Next generation sequencing

RNA-seq

Stig Uggerhøj Andersen, PhD

Department of Molecular Biology

University of Aarhus

Lecture overview

- Applications and data scale
- Sample preparation
- Strand specificity
- Single-cell sequencing
- Spliced alignments
- Quantification and normalization
- Long read RNA-seq

Applications and data scale

Counting or Profiling

 10 million total reads of 50 bp length from poly-A selected RNA will give performance better than any microarray

Studying Alternative Splicing or quantifying cSNPs for most transcripts

Deeper profiling of 50 to 100 million reads, with read lengths of 50 to 100 bps, from poly-A selected RNA using mRNA-Seq assay

Complete Annotation of an entirely New Transcriptome

- ~500 Million reads of 100 bp read length from multiple tissues
- Normalized stranded mRNA-Seq
- Normalized stranded Total RNA-Seq for looking at ncRNAs
- Small RNA-Seq for microRNAs

Consider Hifi reads for annotation of a new transcriptome

You should profile ~15 million full length transcripts at average 2kb length

Applications and data scale

RNA-seq overview

RNA-seq

PMID: 26813401

Experimental design

- Beware of batch effects
 - circadian rhythm (time of day)
 - sampling method
 - sequencing strategy (adapters, lanes)
- Record all information and check for covariation
- Three replicates to keep statistical analysis options open

Sample preparation - isolating mRNA

Classes of RNA Molecules in Human Cells

- Ribosomal RNA rRNA
 - 28 S
 - 18 S
 - -5.8 S
- Non-coding RNA ncRNA
 - tRNA
 - snoRNA
 - lincRNA
 - miRNA
 - Many, many others...
- Mitochondrial RNA mtRNA
- Messenger RNA mRNA
 - Highly expressed transcripts (>10,000 copies per cell)
 - Rarely expressed transcripts (~1 copy per cell)

Sample preparation

Enrichment of RNA or cDNA samples by selection or counterselection

Hybridization based

- ▶ oligo-dT
- selects pA+ RNA
- ► Ribominus (Plus)
- counterselection of ribosomal RNAs (Plus includes mitochondrial rRNAs)
- Capture arrays/bead capture
- for selection of an array of 'hand-picked' targets
- Custom-made selection or counterselection strategies
- e.g. through hybridization to biotinylated RNA or DNA molecules
- ► DSN-normalization
- elimination of cDNAs arising from highly abundant RNAs in total RNA samples by a differential hybridization approach coupled with duplexspecific nuclease

Sample preparation – Illumina sequencing

from https://www.labome.com/method/RNA-seq.html(https://www.labome.com/method/RNA-seq.html)

Stranded RNA-seq

Differential gene expression analysis

Spliced read alignment problem

Tophat > 3000 citations

Spliced read alignment problem

STAR >2000 citations

PMID: 23104886

Spliced read aligners

PMID: 24185836

Differential gene expression analysis

Cufflinks isoform quantification

The de novo way

- Trans-ABySS (PMID: 20935650)
- Trinity (PMID: 21572440)
- Mapping reads more sensitive
- de novo has no problems with intron/exon structure
- With long reads, de novo assembly of transcripts is becoming obsolete (most transcripts are significantly shorter than HiFi reads).

RNA-seq overview

RNA-seq

PMID: 26813401

RNA-seq overview

RNA-seq PMID: 26813401

Nanopore RNA-seq

PacBio RNA-seq

PacBio RNA-seq

Sequel II System

- 1 SMRT Cell 8M for whole transcriptome- Up to 4 million full-length reads
 - Accuracy 99-99.9%

	Unique Genes	Unique Transcripts	Unique ORFs
Single Cell, Human Brain Organoid	14,737	60,815	34,697
Single Cell, Human Cell Line	17,767	237,951	89,399
Bulk, UHRR [3]	16,328	183,689	60,649
Bulk, Alzheimer Brain [4]	17,670	162,290	80,539

PacBio RNA-seq

Main Bioinformatics Tools

Input

Output

Sequencing

subreads.bam

Iso-Seq Analysis

subreads.bam or ccs.bam Collapsed unique transcripts (GFF, FASTA)

Transcript Classification

Unique transcripts Reference genome Annnotation (GTF) CAGE Peak Junction data...

Transcript classification Junction classification Figures

Functional Annotation

SQANTI output

Annotated GTF

Differential Analysis

Experimental design Annotated GTFs

