

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-121481

(43)Date of publication of application: 28.04.1994

(51)Int.CI.

H02K 3/46 H02K 3/44 H02K 15/12 H02K 33/18

(21)Application number : 04-266197

(71)Applicant : SHOWA ELECTRIC WIRE & CABLE CO

LTD

(22)Date of filing:

05.10.1992

(72)Inventor: MORIYAMA TAKESHI

MURANISHI SATORU MASUMURA TERUFUMI KAMEZAWA YASUFUMI AKAMA SUKEHIRO YASUDA ISAO

(54) MANUFACTURE OF INSERT MOLD COIL

(57)Abstract:

PURPOSE: To manufacture a voice coil motor where the stroke in calculation can be gotten.

CONSTITUTION: A coil 4a is made by winding a lead wire 4b on a bobbin 4c. This bobbin 4c is arranged at the engaging part 11a of the coil arrangement part 11 of the mold 10 consisting of the coil arrangement part 11 and a columnar part 12. Then, fused resin 13 is injected into the coil arrangement part 11 and the columnar part 12. At this time, the bobbin 4c does not fuse at the temperature where resin 13 fuses since it is made of cured thermosetting resin. A voice coil 4 is made, in which the periphery not in contact with the bobbin 4c of the coil 4a is covered with resin 13. Hereby, the coil 4a engages with the engaging part 11a, so it does not shift even if fused resin is injected, and the coil is molded in the fixed position. Therefore, when it is used for a

voice coil motor, the estimated stroke can be actually

LEGAL STATUS

gotten.

[Date of request for examination]

29.09.1999

[Date of sending the examiner's decision of rejection] [Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-121481

(43)公開日 平成6年(1994)4月28日

(51) Int. Cl. ⁵ H02K 3/46 3/44 15/12 33/18	識別記号 B B E E	7346-5H 8325-5H	FI		技	術表示箇所	
			審	査請求 未請求	₹ 請求項の数1	(全4頁)	
(21)出願番号	特願平4-266197		(71)出願人	000002255 昭和電線電纜	株式会社		
(22) 出願日	日 平成4年(1992)10月5日			神奈川県川崎市川崎区小田栄2丁目1番1 号			
			(72)発明者		市川崎区小田栄 2 電纜株式会社内	丁目1番1	
			(72)発明者	村西 哲神奈川県川崎市川崎区小田栄2丁目1番1号 昭和電線電纜株式会社内			
			(74)代理人	弁理士 山田	明信		

最終頁に続く

(54) 【発明の名称】インサートモールドコイルの製造方法

(57)【要約】

【目的】 計算上のストロークが得られるボイスコイル モータを製造する。

【構成】 ボビン4 c に導線4 b を巻回し、コイル4 a を作成する。このボビン4 c をコイル配置部11及び円柱部12からなる金型10のコイル配置部11及び円柱部12に溶融樹脂13を注入する。この時、ボビン4 c は熱硬化性樹脂を硬化させて形成されているので樹脂13の溶融温度では溶融しない。コイル4 a のボビン4 c に接触していない外周を樹脂13で被覆されたボイスコイル4が形成される。

【効果】 コイル4 a は嵌合部11 a に嵌合されるため、溶融樹脂13を注入しても移動することがなく、定位置にコイルがモールドされる。そのため、ボイスコイルモータに使用した時、計算上のストロークが得られる。

【特許請求の範囲】

【請求項1】熱硬化性樹脂を硬化させて形成したボビン に導線を巻回したコイルを、当該ボビンに挿入される嵌 合部を備えた金型に固定し、前記コイルが前記ボビンに 接触する部分を除く前記コイルの外周に溶融した樹脂を 注入することを特徴とするインサートモールドコイルの 製造方法。

1

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はインサートモールドコイ 10 ルの製造方法に係わり、特に高品質な製品を歩留りよく 製造するインサートモールドコイルの製造方法に関す る。

[0002]

【従来の技術】従来から、載置した機器等を床等から伝 達される振動から絶縁するための除振台がある。除振台 は空気ばね等を介して床の振動を能動的に減少させると 共に、センサにより振動を検知して振動を相殺する力を 加え、アクティブに振動を除去するものである。アクテ ィブに振動を除去するための装置としてセンサからの信 20 号により電気的に除振台に負荷を加えるボイスコイルモ ータがある。ボイスコイルモータは永久磁石とコイル間 の反発力を利用したものであり、コイルに通電される電 流により移動量が可変するものであって、センサからの 信号によりコイルに流す電流を変動させ、除振台の振動 を制御している。

【0003】このようなボイスコイルモータに用いられ るコイルは、巻線が露出されていると傷等を受けやす く、強固にするため表面に被覆を施している。巻線の表 面を保護するための被覆はボビンに導線を巻回し、コイ 30 ル上に接着剤を塗布したり、より強固な被覆を得るため 樹脂モールドを行っている。樹脂モールドは図3に示す ように、導線を巻回したコイル1を金型2内に配置し、 コイル1の外周に溶融した樹脂3を注入し樹脂モールド を行っていた。

【0004】金型2は、コイル1の周囲に所望の厚さの 樹脂被覆が設けられるように構成されている。即ち、円 筒部21及び円筒部21に連りコイル1の上部を被覆形 成する円柱部22を有し、円筒部21に配置されたコイ ル1の外周と金型の内壁面間及び円柱部22に樹脂3を 40 注入し、コイル1外周に樹脂被覆してインサートモール ドコイル11を形成していた。

[0005]

【発明が解決すべき課題】しかしながら、金型2の円筒 部21に、導線を巻回したコイル1を配置して樹脂モー ルドを行う際、コイル1は何ら支持されておらず、溶融 した樹脂3を注入する際に、コイル1が移動してしま い、コイルが一定位置にモールドされたインサートモー ルドコイル11を成形するのは非常にむずかしかった。 コイルが中心位置にモールドされないとボイスコイルモ 50 入されるコイル配置部11及びコイル4aの上部に樹脂

ータに使用した際、計算上のストロークが得られず、ボ イスコイルモータの品質が低下し、最悪の場合は導線が 表面に露出してしまい、歩留りが悪くなってしまうとい う不都合があった。

【0006】本発明は上記欠点を解消するためになされ たものであって、導線を巻回したコイルを定位置に固定 でき、このため高品質な製品を歩留りよく製造すること ができるインサートモールドコイルの製造方法を提供す ることを目的とする。

[0007]

【課題を解決するための手段】上記目的を達成するた め、本発明のインサートモールドコイルの製造方法は、 熱硬化性樹脂を硬化させて形成したボビンに導線を巻回 したコイルを、当該ボビンに挿入される嵌合部を備えた 金型に固定し、前記コイルが前記ボビンに接触する部分 を除く前記コイルの外周に溶融した樹脂を注入するもの である。

[0008]

【作用】ボビンを熱硬化性樹脂を硬化させてモールド樹 脂を充填しても溶融しないように形成し、このボビンに 導線を巻回する。コイルは樹脂注入時に移動しないよう にボビンに接着剤等で固定しておくとよい。樹脂モール ドを行う金型は、ボビンを挿入する嵌合部を備え、この 嵌合部にボビンが嵌合される。このため、コイルの外周 と金型内壁面との間隙に溶融された樹脂が注入される時 コイルはボビンに固定され、ボビンは金型に固定される ため、移動しない。この時ボビンはモールド樹脂により 加熱されても溶融されないので、コイルは常に定位置に モールドされる。コイルの内側のボビンを除いた外周に 樹脂被覆がなされ、インサートモールドコイルが形成さ れる。

[0009]

【実施例】本発明のインサートモルドコイルの製造方法 をボイスコイルモータに使用されるボイスコイルの製造 方法に適用した一実施例を図面を参照して説明する。本 発明により製造されるボイスコイル4は図1に示すボイ スコイルモータ5に適用されるものである。

【0010】ボイスコイルモータ5は鉄製の底面6aと 底面 6 a に垂直な支柱 6 b を有するリアヨーク 6 と、リ アヨーク6の底面6aに垂直で底面6aの周上に嵌合、 接着される鉄製のサイドョーク7と、サイドョーク7の 内側に接合され、リアヨーク6の支柱6 b と間隙8を有 して設けられる永久磁石9が一体化されて成り、この間 隙8にボイスコイル4が上下動可能に遊挿されて構成さ れるものであり、ボイスコイル4に通電される電流によ り、その上下動の移動量が定められるものである。

【0011】このようなボイスコイル4を製造する製造 装置は、図2に示すような金型10を備えている。金型 10はコイル4aが配置されてその外周に樹脂13が注 3

被覆を設ける円柱部12から構成される。ここでコイル 4 a は導線4 b が円筒状のボビン4 c に巻回されてなる ものである。ボビン4 c は熱硬化性樹脂で形成され、モールドされる樹脂と同じ例えばエポキシ系樹脂等で形成 される。ボビン4 c を形成する熱硬化性樹脂は例えばガラスエポキシ樹脂、フェノール樹脂等であり、モールド される樹脂は同じエポキシ系樹脂が採用されるが、ボビン4 c はエポキシ樹脂を予め硬化して形成されているため、モールドされるエポキシ樹脂の溶融温度では溶融されない。コイル4 a はこのようなボビン4 c に導線4 b 10 を巻回した後、接着剤等で固定するようにしてもよい。

【0012】このようにボビン4cに導線4bが固定されたコイル4aにモールド被覆を行う金型10のコイル配置部11は、ボビン4cを挿入する嵌合部11aを備える。嵌合部11aはボビン4cの内径と同じ外径を有し、ボビン4cを間隙なく嵌合し固定できるようになっている。また、金型10の円柱部12はコイル4aの上部に樹脂が注入される間隙を備え、コイル4aをモールドする。

【0013】金型10には図示しないが樹脂の注入口が 20 備えられる。このような構成の金型10を用いて、ボイスコイル4を形成するには、まずガラスエポキシ樹脂等から成るボビン4cに導線4bを巻回し、接着剤により導線4bをボビン4cに固定してコイル4aを作成する。その後、金型10のコイル配置部11の嵌合部11aにボビン4cを挿入し、コイル4aを固定し溶融樹脂13を注入してボイスコイル4を作成する。この時樹脂を注入してもコイル4aは固定されているため、コイル4aは位置ずれすることがなく、また、ボビン4cは熱硬化性樹脂を硬化させて形成されておりモールド樹脂1 303の溶融温度では溶融しないため、溶融樹脂13を注入してもボビン4cが溶融されることはない。このため、

ボビン4 c は確実に定位置に留り、コイル4 a は定位置にモールドされる。ボイスコイル4 は内側はボビン4 c でそれ以外の部分は樹脂13により被覆されたインサートモールドコイルとして形成される。

【0014】上記説明は本発明の一実施例の説明であって、本発明はこれに限定されない。即ち、金型10の嵌合部はこれに限定されず、ボビン4cが嵌合できる形状ならば何れのものでも適用することができる。また、ボイスコイルに限らず何れのインサートモールドコイルにも適用できる。

[0015]

【発明の効果】以上の説明からも明らかなように、本発明のインサートモールドコイルの製造方法によれば、コイルを金型内の定位置に固定することができるため、位置ずれ等がない高品位なインサートモールドコイルを歩留り良く製造できる。

【図面の簡単な説明】

【図1】本発明のインサートモールドコイルの製造方法 により製造されるインサートモールドコイルの一実施例 が適用されるボイスコイルモータを示す断面図。

【図2】ボイスコイルを製造する金型を示す断面図。

【図3】従来のボイスコイルを製造する金型を示す断面図。

【符号の説明】

4……ボイスコイル (インサートモールドコイル)

4 a ……コイル

4 b ……導線

4 c ……ボビン

10……金型

1 1 a ……·嵌合部

13樹脂

【図1】

【図2】

【図3】

フロントページの続き

(72) 発明者 増村 照文

神奈川県川崎市川崎区小田栄2丁目1番1号 昭和電線電纜株式会社内

(72)発明者 亀沢 康文

神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 赤間 助広

神奈川県川崎市川崎区小田栄2丁目1番1

号 昭和電線電纜株式会社内

(72) 発明者 安田 功

神奈川県川崎市川崎区小田栄2丁目1番1

号 昭和電線電纜株式会社内