#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 2. 범주형 변수
 - 1) 종류별로 데이터 수량 확인
- 2) 범주형 데이터의 데이터 분

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

1. 패키지 참조하기

```
import sys
sys.path.append("../../")
import helper

import numpy as np
from pandas import read_excel, DataFrame, melt, merge
from pca import pca
from pandas.api.types import CategoricalDtype
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
from matplotlib import pyplot as plt
import seaborn as sb
from scipy import stats
import statsmodels.api as sm
```

2. 데이터 가져오기

미국 환자의 의료비가 들어 있는 데이터셋으로 1,338 개의 관측치가 있다.

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 2. 범주형 변수
 - 1) 종류별로 데이터 수량 확인
- 2) 범주형 데이터의 데이터 분

변수	의미	기타
age	수익자의 연령	수치형
sex	계약자의 성별	범주형 데이터(female/male)
bmi	미만도. 몸무게를 키의 제곱 으로 나눈 값.	수치형 정상범위: 18.5~24.9
children	의료보험이 적용되는 자녀 수	수치형 데이터
smoker	흡연 여부	범주형 데이터(yes/no)
region	거주지역	범주형 (북동: northeast, 남동: southeast / 남서: southwest / 북서: northwest)
expense	의료비	수치형 데이터

origin = read_excel("https://data.hossam.kr/E04/insurance.xlsx")
origin

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

10_선형회귀_예시(2).ipynb

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 2. 범주형 변수
 - 1) 종류별로 데이터 수량 확인
- 2) 범주형 데이터의 데이터 분

	age	sex	bmi	children	smoker	region	charges
•••							
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

#02. 데이터 전처리

1. 데이터 프레임 복사 후 결측치와 데이터 타입 확인

```
edf = origin.copy()
helper.prettyPrint(edf.isna().sum(), title="결촉치 개수")
helper.prettyPrint(edf.dtypes, title="데이터 타입")
```


10_선형회귀_예시(2).ipynb

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 2. 범주형 변수
 - 1) 종류별로 데이터 수량 확인
- 2) 범주형 데이터의 데이터 분

2. 범주형 타입 변환

범주형 필드 이름

```
cnames = ["sex", "smoker", "region"]
cnames
```

['sex', 'smoker', 'region']

범주형 컬럼 타입 변환

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 2. 범주형 변수
 - 1) 종류별로 데이터 수량 확인
- 2) 범주형 데이터의 데이터 분

edf2 = helper.setCategory(edf, fields=cnames, labelling=False) helper.prettyPrint(edf2.dtypes, title="데이터 타일")

#03. 탐색적 데이터 분석

1. 수치형 변수

1) 기초 통계량 확인

수치형 데이터 타입은 전체적인 통계값을 파악하는 것이 좋다.

```
desc = edf2.describe()
helper.prettyPrint(desc)
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 2. 범주형 변수
 - 1) 종류별로 데이터 수량 확인
- 2) 범주형 데이터의 데이터 분

+	+	L	+	·
į	age	bmi	children	charges
count	1338	1338	1338	1338
mean	39.207	30.6634	1.09492	13270.4
std	14.05	6.09819	1.20549	12110
min	18	15.96	0	1121.87
25%	27	26.2963	0	4740.29
50%	39	30.4	1	9382.03
75%	51	34.6938	2	16639.9
max	64	53.13	5	63770.4
+	+		+	·

의료비지출 변수의 통계값을 살펴보면 중앙값이 \$9,382 이고, 평균이 \$13,270 인 것을 알수 있다. 여기서 해당 변수의 평균값이 중앙값보다 크기 때문에 의료비 분포는 오른쪽으로 꼬리가 긴 분포를 지닐 것이다.

2) 전체 상자그림 확인

```
plt.figure(figsize=(10, 5))
sb.boxplot(data=edf)
plt.grid()
plt.show()
plt.close()
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 2. 범주형 변수
 - 1) 종류별로 데이터 수량 확인
- 2) 범주형 데이터의 데이터 분

3) 개별 상자그림 확인

```
fig, ax = plt.subplots(2,2, figsize=(13, 10))
rows = len(ax)
cols = len(ax[0])

for i in range(0, rows):
    for j in range(0, cols):
        idx = i * cols + j
        fieldName = desc.columns[idx]
        field = edf2[fieldName]
        sb.boxplot(edf, y=field, ax=ax[i][j])
```

10_선형회귀_예시(2).ipynb

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 2. 범주형 변수
 - 1) 종류별로 데이터 수량 확인
- 2) 범주형 데이터의 데이터 분

4) 히스토그램 확인

file:///D:/10_선형회귀_예시(2).ipynb

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 2. 범주형 변수
 - 1) 종류별로 데이터 수량 확인
- 2) 범주형 데이터의 데이터 분

```
fig, ax = plt.subplots(2, 2, figsize=(16, 8))
rows = len(ax)
cols = len(ax[0])
for i in range(rows):
    for j in range(cols):
        idx = i * cols + j
        fieldName = desc.columns[idx]
        field = edf[fieldName]
        hist, bins = np.histogram(field, bins=5)
        bins2 = np.round(bins, 1)
        sb.histplot(data=edf2, x=fieldName, bins=5, kde=True, ax=ax[i][j
        ax[i][j].set_xticks(bins2)
        ax[i][j].set xticklabels(bins2)
        if idx+1 = len(desc.columns):
            break
plt.show()
plt.close()
```

23. 8. 11. 오전 10:28

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 2. 범주형 변수
 - 1) 종류별로 데이터 수량 확인
- 2) 범주형 데이터의 데이터 분 표 시가하

10_선형회귀_예시(2).ipynb

대부분의 사람들은 연간 \$15,000 이하의 의료비 지출에 분포되어 있음을 알 수 있다.

마찬가지로 bmi지수를 살펴보면 과체중이상의 데이터가 절반 이상을 차지하는 것을 알 수 있다.

1121.9

13651.6

26181.3

charges

38711.0

51240.7

63770.4

2. 범주형 변수

1) 종류별로 데이터 수량 확인

1.0

2.0

```
for name in cnames:
   helper.prettyPrint(edf2[name].value_counts(), title="count")
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 2. 범주형 변수
 - 1) 종류별로 데이터 수량 확인
- 2) 범주형 데이터의 데이터 분 표 시간하

2) 범주형 데이터의 데이터 분포 시각화

```
fig, ax = plt.subplots(1, len(cnames), figsize=(25, 5))

for i, v in enumerate(cnames):
    vc = DataFrame(edf2[v].value_counts(), columns=['count'])
    #print(vc)
```

23. 8. 11. 오전 10:28

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 2. 범주형 변수
 - 1) 종류별로 데이터 수량 확인
- 2) 범주형 데이터의 데이터 분

10 선형회귀 예시(2).ipynb

sb.barplot(data=vc, x=vc.index, y='count', ax=ax[i])
ax[i].set title(v)

plt.show()
plt.close()

흡연 여부의 경우 비흡연자가 많이 분포되어 있다.

그 밖에 성별과 지역의 경우 비슷하게 분포되어 있기 때문에 분산분석을 통해 통제요인으로 넣는 것을 고려해 볼 수 있겠다.