CMIP6 Model Documentation

Institute: CCCMA
Model: CANESM5
Topic: Aerosol

Doc. Generated: 2018-12-17

Doc. Seeded From: N/A

Specialization Version: 1.0.2

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	8
3	Transport	10
4	Emissions	12
5	Concentrations	14
6	Optical Radiative Properties	15
7	Model	19

1 Key Properties

Key properties of the aerosol model

1.1.1 Top level properties

Key properties of the aerosol model

1.1.1.1 Name *

Name of aerosol model code

CanESM2 aerosol scheme

1.1.1.2 Keywords *

Keywords associated with aerosol model code

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of aerosol model.

Prognostic, single-moment bulk scheme for sulphate, organic carbon, black carbon, sea salt, and mineral dust (online). Emissions for sulphur dioxide and organic and black carbon according to CMIP5. References: Lohmann, U., K. von Salzen, N. McFarlane, H. G. Leighton, and J. Feichter, 1999, Tropospheric sulphur cycle in the Canadian general circulation model, J. Geophys. Res., 104, 26,833-26,858; Croft, B., U. Lohmann, and K. von Salzen, 2005, Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model, Atmos. Chem. Phys., 5, 1931-1949.

1.1.1.4 Scheme Scope *

Atmospheric	domains	covered	hu	the	aerosol	model
Auniospheric	aomains	covereu	vy	une	uerosoi	mouei

\boxtimes	Troposphere
\boxtimes	Stratosphere
	Mesosphere
	Whole atmosphere
	Other - please specify:

1.1.1.5 Basic Approximations *

Basic approximations made in the aerosol model

Single-moment (mass), bulk

1.1.1.6 Prognostic Variables Form *				
Prognostic variables in the aerosol model				
☐ 3D mass/volume ratio for aerosols				
☐ 3D number concentration for aerosols				
Other - please specify:				
1.1.1.7 Number Of Tracers *				
Number of tracers in the aerosol model				
9				
1.1.1.8 Family Approach *				
Are aerosol calculations generalized into families of species?				
☐ False				
1.2.1 Software Properties				
Software properties of aerosol code				
1.2.1.1 Repository				
Location of code for this component.				
Enter TEXT:				
1.2.1.2 Code Version				
Code version identifier.				
Enter TEXT:				
1010 C 1 I				
1.2.1.3 Code Languages $Code \ language(s).$				
Enter COMMA SEPARATED list:				
1.3.1 Timestep Framework				
Physical properties of seawater in ocean				
1.3.1.1 Method *				
Mathematical method deployed to solve the time evolution of the prognostic variables				
☐ Uses atmospheric chemistry time stepping				
Specific timestepping (operator splitting)				

	Specific timestepping (integrated) Other - please specify:					
Timestep	Split Operator Advection Timestep for aerosol advection (in seconds) INTEGER value:					
Timestep	Split Operator Physical Timestep for aerosol physics (in seconds). INTEGER value:					
Timestep	1.3.1.4 Integrated Timestep * Timestep for the aerosol model (in seconds) Enter INTEGER value:					
	Integrated Scheme Type * e type of timestep scheme					
Select	t SINGLE option:					
	Explicit					
	Implicit					
	Semi-implicit					
	Semi-analytic					
	Impact solver					
	Back Euler					
	Newton Raphson					
	Rosenbrock					
	Other - please specify:					

1.4.1 Meteorological Forcings

1.4.1.1 Variables 3D

 $Three\ dimensional\ forcing\ variables,\ e.g.\ U,\ V,\ W,\ T,\ Q,\ P,\ conventive\ mass\ flux$

Enter COMMA SEPARATED list:

1.4.1.2 Variables 2D

Two dimensional forcing variables, e.g. land-sea mask definition

Enter COMMA SEPARATED list:

1.4.1.3 Frequency

Frequency with which meteorological forcings are applied (in seconds).

Enter INTEGER value:

1.5.1 Resolution

Resolution in the aerosol model grid

1.5.1.1 Name *

This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.

Enter TEXT:

1.5.1.2 Canonical Horizontal Resolution

Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.

Enter TEXT:

1.5.1.3 Number Of Horizontal Gridpoints

Total number of horizontal (XY) points (or degrees of freedom) on computational grid.

Enter INTEGER value:

1.5.1.4 Number Of Vertical Levels

Number of vertical levels resolved on computational grid.

Enter INTEGER value:

1.5.1.5 Is Adaptive Grid *				
Set to true if the grid resolution changes during execution.				
Select either TRUE or FALSE:				
True	False			

1.6.1 Tuning Applied

 $Tuning\ methodology\ for\ aerosol\ model$

1.6.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.6.1.2 Global Mean Metrics Used

List of metrics of the global mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.6.1.3 Regional Metrics Used

List of metrics of regional mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.6.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPARATED list:

2 Grid

Aerosol grid

2.1.1 Top level properties

 $Aerosol\ grid$

2.1.1.1 Name

Name of grid in aerosol model.

Enter TEXT:

2.1.1.2 Overview

Overview of grid in aerosol model.

Enter TEXT:

2.1.1.3 Matches Atmosphere Grid *

Does the atmospheric aerosol grid match the atmosphere grid?

2.2.1 Resolution

Resolution in the atmospheric aerosol grid

2.2.1.1 Name *

This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.

Enter TEXT:

2.2.1.2 Canonical Horizontal Resolution

 $Expression\ quoted\ for\ gross\ comparisons\ of\ resolution,\ e.g.\ 50km\ or\ 0.1\ degrees\ etc.$

Enter TEXT:

2.2.1.3 Number Of Horizontal Gridpoints

 $Total\ number\ of\ horizontal\ (XY)\ points\ (or\ degrees\ of\ freedom)\ on\ computational\ grid.$

Enter INTEGER value:

2.2.1.4	Number	Of Vertical	Levels

 $Number\ of\ vertical\ levels\ resolved\ on\ computational\ grid.$

Enter INTEGER value:

2.2.1.5 Is Adaptive Grid *			
Set to true if grid resolution changes during execution.			
Select either TRUE or FALSE:			
True	☐ False		

3 Transport

 $Aerosol\ transport$

3.	1	.1	Top	level	pro	perties

 $Aerosol\ transport$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ transport\ in\ aerosol\ model.$

Enter TEXT:

3.1.1.2 Overview

Overview of aerosol transport in aerosol model.

Enter TEXT:

3.1.1.3 Scheme *

 $Method\ for\ aerosol\ transport\ modelling$

Select SINGLE option:			
	Uses atmospheric chemistry transport scheme		
	Specific transport scheme (eulerian)		
	Specific transport scheme (semi-lagrangian)		
	Specific transport scheme (eulerian and semi-lagrangian)		
	Specific transport scheme (lagrangian)		

3.1.1.4 Mass Conservation Scheme *

 $Methods\ used\ to\ ensure\ mass\ conservation.$

Select MULTIPLE options:

Uses atmospheric chemistry transport scheme
Mass adjustment
Concentrations positivity
Gradients monotonicity
Other - please specify:

Transport by convention				
Selec	t MULTIPLE options:			
	Uses atmospheric chemistry transport scheme			
	Convective fluxes connected to tracers			
	Vertical velocities connected to tracers			

3.1.1.5 Convention *

Other - please specify:

4	т
4	Emissions
_	

 $Atmospheric\ aerosol\ emissions$

4 .	1.	1	Top	level	pro	perties

 $Atmospheric\ aerosol\ emissions$

4.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ emissions\ in\ aerosol\ model.$

 ${f Enter\ TEXT}:$

4.1.1.2 Overview

 $Overview\ of\ atmospheric\ aerosol\ emissions\ in\ aerosol\ model.$

Enter TEXT:

4.1.1.3 Method *

Lightning

 $Method\ used\ to\ define\ aerosol\ species\ (several\ methods\ allowed\ because\ the\ different\ species\ may\ not\ use\ the\ same\ method).$

Select	t MULTIPLE options:
	None
	Prescribed (climatology)
	Prescribed CMIP6
	Prescribed above surface
	Interactive
	Interactive above surface
	Other - please specify:
4.1.1.4	Sources
Sources of	the aerosol species are taken into account in the emissions scheme
Select	t MULTIPLE options:
	Vegetation
	Volcanos
	Bare ground
	Sea surface

	Fires
	Aircraft
	Anthropogenic
	Other - please specify:
	Prescribed Climatology
Specify th	e climatology type for aerosol emissions
Selec	t SINGLE option:
	Constant
	Interannual
	Annual
	Monthly
	Daily
	rosol species emitted and prescribed via a climatology r COMMA SEPARATED list:
	Prescribed Spatially Uniform Emitted Species rosol species emitted and prescribed as spatially uniform
Ente	r COMMA SEPARATED list:
4.1.1.8	Interactive Emitted Species
List of ae	rosol species emitted and specified via an interactive method
Ente	r COMMA SEPARATED list:
4.1.1.9	Other Emitted Species
List of ae	rosol species emitted and specified via an "other method"
Ente	r COMMA SEPARATED list:
	Other Method Characteristics
	ristics of the "other method" used for aerosol emissions
Ente	r TEXT:

5 Concentrations

Atmospheric aerosol concentrations

5.1.1 Top level properties

 $Atmospheric\ aerosol\ concentrations$

5.1.1.1 Name

Commonly used name for the concentrations in aerosol model.

Enter TEXT:

5.1.1.2 Overview

 $Overview\ of\ atmospheric\ aerosol\ concentrations\ in\ aerosol\ model.$

Enter TEXT:

5.1.1.3 Prescribed Lower Boundary

List of species prescribed at the lower boundary.

Enter COMMA SEPARATED list:

5.1.1.4 Prescribed Upper Boundary

List of species prescribed at the upper boundary.

Enter COMMA SEPARATED list:

5.1.1.5 Prescribed Fields Mmr

List of species prescribed as mass mixing ratios.

Enter COMMA SEPARATED list:

5.1.1.6 Prescribed Fields And Plus Ccn

List of species prescribed as AOD plus CCNs.

Enter COMMA SEPARATED list:

6 Optical Radiative Properties

Aerosol optical and radiative properties

6.1.1 Top level properties

Aerosol optical and radiative properties

6.1.1.1 Name

Commonly used name for the optical radiative properties in aerosol model.

Enter TEXT:

6.1.1.2 Overview

Overview of aerosol optical and radiative properties in aerosol model.

Enter TEXT:

6.2.1 Absorption

Absortion properties in aerosol scheme

6.2.1.1 Black Carbon

Absorption mass coefficient of black carbon at 550nm (if non-absorbing enter 0)

Enter FLOAT value:

6.2.1.2 Dust

Absorption mass coefficient of dust at 550 nm (if non-absorbing enter 0)

Enter FLOAT value:

6.2.1.3 Organics

 $Absorption\ mass\ coefficient\ of\ organics\ at\ 550nm\ (if\ non-absorbing\ enter\ 0)$

Enter FLOAT value:

6.3.1 Mixtures

6.3.1	.1 Externa	al *			
Is ther	e external mi	ixing with 1	spect to chemical composite	ion?	
Se	lect either	TRUE or	FALSE:		
	True		False		
6.3.1	.2 Interna	l *			
Is ther	e internal mi	xing with r	spect to chemical composite	ion?	
\mathbf{Se}	lect either	TRUE or	FALSE:		
	True		False		
6.3.1	.3 Mixing	Rule			
If there	e is internal i	mixing with	respect to chemical compos	sition then indicate the mixing rule	е
Er	nter TEXT:				
6.4.1	l Impact	Of H2)		
The i	mpact of H	20 on ae	osols		
6.4.1	.1 Size *				
Does I	H2O impact s	ize?			
Se	lect either	TRUE or	FALSE:		
] True		False		
6.4.1	.2 Interna	l Mixtu	e *		
Does I	H2O impact a	$erosol\ inte$	nal mixture?		
Se	lect either	TRUE or	FALSE:		
	True		False		
6.4.1	.3 Externa	al Mixtu	e *		
Does I	H2O impact a	erosol exte	nal mixture?		
\mathbf{Se}	lect either	TRUE or	FALSE:		
	True		False		

6.5.1 Radiative Scheme

 $Radiative\ scheme\ for\ aerosol$

6.5.1.1 Overview *
Overview of radiative scheme
Enter TEXT:
6.5.1.2 Shortwave Bands *
Number of shortwave bands
Enter INTEGER value:
6.5.1.3 Longwave Bands * Number of longwave bands Enter INTEGER value:
6.6.1 Cloud Interactions
Aerosol-cloud interactions
6.6.1.1 Overview *
Overview of aerosol-cloud interactions
Enter TEXT:
4.4.1.0 T
6.6.1.2 Twomey *
Is the Twomey effect included?
Select either TRUE or FALSE:
☐ True ☐ False
6.6.1.3 Twomey Minimum Ccn
If the Twomey effect is included, then what is the minimum CCN number?
Enter INTEGER value:
6.6.1.4 Drizzle *
Does the scheme affect drizzle?
Select either TRUE or FALSE:
☐ True ☐ False

6.6.1.5 Cloud Lifetime *
Does the scheme affect cloud lifetime?
Select either TRUE or FALSE:
True False
6.6.1.6 Longwave Bands *
Number of longwave bands
Enter INTEGER value:

7 Model

Aerosol model

7.1.1 Top level properties

 $Aerosol\ model$

7.1.1.1 Name

Commonly used name for the model in aerosol model.

Enter TEXT:

7.1.1.2 Overview *

 $Overview\ of\ atmospheric\ aerosol\ model$

Enter TEXT:

7.1.1.3 Processes *

Processes included in the aerosol model.

- Dry deposition
- Wet deposition (impaction scavenging)
- Wet deposition (nucleation scavenging)
- Coagulation
- Oxidation (gas phase)
- Oxidation (in cloud)
- Condensation
- Ageing Ageing
- Advection (horizontal)
- Advection (vertical)
- Heterogeneous chemistry
- ☐ Nucleation

7.1.1.4 Coupling

Other model components coupled to the aerosol model

Radiation

	Land surface
	Heterogeneous chemistry
\boxtimes	Clouds
	Ocean
	Cryosphere
	Gas phase chemistry
	Other - please specify:
	Gas Phase Precursors *
	e aerosol precursors.
\boxtimes	DMS
\boxtimes	SO2
	Ammonia
	Iodine
	Terpene
	Isoprene
	VOC
	NOx
	Other - please specify:
	Scheme Type *
	of aerosol scheme used by the aerosol model (potentially multiple: some species may be covered by one erosol scheme and other species covered by another type).
\boxtimes	Bulk
	Modal
	Bin
	Other - please specify:
	Bulk Scheme Species *
Species c	overed by the bulk scheme.
Selec	et MULTIPLE options:
	Sulphate
	Nitrate

Ш	Sea salt
	Dust
	Ice
	Organic
	Black carbon / soot
	SOA (secondary organic aerosols)
	POM (particulate organic matter)
	Polar stratospheric ice
	NAT (Nitric acid trihydrate)
	NAD (Nitric acid dihydrate)
	STS (supercooled ternary solution aerosol particule)
	Other - please specify: