PÓS-GRADUAÇÃO EM CIÊNCIA DE DADOS 1°S/22 D3TOP - Tópicos em Ciência de dados

Aplicação de técnicas de ML e PLN na análise de sentimentos de comentários sobre produtos

Aluno: Daniel Vargas Shimamoto CP3013391

ÍNDICE

- 1) Informações Gerais
- 2) Objetivo
- 3) Aquisição dos dados
- 4) Limpeza
- 5) Pré processamento
- 6) Vetorização
- 7) Machine Learning
- 8) Resultados
- 9) Referências

INFORMAÇÕES GERAIS

Dataset:

- <u>Olist Store Version 2</u> 100 mil pedidos de vários marketplaces no Brasil entre 2016 e 2018
- Compra → Envio do produto → Recebimento/Vencimento da data de entrega → Pesquisa de Satisfação (Nota de 1 a 5 + Comentário)
- 8 datasets

- Olist Order Reviews Dataset
 - Informações sobre satisfação
- Olist Order Items Dataset
 - Itens das ordens
- Olist Products Dataset
 - Informações dos produtos

OBJETIVO

• Com base nos comentários recebidos na pesquisa de satisfação, prever o sentimento (Negativo ou Positivo) utilizando modelos supervisionados.

AQUISIÇÃO DOS DADOS

- Datasets
 - Olist Order Reviews Dataset
 - o Olist Order Items Dataset
 - Olist Products Dataset
- Colunas Finais
 - order_id, product_category_name, review_score, review_comment_message
 - \circ Review_score \rightarrow 1-3 Negativo; 4-5 Positivo (KIM et al., 2020)

LIMPEZA

- Remoção de avaliações sem comentários
- Remoção de comentários da mesma ordem do mesmo tipo de produto (mais de um produto por ordem)
- Quantidade final de dados 41.336
 - Negativos: 14.748 ~ 36%
 - Positivos: 26.588 ~ 64%

PRÉ PROCESSAMENTO

- - o Comentários: 258
 - Substituição: valorData
- Quebra de linha: '[\n\r]'
 - o Comentários: 3890
 - o Substituição:
- Dinheiro: '[R]{0,1}\\$[]{0,}\d+(, | \.)\d+'
 - Comentários: 28
 - o Substituição: valorDinheiro
- Numeração: '[0-9]+'
 - o Comentários: 4196
 - o Substituição: valorNumero

PRÉ PROCESSAMENTO

• Pré processamento

- Normalização em minúsculo: Evitar que palavras iguais sejam tratadas de formas diferentes
- Tratamento da palavra "Não": A palavra "não" é muito importante para análise de comentários e pode aparecer de diversas formas em um texto. Por ser uma stopword ela será tratada para não perder essa informação
- o Remoção de caracteres especiais: Redução de ruídos
- Remoção de acentos: Reduzir variação de erros gramaticais
- o Remoção de Stopwords: Palavras que adicionam ruído sem agregar informações

PRÉ PROCESSAMENTO

• Stemming

- o Reduzir a palavra ao seu radical
- o Representação uniforme (sem flexões)
- O Pode reduzir a palavra a uma classe gramatical incorreta
- $nltk \rightarrow RSLPStemmer()$

Comentário Original

<u>Parabéns</u> loj<u>as</u> lannist<u>er</u>, ador<u>ei</u> compr<u>ar pela I</u>nternet, segur<u>o e</u> pr<u>ático!</u> Parab<u>éns a todos</u> fel<u>iz Pá</u>sco<u>a</u>

Comentário pré processado

parab loj lannist ador compr internet segur pra parab tod feliz pasco

VETORIZAÇÃO

• TFIDF

- o Ponderação dos termos mais comuns usados em um documento em relação aos demais
- \circ sklearn.feature_extraction.text \rightarrow TfidfVectorizer

$$TF = \frac{\text{Frequencia da palavra no documento}}{\text{Total de palavras no documento}}$$

$$IDF = \log \left(\frac{\text{Número total de documentos}}{\text{Número total de documentos com a palavra}} \right)$$

$$TF, IDF = TF * IDF$$

Params

- max_features: 300
- min_df: 7
- max_df: 0.8

MACHINE LEARNING

- Gaussian Naive Bayes
 - Sem fine tuning
- Regressão Logística
 - Fine Tuning: penalty, C, class_weight
- SGD Classifier
 - Fine Tuning: penalty, alpha

RESULTADOS

Modelo	Acuracia Treino	Acuracia Teste	Tempo de treinamento (s)
Gaussian Naive Bayes	0.834	0.833	2.33
Logistic Regression	0.887	0.888	35.15
SGD Classifier	0.888	0.887	106.04

- Os modelos possuem uma melhor acurácia nos dados com comentários positivos
 - o Desbalanceamento das classes
- Regressão Logística e SGD tiveram resultados semelhantes
 - o Regressão Logística possui um tempo de treinamento bem menor
- Próximos passos
 - Outras técnicas de vetorização (Bag of N-Grams)
 - Outros modelos de classificação (Ensemble Learning, redes neurais)

Referências

- KAGGLE. Brazilian E-Commerce Public Dataset by Olist. Version 2. Created by Francisco Magioli. Data Update: 2021/10/01. Disponível em: https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce. Acesso em: 24 jun. 2022.
- KIM, Y.; LEVY, J.; LIU, Y. Speech sentiment and customer satisfaction estimation in socialbot conversations. arXiv preprint arXiv:2008.12376. Disponível em: https://arxiv.org/pdf/2008.12376.pdf. Acesso em: 24 jun. 2022. 2020.
- GITHUB. OlistDataset. Disponível em: https://github.com/Shimad01/OlistDataset. Acesso em: 26 jun. 2022., 2022

OBRIGADO!