

## **Problem and Approach**

- New infectious diseases arise periodically
- Mass vaccination is crucial for controlling the spread of infection
- Improved public health campaign necessary to encourage vaccination



## **Problem and Approach**

- New infectious diseases arise periodically
- Mass vaccination is crucial for controlling the spread of infection
- Improved public health campaign necessary to encourage vaccination

Data-driven approach to target people less likely to vaccinate



## **Description of Data**

#### Source:

- Data originally from US DHHS National 2009 H1N1 Flu Survey,
- Accessed from DrivenData competition website



## **Description of Data**

#### Source:

- Data originally from US DHHS National 2009 H1N1 Flu Survey,
- Accessed from DrivenData competition website
- ~26K survey respondents answered the y/n target vaccine questions (Training Set)
  - 35 features: demographic, health, behavioral factors
  - ~12-14K respondents did not answer the Health Insurance or Employment questions; removed these features
  - Removed records with NaN values, leaving ~20K records in the Training Set
  - Categorical features were encoded using dummy variables







## **Insights from Exploratory Data Analysis**





Blue: Seasonal Flu Vaccine Compliant

## **Insights from Exploratory Data Analysis**





Blue: Seasonal Flu Vaccine Compliant

#### Features associated with seasonal flu vaccine compliance:

- Frequent hand washing
- Avoiding sick people
- Doctor recommended the seasonal vaccine
- Opinion that the seasonal flu vaccine is effective

## **Approach**

### **Campaign will target:**

- Non-vaccinators (true negatives)
- People "on the fence" (false negatives)

## **Approach**

#### **Campaign will target:**

- Non-vaccinators (true negatives)
- People "on the fence" (false negatives)

#### Therefore:

- Increase precision, so that vaccinators are not targeted
- Predicting false negatives is fine-- may have characteristics of non-vaccinators, targeting may be beneficial
- False positives should be minimized, so these people are properly identified and targeted

# **Model Exploration**

- Decision Tree
- Random Forest
- Naive Bayes Bernoulli
- Logistic Regression



## **Model Exploration**

- Decision Tree
- Random Forest
- Naive Bayes Bernoulli
- Logistic Regression

Training data was split into training and validation sets for model exploration











Random Forest performs slightly better than Decision Tree (fewer false positives, more true negatives)





Naive Bayes (Bernoulli) performs slightly worse than Random Forest



Naive Bayes (Bernoulli) performs slightly worse than Random Forest (more false positives, fewer true negatives)









Precision: 0.7874



Precision: 0.8603



Precision: 0.7874



Precision: 0.8603

Logistic Regression Model, Threshold 0.7 (fewest false positives, more true negatives)

## Top Candidate: Logistic Regression, Threshold 0.7



Predicts more true negatives to focus campaign on, minimizes false positives

## **Next Steps**

- Further refine model; decrease false positives even more?
- Apply refined model to test data set



# Thank you! (and please wash your hands!)





