Sustabdyta šviesa ir kitos keistenybės: šviesos sklidimas daugelio lygmenų sistemose

Julius Ruseckas

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas

Balandžio 14, 2010

Kvantinės optikos grupė

http://www.itpa.lt/quantumgroup/

- Bendri dėsningumai
- Šviesos sklidimas dviejų lygmenų sistemose
- Šviesos sklidimas trijų lygmenų sistemose
- 4 Sudėtingesnės konfigūracijos

- Bendri dėsningumai
- Šviesos sklidimas dviejų lygmenų sistemose
- Šviesos sklidimas trijų lygmenų sistemose
- 4 Sudėtingesnės konfigūracijos

- Bendri dėsningumai
- Šviesos sklidimas dviejų lygmenų sistemose
- Šviesos sklidimas trijų lygmenų sistemose
- 4 Sudėtingesnės konfigūracijos

- Bendri dėsningumai
- Šviesos sklidimas dviejų lygmenų sistemose
- Šviesos sklidimas trijų lygmenų sistemose
- Sudėtingesnės konfigūracijos

Šviesa

Šviesa yra elektromagnetinė banga

- Fazinis greitis
- Grupinis greitis
- Signalinis greitis

Fazinis greitis

- Grupinis greitis
- Signalinis greitis

- Fazinis greitis
- Grupinis greitis
- Signalinis greitis

- Fazinis greitis
- Grupinis greitis
- Signalinis greitis

Atomai

Elektronai atomuose gali turėti tik tam tikras energijos vertes

<u>Švieso</u>s saveika su atomais

Rezonanso salyga

$$h\nu = E_2 - E_1$$

 $h = 6.62606896 \times 10^{-34} \, \text{J} \cdot \text{s}$ yra Planck'o konstanta

Šviesos sugertis

Šviesai esant rezonanse su šuoliu g o e, vyksta sugertis

- ullet Švytuoklės svyravimo periodas ω_1
- Rezonansas jei $\omega \approx \omega_1$
- Sugertis

- ullet Švytuoklės svyravimo periodas ω_1
- Rezonansas jei $\omega \approx \omega_1$
- Sugertis

- ullet Švytuoklės svyravimo periodas ω_1
- Rezonansas jei $\omega \approx \omega_1$
- Sugertis

- ullet Švytuoklės svyravimo periodas ω_1
- Rezonansas jei $\omega \approx \omega_1$
- Sugertis

Kiti atvejai

Savaiminis spinduliavimas

Kiti atvejai

Savaiminis spinduliavimas

Indukuotas spinduliavimas

Papildomas valdantysis lazeris

- Šuolių $g \rightarrow e$ ir $s \rightarrow e$ destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

- Šuolių $g \rightarrow e$ ir $s \rightarrow e$ destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

- Šuolių $g \rightarrow e$ ir $s \rightarrow e$ destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

- Šuolių $g \rightarrow e$ ir $s \rightarrow e$ destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

- Šuolių $g \rightarrow e$ ir $s \rightarrow e$ destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

- Šuolių $g \rightarrow e$ ir $s \rightarrow e$ destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

- Šuolių $g \rightarrow e$ ir $s \rightarrow e$ destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

- Jei $\omega_2 \approx \omega$ tai švytuoklė 2 svyruoja su amplitude, proporcinga išorinei jėgai ir su priešinga faze
- Švytuoklė 1 beveik nejuda, jėga iš dešinės = jėga iš kairės
- Disipacija išnyksta, tačiau tokia būsena yra lengvai suardoma

- Jei $\omega_2 \approx \omega$ tai švytuoklė 2 svyruoja su amplitude, proporcinga išorinei jėgai ir su priešinga faze
- Svytuoklė 1 beveik nejuda, jėga iš dešinės = jėga iš kairės
- Disipacija išnyksta, tačiau tokia būsena yra lengvai suardoma

- Jei $\omega_2 \approx \omega$ tai švytuoklė 2 svyruoja su amplitude, proporcinga išorinei jėgai ir su priešinga faze
- Švytuoklė 1 beveik nejuda, jėga iš dešinės = jėga iš kairės
- Disipacija išnyksta, tačiau tokia būsena yra lengvai suardoma

- Jei $\omega_2 \approx \omega$ tai švytuoklė 2 svyruoja su amplitude, proporcinga išorinei jėgai ir su priešinga faze
- Švytuoklė 1 beveik nejuda, jėga iš dešinės = jėga iš kairės
- Disipacija išnyksta, tačiau tokia būsena yra lengvai suardoma

- Labai siauras skaidrumo langas
- Medžiaga su didele dispersija
- Mažas grupinis greitis lėta šviesa

Labai siauras skaidrumo langas

- Medžiaga su didele dispersija
- Mažas grupinis greitis lėta šviesa

- Labai siauras skaidrumo langas
- Medžiaga su didele dispersija
- Mažas grupinis greitis lėta šviesa

Lėta šviesa

- Labai siauras skaidrumo langas
- Medžiaga su didele dispersija
- Mažas grupinis greitis lėta šviesa

- Informacija apie sklindančią šviesą yra elektroniniame sužadinime
- Išjungus valdantį lazerį, infromacija elektroniniame sužadinime išlieka
- Vėl įjungus valdantį lazerį, zonduojantis šviesos pluoštas atsigamina

- Informacija apie sklindančią šviesą yra elektroniniame sužadinime
- Išjungus valdantį lazerį, infromacija elektroniniame sužadinime išlieka
- Vėl įjungus valdantį lazerį, zonduojantis šviesos pluoštas atsigamina

- Informacija apie sklindančią šviesą yra elektroniniame sužadinime
- Išjungus valdantį lazerį, infromacija elektroniniame sužadinime išlieka
- Vėl įjungus valdantį lazerį, zonduojantis šviesos pluoštas atsigamina

- Informacija apie sklindančią šviesą yra elektroniniame sužadinime
- Išjungus valdantį lazerį, infromacija elektroniniame sužadinime išlieka
- Vėl įjungus valdantį lazerį, zonduojantis šviesos pluoštas atsigamina

Šviesos impulsų susispaudimas dėl suletėjimo

Dviguba ∧ schema

- Papildoma sužadinta būsena
- Papildomas, priešpriešais sklindantis, valdantysis lazerio pluoštas

Tripodo schema

Dvigubo tripodo schema

Dvigubo tripodo schema

Dvi sukabintos posistemės

- Laukai \mathcal{E}_1 ir \mathcal{E}_2 yra sukabinti
- Pavieniui jie neturi apibrėžto grupinio greičio
- Tik tam tikros zonduojančių laukų kombinacijos sklinda apibrėžtu greičiu

- Laukai \mathcal{E}_1 ir \mathcal{E}_2 yra sukabinti
- Pavieniui jie neturi apibrėžto grupinio greičio
- Tik tam tikros zonduojančių laukų kombinacijos sklinda apibrėžtu greičiu

- Laukai \mathcal{E}_1 ir \mathcal{E}_2 yra sukabinti
- Pavieniui jie neturi apibrėžto grupinio greičio
- Tik tam tikros zonduojančių laukų kombinacijos sklinda apibrėžtu greičiu

- Laukai \mathcal{E}_1 ir \mathcal{E}_2 yra sukabinti
- Pavieniui jie neturi apibrėžto grupinio greičio
- Tik tam tikros zonduojančių laukų kombinacijos sklinda apibrėžtu greičiu

Osciliacijos kaip tarp neutrinų rūšių

- \mathcal{E}_1 yra atspindimas į \mathcal{E}_2
- Atspindėtų ir praėjusių laukų intensyvumai periodiškai kinta kintant dujų debesėlio ilgiui

Osciliacijos kaip tarp neutrinų rūšių

- \mathcal{E}_1 yra atspindimas į \mathcal{E}_2
- Atspindėtų ir praėjusių laukų intensyvumai periodiškai kinta kintant dujų debesėlio ilgiui

Osciliacijos kaip tarp neutrinų rūšių

- \mathcal{E}_1 yra atspindimas į \mathcal{E}_2
- Atspindėtų ir praėjusių laukų intensyvumai periodiškai kinta kintant dujų debesėlio ilgiui

Reliatyvistinė lygtis

Kiek nukrypus lazerių dažniams nuo rezonanso

gaunama sklidimo lygtis tampa panaši į lygtį reliatyvistinėms dalelėms, turinčioms mase.

Reliatyvistinė lygtis

Kiek nukrypus lazerių dažniams nuo rezonanso gaunama sklidimo lygtis tampa panaši į lygtį reliatyvistinėms dalelėms, turinčioms masę.

Ačiū už dėmesį!