Teoría de números algebraicos Tarea 3

Alexey Beshenov (alexey.beshenov@cimat.mx)

2 de septiembre de 2020

Fecha límite: viernes, 11 de septiembre.

Consideremos el campo ciclotómico $K=\mathbb{Q}(\zeta_8)$. Más adelante veremos un modo adecuado para probar que $\mathcal{O}_K=\mathbb{Z}[\zeta_8]$, pero por el momento se puede aceptar este resultado.

Ejercicio 3.1. Usando el teorema de Kummer–Dedekind, describa las factorizaciones de $p\mathcal{O}_K$ en ideales primos para diferentes primos racionales p. (La respuesta depende de p mód 8.)

Ejercicio 3.2. Encuentre las subextensiones $\mathbb{Q} \subset F \subset \mathbb{Q}(\zeta_8)$ y las factorizaciones de $p\mathcal{O}_F$ para cada una de estas. (Para encontrar las subextensiones, use la teoría de Galois.)

Ejercicio 3.3. Considerando la descomposición de primos racionales en \mathcal{O}_K , demuestre que $\zeta_p \notin \mathbb{Q}(\zeta_q)$ para diferentes primos impares $p \neq q$.

Ejercicio 3.4. Para el campo ciclotómico $K=\mathbb{Q}(\zeta_p)$ el grupo de Galois $\mathrm{Gal}(K/\mathbb{Q})$ es cíclico, así que la teoría de Galois implica que existe un subcampo cuadrático único $F\subset K$. Considerando la factorización de primos racionales en \mathcal{O}_F y \mathcal{O}_K , demuestre que $F=\mathbb{Q}(\sqrt{p^*})$, donde $p^*=(-1)^{(p-1)/2}p$. (Sugerencia: si q se ramifica en \mathcal{O}_F , entonces q se ramifica en \mathcal{O}_K .)