程序验证方法 研究生课程 Chapter 10 (10.1-10.4) Nondeterministic Programs

朱惠彪 华东师范大学 软件工程学院

10.1 Syntax

Expanding the grammar for while programs by adding for each n≥ 1 the following production rules:

if command or alternative command

$$S ::= if B_1 \rightarrow S_1 \square \ldots \square B_n \rightarrow S_n fi,$$

do command or repetitive command

$$S ::= do B_1 \rightarrow S_1 \square ... \square B_n \rightarrow S_n od.$$

Also written as

if
$$\square_{i=1}^n B_i \to S_i$$
 fi and do $\square_{i=1}^n B_i \to S_i$ od.

Guarded Command

Guard

Execution

• if
$$B_1 \rightarrow S_1 \square \ldots \square B_n \rightarrow S_n$$
 fi

- If more than one guard B_i evaluates to true, any of the corresponding statements S_i may be executed next.
- ◆ If all guards evaluate to false, the alternative command will signal a failure.

10.2 Semantics

```
(xx) < if \square_{i=1}^n B_i \rightarrow S_i fi, \sigma > \cdots < S_i, \sigma > \cdots
           where \sigma \mid = B_i and i \in \{1, ..., n\},
                                                                                    Here fail is an exceptional state.
(xxi) < if \square_{i=1}^n B_i \rightarrow S_i fi, \sigma > \rightarrow < E, fail >
           where \sigma \mid = \bigwedge_{i=1}^{n} \neg B_{i}
(xxii) < do \square_{i=1}^n \to S_i od, \sigma > \to < S_i; do \square_{i=1}^n B_i \to S_i od, \sigma > \to < S_i
           where \sigma \mid = B_i and i \in \{1, ..., n\},
(xxiii) < do \square_{i=1}^n B_i \to S_i od, \sigma > \to < E, \sigma >
           where \sigma \mid = \bigwedge_{i=1}^{n} \neg B_{i}.
```

M [[S]]

Partial correctness semantics:

$$M[[S]](\sigma) = \{\tau \mid < S, \ \sigma > \to^* < E, \ \tau > \},$$

Total correctness semantics:

$$M_{tot}$$
 [[S]](σ) = M [[S]](σ)
 $\cup \{ \bot \mid S \text{ can diverge from } \sigma \}$

 \cup {fail | S can fail from σ }.

Chapter 3.7

Properties of Semantics

Lemma 10.1. (Bounded Nondeterminism)

Let S be a nondeterministic program and σ a proper state. Then M_{tot} [[S]](σ) is either finite or it contains \bot .

- Lemma 10.2. (Correspondence)
 - (i) $M_{tot}[[\text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi }]] = M_{tot}[[\text{if } B \rightarrow S_1 \square \neg B \rightarrow S_2 \text{ fi}]],$
 - (ii) M_{tot} [[while B do S od]] = M_{tot} [[do $B \rightarrow S$ od]].

if B then S_1 else S_2 fi \equiv if $B \rightarrow S_1 \square \neg B \rightarrow S_2$ fi while B do S od \equiv do $B \rightarrow S$ od.

Syntactic Approximation of a loop

Let Ω be a nondeterministic program such that $M[[\Omega]](\sigma) = \emptyset$ holds for all proper states σ .

kth syntactic approximation of a loop do $B_i \rightarrow S_i$ od:

$$(\operatorname{do} \square_{i=1}^{n} B_{i} \to S_{i} \operatorname{od})^{0} = \Omega$$

$$(\operatorname{do} \square_{i=1}^{n} B_{i} \to S_{i} \operatorname{od})^{k+1} = \operatorname{if} \square_{i=1}^{n} B_{i} \to S_{i}; (\operatorname{do} \square_{i=1}^{n} B_{i} \to S_{i} \operatorname{od})^{k}$$

$$\square \wedge_{i=1}^{n} \neg B_{i} \to skip$$
fi.

N[[S]]

Let N stand for M or M_{tot} . We extend N to deal with the error states \perp and fail by

$$M[[S]](\bot) = M[[S]](fail) = \emptyset$$

and

$$M_{tot}$$
 [[S]](\perp) = { \perp } and M_{tot} [[S]](fail) = {fail}

and to deal with sets $X \subseteq \Sigma \cup \{\bot\} \cup \{fail\}$ by

$$\mathcal{N}[[S]](X) = \bigcup_{\sigma \in x} \mathcal{N}[[S]](\sigma).$$

Lemma 10.3

Lemma 10.3. (Input/Output)

- (i) $\mathcal{N}[[S]]$ is monotonic; that is, $X \subseteq Y \subseteq \Sigma \cup \{\bot\}$ implies $\mathcal{N}[[S]](X) \subseteq \mathcal{N}[[S]](Y)$.
- (ii) $\mathcal{N}[[S_1; S_2]](X) = \mathcal{N}[[S_2]](\mathcal{N}[[S_1]](X)).$
- (iii) $M[(S_1; S_2); S_3]](X) = M[[S_1; (S_2; S_3)]](X).$
- (iv) $M[[if \square_{i=1}^n B_i \rightarrow S_i fi]](X) = \bigcup_{i=1}^n M[[S_i]](X \cap [[B_i]]).$
- (v) if $X \subseteq \bigcup_{i=1}^{n} [[B_i]]$ then

$$M_{tot}$$
 [[if $\square_{i=1}^n B_i \rightarrow S_i$ fi]](X) = $\bigcup_{i=1}^n M_{tot}$ [[S_i]](X \cap [[B_i]]).

(vi)
$$M[[do \square_{i=1}^n B_i \rightarrow Siod]] = \bigcup_{k=0}^{\infty} M[[(do \square_{i=1}^n B_i \rightarrow S_i od)^k]].$$

10.4 Verification

Partial Correctness

RULE 30: ALTERNATIVE COMMAND

RULE 5: LOOP

$$\{p \land B\} S\{p\}$$

 $\{p\}$ while B do S od $\{p \land \neg B\}$

$$\{p \land B_i\} S_i \{q\}, i \in \{1, \ldots, n\}$$
 $\{p\} \text{ if } \square_{i=1}^n B_i \rightarrow S_i \text{ fi } \{q\}$

RULE 31: REPETITIVE COMMAND

Invariant
$$\{p \land B_i\} S_i \{p\}, i \in \{1, ..., n\}$$

$$\{p\} \text{ do } \square_{i=1}^n B_i \rightarrow S_i \text{ od } \{p \land \bigwedge_{i=1}^n \neg B_i\}$$

Proof System

PROOF SYSTEM PN:

This system consists of the group of axioms and rules 1, 2,

3, 6, 30, 31 and A2-A6.

AXIOM 1: SKIP

 $\{p\}$ skip $\{p\}$

AXIOM 2: ASSIGNMENT

$${p[u := t]} u := t {p}$$

RULE 3: COMPOSITION

RULE 6: CONSEQUENCE

$$\frac{\{p\}\ S_1\ \{r\}, \{r\}\ S_2\ \{q\}\}}{\{p\}\ S_1;\ S_2\ \{q\}}$$

$$\frac{p \to p_1, \{p_1\} \ S \ \{q_1\}, q_1 \to q}{\{p\} \ S \ \{q\}}$$

Total Correctness

We have to show absence of failures and absence of divergence.

RULE 32: ALTERNATIVE COMMAND II

Failures arise only if none of the guards in an alternative command evaluates to true

$$p \rightarrow \bigvee_{i=1}^{n} B_{i},$$

$$\{p \land B_{i}\} S_{i} \{q\}, i \in \{1, ..., n\}$$

$$\{p\} \text{ if } \square_{i=1}^{n} B_{i} \rightarrow S_{i} \text{ fi } \{q\}$$

RULE 33: REPETITIVE COMMAND II

$$\{p \land B_i\} S_i\{p\}, i \in \{1, \dots, n\},$$

 $\{p \land B_i \land t = z\} S_i\{t < z\}, i \in \{1, \dots, n\},$
 $p \rightarrow t \ge 0$
 $\{p\} \text{ do } \square_{i=1}^n B_i \rightarrow S_i \text{ od } \{p \land \bigwedge_{i=1}^n \neg B_i\}$

PROOF SYSTEM

• PROOF SYSTEM TN:

This system consists of the group of axioms and rules1, 2, 3, 6, 32, 33 and A3–A6.

Proof Outline for Total Correctness

• (xiii)

$$\begin{array}{c}
\rho \rightarrow \bigvee_{i=1}^{n} B_{i}, \\
 & \{\rho \land B_{i}\} S_{i}^{*}\{q\}, i \in \{1, ..., n\} \\
\hline
\{\rho\} \text{ if } \square_{i=1}^{n} B_{i} \rightarrow \{\rho \land B_{i}\} S_{i}^{*}\{q\} \text{ fi } \{q\}
\end{array}$$

• (xiv)

$$\{p \land B_i\} S_i^* \{p\}, i \in \{1, \dots, n\},$$
 $\{p \land B_i \land t = z\} S_i^{**} \{t < z\}, i \in \{1, \dots, n\},$
 $p \rightarrow t \geq 0$

 $\{\text{inv:} p\}\{\text{bd:} t\} \text{ do } \square_{i=1}^n B_i \rightarrow \{p \land B_i\} S_i^*\{p\} \text{ od } \{p \land \bigwedge_{i=1}^n \neg B_i\} \}$

Example 10.1

Proof outline for total correctness of the program GCD (mentioned in the beginning of Section 10.3):

Invariant:

$$p \equiv \gcd(x, y) = \gcd(x_0, y_0) \land x > 0 \land y > 0$$
Bound function:

$$t \equiv x + y.$$

Example:

```
If x=16 and y=5, then
         x>y\rightarrow x=11 y=5;
                x=6 y=5;
                x=1 y=5;
         x < y \rightarrow x = 1 y = 4;
                x=1 y=3;
                x=1 y=2;
    When exiting from loop, 'x=y' is satisfied!
```

The greatest common divisor of

Soundness

Theorem 10.1. (Soundness of PN and TN)

- (i) The proof system PN is sound for partial correctness of nondeterministic programs.
- (ii) The proof system TN is sound for total correctness of nondeterministic programs.

Thank you