C. Cauchy (sèries): $\sum a_n$ conv. $\iff \forall \varepsilon > 0, \exists n_0 \text{ t. q. } m > n \ge n_0 \text{ llavors,}$ $|s_m - s_n| = |a_{n+1} + \dots + a_m| < \varepsilon.$

• La convergència és lineal i associativa. Sèries geomètriques: $\sum_{n\geq 1} \alpha^n$ conv. sii $|\alpha|\leq 1$, div sii $\alpha\geq 1$ i oscil·lant sii $\alpha=-1$.

• $\sum a_n$ conv. $\iff \sum p_n, \sum q_n$ conv. Si això passa, $\sum a_n = \sum p_n - \sum q_n$

• $\sum a_n$ cond. conv. $\iff \sum p_n, \sum q_n$ div.

• $\sum a_n$ abs. conv. $\implies \sum a_{\sigma(n)}$ abs. conv. i $\sum a_n = \sum a_{\sigma(n)}$

1 Sèries n. positius

Dins aquest apartat les successions són totes de termes positius.

C. comp. dir.: $a_n \leq b_n \forall n \geq n_0 \implies \sum_{n=n_0}^{\infty} a_n \leq \sum_{n=n_0}^{\infty} b_n \implies (\sum b_n \text{ conv.})$ $\implies \sum a_n \text{ conv.}) \text{ i } (\sum a_n \text{ div.}) \implies \sum b_n \text{ div.})$ C. comp. al limit: (a_n) i (b_n) estr. pos. i $\frac{1}{3} \lim \frac{a_n}{b_n} = l \in [0, +\infty]. \text{ Si } l < \infty, \sum b_n \text{ conv.}$ $\implies \sum a_n \text{ conv.} \text{ Si } l > 0, \sum a_n \text{ conv.}$ $\implies \sum b_n \text{ conv.}$

C. arrel Cauchy: (a_n) positiva i

 $\exists \lim a_n^{1/n} = \alpha \implies (\alpha > 1 \text{ div.})$ i ($\alpha < 1 \text{ conv.}).$

C. quo. Alambert: (a_n) estr. pos. i $\exists \lim \frac{a_{n+1}}{a_n} = \alpha \implies (\alpha > 1 \text{ div.})$ i $(\alpha < 1 \text{ conv.})$.

<u>C. Raabe</u>: (a_n) estr. pos. i $\exists \lim n(1 - \frac{a_{n+1}}{a_n}) = L \implies (L > 1 \text{ conv.})$ i (L < 1 div.).

<u>C. Leibniz sèr. alt.</u>: (a_n) decr. i $\lim a_n = 0$, llavors $\sum (-1)^n a_n$ és conv.. A més,

 $|s - s_N| < a_{n+1}.$

C. de la integral: $a_n = f(n), f \ge 0$ int. i decreixent, $\int_M^{\infty} f$ convergeix $\iff \sum a_k$ convergeix i $\sum_M^{\infty} = \sum_M^{N-1} + \int_N^{\infty} f + \varepsilon_N$, $\varepsilon_N \in [0, a_N]$.

C. logarítmic: $\lim_{n \to \infty} \frac{-\log a_n}{\log n} = L \implies (L > 1)$ conv.) i (L < 1 div.).

C. condensació: a_n decreixent, $a_n \ge 0$, $\sum a_n$ convergent $\iff \sum 2^n a_{2^n}$ convergent.

Sèrie Rie.: $\sum_{n\geq 1} \frac{1}{n^p}$ és conv. sii p>1, div. altrament.

2 Altres sèries

<u>T. Riemann</u>: Sèrie cond. conv. \Longrightarrow podem reordenar per tal que $\sum = s \in [-\infty, +\infty]$. Sèrie alternada: un pos., un neg., ...

 $\begin{array}{|c|c|c|c|}\hline \underline{C. \ Dirichlet} : \ Si \ s_n \ d'(a_n) \ fitades \ i \ (b_n) \ decr., \\ \hline \lim b_n = 0, \ llavors \ \sum a_n b_n \ convergeix. \end{array}$

3 Sèries de potències

Radi de convergència: Màxim r t.q. $\sum |a_n| r^n$ és conv.

Domini de conv.: (-R, R), on R és radi de conv.. És possible que convergeixi als exterms. T. Cauchy-Hadamard: Sigui $\sum a_n x^n$, R ve donada per $\frac{1}{R} = \limsup |a_n|^{1/n}$. La sèrie de potències és abs. conv. si |x| < R i div. si |x| > R. Si |x| = R no sabem res. Càlcul radi de conv.: $\frac{1}{R} = \lim |a_n|^{1/n}$ o $\frac{1}{R} = \lim \frac{|a_{n+1}|}{|a_n|}$.

4 Integrals impròpies

 \bullet La convergència d'integrals és lineal. Localm integ: si $f\colon D\to\mathbb{R}.$ integ $\forall \text{interval}$ compacte $K\subseteq D$

C. Cauchy per a int. impròpies:

 $f: [a,b) \to \mathbb{R}. \int_a^b f \text{ is conv.}$ $\iff \forall \varepsilon > 0, \exists c_0 \in [a,b) \text{ t. q. si } c_1, c_2 > c_0,$ $| \text{llavors} \left| \int_{c_1}^{c_2} f \right| < \varepsilon.$

C. comp. dir.: $f,g:[a,b)\to\mathbb{R}, f,g>0, f\leq g$ localment integrables. Aleshores $\int_a^b f\leq \int_a^b g$. Si la segona conv., la primera també. Si la primera div., la segona també.

 $\begin{array}{l} \underline{\text{C. comp. al limit:}} \ f,g:[a,b) \to \mathbb{R}, \ f,g>0 \\ \hline \text{localment integrables. Suposem} \ \exists \lim_{x \to b} \frac{f(x)}{g(x)} = l. \end{array}$

Si $l < \infty$, $\int_a^b g$ conv. $\Longrightarrow \int_a^b f$ conv.. Si l > 0, $\int_a^b f$ conv. $\Longrightarrow \int_a^b g$ conv.. C. Dirichlet: $f, g : [a, b) \to \mathbb{R}$ localment integrables. Suposem $\exists M > 0$ t. q. si

 $a < c < b, \left| \int_a^c f(x) \, \mathrm{d}x \right| \le M$ i g decreixent amb $\lim_{a \to 0} g = 0$. Aleshores $\int_a^b fg$ és conv..

5 Integrals a rectangles

Suma inf. del rect.:

 $\overline{m_R = \inf_{x \in \mathbb{R}} f(x)}, s(f; \mathcal{P}) = \sum_R m_R \operatorname{vol}(R).$ Suma sup. del rect.:

 $\overline{M_R} = \sup_{x \in \mathbb{R}} f(x), S(f; \mathcal{P}) = \sum_R M_R \operatorname{vol}(R).$ Si \mathcal{P}' més fina que \mathcal{P} :

 $s(f; \mathcal{P}) \leq s(f; \mathcal{P}') \leq S(f; \mathcal{P}') \leq S(f; \mathcal{P}).$ • $\int_A f = \sup_{\mathcal{P}} s(f; \mathcal{P}), \ \overline{\int}_A f = \inf_{\mathcal{P}} S(f; \mathcal{P}) \rightarrow$ si són iguals, f és integrable Riemann.
C. Riemann: f int. Rie.

 $\iff \forall \varepsilon > 0, \exists \mathcal{P} \text{ t. q. } S(f; \mathcal{P}) - s(f; \mathcal{P}) < \varepsilon.$

 \bullet Integrabilitat Riemann és lineal i conserva la positivitat.

Suma de Rie.: Siguin $\xi_k \in R_k$, la suma és $R(f; \mathcal{P}; \xi) = \sum_k f(\xi_k) \operatorname{vol}(R_k)$.

6 Mesura nul·la

Mesura nul·la: $C \subset \mathbb{R}^n$ recobert per numerables rectangles de mesura $< \varepsilon, \, \forall \varepsilon > 0$. Contingut nul: Mesura nul·la amb un nombre finit de rectangles.

- \bullet C té un punt interior \implies no té mes. nul·la.
- \bullet C té contingut nul \implies fitat i té mes. nul·la.
- \bullet C té mes. nul·la i compac. \implies té cont. nul.
- $D \subset \mathbb{R}^{n+1}$ fitat, $f: D \to \mathbb{R}$ unif. contínua \Longrightarrow graf f té mesura nul·la.
- $D \subset \mathbb{R}^{n+1}$ compacte, $f: D \to \mathbb{R}$ contínua \Longrightarrow graf f té mesura nul·la.

Quadrat: volum: c^n , diàmetre: $c\sqrt{n}$ (a \mathbb{R}^n , on c costat).

- Sigui $z \subset \mathbb{R}^n$ mesura nul·la. $\forall \varepsilon, \exists$ família numerable de quadrats compactes Q_k t.q. $z \in \bigcup_k Q_k, \sum \operatorname{vol}(Q_k) < \varepsilon$.
- Sigui $f: U \to \mathbb{R}$ classe \mathscr{C}^1 o lipschitziana, $z \subset U$ mesura nul·la, llavors $f(z) \subset \mathbb{R}^n$ té mesura nul·la.

7 Teorema de Lebesgue

• f cont. en $a \iff \omega(f,a) = 0$. T. Lebesgue: Sigui $A \subset \mathbb{R}^n$ rectangle compacte, $\overline{f} \colon A \to \mathbb{R}$ fitada. Llavors f és integrable Riemann \iff disc(f) és de mesura nul·la \iff contínua gairebé pertot.

8 Integral de Riemann

- $C \subset \mathbb{R}^n$ és admissible o mesurable Jordan si és fitat i Fr(C) té mesura nul·la.
- $\operatorname{Fr}(A \cup A'), \operatorname{Fr}(A \cap A'), \operatorname{Fr}(A \setminus A') \subseteq \operatorname{Fr}(A) \cup \operatorname{Fr}(A').$
- $\operatorname{Fr}(A \times B) = (\operatorname{Fr}(A) \times \overline{B}) \cup (\overline{A} \times \operatorname{Fr}(B)).$
- $A, A' \subset \mathbb{R}^n$ admissibles
- $\implies A \cup A', A \cap A', A \setminus A' \text{ admissibles}.$
- $A \subset \mathbb{R}^n, B \subset \mathbb{R}^m$ admissibles $\Rightarrow A \times B \subset \mathbb{R}^{n+m}$ admissible.

• Els rectangles fitats i les boles euclidianes són admissibles.

Funció característica de $C \subset X$: (o indicatriu) $\chi_C \colon X \to \mathbb{R}, \chi_C(x) = 1$ si $x \in C$, val 0 altrament.

- χ no és contínua a $Fr(C) \Longrightarrow (C \text{ adm.}$ $\iff C \text{ fitat i } \forall R, \exists \int_{R} \chi_{C} \text{ t. q. } C \subset R).$
- $g: E \to \mathbb{R}, \tilde{g}: X \to \mathbb{R}(\tilde{g}(x) = 0, \forall x \notin E).$ Aleshores $\operatorname{disc}(g) \subseteq \operatorname{disc}(\tilde{g}) \subseteq \operatorname{disc}(g) \cup \operatorname{Fr}(E).$
- $f\chi_C$ integrable Rie. en R \iff disc(f) de mesura nul·la.

- Si C adm., $\operatorname{vol}(C) = \int_C 1$ és la mesura (o contingut) de Jordan o volum (n-dimensional) de C.
- $\bullet \ C \subset \mathbb{R}^n$ té contingut nul $\iff C$ adm. i $\operatorname{vol}(C) = 0.$

9 Propietats de la int. de Rie.

• Sigui $E \subset \mathbb{R}^n$ mesurable Jordan, Rie $(E) = \{f | f \text{ int. Rie. en } E\}$ és un \mathbb{R} -e.v. i Rie: $E \to \mathbb{R}$, Rie $(f) = \int_E f$ és una forma lineal

positiva i monòtona. T. valor mitjà per a integrals: Sigui E m.J., $f: E \to \mathbb{R}$ int. Rie.. $m \le f \le M \Longrightarrow m \operatorname{vol}(E) \le \int_E f \le M \operatorname{vol}(E)$.

- E m.J. connex, $f: E \to \mathbb{R}$ fitada i cont., $\exists x_0 \in E \text{ t. q. } \int_E f = f(x_0) \operatorname{vol}(E).$
- E m.J., $f: E \to \mathbb{R}$ int. Rie., $h: f(E) \to \mathbb{R}$ cont., $h \circ f$ és int. Rie..
- \bullet f,h int. Rie. no implica $h\circ f$ int. Rie..
- f int. Rie. $\Longrightarrow |f|$ int. Rie. i $\left| \int_E f \right| \le \int_E |f|$.
- f, g int. Rie. $\implies fg$ int. Rie.
- Siguin $A, B \subset \mathbb{R}^n$ m.J. $f \colon A \cup B \to \mathbb{R}$ fitada. Si f és int. Rie. a A i B, aleshores ho és a $A \cap B$ i a $A \cup B$ i es compleix:

 $\int_{A \cup B} f = \int_{A} f + \int_{B} f - \int_{A \cap B} f.$ • E m.J., $f: E \to \mathbb{R}$ positiva i int. Rie., aleshores $\int_{E} f = 0 \iff f$ nul·la gairebé

aleshores $\int_E f = 0 \iff f$ nul·la gairebé pertot.

• Dues funcions int. i iguals gairebé perto

• Dues funcions int. i iguals gairebé pertot tenen la mateixa integral (tot i que canviar els valors en un conjunt de mesura nul·la pot destruir la integrabilitat).

10 Teorema de Fubini

 $\frac{\text{T. Fubini:}}{f \colon A \times B \to \mathbb{R}} \ \text{int. Rie.. Sigui}$

 $\Phi \colon A \to \mathbb{R} \text{ t. q. } \int_{\mathcal{D}} f(x, \cdot) \leq \Phi(x) \leq \overline{\int}_{\mathcal{D}} f(x, \cdot).$ Aleshores Φ int. Rie. i

 $\int_{A \times B} f = \int_A \Phi$, $(A \leftrightarrow B \text{ també})$.

- $x \in A$ t. q. f(x,) no int. Rie. té mesura nul·la.
- $D \subset X$. $f: D \to \mathbb{R}$ cont., $E = \{(x, y) \in X \times \mathbb{R} | x \in D, y > f(x) \}, \text{ llavors}$ $(D \subset X \text{ tancat} \implies E \subset X \times \mathbb{R} \text{ tancat})$ i $(\operatorname{Fr}(E) \subset \operatorname{graf}(f) \cup (\operatorname{Fr}(D) \times \mathbb{R})).$
- $D \subset \mathbb{R}^{n-1}$ comp., m.J., $\varphi, \psi \colon D \to \mathbb{R}$ cont. t.g. $\varphi < \psi$, $E = \{(x,y) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid x \in \mathbb{R}^{n-1} \times \mathbb{R}^{n-1} \times \mathbb{R} \mid x \in \mathbb{R}^{n-1} \times \mathbb{R}^$ $D, \varphi(x) \le y \le \psi(x) \subset \mathbb{R}^n$ és compacte i m.J.. (Si $f: E \to \mathbb{R}$, $\int_E f = \int_D dx \int_{\wp(x)}^{\psi(x)} dy f(x, y)$). Regió elemental: A \mathbb{R} és un interval compacte. $\overline{\text{Si no \'es de la forma }}\{(x,y)\in\mathbb{R}^{n-1}\times\mathbb{R}|x\in D.$ $\phi(x) < y < \psi(x)$, on $D \subset \mathbb{R}^{n-1}$ és regió elemental i $\phi < \psi : D \to \mathbb{R}$ contínues.

11 Canvi de variables

• Sigui $V \subset \mathbb{R}^n$ obert, $\varphi \colon V \to \mathbb{R}^n$ injectiva. classe \mathscr{C}^1 amb det $d\varphi(y) \neq 0, \forall y \in V$. Sigui $U = \varphi(V)(\varphi \colon V \to U \text{ difeo. classe } \mathscr{C}^1)$. Si $f: U \to \mathbb{R}$ int., $\int_U f = \int_V (f \circ \varphi) |\det d\varphi|$.

11.1 Alguns canvis de variables

Polars a \mathbb{R}^2 :

 $\int_{\mathcal{U}} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_{\mathcal{U}} f(r \cos \varphi, r \sin \varphi) r \, \mathrm{d}r \, \mathrm{d}\varphi.$ Cilíndriques a \mathbb{R}^3 : $\int_{\mathcal{U}} f(x, y, z) dx dy dz =$ $\int_{V} f(\rho \cos \varphi, \rho \sin \varphi, z) \rho \, \mathrm{d}\rho \, \mathrm{d}\varphi \, \mathrm{d}z.$ Esfèriques a \mathbb{R}^3 : $\int_U f(x,y,z) dx dy dz =$ $\int_{V} f(r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta)$ $r^2 \sin \theta \, dr \, d\varphi \, d\theta$.

12 Altres

12.1 Integrals

- $\bullet \int x^n dx = \frac{1}{n+1} x^{n+1}$
- $\bullet \int \frac{1}{x} dx = \log(|x|)$
- $\bullet \int e^x = e^x$
- $\bullet \int a^x dx = \frac{a^x}{\log(a)}$
- $\int \sin(x) dx = -\cos(x)$
- $\bullet \int \cos(x) dx = \sin(x)$
- $\int \tan(x) dx = -\log(|\cos(x)|)$
- $\int \arcsin\left(\frac{x}{a}\right) dx = x \arcsin\left(\frac{x}{a}\right) + \sqrt{a^2 x^2}$
- $\int \arccos\left(\frac{x}{a}\right) dx = x \arccos\left(\frac{x}{a}\right) \sqrt{a^2 x^2}$ a > 0
- $\int \arctan\left(\frac{x}{a}\right) dx =$

 $x \arctan\left(\frac{x}{a}\right) - \frac{a}{2}\log\left(a^2 + x^2\right) a > 0$

- $\int \sin^2(mx) dx = \frac{1}{2m} (mx \sin(mx)\cos(mx))$
- $\bullet \int \sec^2(x) dx = \tan(x)$
- $\bullet \int \csc^2(x) dx = -\cot(x)$
- $\bullet \int \sin^n(x) dx =$
- $-\frac{\sin^{n-1}(x)\cos(x)}{2} + \frac{n-1}{2} \int \sin^{n-2}(x) dx$
- $-\frac{\cos^{n-1}(x)\sin(x)}{\cos^{n-1}(x)\sin(x)} + \frac{n-1}{\cos^{n-1}(x)\cos^{n-1}(x)} dx$
- $\int \tan^n(x) dx = \frac{\tan^{n-1}(x)}{n-1} \int \tan^{n-2}(x) dx$
- $\int \sinh(x)dx = \cosh(x)$
- $\bullet \int \cosh(x) dx = \sinh(x)$
- $\int \tanh(x)dx = \log(\cosh(x))$
- $\bullet \int \sinh^2(x) dx = \frac{1}{4} \sinh(2x) \frac{1}{2}x$
- $\int \cosh^2(x) dx = \frac{1}{4} \cosh(2x) + \frac{1}{2}x$
- $\int \frac{1}{\sqrt{2+x^2}} dx = \log \left(x + \sqrt{a^2 + x^2} \right)$
- $\bullet \int \frac{1}{a^2+x^2} dx = \frac{1}{2} \arctan \frac{x}{2}$
- $\int \sqrt{a^2 x^2} dx = \frac{x}{2} \sqrt{a^2 x^2} + \frac{a^2}{2} \arcsin \frac{x}{2}$
- $\bullet \int (a^2 x^2)^{\frac{3}{2}} dx =$
- $\frac{x}{2}(5a^2-2x^2)\sqrt{a^2-x^2}+\frac{3a^4}{2}\arcsin\frac{x}{2}$
- $\bullet \int \frac{1}{\sqrt{x^2 x^2}} dx = \arcsin \frac{x}{x}$
- $\bullet \int \frac{1}{a^2 x^2} dx = \frac{1}{2a} \log \left| \frac{x + a}{x a} \right|$
- $\bullet \int \frac{1}{(a^2-x^2)^{\frac{3}{2}}} dx = \frac{x}{a^2 \sqrt{a^2-x^2}}$
- $\bullet \int \sqrt{x^2 \pm a^2} dx =$
- $\frac{x}{2}\sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \log |x \pm \sqrt{x^2 \pm a^2}|$
- $\bullet \int \frac{1}{\sqrt{x^2-a^2}} dx = \log |x + \sqrt{x^2 a^2}|$
- $\bullet \int \frac{1}{x(a+bx)} dx = \frac{1}{a} \log \left| \frac{x}{a+bx} \right|$
- $\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx$
- $\bullet \int \frac{x}{\sqrt{a+bx}} dx = \frac{2(bx-2a)\sqrt{a+bx}}{3b^2}$
- $\int \frac{1}{x\sqrt{a+bx}} dx = \frac{1}{\sqrt{a}} \log \left| \frac{\sqrt{a+bx} \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|$
- $\bullet \int \frac{\sqrt{a^2-x^2}}{x^2} dx = \sqrt{a^2-x^2} a \log \left| \frac{a+\sqrt{a^2-x^2}}{x^2} \right|$
- $\bullet \int x\sqrt{a^2-x^2}dx = -\frac{1}{2}(a^2-x^2)^{\frac{3}{2}}$
- $\int x^2 \sqrt{a^2 x^2} =$
- $\frac{a}{3}(2x^2-a^2)\sqrt{a^2-x^2}+\frac{a^4}{3}\arcsin\frac{x}{3}$
- $\bullet \int \frac{1}{x\sqrt{a^2 x^2}} dx = -\frac{1}{a} \log \left| \frac{a + \sqrt{a^2 x^2}}{x} \right|$
- $\bullet \int \frac{x}{\sqrt{a^2-x^2}} dx = -\sqrt{a^2-x^2}$
- $\bullet \int \frac{x^2}{\sqrt{a^2-x^2}} dx = -\frac{x}{2} \sqrt{a^2-x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}$

- $\bullet \int \frac{\sqrt{a^2+x^2}}{a^2+x^2} dx = \sqrt{a^2+x^2} a \log \left| \frac{a+\sqrt{x^2+a^2}}{a^2+x^2} \right|$
- $\int x\sqrt{x^2+a^2}dx = \frac{1}{2}(x^2+a^2)^{\frac{3}{2}}$
- $\bullet \int \frac{1}{x \sqrt{x^2 + a^2}} dx = \frac{1}{a} \log \left| \frac{x}{a + \sqrt{x^2 + a^2}} \right|$
- $\bullet \int \frac{1}{x\sqrt{x^2-x^2}} dx = \frac{1}{a} \arccos \frac{a}{|x|}$
- $\bullet \int \frac{1}{x^2 \sqrt{x^2 + a^2}} dx = \pm \frac{\sqrt{x^2 \pm a^2}}{a^2}$
- $\bullet \int \frac{x}{\sqrt{x^2+a^2}} dx = \sqrt{x^2 \pm a^2}$
- $\bullet \int \frac{1}{ax^2+bx+a} dx =$

$$\begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \log \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right| & (b^2 > 4ac) \\ \frac{2}{\sqrt{b^2 - 4ac}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}} & (b^2 < 4ac) \end{cases}$$

- $\bullet \int \frac{x}{ax^2+bx+c} dx =$ $\frac{1}{2} \log |ax^2 + bx + c| - \frac{b}{2a} \int \frac{1}{ax^2 + bx + c} dx$
- $\bullet \int \frac{1}{\sqrt{ax^2 + bx^2 + c}} dx =$

$$\begin{cases} \frac{1}{\sqrt{a}} \log \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right| & (a > 0) \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}} & (a < 0) \end{cases} \bullet 2 \sin(a) \cos(b) = \cos(a + b) + \cos(a - b) \\ \bullet 2 \cos(a) \sin(b) = \cos(a + b) - \cos(a - b) \\ \bullet \cos^2(a) = \frac{1 + \cos(2a)}{2} \\ \cdot 2(a) = \frac{1 + \cos(2a)}{1 - \cos(2a)} \end{cases}$$

- $\bullet \int \sqrt{ax^2 + bx + c} dx =$
- $\frac{2ax+b}{4a}\sqrt{ax^2+bx+c} \frac{4ac-b^2}{8a}\int \frac{1}{\sqrt{ax^2+bx+c}}dx$
- $\bullet \int \frac{x}{\sqrt{ax^2 + bx + c}} dx =$

$$\frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{1}{\sqrt{ax^2 + bx + c}} dx$$

- $\bullet \int x^3 \sqrt{x^2 + a^2} dx = \left(\frac{1}{5}x^2 \frac{2}{15}a^2\right) \sqrt{(a^2 + x^2)^3}$
- $\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \frac{\pm \sqrt{(x^2 \pm a^2)^3}}{3a^2 x^3}$ $\int \sin(ax) \sin(bx) dx = \frac{\sin(a-b)x}{2(a-b)}$ $\sin(a+b)x$
- $\int \sin(ax)\cos(bx)dx = \frac{\cos(a-b)x}{2(a-b)}$ $\cos(a+b)x$
- $\sin(a+b)x$
- $\int x^n \log(ax) dx = x^{n+1} \left(\frac{\log(ax)}{n+1} \right)$
- $\bullet \int e^{ax} \sin bx dx = \frac{e^{ax} (b \sin(bx) b \cos(bx))}{(ax + b)^2}$
- $\int e^{ax} \sin bx dx = \frac{e^{ax} \left(b \sin(bx) + b \cos(bx)\right)}{a^2 + b^2}$ $\int e^{ax} \cos bx dx = \frac{e^{ax} \left(b \sin(bx) + b \cos(bx)\right)}{a^2 + b^2}$

12.2 Més sobre integrals

- $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx$ conv. $\iff \alpha > 1$ i és $\frac{1}{\alpha-1}$.
- $\int_0^1 \frac{1}{x^{\alpha}} dx \text{ conv.} \iff \alpha < 1 \text{ i és } \frac{1}{1-\alpha}$
- $\int_0^{+\infty} e^{-\alpha t} dt$ conv. $\iff \alpha > 0$ i és $\frac{1}{\alpha}$.
- $\int \sqrt{1-x^2} = \frac{1}{2}(\arcsin(x) + x\sqrt{1-x^2}) + C.$

12.3 Taylor

- $\bullet e^x = \sum_{n>0} \frac{x^n}{n!}$.
- $\bullet \cos x = \sum_{n>0} (-1)^n \frac{x^{2n}}{(2n)!}$
- $\bullet \sin x = \sum_{n>0} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$

- $\bullet \log(1+x) = \sum_{n>1} (-1)^{n+1} \frac{x^n}{n}$
- $(1+x)^p = \sum_{n \ge 0} {p \choose n} x^n$.
- $\bullet (1+x)^{-1} = \sum_{n>0}^{n \ge 0} (-1)^n x^n.$
- $\bullet \cosh x = \sum_{m > 0} \frac{x^{2n}}{(2m)!}$
- $\bullet \sinh x = \sum_{n>0} \frac{x^{2n+1}}{(2n+1)!}$.
- $\arctan x = \sum_{n>0} (-1)^n \frac{x^{2n+1}}{2n+1}$.

12.4 Trigonometria

- $\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$.
- $\bullet \cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$.
- $\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \tan(b)}$
- $\bullet \sin(a) + \sin(b) = 2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2}).$
- $\bullet \cos(a) + \cos(b) = 2\cos(\frac{\tilde{a}+b}{2})\cos(\frac{\tilde{a}-b}{2}).$
- $2\cos(a)\cos(b) = \cos(a-b) + \cos(a+b)$
- $\bullet \ 2\sin(a)\sin(b) = \cos(a-b) \cos(a+b)$
- $\bullet \ 2\sin(a)\cos(b) = \cos(a+b) + \cos(a-b)$
- $\cos^2(a) = \frac{1 + \cos(2a)}{2}$
- $\bullet \sin^2(a) = \frac{1 \cos(2a)}{a}$

12.5 Còniques

- El·lipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} 1 = 0$
- Hipèrbola: $\frac{x^2}{2} \frac{y^2}{12} 1 = 0$

12.6 Quàdriques

- El·lipsoide: $\frac{x^2}{2} + \frac{y^2}{12} + \frac{z^2}{2} 1 = 0$
- Hiperboloide (1 fulla): $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{a^2} + 1 = 0$
- Hiperboloide (2 fulles): $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{a^2} 1 = 0$
- Con: $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{a^2} = 0$
- Paraboloide el·líptic: $\frac{x^2}{z^2} + \frac{y^2}{z^2} z = 0$
- Paraboloide hiperbòlic: $\frac{x^2}{z^2} \frac{y^2}{z^2} z = 0$
- Cilindre el·líptic: $\frac{x^2}{a^2} + \frac{y^2}{h^2} 1 = 0$
- Cilindre hiperbòlic: $\frac{x^2}{a^2} \frac{y^2}{b^2} 1 = 0$ Cilindre parabòlic: $x^2 + 4ay = 0$

12.7 Criteris per límits

- Stolz: (b_n) est. monòtona, $\{\lim b_n = \pm \infty \text{ o} \}$ bé $\lim a_n = \lim b_n = 0$ } i $\lim \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = L \in$
- $\mathbb{R} \cup \{-\infty, +\infty\} \implies \lim_{h \to \infty} \frac{a_n}{h_n} = L$ • Arrel-quocient: (a_n) no nul·la $\forall n \geq n_0$.

$$\exists \lim \left| \frac{a_{n+1}}{a_n} \right| = L \implies \lim \sqrt[n]{|a_n|} = L$$

• Indeterminació 1^{∞} : $\lim b_n^{c_n} = e^{\lim (b_n - 1)c_n}$

Nom: