Highly efficient silicon solar cells

UNIK 4450/9450 - Schedule

30/8 Solar cell fundamentals

6/9 Solar cell efficiency

20 13/9 Semiconductor theory

20/9 Generation

27/9 Recombination and lifetime

4/10 Silicon

11/10 Junctions

•• 18/10 Solar cells

25/10 Silicon solar cells I (@IFE)

1/11 Silicon solar cells II

8/11 Light management

15/11 Alternative solar cells

29/11 Solar modules & systems

• 6/12 Q&A

Oral exam December 12th

Overview

- Standard solar cells revisited
- Efficiency limits
 - The Shockley-Queisser limit
 - Loss mechanisms in real silicon solar cells
 - Improved design rules
- Gradual improvements of conventional solar cells
 - Case 1: Acidic texturing
 - Case 2: Improving the blue response
- Highly efficient silicon solar cells
 - Industrial solar cells
 - Laboratory solar cells

Clever student question:

"How good can a silicon solar cell be?"

The Shockley-Queisser limit

- Si p-n homojunction solar cell: 29.4 % efficiency
- Assumptions
 - All photons incident on cell captured
 - Complete absorption of all photons with $\mathrm{E}>\mathrm{E_g}$
 - Complete thermalization occurs
 - Lossless transport and collection of charge carriers
 - Ideal materials: auger and/or radiative recombination dominating recombination mechanism

Clever student question rephrased:

"How good can a silicon solar cell *really* be?"

Fundamental loss mechanisms

- Insufficient photon energies
 - $E < E_g$
- Thermalization of energetic carriers
 - If $E > E_g$, $E \to E_g$
- 3. Energy loss across p-n junction
- 4. Energy loss at contacts
- 5. Recombination

M.A. Green, UNSW

Avoidable losses – generation

- The reflectance of a standard solar cell is too high
 - Alkaline texturing not suited for mc-Si
 - Shading is too high (~5 %)
 - A single-layer ARC is good but far from optimal
- Transmission becomes more important as the solar cell thickness is reduced

Avoidable losses – recombination

- Recombination still occurs in a standard solar cell
 - Surface recombination
 - Front surface: detrimental to blue response
 - Rear surface: detrimental for longer wavelengths
 - Emitter recombination
 - The recombination in a heavily doped front side emitter reduces the blue response
 - Contact recombination
 - A metal-semiconductor interface is generally a highly recombinative surface
 - Bulk recombination
 - SRH recombination

Avoidable losses – resistive losses

- Resistive losses must be taken into account
 - Series resistance
 - Sheet resistance in emitter increases with thinner and less doped emitters
 - Resistance in finger contact increases with decreasing finger width
 - Shunt resistance
 - Process and material induced shunts degrade the performance of many industrial solar cells

Improved design rules

- What factors limit the performance of standard solar cells?
 - The higher efficiencies we want to achieve, the more minor loss mechanisms must we take into account!
- How can we reduce the impact of these factors and make better solar cells?

Improved design rules

- General comments: many trade-offs must be made:
 - Emitter doping
 - Blue response versus sheet conductivity?
 - Finger contacts
 - Shading versus contact resistance?
 - Cost versus performance

Generation

- The reflectance of a standard solar cell is too high
 - Alkaline texturing not suited for mc-Si
 - Use isotropic texturing
 - Plasma texturing, acidic texturing, laser texturing
 - Optimal texture is not random
 - Photolithography
 - Shading is too high (7 8 %)
 - Minimize front contact area
 - Back-side contacted solar cells
 - A single-layer ARC is good but far from optimal
 - Use a double- or multi-layer ARC
- Transmission becomes more important as the solar cell thickness is reduced
 - Light trapping

Recombination

- Recombination still occurs in a standard solar cell.
 - Surface recombination
 - Front surface: detrimental to blue response
 - Rear surface: detrimental for longer wavelengths
 - Good surface passivation is required on both sides
 - Emitter recombination
 - The recombination in a heavily doped front side emitter reduces the blue response
 - Reduce emitter thickness and/or doping
 - Contact recombination
 - A metal-semiconductor interface is generally a highly recombinative surface
 - Use selective doping beneath contacts
 - Minimize contact area
 - Bulk recombination
 - Use thinner wafers

Resistive losses

- Resistive losses must be taken into account
 - Series resistance
 - Sheet resistance in emitter increases with thinner and less doped emitters
 - Resistance in finger contact increases with decreasing finger width
 - Move contacts and emitter to the rear of the solar cell
 - Reduce resistance at metal-semiconductor interface is by doping region beneath contact heavily
 - Shunt resistance
 - Can be reduced to acceptable levels

Origins

Bell System Solar Battery Converts Sun's Rays into Electricity!

Bell Telephone Laboratories invention has great possibilities for telephone service and for all mankind

Bell Labs / Wikipedia

Opportunities?

- Silicon production technology
 - Norwegian example: the centrifugal CVD reactor
 - High troughput
 - High material quality
 - Record low energy consumption
 - Potential for REALLY low cost

Opportunities?

- High quality silicon crystals
 - Required for high efficiency silicon solar cells

Opportunities

- High quality silicon crystals
 - Required for high efficiency silicon solar cells

IFE/SINTEF/Norsun

Gradual improvements

Case 1: Acidic texturing

- Etch rates of Si in alkaline solutions very orientation dependent
- Reflectance will vary from grain to grain

Isotropic textures can be made by several methods, including acidic texturing

IFE

Case 1: Acidic texturing

MarsteinIFE

Case 2: Improving the blue response

Emitter formation

- Phosphorous diffusion
 - Gas diffusion from POCl₃ gas most common
 - Spraying, spinning, mist evaporation and screen-printing possible
 - High temperature diffusion (~900 °C)
 - A glass layer forms during diffusion and must be removed using HF
 - Gettering occurs simultaneuously

Resistance (R)

- The resistance (Ω) is a macroscopic quantity
- Contains both material and topological information

Resistivity (ρ)

- The resistivity (Ω · cm) is a material specific quantity
- Resistance of box-shaped resistance

$$R = \rho \; L/A$$

The resistivity of Si is doping dependent

$$\rho = (q(\mu_n n + \mu_p p))^{-1}$$

Sheet resistance (R).

- Emitters are inhomogenously doped
- Resistivity will vary with emitter depth (x)
- The sheet resistance (Ω/)•is a useful quantity

$$\begin{split} R &= 1/q \int \mu_n(n(x)) n(x) dx \\ &\approx 1/q \mu_{eff} \int n(x) dx \end{split}$$

Example: box emitter with depth d

$$R = 1/q\mu_{eff} n_{em} d = \rho/d$$

• Typical values: $\sim 50 \Omega/ \bullet$

Series resistance

- The series resistance for electron transport through exceedingly thin emitters can be significant
- Contact firing is also sensitive to emitter sheet resistances
 - Contact resistance problems

Blue response

- The emitter is a place of high recombination rates in a solar cell
- To improve the blue response, thinner and/or less doped emitters must be used
- After gettering, many impurities are located in the emitter

Efficient Si solar cells

New solar cell designs

- Industrial solar cells
 - Cost-efficiency achieved by increasing efficiency
 - Examples
 - BP Buried contact solar cell
 - SunPower back-contacted solar cell
 - Panasonic (Sanyo) HIT cell
 - Kaneka IBC-HIT
 - Yingli PANDA cell
 - Q-cells Q.ANTUM cell

- Laboratory solar cells
 - Efficiency at all costs
 - Small area solar cells
 - World record cells:
 - sc-Si: PERL (UNSW)
 - mc-Si: LFC (ISE FhG)
 - Examples:
 - PERL
 - LFC
 - RISE
 - COSIMA

Buried contact solar cell (BP)

- BP Saturn solar cell
- Main concept
 - Reduce shading by burying contacts in wafer
- Efficiency
 - ~20 %

Buried contact solar cell (BP)

- Modified process steps
 - 1. Deposit ARC
 - ARC acts as mask for plating
 - 2. Make grooves
 - Laser grooving or mechanical grooving
 - 3. Make local contact doping to reduce contact recombination and resistance
 - 4. Create buried contacts by plating in laser grooves

Back contacted solar cell (Sunpower)

- Main concept
 - Back-sided contacting
 - Avoid shading losses entirely
 - Improve blue response
- Requirement
 - High lifetime (~1 ms)
 - N-type FZ or Cz Si

Back contacted solar cell (Sunpower)

- Efficiency
 - Large area record: 25.0 %

Back contacted solar cell (Sunpower)

- Maintaining high lifetime
 - n-type substrate
 - Excellent surface passivation
 - Two-sided SiO₂
 - Reduced contact area

Back contacted solar cell (Sunpower)

- Modified process steps
 - Photolithography or screen-printing used for pattern definition
 - Contacts
 - Emitter
 - Single- or double-layer ARC

HIT solar cell (Sanyo/Panasonic)

- Main concept
 - A heterojunction solar cell with superior surface passivation
 - a-Si:H emitter
- Efficiency
 - Large area record: 24.7%
 - Thickness: 96 μm
 - Approximately 20 % in production

HIT solar cell (Sanyo/Panasonic)

- Modified process steps
 - Deposition of passivating a-Si:H layers on both sides
 - Emitter
 - Passivating layers
 - Low sheet resistance assured by using transparent conductive oxide (TCO)
 - N-type Si assures high lifetime

Q.ANTUM

Q.ANTUM - Q-CELLS NEXT GENERATION HIGH-POWER SILICON CELL & MODULE CONCEPT

P. Engelhart*, D. Manger, B. Klöter, S. Hermann, A.A. Stekolnikov, S. Peters, H.-C. Ploigt, A. Eifler, C. Klenke, A. Mohr, G. Zimmermann, B. Barkenfelt, K. Suva, J. Wendt, T. Kaden, S. Rupp, D. Rychtarik, M. Fischer, J.W. Müller, P. Wawer

Q-Cells SE, OT Thalheim, Sonnenallee 17-21, 06766 Bitterfeld-Wolfen *Phone: +49 (0)3494 66 99-52146; e-mail: p.engelhart@q-cells.com

26th European Photovoltaic Solar Energy Conference, 5-9 September 2011, Hamburg, Germany

Figure 1: Schematic cross-section of the Q.ANTUN solar cell design with passivated rear (not to scale).

Figure 4: J-V-curve and parameters of our record p-type Cz large area Q.ANTUM cell. The data were independently confirmed by Fraunhofer ISE CalLab.

Figure 5: J-V-curve and parameters of our World Record multi-crystalline large area Q.ANTUM cell. The data were independently confirmed by Fraunhofer ISE

P. Engelhardt et al., Proceedings of the 26th EUPVSEC (2011)

19.5% efficient n-type solar cells made in production

Teun Burgers

Production efficiency: 19.5% (confirmed at FhG-ISE)

P. Engelhardt et al., Proceedings of the 26th EUPVSEC (2011)

V_{oc}: surface recombination and diffusion length

$$V_{oc} = \frac{kT}{q} \ln \left(\frac{J_L}{J_{0e} + J_{0b}} + 1 \right)$$

J₀ sources

- Material
- Contacts
- High doping
- Surfaces

19.5% efficient n-type solar cells made in production

Teun Burgers

PLUTO

Solar powering a green future™

Figure 4: Average power of monocrystalline modules made from Pluto and screen-print technologies during the same production period. The improved technology incorporated into Pluto results in an additional 10W in a 72-cell configuration module, using standard 125mm monocrystalline silicon wafers.

Figure 5: Graph showing the average power of multicrystalline modules made with Pluto and screen-print technologies using standard 156mm multicrystalline silicon wafers showing Pluto delivers an additional 12W+ in a 72-cell configuration module.

20 pm | 13 pm | 15 pm

Figure 2:

(a) A Scanning Electron Microscope (SEM) image of typical Pluto metal finger

(b) the corresponding cross-sectional image showing line width, height and aspect ratio.

Q.ANTUM

Q.ANTUM - Q-CELLS NEXT GENERATION HIGH-POWER SILICON CELL & MODULE CONCEPT

P. Engelhart*, D. Manger, B. Klöter, S. Hermann, A.A. Stekolnikov, S. Peters, H.-C. Ploigt, A. Eifler, C. Klenke, A. Mohr, G. Zimmermann, B. Barkenfelt, K. Suva, J. Wendt, T. Kaden, S. Rupp, D. Rychtarik, M. Fischer, J.W. Müller, P. Wawer

Q-Cells SE, OT Thalheim, Sonnenallee 17-21, 06766 Bitterfeld-Wolfen *Phone: +49 (0)3494 66 99-52146; e-mail: p.engelhart@q-cells.com

26th European Photovoltaic Solar Energy Conference, 5-9 September 2011, Hamburg, Germany

Figure 1: Schematic cross-section of the Q.ANTUN solar cell design with passivated rear (not to scale).

Figure 4: J-V-curve and parameters of our record p-type Cz large area Q.ANTUM cell. The data were independently confirmed by Fraunhofer ISE CalLab.

Figure 5: J-V-curve and parameters of our World Record multi-crystalline large area Q.ANTUM cell. The data were independently confirmed by Fraunhofer ISE

P. Engelhardt et al., Proceedings of the 26th EUPVSEC (2011)

IBC-HIT

- Current and past world record
 - 2016: Kaneka 26.6 %

PERL solar cell

- Main concept
 - World record holder on sc-Si wafers until '14
 - Superior performance over cost-efficiency
 - Uses (almost?) every smart trick in the book
- Efficiency
 - 25.0 %

PERL solar cell

- Modified steps
 - Photolithographically defined texture
 - Very low reflectance, large optical thickness
 - Two-sided oxide passivation
 - Very low surface recombination velocities

PERL solar cell

- Modified steps
 - Photolithograpically defined contacts
 - Small contact area on both sides
 - Localized rear contacts and doping reduces contact resistance

Laser fired contact solar cell (LFC)

- Features:
 - Isotropic plasma texture
 - Two-sided oxide passivation
 - Laser-fired contacts
 - Local BSF around contacts
- Efficiency:
 - 20.4% on small area

Back contact solar cells

Metallization wrap-through (MWT) cells in a module from Solland

Sunpower module

Emitter wrap-through (EWT) cells in a module from Advent Solar

TOPCon

- Features:
 - Tunnel Oxide Passivated Contact
 - Full-area passivated rear contact

New world record in 2014!

Breaking a 15 year record

Panasonic : IBC-HIT concept in a HIT® solar cell

• Efficiency: **25.6%** (up 0.6%)

Area: 143.7 cm²

Open-circuit voltage (Voc): 0.740 V Short circuit current (Isc): 6.01 A

Short circuit current density (Jsc): 41.8 mA/cm²

Fill factor (FF): 0.827 Cell conversion efficiency: 25.6%

Cell area: 143.7 cm²

Even newer records

- High efficiency crystalline silicon solar cells:
 - Kaneka IBC-HIT 26.6% (90.5% of theoretical limit!)

Kaneka/NEDO

Si tandem solar cell

Tandem

- High efficiency crystalline silicon solar cells:
- Beyond Shockley Queisser:
- Three main approaches:
 - 1. "The solar cell is fine, change the Sunlight instead!"
 - 2. "One cell for every wavelength!"
 - 3. "Thermalization is your friend!"

Efficiency

Received: 12 May 2017

Accepted: 30 May 2017

DOI: 10.1002/pip.2909

WILEY

ACCELERATED PUBLICATION

Solar cell efficiency tables (version 50)

Martin A. Green¹ | Yoshihiro Hishikawa² | Wilhelm Warta³ | Ewan D. Dunlop⁴ | Dean H. Levi⁵ | Jochen Hohl-Ebinger³ | Anita W.Y. Ho-Baillie¹

Correspondence

Martin A. Green, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia. Email: m.green@unsw.edu.au

⁴ Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney 2052, Australia

² National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics (RCPV), Central 2, Umezono 1-1-1, Ibaraki, Tsukuba 305-8548, Januan

Department: Characterisation and Simulation/Callab Cells, Fraunhofer-Institute for Solar Energy Systems, Heidenhofstr. 2, Freiburg D-79110, Germany

⁴European Commission—Joint Research Centre, Directorate C—Energy, Transport and Climate, Va E. Fermi 2749, Ispra IT-21027VA, Italy

⁵National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA

TABLE 1 Confirmed single-junction terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000 W/m²) at 25°C (IEC 60904-3: 2008, ASTM G-173-03 global). New entries in bold type

	Efficiency	Area	V _{oc}	J _{ic}	Fill Factor	Test Centre	
Classification	(%)	(cm²)	(V)	(mA/cm²)	(%)	(date)	Description
Slicon							
Si (crystalline cell)	26.7 ± 0.5	79.0 (da)	0.738	42.65°	84.9	AIST (3/17)	Kaneka, n-type rear IBC ⁵
Si (multicrystalline cell)	21.9 ± 0.4 b	4.0003 (t)	0.6726	40.76°	79.7	PhG-ISE (2/17)	FhG-ISE, n-type ⁶
Si (thin transfer submodule)	21.2 ± 0.4	239.7 (ap)	0.687°	38.50°4	80.3	NREL (4/14)	Salexel (35 µm thick) ⁷
Si (thin film minimodule)	10.5 ± 0.3	94.0 (ap)	0.492°	29.7	72.1	FhG-ISE (8/07)*	CSG Solar (<2 µm on glass) [®]
III-V cells							
GaAs (thin film cell)	28.8 ± 0.9	0.9927 (ap)	1.122	29.68°	86.5	NREL (5/12)	Alta Devices ⁹
GaAs (multicrystalline)	18.4 ± 0.5	4.011 (t)	0.994	23.2	79.7	NREL (11/95)	RTI, Ge substrate 10
InP (crystalline cell)	24.2 ± 0.5 ^b	1.008 (ap)	0.939	31.15°	82.6	NREL (9/12)	NREL ¹¹
Thin film chalcogenide							
CIGS (œll)	21.7 ± 0.5	1.044 (da)	0.718	40.70°	74.3	AIST (1/17)	Solar Frontier ¹²
CdTe (cell)	21.0 ± 0.4	1.0623 (ap)	0.8759	30.25 ^d	79.4	Newport (8/14)	First Solar, on glass 13
CZTS (cell)	10.0 ± 0.2	1.113 (da)	0.7083	21.77°	65.1	NREL (3/17)	UNSW ¹⁴
Amorphous/microcrystalline							
Si (amorphous œl)	10.2 ± 0.3 ^{g,b}	1.001 (da)	0.896	16.36 ^d	69.8	AIST (7/14)	AIST15
Si (microcrystalline cell)	11.9 ± 0.3 ^b	1.044 (da)	0.550	28.72°	75.0	AIST (2/17)	AIST ¹⁶
Perovskite .							
Perovskite (ce II)	19.7 ± 0.6 ^{g,h}	0.9917 (da)	1.104	24.671	72.3	Newport (3/16)	KRICT/UNIST ¹⁷
Perovskite (minimodule)	16.0 ± 0.4 ^{g,h}	16.29 (ap)	1.029	19.51°-	76.1	Newport (4/17)	Microquanta, 6 serial cells ¹⁸
Dye sensitised							
Dye (cell)	11.9 ± 0.4^{J}	1.005 (da)	0.744	22.47k	71.2	AIST (9/12)	Sharp ¹⁹
Dye (minimodule)	10.7 ± 0.4 ^j	26.55 (da)	0.754°	20.19 ^{c)}	69.9	AIST (2/15)	Sharp, 7 serial cells 19
Dye (submodule)	8.8 ± 0.3^{1}	398.8 (da)	0.697	18.42°,m	68.7	AIST (9/12)	Sharp, 26 serial cells ²⁰
Organic							
Organic (cell)	11.2 ± 0.3 ⁿ	0.992 (da)	0.780	19.30 ^d	74.2	AIST (10/15)	Toshiba ²¹
Organic (minimodule)	9.7 ± 0.3°	26.14 (da)	0.806	16.47 ^{c,j}	73.2	AIST (2/15)	Toshiba (8 series cells) ²²

TABLE 2 Confirmed multiple-junction terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000 W/m²) at 25°C (IEC 60904-3: 2008, ASTM G-173-03 global). New entries in bold type

•	_			•			
	Efficiency	Area	Voc	Jsc	Fill Factor	Test Centre	
Classification	(%)	(cm²)	(V)	(mA/cm²)	(%)	(date)	Description
III-V Multijunctions							
5 junction cell (bonded)	38.8 ± 1.2	1.021 (ap)	4.767	9.564	85.2	NREL (7/13)	Spectrolab, 2-terminal ²³
(2.17/1.68/1.40/1.06/0.73 eV)							
InGaP/GaAs/InGaAs	37.9 ± 1.2	1.047 (ap)	3.065	14.27°	86.7	AIST (2/13)	Sharp, 2 term. ²⁴
Galn P/GaAs (monolithic)	31.6 ± 1.5	0.999 (ap)	2.538	14.18 ^b	87.7	NREL (1/16)	Alta Devices, 2 term. ²⁵
Multijunctions with c-Si							
GalnP/GaAs/Si (mech. stack)	35.9 ± 0.5°	1.002 (da)	2.52/0.681	13.6/11.0	87.5/78.5	NREL (2/17)	NREL/CSEM/EPFL, 4-term.26
GalnP/GaAs/Si (wafer bonded)	31.3 ± 1.1°	3.981 (ap)	3.046	11.7 ^d	87.5	PhG-ISE (3/17)	Fraunhofer ISE, 2-term. ²⁷
GalnP/GaAs/Si (monolithic)	19.7 ± 0.7°	3.943 (ap)	2.323	10.0*	84.3	FhG-ISE (8/16)	Fraunhofer ISE ²⁰
GaAs/Si (mech. stack)	328 ± 0.5°	1.003 (da)	1.09/0.683	28.9/11.1	85.0/79.2	NREL (12/16)	NREL/CSEM/EPFL, 4-term ²⁶
Perovskite/Si (monolithic)	23.6 ± 0.6	0.990 (ap)	1.651	18.09*	79.0	NREL (8/16)	Stanford/ASU ²⁹
GalnP/GalnAs/Ge; Si(spectral split minimodule)	34.5 ± 2.0	27.83 (ap)	2.66/0.65	13.1/93	85.6/79.0	NREL (4/16)	UNSW/Azur/Trina, 4-term.30
a-Si/nc-Si Multijunctions							
a-Si/nc-Si/ne-Si (thin-film)	14.0 ± 0.4 RC	1.045 (da)	1.922	9.94*	73.4	AIST (5/16)	AIST ³¹
a-Si/nc-Si (thin-film cell)	12.7 ± 0.4% c	1.000(da)	1.342	13.45 ^h	70.2	AIST (10/14)	AIST15,32

TABLE 3 Confirmed terrestrial module efficiencies measured under the global AM1.5 spectrum (1000 W/m²) at a cell temperature of 25°C (IEC 60904-3: 2008, ASTM G-173-03 global). New entries in bold type

	Effic.	Area	V _{oc}	l _{ec}	FF	Test Centre	
Classification	(%)	(cm²)	(V)	(A)	(%)	(date)	Description
Si (crystalline)	24.4 ± 0.5	13177 (da)	79.5	5.04ª	80.1	AIST (9/16)	Kaneka (108 cells) ⁵
Si (multicrystaline)	19.9 ± 0.4	15143 (ap)	78.87	4.795	79.5	PhG-ISE (10/16)	Trina Solar (120 cells)33
GaAs (thin film)	24.8 ± 0.5	865.3 (ap)	11.07	2.288 ^b	84.7	NREL (11/16)	Alta Devices ³⁴
CIGS (Cd free)	19.2 ± 0.5	841 (da)	48.0	0.456 ^b	73.7	AIST (1/17)	Solar Frontier (70 cells)35
CIGS (brge)	15.7 ± 0.5	9703 (ap)	28.24	7.254	72.5	NREL (11/10)	Missole ³⁶
CdTe (thin-film)	18.6 ± 0.6	7038.8 (ap)	110.6	1.533 ^d	74.2	NREL (4/15)	First Solar, monolithic ³⁷
a-Si/nc-Si (tandem)	12.3 ± 0.3°	14322 (t)	280.1	0.902	69.9	ESTI (9/14)	TEL Solar, Trubbach Labs ³⁸
Organic	8.7 ± 0.3 ⁸	802 (da)	17.47	0.569h	70.4	AIST (5/14)	Toshiba ²²
Multijunction							
InGaP/GaAs/InGaAs	31.2 ± 1.2	968 (da)	23.95	1.506	83.6	AIST (2/16)	Sharp (32 cells) ³⁹

TABLE 4 "Notable exceptions": "Top dozen" confirmed cell and module results, not class records measured under the global AM1.5 spectrum (1000 Wm⁻²) at 25°C (IEC 60904-3: 2008, ASTM G-173-03 global). New entries in bold type

	Efficiency	Area	V _{oc}	J _{ec}	Fill Factor	Test Centre	
Classification	(%)	(cm²)	(V)	(mA/cm ²)	(%)	(date)	Description
Cels (silion)							
Si (crystalline)	25.0 ± 0.5	4.00 (da)	0.706	42.7 ^a	828	Sandia (3/99) ^b	UNSW p-type PERC top/rear contacts ⁴⁰
Si (crystalline)	$25.7 \pm 0.5^{\circ}$	4.017 (da)	0.7249	42.54 ^d	833	FhG-ISE (3/17)	FhG-ISE, n-type top/rear contacts ⁴¹
Si (large)	26.6 ± 0.5	179.74 (da)	0.7403	425 ^d	84.7	FhG-ISE (11/16)	Kaneka, n-type rear IBC ⁵
Si (multicrystalline)	21.3 ± 0.4	242.74 (t)	0.6678	39.80*	0.08	FhG-ISE (11/15)	Trina Solar, large p-type ⁴²
Cels (III-V)							
GalnP	21.4 ± 0.3	0.2504 (ap)	1.4932	16.31 ^f	87.7	NREL (9/16)	LG Electronics, high bandgap ⁴³
Cells (chalcogenide)							
CIGS (thin-film)	22.6 ± 0.5	0.4092 (da)	0.7411	37.76 ^f	208	FhG-ISE (2/16)	ZSW on glass ⁴⁴
CIGSS (Cd free)	22.0 ± 0.5	0.512 (da)	0.7170	39.45 ^f	77.9	FhG-ISE (2/16)	Solar Frontier on glass ¹²
CdTe (thin-film)	22.1 ± 0.5	0.4798 (da)	0.8872	31.69 ^g	78.5	Newport (11/15)	First Solar on glass ⁴⁵
CZTSS (thin-film)	12.6 ± 0.3	0.4209 (ap)	0.5134	35.21 ^h	698	Newport (7/13)	IBM solution grown ⁴⁶
CZTS (thin-film)	11.0 ± 0.2	0.2339(da)	0.7306	21.74 ^d	693	NREL (3/17)	UNSW on glass 14
Cells (other)							
Perovskite (thin-film)	$22.1 \pm 0.7^{\circ}$	0.0946 (ap)	1.105	24.97 ¹	803	Newport (3/16)	KRICT/UNIST17
Organic (thin-film)	12.1 ± 0.3^k	0.0407 (ap)	0.8150	20.27 ^d	735	Newport (2/17)	Phillips 66

Abbreviations: CIGSS, CulnGaSSe; CZTSS, Cu₂ZnSnS_{4-y}Se_y; CZTS, Cu₂ZnSnS_{4-y}Se_y; (ap), aperture area; (t), total area; (da), designated illumination area; AIST, Japanese National Institute of Advanced Industrial Science and Technology; NREL, National Renewable Energy Laboratory; FhG-ISE, Fraunhofer-Institut für Solare Energiesysteme.

TABLE 5 "Direct beam" terrestrial concentrator cell and module efficiencies measured under the ASTM G-173-03 direct AM1.5 spectrum at a cell temperature of 25°C. New entries in bold type

	Effic.	Area	Intensity	Test Centre	
Classification	(%)	(cm²)	(suns)	(date)	Description
Single œls					
GaAs	29.3 ± 0.7 ^b	0.09359 (da)	49.9	NREL (10/16)	LG Electronics
Si	27.6 ± 1.2°	1.00 (da)	92	FhG-ISE (11/04)	Amonix back-contact ⁴⁰
CIGS (thin-film)	23.3 ± 1.2 ^{d,a}	0.09902 (ap)	15	NREL (3/14)	NREL ⁴⁹
Multijunction cells					
GalnP/GaAs; GalnAsP/GalnAs	46.0 ± 2.2	0.0520 (da)	508	AIST (10/14)	Soitec/CEA/FhG-ISE 4j bonded ⁵⁰
GainP/GaAs/GainAs/GainAs	45.7 ± 2.3 ^{d,g}	0.09709 (da)	234	NREL (9/14)	NREL, 4j monolithic ⁵¹
InGaP/GaAs/InGaAs	44.4 ± 2.6 ^h	0.1652 (da)	302	FhG-ISE (4/13)	Sharp, 3j inverted metamorphic ⁵²
GalnP/GalnAs	35.1 ± 1.1 ^{dj}	0.05376 (da)	407	PhG-ISE (3/17)	Fraunhofer ISE 2j ⁵³
Minimodule					
GalnP/GaAs; GalnAsP/GalnAs (wafer bonded)	43.4 ± 2.4 ⁴¹	18.2 (ap)	340 ^k	PhG-ISE (7/15)	Fraunhofer ISE 4j (lens/cell) ⁵⁴
Submodule					
GalnP/GalnAs/Ge; Si	40.6 ± 2.0 ^m	287 (ap)	365	NREL (4/16)	UNSW 4j split spectrum ²⁵
Modules					
Si	20.5 ± 0.8 ^d	1875 (ap)	79	Sandia (4/89) ^k	Sandia/UNSW/ENTECH (12 cells)54
Three junction (3j)	35.9 ± 1.8 ^m	1092 (ap)	N/A	NREL (8/13)	Amonix ⁵⁷
Four junction (4)	38.9 ± 2.5°	812.3 (ap)	333	FhG-ISE (4/15)	Soitec ⁵⁸
"Notable Exceptions"					
Si (large-area cell)	21.7 ± 0.7	20.0 (da)	11	Sandia (9/90) ^k	UNSW laser grooved ⁵⁹
Luminescent minimodule	7.1 ± 0.2	25(ap)	2.5 ^k	ESTI (9/08)	ECN Petten, GaAs cells ⁴⁰

Quantum efficiency

