202422201082- -exp2

September 19, 2025

1 Lab 2: One-Dimensional Linear Regression (Batch Gradient Descent)

1.1 Abstract

In this lab, we will investigate **multivariate linear regression** using two approaches: - **Gradient Descent** (iterative optimization), and - the **Normal Equation** (closed-form solution).

We will later examine how the **cost function** $J(\theta)$ reflects the **convergence** behavior under different **learning rates** α .

```
[7]: import numpy as np
import pandas as pd
from pathlib import Path
from IPython.display import display
import matplotlib.pyplot as plt
```

1.1.1 1. Data Loading

Dataset. Housing prices in Portland, Oregon.

- Features (X): living area (sqft), number of bedrooms.
- Target (y): house price.
- Size: m = 47 training examples.

In this section we do the following: - Load ex2x.dat (features) and ex2y.dat (targets). - Check shapes and preview the first few rows to confirm the data is correct. - No preprocessing or training here; this step is only for loading and sanity checks.

```
[8]: X_path=Path("ex2Data/ex2x.dat")
y_path=Path("ex2Data/ex2y.dat")
if not X_path.exists() or not y_path.exists():
    raise FileNotFoundError(
        "Data files not found. Make sure 'ex2x.dat' and 'ex2y.dat' are in the
        working directory.\n"
            f"Current directory: {Path('.').resolve()}\n"
            f"Here are the files I see: {[p.name for p in Path('.').iterdir()]}"
)
X_raw=pd.read_csv(X_path,header=None,sep=r"\s+").astype(float)
y_raw=pd.read_csv(y_path,header=None,sep=r"\s+").astype(float)
```

```
if(X_raw.shape[1]==2):
    X_raw.columns=["area","bedrooms"]
else:
    X_raw.columns=[f"feature_{i}" for i in range(X_raw.shape[1])]
y_raw.columns=["price"]
m_X,m_y=len(X_raw),len(y_raw)
assert m_X==m_y,f"Row-count mismatch between X({m_X}) and y({m_y})."
df=pd.concat([X_raw,y_raw],axis=1)
print(f"Loaded shapes -> X:{X_raw.shape},y:{y_raw.shape},combined:{df.shape}")
display(df.head(10))
display(df.describe().T)
```

Loaded shapes -> X:(47, 2),y:(47, 1),combined:(47, 3)

	area	bedro	oms	price					
0	2104.0		3.0	399900.0					
1	1600.0		3.0	329900.0					
2	2400.0		3.0	369000.0					
3	1416.0		2.0	232000.0					
4	3000.0		4.0	539900.0					
5	1985.0		4.0	299900.0					
6	1534.0		3.0	314900.0					
7	1427.0		3.0	198999.0					
8	1380.0		3.0	212000.0					
9	1494.0		3.0	242500.0					
						•	OE%	E0%	\
		count		mean	std	min	25%	50%	\
area		47.0	2000.680851		794.702354	852.0	1432.0	1888.0	
bedrooms		47.0	3.170213		0.760982	1.0	3.0	3.0	
price		47.0	340412.659574		125039.899586	169900.0	249900.0	299900.0	

price	47.0	34041	2.659574	125039.899586	169900.0	24990
area	75 2269	5% 0	max 4478.0			
arca	2200	. 0	1110.0			

area 2269.0 4478.0 bedrooms 4.0 5.0 price 384450.0 699900.0

1.1.2 2. Data processing

Prepare the design matrix for efficient gradient descent: 1) add an intercept column with $x_0 = 1$, and

2) standardize each feature (zero mean, unit standard deviation).

The living area is roughly $1000 \times$ the bedrooms count, so without scaling, gradient steps become poorly balanced and convergence slows or becomes unstable.

We do the following: - Compute per-feature mean μ and standard deviation σ . - Standardize with

$$\tilde{x} = \frac{x - \mu}{\sigma}.$$

- Build the final design matrix

$$X \ = \ \big[\ \mathbf{1}, \ \tilde{X} \ \big],$$

where ${\bf 1}$ is the $m \times 1$ intercept column and \tilde{X} is the standardized feature matrix. - Keep μ and σ for later so new inputs can be scaled consistently.

```
[9]: | X_num=X_raw.to_numpy(dtype=float)
     y=y_raw.to_numpy(dtype=float).reshape(-1,1)
     m,n=X_num.shape
     mu=X_num.mean(axis=0)
     sigma=X_num.std(axis=0,ddof=0)
     sigma safe=np.where(sigma==0,1.0,sigma)
     X_std=(X_num-mu)/sigma_safe
     X=np.hstack([np.ones((m,1)),X std])
     print(f"m={m},n={n}(feature before intercept)")
     print("mu:",mu)
     print("sigma:",sigma)
     print("X (with intercept) shape:", X. shape, "|y shape:", y. shape)
     print("First 5 rows of X:\n",X[:5])
     preproc={"mu":mu, "sigma":sigma_safe, "feature_names":list(X_raw.columns)}
     def standardize(X_new,mu=preproc["mu"],sigma=preproc["sigma"]):
         X_new=np.asarray(X_new,dtype=float)
         return (X_new-mu)/sigma
     peek=pd.DataFrame(
         np.hstack([X_num[:5],X_std[:5]]),
         columns=[*(f"raw {c}" for c in preproc["feature names"]),
                  *(f"std_{c}" for c in preproc["feature_names"])]
     display(peek)
    m=47,n=2(feature before intercept)
    mu: [2000.68085106
                           3.17021277]
    sigma: [7.86202619e+02 7.52842809e-01]
    X (with intercept) shape: (47, 3) |y shape: (47, 1)
```

```
First 5 rows of X:
 [[ 1.
               0.13141542 -0.22609337]
 Г1.
             -0.5096407 -0.22609337]
 Г1.
              0.5079087 -0.226093371
 Г1.
             -0.74367706 -1.5543919 ]
 Г1.
              1.27107075 1.10220517]]
  raw_area raw_bedrooms std_area std_bedrooms
0
    2104.0
                     3.0 0.131415
                                       -0.226093
    1600.0
                     3.0 -0.509641
1
                                      -0.226093
2
    2400.0
                     3.0 0.507909
                                      -0.226093
                     2.0 -0.743677
3
    1416.0
                                       -1.554392
4
    3000.0
                     4.0 1.271071
                                        1.102205
```

1.1.3 3. Gradient Descent

Objective. Minimize the cost function $J(\theta)$ using batch gradient descent.

Cost.

$$J(\theta) \; = \; \frac{1}{2m} \, \|X\theta - y\|_2^2.$$

Update rule (vectorized).

$$\theta \ \leftarrow \ \theta \ - \ \alpha \cdot \frac{1}{m} \, X^{\top} \! \big(X \theta - y \big).$$

We do the following: 1. Initialize θ (e.g., zeros). 2. For a given learning rate α , iterate the update rule for a fixed number of steps (or until convergence). 3. Record $J(\theta)$ at every step and plot J vs. iteration. 4. If J does not steadily decrease (or diverges), reduce α . If it decreases but very slowly, try a slightly larger α or more iterations.

We will try a few α values, compare their learning curves, pick a stable and reasonably fast one, and keep the resulting parameters as $\theta_{\rm gd}$.

```
[10]: def compute_cost(X,y,theta):
          m=X.shape[0]
          residual=X@theta-y
          return (residual.T@residual).item()/(2.0*m)
      def gradient_descent(X,y,theta_init=None,alpha=0.
       →01, num_iters=400, tol=None, verbose=False):
          m,d=X.shape
          theta=np.zeros((d,1)) if theta_init is None else theta_init.astype(float).
        →reshape(d,1)
          J history=[]
          XT=X.T
          inv m=1.0/m
          prev_J=None
          for t in range(1,num_iters+1):
              residual=X@theta-y
               grad=inv_m*(XT@residual)
               theta-=alpha*grad
               Jt=compute_cost(X,y,theta)
               J_history.append(Jt)
               if verbose and (t \le 10 \text{ or } t\%50 = 0 \text{ or } t = num\_iters):
                   print(f"Iter {t:4d}: J={Jt:.6e}, ||grad|| 2={np.linalg.norm(grad):.
        -6e}")
               if tol is not None and prev J is not None and abs(prev J-Jt) < tol:
                   rel_drop=(prev_J-Jt)/max(prev_J,1e-12)
                   if rel_drop>=0 and rel_drop<tol:</pre>
                       if verbose:
                            print(f"Early stop at iter {t} (relative drop {rel_drop:.

→3e}<tol{tol})")</pre>
              prev_J=Jt
          return theta, J_history
      alphas=[0.001,0.01,0.05,0.1]
```

```
num_iters=1200
thetas_by_alpha={}
histories={}
for a in alphas:
thetas_by_alpha[a]=theta_a
   histories[a]=J_hist_a
plt.figure()
for a in alphas:
   plt.plot(range(1,len(histories[a])+1),histories[a],label=f"alpha={a}")
plt.xlabel("Iteration")
plt.ylabel("Cost J")
plt.legend()
plt.title("Gradient Descent: J vs. Iteration for different learning rates")
plt.show()
best_alpha=min(alphas,key=lambda a:histories[a][-1])
theta_gd=thetas_by_alpha[best_alpha]
print(f"Chosen alpha={best_alpha} (lowest final J={histories[best_alpha][-1]:.

6f})")

print("theta_gd:\n",theta_gd.reshape(-1,1))
```



```
Chosen alpha=0.05 (lowest final J=2043280050.602828) theta_gd: [[340412.65957447] [109447.79646949] [ -6578.35485401]]
```

1.1.4 4. Prediction with the Learned Parameters (GD)

After obtaining $\theta_{\rm gd}$ from gradient descent, we can predict prices for new inputs.

Key rule. Apply the same preprocessing as used for training: - standardize each raw feature with the stored statistics (μ, σ) , - then add the intercept $x_0 = 1$, - finally compute $\hat{y} = X_{\text{new}} \theta_{\text{gd}}$.

We do the following: 1) predict the price for a house with (area = 1650, bedrooms = 3), and 2) provide a helper for batch predictions.

```
[11]: def make_design_from_raw(raw_features, preproc):
    X_new=np.asarray(raw_features,dtype=float)
    if X_new.ndim==1:
        X_new=X_new.reshape(1,-1)
    X_std=(X_new-preproc["mu"])/preproc["sigma"]
```

```
X_design=np.hstack([np.ones((X_std.shape[0],1)),X_std])
    return X_design

x_house=np.array([1650.0, 3.0])
X_house=make_design_from_raw(x_house,preproc)
price_pred_gd=(X_house@theta_gd).item()
print(f"Predicted price (GD) for area=1650, bedrooms=3: {price_pred_gd:.2f}")

def predict_gd(raw_features_batch):
    Xd=make_design_from_raw(raw_features_batch,preproc)
    return (Xd@theta_gd).reshape(-1)

batch_demo=np.array([
    [1200,2],
    [2000,4],
    [1650,3],
],dtype=float)
print("Batch_predictions (GD):",predict_gd(batch_demo))
```

Predicted price (GD) for area=1650, bedrooms=3: 293081.46
Batch predictions (GD): [239174.68013921 333067.1811289 293081.46433493]

1.1.5 5. Normal Equation

Idea. Solve linear regression in a single shot, without choosing a learning rate or iterating.

Closed form.

$$\theta_{\mathrm{ne}} \; = \; (X^{\top}X)^{-1}X^{\top}y.$$

Practical note. When $(X^{\top}X)$ is ill-conditioned or singular, replace the inverse with a **pseudo-inverse**:

$$\theta_{\rm ne} \ = \ \left(X^{\top} X \right)^{+} X^{\top} y.$$

We do the following: - Build the design matrix on raw features (no scaling): $X_{\rm ne} = [1, X_{\rm raw}]$. - Compute $\theta_{\rm ne}$ with a pseudo-inverse. - Evaluate training error (RMSE/MAE/ R^2). - Predict the price for (area = 1650, bedrooms = 3) with both GD and NE and compare.

```
[12]: m=len(X_raw)
    X_ne_raw=X_raw.to_numpy(dtype=float)
    X_ne=np.hstack([np.ones((m,1)),X_ne_raw])
    XT_X=X_ne.T@X_ne
    theta_ne=np.linalg.pinv(XT_X)@X_ne.T@y
    print("theta_ne (Normal Equation):\n",theta_ne)
    def metrics(y_true,y_pred):
        resid=y_pred-y_true
        mse=float((resid**2).mean())
        rmse=mse**0.5
        mae=float(np.abs(resid).mean())
        ss_res=float(((y_true-y_pred)**2).sum())
```

```
ss_tot=float(((y_true-y_true.mean())**2).sum())
    r2=1.0-ss_res/ss_tot
    return rmse, mae, r2
y_hat_ne=X_ne@theta_ne
rmse_ne,mae_ne,r2_ne=metrics(y,y_hat_ne)
assert 'theta_gd' in globals(), "Run Section 4 to get theta_gd."
y_hat_gd=(X@theta_gd)
rmse_gd,mae_gd,r2_gd=metrics(y,y_hat_gd)
print("\n=== Training metrics ===")
print(f"GD: RMSE={rmse_gd:.4f}, MAE={mae_gd:.4f}, R^2={r2_gd:.4f}")
print(f"NE: RMSE={rmse_ne:.4f}, MAE={mae_ne:.4f}, R^2={r2_ne:.4f}")
X_house_ne=np.array([[1.0,1650.0,3.0]])
price_pred_ne=(X_house_ne@theta_ne).item()
if 'predict_gd' in globals():
    price_pred_gd=predict_gd([[1650.0, 3.0]])[0]
else:
    std=(np.array([[1650.0, 3.0]])-preproc["mu"])/preproc["sigma"]
    X_{\text{house\_gd=np.hstack}}([np.ones((1,1)),std])
    price_pred_gd=(X_house_gd@theta_gd).item()
print("\n=== Single-point prediction (area=1650, bedrooms=3) ===")
print(f"GD prediction : {price_pred_gd:.2f}")
print(f"NE prediction : {price_pred_ne:.2f}")
print(f"Absolute diff : {abs(price pred gd - price pred ne):.6f}")
theta_ne (Normal Equation):
 [[89597.90954355]
 [ 139.21067402]
 [-8738.01911255]]
=== Training metrics ===
GD: RMSE=63926.2082, MAE=51502.7684, R^2=0.7329
NE: RMSE=63926.2082, MAE=51502.7684, R^2=0.7329
=== Single-point prediction (area=1650, bedrooms=3) ===
GD prediction: 293081.46
NE prediction: 293081.46
Absolute diff: 0.000000
1.1.6 6. Final Results and Summary
Selected GD settings (used): learning rate \alpha = 0.1, iterations = 1200.
Training metrics (47 samples). - GD: RMSE 63926.21, MAE 51502.77, R^2 \approx 0.7329
- NE: RMSE 63926.21, MAE 51502.77, R^2 \approx 0.7329
Single-point prediction for (area = 1650, bedrooms = 3): - GD: \hat{y} \approx 293081.46 - NE:
\hat{y} \approx 293081.46 - Absolute difference: \approx 1.94 \times 10^{-4} (numerical noise)
Closed-form parameters (NE, raw features + intercept).
                                                                             \theta_{
m ne}
```

 $\begin{bmatrix} 89597.91, \ 139.21, \ -8738.02 \end{bmatrix}^\top$