Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Лабораторная работа № 4

По дисциплине:

«Функциональная схемотехника»

3 вариант

Выполнили:

Третьяков К. П.

Тропина Ю. А.

Группа р3201

Преподаватель:

Быковский С. В.

Оглавление

1. Цели работы	3
2. Реализация конечного автомата по графу переходов	4
3. Конечный автомат цифрового устройства - распознаватель	8
Вывод:	11

1. Цели работы

- а) Познакомиться с применением конечных автоматов при разработке цифровых схем
- б) Получить навыки проектирования и отладки схем с цифровыми автоматами

Задание:

Кодирование состояний указано в задании по варианту. Входные переменные Xi – двоичные. Кодирование выходных сингалов – прямое унитарное. При комбинациях входных сигналов, не указанных на графе переходов, переход в новое состояние на текущем такте не производится (иначе говоря, производится переход в то же самое состояние).

Вариант 3:

Автомат 3 Прямое унитарное RS Распознаватель последовательностей: 01, 10, 11 Двоичное RS

1. Распознаватель. Конечный автомат для распознавания определенных последовательностей во входном потоке битов. Автомат имеет одну входную линию — информационную. Автомат имеет столько выходных линий, сколько последовательностей он может распознавать. На рис. 4.5 показан пример распознавателя с

Рисунок 4.3: Граф переходов автомата 3

входными и

выходными сигналами. Этот автомат сигнализирует, когда во входном потоке битов встречаются последовательности «010» и «101». Автомат сканирует поток битов, который подается на информационный вход. Если встречается одна из заданных комбинаций, автомат устанавливает соответствующий двоичный выход в «1» на период одного такта синхронизации. Остальное время выходы автомата находятся в состоянии «0». Наложение комбинаций не поддерживается (одна распознанная комбинация не может являться частью другой).

Рисунок 4.5: Входные и выходные сигналы автомата «распознаватель»

2. Реализация конечного автомата по графу переходов

Тип автомата — автомат Мура, так как значение на выходе зависит только от состояния автомата таблицы кодирования состояний, входных и выходных сигналов, таблицы переходов и выходов; кодирование состояний

state	encoding
S0	000001
S1	000010
S2	000100
S3	001000
S4	010000
S5	100000

Кодирование входных сигналов

state	X0	X1	X2
0	0	0	0
1	0	0	1
2	0	1	0
3	1	0	0

Кодирование выходных сигналов

state	Y0	Y1
0	0	0
1	0	1
2	1	0

Таблица переходов

Current	X0	X1	X2	Output
S				
S0	1	1	Х	S1
S0	0	Χ	1	S5
S1	Х	1	1	S2
S2	0	1	Х	S3
S2	1	0	Х	S5
S3	Х	1	0	S0
S3	1	1	1	S4
S4	1	1	Χ	S2
S4	0	Χ	Χ	S5
S5	0	1	1	S1

Таблица выходов

S0	S1	S2	S3	S4	S5	Y0	Y1
1	0	0	0	0	0	0	1
0	1	0	0	0	0	1	0
0	0	1	0	0	0	1	0
0	0	0	1	0	0	1	0
0	0	0	0	1	0	0	1
0	0	0	0	0	1	1	0

Схема тестирования

Сверху-вниз – Y0, Y1, X0, X1, X2, C, CLR

3. Конечный автомат цифрового устройства - распознаватель

Тип автомата – автомат Мура, т.к. значение на выходе зависит только от состояния автомата

кодирование состояний

state	encoding
S1	100
S2	000
S3	110
S4	001
S5	101
S6	011
S7	111

Кодирование выходных сигналов

state	Y0	Y1	Y2
S1	0	0	0
S2	0	0	0
S3	0	0	0
S4	0	0	0
S5	1	0	0
S6	0	1	0
S7	0	0	1

Таблица переходов

Current	Input	Next
	IIIput	
S		State
S1	1	S3
S1	0	S2
S2	1	S5
S2	0	S4
S3	1	S 7
S3	0	S6
S4	1	S3
S4	0	S2
S5	1	S3
S5	0	S2
S6	1	S3
S6	0	S2
S7	1	S3
S7	0	S2

Таблица выходов

S1	S2	S3	S4	S5	S6	S7	Y0	Y1	Y2
1	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	1

Схема тестирования

Сверху-вниз – DATA, C, CLR, выходы - 01, 10, 11

Вывод

Конечные автоматы - последовательные логические схемы, число возможных внутренних состояний которых конечно (2^k, где k - количество регистров).

На вход КА также подается тактовый сигнал и, возможно, сигнал сброса. КА состоит из двух блоков комбинационной логики: логики перехода в следующее состояние и выходной логики, – и из регистра, в котором хранится текущее состояние.

По фронту каждого тактового импульса автомат переходит в следующее состояние, которое определяется текущим состоянием и значениями на входах.

В автомате Мура выходные значения зависят лишь от текущего состояния, в то время как в автомате Мили выход зависит как от текущего состояния, так и от входных данных.

Конечные автоматы предоставляют систематический способ проектирования синхронных последовательных схем по заданному функциональному описанию.

Состояния в конечном автомате могут кодироваться несколькими способами - двоичным кодированием (00, 01, 10) и прямым кодированием (001, 010, 100). При двоичном кодировании каждому состоянию ставится в соответствие двоичное число (номер этого состояния). Так как К двоичных чисел можно записать в log₂K разрядах, системе с К состояниями нужно всего log₂K битов состояния. В прямом кодировании для каждого состояния используется один бит состояния.