Written Report: Assisting Scouts in Identifying Top Talent (CKM Sports Mangement)

INSY 442: Data Analysis & Visualization

Dr. Geneviève Bassellier

Alexander Sukhanov (260988130)

Emily Hagelauer (260892609)

Jonathan Steinberg (260924571)

Justin Ma (260898526)

Thomas Atchison (260986081)

Introduction

CKM Sports Management is a Vancouver-based full-service hockey agency founded in 2010. The organization supports amateur and professional hockey players throughout North America and internationally through a trusted network of scouts, trainers, agents, and player support staff to help players achieve success on and off the ice. CKM provides a holistic range of developmental services to its clients including nutrition and strength training, post-secondary education and financial planning, assistance with finding professional and junior hockey jobs as well as hockey analytics. CKM's rapid growth can be attributed to their innovative approach and superior client services, which has enabled them to represent clients in over seven professional hockey leagues globally, including the WHL, OHL, QMJHL, AHL, ECHL, SPHL, and various European hockey leagues. CKM's partners include Project Sport Agency, KeySport Agency, and Sport Agon.

CKM leverages technology and data to determine a players' strength, weaknesses, tendencies, and what works and doesn't work for them. The use of hockey analytics has practical applications that can be exploited by individuals for both development and negotiation utilization. Player analytic performance reports can be a key component to accelerated development, with individual statistical tendencies shared with coaching staff for better integration within team coaching strategy. For negotiation, analytics are highly valuable to agents, scouts, and professional hockey programs. Tracked data can serve as a negotiating tool by comparing their client's inputs and outputs players with statistical cohorts.

CKM's data can also be utilized for scouting purposes, where data-driven insights are used to identify and select top talent. Assisting scouts in identifying top talent is important because it helps upper management make informed decisions about who to draft or sign. By using data and advanced analytics to identify top performers and future stars, teams can gain a competitive edge and improve their chances of success. In addition, selecting the right talent can impact a team's revenue through increased ticket sales, merchandise, and sponsorship deals.

For this project, we constructed dashboards to assist scouts in identifying the best hockey talent at the minor league level. Our dashboards equip scouts and team executives with the information they need to make informed decisions about player selection and provides them with the flexibility to use the tool as they see fit. We assembled two dashboards, one for forwards and one for defense. The graphs within each dashboard highlight specific aspects of a player's performance relevant to their position, such as their playmaking vs goal scoring tendencies, shooting ability, as well as their offensive and defensive impact. Some of the visualizations represent different archetypes of players for each position, such as puck luck, discipline, heavy hitters, and power play specialists, enabling scouts to assess players on a holistic set of key performance indicators and identify players who align with their team's objectives. Our dashboards also allow scouts to effectively compare players by filtering across age groups, leagues, teams, and player names across all visualizations. Certain graphs are equipped with their own filters, allowing scouts to customize the relationship they want to focus on. In addition, the dashboards provide a seperate section for player analysis, making it easier for scouts to focus on key information and gain a better understanding of players' strengths and weaknesses.

Dataset and Methodology

The dataset used for our dashboards was extracted from InStat, an online database for players and teams in a variety of sports that is popular amongst the hockey analytics community. Accessing the InStat database requires a paid-for subscription, therefore the dataset was provided to us by CKM Sports. The dataset was composed of 4,538 players across 177 teams in 16 different minor leagues across Canada. Each of these minor leagues either consists of players under 16, 17, or 18 years of age.

Player were evaluated on 31 statistics, most of which are related to their ice time, points, shots, and faceoffs. These statistics were given to us in average per game form, so we calculated each of their totals by multiplying their averages by the number of games played by each player. This included calculating their total time on ice in seconds, which the totals were then divided by and subsequently multiplied by 3,600 to obtain statistics per 60 minutes. Hockey statistics are often displayed in "Per 60" form as it is a normalized metric that facilities a fairer comparison between players with differences in ice time.

In addition to these player-centric statistics, we were able to extrapolate totals for each team by summing the statistics of all players on the same team. We then divided each player's total by that of their team for each statistic to create a "relative to team" metric. Statistics displayed as a proportion of their team's total allowed us to gain insight on the most dominant players on each team, however they should be analyzed with caution: Players on teams with a lower overall talent level may have a greater share of their team's statistics, which can make them seem better than they actually are. On the other hand, players on teams with a high concentration of talent may have a lower share of their team's statistics, thus appearing worse than they are in reality.

Challenges: Duplicate Players

There were 382 player names that appeared more than once in our dataset. These duplicate players pose several issues, one of which is distinguishing between instances of the same player that appear in multiple rows and different players who coincidentally share the same name. In the former case, the same player would appear more than once in our visualizations, which can confuse the end-user and limit their ability to analyze these players holistically.

To remedy this issue, we analyzed the values for Team, League, Number, and Position attributes between the rows of each duplicate player. Given our limited domain knowledge of players in the dataset, we used these attributes to find patterns to help uncover the reason for these duplicate players. Our results were as follows:

- 57 players had same values for Team and same values for League
- 188 players had same values for Team and different values for League
- 62 players had different values for Team and same values for League
- 75 players had different values for Team and different values for League

All the players in the subset of 57 were evidently the same player appearing in more than one row in the dataset. Some players were duplicated because they had played both forward and defense positions, while others had several jersey numbers. For all 57 players, we merged their statistics by taking the sum between their duplicate rows and created an additional column for those that had multiple jersey numbers. We did not have to create an additional column for Position since we opted to create sperate dashboards for forwards and defensemen anyway.

The group of 188 players predominately consisted of those who play in several age groups with similar league abbreviations. For example, some talented 16-year-old players play in both the CSSHL U16 and CSSHL U17 leagues. However, the difference between league abbreviations were sometimes starker; some players played in the CSSHL, a country-wide league, and the SMAAAHL, a Saskatchewan-based league. Regardless, CKM instructed us to keep these players as separate observations in the dataset since to account for the skill disparity between leagues; often a 16-year-old will perform at a much higher level in their own league than in higher age groups.

When handling the players in the group of 62 and 75 players that played in different leagues, we took a hybrid approach. First, we extracted players who are separate individuals that coincidentally share the same name. Most of these players had different values for Team, League, and Number between their duplicate rows. Then, we merged similar team abbreviations under a common name, specifically their team abbreviation belonging to their oldest age group. For example, the Mississauga U16 team in the GTHL league is called the Reps, while their U18 team is referred to as the Rebels, so we assigned the team name Rebels to all rows of this type. Lastly, the difference between some team abbreviations between duplicate were quite distinct, and were clearly not part of the same organization. In this case, we were instructed to retain the observation that players logged the most games with and remove the row containing the team they played for the least. We discovered that, on average, players played 17.9 games with their primary team and only 2.3 games with their secondary team. Therefore, the removal of their secondary-team data would have a negligible affect on their player evaluation.

Now, the only type of duplicate players remaining in the dataset are those who share the same team abbreviation and different league abbreviation between their rows. Typically, our dashboard would be able to dynamically display their statistics depending on what filters are activated. For a player in a U16 and U17 league, our dashboard would only display their U17 stats when the U17 filter is activated, and the summation of their stats when no filters are activated. However, since most of our data is in Per 60 or Relative to Team form, summing statistics between league would be erroneous. Therefore, we opted to keep these players as separate entities in our visualizations.

Challenges: Data-Related

Data quality posed several challenges, such as inappropriate formatting and missing data points. To ensure readability, some columns needed to be appropriately formatted. For instance, the "Time on Ice" column followed the DD-MM-YYYY HH:MM:SS format, which meant that players with ice time over 24 minutes needed to be manually adjusted to a more readable format. Additionally, some columns had missing data points, which hindered the ability to draw reliable conclusions. For example, the "Passes to the Slot" column only had 1,042 out of 4,549 observations, and was thus dropped to reduce the impact of missing data bias. Furthermore, many teams played a small number of games (41 teams out of 184 had less than five games played), which may lead to a small sample bias. Therefore, when developing charts, we were cautious when including players with a small number of games played.

Another challenge we faced was the limited availability of certain attributes in the dataset provided by CKM. We noticed that some features that were widely available on InStats were missing in our dataset which would have enables us to develop more comprehensive graphs, and help scouts identify future talents more efficiently. Analyzing additional features related power plays, penalty kills, and possession time would have provided our analysis with more diversity and allowed us to evaluate players

more comprehensively, enabling the identification of hidden talents that are often missed through traditional metric analysis. We understand that most of these additional features were excluded to ensure comparability across leagues as they are not measured uniformly in all leagues. Overall, we prioritized the comparability of data across leagues over delving into more high-depth statistics. Our main objective was to ensure that potential talents from all leagues were not excluded simply because their league did not provide advanced statistics.

Lastly, we had small issues with communication. While our group was able to communicate well together, the lack of interactivity in Tableau made it hard to work all together, especially when creating dashboards. Yet, our group was able to subdivide the work efficiently and benefit from synergy while working individually as some members attempted to develop features and then met to build on each finding.

APPENDIX

Graph	Objective	Challenges
Puck Luck	This graph is to identify the players more likely to regress in	Had to create
Graph	the future. The % of Secondary Assists [Secondary Assist /	calculated fields
	Total Assists] (Y-axis) emphasizes players that had few	for both axis.
	primary ones (more impactful and repeatable). The Shooting	
	Percentage [Goals / Shots on Goal] (X-axis) single out high	
	shooting percentage players (less likely to be sustained).	
Defensive	This graph aims to identify players with the toughest	This chart only
Forwards	assignments. The DZone Start % [Faceoff in DZone / Total	graphs centers
	Faceoff] emphasize players with defense-first assignments,	since they are the
	while the number of shots on the Penalty Kill emphasizes	only one taking
	players with more minutes played at 4 VS 5 (also a tougher	Faceoffs and had to
	assignment). The size and color of the bubble represents how	make sure the chart
	well they perform in these situations.	was not too clutter.
Relative to	This chart is to add context to the performance of players	Doing the toggle to
Team	through the integration of the team statistics. In fact, by	display the
	displaying the % of points from players compared to their	changing fields
	team, it is easy to identify players on bad team which may	required the use of
	have alter their statistics.	parameters +
		calculated fields.
+/- Relative to	This chart is to add context to the performance of players	This visualization
Team	through the integration of the team statistic. In fact, by	required much
	displaying the +/- from players compared to their team, it is	manipulation
	easy to identify players which did much better than their	beforehand to find
	teammates as they have a better goal differential than their	the team statistics
	teammates.	and then the player
		relative.
Primary Points	This chart shows the performance of players on the most	(see Primary Points
Correlation	important dimensions for forwards (Points per 60, Assists Per	Relative to Team
	60, Primary Assists Per 60, and Secondary Assists per 60) on	Bar Chart)
	a scatterplot. This chart will enable to see the best player (and	
	style) rapidly as they will appear in the top right of the	
	scatterplot.	
Goal scorers VS	This chart enables in the glimpse of an eye to see if a player is	Figure out the
playmakers	a playmaker or goal scorer. Through a stacked bar chart	multi-axing for the
	showing their number of goals per 60 (in orange) and assists	stacked chart.
	per 60 (in blue) one can identify the playing style of players	
	(e.g., high proportion of goals represents a goal scorer).	
Offensive	Our "catch-all statistic" enables users to see the overall	A lot of data pre-
Impact	offensive contribution of a player. This is the addition of the	processing was

	namentile ments of each player on the 2 immentant offensive	nagaggamy bafama
	percentile rank of each player on the 3 important offensive	necessary before
	metrics (Goals, First Assists, and Inner Slot Shots). The	using the data in
	boxplot with percentile enables users to see the difference	Tableau to create
	between individual data points (mostly through outliers).	our field.
Faceoff	The goal of this chart is to identify a new archetype: the	Making sure the
Effectiveness	faceoffs specialists. An underrated statistics when it comes to	points have
	forward – it defines whether you start with possession or not.	consistent size.
Sharp Shooters	This graph is to show who are the best pure goal scorers in the	Ensure the
	dataset by ranking them by shooting percentage [Goals / Shots	readability of the
	on Goal] (left horizontal bar chart) and which player gets the	side-by-side chart
	most shots from high danger areas – more likely to score	which can give
	goals (right horizontal bar chart).	data overload
		easily.
Heavy Hitters	This chart shows a new archetype of players: the players who	Ensure the proper
	are hard to play against. They take many penalties, they have	readability of the
	many hits per game, you do not want to be there at the same	plot despite having
	time as they are!	different axis scale.

Table 1: Forwards Graph

Graph	Objective	Challenge
Assists	This chart is to show the performance of players on the most	(see Primary Points
Correlation	important dimensions for an offensive defenseman (Assists	Relative to Team
	per 60, TOI Per 60, +/- Per 60) on a scatterplot. This chart	Bar Chart)
	will enable to see the best player rapidly as they will appear	
	in the top right of the scatterplot.	
Scoring Chance	This graph is to show who are the best defenseman at getting	(see Forward Shots
Creator	puck to the net – an undervalued statistic for defenseman.	Breakdown Chart)
	First, by looking at the % of shots that hit the net [Shots on	
	Goal / Shots (left horizontal bar chart) and which player gets	
	the most proportion of his team shots on the PP (if the PP is	
	centered around him).	
Defensive	Time one ice – although slightly biased – is a logical statistic	Adjusting the
Usage	to use when evaluating a Defenseman because of its	highlighter to
	universality. Scouts can easily understand this statistic as it is	efficiently visualize
	commonly used. The data displayed as a histogram also	filtered player.
	enables us to see the stats relative to others quickly.	
Defenseman	Our "catch-all statistic" that enables users to see the overall	A lot of data pre-
Impact	contribution of a player. This is the addition of the percentile	processing was
	rank of each player on the 3 important metrics (Time on Ice,	necessary before
	Primary Points, and +/-). The boxplot with percentile enables	using the data in
	users to see the difference between individual data points	Tableau to create
	(mostly comparing outliers).	our field.

Plus/Minus (Per	This chart is to show the performance of players on one of	Select the most
Game)	the most important dimensions for defenseman: +/ The	appropriate way to
	objective is to see who the best all-around defenseman are.	display the value.

Table 2: Defensemen Graph

Graph	Description	Challenges
Primary Points Breakdown	This dashboard is the first layer of	The interconnectivity
Stacked Chart,	analysis for forwards: it enables scouts to	of every graph (i.e.,
Offensive Impact,	identify the best talent. However, it does	with the filters and
Primary Points Correlation,	so by presenting different archetype of	highlighters)
Faceoff Effectiveness,	players: The playmakers, the goals	
Sharp Shooters	scorers, the overall offensive gem, and the	
	Faceoff specialists.	

Table 3: Forwards – Scouting Dashboard

Graph	Description	Challenges
Puck Luck Graph,	This dashboard is the second layer of	Finding enough
Defensive Forwards,	analysis: once the best players were	metrics to create a 2 nd
Relative to Team,	identified, this dashboard adds context to	dashboard that remains
¬/- Relative to Team	the data and enables to understand if the	insightful.
Heavy Hitters	player performance is likely going to stay	
	the same or regress.	

Table 4: Forwards – Player Situational Data

Graph	Description	Challenges
Defenseman Impact,	This dashboard enables scouts to	There was a lack of metrics for
Defensive Usage	identify the best talent.	defenseman.
Assists Correlation,	However, it does so by	
Scoring Chance Creator	presenting different archetypes	
Plus/Minus (Per Game)	of players: The overall gems, the	
	offensive defenseman, and the	
	best defensive defenseman.	

Table 5: Defensemen – Scouting Dashboard