WaveNet: A Generative Model for Raw Audio Aäron van den Oord et al., 2016

Rui Yoshinaga

July 21, 2021

Overview

WaveNet: A Generative Model for Raw Audio

- Topic: Audio Generation
- Contributions:
 - Text-to-Speech (TTS): Generating natural speech
 - Develop new architectures
 - Various audio generation by conditioning
 - Application to music generation, etc.
- Generated samples:
 - https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

Composition

waveform
$$\boldsymbol{x} = \{x_1, \dots, x_T\} \in [-1, 1]^T$$

Modeling of p(x)

• The joint probability of waveform \boldsymbol{x} is factorised:

$$p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t \mid x_1, \dots, x_{t-1})$$
 (1)

• Sample x_t is conditioned on the previous samples x_1, \ldots, x_{t-1}

Composition

Architecture

- NN that takes inputs x_{t-L}, \ldots, x_{t-1} and outputs x_t
- Modeling by CNN (Dilated Causal Convolution)
 - c.f. image generation [1, 2], w/o pooling layer

Training and Generation

- Training: maximize the log-likelihood
- Generation: autoregression

Softmax Distribution

Input/Output

- Input: previous samples x_{t-L}, \ldots, x_{t-1}
- Output: the probability distribution of next sample x_t

μ -law companding transofrmation

- raw audio: quantized at 16bits, amplitude: 2^{16} levels
- Apply μ -law companding transformation o 256 levels

$$f(x_t) = \operatorname{sign}(x_t) \frac{\ln(1 + \mu|x_t|)}{\ln(1 + \mu)}$$

where $-1 < x_t < 1$ and $\mu = 255$

Causal Convolution

- Basic structure of WaveNet
- Independent future samples x_{t+1}, x_{t+2}, \dots
- No recurrent connections, training in parallel
- Increase in the size of receptive field
 - In the above figure, receptive field = 5
 - Increase layers or filter size

Dilated Convolution

 $receptive \ field = 16$

- Skip inputs at fixed intervals
- In WaveNet, dilation is doubled $(1, 2, 4, \ldots, 512, 1, 2, \ldots)$
 - Exponential increase in dilation o larger receptive field
 - Stacking blocks further increases the size of receptive field

Stacked Dilated Convolution

Gated Activation Unit

Gated activation unit [2]

$$z = \tanh(W_{f,k} * x) \odot \sigma(W_{g,k} * x)$$
 (2)

- $W_{*,k}$: learnable convolution filter in k-th layer
- *: convolution operator
- Worked significantly better than ReLU

Residual and Skip Connection

- Residual [3] and Skip Connections
 - Speed up convergence
 - Enable training of much deeper model

Conditional WaveNets

- Modeling conditional distribution $p({m x}|{m h})$ by additional input ${m h}$
- Eq.(1) now becomes

$$p(\boldsymbol{x} \mid \boldsymbol{h}) = \prod_{t=1}^{T} p(x_t \mid x_1, \dots, x_{t-1}, \boldsymbol{h})$$
(3)

- Generate audio with the required characteristics by conditioning
 - e.g.1 speaker ID (who speaks)
 - e.g.2 text for TTS (what to speaks)
- Conditioning in 2 different ways:
 - {Global, Local} conditioning

Global Conditioning

Conditioning on single h that influences output across all timesteps
 e.g. TTS: speaker embedding (who speaks)

The activation function from Eq.(2) now becomes:

$$\boldsymbol{z} = \tanh(W_{f,k} * \boldsymbol{x} + V_{f,k}^T \boldsymbol{h}) \odot \sigma(W_{g,k} * \boldsymbol{x} + V_{g,k}^T \boldsymbol{h})$$

- W_{*,k}: learnable convolution filter in k-th layer
- * : convolution operator
- $V_{*,k}$: learnable linear projection in k-th layer
- $V_{*k}^T \mathbf{h}$: broadcast over the time dimention

Local Conditioning

- Condition on the second time series $m{h} = \{h_t\}$
 - h has a lower sampling frequency than audio x e.g. TTS: linguistic features
- Map \boldsymbol{h} to a new time series $\boldsymbol{y} = f(\boldsymbol{h})$
 - f: transposed convolutional network (learned upsampling)
 - (also possible to use $V_{f,k}*m{h}$ repeatedly across time)
- The activation function from Eq.(2) now becomes:

$$z = \tanh(W_{f,k} * x + V_{f,k} * y) \odot \sigma(W_{g,k} * x + V_{g,k} * y)$$

- $W_{*,k}, V_{*,k}$: learnable convolution filter in k-th layer
- * : convolution operator

Experiments (Music)

Music Datasets

- MagnaTagATune dataset
 - each 29-second clip is annotated with tags
- 2. YouTube piano dataset

Receptive field

- several seconds: long-range consistency ×
- enlarging the receptive field \rightarrow musical samples

Generating results

- Harmonic and aesthetically pleasing even no conditioning
- Conditioning on tags
 - Train with one-hot vector corresponds to the tags
 - Control generation by conditioning on the one-hot vector
- https://www.deepmind.com/blog/wavenet-generative-model-raw-audio/

Experiments

Multi-Speaker Speech Generation

- Conditioned on the speaker: feed the speaker ID as one-hot vector
- Generate non-existent but human language-like words realistically
- Mimicked the breathing and mouth movements of the speakers

Text-To-Speech

- Conditioned on the linguistic features and the value of $\log f_0$
- Achieved 5-scale MOSs in naturalness above 4.0
- Significantly better than the baseline

Speech Recognition

- Partially change architecture and loss
- · Obtained the best score as model trained directly on raw audio

Conclusion

- WaveNet: A generative model for raw audio
 - Directly generate audio as waveform (raw audio domain)
- Dilated Causal Convolutions
 - Enables large receptive field with exponentially increasing dilation
- Can be applied in various applications about audio signals
 - TTS, Music generation, Speech recognition

References

- [1] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent Neural Networks, 2016.
- [2] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray Kavukcuoglu. Conditional Image Generation with PixelCNN Decoders, 2016.
- [3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition, 2015.