Analízis I

Simon László előadása alapján

ELTE, 2009. január

Ajánlott irodalom:

- Komornik Vilmos: Valós analízis előadások
- Mezei István, Faragó István, Simon Péter: Bevezetés az analízisbe

Előadó e-mail címe: simonl a ludens.elte.hu-nál

Ez a jegyzet **nem** szakirodalom s nem garantált, hogy az órai anyagot teljesen lefedi, az előadásokra bejárni ajánlott.

Ha a jegyzetben helyesírási, tartalmi vagy formai hibát találsz, kérlek jelezd az előadónak vagy a tuzesdaniel@gmail.com e-mail címen!

A korábban (középiskolában) tanultakból általánosítunk. \mathbb{R}^n -ben éltünk eddig, ahol vektor alatt ezt értettük: 09.16 $\mathbf{v} = (v_1, v_2...v_n)$ ahol $v_j \in \mathbb{R}$ és $\mathbf{v} \in \mathbb{R}^n$ Ezen vektorfogalmat fogjuk általánosítani úgy, hogy a már korábban tanult vektorok némely tulajdonságait kiválasztjuk, s egy halmaz (\mathbb{V}) elemeit (a, b és c) akkor fogjuk vektoroknak nevezni, ha az alább kiválaszott - és korábban (középiskolában) már tanult - tulajdonságokat (a műveletekkel) teljesítik.

• összeadás +

 \mathbb{R}^n -ben azt mondtuk, hogy $\mathbf{v} + \mathbf{u} = (v_1, v_2 ... v_n) + (u_1, u_2 ... u_n) = (v_1 + u_1, v_2 + u_2 ... v_n + u_n)$, ezek tulajdonságaiból az alábbiakat általánosítjuk:

- 1. a + (b + c) = (a + b) + c (asszociativitás)
- 2. $\exists !0 \in \mathbb{V} : a + 0 = 0 + a = a$ (egy ség, semleges elem létezése)
- 3. $\forall a \in \mathbb{V} \exists ! (-a) \in \mathbb{V} : a + (-a) = 0$ (inverz elem létezése)
- 4. a + b = b + a (kommutativitás)

Az első 3 tulajdonságokkal rendelkező struktúrát csoportnak, a 4-ikkel is rendelkezőt Abel-csoportnak, vagy kommutatív csoportnak nevezzük.

• skalárral való szorzás ·

Legy en $\lambda, \beta \in \mathbb{R}! \mathbb{R}^n$ -ben azt mondtuk, hogy $\lambda \mathbf{v} = \lambda(v_1, v_2...v_n) = (\lambda v_1, \lambda v_2...\lambda v_n)$, ezek tulajdonságaiból az alábbiakat általánosítjuk:

- 1. $\lambda(a+b) = \lambda a + \lambda b$, $(\lambda + \mu)a = \lambda a + \mu a$ (disztributivitás)
- 2. $\lambda(\beta a) = (\lambda \beta)a$
- 3. 1a = a

<u>Definíció</u>: Ha egy halmazon értelmezve van az összeadás és a skalárral való szorzás a fentiek szerint, akkor azt

vektortérnek (avagy lineáris térnek) nevezzük.

Ismert művelet volt \mathbb{R}^n -ben a skaláris szorzás, ezt értettük alatta: $\langle \mathbf{v}, \mathbf{u} \rangle = \sum_{j=1}^n v_j u_j$. Erre érvényesek az alábbi

tulajdonságok:

- $\langle a, b + c \rangle = \langle a, b \rangle + \langle a, c \rangle$
- $\langle a, b \rangle = \langle b, a \rangle$
- $\lambda \langle a, b \rangle = \langle \lambda a, b \rangle$
- $\langle a, a \rangle \ge 0$ és $\langle a, a \rangle = 0 \Leftrightarrow a = 0$

Definíció: Legyen X vektortér, amelynek elemei között értelmezve van a skaláris szorzat (két elem skaláris szorzata egy \mathbb{R} -beli szám) a fenti tulajdonságokkal. Ekkor X-t valós euklideszi (eukleidészi) térnek nevezzük. Jó **példa** az euklideszi térre a [0,1] intervallumon értelmezett folytonos függvények összessége (röviden C[0,1]) a

szokásos összeadással, számmal való szorzással, ha a skaláris szorzat definíciója: $\langle f,g \rangle := \int_0^1 f \cdot g$.

<u>Definíció</u>: Legy en X valós euklideszi tér! Ekkor egy $a \in X$ elem normáját így határozhatjuk meg: $||a|| := \sqrt{\langle a, a \rangle}$ A norma tulajdonságai:

- 1. $||a|| \ge 0$ és $||a|| = 0 \Leftrightarrow a = 0$
- 2. $\|\lambda a\| = |\lambda| \cdot \|a\|$
- 3. $||a+b|| \le ||a|| + ||b||$ (háromszög egy enlőtlenség), mert $\langle a+b,a+b\rangle = \langle a,a\rangle + \langle b,a\rangle + \langle a,b\rangle + \langle b,b\rangle =$ = $||a||^2 + ||b||^2 + 2\langle a,b\rangle \le ||a||^2 + ||b||^2 + 2||a|| \cdot ||b|| = (||a|| + ||b||)^2$. Itt felhasználtuk az ún Cauchy-Schwarz-egy enlőtlenséget, mely szerint:

<u>Tétel</u>: Legy en X valós euklideszi tér! Ekkor $\forall a, b \in X$ esetén $|\langle a, b \rangle| \le ||a|| \cdot ||b||$. (Cauchy-Schwarz egy enlőtlenség, röviden CS)

Bizony ítás: $0 \le \langle a + \lambda b, a + \lambda b \rangle = \langle a, a \rangle + \langle \lambda b, a \rangle + \langle a, \lambda b \rangle + \langle \lambda b, \lambda b \rangle = \langle a, a \rangle + 2\lambda \langle a, b \rangle + \lambda^2 \langle b, b \rangle$, ez teljesül minden λ értékre, így $4\langle a, b \rangle^2 - 4\langle a, a \rangle \langle b, b \rangle \le 0$, vagy is $\langle a, b \rangle^2 \le \langle a, a \rangle \langle b, b \rangle \Rightarrow |\langle a, b \rangle| \le \sqrt{\langle a, a \rangle} \sqrt{\langle b, b \rangle} = ||a|| \cdot ||b||$, és pont ezt akartuk igazolni.

<u>Definíció</u>: legy en *X* vektortér, amely en értelmezve van egy norma a fenti tulajdonságokkal, ekkor *X*-t normált térnek nevezzük.

Példa: X = C[0,1], a függvény normája pedig ||f||: = sup |f|.

Egy normált térben mindig értelmezhető az elemek ρ távolsága, $\rho(a,b) := ||a-b||$. A távolság (metrika) tulajdonságai:

1.
$$\rho(a,b) \ge 0$$
 és $\rho(a,b) = 0 \Leftrightarrow a = b$

- 2. $\rho(a, b) = \rho(b, a)$
- 3. $\rho(a,c) \le \rho(a,b) + \rho(b,c)$ (háromszög egyenlőtlenség)

<u>Definíció</u>: Legy en X valamily en halmaz és tfh értelmezve van $\rho: X \times X \to \mathbb{R}$ függvény (metrika, távolság) a fenti tulajdonságokkal! Ekkor X-t metrikus térnek nevezzük.

Topológiai alapfogalmak a metrikus térben

• Legy en X metrikus tér! Egy $a \in X$ pont r sugarú körny ezete azon pontok összessége, amely ek a-tól r-nél kisebb távolságra vannak: $B_r(a) := \{x \in X : \rho(x, a) < r\}$

Pont és halmaz viszonya

Legy en $a \in X, M \subset X$!

<u>Definíció</u>: azt mondjuk, hogy az a pont az M halmaznak belső pontja, ha létezik a-nak olyan r sugarú környezete, hogy $B_r(a) \subset M$. Jele: $a \in \text{int}(M)$

<u>Definíció</u>: a pont az M halmaznak külső pontja, ha létezik a-nak olyan r sugarú környezete, hogy $B_r(a) \cap M = \emptyset$. Jele: $a \in \text{ext}(M)$

<u>Definíció</u>: az a pont M-nek határpontja, ha a minden r sugarú környezete esetén $B_r(a) \cap M \neq \emptyset$ és $B_r(a) \cap M^C \neq \emptyset$. Jele: $a \in \partial(M) = \text{front}(M)$

<u>Állítás:</u> $\partial(M)$, ext (M), int (M) halmazok diszjunktak, uniójuk kiadja X-et.

<u>Definíció</u>: egy $a \in X$ pontot az M halmaz torlódási pontjának nevezünk, ha az a pont minden környezetében van M-beli, de a-tól különböző pont, formailag: a torlódási pont, ha $\{B_r(a)\setminus\{a\}\}\cap M\neq\emptyset$. Az M halmaz torlódási pontjainak halmazát M-vel jelöljük.

M egjegy zés: ha az a pont M-nek torlódási pontja, akkor a-nak minden körny ezete végtelen sok pontot tartalmaz az M halmazból.

<u>Definíció</u>: egy $a \in M$ pontot az M halmaz izolált pontjának nevezünk, ha $\exists B_r(a): B_r(a) \cap M = \{a\}$ és $r \neq 0$.

<u>Definíció</u>: az M halmaz belső és határpontjainak összességét az M halmaz lezárásának nevezzük, $\overline{M} = \operatorname{int} M \cup \partial M$. M egjegy zés: \overline{M} pontjait szokás M érintkezési pontjainak is nevezni. Továbbá $a \in \overline{M} \Leftrightarrow \forall B_r(a) \cap M \neq \emptyset$.

Példák:

• $X = \mathbb{R}, M = (0,1) \Rightarrow M' = [0,1]$, izolált pontja nincs, $\partial M = \{0,1\}$, int $M = (0,1), \overline{M} = [0,1]$

- $X = \mathbb{R}, M = \mathbb{Z} \Rightarrow M' = \emptyset$, minden pontja izolált, $\partial M = \mathbb{Z}$, int $M = \emptyset$, $\overline{M} = \mathbb{Z}$
- $X = \mathbb{R}, M = [0,1] \Rightarrow M' = [0,1]$, nincs izolált pontja, $\partial M = \{0,1\}$, int M = (0,1), $\overline{M} = [0,1]$

Nyílt és zárt halmazok

<u>Definíció</u>: egy $M \subset X$ halmazt nyíltnak nevezünk, ha $\forall x \in M$ esetén $x \in \text{int}(M) \Leftrightarrow M \subset \text{int}(M) \Leftrightarrow M \cap \partial M = \emptyset$.

<u>Definíció</u>: egy M halmazt zártnak nevezünk, ha tartalmazza az összes határpontját $\Leftrightarrow \partial M \subset M$.

Példák (legyen X: = \mathbb{R}):

- M = [0,1] zárt halmaz
- M = (0,1) ny îlt halmaz
- M = (0,1] se nem nyílt, se nem zárt halmaz
- $M = \mathbb{Z}$ zárt halmaz (minden pontja izolált is)

Állítás: egy $M \subset X$ halmaz zárt $\Leftrightarrow M = \overline{M} \Leftrightarrow M' \subset M$.

<u>Tétel</u>: tetszőleges M halmaz esetén int (M) és ext (M) nyílt halmaz.

Bizonyítás (int (M) nyílt halmaz): legyen $a \in \operatorname{int} M$. Azt kellene megmutatni, hogy $\exists B_r(a) \subset \operatorname{int} M$. $a \in \operatorname{int}(M) \Rightarrow \exists B_R(a) \subset M$. Legyen r := R/2, ekkor $B_r(a) \subset \operatorname{int}(M)$, ugyanis ha $b \in B_r(a)$, akkor a háromszög egyenlőtlenség miatt $B_r(b) \subset B_R(a) \subset M$, $b \in \operatorname{int}(M) \Rightarrow B_r(a) \subset \operatorname{int}(M)$.

<u>Állítás:</u> ∂M , \overline{M} , M' zárt halmazok.

Tétel: ha $M \subset X$ nyílt, akkor $M^C = X \setminus M$ zárt halmaz.

Bizonyítás: tfh M nyílt halmaz, ekkor $\partial M \cap M = \emptyset$, $\partial M = \partial (M^c)$, ezért $\partial M^C \cap M = \emptyset \Rightarrow \partial M^C \subset M^C$, vagy is M^C zárt.

Tétel: akárhány nyílt halmaz uniója nyílt halmaz, és véges sok nyílt halmaz metszete is nyílt.

Bizonyítás: legy enek $M_{\gamma \in I}$ nyílt halmazok (I indexhalmaz)! Belátjuk, hogy $M := \bigcup_{\gamma \in I} M_{\gamma}$ nyílt. Legy en

 $a \in M \Rightarrow \exists \gamma : a \in M_{\gamma}$. Mivel M_{γ} ny îlt, ezért $\exists B_r(a) \subset M_{\gamma} \Rightarrow B_r(a) \subset M$.

Legy enek $M_{j \in I}$ ny îlt halmazok (I indexhalmaz)! Belátjuk, hogy $M := \bigcap_{j=1}^{p} M_j$ ny îlt halmaz. Legy en

 $a\in M\Rightarrow a\in M_j,\,\forall\,j=1,2...p.$ Mivel M_j nyílt, ezért $\exists\,r_j\!:\!B_{r_j}(a)\subset M_j.$ Legyen

$$r = \min \left\{ r_1, r_2, ..., r_p \right\} \Rightarrow B_r(a) \subset \bigcap_{j=1}^p M_j.$$

<u>Tétel</u>: akárhány zárt halmaz metszete zárt halmaz, és véges sok zárt halmaz uniója is zárt.

Bizonyítás: (belátjuk, hogy metszetük zárt) tfh M_{γ} zárt! Ekkor M_{γ}^{C} nyílt halmaz. Ezért $\bigcap_{\gamma \in I} M_{\gamma} = \left(\bigcup_{\gamma \in I} M_{\gamma}^{C}\right)^{C}$ zárt.

Az unió esete hasonlóan bizonyítható.

M egjegy zés: végtelen sok ny ílt halmaz metszete általában nem ny ílt, az alaphalmaz és az üreshalmaz ny ílt és zárt egy szerre.

Sorozatok határértéke a metrikus térben

09.18

<u>Definíció</u>: egy $f: \mathbb{N} \to X$ (X metrikus tér) függvényt X-beli sorozatnak nevezünk. Jelölés: a sorozat k-adik tagja $a_k := f(k)$ -nek, a sorozat $(a_k)_{k \in \mathbb{N}} := f(a_k) = f$.

<u>Definíció</u>: azt mondjuk, hogy az (a_k) sorozat határértéke (limesze) $a \in X$, ha az a pont tetszőleges ε sugarú környezetéhez létezik olyan $k_0 \in \mathbb{N}$ küszöbszám, hogy $k > k_0, k \in \mathbb{N}$ esetén $a_k \in B_{\varepsilon}(a)$. Másképp:

$$\forall \varepsilon > 0 \,\exists k_0 : k > k_0 \Rightarrow \rho(a_k, a) < \varepsilon$$
, ezt így jelöljük: $\lim_{k \to \infty} a_k = a$

A limesz tulajdonságai

- 1. ha $a_k = a$ (minden k-ra), akkor $\lim (a_k) = a$
- 2. tfh lim (a_k) = a, akkor (a_k) minden részsorozatának határértéke létezik és értékük a.
 Részsorozat: (a_k) véges vagy végtelen sok elemét elhagyom úgy, hogy még mindig végtelen sok maradjon, és a sorrenden nem változtatok. Másképpen: (a_k) részsorozata (a_{gk}), ahol g: N → N szigorúan monoton növő.
 Bizony ítás: lim (a_k): = a ⇒ ∀ε > 0∃k₀: k > k₀ ⇒ ρ(a_k, a) < ε. Mivel g_k ≥ k ⇒ k > k₀ -ra ρ(a_{gk}, a) < ε, hisz ekkor g_k > k₀.
- 3. a határérték egyértelmű Bizonyítás: tfh (a_k) határértékei a és b (X elemei), Belátandó, hogy a = b. $\forall \varepsilon > 0 \exists k_0 : k > k_0 \Rightarrow \rho(a_k, a) < \varepsilon$, másrészt $\forall \varepsilon > 0 \exists k_1 : k > k_1$, $\rho(a_k, b) < \varepsilon \Rightarrow k > \max\{k_0, k_1\}$ esetén $\rho(a_k, a) < \varepsilon$, $\rho(a_k, b) < \varepsilon$, így a háromszög egyenlőtlenség alapján $\rho(a, b) \leq \rho(a, a_k) + \rho(a_k, b) < 2\varepsilon$, $\forall \varepsilon > 0 \Rightarrow \rho(a, b) = 0 \Leftrightarrow a = b$
- 4. ha $\lim (a_k) = a \Rightarrow (a_k)$ minden átrendezésének a hatáértéke szintén a Egy (a_k) átrendezése: veszek egy $g: \mathbb{N} \to \mathbb{N}$ bijekciót, az átrendezett sorozat: (a_{g_k}) .
- 5. sorozatok összefésülése $(a_k), (b_k)$ X-beli sorozatok összefésülése olyan (c_k) X-beli sorozat, melynek elemei a_1, b_1, a_2, b_2 Ha $\lim (a_k) = a = \lim (b_k) \Rightarrow \lim (c_k) = a$
- 6. Ha egy sorozatnak létezik a limesze, akkor korlátos is. (Korlátos: létezik olyan *n* dimenziós gömb, mely tartalmazza a sorozat összes elemét.)

Bizony ítás:
$$\lim (a_k) = a \Rightarrow \varepsilon = 1 \exists k_0 : k > k_0 \Rightarrow \rho(a_k, a) < 1$$
, így $r := \max \{ \rho(a, a_1), \rho(a, a_2), ..., \rho(a, a_{k_0}) \}$ esetén $a_k \in B_{r+1}(a) \forall k$.

A limesz műveletei tulajdonságai

• összeadás

<u>Tétel</u>: legy en X normált tér! Ha $\lim (a_k) = a$, $\lim (b_k) = b \Rightarrow \lim (a_k + b_k) = a + b$.

Bizonyítás: mivel $\lim (a_k) = a$, ezért $\forall \varepsilon > 0 \exists k_0 : k > k_0 \Rightarrow \rho(a, a_k) = ||a_k - a|| < \varepsilon$ és mivel $\lim (b_k) = b$, ezért

 $\forall \varepsilon > 0 \exists k_1 : k > k_1 \Rightarrow \rho(b, b_k) = ||b_k - b|| < \varepsilon, \text{ igy}$

$$\rho(a_k + b_k, a + b) = \|(a_k + b_k) - (a + b)\| = \|(a_k - a) + (b_k - b)\| \le \|a_k - a\| + \|b_k - b\| < 2\varepsilon, \text{ ha } k > \max\{k_0, k_1\}.$$

• szorzás

<u>Tétel</u>: legy en X normált tér! Tfh $\lim (a_k) = a$, $(a_k \in X)$ és $\lim (\lambda_k) = \lambda$ $(\lambda_k \in \mathbb{R})$. Ekkor $\lim (\lambda_k a_k) = \lambda a$.

Bizonyítás: mivel $\lim (a_k) = a$ ezért $\forall \varepsilon > 0 \exists k_0 : k > k_0 \Rightarrow ||a_k - a|| < \varepsilon$. Mivel $\lim (\lambda_k) = k$ ezért

 $\forall \varepsilon > 0 \exists k_1 : k > k_1 \Rightarrow |\lambda_k - \lambda| < \varepsilon$. Tehát $k > \max\{k_0, k_1\}$ esetén

$$\|\lambda_k a_k - \lambda a\| = \|(\lambda_k a_k - \lambda a_k) + (\lambda a_k - \lambda a)\| \le \|\lambda_k a_k - \lambda a_k\| + \|\lambda a_k - \lambda a\| =$$

$$= \|(\lambda_k - \lambda)a_k\| + \|\lambda(a_k - a)\| = \underbrace{|\lambda_k - \lambda|}_{<\varepsilon} \|a_k\| + \underbrace{|\lambda|}_{r \ \ddot{0} \ gz} \underbrace{\|a_k - a\|}_{\varepsilon}. \text{ Mivel } (a_k) \text{ korlátos, } \exists M > 0 : \|a_k\| < M \ \forall k \in \mathbb{N} \text{ -re,}$$

tehát $k > \max\{k_0, k_1\}$ esetén $\|\lambda_k a_k - \lambda a\| < \varepsilon M + |\lambda|\varepsilon = (M + |\lambda|)\varepsilon$.

<u>Tétel</u>: legy en X euklideszi tér! Tfh $\lim (a_k) = a$ és $\lim (b_k) = b$, ahol $a_k, b_k \in X$. Ekkor $\lim \langle a_k, b_k \rangle = \langle a, b \rangle$

Bizonyítás: a <u>Cauchy-Schwarz</u> felhasználásával.

<u>Tétel</u>: legy en X normált tér! Ha lim $(\lambda_k) = 0$ és (a_k) korlátos, $\Rightarrow \lim (\lambda_k a_k) = 0$

Bizonyítás: hasonló az előzőhöz.

Osztás

<u>Tétel</u>: legy en (a_k) egy valós vagy komplex sorozat. Ha $a = \lim (a_k) \neq 0 \Rightarrow \lim \left(\frac{1}{a_k}\right) = \frac{1}{a}$.

Bizony ítás: mivel $\lim (a_k) = a \Rightarrow \forall \varepsilon > 0 \exists k_0 : k > k_0 \Rightarrow |a_k - a| < \varepsilon$, így $\exists k_1 : k > k_1 \Rightarrow |a_k - a| < \varepsilon |a|^2/2$. Legy en $\varepsilon := \frac{|a|}{2}$, ekkor $\exists k_2 : k > k_2 \Rightarrow |a_k| > \frac{|a|}{2}$. Legy en $k > \max\{k_1, k_2\}$, ekkor $\left|\frac{1}{a_k} - \frac{1}{a}\right| = \frac{|a - a_k|}{|a_k a|} < \frac{\varepsilon |a|^2/2}{|a_k||a|} = \frac{\varepsilon |a|/2}{|a|/2} = \varepsilon$, és pont ezt akartuk igazolni.

Zárt halmazok jellemzése sorozatokkal

Emlékeztető: X metrikus térben egy M halmazt zártnak neveztünk, ha $\partial M \subset M \Leftrightarrow \overline{M} \subset M \Leftrightarrow \overline{M} = M$ (ahol $\overline{M} = \operatorname{int}(M) \cup \partial M$), továbbá $a \in \overline{M} \Leftrightarrow$ ha a bármely környezete tartalmaz M béli pontot is. Ezek szerint M zárt halmaz pontosan akkor, ha minden olyan pont, amelynek bármely környezetében van M beli pont, az M-hez tartozik.

<u>Tétel</u>: egy $M \subset X$ halmaz zárt pontosan akkor, ha tetszőleges konvergens sorozatot nézve, melynek tagjai $a_k \in M$ $\lim (a_k) \in M$.

Bizonyítás: az előbbiek szerint M halmaz zárt pontosan akkor, ha minden olyan pont, amelynek bármely

környezetében van M beli pont, az M-hez tartozik.

- \Rightarrow irány ban: tfh M zárt! Ha $a_k \in M$ és $\lim (a_k) = a$, akkor $a \in M$, mert a minden környezetében van M beli pont is (nevezetesen a_k).
- \Leftarrow irány ban: fordítva is igaz, ha a minden körny ezete tartalmaz M béli pontot, akkor $\exists (a_k) \in M$: $\lim (a_k) = a$. Vagy is minden oly an pont (a), amely nek minden körny ezetében van M-beli pont (az a_k -k), az M-nek eleme, és a fentiek szerint ebből következik, hogy M zárt.

Korlátos és zárt halmazok, illetve sorozatkompakt halmazok

<u>Tétel</u>: legy en (a_k) korlátos sorozat \mathbb{R}^n -ben! Ekkor (a_k) sorozatnak létezik konvergens részsorozata. (Bolzano-Weierstrass-féle kiválasztási tétel \mathbb{R}^n -ben)

Bizonyítás: először n=1 esetre, ekkor $(a_k \in \mathbb{R})$ korlátos $\Rightarrow \exists [c,d] \ni a_k, \forall k$. Felezzük [c,d] intervallumot! Ekkor a két zárt fél intervallum közül legalább az egyik végtelen sok tagot tartalmaz a sorozatból. Ez legyen $[c_1,d_1]$. Ezt megint felezzük, melyek közül legalább az egyik végtelen sok tagot tartalmaz a sorozatból, ez legyen $[c_2,d_2]$...Így a_k -ból kiválasztható egy a_{k_l} részsorozat úgy, hogy $a_{k_l} \in [c_l,d_l]$. Belátjuk, hogy a_{k_l} részsorozat konvergens.

 $[c,d]\supset [c_1,d_1]\supset [c_2,d_2]\supset\ldots\supset [c_l,d_l], \lim_{l\to\infty}|c_l-d_l|=\lim_{l\to\infty}\frac{c-d}{2^l}=0. \text{ Tudjuk, hogy }\{c_l:l\in\mathbb{N}\}\text{ felülről korlátos}\}$

 $\Rightarrow \exists \sup \{c_l : l \in \mathbb{N}\}\ \text{\'es azt is, hogy } \{d_l : l \in \mathbb{N}\}\ \text{alulr\'ol korl\'atos}\ \Rightarrow \exists \inf \{d_l : l \in \mathbb{N}\}.\ \text{M\'ivel}$

 $\lim_{l\to\infty}|c_l-d_l|=0\Rightarrow \sup\{c_l:l\in\mathbb{N}\}=\inf\{d_l:l\in\mathbb{N}\}:=\alpha, \text{ tov\'abb\'a}\ a_{k_l}\in[c_l,d_l]\Rightarrow \lim\left(a_{k_l}\right)=\alpha \text{ (,,rend\"or-elv'')}.$

n=2 esetre, ekkor $a_k=\left(a_k^{(1)},a_k^{(2)}\right)$. Mivel a_k korlátos sorozat \mathbb{R}^2 -ben, így $a_k^{(1)},a_k^{(2)}$ korlátos sorozatok \mathbb{R} -ben. Az előzőek szerint az előbbiből kiválasztható ebből egy konvergens részsorozat, $\left(a_{k_l}^{(1)}\right)_{l\in\mathbb{N}}$. Tekintsük az $a_k^{(2)}$ ugyanilyen indexű elemekből álló $\left(a_{k_l}^{(2)}\right)$ részsorozatát (mely korlátos \mathbb{R} -ben). Az előzőek szerint ennek létezik konvergens részsorozata, $\left(a_{k_{l_m}}^{(2)}\right)_{m\in\mathbb{N}}$. $\left(a_{k_l}^{(1)}\right)_{l\in\mathbb{N}}$ konvergens, így $\left(a_{k_{l_m}}^{(1)}\right)_{m\in\mathbb{N}}$ is az, így $\left(a_{k_{l_m}}\right)$: $=\left(a_{k_{l_m}}^{(1)},a_{k_{l_m}}^{(2)}\right)$ részsorozat konvergens.

n=3 esetén hasonló módon, mint n=1 -ről váltottunk n=2 -re, itt is igazolható (tkp teljes indukció).

M egjegy zés: hasonló jellegű állítások általában nem igazak tetszőleges normált terekben, csak véges dimenzióban!

<u>Tétel</u>: legy en $M \subset \mathbb{R}^n$ korlátos és zárt halmaz! Ha $(a_k \in M)_{k \in \mathbb{N}}$ tetszőleges sorozat, akkor létezik olyan (a_{k_l}) 09.23 részsorozata, amely konvergens és $\lim (a_{k_l}) \in M$

Bizonyítás: mivel M korlátos \Rightarrow (a_k) korlátos sorozat \mathbb{R}^n -ben. A Bolzano-Weierstrass-féle kiválasztási tétel szerint ennek létezik konvergens részsorozata $a_{k_l} \in M$, M zárt $\Rightarrow \lim (a_{k_l}) \in M$.

<u>Definíció</u>: legy en X tetszőleges metrikus tér! Egy $M \subset X$ halmazt sorozatkompaktnak nevezünk, ha tetszőleges

M-beli sorozatnak van konvergens részsorozata, és limesze $\in M$.

Megjegyzés: a fenti tétel szerint \mathbb{R}^n -ben minden korlátos és zárt halmaz sorozatkompakt.

Állítás: ha X tetszőleges metrikus tér $\Rightarrow \forall$ sorozatkompakt halmaz korlátos és zárt, de ha egy metrikus térben egy halmaz korlátos és zárt, még nem következik, hogy sorozatkompakt is (természetesen \mathbb{R}^n -ben igaz).

Bizonyítás: legy en $M \subset X$ sorozatkompakt halmaz! Először belátjuk, hogy M korlátos.

Indirekt bizonyítás: M nem korlátos. Legy en $a \in X$ rögzített pont. Ha M nem korlátos $\Rightarrow \exists x_1 \in M, x_1 \not\in B_1(a)$ és $\exists x_2 \in M, x_2 \not\in B_2(a)$ és ... Belátjuk (indirekt), hogy az így nyert (x_l) sorozatnak nincs konvergens részsorozata. Ha ugyanis $\exists \lim_{k \to \infty} (x_{l_k}) = x_0 \in M \Rightarrow \lim_{k \to \infty} \rho(x_{l_k}, a) = \rho(x_0, a)$, ez ellentmond annak, hogy

 $x_{l_k} \notin B_{l_k}(a) \Leftrightarrow \rho(x_{l_k}, a) > l_k \to \infty.$

Most belátjuk, hogy M zárt. Tekintsük az (a_k) M-beli elemekből álló konvergens sorozatokat! Mivel M sorozatkompakt, ezért (a_k) -nak létezik (a_{k_l}) részsorozata, ami konvergens és $\lim (a_{k_l}) \in M$, de $\lim (a_{k_l}) = \lim (a_k) \Rightarrow \lim (a_k) \in M$. Mint korábban bizonyítottuk, ez ekvivalens azzal, hogy M zárt.

Cauchy-féle konvergencia-kritérium, teljesség

<u>Tétel</u>: legy en X metrikus tér! Ha (a_k) konvergens sorozat, $\lim (a_k) = a \in X$, akkor teljesül rá az ún. Cauchy-féle (konvergencia) kritérium: $\forall \varepsilon > 0 \,\exists k_0 : k, l > k_0 \Rightarrow \rho(a_k, a_l) < \varepsilon$.

Bizonyítás: mivel

 $\lim \left(a_k\right) = a \Rightarrow \exists k_0 : \forall k, l > k_0 \Rightarrow \rho(a_k, a) < \frac{\varepsilon}{2}, \rho(a_l, a) < \frac{\varepsilon}{2} \Rightarrow \rho(a_k, a_l) \leq \rho(a_k, a) + \rho(a, a_l) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Kérdés: fordítva igaz-e? Általában nem.

Példák:

- Legyen $X = \mathbb{Q}$ a szokásos távolsággal! Tfh $a_{k \in \mathbb{N}} \in \mathbb{R}$, de $\lim (a_k) = \sqrt{2}$. Ekkor (a_k) teljesíti a Cauchy-féle konvergencia-kritériumot, de nincs határértéke X-ben.
- X: = (0,1), a szokásos távolsággal. a_k : = $\frac{1}{k}$ tagokból álló sorozat. Ez megint teljesíti a Cauchy-féle konvergencia-kritériumot, még sincs határértéke X-ben.

<u>Definíció</u>: egy *X* metrikus teret teljes metrikus térnek nevezzük, ha minden *X*-beli Cauchy-sorozatnak (vagy is melyre teljesül a Cauchy-féle konvergencia-kritérium) van limesze *X*-ben.

Tétel: \mathbb{R}^n teljes metrikus tér.

M egjegy zés: a tétel azt mondja, hogy ha $(a_k) \in \mathbb{R}^n$ -beli sorozatra teljesül a Cauchy-féle konvergencia-kritérium $\Rightarrow \exists \lim (a_k) \in \mathbb{R}^n$.

Bizonyítás: legy en $(a_k) \in \mathbb{R}^n$, melyre teljesül a Cauchy-féle konvergencia-kritérium

 $\Leftrightarrow \forall \varepsilon > 0 \exists k_0 : k, l > k_0 \Rightarrow ||a_k - a_l|| < \varepsilon$. Először belátjuk, hogy (a_k) korlátos.

Legy en ε : = 1, ekkor $\exists k_0 : k, l > k_0 \Rightarrow ||a_k - a_l|| < \varepsilon = 1$. Legy en $l = k_0 + 1$ rögzített, ekkor láthatjuk, hogy minden $\forall k \geq l : ||a_k - a_l|| < 1$, vagy is k_0 fölött korlátos a sorozat. Mivel k_0 véges, ezért $a_0, a_1 ... a_{k_0}$ véges sok elem, így korlátos is.

Most belátjuk, hogy konvergens is. Alkalmazzuk a Bolzano-Weierstrass kiválasztási tételt, miszerint minden korlátos sorozatnak van konvergens részsorozata $\Rightarrow \exists \left(a_{k_l}\right)$: $\lim \left(a_{k_l}\right) = a \in \mathbb{R}^n$. Belátandó még, hogy az (a_k) sorozat is ehhez tart. Legy en $\varepsilon/2 > 0$ tetszőleges. Mivel $\lim \left(a_{k_l}\right) = a \Rightarrow \exists l_0: l > l_0 \Rightarrow \|a_{k_l} - a\| < \frac{\varepsilon}{2}$. Másrészt mivel a Cauchy sorozat is, ezért $\exists k_1: k, l > k_1 \Rightarrow \|a_k - a_l\| < \frac{\varepsilon}{2} \Rightarrow \|a_k - a_{k_l}\| < \frac{\varepsilon}{2} \Rightarrow \|a_k - a_{k_l}\| + \|a_{k_l} - a\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Függvények limesze (határértéke)

A továbbiakban legyen X és Y metrikus terek, $f:X \rightarrow Y$, $D_f \subset X$ és $R_f \subset Y!$

<u>Definíció</u>: legy en $a \in X$ az f függvény értelmezési tartományának torlódási pontja! Azt mondjuk, hogy az f függvénynek az a pontban $b \in Y$ a határértéke (limesze), ha b bármely (kicsi) $B_{\varepsilon}(b)$ környezetéhez létezik a-nak olyan $B_{\delta}(a)$ környezete, hogy $x \in B_{\delta}(a) \cap D_f, x \neq a \Rightarrow f(x) \in B_{\varepsilon}(b)$.

M egjegy zés: mivel a pont D_f -nek torlódási pontja, ezért bármely $\delta > 0$ esetén $\exists x \neq a : x \in B_{\delta}(a) \cap D_f$, továbbá a függvény határértéke szempontjából mindegy, hogy fértelmezve van-e a-ban vagy sem és f(a) mivel egyenlő.

Állítás: a limesz egy pontban egy értelmű.

<u>Definíció</u>: legy en $a \in D_f$. Ekkor f függvényt a pontban folytonosnak nevezzük, ha az $f(a) \in Y$ bármely $B_{\varepsilon}(f(a))$ környezetéhez található az a-nak olyan $B_{\delta}(a)$ környezete, hogy $x \in B_{\delta}(a) \cap D_f \Rightarrow f(x) \in B_{\varepsilon}(f(a))$. Megjegyzés:

- ha a a D_f -nek izolált pontja, akkor abban a függvény folytonos
- ha a a D_f -nek torlódási pontja, akkor f folytonos a-ban $\Leftrightarrow \lim_{x \to a} f(x) = f(a)$.
- legy en f valós-valós függvény! Ekkor f-nek a-ban baloldali határértékét így értelmezzük: $\lim_{x \to a} f|_{(-\infty,a)}(x)$ (ha létezik), és f-nek a-ban jobboldali határértéke $\lim_{x \to a} f|_{(a,\infty)}(x)$ (ha létezik)
- az $f(x) = \frac{1}{x}$ függvény folytonos, mert mindenhol folytonos, ahol értelmezve van (0-ban nincs értelmezve)

Példa:
$$f(x) = \begin{cases} 0 & \text{ha } x \in [0,2] \setminus \{1\} \\ 1 & \text{ha } x = 1 \end{cases}$$
. Ez a függvény 1-ben nem folytonos, és határértéke 1-ben 0.

<u>Definíció</u>: ha f folytonos D_f minden pontjában, akkor f-et folytonosnak nevezzük.

1. Tétel: legyen $a \in D_f$ ' (D_f ' a torlódási pontok halmaza)! $\lim_{x \to a} f(x) = b \Leftrightarrow \forall (x_k) \subset D_f \setminus \{a\}, \lim (x_k) = a$ esetén $\lim_{k \to \infty} f(x_k) = b$.

Bizonyítás \Rightarrow irányban: legy en $\lim_{x \to a} f(x) \equiv \lim_{a} f = b$. Legy en (x_k) tetszőleges olyan sorozat, mely re

 $x_k \in D_f \setminus \{a\}, \lim (x_k) = a!$ Belátandó, hogy $\forall \varepsilon > 0 \exists k_0, k > k_0 \Rightarrow f(x_k) \in B_{\varepsilon}(b)$. Mivel $\lim f = b \Rightarrow \forall \varepsilon > 0 \exists \delta > 0 : x \in \{B_{\delta}(a) \cap D_f\} \setminus \{a\} \Rightarrow f(x) \in B_{\varepsilon}(b)$, másrészt

 $\lim (x_k) = a, x_k \in D_f \setminus \{a\} \Rightarrow \forall \delta > 0 \exists k_0 : k > k_0 \Rightarrow x_k \in B_\delta(a), \text{ vagy is } k > k_0 \text{ esetén } f(x_k) \in B_\varepsilon(b).$

Bizonyítás \Leftarrow irányban: tfh $\forall (x_k) \subset D_f \setminus \{a\}$, $\lim (x_k) = a$ esetén $\lim_{k \to \infty} f(x_k) = b$, bizonyítandó: $\Rightarrow \lim_a f = b$,

vagy is $\forall \varepsilon > 0 \exists \delta > 0, \forall x \in \{B_{\delta}(a) \cap D_f\} \setminus \{a\} \Rightarrow f(x) \in B_{\varepsilon}(b)$. Indirekt bizonyítunk:

 $\exists \varepsilon_0 > 0 \,\forall \delta > 0, \exists x \in \left\{B_\delta(a) \cap D_f\right\} \setminus \{a\} : f(x) \not\in B_{\varepsilon_0}(b). \text{ Legy en } \delta : = \frac{1}{k}, k \in \mathbb{N}, \text{ ehhez}$

 $\exists x_k \in B_{\frac{1}{k}}(a), x_k \in D_f \setminus \{a\} : f(x_k) \neq B_{\varepsilon_0}(b). \text{ Ekkor } \lim (x_k) = a, \text{ de } \lim_{k \to \infty} f(x_k) \neq b, \text{ mert } \forall k \in \mathbb{N} \text{ -re }$

 $f(x_k) \not\in B_{\varepsilon_0}(b)$, ez meg ellentmond a feltevésünknek.

2. Tétel: legy en $a \in D_f$! Ekkor az f függvény a-ban folytonos pontosan akkor, ha $\forall (x_k) \subset D_f$, $\lim (x_k) = a$ esetén $\lim_{k \to \infty} f(x_k) = f(a)$.

Bizonyítás: az előzővel analóg módon

Műveleti szabályok

• + összeadás

<u>Tétel</u>: legy en X metrikus, Y normált tér! Legy enek $f, g: X \rightarrow Y$ és $a \in (D_f \cap D_g)$ '. Ekkor $\lim_a f = b$, $\lim_a g = c \Rightarrow \lim_a (f + g) = b + c$.

Bizonyítás: legyen (x_k) tetszőleges olyan sorozat, melyre teljesül, hogy $x_k \in \{D_f \cap D_g\} \setminus \{a\}, \lim (x_k) = a$. Azt kell megmutatni, hogy $\lim_{k \to \infty} (f+g)(x_k) = b+c$, ahol $(f+g)(x_k) = f(x_k) + g(x_k)$. Mivel

 $\lim_{a} f = b, x_{k} \in D_{f} \setminus \{a\}, \lim_{k \to \infty} (x_{k}) = a \Rightarrow \lim_{k \to \infty} f(x_{k}) = b \text{ (átviteli elvből), hasonlóan } \lim_{a} g = c \Rightarrow \lim_{k \to \infty} g(x_{k}) = c, \text{ (gy ezekből } \lim_{k \to \infty} (f(x_{k}) + g(x_{k})) = b + c$

- szorzás
 - 1. Tétel: legy en X metrikus, Y normált tér, $f: X \to Y$, $\lambda: X \to \mathbb{R}$. Legy en $a \in \{D_f \cap D_\lambda\}'$! Ha $\lim_a f = b \in Y$, $\lim_a \lambda = \lambda_0 \in \mathbb{R} \Rightarrow \lim_a (\lambda f) = \lambda_0 b \in Y$
 - 2. <u>Tétel</u>: legy en X metrikus, Y euklideszi tér, $f, g: X \rightarrow Y, a \in \{D_f \cap D_g\}'$! Ha $\lim_a f = b \in Y, \lim_a g = c \in Y \Rightarrow \lim_a \langle f, g \rangle = \langle b, c \rangle$
- osztás

<u>**Tétel**</u>: legy en X metrikus tér, $f: X \to \mathbb{R}$. Ha $\lim_a f = b \in \mathbb{R} \setminus \{0\} \Rightarrow \lim_{x \to a} \frac{1}{f(x)} = \frac{1}{b}$.

Műveleti szabályok folytonosságra

• + összeadás:

<u>Tétel:</u> legy en X metrikus, Y normált tér, $f, g: X \rightarrow Y$. Ha f, g folytonos a-ban $\Rightarrow f + g$ is folytonos a-ban.

- szorzás
 - 1. <u>Tétel</u>: legy en X metrikus, Y normált tér, $f: X \rightarrow Y$, $\lambda: X \rightarrow \mathbb{R}$ folytonosak a-ban, ekkor $\lambda \cdot f$ is folytonos a-ban.
 - 2. <u>Tétel</u>: legy en X metrikus, Y euklideszi tér. Ha $f,g:X \rightarrow Y$ folytonosak a-ban $\Rightarrow \langle f,g \rangle$ is folytonos a-ban.
- osztás:

<u>Tétel:</u> legy en X metrikus tér, $f:X \to \mathbb{R}$. Ha f folytonos a-ban és $f(a) \neq 0 \Rightarrow \frac{1}{f}$ is folytonos a-ban.

(Az előző tételek bizonyítása az átviteli elvvel történik.)

A kompozíció függvény

1. <u>Tétel</u>: legy enek X, Y, Z metrikus terek, $f:X \rightarrow Y$, $g:Y \rightarrow Z$. Ha f folytonos $a \in X$ -ben, g pedig $b = f(a) \in Y$ -ban, $\Rightarrow g \circ f$ is folytonos a-ban.

Bizonyítás: mivel g folytonos b = f(a) -ban, így g értelmezve van f(a) -ban, ezért $g \circ f$ értelmezve van a-ban, $(g \circ f)(a) = g(f(a))$. Az átviteli elvvel belátjuk, hogy $g \circ f$ folytonos a-ban. Legy en (x_k) tetszőleges sorozat, melyre $\lim (x_k) = a, x_k \neq a, x_k \in D_{g \circ f}$. Az utóbbi azt jelenti, hogy $x_k \in D_f$, másrészt $f(x_k) \in D_g$, igazolandó tehát, hogy $\lim_{k \to \infty} (g \circ f)(x_k) = (g \circ f)(a) = g(f(a))$.

Mivel f folytonos a-ban, $\lim_{k \to \infty} f(x_k) = f(a)$. Másrészt g folytonos f(a) -ban, így g-re alkalmazva az átviteli elvet, $\lim_{k \to \infty} g(f(x_k)) = g(f(a))$.

Kérdés: ha $\lim_{a} f = b$, $\lim_{b} g = c \Rightarrow \lim_{a} (g \circ f) = c$? Általában nem. Példa: legy en $g(y) = \begin{cases} 0 \text{ ha } y = 0 \\ 1 \text{ ha } y \neq 0 \end{cases}$, és f pedig a

konstans 0 függvény, azaz f(x) = 0, valamint a = b = 0. Ekkor $\lim_{0} g = 1$, $(g \circ f)(x) = 0 \ \forall x \Rightarrow \lim_{0} (g \circ f)(x) = 0$

2. <u>Tétel</u>: legy enek X, Y, Z metrikus terek, $f: X \rightarrow Y, g: Y \rightarrow Z$. Ha $\lim_{a} f = b$ és g folytonos b-ben, akkor $\lim_{a} (g \circ f) = g(b)$.

Inverz függvény folytonos sága

Egy tetszőleges függvény inverzét akkor tudjuk értelmezni, ha a függvény injektív, azaz $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

<u>Definíció</u>: ha f injektív, akkor inverzét így értelmezhetjük: $f^{-1}: R_f \to D_f, y \in R_f$ esetén $f^{-1}(y) = x$, ahol $x \in D_f, f(x) = y$.

<u>Állítás:</u> ha $f: \mathbb{R} \to \mathbb{R}$ és szigorúan monoton függvény, akkor f injektív.

Kérdés: Ha f folytonos és injektív, akkor inverze is? Általában nem. Pl: $f(x) = \begin{cases} x & \text{ha } x < 1 \\ x - 1 & \text{ha } x \ge 2 \end{cases}$

Állítás: ha $f: \mathbb{R} \to \mathbb{R}$ függvény szigorúan monoton, akkor inverze is.

<u>Tétel</u>: ha $f:I\to\mathbb{R}$ szigorúan monoton függvény és $I\subset\mathbb{R}$ valamilyen intervallum $\Rightarrow f^{-1}$ folytonos.

M egjegy zés: az intervallumok az \mathbb{R} összefüggő részhalmazai. Egy $A \subset \mathbb{R}$ halmazt összefüggőnek nevezünk, ha $\forall x_1, x_2 \in A, x_1 < x < x_2 \Rightarrow x \in A$.

Bizonyítás: legy en $y_0 \in D_{f^{-1}} = R_f$. Legy en $x_0 = f^{-1}(y_0)$. Először tegy ük fel, hogy $x_0 \in \operatorname{int} I$. Azt szeretnénk belátni, hogy f^{-1} folytonos y_0 -ban. Legy en $\varepsilon > 0$, $x_0 \pm \varepsilon \in I$ (ily en ε létezik, mert $x_0 \in \operatorname{int} I$)! Ekkor $f(x_0 - \varepsilon) < f(x_0) < f(x_0 + \varepsilon)$, mivel f szigorúan monoton (növő). Ha $y \in (f(x_0 - \varepsilon), f(x_0 + \varepsilon))$, mivel f inverze is szigorúan monoton, ezért $f^{-1}(f(x_0 - \varepsilon)) < f^{-1}(y) < f^{-1}(f(x_0 + \varepsilon)) \Leftrightarrow f^{-1}(y_0) - \varepsilon < f^{-1}(y) < f^{-1}(y_0) + \varepsilon$, vagy is f^{-1} folytonos y_0 -ban. Az $x_0 \in \partial I$ eset tárgy alása hasonló.

Példák:

- 1. $f: \mathbb{R} \to \mathbb{R}, x \in \mathbb{R}, x \geq 0, f(x) = x^n, n \in \mathbb{N}$, ekkor f szigorúan monton nő, $D_f = [0, \infty), f^{-1}$ folytonos az $y \in R_f$ pontokban és $f^{-1}(y) = \sqrt[n]{y}$. (Később látjuk a <u>Bolzano-tétellel</u>, hogy $R_f = [0, \infty)$.)
- 2. $f: \mathbb{R} \to \mathbb{R}, x \in \mathbb{R}, f(x) = e^x$, ekkor f szigorúan monoton nő, $D_f = \mathbb{R}, f^{-1}$ folytonos. (Később látjuk a Bolzanotétellel, hogy $D_{f^{-1}} = R_f = (0, \infty)$.)

Tétel: legy enek X, Y metrikus terek, $f: X \rightarrow Y$, $f \in C(D_f)$, D_f sorozatkompakt, f injektív $\Rightarrow f^{-1} \in C(R_f)$. Bizony ítás: legy en $y_0 \in D_{f^{-1}} = R_f$. Belátjuk, hogy $f^{-1} \in C[y_0]$. Alkalmazzuk az átviteli elvet! Legy en $y_k \in D_{f^{-1}} = R_f$ oly an, amely re $\lim (y_k) = y_0$. Belátandó: $(f^{-1}(y_k))_{k \in \mathbb{N}} \rightarrow f^{-1}(y_0)$. $x_k := f^{-1}(y_k), x_0 := f^{-1}(y_0) \Rightarrow y_k = f(x_k), y_0 = f(x_0)$, vagy is belátandó: $\lim (x_k) \rightarrow x_0$. Indirekt bizony ítunk: ha ez nem lenne igaz, akkor $\exists \varepsilon_0 > 0$, $x_{k_l} : \rho(x_{k_l}, x_0) \ge \varepsilon_0$. Tekintsük az (x_{k_l}) sorozatot, amely re $x_{k_l} \in D_f$. Tudjuk, hogy D_f sorozatkompakt, ekkor $\exists \left(x_{k_{l_j}}\right) : \lim \left(x_{k_{l_j}}\right) = x * \in D_f$, de mivel $f \in C[x *] \Rightarrow \lim_{j \to \infty} f\left(x_{k_{l_j}}\right) = f(x *)$ és mivel $\lim_{j \to \infty} f\left(x_{k_{l_j}}\right) = \lim \left(y_{k_{l_j}}\right) = y_0 = f(x_0) \Rightarrow f(x_0) = f(x *)$. De hát f injektív, vagy is $x_0 = x *$, ami meg ellentmondás, mert $\lim \left(x_{k_{l_i}}\right) = x * = x_0$ esetén $\exists j \in \mathbb{N} : \rho\left(x_{k_{l_i}}, x_0\right) < \varepsilon_0$, de ez ellentmond $\rho\left(x_{k_l}, x_0\right) \ge \varepsilon_0$ -nak.

A folytonos függvények alaptulajdonságai

<u>Tétel</u>: legy en X, Y metrikus terek, $f: X \to Y$, $f \in C(D_f)$, D_f sorozatkompakt $\Rightarrow R_f$ is sorozatkompakt. (Weierstrass tétele).

Bizonyítás: legy en $(y_k) \subset R_f$ tetszőleges sorozat! Azt kell megmutatni, hogy $\exists (y_{k_l})$ részsorozata, mely konvergens és $\lim (y_{k_l}) \in R_f$. Mivel $y_k \in R_f \Rightarrow \exists x_k \in D_f$: $f(x_k) = y_k$. Mivel D_f sorozatkompakt és $x_k \in D_f \Rightarrow \exists (x_{k_l})$: $\lim (x_{k_l}) = x_0 \in D_f$. Mivel $f \in C[x_0] \Rightarrow \lim_{l \to \infty} f(x_{k_l}) = f(x_0) = y_0 \in R_f$, node $f(x_{k_l}) = y_{k_l}$, ezért

 $\lim (y_{k_I}) = y_0 \in R_f$, és pont ezt akartuk belátni.

Következmények:

- 1. D_f sorozatkompakt $\Rightarrow R_f$ korlátos és zárt (minden sorozatkompakt halmaz korlátos és zárt)
- 2. ha $Y = \mathbb{R}$ akkor is, ha D_f sorozatkompakt $\Rightarrow R_f \subset \mathbb{R}$ korlátos és zárt. A korlátosság következménye: $\sup R_f$, inf R_f véges, és mivel az R_f értékkészlet zárt $\Rightarrow \exists x_1, x_2 \in D_f$: $f(x_1) = \inf f$, $f(x_2) = \sup f$

Példák arra, hogy miért szükséges feltenni, hogy D_f sorozatkompakt (D_f , R_f sorozatkompaktsága \mathbb{R} -ben azt jelenti, hogy a halmazok korlátosak és zártak)

- 1. $D_f = [0, \infty)$ zárt, de nem korlátos, f(x) = x, ekkor $R_f = [0, \infty)$ nem korlátos
- 2. $D_f = (0,1], f(x) = \frac{1}{x}$, ekkor D_f korlátos, de nem zárt, R_f pedig nem korlátos.

M egjegy zés: az a tény, hogy egy $f: X \to Y, f \in C[x_0] \Rightarrow \forall \varepsilon > 0 \exists \delta > 0 : x \in B_{\delta}(x_0) \cap D_f \Rightarrow f(x) \in B_{\varepsilon}(f(x_0))$, ahol δ függhet ε -tól és x_0 -tól is.

<u>Definíció</u>: azt mondjuk, hogy X, Y metrikus terek esetén egy $f: X \rightarrow Y$ függvény egyenletesen folytonos, ha $\forall \varepsilon > 0 \exists \delta > 0: x_1, x_2 \in D_f, \rho(x_1, x_2) < \delta \Rightarrow \rho(f(x_1), f(x_2)) < \varepsilon$. Tehát ekkor δ csak ε -tól függ.

<u>**Tétel**</u>: ha f folytonos és D_f sorozatkompakt \Rightarrow f egyenletesen folytonos. (Heine tétele.)

Bizonyítás: tfh f folytonos, D_f sorozatkompakt. Indirekt bizonyítunk: $\exists \varepsilon > 0 \,\forall \delta > 0$: $\exists x_1, x_2 \in D_f, \rho(x_1, x_2) < \delta$, de $\rho(f(x_1), f(x_2)) \geq \varepsilon$. Legyen $\delta := \frac{1}{k}, k \in \mathbb{N}$, ekkor tehát $\exists x_k, \widetilde{x_k} \in D_f : \rho(x_k, \widetilde{x_k}) < \frac{1}{k} \text{ de } \rho(f(x_k), f(\widetilde{x_k})) \geq \varepsilon$. Tudjuk, hogy D_f sorozatkompakt, így $\exists (x_{k_l}) \subset D_f : \lim (x_{k_l}) = x_0 \in D_f$. Mivel $\rho(x_{k_l}, \widetilde{x_{k_l}}) < \frac{1}{k}, \lim (\frac{1}{k}) = 0 \Rightarrow \lim (\widetilde{x_{k_l}}) = \lim (x_{k_l}) = x_0 \in D_f$. Mivel $f \in C[x_0]$, az átviteli elv alapján $f(x_{k_l}) = f(x_0)$, $\lim_{k \to \infty} f(x_{k_l}) = f(x_0)$, de ez meg ellentmondás a feltevésünkkel, miszerint $\rho(f(x_k), f(\widetilde{x_k})) \geq \varepsilon$.

Példák:

- 1. $D_f = [0, \infty)$ ez zárt, de nem korlátos, $f(x) := x^2$ nem egyenletesen folytonos
- 2. $D_f = (0,1]$ ez korlátos, de nem zárt, $f(x) := \frac{1}{x}$ nem egyenletesen folytonos.

<u>Tétel</u>: legy en $f:[a,b] \to \mathbb{R}$, $f \in C[a,b]$, $f(a) \neq f(b)$, ekkor tetszőleges $\eta \in (f(a),f(b))$ számhoz $\exists \xi \in (a,b): f(\xi) = \eta$. (Bolzano tétel)

Bizonyítás: tekintsük a következő halmazt: $M := \{x \in [a,b]: f(x) < \eta\} \subset [a,b] \Rightarrow M \neq \emptyset$ mivel $a \in M$, továbbá M korlátos. Legy en $\xi := \sup M$. Belátjuk, hogy $f(\xi) = \eta$. Indirekt bizonyítunk: $f(\xi) < \eta$ vagy $f(\xi) > \eta$ nem lehetséges. Első eset: ha $f(\xi) < \eta$ lenne, akkor $f(b) > \eta \Rightarrow \xi \neq b$, ezért ξ -nek megadható olyan jobboldali környezete, ahol a függvényértékek η -nál kisebbek, mert $f \in C[\xi]$, vagy is $\exists \delta > 0 : x \in [\xi, \xi + \delta] \Rightarrow f(x) < \eta$, ez pedig ellentmond annak,

hogy $\xi = \sup M$.

M ásodik eset: ha $f(\xi) > \eta$ lenne, akkor $f(a) < \eta \Rightarrow \xi \neq a$ és $f \in C[a,b] \Rightarrow \exists \delta > 0 : x \in [\xi - \delta, \xi] \Rightarrow f(x) > \eta$. Ez is ellentmond annak, hogy $\xi = \sup M = \sup \{x \in [a,b] : f(x < \eta)\}$. Tehát mivel $f(\xi) \not> \eta$, $f(\xi) \not> \eta$, $f(\xi) \neq \eta \Rightarrow f(\xi) = \eta$.

Következmények: legyen $I \subset \mathbb{R}$ valamilyen intervallum (véges vagy végtelen, nyílt vagy zárt), és tfh $f:I \to \mathbb{R}, f \in C(I)$. Ekkor $\forall x_1, x_2 \in I, y \in (f(x_1), f(x_2))$ esetén $\exists x_0 \in (x_1, x_2): f(x_0) = y$.

Megjegyzés: az ilyen tulajdonságú függvényeket Darboux tulajdonságúaknak nevezzük. A Bolzano-tétel kimondja, hogy ha $f: I \to \mathbb{R}, f \in C(I) \Rightarrow f$ Darboux tulajdonságú.

Példa: $f(x) = \begin{cases} \sin \frac{1}{x} & \text{ha } 0 < x \le 1 \\ 0 & \text{ha } x = 0 \end{cases}$. Ez a függvény Darboux tulajdonságú, de nem folytonos 0-ban.

<u>Állítás:</u> egy $A \subset \mathbb{R}$ halmaz intervallum $\Leftrightarrow \forall x_1, x_2 \in A, \forall x \in (x_1, x_2)$ esetén $x \in A$.

Ezen állítás segítségével a Bolzano tétel így is megfogalmazható:

<u>Tétel</u>: ha *I* intervallum, és $f:I \to \mathbb{R}$, $f \in C(I) \Rightarrow R_f$ is intervallum.

Alkalmazás:

- 1. $I: = [0, \infty), f(x) = x^n, n \in \mathbb{N}!$ Ekkor a tétel szerint mivel f folytonos, R_f valamilyen intervallum, f szigorúan monoton nő, f(0) = 0, $\lim_{x \to \infty} f(x) = \infty \Rightarrow R_f = [0, \infty) \Rightarrow D_{f^{-1}} = [0, \infty)$
- 2. $I = \mathbb{R}, f: I \to \mathbb{R}, f(x) = e^x \Rightarrow f(x) \in C(I), \lim_{x \to -\infty} f(x) = 0, \lim_{x \to \infty} f(x) = \infty, f$ szigorúan monoton nő, $R_f = (0, \infty) \Rightarrow D_{f^{-1}} \equiv D_{\ln} = (0, \infty).$

Bolzano-tétel metrikus terekben

10.13

<u>Definíció</u>: Legy en *X* metrikus tér, $[\alpha, \beta] \subset \mathbb{R}$, φ : $[\alpha, \beta] \to X$, $\varphi \in C[\alpha, \beta]$. Ekkor azt mondjuk, hogy φ folytonos ívet, görbét határoz meg az *X*-ben. $R_{\varphi} = \{\varphi(t): t \in [\alpha, \beta]\} \subset X$. Ekkor $\varphi(\alpha)$ és $\varphi(\beta)$ -t a görbe végpontjainak nevezzük. (M egj: van, amikor φ -t nevezzük görbének, nem pedig a "képét".)

<u>Definíció</u>: azt mondjuk, hogy az $A \subset X$ halmaz ívszerűen összefüggő, ha az A halmaz bármely két pontja összeköthető az A-ban haladó folytonos görbével, ívvel, vagy is $\forall a, b \in A \exists \varphi : [\alpha, \beta] \to X, \varphi \in C[\alpha, \beta]$, hogy $\varphi(\alpha) = a, \varphi(\beta) = b, t \in (\alpha, \beta) \Rightarrow \varphi(t) \in A$

<u>Tétel</u>: legy enek X, Y metrikus terek, $f: X \to Y$, $f \in C(D_f)$! Ha D_f ívszerűen összefüggő, akkor R_f is. Bizony ítás: legy enek $y_1, y_2 \in R_f$. Belátjuk, hogy y_1, y_2 összeköthető R_f -ben haladó folytonos ívvel. Mivel $y_1, y_2 \in R_f \Rightarrow \exists x_1, x_2 \in D_f$: $f(x_1) = y_1, f(x_2) = y_2$. Mivel D_f ívszerűen összefüggő $\Rightarrow \exists \varphi : [\alpha, \beta] \to X$, $\varphi \in C[\alpha, \beta]$, hogy $\varphi(\alpha) = x, \varphi(\beta) = x_2, t \in (\alpha, \beta) \Rightarrow \varphi(t) \in D_f$. Legy en $\psi: [\alpha, \beta] \to Y, \psi: = f \circ \varphi$ ekkor ψ folytonos (kompozíció függvény tulajdonságából), továbbá $t \in (\alpha, \beta) \Rightarrow \psi(t) = f(\varphi(t)) \in R_f$, sőt,

$$\psi(\alpha) = f(\varphi(\alpha)) = f(x_1) = y_1, \psi(\beta) = f(\varphi(\beta)) = f(x_2) = y_2.$$

<u>Definíció</u>: azt mondjuk, hogy az $A \subset X$ összefüggő (<u>topológiai</u> értelemben), ha nem adható meg G_1 és G_2 diszjunkt nyílt halmaz úgy, hogy $G_1 \cup G_2 \supset A, A \cap G_1 \neq \emptyset, A \cap G_2 \neq \emptyset$.

Megjegyzés: belátható, hogy ha A ívszerűen összefüggő, akkor összefüggő.

<u>Tétel</u>: legy enek X, Y metrikus terek, $f: X \rightarrow Y$, $f \in C(D_f)$! Ha D_f összefüggő $\Rightarrow R_f$ is. (Bolzano-tétel metrikus térben.)

Függvénysorok és sorozatok egyenletes konvergenciája

 $\underline{\mathbf{Definíció}} : \text{legyenek } X, Y \text{ metrikus terek}, M \subset X, \text{ \'es } \forall j \in \mathbb{N} \text{ -re } f_j : M \to Y. \text{ Azt mondjuk, hogy } f_j \text{ függv\'eny ek}$ függv\'eny sorozatot alkotnak, jelölése $\left(f_j\right)_{j \in \mathbb{N}}$.

Kérdés: feltéve, hogy $f_j \in C(M)$ minden j-re, $\Rightarrow f \in C(M)$? Általában nem. Pl: $f_j(x) = x^j, 0 \le x \le 1, j \in \mathbb{N}$, ekkor $\forall f_j \in C(M), \text{ de } \lim_{j \to \infty} f_j(x) = \begin{cases} 0 & \text{ha } 0 \le x < 1 \\ 1 & \text{ha } x = 1 \end{cases}.$

<u>Definíció</u>: azt mondjuk, hogy az $f_j: M \to Y$ függvényekből álló sorozat egyenletesen tart az $f: M \to Y$ függvényhez, ha $\forall \varepsilon > 0 \exists j_0 \in \mathbb{N}: j > j_0 \Rightarrow \rho \left(f_j(x), f(x) \right) < \varepsilon, \forall x \in M.$

Megjegyzés: j_0 csak ε -tól függ, és nem függ x-től. (Pontonkénti konvergencia esetén függhet x-től.)

Példa: $f_j(t) := t^j, 0 < a < 1, 0 \le t \le a$, ekkor f_j egy enletesen tart 0-hoz a [0,a] -n. Ugy anis legy en $\varepsilon > 0$ tetszőleges, $0 \le t^j < \varepsilon$ esetén $0 \le t^j < \varepsilon$ mikor teljesül? Válasszuk meg j_0 számot úgy, hogy $j > j_0$ esetén $a^j < \varepsilon$. Ezt mindig megtehetjük, ugy anis 0 < a < 1, így $0 \le t \le a$ esetén $t^j \le a^j \le \varepsilon$.

<u>Tétel</u>: legy en $f_j: M \to Y, M \subset X, f_j \in C(D_f)$. Ha (f_j) függvény sorozat egy enletesen tart egy $f: M \to Y$ függvény hez, akkor f folytonos.

Bizonyítás: legy en $x_0 \in M$. Belátjuk, hogy $f \in C[x_0]$. Tetszőleges $x \in M$ esetén $\rho(f(x), f(x_0)) \leq \rho\Big(f(x), f_j(x)\Big) + \rho\Big(f_j(x), f_j(x_0)\Big) + \rho\Big(f_j(x_0), f(x_0)\Big)$. Legy en $\frac{\varepsilon}{3} > 0$ tetszőleges, ezért mivel $\Big(f_j\Big)$ egy enletesen tart f-hez, $\exists j_0 : j > j_0 \Rightarrow \rho\Big(f(x), f_j(x)\Big) < \frac{\varepsilon}{3}, \rho\Big(f(x_0), f_j(x_0)\Big) < \frac{\varepsilon}{3}$. Választhatunk egy rögzített $j > j_0$ -t,

 $\text{mondjuk } j = j_0 + 1. \text{ Továbbá tudjuk, hogy } f_j \in C[x_0] \Rightarrow \exists \delta > 0 : x \in M, \\ \rho(f(x), f(x_0)) \leq \underbrace{\rho\left(f(x), f_j(x)\right)}_{<\varepsilon/3 \text{ mivel } j > j_0} + \underbrace{\rho\left(f_j(x), f_j(x_0)\right)}_{<\varepsilon/3 \text{ ha } x \in B_\delta(x_0)} + \underbrace{\rho\left(f_j(x_0), f(x_0)\right)}_{<\varepsilon/3 \text{ mivel } j > j_0} < \varepsilon.$

Megjegyzés: $f_i(t) := t^j, 0 \le t \le 1$ függvények esetén (f_i) függvénysorozat nem tart egyenletesen az f függvényhez.

<u>Definíció</u>: azt mondjuk, hogy a g_k tagokból álló sor pontonként konvergens és összege $f:M\to\mathbb{R}$ függvény, ha $\forall x\in M$ esetén $g_k(x)$ tagokból álló számsor konvergens \mathbb{R} -ben, és a sor összege f(x), és ezt így jelöljük:

$$\sum_{k=1}^{\infty} g_k(x) = f(x) \text{ jelöljük.}$$

Megjegyzés:
$$\sum_{k=1}^{\infty} g_k(x) \equiv \lim_{j \to \infty} f_j(x) = \lim_{j \to \infty} \sum_{k=1}^{j} g_j(x).$$

Tétel: tfh $g_k:M\to\mathbb{R}$ folytonos és a g_k tagokból álló sor egyenletesen konvergál egy $f:M\to\mathbb{R}$ függvényhez $\Rightarrow f\in C(D_f)$.

Bizonyítás: $f_j = \sum_{k=1}^J g_k$ folytonos, $\lim (f_j) = f$ -hez egyenletesen konvergál $\Rightarrow f \in C(D_f)$.

<u>Tétel</u>: tfh $g_k: M \to \mathbb{R}$ függvényekre teljesül, hogy $|g_k| \le a_k, a_k \in \mathbb{R}$ és $\sum_{k=1}^{\infty} a_k < \infty$. Ekkor a (g_k) tagokból álló

függvény sor egy enletesen konvergens.

Bizonyítás: legyen $x \in M$ tetszőleges, rögzített pont. Először belátjuk, hogy $\sum_{k=1}^{\infty} |g_k(x)| < \infty$. Legyen

$$f_j(x) := \sum_{k=1}^j g_k(x), \text{ ekkor } \exists j_0 : j > l > j_0 \Rightarrow \left| f_j(x) - f_l(x) \right| = \left| \sum_{k=l+1}^j g_k(x) \right| \le \sum_{k=l+1}^j \left| g_k(x) \right| \le \sum_{k=l+1}^j \left|$$

$$\sum_{k=1}^{\infty} a_k < \infty$$
, vagy is $(f_j(x))_{j \in \mathbb{N}}$ számsorozatra teljesül a Cauchy-kritérium. M ivel \mathbb{R} teljes tér

 $\Rightarrow \exists f(x) \in \mathbb{R}: \lim_{\substack{j \to \infty \\ j \to \infty}} f_j(x) = f(x)$, vagy is a $|g_k(x)|$ és a $g_k(x)$ tagokból álló függvény sor konvergens.

Belátjuk, hogy a sor, illetve a vele ekvivalens (f_j) függvény sorozat egy enletesen konvergál f-hez. Legy en $\varepsilon > 0$ tetszőleges, a fentiek szerint, $j \to \infty$ határátmenetben a fenti egy enlőtlenségből kapjuk, hogy

 $|f(x) - f_l(x)| \le \sum_{k=l+1}^{\infty} a_k < \varepsilon, \forall x \in M, \text{ ha } l > j_0. \text{ De hisz ez pont az jelenti, hogy } f_k \text{ egy enletesen tart } f\text{-hez.}$

Hatványsorok

<u>Definíció</u>: egy $c_j x^j, x \in \mathbb{R}, c_j \in \mathbb{R}, j = 0,1,2...$ tagokból álló függvénysort hatványsornak nevezünk.

Megjegyzés: a hatványsor tagjai folytonos függvények.

Kérdés: a hatványsor mely x-ekre konvergens, illetve egyeneltesen konvergens?

<u>Definíció</u>: legy en $a_k \in \mathbb{R}$, $k \in \mathbb{R}$. Az $(a_k)_{k \in \mathbb{N}}$ valós számsorozat limesz szuperiorját illetve limesz inferiorját így értelmezzük: limsup $(a_k)_{k \in \mathbb{N}} = \limsup_{k \to \infty} a_k$ jelenti azt a legnagyobb valós számot (vagy végtelent), amelyhez az (a_k) egy alkalmas részsorozata konvergál. Ezzel analóg a liminf (a_k) .

Megjegyzés:

- 1. mindig létezik limesz inferior és limesz szuperior
- 2. ha $\exists \lim (a_k) \Rightarrow \lim (a_k) = \limsup (a_k) = \liminf (a_k)$
- 3. $\limsup_{k \to \infty} (a_k) = \lim_{k \to \infty} [\sup \{a_k, a_{k+1}, ...\}]$

<u>**Tétel**</u>: legy en R: = $\frac{1}{\limsup \sqrt[k]{|c_k|}}$. Ha a nevező nulla lenne, akkor R: = ∞ , ha végtelen, akkor R: = 0. Ekkor |x| < R esetén a hatvány sor konvergens, |x| > R esetén pedig divergens.

Bizonyítás: a gyökkritérium alapján...

Tétel: legyen $0 < R_0 < R$, ekkor a hatványsor egyenletesen konvergens az R_0 sugarú intervallumban (vagy körben). Bizonyítás: Weierstrass kritériummal bizonyítjuk. Legyen $g_j(x) = c_j x^j$, j = 0,1,..., ekkor $|g_j(x)| = |c_j x^j| = |c_j| |x^j| \le |c_j| |R_0^j$. Azt kellene belátni, hogy $|c_j| |R_0^j$ tagokból álló sor konvergens. Alkalmazzuk erre a gyökkritériumot! $\sqrt[j]{|c_j| |R_0^j} = R_0 \sqrt[j]{|c_j|}$, $\lim_{j \to \infty} \sqrt[j]{|c_j| |R_0^j} = R_0 \lim_{j \to \infty} \sqrt[j]{|c_j|} = \frac{R_0}{R} < 1 \Rightarrow \sum_{j=1}^{\infty} |c_j| |R_0^j$ konvergens (ez a gyökkritérium).

Következmény: a hatványsor összege folytonos a konvergenciakör belsejében. Például $e^x = \sum_{j=0}^{\infty} \frac{x^j}{j!}$, ennek a

konvergencia-sugara végtelen, mert $R = \frac{1}{\limsup \sqrt[n]{1/n!}} = \limsup \sqrt[n]{n!} = \infty$.

Differenciálhatóság

10.20

<u>Definíció</u>: egy $f: \mathbb{R} \to \mathbb{R}$ vagy $\mathbb{C} \to \mathbb{C}$ függvényt az x_0 pontban differenciálhatónak nevezünk, ha $x_0 \in \operatorname{int} D_f$ és $\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ és véges $\Leftrightarrow \exists \lim_{\varepsilon \to 0} \frac{f(x_0 + \varepsilon) - f(x_0)}{\varepsilon}$ és véges.

Megjegyzés: Hogy egy ilyen definíciót továbbvihessünk "többváltozós" függvényekre, szükségünk van a lineáris leképezések vizsgálatára.

Lineáris leképezések

<u>Definíció</u>: legy en X vektortér, azt mondjuk, hogy az $M \subset X$ halmaz elemei lineárisan függetlenek, ha bármely M-beli véges sok elemre $\sum_{i} \alpha_{i} x_{i} = 0 \Leftrightarrow \alpha_{i} = 0$. Gyakran M-et nevezzük lineárisan függetlennek, nem pedig az elemeit.

Állítás: egy vektortér lineárisan független elemeinek maximális száma egyértelmű.

<u>Definíció</u>: az X vektortér dimenziójának nevezzük az X-beli lineárisan független elemek maximális számát (véges vagy végtelen is lehet).

<u>Definíció</u>: legy enek X és Y vektorterek, $M \subset X$! Egy $A:M \to Y$ lekép ez ést lineárisnak nevezünk, ha

- 1. $x_1, x_2 \in M \Rightarrow x_1 + x_2 \in M$, és $x \in M$, $\lambda \in \mathbb{R} \Rightarrow \lambda x \in M$
- 2. $A(x_1 + x_2) = A(x_1) + A(x_2)$ (additivitás)
- 3. $A(\lambda x_1) = \lambda A(x_1)$ (homogenitás)

M egjegy zés: az első feltétel *M*-től megköveteli, hogy lineáris altér legyen, azonban gyakran *A*-t egy *X*-ről *Y*-ba kép ező függvény ként definiáljuk, így *M*-re nincs is szükség.

Példák: $X: = \mathbb{R}^n, Y: = \mathbb{R}^m, A: \mathbb{R}^n \to \mathbb{R}^m$ lineáris leképezés. Ekkor egyértelműen létezik egy olyan \mathscr{A} mátrix, hogy

$$\mathcal{A}x = Ax, \text{ és } \mathcal{A} \text{ ily en alakú: } \mathcal{A}: = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Definíció: jelölje a lin (X, Y) = L(X, Y) az összes $X \to Y$ lineáris leképezések halmazát!

Definíció: legy en X, Y vektorterek, $A \in \text{lin}(X, Y)$, $B \in \text{lin}(X, Y)$, ekkor A + B -t így értelmezzük:

$$(A + B)(x) = \underbrace{Ax + Bx}_{\in Y}, \forall x \text{ -re.}$$

 $\underline{\text{Allitás:}} (A + B) \in \text{lin}(X, Y)$

<u>Definíció</u>: az $A \in \text{lin}(X, Y)$ -nek $\lambda \in \mathbb{R}$ számmal való szorzatát így értelmezzük: $(\lambda A)(x) = \lambda(Ax)$.

M egjegy zés: a homogenitás miatt a zárójelet elhagy hatjuk, a művelet egyértelmű marad.

Állítás: λA ∈ lin (X, Y)

<u>Tétel</u>: lin(X, Y) vektorteret alkot az előbbi két művelettel (vagy is az A + B között értelmezett összeadással és λA -val értelmezett szorzással).

<u>Definíció</u>: legy enek Y = X vektorterek! Egy $A \in \text{lin}(X, X), B \in \text{lin}(X, X)$ szorzatát így értelmezzük: (AB)(x) = A(B(x)), vagy is mint kompozíció, tehát $AB \equiv A \circ B$.

 $\underline{\text{Allitas:}}$ *AB* ∈ lin (*X*, *X*).

Definíció: legy en

- $I: X \to X$, $Ix = x \ \forall x \in X$ és
- $0: X \to X$, $0x = 0 \in X \ \forall x \in X$

Ekkor $I \in \text{lin}(X, X)$ és $0 \in \text{lin}(X, X)$. Így igaz a következő

<u>**Tétel**</u>: lin(X, X) -ben érvényesek a következők:

- 1. (A+B)C = AC + BC
- 2. C(A+B) = CA + CB
- 3. $\lambda \in \mathbb{R}(AB) = (\lambda A)B$
- 4. $\exists !0 \in lin(X, X) : 0A = A0 = 0 \ \forall A$
- 5. $\exists !I \in lin(X, X): IA = AI = A \forall A$

<u>Definíció</u>: egy $A \in \text{lin}(X, X)$ hatványait így értelmezzük: $A^0 = I$, $A^1 = A$, $A^2 = AA$...

$$A^{n} = \underbrace{AA...A}_{n \text{ db}} = AA^{n-1} = A^{n-1}A.$$

Állítás: legy en X: = \mathbb{R}^n és $A, B \in \text{lin}(\mathbb{R}^n, \mathbb{R}^n)$. Ha $\mathcal{A} \Leftrightarrow A, \mathcal{B} \Leftrightarrow B$, akkor $\mathcal{AB} \Leftrightarrow AB$. (Itt $\mathcal{A} \Leftrightarrow A$ azt jelenti, hogy $Ax = \mathcal{A}x$; \mathcal{AB} mátrixszorzást jelent).

<u>Definíció</u>: legy en X vektortér, $A \in \text{lin}(X, X)$! Azt mondjuk, hogy $\lambda \in \mathbb{R}$ szám az A leképezés sajátértéke és $x \in X, x \neq 0$ pedig a sajátvektora, ha $Ax = \lambda x$.

<u>Definíció</u>: a ψ sajátérték rangjának (vagy geometriai multiplicitásának) a ψ -hoz tartozó lineárisan független sajátelemek (sajátvektorok) maximálás számát nevezzük.

Megjegyzés: a ψ -hoz tartozó sajátvektorok alteret alkotnak.

Speciális eset:
$$X: = \mathbb{R}^n, A \Leftrightarrow \mathcal{A}, I \Leftrightarrow \mathcal{E} = \begin{pmatrix} 1 & 0 & \ddots \\ 0 & \ddots & 0 \\ \ddots & 0 & 1 \end{pmatrix}$$
: $\det(\mathcal{A} - \lambda \mathcal{E}) = 0$ egy enlet megoldásai adják a ψ

sajátértékeket.

Lineáris leképezések inverze

Legy en X vektortér! Egy $A \in \text{lin}(X, X)$ leképezésnek mikor van inverze? (Tudjuk, hogy az inverz csak akkor értelmezhető, ha a függvény injektív).

<u>Tétel</u>: egy $A \in \text{lin}(X, X)$ leképezésnek pontosan akkor van inverze, ha $Ax = 0 \Leftrightarrow x = 0$, vagy is ha ker $A = \{0\}$. Bizonyítás: belátjuk, hogy A injektív, ha ker A = 0, illetve ker A = 0 ha A injektív. Első része: legy en $x_1, x_2 \in X$ és $Ax_1 = Ax_2 \Rightarrow A(x_1 - x_2) = 0$, mivel ker A = 0, ezért $\Rightarrow x_1 - x_2 = 0 \Rightarrow x_1 = x_2$, tehát A injektív, ha ker A = 0. M ost belátjuk, hogy ker A = 0 ha A injektív, vagy is $Ax = 0 \Rightarrow x = 0$. A0 = 0 és A injektív $\Rightarrow x = 0$.

 $\underline{\text{\'All\'it\'as:}}\ A \in \text{lin}\ (X,X) \text{ injekt\'iv } \Rightarrow A^{-1} \in \text{lin}\ (X,X)$

 $\underline{\text{\'All\'it\'as:}} \text{ legyen } A \in \text{lin}\,(X,X) \text{ olyan, hogy } \exists B \in \text{lin}\,(X,X) : AB = BA = I, \text{ ekkor } \exists A^{-1} \text{ \'es } A^{-1} = B.$

Lineáris és folytonos operátorok

Legy en a továbbiakban X, Y normált tér, $A \in lin(X, Y)$.

Kérdés: következik-e ebből, hogy A folytonos is? Általában nem.

<u>Állítás:</u> legyen $A \in \text{lin}(\mathbb{R}^n, \mathbb{R}^m)$, ekkor A folyonos.

Bizonyítás: legy en \mathcal{A} mátrix, mely re $\mathcal{A}x = Ax$. Becsüljük meg amink van |Ax| -t!

$$|Ax|^2 = |\mathcal{A}x|^2 = \sum_{j=1}^m y_j^2 \le \sum_{j=1}^m \sum_{k=1}^n a_{jk}^2 \sum_{k=1}^n x_k^2 = |x|^2 \sum_{j=1}^m \sum_{k=1}^n a_{jk}^2$$
 (lásd a megjegyzést), vagy is

$$|Ax|^2 \le c^2 |x|^2 \Rightarrow |Ax| \le c|x|$$
, így $|Ax - Ax_0| \le c|x - x_0|$. Legy en $\varepsilon > 0$ tetszőleges, $\delta := \frac{\varepsilon}{c} > 0$. Ha $|x - x_0| < \delta = \frac{\varepsilon}{c} \Rightarrow |Ax - Ax_0| < c\frac{\varepsilon}{c} = \varepsilon$.

M egjegy zés: az első számítás során felhasználtuk, hogy $y_j = (\mathcal{A}x)_j = \sum_{k=1}^m a_{jk} x_k \Rightarrow y_j^2 \leq \left(\sum_{k=1}^m a_{jk}^2\right) \left(\sum_{k=1}^m x_k^2\right).$

(Cauchy-Schwarz egyenlőtlenség).

<u>Definíció</u>: legy en X, Y normált tér, $A \in \text{lin}(X, Y)$! Az A leképezést korlátosnak nevezzük, ha $\exists c \geq 0, c \in \mathbb{R} : ||Ax|| \leq c||x||, \forall x \in X$ -re.

Tétel: legy en $A \in \text{lin}(X, Y)$. Ekkor A folytonos $\Leftrightarrow A$ korlátos.

Bizonyítás: \Leftarrow irány ban: tfh A korlátos, vagy is $\exists c \geq 0$: $||Ax|| \leq c||x||$. Legy en $x_0 \in X$. Azt szeretnénk belátni, hogy $\forall \varepsilon > 0 \exists \delta > 0$: $||x - x_0|| < \delta \Rightarrow ||Ax - Ax_0|| < \varepsilon$. Tudjuk, hogy $||Ax - Ax_0|| = ||A(x - x_0)|| \leq c||x - x_0||$, ezért legy en $\delta := \frac{\varepsilon}{c} > 0$, így $||Ax - Ax_0|| < c \frac{\varepsilon}{c} = \varepsilon$.

⇒ irány ban indirekt: tfh A nem korlátos, de folytonos, vagy is a nem korlátosságból adódóan

 $\forall c>0\,\exists x:\|Ax\|>c\|x\|. \text{ Ekkor }\forall n\in\mathbb{N}\text{ számhoz }\exists x_n\in X:\|Ax_n\|>n\|x_n\|, c:=n. \text{ Legy en }\widetilde{x_n}:=\frac{x_n}{n\|x_n\|}, \text{ ekkor }\|\widetilde{x_n}\|=\frac{1}{n}\frac{\|x_n\|}{\|x_n\|}=\frac{1}{n}, \text{ vagy is }\lim(\widetilde{x_n})=0. \text{ M ivel }A\text{ folytonos, így az átviteli elv segítségével }\lim\|A\widetilde{x_n}\|=0, \text{ de tudjuk, hogy }\|A\widetilde{x_n}\|=\|A\frac{x_n}{n\|x_n\|}\|>\frac{n\|x_n\|}{n\|x_n\|}=1, \text{ tehát azt kaptuk, hogy }\|A\widetilde{x_n}\|>1\,\forall n\text{ -re, de ez meg ellentmond annak, hogy }\lim\|A\widetilde{x_n}\|=0$

Definíció: egy f függvényt akkor nevezünk folytonosan differenciálhatónak egy $[\alpha, \beta]$ -n, ha folytonos az $[\alpha, \beta]$ -n, differenciálható a (α, β) -n és a deriváltjának létezik folytonos kiterjesztése az $[\alpha, \beta]$ -ra. Ezt a tényt így jelöljük: $f ∈ C^1[0,1]$.

Példa lineáris, nem korlátos operátorra: X := C[0,1], művelet a szokásos összeadás és skalárral való szorzás, a norma $\|f\| = \sup |f|$. Legyen $f \in D_A = C^1[0,1] \subset X$, ahol A a differenciáloperátor, vagy is $Af := f' \in X$. Vegyük észre, hogy $A \in \lim (X,X)$, de nem folytonos. Ugyanis: az $f_j(t) = \frac{1}{j} e^{-jt}$, $j \in \mathbb{N}$, $t \in [0,1]$ függvények folytonosan differenciálhatóak, normájuk $\|f_j(t)\| = \frac{1}{j} \Rightarrow \lim_i \|f_j\| = 0$. Továbbá

 $f_j'(t) = -e^{-jt} \Rightarrow \|f_j'(t)\| = 1 \Rightarrow \lim_j \|f_j'\| = \lim_j \|Af_j\| = 1$. Eszerint az Af = f', f folytonosan differenciálható, C $[0,1] \mapsto C[0,1]$ operátor nem folytonos, de lineáris (az A operátor a [0,1] intervallumon folytonos függvények halmazából képez a [0,1] intervallumon folytonos függvények halmazába).

Adott vektortérhez többféleképp is értelmezhető norma. Folytonos függvényekre (amik vektorteret alkotnak) 11.04 egy lehetséges norma a következő: $||f||_1 = \int_0^1 |f| \operatorname{vagy}$ akár a következő: $||f||_{\infty} = \sup\{|f|: t \in [0,1]\}$. Ez utóbbira lássuk be a norma tulajdonságait!

1. $||f|| = 0 \Leftrightarrow f = 0$ láthatóan teljesül

- 2. $\|\lambda f\| = \sup\{|\lambda f(t)|: t \in [0,1]\} = \sup\{|\lambda||f(t)|: t \in [0,1]\} = |\lambda|\sup\{|f(t)|: t \in [0,1]\} = |\lambda| \cdot \|f\|$
- 3. $||f + g|| = \sup\{|f + g|(t): t \in [0,1]\} \le \sup\{|f(t)| + |g(t)|: t \in [0,1]\} \le \sup\{|f(t)|: t \in [0,1]\} + \sup\{|g(t)|: t \in [0,1]\}$

Definíció: legy en X, Y normált tér, $A \in \text{lin}(X, Y)$ és korlátos. Értelmezzük az A operátor normáját! $||A|| := \sup \{||Ax|| : ||x|| = 1\}$. Belátandó, hogy a norma tulajdonságai teljesülnek. Mivel A korlátos, $\exists c \in \mathbb{R} : ||Ax|| \le c||x|| = c$, ha ||x|| = 1.

- 1. Ny ilván $||A|| \ge 0$ és $A = 0 \Rightarrow ||A|| = 0$. Fordítva: $||A|| = 0 \Rightarrow ||Ax|| = 0 \forall x \in X$, ||x|| = 1. Bizony ítandó, hogy ekkor $A = 0 \Leftrightarrow Az = 0 \forall z \in X$. Ekkor $Az = A\left(\frac{z}{||z||} ||z||\right) = ||z||A\left(\frac{z}{||z||}\right) = ||z||0 = 0, \forall z \in X \Leftrightarrow A = 0$.
- 2. $\|\lambda A\| = \sup \{\|(\lambda A)x\| \|\|x\| = 1\} = \sup \{|\lambda| \|Ax\| \|\|x\| = 1\} = |\lambda| \sup \{\|Ax\| \|\|x\| = 1\} = \lambda \|A\|$.
- 3. $||A + B|| = \sup \{||(A + B)x|| : ||x|| = 1\} \le \sup \{||Ax|| + ||Bx|| : ||x|| = 1\} \le \sup \{||Ax|| : ||x|| = 1\} + \sup \{||Bx|| : ||x|| = 1\} = ||A|| + ||B||.$

<u>Tétel</u>: legy en X, Y normált tér! Tekintsük a korlátos, $\lim (X, Y)$ -beli operátorokat az összeadással és számmal való szorzással és az előbb értelmezett normával. Ez normált teret alkot és L(X, Y) -nak jelöljük.

Megjegyzés: az X-en értelmezett Y-ba képező korlátos lineáris operátorok a szokásos műveletekkel vektorteret alkotnak, mert 2 korlátos, folytonos operátor összege is folytonos, korlátos és skalár szorosa is korlátos (utóbbi ekvivalens a folytonossággal, mint bizonyítottuk).

Állítás: legy en $A \in L(X, Y)$! Ekkor $||A|| = \min \{c \ge 0 : ||Ax|| \le c||x||, \forall x \in X\}$.

Bizony ítás: α : = inf $\{c \ge 0 : ||Ax|| \le c||x|| \, \forall x \in X\}$. Mivel $||A|| = \sup\{||Ax||| ||x|| = 1\} \Rightarrow \forall z \in X \setminus \{0\}$ elemet véve $z = \frac{z}{\|z\|} \|z\|$. Ekkor $||Az|| = \|A\frac{z}{\|z\|} \|z\|\| = \|z\| \cdot \left(A\left(\frac{z}{\|z\|}\right)\right) \le$

 $\leq \|z\| \cdot \|A\| \Rightarrow \|A\| \in \{c \geq 0 : \|Ax\| \leq c\|x\|, \ \forall x \in X\} \Rightarrow \alpha \leq \|A\|. \text{ Belátjuk, hogy } \alpha < \|A\| \text{ nem lehet, ha ugyanis}$ $\alpha < \|A\| \text{ lenne, akkor } \exists c : 0 \leq c < \|A\|, \|Ax\| \leq c\|x\|, \text{ de ekkor } \|A\| = \sup \{\|Ax\| \|\|x\| = 1\} \leq \sup \{c\|x\| \|\|x\| = 1\} = c$ lenne, ami ellentmond $c < \|A\|$ -nak.

<u>Tétel</u>: legy en X normált, Y teljes normált tér, ekkor L(X, Y) normált tér is teljes.

Bizonyítás: legyen $(A_j)_{j\in\mathbb{N}}$ Cauchy-sorozat az L(X,Y) normált térben, vagyis

 $\forall \varepsilon > 0 \,\exists \, k_0 : j,k > k_0 \, \Rightarrow \, \left\| A_j - A_k \right\| < \varepsilon. \text{ Be kellene látni, hogy } \, \exists \, A \in L(X,Y) : \lim_i \left\| A_j - A \right\| = 0. \text{ Legyen } x \in X$

tetszőleges rögzített elem! Tekintsük az $(A_j x)_{j \in \mathbb{N}}$ Y-beli sorozatot! Belátjuk, hogy erre teljesül a Cauchy-kritérium.

$$\|A_jx - A_kx\| = \|(A_j - A_k)x\| \le \|A_j - A_k\| \|x\| \le \varepsilon \|x\|. \text{ Mivel } Y \text{ t\'er teljes, } \exists \lim_{j \to \infty} (A_jx) = A(x) \in Y.$$

 $\lim_{j\to\infty} ||A_j x - A(x)|| = 0$, $\forall x \in X$ rögzített elemre. Nem nehéz belátni, hogy $A \in \text{lin}(X, Y)$. Belátandó, hogy korlátos is.

 $\|A_jx\| \leq \|A_j\| \cdot \|x\|. \text{ Mivel } (A_j) \text{ Cauchy sorozat, } \forall \varepsilon > 0 \,\exists \, j_0 : j,k > j_0 \Rightarrow \|A_j - A_k\| < \varepsilon. \text{ Legy en } \varepsilon : = 1,k : = j_0 + 1,$ ekkor $\|A_j - A_{j_0 + 1}\| < 1 \text{ ha } j > j_0. A_1, A_2 ... A_{j_0}, A_k \text{ véges sok operátor, ezek korlátosak. Ebből következik, hogy}$

 $\exists c: \|A_j\| \le c, \ \forall j, \text{ továbbá a } \|A_jx - A_kx\| \le \varepsilon \|x\| \text{ egy enlőtlenségből követkeik } k \to \infty \text{ esetben, hogy}$ $\|A_jx - Ax\| \le \varepsilon \|x\|, \text{ tehát } \|A_jx\| \to \|Ax\| \le c \|x\| \text{ és } \lim_j \|A_j - A\| = 0.$

Emlékeztető kalkulusról: $f: \mathbb{R} \to \mathbb{R}$ függvény differenciálható egy x_0 pontban, ha $\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} := f'(x_0)$. Legyen $\varepsilon(x) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \Leftrightarrow f(x) - f(x_0) = f'(x_0)(x - x_0) + \varepsilon(x)(x - x_0)$, ekkor egy f differenciálható, ha $\lim_{x \to x_0} \varepsilon(x) = 0$. Ha $f(x) - f(x_0) = f'(x_0)(x - x_0) + \varepsilon(x)(x - x_0)$ teljesül úgy, hogy $\lim_{x \to x_0} \varepsilon(x) = 0 \Rightarrow f$ differenciálható. M ódosítás: $\eta(x) := \varepsilon(x)(x - x_0)$, ekkor $f(x) - f(x_0) = A(x - x_0) + \eta(x)$, ahol $\lim_{x \to x_0} \frac{\eta(x)}{x - x_0} = 0$. Ezt, az eredetivel ekvivalens meghatározást tovább lehet általánosítani normált terekre.

M egjegy zés: $X = Y = \mathbb{R}$ esetben visszaadja a klasszikus definíciót.

<u>Állítás</u>: ha f differenciálható az x_0 -ban, akkor A egyértelmű.

Bizony ítás: tfh $A, \widetilde{A} \in L(X, Y)$: $f(x) - f(x_0) = A(x - x_0) + \eta(x)$ és $f(x) - f(x_0) = \widetilde{A}(x - x_0) + \widetilde{\eta}(x)$ ahol $\lim_{x \to x_0} \frac{\eta(x)}{\|x - x_0\|} = 0 = \lim_{x \to x_0} \frac{\widetilde{\eta}(x)}{\|x - x_0\|}.$ Belátjuk, hogy $A - \widetilde{A} = 0$.

Legy en $z \in X$ tetszőleges és $a \in \mathbb{R} \setminus \{0\}$. Ekkor $x = x_0 + a \cdot z$ benne van az x_0 kis környezetében, ha |a| elég kicsi.

Ekkor
$$0 = (A - \widetilde{A})(az) + (\eta - \widetilde{\eta})(x_0 + az)$$
. Osszuk mindkét oldalt a -val! $0 = (A - \widetilde{A})z + (\eta - \widetilde{\eta})(x_0 + az)/a$, így
$$\left\| \frac{(\eta - \widetilde{\eta})(x_0 + az)}{a} \right\| = \frac{\|(\eta - \widetilde{\eta})(x_0 + az)\|}{\|a\|} = \frac{\|(\eta - \widetilde{\eta})(x_0 + az)\|}{\|x - x_0\|} \|z\| = \underbrace{\frac{\|(\eta - \widetilde{\eta})x\|}{\|x - x_0\|}}_{\to 0 \text{ ha } x \to x_0} \|z\| \to 0, \text{ ezért } (A - \widetilde{A})z = 0, \forall z$$

<u>Definíció</u>: ha f differenciálható az x_0 -ban, akkor az $A \in L(X, Y)$ korlátos lineáris operátort az f függvény x_0 beli deriváltjának nevezzük, és $f'(x_0)$ -nak jelöljük.

Megjegyzés: $f'(x_0) \in L(X, Y)$, továbbá erre igaz, hogy $f(x) - f(x_0) = f'(x_0)(x - x_0) + \eta(x)$, ahol $\lim_{x \to x_0} \frac{\eta(x)}{x - x_0} = 0$.

 $\text{Speciális eset: } A = f'(x_0) \in L(\mathbb{R}^n, \mathbb{R}^m), \text{ ennek megfeleltethető egy } \mathscr{A} \text{ mátrix: } \mathscr{A}x = Ax : \mathscr{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$

<u>Állítás</u>: ha f differenciálható x_0 -ban, akkor f folytonos x_0 -ban.

Bizonyítás: $f(x) - f(x_0) = f'(x_0)(x - x_0) + \eta(x)$. Belátjuk, hogy $\lim_{x \to x_0} [f(x) - f(x_0)] = 0$. Egyrészt

 $||f'(x_0)(x-x_0)|| \le ||f'(x_0)|| ||x-x_0|| \to 0 \text{ ha } x \to x_0. \text{ Másrészt } ||\eta(x)|| = \frac{||\eta(x)||}{||x-x_0||} ||x-x_0|| \to 0 \text{ ha } x \to x_0. \text{ Tehát}$

A deriválás művelete, műveleti szabályok

11.18

<u>Tétel</u>: tfh f és g differenciálható x_0 -ban $\Rightarrow f + g$ is, és $(f' + g')(x_0) = f'(x_0) + g'(x_0)$. Továbbá tetszőleges $\lambda \in \mathbb{R}$ esetén λf is differenciálható x_0 -ban és $(\lambda f)'(x_0) = \lambda (f'(x_0))$.

Bizonyítás: mivel f differenciálható x_0 -ban $\Rightarrow f$ értelmezve van $B_{r_1}(x_0)$ -n is, ha r_1 elég kicsi. Legy en $x \in B_{r_1}(x_0)$!

Ekkor $f(x) - f(x_0) = f'(x_0)(x - x_0) + \eta_1(x)$, ahol $\lim_{x \to x_0} \frac{\eta_1(x)}{\|x - x_0\|} = 0$. Mivel g differenciálható x_0 -ban $\Rightarrow g$ értelmezve

van az $B_{r_2}(x_0)$ -n is, ha r_2 elég kicsi. Legy en $x \in B_{r_2}(x_0)$, ekkor $g(x) - g(x_0) = g'(x_0)(x - x_0) + \eta_2(x)$, ahol

 $\lim_{x \to x_0} \frac{\eta_2(x)}{\|x - x_0\|} = 0.$ Ezekből következik, hogy $r = \min\{r_1, r_2\}$ esetén, $x \in B_r(x_0)$ -re:

$$[f(x) + g(x)] - [f(x_0) + g(x_0)] = f'(x_0)(x - x_0) + g'(x_0)(x - x_0) + \eta_1(x) + \eta_2(x) =$$

$$= [f'(x_0) + g'(x_0)](x - x_0) + [\eta_1(x) + \eta_2(x)]. \text{ Továbbá mivel } \frac{\eta_1(x) + \eta_2(x)}{\|x - x_0\|} = \underbrace{\frac{\eta_1(x)}{\|x - x_0\|}}_{\to 0 \text{ ha } x \to x_0} + \underbrace{\frac{\eta_2(x)}{\|x - x_0\|}}_{\to 0 \text{ ha } x \to x_0} \to 0 \text{ ha } x \to x_0,$$

$$\lim_{x \to x_0} \frac{\eta_1(x) + \eta_2(x)}{\|x - x_0\|} = 0.$$

<u>Tétel</u> (a kompozíció függvény deriválási szabálya): tfh X, Y, Z normált terek, $f: X \rightarrow Y, g: Y \rightarrow Z$, ekkor $(g \circ f): X \rightarrow Z$. Tfh f differenciálható $x_0 \in X$ -ban és g differenciálható $y_0 \in Y$ -ban úgy, hogy $y_0 = f(x_0)$. Ekkor $g \circ f$ is differenciálható x_0 -ban és $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0) \in L(X, Z)$.

Bizonyítás: mivel f differenciálható x_0 -ban, így f értelmezve van egy $B_r(x_0)$ környezetben. Legyen $x \in B_{r_1}(x_0)$, ekkor $f(x) - f(x_0) = f'(x_0)(x - x_0) + \eta_1(x)$ ahol $\lim_{x \to x_0} \frac{\eta_1(x)}{\|x - x_0\|} = 0$. Mivel g differenciálható $y_0 = f(x_0)$ -ban, ezért

értelmezve van y_0 egy $B_{r_2}(y_0)$ körny ezetében. Legy en $y \in B_{r_2}(y_0)$, ekkor $g(y) - g(y_0) = g'(y_0) \cdot (y - y_0) + \eta_2(y)$ és

$$\lim_{y \to y_0} \frac{\eta_2(y)}{\|y - y_0\|} = 0. \text{ Mivel } f \in C(x_0) \Rightarrow B_{r_2}(y_0) = B_{r_2}(f(x_0)) \text{ k\"orny ezethez } \exists B_{\widetilde{r_1}}(x_0) : x \in B_{\widetilde{r_1}}(x_0) \Rightarrow f(x) \in B_{r_2}(f(x_0))$$

. Legy en r_{1*} : = min $\{r_1, \widetilde{r_1}\}$. $x \in B_{r_1*}(x_0)$ esetén y hely ébe f(x) -t írhatunk a g-re vonatkozó egy enletben

$$\Rightarrow g(f(x)) - g(f(x_0)) = g'(f(x_0))(f(x) - f(x_0)) + \eta_2(f(x)) \Rightarrow (g \circ f)(x) - (g \circ f)(x_0) =$$

$$=g'(f(x_0))[f'(x_0)(x-x_0)+\eta_1(x)]+\eta_2(f(x))=g'(f(x_0))[f'(x_0)(x-x_0)]+\underbrace{\left[g'(f(x_0))\eta_1(x)+\eta_2(f(x))\right]}_{\eta(x)}. \text{ Azt kellene}$$

megmutatni, hogy $\lim_{x \to x_0} \frac{\eta(x)}{\|x - x_0\|} = 0$. Tekintsük először $\eta(x)$ első tagját:

$$\frac{\|g'(f(x_0))\eta_1(x)\|}{\|x-x_0\|} \leq \frac{\|g'(f(x_0))\|\|\eta_1(x)\|}{\|x-x_0\|} = \|g'(f(x_0))\|\frac{\|\eta_1(x)\|}{\|x-x_0\|} \to 0, \text{ mert az utols\'o tag } \to 0. \text{ Teh\'at m\'ar elegend\~o csak}$$

$$\frac{\eta_2(f(x))}{\|x-x_0\|} \to 0 \text{ állítást belátni. Ehhez használjuk a következő jelölést: } \varepsilon(y) := \begin{cases} \frac{\|\eta_2(y)\|}{\|y-y_0\|} & \text{ha } y \neq y_0, y \in B_{r_2}(y_0) \\ 0 & \text{ha } y = y_0 \end{cases}.$$

Láthatjuk, hogy ekkor $\varepsilon: Y \to \mathbb{R}, \varepsilon \in C(y_0)$. Átrendezve:

$$\|\eta_{2}(y)\| = \varepsilon(y)\|y - y_{0}\| \quad \forall y \in B_{r_{2}}(y_{0}) \Rightarrow \frac{\|\eta_{2}(f(x))\|}{\|x - x_{0}\|} = \varepsilon(f(x)) \frac{\|f(x) - f(x_{0})\|}{\|x - x_{0}\|} = \underbrace{\varepsilon(f(x))}_{\text{higher keylétes}} \underbrace{\|f(x) - f(x_{0})\|}_{\text{higher keylétes}}, \text{ a szorzat } \to 0, \text{ ha}$$

az utolsó tényező korlátos, ugyanis ε definíciójából következik, hogy $\lim_{x \to x_0} \varepsilon(f(x)) = \varepsilon(f(x_0)) = 0$, mert

 $f \in C(x_0), \varepsilon \in C(y_0) \Leftrightarrow \varepsilon \in C(f(x_0))$. A második tényező valóban korlátos, ugyanis

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + \eta_1(x) \Rightarrow ||f(x) - f(x_0)|| \le ||f'(x_0)(x - x_0)|| + ||\eta_1(x)|| \le ||f(x_0)|| + ||f(x_0$$

$$\leq \|f'(x_0)\|\cdot \|x-x_0\| + \|\eta_1(x)\| \Rightarrow \frac{\|f(x)-f(x_0)\|}{\|x-x_0\|} \leq \underbrace{\|f'(x_0)\|}_{\text{r\"{o}gz}} + \underbrace{\frac{\eta_1(x)}{\|x-x_0\|}}_{\rightarrow 0}.$$

<u>Tétel</u> (a valós függvény inverzének deriválási szabálya): legy en I egy \mathbb{R} -beli nyílt intervallum! Legy en $f:I\to R$ szigorúan monoton függvény és $f\in C(D_f)$. Ha f differenciálható $a\in D_f$ -ban és $f'(a)\neq 0\Rightarrow f^{-1}$ differenciálható f(a) -ban és $(f^{-1})'(b)=\frac{1}{f'(f^{-1}(b))}$.

Bizonyítás: mivel f szigorúan monoton (növő), ezért f injektív, tehát létezik f^{-1} . Mivel $D_f = I$ intervallum, ezért $R_f = J$ is intervallum (Bolzano tétel), sőt, nyílt is, mivel f szigorúan monoton. Ekkor b = f(a) -t tekintve $b \in \text{int } D_{f^{-1}} = R_f$. f^{-1} értelmezve van b egy környezetében, ebből véve egy y pontot

$$\frac{f^{-1}(y) - f^{-1}(b)}{y - b} = \frac{1}{\frac{f(x) - f(a)}{x - a}} = \frac{1}{\frac{f(f^{-1}(y)) - f(f^{-1}(b))}{f^{-1}(y) - f^{-1}(b)}}. h_a(x) : = \begin{cases} \frac{f(x) - f(a)}{x - a} & \text{ha } x \neq a \\ f'(a) & \text{ha } x = a \end{cases}$$
 Ebből láthatjuk, hogy $h_a \in C(a)$.

Ekkor $\frac{f^{-1}(y)-f^{-1}(b)}{y-b} = \frac{1}{h_a(f^{-1}(y))}$. $\lim_{y\to b} f^{-1}(y) = a$ mert $f^{-1} \in C(R_f)$, $f^{-1}(b) = a$. Ha $y \neq b \Rightarrow f^{-1}(y) \neq a$ (mert f szigorúan monoton). Másrészt $h_a \in C(a) \Rightarrow \lim_{y\to b} h_a(f^{-1}(y)) = h_a(a) = f'(a)$.

Példák:

- $f(x) = e^x$, $x \in \mathbb{R} = I$, f szigorúan monoton nő, mindenhol deriválható, $f'(x) = e^x$, $R_f = (0, \infty) = J$ $b > 0, b \in J$ esetén $\ln'(b) = (f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))} = \frac{1}{e^{\ln b}} = \frac{1}{b}$
- $f(x) = \sin x$, $I: = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, ez szigorúan monoton nő, differenciálható, $f'(x) = \cos x$. $\arcsin'(x) = \left(f^{-1}\right)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1-\sin^2(\arcsin(x))}} = \frac{1}{\sqrt{1-x^2}}$.

Differenciálhatóság $\mathbb{R}^n \rightarrow \mathbb{R}^m$ -ben

A továbbiakban legy en X: = \mathbb{R}^n , Y: = \mathbb{R}^m . Tegy ük fel, hogy $f: \mathbb{R}^n \to \mathbb{R}^m$. Mit jelent az, hogy f differenciálható egy $x_0 \in \mathbb{R}^n$ pontban?

Definíció szerint $\exists A \in L(\mathbb{R}^n, \mathbb{R}^m): f(x) - f(x_0) = A(x - x_0) + \eta(x), \lim_{x \to x_0} \frac{\eta(x)}{\|x - x_0\|} = 0, \forall x \in B_r(x_0).$ Tudjuk, hogy

A-hoz egyértelműen megfeleltethető egy
$$\mathscr{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$
 mátrix, melyre $A(x - x_0) = \mathscr{A}(x - x_0)$, így

$$f(x) - f(x_0) = \mathcal{A}(x - x_0) + \eta(x).$$

Kérdés: mik a mátrixelemek, vagy is $a_{ij}=?$ Először legyen m=1, azaz $f:\mathbb{R}^n \to \mathbb{R}$. f differenciálhatósága azt jelenti,

hogy
$$\mathbb{R} \ni f(x) - f(x_0) = \sum_{i=1}^{n} a_{1,i} (x_i - x_{0,i}) + \eta(x)$$
 ahol $\lim_{x \to x_0} \frac{\eta(x)}{\|x - x_0\|} = 0$. Legy en speciel

$$x = (x_{0,1}, x_{0,2}...x_{0,j-1}, x_j, x_{0,j+1}...x_{0,n}). \text{ Ekkor } f(x) - f(x_0) = a_{1j}(x_j - x_{0,j}) + \eta(x) \Rightarrow$$

$$\Rightarrow \frac{f(x_{0,1}, x_{0,2}...x_{0,j-1}, x_j, x_{0,j+1}...x_{0,n}) - f(x_{0,1}, x_{0,2}...x_{0,j-1}, x_{0,j}, x_{0,j+1}...x_{0,n})}{x_j - x_{0,j}} = a_{1j} + \frac{\eta(x)}{x_j - x_{0,j}}, \text{ ahol } \left| \frac{\eta(x)}{|x_j - x_{0,j}|} \right| = \frac{|\eta(x)|}{|x_j - x_{0,j}|} \to 0.$$

Ezért a függvény j-edik változó szerinti parciális deriváltja x_0 -ban $\partial_j f(y_0) = \frac{\partial f}{\partial x_j}(x_0) = a_{1j}$. Tehát $a_{1j} = \partial_j f(x_0)$. Ez volt az m = 1 eset. Általánosan, $f: \mathbb{R}^n \to \mathbb{R}^m$, $f(x) \in \mathbb{R}^m$ esetre mi lesz? $f(x) = (f_1(x), f_2(x)...f_m(x))$. f_k -t nevezhetjük a függvény koordináta-függvényének. f differenciálhatósága azt jelenti, hogy

$$f(x) - f(x_0) = \mathcal{A}(x - x_0) + \eta(x), \lim_{x \to x_0} \frac{|\eta(x)|}{|x - x_0|} \to 0, \quad \eta = (\eta_1, \eta_2 ... \eta_n). \text{ Ugy anez koordinátánként kiírva:}$$

 $f_k(x) - f_k(x_0) = \sum_{j=1}^n a_{kj} (x_j - x_{0,j}) + \eta_k(x)$, az előbbiek szerint $a_{kj} = \partial_j f_k(x_0)$. Tehát a mátrixot ilyen alakban írhatjuk:

$$\mathcal{A} = \begin{pmatrix} \partial_1 f_1(x_0) & \partial_2 f_1(x_0) & \cdots & \partial_n f_1(x_0) \\ \partial_1 f_2(x_0) & \partial_2 f_2(x_0) & \cdots & \partial_n f_2(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_1 f_m(x_0) & \partial_2 f_m(x_0) & \cdots & \partial_n f_m(x_0) \end{pmatrix}.$$

<u>Tétel</u>: ha $f = (f_1, f_2...f_n): \mathbb{R}^n \to \mathbb{R}^m$ függvény differenciálható egy $x_0 \in \mathbb{R}^n$ pontban, akkor $\forall k$ -ra f_k parciálisan differenciálható minden változójában, továbbá $f'(x_0) \in L(\mathbb{R}^n, \mathbb{R}^m)$ a fenti mátrixszal adható meg. Az $\mathscr A$ mátrixelemei a koordináta függvények első parciális deriváltjai.

M egjegy zés: ha $f:\mathbb{R}^n \to \mathbb{R}$ parciálisan differenciálható x_0 -ban minden változója szerint, abból nem következik, hogy f differenciálható is.

Egyváltozós kitérés

Lokális növekedés, fogyás – lokális szélsőérték

<u>Definíció</u>: legy en $f: \mathbb{R} \rightarrow \mathbb{R}$, $a \in \text{int } D_f!$ Azt mondjuk, hogy

• flokálisan nő a-ban, ha $\exists B_{\delta}(a) = (a - \delta, a + \delta)$ környezet, hogy $a - \delta < x < a \Rightarrow f(x) \leq f(a)$ és

 $a < x < a + \delta \Rightarrow f(a) \le f(x)$

- flokálisan szigorúan nő a-ban, ha $\exists B_{\delta}(a) = (a \delta, a + \delta)$ környezet, hogy $a \delta < x < a \Rightarrow f(x) < f(a)$ és $a < x < a + \delta \Rightarrow f(a) < f(x)$ (A különbség a két függvényérték relációjában van.)
- flokálisan csökken a-ban, ha $\exists B_{\delta}(a) = (a \delta, a + \delta)$ környezet, hogy $a \delta < x < a \Rightarrow f(x) \ge f(a)$ és $a < x < a + \delta \Rightarrow f(a) \ge f(x)$
- flokálisan szigorúan csökken a-ban, ha $\exists B_{\delta}(a) = (a \delta, a + \delta)$ környezet, hogy $a \delta < x < a \Rightarrow f(x) > f(a)$ és $a < x < a + \delta \Rightarrow f(a) > f(x)$

<u>Tétel</u>: legy en f differenciálható a pontban! Ha f függvény a-ban lokálisan nő $\Rightarrow f'(a) \ge 0$, és ha $f'(a) > 0 \Rightarrow f$ a-ban szigorúan lokálisan nő, illetve ha lokálisan fogy $\Rightarrow f'(a) \le 0$ és ha $f'(a) < 0 \Rightarrow f$ a-ban szigorúan lokálisan fogy.

Bizonyítás: a) tfh f függvény a-ban lokálisan nő és f differenciálható a-ban. $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$. Mivel f függvény a-ban lokálisan nő $\Rightarrow \frac{f(x) - f(a)}{x - a} \ge 0$ ha $0 < |x - a| < \delta \Rightarrow \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \ge 0$, azaz $f'(a) \ge 0$.

b) tfh $f'(a) > 0 \Rightarrow f$ értelmezve a egy környezetében. Mivel $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) > 0$, ezért

 $\exists \delta > 0: 0 < |x - a| < \delta \Rightarrow \frac{f(x) - f(a)}{x - a} > 0$ tehát f függvény a-ban szigorúan lokálisan nő.

Megjegyzés: fordítva nem igaz, tehát ha f szigorúan lokálisan nő $\neq f' > 0$.

Példa: $f(x) = x^3$, ekkor $f'(x) = 3x^2$. Ez 0-ban szigorúan lokálisan nő, de f'(0) = 0.

Definíció: legyen $f: \mathbb{R} \rightarrow \mathbb{R}$, $a \in \text{int } D_f$. Azt mondjuk, hogy f-nek a-ban

- lokális minimuma van, ha $\exists B_{\delta}(a) = (a \delta, a + \delta): x \in B_{\delta}(a) \Rightarrow f(x) \geq f(a)$
- szigorú lokális minimuma van, ha $x \in B_{\delta}(a) \setminus \{a\} \Rightarrow f(x) > f(a)$.

Tétel: ha f differenciálható a-ban és a-ban lokális szélsőértéke van $\Rightarrow f'(a) = 0$.

Bizonyítás: indirekt, $f'(a) \neq 0$. Ha pl $f'(a) > 0 \Rightarrow a$ -ban szigorúan lokálisan nő, vagy ha $f'(a) < 0 \Rightarrow a$ -ban szigorúan lokálisan fogy.

M egjegy zés: $f'(a) = 0 \not\Rightarrow f$ -nek a-ban lokális szélsőértéke van. Pl $f(x) = x^3$, $a = 0 \Rightarrow f'(0) = 0$, pedigf0-ban szigorúan lokálisan nő.

Monoton növekedés és fogyás

11.25

<u>Definíció</u>: azt mondjuk, hogy az $f: \mathbb{R} \to \mathbb{R}$ egy *I* intervallumon

- monoton nő, ha $\forall x_1, x_2 \in I$ esetén $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$
- monoton csökken, ha $\forall x_1, x_2 \in I$ esetén $x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$
- szigorú monoton nő, ha $\forall x_1, x_2 \in I$ esetén $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
- szigorú monoton csökken, ha $\forall x_1, x_2 \in I$ esetén $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$

Rolle **Tétel**: tfh $f:[a,b] \to \mathbb{R}$ folytonos és (a,b) -n differenciálható, f(a) = f(b). Ekkor $\exists \xi \in (a,b): f'(\xi) = 0$.

Bizonyítás: a) ha f(x) = f(a) = f(b), $\forall x$, akkor $f'(x) = 0 \quad \forall x \in (a, b)$.

b) ha létezik $x \in (a, b)$: $f(x) \neq f(a) = f(b)$, pl f(x) < f(a), akkor mivel $f \in C[a, b] \Rightarrow [a, b]$ sorozatkompakt halmaz \mathbb{R} -ben (ami korlátos és zárt) ezért R_f sorozatkompakt \Rightarrow korlátos és zárt. $\exists \xi \in [a, b]$: $f(\xi) = \inf f = \min f$. Mivel $\exists f(x)$: f(x) < f(a), ezért $\xi \in (a, b)$. Ezért ξ -ben lokális minimuma van. ξ differenciálható ξ -ben, tehát ξ -ben, tehát ξ -ben lokális minimuma van.

Lagrange-féle középérték <u>Tétel</u>: tfh $f:[a,b] \to \mathbb{R}, f \in C(D_f)$ és f differenciálható (a,b) -n. Ekkor $\exists \xi \in (a,b): f'(\xi) = \frac{f(b)-f(a)}{b-a}$.

Bizonyítás: visszavezetjük a Rolle tételre. Értelmezzük a g függvényt a következő módon:

$$g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)$$
. Ekkor $g\in C[a,b]$ és g differenciálható (a,b) -n. $g(b)=f(b)-\frac{f(b)-f(a)}{b-a}(b-a)=f(a)$, de a definícióból látható, hogy $g(a)=f(a)\Rightarrow g(b)=g(a)$. Alkalmazzuk Rolle tételét! $\exists \xi : g'(\xi)=0$, azaz $0=g'(\xi)=f'(\xi)-\frac{f(b)-f(a)}{b-a}$

<u>Tétel</u>: legy en $I \subset \mathbb{R}$ intervallum! $f:I \to \mathbb{R}$, $f \in C(I)$, továbbá f differenciálható int I -ben. Ekkor f monoton nő az I-n $\Leftrightarrow f'(x) \ge 0 \, \forall x \in \text{int } I$.

Bizonyítás: a) ha f monoton nő $\Rightarrow \forall x \in \text{int } I \text{ -re } f'(x) \ge 0$

b) tfh $f'(x) \ge 0 \,\forall x \in \text{int } I$. Legy en $x_1, x_2 \in I$, $x_1 < x_2$! Azt kellene belátni, hogy $f(x_1) \le f(x_2)$. Alkalmazzuk a Lagrange-féle középérték tételt! $[x_1, x_2] \subset I \Rightarrow \exists \xi \in (x_1, x_2) \subset I$: $f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$. A feltétel szerint $f'(\xi) \ge 0, x_2 - x_1 > 0 \Rightarrow f(x_2) - f(x_1) \ge 0 \Rightarrow f(x_2) \ge f(x_1)$.

Megjegyzés: azt hihetnénk, hogy f szigorúan monoton növekedése $\Leftrightarrow f'(x) > 0 \forall x \in \text{int } D_f$, pedig nem.

Példa: $f(x) = x^3, x \in \mathbb{R}$. Ekkor f szigorúan monoton nő, de f'(0) = 0.

<u>Tétel</u>: legyen $I \subset \mathbb{R}$ intervallum, $f:I \to \mathbb{R}$, $f \in C(I)$ és f differenciálható int I -ben! Ekkor f szigorúan monoton nő I-n $\Leftrightarrow f'(x) \ge 0$ és I-nek nincs olyan J részintervalluma, ahol $f'(x_j) = 0$, $\forall x_j \in J$

Bizonyítás: \Rightarrow irány ban: tfh f szigorúan monoton nő az I-n \Rightarrow monoton nő \Rightarrow $f'(x) \geq 0 \, \forall x \in \text{int } I$. Indirekt tfh $\exists (c,d) \subset I: f'(x) = 0 \, \forall x \in (c,d) \Rightarrow \text{ Lagrange-féle középérték tétel felhasználásából } \Rightarrow f = állandó <math>(c,d)$ -n. Ez ellentmond annak, hogy f szigorúan monoton nő.

 \Leftarrow irány ban: tfh $f'(x) \ge 0 \, \forall x \in \text{int } I$ és $\not\exists J \subset I$ részintervallum, ahol $f'(x_j) = 0 \, \forall x_j \in J$. Mivel $f'(x) \ge 0 \Rightarrow f$ monoton nő. Ha f nem szigorúan monoton növő lenne, akkor $\exists x_1, x_2 \in I, x_1 < x_2 : f(x_1) = f(x_2) \Rightarrow \text{ (mivel } f \text{ monoton nő)}$ $f(x_1) = f(x) = f(x_2) \, \forall x \in (x_1, x_2) \Rightarrow f'(x) = 0$, ha $x \in (x_1, x_2)$.

<u>Tétel</u>: tfh $f:\mathbb{R}^n \to \mathbb{R}$, és ennek az összes elsőrendű parciális deriváltja létezik $x_0 \in \mathbb{R}^n$ valamely teljes környezetében, és ezek folytonosak x_0 -ban. Ekkor f differenciálható x_0 -ban.

Bizonyítás: a feltétel szerint egy x_0 bizonyos környezetében fekvő $x = (x_1, x_2...x_n)$ pontra $f(x) - f(x_0) =$

 $= [f(x_1, x_2...x_n) - f(x_{1,0}, x_2...x_n)] + [f(x_{1,0}, x_2...x_n) - f(x_{1,0}, x_{2,0}...x_n)] + ... + [f(x_{1,0}, x_{2,0}...x_{n-1,0}, x_n) - f(x_{1,0}...x_{n,0})] + ... + [f(x_{1,0}, x_{2,0}...x_{n-1,0}, x_n) - f(x_{1,0}...x_{n,0}, x_n)] + ... + [f(x_{1,0}, x_{2,0}...x_{n,0}, x_n) - f(x_{1,0}...x_{n,0}, x_n)] + ... + [f(x_{1,0}, x_{2,0}...x_{n,0}, x_n)] + ... + [f(x_{1,0}, x$

, alkalmasan választott $\xi_i \in (x_i, x_{i,0})$ segítségével folytatva (Lagrange-féle középértéktétel felhasználásával):

$$f(x) - f(x_0) =$$

$$= \partial_1 f(\xi_1, x_2...x_n)(x_1 - x_{1,0}) + \partial_2 f(x_{1,0}, \xi_2, x_3...x_n)(x_2 - x_{2,0}) + ... + \partial_n f(x_{1,0}, x_{2,0}...x_{n-1,0}, \xi_n)(x_n - x_{n,0}) =$$

$$= \partial_1 f(x_0)(x_1 - x_{1,0}) + \partial_2 f(x_0)(x_2 - x_{2,0}) + ... + \partial_n f(x_0)(x_n - x_{n,0}) + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial_1 f(x_0)\right](x_1 - x_{1,0})}_{\eta_1(x)} + \underbrace{\left[\partial_1 f(\xi_1, x_2...x_n) - \partial$$

$$+\underbrace{\left[\frac{\partial_2 f(x_{1,0},\xi_2,x_3...x_n)-\partial_2 f(x_0)\right](x_2-x_{2,0})}_{\eta_2(x)}+...+\underbrace{\left[\frac{\partial_n f(x_{1,0},x_{2,0},...,x_{n-1,0}\xi_n)-\partial_n f(x_0)\right](x_n-x_{n,0})}_{\eta_n(x)}. \text{ Azt kellene}}_{\eta_2(x)}$$
 belátni, hogy
$$\lim_{x\to x_0}\frac{\eta(x)}{|x-x_0|}=0 \text{ ahol } \eta(x)=\sum_{i=1}^n\eta_i(x). \text{ Hasonló egyenlőség érvényes } \eta(x) \text{ minden tagjára, pl. az 1-re:}$$

$$\frac{\left| \left[\partial_{1} f(\xi_{1}, x_{2}...x_{n}) - \partial_{1} f(x_{0}) \right](x_{1} - x_{1,0}) \right|}{|x - x_{0}|} \leq \underbrace{\left[\partial_{1} f(\xi_{1}, x_{2}...x_{n}) - \partial_{1} f(x_{0}) \right]}_{x \to x_{0} \text{ és } \partial_{1} f \in C(x_{0}) \Rightarrow \text{ ez } \to 0} \underbrace{\frac{\left| x_{1} - x_{1,0} \right|}{|x - x_{0}|}}_{\leq 1}$$

M egjegy zés: a tétel feltétele elegendő, de nem szükséges f differenciálhatóságához.

<u>Tétel</u>: legy en $f:\mathbb{R}^n \to \mathbb{R}^m (m > 1)$. $f = (f_1, f_2...f_n)$. Az, hogy f differenciálható x_0 -ben $\Leftrightarrow \forall j$ -re f_j differenciálható x_0 -ban, $f_j:\mathbb{R}^n \to \mathbb{R}$. Következmény: ha $\partial_k f_j$ létezik x_0 egy környezetében és folytonos x_0 -ban $\forall j,k$ -ra, akkor fdifferenciálható x_0 -ban.

Bizonyítás: f differenciálható x_0 -ban $\Rightarrow f(x) - f(x_0) = \mathcal{A}(x - x_0) + \eta(x)$ ahol $\lim_{x \to x_0} \frac{\eta(x)}{|x - x_0|} = 0$, $\eta = (\eta_1, \eta_2, \eta_3 ... \eta_n)$.

"Koordinátás" alakban így is írhattuk volna: $f_j(x) - f_j(x_0) = \mathcal{A}_j(x - x_0) + \eta_j(x) \ \forall j$ -re, ahol

$$\mathcal{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \text{ illetve } \mathcal{A}_k = (a_{k1}, a_{k2} \dots a_{kn}). \text{ Ez pontosan azt jelenti, hogy } f_j \text{ koordinátafüggvény}$$

differenciálható x_0 -ban.

Definíció: legy en X, Y normált terek, $f: X \rightarrow Y$, $\Omega \subset X$ tartomány (vagy is nyílt és összefüggő). Ha az f az Ω minden pontjában differenciálható, akkor azt mondjuk, hogy f differenciálható Ω -n.

<u>Definíció</u>: legy en $f: \mathbb{R}^n \to \mathbb{R}$, $\Omega \subset \mathbb{R}!$ Ha $\forall j$ -re $\exists \partial_i f(x), \forall x \in \Omega$, akkor f egy szer parciálisan differenciálható Ω -ban. Ha $\partial_i f$ folytonos is Ω minden pontjában $\forall j$ -re, akkor f egy szer folytonosan differenciálható Ω -n, $f' \in C(\Omega)$.

Magasabbrendű differenciálhatóság

<u>Definíció</u>: legyenek X, Y normált terek, $f: X \rightarrow Y$. Tekintsük az összes $x \in X$ pontot, melyben f differenciálható! Azt a

függvényt, amely az ilyen $x \in X$ ponthoz az $f'(x) \in L(X, Y)$ deriváltat rendeli, f(első) derivált függvényének nevezzük, jele f'.

Definíció: legy enek X, Y normált terek, $f: X \rightarrow Y$. Ha f' differenciálható x_0 -ban (tehát értelmezve is van x_0 egy környezetében), akkor azt mondjuk, hogy f kétszer differenciálható x_0 -ban és definíció szerint $f''(x_0) := (f')'(x_0)$. Megjegyzés: $f''(x_0): X \rightarrow L(X, Y), f''(x_0)$ lineáris folytonos operátor, így $f''(x_0) \in L(X, L(X, Y))$.

Definíció: ha f' függyény értelmezve van és folytonos valamely $\Omega \subset X$ tartományon, akkor azt mondjuk, hogy f egy szer foly tonosan differenciálható Ω -n.

M egjegy zés: ez a definíció $X = \mathbb{R}^n$, $Y = \mathbb{R}$ esetén ekvivalens a korábbi definícióval.

Definíció: ha f' függvény értelmezve van és folytonos valamely $\Omega \subset X$ tartományon, akkor azt mondjuk, hogy f kétszer folytonosan differenciálható Ω -n.

<u>Definíció</u>: legyen $f:\mathbb{R}^n \to \mathbb{R}$ képező függvény! Ha valamely j-re a $\partial_i f$ függvény a k-adik változója szerint parciálisan differenciálható egy $x_0 \in \mathbb{R}^n$ pontjában, akkor $\partial_k \partial_j f(x_0) := \left[\partial_k \left(\partial_j f \right) \right] x_0$. Hasonlóan értelmezhető f függvény magasabb rendű parciális deriváltjaira.

Kérdés: igaz-e, hogy $\partial_j \partial_k f = \partial_k \partial_j f$, $\forall j,k$ -ra? Általában nem (de azért a fizikában előforduló példákra általában igaz, mint ahogy látni is fogjuk).

Pl:
$$f(x, y)$$
: =
$$\begin{cases} \frac{xy^3}{(x^2 + y^2)} & \text{ha } (x, y) \neq (0,0) \\ 0 & \text{ha } (x, y) = (0,0) \end{cases}$$
. Ekkor $\partial_1 \partial_2 f(0,0) = 0$ de $\partial_2 \partial_1 f(0,0) = 1$. Az eredmények nen

Pl:
$$f(x,y)$$
: =
$$\begin{cases} \frac{xy^3}{(x^2+y^2)} & \text{ha } (x,y) \neq (0,0) \\ 0 & \text{ha } (x,y) = (0,0) \end{cases}$$
. Ekkor $\partial_1 \partial_2 f(0,0) = 0$ de $\partial_2 \partial_1 f(0,0) = 1$. Az eredmények nem triviálisak, segítségképp: $\partial_1 f = \begin{cases} \frac{y^5 - x^2y^3}{(x^2+y^2)^2} & \text{ha } (x,y) \neq (0,0) \\ 0 & \text{ha } (x,y) = (0,0) \end{cases}$ illetve $\partial_2 f = \begin{cases} \frac{3x^3y^2 + xy^2}{(x^2+y^2)^2} & \text{ha } (x,y) \neq (0,0) \\ 0 & \text{ha } (x,y) = (0,0) \end{cases}$.

Young Tétel \mathbb{R}^2 -ből \mathbb{R} -be képező függvényekre: legyen $f:\mathbb{R}^2 \to \mathbb{R}$, melyre $(x_0, y_0) \in D_f \subset \mathbb{R}^2$ pont környezetében létezik $\partial_1 \partial_2 f$ és $\partial_2 \partial_1 f$ is és folytonosak (x_0, y_0) pontban. Ekkor $\partial_1 \partial_2 f(x_0, y_0) = \partial_2 \partial_1 f(x_0, y_0)$.

$$F(x) := f(x, y) - f(x, y_0)$$
 Bizony ítás:
$$G(y) := f(x, y) - f(x_0, y)$$
 $\Rightarrow F(x) - F(x_0) = G(y) - G(y_0)$. Alkalmazzuk először a Lagrange

középérték-tételt F és G függvényekre! $\exists \xi$ az x, x_0 között, hogy

$$F(x) - F(x_0) = F'(\xi)(x - x_0) = \left[\partial_1 f(\xi, y) - \partial_1 f(\xi, y_0) \right](x - x_0) \text{ \'es } \exists \eta \text{ az } y, y_0 \text{ k\"oz\"ott, hogy}$$

$$G(y) - G(y_0) = G'(\eta)(y - y_0) = \left[\partial_2 f(x, \eta) - \partial_2 f(x_0, \eta) \right](y - y_0), \text{ ez\'ert a fenti egy enl\"os\'eg miatt}$$

$$\left[\partial_1 f(\xi, y) - \partial_1 f(\xi, y_0) \right](x - x_0) = \left[\partial_2 f(x, \eta) - \partial_2 f(x_0, \eta) \right](y - y_0). \text{ M\'eg 2x alkalmazzuk a Lagrange-f\'ele k\"oz\'ep\'ert\'ek}$$
tételt: $y \mapsto \partial_1 f(\xi, y)$ függvényre és $x \mapsto \partial_2 f(x, \eta)$ függvényre.

 $\exists \widetilde{\xi}, \widetilde{\eta} : \partial_2(\partial_1 f)(\xi, \widetilde{\eta})(y - y_0)(x - x_0) = \partial_1(\partial_2 f)(\widetilde{\xi}, \eta)(x - x_0)(y - y_0), \text{ ahol } \widetilde{\xi} \text{ egy } x, x_0 \text{ között, } \widetilde{\eta} \text{ pedig egy } y, y_0$ $\text{között van. } \partial_2(\partial_1 f)(\xi, \widetilde{\eta}) = \partial_1(\partial_2 f)(\widetilde{\xi}, \eta). (x, y) \to (x_0, y_0) \text{ esetén, mivel } \partial_1 \partial_2 f \text{ és } \partial_2 \partial_1 f \text{ folytonosak } (x_0, y_0)$ $-\text{ban, } \Rightarrow \partial_2(\partial_1 f)(x_0, y_0) = \partial_1(\partial_2 f)(x_0, y_0).$

Következmény: ha $f:\mathbb{R}^n \to \mathbb{R}$ -be képez és az f-nek az összes második parciális deriváltja létezik x_0 egy környezetében és folytonos x_0 -ban $\Rightarrow \partial_i \partial_k f(x_0) = \partial_k \partial_i f(x_0)$.

<u>Definíció</u>: azt mondjuk, hogy egy $f:\mathbb{R}^n \to \mathbb{R}$ függvény k-szor ($k \ge 1$) folytonosan differenciálható Ω -n, ha minden legfeljebb k-ad rendű parciális derivált létezik és folytonos az $\Omega \subset \mathbb{R}^n$ tartományon.

<u>Tétel</u>: ha $f:\Omega\to\mathbb{R}$ függvény k-szor folytonosan differenciálható, akkor f minden legfeljebb k-adrendű parciális deriváltjában a deriválások sorrendje tetszőlegesen felcserélhető.

Jelölés: feltéve, hogy f függvény k-szor folytonosan differenciálható, a továbbiakban használandó a következő jelölés a legfeljebb k-adrendű parciális deriváltakra: $\alpha=(\alpha_1,\alpha_2...\alpha_n), \alpha_j\geq 0, \alpha_j\in\mathbb{N}$ esetén $\partial^\alpha f:=\partial_1^{\alpha_1}\partial_2^{\alpha_2}...\partial_n^{\alpha_n}f$. A deriválás rendje $|\alpha|=\sum_{j=1}^n\alpha_j\leq k$.

M egjegy zés: ha $f:\mathbb{R}^n \to \mathbb{R}$ függvény k-szor folytonosan differenciálható Ω -n $\Rightarrow f$ minden legfeljebb (k-1) -edrendű parciális deriváltja differenciálható.

Bilineáris operátorok

Azért kellenek, mert $f''(x_0) \in L(X, L(X, Y))$, és ezt összefüggésbe akarjuk hozni az $X \times X$ -ből Y-ba kép ező operátorokkal.

<u>Definíció</u>: legy enek X, Y vektorterek, ekkor $X \times Y$: $\{(x, y) | x \in X, y \in Y\}$ és $X \times Y$ -n értelmezzük az összeadást és a valós számmal való szorzást: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \lambda \in \mathbb{R}$ esetén $\lambda(x_1, y_1) = (\lambda x_1, \lambda y_1)$.

Állítás: az X×Y a fenti tulajdonságokkal vektorteret alkot.

Definíció: legyenek X, Y normált terek. Ekkor az X, Y vektortérben vezessük be a következő normát:

$$||(x, y)|| := \sqrt{||x||^2 + ||y||^2}!$$

(M egj: más normát is lehetne definiálni, pl ||x, y||: = ||x|| + ||y||).

Állítás: X×Y a fenti normával normált tér.

<u>Definíció</u>: legy enek X, Y, Z normált terek, tekintsük az $X \times Y$ vektorteret! Egy $\widetilde{A}: X \times Y \to Z$ op erátort bilineárisnak

nevezünk, ha minden rögzített $\forall x \in X$ esetén $y \mapsto \widetilde{A}(x, y), y \in Y$ lineáris és minden rögzített $y \in Y$ esetén $x \mapsto \widetilde{A}(x, y)$, $x \in X$ lineáris.

M egjegyzés: az X×Y-ből Z-be képező bilineáris operátorok vektorteret alkotnak a következő művelettel:

$$\underbrace{\left(\widetilde{A} + \widetilde{B}\right)}_{\in L(X \times Y, Z)} \underbrace{\left(x, y\right)}_{\in X \times Y} = \underbrace{\widetilde{A}(x, y)}_{\in Z} + \underbrace{\widetilde{B}(x, y)}_{\in Z} \text{ és } \lambda \in \mathbb{R} \text{ esetén } \left(\lambda \widetilde{A}\right)(x, y) = \lambda \cdot \widetilde{A}(x, y) \in Z.$$

Kérdés: legyenek X, Y, Z normált terek (tehát vektorterek is). Továbbá legyen $\widetilde{A}: X \times Y \to Z$ bilineáris operátor. Következik-e ebből, hogy \widetilde{A} folytonos? Általában nem.

<u>Tétel</u>: az $\widetilde{A}: X \times Y \rightarrow Z$ bilineáris operátor folytonos $\Leftrightarrow \exists c \ge 0: \|\widetilde{A}(x,y)\| \le c\|x\| \cdot \|y\|, \ \forall x \in X, \ \forall y \in Y$ -ra.

Megjegyzés: ha az utóbbi teljesül, akkor \widetilde{A} bilineáris operátort korlátosnak nevezzük.

Bizonyítás \Leftarrow irányban: tfh \widetilde{A} korlátos. Belátjuk, hogy \widetilde{A} folytonos $(x_0, y_0) \in X \times Y$ rögzített elemnél.

$$\begin{split} & \|\widetilde{A}(x,y) - \widetilde{A}(x_0,y_0)\| = \left\| \left[\widetilde{A}(x,y) - \widetilde{A}(x_0,y) \right] + \left[\widetilde{A}(x_0,y) - \widetilde{A}(x_0,y_0) \right] \right\| \leq \\ & \leq \left\| \left[\widetilde{A}(x,y) - \widetilde{A}(x_0,y) \right] + \left[\widetilde{A}(x_0,y) - \widetilde{A}(x_0,y_0) \right] \right\| \leq \left\| \widetilde{A}(x-x_0,y) \right\| + \left\| \widetilde{A}(x_0,y-y_0) \right\| \leq c \|x-x_0\| \|y\| + c \|x_0\| \|y-y_0\| \\ & \text{ez\'ert ny\'ilv\'an} \end{split}$$

 $\forall \varepsilon > 0 \,\exists \, \delta > 0 \colon \|(x,y) - (x_0,y_0)\| = \sqrt{\|x - x_0\|^2 + \|y - y_0\|^2} < \delta \Rightarrow c\|x - x_0\| \cdot \|y\| + c\|x_0\| \cdot \|y - y_0\| < \varepsilon$ $\Rightarrow \text{ irány ban: tfh folytonos, de nem korlátos (indirekt): } \forall n \in \mathbb{N} \,\exists \, x_n \in X, \, y_n \in Y \colon \|\widetilde{A}(x_n,y_n)\| > n^2 \,\|x_n\| \cdot \|y_n\|.$ Legy en $\widetilde{x_n} \colon = \frac{x_n}{n \cdot \|x_n\|} \to 0$ és $\widetilde{y_n} \colon = \frac{y_n}{n \cdot \|y_n\|} \to 0$. Ebből már látszik az állítás.

<u>Definíció</u>: legy enek X, Y, Z normált terek, $\widetilde{A}: X \times Y \rightarrow Z$ korlátos, folytonos bilineáris operátor. Ekkor \widetilde{A} normáját így értelmezzük: $\|\widetilde{A}\|:=\sup \left\{\|\widetilde{A}(x,y)\|:\|x\|=1,\|y\|=1\right\}$.

 $\frac{\text{Állítás}}{\text{Allítás}}: \|\widetilde{A}\| = \min \left\{ c \|\widetilde{A}(x,y)\| \le c \|x\| \cdot \|y\|, \ \forall (x,y) \in X \times Y \right\}. \text{ (A bizonyítása hasonló lineáris korlátos operátorok esetéhez.)}$

<u>Tétel</u>: tekintsük az $X \times Y \to Z$ képező korlátos bilineáris operátorokat az előbb bevezetett összeadással és skalárral való szorzással, és vegyük hozzá a fenti normát. Ekkor egy normált teret kapunk.

Észrevétel: legyenek X, Y, Z normált terek, $A \in L(X, L(Y, Z))$. Értelmezzük az $\widetilde{A}: X \times Y \to Z$ operátort:

 $\widetilde{A}(x, y) := \underbrace{(Ax)y}_{\in Z}$. Ekkor $\widetilde{A}: X \times Y \to Z$ korlátos bilineáris operátor.

Bizonyítás: a) a fentiek szerint $\widetilde{A}: X \times Y \to Z$

b) belátjuk először, hogy \widetilde{A} bilineáris operátor

$$\widetilde{A}(\lambda_1 x_1 + \lambda_2 x_2, y) = [A(\lambda_1 x_1 + \lambda_2 x_2)]y = (\lambda_1 A x_1 + \lambda_2 A x_2)y = \lambda_1 [(A x_1)y] + \lambda_2 [(A x_2)y] = \lambda_1 \widetilde{A}(x_1, y) + \lambda_2 \widetilde{A}(x_2, y)$$

$$\widetilde{A}(x, \lambda_1 y_1 + \lambda_2 y_2) = (A x)(\lambda_1 y_1 + \lambda_2 y_2) = \lambda_1 (A x)y_1 + \lambda_2 (A x)y_2 = \lambda_1 \widetilde{A}(x, y_1) + \lambda_2 \widetilde{A}(x, y_2).$$

c) belátjuk, hogy \widetilde{A} korlátos: $\|\widetilde{A}(x,y)\| = \|(Ax)y\| \le \|Ax\| \cdot \|y\| \le \|A\| \cdot \|x\| \cdot \|y\| \Rightarrow \widetilde{A}$ korlátos, továbbá $\|\widetilde{A}\| \le \|A\|$.

<u>Tétel</u>: legy enek X, Y, Z normált terek, $A \in L(X, L(Y, Z))$. Ekkor az $\widetilde{A}(x, y) := (Ax)y, x \in X, y \in Y$ képlettel értelmezett $\widetilde{A}: X \times Y \to Z$ bilineáris operátor. Fordítva: minden $\widetilde{A}: X \times Y \to Z$ bilineáris operátort ilyen alakú: $\exists !A: L(X, L(Y, Z)): \widetilde{A}(x, y) = (Ax)y$.

Bizonyítás: az első állítást beláttuk. Fordítva: tfh $\widetilde{A}: X \times Y \to Z$ korlátos bilineáris operátor. Tekintsük tetszőleges, rögzített $x \in X$ esetén a következő A(x) operátort: $y \mapsto \widetilde{A}(x,y)$. Ez egyrészt lineáris, másrészt korlátos, hiszen a feltétel szerint \widetilde{A} korlátos:

 $\|[A(x)](y)\| = \|\widetilde{A}(x,y)\| = \|\|x\| \cdot \|y\| \cdot \widetilde{A}\left(\frac{x}{\|x\|}, \frac{y}{\|y\|}\right) \| \le \|\widetilde{A}\| \cdot \|x\| \cdot \|y\| = \left(\|\widetilde{A}\| \cdot \|x\|\right) \|y\| \Rightarrow \text{ a fenti operator korlátos operator és normája } \le \|\widetilde{A}\| \cdot \|x\|.$ Jelölje A(x) ezt az L(Y,Z) -beli operatort $\Rightarrow \widetilde{A}(x,y) = (A(x))y$. Nem nehéz belátni, hogy A(x) x-től lineárisan függ. A korlátos is, hisz $\|A(x)\| \le \|\widetilde{A}\| \cdot \|x\|$, $\forall x \in X \Rightarrow A$ korlátos is, sőt $\|A\| \le \|\widetilde{A}\| \Rightarrow \|\widetilde{A}\| = \|A\|$. (lásd az előbbi tételt)

M egjegy zés: $\widetilde{A}(x, y) = (Ax)y$ képlet lineáris normatartó lekép ezést definiál a bilineáris operátorok és L(X, L(Y, Z)) között.

Multilineáris leképezések

<u>Definíció</u>: legy enek $X_1, X_2 ... X_n, Z$ vektorterek. Egy $X_1 \times X_2 \times ... \times X_n \to Z$ leképezést multilineárisnak nevezünk, ha minden koordinátájában lineáris (midőn a többit rögzítjük).

<u>Definíció</u>: legy enek $X_1, X_2 ... X_n, Z$ normált terek! Egy $\widetilde{A}: X_1 \times X_2 \times ... \times X_n \to Z$ multilineáris lekép ezés korlátos $\exists c \geq 0: \|\widetilde{A}(x_1, x_2, ..., x_n)\| \leq c \cdot \|x_1\| \cdot \|x_2\| \cdot ... \cdot \|x_n\| \, \forall x_j \in X_j.$

<u>Tétel:</u> \widetilde{A} folytonos $\Leftrightarrow \widetilde{A}$ korlátos.

 $\underline{\underline{\mathsf{T\acute{e}tel}}}$: egy \widetilde{A} multilineáris folytonos operátor általános alakja

$$\widetilde{A}(x_1, x_2, x_3 ... x_n) = (((Ax_1)x_2)x_3 ... x_n), A \in L(X_1, L(X_2 ... L(X_n, Z))).$$

Alkalmazás a magasabbrendű deriváltak értelmezésére

Legy enek X, Y normált terek, $f: X \rightarrow Y$. Haf differenciálható $x_0 \in X$ -ben, akkor $f'(x_0) \in L(X,Y)$. f' függvény X-ből L(X,Y) -ba képező függvény. Ezért $f''(x_0) = (f')'(x_0) \in L(X,L(X,Y))$. Az $f''(x_0) \in L(X,L(X,Y))$ -beli operátornak a fentiek szerint egy értelmű módon megfelel egy $X \times X \rightarrow Y$ bilineáris folytonos operátor:

$$A\colon=f"(a)\in L(X,L(X,Y)), \widetilde{A}(x_1,x_2)\colon=(Ax_1)x_2=((f"(a))x_1)x_2, (x_1,x_2)\in X\times X.$$

Speciális eset: $X: = \mathbb{R}^n$, $Y: = \mathbb{R}$. Ekkor $f: \mathbb{R}^n \to \mathbb{R}$, $L(\mathbb{R}^n, \mathbb{R}) \ni f'(a) \leftrightarrow (\partial_1 f(a), \partial_2 f(a), ..., \partial_n f(a)) \in \mathbb{R}^n$ (a \leftrightarrow jel a megfeleltethetőséget jelenti). $f': \mathbb{R}^n \to L(\mathbb{R}^n, \mathbb{R})$. Ez úgy is felfogható, hogy $f': \mathbb{R}^n \to \mathbb{R}^n$. $f''(a) \in L(\mathbb{R}^n, L(\mathbb{R}^n, \mathbb{R}))$

tekinthető $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ bilineáris operátornak, de tekinthető $L(\mathbb{R}^n, \mathbb{R}^n)$ -beli operátornak is, ennek megfelel egy

$$n \times n \text{-es mátrix. } f' = (\partial_1 f, \, \partial_2 f, \dots, \partial_n f), \, f''(a) \Leftrightarrow \begin{pmatrix} \partial_1^2 f(a) & \partial_2 \, \partial_1 f(a) & \cdots & \partial_n \, \partial_1 f(a) \\ \partial_1 \, \partial_2 f(a) & \partial_2^2 f(a) & \cdots & \partial_n \, \partial_2 f(a) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_1 \, \partial_n f(a) & \partial_2 \, \partial_n f(a) & \cdots & \partial_n^2 f(a) \end{pmatrix} = \mathscr{A}.$$

$$[f''(a)](x_1,x_2) = \langle \mathcal{A}x_1, x_2 \rangle = \sum_{j=1}^n \left[\sum_{k=1}^n \partial_j \partial_k f(a) x_{1k} \right] x_{2j}.$$

Speciális eset: $X:=\mathbb{R}$, Y tetszőleges normált tér, $f:X\to Y$, $L(\mathbb{R},Y)\ni f'(a)\leftrightarrow y\in Y$ (a nyíl a megfeleltethetőséget jelenti) a következő képlettel: $\mathbb{R}\ni t\mapsto yt\in Y$, \mathbb{R} -ből Y-ba képező lineáris operátor. Ekkor f'(a) azonosítható $y\in Y$ elemmel.

Magyarázat: ebben az esetben az $Y \ni f'(a) \leftrightarrow \lim_{h \to 0} \frac{f(a+h)-f(a)}{h}, f''(a) \Leftrightarrow b \in Y$, ugyanis f' is tekinthető $\mathbb{R} \to Y$ függvénynek, $x_1, x_2 \in \mathbb{R}$, $[f''(a)](x_1, x_2) = [f''(a)x_1]x_2 = (bx_1)x_2$.

A Lagrange középértéktétel többváltozós függvényekre

Legy en X normált tér, $Y := \mathbb{R}$.

<u>Tétel</u>: legy en $a, b \in X, L(a, b)$: = $\{a + t(b - a) : t \in [0,1]\}$. Tfh $f: X \to \mathbb{R}$ folytonos L(a, b) -n és differenciálható int (L(a, b)). Ekkor $\exists \xi \in \text{int}(L(a, b)) : \underline{f(b)} - \underline{f(a)} = \underbrace{f'(\xi)}_{f'(\xi)} \underbrace{(b - a)}_{f'(\xi)}$.

Bizonyítás: visszavezetjük az $\mathbb{R} \to \mathbb{R}$ függvényekre. $\phi(t) := a + t(b - a), t \in [0,1]$. Ekkor $\phi:[0,1] \to X, \phi \in C(0,1)$ és itt differenciálható is. $\phi'(t) = (b - a) \in X, g(t) = f(\phi(t)) = (f \circ \phi)(t), t \in [0,1]$, ekkor $g:[0,1] \to \mathbb{R}$. Mivel $f \in C(L(a,b)) \Rightarrow f \circ \phi \in C[0,1]$, továbbá $f \circ \phi$ differenciálható (0,1) -n, $g'(t) = (f \circ \phi)'(t) = f'(\phi(t))\phi'(t) \in L(\mathbb{R},\mathbb{R}),$ g függvényre alkalmazzuk a Lagrange-féle középérték-tételt: $\exists \tau \in (0,1): g(1) - g(0) = g'(\tau)(1-0),$ $g(1) = f(\phi(1)) = f(b), g(0) = f(a), g'(\tau) = f'(\phi(\tau))\phi'(\tau) = f'(\phi(\tau))(b-a).$ $\xi: = \phi(\tau) = a + \tau(b-a).$ Kérdés: mi a helyzet akkor, ha $Y \neq \mathbb{R}$. Egyszerű példa: $X: = \mathbb{R}, Y: = \mathbb{R}^2$. Ebben az esetben a fenti állítás általában nem igaz. $f = (f_1, f_2): \mathbb{R} \to \mathbb{R}^2, f_1(t): = \sin t, t \in [0, 2\pi], f_2(t): = \cos t.$ Ekkor $f(0) = f(2\pi) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, f'(\tau) = \begin{pmatrix} \cos \tau \\ -\sin \tau \end{pmatrix},$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = f(2\pi) - f(0) = f'(\tau)2\pi \neq 0 \ (0 = a, 2\pi = b).$$

<u>Tétel</u>: legy enek X, Y normált terek, $f: X \rightarrow Y$, $a, b \in X$, $f \in C[L(a,b)]$ és f differenciálható int (L(a,b)). Ekkor

 $\|f(b)f(a)\| \leq \sup_{\xi \in L(a,b)} \|f'(\xi)(b-a)\|.$ Ez a Lagrange egy enlőtlenség.

Alkalmazás 12.09

Állítás: legy enek X, Y normált terek, $\Omega \subset X$ tartomány (azaz nyílt és összefüggő) $\Leftrightarrow \Omega$ nyílt és bármely két pontja összeköthető egy Ω -ban haladó törött vonallal. Tfh $f:\Omega \to Y$ és f differenciálható Ω minden pontjában és $f'(x) = 0, \forall x \in \Omega \Rightarrow f$ állandó.

Bizonyítás: legy en $x_1 \in \Omega$, $x_2 \in \Omega$ tetszőleges. Belátjuk, hogy $f(x_1) = f(x_2) \in Y$. Kössük össze az x_1 és x_2 pontokat egy Ω -ban haladó törött vonallal! A töréspontok legy enek $x_1, \xi_1, \xi_2, ..., \xi_k, x_2$. Először alkalmazzuk a Lagrange-egy enlőtlenséget $L(x_1, \xi_1)$ -re! $||f(\xi_1) - f(x_1)|| \le \sup_{\eta_1 \in L(x_1, \xi_1)} ||f'(\eta_1)(\xi_1 - x_1)|| = 0 \Rightarrow f(\xi_1) = f(x_1)$.

Alkalmazva $L(\xi_1, \xi_2)$ -re, $L(\xi_2, \xi_3)$ -ra,..., $L(\xi_k, x_2)$ -re, kapjuk, hogy $f(\xi_1) = f(\xi_2), f(\xi_2) = f(\xi_3),..., f(\xi_k) = f(x_2) \Rightarrow f(x_1) = f(x_2).$

Függvénysorok és sorozatok integrálása és deriválása

Legy enek f_k : $[a,b] \to \mathbb{R}$, egy szerűség kedvéért folytonos függvények, $k \in \mathbb{N}$. Tfh $\forall x \in [a,b]$ esetén $\lim_{k \to \infty} f_k(x) = f(x)$. Ekkor mondtuk, hogy (f_k) függvény sorozat pontonként tart egy f függvényhez.

Kérdés: ebből következik-e, hogy $\lim_{k\to\infty}\int\limits_a^b f_k(x)dx=\int\limits_a^b f(x)dx$? Általában nem. Pl.:

$$f_k(x) := \begin{cases} x/(1/2k) \text{ ha } 0 \le x \le 1/2k \\ -x/(1/2k) + 2k \text{ ha } 1/2k < x \le 1/k \\ 0 \text{ egyébként} \end{cases}$$

<u>Tétel</u>: egy $f_k:[a,b] \to \mathbb{R}$, $f_k \in C[a,b]$ és $(f_k) \to f$ egy enletesen $(\Rightarrow f \in C[a,b])$. Ekkor $\lim_{k \to \infty} \int_a^b f_k(x) dx = \int_a^b f(x) dx$

Bizonyítás: $\lim_{k \to \infty} \left| \int_a^b f_k(x) dx - \int_a^b f(x) dx \right| = 0$ ezt kellene belátni.

$$\left| \int_{a}^{b} f_{k}(x)dx - \int_{a}^{b} f(x)dx \right| = \left| \int_{a}^{b} [f_{k}(x) - f(x)]dx \right| \le \int_{a}^{b} |f_{k}(x) - f(x)|dx. \text{ Mivel } (f_{k}) \to f \text{ egy enletesen}$$

 $\Rightarrow \forall \varepsilon > 0 \exists k_0 : k > k_0 \Rightarrow |f_k(x) - f(x)| < \varepsilon, \forall x \in [a, b]. \text{ Így } \int_a^b |f_k(x) - f(x)| dx < \varepsilon \cdot (b - a), \text{ ebből következik a tétel}$

<u>Tétel</u>: legy en $g_j:[a,b] \to \mathbb{R}, g_j \in C[a,b], \sum_{i=1}^{\infty} g_j = f$ sor egy enletes en konvergens (vagy is ha a részletösszegek

sorozata egyenletesen konvergál f-hez, ekkor amúgy f folytonos) $\Rightarrow \sum_{j=1}^{\infty} \int_{a}^{b} g_{j}(x)dx = \int_{a}^{b} f(x)dx$.

állítása.

 $\begin{array}{l} \textbf{\underline{T\acute{e}tel}} \colon \mathsf{tfh} \ f_k\colon (a,b) \to \mathbb{R} \ \mathsf{f\ddot{u}ggv\acute{e}ny} \ \mathsf{folytonosan} \ \mathsf{differenci\acute{a}lhat\acute{o}}, \ \mathsf{tov\acute{a}bb\acute{a}} \ (f_k') \to g \ \mathsf{egy} \ \mathsf{enletesen} \ (a,b) \ \mathsf{-n}, \ \mathsf{tov\acute{a}bb\acute{a}} \ \mathsf{egy} \\ \mathsf{alkalmas} \ c \in (a,b) \ \mathsf{helyre} \ \lim_{k \to \infty} f_k(c) = \alpha \ \mathsf{v\acute{e}ges}. \ \mathsf{Ebb\acute{o}l} \ \mathsf{k\"{o}vetkezik}, \ \mathsf{hogy} \ (f_k) \to f \ \mathsf{egy} \ \mathsf{enletesen} \ (a,b) \ \mathsf{-n}, f \ \mathsf{folytonosan} \\ \mathsf{differenci\acute{a}lhat\acute{o}} \ \mathsf{\acute{e}s} \ f'(x) = \lim_{k \to \infty} [f_k'(x)]. \end{array}$

Bizonyítás: alkalmazzuk a Newton-Leibniz formulát az f_k folytonosan differenciálható függvényekre, $x \in (a, b)$

rögzített.
$$f_k(x) - f_k(c) = \int_{c}^{x} f_k'(t)dt \Rightarrow f_k(x) = \int_{c}^{x} f_k'(t)dt + f_k(c) \rightarrow \int_{c}^{x} g(t)dt + \alpha$$
, mert $f_k'(t) \rightarrow g(t)$ egy enletesen,

$$t \in [x,c]$$
 vagy $t \in [c,x]$. Továbbá f_k egyenletesen tart $\underbrace{\left[\int\limits_{c}^{x}g(t)dt+\alpha\right]}_{f(x)}$ -hoz, ugyanis

$$|f_k(x) - f(x)| = \left[\int_c^x f_k'(t)dt + f_k(c) \right] - \left[\int_c^x g(t)dt + \alpha \right] \le \left| \int_c^x (f_k'(t) - g(t))dt \right| + \underbrace{|f_k(c) - \alpha|}_{<\varepsilon \text{ ha } k > k_0} \le \frac{1}{\varepsilon} \int_c^x |f_k'(t)|^2 dt + \frac{1}{$$

 $\leq |x - c| \cdot \underbrace{\sup(|f_k'(t) - g(t)|)}_{\leq \varepsilon \text{ ha k} > k_1} + \varepsilon \leq (b - a)\varepsilon + \varepsilon \text{ és } k \geq \max\{k_0, k_1\} \Rightarrow (f_k) \to f \text{ egy enletesen } (a, b) \text{ -n. Kellett, hogy}$

$$(b-a)$$
 véges legyen! $f(x) = \int_{c}^{x} g(t)dt + \alpha \Rightarrow f'(x) = g(x), \forall x \in (a,b).$

<u>Tétel</u>: tfh ϕ_j : $(a,b) \to \mathbb{R}$ folytonosan differenciálható. $\sum_{j=1}^{\infty} \phi_j' = g$ egyenletesen konvergens (a,b) -n, továbbá

$$\exists c \in (a,b) : \sum_{j=1}^{\infty} \phi_j(c) = \alpha \text{ véges. Ekkor } \sum_{j=1}^{\infty} \phi_j \text{ egy enletesen konvergens } (a,b) \text{ -n, } f : = \sum_{j=1}^{\infty} \phi_j \text{ függvény}$$

differenciálható (a,b) -n és $f'(x) = \sum_{j=1}^{\infty} \phi_j'(x), \forall x \in (a,b).$

Bizonyítás:
$$f_k = \sum_{j=1}^k \phi_j \dots$$

Cauchy-féle középérték <u>Tétel</u>: tfh $f,g:[a,b] \to \mathbb{R}$, folytonosak, (a,b) -n differenciálhatóak és $g'(x) \neq 0, \forall x \in (a,b)$. Ekkor $\exists \xi \in (a,b) : \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$. (Ha g(x)=x, akkor ez a Lagrange középérték tétel)

Bizonyítás: $g(b)-g(a) \neq 0$, ugy anis ha g(b)-g(a)=0 lenne, akkor a Rolle tétel szerint g függvényre $\exists \eta \in (a,b) : g'(\eta)=0$. Legy en $F(x) := f(x)-\frac{f(b)-f(a)}{g(b)-g(a)}[g(x)-g(a)]$. Ekkor F folytonos [a,b] -n és differenciálható (a,b) -n, F(a)=f(a), $F(b)=f(b)-\frac{f(b)-f(a)}{g(b)-g(a)}[g(b)-g(a)]=f(a)$. F(a)=F(b) \Rightarrow Rolle tétel segítségével

 $\exists \, \xi \in (a,b) : F'(\xi) = 0, \, \text{azaz} \, \, 0 = F'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{g(b) - g(a)} \, g'(\xi).$

L' Hôpital szabály

<u>Tétel</u> (alapeset): tfh f, g értelmezve van és differenciálható $a \in \mathbb{R}$ egy környezetében (a-ban nem is kell), továbbá $\lim_{x \to a} f(x) \equiv \lim_{a} f = 0$ és $\lim_{b} g = 0$. Ekkor $\lim_{a} \frac{f}{g} = \lim_{a} \frac{f}{g}$, ha létezik ez utóbbi.

Bizonyítás: értelmezzük az f és g függvényt a-ban! f(a): =0, g(a): =0. Ezért f, g folytonosak a egy környezetében és deriválhatók is x kivételével, $g'(x) \neq 0$. Alkalmazzuk a Cauchy-féle középérték-tételt: a környezetében levő x pont és a által meghatározott intervallumra $\exists \xi \in (a,b)$: $\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi)}{g'(\xi)} \Rightarrow x \to a$ esetén $\xi \to a \Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{\xi \to a} \frac{f'(\xi)}{g'(\xi)}$, ha ez utóbbi létezik.

Általánosítások: a) $a:=\pm\infty$ és $\lim_a f=0$, $\lim_a g=0$, ekkor is igaz, hogy $\lim_a \frac{f}{g}=\lim_a \frac{f'}{g'}$, ha ez utóbbi létezik b) $\lim_a f=\pm\infty$ és $\lim_a g=\pm\infty$ esetén hasonló állítás.

Hatványsorok integrálása és deriválása

 $\sum_{k=0}^{\infty} c_k (x-a)^k, a, x \in \mathbb{R} \text{ ezt nevezzük } x\text{-nek } a \text{ körüli hatvány sornak. Ez egy speciális függvény sor. Legy en ennek a}$

konvergencia sugara R! Tudjuk, hogy |x - a| < R esetén a hatvány sor konvergens x-ben. Azt is tudjuk, hogy $\forall \delta > 0$ esetén a hatvány sor egy enletesen konvergens $[a - R + \delta, a + R - \delta]$ intervallumon.

<u>**Tétel**</u>: legy en a hatvány sor konvergencia sugara R > 0 és $R \le \infty$. Ekkor egy részt tetszőleges $[c,d] \subset (a-R,a+R)$ esetén a hatvány sor tagonként integrálható, vagy is $\int\limits_{a}^{d} \sum\limits_{k=0}^{\infty} c_k (x-a)^k dx = \sum\limits_{k=0}^{\infty} \int\limits_{a}^{d} c_k (x-a)^k dx$.

<u>Tétel</u>: legy en a hat vány sor konvergencia sugara R > 0 és $R \le \infty$. Ekkor |x - a| < R esetén a hat vány sor x-ben tagonként deriválható: $\left(\sum_{k=0}^{\infty} c_k (x-a)^k\right)' = \sum_{k=0}^{\infty} \left(c_n (x-a)^k\right)'$.

Bizonyítás: alkalmazzuk a függvénysorok tagonkénti deriválásáról szóló tételt! Világos, hogy a hatványsor tagjai folytonosak, akárhányszor differenciálhatóak. Kérdés: mi a tagok deriváltjaiból alkotott hatványsor konvergencia sugara? Látható, hogy ugyanaz. A derivált sor k-adik tagja: $c_k k(x-a)^{k-1}$, erre ugyanaz a konvergencia sugár adódik. Tehát a deriváltakból álló sor egyenletesen konvergens [c,d] -n ha $[c,d] \subset (a-R,a+R)$, |x-a| < R, [c,d] -t megválaszthatjuk úgy, hogy $x \in [c,d]$.

Taylor formula

tfh egy hatványsor konvergencia sugara > 0, $f(x) = \sum_{k=0}^{\infty} c_k (x-a)^k$, |x-a| < R > 0. (Definíció szerint itt $0^0 = 1$.)

Az előbbiek szerint |x - a| < R esetén

$$f'(x) = \sum_{k=0}^{\infty} c_k k(x - a)^{k-1}$$

$$f''(x) = \sum_{k=0}^{\infty} c_k k(k-1)(x-a)^{k-2}$$

:

$$f^{(j)}(x) = \sum_{k=0}^{\infty} c_k k(k-1)(k-2)...(k-j+1)(x-a)^{k-j}$$

Ekkor
$$f^{(j)}(a) = c_j \cdot j(j-1)(j-2)...2 \cdot 1 = c_j j! \Rightarrow c_j = \frac{f^{(j)}(a)}{j!}$$

polinom), vagy is
$$f = \sum_{k=0}^{N} c_k (x - a)^k$$
, ekkor $c_k = \frac{P^{(k)}(a)}{k!}$, más szóval $P(x) = \sum_{k=0}^{N} \frac{P^{(k)}(a)}{k!} (x - a)^k$.

Taylor formula Lagrange- féle maradéktaggal

<u>Tétel</u>: tfh f függvény N+1-szer differenciálható a egy környezetében. Ebben a környezetben fekvő tetszőleges x

pontjára $f(x) = \sum_{k=0}^{N} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(N+1)}(\xi)}{(N+1)!} (x-a)^{N+1}$, alkalmasan választott $\xi \in (x,a)$ elemre.

M egjegy zés: N = 0 esetén megkapjuk a Lagrange-féle középértéktételt.

Bizonyítás: jelölje
$$g(x)$$
: = $f(x) - \sum_{k=0}^{N} \frac{f^{(k)}(a)}{k!} (x - a)^k = f(x) - P(x)$. Ekkor $g(a) = f(a) - P(a)$, de $P(a) = f(a)$, így

$$g(a) = 0. \text{ Tov\'abb\'a}\ g'(a) = f'(a) - P'(a), \text{ node } f'(a) = P'(a), \text{ figy } g'(a) = 0 \ \dots \ g^{(n)}(a) = f^{(n)}(a) - P^{(n)}(a) = 0.$$

Tekintsük:
$$\frac{g(x)}{(x-a)^{N+1}} = \frac{g(x) - g(a)}{(x-a)^{N+1} - (a-a)^{N+1}} = \frac{g'(\xi)}{(n+1)(\xi_1 - a)^N}, \text{ felhasználva a Cauchy-féle középérték tételt. További }$$

alkalmazása segítségével

$$\frac{g(x)}{(x-a)^{N+1}} = \frac{g'(\xi_1) - g'(a)}{(N+1)(\xi_1 - a)^N - (N+1)(a-a)^N} = \frac{g''(\xi_2)}{(N+1)N(\xi_2 - a)} = \dots = \frac{f^{(N+1)}(\xi_{N+1})}{(N+1)!} \Rightarrow \frac{g(x)}{(x-1)^{N+1}} = \frac{f^{(N+1)}(\xi_{N+1})}{(N+1)!}$$

Következmény: ha f akárhányszor differenciálható a egy környezetében, akkor (ha tudom, hogy

$$\xi \in (a,x): \lim_{N \to \infty} \frac{f^{(N+1)}(\xi)}{(N+1)!} (x-a)^{N+1} = 0 \ \xi \text{-ben egyenletesen}) \ \Rightarrow f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k, \ \text{ez } f \text{Tay lor sorfejtése}.$$

Egy szerű, elegendő (de nem szükséges) feltétel, ha $\xi \in (a, x)$, $|f^{(n+1)}(\xi)|$ egy enletesen korlátos, ugy anis $\lim_{n \to \infty} \frac{(x-a)^{n+1}}{(n+1)!} = 0.$

<u>Definíció</u>: tfh egy f függvény a egy környezetében akárhányszor differenciálható! Ekkor $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$

hatványsort az f függvény Taylor sorának nevezünk.

M egjegy zés: lehetséges, hogy f akárhány szor differenciálható, de a Taylor sora az a pont kivételével nem állítja elő a

függvényt. pl:
$$f(x) = \begin{cases} 0 & \text{ha } x = 0 \\ e^{-\frac{1}{x^2}} & \text{egyébként} \end{cases}$$
. Ennek $\lim_{x \to 0} f(x) = 0$, $\lim_{x \to 0} f'(x) = 0$... $\lim_{x \to 0} f^{(k)}(x) = 0$, $\forall k \Rightarrow f$ akárhányszor

deriválható az a=0 helyen. $\lim_{h\to 0}\frac{f(h)-f(0)}{h-0}=0$, tehát $f'(0)=0, f''(0)=0...\Rightarrow f$ Taylor sora 0, pedig f(x)>0 ha $x\neq 0$.