Lateral Load Resisting Systems Effective Length Method

GIVEN:

Number of Floors:

2

Reference:

Excel

Section

Eq/Fig/Table/Notes

1. MEMBERS FOR ANALYSIS: Information

							No translation	on	Late	al Translatio	า	
Member Ref.	Frame	Floor	Member	Section	Length	Axial Load	Mom. (x)	Mom.(y)	Axial Load	Mom. (x)	Mom.(y)	Lateral Deflection
(#)	(type)	Units		(Shape)	(ft)	P nt (kip)	M ntx (kip.ft)	M nty (kip.ft)	P It (kip)	MI _{tx (kip.ft)}	MI _{tx (kip.ft)}	Δ H (in)
1	Braced	First	Column	W8X40	15	130	14	0	0	0	0	0
2	Braced	Roof	Column	W8X40	15							
3	Braced	First	Column	W8X40	15	130	14	0	0	0	0	0
4	Braced	Roof	Column	W8X40	15							
5	Braced	First	Column	W8X40	15							
6	Braced	Roof	Column	W8X40	15							
9	Braced	First	Beam	W21X55	36							
10	Braced	First	Interior Beam	W21X55	36							
11	Braced	First	Beam	W21X55	36							
12	Braced	Roof	Beam	W14X34	36							
13	Braced	Roof	Interior Beam	W14X34	36							
14	Braced	Roof	Beam	W14X34	36							
15	Braced	Roof	Braces	WT9X48.5	39							
16	Braced	Roof	Braces	WT9X48.5	39							
17	Braced	First	Braces	WT9X48.5	39							
18	Braced	First	Braces	WT9X48.5	39							
1	Moment	First	Column	W8X40	15							
2	Moment	Roof	Column	W8X40	15							
7	Moment	First	Column	W8X40	15							
8	Moment	Roof	Column	W8X40	15							

Lateral Load Resisting Systems Effective Length Method

21	Moment	First	Column	W8X40	15							
22	Moment	Roof	Column	W8X40	15							
23	Moment	First	Column	W8X40	15	27.2	6	0	3.4	71	0	0.003
24	Moment	Roof	Column	W8X40	15							
25	Moment	Roof	Beam	W12X16	24							
26	Moment	Roof	Interior Beam	W18X35	24	5.3	3.5	0	1	10.4	0	0.003
27	Moment	Roof	Beam	W12X16	24							
28	Moment	First	Beam	W14X22	24							
29	Moment	First	Interior Beam	W21X44	24	6.6	20	0	2	15	0	0.003
30	Moment	First	Beam	W14X22	24							

Reference: Section AISC 14th

Eq/Fig/Table/Notes

2. LOADS

Member Ref.	Frame	Floor	\mathbf{P}_{story}	P _{mf}	Lateral Shear	α	Gravity Load	Notional Load
(#)	(type)	Units	(kip)	(kip)	(kip)	(LRFD)	(kip)	(kip)
1-B	Braced	First	3643.2	607.6	31	1	214	0.43
1-M	Moment	First	3643.2	607.6	31	1	214	0.43
2-B	Braced	Roof	622.1	607.6	31	1	470	0.94
2-M	Moment	Roof	622.1	607.6	31	1	470	0.94

3. DETERMINATION OF LATERAL-TORSIONAL BUCKLING FACTOR Cb

F Eq. F1-1

Member Ref.	Frame	Floor	Member	Section	Length	M _{max}	M _{.25}	M _{.5}	M _{.75}	Сь	K
(#)	(type)	Units		(Shape)	(ft)	(kip.ft)	(kip.ft)	(kip.ft)	(kip.ft)		
1	Braced	First	Column	W8X40	15	500.00	270.13	440.24	285.65	1.34	
3	Braced	First	Column	W8X40	15	500.00	270.13	440.24	285.65	1.34	
9	Braced	First	Beam	W21X55	36	500.00	270.13	440.24	285.65	1.34	
7	Moment	First	Column	W8X40	15	500.00	270.13	440.24	285.65	1.34	
8	Moment	Roof	Column	W8X40	15	500.00	270.13	440.24	285.65	1.34	
23	Moment	First	Column	W8X40	15	500.00	270.13	440.24	285.65	1.34	
24	Moment	Roof	Column	W8X40	15	500.00	270.13	440.24	285.65	1.34	
26	Moment	Roof	Interior Beam	W18X35	24	500.00	270.13	440.24	285.65	1.34	
27	Moment	Roof	Beam	W12X16	24	500.00	270.13	440.24	285.65	1.34	
29	Moment	First	Interior Beam	W21X44	24	500.00	270.13	440.24	285.65	1.34	
30	Moment	First	Beam	W14X22	24	500.00	270.13	440.24	285.65	1.34	

4. PRE-DETERMINATION OF EFFECTIVE LENGTH FACTOR K

Appendix 7

C-A-7-1

Eq.

Member Ref.	Frame	Floor	Member	Section	Length	Moment of Inertia	Modulus of Elasticity	Support end A	Support end B	Stiffness	Factor K
(#)	(type)	Units		(Shape)	(ft)	(in ⁴)	(ksi)	(type)	(type)	(kip.ft)	
1	Braced	First	Column	W8X40	15	146	29000	Pin	2/9	1960.2	0.8
2	Braced	Roof	Column	W8X40	15	146	29000	1*9	12	1960.2	
3	Braced	First	Column	W8X40	15	146	29000	Pin	4/9-10	1960.2	0.745
4	Braced	Roof	Column	W8X40	15	146	29000	3/9-10	12/13	1960.2	
9	Braced	First	Beam	W21X55	36	1140	29000	1*2/9	3-4*9-10	9566.0	0.66
10	Braced	First	Interior Beam	W21X55	36	1140	29000	Pin	Pin	9566.0	
12	Braced	Roof	Beam	W14X34	36	340	29000	Pin	Pin	2853.0	
13	Braced	Roof	Interior Beam	W14X34	36	340	29000	Pin	Pin	2853.0	
7	Moment	First	Column	W8X40	15	146	29000	Pin	8/30	1960.2	2.5
8	Moment	Roof	Column	W8X40	15	146	29000	7/30	27	1960.2	2.18
21	Moment	First	Column	W8X40	15	146	29000	Pin	21-22/28-29	1960.2	
22	Moment	Roof	Column	W8X40	15	146	29000	22-21/28-29	Pin	1960.2	
23	Moment	First	Column	W8X40	15	146	29000	Pin	24/29-30	1960.2	1.88
24	Moment	Roof	Column	W8X40	15	146	29000	23/29-30	26-27	1960.2	1.2
25	Moment	Roof	Beam	W12X16	24	103	29001	23/29-31	26-28	432.2	
26	Moment	Roof	Interior Beam	W18X35	24	510	29000	2*25	22/25-26	2139.8	1.25
27	Moment	Roof	Beam	W12X16	24	103	29000	24*26-27	8*27	432.1	1.6
28	Moment	First	Beam	W14X22	24	199	29001	1-2*28	21-22/28-29	835.0	
29	Moment	First	Interior Beam	W21X44	24	843	29000	Moment	Moment	3536.9	1.28
30	Moment	First	Beam	W14X22	24	199	29000	23-24/29-30	7*8/30	834.9	1.65

5. DETERMINATION OF EFFECTIVE LENGTH FACTOR K

Appendix 7

Eq. C-A-7-2

Member Ref.	End	Support	Column 1	Column 2	Beam 1	Beam 2	Beam 3	Beam 4	Rotational Stiffness (G)	K
(#)	(type)	Units		(Shape)	(ft)	(in ⁴)	(ksi)	(kip.ft)	(kip.ft)	

1	Α	Pin					10.00	0.80
	В	2/9	2	1	9		0.41	
3		Pin					10.00	0.745
		4/9-10	4	3	9	10	0.20	
9		1*2/9	1	2	9		0.41	0.66
		3-4*9-10	3	4	9		0.41	
7		Pin					10.00	2.5
		8/30	8	7	30		4.70	
8		7/30	7	8	30		4.70	2.18
		27	8		27		4.54	
23		Pin					10.00	1.88
		24/29-30	23	24	29	30	0.90	
24		23/29-30	23	24	29	30	0.90	1.2
		26-27	24		26	27	0.76	
26		2*25	24		26	27	0.45	1.25
		22/25-26	22		25	26	0.76	
27		24*26-27	24		26	27	0.76	1.6
		8*27	8		27		4.54	
29		Moment	22	21	28	29	0.90	1.28
		Moment	23	24	29	30	0.90	
30		23-24/29-30	24	23	30	29	0.90	1.65
		7*8/30	7	8	30		4.70	

6. RESULTS F

Member Ref.	Frame	Floor	Member	Pre-Section	Length	New- Section	Unit Weight	Spacing or a	Beams/Bay	Qty of Members	Amount of Steel
(#)	(type)	Units		(Shape)	(ft)	(Shape)	(plf)	(ft)	(Units)	(Units)	(kips)
1	Braced	First	Column	W8X40	15	W8X40	40	12.0	0.0	1.20	1.50
2	Braced	Roof	Column	W8X40	15	W8X40	40	1.7	0.0	1.20	1.50
3	Braced	First	Column	W8X40	15	W8X40	40	5.0	0.0	1.20	1.50
4	Braced	Roof	Column	W8X40	15	W8X40	40	0.0	0.0	1.20	1.20
5	Braced	First	Column	W8X40	15	W8X40	40	0.0	0.0	1.20	1.50
6	Braced	Roof	Column	W8X40	15	W8X40	40	0.0	0.0	1.20	1.50
9	Braced	First	Beam	W21X55	36	W21X55	55	0.0	0.0	2.16	2.16
10	Braced	First	Interior Beam	W21X55	36	W21X55	55	0.0	0.0	2.16	2.16
11	Braced	First	Beam	W21X55	36	W21X55	55	0.0	0.0	2.16	2.16
12	Braced	Roof	Beam	W14X34	36	W14X34	34	0.0	0.0	1.37	1.37
13	Braced	Roof	Interior Beam	W14X34	36	W14X34	34	0.0	0.0	1.37	1.37
14	Braced	Roof	Beam	W14X34	36	W14X34	34	0.0	0.0	1.37	1.37
15	Braced	Roof	Braces	WT9X48.5	39	W10X33	33	0.0	0.0	3.78	2.57
16	Braced	Roof	Braces	WT9X48.5	39	W10X33	33	0.0	0.0	3.78	2.57
17	Braced	First	Braces	WT9X48.5	39	W10X33	33	0.0	0.0	3.78	2.57
18	Braced	First	Braces	WT9X48.5	39	W10X33	33	0.0	0.0	3.78	2.57
1	Moment	First	Column	W8X40	15	W8X40	40	12.0	0.0	1.20	1.50
2	Moment	Roof	Column	W8X40	15	W8X40	40	1.7	0.0	1.20	1.50
7	Moment	First	Column	W8X40	15	W8X40	40	0.0	0.0	1.20	1.50
8	Moment	Roof	Column	W8X40	15	W8X40	40	0.0	0.0	1.20	1.50
21	Moment	First	Column	W8X40	15	W8X40	40	0.0	0.0	1.17	2.04
22	Moment	Roof	Column	W8X40	15	W8X40	40	0.0	0.0	1.17	2.04
23	Moment	First	Column	W8X40	15	W8X40	40	0.0	0.0	1.17	2.04
24	Moment	Roof	Column	W8X40	15	W8X40	40	5.0	0.0	1.17	2.04
25	Moment	Roof	Beam	W12X16	24	W12X16	16	8.0	0.0	1.44	1.44
26	Moment	Roof	Interior Beam	W18X35	24	W18X35	35	0.0	0.0	1.92	1.87
27	Moment	Roof	Beam	W12X16	24	W12X16	16	0.0	0.0	1.44	1.44
28	Moment	First	Beam	W14X22	24	W14X22	22	0.0	0.0	1.92	1.92
29	Moment	First	Interior Beam	W21X44	24	W21X44	44	0.0	0.0	1.92	2.54
30	Moment	First	Beam	W14X22	24	W14X22	22	0.0	0.0	1.92	1.92

COLUMN-CAPACITY

Member Ref:1Frame:BracedFloor:FirstMember:ColumnRef. 2:1-B

ASSUMPTIONS:

No transverse loads are applied to the member (Per section 7)

1. MATERIAL PROPERTIES:

2. MEMBER GEOMETRIC INFORMATION:

Beam Length L = 15 ft 15 Project Information

Column Slenderness Parameters:

Unbraced Length, x: 15 ft Global or Local System? L_{bx} = Unbraced Length, y: L_{by =} 15 ft Unbraced Length, z: 15 ft $L_{bz} =$ Eff. Length Factor, x: 1 K_x = Eff. Length Factor, y: $K_{y} =$ 1 Eff. Length Factor, z: 1 $K_{z} =$

Reference: Excel

Section Eq/Fig/Table/Notes Information 3. SECTION PROPERTIES W W8X40 Section: Member is in: Compression in^4 146 d = Moment of Inertia, x: Depth: 8.25 in in^4 $b_{f=}$ 49.1 Width: 8.07 Moment of Inertia, y I_{yw} = in in^4 Polar Moment of Inertia: J_{w=} 1.12 Flange Thickness: $t_{f=}$ 0.56 in Radius of Gyration, x: 3.53 Web Thickness: 0.36 $r_{xw} =$ in t_{w=} in in² 2.04 Radius of Gyration, y in Area: A = 11.7 ryw = in^3 Section Modulus: 35.5 $S_{x} =$ r_{ts} $r_{ts} =$ 2.81 in in^3 Plastic Section Modulus, x: Z = 39.8 Distance flange/centro $h_{0} =$ 11.60 in Т 0 T = Warping Constant $C_{w} =$ 726 in in 3. PRELIMINARY ANALYSIS Eq. E 6-2a/b $(KL/r)_{x=}$ 51.0 **Slenderness Ratios:** $(KL/r)_{v=}$ 88.2 AISC Table 3-2 $(KL)_{z}$ 180.0 **AISC** Table 3-2

88.2

113.43

USE E3-2

4. LOCAL SLENDERNESS CHECK:

Critical Stress, Fcr equation:

Largest Possible Ratio:

Compressive Control:

Table B4.1a

Ε

	Web	Flange
Member	h/tw	bf/2t
	17.6	7.21
Critical	$\lambda_{\rm r}$	λ_{r}
Case	[case 5]	[case 1]
	35.9	35.9
Check	Nonslender	Nonslender

				Reference: Section	AISC 14th <i>Eq/Fig/Table/Notes</i>
5. BUCKLING ANALYSIS:				E	
Euler Buckling Stress:	F _{e3 =}	36.8	ksi		Eq. E3-4
Torsional Buckling Stress:	F _{e4 =}	97.2	ksi		Eq. E4-4
Controling Euler Stress:	Fe3 =	36.8	ksi		
Critical Buckling Stress:	F _{cr =}	28.3	ksi		Eq. E3-2
6. COLUMN CAPACITY:				Eq. E3-1	

14.551 Advanced Steel Design Homework 4 Problem # 4.2

ksi

Member-Capacity and Beam-Column Analysis

Ana Gouveia 12/8/2014

Compressive Strength:

_{1 =} 331.1 ksi

Eq. E3-1

Factor:

Φ = 0.9

Column Capacity:

 $\Phi.P_{n=}$ 298.0

BEAM-COLUMN ANALYSIS

1. MATERIAL PROPERTIES:

Modulus of Elasticity: E = 29000 ksi G = 11200 ksi

Yield Strength: $F_{y=}$ 50 ksi

2. MEMBER GEOMETRIC INFORMATION:

Beam Length L = 15 ft Project Information

Column Slenderness Parameters:

Unbraced Length, x: $L_{bx} = 15$ ft Global or Local System? Unbraced Length, y: $L_{by} = 15$ ft

Unbraced Length, z: $L_{bz} = 15$ ft

Eff. Length Factor Check: K<1 Check for values below

Eff. Length Factor, x: $K_{x=}$ 0.8 Eff. Length Factor, y: $K_{y=}$ 0.8 Eff. Length Factor, z: $K_{z=}$ 1

Plastic Zones Lengths and Info: Full plastic yield Length: $L_{p=}$ 7.2 ft

LTB Length: $L_{r=}$ 29.9 ft

 $\phi_b BF =$ 2.46 kips $\phi_b M_{px} =$ 149 kip.ft

Reference: Excel

Section *Eq/Fig/Table/Notes*

3. SECTION PROPERTIES Information

Section:	W	W8X40					
Member is in:		Compression					
Moment of Inertia, x:	I _{xw} =	146	in ⁴	Depth:	d =	8.25	in
Moment of Inertia, y	I _{yw} =	49.1	in ⁴	Width:	b _{f =}	8.07	in
Polar Moment of Inertia:	J _{w=}	1.12	in ⁴	Flange Thickness:	$t_{f=}$	0.56	in
Radius of Gyration, x:	r _{xw =}	3.53	in	Web Thickness:	t _{w =}	0.36	in
Radius of Gyration, y	ryw =	2.04	in	Area:	A =	11.7	in ²
Section Modulus:	S _{x =}	35.5	in ³	r _{ts}	r _{ts =}	2.81	in
Plastic Section Modulus, x:	Z =	39.8	in ³	Distance flange/centro	h _{0 =}	11.60	in
Plastic Section Modulus, y:	$Z_{y=}$	18.5	in	Warping Constant	C _{w =}	726	in
Т	T =	0	in	Section Modulus:	$S_{y=}$	12.2	in ³

Flexure

Along axis x:

Ana Gouveia 12/8/2014

Member-Capacity and Beam-Column Analysis

3. SLENDERNESS CHARACTERISTICS:

Web

Compact

Flange

Compact

Table B4.1a

Compression	Mntx =	14				
4. CONSIDERATION OF IMP	PERFECTIONS - I	NOTIONAL L	.OADS:	C2.2(b)		
Notional Load:	Z _{i =}	0.428	kip		Eq.	C2-1
Second/First order drift rati	o:	2	in			
Is it applied at all levels in a	ll combinations	?	YES	Ref. to C.2.3(3)		
				Reference: Section	GTS Eq/Fia/	Table/Notes
5. FIRST ORDER ANALYSIS I	FORCES:			GTS	۱۰ ۵۰	,
Ultimate Axial Load, NT	P _{nt} =	130	kips			
Ultimate Moment, NT, x	M _{ntx} =	14	kip.ft			
Ultimate Moment, NT, y	M _{nty} =	0	kip.ft			
Ultimate Axial Load, LT	P _{It} =	0	kips			
Ultimate Moment, LT, y	MI _{tx} =	0	kip.ft			
Ultimate Moment, LT, y	MI _{tx} =	0	kip.ft			
Offiniate Montene, Er, y	iviitx =	U	Кірлі			
Total V. load in story	P _{story} =	3643.2	kip			
	P _{mf} =	607.6	kip			
Story Shear in Direction of	H =	31	kip			
	α =	1		LRFD		
Lateral Deflection	ΔH =	0.215	in			
Fact. Story Drift Limit	ΔH/L =	0.0012				
6. MEMBER CAPACITY:				Eq. E3-1		
A : 10 ''	4 D	200.0				
Axial Capacity	φ.P _{n =}	298.0	ksi			
Flexure Capacity						
Along axis x:	Zone =	2				
	Cb =	1.34				
Flexure Capacity, x	$M_{cx} =$	149.0	kip.ft			
Along axis y:	Fy.Zy =	925			Eq.	F6-1
	1.6Fy.Sy =	976			Eq.	F6-1
Flexure Capacity, y	M_{cy} =	832.5	kip.ft	D (
				Reference: Section	AISC 14t	
7. APPROXIMATE SECOND	ORDER ANALYS	SIS:		C	LY/FIY/	Table/Notes
The state of the s						

DAM:

Use reduced stiffness per C2.3

14.551 Advanced Steel Design Homework 4		Member-Cap	Problem # 4.: pacity and Beam-	2 Column Analysis		Ana Gouveia 12/8/2014
	τ_b =	1.00		Apply to all	С	2.3(2)
Type of Curvature:		Single				
Smaller 1st-O End Mom:	$M_1 =$	-1				
Larger 1st-O End Mom:	$M_2 =$	1				
Modif. Coefficient, x:	$C_{mx} =$	1		App. 8	Eq.	A-8-4
Elastic Buckling Strength, x	$P_{ex} =$	1612	kip	App. 8	Eq.	A-8-5
Amplification Factor	$B_{1x} =$	1.0		App. 8	Eq.	A-8-3
Factor Check:		ОК		Check		
Along axis y:						
	τ_b =	1		Apply to all	С	2.3(2)
Type of Curvature:		Single				
Smaller 1st-O End Mom:	M _{1 =}	-1				
Larger 1st-O End Mom:	M ₂ =	1				
Modif. Coefficient, y	$C_{my} =$	1		App. 8	Eq.	A-8-4
Elastic Buckling Strength	$P_{ey} =$	542	kip	App. 8	Eq.	A-8-5
Amplification Factor	$B_{1y} =$	1.0		App. 8	Eq.	A-8-3
Factor Check:		OK		Check		
Calculate P-∆ Amplification Fa	actor:					
Along axis x:						
	$R_{m} =$	0.97				A-8-8
	$P_{e-story} =$	25304.2	kip			A-8-7
	$B_{2x} =$	1.17				A-8-6
2nd-Order Axial Strength	$P_{r} =$	130.0	kip			A-8-2
2nd-Order Mom. Strength	M_{rx} =	0.0	kip.ft			A-8-1
Along axis y:						
	$R_{my} =$	0.97				A-8-8
	$P_{e-storyY} =$	25304.2	kip			A-8-7
	$B_{2y} =$	1.00				A-8-6
2nd-Order Axial Strength	P_{ry} =	130.0	kip			A-8-2
2nd-Order Mom. Strength	M_{ry} =	-14.0	kip.ft			A-8-1
8. COMBINED FORCES INTERA	CTION EQU	ATION:		GTS		
Check Pr/Pc	$P_r/P_{c} =$	0.436				
Pr/Pc ≥ 0,2		1.294	ОК		Eq.	H.1-1a
Pr/Pc < 0,2		0.000	ОК		Eq.	H.1-1b
Design Check			OK		Eq.	H.1-1a

Problem # 4.2Member-Capacity and Beam-Column Analysis

COLUMN-CAPACITY

Member Ref:3Frame:BracedFloor:FirstMember:ColumnRef. 2:1-B

ASSUMPTIONS:

No transverse loads are applied to the member (Per section 7)

1. MATERIAL PROPERTIES:

Modulus of Elasticity: E = 29000 ksi G = 11200 ksi

Yield Strength: $F_{y=}$ 50 ksi

2. MEMBER GEOMETRIC INFORMATION:

Beam Length L = 15 ft 15 Project Information

Column Slenderness Parameters:

Unbraced Length, x: $L_{bx} = 0.745$ ft Global or Local System?

Unbraced Length, y: $L_{by} = 0.745$ ft Unbraced Length, z: $L_{bz} = 15$ ft Eff. Length Factor, x: $K_{x} = 1$

Eff. Length Factor, y: $K_{y} = 1$

Eff. Length Factor, z: $K_{z} = 1$

Reference: Excel

Problem # 4.2

Member-Capacity and Beam-Column Analysis

2 CECTION PROPERTIES				Section Information		Eq/Fig/Tab	le/Notes
3. SECTION PROPERTIES				IIIIOIIIIatioii			
Section:	W	W8X40					
Member is in:		Compression					
			in ⁴				
Moment of Inertia, x:	I _{xw} =	146		Depth:	d =	8.25	in
Moment of Inertia, y	I _{yw =}	49.1	in ⁴	Width:	b _{f =}	8.07	in
Polar Moment of Inertia:	J _{w =}	1.12	in ⁴	Flange Thickness:	t _{f=}	0.56	in
Radius of Gyration, x:	r _{xw =}	3.53	in	Web Thickness:	t _{w =}	0.36	in
Radius of Gyration, y	ryw =	2.04	in	Area:	A =	11.7	in ²
Section Modulus:	S _{x =}	35.5	in ³	r_{ts}	r _{ts =}	2.81	in
Plastic Section Modulus, x:	Z =	39.8	in ³	Distance flange/centro	h _{0 =}	11.60	in
Т	T =	0	in	Warping Constant	C _{w =}	726	in
3. PRELIMINARY ANALYSIS				Eq. E 6-2a/b			
Claredown and Batica	(1/1 /%)	0.5		_			
Slenderness Ratios:	(KL/r) _{x =}	2.5					
	$(KL/r)_{y=}$	4.4		AISC	T	「able	3-2
	$(KL)_{z} =$	180.0		AISC	1	Table	3-2
Largest Possible Ratio:		4.4					
Compressive Control:		113.43		E			
Critical Stress, Fcr equation:		USE E3-2					

4. LOCAL SLENDERNESS CHECK:

Table B4.1a

	Web	Flange
Member	h/tw	bf/2t
	17.6	7.21
Critical	λ_{r}	λ_{r}
Case	[case 5]	[case 1]
	35.9	35.9
Check	Nonslender	Nonslender

				Reference: Section	AISC 14th Eq/Fig/Table/Notes
5. BUCKLING ANALYSIS:				E	_
Euler Buckling Stress:	F _{e3 =}	14903.3	ksi		Eq. E3-4
Torsional Buckling Stress:	F _{e4 =}	97.2	ksi		Eq. E4-4
Controling Euler Stress:	Fe4 =	97.2	ksi		
Critical Buckling Stress:	F _{cr =}	INSERT	ksi		Eq. E3-2
6. COLUMN CAPACITY:				Eq. E3-1	

14.551 Advanced Steel Design Homework 4, 12/8/2014

Problem # 4.2

Ana Gouveia

Member-Capacity and Beam-Column Analysis

Compressive Strength: P_{n=} #VALUE! ksi Eq. E3-1

Factor: Φ = 0.9

Column Capacity: $\Phi.P_{n=}$ #VALUE! ksi

BEAM-COLUMN ANALYSIS

1. MATERIAL PROPERTIES:

Modulus of Elasticity: E = 29000 ksi

G = 11200 ksi

Yield Strength: $F_{y=}$ 50 ksi

2. MEMBER GEOMETRIC INFORMATION:

Beam Length L = 15 ft Project Information

Column Slenderness Parameters:

Unbraced Length, x: $L_{bx} = 15$ ft Global or Local System?

Unbraced Length, y: $L_{by} = 15$ ft Unbraced Length, z: $L_{bz} = 15$ ft

Eff. Length Factor Check: K<1 Check for values below

Eff. Length Factor, x: $K_{x} = 1$ Eff. Length Factor, y: $K_{y} = 1$ Eff. Length Factor, z: $K_{z} = 1$

Plastic Zones Lengths and Info:

Full plastic yield Length: $L_{p} = 7.2$ ft

LTB Length: $L_{r}=$ 29.9 ft $\phi_b BF=$ 2.46 kips

 $\begin{array}{llll} \varphi_b BF = & 2.46 & \text{kips} \\ \varphi_b M_{px} = & 149 & \text{kip.ft} \end{array}$

Reference: Excel

Section *Eq/Fig/Table/Notes*

3. SECTION PROPERTIES Information

Section:	W	W8X40					
Member is in:		Compression					
Moment of Inertia, x:	I _{xw =}	146	in ⁴	Depth:	d =	8.25	in
Moment of Inertia, y	I _{yw =}	49.1	in⁴	Width:	b _{f =}	8.07	in
Polar Moment of Inertia:	$J_{w} =$	1.12	in ⁴	Flange Thickness:	t _{f=}	0.56	in
Radius of Gyration, x:	$r_{xw} =$	3.53	in	Web Thickness:	t _{w =}	0.36	in
Radius of Gyration, y	ryw =	2.04	in	Area:	A =	11.7	in ²
Section Modulus:	S _{x =}	35.5	in ³	r_{ts}	r _{ts =}	2.81	in
Plastic Section Modulus, x:	Z =	39.8	in ³	Distance flange/centro	h _{0 =}	11.60	in
Plastic Section Modulus, y:	Z _{y =}	18.5	in	Warping Constant	C _{w =}	726	in
Т	T =	0	in	Section Modulus:	S _{y =}	12.2	in ³

Flexure

Along axis x:

Problem # 4.2

Flange

Compact

Web

Compact

Member-Capacity and Beam-Column Analysis

3. SLENDERNESS CHARACTERISTICS:

Table B4.1a

Compression	Mntx =	14				
4. CONSIDERATION OF IMP	ERFECTIONS -	NOTIONAL L	OADS:	C2.2(b)		
Notional Load:	Z _{i =}	0.428	kip		Eq.	C2-1
Second/First order drift ratio		2	in		·	
Is it applied at all levels in al	l combinations	;?	YES	Ref. to C.2.3(3)		
				Reference: Section	GTS Fa/Fia/	Table/Notes
5. FIRST ORDER ANALYSIS F	ORCES:			GTS	<u> </u>	Tubic/ Notes
Ultimate Axial Load, NT	P _{nt} =	130	kips			
Ultimate Moment, NT, x	M _{ntx} =	14	kip.ft			
Ultimate Moment, NT, y	M _{nty} =	0	kip.ft			
Ultimate Axial Load, LT	P _{It} =	0	kips			
Ultimate Moment, LT, y	MI _{tx} =	0	kip.ft			
Ultimate Moment, LT, y	MI _{tx} =	0	kip.ft			
Total V. load in story	P _{story} =	3643.2	kip			
	P _{mf} =	607.6	kip			
Story Shear in Direction of	H =	31	kip			
	α =	1		LRFD		
Lateral Deflection	$\Delta H =$	0.215	in			
Fact. Story Drift Limit	Δ H/L =	0.0012				
6. MEMBER CAPACITY:				Eq. E3-1		
Avial Canacity	φ.P _{n =}	#VALUE!	leci			
Axial Capacity	Ψ•Γ n =	#VALUE!	ksi			
Flexure Capacity						
Along axis x:	Zone =	2				
	Cb =	1.34				
Flexure Capacity, x	$M_{cx} =$	149.0	kip.ft			
Along axis y:	Fy.Zy =	925			Eq.	F6-1
	1.6Fy.Sy =	976			Eq.	F6-1
Flexure Capacity, y	M_{cy} =	832.5	kip.ft			
				Reference: Section	AISC 14t	h <i>Table/Notes</i>
7. APPROXIMATE SECOND (ORDER ANAI Y	SIS:		C	-4/ · ·9/	1 1.2.0,

DAM:

Use reduced stiffness per C2.3

14.551 Advanced Steel Design Homework 4, 12/8/2014		Member-Cap	Problem # 4. pacity and Beam	2 -Column Analysis	Ana Gouveia		
	τ_{b} =	1.00		Apply to all	С	2.3(2)	
Type of Curvature:		Single					
Smaller 1st-O End Mom:	$M_1 =$	-1					
Larger 1st-O End Mom:	$M_2 =$	1					
Modif. Coefficient, x:	C _{mx} =	1		App. 8	Eq.	A-8-4	
Elastic Buckling Strength, x	$P_{ex} =$	1612	kip	App. 8	Eq.	A-8-5	
Amplification Factor	$B_{1x} =$	1.0		App. 8	Eq.	A-8-3	
Factor Check:		ОК		Check			
Along axis y:							
	τ_b =	1		Apply to all	С	2.3(2)	
Type of Curvature:		Single					
Smaller 1st-O End Mom:	M _{1 =}	-1					
Larger 1st-O End Mom:	$M_2 =$	1					
Modif. Coefficient, y	$C_{my} =$	1		App. 8	Eq.	A-8-4	
Elastic Buckling Strength	$P_{ey} =$	542	kip	App. 8	Eq.	A-8-5	
Amplification Factor	$B_{1y} =$	1.0		App. 8	Eq.	A-8-3	
Factor Check:		OK		Check			
Calculate P-∆ Amplification F	actor:						
Along axis x:							
	$R_{m} =$	0.97				A-8-8	
	$P_{e-story} =$	25304.2	kip			A-8-7	
	$B_{2x} =$	1.17				A-8-6	
2nd-Order Axial Strength	$P_{r} =$	130.0	kip			A-8-2	
2nd-Order Mom. Strength	M_{rx} =	0.0	kip.ft			A-8-1	
Along axis y:							
	$R_{my} =$	0.97				A-8-8	
	$P_{e-storyY} =$	25304.2	kip			A-8-7	
	$B_{2y} =$	1.00				A-8-6	
2nd-Order Axial Strength	$P_{ry} =$	130.0	kip			A-8-2	
2nd-Order Mom. Strength	M_{ry} =	-14.0	kip.ft			A-8-1	
8. COMBINED FORCES INTERACTION EQUATION				GTS			
Check Pr/Pc	$P_r/P_{c} =$	#VALUE!					
Pr/Pc ≥ 0,2	-	1.294	ОК		Eq.	H.1-1a	
Pr/Pc < 0,2		0.000	OK		Eq.	H.1-1b	
Design Check			OK		Eq.	H.1-1a	