Analog & Digital Communication Lab (IT-351)

Submitted in partial fulfilment of the requirement of the degree of BACHELOR IN TECHNOLOGY

COMPUTER SCIENCE & ENGINEERING

By

Anirudh Gautam

ENROLLMENT NO. 01116403220

(5th Sem.)

University School of Information & Communication Technology

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY DWARKA, NEW DELHI 2022-23

Under the Supervision of

Dr. Mansi Jhamb
USICT, GGSIPU

INDEX

Sr. no.	Name of Experiment	Page no.	Remarks
1.	To plot the waveforms for: Sine, Cosine, Exponential, Ramp, Unit step signal, Unit impulse signal in continuous time.	3	
2.	To plot the waveforms for: Sine, Cosine, Exponential, Ramp, Unit step signal, Unit impulse signal in discrete time	5	
3.	To perform amplitude modulation using MATLAB.	7	
4.	To perform frequency modulation using MATLAB.	9	
5.	To simulate Pulse code modulation (PCM) technique using MATLAB.	11	
6.	To simulate amplitude shift key (ASK) technique using MATLAB.	13	
7.	To simulate frequency shift keying (FSK) technique using MATLAB.	15	
8.	To simulate phase shift keying (PSK) using MATLAB.	17	
9.	To simulate Pulse Amplitude Modulation (PAM) technique using MATLAB.	19	
10.	To simulate Pulse Width Modulation (PWM) using MATLAB.	21	
11.	To simulate Time Division Multiplexing (TDM) using MATLAB.	23	

Aim: To plot the waveforms for: Sine, Cosine, Exponential, Ramp, Unit step signal, Unit impulse signal in continuous time.

Software & Hardware Required:

MATLAB Software (MATLAB R2017a)

Personal Computer

```
clc;
clear;
t=5:0.1:5;
f = 1000;
a=sin(2*pi*f*t);
b=cos(2*pi*f*t);
x=t;
y=(t==0);
z=(t>=0);
c=exp(t);
subplot(3,2,1);
plot(t,a);
axis([0 5 -1 1]);
xlabel('time');
ylabel('Amplitude');
title('Sine Wave');
subplot(3,2,2);
plot(t,b);
axis([0 5 -1 1]);
xlabel('time');
ylabel('Amplitude');
title('Cosine Wave');
subplot(3,2,3);
plot(t, x);
axis([0 5 0 5]);
xlabel('time');
ylabel('Amplitude');
title('Unit Ramp Signal')
subplot(3,2,4);
plot(t,c);
xlabel('time');
ylabel('Amplitude')
title('Exponential Signal')
subplot(3,2,5);
plot(t,y);
xlabel('time');
ylabel('Amplitude');
title('Unit Impulse Signal');
subplot(3,2,6);
plot(t,z);
axis([-1 5 -1 2]);
xlabel('time');
ylabel('Amplitude');
```

title('Unit Step Signal');

Aim: To plot the waveforms for: Sine, Cosine, Exponential, Ramp, Unit step signal, Unit impulse signal in discrete time.

Software & Hardware Required:

MATLAB Software (MATLAB R2017a)

Personal Computer

```
clc;
clear:
N = 10
n=0:N-1;n1=0:0.1:5; f=1;
a = \sin(2*pi*f*n1);
b = \cos(2^*pi^*f^*n1);
x = n;
y=(n==0);
z=(n>=0);
c=exp(n);
subplot(3,2,1);
stem(a);
axis([0 20 -1 1]);
xlabel('time');
ylabel('Amplitude');
title('discrete sine wave');
subplot(3,2,2);
stem(b);
axis([0 20 -1 1]);
xlabel('time'):
ylabel('Amplitude');
title('discrete cosine wave');
subplot(3,2,3);
stem(n,x);
axis([0 10 0 10]);
xlabel('time');
ylabel('Amplitude');
title('discrete unit ramp signal');
subplot(3,2,4);
stem(n,c);
xlabel('time');
ylabel('Amplitude');
title('discrete exponential signal');
subplot(3,2, 5);
stem(n,y);
axis([-4 4 0 2]);
xlabel('time');
ylabel('Amplitude');
title('discrete unit impulse signal');
subplot(3,2,6);
stem(n,z);
axis([-1 5 -1 2]);
xlabel('time');
```

ylabel('Amplitude');
title('discrete unit step signal');

Aim: To perform amplitude modulation using MATLAB.

Software & Hardware Required:

MATLAB Software (MATLAB R2017a)

Personal Computer

Code:

```
clc;
clear;
close all;
m=1;
Am=5; %Amp of modulating signal
fa=2000; %frequency of modulating signal
Ta=1/fa;
t = 0:Ta/999:6*Ta;
ym = Am*sin(2*pi*fa*t);
subplot(3,1,1);
plot(t,ym);
title('modulating signal');
%carrier signal
Ac = Am/m;
fc = fa*10;
Tc = 1/fc;
ye = Ac*sin(2*pi*fc*t);
subplot(3,1,2);
plot(t,ye);
grid on;
title('carrier signal');
%AM modulation
y = Ac+(1+m*sin(2*pi*fa*t)).*sin(2*pi*fc*t);
subplot(3,1,3);
plot(t,y);
title('amplitude modulation signal');
grid on;
```


Aim: To perform frequency modulation using MATLAB.

Software & Hardware Required:

MATLAB Software (MATLAB R2017a)

Personal Computer

Code:

```
% code for FM
%fm = 35Hz, fc = 500Hz, Am = 1V, Ac = 1v, B = 10
fs = 10000;
Ac = 1;
Am = 1;
fm = 35;
fc = 500;
B = 10;
t = (0:0.1*fs)/fs;
wc = 2*pi*fc;
wm = 2*pi*fm;
m t = Am*cos(wm*t);
subplot(3,1,1);
plot(t, m_t);
title('Modulating (message signal, fm=35hz)');
c_t = Ac^*cos(wc^*t);
subplot(3,1,2);
plot(t,c_t);
title('Carrier signal (fm=500hz)');
s_t = Ac^*cos((wc^*t)+B^*sin(wm^*t));
subplot(3,1,3);
plot(t,s_t);
title('Modulated signal');
```


Aim: To simulate Pulse code modulation (PCM) technique using MATLAB.

Software & Hardware Required:

MATLAB Software (MATLAB R2017a)

Personal Computer

```
clc;
clear;
t = 0:0.01:1;
f = 5;
a = sin(2*pi*f*t);
subplot(2,2,1);
plot(t,a);
xlabel('Time');
ylabel('Amplitude');
title('Message Signal');
b = 2;
c = a+b;
subplot(2,2,2);
stem(t,c);
xlabel('Time');
ylabel('Amplitude');
title('Sampled Signal');
d = quant(c);
subplot(2,2,3);
plot(t,d);
xlabel('Time');
ylabel('Amplitude');
```

```
title('Quantized signal');
e = de2bi(d, 'left-msb');
subplot(2,2,4);
plot(t,e);
axis([0 1 0 1]);
xlabel('Time');
ylabel('Amplitude');
title('PCM Signal');
```


Aim: To simulate amplitude shift key (ASK) technique using MATLAB.

Software & Hardware Required:

MATLAB Software (MATLAB R2017a)

Personal Computer

Code:

```
clc;
clear;
t = 0:0.001:10;
b = 2;
fc = 4; %sinusoidal signal
fm = 1; % pulse signal
a = b*(sin(2*pi*fc*t));
subplot(3,1,1);
plot(t,a);
title('Carrier Signal');
xlabel('Time');
ylabel('Amplitude');
y = (b/2)*square(2*pi*fm*t,50)+(b/2);
y1 = a.*y;
subplot(3,1,2);
plot(t,y,'r');
title('Message Signal');
xlabel('Time');
ylabel('Amplitude');
subplot(3,1,3);
plot(t,y1);
title('Amplitude Shift Keying Signal');
xlabel('Time');
ylabel('Amplitude');
```


Aim: To simulate frequency shift keying (FSK) technique using MATLAB.

Software & Hardware Required:

MATLAB Software (MATLAB R2017a)

Personal Computer

```
clc;
clear:
fc1 = input('Enter the frequency of first sine wave carrier high frequency: ');
fc2 = input('Enter the frequency of second sine wave carrier lower frequency: ');
fp = input('Enter the freq. of periodic binary pulse (message): ');
amp = 2;
a = 0.5;
t = 0:0.001:1; %For setting sampling interval
c1 = amp.*sin(2*pi*fc1*t); %First carrier sine wave
c2 = amp.*sin(2*pi*fc2*t); %second carrier sine wave
subplot(5,1,1);
plot(t,c1);
xlabel('Time');
ylabel('Amplitude');
title('Carrier 1 wave');
subplot(5,1,2);
plot(t,c2,'r');
xlabel('Time');
ylabel('Amplitude');
title('Carrier 2 wave');
m = a.*square(2*pi*fp*t)+a;
subplot(5,1,3);
plot(t,m);
xlabel('Time');
ylabel('Amplitude');
title('Binary Message Pulses');
n = length(t);
for i=1:n
  if m(i)==0
     f(i)=c2(i);
     f(i)=c1(i);
  end
end
subplot(5,1,4);
plot(t,f,'m');
xlabel('Time');
ylabel('Amplitude');
title('FSK (frequency shift keying modulated wave)');
```

```
Enter the frequency of first sine wave carrier high frequency:
100
Enter the frequency of second sine wave carrier lower frequency:
40
Enter the freq. of periodic binary pulse (message):
```

```
Enter the freq. of periodic binary pulse (message): 5
```


Aim: To simulate phase shift keying (PSK) using MATLAB.

Software & Hardware Required:

MATLAB Software (MATLAB R2017a)

Personal Computer

```
clc:
clear;
A = 4;
t = 0:0.001:1;
f1 = input('Carrier Sine wave frequency=');
f2 = input('Message Frequency= ');
x = A.*sin(2*pi*f1*t);
y = A.*sin(2*pi*f1*t+pi);
subplot(4,1,1);
plot(t,x);
xlabel('Time');
ylabel('Amplitude');
title('Carrier wave');
grid on;
subplot(4,1,2);
plot(t,y);
xlabel('Time');
ylabel('Amplitude');
title('Carrier wave with pi phase shift');
grid on;
m = A/2.*square(2*pi*f2*t) + A/2;
subplot(4,1,3);
plot(t,m);
xlabel('Time');
ylabel('Amplitude');
title('Message Signal');
grid on;
n = length(t);
for i=1:n
  if m(i) == 0
     f(i)=y(i);
  else
     f(i)=x(i);
  end
end
subplot(4,1,4);
plot(t,f,'r');
axis([0 1 -6 6]);
xlabel('t');
ylabel('y');
title('Phase-Shift keying signal');
grid on;
```

```
Carrier Sine wave frequency=
100
Message Frequency=
20
>>
```


Aim: To simulate Pulse Amplitude Modulation (PAM) technique using MATLAB.

Software & Hardware Required:

MATLAB Software (MATLAB R2017a)

Personal Computer

Code:

```
clc;
clear;
t = 0:1/1e3:1;
d = 0:1/5:1;
x = \sin(2*pi/4*2*t);
figure;
subplot(3,1,1);
plot(x);
title('message');
xlabel('time');
ylabel('amplitude');
y = pulstran(t,d,'rectpuls',0.1);
subplot(3,1,2);
plot(y);
title('pulse input');
xlabel('time');
ylabel('amplitude');
z = x.*y;
subplot(3,1,3);
plot(z);
title('PAM Modulation');
xlabel('time');
ylabel('amplitude');
```


Aim: To simulate Pulse Width Modulation (PWM) using MATLAB.

Software & Hardware Required:

MATLAB Software (MATLAB R2017a)

Personal Computer

```
clc;
clear;
t = 0:0.001:1;
fc = input('Enter the frequency of carrier signal=> ');
fm = input('Enter the frequency of message signal=> ');
a = input('Enter the amplitude of carrier signal=> ');
b = input('Enter the Amplitude of meesgae signal (< carrier)=> ');
vc = a.*sawtooth(2*pi*fc*t);
vm = b.*sin(2*pi*fm*t);
n = length(vc);
for i=1:n
  if vm(i) > = vc(i)
     pwm(i) = 1;
  else
     pwm(i) = 0;
  end
end
subplot(3,1,1);
plot(t, vm, 'black');
xlabel('Time');
ylabel('Amplitude');
title('Message Signal');
legend('Message Signal');
grid on;
subplot(3,1,2);
plot(t, vc);
xlabel('sample');
vlabel('Amplitude');
title('Carrier Signal');
legend('Carrier Signal');
grid on;
subplot(3,1,3);
plot(t, pwm, 'red');
xlabel('Smaple');
ylabel('Amplitude');
title('PWM Signal');
legend('PWM Signal');
axis([0 1 0 2]);
grid on;
```

ha = axes('Position', [0 0 1 1], 'Xlim', [0 1], 'Ylim', [0 1], 'Box', 'off', 'visible', 'off', 'Units', 'normalized', 'clipping', 'off');

```
Enter the frequency of carrier signal=>
20
Enter the frequency of message signal=>
5
```

```
Enter the amplitude of carrier signal=>
10
Enter the Amplitude of meesgae signal (< carrier)=>
2
>>
```


Aim: To simulate Time Division Multiplexing (TDM) using MATLAB.

Software & Hardware Required:

MATLAB Software (MATLAB R2017a)

Personal Computer

```
clc;
clear;
n = input('Enter the number of signal multiplexed: ');
r = input('Enter the number of bits in each signal: ');
for i=1:n
  a = input('Enter data bits: ');
  for j=1:r
     a1(i,j) = a(1,j);
     j = j+1;
  disp('Enter next signal data bits: ');
  i = i+1;
end
for i=1:n
  for j=1:r
     a2(1,j) = a1(i,j);
     j = j+1;
  end
  subplot(n,1,i);
  stem(a2, 'r');
  title('Input Signal');
  i = i+1;
end
k = 1;
for i=1:n
  for j=1:r
     m(1,k) = a1(i,j);
     i = i+1;
     k = k+1;
  end
  i = i+1;
end
stem(m);
title('Multiplexed Signal');
```

```
Enter the number of signal multiplexed:

3
Enter the number of bits in each signal:
4
```

```
Enter data bits:
[1,1,0,1]
Enter next signal data bits:
Enter data bits:
[2,3,4,5]
```

```
Enter next signal data bits:
Enter data bits:
[4,2,1,0]
Enter next signal data bits:
>>
```

