The LNM Institute of Information Technology Jaipur, Rajsthan

MATH-I ■ Assignment #8

(Real-valued Functions of Several Variables: Continuity, limits and Iterated Limits)

1. Examine the following functions for continuity at the point (0,0) where f(0,0)=0and f(x,y) for $(x,y) \neq (0,0)$ is given by

(a)
$$|x| + |y|$$
, (b) $\frac{-x}{\sqrt{x^2 + y^2}}$, (c) $\frac{2x}{x^2 + x + y^2}$, (d) $\frac{x^4 - y^2}{x^4 + y^2}$, (e) $\frac{x^4}{x^4 + y^2}$.

2. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} 1, & \text{if } x = 0 \text{ or if } y = 0 \\ 0, & \text{otherwise.} \end{cases}$$

Show that the function satisfy the following:

- (a) The iterated limits $\lim_{x\to 0} \left[\lim_{y\to 0} f(x,y) \right]$ and $\lim_{y\to 0} \left[\lim_{x\to 0} f(x,y) \right]$ exist and equals 0, (b) $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist,
- (c) f(x,y) is not continuous at (0,0).
- 3. Consider the function

$$f(x,y) = \begin{cases} x \sin \frac{1}{y} & \text{if } y \neq 0\\ 0 & \text{if } y = 0. \end{cases}$$

Find iterated limits $\lim_{x\to 0} \left[\lim_{y\to 0} f(x,y) \right]$ and $\lim_{y\to 0} \left[\lim_{x\to 0} f(x,y) \right]$ (if exists). Also find $\lim_{(x,y)\to(0,0)} f(x,y) \text{ (if exists)}$

4. Consider the function

$$f(x,y) = \begin{cases} \sin(xy) & \text{if } (x,y) \neq (0,0) \\ 1 & \text{if } (x,y) = (0,0). \end{cases}$$

Find $\lim_{(x,y)\to(0,0)} f(x,y)$ if it exists.

5. Using $\epsilon - \delta$ definition show that

$$\lim_{(x,y)\to(0,0)} y \sin\frac{1}{x^2 + y^2} = 0$$

6. Suppose $f(x,y) := \frac{x^3y}{x^4 + y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0. Show that f is continuous using $\epsilon - \delta$ definition.