Probability Introduction

Week 02 - Day 01

Probability

Probability = chance of an event (coin flip, result of a match, etc.)

P(head) = 0.5 = 50% (1=100%)

P(tail) = 0.5 = 50% (1=100%)

Axioms

Axiom 1: non negativity

The probability of an event is greater or equal to zero

$$P(A) >= 0$$

P(Head) = -0.7 ???

Axiom 2: unit measure

The probability of all the possible events is 1

$$P(head) + P(tail) = 1$$

Axiom 2: additivity

P(Head or Tail) = P(head) + P(Tails)

(disjoints events = "non overlapping" = mutually exclusive)

Properties

1 - Probability of No Event

is zero!... (it's either tail or head)

2 - Probability of A or B (union)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

If no overlapping -> just P(a) + P(B)

P(triangle U blue) = ?

P(triangle U blue) = ?

3 - Conditional Probability

$$P(A|B) = P(A \cap B) / P(B)$$

- 1) Useful for ML
- 2) Example: p(win | playing against juventus)

P(win | playing against juve) = ?

P(win | playing against juve) = 4/7

4 - Joint probability

 $P(A \cap B) = P(A|B) * P(B)$

Just play with the previous formula!

5 - Total probability

<u>video</u>

Combinatorics

Basic definition

<u>Combinatorics</u> is the study of how sets can be enumerated

"How many strings of 5 letters can I build using only [a,b,e,n,o]."

Counting principle

$$3 \text{ girls} = (a,b,c)$$

4 boys =
$$(1,2,3,4)$$

How many possible couples like (girl,boy) can you have?

Counting principle

a1,a2,a3,a4

b1,b2,b3,b4

c1,c2,c3,c4

 $4x3 = 12 \rightarrow double for loop! :)$

Permutations

<u>Video</u>

Combinations

<u>Video</u>

With replacement (sampling)

The same element can be chosen more than one time

Birthday paradox

https://en.wikipedia.org/wiki/Birthday_problem

Lesson material

Skip:

Distinguishable vs. Indistinguishable ("balls and urns")