Vector, Matrix, Trigonometric Functions, and Intersections

Game Mathematics

王銓彰 墨匠科技 BlackSmith CEO

cwang001@mac.com
cwang001@blacksmis.com

Content

- · Coordinate Systems (座標系統)
- Trigonometric Functions (三角函數)
- Vectors (向量)
- Matrix and Transformations (矩陣與空間轉換)
- Intersections (解交點)
- Math about Rotations (旋轉)

3D座標系統

- 直角坐標系
 - · 笛卡兒座標系統(Cartesian coordinate system)
 - 通常使用右手定則,但非絕對
 - · Unity使用左手系統
 - Z-up or Y-up
 - · 以往學校或3D軟體習慣以Z軸為朝上的座標軸,近來流行使用Y軸
 - Unity uses Y-up.
 - · 3ds Max uses Z-up.

2D座標系統

- · For 2D, 我們習慣使用左手系統
 - Windows Desktop (Screen)
 - Viewport for rendering

Origin

Trigonometric Functions (三角函數)

- Definition:
 - A standard unit circle (a circle with radius 1 unit)
 - A triangle is formed by a ray starting at the origin and making some angle with the x-axis
 - $sin(\theta)$ is the y-component of the triangle
 - $cos(\theta)$ is the x-component of the triangle

Trigonometric Functions (三角函数)

- Six Trigonometric functions
 - Sine function, $sin\theta$
 - Cosine function, $\cos\theta$
 - Tangent function, $tan\theta = sin\theta/cos\theta$
 - Slope of the triangle
 - Cotangent function, $cot\theta = 1/tan\theta$
 - Secant function, $sec\theta = 1/cos\theta$
 - Cosecant function, $csc\theta = 1/sin\theta$
- Only one function you need to learn in detail: sinθ
 - $cos\theta = sin(\theta + \pi/2)$

Trigonometric Functions (三角函數)

- Useful formula:
 - $\sin^2\theta + \cos^2\theta = 1$
 - $\sin 2\theta = 2\sin \theta \cos \theta$
 - $\cos 2\theta = \cos^2 \theta \sin^2 \theta$
 - $tan2\theta = 2tan\theta/(1 tan^2\theta)$

Inverse Trigonometry (反三角函数)

- $sin^{-1}(\theta)$
 - arcsine function
- $cos^{-1}(\theta)$
- $tan^{-1}(\theta)$
- $\cot^{-1}(\theta)$
- $sec^{-1}(\theta)$
- $CSC^{-1}(\theta)$

- Be careful to use inverse trigonometric functions:
 - · Numerical error in floating-point computing

Spherical Coordinate System

• 球座標系

- $p(\rho, \phi, \theta)$
- ρ: the distance to origin
- φ: the angle from Z-axis
- θ: the angle from X-axis to the projection of the P on XY-plane

- · A vector is an entity that possesses magnitude and direction.
- A 3D vector is a triple:
 - $\mathbf{V} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, where each component \mathbf{v}_i is a scalar.
- A ray (directed line segment), that possesses *position*, *magnitude* and *direction*.

Length of a vector

$$|\mathbf{v}| = (\mathbf{v}_1^2 + \mathbf{v}_2^2 + \mathbf{v}_3^2)^{1/2}$$

- Unit vector
 - 單位向量
 - Length = 1.0

$$\boldsymbol{U} = \boldsymbol{V} / |\boldsymbol{V}|$$

Addition of vectors

$$X = V + W$$

= (x_1, y_1, z_1)
= $(v_1 + w_1, v_2 + w_2, v_3 + w_3)$

Cross product of two vectors

$$\mathbf{x} = \mathbf{v} \times \mathbf{w}$$
= $(\mathbf{v}_2 \mathbf{w}_3 - \mathbf{v}_3 \mathbf{w}_2) \mathbf{i} + (\mathbf{v}_3 \mathbf{w}_1 - \mathbf{v}_1 \mathbf{w}_3) \mathbf{j} + (\mathbf{v}_1 \mathbf{w}_2 - \mathbf{v}_2 \mathbf{w}_1) \mathbf{k}$
where \mathbf{i} , \mathbf{j} and \mathbf{k} are standard unit vectors:

 $\mathbf{i} = (1, 0, 0), \mathbf{j} = (0, 1, 0), \mathbf{k} = (0, 0, 1)$

• Application: A normal vector to a polygon is calculated from 3 (non-collinear) vertices of the polygon.

$$N_p = V_1 \times V_2$$

Dot product of two vectors

$$x = V \cdot W$$

= $v_1 w_1 + v_2 w_2 + v_3 w_3$

• Application : A dot product of two unit vectors = the cosine value of the angle between these two vectors

$$\cos\theta = \frac{V \cdot W}{|V| |W|}$$

Matrix

- Basics:
 - Definition
 - A is a mxn matrix: $A = (a_{ij}) =$.
 - Transpose

$$\boldsymbol{C} = \boldsymbol{A}^T = (a_{ji})$$

Addition

$$C = A + B$$
 $c_{ij} = a_{ij} + b_{ij}$

Matrix

• Scalar-matrix multiplication

$$C = \alpha A$$
 $c_{ij} = \alpha a_{ij}$

Matrix-matrix multiplication

$$C = A B \qquad c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj}$$

Coordinate System in 3D (Space)

Linear Transformations

- Linear transformations are combinations of ...
 - · Scale, rotation, shear, and mirror
- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - · Ratios are preserved

Affine Transformations

- Affine transformations are combinations of ...
 - · Linear transformations, and translation
- Properties of affine transformations:
 - · Origin does not necessary map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved

Transformations in Matrix Form

• A point is a column matrix $\mathbf{v}^{\mathrm{T}} = [\mathbf{x} \ \mathbf{y} \ \mathbf{z}]$

$$\mathbf{v}^{\mathbf{T}} = [\mathbf{x} \ \mathbf{y} \ \mathbf{z}]$$

· Using matrix notation, a point **v** is transformed under translation, scaling and rotation as:

$$V' = V + D$$
 $V' = SV$
 $V' = RV$

where **D** is a translation vector and

s and R are scaling and rotation matrices

Translation

• Translation tranformation :

$$V' = V + D$$

D is the translation vector (Tx, Ty, Tz)

$$x' = x + T_x$$

 $y' = y + T_y$
 $z' = z + T_z$

Rotations

- Rotations are the major transformation tool used in 3D
 - In the formats:
 - Euler angles:
 - Rotation with X, Y, and Z axes: $(\theta_x, \theta_y, \theta_z)$
 - Rotation with an arbitrary axis (x, y, z, θ) : a 4D vector
 - Quaternion: (w, x, y, z)
- · Here we only discuss one of the Euler angles:
 - Rotation with Z-axis: Rz

$$\mathbf{R_z} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Scaling

• Scaling Transformation:

$$x' = xS_x$$
 $y' = yS_y$
 $z' = zS_z$

• In matrix form: S

$$\mathbf{S} = \begin{bmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & S_{z} \end{bmatrix}$$

A Series of Transformations

· We can net a series of transformation together

$$V' = M_1V$$

$$V'' = M_2V'$$

then the transformation matrices can be concatenated

$$M_3 = M_2M_1$$

$$V'' = M_3V$$

Homogeneous Coordinate System

• To make the translation can be in matrix multiplication, we introduce the homogeneous coordinate system

$$\mathbf{v}^{\mathbf{T}} = (x, y, z, w), \text{ where w is 1}$$

• Translation can be represented as:

$$f V' = TV$$
 = $f TV$ = $egin{bmatrix} 1 & 0 & 0 & T_x \ 0 & 1 & 0 & T_y \ 0 & 0 & 1 & T_z \ 0 & 0 & 0 & 1 \end{bmatrix} egin{bmatrix} x \ y \ z \ 1 \end{bmatrix}$

Homogeneous Coordinate System

• Scaling can be represented as:

$$\mathbf{V'} = \mathbf{SV} \\
= \begin{bmatrix}
Sx & 0 & 0 & 0 \\
0 & Sy & 0 & 0 \\
0 & 0 & Sz & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}$$

Homogeneous Coordinate System

• Rotation to Z-axis can be represented as:

$$\begin{aligned} \mathbf{V'} &= \mathbf{R_z V} \\ &= \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ 1 \end{bmatrix}$$

Barycentric Coordinate System

$$h = \frac{A_a}{A} h_a + \frac{A_b}{A} h_b + \frac{A_c}{A} h_c$$

$$where A = A_a + A_b + A_c$$

If $(A_a < 0 || A_b < 0 || A_c < 0)$ then the point is outside the triangle

"Triangular Coordinate System" "Barycentric Coordinate System"

Triangle Area - 2D Solution

• If we only consider the 2D area:

$$A = \frac{1}{2} \begin{bmatrix} x_a & y_a \\ x_b & y_b \\ x_c & y_c \\ x_a & y_a \end{bmatrix}$$

$$= \frac{1}{2}(x_a*y_b + x_b*y_c + x_c*y_a - x_b*y_a - x_c*y_b - x_a*y_c)$$

Triangle Area - 3D Solution

$$A(\Delta) = \frac{1}{2} |\mathbf{v} \times \mathbf{w}|$$

$$= \frac{1}{2} |(\mathbf{V}_1 - \mathbf{V}_0) \times (\mathbf{V}_2 - \mathbf{V}_0)|$$

Barycentric Coordinate System Applications

- Terrain following
 - · Interpolating the height of arbitrary point within the triangle
- Hit test
 - Intersection of a ray from camera to a screen position with a triangle
- Ray cast
 - · Intersection of a ray with a triangle
- Collision detection
 - Intersection

Intersections

- Ray Casting
- Containment Test
- Separating Axis

Ray Casting - The Ray Equation

- · Cast a ray to calculate the intersection of the ray with models
- · Use parametric equation for a ray

$$x = x_0 + (x_1 - x_0) t$$

 $y = y_0 + (y_1 - y_0) t, t = 0, 8$
 $z = z_0 + (z_1 - z_0) t$

- When t = 0, the ray is on the start point (x_0, y_0, z_0)
- Only the t ≥ 0 is the answer candidate
- The smallest positive t is the answer

Ray Casting - The Plane Equation

- Each triangle in the 3D models has its plane equation.
- Use ax + by + cz + d = 0 as the plane equation.
- (a, b, c) is the plane normal vector.
- | d | is the distance of the plane to origin.
- · Substitute the ray equation into the plane.
- Solve the t to find the intersect point.
- Check the intersect point within the triangle or not by using "Triangle Area Test"

Containment Test

2D version

"If no. of intersection is odd, the point is inside, otherwise, it's outside"

Separating Axis

- For convex objects only
- If there is existing an axis (2D) or a plane (3D) to separate two convex objects, these two objects are not intersected.

Separating Axis

How?

- Project the vertices of each object on the axis/plane that is perpendicular to axis/plane we are going to find.
- · Get the extreme of the projection area of each object.
- If the projection are of these two object are not overlapped, the two objects are not intersected.

Separating Axis Algorithm

```
Bool TestIntersect (ConvexPolyhedron C0, ConvexPolyhedron C1)
   // test faces of C0 for separation
   for (i = 0; i < C0.GetFaceCount(); i++) {
      D = C0.GetNormal(i);
      ComputeInterval(C0, D, min0, max0);
      ComputeInterval(C1, D, min1, max1);
      if (max1 < min0 | max0 < min1) return false;
   // test faces of C1 for separation
   for (i = 0; i < C1.GetFaceCount(); i++) {</pre>
      D = C1.GetNormal(i);
      ComputeInterval(C0, D, min0, max0);
      ComputeInterval(C1, D, min1, max1);
      if (max1 < min0 | max0 < min1) return false;
```

Separating Axis Algorithm

// test cross products of pairs of edges

```
for (i = 0; i < C0.GetEdgeCount(); i++) {
   for (j = 0; j < C1.GetEdgeCount(); j++) {
      D = Cross(C0.GetEdge(i), C1.GetEdge(j));
      ComputeInterval(C0, D, min0, max0);
      ComputeInterval(C1, D, min1, max1);
      if (max1 < min0 | max0 < min1) return false;
return true;
```

Separating Axis Algorithm

Rotations

- Euler Angles
- Rotation with an Arbitrary Axis
- Quaternion

Euler Angles

- A rotation is described as a sequence of rotations about three mutually orthogonal coordinates axes fixed in space
 - X-roll, Y-roll, Z-roll

 $R(\theta_1, \theta_2, \theta_3)$ represents an x-roll, followed by y-roll, followed by z-roll

$$\mathbf{R}(\theta_1, \, \theta_2, \, \theta_3) = \begin{bmatrix}
c_2c_3 & c_2s_3 & -s_2 & 0 \\
s_1s_2c_3-c_1s_3 & s_1s_2s_3+c_1c_3 & s_1c_2 & 0 \\
c_1s_2c_3+s_1s_3 & c_1s_2s_3-s_1c_3 & c_1c_2 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

where $s_i = sin\theta_i$ and $c_i = cos\theta_i$

3! possibilities

Euler Angles & Interpolation

- · Interpolation happening on each angle
- Multiple routes for interpolation
- More keys for constrains

Rotation with Arbitrary Axis

-R(θ , n), n is the rotation axis, θ is the angle.

$$r_h = (n \cdot r)n$$

 $r_v = r - (n \cdot r)n$, rotate into position Rr_v

$$V = n \times r_v = n \times r$$

$$r_{v}$$
 θ Rr_{v}

$$Rr_{v} = (\cos\theta)r_{v} + (\sin\theta)V$$
->
$$Rr = Rr_{h} + Rr_{v}$$
= $r_{h} + (\cos\theta)r_{v} + (\sin\theta)V$
= $(n \cdot r)n + (\cos\theta)(r - (n \cdot r)n) + (\sin\theta)nxr$
= $(\cos\theta)r + (1-\cos\theta)n(n \cdot r) + (\sin\theta)nxr$

Quaternions

- By Sir William Hamilton (1843)
- From Complex numbers (a + ib), $i^2 = -1$
- 16,October, 1843, Broome Bridge in Dublin
- 1 real + 3 imaginary = 1 quaternion
- q = a + bi + cj + dk
- $i^2 = i^2 = k^2 = -1$
- ij = k & ji = -k, cyclic permutation i-j-k-i
- q = (s, v), where $(s, v) = s + v_x i + v_y j + v_z k$

Quaternion Algebra

$$q_1 = (s_1, v_1) \text{ and } q_2 = (s_2, v_2)$$

$$q_3 = q_1q_2 = (s_1s_2 - v_1 \cdot v_2, s_1v_2 + s_2v_1 + v_1xv_2)$$

Conjugate of $\mathbf{q} = (s, \mathbf{v}), \quad \mathbf{q} = (s, -\mathbf{v})$

$$qq = s^2 + |v|^2 = |q|^2$$

A unit quaternion q = (s, v), where qq = 1

A pure quaternion p = (0, v)

Quaternion As Rotations

Take a pure quaternion $\mathbf{p} = (0, \mathbf{r})$ and a unit quaternion $\mathbf{q} = (s, \mathbf{v})$ where $\mathbf{q}\mathbf{q} = 1$ and define $\mathbf{R}_{\mathbf{q}}(\mathbf{p}) = \mathbf{q}\mathbf{p}\mathbf{q}^{-1}$ where $\mathbf{q}^{-1} = \mathbf{q}$ for a unit quaternion

$$R_q(p) = (0, (s^2 - v \cdot v)r + 2v(v \cdot r) + 2svxr)$$

Let
$$\mathbf{q} = (\cos\theta, \sin\theta, \mathbf{n}), \quad |\mathbf{n}| = 1$$

$$R_q(p) = (0, (\cos^2\theta - \sin^2\theta)r + 2\sin^2\theta n(n \cdot r) + 2\cos\theta\sin\theta nxr)$$

= $(0, \cos^2\theta r + (1 - \cos^2\theta)n(n \cdot r) + \sin^2\theta nxr)$

Conclusion:

The act of rotating a vector r by an angular displacement (θ, \mathbf{n}) is the same as taking this displacement, 'lifting' it into quaternion space, by using a unit quaternion (cos(θ /2), $\sin(\theta/2)\mathbf{n}$)

Quaternion To Rotation Matrix

$$q = (w,x,y,z) - \begin{bmatrix} 1-2y^2-2z^2 & 2xy-2wz & 2xz+2wy & 0 \\ 2xy+2wz & 1-2x^2-2z^2 & 2yz-2wx & 0 \\ 2xz-2wy & 2yz+2wx & 1-2x^2-2y^2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation Matrix To Quaternion

```
float tr, s;
                                tr = m[0] + m[4] + m[8];
                                 if (tr > 0.0f) {
                                  s = (float) sqrt(tr + 1.0f);
                                  q->w = s/2.0f;
M_0 M_1 M_2 O
                                  s = 0.5f/s;
M_3 M_4 M_5 O
                                  q->x = (m[7] - m[5])*s;
M_6 M_7 M_8 O
                                  q->y = (m[2] - m[6])*s;
                                  q->z = (m[3] - m[1])*s;
                                 else {
                                  float qq[4];
                                  int i, j, k;
                                  int nxt[3] = \{1, 2, 0\};
                                  i = 0;
                                  if (m[4] > m[0]) i = 1;
                                  if (m[8] > m[i*3+i]) i = 2;
```

```
j = nxt[i]; k = nxt[j];
s = (float) sqrt((m[i*3+i] - (m[j*3+j] + m[k*3+k]))
    + 1.0f);
qq[i] = s*0.5f;
if (s != 0.0f) s = 0.5f/s;
qq[3] = (m[j+k*3] - m[k+j*3])*s;
qq[j] = (m[i+j*3] + m[j+i*3])*s;
qq[k] = (m[i+k*3] + m[k+i*3])*s;
q->w = qq[3];
q->x = qq[0];
q->y = qq[1];
q->z = qq[2];
```

Quaternion Interpolation

$$slerp(q_1, q_2, t) = q_1 \frac{sin((1 - t)\phi)}{sin\phi} + q_2 \frac{sin(t\phi)}{sin\phi}$$