Math 454 Principles of Real Analysis Fall 2020 Q2

Textbook: Abbott, *Understanding Analysis*, Springer-Verlag, **2e** (2016).

Wk	Date	Section	Problems 2e	Due	Topics
1	M 11/30	1.1	-	F 12/4	Ch. 1 – Real Numbers
		1.2	5, 8, 9		N, Z, Q, R; function, one-to-one, onto;
		1.3	3, 8		sup, inf, Axiom of Completeness;
		1.4	1, 3		Q countable, R uncountable, Q dense in R;
		1.5	9		Cantor's Theorem
		1.6	4		
	W 12/2	2.1	-	M 12/7	Ch. 2 – Sequences and Series
		2.2	1, 2, 7		
		2.3	3, 7, 13a		
	F 12/4	2.4	1, 7	W 12/9	Monotone Convergence Theorem
		2.5	1, 9		Bolzano-Weierstrass Theorem
2	M 12/7	2.6	2, 3	F 12/11	Cauchy sequence
		2.7	5, 8, 9		Infinite series and convergence tests
		2.8	1		
		2.9	-		
	W 12/9		Q&A,	M 12/14	Exam 1 – due M 12/14
			hand out exam		
	F 12/11	3.1	-	W 12/16	Ch. 3 – Basic Topology of R, Cantor Set,
		3.2	2, 6, 8, 14		Open and closed sets
3	M 12/14	3.3	1, 2, 11	F 12/18	Compact sets, Heine-Borel Theorem
		3.4	5, 7, 9ab		Perfect, connected
	W 12/16	4.1	-	M 12/21	Ch. 4 – Limits and Continuity
		4.2	5, 8ab, 9, 11		Definition of the limit of a function
		4.3	3, 7, 8		Continuity
	F 12/18	4.4	1, 6, 11	M 1/4	Compact sets and connected sets under
		4.5	7		continuous maps, uniform continuity,
		4.6	-		Intermediate Value Theorem
4	M 12/21		Q&A, hand out exam	W 1/6	Exam 2 – due W 1/6
			nana out exam		
	W 12/23 –	N 1/3			Holiday Break
5	M 1/4	5.1	_	F 1/8	Ch. 5 – Derivative
		5.2	3, 7		Definition, continuity, $g_n(x) = x^n \sin(1/x)$
		5.3	1a, 3, 7, 11a		Darboux's Theorem, Mean Value Theorem
	W 1/6	5.4	=	M 1/11	Example: sawtooth function – continuous,
		5.5	-		nowhere-differentiable
	F 1/8	6.1	-	W 1/13	Ch. 6 – Sequences and Series of Functions
		6.2	1, 3, 5		Pointwise and uniform convergence
		6.3	1, 3		
		6.4	3a, 5a		
6	M 1/11	6.5	1, 2, 7, 8a	F 1/15	Power series
		6.6	5		Taylor series
		6.7	-		
	W 1/13		Q&A, hand out exam	M 1/18	Exam 3 – due M 1/18
	F 1/15	7.1	-	W 1/20	Ch. 7 – Riemann Integral
	1 1/13	7.1	1, 2	11 1/20	Definition of Riemann Integral;
		7.2	1, 2		U(f), L(f)
		7.3	3		
11	M 1/18	7.5	8ab	F 1/22	Fundamental Theorem of Calculus
**	1,1,10	7.6	1, 3	1 1/22	measure zero;
		7.7	-		Lebesgue's Theorem
	<u> </u>	1.1	1 -		Leocague a Theoretti

	W 1/20	8.1		-	Ch. 8 – Generalized Riemann Integral
	F 1/22	8.1	hand out Exam 4	-	Tagged partition, gauge, Kurzweil-Henstock Integral
12	M 1/25		office hours	W 1/27	Exam 4 – due W 1/27
	W 1/27				evaluations