad
 - \Rightarrow transverse normalized emittance: 0.1 mm mrad< ε_n <1 mm mrad
- **microbunched**: e- grouped into subtle structure within sub- μ m range (Today's diagnostics frontier)
- bunch charge, energy spread, repetition rate, efficiency et al.

"Microbunched e- beam in LWFA"

Xu et al, Phys. Rev. Lett 117, 034801 (2016)

Emittance¹: $\varepsilon_x \equiv \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$.

Normalized emittance: $\varepsilon_{x,n} = \beta_z \gamma \varepsilon_x \approx \gamma \varepsilon_x$.

- 1. \propto area of e- occupied in 6D phase space
- 2. Conserved in ideal beam transportation

- Microbunched e- structure (only) by COTR (3D)
- Transverse divergence by COTRI (2D)
- z-dependent transverse divergence by COTRI and physical constraints (quasi-1D)

COTR ⇒**quasi-6D structure**

1 Corde et al, *Rev. Mod. Phys.* **85**, 000001 (2013)

Outline

- 1 Introduction to LWFA and its diagnostics
- COTR(I) and quasi-6D structure of e- bunches
- Future directions, experimental work & conclusion

Useful abbreviations:

- LWFA: Laser-driven WakeField Accelerator
- TR: Transition Radiation
- COTR: Coherent Optical Transition Radiation
- COTRI: Coherent Optical Transition Radiation Interferometry

Transition Radiation (single e-)

TR is emitted when charged particle passes from one medium into another with different index of refractive.

Single e- TR energy¹ in far field:

$$\frac{\mathrm{d}^2 W_1}{\mathrm{d}\omega \mathrm{d}\Omega} = \frac{e^2}{4\pi^3 \epsilon_0 c} \frac{\beta^2 \sin^2 \theta}{(1 - \beta^2 \cos^2 \theta)^2}$$

- 1. target radiating & radially polarized
- 2. broadband (low- and high- ω cutoff: 0.2 μ m-10 μ m)
- 3. narrow cone (peaked at $\theta \sim \frac{1}{\gamma}$) & weakly γ -dependent ($\gamma \gg 1$)

Transition Radiation (e-bunch)

In the case of multiple e-:

$$\frac{\mathrm{d}^2 W_N}{\mathrm{d}\omega \mathrm{d}\Omega} = \left[\underbrace{N + N(N-1)} \cdot |F(\omega, \theta)|^2 \right] \cdot \frac{\mathrm{d}^2 W_1}{\mathrm{d}\omega \mathrm{d}\Omega}$$

- Out-of-phase/emission $\propto N$ (incoherent)
- In-phase emission $\propto N^2$ (coherent)

where $F(\omega, \theta)$ is the form factor (level of coherence)

$$F(\omega,\theta) = \int \rho(\mathbf{r})e^{i\mathbf{k}\mathbf{r}}\mathrm{d}\mathbf{r}$$

- $\lambda > \sigma_z$: incoherent
- $\lambda < \sigma_z$: coherent
- microbunched e- beam: λ is coherent down to
 optical range (COTR)⇒structure info

Transition Radiation Imaging (single e- near field)

COTR is detected in the near field

Source plane^{1,2}:

$$E_{x,y}^{S}(x_{S},y_{S},\omega) = \frac{e\omega}{\pi v^{2}\gamma} \frac{x_{S},y_{S}}{\sqrt{x_{S}^{2}+y_{S}^{2}}} K_{1}\left(\frac{\omega}{v\gamma}\sqrt{x_{S}^{2}+y_{S}^{2}}\right)$$
Lens plane:
$$E_{x,y}^{li}(x_{S},y_{S},\omega) = -\frac{ie^{ika}}{\lambda a} e^{ik\frac{x_{l}^{2}+y_{l}^{2}}{2a}} \int dx_{S} dy_{S} E_{x,y}^{S} e^{-ik\frac{x_{l}x_{S}+y_{l}y_{S}}{2a}} e^{ik\frac{x_{S}^{2}+y_{S}^{2}}{2a}}$$

$$E_{x,y}^{lo}(x_{S},y_{S},\omega) = E_{x,y}^{li}(x_{S},y_{S},\omega) e^{-ik\frac{x_{l}^{2}+y_{l}^{2}}{2f}}$$
Image plane:
$$E_{x,y}^{li}(x_{S},y_{S},\omega) = -\frac{ie^{ikb}}{\lambda b} e^{ik\frac{x_{l}^{2}+y_{l}^{2}}{2b}} \int dx_{l} dy_{l} E_{x,y}^{lo} e^{-ik\frac{x_{l}x_{l}+y_{l}y_{l}}{2b}} e^{ik\frac{x_{l}^{2}+y_{l}^{2}}{2b}}$$

$$\Rightarrow \mathbf{E}(x_{l},y_{l}) = \frac{2e}{\lambda vM} f(\theta_{m},\gamma,\zeta) \mathbf{e}_{r}$$
 Field Point Spread Function (FPSF)

$$\begin{bmatrix} \lambda \\ \gamma \\ M \\ \theta_m \end{bmatrix} \implies S(x_i, y_i, \omega)$$

The energy flux per unit frequency interval is

$$S(x_i, y_i, \omega) = \frac{c}{4\pi^2} (|\mathbf{E}(x_i, y_i)|^2) = \frac{\mathrm{d}^3 W_1}{\mathrm{d}\omega \mathrm{d}x_i \mathrm{d}y_i}$$
 Point Spread Function (PSF)

Transition Radiation Imaging (single e- near field)

FPSF polarized in x-axis

Lineout of FPSF_x at y=0

1.00 - 0.75 - 0.50 - 0.25 - 0.00 - 0.25 - 0.50 - 0.75 - 1.00 - 0.75 - 1.00 - 5 0 5 10 15 20

Lineout of FPSF_y at x=0

Lineout of PSF at y=0

Transition Radiation Imaging (e-bunch near field)

Electron number density $\rho(x_s, y_s, z_s)$

$$\mathbf{E}^{(n)}(x_i, y_i) = \Delta z_n \iint \mathrm{d}x_s \mathrm{d}y_s \, \rho(x_s, y_s, z_n) \mathrm{FPSF}(x_i - x_s, y_i - y_s)$$

Each slice has a phase delay¹ e^{ikz_n}

Total **E** field is

$$\boldsymbol{E_{\text{tot}}}(x_i, y_i) = \iiint \mathrm{d}x_s \mathrm{d}y_s dz_s \cdot \rho(x_s, y_s, z_s) \cdot e^{ikz} \cdot \mathrm{FPSF}(x_i - x_s, y_i - y_s)$$

Total energy flux per unit frequency interval is

$$S_{\text{tot}}(x_i, y_i, \omega) = \frac{c}{4\pi^2} (|\boldsymbol{E}_{\text{tot}}(x_i, y_i)|^2) = \frac{d^3 W_1}{d\omega dx_i dy_i}$$

$$\left.\begin{array}{c}
 \lambda \\
 \gamma \\
 M \\
 \theta_m \\
 \rho
 \end{array}\right\} \implies S_{\text{tot}}(x_i, y_i, \omega)$$

Revealing the $\rho(x_s, y_s, z_s)$ by COTR: an inverse problem

Forward process: $\rho(x_s, y_s, z_s) \Rightarrow S(x_i, y_i)$

$$\begin{bmatrix} \lambda \\ \gamma \\ M \\ \theta_m \end{bmatrix} \implies S_{\text{tot}}(x_i, y_i, \omega)$$

Backward process: $S(x_i, y_i) \Rightarrow \rho(x_s, y_s, z_s)$

Without loss of generality, consider *S* as what is measured.

Revealing the $\rho(x_s, y_s, z_s)$ by COTR: workflow

$$\rho(x_s,y_s,z_s) = \sum_{j=1}^N \ N_{e_j} \frac{1}{\sqrt{2\pi}\sigma_{x_j}} \exp\left(-\frac{\left(x-\mu_{x_j}\right)^2}{2\sigma_{x_j}^2}\right) \frac{1}{\sqrt{2\pi}\sigma_{y_j}} \exp\left(-\frac{\left(y-\mu_{y_j}\right)^2}{2\sigma_{y_j}^2}\right) \frac{1}{\sqrt{2\pi}\sigma_{z_j}} \exp\left(-\frac{\left(z-\mu_{z_j}\right)^2}{2\sigma_{z_j}^2}\right)$$
 Suppose $\rho(x_e,y_e,z_e)$ is a parameterized function, i.e. sum of Gauss functions.

$$\downarrow \text{Model-based}$$

$$Predicted data \qquad Observed data$$

$$\sum_{x_i,y_i} \left|S_j(x_i,y_i,\omega) - S_{\text{meas}}(x_i,y_i,\omega)\right|^2 \qquad \text{Loss function} \qquad \text{should}$$
Optimizer (i. e. genetic algorithm, differential evolution, simulated annealing)

Revealing the $\rho(x_s, y_s, z_s)$ by COTR: Latest results

Genetic algorithm

Differential evolution

Revealing the $\rho(x_s, y_s, z_s)$ by COTR: uniqueness

Phase info lost in the forward process \Rightarrow reconstruction is not unique

How to compress the volume of solution space \Rightarrow Knowing longitudinal profile in advance!

Knowledge of e- beam longitudinal is **injection-regime-dependent**:

- Down ramp injection: e- spectrum
- Self-truncated ionization injection: PIC simulation
- Self injection: not accessible

Revealing the $\rho(x_s, y_s, z_s)$ by COTR: ML-workflow

- GPU computation
- Machine Learning (ML)

Revealing the $\rho(x_s, y_s, z_s)$ by COTR: Gradient descent

Revealing the $\rho(x_s, y_s, z_s)$ by COTR: Training loss

- ~2 hours
- Final loss reduced to 1/50 of the initial loss

Revealing the $\rho(x_s, y_s, z_s)$ by COTR: Neural network "vision"

Training repository: paired ρ and S for NN(neural network) to learn

Test repository: paired ρ and S. Given the S, to see if the NN could deduce ρ close to the right one

COTRI Imaging

COTRI is detected in the far field

Divergence \Leftrightarrow Angle of incidence $\psi \Rightarrow$ Far-field Interferometry

Field point spread function¹: $E = \frac{e}{\pi\sqrt{c}} \frac{\psi - \theta}{\gamma^{-2} + |\psi - \theta|^2}$

Total E field: $E_{\text{tot}} = E * h(\mathbf{r}, \mathbf{p})e^{i\mathbf{k}\mathbf{r}}$

6D phase space distribution

Fringes contain info of ...

Revealing divergence by COTRI

Fringes are sensitive to:

- Optical detection bandwidth $\Delta \lambda$
- Energy bandwidth $\Delta \gamma$
- Transverse size σ_r
- Divergence σ_{θ}

By choosing $\Delta\lambda$, $\Delta\gamma$, and L σ_r and σ_θ can be dominant

Transverse divergence could be revealed!

Quasi-6D structures explored by COTR(I)

So far, we have obtained the 5D structures:

- 3D density profile (by COTR)
- 2D transverse divergence (by COTRI)

With reasonable physical assumptions, some phase spaces can be ruled out¹

eg: microbunched portion have lower divergence

Obtain an **upper limit** on transverse emittance on each slice (quasi-1D)

1 LaBerge, AAC 2024 21

Outline

- 1 Introduction to LWFA and its diagnostics
- COTR(I) and quasi-6D structure of e- bunches
- Future directions, experimental work & conclusion
 - Measurement of form factor
 - Extension to Smith-Purcell Radiation
 - Monitoring the microbunched e- in Free Electron Lasers
 - Combination with Diffraction Radiation

Measurement of form factor

$$\frac{\mathrm{d}^2 W_N}{\mathrm{d}\omega \mathrm{d}\Omega} = [N + N(N-1) \cdot |F(\omega,\theta)|^2] \cdot \frac{\mathrm{d}^2 W_1}{\mathrm{d}\omega \mathrm{d}\Omega}$$

$$F(\omega, \theta) = \int \rho(\mathbf{r}) e^{i\mathbf{k}\mathbf{r}} d\mathbf{r}$$
 (Form factor)

With longitudinal and transverse profile separatable:

$$F(\omega,\theta) = F_{\perp}(\omega,\theta)F_{\mathbf{z}}(\omega,\theta) = \int \rho_{\perp}(\mathbf{r}_{\perp})e^{i\mathbf{k}_{\perp}\mathbf{r}_{\perp}}d\mathbf{r}_{\perp}\int \rho_{z}(z)e^{ik_{z}z}dz$$

Suppose the e-bunch takes a bi-Gaussian shape:

$$\rho(\mathbf{r}) = \rho_{\perp}(\mathbf{r}_{\perp})\rho_{z}(z) = \frac{1}{\sqrt{2\pi}^{3}\sigma_{\perp}^{2}\sigma_{z}}e^{-\frac{r_{\perp}^{2}}{2\sigma_{\perp}}}e^{-\frac{z^{2}}{2\sigma_{z}}}$$

We have $|F_{\perp}(\omega,\theta)| = e^{-2\pi^2 \frac{\sigma_{\perp}^2}{\lambda^2} \sin^2 \theta}$ (close to unity if $\sigma_{\perp} \ll \gamma \lambda$)¹

$$|F_z(\omega,\theta)| = e^{-2\pi^2 \frac{\sigma_z^2}{\lambda^2} \cos^2 \theta}$$

$$|F(\omega,\theta)| \approx |F_z(\omega,\theta)|$$

With inverse Fourier transform:

$$\rho_z(z) = \frac{1}{2\pi} \int F(\omega, \theta) e^{\frac{i\omega z}{c}} d\omega$$

- With the knowledge of form factor, we can reconstruct the longitudinal profile of the e- beam.
- The only general method to go down to sub-fs resolution

Measurement of form factor: complex value

$$F(\omega, \theta)$$
 is a complex value: $\rho_z(z) = \frac{1}{2\pi} \int F(\omega, \theta) e^{\frac{i\omega z}{c}} d\omega$

Measurement of the absolute value^{1,2}

$$|F(\omega,\theta)| = \frac{\frac{dW_N}{d\omega} \cdot \frac{dW_1}{d\omega} - N \frac{dW_1}{d\omega}}{N(N-1)}$$

- 1. Interpolation & extrapolation
- 2. Phase retrieval algorithm
- 3. Physical constraints

Measurement of the phase:

The phase is closely related to the phase of E field

$$E_{\text{tot}}(\omega, \theta) = \int \text{FPSF}(\omega, \theta) \rho_z(z) e^{i\frac{i\omega z}{c}\cos\theta} dz$$

 $|E_{\text{tot}}(\omega)|$ is captured by the camera, phase $\varphi(\omega)$?

To build **phase-sensitive** detectors!

1 Lai et al, *Phys. Rev. E* **50**, 5 (1994)

2 Lai et al, Phys. Rev. E 50, 6 (1994)

Measurement of form factor: spectral interferometry

Self-referenced spectral interferometry¹

 $ilde{E}_{
m ref}$ is well characterized in amplitude and phase²

How to detect $\widetilde{E}_{\mathrm{Sig}}$? From Interferometry

$$\tilde{S}(\omega) = \left| \tilde{E}_{\text{ref}} + \tilde{E}_{\text{sig}} \right|^2 = \tilde{S}_0(\omega) + \tilde{f}(\omega)e^{i\omega\tau} + \tilde{f}^*(\omega)e^{-i\omega\tau}$$

$$\tilde{S}_0(\omega) = \left| \tilde{E}_{\text{ref}} \right|^2 + \left| \tilde{E}_{\text{sig}} \right|^2 \text{(DC term)}$$

$$\tilde{f}(\omega) = \tilde{E}_{\mathrm{ref}} \tilde{E}^*_{\mathrm{sig}}$$
 (AC term)

$$\left|\tilde{E}_{\text{ref}}(\omega)\right| = \frac{1}{2} \left(\sqrt{\tilde{S}_0(\omega) + 2\left|\tilde{f}(\omega)\right|} + \sqrt{\tilde{S}_0(\omega) - 2\left|\tilde{f}(\omega)\right|} \right)$$

$$\left| \tilde{E}_{\text{sig}}(\omega) \right| = \frac{1}{2} \left(\sqrt{\tilde{S}_0(\omega) + 2 \left| \tilde{f}(\omega) \right|} - \sqrt{\tilde{S}_0(\omega) - 2 \left| \tilde{f}(\omega) \right|} \right)$$

$$\varphi_{\text{sig}}(\omega) = \varphi_{\text{ref}}(\omega) - \arg\left(\tilde{f}(\omega)\right)$$

- 1 Oksenhendler et al, Appl. Phys. B 99, 7-12 (2001)
- 2 Pariente et al, Nat. Photon. 10, 547-553 (2016)

Extension to Smith-Purcell radiation

SPR angle-wavelength condition

$$\lambda = \frac{l}{n} \left(\frac{1}{\beta} - \cos \theta \right)$$

$$\frac{dW_1}{d\Omega} = 2\pi e^2 \frac{Z}{l} \frac{n^2 \beta^3}{(1 - \beta \cos \theta)^3} e^{-\frac{2x_0}{\lambda_e}} R^2$$

Coherent emission $\frac{dW_N}{d\Omega} \cong \frac{dW_1}{d\Omega} N^2 S_{\mathrm{coh}}$

where
$$S_{\rm coh} = \left| \int T e^{-i\omega t} \, dt \right|^2$$

- 1. Another source of THz radiation
- 2. Possesses microbunching info
- Help to reveal the temporal profile (cross-calibration with COTR) ²⁶

Monitoring the microbunching in Free Electron Lasers

Seed laser or noise radiation interacting with electrons

Radiation amplified linearly & e- microbunching growth

Exponential gain regime & microbunched e-

Monitoring the pre-microbunching

Monitoring the microbunching

in FEL

Invasive?

27

Combined with diffraction radiation (DR)¹

Single-shot & **Non-invasive** diagnostics

Babinet's principle²:

TR from a finite screen can be analytically calculated

$$E_{x,y}^{li}(x_s, y_s, \omega) = -\frac{ie^{ika}}{\lambda a} e^{ik\frac{x_l^2 + y_l^2}{2a}} \int dx_s dy_s E_{x,y}^s e^{-ik\frac{x_l x_s + y_l y_s}{2a}} e^{ik\frac{x_s^2 + y_s^2}{2a}}$$

Upcoming Experimental Work & Conclusion

1946, proposal of transition radiation 1957, proposal of surface wave excitation by transition radiatioin 1958, Ferrell radiation 1959, observation of transition radiation 1959, X-ray transition radiation 1960, quantum transition radiation 1991, observation of coherent transition radiation 2006, observation of surface wave excitation by transition radiation 2009, transition radiation from negative-index material 2012, transition radiation from 2D materials 2017, plasmonic splashing from transition radiation 2018, generation of effective Cherenkov radiation from resonance transition radiation 2019, transition radiation from photonic topological crystals 2021, transition radiation from photonic time-crystals 2022, low-velocity-favored transition radiation

Future experimental COTR(I) work is scheduled in UT³ lab.

Conclusion

- Introduction on LWFA, and COTR-related diagnostics⇒quasi-6D structure
- 2. Several possible directions in the future

Thanks

UT-LWFA Group Members:

- Michael Downer (PI)
- Rafal Zgadzaj (Research Scientist)
- Jason Brooks
- Jose Franco Altamirano
- Ross Rudzinsky
- Timothy Araujo
- Yuxuan Cao
- Isabella Pagano
- Dominik Stec
- Bryan Dinh
- Leslie Zhang
- Xiantao Cheng
- Maxwell LaBerge

Courtesy of Google image & Ross