

Python Meets Mathematics: Calculus

Sunglok Choi, Assistant Professor, Ph.D. Computer Science and Engineering Department, SEOULTECH sunglok@seoultech.ac.kr | https://mint-lab.github.io/

Building Mathematical Intuition

- **1. Imagine** (or visualize)
 - e.g. Numberblocks (by BBC) [YouTube]
 - e.g. Why 4 x 6 == 6 x 4? (for kids without knowledge of a $\frac{\text{multiplication table}}{\text{multiplication table}}$ and $\frac{\text{commutativity}}{\text{multiplication table}}$

- **2. Ask why** (or think about its applications)
 - e.g. Why did I learn about a matrix?

Image: Pinterest

Tools

SciPy

- A python-based open-source ecosystem for mathematics, science, and engineering.
 - An open-source <u>computing tool</u> against the commercial software such as <u>MATLAB</u>
 - Included in <u>Anaconda</u> by default
- Major components

SciPy library Fundamental library for scientific computing

Matplotlib
Comprehensive 2-D
plotting

IPython
Enhanced interactive console

SymPy
Symbolic mathematics

pandasData structures & analysis

- Online references: <u>MINT Lab's Know-where</u>
 - Please refer Programming (Python) category, especially about P3. NumPy, SciPy, and Matplotlib section.

Image: SciPy

Programming Python with SciPy meets Mathematics

- Calculus
- Linear Algebra
- Optimization
- Probability
- Information Theory

Getting Started from Drawing an Equation

- Example) Drawing $y = 0.1x^3 0.8x^2 1.5x + 5.4$
- Visualization with <u>Desmos Graphing Calculator</u>

<u>Desmos Global Math Art Contest</u> (Age 13-14)

Getting Started from Drawing an Equation

- Example) Drawing $y = 0.1x^3 0.8x^2 1.5x + 5.4$
- Visualization with <u>Matplotlib</u>

```
import matplotlib.pyplot as plt

xs = [x for x in range(-4, 10)]
ys = [0.1*x**3 - 0.8*x**2 - 1.5*x + 5.4 for x in xs]

plt.plot(xs, ys, 'r-')
plt.show()
```


Further improvement)

- How to make the graph smooth?
- How to draw the grid?
- How to display labels on X and Y axes?
- How to make its aspect ratio equal?

- Matplotlib is a plotting library for creating static, animated, and interactive visualization in Python.
- References: <u>Documentation</u>, <u>Examples</u> (Gallery), <u>Tutorials</u>, and <u>Cheatsheets</u> (made by Matplotlib)

Matplotlib is a plotting library for creating static, animated, and interactive visualization in Python.

References: <u>Documentation</u>, <u>Examples</u> (Gallery), <u>Tutorials</u>, and <u>Cheatsheets</u> (made by Matplotlib)

- Matplotlib is a plotting library for creating static, animated, and interactive visualization in Python.
- References: <u>Documentation</u>, <u>Examples</u> (Gallery), <u>Tutorials</u>, and <u>Cheatsheets</u> (made by Matplotlib)
- API examples @ matplotlib.pyplot module (a state-based interface; ~ MATLAB)
 - plot([x], y, [fmt], ...): Plot y versus x as lines and/or markers
 - hist(x, bins=None, range=None, ...): Plot a <u>histogram</u>
 - contour([X, Y,] Z, [levels], ...): Plot contour lines
 - imshow(X, cmap=None, ...): Display data as an image (a 2D regular <u>raster</u>)
 - title(label, ...): Set a title for the Axes
 - axis(...): Get or set axis properties (e.g. 'on'/'off', 'equal', and range of X/Y axes)
 - legend(...): Place a legend on the Axes
 - grid(...): Configure the grid lines
 - xlabel(label, ...), xlim(left, right), ...: Set the label and limit for the x-axis
 - figure(num=None, ...): Create a new figure or activate an existing figure
 - show(...): Display all open figures
 - savefig(filename, ...): Save the current figure

• Usage example) Drawing $y = 0.1x^3 - 0.8x^2 - 1.5x + 5.4$ import matplotlib.pyplot as plt

```
scale = 10
xs = [x/scale for x in range(-4*scale, 10*scale)]
ys = [0.1*x**3 - 0.8*x**2 - 1.5*x + 5.4 for x in xs]

plt.title('y = 0.1x^3 - 0.8x^2 - 1.5x + 5.4') # LaTeX style
plt.plot(xs, ys, 'r-')
plt.xlabel('x')
plt.ylabel('y')
plt.grid()
plt.axis('equal')
plt.show()
```


Further improvement)

- ✓ How to make the graph smooth?
- ✓ How to draw the grid?
- ✓ How to display labels on X and Y axes?
- ✓ How to make its aspect ratio equal?

- Example) Plotting midterm and final scores
 - The given data (file: data/class_score_en.csv) # midterm (max 125), final (max 100) 113, 86 104, 83 110, 78 101, 79 101, 77 103, 76 71, 94 102, 71 88, 76 101, 72 81, 78 84, 78

- Example) Plotting midterm and final scores
 - Analysis using representative values (e.g. mean, median, ...; <u>대표값</u> in Korean)
 - Midterm

- Mean: **74.209**

Variance: 632.817

Median: **72.000**

Min/Max: (21.000, 117.000)

Final

Mean: 58.674

Variance: 618.545

Median: 66.000

Min/Max: (0.000, 94.000)

Total

Mean: 58.952

Variance: 423.546

Median: **65.000**

Min/Max: (6.720, 87.760)

- Example) Plotting midterm and final scores
 - Practice) Plot the <u>scatter plot</u> of midterm and final scores
 - Practice) Plot the <u>histogram</u> of total scores
 - What can you discover from two graphs?

Visualization

Visualization is very important not only for your <u>data</u> but also for your <u>programs</u>, <u>systems</u>, and <u>society</u>.

14

Calculus

- <u>Calculus</u> (originally called *infinitesimal calculus*, 미적분학 in Korean) is the mathematical study of continuous change.
- Two major tools

Differentiation:

Finding a <u>derivative</u> of a function

Integration:

Calculating numbers to a function by combining infinitesimal increments

15

Calculus Differentiation

- <u>Differentiation</u> is the process of finding a derivative of a function.
- Derivative [Wikipedia]
 - Definition
 - <u>Change</u> of the function value (**output value**) with respect to a <u>change</u> in its argument (**input value**)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Meaning
 - The **slope** of a tangent line (plane) to the given function
 - The tangent line ~ linear approximation (Note: 1st-order <u>Tayor series</u>)
- Notation
 - Leibniz's notation: $\frac{df}{dx}(x), \frac{d^2f}{dx^2}(x)$
 - Largrange's notation: f'(x), f''(x)
 - Newton's notation: \dot{y} , \ddot{y} where y = f(x)
 - Euler's notation: $D_x f(x)$, $D_x^2 f(x)$

Image: Wikipedia

- Rules of computing a derivative [Wikipedia]
 - The polynomial rule of $f(x) = x^n$
 - $f'(x) = nx^{n-1}$
 - Logarithmic and exponential functions
 - $\frac{d}{dx} \ln x = \frac{1}{x}$
 - $\frac{d}{dx}(e^x) = e^x$ (Note: e <u>Euler's number</u>, 자연상수 in Korean)
 - The product rule of h(x) = f(x)g(x)
 - h'(x) = f'(x)g(x) + f(x)g'(x)
 - Note) The quotient rule of $h(x) = \frac{f(x)}{g(x)} = f(x)g(x)^{-1}$
 - $h'(x) = \frac{f'(x)g(x) g'(x)f(x)}{g^2(x)}$
 - The **chain rule** of h(x) = f(g(x))
 - $h'(x) = \frac{dh(x)}{dx} = \frac{df(g(x))}{dx} = f'(g(x)) \cdot g'(x) = \frac{df(g(x))}{dg(x)} \cdot \frac{dg(x)}{dx}$
 - Too many ...

Theoretical CS Mathematical Cheat Sheet

The	oretical Computer Science Cheat Sh	neet	
π	Ca	Calculus	
Wallis' identity: $\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$	Derivatives: $\frac{d(cu)}{d(cu)} = c\frac{du}{d(u+v)} = c\frac{d(u+v)}{d(u+v)} = c\frac{du}{d(u+v)}$	$= \frac{du}{dx} + \frac{dv}{dx}, \qquad 3. \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{d}{dx}$	
Brouncker's continued fraction expansion: $\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2}}}}$	ua ua ua	$= \frac{dx + dx}{dx}, \qquad dx + dx + dx$ $= \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}, \qquad 6. \frac{d(e^{cu})}{dx} = ce^{cu}\frac{d}{dx}$	
$2 + \frac{5}{2 + \frac{5}{2 + \frac{7}{2 + \frac{7}{2 + \dots}}}}$ Gregrory's series:	7. $\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx},$	$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u}\frac{d}{dx}$	
Frequency s series: $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$ Newton's series:	9. $\frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$	$10. \ \frac{d(\cos u)}{dx} = -\sin u \frac{d}{d}$	
$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$	11. $\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$	$12. \ \frac{d(\cot u)}{dx} = \csc^2 u \frac{d}{dx}$	
Sharp's series:	13. $\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$,	14. $\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{d}{dx}$	
$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \dots \right)$	15. $\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1 - u^2}} \frac{du}{dx},$	16. $\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{dx}{dx}$	
Euler's series:	17. $\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx},$	18. $\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{d}{dx}$	
$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$ $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$	19. $\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx},$	$20. \ \frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$	
$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$	$21. \frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx},$	$22. \frac{d(\cosh u)}{dx} = \sinh u \frac{d}{dx}$	
Partial Fractions Let $N(x)$ and $D(x)$ be polynomial functions of x . We can break down	$23. \frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx},$	$24. \frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{d}{dx}$	
N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater	25. $\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$,	26. $\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{d}{dx}$	
than or equal to the degree of D , divide N by D , obtaining	$27. \frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$	$28. \frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{dx}{dx}$	
$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$	$29. \ \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$	$30. \ \frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{d}{dx}$	
where the degree of N' is less than that of D . Second, factor $D(x)$. Use the follow-	31. $\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx},$	32. $\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{ u \sqrt{1+u^2}} \frac{du}{dx}$	

- Example) Finding the slope and tangent line of $y = 0.1x^3 0.8x^2 1.5x + 5.4$ at x = 2 (y = 0)
 - Derivative function: $\frac{dy}{dx}(x) = 0.3x^2 1.6x 1.5$
 - Derivative value at x = 2 (y = 0): $\frac{dy}{dx}(2) = -3.5$
 - Tangent line at x = 2 (y = 0): $y 0 = -3.5(x 2) \rightarrow y = -3.5x + 7$
- Example) Plotting the above results

```
import matplotlib.pyplot as plt
```

```
scale = 10
xs = [x/scale for x in range(-4*scale, 10*scale)]
ys = [0.1*x**3 - 0.8*x**2 - 1.5*x + 5.4 for x in xs]
yt = [-3.5*x + 7 for x in xs]

plt.plot(xs, ys, 'r-', label='y')
plt.plot(xs, yt, 'b--', label='tangent line at x=2')
plt.xlabel('x')
plt.ylabel('y')
plt.grid()
plt.legend()
plt.show()
```


■ Example) A turtle moving on $y=0.1x^3-0.8x^2-1.5x+5.4$ (turtle_animation.py) import tkinter as tk import turtle, math

```
# Generate 'y = 0.1*x**3 - 0.8*x**2 - 1.5*x + 5.4'
scale = 10
xs = [x/scale for x in range(-4*scale, 10*scale)]
ys = [0.1*x**3 - 0.8*x**2 - 1.5*x + 5.4 for x in xs]
yd = [0.3*x**2 - 1.6*x - 1.5 for x in xs]
# Prepare 'screen' and 'actor'
root = tk.Tk()
```

Prepare 'screen' and 'actor' How to derive a derivative function of root = tk.Tk() a complex function?

```
canvas = tk.Canvas(root, width=500, height=500)
canvas.pack()
screen = turtle.TurtleScreen(canvas)
```

actor = turtle.RawTurtle(screen, 'turtle')

actor.radians() # Use radian unit for angle and rotation

```
# Draw the function
zoom = 20
actor.penup()
actor.setpos(zoom*xs[0], zoom*ys[0]) # Put at the initial point
actor.pendown()
for (x, y, slope) in zip(xs, ys, yd):
    actor.setpos(zoom*x, zoom*y)
    actor.setheading(math.atan2(slope, 1))
screen.mainloop()
```


• Example) Finding the derivative function of $y = 0.1x^3 - 0.8x^2 - 1.5x + 5.4$ using SymPy

Note) More Examples with SymPy

• Example) Solve the above equation (find x when y = 0) using <u>SymPy</u>

```
roots = sp.solveset(y, x)
print(roots)  # FiniteSet(-3.0, 2.0, 9.0)
r0 = float(roots.args[0])  # -3.0 / Casting from Float object to float
```

Example) Factorize the above equation using <u>SymPy</u>

- <u>Numerical differentiation</u> is an algorithm to approximate <u>a derivative value</u> of a function using values of the function. (Note: It does not derive <u>a derivative function</u>.)
 - The definition of derivative: $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) f(x)}{\Delta x}$
 - Two-point estimation: $f'(x_0) = \frac{f(x_0+h)-f(x_0)}{h}$ or $f'(x_0) = \frac{f(x_0+h)-f(x_0-h)}{2h}$
- Example) Finding the slope and tangent line of $y = 0.1x^3 0.8x^2 1.5x + 5.4$ at x = 2
 - Derivative at x = 2 (y = 0): -3.5

```
y = lambda x: 0.1*x**3 - 0.8*x**2 - 1.5*x + 5.4
x0 = 2
h = 0.001
d1 = (y(x0+h) - y(x0)) / h  # -3.5002
d2 = (y(x0+h/2) - y(x0-h/2)) / h # -3.5000
```


Image: Wikipedia

Summary

- Building mathematical intuition: 1) Imagine, 2) Ask why
- Visualization
 - Matplotlib: A plotting library in Python
 - Visualization is very important not only for your <u>data</u> but also for your <u>programs</u>, <u>systems</u>, and <u>society</u>.
- Calculus Differentiation
 - Derivative definition: $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) f(x)}{\Delta x}$
 - Meaning
 - The **slope** of a tangent line (plane) to the given function
 - The tangent line ~ **linear approximation**
 - How to get a derivative
 - Your hand-on derivation using <u>rules</u>
 - Analytical differentiation using <u>SymPy</u> (a symbolic mathematical engine in Python)
 - Numerical differentiation (two-point estimation)