

QD

41

A3313

1976

UNIT

K

CURR

Ex LIBRIS
UNIVERSITATIS
ALBERTAEISIS

Digitized by the Internet Archive
in 2021 with funding from
University of Alberta Libraries

<https://archive.org/details/alchem30unitkjenk>

frank jenkins
dick tomkins
oliver lantz
michael dzwinie

tom mowat

george klimiuk
myron baziuk
dean hunt
dale jackson

Alberta
Copyright © 1976:
Edmonton School District #7
10515 - 100 Street,
Edmonton, Alberta

alberta chemistry
project materials

FOREWORD

ALCHEM (Alberta Chemistry Project Materials) was initiated by the Edmonton Regional Chemistry Council. Funding has been provided by the Edmonton Public School Board and to a lesser extent the Edmonton Separate School Board. ALCHEM is a local curriculum materials development project aimed at preparing classroom oriented materials. The unique format has received widespread approval both by students and teachers. The materials have been piloted by over 20,000 students and 100 teachers. The feedback has been very positive. On a comparative study, ALCHEM students have significantly outperformed students using other materials. On the same comparative study ALCHEM students showed an equal or higher interest in chemistry.

The main objectives when writing the materials have been:

1. keep a high level of chemistry
2. provide easy-to-learn-from classroom materials
3. integrate applied chemistry and theoretical chemistry

The applied chemistry has largely centered around:

1. environmental chemistry
2. consumer chemistry
3. industrial chemistry
4. history of chemistry

Acknowledgements

The ALCHEM project is indebted to:

1. the ALCHEM pilot teachers
2. the University of Alberta, Department of Chemistry
3. the University of Alberta, Department of Secondary Education
4. our much suffering typists
5. Queen Elizabeth High School administration, secretarial staff and teachers
6. the ALCHEMists - Frank Jenkins, George Klimiuk, Dean Hunt, Dick Tompkins, Oliver Lantz, Michael Dzwiniel, Dale Jackson, Tom Mowat, Myron Baziuk and Eugene Kuzub

ALCHEM 30 Copyright (c) 1975, 1976 : Edmonton Public School Board

First edition (1975)

Second (revised) edition (1976)

Illustration by Don Pasmore

Photography and printing by Gerry Mikytyshyn

Illustrations on front cover: Davy, Bronsted and Joule

For more information contact:

Frank Jenkins, Queen Elizabeth Composite High School
9425 - 132 Avenue
Edmonton, Alberta. T5E 0Y4

Tel: 476-8671

ALCHEM 30 ELECTIVE UNITS

Elective Units

Unit 0: Foods and Their Analogs (1975)

1. Lipids - natural fats and synthetic analogs (soaps and detergents)
2. Proteins - natural polypeptides and synthetic polymers (polyalkenes, polyesters and polyamides)
3. Carbohydrates - natural saccharides (monosaccharides, disaccharides and polysaccharides) and synthetic sweeteners

Unit P: Fertilizers (1977)

1. Production of fertilizers - fertilizer plants and the nitrogen cycle
2. Use of fertilizers - quantitative rating and application of fertilizers and listing of elements required for plant growth
3. Advantages and disadvantages of fertilizer use

Unit Q: Pesticides (Insecticides) (1975)

1. Main concerns about classes and structures of insecticides
2. DDT - history, threat to man (food chains and concentration effect)
3. Alternative to use of insecticides

Unit R: Gasoline (1975)

1. Composition
2. Octane rating
3. Tetraethyllead
4. Undesirable emissions
5. Catalytic converters

Unit S: Drugs (1975)

1. Aspirin - synthesis, % yield and melting point of aspirin (Incomplete)

Unit OS: Alberta's Oil Sands (1976)

1. Relative importance and extent of energy resources
2. Geography and geology
3. Composition of Athabasca deposit
4. Composition of bitumen
5. History of process research
6. Extraction of bitumen
7. Upgrading of bitumen
8. Ancillary reaction units
9. Future development

Future ALCHEM Elective Units (1977)

1. Alberta Chemical Industries (ALCHEM 10 or 20)
2. Sulfur
3. Petrochemicals
4. Petroleum
5. Coal

2577458

ALCHEM 30 - CORE UNITS

Unit K: Review of Chemistry 10 & 20

1. Elements and the periodic table
2. Compounds, bonding and nomenclature
3. Chemical reactions
4. The mole
5. Gravimetric stoichiometry
6. Chemical bonding (Lewis diagrams & VSEPR)
7. Organic chemistry
8. Solution chemistry
9. Solution stoichiometry

Unit L: Energy Changes

1. Force fields, bonds, energy and measuring energy changes
2. Phase changes - states of matter and molar heats of phase changes
3. Chemical changes - energy stored in bonds, endothermic and exothermic reactions, heats of formation, and molar heats of reaction
4. Nuclear changes - a comparison of the energy involved in phase, chemical and nuclear changes
5. Alternative energy sources

Unit M: Electrochemistry

1. Redox in a beaker
2. Half reactions and balancing equations
3. Reduction potentials
4. Electrochemical cells and applications
5. Electrolytic cells and applications

Unit N: Acids and Bases

1. Definitions and classification
2. Special nature of water in Bronsted-Lowry theory
3. Strength vs. concentration of acids and bases
4. Predicting products in and extent of acid-base reactions
5. Polyprotic acids
6. pH, $[H^+]$ and $[OH^-]$ calculations and percent reaction
7. Indicators, titration curves and titrations

UNIT K

Review of Chemistry 10 & 20

REVIEW OF CHEMISTRY 10 & 20
ATOMIC STRUCTURE AND CHEMICAL SPECIES

K1

Definitions

nucleus - the central region of the atom

proton - a heavy, stable, positively charged particle found in the nucleus of all atoms

neutron - a heavy, stable, uncharged particle found in the nucleus of atoms

electron - a light, stable, negatively charged particle found in the region surrounding the nucleus

atom - an extremely stable arrangement of protons, neutrons and electrons. An atom is the smallest part of matter that can enter into chemical combination.

electron energy level - electrons around an atom possess specific amounts of energy and are most likely to be found in specific regions around the nucleus called energy levels. The number of electrons that can occupy any energy level is reflected in the periodic table of elements.

Bohr diagram of an atom - a diagram of an atom showing the number of protons and neutrons in the nucleus and the number of electrons in each energy level.
Sometimes neutrons are not shown.

atomic number - the number of protons in the nucleus of an atom

mass number - the number of protons plus neutrons in the nucleus of an atom or simple ion

isotopes - two atoms that have the same number of protons but a different number of neutrons

valence electrons - the electrons in the outer most energy level of an atom

simple ion - an atom that has lost or gained one or more electrons to conform with the octet rule. All ions have a charge.

metal - an element that can form positive ions. Metals are lustrous, malleable, ductile, and conduct heat and electricity well. Generally, metals are shown on the left side of the staircase line on the periodic table

nonmetal - an element that can form negative ions. Nonmetals are dull in appearance, brittle and conduct heat and electricity very poorly.

ionic compound - a compound that is composed of positive and negative ions. Ionic compounds usually contain metallic and nonmetallic ions.

molecule - the smallest particle that exists in a free state. A molecule is a group of chemically bonded atoms or a single atom as for the noble gases.

element - a pure substance which contains only one kind of atoms

compound - a pure substance which contains more than one kind of atom bonded together. These atoms can not be physically separated from one another.

molecular compounds - compounds that exist only as molecules. Molecular compounds usually contain only nonmetallic elements.

acid - an aqueous solution of a compound containing hydrogen which conducts electricity, tastes sour, turns blue litmus red, neutralizes bases and reacts with active metals to form hydrogen gas. The term acid sometimes also refers to the compound dissolved. (Refer to Unit N, Acids and Bases.)

base - an aqueous solution that reacts with acids. Bases turn litmus blue, taste bitter, and conduct electricity. (Refer to Unit N, Acids and Bases.)

salt - any ionic compound that could be produced by an acid-base reaction

complex ion - a stable group of atoms that have lost or gained one or more electrons. The atoms in the complex ion are covalently bonded.

REVIEW OF CHEMISTRY 10 & 20

ELEMENTS AND PERIODIC TABLE (REMEDIAL)

Species Name	Species Symbol	Number Protons	Number Electrons	Common Use	Net Charge	Electrons in Each Energy Level			# Valence Electrons
						1	2	3	
Example: carbon atom	C	6	6	main constituent of coal	0	2	4	0	4
1. chloride ion	Cl ⁻			cookware, house siding					
2.				production of Cl ₂ (g) by electrolysis					
3.	Si			transistors and semi-conductor diodes					
4.	Mg ²⁺			causes water hardness					
5. neon atom				neon lights					
6.				in table salt	1 ⁺	2	8		
7.	16			production of sulfuric acid				6	
8.	16	18		in tarnish of silver					
9.				80% of air consists of pairs of these atoms	0	2	5	0	
10.	H ⁺			provided by all acids					

TABLE K1
REVIEW OF CHEMISTRY 10 & 20
IONIC COMPOUNDS, ACIDS, MOLECULAR COMPOUNDS

Ionic Compounds	Acids	Molecular Compounds
Formula of Pure Substance (indicates simplest ratio of ions)	molecular formula (indicates actual number of atoms in a molecule)	molecular formula (indicates actual number of atoms in a molecule)
Type of Bond and Arrangement of Electrons (atoms gain or loose electrons to form ions)	covalent bond	covalent bond (atoms share pairs of electrons)
Melting Point and State of Room Temperature (high melting point; solid at room temperature)	low melting point; solid, liquid or gas at room temperature	low melting point; solid, liquid or gas at room temperature
Color of Aqueous Solution (if substance is soluble)	colorless or colored	colorless only
Electrical Conductivity of Aqueous Solution (if substance is soluble)	conducts electricity	does not conduct electricity
Nomenclature (Stock or Classical system)	ionic nomenclature or acid nomenclature	molecular nomenclature (prefix system)
Examples NaCl (s), NaOH (s), CuSO ₄ (s), SnF ₂ (s)	HCl (g) . . . HCl (aq) H ₂ SO ₄ (l) . . . H ₂ SO ₄ (aq) C ₆ H ₅ COOH (s) . . . C ₆ H ₅ COOH (aq)	CH ₄ (g) C ₂ H ₅ OH (l) P ₄ O ₁₀ (s) C ₁₂ H ₂₂ O ₁₁ (s)

REVIEW OF CHEMISTRY 10 & 20

NOMENCLATURE

Polyatomic Molecular Elements

In naming elements it is *not* necessary to indicate the number of atoms that are bonded together in a molecule; *e.g.*, hydrogen is the name of H. The polyatomic molecular elements are: H₂, N₂, O₂, F₂, Cl₂, Br₂, I₂, S₈ (crystalline) and P₄ (white phosphorus).

Nomenclature for Molecular Compounds-Prefix System

Name the compound using the Greek or Roman (nona) prefix to indicate the number of each kind of atom covalently bonded to one another. The prefixes should be learned.

Chemical Prefixes	
mono = 1	hexa = 6
di = 2	hepta = 7
tri = 3	octa = 8
tetra = 4	nona = 9
penta = 5	deca = 10

Formulas to be Learned	
Formula	Name
O ₃ (g)	ozone
H ₂ O(l)	water
NH ₃ (g)	ammonia
CH ₄ (g)	methane
C ₁₂ H ₂₂ O ₁₁ (g)	sucrose
CH ₃ OH(l)	methanol
C ₂ H ₅ OH(l)	ethanol

Alkanes to be Learned	
Formula (C _n H _{2n+2})	Name
CH ₄	methane
C ₂ H ₆	ethane
C ₃ H ₈	propane
C ₄ H ₁₀	butane
C ₅ H ₁₂	pentane
C ₆ H ₁₄	hexane
C ₇ H ₁₆	heptane
C ₈ H ₁₈	octane
C ₉ H ₂₀	nonane
C ₁₀ H ₂₂	decane

Naming Ionic Compounds

When naming any ionic compound the rule is to simply write the name of the cation (positive ion) followed by the name of the anion (negative ion). For ions with more than one charge the Stock System name (Roman numerals) is preferred over the classical system name (ic, ou).

Acids

Acids are named by changing the hydrogen compound name to the acid name using the rules given on the ALCHEM periodic table.

Hydrated Compounds

The complete formula of a hydrated compound is written by following the formula of compound with a dot and the proper number of water molecules. In the full name the water is read as *hydrate* using the usual chemistry prefixes.

E.g., CuSO₄·5H₂O - copper(II) sulfate pentahydrate

NOMENCLATURE REMEDIAL

i, m, or a	Chemical Formula	Common Name and/or Use	Chemical Name of Substance
		rust remover	phosphoric acid
	$\text{NaNO}_3(s)$	meat preserver	
	$\text{NO}_2(g)$	component of smog	
	HCl(aq)	very common acid; cleans concrete & galvanized iron; also gastric acid	
	HCl(g)	used to make hydrochloric acid	
		bluestone fungicide	copper(II) sulfate pentahydrate
		used for stating P-equivalent in fertilizer	solid diphosphorus pentaoxide
		found in sour natural gas	hydrosulfuric acid
	$\text{H}_2(g)$	hydrogen torch welding, weather balloons	
		ingredient of fertilizer	ammonium phosphate
	$\text{H}_2\text{O}_2(aq)$	disinfectant, mouthwash, bleach	
		household cleaner	aqueous ammonia
		used to make fertilizers	ammonia gas
	$\text{K}_2\text{SO}_3(s)$	skin fungicide, treatment of ringworm	
	$\text{CH}_3\text{OH}(l)$	wood alcohol; windshield washer fluid, duplicating fluid	
2		prevents tooth decay	tin(II) fluoride stannous fluoride
3	$\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}(s)$	Glauber's salt, medicine	

REVIEW OF CHEMISTRY 10 & 20

K5

NOMENCLATURE REMEDIAL

Provide either the chemical name or formula as required. With the chemical formula indicate the physical state of the substance. Classify the chemicals as either an ionic (i) or molecular (m) substance or an acid (a).

i, m, or a	Chemical Formula	Common Name and/or Use	Chemical Name of Substance
8. i	$\text{NaHSO}_4(s)$	Sanitflush, bowl cleaner	sodium bisulfate sodium hydrogen sulfate
9. i	$\text{H}_2\text{SO}_4(aq)$	the most used industrial acid	
10.		toxic cleaning solvent	
11.	$\text{HgS}(s)$	cinnabar, a mercury ore	
12.	$\text{NaHCO}_3(s)$	baking soda	
13.		drinking alcohol	ethanol
14.		epsom salts medicine	magnesium sulfate heptahydrate
15.		milk of magnesia, stomach antacid, laxative	magnesium hydroxide
16.	$\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}(s)$	photographic hypo, antichlor	
17.	$\text{O}_2(g)$	the gas that sustains respiration and combustion	
18.	$\text{NaHSO}_3(s)$	yeast inhibitor	
19.		siderite, iron ore	iron(II) carbonate
20.	$\text{Fe}_2\text{O}_3(s)$	hematite, iron ore	
21.		most common sweetener	sucrose
22.	$\text{CaSO}_4 \cdot 2\text{H}_2\text{O}(s)$	gypsum, building material	
23.		water glass; preserves eggs, adhesive cement, fireproofing	sodium silicate
24.		bleaching of paper, water treatment	chlorine gas

REVIEW OF CHEMISTRY 10 & 20
SIGNIFICANT DIGITS, MOLES AND MOLARITY

K7

Definition

Significant digits are all of the certain digits from a measurement plus one uncertain (estimated) digit.

Counting Significant Digits

1. Count all digits from 1 to 9 plus zeros in between and following other digits.
2. Do not count zeros in front of a value because they only serve to set the decimal place.

Exact numbers

Exact numbers are not uncertain and are said to have an infinite number of significant digits.

1. Numbers that are defined; e.g., 1000 kg = 1 t.
2. Numbers that result from counting objects; e.g., 32 students.

The Addition and Subtraction Rule

Round-off all the values to the least number of decimal places and then add or subtract.

The Multiplication and Division Rule

Multiple or divide and then round-off to the least number of significant digits.

Definitions

Mole - the amount of substance in a system which contains as many elementary entities as there are atoms in exactly 0.012 kg of carbon 12. (SI definition) Note: Entities can be atoms, molecules, electrons, ions, formula units or other particles. Carbon-12 is the most common isotope of carbon-containing 6 protons, 6 neutrons, and 6 electrons. To three significant digits the number of atoms in 0.012 kg is 6.02×10^{23} (Avogadro's number). The mole can be thought of as 6.02×10^{23} particles.

Molar mass - the mass of one mole of substance is units of grams per mole (g/mol)

Molar concentration - a measure of the concentration of solutions expressed in units of moles of solute per litre of solution-symbolized as mol/l or M. The units M are equivalent to the units mol/l and is read as molar. The molar concentration of a solution is often referred to as the molarity of a solution.

Formulas

$$\begin{array}{ccc} \boxed{\# \text{ moles} = \frac{\text{mass}}{\text{molar mass}}} & \xrightarrow{\hspace{1cm}} & \boxed{\text{mass} = \# \text{ moles} \times \text{molar mass}} \\ \boxed{M = \frac{\# \text{ moles}}{\# \text{ litres}}} & \xrightarrow{\hspace{1cm}} & \boxed{\# \text{ moles} = M \times \# \text{ litres}} \xrightarrow{\hspace{1cm}} \boxed{\# \text{ litres} = \frac{\# \text{ moles}}{M}} \end{array}$$

REVIEW OF CHEMISTRY 10 & 20

THE MOLE AND MOLAR CONCENTRATION (REMEDIAL)

Name, Formula and Use	Molar Mass	Mass	# Moles	Molarity	Solution Volume
e.g. $\text{Cu}(\text{NO}_3)_2$ copper(II) nitrate	$1 \text{ Cu} = 1 \times 63.5 = 63.5$ $2 \text{ N} = 2 \times 14.0 = 28.0$ $6 \text{ O} = 6 \times 16.0 = 96.0$ 187.5 or 188 g/mol	226 g (given)	$\# \text{ moles} = \frac{\text{mass}}{\text{molar mass}}$ $\text{Cu}(\text{NO}_3)_2 = \frac{226 \text{ g}}{187.5 \text{ g/mol}}$ $= 1.21 \text{ mol}$	$M = \frac{\# \text{ mole}}{\# \text{ litres}}$ $\text{Cu}(\text{NO}_3)_2 = \frac{1.20 \text{ mol}}{4.00}$ $= 0.300 \text{ M}$	4.00 L (given)
1. carbon tetrachloride (common solvent dry cleaning)		16.9 g		0.45 mol	
2. SiO_2 (sand)				1.40 mol	0.400 M
3. sulfuric acid (most common industrial acid)					

REVIEW OF CHEMISTRY 10 & 20
THE MOLE AND MOLAR CONCENTRATION (REMEDIAL)

Name, Formula and Use	Molar Mass	Mass	# Moles	Molarity	Solution Volume
4. NaCl (table salt)				0.0600 M	70.0 ml
5. NaHSO ₄ (Sani-Flush)			0.0250 mol	0.400 M	
6. potassium dichromate (a common oxidizing agent)	35.0 g				200 ml
7. Pb(CH ₃ COO) ₂ · 3H ₂ O (a soluble lead salt)	13.0 g			0.0320 M	

REVIEW OF CHEMISTRY 10 & 20
PREPARATION AND DILUTION OF SOLUTIONS

K10

Preparation of Solutions

Dissolve the correct mass of solute in less than the required amount of solvent. Then add solvent to bring the total volume to the desired value.

Dilution of Solutions

When a solution is diluted only the amount of solvent is increased. Therefore, the number of moles of solute in the *initial* concentrated solution is equal to the number of moles of solute in the *final* diluted solution.

Since # moles = M x # litres,

i = initial

$$M_i \times \# \text{ litres}_i = M_f \times \# \text{ litres}_f \quad f = \text{final}$$

Definitions

Solubility - the concentration of solute in a saturated solution at a given temperature.
The units of solubility are usually grams of solute per 100 ml of solution.

Molar Solubility - the molar concentration of a saturated solution at a given temperature.

SOLUTIONS AND SOLUBILITY

1. The solubility of sodium chloride (table salt) is 36.5 g per 100 ml of solution at room temperature. Calculate the molar solubility of sodium chloride.
2. A saturated solution of sodium hydroxide at room temperature has a concentration of 19.1 M. What mass of sodium hydroxide does a 100 ml sample of saturated solution contain?
3. What volume of 6.00 M sulfuric acid is required to make 200 ml of 0.75 M acid solution?
4. Describe how to prepare a 0.100 M solution of copper(II) sulfate pentahydrate? (Show calculations and steps.)

CHEMICAL REACTIONS

Chemical Reaction Clues

1. Formation of a precipitate 3. Color change
 2. Formation of a gas 4. Energy change

Conservation Laws

In a chemical reaction all of the following are conserved.

1. the number of each kind of atom
 2. mass
 3. energy

Information in a Balanced Chemical Equation

A balanced chemical equation shows the chemical composition, state, and mole relations of all substances involved as well as the reaction type.

Classification of Chemical Reactions by the Chemical Composition of the Reagents Involved

The product of a chemical reaction can be predicted from the type of chemical reaction.

1. Simple composition (sc): element + element → compound
2. Simple decomposition (sd): compound → element + element
3. Single replacement (sr): element + compound → element + compound
4. Double replacement (dr): compound + compound → compound + compound
5. Hydrocarbon combustion (hc): hydrocarbon + oxygen → carbon dioxide + water
6. Other (o): Reaction cannot be specified as being any of the preceding five types.

Classification of Reactions by Energy Changes

*Endothermic reaction - energy enters the system;
 i.e., energy is absorbed by the system; i.e., energy is added to the system.
 For example, in electrolysis energy is consumed (absorbed).*

*Exothermic reaction - energy leaves the system;
 i.e., energy is given off by the system; i.e., energy is removed from the system.
 For example, in hydrogen welding heat is released.*

REVIEW OF CHEMISTRY 10 & 20
CHEMICAL REACTIONS

K13

Using the simplest whole number coefficients write a balanced chemical equation for each of the following chemical reactions. Include the state of matter as subscripts in the balanced equation. Identify the reaction type in the space provided.

Example:

In water treatment plants hardness in the form of calcium sulfate is removed from the water by adding a washing soda solution.

Reaction type: double replacement

Word equation: calcium sulfate + sodium carbonate \longrightarrow calcium carbonate + sodium sulfate

1. Combustion occurs in a photographic flashbulb.

Reaction type:

Balanced equation:

Word equation:

2. Propane gas is burned in a camp stove.

Reaction type:

Balanced equation:

Word equation:

3. Phosphoric acid solution is used as rust (Fe_2O_3) remover.

Reaction type:

Balanced equation:

Word equation:

4. The test for hydrogen is a pop when ignited in the presence of air.

Reaction type:

Balanced equation:

Word equation:

5. Milk of magnesia (magnesium hydroxide) is used to counteract excess stomach acidity (hydrochloric acid).

Reaction type:

Balanced equation:

Word equation:

CHEMICAL REACTIONS

6. The cap is removed from a carbonated beverage. The carbonic acid in the beverage decomposes to produce carbon dioxide and water.

Reaction type:

Balanced equation:

Word equation:

7. Nickel is plated with copper using a copper(II) sulfate solution.

Reaction type:

Balanced equation:

Word equation:

8. Baking soda (sodium hydrogen carbonate) is used to neutralize a car battery acid (sulfuric acid) spill.

Reaction type:

Balanced equation:

Word equation:

9. Mercury(II) oxide is decomposed into its elements. (Joseph Priestley discovered oxygen using this reaction.)

Reaction type:

Balanced equation:

Word equation:

10. Soap (sodium stearate) may react with hard water ($MgSO_4(aq)$) to precipitate bath-tub-ring.

Reaction type:

Balanced equation:

Word equation:

11. Iron rusts in moist air (water and oxygen) to cause millions of dollars damage each year. (Rust is iron(III) oxide trihydrate.)

Reaction type:

Balanced equation:

Word equation:

12. Sulfur dioxide emissions from industries combines with water vapor to produce acid rain (sulfurous acid).

Reaction type:

Balanced equation:

Word equation:

EQUATIONS

Equations

Chemical equations are a shorthand way of representing what occurs in chemical reactions. The same notation can be extended to include changes of state and solvation (the process of dissolving).

Types of Solutes

nonelectrolytes - substances which dissolve to yield solutions that do not conduct electricity. Nonelectrolytes are usually molecular substances and in solution exist as molecules.

electrolytes - substances which dissolve to yield solutions that do conduct electricity. Electrolytes generally include ionic compounds and in solution exist as ions. (Acids are also electrolytes. See Unit N, ALCHEM 30.)

Remedial Problems

Write a balanced chemical equation for each of the following statements. Indicate the state of each species involved; e.g., bluestone (copper(II) sulfate pentahydrate) is dissolved in water to make a fungicide spray for plum trees.

e.g., Baking soda (sodium bicarbonate) dissolves in water.

1. Methanol is evaporated.
2. Sodium hydroxide dissolves in water.
3. Ethanol dissolves in water.
4. Ethanol is burned.
5. Bromine dissolves in ethanol.
6. Potassium burns in air.
7. Potassium reacts with water.
8. Potassium dissolves in mercury.
9. Iron(II) nitrate hexahydrate dissolves in water.
10. Epsom salts (magnesium sulfate heptahydrate) are dissolved in water.

Notes:

1. Solvents are indicated as subscripts of products *not* as reagents.
2. Water of hydration is included in the water of solvation and is *not* written as a product.

REVIEW OF CHEMISTRY 10 & 20
IONIC CONCENTRATION

K16

Calculating Ionic Concentrations

Step 1: Write the balanced equation for the dissociation.

Step 2: Use the formula,
required concentration = given concentration $\times \frac{\text{coefficient of required species}}{\text{coefficient of given species}}$

Note: This formula applies only to solutions.

Example:

1. In a 0.23 M $\text{Al}_2(\text{SO}_4)_3$ solution, what is the concentration of each ion?

Step 1: Write a balanced equation. $\text{Al}_2(\text{SO}_4)_3(s) \longrightarrow 2\text{Al}^{3+}(\text{aq}) + 3\text{SO}_4^{2-}(\text{aq})$

Step 2: Calculate the molar concentration of each ion using the mole ratio.

required concentration = given concentration $\times \frac{\text{coefficient of required species}}{\text{coefficient of given species}}$

$$\begin{aligned}\text{Al}^{3+} &= 0.23 \text{ M} \times \frac{2}{1} & \text{M} &= 0.23 \text{ M} \times \frac{3}{1} \\ &= 0.46 \text{ M} & &= 0.69 \text{ M}\end{aligned}$$

The concentration of the Al^{3+} ion is 0.46 M and the concentration of SO_4^{2-} ion is 0.69 M.

2. What amount of ammonium sulfate is required if 100 ml of solution with a 0.100 M NH_4^+ (aq) ion concentration is to be made?

Step 1: Write a balanced equation. $(\text{NH}_4)_2\text{SO}_4(s) \longrightarrow 2\text{NH}_4^+(\text{aq}) + \text{SO}_4^{2-}(\text{aq})$

Step 2: Calculate the concentration of $(\text{NH}_4)_2\text{SO}_4$ (aq).

required concentration = given concentration $\times \frac{\text{coefficient of required species}}{\text{coefficient of given species}}$

$$\begin{aligned}\text{M} &= 0.100 \text{ M} \times \frac{1}{2} \\ (\text{NH}_4)_2\text{SO}_4 &= 0.0500 \text{ M}\end{aligned}$$

Step 3: Calculate the amount of $(\text{NH}_4)_2\text{SO}_4$ required

$$\# \text{moles} = \text{M} \times \# \text{litres}$$

$$(\text{NH}_4)_2\text{SO}_4 = 0.0500 \text{ mol/l} \times 0.100 \ell$$

=

$$= 0.00500 \text{ mol or } 5.00 \times 10^{-3} \text{ mol.}$$

The amount of ammonium sulfate required is 5.00×10^{-3} mol.

Remedial Problems

Find the molar concentration of each ion in the following solutions. Work does not have to be shown.

1. 0.120 M Na_2CO_3 (washing soda)

2. saturated table salt solution (5.3 M)

3. 0.0621 M ammonium dichromate

4. 0.84 M Na_3PO_4 (commercial name is TSP or trisodium phosphate)

Find the concentration if the concentration of the ion is given.

5. 0.500 M Na^+ (aq) in a sodium carbonate solution.

6. 0.20 M $\text{Cr}_2\text{O}_7^{2-}$ (aq) in a potassium dichromate solution.

7. 0.575 M Cl^- (aq) in a iron(III) chloride solution.

8. 0.00233 M CH_3COO^- (aq) in a lead(II) acetate solution.

REVIEW OF CHEMISTRY 10 & 20

REACTIONS IN SOLUTION

Types of Reactions in Solution

Three common types of reactions in solution are single replacement reactions, precipitation reactions and neutralizing reactions. The latter two represent different types of double replacement reactions.

1. Single Replacement Reactions in Solution

Single replacement reactions usually take place when a sample of an element is added to an aqueous solution of a compound. The element reacts with a compound to form a new element and a new compound. The general equation for a single replacement reaction is

a. Metals replace metals. Nonmetals replace nonmetals.

b. active metal + water \longrightarrow hydrogen + a hydroxide

c. metal + salt \longrightarrow metal + salt

d. nonmetal + salt \longrightarrow nonmetal + salt

2. Double Replacement Reactions in Solutiona. Precipitation Reactions

Precipitation reactions occur when two compounds in solution react to produce a new compound that has low solubility. The new compound of low solubility is called a precipitate. Precipitation is identified in an equation by a product with the subscript "s". For example:

Solid particles of precipitate settle out and can be separated from the remaining solution by filtration. The liquid which goes through the filter paper is called the filtrate. The solid precipitate caught in the filter paper can be dried and its mass determined.

The rules for determining the solubility of ionic compounds are given on the ALCHEM data sheet.

b. Neutralization Reactions

Neutralization reactions are reactions between acids and bases in solution. The products of a neutralization are water and salt.

NET IONIC EQUATIONS

Writing Ionic Equations

Many chemical reactions can be represented by three different kinds of equations: *nonionic equations*, *total ionic equations* and *net ionic equations*. For reactions in aqueous solution, the most correct are ionic equations since in the ionizing water media, substances that are electrolytes undergo dissociation into ions. The ionic species in aqueous solution subsequently react as ions.

1. Nonionic Equations

In nonionic equations, the elements and compounds are written in their molecular or formula unit forms.

Example:

2. Total Ionic Equations

In total ionic equations, elements and compounds are written in the forms in which they are predominately present: electrolytes as ions; nonelectrolytes, precipitates and gases in their molecular or formula unit forms.

Example:

3. Net Ionic Equations

In net ionic equations, only those molecules, formula units or ions that have changed (predominant reacting species) are included in the equation; ions or molecules that do not change (spectator species) are omitted.

Example:

The following is a summary of rules to observe when writing ionic equations.

1. Electrolytes are written in their ion form.
2. Nonelectrolytes are written in their molecular forms.
3. The net ionic equation includes only those substances that have undergone a chemical change; i.e., predominant reacting species.
4. Insoluble substances, precipitates and gases are written in their molecular or formula unit forms.
5. Equations must be balanced, both in atoms and in electrical charge.

Example:

Write the nonionic, total ionic and net ionic equations representing the reactions between aqueous sodium sulfate and aqueous barium nitrate.

NONIONIC, TOTAL IONIC AND NET IONIC EQUATION

Write the nonionic equation, the total ionic equation and the net equation for each of the following reactions. Indicate the state of each species in each reaction.

1. A solution of iron(III) chloride is tested for the presence of the iron(III) ion by the addition of dilute sodium hydroxide. A red precipitate indicates a positive result.
2. Aqueous solutions of potassium sulfate and barium bromide are mixed.
3. An aqueous solution of washing soda (Na_2CO_3) is added to hard water containing magnesium sulfate. The magnesium ions are precipitated from water.
4. A copper(II) sulfate solution is tested for the presence of copper(II) ion by the addition of an aqueous solution of sodium sulfide. A black precipitate indicates a positive result.
5. Liquid bromine is added to an aqueous solution of sodium iodide. The solution turns brown indicating the presence of aqueous molecular iodine.

NONIONIC, TOTAL IONIC AND NET IONIC EQUATION

6. Zinc can be shown to be a chemically more reactive metal than copper by reacting zinc with aqueous copper(II) sulfate.
7. Potassium metal reacts violently with water.
8. Nickel is extracted from aqueous nickel(II) sulfate by the addition of copper.
9. An aqueous solution of silver nitrate produces a white precipitate when reacted with aqueous sodium chloride. The white precipitate indicates the presence of silver ions in the original solution.
10. Chlorine water (aqueous molecular chlorine) is mixed with a solution of potassium bromide. The solution turns orange indicating the presence of aqueous molecular bromine.

REVIEW OF CHEMISTRY 10 & 20

STOICHIOMETRY FLOWCHART

Given
"A"

Step 1: Write a balanced chemical equation.
 Step 2: Calculate the # moles of the given substance.
 Step 3: Calculate the # moles of the required substance.
 Step 4: Calculate the mass, solution volume or molar concentration as required.

mass of A

$$\# \text{ moles}_A = \frac{\text{mass}}{\text{molar mass}}$$

$$\# \text{ moles}_A = \frac{\text{mass}}{\text{molar mass}}$$

$$\# \text{ moles}_B = \frac{\# \text{ moles}_A \times \text{ratio}}{1}$$

solution volume and
concentration of A

$$\text{mass} = \# \text{ moles} \times \text{molar mass}$$

solution volume of B

$$\text{mass} = \# \text{ moles} \times \frac{\text{molar mass}}{M}$$

solution concentration
of B

Step 2

FIGURE 1

STOICHIOMETRY LAB - LAB K1

Purpose:

To quantitatively determine the concentration of sulfate ions in a sample of sodium sulfate of unknown concentration using a 0.0500 M solution of $\text{BaCl}_2(\text{aq})$.

Materials:Day I:

150 ml of 0.0500 M BaCl_2

10.0 ml of $\text{Na}_2\text{SO}_4(\text{aq})$ of unknown concentration

2 - 250 beakers

1 - stirring rod

1 - 10 ml pipet & bulb

1 - watch glass

Day II:

1 - filter paper

1 - filter funnel

1 - funnel rack

1 - ring stand

1 - stirring rod c/w rubber policeman

1 - 50 ml or 100 ml graduated cylinder

Prelab Exercise:

Write the balanced chemical equations for the reaction in this lab.
nonionic equation: _____

total ionic equation: _____

net ionic equation: _____

Procedure:Day I:

1. Use a graduated cylinder to obtain about 25 ml of sodium sulfate solution of unknown concentration. Pipet 10.0 ml of the sodium sulfate solution into a 250 ml beaker.
2. Use a 250 ml beaker to obtain about 150 ml of 0.0500 M Barium chloride solution. all but about 25 ml of the 150 ml of 0.0500 M barium chloride solution to the sodium sulfate solution. Stir for two or three minutes and let stand for about five minutes.
3. Add another 25 ml of 0.0500 M barium chloride solution to verify that all the sulfate has precipitated. (The barium chloride solution is in excess and the volume used will not be part of the calculations.).
4. Cover the beaker with a watch glass and let the mixture set overnight to get larger crystals.

Day II:

5. Determine and record the mass of a piece of filter paper to 0.01 g.
6. Filter the solution from Day I, Step 4. Make sure all of the precipitate has been transferred to the filter paper. Use water from a wash bottle and a stirring rod with a rubber policeman to remove any solid that sticks to the beaker. Wash the precipitate with distilled water.
7. Carefully remove the filter paper containing the barium sulfate from the funnel and place it unfolded onto a watchglass. Label the watchglass and place it in a fume hood to dry.

STOICHIOMETRY LAB - LAB K1

Day III:

8. Carefully remove the filter paper containing the precipitate from the watchglass. Determine and record the mass of the filter paper plus precipitate.

Observations:

Mass of filter paper plus barium sulfate _____

Mass of filter paper _____

Calculations:

1. Mass of barium sulfate precipitate _____

2. Calculate the molar concentration of the sulfate ions in the original sample.

In industry sulfate ion concentrations are reported in units of grams of sulfur per litre of solution. To convert the results of this lab to this form find:

3. the mass of sulfate ions in 1.000 ℓ of solution.

4. the percentage of sulfur in sulfate ions.

5. the mass of sulfur per litre of solution.

STOICHIOMETRY LAB - LAB K1

Question:

Chemical plants are limited in the amount of sulfate ions they are allowed to release into the environment. The effluents of each plant is monitored to see that the standards set by the government are not exceeded. The test used involves the same chemical reaction as the one used in this experiment.

The effluent of a chemical plant was tested for sulfur in the form of sulfates. It was found that a 100 ml sample produced 0.04200 g of barium sulfate when reacted with a solution of barium chloride. Calculate the concentration of sulfate ions in the effluent and the number of grams of sulfur per litre in the effluent.

STOICHIOMETRY

1. How many moles of oxygen are needed to completely oxidize 3.60 g of steel wool (assume pure iron) to produce iron(III) oxide?
2. What mass of water would be produced from the complete combustion of 15.0 g of C_8H_{18} (one of the components of gasoline)?
3. To what final volume must 45.0 ml of 6.00 M HCl (aq) be diluted to obtain a 0.400 M solution?

STOICHIOMETRY

4. What mass of mercury(II) oxide must be decomposed to yield 5.50 g of mercury?

5. An excess of a barium chloride solution was added to 400 ml of silver nitrate solution and 5.10 g of precipitate was formed. What was the concentration of the silver nitrate solution?

6. When 25.0 ml of a 0.400 M hydrochloric acid solution was pipetted into an Erlenmeyer flask and titrated with a solution of potassium hydroxide the following data were obtained. Calculate the concentration of the potassium hydroxide solution.

Buret Reading (KOH)	Trial 1	Trial 2	Trial 3
Final	29.8 ml	39.8 ml	49.6 ml
Initial	20.2 ml	29.8 ml	39.8 ml
Volume Used			

STOICHIOMETRY

7. What volume of 0.500 M copper(II) sulfate solution must be reacted with an excess of zinc to obtain a 1.00 g deposit of copper?

8. What mass of zinc will react with 50.0 ml of 6.00 M hydrochloric acid?

9. A 20.0 ml sample of iron(III) chloride solution is reacted with an excess of 1.00 M sodium hydroxide solution and 2.36 g of precipitate was obtained. What was the concentration of the iron(III) chloride solution?

STOICHIOMETRY

10. Describe in detail how you would prepare 1000 ml of a 0.400 M solution of corn sugar ($C_6H_{12}O_6 \cdot H_2O$).

11. What is the concentration of a sodium acetate solution made by diluting 200 ml of a 0.250 M solution to 5.000 l?

12. If 20.5 g of $Ca(NO_3)_2$ is dissolved to form 200 ml of solution, what is the concentration of the anions in the solution?

LEWIS DIAGRAMS AND VSEPR THEORY

Definitions

chemical bond - a force of attraction between chemical species (atoms, ions, molecules)

covalent bond - a bond in which electron pairs are shared between atoms

ionic bond - the bond due to the electrostatic attraction between a positive and a negative ion. For ions to be formed one or more electrons must be transferred.

octet rule - an atom or ion with eight valence electrons is stable

Lewis Diagram of an atom - a diagram that represents the valence electrons of an atom as dots around the chemical symbol of the element

Lewis Diagram of a molecule - a diagram that shows the valence electrons of all the atoms in a molecule so arranged that the octet rule is satisfied for each atom. Electrons are always shown in pairs.

structural formula - a diagram of a molecule that represents atoms by the atomic symbol and electron pairs forming covalent bonds by lines

lone electron pair - an electron pair not involved in bonding

bonding electron pair - an electron pair shared by two atoms

VSEPR THEORY AND SHAPES OF MOLECULES

All discrete molecules have a definite three-dimensional shape. The Valence Shell Electron Pair Repulsion Theory (VSEPR theory) provides a relatively simple and reliable basis for understanding and predicting molecular geometry. The theory only requires that the number of valence electrons be known. Molecular geometry can be determined from Lewis electron-dot diagrams and VSEPR theory.

The VSEPR Theory proposes a set of rules for predicting molecular geometry based on the idea that, the arrangement in space of the covalent bonds formed by an atom depends on the arrangement of electron pairs in the outermost valence shell of the central atom. For this course, the most relevant of the rules are:

1. Valence electron pairs, both shared (bonded) and lone (nonbonded) arrange themselves around the central atom in a molecule in such a way as to minimize repulsion. Thus, the bonding and lone pairs of electrons take-up positions around the central atom as far away from one another as possible.
2. For purposes of predicting molecular geometry, treat multiple bonds (double and triple bonds) as one bond.

Table K2
Shapes Around the Central Atom

Shape	Number of Bonds Around the Central Atom	Number of Lone Electron Pairs Around the Central Atom
linear	2	0
trigonal planar	3	0
tetrahedral	4	0
pyramidal	3	1
V-shaped	2	2

Table K3
Examples Showing 3-Dimensional Representation

O=C=O				
linear about the carbon atom	pyramidal about the nitrogen atom	trigonal planar about the carbon atom	tetrahedral about the carbon atom	V-shaped about the oxygen atom

SHAPES OF MOLECULES

Complete the following table.

e.g.

	Formula of Compound	Lewis Diagram	Number of Lone Pairs on the Central Atom	Number of Bonds on the Central Atom	Name of Shape	Dimensional Representation
e.g.	PBr ₃	 Br P Br Br	1	3	pyramidal	
1.	H ₂ Se					
2.	C ₂ F ₄					
3.	SiH ₄					
4.	C ₂ H ₂					
5.	H ₂ O ₂					
6.	C ₂ H ₆					
7.	HCHO					

REVIEW OF CHEMISTRY 10 & 20
POLARITY OF BONDS AND MOLECULES

K32

Definitions

electronegativity - a measure of the relative attraction of an atom for its valence electrons. The electronegativity of each element is given on the ALCHEM periodic table.

nonpolar covalent bond - a covalent bond formed by two atoms of equal electronegativity. The electron pair (or pairs) is shared equally.

polar covalent bond - a covalent bond formed by two atoms of unequal electronegativity. The electron pair (pairs) is not shared equally.

dipole - the unequal distribution of electric charge

bond dipole - the unequal distribution of charge in a polar covalent bond. The atom with the higher electronegativity attracts the bonding electrons more strongly making that atom slightly negative. The other atom is then slightly positive.

nonpolar molecule - a molecule in which all the bond dipoles add to zero.

polar molecule - a molecule in which all the bond dipoles do not add to zero.

molecular dipole - the net dipole bound by adding all the bond dipoles.

Dipole Representation

A dipole is represented by an arrow next to the bond or an arrow through the molecule. The arrow points in the direction of the electron displacement; i.e. toward the more electronegative atom.

Table K4
Bond and Molecular Dipoles

3 Dimensional Representation Showing Bond Dipole					
3 Dimensional Representation Showing Molecular Dipole					
Addition of Bond Dipoles	do not cancel	cancel	do not cancel	cancel	cancel

REVIEW OF CHEMISTRY 10 & 20
POLARITY OF BONDS AND MOLECULES

K33

Complete the following table:

P-polar molecule

NP-nonpolar molecule

Formula	Lewis Diagram	Bond Dipole on 3-Dimensional Diagram	P or NP	Molecular Dipole on 3-Dimensional Diagram (if any)
e.g. CCl_4	$\begin{array}{c} :\ddot{\text{Cl}}: \\ \vdots \quad \vdots \quad \vdots \\ :\ddot{\text{Cl}}:\text{C}:\ddot{\text{Cl}}: \\ \vdots \quad \vdots \\ :\ddot{\text{Cl}}: \end{array}$		NP	none
1. HOCl				
2. NBr_3				
3. CH_3OH				
4. CHCl_3				
5. I_2				
6. HCHO				

BONDING BETWEEN MOLECULES

Definitions

van der Waals forces - the forces of attraction between one molecule and another molecule. Van der Waals forces include London dispersion forces, dipole-induced-dipole interactions, and dipole-dipole interactions. The words *forces* and *interactions* are used because these forces are *weaker* than the ones referred to as *bonds*.

hydrogen bond - the attraction between the hydrogen atom (proton) bonded to a highly electronegative element and the lone pair electrons of a second highly electronegative atom. The hydrogen bond can be thought of as the interaction between two molecules or parts of a single molecule in which a proton is shared by two atoms. Only fluorine, chlorine, oxygen and nitrogen atoms have sufficiently high electronegativities to form hydrogen bonds.

Interactions of Nonpolar Molecules

In nonpolar substances the London dispersion forces are the van der Waals forces which are acting.

Interactions of Polar Molecules

In polar molecules the van der Waals forces consist of all three types of interactions. If the polar molecules contain a hydrogen atom bonded to a fluorine, oxygen or nitrogen, hydrogen bonding is also present.

Factors Affecting the Strength of van der Waals Forces

1. The strength of the van der Waals forces increases with the total number of electrons in the molecules.
2. The strength of the van der Waals forces increases with the polarity of the molecules involved.
3. The strength of the van der Waal forces is influenced by the geometry of the molecules.

Relative Strength of Bonds

The approximate relationship of the bond strengths among van der Waals forces, hydrogen and covalent bonds is 1:10:100, respectively.

Summary of Intermolecular Forces

Intermolecular Forces and Polar Nature of Molecules
Figure K2

REVIEW OF CHEMISTRY 10 & 20

K35

INTERMOLECULAR BONDING

Complete the following table.

Relation of Boiling Point to the Number of Electrons
and to the Type of Intermolecular Forces

Substance	Number of Electrons	Boiling Point (°C)	Types of Intermolecular Forces				Hydrogen bonding	
			van der Waals					
			dipole-dipole	dipole-induced dipole	London dispersion			
e.g., F ₂	18	- 188				✓		
1. Cl ₂		- 35						
2. Br ₂		59						
3. I ₂		184						
4. ClF		- 101						
5. BrF		- 20						
6. BrCl		5						
7. IC1		97						
8. IBr		116						
9. CH ₄		- 162						
10. C ₂ H ₆		- 87						
11. n - C ₃ H ₈		- 45						
12. n - C ₄ H ₁₀		- 0.5						
13. n - C ₅ H ₁₂		36						
14. CF ₄		- 129						
15. CC1 ₄		77						
16. CBr ₄		189						
17. CH ₃ F		- 78						
18. CH ₃ Cl		- 24						
19. CH ₃ Br		3.6						
20. CH ₃ I		43						
21. CH ₃ OH		65						
22. C ₂ H ₅ F		- 38						
23. C ₂ H ₅ Cl		13						
24. C ₂ H ₅ Br		38						
25. C ₂ H ₅ I		72						
26. C ₂ H ₅ OH		78						

What relationship exists between number of electrons and types of intermolecular forces?

INTERMOLECULAR BONDING

Table K5
Summary of Chemical Bond Types

Bond Type	Characteristics of Formulation	Some General Properties	Examples
Bonding Between Atoms	Covalent	Bonding electrons shared	
	a. nonpolar	Bonding electrons equally shared; uniform charge distribution	H ₂ , N ₂ , O ₂ , Cl ₂ , I ₂ , P ₂ , S ₈
	b. polar	Bonding electrons unequally shared; charge separation gives bond dipole	As above, but with slightly stronger bonds
	c. covalent network	Bonding electrons equally shared to form three dimensional atomic lattice (crystal)	Very hard; very high melting point; insoluble in most ordinary solvents; nonconductors of electricity
	Ionic	Ion formation by electron transfer; electrostatic attraction between ions to form three dimensional ionic lattice (crystal)	Crystalline solids under ordinary conditions; high melting and boiling points; dissolve in polar liquids to form conducting solutions; electrical conductors in liquid phase
	Metallic	Positive ions in "sea" of mobile, delocalized valence electrons	Lustrous, malleable; good electrical conductors; wide range of melting points
Bonding Between Molecules	van der Waals	Weak electrostatic attraction among permanent temporary or induced molecular dipoles	Relatively low melting solids, gases or liquids because of relatively weak intermolecular forces
	Hydrogen Bonding	Exposed hydrogen atom in one molecule attracted to negative end of highly electronegative atom in a polar molecule	Relatively high-melting solids, gases or liquids because of relatively strong intermolecular attraction

REVIEW OF CHEMISTRY 1 & 20
SUMMARY OF SOME ORGANIC COMPOUND GROUPS

GROUP	STRUCTURE (R REPRESENTS CARBON CHAIN)	NOMENCLATURE	SHAPE	A. PHYSICAL PROPERTIES B. CHEMICAL REACTIONS	USES AND OCCURRENCE
alkanes	H or R - C - C - R or H	ane	arour	a. non polar; insoluble; low melting and boiling points b. substitution; combustion	fuels
alkenes	H - 2 - C = C - R or H	ene	trigonal planar around each C	a. same as alkane. b. addition	starting materials for many plastics
alkynes	H or R - C ≡ C - R or H	yne	linear	a. same as alkenes. b. addition of Cl or Br to form molecules of $R-C\equiv C-Cl$ or $R-C\equiv C-Br$	first member of the series used in oxyacetylene welding
aromatics		variable	cyclic ring as a trigonal planar molecule	a. non polar; insoluble in water b. substitution; no addition	very diverse-- solvents, foods, drugs, explosives, mothballs
alcohols	H or R - O - H	anol	trigonal planar around oxygen	a. higher boiling; soluble because of hydrogen bonding b. many reactions, e. a., esterification, combustion	very diverse-- antifreeze, alcoholic drinks, cosmetics, foods
acids	H or R - O - OH	acid	trigonal planar around C	a. high boiling; soluble due to hydrogen bonding b. all inorganic acid reactions; esterification	commonly occur in foods, waxes
esters	$R - \overset{\text{O}}{\underset{ }{\text{C}}} - R'$	anoate	trigonal planar around C	a. insoluble in water b. can react with water to form an acid and alcohol	used as solvents and artificial flavors; commonly occur in animal fats and vegetable oils

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000

Rules for the IUPAC System of Nomenclature

1. Choose the longest continuous carbon chain that includes the
 - a. functional group, or
 - b. substitution, or
 - c. side chain.
2. Number the carbon atoms in the longest continuous chain starting at the end closest to the
 - a. functional group, or
 - b. substitution, or
 - c. side chain.
3. Give the compound the name of the alkane that has the same number of carbon atoms as the
4. Change the suffix of the alkane to indicate the functional group present.
5. Locate the functional group by stating the number of the carbon atom to which the functional group is attached. Always start from the end of the longest chain that will locate the functional group using the lowest number possible.
6. Substitutions and side chains are identified by giving the name of each substitution and side chain. State the number of the carbon atom in the longest continuous chain to which the substitution or side chain is attached. Hydrocarbon side chains are named by changing the ".*n*." suffix to "/*n*". List the substitutions and side chains either
 - a. alphabetically, or
 - b. in order of size, or
 - c. start at one end of the chain and proceed to the other end naming all successive substitutions and branches in order using the lowest numbers possible to locate all substitutions and side chains.

Table K7
Common Substitution Groups

Formula of Group	Prefix	Formula of Group	Prefix
-F	fluoro	-NH ₂	amino-
-Cl	chloro-	-CH ₃	methyl-
-Br	bromo-	-CH ₂ CH ₃ or -C ₂ H ₅	ethyl-
-I	iodo-	or -C ₆ H ₅	phenyl-
-NO ₂	nitro-		benzyl-

REVIEW OF CHEMISTRY 10 & 20

ORGANIC NOMENCLATURE (REMEDIAL)

Systematic (IUPAC) Name	Structural Formula	Expanded Molecular Formula	Molecular Formula	Common Name and Use
2,2,3-trimethylpentane		$\text{CH}_3\text{C}(\text{CH}_3)_2\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$	C_8H_{18}	isooctane, the compound used to obtain the original octane rating of 100 when testing gasoline
propanoic acid		$\text{CH}_3\text{CH}_2\text{COOH}$	$\text{C}_2\text{H}_5\text{COOH}$	propionic acid, an emulsifier and mold inhibitor
ethyl ethanoate		$\text{CH}_3\text{COOCH}_2\text{CH}_3$	$\text{CH}_3\text{COOC}_2\text{H}_5$	banana flavor and odor
1.		CHCH		acetylene, welding
1,2,3-propanetriol				glycerol or glycerine, cosmetics
3.				freon, refrigerant

REVIEW OF CHEMISTRY 10 & 20

ORGANIC NOMENCLATURE (REMEDIAL)

Systematic (IUPAC) Name	Structural Formula	Expanded Molecular Formula	Molecular Formula	Common Name and Use
4.		CHCl ₃		chloroform, an anesthetic
5.	$ \begin{array}{c} \\ -C-C- \\ \quad \\ O \quad H \\ \\ H \end{array} $			ethylene glycol, car radiator anti-freeze
6.		CH ₃ CH ₂ CH ₂ CH ₂ OH		hydraulic fluid
7.	chloroethene			vinyl chloride, making of PVC plastics (polyvinyl chloride)
8.		$ \begin{array}{c} \\ -C- \\ \\ C=C-C=C \\ \quad \\ H \quad H \end{array} $		isoprene, monomer natural rubber
9.	butanoic acid			butyric acid, odor of rancid butter, a very unpleasant odor

REVIEW OF CHEMISTRY 10 & 20
ORGANIC NOMENCLATURE (REMEDIAL)

Systemic (IUPAC) Name	Structural Formula	Expanded Molecular Formula	Molecular formula	Common Name and Use
10.				halothane, general inhalation anesthetic
11.		$\text{CH}_3\text{CH}_2\text{CH}_3$		fuel
12.				methyl chloride, used to make methanol
13.				neohexane, constituent of high test gasoline
14.		$\text{CH}_3(\text{CH}_2)_{14}\text{COOH}$		palmitic acid, in animal fat
15.				carboxylic acid (archaic name), disinfectant

REVIEW OF CHEMISTRY 10 & 20

ORGANIC NOMENCLATURE (REMEDIAL)

Systemic (IUPAC) Name	Structural Formula	Expanded Molecular Formula	Molecular Formula	Common Name and Use
16. methylbutanoate				pineapple, odor and flavor
17.				styrene used to make polystyrene
(name as ethene compound)				
18.		CH_3CHCH_2		propylene, making of the plastic poly propylene
19.	$\begin{array}{c} \\ -\text{C}-\text{C}=\text{C}' \\ \\ -\text{C}- \end{array}$			isobutylene, butyl rubber a soft plastic
20.				isopropyl alcohol rubbing alcohol
21.		$\text{CCl}_3(\text{Cr}(\text{OH})_2)_2$		chloral hydrate sedative
22.				rum flavor and odor

COMMON TYPES OF ORGANIC CHEMICAL REACTIONS

Combustion of Organic CompoundsSubstitution ReactionAddition ReactionsEsterification

— ane
— ene
— yne

Organic Rx types

combustion
substitution
addition
esterification

REVIEW OF CHEMISTRY 10 & 20

ORGANIC CHEMISTRY

Complete and balance the following chemical equations with structural formulas. Identify the reactant and product and the reaction type.

Reaction type: _____

Reaction type: _____

Reaction type: _____

Reaction type: _____

Reaction type: _____

REVIEW OF CHEMISTRY 10 & 20

K46

ORGANIC EQUATIONS

Write the balanced structural equation for each of the following statements and name the type of reaction.

1. Methane is reacted with chlorine to make tetrachloromethane (carbon tetrachloride).

2. Ethyne is reacted with bromine to make 1,1,2,2,-tetrabromoethane (TBE), a very dense organic solvent.

3. Ethanol is made by reacting ethene with water.

4. Artificial rum flavor is made by reacting methanoic acid with ethanol.

5. Propane is burned in a camp stove.

DATE DUE SLIP	
	DUE FEB 24 '92 DUE FEB 26 1992 RETURN
RETURNED APR 27 '78	
DUE EDUC JAN 20 '79 JAN 19 RETURN	
DUE EDUC APR 30 '81 JAN 21 RETURN	
DUE EDUC OCT 15 '81	
OCT 22 '81	
DUE EDUC NOV 26 '81	
RETURN NOV 1 '81	
DUE EDUC MAR 14 '83 RETURN MAR 14 '83	
DUE EDUC OCT 15 '83 RETURN OCT 15 '83	
F255	

QD 41 A3313 1976 UNIT K
ALBERTA CHEMISTRY PROJECT

MATERIALS

ALCHEM 30

39283346 Curr

* 000004356606 *

RECOMMENDED FOR USE
IN ALBERTA SCHOOLS

QD
41
A3313
1976
Unit K

CURRICULUM
EDUCATION LIBRARY

B15947