LA UNIVERS	<u> </u>	-
1.解;uɪʃ¦xexdx	(2) Starksinxdx	小结论推译?
$= \chi e^{x} _{0}^{2} - \int_{0}^{1} e^{x} dx$.1 .1 .1	$\sqrt{\frac{1}{x}} dx I_{n-1} = \int_{-\infty}^{\infty} \sin^n x dx (n - 32)$
$= xe^{x} _{0}^{1} - e^{x} _{0}^{1}$	= Oresinx.x / + + 1/3	d(1-X2) =- (3 (sin X)n-1 d(los X)
=	= Orcsinx X = + JI-X-1	=-[(sinx)n-1 losx = - [Sinx)n-1]
-1,	= 72 + 52 -1	= [Losx. LN-1/15in XI n-2 Losx clx
	-12 2	= $(N-1)$ \[\frac{\frac{1}{2}}{2} \big[\left\{\text{sin}\text{xin}^{n-2}\big]} \div \text{sin}^n \text{x}\] \dx
13) 邮边推野站	[4] 同理!	= (n-1) (In-2-In)
1 los X dx	Sinbxdx	$\therefore n I_n = l^{n-1} I_{n-2}$
= 1×5×2	= 5x 3x 1x 2x 2	$\Rightarrow I_n = \frac{n-1}{n} I_{n-1}$
- 71313 - 1b - 35	= <u>57</u>	"Io= Jo Lsinx1 dx= Z
- 35	32	: In=∫n-1:n-3:
		带· 型 , 防毒数
10.1		$\int_{-\infty}^{\infty} \sin^n x dx = \int_{-\infty}^{\infty} \cos^n x dx$
		延 至 X= 至-t
		dx=-dt
		$\int_{-\infty}^{\infty} \sin^n x dx = -\int_{-\infty}^{\infty} \cos^n t dt$
		$\int_{-\infty}^{\infty} \sin^n x dx = \int_{-\infty}^{\infty} \cos^n t dt$ $= \int_{-\infty}^{\infty} \cos^n x dx$ $= \int_{-\infty}^{\infty} \cos^n x dx$
		= Sounxdx

2.解(1) So XSinždX	(2) Se xlnxdx	
= -2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	= = [oln2xdx2	
$=-2\left(X \log \frac{X}{2}\right)^{\pi_{-}} - \int_{a}^{\pi_{-}} \log \frac{X}{2} dX$	= 1 (x2/n2x / = - 5 2x/nxdx)	
$= 2 \left(\frac{2 \sin \frac{x}{2}}{0} - \int_{0}^{\infty} los \frac{x}{2} dx \right)$ $= 2 \left(\frac{2 \sin \frac{x}{2}}{0} - \frac{x los \frac{x}{2}}{0} \right)$	= $\frac{1}{2} [X^{1} \ln^{2} X - (X^{1} \ln X - \int_{0}^{e} x dx)]$	
=4	$=\frac{1}{2}[X^{2}ln^{2}Xt+\frac{1}{2}X^{2}-X^{2}lnX)]_{0}^{e}$	
•	: Um = Lx2ln2x+=x2lnx)=() (通过大X	积碱
13) So xarctanyolx	、原式= 年/光后答案错误)	,
= = 5 % arctanxdx2	Je Xln2x dx= 4Le2-1)	
= $\frac{1}{2}LX^{2}$ arctanx $\left \frac{1}{6} - \frac{1}{6} \frac{X^{2}}{X+1} dX \right $		
$=\frac{1}{2}[X^2arctanX _0^2-\int_0^1dX+\int_0^1\frac{dX}{X+1}]$	14). J& e2x Los Xdx	
= \(\frac{1}{2} \aretan\(\frac{1}{6} - \times \frac{1}{6} + \aretan\(\frac{1}{6} \)	= JE exdsinx	· ·
= 74-1.	$= e^{2x} \cdot \sin x \Big _{0}^{\frac{2x}{3}} - \int_{0}^{\frac{2x}{3}} 2e^{2x} \sin x dx$	
	= e2x. sinx = +2 = exdlosx	
51. So e - Kdx	= e2x. sinx = +2 Le2x losx = -2 = e2x losx	dx)
至-取=t=> X=t ²	約项得: Jeexbsxdx= + Lexsinxle+2exb	(ASX (증)
dx=2t dt	= \frac{1}{6} (e^{\frac{1}{2}} - 2).	
上原式= Joet itdt		
$=-2\int_{-1}^{0} t \cdot e^{t} dt$	(b) \\\ \frac{1}{2} \lnx\dx \lnx\dx = \x \ln	1X-X+/
$= -2e^{t}(t-1) _{-1}^{\circ}$	= Selnxdx-Silnxdx	71 /110
= 2-42-1.	= (xlnx-x) = - (xlnx-x) =	
	= 2-2	

L7) Se sinllnx)dx =[X·sinclnx]] = - Stoselnxidx =[XsinxUnxi] = [Xlosdnxi] = Se sinclnxidx 科项得 [finclax)dx=是[xsinxdax]e-xlosclaxi]e] $=\frac{1}{2}[e\sin[-elos]+1]$ (8) 1/2 Xaresinx dx = $\int_{0}^{\frac{1}{2}} X arcsin X d arcsin X$ 玄arcsinX=t=7 X=sint ·原式= Set sint dt Xsinaxdx 2.41/ 曲可用 = [sint-tlast] = Lsinax- Lasax+C 可挡 = 1-5元 3.解/ Soxy Wax $= \int_0^2 \chi^2 df'(\chi)$ = Xf(x) /2-2(50 Xf(x)dx) = $X^2 f(x)|_0^2 + 2 \int_0^2 f(x) - 2x f(x)|_0^2$

将题中数据代入,得原式=0.

生解(い):'(f'tx)'=2f(x)f'(x)

(2)由施瓦茨不筆式得: ?1b9(3 (f(x)・Xf'(x)) dx)'=2 (x f'(x))' dx

= $\frac{1}{2}\int_{a}^{b}x d(f'(x))$

5解;证明;UI, [音[f(X)+f'l(X)]sinXdX

= Softwsinxdx+ Softwsinxdx

=) [fix finx dx + sinx fix] [-] [fix losxdx

二手(至)+ SofixinxdX- 管losx dflx1

= f'l=+ [즉fuysinxdx - L LOSX·flx)] = + [증fux)sinxdx)

= fult f'(至).

LZ). [[f(x)+f"(x)] Ws x dx

= [] fix psxdx + [] losxdfix]

= [=fixilosxdx + losxfixi] = +]=fixisinxdx

=-f'lo]+ SOFTWLOSXdX+ SosinXdflx1

-- flat foftxlasxdX+ sinxflxi of- foftxllasxdx

={经1-1/101.

[X2sinxdx

flx1=X, flx1=2X

=] [X+2)sinXdX-2] sinXdX

ful=0, f'(至)=石

= 五十2105X13

=TV-2

= [章(X412X2) los XdX-12 [章X205XdX

= [含(X+12X+) lasxdX-12([含(X+2)lasxdX-]含2lasxdX)

g(X=X², g'(X)=ZX 9(至)=육², g'(1)=0

= 架-3元2+24.L课柜面管案错误)