

APPLICATION
FOR
UNITED STATES LETTERS PATENT

TITLE: ADAPTIVE COMMUNICATION SYSTEM,
COMMUNICATION CONTROL DEVICE,
COMMUNICATION TERMINAL, COMPUTER PROGRAM
AND COMMUNICATION METHOD

APPLICANT: HIDEAKI NAMBA, KAZUOKI MATSUGATANI AND
MIKIO SASAKI

CERTIFICATE OF MAILING BY EXPRESS MAIL

Express Mail Label No. EL 870691843 US

I hereby certify under 37 CFR §1.10 that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee with sufficient postage on the date indicated below and is addressed to the Commissioner for Patents, Washington, D.C. 20231.

September 12, 2001

Date of Deposit

Michael Hubbard

Signature

Michael Hubbard

Typed or Printed Name of Person Signing Certificate

ADAPTIVE COMMUNICATION SYSTEM, COMMUNICATION
CONTROL DEVICE, COMMUNICATION TERMINAL,
COMPUTER PROGRAM AND COMMUNICATION METHOD

5

CROSS REFERENCE TO RELATED APPLICATION

This application is based on and incorporates herein by reference Japanese Patent Application No. 2000-278120 filed on September 13, 2000.

10

BACKGROUND OF THE INVENTION

1. Field of the Invention:

The present invention relates to an adaptive communication system.

2. Description of Related Art:

The present invention relates to an adaptive communication system.

Various dual-band radio communication terminals have been proposed. One such communication terminal (disclosed in Japanese Unexamined Patent Publication No. 11-298964) is adapted for use with two communication systems, namely, the PHS system and the PDC system. Another such communication terminal is adapted for use with another two communication systems, namely, the CDMA system and the AMPS (Advanced Mobile Phone Service). In both cases, the communication terminal selects one of the two communication systems which provides a higher received power than the other.

However, in the above dual-band radio communication

terminal, the communication system is selected based on the received power when the communication terminal downloads contents data, as described above. Thus, depending on the contents data to be downloaded, appropriate selection of the communication system cannot be made.

For example, in a case of downloading contents data of a newspaper, the contents data is relatively large. Thus, in this case, a large-volume, high-speed communication system (e.g., the PHS system) is required. However, depending on the received power at the dual-band communication terminal, the above dual-band radio communication terminal could select a low-volume, low-speed communication system (e.g., the PDC system). In this case, a degree of emergency for downloading the data (necessity of quick response) is relatively low. Thus, it is preferred that the communication terminal holds the download until the communication terminal enters an operation area of the large-volume, high-speed communication system instead of immediately initiating the download of the data through the low-volume, low speed communication system.

20

SUMMARY OF THE INVENTION

The present invention addresses the above disadvantage. Thus, it is an objective of the present invention to provide an adaptive communication system that can conduct an appropriate communication based on contents of data to be transmitted. It is another objective of the present invention to provide a communication control device used in the adaptive communication

system. It is a further objective of the present invention to provide a communication terminal used in the adaptive communication system. It is a further objective of the present invention to provide a computer program for operating a computer of the communication terminal. It is a further objective of the present invention to provide a communication method for the adaptive communication system.

To achieve the objectives of the present invention, there is provided an adaptive communication system including a first communication device and a second communication device. The first communication device is adapted for use with a plurality of communication systems. The first communication device transmits a first request signal for requesting download of data to the second communication device. The second communication device transmits data attribute information indicative of contents of the data to the first communication device after reception of the first request signal. The first communication device selects one of the plurality of communication systems based on the data attribute information after reception of the data attribute information. The first communication device transmits a second request signal for requesting the download through the selected communication system to the second communication device. The second communication device transmits the data to the first communication device through the selected communication system after reception of the second request signal.

The first communication device receives the data.

The first communication device may select the one of the

plurality of communication systems also based on system attribute information of each one of the plurality of communication systems besides the data attribute information.

To achieve the objectives of the present invention, there
5 is provided an adaptive communication system including a first communication device and a second communication device. The first communication device is adapted for use with a plurality of communication systems and uploads data to the second communication device. The first communication device selects one of the plurality of communication systems based on data attribute information indicative of contents of the data. The first communication device transmits the data to the second communication device through the selected communication system.

To achieve the objectives of the present invention, there
15 is also provided a communication control device including a data storage, an attribute adder, a first receiver, a data attribute information transmitter, a second receiver and a data transmitter. The data storage stores data. The attribute adder adds data attribute information indicative of contents of the data. The first receiver receives a first request signal for requesting download of the data. The data attribute information transmitter transmits the data attribute information in response to reception of the first request signal. The second receiver receives a second request signal for requesting the download. The second request signal is made based on the data attribute information.
20 The data transmitter transmits the data in response to reception of the second request signal.

To achieves the objectives of the present invention, there is also provided a communication terminal including a control unit and being adapted for use with a plurality of communication systems. The communication terminal includes a first transmitting means, a first receiving means, a selecting means, a second transmitting means and a second receiving means. The first transmitting means transmits a first request signal to a second communication device in response to operation of the control unit. The first request signal requests download of data.

10 The first receiving means receives data attribute information indicative of contents of the data from the second communication device after transmission of the first request signal. The selecting means selects one of the plurality of communication systems based on the data attribute information after reception of the data attribute information. The second transmitting means transmits a second request signal to the second communication device. The second request signal requests the download through the selected communication system. The second receiving means receives the data from the second communication device through

15 the selected communication system after transmission of the second request signal.

20

To achieve the objectives of the present invention, there is also provided a computer program for operating a computer of a communication terminal. The computer program executes steps of transmitting a first request signal to a second communication device in response to operation of a control unit of the communication terminal, the first request signal requesting

download of data, receiving data attribute information indicative of contents of the data from the second communication device after transmission of the first request signal, selecting one of the plurality of communication systems based on the data attribute information after reception of the data attribute information, transmitting a second request signal to the second communication device, the second request signal requesting the download through the selected communication system and receiving the data from the second communication device through the selected communication system after transmission of the second request signal.

To achieve the objectives of the present invention, there is also provided a communication method including steps of transmitting a first request signal from a first communication device to a second communication device, the first request signal requesting download of data, transmitting data attribute information from the second communication device to the first communication device after reception of the first request signal, the data attribute information being indicative of download time determined based on contents of the data, transmitting a second request signal from the first communication device to the second communication device at the download time after reception of the data attribute information, the second request signal requesting the download, transmitting the data from the second communication device to the first communication device after reception of the second request signal, and receiving the data in the first communication device.

To achieve the objectives of the present invention, there is also provided a communication control device including a data storage, an attribute adder, a first receiver, a data attribute information transmitter, a second receiver and a data transmitter.

5 The data storage stores data. The attribute adder adds data attribute information indicative of download time determined based on contents of the data. The first receiver receives a first request signal for requesting download of the data. The data attribute information transmitter transmits the data attribute information in response to reception of the first request signal. The second receiver receives a second request signal for requesting the download. The data transmitter transmits the data in response to reception of the second request signal.

10 To achieve the objectives of the present invention, there is also provided a communication terminal including a control unit. The communication terminal further includes a first transmitting means, a first receiving means, a second transmitting means and a second receiving means. The first transmitting means transmits a first request signal to a second communication device in response to operation of the control unit.

15 The first request signal requests download of data. The first receiving means receives data attribute information from the second communication device after transmission of the first request signal. The data attribute information is indicative of download time determined based on contents of the data. The second transmitting means transmits a second request signal to the second communication device at the download time after

reception of the data attribute information. The second request signal requests the download. The second receiving means receives the data from the second communication device after transmission of the second request signal.

5 To achieve the objectives of the present invention, there is also provided a computer program for operating a computer of a communication terminal. The computer program executes steps of transmitting a first request signal to a second communication device in response to operation of a control unit of the communication terminal, the first request signal requesting download of data, receiving data attribute information from the second communication device after transmission of the first request signal, the data attribute information being indicative of download time determined based on contents of the data, transmitting a second request signal to the second communication device at the download time after reception of the data attribute information, the second request signal requesting the download, and receiving the data from the second communication device after transmission of the second request signal.

10
15
20

20

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with additional objectives, features and advantages thereof, will be best understood from the following description, the appended claims and the accompanying drawings in which:

25

FIG. 1 is a schematic diagram showing an adaptive communication system according to one embodiment of the present

invention;

FIG. 2 is a diagram showing a profile and data stored in a database computer shown in FIG. 1;

5 FIG. 3 is a diagram showing operation of the adaptive communication system;

FIG. 4 is a flow chart showing operation of a communication terminal shown in FIG. 1;

FIG. 5A is a diagram showing transmission rates of the communication terminal;

10 FIG. 5B is a diagram showing moving speeds of the communication terminal;

FIG. 6 is a schematic diagram showing a modification of the embodiment;

15 FIG. 7 is a schematic diagram showing a modification of the embodiment;

FIG. 8 is a schematic diagram showing a modification of the embodiment; and

20 FIG. 9 is a schematic diagram showing a modification of the embodiment.

DETAILED DESCRIPTION OF THE INVENTION

An adaptive communication system according to one embodiment of the present invention will be described with reference to the accompanying drawings.

25 As shown in FIG. 1, the adaptive communication system includes a communication terminal 10, base stations 20A, 20B, networks 30A, 30B, a communication control device 40 and a

database computer 50. The communication terminal 10 (radio communication terminal) is a dual-mode cellular phone (dual-band radio communication terminal) that is adapted for use with both the communication system A and the communication system B. In 5 this embodiment, it is assumed that the communication terminal 10 is installed in a vehicle.

The communication terminal 10 includes a microcomputer (CPU) 11, a memory 12, a control unit 13, a display unit 14, radio units 15A, 15B and antennae 16A, 16B. The microcomputer 11 executes various processes, such as a telephone call process, a download process and an upload process. A vehicle speed signal from a vehicle speed sensor of the vehicle is inputted to the microcomputer 11. The memory 12 stores computer programs for executing the telephone call process, the download process, the upload process and the like. Furthermore, the memory 12 stores score values to be used in an evaluation function which will be described below in greater detail. The display unit 14 is, for example, a liquid crystal panel and is controlled by the microcomputer 11 to display various information.

20 The radio unit 15A is controlled by the microcomputer 11 to transmit and receive signals through the antenna 16A. The radio unit 15B is controlled by the microcomputer 11 to transmit and receive signals through the antenna 16B. The control unit 13 includes a plurality of keys, such as ten keys, an enter key, 25 a selection key and the like.

The base station 20A constitutes a communication system A in cooperation with the network 30A. The base station 20B

constitutes a communication system B in cooperation with the network 30B. Each communication system A, B is connected to the communication control device 40 through a public network (communication system network). The communication system A uses
5 the PDC system (or the CDMAone system or W-CDMA system). The communication system B uses the PHS system (or the DSRC system or wireless LAN system).

A communication rate (transmission rate: 9600 bps) of the communication system A is lower than a communication rate
10 (transmission rate: 64000 bps) of the communication system B. In the present embodiment, the communication rate is used as system attribute information. In this embodiment, the system attribute information is the attribute information of the corresponding communication system. Furthermore, a maximum communicatable moving speed of the communication terminal of the communication system A is higher than a maximum communicatable moving speed of a communication system B (a communication cost of the communication system A is higher than a communication cost of the communication system B).

20 The communication control device 40 receives a profile (data attribute information), which will be described later, from the database computer 50 and transmits it to the communication terminal 10. The database computer 50 is a "server" and stores various data (various contents data) and profiles of such data
25 in its memory (data storage). As shown in FIG. 2, each profile is added to a head of the corresponding data (communication contents). The profile is added to the memory of the database

computer 50 through an input operation (attribute adder). The profile is data attribute information corresponding to the contents of the data. Examples of the data attribute information include a secrecy level of the data, a type of the evaluation function, a type of the communication system, a place of the communication, download time and the like.

The evaluation function is the function used for determining one of the communication systems A, B that corresponds to or suitable for the contents of the data. Here, the communication system is the system (e.g., the PDC system, the CDMA system, the W-CDMA system, the PHS system, the LAN system or the like) that corresponds to the contents of the data. The place of the communication is the place where the data can be received by the communication terminal 10 and which is determined based on the contents of the data. The download time is the time at which the data can be downloaded by the communication terminal 10 and which is determined based on the contents of the data.

Operation of the adaptive communication system of the present embodiment will be described with reference to FIGS. 3 and 4. FIG. 3 is a diagram showing the operation of the adaptive communication system, and FIG. 4 is a flow chart showing operation of the microcomputer 11 of the communication terminal 10. The microcomputer 11 executes the operation by following the flow chart shown in FIG. 4. First, the operation of the entire communication system will be described with reference to FIG. 3. As an example operation of the adaptive communication system, download of newspaper data by the communication terminal 10 will

be described. Here, it is assumed that the data of the newspaper is relatively large, and the contents of the newspaper show a relatively low degree of download urgency.

First, it is assumed that the microcomputer 11 of the communication terminal 10 has compared a received power of the radio unit 15A and a received power of the radio unit 15B with each other upon a corresponding key operation of the control unit 13, and the communication terminal 10 is now connected to the network A through the communication system A based on the result of the comparison. At this state, if a user operates the control unit 13 to request the download of the data, a communication request signal (first request signal) is transmitted through the radio unit 15A (I in FIG. 3). The transmitted communication request signal is received by the communication control device 40 through the base station 20A and the network A.

When the communication control device 40 (a first receiver) receives the communication request signal, the communication control device 40 requests transmission of a profile indicative of the attribute of the requested data to the database computer 50 (II in FIG. 3). Then, the database computer 50 transmits the requested profile to the communication control device 40 (III in FIG. 3). Thereafter, the communication control device 40 transmits the profile to the communication terminal 10 (a second receiver: IV in FIG. 3) through the network A and the base station 20A.

Upon reception of the profile, the communication terminal 10 carries out a selecting/determining process for determining

the communication system to be used for the download of the data based on the profile (V in FIG. 3). That is, in the selecting/determining process, one of the communication systems A, B is selected based on the contents of the data (newspaper data).

5 For example, it is now assumed that the communication system B is selected. Hereinafter, the communication system selected in this manner is referred to as the selected communication system. Details of the selecting/determining process will be described later.

10 Next, the communication terminal 10 transmits a notification signal indicative of the selected communication system to the communication control device 40 through the base station 20B and the network B (VI in FIG. 3). The communication control device 40 transmits the notification signal to the database computer 50 (VII in FIG. 3). When the database computer 50 receives the notification signal, the database computer 50 transmits the data (newspaper data) to the communication control device 40 (IX in FIG. 3). The communication control device 40 stores the data (newspaper data) therein.

20 When the communication system B is selected as the selected communication system, the microcomputer 11 of the communication terminal 10 transmits a transmission request signal (second request signal) to the base station 20B through the radio unit 15B. The base station 20B transmits the transmission request signal to the communication control device 40 through the network B (VIII in FIG. 3). When the communication control device 40 receives the transmission request signal, the communication

control device 40 (data transmitter) transmits the data (newspaper data) to the communication terminal 10 through the network B and the base station 20B (X in FIG. 3). Then, the communication terminal 10 receives the data and stores the data 5 in the memory 12. Thereby, the download of the data (newspaper data) ends.

The operation of the microcomputer 11 of the communication terminal 10 will be described with reference to FIG. 4. First, at step 100, data communication request is carried out. Next, 10 at step 110, the profile corresponding to the contents of the data is received from the communication control device 40. At the subsequent step 120, one of the communication systems is selected based on the profile. At the following step 130, the result of the selection is notified to the communication control device 40. Then, at step 140, the transmission request signal is transmitted 15 through the radio unit 15B. Thereafter, at step 150, the data (newspaper data) is received through the radio unit 15B.

Before the transmission of the transmission request signal, the microcomputer 11 notifies the selected communication system 20 to the user through the display unit 14. For example, if the communication system B is selected, the microcomputer 11 controls the display unit 14 to display a message, for example, informing that "the communication system B is selected, and do you request download of the data ? 1: YES, 2: NO". Then, when the ten key 25 "1" of the control unit 13 is pressed, the download of the data proceeds. On the other hand, when the ten key "2" of the control unit 13 is pressed, control moves to step 120.

In this manner, it is possible to terminate the download through the selected communication system according to the will of the user. The microcomputer 11 does not necessarily transmit the transmission request signal immediately upon operation of the control unit 13. That is, the data indicative of the download time can be included in the profile transmitted to the communication terminal 10 in addition to the evaluation function, so that the transmission request signal can be transmitted from the microcomputer 11 of the communication terminal 10 at the download time specified in the profile later on.

Details of the selecting/determining process carried out by the microcomputer 11 of the communication terminal 10 will be described with reference to FIGS. 5A and 5B. FIG. 5A is a diagram showing a table containing score values for the various transmission rates of the communication systems. The table is used to convert the transmission rates to the corresponding score values. FIG. 5B is a diagram showing a table containing score values for the various moving speeds of the communication terminal 10. The table is used to convert the moving speeds to the corresponding score values. In this instance, the profile transmitted to the communication terminal 10 based on the contents of the data includes the following evaluation function.

First, the following formula 1 is used as the evaluation function for selecting the communication system that corresponds to the contents of the data.

[FORMULA 1]

$$J = W_1 \times (\text{transmission rate}) + W_2 \times (\text{moving speed})$$

The transmission rate of the formula 1 is the score value of the transmission rate of the currently used communication system shown in FIG. 5A. The moving speed of the formula 1 is the score value of the moving speed of the communication terminal
5 10 (the output of the vehicle speed sensor in this embodiment) shown in FIG. 5B. W1 and W2 are weighing coefficients. Each one of W1 and W2 is "1" in this instance and is determined based on the contents of the data. That is, in this embodiment, each value of W1 and W2 is determined based on the fact that the data is relatively large, and the contents of the data (newspaper data) shows the relatively low degree of download urgency. In a case
10 of image data, sound data or data showing relatively high download urgency, W1 and W2 may be a value different from "1", and a formula
15 different from the formula 1 may be used as the evaluation function.

In the present embodiment, if an evaluation value J is greater than 100 (threshold value), i.e., $J > 100$, the communication system B is selected. On the other hand, if the evaluation value J is equal to or less than 100 (threshold value),
20 i.e., $J \leq 100$, the communication system A is selected.

As a specific example, it is assumed that the moving speed is less than 10 km, and the communication system A is currently selected. In this instance, the transmission rate of the communication system A is 9600 bps, so that "10" is selected as
25 the score value for that transmission rate based on the diagram shown in FIG. 5A. Since the moving speed is less than 10 km, "100" is selected as the score value for that moving speed based on the

diagram shown in FIG. 5B. When these scores are selected for both the moving speed and the transmission rate, respectively, the evaluation value J is "110" that is greater than 100, so that the communication system B is selected. That is, the communication
5 system is switched from the communication system A to the communication system B.

Furthermore, if the communication system A is currently selected, and the moving speed is equal to or greater than 100 km, "10" is selected as the score value for the moving speed.
10 Since the score value of the moving speed is "10", the evaluation value J is "20" that is less than 100, so that the communication system A is selected.

Characteristics of the present embodiment will be described. In the case of downloading the large data (contents data), such as the newspaper data, the communication system that allows the large-volume, high-speed communication is required, but the degree of download urgency for downloading the data is relatively low. The communication system B shows the higher communication rate in comparison to the communication system A,
15 and the communication system B shows the lower maximum communicatable moving speed of the communication terminal in comparison to the communication system A. Because of the above fact, the communication system B is suitable for the download of the large data, such as the newspaper data.
20

As a result, in the present embodiment, when the moving speed of the communication terminal 10 is relatively low (e.g., less than 10 km), the communication system B is selected through
25

the evaluation function of the formula 1 in the process of selecting the communication system. For example, while the vehicle that has the communication terminal 10 stops at the red light traffic signal, the communication system B is selected, and
5 the data is downloaded through the communication system B. Thus, the appropriate communication corresponding to the contents of the data is possible.

Furthermore, when the moving speed of the communication terminal 10 is relatively high (e.g., 100 km or higher), the communication system A is selected. However, it is possible to prevent the download of the data by operating the control unit
100 13. As described above, the communication control device 40 can store the data, and the communication control device 40 can also transmit and receive the profile. Thus, it is possible to reduce
15 50 workload of the database computer 50.

(Modifications)

In the above embodiment, one exemplary adaptive communication system is described in which the communication terminal 10 selects one of the communication systems
20 (communication system A or B) based on the profile (data attribute information). However, it is possible to modify the adaptive communication system in such a manner that the communication control device 40 selects the communication system as will be described below. A structure of such an adaptive communication
25 system will be described with reference to FIG. 6. The adaptive communication system shown in FIG. 6 includes a communication terminal 10, base stations 21-24, a communication control device

40, a provider 400 and sites 300-302.

First, the communication terminal 10 transmits a request signal to the provider 400 through the base station 21 (an arrow 201 in FIG. 6). The request signal includes a mobile profile (various information including a moving speed, a possible communication rate, terminal environment, user environment and the like). Based on the request signal, the provider 400 accesses the site 300 (202 in FIG. 6) and the communication control device 40 (204 in FIG. 6).

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550

(specification of the communication system), data wait time, delivery time and the like. Based on the profile M1, the communication control device 40 transmits the contents data segments Ca, Cb, Cc together with the corresponding profiles M2a, 5 M2b, M2c to the different corresponding base stations 22-24, respectively. Each base station 22-24 transmits the corresponding contents data segment Ca, Cb, Cc together with the corresponding profile M2a, M2b, M2c to the communication terminal 10.

10 That is, the communication control device 40 transmits the contents data segments Ca, Cb, Cc together with the corresponding profiles M2a, M2b, M2c to the communication terminal 10 through the different communication systems. Thereafter, the communication terminal 10 integrates the contents data segments 15 Ca, Cb, Cc based on the corresponding profiles M2a, M2b, M2c.

The adaptive communication system is not limited to the above modification and can be modified to the one shown in FIG. 7. In this case, a contents data segment C1 and a profile M1 are transmitted to a communication control device 40A from the site 20 300, and a contents data segment C2 and a profile M2 are transmitted to a communication control device 40B from a site 301. Furthermore, a contents data segment C3 and a profile M3 are transmitted to the communication control device 40C from a site 25 302. Each one of the profiles M1-M3 includes delivery time (t1, t2, t3) of the corresponding contents data segment C1-C3 and an integration method thereof. Each one of the communication control device 40A-40C transmits the corresponding contents data

segment C1-C3 through the corresponding base station 22-24 to the communication terminal 10 at the time specified in the corresponding profile M1-M3. Then, the communication terminal 10 integrates the contents data segments C1-C3 based on the 5 corresponding profiles M1-M3 (integration method).

In the above embodiment, the communication rate is used as the exemplary system attribute information, and one of the communication systems A, B is selected based on the data attribute information. However, this arrangement can be modified as follows. That is, besides the communication rate, the system attribute information can be a place of transmission, a communication type (two-way communication, packet communication, transceiver communication), a communication data format, an encryption means, a communication protocol, a multiplexing method, a media searching method, a media filtering method, a media description method, media encoding method or the like. In 10 this embodiment, the communication data format is the data format used in the communication of the profile (data attribute information), the data contents, the system attribute 15 information and the like. The media filtering method is the method for extracting only the necessary contents from various contents of the media to be delivered based on the requested attribute information. The media processing method can be one 20 of various processing methods, for example, for compression, decompression, encoding, decoding, modulation, transmission, 25 replay, display, conversion or recognition/interpretation of various data, such as video data, sound data, graphic data. The

media description method is the method for writing a structure, semantics and the like of contents of the media. One representative example of the media description method is the MPEG7 standard. The media encoding method is the method for compressing and encoding video data, sound data and/or the like based on a communication band, a storage size and/or the like. In a case of a still picture, the JPEG is often used, and in a case of a motion picture, the MPEG is often used.

For example, if the place of transmission is selected as the system attribute information, one of the places where the communication terminal 10 can transmit and receive the data is selected based on the data attribute information. That is, the communication terminal 10 can receive the data at the selected place of transmission that is selected based on the data attribute information. If one of the communication type, the communication protocol, the encryption method, the communication data format, the multiplexing method, the media searching method, the media filtering method, the media description method and the media encoding method is selected as the system attribute information, this system attribute information is selected based on the data attribute information like in the case of the communication rate.

The adaptive communication system is not limited to the above modification and can be modified to the one shown in FIG. 8. This is different from the modification shown in FIG. 7. That is, the profile M3 and the contents data segment C3 from the site 302 are transmitted to the communication control device 40A. Then, in the communication control device 40A, the contents data

segments C1, C3 are integrated and are transmitted to the communication terminal 10 through the base station 22.

Furthermore, in the above embodiment, the evaluation function that uses the moving speed and the transmission rate is used as the data attribute information, and the system attribute information is selected based on the result of the evaluation function. However, this can be modified as follows. That is, in the process of selecting the communication system (or specifying the download time), in addition to the moving speed and the transmission rate, it is possible to further consider at least one of the selectable communication rate, the received power, a state of communication traffic (or a degree of communication traffic congestion), place (a station, a traffic junction, a railroad crossing), a state of surrounding traffic jam, intended driving path, a carrier (driver/non-driver) of the communication terminal, a desired application, a type and quality of the contents, a cost of user request, a degree of emergency of the request (emergency medical information, music, news, navigation information), communication terminal capacity, display capacity and the like, as shown in FIG 9.

Furthermore, in the process of selecting the system attribute information (or in a process of specifying download time), popularity of the contents (e.g., degree of access concentration), a site type, a genre (e.g., music, news), data type (e.g., video, sound, characters), the description method and/or a size of the data can be further considered in addition to the moving speed and the transmission rate.

Furthermore, the following modification is also possible. That is, in addition to the selection of the system attribute information, selection of the site, specification of access time of the contents, specification of the communication protocol, 5 specification of the description method, specification of a process tool, specification of the encoding method and/or the like is possible. Furthermore, the above selection can be conducted based on a place or a predicted place of the communication terminal 10 and its operation time. Also, it is possible to select the communication system based on an 10¹⁰ acceleration of the communication terminal 10. Moreover, the communication system can be selected based on an intended moving path of the user or of the communication terminal 10 (e.g., a train, a bus, an automobile, an airplane, a ship, an escalator in a 15 building, a moving walkway) and also based on a point where the large-volume communication is possible (e.g., an intersection, a train station, a convenience store, a gas station, a toll gate). In addition, the communication system may be selected also based 20 on a type of the user (e.g., a driver, a non-driver vehicle occupant, a pedestrian, a passenger of a commercial vehicle).

Furthermore, in addition to the selection of the system attribute information, a task priority order of a display process, a communication process and a contents handling process in the communication terminal 10 of the above embodiment can be changed. 25 Also, the searching method, the filtering method, search depth of metadata (contents description data), structure of the metadata (hierarchical relationship of the attributes, a format

of the data attribute information, or the like) or the division method of the contents may be modified.

In addition to the selection of the communication system described in the above embodiment, each one of the means for 5 integrating the contents data segments distributed among the sites, and the means for transmitting the contents after dividing the contents into the smaller segments may be modified. Also, the contents that are distributed among the plurality of sites can be transmitted based on the type of the contents (media environment), the communication environment and the user request 10 by switching the site from one to another.

In one practice of the present invention, if a first communication terminal has both the profile and the data, the first communication terminal may transmit the data to the server 15 based on the profile (data attribute information), and the server, in turn, may transmit the data to a second communication terminal based on the profile (data attribute information). Furthermore, the data may be transmitted between the first communication terminal and the second communication terminal based on the 20 profile (data attribute information) without using the server.

In the practice of the present invention, the present invention is not limited to the download from the database computer 50 to the communication terminal 10 and can be applied to upload from the communication terminal 10 to the database computer 50. That is, when the communication terminal 10 uploads 25 the data to database computer 50 through the communication control device 40, the communication terminal 10 may select one

of the communication systems A, B based on the profile (data attribute information) which indicates the communication type corresponding to the contents of the newspaper data, and the communication terminal 10 may transmit the data to the database computer 50 through the communication control device 40 and also through the selected communication system.

In the above embodiment, the communication system is selected based on the profile data (data attribute information). However, the download time of the data corresponding to the contents of the data may be used as the data attribute information. That is, the communication terminal 10 transmits the communication request signal, which requests the download of the data, to the database computer 50 through the communication control device 40. After reception of the communication request signal, the database computer 50, in turn, transmits the data attribute information, which indicates the download time of the data, to the communication terminal 10 through the communication control device 40. Then, after reception of the data attribute information, the communication terminal 10 transmits the transmission request signal, which requests the download of the data, to the database computer 50 through the communication control device 40 at the download time. After reception of the transmission request signal, the database computer 50 transmits the data to the communication terminal 10 through the communication control device 40. Then, the communication terminal 10 receives the data.

In this instance, the communication control device 40

includes the data storage, the attribute adder, the first receiver, the data attribute information transmitter, the second receiver and the data transmitter. The data storage stores the data. The attribute adder adds the data attribute information that indicates download time of the data corresponding to the contents of the data. The first receiver receives the communication request signal (first request signal) for requesting the download of the data. The data attribute information transmitter transmits the data attribute information in response to reception of the communication request signal. The second receiver receives the transmission request signal (second request signal) for requesting the download of the data. The data transmitter transmits the data in response to reception of the transmission request signal (second request signal).

Furthermore, in the communication terminal 10, the communication request signal (first request signal), which requests the download of the data, is transmitted to the database computer 50 through the communication control device 40 upon operation of the control unit 13. Then, after transmission of the communication request signal, the communication terminal 10 receives the data attribute information, which indicates the download time of the data corresponding to the contents of the data, from the communication control device 40. Upon reception of the data attribute information, the communication terminal 10 transmits the transmission request signal (second request signal) to the communication control device 40 at the download time. Then, after transmission of the transmission request

signal, the communication terminal 10 receives the data from the communication control device 50.

Also, in the practice of the present invention, the profile may be formed by the database computer 50 based on the data.

5 Alternatively, the profile may be formed by the communication control device 40 based on the data.

Also, in the practice of the present invention, the computer programs stored in the memory 12 of the communication terminal 10 may be delivered from a recording media of the server 10 through the communication via the network. Furthermore, it is possible to provide a plurality of memories 12, and the computer programs may be distributed among the memories 12. Furthermore, in the practice of the present invention, the profile may be stored separately from the data in the database computer 50. Also, 15 in the practice of the present invention, the communication terminal 10 is not necessarily the cellular phone and can be any device, such as a portable communication terminal, a computer or the like.

Additional advantages and modifications will readily occur 20 to those skilled in the art. The invention in its broader terms is therefore, not limited to the specific details, representative apparatus, and illustrative examples shown and described.