# Complex Network Analysis on Bike-Sharing Systems

M.Sc. Siyu Chen

Technical Presentation

Supervisor: Prof. Zhenghui Sha

Institute of Information-oriented Control

Technical University of Munich





## **Motivation**

### **Bike-Sharing Systems (BSS)**

Bike-sharing systems (BSS) are emerging transportation systems arising from the sharing economy.





### **Motivation**

# **Bike-Sharing Systems (BSS)**

Bike-sharing systems (BSS) are emerging transportation systems arising from the sharing economy.

# Challenges

- How to transform the weighted network to a sparsified binary network with an appropriate weight threshold matrix?
- Given a social network, how to infer the new interactions among its members in the near future?





# **Motivation**

# Bike-Sharing Systems (BSS)

Bike-sharing systems (BSS) are emerging transportation systems arising from the sharing economy.

# **Challenges**

- How to transform the weighted network to a sparsified binary network with an appropriate weight threshold matrix?
- Given a social network, how to infer the new interactions among its members in the near future?
- Task 1: minimum absolute spectral similarity (MASS) technique for determining the weight threshold.
- Task 2: classification in machine learning for link prediction.



■ minimum absolute spectral similarity (MASS) [Yan+ 2018]

$$\sigma_{\min} = \min_{|x|=1} \left( 1 - \frac{x^T \Delta L x}{\lambda_N} \right) = \frac{\lambda_N - \lambda_N^{\Delta}}{\lambda_N} \tag{1}$$

Task 1 •0000

■ minimum absolute spectral similarity (MASS) [Yan+ 2018]

$$\sigma_{\min} = \min_{|x|=1} \left( 1 - \frac{x^T \Delta L x}{\lambda_N} \right) = \frac{\lambda_N - \lambda_N^{\Delta}}{\lambda_N}$$
 (1)





■ minimum absolute spectral similarity (MASS) [Yan+ 2018]

$$\sigma_{\min} = \min_{|x|=1} \left( 1 - \frac{x^T \Delta L x}{\lambda_N} \right) = \frac{\lambda_N - \lambda_N^{\Delta}}{\lambda_N} \tag{1}$$

By MASS, we can evaluate what percentage of links are removed, the graph can still remain good graph property  $\sigma$ .



 Motivation
 Task 1
 Task 2
 Conclusion o

 ○
 ●0000
 0000
 3

### **Algorithm 1** pseudocode for MASS

- 1: Generate original weighted matrix  $\boldsymbol{W}$  from data file;
- 2: Initialization for threshold matrix X=W and sample period p;
- 3: t = 0 : p : 1
- 4: **for** i = 1 to 1/p **do**
- 5: Calculate the value of weight x in t(i) \* 100-th percentile;
- 6: X(W < x) = 0;
- 7: Calculate degree matrices  $D_0$  and D of W and X;
- 8:  $L=D_0-W$  and  $\tilde{L}=D-X$ ;
- 9:  $\Delta \lambda_N = L \tilde{L}$ ;
- 10: Calculate minimum eigenvalues  $\lambda_N^{\Delta}$  and  $\lambda_N$  of  $\Delta L$  and L;
- 11: Calculate  $\sigma(i)$  according to Eq. (1);
- 12: end for













#### MASS



Variation of MASS, for networks in 2016 and in 2017



Task 1 00●00

#### MASS



Variation of MASS, for networks in 2016 and in 2017



ivation Task 1

#### MASS



When 30% links are removed, the networks for 2016 and 2017 remain good graph properties!

Variation of MASS, for networks in 2016 and in 2017





lacktriangle Visualization for resulting networks  $ilde{G}_1$  in 2016 and  $ilde{G}_2$  in 2017



Visualization for  $\tilde{G}_1$ 



Visualization for  $\tilde{G}_2$ 



Motivation 0







#### Network statistics

Statistics for resulting networks  $\tilde{G}_1$  and  $\tilde{G}_2$ 

| Network statistics          | 2016  | 2017   |  |
|-----------------------------|-------|--------|--|
| Average Degree              | 73.4  | 75.949 |  |
| Network Diameter            | 10    | 9      |  |
| Graph Density               | 0.135 | 0.139  |  |
| Modularity                  | 0.222 | 0.268  |  |
| Average cluster coefficient | 0.47  | 0.469  |  |

Task 2



- Dataset: We describe the resulting graph  $\tilde{G}$  as dataset  $\mathcal{D} = \{X,Y\}$ , where  $X = \{x_1,...,x_n\} \in \mathbb{R}^{2d \times n}$ ,  $Y = \{y_1,...,y_n\} \in \mathbb{R}^n$ , feature vector  $x_i \in \mathbb{R}^{2d}$  and label  $y_i \in \{0,1\}$ .
- NN-based classifier:



Structure of the l=3 fully-connected layers

Motivation 0 Task 1



Task 2

•000



- Dataset: We describe the resulting graph  $\tilde{G}$  as dataset  $\mathcal{D} = \{X,Y\}$ , where  $X = \{x_1,...,x_n\} \in \mathbb{R}^{2d \times n}$ ,  $Y = \{y_1,...,y_n\} \in \mathbb{R}^n$ , feature vector  $x_i \in \mathbb{R}^{2d}$  and label  $y_i \in \{0,1\}$ .
- NN-based classifier:



Structure of the l=3 fully-connected layers

# Challenge

How to solve class imbalance for the number of "edge" and "non-edge"?



Motivation O







- Dataset:
  - n = 338k training data points from data file 2016
     n = 342k validation data points from data file 2017.
  - feature vector: node attributes  $a \in \mathbb{R}^3$ , "latitude", "longitude" and "dpcapacity" from  $\tilde{v}$  to  $\tilde{u}$ ,  $x_i \in \mathbb{R}^6$ ; labels: "edge" class  $y_i = 1$  and "non-edge" class  $y_i = 0$ .

■ Link prediction framework





Motivation 0 Task 1 00000 Task 2

Conclusion

9

#### ■ Evaluation

#### Evaluation based on two samplers

| sampler          | accuracy | e-precision | e-recall |
|------------------|----------|-------------|----------|
| routine sampler  | 0.89     | 0           | 0        |
| weighted sampler | 0.69     | 0.21        | 0.84     |

### Evaluation based on different class weight ratio

| edge: non-edge | accuracy | e-precision | e-recall | n-precision | n-recall |
|----------------|----------|-------------|----------|-------------|----------|
| 0.8: 0.2       | 0.80     | 0.50        | 0.05     | 0.90        | 0.99     |
| 0.9: 0.1       | 0.69     | 0.39        | 0.26     | 0.92        | 0.95     |
| 0.95: 0.05     | 0.56     | 0.28        | 0.65     | 0.95        | 0.79     |
| 0.99: 0.01     | 0.30     | 0.16        | 0.93     | 0.98        | 0.44     |

#### ■ Evaluation

The precision-recall curve







#### ■ Evaluation

The precision-recall curve













#### ■ Evaluation

The precision-recall curve



The threshold value 0.6 is chosen for the balance between precision and recall in post-processing.

Motivation 0







 $\blacksquare$  The weight threshold matrix is determined by removing 30% of links using the MASS technique.



- $\blacksquare$  The weight threshold matrix is determined by removing 30% of links using the MASS technique.
- Link prediction framework based on NN classifier is designed to establish a model.



- $\blacksquare$  The weight threshold matrix is determined by removing 30% of links using the MASS technique.
- Link prediction framework based on NN classifier is designed to establish a model.





- $\blacksquare$  The weight threshold matrix is determined by removing 30% of links using the MASS technique.
- Link prediction framework based on NN classifier is designed to establish a model.

 $\Longrightarrow$ 

Weighted sampler is adopted to guarantee a balanced training data for "edge" class and "non-edge" classes and improve the performance of the model.



# References



Xiaoran Yan, Lucas Jeub, Alessandro Flammini, Filippo Radicchi and Santo Fortunato. Weight Thresholding on Complex Networks. June 2018.