Contents

1	Classes					
	1.1	factor	misc - misc	iscellaneous functions related factoring		
		1.1.1		$ors - all divisors \dots \dots \dots \dots$		
		1.1.2	primeDi	visors – prime divisors		
		1.1.3	primePo	owerTest – prime power test		
		1.1.4	squarePa	art – square part		
		1.1.5	Factored	dInteger – integer with its factorization		
			1.1.5.1	is divisible by		
			1.1.5.2	exact division		
			1.1.5.3	divisors		
			1.1.5.4	proper_divisors		
			1.1.5.5	prime divisors		
			1.1.5.6	square part		
			1.1.5.7	squarefree part		
			1150	CODY		

Chapter 1

Classes

1.1 factor.misc – miscellaneous functions related factoring

- Functions
 - allDivisors
 - primeDivisors
 - primePowerTest
 - squarePart
- Classes
 - $\ Factored Integer \\$

1.1.1 allDivisors – all divisors

```
allDivisors(n: integer) \rightarrow list
```

Return all factors divide n as a list.

1.1.2 primeDivisors – prime divisors

```
primeDivisors(n: integer) \rightarrow list
```

Return all prime factors divide n as a list.

1.1.3 primePowerTest – prime power test

```
primePowerTest(n: integer) \rightarrow (integer, integer)
```

Judge whether n is of the form p^k with a prime p or not. If it is true, then (p, k) will be returned, otherwise (n, 0).

This function is based on Algo. 1.7.5 in [1].

1.1.4 squarePart – square part

```
squarePart(n: integer) \rightarrow integer
```

Return the largest integer whose square divides n.

Examples

```
>>> factor.misc.allDivisors(1001)
[1, 7, 11, 13L, 77, 91L, 143L, 1001L]
>>> factor.misc.primeDivisors(100)
[2, 5]
>>> factor.misc.primePowerTest(128)
(2, 7)
>>> factor.misc.squarePart(128)
8L
```

1.1.5 FactoredInteger – integer with its factorization

Initialize (Constructor)

```
egin{aligned} 	ext{FactoredInteger} (	ext{integer}, 	ext{factors: } dict=\{\}) \ &
ightarrow 	ext{FactoredInteger} \end{aligned}
```

Integer with its factorization information.

If factors is given, it is a dict of type prime: exponent and the product of $prime^{exponent}$ is equal to the integer. Otherwise, factorization is carried out in initialization.

A class method to create a new **FactoredInteger** object from partial factorization information partial.

Operations

operator	explanation			
F * G	multiplication (other operand can be an int)			
F ** n	powering			
F == G	equal			
F != G	not equal			
F % G	remainder (the result is an int)			
F // G	same as exact division method			
str(F)	string			
int(F)	convert to Python integer (forgetting factorization)			

Methods

1.1.5.1 is divisible by

```
is\_divisible\_by(self, other: integer/FactoredInteger) 
 <math>\rightarrow bool
```

Return True if other divides self.

1.1.5.2 exact division

```
	ext{exact\_division(self, other: } integer/ 	ext{FactoredInteger}) \\ 	o 	ext{FactoredInteger}
```

Divide by other. The other must divide self.

1.1.5.3 divisors

```
	ext{divisors(self)} 
ightarrow 	ext{\it list}
```

Return all divisors as a list.

${\bf 1.1.5.4 \quad proper_divisors}$

```
	ext{proper divisors(self)} 
ightarrow 	ext{\it list}
```

Return all proper divisors (i.e. divisors excluding 1 and self) as a list.

1.1.5.5 prime divisors

```
prime divisors(self) \rightarrow list
```

Return all prime divisors as a list.

1.1.5.6 square_part

```
\mathbf{square} \quad \mathbf{part}(\mathbf{self}, \, \mathbf{asfactored:} \, \mathit{bool} \mathbf{=} \mathbf{False}) \, \rightarrow \, \mathit{integer}/\mathbf{FactoredInteger} \, \, \mathbf{object}
```

Return the largest integer whose square divides self.

If an optional argument asfactored is true, then the result is also a FactoredInteger object. (default is False)

1.1.5.7 squarefree part

 $squarefree \quad part(\texttt{self}, \texttt{ asfactored: } \textit{bool} \\ = False) \\ \rightarrow \textit{integer}/ \\ \underline{FactoredInteger \ object}$

Return the largest squarefree integer which divides self.

If an optional argument asfactored is true, then the result is also a FactoredInteger object object. (default is False)

1.1.5.8 copy

 $\mathbf{copy}(\mathtt{self}) \to \mathbf{FactoredInteger\ object}$

Return a copy of the object.

Bibliography

[1] Henri Cohen. A Course in Computational Algebraic Number Theory. GTM138. Springer, 1st. edition, 1993.