Capacitors

Capacitors—devices that store electric charge. Capacitors are commonly used in a variety of electric circuits. For instance, they are used to

- tune the frequency of radio receivers,
- as filters in power supplies,
- to eliminate sparking in automobile ignition systems, and
- as energy-storing devices in electronic flash units.

Consider two conductors carrying charges of equal magnitude but of opposite sign, as shown in Figure. Such a combination of two conductors is called a capacitor. The conductors are called *plates*. A potential difference V exists between the conductors due to the presence of the charges.

The **capacitance** *C* of a capacitor is the ratio of the magnitude of the charge on either conductor to the magnitude of the potential difference between them:

$$C \equiv \frac{Q}{\Delta V} \tag{26.1}$$

CALCULATING CAPACITANCE

Parallel-Plate Capacitors

Two parallel metallic plates of equal area *A are separated by a distance d, as shown* in Figure. One plate carries a charge *Q*, and the other carries a charge *Q*.

The value of the electric field between the plates is

$$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{\epsilon_0 A}$$

$$\Delta V = Ed = \frac{Qd}{\epsilon_0 A}$$

$$C = \frac{Q}{\Delta V} = \frac{Q}{Qd/\epsilon_0 A}$$

$$C = \frac{\epsilon_0 A}{d}$$

the capacitance of a parallel-plate capacitor is proportional to the area of its plates and inversely proportional to the plate separation,

The Cylindrical Capacitor

A solid cylindrical conductor of radius a and charge Q is coaxial with a cylindrical shell of negligible thickness, radius b > a, and charge -Q

irst calculate the potential difference between the two cylinders,

$$V_b - V_a = -\int_a^b \mathbf{E} \cdot d\mathbf{s}$$
 $E_r = 2k_e \lambda / r$

$$E_r = 2k_e\lambda/r$$

$$V_b - V_a = -\int_a^b E_r dr = -2k_e \lambda \int_a^b \frac{dr}{r} = -2k_e \lambda \ln\left(\frac{b}{a}\right)$$

$$C = \frac{Q}{\Delta V} = \frac{Q}{\frac{2k_e Q}{\ell} \ln \left(\frac{b}{a}\right)} = \frac{\ell}{2k_e \ln \left(\frac{b}{a}\right)}$$

$$\frac{C}{\ell} = \frac{1}{2k_e \ln\left(\frac{b}{a}\right)}$$

the capacitance per unit length of

The Spherical Capacitor

A spherical capacitor consists of a spherical conducting shell of radius b and charge -Q concentric with a smaller conducting sphere of radius a and charge Q

$$\begin{split} V_b - V_a &= -\int_a^b E_r \, dr = -\, k_e Q \int_a^b \frac{dr}{r^2} = \, k_e Q \left[\frac{1}{r} \right]_a^b \\ &= k_e Q \left(\frac{1}{b} - \frac{1}{a} \right) \end{split}$$

$$\Delta V = |V_b - V_a| = k_e Q \frac{(b-a)}{ab}$$

$$C = \frac{Q}{\Delta V} = \frac{ab}{k_e(b-a)}$$

COMBINATIONS OF CAPACITORS

Parallel Combination

The individual potential differences across capacitors connected in parallel are all the same and are equal to the potential difference applied across the

combination.

The total charge Q stored by the two capacitors is

$$Q = Q_1 + Q_2$$

$$Q_1 = C_1 \Delta V \qquad Q_2 = C_2 \Delta V \qquad Q = C_{eq} \Delta V$$

$$\begin{split} C_{\rm eq} \, \Delta V &= \, C_1 \, \Delta V + \, C_2 \, \Delta V \\ C_{\rm eq} &= \, C_1 \, + \, C_2 \, \quad \begin{pmatrix} {\rm parallel} \\ {\rm combination} \end{pmatrix} \end{split}$$

$$C_{\text{eq}} = C_1 + C_2 + C_3 + \cdots$$
 (parallel combination)

COMBINATIONS OF CAPACITORS

 ΔV

 ΔV

Series Combination

$$\Delta V = \Delta V_1 + \Delta V_2$$

$$\Delta V_1 = \frac{Q}{C_1}$$
 $\Delta V_2 = \frac{Q}{C_2}$ $\Delta V = \frac{Q}{C_{eq}}$

$$\frac{Q}{C_{\rm eq}} = \frac{Q}{C_1} + \frac{Q}{C_2}$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$
 (series combination)

$$\frac{1}{C_{\rm eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots \qquad \begin{pmatrix} \text{series} \\ \text{combination} \end{pmatrix}$$

This demonstrates that the equivalent capacitance of a series combination is always less than any individual capacitance in the combination.

ENERGY STORED IN A CHARGED CAPACITOR

Suppose that q is the charge on the capacitor at some instant during the charging process. At the same instant, the potential difference across the capacitor is $\Delta V = q/C$.

the work necessary to transfer an increment of charge dq from the plate carrying charge -q to the plate carrying charge q (which is at the higher electric potential) is

$$dW = \Delta V dq = \frac{q}{C} dq$$

$$W = \int_0^Q \frac{q}{C} \, dq = \frac{1}{C} \int_0^Q q \, dq = \frac{Q^2}{2C}$$

$$U = \frac{Q^2}{2C} = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$$

Energy stored in a parallel-plate capacitor

$$U = \frac{1}{2} \frac{\epsilon_0 A}{d} (E^2 d^2) = \frac{1}{2} (\epsilon_0 A d) E^2$$

energy per unit volume $u_E = U/V = U/Ad$,

Energy density in an electric field

$$u_E = \frac{1}{2} \epsilon_0 E^2$$

energy density in any electric field is proportional to the square of the magnitude of the electric field at a given point.

CAPACITORS WITH DIELECTRICS

A dielectric is a non conducting material, such as rubber, glass, or waxed paper.

When a dielectric is inserted between the plates of a capacitor, the capacitance increases.

If the dielectric completely fills the space between the plates, the capacitance increases by a dimensionless factor κ, which is called the dielectric constant.

$$\Delta V = \frac{\Delta V_0}{\kappa}$$

$$C = \frac{Q_0}{\Delta V} = \frac{Q_0}{\Delta V_0 / \kappa} = \kappa \frac{Q_0}{\Delta V_0}$$

$$C = \kappa C_0$$

$$C = \kappa \frac{\epsilon_0 A}{d}$$

advantages:

- Increase in capacitance
- · Increase in maximum operating voltage
- Possible mechanical support between the plates, which allows the plates to be close together without touching, thereby decreasing d and increasing C

Types of Capacitors

Figure 26.15 Three commercial capacitor designs. (a) A tubular capacitor, whose plates are separated by paper and then rolled into a cylinder. (b) A high-voltage capacitor consisting of many parallel plates separated by insulating oil. (c) An electrolytic capacitor.

AN ATOMIC DESCRIPTION OF DIELECTRICS

the field in the presence of a dielectric is

$$\mathbf{E} = \frac{\mathbf{E}_0}{\kappa}$$

Polar molecules are randomly oriented in the absence of an external

electric field.

b) When an external field is applied, the molecules partially align with the field.

 $\sigma_{\rm ind} - \sigma$

 $-\sigma_{\text{ind}}$

(a)

