- Dijkstra's Algorithm (10 分)

規定 Input:出發點:以大寫英文字母 A-Z 表示。 路徑:一串包含起點、終點(大寫英文字母 A-Z)與權重 W(1<=W<=1000)的字串,每段路徑之間以逗號隔開。(此 Graph 是無向圖) 規定 Output:以 Dijkstra's Algorithm 計算最短路徑,每當加入新節點時,印出當前的 Adjacency Matrix (若節點之間無路徑連接,W 設為 9999)。

※須使用圖形化輸出,且依照範例輸出圖像化,若使用小黑窗則分數為0。

範例 Input: 出發點: A

路徑: AB7,BC10

範例 Output:

Initial

	Α	В	С			
Α	0	7	9999			
Including B						
	Α	В	С			

	Α	В	C
Α	0	7	17

Including C

	Α	В	С
Α	0	7	17

範例 Input: 出發點: A

路徑: AB7,BC8,CD6,DE12

範例 Output:

Initial

	A	В	С	D	Е			
A	0	7	9999	9999	9999			
Including B	Including B							
	A	В	С	D	Е			
A	0	7	15	9999	9999			
Including C	Including C							
	A	В	С	D	Е			
A	0	7	15	21	9999			
Including D								
	A	В	С	D	Е			
A	0	7	15	21	33			
Including E								
	A	В	С	D	Е			
A	0	7	15	21	33			

11-2-資演-第二次 DEMO 題目

範例 Input:出發點: A

路徑: B C 5,D E 8,A B 6,C D 12

範例 Output:

Initial

	A	В	С	D	Е
A	0	6	9999	9999	9999
Including B					
	A	В	С	D	Е
A	0	6	11	9999	9999
Including C					
	A	В	С	D	Е
A	0	6	11	23	9999
Including D					
	A	В	С	D	Е
A	0	6	11	23	31
Including E					
	A	В	С	D	Е
A	0	6	11	23	31

二、Floyd-Warshall algorithm (10 分)

規定輸入:

路徑:一個包含起點、終點(以大寫英文字母 A-Z 表示)與權重 $W(1 \le W \le 100)$ 的字串以逗號隔開, 每段路徑之間以括號隔開。(此 Graph 是無向圖)

規定輸出:

以 Floyd-Warshall 計算最短路徑顯示最後結果權重表格

※須使用圖形化輸出,若使用小黑窗則分數為0。

範例輸入:

路徑:(A,B,8) (A,C,9) (A,D,6) (B,C,7) (B,E,9) (B,F,4) (C,D,6) (C,E,2) (C,F,3) (D,F,2)(E,G,3) (F,G,3)

範例輸出:

	A	В	C	D	Е	F	G
A	0	8	9	6	11	8	11
В	8	0	7	6	9	4	7
С	9	7	0	5	2	3	5
D	6	6	5	0	7	2	5
Е	11	9	2	7	0	5	3
F	8	4	3	2	5	0	3
G	11	7	5	5	3	3	0

三、Heap Sort (10 分)

規定 Input:

輸入一串 0~100 的整數,以逗號,隔開。

規定 Output:

首先輸出用 Heap Sort 完成排序的數字,以逗號,隔開。(4分)

再畫樹 A 與樹 B。(6分,A、B 樹分別佔3分)

樹 A: 依據一開始輸入的數字之順序所建構的完整 2 元樹(Complete Binary tree)。

樹 B: 依據 Heap Sort 最終排序結果順序建構的完整 2 元樹(Complete Binary tree)。

※須使用圖形化輸出,若使用小黑窗則分數為0。

範例:

Input: 45,49,17,1,7,6

Output1:

1,6,7,17,45,49

Output2(畫樹):

樹 A

樹 B

