动手学深度学习 v2 李沐・AWS

线性代数

$$|A-\lambda I| = 0$$

标量

$$c = a + b$$
$$c = a \cdot b$$
$$c = \sin a$$

• 长度

$$|a| = \begin{cases} a & \text{if } a > 0 \\ -a & \text{otherwise} \end{cases}$$
$$|a + b| \le |a| + |b|$$
$$|a \cdot b| = |a| \cdot |b|$$

向量

• 简单操作

$$c = a + b$$
 where $c_i = a_i + b_i$
 $c = \alpha \cdot b$ where $c_i = \alpha b_i$

 $c = \sin a$ where $c_i = \sin a_i$

• 长度

$$||a||_{2} = \left[\sum_{i=1}^{m} a_{i}^{2}\right]^{\frac{1}{2}}$$

$$||a|| \ge 0 \text{ for all } a$$

$$||a + b|| \le ||a|| + ||b||$$

$$||a \cdot b|| = |a| \cdot ||b||$$

向量

$$c = a + b$$

$$c = \alpha \cdot b$$

数学家的'parallel for all do'

向量

• 点乘
$$a^{\top}b = \sum_{i} a_{i}b_{i}$$

•
$$\mathbb{E}^{\stackrel{\sim}{\nearrow}}$$
 $a^{\top}b = \sum_{i} a_{i}b_{i} = 0$

• 简单操作

$$C = A + B$$
 where $C_{ij} = A_{ij} + B_{ij}$
 $C = \alpha \cdot B$ where $C_{ij} = \alpha B_{ij}$
 $C = \sin A$ where $C_{ij} = \sin A_{ij}$

• 乘法 (矩阵乘以向量)

• 乘法 (矩阵乘以矩阵)

$$C = AB$$
 where $C_{ik} = \sum A_{ij}B_{jk}$

• 范数

$$c = A \cdot b$$
 hence $||c|| \le ||A|| \cdot ||b||$

- 取决于如何衡量 b 和 c 的长度
- 常见范数
 - 矩阵范数: 最小的满足的上面公式的值
 - Frobenius 范数

$$\|A\|_{\text{Frob}} = \left[\sum_{ij} A_{ij}^2\right]^{\frac{1}{2}}$$

特殊矩阵

• 对称和反对称

正定

$$||x||^2 = x^\top x \ge 0$$
 generalizes to $x^\top Ax \ge 0$

特殊矩阵

- 正交矩阵
 - 所以行都相互正交
 - 所有行都有单位长度 U with $\sum_{i} U_{ij} U_{kj} = \delta_{ik}$
 - ·可以写成 $UU^{\mathsf{T}} = \mathbf{1}$
- 置换矩阵

P where $P_{ij} = 1$ if and only if $j = \pi(i)$

• 置换矩阵是正交矩阵

- 特征向量和特征值
 - 不被矩阵改变方向的向量

• 对称矩阵总是可以找到特征向量

 $2x^2yy'+y^2=2$ groof = (af ; af) $tyx \cdot cotgx = 1$ $a^2 = b^2 + c^2 - 2bc$ co $\mathcal{B} = \begin{pmatrix} 2 & 1 & -1 & 0 \\ 3 & 0 & 4 & 2 \end{pmatrix}$ $Y_{i+1} = Y_i + b \cdot K_2$ 1/2 - 2 - 2 - 2 - 2 $\iiint_{M} \frac{1}{2} dx dy dz = \int_{0}^{2\pi} \left(\int_{0}^{2} \left(\int_{$ rrdo de de $\lim_{n \to +\infty} \frac{\sqrt{n^3+1}+n}{\sqrt[3]{3}n^2+2n-1}$ $2arctg \times - \times = 0$, I = (1, 10)(1+ex) sind 1/2 sin4x.cos3xdx 1/ y= 3/x+1 ix= tgt cos2 + cos2 + cos2 + = 1 2(b)=10-16 Sin2, n= (Fx; Fy; Fz) 2 +b2=c2 2,BITEC $\lambda_z = i \sqrt{14}$ $\frac{\chi^2}{Q^2} + \frac{\chi^2}{b^2} + \frac{z^2}{C^2} = 0$ $f(x) = 2^{-x} + 1, \varepsilon = 0.005$ sin2x= 2sinx.cosx e2-xy2=e;A[0;e;1] $\frac{2x}{x^2+2y^2}=2$ WHB1 # 0; 1/ # 0 sin(x+y)=sinx cosytosy |Z|= 02.63 $J(\frac{\partial f}{\partial x}) = 16 - x^2 + 16y^2 - 42 > 0$ $A = \begin{pmatrix} x_1 & 1 + x^2 & 1 \\ y_1 & 1 + y^2 & 1 \\ z_1 & 1 + z^2 & 1 \end{pmatrix}; x = 0, y = 1, z = 2$ $cos p = \frac{(1,0)}{\sqrt{3}}$ \$3x7+166x-0,17 (im (1+3)" A=[1:0;3]

 $x^3+x^2+y^3+2^3+xy2-6=0$

动手学深度学习 v2 李沐·AWS