Eynard-Orantin invariants and Cohomological field theories Lorne, December 2012. Paul Norbury Melbourne

#### Outline

- Eynard-Orantin invariants
- Cohomological field theories
- Givental's viewpoint of CohFT
- ► Geometric relation between Givental and Eynard-Orantin

## **Eynard-Orantin invariants**

Input : Riemann surface C, meromorphic  $x, y : C \to \mathbb{C}$  dx has simple zeros, disjoint from zeros of dy.

Output: meromorphic multidifferentials  $\omega_n^g(p_1,...,p_n)$ ,  $p_i \in C$ 

Defined recursively:  $\omega_1^0 = ydx$ 

$$\delta\omega_n^{\mathbf{g}}(p_1,...,p_n) = \int_{\gamma(p)} \Lambda(p)\omega_{n+1}^{\mathbf{g}}(p,p_1,...,p_n) \Leftarrow \text{variation of } (C,x,y)$$

 $\omega_n^{g}(p_1,...,p_n)$  are generating functions for enumerative problems.

- 1.  $x = y^2$ —intersection numbers on  $\overline{\mathcal{M}}_{g,n}$ , EO, K.
- 2.  $x = \log y y$ —simple Hurwitz numbers BEMS, ELSV.
- 3.  $xy y^2 = 1$ —Belyi Hurwitz problem, N, K.
- 4.  $x = 2 \cosh y$ —stationary GW invariants of  $\mathbb{P}^1$ , NS/DOSS, OP.

# AIM: Find context for Eynard-Orantin invariants

Theorem (Dunin-Barkowski, Orantin, Shadrin, Spitz 2012)

Semi-simple cohomological field theories are equivalent to Eynard-Orantin invariants of local curves.

Theorem (N., Scott g = 0, 1, DOSS g > 1)

For the curve x = z + 1/z,  $y = \ln z$  an analytic expansion of  $\omega_n^g(p_1,...,p_n)$  around a branch of  $x_i = \infty$  is

$$\Omega_n^g(x_1,...,x_n) = \sum_{\mathbf{b}} \left\langle \prod_{i=1}^n \tau_{b_i}(\omega) \right\rangle_g^{\mathbb{P}^1} \cdot \prod_{i=1}^n \frac{(b_i+1)!}{x_i^{b_i+2}} dx_i.$$

NS and DOSS proofs are indirect.

### Cohomological field theories

• Vector space  $(H, \eta)$  and a sequence of  $S_n$ -equivariant maps

$$I_{g,n}:H^{\otimes n}\to H^*(\overline{\mathcal{M}}_{g,n})$$

which satisfy compatibility conditions from inclusion of strata:

$$\overline{\mathcal{M}}_{g_1,n_1+1} \times \overline{\mathcal{M}}_{g_2,n_2+1} \to \overline{\mathcal{M}}_{g_1+g_2,n_1+n_2}$$

- Examples:
  - ▶  $I_{g,n} \in H^0(\overline{\mathcal{M}}_{g,n}) \Rightarrow 2D$  topological field theories
  - lacktriangle dim  $H=1\Rightarrow I_{g,n}$  determined by an element of  $H^*(\overline{\mathcal{M}}_{g,n})$
  - ► Gromov-Witten invariants (lose information ... but equivalent)

$$\blacktriangleright \ \overline{\mathcal{M}}_{g,n}(X,d) = \{\pi : (\Sigma, p_1, \dots, p_n) \stackrel{\text{degree } d}{\longrightarrow} X\} / \sim$$

$$I_{g,n}: H^{\otimes n} = H^*(X)^{\otimes n} \xrightarrow{ev^*} H^*(\overline{\mathcal{M}}_{g,n}(X,d)) \to H^*(\overline{\mathcal{M}}_{g,n})$$

▶ Correlators:  $k_i \in \mathbb{N}$ ,  $e_{\nu} \in H$ ,  $\nu = 0, ..., N-1$ 

$$\langle au_{k_1}(e_{
u_1})... au_{k_n}(e_{
u_n}) 
angle_{g} := \int_{\overline{\mathcal{M}}_{g,n}} I_{g,n}(e_{
u_1},...,e_{
u_n}) \cdot \prod_{i=1}^n \psi_j^{k_j}$$

### Partition function

$$F_g(\lbrace t_k^{\nu}\rbrace) = \left\langle \exp \sum_{k=0}^{\infty} \tau_k(t_k) \right\rangle_g \text{ for } t_k = t_k^{\nu} e_{\nu}$$

Examples

$$F_0 = \frac{t_0^3}{6} + \frac{t_0^3 t_1}{6} + \frac{t_0^3 t_1^2}{6} + \frac{t_0^4 t_2}{24} + \frac{t_0^4 t_1 t_2}{8} + \dots \quad (t_k = t_k^0)$$

$$F_0 = \frac{(t_0^0)^2 t_0^1}{2} + \exp t_0^1 + \frac{(t_1^1)^2}{2} + \frac{t_2^1}{4} + \dots$$

Properties:

(DE) 
$$\partial_{0,1}F_0 = -2F_0 + \sum_{k=0}^{\infty} t_k^{\nu} \partial_{\nu,k} F_0$$
(SE) 
$$\partial_{0,0}F_0 = \frac{1}{2} t_0^{\mu} t_0^{\nu} \eta_{\mu\nu} + \sum_{k=0}^{\infty} t_{k+1}^{\nu} \partial_{\nu,k} F_0$$
(TRR) 
$$\partial_{\alpha,k+1} \partial_{\beta,l} \partial_{\gamma,m} F_0 = \partial_{\alpha,k} \partial_{\mu,0} F_0 \cdot \eta^{\mu\nu} \cdot \partial_{\beta,l} \partial_{\gamma,m} \partial_{\nu,0} F_0$$

### Givental's viewpoint

Represent genus 0 partition function geometrically.

$$H((\hbar,\hbar^{-1}))\supset \mathcal{L}=\{t_0+t_1\hbar+...+\frac{\partial F_0}{\partial t_0}\hbar^{-1}+\frac{\partial F_0}{\partial t_1}\hbar^{-2}+...\}$$



 $(t_k=t_k^\nu e_\nu)$ 

 $\hbar T \mathcal{L} \subset T \mathcal{L} \Leftrightarrow F_0$  satisfies SE, DE, TRR  $\mathcal{L}$  determined by a section, the *J*-function  $J: H \to \mathcal{L}$ 



# Geometric relation between Givental and Eynard-Orantin

#### Follow K. Saito, Dubrovin, Barannikov

- ▶ (C,x), affine curve and holomorphic function  $x:C\to \mathbb{C}$
- ▶ Milnor ring  $R_x \cong \mathbb{C}^{|D|}$  where  $dx^{-1}(0) = D \subset C$ 
  - ▶ any R-module N defines a quotient ring  $R \to R/\mathrm{Ann}\ N$
  - ▶  $R_x$  defined by the  $\mathbb{C}[C]$ -module  $H^0(K_C)/\langle dx \rangle$
- ▶ space of deformations  $\{(C_t, x_t), t \in H\}$  with  $T_t H \stackrel{\cong}{\to} R_{x_t}$  Examples:  $v \mapsto \partial_v x_t$ 
  - C rational
    - $x_t(z) = z^d + t_{d-2}z^{d-2} + ... + t_0, \ R_{x_t} = \mathbb{C}[z]/x_t'(z) \ (Sabbah)$
    - $x_t(z) = (z^d + t_{d-1}z^{d-1} + ... + t_0)/z^k, R_{x_t} = \mathbb{C}[z, z^{-1}]/x_t'(z)$
  - C elliptic,  $x = \wp(z)$ , Weierstrass  $\wp$ -function

$$x = \wp(z), \quad R_\wp = \mathbb{C}[\wp]/(-4\wp^3 + a\wp + b)$$

 $\dim H = 3 \Rightarrow \text{must deform } x \text{ and } C$ 



▶ metric on  $H \cong R_x$  defined by differential dy on C, (no zeros in common with dx)

$$\langle p, q \rangle := \underset{x=\infty}{\operatorname{Res}} \frac{p d y \cdot q d y}{d x}, \quad p, q \in R_x$$

- ▶ locally free sheaf E over  $H \times \mathbb{C}^{\times}$ 
  - $E_t$  = sheaf of 1-forms over  $C_t$
  - flat connection  $\nabla^{\mathrm{GM}}$  depending on h

•

$$H((\hbar, \hbar^{-1})) = \{ s \in \Gamma(M, E \otimes_{\mathcal{O}_M((h))} \mathcal{O}_M((h, h^{-1})) | \nabla s = 0 \}$$
  
$$\cong T_t H \otimes \mathbb{C}((\hbar, \hbar^{-1}))$$

- $ightharpoonup \mathcal{L} \subset H((\hbar, \hbar^{-1}))$ 
  - ▶ ruled by embeddings  $E_t \subset H((\hbar, \hbar^{-1}))$

### Conclusion

- Givental:  $\mathcal{L} \subset H((\hbar, \hbar^{-1}))$
- ▶ Eynard-Orantin: (C, x, y)
- ▶ Constructed  $\mathcal{L} \subset H((\hbar, \hbar^{-1}))$  from (C, x, y)
- Need to prove that this contruction realises DOSS
- ▶ Proven for GW(pt) and  $GW(\mathbb{P}^1)$