MATE 6540: Tarea 3

Due on 19 de mayo $\label{eq:prof.Prof.Iván Cardona} \textit{Cardona}, C41, 19 de mayo$

Sergio Rodríguez

Problem 0

Considere al espacio $\hat{\mathbf{2}}$ con la topología discreta $\mathcal{T}_{\mathrm{disc}}$.

Demuestre la proposición:

El espacio topológico (X,\mathcal{T}_X) es conexo \iff No existe una función continua $g:(X,\mathcal{T}_X) \to \left(\widehat{\mathbf{2}},\mathcal{T}_{\mathrm{disc}}\right)$ que sea suprayectiva.

Demo:

 (\Longrightarrow)

Suponga que (X,\mathcal{T}_X) es conexo. Sea $g:(X,\mathcal{T}_X)\to \left(\widehat{\mathbf{2}},\mathcal{T}_{\mathrm{disc}}\right)$ una función continua. Afirmamos que g no es suprayectiva. Note que $\{0\},\{1\}\in\mathcal{T}_{\mathrm{disc}}$ son disjuntos con $\{0\}\cup\{1\}=\{0,1\}$. Entonces $\{\{0\},\{1\}\}\}$ es una separación de $\widehat{\mathbf{2}}$. Por otra parte, $g(X)\subseteq\widehat{\mathbf{2}}$ es imagen continua de un espacio conexo. Entonces, por un teorema demostrado en clase, g(X) es conexo. Pero $\widehat{\mathbf{2}}$ no es conexo, entonces $g(X)\subseteq\{0\}$ o $g(X)\subseteq\{1\}$ pero no ambos.

 $\therefore g$ no es suprayectiva.

 (\Longleftrightarrow)

Demostramos el contrapositivo. Suponga que (X,\mathcal{T}_X) no es conexo, entonces existe una separación $\{A,B\}$. Ahora defina $g:(X,\mathcal{T}_X) \to \left(\widehat{\mathbf{2}},\mathcal{T}_{\mathrm{disc}}\right)$ de la siguiente manera:

$$g(x) := \begin{cases} 0 \text{ si } x \in A \\ 1 \text{ si } x \in B \end{cases} \tag{1}$$

Note que:

- (a) $A \cap B \neq \emptyset \Longrightarrow g$ está bien definida.
- (b) $A, B \neq \emptyset \Longrightarrow g$ es suprayectiva.
- $\begin{array}{l} \text{(c) } g^{-1}(\emptyset) = \emptyset \in \mathcal{T}_X, \quad g^{-1}(\{0\}) = A \in \mathcal{T}_X, \quad g^{-1}(\{1\}) = B \in \mathcal{T}_X, \quad g^{-1}(\{0,1\}) = X \in \mathcal{T}_X \\ \Longrightarrow g \text{ es continua}. \end{array}$
- $\cdot \cdot$ existe una función continua $g:(X,\mathcal{T}_{\!X})\to \left(\widehat{\mathbf{2}},\mathcal{T}_{\!\text{disc}}\right)$ que es suprayectiva.

MEP

Problem 1

Sea X un conjunto infinito dotado de la siguiente topología

 $\mathcal{T}_{cof} = \{U \subseteq X \mid X \setminus U \text{ es finito o } U = \emptyset\}$ (i.e. la topología de los complementos finitos)

- (a) Demuestre: (X, \mathcal{T}_{cof}) es conexo.
- (b) Demuestre: (X, \mathcal{T}_{cof}) es compacto.

Problem 2

Dé ejemplos de subespacios A y B de $(\mathbb{R}^2,\mathcal{T}_{\varepsilon^2})$ tales que:

- (a) A y B son conexos, pero $A \cap B$ no es conexo.
- (b) A y B no son conexos, pero $A \cup B$ es conexo.
- (c) A y B son conexos pero $A \setminus B$ no es conexo.
- (d) $A \ y \ B$ son conexos $y \ \overline{A} \cap \overline{B} \neq \emptyset$, pero $A \cup B$ no es conexo.

Problem 3

Sean (X, \mathcal{T}_X) un espacio topológico y $\{\infty\}$ un objeto que no pertenezca a X. Defina $Y = X \cup \{\infty\}$ y $\mathcal{T}_\infty = \{U \subseteq Y \mid U \in \mathcal{T}_X \text{ o } Y \setminus U \text{ es compacto y cerrado en } X\}.$

- (a) Demuestre que \mathcal{T}_{∞} es una topología sobre Y.
- (b) Sea \mathcal{T}' la topología relativa sobre X,la que hereda como subconjunto de Y. Demuestre que $\mathcal{T}'=\mathcal{T}_X.$

Problem 4

Sean (X, \mathcal{T}_X) un espacio topológico y $\{\infty\}$ un objeto que no pertenezca a X. Defina $Y = X \cup \{\infty\}$ y $\mathcal{T}_\infty = \{U \subseteq Y \mid U \in \mathcal{T}_X \text{ o } Y \setminus U \text{ es compacto y cerrado en } X\}.$

(c) Demuestre que $(Y, \mathcal{T}_{\infty})$ es compacto.