Continued Fractions 1

- 1. Expand the fractions $\frac{17}{3}$ and $\frac{3}{17}$ into continued fractions.
- 2. Convert into rational numbers: [2; 1, 4], [-3; 2, 12], [0; 1, 1, 100].
- 3. Given positive integers b, c, d with c > d, prove that [a; c] < [a; d] but [a; b, c] > [a, b, d] for any integer a.
- 4. Let a_1, a_2, \ldots, a_n and c be positive real numbers. Prove that

$$[a_0; a_1, \dots, a_n] > [a_0; a_1, \dots, a_n + c]$$

holds if n is odd, but is false if n is even.

5. Verify that [2; 3, 7] and [2; 3, 6, 1] are two continued fraction expansions of $\frac{51}{52}$. In general, any rational number $\frac{u_0}{u_1}$ has at least two continued fraction expansions:

$$\frac{u_0}{u_1} = [a_0; a_1, \dots, a_{j-1}, a_j] = [a_0; a_1, \dots, a_{j-1}, a_j - 1, 1]. \tag{1}$$

6. Prove that the expansions in (1) are the only continued fraction expansions of $\frac{u_0}{u_1}$. In other words, show that if $[a_0; a_1, \ldots, a_j] = [b_0; b_1, \ldots, b_n]$ with $a_j > 1$ and $b_n > 1$, then j = n and $a_i = b_i$ for $i = 0, 1, \ldots, n$.