To show that Number Partitioning is in NP we use the subset $S \subset \{1, ..., n\}$ such that $\sum_{i \in S} w_i = \frac{1}{2} \sum_{i=1}^n w_i$ as the certificate. Given a certificate we can add the corresponding numbers in polynomial time and test if the claimed equation holds.

To prove that $Number\ Partitioning$ is NP-complete, we show that $Subset\ Sum \le P\ Number\ Partitioning$. Consider an arbitrary instance of $Subset\ Sum$ with numbers w_1,\ldots,w_n and target sum W. We will construct an equivalent instance of $Number\ Partitioning$. Let $T=\sum_{i=1}^n w_i$ be the total sum of all numbers. Add two numbers $w_{n+1}=W+1$ and $w_{n+2}=T+1-W$. Note that the sum of all n+2 numbers is 2T+2. We claim that the partition problem with these n+2 numbers is equivalent to the original $Subset\ Sum$ instance. To prove this, assume first that the answer in the $Subset\ Sum$ problem is "yes", there is a subset S such that $\sum_{i\in S} w_i = W$. Now we can create a partition solution by adding w_{n+2} to the subset S, and using all other numbers as the other part. Now assume conversely that the answer in the $Number\ Partitioning$ problem is "yes", there is a partition where the two parts have equal sums, that is, they both sum to T+1. Note that w_{n+1} and w_{n+2} cannot be in the same part as $w_{n+1}+w_{n+2}>T+1$. Consider the part that contains w_{n+2} . The sum of all numbers in this part is T+1, so the numbers other than w_{n+2} must sum to W.

Note that it was important to add the +1 in both w_{n+1} and w_{n+2} . A natural first idea would have been to use $w_{n+1} = W$ and $w_{n+2} = T - W$. However, this instance of *Number Partitioning* is always "yes", independent of the answer in the original *Subset Sum* problem, as now the total sum is 2T and $w_{n+1} + w_{n+2} = T$.

 $^{^{1}}$ ex123.267.365