Support Vector Machines

Machine Learning

Daniele Loiacono

Outline and References

- Outline
 - ► Separable Problems [PRML 7.1]
 - Non-Separable Problems [PRML 7.1.1]
 - ► Training [PRML 7.1.1]
 - Multi-Class SVM [PRML 7.1.3]
 - ► SVM for regression [PRML 7.1.4]

- □ References
 - ► Pattern Recognition and Machine Learning, Bishop [PRML]

Sparse Kernel Machines

- □ A significant limitation to kernel methods is that we need to compute the kernel function for each sample in the training set, that is often computationally unfeasible
- □ To deal with this issue, sparse kernel methods find sparse solutions, that rely only on a subset of the training samples
- ☐ The most well known among these methods are:
 - Support Vector Machines
 - ▶ Relevance Vector Machines

Sparse Kernel Machines

- □ A significant limitation to kernel methods is that we need to compute the kernel function for each sample in the training set, that is often computationally unfeasible
- ☐ To deal with this issue, **sparse kernel methods** find **sparse** solutions, that rely only on a **subset** of the training samples
- ☐ The most well known among these methods are:
 - Support Vector Machines
 - ▶ Relevance Vector Machines

Do you remember the perceptron?

$$f(\mathbf{x}, \mathbf{w}) = \begin{cases} +1, & \text{if } \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) + b \ge 0 \\ -1, & \text{otherwise} \end{cases}$$

Properties

- ▶ DS is $y(\cdot) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) + b = 0$
- ▶ DS is orthogonal to w
- ▶ distance of DS from origin is $-\frac{w_0}{\|\mathbf{w}\|_2}$
- ▶ distance of x from DS is $\frac{y(X)}{\|\mathbf{w}\|_2}$

The perceptron in action

Are all the solution equivalent?

Maximum Margin Classifier

☐ The margin will be:

$$margin = \min_{n} \frac{t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b)}{||\mathbf{w}||}$$

☐ Thus, the optimal **hyperplane** will be:

$$\arg\max_{\mathbf{w},b} \left\{ \min_{n} \left[\frac{t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b)}{||\mathbf{w}||} \right] \right\}$$

☐ Unfortunately, solving this optimization problem would be very complex...

Equivalent constrained optimization problem

- □ Canonical hyperplane
 - ► There are infinite equivalent solutions:

$$\kappa \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) + \kappa b \quad \forall \kappa > 0$$

▶ We will consider only solutions such that:

$$t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b) = 1 \quad \forall \mathbf{x}_n \in \mathcal{S}$$

☐ Equivalent **quadratic programming** problem

Minimize
$$\frac{1}{2} \|\mathbf{w}\|_2^2$$

Subject to $t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b) \ge 1$, for all n

☐ We can derive the dual problem using Lagrance multipliers:

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{n} \alpha_i \left(t_i \left(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) + b \right) - 1 \right)$$

- lacktriangle We need to maximize $\mathcal L$ with respect to α and minimize it with respect to $\mathbf w$ and b
- \Box We can compute the gradient w.r.t. w and b and derive dual representation

$$\frac{\partial}{\partial \mathbf{w}} \mathcal{L} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_i t_i \boldsymbol{\phi}(\mathbf{x}_i)$$

$$\frac{\partial}{\partial b}\mathcal{L} = 0 \quad \Rightarrow \quad \sum_{i=1}^{n} \alpha_i t_i = 0$$

Dual Problem

☐ We can now rewrite the optimization problem as:

Maximize
$$\tilde{\mathcal{L}}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

Subject to $\alpha_n \geq 0$ and $\sum_{n=1}^{N} \alpha_n t_n = 0$, for $n = 1, \dots, N$

where the explicit feature mapping does not appear explicitly anymore

Discriminant Function and Support Vectors

☐ The resulting discriminant function is:

$$y(\mathbf{x}) = \sum_{n=1}^{N} \alpha_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

- ▶ Only samples on the margin does contribute (i.e., $\alpha_i > 0$),
- ▶ These samples are the Support Vectors
- ▶ The bias is computed as:

$$b = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_n \in \mathcal{S}} \left(t_n - \sum_{\mathbf{x}_m \in \mathcal{S}} \alpha_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right)$$

Support Vectors (S)

Example

☐ An example of SVM discriminant function using Gaussian kernel function

Non-Separable Problem

- ☐ So far, we assumed that samples are linearly separable in the feature space
- ☐ However, this is not always the case (e.g., noisy data)
- \square How to deal with such problems? We allow "error" (ξ_i) in classification:

Soft-Margin optimization problem

Minimize
$$\frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{n=1}^{N} \xi_{n}$$
Subject to
$$t_{n}(\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}) + b) \geq 1 - \xi_{n}, \quad \text{for all } n$$

$$\xi_{n} \geq 0, \quad \text{for all } n$$

- \square ξ_n are called slack variables and represents penalties to margin violation
- ☐ C is a tradeoff parameter between error and margin
 - ▶ it allows to adjust the bias-variance tradeoff
 - ▶ tuning is required to find optimal value for C

Dual Representation (Box Constraints Problem)

Maximize
$$\tilde{\mathcal{L}}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$
Subject to $0 \le \alpha_n \le C$,
$$\sum_{n=1}^{N} \alpha_n t_n = 0,$$
 for $n = 1, \dots, N$

- \square As usual, **support vectors** are the samples for which $\alpha_n > 0$
 - ▶ If $\alpha_n < C \implies \xi_n = 0$, i.e., the sample is on the margin
 - ▶ If $\alpha_n = C$ the sample can be inside the margin and be either correctly classified $(\xi_n \le 1)$ or misclassified $(\xi_n > 1)$

Alternative formulation: v-SVM

$$\begin{aligned} \mathbf{Maximize} \quad & \tilde{\mathcal{L}}(\boldsymbol{\alpha}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m) \\ \mathbf{Subject to} \quad & 0 \leq \alpha_n \leq 1/N, \\ & \sum_{n=1}^{N} \alpha_n t_n = 0, \\ & \sum_{n=1}^{N} \alpha_n \geq \nu \end{aligned} \qquad \text{for } n = 1, \dots, N$$

□ Where $0 \le v < 1$ is a user parameter that allow to control both the margin errors and the number of support vectors:

fraction of Margin Errors $\leq v \leq$ fraction of SVs

Example

☐ An example of v-SVM discriminant function using Gaussian kernel function

SVM Training

- \Box Just solve the optimization problem to find α_i and b
- \square ... but it is very expensive: O(n³) where n is the size of training set
- ☐ Faster approaches:
 - Chunking
 - Osuna's methods
 - Sequential Minimal Optimization
- ☐ Online learning:
 - Chunking-based methods
 - ▶ Incremental methods

Chunking

- □ Solves iteratively a sub-problem (working set)
- Build the working set with current SVs and the M samples with the bigger error (worst set)
- ☐ Size of the working set may increase!
- □ Converges to optimal solution!

Osuna's Method

- ☐ Solves iteratively a sub-problem (working set)
- Replace some samples in the working set with missclassified samples in data set
- ☐ Size of the working set is fixed!
- □ Converges to optimal solution!

Sequential Minimal Optimization

- Works iteratively only on two samples
- □ Size of the working set is minimal and multipliers are found analytically
- Converges to optimal solution!

Multi-class SVM

☐ So far we considered two-classes problems:

■ How does SVM deal with multi-class problems?

One-against-all

☐ A k-class problem is decomposed in k binary (2-class) problems

- ☐ Training is performed on the entire dataset and involves k SVM classifiers
- ☐ Test is performed choosing the class selected with the highest margin among the k SVM classifiers

One-against-one

 \square A k-class problem is decomposed in k(k-1)/2 binary (2-class) problems

- \square The k(k-1)/2 SVM classifiers are trained on subsets of the dataset
- ☐ Test is performed by applying all the k(k-1)/2 classifiers to the new sample and the most voted label is chosen

DAGSVM

- \square In DAGSVM, the k-class problem is decomposed in k(k-1)/2 binary (2-class) problems as in one-against-one
- ☐ Training is performed as in one-against-one
- But test is performed using a Direct Acyclic Graph to reduce the number of SVM classifiers to apply:

■ The test process involves only k-1 binary SVM classifiers instead of k(k-1)/2 as in one-against-one approach

Multi-class SVM: summary

- □ One-against-all
 - cheap in terms of memory requirements
 - expensive training but cheap test
- One-against-one
 - expensive in terms of memory requirements
 - expensive test but slightly cheap training
- DAGSVM
 - expensive in terms of memory requirements
 - slightly cheap training and cheap test
- □ One-against-one is the best performing approach, due to the most effective decomposition
- □ DAGSVM is a faster approximation of one-against-one

Regression

Regression

