멋쟁이사자처럼 K-Digital Training 『인공지능 통합과정』

『최종 프로젝트 수행 계획서』

제 출 일	211102	담당 강사	임동조
팀 명	으쌰으쌰	팀 인 원	김범중 김진연
기 술 스 택	외부 데이터 크롤링, 랜덤 포레스트, 결정 트리 모델 생성 예정		
프로젝트명	트명 날씨에 따른 가스공급량 수요예측 모델 개발		

■ 프로젝트 목표 및 개요

[목표]

- 실전 데이터를 활용한 머신 러닝 및 딥러닝 모델 구축 및 실전 분석 능력 향상
- 상위 5%에 들기
- 머신 러닝 및 딥러닝 원리 이해, 활용 및 기술 습득

[개요]

- (1) 데이터 탐색 및 시각화 (태블로, matplotlib, seaborn, plotly)
- (2) 외부 데이터 수집 및 데이터 병합
 - 시간별 날씨 데이터 크롤링 (나주시 농업기상정보시스템)
- (3) 머신 러닝 모델 구축 및 평가
 - 데이터 전처리
 - k-fold 교차 검증
 - 회귀(선형회귀, Ridge, Lasso)
 - knn, 의사결정트리, 앙상블(랜덤포레스트, lightgbm, xgboost, catboost 등)
 - pycaret를 활용한 모델 비교 평가

[대회 정보]

일정: 데이터 확인 - 머신 모델 테스트 - 모델 선택 - 개선

- ◆ 대회명: 데이콘 가스공급량 수요예측 모델개발 대회
- ◆ 대회 링크: https://dacon.io/competitions/official/235830/overview/description
- ◆ 주제 : 한국가스공사의 시간단위 가스 공급량 데이터와 기상 데이터 및 유가 데이터를 종합한 데이터셋을 구축하여 90일 한도 일간 공급량을 예측하는 인공지능 모델을 개발

■ 역할 분담

성 명	분담 내용	역 할
가채원	- 프로젝트 전반적인 계획 및 팀 조율	팀장
	- 데이터 탐색 및 시각화	
	- 중간 결과 발표 자료 작성 (노션 정리)	
	- 자료 리서치	
	- 데이터 탐색 및 시각화(태블로 활용)	
김범중	- 데이터 수집 탐색 및 전처리	부팀장
	내용 : 나주시 농업기상정보시스템의 기온 데이터	
	URL:	
	- 모델 구축 및 평가	
	평가 지표(MSE, RMSE, 결정계수, MAE, NMAE)를 활용한 평가	
	- 모델 개선	
김진연	- 데이터 탐색 및 시각화	팀원
	- 시각화 지원(태블로)	
	- 모델 구축 및 개선	
	- 회귀(선형회귀), 의사결정트리	
	- 앙상블(rf, xgboost, lightgbm, catboost 등)	
	- pycaret를 활용한 모델 비교	
윤진훈	- 데이터 탐색 및 시각화	팀원
	- 모델 구축 및 개선	
	- 회귀(선형회귀), 의사결정트리	
	- 앙상블(rf, xgboost, lightgbm, catboost 등)	

■ 예상 결과물

날짜에 따른 가스 공급량 예측에 대한 결과물

- (1) 최종 프로젝트 소스 코드
- (2) 최종 프로젝트 발표 자료
- (3) 모델 비교 평가와 파라미터 변경 이력 등의 엑셀 정리 자료