Final Review

8.3.17

What are the functions of these regions?

- Thalamus:
- Hypothalamus:
- Tectum:
- Tegmentum:
- Pons:
- Medulla:

What are the functions of these regions?

- Thalamus: sensory and motor "relay center"
- Hypothalamus: 4 Fs (feeding, fighting, fleeing, sex)
- Tectum: sensory pathways
- Tegmentum: motor pathways
- Pons: carries info throughout cortex
- Medulla: vital reflexes

What are the regions of the limbic system and their functions?

- H_____
- Δ
- C
- O_____

What are the regions of the limbic system and their functions?

- Hippocampus memory formation
- Amygdala emotion regulation
- Cingulate gyrus risk assessment
- Olfactory bulb smell info

Describe the frontal lobe

- The frontal lobe contains which region involved in long-term planning, executive functioning, inhibition?
- What part of the above region is associated with social emotional behavior?

Describe the frontal lobe

- The frontal lobe contains which region involved in long-term planning, executive functioning, inhibition? PFC
- What part of the above region is associated with social emotional behavior? OFC

Describe the motor cortex

- The primary motor cortex is located in what lobe?
- What language region near it leads to impairments in sign language if damaged?
- What is the difference between the primary motor cortex and the premotor cortex?
- The primary motor cortex lies in the (pre/post)-central gyrus.

Describe the motor cortex

- The primary motor cortex is located in what lobe? **Frontal**
- What language region near it leads to impairments in sign language if damaged? Broca's Area
- What is the difference between the primary motor cortex and the premotor cortex? Premotor involved in planning movement
- The primary motor cortex lies in the (pre/post)-central gyrus.

Describe the parietal lobe

- The parietal lobe is associated with what?
- The somatosensory cortex is in the (pre/post)-central gyrus
- The parietal lobe is part of what visual pathway?
- Can this visual pathway detect direction of motion?

Describe the parietal lobe

- The parietal lobe is associated with what? Somatosensory cortex
- The somatosensory cortex is in the (pre/post)-central gyrus
- The parietal lobe is part of what visual pathway? Dorsal
- Can this visual pathway detect direction of motion? Yes

Describe the temporal lobe

- The temporal cortex contains what primary sensory cortex?
- What region of the temporal lobe is the end of the ventral visual pathway?
- What region of the temporal lobe is associated with memory?
- What language region in the temporal lobe is associated with deficits in language comprehension?

Describe the temporal lobe

- The temporal cortex contains what primary sensory cortex? auditory
- What region of the temporal lobe is the end of the ventral visual pathway? Inferior temporal
- What region of the temporal lobe is associated with memory? Medial temporal lobe
- What language region in the temporal lobe is associated with deficits in language comprehension? Wernicke's Area

Describe the occipital lobe

- The primary visual cortex of the occipital lobe is called what?
- Visual fields connect to the (ipsi/contra)lateral side of the visual cortex
- In the dark, photoreceptors are (on/off), and the flow of Na+ creates what's known as the

Describe the occipital lobe

- The primary visual cortex of the occipital lobe is called what? V1
- Visual fields connect to the (ipsi/contra)lateral side of the visual cortex
- In the dark, photoreceptors are (on/off), and the flow of Na+ creates what's known as the dark current.

What are some roles of glial cells?

What are some roles of glial cells?

- Myelination
- Providing nutrients to neurons
- Removing toxins

Describe signal propagation in neurons

- Neurons receive an incoming message from its (axon/dendrite).
- The nerve impulse is sent down the (axon/soma) of the neuron through a process called _____ conduction.
- In this process, the signal jumps in between the ______, the spaces between myelin sheaths along the neuron.
- In a disease called ______, myelin is degenerated, degrading the (ionic/electrical) signal over time. In addition, there are no (ion/electrical) gates under the myelin, preventing the cell from reverting to (ionic/electrical) conduction as well.

Describe signal propagation in neurons

- Neurons receive an incoming message from its (axon/dendrite).
- The nerve impulse is sent down the (axon/soma) of the neuron through a process called saltatory conduction.
- In this process, the signal jumps in between the **Nodes of Ranvier**, the spaces between myelin sheaths along the neuron.
- In a disease called **multiple sclerosis**, myelin is degenerated, degrading the (ionic/**electrical**) signal over time. In addition, there are no (**ion**/electrical) gates under the myelin, preventing the cell from reverting to (**ionic**/electrical) conduction as well.

Describe the steps of an action potential

Describe the steps of an action potential

Describe how an NT affects a neuron

- What is the process in which Ca++ causes vesicles in the presynaptic neuron to release neurotransmitter (NT)?
- When the NT reaches the postsynaptic receptor site, does it enter the postsynaptic cell?
- If the NT is an (agonist/antagonist), it increases the reaction of the postsynaptic cell, which can lead to (IPSP/EPSP).
- What is the effect called when a second messenger activates metabolic process that opens an ion gate?
- This effect is (rapid and short-lived/slow and long-lived).

Describe how an NT affects a neuron

- What is the process in which Ca++ causes vesicles in the presynaptic neuron to release neurotransmitter (NT)? exocytosis
- When the NT reaches the postsynaptic receptor site, does it enter the postsynaptic cell? No, it attaches to receptor site and then detaches
- If the NT is an (agonist/antagonist), it increases the reaction of the postsynaptic cell, which can lead to (IPSP/EPSP).
- What is the effect called when a second messenger activates metabolic process that opens an ion gate? **metabotropic**
- This effect is (rapid and short-lived/slow and long-lived).

Why is the homunculus important?

Why is the homunculus important?

- Demonstrates how different parts of the body are represented in the cortex
- What is type of mapping called?
- Does it exist for all senses?
- If an area is disproportionately represented on the cortex, what is this called?

Why is the homunculus important?

- Demonstrates how different parts of the body are represented in the cortex
- What is type of mapping called? topographic
- Does it exist for all senses? Yes (retinotopic, tonotopic, somatosensory)
- If an area is disproportionately represented on the cortex, what is this called? Magnification factor

Choose either the Dorsal or Ventral visual pathway for the following

- Also known as the Parvocellular pathway
- Sensitive to motion direction
- Ends at the inferior temporal cortex, a region important for recognizing faces
- Also known as the "where/how" pathway
- Ends at the posterior parietal cortex
- Also known as the "who/what" pathway
- Detects depth through binocular disparity
- Sensitive to color

Choose either the Dorsal or Ventral visual pathway for the following

- Also known as the Parvocellular pathway Ventral
- Sensitive to motion direction **Dorsal**
- Ends at the inferior temporal cortex, a region important for recognizing faces Ventral
- Also known as the "where/how" pathway Dorsal
- Ends at the posterior parietal cortex Dorsal
- Also known as the "who/what" pathway Ventral
- Detects depth through binocular disparity Dorsal
- Sensitive to color Ventral

Somatosensory Pathways: the spinothalamic pathway

- Carries (free/encapsulated) nerve ending sensations (hot, cold, sex).
- Sensory fibers enter the spinal cord via the _____ and synapse.
- Fibers ascend and connect with (first/second) order neuron, which crosses to contralateral side and synapses with VPN (_______) of thalamus.
- Nerves are (small/large) and (unmyelinated/myelinated).

Somatosensory Pathways: the spinothalamic pathway

- Carries (free/encapsulated) nerve ending sensations (hot, cold, sex).
- Sensory fibers enter the spinal cord via the dorsal root and synapse.
- Fibers ascend and connect with (first/second) order neuron, which crosses to contralateral side and synapses with VPN (Ventral Posterior Nucleus) of thalamus.
- Nerves are (small/large) and (unmyelinated/myelinated).

Somatosensory Pathways: the medial lemniscal pathway

- (Free/Encapsulated) nerve ending sensations enters through dorsal root of spinal cord where
 _____ axon synapses.
- Main fiber ascends on ipsilateral side to the ______.
- Second-order neuron will cross to contralateral side through the brainstem and synapse on VPN.
- Nerves are (small/large) and (unmyelinated/myelinated).

Somatosensory Pathways: the medial lemniscal pathway

- (Free/Encapsulated) nerve ending sensations enters through dorsal root of spinal cord where collateral axon synapses.
- Main fiber ascends on ipsilateral side to the medulla.
- Second-order neuron will cross to contralateral side through the brainstem and synapse on VPN.
- Nerves are (small/large) and (unmyelinated/myelinated).

Motor Pathways: the corticospinal tract

- Controls (involuntary/voluntary) movement on contralateral side
- (Unmyelinated/myelinated) tract and designed for what?
- Crosses over in pons to synapse on _____ nerve to face.

Motor Pathways: the corticospinal tract

- Controls (involuntary/voluntary) movement on contralateral side
- (Unmyelinated/myelinated) tract and designed for what? Fine motor movements, distal muscles (i.e. hand movements in playing piano)

Motor Pathways: the ventromedial tract?

- Bilateral and (ipsi/contra)lateral
- What is an important note about the parts of the body and the movements the ventromedial tracts control?

Motor Pathways: the ventromedial tract?

- Bilateral and (ipsi/contra)lateral
- What is an important note about the parts of the body and the movements the ventromedial tracts control? Primarily controls movements where one side cannot move without the other.

Describe across-fiber coding

- Across-fiber coding involves (a single/multiple) neuron(s) encoding patterns of activity.
- Does this patterning exist for vision?
- What about for audition?
- What about for somatosensory modalities?

Describe across-fiber coding

- Across-fiber coding involves (a single/multiple) neuron(s) encoding patterns of activity.
- Does this patterning exist for vision? Yes
- What about for audition? Yes
- What about for somatosensory modalities? Yes

Across-Fiber Coding

What do you know about these NTs?

- 5HT:
- Substance P:
- Dopamine:
- Glutamate:
- ACh:
- GABA:
- Endorphin:

What do you know about these NTs?

- 5HT: low levels can lead to aggression, depression; are reuptaken by presynaptic cell; ends REM sleep
- Substance P: released in pain responses
- Dopamine: associated with reward; released by nucleus accumbens; low levels in basal ganglia implied in Parkinson's
- Glutamate: excitatory; involved in LTP
- ACh: released in REM sleep; released during muscle contraction; low levels implied in Alzheimer's; opponency with GABA
- GABA: inhibitory, released in deep sleep, opponency with ACh
- Endorphin: released by PAG to counteract pain