

ET.	EXAMEN	SE	APRIJERA	CON 3	EJERCICIOS	CORRECTAMENTE	RESUELTOS
	TO A TATALLA	DL	AL HULLDA	COLLO	TOTALOTOD	COLUMNICATION	ITTOUTHION

Apellido:	Nombres:
Padrón:	

- 1. a) Indicar las condiciones que debe cumplir un trazador cúbico para que sea una una Spline cúbica natural que interpole a una función $f \in C^2[a,b]$ en n+1 puntos del intervalo [a,b]; $a = x_0 < x_1 < ... < x_n = b$.
- 2. Se sabe que la ecuación diferencial no lineal de segundo orden: $\frac{d^2\theta}{dt^2} + \frac{g}{L}sen(\theta) = 0$, es un modelo del movimiento de un péndulo simple de longitud L. Sabiendo que: $g = 9.8 \frac{m}{s^2}$ y L = 1m. Aplicar el método de Euler en el intervalo [0,3] para aproximar $\theta(0.2)$, sabiendo que $\theta(0) = 0$, $\theta'(0) = -1$ y h = 0.1. Trabajar con tres decimales y redondeo.
- - b) Estimar la población para t=3.5 (el tiempo está medidio en meses). Trabajar con tres decimales y redondeo.
- 4. Determinar la intersección entre la circunferencia $(x-1)^2 + y^2 = 4$ y la hipérbola xy = 1 tomando como valor inicial el vector $x_0 = (0.5, 1)^t$. Utilizar tres iteraciones del método de Newton para sistemas no lineales. Usar dos decimales y redondeo.
- 5. a) Determinar los valores de N y de h que se requieren para aproximar la integral $\int_{0.5}^{1} \cos(\sqrt{x}) dx$ con un error menor que 10^{-2} . (El error para la regla de los Trapecios compuesta es: $|E_T| = \frac{h^2(b-a)}{12}|f''(\xi)|, \ \xi \in [a,b].$
 - b) Con lo hecho en el punto anterior estimar el valor de dicha integral.