

A Dataflow Processing Chip for Training Deep Neural Networks

Dr. Chris Nicol
Chief Technology Officer

Wave Computing Profile

Founded in 2010

- Tallwood Venture Capital
- Southern Cross Venture Partners

Headquartered in Campbell, CA

- World class team of 53 dataflow, data science, and systems experts
- 60+ patents

Invented Dataflow Processing Unit (DPU) architecture to accelerate deep learning training by up to 1000x

- Coarse Grain Reconfigurable Array (CGRA) Architecture
- Static scheduling of data flow graphs onto massive array of processors

Now accepting qualified customers for Early Access Program

Challenges of Machine Learning

Extended training time due to increasing size of datasets

Weeks to tune and train typical deep learning models

Hardware for accelerating ML was created for other applications

• GPUs for graphics, FPGA's for RTL emulation

Design

Neural network

architecture

Cost functions

Data coming in "from the edge" is growing faster than the datacenter can accommodate/use it...

Tune

Parameter

initialization

Learning rate

Mini-batch size

Train

Rate

Accuracy

Convergence

Deploy

For testing

Problems with Existing Solutions

- Co-processors must wait on the CPU for instructions
- This limits
 performance and
 reduces efficiency
 and scalability
- Restricts embedded use cases to inferencing-only

Figure 13: EEG visualization of Inception training showing CPU and GPU activity.

Source: Google; http://download.tensorflow.org/paper/whitepaper2015.pdf

Wave Dataflow Processor is Ideal for Deep Learning

Deep Learning Networks are Dataflow Graphs

Programmed on Deep Learning Software

Run on Wave Dataflow Processor

WaveFlow Agent Library

Assemble Graph at

Wave Dataflow Processor

Wave Computing. Copyright 2017.

Wave Dataflow Processing Unit

Chip Characteristics & Design Features

16ff CMOS Process Node	16K Processors, 8192 DPU Arithmetic Units	Self-Timed, MPP Synchronization
181 Peak Tera-Ops, 7.25 Tera Bytes/sec Bisection Bandwidth	16 MB Distributed Data Memory	8 MB Distributed Instruction Memory
1.71 TB/s I/O Bandwidth 4096 Programmable FIFOs	270 GB/s Peak Memory Bandwidth	2048 outstanding memory requests
4 Billion 16-Byte Random Access Transfers / sec	4 Hybrid Memory Cube Interfaces	2 DDR4 Interfaces
PCIe Gen3 16-Lane Host interface	32-b Andes N9 MCU	1 MB Program Store for Paging
Hardware Engine for Fast Loading of AES Encrypted Programs	Up to 32 Programmable dynamic reconfiguration zones	Variable Fabric Dimensions (User Programmable at Boot)

- Clock-less CGRA is robust to Process, Voltage & Temperature.
- Distributed memory architecture for parallel processing
- Optimized for data flow graph execution
- DMA-driven architecture overlapping I/O and computation

Wave Current Generation DPU Board

Key DPU Board Features

- 65,536 CGRA Processing Elements
- 4 Wave DPU chips per board
- Modular, flexible design
 - Multiple DPU boards per Wave Compute Appliance
- Off-the-shelf components
 - 32GB of ultra high-speed DRAM
 - 512GB of DDR4 DRAM
 - FPGA for high-speed board-to-board communication

Wave's Solution: Dataflow Computer for Deep Learning

- Best-in-class, highly scalable deep learning training and inference
- More than orders of magnitude better compute-power efficiency
- Plug-and-play node in a datacenter network -- Big Data Hadoop, Yarn, Spark, Kafka
- Native support of Google TensorFlow (initially)

Dataflow Processing Element (PE)

Wave Computing. Copyright 2017.

Cluster of 16 Dataflow PEs

- 16 Processor CLUSTER: a full custom tiled GDSII block
- Fully-Connected PE Quads with fan-out
- 8 DPU Arithmetic Units
 - Per-cycle grouping into 8, 16, 24, 32, 64-b Operations
 - Pipelined MAC Units with (un)Signed Saturation
 - Support for floating point emulation
 - Barrel Shifter, Bit Processor
 - SIMD and MIMD instruction classes
 - Data driven

- 16KB Data RAM
- 16 Instruction RAMs
- Full custom semi-static digital circuits
- Robust PVT insensitive operation
 - Scalable to low voltages
 - No global signals, no global clocks

Hybrid CGRA Architecture

Data-Driven Power Management

From Asleep to Active

- Word switch fabric remains active
- If valid data arrives at switch input AND switch executes instruction to send data to one of Quads THEN wake up PEs
- Copy PC from word switch to PE and byte switch iRAMs
- Send the incoming data to the PEs

From Active to Asleep

- A PE executes a "sleep" instruction
- All PE & byte switch execution is suspended
- PE can opt for fast wakeup or slow wakeup (deep sleep with lower power)

Compute Machine with AXI4 Interfaces

Wave DPU Hierarchy

Wave DPU Memory Hierarchy

6-10 GHz Auto-Calibrated Clock Distribution

Clock Distribution and Generation Network across entire Fabric

- Clock skew and jitter limit cycle time with traditional clock distribution
- Self-timed "done" signal from PEs if they are awake. Programmable tuning of margin.
- Synchronized with neighboring Clusters to minimize skew
- 1-sigma local mismatch ~1.3ps and global + local mismatch ~6ps at 140ps cycle time

Reset, Configuration Modes

Dynamic Reconfiguration

Runtime resource manager performing mount()

- Runtime resource manager in lightweight host.
- Mount(). Online placement algorithm with maxrects management of empty clusters.
- Uses "porosity map" for each kernel showing route-thru opportunities. (SDK provides this)
- Just-in-time Place & Route (using A*) of I/Os through other kernels without functional side-effects.
- Unmount(). Removes paths through other kernels.
- Machines are combined for mounting large kernels. Partitioned during unmount().
- Periodic garbage collection used for cleanup.
- Average mount time < 1ms

WaveFlow Software Stack

- DF agent partitioning
- DFG throughput optimization
- Runs on Session Host
- Resource Manager
- Monitors
- Drivers
- Runs on a Wave Deep Learning Computer
- BLAS 1,2,3
- · CONV2D
- · SoftMax, etc.

On line

Off line

- WFG Compiler
- WFG Linker
- WFG Simulator

WaveFlow SDK

WaveFlow Agent Library

WaveFlow agents are pre compiled off-line using WaveFlow SDK

- Wave provides a complete agent library for TensorFlow
- Customer can create additional agents for differentiation

Your new DNN training technique

WaveFlow SDK

Wave SDK: Compiler Produces Kernels

Kernels are islands of machine code scheduled onto machine cycles

Example: Sum of Products on 16 PEs in a single cluster

PE 0 to 15

Sum of Products Kernel

WFG of Sum of Products

Mapping Inception V4 to DPUs

Inference Graph generated directly from Keras model by Wave Compiler

Deep Neural Network Performance

Benchmarks on a single node 64-DPU Data Flow Computer

- ImageNet training, 90 epochs, 1.28M images, 224x224x3
- Seq2Seq training using parameters from https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf by I. Sutskever, O. Vinyals & Q. Le

Network	Inferencing (Images/sec)	Training time
AlexNet	962,000	40 mins
GoogleNet	420,000	1 hour 45 mins
Squeezenet	75,000	3 hours
Seq2Seq	-	7 hours 15 min

Wave's Early Access Program

Wave is now accepting qualified customers to its Early Access Program (EAP)

Provides select companies access to a Wave machine learning computer for testing and benchmarking months before official system sales begin

For details about participation in the limited number of EAP positions, contact info@wavecomp.com