Securing IoT devices using Ensemble Machine Learning in Smart Home Management System

Raktim Ranjan Das*, Bhargavi Krishnamurthy[†], Saikat Das[‡]
*Department of Computer Science and Engineering, Stamford University Bangladesh, Dhaka, Bangladesh
*Department of Computer Science, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
[‡]Department of Computer Science, Utah Valley University, Orem, UT, USA
Emails: RaktimDas16@gmail.com, Bhargavi.Tumkur@gmail.com, Saikat.Das@UVU.edu

I. Introduction

This document is meant to be used alongside the article "Securing IoT devices using Ensemble Machine Learning in Smart Home Management System". In this document, we have added the appendix section of the original paper. Here, we have listed the hyper parameters in a Table that are used to build our models using various machine learning algorithm and ensemble algorithm. Furthermore, the detailed results of our experiments using NSL-KDD, UNSW-NB15, CICIDS2017 and DS2OS datasets are listed here.

 ${\bf TABLE\ I}$ Hyper-parameter values used for different individual and ensemble classifiers.

	Classifier	Short Names	Hyper-parameter Values
Supervised Models	Logistic Regression	LR	random_state=0, solver='lbfgs', multi class='multinomial'
	Decision Tree	DT	default parameters
	Naïve Bayes	NB	alpha=1.0, binarize=0.0,
			fit_prior=True, class_prior=None
	Neural Network	NN	solver='lbfgs', alpha=1e-5,
			hidden_layer_sizes=(5, 2), random_state=1
	Support Vector	SVM	C=1.0, kernel='rbf', degree=3, gamma='scale',
	Machine		coef0=0.0, shrinking=True, probability=True
Ensemble	Majority Voting	Ens_MV	none
Models	Decision Tree	Ens_DT	default parameters
	Naïve Bayes	Ens-NB	alpha=1.0, binarize=0.0,
			fit_prior=True, class_prior=None
	Logistic Regresion	Ens_LR	random_state=0, solver='lbfgs',
			multi_class='multinomial'
	Neural Network	Ens_NN	solver='lbfgs', alpha=1e-5, novelty=True
	0	E 07774	hidden_layer_sizes=(5, 2), random_state=1
	Support Vector	Ens_SVM	C=1.0, kernel='rbf', degree=3, gamma='scale',
	Machine		coef0=0.0, shrinking=True, probability=True

 ${\bf TABLE~II}\\ {\bf Comparative~performance~analysis~of~eleven~models~using~NSL-KDD~dataset}$

Classifier	F-1	Accuracy	Precision	Sensitivity	Specificity	FPR	ROC_auc	Elp_time
LR	0.732	0.746	0.915	0.611	0.925	0.075	0.889	4.431
NB	0.751	0.768	0.965	0.615	0.970	0.030	0.927	0.323
NN	0.786	0.795	0.967	0.662	0.971	0.029	0.824	7.975
DT	0.790	0.798	0.968	0.668	0.970	0.030	0.820	0.803
SVM	0.778	0.789	0.971	0.649	0.975	0.025	0.910	1031.116
Ens_MV	0.766	0.779	0.969	0.633	0.973	0.027	N/A	2.372
Ens_LR	0.887	0.881	0.959	0.826	0.954	0.046	0.898	0.278
Ens_NB	0.887	0.881	0.959	0.826	0.954	0.046	0.892	0.234
Ens_NN	0.887	0.881	0.959	0.826	0.954	0.046	0.896	0.386
Ens_DT	0.887	0.880	0.959	0.825	0.954	0.046	0.900	0.243
Ens_SVM	0.887	0.881	0.959	0.826	0.954	0.046	0.886	12.174

TABLE III

COMPARATIVE PERFORMANCE ANALYSIS OF ELEVEN MODELS USING UNSW-NB15 DATASET

Classifier	F-1	Accuracy	Precision	Sensitivity	Specificity	FPR	ROC_AUC	Elasped Time
LR	0.665	0.643	0.627	0.707	0.580	0.420	0.643	5.511
NB	0.616	0.558	0.544	0.710	0.406	0.594	0.558	0.31
NN	0.815	0.788	0.724	0.932	0.645	0.355	0.788	13.586
DT	0.867	0.856	0.802	0.944	0.767	0.233	0.856	1.196
SVM	0.762	0.735	0.692	0.847	0.624	0.376	0.735	2537.329
Ens_MV	0.765	0.737	0.692	0.854	0.621	0.379	N/A	2.315
Ens_LR	0.866	0.857	0.810	0.93	0.785	0.215	0.857	1.143
Ens_NB	0.798	0.798	0.791	0.805	0.791	0.209	0.798	0.246
Ens_NN	0.867	0.857	0.808	0.935	0.78	0.22	0.858	6.019
Ens_DT	0.866	0.857	0.811	0.928	0.786	0.214	0.857	0.238
Ens_SVM	0.866	0.857	0.811	0.928	0.786	0.214	0.857	174.102

TABLE IV

COMPARATIVE PERFORMANCE ANALYSIS OF ELEVEN MODELS USING CICIDS 2017 DATASET

Classifier	F-1	Accuracy	Precision	Sensitivity	Specificity	FPR	ROC_AUC	Elasped Time
LR	0.868	0.851	0.785	0.970	0.730	0.270	0.940	1.172
NB	0.431	0.591	0.723	0.307	0.880	0.120	0.816	0.115
NN	0.899	0.89	0.836	0.974	0.805	0.195	0.958	2.973
DT	0.994	0.994	0.993	0.996	0.993	0.007	0.994	0.448
SVM	0.9	0.89	0.833	0.978	0.800	0.200	0.966	311.716
Ens_MV	0.911	0.903	0.854	0.975	0.831	0.169	N/A	2.053
Ens_LR	0.995	0.995	0.994	0.996	0.993	0.007	0.998	0.150
Ens_NB	0.987	0.986	0.997	0.977	0.996	0.004	0.998	0.095
Ens_NN	0.995	0.995	0.995	0.996	0.994	0.006	0.998	0.286
Ens_DT	0.995	0.995	0.995	0.995	0.995	0.005	0.998	0.100
Ens_SVM	0.995	0.995	0.994	0.996	0.993	0.007	0.993	0.537

 $\label{table v} TABLE\ V$ Comparative performance analysis of eleven models using DS2OS dataset

Classifier	F-1	Accuracy	Precision	Sensitivity	Specificity	FPR	ROC_AUC	Elasped Time
LR	0.855	0.832	0.757	0.983	0.678	0.322	0.917	1.139
NB	0.435	0.595	0.735	0.309	0.887	0.113	0.768	0.116
NN	0.866	0.853	0.802	0.941	0.764	0.236	0.936	2.888
DT	0.933	0.929	0.892	0.979	0.879	0.121	0.971	0.446
SVM	0.87	0.853	0.783	0.98	0.724	0.276	0.946	418.727
Ens_MV	0.889	0.876	0.809	0.986	0.764	0.236	N/A	2.055
Ens_LR	0.936	0.931	0.9	0.974	0.884	0.116	0.96	0.16
Ens_NB	0.928	0.923	0.901	0.955	0.888	0.112	0.958	0.097
Ens_NN	0.936	0.931	0.9	0.974	0.884	0.116	0.96	0.461
Ens_DT	0.994	0.995	0.995	0.995	0.995	0.005	0.961	0.103
Ens_SVM	0.937	0.932	0.899	0.978	0.883	0.117	0.947	4.404