Variable Compleja

SEGUNDO EXAMEN PARCIAL

Julio 30 de 2024

ALEXIS

Juan Camilo Lozano Suárez

Ejercicio 1. Suponga que la serie

$$\sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

converge a una función analítica X(z) en algún anillo $R_1 < |z| < R_2$. La suma X(z) es llamada la **z-transformada** de x[n] $(n = 0, \pm 1, \pm 2, \ldots)$. Use la expresión (5), Sec. 66, para los coeficientes en una serie de Laurent para mostrar que si el anillo contiene la circunferencia unitaria |z| = 1, entonces la z-transformada inversa de X(z) puede escribirse como

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{i\theta}) e^{in\theta} d\theta \qquad (n = 0, \pm 1, \pm 2, \dots).$$

Solución. Llamemos A a la región anular $R_1 < |z| < R_2$, y C a la circunferencia |z| = 1 orientada positivamente. Supongamos que C está contenido en A. Como X(z) es analítica en A y C es un contorno simple orientado positivamente alrededor de 0 y contenido en A, se sigue que X(z) tiene representación en serie de Laurent

$$X(z) = \sum_{-\infty}^{\infty} c_n z^n, \qquad (z \in A)$$

donde, para todo $n \in \mathbb{Z}^+$,

$$c_n = \frac{1}{2\pi i} \int_C \frac{X(z)}{z^{n+1}} dz.$$

Como además, para todo $z \in A$ tenemos

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n},$$

por la unicidad de la representación en serie de Laurent, se sigue que para todo $n \in \mathbb{Z}^+$,

$$x[n] = c_{-n}$$

$$= \frac{1}{2\pi i} \int_C \frac{X(z)}{z^{-n+1}} dz$$

$$= \frac{1}{2\pi i} \int_C X(z) z^{n-1} dz.$$

Haciendo el cambio de variable $z=e^{i\theta},\,dz=ie^{i\theta}d\theta,$ se tiene

$$\begin{split} \frac{1}{2\pi i} \int_C X(z) z^{n-1} dz &= \frac{1}{2\pi i} \int_{-\pi}^{\pi} X(e^{i\theta}) (e^{i\theta})^{n-1} i e^{i\theta} d\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{i\theta}) e^{in\theta} d\theta, \end{split}$$

con lo que concluimos

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{i\theta}) e^{in\theta} d\theta$$
 $(n = 0, \pm 1, \pm 2, \dots).$

Ejercicio 2. (Segundo punto)

Solución. (Prueba segundo punto)

Ejercicio 3. Calcule $\oint_{|z|=2} \frac{\operatorname{senh}(1/z)}{z-1} dz$.

Solución. Asumimos que el contorno |z|=2 está orientado positivamente. Llamemos $f(z)=\frac{\mathrm{senh}(1/z)}{z-1}$. Como senh es una función entera, los únicos puntos en que f no es analítica son $z_0=0$ y $z_1=1$, que se encuentran dentro de |z|=2, y por tanto son puntos singulares aislados de f. Por el teorema de los residuos de Cauchy tenemos

$$\oint_{|z|=2} \frac{\sinh(1/z)}{z-1} dz = 2\pi i \sum_{k=0}^{1} \underset{z=z_k}{\text{Res }} f(z).$$

• Calculemos $\underset{z=z_0}{\operatorname{Res}} f(z)$. Sabemos que

$$senh(z) = z + \frac{z^3}{3!} + \frac{z^5}{5!} + \dots$$
 $(z \in \mathbb{C}),$

luego,

$$\operatorname{senh}\left(\frac{1}{z}\right) = \frac{1}{z} + \frac{1}{3!} \frac{1}{z^3} + \frac{1}{5!} \frac{1}{z^5} + \dots \qquad (z \in \mathbb{C} - \{0\}).$$

También, para |z| < 1:

$$\frac{1}{z-1} = -\frac{1}{1-z}$$

$$= -\sum_{n=0}^{\infty} z^n$$

$$= -(1+z+z^2+\dots)$$

$$= -1-z-z^2-\dots,$$

de modo que para 0 < |z| < 1 se tiene

$$f(z) = \operatorname{senh}\left(\frac{1}{z}\right) \frac{1}{z-1}$$

$$= \left(\frac{1}{z} + \frac{1}{3!} \frac{1}{z^3} + \frac{1}{5!} \frac{1}{z^5} + \dots\right) \left(-1 - z - z^2 - \dots\right).$$

En particular, podemos ver que el coeficiente de 1/z en la anterior serie es

Res_{z=z₀}
$$f(z) = -1 - \frac{1}{3!} - \frac{1}{5!} - \frac{1}{7!} - \dots$$

= $\sum_{n=0}^{\infty} -\frac{1}{(2n-1)!}$.

Sabemos que, para todo $z \in \mathbb{C}$ se tiene $e^z = \sum_{n=0}^{\infty} z^n/n!$, de modo que

$$e - e^{-1} = \left(\sum_{n=0}^{\infty} \frac{1}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}\right)$$
$$= \sum_{n=0}^{\infty} (1 - (-1)^n) \frac{1}{n!}$$
$$= \frac{2}{1!} + \frac{2}{3!} + \frac{2}{5!} + \dots$$
$$= \sum_{n=0}^{\infty} \frac{2}{(2n+1)!},$$

y por tanto

$$\frac{e - e^{-1}}{2} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!}.$$

De lo anterior obtenemos

$$\mathop{\mathrm{Res}}_{z=z_0} f(z) = -\frac{e-e^{-1}}{2} = -\mathrm{senh}(1).$$

• Calculemos $\underset{z=z_1}{\operatorname{Res}} f(z)$. Como $\operatorname{senh}(1/z)$ es analítica y no nula en $z_1=1$, tenemos que $z_1=1$ es un polo simple de f y por tanto $\underset{z=z_1}{\operatorname{Res}} f(z)=\operatorname{senh}(1)$.

Con los ítems anteriores concluimos

$$\oint_{|z|=2} \frac{\operatorname{senh}(1/z)}{z-1} dz = 2\pi i \sum_{k=0}^{1} \operatorname{Res}_{z=z_k} f(z)$$
$$= 2\pi i \left(-\operatorname{senh}(1) + \operatorname{senh}(1)\right)$$
$$= 0.$$

Ejercicio 4.

Soluci'on.

Ejercicio 5. Calcule usando residuos:

$$\int_{-\infty}^{\infty} \frac{dx}{ax^2 + bx + c}$$

y

$$\int_{-\infty}^{\infty} \frac{dx}{\left(ax^2 + bx + c\right)^2}$$

donde $a, b \ y \ c \ son \ reales \ tales \ que \ b^2 < 4ac.$

Solución. I. $\int_{-\infty}^{\infty} \frac{dx}{ax^2+bx+c}$

Llamemos $f(z)=1/(az^2+bz+c)$. Como $4ac>b^2\geq 0$, tenemos $a\neq 0$. Así, tomando

$$z_1 = -\frac{b}{2a} + i\frac{\sqrt{4ac-b^2}}{2|a|} \quad \text{y} \quad z_2 = -\frac{b}{2|a|} - i\frac{\sqrt{4ac-b^2}}{2a} = \overline{z_1},$$

tenemos

$$f(z) = \frac{1}{a(z - z_1)(z - z_2)}.$$

Llamando $q(z) = a(z - z_1)(z - z_2)$, como $4ac - b^2 \neq 0$, tenemos que q(z) no tiene ceros reales, y z_1 es su único cero sobre el eje real. Además, como la función $1/(a(z - z_2))$ es analítica y no nula en z_1 , se tiene que z_1 es un polo simple de f(z), y

$$B := \underset{z=z_1}{\text{Res }} f(z)$$

$$= \frac{1}{a(z_1 - z_2)}$$

$$= \frac{1}{a(z_1 - \overline{z_1})}$$

$$= \frac{1}{2ia \cdot \text{Im}(z_1)}$$

$$= \frac{1}{2ia \frac{\sqrt{4ac - b^2}}{2|a|}}$$

$$= \frac{|a|}{ia\sqrt{4ac - b^2}}$$

$$= \operatorname{sgn}(a) \frac{1}{i\sqrt{4ac - b^2}}.$$

Tomamos $R > |z_1|$ y llamamos C_R a la curva $Re^{i\theta}$ con $\theta \in [0, \pi]$, y C a la curva que consta del eje real de -R a R junto a C_R . Por el teorema de los residuos de Cauchy tenemos

$$\int_{-R}^{R} f(x)dx + \int_{C_R} f(z)dz = \int_{C} f(z)dz = 2\pi i B,$$

y por tanto,

$$\lim_{R\to\infty}\int_{-R}^R f(x)dx = 2\pi i B - \lim_{R\to\infty}\int_{C_R} f(z)dz.$$

Para cada $z \in C_R$ tenemos

$$|z - z_1| \ge ||z| - |z_1||$$

= $|R - |z_1||$
= $R - |z_1|$

(pues $R > |z_1|$), y

$$|z - z_2| \ge ||z| - |z_2||$$

= $|R - |z_2||$
= $|R - |\overline{z_1}||$
= $|R - |z_1||$
= $R - |z_1|$.

Por tanto

$$\frac{1}{(R-|z_1|)^2} \ge \frac{1}{|z-z_1||z-z_2|},$$

de modo que

$$|f(z)| = \left| \frac{1}{a(z - z_1)(z - z_2)} \right|$$

$$= \frac{1}{|a||z - z_1||z - z_2|}$$

$$\leq \frac{1}{|a|(R - |z_1|)^2},$$

con lo cual tenemos

$$\left| \int_{C_R} f(z) dz \right| \leq \frac{\pi R}{|a|(R-|z_1|)^2}.$$

Como $\lim_{R\to\infty}(\pi R)/(|a|(R-|z_1|)^2)=0$, se sigue que $\lim_{R\to\infty}\int_{C_R}f(z)dz=0$. Con lo anterior

$$\lim_{R \to \infty} \int_{-R}^{R} f(x) dx = 2\pi i B,$$

es decir,

$$\lim_{R \to \infty} \left(\int_{-R}^{0} f(x)dx + \int_{0}^{R} f(x)dx \right) = 2\pi i B.$$

Por el criterio de la integral, $\int_0^\infty f(x)dx$ converge si y solo si $\sum_{n=0}^\infty f(n)$ converge, pero vemos que esto es cierto haciendo comparación del límite con la serie convergente $\sum_{n=1}^\infty 1/(an^2)$. Por tanto, $\lim_{R\to\infty} \int_0^R f(x)dx$ converge; como $\lim_{R\to\infty} \left(\int_{-R}^0 f(x)dx + \int_0^R f(x)dx\right)$ converge, también lo hace $\lim_{R\to\infty} \int_{-R}^0 f(x)dx$, de modo que

$$\lim_{R \to \infty} \left(\int_{-R}^{0} f(x)dx + \int_{0}^{R} f(x)dx \right) = \lim_{R \to \infty} \int_{-R}^{0} f(x)dx + \lim_{R \to \infty} \int_{0}^{\infty} f(x)dx$$
$$= \int_{-\infty}^{\infty} f(x)dx,$$

y por tanto

$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i B$$

$$= 2\pi i \cdot \operatorname{sgn}(a) \frac{1}{i\sqrt{4ac - b^2}}$$

$$= \operatorname{sgn}(a) \frac{2\pi}{\sqrt{4ac - b^2}}.$$

II. $\int_{-\infty}^{\infty} \frac{dx}{(ax^2 + bx + c)^2}$

(Seguimos usando z_1, z_2, C, \ldots con el mismo significado del ítem **I.**) Llamando $g(z) = 1/(az^2 + bz + c)^2$ tenemos

$$g(z) = \frac{1}{z^2(z-z_1)^2(z-z_2)^2}.$$

Notemos que $r(z) := a^2(z-z_1)^2(z-z_2)^2$ no tiene ceros reales y z_1 es su único cero por encima del eje real. Además, como la función $1/(a^2(z-z_2)^2)$ es analítica y no nula en z_1 , se tiene que z_1 es un polo de orden 2

de g(z), y

$$\begin{split} D := & = \underset{z=z_1}{\operatorname{Res}} g(z) \\ & = \frac{d}{dz} \left(\frac{1}{a^2(z-z_2)^2} \right) \Big|_{z=z_1} \\ & = \frac{-2}{a^2(z-z_2)^3} \Big|_{z=z_1} \\ & = \frac{-2}{a^2(z_1-z_2)^3} \\ & = \frac{-2}{a^2(z_1-\overline{z_1})^3} \\ & = \frac{-2}{a^2\left(2i\operatorname{Im}(z_1)\right)^3} \\ & = \frac{-2}{a^2\left(2i\frac{\sqrt{4ac-b^2}}{2|a|}\right)^3} \\ & = \frac{-2}{-\frac{i}{|a|}(4ac-b^2)^{3/2}} \\ & = -\frac{2i|a|}{(4ac-b^2)^{3/2}}. \end{split}$$

Como q(z) y r(z) tienen el mismo cero sobre el eje real, podemos integrar g(z) sobre el contorno C para, de forma similar a como se hizo en \mathbf{I} , llegar a

$$\int_{-\infty}^{\infty} g(x)dx = 2\pi i D$$

$$= 2\pi i \left(-\frac{2i|a|}{(4ac - b^2)^{3/2}} \right)$$

$$= \frac{4\pi |a|}{(4ac - b^2)^{3/2}}.$$

Ejercicio 6.

Soluci'on.

Ejercicio 7. Muestre que para n - m > 2 se tiene que

$$\int_0^\infty \frac{x^m}{x^n+1} = \frac{\pi}{n \ \mathrm{sen}[\pi(m+1)/n]}.$$

Solución. Asumimos $m, n \in \mathbb{N}$. Llamemos $f(z) = z^m/(z^n + 1)$ y $z_k = e^{\pi i (2k+1)/n}$ para $k \in 0, 1, \ldots, n-1$; además, tomemos $\varphi = 2\pi/n$ y R > 1. Con lo anterior, llamamos C_R a la curva $Re^{i\theta}$ con $\theta \in [0, \varphi]$, C_1 a la curva $re^{i\varphi}$ con r variando de R a 0, y C a la curva que consiste del eje real de 0 a R, C_R y C_1 (ver Figura 1).

Llamando

$$\phi(z) = \frac{z^m}{\prod\limits_{0 < k < n-1} (z - z_k)},$$

Figura 1: El contorno C

tenemos $f(z) = \phi(z)/(z-z_0)$. Como $\phi(z)$ es analítica y no nula en z_0 , entonces z_0 es un polo simple de f(z) y

$$B := \underset{z=z_0}{\text{Res }} f(z)$$

$$= \phi(z_0)$$

$$= \frac{z_0^m}{\prod_{0 < k \le n-1} (z_0 - z_k)}$$

$$= \frac{z_0^m}{\left(\frac{z^n - 1}{z - z_0}\right)\Big|_{z=z_0}}.$$

Haciendo división sintética puede verse que

$$\frac{z^n - 1}{z - z_0} = \sum_{k=1}^n z_0^{k-1} z^{n-k},$$

de modo que

$$\left. \left(\frac{z^n - 1}{z - z_0} \right) \right|_{z = z_0} = \left. \left(\sum_{k=1}^n z_0^{k-1} z^{n-k} \right) \right|_{z = z_0}$$

$$= \sum_{k=1}^n z_0^{k-1} z_0^{n-k}$$

$$= \sum_{k=1}^n z_0^{n-1}$$

$$= n z_0^{n-1},$$

y con esto

$$B = \frac{z_0^m}{nz_0^{n-1}}$$
$$= \frac{z_0^{m+1}}{nz_0^n}$$
$$= -\frac{z_0^{m+1}}{nz_0^m}$$

Como z_0 es el único cero de $z^n + 1$ dentro de C, se tiene que f(z) es analítica en C y su interior salvo z_0 . Por el teorema de los residuos de Cauchy obtenemos

$$\int_0^R f(x)dx + \int_{C_R} f(z)dz + \int_{C_1} f(z)dz = \int_C f(z)dz = 2\pi i B,$$

о,

$$\int_{0}^{R} f(x)dx + \int_{C_{1}} f(z)dz = 2\pi i B - \int_{C_{R}} f(z)dz,$$

Haciendo el cambio de variable $z=re^{i\varphi},\,dz=e^{i\varphi}dr$ tenemos

$$\begin{split} \int_{C_1} f(z)dz &= -\int_0^R f(re^{i\varphi})e^{i\varphi}dr \\ &= -e^{i\varphi} \int_0^R \frac{(re^{i\varphi})^m}{(re^{i\varphi})^n + 1}dr \\ &= -e^{i\varphi} \int_0^R \frac{r^m e^{im\varphi}}{r^n e^{in\varphi} + 1}dr \\ &= -e^{i\varphi(m+1)} \int_0^R \frac{r^m}{r^n + 1}dr \qquad (e^{in\varphi} = e^{in\frac{2\pi}{n}} = e^{i2\pi} = 1) \\ &= -e^{i\varphi(m+1)} \int_0^R f(r)dr \\ &= -e^{i\varphi(m+1)} \int_0^R f(x)dx. \end{split}$$

Así, de la igualdad

$$\int_0^R f(x)dx + \int_{C_1} f(z)dz = 2\pi i B - \int_{C_R} f(z)dz$$

se sigue

$$2\pi iB - \int_{C_R} f(z)dz = \int_0^R f(x)dx - e^{i\varphi(m+1)} \int_0^R f(x)dx$$
$$= \left(1 - e^{i\varphi(m+1)}\right) \int_0^R f(x)dx,$$

y, haciendo tender R a ∞ ,

$$\left(1 - e^{i\varphi(m+1)}\right) \int_0^\infty f(x)dx = 2\pi iB - \lim_{R \to \infty} \int_{C_R} f(z)dz.$$

Para cada $z \in C_R$ tenemos

$$|z^{n} + 1| = |z^{n} - (-1)|$$

 $\geq ||z^{n}| - |-1||$
 $= |R^{n} - 1|$
 $= R^{n} - 1,$

donde en la última igualdad usamos que, como R > 1 entonces $R^n > 1$. Con lo anterior $1/|z^{n+1}| \le 1/(R^n - 1)$, de modo que

$$|f(z)| = \left| \frac{z^m}{z^n + 1} \right|$$

$$= \frac{|z|^m}{|z^n + 1|}$$

$$= \frac{R^m}{|z^n + 1|}$$

$$\leq \frac{R^m}{P^n + 1},$$

luego,

$$\left| \int_{C_R} f(z) dz \right| \le \frac{R^m}{R^n - 1} \varphi R$$
$$= \varphi \frac{R^{m+1}}{R^n - 1}.$$

Como n>m+2, se tiene $\lim_{R\to\infty}\varphi R^{m+1}/(R^n-1)=0$, y con esto

$$\lim_{R \to \infty} \int_{C_R} f(z) dz = 0.$$

Así,

$$\left(1 - e^{i\varphi(m+1)}\right) \int_0^\infty f(x)dx = 2\pi i B,$$

es decir,

$$\begin{split} \int_0^\infty f(x) dx &= \frac{2\pi i B}{1 - e^{i\varphi(m+1)}} \\ &= -\frac{z_0^{m+1}}{n} \cdot \frac{2\pi i}{1 - e^{i\varphi(m+1)}} \\ &= -\frac{z_0^{m+1}}{n} \cdot \frac{2\pi i}{1 - (e^{i\varphi})^{m+1}}. \end{split}$$

Notemos que $e^{i\varphi}=e^{2\pi i/n}=\left(e^{\pi i/n}\right)^2={z_0}^2,$ con lo que

$$-\frac{z_0^{m+1}}{n} \cdot \frac{2\pi i}{1 - (e^{i\varphi})^{m+1}} = -\frac{z_0^{m+1}}{n} \cdot \frac{2\pi i}{1 - z_0^{2(m+1)}}$$
$$= \frac{2\pi i}{n} \cdot \frac{1}{z_0^{m+1} - z_0^{-(m+1)}}.$$

Ahora, observemos que

$$\begin{split} z_0^{m+1} - z_0^{-(m+1)} &= e^{\pi i (m+1)/n} - e^{-\pi i (m+1)/n} \\ &= e^{\pi i (m+1)/n} - \overline{e^{\pi i (m+1)/n}} \\ &= 2i \cdot \operatorname{Im} \left(e^{i\pi (m+1)/n} \right) \\ &= 2i \cdot \operatorname{sen} [\pi (m+1)/n]. \end{split}$$

Con esto,

$$\frac{2\pi i}{n} \cdot \frac{1}{z_0^{m+1} - z_0^{-(m+1)}} = \frac{2\pi i}{n} \cdot \frac{1}{2i \cdot \text{sen}[\pi(m+1)/n]}$$
$$= \frac{\pi}{n \cdot \text{sen}[\pi(m+1)/n]},$$

con lo que podemos concluir

$$\int_0^\infty f(x)dx = \frac{\pi}{n \cdot \mathrm{sen}[\pi(m+1)/n]}.$$

Ejercicio 8.

Soluci'on.