MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI

OLIMPIADA DE FIZICĂ ETAPA NAȚIONALĂ 30 IANUARIE- 4 FEBRUARIE 2011 ARAD

Subiectul 1.

Un cilindru vertical este împărțit în trei compartimente, de lungime l = 40 cm fiecare, prin intermediul a două pistoane izolatoare termic A și B; fiecare piston are masa M = 0.5 kg. Inițial pistonul A este blocat iar pistonul B se poate deplasa liber, fără frecări (vezi **figura 1**). Considerând că temperatura heliului este egală cu temperatura exterioară $T_1 = 300 K$ și că numerele de moli de He și O_2 sunt egale $v_{He} = v_{O2} = v = 6.0168 \cdot 10^{-4}$ moli, calculează:

- a) temperatura inițială a oxigenului, T_2 ;
- b) lungimea compartimentului care conține oxigen, dacă temperatura acestuia devine T_1 ;
- c) căldura schimbată de gaz cu exteriorul în timpul modificării temperaturii oxigenului.

La un moment dat, după atingerea echilibrului termic, He difuzează prin cele două pistoane.

- d) Determină noua poziție de echilibru a pistonului \boldsymbol{B} , după încetarea difuziei.
- e) Se eliberează pistonul A. Calculează căldura schimbată de sistem cu exteriorul până la atingerea noii stări de echilibru.
- f) Calculează distanța medie dintre două molecule de He, d_{med} , precum și distanța medie dintre două ciocniri consecutive, λ , între moleculele de He. Argumentează, pe baza acestor valori, că He poate fi tratat ca un gaz ideal.

Se cunosc: $r_0 = 31 \cdot 10^{-12} \text{ m} - \text{raza}$ atomului de He, $R = 8.31 \frac{\text{J}}{\text{molK'}}$, $g = 10 \text{ m/s}^2$, $S = 10 \text{ cm}^2 - \text{aria}$ suprafeței unui piston. Dacă îți este util poți folosi $\frac{vRT_1}{Mg} = a = 30 \text{ cm}$.

Figura 1

 V_1

Figura 2

 $2V_1$

V

Subiectul 2.

A. Un gaz ideal ($C_v = 3R/2$), parcurge ciclul reprezentat în **Figura 2**.

- a) Calculează randamentul motorului care ar funcționa după un astfel de ciclu.
- b) Reprezintă ciclul intr-un sistem de coordonate p = f(T).
- c) Calculează lucrul mecanic minim necesar pentru a transforma în gheață o masa m = 0.1kg de apă aflată la temperatura 0°C, dacă se utilizează o mașina termică funcționând după un ciclu de forma celui din **Figura 2**.

Se cunoaște $\lambda = 3.35 \cdot 10^5 \text{ J/kg}$.

B. Sistemul din **Figura 3** constă dintr-un tub și două pistoane de secțiuni S și respectiv 2S legate printr-o tijă rigidă, foarte subțire. În exteriorul sistemului se află aer la temperatura T_0 și presiunea p_0 . Între pistoane se află un gaz ideal, având temperatura inițială $T=3T_0$. Pistoanele se pot deplasa fără frecare; inițial sistemul este în echilibru mecanic cu mediul exterior.

Calculează lucrul mecanic efectuat de gaz până la atingerea echilibrului termodinamic între sistem și exterior.

Figura 3

- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- **5.** Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI

OLIMPIADA DE FIZICĂ ETAPA NAȚIONALĂ 30 IANUARIE- 4 FEBRUARIE 2011 ARAD

Subiectul 3.

O încăpere ce are temperatura inițiala T_c este încălzită cu ajutorul unui aparat de aer condiționat, ce poate fi considerat o pompă de căldura ideală. Încălzitorul preia căldură de la mediul exterior, care are temperatura $T_{\rm ex}$, și o transmite radiatorului din casă care are temperatura $T_{\rm r} > T_{\rm ex}$. Radiatorul furnizează, în unitatea de timp, căldură încăperii conform relației $\frac{Q_{\rm f}}{\Delta t} = K_2(T_{\rm r} - T_{\rm c})$ unde K_2 este o constantă cunoscută. Încăperea pierde căldură și o cedează mediului exterior, în unitatea de timp, conform relației $\frac{Q_{\rm p}}{\Delta t} = K_1(T_{\rm c} - T_{\rm ex})$ unde K_1 este o constantă cunoscută.

- a) Știind că eficiența sistemului de încălzire ε este definită ca raportul dintre căldura furnizată de sistemul electric și lucrul mecanic efectuat $\varepsilon = \frac{\varrho_f}{L}$, calculează eficiența sistemului de încălzire.
 - b) Care este puterea absorbită de încălzitorul electric când încăperea are temperatura T_c ?
- c) Stabilește temperatura de echilibru T_{c1} din interiorul încăperii, după un timp suficient de lung de funcționare a încălzitorului.
- d) Considerând că pierderile de căldură se realizează doar prin fereastră și că aceste pierderi depind de dimensiunile ferestrei (S suprafața ferestrei și d grosimea stratului de aer dintre geamurile ferestrei), de conductivitatea termica λ a mediului dintre geamurile ferestrei după legea $Q_{\rm p} = \lambda \frac{s}{d} (T_{\rm c2} T_{\rm ex}) \cdot \Delta t$, determină noua temperatură de echilibru, $T_{\rm c2}$, la care ajunge camera dacă se dublează lungimea ferestrei iar grosimea stratului de aer dintre geamuri rămâne constantă. ($T_{\rm ex}$ = constant).

Subiect propus de

prof. dr. Constantin Corega, prof. Seryl Talpalaru, prof. Ion Toma Colegiul Național *Emil Racoviță – Cluj-Napoca* Colegiul Național *Emil Racoviță – Iași* Colegiul Național *Mihai Viteazul – București*

^{1.} Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

^{2.} În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.

^{3.} Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.

^{4.} Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

^{5.} Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.