Resumo de Curvas e Superfícies

Sumário

Curvas, Reta tangente e Comprimento de arco

Difeomorfismo e Reparametrização

Ângulo e Curvatura

Diedro de Frenet e Teorema Fundamental

Curvas Regulares no \mathbb{R}^3

Curvas, Reta tangente e Comprimento de arco

Definição 1 Uma curva parametrizada em \mathbb{R}^n é uma aplicação $\gamma: I \to \mathbb{R}^n$ sendo $I \subset \mathbb{R}$ aberto.

Definição 2 O conjunto imagem de γ , $\gamma(I) \subset \mathbb{R}^n$ é dito o **traço** de γ .

Definição 3 (Vetor tangente) Seja $\gamma: I \to \mathbb{R}^n$ com $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$ com $\gamma_i(y)$ diferenciáveis $\forall i, i = 1 \dots n, o \ vetor$

$$\gamma'(t) = (\gamma_1'(t), \dots, \gamma_n'(t))$$

 \acute{e} chamado **vetor tangente de** γ em t

Definição 4 (Curvas regulares) Seja $\gamma(t): I \to \mathbb{R}^n$ uma curva parametrizada diferenciável. Diz-se que γ é regular, quando $\gamma'(t) \neq 0$, $\forall t \in I$.

Definição 5 (Reta tangente) Seja γ uma curva regular, então a **reta tangente** de γ no ponto $t_0 \in I$ é aquela que contém o ponto $\gamma(t)$ e é paralela ao vetor $\gamma'(t)$, ou seja

$$r(\lambda) = \gamma(t_0) + \lambda \gamma'(t_0)$$

Definição 6 (Comprimento de arco) O comprimento de arco de α , de $\alpha(a)$ até $\alpha(b)$ definido por $L_a^b(\alpha)$ é

$$L_a^b(\alpha) = \int_a^b \|\alpha'(t)\| dt$$

Definição 7 Se $\gamma:(a,b)\to\mathbb{R}^n$ é uma c.p.¹, sua **velocidade no ponto** $\gamma(t)$ é $\|\gamma'(t)\|$, e a curva é dita com **velocidade unitária** se $\|\gamma'(t)\|=1$, $\forall t\in(a,b)$ e é parametrizada por comprimento de arco.

Teorema 1 Toda curva regular pode ser reparametrizada por comprimento de arco.

Difeomorfismo e Reparametrização

Definição 8 (Difeomorfismo) Dado os conjuntos abertos $U \subset \mathbb{R}^n$ e $V \subset \mathbb{R}^n$. Uma bijeção $f: U \to V$ é dita difeomorfismo quando f e f^{-1} são diferenciáveis.

Definição 9 (Reparametrização) A curva $\beta(s)$ é dita uma reparametrização de $\alpha(t): I \subset \mathbb{R} \to \mathbb{R}^2$ regular quando dados $I_0 \subset \mathbb{R}$ e $\phi: I_0 \to I$ difeomorfismo. Temos $\beta(S) = \alpha(\phi(S))$).

Definição 10 Seja $\alpha(t):(a,b)\to\mathbb{R}^2\ r\ \beta(S):(c,d)\to\mathbb{R}^2$. Então

- $\beta(S)$ é uma reparametrização positiva de α se $\phi'(S) > 0$, $\forall S$
- $\beta(S)$ é uma reparametrização negativa de α se $\phi'(S) < 0$. $\forall S$

Definição 11 Qualquer reparametrização de uma c.p. regular é regular (i.e. difeomorfismos preservam regularidade).

Proposições 1 A função L (comprimento de arco) é um difeomorfismo.

Definição 12 Toda curva regular $\alpha: I \to \mathbb{R}^2$ admite reparametrização por comprimento de arco.

¹curva parametrizada

Ângulo e Curvatura

Definição 13 (Função Ângulo) Dada uma curva diferenciável $\gamma: I \to S^1$, onde S^1 é o círculo de \mathbb{R}^2 com centro na origem e raio 1, diz-se que $\theta: I \to \mathbb{R}$ é uma **função-ângulo** de γ , quando

$$\gamma(s) = (\cos(\theta(s)), \sin(\theta(s)), \forall s \in I$$

Definição 14 (Curvatura) Seja $\alpha: I \to \mathbb{R}$ unit-speed. Designando-se o vetor tangente de α em $s \in I$ por T(s), podemos afirmar que a curva $T(s) = I \to S^1$ admite função ângulo

$$T(s) = (cos(\theta(s)), sen(\theta(s)), \forall s \in I$$

Daí a curvatura de α em $s \in I$ é definida por

$$K(s) = \theta'(s) = det(\alpha'(s), \alpha''(s))$$

Diedro de Frenet e Teorema Fundamental

Teorema 2 (Função-ângulo diferenciável) Seja $\gamma: I \to S^1$ uma curva diferenciável. Então, γ admite uma função ângulo $\theta: I \to \mathbb{R}$, a qual é diferenciável. Além disso, toda função-ângulo de γ , a qual é diferenciável, difere de θ por uma constante.

Corolário 2.1 Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}$ e seja $\beta(s) = \alpha(\theta(s))$ a parametrização por comprimento de arco de α , a curvatura de α em $t \in I$ é $K_{\alpha}(t)$, e, por definição é a curvatura de β em $\theta^{-1}(t)$, isto é

$$K_{\alpha} := K_{\beta}(\theta^{-1}(t))$$

Definição 15 (Diedro de Frenet) Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^2$ uma curva regular parametrizada por comprimento de arco. Dado $s \in I$, o vetor N(s) = JT(s) é dito o vetor normal de α em $s \in I$. A base ortonormal de \mathbb{R}^2 formado por T(s) e N(s) é chamada **Dietro de Frenet** em s.

Definição 16 (Movimento Rígido) $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ é dita movimento rígido, quando preserva distancia, isto é, para quaisquer $p, q \in \mathbb{R}^2$

$$\|\Phi(p) - \Phi(q)\| = \|p - q\|$$

Teorema 3 Seja $\Phi: A+p_0$ um movimento rígido direto de \mathbb{R}^2 e $\alpha: I \to \mathbb{R}^2$ uma curva regular parametrizada por comprimento de arco. Então, $\beta = \Phi \circ \alpha: I \to \mathbb{R}^2$ é uma curva regular de \mathbb{R}^2 , parametrizada por comprimento de arco, tal que

$$K_{\alpha}(s) = K_{\beta}(s) \ \forall s \in I$$

Teorema 4 (Teorema Fundamental da Teoria Local das Curvas Planas) Sejam I um intervalo aberto da reta $e K : I \to \mathbb{R}$ uma função diferenciável.

- 1. Então existe uma curva diferenciavel $\alpha: I \to \mathbb{R}^2$, unit-speed, cuja função curvatura coincide com K.
- 2. Além disso, para toda $\beta: I \to \mathbb{R}^2$, unit-speed, que cumpre $K_{\beta} = K$, existe um movimento rígido $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\alpha = \Phi \circ \beta$

Curvas Regulares no \mathbb{R}^3

Definição 17 (Curvas no \mathbb{R}^3) As curvas diferenciáveis no \mathbb{R}^3 , são definidas de forma análoga ao \mathbb{R}^2 , isto é, uma curva no \mathbb{R}^3 é uma aplicação diferenciável de um intervalo I (aberto) em \mathbb{R}^3 , da forma

$$\alpha(t) = (x(t), y(t), z(t)), \ t \in I$$

Onde x, y e z são diferenciáveis, e a curva é dita **regular** quando

$$\alpha'(t) = (x'(t), y'(t), z'(t)) \neq (0, 0, 0), \ t \in I$$

Proposições 2 De forma análoga vale para \mathbb{R}^3 que

- Comprimento de arco é invariável por reparametrização.
- Toda curva regular admite reparametrização unit-speed ($\|\alpha'(t)\| = 1$).

Definição 18 (Curvatura no \mathbb{R}^3 Dada uma curva $\alpha: I \to \mathbb{R}$ regular parametrizada por comprimento de arco, a **curvatura** de α em $s \in I$ é definida como

$$K_{\alpha}(s) = \|\alpha''(s)\|$$

Definição 19 (2-regular) Seja uma curva regular $\alpha: I \to \mathbb{R}^3$ unit-speed, e $K_{\alpha}(s) > 0, \forall s$, ou seja, $\alpha''(s) \neq 0, \forall s$. ENtão dizemos que α é **2-regular**.

Definição 20 (Triedro de Frenet) Para α 2-regular, seja $T(s) = \alpha'(s)$ (vetor tangente), $N(s) = \frac{\alpha''(s)}{\|\alpha''(s)\|}$ (vetor normal) e $B(s) = T(s) \times N(s)$ (vetor binormal). Desse modo estabelecemos um referencial chamado Triedro de Frenet formado pelos vetores $\{T(s), N(s), B(s)\}$, onde,

$$\begin{cases} B(s) = T(s) \times N(s) \\ N(s) = B(s) \times T(s) \\ T(s) = N(s) \times B(s) \end{cases}$$