CSE 2033:ADVANCED DISCRETE MATHEMATICS

REQUIRED COURSE TEXTBOOK:

- 1. Introductory Combinatorics by Richard A. Brualdi, Fifth Edition, Pearson India
- 2. Introduction to Lattices and order by B. A Davey and H. A. Priestley, Cambridge University 3. abstract Algebra, 3rd Edition by David S. Dummit, Wiley India

Course format: 4 Classes / week/, 1 hr. / Class, Grading - internal: 15 % Mid Term + 10% quizzes +10% assignments + 5% attendance = 40 %

SI No.	Topics	Lecture Hours	Chapters	Problems to be discussed in class		
COMBINATORICS						
3	Counting Principles	1	2.1			
	Permutations of Sets	1	2.2			
4	Combination of Sets	1	2.3			
	*(Th2.3.1,2.3.2,2.3.3,2.3.4)					
5	Permuatations of Multisets	1	2.4	2.7(6, 7,10)		
6	Combinatios of Multisets *(Th 2.4.1,2.4.2,2.4.4,2.5.1)	1	2.5	2.7(11,16,32)		
7	Pigeonhole Principle:Simple form	1	3.1			
8	Pigeonhole Principle: Strong form	1	3.2	3.4(3,4,10)		
9	Generating Permutaions (algorithm I, II)	1	4.1			
10	Inversions in permutations	1	4.2			
11	Generating Combinations (Base 2 algorithm)	1	4.3	4.6 (1,3,9,10)		
12	Pascal's Triangle ,The	1	5.1			
	Binomial Theorem (Th 5.2.2)		5.2			
13	Unimodality of Binomial Coefficients (Th 5.3.1, Cor: 5.3.2)	1	5.3			
14	The Multinomial Theorem and Newton's Binomial Theorem, (Th 5.4.1, Th 5.5.1)	1	5.4	5.7(8 ,15,18,38)		
15	The Inclusion – Exclusion Principle Th 6.1.1	1	6.1			
16	Combinations with repetition,	1	6.2			
17	Derangements (Th 6.3.1(without proof)	1	6.3	6.7(2,4,6)		
18	Some Number Sequences	1	7.1			
19	Generating Sequences	1	7.2			

20,21	Solving Linear	2	7.4	7.7(2,3,4,34)
	Homogeneous Recurrence			
	Relations			

Note: 1. Few examples will be discussed by teacher in class and remaining all examples are strictly to be covered from each mentioned topics by the students.

2. Theorems proof are not compulsory

	ABST	RACT ALG	EBRA	
22	Introduction to groups: axioms and exaamples (Proposition 1 and 2)	1	1.1	3,6,12
23	Dihedral Groups	1	1.2	1
	The Quaternion Group	1	1.5	1
24	Subgroups: Definitions and examples (Proposition 1)	1	2.1	1(a),1(b), 2(a),2(b),8
25	Centralizers and Normalisers	1	2.2	4,10
26	Cyclic Groups(Examples and Proposition 2,3)	1	2.3	1,3,12
27	The lattice of subgroups of a group	1	2.5	2(a), 2(b), 6
29	Quotient Groups: Definitions and Examples	1	3.1	4,17
30	Lagrange's Theorem	1	3.2	1, 4
31	Ring Theory: Basic Definitions and Examples	1	7.1	1,2
32	Polynomial Rings, Matrix Rings and Group Rings	1	7.2	1.a
		LATTICES	l	1
33	Ordered sets : Definition and Examples from social science and computer science	1	1.1 to 1.7	
34	Constructing and deconstructing orders sets	1	1.14 to 1.25	
35	Down Sets and up sets	1	1.27 to 1.32	
36	Lattices and complete lattices: lattices as ordered sets	1	2.1 to 2.6	
37	Formal Concept analysis:	1	3.1 to 3.6	
38	The fundamental theorem of concept lattices	1	3.7 to 3.11	

39	Modular Distributive	1	4.1 to 4.7	
40	Boolean Algebra	1	4.16 to 4.20	