Vstęp ORM Zależności Modelowanie obiektowe Podsumowani

Praca Dyplomowa Magisterska

Mechanizm modelowania danych i mapowania obiektowego dla Apache Cassandry

> Jakub Turek J.Turek@stud.elka.pw.edu.pl

9 października 2014r.

Cel pracy

System mapowania obiektowego dla bazy Apache Cassandra:

- Zachowanie różnicy w wydajności pomiędzy relacyjnymi bazami danych a Cassandrą.
- Możliwość stosowania wzorców modelowania do optymalizacji.
- Zachowanie zgodności z istniejącymi mechanizmami mapowania obiektowo-relacyjnego.

Vstęp **ORM** Zależności Modelowanie obiektowe Podsumowani

Kundera

Kundera

Implementacja Java Persistence API dla baz danych NoSQL.

Wspierane silniki:

- Cassandra
- HBase
- MongoDB
- Redis
- Oracle NoSQL
- ► Neo4j
- Couchdb
- Elastic Search

Porównanie czasu wstawiania rekordów:

Analiza problemu

Modelowanie relacji wiele-do-wielu przez bibliotekę Kundera

Użytkownik	Wiek
jkowalski	24
mnowak	45

Przedmiot	Cena
laptop	2276.99
audiobook	42.40

Klucz	Użytkownik	Przedmiot 1	Przedmiot 2
1	jkowalski	laptop	audiobook
2	mnowak	audiobook	(null)

Modelowanie zależności (1/2)

Zależność znormalizowana zwrotna

Użytkownik	Wiek	
jkowalski	24	
mnowak	45	

Przedmiot	Cena	
laptop	2276.99	
audiobook	42.40	

Użytkownik Przedmiot		Przedmiot 2
jkowalski	laptop	audiobook
mnowak	audiobook	(null)

Przedmiot	Użytkownik 1	. Użytkownik 2		
audiobook	jkowalski	mnowak		
laptop	jkowalski	(null)		

Modelowanie zależności (2/2)

Zależność zdenormalizowana zwrotna

Użytownik	Wiek	P. 1	C. 1	P. 2	C. 2
jkowalski	24	audiobook	42.40	laptop	2276.99
mnowak	45	audiobook	42.40	(null)	(null)

Zalety:

- Bardzo wysoka wydajność:
 - Pełna informacja w jednym odwołaniu.
 - Cassandra została zaprojektowana do wielokrotnych wstawień.

Wady:

- Problem z aktualizacją danych. Dwie alternatywy:
 - Czasochłonna aktualizacja wymagająca dodatkowych indeksów.
 - Niespójność danych.

Wstęp ORM Zależności **Modelowanie obiektowe** Podsumowanie

Modelowanie obiektowe

Wzorce modelowania

Wspierane wzorce modelowania:

- Szereg zdarzeń:
 - Grupowanie po komponentach daty/czasu.
 - Wpisy z ograniczoną pamięcią.
- Kolejki.
- Selektywna aktualizacja.
- Indeksy wartości unikalnych.

Podsumowanie

- Nie wszystkie cele udało się osiągnąć:
 - Porzucenie zgodności z mapowaniem obiektowo-relacyjnym na rzecz efektywnego modelu.
- Porzucenie zgodności umożliwiło rozbudowę systemu o narzędzia zarządzania danymi:
 - Migracje.
 - Profilowanie.
- Studium przypadku pokazało znaczną przewagę mechanizmu w stosunku do modelowania dziedziny przy pomocy CQL:
 - Model logiczny kontra model fizyczny.
 - Wbudowana logika obsługi danych.

Koniec

Dziękuję za uwagę!