

Parametric Representations of Lines

Source: Parametric representations of lines (video) | Khan Academy

Introduction: From Slopes to Vectors

You might be wondering—why go through all this "linear algebra" when you already know how to draw lines from Algebra 1? You've seen:

$$y = mx + b$$

Simple, right? So why all the vectors and sets? 😩

Because traditional algebra is built around **2D thinking**. But in linear algebra, we move beyond! We need a method that works in:

- \mathbb{R}^2 : Flat, cozy, familiar \blacksquare
- \mathbb{R}^3 : Welcome to 3D—spacey \mathscr{G}
- \mathbb{R}^n : Up to 50, 100, or infinite dimensions \blacksquare

To represent a line *anywhere*, in any dimension, you need the **parametric form** of a line, powered by **vectors** and **scalar multiplication**. Let's dive in!

Defining a Vector

Let's start with a simple 2D vector:

$$ec{v} = egin{bmatrix} 2 \ 1 \end{bmatrix}$$

In standard position (meaning: tail at the origin (0,0)), it points:

- 9 2 units right (x-direction)
- ¶ 1 unit up (y-direction)

So visually, it points diagonally, rising 1 for every 2 steps across—a slope of $\frac{1}{2}$.

Set of Scalar Multiples

Now let's define a set:

$$S = \{c \cdot \vec{v} \mid c \in \mathbb{R}\}$$

This means: we're multiplying \vec{v} by every real number c, stretching or flipping it depending on c's value.

Examples 🎨

• c = 2:

$$2\cdotec{v}=egin{bmatrix} 4\2 \end{bmatrix}$$

A longer vector in the same direction.

• c = 1.5:

$$\begin{bmatrix} 3 \\ 1.5 \end{bmatrix}$$

Slightly shorter—still collinear.

• c = 0.001:

Tiny vector pointing the same way.

• c = -10:

All such vectors are **collinear**—they lie along the same line through the origin. If we view them as **position vectors** (i.e., they point *to* a coordinate), then together they **trace out an infinite line**:

Line of slope $\frac{1}{2}$ passing through the origin

Prawing them in **standard position** (tail at origin) is crucial to see this collinearity clearly.

Lines Not Through the Origin

Let's level up: what if we want the **same line**, but it **doesn't** pass through the origin?

Shifting the Line

Let's pick a new starting point:

$$ec{x} = egin{bmatrix} 2 \ 4 \end{bmatrix}$$

This vector points to a position elsewhere on the plane. We now want a line **parallel** to our original, but passing through \vec{x} .

Parametric Equation of the Line

We define a new set:

$$L = \{ ec{x} + t \cdot ec{v} \mid t \in \mathbb{R} \}$$

- \vec{v} : direction vector (defines slope)
- \vec{x} : starting point (shifts the line)
- t: parameter (scalar, "time" slider

Visual Breakdown @ !

- $t = 0 \Rightarrow$ You're exactly at \vec{x}
- t=1 \Rightarrow You move in direction \vec{v}
- t=-1 \Rightarrow You move opposite to $ec{v}$
- Varying t fills the entire line through \vec{x} , parallel to \vec{v}

of Think of \vec{v} as a "directional arrow" and \vec{x} as your **starting location**. Together, they sweep out a line in \mathbb{R}^2 .

But Wait... Why Not Just Use y=mx+b?

Because that only works when:

- You're in 2D
- The line can be expressed explicitly as y in terms of x

It doesn't generalize.

But our vector form?

$$L = \{ ec{x} + t \cdot ec{v} \mid t \in \mathbb{R} \}$$

- ✓ Works in any dimension
- √ Describes lines through any point
- √ Handles any direction
- igslash Becomes essential in \mathbb{R}^3 or higher

eal P Lines Through Two Points in \mathbb{R}^2

Let's say we're given **two position vectors** (a.k.a. points):

$$ec{a} = egin{bmatrix} 2 \ 1 \end{bmatrix}, \quad ec{b} = egin{bmatrix} 0 \ 3 \end{bmatrix}$$

We want to find a parametric equation of the line passing through both points.

Direction Vector = Their Difference

To get the direction the line travels, we subtract:

$$ec{d}=ec{b}-ec{a}=egin{bmatrix}0\\3\end{bmatrix}-egin{bmatrix}2\\1\end{bmatrix}=egin{bmatrix}-2\\2\end{bmatrix}$$
 (or even $ec{a}-ec{b}$, it will be the same)

This vector tells us the "tilt" or "flow" of the line—its direction.

forall Think of $ec{d}$ as the bridge that connects $ec{a}$ and $ec{b}$.

Parametric Line: Two Equivalent Forms

We can start from either point and walk along \vec{d} :

Option 1:

$$L = \left\{ ec{a} + t \cdot (ec{b} - ec{a}) \mid t \in \mathbb{R}
ight\}$$

Option 2:

$$L = \left\{ ec{b} + t \cdot (ec{b} - ec{a}) \mid t \in \mathbb{R}
ight\}$$

They trace the **same** line, just starting from different launch pads \(\varphi \).

Personal Insight: Understanding Parametric Lines

$$L = \left\{ ec{b} + t \cdot ec{d} \mid t \in \mathbb{R}
ight\}$$

The image above helped me visualize how the parts work together:

- lacksquare $ec{d}$ lies along the line. I realized we can compute it as $ec{b}-ec{a}$ (or the other way around). It's the "direction vector"—giving us the slope or flow of the line.
- **6** The parameter t lets us stretch \vec{d} , reverse it, or scale it moving us forward and backward along the line.
- extstyle eanchoring it at a specific place in space.

Split into Coordinates (Parametric Form)

Let's use Option 2:

$$ec{b} = egin{bmatrix} 0 \ 3 \end{bmatrix}, \quad ec{d} = egin{bmatrix} -2 \ 2 \end{bmatrix}$$

Then:

$$ec{l}(t) = ec{b} + t \cdot ec{d} = egin{bmatrix} 0 \ 3 \end{bmatrix} + t \cdot egin{bmatrix} -2 \ 2 \end{bmatrix} = egin{bmatrix} -2t \ 2t + 3 \end{bmatrix}$$

So we have the coordinate-wise parametric equations:

$$x(t) = -2t, \quad y(t) = 2t + 3$$

This is the same line you'd get with slope-intercept form in Algebra 1—but now it's powered by vectors, and ready for higher dimensions.

igtie Parametric Lines in $\,\mathbb{R}^3$

Now for the magic trick: let's define a line in 3D ...

Let's say we have two points (position vectors):

$$ec{P_1} = egin{bmatrix} -1 \ 2 \ 7 \end{bmatrix}, \quad ec{P_2} = egin{bmatrix} 0 \ 3 \ 4 \end{bmatrix}$$

Step 1: Direction Vector

$$ec{d}=ec{P}_1-ec{P}_2=egin{bmatrix} -1\ -1\ 3 \end{bmatrix}$$

Step 2: Parametric Vector Form

Start at \vec{P}_1 , and walk in direction \vec{d} :

$$L = \left\{ ec{P}_1 + t \cdot ec{d} \mid t \in \mathbb{R}
ight\}$$

Which is:

$$ec{l}(t) = egin{bmatrix} -1 \ 2 \ 7 \end{bmatrix} + t \cdot egin{bmatrix} -1 \ -1 \ 3 \end{bmatrix}$$

Step 3: Parametric Equations (Component-wise)

$$x(t) = -1 - t$$

$$y(t) = 2 - t$$

$$z(t) = 7 + 3t$$

Make You now have a precise, controllable formula to navigate along the line in 3D. This is how a drone, a camera, or a simulated particle travels through space!

lacksquare In \mathbb{R}^3 , you can't describe a line with one equation like $ax+by+cz=d. \label{eq:cz}$ That would define a **plane!**

You **must** use parametric equations for lines in 3D and beyond.

🚀 Beyond 3D: Higher-Dimensional Lines

Let's jump to \mathbb{R}^n , where $n \geq 4$, 10, or even 100 \nearrow .

You can't draw these lines anymore—but mathematically, they're completely valid.

General Parametric Line Form in \mathbb{R}^n

Let:

- \vec{p} : a point in \mathbb{R}^n
- $ec{v}$: a direction vector in \mathbb{R}^n

Then the line is:

$$L = \{ \vec{p} + t \cdot \vec{v} \mid t \in \mathbb{R} \}$$

This works whether you're in:

- \mathbb{R}^4 : spacetime igotimes
- \mathbb{R}^{1000} : data science, AI embeddings \blacksquare
- \mathbb{R}^{∞} : function spaces, advanced physics \bigoplus

Even though you can't **visualize** these spaces, **linear algebra lets you operate confidently in them**

🧠 🔑 Key Takeaways

A parametric equation of a line has the form:

$$ec{x}(t) = ec{p} + t \cdot ec{v}$$

where:

- \circ \vec{p} = position vector (a point on the line)
- \vec{v} = direction vector (the line's slope or orientation)
- $\circ \ t \in \mathbb{R}$ = scalar parameter (like time $\overline{\mathbb{X}}$)
- In \mathbb{R}^2 , this approach **recovers slope-intercept lines** and much more

- In \mathbb{R}^3 and higher:
 - $\circ~$ Scalar equations like ax+by+cz=d define **planes**, not lines igstar
 - Parametric form is the only way to represent lines
- This technique generalizes to any dimension—essential for:
 - Geometry in higher-dimensional spaces
 - Simulations in physics and graphics
 - Neural network embeddings and manifold learning