

NCERT solutions for class 9 Maths Linear Equations in Two Variables Ex 4.2

Q1. Which one of the following options is true, and why?

$$y = 3x + 5$$
 has

- (i) a unique solution,
- (ii) only two solutions,
- (iii) infinitely many solutions

Ans: We need to the number of solutions of the linear equation y = 3x + 5.

We know that any linear equation has infinitely many solutions.

Justification:

If
$$x = 0$$
 then $y = 3 \times 0 + 5 = 5$

If
$$x = 1$$
 then $y = 3 \times 1 + 5 = 8$

If
$$x = -2$$
 then $y = 3 \times (-2) + 5 = -1$

Similarly, we can find infinite many solutions by putting the values of x.

Q2. Write four solutions for each of the following equations:

(i)
$$2x + y = 7$$

(ii)
$$\pi x + y = 9$$

(iii)
$$x = 4y$$

Ans: 2x + y = 7

We know that any linear equation has infinitely many solutions.

Let us put x = 0 in the linear equation 2x + y = 7, to get

$$2(0) + y = 7$$
 $\Rightarrow y = 7$.

Thus, we get first pair of solution as (0,7).

Let us put x=2 in the linear equation 2x+y=7, to get

$$2(2) + y = 7 \implies y + 4 = 7 \implies y = 3.$$

Thus, we get second pair of solution as (2,3).

Let us put x = 4 in the linear equation 2x + y = 7, to get

$$2(4) + y = 7$$
 $\Rightarrow y + 8 = 7 \Rightarrow y = -1$.

Thus, we get third pair of solution as (4,-1).

Let us put x = 6 in the linear equation 2x + y = 7, to get

$$2(6) + y = 7 \implies y + 12 = 7 \implies y = -5.$$

Thus, we get fourth pair of solution as (6,-5).

Therefore, we can conclude that four solutions for the linear equation 2x + y = 7 are

$$(0,7),(2,3),(4,-1)$$
 and $(6,-5)$.

(ii)
$$\pi x + y = 9$$

We know that any linear equation has infinitely many solutions.

Let us put x = 0 in the linear equation $\pi x + y = 9$, to get

$$\pi(0) + y = 9$$
 $\Rightarrow y = 9$

Thus, we get first pair of solution as (0,9).

Let us put y = 0 in the linear equation $\pi x + y = 9$, to get

$$\pi x + (0) = 9$$
 $\Rightarrow x = \frac{9}{\pi}$.

Thus, we get second pair of solution as $\left(\frac{9}{\pi},0\right)$.

Let us put x=1 in the linear equation $\pi x + y = 9$, to get

$$\pi(1) + y = 9$$
 $\Rightarrow y = \frac{9}{\pi}$

Thus, we get third pair of solution as $\left(1, \frac{9}{\pi}\right)$.

Let us put y = 2 in the linear equation $\pi x + y = 9$, to get

$$\pi x + 2 = 9$$
 $\Rightarrow \pi x = 7 \Rightarrow x = \frac{7}{\pi}$

Thus, we get fourth pair of solution as $\left(\frac{7}{\pi}, 2\right)$.

Therefore, we can conclude that four solutions for the linear equation $\pi x + y = 9$ are

$$(0,9)$$
, $\left(\frac{9}{\pi},0\right)$, $\left(1,\frac{9}{\pi}\right)$ and $\left(\frac{7}{\pi},2\right)$.

(iii)
$$x = 4y$$

We know that any linear equation has infinitely many solutions.

Let us put y = 0 in the linear equation x = 4y, to get

$$x = 4(0)$$
 $\Rightarrow x = 0$

Thus, we get first pair of solution as (0,0).

Let us put y = 2 in the linear equation x = 4y, to get

$$x = 4(2)$$
 $\Rightarrow x = 8$

Thus, we get second pair of solution as (8,2).

Let us put y = 4 in the linear equation x = 4y, to get

$$x = 4(4)$$
 $\Rightarrow x = 16$

Thus, we get third pair of solution as (16,4).

Let us put y = 6 in the linear equation x = 4y, to get

$$x = 4(6)$$
 $\Rightarrow x = 24$

Thus, we get fourth pair of solution as (24,6).

Therefore, we can conclude that four solutions for the linear equation x = 4y are (0,0),(8,2),(16,4) and (24,6).

Q3. Check which of the following are solutions of the equation x - 2y = 4 and which are not:

- (i) (0,2)
- (ii) (2,0)

(iv)
$$(\sqrt{2}, 4\sqrt{2})$$

Ans: (i) (0,2)

We need to put x = 0 and y = 2 in the L.H.S. of linear equation x - 2y = 4, to get

$$(0)-2(2)=-4$$

Therefore, we can conclude that (0,2) is not a solution of the linear equation x-2y=4.

We need to put x = 2 and y = 0 in the L.H.S. of linear equation x - 2y = 4, to get

$$(2)-2(0)=2$$

∴ L.H.S. ≠ R.H.S.

Therefore, we can conclude that (2,0) is not a solution of the linear equation x-2y=4.

We need to put x = 4 and y = 0 in the linear equation x - 2y = 4, to get

$$(4)-2(0)=4$$

Therefore, we can conclude that (4,0) is a solution of the linear equation x-2y=4.

(iv)
$$(\sqrt{2}, 4\sqrt{2})$$

We need to put $x = \sqrt{2}$ and $y = 4\sqrt{2}$ in the linear equation x - 2y = 4, to get

$$\left(\sqrt{2}\right) - 2\left(4\sqrt{2}\right) = -7\sqrt{2}$$

Therefore, we can conclude that $(\sqrt{2}, 4\sqrt{2})$ is not a solution of the linear equation x-2y=4.

We need to put x = 1 and y = 1 in the linear equation x - 2y = 4, to get

$$(1)-2(1)=-1$$

 \therefore L.H.S. \neq R.H.S.

Therefore, we can conclude that (1,1) is not a solution of the linear equation x-2y=4.

Q4. Find the value of k, if x = 2, y = 1 is a solution of the equation 2x + 3y = k.

Ans: We know that, if x = 2 and y = 1 is a solution of the linear equation 2x + 3y = k, then on substituting the respective values of x and y in the linear equation 2x + 3y = k, the LHS and RHS of the given linear equation will not be effected.

$$\therefore$$
 2(2)+3(1)= $k \Rightarrow k=4+3 \Rightarrow k=7$

Therefore, we can conclude that the value of k, for which the linear equation 2x + 3y = k has x = 2 and y = 1 as one of its solutions is 7.

******* END ******