计算理论

教材:

[S] 唐常杰等译, Sipser著, 计算理论导引(第3版), 机械工业.

参考资料:

[L] Lewis等著, 计算理论基础, 清华大学.

计算理论 第一部分 计算模型

第1章 有限自动机 第3章 图灵机

第二部分 可计算性

第4章 存在没有算法的问题

第三部分 计算复杂性

第7章 P, NP 与NP完全性

计算机的基本能力和局限性是什么?

第1章有限自动机

常用证明方法

数学归纳法 反证法 鸽巢原理

数学归纳法

命题: 所有的马都是一种颜色.

证明: 我们只需要证明任意n 匹马只有一种颜色.

- (i) (初始步) 当 n=1时, 只有一匹马, 马的颜色只有一种.
- (ii) (递推步) 假设对正整数k, k 匹马只有一种颜色. 考察 k+1 匹马. 不妨把这些马编号为 1, 2, ..., k, k+1. 由归纳假设, 去掉编号为2的马后, (1, 3, 4, ..., k+1) 这k匹马只有一种颜色, 于是编号为3, 4, ..., k+1的马与编号为1的马同色.

同样地由归纳假设,去掉编号为 k+1 的马后,(1,2,3,...,k)这k 匹马只有一种颜色,所以编号为2 的马与编号为1的马同色.

综上,编号为2,3,...,k,k+1的马都与编号为1的马同色,因此 k+1匹马的颜色相同.证毕.

字符串与语言

字母表: 任意一个有限集. 常用记号 Σ , Γ .

符号: 字母表中的元素

字符串:字母表中符号组成的有限序列

如asdf, 通俗地说即单词

串的长度|·|, 例: |abcde|=5

串的连接*, 例: (abc)*(de)=abcde

串的反转R, 例: (abcde)R=edcba

空词:记为ε,长度为0

语言: 给定字母表上一些字符串的集合

取字母表 $\Sigma = \{0,1\}, \Sigma$ 上的语言举例:

 $A=\{0,00,0000\}, B=\{0,00,01,000,001,...\}$

确定型有限(穷)自动机的形式定义

定义:有限自动机是一个5元组(Q,Σ,δ,s,F),

- 1) Q是有限集, 称为状态集;
- 2) Σ是有限集, 称为字母表;
- 3) δ : Q× Σ \rightarrow Q是转移函数;
- 4) s∈Q是起始状态;
- 5) F⊆Q是接受状态集;

• 状态图等价于形式定义

δ	0	1
$\mathbf{q_1}$	\mathbf{q}_1	\mathbf{q}_2
$\mathbf{q_2}$	\mathbf{q}_3	$\mathbf{q_2}$
\mathbf{q}_3	$\mathbf{q_2}$	$\mathbf{q_2}$

有限自动机

读写头不能改写,且只能右移

状态: q_1,q_2,q_3 起始状态 q_1

接受状态q2 转移:箭头

运行: 从起始状态开始沿转移箭头进行.

输出:输入读完处于接受状态则接受,否则拒绝.

接受: 1, 11, 100, 101, 1101, ...

拒绝: ε, 0, 10, 110, 1010, ...

DFA计算的形式定义

设M=(Q, Σ , δ ,s,F)是一个DFA,

 $w=w_1w_2...w_n$ 是字母表 Σ 上的一个字符串.

若存在Q中的状态序列 $r_0, r_1, ..., r_n$,满足

- 1) $r_0 = s$;
- 2) $\delta(\mathbf{r}_{i}, \mathbf{w}_{i+1}) = \mathbf{r}_{i+1};$
- 3) $r_n \in F$

则M接受w.

$$s \xrightarrow{W_1} r_1 \xrightarrow{W_2} r_2 \xrightarrow{\cdots} r_{n-1} \xrightarrow{W_n} r_n$$

有限自动机的语言:正则语言

对有限自动机M, 若 $A = \{ w \in \Sigma^* | M接受w \},$

即A是有限自动机M的语言,记为L(M)=A,也称M识别A.

注: M的语言唯一. M不识别任何其它语言.

若存在DFA识别语言A,则称A是正则语言.

称两个有限自动机等价若它们语言相同0 M_1 q_1 q_2 q_3

注: 在任何状态, 读到1后一定会进入状态q2.

 $L(M_1)=\{w \mid w \neq 0,1 = 0,1 \neq 0,1 \neq$

且最后一个1后面含有偶数个0 }

注: 任何其它语言都不是M₁的语言.

有限自动机的设计(难点)

- 自己即自动机
- 寻找需要记录的关键信息

设计识别下列语言的DFA:

{ w∈{0,1}* | w从1开始, 以0结束 } $\Sigma=\{0,1\}$,根据关键信息设计状态, 空, 以0开始, 以1开始以0结束、 0 以1开始以1结束 1开始 1开始 1结束 空 0 0开始 0,1

{ w∈{0,1}* | w含有子串1010 } Σ={0,1}, 关键信息: ε, 1, 10, 101, 1010

{ w∈{0,1}* | w倒数第2个符号是1 } 只需关注最后两个符号

 $\Sigma = \{0,1\}$, 关键信息: ϵ , 0, 00, 1, 01, 10, 11

{ 0^k | k是2或3的倍数 }

 $\Sigma = \{0\}$, 关键信息: ϵ , 0^1 , 0^2 , 0^3 , 0^4 , 0^5 .

记为: 0,1,2,3,4,5

{ 0^k | k是2或3的倍数 }

 $\Sigma = \{0\}$, 关键信息: ϵ , 0^1 , 0^2 , 0^3 , 0^4 , 0^5 ,

记为: 0,1,2,3,4,5 或 (0,0), (1,1), (0,2), (1,0), (0,1), (1,2)

 $\{0^k|k是2或3的倍数\} = \{0^k|k是2倍数\} \cup \{0^k|k是3的倍数\}$ $\{0^k|k是2和3的倍数\} = \{0^k|k是2倍数\} \cap \{0^k|k是3的倍数\}$?

{ 0^k | k是2和3的倍数 }

 $\Sigma = \{0\}$, 关键信息: ϵ , 0^1 , 0^2 , 0^3 , 0^4 , 0^5 ,

记为: 0,1,2,3,4,5 或 (0,0), (1,1), (0,2), (1,0), (0,1), (1,2)

 $\{0^k|k是2和3的倍数\} = \{0^k|k是2倍数\} \cap \{0^k|k是3的倍数\}$

正则语言的并是正则语言

定理: 设A,B都是 Σ 上的正则语言,则 $A \cup B$ 也是正则语言.

证明: 设
$$M_1$$
=(Q_1 , Σ , δ_1 , s_1 , F_1)和 M_2 =(Q_2 , Σ , δ_2 , s_2 , F_2)是DFA, 且 $L(M_1)$ =A, $L(M_2)$ =B,

$$\diamondsuit Q=Q_1\times Q_2$$
, $s=(s_1,s_2)$, $F=F_1\times Q_2\cup Q_1\times F_2$,

$$\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}, \forall a \in \Sigma, r_1 \in \mathbf{Q}_1, r_2 \in \mathbf{Q}_2,$$

$$\delta((r_1,r_2), a) = (\delta_1(r_1,a), \delta(r_2,a)),$$

即对i=1,2,第i个分量按 M_i 的转移函数变化.

令M=(Q,Σ,δ,s,F), 则
$$\forall$$
x (x∈L(M) \leftrightarrow x∈A \cup B) 即 L(M) = A \cup B. 证毕

正则语言的交是正则语言

定理: 设A,B都是 Σ 上的正则语言,则 $A \cap B$ 也是正则语言.

证明: 设 M_1 =(Q_1 , Σ , δ_1 , s_1 , F_1)和 M_2 =(Q_2 , Σ , δ_2 , s_2 , F_2)是DFA, 且 $L(M_1)$ =A, $L(M_2)$ =B,

$$\diamondsuit Q=Q_1\times Q_2$$
, $s=(s_1,s_2)$, $F=F_1\times F_2$,

 $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}, \forall a \in \Sigma, r_1 \in \mathbf{Q}_1, r_2 \in \mathbf{Q}_2,$

$$\delta((r_1,r_2), a) = (\delta_1(r_1,a), \delta(r_2,a)),$$

即对i=1,2,第i个分量按Mi的转移函数变化.

 \diamondsuit M=(Q,Σ,δ,s,F), 则 \forall x (x∈L(M) \leftrightarrow x∈A \cap B) 即 L(M) = A \cap B. 证毕

证明特点:构造性证明

正则语言与正则运算

如果语言A被一DFA识别,则称A是正则语言 算术中,对象是数,操作是运算,如+×. 计算理论中,对象是语言,操作是语言的运算. 定义:设A和B是两个语言,定义正则运算 并,连接,星号如下:

- 并: $A \cup B = \{x | x \in A$ 或 $x \in B\}$
- 连接: $A^{\circ}B = \{xy | x \in A \perp \exists y \in B\}$
- 星号: $A^* = \{x_1x_2...x_k | k \ge 0$ 且每个 $x_i \in A\}$

正则运算举例

```
设字母表Σ由标准的26个字母组成
A={good,bad}, B={boy,girl}, 则
A \cup B = \{ good, bad, boy, girl \}
A°B={ goodboy, goodgirl, badboy, badgirl }
A^* = \{\epsilon, \text{ good, bad, goodgood, goodbad, } \dots \}
  问题:
```

- 1. 正则语言对于正则运算是否封闭?
- 2. 如何判断一个语言是正则语言?

非确定型机器(难点)

前面因为 δ : Q× $\Sigma \rightarrow$ Q是一个函数,所以

- 每步存在唯一的方式进入下一状态
- · 称为确定型有限自动机(DFA) 现在引入非确定型有限自动机(NFA)

- 每步可以0至多种方式进入下一步
- •转移箭头上的符号可以是空串ε, 表示不读任何输入就可以转移过去

非确定型计算

注: 若起始状态有射出的ε箭头?

NFA的计算方式

- Step 1.设读到符号s, 对(每个副本)机器状态q, 若q有多个射出s箭头,则机器分裂成多个副本. 状态相同的副本视为同一副本.
- Step 2. 对每个副本的状态,若其上有射出的ε箭头,则不读任何输入,机器分裂出相应副本.
- Step 3. 读下一个输入符号, 转step1. 若无输入符号, 计算结束, 并且, 若此时有一个副本处于接受状态,则接受, 否则拒绝.

NFA的形式定义

定义: NFA是一个5元组(Q, Σ , δ ,s,F),

- 1) Q是状态集;
- 2) Σ是字母表;
- 3) δ: $Q \times \Sigma_{\epsilon} \rightarrow P(Q)$ 是转移函数;
- 4) s∈Q是起始状态;
- 5) F⊆Q是接受状态集;

其中
$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

状态图 与 式定 包含 相同信息

试写出该状态图 对应的形式定义

$$\delta(q_1,1) = \{q_1,q_2\}$$

$$\delta(\mathbf{q}_2, \boldsymbol{\varepsilon}) = \{\mathbf{q}_3\}$$

$$\delta(q_2,1) = \emptyset$$

$$\delta(q_1, \varepsilon) = \emptyset$$

如何定义NFA的计算

NFA计算的形式定义

设N=(Q,Σ,δ,q₀,F)是一台NFA, w是Σ上字符串 称 N接受w,

若 w能写作w=w₁w₂...w_n, w_i∈Σ_ε,且 存在Q中的状态序列 $\mathbf{r}_0,\mathbf{r}_1,...,\mathbf{r}_n$,满足

- 1) $r_0 = q_0$;
- 2) $r_{i+1} \in \delta(r_i, w_{i+1});$
- 3) $r_n \in F$ $r_0 \xrightarrow{W_1} r_1 \xrightarrow{W_2} r_2 \xrightarrow{\cdots} r_{n-1} \xrightarrow{W_n} r_n$

对于输入,NFA计算的路径可能不唯一.

NFA计算形式定义举例

NFA的设计(难点)

- 自己即自动机
- 寻找需要记录的关键信息 设计识别{0,1}上以下语言的NFA: { w∈{0,1}* | w从1开始, 以0结束 } { w∈{0,1}* | w含有子串1010 } { w∈{0,1}* | w是倒数第2位是1 } { 0^k | k是2或3的倍数 }

NFA的设计

 ${ w∈{0,1}* | w从1开始,以0结束 }$ Σ={0,1},根据关键信息设计状态, 空,以0开始,以1开始以1结束,以1开始以0结束

NFA的设计

{ w∈{0,1}* | w含有子串1010 }

 $\Sigma = \{0,1\}$, 关键信息: 忽略(ϵ), 1, 10, 101, 1010

NFA的设计

 $\{ w \in \{0,1\}^* \mid w 倒数第2个符号是1 \}$ $\Sigma = \{0,1\}, 关键信息: 忽略(\varepsilon), 1, 1x,$

DFA

NFA与DFA等价

定理:每个NFA都有一台等价的DFA.

构造DFA 持健信息 有所本的 事件 的集合

每个NFA都有等价的DFA NFA的确定化:子集法

- (1)首先将从 NFA N的起始状态S出发经过任意条ε 弧所能到达的状态组成的集合作为确定化后的 DFA M的起始状态S'。
- (2)从S'出发,经过对任意输入符号a∈∑的状态转移所能到达的状态(包括读入输入符号a之后所有可能的ε转移所能到达的状态)所组成的集合作为M的新状态。
 - (3) 如此重复,直到不再有新的状态出现为止。
- (4) 在所产生的状态中,含有原NFA接受态的子集作为DFA的接受态。

每个NFA都有等价的DFA

以原状态的子集 为新机器的状态

编号	δ	0	1
1	{q ₁ } 1	$\{\mathbf{q_1}\}$	${q_1, q_2, q_3}^2$
2	$\{q_1, q_2, q_3\}$	${q_1, q_3}$	${q_1, q_2, q_3, q_4}4$
3	$\{q_1, q_3\}$	$\{\mathbf{q_1}\}$	$\{q_1, q_2, q_3, q_4\}$
4*	$\{q_1, q_2, q_3, q_4\}$	${q_1, q_3, q_4}5$	$\{q_1, q_2, q_3, q_4\}$
5*	$\{q_1, q_3, q_4\}$	$\{q_1, q_4\}_{6}$	$\{q_1, q_2, q_3, q_4\}$
6*	$\{q_1, q_4\}$	${\bf q_1, q_4}$	$\{q_1, q_2, q_3, q_4\}$

每个NFA都有等价的DFA

证明: 设N =
$$(Q_1, \Sigma, \delta_1, s_1, F_1)$$
是NFA, //设计Q,F, s, δ
令 Q = $P(Q_1)$, //全体子集
$$F = \{A \in Q : F_1 \cap A \neq \emptyset \},$$

$$s = E(\{s_1\}), E(A) = \{q : \exists r \in A, r \not\in 0 \text{到多个} \epsilon \text{箭头可达q} \}$$

$$\delta: Q \times \Sigma \rightarrow Q, \quad \forall a \in \Sigma, \forall A \in Q,$$

$$\delta(A, a) = E(\bigcup_{r \in A} \delta_1(r, a))$$

$$M = (Q, \Sigma, \delta, s, F),$$
则 $\forall x (x \in L(M) \leftrightarrow x \in L(N)),$
即 $L(M) = L(N).$

证毕

正则运算的封闭性

定理: 正则语言对并运算封闭.

定理:正则语言对连接运算封闭.

定理: 正则语言对星号运算封闭.

证明: 画状态图.

证明若A,B正则,则AUB正则

则 $L(M) = A \cup B$.

 $M=(Q,\Sigma,\delta,s,F),$

证明若A, B正则, 则A°B正则

DFA:
$$M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$$
, $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$, $L(M_1) = A$, $L(M_2) = B$, $\Leftrightarrow Q = Q_1 \cup Q_2$ 不交并, $F = F_2$,

$$\forall \mathbf{r} \in \mathbf{F}_1, \, \delta(\mathbf{r}, \boldsymbol{\varepsilon}) = \{\mathbf{s}_2\}$$

$$\forall i=1,2, \forall r \in Q_i, \forall a \in \Sigma, \delta(r,a) = \{\delta_i(r,a)\}$$

$$M=(Q,\Sigma,\delta,s_1,F),$$

则 $L(M) = A \circ B$.

证明若A正则,则A*正则

DFA:
$$M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1), L(M_1) = A,$$

令
$$Q = Q_1 \cup \{s\}$$
 不交并, $F = F_1 \cup \{s\}$ 不交并

$$\forall r \in Q_1, \forall a \in \Sigma, \delta(r,a) = \{\delta_1(r,a)\}\$$

$$\forall \mathbf{r} \in \mathbf{F}_1, \, \delta(\mathbf{r}, \boldsymbol{\varepsilon}) = \{\mathbf{s}_1\},$$

$$\delta(s,\varepsilon)=\{s_1\},$$

$$M=(Q,\Sigma,\delta,s,F),$$

则 L(M) = A*.

正则表达式

定义: 称R是一个正则表达式, 若R是

- 1) $a, a \in \Sigma$;
- 2) ε;
- $3)\varnothing$;
- 4) (R₁∪R₂), R₁和R₂是正则表达式;
- 5) (R₁°R₂), R₁和R₂是正则表达式;
- 6) (R₁*), R₁是正则表达式;

每个正则表达式R表示一个语言(?),记为L(R).

例: 0*10*, $01\cup 10$, $(\Sigma\Sigma)*$, $1*\emptyset$, $\emptyset*$.

正则表达式与DFA等价

定理2.3.1: 语言A正则⇔A可用正则表达式描述.

- (⇐) 若语言A可用正则表达式描述,则 A正则. (容易)
- (⇒) 若语言A正则, 则A可用正则表达式描述. (困难)

A有正则表达式⇒A正则

数学归纳法

R是一个正则表达式, 若R是

- 1) $a, a \in \Sigma$
- **2) ε**
- 3) Ø
- 4) $(R_1 \cup R_2)$
- 5) $(R_1 {}^{\circ}R_2)$
- 6) (R₁*)

A正则⇒A有正则表达式

构造广义非确定有限自动机(GNFA)

- 非确定有限自动机
- 转移箭头可以用任何正则表达式作标号证明中的特殊要求:
- 起始状态无射入箭头.
- 唯一接受状态(无射出箭头).
- 手段:一个一个地去掉中间状态.

正则表达式到NFA的转换

NFA到正则表达式的转换

(3)
$$A \xrightarrow{e_1} B \xrightarrow{e_3} C$$
 替换成 $A \xrightarrow{e_1 e_2^* e_3} B$

删除一个中间状态

设q_{rip}为待删中间状态, 对任意两个状态q_i, q_i都需要修改箭头标号

举例: A正则⇒A有正则表达式

非正则语言

```
B={ 0<sup>n</sup>1<sup>n</sup> | n≥0 }
C={ w | w中0和1的个数相等 }
D={ w | w中01和10的个数相等 }
哪些是正则语言?
```

泵引理

定理(泵引理): 设A是正则语言,则存在p>0使得

对任意w∈A, |w|≥p, 存在分割w=xyz满足

- 1) 对任意 $i \ge 0$, $xy^iz \in A$;
- 2) |y| > 0;
- 3) |xy|≤p.

11011 :
$$q_0$$
-1- q_1 - 101 - q_1 - 1 - q_3 -接受 1(101) i 1: q_0 -1- q_1 - (101) i - q_1 - 1 - q_3 -接受

$$11011 = xyz$$

x=1, y=101, z=1. xyiz 被接受的原因?

取p为DFA状态个数.

由鸽巢原理,读前p个符号必有状态重复

泵引理的等价描述

定理(泵引理): 设A是正则语言,则存在p>0使得

对任意w∈A, |w|≥p, 存在分割w=xyz满足

- 1) 对任意 $i \ge 0$, $xy^iz \in A$;
- 2) |y| > 0;
- 3) |xy|≤p.

若A是正则语言,

则3p>0

 $\forall w \in A(|w| \ge p)$

 $\exists x,y,z(|y|>0, |xy|\leq p, w=xyz)$

 $\forall i \geq 0$,

 $xy^{i}z \in A$.

若∀p>0

 $\exists w \in A(|w| \ge p)$

 $\forall x,y,z(|y|>0, |xy|\leq p, w=xyz)$

∃i≥0,

 $xy^iz \notin A$.

则A非正则语言

B = { 0ⁿ1ⁿ | n≥0 } 非正则

C = { ww | w∈{0,1}* } 非正则

∴ C非正则语言

泵引理的证明

定理(泵引理): 设A是正则语言,则存在p>0使得对任意 $w \in A$, $|w| \ge p$, 存在分割w=xyz满足

- 1) 对任意 $k \ge 0$, $xy^kz \in A$;
- 2) |y| > 0;
- 3) |xy|≤p.

证明: \diamondsuit M=(Q, Σ , δ ,s,F) 且 L(M)=A, \diamondsuit p=|Q|, \diamondsuit w = w₁w₂...w_n \in A, w_i \in Σ , 且n \ge p, 则有

$$s=r_0 \xrightarrow{W_1} r_1 \xrightarrow{W_2} r_2 \xrightarrow{\cdots} r_{n-1} \xrightarrow{W_n} r_n \in F$$

由鸽巢原理,存在i<j≤p使得 $r_i=r_j$,令 $x=w_1...w_i$, $y=w_{i+1}...w_j$, $z=w_{j+1}...w_n$. 那么对 $\forall k \geq 0$, $xy^kz \in A$.

第3章 图灵机

- 1. 图灵机基础
- 1.1 图灵机的定义
- 1.2 图灵机举例
- 1.3 图灵机的描述

图灵对计算的观察

图灵: 计算通常是一个人拿着笔在纸上进行的.

他根据●眼睛看到的纸上符号,

• 脑中的若干法则,

指示笔 ● 在纸上擦掉或写上一些符号,

• 再改变他所看到的范围.

继续,直到他认为计算结束.

脑:控制器 纸:存储带

眼睛和笔:读写头

法则:转移函数

与有限自动机的区别

有限自动机:

- •输入带长度有限
- 只能读和右移, 不能写和左移
- 读完输入停机

图灵机(TM)的形式化定义

TM是一个7元组(Q, Σ , Γ , δ , q_0 , q_a , q_r)

- 1) Q是状态集.
- 2) Σ是输入字母表,不包括空白符 □.
- 3) Γ 是带字母表,其中 □ ∈ Γ , Σ ⊂ Γ .
- 4) δ : Q×Γ \rightarrow Q×Γ×{L,R}是转移函数.
- 5) q_0 ∈Q是起始状态. 6) q_a ∈Q是接受状态.
- 7) $q_r \in Q$ 是拒绝状态, $q_a \neq q_r$.

图灵机的初始化

设M=(Q, Σ , Γ , δ , q_0 , q_a , q_r), w= \mathbf{w}_1 ... $\mathbf{w}_n \in \Sigma^n$,

- 输入带: 将输入串w放在最左端n格中, 带子其余部分补充空格 □.
- •读写头:指向工作带最左端.

例:设输入串为0101,则其初始形态为

图灵机的运行

• 图灵机根据转移函数运行.

例:设输入串为0101, 且 $\delta(q_0,0)=(p,\#,R)$, 则有

•注:若要在最左端左移,读写头保持不动.

$$\delta(q_0,0)=(p,\#,R)$$
的状态图表示: $q_0 \xrightarrow{0 \to \#,R} p$

$$(q_0)$$
0 \rightarrow 0,R (p) 简记为 (q_0) 0 \rightarrow R (p)

判定器与语言分类

- 图灵机运行的三种结果
 - 1. 若TM进入接受状态,则停机且接受输入,
 - 2. 若TM进入拒绝状态,则停机且拒绝输入,
 - 3. 否则TM一直运行,不停机.
- 定义: 称图灵机M为判定器, 若M对所有输入都停机.

• 定义不同语言类:

图灵可判定语言:某个判定器的语言(也称递归语言)

图灵可识别语言: 某个图灵机的语言,

也称为递归可枚举语言

图灵机的格局

- 描述图灵机运行的每一步需要如下信息: 控制器的状态;存储带上字符串;读写头的位置.
- 定义: 对于图灵机M=(Q, Σ , Γ , δ , q_0 , q_a , q_r), $\psi_q \in Q$, $u,v \in \Gamma^*$, 则格局 uqv表示
 - 1) 当前控制器状态为q;
 - 2) 存储带上字符串为uv(其余为空格);
 - 3) 读写头指向v的第一个符号.
- 起始格局,接受格局,拒绝格局.

格局演化举例

省略拒绝状态

s 0 1

s 0 1

• • •

循环

s 1 0 # q_a 0 接受

图灵机计算的形式定义

称图灵机M接受字符串w,

若存在格局序列 $C_1,C_2,...,C_k$ 使得

- 1) C_1 是M的起始格局 q_0 w;
- 2) C_i产生C_{i+1}, i=1,...,k-1;
- 3) C_k 是M的接受格局.

M的语言: M接受的所有字符串的集合, 记为L(M).

- 1. 图灵机基础
- 1.1 图灵机的定义
- 1.2 图灵机举例
- 1.3 图灵机的描述

图灵机举例

 $\Sigma = \{0,1\}, A = \{0w1: w \in \Sigma^*\}$ 正则语言 $B = \{0^n1^n: n \ge 0\}$ 上下文无关语言 $\Sigma = \{0\}, C = \{0^k: k = 2^n, n \ge 0\}$ 图灵可判定语言 M = "对于输入串w,

- 1) 若w=ε, 则拒绝.
- 2) 若只有1个0,则接受.
- 3) 若有奇数个0,则拒绝.
- 4) 隔一个0,删一个0. 转(2)."

L(M)=C, 即M识别C.

M="对于输入w,

- 1) 若w=ε, 则拒绝.
- 2) 若只有1个0,则接受.
- 3) 若有奇数个0,则拒绝.
- 4) 隔一个0,删一个0. 转(2)."

M="对于输入w,

- 1) 若w=ε, 则拒绝.
- 2) 若只有1个0,则接受.
- 3) 若有奇数个0,则拒绝.
- 4) 隔一个0,删一个0. 转(2)."

M="对于输入w,

- 1) 若w=ε, 则拒绝.
- 2) 若只有1个0,则接受.
- 3) 若有奇数个0,则拒绝.
- 4) 隔一个0,删一个0. 转(2)."

各种语言类的包含关系

 $P(\Sigma^*)$ 图灵可识别语言 可判定语言 上下文无关语言 正则语言

图灵机的描述

- (1) 形式水平的描述(状态图或转移函数)
- (2) 实现水平的描述(读写头的移动,改写)
- (3) 高水平描述(使用日常语言) 用带引号的文字段来表示图灵机. 例如:

M="对于输入串w,

- 1) 若w=ε, 则拒绝.
- 2) 若只有1个0,则接受.
- 3) 若0的个数为奇数,则拒绝.
- 4) 从带左端隔一个0, 删一个0. 转(2)."

图灵机的输入

- ·由定义, TM的输入总是字符串.
- 有时候要输入数,图,或图灵机等对象.那么要将对象编码成字符串.
- ·记对象O的编码为<O>.
- 本课程中一般不关心实际编码方式.

数:可取二进制,十进制,或其它编码.

图: 例如左边的图可以编码为:

G=(1,2,3,4)((1,2),(2,3),(3,1),(1,4))

特别的,图灵机是有向带权图 也可以编码为字符串。

输入为对象的图灵机举例

 M_1 ="对于输入<G>, G是一个无向图,

- 1) 选择G的一个顶点, 并做标记.
- 2) 重复如下步骤, 直到没有新标记出现.
- 3) 对于G的每个未标记顶点, 若有边 将它连接到已标记顶点, 则标记它.
- 4) 若G的所有顶点已标记,则接受; 否则,拒绝."

分析 M_1 的语言可知:

 $L(M_1)=\{<G>\mid G是连通的无向图\}$

- 1. 图灵机基础
- 2. 图灵机的变形

图灵机的变形

图灵机有多种变形: 例如多带图灵机,非确定图灵机 还有如枚举器,带停留的图灵机等等 只要满足必要特征, 它们都与这里定义的图灵机等价.

非确定型图灵机(NTM)

·NTM的转移函数

$$\delta: Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L,R\})$$

· NTM转移函数举例

$$\delta(q_3,0)=\{(q_2,x,R), (q_1,1,L), (q_3,\$,R)\}$$

- · 称NTM M接受x, 若在x上运行M时有接受分支.
- 称一NTM为判定的, 若它对所有输入,所有分支都停机.
- · 定理: 每个NTM都有等价的确定TM.
- 定理: 每个判定NTM都有等价的判定TM.

举例

计算理论第1章作业

1.1 下图给出了两台DFA M_1 和 M_2 的状态图。

回答下述关于这两台机器的问题。

- a. 它们的起始状态是什么?
- b. 它们的接受状态集是什么?
- c. 对输入aabb,它们经过的状态序列是什么?
- d. 它们接受字符串aabb吗?
- e.它们接受字符串ε吗?
- 1.6 画出识别下述语言的DFA状态图。字母表为{0,1}
 - d. {w|w的长度不小于3,并且第3个符号为0};
- 1.7. 给出下述语言的NFA,并且符合规定的状态数。

字母表为{0,1}

e. 语言0*1*0*0,3个状态。

 $\mathbf{M_1}$

计算理论第1章作业

- 1.16(b) 将如右图的非确定有限自动机 转换成等价的确定有限自动机.
- 1.21(a) 将如右图的有限自动机转换成等价的正则表达式.

1.21(a)题图

计算理论第1章作业

- 1.22 在某些程序设计语言中,注释出现在两个分隔符之间,如/#和#/.设C是所有有效注释串形成的语言. C中的成员必须以/#开始,/#结束,并且在开始和结束之间没有#/.为简便起见,所有注释都由符号a和b写成;因此C的字母表 Σ={a, b, /, #}.
 - a. 给出识别C的DFA
 - b. 给出生成C的正则表达式.
- 1.29 使用泵引理证明下述语言不是正则的。
 - **b.** $A = \{ www \mid w \in \{a,b\}^* \}$

计算理论第3章作业

补充说明:没有画出的箭头指向拒绝状态

- 3.2 对于识别{w|w=u#u, u \in {0,1}*}的图 灵机M₁ (见左图),在下列输入串上,给出M所进入的格局序列.
 - c. 1##1, d. 10#11, e. 10#10
- 3.8 下面的语言都是字母表{0,1}上的语言,以实现水平的描述给出判定这些语言的图灵机:
- b. {w|w所包含的0的个数是1的个数的两倍}
- c. {w|w所包含的0的个数不是1的个数的两倍}
- 3.15b 证明图灵<mark>可判定</mark>语言类在**连接**运 算下封闭.
- 3.16d证明图灵<mark>可识别</mark>语言类在交运算下封闭.
- 3.21 设多项式 $c_1 x^{n+} c_2 x^{n-1} + \ldots + c_n x + c_{n+1}$ 有根 $x = x_0, c_{\text{max}} \oplus c_i$ 的最大绝对值. 证明 $|x_0| \leq (n+1) c_{\text{max}} / |c_1|$

3n+1问题目前不知道有没有算法

- 输入:一个正整数n,
- 映射: f(n) = n/2, 若n是偶数;f(n) = 3n+1, 若n是奇数.
- 迭代: 5→16→8→...,到1则停止
- 输出: n可在f迭代下是否能到1停止
- 直接模拟是正确的算法吗? 10000
- 27需迭代111步(见右图)
- 1~5×10¹⁸都能到1.([wiki])

不可判定问题(没有算法)举例

Hilbert第十问题: "多项式是否有整数根"有没有算法? 1970's 被证明不可判定.

M = "对于输入 "p", p是k元多项式,

- 1. 取k个整数的向量x(绝对值和从小到大)
- 2. 若p(x) = 0 ,则停机接受.
- 3. 否则转1."

这个图灵机对输入 $p(x,y) = x^2 + y^2 - 3$ 不停机