

SÍLABO ESTÁTICA

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: IV SEMESTRE ACADÉMICO: 2017-II

I. CÓDIGO DEL CURSO : 09025404040

II. CRÉDITOS : 04

III. REQUISITOS : 09005603050 Física I

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso es parte del área curricular de tecnología; tiene carácter teórico-práctico. Permite desarrollar en el estudiante de ingeniería la capacidad de analizar cualquier problema en forma lógica y sencilla, y la de aplicar para su solución los principios de la mecánica.

El curso se desarrolla mediante las unidades de aprendizaje siguientes: I. Principios generales y estática de partículas. II. Cuerpos rígidos: sistemas equivalentes de fuerza, y equilibrio. III. Fuerzas distribuidas: centroides y centros de gravedad, y momentos de inercia. IV. Análisis de estructuras, y fuerzas en vigas.

VI. FUENTES DE CONSULTA

Bibliográficas

- Beer, Johnston y Eisenberg (2013). *Mecánica Vectorial para Ingenieros: estática*. México: Mcgraw Hill Interamericana S.A.
- · Hibbeler, R. C. (2013). Ingeniería Mecánica: estática. México: Pearson Prentice.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: PRINCIPIOS GENERALES Y ESTÁTICA DE PARTÍCULAS

OBJETIVOS DE APRENDIZAJE:

- Aplicar las leyes del movimiento y de la gravitación de Newton.
- Resolver problemas de equilibrio de partículas usando las ecuaciones de equilibrio.

PRIMERA SEMANA.

Primera sesión:

Qué es la mecánica conceptos y principios fundamentales.

Segunda sesión:

Práctica dirigida

SEGUNDA SEMANA

Primera sesión:

Fuerzas en un plano. Resultante de dos fuerzas. Resultante de varias fuerzas concurrentes. Adición de fuerzas mediante la suma de sus componentes cartesianos.

Segunda sesión:

Práctica dirigida

TERCERA SEMANA

Primera sesión:

Problemas de equilibrio: diagrama de cuerpo libre. Fuerzas en el espacio. Equilibrio de una partícula en el espacio.

Segunda sesión:

Práctica calificada 1.

UNIDAD II: CUERPOS RIGIDOS: SISTEMAS EQUIVALENTES DE FUERZA Y EQUILIBRIO

OBJETIVOS DE APRENDIZAJE:

- Determinar la resultante de sistemas de fuerza no concurrentes.
- Determinar el ángulo entre dos vectores o la proyección de uno sobre el otro.
- Resolver problemas de equilibrio de cuerpo rígido usando las ecuaciones de equilibrio.

CUARTA SEMANA

Primera sesión:

Fuerzas internas y externas. Momento de una fuerza con respecto a un punto. Teorema de Varignon.

Segunda sesión:

Práctica dirigida.

QUINTA SEMANA

Primera sesión:

Producto triple mixto de tres vectores. Momento de una fuerza con respecto a un eje dado.

Descomposición de una fuerza dada en una fuerza en el origen y un par.

Segunda sesión:

Práctica dirigida

SEXTA SEMANA

Primera sesión:

Reducción de fuerzas, sistemas equivalentes, reducción a una llave.

Segunda sesión:

Práctica calificada 2.

SÉPTIMA SEMANA

Primera sesión:

Diagrama de cuerpo libre. Equilibrio en dos dimensiones. Equilibrio de un cuerpo sujeto a fuerzas.

Segunda sesión:

Práctica dirigida.

OCTAVA SEMANA

Examen Parcial.

NOVENA SEMANA

Primera sesión:

Equilibrio de cuerpo rígido en dos y tres dimensiones.

Segunda sesión:

Práctica dirigida

UNIDAD III: FUERZAS DISTRIBUIDAS: CENTROIDES Y CENTROS DE GRAVEDAD, Y MOMENTOS DE INERCIA

OBJETIVOS DE APRENDIZAJE:

- Determinar la ubicación del centro de gravedad y centroide para un sistema de partículas discretas y un cuerpo de forma arbitraria.
- Hallar la resultante de una carga general distribuida y determinar la resultante de un fluido.
- Determinar el momento de inercia de un área.
- Expresar el teorema de los ejes paralelos para determinar los momentos de inercia.

DÉCIMA SEMANA

Primera sesión:

Centroides y centros de gravedad de cuerpos bidimensionales.

Segunda sesión:

Práctica dirigida

UNDÉCIMA SEMANA

Primera sesión:

Teoremas de Pappus-Guldinus, fuerzas en superficies sumergidas.

Segunda sesión:

Práctica calificada 3

DUODÉCIMA SEMANA

Primera sesión:

Centro de gravedad de un cuerpo tridimensional. Cuerpos compuestos. Determinación de centroides de volúmenes por integración.

Segunda sesión:

Práctica dirigida.

DECIMOTERCERA SEMANA

Primera sesión:

Momentos de inercia. Momento polar de inercia. Radio de giro de un área. Teorema de los ejes paralelos.

Segunda sesión:

Práctica dirigida.

UNIDAD IV: ANÁLISIS DE ESTRUCTURAS Y FUERZAS EN VIGAS

OBJETIVOS DE APRENDIZAJE:

- Determinar las fuerzas en los elementos de una armadura usando el método de los nudos y el método de las secciones.
- Analizar las fuerzas que actúan sobre los elementos de los bastidores compuestos por elementos conectados mediante pasadores.
- Analizar las fuerzas.

DECIMOCUARTA SEMANA

Primera sesión:

Armaduras. Armaduras espaciales. Análisis de armaduras por el método de secciones. Armaduras formadas por varias armaduras simples.

Segunda sesión:

Práctica calificada 4.

DECIMOQUINTA SEMANA

Primera sesión:

Armazones y máquinas. Estructuras que contienen elementos sujetos a fuerzas múltiples. Análisis de un armazón.

Vigas: diferentes tipos de cargas y apoyos. Fuerza cortante y momento flector en una viga.

Relaciones entre carga, fuerza cortante y momento flector.

Segunda sesión:

Problemas de armaduras y armazones.

Práctica dirigida.

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCION DEL CURSO AL COMPONENTE PROFESIONAL

Matemáticas y Ciencias Básicas
Tópicos de Ingeniería
Educación general
0

IX. PROCEDIMIENTOS DIDÁCTICOS

Método expositivo-interactivo. Disertación docente y exposición del estudiante.

Método de discusión guiada. Conducción de grupo para abordar situaciones y arribar a conclusiones y recomendaciones.

Método de demostración-Ejecución. El docente ejecuta para demostrar cómo y con qué se hace, y el estudiante ejecuta para demostrar qué aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor una para cada estudiante del curso, ecran,

proyector de multimedia.

Materiales: Manual universitario. Programa CAD (AutoCAD 2009). Aplicaciones multimedia.

XI. EVALUACIÓN

Donde:

El promedio final se obtiene del modo siguiente:

PF= 0.30*PE+0.30*EP+0.40*EF

PF: Promedio Final

PE: Promedio de Evaluaciones

EP: Examen Parcial

EF: Examen Final

PE= (P1+P2+P3+P4)/4

Donde:

P1,..., P4: Prácticas Calificadas (escritas)

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes) para la carrera Profesional de Ingeniería Civil, se establece en la siguiente tabla:

Siendo K=clave R=relacionado vacío= no aplica Habilidad para aplicar conocimientos de matemática, ciencias, computación e R (a) ingeniería Diseñar y conducir experimentos, así como analizar e interpretar los datos R (b) Habilidad para analizar problemas y definir los requerimientos apropiados para la Κ (c) solución Habilidad para diseñar, implementar y evaluar sistemas de información, Κ (d) componentes o procesos que satisfagan las necesidades requeridas (e) Habilidad para trabajar adecuadamente en un equipo multidisciplinario R Comprensión de lo que es la responsabilidad profesional y temas éticos, legales, (f) seguridad y sociales (g) Habilidad para comunicarse con efectividad Una educación amplia necesaria para entender el impacto que tienen las (h) R soluciones de sistemas de información dentro de un contexto social y global Reconocer la necesidad y tener la habilidad de seguir aprendiendo y R (i) capacitándose a lo largo de su vida Conocimiento de los principales temas contemporáneos R Habilidad para usar técnicas y herramientas modernas necesarias en el R (k) desarrollo de sistemas de información Comprensión de los procesos que soportan la entrega y la administración de los (I) sistemas de información dentro de un entorno específico

XIII. HORARIO, SESIONES, DURACIÓN

a) Horas de clase: Teoría Práctica Laboratorio

٠,	i ioi ao ao ciaco.			
•		3	2	0

- b) Número de sesiones por semana: Dos sesiones.
- c) Duración: 5 horas académicas de 45 minutos

XIV. JEFE DEL CURSO

Ing. Enoch Aurelio Maguiña Rodríguez.

XV. FECHA:

La Molina, agosto de 2017.