LAB06 - Python em SS:

Amostragem:

Para transportar um sinal analógico para dentro de dispositivos digitais, precisamos Amostrá-los, Quantizá-los e codificá-los. O dispositivo que faz a amostragem, a quantização e a codificação de um sinal analógico (tempo contínuo) é chamado de conversor Analógico para Digital ou conversor A/D, enquanto o dispositivo que converte sinais Digitais em sinal Analógicos de tempo contínuo é chamado de conversor Digital para Analógico ou conversor D/A.

Destes três processos nós vamos estudar o primeiro a amostragem. Que é a captura de amostras do sinal contínuo em intervalos uniformemente espaçados. Transformando em um sinal de tempo discreto. E também vamos incluir o retorno do sinal discreto no tempo para um sinal de tempo contínuo.

Teorema de Amostragem: Representação de um sinal de tempo contínuo por suas amostras.

Quando amostramos um sinal de tempo contínuo, temos que escolher o período que o sinal será amostrado.

- Se escolhermos um período com um valor extremamente pequeno para o período de amostragem, obteremos um sinal discreto com uma diferença significativa pequena entre ele e o sinal contínuo, tanto no visual como no conteúdo de informação. Esse sinal discreto será formado por mais pontos e desta forma necessitara de mais recursos para ser tratado.
- Se escolhermos um valor grande para o período de amostragem, obteremos uma compressão de dados, uma diminuição no número de amostras, mas corremos o risco de perder algumas informações importantes fornecidas pelo sinal contínuo.

Então a pergunta que deve ser respondida é como fazer a amostragem sem perder as informações do sinal contínuo e não gerar muitas amostras? É mais fácil perceber a resposta correta no domínio da frequência do que no domínio do tempo.

A primeira medida para a conversão do sinal x(t) em um sinal digital e discretizá-lo na variável do tempo. Ou seja, amostrar x(t) em períodos uniformes de $t = nT_s$ ou

$$x(nT_s) = x(t)|_{t=nT_s}$$
, sendo n inteiro

Onde T_s é o período de amostragem.

Uma forma bem conveniente de apresentar a amostragem e através da multiplicação do sinal contínuo por um trem de impulso.

Figura 1 - Representação da amostragem.

Exemplo 1: Vamos pegar o sinal

$$x(t) = 100\cos(2\pi \cdot 100t)$$

E vamos amostrá-lo com diferentes taxas de amostragem ($T_s = 0.001$, 0.0025 e 0.008 s) para analisar os resultados:

A figura 2 apresenta os gráficos de x(t) no tempo e do modulo na frequência de x(t).

Figura 2 - Gráficos de x(t) no tempo e na frequência.

Com um trem de impulso caracterizado por

$$\delta_{T_S}(t) = \sum \delta(t - nT_S)$$

Sendo o T_s = 0.001 s a figura 3 apresenta seus gráficos de tempo e frequência.

Figura 3 - Gráficos do tempo e do modulo da frequência de um Trem de impulso com T_s = 0.001 s.

Como discutido anteriormente podemos representar a amostragem de um sinal com a sua multiplicação por um trem de impulso. Como demonstrado pela próxima equação:

$$x_{s1}(t) = x(t)\delta_{T_s}(t)$$

A periodicidade do trem do impulso determina a taxa de amostragem do sinal. No exemplo com T_s = 0.001 s isto implica em uma freq. de amostragem f_s = 1/ T_s = 1000 Hz.

Assim $x_{s1}(t)|_{T_{s=0.001}}$ é o sinal x(t) amostrado com uma f_s = 1000 Hz. A figura 4 apresenta seus gráficos no tempo e do modulo da frequência.

Figura 4 - Gráficos de $x_{s1}(t)$ no tempo e do modulo da frequência.

A figura 5 apresenta a representação no tempo discreto e a serie de Fourier (FS) de $x_{st}[n]$:

Figura 5 - $x_{s1}[n]$ no tempo e sua FS.

Vamos aumentar o período do trem de impulso para T_s = 0.0025 s. Então temos na figura 6 os gráficos de tempo e da frequência do novo trem de impulso.

Figura 6 - Gráficos do trem de impulso com T_s = 0.0025 s.

Vamos amostrar novamente x(t) com o novo trem de impulso, e como T_s = 0.0025 s o que implica em uma f_s = 400 Hz. Assim $x_{s2}(t)|_{T_s = 0.0025}$ é o sinal x(t) amostrado com uma f_s = 400 Hz. A figura 7 apresenta seus gráficos no tempo e do modulo da frequência.

Figura 7 - Gráficos de $x_{s2}(t)$ no tempo e do modulo da frequência.

A figura 8 apresenta a representação no tempo discreto e a serie de Fourier (FS) de $x_{s2}[n]$:

Figura $8 - x_{s2}[n]$ no tempo e sua FS.

Vamos novamente aumentar o período do trem de impulso para T_s = 0.008 s. Então temos na figura 9 os gráficos de tempo e da frequência do novo trem de impulso.

Figura 9 - Gráficos do Trem de impulso com T_s = 0.008 s.

Sendo que amostrar x(t) com um trem de impulso, e como T_s = 0.008 s o que implica em uma f_s = 125 Hz. Assim $x_{s3}(t)|_{T_s = 0.008}$ é o sinal x(t) amostrado com uma f_s = 125 Hz. A figura 10 apresenta seus gráficos no tempo e do modulo da frequência.

Figura 10 - Gráficos no tempo e frequência de $x_{s3}(t)$

Para comparação e analise juntamos os gráficos no domínio do tempo dos sinais na figura 11.

Figura 11 – Gráfico com todos os sinais amostrados.

Note que os sinais amostrados acompanham o sinal original. E no domínio do tempo não é muito fácil perceber quais sinais amostrados podem ser recuperados. Então vamos olhar o gráfico na frequência como apresentada na figura 12.

Figura 12 – Gráficos com os módulos na frequência dos sinais amostrados.

Analisando no domínio da frequência é fácil perceber que os sinais amostrados $x_{s1}(t)$ e $x_{s2}(t)$ são os mais parecidos com x(t). Enquanto o sinal $x_{s3}(t)$ é completamente diferente.

Lembrando o teorema de amostragem:

Teorema de Amostragem:

Seja x(t) um sinal de banda limitada com $X(j\omega)=0$ para $|\omega|>\omega_M$. Onde $\omega=2\pi f\ e\ \omega_M=2\pi f_M$. Então, x(t) é determinado unicamente por suas amostras $x(nT_s)$; $n=0,\pm 1,\pm 2,...$ se

$$f_{\rm S} > 2f_{\rm M}$$
,

em que

$$f_s = \frac{1}{T_s}$$

Assim sabendo que a frequência máxima de x(t) é f_M = 100 Hz e de acordo com a teoria de amostragem a frequência mínima de amostragem para que $x_s(t)$ represente unicamente o

sinal x(t) é $f_{smin} > 200$ Hz. Percebemos que o motivo do sinal $x_{s3}(t)$ (com $f_s = 125$ Hz) não se parecer com x(t) é devido a fenômeno *Aliasing* (sobreposição do espectro de frequência).

Note que para retornar os sinais $x_{s1}(t)$ e $x_{s2}(t)$ ao tempo continuo basta aplicar um filtro passa-baixas.

Exemplo 2: Vamos pegar o sinal

$$x(t) = u(t - 0.005) - u(t - 0.02)$$

E vamos amostrá-lo com diferentes taxas de amostragem ($T_s = 0.002$, 0.005, 0.0111 s) para analisar os resultados:

A figura 13 apresenta os gráficos de x(t) no tempo e do modulo na frequência de x(t).

Figura 13 -- Gráficos de x(t) no tempo e na frequência.

Neste exemplo o sinal x(t) não é limitado em frequência. Ele não tem um valor de $|\omega|$ em que $X(j\omega)=0$. Então para evitar o efeito de *aliasing* este sinal precisaria ser filtrado antes da amostragem. Essa filtragem é realizada através de um filtro *anti-aliasing*, o qual é responsável em limitar a frequência do sinal a ser amostrado. Para demonstração vamos filtrar o sinal x(t) por um filtro *anti-aliasing* (Filtro a capacitor passa-baixas) com a resposta em frequência dada por:

$$H(j\omega) = \frac{1}{1 + (j\omega RC)}$$

Com um RC = 0.5. A figura 14 apresenta o sinal após passar pelo filtro anti-aliasing.

Figura 14 - O sinal x(t) após o filtro anti-aliasing.

Vamos amostrá-lo com um trem de impulso com um período de T_s = 0.002 s a figura 15 apresenta seus gráficos de tempo e frequência.

Figura 15 – Gráficos do trem de impulso com T_s = 0.002 s

Amostrando o sinal $x_f(t)$ com o trem de impulso temos $x_{s1}(t) = x_f(t)\delta_{T_s}(t)$.

Como a periodicidade do trem do impulso determina a taxa de amostragem do sinal e com $T_s = 0.002$ s temos uma $f_s = 1/T_s = 500$ Hz. Assim $x_{s1}(t)|_{T_s = 0.002}$ é o sinal $x_f(t)$ amostrado com uma $f_s = 500$ Hz. A figura 16 apresenta seus gráficos no tempo e do modulo da frequência.

Figura 16 - Gráficos de $x_{s1}(t)$ no tempo e do modulo da frequência.

Vamos aumentar o período do trem de impulso para T_s = 0.005 s. Então temos na figura 17 os gráficos de tempo e da frequência do novo trem de impulso.

Figura 17 - Gráficos do trem de impulso com T_s = 0.005 s.

Vamos amostrar novamente $x_f(t)$ com T_s = 0.005 s o que implica em uma f_s = 200 Hz. Assim $x_{s2}(t)|_{T_s = 0.005}$ é o sinal x(t) amostrado com uma f_s = 200 Hz. A figura 18 apresenta seus gráficos no tempo e do modulo da frequência.

Figura 18 - Gráficos de $x_{s2}(t)$ no tempo e do modulo da frequência.

Vamos novamente aumentar o período do trem de impulso para T_s = 0.0111 s. Então temos na figura 19 os gráficos de tempo e da frequência do novo trem de impulso.

Figura 19 - Gráficos do Trem de impulso com $T_s = 0.0111$ s.

Obtemos $x_{s3}(t)|_{T_s = 0.011}$ amostrando $x_f(t)$ com $T_s = 0.0111$ s o que implica em uma $f_s \cong 90$ Hz. A figura 20 apresenta seus gráficos no tempo e do modulo da frequência.

Figura 20 - Gráficos no tempo e frequência de $x_{s3}(t)$.

Vamos comparar os gráficos no domínio do tempo dos sinais amostrados na figura 21.

Figura 21 - Gráfico com todos os sinais amostrados.

O sinal $x_{s1}(t)$ possuem vários pontos dentro do sinal original, enquanto os sinais $x_{s2}(t)$ e $x_{s3}(t)$ possuem poucos pontos dentro do sinal original, respectivamente 4 e 2 pontos. Vamos examinar a figura 22 a qual tem os gráficos dos sinais na frequência.

Figura 22 – Gráfico com os módulos na frequência dos sinais amostrados.

No gráfico da frequência é fácil perceber que o sinal $x_{s3}(t)$ está muito ruim, não há como retorna-lo ao sinal original. O sinal $x_{s2}(t)$ sofre um pouco com o *aliasing*, podemos perceber isso ao examinar o lóbulo em 100 HZ. O sinal recuperado provavelmente será um pouco distorcido, mas dependendo da aplicação ele pode ser usado diretamente, sem nenhum tipo de correção.

Reconstrução do Sinal:

O teorema de Amostragem diz que se $f_s > 2 \, f_{m \acute{a} x} \, (f_{m \acute{a} x} \, \acute{e} \, a \, freq.$ máxima do sinal de tempo continuo) o sinal pode retornar ao domínio de tempo contínuo através de um filtro passa-baixas ideal com uma frequência de corte maior que $f_{m \acute{a} x}$.

Na pratica os filtros ideais não são usados, e geralmente eles são substituídos por filtros não ideais. E claro que isso implica em uma diferença entre o sinal original e o sinal recuperado. A escolha geralmente se dá em função da aplicação desejada, no qual se escolhe um nível de distorção adequado para o sinal recuperado.

Um sistema muito utilizado na pratica devido a custos e complexidades é o sistema nomeado retentor de ordem zero vamos ver como ele funciona no exemplo 3.

Exemplo 3: Vamos aplicar no exemplo 1 o retentor de ordem zero. Lembrando-se do sinal no tempo contínuo.

A figura 23 apresenta o sinal do exemplo 1.

Figura 23 – Sinal do exemplo 1

Aplicando o Retentor de ordem zero no sinal com $f_s = 10 f_{m \dot{\alpha} x}$ ou $T_s = 0.001$ s. A figura 24 apresenta o sinal $x_{st}(t)$ amostrado e o sinal recuperado $x_s(t)$.

Figura 24 - O sinal $x_{s1}(t)$ amostrado e o sinal recuperado $x_s(t)$.

Aplicando o Retentor de ordem zero com uma taxa de amostragem menor. Note a maior presença dos componentes de frequência perto das harmônicas da frequência de amostragem. O resultado do aumento no período de amostragem é apresentado na figura 25.

Figura 25 - O sinal $x_{s1}(t)$ amostrado e o sinal recuperado $x_s(t)$.

Dependendo da necessidade os sinais recuperados podem precisar passar por um processo filtragem para eliminar ou mitigar a presença de elementos de frequência fora do sinal original. Só para demonstração vamos utilizar um filtro passa-baixas RC apresentado na figura 26.

Figura 26 - Filtro RC

A figura apresenta no domínio da frequência o sinal $x_r(t)$ normalizado e a resposta em frequência do filtro passa baixas com um RC = 0.35.

Figura 27 - Modulo de $x_r(t)$ e a resposta em frequencia do filtro RC = 0.35

A figura 28 apresenta o sinal recuperado $x_r(t)$ e após a filtragem o $x_{rf}(t)$. Notamos alguns detalhes interessantes, como que o sinal filtrado foi atenuado e atrasado.

Figura 28 - Gráficos $x_r(t)$ e $x_{rf}(t)$

A figura 29 também compara o sinal recuperado e o sinal recuperado filtrado. Note que o sinal filtrado ficou um pouco melhor. Pode-se conseguir um sinal mais parecido com o original com um filtro melhor.

Figura 29 - Comparando os sinais recuperado e o recuperado filtrado Ts = $0.001 \, s$.

O taxa de amostragem também influencia no momento da recuperação. Por exemplo, vamos pegar o sinal amostrado com T_s = 0.0025 s e vamos passá-lo pelo mesmo filtro. A figura 30 apresenta os resultados.

Figura 30 – Comparando os sinais recuperado e o recuperado filtrado T_s = 0.0025 s

Note a presença de mais componentes de frequência indesejadas. Neste caso precisaremos de um filtro melhor para atingir a mesma qualidade do exemplo anterior.

Exercício 1) Considere um sinal analógico x(t) composto por três senoides de frequência igual na equação:

$$x(t) = 2sen(2\pi f_1 t) + 2sen(2\pi f_2 t) + sen(2\pi f_3 t)$$

Onde $f_1 = 1$ kHz; $f_2 = 4$ kHz e $f_3 = 6$ kHz.

- a) Sendo o sinal $x_o(t)$ o sinal x(t) amostrado na taxa de amostragem de 5 kHz.
 - I. Usando o Python:
 - plote x(t) no tempo e o seu modulo na frequência;
 - plote $x_o(t)$ no tempo e o seu modulo na frequência.
 - II. Mostre se $x_a(t)$ sofre de *aliasing*. Descreva como isso ocorre! (Pode desenhar na mão ou através do Python)
 - III. Plote no mesmo gráfico, os sinais x(t) e $x_a(t)$. (plote o sinal $x_a(t)$ no tempo continuo cada ponto interligando o próximo ponto).
- b) Sendo o sinal $x_a(t)$ o sinal x(t) amostrado na taxa de amostragem de 10 kHz.
 - I. Usando o Python:
 - plote x(t) no tempo e o seu modulo na frequência;
 - plote $x_a(t)$ no tempo e o seu modulo na frequência.
 - II. Mostre se $x_a(t)$ sofre de *aliasing*. Descreva como isso ocorre! (Pode desenhar na mão ou através do Python)
 - III. Plote no mesmo gráfico, os sinais x(t) e $x_o(t)$. (plote o sinal $x_o(t)$ no tempo continuo cada ponto interligando o próximo ponto).