CONFIDENCE INTERVALS

The objective is the construction of confidence intervals for population parameters. When the underlying distribution of a statistic is approximately normal ¹, the confidence interval will be of the form

Point estimate \pm margin of error

The question becomes: how do we build the margin of error, i.e. how to identify the appropriate test statistics.

\longrightarrow When σ is known

If the population standard deviation σ is known, a $(100-\alpha)\%$ confidence interval for μ is given by:

$$\bar{\mathbf{X}} \pm z_{\alpha/2} \times \frac{\sigma}{\sqrt{n}}$$

 $\bar{\mathbf{X}}$: sample mean; n: sample size; σ : population standard deviation z: z value from the z-test statistics; α : significance level $z_{\alpha/2}=1.96$ for a 95% confidence interval

Use cases:

- estimation of a population proportion p (how close is the sample proportion \hat{p} to the true value of the parameter)
- estimation of a population mean in the unlikely case that σ is known

\longrightarrow When σ is unknown

If the population standard deviation σ is not known, a $(100-\alpha)\%$ confidence interval for μ is given by:

$$\bar{\mathbf{X}} \pm t_{\alpha/2} \times \frac{s}{\sqrt{n}}$$

We use s the unbiased sample standard deviation to estimate σ and therefore need to implement the t-procedure instead of the z procedure.

 $\bar{\mathbf{X}}$: sample mean; n: sample size; s: unbiased sample standard deviation

t: t value from the t distribution with n-1 degrees of freedom

 α : significance level

¹One of the major justification for supposing a normal distribution is the central limit theorem.