Теория вероятностей

MIPT

Осень 2012 г.

Содержание

Введение	2
Вероятностное пространство	2
Дискретные вероятностные пространства	5
Условные вероятности	7
Системы множеств	8
Независимость событий	11
Вероятностная мера на $(\mathbb{R},B_{\mathbb{R}})$	12
Классификация вероятностных мер и функций распределения на прямой	14
Вероятностные меры в \mathbb{R}^n	17
Случайные величины в дискретных вероятностных пространствах	19
Случайные элементы	22
Действия над случайными величинами и векторами	24
Характеристики случайных величин и векторов	25
Независимость случайных величин и векторов	32
Неравенства	35
Виды сходимостей случайных величин	36
Усиленный закон больших чисел для случайных величин с ограниченными дис- персиями	39
Предельный переход под знаком E	43
Усиленный закон больших чисел для с.в. с конечным математическим ожиданием	44

Замена переменных в интеграле Лебега	47
Прямое произведение вероятностных пространств	50
Слабая сходимость вероятностный мер	52
Предельные теоремы для схемы Бернулли	54
Характеристические функции	55

Введение

Предмет изучения теории вероятностей: Математический анализ случайных явлений.

Эксперименты бывают:

- Детерминированный результат (изучают другие науки)
- Случайный результат (теория вероятностей)

Одиночные результаты случайных экспериментов не позволяют обнаружить закономерности, однако при большом числе результатов однородных случайных экспериментов обнаруживается устойчивость частот.

Пример 1. Подбрасывание монетки:

Бюфорон, XVIII век, 4040 подбрасываний, 2048 раз выпал орел, частота 0,508...

Пирсон, XIX век, 24000 подбрасываний, 12012 раз выпал орел, частота 0,5005...

Принцип устойчивости частот:

Частота осуществления какого-либо исхода в последовательности однородных случайных экспериметов сходится к некоторому числу $p \in [0, 1]$.

Пусть A - некоторое событие, $U_n(A)$ - количетсво появлений в результатах случайных экспериментов после n испытаний. Тогда

$$\frac{U_n(A)}{n} \xrightarrow[n \to \infty]{} p(A)$$
 – вероятность события A .

Однако с математической точки зрения это неудобно. Нужно предложить другое определение вероятности, для которого будет наблюдаться устойчивость частот.

Вероятностное пространство

В основе теории вероятностей лежит понятие вероятностного пространства (Ω, \mathcal{F}, P) (т.н "тройки Колмогорова")

- $\begin{array}{l} \textcircled{1} \ \Omega-npocmpaнcmbo элементарных событий.} \\ \omega \in \Omega-\text{ называется элементарным событием.} \\ \text{B результате случайного эксперимента получаем один и ровно один элемент. } \Omega \end{array}$
- (2) $\mathcal{F} \sigma$ -алгебра подмножеств на Ω . Элементы \mathcal{F} называются coбытиями. $\forall A \in \mathcal{F} \Rightarrow A \subset \Omega$.

Определение 1. Система подмножеств \mathcal{F} множества Ω называется алгеброй, если:

- 1. $\Omega \in \mathcal{F}$
- 2. $\forall A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$
- 3. $\forall A, B \in \mathcal{F} \Rightarrow A \triangle B \in \mathcal{F}$

Упражнение 1. Алгебра замкнута относительно операций:

- 1. $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$
- 2. $A, B \in \mathcal{F} \Rightarrow A \setminus B \in \mathcal{F}$
- 3. $A \in \mathcal{F} \Rightarrow \overline{A} \in \mathcal{F}$

Определение 2. $\overline{A} = \Omega \setminus A$, называется дополнительным событием к событию A.

Пример 2.

- 1. $\mathcal{F}_* = \{\emptyset, \Omega\}$ тривиальная алгебра
- 2. $\mathcal{F}^* = 2^{\Omega}$ (все подмножества Ω) дискретная алгебра
- 3. $\mathcal{F} = \{\varnothing, A, \overline{A}, \Omega\}$ алгебра "порожденная" A
- 4. Конечные объединения подмножеств вида $[a,b), (-\infty;0), [d,+\infty)$ образуют алгебру.

Определение 3. Система подмножеств \mathcal{F} множества Ω называется σ -алгеброй, если:

- 1. \mathcal{F} алгебра
- 2. $\forall \{A_n, n \in \mathbb{N}\}, A_n \in \mathcal{F} \ \forall n \Rightarrow \bigcup_{n=1}^{+\infty} A_n \in \mathcal{F}$

Упражнение 2. Условие $\bigcup_n A_n \in \mathcal{F}$ можно заменить на $\bigcap_n A_n \in \mathcal{F}$

Пример 3.

- 1. \mathcal{F}_* тривиальная σ -алгебра
- 2. \mathcal{F}^* дискретная σ -алгебра
- 3. \forall конечная алгебра является σ -алгеброй.
- 4. $[a,b), (-\infty;c), [d,+\infty)$ не σ -алгебра.

Определение 4. Пара (Ω, \mathcal{F}) множества Ω с заданной на нем σ -алгеброй \mathcal{F} называется измеримым пространством.

Определение 5. Отображение $P \colon \mathcal{F} \to [0;1]$ называется вероятностной мерой(или вероятностью) на (Ω, \mathcal{F}) , если:

- 1. $P(\Omega) = 1$
- 2. Для \forall последовательности $\{A_n, n \in \mathbb{N}\}$, $A_n \in \mathcal{F} \ \forall n$ такой, что $\forall i \neq j : A_i \cap A_j = \emptyset$ выполнено свойство счетной аддитивности:

$$P\left(\bigsqcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

Утверждение 1.

1.
$$P(\emptyset) = 0$$

2. Если
$$A \cap B = \emptyset$$
, то $P(A \cup B) = P(A) + P(B)$ (свойство конечной аддитивности)

3.
$$P(\overline{A}) = 1 - P(A)$$

4.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

5.
$$\forall A_1, \dots, A_m \in \mathcal{F}$$

$$P\left(\bigcup_{n=1}^m A_n\right) \leqslant \sum_{n=1}^m P(A_n)$$

6. Ecsu $A \subset B$, mo $P(A) \leqslant P(B)$

Доказательство.

1.
$$\forall n \ A_n = \varnothing \Rightarrow P\left(\bigsqcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n) = \sum_{n=1}^{\infty} P(\varnothing) < +\infty \Rightarrow P(\varnothing) = 0$$

2.
$$A_1 = A, A_2 = B, A_3 = A_4 = \dots = A_n = \dots = \emptyset$$

 $P\left(\bigsqcup_{n=1}^{\infty} A_n\right) = P(A \cup B) = \sum_{n=1}^{\infty} P(A_n) = P(A) + P(B)$

3.
$$\Omega = A \sqcup \overline{A} \Rightarrow |\text{no } 2| \Rightarrow 1 = P(A) + P(\overline{A})$$

4.
$$A \cup B = A \sqcup (B \setminus (A \cap B))$$

 $\Rightarrow P(A \cup B) = P(A) + P(B \setminus (A \cap B))$

$$B = (A \cap B) \sqcup (B \setminus (A \cap B))$$

$$\Rightarrow P(B) = P(A \cap B) + P(B \setminus (A \cap B))$$

Осталось отнять вычесть одно равенство из другого.

5. Если m=2 — то это пункт 4).

По индукции

$$P\left(\bigcup_{n=1}^m A_n\right)\leqslant P(A_m)+P\left(\bigcup_{n=1}^{m-1} A_n\right)\leqslant |\text{индукция}|\leqslant P(A_m)+\sum_{n=1}^{m-1} P(A_n)=\sum_{n=1}^m P(A_n)$$

6. Следует из 4).

Определение 6. Будем обозначать $A_n \downarrow An \to +\infty$, если для последовательности событий $\{A_n, n \in \mathbb{N}\}$ выполнены свойства:

1.
$$A_n \supset A_{n+1} \supset \dots$$

$$2. \ A = \bigcap_{n=0}^{\infty} A_n$$

Теорема 1 (О непрерывности в нуле вероятностной меры). Пусть (Ω, \mathcal{F}) - измеримое пространство, а $P \colon \mathcal{F} \to [0,1]$ удовлетворяет двум свойствам:

1.
$$P(\Omega) = 1$$

2. Р - конечно-аддитивна.

Тогда P - вероятностная мера $\Leftrightarrow P$ - непрерывна в нуле $(m.e\ ecnu\ A_n\downarrow\varnothing,\ mo\ P(A_n)\to 0).$

Доказательство.

 (\Leftarrow) Пусть P - вероятностная мера, а $A_n \downarrow \varnothing$.

Рассмотрим
$$B_m = A_m \setminus A_{m+1}$$
. Тогда в силу $\bigcap_n A_n = \varnothing \Rightarrow \bigsqcup_{m=n}^\infty B_m = A_n$

Тогда в силу счетной аддитивности $P(A_n) = \sum_{m=n}^{\infty} P(B_m)$

Но ряд
$$P(A_1)=\sum\limits_{m=1}^{\infty}P(B_m)$$
 сходится $\Rightarrow\sum\limits_{m=n}^{\infty}P(B_m)$ есть остаток сходящего ряда $\Rightarrow P(A_n)\to 0$

 (\Rightarrow) Пусть P непрерывна в нуле.

Покажем её счетную аддитивность:

Пусть
$$A_n, n \in \mathbb{N}$$
 т.ч $A_n \in F \ \forall n$ и $A_i \cap A_j = \varnothing$ при $i \neq j$

Рассмотрим
$$B_m = \bigsqcup_{n=m}^{+\infty} A_n$$
. Тогда $B_m \supset B_{m+1} \supset \dots$

Покажем, что $\bigcap B_m = \emptyset$.

Пусть
$$\omega \in \bigcap_{m} B_{m}^{m} \Rightarrow \omega \in B_{1} \Rightarrow \exists k : \omega \in A_{k} \Rightarrow \omega \notin B_{k+1}$$
 Противоречие.

Следовательно, $\bigcap_m B_m = \emptyset$ и в силу непрерывности в нуле $P(B_m) \to 0$.

Далее
$$P\left(\bigsqcup_{n=1}^{\infty}A_{n}\right)=P\left(\bigsqcup_{n=1}^{m}A_{m}\sqcup B_{m+1}\right)=|$$
конечная аддитивность $|=\sum_{n=1}^{m}P(A_{n})+P(B_{m+1})\to\sum_{n=1}^{\infty}P(A_{n}),m\to\infty$ $\Rightarrow P\left(\bigsqcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}P(A_{n})$

Следствие 1 (непрерывность вероятностной меры).

- 1. Ecau $A_n \downarrow A$, mo $P(A_1) \rightarrow P(A)$
- 2. Ecau $A_n \uparrow A \ (m.e \ A_n \subset A_{n-1} \subset \ldots, \ u \ A = \bigcup_n A_n, \ mo \ P(A_n) \to P(A)$

Доказательство.

- 1. Надо рассмотреть $B_n = A_n \setminus A$
- 2. Надо рассмотреть $B_n = \overline{A_n}$

Дискретные вероятностные пространства

В дискретном случае множество элементарных исходов Ω – счетно или конечно.

Сигма-алгебру ${\mathcal F}$ на Ω выбирают дискретной, ${\mathcal F}={\mathcal F}^*=2^\Omega$

Тогда вероятность P можно задать как функцию на Ω :

$$P \colon \Omega \to [0,1],$$
 т.ч. $\sum_{\omega \in \Omega} P(\omega) = 1$

В этом случае
$$\forall A\subset\Omega:P(A)=\sum_{\omega\in A}P(\omega)$$

(I) Классическая модель

В классической модели Ω – конечно, все элементарные события равновероятны:

$$\forall \omega \in \Omega : P(\omega) = \frac{1}{|\Omega|}$$

Тогда
$$\forall A \subset \Omega : P(A) = \frac{|A|}{|\Omega|}$$

Пример 4.

- 1. Бросок монеты. $\Omega = \{ \text{Орел}, \text{Решка} \}.$ P(Орел) = P(Решка) = 1/2
- 2. Бросок кости. $\Omega = \{1, \dots, 6\}$ $P(i) = 1/6 \quad \forall i = 1 \dots 6$
- 3. Бросок двух монет. "Заблуждение Даламбера". $\Omega = \{OO, OP, PP\}$ Кажется, что все исходы имеют верятность 1/3

Проблема в различимости монет.

Если они различимы, то $\Omega = \{OO, OP, PO, PP\}$, и вероятности событий равны 1/4 P(выпал 1 орел и 1 решка)=1/2

4. Схема испытаний Бернулли. $\Omega = \{ \vec{\omega} = (w_1, \dots, w_n) \mid w_i \in \{0, 1\} \}. \ |\Omega| = 2^{\Omega}$ Эта модель отвечает броскам n различимых монет.

(II) <u>Геометрические вероятности</u>

Здесь $\Omega\subseteq\mathbb{R}^n,\,n\geqslant 1$ и для Ω определен, конечен и положителен его объем $\mu(\Omega)>0.$

Сигма-алгебра ${\mathcal F}$ состоит из тех $A\subset\Omega$ для которых тоже определен объем $\mu(A)$

Тогда вероятность P задается так:

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$

 Π одобная модель — ествественное продолжение классической модели на случай непрерывных пространств.

Пример 5. Задача о встрече:

Два товарища договорились встретиться утром на остановке. Каждый приходит в случайное время между 9 и 10, ждет 15 минут, потом уезжает.

Какова вероятность встречи?

Решение. Пространство элементарных событий – это квадрат $[9, 10] \times [9, 10]$.

Время прихода вервого и время прихода второго — случайная точка $(u, v) \in [9, 10] \times [9, 10]$.

Изобразим пространство событий геометрически:

Заштрихованная область $A = \{ (u, v) \mid u, v \in [9; 10], |u - v| < 1/4 \}.$

Нужно найти меру этой области:

$$\mu(A)=1-(3/4)^2=7/16$$
 $\mu(\Omega)=1$ $\Rightarrow P(\text{они встретятся})=\mu(A)/\mu(\Omega)=7/16$

Условные вероятности

Пусть (Ω, \mathcal{F}, P) – вероятностное пространство.

Определение 1. Для $\forall A \in \mathcal{F}$, т.ч. P(A) > 0 условной вероятностью события $B \in \mathcal{F}$ при условии A называют

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

если же P(A)=0, то $P(B\mid A)=0,\ \forall B\in\mathcal{F}$

Упражнение 3. Если P(A)>0, то функция $\overline{P}(B)=P(B\mid A)$

тоже является вероятностной мерой на (Ω, \mathcal{F}) .

Определение 2. Систему событий $\{B_n\}_{n=1}^\infty$ называют разбиением множества $\Omega,$ если:

1.
$$\forall i \neq j : B_i \cap B_j = \emptyset$$

$$2. \bigsqcup_{n=1}^{\infty} B_n = \Omega$$

В этом случае также говорят, что $\{B_n\}_{n=1}^\infty$ обрезует полную группу несовместных событий.

Лемма 1 (формула полной вероятности).

Пусть $\{B_n\}_{n=1}^\infty$ - разбиение Ω . Тогда для $\forall A \in \mathcal{F}$:

$$P(A) = \sum_{n=1}^{\infty} P(A \mid B_n) P(B_n)$$

Доказательство. Рассмотрим событие A

$$P(A) = P(A \cap \Omega) = P\left(A \cap \bigsqcup_{n=1}^{\infty} B_n\right) = P\left(\bigsqcup_{n=1}^{\infty} A \cap B_n\right) =$$

$$= |\text{счетная аддитивность}| = \sum_{n=1}^{\infty} P(A \cap B_n) = \sum_{n=1}^{\infty} P(A \mid B_n) P(B_n)$$

Пример 6. В ящике всего n шаров, из них k - белых. Последовательно, без возвращения, вынимаем по одному шару. Обозначим $A_j = \{$ на j-том шаге вынули белый шар $\}$.

Доказать:

$$P(A_j) = \frac{k}{n}$$

Первое решение: воспользоваться симметрией.

Второе решение: в лоб

Введем события $B_i(i) = \{ \text{среди первых } j-1 \text{ шара вынули ровно } i \text{ белых} \}$

Тогда $B_j(i)$ образуют разбиение, $i=0\ldots k$

Легко видеть, что

$$P(A_j \mid B_j(i)) = \frac{k-i}{n-j+1}$$

$$P(B_{j}(i)) = C_{j-1}^{i} \frac{k(k-1)\dots(k-i+1)(n-k)\dots(n-k-j+1+i)}{n(n-1)\dots(n-j+1)} = \frac{C_{j-1}^{i}C_{k}^{i} i! C_{n-k}^{j-1-i}(j-i-1)!}{C_{n}^{j-1}(j-1)!} = \frac{C_{k}^{i}C_{n-k}^{j-1-i}}{C_{n}^{j-1}}$$

Отсюда:

$$P(A_j) = \sum_{i=0}^k \frac{k-i}{n-j+1} \frac{C_k^i C_{n-k}^{j-1-i}}{C_n^{j-1}} = \frac{k}{n} \sum_{i=0}^k \frac{C_{k-1}^i C_{n-k}^{j-1-i}}{C_{n-1}^{j-1}} = \frac{k}{n}$$

Лемма 2 (формула Байеса).

Пусть $\{B_n\}_{n=1}^{\infty}$ – разбиение Ω , а $A \in \mathcal{F}: P(A) > 0$. Тогда $\forall n$

$$P(B_n \mid A) = \frac{P(A \mid B_n)P(B_n)}{\sum_{k=1}^{\infty} P(A \mid B_k)P(B_k)}$$

Определение 3. $P(B_n)$ называется априорной вероятностью.

 $P(B_n \mid A)$ называется апостериорной вероятностью (относительная вероятность при условии известного результата эксперимента)

Системы множеств

Пусть Ω - некоторое множество

Определение 1. Система подмножеств \mathcal{M} множества Ω называется π - cucmemoŭ, если $\forall A, B \in \mathcal{M}$ выполнено $A \cap B \in \mathcal{M}$

Определение 2. Система подмножеств \mathcal{L} множества Ω называется λ - $cucmemo\dot{u}$, если

1. $\Omega \in \mathcal{L}$

- 2. Если $A, B \in \mathcal{L}$ и $A \subset B$, то $B \setminus A \in \mathcal{L}$
- 3. Если последовательность $\{A_n\}_{n=1}^{\infty}$, $A_n \in \mathcal{L} \quad \forall n$, удовлетворяет $A_n \uparrow A$ (т.е $A_n \subset A_{n+1} \subset \dots$ и $A = \bigcup A_n$), то $A \in \mathcal{L}$

Лемма 3 (о π - и λ - системах). Система $\mathcal F$ подмножеств Ω является σ -алгеброй \Leftrightarrow она является π -системой и λ -системой одновременно.

Доказательство.

 (\Rightarrow) очевидно.

 (\Leftarrow) Для $\forall A \in \mathcal{F}$

$$\overline{A} = \Omega \setminus A \in \mathcal{F}$$
 т.к. $\mathcal{F} - \lambda$ -система $(A \subset \Omega \text{ и } \Omega \in \mathcal{F}, \text{ свойство } 2)$

Также имеется замкнутость относительно \cap в \mathcal{F} ($\mathcal{F}-\pi$ -система) \Rightarrow \mathcal{F} является алгеброй

Покажем, что она σ -алгебра:

Пусть $\{B_n, n \in \mathbb{N}\}$ - последовательность элементов из \mathcal{F} , Проверим, что $\bigcup B_n \in \mathcal{F}$

Положим $A_m=\bigcup_{n=1}^m B_n$. Тогда $A_m\in\mathcal{F}$ т.к \mathcal{F} – алгебра. Кроме того $A_m\subset A_{m+1}$ и $A_m\uparrow\bigcup_n B_n=B$

Тогда в силу свойства 3) λ -системы, $B \in \mathcal{F}$. Значит $F - \sigma$ -алгебра

Пример 7. $\Omega = \{1, 2, 3, 4\}$

 $\mathcal{L} = \{ \varnothing; (1,2); (1,3); (1,4); (2,3); (2,4); (3,4); \Omega \}$

Тогда \mathcal{L} – это λ -система, но не алгебра.

Лемма 4 (о существовании минимальной системы).

Пусть \mathcal{M} – система подмножеств Ω .

Тогда существует минимальная (по включению) алгебра (или σ -алгебра, π -система, λ -система) содержащая \mathcal{M} и обозначаемая $\mathcal{L}(\mathcal{M})$ ($\sigma(\mathcal{M}), \pi(\mathcal{M}), \lambda(\mathcal{M})$)

Доказательство. Рассмотрим $\mathcal{F}^*=2^\Omega$ – дискретная σ -алгебра. Она является алгеброй(σ -алгеброй, π -системой, λ -системой), содержащей \mathcal{M} , т.е множество интересующих нас систем не пусто.

Рассмотрим $\alpha(\mathcal{M})$ ($\sigma(\mathcal{M}), \pi(\mathcal{M}), \lambda(\mathcal{M})$) – пересечение всех алгебр (σ -алгебр, π -систем), содержащих \mathcal{M} . Тогда $\alpha(\mathcal{M})$ ($\sigma(\mathcal{M})$, $\pi(\mathcal{M})$, $\lambda(\mathcal{M})$) тоже будет являться алгеброй (σ -алгеброй, π системой, λ -системой), содержащей \mathcal{M} .

При этом она будет минимальной по включению.

Пример 8.

1. Пусть $\mathcal{M} = \{ (a, b) \mid a < b \in \mathbb{R} \}$ – система интервалов. Тогда минимальная σ -алгебра, содержащая \mathcal{M} , называется борелевской σ -алгеброй на прямой и обозначается $B(\mathbb{R})$

$$B(\mathbb{R}) = \sigma(\mathcal{M})$$

2. Рассмотрим в \mathbb{R}^n систему подмножеств вида

$$\mathcal{M} = \{ B_1 \times \ldots \times B_n \mid B_i \in B(\mathbb{R}) \}$$

$$\mathcal{M} = \{ (x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_i \in B_i \quad \forall i = 1 \ldots n \}$$

Тогда минимальная σ -алгебра, содержащая \mathcal{M} называется болевеской σ -алгеброй в \mathbb{R}^n и обозначается $B(\mathbb{R}^n)$

3. $\mathbb{R}^{\infty} = \{ (x_1, x_2, \ldots) \mid x_n \in \mathbb{R} \quad \forall n \}$ – числовые последовательности. Для $\forall n \ \forall B_n \in B(\mathbb{R}^n)$ введем

$$\mathcal{M}_n(B_n) = \{ \vec{x} \in \mathbb{R}^{\infty}, \vec{x} = (x_1, x_2, \ldots) \mid (x_1, \ldots, x_n) \in B_n \}$$

– цилиндр с основанием B_n

Минимальная σ -алгебра, содержащая все цилиндры, называется борелевской σ -алгеброй в \mathbb{R}^{∞} и обозначается $B(\mathbb{R}^{\infty})$. Формально:

$$B(\mathbb{R}^{\infty}) = \sigma(\{ \mathcal{M}_n(B_n) \mid n \in \mathbb{N}, B_n \in B(\mathbb{R}^n) \})$$

Теорема 1 (о монотонных классах).

Пусть \mathcal{M} – π -система на Ω . Тогда $\lambda(\mathcal{M}) = \sigma(\mathcal{M})$.

Доказательство. Заметим, что $\sigma(\mathcal{M})$ – σ -алгебра, содержащая $\mathcal{M} \Rightarrow \sigma(\mathcal{M})$ – λ -система, содержащая $\mathcal{M} \Rightarrow \lambda(\mathcal{M}) \subset \sigma(\mathcal{M})$ в силу минимальности.

Согласно лемме о π - и λ -системах для того, чтобы доказать $\sigma(\mathcal{M}) \subset \lambda(\mathcal{M})$, достаточно проверить, что $\lambda(\mathcal{M})$ является π -системой.

Действительно, тогда $\lambda(\mathcal{M})$ будем σ -алгеброй, содержащей $\mathcal{M} \Rightarrow \sigma(\mathcal{M}) \subset \lambda(\mathcal{M})$

Рассмотрим следующую систему подмножеств:

$$\mathcal{M}_1 = \{ B \in \lambda(\mathcal{M}) \mid \forall A \in \mathcal{M} \hookrightarrow A \cap B \in \lambda(\mathcal{M}) \}$$

Покажем, что \mathcal{M}_1 , является λ -системой,

- 1. $\Omega \in \mathcal{M}_1$? Для $\forall A \in \mathcal{M}$ $\Omega \cap A = A \in \mathcal{M} \subset \lambda(\mathcal{M}) \Rightarrow \Omega \in \mathcal{M}$.
- 2. Пусть $A, B \in \mathcal{M}_1$ и $A \subset B$. Верно ли, что $B \setminus A \in \mathcal{M}_1$? Пусть $C \in \mathcal{M}$. Тогда $(B \setminus A) \cap C = (B \cap C) \setminus (A \cap C)$

Причем $(A \setminus C) \subset (B \setminus C) \Rightarrow$ по свойству 2) λ -системы получаем, что $(B \setminus A) \cap C \in \lambda(M) \Rightarrow (B \setminus A) \in \mathcal{M}_1$

3. Пусть $\{B_n, n \in \mathbb{N}\}$ – последовательность из \mathcal{M}_1 , причем $B_n \uparrow B$. Верно ли, что $B \in \mathcal{M}_1$? Для $\forall A \in \mathcal{M} \quad (B_n \cap A) \uparrow (B \cap A)$. Но $(B_n \cap A) \in \lambda(\mathcal{M}) \Rightarrow (B \cap A) \in \lambda(\mathcal{M})$ по свойству 3) λ -системы. $\Rightarrow B \in \mathcal{M}_1$.

Мы показали, что \mathcal{M}_1 – λ -система.

В силу того, что \mathcal{M} – π -система, $\mathcal{M} \subset \mathcal{M}_1 \Rightarrow \lambda(\mathcal{M}) \subset \mathcal{M}_1$. В силу минимальности. Но $\mathcal{M}_1 \subset \lambda(\mathcal{M})$ по построению.

Следовательно, $\lambda(\mathcal{M}) = \mathcal{M}_1$, т.е. $\forall A \in \lambda(\mathcal{M}) \quad \forall B \in \mathcal{M} \quad A \cap B \in \lambda(\mathcal{M})$

Рассмотрим систему

$$\mathcal{M}_2 = \{ B \in \lambda(\mathcal{M}) \mid \forall A \in \lambda(\mathcal{M}) \hookrightarrow A \cap B \in \lambda(\mathcal{M}) \}$$

Точно также проверяется, что \mathcal{M}_2 – это λ -система.

А ранее мы доказали, что $\mathcal{M}\subset\mathcal{M}_2$ Значит $\lambda(\mathcal{M})\subset\mathcal{M}_2\Rightarrow\lambda(\mathcal{M})=\mathcal{M}_2$

Значит $\lambda(\mathcal{M})$ – π -система. То есть

$$\forall A, B \in \lambda(\mathcal{M}) \hookrightarrow A \cap B \in \lambda(\mathcal{M})$$

Независимость событий

Определение 1. События A и B на вероятностном пространстве (Ω, \mathcal{F}, P) называются *независимыми*, если

$$P(A \cap B) = P(A) P(B)$$

Упражнение 4. Пусть A и B независимы. Тогда независимыми будут и такие пары: \overline{A}, B A, \overline{B} $\overline{A}, \overline{B}$

Определение 2. Набор событий $A_1 \dots A_n$ называются попарно независимыми, если $\forall i \neq j$ A_i независимо с A_j .

Определение 3. События $A_1 \dots A_n$ называются независимыми в совокупности, если $\forall k \leqslant n, \forall i_1, \dots i_k : 1 \leqslant i_1 < \dots < i_k \leqslant n$ выполнено:

$$P(A_{i_1} \cap ... \cap A_{i_k}) = P(A_{i_1}) ... P(A_{i_k})$$

Определение 4. Системы событий $\mathcal{M}_1 \dots \mathcal{M}_n$, $\mathcal{M}_i \subset \mathcal{F}$ называются *независимыми в совокупности*, если $\forall A_1 \in \mathcal{M}_1, \dots, A_n \in \mathcal{M}_n$ события $A_1 \dots A_n$ – независимы в совокупности.

Лемма 5 (критерий независимости σ -алгебр).

 $\Pi y cm \circ \mathcal{M}_1 \ u \ \mathcal{M}_2 - \pi$ -системы в \mathcal{F} . Тогда $\sigma(\mathcal{M}_1) \ u \ \sigma(\mathcal{M}_2)$ независимы $\Leftrightarrow \mathcal{M}_1 \ u \ \mathcal{M}_2 -$ независимы.

Доказательство.

- (⇒) очевидно из определения
- (⇐) используем принцип подходящих множеств.

Рассмотрим такую систему:

$$\mathcal{L}_1 = \{ A \in \sigma(\mathcal{M}_2) \mid A \text{ независимо с } \mathcal{M}_1 \}$$

Проверим, что \mathcal{L}_1 – это λ -система.

1. $\Omega \in \mathcal{L}_1$?

$$P(\Omega \cap A) = P(A) = P(A) P(\Omega) \Rightarrow$$
 независимы $\Rightarrow \Omega \in \mathcal{L}_1$

2. Пусть $A, B \in \mathcal{L}_1$, причем $A \subset B$. $B \setminus A \in \mathcal{L}_1$? Пусть $C \in \mathcal{M}_1$. Тогда

$$P(B \setminus A \cap C) = P((B \cap C) \setminus (A \cap C)) = P(B \cap C) - P(A \cap C) =$$

 $P(B) P(C) - P(A) P(C) = (P(B) - P(A)) P(C) = P(B \setminus A) P(C)$
 $\Rightarrow B \setminus A$ независимо с $C \Rightarrow$ независимо с $\mathcal{M}_1 \Rightarrow B \setminus A \in \mathcal{L}_1$

3. Пусть $B_n \uparrow B, B_n \in \mathcal{L}_1$. Верно ли, что $B \in \mathcal{L}_1$?

Да:

Пусть
$$A \in \mathcal{M}_1$$
. Тогда $(B_n \cap A) \uparrow (B \cap A)$.

 $P(B\cap A)=|$ по теореме о непрерывности меры $|=\lim_n P(B_n\cap A)=$

$$=|B_n\in\mathcal{L}_1\Rightarrow B$$
 независимо с $A|=\lim_n P(B_n)P(A)=|$ по теореме о непрерывности $|=P(B)P(A)$

 $\Rightarrow B$ и A непрерывны $\Rightarrow B \in \mathcal{L}_1$

Значит $\mathcal{L}_1 - \lambda$ -система. По условию мы знаем, что \mathcal{M}_2 независима с $\mathcal{M}_1 \Rightarrow \mathcal{M}_2 \subset \mathcal{L}_1 \Rightarrow$ по следствию из теоремы о монотонности $\Rightarrow \sigma(\mathcal{M}_2) \subset \mathcal{L}_1 \Leftrightarrow$ т.е. $\sigma(\mathcal{M}_2)$ независимо с \mathcal{M}_1

Рассмотрим по аналогии

$$\mathcal{L}_2 = \{ A \in \mathcal{F} \mid A \text{ независимо с } \sigma(\mathcal{M}_2) \}$$

Аналогично $\Rightarrow \mathcal{L}_2 - \lambda$ -система.

По теореме о монотонных классах, в силу того, что $\mathcal{M}_1 \subset \mathcal{L}_2$, получаем, что $\sigma(\mathcal{M}_1) \subset \mathcal{L}_2 \Rightarrow \sigma(\mathcal{M}_1)$ независимо с $\sigma(\mathcal{M}_2)$.

Следствие 1. Пусть $\mathcal{M}_1 \dots \mathcal{M}_n$ – π -системы в \mathcal{F} . Тогда $\mathcal{M}_1, \dots, \mathcal{M}_n$ независимы в совокупности $\Leftrightarrow \sigma(\mathcal{M}_1), \dots \sigma(\mathcal{M}_n)$ независимы в совокупности.

Определение 5. Пусть $\{\mathcal{M}_{\alpha}\}_{\alpha\in\mathfrak{A}}$ – произвольный набор систем событий из \mathcal{F} . Тогда этот набор называется независимым в совокупности, если $\forall n \,\forall \alpha_1 \dots \alpha_n \in \mathfrak{A}, \ \alpha_i \neq \alpha_j$, системы $\mathcal{M}_{\alpha_1} \dots \mathcal{M}_{\alpha_n}$ независимыми в совокупности, тоесть любой конечный поднабор независим.

Вероятностная мера на $(\mathbb{R}, B_{\mathbb{R}})$

Теорема 1 (Каратеодори, о продолжении меры). Пусть Ω – некоторое множество, \mathcal{A} - алгебра на нем, P_{σ} – вероятностая мера на (Ω, \mathcal{A}) Тогда \exists ! вероятностная мера P на $(\Omega, \sigma(\mathcal{A}))$, являющаяся продолжением меры P_{σ} , т.е $\forall A \in \mathcal{A} \hookrightarrow P_{\sigma}(\mathcal{A}) = P(\mathcal{A})$

Лемма 6. Пусть (Ω, \mathcal{F}) – измеримое простанство, \mathcal{M} – π -система в \mathcal{F} , а P и Q – две вероминостные меры на (Ω, \mathcal{F}) . Тогда если $P|_{\mathcal{M}} = Q|_{\mathcal{M}}$, то

$$P|_{\sigma(\mathcal{M})} = Q|_{\sigma(\mathcal{M})}$$

Доказательство. Рассмотрим

$$\mathcal{L} = \{ A \in \mathcal{F} \mid P(A) = Q(A) \}$$

Покажем, что \mathcal{L} – это λ -система.

- 1. $\Omega \in \mathcal{L} : P(\Omega) = Q(\Omega)$
- 2. Пусть $A, B \in \mathcal{L}$. $A \subset B \Rightarrow$

$$P(B \setminus A) = P(B) - P(A) = Q(B) - Q(A) = Q(B \setminus A) \Rightarrow (B \setminus A) \in \mathcal{L}$$

3. Пусть $A_n \uparrow A, \ A_n \in \mathcal{L} \quad \forall n$. Тогда

$$P(A) = |\text{непрерывность вероятностной меры}| = \lim_n P(A_n) = \lim_n Q(A_n) =$$
 $= |\text{непрерывность вероятностной меры}| = Q(A)$
 $\Rightarrow A \in \mathcal{L}$

Доказали, что $\mathcal{L} - \lambda$ -система. По условию $\mathcal{M} \subset \mathcal{L} \Rightarrow$ по теореме о монотонных классах получаем, что $\sigma(\mathcal{M}) \subset \mathcal{L}$, т.е.

$$P|_{\sigma(\mathcal{M})} = P|_{\sigma(\mathcal{M})}$$

Следствие 1 (единственность в теореме Каратеодори).

Пусть P и Q – два продолжения P_{σ} на $\sigma(\mathcal{A})$. Но \mathcal{A} – алгебра $\Rightarrow \pi$ -система.

$$P|_A = P_\sigma = Q|_A$$

 \Rightarrow по лемме получаем, что $\forall A \in \sigma(A)$

P(A) = Q(A), т.е продолжение единственно.

Пусть P – вероятностная мера на $(\mathbb{R}, B(\mathbb{R}))$

Определение 1. Функция $F(x), x \in \mathbb{R}$, заданная по правилу

$$F(x) = P((-\infty, x])$$

называется функцией распределения вероятностной меры Р.

Лемма 7 (свойства функции распределения).

 $\Pi y cm \, b \, F(x)$ – функция распределения вероятностной меры P. Тогда

- 1. F(x) неубывающая
- 2. $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$
- 3. F(x) непрерывная справа.

Доказательство.

1. Пусть $y \geqslant x$. Тогда

$$F(y) - F(x) = P((-\infty; y]) - P((-\infty; x)) = P((x, y]) \ge 0$$

2. Пусть $x_n \to -\infty$ при $n \to \infty$. Тогда $(-\infty; x_n] \downarrow \varnothing \Rightarrow$ по непрерывности вероятностной меры.

$$F(x_n) = P((-\infty, x_n]) \xrightarrow[n \to \infty]{} P(\varnothing) = 0$$

Аналогично, если $x_n \to +\infty$, то $(-\infty; x_n] \uparrow \mathbb{R} \Rightarrow$ в силу непрерывности вероятностой меры.

$$F(x_n) = P((-\infty; x_n])) \xrightarrow[n \to \infty]{} P(\mathbb{R}) = 1$$

3. Пусть $x_n \to x+0$ Тогда $(-\infty, x_n]) \downarrow (-\infty; x] \Rightarrow$ в силу непрерывности вероятностой меры.

$$F(x_n) = P((-\infty; x_n]) \xrightarrow[n \to \infty]{} P((-\infty; x]) = F(x)$$

Следствие 2. Функция имеет предел слева в каждой точке $x \in \mathbb{R}$, при этом точек разрыва у нее не более чем счетное множество.

Доказательство. Каждая точка разрыва является скачком. Каждому скачку сопоставим отрезок. Отрезки скачков не пересекаются, так как функция монотонная. В каждом из них найдется рациональная точка \Rightarrow точек разрыва не более чем счетно.

Определение 2. Функция F(x) называет функцией распределения на \mathbb{R} , если она удовлетворяет свойствам (1), (2), (3) из леммы.

Теорема 2 (взаимнооднозначное соответствие функции распределения и вероятностной меры). F(x) – функция распределения на \mathbb{R} . Тогда существует единственная вероятностная мера P на $(\mathbb{R}, B(\mathbb{R}))$, m.ч. F(x) является функцией распределния P, m.e. $\forall x \in \mathbb{R}$

$$F(x) = P((-\infty; x])$$

Идея доказательства Рассмотрим \mathcal{A} – алгебру, состоящую из конечных объединений непересекающихся полуинтервалов вида (a,b], т.е. $\forall A \in \mathcal{A}$ имеет вид:

$$A = \bigsqcup_{k=1}^{n} (a_k, b_k] \quad (*)$$

где
$$-\infty \leqslant a_1 < b_1 < a_2 < \ldots < b_n \leqslant +\infty$$

Рассмотрим функцию P_0 на A, заданную по правилу: Если A имеет вид (*), то

$$P_0(A) = \sum_{k=1}^{n} (F(b_k) - F(a_k))$$

Легко видеть, что P_0 обладает свойствами

- 1. $P_0(A) \in [0,1] \quad \forall A \in \mathcal{A}$
- 2. $P_0(\mathbb{R}) = F(+\infty) F(-\infty) = 1$
- 3. P_0 конечно-аддитивна, т.е. $\forall A, B \in \mathcal{A}$ $A \cap B = \varnothing \hookrightarrow P_0(A \cup B) = P_0(A) + P_0(B)$

Если бы удалось доказать, что P_0 счетно-аддитивна на \mathcal{A} , то P_0 стала бы вероятностной мерой на $(\mathbb{R}, \mathcal{A})$ и по теореме Каратеодори её можно было бы продолжить единственным образом до вероятностной меры P на $(\mathbb{R}, \sigma(\mathcal{A}))$. Но $\sigma(\mathcal{A}) = B(\mathbb{R})$.

Тогда бы F(x) была бы функцией распределения меры P

$$F(x) = P_0((-\infty; x]) = P((-\infty; x])$$

Классификация вероятностных мер и функций распределения на прямой

(1) Дискретные распределения

Пусть $\mathcal{X} \subset \mathbb{R}$ – не более чем счетное множество.

Определение 1. Вероятностная мера P на $(\mathbb{R}, B(\mathbb{R}))$, удовлетворяющая свойству $P(\mathbb{R} \setminus \mathcal{X}) = 0$, называется дискретной вероятностой мерой на \mathcal{X} . Её функция функция распределения называется дискретной.

Пусть
$$\mathcal{X}=\{x_k\}$$
 и положим $p_k=P(\{x_k\})$ Тогда $P(\mathcal{X})=1=\sum_k P(\{x_k\})=\sum_k p_k$

Определение 2. Набор чисел (p_0, p_1, \ldots) называется распределением вероятностей на \mathcal{X} .

Как выглядит функция распределения дискретной верятностной меры P? F(x) – кусочно-постоянная разрывная в точках $x_k \in \mathcal{X}$. При этом величина скачка равна

$$\Delta F(x_k) = F(x_k) - F(x_k - 0) = P(\{x_k\}) = p_k$$

Примеры дискретных распределений

1. Дискретное равномерное $\mathcal{X} = \{1, \dots, N\}$, $k = 1, \dots, N$ и $p_k = 1/N$ для $\forall k \in \mathcal{X}$.

2. Бернуллиевское

$$\mathcal{X} = \{0, 1\}, k = 0, 1$$
$$p_k = p^k (1 - p)^{1 - k},$$

где $p \in [0,1]$ - параметр.

3. Биномиальное распределение

$$\mathcal{X} = \{0, \dots, n\}$$
$$p_k = C_n^k p^k (1 - p)^{n - k},$$

где $p \in [0, 1]$ - параметр.

4. Пуассоновское распределение

$$\mathcal{X}=\mathbb{Z}_+$$
 $k=0,1,2,\ldots$ $p_k=rac{\lambda^k}{k!}e^{-\lambda}, \lambda>0$ — —параметр

Моделирование: биномиальное → пуассоновское

(2) Абсолютно непрерывные распределения

Определение 3. Пусть F(x) – функция распределения вероятностой меры P на \mathbb{R} , причем для $\forall x \in \mathbb{R}$ имеет место равенство

$$F(x) = \int_{-\infty}^{x} p(t) dt$$

где $p(t) \geqslant 0$ – неотрицательная функция т.ч

$$\int_{-\infty}^{+\infty} p(t) \, dt = 1$$

В этом случае вероятностная мера P называется абсолютно непрерывной, а F(x) - абсолютно непрерывной функцией распределения. Функция p(t) называется плотностью распределения P (или просто плотностью)

Пример 9.

1. Равномерное распределение на отрезке [a, b].

$$p(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{иначе} \end{cases}$$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & x \in [a, b] \\ 1, & x \geqslant b \end{cases}$$

2. Нормальное распределение (с параметрами (a, σ^2))

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}}, \ a \in \mathbb{R}, \sigma > 0$$

16

Моделирование: измерения величины a = a +ошибка измерения.

3. Гамма распределение (с параметрами (d, λ))

$$p(x) = \begin{cases} \frac{\alpha^{\lambda} x^{\lambda-1}}{\Gamma(x)} e^{-\alpha x}, & x>0, \quad \alpha, \lambda>0 \\ 0, & \text{иначе} \end{cases}$$

Определение 4.

$$\Gamma(\lambda) = \int\limits_0^{+\infty} x^{\lambda-1} e^{-x} dx \quad \text{для } \lambda > 0$$

$$\Gamma(n) = (n-1)!$$

$$\Gamma(\lambda+1) = \lambda \Gamma(\lambda)$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

4. Экспоненциальное распределение (или показательное) (с параметром $\lambda > 0$).

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & \text{иначе} \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0\\ 0, \text{иначе} \end{cases}$$

Моделирование: время ожидания (время работы приборов)

5. Распределение Коши (с параметром $\Theta > 0$)

$$p(x) = \frac{\Theta}{\pi(\Theta^2 + x^2)}$$
$$F(x) = \frac{1}{\pi} \arctan\left(\frac{x}{\Theta}\right) + \frac{1}{2}$$

③ Сингулярные распределения

Определение 5. Пусть F(x) – функция распределения на \mathbb{R} . Точка $x_0 \in \mathbb{R}$ называется точкой роста для F(x), если для $\forall \varepsilon > 0$

$$F(x_0 + \varepsilon) - F(x_0 - \varepsilon) > 0$$

Определение 6. Множество $A \subset \mathbb{R}$ называется множеством лебеговой меры нуль, если для $\forall \varepsilon > 0 \quad \exists$ счетный набор интервалов $((a_k, b_k), k \in \mathbb{N})$ т.ч

$$\sum_{k} (b_k - a_k) \leqslant \varepsilon$$
$$A \subset \bigcup_{k=1}^{\infty} (a_k, b_k)$$

Пример 10. \forall счетное множество \mathcal{X} имеет меру нуль. Пусть

$$\mathcal{X} = \{x_1, x_2, \dots\}$$

$$(a_k, b_k) = \left(x_k - \frac{\varepsilon}{2^{k+1}}, x_k + \frac{\varepsilon}{2^{k+1}}\right)$$

$$\sum_{k=1}^{\infty} (b_k - a_k) = \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon$$

Определение 7. Функция распределения F(x) называется *сингулярной*, если она непрерывна и её множество точек роста имеет лебегову меру нуль.

Теорема 1 (Лебег). Пусть F(x) – произвольная функция распределения. Тогда существует разложение вида

$$F(x) = \alpha_1 F_1(x) + \alpha_2 F_2(x) + \alpha_3 F_3(x)$$

где

 F_1 – дискретная функция рапределения

 F_2 – абсолютно непрерывная функция рапределения

 F_3 – сингулятная функция рапределения

 $\alpha_1, \alpha_2, \alpha_3 \geqslant 0, \quad \alpha_1 + \alpha_2 + \alpha_3 = 1$

Вероятностные меры в \mathbb{R}^n

Определение 1. Пусть P – вероятносная мера на $(\mathbb{R}^n, B(\mathbb{R}^n))$

Тогда функция $F(\vec{x}), \vec{x} = (x_1, \dots, x_n)$

$$F(\vec{x}) = P((-\infty, x_1] \times \ldots \times (-\infty, x_n])$$

называется функцией распределения вероятностой меры P в \mathbb{R}^n .

Обозначения. Пусть $\vec{x}^{(k)} = (x_1^{(k)}, \dots, x_n^{(k)}) \in \mathbb{R}^n$

Будем писать
$$\vec{x}^{(k)} \downarrow \vec{y} = (y_1, \dots, y_n)$$
, если: $\forall i \quad x_i^{(k)} \geqslant x_i^{(k+1)} \geqslant y_i \quad u \quad x_i^{(k)} \rightarrow y_i \quad npu \quad k \rightarrow \infty$

Лемма 8 (свойства многомерной функции распределения).

Пусть $F(\vec{x})$ – функция распределения вероятностной меры P в \mathbb{R}^n Тогда:

- 1. Ecau $\vec{x}^{(k)} \downarrow \vec{x}$, mo $F(\vec{x}^{(k)}) \rightarrow F(\vec{x})$
- 2. $\lim_{\forall i : r: \to +\infty} F(\vec{x}) = 1 \ u \ \forall i \lim_{x_i \to -\infty} F(\vec{x}) = 0$
- 3. Для $\forall i = 1 \dots n \quad \forall a_i < b_i \in \mathbb{R}$ введем оператор

$$\Delta_{a_i,b_i}^i F(\vec{x}) = F(x_1, \dots b_i, \dots x_n) - F(x_1, \dots a_i, \dots x_n)$$

Tогда $\forall a_1 < b_1, \ldots, a_n < b_n$:

$$\Delta^1_{a_1,b_1}\dots\Delta^n_{a_n,b_n}F(\vec{x})\geqslant 0$$

Доказательство.

- 1. Если $\vec{x}^{(k)} \downarrow \vec{x}$, то множество $(-\infty, x_1^{(k)}] \times \ldots \times (-\infty, x_n^{(k)}] \downarrow (-\infty, x_1] \times \ldots \times (-\infty, x_n]$ \Rightarrow |по непрерывности вероятностной меры| \Rightarrow $F(\vec{x}^{(k)}) = P((-\infty, x_1^{(k)}] \times \ldots \times (-\infty, x_n^{(k)}]) \xrightarrow[k \to \infty]{} P((-\infty, x_1] \times \ldots \times (-\infty, x_n]) = F(\vec{x})$
- 2. Если $x_1 \dots x_n \to +\infty$, то $(-\infty, x_1] \times \dots \times (-\infty, x_n] \uparrow \mathbb{R}^n$ В силу непрерывности вероятностной меры:

$$\lim_{\forall i: x_i \to \infty} F(\vec{x}) = P(\mathbb{R}^n) = 1$$

Если же $\vec{x}^{(k)} \to -\infty$, $k \to \infty$, то $(-\infty, x_1] \times \ldots \times (-\infty, x_i^{(k)}] \times \ldots \times (-\infty, x_n] \downarrow \varnothing$

Отсюда в силу непрерывности вероятностной меры:

$$\lim_{x_i \to -\infty} F(\vec{x}) = P(\varnothing) = 0$$

3. Докажем, только для n=2

$$\Delta_{a_1b_1}^1 \Delta_{a_2b_2}^2 F(\vec{x}) = \Delta_{a_1b_1}^1 (F(x_1, b_2)) - F(x_1, a_2)) = F(b_1, b_2) - F(b_1, a_2) - F(a_1, b_2) + F(a_1, a_2) = P((-\infty, b_1] \times (-\infty, b_2]) - P((-\infty, b_1] \times (-\infty, b_2]) - P((-\infty, a_1] \times (-\infty, b_2]) + P((-\infty, a_1] \times (-\infty, a_2]) = P((a_1, b_1] \times (a_2, b_2]) - P((-\infty, a_1] \times (-\infty, a_2]) + P((-\infty, a_1] \times (-\infty, a_2]) = P((a_1, b_1] \times (a_2, b_2]) \geqslant 0$$

Теорема 1 (о взаимно однозначном соответствии).

Если $F(\vec{x}), \ \vec{x} \in \mathbb{R}^n$, удовлетворяет свойствам 1) - 3) из леммы, то $\exists !$ вероятностная мера P в $(\mathbb{R}^n, B(\mathbb{R}^n)),$ для которой $F(\vec{x})$ является функцией распределения т.е.

$$\forall a_1 < b_1, \dots, a_n < b_n$$

 $\Delta^1_{a_1 b_1} \dots \Delta^n_{a_n b_n} F(\vec{x}) = P((a_1, b_1] \times \dots \times (a_n, b_n])$

Примеры многомерных функций распределения

Пример 11. 1. Пусть $F_1(x_1), \ldots, F_n(x_n)$ – одномерные функции распределения. Тогда

$$F(x_1,\ldots,x_n)=F_1(x_1)\ldots F_n(x_n)$$

— многомерная функция распределения в \mathbb{R}^n .

Заметим, что

$$\Delta_{a_1b_1}^1 \dots \Delta_{a_nb_n}^n F(x_1, \dots x_n) = \prod_{k=1}^n (F_k(b_k) - F_k(a_k))) \geqslant 0$$

Если $F_i(x_i)=x_i$, для $\forall i=1\dots n$ при $x_i\in[0,1]$, то

$$F(x_1,\dots x_n) = egin{cases} 0, & ext{если } \exists i: x_i < 0 \ \prod_{i=1}^n (x_i I\{x_i \in [0,1]\} + I\{x_i \geqslant 1\}), & ext{иначе} \end{cases}$$

Такая F соответствует для меры Лебега на $[0,1]^n$.

2. Пусть
$$f(t_1, ..., t_n), t_i \in \mathbb{R}$$
 - функция в \mathbb{R}^n т.ч
$$\int_{\mathbb{R}^n} f(t_1, ..., t_n) \ dt_1 ... dt_n = 1 \ \text{и} \ f(t_1, ..., t_n) \geqslant 0$$

Тогда

$$F(x_1, \dots x_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f(t_1 \dots t_n) dt_1 \dots dt_n$$

— многомерная функция распределения

$$\Delta_{a_1b_1}^1 \dots \Delta_{a_nb_n}^n F(x_1, \dots x_n) = \int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} f(t_1 \dots t_n) \ dt_1 \dots dt_n \geqslant 0$$

В этом случае $f(t_1...t_n)$ называется плотностью функции распределения $F(x_1...x_n)$ (или просто плотностью). Ясно, что

$$f(x_1 \dots x_n) = \frac{\partial^n}{\partial x_1 \dots \partial x_n} F(x_1 \dots x_n)$$

Вероятностные меры в $\mathbb{R}^{\infty} = \mathbb{R}^{\mathbb{N}}$

Пусть P – вероятностная мера в $(\mathbb{R}^{\infty}, B(\mathbb{R}^{\infty}))$. Для $\forall B_n \in B(\mathbb{R}^n)$ введем

$$\mathcal{F}_n(B_n) = \{ \vec{x} \in \mathbb{R}^{\infty} \mid (x_1, \dots, x_n) \in B_n \}$$

— цилиндр с основанием B_n

Тогда $P_n(B_n) = P(\mathcal{F}_n(B_n))$ является вероятностной мерой в $(\mathbb{R}^{\infty}, B(\mathbb{R}^{\infty}))$. При этом имеет место свойство согласованности:

$$P_{n+1}(B_n \times \mathbb{R}) = P(\mathbb{R})$$

Теорема 2 (Колмоговора, о мерах в \mathbb{R}^{∞}).

Пусть $\forall n$ задана вероятностная мера P_n в $(\mathbb{R}^{\infty}, B(\mathbb{R}^{\infty}))$, причем для $\{P_n, n \in \mathbb{N}\}$ выполнено свойтсво согласованности.

Тогда $\exists !$ вероятностная мера P в $(\mathbb{R}^{\infty}, B(\mathbb{R}^{\infty})), m.ч. \forall n \forall B_n \in B(\mathbb{R}^n)$:

$$P_n(B_n) = P(\mathcal{F}_n(B_n))$$

Случайные величины в дискретных вероятностных пространствах

Пусть (Ω, P) – дискретное вероятностное пространство.

Определение 1. Отображение $\xi \colon \Omega \to \mathbb{R}$ называется случайной величиной.

Т.к Ω не более чем счетно, то ξ принимает не более чем счетное число значений (a_1, a_2, \ldots)

Введем события $A_i = \{ \omega \mid \xi(\omega) = a_i \}$ – состоит в том, что ξ приняло значение a_i .

$$p_i = P(A_i) = P(\xi = a_i)$$
 и $\sum_i p_i = 1 = \sum_i P(A_i)$

Определение 2. Набор значений (a_1, a_2, \ldots) и вероятностей (p_1, p_2, \ldots) , с которыми эти значения принимаются, вместе образуют распределение случайной величины ξ .

Замечание. $\xi_1 \dots \xi_n$ – случайные величины, $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ – функция, то $\varphi(\xi_1, \dots, \xi_n)$ – тоже случайная величина.

Определение 3. Пусть ξ – случайная величина со значениями (a_1, a_2, \ldots) и η – случайная величина со значениями (b_1, b_2, \ldots) . Случайные величины ξ и η называются независимыми, если $\forall i \forall j$ события $\{\xi = a_i\}$ и $\{\eta = b_j\}$ независимы, т.е

$$P(\xi = a_i, \eta = b_j) := P(\{\xi = a_i\} \cap \{\eta = b_j\}) = P(\xi = a_i)P(\eta = b_j)$$

Определение 4. Пусть $\xi_1, \ldots \xi_n$ - случайные величины, ξ_i принимает значения $(a_1^{(i)}, a_2^{(i)}, \ldots)$. Тогда $\xi_1, \ldots \xi_n$ называют *независимыми в совокупности*(взаимно независимыми), если $\forall j_1, \ldots j_n$ выполнено:

$$P(\xi_1 = a_{j_1}^{(1)}, \dots, \xi_n = a_{j_n}^{(n)}) = \prod_{k=1}^n P(\xi = a_{j_k}^{(k)})$$

Пример 12.

1. Бросок игральной кости.

 η — число очков, выпавшее на кости.

Распределение η – равномерное на $\{1, ... 6\}$

2. Пусть $A \subset \Omega$ — событие. Тогда случайная величина

$$I_A(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega! \in A \end{cases}$$

Называется индикатором события A.

Другое обозначение: $I\{A\}$.

3. ξ называется биномиальной случайной величиной, если она принимает значения $\{1,2,\ldots,n\}$

$$P(\xi = k) = C_n^k p^k (1 - p)^{n-k}, \ k = 0, \dots, n$$

Обозначение: $\xi \sim Bin(n,p)$

4. ξ называется пуассоновской случайной величиной, $\xi \sim Pois(\lambda)$, если ξ принимает значения в \mathbb{Z}_+ и

$$P(\xi = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k \in \mathbb{Z}_+$$

 $\lambda > 0$ – параметр распределения.

Упражнение 5.

- 1. I_A и I_B независимы $\Leftrightarrow A$ и B независимы
- 2. ξ_1, \dots, ξ_n с.в. Тогда они независимы в совокупности $\Leftrightarrow \forall x_1, \dots, x_n \in \mathbb{R}$:

$$P(\xi_1 = x_1, \dots, \xi_n = x_n) = \prod_{k=1}^n P(\xi_k = x_k)$$

- 3. Если ξ и η независимы, и $\xi \sim Bin(n,p), \, \eta \sim Bin(m,p), \, \text{то } \xi + \eta \sim Bin(n+m,p).$
- 4. Если $\xi \sim Pois(\lambda_1)$, $\eta \sim Pois(\lambda_2)$, то $\xi + \eta \sim Pois(\lambda_1 + \lambda_2)$.

Определение 5. Пусть ξ – случайная величина. Её математическим ожиданием называют

$$E\xi = \sum_{\omega \in \Omega} \xi(\omega) P(\omega)$$

Если ряд в правой части сходится абсолютно.

Пример 13. В классической модели Ω – конечно и $P(\omega) = \frac{1}{|\Omega|}$ для $\forall \omega \in \Omega$. Тогда

$$E\xi = \sum_{\omega \in \Omega} \frac{\xi(\omega)}{|\Omega|} = \frac{1}{|\Omega|} \sum_{\omega \in \Omega} \xi(\omega)$$

— среднее арифметическое значений.

Лемма 9 (свойства математического ожидания).

1. Линейность

$$E(a\xi + b\eta) = aE\xi + bE\eta, \quad a, b \in \mathbb{R}$$

2. Пусть η принимает значения (a_1, a_2, \ldots) . Тогда

$$E\xi = \sum_{i} a_i P(\xi = a_i)$$

3. Пусть ξ - принимает значения $(a_1, a_2, ...)$ Тогда для \forall функции $\varphi(x)$:

$$E\varphi(\xi) = \sum_{i} \varphi(a_i) P(\xi = a_i)$$

- 4. Ecsu $\xi \leqslant \eta$, mo $E\xi \leqslant E\eta$
- 5. Если ξ и η независимы, то

$$E\xi\eta = E\xi E\eta$$

Доказательство.

1. Очевидно из определения.

2.

$$\begin{split} E\xi &= \sum_{\omega \in \Omega} \xi(\omega) P(\omega) = \sum_{i} \sum_{\omega: \xi(\omega) = a_{i}} \xi(\omega) P(\omega) = \\ &\sum_{i} \sum_{\omega: \xi(\omega) = a_{i}} a_{i} P(\omega) = \sum_{i} a_{i} \sum_{\omega: \xi(\omega) = a_{i}} P(\omega) = \sum_{i} a_{i} P(\xi = a_{i}) \end{split}$$

- 3. Аналогично 2)
- 4. Очевидно из определения.

5.

$$\begin{split} E\xi\eta &= \sum_{\omega\in\Omega}\xi(\omega)\eta(\omega)P(\omega) = \sum_{i,j}\sum_{\substack{\omega:\xi(\omega)=a_i\\\eta(\omega)=b_j}}\eta(\omega)\xi(\omega)P(\omega) = \sum_{i,j}a_ib_j\sum_{\substack{\omega:\xi(\omega)=a_i\\\eta(\omega)=b_j}}P(\omega) = \\ &= \sum_{i,j}a_ib_jP(\xi=a_i,\eta=b_j) = |\text{hезависимость}| = \sum_{i,j}a_ib_jP(\xi=a_i)P(\eta=b_j) = \\ &= \left(\sum_ia_iP(\xi=x_i)\right)\left(\sum_jb_jP(\eta=b_j)\right) = E\xi E\eta \end{split}$$

Следствие 1. Для матожидания $E\xi$ (u $E\varphi(\xi)$) достаточно знать распределение случайной величины ξ .

Определение 6. $E\xi^k$ – момент порядка k случайной величины ξ (k-й момент)

 $E(\xi-E\xi)^k$ – центральный момент порядка k случайной величины η (k-й центральный момент).

 $E\xi(\xi-1)\dots(\xi-k+1)$ – факториальный момент порядка k случайной величины $\eta,\,k\in\mathbb{N}$

 $D\xi = E(\xi - E\xi)^2 - \partial ucnepcus$ случайной величины ξ

Лемма 10 (свойства дисперсии).

1.
$$D\xi = E\xi^2 - (E\xi)^2$$

- 2. $D\xi \geqslant 0$
- 3. $D(c\xi) = c^2 D\xi$

4.
$$D\xi = 0 \Leftrightarrow P(\xi = E\xi) = 1$$

Утверждение 2. Если ξ – биномиальная: $\xi \sim Bin(n,p)$, то $D\xi = np(1-p)$

Определение 7. Пусть ξ и η - две случайные величины. Ковариацией случайных величин ξ и η называется

$$cov(\xi, \eta) = E(\xi - E\xi)(\eta - E\eta)$$

Если $cov(\xi, \eta) = 0$, то ξ и η называются некоррелированными.

- 1. $cov(\xi, \eta) = E\xi\eta E\xi E\eta$
- 2. Если ξ и η независимы, то они не коррелируют. (обратное неверно!)
- 3. $D\xi = cov(\xi, \xi)$

Утверждение 3.

$$D(\xi + \eta) = D\xi + D\eta + 2\operatorname{cov}(\xi, \eta)$$

Доказательство.

$$D(\xi + \eta) = E(\xi + \eta - E(\xi + \eta))^{2} = E(\xi - E\xi)^{2} + E(\eta - E\eta)^{2} + 2E(\xi - E\xi)(\eta - E\eta) =$$

= $D\xi + D\eta + 2\operatorname{cov}(\xi, \eta)$

Следствие 2. Если ξ и η независимы, то $D(\xi + \eta) = D\xi + D\eta$

Случайные элементы

Определение 1. Пусть (Ω, \mathcal{F}) и (E, \mathcal{E}) – два измеримых пространства. Отображение $X \colon \Omega \to E$ называется случайным элементом, если оно является \mathcal{F} - измеримым. (или $\mathcal{F} \setminus \mathcal{E}$ - измеримым) т.е $\forall B \in \mathcal{E}$

$$\{x \in B\} = X^{-1}(B) = \{\omega \mid X(\omega) \in B\} \in \mathcal{F}.$$

Определение 2.

Если $(E,\mathcal{E})=(\mathbb{R},B(\mathbb{R}))$, то случайный элемент X называется случайной величиной.

Если $(E,\mathcal{E})=(\mathbb{R}^n,B(\mathbb{R}^n))$, то X называется случайным вектором.

Лемма 11 (достаточное условие измеримости отображения).

Пусть (Ω, \mathcal{F}) и (E, \mathcal{E}) – два измеримых пространства, $X \colon \Omega \to E$. Пусть $\mathcal{M} \subset \mathcal{E}$ таково, что $\sigma(\mathcal{M}) = \mathcal{E}$. Тогда X является случайным элементом \Leftrightarrow для $\forall B \in \mathcal{M}$

$$X^{-1}(B) = \{ \omega \mid X(\omega) \in B \} \in \mathcal{F}$$

Доказательство.

(⇒) очевидно из определения

 (\Leftarrow)

Рассмотрим систему множеств

$$D = \left\{ B \in \mathcal{E} \mid X^{-1}(B) \in \mathcal{F} \right\}$$

Убедимся в том, что D – это σ -алгебра. Операция праобраз сохраняет все теоретико-множественные операции.

$$X^{-1}\left(\bigcup_{\alpha}D_{\alpha}\right) = \bigcup_{\alpha}X^{-1}(D_{\alpha})$$

$$X^{-1}\left(\bigcap_{\alpha}D_{\alpha}\right) = \bigcap_{\alpha}X^{-1}(D_{\alpha})$$

$$X^{-1}(B \setminus A) = X^{-1}(B) \setminus X^{-1}(A)$$

Тогда

1. $X^{-1}(E) = \Omega \in \mathcal{F} \Rightarrow E \in D$

2.
$$X^{-1}\left(\bigcup_{n=1}^{\infty} D_n\right) = \{D_n \in D\} = \bigcup_{n=1}^{\infty} X^{-1}(D_n) \in \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} D_n \in D$$

3. Если
$$B, A \in D$$
, то $X^{-1}(B \setminus A) = X^{-1}(B) \setminus X^{-1}(A) \in \mathcal{F} \Rightarrow B \setminus A \in D$

 $D-\sigma$ -алгебра и по условию $\mathcal{M}\subset D\Rightarrow$ в силу минимальности $\sigma(\mathcal{M})=\mathcal{E}\subset D$ т.е $\forall B\in\mathcal{E}:X^{-1}(B)\in\mathcal{F}$ и, стало быть, X – случайный элемент.

Следствие 1.

- 1. X случайная величина на $(\Omega, \mathcal{F}) \Leftrightarrow \forall x \in \mathbb{R} : \{X \leqslant x\} = \{\omega \mid X(\omega) \leqslant x\} \in \mathcal{F}$
- 2. $X = (X_1, \ldots, X_n)$ случайный вектор на $(\Omega, \mathcal{F}) \Leftrightarrow \forall i : X_i$ случайная величина.

Доказательство.

(⇒) 1) и 2) очевидно из определения случайных величин и векторов

 (\Leftarrow)

- 1. Рассмотрим систему $\mathcal{M} = \{ (-\infty; x] \mid x \in \mathbb{R} \}$. Тогда $\sigma(\mathcal{M}) = B(\mathbb{R})$. По условию $X^{-1}(B) \in \mathcal{F}$ для $\forall B \in \mathcal{M}$. По лемме о достаточном условии измеримости получим, что X – случайная величина.
- 2. Рассмотрим систему $\mathcal{M} = \{ B_1 \times \dots B_n \mid B_i \in B(\mathbb{R}) \}$ Тогда $\sigma(\mathcal{M}) = B(\mathbb{R}^n)$

$$X^{-1}(B_1 \times ... \times B_n) = \{ \omega \mid X_1(\omega) \in B_1, ..., X_n(\omega) \in B_n \} = \bigcap_{i=1}^n X_i^{-1}(B_i) \in \mathcal{F}$$

 $\Rightarrow X^{-1}(B) \in \mathcal{F}$ для $\forall B \in \mathcal{M}$. По лемме получаем, что X – случайный вектор.

Смысл условия измеримости

Случайные величины и векторы — это численные и векторные характеристики случайных экспериментов. Нам нужно уметь вычилсять вероятности вида $P(\xi \leqslant x)$ или $P(\xi \in [a,b])$

Но P задана формально только на σ -алгебре $\mathcal F$

Значит, нам нужно требовать, чтобы события вида $\{\xi \leq x\}$ и $\{\xi \in [a,b]\}$ лежали в \mathcal{F} .

Действия над случайными величинами и векторами

Определение 1. Функция $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$ называется борелевской, если для $\forall B \in B(\mathbb{R}^m)$

$$\varphi^{-1}(B) = \{ x \mid \varphi(x) \in B \} \in B(\mathbb{R}^n)$$

Лемма 12. Пусть $\xi = (\xi_1, \dots, \xi_n)$ – случайный вектор. $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$ – борелевская функция. Тогда $\varphi(\xi)$ – тоже случайный вектор.

Доказательство. Пусть $B \in B(\mathbb{R}^m)$. Тогда

$$(\varphi(\xi))^{-1}(B) = \{ \, \omega \mid \varphi(\xi(\omega)) \in B \, \} = \{ \, \omega \mid \xi(\omega) \in \varphi^{-1}(B) \, \} \in \mathcal{F} \quad \text{ (t.k } \varphi^{-1}(B) \in B(\mathbb{R}^n)) \in \mathcal{F} = \emptyset \}$$

$$\Rightarrow arphi(\xi)$$
 – случайный вектор.

Теорема 1. Любая непрерывная или кусочно-непрерывная функция является борелевской.

Следствие 1.

Пусть ξ и η – случайные величины, $c \in \mathbb{R}$.

Тогда $c\xi$, $\xi+c$, $\xi+\eta$, $\xi-\eta$ и $\frac{\xi}{\eta}$ (считаем, что $\eta(\omega)\neq 0$ $\forall \omega\in\Omega$) – тоже случайные величины.

Доказательство. $\varphi(x,y)=xy$ или x+y – непрерывная функция в $\mathbb{R}^2\Rightarrow$ борелевская. Константа c – случайная величина \Rightarrow по лемме получаем, что $c\,\xi,\;\xi+c,\;\xi+\eta,\;\xi-\eta$ — случайные величины.

Рассмотрим

$$\varphi(x,y) = \begin{cases} \frac{x}{y}, & y \neq 0 \\ 0, & y = 0 \end{cases}$$

Она тоже борелевская(кусочно-непрерывная) $\Rightarrow \varphi(\xi,\eta) = \frac{\xi}{\eta}$ — тоже случайная величина. \Box

Лемма 13 (пределы случайной величины).

 $\Pi ycmb$ $\{\xi_n, n \in \mathbb{N}\}$ – последовательность случайных величин.

Tогда $\overline{\lim_n} \, \xi_n, \; \underline{\lim_n} \, \xi_n, \; \sup_n \xi_n, \; \inf_n \xi_n \; - \; m$ оже случайная величина.

(Они могут принимать значения $\pm \infty$)

Доказательство.

$$\left\{ \omega \mid \sup_{n} \xi_{n}(\omega) \leqslant x \right\} = \bigcap_{n=1}^{\infty} \{\xi_{n} \leqslant x\} \in \mathcal{F}$$

$$\Rightarrow \sup_{n} \xi_{n}(\omega) - \text{случайная величина}$$

$$\left\{ \omega \mid \inf_{n} \xi_{n}(\omega) \geqslant x \right\} = \bigcap_{n=1}^{\infty} \{\xi_{n} \geqslant x\} \in \mathcal{F}$$

$$\Rightarrow \inf_{n} \xi_{n}(\omega) - \text{случайная величина}$$

$$\left\{ \omega \mid \overline{\lim_{n} \xi_{n}(\omega)} \leqslant x \right\} = \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \{\xi_{n} \leqslant x + 1/k\} \in \mathcal{F}$$

$$\Rightarrow \overline{\lim_{n} \xi_{n}(\omega)} - \text{случайная величина}$$

$$\left\{ \omega \mid \underline{\lim_{n} \xi_{n}(\omega)} \geqslant x \right\} = \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \{\xi_{n} \geqslant x + 1/k\} \in \mathcal{F}$$

$$\Rightarrow \underline{\lim_{n} \xi_{n}(\omega)} - \text{случайная величина}$$

Характеристики случайных величин и векторов

Распределение случайной величины вектора.

Определение 1. Пусть (Ω, \mathcal{F}, P) – ветоятностное пространство, ξ - случайная величина на нем. Тогда распределением ξ называется вероятностная мера P_{ξ} на $(\mathbb{R}, B(\mathbb{R}))$ Заданная по правилу

$$P_{\xi}(B) = P(\xi \in B), \ B \subset B(\mathbb{R}).$$

Определение 2. Пусть ξ - случайный вектор размерности n на (Ω, \mathcal{F}, P) . Тогда его распределением P_{ξ} называется вероятностая мера $\mathbb{R}^{n}, B(\mathbb{R}^{m})$, заданная по правилу

$$P_{\xi}(B) = P(\xi \in B), \ B \in B(\mathbb{R})$$

Функция распределения

Определение 3. Пусть (Ω, \mathcal{F}, P) – вероятностное пространство. ξ - случайная велличина на нем. Тогда функцией распределения случайной величины ξ называется

$$F_{\xi}(x) = P(\xi \leqslant x)$$

Определение 4. Случайная величина ξ называется

- дискретной, если её функция распределения дискретная.
- абсолютно непрерывной, если её функция распределения абсолютно непрерывна. В этом случае

$$P(\xi \leqslant x) = F_{\xi}(x) = \int_{-\infty}^{+\infty} x P_{\xi}(t) dt$$

и функция $p_{\xi}(t)$ называется плотностью случайной величины ξ .

• сингулярной, если её функция распределения сингулярна

• непрерывной, если её функция рапределение непрерывна.

Определение 5. Пусть $\xi = (\xi_1, \dots, \xi_n)$ – случайный вектор на (Ω, \mathcal{F}, P) . Тогда его функцией распределения называется

$$F_{\xi}(x_1,\ldots,x_n)=P(\xi_1\leqslant x_1,\ldots,\xi_n\leqslant x_n).$$

Порожденная σ -алгебра

Определение 6. Пусть ξ - случайная величина на (Ω, \mathcal{F}, P) . Тогда σ -алгеброй \mathcal{F}_{ξ} , порожденной ξ называется

$$F_{\xi} = \{ \{ \xi \in B \} \mid B \in B(\mathbb{R}^n) \}$$

Определение 7. Если ξ – случайный вектор размерности n на (Ω, \mathcal{F}, P) , то σ -алгеброй, порожденной ξ называется

$$F_{\xi} = \{ \{ \xi \in B \} \mid B \in B(\mathbb{R}^n) \}$$

Схема:

$$(\Omega, \mathcal{F}, P) \xrightarrow{\xi} (\mathbb{R}, B(\mathbb{R}))$$

$$P \to P_{\xi}$$

$$F_{\xi} \leftarrow B(\mathbb{R})$$

Определение 8. Пусть ξ и η – случайные величины. Будем говорить, что η является \mathcal{F}_{ξ} - измеримой, если $\mathcal{F}_{\eta} \subset \mathcal{F}_{\xi}$.

Упражнение 6. Пусть $\varphi(x)$ – борелевская функция, $\eta=\varphi(\xi)$. Тогда $\eta-\mathcal{F}_{\xi}$ - измерима.

Теорема 1. Пусть η - F_{ξ} - измерима. Тогда \exists борелевская функция $\varphi(x)$ т.ч. $\eta=\varphi(\xi)$

Определение 9.

Пусть $A \in \mathcal{F}$ – событие на (Ω, \mathcal{F}, P)

Тогда случайная величина

$$I_A = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}$$

называется индикатором события A

Определение 10. Случайная величина ξ называется npocmoй, если она принимает конечное число значений.

Тогда \exists набор $\{x_1,\ldots,x_n\}$ из различных чисел т.ч

$$\xi = \sum_{k=1}^{n} x_k I_{A_k}$$

где события $A_1 \dots A_n$ – разбиение Ω . т.е $A_k = \{\xi = x_k\}$

Определение 11. Пусть ξ – случайная величина.

Тогда обозначим: $\xi^+ = \max(\xi, 0)$ и $\xi^- = \max(-\xi, 0)$

Ясно, что $\xi = \xi^+ - \xi^-, |\xi| = \xi^+ + \xi^-$

Теорема 2 (о приближении простыми).

- 1. Если $\xi \geqslant 0$, то \exists последовательность $\{\xi_n, n \in \mathbb{N}\}$ простых неотрицательных случайных величин, т.ч $\xi_n \uparrow \xi$ (т.е. $\forall \omega \in \Omega : \xi_n(\omega) \leqslant \xi_{n+1}(\omega)$ и $\xi(\omega) = \lim_{n \to \infty} \xi_n(\omega)$) и ξ_n явл. \mathcal{F}_{ξ} измеримыми.
- 2. Если ξ произвольная случайная величина, то \exists последовательность $\{\xi_n, n \in \mathbb{N}\}$ простых \mathcal{F}_{ξ} измеримых случайных величин т.ч. $|\xi_n| \leq |\xi| \ \forall n \ u \ \xi_n(\omega) \to \xi(\omega)$

Доказательство.

1. Положим

$$\xi_n(\omega) = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} I\left\{\frac{k-1}{2^n} \le \xi(\omega) < \frac{k}{2^n}\right\} + nI\{\xi(\omega) \ge n\}$$

Легко видеть, что $\xi_n \uparrow \xi$ и ξ_n является \mathcal{F}_ξ - измеримым (т.к. $\left\{\frac{k-1}{2^n} \leqslant \xi < \frac{k}{2^n}\right\} \in \mathcal{F}_\xi$)

2. Пусть $\xi = \xi^+ - \xi^-$ и пусть $\{\eta_n, n \in \mathbb{N}\}$ – последовательность простых \mathcal{F}_{ξ} - измеримых с.в. т.ч. $\eta_n \uparrow \xi^+$, а $\{\zeta_n, n \in \mathbb{N}\}$ – последовательность простых \mathcal{F}_{ξ} - измеримых т.ч. $\zeta_n \uparrow \xi^-$

Положим $\xi_n = \eta_n - \zeta_n$.

Тогда $\xi_n \to \xi$ $\forall \omega \in \Omega$ и $|\xi_n| = |\eta_n| + |\zeta_n| \leqslant |\xi^+| + |\xi^-| = |\xi|$

Математическое ожидание случайных величин

Пусть (Ω, \mathcal{F}, P) – вероятностное пространство, ξ - случайная величина на нем. Что такое $E\xi$? Простые случайные величины.

Пусть ξ – простая случайная величина, т.е.

$$\xi = \sum_{k=1}^{n} x_k I_{A_k},$$

где $x_1 \dots x_n$ – различные числа, A_1, \dots, A_n – разбиение Ω , т.е. $A_k = \{\xi = x_k\}$

Определение 12. Для простой случайной величины ξ её математическим ожиданием называют

$$E\xi = \sum_{k=1}^{n} x_k P(A_k)$$

Свойства математического ожидания для простых случайных величин

- 1. $\xi = c = const \Rightarrow E\xi = c$
- 2. Линейность

$$E(a\xi + b\eta) = aE\xi + bE\eta, \quad a, b \in \mathbb{R}$$

Доказательство. Обозначим $\zeta = a\xi + b\eta$, пусть ξ принимает значения $x_1 \dots x_n$, η – значения $y_1 \dots y_m$, ζ – значения $z_1 \dots z_l$

Обозначим $C_{k,j} = \{ \xi = x_k, \eta = y_j \}.$ Тогда

$$E\zeta = \sum_{i=1}^{l} z_{i} P(\zeta = z_{i}) = \sum_{i=1}^{l} z_{i} \sum_{\substack{k,j: \\ ax_{k} + by_{j} = z_{i}}} P(\xi = x_{k}, \eta = y_{j}) =$$

$$\sum_{i=1}^{l} \sum_{\substack{k,j: \\ ax_{k} + by_{j} = z_{i}}} (ax_{k} + by_{j}) P(\xi = x_{k}, \eta = y_{j}) =$$

$$\sum_{k=1}^{n} \sum_{j=1}^{m} (ax_{k} + by_{j}) P(\xi = x_{k}, \eta = y_{j}) =$$

$$\sum_{k=1}^{n} \sum_{j=1}^{m} (ax_{k} + by_{j}) P(\xi = x_{k}, \eta = y_{j}) = aE\xi + bE\eta$$

3. Если $\xi \geqslant 0$, то $E\xi \geqslant 0$

Доказательство. Если $\xi\geqslant 0$, то все $x_k\geqslant 0\Rightarrow E\xi\geqslant 0$

4. Если $\xi \leqslant \eta$, то $E\xi \leqslant E\eta$

Доказательство. Рассмотрим $\zeta = \eta - \xi \geqslant 0$. По свойству 3

$$0 \leqslant E\zeta = E(\eta - \xi) = E\eta - E\xi$$

Неотрицательные случайные величины

Определение 13. Пусть ξ – неотрицательная случайная величина, а $\{\xi_n, n \in \mathbb{N}\}$ – \forall последовательность неотрицательных простых случайных величин, т.ч. $\xi_n \uparrow \xi$.

Тогда $E\xi_n\leqslant E\xi_{n+1}\Rightarrow \exists$ предел $E\xi_n$ и

$$E\xi := \lim_{n \to \infty} E\xi_n$$

Лемма 14. Пусть $\{\xi_n, n \in \mathbb{N}\}$ и η – простые неотрицательные случайные вечилины, причем $\xi_n \uparrow \xi \geqslant \eta$. Тогда

$$\lim_{n\to\infty} E\xi_n \geqslant E\eta$$

Доказательство. Пусть $\varepsilon>0$ фиксировано. Рассмотрим $A_n=\{\,\omega\mid \xi_n-\eta\geqslant -\varepsilon\,\}$ Тогда

$$E\xi_n = E(\xi_n I_{A_n} + E(\xi_n I_{\overline{A}_n} \geqslant E((\eta - \varepsilon)I_{A_n}) = E\eta - E\eta I_{\overline{A}_n} - \varepsilon EI_{A_n} \geqslant E\eta - c P(\overline{A}_n) - \varepsilon P(A_n);$$

где
$$c=\max_{\omega\in\Omega}\eta(\omega)$$
 Заметим, что $A_n=\{\xi_n\geqslant\eta-\varepsilon\}\uparrow\Omega$ т.к. $\xi_n\uparrow\xi\geqslant\eta\Rightarrow P(A_n)\to 1$ Значит

$$\lim_{n \to \infty} E\xi_n \geqslant E\eta_n \geqslant E\eta - \varepsilon$$

В силу произвольности ε : $\lim_{n\to\infty} E\xi_n\geqslant E\eta$

Следствие 1. Определение математического ожидания для неотрицательных случайных величин корректно.

Доказательство. Пусть $\xi \geqslant 0$ и $\xi_n \uparrow \xi$, $\eta_n \uparrow \xi$ – последовательность простых неотрицательных случайных величин. Тогда $\forall m$ в силу леммы

$$\lim_{n \to \infty} E\xi_n \geqslant E\eta_m$$

$$\Rightarrow \lim_{n \to \infty} E\xi_n \geqslant \lim_{m \to \infty} E\eta_m$$

Меняем ξ и η местами в рассуждении.

$$\lim_{m \to \infty} E \eta_m \geqslant \lim_{n \to \infty} E \xi_n$$

$$\Rightarrow \lim_{n \to \infty} E \xi_n = \lim_{m \to \infty} E \eta_m$$

Замечание. Если ξ – неотрицательная с.в., то

$$E\xi=\sup_{\eta:\eta\leqslant\xi}E\eta,$$
 где η – неотриц. простая с.в.

Произвольные случайные величины

Определение 14. Пусть ξ – произвольная случайная величина, $\xi = \xi^+ - \xi^-$

- 1. Если $E\xi^+$ и $E\xi^-$ конечны, то $E\xi:=E\xi^+-E\xi^-$
- 2. Если $E\xi^+=+\infty$ и $E\xi^-$ конечно, то $E\xi:=+\infty$
- 3. Если $E\xi^+$ конечно и $E\xi^-=+\infty$, то $E\xi:=-\infty$
- 4. Если $E\xi^+ = E\xi^- = +\infty$, то $E\xi$ не существует(не определено)

Замечание.

1. Математическое ожидание случайной величины это интеграл Лебега по вероятностной мере P

$$E\xi := \int_{\Omega} \xi dP = \int_{\Omega} \xi(\omega) P(d\omega)$$

- 2. $E\xi$ конечно $\Leftrightarrow E|\xi|$ конечно.
- 3. Множество случ. величин ξ на (Ω, \mathcal{F}, P) с условием: $E\xi$ конечно, образует пространство $L^1(\Omega, \mathcal{F}, P)$. Далее мы убедимся, что это линейное пространство.

Свойства математического ожидания

 \bigcirc Пусть ξ – случайная величина, $E\xi$ - конечно. Тогда для $\forall c \in \mathbb{R} \ E(c\,\xi)$ конечно и

$$E(c\,\xi) = cE\xi$$

Доказательство. Для простых ξ , доказано ранее. Пусть $\xi \geqslant 0$.

Если $c\geqslant 0$, то возьмем последовательность простых неотрицательных случайных величин ξ_n т.ч. $\xi_n\uparrow\xi$. Тогда $c\,\xi_n\uparrow c\,\xi\Rightarrow$

$$E(c\,\xi) = \lim_{n \to \infty} E(c\,\xi_n) = c \lim_{n \to \infty} E\xi_n = cE\xi$$

Если
$$c < 0$$
, то $c\xi = -(c\xi)^- = -(-c\xi)$
 $\Rightarrow E(c\xi) = -E(c\xi)^- = -E((-c)\xi) = cE\xi$

Пусть ξ - произвольная, $c \geqslant 0$

Тогда

$$E(c\xi) = E(c\xi)^{+} - E(c\xi)^{-} = Ec\xi^{+} - Ec\xi^{-} = c(E\xi^{+} - E\xi^{-}) = cE\xi$$

Для c < 0 действуем аналогично.

(2) Если $\xi\leqslant\eta$ и $E\eta,E\xi$ - конечны, то

$$E\eta \leqslant E\xi$$

Доказательство. Для простых ξ и η - доказано. Пусть ξ и η - неотрицательны. Тогда

$$E\eta = \sup_{\mu: \mu \leqslant \eta} E\mu \leqslant \sup_{\mu: \mu \leqslant \xi} E\mu = E\xi$$

Пусть ξ и η - произвольные.

Тогда
$$\xi^+(\omega) \geqslant \eta^+(\omega)$$
 и $\xi^-(\omega) \leqslant \eta^-(\omega)$
$$\Rightarrow E\eta = E\eta^+ - E\eta^- \leqslant E\xi^+ - E\xi^- = E\xi$$

(3) Если $E\xi$ - конечно, то

$$|E\xi| \leqslant E|\xi|$$

Доказательство. $|\xi| = \xi^+ + \xi^- \Rightarrow E|\xi|$ – конечно.

По свойству 2

$$E(-|\xi|) \leqslant E\xi \leqslant E|\xi| \Rightarrow -E|\xi| \leqslant E\xi \leqslant E|\xi| \Rightarrow |E\xi| \leqslant E|\xi|$$

(4) Аддитивность

Пусть ξ и η - случайные величины. $E\xi$ и $E\eta$ - конечны.

Тогда $E(\xi + \eta)$ - конечно и

$$E(\xi + \eta) = E\xi + E\eta$$

Доказательство. Для простых доказано ранее. Пусть ξ и η – неотрицательные случайные величины. Возьмем ξ_n, η_n - последовательности простых неотрицательных случайных величин, т.ч. $\xi_n \uparrow \xi \eta_n \uparrow \eta$. Тогда $\xi_n + \eta_n \uparrow \xi + \eta$

$$E(\xi + \eta) = \lim_{n \to \infty} E(\xi_n + \eta_n) = \lim_{n \to \infty} E\xi_n + \lim_{n \to \infty} E\eta_n = E\xi + E\eta$$

Пусть ξ и η - произвольные случайные величины.

Тогда
$$(\xi + \eta)^+ \leq (\xi^+ + \eta^+)$$

Обозначим $\delta = (\xi^+ + \eta^+) - (\xi + \eta)^+ \ge 0.$

Тогда
$$(\xi^- + \eta^-) - (\xi + \eta)^- = \delta$$

Для неотрицательных случайных величин аддитивность доказали ⇒

$$E(\xi + \eta)^{+} + E\delta = E\xi^{+} + E\eta^{+} + E\xi^{-} + E\eta^{-} = E\delta + E(\xi + \eta)^{-}$$

$$\Rightarrow E(\xi + \eta) = E(\xi + \eta)^{+} - E(\xi + \eta)^{-} = E\xi^{+} + E\eta^{+} - E\delta - E\xi^{-} - E\eta^{-} + E\delta = E\xi + E\eta$$

- (5) 1) Пусть $|\xi|\leqslant \eta$ и $E\eta$ конечно. Тогда $E\xi$ конечно.
 - 2) Пусть $\xi \leqslant \eta$ и $E\eta < +\infty$, тогда $E\xi < +\infty$ Если $\xi \geqslant \eta$ и $E\eta > -\infty$, то $E\xi > -\infty$.
 - 3) Если $E\xi$ конечно и $A \in \mathcal{F}$, то $E(\xi I_A)$ тоже конечно.

Доказательство.

1)
$$\xi^-, \xi^+ \leqslant \eta \Rightarrow E\xi^+ = \sup_{0 \leqslant \xi \leqslant \xi^+} E\xi \leqslant \sup_{0 \leqslant \xi \leqslant \eta} E\xi = E\eta < +\infty$$
 Аналогично с $E\xi^-$. Тогда $E\xi = E\xi^+ - E\xi^-$ – тоже конечно

- 2) $\xi^+\leqslant\eta^+$ и $E\eta^+<+\infty\Rightarrow$ по доказанному в 1), что $E\xi^+<+\infty\Rightarrow E\xi<+\infty$
- 3) $(\xi I_A)^+ = \xi^+ I_A \leqslant \xi^+ \Rightarrow E(\xi I_A)^+$ конечно. Аналогично, $E(\xi I_A)^-$ тоже конечно.

Определение 15. Говорят, что событие A происходит почти наверное, если P(A) = 1

$$\bigcirc 6$$
 $\xi=0$ п.н. Тогда $E\xi=0$

Доказательство. Пусть ξ – простая случайная величина.

$$\xi=\sum_{k=1}^n x_k I_{A_k},$$
 где $x_1,\ldots x_n$ — различные и $A_1\ldots A_n$ — разбиение $\Omega:A_k=\{\xi=x_k\}$

Тогда, если $x_k \neq 0$, то $A_k = \{\xi = x_k\} \subset \{\xi \neq 0\}$

$$\Rightarrow P(A_k) \leqslant P(\xi \neq 0) = 0$$

$$\Rightarrow E\xi = \sum_{k=1}^{n} x_k P(A_k) = 0$$

Если $\xi\geqslant 0$ — неотрицательная случайная величина, то $E\xi=\sup_{\eta\leqslant\xi}E\eta$, где η — простая неотрицательная с.в.

Но для таких $\eta:0\leqslant\eta\leqslant\xi=0\Rightarrow\eta=0$ п.н.

Значит $E\eta = 0$

Если ξ – произвольная случайная величина, то $\xi^+ = 0$ п.н., $\xi^- = 0$ п.н.

По доказанному
$$E\xi^+=E\xi^-=0 \Rightarrow E\xi=E\xi^++E\xi^-=0$$

(7) Если $\xi=\eta$ п.н. и $E\eta$ - конечно, то $E\xi$ - конечно и $E\xi=E\eta$

Доказательство. Рассмотрим $A=\{\xi\neq\eta\}$. Тогда $I_A=0$ п.н. $\Rightarrow\xi I_A=0$ п.н., $\eta I_A=0$ п.н.

$$\xi=\xi I_A+\xi I_{\overline{A}}=\xi I_A+\eta I_{\overline{A}}\Rightarrow E\xi$$
 конечно и $E\xi=E\xi I_A+E\eta I_{\overline{A}}=E\eta I_A+E\eta I_{\overline{A}}=E\eta$

(8) Пусть $\xi \geqslant 0$ и $E\xi = 0$.

Тогда $\xi = 0$ п.н.

 \mathcal{A} оказательство. Рассмотрим $A=\{\xi>0\}$ и $A_n=\{\xi>\frac{1}{n}\}$ Тогда $A_n\uparrow A$. Но

$$P(A_n) = EI_{A_n} \leqslant E(\xi_n)I_{A_n} \leqslant nE\xi = 0$$

Отсюда в силу непрерывности вероятностной меры

$$P(A) = \lim_{n \to \infty} P(A_n) = 0$$

(9) Пусть $E\xi$ и $E\eta$ - конечно и для $\forall A\in\mathcal{F}$ выполнено:

$$E(\xi I_A) \leqslant E(\eta I_A)$$

Тогда $\xi \leqslant \eta$ п.н.

Доказательство. Рассмотрим $B\{\xi > \eta\}$. Тогда $E\eta I_B \leqslant E\xi I_B \leqslant E\eta I_B$ Тогда $E\xi I_B = E\eta I_B \Rightarrow E(\xi - \eta)I_B = 0 \Rightarrow |\text{по свойству } 8| \Rightarrow (\xi - \eta)I_B = 0$ п.н. Но $(\xi - \eta)I_B = 0 \Leftrightarrow I_B = 0$ $\Rightarrow I_B = 0$ п.н. и, значит, P(B) = 0

Независимость случайных величин и векторов

Определение 1. Набор случайных векторов (величин) $\{\xi_{\alpha}\}_{{\alpha}\in\mathfrak{A}}$ называется независимым в совокупности $\{\mathcal{F}_{\xi_{\alpha}}\}_{{\alpha}\in\mathfrak{A}}$ сигма-алгебры, ими порожденные.

Следствие 1. Случайные величины $\xi_1 \dots \xi_n$ - независимы в совокупности $\Leftrightarrow \forall B_1 \dots B_n \in B(\mathbb{R})$ события $\{\xi_1 \in B_1\} \dots \{\xi_n \in B_n\}$ - независимы в совокупности.

Теорема 1 (критерий независимости для функции распределения).

Случайные величины $\xi_1 \dots \xi_n$ – независимы в совокупности $\Leftrightarrow \forall x_1 \dots, x_n \in \mathbb{R}$

$$P(\xi_1 \leqslant x_1, \dots, \xi_n \leqslant x_n) = P(\xi_1 \leqslant x_1) \dots P(\xi_n \leqslant x_n)$$

Доказательство. $\xi_1 \dots \xi_n$ – независимы в совокупности $\Leftrightarrow \sigma$ -алгебры $\mathcal{F}_{\xi_1} \dots \mathcal{F}_{\xi_n}$ – независимы в совокупности \Leftrightarrow |критерий независ. σ -алгебр| $\Leftrightarrow \pi$ -системы порождающие эти σ -алгебры независимы.

Для σ -алгебры $\mathcal{F}_{\xi_i} = \{ \{ \xi_i \in B \} \mid B \in B(\mathbb{R}) \}$ такой π -системой будет $\{ \{ \xi_i \leqslant x \} \mid x \in \mathbb{R} \}$.

Это следует из того, что $\sigma((-\infty;x]:x\in\mathbb{R})=B(\mathbb{R})$

 $\Leftrightarrow \pi$ -системы { $\{\xi_i \leqslant x_i\} \mid x_i \in \mathbb{R} \}$ – независимы

 $\Leftrightarrow \forall x_1 \dots x_n$ - события. $\{\xi_1 \leqslant x_1\} \dots \{\xi_n \leqslant x_n\}$ независимы в совокупности

$$\Leftrightarrow P(\xi_1 \leqslant x_1, \dots, \xi_n \leqslant x_n) = P(\xi_1 \leqslant x_1) \dots P(\xi_n \leqslant x_n), \quad \forall x_1 \dots x_n \in \mathbb{R}$$

Теорема 2 (функции от независимых – тоже независимы).

 $\Pi y cmb \ \xi_1 \dots \xi_m$ – независимые случайные векторы, ξ_i имеет размерность n_i .

 $\Pi y cm b \ f_i \colon \mathbb{R}^{n_i} \to \mathbb{R}^{k_i}$ – борелевская функция, $\forall i = 1 \dots n$

Tогда $f_1(\xi_1),\ldots,f_n(\xi_n)$ – независимы в совокупности.

Доказательство. Обозначим $\eta_i = f_i(\xi_i)$.

Тогда $\forall B \in B(\mathbb{R}^{k_i})$:

$$\{\eta_i \in B\} = \{f_i(\xi_i) \in B\} = \{\xi_i \in (f_i^{-1})(B)\} \in \mathcal{F}_{\xi_i}$$

то есть $\mathcal{F}_{\eta_i} \subset \mathcal{F}_{\xi_i}$

По условию $\mathcal{F}_{\xi_1}\dots\mathcal{F}_{\xi_n}$ – независимы $\Rightarrow \mathcal{F}_{\eta_1}\dots\mathcal{F}_{\eta_n}$ – тоже независимы.

 $\Leftrightarrow \eta_1 \dots \eta_n$ – независимы в совокупности.

Теорема 3. Пусть случайная величина ξ и η – независимы, причем $E\xi$ и $E\eta$ – конечны. Тогда $E\xi\eta$ тоже конечно и $E\xi\eta=E\xi E\eta$

Доказательство. Пусть ξ и η - простые случайные величины,

 ξ - принимает значения $x_1 \dots x_n, \quad \eta$ - принимает значения $y_1 \dots y_m$.

Тогда по линейности:

$$\begin{split} E\xi\eta &= \sum_{k,j} x_k y_j P(\xi = x_k, \eta = y_j) = |\text{независимость}| = \sum_{k,j} x_k y_j P(\xi = x_k) P(\eta = y_j) = \\ &= \left(\sum_{k=1}^n x_k P(\xi = x_k)\right) \left(\sum_{j=1}^m y_j P(\eta = y_j)\right) = E\xi E\eta \end{split}$$

Пусть теперь η и ξ – неотрицательные случайные величины.

Тогда по теореме о приближении простыми \exists последовательность простых \mathcal{F}_{ξ} – измеримых неотрицательных случайных величин $\{\xi_n, n \in \mathbb{N}\}$, т.ч. $\xi_n \uparrow \xi$. Аналогично $\exists \{\eta_n, n \in \mathbb{N}\}$ – последовательных простых неотрицательных \mathcal{F}_{η} - измеримых случайных величин, т.ч. $\eta_n \uparrow \eta$

Тогда $\xi_n \eta_n \uparrow \xi \eta$ и $\forall n : \xi_n$ и η_n – независимы.

$$\Rightarrow E\xi\eta = \lim_{n \to \infty} E\xi_n\eta_n = |$$
независимость ξ_n и $\eta_n| = \lim_{n \to \infty} E\xi_n E\eta_n = E\xi E\eta$

Пусть ξ и η - произвольные с.в. Тогда ξ^+, ξ^- – функции от $\xi, \quad \eta^+, \eta^-$ – функции от $\eta \Rightarrow \xi^+, \xi^-$ – независимы с η^+, η^-

Отсюда получаем

$$(\xi\eta)^+ = \xi^+\eta^+ + \xi^-\eta^- \Rightarrow E(\xi\eta)^+ = E(\xi^+\eta^+) + E(\xi^-\eta^-) =$$

= | независимость ξ^+ с η^+ и ξ^- с η^- | = $E\xi^+E\eta^+ + E\xi^-E\eta^-$

Аналогично
$$E(\xi\eta)^- = E\xi^+ E\eta^- + E\xi^- E\eta^+$$
 $\Rightarrow E\xi\eta$ конечно и $E\xi\eta = E\xi^+\eta^+ + E\xi^- E\eta^- - E\xi^+\eta^- - E\xi^- E\eta^+ = E\xi E\eta$

Дисперсия и ковариация

Определение 2. Дисперсией с.в. ξ называетют

$$D\xi = E(\xi - E\xi)^2$$
, если $E\xi$ существует

Определение 3. *Ковариацией* случайных величин ξ и η называют

$$cov(\xi, \eta) = E(\xi - E\xi)(\eta - E\eta)$$

Если $cov(\xi, \eta) = 0$, то ξ и η называются некоррелированными.

Если $D\xi$ и $D\eta$ – конечны и положительны, то можно определить расстояние

$$\rho(\xi, \eta) = \frac{\text{cov}(\xi, \eta)}{\sqrt{D\xi D\eta}}$$

которое называется коэффициентом корреляции ξ и η

Лемма 15 (свойства дисперсии и ковариации).

Если все математические ожидания конечны, то

- 1. Ковариация билинейна.
- 2. $cov(\xi, \eta) = E\xi\eta E\xi E\eta$ $D\xi = cos(\xi, \xi) = E\xi^2 - (E\xi)^2$
- 3. $D(c\xi) = c^2 D\xi, D(\xi + c) = D\xi$
- 4. Неравенство Коши-Буняковского.

$$|E\xi\eta|^2 \leqslant E\xi^2 E\eta^2$$

5. $|\rho(\xi,\eta)|\leqslant 1$, причем $\rho(\xi,\eta)=1\Leftrightarrow \xi$ и η – n.н. линейно зависимы.

Доказательство.

Свойства 1) - 3) легко вытекают из свойств математического ожидания.

4. Рассмотрим для $\lambda \in \mathbb{R}$:

$$f(\lambda) = E(\xi + \lambda \eta)^2 \geqslant 0$$

Ho $f(\lambda)=E\xi^2+2E\xi\eta\lambda+\lambda^2E\eta^2\geqslant 0 \Leftrightarrow$ дискриминант $\leqslant 0$, т.е. $4[(E\xi\eta)^2-E\xi^2E\eta^2]\leqslant 0$

5. Рассмотрим $\xi_1 = \xi - E\xi$, $\eta_1 = \eta - E\eta$ Тогда $\mathrm{cov}(\xi,\eta) = E\xi_1\eta_1$, $D\xi = E\xi_1^2$, $D\eta = E\eta_1^2$ $\Rightarrow |\rho(\xi,\eta)| = \left|\frac{E\xi_1\eta_1}{\sqrt{E\xi_1^2E\eta_1^2}}\right| \leqslant 1$, по нер-ву Коши-Буняковского.

При этом $|\rho(\xi,\eta)|=1\Leftrightarrow$ дискриминант $=0\Leftrightarrow\exists!\lambda_0\in\mathbb{R}$ т.ч. $f(\lambda_0)=0$. т.е. $E(\xi_1+\lambda_0\eta_1)^2=0$ $\Rightarrow\xi_1+\lambda_0\eta_1=0$ п.н. т.е.

$$\xi = E\xi - \lambda_0(\eta - E\eta)$$
 п.н.

$$D(\xi_1 + \dots \xi_n) = \sum_{k=1}^n D\xi_k$$

Доказательство.

$$D(\xi_1 + \dots + \xi_k) = \cos(\xi_1 + \dots + \xi_k, \xi_1 + \dots + \xi_k) = \sum_{i,j} \cos(\xi_i, \xi_j) = \sum_{i} \cos(\xi_i, \xi_i) = \sum_{i} D\xi_i$$

Следствие 3. $\xi_1 \dots \xi_n$ – независимы, $D\xi_i < +\infty$. Тогда $D(\xi_1 + \dots \xi_n) = \sum_{k=1}^n D\xi_k$

Определение 4. Пусть $\xi = (\xi_1, ldots, \xi_n)$ – случ. вектор.

Тогда его мат. ожиданием называется вектор из мат. ожиданий его компонент:

$$E\xi = (E\xi_1, \dots, E\xi_n)$$

Определение 5. Дисперсией вектора ξ называется его матрица ковариаций:

$$D\xi = \left\| \operatorname{cov}(\xi_i, \xi_j) \right\|_{i, i=1}^n -$$
матрица $n \times n$

Пемма 16. Матрица ковариаций случайного вектора является симметрической и неотрицательно определенной.

 \mathcal{A} оказательство. $D\xi = \|\text{cov}(\xi_i, \xi_j)\|_{i,j=1}^n$ – симметричная т.к $\text{cov}(\xi_i, \xi_j) = \text{cov}(\xi_j, \xi_i)$

Пусть $x_1 \dots x_n \in \mathbb{R}$, $x = (x_1, \dots, x_n)$ – вектор.

$$\begin{split} \langle D\xi x,x\rangle &= \sum_{i,j=1}^n cov(\xi_i,\xi_j) x_i x_j = |\text{линейность ковариации}| = \sum_{i,j=1}^n cov(x_i\xi_i,x_j\xi_j) = \\ &= |\text{суммируем по } i| = \sum_{j=1}^n cov(x_1\xi_1+\ldots x_n\xi_n,x_j\xi_j) = \\ &= |\text{суммируем по } j| = cov(x_1\xi_1+\ldots x_n\xi_n,x_1\xi_1+\ldots +x_n\xi_n) = D(x_1\xi_1+\ldots +x_n\xi_n) \geqslant 0 \end{split}$$

⇒ неотр. определенная

Неравенства

(1) Неравенство Маркова

Пусть $\xi \geqslant 0$ — неотрицательная случайная величина.

Тогда для
$$\forall \varepsilon > 0$$
 :
$$P(\xi \geqslant \varepsilon) \leqslant \frac{E\xi}{\varepsilon}$$

Доказательство.
$$P(\xi \geqslant \varepsilon) = EI\{\xi \geqslant \varepsilon\} \leqslant E\left(\frac{\xi}{\varepsilon}I\{\xi \geqslant \varepsilon\}\right) \leqslant E\left(\frac{\xi}{\varepsilon}\right) = \frac{E\xi}{\varepsilon}$$

$\left(2 ight)$ Неравенство Чебышева

Если
$$D\xi<+\infty,$$
 то для $\forall \varepsilon>0:$ $P(|\xi-E\xi|\geqslant \varepsilon)\leqslant \frac{D\xi}{\varepsilon^2}$

Доказательство.

$$P(|\xi - E\xi| \geqslant \varepsilon) = P(|\xi - E\xi|^2 \geqslant \varepsilon^2) \leqslant |\text{нер-во Маркова}| \leqslant \frac{E |\xi - E\xi|^2}{\varepsilon^2} = \frac{D\xi}{\varepsilon^2}$$

③ Неравенство Йенсена

Пусть g(x) – выпуклая вниз функция. Пусть $E\xi$ - конечно. Тогда

$$\boxed{Eg(\xi) \geqslant g(E\xi)}$$

Доказательство. Т.к g(x) – выпуклая вниз функция, то $\forall x_0 \in \mathbb{R} \ \exists \lambda(x_0) :$ т.ч. $\forall x \in \mathbb{R}$ выполнено:

$$g(x) \geqslant g(x_0) + \lambda(x_0)(x - x_0)$$

Положим $x = \xi$, $x_0 = E\xi$. Тогда

$$g(\xi) \geqslant g(E\xi) + \lambda(E\xi)(\xi - E\xi)$$

Берем математическое ожидание от обеих частей:

$$Eg(\xi) \geqslant g(E\xi) + \lambda(E\xi)E(\xi - E\xi) = g(E\xi)$$

Виды сходимостей случайных величин

Определение 1.

1. Последовательность случайных величин $\{\xi_n, n \in \mathbb{N}\}\ cxodumcs\ no\ вероятности\ к\ случайной величине <math>\xi\ ($ обозначение $\xi_n \stackrel{p}{\to} \xi\)$, если для $\forall \varepsilon > 0$:

$$P(|\xi_n - \xi| \geqslant \varepsilon) \xrightarrow[n \to \infty]{} 0$$

2. Последовательность случайных величин $\{\xi_n, n \in \mathbb{N}\}$ сходится с вероятностью 1 к случайной величине ξ (или сходится почти наверное), если

$$P(\omega : \lim_{n \to \infty} \xi_n(\omega) = \xi(\omega)) = 1$$

Обозначения: $\xi_n \xrightarrow{\text{п.н.}} \xi, \; \xi_n \to \xi \; \text{п.н.}$ или $\xi_n \to \xi \; P$ -п.н.

3. Последовательность случайных величин $\{\xi_n, n \in \mathbb{N}\}$ сходится в среднем порядка p > 0 к случайной величине ξ (или сходится в пространстве L^p), если

$$E|\xi_n - \xi|^p \xrightarrow[n \to \infty]{} 0$$

Обозначение: $\xi_n \xrightarrow{L^p} \xi$

4. Последовательность случайных величин $\{\xi_n, n \in \mathbb{N}\}$ сходится по распределению к случайной величине ξ , если для \forall ограниченой непрерывной ф-ции f(x) выполнено

$$Ef(\xi_n) \xrightarrow[n\to\infty]{} Ef(\xi)$$

Обозначение: $\xi_n \xrightarrow{d} \xi$

Теорема 1 (Закон больших чисел в форме Чебышева).

Пусть $\{\xi_n, n \in \mathbb{N}\}$ – последовательность попарно некоррелированных случайных величин, т.ч. $\forall n : D\xi_n \leqslant C$.

Обозначим $S_n = \xi_1 + \ldots + \xi_n$. Тогда

$$\frac{S_n - ES_n}{n} \xrightarrow{P} 0, \quad n \to \infty$$

Доказательство.

$$P\left(\left|\frac{S_n - ES_n}{n}\right| \geqslant \varepsilon\right) \leqslant |\text{нер-во Чебышева}| \leqslant \frac{D\left(\frac{S_n - ES_n}{n}\right)}{\varepsilon^2} = \frac{D(S_n - ES_n)}{n^2 \varepsilon^2} = \frac{DS_n}{n^2 \varepsilon^2} = |\xi_i \text{ и } \xi_j \text{ - некорр.}| = \frac{\sum_{j=1}^n D\xi_j}{n^2 \varepsilon^2} \leqslant \frac{Cn}{n^2 \varepsilon^2} \xrightarrow[n \to \infty]{} 0$$

Следствие 1. Пусть $\{\xi_n, n \in \mathbb{N}\}$ – независимые случайные величины, т.ч. $D\xi_n \leqslant C, \forall n$ и $E\xi_n = a, \forall n$.

Тогда, обозначив $S_n = \xi_1 + \ldots + \xi_n$, получаем

$$\frac{S_n}{n} \xrightarrow{P} a$$

Смысл ЗБЧ:

 $\xi_1 \dots \xi_n \dots$ – результаты независимых проведений одного и того же эксперимента.

Тогда их среднее арифметическое сходится к среднему значению результата одного эксперимента $E\xi_i$

Если ξ_i – индикаторы наступления некоторого события A:

$$\xi_i = I\{A \text{ наступило в } i\text{-м эксперименте}\}$$

то

$$\frac{\xi_1 + \ldots + \xi_n}{n} \xrightarrow{P} E\xi_i = P(A)$$

Таким образом ЗБЧ — это принцип устойчивости частот постулировавшийся в начале курса.

Лемма 17 (критерий сходимости почти наверное).

$$\xi_n \xrightarrow{n.\text{H.}} \xi \quad \Leftrightarrow \quad \partial \text{As } \forall \varepsilon > 0 : P(\sup_{k \geqslant n} |\xi_k - \xi| \geqslant \varepsilon) \xrightarrow[n \to \infty]{} 0$$

Доказательство.

Обозначим
$$A_k^{\varepsilon}=\{|\xi_k-\xi|\geqslant \varepsilon\}$$
 и $A^{\varepsilon}=\bigcap_{n=1}^{\infty}\bigcup_{k\geqslant n}A_k^{\varepsilon}$

Тогда
$$\{\xi_n \nrightarrow \xi\} = \bigcup_{m=1}^{\infty} A^{\frac{1}{m}}$$

Получаем

$$P(\xi_n \nrightarrow \xi) = 0 \Leftrightarrow P\left(\bigcup_{m=1}^{\infty} A^{\frac{1}{m}}\right) = 0 \Leftrightarrow \forall m : P\left(A^{\frac{1}{m}}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 : P(A^{\varepsilon}) = 0.$$

$$\operatorname{Ho} \bigcup_{k\geqslant n} A_k^{\varepsilon} \downarrow A^{\varepsilon}, \operatorname{поэтому} P(A^{\varepsilon}) = \lim_{n\to\infty} P\left(\bigcup_{k\geqslant n} A_k^{\varepsilon}\right) = 0 \Leftrightarrow P\left(\bigcup_{k\geqslant n} A_k^{\varepsilon}\right) \xrightarrow[n\to\infty]{} 0$$

Оталось заметить, что
$$\bigcup_{k\geqslant n}A_k^{\varepsilon}=\{\sup_{k\geqslant n}|\xi_k-\xi|\geqslant \varepsilon\}$$

Теорема 2 (взаимоотношение различных видов сходимости).

Выполнены соотношение

1.
$$\xi_n \xrightarrow{n.H.} \xi \Rightarrow \xi_n \xrightarrow{P} \xi$$

2.
$$\xi_n \xrightarrow{L^P} \xi \Rightarrow \xi_n \xrightarrow{P} \xi$$

3.
$$\xi_n \xrightarrow{P} \xi \Rightarrow \xi_n \xrightarrow{d} \xi$$

Доказательство.

1. Если $\xi_n \xrightarrow{\text{п.н.}} \xi$, то по лемме для $\forall \varepsilon > 0$:

$$P(\sup_{k\geqslant n}|\xi_k-\xi|\geqslant\varepsilon)\xrightarrow[n\to\infty]{}0,\quad\text{ но событие }\{|\xi_n-\xi|\geqslant\varepsilon\}\subset\{\sup_{k\geqslant n}|\xi_k-\xi|\geqslant\varepsilon\}$$

$$\Rightarrow P(|\xi_n-\xi|\geqslant\varepsilon)\leqslant P(\sup_{k\geqslant n}|\xi_k-\xi|\geqslant\varepsilon)\xrightarrow[n\to\infty]{}0$$

- 2. $P(|\xi_n \xi| \geqslant \varepsilon) = P(|\xi_n \xi|^P \geqslant \varepsilon^P) \leqslant |\text{нер-во Mapkoba}| \leqslant \frac{E|\xi_n \xi|^P}{\varepsilon^P} \xrightarrow[n \to \infty]{} 0$
- 3. Пусть f(x) ограниченная непрерывная функция, $|f(x)| \leq C, \forall x \in \mathbb{R}$. Пусть $\varepsilon > 0$ фиксировано. Возьмем такое N, что

$$P(|\xi| > N) \leqslant \frac{\varepsilon}{4C}$$

Функция f(x) равномерно непрерывна на [-N,N], т.е $\exists \delta>0: \forall x,y$ с условием $|x|\leqslant N$ и $|x-y|\leqslant \delta$ выполнено

$$|f(x) - f(y)| \le \frac{\varepsilon}{2}$$

Рассмотрим следующее разбиение Ω

$$A_1 = \{ |\xi_n - \xi| \le \delta, |\xi| \le N \}$$

$$A_2 = \{ |\xi_n - \xi| \le \delta, |\xi| > N \}$$

$$A_3 = \{ |\xi_n - \xi| > \delta \}$$

Тогда

$$|Ef(\xi_n) - Ef(\xi)| \le E|f(\xi_n) - f(\xi)| = E(|f(\xi_n) - f(\xi)|(I_{A_1} + I_{A_2} + I_{A_3}))$$

Если выполнено A_1 , то $|f(\xi_n) - f(\xi)| \leqslant \frac{\varepsilon}{2} \Rightarrow E|f(\xi_n) - f(\xi)|I_{A_1} \leqslant \frac{\varepsilon}{2}EI_{A_1} \leqslant \frac{\varepsilon}{2}$ Если выполнено A_2 или A_3 , то $|f(\xi_n) - f(\xi)| \leqslant 2C$

$$\Rightarrow \bigotimes \frac{\varepsilon}{2} + 2CE(I_{A_2} + I_{A_3}) = \frac{\varepsilon}{2} + 2C(P(A_2) + P(A_3)) \leqslant$$
$$\leqslant \frac{\varepsilon}{2} + 2CP(|\xi| > N) + 2CP(|\xi_n - \xi| > \delta) \leqslant \varepsilon + 2CP(|\xi_n - \xi| > \delta)$$

По условию $P(|\xi_n - \xi| > \delta) \xrightarrow[n \to \infty]{} 0$

Значит в силу произвольности $\varepsilon > 0$, $Ef(\xi_n) \to Ef(\xi)$, т.е. $\xi_n \xrightarrow{d} \xi$

Замечание. Сходимость по распределению случайных величин — это, на самом деле, сходимость их распределений.

Обратных стрелок нигде нет. Можно привести контрпримеры.

Усиленный закон больших чисел для случайных величин с ограниченными дисперсиями

Определение 1. Последовательность $\{x_n, n \in \mathbb{N}\}$ чисел из \mathbb{R} называется $\phi y n \partial a menma n b n o u, если$

$$|x_n - x_m| \to 0, \quad n, m \to +\infty$$

Теорема 1 (критерий Коши). Последовательность $\{x_n, n \in \mathbb{N}\}$ сходится \Leftrightarrow она фундаментальна.

Теорема 2 (критерий Коши сходимости почти наверное). Последовательность $\{\xi_n, n \in \mathbb{N}\}$ сходится почти наверное $\Leftrightarrow \{\xi_n, n \in \mathbb{N}\}$ фундаментальна с вероятностью 1.

Доказательство.

 (\Rightarrow) Пусть $\xi_n \xrightarrow{\Pi.H.} \xi$.

Тогда если $\omega \in \Big\{\omega \mid \lim_{n \to \infty} \xi_n(\omega) \xi(\omega)\Big\}$, то $\omega \in \{\{\xi_n(\omega)\} - \text{фундаментальна}\}$

$$\Rightarrow P(\{\xi_n\}$$
 – фундаментальна) $\geqslant P(\lim_{n \to \infty} \xi_n = \xi) = 1$

 (\Leftarrow) Обозначим $A = \{\{\xi_n\} - фундаментальна\}$

Тогда $\forall \omega \in A$ у $\xi_n(\omega)$ \exists предел $\xi(\omega)$

$$\xi(\omega) := \lim_{n \to \infty} \xi_n(\omega), \quad \text{ если } \omega \in A$$

Если же $\omega \not\in A$, то положим $\xi(\omega) := 0$

Тогда $\xi_n I_A \to \xi \Rightarrow \xi$ – случайная величина(как предел случайных величин)

$$P(\xi_n \to \xi) \leqslant P(\{\xi_n \to \xi\} \cap A) = P(A) = 1$$

 $\Rightarrow \xi_n \xrightarrow{\text{II.H.}} \xi$

Лемма 18 (критерий фундаментальности с вероятностью 1).

Последовательность $\{\xi_n,\ n\in\mathbb{N}\}$ фундаментальна с вероятностью $1\Leftrightarrow$ для $\forall \varepsilon>0$:

$$P(\sup_{k\geqslant n}|\xi_k-\xi_n|\geqslant \varepsilon)\xrightarrow[n\to\infty]{}0$$

Доказательство. Полностью аналогично док-ву критерия сходимости почти наверное.

Теорема 3 (Колмогоров-Хинчин, достаточное условие для сходимости ряда почти наверное).

Пусть $\{\xi_n, n \in \mathbb{N}\}$ – последовательность независимых случайных величин т.ч. $E\xi_n = 0, \forall n$ и $E\xi_n^2 < +\infty, \forall n$

Тогда если сходится $\sum_n E\xi_n^2 < +\infty$, то ряд $\sum_n \xi_n$ сходится почти наверное.

Лемма 19 (Неравенство Колмогорова).

 $\Pi y cm b \ \xi_1 \dots \xi_n$ – независимые с.в.

 $E\xi_i=0$ и $E\xi_i^2<+\infty$. Обозначим $S_k=\xi_1+\ldots+\xi_k$

Тогда

$$P\left(\max_{1 \le k \le n} |S_k| \ge \varepsilon\right) \le \frac{ES_n^2}{\varepsilon^2}$$

Доказательство. Обозначим $A = \left\{ \max_{1\leqslant k\leqslant n} |S_k|\geqslant \varepsilon \right\}$

Разделим A на следующие части:

$$A_k = \{ |S_k| \geqslant \varepsilon$$
 и $|S_i| < \varepsilon$ для $i = 1 \dots k - 1 \}$.

Тогда
$$A_k \cap A_j = \emptyset$$
 при $k \neq j$ и $A = \bigsqcup_{k=1}^n A_k$

Рассмотрим

$$ES_n^2 \geqslant E(S_n^2 I_A) = E\sum_{k=1}^n (S_n^2 I_{A_k}) = \sum_{k=1}^n E(S_n^2 I_{A_k})$$

$$ES_n^2 I_{A_k} = E(S_k + \xi_{k+1} + \dots + \xi_n)^2 I_{A_k} =$$

$$= ES_k^2 I_{A_k} + 2ES_k(\xi_{k+1} + \dots + \xi_n) I_{A_k} + E(\xi_{k+1} + \dots + \xi_n)^2 I_{A_k}$$

Ho I_{A_k} зависит от $S_1 \dots S_k \Rightarrow S_k I_{A_k}$ не зависит от $\xi_{k+1} \dots \xi_n$

Следовательно, второе слагаемое

$$ES_k I_{A_k}(\xi_{k+1} + \dots + \xi_n) = ES_k E(\xi_{k+1} + \dots + \xi_n) = 0 \quad (\forall i : E\xi_i = 0)$$

$$\Rightarrow ES_n^2 I_{A_k} = ES_k^2 I_{A_k} + E(\xi_{k+1} + \dots + \xi_n)^2 I_{A_k} \geqslant ES_k^2 I_{A_k} \geqslant \varepsilon^2 EI_{A_k} = \varepsilon^2 P(A_k)$$

т.к $S_k \geqslant \varepsilon$ на A_k .

В итоге

$$ES_n^2 \geqslant \sum_{k=1}^n E(S_n^2 I_{A_k}) \geqslant \varepsilon^2 \sum_{k=1}^n P(A_k) = \varepsilon^2 P(A)$$

Док-во теоремы Колмогорова-Хинчина.

Обозначим $S_n = \sum_{k=1}^n \xi_k$. Тогда $\sum_{k=1}^\infty \xi_k$ сходится п.н. \Leftrightarrow (критерий Коши) \Leftrightarrow

 $\Leftrightarrow \{S_n, n \in \mathbb{N}\}$ фундаментальна с вероятностью $1 \Leftrightarrow ($ критерий фундаментальности $) \Leftrightarrow$

$$\Leftrightarrow$$
 для $\forall \varepsilon > 0: P(\sup_{k > n} |S_k - S_n| \geqslant \varepsilon) \xrightarrow[n \to \infty]{} 0$

Оценим её: Рассмотрим.

$$\begin{split} &P(\sup_{k\geqslant n}|S_k-S_n|\geqslant \varepsilon)=P(\bigcup_{k\geqslant n}\{|S_k-S_n|\geqslant \varepsilon\})=|\text{непрерывность вер. меры}|=\\ &=\lim_{N\to\infty}P(\bigcup_{k=n}^{N+n}\{|S_k-S_n|\geqslant \varepsilon\})=\lim_{N\to\infty}P(\max_{1\leqslant k\leqslant N}|S_{k+n}-S_n|\geqslant \varepsilon)=|\text{нер-во Колмогорова}|\leqslant\\ &\leqslant\lim_{N\to\infty}\frac{E(S_{n+N}-S_n)^2}{\varepsilon^2}=\lim_{N\to\infty}\frac{\sum_{k=n+1}^{n+N}E\xi_k^2}{\varepsilon^2}=\frac{\sum_{k=n+1}^{\infty}E\xi_k^2}{\varepsilon^2}\xrightarrow{n\to\infty}0 \end{split}$$

т.к. это остаток сходящегося ряда (по условию $\sum\limits_n E\xi_n^2<+\infty)$

Лемма 20 (Тёплиц).

Пусть последовательность $x_n \to x$, $\{a_n, n \in \mathbb{N}\}$ m.ч. $a_n \geqslant 0$ и $b_n = \sum_{j=1}^n a_j \uparrow +\infty$.

Tог ∂a

$$\frac{1}{b_n} \sum_{k=1}^n a_j x_j \xrightarrow[n \to \infty]{} x$$

Доказательство. Пусть $\varepsilon > 0$ – произвольное. Возьмём $n_0 = n_0(\varepsilon)$ т.ч. $\forall n > n_0 : |x - x_n| < \frac{\varepsilon}{2}$ Далее, возьмем $n_1 > n_0$, т.ч.

$$\frac{1}{b_{n_1}} \sum_{j=1}^{n_0} a_j |x_j - x| < \frac{\varepsilon}{2}$$

Тогда для $\forall n > n_1$

$$\left| \frac{1}{b_n} \sum_{j=1}^n a_j x_j - x \right| = \left| \frac{1}{b_n} \sum_{j=1}^n a_j (x_j - x) \right| \leqslant$$

$$\leqslant \frac{1}{b_n} \sum_{j=1}^{n_0} a_j |x_j - x| + \frac{1}{b_n} \sum_{j=n_0+1}^{n_1} a_j |x_j - x| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \frac{1}{b_n} \sum_{j=n_0+1}^n a_j \leqslant \varepsilon$$

Лемма 21 (Кронекер).

Пусть ряд $\sum_{n} x_n$ сходится.

 $\{a_n,\ n\in\mathbb{N}\}$ – некоторая последовательность $a_n\geqslant 0$ т.ч. $b_n=\sum\limits_{j=1}^na_j\uparrow+\infty$

Tог ∂a

$$\frac{1}{b_n} \sum_{j=1}^n b_j x_j \xrightarrow[n \to \infty]{} 0$$

Доказательство. Обозначим $S_n = x_1 + \ldots + x_n$. Тогда $\{S_n\}$ сходится.

$$\sum_{j=1}^{n} b_j x_j = \sum_{j=1}^{n} b_j (S_j - S_{j-1}) = b_n S_n - \sum_{j=1}^{n} S_{j-1} (b_j - b_{j-1}) = b_n S_n - \sum_{j=1}^{n} S_{j-1} a_j$$

Делим на b_n :

$$\frac{1}{b_n} \sum_{j=1}^n b_j x_j = S_n - \frac{1}{b_n} \sum_{j=1}^n S_{j-1} a_j$$
$$S_n \xrightarrow[n \to \infty]{} \sum_{n=1}^\infty x_n = S$$

А по лемме Тёплица:

$$\frac{1}{b_n} \sum_{j=1}^n S_{j-1} a_j \xrightarrow[n \to \infty]{} S$$

⇒ их разность стремится к нулю.

Теорема 4 (Усиленный закон больших чисел в форме Колмогорова-Хинчина).

 $\Pi ycmv$ $\{\xi_n,\ n\in\mathbb{N}\}$ – независимые с.в. т.ч. $D\xi_n<+\infty \forall n.$

Пусть последовательность $\{b_n,\ n\in\mathbb{N}\}$ т.ч. $b_n>0, b_n\uparrow+\infty$ и

$$\sum_{n=1}^{\infty} \frac{D\xi_n}{b_n^2} < +\infty$$

Обозначим $S_n = \xi_1 + \dots \xi_n$. Тогда

$$\left[\begin{array}{c|c} S_n - ES_n & \xrightarrow{n.n.} 0 \\ \hline b_n & \xrightarrow{n} 0 \end{array}\right] \quad (npu \ n \to \infty)$$

Доказательство. Рассмотрим

$$\frac{S_n - ES_n}{b_n} = \frac{1}{b_n} \sum_{k=1}^n b_k \left(\frac{\xi_k - E\xi_k}{b_k} \right)$$

Далее с.в. $\eta_k = \frac{\xi_k - E \xi_k}{b_k}$ – независимы и $E \eta_k = 0$

Тогда

$$\sum_{k=1}^{\infty} E \eta_k^2 = \sum_{k=1}^{\infty} E \left(\frac{\xi_k - E \xi_k}{b_k} \right)^2 = \sum_{k=1}^{\infty} \frac{D \xi_k}{b_k^2} < +\infty$$

 \Rightarrow по теореме о сходимости ряда, ряд $\sum_k \eta_k$ сходится п.н.

Но по лемме Кронекера $\frac{1}{b_n}\sum_{k=1}^n b_k\left(\frac{\xi_k-E\xi_k}{b_k}\right)$ сходится к нулю для всех ω , для которых

$$\sum_{k=1}^{\infty} \frac{\xi_k - E\xi_k}{b_k} = \sum_{k=1}^{\infty} \eta_k$$

сходится. А этот ряд сходится.

$$\Longrightarrow \frac{S_n - ES_n}{b_n} \xrightarrow{\text{\tiny II.H.}} 0$$

Следствие 1. Пусть $\{\xi_n, n \in \mathbb{N}\}$ – независимые случайные величины m.ч. $D\xi_n \leqslant C \ \forall n \in \mathbb{N}$ Обозначим $S_n = \xi_1 + \ldots + \xi_n$.

Tог ∂a

$$\frac{S_n - ES_n}{n} \xrightarrow{n.u.} 0$$

Eсли, κ тому же, $E\xi_i = a \forall i, mo$

$$\frac{S_n}{n} \xrightarrow{n.H.} a$$

Доказательство. Возьмем $b_n = n \Rightarrow b_n > 0, b_n \uparrow +\infty$.

Тогда

$$\sum_{n} \frac{D\xi_n}{b_n^2} = \sum_{n} \frac{D\xi_n}{n^2} \leqslant \sum_{n} \frac{c}{n^2} < +\infty$$

Согласно УЗБЧ

$$\frac{S_n - ES_n}{n} \xrightarrow{\Pi.H.} 0, \quad (n \to \infty)$$

Если же $E\xi_n=a$, то $ES_n=n-a$

$$\frac{S_n}{n} - a \xrightarrow{\text{\tiny II.H.}} 0 \Leftrightarrow \frac{S_n}{n} \xrightarrow{\text{\tiny II.H.}} a$$

Смысл УЗБЧ: обоснование феномена устойчивости частот появлений событий в последовательностях независимых экспериментов.

Если $\xi_i = I\{$ событие A произошло в i- том эксперимете $\}$ то

$$\nu_n(A) = \frac{\xi_1 + \ldots + \xi_n}{n} \xrightarrow{\text{\tiny II.H.}} E\xi_1 = P(A)$$

Предельный переход под знаком E

Boπpoc: $\xi_n \xrightarrow{\text{п.н.}} \xi \Rightarrow E\xi \rightarrow E\xi$?

Теорема 1 (О монотонной сходимости).

Пусть $\{\xi_n, n \in \mathbb{N}\}, \xi, \eta - c.e.$

- 1. Ecau $\xi_n \uparrow \xi$, $\xi_n \geqslant \eta$, $\forall n \in \mathbb{N}$ $u \ E\eta > -\infty$, $mo \ E\xi = \lim_{n \to \infty} E\xi_n$
- 2. Ecau $\xi_n \downarrow \xi, \xi_n \leqslant \eta, \forall n \in \mathbb{N} \ u \ E\eta < +\infty, \ mo \ E\xi = \lim_{n \to \infty} E\xi_n$

Теорема 2 (лемма Фату).

Пусть $\{\xi_n, n \in \mathbb{N}\}, \eta$ – с.в., $E\eta$ - конечно

- 1. Ecau $\xi_n \geqslant \eta, \forall n \in \mathbb{N}, mo$ $\underline{\lim}_n E\xi_n \geqslant E \underline{\lim}_n \xi_n$
- 2. Если $\xi_n \leqslant \eta, \forall n \in \mathbb{N}, \ mo$ $\overline{\lim}_n E \xi_n \leqslant E \overline{\lim}_n \xi_n$

3. $Ecnu |\xi_n| \leqslant \eta, \forall n \in \mathbb{N}, mo \quad E \underset{n}{\underline{\lim}} \xi_n \leqslant \underset{n}{\underline{\lim}} E\xi_n \leqslant \overline{\lim}_n E\xi_n \leqslant E \underset{n}{\overline{\lim}} \xi_n$

Доказательство.

1. Обозначим $\psi_n = \inf_{k \geqslant n} \xi_k$. Тогда $\psi_n \uparrow \underline{\lim}_n \xi_n$ и $\psi_n \geqslant \eta, \forall n \in \mathbb{N}$.

По теореме о монотонной сходимости получаем

$$\lim_{n} E\psi_n = E \underline{\lim}_{n} \xi_n$$

Осталось заметить, что

$$E \underline{\lim}_{n} \xi_{n} = \lim_{n} E \psi_{n} = \underline{\lim}_{n} E \psi_{n} \leqslant \underline{\lim}_{n} E \xi_{n}$$

T.K. $\xi_n \geqslant \psi_n, \forall n$

- 2. Следует из 1) заменой ξ_n на $-\xi_n$
- 3. Сразу следует из 1) и 2)

Теорема 3 (Лебега о мажорируюмой сходимости).

Пусть $\{\xi_n, n \in \mathbb{N}\}$ – последовательность с.в. т.ч. $\xi_n \xrightarrow{n.н.} \xi$ и для $\forall n : |\xi_n| \leqslant \eta$, причем $E\eta$ конечно.

Тогда $E\xi=\lim_n E\xi_n$ и, более того, $E|\xi_n-\xi|\to 0$ (т.е. $\xi_n\xrightarrow{L^1}\xi$)

 \mathcal{A} оказательство. Заметим, что $\xi = \lim_n \xi_n = \underline{\lim}_n \xi_n = \overline{\lim}_n \xi_n$ п.н.

⇒ по лемме Фату

$$E\xi = E \underbrace{\lim_{n} \xi_{n}}_{n} \leqslant \underbrace{\lim_{n} E\xi_{n}}_{n} \leqslant \overline{\lim_{n} E\xi_{n}} \leqslant E \underbrace{\lim_{n} \xi_{n}}_{n} = E\xi$$

$$\Rightarrow \lim_{n} E\xi_{n} = E\xi$$

Конечность $E\xi$ следует из того, что $|\xi|\leqslant\eta$ п.н. и конечности $E\eta$

Для обоснования сходимости в L^1 достаточно взять $\psi_n = |\xi_n - \xi|$.

Тогда $|\psi_n|\leqslant 2|\eta|$ п.н. и $\psi_n\xrightarrow{\text{п.н.}}0\Rightarrow E\psi_n\to 0$

Усиленный закон больших чисел для с.в. с конечным математическим ожиданием

Определение 1. Пусть $\{A_n, n \in \mathbb{N}\}$ – последовательность событий.

Тогда событием $\{A_n$ бесконечное число $\} = \{A_n$ б.ч $\}$ наз. событие, заключающееся в том, что произошло бесконесное число событий в последовательности $\{A_n, n \in \mathbb{N}\}$. Формально:

$$\{A_n \text{ б.ч.}\} = \bigcap_{n=1}^{\infty} \bigcup_{k \geqslant n} A_k$$

Лемма 22 (Борель-Кантелли).

1. Если
$$\sum_{n} P(A_n) < +\infty$$
, то $P(A_n$ б.ч.) = 0

2. Если
$$\sum\limits_n P(A_n) = +\infty$$
 и все A_n - независимые, то $P(A_n$ б.ч.) $= 1$

Доказательство.

1.

$$P(A_n \text{ б.ч.}) = P\left(\bigcap_{n=1}^\infty \bigcup_{k\geqslant n} A_k\right) = \lim_{n\to\infty} P\left(\bigcup_{k\geqslant n} A_k\right) \leqslant \lim_{n\to\infty} \sum_{k\geqslant n} P(A_k) = 0$$

2.

$$P(A_n \text{ б.ч.}) = \lim_{n \to \infty} P\left(\bigcup_{k \geqslant n} A_k\right) = \lim_{n \to \infty} P\left(1 - \bigcap_{k \geqslant n} \overline{A}_k\right)$$

Но

$$P\left(\bigcap_{k\geqslant n}\overline{A}_n\right) = |\text{непр. вер. меры}| = \lim_{N\to\infty}P\left(\bigcap_{k\geqslant n}^N\overline{A}_k\right) = \lim_{N\to\infty}\prod_{k=n}^NP(\overline{A}_k) = \lim_{N\to\infty}\prod_{k=n}^NP(\overline{A}_k) = \lim_{N\to\infty}\prod_{k=n}^N(1-P(A_k)) \leqslant \lim_{N\to\infty}\prod_{k=n}^Ne^{-P(A_k)} = \lim_{N\to\infty}e^{-\sum\limits_{k=n}^NP(A_k)} = e^{-\sum\limits_{k=n}^NP(A_k)} = 0$$

T.K.
$$\forall n: \sum_{k=n}^{\infty} P(A_k) = +\infty$$

$$\Rightarrow P(A_n \text{ б.ч.}) = 1$$

Лемма 23. Пусть ξ - неотр. с.в., $E\xi$ - конечно. Тогда

$$\sum_{n=1}^{\infty} P(\xi \geqslant n) \leqslant E\xi \leqslant 1 + \sum_{n=1}^{\infty} P(\xi \geqslant n) = \sum_{n=0}^{\infty} P(\xi \geqslant n)$$

Доказательство.

$$\sum_{n=1}^{\infty} P(\xi \geqslant n) = \sum_{n=1}^{\infty} \sum_{k=n}^{\infty} P(k \leqslant \xi < k+1) = \sum_{k=1}^{\infty} k P(k \leqslant \xi < k+1) = \sum_{k=0}^{\infty} k P(k \leqslant \xi < k+1) = \sum_{k=0}^{\infty} E(k I\{k \leqslant \xi < k+1\}) \leqslant \sum_{k=0}^{\infty} E(\xi I\{k \leqslant \xi < k+1\}) = E\left(\sum_{k=1}^{\infty} \xi I\{k \leqslant \xi < k+1\}\right) = E\{\xi \leqslant E\left(\sum_{k=0}^{\infty} (k+1) I\{k \leqslant \xi < k+1\}\right) = \sum_{n=1}^{\infty} P(\xi \geqslant n) + \sum_{n=0}^{\infty} P(k \leqslant \xi < k+1) = \sum_{k=1}^{\infty} P(\xi \geqslant n) + 1$$

Определение 2. Случайные величины ξ и η наз. *одинаково распределенными*, если у них совпадают функции распределения.

Обозначение: $\xi \stackrel{d}{=} \eta$

Утверждение 4. Если $\xi \stackrel{d}{=} \eta$, то для \forall борелевской g(x) т.ч. $Eg(\xi)$ конечно, выполнено:

$$Eg(\xi) = Eg(\eta)$$

Г

Теорема 1 (Усиленный закон больших чисел в форме Колмогорова).

Пусть $\{\xi_n, n \in \mathbb{N}\}$ – независимые одинаково распределенные случ. величины (н.о.р.с.в), т.ч: $E|\xi_i| < +\infty$.

Tог ∂a

$$\frac{\xi_1 + \ldots + \xi_n}{n} \xrightarrow{n.n.} m = E\xi_1$$

$$\sum_{n=1}^{\infty} P(|\xi_1| \geqslant n) < +\infty$$

В силу одинаковой распределенности:

$$\sum_{n=1}^{\infty} P(|\xi_1| \geqslant n) = \sum_{n=1}^{\infty} P(|\xi_n| \geqslant n) < +\infty$$

Согласно лемме Бореля-Кантелли:

$$P(\{|\xi_n| \geqslant n\} \text{ б.ч.}) = 0$$

 \Rightarrow с вероятностью 1 $\forall n$, кроме конечного числа, выполнено $\{|\xi_n| \leqslant n\}$.

Обозначим $\widetilde{\xi_n} = \xi_n \ I\{|\xi_n| \leqslant n\}.$

Тогда с вероятностью 1, $\widetilde{\xi_n}=\xi_n$, кроме конечного числа элементов.

Считаем, что $E\xi_i=0$

Получаем, что

$$P\left(\frac{\xi_1 + \ldots + \xi_n}{n} \to 0\right) = P\left(\frac{\widetilde{\xi_1} + \ldots + \widetilde{\xi_n}}{n} \to 0\right)$$

Рассмотрим $E\widetilde{\xi_n}$:

$$E\widetilde{\xi_n} = E\xi_n \ I\{|\xi_n| \leqslant n\} = E\xi_1 \ I\{|\xi_1| < n\} \xrightarrow[n \to \infty]{} E\xi_1 = 0$$

Согласно лемме Тёплица

$$\frac{1}{n} \sum_{k=1}^{n} E\widetilde{\xi_k} \to 0, \quad \text{при } n \to \infty$$

Значит

$$\underbrace{\widetilde{\xi_1} + \ldots + \widetilde{\xi_n}}_{n} \xrightarrow{\text{\tiny II.H.}} 0 \Leftrightarrow \underbrace{(\widetilde{\xi_1} - E\widetilde{\xi_1}) + \ldots + (\widetilde{\xi_n} - E\widetilde{\xi_n})}_{n} \xrightarrow{\text{\tiny II.H.}} 0$$

Обозначим $\bar{\xi_n} = \tilde{\xi_n} - E\tilde{\xi_n}$.

Согласно лемме Кронекера, если сходится ряд

$$\sum_{k=1}^{\infty} \frac{\bar{\xi_k}}{k}, \quad \text{to} \frac{\bar{\xi_1} + \ldots + \bar{\xi_n}}{n} \to 0$$

(для фикс. $\omega \in \Omega$)

Остается проверить, что ряд $\sum_{k=1}^{\infty} \frac{\bar{\xi_k}}{k}$ сходится с вероятностью 1.

Согласно теореме Колмогорова-Хинчина для этого достаточно показать $(\bar{\xi_k}$ - нез., $E\bar{\xi_k}=0)$, что сходится ряд $\sum\limits_{k=1}^{\infty} \frac{E\bar{\xi_k^2}}{k^2}$

$$\sum_{k=1}^{\infty} \frac{E\bar{\xi}_{k}^{2}}{k^{2}} = \sum_{k=1}^{\infty} \frac{D\tilde{\xi}_{k}}{k^{2}} \leqslant \sum_{k=1}^{\infty} \frac{E\tilde{\xi}_{k}^{2}}{k^{2}} = \sum_{k=1}^{\infty} \frac{1}{k^{2}} E\xi_{k}^{2} I\{|\xi_{k}| \leqslant k\} = \sum_{k=1}^{\infty} \frac{1}{k^{2}} E(\xi_{1}^{2} I\{|\xi_{1}| \leqslant k\}) = \sum_{k=1}^{\infty} \frac{1}{k^{2}} E(\xi_{1}^{2} \sum_{n=1}^{k} I\{n-1 < |\xi_{1}| \leqslant n\}) = \sum_{n=1}^{\infty} E(\xi_{1}^{2} I\{n-1 < |\xi_{1}| \leqslant n\}) \cdot \sum_{k=n}^{\infty} \frac{1}{k^{2}} \leqslant \sum_{n=1}^{\infty} E\left(\xi_{1}^{2} I\{n-1 < |\xi_{1}| \leqslant n\} \cdot \frac{2}{n}\right) \leqslant 2 \sum_{n=1}^{\infty} E(|\xi_{1}| I\{n-1 < |\xi_{1}| \leqslant n\}) = 2E\left(\sum_{n=1}^{\infty} |\xi_{1}| I\{n-1 < |\xi_{1}| \leqslant n\}\right) = 2E|\xi_{1}| < +\infty$$

Замена переменных в интеграле Лебега

Пусть (Ω, \mathcal{F}, P) – вероятностное пространство, ξ – с.в. на нем и $E\xi$ – конечно.

Обозначения.

1.
$$E\xi = \int\limits_{\Omega} \xi \, dP$$
 — интеграл Лебега от ξ по вер. мере P .

2.
$$\int\limits_A \xi \, dP := E(\xi I_A)$$
 для $orall A \in \mathcal{F}$

Напоминание: Распределение P_{ξ} – это вероятностная мера на $(\mathbb{R}, B(\mathbb{R}))$ $(P_{\xi} = P(\xi \in B))$ Для вер. пр-ва $(\mathbb{R}, B(\mathbb{R}), P_{\xi})$ тоже можно ввести мат. ожидание.

1. $\int\limits_{\mathbb{R}} g(x) P_{\xi}(dx)$ – мат. ожидание с.в. g(x) на таком пространстве.

2.

$$\int_{A} g(x)P_{\xi}(dx) := \int_{\mathbb{R}} g(x)I_{A}(x)P_{\xi}(dx), \quad \forall A \in B(\mathbb{R})$$

3. Если $F_{\xi}(x)$ – ф.р. с.в. ξ , то

$$dF_{\mathcal{E}}(x) := P_{\mathcal{E}}(dx)$$

Вопрос: можно ли вычислить $Eg(\xi)$, зная только ее распределение?

Теорема 1 (замена переменных в интеграле Лебега).

Пусть $\xi = (\xi_1, \dots, \xi_n)$ – случайный вектор, $g \colon \mathbb{R}^n \to \mathbb{R}$ – борелевская функция. Тогда для $\forall B \in B(\mathbb{R})$ выполнено:

$$E(g(\xi))I\{\xi \in B\} \stackrel{\text{def}}{=} \int_{\{\xi \in B\}} g(\xi)dP = \int_{B} g(x)P_{\xi}(dx)$$

Доказательство. Пусть g – простая: $g(x) = I_A(x)$ для $A \in B(\mathbb{R}^n)$. Тогда

$$Eg(\xi)I\{\xi \in B\} = EI\{\xi \in A\}I\{\xi \in B\} = EI\{\xi \in A \cap B\} =$$

$$= \int_{A \cap B} P_{\xi}(dx) = \int_{B} I_{A}(x)P_{\xi}(dx) = \int_{B} g(x)P_{\xi}(dx)$$

Если функция g(x) – простая неотрицательна, то искомое равенство следует из линейности мат. ожидания. Если g(x) – произвольная неотрицательная, то рассмотрим последовательность простых неотриц. $g_n(x)$ т.ч. $g_n(x) \uparrow g(x)$.

Тогда по теореме о монотонной сходимости:

$$Eg_n(\xi)I\{\xi \in B\} \xrightarrow[n \to \infty]{} Eg(\xi)I\{\xi \in B\}$$
$$\int_B g_n(x)P_{\xi}(dx) \xrightarrow[n \to \infty]{} \int_B g(x)P_{\xi}(dx)$$

 \Rightarrow доказано для неотриц. g(x).

В общем случае, пользуемся разложением $g(x) = g^+(x) - g^-(x)$ и линейностью математического ожидания.

Следствие 1.

- (1) Для вычисления $Eg(\xi)$ достаточно знать только распределение ξ .
- (2) Для \forall борелевской $g(x) \colon \mathbb{R}^n \to \mathbb{R}$ $u \; \forall \; cлуч.$ вектора $\xi \; u \colon \mathbb{R}^n$:

$$Eg(\xi) = \int_{\mathbb{R}^n} g(x) P_{\xi}(dx)$$

Доказательство. Достаточно положить $B = \mathbb{R}^n$ в теореме.

(3) Если ξ – с.в., то

$$E\xi = \int_{\mathbb{R}} x P_{\xi}(dx)$$

Доказательство. Достаточно положить g(x)=x в 2

(4) Eсли $\xi\stackrel{d}{=}\eta$ – одинаково распределены, то для \forall борелевской g(x) : $Eg(\xi)=Eg(\eta)$

Доказательство.

$$Eg(\xi) = \int_{\mathbb{R}} g(x)P_{\xi}(dx) = \int_{\mathbb{R}} g(x)P_{\eta}(dx) = Eg(\eta)$$

(5) Пусть ξ – дискретная с.в. со значениями в $\mathcal{X} = \{x_i\}_{i=1}^{\infty}$. Тогда для \forall борелевской функции g(x):

$$Eg(\xi) = \sum_{i=1}^{\infty} g(x_i) P(\xi = x_i) = \sum_{i=1}^{\infty} g(x_i) P_{\xi}(\{x_i\})$$

Доказательство. Если $g(x)\geqslant 0$, то $\sum\limits_{i=1}^n g(x_i)I\{\xi=x_i\}\uparrow g(\xi)$

⇒ по теореме о монотонной сходимости:

$$Eg(\xi) = \lim_{n \to \infty} \sum_{i=1}^{n} g(x_i) P(\xi = x_i) = \sum_{i=1}^{\infty} g(x_i) P(\xi = x_i)$$

В общем, раскладываем g(x) на g^+ и g^- и пользуемся линейностью мат. ожидания. \qed

Следствие 2. если P_{ξ} – дискр. распр. на $\mathcal{X}=\{x_i\},\ mo$

$$\int_{\mathbb{R}} g(x) P_{\xi}(dx) = \sum_{i=1}^{\infty} g(x_i) P_{\xi}(\{x_i\}) = \int_{\mathbb{R}} g(x) dF_{\xi}(x)$$

Пример 14. Пусть $\xi \sim Pois(\lambda)$. Найти $E\xi = ?$

$$\xi \sim Pois(\lambda) \Rightarrow P(\xi=k) = rac{\lambda^k e^{-\lambda}}{k!}, \quad$$
 для $\forall k \in \mathbb{Z}_+$

Тогда

$$E\xi = \sum_{k=0}^{\infty} k P(\xi = k) = \sum_{k=0}^{\infty} k \frac{\lambda^k e^{-\lambda}}{k!} = e^{-\lambda} \sum_{k=1}^{\infty} k \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} = \lambda$$

(6) Пусть ξ – абсолютно непрерывная с.в. с плотностью $f_{\xi}(x)$. Тогда для $\forall g(x)$ – борелевской функции:

$$Eg(\xi) = \int_{\mathbb{R}} g(x) f_{\xi}(x) dx$$

Доказательство. Пусть F_{ξ} – ф.р. ξ . Тогда по определению плотности,

$$P(\xi \leqslant x) = F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(y) dy$$

С другой стороны,

$$P(\xi \leqslant x) = P_{\xi}((-\infty, x]) = \int_{-\infty}^{x} P_{\xi}(dy)$$
$$\Rightarrow P_{\xi}(dy) = f_{\xi}(y)dy$$

В итоге,

$$Eg(\xi) = \int_{\mathbb{R}} g(x) P_{\xi}(dx) = \int_{\mathbb{R}} g(x) f_{\xi}(x) dx$$

Пример 15. Пусть $\xi \sim N(a, \sigma^2)$. Вычислить $E\xi$.

Плотность $N(a, \sigma^2)$ равна:

$$f_{\xi} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}}$$

Тогда

$$\Rightarrow E\xi = \int_{R} x f_{\xi}(x) dx = \int_{\mathbb{R}} x \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x-a)^{2}}{2\sigma^{2}}} dx$$
$$= \int_{\mathbb{R}} (x-a) \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x-a)^{2}}{2\sigma^{2}}} dx + a \int_{\mathbb{R}} f_{\xi}(x) dx = a$$

Замечание. Если $\xi = (\xi_1, \dots, \xi_n)$ – случайный вектор с плотностью $f_{\xi}(x_1, \dots, x_n)$, то для $\forall g \colon \mathbb{R}^n \to \mathbb{R}$ – борелевской функции:

$$Eg(\xi_1,\ldots,\xi_n) = \int_{\mathbb{R}^n} g(x_1,\ldots,x_n) f_{\xi}(x_1,\ldots,x_n) dx_1 \ldots dx_n$$

Пример 16. Если (ξ,η) имеет плотность $f_{(\xi,\eta)}(x,y)$, то

$$E\xi\eta = \int_{\mathbb{R}^2} xy f_{(\xi,\eta)}(x,y) dx dy$$

Прямое произведение вероятностных пространств

Определение 1. Пусть $(\Omega, \mathcal{F}_1, P_1)$ и $(\Omega, \mathcal{F}_2, P_2)$ – два вероятностных пространства. Тогда вероятностное пространство (Ω, \mathcal{F}, P) наз. их *прямым произведением*, если

- $\Omega = \Omega_1 \times \Omega_2$
- $\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$, r.e. $\mathcal{F} = \sigma(\{B_1 \times B_2 \mid B_1 \in \mathcal{F}_1, B_2 \in \mathcal{F}_2\})$
- $P=P_1\otimes P_2$, т.е. $P=P_1\otimes P_2$, т.е. $P=P_1\otimes P_2$, т.е. $P=P_1\otimes P_2$, т.е. $P=P_1\otimes P_2$, т.е. правилу $P(B_1\times B_2)=P_1(B_1)\cdot P_2(B_2)$

Такое продолжение \exists и единственно по теореме Каратеодори.

Теорема 1 (Фубини).

 $\Pi y cm \iota (\Omega, \mathcal{F}, P)$ – прямое произведение $(\Omega, \mathcal{F}_1, P_1)$ и $(\Omega, \mathcal{F}_2, P_2)$.

Пусть с.в
$$\xi \colon \Omega \to \mathbb{R}$$
 т.ч. $\int\limits_{\Omega} |\xi(\omega_1,\omega_2)| dP < +\infty$

Тогда интегралы $\int\limits_{\Omega_1} \xi(\omega_1,\omega_2) dP_1$ и $\int\limits_{\Omega_2} \xi(\omega_1,\omega_2) dP_2$ определены почти наверное относительно P_2 и P_1 , являются измеримыми отностительно \mathcal{F}_2 , \mathcal{F}_1 соотв., и кроме того,

$$\int\limits_{\Omega} \xi(\omega_1, \omega_2) dP = \int\limits_{\Omega_1} \int\limits_{\Omega_2} \xi(\omega_1, \omega_2) dP_2 dP_1 = \int\limits_{\Omega_2} \int\limits_{\Omega_1} \xi(\omega_1, \omega_2) dP_1 dP_2$$

Смысл теоремы: Двойной интеграл = повторному интегралу

Утверждение 5. Пусть ξ , η – независ. с.в.

Tогда $(\mathbb{R}^2, B(\mathbb{R}^2), P_{(\xi,\eta)})$ явл. прямым произведением $(\mathbb{R}^2, B(\mathbb{R}^2), P_{\xi})$ и $(\mathbb{R}^2, B(\mathbb{R}^2), P_{\eta})$

Доказательство.

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$$
$$B(\mathbb{R}^2) = B(\mathbb{R}) \otimes B(\mathbb{R})$$
$$P_{(\xi,\eta)}(B_1 \times B_2) = P_{\xi}(B_1) \cdot P_{\eta}(B_2)?$$

Действительно,

$$P_{(\xi,\eta)}(B_1 \times B_2) = P((\xi,\eta) \in B_1 \times B_2) = P(\xi \in B_1, \eta \in B_2) = |\text{независимость}| = P(\xi \in B_1) \cdot P(\eta \in B_2) = P_{\xi}(B_1) \cdot P_{\eta}(B_2).$$

Лемма 24 (О свертке распределений).

Пусть ξ, η – нез. с.в. с ф.р. F_{ξ} и F_{η} .

Тогда:

1.

$$F_{\xi+\eta}(z) = \int\limits_{\mathbb{R}} F_{\xi}(z-x)dF_{\eta}(x) = \int\limits_{\mathbb{R}} F_{\eta}(z-x)dF_{\eta}(x)$$

2. Если ξ имеет плотность $f_{\xi}(x)$, η – плотность $f_{\eta}(x)$, то $\xi+\eta$ имеет плотность

$$f_{\xi+\eta}(z) = \int_{\mathbb{R}} f_{\xi}(z-x) f_{\eta}(x) dx = \int_{\mathbb{R}} f_{\eta}(z-x) f_{\xi}(x) dx$$

Доказательство.

1.

$$\begin{split} F_{\xi+\eta}(z) &= P(\xi+\eta\leqslant z) = EI\{\xi+\eta\leqslant z\} = |\text{ф-ла замены переменных}| = \\ &= \int\limits_{\mathbb{R}^2} I\{x+y\leqslant z\} P_{(\xi,\eta)}(dx,dy) = \int\limits_{\mathbb{R}^2} I\{x+y\leqslant z\} P_{\xi}(dx) P_{\eta}(dy) = |\text{теор. Фубини}| = \\ &= \int\limits_{\mathbb{R}} \left(\int\limits_{\mathbb{R}} I\{x+y\leqslant z\} P_{\xi}(dx)\right) P_{\eta}(dy) = \int\limits_{\mathbb{R}} P(\xi+y\leqslant z) P_{\eta}(dy) = \int\limits_{\mathbb{R}} F_{\eta}(z-y) dF_{\eta}(dy) \end{split}$$

2.

$$\begin{split} F_{\xi+\eta}(z) &= \int\limits_{\mathbb{R}^2} I\{x+y\leqslant z\} P_\xi(dx) P_\eta(dy) = \int\limits_{\mathbb{R}^2} I\{x+y\leqslant z\} f_\xi(x) f_\eta(y) dx dy = \\ &= \left|t=x+y, x'=x\right| = \int\limits_{\mathbb{R}^2} I\{t\leqslant z\} f_\xi(x') f_\eta(t-x') dx' dt = |\text{теорема Фубини}| = \\ &= \int\limits_{-\infty}^z \left(\int\limits_{\mathbb{R}} f_\xi(x') f_\eta(t-x') dx'\right) dt = \int\limits_{-\infty}^z f_{\xi+\eta}(t) dt \end{split}$$

Замечание:

Если $\xi_1 \dots \xi_n$ – незав. с.в., то $P_{(\xi_1, \dots, \xi_n)} = P_{\xi_1} \otimes \dots \otimes P_{\xi_n}$, $dF_{\xi_1, \dots, \xi_n}(x_1 \dots x_n) = dF_{\xi_1}(x_1) \dots dF_{\xi_n}(x_n)$

и если ξ_i имеет плотность $f_{\xi_i}(x_i)$, то вектор $\xi = (\xi_1, \dots, \xi_n)$ тоже имеет плотность

$$f_{\xi}(x_1 \dots x_n) = f_{\xi_1}(x_1) \cdot \dots \cdot f_{\xi_n}(x_n) = \frac{\partial^n}{\partial x_1 \dots \partial x_n} F_{\xi}(x_1 \dots x_n)$$

Слабая сходимость вероятностный мер

Определение 1. Последовательность $\{F_n(x), n \in \mathbb{N}\}$ функций распределения на \mathbb{R} назыв. *слабо сходящейся* к функции распределения F(x), если $\forall f(x)$ – огр. непрер. функции на \mathbb{R}

$$\int_{\mathbb{R}} f(x)dF_n(x) \xrightarrow[n \to \infty]{} \int_{\mathbb{R}} f(x)dF(x)$$

Обозначение 1. $F_n \xrightarrow{w} F$

Следствие 1. *C. в.* $\xi_n \xrightarrow{d} \xi \Leftrightarrow F_{\xi_n} \xrightarrow{w} F_{\xi}$

Доказательство.

$$Ef(\xi_n)=|$$
замена переменной $|=\int\limits_{\mathbb{R}}f(x)dF_{\xi_n}(x)\xrightarrow[n\to\infty]{}Ef(\xi)=\int\limits_{\mathbb{R}}f(x)dF_{\xi}(x)$

Определение 2. Последовательность $\{F_n(x), n \in \mathbb{N}\}$ – функций распределения на \mathbb{R} называется сходящейся в основном к функции распределения F(x), если $\forall x \in \mathbb{C}(F)$:

$$F_n(x) \xrightarrow[n \to \infty]{} F(x)$$

где $\mathbb{C}(F)$ – множество точек непр. функции F(x)

Обозначение 2. $F_n \Rightarrow F$

Пусть $\{P_n, n \in \mathbb{N}\}, P$ – вероятностная мера в $(\mathbb{R}^m, B(\mathbb{R}^m))$

Определение 3. Последовательность P_n наз. *слабо сходящейся* к вер. мере P, если $\forall f(x)$ – огранич. непр. ф-ии в \mathbb{R}^m выполнено:

$$\int_{\mathbb{R}^m} f(x) P_n(dx) \xrightarrow[n \to \infty]{} \int_{\mathbb{R}^m} f(x) P(dx)$$

Обозначение 3. $P_n \xrightarrow{w} P$

Следствие 2. *C. в.* $\xi_n \xrightarrow{d} \xi \Leftrightarrow F_{\xi_n} \xrightarrow{w} F_{\xi} \Leftrightarrow P_{\xi_n} \xrightarrow{w} P_{\xi}$

Определение 4. Последовательность P_n сходится к вер. мере P в основном, если для $\forall A \in B(\mathbb{R}^m)$ с условием $P(\partial A) = 0$ выполнено:

$$P_n(A) \xrightarrow[n\to\infty]{} P(A)$$

Обозначение 4. $P_n \Rightarrow P$

Теорема 1 (Александров).

Для вер. мер в \mathbb{R}^m следующие условия эквивалентны

1.
$$P_n \xrightarrow{w} P$$

2.
$$\overline{\lim}_n P_n(A) \leqslant P(A)$$
, \forall замкнутого A

3.
$$\underline{\lim}_{n} P_n(A) \geqslant P(A), \quad \forall \ omkpumoro \ A$$

4.
$$P_n \Rightarrow P$$

Теорема 2 (Эквивательность пределений сходимости).

Пусть $\{P_n, n \in \mathbb{N}\}, P$ – вероятностные меры на \mathbb{R} , $\{F_n(x), n \in \mathbb{N}\}, F(x)$ – соответств. им функции распределения.

Тогда следующие условия эквивалентны:

1.
$$P_n \xrightarrow{w} P$$

$$2. P_n \Rightarrow P$$

3.
$$F_n \xrightarrow{w} P$$

4.
$$F_n \Rightarrow F$$

Доказательство. По теореме Александрова достаточно проверить, что (2) эквивалентно (4).

$$(2) \Rightarrow (4)$$
:

Пусть $x \in \mathbb{C}(F)$

Тогда $\partial((-\infty;x]) = \{x\}.$

Значит,

$$F_n(x) = P_n((-\infty; x]) \xrightarrow{P_n \to P} P((-\infty; x]) = F(x)$$

 $(4) \Rightarrow (2)$:

Для установления (2) по теореме Александрова достаточно проверить, что $\varliminf_n P_n(A) \geqslant P(A), \forall A$ – откр. из $\mathbb R$

Пусть $A \subset \mathbb{R}$ – открыто, тогда $A = \bigsqcup_{k=1}^{\infty} I_k$, где $I_k = (a_k, b_k)$ – непересек. интервалы.

Для $\forall \varepsilon>0$ выберем $I_k'=(a_k',b_k']\subset I_k$, т.ч. a_k',b_k' – точки непрерывности F(x) и

$$P(I_k') \geqslant P(I_k) - \frac{\varepsilon}{2^k}$$

Такой выбор $(a'_k, b'_k]$ возьмем в силу непр. вер. меры и того факта, что F(x) имеет не более чем счетное число точек разрыва. Тогда

$$\underline{\lim}_{n} P_n(A) = \underline{\lim}_{n} \sum_{k=1}^{\infty} P_n(I_k) \geqslant |\forall N| \geqslant \underline{\lim}_{n} \sum_{k=1}^{N} P_n(I_k) \geqslant \sum_{k=1}^{N} \underline{\lim}_{n} P_n(I_k)$$

Устремим $N \to \infty$:

$$\underline{\lim}_{n} P_{n}(A) \geqslant \sum_{k=1}^{\infty} \underline{\lim}_{n} P_{n}(I_{k}) \geqslant \sum_{k=1}^{\infty} \underline{\lim}_{n} P_{n}(I'_{k}) \stackrel{\triangle}{=}$$

Но $P_n(I_k') = P((a_k', b_k'])) = F_n(b_k') - F_n(a_k') \xrightarrow[n \to \infty]{} F(b_k') - F(a_k')$, так как a_k', b_k' – точки непр. F(x). Значит $F_n \Rightarrow F$

В силу произвольности $\varepsilon > 0$, $\varliminf_n P_n(A) \geqslant P(A)$

Следствие 3. Пусть $\{\xi_n, n \in \mathbb{N}\}, \xi$ – c.s. Тогда $\xi_n \xrightarrow{d} \xi \Leftrightarrow F_{\xi_n}(x) \xrightarrow[n \to \infty]{} F_{\xi}(x)$ для $\forall x \in \mathbb{C}(F_{\xi})$

Смысл сходимости по распределению:

Это апроксимация распределений.

Пусть η – нек. с.в. со "сложным" распр. (сложно вычислить ф.р. η).

Пусть $\xi_n \xrightarrow{d} \xi$, где распр. ξ "легко"вычислить(или оно известно).

Если $\xi_m \stackrel{d}{=} \eta$ для достаточно большого номера m, то ф.р. η можно апроксимировать ф.р. ξ .

Предельные теоремы для схемы Бернулли

Описание модели: проводим большое число независимых однородных случ. экспериментов, в которых мы фиксируем "успех"или "неудачу".

Нас интересует распределение числа успехов при проведении большого числа экспериментов.

Математическая модель:

$$\{\xi_n, \ n \in \mathbb{N}\}$$
 — нез. с.в. $P(\xi_n = 1) = p, \ P(\xi_n = 0) = 1 - p = q$

Определение 1. Распределение ξ_n наз. распр. Бернулли.

Обозначим $S_n = \xi_1 + \ldots + \xi_n$ – число "успехов" после проведения n испытаний.

Теорема 1 (Бернулли, 1703, ЗБЧ).
$$\frac{S_n}{n} \stackrel{p}{\to} p$$

Несмотря на то, что распр. S_n известно, практическое вычисление вероятностей вида $P(a \leq S_n \leq b)$ при очень больших n затруднительно.

Теорема 2 (Пуассон).

 $Ec \Lambda u \ np(n) \to \lambda > 0, \ mo \ \forall k \in \mathbb{Z}_+$

$$P(S_n = k) \xrightarrow[n \to \infty]{} \frac{\lambda^k e^{-\lambda}}{k!}$$

Доказательство.

$$P(S_n = k) = C_n^k p^k (1-p)^{n-k} = \frac{1}{k!} (np)^k \frac{n(n-1)\dots(n-k+1)}{n^k} (1-p)^n (1-p)^{-k}$$
$$= \frac{1}{k!} (\lambda + o(1))^k e^{-\lambda} \xrightarrow[n \to \infty]{} \frac{1}{k!} \lambda^k e^{-\lambda}$$

Следствие 1. Если $\xi_n \sim Bin(n,p(n)),\ \emph{rde }np(n) \rightarrow \lambda > 0,\ mo\ \xi_n \stackrel{d}{\rightarrow} \eta \sim Pois(\lambda)$

Доказательство. $\xi_n \xrightarrow{d} \eta \Leftrightarrow \forall x \in \mathbb{C}(F_\eta) : F_{\xi_n}(x) \to F_{\eta}(x)$ Но ξ_n и η принимает значения $\mathbb{Z}_+ \Rightarrow \forall x \in \mathbb{R} \setminus \mathbb{Z}_+ :$

$$F_{\xi_n}(x) = \sum_{\substack{k \leqslant x \\ k \in \mathbb{Z}_+}} P(\xi_n = k) \to |$$
по теор. Пуассона $| \to \sum_{\substack{k \leqslant x \\ k \in \mathbb{Z}_+}} P(\eta = k) = F_{\eta}(x)$

Теорема 3 (Муавр-Лаплас).

Пусть $p = const, S_n \sim Bin(n, p)$. Обозначим для $\forall -\infty \leqslant a \leqslant b \leqslant +\infty$

$$P_n(a,b) = P\left(a \leqslant \frac{S_n - np}{\sqrt{npq}} \leqslant b\right)$$

Тогда имеет место сходимость:

$$\sup_{-\infty \leqslant a \leqslant b \leqslant +\infty} \left| P_n(a,b) - \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \right| \xrightarrow[n \to \infty]{} 0$$

Следствие 2. В условиях теоремы Муавра-Лапласа

$$\frac{S_n - np}{\sqrt{npq}} \xrightarrow{d} \eta \sim N(0, 1)$$

 \mathcal{A} оказаmельcmво. Обозначим $\xi_n := \frac{S_n - np}{\sqrt{npq}}$

Тогда $\xi_n \xrightarrow{d} \eta \sim N(0,1) \Leftrightarrow \forall x \in \mathbb{R}$

$$F_{\xi_n}(x) \xrightarrow[n \to \infty]{} F_{\eta}(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

Но теорема Муавра-Лапласса именно это и утверждает

Характеристические функции

Определение 1. Характеристической функцией с.в. ξ называется

$$\varphi_{\xi}(t) = Ee^{it\xi}, \quad t \in \mathbb{R}$$

 $\it Замечание.\$ Характеристическая функция, вообще говоря, явл. комплекснозначной. Мы понимаем $\it Ee^{it\xi}$ как

$$Ee^{it\xi} = E\cos(t\xi) + iE\sin(t\xi)$$

Определение 2. Пусть F(x), $x \in \mathbb{R}$ – функция распределения на \mathbb{R} Её характеристической функцией наз.

$$\varphi(t) = \int_{\mathbb{R}} e^{it\xi} dF(x)$$

Если P – вероятностная мера на $(\mathbb{R}, B(\mathbb{R}))$, то её характеристической ф-ей наз.

$$\varphi(t) = \int\limits_{\mathbb{D}} e^{it\xi} P(dx)$$

Следствие 1. $\varphi_{\xi}(t)$ – $x.\phi.$ c.e. $\xi \Leftrightarrow \varphi_{\xi}(t)$ – $x.\phi.$ $F_{\xi}(x) \Leftrightarrow \varphi_{\xi}(t)$ – $x.\phi.$ P_{ξ} $(pacnp.\ \xi)$

Доказательство.

$$\varphi_{\xi}(t) = Ee^{it\xi} = \int_{\mathbb{R}} e^{itx} P_{\xi}(dx) = \int_{\mathbb{R}} e^{itx} dF_{\xi}(x)$$

Определение 3. Пусть $\xi = (\xi_1, \dots, \xi_n)$ – случайный вектор. Его характеристической функцией наз.

$$\varphi_{\xi}(t) = Ee^{i\langle t\xi \rangle}$$
, где $t = (t_1, \dots, t_n) \in \mathbb{R}^n$, а $\langle t, \xi \rangle = \sum_{i=1}^n t_i \xi_i$

Определение 4. Пусть $F(x), x \in \mathbb{R}$ – функция распр. в \mathbb{R}^n .

Её х.ф. наз.

$$\varphi(t) = \int_{\mathbb{R}^n} e^{i\langle t, x \rangle} dF(x), \quad t \in \mathbb{R}^n$$

Если P – вероятносная мера в \mathbb{R}^n , то её х.ф. наз

$$\varphi(t) = \int_{\mathbb{R}^n} e^{i\langle t, x \rangle} P(dx), \quad t \in \mathbb{R}^n$$

Следствие 2. Если $\xi = (\xi_1, \dots, \xi_n)$ – сл. вектор, то $\varphi_{\xi}(t)$ – $x.\phi.$ $\xi \Leftrightarrow \varphi_{\xi}(t)$ – $x.\phi.$ $F_{\xi}(x), x \in \mathbb{R}^n \Leftrightarrow \varphi_{\xi}(t)$ – $x.\phi.$ $P_{\xi}(t)$

Пример 17.

1. $\xi \sim Bern(p)$, бернуллевская с.в., $P(\xi=1)=p, \quad P(\xi=0)=1-p.$ Тогда

$$\varphi_{\xi}(t) = Ee^{it\xi} = e^{it}P(\xi = 1) + e^{it0}P(\xi = 0) = pe^{it} + 1 - p$$

2. $\xi \sim Pois(\lambda)$, пуассоновская с.в.

$$\varphi_{\xi}(t) = Ee^{it\xi} = \sum_{k=0}^{\infty} e^{itk} P(\xi = k) = \sum_{k=0}^{\infty} e^{itk} \frac{\lambda^k}{k!} e^{-\lambda} = \left(\sum_{k=0}^{\infty} \frac{(e^{it}\lambda)^k}{k!}\right) e^{-\lambda} = e^{\lambda(e^{it}-1)}$$

3. $\xi \sim Exp(\lambda)$ экспоненциальная с.в.

$$\varphi_{\xi}(t) = Ee^{it\xi} = \int_{0}^{+\infty} e^{itx} \lambda e^{-\lambda x} dx = \lambda \int_{0}^{+\infty} e^{(it-\lambda)x} dx = \frac{\lambda}{\lambda - it}$$

Основные свойства характеристических функций

① Пусть $\varphi(t)$ – х.ф. с.в. ξ . Тогда $|\varphi(t)|\leqslant \varphi(0)=1,\ \forall t\in\mathbb{R}$

Доказательство.

$$|\varphi(t)| = |Ee^{it\xi}| \leqslant E|e^{it\xi}| = 1 = \varphi(0)$$

(2) Пусть $\varphi(t)$ – хар. ф. с.в. ξ , а $\eta=a\xi+b,\ a,b\in\mathbb{R}$. Тогда

$$\varphi_n(t) = e^{itb} \varphi_{\mathcal{E}}(ta)$$

Доказательство.

$$\varphi_{\eta}(t) = Ee^{it\eta} = Ee^{it(a\xi+b)} = e^{itb}E\varphi_{i(at)\xi} = e^{itb}\varphi_{\xi}(at)$$

 \bigcirc 3 Пусть $\varphi(t)$ – х.ф.с.в. ξ . Тогда $\varphi(t)$ равномерно непрерывна на \mathbb{R} .

Доказательство.

$$\left|\varphi(t+h)-\varphi(t)\right| = \left|Ee^{i(t+h)\xi}-Ee^{it\xi}\right| = \left|E(e^{i(t+h)\xi}-e^{it\xi})\right| = \left|E(e^{it\xi}(e^{ih\xi}-1))\right| = E|e^{ih\xi}-1|$$

При $h \to 0$, $e^{ih\xi} - 1 \to 0$ п.н.

Кроме того, $E|e^{ih\xi}-1|\leqslant 2\Rightarrow$ по теореме Лебега о мажорируемой сходимости:

$$E|e^{ih\xi}-1| \xrightarrow[h\to 0]{} 0 \Rightarrow \varphi(t)$$
 равномерно непрерывна на \mathbb{R} .

(4) Пусть $\varphi(t)$ – х.ф. с. в. ξ . Тогда $\varphi(t) = \overline{\varphi(-t)}$

Доказательство.

$$\varphi(t) = Ee^{it\xi} = Ee^{conj-it\xi} = \overline{Ee^{-it\xi}} = \overline{\varphi(-t)}$$

(5) Пусть $\varphi(t)$ – х.ф. с.в. ξ . Тогда $\varphi(t)$ – действительнозначная \Leftrightarrow распределение ξ симметрично, т.е. $\forall B \in B(\mathbb{R})$

$$P(\xi \in B) = P(\xi \in -B)$$

Доказательство.

(<
=) Пусть распр. ξ – симметрично. Тогда
 $\xi \stackrel{d}{=} -\xi \Rightarrow$

$$Esin(t\xi) = Esin(-t\xi) = -Esin(t\xi)$$

$$\Rightarrow Esin(t\xi) = 0 \Rightarrow \varphi(t) = Ee^{it\xi} = Ecos(t\xi) \in \mathbb{R}$$

– действительнозначная.

 (\Rightarrow) Пусть $\varphi(t)\in\mathbb{R},\,\forall t\in\mathbb{R}.$ Тогда по свойствам 2 и 4

$$\varphi(t) = \varphi_{\xi}(t) = \overline{\varphi_{\xi}(-t)} = \varphi_{\xi}(-t) = \varphi_{-\xi}(t)$$

т.е. у ξ и у $-\xi$ одинаковая х.ф. \Rightarrow по теореме о единственности функции распр. ξ и $-\xi$ совпадают.

 $\Rightarrow \xi \stackrel{d}{=} -\xi$ и, значит, для $\forall B \in B(\mathbb{R})$:

$$P(\xi \in B) = P(-\xi \in B) = P(\xi \in -B)$$

6 Пусть ξ_1, \dots, ξ_n – независимые с.в., $S_n = \xi_1 + \dots + \xi_n$ Тогда

$$\varphi_{S_n}(t) = \prod_{k=1} \varphi_{\xi_k}(t)$$

Доказательство.

$$arphi_{S_n}(t)=Ee^{iS_nt}=Ee^{i\xi_1t}\dots e^{i\xi_nt}=| ext{c.b}|$$
 независимы $\Rightarrow e^{ ext{c.b}}$ независимы $|==\left(Ee^{i\xi t}\right)\dots\left(Ee^{i\xi_nt}\right)=\prod_{k=1}^n arphi_{\xi_k}(t)$

Теорема 1 (о производных х.ф.).

Пусть $E|\xi|^n<+\infty,\ n\in\mathbb{N}.$ Тогда для $\forall r\leqslant n:\exists \varphi_\xi^{(r)}(t),\ npuчем$

1.
$$\varphi_{\xi}^{(r)}(t) = \int_{\mathbb{R}} (ix)^r e^{itx} P_{\xi}(dx)$$

$$2. E\xi^r = \frac{\varphi_{\xi}^{(r)}(0)}{i^r}$$

3.
$$\varphi_{\xi}(t) = \sum_{k=0}^{n} \frac{(it)^k}{k!} E\xi^k + \frac{(it)^n}{n!} \varepsilon_n(t)$$

$$\varepsilon \partial e \ |\varepsilon_n(t)| \leqslant 3E|\xi|^n \ u \ \varepsilon_n(t) \to 0, \ npu \ t \to 0$$

Доказательство.

1. Заметим, что $E|\xi|^r$ конечно для $\forall r\leqslant n$ т.к. $|\xi|^r\leqslant |\xi|^n+1$ Рассмотрим

$$\frac{\varphi_{\xi}(t+h) - \varphi_{\xi}(t)}{h} = \frac{Ee^{i(t+h)\xi} - Ee^{it\xi}}{h} = E\left(e^{it\xi}\frac{e^{ih\xi} - 1}{h}\right)$$

При $h \to 0, \; \frac{e^{ih\xi}-1}{h} \to i\xi$ п.н., кроме того $\left|\frac{e^{ih\xi}-1}{h}\right| \leqslant |\xi|$

 \Rightarrow по теореме Лебега.

$$E\left(e^{it\xi} \frac{e^{ih\xi} - 1}{h}\right) \xrightarrow[h \to 0]{} E(i\xi e^{it\xi}) = \int_{\mathbb{R}} (ix)e^{itx} P_{\xi}(dx) = \varphi'_{\xi}(t)$$

Установление формулы для $\varphi_{\xi}^{(r)}$ при r>1 проводится по индукции аналогично.

- 2. Формула $E\xi^k=rac{arphi_\xi^{(r)}(0)}{i^r}$ сразу следует из формулы для $arphi_\xi^{(r)}$
- 3. Имеет место разложение:

$$e^{iy} = \sum_{k=0}^{n-1} \frac{(it)^k}{k!} + \frac{(iy)^n}{n!} (\cos \theta_1 y + i \sin \theta_2 y)$$

где $|\theta_1| \leqslant 1, |\theta_2| \leqslant 1.$

Тогда

$$e^{it\xi(\omega)} = \sum_{k=0}^{n-1} \frac{(it\xi)^k}{k!} + \frac{(it\xi)^n}{n!} (\cos(\theta_1(\omega)t\xi(\omega)) + i\sin(\theta_1(\omega)t\xi(\omega)))$$

$$\Rightarrow \varphi_{\xi}(t) = Ee^{it\xi} = \sum_{k=0}^{n-1} \frac{(it)^k}{k!} E\xi^k + \frac{(it)^n}{n!} E(\xi^n(\cos(\theta_1t\xi) + i\sin(\theta_1t\xi))) =$$

$$= \sum_{k=0}^n \frac{(it)^k}{k!} E\xi^k + \frac{(it)^n}{n!} \varepsilon_n(t)$$

где $\varepsilon_n(t) = E(\xi^n(\cos(\theta_1 t \xi) + i \sin(\theta_1 t \xi) - 1))$ Легко увидеть, что $|\varepsilon_n(t)| \leq 3E|\xi|^n$ и $E(\xi^n(\cos(\theta_1 t \xi) + i \sin(\theta_1 t \xi) - 1)) \to 0$, $t \to 0$ По теореме Лебега, $\varepsilon_n(t) \xrightarrow[t \to 0]{} 0$ Теорема 2 (о разложении в ряд х.ф.).

Пусть ξ – с.в. такова, что $E|\xi|^n < +\infty$ для $\forall n \in \mathbb{N}$.

 $\mathit{Ecлu}\ \mathit{dля}\ \mathit{некоторго}\ T>0\ \mathit{выполнено}$

$$\overline{\lim_{n}} \left(E \frac{|\xi|^n}{n!} \right)^{\frac{1}{n}} < \frac{1}{T},$$

то для $\forall t: |t| < T$, выполнено

$$\varphi_{\xi}(t) = \sum_{n=0}^{\infty} \frac{(it)^n}{n!}$$

Доказательство.

Пусть t_0 такое, что $|t_0| < T$. Тогда

$$\overline{\lim_{n \to \infty}} \left(E \frac{|\xi|^n |t_0|^n}{n!} \right)^{\frac{1}{n}} < \frac{|t_0|}{T} < 1$$

По принципу Коши ряд

$$\sum_{k=0}^{\infty} \frac{E|\xi|^n |t_0|^n}{n!}$$
 сходится.

Рассмотрим t т.ч. $|t| < |t_0|$:

$$\varphi_{\xi}(t) = \sum_{k=0}^{n} \frac{(it)^{k}}{k!} E\xi^{k} + \frac{(it)^{n}}{n!} \varepsilon_{n}(t)$$
 (*)

Ho $|R_n(t)| \leqslant \frac{|t|^n}{n!} 3E|\xi|^n \xrightarrow[n \to \infty]{} 0$

Устремляя $n \to \infty$ в (*) получаем

$$\varphi_{\xi}(t) = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} E\xi^n$$

В силу произвольности t_0 с условием $|t_0| < T$, получаем, что разложение верно для всех $t \in (-T,T)$

Пример 18. Пусть $\xi \sim N(0,1)$. Тогда $\varphi_{\xi} = e^{\frac{-t^2}{2}}$

Доказательство. Посчитаем моменты с.в. ξ .

$$E\xi^m = \int\limits_{\mathbb{D}} x^m \frac{1}{\sqrt(2\pi)} e^{\frac{-x^2}{2}} dx$$

Если m - нечетно, то $E\xi^m=0$

Если же m - четно, то

$$E\xi^{m} = 2 \int_{0}^{+\infty} x^{m} \frac{1}{\sqrt{2\xi}} e^{-\frac{x^{2}}{2}} dx = \left| y = \frac{x^{2}}{2} \right| = 2 \int_{0}^{+\infty} (2y)^{m/2} \frac{1}{\sqrt{2\pi}} e^{-y} \frac{dy}{\sqrt{2y}}$$

$$= 2^{\frac{m}{2}} \frac{1}{\sqrt{\pi}} \int_{0}^{+\infty} y^{\frac{m-1}{2}} e^{-y} dy = 2^{\frac{m}{2}} \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{m+1}{2}\right) = 2^{\frac{m}{2}} \frac{1}{\sqrt{\pi}} \frac{m-1}{2} \cdot \frac{m-3}{2} \cdot \dots \cdot \frac{1}{2} \cdot \Gamma\left(\frac{1}{2}\right)$$

$$= 2^{\frac{m}{2}} \frac{1}{\sqrt{\pi}} \frac{(m-1)!!}{2^{m/2}} \sqrt{\pi} = (m-1)!!$$

Рассмотрим

$$\begin{split} &\overline{\lim}_n \left(\frac{E|\xi|^n}{n!}\right)^{\frac{1}{n}} = \overline{\lim}_n \left(\frac{E|\xi|^{2n}}{(2n)!}\right)^{\frac{1}{2n}} = \overline{\lim}_n \left(\frac{(2n-1)!!}{(2n)!}\right)^{\frac{1}{2n}} = \overline{\lim}_n \left(\frac{1}{(2n)!!}\right)^{\frac{1}{2n}} \\ &= \overline{\lim}_n \left(\frac{1}{2^n n!}\right)^{\frac{1}{2n}} = |\text{ф-ла Стирлинга}| = \overline{\lim}_n \left(\frac{e^n}{2^n n^n}\right)^{\frac{1}{2n}} = 0 < \frac{1}{T}, \ \forall T \end{split}$$

 $\Rightarrow \varphi_{\xi}(t)$ разлагается в ряд на всей прямой.

Осталось его посчитать

$$\varphi_{\xi}(t) = \sum_{k=0}^{\infty} \frac{(it)^k}{k!} E\xi^k = \sum_{m=0}^{\infty} \frac{(it)^{2m}}{(2m)!} E\xi^{2m} = \sum_{m=0}^{\infty} \frac{(-t^2)^m}{(2m)!} (2m-1)!!$$

$$= \sum_{m=0}^{\infty} \frac{(-t^2)^m}{(2m)!!} = \sum_{m=0}^{\infty} \frac{(-t^2)^m}{2^m m!} = \sum_{m=0}^{\infty} \left(\frac{-t^2}{2}\right)^m \cdot \frac{1}{m!} = e^{-t^2/2}$$

Следствие 3. Пусть $\xi \sim N(a, \sigma^2)$. Тогда

$$\varphi_{\xi}(t) = e^{ita - \frac{t^2 \sigma^2}{2}}$$

Доказательство. Если $\xi \sim N(a, \sigma^2)$, то $\eta = \frac{\xi - a}{\sigma} \sim N(0, 1)$

$$\Rightarrow \varphi_{\xi}(t) = e^{ita}\varphi_{\eta}(t\sigma) = e^{ita - \frac{t^2\sigma^2}{2}}$$

Теорема 3 (единственности).

Пусть F(x), G(x) – функции распределения на прямой. Если характеристические функции F и G совпадают, то F=G.

Доказательство. Пусть $a < b \in \mathbb{R}$. Для $\forall \varepsilon > 0$ рассмотрим функцию $f_{\varepsilon}(x)$:

Докажем, что

$$\int_{\mathbb{R}} f_{\varepsilon}(x)dF(x) = \int_{\mathbb{R}} f_{\varepsilon}dG(x)$$

Рассмотрим отрезок $[-n,n],\ n\in\mathbb{N}$ т.ч. $[-n,n]\supset [a,b+arepsilon].$

По теореме Вейерштрасса $f_{\xi}(x)$ равномерно приближается тригонометрическими многочленами от $\frac{x\pi}{n}$, т.е.

$$\exists f_{arepsilon}^n(x) = \sum_{k \in K} a_k e^{i \frac{k \pi x}{n}}, \ a_k \in \mathbb{R}, \ K$$
 – конечное подмно-во \mathbb{Z}

т.ч.
$$|f_{\varepsilon}(x) - f_{\varepsilon}^n(x)| \leqslant \frac{1}{n}, \ \forall x \in [-n, n]$$

Заметим, что $f_{\varepsilon}^{n}(x)$ явл. периодической с периодом 2n

 \Rightarrow т.к. $|f_{\varepsilon}^n(x)|\leqslant 2$ для $\forall x\in [-n,n]$, то $|f(x)|\leqslant 1$ и $|f_{\varepsilon}^n(x)|\leqslant 2$, для $\forall x\in \mathbb{R}$.

По условию $\forall t \in \mathbb{R}$

$$\int_{\mathbb{R}} e^{itx} dF(x) = \int_{\mathbb{R}} e^{itx} dG(x)$$

$$\Rightarrow \int_{\mathbb{R}} f_{\varepsilon}^{n}(x) dF(x) = \int_{\mathbb{R}} f_{\varepsilon}^{n}(x) dG(x)$$

Теперь оценим:

$$\left| \int\limits_{\mathbb{R}} f_{\varepsilon}(x) dF(x) - \int\limits_{\mathbb{R}} f_{\varepsilon}(x) dG(x) \right| \leqslant \left| \int\limits_{\mathbb{R}} f_{\varepsilon}^{n}(x) dF(x) - \int\limits_{\mathbb{R}} f_{\varepsilon}^{n}(x) dG(x) \right| +$$

$$+ \int\limits_{\mathbb{R}} (f_{\varepsilon}(x) - f_{\varepsilon}^{n}(x)) dF(x) - \int\limits_{\mathbb{R}} (f_{\varepsilon}(x) - f_{\varepsilon}^{n}(x)) dG(x) \leqslant$$

$$\leqslant \frac{1}{n} \int\limits_{[-n,n]} dF(x) + \frac{1}{n} \int\limits_{[-n,n]} dG(x) + 2 \left(\int\limits_{\mathbb{R} \setminus [-n,n]} dF(x) + \int\limits_{\mathbb{R} \setminus [-n,n]} dG(x) \right) \leqslant$$

$$\leqslant \frac{2}{n} + 2 \left(\int\limits_{-\infty}^{-n} dF(x) + \int\limits_{n}^{+\infty} dF(x) + \int\limits_{-\infty}^{-n} dG(x) + \int\limits_{n}^{+\infty} dG(x) \right) =$$

$$= \frac{2}{n} + 2(F(-n) + 1 - F(n) + G(-n) + 1 - G(n)) \to 0, \text{ при } n \to \infty$$

Отсюда получаем, что $\forall \varepsilon$

$$\int_{\mathbb{R}} f_{\varepsilon}(x)dF(x) = \int_{\mathbb{R}} f_{\varepsilon}(x)dG(x)$$

При $\varepsilon \to 0, f_{\varepsilon}(x) \to I_{(a,b]}(x)$

При этом $|f_{\varepsilon}(x)| \leqslant 1$ для $\forall x \in \mathbb{R} \Rightarrow$ по теореме Лебега

$$\int_{\mathbb{R}} f_{\varepsilon}(x)dF(x) \xrightarrow{\varepsilon \to 0} \int_{\mathbb{R}} I_{(a,b]}dF(x) = F(b) - F(a)$$

Следовательно, для $\forall a < b$:

$$F(b) - F(a) = G(b) - G(a)$$

Устремим $a \to -\infty, \Rightarrow \forall x \in \mathbb{R}$

$$F(x) = G(x)$$

Пример 19. Пусть ξ_1, ξ_2 – нез. с.в., $\xi_i \sim N(a_i, \sigma_i^2)$. Тогда $\xi_1 + \xi_2 \sim N(a_1 + a_2, \sigma_1^2 + \sigma_2^2)$.

Доказательство. х.ф.

$$\varphi_{\xi_j}(t) = e^{ia_j t - \frac{1}{2}\sigma_j^2 t^2}$$

$$\Rightarrow \varphi_{\xi_1 + \xi_2}(t) = |\text{He3.}| = \varphi_{\xi_1}(t)\varphi_{\xi_2}(t) = e^{i(a_1 + a_2)t - \frac{1}{2}t^2(\sigma_1^2 + \sigma_2^2)}$$

$$- x. \oplus N(a_1 + a_2, \sigma_1^2 + \sigma_2^2)$$

По теореме о единственности $\xi_1 + \xi_2 \sim N(a_1 + a_2, \sigma_1^2 + \sigma_2^2)$

Теорема 4 (критерий независимости компонент случайного вектора). Пусть $\xi = (\xi_1, \dots, \xi_n)$ – случайный вектор. Тогда $\xi_1 \dots \xi_n$ – независимы в совокупности $\Leftrightarrow x.\phi$. вектора ξ распадается в произведение $x.\phi$. ξ_j :

$$\varphi_{\xi}(t_1,\ldots,t_n)=\varphi_{\xi_1}(t_1)\cdot\ldots\cdot\varphi_{\xi_n}(t_n)$$

Доказательство.

 (\Rightarrow) Пусть $\xi_1 \dots \xi_n$ – независимы. Тогда

$$\varphi_{\xi}(t_1 \dots t_n) = Ee^{i\sum_{k=1}^n \xi_k t_k} = E(e^{it_1\xi_1} \dots e^{it_n\xi_n}) = \prod_{k=1}^n Ee^{it_k\xi_k} = \prod_{k=1}^n \varphi_{\xi_k}(t_k)$$

 (\Leftarrow) Пусть F_1,\ldots,F_n – функции распределения ξ_1,\ldots,ξ_n .

Рассмотрим $G(x_1,\ldots,x_n)=F_1(x_1)\cdot\ldots\cdot F_n(x_n)$ Посчитаем её х.ф.:

$$\int\limits_{\mathbb{R}^n} e^{i\langle t,x\rangle} dG(x) = \int\limits_{\mathbb{R}^n} e^{i\langle t,x\rangle} dF_1(x_1) \dots dF_n(x_n) = |\text{теорема Фубини}| =$$

$$= \prod_{k=1}^n \int\limits_{\mathbb{D}^n} e^{it_k x_k} dF_k(x_k) = \prod_{k=1}^n \varphi_{\xi_k}(t_k) = \varphi_{\xi}(t_1 \dots t_n)$$

Но φ – х.ф. вектора ξ . \Rightarrow она является х.ф. ф.р. $F_{\xi}(x_1 \dots x_n)$.

По теореме о единственности

$$F_{\varepsilon}(x_1 \dots x_n) = G(x_1 \dots x_n) = F_1(x_1) \dots F_n(x_n)$$

По критерию независимости для ф.р. получаем, что $\xi_1 \dots \xi_n$ независимы в совокупности.

Теорема 5 (формула обращения).

Пусть $\varphi(t)$ – $x.\phi.$ $\phi.p.$ F(x) Тогда

1. Для $\forall a < b, \ a, b \in \mathbb{C}(F)$ – точки непрерывности F(x), выполнено:

$$F(b) - F(a) = \frac{1}{2\pi} \lim_{c \to +\infty} \int_{-c}^{c} \frac{e^{-itb} - e^{-ita}}{it} \varphi(t) dt$$

2. Если $\int\limits_{\mathbb{R}} |\varphi(t)| dt < +\infty$, то у F(x) \exists плотность f(x) u

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{D}} e^{-itx} \varphi(t) dt$$

Пример 20. Пусть ξ имеет распр. Коши

$$p_{\xi}(x) = \frac{1}{\pi(1+x^2)}$$

Найти х.ф. ξ .

 \mathcal{A} оказательство. Пусть η имеет распр. Лапласа, $p_{\eta}(x)=rac{1}{2}e^{-|x|}$

Тогда
$$arphi_{\eta}(t)=rac{1}{1+t^2},$$
 и $\int\limits_{\mathbb{R}}|arphi(t)|dt<+\infty$

⇒ по формуле обращения

$$p_{\eta}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \varphi(t) dt = \frac{1}{2} \int_{\mathbb{R}} e^{-itx} \frac{1}{\pi(1+t^2)} dt = \frac{1}{2} \varphi_{\xi}(-x)$$
$$\Rightarrow \varphi_{\xi}(t) = e^{-|t|}$$

Как понять, является ли функция характеристической?

Определение 5. Функция $(\varphi(t), t \in \mathbb{R})$ наз. неотрицательно определенной, если $\forall t_1 \dots t_n \in \mathbb{R}$ $z_1 \dots z_n \in \mathbb{C}$ выполнено:

$$\sum_{i,j=1}^{n} \varphi(t_i - t_j) z_i \overline{z_j} \geqslant 0$$

Теорема 6 (Бонхер - Хинчин).

Пусть $\varphi(t), t \in \mathbb{R}$ – непрерывна в нуле и $\varphi(0) = 1$. Тогда $\varphi(t)$ явл. хар. функцией $\Leftrightarrow \varphi(t)$ неотрицательно определена.

Доказательство. (\Rightarrow) Пусть $\varphi(t)$ – х.ф. с.в. ξ . Тогда $\forall t_1 \dots t_n \in \mathbb{R}, \ \forall z_1 \dots z_n \in \mathbb{C}$

$$\sum_{j,k=1}^{n} \varphi(t_j - t_k) z_j \overline{z_k} = \sum_{j,k=1}^{n} E e^{i(t_j - t_k)\xi} z_j \overline{z_k} = E \left(\sum_{j,k=1}^{n} e^{it_j \xi} z_j e^{-it_k \xi} \overline{z_k} \right) =$$

$$= E \left(\sum_{j,k=1}^{n} (e^{it_j \xi} z_j) \overline{(e^{it_k \xi} z_k)} \right) = E \left(\sum_{j}^{n} (e^{it_j \xi} z_j) \right) \cdot \overline{\left(\sum_{k=1}^{n} e^{it_k \xi} z_k \right)} = E \left| \sum_{j=1}^{n} e^{it_j \xi} z_j \right|^2 \geqslant 0$$

Следствие 4. Если $\varphi(t)$ и $\psi(t)$ – две $x.\phi.$, то $\forall \alpha \in (0,1)$:

$$\alpha \varphi(t) + (1 - \alpha)\psi(t)$$
 – тоже $x.\phi$.

Теорема 7 (непрерывности).

Пусть $\{F_n(x), n \in \mathbb{N}\}$ – последовательность ф.р. на \mathbb{R} , а $\{\varphi_n(t), n \in \mathbb{N}\}$ – последовательность $ux \ x.\phi$.

Tог ∂a

- 1. Если $F_n \xrightarrow{w} F$, где F(x) ф.р. на \mathbb{R} , то для $\forall t \in \mathbb{R} : \varphi_n(t) \to \varphi(t)$ при $n \to \infty$, где $\varphi(t)$ $x. \phi$. F(x)
- 2. Пусть для $\forall t \in \mathbb{R}$ \exists предел $\lim_{n \to \infty} \varphi_n(t)$, причем $\varphi(t) = \lim_{n \to \infty} \varphi_n(t)$ непрерывна в нуле. Тогда $\exists \ \phi.p.\ F(x)\ m.ч.\ F_n \xrightarrow{w} F\ u\ \varphi(t)$ $x.\phi.\ F(x)$

Доказательство. 1. Если $F_n \xrightarrow{w} F$, то $\forall f(x)$ – огр. непр. выполнено:

$$\int\limits_{\mathbb{R}} f(x)dF_n(x) \xrightarrow[n \to \infty]{} \int\limits_{\mathbb{R}} f(x)dF(x)$$

 Φ ункции $\cos tx$ и $\sin tx$ – огр. и непр., тогда

$$\varphi_n(t) = \int_{\mathbb{R}} e^{itx} dF_n(x) = \int_{\mathbb{R}} \cos tx \, dF_n(x) + i \int_{\mathbb{R}} \sin tx \, dF_n(x) \xrightarrow[n \to \infty]{} \int_{\mathbb{R}} \cos tx \, dF(x) + i \int_{\mathbb{R}} \sin tx \, dF(x) = \varphi(t)$$

Следствие 5. *C. в.* $\xi_n \stackrel{d}{\to} \xi \Leftrightarrow \forall t \in \mathbb{R} : \varphi_{\xi_n}(t) \to \varphi_{\xi}(t)$

Доказательство. $\xi_n \xrightarrow{d} \xi \Leftrightarrow F_{\xi_n} \xrightarrow{w} F_{\xi} \Leftrightarrow \varphi_{\xi_n}(t) \to \varphi_{\xi}(t)$ для $\forall t \in \mathbb{R}$.

Теорема 8 (Центральная предельна теорема).

Пусть $\{\xi_n, n \in \mathbb{N}\}$ – последовательность независимых одинаково распределенных с.в. т.ч. $0 < D\xi_n < +\infty$.

Обозначим $S_n = \xi_1 + \ldots + \xi_n$ Тогда

$$\frac{S_n - ES_n}{\sqrt{DS_n}} \xrightarrow{d} N(0,1)$$

Доказательство.

Обозначим $a=E\xi_i, \sigma^2=D\xi_i$. Рассмотрим $\eta_i=\frac{\xi_i-a}{\sigma}\Rightarrow E\eta_i=0, D\eta_i=E\eta_i^2=1$ Тогда

$$T_n = \frac{S_n - ES_n}{\sqrt{DS_n}} = |\text{независимость}| = \frac{S_n - na}{\sqrt{n}\sigma} = \frac{\eta_1 + \dots \eta_n}{\sqrt{n}}$$

Рассмотрим х.ф. η_i :

$$\varphi_{\eta_i}(t) = \varphi(t) = 1 + E\eta_i(it) + \frac{1}{2}E\eta_i^2(it)^2 + o(t^2);$$

Отсюда получаем, что

$$\varphi_{T_n}(t) = \varphi_{\eta_1 + \ldots + \eta_n}(\frac{t}{\sqrt{n}}) = |\text{независимость}| = \left(\varphi\left(\frac{t}{\sqrt{n}}\right)\right)^n = \left(1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right)^n \xrightarrow[n \to \infty]{} e^{-\frac{t^2}{2n}}$$

Но $e^{-\frac{t^2}{2}}$ – х.ф. $N(0,1) \Rightarrow$ по теорема непрерывности мы получаем, что

$$T_n = \frac{S_n - ES_n}{\sqrt{DS_n}} \xrightarrow{d} N(0, 1)$$

Следствие 6. В условиях ЦПТ для $\forall x \in \mathbb{R}$ выполнено

$$P\left(\frac{S_n - ES_n}{\sqrt{DS_n}} \leqslant x\right) \xrightarrow[n \to \infty]{} \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

Доказательство. По ЦПТ $T_n = \frac{S_n - ES_n}{\sqrt{DS_n}} \xrightarrow{d} \xi \sim N(0,1) \Leftrightarrow F_{T_n} \Rightarrow F_{\xi}$, где $F_{\xi}(x)$ – ф.р. N(0,1), т.е. $\forall x \in \mathbb{R}$:

$$F_{T_n} \xrightarrow[n \to \infty]{} F_{\xi}(x) = \int_{-\infty} x \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

Следствие 7. В условиях ЦПТ, если $E\xi_i = a, D\xi_i = \sigma^2$, то

$$\sqrt{n}\left(\frac{S_n}{n} - a\right) \xrightarrow{d} N(0, \sigma^2)$$

Доказательство.

$$\sigma T_n = \sigma \frac{S_n - ES_n}{\sqrt{DS_n}} = \sigma \frac{S_n - na}{\sqrt{n}\sigma} = \sqrt{n} \left(\frac{S_n}{n} - a\right)$$

Ho
$$T_n \xrightarrow{d} N(0,1) \Rightarrow \sigma T_n \xrightarrow{d} \sigma N(0,1) = N(0,\sigma^2)$$

$$\Rightarrow \sqrt{n} \left(\frac{S_n}{n} - a \right) \xrightarrow{d} N(0,\sigma^2)$$

Теорема 9 (Теорема Берри - Эссен).

Пусть $\{\xi_n, n \in \mathbb{N}\}$ – нез. с.в., $E|\xi_i|^3 < +\infty$,

$$E\xi_i = a, \ D\xi_i = \sigma^2 > 0.$$

Обозначим $S_n = \xi_1 + \ldots + \xi_n, \ T_n = \frac{S_n - ES_n}{\sqrt{DS_n}}$

Tог ∂a

$$\sup_{x \in \mathbb{R}} |F_{T_n}(x) - \Phi(x)| \leqslant C \frac{E|\xi_1 - a|^3}{\sigma^3 \sqrt{n}}$$

где C – абс. константа. Вместо ξ_1 можно взять любую из $\xi_1 \dots \xi_n$.

Что можно сказать про C?

- 1. $C \geqslant \frac{1}{\sqrt{2\pi}} \approx 0,399$ (Эссен)
- 2. Текущий рекорд $\forall n \forall \xi : C \leq 0.48$

Пример 21. Складываются 10^4 чисел, каждое из которых было вычислено с точностью 10^{-6} . Найти в каких пределах с вероятностью 0.99 лежит суммарная ошибка, считая, что все ошибки независимы и распределены $R(-10^{-6}, 10^{-6})$

Доказательство. $\xi_i \sim R(-10^{-6}, 10^{-6})$ – нез. с. в.

$$E\xi_i = a = 0, \ D\xi_i = \sigma^2 = 10^{-12} \frac{2}{3}, \ S_n = \xi_1 + \ldots + \xi_n.$$

Согласно ЦПТ:

$$P\left(\left|\frac{S_n - ES_n}{\sqrt{DS_n}}\right| \leqslant u\right) \sim P(|\eta| \leqslant u)$$
, где $\eta \sim N(0,1)$

Из таблицы значений $\Phi(x)=\int\limits_{-\infty}x\frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}dy$

Получаем, что при u = 2.58

$$P(|\eta| \le u) \ge 0.99$$

$$\Rightarrow P\left(|S_n| \le 2.58\sqrt{DS_n}\right) \ge 0.99$$

$$P\left(|S_n| \le 2.58\sqrt{\frac{2}{3}} \cdot 10^{-6}\right) \ge 0.99$$

Суммарная ошибка: $2.58\sqrt{\frac{2}{3}}\cdot 10^{-6}$