Chapitre 2 : CALCULS ALGÉBRIQUES

I Rappels sur le calcul polynomial

I.1 Identités remarquables

Pour des complexes x et y:

$$(x+y)^2 = x^2 + 2xy + y^2$$

•
$$(x+y)^2 = x^2 + 2xy + y^2$$
 • $(x-y)^2 = x^2 - 2xy + y^2$ • $x^2 - y^2 = (x-y)(x+y)$

•
$$x^2 - y^2 = (x - y)(x + y)$$

La deuxième identité se déduit de la première en changeant y en -y.

Ces inégalités seront généralisées plus loin, notamment par la formule du binôme de Newton.

Des inégalités déduites à connaître :

(1) Pour
$$a$$
 et b réels : $ab \leqslant \frac{a^2 + b^2}{2}$ avec égalité si, et seulement si, $a = b$.

(2) Pour
$$a>0$$
 et $b>0$: $\sqrt{a}-\sqrt{b}=\frac{a-b}{\sqrt{a}+\sqrt{b}}$ (multiplication par la quantité conjuguée)

1▶

Pratique 1:

- **1.** Comment factoriser $x^2 + 1$?
- **2.** Montrer que : $0 \le \sqrt{5} 2 \le 1/4$
- **3.** Simplifier (écriture sans dénominateur) : $\frac{\sqrt{5}+2}{\sqrt{5}-2}$
- **4.** Montrer que $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* et donner sa dérivée, en calculant : $\lim_{h \to 0} \frac{\sqrt{x+h} \sqrt{x}}{h}$

I.2 Factorisations polynomiales

Application polynomiale : $P: x \mapsto a_0 + a_1 x + \ldots + a_n x^n = \sum_{k=0}^n a_k x^k$ (avec a_i dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C})

Convention : $x^0 = 1$.

Si $a_n \neq 0$, le degré de P est noté deg(P), c'est n.

Par convention, le degré du polynôme nul est $-\infty$.

Nous démontrerons plus tard :

- P est l'application nulle si, et seulement si, les coefficients a_i sont tous nuls. En particulier deux polynômes sont égaux si, et seulement si, leurs coefficients sont identiques.
- P se factorise par un polynôme A (ou A divise P) s'il existe un polynôme Q tel que P = AQ.
- a est racine de P, c'est à dire P(a) = 0 si, et seulement si, P se factorise par le monôme x a. L'ordre de multiplicité de a est la plus grande puissance naturelle α telle que $(x-a)^{\alpha}$ divise P.
- Si deg $P \ge 1$, alors P peut s'écrire comme produit de n facteurs complexes de forme $(x a_i)$ et d'une constante non nulle λ , de manière unique à l'ordre près des facteurs :

$$P(x) = \lambda(x - a_1)(x - a_2) \dots (x - a_n) = \lambda \prod_{k=1}^{n} (x - a_k)$$

Les racines a_i ne sont pas forcément distinctes deux à deux : en les regroupant par valeurs égales on obtient l'écriture

$$P(x) = \lambda (x - b_1)^{\alpha_1} (x - b_2)^{\alpha_2} \dots (x - b_q)^{\alpha_q} = \lambda \prod_{k=1}^{q} (x - b_k)^{\alpha_k}$$

où α_k est l'ordre de multiplicité de la racine b_k pour P (et λ le coefficient dominant de P).

Ce dernier résultat nécessite le cadre complexe : $x^2 + 1 = (x - i)(x + i)$ mais $x \mapsto x^2 + 1$ n'a pas de racine réelle (irréductibilité sur \mathbb{R}).

Sachez factoriser un polynôme par x-a quand vous savez que a est racine

2▶

Pratique 2:

- 1. Factoriser $x^3 7x^2 7x + 1$.
- **2.** Factoriser $2x^4 + 5x^3 x^2 + 5x 3$ sachant que 1/2 et -3 sont racines.

I.3 Rappels sur les trinômes réels de degré 2

Soit a un réel non nul, b et c des réels, et $P = ax^2 + bx + c$ le trinôme étudié.

- Discriminant de $P: \Delta = b^2 4ac$
- Forme canonique de $P: \forall x \in \mathbb{C}, \ ax^2 + bx + c = a\left((x + \frac{b}{2a})^2 \frac{\Delta}{4a^2}\right)$
- Cette forme canonique donne la «résolution» de l'équation (E) $ax^2 + bx + c = 0$ d'inconnue x dans \mathbb{C} :
- * si $\Delta > 0$, (E) admet deux solutions qui sont réelles et distinctes : $\frac{-b + \sqrt{\Delta}}{2a}$ et $\frac{-b \sqrt{\Delta}}{2a}$
- * si $\Delta < 0$, (E) admet deux solutions qui sont complexes non réelles et conjuguées :

$$\frac{-b + i\sqrt{-\Delta}}{2a} \text{ et } \frac{-b - i\sqrt{-\Delta}}{2a}$$

- * si $\Delta = 0$, (E) admet une seule racine, dite double : $-\frac{b}{2a}$
- Relations coefficients-racines : en notant x_1 et x_2 les deux racines complexes de (E), éventuellement confondues :

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$
 et
$$\begin{cases} x_{1} + x_{2} = -b/a \\ x_{1}x_{2} = c/a \end{cases}$$

Ceci permet de trouver facilement la deuxième racine complexe quand on en connaît déjà une...

Pratique 3:

- 1. Donner la forme canonique de : a) $2x^2 + x + 4$ et de b) $-3x^2 + 2x + 1$
- 2. Sans calcul, donner la somme et le produit des racines des deux trinômes précédents.
- **3.** Résoudre l'équation $x^2 + x + 1 = 0$ d'inconnue x dans \mathbb{C} .
- **4.** Résoudre l'équation $z^2 6z + 5 = 0$ d'inconnue z dans \mathbb{C} .
- **5.** Soit $\theta \in \mathbb{R}$. Résoudre l'équation $y^2 2\cos(\theta)y + 1 = 0$ d'inconnue y dans \mathbb{C} .
- **6.** Résoudre le système $\begin{cases} x+y=2 \\ xy=3 \end{cases}$ d'inconnues x et y dans \mathbb{C} .
- 7. Résoudre le système $\begin{cases} x+y=2\\ x^2+y^2=3 \end{cases}$ d'inconnues x et y dans \mathbb{C} .

II Sommes et produits, les symboles \sum et \prod

II.1 Notations

$$1 + \sqrt{2} + \sqrt{3} + \ldots + \sqrt{10}$$
 se note : $\sum_{k=1}^{10} \sqrt{k}$ ou $\sum_{k \in \llbracket 1, 10 \rrbracket} \sqrt{k}$ ou encore $\sum_{1 \leqslant k \leqslant 10} \sqrt{k}$

et de même : 1.2.3 100 =
$$\prod_{k=1}^{100} k = \prod_{k \in [\![1,100]\!]} k = \prod_{1 \leqslant k \leqslant 100} k = 100!$$

Pour I un ensemble fini et $(z_i)_{i\in I}$ une famille de scalaires :

- $\sum_{i \in I} z_i$ désigne la somme des z_i lorsque i décrit I; si $I = \emptyset$, valeur 0
- $\bullet \prod_{i \in I} z_i$ le produit des z_i lorsque i décrit I ; si $I = \varnothing,$ valeur 1

Pour deux entiers m et n tels que $m \leq n$, et I = [m, n], on note plus souvent :

- $\sum_{i=m}^{n} z_i = \sum_{m \leq i \leq n} z_i$ est la somme des z_i pour i de m à n
- $\prod_{i=m}^{n} z_i = \prod_{m \leqslant i \leqslant n} z_i$ est le produit des z_i pour i de m à n

Entre m et n compris, il y a n-m+1 entiers! En particulier, $\sum_{k=m}^{n} 1 = n-m+1$!

Pratique 4:

- **1.** Écrire sous forme condensée, pour un naturel non nul $n: 0+1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$
- **2.** Même chose avec : $1 \times 4 \times 9 \times \ldots \times n^2$
- **3.** Comparer $\sum_{k=1}^{n} \sin(k)$ et $\sum_{j=1}^{n} \sin(j)$. Comment qualifier les indices k et j dans ces sommes?
- 4. Calculer pour un scalaire z donné : $\sum_{k=0}^{n} z$ et $\prod_{i \in \llbracket 0,n \rrbracket} z$
- **5.** Comparer : $\sum_{k=1}^{n} n$ et $\sum_{k=1}^{n} k$
- **6.** Simplifier: $\sum_{k=1}^{n} (2k) \text{ et } \prod_{k=1}^{n} (2k)$
- 7. Calculer la somme de n termes consécutifs d'une suite arithmétique : $\sum_{k=m}^{m+n-1} (a+bk)$

II.2 Changements d'indices (réindexation)

m, n, p désignent des naturels tels que $m \leq n$, et $(z_i)_{i \in \mathbb{N}}$ désigne une famille de scalaires.

Changements d'indices les plus courants :

1) par décalage :
$$\sum_{k=m}^n z_k = \sum_{k=m+p}^{n+p} z_{k-p} \quad \text{et} \quad \prod_{k=m}^n z_k = \prod_{k=m+p}^{n+p} z_{k-p}$$

2) par inversion:
$$\sum_{k=m}^{n} z_k = \sum_{k=m}^{n} z_{m+n-k}$$
 et $\prod_{k=m}^{n} z_k = \prod_{k=m}^{n} z_{m+n-k}$

5▶

Pratique 5:

- 1. Soit $n \in \mathbb{N}^*$. Montrer que : $\sum_{k=1}^n \sqrt{k} = \sum_{k=0}^{n-1} \sqrt{k+1}$
- **2.** Montrer que : $\sum_{k=0}^{n} k = \sum_{k=0}^{n} (n-k)$, et en déduire cette somme.

Des sommes et des produits généraux à savoir calculer :

- (a) Somme télescopique (ou en cascade) : $\sum_{i=m}^{n} (z_{i+1} z_i) = z_{n+1} z_m$
- (b) Produit télescopique (ou en cascade) : $\prod_{i=m}^{n} \frac{z_{i+1}}{z_i} = \frac{z_{n+1}}{z_m}$ (si défini)
- (c) Somme géométrique de raison $q:\sum\limits_{k=0}^{n}q^{k}=\frac{1-q^{n+1}}{1-q}$ si $q\neq 1,\,n+1$ sinon

Pratique 6:

1. Calculer:
$$\sum_{k=5}^{10} (\frac{1}{3})^k$$

2. Soit z un scalaire. En calculant
$$(z-1)\sum_{k=0}^{n}kz^{k}$$
, donner : $\sum_{k=1}^{n}kz^{k}$

3. Montrer que :
$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$
. Calculer : $\sum_{k=1}^{n} \frac{1}{k(k+1)}$

4. Calculer :
$$\sum_{k=1}^{n} \ln(1 + \frac{1}{k})$$

5. Calculer :
$$\prod_{k=1}^{n} (1 + \frac{1}{k})$$

6. Retrouver
$$\sum_{k=1}^{n} k$$
 à partir de la simplification de $(k+1)^2 - k^2$. Comment calculer $\sum_{k=1}^{n} k^2$?

II.3 Sommes doubles et produits doubles

On peut sommer ou effectuer un produit sur un ensemble d'indices I formé de couples.

• Sommation en rectangle :

Soit par exemple des naturels p et q et $I = \llbracket 0, p \rrbracket \times \llbracket 0, q \rrbracket$ le «rectangle» formé des couples (i, j) tels que $0 \le i \le p$ et $0 \le j \le q$.

Soit $z_{(i,j)}$ des scalaires pour $(i,j) \in I$. On les note plus généralement $z_{i,j}$.

On note :
$$\sum_{(i,j)\in I} z_{i,j} = \sum_{0\leqslant i\leqslant p, 0\leqslant j\leqslant q} z_{i,j} = \begin{cases} \sum\limits_{i=0}^p \sum\limits_{j=0}^q z_{i,j} & \text{(somme par colonnes)} \\ \sum\limits_{j=0}^q \sum\limits_{i=0}^p z_{i,j} & \text{(somme par lignes)} \end{cases}$$

et de même :
$$\prod_{(i,j)\in I} z_{i,j} = \prod_{0\leqslant i\leqslant p, 0\leqslant j\leqslant q} z_{i,j} = \begin{cases} \prod\limits_{i=0}^p \prod\limits_{j=0}^q z_{i,j} & \text{(produit par colonnes)} \\ \prod\limits_{j=0}^q \prod\limits_{i=0}^p z_{i,j} & \text{(produit par lignes)} \end{cases}$$

7▶

Pratique 7:

1. Calculer :
$$\sum\limits_{(i,j)\in \llbracket 1,n\rrbracket^2}ij$$

2. Vérifier que pour des scalaires
$$a_i$$
 et b_i : $\sum_{m\leqslant i\leqslant n,p\leqslant j\leqslant q}a_ib_j=(\sum_{m\leqslant i\leqslant n}a_i)(\sum_{p\leqslant j\leqslant q}b_j)$

3. A-t-on de même :
$$\prod_{m\leqslant i\leqslant n, p\leqslant j\leqslant q}a_ib_j=(\prod_{m\leqslant i\leqslant n}a_i)(\prod_{p\leqslant j\leqslant q}b_j)?$$

• Sommation en triangle :

I est maintenant le «triangle» formé des couples (i, j) tels que $0 \le i \le j \le p$.

On note :
$$\sum_{(i,j)\in I} z_{i,j} = \sum_{0\leqslant i\leqslant j\leqslant p} z_{i,j} = \begin{cases} \sum\limits_{i=0}^p \sum\limits_{j=i}^p z_{i,j} & \text{(somme en colonnes "variables")} \\ \sum\limits_{j=0}^p \sum\limits_{i=0}^j z_{i,j} & \text{(somme en lignes "variables")} \end{cases}$$

et de même :
$$\prod_{(i,j)\in I} z_{i,j} = \prod_{0\leqslant i\leqslant j\leqslant p} z_{i,j} = \begin{cases} \prod_{i=0}^p \prod_{j=i}^p z_{i,j} & \text{(produit en colonnes & (variables }))} \\ \prod_{j=0}^p \prod_{i=0}^j z_{i,j} & \text{(produit en lignes & (variables))} \end{cases}$$

8▶

Pratique 8:

- 1. Calculer $\sum_{(i,j)\in [\![1,n]\!]^2, i\leqslant j}\frac{i}{j}$
- **2.** Montrer que : $(\sum_{i=1}^n z_i)^2 = \sum_{i=1}^n z_i^2 + \sum_{(i,j)\in[[1,n]]^2, i\neq j} z_i z_j = \sum_{i=1}^n z_i^2 + 2\sum_{1\leqslant i< j\leqslant n} z_i z_j$

Penser à changer (correctement) l'ordre des sommes en cas de difficulté avec une somme double!

III Formule du binôme de Newton (1642-1727) - Cœfficients binomiaux

Sauf précision, n et k sont des naturels, a et b deux scalaires.

• Factorielle de n: 0! = 1 et pour $n \ge 1$, $n! = \prod_{k=1}^{n} k = n \cdot (n-1)!$

Pratique 9:

- 1. Vérifier que pour n naturel non nul : $2^{n-1} \le n! \le n^{n-1}$
- **2.** p et n sont deux naturels et $1 \le p \le n$. Écrire $\prod_{k=1}^{p} (n+1-k)$ à l'aide de factorielles.
- **3.** Écrire plus simplement : $\prod_{2 \leq k \leq 2n, k \text{ pair}} k$
- Cœfficient binomial pour n et k entiers naturels : $\binom{n}{k} = \begin{cases} \frac{n!}{k!(n-k)!} & \text{si } k \in \llbracket 0, n \rrbracket \\ 0 & \text{sinon} \end{cases}$

Remarque:

Pour $k \in [0, n]$, on montrera que $\binom{n}{k}$ est :

- le nombre de parties à k éléments d'un ensemble à n éléments,
- le nombre de façons d'obtenir k pile en lançant n fois une pièce (nombre de façons d'obtenir k succès lors d'une suite de n expériences de Bernoulli indépendantes),

ce qui conduit à poser
$$\binom{n}{k} = 0$$
 si $k \in \mathbb{Z} \setminus [0, n]$.

Propriétés

1) $\binom{n}{k}$ est un naturel.

2) Symétrie :
$$\binom{n}{k} = \binom{n}{n-k}$$

3) Formule du **triangle de Pascal (1623-1662)** : $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

4) Formule de calcul efficace : $\binom{n+1}{k+1} = \frac{n+1}{k+1} \binom{n}{k}$

9▶

• Formule du binôme de Newton :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

10▶

Pratique 10:

1. Écrire $(a+b)^n$ explicitement pour n de 0 à 5.

2. Simplifier : $\binom{7}{3} - \binom{6}{3}$

3. Calculer $(1+1)^n$ et en déduire une formule sommatoire sur les $\binom{n}{k}$

IV Sommes particulières à connaître

a et b sont des scalaires, n un naturel, q un scalaire différent de 1.

•
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
 (binôme de Newton)

$$\bullet \sum_{k=0}^{n} q^{k} = \begin{cases} \frac{1-q^{n+1}}{1-q} & \text{si } q \neq 1 \\ n+1 & \text{sinon} \end{cases}$$
 (somme géométrique, mieux vaut deux fois qu'une...)

•
$$a^n - b^n = (a - b) \cdot \sum_{k=0}^{n-1} a^k b^{n-1-k} = (a - b) \cdot \sum_{p+q=n-1} a^p b^q$$

11▶

Pratique 11:

1. Factoriser : $a^3 - b^3$, $a^4 - b^4$, $a^5 - b^5$ **2.** Factoriser : $a^3 + b^3$ **3.** Calculer : $\sum_{k=0}^{n} k \binom{n}{k}$

SAVOIR...

- (1) ... reconnaître une identité remarquable, une somme ou un produit télescopique, une somme géométrique.
- (2) ... réindexer dans une somme ou un produit (décalage, inversion, rectangle, triangle).
- (3) ... qu'un calcul effectif de somme passe en général par une somme télescopique ou géométrique.
- (3) ... résoudre une équation polynomiale de degré 2.
- (4) ... utiliser les relations coefficients-racines.
- (5) ... les propriétés relatives aux coefficients binomiaux.
- (6) ... utiliser la formule du binôme de Newton pour développer ou obtenir des relations faisant intervenir les coefficients binomiaux.

THÉORÈMES et PROPOSITIONS

... outils pour ...

Formule du trangle de Pascal et formule efficace

Calculs avec des $\binom{n}{p}$

Formule du binôme de Newton

Calculs de puissance, calculs avec des $\binom{n}{p}$

Sommes particulières à connaître

Calculs divers