10215501442的文本分类实验

训练数据划分

本次实验采用的是**固定划分**

根据CSDN上的这篇文章【深度学习】如何分配训练集、验证集、测试集比例_训练集测试集验证 集比例-CSDN博客上 所说的内容

对于传统机器学习阶段(数据集在万这个数量级),一般分配比例为训练集和测试集的比例为7:3或是8:2。为了进一步降低信息泄露同时更准确的反应模型的效能,更为常见的划分比例是训练集、验证集、测试的比例为6:2:2。

因从,在本次实验中将train_data.txt的内容的 6/8 也就是75%分配为训练集,剩余的25%分配为验证集的内容。

而具体的分配是采取的随机分配,使用python程序读入train_data.txt的内容,统计一下各个label的个数,并对每个label随机分配75%至train.txt(训练集),剩余的25%分配至Validation.txt(验证集)。

divide.py:

```
train data = {}
check data = {}
for label in label counts.keys():
    data for label = [line for line in data if json.loads(line)['label'] ==
int(label)]
   random.shuffle(data for label)
   total samples = len(data for label)
   train samples = data for label[:int(total samples * 0.75)]
    check_samples = data_for_label[int(total_samples * 0.75):]
   train data[label] = train samples
    check data[label] = check samples
# 写入train.txt
with open('train.txt', 'w') as train file:
   for label in train data:
        train_file.writelines(train_data[label])
# 写入check.txt
with open('Validation.txt', 'w') as check_file:
   for label in check_data:
        check file.writelines(check data[label])label in check data:
```

数据以及Bert模型载入

本次实验的文本向量化选用的是Bert, Bert能够理解上下文中的单词, 捕捉更全局的语义信息,而且可以用到Pytorch (在前期准备工作时为了装Pytorch我甚至重装了好几次anaconda)和GPU。 (TF-IDF无法捕捉单词之间的语义关系, Word2Vec不适用于捕捉全局语境)

下面是数据以及模型载入的代码

```
print('预处理开始')
# 读取训练数据
data_path = r'train.txt的路径'
with open(data_path, "r") as file:
    train_data = file.read()
train_samples = [json.loads(line) for line in train_data.split('\n') if line.strip()]
print('训练数据载入成功')
# 读取验证数据
validation_data_path = r'Validation.txt的路径'
with open(validation_data_path, "r") as file:
    validation_data = file.read()
validation_samples = [json.loads(line) for line in validation_data.split('\n') if
line.strip()]
print('验证数据载入成功')
```

```
# 检查GPU是否可用

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print("正在使用的device为:", device)

# 加载tokenizer

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

print('tokenizer已加载')

# 将模型加载到GPU (如果可用) 或CPU

model = BertModel.from_pretrained("bert-base-uncased").to(device)

print('模型已加载至device')
```

文本向量化

以下是训练集的文本向量化代码

```
start_time = time.time() # 记录文本向量化的时间
train_vectors = [] # 用于存储训练集的文本向量
train labels = [] # 用于存储训练集的标签
for sample in train_samples:
   raw text = sample['raw']
   inputs = tokenizer(raw text, return tensors="pt", padding=True, truncation=True,
max length=512)
   inputs = {key: value.to(device) for key, value in inputs.items()}
   with torch.no grad():
       outputs = model(**inputs)
   hidden states = outputs.last hidden state
   # 使用BERT的隐藏状态作为文本特征
   text vector = hidden states.mean(dim=1).squeeze() # 使用均值池化
   label = sample['label']
   train vectors.append(text vector)
   train_labels.append(label)
train vectors = torch.stack(train vectors)
train_labels = torch.tensor(train_labels, dtype=torch.long).to(device)
# 验证数据的文本向量化,略
end time = time.time()
print(f'文本向量化用时: {end_time - start_time} 秒')
```

在这里将训练集和验证集的文本进行了向量化,并使用了均值池化,均值池化可以确保最终的文本特征向量具有一致的维度,就以多次实验的观察来说,文本向量化(训练集和验证集)所需要的时间为3~4分钟之间,而在前面的数据以及Bert模型载入阶段也需要花费一分钟左右的时间。

测试集的文本向量化同理

训练分类器

MLP

```
# 招参数
hidden layer = 1 # 当前隐藏层数 1
input dim = 768 # BERT的隐藏状态大小
hidden_dim = 200 # 神经元数量
output dim = 10 # 类别数
learning rate = 0.1 # 学习率
epochs = 300
             # 训练轮数
# 定义MLP模型
class MLP(nn.Module):
   def init (self, input dim, hidden dim, output dim):
       super(MLP, self).__init__()
       self.fc1 = nn.Linear(input dim, hidden dim)
       #self.fc2 = nn.Linear(hidden dim, hidden dim) # 第二个隐藏层
       #self.fc3 = nn.Linear(hidden dim, hidden dim) # 第三个隐藏层
       self.fc4 = nn.Linear(hidden_dim, output_dim) # 输出层
   def forward(self, x):
       x = torch.relu(self.fc1(x))
       #x = torch.relu(self.fc2(x))
       #x = torch.relu(self.fc3(x))
       x = self.fc4(x)
       return x
# 打印当前超参数的代码,略,下面是训练模型以及进行验证的代码
start time = time.time()
print('start training')
mlp_model = MLP(input_dim, hidden_dim, output_dim).to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(mlp_model.parameters(), lr=learning_rate)
```

```
# 开始训练
for epoch in range(epochs):
    mlp_model.train()
    optimizer.zero_grad()
    outputs = mlp_model(train_vectors)
    loss = criterion(outputs, train_labels)
    loss.backward()
    optimizer.step()
end_time = time.time()
print(f'训练时间: {end_time - start_time} 秒')
```

如果要一次测试不同的超参数可以将上面超参数部分的内容更改为

以多次实验的经验来看,模型训练时间一般很短,在一秒之内,因此多次训练不会花费大量时间。

以下的表格内的内容为验证集准确率,单位为%,加黑的为不同的超参数

神经元数量 100 隐藏层 1 可以看出在训练轮数较低的情况下提高轮数可以提高验证集准确率

轮数∖学习率	0.1	0.01	0.001
10	31	10	9.7
20	54	9.2	7.5
30	66	11.8	10.45

轮数\学习率	0.1	0.01	0.001
50	82	12	8.9
75	81	21	10.6
100	84	45	11.6

神经元数量 100 学习率 0.1 可以看出轮数不变的情况下层数少点更好

轮数∖隐藏层	2	3
100	75	33
200	76	54
300	86	61

学习率 0.1 隐藏层 1 可能是神经元数量提高的不多,所以提升的不明显

轮数∖神经元	150	200
100	83	84
200	88	88
300	89	89

最终选择的超参数是

hidden_layer = 1 # 当前隐藏层数 3

input_dim = 768 # BERT的隐藏状态大小

hidden_dim = 200 # 神经元数量 output_dim = 10 # 类别数 learning_rate = 0.1 # 学习率 epochs = 300 # 训练轮数

验证集准确率为89~90%

测试

```
# 使用训练好的模型进行预测
mlp_model.eval()
with torch.no_grad():
    test_outputs = mlp_model(test_vectors)
    __, predicted_labels = torch.max(test_outputs, 1)
# 保存预测结果到result.txt
result_path = "result_MLP.txt"
with open(result_path, "w", encoding="utf-8") as result_file:
    result_file.write("id,pred\n")
    for i, label in enumerate(predicted_labels):
        result_file.write(f"{i},{label.item()}\n")
print("预测结果已保存到 result_MLP.txt")
#torch.save(mlp_model.state_dict(), 'MLP.pth')
```

逻辑回归

```
# 初始化逻辑回归模型
logistic_regression = LogisticRegression(max_iter=1000, random_state=42)
# 训练逻辑回归模型
logistic_regression.fit(train_texts, train_labels)
# 验证逻辑回归模型
predictions = logistic_regression.predict(validation_texts)
# 计算验证集准确率
accuracy = accuracy_score(validation_labels, predictions)
```

逻辑回归的验证集准确率为93.95%

SVM

```
svm_model = SVC(C=1.0, kernel='linear', gamma='scale') # 超参数
svm_model.fit(train_texts, train_labels)
# 使用SVM模型进行验证
predictions = svm_model.predict(validation_texts)
# 计算验证集准确率
accuracy = accuracy_score(validation_labels, predictions)
print(f'验证集准确率: {accuracy}')
```

SVM的验证集准确率为93.9%

决策树

```
# 创建并训练决策树模型

decision_tree = DecisionTreeClassifier(max_depth=10) # 设置决策树的超参数,可以根据需求
调整

decision_tree.fit(loaded_train_texts, train_labels)
# 验证决策树模型

predictions = decision_tree.predict(loaded_validation_texts)
# 计算验证集准确率

accuracy = accuracy_score(validation_labels, predictions)

print(f'验证集准确率: {accuracy}')
```

决策树的验证集准确率为66.55

结果比较

```
with open('result_svm.txt', 'r') as file1, open('result_Logistic.txt', 'r') as file2:
    lines1 = file1.readlines()
    lines2 = file2.readlines()

count = 0

total_lines = len(lines1) - 1

# 適历每一行(从第二行开始),比较pred的值

for i in range(1, total_lines + 1):
    pred1 = float(lines1[i].split(',')[1]) # 假设pred在每行以逗号分隔
    pred2 = float(lines2[i].split(',')[1])
    if pred1 == pred2:
        count += 1

# 计算百分比
percentage = (count / total_lines) * 100

# 输出结果
print(f"相等的百分比: {percentage:.2f}%")
```

一个简单的比较结果之间相似度的程序,MLP, SVM, 逻辑回归互相之间的结果相似都在90%以上,而决策树与其他结果的比较相似度都在60~70%左右。

BUG

有时载入tokenizer时,会有奇怪的报错,但是再次运行程序又没有了该问题,无法复现,非常奇怪,在五次六次运行中可能会有一次这样的报错。