Лекция 11: Метод опорных векторов

Линейный бинарный классификатор на основе разделяющей гиперплоскости

- Основные определения и свойства:
 - \square Отклик $Y = \{-1, +1\}$
 - \Box Дискр. ф-ция $g(x) = g_{+}(x) g_{-}(x)$

 - \square Линейность $g(x) = \langle w, x \rangle + w_0$
 - □ Граница гиперплоскость $H = \{x | \langle w, x \rangle + w_0 = 0\}$ определяется нормалью w/||w|| и смещением w_0 /||w||.

- Знаковое расстояние от точки x_0 до границы $d(x_0, H) = g(x_0)/||w||$ (подстановка в нормализованное уравнение гиперплоскости). Пусть $x_0 = p + h$, $p \in H$ проекция x_0 на H, h –ортогональное дополнение, тогда $h = d\frac{w}{||w||}$, $x_0 = p + d\frac{w}{||w||}$ домножаем скалярно на w прибавляем w_0 , получаем: $\langle w, x_0 \rangle + w_0 = \langle w, p \rangle + w_0 + d\frac{\langle w, w \rangle}{||w||} \Rightarrow d = \frac{\langle w, x_0 \rangle + w_0}{||w||}$
- Прогноз a(x) = sign(g(x)) с какой стороны от H, расстояния от центра координат до H равно $w_0/||w||$

Персептрон Розенблатта

- Модель разделяющая гиперплоскость:
 - \square Функция потерь $L_{perc}(M) = -[M]_+,$
 - □ Обучение SGD, доказана сходимость за конечное число шагов
 - □ Для «ошибок» (примеров не с той стороны гиперплоскости):

$$\begin{pmatrix} w^{(t)} \\ w_0^{(t)} \end{pmatrix} + \eta \begin{pmatrix} y_i x_i \\ y_i \end{pmatrix} \rightarrow \begin{pmatrix} w^{(t+1)} \\ w_0^{(t+1)} \end{pmatrix}$$

- Недостатки (их устранение достоинства SVM):
 - Несколько возможных решений при линейной разделимости классов (зависит от начального приближения)
 - Не сходится при линейной неразделимости классов, а при линейной разделимости долго сходится (много шагов)

Обучение линейного классификатора

- «Пороговая» (персептрон) функция потерь $L_{perc}(M) = -[M]_+$
 - □ кусочно-постоянная ⇒ имеет нулевые градиенты
- Можно ограничить ее сверху другой гладкой функцией потерь и искать решение задачи оптимизации с регуляризацией:
 - □ Логистическая:

$$L_{log}(M) = \log_2(1 + e^{-M})$$

□ Квадратичная:

$$L_{sq}(M) = (1 - M)^2$$

□ Экспоненциальная:

$$L_{exp}(M) = e^{-M}$$

□ Тангесовая:

$$L_{tng}(M) = (2\arctan(M) - 1)^2$$

□ Hinge («шарнир»):

$$L_{hinge}(M) = -[1 - M]_+$$

$$\min_{w} \frac{1}{l} \sum_{i} L_*(y_i(\langle x_i, w \rangle + w_0)) + \gamma L_p(w)$$

Аппроксимация Hinge функцией потерь с L₂ регуляризацией

• Ограничим сверху эмпирический риск персептрона L_2 - регуляризованным эмпирическим риском с с Hinge функцией потерь:

$$\begin{aligned} Q_{perc}(w, w_0) &= \sum_{i=1}^{l} [M_i(w, w_0) < 0] \leq \\ &\leq Q_{hinge} (w, w_0) = \sum_{i=1}^{l} (1 - M_i(w, w_0))_+ + \gamma ||w||^2 \\ &Q_{hinge} \to \min_{w, w_0} \quad \Rightarrow Q_{perc} \to \min_{w, w_0} \end{aligned}$$

- Первое слагаемое:
 - □ линейно штрафует за приближение к границе классов с «правильной стороны» ближе чем 1
 - □ линейно штрафует за удаление от границы с «неправильной стороны»
- Второе слагаемое:
 - □ штрафует за сложность, не давая переобучаться
 - □ контролирует стабильность при мультколлинеарности

Оптимальная разделяющая гиперплоскость в случае линейно разделимых классов

- В случае линейно разделимости классов:
 - можно провести бесконечно много разделяющих гиперплоскостей.
 - □ Какая из них лучше?
- Определим ширину разделяющей полосы зазор (марджин) для множества точек как минимум по всем:

$$\rho = \min_{1 \le i \le l} M(x_i, y_i) = \min_{1 \le i \le l} y_i g(x_i)$$

- Т.к. есть случайная составляющая (шум):
 - наблюдения могут лежать в некоторой окрестности неизвестного радиуса ϵ
 - \square значит чем больше отступ ρ , тем меньше вероятность, что окрестность точек рядом с границей пересечет ее
- Вывод нужно максимизировать зазор

Максимизация отступа в случае линейно разделимых классов

- Каноническое уравнение гиперплоскости:
 - уравнение Н определено с точностью до множителя, надо зафиксировать (с точностью до знака)
 - □ нормируем параметры так, чтобы расстояние d(x, H) = g(x)/||w|| от границы до ближайшего наблюдения каждого класса было равно 1
 - \square Это приводит к условиям: если $y_i=1\Rightarrow \langle w,x_i\rangle+w_0\geq 1$, а для $y_i=-1\Rightarrow \langle w,x_i\rangle+w_0\leq -1$ и в общем виде $\forall i\colon y_i(\langle w,x_i\rangle+w_0)\geq 1$
- Ширина разделяющей полосы (зазора между классами):

$$\rho = \frac{2}{||w||} \to \max_{w}$$

■ Получаем задачу условной оптимизации:

$$\begin{cases} \min_{w} \frac{1}{2} ||w||^{2} \\ \forall i: y_{i}(\langle w, x_{i} \rangle + w_{0}) \ge 1 \end{cases}$$

■ Все выпуклое - единственное решение!

Решение в случае линейно разделимых классов

■ Выпишем лагранжиан:

$$L(w, w_0; \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{l} \alpha_i [y_i(\langle w, x_i \rangle + w_0) - 1]$$

- \square с множителями Лагранжа $\alpha_i \geq 0$ для каждого ограничения
- □ с условиями дополняющей нежёсткости (ККТ):

$$\forall i: \alpha_i [y_i(\langle w, x_i \rangle + w_0) - 1] = 0$$

Из необходимых условий оптимальности следует:

$$\frac{\partial L(w, w_0; \alpha)}{\partial w_0} = 0 \Rightarrow \sum_{i=1}^l \alpha_i y_i = 0, \frac{\partial L(w, w_0; \alpha)}{\partial w} = 0 \Rightarrow w = \sum_{i=1}^l \alpha_i y_i x_i$$

Дискриминантная функция:

$$g(x) = \langle w, x \rangle + w_0 = \sum_{i=1}^{l} \alpha_i y_i \langle x_i, x \rangle + w_0$$

■ Сдвиг w_0 может корректироваться «вручную», обычно инициализируется как: $w_0 = \frac{1}{l} \sum_{j=1}^l (y_j - \sum_{i=1}^l \alpha_i y_i \langle x_i, x \rangle)$

Опорные вектора в случае линейно разделимых классов

- По свойствам множителей Лагранжа: $y_i(\langle w, x_i \rangle + w_0) > 1 \Rightarrow \alpha_i = 0$:
 - $\alpha_i \neq 0$ для **опорных векторов** (наблюдения лежат строго на границе, их расстояние до H равно 1)
 - □ Дискриминантная функция (и модель) зависит **только от опорных векторов**: $a(x) = \text{sign}(\sum_{i \in SV} \alpha_i y_i \langle x_i, x \rangle + w_0)$
 - □ Результат обучения не зависит от наличия в тренировочном наборе наблюдений, не лежащих на границе, их можно исключить из выборки и получить ту же модель SVM (вот только мы заранее не знаем, какие именно наблюдения лежат на границе)
 - □ Этим свойством пользуются алгоритмы оптимизации для SVM

Линейно неразделимые классы

- Классы не обязаны быть линейно разделимы:
 - можно попробовать перебрать оптимальные гиперплоскости, минимизируя число ошибок, но оказалось, что это NP-трудная задача (не найдено не экспоненциальных по сложности методов)
- Основной подход дополнительно линейно штрафовать модель за «нарушение» неравенств канонической гиперплоскости:

обобщающая ошибка способность
$$\begin{cases} \min\limits_{w,\xi,w_0}\frac{1}{2}\big|\big|w\big|\big|^2+\frac{c}{l}\sum_{i=1}^{l}\xi_i \\ \forall i\colon y_i(\langle w,x_i\rangle+w_0)\ \geq\ 1-\xi_i,\xi_i\geq 0 \end{cases}$$

- □ параметр C задает в явном виде компромисс между точностью и сложностью модели
- $\, \Box \,$ Аналогично безусловной минимизации Hinge функции потерь с L_2 регуляризацией:

$$Q_{hinge}(w, w_0) = \sum_{i=1}^{l} (1 - M_i(w, w_0))_+ + \gamma ||w||^2 \to \min_{w, w_0}$$

M

Метод множителей Лагранжа для линейно неразделимых классов

Снова выпишем лагранжиан:

$$L(w, w_0, \xi; \alpha, \eta) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{l} \alpha_i [y_i(\langle w, x_i \rangle + w_0) - 1] - \sum_{i=1}^{l} \xi_i(\alpha_i + \eta_i - C)$$

- \square α_i двойственные переменные к условиям $y_i(\langle w, x_i \rangle + w_0) \geq 1 \xi_i$
- $\ \square\ \eta_i$ двойственные переменные к условиям $oldsymbol{\xi}_i \geq oldsymbol{0}$

условия дополняющей нежёсткости ККТ:

$$\forall i: \alpha_i [y_i(\langle w, x_i \rangle + w_0) - (1 - \boldsymbol{\xi_i})] = 0, \boldsymbol{\eta_i \xi_i} = \mathbf{0}$$

Из необходимых условий седловой точки функции Лагранжа:

$$\frac{\partial L(w, w_0, \alpha, \eta)}{\partial w_0} = 0 \Rightarrow \sum_{i=1}^l \alpha_i y_i = 0, \frac{\partial L(w, w_0, \alpha, \eta)}{\partial w} = 0 \Rightarrow w = \sum_{i=1}^l \alpha_i y_i x_i,
\frac{\partial L(w, w_0, \alpha, \eta)}{\partial \xi} = \mathbf{0} \Rightarrow \eta_i + \alpha_i = \mathbf{C}$$
(**)

(*)

■ Дискриминантная функция и сдвиг те же, но опорные вектора другие: $g(x) = \sum_{i=1}^{l} \alpha_i y_i \langle x_i, x \rangle + w_0, w_0 = \frac{1}{l} \sum_{j=1}^{l} (y_j - \sum_{i=1}^{l} \alpha_i y_i \langle x_i, x \rangle)$

Опорные вектора для линейно неразделимых классов

- Получаем два типа опорных векторов:
 - □ **Ошибки** неравенство со штрафом строго НЕ выполняется: $\alpha_i = C$, $\eta_i = 0$, $\xi_i > 0$, $y_i(\langle w, x_i \rangle + w_0) > 1$
 - □ Граничные неравенство выполняется как равенство:

$$\mathbf{0} < \alpha_i < C, 0 < \eta_i < C, \xi_i = \mathbf{0}, y_i(\langle w, x_i \rangle + w_0) = 1$$

- Остальные (не важные) наблюдения:
 - □ Периферийные неравенство со штрафом выполняется:

$$\alpha_i = 0, \eta_i = C, \xi_i = 0, y_i(\langle w, x_i \rangle + w_0) < 1$$

снова от них ничего не зависит

Граничные опорные вектора

опорные вектора ошибки

Двойственная задача

- Можно решать прямую задачу (есть для этого методы оптимизации), но оказалось, что удобнее решать двойственную
- Подставим равенства, полученные из условий (*) и (**) в $L(w, w_0, \xi; \alpha, \eta)$ и увидим, что Лагранжиан после всех сокращений зависит только от двойственных переменных α_i и имеет простую квадратичную форму:

$$L(\underline{w}, \underline{w}_0, \underline{\xi}; \alpha, \underline{\eta}) = W(\alpha) = \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_j \langle x_j, x_i \rangle$$

• пользуясь свойством седловой точки Лагранжа:

$$L(w^*, w_0^*, \xi^*; \alpha^*, \eta^*) = \min_{w, w_0, \xi} L(w, w_0, \xi; \alpha^*, \eta^*) = \max_{\alpha, \eta} L(w^*, w_0^*, \xi^*; \alpha, \eta)$$

• перейдем к решению двойственной задачи:

$$\begin{cases} \max_{\alpha} W(\alpha) \\ 0 \le \alpha_i \le C, \sum_{i=1}^{l} \alpha_i y_i = 0 \end{cases}$$

■ решение прямой задачи выражается через него как:

$$a(x) = \operatorname{sign}(\sum_{i \in SV} \alpha_i y_i \langle x_i, x \rangle + w_0)$$

Выбор параметра штрафа С

- Аналогично параметру регуляризации (но наоборот):
 - \square чем больше C тем меньше смещение и больше дисперсия модели
 - \square чем меньше C тем больше обобщающая способность и ошибка подгонки модели ($C_{left} > C_{middle} > C_{right}$)

- На практике:
 - □ используют стандартные эвристики: C={0.1, 1, 10}
 - □ подбирают с помощью кросс-валидации (по сетке значений)
- Не интуитивный параметр
 - □ Тяжело: угадать точно, выбрать сетку для перебора, понять смысл

Nu-SVM

Основная идея – напрямую максимизировать зазор (ширину разделяющей полосы) между классами р

$$\min_{\xi, \rho, w, w_0} \frac{1}{2} ||w||^2 + \frac{1}{l} \sum_{i=1}^{l} \xi_i - \rho v$$

$$\forall i: (y_i(\langle x_i, w \rangle + w_0) \le \rho - \xi_i, \rho \ge 0, \xi_i \ge 0)$$

 Также через преобразование Лагранжиана сводится к задаче квадратичного программирования в двойственных переменных:

$$\begin{cases} \max_{\alpha} -\frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{j}, x_{i} \rangle \\ \mathbf{0} \leq \alpha_{i} \leq \frac{1}{l}, \sum_{i=1}^{l} \alpha_{i} y_{i} = 0, \sum_{i=1}^{l} \alpha_{i} \geq \mathbf{v} \end{cases}$$

- Вместо метапараметра С используется ν с важными «ν-свойствами»:
 - $\ \square\ \nu$ -верхняя граница пропорции опорных векторов ошибок
 - $\ \square\
 u$ -нижняя граница пропорции опорных векторов граничных
 - асимптотически с вероятностью 1 (при определенных условиях) эти границы достигаются

M

Многоклассовый SVM «каждый против всех»

Каждый против всех:

□ Строим к моделей (к-число классов), выбираем класс с наиболее уверенным прогнозом – наибольшей дискриминантной функцией:

$$\arg\max_{j=1,\dots,k} g_j(x)$$

• Особенности:

- □ Гарантировано есть хотя бы один несбаласированный набор (т.к. 1 класс против всех остальных)
- □ Вычислительно сложно при больших наборах данных *k* бинарных задач с / наблюдениями в каждой
- □ независимое обучение независимые $g_j(x)$, надо приводить на близкие шкалы, можно с помощью $\operatorname{softmax}(g_1(x), ..., g_k(x))$ или более корректно с помощью корректировки Платта

Корректировка Платта

Преобразуем отклик SVM из (-∞, +∞) в вероятностный диапазон [0,1]с помощью подгонки сигмоиды:

$$p_{svm}(x)=\frac{1}{_{1+\exp(Ag_{svm}(x)+B)}}$$
 где $g_{svm}(x)=\sum_{i\in SV}\alpha_iy_i\langle x_i,x\rangle+w_0)$, а A и B – параметры

- Чтобы не переобучиться:
 - □ параметры А и В подбираются как в логистической регрессии с одним предиктором (откликом SVM) на валидационной выборке (не использовалась для обучения SVM) или с помощью кросс-валидации
 - □ дополнительно часто используется «регуляризация» откликов:

$$y_i^{Platt} = \begin{cases} \frac{l_+ + 1}{l_+ + 2}, y_i = 1\\ \frac{1}{l + 2}, y_i = -1 \end{cases}$$

Дисбаланс классов

- Возможные подходы к решению проблемы:
 - □ В целом SVM менее чувствителен к дисбалансу, чем другие методы, т.к. модель зависит только от опорных векторов
 - ☐ SMOTE (oversampling)
 - □ Undersampling + корректировка сдвига w_0 строим SVM на сбалансированной выборке, а w_0 выбираем с учетом дисбаланса, например $w_0^* = \mathop{\rm argmin}_{w_0} F_\beta\left(g(x,w_0),y\right)$
 - □ Undersampling + корректировка Платта строим SVM на сбалансированной выборке, а корректировку Платта на несбалансированной
 - □ Используем веса наблюдений
 - □ Используем веса классов:

$$\begin{cases} \min_{w,\xi,w_0} \frac{1}{2} ||w||^2 + \frac{C_{-1}}{l_{-1}} \sum_{i:y_i = -1} \xi_i + \frac{C_1}{l_1} \sum_{i:y_i = +1} \xi_i \\ \forall i: y_i (\langle w, x_i \rangle + w_0) \geq 1 - \xi_i, \xi_i \geq 0 \end{cases}$$

Многоклассовый SVM«каждый против каждого»

- Каждый против каждого
 - □ Строим k(k-1)/2 моделей (kчисло классов), выбираем класс голосованием:

$$\arg\max_{j=1,\dots,k} \sum_{i\neq j} [g_{ij}(x)]_+$$

- □ меньше проблем с дисбалансом классов чем в каждом против всех
- □ вычислительно сложно при больших *k,* получаем k(k-1)/2 бинарных задач, правда наблюдений в каждой меньше /
- □ независимое обучение независимые g_{ij}(x) не так критично как в каждом против всех (не сравниваем отклики разных моделей друг с другом напрямую)
- могут быть «ничьи», простое голосование не лучший подход, надо учитывать «уверенность» в прогнозе, а значит тоже корректировать отклики

7

Вероятности классов на основе попарных сравнений

- Если по результатам применения подхода «каждый против каждого» необходимо вычислить вероятности принадлежности наблюдения x_0 каждому из k классов $p_1(x_0), ..., p_k(x_0)$, то можно воспользоваться подходом попарных сравнений:
 - Применяем все k(k-1)/2 попарных моделей и получаем для каждой пары классов (i,j) значение дискриминантной функции $g_{ij}(x_0)$
 - □ Делаем корректировку Платта $p_{ij}(x_0)$ (x_0 можно не указывать, т.к. все считается только для него)
 - Принимаем предположение модели Брэдли-Терри для попарных сравнений: $p_{ij} = p_i/(p_i + p_j)$, где p_s неизвестны для $1 \le s \le k$
 - Находим их, минимизируя численным методом дивергенцию Кульбака-Лейблера :

$$\sum_{i,j} p_{ij} \log \left(\frac{p_{ij}(p_i + p_j)}{p_i} \right) + \sum_{i,j} \frac{p_i}{p_i + p_j} \log \left(\frac{p_i}{p_{ij}(p_i + p_j)} \right) \to \min_{p_1, \dots, p_k}$$

Многоклассовый ECOC SVM

■ ECOC:

- \square Строим кодовую матрицу M с m новыми «суперклассами», каждый объединяет комбинацию исходных классов и
- \square Обучаем m моделей $g_1(x), ..., g_m(x)$
- При классификации получаем вектор прогнозов и выбираем класс с наиболее близким кодовым словом:

Особенности:

- □ вычислительную сложность можно контролировать числом столбцов
- можно рассчитывать «уверенность» в прогнозе на основе расстояний до кодовых слов или по модели Брэдли-Терри
- \square но качество зависит от M если не угадали, то начинаем все заново

w

SVM с многоклассовой целевой функцией

- Постановка задачи:
 - □ пусть k число классов
 - □ вводим к гиперплоскостей и отдельно штрафуем за нарушение каждой границы и отдельно штрафуем каждую за ее сложность (максимизируем ширину каждой разделяющей полосы)
 - □ все штрафы суммируем в целевой функции:

$$\begin{cases} \min_{w,w_0,\xi} \frac{1}{2} \sum_{j=1}^k \left| |w^j| \right|^2 + \frac{C}{l} \sum_{i=1}^l \sum_{j \neq y_i} \xi_{ij} \\ \forall i, j: y_i (\langle w^{y_i}, x_i \rangle + w_0^{y_i}) \geq \langle w^j, x_i \rangle + w_0^j + 2 - \xi_{ij}, \xi_{ij} \geq 0 \end{cases}$$

- Особенности:
 - менее гибкие настройки по сравнению с остальными методам.
 - □ вычислительно сложно много двойственных переменных при большом наборе, проблема дисбаланса тоже есть
 - □ зато дискриминантные функции подгоняются вместе прогнозы зависимы, не нужны корректировки

10

Случай существенно нелинейной границы между классами

- Следствие из Теоремы Ковера (о числе возможных линейных разбиений *m* точек в *n*-мерном пространстве):
 - □ В случае линейно неразделимых классов нелинейное отображение исходного пространства признаков в новое пространство признаков большей (или даже бесконечной) размерности увеличивает шансы линейного разделения в нем образов наблюдений из исходного пространства признаков
 - □ Новое пространство называется «спрямляющим»

Нелинейный метод опорных векторов

- Основная идея:
 - Нелинейное преобразование исходного пространства признаков в новое пространство большей или бесконечной размерности.
 - Разделяющая плоскость строится в преобразованном пространстве
 - В новом пространстве зависимость линейна, в исходном нелинейна
- Постановка задачи оптимизации и модель C-SVM (и nu-SVM) не зависят от признаков, а только от их скалярного произведения:
 - □ Целевая функция C-SVM:

$$W(lpha) = \sum_{i=1}^{l} lpha_i - rac{1}{2} \sum_{i,j=1}^{l} lpha_i lpha_j y_i y_i (x_i, x_j)$$
 Скалярное произведение Решающая функция: $a(x) = sign \ \left(\sum_{i=1}^{n} lpha_i \ y(\langle x_i, x \rangle) + w_0 \right)$

- Kernel trick (подмена ядра):
 - Замена скалярного произведения на другое ядро неявно преобразует исходное пространство признаков в спрямляющее без необходимости явного пересчета признаков

Спрямляющее пространство для метода опорных векторов

- Спрямляющее пространство:
 - Преобразование исходного пространства признаков X в гильбертово пространство H с помощью отображения $\phi: X \to H$ может быть реализовано **неявно**, за счет замены скалярного произведения в X на функцию **ядра** $K: X \times X \to \mathbb{R}$, которая является скалярным произведением в $H: \forall x_i, x_i: K(x_i, x_i) = \langle \phi(x_i), \phi(x_i) \rangle$
- Функция $K: X \times X \to \mathbb{R}$ является ядром тогда и только тогда K:
 - \square симметрична: $\forall x_i, x_j : K(x_i, x_j) = K(x_j, x_i)$
 - □ неотрицательно определена: $\forall f: X \to \mathbb{R}$:

$$\int_{X} \int_{X} K(x_{i}, x_{j}) f(x_{i}) f(x_{j}) dx_{i} dx_{j} \ge 0$$

■ Нелинейный ядерный C-SVM (для nu-SVM аналогично):

$$W(\alpha) = \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{l} \alpha_i \alpha_j y_i y K(x_i, x_j), a(x) = sign \left(\sum_{i=1}^{l} \alpha_i y K(x_i, x_j) + w_0\right)$$
 Ядра

Примеры популярных ядер

- Линейное ядро:
 - $\square \ K(x_i,x_j) = \langle x_i,x_j \rangle$ спрямляющее пространство совпадает с исходным
- Полиномиальное ядро степени d со сдвигом b:
 - \square $K(x_i,x_j)=\left(b+\left\langle x_i,x_j\right\rangle\right)^d$ разделяющая поверхность d -го порядка
 - \square параметр d контролирует «сложность» модели, а значит K тоже **регуляризатор**
 - □ Н эквивалентно пространству, полученному «ручной» генерацией полиномиальных признаков (например, PolynomialFeatures sklearn.preprocessing)
 - Частный случай b=0 (не получаем полный полином, только члены степени d), в результате H пространство мономов размерности C_d^{d+m-1} , простой пример при b=0, d=2, m=2:

$$\phi: \mathbb{R}^2 \to H = \mathbb{R}^3$$

$$\phi: ((x_i, x_j)) \to (x_i^2, x_j^2, x_i x_j)$$

$$K(x_i, x_j) = \langle x_i, x_j \rangle^2$$

Примеры популярных «нейросетевых» ядер

- Гауссовская (RBF kernel):
 - □ $K(x_i, x_j) = \exp(-\gamma (x_i x_j)^2)$ с параметром ширина ядра γ , который «штрафует» расстояние между объектами
 - Чем больше γ, тем сложнее граница опять ядрорегуляризатор
 - □ Спрямляющее пространство бесконечномерное пространство функций (нельзя явно выразить все координаты)
 - $x_i \qquad x_j \qquad \phi(x_i) \ \phi(x_j)$

- Сигмоидальное ядро (hyperbolic tangent kernel):
 - \square $K(x_i, x_j) = \tanh(a\langle x_i, x_j \rangle + b)$ с параметром ширина ядра a и b
 - формально является ядром не при всех значениях параметров, но тоже регуляризирует модель
 - Спрямляющее пространство геодезическое (на эллипсоиде)

Сходство и отличия SVM и простых нейросетей

- Нейронный сети прямого распространения:
 - □ Сигнал передается от входного уровня к выходному по «слоям»
 - □ Внутри нейронов расчет нелинейных выходных функций активации, от комбинации входных переменных, где каждый вход следующего слоя композиции выходов предыдущего.
 - □ Нет задержек, времени, т.к. нет циклов (в отличии от рекуррентных сетей)
 - □ Модель по сути параметрическая, уравнение зависимости отклика от предикторов определяется графом сети и функциями активации
 - □ Обучение целевая функция (эмпирический риск) определяется типом и

распределением отклика (как в GLM)

□ Применяются разные методы оптимизации, популярный – обратное распространение ошибки (SGD), но используют и методы 2 порядка

Входной слой Скрытый слой Выходной слой

Сходство и отличия сигмоидального SVM и однослойного персептрона

- Однослойный персептрон (SLP):
 - Один скрытый слой с сигмоидальными функциями активации
 - Архитектура определяет
 параметрическую модель и
 решающую функцию как в SVM:

$$g^{-1}(y) = w_0 + \sum_{i=1}^{n} w_i \tanh\left(w_{0i} + \sum_{j=1}^{n} w_{ij} x_j\right)$$

- Но с SVM принципиальные отличия:
 - \square h число SV, заранее не известно
 - \square w_{0i} параметр ядра, не подгоняется
 - $\ \square \ w_{ij}$ координаты опорных векторов
 - $\ \square \ w_i$ произведение метки и множителя Лагранжа опорных векторов

Сходство и отличия SVM с гауссовским ядром и RBF нейросети

- RBF нейросеть:
 - Один скрытый слой с функциями активации Гаусса
 - Архитектура определяет
 параметрическую модель и
 решающую функцию как в SVM:

$$g^{-1}(y) = w_0 + \sum_{i=1}^n w_i e^{-w_{0i} \left(\sum_j (w_{ij} - x_j)^2 \right)}$$

- Но с SVM принципиальные отличия:
 - \square h число SV, заранее не известно
 - $\ \square\ w_{0i}$ параметр ядра, не подгоняется
 - w_{ij} координаты опорных векторов, а не прототипов нейронов
 - w_i произведение метки и множителя
 Лагранжа опорных векторов

Сходство и отличия SVM и простых нейросетей

■ Сходство:

 структурно одинаковые решающие функции и соответственно похожие формы искомых зависимостей (но параметры ищутся поразному и априори зафиксированы разные параметры, у нейросетей более гибкий набор параметров):

- Ключевые преимущества SVM:
 - единственное решение (при любом начальном приближении)
 - □ более эффективные и контролируемые методы оптимизации

Влияние ядра

```
for degree in [1, 3, 5]:
   DecisionBoundaryDisplay.from estimator(
       SVC(kernel="poly", degree=degree).fit(X, y), X, cmap="Pastel1")
   plt.scatter(*X.T, c=y, cmap="Set1")
                     4.5
   Degree=1
                     2.5
                     2.0
                     1.5
                     1.0
                     4.5
 Degree=3
                     2.5
                     2.0
                     1.5
 Degree=5
```

2.5

2.0

1.5

Влияние параметра штрафа за сложность

```
from sklearn.svm import NuSVC

X, y = load_iris(return_X_y=True)
X = X[:, :2]

for i, nu in enumerate([0.1, 0.5, 0.9]):
    DecisionBoundaryDisplay.from_estimator(
        NuSVC(nu=nu, kernel="rbf").fit(X, y), X, cmap="Pastel1")
    plt.scatter(*X.T, c=y, cmap="Set1")
```


Методы синтеза ядер

- Популярные методы:
 - □ Линейная комбинация (с положительными весами) ядер ядро
 - □ Произведение ядер ядро
 - □ RBF от любого расстояния ядро (кстати, ядро задает расстояние в спрямляющем пространстве: $\sqrt{K(x_i,x_i) + K(x_j,x_j) 2K(x_i,x_j)}$
 - \square $\forall \phi: X \to \mathbb{R}, K(x_i, x_j) = \phi(x_i)\phi(x_j)$ ядро

 - \square $\forall s: X \times X \to \mathbb{R}$ симметричная и интегрируемая, то $\mathrm{K}(x_i, x_j) = \int_X s(x_i, z) \, s(x_j, z) dz$ ядро
 - □ Если K_{base} ядро и $f: \mathbb{R} \to \mathbb{R}$ представима в виде сходящегося степенного ряда с неотрицательными коэффициентами, то $K(x_i, x_j) = f(K_{base}(x_i, x_j))$ ядро
 - □ Если есть вероятностная модель, где $p(x|\theta)$ правдоподобие, а M положительно определенная квадратная симметричная матрица, то $K(x_i, x_i) = \nabla_{\theta} \ln p(x_i|\theta)^T M^{-1} \nabla_{\theta} \ln p(x_i|\theta)$ ядро

Ядра для сложных структур (пример – спектральное ядро)

- Для работы с текстовыми данными:
 - можно использовать векторную модель мешка слов и любое стандартное ядро над ней
 - □ но такая модель не учитывает порядок слов и расстояние
- Можно построить ядро, учитывающее порядок и расстояния:
 - пусть Σ фиксированный алфавит, а множество всевозможных строк длины n есть Σ^n , тогда множество всех строк $\Sigma^* = \bigcup_{n=0}^\infty \Sigma^n$
 - \square спрямляющее пространство H, такое, что каждая координата связана с некоторой допустимой строкой u в Σ ,
 - $\ \square$ тогда для любой строки s ее u-я координата может быть задана как

$$[\phi_n(s)]_u = \sum_{i:s(i)=u} \lambda^{l(i)}$$

- \Box где *i* множество индексов, формирующее подстроку из *s*,
- \square $l\left(i\right)$ расстояния между первым и последним индексом
- \square $0 < \lambda < 1$ весовой параметр, контролирует разреженность подстроки

Ядра для сложных структур (пример – спектральное ядро для строк)

- Пример: $[\phi_3("Nasdaq")]_{asd} = \lambda^3$, a $[\phi_3("lass das")]_{asd} = 2\lambda^5$
- Строковое ядро для строк s и t длинны n:

$$K_n(s,t) = \sum_{u \in \Sigma^n} [\phi_n(s)]_u [\phi_n(t)]_u = \sum_{u \in \Sigma^n} \sum_{i,j:s(i)=t(j)=u} \lambda^{l(j)+l(i)}$$

- Строковое ядро для строк s и t произвольной длинны:
 - \square с набором параметров «веса» длин $c_n \ge 0$: $K(s,t) = \sum_n c_n K_n(s,t)$
- Есть эффективный алгоритм динамического программирования для расчета таких ядер
- Примеры применения:
 - □ ДНК классификация
 - □ SMS/chat anti-spam
 - □ language identification

Локальные ядра для пространственных признаков (изображений, строк, ДНК ...)

- Аналог свертки в CNN:
 - Считаются ядра по локальным областям в пространстве признаков
 - Могут дополнительно учитываться веса признаков на основе удаленности от центра области локализации
 - Полученные значения агрегируются так, чтобы результат оставался ядром
 - Может быть несколько уровней «вложенности»

Augmentation в SVM – виртуальные опорные вектора

- Ключевая особенность SVM нет необходимости «зашумлять» всю выборку:
 - □ решается задача без augmentation
 - «зашумляются» только опорные вектора
 - «искаженные» опорные вектора называются виртуальными
 - □ после этого строится классификатор только на них
 - □ можно повторить несколько раз

Нелинейная регрессия SVM

 є -чувствительная функция потерь определяется как (линейное) расстояние до отклика за вычетом порога:

$$L_{\epsilon}(y, g(x)) = \begin{cases} 0, & |g(x) - y| < \epsilon \\ |g(x) - y| - \epsilon, |g(x) - y| \ge \epsilon \end{cases}$$

- Точки «внутри» полосы отступа от отклика – не штрафуются
- Уравнение регрессии задается как: $g(x) = \langle w, x \rangle_H + w_0$
- Формулируется регуляризированный эмпирический риск:

$$\min_{w,w_0} C \sum_{i=1}^{l} L_{\epsilon}(g(x_i), y_i) + \frac{1}{2} ||w||^2$$

Прямая задача оптимизации

ullet -формулировка (прямая задача):

штраф за сложность
$$\begin{cases} \min_{\xi^+/^-,w,w_0} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^l (\xi_i^+ + \xi_i^-) \\ (\langle w,x_i\rangle_H + w_0) - y_i \leq \epsilon + \xi_i^+, \xi_i^+ \geq 0 \\ y_i - (\langle w,x_i\rangle_H + w_0) \leq \epsilon + \xi_i^-, \xi_i^- \geq 0 \end{cases}$$
 штраф за ошибку

$$\begin{cases} \min_{\epsilon, \xi^{+/-}, w, w} \left(\frac{1}{2} ||w||^2 \right) + C \left(\frac{1}{l} \sum_{i=1}^{l} (\xi_i^+ + \xi_i^-) + \epsilon v \right) \\ (\langle w, x_i \rangle_H + w_0) - y_i \le \epsilon + \xi_i^+, \xi_i^+ \ge 0, \\ y_i - (\langle w, x_i \rangle_H + w_0) \le \epsilon + \xi_i^-, \xi_i^- \ge 0 \\ \epsilon \ge 0 \end{cases}$$

□ *ν*-свойства аналогичны классификации: верхняя граница пропорции опорных векторов – ошибок и нижняя граница пропорции опорных векторов – граничных, асимптотически достигаются

Двойственная задача ϵ - SVR

- Аналогично задачи классификации:
 - выписываем Лагранжиан, дифференцируем по прямым переменным, подставляем в Лагранжиан
 - с учетом условий ККТ переходим к двойственной, она не зависит от переменных прямой задачи и является задачей квадратичного программирования
- Двойственная задача:

$$\begin{cases} \max_{\alpha^{+},\alpha^{-}} -\frac{1}{2} \sum_{i,j=1}^{l} \left(\alpha_{i}^{+} - \alpha_{i}^{-}\right) \left(\alpha_{i}^{+} - \alpha_{i}^{-}\right) K(x_{j}, x_{i}) - \epsilon \sum_{i=1}^{l} \left(\alpha_{i}^{+} + \alpha_{i}^{-}\right) + \sum_{i=1}^{l} y_{i} \left(\alpha_{i}^{+} - \alpha_{i}^{-}\right) \\ \sum_{i=1}^{l} y_{i} \left(\alpha_{i}^{+} - \alpha_{i}^{-}\right) = 0, 0 \le \alpha_{i}^{+} \le \frac{C}{l}, 0 \le \alpha_{i}^{-} \le \frac{C}{l} \end{cases}$$

- Результат:
 - □ Опорные вектора: $\alpha_i^+ = C/l$ или $\alpha_i^- = C/l$ для ошибок (за ϵ полосой)

 - \Box Функция регрессии $g(x) = \sum_{i \in SV} (\alpha_i^+ \alpha_i^-) K(x, x_i) + w_0$

Двойственная задача v - SVR

Аналогичный вывод:

$$\begin{cases} \max_{\alpha^+,\alpha^-} \sum_{i=1}^l y_i (\alpha_i^+ - \alpha_i^-) - \\ -\frac{1}{2} \sum_{i,j=1}^l (\alpha_j^+ - \alpha_j^-) (\alpha_i^+ - \alpha_i^-) K(x_j, x_i) \\ \sum_{i=1}^l y_i (\alpha_i^+ - \alpha_i^-) = 0, \\ 0 \le \alpha_i^+ \le \frac{C}{l}, 0 \le \alpha_i^- \le \frac{C}{l} \\ \sum_{i=1}^l y_i (\alpha_i^+ + \alpha_i^-) \le \nu C \end{cases}$$

- \square Функция регрессии $g(x) = \sum_{i \in SV} (\alpha_i^+ \alpha_i^-) K(x, x_i) + w_0$
- \Box Связь ν SVR и ϵ SVR: при одинаковых C, w, w_0 однозначно связаны $\nu \Leftrightarrow \epsilon$, все равно какой из них задавать

7

Общие особенности методов оптимизации для SVM

- Основные вычислительные затраты:
 - Расчет матрицы ядра (для экономии памяти кэшируют по элементно или по строкам или по блокам матрицы ядра)
 - Численный метод оптимизации для задачи квадратичного программирования (когда остановится и какой использовать?)
- Если g решающая функция C-SVM, то:
 - □ можно оценить эмпирический риск с регуляризацией:

$$Q_{reg}(g) \ge Q_{reg}(g_{opt}) \ge Q_{reg}(g) - \frac{1}{Cl}Gap(g)$$

- \square сходимость обычно оценивают через Gap(g)
- \square С-классификация $Gap(g) = \sum_j C \max\left(0,1-y_jg(x_j)\right) + lpha_j(y_jg(x_j)-1)$
- \Box ϵ -регрессия:

$$Gap(g) = \sum_{j} C\left(\xi_{j}^{+} + \xi_{j}^{-}\right) + \alpha_{j}^{+}\left(\epsilon + g(x_{j}) - y_{j}\right) + \alpha_{j}^{-}\left(\epsilon - g(x_{j}) + y_{j}\right)$$

 \square есть оценки Gap(g) и для $\nu-\mathsf{SVM}$

Методы оптимизации для задачи квадратичного программирования

Задача квадратичного программирования:

Q — симметричная матрица

$$\begin{cases}
\min_{\alpha} \frac{1}{2} \alpha^T Q \alpha + c^T \alpha \\
A \alpha \le b
\end{cases}$$

- SVM особенности:
 - \square *Q* строится на основе матрицы ядер *K* и можно попытаться ее упростить
 - Существенная часть переменных или не опорные вектора ($\alpha=0$) или опорные вектора ошибки ($\alpha=C$), если найдем, то можно не пересчитывать

м

Градиентный спуск для задачи квадратичного программирования в SVM

■ Постановка задачи (g – решающая функция SVM):

$$Q_{reg} = \frac{1}{l} \sum_{i} L(y_{i}, g(x_{i})) + \frac{\gamma}{2} ||g||^{2}, \partial Q_{reg} = \frac{1}{l} \sum_{i} L'(y_{i}, g(x_{i})) + \gamma g$$

■ Шаг градиента для дискриминантной функции (η-длина шага):

$$g \leftarrow g - \eta \ \partial Q_{reg} = (1 - \eta \gamma)g - \frac{\eta}{l} \sum_{i} L'(y_i, g(x_i)) K(x_i, .)$$

Шаг градиента для коэффициентов дискриминантной функции:

$$\alpha \leftarrow \alpha - \eta(\gamma \alpha + c)$$
, где $c_i = L'(y_i, g(x_i))$

- \square для классификации $L'ig(y_i,g(x_i)ig) = egin{cases} -y_i,y_ig(x_i) < 1 \\ 0,$ иначе
- \square для классификации $L'ig(y_i,g(x_i)ig) = egin{cases} 1,g(x_i)-y_i > \epsilon \ -1,y_i-g(x_i) > \epsilon \ 0,$ иначе
- \square для не опорных векторов lpha остается $0 \dots$

Жадная разреженная аппроксимация матрицы ядра

- Основная идея уменьшить размерность матрицы ядра:
 - □ можно через матричные разложения, но вычислительно затратно
 - поэтому исходную матрицу ядра $K^{l imes l}$ приближают линейной комбинацией подмножеств ее строк и столбцов (без потери общности можем считать их первыми $m \ll l$), тогда:

$$\left\|K - \widetilde{K}\right\|^{2} \to \min_{\beta} \Rightarrow \beta_{opt} = K^{l \times m} (K^{m \times m})^{-1}, \forall i, j : \widetilde{K}(x_{i}, x_{j}) = \sum_{s=1}^{m} \beta_{is} K(x_{i}, x_{s})$$

- \square Решаем задачу меньшей размерности с $K^{m \times m}$, и выражаем решение исходной задачи через нее
- Как выбрать индексы для m?
 - \square есть простые процедуры $\left(K^{s+1\times s+1}\right)^{-1} \leftarrow (K^{s\times s})^{-1}$ и $\beta_{opt}^{l\times s+1} \leftarrow \beta_{opt}^{l\times s}$
 - жадный алгоритм: начинает с пустого множества индексов, берет небольшое случайное подмножество индексов, находит среди них лучший, добавляет его, берет следующее случайное подмножество и так далее пока не найдет m индексов

Методы внутренней точки для SVM

- Основные свойства (неформально):
 - □ Эффективны для небольших задач, полиномиальная сходимость
 - Для некоторых ядер можно эффективно сократить (аппроксимировать)
 матрицу ядра и распараллелить оптимизацию в том числе по данным
 - □ Выбор начального приближения «внутри» ограничений и последовательное приближение решения (например, с помощью ньютоновского метода) с штрафом за приближение к границе
 - □ Есть много вариантов для SVM, например, барьерные методы
- Упрощенный пример барьерного метода:
 - □ сводим задачу условной оптимизации $\min_{x} f(x)$, при $cx \le 0$ к безусловной, добавляя ограничения-неравенства в **барьерную** функцию с параметром μ :

$$\min_{x} f(x) + \mu \sum_{i} \log(-c_{i}(x))$$

последовательно пересчитываем x, делая шаг методом Ньютона, и меняем $\mu \to 0$ по определенной стратегии (например, $\mu^{(t+1)} \leftarrow \mu^{(t+1)} \sigma$, $\sigma \in (0,1)$), после каждого пересчета x

.

Методы активных множеств

- Покоординатный спуск в пространстве переменных:
 - □ Решаем стандартную задачу SVM квадратичного программирования:

$$\begin{cases} \min \frac{1}{2}\alpha^TQ\alpha + c^T\alpha \\ A\alpha = b, \{0 \leq \alpha \leq u\} \text{ или } \{\alpha + t = u, \alpha \geq 0, t \geq 0\} \end{cases}$$

- «Замораживаем» часть переменных с индексами $S_f \subset [l]$, остальные индексы рабочее (активное) множество $S_w = [l] \backslash S_f$
- □ Получаем:

$$Q = \begin{bmatrix} Q_{ww} & Q_{fw} \\ Q_{wf} & Q_{ff} \end{bmatrix}, c = (c_w, c_f), A = [A_w A_f], u = (u_w, u_f)$$

Получаем и решаем такую же задачу, но меньшей размерности по α_w и с измененными граничными условиями: «заморожено» - не оптимизируется

$$\begin{cases} \min\limits_{\alpha_{w}} \frac{1}{2} \alpha_{w}^{T} Q_{ww} \alpha_{w} + [c_{w} + Q_{wf} \alpha_{f}]^{T} \alpha_{w} + \frac{1}{2} \alpha_{f}^{T} Q_{ff} \alpha_{f} + c_{f}^{T} \alpha_{f} \\ A_{w} \alpha_{w} = b - A_{f} \alpha_{f} \end{cases} \{ 0 \leq \alpha_{w} \leq u_{w} \}$$
 или $\{ \alpha_{w} + t_{w} = u_{w}, \alpha_{w} \geq 0, t_{w} \geq 0 \}$

v

Методы активных множеств

	Основная	П	робл	тема
_	<i>y</i> 0110 <i>D</i> 11071		000	101110

- как выбрать индексы для активного множества?
- приведет ли выбранная стратегия обновления активного множества к сходимости к глобальному оптимуму?
- Стратегии выбора (и перебора) индексов:
 - □ минимизация штрафа за ошибки (нарушения граничных условий)
 - □ максимизация градиента прямой или двойственной целевой функции
 - □ на основе улучшения Лагранжиана напрямую
- Популярный подход последовательная минимальная оптимизация (Sequential minimal optimization, **SMO**)
 - □ В активном множестве только два индекса позволяет получить аналитическое решение малой задачи для обоих (без итераций)
 - □ Перебираются пары индексов (возможно с дополнительными эвристиками для не рассмотрения части наблюдений)
 - Находятся новые значения множителей Лагранжа для каждой пары и значение Лагранжиана, по нему выбирается лучшая пара

Выводы по SVM

- SVM для классификации строит разделяющую гиперплоскость:
 - □ с максимально широкой границей в спрямляющем пространстве признаков, неявно индуцированном kernel функцией, используемой в качестве скалярного произведения
- SVR строит:
 - пинейную в спрямляющем пространстве и (возможно) нелинейную в исходном пространстве признаков регуляризованную регрессию, используя ϵ —толерантную робастную функцию потерь
- Параметры регуляризации задают компромисс между точностью подгонки и обобщающей способностью модели:
 - □ контролируя ее сложность
 - □ уменьшая влияние выбросов и мультиколлинеарности
 - \square C или u для классификации
 - \square C и ν или C и ϵ для регрессии
 - υ свойства позволяют явно контролировать ожидаемую пропорцию ошибок
 - □ параметры функции ядра также влияют на сложность модели

Выводы по SVM

- Модели опорных векторов представляют собой:
 - □ линейную комбинацию kernel функций от части наблюдений из тренировочного набора (опорных векторов) и зависят только от них
- Достоинства:
 - □ Единственное решение при любом начальном приближении
 - □ Kernel trick смена пространства признаков «на лету» без необходимости их явно рассчитывать
 - Понятная геометрическая интерпретация
 - □ Относительная устойчивость к проклятию размерности
 - □ Явный контроль сложности модели
- Основные недостатки:
 - □ Качество существенно зависит от метапараметров регуляризации
 - □ Построение ядра для конкретной задачи –трудоемкий, плохо формализуемый процесс, особенно для структурированных данных
 - □ Вычислительная сложность как на этапе построения матрицы ядра,
 так и на этапе оптимизации
 - □ Нет встроенного отбора и оценка важности признаков