

Search Engines and Applications for Web and Enterprise Data

Kenneth Wai-Ting LEUNG

Search Engine was not Created by Google!

It has many names:

- Information retrieval (IR): dated back to 50's as one of the major applications of computers
- Document retrieval: "Information" could mean many things; "document" refers to natural language texts organized in some predefined structures (books, reports, letters)
- Text retrieval: Texts are strings of characters with little or no structure; no images or videos

Applications

- Digital libraries: All materials in digital forms, accessible and searchable digitally
- Web search: Search anything accessible on the Web; include non-text content, although this course focuses on texts (HTML pages)
- Vertical search: Search in a particular domain, e.g., image, video, news, product (e-commerce) search
 - If we consider web search as "horizontal" search, vertical search focuses on a particular segment, topic or data type and provides better search functions for its focus compared to a general web search engine

Types of Data

- Unformatted or unstructured data (as opposed to relational database)
 - Textual data: papers, technical reports, newspaper articles
 - Completed untagged, plain-text data
- Semi-structured data
 - Web pages (HTML and XML files)
 - Email messages
- Non-textual/multimedia data
 - images, graphics, video

Examples of IR Systems:

- Examples of famous search engines are Google, Bing, Baidu (GBB), ...
 - Stand-alone search engines (i.e., interact directly with users and search is the only function they provide)

Groups

News

Images

Other Examples of IR Systems

- Most people used IR in some embedded ways
 - In Windows 10, search is one of the many functions of the operating system
 - Search is provided to users as a function or service offered by the application (e.g., in a library system) instead of a standalone search engine by itself)

Library systems

Books: http://ustlib.ust.hk/ (HKUST library)

Result Page has more Functions

Unlike Google, libraries have more structured data (fields / facets)

Search in Different Applications

- Vertical Search: A search engine for one data of a focus area
 - Data could be maintained on multiple sites in the vertical search or aggregated from multiple external sites
 - E.g., Job search, News search, Movie search, ...
- Site Search: A search engine for one site (or group of related sites)
 - hsbc.com.hk, ust.hk, ...
- Custom Search: A search frontend to a (big) backend search engine to narrow search to a small set of websites
 - Ust.hk/search-engine?...

Both Google Site Search and Google Custom Search are Google products, but the idea is applicable to other search engines

- Enterprise Search: A search engine for a corporate intranet
 - Multiple types of data (databases, Office documents, emails, ...)
 - Different user roles (sales vs technical support vs CEO ...)
 - Security, security, security, ...

Embedded Search Engines on Devices

- Search engines embedded on portable devices (mobile phones, USB thumb drives, CD ROMs)
- Search engines are tailored for the data on device
 - E.g., Electronic encyclopaedia, product catalogues, corporate reports, etc.
 - Don't forget that a CD could hold 600 Mbytes of text!
- Special requirements:
 - No installation needed; built-in and executable
 - Provide adequate interface (e.g., web-based)
 - Fast and resource sensitive (running on small devices)

File Search on UNIX/LINUX

- UNIX grep commands (grep, egrep, agrep, etc.)

\$ grep comp4321 input-file1 input-file2 ...

- man –k keyword
 - Search UNIX man pages
- These are simple "search engines" although search functions are extremely simple and primitive!

How do you Search for Files on Windows?

- Search for files: plain text, MS Office files, email, etc.
- Specify filenames, dates, file types, etc.
- Windows built-in search function, Yahoo Desktop, Google Desktop, Windows Desktop, etc.

Desktop Search Examples

- Windows desktop search has been integrated into Windows
- Copernic is still available
- Google desktop has long been discontinued

Search result

Index/Search on Windows 10

- Windows 10 Index Option allows you to specify:
 - Folders to index
 - Index encrypted files or not
 - To index properties only or properties plus content for different file types
 - Rebuild index at any time

Web Search Engines (GBB: Google/Bing/Baidu)

- World wide web search engines or Web Search
 - Most popular IR application nowadays, e.g., Google, Bing, Baidu
 - Other niche search engine DuckDuckGo, Yandex, etc.

Federated and Meta Search

- Several search engines are used to return complete search results across all search engines
- A query will be dispatched to all search engines and search results are sent back to the originator, which will integrate the result

Federated vs Meta Search

Federated Search	Meta Search
Each node is a full-function SE for its own collection	Meta-search node passes queries and search results between users and underlying SEs; itself is not a SE
Search engines agree to join Federated Search	Agreement is not needed; unwilling SEs can block search requests
Agree to use the same standard for query/result representation and API (e.g., ANSI/ISO Z39.50 for libraries)	Query and results of underlying SEs can have different format; metasearch performs query transformation and data aggregation
SEs can collaborate to perform a search	Participating SEs do not collaborate with each other
E.g., HKALL (HK Academic Lib Link)	Dogpile.com

Differences from Web Search (GBB)

- Technologies for all these different forms of search are more or less the same, but in enterprise or product search
 - Data are more structured:
 - Data are grouped into "collections ", e.g., products, press releases, news, manuals, records dumped from database tables
 - Search can be applied to a subset of the collections
 - Query format:
 - Standard AND/OR, phrase, etc.
 - Search on fields: titles, authors, within date range, etc.
 - Result page: Grouped by document types, ranked by date or relevance, etc.
- Example: search on amazon.com; what search features are most useful to you that are available on GBB?

Why is IR Important? Needed Everywhere!

- Most information available is in textual form and has no predefined format (e.g., emails and newsgroup articles)
 - You may think businesses store data in structured databases, but >80% of business information is unstructured and mostly in text
- Integration of text retrieval capability in most relational database systems. SQL already supports limited search capability such as search based on regular expressions:
 - select * from Employee where Name like '%Lee%'
- Increasing number of online documentation systems (no more hardcopy!)
- Of course, the bloom of World Wide Web

Why is IR Difficult? Size!

- The size of the web is doubling every year:
 - 50 million pages in November 1995
 - 320 million pages in December 1997
 - 800 million pages in February 1999
 - 1 billion pages in 2000
 - 3.5 billion in 2003 (openfind.com)
 - 8 billion in 2004 (google.com)
 - 20+ billion in 2005 (yahoo.com)
 - Google stopped releasing the size
 - 130 trillion in 2016
- Huge amount of data (e.g., WWW) dictates efficiency, effectiveness and user-friendliness

Imagine you need to spend "just one second more" on each page!
Renders Natural
Language Processing methods infeasible

Cloud Computing is Powerful: It can do what no PC can do

Example: Google Search

- Is Google Search faster than search in Windows/Outlook/Word?
 - And Google Search must be much harder....
- How much storage does it take to store all of the web pages?
 - 100B pages * 10K per page = 1000T disk!
- Cloud computing has at its disposal
 - Essentially infinite amount of disk
 - Essentially infinite amount of computation
 - (Assuming they can be parallelized)
 - Slide from a Google Presentation

A Google Search Uses >1000 Machines Simultaneously

Elapsed time: 0.25s, machines involved: 1000+

Google

Why is IR Difficult? Semantics!

- Unstructured data: difficult to capture semantics in documents.
 Compare:
 - "select * from Employee where Salary > 100,000"
 - "retrieve all news items about corporate takeover"
- Why is the second query more difficult to answer? The following query is even more difficult:
 - "retrieve all news items about <u>corporate takeover</u> involving <u>an</u> internet company"
 - Note: syntactic → semantic → real-world knowledge
- Documents have unrestricted subject domains
 - it is hard to predefine or pre-categorize the subject domains of documents

Why is IR a Difficult Problem? Diversity!

- Diversified user base: expert to casual users
 - a system may be clumsy for an expert user but difficult to use for a casual user
 - a system may return information too general to be useful for an expert in the subject but too narrow for a general user
- Intention of information and user query is hard to capture
 - compare a README file and a user manual
 - compare a summary versus an in-depth report

One size cannot fit all!

Indexing by Professionals (Librarians/Authors)

- High labor cost of trained human indexers
- Inconsistency in selecting index terms and judging relevance
 - thesauri created by two indexers in a given subject domain have only 60% of index terms in common
 - indexes obtained by two indexers from the same document with the same thesaurus have only 30% in common
 - documents obtained from two persons searching the same document set with the same question have only 40% in common
 - relevance judgments obtained by two users on the same set of documents and the same topic have only 60% in common
- Ref: Olson, Hope A., and Dietmar Wolfram. "Indexing consistency and its implications for information architecture: A pilot study." IA Summit (2006).

Why is IR a Difficult Problem?

- Distributed and interlinked (e.g., <u>Hypertext</u> and WWW)
 - Where to start a search? Unlike in a centralize database, you have only one (or a few) database(s) to search.
 - How are the information related?

- Efficiency vs. effectiveness
 - With limited resources, one can only improve efficiency and effectiveness to a certain degree.
 - Improving efficiency often means degrading effectiveness, and vice versa.

Document Retrieval Model

- Document: a long string of characters contained in a single file
- Index: a list of important keywords from the documents, stored in some efficient file structure
- Query: Boolean (A and B or C), list of words, natural language
- Relevance feedback: try "similar pages" in Google

Evolution of Search Technologies

- Zeroth-generation search (1960 -)
 - Libraries, collections of electronic documents (legal documents, Lexis/Nexis, scientific databases)
 - Individual documents organized in folders or databases
 - Keyword-based search (looking for keywords)
 - Search on fields (title, author, date) in addition to search on full text body
 - Boolean (title="computer" <u>AND</u> body contains "IBM")
 - E.g., IBM Stairs
 - 0.5 generation: adding statistical to Boolean (e.g., how often does a keyword appear in a document and where?)

Evolution of Search Technologies (Cont.)

- First-generation search engines (web-based, 1993 -)
 - Statistical keyword match
 - Traditional search methods (mostly vector space model, which we will learn next) applied to web
 - Add a spider / crawler to download web pages
 - Earlier versions:
 - Altavista (started by Digital Equipment Corporation, then the 2nd largest computer company; sold to Yahoo!)
 - Infoseek (founded in 1994; Infoseek engineer Li Yanhong returned to China and founded Baidu; sold to Disney in 1998)
 - Lycos (started by CMU in 1994)
 - etc.

Evolution of Search Technologies (Cont.)

- Second-generation search engines (1997)
 - In addition to keyword matching, relying heavily on <u>link analysis</u> (thus capitalizing on the special property of web)
 - Using links to measure the quality of web page, thus fundamentally expand the dimension of ranking
 - Google, Fast (sold to Microsoft), etc. etc.

Evolution of Search Technologies (Cont.)

- Third-generation search engines (2001-)
 - Incorporate advanced search features, e.g., automatic categorization

Challengers:

- Teoma (acquired by ask.com)
- Wisenut (acquired by Looksmart)
- Vivisimo (own clusty.com; started by CMU in 2000; acquired by IBM)
- Powerset (acquired by Microsoft in 2008 at allegedly US\$ 100m)
- Companies that you will start!

Terms of use Home Products Services & solutions Support & downloads www.ibm.com - [cache] - MSN. Open Directory. Ask. Wisenut. Gigablast

The IBM corporate home page, entry point to information about IBM products and services United States [change]

The Search Industry (and our Job Market)

- GBB: Global web search engines attract billions of searches every day; advertisement is the major source of revenue; technological competitiveness is a must (winner takes all!)
- Enterprise search: Companies deploy their own search engines to enhance productivity; vendors include Endeca (Oracle), Microsoft (SharePoint), and Google (Site/Custom Search)
- Various vertical search: Business directories, recruitment and travel web sties; advertisement is the largest source of revenue
- Search engine marketing (SEM): Marketing via search engine ad placements
- Search engine optimization (SEO): Companies helping websites to rank high in GBB

Take Home Messages

- Search engine is rooted in "information retrieval" used by academics
- IR existed even before computers were invented (e.g., manual catalogs in libraries, manual keyword extraction)
- Search engine does NOT just mean web search (Google.com and Bing.com), it includes intranet and enterprise search engines
- Search engine could search structured information (as in library systems); how is structured information represented in HTML?
- Search is difficult because it has to "understand" what the user wants through a few query keywords and retrieve 10 best pages out of billions of pages based on the semantic content of the pages
- In addition to sophistication of search, scaling up remains important
- High quality ranking at sub-second speed => Great User experience