. נקרא יחס העדרה: יחס כנקרא יחס העדרה: יחס הגדרה: יחס העדרה: יחס העדרה: יחס העדרה: יחס העדרה: יחס העדרה:

- 1) רפלקסיביות.
 - .סימטריות (2
- .) טרנזיטיביות (3

:פתרון

רפלקסיביות) נתון $V=\mathbb{F}^n$ אז $V=\mathbb{F}^n$ כי נבחר בסיס ב \mathbb{F}^n נקבל איזומורפיזם. W=V אומרת נניח נניח עודעים $V=\mathbb{F}^n$ וגם $V=\mathbb{F}^n$ זאת אומרת V=W. ערנזיטיביות) נתון U=W וגם ערנזיטיביות) נתון U=W וגם ערנזיטיביות) נתוך U=W מה U=W מה U=W מכאן נובע ש $U=\mathbb{F}^n$ נובע ש $U=\mathbb{F}^n$ נקבל U=W.

______ תרגיל 2.2:

 $.v_1-v_2\in\ker(T)$ צריך להראות ש־ . $T(v_1)=\overline{T(v_2)}$ נתון $.W
ightarrow T(v_1),T(v_2)$ לינארית לכן T:V o W מרחב וקטורי, W

$$T(v_1) = T(v_2) \Rightarrow 0 = T(v_1) - T(v_2) \in W$$

 $\Rightarrow 0 = T(v_1 - v_2) \Rightarrow v_1 - v_2 \in \ker(T).$

 $T(v_1)=T(v_2)$ נתון $v_1-v_2\in\ker(T)$ צריך להראות שי $T\leftarrow T(v_1-v_2)=0 \leftarrow v_1-v_2\in\ker(T)$ לינארית לכן $T(v_1)=T(v_2)\leftarrow W\ni T(v_1)-T(v_2)=0$