Homework Set 2, CPSC 8420, Fall 2024

Matthew Collins

Due 10/28/2024, Monday, 11:59PM EST

Problem 1

For Principle Component Analysis (PCA), from the perspective of maximizing variance (assume the data is already self-centered)

- show that the first column of **U**, where $[\mathbf{U}, \mathbf{S}] = svd(\mathbf{X}^T\mathbf{X})$ will maximize $\|\mathbf{X}\boldsymbol{\phi}\|_2^2$, s.t. $\|\boldsymbol{\phi}\|_2 = 1$. (Note: you need prove why it is optimal than any other reasonable combinations of \mathbf{U}_i , say $\hat{\boldsymbol{\phi}} = 0.8 * \mathbf{U}(:, 1) + 0.6 * \mathbf{U}(:, 2)$ which also satisfies $\|\hat{\boldsymbol{\phi}}\|_2 = 1$.)
- show that the solution is not unique, say if ϕ is the optimal solution, so is $-\phi$.
- show that first r columns of \mathbf{U} , where $[\mathbf{U}, \mathbf{S}] = svd(\mathbf{X}^T\mathbf{X})$ maximize $\|\mathbf{X}\mathbf{W}\|_F^2$, s.t. $\mathbf{W}^T\mathbf{W} = \mathbf{I}_r$.
- \bullet Assume the singular values are all different in S, then how many possible different W's will maximize the objective above?

Answer

Part (a)

Show that the first column of **U**, where $[\mathbf{U}, \mathbf{S}] = \text{svd}(\mathbf{X}^T \mathbf{X})$, maximizes $\|\mathbf{X}\boldsymbol{\phi}\|_2^2$ subject to $\|\boldsymbol{\phi}\|_2 = 1$. **Proof:**

The variance of the data when projected onto a unit vector ϕ is

$$\|\mathbf{X}\boldsymbol{\phi}\|_2^2 = \boldsymbol{\phi}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\phi}$$
 subject to $\|\boldsymbol{\phi}\|_2 = 1$

 $\mathbf{X}^T\mathbf{X}$ is a symmetric matrix, decompose it as

$$\mathbf{X}^T\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{U}^T,$$

where U is an orthogonal matrix and S is a diagonal matrix containing the singular values

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0.$$

Substituting into the objective function

$$\phi^T \mathbf{X}^T \mathbf{X} \phi = \phi^T \mathbf{U} \mathbf{S} \mathbf{U}^T \phi.$$

Let $\psi = \mathbf{U}^T \phi$. Since **U** is orthogonal, $\|\psi\|_2 = \|\phi\|_2 = 1$. Thus, the expression becomes

$$\phi^T \mathbf{U} \mathbf{S} \mathbf{U}^T \phi = \psi^T \mathbf{S} \psi.$$

The quantity $\psi^T \mathbf{S} \psi$ is maximized when ψ aligns with the eigenvector corresponding to the largest singular value σ_1 . Therefore, the maximum is achieved when $\phi = \mathbf{U}(:,1)$.

 $\hat{\phi} = 0.8\mathbf{U}(:,1) + 0.6\mathbf{U}(:,2)$ satisfies $\|\hat{\phi}\|_2 = 1$, the contribution from σ_2 will reduce the value of $\phi^T \mathbf{X}^T \mathbf{X} \phi$ since $\sigma_1 \geq \sigma_2$. Hence, $\mathbf{U}(:,1)$ is the optimal choice.

Part (b)

Show that the solution is not unique if ϕ is an optimal solution, then $-\phi$ is also optimal.

Proof

Consider the objective function

$$\|\mathbf{X}\boldsymbol{\phi}\|_2^2 = \boldsymbol{\phi}^T\mathbf{X}^T\mathbf{X}\boldsymbol{\phi}$$

Take $-\phi$

$$\|\mathbf{X}(-\boldsymbol{\phi})\|_2^2 = (-\boldsymbol{\phi})^T \mathbf{X}^T \mathbf{X}(-\boldsymbol{\phi}) = \boldsymbol{\phi}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\phi}.$$

The value of the objective function remains unchanged, which implies that both ϕ and $-\phi$ are optimal solutions.

Part (c)

Show that the first r columns of \mathbf{U} , where $[\mathbf{U}, \mathbf{S}] = \text{svd}(\mathbf{X}^T \mathbf{X})$, maximize $\|\mathbf{X}\mathbf{W}\|_F^2$, s.t. $\mathbf{W}^T \mathbf{W} = \mathbf{I}_r$.

The objective function can be written as

$$\|\mathbf{X}\mathbf{W}\|_F^2 = \text{Tr}(\mathbf{W}^T \mathbf{X}^T \mathbf{X} \mathbf{W}).$$

By SVD $\mathbf{X}^T \mathbf{X} = \mathbf{U} \mathbf{S} \mathbf{U}^T$,

$$\text{Tr}(\mathbf{W}^T \mathbf{U} \mathbf{S} \mathbf{U}^T \mathbf{W}).$$

Let $\mathbf{V} = \mathbf{U}^T \mathbf{W}$. Since \mathbf{U} is orthogonal, $\mathbf{V}^T \mathbf{V} = \mathbf{I}_r$. The objective becomes

$$\text{Tr}(\mathbf{V}^T \mathbf{S} \mathbf{V}).$$

The trace $\text{Tr}(\mathbf{V}^T\mathbf{S}\mathbf{V})$ is maximized when \mathbf{V} aligns with the first r columns of \mathbf{U} , corresponding to the largest r singular values $\sigma_1, \ldots, \sigma_r$. Therefore, $\mathbf{W} = \mathbf{U}(:, 1:r)$ is the optimal solution.

Part (d)

Assuming the singular values in S are different, how many possible different W's will maximize the objective?

Answer:

Given that the singular values in **S** are all distinct, the optimization problem of maximizing $\|\mathbf{X}\mathbf{W}\|_F^2$ under the constraint $\mathbf{W}^T\mathbf{W} = \mathbf{I}_r$ has solutions that can be expressed as:

$$\mathbf{W}=\mathbf{U}_{r}\mathbf{Q},$$

where \mathbf{U}_r consists of the first r columns of \mathbf{U} , and \mathbf{Q} is any orthogonal $r \times r$ matrix such that $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}_r$. The set of all such orthogonal matrices \mathbf{Q} forms the orthogonal group O(r).

Problem 2

Given matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ (assume each column is centered already), where n denotes sample size while p feature size. To conduct PCA, we need find eigenvectors to the largest eigenvalues of $\mathbf{X}^T\mathbf{X}$, where usually the complexity is $\mathcal{O}(p^3)$. Apparently when $n \ll p$, this is not economic when p is large. Please consider conducting PCA based on $\mathbf{X}\mathbf{X}^T$ and obtain the eigenvectors for $\mathbf{X}^T\mathbf{X}$ accordingly and use experiment to demonstrate the acceleration.

Answer

To efficiently perform PCA when $n \ll p$, the eigenvectors of $\mathbf{X}^T\mathbf{X}$ can be obtained from the eigenvectors of $\mathbf{X}\mathbf{X}^T$. This is computationally cheaper when p is large and n is relatively small.

By decomposition of $\mathbf{X}\mathbf{X}^T$,

$$\mathbf{X}\mathbf{X}^T = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^T,$$

The eigenvectors of $\mathbf{X}^T\mathbf{X}$ can be obtained from \mathbf{U} .

$$\mathbf{V} = \mathbf{X}^T \mathbf{U} \mathbf{\Lambda}^{-\frac{1}{2}}$$

Python code was created below to expiriment and demonstrate the differences between eigenvalues of $\mathbf{X}^T\mathbf{X}$ and $\mathbf{X}\mathbf{X}^T$. The python code iterates through different sample sizes (n) and different feature sizes (p) and keeps track of the time it takes to comput the eigenvalues using both $\mathbf{X}^T\mathbf{X}$ and $\mathbf{X}\mathbf{X}^T$. From the experiment, we expect that the indirect method using $\mathbf{X}\mathbf{X}^T$ will be significantly faster than the direct method when $n \ll p$. The computational complexity of finding eigenvectors of an $n \times n$ matrix $\mathbf{X}\mathbf{X}^T$ is $\mathcal{O}(n^3)$, which is much more efficient when $n \ll p$. As can be seen in Figure 1 and Figure 2, for cases where $n \ll p$, the dramatic speedup of using $\mathbf{X}\mathbf{X}^T$ can be seen that appears to be very close to $\mathcal{O}(n^3)$.

Python Code

```
import numpy as np
import time
import pandas as pd
import matplotlib.pyplot as plt

n_values = [50, 100, 200]
p_values = [500, 1000, 2000]

results = []

for n in n_values:
   for p in p_values:
    np.random.seed(0)
   X = np.random.randn(n, p)

# Direct Eigenvalue Decomposition of X^T X start_time = time.time()
```


Figure 1: Speedup Compared to Feature Size

```
(hw2) (base) PS E:\CPSC 8420 Advances Machine Learning\Hw2 24F> python .\problem 2.py
      n
                time direct time indirect
                                                speedup
 0
     50
          500
                   0.063036
                                   0.001013
                                              62.224988
     50
                   0.189120
                                             172.552954
         1000
                                   0.001096
 2
     50
         2000
                   0.554991
                                   0.002073
                                             267.686510
 3
    100
          500
                   0.066495
                                   0.004047
                                              16.430162
    100
         1000
                   0.211799
                                   0.004049
                                              52.311152
 5
    100
         2000
                   0.582603
                                   0.005095
                                             114.342471
 6
    200
          500
                   0.067038
                                   0.008113
                                               8.262592
    200
         1000
                   0.185035
                                   0.008619
                                              21.468630
                                              45.594586
         2000
                   0.558259
                                   0.012244
    200
```

Figure 2: Speedup Table

```
XtX = np.dot(X.T, X)
  _, V1 = np.linalg.eigh(XtX)
  time_direct = time.time() - start_time
  # Indirect (Efficient Computation) Eigenvalue Decomposition using X X^T
  start_time = time.time()
  XXt = np.dot(X, X.T)
  D, U = np.linalg.eigh(XXt)
  V2 = np.dot(X.T, U) / np.sqrt(D) # Normalize eigenvectors
  time_indirect = time.time() - start_time
  epsilon = 1e-10
  speedup = time_direct / (time_indirect + epsilon)
  results.append({
   'n': n,
   'p': p,
   'time_direct': time_direct,
   'time_indirect': time_indirect,
   'speedup': speedup
  })
results_df = pd.DataFrame(results)
print(results_df)
for n in n_values:
 subset = results_df[results_df['n'] == n]
 plt.plot(subset['p'], subset['speedup'], marker='o', label=f'n={n}')
plt.xlabel('p (Feature Size)')
plt.ylabel('Speedup (Time Direct / Time Indirect)')
plt.title('Speedup of Indirect Method vs. Direct Method')
plt.legend()
plt.grid(True)
plt.show()
```

Problem 3

Let $\theta^* \in \mathbb{R}^d$ be the ground truth linear model parameter and $\mathbf{X} \in \mathbb{R}^{N \times d}$ be the observing matrix and each column of \mathbf{X} is independent. Assume the linear model is $\mathbf{y} = \mathbf{X}\theta^* + \epsilon$ where ϵ follows $Gaussian(0, \sigma^2\mathbf{I})$. Assume $\hat{\theta} = \arg\min_{\theta} \|\mathbf{X}\theta - \mathbf{y}\|^2$.

- Please show that $\mathbf{X}^T\mathbf{X}$ is invertible.
- Show that $MSE(\theta^*, \hat{\theta}) := E_{\epsilon}\{\|\theta^* \hat{\theta}\|^2\} = \sigma^2 trace((\mathbf{X}^T\mathbf{X})^{-1})$
- Show that as N increases, MSE decreases. (hint: make use of 'Woodbury matrix identity')

Answer

Part (a)

Show that $\mathbf{X}^T\mathbf{X}$ is invertible.

Proof:

Each column of X is independent. The columns of X form a linearly independent set.

$$rank(\mathbf{X}) = d$$
, where d is the number of columns in \mathbf{X} .

Therefore, if **X** has full column rank, then $\mathbf{X}^T\mathbf{X}$ is a $d \times d$ matrix. Since **X** has full column rank, $\mathbf{X}^T\mathbf{X}$ is a $d \times d$ matrix, rank($\mathbf{X}^T\mathbf{X}$) = d, and $\mathbf{X}^T\mathbf{X}$ is invertible.

Part (b)

Proof: The estimator $\hat{\theta}$ is given by the least squares solution:

$$\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$

Substituting $\mathbf{y} = \mathbf{X}\theta^* + \epsilon$,

$$\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} \theta^* + \epsilon).$$

Simplifying,

$$\hat{\theta} = \theta^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon.$$

The mean squared error (MSE) is given by:

$$MSE(\theta^*, \hat{\theta}) = \mathbb{E}_{\epsilon} \left\{ \|\theta^* - \hat{\theta}\|^2 \right\} = \mathbb{E}_{\epsilon} \left\{ \|(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon\|^2 \right\}.$$

Since $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$,

$$\mathbb{E}_{\epsilon} \left\{ \epsilon \epsilon^{T} \right\} = \sigma^{2} \mathbf{I}.$$

$$\mathbb{E}_{\epsilon} \left\{ (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \epsilon \epsilon^{T} \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-1} \right\} = \sigma^{2} (\mathbf{X}^{T} \mathbf{X})^{-1}.$$

$$MSE(\theta^{*}, \hat{\theta}) = \sigma^{2} trace((\mathbf{X}^{T} \mathbf{X})^{-1}).$$

Part (c)

Proof: The Woodbury matrix identity states that for matrices **A**, **U**, **C**, and **V** of appropriate dimensions:

$$(\mathbf{A} + \mathbf{U}\mathbf{C}\mathbf{V})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{C}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}\mathbf{A}^{-1}.$$

where $\mathbf{A} \in \mathbb{R}^{d \times d}$, $\mathbf{U} \in \mathbb{R}^{d \times k}$, $\mathbf{C} \in \mathbb{R}^{k \times k}$, and $\mathbf{V} \in \mathbb{R}^{k \times d}$. Given $\mathbf{X} \in \mathbb{R}^{N \times d}$, where N is the number of observations and d is the number of features. Suppose we have an initial sample matrix $\mathbf{X}_0 \in \mathbb{R}^{N_0 \times d}$ and add a new sample $\mathbf{x} \in \mathbb{R}^{1 \times d}$. The updated observation matrix becomes:

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_0 \\ \mathbf{x} \end{pmatrix} \in \mathbb{R}^{(N_0+1) \times d}.$$

 $\mathbf{X}^T\mathbf{X}$ is updated as:

$$\mathbf{X}^T \mathbf{X} = \mathbf{X}_0^T \mathbf{X}_0 + \mathbf{x}^T \mathbf{x}.$$

Let $\mathbf{A} = \mathbf{X}_0^T \mathbf{X}_0$, $\mathbf{U} = \mathbf{x}^T$, $\mathbf{C} = 1$, and $\mathbf{V} = \mathbf{x}$. Applying the Woodbury matrix identity, we get:

$$(\mathbf{X}_0^T\mathbf{X}_0 + \mathbf{x}^T\mathbf{x})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(1 + \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}\mathbf{A}^{-1}.$$

Simplifying:

$$(\mathbf{X}_0^T\mathbf{X}_0 + \mathbf{x}^T\mathbf{x})^{-1} = (\mathbf{X}_0^T\mathbf{X}_0)^{-1} - \frac{(\mathbf{X}_0^T\mathbf{X}_0)^{-1}\mathbf{x}^T\mathbf{x}(\mathbf{X}_0^T\mathbf{X}_0)^{-1}}{1 + \mathbf{x}(\mathbf{X}_0^T\mathbf{X}_0)^{-1}\mathbf{x}^T}.$$

The term:

$$\frac{(\mathbf{X}_0^T\mathbf{X}_0)^{-1}\mathbf{x}^T\mathbf{x}(\mathbf{X}_0^T\mathbf{X}_0)^{-1}}{1+\mathbf{x}(\mathbf{X}_0^T\mathbf{X}_0)^{-1}\mathbf{x}^T}$$

is a positive semi-definite matrix. Subtracting this term from $(\mathbf{X}_0^T\mathbf{X}_0)^{-1}$ decreases the overall trace. Therefore, as we add more samples (i.e., as N increases), $\operatorname{trace}((\mathbf{X}^T\mathbf{X})^{-1})$ decreases, leading to a decrease in MSE.

References

- [1] Towards Data Science, "Principal Component Analysis (Part 1) Formulations," TowardsAug. The Different DataScience. Available: 30. 2019. [Online]. https://towardsdatascience.com/ principal-component-analysis-part-1-the-different-formulations-6508f63a5553.
- [2] A. Alekhyo, "Computational Complexity of PCA," *Medium*, Jan. 10, 2021. [Online]. Available: https://alekhyo.medium.com/computational-complexity-of-pca-4cb61143b7e5.
- $^{"}$ Is **MSE** [3] Stats Stack Exchange, decreasing with increasing number variables?" StackDec. 18, 2017. of explanatory StatsExchange, On-Available: https://stats.stackexchange.com/questions/306267/ line|.is-mse-decreasing-with-increasing-number-of-explanatory-variables.
- [4] Wikipedia, "Mean squared error," Wikipedia, The Free Encyclopedia, Mar. 1, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Mean_squared_error.
- [5] Wikipedia, "Woodbury matrix identity," Wikipedia, The Free Encyclopedia, Mar. 1, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Woodbury_matrix_identity.