Examples for Using Speech Signal Processing Toolkit Ver. 3.11

SPTK working group

December 25, 2017

Contents

I	Bası	Basics				
	1.1	Help message				
	1.2	Data type conversion between "little endian" and "big endian."				
	1.3	Dump a binary data file				
	1.4	Data type conversion from "short int" to "float"				
	1.5	Plotting speech waveform on X-window				
	1.6	Save the figure in an Encapsulated PostScript file				
	1.7	Play a sound file				
	1.8	Cut a portion out of a file				
2	Pitch Extraction from Speech Waveform					
_	2.1	A pitch extractor				
	2.1					
	2.2	Plotting the extracted pitch contour				
3	Speech Analysis/Synthesis Based on Mel-Cepstral Representation					
	3.1	Mel-cepstral analysis of speech				
	3.2	Plotting spectral estimates from mel-cepstrum				
	3.3	Plotting the spectral estimate with the FFT spectrum				
	3.4	Speech synthesis from mel-cepstrum				
4	Speech Analysis/Synthesis based on LPC					
	4.1	LPC analysis of speech				
	4.2	Plotting spectral estimates from LPC coefficients				
	4.3	Plotting the spectral estimate with the FFT spectrum				
	4.4	Speech synthesis from LPC coefficients				
	4.5	Obtain PARCOR coefficients from LPC coefficients				
	4.6	Speech synthesis from PARCOR coefficients				
	4.7	Obtain LSP coefficients from LPC coefficients				
	4.8	Speech synthesis from LSP coefficients				
_	C	ash Anglusis/Sunthasis Dagod on Mal Composition Constrol Demoscontation				
5	Speech Analysis/Synthesis Based on Mel-Generalized Cepstral Representation					
	5.1	Mel-generalized cepstral analysis of speech				
	5.2	Plotting spectral estimates from mel-generalized cepstrum				
	5.3 5.4	Plotting the spectral estimate with the FFT spectrum				
	3 /I	Speech synthesis from mel-generalized censtrum				

6	Vect	or Quantization of Mel-Cepstrum	18		
	6.1	Train a (very small) Codebook	18		
	6.2	Encode (training vectors)	18		
	6.3	Decode (training vectors)	19		
	6.4	Plotting original and quantized spectra	19		
	6.5	Performance evaluation on the training data	20		
	6.6	Speech synthesis from quantized mel-cepstrum	21		
7	Preparation of Speech Parameter for Speech Recognition 22				
	7.1	Cepstrum derived from LPC analysis (LPC cepstrum)	22		
	7.2	Mel-cepstrum derived from LPC analysis (LPC mel-cepstrum)	22		
	7.3	Mel-cepstrum obtained by mel-cepstral analysis	22		
	7.4	Mel-cepstrum derived from mel-generalized cepstral analysis	23		
	7.5	Plotting spectra for each speech recognition parameter	23		
8	Play	ing with the Vocoder Based on Mel-Cepstrum	24		
	8.1	High- or low-pitched voice	24		
	8.2	Fast- or slow-speaking voice	25		
	8.3	Hoarse voice	25		
	8.4	Robotic voice	25		
	8.5	Child-like or deep voice	25		
	8.6	Various voices	25		
9	Snee	ech Synthesis Based on HMM	26		
	9.1	Speech parameter generation from a sequence of HMMs	26		
	9.2	Plotting spectra calculated from generated mel-cepstrum	26		
	9.3	Speech synthesis from the generated mel-cepstrum	26		
	9.4	Check the given mean and variance vectors	27		
	⊅. ∓	9.4.1 Dump static feature vectors	27		
		9.4.2 Dump variance vectors of static feature vectors	28		
			28		
	0.5	9.4.4 Dump variance vectors of dynamic feature vectors (delta)	28		
	9.5	Speech synthesis without dynamic feature	28		
10		e Conversion based on GMM	29		
	10.1	Minimum configuration of voice conversion	29		
		10.1.1 Training GMM	30		
		10.1.2 Voice conversion	30		
	10.2	Voice conversion using iterative alignment	30		
		10.2.1 Training initial GMM	30		
		10.2.2 GMM estimation using iterative alignment	30		
		10.2.3 Voice conversion	31		
11	Spea	aker Identification Based on GMM	31		
		GMM training	31		
		Speaker identification	31		

1 Basics

1.1 Help message

impulse -h

1.2 Data type conversion between "little endian" and "big endian."

Files: data.short: speech data included in this example (short integer, 16 kHz sampling, little endian) data.short-b: speech data (short integer, 16 kHz sampling, big endian)

swab +s < data.short > data.short-b

1.3 Dump a binary data file

Files: data.short: speech data included in this example (short integer, 16 kHz sampling)

dmp +s data.short | less

1.4 Data type conversion from "short int" to "float"

Files: data.short: speech data included in this example (short integer, 16 kHz sampling) data.float: speech data (float, 16 kHz sampling)¹²

x2x +sf < data.short > data.float

1.5 Plotting speech waveform on X-window

Files: data.short: speech data included in this example (short integer, 16 kHz sampling)

gwave +s data.short | xgr

¹By clicking links in this PDF file, your PC may play some speech files, which were converted from "float" format into "wav" format (16 kHz sampling, 16-bit integer).

²If you compiled SPTK with "--enable-double" option, please use "+sd" option instead of "+sf" and "+d" option instead of "+f".

1.6 Save the figure in an Encapsulated PostScript file

Files: data.short: speech data included in this example (short integer, 16 kHz sampling) figure.eps: Encapsulated PostScript file

gwave +s data.short | psgr > figure.eps

1.7 Play a sound file

Files: data.short: speech data included in this example (short integer, 16 kHz sampling)

Note: This works only on Linux, Solaris, and FreeBSD.

da +s -s 16 -a 100 data.short

1.8 Cut a portion out of a file

Files: data.short: speech data included in this example (short integer, 16 kHz sampling)

bcut +s -s 1000 -e 11000 < data.short |\ gwave +s | xgr

2 Pitch Extraction from Speech Waveform

2.1 A pitch extractor

Files: data.short: speech data included in this example (short integer, 16 kHz sampling)

Conditions: frame period: 80 points (5 ms)

minimum fundamental frequency for search: 80 Hz maximum fundamental frequency for search: 165 Hz

Note: Options should be adjusted for each speech data.

x2x + sf data.short | pitch -a 1 -s 16 -p 80 -L 80 -H 165 > data.pitch

2.2 Plotting the extracted pitch contour

Files: data.pitch: pitch data extracted from speech data "data.short" (float)

Conditions: Minimum value of vertical axis: 0.0 Maximum value of vertical axis: 250.0

Width: 15 cm Height: 4 cm

fdrw -y 0 250 -W 1.5 -H 0.4 < data.pitch | xgr

3 Speech Analysis/Synthesis Based on Mel-Cepstral Representation

3.1 Mel-cepstral analysis of speech

Files: data.short: speech data included in this example (short integer, 16 kHz sampling)

data.mcep: mel-cepstrum (float)

Conditions: frame length: 400 points (25 ms)

frame period: 80 points (5 ms) window: Blackman window

analysis order: 20

frequency warping parameter: $\alpha = 0.42$

FFT size: 512 points

<code>x2x +sf < data.short | frame -l 400 -p 80 | window -l 400 -L 512 |\mcep -l 512 -m 20 -a 0.42 > data.mcep</code>

3.2 Plotting spectral estimates from mel-cepstrum

Files: data.mcep: mel-cepstrum (float)

Conditions: analysis order: 20

frequency warping parameter: $\alpha = 0.42$

FFT size: 512 points

plotted frames: from 10-th to 135-th sampling frequency: 16 kHz

bcut +f -n 20 -s 10 -e 135 < data.mcep |\ mgc2sp -m 20 -a 0.42 -g 0 -l 512 | grlogsp -l 512 -x 8 | xgr

bcut +f -n 20 -s 10 -e 135 < data.mcep |\ mgc2sp -m 20 -a 0.42 -g 0 -l 512 | grlogsp -l 512 -x 8 -t | xgr

3.3 Plotting the spectral estimate with the FFT spectrum

Files: data.mcep: mel-cepstrum (float)

Conditions: analysis order: 20

frequency warping parameter: $\alpha = 0.42$

FFT size: 512 points

```
plotted frame: 65-th sampling frequency: 16 kHz

( x2x +sf < data.short | frame -1 400 -p 80 | \
bcut +f -1 400 -s 65 -e 65 |\
window -1 400 -L 512 | spec -1 512 |\
glogsp -1 512 -x 8 -p 2 ;\
bcut +f -n 20 -s 65 -e 65 < data.mcep |\
mgc2sp -m 20 -a 0.42 -g 0 -1 512 | glogsp -1 512 -x 8 ) | xgr
```

3.4 Speech synthesis from mel-cepstrum

da +f -s 16 data.mcep.syn

4 Speech Analysis/Synthesis based on LPC

4.1 LPC analysis of speech

Files: data.short: speech data included in this example (short integer, 16 kHz sampling) data.lpc: LPC coefficients (float)

Conditions: frame length: 400 points (25 ms)

frame period: 80 points (5 ms) window: Blackman window

analysis order: 20

x2x +sf < data.short | frame -l 400 -p 80 | window -l 400 |\ lpc -l 400 -m 20 > data.lpc

4.2 Plotting spectral estimates from LPC coefficients

```
Files: data.lpc: LPC coefficients (float)

Conditions: analysis order: 20

bcut +f -n 20 -s 10 -e 135 < data.lpc |\
spec -l 512 -n 20 | grlogsp -l 512 -x 8 | xgr

or

bcut +f -n 20 -s 10 -e 135 < data.lpc |\
mgc2sp -m 20 -a 0 -g -l -n -u -l 512 |\
grlogsp -l 512 -x 8 | xgr
```


Frequency (kHz)

4.3 Plotting the spectral estimate with the FFT spectrum

Files: data.lpc: LPC coefficients (float)

```
Conditions: analysis order: 20
     plotted frame: 65-th
     sampling frequency: 16 kHz
( x2x + sf < data.short | frame -1 400 -p 80 | \
bcut +f -l 400 -s 65 -e 65 |\
window -1 400 -L 512 | spec -1 512 |\
glogsp -1 512 -x 8 -p 2; \setminus
bcut +f -n 20 -s 65 -e 65 < data.lpc > data.tmp ;\
spec -1 512 -n 20 -p data.tmp | glogsp -1 512 -x 8;\
\rm data.tmp ) | xgr
     TUU
   Log magnitude (dB)
      20
       0 L
              Frequency (kHz)
```

Speech synthesis from LPC coefficients

```
Files: data.pitch: pitch data extracted from speech data "data.short" (float)
      data.lpc: LPC coefficients (float)
      data.lpc.syn: synthesized speech (float)
```

Conditions: frame period: 80 points (5 ms)

analysis order: 20

excite -p 80 data.pitch | poledf -m 20 -p 80 data.lpc > data.lpc.syn gwave +f data.lpc.syn | xgr

da +f -s 16 data.lpc.syn

4.5 Obtain PARCOR coefficients from LPC coefficients

Files: data.lpc: LPC coefficients (float) data.par: PARCOR coefficients (float)

Conditions: analysis order: 20

lpc2par -m 20 < data.lpc > data.par

4.6 Speech synthesis from PARCOR coefficients

Files: data.pitch: pitch data extracted from speech data "<u>data.short</u>" (float) data.par: PARCOR coefficients (float)

data.par.syn: synthesized speech (float)

Conditions: frame period: 80 points (5 ms)

analysis order: 20

excite -p 80 data.pitch | ltcdf -m 20 -p 80 data.par > data.par.syn
gwave +f data.par.syn | xgr

4.7 Obtain LSP coefficients from LPC coefficients

Files: data.lpc: LPC coefficients (float) data.lsp: LSP coefficients (float)

Conditions: analysis order: 20

split number of unit circle: 256

lpc2lsp -m 20 -n 256 < data.lpc > data.lsp

4.8 Speech synthesis from LSP coefficients

Files: data.pitch: pitch data extracted from speech data "data.short" (float) data.lsp: LSP coefficients (float)

data.lsp.syn: synthesize speech (float)

Conditions: frame period: 80 points (5 ms)

analysis order: 20

excite -p 80 data.pitch | lspdf -m 20 -p 80 data.lsp > data.lsp.syn

gwave +f data.lsp.syn | xgr

da +f -s 16 data.lsp.syn

5 Speech Analysis/Synthesis Based on Mel-Generalized Cepstral Representation

5.1 Mel-generalized cepstral analysis of speech

Files: data.short: speech data included in this example (short integer, 16 kHz sampling) data.mgcep: mel-generalized cepstrum (float)

```
Conditions: frame length: 400 points (25 ms) frame period: 80 points (5 ms) window: Blackman window analysis order: 20 frequency warping parameter: \alpha=0.42 power parameter: \gamma=-1/2 x2x +sf < data.short | frame -1 400 -p 80 | window -1 400 -L 512 |\mgcep -m 20 -a 0.42 -c 2 -1 512 > data.mgcep
```

5.2 Plotting spectral estimates from mel-generalized cepstrum

Files: data.mgcep: mel-generalize cepstrum (float)

Conditions: analysis order: 20

frequency warping parameter: $\alpha = 0.42$

power parameter: $\gamma = -1/2$ plotted frames: from 10-th to 135-th sampling frequency: 16 kHz

bcut +f -n 20 -s 10 -e 135 < data.mgcep |\ mgc2sp -m 20 -a 0.42 -c 2 -l 512 | grlogsp -l 512 -x 8 | xgr

Frequency (kHz)

Conditions: analysis order: 20

5.3 Plotting the spectral estimate with the FFT spectrum

```
Files: data.mgcep: mel-generalized cepstrum (float)
```

```
frequency warping parameter: \alpha = 0.42
     power parameter: \gamma = -1/2
     FFT size: 512 points
     plotted frame: 65-th
     sampling frequency: 16 kHz
( x2x + sf < data.short | frame -1 400 -p 80 | \
bcut +f -l 400 -s 65 -e 65 |\
window -l 400 -L 512 | spec -l 512 |\
glogsp -1 512 -x 8 -p 2;\
bcut +f -n 20 -s 65 -e 65 < data.mgcep |\
```

```
mgc2sp -m 20 -a 0.42 -c 2 -l 512 | glogsp -l 512 -x 8) | xgr
```


5.4 Speech synthesis from mel-generalized cepstrum

Files: data.pitch: pitch data extracted from speech data "data.short" (float)

data.mgcep: mel-generalized cepstrum (float) data.mgcep.syn: synthesized speech (float)

Conditions: frame period: 80 points (5 ms)

analysis order: 20

frequency warping parameter: $\alpha = 0.42$

power parameter: $\gamma = -1/2$

excite -p 80 data.pitch |\ mglsadf -m 20 -a 0.42 -c 2 -p 80 data.mgcep > data.mgcep.syn

gwave +f data.mgcep.syn | xgr

da +f -s 16 data.mgcep.syn

6 Vector Quantization of Mel-Cepstrum

6.1 Train a (very small) Codebook

Files: data.mcep: mel-cepstrum for training (float)

codebook.mcep: codebook (float)

Conditions: vector size: 21 (analysis order: 20)

codebook size: 32

lbg -n 20 -e 32 < data.mcep > codebook.mcep

6.2 Encode (training vectors)

Files: codebook.mcep: codebook (float) data.mcep.index: index (int)

```
Conditions: vector size: 21 (analysis order: 20)
        codebook size: 32
vq -n 20 codebook.mcep < data.mcep > data.mcep.index
```

6.3 Decode (training vectors)

6.4 Plotting original and quantized spectra

6.5 Performance evaluation on the training data

Files: codebook.mcep: codebook (float) data.mcep.index: index (int)

data.mcep.vq: quantized vectors (float)

data.mcep.vq.cdist: cepstrum distortion in dB (float)

Conditions: vector size: 21 (analysis order: 20)

codebook size: 32

```
freqt -a 0.42 -m 20 -A 0 -M 255 < data.mcep > data.mcep.cep freqt -a 0.42 -m 20 -A 0 -M 255 < data.mcep.vq |\ cdist data.mcep.cep -m 255 > data.mcep.vq.cdist \rm data.mcep.cep
```

6.6 Speech synthesis from quantized mel-cepstrum

Files: data.pitch: pitch data extracted from speech data "data.short" (float) data.mcep.vq: quantized mel-cepstrum (float) data.mcep.vq.syn: synthesized speech (float)

Conditions: frame period: 80 points (5 ms)

analysis order: 20

frequency warping parameter: $\alpha = 0.42$

excite -p 80 data.pitch |\ mlsadf -m 20 -a 0.42 -p 80 data.mcep.vq > data.mcep.vq.syn

gwave +f data.mcep.vq.syn | xgr

da +f -s 16 data.mcep.vq.syn

7 Preparation of Speech Parameter for Speech Recognition

7.1 Cepstrum derived from LPC analysis (LPC cepstrum)

```
Files: data.short: speech data included in this example (short integer, 16 kHz sampling)
Conditions: frame length: 400 points (25 ms)
     frame period: 80 points (5 ms)
     window: Blackman window
     analysis order: 12
     order of LPC cepstrum: 12
x2x + sf < data.short | frame -1 400 -p 80 | window -1 400 | \
lpc - 1 \ 400 - m \ 12 \ | \ lpc2c - m \ 12 - M \ 12 > data.lpc.cep
     Mel-cepstrum derived from LPC analysis (LPC mel-cepstrum)
Files: data.short: speech data included in this example (short integer, 16 kHz sampling)
Conditions: frame length: 400 points (25 ms)
     frame period: 80 points (5 ms)
     window: Blackman window
     analysis order: 12
     order of LPC mel-cepstrum: 12
x2x + sf < data.short | frame -1 400 -p 80 | window -1 400 | \
lpc -1 400 -m 12 |\
lpc2c -m 12 -M 256 |\
freqt -m 256 -a 0 -M 12 -A 0.42 > data.lpc.mcep
   or
x2x + sf < data.short | frame -1 400 -p 80 | window -1 400 | \
lpc -1 400 -m 12 |\
mgc2mgc - m 12 - a 0 - g - 1 - n - u - M 12 - A 0.42 - G 0 > data.lpc.mcep
     Mel-cepstrum obtained by mel-cepstral analysis
7.3
Files: data.short: speech data included in this example (short integer, 16 kHz sampling)
     data.mcep: mel-cepstrum (float)
Conditions: frame length: 400 points (25 ms)
```

 $x2x + sf < data.short | frame -1 400 -p 80 | window -1 400 -L 512 | \$

frame period: 80 points (5 ms) window: Blackman window

frequency warping parameter: $\alpha = 0.42$

mcep - 1 512 - m 12 - a 0.42 > data.mcep.mcep

analysis order: 20

FFT size: 512 points

7.4 Mel-cepstrum derived from mel-generalized cepstral analysis

Files: data.short: speech data included in this example (short integer, 16 kHz sampling)

7.5 Plotting spectra for each speech recognition parameter

```
Files: data.lpc.cep: LPC cepstrum (float)
data.lpc.mcep: LPC mel-cepstrum (float)
data.mcep.mcep: mel-cepstrum (float)
data.mgcep.mcep: mel-cepstrum derived from mel-generalized cepstrum (float)
```

Conditions: plotted frames: from 10-th to 135-th

```
(\
bcut +f -n 12 -s 10 -e 135 < data.lpc.cep |\
mgc2sp -m 12 -a 0 -g 0 -l 512 |\
grlogsp -l 512 -x 8 -0 1 -c "(a) LPC-CEP" ;\
bcut +f -n 12 -s 10 -e 135 < data.lpc.mcep |\
mgc2sp -m 12 -a 0.42 -g 0 -l 512 |\
grlogsp -l 512 -x 8 -0 2 -c "(b) LPC-MCEP" ;\
\
bcut +f -n 12 -s 10 -e 135 < data.mcep.mcep |\
mgc2sp -m 12 -a 0.42 -g 0 -l 512 |\
grlogsp -l 512 -x 8 -0 3 -c "(c) MCEP" ;\
\
bcut +f -n 12 -s 10 -e 135 < data.mgcep.mcep |\
mgc2sp -m 12 -a 0.42 -g 0 -l 512 |\
grlogsp -l 512 -x 8 -0 3 -c "(d) MGCEP-MCEP" ) | xgrlogsp -l 512 -x 8 -0 4 -c "(d) MGCEP-MCEP" ) | xgr</pre>
```


8 Playing with the Vocoder Based on Mel-Cepstrum

8.1 High- or low-pitched voice

8.2 Fast- or slow-speaking voice

```
Files: data.mcep.fast.syn: synthesized speech (float)

data.mcep.slow.syn: synthesized speech (float)

sopr -m 1 data.pitch |\
excite -p 40 | mlsadf -m 20 -a 0.42 -p 40 data.mcep |\
tee data.mcep.fast.syn | da +f -s 16

sopr -m 1 data.pitch |\
excite -p 160 | mlsadf -m 20 -a 0.42 -p 160 data.mcep |\
tee data.mcep.slow.syn | da +f -s 16
```

8.3 Hoarse voice

```
Files: data.mcep.hoarse.syn: synthesized speech (float)

sopr -m 0 data.pitch |\
excite -p 80 | mlsadf -m 20 -a 0.42 -p 80 data.mcep |\
tee data.mcep.hoarse.syn | da +f -s 16
```

8.4 Robotic voice

```
Files: data.mcep.robot.syn: synthesized speech (float)

train -p 200 -l -l | mlsadf -m 20 -a 0.42 -p 80 data.mcep |\
tee data.mcep.robot.syn | da +f -s 16
```

8.5 Child-like or deep voice

8.6 Various voices

```
Files: <a href="mailto:data.float">data.float</a>: original speech (float)

data.mcep.syn: synthesized speech (float)

data.mcep.{ <a href="mailto:high">high</a>, <a href="mailto:low, fast, slow, hoarse">hoarse</a>, <a href="mailto:robot">robot</a>, <a href="mailto:child">child</a>, <a href="mailto:deep">deep</a>}.syn: synthesized speech (float)

data.mcep.{ <a href="mailto:high">high</a>, <a href="mailto:low, fast, slow, hoarse">low, hoarse</a>, <a href="mailto:robot">robot</a>, <a href="mailto:child">child</a>, <a href="mailto:deep">deep</a>}.syn
```

9 Speech Synthesis Based on HMM

9.1 Speech parameter generation from a sequence of HMMs

Files: sample.pdf: sequence of mean and variance corresponding to a state sequence included in this example

(float, little endian)³

sample.mcep: mel-cepstrum generated from a sequence of HMMs (float)

Conditions: analysis order: 24

```
weight coefficients for calculating delta: w(-1) = -0.5, w(0) = 0, w(1) = 0.5 weight coefficients for calculating delta-delta: w(-1) = 0.25, w(0) = -0.5, w(1) = 0.25
```

Note: The state sequence is determined according to the state duration densities of the HMMs. The algorithm is not included in SPTK.

```
mlpg -m 24 -i 1 -d -0.5 0 0.5 -d 0.25 -0.5 0.25 sample.pdf > sample.mcep
```

9.2 Plotting spectra calculated from generated mel-cepstrum

Files: sample.mcep: mel-cepstral coefficients (float)

Conditions: analysis order: 24

frequency warping parameter: $\alpha = 0.42$

FFT size: 512 points

plotted frames: from 100-th to 250-th sampling frequency: 16 kHz

```
bcut +f -n 24 -s 100 -e 250 < sample.mcep |\ mgc2sp -m 24 -a 0.42 -g 0 -l 512 | grlogsp -l 512 -x 8 -t | xgr
```


9.3 Speech synthesis from the generated mel-cepstrum

Files: sample.pitch: pitch data generated from a sequence of MSD-HMMs included in this example (float, little endian)⁴

sample.mcep: mel-cepstrum (float)

sample.mcep.syn: synthesized speech (float)

Conditions: frame period: 80 points (5 ms)

analysis order: 24

frequency warping parameter: $\alpha = 0.42$

³If you compiled SPTK with "--enable-double" option, please first convert this file into double format: x2x +sd sample.pdf > sample.pdf.double

⁴If you compiled SPTK with "--enable-double" option, please first convert this file into double format: x2x +sd sample.pitch > sample.pitch.double

Note: The pitch pattern generation algorithm is not included in SPTK.

excite -p 80 sample.pitch |\
mlsadf -p 80 -a 0.42 -m 24 sample.mcep > sample.mcep.syn

gwave +f sample.mcep.syn | xgr

da +f -s 16 sample.mcep.syn

9.4 Check the given mean and variance vectors

Files: sample.pdf: sequence of mean and variance corresponding to a state sequence (float)

Conditions: analysis order: 24

9.4.1 Dump static feature vectors

bcp +f -l 150 -s 0 -e 24 sample.pdf | dmp -n 24 | less

9.4.2 Dump variance vectors of static feature vectors

```
bcp +f -l 150 -s 75 -e 99 sample.pdf | sopr -INV | dmp -n 24 | less
```

9.4.3 Dump dynamic feature vectors (delta)

```
bcp +f -l 150 -s 25 -e 49 sample.pdf | dmp -n 24 | less
```

9.4.4 Dump variance vectors of dynamic feature vectors (delta)

```
bcp +f -l 150 -s 100 -e 124 sample.pdf | sopr -INV | dmp -n 24 | less
```

9.5 Speech synthesis without dynamic feature

Files: sample.pitch: pitch data generated from a sequence of MSD-HMMs (float) sample.mcep.wo-dyn: mel-cepstrum generated without dynamic feature (float) sample.mcep.wo-dyn.syn: synthesized speech without dynamic feature (float)

Conditions: frame period: 80 points (5 ms)

analysis order: 24

frequency warping parameter: $\alpha = 0.42$

bcp +f -l 150 -s 0 -e 24 sample.pdf > sample.mcep.wo-dyn

bcut +f -n 24 -s 100 -e 250 < sample.mcep.wo-dyn $\mid \setminus$ mgc2sp -m 24 -a 0.42 -g 0 -l 512 \mid grlogsp -l 512 -x 8 -t \mid xgr


```
excite -p 80 sample.pitch |\
mlsadf -p 80 -a 0.42 -m 24 sample.mcep.wo-dyn > sample.mcep.wo-dyn.syn
```

gwave +f sample.mcep.wo-dyn.syn | xgr

da +f -s 16 sample.mcep.wo-dyn.syn sample.mcep.syn

10 Voice Conversion based on GMM

Voice conversion from speaker maleA to speaker maleB

10.1 Minimum configuration of voice conversion

Files: <a href="mailto:source_

Conditions: frame length: 400 points(25ms)

frame period: 80 points(5ms) window: Blackman window

analysis order: 24

frequency warping parameter: α =0.42 the number of GMM mixture: 2

10.1.1 Training GMM

```
x2x +sf < source_maleA.raw | frame -1 400 -p 80 | window -1 400 -L 1024 |\
    mcep -1 1024 -m 24 -a 0.42 > source_maleA.mcep
x2x +sf < target_maleB.raw | frame -1 400 -p 80 | window -1 400 -L 1024 |\
    mcep -1 1024 -m 24 -a 0.42 > target_maleB.mcep
dtw -m 24 target_maleB.mcep < source_maleA.mcep | gmm -1 50 -m 2 -f > maleA_maleB.gmm
```

10.1.2 Voice conversion

```
x2x +sf < test_maleA.raw | frame -1 400 -p 80 | window -1 400 -L 1024 |\
    mcep -1 1024 -m 24 -a 0.42 > test_maleA.mcep
x2x +sf < test_maleA.raw | pitch -s 16 -p 80 > test_maleA.pitch
vc -n 24 -m 2 maleA_maleB.gmm < test_maleA.mcep > converted_maleB.mcep
excite -p 80 test_maleA.pitch |\
    mlsadf -m 24 -p 80 -a 0.42 converted_maleB.mcep > converted_maleB.syn
```

10.2 Voice conversion using iterative alignment

Files: source_maleA.short: original speech signal spoken by maleA (short integer, 16 kHz sampling, little endian)

target_maleB.short: target speech signal spoken by maleB (short integer, 16 kHz sampling, little endian)

test_maleA.short: test speech signal spoken by maleA (short integer, 16 kHz sampling, little endian)

converted_maleB_1.syn: converted speech signal (float)

Conditions: frame length: 400 points(25ms)

frame period: 80 points(5ms) window: Blackman window

analysis order: 24

sampling frequency: 16kHz

frequency warping parameter: α =0.42 the number of GMM mixture: 2

10.2.1 Training initial GMM

```
dtw -m 24 target_maleB.mcep < source_maleA.mcep > maleA_maleB_0.dtw
gmm -l 50 -m 2 -f < maleA_maleB_0.dtw > maleA_maleB_0.gmm
```

10.2.2 GMM estimation using iterative alignment

```
x2x +sf < source_maleA.raw | frame -1 400 -p 80 | window -1 400 -L 1024 |\
    mcep -1 1024 -m 24 -a 0.42 |\
    vc -n 24 -m 2 maleA_maleB_0.gmm |\
    dtw -m 24 target_maleB.mcep -v maleA_maleB.viterbi > /dev/null
dtw -m 24 -V maleA_maleB.viterbi target_maleB.mcep < source_maleA.mcep > maleA_maleB_1.dtw
gmm -1 50 -m 2 -f < maleA_maleB_1.dtw > maleA_maleB_1.gmm
```

10.2.3 Voice conversion

```
vc -n 24 -m 2 maleA_maleB_1.gmm < test_maleA.mcep > converted_maleB_1.mcep
excite -p 80 test_maleA.pitch |\
    mlsadf -m 24 -p 80 -a 0.42 converted_maleB_1.mcep > converted_maleB_1.syn
```

11 Speaker Identification Based on GMM

identification of speaker maleB from speaker maleA, maleB and maleC

Files: data_male{A,B,C}.short: speech signal spoken by maleA,B and C (short integer, 16 kHz sampling, little endian)

test_maleB.short: test speech signal spoken by maleB (short integer, 16 kHz sampling, little endian)

Conditions: order of mfcc: 12

11.1 GMM training

```
x2x +sf < data_maleA.short | frame | mfcc | gmm -1 12 > maleA.gmm x2x +sf < data_maleB.short | frame | mfcc | gmm -1 12 > maleB.gmm x2x +sf < data_maleC.short | frame | mfcc | gmm -1 12 > maleC.gmm
```

11.2 Speaker identification

```
x2x +sf < test_maleB.short | frame | mfcc > test_maleB.mfcc
gmmp -a -l 12 maleA.gmm test_maleB.mfcc > result_maleA.score
gmmp -a -l 12 maleB.gmm test_maleB.mfcc > result_maleB.score
gmmp -a -l 12 maleC.gmm test_maleB.mfcc > result_maleC.score
```

The recognized speaker's score is the largest value for the test speech signal.