Résumé de cours - Diagonalisation

Table des matières

1	Voc	abulaire des éléments propres	2
	1.1	Pour une matrice carrée	2
	1.2	Pour un endomorphisme	4
2	Diagonalisabilité, diagonalisation		
	2.1	Définitions pour une matrice, un endomorphisme	5
	2.2	Liberté des vecteurs propres	6
	2.3	Critère de diagonalisabilité	6
	2.4	Cas particulier: matrices symétriques	7
3	Recherche de valeurs propres		8
	3.1	Cas des matrices triangulaires	8
	3.2	Polynômes annulateurs	8
		Étude d'inversibilité à paramètre	
4	IIn	exemple rédigé de diagonalisation	10

Introduction: Motivation

Définition 1 (Matrice diagonale)

Tinition 1 (*Matrice diagonale*)

Une matrice diagonale est une matrice carrée $D \in \mathcal{M}_n(\mathbb{R})$ s'écrivant : $D = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \end{bmatrix}$ Ses coefficients hors de la diagonale sont donc nuls.

Proposition 2

Toutes les manipulations sur les matrices diagonales se font coefficient par coefficient.

On choisit ici deux matrices diagonales $D = \begin{bmatrix} \lambda_1 & \cdot & \cdot \\ \cdot & \lambda_2 & \cdot \\ \cdot & \cdot & \lambda_3 \end{bmatrix}$ et $E = \begin{bmatrix} \mu_1 & \cdot & \cdot \\ \cdot & \mu_2 & \cdot \\ \cdot & \cdot & \mu_3 \end{bmatrix}$ de format 3×3 .

Les règles de calcul suivantes sont vérifiées. (Les analogues aussi pour les matrices diagonales $n \times n$.)

► Somme On a:
$$D + E = \begin{bmatrix} \lambda_1 + \mu_1 & \cdot & \cdot \\ \cdot & \lambda_2 + \mu_2 & \cdot \\ \cdot & \cdot & \lambda_3 + \mu_3 \end{bmatrix}$$
.

▶ **Produit** On a:
$$D \cdot E = E \cdot D = \begin{bmatrix} \lambda_1 \cdot \mu_1 & \cdots & \cdots \\ \vdots & \lambda_2 \cdot \mu_2 & \cdots \\ \vdots & \ddots & \lambda_3 \cdot \mu_3 \end{bmatrix}$$

► **Puissances**
Pour
$$k \in \mathbb{N}$$
, on a : $D^k = \begin{bmatrix} \lambda_1^k & \cdot & \cdot \\ \cdot & \lambda_2^k & \cdot \\ \cdot & \cdot & \lambda_3^k \end{bmatrix}$
► **Inversibilité**

La matrice D est inversible ssi ses coefficients diagonaux sont tous $\neq 0$.

Alors, on a:
$$D^{-1} = \begin{bmatrix} \frac{1}{\lambda_1} & \cdot & \cdot \\ \cdot & \frac{1}{\lambda_2} & \cdot \\ \cdot & \cdot & \frac{1}{\lambda_3} \end{bmatrix}$$

Définition 3 (Relation de similitude)

Soient deux matrices carrées : $A,B \in \mathcal{M}_n(\mathbb{R})$.

Une **relation de similitude** entre A,B est une relation s'écrivant : $A \cdot P = P \cdot B$.

pour une certaine matrice $P \in \mathcal{M}_n(\mathbb{R})$ inversible.

On dit alors que *A* et *B* sont semblables.

La relation de similitude s'écrit aussi : $A = P \cdot B \cdot P^{-1}$.

Manipulations

On peut alors montrer que pour $k \in \mathbb{N}$, on a : $A^k = P \cdot B^k \cdot P^{-1}$.

Par exemple, si la matrice B est diagonale et connue, on peut calculer les puissances B^k , et en déduire l'expression de A^k .

Formulation endomorphisme

Les matrices A_1 , A_2 sont semblables si elles représentent le même endomorphisme.

La relation de similitude, pour *P* inversible, s'écrit en effet : $A_1 = P \cdot A_2 \cdot P^{-1}$.

Elle se lit comme une formule de changement de base.

Soit f un endomorphisme représenté par la matrice A_1 , dans une certaine base \mathcal{B}_1 .

Par exemple, f = l'endomorphisme de \mathbb{R}^n canoniquement associé : $(\vec{X} \mapsto f(\vec{X}) = A_1 \cdot \vec{X})$.

La matrice *P* joue le rôle de **matrice de passage**.

Soit \mathcal{B}_2 la nouvelle base telle que : $P = \text{Pas}(\mathcal{B}_1 \leadsto \mathcal{B}_2)$.

On a alors : $A_2 = \text{Mat}_{\mathcal{B}_2}(f)$.

La relation $A_1 = P \cdot A_2 \cdot P^{-1}$ se traduit : $\operatorname{Mat}_{\mathcal{B}_1}(f) = \operatorname{Pas}(\mathcal{B}_1 \leadsto \mathcal{B}_2) \cdot \operatorname{Mat}_{\mathcal{B}_2}(f) \cdot \left(\operatorname{Pas}(\mathcal{B}_1 \leadsto \mathcal{B}_2)\right)^{-1}$.

1 Vocabulaire des éléments propres

Les définitions essentielles à connaître sont :

- valeurs propres, spectre.
- vecteurs propres, sous-espace propre.

1.1 Pour une matrice carrée

Pour toute cette sous-section 1.1 : soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

Définition 4 (Couple propre)

Soient $\lambda \in \mathbb{R}$ et $\vec{X} \in \mathbb{R}^n$.

Équation des couples propres

Le couple (λ, \vec{X}) est **propre** pour A si $A \cdot \vec{X} = \lambda \cdot \vec{X}$, avec : $\vec{X} \neq \vec{0}$

▶ Terminologie

On dit alors que : $\rightarrow \lambda$ est une **valeur propre** de A.

• \vec{X} est un **vecteur propre** de A, associé à la valeur propre λ .

Définition 5 (Spectre)

L'ensemble des valeurs propres λ de $A \in \mathcal{M}_n(\mathbb{R})$ s'appelle le **spectre** de A, noté $\mathrm{Sp}(A)$.

Vérification du caractère propre de $\lambda \in \mathbb{R}$

Soit $\lambda \in \mathbb{R}$ un scalaire.

On a l'équivalence : $[\lambda \in \operatorname{Sp}(A)] \iff [\lambda \text{ est une valeur propre de } A].$

Pour vérifier si $\lambda \in \operatorname{Sp}(A)$, on résout donc, pour $\vec{X} \in \mathbb{R}^n$, l'équation : $A \cdot \vec{X} = \lambda \cdot \vec{X}$.

Alors : \rightarrow si on trouve des **solutions non-nulles** $\vec{X} \neq \vec{0}$, alors : $\lambda \in \operatorname{Sp}(A)$.

▶ si la **seule solution** est : $\vec{X} = \vec{0}$, alors : $\lambda \notin Sp(A)$.

Définition 6 (Sous-espaces propre)

Le **sous-espace propre** associé à λ est l'ensemble des vecteurs $\vec{X} \in \mathbb{R}^n$ vérifiant : $A \cdot \vec{X} = \lambda \cdot \vec{X}$. On le note : $E_{\lambda}(A) = \{\vec{X} \in \mathbb{R}^n \text{ tels que} : A \cdot \vec{X} = \lambda \cdot \vec{X}\}$.

Proposition 7 (Reformulation des sous-espaces propres)

Pour $\lambda \in \mathbb{R}$, et $\vec{X} \in \mathbb{R}^n$, on peut réécrire l'équation des vecteurs propres.

En regroupant à gauche, il vient : $[A \cdot \vec{X} = \lambda \cdot \vec{X}] \iff [A \cdot \vec{X} - \lambda \cdot \vec{X} = \vec{0}]$

$$\iff [(A - \lambda \cdot I_n) \cdot \vec{X} = \vec{0}].$$

Le sous-espace propre associé à λ s'écrit donc : $E_{\lambda}(A) = \text{Ker}(A - \lambda \cdot I_n)$.

Ce sont des sous-espaces vectoriels

On a: $E_{\lambda}(A) = \operatorname{Ker}(A - \lambda \cdot I_n) \subset \mathbb{R}^n$.

Plus précisément, les sous-espaces propres de A sont des **sous-espaces vectoriels** de \mathbb{R}^n .

Définition 8 (Caractérisation des valeurs propres)

On a l'équivalence : $\lambda \in \operatorname{Sp}(A) \iff \operatorname{Ker}(A - \lambda I_n) \neq \{\vec{0}\}\$ $\iff A - \lambda I_n \text{ n'est } \mathbf{pas} \text{ inversible.}$

Démonstration pour la non-inversibilité de $A - \lambda \cdot I_n$:

La formule du rang, pour une matrice $M \in \mathcal{M}_n(\mathbb{R})$, s'écrit : $\dim (\operatorname{Ker}(M)) + \operatorname{rg}(M) = n$.

Pour *M* matrice carrée, il y a équivalence entre : \blacktriangleright Ker(*M*) = $\{\vec{0}\}$. (pas de solutions non-nulles à $M \cdot \vec{X} = \vec{0}$.)

- rg(M) = n. (les colonnes engendrent \mathbb{R}^n)
- M inversible.

À l'inverse, montrer que $\lambda \in \operatorname{Sp}(A)$, revient à montrer que $A - \lambda \cdot I_n$ n'est **pas inversible**.

Dimension des sous-espaces propres

On a aussi l'équivalence : $[\lambda \in \operatorname{Sp}(A)] \iff [\dim(\operatorname{Ker}(A - \lambda \cdot I_n)) \ge 1].$

Proposition 9 (Cas particulier de la valeur propre $\lambda = 0$)

On a l'équivalence : $[0 \text{ est } \mathbf{valeur } \mathbf{propre} \text{ de } A] \iff [\text{la matrice } A \text{ n'est } \mathbf{pas } \mathbf{inversible}].$

1.2 Pour un endomorphisme

Pour toute cette sous-section 1.2: soit $f: E \rightarrow E$.

Définition 10 (Couple propre)

Soient $\lambda \in \mathbb{R}$ et $\vec{u} \in E$.

Équation des couples propres

Le couple (λ, \vec{u}) est **propre** pour f si $f(\vec{u}) = \lambda \cdot \vec{u}$, avec : $\vec{u} \neq \vec{0}$.

Terminologie

On dit alors que : $\rightarrow \lambda$ est une **valeur propre** de f.

• \vec{u} est un **vecteur propre** de f, associé à la valeur propre λ .

Définition 11 (Spectre)

L'ensemble des valeurs propres λ de $f \in \mathcal{M}_n(\mathbb{R})$ s'appelle le **spectre** de f, noté $\mathrm{Sp}(f)$.

Définition 12 (Sous-espaces propre)

Le **sous-espace propre** associé à λ est l'ensemble des vecteurs $\vec{u} \in E$ vérifiant : $f(\vec{u}) = \lambda \cdot \vec{u}$. On le note : $E_{\lambda}(f) = \{\vec{u} \in E \text{ tels que}: f(\vec{u}) = \lambda \cdot \vec{u}\}$.

Proposition 13 (Reformulation des sous-espaces propres)

Le sous-espace propre associé à λ s'écrit donc : $E_{\lambda}(f) = \text{Ker}(f - \lambda \cdot \text{Id}) \subset E$. Les sous-espaces propres de f sont donc des **sous-espaces vectoriels** de E.

À partir de ce point, et jusqu'à la fin,

on suppose que E est un espace vectoriel de dimension finie

On note $n = \dim(E)$.

Définition 14 (Caractérisation des valeurs propres)

On a l'équivalence : $\lambda \in \operatorname{Sp}(f) \iff \operatorname{Ker}(f - \lambda \operatorname{Id}) \neq \{\vec{0}\}$ $\iff f - \lambda \operatorname{Id} \text{ n'est } \mathbf{pas} \text{ bijectif.}$

Démonstration pour la non-bijectivité de $f - \lambda \cdot \text{Id}$:

La formule du rang, pour un endomorphisme $g \in \mathcal{L}(E)$, s'écrit : $\dim(\ker(g)) + \operatorname{rg}(g) = \dim(E)$.

Pour f **endomorphisme**, il y a équivalence entre :

- $Ker(g) = \{\vec{0}\}\$. (l'endomorphisme f est **injectif**)
- rg(g) = dim(E). (l'endomorphisme f est surjectif)
- ▶ l'endomorphisme g est bijectif.

À l'inverse, montrer que $\lambda \in \operatorname{Sp}(f)$, revient à montrer que $f - \lambda \cdot \operatorname{Id}$ n'est **pas bijectif**.

Proposition 15 (Cas particulier de la valeur propre $\lambda = 0$)

On a l'équivalence : [0 est **valeur propre** de f] \iff [l'endomorphisme f n'est **pas bijectif**].

2 Diagonalisabilité, diagonalisation

2.1 Définitions pour une matrice, un endomorphisme

Définition 16 (Formule de diagonalisation d'une matrice)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

On dit que A est diagonalisable si elle est **semblable** à une matrice diagonale.

On doit donc avoir une formule de diagonalisation sous la forme : $A = P \cdot D \cdot P^{-1}$,

avec les hypothèses : P matrice inversible,

D matrice diagonale.

Définition 17 (Diagonalisabilité d'un endomorphisme)

Soit *E* un espace vectoriel de dimension finie, et $f: E \to E$ un endomorphisme de *E*.

On dit que l'endomorphisme f est **diagonalisable** s'il existe une base $\mathcal{B}' = (\vec{u}_1, ..., \vec{u}_n)$ de E formée de vecteurs propres pour f.

Représentation matricielle dans une base de vecteurs propres

Soit $\mathcal{B}' = (\vec{u}_1, \dots, \vec{u}_n)$ une base de vecteurs propres de f, comme dans la proposition.

Soient $\lambda_1, ..., \lambda_n$ les valeurs propres respectivement associées.

On a donc :
$$\begin{cases} f(\vec{u}_1) = \lambda_1 \cdot \vec{u}_1 \\ f(\vec{u}_2) = \lambda_2 \cdot \vec{u}_2 \\ \vdots \\ f(\vec{u}_n) = \lambda_n \cdot \vec{u}_n \end{cases}$$

Dans la base $\mathcal{B}' = (\vec{u}_1, \dots, \vec{u}_n)$ la matrice correspondante est donc bien diagonale.

En omettant tous les coefficients nuls : $\operatorname{Mat}_{\mathcal{B}'}(f) = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{bmatrix}$.

Équivalence des deux définitions

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

Notons $f:\int \mathbb{R}^n \to \mathbb{R}^n$ l'endomorphisme canoniquement associé à la matrice A. $\vec{X}\mapsto A\cdot\vec{X}$

La matrice de f dans la base canonique $\mathcal{B}_c = (\vec{e}_1, \dots, \vec{e}_n)$ est donc : $\mathrm{Mat}_{\mathcal{B}_c}(f) = A$.

La formule de diagonalisation s'écrit : $A = P \cdot D \cdot P^{-1}$,

où l'on suppose que : ▶ P est **inversible**.

▶ D est diagonale.

La famille $\mathcal{B}' = (\vec{u}_1, \dots, \vec{u}_n)$ des vecteurs colonnes de P est donc une base de \mathbb{R}^n .

Comme en introduction, la similitude s'interprète comme le passage : • de la base canonique,

 \triangleright à la base \mathcal{B}' .

Ces vecteurs $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n$, sont donc des vecteurs propres.

Pour
$$D = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$
, on a en effet : $\forall i \in [1, n], f(\vec{u}_i) = \lambda_i \cdot \vec{u}_i$.

2.2 Liberté des vecteurs propres

Proposition 18 (Concaténation de familles de vecteurs propres)

Soit f un endomorphisme de E.

Soient $\lambda_1, \lambda_2, ..., \lambda_r$ des valeurs propres **distinctes** de f.

Notons $E_{\lambda_1}(f), E_{\lambda_2}(f), \dots, E_{\lambda_r}(f)$ les sous-espaces propres associés à celles-ci.

Dans chacun de ces sous-espaces propres, choisissons une famille libre :

$$\mathcal{F}_1 \subset E_{\lambda_1}(f), \quad \mathcal{F}_2 \subset E_{\lambda_2}(f), \quad \dots \quad \mathcal{F}_r \subset E_{\lambda_r}(f)$$

Alors la famille **concaténée** (« *mise ensemble* ») $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 \cup \cdots \cup \mathcal{F}_r$ est **libre** (*elle aussi*).

Proposition 19 (Corollaire de la proposition 18)

Soit $n' = \sum_{\lambda \in \operatorname{Sp}(f)} \dim (E_{\lambda}(f))$ la **somme** des **dimensions** des **sous-espaces propres** de f.

Alors il existe une famille libre de n' vecteurs de E formée de vecteurs propres de f.

Démonstration : Numérotons les valeurs propres de f sous la forme : $Sp(f) = {\lambda_1, \lambda_2, ..., \lambda_r}$.

On choisit les (λ_i) distinctes.

(par exemple $\lambda_1 < \lambda_2 < \cdots < \lambda_r$.)

On choisit une base pour chacun des sous-espaces propres : $\mathcal{F}_i \subset E_{\lambda_i}(f)$.

Le nombre de vecteurs de la famille \mathcal{F}_i est donc : $Card(\mathcal{F}_i) = dim(E_{\lambda_i}(f))$.

Ces bases sont des familles libres, appartenant chacune à des sous-espaces propres distincts.

D'après la proposition 18, la famille concaténée $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 \cup \cdots \cup \mathcal{F}_r$ est libre.

Le nombre de vecteurs de celle-ci est :
$$\operatorname{Card}(\mathcal{F}) = \sum_{i=1}^{r} \operatorname{Card}(\mathcal{F}_i) = \sum_{i=1}^{r} \dim(E_{\lambda_i}(f)).$$

Remarque (il n'y « pas trop » de vecteurs propres libres, « ni trop » de valeurs propres)

Notons $n = \dim(E)$ la dimension de l'espace ambient de $f : E \to E$.

Le nombre de vecteurs de la **famille libre** $\mathcal{F} \subset E$ ne peut donc pas dépasser $n = \dim(E)$. En particulier :

1. la somme des dimensions des sous-espaces propres de f ne peut pas dépasser n.

On a donc:
$$\sum_{\lambda \in \operatorname{Sp}(f)} \dim (E_{\lambda}(f)) \leq n. \quad (avec \ n = \dim(E).)$$

2. le nombre de valeurs propres de f ne peut pas dépasser n.

On a donc: $Card(Sp(f)) \le n$. (avec n = dim(E).)

2.3 Critère de diagonalisabilité

La somme des dimensions des sous-espaces propres donne un critère de diagonalisabilité.

On en donne deux versions : endomorphisme/matrice carrée.

Il s'agit dans les deux cas d'une condition nécessaire et suffisante de diagonalisabilité.

Pour pouvoir diagonaliser, il faut avoir « assez » de vecteurs propres. (autant que la dimension.)

Proposition 20 (Critère de diagonalisabilité (version endomorphisme))

Soit E un espace vectoriel de dimension finie. Notons $n=\dim(E)$ sa dimension.

Soit $f: E \to E$ un endomorphisme de E.

Alors on a la condition nécessaire et suffisante de diagonalisabilité:

$$[f \text{ est diagonalisable}] \iff \left[\sum_{\lambda \in \operatorname{Sp}(f)} \dim \left(E_{\lambda}(f)\right) = n = \dim(E)\right].$$

Proposition 21 (Critère de diagonalisabilité (version matricielle))

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

Alors on a la condition nécessaire et suffisante de diagonalisabilité :

$$[A \text{ est diagonalisable}] \iff \left[\sum_{\lambda \in \operatorname{Sp}(A)} \dim \left(E_{\lambda}(A)\right) = n\right].$$

(où n = nombre de colonnes de A)

Démonstration de la proposition 20 :

▶ **Sens** ← On utilise le résultat du corollaire 19.

La concaténation des bases de tous les sous-espaces propres fournit une famille libre.

Le cardinal de cette famille est : $\sum_{\lambda \in \operatorname{Sp}(f)} E_{\lambda}(f)$

Supposons que la somme des dimensions des sous-espaces propres vaut $n = \dim(E)$.

Cette famille libre de *n* vecteurs est alors aussi génératrice.

Il s'agit bien d'une base de *E*, formée, par construction, de vecteurs propres de *E*.

L'endomorphisme f est donc diagonalisable

► **Sens** ⇒ On admet cette implication, qui est moins intéressante pour nous.

Cas particulier de diagonalisabilité: assez de valeurs propres

Comme la dimension d'un sous-espace propre doit être ≥ 1 , on a un cas particulier :

Proposition 22 (Cas particulier (version endomorphisme))

Soit E un espace vectoriel de dimension finie. Notons $n = \dim(E)$ sa dimension.

Soit $f: E \to E$ un endomorphisme de E.

Si f admet $n = \dim(E)$ valeurs propres **distinctes**, alors f est diagonalisable.

Proposition 23 (Cas particulier (version matricielle))

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

Si A admet n valeurs propres **distinctes**, alors A est diagonalisable.

2.4 Cas particulier: matrices symétriques

Définition 24 (Matrice symétrique)

Soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée. On dit que M est **symétrique** si on a : ${}^tM = M$.

(M est égale à sa propre transposée) (M est invariante par transposition)

Exemples de matrices symétriques

▶ **Pour** n = 2

Les matrices symétriques de format 2×2 s'écrivent : $\begin{bmatrix} a & b \\ b & a \end{bmatrix}$

▶ **Pour** *n* = 3

Les matrices symétriques de format 3×3 s'écrivent : $\begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$

Proposition 25 (Théorème spectral)

Soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée **symétrique**.

Alors M est diagonalisable.

Recherche de valeurs propres 3

3.1 Cas des matrices triangulaires

Soit $T \in \mathcal{M}_n(\mathbb{R})$ une matrice triangulaire supérieure.

Notons $d_1, ..., d_n$ ses coefficients diagonaux

Proposition 26 (Inversibilité)

T est inversible
$$\Leftrightarrow$$
 ses coeff^{ts} diag^x sont tous non-nuls. $\Leftrightarrow d_1 \neq 0, d_2 \neq 0, ..., d_n \neq 0.$

Proposition 27 (Valeurs propres)

Le spectre de
$$T$$
 est $Sp(T) = \{d_1, d_2, ..., d_n\}$. Ainsi, λ valeur propre de $T \iff \lambda$ sur la diagonale de T .

Remarque

Les valeurs propres d'une matrice triangulaire sont donc « déjà » sur sa diagonale. Certaines matrices triangulaires sont diagonalisables, d'autres non.

3.2 Polynômes annulateurs

Une relation de dépendance linéaire entre les puissances d'une matrice ou d'un endomorphisme s'interprète comme un polynôme annulateur.

Définition 28 (Polynôme annulateur d'une matrice)

finition 28 (Polynôme annulateur d'une matrice)
Soit
$$\Pi \in \mathbb{R}[X]$$
 un polynôme. Notons-le : $\Pi(X) = \sum_{k=0}^{d} a_k \cdot X^k$.

On dit que Π est un **polynôme annulateur** de A si : $\sum_{k=0}^{d} a_k \cdot A^k = 0$. (matrice nulle).

(On rappelle que $A^0 = I_n$)

Proposition 29 (Les valeurs propres sont racines)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

On suppose que A admet $\Pi(X) \in \mathbb{R}[X]$ pour polynôme annulateur.

Alors toutes les valeurs propres de A sont racines de P(X).

En d'autres termes : $\mathbf{si} \ \lambda \in \mathrm{Sp}(A)$, $\mathbf{alors} \ \Pi(\lambda) = 0$.

Remarque: caractère non-suffisant

La proposition est une **condition nécessaire**.

« Les seules valeurs propres **possibles** sont les racines d'un polynôme annulateur. »

La proposition n'est **pas** une condition **suffisante**.

« On n'est pas certain que toutes les racines d'un polynôme annulateur soient valeur propre. » Il faut donc toujours vérifier si les racines trouvées **sont bien valeur propre**.

Démonstration : Soit (λ, \vec{u}) un couple propre de A. On a donc : $A \cdot \vec{u} = \lambda \vec{u}$. $\lambda \vec{u} \neq \vec{0}$.

Par récurrence, on trouve, pour $k \in \mathbb{N}$, l'expression pour **ce vecteur propre** : $A^k \cdot \vec{u} = \lambda^k \cdot \vec{u}$.

Soit $\Pi \in \mathbb{R}[X]$ un polynôme. Notons-le : $\Pi(X) = \sum_{k=0}^{d} a_k \cdot X^k$.

On applique les coefficients du polynôme. Il vient : $\left(\sum_{k=0}^{d} a_k \cdot A^k\right) \cdot \vec{u} = \sum_{k=0}^{d} a_k \cdot A^k \cdot \vec{u}$ $=\sum_{k=0}^{d}a_k\cdot\lambda^k\cdot\vec{u}$ $= \big(\sum_{k=0}^d a_k \cdot \lambda^k\big) \cdot \vec{u} = \Pi(\lambda) \cdot \vec{u}.$ Si le polynôme Π est annulateur de A, on a donc : $\sum_{k=0}^d a_k \cdot A^k = 0.$ En particulier : $\vec{0} = \Pi(\lambda) \cdot \vec{u}$ Compared to

3.3 Étude d'inversibilité à paramètre

Cette méthode est, en général, déconseillée.

D'une manière générale, je recommande (saufindication expresse de l'énoncé) de l'utiliser quasi-exclusivement dans le cas des matrices compagnons, comme ci-dessous.

Example: Cherchons le spectre d'une matrice de la forme : $A = \begin{bmatrix} 0 & 0 & a \\ 1 & 0 & b \\ 0 & 1 & c \end{bmatrix}$.

▶ Application du pivot à $A - \lambda \cdot I_3$

Cherchons à quelle condition sur $\lambda \in \mathbb{R}$, la matrice $A - \lambda \cdot I_3$ est inversible.

On échelonne :
$$A - \lambda \cdot I_3 = \begin{bmatrix} -\lambda & 0 & a \\ 1 & -\lambda & b \\ 0 & 1 & -\lambda + c \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -\lambda & b \\ 0 & 1 & -\lambda + c \\ -\lambda & 0 & a \end{bmatrix} \qquad \text{opération : } L_1 \leftarrow L_2 \leftarrow L_3 \leftarrow L_1.$$

$$\sim \begin{bmatrix} 1 & -\lambda & b \\ 0 & 1 & -\lambda + c \\ 0 & -\lambda^2 & a + b\lambda \end{bmatrix} \qquad \text{opération : } L_3 \leftarrow L_3 + \lambda \cdot L_1$$

$$\sim \begin{bmatrix} 1 & -\lambda & b \\ 0 & 1 & -\lambda + c \\ 0 & 0 & a + b\lambda + c\lambda^2 - \lambda^3 \end{bmatrix} \qquad \text{opération : } L_3 \leftarrow L_3 + \lambda \cdot L_2$$

La matrice obtenue est bien triangulaire supérieure

► Conclusion : inversibilité de $A - \lambda \cdot I_3$

La matrice $A - \lambda \cdot I_3$ est donc inversible *ssi* les trois coefficients diagonaux sont $\neq 0$.

Ainsi on a la condition nécessaire et suffisante : $[A - \lambda \cdot I_3 \text{ inversible}] \iff [a + b\lambda + c\lambda^2 - \lambda^3 \neq 0].$

 \triangleright Conclusion : valeurs propres de A

On inverse l'équivalence :
$$[\lambda \text{ est valeur propre de } A] \iff [A - \lambda \cdot I_3 \text{ pas inversible}]$$

 $\iff [a + b\lambda + c\lambda^2 - \lambda^3 \neq 0].$

Les valeurs propres de A sont donc **exactement** les racines du polynôme : $\Pi(X) = X^3 - cX^2 - bX - a$. Remarque

Par cette approche, on sait que **toutes les racines** sont des valeurs propres de A.

C'est à contraster à l'utilisation d'un polynôme annulateur; pour laquelle il reste à vérifier si les racines sont valeurs propres.

Un exemple rédigé de diagonalisation 4

On diagonalise l'endomorphisme $f \in \mathcal{L}(\mathbb{R}^3)$ associé à la matrice : $A = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$.

▶ **Diagonalisabilité** Cette matrice est symétrique.

Par le théorème spectral, elle est donc diagonalisable.

► **Recherche de polynôme annulateur** On vérifie : $A^2 = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 2 \end{bmatrix}$.

Cherchons un polynôme annulateur de degré 2 en trouvant $\alpha, \beta \in \mathbb{R}$ tels que : $A^2 = \alpha \cdot A + \beta \cdot I_3$.

On trouve la relation : $A^2 + A - 2 \cdot I_3 = 0_3$.

Le polynôme : $O(X) = X^2 + X - 2$ est annulateur de A.

Recherche des valeurs propres possibles

Les seules valeurs propres **possibles** pour *A* sont les racines de $Q(X) = (X-1) \cdot (X+2)$.

Ce sont : 1 et -2.

• Étude de $\lambda = 1$ On étudie le noyau de la matrice $A - I_3 = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$.

Soit
$$\vec{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$
. On résout : $\vec{X} \in \text{Ker}(A - I_3) \iff (A - I_3) \cdot \vec{X} = \vec{0}$ $\iff \begin{pmatrix} -2x + y + z = 0 \\ x - 2y + z = 0 \\ x + y - 2z = 0 \end{pmatrix}$ On applique l'algorithme du pivot.

On parvient au système équivalent : $\vec{X} \in \text{Ker}(A - I_3) \iff \begin{cases} x & -z = 0 \\ y - z = 0 \end{cases}$ Les **inconnues principales** (inconnues «à pivot») sont x et y.

Il y a une **inconnue secondaire** (inconnue « paramètre ») : c'est z.

On exprime tout en fonction de l'inconnue secondaire *z*.

Il vient:
$$\vec{X} \in \text{Ker}(A - I_3) \iff \begin{cases} x = z \\ y = z \\ z = z \end{cases} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ z \\ z \end{pmatrix} \iff \vec{X} = z \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \iff \vec{X} \in \text{Vect}\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Ainsi, on a montré : $E_1(A) = \text{Ker}(A - I_3) = \text{Vect}\begin{pmatrix} 1\\1\\1 \end{pmatrix} \neq \{\vec{0}\}.$

Le scalaire $\lambda = 1$ est donc bien valeur propre de A.

• Étude de $\lambda = -2$ On étudie de même le noyau de : $A + 2 \cdot I_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Cette matrice est de rang 1. (trois vecteurs colonnes colinéaires.)

Par la formule du rang pour une matrice à 3 colonnes : $\dim(\text{Ker}(A+2\cdot I_3)) = 3 - \text{rg}(A+2\cdot I_3)$.

On résout et on trouve : $\operatorname{Ker}(A+2\cdot I_3) = \operatorname{Vect}\left[\begin{pmatrix} -1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix}\right]$.

Le scalaire $\lambda = 1$ est donc bien valeur propre de A.

Conclusion : diagonalisabilité

Les valeurs propres de A sont $Sp(A) = \{-2,1\}$. La somme des dimensions des sous-espaces propres donne : $\sum_{\lambda \in Sp(A)} \dim \left(E_{\lambda}(A) \right) = \underbrace{\dim \left(E_{-2}(A) \right)}_{=2} + \underbrace{\dim \left(E_{1}(A) \right)}_{=1} = 3$. (nombre de colonnes de A)

▶ **Conclusion : diagonalisation** On retrouve la diagonalisabilité de *A*.

On concatène (met ensemble) les bases des sous-espaces propres pour chaque valeur propre.

La famille obtenue $\mathcal{B}' = \begin{bmatrix} \vec{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \vec{v} = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}, \vec{w} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \end{bmatrix}$ est libre dans \mathbb{R}^3 . C'est donc une base. On écrit les relations : $\begin{cases} f(\vec{u}) = A \cdot \vec{u} = 2\vec{u} \\ f(\vec{u}) = A \cdot \vec{v} = -\vec{v} \end{cases}$ La matrice dans la nouvelle base est donc : $f(\vec{u}) = A \cdot \vec{w} = -\vec{w}.$ Mat $_{\mathcal{B}'}(f) = D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$. La matrice de passage : $Pas(\mathcal{B}_c \leadsto \mathcal{B}') = P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$. La relation de diagonalisation s'écrit alors : $A = P \cdot D \cdot P^{-1}.$