2022

Full Marks: 75

Time: 3 hours

Answer from both the Groups as directed

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

GROUP - A

Answer all questions

Unit — I

1. Objective type questions:

 1×5

(i) The value of the integral

3

1st Sem-M (MN-IA)

MANUFACTURED BY: MAMA COPY, RANCHI We welcome feedback about our product

(Short answer type questions

Unit - II

tan" x dx then show that

(v) The area of the ellipse $\frac{x}{x}$

(a) nab (b) na²b

(c) 4mab

(d) 16nab

M.R.P.₹.: 75/-(INCLUSIVE OF AU, TAXES) : 64

PAGES: 240

(iv) Which of the following functions

f:R→R is one-one?

 $(a) f(x) = x^3$

 $(b) f(x) = x^4$

 $(c) \quad f(x) = x^6$

(d) $f(x) = \sin x$

© (G) 0 1

- (b) 12x³ (c) 24x (d) 4x
- (iii) The value of $\lim_{x\to\infty} \frac{\sin x}{x}$ is

(ii) If $y = x^4$ then its 4th derivative (y_4) is

B

3

(a) 24

3. Trace the curve $x^3 + y^3 = 3\alpha xy$.

(Long Answer Type Questions)

Answer any four questions: SA TON - BINE

4. (a) Find the entire length of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$.

- (b) Find the asymptotes of the curve $4x^3 - 3xy^2 - y^3 + 2x^2 - xy - y^2 - 1 = 0.$
- (a) Show that the area bounded by the curves $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$ square units
- (b) Find 'C' of the Lagrange's mean value theorem, if $f(x) = x^2 - 3x - 17$ × n

1st Sem-M (MN-JA)

Ist Sem-M (MN-IA)

6. (a) If is given that the Rolle's Theorem holds good for the function

$$f(x) = x^3 + ax^2 + bx, x \in [1, 2]$$

at the point $x = \frac{4}{3}$. Then find the value of pair (a,b).

- (b) Evaluate $\int \int e^{2x+3y} dx dy$ over the triangle bounded by the lines x=0, y=0, x+y=1.
- 7. (a) Evaluate the integral $\int \sin^n x dx$.
- $r=a(1-\cos\theta)$ is 8a. (b) Show that the total length of the cardioid

8. (a) If $y = (\sin^{-1} x)^2$ then show that

(i) $(1-x^2)y_2-xy_1-2=0$.

(ii) $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$

where y_n denotes the nth differential co-efficient of y.

- (b) Find the volume of the solid generated by the revolution of $y^2 = \frac{x^3}{a-x}$ about its asymptote.
- 9. (a) Evaluate the following limits:

(i)
$$\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{1/x^2}$$

(ii)
$$\lim_{x\to 0} \frac{(1+x)^{1/x} - e}{x}$$
.

(b) Let
$$f(x) = x \left(\frac{\frac{1}{e^x - e^{-x}}}{\frac{1}{e^x + e^{-x}}} \right), x \neq 0; f(0) \neq 0.$$

show that f is continuous but not differentiable at x = 0.