

Preprocessing I: Within Subject

John Ashburner

Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK.

Contents

* Preliminaries

- * Rigid-body and affine transformations
- * Optimisation and objective functions
- * Transformations and interpolation
- * Realignment
- * Coregistration

Rigid-body transformations

- * Assume that brain of the same subject doesn't change shape or size in the scanner.
 - * Head can move, but remains the same shape and size.
 - * Some exceptions:
 - * Image distortions.
 - * Brain slops about slightly because of gravity.
 - * Brain growth or atrophy over time.
- * If the subject's head moves, we need to correct the images.
 - * Do this by image registration.

Image registration

Two components:

- Registration i.e. Optimise the parameters that describe a spatial transformation between the source and reference images
- Transformation i.e. Re-sample according to the determined transformation parameters

2D affine transforms

- * Translations by t_x and t_y
 - * $x_1 = x_0 + t_x$
 - * $y_1 = y_0 + t_y$
- * Rotation around the origin by ⊕ radia

*
$$y_1 = -\sin(\Theta) x_0 + \cos(\Theta) y_0$$

- * Zooms by s_x and s_y
 - * $x_1 = s_x x_0$
 - * $y_1 = s_v y_0$

$$x_1 = x_0 + h y_0$$

$$*y_1 = y_0$$

2D affine transforms

- Translations by t_x and t_y
 - * $x_1 = 1 x_0 + 0 y_0 + t_x$
 - * $y_1 = 0 x_0 + 1 y_0 + t_y$
- * Rotation around the origin by ⊕ radia
 - * $x_1 = \cos(\Theta) x_0 + \sin(\Theta) y_0 + 0$
 - * $y_1 = -\sin(\Theta) x_0 + \cos(\Theta) y_0 + 0$
- * Zooms by s_x and s_y :
 - * $x_1 = s_x x_0 + 0 y_0 + 0$
 - * $y_1 = 0 x_0 + s_y y_0 + 0$

*Shear

$$x_1 = 1 x_0 + h y_0 + 0$$

 $y_1 = 0 x_0 + 1 y_0 + 0$

3D rigid-body transformations

- * A 3D rigid body transform is defined by:
 - * 3 translations in X, Y & Z directions
 - * 3 rotations about X, Y & Z axes
- * The order of the operations matters

Voxel-to-world transforms

- * Affine transform associated with each image
 - * Maps from voxels (x=1..n_x, y=1..n_y, z=1..n_z) to some world coordinate system. e.g.,
 - * Scanner co-ordinates images from DICOM toolbox
 - * T&T/MNI coordinates spatially normalised
- * Registering image B (source) to image A (target) will update B's voxel-to-world mapping
 - Mapping from voxels in A to voxels in B is by
 - * A-to-world using M_A, then world-to-B using M_B-1
 - * $M_{B}^{-1} M_{A}$

Left- and right-handed coordinate systems

- * NIfTI format files are stored in either a left- or right-handed system
 - * Indicated in the header
- * Talairach & Tournoux uses a right-handed system
- * Mapping between them sometimes requires a flip
 - * Affine transform has a negative determinant

"Radiological" and "neurological" conventions

Optimisation

- * Image registration is done by optimisation.
- * Optimisation involves finding some "best" parameters according to an "objective function", which is either minimised or maximised
- * The "objective function" is often related to a probability based on some model

Optimisation

* Because registration only finds a *local optimum*, some manual reorienting of the images may be needed before doing anything else in SPM.

An MNI-space image from spm12/canonical directory.

Objective functions

- * Intra-modal
 - * Mean squared difference (minimise)
 - * Normalised cross correlation (maximise)

- * Inter-modal (or intra-modal)
 - * Mutual information (maximise)
 - * Normalised mutual information (maximise)
 - * Entropy correlation coefficient (maximise)

Simple interpolation

- * Nearest neighbour
 - * Take the value of the closest voxel
- * Tri-linear
 - Just a weighted average of the neighbouring voxels
 - * $f_5 = f_1 x_2 + f_2 x_1$
 - * $f_6 = f_3 x_2 + f_4 x_1$
 - * $f_7 = f_5 y_2 + f_6 y_1$

B-spline interpolation

Contents

* Preliminaries

* Realignment

- * Realignment by minimising mean-squared difference
- * Residual artifacts and distortion correction
- * Coregistration

Mean-squared difference

- Minimising mean-squared difference works for intra-modal registration (realignment)
- * Simple relationship between intensities in one image, versus those in the other
 - * Assumes normally distributed differences

Motion estimates

Residual errors from aligned fMRI

- * Re-sampling can introduce interpolation errors
 - * especially tri-linear interpolation
- * Gaps between slices can cause aliasing artefacts
- Slices are not acquired simultaneously
 - * rapid movements not accounted for by rigid body model
- * Image artefacts may not move according to a rigid body model
 - * image distortion
 - * image dropout
 - Nyquist ghost
- * BOLD signal changes influence the estimated motion.
- Functions of the estimated motion parameters can be modelled as confounds in subsequent analyses

Movement-by-distortion interaction of fMRI

- *Subject disrupts B₀ field, rendering it inhomogeneous
 - * distortions in phase-encode direction
- *Subject moves during EPI time series
- *Distortions vary with subject orientation
 *shape varies

Movement-by-distortion interaction

Original position

Realign & Unwarp

Correcting for distortion changes

Andersson et al, 2001

Contents

- * Preliminaries
- * Realignment

* Coregistration

* Coregistration by maximising mutual information

Coregistration

- Inter-modal registration.
- Match images from same subject but different modalities:
 - anatomical localisation of single subject activations
 - achieve more precise spatial normalisation of functional image using anatomical image.

Coregistration maximises Mutual Information

- * Used for between-modality registration
- * Derived from joint histograms
- * MI= $\int_{ab} P(a,b) \log_2 [P(a,b)/(P(a) P(b))]$
 - * Related to entropy: MI = -H(a,b) + H(a) + H(b)
 - * Where $H(a) = -\int_{a} P(a) \log_{2}P(a)$ and $H(a,b) = -\int_{a} P(a,b) \log_{2}P(a,b)$

"Check Reg" to assess alignment

EPI dropout and distortion

References

- * Friston et al. Spatial registration and normalisation of images. Human Brain Mapping 3:165-189 (1995).
- * Collignon et al. Automated multi-modality image registration based on information theory. IPMI'95 pp 263-274 (1995).
- * Thévenaz et al. *Interpolation revisited*. IEEE Trans. Med. Imaging 19:739-758 (2000).
- * Andersson et al. *Modeling geometric deformations in EPI time series*. Neuroimage 13:903-919 (2001).