PERFORMANCE METRICS

George Porter Week 1 Fall 2020

ATTRIBUTION

- These slides are released under an Attribution-NonCommercial-ShareAlike 3.0
 Unported (CC BY-NC-SA 3.0) Creative Commons license
- These slides incorporate material from:
 - Alex C. Snoeren, UC San Diego
 - Computer Networking: A Top Down Approach

PERFORMANCE METRICS

- Bandwidth: number of bits transmitted per unit of time
- Latency = Propagation + Transmit + Queue
 - Propagation = Distance/SpeedOfLight(*)
 - Transmit = 1 bit/Bandwidth
 - Queue = Time waiting in switches/routers behind other traffic (traffic jam)
- Overhead
 - # secs for CPU to put message on wire
- Error rate
 - Probability P that message will not arrive intact

BANDWIDTH VS. LATENCY

1 Byte Object

	Latency: 1 ms	Latency: 100 ms
Bandwidth: 1 Mbps	1,008 μs	100,008 μs
Bandwidth: 100 Mbps	1,000 μs	100,000 μs

10 MB Object

	Latency: 1 ms	Latency: 100 ms	
Bandwidth: 1 Mbps	80.001 s	80.1 s	
Bandwidth: 100 Mbps	.801 s	.9 s	

NETWORK PERFORMANCE MEASUREMENT UNITS

Exp.	Explicit	Prefix	Ехр.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10 ⁻⁶	0.00001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 ⁻¹²	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.0000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10 ⁻¹⁸	0.000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000,000	Exa
10 ⁻²¹	0.00000000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000,000	Zetta
10 ⁻²⁴	0.0000000000000000000000000001	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta

TERMINOLOGY STYLE

- Mega versus Mega, Kilo versus Kilo
 - Computer architecture: Mega → 2^20, Kilo → 2^10
 - Computer networks: Mega \rightarrow 10⁶, Kilo \rightarrow 10³
- Mbps versus MBps
 - Networks: typically megabits per second
 - Architecture: typically megabytes per second
- Bandwidth versus throughput
 - Bandwidth: available over link
 - Throughput: available to application
 - E.g. subtract protocol headers, etc.

PERFORMANCE TOOLS

- Ping
 - Test if other side is "alive"
 - Measures round-trip latency
- Netperf/iperf3
 - Times how long it takes to send N bytes to the other endpoint
 - Used to calculcate bandwidth