Homework #1

- 1. A vector ^{A}P is rotated about \hat{X}_{A} by ϕ degrees and is subsequently rotated about \hat{Z}_{A} by θ degrees.
 - (a) Give the rotation matrix which accomplishes these rotations in the given order.
 - (b) What is the result if $\phi = 30^{\circ}$ and $\theta = 45^{\circ}$?
- 2. A frame {B} is located as follows: initially coincident with a frame {A} we rotate {B} about \hat{Z}_B by θ and then we rotate the resulting frame about \hat{X}_B by ϕ degrees.
 - (a) Give the rotation matrix, ${}^A_B R$ which will change the description of vectors from ${}^B P$ to ${}^A P$.
 - (b) What is the result if $\phi = 30^{\circ}$ and $\theta = 45^{\circ}$?
 - (c) What is ^AŶ_B?
- 3. A vector is given by

$${}^{B}P = \left[\begin{array}{c} 1.0 \\ 5.0 \\ 10.0 \end{array} \right].$$

Given

$${}^B_AT = \left[\begin{array}{ccccc} 1.0 & 0.0 & 0.0 & 3.0 \\ 0.0 & 0.6 & 0.8 & -1.0 \\ 0.0 & -0.8 & 0.6 & 1.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{array} \right],$$

compute ${}^{A}P$.

Given the following 3x3 matrix,

$$R = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}.$$

- (a) Show that it is a rotation matrix.
- (b) Determine a unit vector that defines this axis of rotation and the angle (in degrees) of rotation.
- (c) What are the Euler parameters ε₁, ε₂, ε₃, ε₄ of R?