UNIVERSIDADE DE SÃO PAULO - INSTITUTO OCEANOGRÁFICO CURSO DE PÓS-GRADUAÇÃO EM OCEANOGRAFIA FÍSICA IOF 5828 - HIDRODINÂMICA DA PLATAFORMA CONTINENTAL

PROFESSOR: BELMIRO MENDES DE CASTRO FILHO

LISTA DE EXERCÍCIOS 2 - DEVOLUÇÃO: 28/11/17

1. As equações de águas rasas podem ser linearizadas em torno de um estado básico definido por:

$$(\bar{\eta}, \bar{u}, \bar{v}) = [\bar{\eta}(x), 0, \bar{v}]$$

tal que a componente de velocidade \bar{v} seja constante e esteja em equilíbrio geostrófico, isto é:

$$f\bar{v} = g \frac{\partial \bar{\eta}}{\partial x}$$

- (a) Linearize as equações de águas rasas em torno desse estado básico. Suponha que $H_o \gg |\bar{\eta}|$, sendo H_o a espessura da coluna de água no estado de repouso;
- (b) Supondo uma plataforma continental ocupando a região $x \geq 0$, e que H_o é constante, simplifique o sistema linearizado obtido filtrando das possíveis soluções as ondas de Poincaré;
- (c) Utilizando o sistema simplificado, obtenha uma equação de onda para η' , a perturbação do nível do mar sobre o estado básico $\bar{\eta}$;
- (d) Supondo solução harmônica com frequência $\omega > 0$, encontre a relação de dispersão para $\ell > 0$ e para $\ell < 0$, sendo ℓ o número de onda paralelo à costa;
- (e) Determine a estrutura normal à costa da onda obtida no ítem anterior. Qual deve ser a relação entre $\frac{\omega}{\ell}$ e \bar{v} , nos casos $\ell > 0$ e $\ell < 0$, para o hemisfério sul?

- (f) Qual a equação independente de ℓ para a velocidade de fase das ondas em estudo, tanto para $\ell > 0$ quanto para $\ell < 0$?
- (g) Identifique e justifique qual tipo de onda está sendo estudada. Como se explica a existência de velocidade de fase paralela à costa negativa no hemisfério sul?
- 2. Combinando as equações inviscidas linearizadas para águas rasas, e desprezando o efeito da rotação da Terra, podemos obter a seguinte equação para o deslocamento da superfície livre do mar:

$$\frac{\partial^2 \eta}{\partial t^2} - g\left[\frac{\partial}{\partial x} (H_o \frac{\partial \eta}{\partial x}) + \frac{\partial}{\partial y} (H_o \frac{\partial \eta}{\partial y})\right] = 0$$

- (a) Obtenha a equação acima;
- (b) Para uma plataforma continental linearmente inclinada semi-infinita, cuja topografia é dada por:

$$H_o(x) = \alpha x, \quad x > 0, \quad \alpha > 0$$

sendo x a direção normal à uma costa reta infinita situada em x=0 , e para soluções harmônicas da forma:

$$\eta = Re[\eta_o(x)e^{i(\ell y - \omega t)}]$$

obtenha a equação diferencial para η_o ;

- (c) Resolva a equação diferencial para η_o utilizando polinômios de Laguerre e obtenha a relação de dispersão. Que tipo de onda aparece como solução?
- (d) Encontre as soluções para η , u e v para o modo fundamental ("gravest mode"). Essa solução parcial foi obtida pela primeira vez em 1846, por Stokes. Discuta a validade e aplicabilidade dessa solução.

3. Para uma plataforma continental linearmente inclinada semi-infinita, obtenha a seguinte relação de dispersão para ondas livres:

$$\omega_n^3 - [f_o^2 + (2n+1)g\alpha\ell]\omega_n - f_o g\alpha\ell = 0, \quad n = 0, 1, 2, \dots$$

onde ω_n é a frequência do enésimo modo, f_o é a frequência inercial, α é a inclinação do fundo, e ℓ é o número de onda na direção paralela à costa. Fazendo a aproximação $\omega^2 \ll f_o^2$, discuta a relação de dispersão resultante.

4. Confinamento de ondas pode ocorrer devido à presença de uma parede vertical que ocupa parte da coluna de água, como o talude continental, por exemplo. Essas ondas são chamadas Ondas Duplas de Kelvin ("Double Kelvin Waves"). Para uma topografia do tipo:

$$H_o(x) = \begin{cases} H_1 & \text{para } x < 0 \\ H_2 & \text{para } x > 0 \end{cases}$$

 $H_1 < H_2$, e utilizando a aproximação da camada rígida, pede-se:

- (a) Encontrar a solução para a amplitude da função de corrente $\Psi(x)$. Esquematize graficamente essa solução;
- (b) Encontrar a relação de dispersão. Como é a propagação de fase em cada hemisfério?
- 5. No estudo de Ondas de Plataforma Continental (OPC) emprega-se, muitas vezes, a aproximação da camada rígida, isto é, assume-se que a divergência horizontal na superfície é desprezível.
 - (a) Mostre que uma condição para a utilização da aproximação da camada rígida no estudo de OPC é:

$$\frac{f_o^2 L^2}{g\bar{H}} \ll 1$$

onde L é a largura e \bar{H} a profundidade média da plataforma continental. Como pode ser chamada a grandeza esquerda da desigualdade acima?

(b) Mostre que outra forma de exprimir a desigualdade acima é:

$$\frac{\omega}{\ell} \ll \frac{g}{f_o} \frac{dH_o}{dx}$$

onde ω é a frequência, ℓ o número de onda paralelo à costa, $H_o(x)$ a espessura da coluna de água no repouso e x a direção perpendicular à costa.

(c) Essa aproximação seria justificável para estudos de OPC na Plataforma Continental Sudeste do Brasil? Justifique.