Retificadores: Mono e Multifásicos

Batista, H.O.B.¹, Alves, W. F. O.², Gomes, T.R.A.G ³.

Matriculas: 96704¹, 96708², 86305³

Departamento de Engenharia Elétrica,

Universidade Federal de Viçosa, Viçosa - MG.

e-mails: hiago.batista@ufv.br¹, werikson.alves@ufv.br², thiago.ridogerio@ufv.br ³

Resumo—Este artigo retrata o estudo sobre retificadores, os quais convertem a energia CA em CC. Neste trabalho, serão abortados 5 tipologias de retificadores sendo elas: Retificador de meia onda, de onda completa com tap central, de onda completa em ponte com tap central, trifásico em ponte e por último o retificador de 12 pulsos. Em seguida, serão obtidos seus parâmetros de desempenho em cada tipologia. Ao final será feito um comparativo entre as diferentes topologias a fim de estabelecer as vantagens e desvantagens das aplicações de cada tipologia de retificação analisada.

 ${\it Palavra}$ ${\it Chave}$ — Retificador, Diodo, Eletrônica de Potência.

Abstract—This article does the study of rectifiers, which convert AC power to DC. In this work, 5 types of rectifiers will be aborted, namely: Half-wave rectifier, full wave with central tap, full wave in bridge with central tap, three-phase in bridge and finally the 12-pulse rectifier. Then, your performance parameters will be obtained for each typology. At the end, a comparison will be made between the different topologies in order to establish the advantages and disadvantages of the applications of each type of grinding analyzed.

Keywords— Rectifier, Diode, Power Electronics.

I. Introducão

Em um mundo cada vez mais globalizado e dependente de energia elétrica surge a necessidade de ter precaução em relação à qualidade de energia [4]. Atualmente, o emprego de semicondutores de potência atuando como chaves (ora aberta, ora fechada), representou um aumentou substancial no rendimento e uma grande mudança de paradigma no processamento de energia [2].

Diante das qualidades de se usar semicondutores, as fontes chaveadas se tornaram muito populares em um vasto leque de aplicações, tanto nas industriais (equipamentos de áudio e empilhadeiras) como nas domesticas (televisores, computadores, impressora) [2].

Entretanto, uma fonte chaveada, se trata de um conversor CC-CC, e a fonte de energia disponível pelas concessionárias (normalmente) é CA, diante disto a maior parte das fontes chaveadas, utilizam um estagio retificador na sua entrada [5].

Diante disto, torna-se necessário, conhecer as topologias e desempenho dos diversos tipos de retificadores. Neste trabalho será estudados cinco tipos de retificadores: Retificador de meia onda, de onda completa com tap central, de onda completa em ponte com tap central, trifásico em ponte e por último o retificador de 12 pulsos.

II. Objetivos

Os objetivos deste trabalho são calcular os seguinte itens abaixo para os cinco diferentes tipos de retificadores:

- Calcular o valor eficaz da tensão e corrente na carga;
- Calcular o valor médio da tensão e corrente na carga;

• Calcular os fatores de desempenho: η , V_{CA} , FF, FR, FUT e FP.

III. METODOLOGIA

Neste trabalho serão analisadas as topologias, citadas anteriormente, por meio do simulador *PLECS* e da linguagem de programação *Python*. Para o cálculo e a analise dos resultados foram utilizados os parâmetros de desempenho [7], sendo eles,

• Os valores eficazes (V_{RMS}) da tensão e corrente:

$$V_{RMS} = \sqrt{\frac{1}{T} \int_0^t v(t)^2 dt} \tag{1}$$

- Os valores médios (V_{CC}) da tensão e corrente:

$$V_{CC} = \frac{1}{T} \int_0^t v(t) dt \tag{2}$$

• A eficiência (η) :

$$\eta = \frac{P_{CC}}{P_{CA}} = \frac{V_{CC}I_{CC}}{V_{CA}I_{CA}} \tag{3}$$

- O valor eficaz da componente CA da tensão de saída (V_{CA}):

$$V_{CA} = \sqrt{V_{RMS}^2 - V_{CC}^2} \tag{4}$$

 O fator de forma, que é uma medida da forma da tensão de saída (FF):

$$FF = \frac{V_{RMS}}{V_{CC}} \tag{5}$$

 O fator de ondulação ou fator de ripple, que é uma medida do conteúdo de ondulação (FR):

$$FR = \frac{V_{CA}}{V_{CC}} = \sqrt{FF^2 - 1} \tag{6}$$

• O fator de utilização do transformador (FUT):

$$FUT = \frac{P_{CC}}{V_S I_S} \tag{7}$$

• O fator de potência (FP):

$$FP = \frac{P_{CA}}{V_S I_S} \tag{8}$$

Para a execução das simulações, como configuração inicial geral, foram utilizados os parâmetros que são apresentados na Tabela I.

Tabela I: Configurações iniciais gerais.

Grandeza	Valor		
Passo da simulação	1/60/1000		
V_{RMS}	127 V		
f	60 Hz		
R_C	12 Ω		
Relação do transformador	2/1:1		
monofásico	2/1.1		
Relação do transformador	2/1:1		
com tap central	2/1.1		
Relação do transformador	$10/10\sqrt{3}$		
trifásico $\Delta - Y$	10/10 / 3		
Resistência do enrolamento			
do transformador trifásico	$10/10 \ [\mu\Omega]$		
$\Delta - Y$			
Indutância de dispersão			
do transformador	$10/10 \ [\mu H]$		
$\Delta - Y$			
Relação do transformador	$10/10\sqrt{3}:10$		
$Y/\Delta - Y$	10/10 (3.10		
Indutância de dispersão			
do transformador trifásico	$20/10:10 \ [\mu H]$		
$Y/\Delta - Y$			
Resistência do enrolamento			
do transformador	$0,1/0,1:0,1 [m\Omega]$		
$Y/\Delta - Y$			

Figura 1: Retificador de meia onda. (Fonte: Próprio Autor)

A. Retificador meia onda

O primeiro circuito a ser analisado é o retificador de meia onda, Figura 1, o qual recebe um sinal CA e o converte para um sinal CC variável que alimenta uma carga puramente resistiva.

Inicialmente, uma fonte de tensão alternada alimenta o transformador no primário. No secundário, a tensão de saída é dividida em dois estágios, o semiciclo positivo e o semiciclo negativo.

No primeiro estágio, devido ao sentido em que o diodo foi conectado, a corrente circula normalmente no circuito, energizando a carga. No segundo estágio, o diodo no circuito impede a passagem da corrente no sentido contrário ao dele, logo a tensão na carga é zero. Os parâmetros iniciais adotados nesta simulação são apresentadas na Tabela I.

B. Retificador de Onda Completa Com Tap Central

Para este tipo de circuito, Figura 2 durante meio ciclo, um diodo estará polarizado diretamente e o outro reversamente, logo, neste período teremos um diodo permitindo a passagem de corrente enquanto o outro está bloqueando. Durante a outra metade do ciclo os papéis se invertem. O diodo que antes conduziam agora passa a bloquear e o diodo que bloqueava agora permite a passagem da corrente. O resultado desse processo é polarização fixa do sinal durante todo ciclo, ou seja, se não há inversão de polaridade a onda está contínua e portando o sinal foi retificado. Cada diodo do circuito deve ser dimensionado para suportar o dobro da tensão sobre a carga. O sinal de saída pode ser verificado na figura 6 no gráfico com título "Onda completa com Tap Central"

O Retificador de Onda Completa com Tap Central possuem as desvantagens de ter sua aplicação limitada a 10 W, o transformador com Tap (derivação central) provoca um aumento no custo do transformador. Este aumento de custo ainda é potencializado devido a corrente CC que flui no secundário do transformador. Por outro lado, esse tipo de retificador é de fabricação simples, a frequência de ondulação é o dobro da frequência de alimentação e ainda tem a capacidade de proporcionar isolação elétrica.

Figura 2: Retificador de onda completa (Fonte: Próprio Autor)

C. Retificador de Onda Completa em Ponte

Uma alternativa para retificar uma onda por completa é utilizar o Retificador de Onda completa em Ponte, mostrado na Figura 3. Esse tipo de retificador possui uma ponte contendo 4 diodos, sendo que dois deles conduzem durante o primeiro meio ciclo e os outros durante o meio ciclo final. A grande vantagem desse tipo de retificador é que estão associados a aplicação industrial, uma vez que suportam até 100 kW, a tensão reversa suportadas pelos diodos devem ser a mesma tensão da carga e também dispensam a utilização de transformadores com Tap central, que geram custo mais altos para a fabricação dos retificadores.

Figura 3: Retificador de Onda Completa em Ponte com Tap Central

(Fonte: Próprio Autor)

D. Retificador trifásico em ponte

Para o quarto circuito, foi simulado o retificador trifásico em ponte, tendo este basicamente a mesma função que um retificador monofásico em ponte, em outras palavras, um conversor CA/CC para fontes trifásicas. Este modelo de retificador possui outras determinadas variações, como por exemplo 6 pulsos, 12 pulsos e 36 pulsos, entretanto, por agora será analisado apenas o retificador trifásico em ponte para seis pulsos.

O circuito utilizado é apresentado na Figura 4, no qual foram utilizados um transformador, estando o primário em Delta (Δ) e o secundário em Estrela (Y), seis diodos e uma carga resistiva.

Na montagem, em cada caminho que a corrente percorre foram conectados dois diodos, formando uma ponte, dessa forma realizando a retificação completa da tensão na carga.

É importante ressaltar que devido a fonte trifásica o diodo não irá permanecer polarizado o tempo todo. Isto ocorre devido ao fato dos sinais de tensão possuírem defasagem entre si de 120° , assim cada diodo permanecerá polarizado somente

Figura 4: Retificador trifásico em ponte. (Fonte: Próprio Autor)

durante esta faixa, e desta forma, mantém a carga "praticamente" energizada dentro de uma faixa de tensão devido a sobreposição dos sinais. Para esta simulação foram considerados os parâmetros citados na Tabela I.

E. Retificador 12 Pulsos

Por último, será analisado o retificador de 12 pulsos. A maneira mais tradicional de se obter um retificador 12 pulsos, é a forma que está ilustrada na Figura 5, ou seja, o primário em Estrela (Y) e no lado dos secundários em Delta (Δ) e Estrela (Y); dessa forma será obtido uma defasagem de 30° entre as tensões do secundário.

Figura 5: Retificador 12 Pulsos. (Fonte: Próprio Autor)

Para esta simulação, será utilizado o circuito da Figura 5, que utiliza uma conexão $Y/\Delta-Y$, porém também poderia ser utilizado a conexão $\Delta/\Delta-Y$, pois fornece 30° de defasagem entre as tensões retificadas [6].

Portanto, serão utilizados os seguintes valores iniciais, conforme mostra a Tabela I e a partir disto será determinado todos os parâmetros já mencionados.

IV. RESULTADOS E DISCUSSÕES

A. Valor eficaz e Valor médio

Para esta simulação, iremos ilustrar apenas as curvas de tensão na carga, visto que, como a carga é puramente resistiva, não há deslocamento de fase entre corrente e tensão, sendo assim a diferença entre a curva de tensão e corrente, será apenas na amplitude.

A Figura 6 ilustra as diferentes curvas de tensão nos diferentes tipos de retificadores.

Dado o gráfico da Figura 6, a Tabela II mostra os valores obtidos para a tensão eficaz, corrente eficaz, tensão média e corrente média dos cinco diferentes tipos de retificadores.

B. Fatores de Desempenho

A partir dos valores eficazes e médios simulados e das Equações apresentadas na metodologia, foi construída a Tabela III, e a Figura 7, que expõem os fatores de desempenho para cada retificador.

Figura 6: Tensão na carga durante um período. (Fonte: Próprio Autor)

Tabela II: Valores de Corrente e Tensão

Retificador	V_{ef} (V)	I_{ef} (A)	V_{cc} (V)	I_{cc} (A)
Meia Onda	44,90	3,74	28,58	2,38
Onda Completa c/ Tap	63,50	5,29	57,15	4,76
Onda Completa c/ Tap em Ponte	63,50	5,29	57,15	4,76
Trifásico	297,22	24,77	296,95	24,75
12 Pulsos	593,15	49,43	593,12	49,43

Tabela III: Fatores de Desempenho

Retificador	n	T/	FF	FR	FUT	FP
	η	V_{ca}		_		
Meia Onda	0,405	34,630	1,571	1,212	0,286	0,707
Onda Completa c/ Tap	0,810	27,650	1,111	0,484	0,810	1,000
Onda Completa c/ Tap em Ponte	0,810	27,650	1,111	0,484	0,810	1,000
Trifásico	0,998	12,690	1,001	0,043	0,958	0,960
12 Pulsos	0,999	7,470	1,000	0,013	0,957	0,957

C. Análise

Diante dos resultados obtidos, verificamos que o retificador de 12 pulsos se destaca como um dos melhores retificadores, pois apresenta os melhores parâmetros de desempenho (Figura 7), e também como pode se ver na Figura 6, é o que tem a forma de onda mais próxima de uma tensão continua.

Outro fato importante de se analisar é o que os retificadores de onda completa monofásicos, apesar de possuírem topologias diferentes como mostra as Figuras 2 e 3, ambos apresentaram

Figura 7: Fatores de Desempenho dos Retificadores (Fonte: Próprio Autor)

respostas iguais, tendo os mesmos valores de desempenho (Figura 7) e a mesma curva de tensão (Figura 6). Entretanto não são iguais, pois no caso do retificador com tap central a tensão no diodo será o dobro da tensão na carga, enquanto no retificador que está na topologia de ponte, a tensão no diodo será a mesma que da carga, fazendo assim os diodos não ficarem sobrecarregados.

O retificador trifásico em ponte, assim como o de 12 pulsos, também propicia melhor aproveitamento do transformador, e alto rendimento. Em contra partida, o transformador de meia onda apresentou os piores resultados, sendo o que tem a menor eficiência (40,50%) e o maior FF (1,571). Além disso, o retificador de meia onda insere muitas harmônicas na rede, o que é prejudicial à qualidade da energia, pois as harmônicas podem aumentar as ocorrências de ressonância, sobreaquecimento dos cabos e cargas e perda do rendimento das máquinas elétricas [3].

Entretanto, a utilização do transformador de 12 pulsos convencional, pode não ser a melhor opção, pois costuma ser pesado e volumoso, sendo assim poderia ser utilizado versões mais modernas, como o retificador de 12 pulsos, com autotransformador e conversores boost [1], pois apresenta um rendimento global maior, peso e volume menor e insere harmônicas de menor amplitude.

V. Conclusões

Percebe-se, portanto, que os objetivos deste trabalho foram alcançados: Determinar os valores médios e eficazes de tensão e corrente, e determinar também os parâmetros de desempenho para cada retificador.

Foi verificado através da Figura 7, quais retificadores possuem os melhores parâmetros de desempenho e quais possuem os piores, dessa forma podendo definir qual retificador seria mais útil em determinada situação, com base em seus fatores de desempenho.

Entretanto, apesar deste trabalho indicar que o retificador de 12 pulsos e o retificador trifásico serem os melhores, estes fatores não devem ser o únicos a serem analisados como tomada de decisão, fatores como: custo, tamanho, peso, volume, harmônicas, carga a ser alimentada e corrente média e eficaz dos diodos também são fatores de grande importância na determinação de um estágio retificador que poderão ser abordados em estudos futuros.

Referências

- Daniel TS Borges and Luiz CG Freitas. Retificador trifásico de 12 pulsos com autotransformador e conversores boost cascateados. Universidade Federal de Uberlândia (UFU), Faculdade de Engenharia Elétrica (FEELT), Núcleo de Pesquisa em Eletrônica de Potência (NUPEP). Uberlândia, MG, Brasil, pages 38400-902.
- [2] Ivan Eidt Colling et al. Conversores ca-cc monofásicos e trifásicos reversíveis com elevado fator de potência. pages 2–3, 2000.
- [3] A De Almeida, L Moreira, and J Delgado. Power quality problems and new solutions. In *International Conference on Renewable Energies and Power Quality*, volume 3, 2003.
- [4] Luís Eduardo Pompeu de Sousa Brasil Háteras. Retificadores multi-pulsos. page 17, 2019.
- [5] Mark J. Kocher and Robert L. Steigerwald. An ac-to-dc converter with high quality input waveforms. *IEEE Transactions on Industry Applications*, IA-19(4):63-75, 1983.
- [6] Priscila da Silva Oliveira. Classificação, metodologia de projeto e aplicação de retificadores multipulsos com conexão diferencial de transformador. 2011.
- [7] Muhamed H RASHID. Eletrônica de potência: dispositivo, circuitos e aplicações. 4ª edição, ed.