

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY THIRD SESSIONAL

SUBJECT: (CE317) DATABASE MANAGEMENT SYSTEM

Examination: B.Tech Semester - III Seat No. : 5\
Date: 10/10/2023: Day: Tuesday
Time: : 09:15 a.m.to 10:30a.m. Max. Marks: : 36

*NOTED EL	WELO.	10		COMMUNICAL
INSTRUC 1. Figu	res to	the riel	nt indicate maximum marks for that question.	
2. The	symbo	ols used	carry their usual meanings.	
			data, if required & mention them clearly.	miceottics.
-	The second		es wherever necessary.	[12]
Q.1 CO4	A	(a)	Find canonical cover for the relation R(V, W, X, Y, Z). The functional	[2]
004	A	(a)	dependencies $\{V \rightarrow W, VW \rightarrow X, Y \rightarrow VX, Y \rightarrow Z\}$ hold true for the relational schema R.	101
CO4	N	(b)	Assume basic timestamp ordering protocol and time starts from 1, each operation takes a unit amount of time. Start of a transaction T _i is denoted as S _i . Table 1 has relevant details. Find RTS(a), WTS(a), RTS(b), WTS(b) at the end.	[2]
CO4	С	(c)	The resource allocation graph for System S is given in Fig. 1. Is S in deadlock or not? Justify your answer.	[2]
C03	A	(d)	Consider a B+ tree in which the search key field is 13 B, the block size is 1024 B, a record pointer is 9 B and a block pointer is 8 B. What is the order of the internal node and leaf node?	[2]
CO3	C	(e)	Consider the following schedule involving two transactions T1 and T2 with initial value of A is 1000. Write log records for this schedule with respect to deferred database modification.	[2]
			S: R1(A); $A = A - 500$; $W_{2}(A)$; Commit(T1); R2(A); $A = A + 1000$; $W_{2}(A)$; Commit(T2)	
CO3	U	(f)	Differentiate Clustering Index and Secondary Index.	[2]
		(-)	Differential Crastering Index and Secondary Index.	
Q.2	Att	lempt	any THREE from the following questions.	[12]
CO1	U	(a)	Consider the following transactions T_1 and T_2 for an initial value of A=100 and B=200.	[4]
			T ₁ :lock-X(B), read(B), B=B-50, Write(B), unlock(B), lock-X(A), read(A), A=A+50, Write(A), unlock(A)	
			T_2 :lock-S(A), read(A), unlock(A), lock-S(B), read(B), unlock(B), display(A+B) Is there a concurrent schedule comprising T_1 and T_2 leading to inconsistent state? If yes then show such schedule and later make necessary modifications to T_1 and	
CO4	N	(b)	T ₂ for resolving the issue. Consider the schedule S ₁ and check whether it is feasible under 2PL, and rigorous 2PL and explain.	[4]
			S ₁ => T1:R(X), T1:R(Y), T1:W(X), T2:R(Y), T3:W(Y), T1:W(X), T2:R(Y). Consider the schedule S ₂ and check whether it is feasible under strict 2PL and explain.	
		195	$S_2 \Rightarrow T2:R(A), T2:W(A), T3:R(C), T2:W(B), T3:W(A), T3:W(C), T1:R(A),$	
			T1:R(B), T1:W(A), T1:W(B).	
CO4	R	(c		[4]
			I. 2 phase locking protocol is sufficient condition for conflict serializability.	
			II. Thomas' write rule is a necessary condition for conflict serializability.	
			Note: A condition A is said to be necessary for a condition B, if (and only if) the	
			falsity of A guarantees the falsity of B. A condition A is said to be sufficient for	
		100	a condition B, if (and only if) the truth of A guarantees the truth of B.	FAT
CO4	I A	(d	In a database system, unique timestamps are assigned to each transaction. T ₁ holds a lock on the resource R, and T ₂ has requested a conflicting lock on the same resource R. The wound-wait algorithm is used to prevent deadlocks in the	

P -- 0 1 mf 9

database assuming that a rolled back transaction is restarted with the new timestamp. Assume any transaction that is not rolled back terminates eventually. Is the database system deadlock-free? Is the database system starvation-free? Justify your answer.

Q.3	Attempt the following questions:			
CO3	C	(a)	Construct B+ tree for 7, 23, 30, 35, 73, 75, 50, 42, 80, 85, 92, 12 with P=4	[6]
CO4	N	(b)	(Order is 4). Write the restart recovery algorithm. Apply this algorithm for the following log records:	[6]

1.	<t1, start=""></t1,>	8. <t2, commit=""></t2,>
2.	<t2, start=""></t2,>	9. <t3, 200,="" 500="" c,=""></t3,>
	<t1, 500,="" 600="" a,=""></t1,>	10. <t4, start=""></t4,>
	<t1, commit=""></t1,>	11. <t4, 1000="" 600,="" d,=""></t4,>
	<t2, 200,="" 400="" b,=""> <checkpoint l=""></checkpoint></t2,>	12. <t4, commit=""></t4,>
	<t3, start=""></t3,>	13. CRASH

OR

Q.3	3 Attempt the following questions.	
CO3	C (a)	Perform Extendible Hashing on the following elements:
		11, 26, 20, 31, 35, 49, 34, 53, 54, 57, 16

Bucket Size: 2

Hash Function: Suppose the global depth is X, then the Hash Function returns

Explain Immediate Database Modification and apply this modification for the CO4 (b) following log records:

1. <t1, start=""></t1,>	8. <t3, 100,="" 900="" c,=""></t3,>
2. <t1, 100,="" 200="" a,=""></t1,>	9. <t4, start=""></t4,>
3. <t1, commit=""></t1,>	10. <t3, commit=""></t3,>
4. <t2, start=""></t2,>	11. <t4, 600="" 900,="" d,=""></t4,>
5. <t2, 500,="" 7000="" b,=""></t2,>	12. <t4, commit=""></t4,>
6. <t2, commit=""></t2,>	13. <t5, start=""></t5,>
7 <t3 start=""></t3>	14. CRASH

Table 1	
Time	OP
1	Sı
2	read ₁ (a)
3	S ₂
4	read ₂ (b)
5	write ₂ (b)
6	write ₁ (a)
7	S ₃
8	write ₃ (a)
9	write ₃ (b)

[12] [5]