

CLAIMS

- 1 1. A system for attenuation of acoustic waves traveling through a longitudinal
2 member capable of transmitting said acoustic waves therethrough comprising:
3 a plurality of spaced-apart masses firmly attached to an adjacent outer wall of said
4 longitudinal member, each said plurality of masses having a predetermined
5 spacing and a predetermined magnitude for attenuation of acoustic pulses in a
6 predetermined frequency range.

- 1 2. The system for attenuation of acoustic waves according to claim 1 wherein said
2 predetermined frequency range comprises 10 khz to 20 khz.

- 1 3. The system for attenuation of acoustic waves according to claim 2 wherein said
2 plurality of masses comprises a material selected from (i) steel rings, and, (ii) tungsten
3 rings.

- 1 4. The system for attenuation of acoustic waves according to claim 3 wherein said
2 plurality of masses is between six and ten.

- 1 5. The system according to claim 1 wherein said spacing of the masses is within the
2 range of twelve to fourteen centimeters.

- 1 6. The system according to claim 1 wherein the masses comprise metal rings

2 attached to the outer wall of the longitudinal member by neck pieces extending inward
3 from an inner circumference of the rings.

1 7. The system according to claim 1 wherein each of said plurality of masses is
2 attached to the longitudinal member by at least one neck piece.

1 8. The system according to claim 1 wherein the masses comprise metal rings
2 attached to a shoulder on the longitudinal member.

1 9. The system according to claim 8 wherein the metal rings are asymmetrically
2 attached to the shoulder on the longitudinal member.

1 10. An apparatus for performing acoustic investigations of a subsurface geological
2 formation penetrated by a borehole comprising:

- 3 (a) a longitudinally extending body conveyed in said borehole;
- 4 (b) an acoustic transmitter supported by the body, said transmitter generating
5 acoustic signals in the body, the borehole and the subsurface formations;
- 6 (c) an acoustic receiver spaced apart from the transmitter and supported by
7 the body for receiving said acoustic signals; and
- 8 (d) an attenuator located on a substantially cylindrical portion of the body
9 having an inner diameter and an outer diameter, between said acoustic
10 transmitter and said acoustic receiver for attenuating said acoustic signals
11 in the body within a predetermined frequency range;

12 wherein said attenuator comprises a plurality of spaced-apart masses having a
13 predetermined spacing, mass and length firmly attached to an outer wall of the
14 cylindrical portion of the body.

1 11. The apparatus of claim 10 wherein the longitudinally extending body is conveyed
2 on a drilling tubular having a drillbit therein for drilling the borehole, said drilling tubular
3 selected from the group consisting of (i) a drillstring, and, (ii) coiled tubing.

1 12. The apparatus of claim 10 wherein the attenuator comprises a plurality of spaced
2 apart masses wherein said predetermined frequency range comprises 10 khz to 20 khz.

1 13. The apparatus of claim 10 wherein the attenuator comprises a plurality of spaced
2 apart masses wherein material of said masses is selected from the group consisting of (i)
3 steel rings, and, (ii) tungsten rings.

1 14. The apparatus of claim 10 wherein the attenuator comprises a plurality of spaced
2 apart masses wherein said plurality of masses is between six and ten.

1 15. The apparatus of claim 10 wherein the attenuator comprises a plurality of spaced
2 apart masses and wherein said spacing of the masses is within the range of twelve to
3 fourteen centimeters.

1 16. A method of performing acoustic investigations of a subsurface geological

2 formation penetrated by a borehole comprising:

- 3 (a) conveying a logging tool having a substantially cylindrical body
- 4 into the borehole;
- 5 (b) activating a transmitter on the body for generating acoustic signals
- 6 in the formation, borehole and the body;
- 7 (c) attenuating signals passing through the body using an attenuator
- 8 comprising a plurality of spaced-apart masses firmly attached on an
- 9 outside adjacent wall of the body, said masses being spaced apart a
- 10 preselected distance to attenuate signals within a specified frequency
- 11 range;
- 12 (d) using a receiver on a side of the attenuator opposite the transmitter
- 13 for receiving signals through the formation and the attenuated signals
- 14 through the body.

1 17. The method of claim 16 wherein said specified frequency range comprises 10 khz
2 to 20 khz.

1 18. The method of claim 16 wherein said plurality of masses comprises a material
2 selected from (i) steel rings, and, (ii) tungsten rings.

1 19. The method of claim 16 further comprising conveying the logging tool on a
2 drilling tubular.

1 20. The method of claim 16 further comprising performing said acoustic
2 investigations during drilling of the wellbore.

1 21. A system for attenuation of acoustic waves traveling through a longitudinal
2 member capable of transmitting said acoustic waves therethrough, comprising a plurality
3 of spaced-apart masses firmly and asymmetrically attached to an adjacent outer wall of
4 said longitudinal member, each said plurality of masses having a predetermined spacing
5 and a predetermined magnitude for attenuation of acoustic pulses in a predetermined
6 frequency range.

1 22. The system according to claim 21 wherein the plurality of masses comprises a
2 material selected from (i) steel rings, and (ii) tungsten rings.

1 23. The system according to claim 21 wherein the predetermined frequency range
2 comprises 10khz to 20 khz.

1 24. The system for attenuation of acoustic waves according to claim 21 wherein said
2 plurality of masses is between six and ten.

1 25. The system according to claim 21 wherein said spacing of the masses is within the
2 range of twelve to fourteen centimeters.

1 26. A method of performing acoustic investigations of a subsurface geological

2 formation penetrated by a borehole comprising:

- 3 (a) conveying a logging tool having a substantially cylindrical body
- 4 into the borehole;
- 5 (b) activating a transmitter on the body for generating acoustic signals
- 6 in the formation, borehole and the body;
- 7 (c) preferentially attenuating signals passing through the body in a
- 8 predetermined direction using an attenuator comprising a plurality of
- 9 spaced-apart masses firmly and asymmetrically attached on an outside
- 10 adjacent wall of the body, said masses being spaced apart a preselected
- 11 distance to attenuate signals within a specified frequency range;
- 12 (d) using a receiver on a side of the attenuator opposite the transmitter
- 13 for receiving signals through the formation and the attenuated signals
- 14 through the body.

1 27. The method of claim 26 wherein said specified frequency range comprises 10 khz
2 to 20 khz.

1 28. The method of claim 26 wherein said plurality of masses comprises a material
2 selected from (i) steel rings, and, (ii) tungsten rings.

1 29. The method of claim 26 further comprising conveying the logging tool on a
2 drilling tubular.

1 30. The method of claim 26 further comprising performing said acoustic
2 investigations during drilling of the wellbore.