Pythagoras' Theorem

The following diagrams are equal as both are equal to $(a+b)^2 = a^2 + 2 * a *$ $b + b^2$.

$$\begin{array}{l} +b^2.\\ \text{i.e. Left}=c^2+4*\frac{1}{2}*a*b \text{ and Right}=a^2+b^2+4*\frac{1}{2}*a*b \;,\\ \text{i.e. }c^2+4*\frac{1}{2}*a*b=a^2+b^2+4*\frac{1}{2}*a*b\\ \text{i.e. }c^2=a^2+b^2 \end{array}$$

i.e.
$$c^2 + 4 * \frac{1}{2} * a * b = a^2 + b^2 + 4 * \frac{1}{2} * a * b$$

i.e.
$$c^2 = a^2 + b^2$$

Pythagoras Theorem (Standard Diagram)

Standard Diagram for Pythagoras' Theorem

Trigonometry version of Pythagoras' Theorem:

Let θ be the angle between lines c and a then

$$\cos \theta = \frac{a}{a}$$
 and $\sin \theta = \frac{b}{a}$

 $\cos\theta = \frac{a}{c}$ and $\sin\theta = \frac{b}{c}$ From Pythagoras' Theorem $a^2 + b^2 = c^2$

tf.

$$\frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

i.e.

$$\cos^2\theta + \sin^2\theta = 1$$

Similar Triangles

Consider the right angled triangle $\triangle ACB$ with a perpendicular constructed from C to D.

The angles $\angle ACB$ and $\angle ADC$ are right angles and so are so are equal. The angles $\angle CAB$ and $\angle CAD$ are the same. The remaining angles $\angle CBA$ and $\angle DCA$ are thus equal.

Since the angles are equal, the triangles $\triangle ACB$ and $\triangle ADC$ are similar and therefore corresponding sides are proportional.

Similar Triangles Cont'd

Similarly, The angles $\angle ACB$ and $\angle ADB$ are right angles and so are equal. The angles $\angle CBA$ and $\angle CBD$ are the same. The remaining angles $\angle CAB$ and $\angle DCB$ are thus equal.

Since the angles are equal, the triangles $\triangle ACB$ and $\triangle CDB$ are similar and therefore corresponding sides are proportional.

 $[\ Euclid's\ Elements:\ http://aleph0.clarku.edu/~djoyce/java/elements/elements.html/ \\$

Similar Triangles Cont'd

Using \cong for 'similar',

we have $\triangle ADC \cong \triangle ACB$ and $\triangle ACB \cong \triangle CDB$.

In similar triangles the corresponding sides are proportional.

$$\triangle ADC \cong \triangle ACB \cong \triangle CDB$$

$$\frac{AD}{AC} = \frac{AC}{AB}$$

$$\frac{CB}{AB} = \frac{DB}{CB}$$
i.e. $AD*AB = AC^2$ and $CB^2 = AB*DB$.
tf. $AC^2 + CB^2 = AB*(AD + DB)$
i.e. $AC^2 + CB^2 = AB^2$ since $AB = AD + DB$

Pythagoras and Circles

Is Pythagoras' Thm true if 'squares' are replaced by 'semi-circles'?

Area of semi-circle on c = $\frac{\pi c^2}{8}$; Area of semi-circle on b = $\frac{\pi b^2}{8}$; Area of semi-circle on a = $\frac{\pi a^2}{8}$; From Pythagoras' Thm:

$$c^2 = b^2 + a^2$$

tf.

$$\frac{\pi c^2}{8} = \frac{\pi b^2}{8} + \frac{\pi a^2}{8}$$

Pythagorean Triples

The triple of natural numbers, a, b and c are Pythagorean when

$$a^2 + b^2 = c^2$$

e.g. 3, 4 and 5 as $3^2 + 4^2 = 5^2$.

More generally, if u and v are natural numbers with u > v, then the 3 numbers

$$\begin{aligned} a &= 2 * u * v \;, \\ b &= u^2 - v^2, \text{ and } \\ c &= u^2 + v^2 \\ \text{form a Pythagorean Triple.} \\ a^2 + b^2 &= (2 * u * v)^2 + (u^2 - v^2)^2 \\ &= 4 * u^2 * v^2 + u^4 - 2 * u^2 * v^2 + v^4 \\ &= u^4 + 2 * u^2 * v^2 + v^4 \\ &= (u^2 + v^2)^2 \\ &= c^2 \end{aligned}$$

Example

Example 1. Let
$$u = 5$$
 and $v = 3$ then $30 = 2 * 5 * 3$, $16 = 5^2 - 3^2$ and $34 = 5^2 + 3^2$ tf. $30^2 + 16^2 = 34^2$ i.e. $900 + 256 = 1156$.