MATH 401: Lecture 17 (10/14/2025)

Today: * complete metric spaces

**X Barach's Fixed Point Theorem (BFPT)

Recall: Every convergent sequence in (X,d) is Cauchy.

But the converse does not always hold. Example 1

We saw in LSIRA Section 2.2 that $\mathbb Q$ is not complete. With $X = \mathbb Q$, and d(x,y) = |x-y|, (X,d) is a metric space. Show all consider $\{x_n\} = \{1.0, 1.4, 1.41, 1.412, \dots, \} \longrightarrow \sqrt{2} \notin \mathbb Q$. In properties of metric spaces hold.

Each $x_n \in \mathbb{R}$, and $\{x_n\}$ is <u>Cauchy</u>. (Why?)

Finy pair of elements X_n and X_m are identical up to the (d-1)st decimal digit whenever $n_1m \neq d$; so $|X_n - X_m| = \frac{1}{10^{(d-1)}}$.

Example 2 $\{\frac{1}{n}\}$, n=2 is Cauchy in X=(0,1) with d(x,y)=|x-y|.

 $|X_n - X_k| = |\frac{1}{n} - \frac{1}{k}| < \frac{1}{N}$ wherever n, k > N. So, $N = \lfloor \frac{1}{k} \rfloor$ will do (for proof that $\{X_n\}$ is Cauchy).

But $\{1\} \rightarrow 0$ as $n \rightarrow \infty$, and $0 \notin X = (0,1)$.

So we define a metric space as complete when it includes all limit points.

 $\frac{\text{Def 3.4.3}}{\text{Cauchy Sequences in } X}$ Converge in X.

We are throwing in all limit points to "complete" the space, starting with $X = \mathbb{Q}$, we get \mathbb{R} . (Example 1).

Example d: X = [0,1] is complete. Note that $\{x_n\} = \{1-\frac{1}{n}\} \rightarrow 1$ as $n \rightarrow \infty$. (continued.)

In fact, we can formalize this observation — if $A \subset X$ is closed, then if will be complete on its own!

Proposition 3.4.4 Assume (X,d) is a complete metric space. If A is closed.

If ACX, then (A, dA) is complete if A is closed.

Prestriction of d to A.

(E) A closed.

(\Leftarrow) A closed.

Consider a Cauchy sequence $\{a_n\}$ in A. $\{a_n\}$ is a sequence in X as well, as $A \subset X$. X is complete $\Rightarrow \{a_n\} \to a \in X$.

A is closed $\Rightarrow a \in A$ (by Prop 3.3.7). $\Rightarrow (A, d_A)$ is complete.

Pick each $a_n \in B(a; \frac{1}{n})$ such that $a_n \in A$. $\Rightarrow \{a_n\}_i \leq Cauchy.(Why?)$ Also, $\{a_n\}_i \Rightarrow a \text{ in } X$, as $X \leq Complete$, but $\{a_n\}_i$ does not converge in A (as $a \notin A$).

 \Rightarrow \exists a Cauchy sequence in A that does not converge in A. \Rightarrow (A, d_A) is not complete.

Banach's Fixed Point Theorem (BFPT)

We now present a central result in many areas of mathematics— a fixed point theorem. The theorem will depend crucially on completeness of metric spaces. We first define a fixed point.

Def Let $f: X \to X$ be a function, where (X,d) is a metric space. A point $a \in X$ is a **fixed point** for f if f(a) = a.

Motivation In many areas of pure and applied mathematics, we often want to solve $g(\bar{x}) = \bar{0}$. System of equations

If we can write $g(\bar{x}) = f(\bar{x}) - \bar{x} = \bar{0}$, and study $f(\bar{x}) = \bar{x}$, we are solving a fixed point problem!

For example, $x^5 + 4x^3 - 2 = 0 \implies x = \frac{2 - x^5}{4}$

We can try to find a sequence $\{\bar{X}_n\}$ where $\bar{X}_{nH} = f(\bar{X}_n)$ instead of solving g(x) = 0 directly. And even if we do not know for sure that g(x) = 0 has a (unique) solution, we can take \bar{X}_n as our approximate solution when $n \geq N$ for some large N.

Note that $f(\bar{x})$ may not be unique above - e.g., we could write $X = (2-4x^3)^{\frac{1}{5}}$ and use a different f(x) to still get f(x) = x.

We need one more property of f so as to be able to guarantee the existence of a fixed point.

Def f:x->x is a contraction if I o < 2 < 1 such that $d(f(x), f(y)) \leq 8d(x,y) + x,y \in X.$ We say that

3 is the contraction factor for f.

We say that

with 0 < 8 < 12 is the contraction factor for f.

Note (i) All contractions are continuous. (Why?) Can use open ϵ -8 ball definition; choose $S = \frac{\epsilon}{2}$.

(ii) $d(f^{\circ n}(x), f^{\circ n}(y)) \leq s^n d(x, y)$ where $f^{\circ n}(x) = f(f(--f(x)) \rightarrow n-fold composition of F)$ in times

We now state and prove Banach's fixed point theorem.

Theorem 3.4.5 (Barach's Fixed Point Theorem)

let (X,d) be a complete metric space, and f: X-> X be a contraction. Then f has a unique fixed point $a \in X$, and the sequence $\{x_n\}$ converges to a, where $x_0 \in X$ and $x_n = f^{\circ n}(x_0)$, $\forall n \in \mathbb{N}$. $(x_1 = f(x_0), x_2 = f(f(x_0))...$

Proof We show uniqueness first.

Assume there exist two fixed points a, bEX, a+b. Then

d(a,b) = d(f(a), f(b)) = 2 d(a,b), 8 < 1as a, b are
fixed points

 $\Rightarrow d(a_1b) = 0 \Rightarrow a = b$.

300012 a $\in X$

We prove $\{x_n\}$ is Cauchy. Then $\{x_n\} \to a$, as (x,d) is complete. Also, $x_{n+1} = f(x_n) \implies as n \rightarrow \infty$, we get

 $a = f(a) \implies a is a fixed point.$

So we're done if we prove \$xn7 is Cauchy.

$$d(x_{n},x_{k}) \leq \sum_{i=0}^{k-1} d(x_{n+i},x_{n+i+i}) \text{ by } \leq \text{le ineq. (see Lecture 12 for a similar result, showed using induction)}$$

$$= \sum_{i=0}^{k-1} d(f^{\circ(n+i)}(x_{0}), f^{\circ(n+i)}(x_{i}))$$

$$\leq \sum_{i=0}^{k-1} g^{n+i} d(x_{0},x_{i}) \qquad \text{Recall, } o=g=1.$$

$$= \frac{g^{n}(1-g^{k})}{1-g} d(x_{0},x_{i}) \qquad \text{sum of geometric series}$$

$$\leq \frac{g^{n}}{1-g} d(x_{0},x_{i}) \qquad g=1.$$

We can choose $N \in \mathbb{N}$ large enough such that this expression is $\leq \epsilon$ for any $\epsilon > 0$ whenever n, k > N (as 0 < s < 1).

$$\frac{2^{n}}{1-2} d(x_{0},x_{1}) < \epsilon$$

$$\Rightarrow \quad \mathcal{S}^{\mathcal{N}} \leq \frac{(1-8) \in}{d(x_{0i}x_{i})}$$

$$- n \log 8 \ge - \log \left(\frac{(1-5) \in}{d(x_0, x_i)} \right)$$

$$n \log(\frac{1}{s}) > \log(\frac{d(x_0, x_1)}{(1-s) \in})$$

$$\Rightarrow N = \left[\frac{\log \left(\frac{d(x_0, x_1)}{1 - s}\right) + 1}{\log \left(\frac{s}{s}\right)}\right] + 1 \text{ will do.}$$