Due Feb 10, 1:59 PM +06

Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1. What does a neuron compute?

1/1 point

- A neuron computes an activation function followed by a linear function (z = Wx + b)
- A neuron computes a linear function (z = Wx + b) followed by an activation function
- A neuron computes the mean of all features before applying the output to an activation function
- A neuron computes a function g that scales the input x linearly (Wx + b)
- **⊘** Correct

 $Correct, we generally say that the output of a neuron is a = g(Wx+b) \ where \ g \ is the activation function (sigmoid, tanh, ReLU, ...).$

2. Which of these is the "Logistic Loss"?

1/1 point

- $\bigcirc \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = |y^{(i)} \hat{y}^{(i)}|^2$
- $\bigcirc \ \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)} \mid$
- $\bigcirc \ \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = max(0, y^{(i)} \hat{y}^{(i)})$
- \bigcirc $\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1 y^{(i)})\log(1 \hat{y}^{(i)}))$
- ✓ Correct

Correct, this is the logistic loss you've seen in lecture!

3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?

1/1 point

- x = img.reshape((32*32,3))
- x = img.reshape((3,32*32))
- x = img.reshape((1,32*32,*3))
- x = img.reshape((32*32*3,1))
- **⊘** Correct
- 4. Consider the two following random arrays "a" and "b":

1/1 point

```
1 a = np.random.randn(2, 3) # a.shape = (2, 3)
2 b = np.random.randn(2, 1) # b.shape = (2, 1)
3 c = a + b
```

What will be the shape of "c"?

	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	C.shape = (2, 1)	
	C.shape = (3, 2)	
	○ Correct Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.	
5.	Consider the two following random arrays "a" and "b":	1/1 point
	1 a = np.random.randn(4, 3) # a.shape = (4, 3) 2 b = np.random.randn(3, 2) # b.shape = (3, 2) 3 c = a*b	
	What will be the shape of "c"?	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	C.shape = (4,2)	
	O c.shape = (3, 3)	
	C.shape = (4, 3)	
	Correct Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).	
6.	Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}].$ What is the dimension of X?	1/1 point
	$\bigcap (m, n_x)$	
	$leftsymbol{igotimes} (n_x,m)$	
	\bigcirc $(m,1)$	
	\bigcirc $(1,m)$	
	○ Correct	
7.	Recall that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a*b" performs an element-wise multiplication.	1/1 point
	Consider the two following random arrays "a" and "b":	
	1 a = np.random.randn(12288, 150) # a.shape = (12288, 150) 2 b = np.random.randn(150, 45) # b.shape = (150, 45) 3 c = np.dot(a,b)	

What is the shape of c?

	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	O c.shape = (12288, 150)	
	o c.shape = (12288, 45)	
	O c.shape = (150,150)	
	Correct Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b"	
8.	Consider the following code snippet:	1/1 point
	<pre>1 # a.shape = (3,4) 2 # b.shape = (4,1) 3 4 for i in range(3): 5</pre>	
	How do you vectorize this?	
	O c=a+b	
	O c=a.T+b.T	
	O c=a.T+b	
	⊘ Correct	
9.	Consider the following code:	1/1 point
	1 a = np.random.randn(3, 3) 2 b = np.random.randn(3, 1) 3 c = a*b	
	What will be c? (If you're not sure, feel free to run this in python to find out).	
	This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)	
	O This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)	
	This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).	
	O It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)	
	⊘ Correct	
10	. Consider the following computation graph.	1/1 point

u = a * b

а

What is the output J?

- $\int J = (c 1)*(b + a)$
- J = (a 1) * (b + c)
- $\int J = a^*b + b^*c + a^*c$
- \bigcirc J = (b 1) * (c + a)
- **⊘** Correct

Yes. J = u + v - w = a*b + a*c - (b + c) = a*(b + c) - (b + c) = (a - 1)*(b + c).