The Particle Swarm Optimization Algorithm

Gurbanzade Orkhan Imamverdiyev Yusif

Summary

- → Introduction to Particle Swarm Optimization (PSO)
 - Origins
 - ◆ Concept
 - PSO Algorithm

Introduction to the PSO:

Inspired from the social behavior and dynamic movements with communications of insects, birds and fishnature.

In 1986, Craig Reynolds described this process in 3 simple behaviors

Separation

avoid crowding local flockmates

Alignment

move towards the average heading of local flockmates

Cohesion

move toward the average position of local flockmates

Introduction to the PSO: Concept

- Each particle is searching for the optimum
- Each particle is moving and hence has a velocity.
- Each particle remembers the position it was in where it had its best result so far (its personal best).
 - But this would not be much good on its own; particles need help in figuring out where to search.

Introduction to the PSO: Concept II

- The particles in the swarm co-operate. They exchange information about what they've discovered in the places they have visited
- The co-operation is very simple. In basic PSO it is like this:
 - A particle has a neighbourhood associated with it.
 - A particle knows the fitnesses of those in its neighbourhood, and uses the position of the one with best fitness.
 - This position is simply used to adjust the particle's velocity

PSO Search Strategy

Our Team

Search Area

Personal best location

10 km

Team best location

10 km

Current direction

10 km

 $2 \times r \times 10 \ km$ r in [0,1]

$$\overrightarrow{X_i^{t+1}} = \overrightarrow{X_i^t} + \overrightarrow{V_i^{t+1}}$$

$$\overrightarrow{V_i^{t+1}} = \overrightarrow{wV_i^t} + c_1 r_1 \left(\overrightarrow{P_i^t} - \overrightarrow{X_i^t} \right) + c_2 r_2 \left(\overrightarrow{G^t} - \overrightarrow{X_i^t} \right)$$

Inertia

Cognitive component

Social component

Pseudo code

```
Initialize the controlling parameters (N, c1, c2, Wmin, Wmax, Vmax, and MaxIter)
Initialize the population of N particles
   for each particle
       calculate the objective of the particle
       Update PBEST if required
       Update GBEST if required
   end for
   Update the inertia weight
   for each particle
       Update the velocity (V)
       Update the position (X)
   end for
white the end condition is not satisfied
Return GBEST as the best estimation of the global optimum
```

Test function

Effect of the parameters

Effect of the parameters c1 and c2

What a particle does

- In each timestep, a particle has to move to a new position. It does this by adjusting its velocity.
 - The adjustment is essentially this:
 - The current velocity PLUS
 - A weighted random portion in the direction of its personal best PLUS
 - A weighted random portion in the direction of the neighbourhood best.
- Having worked out a new velocity, its position is simply its old position plus the new velocity.

★ Advantages

- Insensitive to scaling of design variables
- Simple implementation
- Easily parallelized for concurrent processing
- Derivative free
- Very few algorithm parameters
- Very efficient global search algorithm

★ Disadvantages

- Tendency to a fast and premature convergence in mid optimum points
- Slow convergence in refined search stage (weak local search ability)

Different Approaches

Several approaches

- 2-D Otsu PSO
- Active Target PSO
- Adaptive PSO
- Adaptive Mutation PSO
- Adaptive PSO Guided by Acceleration Information
- Attractive Repulsive Particle Swarm Optimization
- Binary PSO
- Cooperative Multiple PSO
- Dynamic and Adjustable PSO
- Extended Particle Swarms

• •••

Sequence Diagram

Class Diagram

Flow Diagram

Use-case diagram

Refences

- https://analyticsindiamag.com/a-tutorial-on-particle-swarm-optimization-in-python/
- https://machinelearningmastery.com/a-gentle-introduction-to-particle-swarm-optimization/
- https://pyswarms.readthedocs.io/en/latest/
- https://nathanrooy.github.io/posts/2016-08-17/simple-particle-swarm-optimization-with-python/
- https://towardsdatascience.com/particle-swarm-optimization-visually-explained-46289eeb2e14
- https://www.geeksforgeeks.org/implementation-of-particle-swarm-optimization/
- https://www.researchgate.net/publication/3903911_Particle_swarm_optimization_Development_applic ations_and_resources
- https://www.researchgate.net/publication/3810335_Empirical_Study_of_Particle_Swarm_Optimization
- https://www.hindawi.com/journals/mpe/2021/5574501/

How can you optimize particle swarms?

- a)By iteratively trying to improve a candidate solution
- b)Regardless of how the swarm operates, by covering to a local optimum
- c)Both of them

What is some different approaches to PSO?

- a) Adaptive Mutation PSO, Adaptive PSO Guided by Acceleration Information
- b) Adaptive PSO Using Iteration, Compatible PSO
- c) Hybrid PSO, Gradient PSO

What is advantage of PSO?

- a)Tendency to a fast and premature convergence in mid optimum points
- b) Very few algorithm parameters
- c)Optimized run time