L3Res global fit status April 20, 2020

Mikko Voutilainen, U. Helsinki and HIP Henning Kirschenmann, HIP

Results for UL17_V1 inputs vs EOY17 reference

//indico.cern.ch/event/896070/#28-update-on-ul17-z-jet-13resi).
The multijet results were privately provided through Minsuk Kim's CERNbox.
Photon+jet from Lucas Torterotot (

The Z+jet results use inputs posted on the JEC agenda of March 9, 2020 (https:

combinationfiles/JEC_Summer19UL17_V1-JER_Fall17_V3b/2020-04-02/*).

I would like to extend special thanks to

► Maximilian Horzela and Daniel Savoiu for Z+jet inputs

/afs/cern.ch/work/l/ltortero/public/JEC-task/2017UL/

- Lucas Torterotot for γ +jet inputs
- Minsuk Kim for multijet inputs
- ▶ Henning Kirschenmann for maintaining global fit software in gitHub

Current to-do list:

- ▶ MPF uncertainties from FSR at high p_T should be smaller. This should increase response and pull UL17 closer to 2016, 2018. At low p_T MPF FSR uncertainty they can be larger, thus constrain L1Res bit less.
- No EM scale for Zee or gamma. NB: Photon scale shifted down by 1% to match ZII
- ▶ Need $|\eta_{e+,e-}| < 1.3$ break-up for Zee mass to use with γ
- \blacktriangleright Further input needed on photon scale uncertainties vs p_T
- ► Finish parameter pulls and correlations plots

Some notes about current global fit settings:

- Electron and muon scales are corrected with Z mass in RunBCDEF. This is measured in bins of Z p_T and fitted with quadratic logarithmic function (constant for $Z\mu\mu$). Z mass fit uncertainty is added to statistical uncertainty for each sample, and Zee and $Z\mu\mu$ are subsequently combined into ZII, which is used in global fit to avoid decorrelated k_{ESR}
- ▶ Photon scale is corrected with Zee mass at $p_{T,Z} = 2 \times p_{T,\gamma}$, and fit uncertainty is added to statistical uncertainty (tbd: get Zee mass with EB-EB only)
- ▶ Reference scale uncertainties are set to 0.2% for combined leptons ($l=e+\mu$), **0.5% for photons with 1.0% rescaling** (since no EM scale yet)
- ▶ MPF method is given additional 0.5% uncertainty for γ +jet and 0.2% for ZII+jet (for 40% Zee+jet) to cover for possible residual EM footprint effects
- ▶ New: k_{FSR} central value and uncertainties are taken for all IOVs from BCDEF
- to reduce uncertainties and avoid decorrelation for pTbal ▶ JEC parameterization is the 2-p fit previously used in 2017

α < 0.3; this last one is used for global fit vs p_T
 Other inclusive α bins are used to derive custom FSR+ISR corrections, under the assumption of linear dependence versus α cut and log-quadratic dependence versus p_T

▶ Inputs are provided for MPF and p_T balance with $\alpha < 0.1, 0.15, 0.20$ and

- dependence versus p_T
 FSR+ISR corrections are further constrained in global fit under the assumption that both MPF and p_T balance converge to same ultimate result (within constraints of their uncorrelated systematics)
- ho γ +jet is also used only at $p_T > 105$ GeV to avoid QCD dijet contamination ho Compared to FOY17, re-enabled 7+jet nTbal at 30–100 GeV with
- ▶ Compared to EOY17, re-enabled Z+jet pTbal at 30–100 GeV with $\alpha_{\rm eff,max} = 0.45$ (**tbd:** revisit pTbal FSR slope change at $p_T < 100$ GeV based

on full Run 2 data, add MPF bias shape from unclustered energy)

current default (plan: JER-syst. weighted average) triggers: {"it0","it40","it60","it80","it140","it200","it260","it320","it400","it450","it5

 \triangleright Multijets has both recoil p_T and leading jet p_T binning; **leading** used as

leading thresholds: {{{0,64},{64,84},{84,114},{114,196},{196,272},{272,330},{330,395},{395,468}

recoil threhsolds: {{{0,97},{97,196},{196,220},{220,272},{272,395},{395,468},{468,592},{592,6

FSR corrections applied (derived vs $p_{T.min}$), fit uncertainty added in global fit

JER uncertainty included (derived for recoil and leading) in global fit (plan: reduced with JER-syst. weighted average, derive 2nd order JER syst. e.g. from recoil vs leading)

Figure : (a) Shift in Zee and $Z\mu\mu$ masses versus Z p_T . (b) MPF and p_T balance for Zee+jet and γ +jet versus $Z\mu\mu$ +jet after mass (and FSR) corrections. γ +jet is EOY17.

Figure: Data (UL17) vs data (EOY17)

Figure: MC (UL17) vs MC (EOY17)

Figure: Data/MC ratio (UL17) vs Data/MC ratio (EOY17)

Figure: Stability checks between data IOVs.

Figure: MC JEC UL17 V1 vs EOY17 V32 (CX=ComplexL1, S=SimpleL1).

Figure: Data JEC UL17 V1 vs EOY17 V32 (CX=ComplexL1, S=SimpleL1).

Figure: Final fit results.

Figure: Pre-fit (post-FSR) results.

Figure: Raw (Pre-fit, pre-FSR) results.

