Answer to Module 3 Problem Set

Student Name: Gaole DaiStudent ID: S01435587

Problem 1

Selection Sort:

Times	Last Step	Trace
Original	1	THISQUESTION
First Sort	<u>I</u> HISQU <u>E</u> STION	EHISQUTSTION
Second Sort	E HISQUTSTION	EHISQUTSTION
Third Sort	EH <u>I</u> SQUTSTION	EHISQUTSTION
Fourth Sort	EHI SQUTST <u>I</u> ON	EHIIQUTSTSON
Fifth Sort	EHII <u>Q</u> UTSTSO <u>N</u>	EHIINUTSTSOQ
Sixth Sort	EHIIN <u>U</u> TSTS <u>O</u> Q	EHIINOTSTSUQ
Seventh Sort	EHIINO <u>T</u> STSU <u>Q</u>	E H I I N O Q S T S U T
Eighth Sort	EHIINOQ STSUT	E H I I N O Q S T S U T
Ninth Sort	E H I I N O Q S <u>T</u> <u>S</u> U T	EHIINOQSSTUT
Tenth Sort	E H I I N O Q S S <u>T</u> U T	EHIINOQSSTUT
Eleventh Sort	E H I I N O Q S S T <u>∪</u> <u>T</u>	EHIINOQSSTTU
Final	E H I I N O Q S S T T U	EHIINOQSSTTU

Problem 2

Insertion Sort:

Times	Last Step	Trace
Original	1	THISQUESTION
First Sort	T H I S Q U E S T I O N	HTISQUESTION
Second Sort	HTISQUESTION	HITSQUESTION
Third Sort	HIT S QUESTION	HISTQUESTION
Fourth Sort	HIST Q UESTION	HIQSTUESTION
Fifth Sort	HIQ ST U E STION	HIQSTUESTION

Times	Last Step	Trace
Sixth Sort	HIQ STU E STION	EHIQSTUSTION
Seventh Sort	E H I Q S T U S T I O N	EHIQSSTUTION
Eighth Sort	E H I Q S S T U T I O N	EHIQSSTTUION
Ninth Sort	EHIQSSTTUION	EHIIQSSTTUON
Tenth Sort	EHIIQSSTTU O N	EHIIOQSSTTUN
Eleventh Sort	E H I I O Q S S T T U N	EHIINOQSSTTU
Final	E H I I N O Q S S T T U	E H I I N O Q S S T T U

Problem 3

MUCHLONGERQUESTION

Times	Last Step	Trace	h- seq
Original	/	M U C H L O N G E R Q U E S T I O N	
1	<u>M</u> UCHL <u>O</u> NGER <u>Q</u> UEST <u>I</u> O N	<u>I</u> UCHL <u>M</u> NGER <u>O</u> UEST <u>Q</u> O N	5
2	I <u>U</u> CHLM <u>N</u> GERO <u>U</u> ESTQ <u>O</u> N	I <u>N</u> CHLM <u>O</u> GERO <u>U</u> ESTQ <u>U</u> N	5
3	IN <u>C</u> HLMO <u>G</u> EROU <u>E</u> STQU <u>N</u>	IN <u>C</u> HLMO <u>E</u> EROU <u>G</u> STQU <u>N</u>	5
4	INC <u>H</u> LMOE <u>E</u> ROUG <u>S</u> TQU N	INC <u>E</u> LMOE <u>H</u> ROUG <u>S</u> TQU N	5
5	INCE <u>L</u> MOEH <u>R</u> OUGS <u>T</u> QU N	INCE <u>L</u> MOEH <u>R</u> OUGS <u>T</u> QU N	5
6	INCEL <u>M</u> OEHR <u>O</u> UGST <u>Q</u> U N	INCEL <u>M</u> OEHR <u>O</u> UGST <u>Q</u> U N	5
7	INCELM <u>O</u> EHRO <u>U</u> GSTQ <u>U</u> N	INCELM <u>O</u> EHRO <u>U</u> GSTQ <u>U</u> N	5
8	INCELMO <u>E</u> HROU <u>G</u> STQU <u>N</u>	INCELMO <u>E</u> HROU <u>G</u> STQU <u>N</u>	5
9	INCELMOE <u>H</u> ROUG <u>S</u> TQU N	INCELMOE <u>H</u> ROUG <u>S</u> TQU N	5
10	INCELMOEH <u>R</u> OUGS <u>T</u> QU N	INCELMOEH <u>R</u> OUGS <u>T</u> QU N	5

Times	Last Step	Trace	h- seq
11	INCELMOEHR <u>O</u> UGST <u>Q</u> U N	INCELMOEHR <u>O</u> UGST <u>Q</u> U N	5
12	INCELMOEHRO <u>U</u> GSTQ <u>U</u> N	INCELMOEHRO <u>U</u> GSTQ <u>U</u> N	5
13	INCELMOEHROU <u>G</u> STQU <u>N</u>	INCELMOEHROU <u>G</u> STQU <u>N</u>	5
14	<u>I</u> N <u>C</u> E <u>L</u> M <u>O</u> E <u>H</u> R <u>O</u> U <u>G</u> S <u>T</u> Q <u>U</u> N	<u>C</u> N <u>G</u> E <u>H</u> M <u>l</u> E <u>L</u> R <u>O</u> U <u>O</u> S <u>T</u> Q <u>U</u> N	2
15	C <u>N</u> G <u>E</u> H <u>M</u> I <u>E</u> L <u>ROU</u> O <u>S</u> T <u>Q</u> U <u>N</u>	CEGEH <u>MINLNOQ</u> O <u>R</u> T <u>S</u> U <u>U</u>	2
16	CEGEHMINLNQQORISU U	CEGEHMINLNOQORISU U	2
17	CEG <u>E</u> H <u>MINLNOQORTS</u> U <u>U</u>	CE <u>G</u> E <u>H</u> M <u>I</u> N <u>L</u> N <u>O</u> Q <u>O</u> R <u>T</u> S <u>U</u> U	2
18	CEGE <u>H</u> M <u>I</u> N <u>L</u> N <u>O</u> Q <u>O</u> R <u>T</u> S <u>U</u> U	CEGE <u>H</u> M <u>I</u> N <u>L</u> N <u>O</u> Q <u>O</u> R <u>T</u> S <u>U</u> U	2
19	CEGEH <u>MINLNOQORTS</u> U <u>U</u>	CEGEH <u>MINLNOQ</u> O <u>R</u> T <u>S</u> U <u>U</u>	2
20	CEGEHM <u>I</u> N <u>L</u> N <u>O</u> Q <u>O</u> R <u>T</u> S <u>U</u> U	CEGEHM <u>I</u> N <u>L</u> N <u>O</u> Q <u>O</u> R <u>T</u> S <u>U</u> U	2
21	CEGEHMI <u>N</u> L <u>NOQORTS</u> U <u>U</u>	CEGEHMI <u>N</u> L <u>N</u> O <u>Q</u> O <u>R</u> T <u>S</u> U <u>U</u>	2
22	CEGEHMIN <u>L</u> N <u>O</u> Q <u>O</u> R <u>T</u> S <u>U</u> U	CEGEHMIN <u>L</u> N <u>O</u> Q <u>O</u> R <u>T</u> S <u>U</u> U	2
23	CEGEHMINL <u>N</u> O <u>Q</u> O <u>R</u> T <u>S</u> U <u>U</u>	CEGEHMINL <u>N</u> O <u>Q</u> O <u>R</u> T <u>S</u> U <u>U</u>	2
24	CEGEHMINLN <u>O</u> Q <u>O</u> R <u>T</u> S <u>U</u> U	C E G E H M I N L N <u>O</u> Q <u>O</u> R <u>T</u> S <u>U</u> U	2
25	CEGEHMINLNO <u>Q</u> O <u>R</u> T <u>S</u> U <u>U</u>	CEGEHMINLNO <u>Q</u> O <u>R</u> T <u>S</u> U <u>U</u>	2
26	CEGEHMINLNOQ <u>O</u> R <u>T</u> S <u>U</u> U	C E G E H M I N L N O Q <u>O</u> R <u>T</u> S <u>U</u> U	2
27	CEGEHMINLNOQO <u>R</u> T <u>S</u> U <u>U</u>	CEGEHMINLNOQO <u>R</u> T <u>S</u> U <u>U</u>	2
28	CEGEHMINLNOQOR <u>T</u> S <u>U</u> U	CEGEHMINLNOQOR <u>T</u> S <u>U</u> U	2

Times	Last Step	Trace	h- seq
29	CEGEHMINLNOQORT <u>S</u> U <u>U</u>	CEGEHMINLNOQORT <u>S</u> U <u>U</u>	2
30	CEGEHMINLNOQORISU U	CEEGHIILNNOOQRSIU U	1

Problem 4

Yes.

- For selection sort, it always picked the highest or lowest element from the unsorted part and putting it at the beginning. Thus, whenever all the keys are identical, the complexity for making **comparison** is $n-1+n-2+n-3+\ldots+1=\mathcal{O}(n^2)$, and the complexity for **exchange** is $\mathcal{O}(m)$.
- For insertion sort, its complexity of making **comparison** is the same as selection sort. However, since all the keys are identical, it did **not need to make any exchange**.
- Thus, if all keys are identical, insertion sort work better than selection sort.

Problem 5

No.

- For selection sort, as problem 4 stated, its **comparison** is always $n-1+n-2+n-3+\ldots+1=\mathcal{O}(n^2)$, and the complexity for **exchange** is $\mathcal{O}(m)$.
- For insertion sort, the **comparison** is the same as selection sort. However, since all keys are in reverse order, the complexity for keys exchange is at worst $n-1+n-2+n-3+\ldots+1=\mathcal{O}(m^2)$. The total cost of comparison and exchange for insertion sort is worse than selection sort.
- Thus, if all keys are in reverse order, selection sort work better than insertion sort.

Problem 6

Steps:

- 1. Sort the list
- 2. Iterate through the sorted list, check and eliminating duplicates by looking the item next to each other. The cost is $\mathcal{O}(n)$.

Python code is shown below:

```
def removeDuplicates(inputList):
 inputList.sort()
 i = 0
 while i < len(inputList)-1:
     if (inputList[i] == inputList[i+1]):
         inputList.remove(inputList[i+1])
     else:
     i += 1
 return inputList</pre>
```

Problem 7

Steps:

- 1. Sort letters of each string.
 - 1. String a, sting b: a'= sort string a'; b'=sort string b'; if a == b then a and b originally are jumbles
- 2. Sort letter, then sort the **signature** to put jumbles together. The complexity for printing out the result is $\mathcal{O}(N)$.

Python code is shown below:

```
def jumbleWords(inputList):
# Sort the string elements in the input list
res = [''.join(sorted(element)) for element in inputList]
# Join the key and sorted value into signature
tuple_list = list(zip(res, inputList))
# Sort the tuple to put jumbles together
tuple_list.sort(key = lambda x: x[0])
# Print out the jubmle words
prev = tuple_list[0][0]
for i, (a, b) in enumerate(tuple_list):
    if (a == prev):
        print(b, end =" ")
    else:
        print('\n')
        print(b, end =" ")
    prev = a
```

Problem 8

Problem 9

- In overall, insertion sort works better than selection sort.
- Insertion sort is faster on inputs that are **partially-sorted**. If array is partially-sorted, the cost for insertion sort is at best $\mathcal{O}(n)$, which indicates that insertion sort make n comparison (scenario also includes Problem 4).
- But the cost for selection sort always take $\mathcal{O}(n^2)$ for worst case and average case.