COSC 445/542	Compiler	February 2016	Name:	
--------------	----------	---------------	-------	--

Open book

1. Consider the regular expression ($a \mid b^*c$)

Note (,) and | are meta-symbols.

Reminder: The precedence of regular expression operators, highest to lowest, is closure (*) > concatenate > alternate (|)

1A. Give three strings recognized by the regular expression.

1B. Write the <u>NFA</u> that recognizes the tokens defined by the regular expression. This question is testing your knowledge of RE \rightarrow NFA; it is not testing your knowledge of RE \rightarrow DFA.

2. Write the state transition table for the following state transition diagram.

3. Write the DFA that corresponds to the following NFA. Any correct DFA is a correct answer to this question.

4. Minimize this DFA

Any correct DFA that has the minimal number of states is a correct answer.

5. Remove direct left recursion from this grammar (Give the complete new set of productions and of non-terminal symbols)

$$S \rightarrow ABc$$

 $A \rightarrow AC \mid C$
 $B \rightarrow w$
 $C \rightarrow x$

$$T = \{ c, w, x \} NT = \{ S, A, B, C \}$$

6. Give a set of productions for an expression grammar with the following four operators: <- , -> , (- ,-)

high precedence: <- , -> right associative low precedence: (- , -) left associative

$$T = \{ <-, ->, (-, -), num, id \}$$

Note: (and) are not symbols in this grammar.

7. Consider this set of productions in a grammar

$$S \rightarrow a S'$$
 //(1)
 $S \rightarrow S'$ //(2)
 $S' \rightarrow T T'$ //(3)
 $T \rightarrow a$ //(4)
 $T' \rightarrow T T'$ //(5)
 $T' \rightarrow \epsilon$ //(6)

$$T = \{a, b\}$$
 NT = $\{S, S', T, T'\}$
A label for each production is given to the right $((1) - (6))$

7A. Give the FIRST sets for all symbols

7B. Give the FOLLOW sets for the non-terminals

7C. Give the FIRST+ sets for all productions.

7D. Is the grammar backtrack free? Why or why not?