STATS 310A: Theory of Probability I

Autumn 2016/17

Lecture 4: October 5

Lecturer: Persi Diaconis Scribes: Kenneth Tay

4.1 The $\pi - \lambda$ Theorem

Recall:

• \mathcal{P} is a π -system if it is closed under finite intersections.

• \mathcal{L} is a λ -system if

- 1. $\Omega \in \mathcal{L}$,
- 2. $A \in \mathcal{L} \Rightarrow A^c \in \mathcal{L}$,
- 3. \mathcal{L} closed under countable disjoint unions.

Fact 0: If $A \subseteq B$ are in \mathcal{L} , then $B - A := B \cap A^c \in \mathcal{L}$.

Fact 1: If \mathcal{L} is also a π -system, then \mathcal{L} is a σ -algebra.

Proof: We just need to prove closure under countable unions.

If $A_1, A_2, \ldots \in \mathcal{L}$, then $A_i' := A_i \cap (A_1 \cup \ldots \cup A_{i-1})^c$ is in \mathcal{L} as well. The A_i' 's are disjoint and $\bigcup A_i' = \bigcup A_i$. Hence, we can use the last property of a λ -system to obtain $\bigcup A_i \in \mathcal{L}$.

Theorem 4.1 ($\pi - \lambda$ **Theorem**) If \mathcal{P} is a π -system and \mathcal{L} is a λ -system and $\mathcal{P} \subseteq \mathcal{L}$, then

$$\sigma(\mathcal{P}) \subseteq \mathcal{L}$$
.

Proof: Let \mathcal{L}_0 be the λ -system generated by \mathcal{P} (i.e. the intersection of all λ -systems containing \mathcal{P}). If we show that \mathcal{L}_0 is a π -system, we can use Fact 1 to complete the proof.

Let $A \in \mathcal{L}_0$. Define

$$\mathcal{L}_A = \{ B : A \cap B \in \mathcal{L}_0 \},\$$

i.e. all sets whose intersection with A lies in \mathcal{L}_0 . We claim that \mathcal{L}_A is a λ -system:

- Certainly $\Omega \in \mathcal{L}_A$ since $\Omega \cap A = A \in \mathcal{L}_0$.
- If $B_1 \subseteq B_2$, $B_1, B_2 \in \mathcal{L}_A$, then $A \cap B_1 \subseteq A \cap B_2 \in \mathcal{L}_0$. Since \mathcal{L}_0 is a λ -system, by Fact 0,

$$B_2 \cap A - (B_1 \cap A) \in \mathcal{L}_0,$$

$$(B_2 - B_1) \cap A \in \mathcal{L}_0,$$

so $B_2 - B_1$ in \mathcal{L}_A .

Take $B_2 = \Omega$, then $B_2 - B_1 = B_1^c$ is in \mathcal{L}_A .

4-2 Lecture 4: October 5

• If $B_1, B_2, \ldots \in \mathcal{L}_A$ disjoint, then $A \cap B_1, \ldots A \cap B_n \in \mathcal{L}_0$ are disjoint. Since \mathcal{L}_0 is a λ -system,

$$\bigcup_{n} (A \cap B_n) \in \mathcal{L}_0,$$

$$A \cap \left(\bigcup_{n} B_n\right) \in \mathcal{L}_0,$$

$$\bigcup_{n} B_n \in \mathcal{L}_A.$$

In particular, if $A \in \mathcal{P} \subseteq \mathcal{L}_0$, then \mathcal{L}_A is a λ -system, and if $B \in \mathcal{P}$, we have $A \cap B \in \mathcal{P}$, so $B \in \mathcal{L}_A$. So $\mathcal{P} \subseteq \mathcal{L}_A$, and so $\mathcal{L}_0 \subseteq \mathcal{L}_A$ (since \mathcal{L}_0 is the smallest λ -system containing \mathcal{P}).

Now, if $B \in \mathcal{L}_0$, then $B \in \mathcal{L}_A$, i.e. $B \cap A \in \mathcal{L}_0$, so $A \in \mathcal{L}_B$.

Since A was an arbitrary set in \mathcal{P} , we have $\mathcal{P} \subseteq \mathcal{L}_B$, so $\mathcal{L}_0 \subseteq \mathcal{L}_B$.

Thus, if B and C are contained in \mathcal{L}_0 , then $B \cap C \in \mathcal{L}_0$, so \mathcal{L}_0 is a π -system.

We have
$$\mathcal{P} \subseteq \sigma(P) \subseteq \mathcal{L}_0$$
.

4.1.1 Applications to Independence

Definition 4.2 $\{\mathcal{F}_i\}_{i\in I}$ in $(\Omega, \mathcal{F}, \mathcal{P})$ are **independent** if for every k, $\{A_i\}_{i=1}^k$, $A_i \in \mathcal{F}_i$, we have

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P(A_i).$$

Proposition 4.3 Let $\{A_i\}_{i\in I}$ be π -systems which are independent. Then, if $\mathcal{F}_i = \sigma(A_i)$, the $\{\mathcal{F}_i\}$ are independent.

Proof: We will only prove this proposition for finite $I = \{1, 2, ..., n\}$.

Let $\mathcal{B}_i := \mathcal{A}_i \cup \{\Omega\}$. These are still independent π -systems.

Define

$$\mathcal{L} = \left\{ B_1 \in \mathcal{F} : P(B_1 \cap \ldots \cap B_n) = \prod_{i=1}^n P(B_i) \quad \forall B_2, \ldots, B_n \in \mathcal{B}_2, \ldots, \mathcal{B}_n, \right\},\,$$

i.e. collection of sets in \mathcal{F} which are independent of the other $\{\mathcal{B}_i\}$. Clearly $\mathcal{B}_1 \subseteq \mathcal{L}$.

We claim that \mathcal{L} is a λ -system:

• $\Omega \in \mathcal{B}_1 \subseteq \mathcal{L}$.

Lecture 4: October 5 4-3

• Let $B_1 \in \mathcal{L}$. Then

$$P\{B_{2} \cap \ldots \cap B_{n}\} = P\{(B_{1} \cup B_{1}^{c}) \cap B_{2} \cap \ldots \cap B_{n}\}$$

$$= P\{B_{1} \cap B_{2} \cap \ldots \cap B_{n}\} + P\{B_{1}^{c} \cap B_{2} \cap \ldots \cap B_{n}\}$$

$$= \prod_{i=1}^{n} P(B_{i}) + P\{B_{1}^{c} \cap B_{2} \cap \ldots \cap B_{n}\},$$

$$\prod_{i=2}^{n} P(B_{i}) - \prod_{i=1}^{n} P(B_{i}) = P\{B_{1}^{c} \cap B_{2} \cap \ldots \cap B_{n}\},$$

$$P\{B_{1}^{c} \cap B_{2} \cap \ldots \cap B_{n}\} = P(B_{1}^{c}) \cdot \prod_{i=2}^{n} P(B_{i}),$$

hence $B_1^c \in \mathcal{L}$.

• If B_1^j , $j = 1, 2, \ldots$ are disjoint sets in \mathcal{L} , then

$$P\left(\left(\bigcup_{j} B_{1}^{j}\right) \cap B_{2} \cap \ldots \cap B_{n}\right) = P\left(\bigcup_{j} (B_{1}^{j} \cap B_{2} \cap \ldots \cap B_{n})\right)$$

$$= \sum_{j} P(B_{1}^{j} \cap B_{2} \cap \ldots \cap B_{n})$$

$$= \sum_{j} P(B_{1}^{j}) \prod_{i=2}^{n} P(B_{i})$$

$$= P\left(\bigcup_{j} B_{1}^{j}\right) \prod_{i=2}^{n} P(B_{i}),$$

i.e.
$$\bigcup_{i} B_1^j \in \mathcal{L}$$
.

Since \mathcal{L} is a λ -system containing the π -system \mathcal{B}_1 , we have $\sigma(\mathcal{B}_1) = \sigma(\mathcal{A}_1) \subseteq \mathcal{L}$. Thus, $\sigma(\mathcal{A}_1)$ is independent of B_2, \ldots, B_n .

Repeat this argument with

$$\mathcal{L} = \left\{ B_2 \in \mathcal{F} : P(B_1 \cap \ldots \cap B_n) = \prod_{i=1}^n P(B_i), B_1 \in \sigma(\mathcal{A}_1), B_i \in \mathcal{B}_i \text{ for } i = 3, \ldots \right\},\,$$

and so on. We obtain the result that $\sigma(A_1), \ldots, \sigma(A_n)$ are independent.

4-4 Lecture 4: October 5

4.2 0-1 Laws

4.2.1 Borel-Cantelli Lemmas

Definition 4.4 Let (Ω, \mathcal{F}, P) be a probability space. Let $A_i, 1 \leq i < \infty$ be measurable sets. Define the event

$$\begin{aligned} A_i \ i.o. &:= \{\omega : \omega \in infinitely \ many \ A_i\} \\ &= \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m. \end{aligned}$$

For example, in the coin tossing example, if $A_i = \{d_i = 1\}$, then A_i i.o. $= \{\omega : \omega \text{ has infinitely many 1s}\}$.

Proposition 4.5 (1st Borel-Cantelli Lemma) If $\sum_{i=1}^{\infty} P(A_i) < \infty$, then $P(A_i \ i.o.) = 0$.

Proof: For any n,

$$A_i$$
 i.o. $\subseteq \bigcup_{m=n}^{\infty} A_m$.

Choose n large so that $\sum_{m=n}^{\infty} P(A_m) < \varepsilon$. Then

$$P(A_i \text{ i.o.}) \leq \sum_{m=n}^{\infty} P(A_m) < \varepsilon.$$

Example (Coin flipping): Let (Ω, \mathcal{F}, P) be the unit interval with length. Look at the longest head run starting at n, denoted by l_n :

$$l_n(\omega) = k \quad \Leftrightarrow \quad d_n(w) = d_{n+1}(\omega) = \dots = d_{n+k-1}(\omega) = 1, d_{n+k}(\omega) = 0.$$

It is clear that

$$P(l_n(\omega) = k) = \frac{1}{2^{k+1}}.$$

Pick integers r_1, r_2, \ldots Let $A_n = \{\omega : l_n(\omega) \ge r_n\}$. Then

$$P(A_n) = \sum_{k=0}^{\infty} P(l_n = r_n + k)$$
$$= \sum_{k=0}^{\infty} \frac{1}{2^{r_n + k + 1}}$$
$$= \frac{1}{2^{r_n}}.$$

Lecture 4: October 5 4-5

By the 1st Borel-Cantelli Lemma, if $\sum \frac{1}{2^{r_n}} < \infty$, then $P(A_n \text{ i.o.}) = 0$. (For example, $r_n = n$, $r_n = (1+\varepsilon)\log_2 n$.)

Proposition 4.6 (2nd Borel-Cantelli Lemma) If $\sum_{i=1}^{\infty} P(A_i) = \infty$ and A_i are independent, then $P(A_i \ i.o.) = 1$.

Proof: Recall this fact: $1 - x \le e^{-x}$ for all $x \in \mathbb{R}$. Hence,

$$\{A_n \text{ i.o.}\}^c = \left[\bigcap_{m=1}^{\infty} \bigcup_{m=n}^{\infty} A_m\right]^c$$

$$= \bigcup_{m=1}^{\infty} \bigcap_{m=n}^{\infty} A_m^c,$$

$$P\left(\bigcap_{m=n}^{\infty} A_m^c\right) = \prod_{i=n}^{\infty} P(A_i^c)$$

$$= \prod_{i=n}^{\infty} (1 - P(A_i))$$

$$\leq \exp\left[-\sum_{i=n}^{\infty} P(A_n)\right].$$

For any n, the exponent is $-\infty$. Hence $P\{A_n \text{ i.o.}\}=1$.

Definition 4.7 If $\{x_n\}_{n=1}^{\infty}$ is a sequence of real numbers, $\limsup x_n := l$ if for all $\varepsilon > 0$,

- 1. $x_n \ge l \varepsilon$ infinitely often, and
- 2. $x_n < l + \varepsilon$ for all sufficiently large n.

Example: $0, 1, 0, 1, \ldots$ has $\limsup x_n = 1$.

Theorem 4.8 For the longest head run,

$$\limsup \frac{l_n(\omega)}{\log_2 n} = 1$$

for almost all ω .

Proof: We proved that with probability 1, $l_n(\omega) < (1 + \varepsilon) \log_2 n$ for sufficiently large n (from the 1st Borel-Cantelli Lemma.

$$l_n(\omega) > (1-\varepsilon)\log_2 n$$
 i.o. follows from the 2nd Borel-Cantelli Lemma.

4-6 Lecture 4: October 5

4.2.2 Kolmogorov's 0-1 Law

Definition 4.9 For a sequence of events A_1, A_2, \ldots , define the **tail field** of the A_i 's as

$$\mathcal{T} := \bigcap_{i=1}^{\infty} \sigma(A_i, A_{i+1}, \dots).$$

Intuitively, this is the set of events that don't depend on any finite number of the A_i 's.

Example: $A_i = \{d_i = 1\}$ in coin tossing. Then $A = \{\frac{S_n}{n} \text{ converges}\}$ is a tail set, i.e. is in \mathcal{T} .

Theorem 4.10 (Kolmogorov 0-1 Law) Let (Ω, \mathcal{F}, P) be a probability space. Let $A_i, 1 \leq i < \infty$ be sets in \mathcal{F} which are independent. Then any tail set has probability 0 or 1.

Proof: Take $A \in \mathcal{T}$. Then $A \subseteq \sigma(A_i, A_{i+1}, \dots)$, which means that A is independent of A_1, \dots, A_{i-1} .

But this is true for every i! So A is independent of $\sigma(A_1, A_2, ...)$.

However, $A \in \sigma(A_1, A_2, ...)$, so $A \perp A$, i.e. is independent of itself.

This means that $P(A \cap A) = P(A)P(A)$, i.e. P(A) = 0 or 1.