עבורם $\sigma\in\{\pm 1\}$ וכן $p\in\mathbb{Z}$ וכן $a_1
eq 0$ אזי איזי $a_1\ldots a_t\in\mathbb{Z}$ איזי אויהי $t\in\mathbb{N}_+$ וכן $\beta\in\mathbb{N}\setminus\{0,1\}$ וכן $\beta\in\mathbb{N}\setminus\{0,1\}$ $x = \sigma \cdot \left(\sum_{i=1}^t \frac{a_i}{\beta^i}\right) \cdot \beta^p$

 $.\sigma$ ייצוג בנקודה צפה אזי $x=\sigma\cdot\left(\sum_{i=1}^trac{a_i}{eta^i}
ight)\cdoteta^p$ עבורו $x\in\mathbb{R}$ ויהי ויהי $t\in\mathbb{N}_+$ בסיס יהי בסיס $eta\in\mathbb{N}\setminus\{0,1\}$

מנטיסה/ספרות משמעותיות: יהי $x=\sigma\cdot\left(\sum_{i=1}^t rac{a_i}{eta^i}
ight)\cdoteta^p$ עבורו $x\in\mathbb{R}$ ויהי ויהי $t\in\mathbb{N}_+$ בסיס יהי הי $eta\in\mathbb{N}\setminus\{0,1\}$ ייצוג בנקודה צפה $(a_1 \dots a_t)$ אזי

 $U בפיס צפה על החזקה בנקודה צפה: יהי <math>\beta \in \mathbb{N} \setminus \{0,1\}$ בסיס יהי ויהיו $t \in \mathbb{N}_+$ ויהיו צפה אפר יהי טענה: יהי $x\in\mathbb{R}\setminus\{0\}$ מספר בעל ייצוג נקודה צפה אזי $t\in\mathbb{N}_+$ יהיו בסיס יהי $t\in\mathbb{N}_+$ מספר בעל ייצוג נקודה צפה אזי $.\beta^{L-1} < |x| < \beta^U$

אזי $x\in\mathbb{R}$ אזי ויהי $x\in\mathbb{R}$ ויהי החזקה ויהי הגבלה על החזקה ויהי A

- $|x| > \beta^U$:overflow •
- $.|x| \leq \beta^{L-1} \ \ \text{:underflow} \ \ \bullet$

קיצוץ נקודה צפה: יהי $x=\sigma\cdot\left(\sum_{i=1}^\infty rac{a_i}{eta^i}
ight)\cdoteta^p$ בבסיס $x\in\mathbb{R}$ ויהי ויהי $t\in\mathbb{R}_+$ ויהי בפה: יהי $eta\in\mathbb{R}\setminus\{0,1\}$.fl $(x) = \sigma \cdot \left(\sum_{i=1}^{t} \frac{a_i}{\beta^i}\right) \cdot \beta^p$

עיגול נקודה צפה: יהי $x=\sigma\cdot\left(\sum_{i=1}^\infty rac{a_i}{eta^i}
ight)\cdoteta^p$ בבטים $x\in\mathbb{R}$ ויהי ויהי $t\in\mathbb{R}_+$ ביטים בטים $\beta\in\mathbb{R}\setminus\{0,1\}$ ביטים אזי

$$.fl(x) = \begin{cases} \sigma \cdot \left(\sum_{i=1}^{t} \frac{a_i}{\beta^i} \right) \cdot \beta^p & 0 \le a_{t+1} < \frac{\beta}{2} \\ \sigma \cdot \left(\left(\sum_{i=1}^{t} \frac{a_i}{\beta^i} \right) + \frac{1}{\beta^t} \right) \cdot \beta^p & \frac{\beta}{2} \le a_{t+1} < \beta \end{cases}$$

 $f(x)= ilde{x}$ אזי $x\in\mathbb{R}$ איי אויהי $t\in\mathbb{N}_+$ בסיס יהי $eta\in\mathbb{N}\setminus\{0,1\}$ איי

 $e\left(x
ight)=x-\mathrm{fl}\left(x
ight)$ אזי $x\in\mathbb{R}$ שגיאה: יהי

 $.|e\left(x
ight)|$ אזי $x\in\mathbb{R}$ שגיאה מוחלטת: יהי

 $\delta\left(x
ight)=rac{e\left(x
ight)}{x}$ אזי $x\in\mathbb{R}$ שגיאה יחסית: יהי

 $\operatorname{fl}\left(x
ight)=x\left(1-\delta\left(x
ight)
ight)$ אזי $x\in\mathbb{R}$ מסקנה: יהי

 $|\delta\left(x
ight)|\leqeta^{-t+1}$ טענה: יהי נקודה צפה אזי נקודה ויהי אויהי ויהי $t\in\mathbb{N}_{+}$ יהי בסיס בסיס $eta\in\mathbb{N}\setminus\{0,1\}$ טענה: יהי

 $|\delta\left(x
ight)|\leq rac{1}{2}eta^{-t+1}$ אזי בפה אזי נקודה צפה אזי ויהי $x\in\mathbb{R}$ ויהי ויהי $t\in\mathbb{N}_+$ ויהי ביסיס הי

 $|e(x+y)| \le |e(x)| + |e(y)|$ אזי $x, y \in \mathbb{R}$ טענה: יהיו

 $|\delta\left(x+y
ight)|\leq\left|\delta\left(x
ight)|+\left|\delta\left(y
ight)
ight|$ מסקנה: יהיו $x,y\in\mathbb{R}$ בעלי סימן זהה אזי

 $|\delta\left(x+y
ight)| \leq \max\left\{\left|\delta\left(x
ight)\right|,\left|\delta\left(y
ight)\right|\right\}$ טענה: יהיו $x,y\in\mathbb{R}$ בעלי סימן זהה אזי

 $|\delta\left(x-y
ight)| \leq \max\left\{|\delta\left(x
ight)|, |\delta\left(y
ight)|, |\delta\left(x-y
ight)| \leq \left|\frac{e(x)}{x-y}\right| + \left|\frac{e(y)}{x-y}\right| \times x, y \in \mathbb{R} \right\}$ טענה: יהיו $x,y \in \mathbb{R}$ אזי $|\delta\left(xy
ight)| \leq |\delta\left(x
ight)| + |\delta\left(y
ight)| + |\delta\left(x
ight)\delta\left(y
ight)| \times x, y \in \mathbb{R}$ טענה: יהיו $x,y \in \mathbb{R}$ אזי $x,y \in \mathbb{R}$ טענה: יהיו $|\delta\left(\frac{x}{y}
ight)| \leq \left|\frac{y}{\mathrm{fl}(y)}\right| \left(|\delta\left(x
ight)| + |\delta\left(y
ight)| \times x, y \in \mathbb{R}$ טענה: יהיו $|\delta\left(\frac{x}{y}
ight)| \leq \left|\frac{y}{\mathrm{fl}(y)}\right| \left(|\delta\left(x
ight)| + |\delta\left(y
ight)| \times x, y \in \mathbb{R}$