

Урок 25

Нелинейные элементы в электрических цепях

Курс подготовки к вузовским олимпиадам 11 класса

Задача №1.

На рисунке слева приведена схема фрагмента электрической цепи, состоящего из двух одинаковых ламп накаливания, резистора сопротивлением $R=200~{\rm Om}$ и идеального амперметра. Вольт-амперная характеристика лампы накаливания приведена на рисунке справа. Определить показания амперметра, если напряжение на концах этого фрагмента составляет $U=9~{\rm B}$.

В случае несамостоятельного газового разряда зависимость силы тока I через газоразрядную трубку от напряжения на трубке U имеет вид, показанный на рисунке. При некотором напряжении U_0 на трубке ток через трубку достигает насыщения. Сила тока насыщения равна $I_0=10$ мкА. Если трубка, последовательно соединённая с некоторым баластным резистором, подключена к источнику с ЭДС E=2 кВ, то сила тока через трубку составляет $I_0/2$. Как надо изменить сопротивление баластного резистора, чтобы достичь тока насыщения?

Задача №3.

На рисунке изображена вольт-амперная характеристика двух соединённых параллельно элементов, один из которых — резистор сопротивлением $R=100~\mathrm{Om},$ а другой — неизвестный элемент Z. Постройте его вольт-амперную характеристику.

Задача №4.

На рисунке показана вольт-амперная характеристика некоторого нелинейного элемента. До напряжения U_0 ток через элемент отсутствует, а затем линейно растёт с напряжением. При включении такого элемента последовательно с источником постоянной ЭДС и баластным резистором, имеющим сопротивление $R_1=300\,$ кОм, через него протекает ток силой $I_1=0.5\,$ мА. При уменьшении сопротивления баластного резистора до $R_2=100\,$ кОм сила тока возрастает вдвое. Определите силу тока, который протечёт через элемент, если баластный резистор закоротить?

Задача №5.

В электрической цепи, схема которой представлена на рисунке, определить величину тока и напряжение на диоде. Все элементы считать идеальными.

Урок 25

Анализ переходных процессов в RC-цепях (часть 1)

Курс подготовки к вузовским олимпиадам 11 класса

RC-цепи постоянного тока

В электрической цепи, схема которой представлена на рисунке, определить величины токов, протекающих во всех ветвях, а также найти заряд конденсатора. Источники – идеальные.

В электрической цепи, схема которой представлена на рисунке, определить величины токов, протекающих во всех ветвях, а также найти заряды конденсаторов. Внутренним сопротивлением источников пренебречь. Считать, что до сборки цепи конденсаторы были не заряжены.

В электрической цепи, схема которой представлена на рисунке, определить разность потенциалов между точками A и B. Внутренним сопротивлением источников пренебречь. Считать, что до сборки цепи конденсаторы были не заряжены.

Переходные процессы в RC-цепях

Задача №1

В электр. цепи, схема которой представлена на рисунке, ключ К разомкнут. Его замыкают.

- 1) Найти величины и направл. токов через конденсатор(-ы) сразу после замыкания ключа К.
- 2) Найти напряжение и полярность на конденсаторе(-ах) в установившемся состоянии цепи при замкнутом ключе К.

Вариант В

Задача №2.

В электрической цепи, схема которой представлена на рисунке, ключ К разомкнут. Его замыкают.

- (а) Определить величину и направление тока в цепи сразу после замыкания ключа К.
- (b) Чему равно напряжение на конденсаторе в установившемся режиме? Какова его полярность?
- (с) Какой заряд протечёт через источник после замыкания ключа К? В каком направлении?
- (d) Определить работу источника после замыкания ключа K.
- (е) Найти изменение энергии электрической цепи после замыкания ключа К.
- (f) Какое количество теплоты выделится в цепи после замыкания ключа K?

Задача №3.

В электрической цепи, схема которой представлена на рисунке, конденсатор ёмкостью C заряжен до напряжения U_0 , а конденсатор ёмкостью 2C — до напряжения $3U_0$. Одноимённо заряженные обкладки соединены резистором сопротивлением R. Ключ K на некоторое время замыкают, а потом размыкают.

- (а) Определить величину и направление тока в цепи сразу после замыкания ключа К.
- (b) Какое количество теплоты выделится в цепи, если в момент размыкания ключа K ток в цепи был в 2 раза меньше начального?

Задача №4

В электрической цепи, схема которой приведена на рисунке, все элементы являются идеальными. Ключ К разомкнут. Его замыкают.

- 1. Чему равен и как направлен ток через ключ К сразу после его замыкания?
- 2. Какой заряд протечёт через ключ К после его замыкания?
- 3. Какое количество теплоты выделится во всей цепи после замыкания ключа К?

Задача №5.

В электрической цепи, схема которой представлена на рисунке, все элементы идеальные. Конденсатор первоначально не заряжен, ключ К разомкнут. Ключ К замыкают, а затем размыкают в момент, когда напряжение на конденсаторе становится равным $\xi/3$. Известно, что пока ключ К был замкнут, через резистор сопротивлением 2R протёк заряд $C\xi/6$. Какое количество теплоты выделилось в цепи, пока ключ К был замкнут?

mapenkin.ru

ПРЕЗЕНТАЦИЮ ПОДГОТОВИЛ

Михаил Александрович ПЕНКИН

- w /penkin
- /mapenkin
- fmicky@gmail.com