(FCM Santa Casa-SP) Duas fontes sonoras, F_1 e F_2 , estão defasadas de 180°. Um ponto P dista x_1 de F_1 e x_2 de F_2 .

Sendo k um número inteiro e λ o comprimento de onda dos sons emitidos por F_1 e F_2 , a condição para que o ponto P sofra interferência construtiva é que a diferença de percurso $\Delta x = x_2 - x_1$ seja dada pela expressão:

a)
$$k\lambda$$
 b) $(k-\frac{1}{2})\lambda$ c) $2k\lambda$ d) $(2k-1)\lambda$

Resolução:

Como as fontes estão defasadas em π rad, estão com fases invertidas, logo Δx deve ser um múltiplo ímpar de $\frac{\lambda}{2}$ para que em P tenhamos um máximo de amplitude.

Mas todo número ímpar é da forma 2k-1 com $k \in \mathbb{Z}$.

Assim, vamos ter:

$$\Delta x = (2k-1)\frac{\lambda}{2} = (k-\frac{1}{2})\lambda$$

Logo a alternativa correta é a B.

Documento compilado em Wednesday $12^{\rm th}$ March, 2025, 21:53, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

Licença de uso: $\underbrace{ \ \, \bigoplus_{\texttt{NC}} \ \, \bigoplus_{\texttt{NC}} \ \, \bigoplus_{\texttt{NC}} \ \, }_{\texttt{NA}} \quad \text{Atribuição-NãoComercial-CompartilhaIgual (CC BY-NC-SA)}.$