MA 162	Exam 3	Spring 2008
Name		

10-digit PUID_____

RECITATION Division and Section Numbers_____

Recitation Instructor____

Instructions:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 22 problems. Problems 1 17 are worth 4 points each, problems 18 20 are worth 6 points each and problems 21 and 22 are worth 7 points each. The maximum score is 100 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators or any electronic devices are not to be used on this test.

1. If $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ converges.

- A. True
- B. False

2. If $\sum_{n=1}^{\infty} |a_n|$ converges then $\sum_{n=1}^{\infty} a_n$ converges.

- A. True
- B. False

3. If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 2$, then $\sum_{n=1}^{\infty} a_n$ converges.

- A. True
- B. False

4. If $\lim_{n\to\infty} \frac{\frac{1}{n}}{a_n} = 2$, then $\sum_{n=1}^{\infty} a_n$ diverges.

- A. True
- B. False

5. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{2}$, then $\sum_{n=1}^{\infty} a_n$ converges.

- A. True
- B. False
- 6. If $a_n > b_n \ge 0$ for all n and $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.
- A. True
- B. False

7. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + n}$ converges absolutely.

- A. True
- B. False

8. $\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$ converges conditionally.

- A. True
- B. False

9. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges.

- A. True
- B. False

10. $\sum_{n=1}^{\infty} \left(\frac{5}{4}\right)^{n-1}$ converges.

- A. True
- B. False

11. $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$ converges absolutely.

- A. True
- B. False

12. $\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \left(\sum_{n=1}^{N} a_n \right).$

- A. True
- B. False

13.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$$
 converges.

- A. True
- B. False

14.
$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$$
 diverges.

- A. True
- B. False

15. If
$$f(x) = 4 + x - x^2 + x^3 - x^4 + \cdots$$
, then $f'''(0) = 6$.

- A. True
- B. False

16. If
$$f(x) = \sum_{n=0}^{\infty} \frac{n}{(n+1)!} x^n$$
, then $f^{(5)}(0) = \frac{1}{6}$.

- A. True
- B. False

17. The radius of convergence of the series
$$\sum_{n=0}^{\infty} (2x)^n$$
 is 2.

- A. True
- B. False

18.
$$\sum_{n=1}^{\infty} \frac{(-2)^{n-2}}{3^n} =$$

- A. $-\frac{3}{5}$

- B. $-\frac{1}{5}$ C. $-\frac{2}{5}$ D. $-\frac{6}{5}$
- E. $-\frac{1}{10}$
- 19. The interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2} (x+1)^n$ is.
 - A. [-2, 0]
 - B. (-2,0]
 - C. [0, 2]
 - D. (0,2]
 - E. [0, 2)

20. If $\frac{1}{1+2x} = c_0 + c_1x + c_2x^2 + c_3x^3 + \cdots$ then $c_3 =$

- A. $\frac{8}{3!}$
- B. $-\frac{8}{3!}$
- C. 8
- D. -8
- E. 4

- 21. Using power series, the smallest number of terms needed to approximate $\int_0^{1/10} \frac{1}{1+x^2} dx$ to within 10^{-6} is
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 5

- 22. The first 4 nonzero terms of the power series representation for $f(x) = (1+x)^{-3}$ are
 - A. $1 3x + 6x^2 10x^3$
 - B. $1 3x + 12x^2 60x^3$
 - C. $1 3x + 6x^2 6x^3$
 - D. $1 3x + 3x^2 x^3$
 - E. $1 3x + 4x^2 8x^3$