

Description

The VSM6N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 6A$ $R_{DS(ON)} < 140mΩ @ V_{GS} = 10V$ (Typ:110mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM6N10-T9	VSM6N10	TO-92	-	-	-

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _G S	±20	V	
Drain Current-Continuous	I _D	6	Α	
Drain Current-Pulsed (Note 1)	I _{DM}	24	Α	
Maximum Power Dissipation	P _D	3	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}\mathbb{C}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient (Note 2)	$R_{\theta JA}$	41.7	°C/W
,	· ·		1 1

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Off Characteristics								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ		

Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA		
On Characteristics (Note 3)								
Gate Threshold Voltage	$V_{GS(th)}$ $V_{DS}=V_{GS},I_D=250\mu A$		1.2	1.8	2.5	V		
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =5A		110	140	mΩ		
Forward Transconductance	g FS	V _{DS} =5V,I _D =2.9A	-	8	-	S		
Dynamic Characteristics (Note4)								
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V,	-	690	-	PF		
Output Capacitance	Coss	F=1.0MHz	-	120	-	PF		
Reverse Transfer Capacitance	C _{rss}	F=1.0IVII IZ	-	90	-	PF		
Switching Characteristics (Note 4)								
Turn-on Delay Time	t _{d(on)}		-	11	-	nS		
Turn-on Rise Time	t _r	V_{DD} =30 V , I_D =2 A , R_L =15 Ω	-	7.4	-	nS		
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10V, R_{G} =2.5 Ω	-	35	-	nS		
Turn-Off Fall Time	t _f		-	9.1	-	nS		
Total Gate Charge	Q_g	\/ -20\/1 -24	-	15.5		nC		
Gate-Source Charge	Q_{gs}	$V_{DS}=30V,I_{D}=3A,$ $V_{GS}=10V$	-	3.2	-	nC		
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	4.7	-	nC		
Drain-Source Diode Characteristics								
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =6A	-	-	1.2	V		
Diode Forward Current (Note 2)	e Forward Current (Note 2)		-	-	6	А		

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature.}$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test circuit

2) Gate charge test circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (curves)

Figure 1. Source-Drain Diode Forward Voltage

Figure 5. Static drain-source on resistance

Figure 2. Safe operating area

Figure 4. Transfer characteristics

Figure 6. R_{DS(ON)} vs Junction Temperature

Figure 7. BV_{DSS} vs Junction Temperature

Figure 8. V_{GS(th)} vs Junction Temperature

Figure 9. Gate charge waveforms 10 V_{DS}=30V I_D=3A V_{GS} (Volts) 6 2 0 0 5 10 15 20 25 30 Q_g (nC)

Figure 11. Normalized Maximum Transient Thermal Impedance