Reactive agents

Reactive policy (strategy): simple state \rightarrow response mapping (may be stateful). Good for realtime. Subsumption architecture manages conflicting behaviors. Strategy is computed from the reward and transition functions to maximize immediate and future rewards. Decision process: describes knowledge of rewards & transitions. Markov: nondeterministic transitions: partially observable MDP: state is uncertain; Q-learning: transitions and rewards are not known. Value of a state: $V(s_i) = R(s_i, a^*) + \gamma V(T(s_i, a^*)), a^*$ the best action, γ the discount factor. The value iteration algorithm (initialize V_i at random, pick best action by trying all, update V_i , stop when max update is small) converges to the true value. For MDP, transition function is a probability distribution: take expected value. The policy iteration optimizes over the policy directly by solving for the linear equations of values for the current policy. Q-learning: need to learn transitions

POMDP can be converted to deterministic MDP by

and rewards (exploration / exploitation, use $\alpha(t)$).

replacing state by a belief function.

Deliberative agents Deliberative architecture: explicit representation of goal states and plans. Considers only the subset of states that may be visited. Search algorithms: DFS (too much time spent in unpromising branches), BFS (too much memory usage), Iterative Deepening (DFS + depth limit), Branch and Bound (ignore nodes with higher cost than best found so far). With adversary: minimax, $\alpha - \beta$ pruning. Regret: difference in outcome between playing move i and the optimal move. In games with chance, minimize expected regret or worst-case regret. Big / chance games: evaluate horizon states with a heuristic and / or Monte-Carlo sampling. Upper Confidence Bound for game trees: minimax over $UCB_i = \frac{\text{wins}_i}{N_i} + c\sqrt{\frac{\log N}{N_i}}.$ Factored representation: Use situation calculus: operators transform predicates (preconditions, add-list, delete-list). Frame axioms carry over predicates that were not modified. Policy and reward functions should be factored. More difficult: factoring the estimate value of a state (use basis functions). Leat-commitment principle: delay commitment to the order in which actions are taken (modulo dependencies). Determine policy by fixpoint iteration (basis functions: solve for weights that minimize the error of the value function recurrence \equiv least squares). Partial-order planning: discover which actions can be carried out in parallel. GraphPlan builds layers (time) with nodes (proposition and actions) and directed edges (in: preconditions, out: add-list). Built in polynomial time, not exhaustive but complete. SAT: State = vector of state variables (each with a domain), add constraints for: pre and post-conditions for operators, incompatible propositions, exclusion for

operators using the same resource. Time is broken up

into 2n discreet points (states, actions).

Multiagent systems _

Multiagent modalities: centralized with shared memory. centralized or distributed with message passing, decentralized (no communication, but observe common signals). Ontologies: provides a shared vocabulary for heterogeneous agents. Self-interested agents: always act to maximize their own interest. We need to create incentives. Centralized planning: can explicitly detect conflicts and synergy. E.g. blackboard system (shared memory). publish-subscribe system (notify on resource usage). Using reactive agents: optimize sum of rewards or each agent optimizes its own (find a NE using policy iteration, but probably not the best one). Using deliberative agents: find conflicting resource usages and similar goals. Partial-global planning: goal tree in which each agent inserts its partial plans (expressed with predicates). Can then reorder actions, exchange tasks. Contract net: cooperation protocol. Managers divide tasks, contractors place bids, contract is made for lowest bid (no negotiation). Tasks can be subcontracted. Market-based variation: managers increase prices until they obtain a solution.

Distributed multiagent systems

Distributed contract nets: make contracts asynchronously and contact agents directly. Agents try to sub-contract tasks with high marginal cost. Problems: incremental bidding can't work, impossible to resolve conflict, bidders must speculate on future tasks. Distributed SAT: variables (tasks), domains (resources that can carry out the task), constraints (timing, preconditions and resources), relations (inequality). Sync backtracking: each agent extends the partial solution of the previous, allows use of heuristics (async: all in parallel, but exponential number of messages needed). Distributed DP: organize agents in a rooted tree + backedges. Send util (constraint) messages up, parent decides the best value locally, get value messages down. Variables are collapsed, only local node knowns which value to set. Distributed local search: start with random assignment, make local change which most reduces the number of conflicts. Neighborhood = variables connected through constraints. Changes can be async as long as there is only 1 change per neighborhood. Breakout algorithm: extension of min-conflict, assigning dynamic priority to each constraint. Pick change that reduces most the sum of priorities. All remaining conflicts have priority increased when reaching local minimum, then restart. Termination: when time count is larger than the distance to the furthest agent.

$_$ Game theorv $_$

Games: zero / general sum. 2 / N players. Strategies: strictly / (very) weakly dominant, pure, mixed, minimax (for zero-sum: value of the game = expected gain $v_A =$ expected loss v_B). Computing minimax for B: find set of p_i^B such that expected gain v of A is minimized and $\forall a_i^A, \sum_{a_i^B} p_j^B R_A(a_i^A, a_j^B) \leq v$. Utility function: can encode risk-profile. Support: set of

actions with $p_a > 0$. Nash equilibria: no player gains from changing strategy, all other things being equal. Theorem: every game has at least a set of (mixed) NE. Compute them by removing dominated actions and going through possible subsets of actions (supports). For N players. NE exists but not necessarily unique or minimax. Uncertain utilities: ex-ante (no knowledge at all), ex-interim (own agent type is known), ex-post (strongest, knowledge of all types). Bayes-NE: NE over ex-ante expected utilities. Ex-post NE: strategies give highest utility no matter the value of the unknown information (not always possible).

Agent cooperation, negotiation

Correlated equilibrium: act depending on an external factor (e.g. coin flip). Mediator: vehicle to enforce a contract. Plays depending on the number of agents which chose the mediator. Negotiation: make, accept or refuse offers to agree on a joint strategy. Strategic or axiomatic. Alternating offers: broken, first offer has more power. Can introduce time constraints, discount factor. Nash bargaining solution: maximize the product of utility gains (from conflict deal), concession is made by deal with lowest product. Mixed strategies: can bargain about probabilities. Monotonic concessions: reaches NBS. Agent with lowest risk tolerance $\frac{u_i(D_i)-u_i(D_j)}{u_i(D_i)-u_i(D_c)}$ must make an offer. Stackelberg games: decisions in sequence between a leader and a follower.

Mechanism design

Social choice: constructing a joint preference order reflecting individual, private orderings. Implementations: dominant equilibrium. Baves-Nash equilibrium. Mechanisms: social choice function + payment rule. Goal: incentive compatibility (best strategy for agents leads to optimizing the social choice function). Revelation principle: for any mechanism, there is a truthful mechanism with the same outcomes and payments (proof by construction) VCG tax: maximizes the sum of declared valuations. $\operatorname{tax}(A_i) = \sum_{A_{i \neq i}} v_j(d_{-i}) - v_j(d_{\operatorname{all}})$. It is truthful, rational and incentive compatible. Generalization: Groves mechanism \approx VCG with offset (e.g. refund part of the tax). Problems: collusions, not Pareto-efficient (tax must be wasted). Roberts' theorem: affine maximizer social choice functions are the only ones that can be implemented for unrestricted preference profiles with incentive compatibility. Median rule: IC for single-peaked preferences.

Auctions _

Auctions: social choice, goals are optimal allocation, individual rationality. Values: private. common (entirely dependent on other's value), correlated. Auction protocols: open-cry (Dutch, English); sealed-bids (Discriminatory, Vickrey). Problems: manipulability (collusion, demand reduction lie), risk-averse or non-truthful / irrational bidding, timing, side-constraints (e.g. procurement), authenticity,

privacy. Revenue equivalence theorem: all 4 settings yield equivalent revenue, but not optimal allocation (not true for correlated values).

Multi-unit Vickrey: each agent pays the price of the bid it displaced from the set of winning bids. Double auctions: sort buy & sell bids in opposing orders, price is last match. M^{th} highest price is incentive-compatible for sellers, $(M+1)^{st}$ for the buyers. McAffee: price is average of last (sell, buy) bid, but block that one \implies loss of 1 trade but gain incentive compatibility. May bid with price-quantity graphs (then, sum up curves and match demand). Bargaining: for 1 buyer and 1 seller. NE at price $0.5 \times (b_1 + b_2)$. Independent English Auctions (k run in parallel): bidding strategies include straightfoward (ignore complementarities, bid only for the best combination); sunk-aware (discout perceved price of won items by some factor since they cannot be returned): price prediction. GVA auction (\approx VCG tax): pay for the difference between the best allocations without and with your bid. GSP auction (internet ads): i^{th} highest bidder pays $(i+1)^{st}$ price to get i^{th} slot (not incentive compatible, but stable prices and high revenue).

Coalitions

Coalitions: when *side-contracts* (utility redistribution) are allowed, coalition utility qeq others \implies stable. Core of a game: set of payoff distributions for which the grand coalition is stable (often empty). Core is known to be nonempty for Superadditive and Convex games $(v(S \cup T) \ge v(S) + v(T) - v(S \cap T))$. Shapley value: unique vector (if core is nonempty, SV payoffs is in it). $SV(a_i) =$ average value of added payoff when added that agent to a sub-coalition (over all orders). Agents not in any carrier coalitions has $SV(a_i) = 0$. Weighted graph games: agents are nodes, self-edges are payoffs, edges are payoffs for 2-coalitions (not possible for all games). Value of a coalition is the sum of edge weights in the subgraph.

Voting protocols

Manipulability: non-truthful voting; removing a candidate can reverse the order: vote organizer can determine the winner by changing the order in which alternatives are presented. Condorcet winner: alternative that beats (or ties) all others in a pairwise majority vote (doesn't always exist; in a majority graph, it is the node with only outgoing edges). Plurality voting: vote for your single preferred alternative (variant: carry out n-1 rounds, eliminate the least preferred at each round). Borda count: give $(n-1) \dots 0$ points to alternatives. Slater ranking: vote between every pair of alternatives, pick the smallest transformation to obtain a majority graph. Gibbard-Satterthwaite theorem: any deterministic voting protocol (≥ 3 alternatives) has one of these properties: dictatorial, non-truthful, or ∃ a candidate that cannot win.

Credits

Most content taken from the lecture notes of Boi Falting's Intelligent Agents class at EPFL, 2015.

Rendered December 13, 2015. Written by Merlin Nimier-David. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.