Cálculo Integral em R Cálculo para Engenharia

Maria Elfrida Ralha

Licenciatura em Engenharia Informática

1/25

Parte I

Integral Indefinido (conclusão)

Índice

- Algumas Propriedades do Integral Indefinido
 - Primitivação de funções racionais

As funções racionais $-f(x) = \frac{N(x)}{D(x)}$,... – são uma classe de funções cujas primitivas se podem exprimir em termos de funções elementares.

Teorema

Fundamental da Álgebra (sobre os números reais):

Qualquer polinómio (de coeficientes reais) de grau ≥ 1 é fatorizável na forma de um produto de uma constante por fatores lineares de tipo (x-a) e por fatores quadráticos irredutíveis do tipo (x^2+bx+c) .

Exercício : Considerem-se os seguintes polinómios: $p_1(x) = x + 1$, $p_2(x) = x^2 + 1$, $p_3(x) = x^3 + 1$ e $p_4(x) = x^4 + 1$.

De que grau são? Quantos e quais zeros tem? Qual a decomposicão assegurada pelo teorema anterior?

Representação Gráfica de $p_i(x)$,

com i = 1, ..., 4

Nota

• A primitivação das funções racionais

$$f(x) = \frac{N(x)}{D(x)}, \quad D_f = \{x \in \mathbb{R} : D(x) \neq 0\},$$

onde N e D são dois polinómios, reduz-se à primitivação de

- polinómios e/ou
- frações (parciais) simples

A determinação de $\int \frac{N(x)}{D(x)} dx$, onde N, D são polinómios e $D \neq 0$, divide-se nas seguintes etapas:

 Usar uma fracção própria; se necessário, recorrer à divisão de polinómios para escrever

$$\frac{N(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$$

- Qualcular os zeros de D e –usando o Teorema Fundamental da Álgebra– decompor D em fatores irredutíveis
- **1** Decompor a fração $\frac{R(x)}{D(x)}$ em frações simples
- Determinar as primitivas das frações simples
- Adicionar a primitiva de Q e as primitivas das frações simples

Primitivação de frações parciais

Considerem-se os seguintes casos,

$$\mathsf{com}\ A, B, \alpha \in \mathbb{R},\ \beta \in \mathbb{R}^+,\ n \in \mathbb{N} \setminus \{1\}$$

• Caso 1:
$$\int \frac{A}{x-\alpha} dx = \ln|x-\alpha| + C$$

• Caso 2:
$$\int \frac{A}{(x-\alpha)^n} dx = A \frac{(x-\alpha)^{(-n+1)}}{-n+1} + C$$

• Caso 3:
$$\int \frac{Ax+B}{(x-\alpha)^2+\beta} dx = \int \frac{Ax}{(x-\alpha)^2+\beta} dx + \int \frac{B}{(x-\alpha)^2+\beta} dx$$

• Caso 4:
$$\int \frac{Ax+B}{[(x-\alpha)^2+\beta]^n} dx$$

Exemplo: Resolução acessória, no Caso 3

Caso
$$3_i$$
: $\frac{1}{(x-\alpha)^2+\beta}$, $\alpha \in \mathbb{R} \text{ e } \beta > 0$

 $[\operatorname{arctg} u(x)]' = \frac{u'(x)}{1 + u^2(x)}$

$$\int \frac{1}{(x-\alpha)^2 + \beta} dx = \int \frac{1}{\beta \left[\left(\frac{x-\alpha}{\sqrt{\beta}} \right)^2 + 1 \right]} dx$$

$$= \frac{\sqrt{\beta}}{\beta} \int \frac{\frac{1}{\sqrt{\beta}}}{\left(\frac{x-\alpha}{\sqrt{\beta}} \right)^2 + 1} dx$$

$$= \frac{1}{\sqrt{\beta}} \operatorname{arctg} \left(\frac{x-\alpha}{\sqrt{\beta}} \right) + \mathcal{C}, \quad \mathcal{C} \in \mathbb{R}.$$

E. Ralha (DMat)

$$\int \frac{3x}{x-2} dx \qquad \int \frac{1}{(x-1)^2 + 4} dx
\int \frac{4}{(x-2)^5} dx \qquad \int \frac{3x+5}{x^3+1} dx
\int \frac{4}{(x-2)^5(x+1)} dx \qquad \int \frac{1}{x^4+1} dx
\int \frac{7x-1}{(x^2+1)(x+2)^2(x^2+4x+5)^2} dx$$

Parte II

Integral Definido

Integral de Riemann

- 2 Integral de Riemann
 - Definição

3 Teorema Fundamental do Cálculo

Índice

- 2 Integral de Riemann
 - Definição

3 Teorema Fundamental do Cálculo

E. Ralha (DMat)

Nota

A base da formulação dos **integrais definidos** é a construção de aproximações, a partir de somas finitas. Exemplos:: Áreas, Distâncias e Valores Médios,...

Sendo $f:[a,b]\subset\mathbb{R}\longrightarrow\mathbb{R}$ uma função, real de variável real, definida em um intervalo fechado e limitado, veremos o que se entende por

- f é integrável (segundo Riemann) em [a, b]?
 E, nesse caso,
- como se define o número (real) representado por $\int_a^b f(x) dx$?
- Integrando f sobre um intervalo [a, x] onde se varia o extremo direito deste intervalo, obtem-se outra função de x.
- O resultado mais importante da integração, denominado TEOREMA FUNDAMENTAL DO CÁLCULO, atesta que a integração e a diferenciação são operações recíprocas.

Integral de Riemann

Seja $f:[a,b]\subset\mathbb{R}\longrightarrow\mathbb{R}$ uma função limitada.

• Consideramos uma partição, \mathcal{P} , do intervalo [a, b], isto é, subdividimos o intervalo [a, b] em n subintervalos que não se sobrepõem e que reunidos são [a, b]. Sejam $x_0, x_1, \ldots, x_{n-1}, x_n$ os extremos desses subintervalos, com

$$a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$$

• Chamamos soma(s) de Riemann de f no intervalo [a,b], para a partição \mathcal{P} , a

$$\sum_{k=0}^{n-1} f(\widetilde{x_k}) (x_{k+1} - x_k), \quad \text{onde} \quad \widetilde{x_k} \in [x_k, x_{k+1}]$$

ou

$$\sum_{k=0}^{n-1} f(\widetilde{x_k}) \Delta x_{k+1}, \quad \text{com} \quad \Delta x_{k+1} = x_{k+1} - x_k$$

• [Integral definido] O integral definido de f em [a, b] é o limite da(s) soma(s) de Riemann de f, quando $n \longrightarrow \infty$, isto é

$$\lim_{n \to \infty} \sum_{k=0}^{n-1} f(\widetilde{x_k}) \, \Delta \, x_{k+1}$$

• O integral definido de f em [a, b] representa-se por

$$\int_{x=a}^{b} f(x) \, dx$$

- A função f diz-se integrável no intervalo [a, b] (segundo Riemann).
- Observe-se que: $n \longrightarrow \infty$ equivale a $\Delta x_{k+1} \longrightarrow 0$.

Índice

2 Integral de Riemann

Definição

3 Teorema Fundamental do Cálculo

E. Ralha (DMat)

Teorema Fundamental do Cálculo

- Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua e, por simplicidade, assuma-se $f\geq 0$.
- Considere-se a área limitada pelo gráfico de f e o eixo das abcissas entre t=a e t=x ($x\leq b$): para cada x o valor da área será dado por uma "função área" F

$$F(x) = \int_a^x f(t) dt.$$

Nota: Esta "função área" pode definir-se, mesmo sem estar garantida a continuidade de f.

Tem-se

$$f(x) h \le \Delta F(x) \le f(x+h) h$$

Justifique!

Ou, dividindo a expressão anterior por h,

$$f(x) \le \frac{\Delta F(x)}{h} \le f(x+h)$$

• Tomando o limite quando $h \longrightarrow 0$ nas designaldades anteriores tem-se

$$\lim_{h \to 0} \frac{\Delta F(x)}{h} = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = F'(x)$$

е

$$\lim_{h \to 0} f(x+h) = f(x)$$

Então

$$f(x) \leq F'(x) \leq f(x)$$

isto é, a "função área"

$$F(x) = \int_{a}^{x} f(t) dt$$

é derivável, tendo-se que $\forall x \in [a, b], F'(x) = f(x)$ o que equivale a dizer-se que a "função área" é uma primitiva da função f.

Teorema (FUNDAMENTAL DO CÁLCULO)

Seja $f: [a, b] \longrightarrow \mathbb{R}$ uma função contínua.

1) A função $F: [a,b] \longrightarrow \mathbb{R}$ definida por

$$F(x) = \int_{a}^{x} f(t) dt$$

é derivável em [a, b], tendo-se

$$F'(x) = f(x), \quad \forall x \in [a, b].$$

2) Fórmula de Barrow: Sendo F uma primitiva de f em [a, b], tem-se

$$\int_a^b f(t) \ dt = F(t) \Big|_a^b \stackrel{\text{def.}}{=} F(b) - F(a).$$

Observações e Exercícios

- Qualquer função contínua $f:[a,b] \longrightarrow \mathbb{R}$ é primitivável em [a,b] MAS, atenção,
 - f pode não ser contínua (e, por conseguinte, não primitivável) e, mesmo assim, ser integrável, em [a,b]
- A "função área", F, pode até não ser derivável ou, mesmo sendo derivável, pode ser tal que a sua derivada não coincide com f nos pontos de descontinuidade de f.
- **1** Para f(x) = 1, com $x \in [0, 2]$ tem-se F(x) = ...

Para
$$h(x) = \begin{cases} 1 & \text{se } x \in \left[0, \frac{1}{2} \left[\cup \right] \frac{1}{2}, 2 \right] \\ \frac{1}{2} & \text{se } x = \frac{1}{2} \end{cases}$$

$$F(x) = ...$$

Outros Exercícios

1 Para
$$g(x) = \begin{cases} 0 & \text{se } x \in [0, 1[\\ 1 & \text{se } x \in [1, 2] \end{cases}$$
 $F(x) = ...$

Para
$$h(x) = \begin{cases} 0 & \text{se } x \in [0, 1[\\ x - 1 & \text{se } x \in]1, 2] \end{cases}$$
 $F(x) = ...$

- **3** Sabendo que $f(x) = \begin{cases} 2 & \text{se } x \in [0,1[\\ 4 & \text{se } x \in [1,2] \end{cases}$ calcule $\int_0^2 f(x) \, dx$

Consequências do TFC: derivação sob o sinal de integral

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, F uma sua primitiva e $\varphi:[c,d]\longrightarrow [a,b]$ derivável.

• Então f é integrável, em particular, entre a e $\varphi(x)$, tendo-se

$$\int_{a}^{\varphi(x)} f(t) dt = F(\varphi(x)) - F(a)$$

• Pelo teorema da derivação da função composta tem-se, então

$$\left(\int_{a}^{\varphi(x)} f(t) dt\right)' = [F(\varphi(x))]' = F'(\varphi(x)) \varphi'(x).$$

• Por 1) do teorema fundamental do cálculo F' = f, pelo que se conclui que

$$\left(\int_{a}^{\varphi(x)} f(t) dt\right)' = f(\varphi(x)) \varphi'(x).$$

Sendo $\varphi, \psi \colon [c, d] \longrightarrow [a, b]$ funções deriváveis, tem-se

$$\left(\int_{\varphi(x)}^{\psi(x)} f(t) dt\right)' = f(\psi(x)) \psi'(x) - f(\varphi(x)) \varphi'(x)$$

Basta notar que

$$\int_{\varphi(x)}^{\psi(x)} f(t) dt = \int_{a}^{\psi(x)} f(t) dt - \int_{a}^{\varphi(x)} f(t) dt = F(\psi(x)) - F(\varphi(x))$$

e conjugar o teorema fundamental do cálculo com o teorema da derivação de funções compostas.

E. Ralha (DMat)

- Calcule F'(x) quando $F(x) = \int_0^x \frac{1}{1+t} dt$
- ② Calcule G'(x) quando $G(x) = \int_0^{x^2} \frac{1}{1+t} dt$.
- lacktriangle Defina f sabendo que $f\colon \mathbb{R}^+_0 \longrightarrow \mathbb{R}$ é uma função contínua tal que

$$\forall x \in \mathbb{R}_0^+, \quad \int_0^{x^2} f(t) \, dt = x^3 e^x - x^4$$