Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding

Yuta Suzuki ²

Naoya Chiba ³

Kotaro Saito 4,5

Kanta Ono ⁵

² Toyota Motor Corporation

Transformers are good for molecules

Key is fully-connected self-attention for finite atoms, with relative position representations (scalar ϕ and vector $oldsymbol{\psi}$) encoding spatial relations between atom pairs.

$$oldsymbol{y}_i = rac{1}{Z_i} \sum_{j=1}^N \expig(oldsymbol{q}_i^T oldsymbol{k}_j / \sqrt{d_K} + \phi_{ij}ig)ig(oldsymbol{v}_j + oldsymbol{\psi}_{ij}ig)$$

(Similar to *Graphormer* by Ying et al., 2021)

But transformers for crystal are very rare.

Why not use transformers for crystals?

Let finite atoms i in a unit cell attend to infinite atoms j(n) in periodically repeated unit cells n.

We call it the *infinitely connected attention*.

Infinitely connected attention can be

Interpreted as Neural Potential Summation by introducing distance decay attention

$$\exp(\phi_{ij(n)}) = \exp\left(-\frac{\|\boldsymbol{p}_{j(n)} - \boldsymbol{p}_i\|^2}{2\sigma_i^2}\right)$$

Performed just like standard self-attention

$$egin{aligned} oldsymbol{y}_i &= rac{1}{Z_i} \sum_{j=1}^N \exp \Big(oldsymbol{q}_i^T oldsymbol{k}_j / \sqrt{d_K} + oldsymbol{lpha}_{ij} \Big) ig(oldsymbol{v}_j + oldsymbol{eta}_{ij} ig) \ & ext{where} \quad oldsymbol{lpha}_{ij} &= \sum_{oldsymbol{n}} \exp ig(\phi_{ij(n)} ig) \ oldsymbol{eta}_{ij} &= \sum_{oldsymbol{n}} \exp ig(\phi_{ij(n)} - lpha_{ij} ig) \psi_{ij(n)} \end{aligned}$$

eV/atom

0.063

0.045

0.047

0.0331

0.0325

0.0294

0.0319

eV/atom

0.047

0.056

0.0342

Closely follow original Transformer architecture

Proposed self-attention layer

Self-attention block

Architectural Recipe

- 1) Relative position repres
- ϕ for distance decay attention
- $m{\cdot}$ ψ for periodicity-aware modeling
- 2) Normalization-free arch for training stability

Results

Beats most of the existing methods!

	Materials Project (MEGNET's snapshot)							
	E form eV/atom	BG eV	Bulk mod. log (GPa)	Shear mod. log (Gpa)				
CGCNN	0.031	0.292	0.047	0.077				
SchNet	0.033	0.345	0.066	0.099				
MEGNET	0.030	0.307	0.060	0.099				
GATGNN	0.033	0.280	0.045	0.075				
ALIGNN	0.022	0.218	0.051	0.078				
Matformer	0.021	0.211	0.043	0.073				
PotNet	0.0188	<u>0.204</u>	<u>0.040</u>	0.065				
Ours	0.0198	0.201	0.0399	0.0692				

More efficient and light-weight!

	Туре	Time/ep	Test/mat.	# params	# blk. params
PotNet	GNN	43 s	313 ms	1.8 M	527 K
Matformer	Transformer	60 s	20.4 ms	2.9 M	544 K
Ours	Transformer	32 s	6.6 ms	853 K	206 K

What's more in paper

JARVIS-DFT 3D

0.20

0.19

0.142

0.137

0.127

0.131

BG (MBJ)

0.41

0.43

0.275

eV

0.14

0.055

- Fourier-space attention for long-range interaction
- Importance of ψ term