תרגיל בית 10

שאלה 1: (10 נק')

. היא חסומה $ar{A}$ של מרחב מטרי (X,d) היא חסומה לחלוטין אם ורק אם A היא חסומה לחלוטין.

שאלה 2: (30 נק')

- א. יהי (X,d) מרחב מטרי. קבוצה $X \subset X$ נקראת מפוזרת אם קיים C>0, כך שלכל $a,b\in S$, המקיימים א. יהי $a,b\in S$ מתקיים $a,b\in S$, מתקיים $a,b\in S$, תהי $a,b\in S$, תהי $a,b\in S$, מתקיים $a,b\in S$, מתקיים $a,b\in S$, תהי $a,b\in S$, והכיחו כי $a,b\in S$, מתקיים (מביע) חסומה לחלוטין (ולכן אינה קומפקטית). (10 נק')
- v=0ב. יהי V מרחב מכפלה פנימית מעל $\mathbb R$ ממימד אינסופי, ויהי B כדור היחידה ב־V, כך שמרכזו ב־U מצאו קבוצה מפוזרת ב־U. הסיקו כי כל כדור סגור ב־U אינו קומפקטי. (20 נק')

. רמז: על מנת למצוא קבוצה מפוזרת ב־B השתמשו בתהליך גרם שמידט

שאלה 3: (40 נק')

- V א. ערחבים וקטוריים איזומורפיים מעל $\mathbb R$ ויהי V איזומורפיזם בינהם. נניח כי על על ער יהיו $u \in U$ א. עריי: $\|u\|_U = \|f(u)\|_V$ לכל ע"י: $\|u\|_U = \|f(u)\|_V$ לכל ע"י: $\|u\|_U = \|f(u)\|_V$ לכל ע"י: $\|u\|_U = \|f(u)\|_V$ לכל המרחב על המרחב ע
- ב. ידוע כי לכל \mathbb{R} , כל שתי נורמות על \mathbb{R}^n הן שקולות. יהי V מרחב וקטורי כלשהו מעל \mathbb{R} ממימד סופי. הוכיחו כי כל שתי נורמות על V הן שקולות. (10 נק')
- W ג. יהי W מרחב וקטורי כלשהו מעל $\mathbb R$ (לאו דווקא ממימד סופי), עם נורמה $\| \|$. תהי M מטריקה על W ממימד סופי. הוכיחו כי V היא תת קבוצה סגורה של W ביחס למטריקה M נק") ביחס למטריקה M מין מרחב של M ממימד סופי.

רמז: השתמשו בסעיף ב' של השאלה.

שאלה 4: (20 נק')

יהי (X,d) מרחב מטרי. נניח כי כל תת קבוצה סגורה וחסומה בו היא קומפקטית. הוכיחו כי (X,d) הוא מרחב מטרי שלם.

בהצלחה!