Example	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0267	F—	~	100	386	3,87
B-0268	F—		89	406	407
B-0269	F—		84	386	387
B-0270	F—	CF ₃	92	440	441
B-0271	F-		98	428	429
B-0272	F—		57	498	499
B-0273	F——}	CI	100	440	441

Example	# R ²	R ¹	%Yield	Calcd. Mass Spe	Observed c Mass Spec (M+H)
B-0274	F—	or CN	94	397	398
B-0275	F-{}		90	422	423
B-0276	F—	F F	100	408	409
B-0277	F-	o F	88	408	409
B-0278	F—		100	426	427
B-0279	F-	G G	54	440	441
B-0280	F—		79	414	415
B-0281	F-\	CF ₃	82	458	459
B-0282	F—	F	89	426	427
B-0283	F—	CF ₃	90	458	459

Exampl	e# R²	ВĄ	%Yi ld	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0284		CF,	100	458	459
B-0285	F—	cF:	94	458	459
B-0286	F—	ST. CF,	100	458	459
B-0287	F-	S Cr,	96	458	459
B-0288	F—	CF ₃	100	458	459
B-0289	F—	a c	96	406	407
B-0290	F—		96	386	387
B-0291	F—	C C C	95	440	441
B-0292	F—		94	390	391
B-0293	F—		100	408	409

Exampl	# R ²	R ³	%Yield	Calcd. Mass Spe	Obs rved c Mass Spec (M+H)
B-0294	F—	CI C	100	440	441
B-0295	F—	F	91	408	409
B-0296	F-	F	96	426	427
B-0297	F—	F	88	390	391
B-0298	F—		95	408	409
B-0299	F—	F 0	90	408	409
B-0300	F——Ş	o o	95	406	407
B-0301	F—	Br.	99	450	451,453
B-0302	F——}	CF _s	94	440	441
B-0303	F—	S S	100	378	379

Example#	R²	R⁴	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0304	F—	N,	100	391	392

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0305			70	326	327
B-0306			59	340	341
B-0307			59	354	355
B-0308			60	368	369
B-0309			61	352	353
B-0310			61	366	367
B-0311			65	356	357

Exampl #	₽ R²	ВĄ	%Yield	Calcd. Mass Spe	Obs rved Mass Sp o (M+H)
B-0312			75	342	343
B-0313			68	356	357
B-0314			31	370	371
B-0315			61	384	385
B-0316			75	368	369
B-0317			62	366	367
B-0318			52	388	389
B-0319		0	53	424	425
B-0320			50	424	425
B-0321			54	442	443

Example	# R²	₽,	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0322			64	474	475
B-0323			58	474	475
B-0324			60	422	423
B-0325			64	422	423
B-0326			58	422	423
B-0327			63	378	379
B-0328		- 2	68	389	390
B-0329			63	362	363
B-0330		} — \$ 1 1 1 1 1 1 1 1 1	48	376	377
B-0331			66	424	425

Example	# R²	R ⁴	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0332			61	442	443
B-0333			60	458	459
B-0334			55	502	503
B-0335			60	454	455
B-0336			100	500	501
B-0337			65	458	-
B-0338		" "	69	502	503
B-0339			69	454	-
B-0340			77	492	493
B-0341			64	458	459

Example	# R ²	R ^J	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0342			41	438	-
B-0343			63	430	431
B-0344			96	464	465
B-0345			62	507	508
B-0346			56	497	498
B-0347		II.	61	341	342
B-0348			3	367	•
B-0349			57	403	404
B-0350			57	481	482
B-0351			31	355	356
• -					

623

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0352			51	397	398

Example	# R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0353	F—		71	382	383
B-0354	F—		35	512	513
B-0355	F—{		37	352	353
B-0356	F—		57	404	405
B-0357	F—		88	366	367
B-0358	F—		88	410	411
B-0359	F—		100	324	325

Exampl	# R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0360	F—{}		56	364	365
B-0361	F—{}	22/2	70	350	351
B-0362	F-	Br Br	100	464	465
B-0363	F—		73	512	513
B-0364	F—		88	377	378
B-0365	F—		70	396	397
B-0366	F—		100	354	355
B-0367	F—		- 71	416	417
B-0368	F—		86	454	455
B-0369	F—		40	440	441

B-0370 B-0371 B-0372 B-0372 B-0373 B-0374 B-0375 B-0376 B-0377 B-0377 B-0377 B-0378 B-0378	Exampl	e# R²	RJ	%Yield	Calcd. Mass Spe	Observe Mass Spe (M+H)	
B-0372 F————————————————————————————————————	B-037	0 F—		94	364	365	
B-0373 F 100 430 431 B-0374 F 75 400 401 B-0375 F 74 386 387 B-0376 F 71 387 388 B-0378 F 69 387 388	B-0371	F—		88	460	461	
B-0374 F————————————————————————————————————	B-0372			69	430	431	
B-0374 F 75 400 401 B-0375 F 74 386 387 B-0376 F 75 378 379 B-0377 F 71 387 388 B-0378 F 71 387 388		F—		100	430	431	
B-0376 F		F—		75	400	401	
B-0377 F— 71 387 388 B-0378 F— 69 387 388	B-0375	F—		74	386	387	
B-0377 F— 71 387 388 B-0378 F— 69 387 388	B-0376	F—		53	378	379	
B-0378 F 69 387 388	B-0377	F—		71	387	388	
B-0370	B-0378	F—		69	387	388	
66 387 388	B-0379	F-		66	387	388	

Example	FR ²	₽₁	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0380	F-{}		85	416	417
B-0381	F—		93	430	431
B-0382	F—		84	382	383
B-0383	F—		74	583	584
B-0384	F—		63	438	439

Example#	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0385	F—		83	440	441
B-0386	F-		99	422	423
B-0387	F—		47	388	389
B-0388	F—		100	448	449
B-0389	F—		71	436	437
B-0390	F—		100	458	459
B-0391	F—	\$	45	414	415

Example	# R ²	R³	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0392	F-		100	440	441
B-0393	F—{}	0 	75	388	389
B-0394	F-{}	\$ II	92	402	403
B-0395	F-	No. No.	87	374	375
B-0396	F—	S	86	360	361
B-0397	F—{}		81	452	453
B-0398	F—		88	428	429
B-0399	F—		99	436	437
B-0400	F—		82	482	483
B-0401	F—		94	367	368

Exampl	# R ²	₽,	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0402	F-	NH 2	73	325	326
B-0403	F—		91	415	416
B-0404	F-		41	379	380
B-0405	F—		88	395	396
B-0406	F—		100	419	420
B-0407	F—		52	353	354
B-0408	F—	p p	83	339	340
B-0409	F—		74	415	416
B-0410	F—		100	419	420
B-0411	F—		94	429	430

Example	# R²	R ^J	%Yi Id	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0412	F-\		91	365	366
B-0413	F—		79	367	368
B-0414	F-{}		85	429	430
B-0415	F—		82	401	402
B-0416	F—		93	429	430
B-0417	F—		97	429	430
B-0418	F—		100	419	420
B-0419	F—		100	431	432
B-0420	F—		36	381	382
B-0421	F——}		96	353	354

Example	e# R²	RJ	%Yield	Calcd. Mass Spe	Obs rved Mass Spec (M+H)
B-0422	F—		100	461	462
B-0423	F—		100	406	407
B-0424	F-{}		76	366	367
B-0425	F-{}		21	368	369
B-0426	F—		100	354	355
B-0427	F—{		100	379	380
B-0428	F—		100	379	380
B-0429	F—		· 86	368	369

Example#	R ²	R,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0430	F—		51	500	501
B-0431	F—		76	479	480
B-0432	F—	O Br	90	500	501
B-0433	F—	2/ S	96	456	457
B-0434	F—	\$-0=0=0	75	496	497
B-0435	F—	0=0=0	52	496	497
B-0436	F—		73	506	

Example	# R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0437	F-		19	466	
B-0438	F—		100	490	491
B-0439	F—		67	464	465
B-0440	F——}		96	472	473
B-0441	F-		87	472	473
B-0442	F—	NO.	72	481	482
B-0443	F—		66	473	474
B-0444	F-		80	515	516
B-0445	F—		94	490	491
B-0446			84	464	465

Exampl	ie# R²	ЬĄ	%Yield	Calcd. Mass Spec	Observe Mass Spe (M+H)	
B-044	7 F-{}		89	470	471	
B-0448) CI	100	490	491	_
B-0449	F—		100	474	475	
B-0450	F-		100	847	448	
B-0451	F—		100	454	455	
B-0452	F—		95	496	497	
B-0453	F-		100	490	491	
B-0454	F—		100	500	501	
B-0455	F—		96	500	501	
B-0456	F—		89	494	495	

Example#	R²	R¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0457	F-{		93	482	483
B-0458	F—		100	490	491
B-0459	F—	CE	100	490	491

Example#	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0460	F—		93	450	451
B-0461	F—		84	452	453
B-0462	F-\		96	456	457
B-0463	F—		66	456	457
B-0464	F—		69	490	491
B-0465	F—	G G	86	490	491
B-0466	F—		78	474	475

Example#	₽ FI ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0467	F—		78	470	471
B-0468	F—		91	450	451
B-0469	F—		85	436	437
B-0470	F—		99	466	467
B-0471	F—		100	490	491
B-0472	F—		37	482	483
B-0473	F—		92	462	463
B-0474	F—		99	530	532
B-0475	F—		55	472	473
B-0476	F—		89	441	442

Example	e# R²	₽	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0477	7 F—		79	464	465
B-0478	F—		92	486	487
B-0479	F—		97	447	448
B-0480	F—{}		75	561	562
B-0481	F—		74	498	499
B-0482	F—		57	548	549
B-0483	F—		83	505	506
B-0484	F—		100	568	569
B-0485	F—		100	495	496
B-0486	F—		100	426	427

Example	R ²	· R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0487	F—		32	389	390
B-0488	F-\		100	568	569
B-0489	F—		91	500	501
B-0490	F—		40	473	474
B-0491	F—		73	514	515

Example	FR ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0492	F—		89	400	401
B-0493	F-	o CI	100	420	421
B-0494	F—		100	400	401
B-0495	F—	CF ₃	100	454	455
B-0496	F—		100	442	443
B-0497	F—		50	512	513
B-0498	F-	CI CI	100	454	455

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0499	F—	Z CN	98	411	412
B-0500	F		100	436	437
B-0501	F—	of F	100	422	423
B-0502	F—	و المار الما	100	422	423
B-0503	F—		92	440	441
B-0504	F—	٥	67	454	455
B-0505	F—		68	428	429
B-0506	F—	CF 3	98	472	473
B-0507	F—	F	. 82	440	441
B-0508	F—	CF ₃	99	472	473

Example	# R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0509	F—	CF,	100	472	473
B-0510	F-	CF ₃	96	472	473
B-0511	F—		100	472	473
B-0512	F—	CF.	100	472	473
B-0513	F—	CF 3	100	472	473
8-0514	F—	a	100	420	421
B-0515	F—		100	400	401
B-0516	F—————————————————————————————————————	O O	100	454	455
8-0517	F—		100	404	405
B-0518	F—		99	422	423

Example	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0519	F—	G G G G G G G G G G G G G G G G G G G	100	454	455
B-0520	F-	F C	98	422	423
B-0521	F—	F	99	440	441
B-0522	F—		88	404	405
B-0523	F—		100	422	423
B-0524	F—	F 0	100	422	423
B-0525	F—	To the second se	100	420	421
B-0526	F—————————————————————————————————————	Br Br	100	464	465
B-0527	F—	CF ₅	100	454	455
B-0528	F—	₹ s	100	392	393

645

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
8-0529	F—	Z,	94	405	406

Example#	R²	ВĄ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0530	F—		67	382	383
B-0531	F—		66	512	513
B-0532	F—		37	352	353
B-0533	F—		56	404	405
B-0534	F—		100	366	367
B-0535	F—————————————————————————————————————		100	410	411
B-0536	F-		1 1	324	325

Example	eë R²	R¹ 	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0537	F—		100	364	365
B-0538	F—		29	350	351
B-0539	F—		70	464	465
B-0540	F—		50	512	513
B-0541	F—		61	377	378
B-0542	F—		61	396	397
B-0543	F—		59	354	355
B-0544	F—		45	416	417
B-0545	F—		100	454	455
B-0546	F—		44	440	441

Example	# R²	R ¹	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0547	F-{}	***	64	364	365
B-0548	F—	T	89	460	461
B-0549	F—		100	430	431
B-0550	F—		100	430	431
B-0551	F—		81	400	401
B-0552	F—		38	386	387
B-0553	F—		31	378	379
B-0554	F—		100	387	388
B-0555	F—		66	387	388
B-0556	F—		32	387	388

649

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
8-0557	F—		70	416	417
8-0558	F—		57	430	431
8-0559	F—		74	382	383
B-0560	F—		36	583	584
B-0561	F—		51	438	439

Example	# R ²	R ⁴	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0562	F—	- F	88	440	441
B-0563	F—		68	422	423
B-0564	F—		47	388	389
B-0565	F—		100	448	449
B-0566	F—		76	436	437
B-0567	F—		99	458	459
B-0568	F—	\$SCF,	45	414	415

Example	# R ²	R-J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0569	F-{}		88	440	441
B-0570	F-		61	388	389
B-0571	F—	\$	58	402	403
8-0572	F—	»	75	374	375
B-0573	F—	0	72	360	361
8-0574	F—		97	452	453
B-0575	F-		71	428	429
8-0576	F—		88	436 .	437
B-0577	F—		72	482	483
B-0578	F—	i i	89	367	368

Example	# R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0579	F—	NH 2	100	325	326
B-0580	F—		75	415	416
B-0581	F—		44	379	380
B-0582	F—		75	395	396
B-0583	F—		80	419	420
B-0584	F—		57	353	354
B-0585	F—		83	339	340
B-0586	F—		71	415	416
B-0587	F—		100	419	420
B-0588	F—		94	429	430

Example	₽# R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0589	F—		78	365	366
B-0590	F—		82	367	368
B-0591	F—		72	429	430
B-0592	F—		82	401	402
B-0593	F—		88	429	430
B-0594	F—		100	429	430
B-0595	F—		99	419	420
B-0596	F—		93	431	432
B-0597	F—		40	381	382
B-0598	F—		93	353	354

Example	R ²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0599	F—		100	461	462
B-0600	F—		98	406	407
B-0601	F—		66	366	367
B-0602	F—	*	25	368	369
B-0603	F—		90	354	355
B-0604	F—		86	379	380
B-0605	F—		87	379	380
B-0606	F—		72	368	369

Observed

Example#	R ²	ผา	%Yield	Calcd. Mass Spec	Mass Spec (M+H)
B-0607	F—	S H	34	500	501
B-0608	F—		100	479	480
B-0609	F-	O Br	82	500	501
B-0610	F—) 	100	456	457
B-0611	F—	0	76	496	497
B-0612	F—	0=\n_0	69	496	497
B-0613	F—	M2 C	61	506	

Example	# R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0614	F—		18	466	·
B-0615	F—		100	490	491
B-0616	F—		77	464	465
B-0617	F—		93	472	473
B-0618	F—		84	472	473
B-0619	F—————————————————————————————————————		71	481	482
B-0620	F—		89	473	474
B-0621	F—		68	515	516
B-0622	F—		70	490	491
B-0623	F—{}		92	464	465

Example	R ²	ВĄ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0624	F—		98	470	471
B-0625	F—	·	96	490	491
B-0626	F—		100	474	475
B-0627	F-{-}		100	447	448
B-0628	F-		64	454	455
8-0629	F-{}	0 0 0	100	496	497
B-0630	F—		85	490	491
B-0631	F—		75	500	501
B-0632	F-		83	500	501
B-0633	F—		58	494	495

658

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0634	F—		63	482	483
B-0635	F—		95	490	491
B-0636	F—		100	490	491

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0637	F—		91	450	451
B-0638	F—		96	436	437
B-0639	F—		100	456	457
B-0640	F—		100	456	457
B-0641	F—		88	490	491
B-0642	F—	a a	99	490	491
B-0643	F—		92	474	475

Example#	R²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0644	F-		100	470	471
B-0645	F—		92	450	451
B-0646	F—		100	436	437
B-0647	F—		90	466	467
B-0648	F—		94	490	491
B-0649	F—		57	482	
B-0650	F—		82	462	463
B-0651	F—		100	530	531
B-0652	F—		53	472	
B-0653	F—		84	441	442

Example	F R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0654	F-		92	464	465
B-0655	F—		100	486	487
B-0656	F—		98	447	448
B-0657	F—		85	561	562
B-0658	F-		92	498	499
8-0659	F—	****	46	548	549
B-0660	F—		80	505	506
B-0661	F—		100	568	569
B-0662	F-		98	495	496
B-0563	F—	0=0	74	426	427

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0664	F—		30	389	390
B-0665	F—		100	568	569
B-0666	F-		93	500	501
B-0667	F—		54	473	474
B-0668	F—		6 6	514	51 5

Example#	R²	R ^J .	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0669	F-	~	65	400	401
B-0670	F—		4 5	420	421
B-0671	F—		43	400	401
B-0672	F—	CF,	45	454	455
B-0673	F—	S	41	442	443
B-0674			16	512	513
B-0675	F—	G CI	39	454	455

Example	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0676	F-	S CN	34	411	412
B-0677	F—		46	436	437
B-0678	F—	J F	37	422	423
B-0679	F—		34	422	423
B-0680	F—		60	440	441
B-0681	F—	٥	31	454	455
B-0682	F—		37	428	429
B-0683	F—	CF 3	46	472	473
B-0684	F—	F	50	440	441
B-0685	F—	CF ₃	44	472	473

Example#	R²	ЯJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0686	F—	CF,	66	472	473
B-0687	F—	CF ₃	57	472	473
B-0688	F—		52	472	473
B-0689	F—	CF,	42	472	473
B-0690	F—	CF 5	34	472	473
B-0691	F—	G C	52	420	421
B-0692 -	F—		41	400	401
B-0693	F—	Ci Ci	56	454	455
B-0694	F—		38	404	405
B-0695	F—		43	422	423

Example	₹ R²	R ^J	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0696	F-	G G	57	454	455
B-0697	F—	F	51	422	423
B-0698	F-	F	59	440	441
B-0699	F—		46	404	405
B-0700	F—		47	422	423
B-0701	F—	E O	46	422	423
B-0702	F—	Co	43	420	421
B-0703	F—	Br.	57	464	465
B-0704	F—	CF ₃	44	454	455
B-0705	F—	₹ S	33	392	393

667

Example#	R²	₽ſ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0706	F—		35	405	406

Example	R ²	R¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0707	F—		76	516	517
B-0708	F-		61	498	499
B-0709	F-	0==0	37	464	465
B-0710	F—		76	524	525
B-0711	F—		75	512	513
B-0712	F—		91	534	535
B-0713	F—	S - CF ,	42	490	491

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0714	F-		87	516	517
B-0715	F—	0==0	60	464	465
B-0716	F—		59	478	479
B-0717	F—	0 	61	450	451
B-0718	F—	\$s	65	436	437
B-0719	F—		84	528	529
B-0720	F—————————————————————————————————————		69	504	505
B-0721	F—		63	512	513
B-0722	F—		88	558	559
B-0723	F—	i i	68	443	444

Example#	R²	R³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0724	F—	NH 2	75	401	402
B-0725	F-		83	491	492
B-0726	F—		24	455	456
B-0727	F—		67	471	472
B-0728	F—		89	495	4 96
B-0729	F—		38	429	430
B-0730	F—		76	415	416
B-0731	F—		60	491	492
B-0732	F—		86	495	496
B-0733	F—		81	505	506

Example	# R²	R ^J	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0734	F—		87	441	442
B-0735	F—		83	443	444
B-0736	F—		91	505	506
B-0737	F—		9	477	-
B-0738	F-		87	505	506
B-0739	F—		82	505	506
B-0740	F—		85	495	496
B-0741	F—		68	507	508
B-0742	F-		14	457	-
B-0743	F—		77	429	430

Example	₱ R²	R ^J	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0744	F—		- 86	537	538
B-0745	F—		82	482	483
B-0746	F—		74	442	443
B-0747	F—	*	83	444	445
B-0748	F—	**	94	430	431
B-0749	F—		100	455	456
B-0750	F—		100	455	456
B-0751	F—		48	444.	445

Example#	R ²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0752	F—		84	516	517
B-0753	F—		67	498	499
B-0754	F-		31	464	465
B-0755	F—		85	524	52 5
B-0756	F-		77	512	513
B-0757	F—		57	534	535
B-0758	F—	S — CF 3	36	490	491

Example	# R ²	RJ	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0759	F—		79	516	517
B-0760	F-		53	464	465
B-0761	F-		50	478	479
B-0762	F—	wix 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60	450	451
B-0763	F—	} — \$—	75	436	437
B-0764	F—		43	528	529
B-0765	F—	\$	75	504	505
B-0766	F—		67	512	513
B-0767	F—		43	558	559
B-0768	F—		78	443	444

Example	e# R²	ВĄ	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0769	F-	NH ₂	76	401	402
B-0770	F—		57	491	492
B-0771	F-{}		14	455	456
B-0772	F—		72	471	472
B-0773	F-		100	495	496
B-0774	F—		41	429	430
B-0775	F—	NH NH	91	415	416
B-0776	F—		64	491	492
B-0777	F—		90	495	496
B-0778	F—		19	505	506

Example	e# R²	RJ	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0779	F———		79	441	442
B-0780	F-		40	443	444
B-0781	F—		93	505	506
B-0782	F—		57	477	478
B-0783	F—		99	505	506
B-0784	F-		100	505	506
B-0785	F—		92	495	496
B-0786	F—		91	507	508
B-0787	F—		15	457	458
B-0788	F—		48	429	430

Example	# R ²	RJ	%Yield	Calcd. Mass Spe	Observed c Mass Spec (M+H)
B-0789	F-		91	537	538
B-0790	F-		93	482	483
B-0791	F—		76	442	443
B-0792	F—	**	96	444	445
B-0793	F—	***	54	430	431
B-0794	F—	100	100	455	456
B-0795	F—		100	455	456
B-0796	F—		94	444	445

Example	# R²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0797	F—		90	458	459
B-0798	F-		90	588	589
B-0799	F—		82	428	429
B-0800	F—		92	480	481
B-0801	[F-		82	442	443
B-0802	F—		95	486	487
B-0803	F—		89	400	401

Example	# R²	ВĄ	%Yield	Calcd. Mass Spe	Observed C Mass Spec (M+H)
B-0804	F-\		87	440	441
B-0805	F-		100	426	427
B-0806	F—	Br	99	540	541
B-0807	F-		96	588	589
B-0808	F—		82	453	454
B-0809	F—		92	472	473
B-0810	F—		98	430	431
B-0811	F—		88	492	493
B-0812	F—		81	530	531
B-0813	F—		98	516	517

Exampl	le# R²	R. ¹	%Yield	Calcd. Mass Spe	Observo Mass Sp (M+H)	e
B-081	4 F—	***	100	440	441	
B-0815	5 F—		100	536	537	
B-0816	F—		99	506	507	
B-0817	F-		98	506	507	
B-0818	F-		86	476	477	
B-0819	F—		90	462	463	7
B-0820	F—		91	454	455	
B-0821	F—		69	463	464	
B-0822	F—		79	463	464	
B-0823	F—		79	463	464	

681

Example#	R²	R1	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0824	F—		82	492	493
B-0825	F—		100	506	507
B-0826	F—		97	458	459
B-0827	F—		100	659	660
B-0828	F—		97	514	515

Example	# R²	н	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0829	F—		63	458	459
B-830	F—		70	588	589
B-0831	F—		. 100	428	429
B-0832	F—	P	81	480	481
B-0833	F—		73	442	443
B-0834	F—		79	486	487
B-0835	F—		5	400	401

Example	# R²	₽₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0836	F—		28	440	441
B-0837	F—		81	426	
B-0838	F—	Br.	84	. 540	427
B-0839	F—		80	588	541 589
B-0840	F—		71	453	454
B-0841	F—		55	472	473
B-0842	F—		71	430	431
B-0843	F—		68	492	493
B-0844	F-		61	530	531
B-0845	F-		84	516	517

B-0846 F 440 441 B-0847 F 86 536 537 B-0848 F 86 536 537 B-0849 F 81 506 507 B-0850 F 83 462 463 B-0852 F 87 463 464 B-0855 F 87 463 464	Example	e# R ²	R¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0847 F 86 536 537 B-0848 F 87 463 464 B-0855 F 80 537	B-0846	5 F-	***	87	440	441
B-0848 F	B-0847	F—				·
B-0849 B-0850 B-0851 B-0852 B-0853 B-0854 B-0855 B-0855 B-0855	B-0848	F—			·	
B-0850 F	B-0849	F—				
B-0851 F		F-				
B-0852 F— 77 454 455 B-0853 F— 87 463 464 B-0854 F— 73 463 464	B-0851	F—				
B-0853 F	B-0852	F—				
B-0854 F	B-0853	F—				
B-0855		F—				
92 463 464	B-0855	F—				

685

Example	R ²	₽,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0856	F—		75	492	493
B-0857	F—		86	506	507
B-0858	F—		84	458	459
B-0859	F—		80	659	660
B-0860	F—		94	514	515

Example	e# R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0861	F—		84	583	584
B-0862	F-		96	475	476
B-0863	F—{		69	423	424
B-0864	F-\{\}		86	437	438
B-0865	F-		62	395	•
B-0866	F-\		81	421	422
B-0867	F-	Br	100	535	536
			<u>-</u>	L_	

Exampl	e# R²	R ^J	%Yield	Calcd. Mass Spe	Observed Mass Spe (M+H)
B-0868	F—		89	583	584
B-0869	F-{\}	35-0	100	448	449
B-0870	F-__\		100	425	426
B-0871	F—		100	487	488
B-0872	F-		78	501	502
B-0873	F-		78	471	472
B-0874	F—		92	475	476
B-0875	F—		37	458	459
B-0876	F—	<u> </u>	69	507	508
B-0877	F—	—————————————————————————————————————	70	445	446
		0	······································		

Exampl	e# R²	₽₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0878	B F-\{\}		91	431	432
B-0879	 F-\		92	511	512
B-0880	F-	PH N	89	410	411
B-0881	F—		84	490	491
B-0882	F—		85	500	501
B-0883	F-		85	424	425
B-0884	F—		86	532	533

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0885	F—		51	583	•
B-0886	F-		97	475	-
B-0887	F-		29	423	424
B-0888	F-		82	437	438
B-0889	F—		93	395	396
B-0890	F—		91	421	422
B-0891	F—	Br	43	535	536

Example#	R²	R٦	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0892	F—		62	583	584
B-0893	F—	3- 0- N	95	448	449
B-0894	F—	***************************************	100	425	426
B-0895	F—		76	487	488
B-0896	F—		62	501	502
B-0897	F—		80	471	472
B-0898	F		79	475	476
B-0899	F		70	458	459
B-0900	F—		62	507	508
B-0901	F—		43	445	446

Examples	P ²	R ⁷	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0902	F-\(\)	No. No.	93	431	432
B-0903	F—		100	511	512
B-0904	F—		95	410	411
B-0905	F-		89	490	491
B-0906	F—		69	500	501
B-0907	F—	www.	28	424	425
B-0908	F—		64	532	533

Example	e# R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0909	F—	22	83	542	543
B-0910	F—		80	434	435
B-0911	F—		91	382	383
B-0912	F—		100	396	397
B-0913	F—		94	354	355
B-0914			95	380	381
B-0915		, ar	98	494	495

Example	# R²	R ^J	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0916	F—{		84	542	543
B-0917	F—{}	\$ - 0 N	79	407	408
B-0918	F—		89	384	385
B-0919	F—		91	446	447
B-0920	F-		99	460	461
B-0921	F—		84	430	431
B-0922	F—		81	434	435
B-0923	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		76	417	418
B-0924	F—		70	466	467
B-0925	F—	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	64	404	405

Examp	ie#	R²	R ^J	%Yield	Calcd Mass Sp	Observed Dec Mass Spe (M+H)
B-092	6 F		»——»——————————————————————————————————	47	390	391
B-0927	7 F-			89	470	471
B-0928	F		ů n	53	369	370
B-0929	F			100	449	450
B-0930				14	459	460
B-0931	F			41	383	384
B-0932	F(94	491	492

Example#	R²	R ³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0933	F—		48	447	448
B-0934	F—		44	429	430
B-0935	F—		33	485	486
B-0936	F—S	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	30	479	-
B-0937	F—	HN —	68	367	368
B-0938	F—	•	72	479	480
B-0939	F—		76	415	416

Example	# R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0940	F—	المراجع المراج	36	397	398
B-0941	F—		41	441	442
B-0942	F—	i A	27	473	474
B-0943	F—		55	493	494
B-0944	F—		53	473	474
B-0945	F—		82	429	430
B-0946	F—		100	459	460
B-0947	F—		60	425	426
B-0948	F—		100	431	432
B-0949	F—		98	473	474

Example	# R²	RJ	%Yi Id	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0950	F—		64	419	420
B-0951	F—{}		100	469	470
B-0952	F—{}		61	469	470
B-0953	F—		67	425	426
B-0954	F—		62	431	432
B-0955	F—		39	461	462
B-0956	F—		66	429	430
B-0957	F—		93	429	430
B-0958	F—	E O	86	365	366
B-0959	F—	, a	73	451	452

	Examp	le#	R²	RJ	% Y	ield	Calcd. Spe	Mass ec	Obser Mass S (M+I	pec
	B-096	0 F-{			98	3	485	5	486	
	B-0961	F—			100	0	469		470	
	B-0962	F	\		100		419		420	
	B-0963	F	\	MN—	83		401	+	402	
	B-0964	F—	\		38		429		430	
B	3-0965	F—	\		90		411		412	
В	-0966	F—		Y	76		443		444	'
В-	0967	F—	-		100		443		444	
B-(968			00	100		177		478	
B-0	969 F		*		77	4	77		178	!

Example	# R²	R ^J	%Yield	Calcd. Mass Spec	Obs rved Mass Spec (M+H)
B-0970	F-		38	461	462
B-0971	F—		95	469	470
B-0972	F—		98	479	480
B-0973	F—		96	485	486
B-0974	F—		74	443	444
B-0975	F—		100	495	496
B-0976	F—		70	453	454
B-0977	F—		100	467	468
B-0978	F—		91	431	432
B-0979	F—		54	491	492

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0980	F—		65	469	470

Example	R ²	К ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0981	F—	*	78	382	383
B-0982	F—{}		82	512	513
B-0983	F—		94	352	353
B-0984	F—		81	404	405
B-0985	F—		84	366	367
B-0986	F—		80	410	411
B-0987	F-		85	324	325

	Example	le#	R²	R ^J	%Yi	eld	Calc Mass S	Obser Mass S (M+H	pec
	B-098	В	F-		91		364	365	
	B-0989	,	F—		. 88		350	351	
	B-0990		F-{_}		68		464	465	
	B-0991		F—		86		512	513	
	B-0992				79		377	378	
E	B - 0993	F			81		396	397	
B	3-0994	F			100		354	355	
В	-0995	F			75		416	417	
B-	0996	F-			65		454	455	

Example	e# R²	R⁴	%Yield	Calcd. Mass Spec	Obs rved Mass Spec (M+H)
B-0997	F-{}		64	440	441
B-0998	F-{}		81	364	365
B-0999	F—{}		79	460	461
B-1000	F—		84	430	431
B-1001	F—		78	430	431
B-1002	F-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		85	400	401
B-1003	F—		83	386	387
B-1004	F—		87	378	379
B-1005			57	387	388

Examp	le#	R ²	R ¹	%Yield	Calcd, Mass Spec	Observed Mass Spec (M+H)
B-100	6	F-{}		80	387	388
B-1007	,	F-		54	387	388
B-1008		F—		64	416	417
B-1009		F—		81	430	431
B-1010				81	382	383
B-1011	F			66	583	584
B-1012	F			69	438	439

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1013	F—	0	53	440	441
B-1014	F—		61	422	423
B-1015	F—		47	388	389
B-1016	F—		74	448	449
B-1017	F—		63	436	437
B-1018	F—		82	458	459
B-1019	F—	S - CF 3	41	414	415

Examp	le# R²	RJ	%Yield	Caicd. Ma Spec	SS Obs rved Mass Spec (M+H)
B-102			100	440	441
B-102	F—		100	388	389
B-1022	F—		74	402	403
B-1023	F-{}		76	374	375
B-1024	F—		73	360	361
B-1025	F—		100	452	453
B-1026	F—		95	428	429
B-1027	F—		98	436	437
B-1028	F—		100	482	483
B-1029	F—		98	367	368
					J

Examples	R²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1030	F—	NH 2	88	325	326
B-1031	F—{		97	415	416
B-1032	F—		64	379	380
B-1033	F—		83	395	396
[.] B-1034	F—		67	419	420
B-1035	F—		73	353	354
B-1036	F—) H	79	339	340
B-1037	F—		78	415	416
B-1038	F—		100	419	420
B-1039	F——}		95	429	430

Example	e# R ²	RJ	%Yield	Calcd. Mas Spec	Observed Mass Spec (M+H)
B-1040	F—		91	365	366
B-1041	F-{		88	367	368
B-1042	F—		78	429	430
B-1043	F—		79	401	402
B-1044	F—		93	429	430
B-1045	F—		100	429	430
B-1046	F—		94	419	420
B-1047	F—		100	431	432
B-1048	F—		58	381	382
B-1049	F—		97	353	354

Example#	R ²	₽,	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1050	F—		100	461	462
B-1051	F-		88	406	407
B-1052	F—		82	366	367
B-1053	F—{}	*	21	368	
B-1054	F—		98	354	355
B-1055	F—	100	100	379	380
B-1056	F—		85	379	380
B-1057	F—		30	368	369

Example	# R ²	R ³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1058	F—		35	500	501
B-1059	F—		77	479	480
B-1060	F-	2 Br	37	500	501
B-1061	F—	2/-S	86	456	457
B-1062)	58	496	497
B-1063	F—	0=0=0	5 9	496	497
B-1064	F—	SI SI CI	58	506	•

711

Example	# R ²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1065	F-	0= 0 o m	24	466	-
B-1066	F—		100	490	491
B-1067	F—		74	464	465
B-1068	F—		79	472	473
B-1069	F—		97	472	473
B-1070	F—	1 2 3 3 3 3 3 3 3 3 3 3	54	481	482
B-1071	F—		67	473	474
B-1072	F—		35	515	516
B-1073	F—		100	490	491
B-1074	F—		100	464	465

Example	# R ²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1075	F-		100	470	471
B-1076	F—		93	490	491
B-1077	F—		100	474	475
B-1078	F—		80	447	448
B-1079	F-		85	454	455
B-1080	F-{}		100	496	497
B-1081	F-		100	490	491
B-1082	F-		100	500	501
B-1083	F—		93	500	501
B-1084	F—		81	494	495

713

Example#	R²	R,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1085	F—		93	482	483
B-1086	F—		92	490	491
B-1087	F—	CF	100	490	491

Example	# R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1088	F-\		97	450	451
B-1089			100	436	437
B-1090	F-{-}		100	456	457
B-1091	F—		100	456	457
B-1092	F—	\	96	490	491
B-1093	F——}		100	490	491
B-1094	F—		100	474	475

Example	P# R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1095	F—		81	470	471
B-1096	F-		77	450	451
B-1097	F—		100	436	437
B-1098	F—		93	466	467
B-1099	F-		100	490	491
B-1100	F—		47	482	-
8-1101	F—		64	462	463
B-1102	F-		98	530	531
B-1103	F—		65	472	
B-1104	F—		88	841	862

	Example	# R²	R ^J	%Yiel	d Calcd. M Spec		
	B-1105	F—		100	464	465	
	B-1106	F—		91	486	487	
	B-1107	F—		96	447	448	
	B-1108	F—		55	561	562	
	B-1109	F—		100	498	499	
	B-1110	F—		73	548	549	
E	3-1111	F—		94	505	506	
8	3-1112	F—		100	568	569	
В	-1113 F			100	495	496	
В-	1114 F			73	426	427	

717

Example	R ²	R,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1115	F-{	S = S = S = S = S = S = S = S = S = S =	30	389	390
B-1116	F—		100	568	569
B-1117	F—		83	500	501
B-1118	F—		55	473	-
B-1119	F—		70	514	515

Example	2# R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1120	F—		84	400	401
B-1121	F—	0	86	420	421
B-1122	F—	0	90	400	401
B-1123	F—	CF3	100	454	455
B-1124	F—	S	.91	442	443
B-1125	F—		50	512	513
B-1126	F—	CI	85	454	455

Example	# R ²	R ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (₩+H)
B-1127	F—	S CN	93	411	412
B-1128	F—		87	436	437
B-1129	F—	of F	78	422	423
B-1130	F—	و المالية الما	96	422	423
B-1131	F—		84	440	441
B-1132	F—		77	454	455
B-1133	F—		62	428	429
B-1134	F—	CF 3	91	472	473
B-1135	F—	F	85	440	441
B-1136	F—	CF ₃	82	472	473

Examp	ole# R²	Кì	%Yield	Calcd. Mas Spec	Observed Mass Spec (M+H)
B-113	37 F—	CF CF	95	472	473
B-113	8 F—	CF	100	472	473
B-1139		}	100	472	473
B-1140		CF,	92	472	473
B-1141	F—		100	472	473
B-1142	F—		88	420	421
B-1143	F—		90	400	401
B-1144	F—	0 0	87	454	455
B-1145	F—		93	404	405
B-1146	F—		90	422	423

721

Example	e# R²	ВĄ	%Yield	Calcd. Ma Spec	Observed Mass Spec (M+H)
B-1147	F—	CI	100	454	455
B-1148	F—{}		87	422	423
B-1149	F-	F	87	440	841
B-1150	F-		90	404	405
B-1151	F—		82	422	423
B-1152	F—	F	85	422	423
B-1153	F—		90	420	421
B-1154	F—		78	464	465
B-1155	F—	CFS	79	454	455
B-1156	F—	S S	95	392	393

722

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1157	F—	N. O	81	405	406

Example	₽ R²	₽,	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-1158	F—		54	396	397
B-1159	F—		42	526	527
B-1160	F—	profession of the second of th	27	366	367
B-1161	F—		58	418	419
B-1162	F—		62	380	381
B-1163	F—		58	424	425
B-1164	F—	244	67	338	339

Examp	ple#	R²	RJ	%Yield	Calcd. Mass Sp		pe
B-116	65 F-			66	378	379	
B-116	66 F-			65	364	365	
B-116	7 F-			64	478	479	
B-1168	8 F-			76	526	527	
B-1169) F-			70	391	392	
B-1170	F			76	410	411	-
B-1171	- F-			82	368	369	
B-1172	F-			73	430	431	
B-1173	F-{			74	468	469	
B-1174	F—			83	454	455	

Example	e# R²	В'n	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-1175	5 F—	***************************************	76	378	379
B-1176	F—		96	474	475
B-1177	F—		94	. 444	445
B-1178	F—		90	444	445
8-1179	F—		. 57	414	415
B-1180	F—		75	400	401
B-1181	F—		66	392	393
8-1182	F—		74	401	402
B-1183	F—		62	401	402
B-1184	F—		51	401	402

Example	# R²	R ^J	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-1185	F—		90	430	431
B-1186	F—		86	444	445
B-1187	F—	8	74	396	397
B-1188	F—		76	597	598
B-1189	F—		60	452	453

Example	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1190	F—		44	454	455
B-1191	F-		47	436	437
B-1192	F-	»==«	50	402	403
B-1193	F—		62	462	463
B-1194	F—		49	450	451
B-1195	F-		61	472	473
B-1196	F—	\$ CF,	52	428	429

Examp	ie# R²	ЬĄ	%Yield	Calcd. Mass Spe	Observe Mass Sp (M+H)	ec
B-119)7 F—		54	454	455	
B-119	8		44	402	403	
B-1199	F—		67	416	417	
B-1200	F—	» 	45	388	389	
B-1201	F-{}	0 ω ω ο	52	374	375	_
B-1202	F—		100	466	467	
B-1203	F—		91	442	443	
B-1204	F-		100	450	451	
B-1205	F—		83	496	497	
B-1206	F—	Å,	97	381	382	

Example	9# R²	БĄ	%Yield	Calcd. Mass Spe	Observed c Mass Spec (M+H)
B-1207	F—	NH 2	100	339	340
B-1208	F—		90	429	430
8-1209	F—		69	393	394
B-1210	F—		35	409	410
B-1211	F—		100	433	434
8-1212	F—		83	367	368
B-1213	F—	FI CONTRACTOR OF THE PROPERTY	78	353	354
B-1214	F—		68	429	430
B-1215	F—		65	433	434
B-1216	F—		91	443	444

Exampl	e# R²	R ⁴	%Yield	Calcd. Mass Spec	Observe Mass Spe (M+H)	
B-121	7 F—		99	379	380	
B-1218	F—		92	381	382	
B-1219	F—		74	443	444	
B-1220	F—		67	415	416	
B-1221	F—		14	443	444	
B-1222	F—		19	443	444	
B-1223	F-		71	433	434	
B-1224	F-		100	445	446	
B-1225	F—	j i	75	395	396	
B-1226	F-		58	367	368	
•						

Example	# R²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1227	F—		98	475	476
B-1228	F-		71	420	421
B-1229	F-		85	380	381
B-1230	F—	**	10	382	-
B-1231	F—	***	66	368	369
B-1232	F—		100	393	394
B-1233 ·	F-		96	393	394
B-1234	F—		66	382	383

Example	e# R ²	RJ	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-1235	5 F—		50	514	515
B-1236	F—	H Charles	100	493	494
B-1237	F-{	Z-SO Br	91	514	515
B-1238	F—	2/3,0	100	470	471
B-1239	F—	0	71	510	511
B-1240	F—	°=′°-	27	510	511
B-1241	F—————————————————————————————————————	HO CI	73	520	

Example	₽ R²	R⁴	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1242	F-	S S S S S S S S S S S S S S S S S S S	26	480	481
B-1243	F—		100	504	
B-1244	F—		52	478	479
B-1245	F—		100	486	487
B-1246	F—		56	486	487
B-1247	F—		43	495	496
B-1248	F—		61	487	488
B-1249	F—		32	529	530
B-1250	F—		56	504	505
B-1251	F—		58	478	479

Exam	pie#	R ²	RJ	%Yiel	d Calco Mass S		pec
B-12	252	F—		98	484	485	
B-12	53	F—	11 1	59	504	505	
B-125	54	F-		100	488	489	
B-125	5	F-		96	461		
B-125	6	F-		79	468	469	
B-1257	7	F—	S C C	63	510	511	
B-1258	,			100	504	505	
B-1259	F			95	514	515	
B-1260	F			92	514	515	
B-1261	F			98	508	509	
		- · · · -					

735

Example#	R²	ВĄ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1262	F—		97	496	497
B-1263	F—		100	504	505
B-1264	F—	CS CS	100	504	505

	H)
B-1265 F— 100 464 46	5
B-1266 F— 79 466 45	
B-1267 F— 100 470 471	
B-1268 F————————————————————————————————————	1
B-1269 F 100 504 505	
B-1270 F— 100 504 505	
B-1271 F— 56 488 489	

Example	₽# R²	R ^J	%Yield	Calcd. Mass Spe	Observed Mass Spe- (M+H)
8-1272			98	484	485
B-1273	F—		90	464	465
B-1274	F—{		87	450	451
B-1275	F—		94	480	481
B-1276	F—		100	504	505
8-1277	F—		60	496	511
B-1278	F—		68	476	477
B-1279	F—		100	544	545
B-1280	F—		68	486	•
B-1281	F—		98	455	456

Exampl	ie# R²	R ¹	%Yield	Calcd. Mass Spe	Observed Mass Spe (M+H)
B-128	2 F—		100	478	479
B-128	3 F—		58	500	501
B-1284	F—————————————————————————————————————		58	461	462
B-1285	F—	Haro	65	575	576
B-1286	F—	<u> </u>	87	512	513
B-1287	F—		79	562	563
B-1288	F—		100	519	520
B-1289	F—		77	582	583
B-1290	F—		100	509	510
B-1291	F—		91	440	441

Example#	R²	R	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
8-1292	F—	0=0=0	35	403	404
B-1293	F—		73	582	583
B-1294	F—		49	514	515
B -1295	F—		48	487	
B-1296	F—		76	528	529

Exampl	e#	R²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-129	7 F-{	→		62	447	448
B-1298	3 F-	<u></u>		66	452	453
B-1299	F	\}	<u>i</u>	65	479	431
B-1300	F-	<u>}</u>		71	444	445
B-1301	F	>		100	472	473
B-1302	!F-			75	410	411
B-1303	F—	\[\]		74	424	425

Exampl	# R ²	R ¹	%Yield	Calcd. Mass Sp		
8-1304	F—		11	430	431	
B-1305	F—		2	424		
8-1306	F—		30	433	434	
B-1307	F—		100	522	523	
8-1308	F—	*, ** C	100	508	509	
B-1309	F—		100	448	449	
B-1310	F—	NH NH	26	430	431	
B-1311	F—		45	397	398	
B-1312	F—	ÎNH Î	14	507	508	
8-1313			67	450	451	

Examp	le#	R²	R ^J	%Yield	Calcd. Mass Sp	
B-131	4			69	. 444	445
B-131	5 F			57	450	451
B-1316	F			75	393	394
B-1317	F		May a	100	461	462
B-1318	F-			31	450	451
B-1319	F-			23	464	465
B-1320	F			59	512	513

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1321	F—		63	414	415
B-1322	F—	- CI	45	434	435
B-1323	F—	2	53	414	415
B-1324	F—	CF,	32	468	469
B-1325	F—		45	456	457
B-1326	F——}		50	526	527
B-1327	F—	G G	55	468	469

Example	R²	К ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1328	F—	ZZ CN	29	425	426
B-1329	F—		67	450	451
B-1330	F—{}	F F	59	436	437
B-1331	F—		45	436	437
B-1332	F—	44	81	454	455
B-1333	IF—	Б Б	23	468	469
B-1334	F—		53	442	443
B-1335	F—	CF s	81	486	487
B-1336	F—	F	69	454	455
B-1337	F—	CF ₃	67	486	487

Example#	R²	К ₁	%Yi ld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1338	F—{}	CF 3	39	486	487
B-1339	F—	CF ₃	61	486	487
B-1340	F—		49	486	487
B-1341	F—	CF,	55	486	487
B-1342	F—		51	486	487
B-1343	F—	CI	72	434	435
B-1344	F——}		52	414	415
B-1345	F——}	C C C	43	468	469
B-1346	F—————————————————————————————————————		40	418	419
B-1347	F—————————————————————————————————————		67	436	437

Exampl	# R²	R ^J	%Yield	Calcd. Mass Spe	Obs rved Mass Spec (M+H)
B-1348	F—	G G	39	468	469
B-1349	F—	F	68	436	437
B-1350	F—	F	73	454	455
B-1351	F—		54	418	419
B-1352	F—		777	436	437
B-1353	F—	F 0	66	436	437
B-1354	F—	ō	58	434	435
B-1355	F-	Br.	77	478	479
B-1356	F—	CF	50	468	469
B-1357	F——}	₹ s	36	406	407

Example#	R²	RJ	%Yi ld	Calcd. Mass Spec	Obs rved Mass Spec (M+H)
B-1358	F—	N,	39	419	420

Example	# R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1359	F-		95	552	553
B-1360	F—) } 	77	444	445
B-1361	F-	34	100	392	393
B-1362	F-		85	406	407
B-1363	F—	2,1	100	364	365
B-1364	F—	2,4	99	390	391
B-1365	F—) BR	92	504	505

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1366	F—		100	552	553
B-1367	F—	2-0-1	100	417	418
B-1368	F—	2	86	394	395
B-1369	F—	2,1	100	456	457
B-1370	F—		100	470	471
B-1371	F—		77	440	441
B-1372	F—	F-55°	100	844	445
B-1373	F—	2	42	427	428
B-1374	F—	7480	60	476	477
B-1375	F—	75%	94	414	415

750

Example	# R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1376	F—	- 10 N	87	400	401
B-1377	F—		100	480	481
B-1378	F——}	1 N N N N N N N N N N N N N N N N N N N	95	379	380
B-1379	F—		93	459	460
B-1380	F—		89	469	470
B-1381	F—	HN-O	84	393	394
B-1382	F—		85	501	502

Example	R ²	R ^L .	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1383	F—	~~~	46	416	417
B-1384	F—	S S	56	432	433
B-1385	F—	0-7-	59	426	427
B-1386	F—	7	50	427	428
B-1387	F-	7	12	427	428
B-1388	F—	Br	66	504 ·	505
B-1389	F—		48	460	461

Example	# R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1390	F—		44	494	495
B-1391	F—	~~	50	456	457
B-1392	F-		47	451	452
B-1393	F—	~	44	444	445
B-1394	F—	۲	52	460	461
B-1395	F—	~	77	440	441
B-1396	F—		58	451	452
B-1397	F—	~ °	64	460 .	461
B-1398	F—	Br.	65	504	505
B-1399	F—	F ₃ C O	50	494	495

Example	R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
8-1400	F—	0 0	74	440	441
B-1401	F—	~~ " " " " " " " " " " " " " " " " " "	76	462	463
B-1402	F-(-)	\$ \$\frac{1}{2} \tag{1}{2} \tag{1}{2}	65	462	463
B-1403	F-	N N N N N N N N N N N N N N N N N N N	64	445	446
B-1404	F—	F ₃ C	70	512	513
B-1405	F—	ر م م	57	512	513
B-1406	F—	CF ₃	73	512	513
8-1407	F—	F;0	80	512	513
8-1408	F—		2	512	513
B-1409	F—	F36	62	512	513

Example	# R ²	₽ ^L	%Yield	Calcd. Mas Spec	Observed Mass Spec (M+H)
B-1410	F—{}	CF ₃	42	512	513
B-1411	F—	~	19	462	463
B-1412	F—	~ * * * * * * * * * * * * * * * * * * *	74	462	463
B-1413	F-______\	20 CG	75	494	495
B-1414	F—		68	462	463
B-1415	F—		48	462	463
B-1416	F—	م م	48	494	495
B-1417	F—	~ ° ° ° °	57	494	495
B-1418	F—	2 G	49	494	495
B-1419	F—	~ Ca	39	494	495

Example	₿ R²	R ^L	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1420	F-	4	72	378	379
B-1421	F-	~ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	74	406	407
8-1422	F-\	70	68	394	395
B-1423	F-	~~~~	57	408	409
B-1424	F—	~~~	77	422	423
8-1425	F—	4	26	408	409
B-1426	F—	4	41	406	407
B-1427	F-	~~~~	37	404	405
B-1428	F—	700	60	456	457
B-1429	F—	CF ₃	2	418	419

Example	# R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1430	F—		61	442	443
B-1431	F-		64	428	429
B-1432	F—	0==s=0	71	429	430
B-1433	F—		74	462	463
B-1434	F—		88	466	467
B-1435	F-	2-0	75	481	482
B-1436	F—		71	504	505

Example	P R²	R ^L	%Yield	Calcd. Mass Spec	Observed Wass Spec (M+H)
B-1437	F—		63	468	469
B-1438	F—		78	502	503
B-1439	F—		70	545	546
B-1440	F—		62	535	536
B-1441	F—		82	608	
B-1442	F-		79	555	556
B-1443	F—	0=0=0	28	513	514
B-1444	F—	00000	75	522	523
B-1445	F—	O S S S S S S S S S S S S S S S S S S S	74	526	527
B-1446	F—		70	570	571

758

Example	# R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1447	F-(73	506	507
B-1448	F—{	0=s=0 CI	76	530	531
B-1449	F—		82	530	531
B-1450	F—	00=0=0	83	530	531
B-1451	F—	≥	74	530	531
B-1452	F—	ο=ω=ο Ο=ω=ο	76	530	531
B-1453	F—	0=0=0	73	530	531
B-1454	F—	0= 0= 0= 0= 0= 0= 0= 0= 0= 0= 0= 0= 0= 0	81	498	499
B-1455	F—	0=0=0	83	498	499
B-1456	F—	O F F O	78	498	499

Example	P ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1457	F-	0=s=0	74	496	497
B-1458	F—	OH SHOW	82	540	541
B-1459	F—	0 = s = 0	80	476	477
B-1460	F-	O = O CF 3	78	530	531
B-1461	F—	0=0=0	82	487	488
B-1462		0=0=0	71	540	541
B-1463	F-	0=0=0 C	78	546	547
B-1464	F—	>====================================	83	480	481
B-1465	F-	0=0=0	84	496	497
B-1466	F—	0 = S = D B	80	540	541

Example	e# R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1467	F-{\}	0=0=0	79	476	477
B-1468	F—	O CF3	79	530	531
B-1469	F—	S CN	75	487	488
B-1470	F-{	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	80	480	481
B-1471	F—	0=0=0	74	496	497
B-1472	F—	2 - S - S - S - S - S - S - S - S - S -	75	540	541
B-1473	F—	0=0=0	77	476	477
B-1474	F—	CF 0	81	530	531
B-1475	F—	2000	70	487	488
B-1476	F-		54	540	541

761

Example#	R²	P ^L	%Yield	Caicd. Mass Spec	Observed Mass Spec (M+H)
8-1477	F—	المالية	79	546	547

	Example	# R²	R ^L	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
	B-1478			87	394	395
	B-1479		B	41	504	505
	B-1480			87	451	452
	B-1481			18	416	417
	B-1482			. 77	427	428
	B-1483			74	406	407
1	B-1484			82	422	423

763

Exam	pie#	R²	R ^L	%Yiel	d Calco Mass S _i		pec
B-14	85			85	460	461	
B-14	86			64	406	407	
B-14	87			71	392	393	
B-148	38			82	427	428	
B-148	9			87	444	445	
B-149	0			81	462	463	
B-1491	1			87	462	463	
B-1492	2			69	364	365	
B-1493				53	417	418	
B-1494				17	426	427	

Example	# R ²	R ^L	%Yield	Calcd. Mass Spe	
B-1495			79	460	461
B-1496			80	444	445
B-1497			82	460	461
B-1498		*	72	378	379
B-1499			70	432	433
B-1500			68	390	391
B-1501			63	394	395
B-1502			78	408	409
B-1503			55	404	405
B-1504		CF,	39	418	419

Exampled	R ²	R [⊥]	%Yield	Calcd. ₩ass Spec	Observed Mass Spec (M+H)
B-1505			69	540	541
B-1506			69	462	463
8-1507			70	496	497
B-1508			65	480	481
B-1509			56	414	415
B-1510		»	62	400	401
B-1511			30	468	469
B-1512			50	476	477
B-1513			44	540	541
B-1514			42	530	531

Example#	R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1515			68	496	497
B-1516			27	429	430
B-1517			92	466	467
B-1518			33	379	380
B-1519			50	393	394
B-1520			82	435	436
B-1521		i C	86	509	510
B-1522			12	405	406
B-1523			59	459	460
B-1524		70	81	459	460

PAGE INTENTIONALLY LEFT BLANK

Example#	R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1525			57	419	420

Example#	R²	R ^L .	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1526			73	410	411
B-1527		6	66	520	521
B-1528			91	467	468
B-1529			73	432	433
B-1530			91	443	444
B-1531			74	422 [·]	423
B-1532			68	438	439

Example	# R ² :	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1533			84	476	477
B-1534			72	422	423
B-1535			78	408	409
B-1536			77	443	444
B-1537			86	460	461
B-1538			74	478	479
B-1539			85	478	479
B-1540			71	380	381
B-1541			71	433	434
B-1542			89	442	443

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1543			82	476	477
B-1544			76	460	461
B-1545			77	476	477
B-1546		***	76	394	395
B-1547			58	448	449
B-1548			83	406	407
B-1549			67	410	411
B-1550			37	424	425
B-1551			55	420	421
B-1552		CF,	23	434	435

Example	F R ² .	R ^L	%Yield	Caicd. Mass Spec	Observed Mass Spec (M+H)
B-1553			83	556	557
B-1554			84	478	479
B-1555			93	512	513
B-1556			83	496	497
B-1557		0 w w o	62	430	431
B-1558		} —	45	416	417
B-1559			67	484	485
B-1560			16	492	493
B-1561			84	556	557
B-1562			74	546	547

773

Example	Ø R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1563			72	512	513
B-1564		}s\	57	445	446
B-1565			64	482	483
B-1566		o Tiz	71	395	396
B-1567			54	409	410
B-1568			76	451	452
B-1569			70	525	526
B-1570			79	421	422
B-1571			60	475	476
B-1572		7: Q.	π	475	476

774

Example#	R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1573			65	435	436

WO 00/31063 PCT/US99/26007

Proton NMR data for selected members from Examples B-0001 through B-1573 are shown in the following table.

Plate ID	1H NMR(s Iv nt), d ppm
B-0120	(DMF-d7) d 8.53(bd, $J = 4.99Hz$, 2H), 7.44-7.24(m, 11H), 4.41(s, 2H), 4.31(br)
B-0224	(DMF-d7) d 8.56(bd, J = 4.98Hz, 2H), 7.78-7.69(m, 4H), 7.39-7.19(m, 6H), 4.23(br, 2H)
B-0235	(DMF-d7) d 8.47(br, 2H), 7.91-7.75(m, 3H), 7.57-7.53(m, 1H), 7.38-7.34(m, 2H), 7.21-7.13(m, 4H), 4.20(br, 2H)
B-0244	(CDCl3/CD3OD) d 8.38(d, J = 5.38 Hz, 1H), 7.62-7.32(m, 9H), 7.04-6.95(m, 4H), 6.86-6.80(m, 2H), 4.52(q, J = 6.96 Hz, 1H), 1.40(d, J = 6.88 Hz, 3H)
B-0256	(DMP-07) d 8.45(bd, J = 2.85, 2H), 7.87(br s, 4H), 7.76-7.75(m, 2H), 7.53-7.33(m, 5H), 7.18-7.13(br, 4H)
B-0426	(DMF-d7), 1.32(br, 3H), 1.67(br, 3H), 4.17(br, 2H), 5.12(br, 1H), 7.50(m, 6H), 8.77(m, 2H), 13.54(br, 1H).
B-0438	(DMSO), 1.14(t, J = 6.9 Hz, 3H), 4.54(m, 1H), 6.99(br, 2H), 7.21(br, 4H), 7.45(s, 1H), 7.61(q, J = 8.7 Hz, 2H), 8.52(d, J = 5.2 Hz, 2H).
3-0466	(DMF-d7), 1.61(brd, J = 30.6 Hz, 3H), 4.61 (br, 1H), 7.25(m, 6H), 7.65(m, 3H), 8.59(br, 2H), 13.34(brd, J = 34.8 Hz, 1H).
3-0473	(CD3OD), 1.53(d, J = 7.2 Hz, 3H), 4.59(q, J = 7.2 Hz, 1H), 6.88(d, J = 4 Hz, 1H), 7.09(m, 3H), 7.15(dd, J = 4.4, 1.6 Hz, 2H), 7.26(m, 2H), 8.46(d, J = 6.0 Hz, 2H).
3-0477	(DMF), 1.80(br, 3H), 2.35(s, 1H), 4.98(br, 1H), 7.38(m, 6H), 7.85(m, 2H), 8.45(br, 1H), 8.75(d, J = 6.0 Hz, 2H).
3-0479	(Methanol-d4), 1.57(d, J = 5.6 Hz, 3H), 4.74(br, 1H), 7.23(m, 4H), 7.60(m, 2H) 7.81(m, 4H), 8.67(br, 2H).
3-0487	(DMF), 1.78(s, 3H), 2.76(br, 6H), 4.85(br, 1H), 7.42(br, 2H), 7.54(br, 2H), 7.66(br, 3H), 8.82(s, 2H).
-0566	(CD3OD), 1.38(d, J = 7.2 Hz, 3H), 4.15(br, 2H), 4.50(br, 1H), 7.04(br, 2H), 7.18(br, 2H), 7.30(m, 7H), 8.45(m, 2H).
-0569	(CD3OD), 1.56(br, 3H), 4.66(q, J = 6.7 Hz, 1H), 7.17(m, 8H), 7.56(m, 2H), 8.47(s, 2H).
-0574	(Methanol-d4), 1.49(br, 3H), 3.86(br, 3H), 4.60(br, 1H), 6.92(br, 2H), 7.19(br, 2H), 7.31(br, 2H), 7.76(m, 4H), 8.60(br, 2H).
-0639	(DMF-d7), 1.58(brd, J = 30.0 Hz, 3H), 4.62(br, 1H), 7.25(m, 6H), 7.60(m, 4H), 8.59(br, 2H), 13.30(brd, J = 12.3 Hz).
-0643	7.18(m, 2H), 7.32(dd, J = 6.0, 4.4 Hz, 1H), 7.70(dd, J = 9.0, 5.8Hz, 1H), 8.43(dd, J = 4.8, 3.2 Hz, 2H).
-0650	(CD3OD), 1.58(br, 3H), 4.62(q, J = 6.6 Hz, 1H), 6.93(br, 1H), 7.17(m, 5H), 7.31(br, 2H), 8.51(br, 2H).
-0656	(CDCl3/CD3OD) d 8.48 (d, J = 5.30 Hz, 2H), 7.72-7.59(m, 4H), 7.14-7.10(m, 2H), 7.03-6.97(m, 4H), 4.60(q, J = 7.57Hz, 1H), 1.43(d, J = 7.26Hz, 3H)
-0663	(CD3OD), 1.52(d, J = 6.8 Hz, 3H), 3.75(s, 3H), 7.21(m, 2H), 7.42(m, 2H), 7.57(s, 1H), 7.76(s, 1H), 7.98(br, 2H), 8.76(br, 2H).
1165	Hz, 2H), 3.06(m, 1H), 3.43(q, J = 6.1 Hz, 2H), 7.02(m, 2H), 7.14(m, 2H), 7.41(m, 2H), 8.59(d, J = 5.6 Hz, 2H).
1169	= 1.6 Hz, 1H), 7.04(t, J = 8.6 Hz, 2H), 7.14(m, 2H), 7.36(m, 2H), 8.39(d, J = 1.8 Hz, 1H), 8.60(m, 2H).
1171	6.83(br, 1H), 7.02(t, J = 8.7 Hz, 2H), 7.15(d, J = 5.6 Hz, 2H), 7.40(m, 2H), 8.59(d, J = 5.0 Hz, 2H).

Plate ID	1H NMR(solvent), d ppm
	(CDCl3), 1.94(br, 2H), 2.53(s, 3H), 2.85(t, J = 6.2 Hz, 2H), 3.65(br, 2H),
B-1179	6.15(br, 1H), 7.04(m, 3H), 7.22(m, 3H), 7.41(br, 4H), 8.60(br, 2H).
İ	(CDCl3), 2.00(br, 2H), 2.85(br, 2H), 3.64(br, 2H), 7.03(br, 3H), 7.17(br, 2H),
B-1183	7.36(br, 2H), 7.66(br, 2H), 8.60(br, 2H), 8.77(br, 2H).
	(DMSO), 1.76(br, 2H), 2.66(br, 2H), 2.91(br, 2H), 4.30(s, 2H), 7.18(br, 5H),
B-1194	7.35(m, 6H), 8.54(d, J = 5.8 Hz, 2H).
	(DMSO), 1.17(br, 3H), 1.76(br, 2H), 2.71(br, 2H), 2.97(br, 4H), 7.18(br, 4H),
B-1200	7.36(br, 2H), 8.54(br, 2H).
	(DMSO), 1.03(s, 6H), 1.68(br, 2H), 2.63(br, 2H), 3.00(br, 2H), 3.65(br, 1H),
B-1206	5.69(m, 2H), 7.16(br, 4H), 7.35(br, 2H), 8.54(br, 2H).
	(DMSO), 1.75(m, 2H), 2.14(s, 6H), 2.66(br, 2H), 3.10(br, 2H), 7.04(br, 3H),
B-1216	7.18(br, 4H), 7.35(m, 2H), 7.47(br, 1H), 8.54(d, J = 4.8 Hz, 2H).
	(DME) 1.25/hr 3H) 3.01/hr 3H) 3.35/hr 4H) 6.00/n 4H) 0.00/n 4H)
B-1226	(DMF), 1.25(br, 3H), 2.01(br, 2H), 3.35(br, 4H), 6.20(s, 1H), 6.30(s, 1H), 7.42(br, 4H), 7.65(br, 2H), 8.77(s, 2H).
	71.42(51, 411), 1.05(51, 211), 0.11(3, 211).
	(DMSO-d6), 1.80(br, 4H), 2.82(br, 1H), 2.94(br, 1H), 3.10(br, 1H), 3.60(br, 1H),
B-1360	4.54(br, 1H), 7.18(m, 4H), 7.30(m, 4H), 7.46(m, 2H), 8.54(br, 2H).
	(DMSO-d6), 0.99(br, 6H), 1.73(br, 4H), 2.89(br, 2H), 3.03(m, 1H), 4.04(br, 2H),
B-1361	4.44(m, 1H), 7.18(m, 4H), 7.30(m, 2H), 8.57(d, J = 4.64 Hz, 2H).
	(DMSO-d6), 1.78(br, 4H), 2.01(s, 3H), 2.89(br, 1H), 3.05(br, 1H), 3.34(br, 1H),
B-1363	3.85(br, 1H), 4.48(br, 1H), 7.12(br, 2H), 7.21(br, 2H), 7.30(br, 2H), 8.69(br, 2H).
	(CDCl3), $0.78(dd, J = 3.0, 2.9 Hz, 2H), 1.00(s, 2H), 1.78(m, 1H), 1.86(b, 4H),$
_	2.64(m, 1H), 2.99(m, 1H), 3.16(m, 1H), 4.33(br, 1H), 4.70(br, 1H), 6.99(m, 2H),
B-1364	7.14(s, 2H), 7.29(m, 2H), 8.64(s, 2H).
	(CDCl3), 1.89(s, 4H), 2.65(m, 1H), 2.96(m, 1H), 3.06(m, 1H), 3.43(s, 3H),
_	3.93(d, J = 13.2 Hz, 1H), 4.09(d, J = 13.5 Hz, 1H), 4.18(d, J = 13.5 Hz, 1H),
B-1368	4.68(d, J = 12.4 Hz, 1H), 7.60(m, 2H), 7.12(s, 2H), 7.26(m, 2H), 8.63(s, 2H).

PCT/US99/26007

By analogy to the procedure identified above for the preparation of Examples B0001-B0048, the following examples B-1574 through B-2269 are prepared.

Examples B-1574 through B-1597 are prepared from Scaffold C-27

Example		₽ ^L		
B-1574		3-1		
B-1575		3. ² C) _F		
B-1576	Br	34		
B-1577	Br			
B-1578	Br	2,4		
B-1579	Br	3,ÎL		
B-1580	Br	BR		

B-1592	Br			
B-1593	Br	Y PH		
B-1594	Br	Y: -		
B -1595	Br		•	
B-1596	Br	HS O		
B-1597	Br			

Examples B-1598 through B-1621 are prepared from Scaffold C-28

R² Example# R^L B-1598 H₃C B-1599 H₃C B-1600 H₃C B-1601 H₃C B-1602 H₃C B-1603 H₃C B-1604

R² Example# RL H₃C B-1605 H₃C B-1606 H₃C B-1607 H₃C B-1608 H₃C B-1609 H₃C B-1610 H₃C B-1611 H₃C B-1612 H₃C B-1613 H₃C B-1614

Example# \mathbb{R}^2 RL H₃C B-1615 H₃C B-1616 H₃C B-1617 H₃C B-1618 H₃C B-1619 H₃C B-1620 HN-H₃C B-1621

Examples B-1622 through B-1645 are prepared from Scaffold C-38

Example#	R ²	R ^L		
B-1622	F—	300		
B-1623	F—	Z.L.		
8-1624	F—	34		
B-1625	F—			
B-1626	F—	0		
B-1627	F—	,		
B-1628	F—	Ş. ☐ BR		

Examplei	R ²	R ^L	•	
B-1629	F—	٤١		
B-1630	F—	27		
B-1631	F-	3,400		
B-1632	F—			
B-1633	F—			·
B-1634	F—			
B-1635	F—	C C C C C C C C C C C C C C C C C C C	·	
B-1636	F—	ST°		
B-1637	F—			
B-1638	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

Example# , R² R^L B-1639 B-1640 B-1641 NH B-1642 B-1643 B-1644 B-1645

Examples B-1646 through B-1669 are prepared from Scaffold C-39

Example#	R ²	R ^L		
B-1646	F—	34		
B-1647	F—	3. L	·	
B-1648	F—	3,4		
B-1649	F—			
B-1650	F—	z,L		
B-1651	F-	\$ <u>4</u>		
B-1652	F-) BR		

RL Example# R2 B-1653 B-1654 B-1655 B-1656 B-1657 B-1658 B-1659 B-1660 B-1661 B-1662

Example# R² $\mathbf{R}^{\mathbf{L}}$ B-1663 B-1664 B-1665 NH B-1666 B-1667 B-1668 B-1669

Examples B-1670 through B-1693 are prepared from Scaffold C-65

Example	[‡] R²	₽ _r		
B-1670	F—	No.	·	
B-1671	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1672	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1673	F—			
B-1674	F—	3,4		
B-1675	F-	24		·
B-1676	F—	₹ BR		

Example	R ²	R ^L		
B-1677	F—			
B-1678	F—	27.		
B-1679	F—{}	3.4		
B-1680	F—			
B-1681	F—			
B-1682	F-{}		·	
B-1683 ·	F-	4		
B-1684	F—	770		·
B-1685	F—	10000 N		
B-1686	F—	10%)		

Example# R² $\mathbf{R}^{\mathbf{L}}$ B-1687 B-1688 B-1689 8-1690 B-1691 B-1692 B-1693

Examples B-1694 through B-1717 are prepared from Scaffold C-66

Example	# R²	· R ^L				
B-1694	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		·		
B-1695	F—	3.L	·		·	
B-1696	F—	34				
B-1697	F-					
B-1698	F—	2,4				
B-1699	F-	34				
B-1700	F—) BR				

Example# R² R^L B-1701 8-1702 B-1703 B-1704 B-1705 B-1706 B-1707 B-1708 B-1709 B-1710

Example#	R ²	R ^L		
B-1711	F—	10 10 N		
B-1712	F—			
B-1713	F—	Y NH		
B-1714	F—	Y S	·	
B-1715	F—			
B-1716	F—	E S		
B-1717	F—	° - 7-		
	· · · · · · · · · · · · · · · · · · ·			

Examples B-1718 through B-1741 are prepared from Scaffold C-69

Example	# R²	₽ſ		
B-1718	F—	3-1		
B-1719	F—	Z.L.		
B-1720	F—	3.L		
B-1721	F—			7
B-1722	F—	3,2		
B-1723	F—	3,4		
B-1724	F—	BR		

Example# R2 $\mathbf{R}^{\mathbf{L}}$ B-1725 B-1726 B-1727 B-1728 B-1729 B-1730 B-1731 B-1732 B-1733 B-1734

Example	# R ²	R ^L			
B-1735	F—	4510			
B-1736	F—	7, 0 F 0			
B-1737	F—	Z NH		·	
B-1738	F-	Y			
B-1739	F—		·		
B-1740	F-	HN			
B-1741	F—	NN NN			

Examples B-1742 through B-1765 are prepared from Scaffold C-70

Example#	R²	R ^L		
B-1742	F—	34	·	
B-1743	F—	3. L		
B-1744	F—	34		
B-1745	F—			
B-1746	F—	24	,	
B-1747	F—			
B-1748	F—	N BR		

R² Example# \mathbf{R}^{L} B-1749 B-1750 8-1751 B-1752 B-1753 B-1754 B-1755 B-1756 **B-1757** B-1758

Example#	R²	R ^L		
B-1759	F—	7, 8, 0 7, 0		
B-1760	F—	7, 8 0 F		
B-1761		Y NH		
B-1762	F—			
B-1763	F—			
B-1764	F—	H O		
B-1765	F—			

Examples B-1766 through B-1789 are prepared from Scaffold C-71

Example	₹ R²	R ^L		
B-1766	F—	34		
B-1767	F—	Z.L.		
B-1768	F—	34		
B-1769	F—			
B-1770	F—	2,4	·	
B-1771	F—	3. H		
B-1772	F—	S BA		

 \mathbb{R}^2 Example# $\mathbf{R}^{\mathbf{L}}$ B-1773 B-1774 B-1775 B-1776 B-1777 B-1778 B-1779 B-1780 B-1781 B-1782

Example# R² R^L B-1783 B-1784 B-1785 NH . B-1786 B-1787 B-1788 B-1789

Examples B-1790 through B-1813 are prepared from Scaffold C-72

Example#	R²	R ^L			
B-1790	F—	34		·	
B-1791	F—	2. C	·		
B-1792	F-	34			
B-1793	F—				
B-1794	F-	24			
B-1795	F—				
B-1796	F—) BR			

Example# R² RL B-1797 B-1798 B-1799 B-1800 B-1801 B-1802 B-1803 **B-1804** B-1805 B-1806

Example	# R ²	R ^L		
B-1807	F—	10 /10 × 10		
B-1808	F—	5,50 F		
B-1809	F—	ZZ NH		
B-1810	F—	Y: C		
B-1811	F—			•
B-1812	F—	HN		
B-1813	F—	HN N	·	·

Examples B-1814 through B-1837 are prepared from Scaffold C-73

Example:	₹ R ²	R ^L		
B-1814	F—	32	·	
B-1815	F—	ŽŮ,		
B-1816	F—	34		
B-1817	F—			
B-1818	F—	3,4		
B-1819	F—			
B-1820	F—	Ş. ☐ BR		

B-1830

Example# \mathbb{R}^2 $\mathbf{R}^{\mathbf{L}}$ B-1821 B-1822 B-1823 B-1824 B-1825 B-1826 B-1827 B-1828 B-1829

Example	₹ R²	R ^L		
B-1831	F—	150		
B-1832	F—	S O		
B-1833	F—	ZZ NH	·	
B-1834	F—			
B-1835	F—			
B-1836	F—	HN		
B-1837	F—	N. T.		

Examples B-1838 through B-1861 are prepared from Scaffold C-33

Example# R² \mathbf{R}^{L} B-1838 B-1839 B-1840 B-1841 B-1842 B-1843 B-1844

Example# R² R^L

B-1845		
B-1846	F— Z—	
B-1847	F-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
B-1848	F—————————————————————————————————————	
B-1849		
B-1850	F—————————————————————————————————————	
B-1851	F-C	
B-1852	F—O	
B-1853		
B-1854		

Example	e# R²	₽ ^L		
B-1855	F—	750		
B-1856	F—	-		
B-1857	F—	YH O		
B-1858	F—	\"_\"_\"_\"\"\"\"\"\"\"\"\"\"\"\"\"\	·	
B-1859	F—			
B-1860	F—	HN		
B-1861	F—	N N N N N N N N N N N N N N N N N N N		

Examples B-1862 through B-1885 are prepared from Scaffold C-45

Example	# R ²	R ^L			
B-1862	F—	3/2		·	
B-1863	F—	Z.L.			
B-1864	F—	34	·		
B-1865	F—				
B-1866	F—	2,1		· · · · · · · · · · · · · · · · · · ·	
B-1867	F—	3,4			
B-1868	F-) BR			

Example#

R²

RL

		·		•	
B-1869	F-	34			
B-1870	F—	27			
B-1871	F—	3,100		·	
B-1872	F—				
B-1873	F—				
B-1874	F—				
B-1875	F—	- 12°			
B-1876	F—	240			·
B-1877	F—			·	
B-1878	F—	7 % O	·		

Example# R² R^L

				
B-1879	F—	7.5%		
B-1880	F—			
B-1881	F—	Y NH	·	
B-1882	F-			
B-1883	F—			
B-1884	F—	E S		
B-1885	F—	¥ ₹		

Examples B-1886 through B-1909 prepared from Scaffold C-42

Example	# R ²	R ^L		
B-1886	F-\{\}	34	·	
B-1887	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1888	F—	34		
B-1889	F—			
B-1890	F—	2,4		
B-1891	F—			
B-1892	F—	Ş. ☐ BR		

Example# R² R^L B-1893 B-1894 B-1895 B-1896 B-1897 B-1898 B-1899 B-1900 B-1901 B-1902

Example	# R ²	R ^L		
B-1903	F—	1° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°		
B-1904	F—	5 0 S		
B-1905	F-	17 ONH		
B-1906	F—			
B-1907	F—			
B-1908	F—	HN		
B-1909	F—	N N N N N N N N N N N N N N N N N N N		

Examples B-1910 through B-1933 are prepared from Scaffold C-44

Example#	R ²	R ^L		
B-1910	F—	3,4		
B-1911	F—	Z.L.		
B-1912	F—	34		
B-1913	F—			
B-1914	F—	2,4		
B-1915	F—	~~ \		
B-1916	F—	S BA		

Example# R²

 $\mathbf{R}^{\mathbf{L}}$

B-1917	F—	3		
B-1918	F-	2,		
B-1919	F—	12-12-0		
B-1920	F—	2		
B-1921	F-			
B-1922	F—			·
B-1923	F—	440	·	
B-1924	F—	No.		
B-1925	F—			
B-1926	F—	7.80		

Example# R² RL B-1927 B-1928 B-1929 B-1930 B-1931 B-1932 B-1933

Examples B-1934 through B-1957 are prepared from Scaffold C-41

Example	# R ²	R ^L		
B-1934	F—	3.4		
B-1935	F—		:	
B-1936	F-{	3-1		
B-1937	F—			
B-1938	F—	2,4		
B-1939	F—	2,4 D		
B-1940	F—) BR		

INTERNATIONAL SEARCH REPORT Internation plication No information on patent family members PCT/US 99/26007 Patent document Patent family member(s) Publication Publication cited in search report date date WO 9852941 26-11-1998 A AU 7726898 A 11-12-1998

INTERNATIONAL SEARCH REPORT

information on patent family members

Internation. uplication No PCT/US 99/26007

EP 0846687 A 10-06-1998 AU 5365598 A 29-06-19 W0 9824437 A 11-06-19 EP 0846686 A 10-06-1998 CA 2223237 A 30-05-19 JP 10182614 A 07-07-19 W0 9419350 A 01-09-1994 AU 681625 B 04-09-19 CA 2156919 A 01-09-19 CN 1120840 A,B 17-04-19 EP 0864656 A 13-12-19 IL 108856 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 AU 568156 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 CN 1070404 A 31-03-19 LD 295374 A 31-10-1991 NONE DD 295374 A 31-10-1991 NONE W0 9852937 A 26-11-1998 AU 7698198 A 11-10-18 US 5998425 A 07-12-11 US 5998425 A 07-12-11 US 5998426 A 08-03-19	Patent document cited in search repo	rt	Publication date		atent family nember(s)	Publication date
AU 3126795 A 22-02-19 CA 2195123 A 08-02-19 EP 0772597 A 14-05-19 US 5580965 A 03-12-19 US 5756530 A 26-05-19 US 5756530 A 26-05-19 US 5680965 A 22-02-20 EP 0846687 A 10-06-1998 AU 5365598 A 29-06-19 EP 0846686 A 10-06-1998 CA 2223237 A 30-05-19 US 5972972 A 26-10-19 EP 0846686 A 10-06-1998 CA 2223237 A 30-05-19 US 5972972 A 26-10-19 EP 0846686 A 10-09-1994 AU 681625 B 04-09-19 AU 6010894 A 14-09-19 CA 2156919 A 01-09-1994 AU 6010894 A 14-09-19 CA 2156919 A 01-09-19 CA 2156919 A 01-09-19 HU 70832 A 28-11-19 HU 70832 A 28-11-19 HU 70832 A 28-11-19 HU 70832 A 23-09-15 A 9400787 A 08-09-15 HMX 9401408 A 31-08-19 US 5570503 A 23-09-19 ZA 9400787 A 08-09-19 HU 65204 A 02-05-19 JP 7252256 A 03-10-16 JP 7252256 A 03-10-16 JP 7252256 A 03-10-16 JP 7252256 A 03-10-19 HW 925145 A 11-01-19 US 5478827 A 26-12-11 US 5478827 A 26-12-11 US 5478827 A 26-12-11 US 5478827 A 26-12-11 US 5524931 A 29-04-11 US 536897 A 18-10-19 TA 9206417 A 15-03-15 CN 1075965 A 08-09-15 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-15 EP 0871622 A 21-10-12-15 US 5998425 A 07-12-15 US 5998425 A 07-12-15 US 5998426 A 08-03-21 US 5998426 A 08-03-21 US 5998426 A 08-03-21 US 5998426 A 08-03-21 US 5998260 A 08-03-21 US 5998260 A 08-03-21	אט טפטאאר	Α	08-02-1006	110	5486E34 A	23-01-1006
CA 2195123 A 08-02-19	MO 3003303	А	00-02-1990			
EP 0772597 A 14-05-19						
JP 10503201 T 24-03-19 US 5580985 A 03-12-19 US 5756530 A 22-02-20 US 6028072 A 22-02-20 US 6028072 A 22-02-20 EP 0846687 A 10-06-1998 AU 5365598 A 29-06-19 US 5972972 A 26-10-19 EP 0846686 A 10-06-1998 CA 2223237 A 30-05-19 US 5972972 A 26-10-19 EP 0846686 A 10-06-1998 CA 2223237 A 30-05-19 WO 9419350 A 01-09-1994 AU 681625 B 04-09-19 CA 2156919 A 01-09-19 CA 2156919 A 01-09-19 CA 2156919 A 01-09-19 EP 0686156 A 13-12-19 HU 70832 A 28-11-19 EP 0686156 A 13-12-19 HU 70832 A 28-11-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-15 CA 2077732 A 10-03-15 US 5670503 A 23-09-19 ZA 9400787 A 08-09-15 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-15 LI 108562 A 03-10-19 LI 065204 A 02-05-15 JP 7252256 A 03-10-19 HU 65204 A 02-05-15 JP 7252256 A 03-10-19 MX 9205145 A 01-04-15 US 5478827 A 26-12-15 US 5478827						
US 5580985 A 03-12-19 US 5756530 A 26-05-19 US 6028072 A 22-02-20 EP 0846687 A 10-06-1998 AU 5365598 A 29-06-19 EP 0846686 A 10-06-1998 CA 2223237 A 30-05-19 US 5972972 A 26-10-19 EP 0846686 A 10-06-1998 CA 2223237 A 30-05-19 US 9419350 A 01-09-1994 AU 681625 B 04-09-19 AU 6010894 A 14-09-19 CA 2156919 A 01-09-19 CA 1150819 A 01-09-19 CN 1120840 A, B 17-04-19 EP 0686156 A 13-12-19 IL 108562 A 10-06-19 JP 8507056 T 30-07-19 IL 108562 A 10-06-19 JP 7526256 A 03-10-19 CN 1070404 A 31-03-19 CN 1070404 A 31-03-19 JP 7525256 A 03-10-19 JP 7525256 A 03-10-19 JP 7525256 A 03-10-19 JP 758264 A 02-05-13 JP 7687188 A 11-10-19 JP 7687188 A 11-10-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5478827 A 26-12-19 US 5478827 A 26-12-19 US 5478827 A 15-03-18 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 US 5998425 A 07-12-11 US 5998425 A 07-12-11 US 5998425 A 07-12-11 US 5998425 A 07-12-11 US 5998553 A 17-11-11						
EP 0846687 A 10-06-1998 AU 5365598 A 22-02-20 EP 0846687 A 10-06-1998 AU 5365598 A 29-06-19 W0 9824437 A 11-06-19 EP 0846686 A 10-06-1998 CA 2223237 A 30-05-19 JP 10182614 A 07-07-19 W0 9419350 A 01-09-1994 AU 681625 B 04-09-19 CA 2156919 A 01-09-1994 CA 2156919 A 10-09-19 CA 2156919 A 10-09-19 EP 0886156 A 13-12-19 EP 0886156 A 13-12-19 HU 70832 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 ZA 9400787 A 08-09-15 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-16 CN 1070404 A 31-03-19 HU 65204 A 02-05-19 JP 2057962 C 10-06-15 JP 2057962 C 10-06-15 JP 2057962 C 10-06-15 JP 2057962 C 10-06-15 JP 6287188 A 11-10-19 WX 9205145 A 02-09-19 MX 9205145 A 02-09-19 US 578687 A 26-12-11 US 578687 A 26-12-11 US 578687 A 18-10-19 ZA 9206417 A 15-03-18 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE W0 9852937 A 26-11-1998 AU 7698198 A 11-10-11 US 5998425 A 07-12-19 W0 9852937 A 26-11-1998 AU 7698198 A 11-10-19 US 5998425 A 07-12-19 W0 9852937 A 26-11-1998 AU 7698198 A 11-10-19 US 5998425 A 07-12-19 W0 9852937 A 26-11-1998 AU 7698198 A 11-10-19						
US 6028072 A 22-02-20 EP 0846687 A 10-06-1998 AU 5365598 A 29-06-19 W0 9824437 A 11-06-19 EP 0846686 A 10-06-1998 CA 2223237 A 30-05-19 US 5972972 A 26-10-19 EP 0846686 A 10-09-1994 AU 681625 B 04-09-19 CA 2156919 A 01-09-19 CA 2156919 A 01-09-19 CN 1120840 A, B 17-04-19 EP 086156 A 13-12-19 IL 108862 A 10-06-19 IL 108868 A 13-08-19 IL 108868 A 10-03-19 IL 108868 B 27-09-19 IL 108868 B 28-08 IL 10-10-10 IL 108868 B 28-						
EP 0846687 A 10-06-1998 AU 5365598 A 29-06-19 W0 9824437 A 11-06-19 EP 0846686 A 10-06-1998 CA 2223237 A 30-05-19 JP 10182614 A 07-07-19 W0 9419350 A 01-09-1994 AU 681625 B 04-09-19 CA 2156919 A 01-09-19 CA 1120840 A,B 17-04-19 EP 0686156 A 13-12-19 HU 70832 A 28-11-19 HU 70832 A 13-10-1991 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 02-05-19 JP 7252256 A 03-10-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 554931 A 29-04-19 US 5478827 A 26-12-19 US 554931 A 29-04-19 US 5598425 A 08-09-19 DD 295374 A 31-10-1991 NONE W0 9531451 A 23-11-1995 US 5559137 A 24-09-19 LP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 W0 9852937 A 26-11-1998 AU 7698198 A 11-12-19 US 5998425 A 07-12-19 W0 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-11 US 5932576 A 03-06-19						26-05-1998
W0 9824437 A 11-06-1998				US	6028072 A	22-02-2000
W0 9824437 A 11-06-1998	EP 0846687	A	10-06-1998	AU	5365598 A	29-06-1998
US 5972972 A 26-10-19 EP 0846686 A 10-06-1998 CA 2223237 A 30-05-19 JP 10182614 A 07-07-19 W0 9419350 A 01-09-1994 AU 681625 B 04-09-19 CA 2156919 A 01-09-19 CN 1120840 A, B 17-04-19 EP 0686156 A 13-12-19 HU 70832 A 28-11-19 IL 108562 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 ZA 9400787 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CN 1070404 A 31-03-19 HU 65204 A 02-05-19 JP 2057962 C 10-06-19 JP 2057962 C 10-06-19 JP 2057962 C 10-06-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5356897 A 18-10-19 US 598425 A 07-12-19 W0 9852937 A 26-11-1998 AU 7698198 A 11-12-19 US 5998425 A 07-12-19 W0 9852937 A 26-11-1998 AU 7698198 A 11-12-19 US 59982576 A 03-08-19						11-06-1998
JP 10182614 A 07-07-19 W0 9419350 A 01-09-1994 AU 681625 B 04-09-19 CA 2156919 A 01-09-19 CA 2156919 A 01-09-19 CN 1120840 A, B 17-04-19 EP 0686156 A 13-12-19 HU 70832 A 28-11-19 IL 108562 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 HU 65204 A 02-05-19 JP 7252256 A 03-10-19 JP 6287188 A 11-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5356897 A 18-10-19 US 5356897 A 18-10-19 US 5356897 A 18-10-19 CA 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE W0 9531451 A 23-11-1995 US 5559137 A 24-09-19 US 5998425 A 07-12-19 W0 9852937 A 26-11-1998 AU 7698198 A 11-12-19 US 5998425 A 07-12-19 W0 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995535 A 17-11-19				US		26-10-1999
JP 10182614 A 07-07-19 W0 9419350 A 01-09-1994 AU 681625 B 04-09-19 CA 2156919 A 01-09-19 CA 2156919 A 01-09-19 CN 1120840 A, B 17-04-19 EP 0686156 A 13-12-19 HU 70832 A 28-11-19 IL 108562 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 HU 65204 A 02-05-19 JP 7252256 A 03-10-19 JP 6287188 A 11-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5356897 A 18-10-19 US 5356897 A 18-10-19 US 5356897 A 18-10-19 CA 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE W0 9531451 A 23-11-1995 US 5559137 A 24-09-19 US 5998425 A 07-12-19 W0 9852937 A 26-11-1998 AU 7698198 A 11-12-19 US 5998425 A 07-12-19 W0 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995535 A 17-11-19	FP 0846686		10-06-1998	CA	2223237 A	30-05-1998
WO 9419350 A 01-09-1994 AU 681625 B 04-09-19 AU 6010894 A 14-09-19 CA 2156919 A 01-09-19 CN 1120840 A, B 17-04-19 EP 0686156 A 13-12-19 HU 70832 A 28-11-19 IL 108562 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 ZA 9400787 A 08-09-15 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 10-03-19 CN 1070404 A 31-03-19 HU 65204 A 02-05-19 JP 7252256 A 03-10-19 JP 788386 B 27-09-19 MX 9205145 A 01-04-19 US 5624931 A 29-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5356897 A 18-10-19 US 5356897 A 18-10-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 US 5998425 A 07-12-19	Li 0040000	^	10 00 1330			
AU 6010894 A 14-09-19 CA 2156919 A 01-09-19 CN 1120840 A, B 17-04-19 EP 0686156 A 13-12-19 HU 70832 A 28-11-19 IL 108562 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 ZA 9400787 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CN 1070404 A 31-03-19 HU 65204 A 02-05-19 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 2057962 C 10-06-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5478827 A 26-12-19 US 5524931 A 29-04-19 US 5356897 A 18-10-19 US 5356897 A 18-10-19 US 5356897 A 18-10-19 US 5356897 A 18-10-19 US 5524931 A 29-04-19 US 5524931 A 29-04-19 US 5526931 A 29-04-19 US 5526931 A 29-04-19 US 5526931 A 29-04-19 US 5526931 A 29-04-19 US 5526897 A 18-10-19 US 593425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-22 NO 995635 A 17-11-19						
CA 2156919 A 01-09-19 CN 1120840 A, B 17-04-19 EP 0686156 A 13-12-19 HU 70832 A 28-11-19 IL 108562 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 ZA 9400787 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 CA 1070404 A 31-03-19 HU 65204 A 02-05-19 JP 7252256 A 03-10-19 JP 7252256 A 03-10-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5478827 A 26-12-19 US 536897 A 18-10-19 ZA 9206417 A 15-03-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 US 5998425 A 07-12-19 US 5998425 A 07-12-19	WO 9419350	Α	01-09-1994			04-09-1997
CN 1120840 A, B 17-04-19 EP 0686156 A 13-12-19 HU 70832 A 28-11-19 IL 108562 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 ZA 9400787 A 08-09-19 ZA 9400787 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 HU 65204 A 02-05-19 JP 7052256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5478827 A 26-12-19 US 5356897 A 18-10-19						
EP 0686156 A 13-12-19 HU 70832 A 28-11-19 IL 108562 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 ZA 9400787 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 10-03-19 HU 65204 A 02-05-19 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5478827 A 26-12-19 US 5356897 A 18-10-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 US 5998425 A 07-12-19 US 5998425 A 08-03-22 NO 995635 A 17-11-19						
HU 70832 A 28-11-19 IL 108562 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 ZA 9400787 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 CA 1070404 A 31-03-19 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5478827 A 18-10-19 US 5478827 A 18-10-19 CA 9206417 A 15-03-19 US 598425 A 07-12-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-22 NO 995635 A 17-11-11 US 5932576 A 03-08-19						17-04-1996
IL 108562 A 10-06-19 JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 ZA 9400787 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 10-03-19 CN 1070404 A 31-03-19 HU 65204 A 02-05-19 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-29 NO 995635 A 17-11-19 US 5932576 A 03-08-19						13-12-1995
JP 8507056 T 30-07-19 MX 9401408 A 31-08-19 US 5670503 A 23-09-19 ZA 9400787 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 HU 65204 A 02-05-19 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5478827 A 26-12-19 US 5356897 A 18-10-19 US 5356897 A 18-10-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-29 NO 995635 A 17-11-19 US 5932576 A 03-08-19						28-11-1995
MX 9401408 A 31-08-19 US 5670503 A 23-09-19 ZA 9400787 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 10-03-19 CN 1070404 A 31-03-19 HU 65204 A 02-05-19 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5478827 A 26-12-19 US 5356897 A 18-10-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19				IL	108562 A	10-06-1997
US 5670503 A 23-09-19 ZA 9400787 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 CA 2077732 A 02-05-19 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5526897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19				JP	8507056 T	30-07-1996
US 5670503 A 23-09-19 ZA 9400787 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 10-03-19 CA 2077732 A 10-03-19 CA 2077732 A 02-05-19 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5526897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19					9401408 A	31-08-1994
ZA 9400787 A 08-09-19 EP 0531901 A 17-03-1993 AU 2280592 A 11-03-19 CA 2077732 A 10-03-19 CN 1070404 A 31-03-19 HU 65204 A 02-05-19 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5356897 A 18-10-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19						23-09-1997
CA 2077732 A 10-03-19 CN 1070404 A 31-03-19 HU 65204 A 02-05-15 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19						08-09-1994
CA 2077732 A 10-03-19 CN 1070404 A 31-03-19 HU 65204 A 02-05-15 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19	FP 0531001	Δ	17-03-1003	Δ11	2280592 A	11-03-1993
CN 1070404 A 31-03-19 HU 65204 A 02-05-19 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19	FI 0331301	^	11 03 1333			
HU 65204 A 02-05-19 JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5336897 A 18-10-19 US 5336897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-29 NO 995635 A 17-11-19 US 5932576 A 03-08-19						
JP 7252256 A 03-10-19 JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19						
JP 2057962 C 10-06-19 JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-26 NO 995635 A 17-11-19 US 5932576 A 03-08-19	•					
JP 6287188 A 11-10-19 JP 7088386 B 27-09-19 MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-26 NO 995635 A 17-11-19 US 5932576 A 03-08-19						
DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-26 NO 995635 A 17-11-19 US 5932576 A 03-08-19						
MX 9205145 A 01-04-19 US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-26 NO 995635 A 17-11-19 US 5932576 A 03-08-19						
US 5478827 A 26-12-19 US 5624931 A 29-04-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-26 NO 995635 A 17-11-19 US 5932576 A 03-08-19						27-09-199!
US 5624931 A 29-04-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-26 NO 995635 A 17-11-19 US 5932576 A 03-08-19		,		MX	9205145 A	01-04-1993
US 5624931 A 29-04-19 US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-26 NO 995635 A 17-11-19 US 5932576 A 03-08-19					5478827 A	26-12-199
US 5356897 A 18-10-19 ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-26 NO 995635 A 17-11-19 US 5932576 A 03-08-19						29-04-199
ZA 9206417 A 15-03-19 CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-26 NO 995635 A 17-11-19 US 5932576 A 03-08-19						18-10-199
CN 1075965 A 08-09-19 DD 295374 A 31-10-1991 NONE WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19						15-03-199
WO 9531451 A 23-11-1995 US 5559137 A 24-09-19 EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19						08-09-199
EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19	DD 295374	A	31-10-1991	NONE		و سند بين ناشا هي هي جارد الله جال قاله وان جناء خاله جب هي
EP 0871622 A 21-10-19 JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19	WO 9531451		23-11-1995	IIS	5559137 A	24-09-199
JP 10500413 T 13-01-19 US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19	## 7001701	•1	20 21 1770			21-10-1998
US 5998425 A 07-12-19 WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19						
WO 9852937 A 26-11-1998 AU 7698198 A 11-12-19 EP 0983260 A 08-03-20 NO 995635 A 17-11-19 US 5932576 A 03-08-19						
EP 0983260 A 08-03-26 NO 995635 A 17-11-19 US 5932576 A 03-08-19			· · · · · · · · · · · · · · · · · · ·		0330420 A 	0/-12-199
NO 995635 A 17-11-19 US 5932576 A 03-08-19	WO 9852937	Α	26-11-1998			11-12-199
US 5932576 A 03-08-19						08-03-200
						17-11-199
WO 9852940 A 26-11-1998 AU 7588398 A 11-12-19		<u> </u>		US	5932576 A	03-08-199
,,,	WO 9852940	A	26-11-1998	AU	7588398 A	11-12-199
						21-01-200

INTERNATIONAL SEARCH REPORT

Internacional application No.

PCT/US 99/26007

BXI	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheat)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 133-140 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 133-140 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the precifical requirements to such an extent that no meaningful International Search can be carried out, specifically:
з	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of from 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. 🔲 j	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is estricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark o	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Internation. pplication No PCT/US 99/26007

.(Continu	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT	<u> </u>	
egory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to	claim No.
	DD 295 374 A (STERLING DRUG INC) 31 October 1991 (1991-10-31)	82	39,71, ,93,
	page 7 -page 8; claims; examples		,
	WO 95 31451 A (SMITHKLINE BEECHAM CORP ;ADAMS JERRY LEROY (US); GALLAGHER TIMOTHY) 23 November 1995 (1995-11-23)	82 94	39,71, ,93, ,101, 6-140
	page 1 -page 3; claim 1 page 16 -page 19; examples		
Ρ,Χ	WO 98 52937 A (ANANTANARAYAN ASHOK ;STEALEY MICHAEL A (US); CLARE MICHAEL (US); G) 26 November 1998 (1998-11-26) abstract; claims page 35 -page 49; examples	1-	160
Ρ,Χ	WO 98 52940 A (ANANTANARAYAN ASHOK ;CRICH JOYCE ZUOWU (US); SELNESS SHAUN RAJ (US) 26 November 1998 (1998-11-26) abstract; claims	1-	160
P,X	WO 98 52941 A (SEARLE & CO; HANSON GUNNAR J (US); LIAO SHUYUAN (US)) 26 November 1998 (1998-11-26) abstract; claim 1 page 21 -page 24; examples 1,2	1-	160

INTERNATIONAL SEARCH REPORT

Internation. ppilication No PCT/US 99/26007

A 40 100		PCT/US 99	2/26007
IPC 7	SIFICATION OF SUBJECT MATTER C07D417/14 C07D471/04 A61P29 231:00),(C07D471/04,221:00,209:0	/00 //(C07D487/04,293 0)	3:00,
According	to International Patent Classification (IPC) or to both national classi	fication and IPC	
	SEARCHED		
Minimum d	ocumentation searched (classification system followed by classific	ation symbola)	
Documente	ation searched other than minimum documentation to the extent tha	t graph discussions are included in the Sold	
		a such documents are included in the heids s	earched
Electronic o	data base consulted during the international search (name of data	pase and, where practical, search terms used	1)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the r	elevant passagss	Relevant to claim No.
Α	ED 0 046 606 A 625555		
A	EP 0 846 686 A (PFIZER LTD ;PFIZ 10 June 1998 (1998-06-10)	(ER (US))	1,39,71,
			82,93, 94,101
	abstract; claims 1,15 page 19; example A24		7,552
Δ			
A	₩O 94 19350 A (OKU TERUO ;KAWAI (JP); TANAKA HIROKAZU (JP); FUJI	YOSHIO	1,39,71,
	PHARM) 1 September 1994 (1994-09	1-01)	82,93, 94,101
	page 53; example 8		1,202
Α .	EP 0 531 901 A (FUJISAWA PHARMAC	EUTICAL	1,39,71,
	CO) 17 March 1993 (1993-03-17)		82.93.
	abstract		94,101
	pages 49 - 51, preparations		
[page 52; example 1		
		-/	
	er documents are listed in the continuation of box C.	X Patent family members are listed in	n annex.
	egories of cited documents :	"T" later document published after the inter	national filing date
"A" document defining the general state of the art which is not considered to be of particular relevance of cited to understand the principle or theory underlying invention.			ory underlying the
"E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered to			he considered to
which is cited to establish the publication date of another Citation or other special reason (as another) "Y" document of particular relevance; the claimed invention			aimed invention
"O" documer other m	nt referring to an oral disclosure, use, exhibition or	document is combined with one or mor	entive step when the
P document published prior to the international filing date but later than the priority date claimed **A* document published priority date claimed **A* docume			
Date of the actual completion of the international search Date of mailing of the international search			
6	April 2000		
Name and mailing eddress of the ISA Authorized officer			
European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijawijk			
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Paisdor, B	

INTERNATIONAL SEARCH REPORT

pplication No Internation

PCT/US 99/26007 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D401/04 A61K31/415 A61K31/47 A61K31/445 A61K31/44 CO7D401/14 A61K31/505 A61K31/52 CO7D405/14 A61K31/50 C07D473/00 CO7D413/14 C07D487/04 CO7D409/14 C07D403/04 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D A61K A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.
X	WO 96 03385 A (SEARLE & CO; LEE LEN F (US); PENNING THOMAS D (US); KRAMER STEVEN) 8 February 1996 (1996-02-08) cited in the application abstract; claims 1,8-10; examples 1-15 page 9 -page 73	1,39,71, 82,93, 94,101, 126-140
A	EP 0 846 687 A (LILLY CO ELI) 10 June 1998 (1998-06-10) abstract; examples page 21; table 1A page 23 -page 25; table 2A -/	1,39,71, 82,93, 94,101

Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.
*Special categoriee of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
6 April 2000	18/04/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL. – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3018	Authorized officer Paisdor, B

2

or a tautomer or pharmaceutically acceptable salt thereof.

70

159. A compound of Claim 71 that is:

or a tautomer or pharmaceutically acceptable salt thereof.

75

160. A compound of Claim 70 wherein R^{404a} is metachloro or para-chloro.

or a tautomer or pharmaceutically acceptable salt thereof.

60

157. A compound of Claim 42 that is:

or a tautomer or pharmaceutically acceptable salt thereof.

65

158. A compound of Claim 71 that is:

or a tautomer or pharmaceutically acceptable salt thereof.

45

154. A compound of Claim 39 that is:

or a tautomer or pharmaceutically acceptable salt thereof.

50

155. A compound of Claim 1 that is:

or a tautomer or pharmaceutically acceptable salt thereof.

55

156. A compound of Claim 82 that is:

40

or a tautomer or pharmaceutically acceptable salt thereof.

152. A compound of Claim 1 that is:

or a tautomer or pharmaceutically acceptable salt thereof.

153. A compound of Claim 1 that is:

or a tautomer or pharmaceutically acceptable salt thereof.

30 151. A compound of Claim 1 that is:

15

or a tautomer or pharmaceutically acceptable salt thereof.

149. A compound of Claim 1 that is:

20

25

or a tautomer or pharmaceutically acceptable salt thereof.

150. The compound:

146. A compound of Claim 71 that is:

5

or a tautomer or pharmaceutically acceptable salt thereof.

147. A compound of Claim 39 that is:

10

or a tautomer or pharmaceutically acceptable salt thereof.

148. The compound:

1209

alkylthioalkylene, arylthioalkylene, alkylsulfinyl, alkylsulfinylalkylene, arylsulfinylalkylene, alkylsulfonyl, alkylsulfonylalkylene,

arylsulfonylalkylene, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, cyano, nitro, alkylamino, arylamino, alkylaminoalkylene, arylaminoalkylene, aminoalkylamino, and hydroxy; or

a pharmaceutically-acceptable salt or tautomer thereof,

said method comprising the steps of treating a substituted ketone with an acyl hydrazide to give the pyrazole.

- 142. The process of Claim 141 wherein the process is carried out in an acidic solvent.
- 143. The process of Claim 141 wherein the acidic solvent is acetic acid.
- 144. The process of Claim 141 wherein the acidic solvent is an organic solvent containing an acid.

145. The compound:

or a tautomer or pharmaceutically acceptable salt thereof.

thiazolylalkyl, thiazolylamino,

170

175

200

groups may be optionally substituted with one or more radicals independently selected from halo, keto, alkyl, aralkyl, aralkenyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfinyl, arylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkoxy, heterocyclylalkoxy, amino, alkylamino, alkenylamino, alkynylamino, cycloalkylamino, cycloalkenylamino, arylamino, haloarylamino, heterocyclylamino, aminocarbonyl, cyano, hydroxy,

heterocyclylamino, aminocarbonyl, cyano, hydroxy, hydroxyalkyl, alkoxyalkylene, alkenoxyalkylene, aryloxyalkyl, alkoxyalkylamino, alkylaminoalkoxy, alkoxycarbonyl, aryloxycarbonyl, heterocyclyloxycarbonyl, alkoxycarbonylamino, alkoxyarylamino, alkoxyaralkylamino,

aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkylaminoalkylamino, hydroxyalkylamino, aralkylamino, aryl(hydroxyalkyl)amino, alkylaminoalkylaminoalkylamino, alkylheterocyclylamino, heterocyclylalkylamino, alkylheterocyclylalkylamino, aralkylheterocyclylamino,

heterocyclylaterocyclylalkylamino,
 alkoxycarbonylheterocyclylamino, nitro,
 alkylaminocarbonyl, alkylcarbonylamino,
 haloalkylsulfonyl, aminoalkyl, haloalkyl, alkylcarbonyl,
 hydrazinyl, alkylhydrazinyl, arylhydrazinyl, and -NR44R45
wherein R44 is alkylcarbonyl or amino, and R45 is alkyl or
 aralkyl; and

R⁴ is selected from hydrido, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein R⁴ is optionally substituted with one or more radicals independently selected from halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkylthio, arylthio,

or R²⁰⁰ represents a bond;

R²⁰¹ represents one or more radicals selected from the group consisting of hydroxy, hydroxyalkyl, cycloalkyl, hydroxyalkylcarbonyl, cycloalkylcarbonyl,

- arylcarbonyl, haloarylcarbonyl, alkoxyalkylene, alkoxyarylene, carboxyalkylcarbonyl, alkoxyalkylcarbonyl, heterocyclylalkylcarbonyl, alkylsulfonylalkylene, aminoalkyl, aralkylamino, alkylaminoalkylene, aminocarbonyl, alkylcarbonylamino,
- alkylcarbonylaminoalkylene, alkylaminoalkylcarbonyl, alkylaminoalkylcarbonylamino, aminoalkylcarbonylaminoalkyl, alkoxycarbonylamino, alkoxyalkylcarbonylamino, alkoxycarbonylaminoalkylene, alkylimidocarbonyl, amidino, alkylamidino,
- aralkylamidino, guanidino, guanidinoalkylene, and alkylsulfonylamino; and

 R^{202} and R^{203} are independently selected from hydrido, alkyl, aryl and aralkyl; and

y and z are independently 0, 1, 2, 3, 4, 5 or 6 wherein y + z is less than or equal to 6; and

x is 0, 1 or 2; or

 R^2 is $-NHCR^{204}R^{205}$ wherein R^{204} is alkylaminoalkylene, and R^{205} is aryl; or

 R^2 is $-C(NR^{206})R^{207}$ wherein R^{206} is selected from hydrogen and hydroxy, and R^{207} is selected from alkyl, aryl and aralkyl; and

R³ is selected from pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

165

160

wherein the R³ pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl,

```
aminocarbonylalkylene, alkylcarbonylaminoalkylene,
100
        aminoalkylcarbonylaminoalkylene,
        alkylaminoalkylcarbonylamino, aminoalkylthio,
        alkylaminocarbonylalkylthio,
        alkylaminoalkylaminocarbonylalkylthio, cyanoalkylthio,
105
        alkenylthio, alkynylthio, carboxyalkylthio,
        alkoxycarbonylalkylthio, alkylsulfinyl, alkylsulfonyl,
        alkoxyalkyl, alkoxyalkylthio, alkoxycarbonylalkylamino,
        alkoxycarbonylaminoalkylene, alkoxycarbonylaminoalkoxy,
        aralkythio, heterocyclylalkylthio, aminoalkoxy,
110
        cyanoalkoxy, carboxyalkoxy, aryloxy, aralkoxy,
        alkenyloxy, alkynyloxy, and heterocyclylalkyloxy; or
              R^2 is R^{200}-heterocyclyl-R^{201}, R^{200}-aryl-R^{201}, or R^{200}-
        cycloalkyl-R201 wherein:
              R<sup>200</sup> is selected from:
115
               -(CR^{202}R^{203})_{v}-;
              -C(0)-;
              -C(O)-(CH<sub>2</sub>),-;
              -C(0) -O - (CH<sub>2</sub>)<sub>v</sub> -;
              -(CH_2)_v-C(O)-;
120
              -O-(CH<sub>2</sub>)<sub>v</sub>-C(O)-;
              -NR^{202}-;
              -NR^{202} - (CH_2)_{v} - ;
              -(CH_2)_V - NR^{202} - ;
              -(CH_2)_v - NR^{202} - (CH_2)_z - ;
              -(CH_2)_v-C(O)-NR^{202}-(CH_2)_z-;
125
              - (CH_2)_v-NR^{202}-C(O)-(CH_2)_z-;
              -(CH_2)_v - NR^{202} - C(O) - NR^{203} - (CH_2)_z - ;
              -S(0)_{x}-(CR^{202}R^{203})_{x}-;
              -(CR^{202}R^{203})_{v}-S(O)_{x}-;
              -S(O)_{x}-(CR^{202}R^{203})_{y}-O-;
130
              -S(O)_{y}-(CR^{202}R^{203})_{y}-C(O)-;
              -O-(CH<sub>2</sub>)<sub>v</sub>-;
              - (CH<sub>2</sub>),-O-;
              -S-; and
135
              -0-;
```

90

95

and

1205

cycloalkylthioalkylene, alkylthioarylene, aralkylthioarylene, heterocyclylthioarylene, 65 arylthioalklylarylene, arylsulfonylaminoalkylene, alkylsulfonylarylene, and alkylaminosulfonylarylene; wherein said alkyl, cycloalkyl, aryl, heterocyclyl, aralkyl, heterocyclylalkylene, alkylheterocyclylarylene, alkoxyarylene, aryloxyarylene, arylaminocarbonylalkylene, 70 aryloxycarbonylarylene, arylcarbonylarylene, alkylthioarylene, heterocyclylthioarylene, arylthicalklylarylene, and alkylsulfonylarylene groups may be optionally substituted with one or more radicals independently selected from alkyl, halo, haloalkyl, 75 alkoxy, keto, amino, nitro, and cyano; or

R²⁷ is -CHR²⁸R²⁹ wherein R²⁸ is alkoxycarbonyl, and R²⁹ is selected from aralkyl, aralkoxyalkylene, heterocyclylalkylene, alkylheterocyclylalkylene, alkoxycarbonylalkylene, alkylthioalkylene, and aralkylthioalkylene; wherein said aralkyl and heterocylcyl groups may be optionally substituted with one or more radicals independently selected from alkyl and nitro; or

R²⁶ and R²⁷ together with the nitrogen atom to which they are attached form a heterocycle, wherein said heterocycle is optionally substituted with one or more radicals independently selected from alkyl, aryl, heterocyclyl, heterocyclylalkylene,

alkylheterocyclylalkylene, aryloxyalkylene, alkoxyarylene, alkylaryloxyalkylene, alkylcarbonyl, alkoxycarbonyl, aralkoxycarbonyl, alkylamino and alkoxycarbonylamino; wherein said aryl, heterocyclylalkylene and aryloxyalkylene radicals may be optionally substituted with one or more radicals independently selected from halogen, alkyl and alkoxy;

R² is selected from mercapto, aryl(hydroxyalkyl)amino, N-alkyl-N-alkynyl-amino,

R1 has the formula

wherein:

45

i is an integer from 0 to 9;

R²⁵ is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene; and

40 R²⁶ is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkylalkylene, aralkyl, alkoxycarbonylalkylene, and alkylaminoalkyl; and

R²⁷ is selected from alkyl, cycloalkyl, alkynyl, aryl, heterocyclyl, aralkyl, cycloalkylalkylene, cycloalkenylalkylene, cycloalkylarylene, cycloalkylcycloalkyl, heterocyclylalkylene, alkylarylene, alkylaralkyl, aralkylarylene, alkylheterocyclyl,

alkylheterocyclylalkylene, alkylheterocyclylarylene, aralkylheterocyclyl, alkoxyalkylene, alkoxyarylene,

alkoxyaralkyl, alkoxyheterocyclyl, alkoxyalkoxyarylene, aryloxyarylene, aralkoxyarylene, alkoxyheterocyclylalkylene, aryloxyalkoxyarylene, alkoxycarbonylalkylene, alkoxycarbonylheterocyclyl, alkoxycarbonylheterocyclylcarbonylalkylene, aminoalkyl,

alkylaminoalkylene, arylaminocarbonylalkylene, alkoxyarylaminocarbonylalkylene, aminocarbonylalkylene, arylaminocarbonylalkylene, alkylaminocarbonylalkylene, arylcarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, alkylaryloxycarbonylarylene,

arylcarbonylarylene, alkylarylcarbonylarylene, alkoxycarbonylheterocyclylarylene, alkoxycarbonylalkoxylarylene, heterocyclylcarbonylalkylarylene, alkylthioalkylene,

PCT/US99/26007

1203

141. A method of preparing pyrazoles of Formula IA

wherein R1 is selected from hydrido, hydroxy, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, 5 heterocyclyl, cycloalkylalkylene, cycloalkenylalkylene, heterocyclylalkylene, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, hydroxyalkenyl, hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl, 10 alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, alkoxyaryl, heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl, alkylthioalkylene, alkenylthioalkylene, alkylthioalkenylene, amino, aminoalkyl, alkylamino, alkenylamino, alkynylamino, arylamino, heterocyclylamino, 15 alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl, heterocyclylsulfonyl, alkylaminoalkylene, alkylsulfonylalkylene, acyl, acyloxycarbonyl, 20 alkoxycarbonylalkylene, aryloxycarbonylalkylene,

- heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, heterocyclyloxycarbonylarylene, alkylcarbonylalkylene, arylcarbonylalkylene,
- heterocyclylcarbonylalkylene, alkylcarbonylarylene, 25 arylcarbonylarylene, heterocyclylcarbonylarylene, alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene, heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene, arylcarbonyloxyarylene, and
- heterocyclylcarbonyloxyarylene; or 30

1202

- 5 1, 39, 71, 82 and 94, or a pharmaceutically acceptable salt thereof.
 - mediated disorder is selected from the group of disorders consisting of bone resorption, graft vs. host reaction, atherosclerosis, arthritis, osteoarthritis, rheumatoid arthritis, gout, psoriasis, topical inflammatory disease state, adult respiratory distress syndrome, asthma, chronic pulmonary inflammatory disease, cardiac reperfusion injury, renal reperfusion injury, thrombus, glomerulonephritis, Crohn's disease, ulcerative colitis, inflammatory bowel disease and cachexia.

5

10

5

5

- 136. The method of Claim 134 wherein the p38 kinase mediated disorder is inflammation.
- 137. The method of Claim 134 wherein the p38 kinase mediated disorder is arthritis.
- 138. The method of Claim 134 wherein the p38 kinase mediated disorder is asthma.
- 139. A method of treating inflammation, said method comprising treating the subject having or susceptible to inflammation with a therapeutically-effective amount of a compound, said compound selected from the compounds of any one of Claims 1, 39, 71, 82 and 94, or a pharmaceutically acceptable salt thereof.
- 140. A method of treating arthritis, said method comprising treating the subject having or susceptible to arthritis with a therapeutically-effective amount of a compound, said compound selected from the compounds of any one of Claims 1, 39, 71, 82 and 94, or a pharmaceutically acceptable salt thereof.

PCT/US99/26007

5

1201

alkylsulfinylalkylene, arylsulfinylalkylene,
alkylsulfonyl, alkylsulfonylalkylene,
arylsulfonylalkylene, alkoxy, aryloxy, aralkoxy,
aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl,
alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, cyano,
nitro, alkylamino, arylamino, alkylaminoalkylene,
arylaminoalkylene, aminoalkylamino, and hydroxy;

provided R^3 is not 2-pyridinyl when R^4 is a phenyl ring containing a 2-hydroxy substituent and when R^1 is hydrido; and

further provided R^2 is selected from aryl, heterocyclyl, unsubstituted cycloalkyl and cycloalkenyl when R^4 is hydrido; and

further provided that R4 is not methylsulfonylphenyl or aminosulfonylphenyl; or

- a pharmaceutically-acceptable salt or tautomer thereof.
 - 132. A pharmaceutical composition comprising a therapeutically-effective amount of a compound, said compound selected from the compounds of any one of Claims 1, 39, 71, 82 and 94, or a pharmaceutically acceptable salt thereof.
 - 133. A method of treating a TNF mediated disorder, said method comprising treating the subject having or susceptible to such disorder with a therapeutically-effective amount of a compound, said compound selected from the compounds of any one of Claims 1, 39, 71, 82 and 94, or a pharmaceutically acceptable salt thereof.
 - 134. A method of treating a p38 kinase mediated disorder, said method comprising treating the subject having or susceptible to such disorder with a therapeutically-effective amount of a compound, said compound selected from the compounds of any one of Claims

WO 00/31063

groups may be optionally substituted with one or more radicals independently selected from halo, keto, alkyl, aralkyl, aralkenyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfinyl, arylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkoxy, heterocyclylalkoxy, amino, alkylamino,

alkenylamino, alkynylamino, cycloalkylamino, cycloalkenylamino, arylamino, haloarylamino, heterocyclylamino, aminocarbonyl, cyano, hydroxy, hydroxyalkyl, alkoxyalkylene, alkenoxyalkylene, aryloxyalkyl, alkoxyalkylamino, alkylaminoalkoxy,

alkoxycarbonyl, aryloxycarbonyl, heterocyclyloxycarbonyl, alkoxycarbonylamino, alkoxyarylamino, alkoxyaralkylamino, aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkylaminoalkylamino, hydroxyalkylamino, aralkylamino, aryl(hydroxyalkyl)amino, alkylaminoalkylamino,

alkylheterocyclylamino, heterocyclylalkylamino, alkylheterocyclylalkylamino, aralkylheterocyclylamino, heterocyclylheterocyclylalkylamino, alkoxycarbonylheterocyclylamino, nitro, alkylaminocarbonyl, alkylcarbonylamino,

haloalkylsulfonyl, aminoalkyl, haloalkyl, alkylcarbonyl, hydrazinyl, alkylhydrazinyl, arylhydrazinyl, and $-NR^{44}R^{45}$ wherein R^{44} is alkylcarbonyl or amino, and R^{45} is alkyl or aralkyl; and

R⁴ is selected from hydrido, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein R⁴ is optionally substituted with one or more radicals independently selected from halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkylthio, arylthio, alkylthioalkylene, arylthioalkylene, alkylsulfinyl,

1199

wherein:

j is an integer from 0 to 8; and m is 0 or 1; and

105 R³⁰ and R³¹ are independently selected from hydrogen, alkyl, aryl, heterocyclyl, aralkyl, heterocyclylalkylene, aminoalkyl, alkylaminoalkyl, aminocarbonylalkyl, alkoxyalkyl, and alkylcarbonyloxyalkyl; and

R³² is selected from hydrogen, alkyl, aralkyl,
110 heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene,
aminoalkyl, alkylaminoalkyl, arylaminoalkyl,
alkylcarbonylalkylene, arylcarbonylalkylene, and
heterocyclylcarbonylaminoalkylene;

 R^{33} is selected from hydrogen, alkyl, $-C(O)R^{35}$, $-C(O)OR^{35}$, $-SO_2R^{36}$, $-C(O)NR^{37}R^{38}$, and $-SO_2NR^{39}R^{40}$, wherein

 R^{35} , R^{36} , R^{37} , R^{38} , R^{39} and R^{40} are independently selected from hydrocarbon, heterosubstituted hydrocarbon and heterocyclyl; and

120 R³⁴ is selected from hydrogen, alkyl, aminocarbonyl, alkylaminocarbonyl, and arylaminocarbonyl; or

 R^2 is $-CR^{41}R^{42}$ wherein R^{41} is aryl, and R^{42} is hydroxy; and

R³ is selected from pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

wherein the R³ pyridinyl, pyrimidinyl, quinolinyl, 130 purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylakyl, thiazolylamino,

-0-;

70 or R²⁰⁰ represents a bond;

R²⁰¹ represents one or more radicals selected from the group consisting of hydrido, halogen, hydroxy, carboxy, keto, alkyl, hydroxyalkyl, haloalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl,

aralkyl, heterocyclylalkylene, alkylcarbonyl, hydroxyalkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, haloarylcarbonyl, alkoxy, alkoxyalkylene, alkoxyarylene, alkoxycarbonyl, carboxyalkylcarbonyl, alkoxyalkylcarbonyl, heterocyclylalkylcarbonyl,

alkylsulfonyl, alkylsulfonylalkylene, amino, aminoalkyl, alkylamino, aralkylamino, alkylaminoalkylene, aminocarbonyl, alkylcarbonylamino, alkylcarbonylaminoalkylene, alkylaminoalkylcarbonyl, alkylaminoalkylcarbonylamino,

aminoalkylcarbonylaminoalkyl, alkoxycarbonylamino, alkoxyalkylcarbonylamino, alkoxycarbonylaminoalkylene, alkylimidocarbonyl, amidino, alkylamidino, aralkylamidino, guanidino, guanidinoalkylene, and alkylsulfonylamino; and

 R^{202} and R^{203} are independently selected from hydrido, alkyl, aryl and aralkyl; and

y and z are independently 0, 1, 2, 3, 4, 5 or 6 wherein y + z is less than or equal to 6; and

x is 0, 1 or 2; or

95 R^2 is -NHCR²⁰⁴R²⁰⁵ wherein R²⁰⁴ is alkylaminoalkylene, and R²⁰⁵ is aryl; or

 R^2 is $-C(NR^{206})R^{207}$ wherein R^{206} is selected from hydrogen and hydroxy, and R^{207} is selected from alkyl, aryl and aralkyl; or

100 R² has the formula:

```
aralkythio, heterocyclylalkylthio, aminoalkoxy,
      cyanoalkoxy, carboxyalkoxy, aryloxy, aralkoxy,
      alkenyloxy, alkynyloxy, and heterocyclylalkyloxy; wherein
35
      the aryl, heterocyclyl, heterocyclylalkyl, cycloalkyl and
      cycloalkenyl groups may be optionally substituted with
      one or more radicals independently selected from halo,
      keto, amino, alkyl, alkenyl, alkynyl, aryl, heterocyclyl,
      aralkyl, heterocyclylalkyl, epoxyalkyl,
40
      amino(hydroxyalkyl) carboxy, alkoxy, aryloxy, aralkoxy,
      haloalkyl, alkylamino, alkynylamino,
      alkylaminoalkylamino, heterocyclylalkylamino,
      alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl,
      arylsulfonyl, and aralkylsulfonyl; or
45
             R^2 is R^{200}-heterocyclyl-R^{201}, R^{200}-aryl-R^{201}, or R^{200}-
      cycloalkyl-R<sup>201</sup> wherein:
             R<sup>200</sup> is selected from:
             - (CR<sup>202</sup>R<sup>203</sup>),-;
             -C(0) -;
50
             -C(0) - (CH_2)_{v} - ;
             -C(O) -O-(CH_2)_v-;
             -(CH_2)_v-C(O)-;
             -O-(CH<sub>2</sub>)<sub>v</sub>-C(O)-;
             -NR^{202}-;
55
             -NR^{202} - (CH_2)_{v} - ;
             -(CH_2)_v-NR^{202}-;
             -(CH_2)_v - NR^{202} - (CH_2)_z - ;
             -(CH_2)_v-C(O)-NR^{202}-(CH_2)_z-;
             -(CH_2)_v - NR^{202} - C(O) - (CH_2)_z - ;
60
             -(CH_2)_v - NR^{202} - C(O) - NR^{203} - (CH_2)_z - ;
             -S(0)_{x}-(CR^{202}R^{203})_{y}-;
             -(CR^{202}R^{203})_{v}-S(O)_{x}-;
             -S(0) - (CR^{202}R^{203}) - 0 - ;
             -S(O)_{x}-(CR^{202}R^{203})_{v}-C(O)-;
 65
             -O-(CH_2)_{v}-;
             -(CH_2)_v-O-;
             -S-; and
```

wherein

R¹ is selected from hydroxy and alkoxyaryl; and R² is selected from hydrido, halogen, mercapto, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, haloalkyl, hydroxyalkyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, heterocyclylheterocyclyl,

heterocyclylalkylheterocyclyl, alkylamino, alkenylamino, alkynylamino, arylamino, aryl(hydroxyalkyl)amino, heterocyclylamino, heterocyclylalkylamino, aralkylamino, N-alkyl-N-alkynyl-amino, aminoalkyl, aminoaryl, aminoalkylamino, aminocarbonylalkylene,

arylaminoalkylene, alkylaminoalkylene, arylaminoarylene, alkylaminoarylene, alkylaminoalkylamino, alkylcarbonylaminoalkylene, aminoalkylcarbonylaminoalkylene, alkylaminoalkylcarbonylamino, cycloalkyl, cycloalkenyl,

aminoalkylthio, alkylaminocarbonylalkylthio, alkylaminoalkylaminocarbonylalkylthio, alkoxy, heterocyclyloxy, alkylthio, cyanoalkylthio, alkenylthio, alkynylthio, carboxyalkylthio, arylthio, heterocyclylthio, alkoxycarbonylalkylthio, alkylsulfinyl,

alkylsulfonyl, carboxy, carboxyalkyl, alkoxyalkyl, alkoxyalkylthio, carboxycycloalkyl, carboxycycloalkenyl, carboxyalkylamino, alkoxycarbonyl, heterocyclylcarbonyl, alkoxycarbonylalkyl, alkoxycarbonylalkylamino, alkoxycarbonylheterocyclyl,

alkoxycarbonylheterocyclylcarbonyl, alkoxyalkylamino, alkoxycarbonylaminoalkylene, alkoxycarbonylaminoalkoxy, alkoxycarbonylaminoalkylamino, heterocyclylsulfonyl,

1195

alkylsulfinylalkylene, arylsulfinylalkylene, alkylsulfonyl, alkylsulfonylalkylene,

arylsulfonylalkylene, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, cyano, nitro, alkylamino, arylamino, alkylaminoalkylene, arylaminoalkylene, aminoalkylamino, and hydroxy;

provided R³ is not 2-pyridinyl when R⁴ is a phenyl ring containing a 2-hydroxy substituent and when R¹ is hydrido; and

provided R3 is not

280 (IV) (V)

285

290

wherein \mathbb{R}^{43} is selected from hydrogen, alkyl, aminoalkyl, alkoxyalkyl, alkenoxyalkyl, and aryloxyalkyl; and

further provided R^2 is selected from aryl, heterocyclyl, unsubstituted cycloalkyl and cycloalkenyl when R^4 is hydrido; and

further provided that R^4 is not methylsulfonylphenyl or aminosulfonylphenyl; and

further provided that R^1 is not methylsulfonylphenyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

131. A compound of Formula IA

235

240

265

radicals independently selected from halo, keto, alkyl, aralkyl, aralkenyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfinyl, arylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkoxy, heterocyclylalkoxy, amino, alkylamino, alkynylamino, cycloalkylamino, cycloalkylamino, cycloalkenylamino, arylamino, haloarylamino,

groups may be optionally substituted with one or more

heterocyclylamino, aminocarbonyl, cyano, hydroxy, hydroxyalkyl, alkoxyalkylene, alkenoxyalkylene, aryloxyalkyl, alkoxyalkylamino, alkylaminoalkoxy, alkoxycarbonyl, aryloxycarbonyl, heterocyclyloxycarbonyl, alkoxycarbonylamino, alkoxyarylamino, alkoxyaralkylamino,

aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkylaminoalkylamino, hydroxyalkylamino, aralkylamino, aryl(hydroxyalkyl)amino, alkylaminoalkylaminoalkylamino, alkylheterocyclylamino, heterocyclylalkylamino, alkylheterocyclylalkylamino, aralkylheterocyclylamino,

heterocyclylheterocyclylalkylamino, alkoxycarbonylheterocyclylamino, nitro, alkylaminocarbonyl, alkylcarbonylamino, haloalkylsulfonyl, aminoalkyl, haloalkyl, alkylcarbonyl, hydrazinyl, alkylhydrazinyl, arylhydrazinyl, and -NR⁴⁴R⁴⁵ wherein R⁴⁴ is alkylcarbonyl or amino, and R⁴⁵ is alkyl or aralkyl; and

R⁴ is selected from hydrido, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein R⁴ is optionally substituted with one or more radicals independently selected from halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkylthio, arylthio, alkylthioalkylene, arylthioalkylene, alkylsulfinyl,

heterocyclylcarbonylaminoalkylene;

 R^{33} is selected from hydrogen, alkyl, -C(0) R^{35} , -C(0) OR^{35} , -SO $_2R^{36}$, -C(0) $NR^{37}R^{38}$, and -SO $_2NR^{39}R^{40}$, wherein

210 R³⁵, R³⁶, R³⁷, R³⁸, R³⁹ and R⁴⁰ are independently selected from hydrocarbon, heterosubstituted hydrocarbon and heterocyclyl; and

R³⁴ is selected from hydrogen, alkyl, aminocarbonyl, alkylaminocarbonyl, and arylaminocarbonyl; or

 R^2 is $-CR^{41}R^{42}$ wherein R^{41} is aryl, and R^{42} is hydroxy; and

R³ is selected from pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylakyl, thiazolylamino,

220

215

wherein the R³ pyridinyl, pyrimidinyl, quinolinyl, purinyl groups are substituted with one or more radicals independently selected from keto, haloarylamino,

- alkoxyalkylene, alkenoxyalkylene, aryloxyalkyl, alkoxyalkylamino, alkylaminoalkoxy, alkoxyarylamino, alkylsulfonylamino, aryl(hydroxyalkyl)amino, alkylaminoalkylamino, alkylheterocyclylamino, alkylheterocyclylalkylamino,
- 230 heterocyclylalkylamino,
 alkoxycarbonylheterocyclylamino and haloalkylsulfonyl;
 and

wherein the R³ maleimidyl, pyridonyl, thiazolyl, thiazolylakyl, thiazolylamino,

alkylamino, aralkylamino, alkylaminoalkylene,
aminocarbonyl, alkylcarbonylamino,
alkylcarbonylaminoalkylene, alkylaminoalkylcarbonyl,
alkylaminoalkylcarbonylamino,
aminoalkylcarbonylaminoalkyl, alkoxycarbonylamino,
alkoxyalkylcarbonylamino, alkoxycarbonylaminoalkylene,
alkylimidocarbonyl, amidino, alkylamidino,
aralkylamidino, guanidino, guanidinoalkylene, and
alkylsulfonylamino; and

 R^{202} and R^{203} are independently selected from hydrido, alkyl, aryl and aralkyl; and

185 y and z are independently 0, 1, 2, 3, 4, 5 or 6 wherein y + z is less than or equal to 6; and

 \mbox{R}^2 is $-\mbox{NHCR}^{204}\mbox{R}^{205}$ wherein \mbox{R}^{204} is alkylaminoalkylene, and \mbox{R}^{205} is aryl; or

190 R^2 is $-C(NR^{206})R^{207}$ wherein R^{206} is selected from hydrogen and hydroxy, and R^{207} is selected from alkyl, aryl and aralkyl; or

R² has the formula:

x is 0, 1 or 2; or

195 wherein:

200

j is an integer from 0 to 8; and
m is 0 or 1; and

R³⁰ and R³¹ are independently selected from hydrogen, alkyl, aryl, heterocyclyl, aralkyl, heterocyclylalkylene, aminoalkyl, alkylaminoalkyl, aminocarbonylalkyl, alkoxyalkyl, and alkylcarbonyloxyalkyl; and

R³² is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl,

205 alkylcarbonylalkylene, arylcarbonylalkylene, and

1191

```
arylsulfonyl, and aralkylsulfonyl; or
              R^2 is R^{200}-heterocyclyl-R^{201}, R^{200}-aryl-R^{201}, or R^{200}-
        cycloalkyl-R201 wherein:
140
              R<sup>200</sup> is selected from:
              -(CR^{202}R^{203}), -;
              -C(0)-;
              -C(0) - (CH<sub>2</sub>), -;
              -C(O)-O-(CH<sub>2</sub>)<sub>v</sub>-;
145
              -(CH_2)_v-C(O)-;
              -O-(CH_2)_v-C(O)-;
              -NR^{202}-:
              -NR^{202} - (CH_2)_{v} - ;
              -(CH_2)_v - NR^{202} - ;
150
              -(CH_2)_v-NR^{202}-(CH_2)_z-;
              -(CH_2)_v-C(O)-NR^{202}-(CH_2)_z-;
              -(CH_2)_v-NR^{202}-C(O)-(CH_2)_z-;
              -(CH_2)_v-NR^{202}-C(O)-NR^{203}-(CH_2)_z-;
              -S(0)_{x}-(CR^{202}R^{203})_{y}-;
155
              -(CR^{202}R^{203})_{y}-S(O)_{x}-;
              -S(O)_{x}-(CR^{202}R^{203})_{y}-O-;
              -S(O)_{v}-(CR^{202}R^{203})_{v}-C(O)-;
              -O-(CH<sub>2</sub>),-;
              - (CH<sub>2</sub>)<sub>v</sub>-O-;
160
              -S-; and
              -0-;
              or R<sup>200</sup> represents a bond;
              R<sup>201</sup> represents one or more radicals selected from
        the group consisting of hydrido, halogen, hydroxy,
165
        carboxy, keto, alkyl, hydroxyalkyl, haloalkyl,
        cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl,
        aralkyl, heterocyclylalkylene, alkylcarbonyl,
        hydroxyalkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl,
        haloarylcarbonyl, alkoxy, alkoxyalkylene, alkoxyarylene,
170
        alkoxycarbonyl, carboxyalkylcarbonyl,
        alkoxyalkylcarbonyl, heterocyclylalkylcarbonyl,
        alkylsulfonyl, alkylsulfonylalkylene, amino, aminoalkyl,
```

heterocyclylalkyl, heterocyclylheterocyclyl, heterocyclylalkylheterocyclyl, alkylamino, alkenylamino, alkynylamino, arylamino, aryl(hydroxyalkyl)amino,

- heterocyclylamino, heterocyclylalkylamino, aralkylamino, N-alkyl-N-alkynyl-amino, aminoalkyl, aminoaryl, aminoalkylamino, aminocarbonylalkylene, arylaminoalkylene, alkylaminoalkylene, arylaminoarylene, alkylaminoalkylamino,
- alkylcarbonylaminoalkylene,
 aminoalkylcarbonylaminoalkylene,
 alkylaminoalkylcarbonylamino, cycloalkyl, cycloalkenyl,
 aminoalkylthio, alkylaminocarbonylalkylthio,
 alkylaminoalkylaminocarbonylalkylthio, alkoxy,
- heterocyclyloxy, alkylthio, cyanoalkylthio, alkenylthio, alkynylthio, carboxyalkylthio, arylthio, heterocyclylthio, alkoxycarbonylalkylthio, alkylsulfinyl, alkylsulfonyl, carboxy, carboxyalkyl, alkoxyalkyl, alkoxyalkylthio, carboxycycloalkyl, carboxycycloalkenyl,
- carboxyalkylamino, alkoxycarbonyl, heterocyclylcarbonyl, alkoxycarbonylalkyl, alkoxycarbonylalkylamino, alkoxycarbonylheterocyclyl, alkoxycarbonylheterocyclylcarbonyl, alkoxyalkylamino, alkoxycarbonylaminoalkylene, alkoxycarbonylaminoalkoxy,
- alkoxycarbonylaminoalkylamino, heterocyclylsulfonyl, aralkythio, heterocyclylalkylthio, aminoalkoxy, cyanoalkoxy, carboxyalkoxy, aryloxy, aralkoxy, alkenyloxy, alkynyloxy, and heterocyclylalkyloxy; wherein the aryl, heterocyclyl, heterocyclylalkyl, cycloalkyl and
- cycloalkenyl groups may be optionally substituted with one or more radicals independently selected from halo, keto, amino, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, aralkyl, heterocyclylalkyl, epoxyalkyl, amino(hydroxyalkyl) carboxy, alkoxy, aryloxy, aralkoxy,
- haloalkyl, alkylamino, alkynylamino, alkylaminoalkylamino, heterocyclylalkylamino, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl,

1189

aralkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, arylsulfonylaminoalkylene, alkylsulfonylarylene, alkylaminosulfonylarylene; wherein said alkyl, cycloalkyl, aryl, heterocyclyl, aralkyl, heterocyclylalkylene, alkylheterocyclylarylene, alkoxyarylene, aryloxyarylene, arylaminocarbonylalkylene, aryloxycarbonylarylene, arylcarbonylarylene, arylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, and alkylsulfonylarylene groups may be optionally substituted with one or more radicals independently selected from alkyl, halo, haloalkyl, alkoxy, keto, amino, nitro, and cyano; or

R²⁷ is -CHR²⁸R²⁹ wherein R²⁸ is alkoxycarbonyl, and R²⁹ is selected from aralkyl, aralkoxyalkylene, heterocyclylalkylene, alkylheterocyclylalkylene, alkoxycarbonylalkylene, alkylthioalkylene, and aralkylthioalkylene; wherein said aralkyl and heterocylcyl groups may be optionally substituted with one or more radicals independently selected from alkyl and nitro; or

80

85

R²⁶ and R²⁷ together with the nitrogen atom to which they are attached form a heterocycle, wherein said heterocycle is optionally substituted with one or more radicals independently selected from alkyl, aryl,

- heterocyclyl, heterocyclylalkylene, alkylheterocyclylalkylene, aryloxyalkylene, alkoxyarylene, alkylaryloxyalkylene, alkylcarbonyl, alkoxycarbonyl, aralkoxycarbonyl, alkylamino and alkoxycarbonylamino; wherein said aryl,
- 95 heterocyclylalkylene and aryloxyalkylene radicals may be optionally substituted with one or more radicals independently selected from halogen, alkyl and alkoxy; and

R² is selected from hydrido, halogen, mercapto,
100 alkyl, alkenyl, alkynyl, aryl, heterocyclyl, haloalkyl,
hydroxyalkyl, aralkyl, alkylheterocyclyl,

WO 00/31063

1188

$$\begin{array}{c|c}
 & R^{25} & O \\
 & | & | & R^{26} \\
 & C - (CH_2)_i - C - N \\
 & | & R^{27}
\end{array}$$
(II)

wherein:

40

i is an integer from 0 to 9;

R²⁵ is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene; and

R²⁶ is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkylalkylene, aralkyl, alkoxycarbonylalkylene, and alkylaminoalkyl; and

aryl, heterocyclyl, aralkyl, cycloalkylalkylene, cycloalkenylalkylene, cycloalkylarylene, cycloalkylcycloalkyl, heterocyclylalkylene, alkylarylene, alkylaralkyl, aralkylarylene, alkylheterocyclyl, alkylheterocyclylalkylene, alkylheterocyclylarylene,

R²⁷ is selected from alkyl, cycloalkyl, alkynyl,

aralkylheterocyclyl, alkoxyalkylene, alkoxyarylene, alkoxyaralkyl, alkoxyheterocyclyl, alkoxyalkoxyarylene, aryloxyarylene, aralkoxyarylene, alkoxyheterocyclylalkylene, aryloxyalkoxyarylene, alkoxycarbonylalkylene, alkoxycarbonylheterocyclyl,

alkoxycarbonylheterocyclylcarbonylalkylene, aminoalkyl, alkylaminoalkylene, arylaminocarbonylalkylene, alkoxyarylaminocarbonylalkylene, aminocarbonylalkylene, arylaminocarbonylalkylene, alkylaminocarbonylalkylene, arylcarbonylalkylene, alkoxycarbonylarylene,

aryloxycarbonylarylene, alkylaryloxycarbonylarylene, arylcarbonylarylene, alkylarylcarbonylarylene, alkoxycarbonylheterocyclylarylene, alkoxycarbonylalkoxylarylene, heterocyclylcarbonylalkylarylene, alkylthioalkylene,

65 cycloalkylthioalkylene, alkylthioarylene,

wherein

R¹ is selected from hydrido, hydroxy, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heterocyclyl, cycloalkylalkylene, cycloalkenylalkylene, heterocyclylalkylene, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, hydroxyalkenyl,

hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl, alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, alkoxyaryl, heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl, alkylthioalkylene, alkenylthioalkylene,

alkylthioalkenylene, amino, aminoalkyl, alkylamino, alkenylamino, alkynylamino, arylamino, heterocyclylamino, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl,

20 heterocyclylsulfonyl, alkylaminoalkylene, alkylsulfonylalkylene, acyl, acyloxycarbonyl, alkoxycarbonylalkylene, aryloxycarbonylalkylene, heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, heterocyclyloxycarbonylarylene,

alkylcarbonylalkylene, arylcarbonylalkylene,
heterocyclylcarbonylalkylene, alkylcarbonylarylene,
arylcarbonylarylene, heterocyclylcarbonylarylene,
alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene,
heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene,

arylcarbonyloxyarylene, and
heterocyclylcarbonyloxyarylene; or

R¹ has the formula

1186

alkylsulfinylalkylene, arylsulfinylalkylene,
alkylsulfonyl, alkylsulfonylalkylene,
arylsulfonylalkylene, alkoxy, aryloxy, aralkoxy,
aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl,
alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, cyano,
nitro, alkylamino, arylamino, alkylaminoalkylene,
arylaminoalkylene, aminoalkylamino, and hydroxy;
provided R³ is not

(IV) (V)

wherein R⁴³ is selected from hydrogen, alkyl, aminoalkyl, alkoxyalkyl, alkenoxyalkyl, and aryloxyalkyl; and

further provided R^2 is selected from aryl, heterocyclyl, unsubstituted cycloalkyl and cycloalkenyl when R^4 is hydrido; and

further provided that R^4 is not methylsulfonylphenyl or aminosulfonylphenyl; and

further provided that R^1 is not methylsulfonylphenyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

130. A compound of Formula IA

groups may be optionally substituted with one or more radicals independently selected from halo, keto, alkyl, aralkyl, aralkenyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfinyl, arylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkoxy, heterocyclylalkoxy, amino, alkylamino,

alkenylamino, alkynylamino, cycloalkylamino, cycloalkenylamino, arylamino, haloarylamino, heterocyclylamino, aminocarbonyl, cyano, hydroxy, hydroxyalkyl, alkoxyalkylene, alkenoxyalkylene, aryloxyalkyl, alkoxyalkylamino, alkylaminoalkoxy,

alkoxycarbonyl, aryloxycarbonyl, heterocyclyloxycarbonyl, alkoxycarbonylamino, alkoxyarylamino, alkoxyaralkylamino, aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkylaminoalkylamino, hydroxyalkylamino, aralkylamino, aryl(hydroxyalkyl)amino, alkylaminoalkylamino,

alkylheterocyclylamino, heterocyclylalkylamino, alkylheterocyclylalkylamino, aralkylheterocyclylamino, heterocyclylheterocyclylalkylamino, alkoxycarbonylheterocyclylamino, nitro, alkylaminocarbonyl, alkylcarbonylamino,

245 haloalkylsulfonyl, aminoalkyl, haloalkyl, alkylcarbonyl, hydrazinyl, alkylhydrazinyl, arylhydrazinyl, and -NR⁴⁴R⁴⁵ wherein R⁴⁴ is alkylcarbonyl or amino, and R⁴⁵ is alkyl or aralkyl; and

R⁴ is selected from hydrido, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein R⁴ is optionally substituted with one or more radicals independently selected from halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkylthio, arylthio, alkylthioalkylene, arylthioalkylene, alkylsulfinyl,

195 wherein:

j is an integer from 0 to 8; and
m is 0 or 1; and

R³⁰ and R³¹ are independently selected from hydrogen, alkyl, aryl, heterocyclyl, aralkyl, heterocyclylalkylene, aminoalkyl, alkylaminoalkyl, aminocarbonylalkyl, alkoxyalkyl, and alkylcarbonyloxyalkyl; and

R³² is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylaminoalkyl, arylaminoalkyl,

205 alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene;

 R^{33} is selected from hydrogen, alkyl, $-C(0)R^{35}$, $-C(0)OR^{35}$, $-C(0)OR^{35}$, $-SO_2R^{36}$, $-C(0)NR^{37}R^{38}$, and $-SO_2NR^{39}R^{40}$, wherein R^{35} , R^{36} , R^{37} , R^{38} , R^{39} and R^{40} are independently selected from hydrocarbon, heterosubstituted hydrocarbon and heterocyclyl; and

 ${\ensuremath{\mathsf{R}}}^{34}$ is selected from hydrogen, alkyl, aminocarbonyl, alkylaminocarbonyl, and arylaminocarbonyl; or

 R^2 is $-CR^{41}R^{42}$ wherein R^{41} is aryl, and R^{42} is hydroxy;

215 and

200

210

R³ is selected from maleimidyl, pyridonyl, thiazolyl, thiazolylakyl, thiazolylamino,

wherein the R³ maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

1183

 $-O-(CH_2)_{v}-;$ 160 - (CH₂)_v-O-; -S-; -0-; or R²⁰⁰ represents a bond; R²⁰¹ represents one or more radicals selected from 165 the group consisting of hydrido, halogen, hydroxy, carboxy, keto, alkyl, hydroxyalkyl, haloalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, aralkyl, heterocyclylalkylene, alkylcarbonyl, hydroxyalkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, 170 haloarylcarbonyl, alkoxy, alkoxyalkylene, alkoxyarylene, alkoxycarbonyl, carboxyalkylcarbonyl, alkoxyalkylcarbonyl, heterocyclylalkylcarbonyl, alkylsulfonyl, alkylsulfonylalkylene, amino, aminoalkyl, alkylamino, aralkylamino, alkylaminoalkylene, 175 aminocarbonyl, alkylcarbonylamino, alkylcarbonylaminoalkylene, alkylaminoalkylcarbonyl, alkylaminoalkylcarbonylamino, aminoalkylcarbonylaminoalkyl, alkoxycarbonylamino, alkoxyalkylcarbonylamino, alkoxycarbonylaminoalkylene, alkylimidocarbonyl, amidino, alkylamidino, 180 aralkylamidino, guanidino, guanidinoalkylene, and alkylsulfonylamino; and R^{202} and R^{203} are independently selected from hydrido, alkyl, aryl and aralkyl; and y and z are independently 0, 1, 2, 3, 4, 5 or 6 185 wherein y + z is less than or equal to 6; and x is 0, 1 or 2; or R^2 is $-NHCR^{204}R^{205}$ wherein R^{204} is alkylaminoalkylene, and R²⁰⁵ is aryl; or R^2 is $-C(NR^{206})R^{207}$ wherein R^{206} is selected from 190 hydrogen and hydroxy, and R²⁰⁷ is selected from alkyl, aryl and aralkyl; or R² has the formula:

```
alkoxycarbonylheterocyclylcarbonyl, alkoxyalkylamino,
        alkoxycarbonylaminoalkylene, alkoxycarbonylaminoalkoxy,
 125
        alkoxycarbonylaminoalkylamino, heterocyclylsulfonyl,
        aralkythio, heterocyclylalkylthio, aminoalkoxy,
        cyanoalkoxy, carboxyalkoxy, aryloxy, aralkoxy,
        alkenyloxy, alkynyloxy, and heterocyclylalkyloxy; wherein
        the aryl, heterocyclyl, heterocyclylalkyl, cycloalkyl and
130
       cycloalkenyl groups may be optionally substituted with
       one or more radicals independently selected from halo,
       keto, amino, alkyl, alkenyl, alkynyl, aryl, heterocyclyl,
       aralkyl, heterocyclylalkyl, epoxyalkyl,
       amino(hydroxyalkyl) carboxy, alkoxy, aryloxy, aralkoxy,
       haloalkyl, alkylamino, alkynylamino,
135
       alkylaminoalkylamino, heterocyclylalkylamino,
       alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl,
       arylsulfonyl, and aralkylsulfonyl; or
             R^2 is R^{200}-heterocyclyl-R^{201}, R^{200}-aryl-R^{201}, or R^{200}-
140
       cycloalkyl-R201 wherein:
             R<sup>200</sup> is selected from:
             -(CR^{202}R^{203})_{v}-;
             -C(0)-;
             -C(O)-(CH<sub>2</sub>),-;
145
             -C(O)-O-(CH<sub>2</sub>)<sub>v</sub>-;
             -(CH<sub>2</sub>)_v-C(O)-;
             -O-(CH_2)_v-C(O)-;
             -NR^{202}-;
             -NR^{202} - (CH_2)_{v} - ;
150
             -(CH_2)_v-NR^{202}-;
             -(CH_2)_v - NR^{202} - (CH_2)_z - ;
             -(CH_2)_v - C(O) - NR^{202} - (CH_2)_z - ;
             -(CH_2)_v-NR^{202}-C(O)-(CH_2)_z-;
             -(CH_2)_v-NR^{202}-C(O)-NR^{203}-(CH_2)_z-;
             -S(0)_{x}-(CR^{202}R^{203})_{y}-;
155
             - (CR^{202}R^{203})_y-S(O)_x-;
             -S(O)_{v}-(CR^{202}R^{203})_{v}-O-;
             -S(O)_{x}-(CR^{202}R^{203})_{y}-C(O)-;
```

1181

they are attached form a heterocycle, wherein said heterocycle is optionally substituted with one or more radicals independently selected from alkyl, aryl,

- heterocyclyl, heterocyclylalkylene,
 alkylheterocyclylalkylene, aryloxyalkylene,
 alkoxyarylene, alkylaryloxyalkylene, alkylcarbonyl,
 alkoxycarbonyl, aralkoxycarbonyl, alkylamino and
 alkoxycarbonylamino; wherein said aryl,
- heterocyclylalkylene and aryloxyalkylene radicals may be optionally substituted with one or more radicals independently selected from halogen, alkyl and alkoxy; and

R² is selected from hydrido, halogen, mercapto,
alkyl, alkenyl, alkynyl, aryl, heterocyclyl, haloalkyl,
hydroxyalkyl, aralkyl, alkylheterocyclyl,
heterocyclylalkyl, heterocyclylheterocyclyl,
heterocyclylalkylheterocyclyl, alkylamino, alkenylamino,
alkynylamino, arylamino, aryl(hydroxyalkyl)amino,

- heterocyclylamino, heterocyclylalkylamino, aralkylamino, N-alkyl-N-alkynyl-amino, aminoalkyl, aminoaryl, aminoalkylamino, aminocarbonylalkylene, arylaminoalkylene, alkylaminoalkylene, arylaminoarylene, alkylaminoalkylamino,
- alkylcarbonylaminoalkylene,
 aminoalkylcarbonylaminoalkylene,
 alkylaminoalkylcarbonylamino, cycloalkyl, cycloalkenyl,
 aminoalkylthio, alkylaminocarbonylalkylthio,
 alkylaminoalkylaminocarbonylalkylthio, alkoxy,
- heterocyclyloxy, alkylthio, cyanoalkylthio, alkenylthio, alkynylthio, carboxyalkylthio, arylthio, heterocyclylthio, alkoxycarbonylalkylthio, alkylsulfinyl, alkylsulfonyl, carboxy, carboxyalkyl, alkoxyalkyl, alkoxyalkylthio, carboxycycloalkyl, carboxycycloalkenyl,
- 120 carboxyalkylamino, alkoxycarbonyl, heterocyclylcarbonyl, alkoxycarbonylalkyl, alkoxycarbonylalkylamino, alkoxycarbonylheterocyclyl,

alkoxyaralkyl, alkoxyheterocyclyl, alkoxyalkoxyarylene, aryloxyarylene, aralkoxyarylene, aryloxyarylene, alkoxyheterocyclylalkylene, aryloxyalkoxyarylene, alkoxycarbonylalkylene, alkoxycarbonylalkylene, aminoalkyl, alkoxycarbonylheterocyclylcarbonylalkylene, aminoalkyl, alkylaminoalkylene, arylaminocarbonylalkylene, alkoxyarylaminocarbonylalkylene, aminocarbonylalkylene, arylaminocarbonylalkylene, alkylaminocarbonylalkylene, arylcarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, alkylaryloxycarbonylarylene,

aryloxycarbonylarylene, alkylaryloxycarbonylarylene, arylcarbonylarylene, alkylarylcarbonylarylene, alkoxycarbonylheterocyclylarylene, alkoxycarbonylalkoxylarylene, heterocyclylcarbonylalkylarylene, alkylthioalkylene,

cycloalkylthioalkylene, alkylthioarylene, aralkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, arylsulfonylaminoalkylene, alkylsulfonylarylene, alkylaminosulfonylarylene; wherein said alkyl, cycloalkyl, aryl, heterocyclyl, aralkyl,

heterocyclylalkylene, alkylheterocyclylarylene, alkoxyarylene, aryloxyarylene, aryloxyarylene, aryloxyarbonylarylene, aryloxycarbonylarylene, aryloxycarbonylarylene, aryloxycarbonylarylene, aryloxycarbonylarylene, alkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, and alkylsulfonylarylene groups may be optionally substituted with one or more radicals

independently selected from alkyl, halo, haloalkyl, alkoxy, keto, amino, nitro, and cyano; or $R^{27} \ \text{is -CHR}^{28} R^{29} \ \text{wherein } R^{28} \ \text{is alkoxycarbonyl, and } R^{29}$

is selected from aralkyl, aralkoxyalkylene, heterocyclylalkylene, alkylheterocyclylalkylene, alkoxycarbonylalkylene, alkylthioalkylene, and aralkylthioalkylene; wherein said aralkyl and heterocylcyl groups may be optionally substituted with one or more radicals independently selected from alkyl

85 and nitro; or

80

 R^{26} and R^{27} together with the nitrogen atom to which

1179

arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl, heterocyclylsulfonyl, alkylaminoalkylene, 20 alkylsulfonylalkylene, acyl, acyloxycarbonyl, alkoxycarbonylalkylene, aryloxycarbonylalkylene, heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, heterocyclyloxycarbonylarylene, alkylcarbonylalkylene, arylcarbonylalkylene, 25 heterocyclylcarbonylalkylene, alkylcarbonylarylene, arylcarbonylarylene, heterocyclylcarbonylarylene, alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene, heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene, arylcarbonyloxyarylene, and 30

R¹ has the formula

heterocyclylcarbonyloxyarylene; or

wherein:

40

i is an integer from 0 to 9;

R²⁵ is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene; and

R²⁶ is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkylalkylene, aralkyl, alkoxycarbonylalkylene, and alkylaminoalkyl; and

R²⁷ is selected from alkyl, cycloalkyl, alkynyl,
45 aryl, heterocyclyl, aralkyl, cycloalkylalkylene,
cycloalkenylalkylene, cycloalkylarylene,
cycloalkylcycloalkyl, heterocyclylalkylene, alkylarylene,
alkylaralkyl, aralkylarylene, alkylheterocyclyl,
alkylheterocyclylalkylene, alkylheterocyclylarylene,
50 aralkylheterocyclyl, alkoxyalkylene, alkoxyarylene,

WO 00/31063

205

provided R^3 is not 2-pyridinyl when R^4 is a phenyl ring containing a 2-hydroxy substituent and when R^1 is hydrido; and

further provided R² is selected from aryl,
200 heterocyclyl, unsubstituted cycloalkyl and cycloalkenyl
when R⁴ is hydrido; and

further provided that R4 is not methylsulfonylphenyl or aminosulfonylphenyl; and

further provided that R^1 is not methylsulfonylphenyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

129. A compound of Formula IA

wherein

R¹ is selected from hydrido, hydroxy, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heterocyclyl, cycloalkylalkylene, cycloalkenylalkylene, heterocyclylalkylene, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, hydroxyalkenyl,

hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl, alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, alkoxyaryl, heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl, alkylthioalkylene, alkenylthioalkylene,

alkylthioalkenylene, amino, aminoalkyl, alkylamino, alkenylamino, alkynylamino, arylamino, heterocyclylamino, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl,

1177

- aralkyl, aralkenyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfinyl, arylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkoxy, heterocyclylalkoxy, amino, alkylamino, alkenylamino, alkynylamino, cycloalkylamino,
- cycloalkenylamino, arylamino, haloarylamino, heterocyclylamino, aminocarbonyl, cyano, hydroxy, hydroxyalkyl, alkoxyalkylene, alkenoxyalkylene, aryloxyalkyl, alkoxyalkylamino, alkylaminoalkoxy, alkoxycarbonyl, aryloxycarbonyl, heterocyclyloxycarbonyl,
- alkoxycarbonylamino, alkoxyarylamino, alkoxyaralkylamino, aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkylaminoalkylamino, hydroxyalkylamino, aralkylamino, aryl(hydroxyalkyl)amino, alkylaminoalkylaminoalkylamino, alkylheterocyclylamino, heterocyclylalkylamino,
- alkylheterocyclylalkylamino, aralkylheterocyclylamino, heterocyclylheterocyclylalkylamino, alkoxycarbonylheterocyclylamino, nitro, alkylaminocarbonyl, alkylcarbonylamino, haloalkylsulfonyl, aminoalkyl, haloalkyl, alkylcarbonyl,
- hydrazinyl, alkylhydrazinyl, arylhydrazinyl, and $-NR^{44}R^{45}$ wherein R^{44} is alkylcarbonyl or amino, and R^{45} is alkyl or aralkyl; and

R4 is selected from hydrido, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein
185 R4 is optionally substituted with one or more radicals independently selected from halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkylthio, arylthio, alkylthioalkylene, arylthioalkylene, alkylsulfinyl, alkylsulfinylalkylene, arylsulfinylalkylene,

- alkylsulfonyl, alkylsulfonylalkylene,
 arylsulfonylalkylene, alkoxy, aryloxy, aralkoxy,
 aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl,
 alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, cyano,
 nitro, alkylamino, arylamino, alkylaminoalkylene,
- 195 arylaminoalkylene, aminoalkylamino, and hydroxy;

150

155

aminocarbonyl, alkylcarbonylamino,
alkylcarbonylaminoalkylene, alkylaminoalkylcarbonyl,
alkylaminoalkylcarbonylamino,
aminoalkylcarbonylaminoalkyl, alkoxycarbonylamino,
alkoxyalkylcarbonylamino, alkoxycarbonylaminoalkylene,
alkylimidocarbonyl, amidino, alkylamidino,
aralkylamidino, guanidino, guanidinoalkylene, and
alkylsulfonylamino; and

 R^{202} and R^{203} are independently selected from hydrido, alkyl, aryl and aralkyl; and

 R^{301} and R^{302} are independently selected from aryl and aralkyl; and

R³⁰³ is selected from alkyl, aryl and aralkyl; and y and z are independently 0, 1, 2, 3, 4, 5 or 6; and yl is 1, 2, 3, 4, 5 or 6; wherein y + z and yl + z are less than or equal to 6; and

x is 0, 1 or 2; wherein either x or y is other than 0 when R^{200} is $-S(O)_x-(CR^{202}R^{203})_y-$; and

R³ is selected from pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

wherein the R³ pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

groups may be optionally substituted with one or more radicals independently selected from halo, keto, alkyl,

1175

alkoxycarbonylamino; wherein said aryl,

heterocyclylalkylene and aryloxyalkylene radicals may be
optionally substituted with one or more radicals
independently selected from halogen, alkyl and alkoxy;
and

```
R^2 is R^{200}-heterocyclyl-R^{201} wherein:
              R<sup>200</sup> is selected from:
100
              -(CR^{301}R^{302})_{v}-;
              -C(0) - (CH<sub>2</sub>)<sub>v1</sub> -;
              -C(0) - O - (CH_2)_{v} - ;
              -(CH_2)_v-C(O)-;
              -O-(CH_2)_v-C(O)-;
105
              -NR^{303}-;
              -NR^{303} - (CH_2)_{v} - ;
              -(CH_2)_{v1}-NR^{202}-;
              -(CH_2)_v - NR^{202} - (CH_2)_{z1} - ;
              -(CH_2)_v - C(O) - NR^{202} - (CH_2)_z - ;
110
              -(CH_2)_v - NR^{202} - C(O) - (CH_2)_z - ;
              -(CH_2)_v - NR^{202} - C(O) - NR^{203} - (CH_2)_z - ;
              -S(0)_{x}-(CR^{202}R^{203})_{y}-;
              -(CR^{202}R^{203})_{v}-S(0)_{x}-;
              -S(0)_{x}-(CR^{202}R^{203})_{y}-O-;
115
              -S(O)_{x}-(CR^{202}R^{203})_{y}-C(O)-;
              -0-(CH_2)_v-; and
              - (CH<sub>2</sub>),-O-;
              R^{201} represents one or more radicals selected from
       the group consisting of hydrido, halogen, hydroxy,
120
       carboxy, keto, alkyl, hydroxyalkyl, haloalkyl,
       cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl,
       aralkyl, heterocyclylalkylene, alkylcarbonyl,
       hydroxyalkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl,
       haloarylcarbonyl, alkoxy, alkoxyalkylene, alkoxyarylene,
125
       alkoxycarbonyl, carboxyalkylcarbonyl,
        alkoxyalkylcarbonyl, heterocyclylalkylcarbonyl,
        alkylsulfonyl, alkylsulfonylalkylene, amino, aminoalkyl,
        alkylamino, aralkylamino, alkylaminoalkylene,
```

arylaminocarbonylalkylene, alkylaminocarbonylalkylene, arylcarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, alkylaryloxycarbonylarylene, 60 arylcarbonylarylene, alkylarylcarbonylarylene, alkoxycarbonylheterocyclylarylene, alkoxycarbonylalkoxylarylene, heterocyclylcarbonylalkylarylene, alkylthioalkylene, 65 cycloalkylthioalkylene, alkylthioarylene, aralkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, arylsulfonylaminoalkylene, alkylsulfonylarylene, alkylaminosulfonylarylene; wherein said alkyl, cycloalkyl, aryl, heterocyclyl, aralkyl, 70 heterocyclylalkylene, alkylheterocyclylarylene, alkoxyarylene, aryloxyarylene, arylaminocarbonylalkylene, aryloxycarbonylarylene, arylcarbonylarylene, alkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, and alkylsulfonylarylene groups 75 may be optionally substituted with one or more radicals independently selected from alkyl, halo, haloalkyl, alkoxy, keto, amino, nitro, and cyano; or \mbox{R}^{27} is $\mbox{-CHR}^{28}\mbox{R}^{29}$ wherein \mbox{R}^{28} is alkoxycarbonyl, and \mbox{R}^{29} is selected from aralkyl, aralkoxyalkylene, 80 heterocyclylalkylene, alkylheterocyclylalkylene, alkoxycarbonylalkylene, alkylthioalkylene, and aralkylthioalkylene; wherein said aralkyl and heterocylcyl groups may be optionally substituted with one or more radicals independently selected from alkyl 85 and nitro; or R^{26} and R^{27} together with the nitrogen atom to which they are attached form a heterocycle, wherein said heterocycle is optionally substituted with one or more radicals independently selected from alkyl, aryl, 90 heterocyclyl, heterocyclylalkylene, alkylheterocyclylalkylene, aryloxyalkylene, alkoxyarylene, alkylaryloxyalkylene, alkylcarbonyl,

alkoxycarbonyl, aralkoxycarbonyl, alkylamino and

alkylcarbonylalkylene, arylcarbonylalkylene,
heterocyclylcarbonylalkylene, alkylcarbonylarylene,
arylcarbonylarylene, heterocyclylcarbonylarylene,
alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene,
heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene,
arylcarbonyloxyarylene, and
heterocyclylcarbonyloxyarylene; or

R1 has the formula

$$\begin{array}{c|c}
 & R^{25} & O & R^{26} \\
 & C & CH_2 & CH_2 & R^{27} \\
 & H & R^{27}
\end{array}$$
(II)

wherein:

40

i is an integer from 0 to 9;

R²⁵ is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene; and

R²⁶ is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkylalkylene, aralkyl, alkoxycarbonylalkylene, and alkylaminoalkyl; and

R²⁷ is selected from alkyl, cycloalkyl, alkynyl,
aryl, heterocyclyl, aralkyl, cycloalkylalkylene,
cycloalkenylalkylene, cycloalkylarylene,
cycloalkylcycloalkyl, heterocyclylalkylene, alkylarylene,
alkylaralkyl, aralkylarylene, alkylheterocyclyl,
alkylheterocyclylalkylene, alkylheterocyclylarylene,
aralkylheterocyclyl, alkoxyalkylene, alkoxyarylene,
alkoxyaralkyl, alkoxyheterocyclyl, alkoxyalkoxyarylene,
aryloxyarylene, aralkoxyarylene,
alkoxyheterocyclylalkylene, aryloxyalkoxyarylene,
alkoxycarbonylalkylene, alkoxycarbonylheterocyclyl,

alkoxycarbonylatkylene, alkoxycarbonylalkylene, aminoalkyl, alkylaminoalkylene, arylaminocarbonylalkylene, alkoxyarylaminocarbonylalkylene, aminocarbonylalkylene,

1172

or aminosulfonylphenyl; and

further provided that R¹ is not methylsulfonylphenyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

128. A compound of Formula IA

wherein

R¹ is selected from hydrido, hydroxy, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heterocyclyl, cycloalkylalkylene, cycloalkenylalkylene, heterocyclylalkylene, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, hydroxyalkenyl,

- hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl, alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, alkoxyaryl, heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl, alkylthioalkylene, alkenylthioalkylene,
- alkylthioalkenylene, amino, aminoalkyl, alkylamino, alkenylamino, alkynylamino, arylamino, heterocyclylamino, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl,
- heterocyclylsulfonyl, alkylaminoalkylene, alkylsulfonylalkylene, acyl, acyloxycarbonyl, alkoxycarbonylalkylene, aryloxycarbonylalkylene, heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, heterocyclyloxycarbonylarylene,

alkenylamino, alkynylamino, cycloalkylamino, cycloalkenylamino, arylamino, haloarylamino,

- heterocyclylamino, aminocarbonyl, cyano, hydroxy, hydroxyalkyl, alkoxyalkylene, alkenoxyalkylene, aryloxyalkyl, alkoxyalkylamino, alkylaminoalkoxy, alkoxycarbonyl, aryloxycarbonyl, heterocyclyloxycarbonyl, alkoxycarbonylamino, alkoxyarylamino, alkoxyaralkylamino,
- aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkylaminoalkylamino, hydroxyalkylamino, aralkylamino, aryl(hydroxyalkyl)amino, alkylaminoalkylaminoalkylamino, alkylheterocyclylamino, heterocyclylalkylamino, alkylheterocyclylalkylamino, aralkylheterocyclylamino,
- heterocyclylheterocyclylalkylamino,
 alkoxycarbonylheterocyclylamino, nitro,
 alkylaminocarbonyl, alkylcarbonylamino,
 haloalkylsulfonyl, aminoalkyl, haloalkyl, alkylcarbonyl,
 hydrazinyl, alkylhydrazinyl, arylhydrazinyl, and -NR⁴⁴R⁴⁵

wherein R^{44} is alkylcarbonyl or amino, and R^{45} is alkyl or aralkyl; and

 R^4 is selected from hydrido, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein R^4 is optionally substituted with one or more radicals

- independently selected from halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkylthio, arylthio, alkylthioalkylene, arylthioalkylene, alkylsulfinylalkylene, arylsulfinylalkylene, alkylsulfonyl, alkylsulfonylalkylene,
- arylsulfonylalkylene, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, cyano, nitro, alkylamino, arylamino, alkylaminoalkylene, arylaminoalkylene, aminoalkylamino, and hydroxy;
- provided R³ is not 2-pyridinyl when R⁴ is a phenyl ring containing a 2-hydroxy substituent and when R¹ is hydrido; and

further provided that R^4 is not methylsulfonylphenyl

1170

alkylcarbonylaminoalkylene, alkylaminoalkylcarbonyl, alkylaminoalkylcarbonylamino,

aminoalkylcarbonylaminoalkyl, alkoxycarbonylamino, alkoxyalkylcarbonylamino, alkoxycarbonylaminoalkylene, alkylimidocarbonyl, amidino, alkylamidino, aralkylamidino, guanidino, guanidinoalkylene, and alkylsulfonylamino; and

 R^{202} and R^{203} are independently selected from hydrido, alkyl, aryl and aralkyl; and

R³⁰⁰ is selected from alkyl, aryl and aralkyl; and y and z are independently 0, 1, 2, 3, 4, 5 or 6 wherein y + z; and yl is 1, 2, 3, 4, 5 or 6; wherein y + z and yl + z are less than or equal to 6; and

x is 0, 1 or 2; and

R³ is selected from pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

150

145

wherein the R³ pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

155

160

groups may be optionally substituted with one or more radicals independently selected from halo, keto, alkyl, aralkyl, aralkenyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfinyl, arylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkoxy, heterocyclylalkoxy, amino, alkylamino,

1169

independently selected from halogen, alkyl and alkoxy; and

```
R^2 is R^{200}-aryl-R^{201} wherein:
              R<sup>200</sup> is selected from:
100
               -(CR^{202}R^{203})_{v}-;
               -C(0) -;
               -C(0) - (CH<sub>2</sub>)<sub>v</sub> - ;
               -C(0) - O - (CH_2)_v - ;
               -(CH_2)_v-C(O)-;
105
               -O-(CH<sub>2</sub>),-C(O)-;
               -NR^{202}-;
               -NR^{202} - (CH_2)_{v} - ;
               -(CH_2)_{v}-NR^{300}-;
               -(CH_2)_v - NR^{202} - (CH_2)_{z1} - ;
110
               -(CH_2)_v-C(O)-NR^{202}-(CH_2)_z-;
              -(CH<sub>2</sub>)_v-NR<sup>202</sup>-C(O)-(CH<sub>2</sub>)_z-;
               -(CH_2)_v - NR^{202} - C(O) - NR^{203} - (CH_2)_z - ;
               -S(0)_{v}-(CR^{202}R^{203})_{v}-;
              -(CR^{202}R^{203})_{v}-S(O)_{x}-;
115
               -S(O)_{x}-(CR^{202}R^{203})_{y}-O-;
              -S(O)_{x}-(CR^{202}R^{203})_{y}-C(O)-;
               -O-(CH<sub>2</sub>)<sub>v</sub>-;
               -(CH<sub>2</sub>)<sub>v</sub>-O-; and
120
               -0-;
               R<sup>201</sup> represents one or more radicals selected from
        the group consisting of hydrido, halogen, hydroxy,
        carboxy, keto, alkyl, hydroxyalkyl, haloalkyl,
        cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl,
        aralkyl, heterocyclylalkylene, alkylcarbonyl,
125
        hydroxyalkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl,
        haloarylcarbonyl, alkoxy, alkoxyalkylene, alkoxyarylene,
        alkoxycarbonyl, carboxyalkylcarbonyl,
        alkoxyalkylcarbonyl, heterocyclylalkylcarbonyl,
        alkylsulfonyl, alkylsulfonylalkylene, amino, aminoalkyl,
130
        alkylamino, aralkylamino, alkylaminoalkylene,
        aminocarbonyl, alkylcarbonylamino,
```

1168

arylcarbonylarylene, alkylarylcarbonylarylene, alkoxycarbonylheterocyclylarylene, alkoxycarbonylalkoxylarylene, heterocyclylcarbonylalkylarylene, alkylthioalkylene, cycloalkylthioalkylene, alkylthioarylene, 65 aralkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, arylsulfonylaminoalkylene, alkylsulfonylarylene, alkylaminosulfonylarylene; wherein said alkyl, cycloalkyl, aryl, heterocyclyl, aralkyl, 70 heterocyclylalkylene, alkylheterocyclylarylene, alkoxyarylene, aryloxyarylene, arylaminocarbonylalkylene, aryloxycarbonylarylene, arylcarbonylarylene, alkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, and alkylsulfonylarylene groups 75 may be optionally substituted with one or more radicals independently selected from alkyl, halo, haloalkyl, alkoxy, keto, amino, nitro, and cyano; or \mbox{R}^{27} is $-\mbox{CHR}^{28}\mbox{R}^{29}$ wherein \mbox{R}^{28} is alkoxycarbonyl, and \mbox{R}^{29} is selected from aralkyl, aralkoxyalkylene, heterocyclylalkylene, alkylheterocyclylalkylene,

is selected from aralkyl, aralkoxyalkylene,
heterocyclylalkylene, alkylheterocyclylalkylene,
alkoxycarbonylalkylene, alkylthioalkylene, and
aralkylthioalkylene; wherein said aralkyl and
heterocylcyl groups may be optionally substituted with
one or more radicals independently selected from alkyl
and nitro; or

R²⁶ and R²⁷ together with the nitrogen atom to which they are attached form a heterocycle, wherein said heterocycle is optionally substituted with one or more radicals independently selected from alkyl, aryl, heterocyclyl, heterocyclylalkylene, alkylheterocyclylalkylene, aryloxyalkylene, alkylaryloxyalkylene, alkylcarbonyl, alkoxyarylene, alkylaryloxyalkylene, alkylcarbonyl, alkoxycarbonyl, aralkoxycarbonyl, alkylamino and alkoxycarbonylamino; wherein said aryl, heterocyclylalkylene and aryloxyalkylene radicals may be

optionally substituted with one or more radicals

90

1167

alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene, heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene, arylcarbonyloxyarylene, and heterocyclylcarbonyloxyarylene; or

R1 has the formula

wherein:

30

40

i is an integer from 0 to 9;

R²⁵ is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene; and

R²⁶ is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkylalkylene, aralkyl, alkoxycarbonylalkylene, and alkylaminoalkyl; and

 R^{27} is selected from alkyl, cycloalkyl, alkynyl,

aryl, heterocyclyl, aralkyl, cycloalkylalkylene, cycloalkenylalkylene, cycloalkylarylene, cycloalkylcycloalkyl, heterocyclylalkylene, alkylarylene, alkylaralkyl, aralkylarylene, alkylheterocyclyl, alkylheterocyclylalkylene, alkylheterocyclylarylene,

aralkylheterocyclyl, alkoxyalkylene, alkoxyarylene, alkoxyaralkyl, alkoxyheterocyclyl, alkoxyalkoxyarylene, aryloxyarylene, aralkoxyarylene, alkoxyheterocyclylalkylene, aryloxyalkoxyarylene, alkoxycarbonylalkylene, alkoxycarbonylheterocyclyl,

alkoxycarbonylheterocyclylcarbonylalkylene, aminoalkyl, alkylaminoalkylene, arylaminocarbonylalkylene, alkoxyarylaminocarbonylalkylene, aminocarbonylalkylene, arylaminocarbonylalkylene, alkylaminocarbonylalkylene, arylcarbonylalkylene, alkoxycarbonylarylene,

60 aryloxycarbonylarylene, alkylaryloxycarbonylarylene,

a pharmaceutically-acceptable salt or tautomer thereof.

127. A compound of Formula IA

wherein

R¹ is selected from hydrido, hydroxy, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heterocyclyl, cycloalkylalkylene, cycloalkenylalkylene, heterocyclylalkylene, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, hydroxyalkenyl,

- hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl, alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, alkoxyaryl, heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl, alkylthioalkylene, alkenylthioalkylene,
- alkylthioalkenylene, amino, aminoalkyl, alkylamino, alkenylamino, alkynylamino, arylamino, heterocyclylamino, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl,
- heterocyclylsulfonyl, alkylaminoalkylene, alkylsulfonylalkylene, acyl, acyloxycarbonyl, alkoxycarbonylalkylene, aryloxycarbonylalkylene, heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, heterocyclyloxycarbonylarylene,
- alkylcarbonylalkylene, arylcarbonylalkylene, heterocyclylcarbonylalkylene, alkylcarbonylarylene, arylcarbonylarylene, heterocyclylcarbonylarylene,

1165

hydroxyalkyl, alkoxyalkylene, alkenoxyalkylene, aryloxyalkyl, alkoxyalkylamino, alkylaminoalkoxy, alkoxycarbonyl, aryloxycarbonyl, heterocyclyloxycarbonyl, alkoxycarbonylamino, alkoxyarylamino, alkoxyaralkylamino, aminosulfinyl, aminosulfonyl, alkylsulfonylamino,

alkylaminoalkylamino, hydroxyalkylamino, aralkylamino, aryl (hydroxyalkyl) amino, alkylaminoalkylaminoalkylamino, alkylheterocyclylamino, heterocyclylalkylamino, aralkylheterocyclylalkylamino, heterocyclylalkylamino,

alkoxycarbonylheterocyclylamino, nitro,
alkylaminocarbonyl, alkylcarbonylamino,
haloalkylsulfonyl, aminoalkyl, haloalkyl, alkylcarbonyl,
hydrazinyl, alkylhydrazinyl, arylhydrazinyl, and -NR⁴⁴R⁴⁵
wherein R⁴⁴ is alkylcarbonyl or amino, and R⁴⁵ is alkyl or
aralkyl; and

 R^4 is selected from hydrido, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein R^4 is optionally substituted with one or more radicals independently selected from halo, alkyl, alkenyl,

alkynyl, aryl, heterocyclyl, alkylthio, arylthio, alkylthioalkylene, arylthioalkylene, alkylsulfinyl, alkylsulfinylalkylene, arylsulfinylalkylene, alkylsulfonyl, alkylsulfonylalkylene, arylsulfonylalkylene, arylsulfonylalkylene, alkoxy, aryloxy, aralkoxy,

aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, cyano, nitro, alkylamino, arylamino, alkylaminoalkylene, arylaminoalkylene, aminoalkylamino, and hydroxy;

provided R³ is not 2-pyridinyl when R⁴ is a phenyl ring containing a 2-hydroxy substituent and when R¹ is hydrido; and

further provided that R^4 is not methylsulfonylphenyl or aminosulfonylphenyl; and

further provided that R1 is not methylsulfonylphenyl;

200 or

alkylaminoalkylcarbonylamino,
aminoalkylcarbonylaminoalkyl, alkoxycarbonylamino,
alkoxyalkylcarbonylamino, alkoxycarbonylaminoalkylene,
alkylimidocarbonyl, amidino, alkylamidino,
aralkylamidino, guanidino, guanidinoalkylene, and
alkylsulfonylamino; and

 R^{202} and R^{203} are independently selected from hydrido, alkyl, aryl and aralkyl; and

y and z are independently 0, 1, 2, 3, 4, 5 or 6 wherein y + z is less than or equal to 6; and

145 x is 0, 1 or 2; and

R³ is selected from pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

150

wherein the R³ pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

155

160

groups may be optionally substituted with one or more radicals independently selected from halo, keto, alkyl, aralkyl, aralkenyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfinyl, arylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkoxy, heterocyclylalkoxy, amino, alkylamino, alkenylamino, alkynylamino, cycloalkylamino, cycloalkenylamino, arylamino, haloarylamino, heterocyclylamino, aminocarbonyl, cyano, hydroxy,

PCT/US99/26007

```
R<sup>2</sup> is R<sup>200</sup>-cycloalkyl-R<sup>201</sup> wherein:
               R<sup>200</sup> is selected from:
100
               -(CR^{202}R^{203})_{v}-;
               -C(0) -;
               -C(0) - (CH<sub>2</sub>)_v - ;
               -C(0) - O - (CH<sub>2</sub>)<sub>v</sub> -;
               -(CH_2)_v-C(O)-;
105
               -O-(CH<sub>2</sub>)<sub>v</sub>-C(O)-;
               -NR^{202}-;
               -NR^{202} - (CH_2)_v - ;
               -(CH_2)_v - NR^{202} - ;
               -(CH_2)_v - NR^{202} - (CH_2)_z - ;
110
               -(CH_2)_v-C(O)-NR^{202}-(CH_2)_z-;
               -(CH<sub>2</sub>)<sub>v</sub>-NR<sup>202</sup>-C(O)-(CH<sub>2</sub>)<sub>z</sub>-;
               -(CH_2)_v - NR^{202} - C(O) - NR^{203} - (CH_2)_z - ;
               -S(0)_{x}-(CR^{202}R^{203})_{v}-;
               -(CR^{202}R^{203})_{v}-S(0)_{x}-;
115
               -S(O)_{x}-(CR^{202}R^{203})_{y}-O-;
               -S(O)_{x}-(CR^{202}R^{203})_{y}-C(O)-;
               -O-(CH<sub>2</sub>)<sub>v</sub>-;
               - (CH<sub>2</sub>),-O-;
120
               -S-; and
               -0-;
               R^{201} represents one or more radicals selected from
        the group consisting of hydrido, halogen, hydroxy,
        carboxy, keto, alkyl, hydroxyalkyl, haloalkyl,
        cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl,
125
        aralkyl, heterocyclylalkylene, alkylcarbonyl,
        hydroxyalkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl,
        haloarylcarbonyl, alkoxy, alkoxyalkylene, alkoxyarylene,
        alkoxycarbonyl, carboxyalkylcarbonyl,
        alkoxyalkylcarbonyl, heterocyclylalkylcarbonyl,
130
        alkylsulfonyl, alkylsulfonylalkylene, amino, aminoalkyl,
        alkylamino, aralkylamino, alkylaminoalkylene,
        aminocarbonyl, alkylcarbonylamino,
        alkylcarbonylaminoalkylene, alkylaminoalkylcarbonyl,
```

85

and nitro; or

alkoxycarbonylalkoxylarylene,
heterocyclylcarbonylalkylarylene, alkylthioalkylene,
cycloalkylthioalkylene, alkylthioarylene,
aralkylthioarylene, heterocyclylthioarylene,
arylthioalklylarylene, arylsulfonylaminoalkylene,
alkylsulfonylarylene, alkylaminosulfonylarylene; wherein
said alkyl, cycloalkyl, aryl, heterocyclyl, aralkyl,

heterocyclylalkylene, alkylheterocyclylarylene, alkoxyarylene, aryloxyarylene, arylaminocarbonylalkylene, aryloxycarbonylarylene, arylcarbonylarylene, alkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, and alkylsulfonylarylene groups
may be optionally substituted with one or more radicals

independently substituted with one or more radicals independently selected from alkyl, halo, haloalkyl, alkoxy, keto, amino, nitro, and cyano; or

R²⁷ is -CHR²⁸R²⁹ wherein R²⁸ is alkoxycarbonyl, and R²⁹ is selected from aralkyl, aralkoxyalkylene, heterocyclylalkylene, alkylheterocyclylalkylene, alkoxycarbonylalkylene, alkylthioalkylene, and aralkylthioalkylene; wherein said aralkyl and heterocylcyl groups may be optionally substituted with one or more radicals independently selected from alkyl

 R^{26} and R^{27} together with the nitrogen atom to which they are attached form a heterocycle, wherein said heterocycle is optionally substituted with one or more radicals independently selected from alkyl, aryl,

heterocyclyl, heterocyclylalkylene, alkylheterocyclylalkylene, aryloxyalkylene, alkoxyarylene, alkylaryloxyalkylene, alkylcarbonyl, alkoxycarbonyl, aralkoxycarbonyl, alkylamino and alkoxycarbonylamino; wherein said aryl,

heterocyclylalkylene and aryloxyalkylene radicals may be optionally substituted with one or more radicals independently selected from halogen, alkyl and alkoxy; and

PCT/US99/26007

30 arylcarbonyloxyarylene, and heterocyclylcarbonyloxyarylene; or

R1 has the formula

wherein:

40

45

i is an integer from 0 to 9;

R²⁵ is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene; and

 R^{26} is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkylalkylene, aralkyl, alkoxycarbonylalkylene, and alkylaminoalkyl; and

R²⁷ is selected from alkyl, cycloalkyl, alkynyl, aryl, heterocyclyl, aralkyl, cycloalkylalkylene, cycloalkenylalkylene, cycloalkylarylene, cycloalkylcycloalkyl, heterocyclylalkylene, alkylarylene, alkylaralkyl, aralkylarylene, alkylheterocyclyl, alkylheterocyclylalkylene, alkylheterocyclylarylene,

aralkylheterocyclyl, alkoxyalkylene, alkoxyarylene, alkoxyaralkyl, alkoxyheterocyclyl, alkoxyalkoxyarylene, aryloxyarylene, aralkoxyarylene, alkoxyheterocyclylalkylene, aryloxyalkoxyarylene, alkoxycarbonylalkylene, alkoxycarbonylheterocyclyl,

alkoxycarbonylheterocyclylcarbonylalkylene, aminoalkyl, alkylaminoalkylene, arylaminocarbonylalkylene, alkoxyarylaminocarbonylalkylene, aminocarbonylalkylene, arylaminocarbonylalkylene, alkylaminocarbonylalkylene, arylcarbonylalkylene, alkoxycarbonylarylene,

aryloxycarbonylarylene, alkylaryloxycarbonylarylene, arylcarbonylarylene, alkylarylcarbonylarylene, alkoxycarbonylheterocyclylarylene,

126. A compound of Formula IA

wherein

- R¹ is selected from hydrido, hydroxy, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heterocyclyl, cycloalkylalkylene, cycloalkenylalkylene, heterocyclylalkylene, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, hydroxyalkenyl,
- hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl, alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, alkoxyaryl, heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl, alkylthioalkylene, alkenylthioalkylene,
- alkylthioalkenylene, amino, aminoalkyl, alkylamino, alkenylamino, alkynylamino, arylamino, heterocyclylamino, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl,
- heterocyclylsulfonyl, alkylaminoalkylene, alkylsulfonylalkylene, acyl, acyloxycarbonyl, alkoxycarbonylalkylene, aryloxycarbonylalkylene, heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, heterocyclyloxycarbonylarylene,
- alkylcarbonylalkylene, arylcarbonylalkylene,
 heterocyclylcarbonylalkylene, alkylcarbonylarylene,
 arylcarbonylarylene, heterocyclylcarbonylarylene,
 alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene,
 heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene,

123. A compound of Claim 94 wherein:

R¹ is hydrido;

R²⁰⁰ represents a bond;

R²⁰¹ represents one or more radicals selected from the group consisting of lower hydroxyalkyl, lower hydroxyalkylcarbonyl, and lower alkylaminoalkylene.

R⁴ is phenyl optionally substituted at a substitutable position with one or more radicals independently selected from halo; and

10 R⁵ is hydrido.

124. A compound of Claim 94 wherein:

R1 is hydrido;

R²⁰⁰ represents a bond;

R²⁰¹ represents one or more radicals selected from the group consisting of hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl, (1-hydroxy-1,1dimethyl)ethyl, hydroxymethylcarbonyl, hydroxyethylcarbonyl, hydroxypropylcarbonyl, methylaminomethylene, ethylaminomethylene, methylaminoethylene, and ethylaminoethylene;

R4 is phenyl optionally substituted at a substitutable position with one or more radicals independently selected from chloro, fluoro, bromo and iodo; and

15 R⁵ is hydrido.

125. A compound selected from compounds, their tautomers and their pharmaceutically acceptable salts, of the group consisting of:

- 114. A compound of Claim 94 wherein Z represents a nitrogen atom.
 - 115. A compound of Claim 94 wherein R1 is hydrido.
- 116. A compound of Claim 94 wherein R^{200} represents a bond.
- 117. A compound of Claim 94 wherein R²⁰¹ represents one or more radicals selected from the group consisting of lower hydroxyalkyl, lower hydroxyalkylcarbonyl, and lower alkylaminoalkylene.
- 118. A compound of Claim 94 wherein R²⁰¹ represents one or more radicals selected from the group consisting of hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl, (1-hydroxy-1,1-dimethyl)ethyl, hydroxymethylcarbonyl, hydroxyethylcarbonyl, hydroxymethylcarbonyl, methylaminomethylene, ethylaminomethylene, methylaminoethylene, and ethylaminoethylene.
 - 119. A compound of Claim 94 wherein R^4 is optionally substituted phenyl.
 - 120. A compound of Claim 94 wherein R⁴ is phenyl optionally substituted at a substitutable position with one or more radicals independently selected from chloro, fluoro, bromo and iodo.
 - 121. A compound of Claim 94 wherein R⁴ is phenyl optionally substituted at the meta or para position with one or more chloro radicals.
 - 122. A compound of Claim 94 wherein R⁵ is hydrido.

1153

dimethylamino, 2-methylbutylamino, ethylamino,
dimethylaminoethylamino, hydroxypropylamino,
hydroxyethylamino, hydroxypropylamino, hydroxybutylamino,
hydroxycyclopropylamino, hydroxycyclobutylamino,
hydroxycyclopentylamino, hydroxycyclohexylamino,
ethyl-2-hydroxy)ethylamino, aminomethyl,
cyclopropylamino, amino, dimethylaminoethylamino,
dimethylaminopropylamino, dimethylaminobutylamino,
dimethylaminopentylamino, diethylaminoethylamino,
diethylaminopropylamino, diethylaminobutylamino,
and
diethylaminopentylamino; or

- a pharmaceutically-acceptable salt or tautomer thereof.
- 110. A compound of Claim 94 wherein R² comprises a substituted piperidinyl or piperazinyl moiety with at least one substituent attached to the distal nitrogen heteroatom or to a carbon ring atom adjacent to the distal nitrogen heteroatom of the piperidine or piperazine ring.
- 111. A compound Claim 94 wherein R² comprises a substituted piperidinyl moiety with at least one substituent attached to the distal nitrogen heteroatom or to a carbon ring atom adjacent to the distal nitrogen heteroatom of the piperidine ring.

5

- 112. A compound of Claim 94 wherein R² comprises a substituted piperazinyl moiety with at least one substituent attached to the distal nitrogen heteroatom or to a carbon ring atom adjacent to the distal nitrogen heteroatom of the piperazine ring.
- 113. A compound of Claim 94 wherein Z represents a carbon atom.

ethylaminobutylamino, diethylaminobutylamino, ethylaminopentylamino, methylaminocarbonyl, methylcarbonyl, and ethylcarbonyl; or a pharmaceutically-acceptable salt or tautomer thereof.

109. A compound of Claim 107 wherein:

R¹ is hydrido; and

R² is R²00-cyclohexyl-R²01 wherein:

R²⁰⁰ is selected from:

methylene;
-NR²⁰²-;
-S-;

-0-;

or R²⁰⁰ represents a bond;

10 R²⁰¹ represents one or more radicals selected from the group consisting of amino, aminomethyl, aminoethyl, aminopropyl, phenylamino, benzylamino, methylaminomethylene, ethylaminomethylene, methylaminoethylene, ethylaminoethylene, aminocarbonyl, methylaminomethylene, ethylaminoethylene, aminocarbonyl, methylaminomethylcarbonyl, ethylaminomethylcarbonyl, methylcarbonylaminomethylene,

ethylcarbonylaminomethylene, aminomethylcarbonylaminocarbonylmethylene,

methoxycarbonylamino, ethoxycarbonylamino, methoxymethylcarbonylamino, methoxyethylcarbonylamino, ethoxymethylcarbonylamino, ethoxyethylcarbonylamino, methoxycarbonylaminomethylene, and ethoxycarbonylaminomethylene; and

 R^{202} is selected from hydrido, methyl, phenyl and benzyl; and

R⁴ is phenyl, wherein said phenyl is optionally substituted with one or more radicals independently selected from fluoro, chloro, methyl, and methoxy; and

R⁵ is selected from hydrido, methylamino,

methylaminomethylene, ethylaminomethylene,
methylaminoethylene, ethylaminoethylene, aminocarbonyl,
methylcarbonylamino, ethylcarbonylamino,
methylaminomethylcarbonyl, ethylaminomethylcarbonyl,
methylcarbonylaminomethylene,
ethylcarbonylaminomethylene,

aminomethylcarbonylaminocarbonylmethylene,
methoxycarbonylamino, ethoxycarbonylamino,
methoxymethylcarbonylamino, methoxyethylcarbonylamino,
ethoxymethylcarbonylamino, ethoxyethylcarbonylamino,
methoxycarbonylaminomethylene, and
ethoxycarbonylaminomethylene; and

 \mbox{R}^{202} and \mbox{R}^{203} are independently selected from hydrido, methyl, ethyl, phenyl and benzyl; and

y is 0, 1 or 2; and

R⁴ is phenyl, wherein said phenyl is optionally substituted with one or more radicals independently selected from fluoro, chloro, methyl, ethyl, methoxy and ethoxy; and

R⁵ is selected from hydrido, fluoro, chloro, bromo, hydroxy, methyl, ethyl, cyano, carboxy, methoxy, methoxycarbonyl, aminocarbonyl, acetyl, methylamino, 55 dimethylamino, ethylamino, dimethylaminoethylamino, hydroxyethylamino, hydroxypropylamino, hydroxybutylamino, hydroxycyclopropylamino, hydroxycyclobutylamino, hydroxycyclopentylamino, hydroxycyclohexylamino, (1ethyl-2-hydroxy) ethylamino, aminomethyl, 60 cyclopropylamino, amino, ethoxycarbonylamino, methoxyphenylmethylamino, phenylmethylamino, fluorophenylmethylamino, fluorophenylethylamino, methylaminoethylamino, dimethylaminoethylamino, methylaminopropylamino, dimethylaminopropylamino, 65 methylaminobutylamino, dimethylaminobutylamino, methylaminopentylamino, dimethylaminopentylamino, ethylaminoethylamino, diethylaminoethylamino,

ethylaminopropylamino, diethylaminopropylamino,

```
a pharmaceutically-acceptable salt or tautomer
 85
       thereof.
                  A compound of Claim 107 wherein:
            R<sup>1</sup> is selected from hydrido, methyl, ethyl,
      hydroxyethyl and propargyl; and
           R^2 is R^{200}-cyclohexyl-R^{201} wherein:
           R<sup>200</sup> is selected from:
  5
            - (CR<sup>202</sup>R<sup>203</sup>),-;
            -NR^{202}-;
            -S-;
           -0-;
 10
           or R<sup>200</sup> represents a bond:
           R^{201} represents one or more radicals selected from
      the group consisting of hydroxy, hydroxymethyl,
      hydroxyethyl, hydroxypropyl, (1-hydroxy-1,1-
      dimethyl)ethyl, cyclopropyl, cyclobutyl, cyclopentyl,
15
      cyclohexyl, methoxymethylene, methoxyethylene,
      methoxypropylene, ethoxyethylene, ethoxypropylene,
     propoxyethylene, propoxypropylene, methoxyphenylene,
     ethoxyphenylene, propoxyphenylene, cyclopropylcarbonyl,
      cyclobutylcarbonyl, cyclopentylcarbonyl,
20
     cyclohexylcarbonyl, benzoyl, chlorobenzoyl,
     fluorobenzoyl, hydroxymethylcarbonyl,
     hydroxyethylcarbonyl, hydroxypropylcarbonyl,
     carboxymethylcarbonyl, carboxyethylcarbonyl,
     carboxypropylcarbonyl, methoxymethylcarbonyl,
     methoxyethylcarbonyl, methoxypropylcarbonyl,
25
     ethoxymethylcarbonyl, ethoxyethylcarbonyl,
     ethoxypropylcarbonyl, propoxymethylcarbonyl,
     propoxyethylcarbonyl, propoxypropylcarbonyl,
     methoxyphenylcarbonyl, ethoxyphenylcarbonyl,
30
     propoxyphenylcarbonyl, piperidinylmethylcarbonyl,
     piperazinylmethylcarbonyl, morpholinylcarbonyl,
     methylsulfonylmethylene, amino, aminomethyl, aminoethyl,
     aminopropyl, phenylamino, benzylamino,
```

1149

ethoxycarbonylaminomethylene, methylimidocarbonyl, ethylimidocarbonyl, amidino, methylamidino, methylamidino, methylamidino, guanidinomethylene, guanidinoethylene, and methylsulfonylamino; and

 R^{202} and R^{203} are independently selected from hydrido, methyl, ethyl, propyl, butyl, phenyl and benzyl; and

55 y is 0, 1 or 2; and

50

65

R4 is phenyl, wherein said phenyl is optionally substituted with one or more radicals independently selected from fluoro, chloro, methyl, ethyl, methoxy and ethoxy; and

R⁵ is selected from hydrido, fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, benzyl, cyano, carboxy, methoxy, methoxycarbonyl, aminocarbonyl, acetyl, methylamino, dimethylamino, 2-methylbutylamino, ethylamino, dimethylaminoethylamino, hydroxyethylamino,

hydroxypropylamino, hydroxybutylamino, hydroxycyclopropylamino, hydroxycyclobutylamino, hydroxycyclopentylamino, hydroxycyclohexylamino, imidazolylamino, morpholinylethylamino, (1-ethyl-2hydroxy)ethylamino, piperidinylamino,

pyridinylmethylamino, phenylmethylpiperidinylamino, aminomethyl, cyclopropylamino, amino, ethoxycarbonylamino, methoxyphenylmethylamino, phenylmethylamino, fluorophenylmethylamino, fluorophenylethylamino, methylaminoethylamino,

dimethylaminoethylamino, methylaminopropylamino, dimethylaminopropylamino, methylaminobutylamino, dimethylaminobutylamino, methylaminopentylamino, dimethylaminopentylamino, ethylaminoethylamino, diethylaminoethylamino, ethylaminopropylamino,

diethylaminopropylamino, ethylaminobutylamino, diethylaminobutylamino, ethylaminopentylamino, methylaminocarbonyl, methylcarbonyl, and ethylcarbonyl; or

-0-; or R²⁰⁰ represents a bond; R²⁰¹ represents one or more radicals selected from the group consisting of hydroxy, hydroxymethyl, 15 hydroxyethyl, hydroxypropyl, hydroxybutyl, (1-hydroxy-1,1-dimethyl)ethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methoxymethylene, methoxyethylene, methoxypropylene, ethoxyethylene, ethoxypropylene, 20 propoxyethylene, propoxypropylene, methoxyphenylene, ethoxyphenylene, propoxyphenylene, cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl, benzoyl, chlorobenzoyl, fluorobenzoyl, hydroxymethylcarbonyl, 25 hydroxyethylcarbonyl, hydroxypropylcarbonyl, carboxymethylcarbonyl, carboxyethylcarbonyl, carboxypropylcarbonyl, methoxymethylcarbonyl, methoxyethylcarbonyl, methoxypropylcarbonyl, ethoxymethylcarbonyl, ethoxyethylcarbonyl, 30 ethoxypropylcarbonyl, propoxymethylcarbonyl, propoxyethylcarbonyl, propoxypropylcarbonyl, methoxyphenylcarbonyl, ethoxyphenylcarbonyl, propoxyphenylcarbonyl, piperidinylmethylcarbonyl, piperazinylmethylcarbonyl, morpholinylcarbonyl, 35 methylsulfonylmethylene, amino, aminomethyl, aminoethyl, aminopropyl, phenylamino, benzylamino, methylaminomethylene, ethylaminomethylene, methylaminoethylene, ethylaminoethylene, aminocarbonyl, methylcarbonylamino, ethylcarbonylamino, 40 methylaminomethylcarbonyl, ethylaminomethylcarbonyl, methylcarbonylaminomethylene, ethylcarbonylaminomethylene, aminomethylcarbonylaminocarbonylmethylene, methoxycarbonylamino, ethoxycarbonylamino, 45 methoxymethylcarbonylamino, methoxyethylcarbonylamino, ethoxymethylcarbonylamino, ethoxyethylcarbonylamino, methoxycarbonylaminomethylene,

methoxyphenylmethylamino, phenylmethylamino,
fluorophenylmethylamino, fluorophenylethylamino,
methylaminoethylamino, dimethylaminoethylamino,
methylaminopropylamino, dimethylaminopropylamino,
methylaminobutylamino, dimethylaminobutylamino,
methylaminopentylamino, dimethylaminopentylamino,
ethylaminoethylamino, diethylaminoethylamino,
ethylaminopropylamino, diethylaminopropylamino,
ethylaminobutylamino, diethylaminobutylamino,
ethylaminopentylamino, methylaminocarbonyl,
methylcarbonyl, and ethylcarbonyl; or
a pharmaceutically-acceptable salt or tautomer
thereof.

A compound of Claim 94 having the Formula XA:

wherein:

Z represents a carbon atom or a nitrogen atom; and

R¹ is selected from hydrido, methyl, ethyl,
hydroxyethyl and propargyl; and

R² is R²00-cyclohexyl-R²01 wherein:

R²00 is selected from:
-(CR²02R²03)y-;
-NR²02-;
-S-;

- ethoxypropylcarbonyl, propoxymethylcarbonyl,
 propoxyethylcarbonyl, propoxypropylcarbonyl,
 methoxyphenylcarbonyl, ethoxyphenylcarbonyl,
 propoxyphenylcarbonyl, piperidinylmethylcarbonyl,
 piperazinylmethylcarbonyl, morpholinylcarbonyl,
- methylsulfonylmethylene, amino, aminomethyl, aminoethyl, aminopropyl, phenylamino, benzylamino, methylaminomethylene, ethylaminomethylene, methylaminoethylene, ethylaminoethylene, aminocarbonyl, methylcarbonylamino, ethylcarbonylamino,
- methylaminomethylcarbonyl, ethylaminomethylcarbonyl, methylcarbonylaminomethylene, ethylcarbonylaminomethylene, aminomethylcarbonylaminocarbonylmethylene, methoxycarbonylamino, ethoxycarbonylamino,
- methoxymethylcarbonylamino, methoxyethylcarbonylamino, ethoxymethylcarbonylamino, ethoxyethylcarbonylamino, methoxycarbonylaminomethylene, ethoxycarbonylaminomethylene, and methylsulfonylamino; and
- R^{202} and R^{203} are independently selected from hydrido, methyl, ethyl, phenyl and benzyl; and

y is 0, 1 or 2; and

50

R⁴ is phenyl, wherein said phenyl is optionally substituted with one or more radicals independently selected from fluoro, chloro, methyl, ethyl, methoxy and ethoxy; and

R⁵ is selected from hydrido, fluoro, chloro, bromo, hydroxy, methyl, ethyl, cyano, carboxy, methoxy, methoxycarbonyl, aminocarbonyl, acetyl, methylamino,

- dimethylamino, ethylamino, dimethylaminoethylamino, hydroxyethylamino, hydroxypropylamino, hydroxybutylamino, hydroxycyclopropylamino, hydroxycyclobutylamino, hydroxycyclopentylamino, hydroxycyclohexylamino, (1-ethyl-2-hydroxy)ethylamino, aminomethyl,
- 60 cyclopropylamino, amino, ethoxycarbonylamino,

1145

dimethylaminoethylamino, methylaminopropylamino, dimethylaminopropylamino, methylaminobutylamino, dimethylaminobutylamino, methylaminopentylamino, dimethylaminopentylamino, ethylaminoethylamino, diethylaminoethylamino, ethylaminopropylamino, diethylaminopropylamino, ethylaminobutylamino, diethylaminobutylamino, ethylaminopentylamino, methylaminocarbonyl, methylaminopentylamino, and ethylcarbonyl; or

a pharmaceutically-acceptable salt or tautomer 85 thereof.

106. A compound of Claim 105 wherein:

R¹ is selected from hydrido, methyl, ethyl,
hydroxyethyl and propargyl; and

R² is R²00-piperazinyl-R²01 wherein:

R²00 is selected from:
-(CR²02R²03)y-;
-NR²02-;
-S-;
-O-;
or R²00 represents a bond;

5

10

R²⁰¹ represents one or more radicals selected from the group consisting of hydroxy, hydroxymethyl, hydroxyethyl, hydroxypropyl, (1-hydroxy-1,1-dimethyl)ethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methoxymethylene, methoxyethylene, ethoxyethylene, methoxyphenylene, ethoxyphenylene, cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl, benzoyl, chlorobenzoyl, fluorobenzoyl, hydroxymethylcarbonyl, carboxymethylcarbonyl, hydroxypropylcarbonyl, carboxymethylcarbonyl, carboxyethylcarbonyl, methoxyethylcarbonyl, methoxymethylcarbonyl, methoxypropylcarbonyl, methoxypropylcarbonyl,

ethoxymethylcarbonyl, ethoxyethylcarbonyl,

1144

methylcarbonylamino, ethylcarbonylamino, 40 methylaminomethylcarbonyl, ethylaminomethylcarbonyl, methylcarbonylaminomethylene, ethylcarbonylaminomethylene, aminomethylcarbonylaminocarbonylmethylene, methoxycarbonylamino, ethoxycarbonylamino, 45 methoxymethylcarbonylamino, methoxyethylcarbonylamino, ethoxymethylcarbonylamino, ethoxyethylcarbonylamino, methoxycarbonylaminomethylene, ethoxycarbonylaminomethylene, methylimidocarbonyl, ethylimidocarbonyl, amidino, methylamidino, methylamidino, benzylamidino, guanidino, 50 guanidinomethylene, guanidinoethylene, and methylsulfonylamino; and R^{202} and R^{203} are independently selected from hydrido, methyl, ethyl, propyl, butyl, phenyl and benzyl; and 55 y is 0, 1 or 2; and R4 is phenyl, wherein said phenyl is optionally substituted with one or more radicals independently selected from fluoro, chloro, methyl, ethyl, methoxy and ethoxy; and 60 R⁵ is selected from hydrido, fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, benzyl, cyano, carboxy, methoxy, methoxycarbonyl, aminocarbonyl, acetyl, methylamino, dimethylamino, 2-methylbutylamino, ethylamino, dimethylaminoethylamino, hydroxyethylamino, 65 hydroxypropylamino, hydroxybutylamino, hydroxycyclopropylamino, hydroxycyclobutylamino, hydroxycyclopentylamino, hydroxycyclohexylamino, imidazolylamino, morpholinylethylamino, (1-ethyl-2hydroxy) ethylamino, piperidinylamino, 70 pyridinylmethylamino, phenylmethylpiperidinylamino, aminomethyl, cyclopropylamino, amino, ethoxycarbonylamino, methoxyphenylmethylamino, phenylmethylamino, fluorophenylmethylamino, fluorophenylethylamino, methylaminoethylamino,

1143

```
wherein:
          Z represents a carbon atom or a nitrogen atom; and
          R1 is selected from hydrido, methyl, ethyl,
 5
     hydroxyethyl and propargyl; and
          R^2 is R^{200}-piperazinyl-R^{201} wherein:
          R<sup>200</sup> is selected from:
          -(CR^{202}R^{203})_{v}-;
          -NR^{202}-;
10
          -S-:
          -0-;
          or R<sup>200</sup> represents a bond;
          R^{201} represents one or more radicals selected from
15
     the group consisting of hydroxy, hydroxymethyl,
     hydroxyethyl, hydroxypropyl, hydroxybutyl, (1-hydroxy-
     1,1-dimethyl)ethyl, cyclopropyl, cyclobutyl, cyclopentyl,
     cyclohexyl, methoxymethylene, methoxyethylene,
     methoxypropylene, ethoxyethylene, ethoxypropylene,
     propoxyethylene, propoxypropylene, methoxyphenylene,
20
     ethoxyphenylene, propoxyphenylene, cyclopropylcarbonyl,
     cyclobutylcarbonyl, cyclopentylcarbonyl,
     cyclohexylcarbonyl, benzoyl, chlorobenzoyl,
     fluorobenzoyl, hydroxymethylcarbonyl,
     hydroxyethylcarbonyl, hydroxypropylcarbonyl,
25
     carboxymethylcarbonyl, carboxyethylcarbonyl,
     carboxypropylcarbonyl, methoxymethylcarbonyl,
     methoxyethylcarbonyl, methoxypropylcarbonyl,
     ethoxymethylcarbonyl, ethoxyethylcarbonyl,
     ethoxypropylcarbonyl, propoxymethylcarbonyl,
30
     propoxyethylcarbonyl, propoxypropylcarbonyl,
     methoxyphenylcarbonyl, ethoxyphenylcarbonyl,
     propoxyphenylcarbonyl, piperidinylmethylcarbonyl,
     piperazinylmethylcarbonyl, morpholinylcarbonyl,
     methylsulfonylmethylene, amino, aminomethyl, aminoethyl,
35
     aminopropyl, phenylamino, benzylamino,
     methylaminomethylene, ethylaminomethylene,
```

methylaminoethylene, ethylaminoethylene, aminocarbonyl,

40 diethylaminopentylamino; or

a pharmaceutically-acceptable salt or tautomer thereof.

104. A compound of Claim 101 wherein:

R¹ is hydrido; and

 $\mbox{\ensuremath{R^2}}$ is $\mbox{\ensuremath{R^{200}}}\mbox{-piperidinyl-}\mbox{\ensuremath{R^{201}}}$ wherein:

R²⁰⁰ is selected from:

5 methylene;

15

20

 $-NR^{202}-;$

-S-;

-0-;

or R²⁰⁰ represents a bond;

10 R²⁰¹ represents one or more radicals selected from the group consisting of methoxyethyl, methylcarbonyl, hydroxymethylcarbonyl, methoxymethylcarbonyl, and amino; and

 R^{202} is selected from hydrido and methyl; and R^4 is phenyl, wherein said phenyl is optionally substituted with one or more radicals independently selected from fluoro, chloro, methyl, and methoxy; and

 ${\sf R}^{\sf 5}$ is selected from hydrido, hydroxypropylamino, hydroxycyclohexylamino, diethylaminoethylamino; or

a pharmaceutically-acceptable salt or tautomer thereof.

105. A compound of Claim 94 having the Formula XA:

$$\begin{array}{c|c}
R^5 \\
R^4 \\
R^2 \\
R^1 \\
XA)
\end{array}$$

1141

```
R<sup>200</sup> is selected from:
 5
          methylene;
          -NR^{202}-;
          -S-;
          -0-;
          or R<sup>200</sup> represents a bond;
          R<sup>201</sup> represents one or more radicals selected from
10
     the group consisting of hydroxy, hydroxymethyl,
     hydroxyethyl, hydroxypropyl, methoxymethyl, methoxyethyl,
     methoxypropyl, ethoxyethyl, ethoxypropyl, propoxyethyl,
     propoxypropyl, methoxyphenyl, ethoxyphenyl,
15
     propoxyphenyl, hydroxymethylcarbonyl,
     hydroxyethylcarbonyl, carboxymethylcarbonyl,
     carboxyethylcarbonyl, methoxymethylcarbonyl,
     methoxyethylcarbonyl, ethoxymethylcarbonyl,
     ethoxyethylcarbonyl, methoxyphenylcarbonyl,
     ethoxyphenylcarbonyl, amino, aminomethyl, aminoethyl,
20
     aminopropyl, N-benzylamino, methylaminomethylene,
     aminocarbonyl, methoxycarbonylamino, and
     ethoxycarbonylamino; and
          R<sup>202</sup> is selected from hydrido, methyl phenyl and
25
     benzyl; and
          R4 is phenyl, wherein said phenyl is optionally
     substituted with one or more radicals independently
     selected from fluoro, chloro, methyl, and methoxy; and
          R<sup>5</sup> is selected from hydrido, methylamino,
     dimethylamino, 2-methylbutylamino, ethylamino,
30
     dimethylaminoethylamino, hydroxypropylamino,
     hydroxyethylamino, hydroxypropylamino, hydroxybutylamino,
     hydroxycyclopropylamino, hydroxycyclobutylamino,
     hydroxycyclopentylamino, hydroxycyclohexylamino, (1-
     ethyl-2-hydroxy) ethylamino, aminomethyl,
35
     cyclopropylamino, amino, dimethylaminoethylamino,
     dimethylaminopropylamino, dimethylaminobutylamino,
     dimethylaminopentylamino, diethylaminoethylamino,
     diethylaminopropylamino, diethylaminobutylamino, and
```

1140

aminomethyl, aminoethyl, aminopropyl, N-benzylamino, methylaminomethylene, aminocarbonyl, methoxycarbonylamino, ethoxycarbonylamino, or methylsulfonylamino; and

 R^{202} is selected from hydrido, methyl, ethyl, phenyl and benzyl; and

R⁴ is phenyl, wherein said phenyl is optionally substituted with one or more radicals independently selected from fluoro, chloro, methyl, ethyl, methoxy and ethoxy; and

R⁵ is selected from hydrido, fluoro, chloro, bromo, hydroxy, methyl, ethyl, cyano, carboxy, methoxy, methoxycarbonyl, aminocarbonyl, acetyl, methylamino, dimethylamino, ethylamino, dimethylaminoethylamino,

- hydroxyethylamino, hydroxypropylamino, hydroxybutylamino, hydroxycyclopropylamino, hydroxycyclobutylamino, hydroxycyclohexylamino, (1-ethyl-2-hydroxy)ethylamino, aminomethyl, cyclopropylamino, amino, ethoxycarbonylamino,
- 45 methoxyphenylmethylamino, phenylmethylamino, fluorophenylmethylamino, fluorophenylethylamino, methylaminoethylamino, dimethylaminoethylamino, methylaminopropylamino, dimethylaminopropylamino, methylaminobutylamino, dimethylaminobutylamino,
- methylaminopentylamino, dimethylaminopentylamino, ethylaminoethylamino, diethylaminoethylamino, ethylaminopropylamino, diethylaminopropylamino, ethylaminobutylamino, diethylaminobutylamino, ethylaminopentylamino, methylaminocarbonyl, methylaminopentylamino, and ethylcarbonyl; or
 - a pharmaceutically-acceptable salt or tautomer thereof.

103. A compound of Claim 101 wherein: R^1 is hydrido; and R^2 is R^{200} -piperidinyl- R^{201} wherein:

1139

```
dimethylaminopropylamino, methylaminobutylamino,
     dimethylaminobutylamino, methylaminopentylamino,
80
     dimethylaminopentylamino, ethylaminoethylamino,
     diethylaminoethylamino, ethylaminopropylamino,
     diethylaminopropylamino, ethylaminobutylamino,
     diethylaminobutylamino, ethylaminopentylamino,
     methylaminocarbonyl, methylcarbonyl, and ethylcarbonyl;
85
           a pharmaceutically-acceptable salt or tautomer
     thereof.
          102. A compound of Claim 101 wherein:
          R1 is selected from hydrido, methyl, ethyl,
     hydroxyethyl and propargyl; and
          R<sup>2</sup> is R<sup>200</sup>-piperidinyl-R<sup>201</sup> wherein:
          R<sup>200</sup> is selected from:
 5
          methylene;
          -NR^{202}-;
          -S-;
          -0-;
10
          or R<sup>200</sup> represents a bond;
          R<sup>201</sup> represents one or more radicals selected from
     the group consisting of hydroxy, hydroxymethyl,
     hydroxyethyl, hydroxypropyl, (1-hydroxy-1,1-
     dimethyl)ethyl, methoxymethyl, methoxyethyl,
     methoxypropyl, ethoxyethyl, ethoxypropyl, propoxyethyl,
15
     propoxypropyl, methoxyphenyl, ethoxyphenyl,
     propoxyphenyl, hydroxymethylcarbonyl,
     hydroxyethylcarbonyl, carboxymethylcarbonyl,
     carboxyethylcarbonyl, methoxymethylcarbonyl,
     methoxyethylcarbonyl, methoxypropylcarbonyl,
20
     ethoxymethylcarbonyl, ethoxyethylcarbonyl,
     ethoxypropylcarbonyl, propoxymethylcarbonyl,
     propoxyethylcarbonyl, propoxypropylcarbonyl,
     methoxyphenylcarbonyl, ethoxyphenylcarbonyl,
25
     propoxyphenylcarbonyl, methylsulfonylmethylene, amino,
```

1138

methylaminomethylcarbonyl, ethylaminomethylcarbonyl, methylcarbonylaminomethylene, ethylcarbonylaminomethylene,

- aminomethylcarbonylaminocarbonylmethylene,
 methoxycarbonylamino, ethoxycarbonylamino,
 methoxymethylcarbonylamino, methoxyethylcarbonylamino,
 ethoxymethylcarbonylamino, ethoxyethylcarbonylamino,
 methoxycarbonylaminomethylene,
- ethoxycarbonylaminomethylene, methylimidocarbonyl, ethylimidocarbonyl, amidino, methylamidino, methylamidino, benzylamidino, guanidino, guanidinomethylene, guanidinoethylene, and methylsulfonylamino; and

60

 R^{202} and R^{203} are independently selected from hydrido, methyl, ethyl, propyl, butyl, phenyl and benzyl; and y is 0, 1 or 2; and

R⁴ is phenyl, wherein said phenyl is optionally substituted with one or more radicals independently selected from fluoro, chloro, methyl, ethyl, methoxy and ethoxy; and

R⁵ is selected from hydrido, fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, benzyl, cyano, carboxy, methoxy, methoxycarbonyl, aminocarbonyl, acetyl,

- methylamino, dimethylamino, 2-methylbutylamino, ethylamino, dimethylaminoethylamino, hydroxyethylamino, hydroxypropylamino, hydroxybutylamino, hydroxycyclopropylamino, hydroxycyclobutylamino, hydroxycyclopentylamino, hydroxycyclohexylamino,
- imidazolylamino, morpholinylethylamino, (1-ethyl-2-hydroxy)ethylamino, piperidinylamino, pyridinylmethylamino, phenylmethylpiperidinylamino, aminomethyl, cyclopropylamino, amino, ethoxycarbonylamino, methoxyphenylmethylamino,
- phenylmethylamino, fluorophenylmethylamino, fluorophenylethylamino, methylaminoethylamino, dimethylaminoethylamino, methylaminopropylamino,

```
hydroxyethyl and propargyl; and
          R^2 is R^{200}-piperidinyl-R^{201} wherein:
          R<sup>200</sup> is selected from:
          -(CR^{202}R^{203})_{v}-;
          -NR^{202}-;
10
          -S-;
          -0-:
          or R<sup>200</sup> represents a bond;
          R<sup>201</sup> represents one or more radicals selected from
     the group consisting of hydroxy, hydroxymethyl,
15
     hydroxyethyl, hydroxypropyl, hydroxybutyl, (1-hydroxy-
     1,1-dimethyl)ethyl, cyclopropyl, cyclobutyl, cyclopentyl,
     cyclohexyl, methoxymethylene, methoxyethylene,
     methoxypropylene, ethoxyethylene, ethoxypropylene,
     propoxyethylene, propoxypropylene, methoxyphenylene,
20
     ethoxyphenylene, propoxyphenylene, cyclopropylcarbonyl,
     cyclobutylcarbonyl, cyclopentylcarbonyl,
     cyclohexylcarbonyl, benzoyl, chlorobenzoyl,
     fluorobenzoyl, hydroxymethylcarbonyl,
     hydroxyethylcarbonyl, hydroxypropylcarbonyl,
25
     carboxymethylcarbonyl, carboxyethylcarbonyl,
     carboxypropylcarbonyl, methoxymethylcarbonyl,
     methoxyethylcarbonyl, methoxypropylcarbonyl,
     ethoxymethylcarbonyl, ethoxyethylcarbonyl,
     ethoxypropylcarbonyl, propoxymethylcarbonyl,
30
     propoxyethylcarbonyl, propoxypropylcarbonyl,
     methoxyphenylcarbonyl, ethoxyphenylcarbonyl,
     propoxyphenylcarbonyl, piperidinylmethylcarbonyl,
     piperazinylmethylcarbonyl, morpholinylcarbonyl,
     methylsulfonylmethylene, amino, aminomethyl, aminoethyl,
35
     aminopropyl, N-methylamino, N,N-dimethylamino, N-
     ethylamino, N,N-diethylamino, N-propylamino, N,N-
     dipropylamino, phenylamino, benzylamino,
     methylaminomethylene, ethylaminomethylene,
     methylaminoethylene, ethylaminoethylene, aminocarbonyl,
40
     methylcarbonylamino, ethylcarbonylamino,
```

dimethylaminopentylamino, ethylaminoethylamino,
diethylaminoethylamino, ethylaminopropylamino,
diethylaminopropylamino, ethylaminobutylamino,
diethylaminobutylamino, ethylaminopentylamino,
methylaminocarbonyl, methylcarbonyl, ethylcarbonyl,
hydrazinyl, and 1-methylhydrazinyl, or -NR⁶²R⁶³ wherein R⁶²
is methylcarbonyl or amino, and R⁶³ is methyl or benzyl;
or

a pharmaceutically-acceptable salt or tautomer thereof.

- 98. A compound of Claim 97 wherein R^2 is R^{200} -piperidinyl- R^{201} .
- 99. A compound of Claim 97 wherein R^2 is R^{200} -pyrazinyl- R^{201} .
- 100. A compound of Claim 97 wherein R^2 is R^{200} -cyclohexyl- R^{201} .
 - 101. A compound of Claim 94 having the Formula XA:

wherein:

5

Z represents a carbon atom or a nitrogen atom; and R¹ is selected from hydrido, methyl, ethyl,

1135

methoxymethylcarbonylamino, methoxyethylcarbonylamino, ethoxymethylcarbonylamino, ethoxyethylcarbonylamino,
45 methoxycarbonylaminomethylene, ethoxycarbonylaminomethylene, methylimidocarbonyl, ethylimidocarbonyl, amidino, methylamidino, methylamidino, benzylamidino, guanidino, guanidinomethylene, guanidinoethylene, and
50 methylsulfonylamino; and

 R^{202} and R^{203} are independently selected from hydrido, methyl, ethyl, propyl, butyl, phenyl and benzyl; and y is 0, 1 or 2; and

R4 is phenyl, wherein said phenyl is optionally substituted with one or more radicals independently selected from methylthio, fluoro, chloro, bromo, iodo, methyl, ethyl, methoxy, ethoxy, phenoxy, benzyloxy, trifluoromethyl, nitro, dimethylamino, and hydroxy; and

55

R⁵ is selected from hydrido, fluoro, chloro, bromo, iodo, hydroxy, methyl, ethyl, propyl, benzyl, fluorophenylethyl, fluorophenylethenyl, fluorophenylpyrazolyl, cyano, carboxy, methoxy, methoxycarbonyl, aminocarbonyl, acetyl, methylamino, dimethylamino, 2-methylbutylamino, ethylamino,

- dimethylaminoethylamino, hydroxyethylamino, hydroxypropylamino, hydroxybutylamino, hydroxycyclopropylamino, hydroxycyclobutylamino, hydroxycyclopentylamino, hydroxycyclohexylamino, imidazolylamino, morpholinylethylamino, (1-ethyl-2-
- hydroxy) ethylamino, piperidinylamino,
 pyridinylmethylamino, phenylmethylpiperidinylamino,
 aminomethyl, cyclopropylamino, amino,
 ethoxycarbonylamino, methoxyphenylmethylamino,
 phenylmethylamino, fluorophenylmethylamino,
- fluorophenylethylamino, methylaminoethylamino, dimethylaminoethylamino, methylaminopropylamino, dimethylaminopropylamino, methylaminobutylamino, dimethylaminobutylamino, methylaminopentylamino,

```
-(CR^{202}R^{203})_{v}-;
          -NR^{202}-;
          -S-:
10
          -0-;
          or R<sup>200</sup> represents a bond;
          R^{201} represents one or more radicals selected from
     the group consisting of hydroxy, hydroxymethyl,
     hydroxyethyl, hydroxypropyl, hydroxybutyl, (1-hydroxy-
     1,1-dimethyl)ethyl, cyclopropyl, cyclobutyl, cyclopentyl,
15
     cyclohexyl, methoxymethylene, methoxyethylene,
     methoxypropylene, ethoxyethylene, ethoxypropylene,
     propoxyethylene, propoxypropylene, methoxyphenylene,
     ethoxyphenylene, propoxyphenylene, cyclopropylcarbonyl,
     cyclobutylcarbonyl, cyclopentylcarbonyl,
20
     cyclohexylcarbonyl, benzoyl, chlorobenzoyl,
     fluorobenzoyl, hydroxymethylcarbonyl,
     hydroxyethylcarbonyl, hydroxypropylcarbonyl,
     carboxymethylcarbonyl, carboxyethylcarbonyl,
     carboxypropylcarbonyl, methoxymethylcarbonyl,
25
     methoxyethylcarbonyl, methoxypropylcarbonyl,
     ethoxymethylcarbonyl, ethoxyethylcarbonyl,
     ethoxypropylcarbonyl, propoxymethylcarbonyl,
     propoxyethylcarbonyl, propoxypropylcarbonyl,
     methoxyphenylcarbonyl, ethoxyphenylcarbonyl,
30
     propoxyphenylcarbonyl, piperidinylmethylcarbonyl,
     piperazinylmethylcarbonyl, morpholinylcarbonyl,
     methylsulfonylmethylene, amino, aminomethyl, aminoethyl,
     aminopropyl, phenylamino, benzylamino,
     methylaminomethylene, ethylaminomethylene,
35
     methylaminoethylene, ethylaminoethylene, aminocarbonyl,
     methylcarbonylamino, ethylcarbonylamino,
     methylaminomethylcarbonyl, ethylaminomethylcarbonyl,
     methylcarbonylaminomethylene,
40
     ethylcarbonylaminomethylene,
     aminomethylcarbonylaminocarbonylmethylene,
     methoxycarbonylamino, ethoxycarbonylamino,
```

1133

R⁴ is selected from aryl selected from phenyl, biphenyl, naphthyl, wherein said aryl is optionally substituted at a substitutable position with one or more radicals independently selected from halo, lower alkyl, lower alkoxy, aryloxy, lower aralkoxy, lower haloalkyl, lower alkylthio, lower alkylamino, nitro, and hydroxy; and

45

5

R⁵ is selected from hydrido, halo, amino, cyano, aminocarbonyl, lower alkyl, lower alkoxy, hydroxy, lower 50 aminoalkyl, lower aralkyl, lower aralkyloxy, lower aralkylamino, lower alkoxycarbonyl, lower alkylamino, lower hydroxyalkylamino, lower alkylcarbonyl, lower aralkenyl, lower arylheterocyclyl, carboxy, lower cycloalkylamino, lower hydroxycycloalkylamino, lower 55 alkoxycarbonylamino, lower alkoxyaralkylamino, lower alkylaminoalkylamino, lower heterocyclylamino, lower heterocyclylalkylamino, lower aralkylheterocyclylamino, lower alkylaminocarbonyl, lower alkylcarbonyl, lower alkoxyaralkylamino, hydrazinyl, and lower 60 alkylhydrazinyl, or -NR62R63 wherein R62 is lower alkylcarbonyl or amino, and R63 is lower alkyl or lower phenylalkyl; or

a pharmaceutically-acceptable salt or tautomer 65 thereof.

- 95. A compound of Claim 94 wherein R^2 is R^{200} -heterocyclyl- R^{201} .
- 96. A compound of Claim 94 wherein R^2 is R^{200} -cycloalkyl- R^{201} .
 - 97. A compound of Claim 94 wherein: R¹ is selected from hydrido, methyl, ethyl,

hydroxyethyl and propargyl; and

 R^2 is R^{200} -piperidinyl- R^{201} , R^{200} -piperazinyl- R^{201} , or R^{200} -cyclohexyl- R^{201} wherein:

R²⁰⁰ is selected from:

```
hydroxyalkyl, lower alkynyl, lower aralkyl, lower
      aminoalkyl and lower alkylaminoalkyl; and
           R<sup>2</sup> is lower hydroxyalkylamino; or
           R^2 is R^{200}-heterocyclyl-R^{201} or R^{200}-cycloalkyl-R^{201}
10
     wherein:
           R<sup>200</sup> is selected from:
           -(CR^{202}R^{203})_{v}-;
           -NR^{202}-;
           -NR^{202}-(CH_2)_v-;
           -(CH_2)_v - NR^{202} - ;
15
           -O- (CH<sub>2</sub>)<sub>v</sub>-;
           - (CH<sub>2</sub>)<sub>v</sub>-O-;
           -S-:
           -0-;
           or R<sup>200</sup> represents a bond;
20
           R^{201} represents one or more radicals selected from
     the group consisting of hydroxy, lower hydroxyalkyl,
     lower cycloalkyl, lower hydroxyalkylcarbonyl, lower
     cycloalkylcarbonyl, arylcarbonyl, haloarylcarbonyl, lower
25
     alkoxyalkylene, lower alkoxyarylene, lower
     carboxyalkylcarbonyl, lower alkoxyalkylcarbonyl, lower
     heterocyclylalkylcarbonyl, lower alkylsulfonylalkylene,
     amino, lower aminoalkyl, lower aralkylamino, lower
     alkylaminoalkylene, aminocarbonyl, lower
30
     alkylcarbonylamino, lower alkylcarbonylaminoalkylene,
     lower alkylaminoalkylcarbonyl, lower
     alkylaminoalkylcarbonylamino, lower
     aminoalkylcarbonylaminoalkyl, lower alkoxycarbonylamino,
     lower alkoxyalkylcarbonylamino, lower
35
     alkoxycarbonylaminoalkylene, lower alkylimidocarbonyl,
     amidino, lower alkylamidino, lower aralkylamidino,
     guanidino, lower guanidinoalkylene, and lower
     alkylsulfonylamino; and
           R^{202} and R^{203} are independently selected from hydrido,
40
     lower alkyl, aryl and lower aralkyl; and
           y is 0, 1, 2 or 3; and
```

1131

alkylsulfinylalkylene, arylsulfinylalkylene, alkylsulfonyl, alkylsulfonylalkylene,

arylsulfonylalkylene, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, cyano, nitro, alkylamino, arylamino, alkylaminoalkylene, arylaminoalkylene, aminoalkylamino, and hydroxy;

provided R³ is not 2-pyridinyl when R⁴ is a phenyl ring containing a 2-hydroxy substituent and when R¹ is hydrido; and

further provided R^2 is selected from $-R^{200}$ -heterocyclyl- R^{201} , $-R^{200}$ -aryl- R^{201} , or $-R^{200}$ -unsubstituted cycloalkyl- R^{201} when R^4 is hydrido; and

further provided that R^4 is not methylsulfonylphenyl or aminosulfonylphenyl; and

further provided that R^1 is not methylsulfonylphenyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

94. A compound of Formula IXA:

wherein

5

215

Z represents a carbon atom or a nitrogen atom; and \mathbb{R}^1 is selected from hydrido, lower alkyl, lower

1130

170

200

groups may be optionally substituted with one or more radicals independently selected from halo, keto, alkyl, aralkyl, aralkenyl, arylheterocyclyl, carboxy,

carboxyalkyl, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfinyl, arylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkoxy, heterocyclylalkoxy, amino, alkylamino, alkenylamino, alkynylamino, cycloalkylamino, cycloalkenylamino, arylamino, haloarylamino,

heterocyclylamino, aminocarbonyl, cyano, hydroxy, hydroxyalkyl, alkoxyalkylene, alkenoxyalkylene, aryloxyalkyl, alkoxyalkylamino, alkylaminoalkoxy, alkoxycarbonyl, aryloxycarbonyl, heterocyclyloxycarbonyl, alkoxycarbonylamino, alkoxyarylamino, alkoxyaralkylamino,

aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkylaminoalkylamino, hydroxyalkylamino, aralkylamino, aryl(hydroxyalkyl)amino, alkylaminoalkylaminoalkylamino, alkylheterocyclylamino, heterocyclylalkylamino, alkylheterocyclylalkylamino, aralkylheterocyclylamino,

heterocyclylheterocyclylalkylamino,
alkoxycarbonylheterocyclylamino, nitro,
alkylaminocarbonyl, alkylcarbonylamino,
haloalkylsulfonyl, aminoalkyl, haloalkyl, alkylcarbonyl,
hydrazinyl, alkylhydrazinyl, arylhydrazinyl, and -NR44R45

wherein R⁴⁴ is alkylcarbonyl or amino, and R⁴⁵ is alkyl or aralkyl; and

R4 is selected from hydrido, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein R4 is optionally substituted with one or more radicals independently selected from halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkylthio, arylthio, alkylthioalkylene, arylthioalkylene, alkylsulfinyl,

R²⁰¹ represents one or more radicals selected from the group consisting of hydroxy, hydroxyalkyl, cycloalkyl, hydroxyalkylcarbonyl, cycloalkylcarbonyl,

- arylcarbonyl, haloarylcarbonyl, alkoxyalkylene, alkoxyarylene, carboxyalkylcarbonyl, alkoxyalkylcarbonyl, heterocyclylalkylcarbonyl, alkylsulfonylalkylene, aminoalkyl, aralkylamino, alkylaminoalkylene, aminocarbonyl, alkylcarbonylamino,
- alkylcarbonylaminoalkylene, alkylaminoalkylcarbonyl, alkylaminoalkylcarbonylamino, aminoalkylcarbonylaminoalkyl, alkoxycarbonylamino, alkoxyalkylcarbonylamino, alkoxycarbonylaminoalkylene, alkylimidocarbonyl, amidino, alkylamidino,
- aralkylamidino, guanidino, guanidinoalkylene, and alkylsulfonylamino; and

 R^{202} and R^{203} are independently selected from hydrido, alkyl, aryl and aralkyl; and

y and z are independently 0, 1, 2, 3, 4, 5 or 6 wherein y + z is less than or equal to 6; and

x is 0, 1 or 2; or

 \mbox{R}^2 is -NHCR $^{204}\mbox{R}^{205}$ wherein \mbox{R}^{204} is alkylaminoalkylene, and \mbox{R}^{205} is aryl; or

 R^2 is $-C(NR^{206})R^{207}$ wherein R^{206} is selected from hydrogen and hydroxy, and R^{207} is selected from alkyl, aryl and aralkyl; and

R³ is selected from pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

165

wherein the R³ pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

1128

```
aminoalkylcarbonylaminoalkylene,
       alkylaminoalkylcarbonylamino, aminoalkylthio,
       alkylaminocarbonylalkylthio,
       alkylaminoalkylaminocarbonylalkylthio, cyanoalkylthio,
       alkenylthio, alkynylthio, carboxyalkylthio,
105
       alkoxycarbonylalkylthio, alkylsulfinyl, alkylsulfonyl,
       alkoxyalkyl, alkoxyalkylthio, alkoxycarbonylalkylamino,
       alkoxycarbonylaminoalkylene, alkoxycarbonylaminoalkoxy,
       aralkythio, heterocyclylalkylthio, aminoalkoxy,
       cyanoalkoxy, carboxyalkoxy, aryloxy, aralkoxy,
110
       alkenyloxy, alkynyloxy, and heterocyclylalkyloxy; or
              R^2 is R^{200}-heterocyclyl-R^{201}, R^{200}-aryl-R^{201}, or R^{200}-
       cycloalkyl-R201 wherein:
              R<sup>200</sup> is selected from:
              -(CR^{202}R^{203}),-;
115
              -C(0)-;
              -C(O)-(CH<sub>2</sub>),-;
              -C(O)-O-(CH<sub>2</sub>),-;
              -(CH_2)_v-C(O)-;
120
              -O-(CH_2)_v-C(O)-;
              -NR^{202}-;
              -NR^{202} - (CH_2)_{v} - ;
              -(CH_2)_{v}-NR^{202}-;
              -(CH_2)_v - NR^{202} - (CH_2)_z - ;
              -(CH_2)_V - C(O) - NR^{202} - (CH_2)_z - ;
125
              -(CH_2)_v - NR^{202} - C(O) - (CH_2)_z - ;
              -(CH_2)_v - NR^{202} - C(O) - NR^{203} - (CH_2)_z - ;
              -S(0)_{x}-(CR^{202}R^{203})_{y}-;
              -(CR^{202}R^{203})_{v}-S(0)_{x}-;
              -S(O)_{v}-(CR^{202}R^{203})_{v}-O-;
130
              -S(O)_{v}-(CR^{202}R^{203})_{v}-C(O)-;
              -O-(CH<sub>2</sub>)<sub>v</sub>-;
              - (CH<sub>2</sub>)<sub>v</sub>-O-;
              -S-; and
135
              -0-;
              or R<sup>200</sup> represents a bond;
```

aralkylthioarylene, heterocyclylthioarylene,
arylthioalklylarylene, arylsulfonylaminoalkylene,
alkylsulfonylarylene, and alkylaminosulfonylarylene;
wherein said alkyl, cycloalkyl, aryl, heterocyclyl,
aralkyl, heterocyclylalkylene, alkylheterocyclylarylene,
alkoxyarylene, aryloxyarylene, arylaminocarbonylalkylene,
aryloxycarbonylarylene, arylcarbonylarylene,
alkylthioarylene, heterocyclylthioarylene,
arylthioalklylarylene, and alkylsulfonylarylene groups
may be optionally substituted with one or more radicals
independently selected from alkyl, halo, haloalkyl,
alkoxy, keto, amino, nitro, and cyano; or

R²⁷ is -CHR²⁸R²⁹ wherein R²⁸ is alkoxycarbonyl, and R²⁹ is selected from aralkyl, aralkoxyalkylene, heterocyclylalkylene, alkylheterocyclylalkylene,

- alkoxycarbonylalkylene, alkylthioalkylene, and aralkylthioalkylene; wherein said aralkyl and heterocylcyl groups may be optionally substituted with one or more radicals independently selected from alkyl and nitro; or
- R²⁶ and R²⁷ together with the nitrogen atom to which they are attached form a heterocycle, wherein said heterocycle is optionally substituted with one or more radicals independently selected from alkyl, aryl, heterocyclyl, heterocyclylalkylene,
- alkylheterocyclylalkylene, aryloxyalkylene, alkoxyarylene, alkylaryloxyalkylene, alkylcarbonyl, alkoxycarbonyl, aralkoxycarbonyl, alkylamino and alkoxycarbonylamino; wherein said aryl, heterocyclylalkylene and aryloxyalkylene radicals may be optionally substituted with one or more radicals
- optionally substituted with one or more radicals independently selected from halogen, alkyl and alkoxy; and

R² is selected from mercapto,
aryl(hydroxyalkyl)amino, N-alkyl-N-alkynyl-amino,
aminocarbonylalkylene, alkylcarbonylaminoalkylene,

$$\begin{array}{c|c}
 & R^{25} & O \\
 & C \\
 & C \\
 & H
\end{array}$$

$$\begin{array}{c|c}
 & C \\
 & C \\
 & R^{26}
\end{array}$$

$$\begin{array}{c|c}
 & R^{26} \\
 & R^{27}
\end{array}$$
(II)

wherein:

45

i is an integer from 0 to 9;

R²⁵ is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene; and

40 R²⁶ is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkylalkylene, aralkyl, alkoxycarbonylalkylene, and alkylaminoalkyl; and

aryl, heterocyclyl, aralkyl, cycloalkylalkylene, cycloalkenylalkylene, cycloalkylarylene, cycloalkylcycloalkyl, heterocyclylalkylene, alkylarylene, alkylaralkyl, aralkylarylene, alkylheterocyclyl, alkylheterocyclylalkylene, alkylheterocyclylarylene,

R²⁷ is selected from alkyl, cycloalkyl, alkynyl,

alkoxyaralkyl, alkoxyheterocyclyl, alkoxyalkoxyarylene, aryloxyarylene, aralkoxyarylene, alkoxyheterocyclylalkylene, aryloxyalkoxyarylene, alkoxycarbonylalkylene, alkoxycarbonylheterocyclyl,

aralkylheterocyclyl, alkoxyalkylene, alkoxyarylene,

alkoxycarbonylheterocyclylcarbonylalkylene, aminoalkyl,
alkylaminoalkylene, arylaminocarbonylalkylene,
alkoxyarylaminocarbonylalkylene, aminocarbonylalkylene,
arylaminocarbonylalkylene, alkylaminocarbonylalkylene,
arylcarbonylalkylene, alkoxycarbonylarylene,
aryloxycarbonylarylene, alkylaryloxycarbonylarylene,

arylcarbonylarylene, alkylarylcarbonylarylene, alkoxycarbonylheterocyclylarylene, alkoxycarbonylalkoxylarylene, heterocyclylcarbonylalkylarylene, alkylthioalkylene, cycloalkylthioalkylene, alkylthioarylene,

WO 00/31063

1125

wherein

R¹ is selected from hydrido, hydroxy, alkyl,
cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl,
heterocyclyl, cycloalkylalkylene, cycloalkenylalkylene,
heterocyclylalkylene, haloalkyl, haloalkenyl,
haloalkynyl, hydroxyalkyl, hydroxyalkenyl,
hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl,

- arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl, alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, alkoxyaryl, heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl, alkylthioalkylene, alkenylthioalkylene, alkylthioalkenylene, amino, aminoalkyl, alkylamino,
- alkenylamino, alkynylamino, arylamino, heterocyclylamino, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl, heterocyclylsulfonyl, alkylaminoalkylene,
- alkylsulfonylalkylene, acyl, acyloxycarbonyl, alkoxycarbonylalkylene, aryloxycarbonylalkylene, heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, heterocyclyloxycarbonylarylene, alkylcarbonylalkylene, arylcarbonylalkylene,
- heterocyclylcarbonylalkylene, alkylcarbonylarylene, arylcarbonylarylene, heterocyclylcarbonylarylene, alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene, heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene, arylcarbonyloxyarylene, and
- 30 heterocyclylcarbonyloxyarylene; or R¹ has the formula

1124

thereof.

- 84. A compound of Claim 82 wherein Z represents a carbon atom.
- 85. A compound of Claim 82 wherein Z represents a nitrogen atom.
- 86. A compound of Claim 82 wherein R^{407a} is selected from chloro, fluoro, bromo and iodo.
- 87. A compound of Claim 82 wherein R^{407a} is metachloro or para-chloro.
 - 88. A compound of Claim 82 wherein R408 is hydrido.
 - 89. A compound of Claim 82 wherein:

 R^{406} is optionally substituted lower alkynyl;

 ${\bf R}^{407a}$ is selected from chloro, fluoro, bromo and iodo; and

5 R⁴⁰⁸ is hydrido.

90. A compound of Claim 82 wherein:

 \mathbb{R}^{406} is selected from optionally substituted ethynyl, propynyl and butynyl;

R^{407a} is selected from chloro, fluoro, bromo and iodo;

5 and

- R408 is hydrido.
- 91. A compound of Claim 82 wherein \mathbb{R}^{406} is propargyl.
- 92. A compound of Claim 82 wherein \mathbb{R}^{407a} is metachloro or para-chloro.
 - 93. A compound of Formula IA

1123

aralkoxy, wherein said aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy substituents may be optionally substituted with one or more alkylene, alkenylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; or

a pharmaceutically-acceptable salt or tautomer thereof.

20

5

10

25

83. A compound of Claim 82 wherein:

R⁴⁰⁶ is selected from lower alkynyl; and
R^{407a} and R^{407b} are independently selected from
hydrogen, halo, lower haloalkyl, lower haloalkoxy, lower
alkoxy, cyano, hydroxy, lower alkyl, lower alkenyl, and
lower alkynyl, wherein said lower haloalkyl, lower
haloalkoxy, lower alkoxy, cyano, hydroxy, lower alkyl,
lower alkenyl, and lower alkynyl substituents may be
optionally substituted with one or more lower alkylene,
lower alkenylene, lower alkynylene, hydroxy, halo, lower
haloalkyl, lower alkoxy, keto, amino, nitro, cyano, lower
alkylsulfonyl, lower alkylsulfinyl, lower alkylthio,
lower alkoxyalkyl, phenyloxy, heterocyclyl, and lower
heteroaralkoxy; and

R⁴⁰⁸ is selected from hydrogen, phenyl, lower
alkylamino, lower alkylthio, lower alkyloxy, phenyloxy,
phenylamino, phenylthio, and phenylalkoxy, wherein said
phenyl, lower alkylamino, lower alkylthio, lower
alkyloxy, phenyloxy, phenylamino, phenylthio, and
phenylalkoxy may be optionally substituted with one or
more lower alkylene, lower alkenylene, hydroxy, halo,
lower haloalkyl, lower alkoxy, keto, amino, nitro, cyano,
lower alkylsulfonyl, lower alkylsulfinyl, lower
alkylthio, lower alkoxyalkyl, phenyloxy, heterocyclyl,
and lower heteroaralkoxy; or

a pharmaceutically-acceptable salt or tautomer

WO 00/31063

1122

butylamino, di-t-butylamino, and di-isobutylamino; ${\bf R}^{\rm 404a} \ \hbox{is selected from chloro, fluoro, bromo and iodo;}$ and

10 R^{405} is hydrido.

- 81. A compound of Claim 80 wherein R^{404a} is metachloro or para-chloro.
 - 82. A compound Formula XXII:

wherein:

Z represents a carbon atom or a nitrogen atom; R^{406} is alkynyl; and

R407a and R407b are independently selected from hydrogen, halo, haloalkyl, haloalkoxy, alkoxy, cyano, hydroxy, alkyl, alkenyl, and alkynyl, wherein said haloalkyl, haloalkoxy, alkoxy, hydroxy, alkyl, alkenyl, and alkynyl substituents may be optionally substituted with one or more alkylene, alkenylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; and

15 R⁴⁰⁸ is selected from hydrogen, aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio,

lower haloalkyl, lower alkoxy, keto, amino, nitro, cyano, lower alkylsulfonyl, lower alkylsulfinyl, lower alkylthio, lower alkoxyalkyl, phenyloxy, heterocyclyl, and lower heteroaralkoxy; or

a pharmaceutically-acceptable salt or tautomer thereof.

- 73. A compound of Claim 71 wherein Z represents a carbon atom.
- 74. A compound of Claim 71 wherein Z represents a nitrogen atom.
- 75. A compound of Claim 71 wherein \mathbb{R}^{403} is optionally substituted dialkylamino.
- 76. A compound of Claim 71 wherein R^{404a} is selected from chloro, fluoro, bromo and iodo.
- 77. A compound of Claim 71 wherein \mathbb{R}^{404a} is metachloro or para-chloro.
 - 78. A compound of Claim 71 wherein R^{405} is hydrido.
- 79. A compound of Claim 71 wherein: $R^{403} \text{ is optionally substituted lower alkylamino;} \\ R^{404a} \text{ is selected from chloro, fluoro, bromo and iodo;} \\ \text{and} \\$
- 5 R^{405} is hydrido.
 - 80. A compound of Claim 71 wherein:

 R⁴⁰³ is selected from optionally substituted
 methylamino, ethylamino, n-propylamino, isopropylamino,
 n-butylamino, sec-butylamino, t-butylamino,
 isobutylamino, dimethylamino, diethylamino, di-npropylamino, di-isopropylamino, di-n-butylamino, di-sec-

1120

cyano, alkylsulfonyl, alkylsulfinyl, alkylthio,
alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy;
and

15 R⁴⁰⁵ is selected from hydrogen, aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy, wherein said aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy substituents may be optionally substituted with one or more alkylene, alkenylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; or

a pharmaceutically-acceptable salt or tautomer 25 thereof.

72. A compound of Claim 71 wherein:

5

10

R⁴⁰³ is selected from lower alkylamino; and R^{404a} and R^{404b} are independently selected from hydrogen, halo, lower haloalkyl, lower haloalkoxy, lower alkoxy, cyano, hydroxy, lower alkyl, lower alkenyl, and lower alkynyl, wherein said lower haloalkyl, lower haloalkoxy, lower alkoxy, cyano, hydroxy, lower alkyl, lower alkenyl, and lower alkynyl substituents may be optionally substituted with one or more lower alkylene, lower alkenylene, lower alkynylene, hydroxy, halo, lower haloalkyl, lower alkoxy, keto, amino, nitro, cyano, lower alkylsulfonyl, lower alkylsulfinyl, lower alkylthio, lower alkoxyalkyl, phenyloxy, heterocyclyl, and lower heteroaralkoxy; and

R⁴⁰⁵ is selected from hydrogen, phenyl, lower
alkylamino, lower alkylthio, lower alkyloxy, phenyloxy,
phenylamino, phenylthio, and phenylalkoxy, wherein said
phenyl, lower alkylamino, lower alkylthio, lower
alkyloxy, phenyloxy, phenylamino, phenylthio, and
phenylalkoxy may be optionally substituted with one or
more lower alkylene, lower alkenylene, hydroxy, halo,

PCT/US99/26007

5

5

10

1119

5 R⁴⁰⁵ is hydrido.

70. A compound of Claim 52 wherein: $R^{403} \text{ is selected from optionally substituted} \\$ cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl; $R^{404a} \text{ is selected from chloro, fluoro, bromo and iodo;} \\$ and

R405 is hydrido.

71. A compound of Formula XXIB:

wherein:

Z represents a carbon atom or a nitrogen atom; R403 is selected from alkylamino; and R404a and R404b are independently selected from hydrogen, halo, haloalkyl, haloalkoxy, alkoxy, cyano, hydroxy, alkyl, alkenyl, and alkynyl, wherein said haloalkyl, haloalkoxy, alkoxy, hydroxy, alkyl, alkenyl, and alkynyl substituents may be optionally substituted with one or more alkylene, alkenylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro,

1118

 $\ensuremath{\text{R}}^{404a}$ is selected from chloro, fluoro, bromo and iodo; and

R405 is hydrido.

- 65. A compound of Claim 64 wherein \mathbb{R}^{404a} is metachloro or para-chloro.
 - 66. A compound of Claim 52 wherein:

R⁴⁰³ is optionally substituted lower alkylaminoalkylene;

R404a is selected from chloro, fluoro, bromo and iodo;

5 and

and

R405 is hydrido.

- 67. A compound of Claim 52 wherein:
- R⁴⁰³ is selected from optionally substituted methylaminomethylene, methylaminoethylene, methylaminopropylene, ethylaminomethylene,
- thylaminoethylene, ethylaminopropylene, propylaminomethylene, propylaminoethylene, propylaminopropylene, dimethylaminomethylene, dimethylaminopropylene, diethylaminomethylene, diethylaminoethylene,
- diethylaminopropylene, dipropylaminomethylene,
 dipropylaminoethylene, and dipropylaminopropylene;

 $\ensuremath{\text{R}^{\text{404a}}}$ is selected from chloro, fluoro, bromo and iodo; and

R405 is hydrido.

- 68. A compound of Claim 67 wherein R^{404a} is metachloro or para-chloro.
 - 69. A compound of Claim 52 wherein: $R^{403} \mbox{ is optionally substituted cycloalkylamino;} \\ R^{404a} \mbox{ is selected from chloro, fluoro, bromo and iodo;}$

- 54. A compound of Claim 52 wherein Z represents a carbon atom.
- 55. A compound of Claim 52 wherein Z represents a nitrogen atom.
- 56. A compound of Claim 52 wherein R^{403} is optionally substituted hydroxyalkyl.
- 57. A compound of Claim 52 wherein R^{403} is optionally substituted alkylaminoalkylene.
- 58. A compound of Claim 57 wherein \mathbb{R}^{403} is optionally substituted dialkylaminoalkylene.
- 59. A compound of Claim 52 wherein R^{403} is optionally substituted cycloalkylamino.
- 60. A compound of Claim 52 wherein R^{404a} is selected from chloro, fluoro, bromo and iodo.
- 61. A compound of Claim 52 wherein R^{404a} is metachloro or para-chloro.
 - 62. A compound of Claim 52 wherein R^{405} is hydrido.
- 63. A compound of Claim 52 wherein: $R^{403} \text{ is optionally substituted lower hydroxyalkyl;} \\ R^{404a} \text{ is selected from chloro, fluoro, bromo and iodo;} \\ \text{and} \\$

R405 is hydrido.

5

64. A compound of Claim 52 wherein:

R⁴⁰³ is selected from optionally substituted hydroxymethyl, hydroxyethyl, hydroxypropyl and hydroxybutyl;

1116

20 substituents may be optionally substituted with one or more alkylene, alkenylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; or

a pharmaceutically-acceptable salt or tautomer thereof.

53. A compound of Claim 52 wherein:

25

20

25

 R^{403} is selected from lower hydroxyalkyl, lower alkylaminoalkylene and cycloalkylamino; and

 R^{404a} and R^{404b} are independently selected from hydrogen, halo, lower haloalkyl, lower haloalkoxy, lower alkoxy, cyano, hydroxy, lower alkyl, lower alkenyl, and lower alkynyl, wherein said lower haloalkyl, lower haloalkoxy, lower alkoxy, cyano, hydroxy, lower alkyl, lower alkenyl, and lower alkynyl substituents may be optionally substituted with one or more lower alkylene,

- 10 lower alkenylene, lower alkynylene, hydroxy, halo, lower haloalkyl, lower alkoxy, keto, amino, nitro, cyano, lower alkylsulfonyl, lower alkylsulfinyl, lower alkylthio, lower alkoxyalkyl, phenyloxy, heterocyclyl, and lower heteroaralkoxy; and
- 15 R⁴⁰⁵ is selected from hydrogen, phenyl, lower alkylamino, lower alkylthio, lower alkyloxy, phenyloxy, phenylamino, phenylthio, and phenylalkoxy, wherein said phenyl, lower alkylamino, lower alkylthio, lower alkyloxy, phenyloxy, phenylamino, phenylthio, and
 - phenylalkoxy may be optionally substituted with one or more lower alkylene, lower alkenylene, hydroxy, halo, lower haloalkyl, lower alkoxy, keto, amino, nitro, cyano, lower alkylsulfonyl, lower alkylsulfinyl, lower alkylthio, lower alkoxyalkyl, phenyloxy, heterocyclyl,
- and lower heteroaralkoxy; or a pharmaceutically-acceptable salt or tautomer

thereof.

one or more chloro radicals.

- 51. A compound of Claim 41 wherein R⁵ is hydrido.
- 52. A compound of Claim 41 having Formula XXIA:

wherein:

Z represents a carbon atom or a nitrogen atom; R^{403} is selected from hydroxyalkyl,

alkylaminoalkylene and cycloalkylamino; and

R^{404a} and R^{404b} are independently selected from
hydrogen, halo, haloalkyl, haloalkoxy, alkoxy, cyano,
hydroxy, alkyl, alkenyl, and alkynyl, wherein said
haloalkyl, haloalkoxy, alkoxy, hydroxy, alkyl, alkenyl,
and alkynyl substituents may be optionally substituted
with one or more alkylene, alkenylene, alkynylene,
hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro,
cyano, alkylsulfonyl, alkylsulfinyl, alkylthio,
alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy;
and

R⁴⁰⁵ is selected from hydrogen, aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy, wherein said aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy

1114

amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; or

a pharmaceutically-acceptable salt or tautomer thereof.

55

- 42. A compound of Claim 41 wherein R² is cyclohexyl substituted with at least one substituent attached to the 4-position carbon ring atom of the cyclohexyl ring.
- 43. A compound of Claim 41 wherein Z represents a carbon atom.
- 44. A compound of Claim 41 wherein Z represents a nitrogen atom.
- 45. A compound of Claim 41 wherein R¹ is selected from hydrido, alkyl, hydroxyalkyl and alkynyl.
 - 46. A compound of Claim 41 wherein R1 is hydrido.
- 47. A compound of Claim 41 wherein R² is cyclohexyl substituted with one or more substituents selected from optionally substituted lower hydroxyalkyl, lower alkylaminoalkylene and cycloalkylamino.
- 48. A compound of Claim 41 wherein R⁴ is optionally substituted phenyl.
- 49. A compound of Claim 41 wherein R⁴ is phenyl optionally substituted at a substitutable position with one or more radicals independently selected from chloro, fluoro, bromo and iodo.
- 50. A compound of Claim 41 wherein R4 is phenyl optionally substituted at the meta or para position with

35

40

alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl, heterocyclylsulfonyl, alkylaminoalkylene,

alkylsulfonylalkylene, acyl, acyloxycarbonyl, alkoxycarbonylalkylene, aryloxycarbonylalkylene, heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, heterocyclyloxycarbonylarylene, alkylcarbonylalkylene, arylcarbonylalkylene,

heterocyclylcarbonylalkylene, alkylcarbonylarylene, arylcarbonylarylene, heterocyclylcarbonylarylene, alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene, heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene, arylcarbonyloxyarylene, and

30 heterocyclylcarbonyloxyarylene; and

 ${
m R}^2$ is cyclohexyl substituted with one or more substituents selected from optionally substituted hydroxyalkyl, alkylaminoalkylene and cycloalkylamino; and

R4 is selected from cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein R4 is optionally substituted with one or more substituents independently selected from halo, haloalkyl, haloalkoxy, alkoxy, cyano, hydroxy, alkyl, alkenyl, and alkynyl, wherein said haloalkyl, haloalkoxy, alkoxy, hydroxy, alkyl, alkenyl, and alkynyl substituents may be optionally substituted with one or more alkylene, alkenylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; and

R⁵ represents one or more substituents independently selected from hydrogen, aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy, wherein said aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy substituents may be optionally substituted with one or more alkylene, alkenylene, hydroxy, halo, haloalkyl, alkoxy, keto,

41. A compound of Claim 39 having Formula XC:

wherein

Z represents a carbon atom or a nitrogen atom; R^1 is selected from hydrido, hydroxy, alkyl,

- 5 cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heterocyclyl, cycloalkylalkylene, cycloalkenylalkylene, heterocyclylalkylene, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, hydroxyalkenyl, hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl,
- arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl, alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, alkoxyaryl, heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl, alkylthioalkylene, alkenylthioalkylene, alkylthioalkenylene, amino, aminoalkyl, alkylamino,
- 15 alkenylamino, alkynylamino, arylamino, heterocyclylamino,

1111

R⁴ is selected from hydrido, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein
R⁴ is optionally substituted with one or more substituents independently selected from halo, haloalkyl, haloalkoxy, alkoxy, cyano, hydroxy, alkyl, alkenyl, and alkynyl, wherein said haloalkyl, haloalkoxy, alkoxy, cyano, hydroxy, alkyl, alkenyl, and alkynyl substituents may be optionally substituted with one or more alkylene, alkenylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; or

a pharmaceutically-acceptable salt or tautomer thereof.

135

5

40. A compound of Claim 39 selected from compounds, their tautomers and their pharmaceutically acceptable salts, of the group consisting of :

110

alkoxyarylene, alkylaryloxyalkylene, alkylcarbonyl, alkoxycarbonyl, aralkoxycarbonyl, alkylamino and alkoxycarbonylamino; wherein said aryl, heterocyclylalkylene and aryloxyalkylene radicals may be optionally substituted with one or more radicals independently selected from halogen, alkyl and alkoxy; and

100 R² is cyclohexyl substituted with one or more substituents selected from optionally substituted hydroxyalkyl, alkylaminoalkylene and cycloalkylamino; and

R³ is selected from pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylakyl, thiazolylamino,

wherein the R³ pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

groups may be optionally substituted with one or more substituents independently selected from hydrogen, aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy, wherein said aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy substituents may be optionally substituted with one or more alkylene, alkenylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; and

1109

alkylaminoalkylene, arylaminocarbonylalkylene, alkoxyarylaminocarbonylalkylene, aminocarbonylalkylene, arylaminocarbonylalkylene, alkylaminocarbonylalkylene, arylcarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, alkylaryloxycarbonylarylene, arylcarbonylarylene, alkylarylcarbonylarylene, alkoxycarbonylheterocyclylarylene, alkoxycarbonylalkoxylarylene, alkoxycarbonylalkoxylarylene,

60

90

heterocyclylcarbonylalkylarylene, alkylthioalkylene, cycloalkylthioalkylene, alkylthioarylene, aralkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, arylsulfonylaminoalkylene, alkylsulfonylarylene, alkylaminosulfonylarylene; wherein

70 said alkyl, cycloalkyl, aryl, heterocyclyl, aralkyl, heterocyclylalkylene, alkylheterocyclylarylene, alkoxyarylene, aryloxyarylene, arylaminocarbonylalkylene, aryloxycarbonylarylene, arylcarbonylarylene, alkylthioarylene, heterocyclylthioarylene,

arylthioalklylarylene, and alkylsulfonylarylene groups may be optionally substituted with one or more radicals independently selected from alkyl, halo, haloalkyl, alkoxy, keto, amino, nitro, and cyano; or

R²⁷ is -CHR²⁸R²⁹ wherein R²⁸ is alkoxycarbonyl, and R²⁹
is selected from aralkyl, aralkoxyalkylene,
heterocyclylalkylene, alkylheterocyclylalkylene,
alkoxycarbonylalkylene, alkylthioalkylene, and
aralkylthioalkylene; wherein said aralkyl and
heterocylcyl groups may be optionally substituted with
one or more radicals independently selected from alkyl
and nitro; or

R²⁶ and R²⁷ together with the nitrogen atom to which they are attached form a heterocycle, wherein said heterocycle is optionally substituted with one or more radicals independently selected from alkyl, aryl, heterocyclyl, heterocyclylalkylene, alkylheterocyclylalkylene, aryloxyalkylene,

heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene,
aryloxycarbonylarylene, heterocyclyloxycarbonylarylene,
alkylcarbonylalkylene, arylcarbonylalkylene,
heterocyclylcarbonylalkylene, alkylcarbonylarylene,
arylcarbonylarylene, heterocyclylcarbonylarylene,
alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene,
heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene,
arylcarbonyloxyarylene, and
heterocyclylcarbonyloxyarylene; or

R¹ has the formula

wherein:

i is an integer from 0 to 9;

R²⁵ is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl,

alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene; and

R²⁶ is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkylalkylene, aralkyl, alkoxycarbonylalkylene, and alkylaminoalkyl; and

R²⁷ is selected from alkyl, cycloalkyl, alkynyl, aryl, heterocyclyl, aralkyl, cycloalkylalkylene, cycloalkenylalkylene, cycloalkylarylene, cycloalkylcycloalkyl, heterocyclylalkylene, alkylarylene, alkylaralkyl, aralkylarylene, alkylheterocyclyl,

alkylheterocyclylalkylene, alkylheterocyclylarylene, aralkylheterocyclyl, alkoxyalkylene, alkoxyarylene, alkoxyaralkyl, alkoxyheterocyclyl, alkoxyalkoxyarylene, aryloxyarylene, aralkoxyarylene, alkoxyheterocyclylalkylene, aryloxyalkoxyarylene,

alkoxycarbonylalkylene, alkoxycarbonylheterocyclyl, alkoxycarbonylheterocyclylcarbonylalkylene, aminoalkyl,

1107

5 ethoxypropylene, and ethoxyisopropylene.

 ${\rm R}^{\rm 401a}$ is selected from chloro, fluoro, bromo and iodo; and

R402 is hydrido.

38. A compound of Claim 37 wherein R^{401a} is metachloro or para-chloro.

39. A compound of Formula IC:

5 wherein

R¹ is selected from hydrido, hydroxy, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heterocyclyl, cycloalkylalkylene, cycloalkenylalkylene, heterocyclylalkylene, haloalkyl, haloalkenyl,

- haloalkynyl, hydroxyalkyl, hydroxyalkenyl, hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl, alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, alkoxyaryl, heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl,
- alkylthioalkylene, alkenylthioalkylene, alkylthioalkenylene, amino, aminoalkyl, alkylamino, alkenylamino, alkynylamino, arylamino, heterocyclylamino, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl,
- alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl,
 heterocyclylsulfonyl, alkylaminoalkylene,
 alkylsulfonylalkylene, acyl, acyloxycarbonyl,
 alkoxycarbonylalkylene, aryloxycarbonylalkylene,

hydroxy-1-cyclopentylacetyl, and 3-hydroxy-1-cyclopentylacetyl, 2-hydroxy-2-cyclohexylacetyl;

 ${\rm R}^{\rm 401a}$ is selected from chloro, fluoro, bromo and iodo; and

10 R^{402} is hydrido.

- 32. A compound of Claim 31 wherein R^{401a} is metachloro or para-chloro.
 - 33. A compound of Claim 15 wherein:

R400 is optionally substituted lower hydroxyalkyl;

 ${\rm R}^{\rm 401}$ is selected from chloro, fluoro, bromo and iodo; and

5 R⁴⁰² is hydrido.

34. A compound of Claim 15 wherein:

R⁴⁰⁰ is selected from optionally substituted hydroxymethyl, hydroxyethyl, hydroxypropyl and hydroxyisopropyl;

 R^{401a} is selected from chloro, fluoro, bromo and iodo; and

R⁴⁰² is hydrido.

- 35. A compound of Claim 34 wherein R^{401a} is metachloro or para-chloro.
 - 36. A compound of Claim 15 wherein:

 ${\rm R}^{\rm 400}$ is optionally substituted lower alkoxyalkylene; ${\rm R}^{\rm 401a}$ is selected from chloro, fluoro, bromo and iodo;

5 R⁴⁰² is hydrido.

and

37. A compound of Claim 15 wherein:

R⁴⁰⁰ is selected from optionally substituted methoxymethylene, methoxyethylene, methoxypropylene, methoxyisopropylene, ethoxymethylene, ethoxyethylene,

1105

26. A compound of Claim 15 wherein:

R400 is optionally substituted lower hydroxyalkylcarbonyl;

R401a is selected from chloro, fluoro, bromo and iodo;

5 and

R402 is hydrido.

27. A compound of Claim 15 wherein:

R400 is selected from optionally substituted 2-hydroxyacetyl, 2-hydroxy-proprionyl, 2-hydroxy-2-methylpropionyl, 2-hydroxy-2-phenylacetyl, 3-

5 hydroxyproprionyl, 2-hydroxy-3-methylbutyryl, 2hydroxyisocapropyl, 2-hydroxy-3-phenylproprionyl, and 2hydroxy-3-imidazolylproprionyl;

 ${\bf R}^{401a}$ is selected from chloro, fluoro, bromo and iodo; and

10 R⁴⁰² is hydrido.

- 28. A compound of Claim 27 wherein \mathbb{R}^{401a} is metachloro or para-chloro.
- 29. A compound of Claim 27 wherein R^{401a} is parachloro and R^{401b} is hydrogen.
 - 30. A compound of Claim 15 wherein:

R⁴⁰⁰ is optionally substituted lower hydroxycycloalkylcarbonyl;

 R^{401a} is selected from chloro, fluoro, bromo and iodo;

5 and

R402 is hydrido.

31. A compound of Claim 15 wherein:

 R^{400} is selected from optionally substituted 1-hydroxy-1-cyclohexylacetyl, 2-hydroxy-1-cyclohexylacetyl, 3-hydroxy-1-cyclohexylacetyl, 4-hydroxy-1-

5 cyclohexylacetyl, 1-hydroxy-1-cyclopentylacetyl, 2-

1104

phenyl, lower alkylamino, lower alkylthio, lower
alkyloxy, phenyloxy, phenylamino, phenylthio, and
45 phenylalkoxy may be optionally substituted with one or
more lower alkylene, lower alkenylene, hydroxy, halo,
lower haloalkyl, lower alkoxy, keto, amino, nitro, cyano,
lower alkylsulfonyl, lower alkylsulfinyl, lower
alkylthio, lower alkoxyalkyl, phenyloxy, heterocyclyl,
50 and lower heteroaralkoxy; or

a pharmaceutically-acceptable salt or tautomer thereof.

- 17. A compound of Claim 15 wherein Z represents a carbon atom.
- 18. A compound of Claim 15 wherein Z represents a nitrogen atom.
- 19. A compound of Claim 15 wherein R⁴⁰⁰ is optionally substituted hydroxyalkylcarbonyl.
- 20. A compound of Claim 15 wherein R^{400} is optionally substituted hydroxycycloalkylcarbonyl.
- 21. A compound of Claim 15 wherein R^{400} is optionally substituted alkoxyalkylene.
- 22. A compound of Claim 15 wherein R^{400} is optionally substituted hydroxyalkyl.
- 23. A compound of Claim 15 wherein R^{401} represents one or more chloro, fluoro, bromo and iodo.
- 24. A compound of Claim 15 wherein \mathbb{R}^{401} is metachloro or para-chloro.
 - 25. A compound of Claim 15 wherein R^{402} is hydrido.

1103

lower heteroarylalkyl, wherein said cycloalkyl, lower alkyl, phenyl, lower phenylalkyl, lower haloalkyl, and lower heteroarylalkyl substituents may be optionally substituted with one or more substituents selected from lower alkylene, lower alkynylene, hydroxy, halo, lower haloalkyl, lower alkoxy, keto, amino, nitro, cyano, lower alkylsulfonyl, lower alkylsulfinyl, lower alkylthio, lower alkoxyalkyl, phenyloxy, heterocyclyl, and lower heteroaralkoxy; or

R⁴⁰⁰ is hydroxycycloalkylcarbonyl that is optionally substituted with one or more substituents selected from cycloalkyl, lower alkyl, phenyl, lower phenylalkyl, lower haloalkyl, and lower heteroarylalkyl, wherein said cycloalkyl, lower alkyl, phenyl, lower phenylalkyl, lower haloalkyl, and lower heteroarylalkyl substituents may be optionally substituted with one or more substituents selected from lower alkylene, lower alkynylene, hydroxy, halo, lower haloalkyl, lower alkoxy, keto, amino, nitro, cyano, lower alkylsulfonyl, lower alkylsulfinyl, lower alkylthio, lower alkoxyalkyl, aryloxy, heterocyclyl, and lower heteroaralkoxy; and

20

25

30

35

40

R^{401a} and R^{401b} are independently selected from hydrogen, halo, lower haloalkyl, lower haloalkoxy, lower alkoxy, cyano, hydroxy, lower alkyl, lower alkenyl, and lower alkynyl, wherein said lower haloalkyl, lower haloalkoxy, lower alkoxy, cyano, hydroxy, lower alkyl, lower alkenyl, and lower alkynyl substituents may be optionally substituted with one or more lower alkylene, lower alkenylene, lower alkynylene, hydroxy, halo, lower haloalkyl, lower alkoxy, keto, amino, nitro, cyano, lower alkylsulfonyl, lower alkylsulfinyl, lower alkylthio, lower alkoxyalkyl, phenyloxy, heterocyclyl, and lower heteroaralkoxy; and

R⁴⁰² is selected from hydrogen, phenyl, lower alkylamino, lower alkylthio, lower alkyloxy, phenyloxy, phenylamino, phenylthio, and phenylalkoxy, wherein said

30

35

1102

heteroarylalkyl, wherein said cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl substituents may be optionally substituted with one or more substituents selected from alkylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; and

R^{401a} and R^{401b} are independently selected from hydrogen, halo, haloalkyl, haloalkoxy, alkoxy, cyano, hydroxy, alkyl, alkenyl, and alkynyl, wherein said haloalkyl, haloalkoxy, alkoxy, hydroxy, alkyl, alkenyl, and alkynyl substituents may be optionally substituted with one or more alkylene, alkenylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; and

R⁴⁰² is selected from hydrogen, aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio,
40 aralkoxy, wherein said aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy substituents may be optionally substituted with one or more alkylene, alkenylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl,
45 alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; or

a pharmaceutically-acceptable salt or tautomer thereof.

16. A compound of Claim 15 wherein:

R⁴⁰⁰ is selected from lower hydroxyalkyl, lower hydroxyalkylcarbonyl and lower alkoxyalkylene, wherein said lower hydroxyalkyl, lower hydroxyalkylcarbonyl and lower alkoxyalkylene may be optionally substituted with one or more substituents selected from cycloalkyl, lower alkyl, phenyl, lower phenylalkyl, lower haloalkyl, and

- 14. A compound of Claim 4 wherein R^5 is hydrido.
- 15. A compound of Claim 1 having Formula XX:

wherein

5

10

15

20

Z represents a carbon atom or a nitrogen atom; \mathbb{R}^{400} is selected from hydroxyalkyl,

hydroxyalkylcarbonyl and alkoxyalkylene, wherein said hydroxyalkyl, hydroxyalkylcarbonyl and alkoxyalkylene may be optionally substituted with one or more substituents selected from cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl, wherein said cycloalkyl,

alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl substituents may be optionally substituted with one or more substituents selected from alkylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio,

a lkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy;

R⁴⁰⁰ is hydroxycycloalkylcarbonyl that is optionally substituted with one or more substituents selected from cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and

thereof.

- 5. A compound of Claim 4 wherein R² is piperidinyl substituted with at least one substituent attached to the distal nitrogen heteroatom or to a carbon ring atom adjacent to the distal nitrogen heteroatom of the piperidine ring.
- 6. A compound of Claim 4 wherein Z represents a carbon atom.
- 7. A compound of Claim 4 wherein Z represents a nitrogen atom.
- 8. A compound of Claim 4 wherein R¹ is selected from hydrido, alkyl, hydroxyalkyl and alkynyl.
 - 9. A compound of Claim 4 wherein R^1 is hydrido.
- 10. A compound of Claim 4 wherein R² is piperidinyl substituted with at least one substituent selected from lower hydroxyalkyl, lower hydroxyalkylcarbonyl and hydroxycycloalkylcarbonyl.
- 11. A compound of Claim 4 wherein R^4 is optionally substituted phenyl.
- 12. A compound of Claim 4 wherein R⁴ is phenyl optionally substituted at a substitutable position with one or more radicals independently selected from chloro, fluoro, bromo and iodo.
- 13. A compound of Claim 4 wherein R^4 is phenyl optionally substituted at the meta or para position with one or more chloro radicals.

1099

R2 is piperidinyl substituted with one or more substituents selected from hydroxycycloalkyl and hydroxycycloalkylcarbonyl, wherein said hydroxycycloalkyl 50 and hydroxycycloalkylcarbonyl substitutents may be optionally substituted with one or more substituents selected from cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl, wherein said cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl substituents may be optionally substituted with one or 55 more substituents selected from alkylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; 60 and

R4 is selected from cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein R4 is optionally substituted with one or more substituents independently selected from halo, haloalkyl, haloalkoxy, alkoxy, cyano, hydroxy, alkyl, alkenyl, and alkynyl, wherein said haloalkyl, haloalkoxy, alkoxy, hydroxy, alkyl, alkenyl, and alkynyl substituents may be optionally substituted with one or more alkylene, alkenylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; and

65

70

75

80

R⁵ represents one or more substituents independently selected from hydrogen, aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy, wherein said aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy substituents may be optionally substituted with one or more alkylene, alkenylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; or

a pharmaceutically-acceptable salt or tautomer

1098

alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, alkoxyaryl, heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl, alkylthioalkylene, alkenylthioalkylene, alkylthioalkenylene, amino, aminoalkyl, alkylamino, 15 alkenylamino, alkynylamino, arylamino, heterocyclylamino, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl, heterocyclylsulfonyl, alkylaminoalkylene, alkylsulfonylalkylene, acyl, acyloxycarbonyl, 20 alkoxycarbonylalkylene, aryloxycarbonylalkylene, heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, heterocyclyloxycarbonylarylene, alkylcarbonylalkylene, arylcarbonylalkylene, heterocyclylcarbonylalkylene, alkylcarbonylarylene,

25 heterocyclylcarbonylalkylene, alkylcarbonylarylene, arylcarbonylarylene, heterocyclylcarbonylarylene, alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene, heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene, arylcarbonyloxyarylene, and

30 heterocyclylcarbonyloxyarylene; and

35

40

R² is piperidinyl substituted with one or more substituents selected from hydroxyalkyl, hydroxyalkenyl, alkoxyalkylene, alkoxyalkenylene, hydroxyalkylcarbonyl, and hydroxyalkenylcarbonyl, wherein said hydroxyalkyl, hydroxyalkenyl, alkoxyalkylene, alkoxyalkenylene, hydroxyalkylcarbonyl, and hydroxyalkenylcarbonyl substitutents may be optionally substituted with one or more substituents selected from cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl, wherein said cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl substituents may be optionally substituted with one or more substituents selected from alkylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl,

alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; or

4. A compound of Claim 1 having Formula XB:

wherein

Z represents a carbon atom or a nitrogen atom; R¹ is selected from hydrido, hydroxy, alkyl,

5 cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heterocyclyl, cycloalkylalkylene, cycloalkenylalkylene, heterocyclylalkylene, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, hydroxyalkenyl, hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl,

3. A compound of Claim 1 selected from compounds, their tautomers and their pharmaceutically acceptable salts, of the group consisting of:

thereof.

5

2. A compound of Claim 1 wherein:

R² is piperidinyl substituted with one or more substituents selected from hydroxyalkyl, hydroxyalkenyl, hydroxyalkynyl, alkoxyalkylene, alkoxyalkenylene, alkoxyalkynylene, hydroxyalkylcarbonyl, hydroxyalkenylcarbonyl, and hydroxyalkynylcarbonyl, wherein said hydroxyalkyl, hydroxyalkenyl, hydroxyalkynyl, alkoxyalkylene, alkoxyalkenylene, alkoxyalkynylene, hydroxyalkylcarbonyl,

- hydroxyalkenylcarbonyl, and hydroxyalkynylcarbonyl substitutents may be optionally substituted with one or more substituents selected from cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl, wherein said cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and
- heteroarylalkyl substituents may be optionally substituted with one or more substituents selected from alkylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; or

R² is piperidinyl substituted with one or more substituents selected from hydroxycycloalkyl, alkoxycycloalkyl, and hydroxycycloalkylcarbonyl, wherein said hydroxycycloalkyl, alkoxycycloalkyl, and hydroxycycloalkylcarbonyl substitutents may be optionally substituted with one or more substituents selected from cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl, wherein said cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl substituents

30 may be optionally substituted with one or more substituents selected from alkylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl,

aryloxy, heterocyclyl, and heteroaralkoxy.

1093

wherein the R³ pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino,

135

150

155

160

groups may be optionally substituted with one or more substituents independently selected from hydrogen, aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy, wherein said aryl, alkylamino, alkylthio, alkyloxy, aryloxy, arylamino, arylthio, aralkoxy substituents may be optionally substituted with one or more alkylene, alkenylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; and

R4 is selected from hydrido, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein R4 is optionally substituted with one or more substituents independently selected from halo, haloalkyl, haloalkoxy, alkoxy, cyano, hydroxy, alkyl, alkenyl, and alkynyl, wherein said haloalkyl, haloalkoxy, alkoxy, cyano, hydroxy, alkyl, alkenyl, and alkynyl substituents may be optionally substituted with one or more alkylene, alkenylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; or

a pharmaceutically-acceptable salt or tautomer

R² is piperidinyl substituted with one or more 100 substituents selected from hydroxyalkyl, hydroxyalkenyl, hydroxyalkynyl, alkoxyalkylene, alkoxyalkenylene, alkoxyalkynylene, and hydroxyacyl, wherein said hydroxyalkyl, hydroxyalkenyl, hydroxyalkynyl, alkoxyalkylene, alkoxyalkenylene, alkoxyalkynylene, and 105 hydroxyacyl substitutents may be optionally substituted with one or more substituents selected from cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl, wherein said cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl substituents may be optionally substituted with one or more substituents 110 selected from alkylene, alkynylene, hydroxy, halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; or 115 R² is piperidinyl substituted with one or more substituents selected from hydroxycycloalkyl and alkoxycycloalkyl, and wherein said hydroxycycloalkyl and alkoxycycloalkyl substitutents may be optionally substituted with one or more substituents selected from 120 cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl, wherein said cycloalkyl, alkyl, aryl, arylalkyl, haloalkyl, and heteroarylalkyl substituents may be optionally substituted with one or more substituents selected from alkylene, alkynylene, hydroxy, 125 halo, haloalkyl, alkoxy, keto, amino, nitro, cyano, alkylsulfonyl, alkylsulfinyl, alkylthio, alkoxyalkyl, aryloxy, heterocyclyl, and heteroaralkoxy; and R³ is selected from pyridinyl, pyrimidinyl, quinolinyl, purinyl, maleimidyl, pyridonyl, thiazolyl, thiazolylalkyl, thiazolylamino, 130

1091

alkoxycarbonylalkoxylarylene,
heterocyclylcarbonylalkylarylene, alkylthioalkylene,
cycloalkylthioalkylene, alkylthioarylene,
aralkylthioarylene, heterocyclylthioarylene,
arylthioalklylarylene, arylsulfonylaminoalkylene,
alkylsulfonylarylene, alkylaminosulfonylarylene; wherein
said alkyl, cycloalkyl, aryl, heterocyclyl, aralkyl,
heterocyclylalkylene, alkylheterocyclylarylene,

heterocyclylalkylene, alkylheterocyclylarylene, alkoxyarylene, aryloxyarylene, arylaminocarbonylalkylene, aryloxycarbonylarylene, arylcarbonylarylene, alkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, and alkylsulfonylarylene groups may be optionally substituted with one or more radicals independently selected from alkyl, halo, haloalkyl, alkoxy, keto, amino, nitro, and cyano; or

R²⁷ is -CHR²⁸R²⁹ wherein R²⁸ is alkoxycarbonyl, and R²⁹ is selected from aralkyl, aralkoxyalkylene, heterocyclylalkylene, alkylheterocyclylalkylene, alkoxycarbonylalkylene, alkylthioalkylene, and aralkylthioalkylene; wherein said aralkyl and heterocylcyl groups may be optionally substituted with one or more radicals independently selected from alkyl

80

85

and nitro; or

R²⁶ and R²⁷ together with the nitrogen atom to which they are attached form a heterocycle, wherein said heterocycle is optionally substituted with one or more radicals independently selected from alkyl, aryl,

heterocyclyl, heterocyclylalkylene, alkylheterocyclylalkylene, aryloxyalkylene, alkoxyarylene, alkylaryloxyalkylene, alkylcarbonyl, alkoxycarbonyl, aralkoxycarbonyl, alkylamino and alkoxycarbonylamino; wherein said aryl,

heterocyclylalkylene and aryloxyalkylene radicals may be optionally substituted with one or more radicals independently selected from halogen, alkyl and alkoxy; and

30 arylcarbonyloxyarylene, and heterocyclylcarbonyloxyarylene; or

R1 has the formula

wherein:

35 i is an integer from 0 to 9;

> R²⁵ is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and

40 heterocyclylcarbonylaminoalkylene; and

> R²⁶ is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkylalkylene, aralkyl, alkoxycarbonylalkylene, and alkylaminoalkyl; and R²⁷ is selected from alkyl, cycloalkyl, alkynyl,

45 aryl, heterocyclyl, aralkyl, cycloalkylalkylene, cycloalkenylalkylene, cycloalkylarylene, cycloalkylcycloalkyl, heterocyclylalkylene, alkylarylene, alkylaralkyl, aralkylarylene, alkylheterocyclyl, alkylheterocyclylalkylene, alkylheterocyclylarylene,

50 aralkylheterocyclyl, alkoxyalkylene, alkoxyarylene, alkoxyaralkyl, alkoxyheterocyclyl, alkoxyalkoxyarylene, aryloxyarylene, aralkoxyarylene, alkoxyheterocyclylalkylene, aryloxyalkoxyarylene, alkoxycarbonylalkylene, alkoxycarbonylheterocyclyl,

55 alkoxycarbonylheterocyclylcarbonylalkylene, aminoalkyl, alkylaminoalkylene, arylaminocarbonylalkylene, alkoxyarylaminocarbonylalkylene, aminocarbonylalkylene, arylaminocarbonylalkylene, alkylaminocarbonylalkylene, arylcarbonylalkylene, alkoxycarbonylarylene,

60 aryloxycarbonylarylene, alkylaryloxycarbonylarylene, arylcarbonylarylene, alkylarylcarbonylarylene, alkoxycarbonylheterocyclylarylene,

1089

WHAT IS CLAIMED IS:

1. A compound of Formula IB:

wherein

R¹ is selected from hydrido, hydroxy, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heterocyclyl, cycloalkylalkylene, cycloalkenylalkylene, heterocyclylalkylene, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, hydroxyalkenyl,

- hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl, alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, alkoxyaryl, heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl, alkylthioalkylene, alkenylthioalkylene,
- alkylthioalkenylene, amino, aminoalkyl, alkylamino, alkenylamino, alkynylamino, arylamino, heterocyclylamino, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl,
- 20 heterocyclylsulfonyl, alkylaminoalkylene,
 alkylsulfonylalkylene, acyl, acyloxycarbonyl,
 alkoxycarbonylalkylene, aryloxycarbonylalkylene,
 heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene,
 aryloxycarbonylarylene, heterocyclyloxycarbonylarylene,
- alkylcarbonylalkylene, arylcarbonylalkylene, heterocyclylcarbonylalkylene, alkylcarbonylarylene, arylcarbonylarylene, heterocyclylcarbonylarylene, alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene, heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene,

1088

Biological data for a number of compounds are shown in the following table. In vitro p38 alpha kinase inhibitory data are shown in the column identified as "p38 alpha IC_{50} (μ M)". In vitro human whole blood assay data for measuring the ability of the compounds to inhibit TNF production in human whole blood stimulated with LPS are shown in the column identified as: "HWB IC_{50} (μ M)". In vivo assessment of the ability of the compounds to inhibit LPS-stimulated TNF-release in the rat is shown in the column identified as: "ratLPS/%Inh@dose(mg/kg)" wherein the dose is in milligram per kilogram (mg/kg) administered by oral gavage, 4 hours before LPS challenge.

Example	p38 alpha	HWB IC ₅₀	ratLPS/%Inh	ratLPS/%Inh	ratLPS/%Inh
	IC ₅₀ (uM)	(uM)	@1.0(mg/kg)	@5.0(mg/kg)	@20.0(mg/kg)
D-1	0.17		83.0		
D-2	0.084	1.79	89.0	95.0	
D-3	0.095	0.46	69.0	88.0	91.0
D-4	0.91	1.55	42.3	83.0	99.0
D-5	0.14	4.09	65.0	78.5	83.0
D-6	0.083	1.33	82.0	96.0	100
D-7	0.44	>25.0		0	·
D-8	0.18	1.3	65	85	
D-9	1.63	15.8	5	86	
D-10	3.95	14.8		80	
D-11	0.16	1.5	43	86	
D-12	0.82	7.06	71	91	
D-13	0.33	8.36	53	87	
D-6 D-7 D-8 D-9 D-10 D-11 D-12	0.083 0.44 0.18 1.63 3.95 0.16 0.82	1.33 >25.0 1.3 15.8 14.8 1.5	82.0 65 5 43 71	96.0 0 85 86 80 86	<u> </u>

1087

respectively in a mixture of formaldehyde and formic acid at temperatures ranging from 40 $^{\circ}\text{C}$ to 110 $^{\circ}\text{C}$.

 $\hbox{ An additional group of compounds of interest includes} \\ 10 \quad \hbox{the following:}$

affords the cis-aminocyclohexane 13, or transaminocyclohexane 14 or the trans-aminomethylcyclohexane 15
respectively (Scheme 3). Suitable reductive alkylations
on 13, 14 or 15 with 1-1.5 equivalents of aldehydes or
ketones in the presence of a reducing agent like sodium
cyanoborohydride or sodium triacetoxyborohydride in
solvents such as methanol, ethanol, acetic acid,
tetrahydrofuran or dichloromethane lead to the desired
mono-alkylated derivatives 16, 17 or 18 respectively.

10

Scheme 3

where R4 can be H

The dimethyl derivatives 19, 20 or 21 can be prepared by heating a solution of the aminocyclohexanes 13, 14 or 15

PCT/US99/26007

1085

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(p-fluorophenoxy)pyrimidyl]-3-(4-chlorophenyl)pyrazole

5

Example D-43

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(p-fluoroanilino)pyrimidyl]-3-(4-chlorophenyl)pyrazole

10

In a manner similar to that outlined above in Scheme D-1, for the synthesis of the piperidine analogs 6, the aminocyclohexane analogs are prepared by substitution of 1 in Scheme D-1 with a suitably protected (Boc is shown) methyl or ethyl ester of cis-aminocyclohexane carboxylic acid 10 or trans-aminocyclohexane carboxylic acid 11 or trans-aminomethylcyclohexane carboxylic acid 12, which

Example D-40

5 5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-R-methylbenzylamino)pyrimidyl]-3-(4-chlorophenyl)pyrazole

10

Example D-41

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-methoxy)pyrimidyl]-3-(4-chlorophenyl)pyrazole

15

Example D-42

WO 00/31063

1083

PCT/US99/26007

Example D-37

5 5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-methylamino)pyrimidyl]-3-(4-chlorophenyl)pyrazole

10 Example D-38

15

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-isopropylamino)pyrimidyl]-3-(4-chlorophenyl)pyrazole

Example D-39

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-S-20 methylbenzylamino)pyrimidyl]-3-(4-chlorophenyl)pyrazole

The following 2-substituted pyrimidine compounds can be prepared as set forth above, particularly in a manner similar to that outlined above in Scheme D-2.

5

Example D-34

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-thiomethyl)pyrimidyl]-3-(4-chlorophenyl)pyrazole

10

15

Example D-35

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-methanesulfonyl)pyrimidyl]-3-(4-chlorophenyl)pyrazole

Example D-36

20

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-amino)pyrimidyl]-3-(4-chlorophenyl)pyrazole

such as N-methylmorpholine or diisopropyl ethylamine) affords the desired final products 17.

1080

benzene affords the hydrazone 12. The hydrazone 12 is deprotonated under basic (base selected from LiHMDS or LDA or tBuOK) conditions in an anhydrous solvent such as tetrahydrofuran or ether and the anion is reacted in situ with a suitably substituted benzoyl chloride 5 to afford, after mild aqueous work up, the desired and fully protected pyrazole 13. Oxidation of the 2-mercaptomethyl group present in 13 with oxidants selected from but not limited to Oxone, H₂O₂ or mCPBA in solvents such as dichloromethane, acetonitrile or tetrahyrofuran affords 10 the 2-methane sulfonyl pyrazole 14. The 2-methanesulfone group in 14 is conveniently displaced with various amines, aryloxides alkoxides or in solvents such as tetrahydrofuran, dioxane, dimethylformamide 15 acetonitrile at temperatures ranging from 20 °C to 200 °C. Under these reaction conditions the tosyl protecting group the pyrazole is also simultaneously deprotected. Aqueous workup affords the desired tosyl deprotected, 2alkoxy, or 2-aryloxy or 2-amino substituted pyrazoles 15. 20 The alkoxides or aryloxides are generated from their respective alcohols or phenols with suitable bases such as LDA or tBuOK LiHMDS, NaH, in solvents tetrahydrofuran, dioxane or dimethylformamide. Deprotection of the remaining N-Boc group in 15 25 accomplished with trifluoroacetic acid or hydrochloric acid in solvents such as dichloromethane or dioxane to afford the pyrazole 16. Treatment of the pyrazole 16 with an acid chloride 7 in the presence of base or with an acid 8 under standard peptide coupling conditions (EDC or DCC 30 or PyBrOP with an additive such as HOBt or HATU and base

PCT/US99/26007

1079

Example D-32

5-[4-N-(2-hydroxy-3-(4-hydroxyphenyl)propionyl)piperidyl]4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

5

Example D-33

10

5-[4-N-(2-hydroxy-3-imidazolpropionyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15

20

The synthesis of 2-substituted pyrimidinyl pyrazoles Reaction of 2-methylmercapto-4is shown in Scheme 2. methyl ester 10 with N-Boc methyl pyrimidine isonipecotic acid (1) under basic (base selected from LiHMDS or LDA or tBuOK) conditions in an anhydrous solvent such as tetrahydrofuran or ether affords the desired Condensation of the ketone 11 with tosyl ketone 11. hydrazine under refluxing conditions in either toluene or

Example D-30

5 5-[4-N-(2-hydroxy-2-(4-trifluoromethylphenyl)acetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

10

Example D-31

5-[4-N-(2-hydroxy-3-phenylpropionyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

Example D-27

5-[4-N-(2-hydroxy-2-cyclohexylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

Example D-28

10

5

5-[4-N-(2-hydroxy-2-(4-methoxyphenyl)acetyl)piperidyl]-4(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15.

Example D-29

5-[4-N-(2-hydroxy-2-(3-methoxyphenyl)acetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

Example D-24

5-[4-N-(2-hydroxy-3,3,3-trifluoropropionyl)piperidyl]-4(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

Example D-25

10

5

5-[4-N-(2-hydroxy-3-methylbutyryl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15

Example D-26

5-[4-N-(2-hydroxyisocaproyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

1075

Example D-21

5-[4-N-(2-hydroxy-1-cyclopentylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

Example D-22

10

5

5-[4-N-(3-hydroxy-1-cyclopentylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15

Example D-23

5-[4-N-(3-hydroxypropionyl)piperidyl]-4-(4-pyrimidyl)-3(4-chlorophenyl)pyrazole

Example D-18

5-[4-N-(3-hydroxy-1-cyclohexylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

Example D-19

10

5

5-[4-N-(4-hydroxy-1-cyclohexylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15

Example D-20

5-[4-N-(1-hydroxy-1-cyclopentylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

PCT/US99/26007 WO 00/31063

1073

Example D-15

5-[4-N-(2-hydroxy-2-(3-chlorophenyl)acetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

5

Example D-16

10

5-[4-N-(1-hydroxy-1-cyclohexylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15

Example D-17

5-[4-N-(2-hydroxy-1-cyclohexylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

following the method of Example C-1 and substituting 3-trifluoromethylbenzoyl chloride for 4chlorobenzoyl chloride the title compound was prepared. ¹H NMR (DMF-d₂) 13.76(s, 1H), 9.41(s, 1H), 8.91(d, J =5.3 Hz, 1H), 8.02(s, 1H), 7.95(t, J = 6.5 Hz, 2H), 7.85(t, J = 7.5 Hz, 1H), 7.53 (d, J = 4.6 Hz, 1H), 4.78 (d, J = 11.9Hz, 1H), 4.45 (d, J = 16.3 Hz, 2H), 4.06 (d, J = 12.5 Hz, 10 1H), 3.69(bs, 2H), 3.34(t, J = 11.3 Hz, 1H), 3.01(d, J = 11.3 Hz, 1H) 13.1 Hz, 1H), 2.20(d, J = 11.1 Hz, 2H), 2.12(br, 1H); MS (M + H): 432 (base peak).

The following examples can be prepared in a manner similar to that described above for the synthesis of Examples C1-C13.

Example D-14

5-[4-N-(2-hydroxy-2-(2-chlorophenyl)acetyl)piperidyl]-4(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

PCT/US99/26007

1071

Hz, 1H), $4.60 \, (d, J = 11.7 \, Hz, 1H)$, $4.25 \, (s, 2H)$, $3.87 \, (d, J = 12.7 \, Hz, 1H)$, $3.52 \, (bs, 2H)$, $3.17 \, (t, J = 12.1 \, Hz, 1H)$, $2.84 \, (d, J = 12.5 \, Hz, 1H)$, $2.03 \, (d, J = 11.9 \, Hz, 2H)$, $1.87 \, (br, 1H)$; MS (M + H): $398 \, (base peak)$.

5

Example D-12

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(3-fluorophenyl)pyrazole

10

By following the method of Example C-1 and substituting 3-fluorobenzoyl chloride for 4-chlorobenzoyl chloride the title compound was prepared. ^{1}H NMR (DMF-d₇) 13.38(s, 1H), 9.24(s, 1H), 8.72(d, J=5.2 Hz, 1H), 7.49(dd, J=8.0 and 6.2 Hz, 1H), 7.24-7.32(m, 4H), 4.60(d, J=13.1 Hz, 1H), 4.25(s, 2H), 3.87(d, J=13.3 Hz, 1H), 3.55-3.60(m, 1H), 3.52(s, 1H), 3.17(t, J=12.2 Hz, 1H), 2.82(d, J=12.9 Hz, 1H), 2.03(d, J=10.9 Hz, 2H), 1.83-1.96(m, 1H); MS (M + H): 382 (base peak).

Example D-13

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(3-trifluoromethylphenyl)pyrazole

1070

By following the method of Example C-1 and substituting 4-trifluoromethoxybenzoyl chloride for 4-5 chlorobenzoyl chloride the title compound was prepared.

¹H NMR (DMF-d₇) 13.55(s, 1H), 9.40(s, 1H), 8.88(d, J = 4.6 Hz, 1H), 7.81(d, J = 7.7 Hz, 2H), 7.64(br, 2H), 7.47(d, J = 4.4 Hz, 1H), 4.75(br, 1H), 4.42(s, 2H), 4.04(d, J = 12.5 Hz, 1H), 3.69(br, 2H), 3.34(t, J = 12.0 Hz, 1H), 3.0(br, 1H), 2.20(d, J = 11.7 Hz, 2H), 2.05(br, 1H); MS (M + H): 448 (base peak).

Example D-11

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(3-chlorophenyl)pyrazole

By following the method of Example C-1 and substituting 3-chlorobenzoyl chloride for 4-chlorobenzoyl chloride the title compound was prepared. ^{1}H NMR (DMF- d_{7}) 13.41(s, 1H), 9.24(s, 1H), 8.73(d, J = 4.9 Hz, 1H), 7.56(s, 1H), 7.49(br, 2H), 7.41(br, 1H), 7.32(d, J = 4.2

1069

3.34(t, J = 12.2 Hz, 1H), 3.0(br, 1H), 2.21(d, J = 10.9 Hz, 2H), 2.08(br, 1H); MS (M + H): 382 (base peak).

Example D-9

5

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-trifluoromethylphenyl)pyrazole

10

By following the method of Example C-1 and substituting 4-trifluoromethylbenzoyl chloride for 4-chlorobenzoyl chloride the title compound was prepared. 1 H NMR (DMF- d_{7}) 13.47(s, 1H), 9.24(s, 1H), 8.73(d, J=4.0 Hz, 1H), 7.77(bd, J=13.3 Hz, 4H), 7.34(d, J=4.3 Hz, 1H), 4.61(br, 1H), 4.26(s, 2H), 3.87(br, 1H), 3.52(s, 2H), 3.17(t, J=12.0 Hz, 1H), 2.8 (br, 1H), 2.02(br, 2H), 1.91(br, 1H); MS (M + H): 432 (base peak).

20

15

Example D-10

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-trifluoromethoxyphenyl)pyrazole

By following the method of Example C-1 and substituting (R)-phenylacetic acid for glycolic acid the title compound was prepared. ¹H NMR (DMSO-d₆) 9.15 (d, J = 0.9 Hz, 1H), 8.63 (d, J = 5.4 Hz, 1H), 7.40 (m, 9H), 7.13 (t, J = 6.6 Hz, 1H), 5.43 (d, J = 19.5 Hz, 1H), 4.51 (s, 1H), 4.04 (m, 1H), 3.33 (m, 4H), 2.8 (m, 2H), 1.68 (m, 3H); MS (M + H): 474 (base peak).

10

5

Example D-8

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-fluorophenyl)pyrazole

15

By following the method of Example C-1 and substituting 4-fluorobenzoyl chloride for 4-chlorobenzoyl chloride the title compound was prepared. ^{1}H NMR (DMF- d_{7}) 13.48(s, 1H), 9.40(s, 1H), 8.86(d, J = 5.1 Hz, 1H), 7.71(br, 2H), 7.42(bd, J = 5.2 Hz, 3H), 4.78(br, 1H), 4.43(s, 2H), 4.04(br, 1H), 3.79(br, 1H), 3.70(s, 1H),

1067

7.39(d, J=7.79Hz, 2H), 7.31(d, J=8.33, 2H), 7.10(dd, J=1.34, 5.1Hz, 1H), 4.76(m, 1H), 4.41(m, 2H), 3.99(m, 1H), 2.97(m, 1H), 2.45(m, 1H), 1.83(m, 2H), 1.64(m, 2H), 1.15(m, 3H); MS (M+H): 412 (base peak).

5

Example D-6

(R)-N-(2-Hydroxypropionyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole hydrochloride

10

25

following By the method of Example substituting (R)-lactic acid for glycolic acid the title 15 compound was prepared. ¹H NMR (CDCl₁) 9.24(s, 1H), 8.52(d, J = 5.0 Hz, 1H), 7.32-7.36(m, 4H), 6.98(d, J = 5.3)Hz, 1H), 4.72(d, J = 10.5 Hz, 1H), 4.55(br, 1H), 3.88(d, J)= 13.1 Hz, 1H), 3.66(br, 1H), 3.19(br, 1H), 2.82(t, J =12.4 Hz, 1H), 2.10(br, 2H), 1.37(d, J = 6.2 Hz, 3H), 1.81-20 1.90 (m, 2H); MS (M + H): 412 (base peak).

Example D-7

(R)-N-(2-Hydroxy-2-phenylacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

1066

The suspension was treated with water and temperature. the resulting solution was extracted with ethyl acetate. The organic phase was filtered through phase separation paper (to remove the residual water) and was concentrated 5 in vacuo to leave an oily solid. The solid was dried under vacuum and was treated with CH₃CN. The suspension was filtered to afford 825 mg of an off-white solid. solid was suspended in 5 mL of dioxane and 0.5 mL of 4 N $\,$ HCl in dioxane was added. The suspension was stirred for 10 1 hour and the suspension was filtered to leave a solid. solid was washed with Et₂O and the resulting The suspension was filtered to give 900 mg of the title compound. ^{1}H NMR (DMSO- d_{6}) 9.23 (s, 1H), 8.69 (s, 1H), 7.45 (m, 4H), 7.19 (s, 1H), 4.8 (br m, 4H), 3.85 (m, 2H), 3.38 (m, 1H), 1.89 (m, 2H), 1.72 (m, 2H), 1.37 (s, 6H); MS15 (M + H): 426 (base peak).

Example D-5

20 (S)-N-(2-Hydroxypropionyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole hydrochloride

By following the method of Example C-1 and substituting (S)-lactic acid for glycolic acid the title compound was prepared. ^{1}H NMR (DMSO- d_{6}) 13.15(s, br, 1H), 9.12(d, J=1.07 Hz, 1H), 8.59(d, J=5.37Hz, 1H),

1065

Example D-4

N-(2-Hydroxy-2-methylpropionyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole hydrochloride

5

To a suspension of 2.05 g (6.1 mmol) of 5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl) pyrazole 10 (Example C-1, Step 3) and 3.7 g (30.5 mmol) of N,Ndimethylamino pyridine in 30 mL of CH2Cl, was added 1.06 mL (7.3 mmol) of 2-acetoxy-2-methylpropionyl chloride. The reaction was allowed to stir overnight at ambient temperature. The reaction was quenched with saturated 15 NH4Cl and water. The resulting aqueous phase was extracted with CH,Cl,. The combined organic layers were concentrated in vacuo to leave an oily solid. The residue was treated with CH₃CN and allowed to stand for 15 The resulting suspension was diluted with Et20 minutes. 20 and was filtered to afford 2.2 q of a solid. Analysis by LC/MS indicated that the solid was a mixture of the hydroxy derivative and the acetoxy derivative. This solid was carried on to the next step without purification.

Step 2: A solution of 1 g of the solid from step 1 in 10 mL of MeOH was treated with 500 mg of solid K_2CO_3 . The mixture was allowed to stir overnight at ambient

To a suspension of 250 mg (0.74 mmol) of 5-(4piperidyl) -4-(4-pyrimidyl) -3-(4-chlorophenyl) pyrazole (Example C-1, Step 3) and 180 mg (1.48 mmol) of N,Ndimethylamino pyridine in 20 mL of CH,Cl, was added 88 mg (0.81 mmol) of 2-methoxyacetyl chloride. The reaction was stirred for 5 hours. The reaction was quenched with 20 mL of saturated NH4Cl. The mixture was extracted with nbutyl alcohol and the organic layer was washed with brine. 10 The solvent was removed to afford 72 mg of an oil. oil was dissolved in 1 mL of warm MeOH. This solution was combined with a warm solution of 1 equivalent of fumaric acid in warm MeOH. The solution was cooled to ambient 15 temperature and the reaction was allowed to stir for 1 The solvent was removed in vacuo and the residue was triturated with Et,O. The resulting solid was isolated by filtration to yield 56 mg of an off-white powder. ^{1}H NMR (DMSO-d₆) 13.23 (bs, 1H), 9.19 (d, J =20 1.2 Hz, 1H), 8.65 (d, J = 5.1 Hz, 1H), 7.41 (m, 4H), 7.16 (dd, J = 5.4, 1.2 Hz, 1H), 4.45 (bd, J = 11.1 Hz, 1H),4.11 $(q_{AB}, J = 39.0, 13.8 \text{ Hz}, 2H), 3.86 \text{ (bd, } J = 12.9 \text{ Hz},$ 1H), 3.32 (m, 4H), 3.04 (bt, J = 12.3 Hz, 1H), 2.63 (bt, J= 12.0 Hz, 1H, 1.77 (m, 4H); MS (M + H); 411 (base)25 peak).

A 25 mL round bottom flask was charged with 65 mg 5 (0.164 mmol) of N-(2-hydroxyacetyl)-5-(4-piperidyl)-4-(4pyrimidyl)-3-(4-chlorophenyl) pyrazole and 2.5 mL dioxane. To this suspension was added 0.082 mL of 4 N HCl The mixture was stirred for 2 hours. in dioxane. The mixture was diluted with 5 mL of Et₂O and filtered. 10 solid was dried over solid CaSO, under vacuum for 12 h to afford 68 mg of N-(2-hydroxyacetyl)-5-(4-piperidyl)-4-(4pyrimidyl) -3-(4-chlorophenyl) pyrazole hydrochloride. ¹H NMR (DMSO-d₆) 9.18(s, 1H), 8.63(d, J=5.37 Hz, 1H), 7.40(d, J=8.59 Hz, 2H), 7.33(d, J=8.59 Hz, 2H), 7.15(m)15 1H), 4.40 (m, 1H), 4.06 (m, 2H), 3.72 (m, 1H), 3.33 (m, 1H), 2.97 (m, 1H), 2.62 (m, 1H), 1.83 (m, 2H), 1.64 (m, 2H); MS (M+H): 398

Example D-3

20

N-(2-Methoxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole (fumarate salt)

g (122 mmol) of 1-hydroxybenzotriazole and 8.1 g (106 mmol) of glycolic acid. The addition of glycolic acid was followed by the addition of 23.7 g (122 mmol) of 1-(3dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride. The reaction was allowed to stir at ambient temperature overnight. The reaction was concentrated in vacuo to leave an oily residue. The residue was dissolved in 400 mL of methanol and 50 mL of 2.5 N NaOH. The reaction mixture was stirred at ambient temperature for 1 hour. 10 The mixture was acidified to pH 5 with 2 N HCl and was extracted with CH2Cl2 (6 x 200 mL). The combined organic phases were filtered through phase paper and the filtrate was concentrated in vacuo to leave a yellow residue. residue was treated with 75 mL of acetonitrile. 15 precipitate formed. The solid was filtered and washed with additional acetonitrile and Et₂O to afford 31.4 g of N-(2-hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4chlorophenyl) pyrazole. ¹H NMR (DMSO-d₅) 9.20 (s. 1H). 8.67 (d, J = 4.8, 1H), 7.40 (m, 4H), 7.17 (d, J = 4.0, 20 1H), 4.53 (m, 2H), 4.13 (s, 2H), 3.77 (m, 1H), 3.05 (t, J= 12.7 Hz, 1H), 2.69 (m, 1H), 1.90 (m, 2H), 1.73 (m, 2H);MS (M + H): 398 (base peak).

Example D-2

25

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole hydrochloride

1061

with THF (100 mL). The combined filtrates were evaporated under reduced pressure to a semisolid.

The semisolid residue was dissolved in 450 mL THF and 180 mL of 12 N HCl was added to this solution rapidly. 5 The reaction mixture was heated to 65 °C for 1.5-2 hours and transferred to a separatory funnel. The organic layer was discarded and the aqueous phase was washed twice with 200 mL of THF. The aqueous phase was transferred back to a 2 L flask and cooled to 0-10 °C in an ice bath. of the solution was adjusted to between ~ 9-10 by dropwise 10 addition of 15 N ammonium hydroxide (~ 180 mL). mixture was transferred back to a separatory funnel and extracted with warm n-butanol (3 X 150 mL). The combined n-butanol phases were evaporated under reduced pressure to The residue was then stirred with methanol (200 15 dryness. mL), filtered and dried to obtain 129 g (90%) of the desired 5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl) pyrazole as a off-white solid. This material was identical in all respects to the material prepared by 20 Method A.

Step 5: A 1 L round bottom flask was charged with 34.2 g (102 mmol) of 5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl) pyrazole, 500 mL of CH₂Cl₂ and 26.6 mL (153 mmol) of Hunig's base. To this suspension was added 16.5

1060

J = 5.2 Hz, 1H), 3.16 (m, 1H), 3.00 (d, J = 11.9 Hz, 2H), 2.52 (m, 2H), 1.69 (m, 4H); MS (M + H): 340 (base peak).

Method B: To a solution of 200 g (423 mmol) of N-tbutylcarbonyl-1-(4-piperidyl)-2-(4-pyrimidyl)-1-ethanone p-toluenesulfonyl hydrazone in 800 mL THF was added 70 mL 10 (500 mmol) of triethylamine in a 3 L three necked flask. The solution was cooled in an ice/salt/water bath to 0-5To this cold solution was added a solution of 4-°C. chlorobenzoyl chloride (74 g, 423 mmol) in 100 mL THF 15 dropwise, maintaining the temperature below 10 °C. After the addition was complete the ice-bath was removed and replaced with a heating mantle. 4-N, dimethylaminopyridine (5 g, 40 mmol) was added and the reaction mixture was heated to 50 °C for 15-30 minutes. 20 The reaction mixture was filtered and the residue washed

PCT/US99/26007

Method A. A 2 L 3-necked round bottom flask fitted with an overhead mechanical stirrer, a N_2 inlet, addition funnel and a thermocouple was charged with 400 mL (400 mmol) of a 1.0 M solution of LiHMDS in THF. solution was cooled to -21.9 °C and a solution of 62 g (131 mmol) of N-t-butylcarbonyl-1-(4-piperidyl)-2-(4pyrimidyl)-1-ethanone p-toluenesulfonyl hydrazone in 400 mL of THF was added slowly. The temperature never exceeded -11 °C throughout the addition. The solution was re-cooled to -19.6 °C and 23.0 g (131 mmol in 250 mL of 10 THF) of p-chlorobenzoylchloride was added slowly. temperature never exceeded -13 °C throughout the addition. The cooling bath was removed and the reaction was allowed to warm to ambient temperature. After 3 hours the 15 reaction was quenched with 600 mL of 3 N HCl. The reaction was warmed to reflux and was held at reflux for 2 The reaction was allowed to cool to ambient hours. temperature overnight. The reaction mixture was washed with 1.4 L of Et_2O and the aqueous phase was neutralized with 1 L of 2.5 N NaOH. The aqueous phase was extracted 20 with ethyl acetate (2 \times 1000 mL). The combined organic phases were washed with brine (1 \times 500 mL), dried over anhydrous Na2SO4, filtered and concentrated in vacuo to afford 21 g of a yellow solid. The solid was suspended in 500 mL of 2:1 Et₂O/hexane. After sonication the solid was 25 isolated by filtration to leave a wet solid. The solid was dried in a vacuum oven to afford 13.8 g of 5-(4piperidyl) -4-(4-pyrimidyl) -3-(4-chlorophenyl) pyrazole. ¹H NMR (DMSO- d_6) 9.18 (s, 1H), 8.65 (d, J = 5.2, 1H), 30 7.44 (d, J = 8.5, 2H), 7.37 (d, J = 7.7 Hz, 2H), 7.15 (d,

a thermocouple was charged with 1.5 L of toluene, 226 g (0.742 mol) of N-t-butylcarbonyl-1-(4-piperidyl)-2-(4pyrimidyl)-1-ethanone and 138.4 g (0.743 mol) of tosyl hydrazide. The mixture was warmed to reflux. solution was allowed to reflux for 2 hours and was cooled 5 to ambient temperature. The reaction was allowed to stand overnight. A fine precipitate formed and was removed by filtration. The filtrate was concentrated in vacuo to afford a brown solid. The solid was suspended in 500 mL of ethyl acetate and the resulting mixture was placed in a 10 sonication bath for 5 hours. The mixture was cooled in an ice bath and was filtered to afford 310 g of a wet solid. The solid was dried in a vacuum oven (40 °C, 5 mm) overnight to afford 248 g of the desired hydrazone (71%). ¹H NMR (CDCl₃) δ 9.03 (d, J = 1.2 Hz, 1H), 8.72 (d, J = 5.2 15 Hz, 2H), 7.89 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.26 (dd, J = 5.2, 1.0 Hz, 1H), 4.03 (d, J = 12.1 Hz, 2H), 3.76 (s, 2H), 2.71 (t, J = 12.1 Hz, 2H), 2.43 (s, 3H), 2.34 (m, 1H), 1.66 (d, J = 13.5 Hz, 2H), 1.47 (s, 20 9H), 1.38 (m, 2H); MS (M + H): 474 (base peak).

Step 4:

Step 2: A 3 L 3-necked round bottom flask fitted with an overhead mechanical stirrer, a $N_{\rm 2}$ inlet, an addition funnel and a thermocouple was charged with 1850 mL (1.85 5 mol) of a 1.0 M solution of LiHMDS in THF. The flask was cooled to 5 $^{\circ}\text{C}$ and 68 mL (0.74 mol) of 4-methylpyrimidine was added (neat) to the stirred solution. solution was added 198 g (0.77 mol) of Ethyl-N-t-10 butylcarbonyl isonipecotate dissolved in 160 mL of THF. The ice bath was removed and the reaction was allowed to stir for 18 hours. The reaction was quenched with 500 mL of saturated NH4Cl and was extracted with 500 mL of ethyl The organic phase was washed with 500 mL of acetate. 15 brine, dried over anhydrous Na₂SO₄, filtered concentrated in vacuo to afford 235 g of a brown oil.

20 Step 3: A 2 L 3-necked round bottom flask fitted with an overhead mechanical stirrer, a Dean-Stark trap and

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

5

Step 1: A 5 L 4-necked round bottom flask fitted with an overhead mechanical stirrer, N₂ inlet and a thermocouple was charged with 600 g (2.75 mol) of di-tert-butyl-dicarbonate and 1.5 L of CH₂Cl₂. The solution was cooled to 0 °C and 428 g (2.73 mol) of ethyl isonipecotate was added dropwise via an addition funnel. The addition took 45 minutes and the temperature rose from 0 °C to 17.4 °C. The reaction mixture was stirred for an additional 2 hours at ambient temperature. The solvent was removed in vacuo to afford 725 g of a yellow oil (residual solvent remained).

temperature and stirred for a period of 4 hours to 20 hours at which time the desired ketone 3 is isolated after aqueous work up. Condensation of the ketone 3 with tosylhydrazide in toluene or benzene as a solvent at refluxing temperatures for a period of 1 hour to 5 hours affords the hydrazone 4. The hydrazone 4 is reacted with a suitably substituted benzoyl chloride 5, in the presence of a base such as LiHMDS or LDA or tBuOK or triethylamine at temperatures ranging from 0 °C to 70 °C. The reaction is stirred for a period of 3-6 hours. Acidic hydrolysis 10 of the protecting groups with an aqueous acid such as HCl or H_2SO_4 and subsequent neutralization with an aqueous base such as NaOH or KOH affords the desired pyrazole 6. Treatment of the pyrazole 6 with an acid chloride 7 in the presence of base or with an acid 8 under standard peptide 15 coupling conditions (EDC or DCC or PyBrOP with an additive such as HOBt or HATU and base such as N-methylmorpholine or diisopropylethylamine or triethylamine) affords the desired pyrazole amide 9. In most instance the desired 20 products can be obtained pure by direct trituration with solvents such as methanol, ethyl acetate, acetonitrile or ether and/or recrystallization from suitable solvents.

The following examples contain detailed descriptions of the methods of preparation of these additional compounds that form part of the invention. These detailed descriptions are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. All compounds showed NMR spectra consistent with their assigned structures.

C-3015/2

1054

Additional compounds of interest can be prepared as set forth above and as described below in Scheme D-1, wherein the $R_{\rm i}$ and $R_{\rm 2}$ substituents are as defined previously.

5

The synthesis begins with the treatment of 10 methylpyrimidine 2 with a base such as LiHMDS, LDA or tBuOK in an organic solvent such as THF or ether which is cooled in an ice bath (0-10 °C). To the resulting 4methylanion is added a solution of a suitably protected (Boc is shown) ethyl ester of isonipecotic acid ${\bf 1}$ in THF 15 The reaction is allowed to warm to room or ether.

Example#	P38 alpha kinase IC50, μΜ	Human Whole Blood IC50, µM or %Inhib@conc. (µM)	Rat LPS Model % Inhibition@ dose@predose time
		4.56	
C-124	0.17	4.56	51%@20mpk@-4h
C-125	7.22	>25.0	
C-126	0.71	>25.0	6%@20mpk@-4h
C-127	0.038	0.27	53%@5mpk@-4h
C-128	0.09	2.22	63%@5mpk@-4h
C-132	0.086	44%@ 5 μM	
C-133	0.16	4.54	55%@5mpk@-4h
C-135	6.0		
C-136	0.032		
C-137	0.051		58%@5mpk@-4h
C-138	0.28	0.68	26%@5mpk@-4h
C-139	0.2	3.66	46%@5mpk@-4h

1052

	D20 -1-k- 1-4	II	Deb IDC M-3-3
rxamb1e#	-	Human Whole Blood	
	IC50, μM	IC50, μM or	% Inhibition@
		%Inhib@conc. (µM)	dose@predose time
C-80	0.008	519.0 FM	cime
· · · · · · · · · · · · · · · · · · ·		51%@ 5 μM	
C-81	0.037	40%@ 5 μM	
C-82	0.15	7.31	
C-83	0.24	1.23	25%@5mpk@-4h
C-84	0.048	0.88	22%@5mpk@-4h
C-85	0.57	>25	660.05 1.0 (1)
C-86	0.007	0.19	66%@5mpk@-4h
C-87	0.027	0.34	50005 10 1
C-88	0.012	0.3	59%@5mpk@-4h
C-89	0.039	0.12	27%@5mpk@-4h
C-90	0.037	0.48	
C-91	0.054	2.31	63%@5mpk@-4h
C-92	0.024	0.28	66%@5mpk@-4h
C-93	0.009	0.38	50%@5mpk@-4h
C-94	0.02	0.27	73%@5mpk@-4h
C-95	0.13	3.91	32%@5mpk@-4h
C-96	0.077	2.1	38%@5mpk@-4h
C-97	0.025	3.83	21%@5mpk@-4h
C-98	0.016	0.64	78%@5mpk@-4h
C-99	0.062	0.38	36%@5mpk@-4h
C-100	0.027	0.27	44%@5mpk@-4h
C-101	0.083	3.71	52%@5mpk@-4h
C-102	0.29	7.56	72%@5mpk@-4h
C-105	0.033	0.13	46%@5mpk@-4h
C-106	0.026	0.44	23%@5mpk@-4h
C-107	0.014	0.38	11%@5mpk@-4h
C-108	0.02	0.73	0%@5mpk@-4h
C-111	0.21	6.05	39%@5mpk@-4h
C-112	0.54	6.36	89%@5mpk@-4h
C-113	0.082	2.72	77%@5mpk@-4h
C-114	0.11	1.73	39%@5mpk@-4h
C-115	0.042	10.2	39%@5mpk@-4h
C-116	0.429	0.50	53%@5mpk@-4h
C-117	3.42	7.26	71%@5mpk@-4h
C-118	0.298	>25	39%@5mpk@-4h
C-120	0.7	18.6	26%@5mpk@-4h
C-121	0.11	15.3	39%@5mpk@-4h
C-122	0.025		55%@5mpk@-4h
C-123	0.67	>25.0	

Biological data from a number of compounds of Examples C-74 through C-139 are shown in the following tables.

In vitro P38-alpha kinase inhibitory data are shown in the column identified as:

"P38 alpha kinase IC50, μM"

In vitro human whole blood assay data for measuring the ability of the compounds to inhibit TNF production in human whole blood stimulated with LPS are shown in the column identified as:

"Human Whole Blood IC50, µM or %Inhib@conc. (µM)"

In vivo assessment of the ability of the compounds to inhibit LPS-stimulated TNF release in the rat is shown in the column identified as:

"Rat LPS Model % Inhibition@dose@predose time"
wherin the dose is milligram per kilogram (mpk)
administered by oral gavage and the predose time
indicates the number of hours before LPS challenge when
the compound is administered.

Example#	P38 alpha kinase IC50, μΜ	Human Whole Blood IC50, µM or %Inhib@conc. (µM)	Rat LPS Model % Inhibition@ dose@predose time
C-74	0.037	0.56	54%@5mpk@-4h
C-75	0.045	0.4	71%@5mpk@-4h
C-76	0.07	3.24	66%@5mpk@-4h
C-77	0.071	8.2	92%@5mpk@-4h
C-78	0.068	10.5	87%@5mpk@-4h
C-79	0.045	0.52	83%@5mpk@-4h

	· · · · · · · · · · · · · · · · · · ·			
Example#	P38 alpha kinas IC50,uM or % inhib@conc. (uM)	or %	Mouse LPS Model % TNF inhib @ dose @predose tim	Rat LPS Model % inhib @d se @predose time
B-2430	90.0%@10.0uM	61.0%@10.0uM		
B-2431	85.0%210.0uM	68.0%@10.0uM		
B-2432	86.0%210.0uM	40.0%@10.0uM		
B-2433	94.0%@10.0uM	84.0%@10.0uM		
B-2434	92.0%@10.0uM	63.0%@10.0uM		
B-2435	84.0%@10.0uM	4.0%@10.0uM		
B-2436	80.0%@10.0uM	54.0%@10.0uM		
B-2437	82.0%@10.0uM	41.0%@10.0uM		
B-2438	75.0%@10.0uM	40.0%@10.0uM		
B-2439	81.0%@10.0uM	44.0%@10.0uM		
B-2440	77.0%@10.0uM	78.0%@10.0uM		
B-2441	86.0%@10.0uM	46.0%@10.0uM		
B-2442	86.0%@10.0uM	>10.0uM		
B-2443	84.0%@10.0uM	44.0%@10.0uM		
B-2444	89.0%@10.0uM	7.0%@10.0uM		
B-2445	94.0%@10.0uM	15.0%@10.0uM		
B-2446	90.0%@10.0uM	28.0%@10.0uM		
B-2447	94.0%@10.0uM	>10.0uM		
B-2448	75.0%@10.0uM	30.0%@10.0uM		
B-2449	86.0%@10.0uM	42.0%@10.0uM		
B-2450	87.0%@10.0uM	46.0%@1.0uM		
B-2451	87.0%@10.0uM	45.0%@10.0uM		
B-2452	89.0%@10.0uM	33.0%@10.0uM		
B-2453	91.0%@10.0uM	>10.0uM		
B-2454	88.0%@10.0uM	40.0%@10.0uM		·
B-2455	87.0%@10.0uM	54.0%@10.0uM		
B-2456	86.0%@10.0uM	53.0%@10.0uM		
B-2457	90.0%@10.0uM	18.0%@10.0uM		
B-2458	83.0%@10.0uM	36.0%@10.0uM		
B-2459	82.0%@10.0uM	81.0%@10.0uM		
B-2460	80.0%@10.0uM	79.0%@10.0uM		
B-2461	67.0%@10.0uM	59.0%@10.0uM		

Example# inblb@conc. (uM) inblb@conc. (uM) dose @predose time B-2390					
Inhib@conc. (uM) Inhib@conc. (uM) dose @predose time					Rat LPS Model %
B-2390 34.0%@10.0uM 27.0%@1.0uM B-2391 40.0%@10.0uM 59.0%@10.0uM 59.0%@10.0uM 59.2392 63.0%@10.0uM 46.0%@10.0uM 510.0uM 51	Example#				
B-2391	:	innib@conc. (um)	innib@conc. (um)	dose epredose time	e predose time
B-2392 63.0%@10.0uM 46.0%@10.0uM B-2393 43.0%@10.0uM >10.0uM B-2394 37.0%@10.0uM 22.0%@10.0uM B-2395 32.0%@10.0uM >10.0uM B-2396 75.0%@10.0uM >10.0uM S-2397 83.0%@10.0uM 22.0%@10.0uM B-2398 55%@100.0uM 10.0%@10.0uM B-2398 69.0%@10.0uM 18.0%@10.0uM B-2399 69.0%@10.0uM 40.0%@10.0uM S-2400 60.0%@10.0uM 44.0%@10.0uM S-2401 78.0%@10.0uM 52.0%@10.0uM S-2402 43.0%@10.0uM 52.0%@10.0uM S-2403 72%@100.0uM 52.0%@10.0uM S-2404 58%@100.0uM 51.0uM S-2404 58%@100.0uM 51.0uM S-2405 47%@100.0uM 24.0%@10.0uM S-2406 45.0%@10.0uM 27.0%@10.0uM S-2408 39.0%@10.0uM 27.0%@10.0uM S-2409 78.0%@10.0uM 32.0%@10.0uM S-2411 26%@10.0uM 32.0%@10.0uM S-2411 26%@10.0uM 33.0%@10.0uM S-2412 40.0%@10.0uM 31.0%@10.0uM S-2413 75.0%@10.0uM 31.0%@10.0uM S-2414 86.0%@10.0uM 31.0%@10.0uM S-2415 94.0%@10.0uM 38.0%@10.0uM S-2416 85.0%@10.0uM 43.0%@10.0uM S-2417 83.0%@10.0uM 43.0%@10.0uM S-2418 88.0%@10.0uM 34.0%@10.0uM S-2419 86.0%@10.0uM 34.0%@10.0uM S-2419 86.0%@10.0uM 38.0%@10.0uM S-2419 86.0%@10.0uM 38.0%@10.0uM S-2421 89.0%@10.0uM 38.0%@10.0uM S-2411 89.0%@10.0uM 38.0%@10.0uM S-2412 89.0%@10.0uM 38.0%@10.0uM S-2413 89.0%@10.0uM 38.0%@10.0uM S-2414 86.0%@10.0uM 38.0%@10.0uM S-2414 86.0%@10.0uM 38.0%@10.0uM S-2422 90.0%@10.0uM 38.0%@10.0uM 38.0%@10.0uM S-2422 90.0%@10.0uM 38.0%@10.0uM	B-2390	34.0%@10.0uM	27.0%@1.0uM		
B-2393	B-2391	40.0%@10.0uM	59.0%@10.0uM		
B-2394 37.0%@10.0uM 22.0%@10.0uM B-2395 32.0%@10.0uM >10.0uM B-2396 75.0%@10.0uM >10.0uM B-2397 83.0%@10.0uM 10.0%@10.0uM B-2398 55%@100.0uM 10.0%@10.0uM B-2399 69.0%@10.0uM 18.0%@10.0uM B-2400 60.0%@10.0uM 40.0%@10.0uM B-2401 78.0%@10.0uM 42.0%@10.0uM B-2402 43.0%@10.0uM 52.0%@10.0uM B-2403 72%@10.0uM 52.0%@10.0uM B-2404 58%@100.0uM 52.0%@10.0uM B-2405 47%@100.0uM 52.0%@10.0uM B-2406 45.0%@10.0uM >10.0uM B-2407 47%@100.0uM 24.0%@10.0uM B-2408 39.0%@10.0uM 10.0%@10.0uM B-2409 78.0%@10.0uM 10.0%@10.0uM B-2410 33.0%@10.0uM 32.0%@10.0uM B-2411 26%@10.0uM 32.0%@10.0uM B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 31.0%@10.0uM B-2414 86.0%@10.0uM 37.0%@10.0uM B-2415 94.0%@10.0uM 43.0%@10.0uM B-2416 85.0%@10.0uM 31.0%@10.0uM B-2417 83.0%@10.0uM 43.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 88.0%@10.0uM 34.0%@10.0uM B-2419 88.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 36.0%@10.0uM B-2419 88.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 34.0%@10.0uM B-2422 90.0%@10.0uM 38.0%@10.0uM B-2423 85.0%@10.0uM 38.0%@10.0uM B-2424 86.0%@10.0uM 38.0%@10.0uM B-2423 85.0%@10.0uM 38.0%@10.0uM B-2424 86.0%@10.0uM 38.0%@10.0uM B-2423 85.0%@10.0uM 38.0%@10.0uM B-2424 86.0%@10.0uM 38.0%@10.0uM	B-2392	63.0%@10.0uM	46.0%@10.0uM		
B-2395 32.0%@10.0uM 28.0%@10.0uM B-2396 75.0%@10.0uM >10.0uM B-2397 83.0%@10.0uM 22.0%@10.0uM B-2398 55%@100.0uM 10.0%@10.0uM B-2399 69.0%@10.0uM 18.0%@10.0uM B-2400 60.0%@10.0uM 40.0%@10.0uM B-2401 78.0%@10.0uM 44.0%@10.0uM B-2402 43.0%@10.0uM 52.0%@10.0uM B-2403 72%@10.0uM 52.0%@10.0uM B-2404 58%@100.0uM 52.0%@10.0uM B-2405 47%@100.0uM >10.0uM B-2405 47%@100.0uM 24.0%@10.0uM B-2406 45.0%@10.0uM 27.0%@10.0uM B-2407 47%@100.0uM 27.0%@10.0uM B-2408 39.0%@10.0uM 10.0%@10.0uM B-2410 33.0%@10.0uM 32.0%@10.0uM B-2411 26%@100.0uM 31.0%@10.0uM B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 37.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 43.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@10.0uM B-2417 83.0%@10.0uM 34.0%@10.0uM B-2417 83.0%@10.0uM 34.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2417 83.0%@10.0uM 34.0%@10.0uM B-2417 83.0%@10.0uM 34.0%@10.0uM B-2417 83.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 34.0%@10.0uM B-2422 90.0%@10.0uM 34.0%@10.0uM B-2423 85.0%@10.0uM 34.0%@10.0uM B-2424 86.0%@10.0uM 34.0%@10.0uM 34.0%@10.0uM B-2424 86.0%@10.0uM 34.0%@10.0uM 34.0%@10.0uM B-2424 86.0%@10.0uM 34.0%@10.0uM 34.0%@10.0uM 34.0%@10.0uM 34.0%@10.0uM 34.0%@10.0uM 34.0%@10.0uM 34.0%@1	B-2393	43.0%@10.0uM	>10.0uM		
B-2396 75.0%@10.0uM >10.0uM B-2397 83.0%@10.0uM 10.0%@10.0uM B-2398 55%@100.0uM 10.0%@10.0uM B-2399 69.0%@10.0uM 18.0%@10.0uM B-2400 60.0%@10.0uM 40.0%@10.0uM B-2401 78.0%@10.0uM 44.0%@10.0uM B-2402 43.0%@10.0uM 52.0%@10.0uM B-2403 72%@100.0uM 52.0%@10.0uM B-2404 58%@100.0uM 52.0%@10.0uM B-2405 47%@100.0uM >10.0uM B-2406 45.0%@10.0uM 24.0%@10.0uM B-2407 47%@100.0uM 27.0%@10.0uM B-2408 39.0%@10.0uM 10.0%@10.0uM B-2410 33.0%@10.0uM 32.0%@10.0uM B-2411 26%@100.0uM 31.0%@10.0uM B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 31.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 38.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@10.0uM B-2417 83.0%@10.0uM 43.0%@10.0uM B-2418 88.0%@10.0uM 43.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 38.0%@10.0uM B-2410 30.0%@10.0uM 34.0%@10.0uM B-2411 88.0%@10.0uM 34.0%@10.0uM B-2412 40.0%@10.0uM 38.0%@10.0uM B-2413 75.0%@10.0uM 38.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 38.0%@10.0uM B-2416 85.0%@10.0uM 38.0%@10.0uM B-2417 83.0%@10.0uM 34.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 38.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 38.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM >10.0uM	B-2394	37.0%@10.0uM	22.0%@10.0uM		
B-2397 83.0%@10.0uM 22.0%@10.0uM B-2398 55%@100.0uM 10.0%@10.0uM B-2399 69.0%@10.0uM 18.0%@10.0uM B-2400 60.0%@10.0uM 40.0%@10.0uM B-2401 78.0%@10.0uM 44.0%@10.0uM B-2402 43.0%@10.0uM 52.0%@10.0uM B-2403 72%@100.0uM 52.0%@10.0uM B-2404 58%@100.0uM 52.0%@10.0uM B-2405 47%@100.0uM >10.0uM B-2406 45.0%@10.0uM 24.0%@10.0uM B-2407 47%@100.0uM 27.0%@10.0uM B-2408 39.0%@10.0uM 10.0%@10.0uM B-2410 33.0%@10.0uM 32.0%@10.0uM B-2411 26%@100.0uM 31.0%@10.0uM B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 31.0%@10.0uM B-2414 86.0%@10.0uM 37.0%@10.0uM B-2415 94.0%@10.0uM 38.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@10.0uM B-2417 83.0%@10.0uM 43.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 34.0%@10.0uM B-2422 90.0%@10.0uM 34.0%@10.0uM B-2423 85.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM 35.00	B-2395	32.0%@10.0uM	28.0%@10.0uM		
B-2398 55%@100.0uM 10.0%@10.0uM B-2399 69.0%@10.0uM 18.0%@10.0uM B-2400 60.0%@10.0uM 40.0%@10.0uM B-2401 78.0%@10.0uM 44.0%@10.0uM B-2402 43.0%@10.0uM 52.0%@10.0uM B-2403 72%@100.0uM 52.0%@10.0uM B-2404 58%@100.0uM 52.0%@10.0uM B-2405 47%@100.0uM >10.0uM B-2406 45.0%@10.0uM 24.0%@10.0uM B-2407 47%@100.0uM 27.0%@10.0uM B-2408 39.0%@10.0uM 10.0%@10.0uM B-2409 78.0%@10.0uM 32.0%@10.0uM B-2410 33.0%@10.0uM 13.0%@10.0uM B-2411 26%@100.0uM 31.0%@10.0uM B-2412 40.0%@10.0uM 37.0%@10.0uM B-2413 75.0%@10.0uM 37.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 43.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@10.0uM B-2417 83.0%@10.0uM 43.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 34.0%@10.0uM B-2422 90.0%@10.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 38.0%@10.0uM B-2423 85.0%@10.0uM 38.0%@10.0uM B-2423 85.0%@10.0uM 38.0%@10.0uM B-2423 85.0%@10.0uM 37.00W@10.0uM B-2423 85.0%@10.0uM 37.00W@10.0uM	B-2396	75.0%@10.0uM	>10.0uM		
B-2399 69.0%@10.0uM 18.0%@10.0uM B-2400 60.0%@10.0uM 40.0%@10.0uM B-2401 78.0%@10.0uM 44.0%@10.0uM B-2402 43.0%@10.0uM 52.0%@10.0uM B-2403 72%@100.0uM 52.0%@10.0uM B-2404 58%@100.0uM 52.0%@10.0uM B-2405 47%@100.0uM >10.0uM B-2406 45.0%@10.0uM 24.0%@10.0uM B-2407 47%@100.0uM 10.0%@10.0uM B-2408 39.0%@10.0uM 10.0%@10.0uM B-2409 78.0%@10.0uM 32.0%@10.0uM B-2410 33.0%@10.0uM 13.0%@10.0uM B-2411 26%@100.0uM 13.0%@10.0uM B-2412 40.0%@10.0uM 37.0%@10.0uM B-2413 75.0%@10.0uM 37.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 43.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@10.0uM B-2417 83.0%@10.0uM 43.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 34.0%@10.0uM B-2422 90.0%@10.0uM 38.0%@10.0uM B-2423 85.0%@10.0uM 37.00	B-2397	83.0%@10.0uM	22.0%@10.0uM		
B-2400 60.0%@10.0uM 40.0%@10.0uM B-2401 78.0%@10.0uM 44.0%@10.0uM B-2402 43.0%@10.0uM 52.0%@10.0uM B-2403 72%@100.0uM 52.0%@10.0uM B-2404 58%@100.0uM 52.0%@10.0uM B-2405 47%@100.0uM >10.0uM B-2406 45.0%@10.0uM 24.0%@10.0uM B-2407 47%@100.0uM 27.0%@10.0uM B-2408 39.0%@10.0uM 10.0%@10.0uM B-2409 78.0%@10.0uM 32.0%@10.0uM B-2410 33.0%@10.0uM 32.0%@10.0uM B-2411 26%@100.0uM 31.0%@10.0uM B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 38.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@10.0uM B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 18.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 36.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 38.0%@10.0uM B-2423 85.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM 38.0%@10.0uM B-2424 86.0%@10.0uM 38.0%@10.0uM	B-2398	55%@100.0uM	10.0%@10.0uM		
B-2401 78.0%@10.0uM 44.0%@10.0uM B-2402 43.0%@10.0uM 52.0%@10.0uM B-2403 72%@100.0uM 52.0%@10.0uM B-2404 58%@100.0uM 52.0%@10.0uM B-2405 47%@100.0uM >10.0uM B-2406 45.0%@10.0uM 24.0%@10.0uM B-2407 47%@100.0uM 27.0%@10.0uM B-2408 39.0%@10.0uM 10.0%@10.0uM B-2409 78.0%@10.0uM 32.0%@10.0uM B-2410 33.0%@10.0uM 32.0%@10.0uM B-2411 26%@100.0uM 31.0%@10.0uM B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 37.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@10.0uM B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 38.0%@10.0uM B-2423 85.0%@10.0uM 38.0%@10.0uM B-2423 85.0%@10.0uM 43.0%@10.0uM B-2424 86.0%@10.0uM 38.0%@10.0uM	B-2399	69.0%@10.0uM	18.0%@10.0uM		
B-2402 43.0%@10.0uM 52.0%@10.0uM B-2403 72%@100.0uM 52.0%@10.0uM B-2404 58%@100.0uM 52.0%@10.0uM B-2405 47%@100.0uM >10.0uM B-2406 45.0%@10.0uM 24.0%@10.0uM B-2407 47%@100.0uM 27.0%@10.0uM B-2408 39.0%@10.0uM 10.0%@10.0uM B-2409 78.0%@10.0uM 26.0%@10.0uM B-2410 33.0%@10.0uM 32.0%@10.0uM B-2411 26%@100.0uM 13.0%@10.0uM B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 37.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@10.0uM B-2417 83.0%@10.0uM 34.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 38.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM >10.0uM	B-2400	60.0%@10.0uM	40.0%@10.0uM		
B-2403 72%@100.0uM 52.0%@10.0uM B-2404 58%@100.0uM 52.0%@10.0uM S2.0%@10.0uM S2.00%@10.0uM S2.00%@10.	B-2401	78.0%@10.0uM	44.0%@10.0uM		
B-2404 58%@100.0uM 52.0%@10.0uM B-2405 47%@100.0uM >10.0uM B-2406 45.0%@10.0uM 24.0%@10.0uM B-2407 47%@100.0uM 27.0%@10.0uM B-2408 39.0%@10.0uM 10.0%@10.0uM B-2409 78.0%@10.0uM 26.0%@10.0uM B-2410 33.0%@10.0uM 32.0%@10.0uM B-2411 26%@100.0uM 13.0%@10.0uM B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 37.0%@10.0uM B-2414 86.0%@10.0uM 37.0%@10.0uM B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@10.0uM B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 38.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 38.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM >10.0uM	B-2402	43.0%@10.0uM	52.0%@10.0uM		
B-2405 47%@100.0uM >10.0uM B-2406 45.0%@10.0uM 24.0%@10.0uM B-2407 47%@100.0uM 27.0%@10.0uM B-2408 39.0%@10.0uM 10.0%@10.0uM B-2409 78.0%@10.0uM 26.0%@10.0uM B-2410 33.0%@10.0uM 32.0%@10.0uM B-2411 26%@100.0uM 13.0%@10.0uM B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 37.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@10.0uM B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM >10.0uM	B-2403	72%@100.0uM	52.0%@10.0uM		
B-2406	B-2404	58%@100.0uM	52.0%@10.0uM		
B-2407	B-2405	47%@100.0uM	>10.0uM		
B-2408	B-2406	45.0%@10.0uM	24.0%@10.0uM		
B-2410 33.0%@10.0uM 32.0%@10.0uM B-2411 26%@100.0uM 13.0%@10.0uM B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 37.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@1.0uM B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM 43.0%@10.0uM B-2424 86.0%@10.0uM 17.00@10.0uM	B-2407	47%@100.0uM	27.0%@10.0uM		
B-2410 33.0%@10.0uM 32.0%@10.0uM B-2411 26%@100.0uM 13.0%@10.0uM B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 37.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@10.0uM B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 66.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2408	39.0%@10.0uM	10.0%@10.0uM		
B-2410 33.0%@10.0uM 32.0%@10.0uM B-2411 26%@100.0uM 13.0%@10.0uM B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 37.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@1.0uM B-2416 85.0%@10.0uM 18.0%@10.0uM B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 66.0%@10.0uM B-2419 86.0%@10.0uM 34.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2421 89.0%210.0uM 17.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2409	78.0%@10.0uM			
B-2412 40.0%@10.0uM 31.0%@10.0uM B-2413 75.0%@10.0uM 37.0%@10.0uM B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@1.0uM B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 66.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2410	33.0%@10.0uM	32.0%@10.0uM	······································	
B-2413 75.0%@10.0uM 37.0%@10.0uM B-2414 86.0%@10.0uM 50.0%@10.0uM B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@1.0uM B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 66.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2421 89.0%210.0uM 17.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2411	26%@100.0uM	13.0%@10.0uM		
B-2414 86.0%@10.0uM 38.0%@10.0uM B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@1.0uM B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 66.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2412	40.0%@10.0uM	31.0%@10.0uM		
B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@10.0uM B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 66.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2413	75.0%@10.0uM	37.0%@10.0uM		
B-2415 94.0%@10.0uM 50.0%@10.0uM B-2416 85.0%@10.0uM 43.0%@1.0uM B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 66.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2414	86.0%@10.0uM	38.0%@10.0uM		
B-2417 83.0%@10.0uM 18.0%@10.0uM B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 66.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2415	94.0%@10.0uM		·	
B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 66.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2416	85.0%@10.0uM	43.0%@1.0uM		
B-2418 88.0%@10.0uM 34.0%@10.0uM B-2419 86.0%@10.0uM 66.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2417	83.0%@10.0uM	18.0%@10.0uM		·
B-2419 86.0%@10.0uM 66.0%@10.0uM B-2420 70.0%@10.0uM 34.0%@10.0uM B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2418				
B-2420 70.0%@10.0uM 34.0%@10.0uM 934.0%@10.0uM	B-2419				
B-2421 89.0%210.0uM 38.0%@10.0uM B-2422 90.0%@10.0uM 17.0%@10.0uM 510.0uM 510.	B-2420				
B-2422 90.0%@10.0uM 17.0%@10.0uM B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2421				
B-2423 85.0%@10.0uM >10.0uM B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2422				
B-2424 86.0%@10.0uM 43.0%@10.0uM	B-2423				
		86.0%@10.0uM			
D-2420 /9.0%@10.0UM 42.0%@10.0UM	B-2425	79.0%@10.0uM	42.0%@10.0uM		
B-2426 88.0%@10.0uM 53.0%@10.0uM					
B-2427 87.0%@10.0uM 59.0%@10.0uM					
B-2428 82.0%@10.0uM 50.0%@10.0uM					
B-2429 92.0%@10.0uM 32.0%@10.0uM					

1		U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
Example#	IC50,uM or %	or %	TNF inhib@	inhib @dose
	innib@conc. (um)	Innib@conc. (uM)	dose @predose time	@predose time
B-2350	38.0%@10.0uM	56.0%@10.0uM		
B-2351	77.0%@10.0uM	1.0%@10.0uM		
B-2352	37.0%@10.0uM	19.0%@10.0uM		
B-2353	38.0%@10.0uM	33.0%@10.0uM		
B-2354	65.0%@10.0uM	25.0%@10.0uM		
B-2355	84.0%@10.0uM	50.0%@10.0uM		
B-2356	77.0%@10.0uM	45.0%@10.0uM		
B-2357	47.0%@10.0uM	41.0%@10.0uM		
B-2358	17.0%@10.0uM	52.0%@10.0uM		
B-2359	76.0%@10.0uM	35.0%@10.0uM		
B-2360	45.0%@10.0uM	>10.0uM		
B-2361	19.0%@10.0uM	46.0%@10.0uM		
B-2362	60%@100.0uM	39.0%@10.0uM		
B-2363	44.0%@10.0uM	1.0%@10.0uM		
B-2364	47.0%@10.0uM	4.0%@10.0uM		
B-2365	82.0%@10.0uM	43.0%@10.0uM		
B-2366	70.0%@10.0uM	59.0%@10.0uM		
B-2367	46.0%@10.0uM	40.0%@1.0uM		
B-2368	65.0%@10.0uM	55.0%@10.0uM		
B-2369	32.0%@10.0uM	>10.0uM		
B-2370	73%@100.0uM	20.0%@10.0uM		
B-2371	54.0%@10.0uM	36.0%@10.0uM		
B-2372	55.0%@100.0uM	>10.0uM		
B-2373	50.0%@100.0uM	6%@10.0uM		
B-2374	35.0%@10.0uM	20.0%@10.0uM		
B-2375	62.0%@100.0uM	>10.0uM		
B-2376	32.0%@10.0uM	17.0%@10.0uM		
B-2377	34.0%@10.0uM	17.0%@10.0uM		
B-2378	48.0%@10.0uM	61.0%@10.0uM		
B-2379	73.0%@100.0uM	45.0%@1.0uM		
B-2380	81%@100.0uM	53.0%@10.0uM		
B-2381	68%@100.0uM	2.0%@10.0uM		
B-2382	51.0%@10.0uM	24.0%@10.0uM		
B-2383	63.0%@10.0uM	35.0%@10.0uM		
B-2384	49%@100.0uM	10.0%@10.0uM		
B-2385	79.0%@10.0uM	19.0%@10.0uM		
B-2386	38.0%@10.0uM	19.0%@10.0uM		
B-2387	50.0%@100.0uM	>10.0uM		
B-2388	42.0%@10.0uM	24.0%@10.0uM		
B-2389		29.0%@10.0uM		

1)				
Example#	IC50,uM or %	or %	Mouse LPS Model % TNF inhib @ dos @predose time	Rat LPS Model % inhib @dose @predose time
B-2310	0.12uM	1.2uM	50%@30mpk@-6h	
B-2311	7.18uM	60%@10.0uM		
B-2312	2.93uM	43.0%@10.0uM		
B-2313	42.3uM	58.0%@10.0uM		
B-2314	11.0uM	66.0%@10.0uM		
B-2315	0.49uM	36.0%@10.0uM		
B-2316	0.46uM	58.0%@10.0uM		
B-2317	1.0uM	60.0%@10.0uM		
B-2318	73.0%@10.0uM	25.0%@10.0uM		
B-2319	75.0%@10.0uM	40.0%@10.0uM		
B-2320	44.0%@10.0uM	35.0%@10.0uM		
B-2321	69.0%@10.0uM	27.0%@10.0uM		
B-2322	76.0%@10.0uM	38.0%@10.0uM		
B-2323	69.0%@10.0uM	46.0%@10.0uM		
B-2324	58.0%@10.0uM	36.0%@10.0uM		
B-2325	60.0%@10.0uM	51.0%@10.0uM		
B-2326	76.0%@10.0uM	33.0%@10.0uM		
B-2327	76.0%@10.0uM	23.0%@10.0uM		
B-2328	65.0%@10.0uM	28.0%@10.0uM		
B-2329	72.0%@10.0uM	53.0%@10.0uM		
B-2330	81.0%@10.0uM	37.0%@10.0uM		***************************************
B-2331	74.0%@10.0uM	44.0%@10.0uM		
B-2332	70.0%@10.0uM	47.0%@10.0uM		
B-2333	58.0%@10.0uM	36.0%@10.0uM		
B-2334	81.0%@10.0uM	45.0%@10.0uM		
B-2335	82.0%@10.0uM	50.0%@10.0uM		
B-2336	48.0%@10.0uM	35.0%@10.0uM		
B-2337	46.0%@10.0uM	59.0%@10.0uM		
B-2338	73.0%@10.0uM	50.0%@10.0uM		
B-2339	84.0%@10.0uM	>10.0uM		
B-2340	35.0%@10.0uM	12.0%@10.0uM		
B-2341	75.0%@10.0uM	50.0%@10.0uM		
B-2342	83.0%@10.0uM	46.0%@10.0uM		
B-2343	43.0%@10.0uM	27.0%@10.0uM		
B-2344	71.0%@10.0uM	50.0%@10.0uM		
B-2345	64.0%@10.0uM	38.0%@10.0uM		
B-2346	45.0%@10.0uM	48.0%@10.0uM		
B-2347	49.0%@10.0uM	50.0%@10.0uM		
B-2348	76.0%@10.0uM	48.0%@10.0uM		
B-2349	75.0%@10.0uM	27.0%@10.0uM		

Example# P38 alpha kinase IC50,uM or % or % TNF inhib inhib@conc. (uM) inhib@conc. (uM) dose @predose time @predose @p	dose
B-2270 0.72uM 31%@10.0uM B-2271 0.93uM 38%@10.0uM B-2272 0.26uM 53.0%@10.0uM B-2273 1.92uM 39.0%@10.0uM B-2274 0.26uM 59.0%@10.0uM B-2275 2.16uM 53.0%@10.0uM B-2276 11.5uM 37.0%@10.0uM B-2277 14.9uM 44.0%@10.0uM B-2278 0.8uM 51.0%@10.0uM B-2279 0.32uM 36.0%@10.0uM B-2280 0.4uM 57.0%@10.0uM B-2281 0.81uM 60.0%@10.0uM B-2282 0.91uM 41.0%@10.0uM B-2283 0.04uM 53.0%@10.0uM B-2284 4.61uM 62.0%@10.0uM	e time
B-2271	
B-2271 0.93uM 38%@10.0uM B-2272 0.26uM 53.0%@10.0uM B-2273 1.92uM 39.0%@10.0uM B-2274 0.26uM 59.0%@10.0uM B-2275 2.16uM 53.0%@10.0uM B-2276 11.5uM 37.0%@10.0uM B-2277 14.9uM 44.0%@10.0uM B-2278 0.8uM 51.0%@10.0uM B-2279 0.32uM 36.0%@10.0uM B-2280 0.4uM 57.0%@10.0uM B-2281 0.81uM 60.0%@10.0uM B-2282 0.91uM 41.0%@10.0uM B-2283 0.04uM 53.0%@10.0uM B-2284 4.61uM 62.0%@10.0uM	
B-2273	
B-2274	
B-2275 2.16uM 53.0%@10.0uM B-2276 11.5uM 37.0%@10.0uM B-2277 14.9uM 44.0%@10.0uM B-2278 0.8uM 51.0%@10.0uM B-2279 0.32uM 36.0%@10.0uM B-2280 0.4uM 57.0%@10.0uM B-2281 0.81uM 60.0%@10.0uM B-2282 0.91uM 41.0%@10.0uM B-2283 0.04uM 53.0%@10.0uM B-2284 4.61uM 62.0%@10.0uM	
B-2276 11.5uM 37.0%@10.0uM B-2277 14.9uM 44.0%@10.0uM B-2278 0.8uM 51.0%@10.0uM B-2279 0.32uM 36.0%@10.0uM B-2280 0.4uM 57.0%@10.0uM B-2281 0.81uM 60.0%@10.0uM B-2282 0.91uM 41.0%@10.0uM B-2283 0.04uM 53.0%@10.0uM B-2284 4.61uM 62.0%@10.0uM	
B-2277 14.9uM 44.0%@10.0uM B-2278 0.8uM 51.0%@10.0uM B-2279 0.32uM 36.0%@10.0uM B-2280 0.4uM 57.0%@10.0uM B-2281 0.81uM 60.0%@10.0uM B-2282 0.91uM 41.0%@10.0uM B-2283 0.04uM 53.0%@10.0uM B-2284 4.61uM 62.0%@10.0uM	
B-2278	
B-2279 0.32uM 36.0%@10.0uM B-2280 0.4uM 57.0%@10.0uM B-2281 0.81uM 60.0%@10.0uM B-2282 0.91uM 41.0%@10.0uM B-2283 0.04uM 53.0%@10.0uM B-2284 4.61uM 62.0%@10.0uM	······································
B-2280 0.4uM 57.0%@10.0uM B-2281 0.81uM 60.0%@10.0uM B-2282 0.91uM 41.0%@10.0uM B-2283 0.04uM 53.0%@10.0uM B-2284 4.61uM 62.0%@10.0uM	
B-2281	
B-2282 0.91uM 41.0%@10.0uM B-2283 0.04uM 53.0%@10.0uM B-2284 4.61uM 62.0%@10.0uM	
B-2283 0.04uM 53.0%@10.0uM B-2284 4.61uM 62.0%@10.0uM	-
B-2284 4.61uM 62.0%@10.0uM	
December 10.00m	
P 2225	
B-2285 2.29uM 49.0%@10.0uM	
B-2286 0.017uM 0.78uM 25%@30mpk@-1h	
B-2287 2.56uM 61.0%@10.0uM	
B-2288 6.51uM 46.0%@10.0uM	
B-2289 3.0uM 30.0%@10.0uM	
B-2290 2.37uM 59.0%@10.0uM	
B-2291 0.019uM 41%@10.0uM	
B-2292 8.82uM 57.0%@10.0uM	
B-2293 2.11uM 56.0%@10.0uM	
B-2294 1.68uM 50.0%@10.0uM	
B-2295 1.79uM 56.0%@10.0uM	
B-2296 17.3uM 63.0%@10.0uM	$\neg \neg$
B-2297 3.59uM 57.0%@10.0uM	
B-2298 0.29uM 4.22uM	
B-2299 1.97uM 62.0%@10.0uM	
B-2300 0.07uM 43.0%@10.0uM	
B-2301 0.18uM 44.0%@10.0uM	$\neg \neg$
B-2302 1.0uM 58.0%@1.0uM	
B-2303 0.011uM 54.0%@10.0uM	
B-2304 1.41uM 50.0%@10.0uM	
B-2305 0.54uM 60.0%@10.0uM	
B-2306 5.88uM 39.0%@10.0uM	——
B-2307 2.29uM 69.0%@10.0uM	J
3-2308 0.66uM 56.0%@10.0uM	
3-2309 0.29uM 47.0%@10.0uM	

Example#	P38 alpha kinase IC50,uM or % Inhib@conc. (uM)	or %	Mouse LPS M del % TNF inhib @ dose @predose time	Rat LPS M del % inhib @d se @predose time
B-1479				

	P38 alpha kinase IC50,uM or % inhib@conc. (uM)	U937 C II IC50,uM or % inhib@conc. (uM)	Mouse LPS Model % TNF inhib @ dose @predose time	Rat LPS Model % inhib @dose
Example#		(2)	c prodose time	@predose time
B-1430	0.75uM	35.0% @1.0uM		
B-1431	0.36uM	58.0% @1.0uM		
B-1432	0.11uM	51.0% @1.0uM		
B-1433	0.26uM	21.0% @1.0uM		
B-1434	0.19uM	28.0% @1.0uM		
B-1435	1.8uM	45.0% @1.0uM		
B-1436 B-1437	1.0uM	20.0% @1.0uM		
	0.3uM	23.0% @1.0uM		
B-1438	2.01uM	27.0% @1.0uM		
B-1439	1.7uM	17.0% @1.0uM		
B-1440	0.87uM	3.0% @1.0uM		
B-1441	1.95uM	66.0% @1.0uM		
B-1442	1.54uM	18.0% @1.0uM		
B-1443	0.014uM	83.0% @1.0uM		
B-1444	0.3uM	24.0% @1.0uM		
B-1445	0.43uM	27.0% @1.0uM		
B-1446	0.77uM	36.0% @1.0uM		
3-1447	0.5uM	34.0% @1.0uM		
3-1448	1.43uM	22.0% @1.0uM		
3-1449	1.61uM	50.0%@1.0uM		
3-1450	2.1uM	49.0%@1.0uM		
3-1451	2.88uM	50% @1.0uM		
3-1452	2.41uM	47.0%@1.0uM		
3-1453 3-1454	2.53uM	49.0% @1.0uM		
	1.6uM	12.0% @1.0uM		
-1455	1.21uM	8.0% @1.0uM		
1456	1.29uM	>1.0uM		
-1457 -1458	0.43uM	43.0% @1.0uM		
	0.95uM	65.0% @1.0uM		
-1459	0.67uM	46.0% @1.0uM		
-1460 -1461	0.96uM	29.0% @1.0uM		
-1462	0.4uM	39.0% @1.0uM		
-1463	0.22uM	50.0% @1.0uM		
	2.34uM	26.0% @1.0uM		
1464	1.18uM	27.0% @1.0uM		
1466	3.23uM	31.0% @1.0uM		
1467	1.69uM	>1.0uM		
1468	1.22uM	1.0% @1.0uM		
1469	1.61uM	10.0% @1.0uM		
1470	0.37uM	14.0% @1.0uM		
1471		28.0% @1.0uM		
1472	0.85uM	25.0% @1.0uM		
1473	0.93uM	12.0%@1.0uM		
1474	1.24uM	14.0% @1.0uM		
	1.23uM	31.0% @1.0uM		
1475		24.0% @1.0uM		
1476		42.0% @1.0uM		
477	2.5uM :	34.0% @1.0uM		

			,	
	P38 alpha kinas	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib@d se	inhib @dose
i	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	anno e conc. (um)	minus conc. (alvi)	a hiedose mine	a hierose mile
B-1381	0.055	0.73uM		
B-1382	<0.1	0.44uM		
B-1383	0.0012	0.15uM		
B-1384	0.57	0.37uM		
B-1385	<0.1	0.11uM		
B-1386	<0.1	0.25uM		
B-1387	<0.1	0.1uM		
B-1388	0.57	1.38uM		
B-1389	0.06	0.57uM		
B-1390	<0.1	71.0%@1.0uM		
B-1391	0.016uM	82.0%@1.0uM		
B-1392	0.059uM	82.0%@1.0uM		
B-1393	3.17uM	80.0%@1.0uM		
B-1394	0.32uM	78.0%@1.0uM		
B-1395	1.48	61.0%@1.0uM		
B-1396	1.55	73.0%@1.0uM		
B-1397	0.92	85.0%@1.0uM		
B-1398	0.67	83.0%@1.0uM		
B-1399	0.14	74.0%@1.0uM		
B-1400	0.024	83.0%@1.0uM		
B-1401	0.033	75.0%@1.0uM		***************************************
B-1402	0.12	76.0%@1.0uM		
B-1403	4.54	71%@1.0uM		
B-1404	0.6	70%@1.0uM		
B-1405	0.28	70%@1.0uM		
B-1406	1.39	56.0%@1.0uM		
B-1407	0.4	71.0%@1.0uM		
B-1408	0.27	69.0%@1.0uM		
B-1409	<0.1	72.0%@1.0uM		
B-1410	<0.1	69%@1.0uM		
B-1411	<0.1	81.0%@1.0uM		
B-1412	0.097	80.0%@1.0uM		
B-1413	0.016	78.0%@1.0uM		
B-1414	0.025	83.0%@1.0uM		
B-1415	1.41	79.0%@1.0uM		
B-1416	0.14	81.0%@1.0uM		
B-1417	0.069	69.0%@1.0uM		
B-1418	1.01	82.0%@1.0uM		
B-1419	0.3	84.0%@1.0uM		
B-1420	<0.1	82.0%@1.0uM		
B-1421	0.014	75.0%@1.0uM		
B-1422	0.58	68.0%@1.0uM		
B-1423	1.58	84.0%@1.0uM		
B-1424	0.86	76.0%@1.0uM		
B-1425	0.09	83.0%@1.0uM		
B-1426	0.19	80.0%@1.0uM		
B-1427	<0.1	84.0%@1.0uM		
B-1428	<0.1	86.0%@1.0uM		
B-1429	<0.1	87.0%@1.0uM		

			,	,
	P38 alpha kinase	U937 Cell IC50,uM	M use LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib@d se
F	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example# B-1334	0.10::00	70.00/ @4.0::04		
	0.13uM	73.0%@1.0uM		
B-1335	0.097uM	63.0%@1.0uM		
B-1336	0.072uM	83.0%@1.0uM		
B-1337	0.4uM	90.0%@1.0uM		
B-1338 B-1339	0.18uM	73.0%@1.0uM		
B-1340	0.12uM	67.0%@1.0uM	ļ	<u> </u>
B-1340	0.043uM	63.0%@1.0uM		
B-1341	0.42uM	52.0%@1.0uM	 	<u> </u>
B-1343	0.25uM 0.065uM	59.0%@1.0uM 83.0%@1.0uM		
B-1344	0.014uM			
B-1345	0.27uM	86.0%@1.0uM		-
B-1345	0.27dW 0.043uW	73.0%@1.0uM 86.0%@1.0uM		
B-1347	0.021uM	84.0%@1.0uM		
B-1348	0.009uM	69.0%@1.0uM		
B-1349	0.037uM	86.0%@1.0uM		
B-1350	0.019úM	78.0%@1.0uM		
B-1351	0.068uM	78.0%@1.0uM		
B-1352	0.013uM	76.0%@1.0uM		
B-1353	0.062uM	80.0%@1.0uM		
B-1354	0.013uM	83.0%@1.0uM		
B-1355	0.07uN	75.0%@1.0uM		
B-1356	0.059uM	91.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1357	0.18uM	84.0%@1.0uM		
B-1358	0.16uM	76.0%@1.0uM		
B-1359	0.005	84.0%@1.0uM		
B-1360	0.11	0.15uM		54%@3mpk@-4h
B-1361	0.03	0.29uM		
B-1362	0.003	0.29uM		
B-1363	0.009	0.28uM	51.0%@30pmk @- 6H	53%@3mpk@-4h
B-1364	0.009	0.27uM	53.0%@30mpk@- 6.0H	17%@3mpk@-4h
B-1365	0.17	88.0%@1.0uM		
B-1366	0.04	0.27uM		
B-1367	<0.1	0.22uM		
B-1368	0.031	0.33uM	44.0%@30mpk @-	
B-1369	<0.1	0.29uM		
B-1370	<0.1	0.77uM		
B-1371	0.06	83.0%@1.0uM		
B-1372	<0.1	0.41uM	48.0%@30mpk @-	
B-1373	0.016	0.17uM		<u> </u>
B-1374	<0.1	0.28uM		
B-1375	0.01	0.25uM	0.001.005	
B-1376	0.009	0.26uM	3.0%@30mpk @-6H	
B-1377	0.12	5.0uM		
B-1378	0.02	1.04uM		
B-1379	<0.1	0.092uM		
B-1380	<0.1	0.26uM		

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib@d se	inhib @dose
ŀ	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#			· ·	• • • • • • • • • • • • • • • • • • • •
B-1285	0.057uM	80.0%@1.0uM		
B-1286	0.15uM	78.0%21.0uM		
B-1287	0.25uM	55.0%@1.0uM		
B-1288	0.15uM	74.0%@1.0uM		
B-1289	0.73uM	35.0%@1.0uM		
B-1290	0.26uM	75.0%@1.0uM		***************************************
B-1291	0.097uM	55.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1292	0.01uM	74.0%@1.0uM		
B-1293	0.31uM	48.0%@1.0uM		
B-1294	0.013uM	54.0%@1.0uM		·
B-1295	0.079uM	74.0%@1.0uM		
B-1296	0.038uM	48.0%@1.0uM		
B-1297	0.02uM	>1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1298	0.055uM	20.0%@1.0uM		
B-1299	0.091uM	>1.0uM		
B-1300	0.071uM	18.0%@1.0uM		
B-1301	0.12uM	15.0%@1.0uM		
B-1302	0.023uM	11.0%@1.0uM		
B-1303	0.08uM	>1.0uM	·	
B-1304	0.11uM	10.0%@1.0uM		
B-1305	0.64uM	9.0%@1.0uM		
B-1306	0.11uM	>1.0uM		
B-1307	0.009uM	16.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1308	<0.1uM	>1.0uM		
B-1309	0.045uM	>1.0uM		
B-1310	0.12uM	11.0%@1.0uM		
B-1311	0.05uM	57.0%@1.0uM		
B-1312	0.35uM	>1.0uM		
B-1313	0.035uM	37.0%@1.0uM		
B-1314	0.045uM	24.0%@1.0uM		
B-1315	0.055uM	12.0%@1.0uM		
B-1316	0.026uM	36.0%@1.0uM		
B-1317	0.019uM	9.0%@1.0uM		
B-1318	<0.1uM	1.0%@1.0uM		
B-1319	0.24uM	>1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1320	0.047uM	43.0%@1.0uM		
B-1321	0.47uM	66.0%@1.0uM		
B-1322	0.12uM	87.0%@1.0uM		
B-1323	0.013uM	85.0%@1.0uM		
B-1324	0.16uM	83.0%@1.0uM		
B-1325	0.27uM	95.0%@1.0uM		
B-1326	0.092uM	84.0%@1.0uM		
B-1327	0.13uM	65.0%@1.0uM		
B-1328	0.032uM	86.0%@1.0uM		
B-1329	0.66uM	54.0%@1.0uM		
B-1329	0.053uM	85.0%@1.0uM		
B-1331	0.003uM			
B-1331	0.004uM	85.0%@1.0uM		
B-1332		81.0%@1.0uM		
D-1000	0.45uM	76.0%@1.0uM		

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
Example#	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
B-1236	0.1uM	53.0%@1.0uM		
B-1237	0.22uM	39.0%@1.0uM		
B-1238	0.14uM	16.0%@1.0uM		
B-1239	<0.1uM	38.0%@1.0uM		
B-1240	<0.1uM	59.0%@1.0uM		
B-1241	0.04uM	81.0%@1.0uM		
B-1242	0.08uM	83.0%@1.0uM		
B-1243	0.04uM	47.0%@1.0uM		
B-1244	0.26uM	44.0%@1.0uM		
B-1245	0.49uM	42.0%@1.0uM		
B-1246	0.27uM	40.0%@1.0uM		
B-1247	<0.1uM	58.0%@1.0uM		
B-1248	<0.1uM	68.0%@1.0uM		
B-1249	0.24uM	60.0%@1.0uM		
B-1250	0.14uM	18.0%@1.0uM		<u> </u>
B-1251	0.41uM	38.0%@1.0uM	· · · · · · · · · · · · · · · · · · ·	
B-1252	0.17uM	46.0%@1.0uM		
B-1253	0.15uM	57.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1254	0.16uM	68.0%@1.0uM		
B-1255	12.9uM	75.0%@1.0uM		
B-1256	0.12uM	41.0%@1.0uM		
3-1257	1.48uM	40.0%@1.0uM		
3-1258	0.07uM	56.0%@1.0uM		
3-1259	<0.1uM	0.48uM		
3-1260	0.11uM	48.0%@1.0uM		
3-1261	0.74uM	44.0%@1.0uM		
3-1262	<0.1uM	63.0%@1.0uM		
3-1263	1.05uM	57.0%@1.0uM		
3-1264	0.32uM	47.0%@1.0uM		
3-1265	0.43uM	51.0%@1.0uM		
3-1266	<0.1uM	58.0%@1.0uM		
-1267	<0.1uM	73.0%@1.0uM		
-1268	<0.1uM	79.0%@1.0uM		
-1269	0.46uM	84.0%@1.0uM		
-1270	0.47uM	83.0%@1.0uM		
-1271	0.13uM	74.0%@1.0uM		
-1272	0.014uM	38.0%@1.0uM		
-1273	<0.1uM	36.0%@1.0uM		
-1274	<0.1uM	41.0%@1.0uM		
-1275	<0.1uM	50.0%@1.0uM		
-1276	0.062uM	11.0%@1.0uM		
-1277	<0.1uM	47.0%@1.0uM		
-1278	0.12uM	85.0%@1.0uM		
1279	<0.1uM	79.0%@1.0uM		
1280	0.039uM	83.0%@1.0uM		
1281		85.0%@1.0uM		
1282		75.0%@1.0uM		
1283	<0.1uM	64.0%@1.0uM		
1284	<0.1uM	75.0%@1.0uM		

	P38 alpha kinase	U937 C II IC50,uM	Mouse LPS Model %	Rat LPS Model %
}	IC50,uM or %	or %	TNF inhib @ dose	inhib @d se
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	· ·		·	
B-1187	76.0%@1.0uM	1.89uM		
B-1188	•	36.0%@1.0uM		
B-1189	68.0%@1.0uM	0.83uM		
B-1190	78.0%@1.0uM	62.0%@1.0uM		
B-1191	74.0%@1.0uM	57.0%@1.0uM		
B-1192	84.0%@1.0uM	0.47uM		
B-1193	69.0%@1.0uM	65.0%@1.0uM		
B-1194	87.0%@1.0uM	0.58uM		
B-1195	52.0%@1.0uM	60.0%@1.0uM		
B-1196	74.0%@1.0uM	68.0%@1.0uM		
B-1197	77.0%@1.0uM	45.0%@1.0uM		
B-1198	92.0%@1.0uM	0.46uM		
B-1199	87.0%@1.0uM	49.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1200	95.0%@1.0uM	0.64uM		
B-1201	84.0%@1.0uM	0.51uM		·-···
B-1202	71.0%@1.0uM	58.0%@1.0uM		
B-1203	84.0%@1.0uM	58.0%@1.0uM		
B-1204	68.0%@1.0uM	59.0%@1.0uM		
B-1205	74.0%@1.0uM	46.0%@1.0uM		
B-1206	81.0%@1.0uM	0.34uM		
B-1207	90.0%@1.0uM	58.0%@1.0uM		
B-1208	82.0%@1.0uM	51.0%@1.0uM		
B-1209	86.0%@1.0uM	55.0%@1.0uM		
B-1210	82.0%@1.0uM	57.0%@1.0uM		
B-1211	88.0%@1.0uM	59.0%@1.0uM		
B-1212	90.0%@1.0uM	57.0%@1.0uM		
B-1213	84.0%@1.0uM	0.62uM		
B-1214	76.0%@1.0uM	58.0%@1.0uM		
B-1215	86.0%@1.0uM	0.23uM		
B-1216	88.0%@1.0uM	0.18uM		
B-1217	87.0%@1.0uM	0.46uM		
B-1218	88.0%@1.0uM	76.0%@1.0uM		
B-1219	85.0%@1.0uM	37.0%@1.0uM		
B-1220	81.0%@1.0uM	53.0%@1.0uM		
B-1221	82.0%@1.0uM	44.0%@1.0uM		
B-1222	65.0%@1.0uM	9.0%@1.0uM		
B-1223	80.0%@1.0uM	61.0%@1.0uM		
B-1224	82.0%@1.0uM	74.0%@1.0uM		
B-1225	89.0%@1.0uM	73.0%@1.0uM		
B-1226	89.0%@1.0uM	0.18uM		
B-1227	83.0%@1.0uM	0.22uM		
B-1228	90.0%@1.0uM	0.72uM		
B-1229	87.0%@1.0uM	0.65uM		
B-1230	90.0%@1.0uM	0.25uM		
B-1231	94.0%@1.0uM	0.56uM		
B-1232	81.0%@1.0uM	54.0%@1.0uM		
B-1233	85.0%@1.0uM	0.36uM		
B-1234	89.0%@1.0uM	0.49uM		
B-1235	0.04uM	76.0%@1.0uM		

	I	T	T	T
	P38 alpha kinase	U937 C II IC50,uM	Mous LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
1	inhib@conc. (uM)	inhib@conc. (uM)	@pr dose time	@predose time
Example#	l			o produce time
B-1138	1.82uM	>1.0uM		
B-1139	0.041uM	29.0%@1.0uM		
B-1140	1.68uM	39.0%@1.0uM		
B-1141	2.47uM	32.0%@1.0uM		
B-1142	0.11uM	37.0%@1.0uM		
B-1143	0.17uM	40.0%@1.0uM		
B-1144	0.44uM	72.0%@1.0uM		
B-1145	1.07uM	71.0%@1.0uM		
B-1146	0.47uM	61.0%@1.0uM		
B-1147	0.095uM	53.0%@1.0uM		
B-1148	0.43uM	61.0%@1.0uM		
B-1149	1.55uM	48.0%@1.0uM		
B-1150	0.47uM	75.0%@1.0uM		
B-1151	0.32uM	72.0%@1.0uM		
B-1152	0.73uM	53.0%@1.0uM		
B-1153	2.22uM	52.0%@1.0uM		
B-1154	0.085uM	46.0%@1.0uM		
B-1155	3.22uM	30.0%@1.0uM		
B-1156	0.27uM	78.0%@1.0uM		
B-1157	0.26uM	66.0%@1.0uM		
B-1158	74%@1.0uM	0.68uM	53%@30mpk@-6h	
B-1159	66.0%@1.0uM	1.03uM	60%@30mpk@-6h	
B-1160	79.0%@1.0uM	0.38uM		
B-1161 B-1162	64.0%21.0uM	0.93uM	40%@30mpk@-6h	45%@3mpk@-4h
B-1163	79.0%@1.0uM	0.59uM	40%@30mpk@-6h	
B-1164	74.0%@1.0uM	0.37uM		
B-1165	EE 00/ @4 01-00	0.35uM	·	·
B-1166	66.0%@1.0uM 77.0%@1.0uM	0.99uM	500/ 000 10 01	
B-1167	70.0%@1.0uM	0.39uM	50%@30mpk@-6h	50%@3mpk@-4h
B-1168	66.0%@1.0uM	1.06uM		
B-1169	80.0%@1.0uM	0.63uM		
B-1170	82.0%@1.0uM	0.11uM		
B-1171	78.0%@1.0uM	0.57uM 0.23uM		
B-1172	68.0%@1.0úM			
B-1173	65.0%@1.0uM	1.95uM 62%@1.0uM		
B-1174	80.0%@1.0uM	0.86uM		
B-1175	72.0%@1.0uM	1.83uM		
B-1176	67.0%@1.0uM	67.0%@1.0uM		
B-1177	70.0%@1.0uM	1.16uM		
B-1178	92.0%@1.0uM	1.61uM		
B-1179	86.0%@1.0uM	0.41uM		
B-1180	78.0%@1.0uM	0.53uM		
B-1181	79.0%@1.0uM	66%@1.0uM		
B-1182	72.0%@1.0uM	0.65uM		
3-1183	77.0%@1.0uM	0.2uM		
3-1184	69.0%@1.0uM	0.63uM		
3-1185	71.0%@1.0uM	0.79uM		
3-1186	83.0%@1.0uM	60%@1.0uM		

			r	
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @d se
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#				•
B-1089	<0.1 uM	39.0%@1.puM		
B-1090	<0.1uM	90.0%@1.0uM		
B-1091	<0.1uM	73.0%@1.0uM		
B-1092	0.27uM	85.0%@1.0uM		
B-1093	0.33uM	36.0%@1.0uM		
B-1094	0.013uM	69.0%@1.0uM		
B-1095	<0.1uM	70.0%@1.0uM		
B-1096	<0.1uM	32.0%@1.0uM		
B-1097	<0.1uM	44.0%@1.07uM		
B-1098	<0.1uM	82.0%@1.0uM		
B-1099	0.26uM	74.0%@1.0uM		
B-1100	0.22uM	56.0%@1.0uM		
B-1101	0.026uM	82.0%@1.0uM		
B-1102	0.035uM	83.0%@1.0uM		
B-1103	0.094uM	90.0%@1.0uM		
B-1104	0.12uM	69.0%@1.0uM		
B-1105	<0.1uM	84.0%@1.0uM		
B-1106	<0.1uM	86.0%@1.0uM		
B-1107	0.057uM	84.0%@1.0uM		
B-1108	0.22uM	81.0%@1.0uM		
B-1109	0.054uM	80.0%@1.0uM		
B-1110	0.47uM	64.0%@1.0uM		
B-1111	0.19uM	64.0%@1.0uM		
B-1112	0.58uM	43.0%@1.0uM		
B-1113	<0.1uM	72.0%@1.0uM		
B-1114 B-1115	0.069uM	51.0%@1.0uM		
	0.024uM	89.0%@1.0uM		
B-1116 B-1117	0.41uM	81.0%@1.0uM 73.0%@1.0uM		
B-1118	0.13uM 0.33uM	91.0%@1.0uM		
B-1119	0.35uM	80.0%@1.0uM		
B-11120	0.47uM	9.0%@1.0uM		
B-1121	3.58uM	29.0%@1.0uM		
B-1122	1.84uM	32.0%@1.0uM		
B-1123	2.93uM	27.0%@1.0uM		
B-1124	1.49uM	52.0%@1.0uM		
B-1125	0.56uM	41.0%@1.0uM		
B-1126	1.5uM	>1.0uM		
B-1127	0.71uM	7.0%@1.0uM		
B-1128	2.55uM	26.0%@1.0uM		
B-1129	1.07uM	46.0%@1.0uM		
B-1130	0.5uM	29.0%@1.0uM		
B-1131	0.076uM	34.0%@1.0uM		
B-1132	0.72uM	11.0%@1.0uM		
B-1133	0.38uM	33.0%@1.0uM		
B-1134	1.71uM	33.0%@1.0uM		
B-1135	0.23uM	38.0%@1.0uM		
B-1136	1.17uM	40.0%@1.0uM		
B-1137	0.038uM	35.0%@1.0uM		

	P38 alpha kinase	11007.0 11.070 14		
1		U937 C II IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @d s
Example#	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
B-1040	72.0%@1.0uM	0.38uM		
B-1041	70.0%@1.0uM	73.0%@1.0uM		
B-1042	79.0%@1.0uM	12.0%@1.0uM		
B-1043	64.0%@1.0uM	53.0%@1.0uM		
B-1044	94.0%@1.0uM	0.93uM		
B-1045	78.0%@1.0uM	25.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1046	72.0%@1.0uM	66.0%@1.0uM		
B-1047	72.0%@1.0uM	58.0%@1.0uM		
B-1048	67.0%@1.0uM	19.0%@1.0uM		
B-1049	67.0%@1.0uM			
B-1050	01.076 G 1.0018	65.0%@1.0uM		
B-1051	68.0%@1.0uM	0.54uM		
B-1052	69.0%@1.0uM	41%@1.0uM		
B-1053	78.0%@1.0uM	66%@1.0uM		
B-1054	79.0%@1.0uM	0.4uM		
B-1055		55.0%@1.0uM		
B-1056	89.0%@1.0uM	63.0%@1.0uM		
B-1057	89.0%@1.0uM	0.76uM		
B-1058	85.0%@1.0uM	0.72uM		
B-1059	0.66uM	43.0%@1.0uM		
B-1060	0.18uM	24.0%@1.0uM		
B-1060	0.11uM	32.0%@1.0uM		
B-1062	0.03uM	19.0%@1.0uM		
	<0.1uM	26.0%@1.0uM		
B-1063	0.16uM	44.0%@1.0uM		
B-1064	0.39uM	50.0%@1.0uM		
B-1065 B-1066	0.56uM	40.0%@1.0uM		
	<0.1uM	39.0%@1.0uM		
B-1067	1.6uM	32.0%@1.0uM		
B-1068 B-1069	0.48uM	24.0%@1.0uM		
	0.22uM	27.0%@1.0uM		
B-1070	<0.1uM	44.0%@1.0uM		
B-1071	<0.1uM	48.0%@1.0uM		
B-1072	0.38uM	28.0%@1.0uM		
B-1073	<0.1uM	21.0%@1.0uM		
B-1074	0.23uM	33.0%@1.0uM		-
B-1075	0.03uM	29.0%@1.0uM		
B-1076	0.08uM	31.0%@1.0uM		
B-1077	<0.1uM	38.0%@1.0uM		
B-1078	0.26uM	48.0%@1.0uM		
B-1079	<0.1uM	40.0%@1.0uM		
B-1080	0.19uM	28.0%@1.0uM		
B-1081	<0.1uM	37.0%@1.0uM		
B-1082	<0.1uM	54.0%@1.0uM		
B-1083	<0.1uM	23.0%@1.0uM		
B-1084	0.43uM	29.0%@1.0uM		
3-1085	<0.1uM	29.0%@1.0uM		
3-1086	<0.1uM	42.0%@1.0uM		
3-1087	0.05uM	32.0%@1.0uM		
3-1088	0.73uM	49.0%@1.0uM		

			<u> </u>	
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS M del %	Rat LPS Mod 1%
	IC50,uM or %	г %	TNF inhib @ dose	inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#				
B-0991	58.0%@1.0uM	33.0%@1.0uM		
B-0992	77.0%@1.0uM	45.0%@1.0uM		
B-0993	57.0%@1.0uM	73.0%@1.0uM		
B-0994	55.0%@1.0uM	43.0%@1.0uM		
B-0995	53.0%@1.0uM	14.0%@1.0uM		
B-0996	54.0%@1.0uM	27.0%@1.0uM		
B-0997	69.0%@1.0uM	22.0%@1.0uM		
B-0998	67.0%@1.0uM	25.0%@1.0uM		
B-0999	61.0%@1.0uM	24.0%@1.0uM		
B-1000	55.0%@1.0uM	42.0%@1.0uM		
B-1001	63.0%@1.0uM	31.0%@1.0uM		
B-1002	70.0%@1.0uM	41.0%@1.0uM		
B-1003	74.0%@1.0uM	29.0%@1.0uM		
B-1004 B-1005	79.0%@1.0uM	45.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
	58.0%@1.0uM	23.0%@1.0uM		
B-1006 B-1007	69.0%@1.0uM	38.0%@1.0uM		
	52.0%@1.0uM	34.0%@1.0uM		
B-1008 B-1009	54.0%@1.0uM	23.0%@1.0uM		
B-1009	80.0%@1.0uM	55.0%@1.0uM		
B-1010	75.0%@1.0uM 72.0%21.0uM	1.0uM		
B-1012	12.0 %21.00IVI	17.0%@1.0uM 20.0%@1.0uM		
B-1013	85.0%@1.0uM	7.0%@1.0uM		
B-1014	88.0%@1.0uM	20.0%@1.0uM		
B-1015	77.0%@1.0uM	34.0%@1.0uM		
B-1016	58.0%@1.0uM	10.0%@1.0uM		
B-1017	96.0%@1.0uM	58.0%@1.0uM		
B-1018	88.0%@1.0uM	34.0%@1.0uM		
B-1019	82.0%@1.0uM	66.0%@1.0uM		
B-1020	87.0%@1.0uM	36.0%@1.0uM		* *- · · · · · · · · · · · · · · · · · ·
B-1021	82.0%@1.0uM	35.0%@1.0uM		
B-1022	84.0%@1.0uM	53.0%@1.0uM		
B-1023	93.0%@1.0uM	70.0%@1.0uM		· · ·
B-1024	89.0%@1.0uM	57.0%@1.0uM		
B-1025	61.0%@1.0uM	23.0%@1.0uM		
B-1026	87.0%@1.0uM	53.0%@1.0uM		······································
B-1027	58.0%@1.0uM	18.0%@1.0uM		
B-1028	70.0%@1.0uM	17.0%@1.0uM		
B-1029	69.0%@1.0uM	54.0%@1.0uM		······································
B-1030	76.0%@1.0uM	60.0%@1.0uM		
B-1031	69.0%@1.0uM	42.0%@1.0uM		·
B-1032	76.0%@1.0uM	37.0%@1.0uM		
B-1033	86.0%@1.0uM	34.0%@1.0uM		
B-1034	66.0%@1.0uM	39.0%@1.0uM		
B-1035	75.0%@1.0uM	52.0%@1.0uM		
B-1036	68.0%@1.0uM	68.0%@1.0uM		
B-1037	•	41.0%@1.0uM		
B-1038	57.0%@1.0uM	0.57uM		
B-1039	<u> </u>	1.33uM		

				
1	P38 alpha kinas	U937 C II IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	(=,			
B-0942	82.0%@1.0uM	2.0%@1.0uM		
B-0943	63.0% @10.0uM	24.0%@1.0uM		
B-0944	45.0%@1.0uM	27.0%@1.0uM		
B-0945	96.0%@1.0uM	0.93uM		
B-0946	76.0%@1.0uM	31.0%@1.0uM		
B-0947	69.0%@1.0uM	34.0%@1.0uM		
B-0948	68.0%@1.0uM	1.81uM		
B-0949	90.0%@1.0uM	17.0%@1.0uM		
B-0950	81.0%@1.0uM	0.58uM		
B-0951	82.0%@1.0uM	20.0%@1.0uM		•
B-0952	44.0%@1.0uM	21.0%@1.0uM		
B-0953	63.0%@1.0uM	25.0%@1.0uM		
B-0954	62.0%@1.0uM	0.52uM		
B-0955	49.0%@1.0uM	0.54uM		
B-0956	56.0%@1.0uM	1.33uM		
B-0957	79.0%@1.0uM	22.0%@1.0uM		
B-0958	74.0%@1.0uM	0.38uM		
B-0959	83.0%@1.0uM	39.0%@1.0uM		
B-0960	48.0%@1.0uM	4.0%@1.0uM		
B-0961	79.0%@1.0uM	23.0%@1.0uM		
B-0962	85.0%@1.0uM	2.71uM		
B-0963	76.0%@1.0uM	39.0%@1.0uM		
B-0964	94.0%@1.0uM	5.0uM		
B-0965	74.0%@1.0uM	1.1uM		
B-0966	50.0%@1.0uM	5.0%@1.0uM		
B-0967	80.0%@1.0uM	29.0%@1.0uM		
B-0968	35.0%@1.0uM	26.0%@1.0uM		
B-0969	63.0%@1.0uM	35.0%@1.0uM		
B-0970	76.0%@10.0uM	0.88uM		
B-0971	61.0%@1.0uM	39.0%@1.0uM		,
B-0972	85.0%@1.0uM	2.0%@1.0uM		
B-0973	66.0%@10.0uM	48.0%@1.0uM		
B-0974	57.0%@1.0uM	47.0%@1.0uM		······································
B-0975	82.0%@1.0uM	32.0%@1.0uM	"	
B-0976	79.0%@1.0uM	36.0%@1.0uM		
B-0977	60.0%@1.0uM	26.0%@1.0uM		
B-0978	59.0%@1.0uM	36.0%@1.0uM		
B-0979	56.0%@10.0uM	23.0%@1.0uM		
B-0980	68.0%@1.0uM	31.0%@1.0uM		
B-0981	62.0%@1.0uM	57.0%@1.0uM		
B-0982	65.0%@1.0uM	23.0%@1.0uM		
B-0983	75.0%@1.0uM	0.8uM		
B-0984	60.0%@1.0uM	51.0%@1.0uM		
B-0985	86.0%@1.0uM	0.75uM		
B-0986	70.0%@1.0uM	71.0%@1.0uM		
B-0987	78.0%@1.0uM	79.0%@1.0uM		
B-0988	72.0%@1.0uM	65.0%@1.0uM		
B-0989	85.0%@1.0uM	0.85uM		
B-0990	•	26.0%@1.0uM	<u> </u>	

	38 alpha kinase			·
inl	IC50,uM or % hib@conc. (uM)	U937 Cell IC50,uM or % inhib@conc. (uM)	Mouse LPS Model % TNF inhib @ dose @predose time	Rat LPS Model % inhib @dose @predose time
Example#				
B-0893				
B-0894				
B-0895				
B-0896				
B-0897				
B-0898				
B-0899				
B-0900				
B-0901				
B-0902				
B-0903				
B-0904				
B-0905				
B-0906				
B-0907				
B-0908				
B-0909				
B-0910				
B-0911				
B-0912		····		
B-0913				
B-0914				
B-0915				
B-0916				
B-0917				
B-0918				
B-0919				
B-0920				
B-0921				
B-0922				
B-0923				
B-0924				
B-0925				
B-0926				
B-0927				
B-0928				
B-0929		······································		
B-0930	····································			
B-0931				
B-0932				
	17.0%@1.0uM	37.0%@1.0uM		
	67.0%@1.0uM	36.0%@1.0uM		
	59.0%@1.0uM	54.0%@1.0uM	_	
	69.0%@1.0uM	>1.0uM		
	54.0%@1.0uM	1.74uM		
	51.0%@1.0uM	29.0%@1.0uM		
	78.0%@1.0uM	14.0%@1.0uM		
	56.0%@1.0uM	22.0%@1.0uM		
	81.0%@1.0uM	25.0%@1.0uM		

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
]	IC50,uM or %	or %	TNF inhib @ dose	inhib @d se
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predos time
Example#	,	(2,		
B-0844	0.4uM	25.0%@1.0uM		
B-0845	1.78uM	-		
B-0846	1.8uM	•		
B-0847	0.73uM	21.0%@1.0uM		
B-0848	1.56uM	•		
B-0849	1.25uM	•		
B-0850	1.81uM	•		
B-0851	0.91uM	39.0%@1.0⊔M		
B-0852	1.02uM	-		
B-0853	•	38.0%@1.0uM		
B-0854	•	25.0%@1.0uM		
B-0855	-	8.0%@1.0uM		
B-0856	-	38.0%@1.0uM		
B-0857	6.25uM	•		
B-0858	2.1uM	48.0%@1.0uM		
B-0859	39.5uM	•		
B-0860	38.1uM	•		
B-0861	1.32uM	12.0%@1.0uM		
B-0862	2.15uM	4.0%@1.0uM		
B-0863	0.81uM	25.0%@1.0uM		
B-0864	0.39uM	40.%@1.0uM		
B-0865	0.66uM	46.0%@1.0uM		
B-0866	1.38uM	28.0%@1.0uM		
B-0867	0.62uM	>1.0uM		
B-0868 B-0869	3.28uM	8.0%@1.0uM		
B-0870	4.19uM 3.13uM	>1.0uM >1.0uM		
B-0871				
B-0872	1.9uM	>1.0uM 3.0%@1.0uM		
B-0873	3.13uM 6.92uM	>1.0uM		
B-0874	1.92uM	>1.0uM	.,,-	
B-0875	2.13uM	8%@1.0uM		
B-0876	0.89uM	>1.0uM		
B-0877	1.17uM	13.0%@1.0uM		
B-0878	0.65uM	19.0%@1.0uM		
B-0879	0.87uM	1.0%@1.0uM		
B-0880	0.15uM	40.0%@1.0uM		
B-0881	1.36uM	>1.0uM		
B-0882	1.48uM	9%@1.0uM		
B-0883	1.06uM	>1.0uM		
B-0884	1.89uM	-		
B-0885				
B-0886				
B-0887				
B-0888				
B-0889			<u> </u>	
B-0890				
B-0891		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
B-0892				
			<u></u>	

			r	
	P38 alpha kinase IC50,uM r%	U937 C II IC50,uM	Mouse LPS M del % TNF inhib @ dose	Rat LPS M del % inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#		, , , , , , , , , , , , , , , , , , , ,		•
B-0795	1.9uM	11.0%@1.0uM		
B-0796	1.4uM			
B-0797	1.04uM	•		
B-0798	1.73uM	•		
B-0799	•	>1.0uM		
B-0800	1.01uM	>1.0uM		
B-0801	0.67uM	>1.0uM		
B-0802	•	>1.0uM		
B-0803	0.057uM	53.0%@1.0uM		
B-0804	0.3uM	32.0%@1.0uM		
B-0805	0.71uM	>1.0uM		
B-0806	3.28uM	>1.0uM		
B-0807	10.8uM	•		
B-0808	3.09uM	>1.0uM		
B-0809	1.22uM	7.0%@1.0uM		
B-0810	1.11uM	>1.0uM		
B-0811	2.79uM	2.0%@1.0uM		
B-0812	2.12uM	>1.0uM		
B-0813	3.02uM	>1.0uM		
B-0814	•	>1.0uM		
B-0815	2.11uM	>1.0uM		
B-0816	3.46uM	>1.0uM		
B-0817	3.07uM	33.0%@1.0uM		
B-0818	4.97uM	>1.0uM		
B-0819	1.08uM	>1.0uM		
B-0820	1.64uM	3.0%@1.0uM		
B-0821	1.44uM	•		
B-0822	1.33uM	•		
B-0823	2.39uM	>1.0uM	<u> </u>	
B-0824	3.41uM	•		
B-0825	٠.	•		
B-0826	1.74uM	•	<u> </u>	
B-0827	15.6uM	`•		
B-0828	7.9uM	•	<u> </u>	
B-0829	0.61uM	65.0%@1.0uM		
B-0830	0.54uM	34.0%@1.0uM	·	
B-0831	0.9uM	>1.0uM		
B-0832	1.49uM	•		
B-0833	0.95uM	23.0%@1.0uM		
B-0834	1.25uM	•		
B-0835	•	•		
B-0836	1.24uM	•		
B-0837	1.96uM	>1.0uM		
B-0838	3.1uM	•		
B-0839	4.3uM	<u> </u>		
B-0840	0.63uM	47.0%@1.0uM		
B-0841	0.32uM	36.0%@1.0uM		
B-0842	0.74uM	63.0%@1.0uM		
B-0843	0.61uM	>1.0uM		

			,	······································
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
i	IC50,uM or %	or %	TNF inhib @ dose	inhib @d se
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#			-	
B-0746	0.01uM	22.0%@1.0uM		
B-0747	1.1uM			
B-0748	1.2uM			
B-0749	4.4uM			······································
B-0750	0.92uM			
B-0751	1.6uM			
B-0752	0.33uM			
B-0753	0.37uM			
B-0754	0.55uM			
B-0755	2.3uM			
B-0756	0.94uM			
B-0757	0.54uM	16.0%@1.0uM		
B-0758	1.5uM			
B-0759	0.3uM			
B-0760	0.01uM	13.0%@1.0uM		
B-0761	<0.1uM			
B-0762	0.13uM	5.0%@1.0uM		
B-0763	0.015uM	17.0%@1.0uM		
B-0764	0.67uM	26.0%@1.0uM		
B-0765	0.3uM	29.0%@1.0uM		
B-0766	0.95uM			
B-0767	0.08uM			
B-0768	1.4uM			
B-0769	12.7uM			
B-0770	2.3uM			
B-0771	0.5uM			
B-0772	0.8uM			
B-0773	14.0uM			
B-0774	1.5u₩			
B-0775	0.6uM	>1.0uM		
B-0776	0.9uM	>1.0uM		
B-0777	21.0uM			
B-0778	51.0uM			
B-0779	0.5uM			
B-0780	1.1uM			
B-0781	48.0uM			·
B-0782	22.0uW			
B-0783	8.0uM			
B-0784	7.0uM	<u></u>		
B-0785	23.0uM			
B-0786 B-0787	24.0uM			
B-0788	1.5uM		<u> </u>	
B-0789	1.2uM	<u></u>		
B-0789 B-0790	33.0uM	4.00/ 0.1.2.		
B-0790 B-0791	1.0uM	4.0%@1.0uM		
B-0791 B-0792	0.3uM	>1.0uM		
B-0792 B-0793	1.1uM			
B-0793 B-0794	0.3uM	0.00/.00 0.00	 .	
D-0/34	2.9uM	2.0%@1.0uM		

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	r %	TNF inhib @ dose	inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#				
B-0697	0.45uM	44.0%@1.0uM		
B-0698	2.33uM	43.0%@1.0uM		
B-0699	0.34uM	31.0%@1.0uM		
B-0700	0.24uM	56.0%@1.0uM		
B-0701	0.39uM	45.0%@1.0uM		
B-0702	0.036uM	39.0%@1.0uM		
B-0703	0.12uM	39.0%@1.0uM		
B-0704	2.19uM	29.0%@1.0uM		
B-0705	0.44uM	21.0%@1.0uM		
B-0706	0.44uM	32.0%@1.0uM		
B-0707	1.7uM			
B-0708	2.1uM			
B-0709	0.84uM			
B-0710	1.99uM			
B-0711	1.99uM			
B-0712	2.9uM			
B-0713	4.3uM			
B-0714	3.7uM			
B-0715	3.2uM			·
B-0716	4.6uM			
B-0717	4.3uM			
B-0718	1.4uM			
B-0719	3.4uM			
B-0720	1.3uM			
B-0721	3.8uM			
B-0722	0.07uM	>1.0uM		
B-0723	0.47uM			
B-0724	0.06uM	17.0%@1.0uM		
B-0725	9.7uM			
B-0726	1.4uM			
B-0727	0.51uM			
B-0728	20.0uM			
B-0729	0.87uM			
B-0730	0.25uM	11.0%@1.0uM		
B-0731	0.87uM	>1.0uM		
B-0732	14.0uM			
B-0733	32.0uM			
B-0734	0.92uM			
B-0735	1.0uM			
B-0736	26.0uM			
B-0737	2.6uM			
B-0738	2.7uM			
B-0739	4.1uM			
B-0740	4.4uM			
B-0741	26.0uM			
B-0742	2.2uM			
B-0743	1.2uM			
B-0744	23.0uM			
B-0745	6.0uM			

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
1	IC50,uM or %	or %	TNF inhib @ dose	inhib @d se
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	(2,		a predose time	& breaose title
B-0648	<0.1uM	83.0%@1.0uM		
B-0649	0.83uM	39.0%@1.0uM		
B-0650	0.006uM	95.0%@1.0uM		8%@3mpk@-4h
B-0651	1.78uM	81.0%@1.0uM		07690IIIDRG-4II
B-0652	0.19uM	83.0%@1.0uM		
B-0653	2.01uM	74.0%@1.0uM		
B-0654	5.97uM	78.0%@1.0uM		
B-0655	1.25uM	76.0%@1.0uM		"
B-0656	0.007uM	95.0%@1.0uM		28%@3mpk@-4h
B-0657	0.17uM	83.0%@1.0uM		20 % 4 Shipke - 411
B-0658	1.14uM	91.0%@1.0uM		
B-0659	2.64uM	87.0%@1.0uM		
B-0660	0.088uM	92.0%@1.0uM		
B-0661	<0.1uM	90.0%@1.0uM		
B-0662	<0.1uM	95.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0663	0.88uM	74.0%@1.0uM		
B-0664	0.39uM	80.0%@1.0uM		
B-0665	0.47uM	72.0%@1.0uM		
B-0666	0.17uM	73.0%@1.0uM		
B-0667	0.83uM	75.0%@1.0uM		
B-0668	0.27uM	78.0%@1.0uM		
B-0669	0.89uM	34.0%@1.0uM		
B-0670	3.15uM	32.0%@1.0uM		
B-0671	6.38uM	36.0%@1.0uM		
B-0672	6.59uM	32.0%@1.0uM		
B-0673	8.54uM	48.0%@1.0uM		
B-0674	2.81uM	42.0%@1.0uM		
B-0675	5.42uM	3.0%@1.0uM		
B-0676	2.09uM	22.0%@1.0uM		
B-0677	1.63uM	25.0%@1.0uM		
B-0678	0.38uM	52.0%@1.0uM		* ***
B-0679	0.062uM	45.0%@1.0uM		
B-0680	0.42uM	67.0%@1.0uM		
B-0681	1.96uM	17.0%@1.0uM		
B-0682	0.76uM	39.0%@1.0uM		
B-0683	13.0uM	32.0%@1.0uM		
B-0684	0.54uM	68.0%@1.0uM		
B-0685	15.4uM	33.0%@1.0uM		
B-0686	0.42uM	59.0%@1.0uM		
3-0687	10.1uM	15.0%@1.0uM		
B-0688	0.66uM	58.0%@1.0uM		
3-0689	14.6uM	27.0%@1.0uM		
3-0690	27.1uM	36.0%@1.0uM		
3-0691	0.16uM	48.0%@1.0uM		
3-0692	0.38uM	29.0%@1.0uM		
3-0693	0.39uM	28.0%@1.0uM		
3-0694	0.62uM	21.0%@1.0uM		
3-0695	0.23uM	32.0%@1.0uM		
3-0696	0.085uM	35.0%@1.0uM		

	P38 alpha kinase IC50,uM or %	U937 C II IC50,uM	Mouse LPS Mod 1 % TNF inhib @ d se	Rat LPS Model % inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#			•	•
B-0599	4.16uM	21.0%@1.0uM		
B-0600	0.002uM	28.0%@1.0uM		
B-0601	0.089uM	1.31uM		43%@3mpk%-4h
B-0602	0.97uM	61.0%@1.0uM		
B-0603	0.09uM	51.0%@1.0uM		
B-0604	0.3uM	20.0%@1.0uM		
B-0605	0.18uM	47.0%@1.0uM		
B-0606	0.17uM	53.0%@1.0uM		
B-0607	2.79uM	70.0%@1.0uM		
B-0608	0.059uM	73.0%@1.0uM		
B-0609	<0.1uM	87.0%@1.0uM		
B-0610	<0.1uM	88.0%@1.0uM		
B-0611	0.65uM	60.0%@1.0uM		
B-0612	0.16uM	60.0%@1.0uM		·-·
B-0613	0.17uM	76.0%@1.0uM		
B-0614	0.76uM	70.0%@1.0uM		0%@3mpk@-4h
B-0615	0.08uM	83.0%@1.0uM		oweening in
B-0616	0.38uM	87.0%@1.0uM		
B-0617	0.045uM	92.0%@1.0uM		
B-0618	0.37uM	80.0%@1.0uM		
B-0619	<0.1uM	88.0%@1.0uM		
B-0620	1.59uM	58.0%@1.0uM		
B-0621	0.36uM	68.0%@1.0uM		
B-0622	0.076uM	78.0%@1.0uM		
B-0623	0.12uM	76.0%@1.0uM		
B-0624	0.085uM	54.0%@1.0uM		······································
B-0625	0.023uM	88.0%@1.0uM		
B-0626	<0.1uM	85.0%@1.0uM		,
B-0627	0.25uM	69.0%@1.0uM	,	
B-0628	0.023uM	72.0%@1.0uM		
B-0629	0.2uM	79.0%@1.0uM		
B-0630	0.06uM	77.0%@1.0uM		
B-0631	0.065uM	81.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0632	<0.1uM	79.0%@1.0uM		
B-0633	0.6uM	80.0%@1.0uM		
B-0634	0.6uM	40.0%@1.0uM		
B-0635	0.15uM	55.0%@1.0uM		
B-0636	<0.1uM	86.0%@1.0uM		
B-0637	0.11uM	92.0%@1.0uM		
B-0638	0.25uM	89.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0639	0.051uM	93.0%@1.0uM		50%@3mpk@-4h
B-0640	0.36uM	94.0%@1.0uM		
B-0641	0.58uM	65.0%@1.0uM		
B-0642	0.49uM	90.0%@1.0uM		
B-0643	0.069uM	85.0%@1.0uM		0%@3mpk@-4h
B-0644	0.058uM	89.0%@1.0uM		
B-0645	0.58uM	80.0%@1.0uM		
8-0646	0.26uM	94.0%@1.0uM		
B-0647	1.61uM	76.0%@1.0uM		

	T	 		
	P38 alpha kinase	U937 C II IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
•	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#				
B-0550	2.41uM	14.0%@1.0uM		
B-0551	1.08uM	56.0%@1.0uM		
B-0552	0.13uM	46.0%@1.0uM		
B-0553	1.44uM	47.0%@1.0uM		
B-0554	2.58uM	20.0%@1.0uM		
B-0555	1.87uM	34.0%@1.0uM		
B-0556	0.49uM	39.0%@1.0uM		
B-0557	1.37uM	32.0%@1.0uM		
B-0558	0.85uM	33.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0559	0.53u₩	49.0%@1.0uM		
B-0560	2.57uM	31.0%@1.0uM		
B-0561	2.07uM	40.0%@1.0uM		
B-0562	0.22uM	0.3uM		5%@3mpk@-4h
B-0563	0.18uM	0.13uM		<u> </u>
B-0564	0.82uM	58%@1.0uM		
B-0565	0.23uM	0.59uM		·
B-0566	<0.1uM	0.17uM		0%@3mpk@-4h
B-0567	0.14uM	0.28uM		
B-0568	1.22uM	46.0%@1.0uM		
B-0569	0.15uM	0.26uM		
B-0570	0.27uM	46.0%@1.0uM		
B-0571	0.38uM	44.0%@1.0uM		
B-0572	0.27 u M	41.0%@1.0uM		
B-0573	0.36uM	1.7uM		
B-0574	0.13uM	0.66uM		37%@3mpk@-4h
B-0575	0.032uM	0.17uM		
B-0576	0.068 u M	0.39uM		65%@3mpk@-4h
B-0577	0.091uM	66.0%@1.0uM		
B-0578	1.88uW	47.0%@1.0uM		
B-0579	0.11uM	79.0%@1.0uM		
B-0580	2.23uM	0.84uM		
B-0581	0.26uM	2.17uM		
B-0582	1.03uM	37.0%@1.0uM		
B-0583	3.93uM	26.0%@1.0uM		
B-0584	0.66uM	54.0%@1.0uM		
B-0585	0.83uW	79.0%@1.0uM	50%@30mpk@-6h	
B-0586	0.81uM	51.0%@1.0uM		
B-0587	6.84uW	38%@1.0uM		
B-0588	12.8uM	42%@1.0uM		
B-0589	1.71uM	42%@1.0uM		
B-0590	1.57uM	38.0uM		
B-0591	3.59uM	29.0%@1.0uM		
B-0592	1.62uM	45.0%@1.0uM		·
B-0593	1.22uM	36.0%@1.0uM		
B-0594	•	41.0%@1.0uM		
B-0595	2.42uM	22.0%@1.0uM		
B-0596	20.0uM	41.0%@1.0uM		
B-0597	1.68uM	63.0%@1.0uM		
B-0598	2.12uM	50.0%@1.0uM		

	P38 alpha kinase IC50,uM r%	U937 Cell IC50,uM or %	Mouse LPS Model % TNF inhib @ dose	Rat LPS M del % inhib @d se
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#				
B-0505	0.28uM	44.0%@1.0uM		
B-0506	0.94uM	43.0%@1.0uM		
B-0507	0.18uM	75.0%@1.0uM		
B-0508	2.0uM	48.0%@1.0uM		
B-0509	0.1uM	86.0%@1.0uM		
B-0510	0.69uM	61.0%@1.0uM		
B-0511	0.007uM	90.0%@1.0uM		
B-0512	1.0uM	53.0%@1.0uM		
B-0513	0.72uM	52.0%@1.0uM		
B-0514	0.14uM	87.0%@1.0uM	7	
B-0515	0.42uM	61.0%@1.0uM		
B-0516	0.37uM	84.0%@1.0uM		
B-0517	0.094uM	52.0%@1.0uM		
B-0518	0.11uM	64.0%@1.0uM		
B-0519	0.043uM	87.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0520	0.4uM	67.0%@1.0uM		
B-0521	1.37uM	52.0%@1.0uM		
B-0522	0.15uM	75.0%@1.0uM		·
B-0523	0.19uM	83.0%@1.0uM		
B-0524	0.4uM	77.0%@1.0uM		
B-0525	0.16uM	76.0%@1.0uM		
B-0526	0.031uM	87.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0527	1.09uM	63.0%@1.0uM		
B-0528	0.14uM	70.0%@1.0uM		
B-0529	0.11uM	73.0%@1.0uM		
B-0530	5.53uM	45.0%@1.0uM	7	
B-0531	0.5uM	48.0%@1.0uM		
B-0532	0.45uM	1.01uM	41%@30mpk@-6h	
B-0533	1.23uM	47.0%@1.0uM		
B-0534	0.41uM	54.0%@1.0uM	· · · · · · · · · · · · · · · · · · ·	
B-0535 B-0536	0.44uM 0.46uM	0.87uM 0.15uM		
B-0537	3.44uM	51.0%@1.0uM		·
B-0538	1.13uM	45.0%@1.0uM	-	
B-0539	2.84uM	21.0%@1.0uM		
B-0540	3.62uM	54.0%@1.0uM		
B-0541	3.24uM	28.0%@1.0uM		
B-0542 B-0543	1.55uM	50.0%@1.0uM		
B-0544	1.56uM 1.12uM	43.0%@1.0uM 27.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0545	1.06uM	41.0%@1.0uM		
B-0546	1.04uM	18.0%@1.0uM		
B-0547	1.24uM	21.0%@1.0uM		
B-0548	1.77uM	28.0%@1.0uM		
B-0549	2.22uM	22.0%@1.0uM		

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	
Example#	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
B-0463	0.052uM	95.0%@1.0uM		
B-0464	<0.1uM	91.0%@1.0uM		
B-0465	0.084uM			
B-0466		98.0%@1.0uM		
B-0467	<0.1uM <0.1uM	98.0%@1.0uM		0%@3mpk@-4h
B-0468		77.0%@1.0uM		
	0.031uM	93.0%@1.0uM		
B-0469	0.056uM	92.0%@1.0uM		
B-0470	0.063uM	92.0%@1.0uM		
B-0471	0.027uM	97.0%@1.0uM		
B-0472	0.19uM	54.0%@1.0uM		
B-0473	0.004uM	95.0%@1.0uM		
B-0474	0.024uM	86.0%@1.0uM		
B-0475	0.21uM	74.0%@1.0uM		
B-0476	0.56uM	69.0%@1.0uM		
B-0477	1.48uM	96.0%@1.0uM		
B-0478	0.034uM	87.0%@1.0uM		
B-0479	0.031uM	90.0%@1.0uM		15%@3mpk@-4h
B-0480	0.12uM	88.0%@1.0uM		
B-0481	0.014uM	95.0%@1.0uM		56%@3mpk@-4h
B-0482	0.97uM	68.0%@1.0uM		
B-0483	0.57uM	68.0%@1.0uM		
B-0484	0.28uM	62.0%@1.0uM		
B-0485	0.04uM	95.0%@1.0uM		
B-0486	0.24uM	80.0%@1.0uM		
B-0487	0.11uM	89.0%@1.0uM		54%@3mpk@-4h
B-0488	0.62uM	88.0%@1.0uM		The same same
B-0489	0.3uM	80.0%@1.0uM		
B-0490	0.91uM	74.0%@1.0uM		
B-0491	0.43uM	66.0%@1.0uM		
B-0492	0.069uM	42.0%@1.0uM		
B-0493	0.3uM	36.0%@1.0uM		
B-0494	0.13uM	30.0%@1.0uM		
B-0495	0.12uM	25.0%@1.0uM		
B-0496	0.83uM	16.0%@1.0uM		
B-0497	0.44uM	31.0%@1.0uM		
B-0498	0.33uM	11.0%@1.0uM		
B-0499	0.39uM	37.0%@1.0uM		
B-0500	0.26uM	41.0%@1.0uM		
B-0501	0.049uM	52.0%@1.0uM		
B-0502	0.065uM	48.0%@1.0uM		
B-0503	0.16uM	73.0%@1.0uM		
B-0504	0.4uM	43.0%@1.0uM		
	V.7UI9I	75.0 76 1.UUIVI		

			<u> </u>	
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM r%	or %	TNF inhib @ dose	inhib @dose
Example#	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
B-0421	0.46uM	57.0%@1.0uM		
B-0422	<0.1uM	40.0%@1.0uM		
B-0423	0.18uM	33.0%@1.0uM		
B-0424	0.083uM	32.0%@1.0uM		<u> </u>
B-0425	0.26uM	54.0%@1.0uM		
B-0426	0.055uM	0.74uM		41%@3mpk@-4h
B-0427	0.63uM	39.0%@1.0uM		
B-0428	0.99uM	27.0%@1.0uM		
B-0429	0.27uM	45.0%@1.0uM		
B-0430	0.29uM	75.0%@1.0uM		
B-0431	0.21uM	64.0%@1.0uM		
B-0432	<0.1uM	89.0%@1.0uM		
B-0433	<0.1uM	92.0%@1.0uM		
B-0434	0.12uM	65.0%@1.0uM		
B-0435	0.3uM	61.0%@1.0uM		·
B-0436	1.11uM	71.0%@1.0uM		
B-0437	0.58uM	59.0%@1.0uM		
B-0438	<0.1uM	91.0%@1.0uM		
B-0439	2.12uM	65.0%@1.0uM		
B-0440	0.66uM	63.0%@1.0uM		
B-0441	0.8uM	58.0%@1.0uM		
B-0442	<0.1 uM	91.0%@1.0uM		
B-0443	2.01uM	71.0%@1.0uM		
B-0444	1.01uM	51.0%@1.0uM		
B-0445	<0.1uM	83.0%@1.0uM		
B-0446	0.78uM	80.0%@1.0uM		
B-0447	0.19uM	71.0%@1.0uM		
B-0448	0.4uM	79.0%@1.0uM		
B-0449	0.83uM	81.0%@1.0uM		
B-0450	0.26uM	81.0%@1.0uM		
B-0451	0.071uM	83.0%@1.0uM	42%@30mpk@-6h	· · · · · · · · · · · · · · · · · · ·
B-0452	0.7uM	75.0%@1.0uM		*************************************
B-0453	0.47uM	75.0%@1.0uM		
B-0454	0.11uM	80.0%@1.0uM		
B-0455	<0.1uM	95.0%@1.0uM		36%@3mpk%-4h
B-0456	1.81uM	67.0%@1.0uM	····	
B-0457	0.089uM	81.0%@1.0uM		
B-0458	0.033uM	70.0%@1.0uM		
B-0459	0.099uM	76.0%@1.0uM		
B-0460	0.061uM	92.0%@1.0uM		
B-0461	0.025uM	96.0%@1.0uM		
B-0462	<0.1uM	97.0%@1.0uM		

		T		
	P38 alpha kinase IC50,uM or %	U937 Cell IC50,uM or %	Mouse LPS Model % TNF inhib d se	Rat LPS Model % inhib @dose
Example#	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
B-0379	0.53uM	24.0%@1.0uM		·
B-0380	1.41u₩	32.0%@1.0uM		
B-0381	0.22uM	47.0%@1.0uM		
B-0382	0.41uM	32.0%@1.0uM		
B-0383	1.43u₩	10.0%@1.0uM		
B-0384	4.02uM	16.0%@1.0uM		
B-0385	0.057uM	0.9uM	30%@30mpk@-6h	0%@3mpk@-4h
B-0386	0.13uM	54.0%@1.0uM		
B-0387	0.41uM	52.0%@1.0uM		
B-0388	<0.1uM	36.0%@1.0uM		
B-0389	0.01uW	0.05uM		62%@3mpk@-4h
B-0390	0.089uM	55.0%@1.0uM		
B-0391	0.86uM	18.0%@1.0uM		
B-0392	0.13uM	57.0%@1.0uM		
B-0393	0.043uM	66.0%@1.0uM		
B-0394	0.13uM	45.0%@1.0uM		
B-0395	0.087uM	48.0%@1.0uM		
B-0396	0.097uM	0.44uM		
B-0397	0.17uM	41.0%@1.0uM		
B-0398	0.054uM	66.0%@1.0uM		
B-0399	0.14uM	39.0%@1.0uM		
B-0400	0.16uM	25.0%@1.0uM		
B-0401	0.46uM	52.0%@1.0uM		
B-0402	0.14uM	1.51uM		
B-0403	1.77uM	2.42uM		
B-0404	0.31uM	48.0%@1.0uM		
B-0405	0.79uM	30.0%@1.0uM		
B-0406	0.54uM	35.0%@1.0uM		
B-0407	0.76uM	27.0%@1.0uM		
B-0408	0.5uM	50.0%@1.0uM		
B-0409	0.53uM	30.0%@1.0uM		
B-0410	0.38uM	44.0%@1.0uM		
B-0411	0.62uM	50.0%@1.0uM		
B-0412	0.24uW	48.0%@1.0uM		
B-0413	0.18uM	55.0%@1.0uM		
B-0414	2.54uM	25.0%@1.0uM		
B-0415	0.42uM	43.0%@1.0uM		
B-0416	0.32uW	34.0%@1.0uM		
B-0417	0.91uM	28.0%@1.0uM		
B-0418	0.22uM	27.0%@1.0uM		
B-0419	0.85 u M	41.0%21.0uM		
B-0420	0.83uM	49.0%@1.0uM		

		<u> </u>	Υ	r
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Mod 1%	Rat LPS Model %
	IC50,uM or %	r %	TNF inhib @ dose	inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#				
B-0337				
B-0338			·	
B-0339				
B-0340				·
B-0341				
B-0342				
B-0343				
B-0344				
B-0345				
B-0346				
B-0347				
B-0348				
B-0349				
B-0350		W		
B-0351				
B-0352		_		
B-0353	1.37uM	55%@1.0uM		
B-0354	1.0uM	0.66uM	51%@30mpk@-6h	54%@3mpk@-4h
B-0355	0.75uM	40.0%@1.0uM		
B-0356	0.66uM	24.0%@1.0uM		
B-0357	1.46uM	0.66uM		
B-0358	0.37uM	17.0%@1.0uM		
B-0359	0.45uM	47.0%@1.0uM		
B-0360	1.6uM	19.0%@1.0uM		
B-0361	0.33uM	46.0%@1.0uM		
B-0362	0.52uM	27.0%@1.0uM		
B-0363	4.67uM	25.0%@1.0uM		
B-0364	1.44uM	27.0%@1.0uM		
B-0365	0.96uM	27.0%@1.0uM		
B-0366	0.7uM	46.0%@1.0uM		
B-0367	1.0uM	23.0%@1.0uM		
B-0368	1.0uM	0.64uM	37%@30mpk@-6h	
B-0369	0.16uM	57.0%@1.0uM		
B-0370	0.65uM	28.0%@1.0uM		
B-0371	0.49uM	28.0%@1.0uM		
B-0372	0.35uM	29.0%@1.0uM		
B-0373	0.45uM	18.0%@1.0uM		
B-0374	1.38uM	12.0%@1.0uM		
B-0375	1.0uM	19.0%@1.0uM		
B-0376	2.99uM	12.0%@1.0uM		
B-0377	1.29uM	36.0%@1.0uM		
B-0378	1.1uM	36.0%@1.0uM		
		30.078 1.UUNI	<u> </u>	

		I		<u>, </u>
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS M del %	Rat LPS Model %
	IC50,uM r% inhib@c nc. (uM)	or %	TNF inhib @ dose	
Example#	minibec nc. (um)	inhib@conc. (uM)	@predose time	@predose time
B-0295	0.82uM	45.0%@1.0uM		
B-0296	8.03uM	36.0%@1.0uM		
B-0297	0.78u₩	30.0%@1.0u₩		
B-0298	0.58u₩	48.0%@1.0uM		<u> </u>
B-0299	0.87uM	54.0%@1.0uM		
B-0300	0.78uM	32.0%@1.0uM		
B-0301	0.19uM	50.0%@1.0uM		
B-0302	4.02u₩	24.0%@1.0uM		<u></u>
B-0303	0.22uM	10.0%@1.0uM		
B-0304	0.56uM	28.0%@1.0uM		
B-0305			-	
B-0306		-		· · · · · · · · · · · · · · · · · · ·
B-0307				
B-0308	***************************************			
B-0309	· · · · · · · · · · · · · · · · · · ·			
B-0310	-	· · · · · · · ·		······································
B-0311	•			
B-0312				
B-0313				
B-0314				
B-0315				
B-0316				
B-0317				
B-0318				
B-0319				
B-0320				
B-0321				
B-0322				, , , , , , , , , , , , , , , , , , ,
B-0323				
B-0324				
B-0325				
B-0326				
B-0327				
B-0328			····	, , <u></u>
B-0329				
B-0330			····	
B-0331				
B-0332				
B-0333				
B-0334				
B-0335				
B-0336				
				

			<u> </u>	
ļ	P38 alpha kinas	U937 C II IC50,uM	Mouse LPS M del %	Rat LPS Model %
	IC50,uM or %	r %	TNF inhib@d se	inhib @dose
Evamala#	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example# B-0253	0.061uM	74.0%@1.0uM		
B-0254	0.12uM	59.0%@1.0uM		
B-0255	0.32uM	68.0%@1.0uM		
B-0255	<0.1uM	88.0%@1.0uM		
B-0257	1.71uM	11.0%@1.0uM		
B-0258	0.37uM	63.0%@1.0uM		
B-0259	0.35uM	58.0%@1.0uM		
B-0260	0.56u M	23.0%@1.0uM		<u> </u>
B-0261	0.49uM	23.0%@1.0uM		
B-0262	0.41uM	89.0%@1.0uM		
B-0263	0.62uM	64.0%@1.0uM		
B-0264	0.14uM	18.0%@1.0uM		
B-0265	0.92uM	24.0%@1.0uM		
B-0266	0.25uM	24.0%@1.0uM		
B-0267	0.48uM	11.0%@1.0uM		
B-0268	3.39uM	19.0%@1.0uM	·	
B-0269	9.81uM	19.0%@1.0uM		
B-0270	5.79uM	13.0%@1.0uM		
B-0271	7.55uM	12.0%@1.0uM		
B-0272	1.81uM	48.0%@1.0uM		
B-0273	5.03uM	13.0%@1.0uM		
B-0274	2.68uM	25.0%@1.0uM		
B-0275	2.67uM	33.0%@1.0uM		
B-0276	1.25uM	26.0%@1.0uM		
B-0277	0.68uM	34.0%@1.0uM		
B-0278	1.26uM	36.0%@1.0uM		
B-0279	1.39uM	33.0%@1.0uM		
B-0280	0.86u M	18.0%@1.0uM		
B-0281	7.37uM	24.0%@1.0uM	·	
B-0282	0.75uM	38.0%@1.0uM		
B-0283	6.66uM	29.0%@1.0uM		
B-0284	0.083uM	65.0%@1.0uM		
B-0285	4.57uM	29.0%@1.0uM		
B-0286	0.33uM	50.0%@1.0uM		
B-0287	4.0uM	22.0%@1.0uM		
B-0288	4.46uM	26.0%@1.0uM		
B-0289	0.15uM	55.0%@1.0uM		
B-0290	0.66uM	44.0%@1.0uM		
B-0291	1.33uM	20.0%@1.0uM		
B-0292	0.22uM	28.0%@1.0uM		
B-0293	0.66uM	53.0%@1.0uM		
B-0294	0.68uM	45.0%@1.0uM	ll	

				·
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib@d se	inhib @d se
Evamela#	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	0.25 uM	209/ @4 0::04		
B-0211		30%@1.0uM		
B-0212	0.12 uM	28%@1.0uM		·
B-0213	0.31 uM	39%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0214	0.16 uM	50%@1.0uM		
B-0215	0.11 uM	51%@1.0uM		
B-0216	0.56 uM	>1.0uM		
B-0217	0.55 uM	>1.0uM		
B-0218	0.53 uM	18%@1.0uM		***************************************
B-0219	0.91 uM	18%@1.0uM		
B-0220	0.13 uM	40%@1.0uM		
B-0221	2.4 uM	>1.0uM		
B-0222	0.4uM	29.0%@1.0uM		
B-0223	0.2uM	1.0%@1.0uM		
B-0224	<0.1uM	93.0%@1.0uM		
B-0225	0.047uM	37.0%@1.0uM		
B-0226	0.074uM	20.0%@1.0uM		
B-0227	0.045uM	1.0%@1.0uM		
B-0228	0.15uM	44.0%@1.0uM		
B-0229	<0.1uM	61.0%@1.0uM		
B-0230	0.041uW	30.0%@1.0uM		
B-0231	0.055uM	40.0%1.0uM		
B-0232	0.048uM	24.0%@1.0uM		
B-0233	0.095uM	43.0%@1.0uM		
B-0234	0.11uM	68.0%@1.0uM		
B-0235	1.31uM	90.0%@1.0uM		
B-0236	0.077uM	46.0%@1.0uM		
B-0237	0.13uM	60.0%@1.0uM		
B-0238	0.47uM	82.0%@1.0uM		
B-0239	5.73uM	84.0%@1.0uM		
B-0240	0.2uM	70.0%@1.0uM		
B-0241	0.1uM	45.0%@1.0uM		
B-0242	<0.1uM	78.0%@1.0uM		
B-0243	0.039uM	53.0%@1.0uM		
B-0244	0.02uM	57.0%@1.0uM		
B-0245	0.13uM	24.0%@1.0uM		
B-0246	<0.1uM	>1.0uM		
B-0247	0.082uM	75.0%@1.0uM		
B-0248	<0.1uM	11.0%@1.0uM		
B-0249	<0.1uM	75.0%@1.0uM		
B-0250	0.28u₩	36.0%@1.0uM		
B-0251	0.31uM	1.0%@1.0uM		
B-0252	0.041uM	54.0%@1.0uM		
				

		 	 	
	P38 alpha kinase	U937 Cell IC50,uM	M use LPS Model %	Rat LPS M del %
	IC50,uM or %	r %	TNF inhib@d se	inhib @d s
Evample#	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example# B-0169	43.0% @1.0uM	21.0% @1.0uM		
B-0170	43.0% @1.0uM	30.0% @1.0uM		
B-0170	61.0% @10.0uM	21.0% @ 1.0uM		
	16.0% @ 10.0uM		1.	
B-0172 B-0173	33.0% @10.0uM	11.0% @1.0uM 48.0% @1.0uM		
	54.0% @ 10.0uM			
B-0174 B-0175	41.0% @10.0uM	43.0% @1.0uM 31.0% @1.0uM		
B-0176	50.0% @1.0uM	30.0% @1.0uM		
B-0177	70.0% @10.0uM	27.0% @1.0uM		
B-0178	12.0% @10.0uM	35.0% @1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0179	27.0% @10.0uM	37.0% @1.0uM		
B-0180	34.0% @10.0uM	23.0% @1.0uM		
B-0181	5.0%@1.0uM	2.0% @1.0uM		
B-0182	39.0% @10.0uM	40.0% @1.0uM		
B-0183	12.0% @10.0uM	34.0% @1.0uM		
B-0184	66.0% @10.0uM	17.0% @1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0185	65.0% @10.0uM	25.0% @1.0uM		
B-0186	40.0% @1.0uM	25.0% @1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0187	4.0% @10.0uM	14.0% @1.0uM		
B-0188	70.0% @10.0uM	35.0% @1.0uM		
B-0189	42.0% @10.0uM	9.0% @1.0uM		
B-0190	59.0% @10.0uM	31.0% @1.0uM		
B-0191	40.0% @1.0uM	29.0% @1.0uM		
B-0192	12.0% @10.0uM	47.0% @1.0uM		
B-0193	0.54 uM	6%@1.0uM		
B0194	1.31 uM	22%@1.0uM		
B-0195	1.03 uM	55%@1.0uM		
B-0196	2.24 uM	>1.0uM		
B-0197	2.0 uM	14%@1.0uM	<u>. </u>	· · · · · · · · · · · · · · · · · · ·
B-0198	1.2 uM	2%@1.0uM		
B-0199	1.34 uM	3%@1.0uM		
B-0200	1.31 uM	16%@1.0uM		
B-0201	0.29 uM	59%@1.0uM		
B-0202	0.55 uM	2.26 uM		
B-0203	0.16 uM	65%@1.0uM		
B-0204	0.21 uM	48%@1.0uM		
B-0205	0.096 uM	54%@1.0uM		
B-0206	5.76 uM	14%@1.0uM		
B-0207	0.12 uM	52%@1.0uM		····
B-0208	0.067 uM	>1.0uM	· · ·	···
B-0209	0.29 uM	8%@1.0uM		
B-0210	0.057 uM	67%@1.0uM		·

	P38 alpha kinase IC50,uM or %	U937 Cell IC50,uM or %	Mouse LPS Model %	Rat LPS Model % inhib @d se
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#		(41.11)	O p. 02000 tillio	o processo time
B-0127	82.0%@1.0uM	0.96uM		
B-0128	78.0%@1.0uM	1.81uM		
B-0129	51.0%@1.0uM	31.0%@1.0uM		
B-0130	69.0%@1.0uM	58.0%@1.0uM		
B-0131	43.0%@1.0uM	46.0%@1.0uM		
B-0132	76.0%@1.0uM	8.0%@1.0uM		
B-0133	51.0%@1.0uM	42.0%@1.0uM		
B-0134	60.0%@1.0uM	2.17uM		
B-0135	78.0%@1.0u₩	58.0%@1.0uM		
B-0136	77.0%@1.0uM	44.0%@1.0uM		
B-0137	41.0%@1.0uM	37.0%@1.0uM		
B-0138	50.0%@1.0uM	32.0%@1.0uM		
B-0139	54.0%@10.0uM	17.0%@1.0uM		
B-0140	67%@10.0uM	9.0%@1.0uM		
B-0141	78.0%@1.0uM	10.0%@1.0uM		
B-0142	86.0%@1.0uM	12.0%@1.0uM		
B-0143	42.0% @1.0uM	3.63uM		
B-0144	86.0% @1.0uM	43.0%@1.0uM		
B-0145	54.0% @10.0uM	12.0% @1.0uM		
B-0146	77.0% @10.0uM	28.0% @1.0uM		
B-0147	44.0% @1.0uM	22.0% @1.0uM		
B-0148	51.0% @1.0uM	>1.0uM		
B-0149	1.15 uM	10.0 uM		
B-0150	27.0% @10.0uM	35.0% @1.0uM		
B-0151	43.0% @1.0uM	30.0% @1.0uM		
B-0152	51.0% @1.0uM	24.0% @1.0uM		
B-0153	57.0% @1.0uM	21.0% @1.0uM		
B-0154	65.0% @10.0uM	14.0% @1.0uM		
B-0155	40.0% @10.0uM	26.0% @1.0uM		
B-0156	42.0% @10.0uM	13.0% @1.0uM		
B-0157	48.0% @10.0uM	9.0% @1.0uM		
B-0158	58.0% @10.0uM	39.0% @1.0uM		
B-0159	54.0% @10.0uM	5.0% @1.0uM		
B-0160	59.0% @10.0uM	26.0% @1.0uM		
B-0161	72.0% @10.0uM	13.0% @1.0uM		
B-0162	23%@1.0uM	2.05 uM	·	
B-0163	20.0% @10.0uM	10.0% @1.0uM		
B-0164	37.0% @10.0uM	20.0% @1.0uM		
B-0165	70.0% @10.0uM	19.0% @1.0uM		
B-0166	45.0% @10.0uM	37.0% @1.0uM		
B-0167	40.0% @1.0uM	37.0% @1.0uM		
B-0168	44%@1.0uM	2.36 uM		

	T	T	T	
	P38 alpha kinase IC50,uM or %	U937 Cell IC50,uM	Mouse LPS Model % TNF inhib @ dos	
Example#	inhib@conc. (uM)		@predose time	@predose time
B-0085	83%@1.0uM	21.0%@1.0uM		
B-0086	91%@1.0uM	37.0%@1.0uM		
B-0087	0.55uM	2.26uM	38%@30mpk@-6h	
B-0088	96%@1.0uM	9.0%@1.0uM	- 0070 C COMPKG - 011	
B-0089	0.04uM	3.33uM	·	
B-0090	98%@1.0uM	52.0%@1.0uM		
B-0091	96%@1.0uM	40.0%@1.0uM		
B-0092	97%@1.0uM	34.0%@1.0uM		
B-0093	3.18 uM	1.25uM	30%@30mpk@-6h	
B-0094	96%@1.0uM	52.0%@1.0uM		
B-0095	98%@1.0uM	38.0%@1.0uM		
B-0096	91%@1.0uM	22.0%@1.0uM		<u> </u>
B-0097	72.0%@10.0uM	38.0%@1.0uM		
B-0098	66.0%@10.0uM	12.0%@1.0uM		
B-0099	43.0% @1.0uM	>1.0uM		
B-0100	75.0% @1.0uM	5.0uM		
B-0101	71.0% @1.0uM	2.11uM		
B-0102	81.0%@1.0uM	15.0%@1.0uM		
B-0103	71.0%@1.0uM	6.0%@1.0uM		
B-0104	56.0% @1.0uM	2.78uM		
B-0105	78.0%@1.0uM	5.0uM		
B-0106	62.0%@1.0uM	5.0uM		
B-0107	0.27uM	5.0uM		
B-0108	61.0%@1.0uM	4.85uM		
B-0109	45.0%@1.0uM	19.0%@1.0uM		
B-0110	66.0%@1.0uM	13.0%@1.0uM		
B-0111	57.0%@1.0uM	>1.0uM		
B-0112	97.0%@1.0uM	1.12uM		
B-0113	75.0%@1.0uM	43.0%@1.0uM		
3-0114	45.0%@1.0uM	3.92uM		
3-0115	47.0%@1.0uM	2.0%@1.0uM		
3-0116	73.0%@1.0uM	35.0%@1.0uM		
3-0117	0.46 uM	1.78 uM	30%@30mpk@-6h	
3-0118	1.18 uM	1.29 uM		
3-0119	89.0%@10.0uM	2.78uM		
3-0120	0.008 uM		77%@100mpk@-6h	70%@3mpk@-4h
3-0121	79.0%@1.0uM	1.22uM		
3-0122	79.0%@10.0uM	2.0%@1.0uM		
-0123	59.0%@1.0uM	>1.0uM		
-0124	73.0%@1.0uM	15.0%@1.0uM		
-0125	70.0%@10.0uM	17.0%@1.0uM		
-0126	66.0%@1.0uM	1.57uM		

	· · · · · · · · · · · · · · · · · · ·			
	P38 alpha kinase	U937 C II IC50,uM	Mouse LPS Model %	Rat LPS Model %
İ	IC50,uM or %	or %	TNF inhib@d se	inhib @dose
Example#	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
B-0043	0.22 uM	0.54uM	 	
B-0044	0.14 uM	0.19uM		
B-0045	94.0%@1.0uM	1.01uM		
B-0046	96.0%@1.0uM	54.0%@1.0uM		
B-0047	94.0%@1.0uM	74.0%@10.0uM		
B-0048	94.0%@1.0uM	76.0%@10.0uM		
B-0049	88%@1.0uM	33.0%@1.0uM		
B-0050	73%@1.0uM	34.0%@1.0uM		
B-0051	3.3uM	2.15uM	47%@100mpk@-6h	700/ @2
B-0052	92%@1.0uM	15.0%@1.0uM	47% W TOUMPAW-on	79%@3mpk@-4h
B-0053	95%@1.0uM	34.0%@1.0uM		·
B-0054	90%@1.0uM	30.0%@1.0uM		
B-0055	93%@1.0uM	>1.0uM		
B-0056	96%@1.0uM	21.0%@1.0uM		
B-0057	96%@1.0uM	29.0%@1.0uM		
B-0058	79%@1.0uM	18.0%@1.0uM		
B-0059	83%@1.0uM	35.0%@1.0uM		
B-0060	73%@1.0uM	22.0%@1.0uM		
B-0061	62%@1.0uM	27.0%@1.0uM		
B-0062	94%@1.0uM	36.0%@1.0uM		
B-0063	96%@1.0uM	40.0%@1.0uM		
B-0064	90%@1.0uM	4.0%@1.0uM		
B-0065	83%@1.0uM	21.0%@1.0uM		
B-0066	94%@1.0uM	28.0%@1.0uM		
B-0067	91%@1.0uM	1.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0068	72%@1.0uM	22.0%@1.0uM		
B-0069	96%@1.0uM	37.0%@1.0uM		
B-0070	92%@1.0uM	30.0%@1.0uM		
B-0071	86%@1.0uM	31.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0072	77%@1.0uM	32.0%@1.0uM		
B-0073	91%@1.0uM	24.0%@1.0uM		
B-0074	92%@1.0uM	42.0%@1.0uM		
B-0075	91%@1.0uM	35.0%@1.0uM		
B-0076	58%@1.0uM	21.0%@1.0uM		
B-0077	0.8uM	10.0uM		
B-0078	80%@1.0uM	20.0%@1.0uM		
B-0079	93%@1.0uM	13.0%@1.0uM		
B-0080	73%@1.0uM	73.0%@1.0uM		
B-0081	92%@1.0uM	13.0%@1.0uM		·
B-0082	47%@1.0uM	27.0%@1.0uM		
B-0083	0.22uM	6.51uM		
B-0084	56%@1.0uM	30.0%@1.0uM		

	P38 alpha kinase	U937 C II IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @d se
E	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	53.0%@1.0uM	40.0% @1.0uM		
B-0001	71.0%@1.0uM	28.0%@10.0uM		
B-0002	71.0%@1.0uM	76.0% 10.0uM		
B-0003 B-0004	80.0%@1.0uM	4.61uM		
B-0004	95.0%@1.0uM	2.97uM		
B-0006	82.0%@1.0uM	80%@10.0uM		
B-0008	74.0%@1.0uM	85.0%@10.0uM		
B-0007	42.0%@1.0uM	65.0%@10.0uM		
B-0008	0.04 uM	0.72uM		
B-0009	0.52 uM	0.65uM		· · · · · · · · · · · · · · · · · · ·
B-0010	0.03 uM	4.47uM		
B-0012	30.0%@1.0uM	44.0% @1.0uM		
B-0012	70.0%@1.0uM	84.0%@10.0uM		
B-0014	79.0%@1.0uM	80.0%@10.0uM		·
B-0015	82.0%@1.0uM	80.0%@10.0uM		
B-0016	94.0%@1.0uM	3.98uM		
B-0017	56.0%@1.0uM	79.0%@10.0uM		·
B-0018	60.0%@1.0uM	59.0%@10.0uM		······································
B-0019	84.0%@1.0uM	100.0%@10.0uM		
B-0020	73.0%@1.0uM	81.0%@10.0uM		
B-0021	68.0%@1.0uM	76.0%@10.0uM		
B-0022	69.0%@1.0uM	44.0@1.0uM		
B-0023	90.0%@1.0uM	77.0%@10.0uM		
B-0024	94.0%@1.0uM	52.0%@1.0uM		
B-0025	89.0%@1.0uM	79.0%@10.0uM		
B-0026	96.0%@1.0uM	3.27uM		
B-0027	94.0%@1.0uM	11.0uM		
B-0028	69.0%@1.0uM	45.0%@10.0uM		
B-0029	91.0%@1.0uM	58.0%@10.0uM		
B-0030	92.0%@1.0uM	75.0%@10.0uM		
B-0031	94.0%@1.0uM	100.0%@10.0uM		
B-0032	94.0%@1.0uM	78.0%@10.0u M		
B-0033	97.0%@1.0uM	10.0uM		
B-0034	95.0%@1.0uM	10.0uM		
B-0035	94.0%@1.0uM	10.0uM		***
B-0036	92.0%@1.0uM	8.24uM		
B-0037	91.0%@1.0uM	86.0%@10.0uM	`	
B-0038	71.0%@1.0uM	84.0%@10.0uM		*
B-0039	89.0%@1.0uM	72.0%@10.0uM		·
B-0040	93.0%@1.0uM	2.3uM		
B-0041	65.0%@1.0uM	66.0%@10.0uM		
B-0042	94.0%@1.0uM	2.76uM		

indicates the number of hours before LPS challenge when the compound is administered.

WO 00/31063 PCT/US99/26007

1011

Biological data from compounds of Examples B-0001 through B-1573 and of Examples B-2270 through B-2462 are shown in the following tables.

In vitro P38-alpha kinase inhibitory data are shown in the column identified as:

"P38 alpha kinase IC50, uM or % inhib @ conc. (uM)"

10

15

20

25

In vitro whole cell assay for measuring the ability of the compounds to inhibit TNF production in human U937 cells stimulated with LPS are shown in the column identified as:

"U937 Cell IC50, uM or % inhib @ conc., (uM)"

In vivo assessment of the ability of the compounds to inhibit LPS-stimulated TNF release in the mouse is shown in the column identified as:

"Mouse LPS Model, % TNF inhib @ dose @ predose time"
wherein in the dose is milligram per kilogram (mpk)
administered by oral gavage and the predose time
indicates the number of hours before LPS challenge when
the compound is administered.

In vivo assessment of the ability of the compounds to inhibit LPS-stimulated TNF release in the rat is shown in the column identified as:

30 "Rat LPS Model, % TNF inhib @ dose @ predose time"

wherein in the dose is milligram per kilogram (mpk)

administered by oral gavage and the predose time

Example C-247

5-[4-(2-N-benzylamino)methylthiazolyl]-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

Example C-248

5-[4-(2-N-acetylamino)methylthiazolyl]-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

Example C-245

5-[4-(2-N, N-dimethylamino)methylthiazolyl]-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

Example C-246

5-[4-(2-N-isopropylamino)methylthiazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-242

5-[4-(2-N-benzylamino)methyloxazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-243

5-[4-(2-N-acetylamino)methyloxazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-244

5-[4-(2-amino)methylthiazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-239

5-[4-(2-amino)methyloxazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-240

5-[4-(2-N, N-dimethylamino)methyloxazolyl]-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

Example C-241

5-[4-(2-N-isopropylamino)methyloxazolyl]-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

Example C-236

5-[4-(2-N-isopropylamino)methylimidazolyl]-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

Example C-237

5-[4-(2-N-benzylamino)methylimidazolyl]-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

Example C-238

5-[4-(2-N-acetylamino)methylimidazolyl]-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

Example C-233

5-[3-(N-acetylamino)benzyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-234

5-[4-(2-amino)methylimidazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-235

5-[4-(2-N, N-dimethylamino)methylimidazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-231

5-[3-(N-isopropylamino)benzyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-232

5-[3-(N-benzylamino)benzyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-228

5-[3-(N-t-butoxycarbonyl)aminobenzyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-229

5-(3-aminobenzyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-230

5-[3-(N, N-dimethylamino)benzyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[3-(1-carboxamidino)benzyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-226

5-[3-(1-N-methylcarboxamidino)benzyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-227

5-[3-(1-N-benzylcarboxamidino)benzyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

1001

Example C-222

5-[4-(1-carboxamidino)benzyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-223

5-[4-(1-N-methylcarboxamidino)benzyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-224

5-[4-(1-N-benzylcarboxamidino)benzyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

1000

Example C-219

5-[3-(1,1-dimethyl-1-(N,N-dimethylamino)propyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-220

5-[3-(1,1-dimethyl-1-(N-isopropylamino)propyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-221

5-[3-(1,1-dimethyl-1-(N-acetylamino)propyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[cis-4-(N-acetyl)methylaminocyclohexyl)]-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

Example C-217

5-[3-(1,1-dimethyl-1-(N-t-butoxycarbonylamino)propyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-218

5-[3-(1,1-dimethyl-1-amino)propyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-(cis-4-methylaminocyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-214

5-[cis-4-(N, N-dimethyl)methylaminocyclohexyl)]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-215

5-[cis-4-(N-isopropyl)methylaminocyclohexyl)]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[trans-4-(N-isopropylamino)cyclohexyl)-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

Example C-211

5-[trans-4-(N-acetylamino)cyclohexyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-212

5-[cis-4-(N-t-butoxycarbonyl)methylaminocyclohexyl)]-4(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[trans-4-(N-t-butoxycarbonylamino)cyclohexyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-208

5-(trans-4-aminocyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-209

5-[trans-4-(N, N-dimethylamino)cyclohexyl]-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

5-[trans-4-(N-isopropylamino)methylcyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-205

5-[trans-4-(N, N-dimethylamino)methylcyclohexyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-206

5-[trans-4-(N-acetylamino)methylcyclohexyl)]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-(N-acetyl-2-morpholinyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-202

5-[trans-4-(N-t-butoxycarbonylamino)methylcyclohexyl]-4(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-203

5-(trans-4-aminomethylcyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-(N-methyl-2-morpholinyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-199

5-(N-isopropyl-2-morpholinyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-200

5-(N-benzyl-2-morpholinyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-(N-benzhydroxylimido-3-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-196

5-(N-phenacethydroxylimido-3-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-197

5-(2-morpholinyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[5-(N-benzyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-193

5-[5-(N-acetyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-194

5-(N-acethydroxylimido-3-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[5-(2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-190

5-[5-(N-methyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-191

5-[5-(N-isopropyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[4-(N-isopropyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-187

5-[4-(N-benzyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-188

5-[4-(N-acetyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[4-(2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-185

5-[4-(N-methyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

987

Example C-181

5-[4-(N-isopropyl-3-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-182

5-[4-(N-benzyl-3-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-183

5-[4-(N-acetyl-3-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[N-methyl-4-(2,5-tetramethyl-4-methoxy)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-179

5-[4-(3-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-180

5-[4-(N-methyl-3-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[N-methyl-4-(4-methoxy)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-176

5-[N-methyl-4-(2,5-tetramethyl-4-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-177

5-[N-methyl-4-(2,5-tetramethyl-4-hydroxy)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[N-benzyl-4-(3,4-dehydro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-173

5-[N-methyl-4-(4-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-174

5-[N-methyl-4-(4-hydroxy)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-(N-phenylacethydroxylimido-4-piperidyl)-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

Example C-170

5-[N-methyl-4-(3,4-dehydro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-171

5-[N-isopropyl-4-(3,4-dehydro)piperidyl]-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-(2-N,N-dimethylamino)ethoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-167

5-(N-acetylhydroxylimido-4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-168

5-(N-benzylhydroxylimido-4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-isopropoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-164

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-(2-N,N-dimethylamino)ethoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-165

5-(4-piperidiny1)-4-[4-(2-(2-N,N-dimethylamino)ethoxy)pyrimidiny1]-3-(4-chloropheny1)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-methoxy)pyrimidinyl]-3(4-chlorophenyl)pyrazole

Example C-161

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-isopropoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-162

5-(4-piperidinyl)-4-[4-(2-isopropoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-(2-methoxyethylamino))pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-158

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-methoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-159

5-(4-piperidinyl)-4-[4-(2-methoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

978

Example C-154

5-(4-N-methylpiperidinyl)-4-[4-(2-isopropylamino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-155

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-(2-methoxyethylamino))pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-156

5-(4-piperidinyl)-4-[4-(2-(2-methoxyethylamino))pyrimidinyl]-3-(4-chlorophenyl)pyrazole

977

Example C-151

5-(4-N-methylpiperidinyl)-4-[4-(2-methylamino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-152

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-isopropylamino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-153

5-(4-piperidinyl)-4-[4-(2-isopropylamino)pyrimidinyl]-3(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-amino)pyrimidinyl]-3(4-chlorophenyl)pyrazole

Example C-149

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-methylamino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-150

5-(4-piperidinyl)-4-[4-(2-methylamino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

975

Example C-145

5-(4-N-methylpiperidinyl)-4-[4-(2-methanesulfonyl)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-146

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-amino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-147

5-(4-piperidinyl)-4-[4-(2-amino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-thiomethyl)pyrimidinyl]-3-4-(chlorophenyl)pyrazole

Example C-143

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-methanesulfonyl)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-144

5-(4-piperidinyl)-4-[4-(2-methanesulfonyl)pyrimidinyl]-3(4-chlorophenyl)pyrazole

acetyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 395 (base peak).

Additional compounds of the present invention which could be prepared using one or more of the reaction schemes set forth in this application include, but are not limited to, the following:

Example C-140

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-thiomethyl)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-141

5-(4-piperidinyl)-4-[4-(2-thiomethyl)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

5-(N-ACETYL-3-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-(3-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (C-90) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (C-74) the title compound was prepared: MS (M+H): 365 (base peak).

Example C-139

5-(N-METHOXYACETYL-3-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-(3-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (C-90) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (C-74) and methoxy

the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound as the hydrochloride salt: ¹H NMR (CDCl₃) δ 9.2 (s, 1 H), 8.48 (d, J = 5.19 Hz, 1 H), 7.31 (m, 4 H), 6.94 (d, J = 4.79 Hz, 1 H), (3.69 (m, 3 H), 3.12 (m, 2 H), 2.3 (m, 3 H), 1.24 (m, 2 H). MS (M+H): 340 (base peak).

Example C-137

5-(N-METHYL-4-PIPERIDYL)-4-(4-PYRIMIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting 5-(4-piperidy1)-4-(4-pyrimidy1)-3-(4-chloropheny1) pyrazole (Example C-136) for 5-(4-piperidy1)-4-(4-pyridy1)-3-(4-chloropheny1) pyrazole hydrochloride (Example C-74) the title compound was prepared: 1H NMR (CDCl₃) δ 9.2 (d, J = 1.2 Hz, 1 H), 8.48 (d, J = 5.59 Hz, 1 H), 7.31 (m, 4 H), 6.95 (dd, J= 1.2, 5.6 Hz, 1 H), 3.39 (m, 1 H), 3.03 (d, J = 11.6 Hz, 2 H), 2.38 (s, 3 H), 2.06 (m, 4 H), 1.24 (m, 2 H). MS (M+H): 354 (base peak).

4-(4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLYL) PROPIONIC

ACID

By following the method of Example C-1 and substituting succinic anhydride for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared: MS (M+H): 312 (base peak).

Example C-136

5-(4-PIPERIDYL)-4-(4-PYRIMIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting methyl-4-chlorobenzoate for ethyl-4-fluorobenzoate, N-t-butoxycarbonyl-isonipecotyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide and 4-methylpyrimidine for 4-picoline

5-(4-(1-AMINO)BUTYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

To a suspension of 4-(4-(4-pyridyl)-3-(4fluorophenyl) pyrazolyl) butyramide (Example C-131) (2 g, 6.2 mmol) in 100 ml of anhydrous ether was added lithium aluminum hydride (467 mg, 12.3 mmol). After the addition was complete, the mixture was warmed to room temperature and stirred for additional 2 h. The reaction was quenched with 20 mL of ethyl acetate and was poured onto 100 mL of 2.5 N NaOH. The mixture was extracted with ethyl acetate $(3 \times 50 \text{ mL})$. The combined extracts were washed with brine (1 x 100 mL), dried over Na₂SO₄, filtered and concentrated to afford the title compound: MS (M+H): 311 (base peak).

mL), dried over MgSO4, filtered and concentrated to give the title compound: MS (M+H): 312 (base peak).

Example C-133

5-[4-(1,1-DIMETHYL-1-HYDROXY)BUTYL]-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

A solution of 4-(4-(4-pyridyl)-3-(4-fluorophenyl) pyrazolyl) butyric acid (Example C-130) (200 mg, 0.615 mmol) in 50 ml of MeOH was treated with 10 ml of 4 N HCl/dioxane. The reaction mixture was stirred for 5 hours and evaporated to dryness. To this residue was added 15 ml of 1N methyl magnesium bromide in butyl ether and 5 ml of anhydrous THF. The reaction was heated to reflux under nitrogen for 64 h.

The reaction was quenched with 20 ml of saturated ammonium chloride. This mixture was transferred to a separatory funnel and was extracted with 100 ml ethyl acetate (2 x 100 mL). The combined ethyl acetate extracts were washed with water (1 x 100 mL), dried over MgSO₄, filtered and concentrated to afford a crude oil. The crude oil was subjected to column chromatography by using 3.5 % MeOH/CH₂Cl₂ followed by 6 % MeOH/CH₂Cl₃ to give the title compound: MS (M+H): 340 (base peak).

periodically treated with additional NH, over a 24 h period. The solution was degassed with a stream of nitrogen and the solution was concentrated to leave a yellow solid. The solid was slurried in ether and filtered to leave the title compound: MS (M+H): 325 (base peak).

Example C-132

5-[4-(1-HYDROXY)BUTYL]-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

4-(4-(4-pyridyl)-3-(4suspension of stirred fluorophenyl) pyrazolyl) butyric acid (Example C-130) (2 g, 6 15 mmol) in 100 ml of anhydrous ether was cooled to 0 °C under nitrogen. Lithium aluminum hydride (467 mg, 12.3 mmol) was added to this suspension slowly. the addition was complete, the mixture was warmed to room temperature and stirred for additional 2 h. The reaction was quenched slowly with 1N KHSO, (80 ml). The mixture was transferred to a separatory funnel and the aqueous layer was removed. The aqueous layer was then made basic with K,CO, (pH 8). The aqueous solution was extracted with ethyl acetate (2 x 100 mL). The combined ethyl acetate extracts were washed with water (1 x 100

4-[4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLYL] BUTYRAMIDE

Methyl 4-(4-(4-pyridyl)-3-(4-fluorophenyl)pyrazolyl) butyrate. To a solution of 4-(4-(4-pyridyl)-3-(4-fluorophenyl)—pyrazolyl) -butyric acid—(Example-C-130) (40 g, 123 mmol) in 650 mL of MeOH was added 20 mL of concentrated H,SO,. The solution was stirred overnight at room temperature. The solution was concentrated and diluted with 200 mL of water. The solution was cooled with an ice/water bath and to the solution was added 150 mL of saturated NaHCO,. The solution was neutralized further with 50% NaOH to pH 7. The resulting slurry was extracted with CH,Cl, (3 x 250 mL). The combined extracts were washed with water (1 x 300 mL) and saturated NaHCO, (1 x 500 mL). The organic phase was dried over Na, SO, filtered and concentrated to afford methyl 4-(4-(4pyridyl)-3-(4-fluorophenyl) pyrazolyl) butyrate: (M+H): 340 (base peak).

4-(4-(4-pyridyl)-3-(4-fluorophenyl) pyrazolyl)
butyramide. A solution of methyl 4-(4-(4-pyridyl)-3-(4fluorophenyl) pyrazolyl) butyrate (39 g, 120 mmol) in 600
mL of MeOH was saturated with NH,. The solution was

2,2-DIMETHYL-4-[4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLYL] BUTYRIC ACID

By following the method of Example C-1 and substituting methyl-4-chlorobenzoate for ethyl-4-fluorobenzoate and 2,2-dimethyl glutaric anhydride for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared: MS (M+H): 370 (base peak).

Example C-130

4-[4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLYL] BUTYRIC ACID

By following the method of Example C-1 and substituting glutaric anhydride for N-benzyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared: MS (M+H): 326 (base peak).

hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 323 (base peak).

Example C-128

(R)-5-(N-METHYL-3-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting (R)-5-(3-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-125) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 337 (base peak).

(R)-5-(N-METHYL-2-PYROLIDINYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting (R)-5-(2-pyrolidinyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-125) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 323 (base peak).

Example C-127

(R)-5-(3-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting (R)-N-t-butoxycarbonyl-nipecotyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-

By following the method of Example C-75 and substituting (S)-5-(2-pyrolidinyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-123) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 323 (base peak).

Example C-125

(R)-5-(2-PYROLIDINYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting (R)-N-t-butoxycarbonyl-prolinyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 309 (base peak).

961

Example C-123

(S)-5-(2-PYROLIDINYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting (S)-N-t-butoxycarbonyl-prolinyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 309 (base peak).

Example C-124

(S)-5-(N-METHYL-2-PYROLIDINYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

960

Example C-122

5-[4-N-(2-DIMETHYLAMINOACETYL)PIPERIDYL]-4-(4-PYRIDYL)-3(4-CHLOROPHENYL) PYRAZOLE

To a solution of N, N-dimethylglycine hydrochloride (0.28 g, 2 mmol) in dimethylformamide (4 mL) was added hydroxybenzotriazole (0.27 2 mmol), g, diisopropylethyl amine (0.7 mL, 4 mmol) and polymer supported ethyl carbodimide (Example B-49) (1 g, To this solution after 30 minutes at temperature was added 5-(4-piperidyl)-4-(4-pyridyl)-3-(4chlorophenyl) pyrazole hydrochloride (Example C-74), 0.41 g, 1 mmol). The suspension was agitated on a labtop orbital shaker for 24 h. The suspension was filtered, washed with dimethylformamide (2 x 5 mL) and filtrates evaporated under high pressure. The residue was dissolved in dichloromethane (30 mL), washed with a saturated solution of sodium bicarbonate (50 mL) and brine (50 mL). The organic layers were dried over sodium sulfate, filtered and evaporated under high vacuum to afford the title compound as a white solid: MS (M+H): 424 (base peak).

reaction mixture was stirred at room temperature for 6 hours. The suspension was evaporated to dryness under reduced pressure. The resulting residue was stirred in acetonitrile (5 mL), filtered and dried in a vacuum dessicator to afford the title compound as a hydrochloride salt: MS (M+H): 354 (base peak).

Example C-121

5-[N-(2-AMINO-2,2-DIMETHYLACETYL)AMINOMETHYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-120 and substituting 5-aminomethyl-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-15) for 5-aminomethyl-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-1) the title compound was prepared: MS (M+H): 370 (base peak).

5-[N-(2-AMINO-2,2-DIMETHYLACETYL)AMINOMETHYL]-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

5-(N-t-butoxycarbonylaminomethyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole. To solution of aminomethyl-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-1)(0.27 1 g, mmol) anhydrous in dimethylformamide (4 mL) was added N-tert-butoxycarbonyl aminoisobutyric acid N-hydroxysuccinimide ester (0.33 g, 1.1 mmol) and the mixture stirred at 40 °C for 24 h. resulting solution was evaporated to dryness under reduced pressure. residue was dissolved The dichloromethane (30 mL) and washed with a saturated solution of sodium bicarbonate (2 \times 20 mL) and brine (20 The organic layers were dried over sodium sulfate, filtered and evaporated under reduced pressure to dryness afford 5-(N-t-butoxycarbonylaminomethyl)-4-(4pyridyl)-3-(4-fluorophenyl) pyrazole as a white solid.

5-(N-(2-amino-2,2-dimethylacetyl)aminomethyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole. To a solution of the above compound in acetonitrile (2 mL) was added 1 mL of a 4.0 M solution of hydrochloric acid in dioxane. The

4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-1) (8.04 g, 30 mmol) in 120 mL dichloromethane was added p-nitrophenylformate (6.01 g, 36 mmol) as a solid. The suspension was stirred for 24 h at room temperature and the solvents removed under reduced pressure. The residue was triturated with ether and filtered to obtain the desired 5-(N-formylaminomethyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole derivative as a white solid: MS (M+H): 297 (base peak).

5-(N-methylaminomethyl)-4-(4-pyridyl)-3-(4fluorophenyl) pyrazole. To a suspension of formylaminomethyl) -4-(4-pyridyl) -3-(4-fluorophenyl) pyrazole (8.74 g, 29.5 mmol) in 90 mL anhydrous tetrahydrofuran was added a 1.0 M solution of borane in tetrahydrofuran (90 mL, 90 mmol) and the mixture was stirred at room temperature for 24 h. 1 N aqueous hydrochloric acid (100 mL) was then added to this mixture and the solution was refluxed for 5 hours and cooled to room temperature. The solution was extracted with ether (2 x 250 mL) and the pH of the aqueous layer adjusted to 9 by addition of concentrated ammonium hydroxide. The aqueous layers (pH ~ 9) were then extracted with ethyl acetate (4 x 150 mL). The organic extracts were dried over sodium sulfate, filtered and evaporated to dryness under reduced pressure. The residue was triturated with acetonitrile and filtered to obtain the title compound as a white solid: MS (M+H): 283 (base peak).

5-[4-(N-ACETYL)AMINOBENZYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-(4-aminobenzyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-116) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 403 (base peak).

Example C-119

5-(N-METHYLAMINOMETHYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

5-(N-formylaminomethyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole. To a suspension of 5-aminomethyl-

acetyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound as the hydrochloride salt: MS (M+H): 361 (base peak).

Example C-117

5-[4-(N, N-DIMETHYL) AMINOBENZYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting 5-(4-aminobenzyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-116) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 389 (base peak).

5-(METHOXYMETHYL)-&-(&-PYRIDYL)-3-(&-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting methyl-4-chlorobenzoate for ethyl-4-fluorobenzoate and 2-methoxyacetyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared: MS (M+H): 300 (base peak).

Example C-116

5-(4-AMINOBENZYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting methyl-4-chlorobenzoate for ethyl-4-fluorobenzoate and N-t-butoxycarbonyl-4-aminophenyl

By following the method of Example C-76 and substituting 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole Example (C-2) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole Example (C-74) the title compound was prepared: MS (M+H): 365 (base peak).

Example C-114

5-[2-(1,1-DIMETHYL)AMINOETHYL]-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

Ву following the method of Example C-1 substituting N-t-butoxycarbonyl-2-amino-2,2dimethylpropanoyl N-hydroxysuccinimide for benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound as the hydrochloride salt: (M+H): 327 (base peak).

and methylsulfonyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 401 (base peak).

Example C-112

5-(N-METHOXYACETYL-&-PIPERIDYL)-&-(A-PYRIDYL)-3-(&-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-2) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-74) and methoxy acetyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 395 (base peak).

Example C-113

5-(N-ACETYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

5-[N-(2-FLUORO)BENZOYL-4-PIPERIDYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 2-fluorobenzoyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 461 (base peak).

Example C-111

5-(N-METHYLSULFONYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-2) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-74)

mmol) in 47 mL of DMF was added Hunig's base (0.60 g, 4.7 mmol) and pyrazole carboxamide hydrochloride (0.68 g, 4.7 mmol). The slurry was allowed to stir at room temperature for 4 days. The reaction mixture was poured onto 300 mL of ether. The resulting precipitate was filtered to leave the title compound as the hydrochloride salt: MS (M+H): 365 (base peak).

Example C-109

5-(N-CYCLOPROPANOYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting cyclopropancyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 407 (base peak).

5-(N-ACETIMIDO-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

To a suspension of 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-2) (0.11 g, 0.35 mmol) in 2 mL EtOH was added ethyl acetamidate hydrochloride (0.065 g, 0.53 mmol) and the mixture was refluxed for 30 minutes. The solution was left at 5-10 °C for 16 h and filtered to obtain the title compound as a white solid: MS (M+H): 364 (base peak).

Example C-108

5-(N-CARBOXAMIDINO-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

To a stirred suspension of 5-(4-piperidy1)-4-(4-pyridy1)-3-(4-fluoropheny1) pyrazole (C-2) (1.5 g, 4.7

948

fluorobenzoate and N-t-butoxycarbonyl-cis-4-aminocyclohexanoyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 353 (base peak).

Example C-106

5-cis-(4-N, N-DIMETHYLAMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-(3-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(3-chlorophenyl) pyrazole hydrochloride (Example C-105) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 381 (base peak).

5-cis-(4-N, N-DIMETHYLAMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-[3-(TRIFLUOROMETHYL) PHENYL] PYRAZOLE

By following the method of Example C-75 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(3-(trifluoromethyl)phenyl) pyrazole (Example C-103) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 415 (base peak).

Example C-105

5-cis-(4-AMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-(3-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting methyl-3-chlorobenzoate for ethyl-4-

By following the method of Example C-75 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-[4-(trifluoromethyl)phenyl] pyrazole (Example C-101) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 415 (base peak).

Example C-103

5-cis-(4-AMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-[3-(TRIFLUOROMETHYL)PHEMYL] PYRAZOLE

By following the method of Example C-1 and substituting methyl-3-(trifluoromethyl)benzoate for ethyl-4-fluorobenzoate N-t-butoxycarbonyl-cis-4and aminocyclohexanoyl N-hydroxysuccinimide for Nbenyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 387 (base peak).

5-cis-(4-AMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-[4-(TRIFLUOROMETHYL)PHENYL] PYRAZOLE

the method By following of Example C-1 and substituting methyl-4-(trifluoromethyl)benzoate ethyl-4-fluorobenzoate and N-t-butoxycarbonyl-cis-4aminocyclohexanoyl N-hydroxysuccinimide for benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 387 (base peak).

Example C-102

5-cis-(4-N, N-DIMETHYLAMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-[4-(TRIFLUOROMETHYL) PHENYL] PYRAZOLE

By following the method of Example C-75 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-98) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 365 (base peak).

Example C-100

5-cis-[4-N-(2-PROPYL)AMINOCYCLOHEXYL]-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-94 and substituting cis-5-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-98) for 5-(cis-4-n-(2-propyl)aminocyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-92) the title compound was prepared: MS (M+H): 379 (base peak).

5-cis-(4-AMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting N-t-butoxycarbonyl-cis-4-aminocyclohexanoyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 337 (base peak).

Example C-99

5-(cis-4-N, N-DIMETHYLAMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

(4-chlorophenyl) pyrazole (Example C-92) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) and methoxy acetyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 425 (base peak).

Example C-97

5-cis-[4-N-(METHYLSULFONYL) AMINOCYCLOHEXYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-92) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) and methylsulfonyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 431 (base peak).

5-cis-[4-N-(ACETYL)AMINOCYCLOHEXYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-92) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 395 (base peak).

Example C-96

5-cis-[4-N-(METHOXYACETYL)AMINOCYCLOHEXYL]-4-(4-PYRIDYL)3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-

5-[cis-4-N-(2-PROPYL)AMINOCYCLOHEXYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

slurry of 5-cis-(4-aminocyclohexyl)-4-(4-To pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-92) (1.0 g, 2.8 mmol, 1.0 eg) in methylene chloride (28 mL) was added acetone (0.5 mL), acetic acid (0.5 mL) and solid sodium triacetoxyborohydride. The slurry was stirred for 5 h and the volatiles were removed. The residue was partitioned between 2.5 M NaOH (25 mL) and ethyl acetate (25 mL) and the aqueous layer was extracted with ethyl acetate (3 x 25 mL). The combined organic layer was washed with brine (50 mL), dried over MgSO, and evaporated. The residue was triturated with ether to yield the title compound as a white powder: 'HNMR (d,-DMSO) δ 8.56 (d, J = 5.84 Hz, 2H), 7.40 (d, J = 8.26 Hz, 2H), 7.30 (d, J = 8.66 Hz, 2H), 7.18 (d, J = 5.64 Hz, 2H), 2.95 (m, 2H), 2.72 (m, 1H), 1.90 (m, 2H), 1.73 (m, 2H), 1.55 (m, 4H), 1.07 (d, J = 5.64 Hz, 6H). MS (M+H): 395 (base peak).

fluorobenzoate and N-t-butoxycarbonyl-cis-4-aminocyclohexanoyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: 1 HNMR (1 d $_6$ -DMSO) δ 8.56 (1 d, 1 d) = 6.04 Hz, 2 H), 7.39 (1 d, 1 d) = 8.66 Hz, 2 H), 7.31 (1 d, 1 d) = 8.46 Hz, 2 H), 7.17 (1 d, 1 d) = 5.84 Hz, 2 H), 3.05 (1 d) (1 d) = 8.46 Hz, 2 H), 1.99 (1 d) 1 d) = 1.53 (1 d) (1 d) MS (1 d) (1 d) MS (1 d) (1 d) (1 d) MS (1 d) (1 d) (1 d) MS (1 d) (1 d) MS (1 d) (1 d) MS (1 d) (1 d) MS (1 d) (1 d) MS

Example C-93

5-cis-(4-N, N-DIMETYLAMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-92) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 381 (base peak).

938

Exampl C-91

5-(N-METHYL-3-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting 5-(3-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole hydrochloride (Example C-90) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 337 (base peak).

Example C-92

5-cis-(4-AMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting methyl-4-chlorobenzoate for ethyl-4-

By following the method of Example C-75 and substituting 5-(4-piperidyl)-4-(4-pyridyl)-3-(3-chlorophenyl) pyrazole hydrochloride (Example C-88) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 353 (base peak).

Example C-90

5-(3-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting N-t-butoxycarbonyl-nipecotyl Nhydroxysuccinimide for N-benyloxycarbonyl-glycinyl Nhydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound as its hydrochloride salt: MS (M+H): 323 (base peak).

5-(4-PIPERIDYL)-4-(4-PYRIDYL)-3-(3-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting methyl-3-chlorobenzoate for ethyl-4-fluorobenzoate and N-t-butoxycarbonyl-isonipecotyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 339 (base peak).

Example C-89

5-(N-METHYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(3-CHLOROPHENYL)
PYRAZOLE

title compound as its hydrochloride salt: MS (M+H): 373 (base peak).the pyrazole C-3 substituent (Cviii). Treatment of the

Example C-87

5-(N-METHYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-[3-(TRIFLUOROMETHYL) PHENYL] PYRAZOLE

By following the method of Example C-75 and substituting 5-(4-piperidyl)-4-(4-pyridyl)-3-[3-(trifluoromethyl)phenyl] pyrazole hydrochloride (Example C-86) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 387 (base peak).

To a solution of 5-(4-piperidyl)-4-(4-pyridyl)-3-[4-(trifluoromethyl)phenyl] pyrazole (Example C-83) (300 mg, 0.7 mmol) in 50 mL of acetone was added 1 mL of AcOH and NaBH(OAc), (15 g, 70.8 mmol). The mixture was warmed to reflux and was stirred for 5 days. The reaction mixture was poured onto 100 mL of 2.5 N NaOH and was extracted with ethyl acetate (2 x 100 mL). The extracts were combined and washed with brine (1 x 100 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated to afford the title compound: MS (M+H): 415 (base peak).

Example C-86

5-(4-PIPERIDYL)-4-(4-PYRIDYL)-3-[3-(TRIFLUOROMETHYL)PHENYL] PYRAZOLE

the method following of Example C-1 Bv substituting methyl-3-(trifluoromethyl)benzoate for ethyl-4-fluorobenzoate and *N-t-*butoxycarbonylisonipecotyl N-hydroxysuccinimide for N-benyloxycarbonylglycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the was accomplished with 4 N HCl in dioxane to afford the title compound as its hydrochloride salt: MS (M+H): 373 (base peak).

Example C-84

5-(N-METHYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-[4-(TRIFLUOROMETHYL) PHENYL] PYRAZOLE

By following the method of Example C-75 and substituting 5-(4-piperidyl)-4-(4-pyridyl)-3-[4-(trifluoromethyl)phenyl] pyrazole hydrochloride (Example C-83) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 387 (base peak).

Example C-85

5-[N-(2-PROPYL)-4-PIPERIDYL]-4-(4-PYRIDYL)-3-[4-(TRIFLUOROMETHYL) PHENYL] PYRAZOLE

24.4 mmol) and 2-thiazolecarboxaldehyde (1.4 g, 12.2 mmol). The suspension was stirred at room temperature for 2 h. To this mixture was added NaCNBH, (1.5 g, 24.4 mmol) and the resulting suspension was stirred at room temperature for 7 days. The mixture was poured onto 2.5 N NaOH and was extracted with ethyl acetate (2 x 100 mL). The combined extracts were washed with brine (1 x 100 mL), dried over Na₂SO₄, filtered and concentrated to leave a solid. This solid was triturated with ether and filtered to afford the title compound: MS (M+H): 436 (base peak).

Example C-83

5-(4-PIPERIDYL)-4-(4-PYRIDYL)-3-[4-(TRIFLUOROMETHYL)PHENYL] PYRAZOLE

By following the method of Example C-1 and substituting methyl-4-(trifluoromethyl)benzoate for ethyl-4-fluorobenzoate and N-t-butoxycarbonyl-isonipecotyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate

5-(N-PROPARGYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of example C-79 and substituting propargyl bromide for 2-bromoethyl methyl ether the title compound was prepared: MS (M+H): 377 (base peak)

Example C-82

5-[N-(2-METHYLTHIAZOLYL)-4-PIPERIDYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

To a suspension of 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) in 12 mL of MeOH was added trimethyl orthoformate (2.6 g,

solvent was removed under reduced pressure to leave a solid. The solid was triturated and filtered to leave the title compound: $^{1}HNMR$ (CDCl₃) δ 8.63 (d, J = 4.23 Hz, 2 H), 7.28 (m, 4 H), 7.14 (d, J = 4.43 Hz, 2 H), 3.57 (t, J = 5.24 Hz, 2 H), 3.38 (s, 3 H), 3.14 (bd, J = 10.1 Hz, 2 H), 2.79 (m, 1 H), 2.68 (t, J = 5.04, 2 H), 2.08 (m, 4 H), 1.92 (m, 2 H). MS (M+H): 397 (base peak).

Example C-80

5-(N-ALLYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of example C-79 and substituting allyl bromide for 2-bromoethyl methyl ether the title compound was prepared: MS (M+H): 379 (base peak)

By following the method of Example C-76 and substituting methylsulfonyl chloride (2.0 equivalents) for acetyl chloride the title compound was prepared: 1 HNMR (DMSO- d_{6}) δ 8.70 (d, J = 6.72 Hz, 2 H), 7.72 (d, J = 6.72 Hz, 2 H), 7.38 (d, J = 7.66 Hz, 2 H), 7.30 (dd, J = 6.72, 1.88 Hz, 2 H), 3.58 (bd, J = 11.8 Hz, 2 H), 2.87 (m, 1 H), 2.82 (s, 3 H), 2.72 (m, 2 H), 1.85 (m, 4 H). MS (M+H): 417 (base peak).

Example C-79

5-[N-METHOXYETHYL-4-PIPERIDYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

To a stirred suspension of 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) (500 mg, 1.2 mmol) in 12 mL of DMF was added Hunig's base (790 mg, 6.1 mmol) and 2-bromoethyl methyl ether (850 mg, 6.1 mmol). The solution was stirred at room temperature for 5 days. The solution was poured onto 2.5 N NaOH and was extracted with ethyl acetate (3 x 100 mL). The combined extracts were washed with water (3 x 100 mL) and brine (1 x 100 mL). The organic phase was dried over Na,SO, and was filtered. The

Exampl C-77

5-(N-METHOXYACETYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting methoxy acetyl chloride for acetyl chloride the title compound was prepared: 1 HNMR (DMSO- d_{6}) δ 8.75 (d, J = 6.72 Hz, 2 H), 7.70 (d, J = 6.72 Hz, 2 H), 7.38 (d, J = 8.60 Hz, 2 H), 7.29 (dd, J = 6.72, 1.88 Hz, 2 H), 4.40 (d, J = 11.8 Hz, 1 H), 4.05 (m, 2 H), 3.70 (d, J = 12.70 Hz, 1 H), 3.25 (s, 3 H), 3.0 (m, 2 H), 2.55 (m, 1 H), 1.7 (m, 4 H). MS (M+H): 411 (base peak).

Example C-78

5-(N-METHYLSULFONYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

Example C-76

5-(N-ACETYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

To a stirred suspension of 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) (1 g, 2.4 mmol) in 24 mL of CH₂Cl₂ was added 4-dimethylamino pyridine (0.88 g, 7.2 mmol) and acetyl chloride (0.21 g, 2.6 mmol). The solution was stirred for 3 h and the solvent was removed under reduced pressure. The residue was treated with saturated NH₄OH (20 mL) and the suspension was extracted with ethyl acetate (3 x 30 mL). The combined extracts were washed with brine (1 x 50 mL), dried over MgSO₄, filtered and concentrated to leave a solid. The solid was triturated with ether and was filtered to leave the title compound: MS (M+H): 381 (base peak).

12.08 Hz, 2 H), 2.88 (m, 1 H), 2.76 (m, 2 H), 1.82 (bs, 4 H). MS (M+H): 339 (base peak).

Example C-75

5-(N-METHYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

To a solution of 5-(4-piperidy1)-4-(4-pyridy1)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) (25 g, 61 mmol) in 140 mL of formic acid (96%) was added 50 g of formaldehyde (37%). The solution was stirred at 75 °C for 48 h and was cooled to room temperature. The excess formic acid was removed under reduced pressure and the residue was dissolved in 100 mL of water. The solution was added to concentrated NH₄OH/H₂O and the mixture was extracted with ethyl acetate (3 x 200 mL). The combined organic layers were washed with brine (1 x 250 mL) and was dried over Na₂SO₄. The solution was filtered and concentrated to leave a white solid. The solid was triturated with ether and was filtered to afford the title compound: MS (M+H): 353 (base peak).

The following examples contain detailed descriptions of the methods of preparation of compounds that form part of the invention. These descriptions are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. All compounds showed NMR spectra consistant with their assigned structures.

Example C-74

5-(4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

following the method of Example C-1 and By for ethyl-4methyl-4-chlorobenzoate substituting fluorobenzoate and N-t-butoxycarbonyl-isonipecotyl for N-benyloxycarbonyl-glycinyl hydroxysuccinimide hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound as the hydrochloride salt: $^{1}HNMR$ (d_s-DMSO) δ 8.57 (d, J = 4.83 Hz, 2 H), 7.41 (d, J = 8.26 Hz, 2 H), 7.29 (d, J = 0.008.26 Hz, 2 H), 7.20 (d, J = 4.63 Hz, 2 H), 3.18 (bd, J =

SCHEME C-11

CxivBoc or CxivCbz

dioxane at temperatures ranging from 0 °C to 100 °C. The resulting 2-amino or 2-oxo derivatives (CxivBoc or CxivCbz) are purified by either chromatography or crystallization.

Step F:

The carbamate protecting groups from CxivBoc or CxivCbz are removed to afford the desired compounds Cxv containing either a free primary amine (R* is hydrogen) or a free secondary amine (R* is not equal to hydrogen). The Boc protecting groups are cleaved utilizing either trifluoroacetic acid in methylene chloride or hydrochloric acid in dioxane at room temperature for several hours. The Cbz protecting groups are cleaved using hydrogen gas at atmospheric or higher pressures and a catalyst (palladium on charcoal) in an alcoholic solvent. The resulting amines Cxv are then crystallized or purified by chromatography.

for a period of 30 minutes to 16 hours maintaining the temperature between 20 °C to 50 °C, poured into water and extracted with an organic solvent. The pyrimidinyl pyrazole CxiiBoc or CxiiCbz is obtained as crude solid which is purified by chromatography or crystallization.

Step D:

The 2-methylmercapto group in the pyrimidinyl pyrazole (CxiiBoc or CxiiCbz) is oxidized to the 2-methylsulfone (where n = 2) or the 2-methylsulfoxide (where n = 1) using either Oxone or m-chloroperbenzoic acid as an oxidizing agent in a suitable solvent at temperatures ranging from 25 °C to 100 °C. Solvents of choice — for — the— oxidation include dichloromethane, acetonitrile, tetrahydrofuran or hydroalcoholic mixtures. The 2-methylsulfone (n = 2) or the 2-methylsulfoxide (n = 1) (CxiiiBoc or CxiiiCbz) is purified by crystallization or chromatography.

Step E:

The 2-methylsulfone/2-methylsulfoxide group in CxiiiBoc or CxiiiCBz is conveniently displaced with various amines or alkoxides at temperatures ranging from 20 °C to 200 °C in solvents that include but are not limited to dimethylformamide, acetonitrile, tetrahydrofuran and dioxane. The alkoxides can be generated from their alcohols by treatment with a base selected from but not limited to sodium hydride, lithium hexamethyldisilazide, potassium tertiary-butoxide in solvents such as tetrahydrofuran, dimethylformamide and

temperature may range from 0 °C to 100 °C. The reaction mixture is then poured into water and extracted with an organic solvent. After drying and removal of solvent the desired monoketone **B89** is isolated as a crude solid which can be recrystallized or purified by chromatography.

Step B:

Monoketone B89 is treated with a base selected from but not limited to n-BuLi, LDA, LiHMDS, t-BuOK, NaH, K,CO, or Cs,CO, in an organic solvent such as THF, ether, t-BuOH, dioxane, toluene or DMF from -78 °C to 50 °C for a period of time from 30 minutes to 5 hours. A solution of an appropriately activated ester of a carboxylic acid $CbzNR^{H}-(CH_{r})_{c}CR^{F}(R^{G})-COOH$ $BocNR^{H}-(CH_{3})_{a}CR^{P}(R^{G})-COOH_{A}$ or preferably but not limited to the N-hydroxysuccinimide ester B90 is then added to the monoketone anion while maintaining the temperature between 0 °C to 100 °C. reaction is allowed to stir at the specified temperature for a period of time ranging from 30 minutes to 48 hours. The resulting pyrimidine diketone intermediate B91 is utilized without further purification in Step C.

Step C:

The solution or suspension containing the diketone intermediate **B91** is quenched with water and the pH adjusted to between 4 and 8 using an acid chosen from AcOH, H₂SO₄, HCl or HNO, while maintaining the temperature between 0 °C to 40 °C. Hydrazine or hydrazine monohydrate is then added to the mixture while maintaining the temperature between 0 °C to 40 °C. The mixture is stirred

organic solvent such as dichloromethane, dichloroethane or dimethylformamide at temperatures ranging from 20 °C to 120 °C affords the desired acylated pyrazoles (Cxi). Suitable acylating agents include acid halides, activated esters of acids such as the N-hydroxysuccinimde esters, p-nitrophenyl esters, pentafluorophenyl esters, sulfonyl halides, isocyanates, and isothiocyanates.

Scheme C-10

A general synthesis of 2-substituted pyrimidinylpyrazole compounds of type **Cxv** is shown in Scheme C-11.

Step A:

4-Methyl-2-methylmercaptopyrimidine is treated with a base selected from but not limited to n-BuLi, LDA, LiHMDS, t-BuOK, NaH in an organic solvent such as THF, ether, t-BuOH, dioxane from -78 °C to 50 °C for a period of time from 30 minutes to 5 hours. The resulting 4-methyl anion is then added to a solution of an appropriate ester B88. The reaction is allowed to stir from 30 minutes to 48 hours during which time the

a suitable alkylating agent $(R_{304}X)$ such as an alkyl chloride, alkyl bromide, alkyl iodide or with an alkyl methanesulfonate or alkyl p-toluenesulfonate in the presence of a suitable base affords the desired alkylated pyrazoles (Cx). Examples of suitable bases include diisopropylethylamine, triethylamine, N-methylmorpholine, potassium carbonate and potassium bicarbonate.

Scheme C-9

Typical conditions for the alkylation include reaction with the suitable base in a polar aprotic solvent such as acetonitrile, dimethylformamide, dimethylacetamide or dimethyl sulfoxide at temperatures ranging from 20 °C to 150 °C. Typical R₃₀₄ substituents are selected from but are not limited to alkyl, substituted benzyl, heteroaromatic, substituted heteroalkyl and substituted heteroarylalkyl groups.

Compounds containing acyl, sulfonyl or ureidyl groups at the nitrogen atom can be prepared as shown in Scheme C-10. Treatment of the pyrazole **Cviii** with a suitable acylating agent in the presence of a base such as N-methylmorpholine, triethylamine, diisopropylethylamine or dimethylamino pyridine in an

G neral Synthetic Procedures

Scheme C-8 illustrates a general method that can be used for the introduction of various groups on an unsubstituted nitrogen atom that is present as part of pyrazole (Cviii) with appropriately substituted aldehydes (R₃₀₂CHO) or ketones (R₃₀₂COR₃₀₃) in the presence of a reducing agent such as sodium cyanoborohydride or sodium triacetoxyborohydride affords the desired products (Cix). Typical conditions for the reductive alkylation include the use of an alcoholic solvent at temperatures ranging from 20 °C to 80 °C. In Scheme C-8, R₃₀₂ and R₃₀₃ are selected from but not limited to alkyl, benzyl, substituted benzyl, arylalkyl, heteroarylalkyl.

Scheme C-9 illustrates another method for introduction of substituents on the unsubstituted nitrogen atom present as part of the C-3 position of the pyrazole (Cviii). Treatment of the pyrazole (Cviii) with

917

Using the method described in Schemes C-6 and C-7, Example 71 is prepared, substituting N-methyl-3-bromomaleimide for B78.

Example C-72

10 Using the method described in Schemes C-6 and C-7, Example 72 is prepared, substituting N-methyl-3-bromomaleimide for B78, and substituting N-Boc-nipecotyl N-hydroxysuccinimide for B83.

15 Example C-73

Using the method described in Schemes C-6 and C-7,

20 Example 73 is prepared, substituting N-methyl-3bromomaleimide for B78 and substituting N-Boc-nipecotyl
N-hydroxysuccinimide for B83.

Example C-69

Using the method described in Schemes C-6 and C-7, Example 69 is prepared, substituting N-Boc-nipecotyl N-hydroxysuccinimide for ${\tt B83}$.

Example C-70

15 Using the method described in Schemes C-6 and C-7, Example 70 is prepared, substituting N-Boc-nipecotyl N-hydroxysuccinimide for B83.

Example C-71

20

5

10

Example C-67

5

Using the method described in Schemes C-6 and C-7, Example C-67 is synthesized, substituting N-2,4-dimethoxybenzyl-4-bromopyridone for B78, and substituting N-Boc-glycyl N-hydroxysuccinimide for B82.

Example C-68

15

Using the method described in Schemes C-6 and C-7,

Example C-68 is synthesized, substituting N-2,4dimethoxybenzyl-4-bromopyridone for B78.

Example C-65

5

Using the method described in Schemes C-6 and C-7, Example 65 is prepared.

10

Example C-66

15

Using the method described in Schemes C-6 and C-7, Example C-66 is synthesized, substituting N-2,4-20 dimethoxybenzyl-4-bromopyridone for B78.

Example C-64

5

Using the method described in Schemes C-6 and C-7, 10 Example 64 is prepared.

Example C-62 is prepared according to the method described in example C-60, substituting 1,3-dibromoethane for methyl iodide.

5

Example C-63

The synthesis of compound C-63 starts with the condensation reaction of bromomaleic anhydride B77 with 4-dimethoxybenzylamine in acetic acid and acetic anhydride. The maleimide 878 is then treated with 4'fluoroacetophenone in the presence of catalytic amount $Pd_2(dba)_3$ and sodium t-butoxide to form the 15 fluoroacetophenone substituted maleimide B79. B79 is then treated with tert-butoxybis(dimethylamino)methane to yield the a-ketoenamine B80. The a-ketoenamine B80 is condensed with hydrazine to form the N-protected maleimide pyrazole B81. The 2,4-dimethoxybenzyl group is cleaved with ceric ammonium nitrate (CAN) to give the 20 title compound C-63.

Step B

5

Example C-61

10 Example C-61 is prepared according to the method described in example C-60, substituting 1,4-dibromobutane for methyl iodide.

15

the presence of a drying agent for a period of time ranging from 1-24 h. Solvent is then evaporated and the resulting imine is used in step B without further purification.

5

20

Step B:

The pyridylpyrazole imine is dissolved in THF and stirred 10 under nitrogen at temperatures ranging from -78 to -20 °C. A base such as LDA, n-BuLi, or LiHMDS is added dropwise to the mixture which is then stirred for an additional 10 minutes to 3 h. Two equivalents of a methyl iodide are then added to the mixture and stirring is continued for several hours. The mixture is then quenched with acid and allowed to warm to room temperature and stirred several hours until cleavage of the Boc and the imine functions is complete. The pH is adjusted to 12 and then the mixture is extracted with an organic solvent, which is dried and evaporated. The crude pyridylpyrazole is then crystallized and/or chromatographed to give purified C-60.

C-54	H ₂ N Boc
C-55	H ₂ N Boc
· C-56	H ₂ N N-NH H
C-57	H ₂ N N-NH H
C-58	H ₂ N N-NH NH-Boc
C-59	H ₂ N NH-Boc

Example C-60

5 Step A:

A Boc protected pyridylpyrazole is treated with benzaldehyde in methylene chloride at room temperature in

5 Step: D

The CBZ protecting group is cleaved using hydrogen gas under pressure and Pd-C in an alcohol solvent, affording scaffold C-52 after filtration and concentration.

10

15 The following compounds C-53 through C-59 in Table C-3 are prepared according to the general procedure described above for the preparation of C-52.

Table C-3

Example No.	Structure
C-53	H ₂ N H

not limited to n-BuLi, LDA, LiHMDS, tBuOK, or NaH contained in hexane, THF, ether, dioxane, or tBuOH from -78 °C to 50 °C for a period of time from 10 minutes to 3 hours. Formyl acetic anhydride is then added as a solution in THF, ether, or dioxane to the monoketone anion while the temperature is maintained between -50 °C and 50 °C. The resulting mixture is allowed to stir at the specified temperature for a period of time from 5 minutes to several hours. The resulting pyridyl diketone intermediate is utilized without purification in Step C.

Step C: The solution containing the pyridyl diketone is quenched with water and the pH is adjusted to between 4 and 8 utilizing an inorganic or organic acid chosen from HOAc, H₂SO₄, HCl, or HNO₃. The temperature during this step is maintained between -20 °C and room temperature. Hydrazine or hydrazine hydrate is then added to the mixture while maintaining the temperature between -20 °C and 40 °C for a period of 30 minutes to several hours. The mixture is then poured into water and extracted with an organic solvent. The N-Cbz-protected pyridyl pyrazole is obtained as a crude solid which is purified by chromatography or crystallization.

Example C-52

5

Step A: Picoline is treated with a base chosen from but not limited to n-BuLi, LDA, LiHMDS, tBuOK, or NaH in an organic solvent such as THF, ether, t-BuOH or dioxane 10 from -78 °C to 50 °C for a period of time from 10 minutes The picoline solution is then added to a to 3 hours. of N-Cbz-(L)-phenylalaninyl solution hydroxysuccinimide. The reaction is allowed to stir from 30 minutes to 48 hours during which time the temperature may range from -20 °C to 120 °C. The mixture is then poured into water and extracted with an organic solvent. After drying and removal of solvent the pyridyl monoketone is isolated as a crude solid which could be purified by crystallization and/or chromatography.

20

25 Step B: A solution of the pyridyl monoketone in ether, THF, tBuOH, or dioxane is added to a base chosen from but

5.8 Hz, 2H), 7.40 (m, 2H), 7.23 (t, J = 8.5 Hz, 1H), 5.16 (s, 2H), 2.40 (s, 3H).

5

Example C-50

According to the procedure described above in Example C
49. Example C-50 was also prepared starting from 4-[3-(4-fluorophenyl)-1H-pyrazole-4-yl]pyridine. Mass spec: M+H

cald: 298; found 298.

H NMR (DMSO-d6): 8.75 (d, J = 6.4 Hz, 2H), 8.68 (s, 1H), 7.78 (d, J = 6.6 Hz, 2H), 7.52 (dd, J = 5.4, 8.5 Hz, 2H), 7.31 (t, J = 8.9 Hz, 2H),

5.16 (s, 2H).

Example C-51

20

Starting with the N-Boc-piperidinyl analog of Example C-2, Example C-51 is also prepared according to the methods described in Scheme C-1.

WO 00/31063 PCT/US99/26007

904

NaOH. Tetrabutylammonium hydroxide (0.5 mL of a 1 M aqueous solution) was added to the stirred mixture. To this mixture was added t-butyl bromoacetate (2.10 g, 10.8 mmol). The reaction mixture was stirred at room temperature for 4 h. The mixture was poured onto 200 mL of CH_2Cl_2 and 200 mL of H_2O . The phases were separated and the organic phase was washed with water (1x100 mL) and brine (1x100 mL). The organic layer was dried over Na_2SO_4 and was filtered. The solvent was removed to leave an off-white solid. This solid was triturated with hexane and the resulting solid isolated by filtration. The solid was washed with hexane to leave 3.4 g of a white solid (90%).

15

10

Step B

The alkylated pyrazole (3.7 g, 10.1 mmol) from Step A was treated with 57 mL of 4 N HCL in dioxane. The solution was stirred at room temperature for 4 h. The solvent was removed under reduced pressure and the residue was dissolved in THF. The solution was treated with propylene oxide (10.3 mmol) and was stirred for 1h at room temperature. The solvent was removed to leave an oil. The residual solvent was chased with several portions of EtOH. The resulting solid was triturated with Et₂O and the title compound Example C-49 was isolated by filtration to afford 3.0 g of an off-white solid (95%). Mass spec: M+H cald: 312; found 312. ¹H NMR (DMSO-d6): 8.81 (d, J = 6.4 Hz, 2H), 7.73 (d, J =

6.45	
C-45	P-NH H
C-46	F CH,
C-47	N-NH
	F CH ₃
C-48	N-NH H
	F CH,

10

Example C-49

15

Step A

The pyrazole (2.60 g, 10.3 mmol) from example C-4 was suspended in 52 mL of dichloroethane and 52 mL of 2.5 M

C-34	F NH2
C-35	F N-NH
C-36	F-NH _N
C-37	F-N-NH ₂
C-38	F NH
C-39	F N-NH
C-40	F CO ₂ t-Bu
C-41	F N-NH H NH
C-42	F N-NH H
C-43	F HN HN
C-44	P N-NH H

C-25	Br N-NH NH2
C-26	H ₃ C N-NH NH ₂
C-27	Br N-NH NH
C-28	H ₃ C N-NH
C-29	N-NH NH₂
C-30	S-NH NH
C-31	F ₃ C N-NH
C-32	F N-NH NH2
C-33	F NH NH

2.71 (br, 1H), 2.51 (br,
2H), 1.68 (br, 4H)

5

10

The following pyridylpyrazoles (C-22 through C-40, Table C-2) are prepared utilizing the general schemes C-1 and C-2 and the experimental procedure described for example 15 C-1 above.

Table C-2

Cmpd. No.	Structure
C-22	F N-NH NH2
C-23	F N-NH NH ₂
C-24	F NH NH2

	T	,	
			(dd, J = 5.8, 9.8 Hz, 4H),
	İ		2.68 (t, J = 7.3 Hz, 2H),
			2.52 (m, 2H), 1.64 (m, 2H)
C-14	CI N-NH NH2	284.0829	(CD ₃ OD): 8.74 (br, 2H),
		284.0806	7.77 (br, 2H), 7.45-7.58
			(m, 3H), 7.30-7.40 (m,
	N.		1H), 4.43 (s, 2H)
C-15	N-NH NH ₂	285	(DMSO-d ₆): 8.53 (br, 2H),
İ	a-C	285	7.56 (br, 2H), 7.26 (m,
			4H), 3.75 (br, 2H)
C-16	N-NH NH ₂	329, 331	$(DMSO-d_6): 8.53 (d, J =$
	Br	329, 331	4.4 Hz, 2H), 7.42 (d, J =
			7.9 Hz, 2H), 7.34 (d, J =
			8.5 Hz, 2H), 7.24 (d, J =
			4.6 Hz, 2H), 3.76 (bs, 2H)
C-17	CI N-NH	339	$(DMSO-d_6): 8.53 (t, J =$
	U X NH	339	4.3 Hz, 2H), 7.33 (m, 3H),
·			7.19.(t, J = 4.6 Hz, 2H),
			7.14 (d, J = 7.3 Hz, 1H),
	·		3.23 (m, 2H), 2.88, (m,
			3H), 1.92, (m, 3H), 1.70
			(m, 1H)
C-18	N-NH	339	$(DMSO-d_6): 8.57 (d, J =$
	CI	339	4.6 Hz, 2H), 7.41 (d, J =
	_ FN]		8.3 Hz, 2H), 7.29 (d, J =
			8.5 Hz, 2H), 7.20 (d, J =
			4.8 Hz, 2H), 3.18 (bd,
			2H), 2.88 (m, 1H), 2.76
			(m, 2H), 1.82 (br, 4H)
C-19	N-NH N-NH	383, 385	(DMSO-d ₆): 8.56 (br, 2H),
	Br	383, 385	7.52 (br, 2H), 7.14-7.29
	⊳ N [⊥]		(m, 4H), 2.99 (br, 2H),

C-9	N-NH NH ₂	313.1465	$(DMSO-d_6): 8.55 (dd, J =$
	F OCH	313.1457	1.5, 4.4 Hz, 2H), 7.37-
			7.32 (m, 2H), 7.26 (dd, J
	17		= 1.6, 4.4 Hz, 2H), 7.22-
			7.16 (m, 2H), 4.06 (t, J =
			6.5 Hz, 1H), 3.49 (d, J = 1)
			6.6 Hz, 2H), 3.20 (s, 3H)
C-10	N-NH NH ₂	354	(DMSO-d ₆): 13.03 (bs,
		354	1H), 8.50 (dd, J=1.6, 2.7
	N CONHCH		Hz, 2H), 7.58 (bq, J=4.3
			Hz, 1H), 7.3 (m, 2H),
			7.12-7.21 (m, 4H), 3.77
			(t, J= 6.3 Hz, 1H), 2.45
			(d, J=4.5 Hz, 3H), 1.97
	•		(t, J= 7.4 Hz, 2H), 1.85
			(dt, J=7.3, 7.1 Hz, 2H)
C-11	N-NH NH2	354	(DMSO-d ₆): 13.03 (bs,
	F	354	1H), 8.50 (dd, J=1.6, 2.7
	N CONHCH₃		Hz, 2H), 7.58 (bq, J=4.3
			Hz, 1H), 7.3 (m, 2H),
			7.12-7.21 (m, 4H), 3.77
			(t, J= 6.3 Hz, 1H), 2.45
			(d, J=4.5 Hz, 3H), 1.97
			(t, J= 7.4 Hz, 2H), 1.85
			(dt, J=7.3, 7.1 Hz, 2H)
C-12	N-NH	283.1359	$(DMSO-d_6): 8.53 (d, J =$
	F NH ₂	283.1363	5.0 Hz, 2H), 7.37-7.32 (m,
	N		2H), 7.21-7.17 (m, 4H),
			2.83(d, J = 6.0 Hz, 2H),
			2.77 (d, $J = 6.0$ Hz, $2H$)
C-13	N-NH NH ₂	297.1515	$(DMSO-d_6): 8.53 (d, J =$
		297.1515	5.4 Hz, 2H), 7.34 (dd, J =
	FNJ		5.8, 8.2 Hz, 2H), 7.18

C-3	N-NH NH ₂	282.127	$(DMF-d_7): 8.77 (br s,$
	F CH ₃	(M)	2H), 7.64-7.62 (m, 2H),
1		282.1245	7.50 (br s, 2H), 7.38-7.34
	, "	(M, EI)	(m, 2H), 4.40-4.37 (m,
			1H), 1.56 (br s, 3H)
C-4	N-NH NH ₂	282.127	$(DMF-d_7): 8.77 (br s,$
	F CH ₃	(M)	2H), 7.64-7.62 (m, 2H),
		282.1147	7.50 (br s, 2H), 7.38-7.35
		(M, EI)	(m, 2H), 4.40-4.37 (m,
			1H), 1.57 (br s, 3H)
C-5	N-NH NH	323.1672	(DMSO-d ₆): 8.56 (br, 2H),
		323.1687	7.32 (m, 2H), 7.18 (m,
	N		4H), 2.91 (m, 2H), 2.71
			(m, 2H) 1.88 (m, 1H), 1.65
			(m, 2H), 1.40 (m, 2H)
C-6	N-NH NH ₂	359	$(DMSO-d_6): 8.46 (d, J =$
		359	4.6 Hz, 2H), 7.32-7.13 (m,
		·	7H), 6.98-6.96 (m, 4H),
			4.06 (t, $J = 7.0$ Hz, 1H),
		•	2.98-2.95 (m, 2H)
C-7	N-NH NH ₂	359	$(DMSO-d_6): 8.46 (d, J =$
	F	359	5.4 Hz, 2H), 7.32-7.28 (m,
			2H), 7.20-7.12 (m, 5H),
			6.98-6.96 (m, 4H), 4.06
			(t, J = 7.0 Hz, 1H), 2.98-
			2.94 (m, 2H)
C-8	N-NH NH ₂	313.1465	(DMSO-d ₆): 13.83 (bs,
	F OCH3	313.1492	1H), 8.61 (d, $J = 5.7 \text{ Hz}$,
			2H), 8.33 (bs, 1H), 7.33
			(m, 6H), 4.44 (m, 1H),
			3.63 (m, 2H), 3.27 (s, 3H)

the filtrate was concentrated to give 4.5 g of an off-white solid (94%). ^{1}H NMR (DMSO-d₆) δ 8.52 (d, J = 4.63 Hz, 2H), 7.36 (dd, J = 5.64, 8.1 Hz, 2H), 7.16-7.30 (m, 4H), 3.79 (s, 2H); ^{19}F NMR (DMSO-d₆) δ -114.56 (m); LC/MS, t_r = 1.21 minutes (5 to 95% acetonitrile/water over 15 minutes at 1 mL/min, at 254 nm at 50°C), M+H = 269 m/z; High Resolution MS Calcd for $C_{15}H_{14}N_{4}F$ (M+H): 269.1202. Found: 269.1229 (Δ mmu = 2.7).

10

The following pyridylpyrazoles (C-2 through C-21, Table C-1) were prepared according to the experimental procedure described above—for example C-1.

15

Table C-1.

Exampl	Structure	MW, M +	'H NMR (solvent), ppm
e No.		Н	is that (boltone), ppm
		Calculat	
		ed	
		Found	
C-2	N-NH	323.1672	$(DMF-d_7): 8.77 (t, J =$
	F	323.1670	4.4 Hz, 2H), 7.60 (m, 2H),
			7.44 (t, $J = 4.4$ Hz, $2H$),
			7.35 (m, 2H), 3.22 (bd,
			2H), 3.01 (septet, $J = 5.3$
			Hz, 1H), 2.74 (m, 2H),
			1.95 (m, 4H)

dried (Na_2SO_4) , filtered and evaporated to leave 157 g of a crude reddish oil.

The oil was suspended in CH_2Cl_2 and filtered to remove any insoluble material (DCU, hydrazone of the monoketone). The solution was split into two portions and each portion was chromatographed (Biotage 75L, 3% EtOH/CH₂Cl₂ then 6% EtOH/CH₂Cl₂). The appropriate fractions were concentrated (some contamination from the monoketone and the hydrazone) from each portion to leave a yellow solid. The solid was suspended in ethyl acetate 10 and heated to boiling for 10 minutes. The solution was allowed to cool to R.T. overnight. The precipitate was filtered to give 30 g of a white solid (27% yield of 2): ¹H NMR (DMF- d_7) δ 13.36 (s, 1H), 8.57 (d, J = 5.8 Hz, 2H), 7.16-7.52 (m, 11H), 5.11 (s, 2H), 4.48 (d, J = 5.4 Hz, 15 2H); ^{19}F NMR (DMF-d₇) δ -114.9 (m), -116.8 (m) (split fluorine signal is due to the pyrazole tautomers); LC/MS, $t_r = 3.52$ minutes (5 to 95% acetonitrile/water over 15 minutes at 1 mL/min, at 254 nm at 50° C), M+H = 403; High Resolution MS Calcd for $C_{23}H_{20}N_4O_2F$ (M+H): 403.1570. Found: $403.1581 (\Delta mmu = 1.1)$.

5-aminomethyl-4-(4-pyridyl)-3-(4-fluorophenyl)

pyrazole. To a 1L Parr bottle was added 7 g (17.4 mmol)

of 2 and 180 mL of MeOH and 90 mL of THF to give a clear solution. The bottle was purged with nitrogen and 1.5 g of 10% Pd/C (wet Degussa type E101) was added. The Parr bottle was pressured to 40 psi (H₂) and was agitated. Hydrogen uptake was 5 psi after 5 h. The bottle was repressured to 42 psi and was agitated overnight. The bottle was purged with N2 and was filtered through Celite. The Celite was washed with MeOH (3x50 mL) and

20

25

30

Na₂SO₄. The organic layer was filtered and the solvent was removed to leave oily solid. Hexane was added to the oil and the resulting solid was filtered and washed with hexane (cold). A yellow solid was isolated (50 g, 54%):

¹H NMR (CDCl₃) δ 8.58 (d, J = 5.7 Hz, 2H), 8.02 (dd, J = 5.5, 8.0, 2H), 7.12-7.21 (m, 4H), 4.23 (s, 2H);

¹⁹F NMR (CDCl₃) δ -104.38 (m); LC/MS, t_r = 2.14 minutes (5 to 95% acetonitrile/water over 15 minutes at 1 mL/min, at 254 nm at 50°C), M+H = 216; High Resolution MS Calcd for C₂₃H₂₀N₄O₂F (M+H): 216.0825. Found: 216.0830 (Δ mmu = 0.5).

N-benzyloxycarbonyl-5-aminomethyl-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole. A 3L round bottom flask fitted with a mechanical stirrer, N_2 inlet and an addition funnel was was charged with 557 mL (0.56 mol) of 1 M t-BuOK in THF and 53 mL (0.56 mol) of t-BuOH. The ketone, 1 (60 g, 0.28 mol) was dissolved in 600 mL of THF and added to the stirred mixture at room temperature. precipitate formed and the mixture was stirred for 1 h. N-benzyloxycarbonyl-glycinyl N-hydroxysuccinimide (128.6 g, 0.42 mol) was dissolved in 600 mL of THF and added dropwise at r.t. over 1h. The mixture was stirred for another 5 minutes and 150 mL of water was added. was adjusted to 6.7 with 70 mL of AcOH. Hydrazine monohydrate (41 mL in100 mL of water) was added via an addition funnel. The mixture was stirred for 1 h and was diluted with 500 mL of water and 500 mL of ethyl acetate. The biphasic mixture was transferred to a sep funnel and the layers were separated. The aqueous layer was extracted with EtOAc (3x300 mL). The organic layer was

10

Example C-1

15

5-AMINOMETHYL-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

20

1-(4-fluorophenyl)-2-(4-pyridyl)-1-ethanone. 4-picoline (40 g, 0.43 mol) was added to a LiHMDS solution (0.45 mol, 450 mL of a 1.0 M solution in THF) over 30 minutes at room temperature (a slight exotherm was observed) The resulting solution was stirred for 1 h. This solution was added to ethyl 4-fluorobenzoate (75.8 g, 0.45 mol, neat) over 1 h. The mixture was stirred overnight (16 h). Water (200 mL) was added and the mixture was extracted with EtOAc (2x200 mL). The organic layer was washed with brine (1x200 mL) and dried over

	R²	R ^B I − R ^C O	Yield	Calcd. Mass Spec.	Obs rved Mass Spec M+H
B-2457	F—	NH S NO	55	540	-
B-2458	F—		22	488	489
B-2459	F—	S-CF	8	486	487
B-2460	F—	O DH S	13	534	535
B-2461	F—	HN O	13	542	•

					
	R²	RB N—Rc N—Rc	Yield	Calcd. Mass Spec.	Observ d Mass Spec M+H
B-2448	F—		51	522	523
B-2449	F-	NH C	19	512	513
B-2450	F—	HN-C)-(X ² C)	16	538	539
B-2451	F—	NH O'N	71	511	512
B-2452	F—	To Oak	71	500	501
B-2453	F—	NH O CF3	61	470	
B-2454	F—	ZH O	15	472	473
B-2455	F—	N-N OF,	39	520	•
B-2456	F—	١٩٩٩	51	533	534

	R²	RB IN RC	Yi ld	Calcd. Mass Sp c.	Observed Mass Spec M+H
B-2439	F—	₹-(-)-5	12	454	455
B-2440	F—		8	521	522
B-2441	F—		6	443	444
B-2442	F—		37	514	515
B-2443	F—		15	518	•
B-2444	F—	TZ T	52	520	-
B-2445	F—		33	517	518
B-2446	F—	0 Z Z	70	500	501
B-2447	F—	**************************************	56	488	489

	R²	RB N—RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2430	F-	O ₂ N NO ₂	15	476	477
B-2431	F—{}	NH O	6	446	447
B-2432	F—	- ₹	37	404	405
B-2433	F—	- Z	8	428	429
B-2434	F—) , , , , , , , , , , , , , , , , , , ,	13	476	477
B-2435	F—	NH C	23	442	443
B-2436	F—	O NH	5	486	487
B-2437	F—		4	492	493
B-2438	F—	0 1 1 1	58	422	423

					
	R²	RB N-RC	Yield	Calcd. ₩ass Spec.	Observ d Mass Spec M+H
B-2421	F-		28	454	455
B-2422	F-{}	NH C	47	420	421
B-2423	F-{}	O H	53	400	401
B-2424	F-	D H	15	400	401
B-2425	F—	NH F ₃ C CF ₃	18	522	523
B-2426	F-\		38	464	465
B-2427	F-____\) - E	26	468	469
B-2428	F-	O= Z- S	22	432	433
B-2429	F—	P E	41	404	405

		R²	RB I N-RC	Yield	Calcd. Mas Spec.	Observed Mass Spe M+H	
	B-2414	F-\	HI STO	14	473	474	
	B-2415	F-	O NH CI	19	421	422	
	B-2416	F—	0 = \frac{1}{2}	13	386	387	
	B-2417	F—		29	414	415	
	B-2418	F—	0-4 -0-0	6	420	421	
E	3-2419	F—	NH CF3	10	454	-	
В	-2420	F—	O H	5	442	443	
				L			

	R²	RB N—RC	Yi Id	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2409	F—	S S	47	448	449
B-2410	F-\		73	542	543
B-2411	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, , , , , , , , , , , , , , , , , , ,	81	489	490
B-2412	F—	0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	54	409	410
B-2413	F—	~~~~	37	493	494

	R ²	RB N—RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2400	F—	NH.	34	381	382
B-2401	F-{}		32	378	379
B-2402	F—{		71	519	520
B-2403	F—{}	0 N N N N N N N N N N N N N N N N N N N	68	527	528
B-2404	F—		62	447	448
B-2405	F—	N S	71	536	537
B-2406	F——}	N 7	47	394	395
B-2407	F—		65	508	509
B-2408	F—	OMe OMe	34	495	496

	R²	R ^B N—R ^c O	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2391	F—		30	435	436
B-2392	F-\		57	464	465
B-2393	F—		50	418	419
B-2394	F—		65	488	489
B-2395	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	59	437	438
B-2396	F—		34	534	535
B-2397	F—	ON CI	32	516	517
B-2398	F—	O CI	81	533	534
B-2399	F——}	O N O	55	502	•

	R ²	RB N—RC	Yi ld	Calcd. Mass Spec.	Obs rv d Mass Sp c M+H
B-2382	F—		48	407	408
B-2383	F—	7- N S	53	382	383
B-2384	F—		38	447	448
B-2385	F—		59	498	450
B-2386	F———	, , , o	45	429	430
B-2387	F———		74	558	• •
B-2388	F—	_ N	53	475	<u>.</u>
B-2389	F—	N - N - N - N - N - N - N - N - N - N -	33	493	494
B-2390	F-		53	487	488

	R²	R ^B N—R ^C	Yield	Calcd. Mass Spec.	Observ d Mass Spec M+H
B-2373	F—		50	432	433
B-2374	F—		29	382	383
B-2375	F—	0 2 2	35	395	396
B-2376	F—		3,6 _	428	429
B-2377	F—	Z Z O	68	438	439
B-2378	F—		55	446	847
B-2379	F-	// /=0 (33	364	365
B-2380	F—		51	421	422
B-2381	F——}		52	429	430

	R²	RB N—RC	Yield	Calcd. Mas Spec.	Observed S Mass Spec M+H
B-236	6 F—		34	380	381
B-2367	F—	O CI	52	480	481
B-2368	F-\		35	407	407
B-2369	F—	- In The	31	435	436
B-2370	F—		33	414	415
B-2371	F-) ,,,	- 28	366	367
B-2372	F—		37	422	423

	R²	RB N—RC	Yield	Calcd. Mass Spec.	Observed Mass Spec W+H
B-2361	F—		13	476	477
B-2362	F—	0 0	46	493	494
B-2363	F—	N	57	396	397
B-2364	F—	N H O	61	438	- 439
B-2365	F—	O NH	72	424	425

		7									
		R²		RB N-	RC	Yield	d			Obse Mass M+	Spec
B-23	52	F—	*	0 0 1 1 1 1 1	<u>~</u>	41		482	:	483	
B-235	3	F—	*		0	57		438		439	
B-2354	4	F-{_}	*	O N H		63		484		485	
B-2355	F		*	Ş-NH → NH	2	28		536		537	
B-2356	F			NH NH		29		408		409	
3-2357	F-			NH N-N		41		436		437	
-2358	F	$\bigcirc\!$	1	\$\frac{1}{2} \times \frac{1}{2}		41		451		452	
2359	F-		7	N N N N N N N N N N N N N N N N N N N		57		502		503	
2360	F			AH AH AH AH AH AH AH AH AH AH AH AH AH A		46	4	96	-	197	
	B-2355 B-2355 B-2356 B-2357	B-2354 B-2355 F-2357 F-2358 F-2359 F-2359	B-2352 F————————————————————————————————————	B-2352 F————————————————————————————————————	B-2352 F————————————————————————————————————	B-2352 F————————————————————————————————————	B-2352 F	B-2352 F	B-2352 F	B-2352 F	B-2352 F

	R²	RB I N—RC	Yield	Calcd. Mass Spec.	Obs rv d Mass Spec M+H
B-2343	F—	O H	29	424	425
B-2344	F—	Br	33	492	493
B-2345	F—	O NH	30	420	421
- B-2346	F—	. FE	- 35	474	475
B-2347	F—	O H	34	392	393
B-2348	F——}	O NH	51	458	459
B-2349	F—	N H	73	517	518
B-2350	F—		22	448	449
B-2351	F—)	64	486	487

	R²	R ^B N—R ^c	Yi ld	Calcd. M Spec.		pec
B-23	34 F-	NH NH	44	428	429	
B-233	35 F—	NH NH	27	406	407	
B-233	6 F—	NH NH	41	428	429	
B-2337	7	O NH	27	423	424	
B-2338	F—	NH CN	33	469	470	
B-2339	F-	E s	52	518	519	
B-2340	F—	O NH	64	442	443	
B-2341	F—	NH	41	350	351	
B-2342	F-	O NH	34	414	415	

			·		,
	R²	R ^B N—R ^c N — R ^c	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2325	F—	NH NH	41	382	383
B-2326	F—	O NH	71	440	441
B-2327	F—	NN S	36	464	465
B-2328	F—	TE TO THE	32	467	468
B-2329	F—	[0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	34	465	466
B-2330	F—	, , , ,	26	364	365
B-2331	F—	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	38	464	465
B-2332	F—	ON H	33	483	484
B-2333	F—	NH NH	36	378	379

	R²	RB N—RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2318	F—	HN	23	426	427
B-2319	F—	NH NH	23	394	
B-2320	F—		50	490	491
B-2321	F-	, , , , , , , , , , , , , ,	49	426	427
B-2322	F—	O NH	40	366	367
B-2323	F—	O NH O S	68	410	411
B-2324	F-______\	NH S	57	456	457

By analogy to the procedure identified above for the preparation of Examples B-2270 through B-2317, the following examples B-2318 through B-2461 were prepared.

. ;	R²	RB I N-RC	Yield	Calcd. Mass Spec.	Ob erved Mass Spec M+H	
B-2317	F—		36	428	•	

	R²	RB N-RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2307	F-	NH NH	5	421	422
B-2308	F—{}		26	470	-
B-2309	F—		24	424	425
B-2310	F—		9	348	•
B-2311	F—	NH NH	₹ 21	338	339
B-2312	F—	NH S	28	398	399
B-2313	F—	- NH	6	410	-
B-2314	F—	NH CN	15	363	364
8-2315	F—		11	444	•
B-2316	F—	i, O	11	418	•

	R²	RB N—RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2297	F—		7	490	-
B-2298	F—	نېئې	4	537	
B-2299	F-		4	507	508
B-2300	F—		7	442	•
B-2301	F—		20	396	397
B-2302	F—	نہرک	30	459	-
B-2303	F-	3, 3	6	482	
B-2304	F—		5	395	396
B-2305	F—		10	460	•
B-2306	F—{}	i, ~ ?	11	466	467

F	R ²	R ^B	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2287	F—	1 6 N	5	437	438
B-2288	F—	~	8	435	436
B-2289	F—	~~\\\	4	450	451
B-2290	F—		9	456	457
B-2291	F—		9	415	416
B-2292	F-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5	368	369
B-2293	F—NH		5	366	367
B-2294	F-		5	381	382
B-2295	F—		16	410	411
B-2296	F—	NCH	4	483	-

	R²	RB N—RC	Yield	Calcd. Mass Spec.	Obs rv d Mass Spec M+H
B-2277	F—		33	490	•
B-2278	F-		53	460	461
B-2279	F—{}		10	420	<u>-</u>
B-2280	F—{}	NH NH	7	435	436
B-2281	F—		18	401	402
B-2282	F—	L HN	22	390	413° °M+Na
B-2283	F—	E	10	394	417° °M+Na
B-2284	F—		7	423	-
B-2285	F—{		23	450	-
B-2286	F-	i, O'O	4	506	-

	R²	RB N—RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2270	F-	- NH	12	352	353
B-2271	F-		39	432	433
B-2272	F-{}	N N N N N N N N N N N N N N N N N N N	26	400	-
B-2273	F—	, ° _	14	396	397
B-2274	F—		30	434	435
B-2275	F—		43	443	•
B-2276	F—	NH NH	35	364	365

dimethylformamide was added to the reconstituted conical vials and the mixture incubated for 2 hours at ambient temperature. Polyamine polymer B33 (4.0 meg N/g resin, 250 mg) and 1.0 mL dichloromethane was then added to the reaction mixture in each conical vial. After agitating the reaction mixtures for 16 h at 250 RPM on an orbital shaker at ambient temperature, the mixtures were filtered through a polypropylene syringe tube fitted with a porous frit. The polymers were washed twice dimethylformamide (1.0 mL.each) and the filtrates and washings collected in conical vials. The filtrates were evaporated to dryness and weighed to afford the desired amide products B-2270 through B-2317 as oils or solids. The analytical data and yields for the products prepared in this manner are listed below.

20

10

15

₩O 00/31063 PCT/US99/26007

866

5

10

Examples B-2270 through B-2317

15

30

In a parallel array reaction block containing 48 fritted vessels, each reaction vessel was charged with 250 mg of polymer bound carbodiimide B48 (1.0 mmol/g resin) and a solution of the acid-containing scaffold c-20 &9 in dimethylformamide (0.1 M, 500 uL). To each slurry was added a solution of pyridine in dichloromethane (0.2 M, 1000 uL) followed by a solution of a unique amine B67 (0.2 M, 375 uL) in dimethylformamide. The reaction mixtures were agitated on a Labline benchtop orbital shaker at 250 RPM for 16-20 h at ambient temperature. The reaction mixtures were filtered into conical vials and polymer was washed with the 1.5 mL of dimethylformamide and 2.0 mL of dichloromethane. The filtrates were evaporated to dryness in apparatus and dimethylformamide (350 uL) was added to each conical vial to dissolve the residue. A solution of tetrafluorophthalic anhydride (1.0 M, 150

	T			
Example#	R²	₽¹		
B-2263	F—	45%		
B-2264	F—	F O		
B-2265	F—	YH NH		
B-2266	F—			
B-2267				
B-2268 F		HN-0		
B-2269 F		S A		

Example	R ²	H,		
B-2253	F-	3-1		
B-2254	F-	27.		
B-2255	F—	3,400		
B-2256	F—			
B-2257	F—			
B-2258	F—			
B-2259	F—	F-11°		
B-2260	F—	2770		
B-2261	F—			
B-2262	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

. -

	Examples B-2246 through B-2269 are prepared from Scaffold C-35					
Example		R ⁷				
B-2246	F—	34				
B-2247	F—	Z,L				
B-2248	F—	34				
B-2249	F—					
B-2250	F—	z.L				
B-2251	F—	2,4				
B-2252	F—	₹ BR				

Example#

 R^2

 R^{J}

	· • • • • • • • • • • • • • • • • • • •			
B-2238	s >	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-2239	s >	7,000		
B-2240	s >			
B-2241	s >	NH NH		
B-2242	S→			
B-2243	s >			
B-2244	s >	HN		
B-2245	s T	LN Z		

Example#

 R^2

 $\mathbf{R}^{\mathbf{J}}$

				
B-2229	S			
B-2230	S	2-0-Z		
B-2231				
B-2232				
B-2233				
B-2234	S S			
B-2235	S S	۴۲۰	•	
B-2236				
B-2237	S	7,00		

Examples B-2222 through B-2245 are prepared from Scaffold C-29

Example# R² R٦ B-2222 B-2223 B-2224 B-2225 B-2226 B-2227 B-2228

Example#	R²	ВĄ			
B-2215	F—	7,0	·	·	
B-2216	F—	7, 0 F 0			
B-2217	F—	7 \ F			
B-2218	F—				
B-2219	F—		·		
B-2220	F—	HN			
B-2221	F-	- Z			

Example#	R²	RJ		
B-2205	F—			
B-2206	F—	2-0-2		
B-2207	F—			
B-2208	F—			
B-2209	F—			
B-2210	F—			
B-2211	F—			
B-2212	F—	7		
B-2213	F—	7 %		
B-2214	F—	7000		

Examples B-2198 through B-2221 re prepared from Scaffold C-22 Example# R² R_{λ} B-2198 B-2199 B-2200 B-2201 B-2202 B-2203 B-2204

Example#	R²	₽		
B-2191	F—	2000		
B-2192	F—	1.00 × 1.00		
B-2193	F—	7		
. B-2194 .	F—			
B-2195	F—			
B-2196	F—	H N		
B-2197	F—			

Example#	R²	۲٩		
B-2181	F—	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
B-2182	F—	2-0-2		
B-2183	F—	3,-10		·
B-2184	F—			
B-2185	F—			
B-2186	F—			
B-2187	F—	F-74°	·	
B-2188	F—	240		
B-2189	F—			
B-2190	F—	7/ NO		

Examples 2174 through B-2197 are prepared from Scaffold C-64

	Examples 2174	through B-2197 are	e prepared	TUITI Scario	14 C-0-7
Example#	R²	ĸ٦			
B-2174	F—				
B-2175	F—	° F	·		-
B-2176	F—	3,4			
B-2177	F—				
B-2178	F-	2,4			
B-2179	F-				
B-2180	F-	Z, III			

Example#	H²	Ħ ¹		
B-2167	F—	2000		
B-2168	F—	7.00 N		
B-2169	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-2170	F-			
B-2171	F-			
B-2172	F—	HN O		
B-2173	F—	~	·	

Example#	R²	₽₁		
B-2157	F—	ئِدُ ا		
B-2158	F—	270-2		
B-2159	F—	3,4		
B-2160	F	ار ا		
B-2161	F—			
B-2162	F—			
B-2163	F—	F		
B-2164	F—			
B-2165	F—			
B-2166	F—	750		

Examples B-2150 through B-2173 are prepared from Scaffold C-32

	Examples 6-213	u through B-21/3 a	ie prepared	nom ocan	0.0 0-02
Example#	R²	R³			
B-2150	F—				
B-2151	F—	° Ç			·
B-2152	F—				
B-2153	F—				·
B-2154	F-	3.L		·	·
B-2155	F—	2, I			
B-2156	F—	O BR			

Example#	R²	R,		
B-2143	H	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-2144	H	7,810		
B-2145	H	NH O NH		
B-2146	H			
B-2147	H			
B-2148	H	HN		
B-2149	H	N N N N N N N N N N N N N N N N N N N		

Example# R² R٦ B-2133 B-2134 B-2135 B-2136 B-2137 B-2138 B-2139 B-2140 B-2141 B-2142

Examples B-2126 through B-2149 are prepared from Scaffold C-56

Example#	R²	R⁴		
B-2126	н—————————————————————————————————————			
B-2127	H			
B-2128	H			
B-2129	н—————————————————————————————————————			
B-2130	н	% O	·	
B-2131	н			
B-2132	н	0 2 BR		

847

Example#	R²	R ^J			
B-2119	H	750			
B-2120	H		·	·	
B-2121	H	7			
B-2122	H				
B-2123	н		·		
B-2124	H	HN			
B-2125	H				

RJ R² Example# B-2109 B-2110 B-2111 B-2112 B-2113 B-2114 B-2115 B-2116 B-2117 B-2118

Examples B-2102 through B-2125 are prepared from Scaffold C-52

Example#	R²	R ^J		
B-2102	н—	3/2		
B-2103	H	3.L		
B-2104	H——	3,4		·
B-2105	H			
B-2106	H	2,4		
B-2107	H			
B-2108	н——{	Z, BR		

R٦ R² Example# B-2094 B-2095 B-2096 B-2097 B-2098 B-2099 B-2100 HN-B-2101

Example#	R ²	R ¹			
B-2085	н	3,11	·.		
B-2086	H	0-10-10-10-10-10-10-10-10-10-10-10-10-10			
B-2087	H———	3,4		·	
B-2088	H	2,1			
B-2089	H	i d		·	·
B-2090	H}				
B-2091	H}	F 17°			
B-2092	H}	N N N N N N N N N N N N N N N N N N N			
B-2093	H——				

Examples B-2078 through B-2101 are prepared from Scaffold C-57

Example#	R²	R ^J		
B-2078	H	3-1		
B-2079	н—————————————————————————————————————	° F		
B-2080	H			
B-2081	H			
B-2082	н	24		
B-2083	H			
B-2084	H	S BR		

 R^{J} Example# \mathbb{R}^2 B-2071 B-2072 B-2073 .NH B-2074 B-2075 B-2076 B-2077

Example#

R²

 R^{J}

				
B-2061	F—{}	3,1		
B-2062	F—	0 7 0 - 2		
B-2063	F—	ا ا		
8-2064	F—			
B-2065	F—			
B-2066	F-			
B-2067	F-	FT		
B-2068	F—	2		
B-2069	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-2070	F—	7,00		

Examples B-2054 through B-2077 are prepared from Scaffold C-34

Example#	R²	R		
B-2054	F—	34		
B-2055	F—	° ZZ		
B-2056	F—			
B-2057	F—			
B-2058	F-	34		
B-2059	F—	0 1		
B-2060	F—) BR		

Example	[‡] R ²	R ^J		
B-2047	F—	750		
B-2048	F—			
B-2049	F—	Y NH		
B-2050	F—			
B-2 051	F-			
B-2052	F—	H N O		
B-2053	F—	0- 7-		

Example#	R ²	₽J			
B-2037	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
B-2038	F-	37		·	
B-2039	F—	الم الم			
B-2040	F—				
B-2041	F—				
B-2042	F—				
B-2043	F—	4	·		
B-2044	F—	77			
B-2045	F-	10000 NO.			
B-2046	F—	750		·	

Examples B-2030 through B-2053 are prepared from Scaffold C-36

Examples	₽ R ²	R¹		
B-2030	F—{}	3/		
B-2031	F—	Z.L.	-	
B-2032	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3,4		
B-2033	F-			
B-2034	F-{}	2,4		
B-2035	F-_______\	2, P		
B-2036	F—	\$		

	Ţ	· · · · · · · · · · · · · · · · · · ·	 	
Example#	R²	RJ		
B-2023	F—	74 0 10 10 10 10 10 10 10 10 10 10 10 10 1		
B-2024	F-\	7, 80 F 0		
B-2025	F—	Z N		
B-2026	F—			·
B-2027	F—			
B-2028	F—	HN O		
B-2029	F-	-	·	·

				
Example	# R ²	R ^J		
B-2013	F—	3,1		
B-2014	F—	072		
B-2015	F—	3,40		
B-2016	F—			
B-2017	F—			
B-2018	F—		·	
B-2019	F-	Frio		
B-2020	F—			
B-2021	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-2022	F—	75 0 75 0		

Examples B-2006 through B-2029 are prepared from Scaffold C-60 Example# R^2 R٦ B-2006 B-2007 B-2008 B-2009 B-2010 B-2011 B-2012

R² Example# \mathbf{R}^{L} B-1999 B-2000 B-2001 B-2002 B-2003 B-2004 B-2005

Example#	R²	R ^L			
B-1989	!S	بالر			
B-1990	<u>s</u>	27.	·		
B-1991	S.	3,400		·	
B-1992	<u></u> S S S S S S S S S	١٠ ١	·		·
B-1993					
B-1994					
B-1995		Gr.			
B-1996		2			
B-1997			·		
B-1998		75%0 75%0			

Examples B-1982 through B-2005 are prepared from Scaffold C-30

Example#	R²	RL		
B-1982	S S S S S S S S S S S S S	3/	·	
B-1983	$s \rightarrow$	3. L		
B-1984	S	34		
B-1985	S→			
B-1986	s →	24		
B-1987				
B-1988	s	O BR		

Example# R² $\mathbf{R}^{\mathbf{L}}$ B-1975 B-1976 B-1977 B-1978 B-1979 B-1980 B-1981

Example# R² R^L

B-1965	F-	با			
B-1966	F—	27.			
B-1967	F—	3-10		·	
B-1968	F—				
B-1969	F—				
B-1970	F—				
B-1971	F—	F 17°	·		
B-1972	F—				
B-1973	F—				
B-1974	F—	7,50			

Examples B-1958 through B-1981 are prepared from Scaffold C-43

Example#	R²	R ^L			
B-1958	F—	34		•	
B-1959	<u></u>	, ZZ,	·		
B-1960	F—				
B-1961	F—				
B-1962		24			
B-1963	F—	3,4			
B-1964	F—	Z- BR			

Example	# R²	RL			
B-1951	F—{}	15 NO			
B-1952	F—	7, 0 F 0			
B-1953	F-	ZZ O NH		·	
B-1954	F—	Y		-	·
B-1955	F—				
B-1956	F—	HN			
B-1957	F—				
				I	

R² Example# $\mathbf{R}^{\mathbf{L}}$ B-1941 B-1942 B-1943 B-1944 B-1945 B-1946 B-1947 B-1948 B-1949 B-1950