BOOLEAN ALGEBRAS

- IMPORTANT CLASS OF ALGEBRAS EXTENSIVELY USED FOR MANY PURPOSES
- BASIS OF THE SWITCHING ALGEBRA (SA) USED FOR FORMAL TREATMENT OF SWITCHING CIRCUITS:
 - TRANSFORMATION OF SWITCHING EXPRESSIONS
 - IDENTITIES FROM BA ENABLE GRAPHICAL AND TAB-ULAR TECHNIQUES FOR MINIMIZATION OF SWITCH-ING EXPRESSIONS LEADING TO SIMPLER/FASTER CIR-CUITS

A BOOLEAN ALGEBRA IS A TUPLE $\{B, +, \cdot\}$:

- B IS A SET OF ELEMENTS;
- ullet + AND · ARE BINARY OPERATIONS APPLIED OVER THE ELEMENTS OF B,

SATISFYING THE FOLLOWING POSTULATES:

P1: If $a, b \in B$, then

(i)
$$a + b = b + a$$

(ii)
$$a \cdot b = b \cdot a$$

That is, + and \cdot are COMMUTATIVE.

P2: If $a, b, c \in B$, then

(i)
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

(ii)
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

P3: THE SET B HAS TWO DISTINCT IDENTITY ELEMENTS, DENOTED AS 0 AND 1, SUCH THAT FOR EVERY ELEMENT IN B

(i)
$$0 + a = a + 0 = a$$

(ii)
$$1 \cdot a = a \cdot 1 = a$$

THE ELEMENTS 0 AND 1 ARE CALLED THE *ADDITIVE* IDENTITY ELEMENT AND THE MULTIPLICATIVE IDEN-TITY ELEMENT, respectively.

P4: FOR EVERY ELEMENT $a \in B$ THERE EXISTS AN EL-EMENT a', CALLED THE COMPLEMENT OF a, SUCH **THAT**

(i)
$$a + a' = 1$$

(i)
$$a + a' = 1$$

(ii) $a \cdot a' = 0$

SYMBOLS + AND · ARE NOT THE ARITHMETIC
 ADDITION AND MULTIPLICATION SYMBOLS

For convenience + and \cdot called "plus" and "times" Expressions a + b and $a \cdot b$ called "sum" and "product," + and \cdot also called "OR" and "AND"

- THE ELEMENTS OF THE SET B ARE CALLED CONSTANTS:
 0 AND 1 ARE CONSTANTS
- ullet SYMBOLS REPRESENTING ARBITRARY ELEMENTS OF B ARE VARIABLES: a,b and c in the postulates are variables.

• PRECEDENCE ORDERING DEFINED ON THE OPERATORS: • HAS PRECEDENCE OVER +.

$$a + (b \cdot c)$$
 can be written as $a + bc$

- ullet SYMBOLS a,b,c,\ldots IN THEOREMS AND POSTULATES ARE $GENERIC\ VARIABLES$: THEY CAN BE SUBSTITUTED BY
 - COMPLEMENTED VARIABLES
 - EXPRESSIONS (FORMULAS)

- SERVES THE SAME ROLE FOR SWITCHING FUNCTIONS AS THE ORDINARY ALGEBRA DOES FOR ARITHMETIC FUNC-TIONS
- SA: SET OF TWO ELEMENTS $B = \{0, 1\}$, AND TWO OPERATIONS AND AND OR:

 THESE OPERATIONS ARE USED TO EVALUATE SWITCH-ING EXPRESSIONS

Theorem 1 THE SWITCHING ALGEBRA IS A BOOLEAN ALGEBRA.

SHOW THAT SA SATISFIES POSTULATES OF BA: FOR EX-AMPLE

[P2:] DISTRIBUTIVITY of (\star) and (\cdot) shown by $perfect\ induction:$

abc	a + bc	(a + b)(a + c)
0 0 0	0	0
0 0 1	0	0
0 1 0	0	0
0 1 1	1	1
100	1	1
101	1	1
1 1 0	1	1
1 1 1	1	1

Since a + bc = (a + b)(a + c) for all cases, P2(i) is satisfied. Show

that P2(ii) is also satisfied.

Theorem 2 PRINCIPLE OF DUALITY. EVERY ALGEBRAIC IDENTITY DEDUCIBLE FROM THE POSTULATES OF A BOOLEAN ALGEBRA REMAINS VALID IF

- the operations + and · are interchanged throughout; and
- the identity elements 0 and 1 are also interchanged throughout.
- This theorem is useful because it reduces the number of different theorems that must be proven: every theorem has its dual.

Theorem 3 EVERY ELEMENT IN B HAS A UNIQUE COMPLEMENT.

Proof: Let $a \in B$; let us assume that a'_1 and a'_2 are both complements of a. Then, using the postulates we can perform the following transformations:

$$a'_1 = a'_1 \cdot 1$$
 by P3(ii) (identity)
 $= a'_1 \cdot (a + a'_2)$ by hypothesis $(a'_2 \text{ is the complement of } a)$
 $= a'_1 \cdot a + a'_1 \cdot a'_2$ by P2(ii) (distributivity)
 $= a \cdot a'_1 + a'_1 \cdot a'_2$ by P1(ii) (commutativity)
 $= 0 + a'_1 \cdot a'_2$ by hypothesis $(a'_1 \text{ is complement of } a)$
 $= a'_1 \cdot a'_2$ by P3(i) (identity)

Changing the index 1 for 2 and vice versa, and repeating all steps for a_2^\prime we get

$$a'_2 = a'_2 \cdot a'_1$$

= $a'_1 \cdot a'_2$ by P1(ii)

and therefore $a_2' = a_1'$.

The uniqueness of the complement of an element allows considering $^{\prime}$ as a unary operation called complementation.

Theorem 4 For any $a \in B$:

(1)
$$a + 1 = 1$$

(1)
$$a + 1 = 1$$

(2) $a \cdot 0 = 0$

Proof: Using the postulates, we can perform the following transformations:

Case (1): by
$$a + 1 = 1 \cdot (a + 1)$$
 P3 (ii) $= (a + a') \cdot (a + 1)$ P4 (i) $= a + (a' \cdot 1)$ P2 (i) $= a + a'$ P3 (ii) P4 (i)

Case (2): by
$$a \cdot 0 = 0 + (a \cdot 0)$$
 P3 (i) $= (a \cdot a') + (a \cdot 0)$ P4 (ii) $= a \cdot (a' + 0)$ P2 (ii) $= a \cdot a'$ P3 (i) P4 (ii)

(2) can also be proven by means of (1) and the principle of duality.

Theorem 5 THE COMPLEMENT OF THE ELEMENT 1 IS 0^{15} , AND VICE VERSA. That is,

$$(1) 0' = 1$$

(2)
$$1' = 0$$

Proof: By Theorem 4,

$$0 + 1 = 1$$
 and $0 \cdot 1 = 0$

Since, by Theorem 3, the complement of an element is unique, Theorem 5 follows.

Theorem 6 IDEMPOTENT LAW.

For every $a \in B$

(1)
$$a + a = a$$

$$(2) \ a \cdot a = a$$

Proof:

(1):
$$a + a = (a + a) \cdot 1$$
 P3 (ii)
 $= (a + a) \cdot (a + a')$ P4 (i)
 $= (a + (a \cdot a'))$ P2 (i)
 $= a + 0$ P4 (ii)
 $= a$ P3 (i)

(2): duality

Theorem 7 INVOLUTION LAW.

For every $a \in B$,

$$(a')' = a$$

Proof: From the definition of complement (a')' and a are both complements of a'. But, by Theorem 3, the complement of an element is unique, which proves the theorem.

Theorem 8 ABSORPTION LAW. For every pair of elements $a, b \in B$,

$$(1) \ a + a \cdot b = a$$

$$(2) \ a \cdot (a + b) = a$$

Proof:

(1):
$$a + ab = a \cdot 1 + ab$$
 P3 (ii)
 $= a(1 + b)$ P2 (ii)
 $= a(b + 1)$ P1 (i)
 $= a \cdot 1$ Theorem 4 (1)
 $= a$ P3 (ii)

(2) duality

Theorem 9 FOR EVERY PAIR OF ELEMENTS $a, b \in B$,

(1)
$$a + a'b = a + b$$

$$(2) \ a(a' + b) = ab$$

Proof:

(1):
$$a + a'b = (a + a')(a + b)$$
 P2 (i)
= $1 \cdot (a + b)$ P4 (i)
= $a + b$ P3 (ii)

(2): duality

Theorem 10 In a Boolean algebra, each of the binary operations (+) and (\cdot) is associative. That is, for every $a,b,c\in B$,

$$(1) \ a + (b + c) = (a + b) + c$$

$$(2) \ a(bc) = (ab)c$$

Corollary 1

1. The order in applying the + operator among n elements does not matter. For example

$$a + (b + (c + (d + e))) = (((a + b) + c) + d) + e$$
$$= a + ((b + c) + d)) + e$$
$$= a + b + c + d + e$$

2. The order in applying the \cdot operator among n elements does not matter.

DeMorgan's Law

Theorem 11 For every pair of elements $a, b \in B$:

$$(1) (a + b)' = a'b'$$

$$(2) (ab)' = a' + b'$$

By duality,

$$(a \cdot b)' = a' + b'$$

Theorem 12 GENERALIZED DeMorgan's LAW.

Let $\{a, b, ..., c, d\}$ be a set of elements in a Boolean algebra. Then, the following identities hold:

(1)
$$(a + b \dots + c + d)' = a'b' \dots c'd'$$

(2)
$$(ab \dots cd)' = a' + b' + \dots + c' + d'$$

DeMorgan's theorems useful in manipulating switching expressions:

Example: find the complement of a switching expression

$$[(a + b')(c' + d') + (f' + g)']' = [(a + b')(c' + d')]'[(f' + g)']'$$

$$= [(a + b')' + (c' + d')'](f' + g)$$

$$= (a'b + cd)(f' + g)$$

OTHER EXAMPLES OF BOOLEAN ALGEBRAS

ALGEBRA OF SETS. The elements of B: set of all subsets of a set S

(P(S)). The operations: set-union (\cup) and set-intersection (\cap) .

$$M = (P(S), \cup, \cap)$$

ALGEBRA OF LOGIC (PROPOSITIONAL CALCULUS).

The elements B: T and F (true and false). The operations: LOGICAL AND and LOGICAL OR.

This algebra is isomorphic with the switching algebra.