Optimization and Computational Linear Algebra for Data Science Lecture 7: Singular value decomposition

Warning: This material is not meant to be lecture notes. It only gathers the main concepts and results from the lecture, without any additional explanation, motivation, examples, figures...

1 The Spectral Theorem

The main result of this section is the following "Spectral Theorem" which tells us that a symmetric matrix is diagonalizable in an orthonormal basis.

Theorem 1.1 (Spectral Theorem)

Let $A \in \mathbb{R}^{n \times n}$ be a **symmetric** matrix. Then there is a orthonormal basis of \mathbb{R}^n composed of eigenvectors of A.

Given an $n \times n$ symmetric matrix A, Theorem 1.1 tells us that one can find an orthonormal basis (v_1, \ldots, v_n) of \mathbb{R}^n and scalars $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that for all $i \in \{1, \ldots, n\}$,

$$Av_i = \lambda_i v_i$$
.

Let P be the $n \times n$ matrix whose columns are v_1, \ldots, v_n . Since (v_1, \ldots, v_n) is an orthonormal basis, we get that P is an orthogonal matrix. Let $D = \text{Diag}(\lambda_1, \ldots, \lambda_n)$ and compute

$$AP = A \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} = \begin{pmatrix} | & | & & | \\ Av_1 & Av_2 & \cdots & Av_n \\ | & | & & | \end{pmatrix} = \begin{pmatrix} | & | & & | \\ \lambda_1 v_1 & \lambda_2 v_2 & \cdots & \lambda_n v_n \\ | & | & & | \end{pmatrix} = PD.$$

By multiplying by P^{T} on both sides, we get $APP^{\mathsf{T}} = PDP^{\mathsf{T}}$. Recall now that P is orthogonal, therefore $PP^{\mathsf{T}} = \mathrm{Id}_n$. We conclude that $A = PDP^{\mathsf{T}}$.

Theorem 1.2 (Spectral Theorem, matrix formulation)

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then there exists an orthogonal matrix P and a diagonal matrix D of sizes $n \times n$, such that

$$A = PDP^{\mathsf{T}}.$$

Proposition 1.1

Let A be a $n \times n$ symmetric matrix and let $\lambda_1 \ge \cdots \ge \lambda_n$ be its n eigenvalues and v_1, \ldots, v_n be the associated orthonormal family of eigenvectors. Then

$$v_1 = \underset{\|v\|=1}{\arg\max} v^{\mathsf{T}} A v$$
, and for $k = 2, \dots n$, $v_k = \underset{\|v\|=1, v \perp v_1, \dots, v_{k-1}}{\arg\max} v^{\mathsf{T}} A v$.

Remark 1.1. Applying the proposition above to the matrix -A which is symmetric with eigenvalues $-\lambda_n \ge \cdots \ge -\lambda_1$ and associated eigenvectors v_n, \ldots, v_1 , we get

$$v_n = \underset{\|v\|=1}{\arg\min} v^{\mathsf{T}} A v, \qquad and \ for \ k = 1, \dots, n-1 \qquad v_k = \underset{\|v\|=1, \ v \perp v_{k+1}, \dots, v_n}{\arg\min} v^{\mathsf{T}} A v.$$

Positive matrices

Definition 1.1

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is said to be positive semi-definite if

$$\forall x \in \mathbb{R}^n, \ x^\mathsf{T} A x \ge 0. \tag{1}$$

The matrix A is said to be positive definite if moreover the inequality in (1) is strict for all $x \neq 0$.

Remark 1.2. Negative semi-definite and negative definite matrices are defined analogously.

Proposition 1.2

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, and let $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ its eigenvalues. Then

A is positive semi-definite $\iff \lambda_i \geq 0 \text{ for } i = 1, \dots, n,$

and

A is positive definite $\iff \lambda_i > 0 \text{ for } i = 1, \dots, n.$

Exercise 1.1. Let $A \in \mathbb{R}^{n \times n}$.

- a. Show that $A^{\mathsf{T}}A$ positive semi-definite.
- b. Let M be a $n \times n$ symmetric positive semi-definite matrix. Show that there exists $A \in \mathbb{R}^{n \times n}$ such that $M = A^{\mathsf{T}}A$.

2 Singular value decomposition

Theorem 2.1 (Singular value decomposition (SVD))

Let $A \in \mathbb{R}^{n \times m}$. Then there exists two orthogonal matrices $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ and a matrix $\Sigma \in \mathbb{R}^{n \times m}$ such that $\Sigma_{1,1} \geq \Sigma_{2,2} \geq \cdots \geq 0$ and $\Sigma_{i,j} = 0$ for $i \neq j$

$$A = U\Sigma V^{\mathsf{T}}$$
.

The columns u_1, \ldots, u_n of U (respectively the columns v_1, \ldots, v_m of V) are called the left (resp. right) singular vectors of A. The non-negative numbers $\Sigma_{i,i}$ are the singular values of A. Moreover rank $(A) = \#\{i \mid \Sigma_{i,i} \neq 0\}$.

Notice that the singular vectors (similarly to the eigenvectors) are not uniquely defined: if $A = U\Sigma V^{\mathsf{T}}$ is a SVD of A, then $A = (-U)\Sigma (-V)^{\mathsf{T}}$ is also a SVD of A. However, with a slight abuse of language, we will often refer v_i as the i^{th} right singular vector of A.

2.1 Properties of the SVD

Let $A \in \mathbb{R}^{n \times m}$ and let $U\Sigma V^{\mathsf{T}}$ be a singular value decomposition of A as in Theorem 2.1. Let u_1, \ldots, u_n be the left singular vectors (i.e. the columns of U) and v_1, \ldots, v_m be the right singular vectors (i.e. the columns of V). Let $\sigma_i = \Sigma_{i,i}$ be the singular values of A.

Proposition 2.1

For i = 1, ..., rank(A) we have

$$Av_i = \sigma_i u_i$$
 and $A^\mathsf{T} u_i = \sigma_i v_i$.

The most important property of the singular vectors for us is the following:

Proposition 2.2

We have

$$v_1 = \underset{\|v\|=1}{\arg \max} \|Av\| \quad and \quad \sigma_1 = \underset{\|v\|=1}{\max} \|Av\|.$$
 (2)

It holds also that

$$v_2 = \underset{\|v\|=1, v \perp v_1}{\arg \max} \|Av\| \quad and \quad \sigma_2 = \underset{\|v\|=1, v \perp v_1}{\max} \|Av\|$$
 (3)

and more generally:

$$v_k = \underset{\|v\|=1, v \perp v_1, \dots, v_{k-1}}{\arg \max} \|Av\|. \quad and \quad \sigma_k = \underset{\|v\|=1, v \perp v_1, \dots, v_{k-1}}{\max} \|Av\|.$$
 (4)

Remark 2.1. Considering A^{T} leads to an analogous result for the left singular vectors u_k :

$$u_k = \underset{\|u\|=1, u \perp u_1, \dots, u_{k-1}}{\arg \max} \|A^{\mathsf{T}}u\|. \quad and \quad \sigma_k = \underset{\|u\|=1, u \perp u_1, \dots, u_{k-1}}{\max} \|A^{\mathsf{T}}u\|.$$
 (5)

Proof. Compute $A^{\mathsf{T}}A = V\Sigma^{\mathsf{T}}\Sigma V^{\mathsf{T}} = VDV^{\mathsf{T}}$ where the matrix $D \stackrel{\text{def}}{=} \Sigma^{\mathsf{T}}\Sigma$ is diagonal with $D_{i,i} = \sigma_i^2$. The family (v_1, \ldots, v_m) is therefore an orthonormal family of eigenvectors of the symmetric matrix $A^{\mathsf{T}}A$ and $\sigma_1^2 \geq \cdot \geq \sigma_m^2$ are the corresponding eigenvalues. The result follows then from Proposition 1.1 applied to $A^{\mathsf{T}}A$, noticing that $v^{\mathsf{T}}A^{\mathsf{T}}Av = \|Av\|^2$.

2.2 Proof of Theorem 2.1

We apply the Spectral Theorem (Theorem 1.1) to the $m \times m$ matrix $A^{\mathsf{T}}A$: there exists an orthonormal basis (v_1, \ldots, v_m) of \mathbb{R}^m of eigenvectors of $A^{\mathsf{T}}A$ associated to eigenvalues $\lambda_1 \geq \cdots \geq \lambda_m$ that are all non-negative because $A^{\mathsf{T}}A$ is non-negative. Let $V \in \mathbb{R}^{m \times m}$ be the orthogonal matrix whose columns are (v_1, \ldots, v_m) .

Let us write $\sigma_i = \sqrt{\lambda_i}$ and let $r = \max\{i | \sigma_i > 0\}$. Define for $i = 1, \dots, r$

$$u_i = \frac{1}{\sigma_i} A v_i \in \mathbb{R}^n. \tag{6}$$

Lemma 2.1

The family (u_1, \ldots, u_r) is orthonormal.

Proof. Let $i, j \in \{1, ..., r\}$.

$$\langle u_i, u_j \rangle = \left(\frac{1}{\sigma_i} A v_i\right)^\mathsf{T} \left(\frac{1}{\sigma_j} A v_j\right) = \frac{1}{\sigma_i \sigma_j} v_i^\mathsf{T} A^\mathsf{T} A v_j = \frac{\sigma_i}{\sigma_j} v_i^\mathsf{T} v_j = \mathbb{1}_{i=j},$$

since $A^{\mathsf{T}}Av_i = \sigma_i^2 v_i$.

If r < n we let (u_{r+1}, \ldots, u_n) be an orthonormal family of vectors of \mathbb{R}^n that are orthogonal to u_1, \ldots, u_r . The family (u_1, \ldots, u_n) is then an orthonormal basis of \mathbb{R}^n Let $U \in \mathbb{R}^{n \times n}$ be the orthogonal matrix whose columns are (u_1, \ldots, u_n) .

Lemma 2.2

For
$$i = r + 1, ..., m, Av_i = 0.$$

Proof. We compute for $i = r + 1, \dots, m$:

$$||Av_i||^2 = v_i^{\mathsf{T}} A^{\mathsf{T}} A^{\mathsf{T}} v_i = v_i^{\mathsf{T}} (\lambda_i v_i) = \sigma_i^2 = 0.$$

Finally, we let $\Sigma \in \mathbb{R}^{n \times m}$ defined by:

$$\Sigma_{i,j} = \begin{cases} \sigma_i & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

It remains to verify that $A = U\Sigma V^{\mathsf{T}}$. Compute for $i = 1, \ldots, m$, using the definition (6) and Lemma 2.2:

$$Av_i = \begin{cases} \sigma_i u_i & \text{if } i \le r \\ 0 & \text{otherwise.} \end{cases}$$

By orthogonality of V and the construction of Σ one verifies easily that

$$U\Sigma V^{\mathsf{T}} v_i = \begin{cases} \sigma_i u_i & \text{if } i \leq r \\ 0 & \text{otherwise.} \end{cases}$$

We conclude that for all $i \in \{1, ..., m\}$, $Av_i = U\Sigma V^{\mathsf{T}}v_i$. Since a linear transformation is uniquely determined by the image of a basis, we conclude that $A = U\Sigma V^{\mathsf{T}}$.

It remains to show:

Lemma 2.3

$$\overline{\operatorname{rank}(A)} = r.$$

Proof. The family (u_1, \ldots, u_r) is orthonormal, hence linearly independent. By definition $u_i \in \text{Im}(A)$ which implies that $\text{rank}(A) = \dim(\text{Im}(A)) \geq r$. To prove the converse inequality, notice that by Lemma 2.2 $v_i \in \text{Ker}(A)$ for $i = r+1, \ldots, m$. The vectors (v_{r+1}, \ldots, v_m) are orthonormal, hence linearly independent. This implies that $\dim(\text{Ker}(A)) \geq m-r$. We conclude by applying the rank Theorem:

$$rank(A) = m - \dim(Ker(A)) \le m - (m - r) = r.$$

${f 3}$ Interpretation and applications of the SVD

3.1 Geometric interpretation

3.2 "Maximal variance" interpretation

Let $a_1, \ldots, a_n \in \mathbb{R}^d$ be n points in d dimensions. We assume that this points are centered, meaning that

$$\sum_{i=1}^{n} a_i = 0.$$

Let A be the $n \times d$ matrix whose rows are a_1, \ldots, a_n and let (v_1, \ldots, v_n) be its right singular vectors. By Proposition 2.2, v_1 , the first right singular vector of A, maximizes

$$v \mapsto ||Av||^2 = \sum_{i=1}^n \langle a_i, v \rangle^2$$

over the unit sphere. This quantity is the variance of the coordinates of the points a_1, \ldots, a_n along the direction $\mathrm{Span}(v)$.

The first right singular vector v_1 gives therefore the direction along which the variance of the data is maximal. Proposition 2.2 gives also that

$$v_k = \underset{\|v\|=1, v \perp v_1, \dots, v_{k-1}}{\arg \max} \|Av\|^2.$$
 (7)

Hence v_2 gives the direction orthogonal to v_1 that maximizes the variance and so on...

3.3 Application: Principal Component Analysis (PCA)

3.4 Best-fitting subspace

Let $a_1, \ldots, a_n \in \mathbb{R}^d$ be n points in d dimensions. We consider the problem of finding the k-dimensional subspace (for $k = 1, \ldots, n$) that fits "the best" these n data points. By "best", we mean here the k-dimensional subspace S that minimize the sum of the square distances to the n points:

minimize
$$\sum_{i=1}^{n} d(a_i, S)^2$$
 with respect to S subspace of dimension k . (8)

Let A be the $n \times d$ matrix whose rows are a_1, \ldots, a_n . The goal of this section is to prove:

Theorem 3.1

Let v_1, \ldots, v_n be right singular vectors of A. Then for all $k \in \{1, \ldots, n\}$, the subspace $\operatorname{Span}(v_1, \ldots, v_k)$ is a solution of (8).

In this case we have for all $i \in \{1, ..., n\}$,

$$d(a_i, S)^2 = ||a_i - P_S(a_i)||^2 = ||a_i||^2 - ||P_S(a_i)||^2,$$

by Pythagorean Theorem (recall that $P_S(a_i) \perp (a_i - P_S(a_i))$). Since v_1 is of unit norm, $P_S(a_i) = \langle v_1, a_i \rangle v_1$, hence:

$$d(a_i, S)^2 = ||a_i||^2 - \langle v_1, a_i \rangle^2.$$

Minimizing (8) is therefore equivalent to maximize

$$\sum_{i=1}^{n} \|P_S(a_i)\|^2. \tag{9}$$

Let us fix an orthonormal basis (s_1, \ldots, s_k) of S. Then for all $x \in \mathbb{R}^d$, $P_S(x) = \langle s_1, x \rangle s_1 + \cdots + \langle s_k, x \rangle s_k$, hence

$$\sum_{i=1}^{n} \|P_S(a_i)\|^2 = \sum_{i=1}^{n} \sum_{j=1}^{k} \langle a_i, s_j \rangle^2 = \|As_1\|^2 + \dots + \|As_k\|^2, \tag{10}$$

Consequently, minimizing (8) is equivalent to maximizing (10) over all orthonormal families (s_1, \ldots, s_k) .

For k = 1, Proposition 2.2 tells us that a subspace of dimension 1 that minimizes (8) is $Span(v_1)$ because

$$v_1 = \arg\max_{\|v\|=1} \|Av\|. \tag{11}$$

If we now want to solve the problem for k = 2, a natural candidate for the subspace S would be $S = \text{Span}(v_1, v_2)$ since by Proposition 2.2

$$v_2 = \underset{\|v\|=1, \, v \perp v_1}{\arg\max} \, \|Av\|. \tag{12}$$

We can follow this greedy strategy for k = 3, ..., n, $S = \operatorname{Span}(v_1, ..., v_k)$ is a natural candidate for being solution of (8).

It is not a priori obvious (except for k = 1) that $S = \text{Span}(v_1, \dots, v_k)$ is a minimizer of (8) over all the subspaces of dimension k. We need the following lemma.

Lemma 3.1

Let $k \in \{2, ..., k\}$. Assume that $(v_1, ..., v_{k-1})$ is an orthonormal family that maximizes (10). Define

$$v_k = \underset{\|v\|=1, v \perp \text{Span}(v_1, \dots, v_{k-1})}{\arg \max} \|Av\|.$$

Then (v_1, \ldots, v_k) is an orthonormal family and $\operatorname{Span}(v_1, \ldots, v_k)$ minimizes (8), i.e. (v_1, \ldots, v_k) maximizes (10).

Proof. Let S be a subspace of dimension k. Let (w_1, \ldots, w_k) be an orthonormal basis of S such that $w_k \perp \operatorname{Span}(v_1, \ldots, v_{k-1})$. By definition of v_k , we have $||Aw_k|| \leq ||Av_k||$. We also assumed that (v_1, \ldots, v_k) maximizes (10), so

$$||Av_1||^2 + \dots + ||Av_{k-1}||^2 \ge ||Aw_1||^2 + \dots + ||Aw_{k-1}||^2.$$

We conclude that

$$||Av_1||^2 + \dots + ||Av_k||^2 \ge ||Aw_1||^2 + \dots + ||Aw_k||^2$$

so (v_1, \ldots, v_k) maximizes (10).

Theorem 3.1 follows then by induction.

