Comparative Analysis of the Performance of Different Machine Learning Techniques in Predicting the Age of Abalones

Marina Adamović, Pavle Tepavčević

Faculty of Sciences, University of Novi Sad

September 2024

Introduction

- Group of sea snails
- ▶ Used in cuisines and it's leftover shell is fashioned into jewelry

Figure: Abalone and its rings.

Defining the problem

- Older abalones have a higher market value
- ► Task: Determine the age
- ightharpoonup Age = Rings + 1.5
- Current approach: Cutting the shell using a microscope and counting the number of rings
- Problem: Time consuming, expensive and it damages the abalone
- ► Solution: Predicting it's age based on physical measurements using machine learning techniques

Dataset

- ► Features: Gender, Length, Diameter, Height, Whole weight, Shucked weight, Viscera weight, Shell weight
- ► Target: Rings
- Good dataset with only a few measurement errors

Gender distribution

Gender Distribution

Figure: Gender distribution of abalones.

Abalone rings distribution

Figure: Violin plot of abalone rings distribution.

Age groups

- ▶ Dividing them into age groups
- ► Two approaches:

Three age groups.

Four age groups.

Distribution of gender by each age group

Figure: Distribution of gender of abalones in each age group.

Distribution of features for each gender.

Figure: Distribution of each feature for three genders.

Distributions of physical features

Distributions of physical features

Correlation matrix

Figure: Correlation matrix of all physical features.

Explaining the variance

► The features are very correlated

Figure: Percentage of variance that each feature can explain

Machine learning

- ► Classification predicting the age group
 - ► k-NN (three or four age groups)

Machine learning

- ► Classification predicting the age group
 - k-NN (three or four age groups)
- Regression predicting the number of rings
 - Linear regression (univariate and multivariate)
 - ► k-NN
 - Neural networks

Classification

- Method using k-NN (based on Length) to estimate the PDF of each group and then using the ML criteria
- ► Three age groups:
 - ► Error of classification = 41%
- ► Four age groups:
 - ► Error of classification = 52%

Linear regression

► Two approaches: Univariate and Multivariate

Linear regression

- ► Two approaches: Univariate and Multivariate
- Univariate taking the length
 - MAE = 2.02
 - $R^2 = 0.30$

Linear regression

- Two approaches: Univariate and Multivariate
- ► Univariate taking the length
 - MAE = 2.02
 - $R^2 = 0.30$
- Multivariate taking all physical features
 - ightharpoonup MAE = 1.63
 - $R^2 = 0.55$

Regression based on k-NN

- ► Method the prediction of number of rings is the mean of number of rings of k nearest neighbors (based on Length)
- ► MAE = 1.88

Neural networks

- Method a dense neural network which predicts the number of rings is trained
- ► MAE = 1.53 (based on everything)

Comparison of Regression Methods

Method	MAE
Linear Regression (Univariate)	2.02
Linear Regression (Multivariate)	1.63
k-NN Regression	1.88
Neural Networks	1.53

Table: Comparison of MAE for Different Regression Methods.

Thank you!