DOBRE PORZADKI, LICZBY PORZADKOWE

Suma przeliczalnie wielu przeliczalnych zbiorow jest przeliczalna:

$$\aleph_0 \ge \bigcup_{n \in \mathbb{N}} A_n, \quad \forall \ n \in \mathbb{N} \quad |A_n| \le \aleph_0$$

DOWOD:

Poniewaz $|A_n| \leq \aleph_0 \; n \in \mathbb{N}$, istnieje bijekcja

$$f_n: \mathbb{N} \to A_n$$
.

Chcemy pokazac, ze istnieje rowniez bijekcja:

$$f: \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in \mathbb{N}} A_n$$

$$f(n,k) = f_n(k) \quad (\clubsuit)$$

Musimy skorzystac z aksjomatu wyboru, poniewaz nie wystarczy nam tylko jeden element z (f_n) - potrzebujemy znac wlasnosci wszystkich elementow (f_n) jednoczesnie. Rozpatrujemy wiec zbior funkcji:

$$F_n = \{ arphi \in S_n^{\mathbb{N}} : arphi ext{ jest bijekcja} \}$$

dla $n \in \mathbb{N}$, gdzie $S_n^{\mathbb{N}}$ to wszystkie funckje $g: \mathbb{N} \to \mathbb{N}$ lub $z \mathbb{N}$ do podzbioru A_n . Niech F bedzie funkcja wyboru dla rodziny $\{F_n: n \in \mathbb{N}\}$, czyli kazdej rodzinie przypisuje element tej rodziny:

$$F(F_n) \in F_n$$
.

Przepiszmy wiec (w sposob bardziej formalny:

$$f(n,k) = F(F_n)(k).$$

Poniewaz $F(F_n)$ jest bijekcja, to rowniez f jest bijekcja.

LEMAT KURATOWSKIEGO-ZORNA:

Jesli $\langle X, \leq \rangle$ jest zbiorem czesciowo uporzadkowanym, w ktorym kazdy lancuch jest ograniczony z gory, to w X istnieje element maksymalny.

TWIERDZENIE: dla dowolnych zbiorow A, B zachodzi $|A| \leq |B|$ lub $|B| \leq |A|$

DOWOD:

Musimy skonstruowac zbior czesciowo uporzadkowany X, do ktorego bedziemy mogli zastosowac $L\!K\!Z$. Elementami tego zioru niech beda przyblizenia tego, co chcemy otrzymac:

$$X = \{f : \mathtt{fnc}(f) \land \mathtt{dom}(f) \subseteq A \land \mathtt{rng}(f) \subseteq B \land \mathtt{f} \mathtt{jest} \mathtt{1-1}\}.$$

Bedziemy rozpatrywali $\langle X,\subseteq
angle$. Chcemy zastosowac do niego LKZ, czyli musimy sprawdzic zalozenia. Niech

$$\mathcal{L} \subseteq X$$

bedzie lancuchem w X. Chcemy pokazac, ze ma on ograniczenie gorne. Niech

$$L = \bigcup \mathcal{L},$$

wtedy L jest ograniczeniem gornym $\mathcal L$, bo zawiera wszystkie elementy tego lancucha.

Znalezlismy juz ograniczenie gorne lancucha \mathcal{L} , teraz musimy pokazac, ze L jest elementem zbioru X z zalozenia, czyli spelnia nastepujace warunki:

- 1. L jest zbiorem par uporzadkowanych. Stwierdzenie to wynika bezposrednio z faktu, ze L jest suma lancucha.
- 2. L jest funkcja, gdyz elementami zbioru X sa funkcje.

Chcemy pokazac, ze

$$\forall \; x,y,z \quad \langle x,y \rangle \in L \; \wedge \; \langle x,z \rangle \in L \implies y=z,$$

czyli L jest zbiorem takich par uporzadkowanych, ze jesli dwie pary maja ten sam poprzednik, to maja tez ten sam nastepnik (def. funkcji).

Ustalmy dowolne x,y,z takie, ze $\langle x,y \rangle \in L$ i $\langle x,z \rangle \in L$. Zatem istnieja $F,G \in \mathcal{L}$ takie, ze

$$\langle x, y \rangle \in F \land \langle x, z \rangle \in G.$$

Poniewaz $\mathcal L$ ma ograniczenie gorne (czyli jest zbior do ktorego naleza wszystkie pozostale) i jest lancuchem, wszystkie jego elementy mozemy porownac miedzy soba. Czyli, bez straty ogolnosci, mozemy zalozyc, ze $F\subseteq G$ i wowczas

$$\langle x,y \rangle \in G \text{ i } \langle x,z \rangle \in G \implies y=z$$

gdyz zbior G jest funkcja (fnc(G)).

3. $dom(L) \subseteq A$

4. $rng(L) \subseteq B$

zalozenie 3. i 4. wynikaja bezposrednio z definicji zbioru X oraz L

$$\mathrm{dom}(\bigcup \mathcal{L}) = \bigcup_{F \in \mathcal{L}} \mathrm{dom}(F)$$

$$\mathtt{rng}(\bigcup \mathcal{L}) = \bigcup_{F \in \mathcal{L}} \mathtt{rng}(F)$$

5. L jest funkcja roznowartosciowa (iniekcja), czyli jesli $\langle x,y \rangle = \langle z,y \rangle$ to x=z.

Ustalmy dowolne x,y,z takie, ze $\langle x,y
angle\in L$ i $\langle z,y
angle\in L$. Zatem istnieja $F,G\in\mathcal{L}$ takie, ze

$$\langle x, y \rangle \in F \land \langle z, y \rangle \in G$$

Poniewaz $\mathcal L$ jest lancuchem, to mozemy zalozyc, ze $F\subseteq G$, a poniewaz $\mathcal L\subseteq X$ i X zawiera jedynie iniekcje, to

$$\langle x, y \rangle \in G \land \langle z, y \rangle \in G \implies x = z.$$

Poniewaz pokazalismy, ze dowolny lancuch X jest ograniczony z gory, to na mocy w X istnieje element maksymalny $\varphi \in X$. Rozpatrzmy trzy mozliwosci:

- 1. $\operatorname{dom}(\varphi) = A$. Wowczas z definicji zbioru X otrzymujemy $\varphi: A \xrightarrow{1-1} B$, czyl $\operatorname{id} |A| \leq |B|$.
- 2. $\operatorname{rng}(\varphi) = B$. Wtedy $|B| \leq |A|$, bo

$$\varphi: \operatorname{dom}(\varphi) \xrightarrow{1-1} B$$

$$\varphi^{-1}: B \xrightarrow{n_{\sigma^{"}}} \operatorname{dom}(\varphi) \subseteq A$$

3. $dom(\varphi) \neq A \land rng(\varphi) \neq B$. Czyli $dom(\varphi) \subsetneq B$ i $rng(\varphi) \subsetneq B$, zatem istnieja $s \in A \setminus dom(\varphi)$ i $t \in B \setminus rng(\varphi)$. W takim razie φ moze byc rozszerzona do:

$$\varphi' = \varphi \cup \{\langle s, t \rangle\}.$$

 $\varphi' \in X$ jest iniekcja, bo $t \notin \operatorname{rng}(\varphi)$. Dodatkowo,

$$\varphi \subsetneq \varphi'$$
,

czyli φ nie jest elementem maksymalnym X, stad zachodzi tylko 1 lub 2.

