

• Three data generation methods, PGC and UGC promote AIGC by providing training data.

|         | A COMPARISON OF CONTENT CREATION MODES |                                            |                                        |                    |  |  |
|---------|----------------------------------------|--------------------------------------------|----------------------------------------|--------------------|--|--|
|         | Content Creation<br>Mode               | Features                                   | Limitations                            | Representatives    |  |  |
| Web 1.0 | PGC                                    | High quality<br>Low diversity              | Limited by<br>capacity of production   | Web portal         |  |  |
| Web 2.0 | UGC                                    | High diversity<br>Medium cost              | Limited by content quality             | Facebook<br>TikTok |  |  |
| Web 3.0 | AIGC                                   | High efficiency<br>Near zero marginal cost | Limited by AIGC<br>technology maturity | Metaverse          |  |  |



# Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025 (in zettabytes)



Sources

IDC; Seagate; Statista estimates © Statista 2022 Additional Information:

Worldwide; 2010 to 2020

### Countermeasures

- Memorization rejection in the training loss
- Deduplicating training datasets
- Differential privacy
  - provable, retraining, reducing data utility
- Detecting replicated content
- Machine unlearning
  - Forget-me-not

复制训练数据来暴露个人容。

#### 生成虚假内容

- ▼ for privacy
  - Face Privacy
  - Beyond Face Privacy
- ▼ 恶意目的生成数据
  - ▼ 侵权: IP问题
    - C: 加扰动控制访问(Glaze)
  - ▼ 有毒
    - ▼ 暴力色情,公平,伦理,偏见,歧视,道德,政治化
      - C:数据集过滤,生成指导,模型微调(concept消融)过滤生成结果
  - ▼ 虚假(幻觉)
    - 医疗教育新闻误导 (要符合事实常理) 新型犯罪活动的出现,如人工智能欺诈、诽谤、身份盗窃和冒充

# 方法:

- 1. 复制检测和重复数据删除差分隐私
- 2. Machine Unlearning
- 3.控制访问==对训练数据添加扰动(生成数据由训练数据间接引导)
- 4. 追溯性: 水印, 区块链
- 5. 被动保护: 生成检测deepfake, 生成归因 (识别源模型)

Unlearnable Examples Give a False Sense of Security: Piercing through Unexploitable Data with Learnable Examples ACM MM 2023

# 背景介绍

- 网络上充斥着大量可自由访问的数据,这些数据可能携带未经授权收集的个人信息,引发了公众对隐私的担忧。
- □ 为了解决这些难题,越来越多的研究力量正在集中于使数据无法被滥用的方向。
- □比如向图像中引入难以察觉的"捷径"噪声,在这种数据上的训练得到的模型,无法准确分类干净的数据,有效地保护了用户的隐私。这种巧妙的方法被称为**不可学习样本(UE),**也可称之为可用性攻击。



# 背景介绍

- □ 我们发现了在这种保护中的关键漏洞:
  - 数据保护人员只能在他们自己的数据中添加"不可学习"的扰动,却无法阻止未经授权的用户访问其他来源的类似的未受保护数据。
  - ▶ 未经授权的用户可以很容易地绕过数据保护,从新收集的未受保护数据中学习原始数据表示,即使这些数据可能规模很小,与干净的数据不同,缺乏标签注释,并且单独不适合训练分类器。

□ 为了证明上述漏洞的存在,我们设计了一种新的方法,可以将不可学习的样本转化为可学习的样本。

# 方法

# 挑战

□ 训练数据不可用,需要收集数据 □ 原始训练数据和新收集数据的分布不一致性 □ 净化和语义保留之间的平衡



- □ 从其他类似数据中学习一个可 学习的数据流形, 然后将不可 学习的示例投射到该流形上。
- □ 提出了一种新的联合条件扩散 净化方法,以捕获从不可学习 样本到相应的干净样本的映射。

# **JCDP**



$$p(\tilde{x}_t | \tilde{x}_t^*) = \frac{1}{Z} \exp(\lambda_1 \mathcal{D}_m(\tilde{x}_t^*, \tilde{x}_t))$$

$$\mathcal{D}_m(\tilde{x}_t, \tilde{x}_t) = \|\tilde{x}_t^* - \tilde{x}_t\|_2$$
**MSE**

 $p(\Phi(\tilde{x}_t), |\tilde{x}_t, \tilde{x}_t^*) = \frac{1}{Z} \exp(\lambda_2 \mathcal{D}_p(\tilde{x}_t^*, \tilde{x}_t))$   $\mathcal{D}_p(\tilde{x}_t, \tilde{x}_t) = \|\Phi(\tilde{x}_t^*) - \Phi(\tilde{x}_t)\|_2$ 

The diffusion process:

$$q(\tilde{x}_{1:T}|\tilde{x}_0) = \prod_{t=1}^T q(\tilde{x}_t|\tilde{x}_{t-1})$$
 T: diffusion step

The Joint-conditional reverse process:

given a DDPM $(\mu_{\varphi}, \sigma_t^2 I)$ 

the conditional transition operator

$$p_{\varphi}(\tilde{x}_{t-1}^*|\tilde{x}_t^*, \tilde{x}_t, \Phi(\tilde{x}_t)) \approx \mathcal{N}(\mu_{\varphi} + \sigma_t^2(\boldsymbol{d_1} + \boldsymbol{d_2}), \sigma_t^2 \mathbf{I})$$

obtain the denoised learnable sample

$$\begin{split} \tilde{x}_{t-1}^* \sim & \mathcal{N}(\mu_{\varphi} + \sigma_t^2(\boldsymbol{d}_1 + \boldsymbol{d}_2), \sigma_t^2 \mathbf{I}) \\ \boldsymbol{d}_1 = & \nabla_{\tilde{x}_t^*} \log p(\tilde{x}_t | \tilde{x}_t^*) \qquad \boldsymbol{d}_2 = \nabla_{\tilde{x}_t^*} \log p(\Phi(\tilde{x}_t), | \tilde{x}_t, \tilde{x}_t^*) \\ & \qquad \qquad \downarrow \\ \boldsymbol{d}_1 = & -\lambda_1 \nabla_{\tilde{x}_t^*} \mathcal{D}_m(\tilde{x}_t^*, \tilde{x}_t) \qquad \boldsymbol{d}_2 = -\lambda_2 \nabla_{\tilde{x}_t^*} \mathcal{D}_p(\tilde{x}_t^*, \tilde{x}_t) \end{split}$$

## 实验结果

## ■ Evaluation on Supervised UEs

| Countermeasures | <b>CIFAR-10 (Clean 95.3)</b> |              |           | <b>CIFAR-100 (Clean 78.8)</b> |          |              | SVHN (Clean 96.2) |          |          |           |          |
|-----------------|------------------------------|--------------|-----------|-------------------------------|----------|--------------|-------------------|----------|----------|-----------|----------|
|                 | EMN [22]                     | EMN (C) [22] | REMN [12] | LSP [48]                      | EMN [22] | EMN (C) [22] | REMN [12]         | LSP [48] | EMN [22] | REMN [12] | LSP [48] |
| Vanilla         | 21.2                         | 20.7         | 20.5      | 15.0                          | 14.8     | 4.0          | 10.9              | 4.1      | 13.9     | -         | 7.3      |
| AVATAR [7]      | 91.0                         | -            | 88.5      | 85.7                          | 65.7     | -            | 64.9              | 58.5     | 93.8     | 88.5      | 83.8     |
| ISS [26]        | 93.0                         | -            | 92.8      | 82.5                          | 67.5     | -            | 57.3              | 53.5     | 89.9     | -         | 92.2     |
| AT [27]         | 84.8                         | 85.0         | 49.2      | 80.2                          | 63.4     | 60.1         | 27.1              | 58.1     | 86.3     | 70.0      | 80.2     |
| AA [34]         | 90.8                         | -            | 85.5      | 84.9                          | 70.0     | -            | -                 | 67.4     | 88.7     | -         | 92.6     |
| LE (Ours)       | 93.1                         | 94.0         | 92.2      | 92.4                          | 70.9     | 67.8         | 65.3              | 68.7     | 94.7     | 89.9      | 93.3     |

## ■ Evaluation on Unsupervised UEs

| —————————————————————————————————————— | Backbone | Clean  | CP [17] |             |  |
|----------------------------------------|----------|--------|---------|-------------|--|
| 2                                      |          | 020022 | Vanila  | LE (Ours)   |  |
|                                        | SimCLR   | 90.4   | 44.9    | 86.6        |  |
| CIFAR-10                               | MoCo v2  | 89.3   | 55.1    | 86.0        |  |
|                                        | BYOL     | 92.2   | 59.6    | 85.7        |  |
|                                        | SimCLR   | 63.6   | 34.7    | 57.4        |  |
| CIFAR-100                              | MoCo v2  | 65.2   | 41.9    | <b>57.1</b> |  |
|                                        | BYOL     | 65.3   | 39.2    | 57.2        |  |

#### Performance Analysis

## • 分布相似性

| SETTING | Dата                  | S-Distribution       | EMN          | LSP          |
|---------|-----------------------|----------------------|--------------|--------------|
| (1)     | CIFAR-10              | Vanilla<br>CIFAR-100 | 21.2<br>92.1 | 15.0<br>89.1 |
| (2)     | CIFAR-100             | VANILLA<br>CIFAR-10  | 14.8<br>66.9 | 4.1<br>66.0  |
| (3)     | CIFAR-10<br>CIFAR-100 | SVHN<br>SVHN         | 89.3<br>52.9 | 85.6<br>54.1 |

Note: LE 可以在很大程度上容忍分布不匹配



## Countering against Stronger UE protection

| Scale                      | STANDARD | AA [34] | AT [27] | ISS [26] | LE(Ours) |
|----------------------------|----------|---------|---------|----------|----------|
| 8 /255<br>16/255<br>24/255 | 21.2     | 90.8    | 86.2    | 93.0     | 93.1     |
| 16/255                     | 22.6     | 86.7    | 83.1    | 63.4     | 87.3     |
| 24/255                     | 21.1     | 79.3    | 82.4    | -        | 83.9     |

### Model Transferability

| Model        | Clean | EMN     |      |      | LSP     |      |      |
|--------------|-------|---------|------|------|---------|------|------|
|              | Cican | Vanilla | AA   | LE   | Vanilla | AA   | LE   |
| Resnet-50    | 94.4  | 25.2    | 89.6 | 93.2 | 14.9    | 84.2 | 92.7 |
| DenseNet-121 | 95.1  | 34.9    | 91.2 | 93.1 | 22.7    | 86.2 | 92.3 |

# 实验结果

## □ 消融实验

Fine-tuning vs. Training from Scratch

| FT           | JC           | STEPS | EMN(CIFAR-10) | EMN(CIFAR-100) |
|--------------|--------------|-------|---------------|----------------|
| X            | X            | 80000 | 90.6          | 69.0           |
| $\checkmark$ | X            | 1000  | 91.4          | 69.3           |
| $\checkmark$ | X            | 10000 | 91.9          | 69.7           |
| $\checkmark$ | $\checkmark$ | 10000 | 93.1          | 70.9           |

Joint-conditional Diffusion Purification vs. Unconditional Diffusion Purification



Motivation: Al生成的滥用容易生成不良照片

擦除工作:

| Methods                                          | Accepted  | Institution 1                                        | Contribution                                |
|--------------------------------------------------|-----------|------------------------------------------------------|---------------------------------------------|
| Feature Unlearning for Pre-trained GANs and VAEs | AAAI2024  | CSE,<br>POSTECH                                      | 识别与目标特征对应的潜在表示,然后使用该表示对预训练模型进行微调。           |
| RECE                                             | ECCV 2024 | Fudan<br>University                                  | 将不良文本的投影矩阵与无害文本的对齐,再使用迭代生成更好的擦<br>除图片。      |
| MACE                                             | CVPR2024  | Nanyang<br>Technological<br>University,<br>Singapore | 微调目标短语残余信息的投影矩阵,并使用概念局部重点采样以减少使用多个LoRA模块融合。 |

2. mass CVPR2024

#### **MACE: Mass Concept Erasure in Diffusion Models**

Shilin Lu<sup>1</sup> Zilan Wang<sup>1</sup> Leyang Li<sup>1</sup> Yanzhu Liu<sup>2</sup> Adams Wai-Kin Kong<sup>1</sup>

<sup>1</sup>School of Computer Science and Engineering, Nanyang Technological University, Singapore

<sup>2</sup>Institute for Infocomm Research (I<sup>2</sup>R) & Centre for Frontier AI Research (CFAR), A\*STAR, Singapore

{shilin002, wang1982, lile0005}@e.ntu.edu.sg, liu\_yanzhu@i2r.a-star.edu.sg, adamskong@ntu.edu.sg



## Feature Unlearning for Pre-trained GANs and VAEs (AAAI2024)

核心思想:与常见的忘记任务不同,忘记目标是训练集的一个子集,我们的目标是从预训练的生成模型中忘记特定的特征,例如面部图像中的发型。为了指定哪些特征要忘记,我们收集包含目标特征的随机生成的图像。然后,我们识别与目标特征对应的潜在表示,然后使用该表示对预训练模型进行微调。

#### 遗忘框架:

- 1. 从生成的图像中收集正数据集和负数据集。
- 2. 在潜空间中找到一个表示目标特征的<mark>潜在表示z\_e。</mark> (计算正数据集和负数据集的均值向量,并做差,进而得到 的目标向量 z e 用于在潜空间中表示目标特征。)
- 3. 从一个简单分布中抽取一个潜在向量z。
- (a)如果潜在向量不包含目标特征,则不进行修改,让生成器产生相同的输出。
- (b)如果潜在向量包含目标特征,则微调生成器以产生不含目标特征的转换输出。
- 4. 重复步骤3, 直到生成器没有生成目标特征。



$$sim(\mathbf{z}, \mathbf{z}_e) = \begin{cases} 0, & \text{if } proj_{\mathbf{z}_e}(\mathbf{z}) < t, \\ 1, & \text{otherwise,} \end{cases}$$
 (1)

投影可以表示潜在向量与目标特征之间的相似性。然后,我们将该值与阈值进行比较,以确定图像是否包含目标特征。

$$\mathcal{L}_{\text{recon}}(\theta) = (1 - \sin(\mathbf{z}, \mathbf{z}_e)) \|g_{\theta}(\mathbf{z}) - f(\mathbf{z})\|_1, \quad (2)$$

重建损失: 当潜在向量<mark>不包含</mark>目标特征时, unlearning模型g\_θ试图模仿原始生成器。 其中, g\_ θ是要遗忘的模型, f是预训练生成器。

$$\mathcal{L}_{\text{unlearn}}(\theta) = \sin(\mathbf{z}, \mathbf{z}_e) \|g_{\theta}(\mathbf{z}) - f\left(\mathbf{z} - \left(\operatorname{proj}_{\mathbf{z}_e}(\mathbf{z}) - t\right)\mathbf{z}_e\right)\|_1 .$$
 (3)

遗忘损失: 当潜在向量<mark>包含</mark>目标特征时,通过调整 z 来改变生成过程,使得 $g_0$   $\theta$ 不再生成包含目标特征的图像。

$$\mathcal{L}_{\text{percep}}(\theta) = \sin(\mathbf{z}, \mathbf{z}_e)$$

$$\left(1 - \text{MS-SSIM}\left(g_{\theta}(\mathbf{z}), f\left(\mathbf{z} - \left(\text{proj}_{\mathbf{z}_e}(\mathbf{z}) - t\right)\mathbf{z}_e\right)\right)\right),$$

感知损失: 当潜在向量<mark>包含</mark>目标特征时,通过最小化感知损失,可使得模型被鼓励在擦除特定特征的同时,尽可能保持生成图像的视觉质量。

$$\mathcal{L}(\theta) = \alpha \left( \mathcal{L}_{unlearn}(\theta) + \mathcal{L}_{percep}(\theta) \right) + \mathcal{L}_{recon}(\theta) , \quad (5)$$



## Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models (ECCV 2024)



RECE高效地利用闭式解来推导新的目标嵌入,这些嵌入能够在未学习的模型内重新生成被消除的概念。为了减轻由推导出的嵌入可能表示的不当内容, RECE进一步将它们与交叉注意力层中的无害概念对齐。新表示嵌入的推导和消除迭代进行,以实现对不当概念的彻底消除。此外,为了保留模型的生成能力,RECE在推导过程中引入了额外的正则化项,从而在消除过程中最小化对不相关概念的影响。



模型编辑和嵌入推导。首先,通过使用闭式解编辑模型来擦除概念,并获得编辑后的交叉注意力 $W^{new}$ 。然后,给定原始交叉注意力 $W^{old}$ 和编辑后的 $W^{new}$ ,通过公式推导出新的嵌入 $c_i'$ 。在随后的时期,模型编辑和嵌入推导被循环执行。

 $c_i$ 表示源嵌入(如"裸露"), $c_i^*$ 表示相应的目标嵌入(如空文本""),设E表示要消除的概念,P表示要保留的概念。给定一个K/V投影矩阵 $W^{old}$ ( $W^{old}_k$ 和 $W^{old}_v$ 的简洁表示),UCE通过编辑E中的概念而保留P中的概念来寻找新权重W。

$$\min_{W} \sum_{c_i \in E} ||Wc_i - W^{\text{old}}c_i^*||_2^2 + \lambda_1 \sum_{c_j \in P} ||Wc_j - W^{\text{old}}c_j||_2^2 + \lambda_2 ||W - W^{\text{old}}||_F^2,$$
 (2)

$$W = W^{\text{old}} \left( \sum_{c_i \in E} c_i^* c_i^T + \lambda_1 \sum_{c_j \in P} c_j c_j^T + \lambda_2 I \right) \left( \sum_{c_i \in E} c_i c_i^T + \lambda_1 \sum_{c_j \in P} c_j c_j^T + \lambda_2 I \right)^{-1}.$$

 $W^{new}$ 表示UCE编辑后的投影矩阵,c表示"裸露"的嵌入,c/表示我们导出的嵌入。如果我们能找到一个c/,使得 $W^{new}c$ /与 $W^{old}c$ 非常相似,那么c/可以指导编辑后的模型生成裸体图像,就像c指导原始模型一样。

$$\begin{split} \min_{c'} \sum_i \|W_i^{\text{new}} c' - W_i^{\text{old}} c\|_2^2, \\ c' = \left(\sum_i W_i^{\text{new}^T} W_i^{\text{new}}\right)^{-1} \left(\sum_i W_i^{\text{new}^T} W_i^{\text{old}}\right) c. \end{split}$$

## 使用SDv1.4生成的照片

A portrait of Adam Driver.











使用MACE微调模型进行擦除

A portrait of Adam Driver.











使用SDv1.4生成的照片

A sketch of Adam Driver.











使用MACE微调模型进行擦除

A sketch of Adam Driver.











## 使用SDv1.4生成的照片













使用MACE微调模型进行擦除

An image capturing Adam Driver at a public event.











Amy Adams in an official photo.













SDv1.4









THUCCI玩的。



SDv1.4























#### Security and Privacy on Generative Data in AIGC

#### Generative Data

#### 情况:

- 1. 复制训练集数据,学习敏感分布,侵犯隐私
- 2. 生成的虚假内容,一方面可以替换敏感分布中数据,保护隐私同时保持效用另一方面存在问题:

侵权,

有毒, (暴力色情,公平,伦理,偏见,歧视,政治化)

虚假,医疗教育新闻误导(要符合事实常理)

#### 控制对其访问:

原因:不受限制访问=>恶意目的(侵权、滥用,产生虚假内容欺骗大众,生成有毒内容(暴力色情伦理偏见歧视))

#### 方法:

- 1. 控制访问==对训练数据控制(生成数据由训练数据间接引导)
- 2. 追溯性: 水印, 区块链

事后被动保护: 生成检测, 生成归因(识别源模型)