Tarea 1 IMA543 Redes Neuronales Avanzadas de Aprendizaje Profundo

Benjamin Higuera, Felipe Pooley 28-05-2025

Objetivo

Basandose en los códigos vistos en clases implementar, entrenar y comparar modelos convolucionales densos —DenseNet y ResNet— utilizando el conjunto de datos **FER2013**.

Ítems

- 1. Entrenar modelos DenseNet y ResNet, ambos con al menos 200 épocas y profundidad mayor o igual a 100 (tampoco se pasen en esta parte).
 - (a) Para DenseNet entrenar modelos con 3 tasas de compresión distintas (0.3-0.5-0.7). Con Tasa de crecimiento de 12.
 - (b) Para ResNet entrenar modelos V1 y V2.
- 2. Entregar reporte y con código ejecutable con evidencias. Lo mínimo que se espera de resultados es : accuracy, tiempos de ejecución, curvas de pérdida y accuracy, de los distintos modelos.

Entregables

- Acerca de la implementación :
 - Códigos ocupados en Python (Keras/TensorFlow), de manera ordenada y legible.
 - Evidencias de ejecución en el servidor Khipu (pantallazos o logs de consola).
 - 2 modelos entrenados guardados mediante model.save() o model.save_weights():
 - * Entregar al menos un archivo .h5 o .keras para DenseNet y otro para ResNet
 - * Deben poder ser cargados con tf.keras.models.load_model() o equivalente.
 - * Asegurarse de incluir el código de definición del modelo si usan solo pesos.

• Informe en PDF (máx. 9 páginas): resumen, métodos, resultados y discusión.

Criterios de Evaluación

Criterio	Descripción	Ponderación
Implementación	Correcta adaptación de modelos y técnicas	40%
Resultados	Claridad y profundidad del análisis	40%
Orden	Orden general y legibilidad del código	10%
Presentación	Organización, coherencia y visualización	10%

Notas Finales

- Con respecto a la precisión de sus modelos se espera que al menos uno supere el 60%. El grupo que en su entrega (informe más entregables de los códigos y modelos) reporte el modelo con la precisión mas alta (puede ser ResNet o DenseNet) tiene el 7 inmediatamente.
- Se debe usar exclusivamente la versión del dataset disponible en la carpeta share del curso y todo el código debe ejecutarse correctamente en el servidor Khipu con una GPU.
- El informe no tiene un formato especifico pero lo que se espera es que no solo mencione métricas, sino también comente por qué un modelo funciona mejor o peor, un formato suficiente es:
 - 1. Descripción general de arquitecturas y modificaciones.
 - 2. Metodología de sus experimentos.
 - 3. Resultados
 - 4. Discusión y conclusiones.
- Use screen o nohup para ejecuciones largas. Se recomienda el uso de verbose=2 al entrenar con nohup.
- No es obligatorio pero se recomienda usar distintos callbacks (checkpoints, early stopping, etc) para manejar sus experimentos y técnicas de aumentación si busca mejores resultados.

Plazo final de entrega: Lunes 5 de Mayo 2025