Capítulo 14

Equilíbrio Químico

- Conceito de Equilíbrio e de Constante de Equilíbrio
- Expressões para a Constante de Equilíbrio
- Relação entre Cinética Química e Equilíbrio Químico
- Que Informação nos Dá a Constante de Equilíbrio
- Factores que Afectam o Equilíbrio Químico

Cópia baseadas na apresentação fornecida pelo editor e não dispensa a consulta do livro "QUÍMICA GERAL", Chang, McGra

Equilibrio — estado em que não existem alterações observáveis ao longo do tempo.

O equilíbrio químico é alcançado quando:

- As velocidades das reacções directa e inversa forem iguais; e
- As concentrações dos reagentes e dos produtos não variarem com o tempo.

Equilíbrio físico

$$H_2O(h) \longrightarrow H_2O(g)$$

Equilíbrio químico

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

14.1

O **equilibrio homogéneo** aplica-se a reacções em que todas as espécies envolvidas se encontram na *mesma fase*.

$$N_2O_4(g) \longrightarrow 2NO_2(g)$$

$$K_c = \frac{[NO_2]^2}{[N_2O_4]}$$

$$K_p = \frac{P_{\text{NO}_2}^2}{P_{\text{N}_2\text{O}_4}}$$

Na maioria dos casos

$$aA (g) + bB (g) \xrightarrow{K_c \neq K_p} cC (g) + dD (g)$$

$$K_p = K_c(RT)^{\Delta n}$$

 Δn = moles de produtos gasosos – moles de reagentes gasosos = (c + d) - (a + b)

14.2

Equilíbrio Homogéneos

$$CH_3COOH(aq) + H_2O(l) \longrightarrow CH_3COO^-(aq) + H_3O^+(aq)$$

$$K_c' = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH][H_2O]}$$

 $[H_2O]$ = constante

$$K_c = \frac{[CH_3COO^-][H_3O^+]}{[CH_2COOH]} = K_c^*[H_2O]$$

Repare que é comum não incluir unidades na constante de equilíbrio.

14.2

14.2

14.2

As concentrações de equilíbrio para a reacção entre o monóxido de carbono e o cloro molecular para formar $COCl_2$ (g) a $74^{\circ}C$ são [CO] = 0,012 M, [Cl₂] = 0,054 M e [$COCl_2$] = 0,14 M. Calcule as constantes de equilíbrio $K_c \in K_c$

$$CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$$

$$K_c = \frac{[COCl_2]}{[CO][Cl_2]} = \frac{0.14}{0.012 \times 0.054} = 220$$

$$K_0 = K_c(RT)^{\Delta n}$$

$$\Delta n = 1 - 2 = -1$$
 $R = 0.0821$ $T = 273 + 74 = 347$ K

$$K_p = 220 \times (0.0821 \times 347)^{-1} = 7.7$$

14.2

A constante de equilíbrio K_p para a reacção

 $2NO_2(g)$ \Longrightarrow $2NO(g) + O_2(g)$

é 158 a 1000K. Qual é a pressão de equilíbrio do O_2 se P_{NO} = 0,400 atm e P_{NO2} = 0,270 atm?

$$K_p = \frac{P_{NO}^2 P_{O_2}}{P_{NO_2}^2}$$

$$P_{O_2} = K_p \frac{P_{NO_2}^2}{P_{NO}^2}$$

 $P_{\rm O_2}$ = 158 × (0,400)²/(0,270)² = **347** atm

O equilíbrio heterogéneo aplica-se a reacções nas quais os reagentes e os produtos estão em fases diferentes.

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

$$K_{c}^{4} = \frac{\text{[CaO][CO}_{2}]}{\text{[CaCO}_{3}]}$$
 [CaCO₃] = constante [CaO] = constante

$$K_c = [CO_2] = K_c \times \frac{[CaCO_3]}{[CaO]}$$

As concentrações de sólidos e líquidos puros não estão incluídos na expressão da constante de equilíbrio.

14.2

Considere o seguinte equilíbrio a 295 K:

 $NH_4HS(s)$ \longrightarrow $NH_3(g) + H_2S(g)$

A pressão parcial de cada gás é 0,265 atm. Calcule K_p e K_c da reacção?

$$K_p = P_{NH_3} P_{H_2S} = 0.265 \times 0.265 = 0.0702$$

$$K_p = K_c(RT)^{\Delta n}$$

$$K_c = K_o(RT)^{-\Delta n}$$

$$\Delta n = 2 - 0 = 2$$
 $T = 295 \text{ K}$

 $K_c = 0.0702 \times (0.0821 \times 295)^{-2} = 1.20 \times 10^{-4}$

 $A + B \longrightarrow \mathcal{E} + \mathcal{B} \qquad K_{c}'$ $\mathcal{E} + \mathcal{B} \longrightarrow E + F \qquad K_{c}''$ $A + B \longrightarrow E + F \qquad K_{c} \qquad K_{c} = \frac{[C][D]}{[A][B]} \qquad K_{c}'' = \frac{[E][F]}{[C][D]}$ $K_{c} = \frac{[E][F]}{[A][B]}$

Se a reacção puder ser expressa como a soma de duas ou mais reacções, a constante de equilíbrio para a reacção global é dada pelo produto das constantes de equilíbrio de cada uma das reacções.

14.2

2

$$N_2O_4(g) \longrightarrow 2NO_2(g)$$

$$2NO_2(g) \longrightarrow N_2O_4(g)$$

$$K = \frac{[NO_2]^2}{[N_2O_4]} = 4,63 \times 10^{-5}$$

$$K = \frac{[NO_2]^2}{[N_2O_4]} = 4,63 \times 10^{-3}$$
 $K^4 = \frac{[N_2O_4]}{[NO_2]^2} = \frac{1}{K} = 216$

Quando a equação da reacção reversível for escrita no sentido oposto, a constante de equilibrío é o inverso da constante de equilíbrio original.

14.2

Escrever Constante de Equilíbrio

- Na fase condensada, as concentrações das espécies reagentes são expressas em M (mol/L); em fase gasosa, as concentrações podem ser expressas em M ou em atm.
- As concentrações de sólidos puros, líquidos puros e solventes não aparecem nas expressões da constante de equilíbrio.
- A constante de equilíbrio é tratada como uma quantidade adimenional.
- Ao atribuirmos um valor à constante de equilíbrio, devemos especificar as equações acertadas e a temperatura.
- Se uma reacção puder ser expressa como a soma de duas ou mais reacções, a constante de equilíbrio da reacção global é dada pelo produto das constantes de equilíbrio das reacções individuais.

14.2

Cinética Química e Equilíbrio Químico

$$A + 2B \xrightarrow{k_d} AB_2$$

 $velocidade_d = k_d[A][B]^2$

 $velocidade_i = k_i[AB_2]$

No equilíbrio

velocidade_d = velocidade_i

$$k_d[A][B]^2 = k_i[AB_2]$$

$$\frac{k_d}{k_i} = K_c = \frac{[AB_2]}{[A][B]^2}$$

14.3

O quociente relaccional (Q_c) calcula-se substituindo as concentrações iniciais de reagentes e de produtos na expressão da constante de equilíbrio (K_c).

- $Q_c < K_c \implies O$ sistema evolui da esquerda para a direita (consumindo reagentes, formando produtos) até se atingir o equilíbrio.
- $Q_c = K_c \implies O$ sistema está em equilíbrio.
- $Q_c > K_c \Rightarrow O$ sistema evolui da direita para a esquerda (consumindo produtos, formando reagentes) até se atingir o equilíbrio.

14.4

Cálculo das Concentrações de Equilíbrio

- 1. Exprimir as concentrações de todas as espécies no equilíbrio em função das concentrações iniciais e de uma única incógnita x, que representa a variação na concentração.
- 2. Escrever a expressão da constante de equilíbrio em função das concentrações no equilíbrio. Conhecendo o valor da constante de equilíbrio, resolver em ordem a x.
- 3. Depois de resolver em ordem a x, calcular as concentrações de todas as espécies no equilíbrio.

14 4

A 1280°C a constante de equilíbro (K_o) da reacção

é 1,1 × 10⁻³. Se as concentrações iniciais forem $[Br_2]$ = 0,063 M e [Br] = = 0,012 M, calcule as concentrações destas espécies no equilíbrio.

Seja x a variação na concentração de Br₂

$$Br_2(g) \implies 2Br(g)$$

Inicial (M) 0,063 0,012

Variação (M) -x +2*x*

Equilíbrio (M) 0,063 - x

$$K_{\rm c} = \frac{[{\rm B}{\rm f}]^2}{[{\rm B}{\rm r}_2]}$$
 $K_{\rm c} = \frac{(0.012 + 2x)^2}{0.063 \ 2 \ x} = 1.1 \times 10^{-3}$ Resolva em ordem a x

14.4

$$K_c = \frac{(0,012+2x)^2}{0,063-x} = 1,1 \times 10^{-3}$$

$$4x^2 + 0,048x + 0,000144 = 0,0000693 - 0,0011x$$

$$4x^2 + 0,0491x + 0,0000747 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = -0,00178$$

$$Br_2(g) \stackrel{}{\longleftarrow} 2Br(g)$$

$$Inicial (M) \qquad 0,063 \qquad 0,012$$

$$Variação (M) \qquad -x \qquad +2x$$

$$Equilibrio (M) \qquad 0,063-x \qquad 0,012+2x$$

$$Em equilibrio, [Br] = 0,012 + 2x = -0.009 M \qquad \text{ou } 0,00844 M$$

$$Em equilibrio, [Br_2] = 0,062 - x = 0,0648 M$$

Princípio de Le Châtelier		
<u>Alteração</u>	<u>Deslocação</u> no equilíbrio	Alteração da constante de equilíbrio
Concentração	sim	não
Pressão	sim	não
Volume	sim	não
Temperatura	sim	sim
Catalisador	não	não
		14.5