1. Impoting Dependencies:

C-Number of row & columns:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn import metrics
```

2. Data Collcetion and Analysis:

A- Loading dataset:

```
In [ ]: data_car = pd.read_csv("C:/Machine_learning Python/projets/CarPrice/car data.csv
```

B- View the data (head)

In []: data_car.head()

Out[]:		Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Tr
	0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	
	1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	
	2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	
	3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	
	4	swift	2014	4.60	6.87	42450	Diesel	Dealer	
	4								

C- type of the data (head)

```
In [ ]: type(data_car)
```

Out[]: pandas.core.frame.DataFrame

D-Number of row & columns:

In []: data_car.shape

Out[]: (301, 9)

E- Information about the data:

In []: data_car.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 301 entries, 0 to 300 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Car_Name	301 non-null	object
1	Year	301 non-null	int64
2	Selling_Price	301 non-null	float64
3	Present_Price	301 non-null	float64
4	Kms_Driven	301 non-null	int64
5	Fuel_Type	301 non-null	object
6	Seller_Type	301 non-null	object
7	Transmission	301 non-null	object
8	Owner	301 non-null	int64
dtypes: float64(2),		int64(3), object	t(4)

memory usage: 21.3+ KB

2. Statisctical measures:

A- General Statistic:

```
In [ ]: data_car.describe()
```

Out[

]:		Year	Selling_Price	Present_Price	Kms_Driven	Owner
	count	301.000000	301.000000	301.000000	301.000000	301.000000
	mean	2013.627907	4.661296	7.628472	36947.205980	0.043189
	std	2.891554	5.082812	8.644115	38886.883882	0.247915
	min	2003.000000	0.100000	0.320000	500.000000	0.000000
	25%	2012.000000	0.900000	1.200000	15000.000000	0.000000
	50%	2014.000000	3.600000	6.400000	32000.000000	0.000000
	75%	2016.000000	6.000000	9.900000	48767.000000	0.000000
	max	2018.000000	35.000000	92.600000	500000.000000	3.000000

B- Number of missing value in each column;

```
In [ ]: data_car.isnull().sum()
        #Any missing values
```

```
Out[]: Car_Name
                          0
                          0
         Year
         Selling_Price
                          0
         Present_Price
         Kms_Driven
                          0
         Fuel_Type
         Seller_Type
                          0
         Transmission
         Owner
                          0
         dtype: int64
```

3. Label Encoding:

A- Distribution of categorical data:

```
In [ ]: print(data_car.Fuel_Type.value_counts())
        print(data_car.Seller_Type.value_counts())
        print(data_car.Transmission.value_counts())
       Fuel_Type
       Petrol
                  239
       Diesel
                   60
       CNG
       Name: count, dtype: int64
       Seller_Type
       Dealer
                      195
       Individual
                      106
       Name: count, dtype: int64
       Transmission
       Manual
                     261
       Automatic
                      40
       Name: count, dtype: int64
        B- Encoding the categorical Data:
In [ ]: data_car.replace({"Fuel_Type": {'Petrol':0,'Diesel':1, 'CNG': 2 }}, inplace=True
        data_car.replace({"Seller_Type": {'Dealer':0,'Individual':1}}, inplace=True)
        data_car.replace({"Transmission": {'Manual':0,'Automatic':1}}, inplace=True)
        data car.head()
Out[]:
                      Year Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type
            Car_Name
         0
                  ritz 2014
                                                                            0
                                                                                        0
                                     3.35
                                                   5.59
                                                             27000
         1
                  sx4
                       2013
                                     4.75
                                                   9.54
                                                             43000
                                                                            1
                                                                                        0
         2
                                                                            0
                  ciaz 2017
                                     7.25
                                                   9.85
                                                              6900
                                                                                        0
         3
              wagon r 2011
                                     2.85
                                                   4.15
                                                              5200
                                                                            0
                                                                                        0
                                                                                        0
         4
                 swift 2014
                                     4.60
                                                   6.87
                                                             42450
                                                                            1
        C- Review the type:
In [ ]: print(data_car.Fuel_Type.value_counts())
        print(data_car.Seller_Type.value_counts())
        print(data_car.Transmission.value_counts())
```

```
Fuel_Type
0 239
1
      60
2
       2
Name: count, dtype: int64
Seller_Type
0
     195
     106
Name: count, dtype: int64
Transmission
    261
     40
Name: count, dtype: int64
   5. Train test split:
```

A- Separating a data & label

```
In [ ]: X = data_car.drop(columns=["Car_Name","Selling_Price"], axis= 1)
Y = data_car["Selling_Price"]
print(X)
print(Y)
```

```
Year Present_Price Kms_Driven Fuel_Type Seller_Type Transmission
       0
            2014
                           5.59
                                       27000
       1
            2013
                           9.54
                                       43000
                                                       1
                                                                    0
                                                                                   0
       2
            2017
                           9.85
                                        6900
                                                       0
                                                                    0
                                                                                   0
       3
            2011
                           4.15
                                        5200
                                                       0
                                                                    0
                                                                                   0
       4
            2014
                           6.87
                                       42450
                                                       1
                                                                    0
                                                                                   0
       296 2016
                           11.60
                                       33988
                                                      1
                                                                    0
                                                                                   0
       297
            2015
                           5.90
                                       60000
                                                       0
                                                                    0
                                                                                   0
       298
            2009
                           11.00
                                       87934
                                                       0
                                                                    0
                                                                                   0
       299 2017
                           12.50
                                        9000
                                                       1
                                                                    0
                                                                                   0
       300 2016
                           5.90
                                        5464
            Owner
       0
                0
       1
                0
       2
                0
       3
                0
       4
                0
       296
                0
       297
                0
       298
                0
       299
                0
       300
                0
       [301 rows x 7 columns]
       0
               3.35
       1
               4.75
       2
               7.25
       3
               2.85
       4
               4.60
               . . .
       296
               9.50
       297
               4.00
       298
               3.35
       299
              11.50
       300
               5.30
       Name: Selling_Price, Length: 301, dtype: float64
        B- Test Split
In [ ]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.1, rando
In [ ]: print(X.shape, X_train.shape, X_test.shape)
       (301, 7) (270, 7) (31, 7)
          6. Training the model (Linear Regression):
        A- Loading the model
        linear_model = LinearRegression()
        B- Training the model:
        linear model.fit(X train, Y train)
```

```
Out[]: v LinearRegression
LinearRegression()
```

7. Model Evaluation:

A- Error score of training data:

```
In [ ]: X_train_prediction = linear_model.predict(X_train)
    error_score = metrics.r2_score(Y_train, X_train_prediction)
    print("R squared Error : ", error_score)
```

R squared Error: 0.8799451660493708

B- Visualisation of the actual & predicted prices:

```
In [ ]: plt.scatter(Y_train, X_train_prediction)
    plt.xlabel("Actual Price")
    plt.ylabel("Predicted Price")
    plt.title("Actual price vs predicted prices")
    plt.show()
```


C- Error score of training data:

```
In [ ]: X_train_predictionTest = linear_model.predict(X_test)
    error_scoreTest = metrics.r2_score(Y_test, X_train_predictionTest)
    print("R squared Error : ", error_scoreTest)
```

R squared Error: 0.8365766715026374

D- Visualisation of the actual & predicted prices:

```
In [ ]: plt.scatter(Y_test, X_train_predictionTest)
    plt.xlabel("Actual Price")
    plt.ylabel("Predicted Price")
    plt.title("Actual price vs predicted prices")
    plt.show()
```


8. Training the model (Lasso Regression):

A- Loading the model:

9. Model Evaluation:

A- Error score of training data:

```
In [ ]: X_train_prediction = Lasso_Model.predict(X_train)
    error_score = metrics.r2_score(Y_train, X_train_prediction)
    print("R squared Error : ", error_score)
```

R squared Error: 0.8427856123435794

B- Visualisation of the actual & predicted prices:

```
In [ ]: plt.scatter(Y_train, X_train_prediction)
    plt.xlabel("Actual Price")
    plt.ylabel("Predicted Price")
    plt.title("Actual price vs predicted prices")
    plt.show()
```

Actual price vs predicted prices

C- Error score of training data:

```
In [ ]: X_train_predictionTest = Lasso_Model.predict(X_test)
    error_scoreTest = metrics.r2_score(Y_test, X_train_predictionTest)
    print("R squared Error : ", error_scoreTest)
```

R squared Error : 0.8709167941173195

D- Visualisation of the actual & predicted prices:

```
In [ ]: plt.scatter(Y_test, X_train_predictionTest)
    plt.xlabel("Actual Price")
    plt.ylabel("Predicted Price")
    plt.title("Actual price vs predicted prices")
    plt.show()
```

