IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of :BUCHHOLZ, Herwig, et al

Serial No.

Filed: 23 September 2003

: PREPARATION HAVING ANTIOXIDANT PROPERTIES

SUBMISSION OF PRIORITY DOCUMENT(S)

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

For

Submitted herewith is a certified copy of each of the below-identified document(s), benefit of priority of each of which is claimed under 35 U.S.C. § 119:

COUNTRY	APPLICATION NO.	FILING DATE
GERMANY	102 44 282.7	23 SEPTEMBER 2002

Acknowledgment of the receipt of the above document(s) is requested.

No fee is believed to be due in association with this filing, however, the Commissioner is hereby authorized to charge fees under 37 C.F.R. §§ 1.16 and 1.17 which may be required to facilitate this filing, or credit any overpayment to Deposit Account No. 13-3402.

Respectfully submitted,

John A. Sopp Reg. No. 33,103 Attorney/Agent for Applicants

MILLEN, WHITE, ZELANO & BRANIGAN, P.C. Arlington Courthouse Plaza I 2200 Clarendon Blvd. Suite 1400 Arlington, Virginia 22201 Telephone: (703) 243-6333

Facsimile: (703) 243-6410

Attorney Docket No.: MERCK-2753

Date: 23 September 2003

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 44 282.7

Anmeldetag:

23. September 2002

Anmelder/Inhaber:

Merck Patent GmbH,

Darmstadt/DE

Bezeichnung:

Zubereitung mit antioxidanten Eigenschaften

IPC:

C 09 K, A 61 K

Bemerkung:

Die vollständigen Seiten 1-4, 6-22, 24-42, 44 - 57, 60 der Beschreibung, die vollständigen Patentansprüche 1, 2, 6, 12 und die vollständige Zusammenfassung sind am 16. Oktober 2002

eingegangen.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 27. März 2003

Deutsches Patent- und Markenamt

Der Präsident

Irh Auftrag

Merck Patent Gesellschaft mit beschränkter Haftung 64271 Darmstadt

Zubereitung mit antioxidanten Eigenschaften

Druckdatum: 20.09.2002 Speicherdatum: 20.09.2002

Zubereitung mit antioxidanten Eigenschaften

Die vorliegende Erfindung betrifft eine Zubereitung mit antioxidanten Eigenschaften, deren Herstellung und Verwendung.

Ein Einsatzgebiet der erfindungsgemäßen Zubereitungen ist beispielsweise die Kosmetik. Aufgabe pflegender Kosmetik ist es, nach Möglichkeit den Eindruck einer jugendlichen Haut zu erhalten. Prinzipiell stehen verschiedene Wege offen, um diesen Weg zu erreichen. So können bereits vorhandene Schädigungen der Haut, wie unregelmäßige Pigmentierung oder Faltenbildung, durch abdeckende Puder oder Cremes ausgeglichen werden. Ein anderer Ansatzpunkt ist, die Haut vor Umwelteinflüssen zu schützen, die zu einer dauerhaften Schädigung und damit Alterung der Haut führen. Die Idee ist also, vorbeugend einzugreifen und dadurch den Alterungsprozess hinauszuzögern. Ein Beispiel sind hierfür die bereits erwähnten UV-Filter, welche durch Absorption bestimmter Wellenlängenbereiche eine Schädigung der Haut vermeiden oder zumindest vermindern. Während bei UV-Filtern das schädigende Ereignis, die UV-Strahlung, von der Haut abgeschirmt wird, versucht man bei einem weiteren Weg. die natürlichen Abwehr-Reparaturmechanismen der Haut gegen das schädigende Ereignis zu unterstützen. Schließlich verfolgt man als weiteren Ansatzpunkt die mit zunehmendem Alter sich abschwächenden Abwehrfunktionen der Haut gegen schädigende Einflüsse auszugleichen, indem Substanzen von außen zugeführt werden, die diese nachlassende Abwehr- bzw. Reparaturfunktion ersetzen können. Beispielsweise besitzt die Haut die Fähigkeit, Radikale, die durch äußere oder innere Stressfaktoren erzeugt werden, abzufangen. Diese Fähigkeit schwächt sich mit zunehmendem Alter ab, wodurch sich der Alterungsprozess mit zunehmendem Alter beschleunigt.

Eine mehr oder minder stark ausgeprägte Sonnenbräune der Haut gilt in der modernen Gesellschaft als attraktiv und als Ausdruck von Dynamik und Sportlichkeit. Neben dieser erwünschten Wirkung der Sonne auf die Haut treten eine Reihe von unerwünschten Nebenwirkungen auf, wie Sonnenbrand oder vorzeitige Hautalterung und Faltenbildung. Von

besonderer Bedeutung ist dabei der Wellenlängenbereich von 280 bis 400 nm. Dieser Bereich umfaßt UV-B-Strahlen mit einer Wellenlänge zwischen 280 und 320 nm, die bei der Bildung eines Sonnenerythems eine entscheidende Rollen spielen, wie auch UV-A-Strahlen, mit einer Wellenlänge zwischen 320 und 400 nm, welche die Haut bräunen aber auch altern lassen, die Auslösung einer erythematösen Reaktion begünstigen oder diese Reaktion bei bestimmten Menschen vergrößern oder sogar phototoxische oder photoallergische und irritative Reaktionen auslösen können.

Hautschädigungen werden nicht nur durch Sonnenlicht verursacht, sondern auch durch andere äußere Einflüsse, wie Kälte oder Wärme. Ferner unterliegt die Haut einer natürlichen Alterung, wodurch Falten entstehen und die Spannkraft der Haut nachläßt.

Eine weitere Schwierigkeit bei der Herstellung von Kosmetika besteht darin, dass Wirkstoffe, die in kosmetische Zubereitungen eingearbeitet werden sollen, oftmals nicht stabil sind und in der Zubereitung geschädigt werden können. Die Schädigungen können beispielsweise durch eine Reaktion mit Luftsauerstoff oder durch die Absorption von UV-Strahlen verursacht werden. Die so geschädigten Moleküle können durch ihre Strukturänderung z.B. ihre Farbe ändern und/oder ihre Wirksamkeit verlieren.

Ein bekannter Weg, die beschriebenen Probleme zu behandeln besteht im Zusatz von Antioxidantien zu den Zubereitungen.

Laut CD Römpp Chemie Lexikon – Version 1.0, Stuttgart/New York: Georg Thieme Verlag 1995 handelt es sich bei Antioxidantien um Verbindungen, die unerwünschte, durch Sauerstoff-Einwirkungen u.a. oxidative Prozesse bedingte Veränderungen in den zu schützenden Stoffen hemmen oder verhindern. Einsatzgebiete sind z.B. in Kunststoffen und Kautschuk zum Schutz gegen Alterung; in Fetten zum Schutz vor Ranzigkeit, in Ölen, Viehfutter, Autobenzin und Düsentreibstoffen zum Schutz gegen Verharzung, in Transformatoren- und Turbinenöl gegen Schlammbildung, in Aromastoffen gegen Geruchsverschlechterung. Als Antioxidantien

wirksam sind u.a. durch sterisch hindernde Gruppen substituierte Phenole, Hydrochinone, Brenzcatechine und aromat. Amine sowie deren Metall-Komplexe. Die Wirkung der Antioxidantien besteht laut Römpp meist darin, daß sie als Radikalfänger für die bei der Autoxidation auftretenden freien Radikale wirken.

Es besteht jedoch weiterhin Bedarf nach hautverträglichen Antioxidantien, die sich auch zum Einsatz in hautpflegenden Zubereitungen eignen.

Aufgabe der Erfindung ist es daher, eine Zusammensetzung zur Verfügung zu stellen, welche eine schützende Wirkung gegen UV-Strahlen aufweist und/oder eine schützende Wirkung gegen oxidativen Stress auf Körperzellen ausübt und/oder einer Alterung der Haut entgegenwirkt.

Überraschend wurde dabei gefunden dass bestimmte Flavonoide sich hervorragend als Antioxdantien eignen. Ein erster Gegenstand der vorliegenden Erfindung ist daher eine Zubereitung mit antioxidanten Eigenschaften, enthaltend zumindest eine Verbindung der Formel I

$$R^3$$
 R^4
 R^9
 R^5
 R^6
 R^7
 R^8
 R^{10}

wobei R¹ bis R¹⁰ gleich oder verschieden sein können und ausgewählt sind aus

- H
- OR¹¹
- geradkettigen oder verzweigten C₁- bis C₂₀-Alkylgruppen,
- geradkettigen oder verzweigten C₃- bis C₂₀-Alkenylgruppen,
- geradkettigen oder verzweigten C₁- bis C₂₀-Hydroxyalkylgruppen, wobei die Hydroxygruppe an ein primäres oder sekundäres Kohlenstoffatom der Kette gebunden sein kann und weiter die

Alkylkette auch durch Sauerstoff unterbrochen sein kann, und/oder

- C₃- bis C₁₀-Cycloalkylgruppen und/oder C₃- bis C₁₂Cycloalkenylgruppen, wobei die Ringe jeweils auch durch -(CH₂)_nGruppen mit n = 1 bis 3 überbrückt sein können,
- wobei alle OR¹¹ unabhängig voneinander stehen für
 - OH
 - geradkettige oder verzweigte C₁- bis C₂₀-Alkyloxygruppen,
 - geradkettigen oder verzweigten C_3 bis C_{20} Alkenyloxygruppen,
 - geradkettigen oder verzweigten C₁- bis C₂₀Hydroxyalkoxygruppen, wobei die Hydroxygruppe(n) an
 ein primäre oder sekundäre Kohlenstoffatome der Kette
 gebunden sein können und weiter die Alkylkette auch
 durch Sauerstoff unterbrochen sein kann, und/oder
 - C₃- bis C₁₀-Cycloalkyloxygruppen und/oder C₃- bis C₁₂Cycloalkenyloxygruppen, wobei die Ringe jeweils auch
 durch -(CH₂)_n-Gruppen mit n = 1 bis 3 überbrückt sein
 können und/oder,
 - Mono- und/oder Oligoglycosylreste,

mit der Maßgabe, dass mindestens 4 Reste aus R¹ bis R⁷ stehen für OH und dass im Molekül mindestens 2 Paare benachbarter Gruppen –OH vorliegen,

oder R^2 , R^5 und R^6 für OH und die Reste R^1 , R^3 , R^4 und R^{7-10} für H stehen.

Unter den Phenolen mit antioxidativer Wirkung sind die teilweise als vorkommenden Naturstoffe Polyphenole für Anwendungen im pharmazeutischen, kosmetischen oder Ernährungsbereich besonders interessant. Beispielsweise weisen die hauptsächlich Pflanzenfarbstoffe bekannten Flavonoide oder Bioflavonoide häufig ein antioxidantes Potential auf. Mit Effekten des Substitutionsmusters von Monound Dihydoxyflavonen beschäftigen sich K. Lemanska. H. Szymusiak, B. Tyrakowska, R. Zielinski, I.M.C.M. Rietjens; Current Topics in Biophysics 2000, 24(2), 101-108. Es wird dort beobachtet, dass Dihydroxyflavone mit einer OH-Gruppe benachbart zur Ketofunktion oder

OH-Gruppen in 3'4'- oder 6,7- oder 7,8-Position antioxidative Eigenschaften aufweisen, während andere Mono- und Dihydroxyflavone teilweise keine antioxidativen Eigenschaften aufweisen.

Häufig wird Quercetin (Cyanidanol, Cyanidenolon 1522, Meletin. Sophoretin, Ericin. 3,3',4',5,7-Pentahydroxyflavon) als besonders wirksames Antioxidans genannt (z.B. C.A. Rice-Evans, N.J. Miller, G. Paganga, Trends in Plant Science 1997, 2(4), 152-159). K. Lemanska, H. Szymusiak, B. Tyrakowska, R. Zielinski, A.E.M.F. Soffers, I.M.C.M. Rietjens; Free Radical Biology&Medicine 2001, 31(7), 869-881 untersuchen die pH-Abhängigkeit der antioxidanten Wirkung von Hydoxyflavonen. Über den gesamten pH-Bereich zeigt Quercetin die höchste Aktivität der untersuchten Strukturen.

In der DE 197 55 504 A1 wird die Verwendung von Flavonen und Flavonoiden gegen die UV-induzierte Zersetzung von Dibenzoylmethan und dessen Derivaten beschrieben.

In der WO 02/00214 für die Verwendung von bestimmten Flavon-Derivaten zur Herstellung von oralen Arzneimitteln zur systemischen Behandlung und Prophylaxe von UV-induzierten Dermatosen, insbesondere der polymorphen Lichtdermatosen und ihren Unterformen und/oder unerwünschten Langzeitfolgen von UV-Bestrahlung, besonders der Lichtalterung, beschrieben. Bevorzugte Flavon-Derivate sind dabei insbesondere natürlich vorkommende Bioflavonoide, wie Rutin, Naringin, Naringenin, Hesperidin, Hesperetin, Taxifolin etc. sowie Derivate davon, wie Troxerutin oder Monoxerutin.

In internationalen der Patentanmeldung WO 00/61095 werden Mischungen von Polyphenolen mit Vitaminen beschrieben. Diese Mischungen eignen sich **Einsatz** zum kosmetischen in oder dermatologischen Zusammensetzungen und sind optimiert zum Fangen freier Radikale wie Hydroxy-Radikale oder Peroxiden. Insbesondere bevorzugt ist dabei die Kombination von Troxerutin mit α-Tocopherolsuccinat und Ascorbyl-palmitat.

Vorteile der erfindungsgemäßen Zusammensetzungen sind dabei insbesondere die antioxidante Wirkung und die gute Hautverträglichkeit. Zusätzlich sind bevorzugte der hier beschriebenen Verbindungen farblos oder nur schwach gefärbt und führen so nicht oder nur in geringer Weise zu Verfärbungen der Zubereitungen. Von Vorteil ist insbesondere das besondere Wirkprofil der erfindungsgemäß einzusetzenden Verbindungen, welches sich im DPPH-Assay (siehe unten) in einer hohen Kapazität Radikale zu fangen (EC₅₀), einer zeitverzögerten Wirkung (T_{EC50} > 120 min) und damit einer mittleren bis hohen antiradikalischen Effizienz (AE) äußert. Zudem vereinigen die Verbindungen nach Formel I im Molekül antioxidative Eigenschaften mit UV-Absorption im UV-A- und/oder –B-Bereich.

Ein Gegenstand der vorliegenden Erfindung ist daher auch die Verwendung der Verbindungen gemäß Formel I, wie oben angegeben, als Antioxidationsmittel mit langanhaltender Wirkung bzw. zur Herstellung einer Zubereitung mit antioxidanten Eigenschaften.

Bei den Zubereitungen handelt es sich dabei üblicherweise entweder um topisch anwendbare Zubereitungen, beispielsweise kosmetische oder dermatologische Formulierungen, oder um Nahrungsmittel bzw. Nahrungsergänzungsmittel. Die Zubereitungen enthalten in diesem Fall einen kosmetisch oder dermatologisch oder Nahrungsmittel-geeigneten Träger und je nach gewünschtem Eigenschaftsprofil optional weitere geeignete Inhaltsstoffe.

Die Verbindungen der Formel I werden erfindungsgemäß typisch in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise in Mengen von 0,1 Gew.-% bis 10 Gew.-% und insbesondere bevorzugt in Mengen von 1 bis 8 Gew.-% eingesetzt. Dabei bereitet es dem Fachmann keinerlei Schwierigkeiten die Mengen abhängig von der beabsichtigten Wirkung der Zubereitung entsprechend auszuwählen.

Bevorzugt sind daher auch Zubereitungen enthaltend zumindest eine Verbindung der Formel I, die dadurch gekennzeichnet ist, dass mindestens zwei benachbarte Reste der Reste R¹ bis R⁴ stehen für OH

und mindestens zwei benachbarte Reste der Reste R⁵ bis R⁷ stehen für OH.

Insbesondere bevorzugte Zubereitungen enthalten zumindest eine Verbindung der Formel I, die dadurch gekennzeichnet ist, dass mindestens drei benachbarte Reste der Reste R¹ bis R⁴ stehen für OH, wobei vorzugsweise die Reste R¹ bis R³ für OH stehen.

Damit die Verbindungen der Formel I ihre positive Wirkung als Radikalfänger auf die Haut besonders gut entwickeln können, kann es bevorzugt sein die Verbindungen der Formel I in tiefere Hautschichten eindringen zu lassen. Dazu stehen mehrere Möglichkeiten zur Verfügung. Zum einen können die Verbindungen der Formel I eine ausreichende Lipophilie aufweisen, um durch die äußere Hautschicht in epidermale Schichten vordringen zu können. Als weitere Möglichkeit können in der Zubereitung auch entsprechende Transportmittel, beispielsweise Liposomen, vorgesehen sein, die einen Transport der Verbindungen der Formel I durch die äußeren Hautschichten ermöglichen. Schließlich ist auch ein systemischer Transport der Verbindungen der Formel I denkbar. Die Zubereitung wird dann beispielsweise so gestaltet, dass sie für eine orale Gabe geeignet ist.

Allgemein wirken die Substanzen der Formel I als Radikalfänger. Solche Radikale werden nicht nur durch Sonnenlicht erzeugt, sondern werden unter verschiedenen Bedingungen gebildet. Beispiele sind Anoxie, die den Elektronenfluß stromauf der Cytochromoxidasen blockiert und die Bildung von Superoxidradikalarionen bedingt; Entzündungen, die unter anderem mit der Bildung von Superoxidanionen durch die Membran-NADPH-Oxidase der Leukozyten einhergehen, die jedoch auch mit der Bildung (durch Disproportionierung in Gegenwart von Eisen (II)-ionen) der Hydroxyradikale und anderer reaktiver Spezies, die normalerweise beim Phänomen einer Phagocytose beteiligt sind, einhergehen; sowie Lipidautooxidation die im Allgemeinen durch ein Hydroxylradikal initiiert wird und lipidische Alkoxyradikale und Hydroperoxide liefert.

Es wird vermutet, dass bevorzugte Verbindungen der Formel I auch als Enzymhemmer wirken. Sie hemmen vermutlich Histidindecarboxylase,

Proteinkinasen, Elastase, Aldosereduktase sowie Hyaluronidase, und ermöglichen daher, die Unversehrtheit der Grundsubstanz vaskulärer Hüllen aufrecht zu erhalten. Ferner hemmen sie vermutlich nicht spezifisch Katechol-O-methyltransferase, wodurch die Menge der verfügbaren Katecholamine und dadurch die Gefäßfestigkeit erhöht wird. Weiter hemmen sie AMP-Phosphodiesterase, wodurch die Substanzen ein Potential zur Hemmung der Thrombozytenaggregation aufweisen.

Aufgrund dieser Eigenschaften eignen sich die erfindungsgemäßen Zubereitungen allgemein zur Immunprotektion und zum Schutz der DNA und RNA. Insbesondere eignen sich die Zubereitungen dabei zum Schutz von DNA und RNA vor oxidativen Angriffen, vor Radikalen und vor Schädigung durch Strahlung, insbesondere UV-Strahlung. Ein weiterer Vorteil der erfindungsgemäßen Zubereitungen ist der Zellschutz, insbesondere der Schutz von Langerhans-Zellen vor Schäden durch die oben genannten Einflüsse. Alle diese Verwendungen bzw. die Verwendung der Verbindungen der Formel I zur Herstellung entsprechend einsetzbarer Zubereitungen sind ausdrücklich auch Gegenstand der vorliegenden Erfindung.

Insbesondere eignen sich bevorzugte erfindungsgemäße Zusammensetzungen auch zur Behandlung von Hautkrankheiten, die mit einer Störung der Keratinisierung verbunden sind, die die Differenzierung und Zellprolif-eration betrifft, insbe-sondere zur Behandlung der Akne vulgaris, Akne comedonicá, der polymorphen Akne, der Akne rosaceae, der nodulären Akne, der Akne conglobata, der alters-bedingten Aknen, der als Neben-wirkung auftretenden Aknen, wie der Akne solaris, der medikamenten-bedingten Akne oder der Akne professionalis, zur Behandlung anderer Störungen der Keratinisierung, insbesondere der Ichtyosen, der ichtyosi-formen Zustände, der Darrier-Krankheit, der palmoplantaris, der Leukoplasien, der leukoplasiformen Zustände, der Haut- und Schleimhaut-flechten (Buccal) (Lichen), zur Behandlung anderer Hauterkrankungen, die mit einer Störung der Keratinisierung zusammenhängen und eine entzünd-liche und/oder immunoallergische Komponente haben und insbesondere aller Formen der Psoriasis, die die Haut, die Schleimhäute und die Finger und Zehennägel betreffen, und des psoriatischen Rheumas und der Haut-

atopien, wie Ekzemen oder der respiratorischen Atopie oder auch der Hypertrophie des Zahnfleisches, wobei die Verbindungen ferner bei einigen Entzündungen verwendet werden können, die nicht mit einer Störung der Keratinisierung zusammenhängen, zur Behandlung aller gutartigen oder bösartigen Wucherungen der Dermis oder Epidermis, die gegebenenfalls viralen Ursprungs sind, wie Verruca vulgaris. Veruca plana, Epidermodysplasia verruciformis, orale Papillomatose, Papillomatosis florida, und der Wucherungen, die durch UV-Strahlung hervorgerufen werden können, insbesondere des Epithelioma baso-cellulare und Epithelioma spinocellulare, zur Behandlung anderer Hautkrankheiten, wie der Dermatitis bullosa und der das Kollagen betreffenden Krankheiten, zur Behandlung bestimmter Augenkrankheiten, insbesondere der Hornhauterkran-kungen, zur Behebung oder Bekämpfung der lichtbedingten und der mit dem Älterwerden zusammenhängenden Hautalterung, zur Verminderung der Pigmentierungen und der Keratosis actinica und zur Behandlung aller Krankheiten, die mit der normalen Alterung oder der lichtbedingten Alterung zusammenhängen, zur Vorbeugung vor oder der Heilung von Wunden/Narben der Atrophien der Epidermis und/oder Dermis, die durch lokal oder systemisch angewendete Corticosteroide hervorgerufen werden und aller sonstigen Arten der Hautatrophie, zur Vorbeugung vor oder Behandlung von Störungen der Wundheilung, zur Vermeidung oder Behebung von Schwanger-schaftsstreifen oder auch zur Förderung der Wundheilung, zur Bekämpfung von Störungen der Talgproduktion, wie Hypersebhorrhö bei Akne oder der einfachen Seborrhö, zur Bekämpfung von oder Vorbeugung von krebsartigen Zuständen oder vor präkanzerogenen Zuständen, insbesondere der promyelozytären Leukämien, zur Behandlung von Entzündungserkrankungen, wie Arthritis, zur Behandlung aller virusbedingten Erkrankungen der Haut oder anderer Bereiche des Körpers, zur Vorbeugung vor oder Behandlung der Alopecie, zur Behandlung von Hautkrankheiten oder Krankheiten anderer Körperbereiche mit einer immuno-logischen Komponente, zur Behandlung von Herz-/Kreislauf-Erkran-kungen, wie Arteriosklerose oder Bluthochdruck, sowie des Insulin-unabhängigen Diabetes, zur Behandlung von Hautproblemen, die durch UV-Strahlung hervorgerufen werden.

Die Antioxidanten Wirkungen der Verbindungen gemäß Formel I können beispielsweise mit dem 2,2-Diphenyl-1-picrylhydrazyl(DPPH)-Assay gezeigt werden. 2,2-Diphenyl-1-picrylhydrazyl ist ein in Lösung stabiles freies Radikal. Das ungepaarte Elektron führt zu einer starken Absorptionsbande bei 515 nm, die Lösung ist dunkel-violett gefärbt. In Gegenwart eines Radikalfängers wird das Elektron gepaart, die Absorption verschwindet die Entfärbung verläuft stöchiometrisch und Berücksichtigung der aufgenommenen Elektronen. Gemessen wird die Extinktion im Photometer. Die antiradikalische Eigenschaft der zu testenden Substanz wird bestimmt, indem man die Konzentration ermittelt, bei der 50 % des eingesetzten 2,2-Diphenyl-1-picrylhydrazyls mit dem Radikalfänger reagiert haben. Ausgedrückt wird diese Konzentration als EC₅₀, ein Wert, der unter den gegebenen Messbedingungen als Substanzeigenschaft zu betrachten ist. Verglichen wird die untersuchte Substanz mit einem Standard (z.B. Tocopherol). Der EC₅₀-Wert ist dabei ein Maß für die Kapazität der jeweiligen Verbindung Radikale zu fangen. Je niedriger der EC₅₀-Wert ist, desto höher ist die Kapazität Radikale zu fangen. Im Sinne dieser Erfindung wird von einer großen oder hohen Kapazität Radikale zu fangen gesprochen, wenn der EC50-Wert niedriger als der von Tocopherol.

Ein weiterer wichtiger Aspekt für die Wirkung der Antioxidantien ist die Zeit in der dieser EC_{50} -Wert erreicht wird. Diese Zeit gemessen in Minuten ergibt den T_{EC50} -Wert, der eine Aussage über die Geschwindigkeit zulässt, mit der diese Antioxidantien Radikale fangen. Im Sinne dieser Erfindungen gelten Antioxidantien, die diesen Wert innerhalb von weniger als 60 Minuten erreichen als schnell, solche die den EC_{50} -Wert erst nach mehr als 120 Minuten erreichen als zeitverzögert wirkend.

Die antiradikalische Effizienz (AE) (beschrieben bei C. Sanchez-Moreno, J.A. Larrauri und F. Saura-Calixto in J. Sci. Food Agric. 1998, 76(2), 270-276.) ergibt sich aus den oben genannten Größen nach folgender Beziehung:

$$AE = \frac{1}{EC_{50} T_{EC_{50}}}$$

Eine niedrige AE (x10⁻³) liegt im Bereich bis etwa 10, von einer mittleren AE wird im Bereich von 10 bis 20 gesprochen und eine hohe AE liegt erfindungsgemäß bei Werten oberhalb 20 vor.

Dabei kann es erfindungsgemäß insbesondere bevorzugt sein, schnell wirkende Antioxidantien mit solchen mit langsamer oder zeitverzögerter Wirkung zu kombinieren. Dabei sind typische Gewichtsverhältnisse der schnell wirkenden Antioxidantien zu zeitverzögert wirkenden Antioxidantien im Bereich 10:1 bis 1:10, vorzugsweise im Bereich 10:1 bis 1:1 und für hautschützende Zubereitungen insbesondere bevorzugt im Bereich 5:1 bis 2:1. In anderen erfindungsgemäß ebenfalls bevorzugten Zubereitungen kann es im Sinne einer Wirkungsoptimierung allerdings von Vorteil sein, mehr zeitverzögert wirkende Antioxidantien als schnell wirkende Antioxidanten vorliegen. Typische Zusammensetzungen zeigen dann Gewichtsverhältnisse der schnell wirkenden Antioxidantien zeitverzögert wirkenden Antioxidantien im Bereich 1:1 bis vorzugsweise im Bereich 1:2 bis 1:8.

Die schützende Wirkung gegen oxidativen Stress bzw. gegen die Einwirkung von Radikalen kann also weiter verbessert werden, wenn die Zubereitungen ein oder mehrere weitere Antioxidantien enthalten, wobei es dem Fachmann keinerlei Schwierigkeiten bereitet geeignet schnell oder zeitverzögert wirkende Antioxidantien auszuwählen..

In einer bevorzugten Ausführungsform der vorliegenden Erfindungen handelt es sich bei der Zubereitung daher um eine Zubereitung zum Schutz von Körperzellen gegen oxidativen Stress, insbesondere zur Verringerung der Hautalterung, dadurch gekennzeichnet, dass sie neben den ein oder mehreren Verbindungen nach Formel I vorzugsweise ein oder mehrere weitere Antioxidantien enthält.

Es gibt viele aus der Fachliteratur bekannte und bewährte Substanzen, die als Antioxidantien verwendet werden können, z.B. Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole, (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-

Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide. Carotine (z.B. α-Carotin, β-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Buthioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall-) Chelatoren, (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure. Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Magnesium-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (z.B. Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordohydroguajaretsäure, Trihydroxybutyrophenon, Quercitin, Harnsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z.B. ZnO, ZnSO₄), Selen und dessen Derivate (z.B. Selenmethionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid).

Mischungen von Antioxidantien sind ebenfalls zur Verwendung in den erfindungsgemäßen kosmetischen Zubereitungen geeignet. Bekannte und käufliche Mischungen sind beispielsweise Mischungen enthaltend als aktive Inhaltsstoffe Lecithin, L-(+)-Ascorbylpalmitat und Zitronensäure (z.B. (z.B. Oxynex® AP), natürliche Tocopherole, L-(+)-Ascorbylpalmitat, L-(+)-Ascorbinsäure und Zitronensäure (z.B. Oxynex® K LIQUID), Tocopherolextrakte aus natürlichen Quellen, L-(+)-Ascorbylpalmitat, L-(+)-Ascorbinsäure und Zitronensäure (z.B. Oxynex® L LIQUID), DL-α-Tocopherol, L-(+)-Ascorbylpalmitat, Zitronensäure und Lecithin (z.B. Oxynex® LM) oder

Butylhydroxytoluol (BHT), L-(+)-Ascorbylpalmitat und Zitronensäure (z.B. Oxynex[®] 2004). Derartige Antioxidantien werden mit Verbindungen der Formel I in solchen Zusammensetzungen überlicherweise in Verhältnissen im Bereich von 1000:1 bis 1:1000, bevorzugt in Mengen von 100:1 bis 1:100 eingesetzt.

Die erfindungsgemäßen Zubereitungen können als weitere Inhaltsstoffe Vitamine enthalten. Bevorzugt sind Vitamine und Vitamin-Derivate ausgewählt aus Vitamin A, Vitamin-A-Propionat, Vitamin-A-Palmitat, Vitamin-A-Acetat, Retinol, Vitamin B, Thiaminchloridhydrochlorid (Vitamin B₁), Riboflavin (Vitamin B2), Nicotinsäureamid, Vitamin C (Ascorbinsäure), Vitamin D, Ergocalciferol (Vitamin D₂), Vitamin E, DL- α -Tocopherol, Tocopherol-E-Acetat, Tocopherolhydrogensuccinat, Vitamin K₁, Esculin (Vitamin P-Wirkstoff), Thiamin (Vitamin B₁), Nicotinsäure (Niacin), Pyridoxin, Pyridoxal, Pyridoxamin, (Vitamin B₆), Panthothensäure, Biotin, Folsäure und Cobalamin (Vitamin B₁₂) in den erfindungsgemäßen kosmetischen Zubereitungen enthalten, insbesondere bevorzugt Vitamin-Vitamin C und dessen Derivaten, DL- α -Tocopherol. Tocopherol-E-Acetat, Nicotinsäure, Pantothensäure und Biotin. Vitamine werden dabei mit Verbindungen der Formel I überlicherweise in Verhältnissen im Bereich von 1000:1 bis 1:1000, bevorzugt in Mengen von 100:1 bis 1:100 eingesetzt.

Die erfindungsgemäß einzusetzenden Verbindungen der Formel I weisen in der Regel auch ein UV-Absorption im UV-A- und oder UV-B-ereich auf. Unter den erfindungsgemäß einzusetzenden Flavonoiden der Formel I finden sich dabei Breitband-UV-Filter, die alleine oder in Kombination mit weiteren UV-Filtern eingesetzt werden können. Andere ebenfalls bevorzugte Verbindungen der Formel I zeigen ein Absorptionsmaximum im Grenzbereich zwischen der UV-B- und der UV-A-Strahlung. Als UV-A-II-Filter ergänzen sie daher vorteilhaft das Absorptionsspektrum von handelsüblichen UV-B- bzw. UV-A-I-Filtern.

Zusätzlich haben solche bevorzugten Verbindungen Vorteile bei der Einarbeitung in die Zubereitungen:

- Mono- und/oder Oligoglycosylreste verbessern die Wasserlöslichkeit der erfindungsgemäß einzusetzenden Verbindungen;
- geradkettige oder verzweigte C₁- bis C₂₀-Alkoxygruppen, insbesondere die langkettigen Alkoxyfunktionen, wie Ethylhexyloxy-Gruppen erhöhen die Öllöslichkeit der Verbindungen;

d.h. über die geeignete Auswahl der Substituenten kann die Hydrophilie bzw. Lipophilie der erfindungsgemäßen Verbindungen gesteuert werden.

Als Mono- oder Oligosaccharid-reste bevorzugt sind dabei Hexosylreste, insbesondere Ramnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Mannosyl und Talosyl sind gegebenenfalls vorteilhaft zu verwenden. Es kann auch vorteilhaft sein, Pentosylreste zu verwenden. Die Glycosylreste können α - oder β -glycosidisch mit dem Grundkörper verbunden sein. Ein bevorzugtes Disaccharid ist beispielsweise das 6-O-(6-deoxy- α -L-mannopyranosyl)- β -D-glucopyranosid.

Die erfindungsgemäßen Zubereitungen können in ebenfalls bevorzugten Ausführungsformen der Erfindung jedoch auch in der Zubereitungs-Matrix schlecht oder nicht lösliche Verbindungen der Formel I enthalten. In diesem Fall liegen die Verbindungen vorzugsweise in feinteiliger Form in der kosmetischen Zubereitung dispergiert vor.

Erfindungsgemäß insbesondere bevorzugte Zubereitungen enthalten neben den Verbindungen der Formel I auch reine UV-Filter.

Bei Einsatz der als UV-A-Filter insbesondere bevorzugten Dibenzoylmethanderivate in Kombination mit den Verbindungen der Formel I ergibt sich ein zusätzlicher Vorteil: Die UV-empfindlichen Dibenzoylmethanderivate werden durch die Anwesenheit Verbindungen der Formel I zusätzlich stabilisiert. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung der Verbindungen gemäß Formel I zur Stabilisierung von Dibenzoylmethanderivaten in Zubereitungen.

Prinzipiell kommen alle UV-Filter für eine Kombination mit den erfindungsgemäßen Verbindungen der Formel I in Frage. Besonders bevorzugt sind solche UV-Filter, deren physiologische Unbedenklichkeit bereits nachgewiesen ist. Sowohl für UVA wie auch UVB-Filter gibt es viele aus der Fachliteratur bekannte und bewährte Substanzen, z.B.

Benzylidenkampferderivate wie 3-(4'-Methylbenzyliden)-dl-kampfer (z.B. Eusolex® 6300), 3-Benzylidenkampfer (z.B. Mexoryl® SD), Polymere von N-{(2 und 4)-[(2-oxoborn-3-yliden)methyl]benzyl}-acrylamid (z.B. Mexoryl® SW), N,N,N-Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilinium methylsulfat (z.B. Mexoryl® SK) oder (2-Oxoborn-3-yliden)toluol-4-sulfonsäure (z.B. Mexoryl® SL),

Benzoyl- oder Dibenzoylmethane wie 1-(4-tert-Butylphenyl)-3-(4-methoxyphenyl)propan-1,3-dion (z.B. Eusolex® 9020) oder 4-lsopropyldibenzoylmethan (z.B. Eusolex® 8020),

Benzophenone wie 2-Hydroxy-4-methoxybenzophenon (z.B. Eusolex® 4360) oder 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und ihr Natriumsalz (z.B. Uvinul® MS-40),

Methoxyzimtsäureester wie Methoxyzimtsäureoctylester (z.B. Eusolex® 2292), 4-Methoxyzimtsäureisopentylester, z.B. als Gemisch der Isomere (z.B. Neo Heliopan® E 1000),

Salicylatderivate wie 2-Ethylhexylsalicylat (z.B. Eusolex® OS), 4-Isopropylbenzylsalicylat (z.B. Megasol®) oder 3,3,5-Trimethylcyclohexylsalicylat (z.B. Eusolex® HMS),

4-Aminobenzoesäure und Derivate wie 4-Aminobenzoesäure, 4-(Dimethylamino)benzoesäure-2-ethylhexylester (z.B. Eusolex® 6007), ethoxylierter 4-Aminobenzoesäureethylester (z.B. Uvinul® P25),

Phenylbenzimidazolsulfonsäuren, wie 2-Phenylbenzimidazol-5-sulfonsäure sowie ihre Kalium-, Natrium- und Triethanolaminsalze (z.B. Eusolex® 232), 2,2-(1,4-Phenylen)-bisbenzimidazol-4,6-disulfonsäure bzw. deren

Salze (z.B. Neoheliopan® AP) oder 2,2-(1,4-Phenylen)-bisbenzimidazol-6-sulfonsäure;

und weitere Substanzen wie

- 2-Cyano-3,3-diphenylacrylsäure-2-ethylhexylester (z.B. Eusolex® OCR),
- 3,3'-(1,4-Phenylendimethylen)-bis-(7,7-dimethyl-2-oxobicyclo-[2.2.1]hept-1-ylmethansulfonsäure sowie ihre Salze (z.B. Mexoryl® SX) und
- 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin (z.B. Uvinul® T 150)
- 2-(4-Diethylamino-2-hydroxy-benzoyl)-benzoesäure hexylester (z.B. Uvinul®UVA Plus, Fa. BASF).

Die in der Liste aufgeführten Verbindungen sind nur als Beispiele aufzufassen. Selbstverständlich können auch andere UV-Filter verwendet werden.

Diese organischen UV-Filter werden in der Regel in einer Menge von 0,5 bis 10 Gewichtsprozent, vorzugsweise 1 - 8 %, in kosmetische Formulierungen eingearbeitet.

Weitere geeignete organische UV-Filter sind z.B.

- 2-(2H-Benzotriazol-2-yl)-4-methyl-6-(2-methyl-3-(1,3,3,3-tetramethyl-1-(trimethylsilyloxy)disiloxanyl)propyl)phenol (z.B. Silatrizole[®]),
- 4,4'-[(6-[4-((1,1-Dimethylethyl)aminocarbonyl)phenylamino]-1,3,5-triazin-2,4-diyl)diimino]bis(benzoesäure-2-ethylhexylester) (z.B. Uvasorb® HEB),
- α-(Trimethylsilyl)-ω-[trimethylsilyl)oxy]poly[oxy(dimethyl [und ca. 6% methyl[2-[p-[2,2-bis(ethoxycarbonyl]vinyl]phenoxy]-1-methylenethyl] und ca. 1,5 % methyl[3-[p-[2,2-bis(ethoxycarbonyl)vinyl)phenoxy)-propenyl) und 0,1 bis 0,4% (methylhydrogen]silylen]] (n \approx 60) (CAS-Nr. 207 574-74-1)
- 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethyl-butyl)phenol) (CAS-Nr. 103 597-45-1)
- 2,2'-(1,4-Phenylen)bis-(1H-benzimidazol-4,6-disulfonsäure, Mononatriumsalz) (CAS-Nr. 180 898-37-7) und

- 2,4-bis-{[4-(2-Ethyl-hexyloxy)-2-hydroxyl]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin (CAS-Nr. 103 597-45-, 187 393-00-6).
- 4,4'-[(6-[4-((1,1-Dimethylethyl)aminocarbonyl)phenylamino]-1,3,5-triazin-2,4-diyl)diimino]bis(benzoesäure-2-ethylhexylester) (z.B. Uvasorb® HEB),

Weitere geeignete UV-Filter sind auch Methoxyflavone ensprechend der älteren Deutschen Patentanmeldung DE 10232595.2.

Organische UV-Filter werden in der Regel in einer Menge von 0,5 bis 20 Gewichtsprozent, vorzugsweise 1 - 15 %, in kosmetische Formulie-rungen eingearbeitet.

Als anorganische UV-Filter sind solche aus der Gruppe der Titandioxide wie z.B. gecoatetes Titandioxid (z.B. Eusolex® T-2000, Eusolex®T-AQUA), Zinkoxide (z.B. Sachtotec®), Eisenoxide oder auch Ceroxide denkbar. Diese anorganischen UV-Filter werden in der Regel in einer Menge von 0,5 bis 20 Gewichtsprozent, vorzugsweise 2 - 10 %, in kosmetische Zubereitungen eingearbeitet.

Bevorzugte Verbindungen mit UV-filternden Eigenschaften sind 3-(4'-Methylbenzyliden)-dl-kampfer, 1-(4-tert-Butylphenyl)-3-(4-methoxy-phenyl)-pro-pan-1,3-dion, 4-Isopropyldibenzoylmethan, 2-Hydroxy-4-meth-oxy-ben-zo-phenon, Methoxyzimtsäureoctylester, 3,3,5-Trimethyl-cyclo-hexyl-sali-cylat, 4-(Dimethylamino)benzoesäure-2-ethyl-hexylester, 2-Cyano-3,3-di-phenyl-acrylsäure-2-ethylhexylester, 2-Phenyl-benzimidazol-5-sulfonsäure sowie ihre Kalium-, Natrium- und Triethanol-aminsalze.

Durch Kombination von einer oder mehrerer Verbindungen der Formel I mit weiteren UV-Filtern kann die Schutzwirkung gegen schädliche Einwirkungen der UV-Strahlung optimiert werden.

Optimierte Zusammensetzungen können beispielsweise die Kombination der organischen UV-Filter 4'-Methoxy-6-hydroxyflavon mit 1-(4-tert-Butylphenyl)-3-(4-methoxyphenyl)propan-1,3-dion und 3-(4'-Methylbenzyliden)-dl-kampfer enthalten. Mit dieser Kombination ergibt sich

ein Breitbandschutz, der durch Zusatz von anorganischen UV-Filtern, wie Titandioxid-Mikropartikeln noch ergänzt werden kann.

Alle genannten UV-Filter können auch in verkapselter Form eingesetzt werden. Insbesondere ist es von Vorteil organische UV-Filter in verkapselter Form einzusetzen. Im Einzelnen ergeben sich die folgende Vorteile:

- Die Hydrophilie der Kapselwand kann unabhängig von der Löslichkeit des UV-Filters eingestellt werden. So können beispielsweise auch hydrophobe UV-Filter in rein wässrige Zubereitungen eingearbeitet werden. Zudem wird der häufig als unangenehm empfundene ölige Eindruck beim Auftragen der hydrophobe UV-Filter enthaltenden Zubereitung unterbunden.
- Bestimmte UV-Filter, insbesondere Dibenzoylmethanderivate, zeigen in kosmetischen Zubereitungen nur eine verminderte Photostabilität. Durch Verkapselung dieser Filter oder von Verbindungen, die die Photostabilität dieser Filter beeinträchtigen, wie beispielsweise Zimtsäurederivate, kann die Photostabilität der gesamten Zubereitung erhöht werden.
- In der Literatur wird immer wieder die Hautpenetration durch organische UV-Filter und das damit verbundene Reizpotential beim direkten Auftragen auf die menschliche Haut diskutiert. Durch die hier vorgeschlagene Verkapselung der entsprechenden Substanzen wird dieser Effekt unterbunden.
- Allgemein können durch Verkapselung einzelner UV-Filter oder anderer Inhaltstoffe Zubereitungsprobleme, die durch Wechselwirkung einzelner Zubereitungsbestandteile untereinander entstehen, wie Kristallisationsvorgänge, Ausfällungen und Agglomeratbildung vermieden werden, da die Wechselwirkung unterbunden wird.

Daher ist es erfindungsgemäß bevorzugt, wenn ein oder mehrere der oben genannten UV-Filter in verkapselter Form vorliegen. Vorteilhaft ist es dabei, wenn die Kapseln so klein sind, dass sie mit dem bloßen Auge nicht beobachtet werden können. Zur Erzielung der o.g. Effekte ist es weiterhin erforderlich, dass die Kapseln hinreichend stabil sind und den verkapselten Wirkstoff (UV-Filter) nicht oder nur in geringem Umfang an die Umgebung abgeben.

Geeignete Kapseln können Wände aus anorganischen oder organischen Polymeren aufweisen. Beispielsweise wird in US 6,242,099 B1 die Herstellung geeigneter Kapseln mit Wänden aus Chitin, Chitin-Derivaten oder polyhydroxylierten Polyaminen beschrieben. Erfindungsgemäß besonders bevorzugt einzusetzende Kapseln weisen Wände auf, die durch einen SolGel-Prozeß, wie er in den Anmeldungen WO 00/09652, WO 00/72806 und WO 00/71084 beschrieben ist, erhalten werden können. Bevorzugt sind hier wiederum Kapseln, deren Wände aus Kieselgel (Silica; undefiniertes Silicium-oxid-hydroxid) aufgebaut sind. Die Herstellung entsprechender Kapseln ist dem Fachmann beispielsweise aus den zitierten Patentanmeldungen bekannt, deren Inhalt ausdrücklich auch zum Gegenstand der vorliegenden Anmeldung gehört.

Dabei sind die Kapseln in erfindungsgemäßen Zubereitungen vorzugsweise in solchen Mengen enthalten, die gewährleisten, dass die verkapselten UV-Filter in den oben angegebenen Mengen in der Zubereitung vorliegen.

Die erfindungsgemäßen Zubereitungen können darüber hinaus weitere übliche hautschonende oder hautpflegende Wirkstoffe enthalten. Dies können prinzipiell alle den Fachmann bekannten Wirkstoffe sein.

Besonders bevorzugte Wirkstoffe sind Pyrimidincarbonsäuren und/oder Aryloxime.

Pyrimidincarbonsäuren kommen in halophilen Mikroorganismen vor und spielen bei der Osmoregulation dieser Organismen eine Rolle (E. A. Galinski et al., Eur. J. Biochem., 149 (1985) Seite 135-139). Dabei sind unter den Pyrimidincarbonsäuren insbesondere Ectoin ((S)-1,4,5,6-Tetrahydro-2-methyl-4-pyrimidincarbonsäure) und Hydroxyectoin ((S,S)-1,4,5,6-Tetrahydro-5-hydroxy-2-methyl-4-pyrimidincarbonsäure und deren Derivate zu nennen. Diese Verbindungen stabilisieren Enzyme und andere Biomoleküle in wässrigen Lösungen und organischen Lösungsmitteln. Weiter stabilisieren sie insbesondere Enzyme gegen denaturierende

Bedingungen, wie Salze, extreme pH-Werte, Tenside, Harnstoff, Guanidiniumchlorid und andere Verbindungen.

Ectoin und Ectoin-Derivate wie Hydroxyectoin können vorteilhaft in Arzneimitteln verwendet werden. Insbesondere kann Hydroxyectoin zur Herstellung eines Arzneimittels zur Behandlung von Hauterkrankungen eingesetzt werden. Andere Einsatzgebiete des Hydroxyectoins und anderer Ectoin-Derivate liegen typischerweise in Gebieten in denen z.B. Trehalose als Zusatzstoff verwendet wird. So können Ectoin-Derivate, wie Hydroxyectoin, als Schutzstoff in getrockneten Hefe- und Bakterienzellen Verwendung finden. Auch pharmazeutische Produkte wie nicht glykosylierte, pharmazeutische wirksame Peptide und Proteine z.B. t-PA können mit Ectoin oder seinen Derivaten geschützt werden.

Unter den kosmetischen Anwendungen ist insbesondere die Verwendung von Ectoin und Ectoin-Derivaten zur Pflege von gealterter, trockener oder gereizter Haut zu nennen. So wird in der europäischen Patentanmeldung EP-A-0 671 161 insbesondere beschrieben, dass Ectoin und Hydroxyectoin in kosmetischen Zubereitungen wie Pudern, Seifen, tensidhaltigen Reinigungsprodukten, Lippenstiften, Rouge, Make-Ups, Pflegecremes und Sonnenschutzpräparaten eingesetzt werden.

Dabei wird vorzugsweise eine Pyrimidincarbonsäure gemäß der unten stehenden Formel II eingesetzt,

worin R¹ ein Rest H oder C1-8-Alkyl, R² ein Rest H oder C1-4-Alkyl und R³, R⁴, R⁵ sowie R⁶ jeweils unabhängig voneinander ein Rest aus der Gruppe H, OH, NH₂ und C1-4-Alkyl sind. Bevorzugt werden Pyrimidincarbonsäuren eingesetzt, bei denen R² eine Methyl- oder eine Ethylgruppe ist und R¹ bzw. R⁵ und R⁶ H sind. Insbesondere bevorzugt werden die Pyrimidincarbonsäuren Ectoin ((S)-1,4,5,6-Tetrahydro-2-methyl-4-pyrimidin-carbonsäure) und Hydroxyectoin ((S, S)-1,4,5,6-Tetrahydro-5-hydroxy-2-methyl-4-pyrimidin-carbonsäure) eingesetzt. Dabei enthalten die erfindungsgemäßen Zubereitungen derartige Pyrimidincarbonsäuren vorzugsweise in Mengen bis zu 15 Gew.-%. Vorzugsweise werden die Pyrimidincarbonsäuren dabei in Verhältnissen von 100:1 bis 1:100 zu den Verbindungen der Formel I eingesetzt, wobei Verhältnisse im Bereich 1:10 bis 10:1 besonders bevorzugt sind.

Unter den Aryloximen 2-Hydroxy-5wird vorzugsweise methyllaurophenonoxim, welches auch als HMLO, LPO oder F5 bezeichnet wird, eingesetzt. Seine Eignung zum Einsatz in kosmetischen Mitteln ist beispielsweise aus der Deutschen Offenlegungsschrift DE-A-41 16 123 bekannt. Zubereitungen, 2-Hydroxy-5-methyllaurodie phenonoxim enthalten, sind demnach zur Behandlung von Hauterkrankungen, die mit Entzündungen einhergehen, geeignet. Es ist bekannt, dass derartige Zubereitungen z.B. zur Therapie der unterschiedlicher Ekzemformen, irritativer und toxischer Dermatitis, **UV-Dermatitis** sowie weiterer allergischer und/oder entzündlicher Erkrankungen der Haut und der Hautanhangsgebilde verwendet werden können. Erfindungsgemäße Zubereitungen, die neben der Verbindung der zusätzlich Formel eine Aryloxim, vorzugsweise 2-Hydroxy-5methyllaurophenonoxim überraschende enthalten. zeigen inflammatorische Eignung. Dabei enthalten die Zubereitungen vorzugsweise 0,01 bis 10 Gew.-% des Aryloxims, wobei es insbesondere bevorzugt ist, wenn die Zubereitung 0,05 bis 5 Gew-% Aryloxim enthält.

Alle Verbindungen oder Komponenten, die in den Zubereitungen verwendet werden können, sind entweder bekannt und käuflich erwerbbar oder können nach bekannten Verfahren synthetisiert werden.

Die eine oder die mehreren Verbindungen der Formel I können in der üblichen Weise in kosmetische oder dermatologische Zubereitungen eingearbeitet werden. Geeignet sind Zubereitungen für eine äußerliche Anwendung, beispielsweise als Creme, Lotion, Gel, oder als Lösung, die auf die Haut aufgesprüht werden kann. Für eine innerliche Anwendung sind Darreichungsformeln wie Kapseln, Dragees, Pulver, Tabletten-Lösungen oder Lösungen geeignet.

Als Anwendungsform der erfindungsgemäßen Zubereitungen seien z.B. genannt: Lösungen, Suspensionen, Emulsionen, PIT-Emulsionen, Pasten, Salben, Gele, Cremes, Lotionen, Puder, Seifen, tensidhaltige Reinigungspräparate, Öle, Aerosole und Sprays. Weitere Anwendungsformen sind z.B. Sticks, Shampoos und Duschbäder. Der Zubereitung können beliebige übliche Trägerstoffe, Hilfsstoffe und gegebenenfalls weitere Wirkstoffe zugesetzt werden.

Vorzuziehende Hilfsstoffe stammen aus der Gruppe der Konservierungsstoffe, Antioxidantien, Stabilisatoren, Lösungsvermittler, Vitamine, Färbemittel, Geruchsverbesserer.

Salben, Pasten, Cremes und Gele können die üblichen Trägerstoffe enthalten, z.B. tierische und pflanzliche Fette, Wachse, Paraffine, Stärke, Traganth, Cellulosederivate, Polyethylenglykole, Silicone, Bentonite, Kieselsäure, Talkum und Zinkoxid oder Gemische dieser Stoffe.

Puder und Sprays können die üblichen Trägerstoffe enthalten, z.B. Milchzucker, Talkum, Kieselsäure, Aluminiumhydroxid, Calciumsilikat und Polyamid-Pulver oder Gemische dieser Stoffe. Sprays können zusätzlich die üblichen Treibmittel, z.B. Chlorfluorkohlenwasserstoffe, Propan/Butan oder Dimethylether, enthalten.

Lösungen und Emulsionen können die üblichen Trägerstoffe wie Lösungsmittel, Lösungsvermittler und Emulgatoren, z.B. Wasser, Ethanol, Isopropanol, Ethylcarbonat, Ethlyacetat, Benzylalkohol, Benzylbenzoat, Propylenglykol, 1,3-Butylglykol, Öle, insbesondere Baumwollsaatöl, Erdnussöl, Maiskeimöl, Olivenöl, Rizinusöl und Sesamöl, Glycerinfett-

säureester, Polyethylenglykole und Fettsäureester des Sorbitans oder Gemische dieser Stoffe enthalten.

Suspensionen können die üblichen Trägerstoffe wie flüssige Verdünnungsmittel, z.B. Wasser, Ethanol oder Propylenglykol, Suspendiermittel, z.B. ethoxylierte Isostearylalkohole, Polyoxyethylensorbitester und Polyoxyethylensorbitanester, mikrokristalline Cellulose, Aluminiummetahydroxid, Bentonit, Agar-Agar und Traganth oder Gemische dieser Stoffe enthalten.

Seifen können die üblichen Trägerstoffe wie Alkalisalze von Fettsäuren, Salze von Fettsäurehalbestern, Fettsäureeiweißhydrolysaten, Isothionate, Lanolin, Fettalkohol, Pflanzenöle, Pflanzenextrakte, Glycerin, Zucker oder Gemische dieser Stoffe enthalten.

Tensidhaltige Reinigungsprodukte können die üblichen Trägerstoffe wie Salze von Fettalkoholsulfaten, Fettalkoholethersulfaten, Sulfobernsteinsäurehalbestern, Fettsäureeiweißhydrolysaten, Isothionate, Imidazolinium-derivate, Methyltaurate, Sarkosinate, Fettsäureamidethersulfate, Alkylamidobetaine, Fettalkohole, Fettsäureglyceride, Fettsäurediethanolamide, pflanzliche und synthetische Öle, Lanolinderivate, ethoxylierte Glycerinfettsäureester oder Gemische dieser Stoffe enthalten.

Gesichts- und Körperöle können die üblichen Trägerstoffe wie synthetische Öle wie Fettsäureester, Fettalkohole, Silikonöle, natürliche Öle wie Pflanzenöle und ölige Pflanzenauszüge, Paraffinöle, Lanolinöle oder Gemische dieser Stoffe enthalten.

Weitere typische kosmetische Anwendungsformen sind auch Lippenstifte, Lippenpflegestifte, Mascara, Eyeliner, Lidschatten, Rouge, Puder-, Emulsions- und Wachs-Make up sowie Sonnenschutz-, Prä-Sun- und After-Sun-Präparate.

Zu den bevorzugten erfindungsgemäßen Zubereitungsformen gehören insbesondere Emulsionen.

Erfindungsgemäße Emulsionen sind vorteilhaft und enthalten z.B. die genannten Fette, Öle, Wachse und anderen Fettkörper, sowie Wasser und einen Emulgator, wie er üblicherweise für einen solchen Typ der Zubereitung verwendet wird.

Die Lipidphase kann vorteilhaft gewählt werden aus folgender Substanzgruppe:

- Mineralöle, Mineralwachse
- Öle, wie Triglyceride der Caprin- oder der Caprylsäure, ferner natürliche
 Öle wie z. B. Rizinusöl;
- Fette, Wachse und andere natürliche und synthetische Fettkörper, vorzugsweise Ester von Fettsäuren mit Alkoholen niedriger C-Zahl, z.B. mit Isopropanol, Propylenglykol oder Glycerin, oder Ester von Fett-Ikoholen mit Alkansäuren niedriger C-Zahl oder mit Fettsäuren;
- Silikonöle wie Dimethylpolysiloxane, Diethylpolysiloxane, Diphenylpolysiloxane sowie Mischformen daraus.

Die Ölphase der Emulsionen, Oleogele bzw. Hydrodispersionen oder Lipodispersionen im Sinne der vorliegenden Erfindung wird vorteilhaft gewählt aus der Gruppe der Ester aus gesättigtem und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäure und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylstearat, Isopropylmyristat, Isopropylpalmitat, Isopropyloleat. n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Isooctylstearat, Isononylstearat, Isononylisononanoat, 2-Ethylhexylpalmitat, 2-Ethylhexyllaurat, 2-Hexaldecylstearat, 2-Octyldodecylpalmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucylerucat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, z. B. Jojobaöl.

Ferner kann die Ölphase vorteilhaft gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, der Silikonöle, der Dialkylether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole, sowie der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12-18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, z. B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnussöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Palmkernöl und dergleichen mehr.

Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Es kann auch gegebenenfalls vorteilhaft sein, Wachse, beispielsweise Cetylpalmitat, als alleinige Lipidkomponente der Ölphase einzusetzen.

Vorteilhaft wird die Ölphase gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Isoeicosan, 2-Ethylhexylcocoat, C_{12^-15} -Alkylbenzoat, Capryl-Caprinsäure-triglycerid, Dicaprylether.

Besonders vorteilhaft sind Mischungen aus C_{12^-15} -Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus C_{12^-15} -Alkylbenzoat und Isotridecylisononanoat sowie Mischungen aus C_{12^-15} -Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat.

Von den Kohlenwasserstoffen sind Paraffinöl, Squalan und Squalen vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.

Vorteilhaft kann auch die Ölphase ferner einen Gehalt an cyclischen oder linearan Silikonölen aufweisen oder vollständig aus solchen Ölen bestehen, wobei allerdings bevorzugt wird, außer dem Silikonöl oder den Silikonölen einen zusätzlichen Gehalt an anderen Ölphasenkomponenten zu verwenden.

Vorteilhaft wird Cyclomethicon (Octamethylcyclotetrasiloxan) als erfindungsgemäß zu verwendendes Silikonöl eingesetzt. Aber auch andere Silikonöle sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden, beispielsweise Hexamethylcyclotrisiloxan, Polydimethylsiloxan, Poly(methylphenylsiloxan).

Besonders vorteilhaft sind ferner Mischungen aus Cyclomethicon und Isotridecylisononanoat, aus Cyclomethicon und 2-Ethylhexylisostearat.

Die wässrige Phase der erfindungsgemäßen Zubereitungen enthält gegebenenfalls vorteilhaft Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylenglykol, Glycerin, Ethylenglykol, Ethylenglykolmonoethyl- oder -monobutylether, Propylenglykolmonomethyl, -monoethyl- oder -monobutylether, Diethylenglykolmonomethyl- oder -monoethylether und analoge Produkte, ferner Alkohole niedriger C-Zahl, z. B. Ethanol, Isopropanol, 1,2-Propandiol, Glycerin sowie insbesondere ein oder mehrere Verdickungsmittel, welches oder welche vorteilhaft gewählt werden können aus der Gruppe Siliciumdioxid, Aluminiumsilikate, Polysaccharide bzw. deren Derivate, z.B. Hyaluronsäure, Xanthangummi, Hydroxypropylmethylcellulose, besonders vorteilhaft aus der Gruppe der Polyacrylate, bevorzugt ein Polyacrylat aus der Gruppe der sogenannten Carbopole, beispielsweise Carbopole der Typen 980, 981, 1382, 2984, 5984, jeweils einzeln oder in Kombination.

Insbesondere werden Gemisch der vorstehend genannten Lösemittel verwendet. Bei alkoholischen Lösemitteln kann Wasser ein weiterer Bestandteil sein.

Erfindungsgemäße Emulsionen sind vorteilhaft und enthalten z. B. die genannten Fette, Öle, Wachse und anderen Fettkörper, sowie Wasser und einen Emulgator, wie er üblicherweise für einen solchen Typ der Formuierung verwendet wird.

In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Zubereitungen hydrophile Tenside.

Die hydrophilen Tenside werden bevorzugt gewählt aus der Gruppe der Alkylglucoside, der Acyllactylate, der Betaine sowie der Cocoamphoacetate.

Die Alkylglucoside werden ihrerseits vorteilhaft gewählt aus der Gruppe der Alkylglucoside, welche sich durch die Strukturformel

$$H_2C$$
 OH H_2C OH O-R OH $DP-1$

auszeichnen, wobei R einen verzweigten oder unverzweigten Alkylrest mit 4 bis 24 Kohlenstoffatomen darstellt und wobei \overline{DP} einen mittleren Glucosylierungsgrad von bis zu 2 bedeutet.

Der Wert DP repräsentiert den Glucosidierungsgrad der erfindungsgemäß verwendeten Alkylglucoside und ist definiert als

$$\overline{DP} = \frac{p_1}{100} \cdot 1 + \frac{p_2}{100} \cdot 2 + \frac{p_3}{100} \cdot 3 + \dots = \sum \frac{p_i}{100} \cdot i$$

Dabei stellen p₁, p₂, p₃ ... bzw. p_i den Anteil der einfach, zweifach dreifach ... i-fach glucosylierten Produkte in Gewichtsprozenten dar. Erfindungsemäß vorteilhaft werden Produkte mit Glucosylierungsgraden von 1-2, insbesondere vorteilhaft von 1, 1 bis 1,5, ganz besonders vorteilhaft von 1,2-1,4, insbesondere von 1,3 gewählt.

Der Wert DP trägt den Umstande Rechnung, dass Alkylglucoside herstellungsedingt in der Regel Gemische aus Mono- und Oligoglucosiden darstellen. Erfindungsgemäß vorteilhaft ist ein relativ hoher Gehalt an

Monoglucosiden, typischerweise in der Größenordnung von 40-70 Gew.-%.

Erfindungsgemäß besonders vorteilhaft verwendete Alkylglylcoside werden gewählt aus der Gruppe Octylglucopyranosid, Nonylglucopyranosid, Decylglucopyranosid, Undecylglucopyranosid, Dodecylglucopyranosid, Tetradecylglucopyranosid und Hexadecylglucopyranosid.

Es ist ebenfalls von Vorteil, natürliche oder synthetische Roh- und Hilfsstoffe bzw. Gemische einzusetzen, welche sich durch einen wirksamen Gehalt an den erfindungsgemäß verwendeten Wirkstoffen auszeichnen, beispielsweise Plantaren[®] 1200 (Henkel KGaA), Oramix[®] NS 10 (Seppic).

Die Acyllactylate werden ihrerseits vorteilhaft gewählt aus der Gruppe der Substanzen, welche sich durch die Strukturformel

auszeichnen, wobei R¹ einen verzweigten oder unverzweigten Alkylrest mit 1 bis 30 Kohlenstoffatomen bedeutet und M⁺ aus der Gruppe der Alkalionen sowie der Gruppe der mit einer oder mehreren Alkyl- und/oder mit einer oder mehreren Hydroxyalkylresten substituierten Ammoniumionen gewählt wird bzw. dem halben Äquivalent eines Erdalkalions entspricht.

Vorteilhaft ist beispielsweise Natriumisostearyllactylat, beispielsweise das Produkt Pathionic[®] ISL von der Gesellschaft American Ingredients Company.

Die Betaine werden vorteilhaft gewählt aus der Gruppe der Substanzen, welche sich durch die Strukturformel

$$R^2$$
-C-NH- $\left(CH_2\right)$ -N- CH_2 -C $\left(CH_3\right)$ -O $\left(CH_3\right)$ -C $\left(CH_3\right)$

auszeichnen, wobei R² einen verzweigten oder unverzeigten Alkylrest mit 1 bis 30 Kohlenstoffatomen bedeutet.

Insbesondere vorteilhaft bedeutet R² einen verzweigten oder unverzweigten Alkylrest mit 6 bis 12 Kohlenstoffatomen.

Vorteilhaft ist beispielsweise Capramidopropylbetain, beispielsweise das Produkt Tego[®] Betain 810 von der Gesellschaft Th. Goldschmidt AG.

Als erfindungsgemäß vorteilhaftes Cocoamphoacetat wird beispielsweise Natriumcocoamphoacetat gewählt, wie es unter der Bezeichnung Miranol[®] Ultra C32 von der Gesellschaft Miranol Chemical Corp. erhältlich ist.

Die erfindungsgemäßen Zubereitungen sind vorteilhaft dadurch gekennzeichnet, dass das oder die hydrophilen Tenside in Konzentrationen von 0,01-20 Gew.-% bevorzugt 0,05-10 Gew.-%, besonders bevorzugt 0,1-5 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Zusammensetzung, vorliegt oder vorliegen.

Zu Anwendung werden die erfindungsgemäßen kosmetischen und dermatologischen Zubereitungen in der für Kosmetika üblichen Weise aufdie Haut und/oder die Haare in ausreichender Menge aufgebracht.

Erfindungsgemäße kosmetische und dermatologische Zubereitungen können in verschiedenen Formen vorliegen. So können sie z. B. eine Lösung, eine wasserfreie Zubereitung, eine Emulsion oder Mikroemulsion vom Typ Wasser-in-Öl (W/O) oder vom Typ Öl-in-Wasser (O/W), eine multiple Emulsion, beispielsweise vom Typ Waser-in-Öl-in-Wasser (W/O/W), ein Gel, einen festen Stift, eine Salbe oder auch ein Aerosol darstellen. Es ist auch vorteilhaft, Ectoine in verkapselter Form darzureichen, z. B. in Kollagenmatrices und anderen üblichen Verkapselungsmaterialien,

z. B. als Celluloseverkapselungen, in Gelatine, Wachsmatrices oder liposomal verkapselt. Insbesondere Wachsmatrices wie sie in der DE-OS 43 08 282 beschrieben werden, haben sich als günstig herausgestellt. Bevorzugt werden Emulsionen. O/W-Emulsinen werden besonders bevorzugt. Emulsionen, W/O-Emulsionen und O/W-Emulsionen sind in üblicher Weise erhältlich.

Als Emulgatoren können beispielsweise die bekannten W/O- und O/W-Emulgatoren verwendet werden. Es ist vorteilhaft, weitere übliche Co-emulgatoren in den erfindungsgemäßen bevorzugten O/W-Emulsionen zu verwenden.

Erfindungsgemäß vorteilhaft werden als Co-Emulgatoren beispielsweise O/W-Emulgatoren gewählt, vornehmlich aus der Gruppe der Substanzen mit HLB-Werten von 11-16, ganz besonders vorteilhaft mit HLB-Werten von 14,5-15,5, sofern die O/W-Emulgatoren gesättigte Reste R und R' aufweisen. Weisen die O/W-Emulgatoren ungesättigte Reste R und/oder R' auf, oder liegen Isoalkylderivate vor, so kann der bevorzugte HLB-Wert solcher Emulgatoren auch niedriger oder darüber liegen.

Es ist von Vorteil, die Fettalkoholethoxylate aus der Gruppe der ethoxylierten Stearylalkhole, Cetylalkohole, Cetylstearylalkohole (Cetearylalkosind: hole) zu wählen. Insbesondere bevorzugt Polyethylen-Polyethylenglycol(14)stearylether (Steareth-13), glycol(13)stearylether (Steareth-15), (Steareth-14), Polyethylenglycol(15)stearylether Polyethylenglycol(17)-Polyethylenglycol(16)stearylether (Steareth-16), stearylether (Steareth-17), Polyethylenglycol(18) stearylether (Steareth-18), Polyethylenglycol(20)-Polyethylenglycol(19)stearylether (Steareth-19), Polyethylenglycol(12)isostearylether (Steareth-20), stearylether Polyethylenglycol(13)isostearylether (Isosteareth-13), (Isosteareth-12), Polyethylen-Polyethylenglycol(14)isostearylether (Isosteareth-14), Polyethylenglycol(16)-(Isosteareth-15), glycol(15)isostearylether Polyethylenglycol(17)isostearylether (Isosteareth-16), isostearylether Polyethylenglycol(18)isostearylether (Isosteareth-18), (Isosteareth-17), Polyethylenglycol(19)isostearylether (Isosteareth-19), Polyethylenglycol(20)isostearylether (Isosteareth-20), Polyethylenglycol(13)cetylether

Polyethylenglycol(14)cetylether (Ceteth-14), Polyethylen-(Ceteth-13), glycol(15)cetylether (Ceteth-15), Polyethylenglycol(16)cetylether (Ceteth-16), Polyethylenglycol(17)cetylether (Ceteth-17), Polyethylenglycol(18)cetylether (Ceteth-18), Polyethylenglycol(19)cetylether (Ceteth-19), Polyethylen-glycol(20)cetylether (Ceteth-20). Polyethylenglycol(13)isocetylether (Isoceteth-13), Polyethylenglycol(14)isocetylether (Isoceteth-14), Polyethylenglycol(15)isocetylether (Isoceteth-15), Polyethylenglycol(16)isocetylether (Isoceteth-16), Polyethylenglycol(17)isocetylether (Isoceteth-17), Polyethylenglycol(18)isocetylether (Isoceteth-18), Polyethylenglycol(19)isocetylether (Isoceteth-19), Polyethylenglycol(20)isocetylether (Isoceteth-20). Polyethylenglycol(12)oleylether (Oleth-12), Polyethylenglycol(13)oleylether (Oleth-13), Polyethylenglycol(14)oleylether (Oleth-14), Polyethylenglycol(15)oleylether (Oleth-15), Polyethylenglycol(12)laurylether (Laureth-12), Polyethylenglycol(12)isolaurylether (Isolaureth-12), Polyethylenglycol(13)cetylstearylether (Ceteareth-13), Polyethylenglycol(14)cetylstearylether (Ceteareth-14), Polyethylenglycol(15)cetylstearylether (Ceteareth-15), Polyethylenglycol(16)cetylstearylether (Ceteareth-16), Polyethylenglycol(17)cetylstearylether Polyethylenglycol(18)cetylstearylether (Ceteareth-17), (Ceteareth-18), Polyethylenglycol(19)cetylstearylether (Ceteareth-19), Polyethylenglycol(20)cetylstearylether (Ceteareth-20).

Es ist ferner von Vorteil, die Fettsäureethoxylate ausfolgender Gruppe zu wählen:

Polyethylenglycol(20)stearat, Polyethylenglycol(21)stearat, Polyethylenglycol(22)stearat, Polyethylenglycol(23)stearat, Polyethylenglycol(24)stearat, Polyethylenglycol(25)stearat, Polyethylenglycol(12)isostearat, Polyethylenglycol(13)isostearat, Polyethylenglycol(14)isostearat, Polyethylenglycol(15)isostearat, Polyethylenglycol(16)isostearat, Polyethylenglycol(17)isostearat, Polyethylenglycol(18)isostearat, Polyethylenglycol(19)isostearat, Polyethylenglycol(20)isostearat, Polyethylenglycol(21)isostearat, Polyethylenglycol(23)isostearat, Polyethylenglycol(23)isostearat, Polyethylenglycol(25)isostearat, Polyethylenglycol(25)isostearat, Polyethylenglycol(12)oleat, Polyethylenglycol(13)oleat,

Polyethylenglycol(14)oleat, Polyethylenglycol(15)oleat, Polyethylenglycol(16)oleat, Polyethylenglycol(17)oleat, Polyethylenglycol(18)oleat, Polyethylenglycol(19)oleat, Polyethylenglycol(20)oleat,

Als ethoxylierte Alkylethercarbonsäure bzw. deren Salz kann vorteilhaft das Natriumlaureth-11-carboxylat verwendet werden. Als Alkylethersulfat kann Natrium Laureth1-4sulfat vorteilhaft verwendet werden. Als ethoxyliertes Cholesterinderivat kann vorteilhaft Polyethylenglycol(30)Cholesterylether verwendet werden. Auch Polyethylenglycol(25)Sojasterol hat sich bewährt. Als ethoxylierte Triglyceride können vorteilhaft die Polyethylenglycol(60) Evening Primrose Glycerides verwendet werden (Evening Primrose = Nachtkerze).

Weiterhin ist von Vorteil, die Polyethylenglycolglycerinfettsäureester aus der Gruppe Polyethylenglycol(20)glyceryllaurat, Polyethylenglycol(21)glyceryllaurat, Polyethylenglycol(22)glyceryllaurat, Polyethylenglycol(23)glyceryllaurat, Polyethylenglycol(6)glycerylcaprat/cprinat, Polyethylenglycol(20)glyceryloleat, Polyethylenglycol(20)glycerylisostearat, Polyethylenglycol(18)glyceryloleat(cocoat zu wählen.

Es ist ebenfalls günstig, die Sorbitanester aus der Gruppe Polyethylenglycol(20)sorbitanmonolaurat, Polyethylenglycol(20)sorbitanmonostearat, Polyethylenglycol(20)sorbitanmonopalmitat, Polyethylenglycol(20)sorbitanmonopalmitat, Polyethylenglycol(20)sorbitanmonopalmitat,

Als fakultative, dennoch erfindungsgemäß gegebenenfalls vorteilhafte W/O-Emulgatoren können eingesetzt werden:

Fettalkohole mit 8 bis 30 Kohlenstoffatomen, Monoglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12-18 C-Atome, Diglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12-18 C-Atomen, Monoglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer

Kettenlänge von 8 bis 24, insbesondere 12-18 C-Atomen, Diglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkhole einer Kettenlänge von 8 bis 24, insbesondere 12-18 C-Atomen, Propylenglycolester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12-18 C-Atomen sowie Sorbitanester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12-18 C-Atomen.

Insbesondere vorteilhafte W/O-Emulgatoren sind Glycerylmonostearat, Glycerylmonoisostearat, Glycerylmonomyristat, Glycerylmonooleat, Diglycerylmonostearat, Diglycerylmonoisostearat, Propylenglycolmonostearat, Propylenglycolmonocaprylat, Propylenglycolmonolaurat, Sorbitanmonoisostearat, Sorbitanmonolaurat, Sorbitanmonocaprylat, Sorbitanmonoisostearat, Sorbitanmonolaurat, Sorbitanmonocaprylat, Sorbitanmonoisooleat, Saccharosedistearat, Cetylalkohol, Stearylalkohol, Arachidylalkohol, Behenylalkohol, Isobehenylalkohol, Selachylalkohol, Chimylalkohol, Polyethylenglycol(2)stearylether (Steareth-2), Glycerylmonolaurat, Glycerylmonocaprinat, Glycerylmonocaprylat.

Erfindungsgemäß bevorzugte Zubereitungen eignen sich besonders zum Schutz menschlicher Haut gegen Alterungsprozesse sowie vor oxidativem Stress, d.h. gegen Schädigungen durch Radikale, wie sie z.B. durch Sonneneinstrahlung, Wärme oder andere Einflüsse erzeugt werden. Dabei liegt sie in verschiedenen, für diese Anwendung üblicherweise verwendeten Darreichungsformen vor. So kann sie insbesondere als Lotion oder Emulsion, wie als Creme oder Milch (O/W, W/O, O/W/O, W/O/W), in Form ölig-alkoholischer, ölig-wässriger oder wässrig-alkoholischer Gele bzw. Lösungen, als feste Stifte vorliegen oder als Aerosol konfektioniert sein.

Die Zubereitung kann kosmetische Adjuvantien enthalten, welche in dieser Art von Zubereitungen üblicherweise verwendet werden, wie z.B. Verdickungsmittel, weichmachende Mittel, Befeuchtungsmittel, grenzflächenaktive Mittel, Emulgatoren, Konservierungsmittel, Mittel gegen Schaumbildung, Parfums, Wachse, Lanolin, Treibmittel, Farbstoffe

und/oder Pigmente, welche das Mittel selbst oder die Haut färben, und andere in der Kosmetik gewöhnlich verwendete Ingredienzien.

Man kann als Dispersions- bzw. Solubilisierungsmittel ein Öl, Wachs oder sonstigen Fettkörper, einen niedrigen Monoalkohol oder ein niedriges Polyol oder Mischungen davon verwenden. Zu den besonders bevorzugten Monoalkoholen oder Polyolen zählen Ethanol, i-Propanol, Propylenglykol, Glycerin und Sorbit.

Eine bevorzugte Ausführungsform der Erfindung ist eine Emulsion, welche als Schutzcreme oder -milch vorliegt und außer der oder den Verbindungen der Formel I beispielsweise Fettalkohole, Fettsäuren, Fettsäureester, insbesondere Triglyceride von Fettsäuren, Lanolin, natürliche und synthetische Öle oder Wachse und Emulgatoren in Anwesenheit von Wasser enthält.

Weitere bevorzugte Ausführungsformen stellen ölige Lotionen auf Basis von natürlichen oder synthetischen Ölen und Wachsen, Lanolin, Fettsäureestern, insbesondere Triglyceriden von Fettsäuren, oder öligalkoholische Lotionen auf Basis eines Niedrigalkohols, wie Ethanol, oder eines Glycerols, wie Propylenglykol, und/oder eines Polyols, wie Glycerin, und Ölen, Wachsen und Fettsäureestern, wie Triglyceriden von Fettsäuren, dar.

Die erfindungsgemäße Zubereitung kann auch als alkoholisches Gel vorliegen, welches einen oder mehrere Niedrigalkohole oder –polyole, wie Ethanol, Propylenglykol oder Glycerin, und ein Verdickungsmittel, wie Kieselerde umfaßt. Die ölig-alkoholischen Gele enthalten außerdem natürliches oder synthetisches Öl oder Wachs.

Die festen Stifte bestehen aus natürlichen oder synthetischen Wachsen und Ölen, Fettalkoholen, Fettsäuren, Fettsäureestern, Lanolin und anderen Fettkörpern.

Ist eine Zubereitung als Aerosol konfektioniert, verwendet man in der Regel die üblichen Treibmittel, wie Alkane, Fluoralkane und Chlorfluoralkane.

Die kosmetische Zubereitung kann auch zum Schutz der Haare gegen fotochemische Schäden verwendet werden, um Veränderungen von Farbnuancen, ein Entfärben oder Schäden mechanischer Art zu verhindern. In diesem Fall erfolgt geeignet eine Konfektionierung als Shampoo, Lotion, Gel oder Emulsion zum Ausspülen, wobei die jeweilige Zubereitung vor oder nach dem Shamponieren, vor oder nach dem Färben oder Entfärben bzw. vor oder nach der Dauerwelle aufgetragen wird. Es kann auch eine Zubereitung als Lotion oder Gel zum Frisieren und Behandeln, als Lotion oder Gel zum Bürsten oder Legen einer Wasserwelle, als Haarlack, Dauerwellenmittel, Färbe- oder Entfärbemittel der Haare gewählt werden. Die Zubereitung mit Lichtschutzeigenschaften kann außer der oder den Verbindungen der Formel I verschiedene, in diesem Mitteltyp verwendete Adjuvantien enthalten, wie Grenzflächen aktive Mittel, Verdickungsmittel, Polymere, weichmachende Schaumstabilisatoren, Konservierungsmittel, Elektrolyte, organische Lösungsmittel, Silikonderivate, Öle, Wachse, Antifettmittel, Farbstoffe und/oder Pigmente, die das Mittel selbst oder die Haare färben oder andere für die Haarpflege üblicherweise verwendete Ingredienzien.

Weitere Gegenstände der vorliegenden Erfindung sind ein Verfahren zur Herstellung einer Zubereitung, welches dadurch gekennzeichnet ist, dass mindestens eine Verbindung der Formel I mit Resten wie oben beschrieben mit einem kosmetisch oder dermatologisch oder für nahrungsmittel geeigneten Träger vermischt wird, und die Verwendung einer Verbindung der Formel I zur Herstellung einer Zubereitung mit antioxidanten Eigenschaften.

Die erfindungsgemäßen Zubereitungen können dabei mit Hilfe von Techniken hergestellt werden, die dem Fachmann wohl bekannt sind.

Das Vermischen kann ein Lösen, Emulgieren oder Dispergieren der Verbindung gemäß Formel I in dem Träger zur Folge haben.

In einem erfindungsgemäß bevorzugten Verfahren wird die Verbindung nach Formel I hergestellt durch Umsetzung einer 2-Hydroxyacetophenon-Verbindung mit einer Lithiumverbindung und anschließend mit einer Ketoverbindung.

Beispielsweise können gemäß M. Cushman und D. Nagarathnam in: Tetrahedron Letters, 31, 6497-6500, 1990 und M.Cushman; Nagarathnam; Journal of Organic Chemistry", 56, 4884-4887, 1991 mit großen Überschuß an Lithiumbis(trimethylsilyl)amid homogenen Reaktions-bedingungen die phenolischen Hydroxylgruppen deprotoniert werden, um das Lithiumenolat des entsprechenden Ketons herzustellen. Anschließend kann das Kohlenstoffatom des Lithiumenolates regioselektiv mit einem Aroylchlorid acyliert werden, um so direkt ein β-Diketon Zwischenprodukt zu erhalten, welches anschließend im sauren Medium cyclisiert wird. Nachteilig an diesem Verfahren ist jedoch der große Überschuß an der Lithiumbase, der auch bei mehreren Reinigungsschritten nur schwer entfernbar ist, sowie der hohe Preis der Lithiumbase.

Daher ist es besonders bevorzugt ein Verfahren entsprechend der Internationalen Patentanmeldung WO 00/60889 durchzuführen. Bei diesem erfindungsgemäß bevorzugten Verfahren wird das Verhältnis der molaren Äquivalente von Lithiumverbindung zu den zu metallierenden funktionellen Gruppen der 2-Hydroxyacetophenon-Verbindung im Bereich 1 bis 1,2 gewählt.

Überraschenderweise wurde gefunden, dass vorerwähntes Verhältnis eine vollständige Metallierung aller Hydroxylgruppen und der Carbonylgruppe der 2-Hydroxyacetophenon Verbindung erlaubt. Weniger als ein Verhältnis von 1 würde zu einer unvollständigen Metallierung führen und damit zu einer großen Anzahl an unerwünschten Nebenprodukten. Ein Verhältnis

von mehr als 1,2 hingegen bedeutet den Einsatz einer größeren Menge der zumeist nicht preiswerten Lithiumverbindungen und das Mitschleppen von Lithiumverbindungen bei allen weiteren Folge- insbesondere Reinigungsschritten.

Bevorzugt ist die Lithiumverbindung ausgewählt aus anorganischen Lithiumverbindungen, da sie preiswert und einfach in großen Mengen verfügbar sind. Des weiteren bieten sie den Vorteil, dass sie in organischen Lösungsmitteln wenig bis gar nicht löslich sind, so dass sie nach einer unter heterogenen Bedingungen geführten Metallisierungsreaktion leicht aus der Reaktionsmischung filtriert werden können, wenn sie im Überschuß eingesetzt werden.

ln. einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens beträgt das Verhältnis von Lithiumverbindung zu den zu metallierenden funktionellen Gruppen der 2-Hydroxyacetophenon-Verbindung genau 1 beträgt. Damit wird erreicht, dass keine evtl. noch gelösten Lithiumverbindungen als Verunreinigungen im Endprodukt auftreten, da diese meist auch nicht durch Reinigungsschritte, wie Umkristallisieren aus den Zwischen- und Endprodukten entfernt werden können.

Vorteilhafterweise wird die Metallierung in einem etherischen Lösungsmittel durchgeführt, da dies die Metallierungsreaktion durch seine Polarität durch Ausbildung von Li-solvaten unterstützt, wodurch die Basizität der Lithiumbase gesteigert wird.

Das im Rahmen des erfindungsgemäßen Verfahrens eingesetzte 2-Hydroxyacetophenon weist bevorzugt folgende Struktur auf:

$$R^3$$
 OH R^8 R^4 R^8

wobei R¹ bis R⁴ und R⁸ die oben angegebene Bedeutung haben oder Gruppen darstellen, die sich durch chemische Modifikationen, wie beispielsweise Abspaltung von Schutzgruppen, Oxidation oder Reduktion, in Gruppen mit den oben genannten Bedeutungen überführen lassen.

Die Ketoverbindung zur Durchführung des erfindungsgemäßen Verfahrens weist vorzugsweise folgende Struktur auf:

$$R^9$$
 R^5
 R^6
 R^7

wobei R⁵ bis R⁷ und R⁹ bis R¹⁰ die oben angegebene Bedeutung haben oder Gruppen darstellen, die sich durch chemische Modifikationen, wie beispielsweise Abspaltung von Schutzgruppen, Oxidation oder Reduktion, in Gruppen mit den oben genannten Bedeutungen überführen lassen und wobei R^y eine Halogenid-, Alkoxyl- oder Ester-Gruppe bedeuten kann.

Vorzugsweise sind die Hydroxylgruppen der 2-Hydroxyacetophenon Verbindung ungeschützt. Damit werden aufwendige Reaktionen zum Aufbringen und Entfernen von Schutzgruppen vermieden, so dass die Reaktion besonders einfach verläuft.

Im Falle der Ketoverbindungen bedeutet R^y Chlorid, d.h. die Verbindung ist ein Säurechlorid, eine Alkoxylgruppe, d.h. die Verbindung ist ein Ester, oder eine Estergruppe, d.h. die Verbindung ist ein Säureanhydrid. Die Verwendung unterschiedlicher Gruppen erlaubt je nach eingesetztem Substrat auch die Variation und genaue Wahl der Reaktionszeit. Beispielsweise beträgt die Reaktionszeit bei Verwendung eines Säurechlorids oder eines Säureanhydrids zwischen 2-6 Stunden, meistens zwischen 4-5 Stunden. Bei Verwendnung eines Esters oder unter Verwendnung silylierter Schutzgruppen beträgt die Reaktionszeit mehr als 8 Stunden, zumeist mehr als 10, oftmals jedoch auch etwa 16-20 Stunden.

Zunächst wird die 2-Hydroxyacetophenon Verbindung vorzugsweise mit dem Keton und einer Lithiumverbindung in trockenem THF bei niedrigen Temperaturen kondensiert (-78°C bis –50 °C) und ergibt ein stabiles Diketon Zwischenprodukt. Bei Temperaturen von mehr als –50°C verläuft die Reaktion entweder gar nicht mehr oder zu schnell, d.h. mit unerwünschten Nebenprodukten oder aber unter Zersetzung des Ausgangsproduktes ab, so daß der Bereich von -78°C bis –50 °C bevorzugt ist. Anschließend wird das Diketon unter sauren Bedingungen bei 95-100°C cyclisiert, um ein Flavonderivat zu ergeben.

Als Lithiumbasen, die in einem erfindungsgemäßen Verfahren Verwendung finden, sind die nachstehend aufgeführten Lithiumbasen besonders geeignet:

LiNH₂, LiN(CH₃)₂, LiN(C₂H₅)₂,LiNCH(CH₃)₂ (LDA), Me₃Cli, PhCH₂Li, Ph₂CHLi, Ph₃CLi, LiCN, LiC(NO₃)₃, LiC(CN)₃, LiN(C₆H₁₁)₂, LiN(CH₂)₂, LiCH₃, LiC₂H₅, LiCH(CH₃)₂, LiC₄H₉, LiCH₂CH(CH₃)₂, LiC₆H₁₃, LiPh, LiCH₃COCHCOCH₃, LiClO, LiClO₄, LilO₄, Li₂O, LiOH, LiOCH₃, LiOC₂H₅, LiOC₄H₉, LiOPh, LiOOCOPh, Lithiumenolate der allgemeinen Formel LiOCR=CR'₂, wobei R und R' ein aliphatischer oder aromatischer Rest ist,

LiOSi(CH₃)₃, Li(Si(CH₃)₃)₂, Li₂CO₃, Lithium-2,2,6,6-tetramethylpiperidin (LiTMP).

Wie vorstehend beschrieben, sind darunter die rein anorganischen Lithiumverbindungen bzw. diejenigen Lithiumverbindungen, deren zumeist organischer Rest über anorganische Atome (O, N, Si) an das Lithiumatom gebunden ist, besonders bevorzugt.

Als Lösungsmittel für die Durchführung der Metallisierungsreaktion wird wie vorstehend beschrieben bevorzugt ein etherisches Lösungsmittel, beispielsweise Diethylether, Tetrahydrofuran (THF), Dibutylether. Andere polare Lösungsmittel, wie Methylethylketon und dergleichen können jedoch ebenfalls verwendet werden, aber auch je nach eingesetztem Hydroxyacetophenon apolare Lösungsmittel, wie z.B. n-Hexan, Heptan, Benzol, Toluol usw.

Es wurde auch festgestellt, dass Verbindungen der Formel I stabilisierend Zubereitung wirken können. Bei der Verwendung entsprechenden Produkten bleiben diese daher auch länger stabil und verändern ihr Aussehen nicht. Insbesondere bleibt auch längerdauernder Anwendung bzw. längerer Lagerung die Wirksamkeit der Inhaltsstoffe, z.B. Vitamine, erhalten. Dies ist unter anderem besonders vorteilhaft bei Zusammensetzungen zum Schutz der Haut gegen die Einwirkung von UV-Strahlen, da diese Kosmetika besonders hohen Belastungen durch die UV-Strahlung ausgesetzt sind.

Die positiven Wirkungen von Verbindungen der Formel I ergeben deren besondere Eignung zur Verwendung in kosmetischen oder pharmazeutischen Zubereitungen.

Ebenso positiv sind die Eigenschaften von Verbindungen mit der Formel I zu werten für eine Verwendung in Nahrungsmitteln oder als Nahrungsergänzungsmittel oder als "functional food". Die weiteren zu

Nahrungsmitteln ausgeführten Erläuterungen gelten sinngemäß auch für Nahrungsergänzungsmittel und für "functional food".

Die Nahrungsmittel, die nach der vorliegenden Erfindung mit einer oder mehreren Verbindungen der Formel I angereichert werden können, umfassen alle Materialien, die für den Verzehr durch Tiere oder für den Verzehr durch Menschen geeignet sind, beispielsweise Vitamine und Provitamine davon, Fette, Mineralien oder Aminosäuren ". (Die Nahrungsmittel können fest sein aber auch flüssig, also als Getränk vorliegen). Weitere Gegenstände der vorliegenden Erfindung sind dementsprechend die Verwendung einer Verbindung nach Formel Lals Nahrungsmittelzusatz

die Verwendung einer Verbindung nach Formel I als Nahrungsmittelzusatz für die human- oder Tierernährung sowie Zubereitungen, die Nahrungsmittel oder Nahrungsergänzungsmittel sind und entsprechende Träger enthalten.

Nahrungsmittel, die nach der vorliegenden Erfindung mit einer oder mehreren Verbindungen der Formel I angereichert werden können, sind beispielsweise auch Nahrungsmittel, die aus einer einzigen natürlichen Quelle stammen, wie z.B. Zucker, ungesüßter Saft, Nektar oder Püree von einer einzigen Pflanzenspezies, wie z.B. ungesüßter Apfelsaft (z.B. auch eine Mischung verschiedener Sorten Apfelsaft), Grapefruitsaft, Orangensaft. Apfelkompott, Aprikosennektar, Tomatensaft, Tomatensoße. Tomatenpüree usw. Weitere Beispiele für Nahrungsmittel, die nach der vorliegenden Erfindung mit einer oder mehreren Verbindungen der Formel I angereichert werden können, sind Korn oder Getreide einer einzigen Pflanzenspezies und Materialien, die aus derartigen Pflanzenspezies hergestellt werden, wie z.B. Getreidesirup, Roggenmehl, Weizenmehl oder Haferkleie. Auch Mischungen von derartigen Nahrungsmitteln sind geeignet, um nach der vorliegenden Erfindung mit einer oder mehreren Verbindungen der Formel I angereichert zu werden, beispielsweise Multivitaminpräparate, Mineralstoffmischungen oder gezuckerter Saft. Als weitere Beispiele für Nahrungsmittel, die nach der vorliegenden Erfindung mit einer oder mehreren Verbindungen der Formel I angereichert werden können, seien Nahrungsmittelzubereitungen, beispielsweise zubereitete Cerealien, Gebäck, Mischgetränke, speziell für Kinder zubereitete

Nahrungsmittel, wie Joghurt, Diätnahrungsmittel, kalorienarme Nahrungsmittel oder Tierfutter, genannt.

Die Nahrungsmittel, die nach der vorliegenden Erfindung mit einer oder mehreren Verbindungen der Formel I angereichert werden können, umfassen somit alle genießbaren Kombinationen von Kohlehydraten, Lipiden, Proteinen, anorganischen Elementen, Spurenelementen, Vitaminen, Wasser oder aktiven Metaboliten von Pflanzen und Tieren.

Die Nahrungsmittel, die nach der vorliegenden Erfindung mit einer oder mehreren Verbindungen der Formel I angereichert werden können, werden vorzugsweise oral angewendet, z.B. in Form von Speisen, Pillen, Tabletten, Kapseln, Pulver, Sirup, Lösungen oder Suspensionen.

Die mit einer oder mehreren Verbindungen der Formel I angereicherten erfindungsgemäßen Nahrungsmittel können mit Hilfe von Techniken hergestellt werden, die dem Fachmann wohl bekannt sind.

Durch ihre Wirkung als Antioxidationsmittel bzw. als Radikalfänger eignen sich Verbindungen der Formel I auch als Arzneimittelinhaltsstoff. Sie wirken dabei unterstützend oder substituierend ZU natürlichen Mechanismen, welche Radikale im Körper abfangen. Die Verbindungen der Formel I können in ihrer Wirkung teilweise mit Radikalfängern wie Vitamin C verglichen werden. Verbindungen der Formel I können beispielsweise zur vorbeugenden Behandlungen von Entzündungen und Allergien der Haut sowie in bestimmten Fällen zur Verhütung bestimmter Krebsarten verwendet werden. Insbesondere eignen sich Verbindungen der Formel I zur Herstellung eines Arzneimittels zur Behandlung von Entzündungen, Allergien und Irritationen, insbesondere der Haut. Ferner können Arzneimittel hergestellt werden in einer Wirkung Venentonikum, als Mittel zur Erhöhung der Festigkeit von Blutkapillaren, als Hemmstoff für Cuperose, als Hemmstoff chemischer, physikalischer oder aktinischer Erytheme, als Mittel zur Behandlung empfindlicher Haut. als Dekongestionsmittel, als Entwässerungsmittel, als Mittel zum Schlankmachen, als Antifaltenmittel, als Stimulatoren der Synthese von Komponenten der extrazellulären Matrix, als stärkendes Mittel zur

Verbesserung der Hautelastizität und als Antialterungsmittel. Weiter zeigen in diesem Zusammenhang bevorzugte Verbindungen der Formel I antiallergische und antiinflammatorische und antiirritative Wirkungen. Sie eignen sich daher zur Herstellung von Arzneimitteln zur Behandlung von Entzündungen oder allergischen Reaktionen.

Im folgenden wird die Erfindung anhand von Beispielen näher erläutert. die Erfindung ist im gesamten beanspruchten Bereich ausführbar und nicht auf die hier genannten Beispiele beschränkt.

Beispiele

Chemikalien	Herkunft	Art.Nr.	Reinheit
2´,5´-Dihydroxyacetophenone	Merck KGaA	818284	98%
2',4'-Dihydroxyacetophenone	Merck KGaA	822027	98%
4-Methoxybenzoesäurechlorid	Merck KGaA	820106	99%
Lithiumhydroxid	Merck KGaA	105691	98%
D-(+)-alpha-acetobromglucose	Merck KGaA	800121	
Tetra-n-butylammoniumbromid	Merck KGaA	818839	
Natronlauge	Merck KGaA	109137	1N
Bortribromid	Merck KGaA	801063	99%
NatriumMethylat	Merck KGaA	806538	
Tetrahydrofuran	Merck KGaA	108107	SeccoSolv
			0,0075% H₂O
Dichloromethan	Merck KGaA	106049	reinst
Salzsäure rauchend	Merck KGaA	100314	37%
Essigsäure	Merck KGaA	100056	100%
Schwefelsäure	Merck KGaA	100731	95-97%

Beispiel 1 Herstellung von 6,3',4'-Trihydroxyflavon

Trockenes, pulverförmiges Lithiumhydroxid (19,7 mmol, 3 Äquivalente) wird auf einmal zu einer gut gerührten Lösung von 2′,5′-Dihydroxyacetophenon (6,4 mmol) in trockenem THF (5 ml) unter Argonatmosphäre bei – 78°C zugegeben. Die Reaktionsmischung wird bei –78°C während einer Stunde gerührt und anschließend während zwei stunden bei –10°C. Nach erneutem Abkühlen auf –78°C, wird auf einmal

eine Lösung von 3',4'-Dimethoxybenzoesäurechlorid (6,5 mmol) in THF (10 ml) zugegeben. Während einer Stunde wird bei -78°C und bei Raumtemperatur während 4 Stunden, bis zum Verschwinden des Ausgangmaterials gerührt. Die Reaktionsmischung wird auf eine Mischung aus Eis (150 g) und konzentriert HCI (5 ml) geleert und mit Dichloromethan (3x50 ml) extrahiert. Die Lösungsmittel werden aus den getrockneten Extrakten entfernt und den Rückstand unter Vakuum während 24 Stunden getrocknet. Der Rückstand wird mit Eisessig (30 ml) und Schwefelsäure (0,2 ml) versetzt und unter Argonatmosphäre während 30 Minuten bis zur einer Stunde auf 95-100°C erhitzt. Etwa ein Drittel der Essigsäure wird abgezogen und der Rückstand in Wasser geleert. Das ausgefällte Produkt wird filtriert, gewaschen und getrocknet und in Methanol umkristallisiert. Eine Bortribromid-Lösung (9,6 mL, 32 Äquivalent) wird zu einer guten gerührten Lösung von 3',4'-dimethoxy-6-hydroyflavon (6,4 mmol) in Dichloromethan (100 mL) unter Argonatmosphäre bei -78°C gegeben. Nach dem kompletten Zugabe der Bortribromid-Lösung, wird die Reaktionsmischung bei Raumtemperatur während 24 Stunden gerührt und anschließend auf eine Mischung aus Eis/Wasser (300 mL) gegeben. Das Produkt wird filtriert und in Ethanol/Wasser umkristallisiert um 6,3',4'-Trihydroxyflavon zu ergeben.

¹H NMR (DMSO-d⁶, 300 MHz) δ 9.76 (very br s, 3H, exchanges with D₂O, OH on C-6, C-3' and C-4'), 7.58 (d, 1H, ${}^3J_{8, 7}$ =, H-8), 7.42 (d, 1H, ${}^4J_{2', 6'}$ =, H-2'), 7.41 (dd, 1H, ${}^3J_{6', 5'}$ =, ${}^4J_{6', 2'}$ =, H-6'), 7.31 (d, 1H, ${}^4J_{5, 7}$ =, H-5), 7.23 (dd, 1H, ${}^3J_{7, 8}$ =, ${}^4J_{7, 5}$ =, H-7), 6.91 (d, 1H, ${}^3J_{5', 6'}$ =, H-5'), 6.68 (s, 1H, H-3). ¹³C NMR (DMSO-d⁶, 75.47 MHz) δ 176.63 (C-4), 162.76 (C-2), 154.61 (C-6), 149.14 (C-9 and C-3'), 145.61 (C-4'), 124.10 (C-1'), 122.63 (C-7), 122.10 (C-10), 119.46 (C-6'), 118.55 (C-8), 115.88 (C-5'), 113.16 (C-2'), 107.47 (C-5), 103.84 (C-3).

EI-MS m/z (% relative composition): 270 (100)

Anal. Calcd for C₁₅H₁₀O₅: C, 66.67%; H, 3.73%; O, 29.60%. Found: C, 65.4%; H, 3.9%; O, 30.1%.

UV-VIS (2-propanol, 1 mg/100 mL) λ_{min} = 251-277 nm, λ_{max} = 339 nm.

Beispiel 2: Herstellung von 5,6,7-Trihydroxyflavon

Trockenes, pulverförmiges Lithiumhydroxid (38,7 mmol, 3 Äquivalente) wird auf einmal zu einer gut gerührten Lösung von 2',4',5',6'Tetrahydroxyflavon (12,9 mmol) in trockenem THF (15 ml) unter Argonatmosphäre bei – 78°C zugegeben. Die Reaktionsmischung wird bei –78°C während einer Stunde gerührt und anschließend während zwei stunden bei –10°C. Nach erneutem Abkühlen auf –78°C, wird auf einmal eine Lösung von Benzoesäurechlorid (14,2 mmol) in THF (20 ml) zugegeben. Während einer Stunde wird bei –78°C und bei Raumtemperatur während 4 Stunden, bis zum Verschwinden des Ausgangmaterials gerührt. Die Reaktionsmischung wird auf eine Mischung aus Eis (300 g) und konzentriert HCl (10 ml) geleert und mit Dichloromethan (3x50 ml) extrahiert. Die lösungsmittel werden aus den getrockneten Extrakten entfernt und den Rückstand unter Vakuum während 24 Stunden getrocknet. Der Rückstand wird mit Eisessig (100

ml) und Schwefelsäure (0,5 ml) versetzt und unter Argonatmosphäre während 30 Minuten bis zur einer Stunde auf 95-100°C erhitzt. Etwa ein Drittel der Essigsäure wird abgezogen und der Rückstand in Wasser geleert. Das ausgefällte Produkt wird filtriert, gewaschen und getrocknet und in Methanol umkristallisiert um 5,6,7-Trihydroxyflavon zu ergeben. M.p: 256-271°C.

¹H NMR (DMSO-d⁶, 500 MHz) δ 12.67 (s, 1H, exchanges with D₂O, OH on C-5), 10.54 (br s, 1H, exchanges with D₂O, OH on C-7), 8.80 (br s, 1H, exchanges with D₂O, OH on C-6), 8.05 (d, 2H, ${}^3J_{2', 3'} = {}^3J_{6', 5'} = 7.93$, H-2' and H-6'), 7.57 (m, 3H, H-3', H-4' and H-5'), 6.92 (s, 1H, H-8), 6.64 (s, 1H, H-3).

¹³C NMR (DMSO-d⁶, 62.90 MHz) *δ* 182.05 (C-4), 162.85 (C-2), 153.59 (C-7), 149.81 (C-9), 146.97 (C-5), 131.70 (C-4'), 130.92 (C-1'), 129.29 (C-6), 129.00 (C3' and C-5'), 126.21 (C-2' and C-6'), 104.43 (C-8), 104.26 (C-10), 93.98 (C-3).

EI-MS m/z (% relative composition): 270 (100). UV-vis (2-propanol, 1 mg / 100 mL) λ_{min} = 276,5 nm, λ_{max} = 325,5 nm

Beispiel 3: Herstellung von 7,8,3',4'-Tetrahydroxyflavon

Trockenes, pulverförmiges Lithiumhydroxid (27,3 mmol, 4 Äquivalente) wird auf einmal zu einer gut gerührten Lösung von 2',3',4'-Trihydroxyacetophenon (6,4 mmol) in trockenem THF (5 ml) unter Argonatmosphäre bei – 78°C zugegeben. Die Reaktionsmischung wird bei -78°C während einer Stunde gerührt und anschließend während zwei stunden bei -10°C. Nach erneutem Abkühlen auf -78°C, wird auf einmal eine Lösung von 3',4'-Dimethoxybenzoesäurechlorid (6,5 mmol) in THF (10 ml) zugegeben. Während einer Stunde wird bei -78°C und bei Raumtemperatur während 4 Stunden, bis zum Verschwinden des Ausgangmaterials gerührt. Die Reaktionsmischung wird auf eine Mischung aus Eis (150 g) und konzentriert HCl (5 ml) geleert und mit Dichloromethan (3x50 ml) extrahiert. Die Lösungsmittel werden aus den getrockneten Extrakten entfernt und den Rückstand unter Vakuum während 24 Stunden getrocknet. Der Rückstand wird mit Eisessig (30 ml) und Schwefelsäure (0,2 ml) versetzt und unter Argonatmosphäre während 30 Minuten bis zur einer Stunde auf 95-100°C erhitzt. Etwa ein Drittel der Essigsäure wird abgezogen und der Rückstand in Wasser geleert. Das ausgefällte Produkt wird filtriert, gewaschen und getrocknet und in Methanol umkristallisiert. Eine Bortribromid-Lösung (9,6 mL, 32 Äquivalent) wird zu einer gut gerührten Lösung von 3',4'-dimethoxy-7,8-dihydroyflavon (6,4 mmol) in Dichloromethan (100 mL) unter Argonatmosphäre bei -78°C gegeben. Nach dem kompletten Zugabe der Bortribromid-Lösung, wird die Reaktionsmischung bei Raumtemperatur während 24 Stunden gerührt und anschließend zu einer Mischung aus Eis/Wasser (300 mL) gegeben. Das Produkt wird filtriert und in Ethanol/Wasser umkristallisiert um 7,8,3',4'-Tetrahydroxyflavon zu ergeben.

¹H NMR (DMSO-d⁶, 300 MHz) δ 9.67 (br s, 4H, exchanges with D₂O, OH on C-7, C-8, C-3' and C-4'), 7.59 (d, 1H, ${}^4J_{2', 6'}$ =, H-2'), 7.47 (dd, 1H, ${}^3J_{6', 5'}$ =, ${}^4J_{6', 2'}$ =, H-6'), 7.39 (d, 1H, ${}^3J_{6, 5}$ =, H-6), 6.93 (d, 1H, ${}^3J_{5, 6}$ =, H-5), 6.90 (d, 1H, ${}^3J_{5', 6'}$ =, H-5'), 6.61 (S, 1H, H-3).

¹³C NMR (DMSO-d⁶, 75.47 MHz) *δ* 176.64 (C-4), 162.34 (C-2), 150.09 (C-7), 149.00 (C-3'), 146.61 (C-9), 145.52 (C-4'), 133.04 (C-8), 122.30 (C-1'), 118.61 (C-5), 116.87 (C-10), 115.80 (C-6'), 114.87 (C-5'), 113.59 (C-2'), 113.33 (C-6), 103.82 (C-3).

EI-MS m/z (% relative abundance) composition: 286 (100)

UV-VIS (2-propanol, 1 mg / 100 mL) λ_{min} = 265-277 nm, λ_{max} = 343 nm.

Anal. Calcd for $C_{15}H_{10}O_6$: C, 62.94%; H, 3.52%; O, 33.54%. Found: C, 61.0%; H, 3.0%; O, 28.7%.

Beispiel 4: Antioxidante Eigenschaften

Die antioxidante Aktivität der erfindungsgemäßen Verbindungen wird im Vergleich zu der Aktivität von Quercetin (3,5,7,3',4'-Pentahydroxyflavon) und anderen üblichen Antioxidantien bestimmt. Unter antioxidanter Aktivität wird dabei die Fähigkeit verstanden als Wasserstoff- oder Elektronen-Donor zu fungieren und so freie Radikale abfangen zu können. Zur Bestimmung dient der DPPH-Assay.

DPPH-Assay

Es wird eine Stammlösung von 2,2-Diphenyl-1-pikrylhydrozyl (DPPH) in Ethanol hergestellt (0,025 g/L DPPH-Radikale). Aliquots dieser Lösung werden mit verschiedenen Konzentrationen der zu testenden Verbindung versetzt. Es wird bei 515 nm, 25°C und 1 cm jeweils die Extinktion gemessen.

Als EC₅₀ wird der Wert ermittelt, bei dem noch 50% der ursprünglichen DPPH-radikal-Konzentration vorliegt. Je kleiner dieser Wert ist, desto höher ist die entsprechende antioxidante Aktivität.

Die Reaktionszeit, die benötigt wird, um diesen Wert zu erreichen wird in dem Wert T_{EC50} angegeben (in Minuten).

Die Antiradikalische Effizienz (AE) ergibt sich daraus nach folgender Beziehung:

$$AE = \frac{1}{EC_{50} T_{EC_{50}}}$$

Ein größerer AE-Wert gibt dabei eine höhere Aktivität gegen Radikale an.

Tabelle 1: Ergebnisse des DPPH-Assay

Verbindung	EC ₅₀	T _{EC50}	AE (x10 ⁻³)
5,6,7-Trihydroxyflavon / Bacalein	0,10	360	27,78
6,3',4'-Trihydroxyflavon	0,12	180	46,30
7,8,3',4'-Tetrahydroxyflavon	0,09	600	18,52
3,5,7,3',4'-Pentahydroxyflavanon /Taxifolin	0,15	1200	5,53
3,5,7,3',4'-Pentahydroxyflavon /Quercetin	0,089	600	18,72
Tocopherol	0,26	< 60	64,1
Ascorbinsäure	0,27	< 60	61,72
Ferulasäure	0,34	600	4,9

Beispiel 5: Zubereitungen

Im folgenden werden beispielhaft Rezepturen für kosmetische Zubereitungen angegeben, die Verbindungen nach Beispielen 1 - 3 enthalten. Im übrigen sind die INCI-Bezeichnungen der handelsüblichen Verbindungen angegeben.

UV-Pearl, OMC steht für die Zubereitung mit der INCI-Bezeichnung: Water (for EU: Aqua), Ethylhexyl Methoxycinnamate, Silica, PVP, Chlorphenesin, BHT; diese Zubereitung ist im handel unter der Bezeichnung Eusolex®UV Pearl™OMC von der Merck KGaA, Darmstadt erhältlich.

Die anderen in den Tabellen angegebenen UV-Pearl sind jeweils analog zusammengesetzt, wobei OMC gegen die angegebenen UV-Filter ausgetauscht wurde.

Tabelle 1 W/O-Emulsionen (Zahlen in Gew.-%)

	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10
Titanium dioxide		2	5					·		3
6,3',4'-Trihydroxyflavon	5	3	2	1	2				1	1
5,6,7-Trihydroxyflavon						1	2	1	-	†
Zinc oxide								5	2	
UV-Pearl , OMC	30	15	15	15	15	15	15	15	15	15
Polyglyceryl-3-Dimerate	3	3	3	3	3	3	3	3	3	3
Cera Alba	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
Hydrogenated Castor Oil	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
Paraffinium Liquidum	7	7	7	7	7	7	7	7	7	7
Caprylic/Capric Triglyceride	7	7	7	7	7	7	7	7	7	7
Hexyl Laurate	4	4	4	4	4	4	4	4	4	4
PVP/Eicosene Copolymer	2	2	2	2	2	2	2	2	2	2
Propylene Glycol	4	4	4	4	4	4	4	4	4	4
Magnesium Sulfate	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Tocopherol	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Tocopheryl Acetate	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Cyclomethicone	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Propylparabene	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Methylparabene	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Water	ad									
	100	100	100	100	100	100	100	100	100	100

Tabelle 1 (Fortsetzung)

	1-11	1-12	1-13	1-14	1-15	1-16	1-17	1-18
Titanium dioxide	3		2		3	1	2	5
Benzylidene malonate polysiloxane		1	0,5	<u> </u>	 -		 	
Methylene Bis-Benztriazolyl	1	1	0,5		 	1	<u> </u>	
Tetramethylbutylphenol				ļ				
5,6,7-Trihydroxyflavon	5	3	2	5	1	3	7	2
Polyglyceryl-3-Dimerate	3	3	3	3		 		
Cera Alba	0,3	0,3	0,3	0,3	2	2	2	2
Hydrogenated Castor Oil	0,2	0,2	0,2	0,2				
Paraffinium Liquidum	7	7	7	7				
Caprylic/Capric Triglyceride	7	7	7	7				
Hexyl Laurate	4	4	4	4	ļ			
PVP/Eicosene Copolymer	2	2	2	2				
Propylene Glycol	4	4	4	4				
Magnesium Sulfate	0,6	0,6	0,6	0,6				
Tocopherol	0,5	0,5	0,5	0,5				
Tocopheryl Acetate	0,5	0,5	0,5	0,5	1	1	1	1
Cyclomethicone	0,5	0,5	0,5	0,5				
Propylparabene	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Methylparabene	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Dicocoyl Pentyerythrityl Citrate (and)					6	6	6	6
Sorbitan Sesquioleate (and) Cera								
Alba (and) Aluminium Stearate								
PEG-7 Hydrogenated Castor Oil					1	1	1	1
Zinc Stearate					2	2	2	2
Oleyl Erucate					6	6	6	6
Decyl Oleate					6	6	6	6
Dimethicone					5	5	5	5
Tromethamine					1	1	1	1
Glycerin					5	5	5	5
Allantoin					0,2	0,2	0,2	0,2
water	ad	ad	ad	ad	ad	ad	ad	ad
	100	100	100	100	100	100	100	100

Tabelle 1 (Fortsetzung)

	1-19	1-20	1-21	1-22	1-23	1-24	1-25	1-26	1-27	1-28	1-29
Titanium dioxide		2	5							3	3
Benzylidene malonate polysiloxane				1					1	1	
Methylene Bis-Benztriazolyl	-					1	2	1			1
Tetramethylbutylphenol											
Zinc oxide								5	2		
6,3',4'-Trihydroxyflavon	5	5	5	5	7	5	5	5	5	5	8
UV-Pearl , OCR		10									5
UV-Pearl, EthylhexylDimethylPABA			10								
UV-Pearl, Homosalate				10							
UV-Pearl, Ethylhexyl salicylate					10						
UV-Pearl , OMC, BP-3						10					
UV-Pearl , OCR, BP-3							10		<u>-</u>		
UV-Pearl, Ethylhexyl Dimethyl								10			
PABA, BP-3											
UV-Pearl, Homosalate, BP-3									10		
UV-Pearl, Ethylhexyl salicylate, BP-						-				10	
3						i					
BMDBM											2
UV-Pearl OMC, 4-	25									·	
Methylbenzylidene Camphor											
Polyglyceryl-3-Dimerate	3	3	3	3	3	3	3	3	3	3	3
Cera Alba	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
Hydrogenated Castor Oil	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
Paraffinium Liquidum	7	7	7	7	7	7	7	7	7	7	7
Caprylic/Capric Triglyceride	7	7	7	7	7	7	7	7	7	7	7
Hexyl Laurate	4	4	4	4	4	4	4	4	4	4	4
PVP/Eicosene Copolymer	2	2	2	2	2	2	2	2	2	2	2
Propylene Glycol	4	4	4	4	4	4	4	4	4	4	4
Magnesium Sulfate	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Tocopherol	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Tocopheryl Acetate	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Cyclomethicone	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Propylparabene	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Methylparabene	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Water	ad 100										

Tabelle 2: O/W-Emulsionen, Zahlen in Gew.-%

	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10
Titanium dioxide		2	5				1			3
Methylene Bis-Benztriazolyl	-	 	 	1		1	2	1	<u> </u>	<u> </u>
Tetramethylbutylphenol										
7,8,3',4´-Tetrahydroxyflavon		†		1	2		<u> </u>		1	1
4'-Methoxy-6-hydroxyflavon	1	3		2		5		5	2	
6,3',4'-Trihydroxyflavon	5	5	5	5	5	5	5	5	5	5
5,6,7-Trihydroxyflavon	1	5	4		6		7		2	1
4-Methylbenzyliden Camphor	2		3		4		3		2	1
BMDBM	1	3		3	3		3	3	3	
Stearyl Alcohol (and) Steareth-7	3	3	3	3	3	3	3	3	3	3
(and) Steareth-10			ĺ							
Glyceryl Stearate (and) Ceteth-	3	3	3	3	3	3	3	3	3	3
20										
Glyceryl Stearate	3	3	3	3	3	3	3	3	3	3
Microwax	1	1	1	1	1	1	1	1	1	1
Cetearyl Octanoate	11,5	11,5	11,5	11,5	11,5	11,5	11,5	11,5	11,5	11,5
Caprylic/Capric Triglyceride	6	6	6	6	6	6	6	6	6	6
Oleyl Oleate	6	6	6	6	6	6	6	6	6	6
Propylene Glycol	4	4	4	4	4	4	4	4	4	4
Glyceryl Stearate SE										
Stearic Acid										1
Persea Gratissima										
Propylparabene	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Methylparabene	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Tromethamine			1,8							
Glycerin			_							
Water	ad	ad	ad	ad	ad	ad	ad	ad	ad	ad
	100	100	100	100	100	100	100	100	100	100

Tabelle 2 (Fortsetzung)

	2-11	2-12	2-13	2-14	2-15	2-16	2-17	2-18
Titanium dioxide	3		2				2	5
Benzylidene malonate polysiloxane		1	0,5					
Methylene Bis-Benztriazolyl	1	1	0,5					
Tetramethylbutylphenol								
4'-Methoxy-7-ß-glucosidflavon				1	2			
7,8,3',4'-Tetrahydroxyflavon	1	3		2		5		5
5,6,7-Trihydroxyflavon	5	5	5	5	5	5	5	5
6,3',4'-Trihydroxyflavon	1	5	4		6		7	
Zinc oxide			2					
UV-Pearl , OMC	15	15	15	30	30	30	15	15
4-Methylbenzyliden Camphor				3				
BMDBM				1				
Phenylbenzimidazole Sulfonic Acid					4			
Stearyl Alcohol (and) Steareth-7	3	3	3	3				
(and) Steareth-10								
Glyceryl Stearate (and) Ceteth-20	3	3	3	3				
Glyceryl Stearate	3	3	3	3				
Microwax	1	1	1	1				
Cetearyl Octanoate	11,5	11,5	11,5	11,5				
Caprylic/Capric Triglyceride	6	6	6	6	14	14	14	14
Oleyl Oleate	6	6	6	6				
Propylene Glycol	4	4	4	4				
Glyceryl Stearate SE					6	6	6	6
Stearic Acid					2	2	2	2
Persea Gratissima	,				8	8	8	8
Propylparabene	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Methylparabene	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Tromethamine					1,8			
Glycerin					3	3	3	3
Water	ad							
	100	100	100	100	100	100	100	100

Tabelle 2 (Fortsetzung)

	·									
	2-19	2-20	2-21	2-22	2-23	2-24	2-25	2-26	2-27	2-28
Titanium dioxide							3	3		2
Benzylidene malonate	1	2				1	1		1	0,5
polysiloxane										
7,8,3',4'-Tetrahydroxyflavon				1	2				1	1
5,6,7-Trihydroxyflavon	1	3		2		5		5	2	
6,3',4'-Trihydroxyflavon	5	5	5	5	5	5	5	5	5	5
4',7-Dihydroxyflavon	1	5	4		6		7		2	1
Methylene Bis-Benztriazolyl			1	2	1			1	1	0,5
Tetramethylbutylphenol										
Zinc oxide					5	2				2
UV-Pearl , OMC	15	15	15	15	15	15	15	15	15	15
Caprylic/Capric Triglyceride	14	14	14	14	14	14	14	14	14	14
Oleyl Oleate										
Propylene Glycol	-									
Glyceryl Stearate SE	6	6	6	6	6	6	6	6	6	6
Stearic Acid	2	2	2	2	2	2	2	2	2	2
Persea Gratissima	8	8	8	8	8	8	8	8	8	8
Propylparabene	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Methylparabene	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Glyceryl Stearate, Ceteareth-	·									
20, Ceteareth-10, Cetearyl										
Alcohol, Cetyl Palmitate										
Ceteareth-30										
Dicaprylyl Ether										
Hexyldecanol,						· · · · · · · · · · · · · · · · · ·				
Hexyldexyllaurate										
Cocoglycerides										
Tromethamine	-									
Glycerin	3	3	3	3	3	3	3	3	3	3
Water	ad	ad	ad	ad	ad	ad	ad	ad	ad	ad
	100	100	100	100	100	100	100	100	100	100
	1									

Tabelle 3: Gele, Zahlen in Gew.-%

	3-1	3-2	3-3	3-4	3-5	3-6	3-7	3-8	3-9	3-10
a = aqueaous gel						1				<u> </u>
Titanium dioxide		2	5							3
5,6,7-Trihydroxyflavon				1	2		-		1	1
7,8,3',4'-Tetrahydroxyflavon	1	3	 	2		5		5	2	1
6,3',4'-Trihydroxyflavon	5	5	5	5	5	5	5	5	5	5
4',7-Dihydroxyflavon	1	5	4		6		7		2	1
Benzylidene malonate polysiloxane			1	1	2				1	1
Methylene Bis-Benztriazolyl		1				1	2	1		
Tetramethylbutylphenol										
Zinc oxide				2				5	2	
UV-Pearl , Ethylhexyl	30	15	15	15	15	15	15	15	15	15
Mehtoxycinnamat										
4-Methylbenzyliden Camphor					2					
Butylmethoxydibenzoylmethane		1								
Phenylbenzimidazole Sulfonic Acid			4							
Prunus Dulcis	5	5	5	5	5	5	5	5	5	5
Tocopheryl Acetate	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Caprylic/Capric Triglyceride	3	3	3	3	3	3	3	3	3	3
Octyldodecanol	2	2	2	2	2	2	2	2	2	2
Decyl Oleate	2	2	2	2	2	2	2	2	2	2
PEG-8 (and) Tocopherol (and)	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Ascorbyl Palmitate (and) Ascorbic										
Acid (and) Citric Acid										
Sorbitol	4	4	4	4	4	4	4	4	4	4
Polyacrylamide (and) C13-14	3	3	3	3	3	3	3	3	3	3
Isoparaffin (and) Laureth-7										
Propylparabene	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Methylparabene	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Tromethamine			1,8						· · · · · ·	
Water	ad	ad	ad	ad	ad	ad	ad	ad	ad	ad
	100	100	100	100	100	100	100	100	100	100

Tabelle 3 (Fortsetzung)

	3-11	3-12	3-13	3-14	3-15	3-16	3-17	3-18
a = aqueaous gel				а	а	а	а	а
Titanium dioxide	3		2					
Benzylidene malonate polysiloxane		1	0,5	1	2			
Methylene Bis-Benztriazolyl	1	1	0,5			1	2	1
Tetramethylbutylphenol								
7,8,3',4'-Tetrahydroxyflavon				1	2			<u> </u>
4'-Methoxy-6-hydroxyflavon	1	3		2		5		5
5,6,7-Trihydroxyflavon	5	5	5	5	5	5	5	5
6,3',4'-Trihydroxyflavon	1	5	4		6		7	
Zinc oxide			2					
UV-Pearl , Ethylhexyl Mehtoxycinnamat	15	15	15	15	15	15	15	15
Prunus Dulcis	5	5	5					
Tocopheryl Acetate	0,5	0,5	0,5					
Caprylic/Capric Triglyceride	3	3	3					
Octyldodecanol	2	2	2					
Decyl Oleate	2	2	2					
PEG-8 (and) Tocopherol (and) Ascorbyl	0,05	0,05	0,05					
Palmitate (and) Ascorbic Acid (and)								
Citric Acid								
Sorbitol	4	4	4	5	5	5	5	5
Polyacrylamide (and) C13-14	3	3	3					
Isoparaffin (and) Laureth-7								
Carbomer				1,5	1,5	1,5	1,5	1,5
Propylparabene	0,05	0,05	0,05					
Methylparabene	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Allantoin				0,2	0,2	0,2	0,2	0,2
Tromethamine				2,4	2,4	2,4	2,4	2,4
Water	ad							
	100	100	100	100	100	100	100	100

Tabelle 3 (Fortsetzung)

	3-19	3-20	3-21	3-22	3-23	3-24	3-25	3-26	3-27	3-28
7,8,3',4'-Tetrahydroxyflavon				1	2				1	1
5,6,7-Trihydroxyflavon	1	3		2		5		5	2	
6,3',4'-Trihydroxyflavon	5	5	5	5	5	5	5	5	5	5
4´,7-Dihydroxyflavon	1	5	4		6		7		2	1
UV-Pearl , OMC	30	30	15	15	15	11	12	15	15	15
Phenylbenzimidazole Sulfonic		4	4							
Acid										
Sorbitol	5	5	5	5	5	5	5	5	5	5
Carbomer	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
Propylparabene										
Methylparabene	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Allantoin	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
Tromethamine	2,4	4,2	4,2	2,4	2,4	2,4	2,4	2,4	2,4	2,4
Water	ad									
	100	100	100	100	100	100	100	100	100	100

Tabelle 3 (Fortsetzung)

	3-29	3-30	3-31	3-32	3-33	3-34	3-35	3-36
4'-Methoxy-7-ß-glucosidflavon				1	2			
7,8,3',4'-Tetrahydroxyflavon	1	3		2		5		5
6,3',4'-Trihydroxyflavon	5	5	5	5	5	5	5	5
5,6,7-Trihydroxyflavon	1	5	4		6		7	
UV-Pearl , OMC	15	10		10	10	10	15	10
UV-Pearl , OCR			10					
UV-Pearl , OMC, Methylene Bis-		7		6				
Benztriazolyl								
Tetramethylbutylphenol								
UV-Pearl, Ethylhexyl salicylate,			10					
ВМОВМ								
Disodium Phenyl Dibenzimidazole		3				3		3
Tetrasulfonate								
Phenylbenzimidazole Sulfonic Acid		2			2	3		3
Prunus Dulcis	5	5	5					
Tocopheryl Acetate	0,5	0,5	0,5					
Caprylic/Capric Triglyceride	3	3	3					
Octyldodecanol	2	2	2					
Decyl Oleate	2	2	2					
PEG-8 (and) Tocopherol (and)	0,05	0,05	0,05					
Ascorbyl Palmitate (and) Ascorbic							,	
Acid (and) Citric Acid								
Sorbitol	4	4	4	5	5	5	5	5
Polyacrylamide (and) C13-14	3	3	3					
Isoparaffin (and) Laureth-7				,				
Carbomer				1,5	1,5	1,5	1,5	1,5
Propylparabene	0,05	0,05	0,05					
Methylparabene	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Allantoin				0,2	0,2	0,2	0,2	0,2
Tromethamine				2,4	2,4	2,4	2,4	2,4
Water	ad							
	100	100	100	100	100	100	100	100

Patentansprüche

 Zubereitung mit antioxidanten Eigenschaften, enthaltend zumindest eine Verbindung der Formel I

$$R^3$$
 R^4
 R^9
 R^5
 R^6
 R^7
 R^2
 R^3
 R^4
 R^9
 R^7

wobei R¹ bis R¹⁰ gleich oder verschieden sein können und ausgewählt sind aus

- H
- OR¹¹
- geradkettigen oder verzweigten C₁- bis C₂₀-Alkylgruppen,
- geradkettigen oder verzweigten C₃- bis C₂₀-Alkenylgruppen,
- geradkettigen oder verzweigten C₁- bis C₂₀-Hydroxyalkylgruppen, wobei die Hydroxygruppe an ein primäres oder sekundäres Kohlenstoffatom der Kette gebunden sein kann und weiter die Alkylkette auch durch Sauerstoff unterbrochen sein kann, und/oder
- C_{3} bis C_{10} -Cycloalkylgruppen und/oder C_{3} bis C_{12} Cycloalkenylgruppen, wobei die Ringe jeweils auch durch - $(CH_{2})_{n}$ Gruppen mit n = 1 bis 3 überbrückt sein können,
- wobei alle OR¹¹ unabhängig voneinander stehen für
 - OH
 - geradkettige oder verzweigte C₁- bis C₂₀-Alkyloxygruppen,
 - geradkettigen oder verzweigten C_3 bis C_{20} Alkenyloxygruppen,
 - geradkettigen oder verzweigten C_1 bis C_{20} Hydroxyalkoxygruppen, wobei die Hydroxygruppe(n) an ein primäre oder sekundäre Kohlenstoffatome der Kette

gebunden sein können und weiter die Alkylkette auch durch Sauerstoff unterbrochen sein kann, und/oder

- C₃- bis C₁₀-Cycloalkyloxygruppen und/oder C₃- bis C₁₂Cycloalkenyloxygruppen, wobei die Ringe jeweils auch
 durch -(CH₂)_n-Gruppen mit n = 1 bis 3 überbrückt sein
 können und/oder,
- Mono- und/oder Oligoglycosylreste,

mit der Maßgabe, dass mindestens 3 Reste aus R¹ bis R⁷ stehen für OH und dass im Molekül mindestens 2 Paare benachbarter Gruppen –OH vorliegen,

oder R^2 , R^5 und R^6 für OH und die Reste R^1 , R^3 , R^4 und R^{7-10} für H stehen.

- Zubereitung nach Anspruch 1, enthaltend zumindest eine Verbindung der Formel I, dadurch gekennzeichnet, dass mindestens zwei benachbarte Reste der Reste R¹ bis R⁴ stehen für OH und mindestens zwei benachbarte Reste der Reste R⁵ bis R⁷ stehen für OH.
- 3. Zubereitung nach mindestens einem der vorhergehenden Ansprüche enthaltend zumindest eine Verbindung der Formel I, dadurch gekennzeichnet, dass mindestens drei benachbarte Reste der Reste R¹ bis R⁴ stehen für OH, wobei vorzugsweise die Reste R¹ bis R³ für OH stehen.
- 4. Zubereitung nach mindestens einem der vorhergehenden Ansprüche enthaltend zumindest eine Verbindung der Formel I, dadurch gekennzeichnet, dass die Zubereitungen eine oder mehrere Verbindungen der Formel I in einer Menge von 0,01 bis 20 Gew.-%, vorzugsweise in einer Menge von 0,1 bis 10 Gew.-% enthält.
- 5. Zubereitung nach mindestens einem der vorhergehenden Ansprüche zum Schutz von Körperzellen gegen oxidativen Stress, insbesondere zur Verringerung der Hautalterung, dadurch gekennzeichnet, dass sie vorzugsweise ein oder mehrere weitere Antioxidantien und/oder Vitamine, vorzugsweise ausgewählt aus Vitamin-A-Palmitat, Vitamin

C und dessen Derivaten, DL- α -Tocopherol, Tocopherol-E-Acetat, Nicotinsäure, Pantothensäure und Biotin, enthält.

- 6. Zubereitung nach mindestens einem der vorhergehenden Ansprüche, wobei die Zubereitung neben der mindestens einen Verbindung nach Formel I einen oder mehrere UV-Filter enthält, die vorzugsweise ausgewählt sind aus der Gruppe, die 3-(4'-Methylbenzyliden)-dl-kampfer, 1-(4-tert-Butylphenyl)-3-(4-methoxyphenyl)propan-1,3-dion, 4-Isopropyldibenzoylmethan, 2-Hydroxy-4-methoxybenzophenon, Methoxyzimtsäureoctylester, 3,3,5-Trimethyl-cyclohexylsalicylat, 4-(Dimethylamino)benzoesäure2-ethylhexylester, 2-Cyano-3,3-diphenylacrylsäure-2-ethylhexylester, 2-Phenylbenzimidazol-5-sulfonsäure sowie ihre Kalium-, Natrium- und Triethanolaminsalze enthält.
- 7. Zubereitung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zubereitung eine Nahrungsmittel oder ein Nahrungsergänzungsmittel ist und einen für Nahrungsmittel geeigneten Träger sowie gegebenenfalls weitere Nahrungsergänzungstoffe enthält.
- 8. Verfahren zur Herstellung einer Zubereitung dadurch gekennzeichnet, dass eine Verbindung der Formel I mit Resten gemäß Anspruch 1 mit einem kosmetisch oder dermatologisch oder für Nahrungsmittel geeignetem Träger vermischt wird.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Verbindung nach Formel I hergestellt wird durch Umsetzung einer 2-Hydroxyacetophenon-Verbindung mit einer Lithiumverbindung und anschließend einer Ketoverbindung.
- 10. Verwendung einer Verbindung der Formel I, wobei die Variablen die in Anspruch 1 angegebene Bedeutung aufweisen, zur Herstellung einer Zubereitung mit antioxidanten Eigenschaften.

- Verwendung einer Verbindung der Formel I, wobei die Variablen die in Anspruch 1 angegebene Bedeutung aufweisen, als Antioxidationsmittel mit langanhaltender Wirkung.
- Verwendung einer Verbindung der Formel I, wobei die Variablen die in Anspruch 1 angegebene Bedeutung aufweisen, als Nahrungsmittelzusatz für die Human- oder Tierernährung.

Zusammenfassung

Zubereitung mit antioxidanten Eigenschaften

Die Erfindung betrifft eine Zubereitung mit antioxidanten Eigenschaften, enthaltend zumindest eine Verbindung der Formel I

wobei R1 bis R10 gleich oder verschieden sein können und ausgewählt sind aus H, OR¹¹, geradkettigen oder verzweigten C₁- bis C₂₀-Alkylgruppen, geradkettigen oder verzweigten C₃- bis C₂₀-Alkenylgruppen, geradkettigen oder verzweigten C₁- bis C₂₀-Hydroxyalkylgruppen, wobei die Hydroxygruppe an ein primäres oder sekundäres Kohlenstoffatom der Kette gebunden sein kann und weiter die Alkylkette auch durch Sauerstoff unterbrochen sein kann, und/oder C₃- bis C₁₀-Cycloalkylgruppen und/oder C₃- bis C₁₂-Cycloalkenylgruppen, wobei die Ringe jeweils auch durch -(CH₂)_n-Gruppen mit n = 1 bis 3 überbrückt sein können, wobei alle OR^{11} unabhängig voneinander stehen für OH, C₁- bis C₂₀-Alkyloxygruppen, C₃- bis C₂₀-Alkenyloxygruppen, geradkettigen oder verzweigten C₁und/oder C₃-C₁₀-C₂₀-Hydroxyalkoxygruppen bis Cycloalkyloxygruppen und/oder C₃- bis C₁₂-Cycloalkenyloxygruppen, wobei die Ringe jeweils auch durch -(CH₂)_n-Gruppen mit n = 1 bis 3 und/oder. Monound/oder überbrückt sein können Oligoglycosylreste, mit der Maßgabe, dass mindestens 3 Reste aus R¹ bis R⁷ stehen für OH und dass im Molekül mindestens 2 Paare benachbarter Gruppen --OH vorliegen, oder R2, R5 und R6 für OH und die Reste R¹, R³, R⁴ und R⁷⁻¹⁰ für H stehen.