Câu 1: Tính tích phân $I = \iint_{\Omega} x^2 y dx dy$ với miền D là tam giác O(0,0), A(3,3), B(3,0):

A. $\frac{81}{4}$

C. $\frac{27}{5}$

- B. $\frac{81}{5}$
- D. $\frac{27}{4}$

Câu 2: Tính $I = \iint_D (3x + y) dx dy$ với D là miền được xác định bởi $\begin{cases} x^2 + y^2 \le 4 \\ y \le 0 \end{cases}$

- A. $\frac{16}{3}$
- C. $\frac{32}{3}$
- B. $\frac{8}{2}$
- D. Cả 3 đáp án trên đều sai

Câu 3: Tính $I = \iint_D xy dx dy$ với D là miền xác định bởi 2 đường $y = \frac{x^2}{2}$ và 3x - y = 4:

A. 5

B. 20

D. Đáp án khác

Câu 4: Tính $I = \iint_D xy^2 dxdy$ với D là miền xác định bởi các đường:

y = x, y = -x + 4, y = 0

- A. $\frac{16}{3}$ C. $\frac{8}{3}$

B. $\frac{32}{3}$

D. Đáp án khác

Câu 5: Tính $I = \iint_D xy dx dy$ với D là miền xác định bởi: $x = \sqrt{y}, x = 2\sqrt{y}, y = 1$

A. 1

C. $\frac{3}{2}$

B. $\frac{1}{2}$

D. 2

Câu 6: Tính $I = \int_0^1 dx \int_{x^2}^1 x e^{y^2} dy$:

- A. e-1 C. $\frac{1}{4}(e-1)$
- B. $\frac{1}{2}(e-1)$
 - D. Đáp án khác

Câu 7: Đổi thứ tự tích phân $I = \int_0^{1+\frac{\sqrt{2}}{2}} dx \int_0^{1-\sqrt{2x-x^2}} f(x,y) dy + \int_{1+\frac{\sqrt{2}}{2}}^2 dx \int_0^{2-x} f(x,y) dy$ được:

A.
$$\int_0^{1-\frac{\sqrt{2}}{2}} dy \int_{1+\sqrt{2y-y^2}}^{2-y} f(x,y) dx$$
 C.
$$\int_0^{1-\frac{\sqrt{2}}{2}} dy \int_{1-\sqrt{2y-y^2}}^{2-y} f(x,y) dx$$

C.
$$\int_0^{1-\frac{\sqrt{2}}{2}} dy \int_{1-\sqrt{2}y-y^2}^{2-y} f(x,y) dx$$

B.
$$\int_{0}^{1+\frac{\sqrt{2}}{2}} dy \int_{1+\sqrt{2y-y^2}}^{2-y} f(x,y) dx$$
 D. Đáp án khác

Câu 8: Tính tích phân $I = \iint_D |x + y| dxdy$ với D là miền xác định bởi $\{(x, y) \in \mathbb{R}^2 \mid |x| \le 1, |y| \le 1\}$

A.
$$\frac{4}{3}$$

C.
$$\frac{2}{3}$$

B.
$$\frac{1}{3}$$

D. Đáp án khác

Câu 9: Tính tích phân $I = \iint_D xy + x^2 dx dy$ với D là miền xác định bởi: $y = \frac{x^2}{2}$, y = 2

A.
$$\frac{32}{15}$$

B.
$$\frac{64}{15}$$

D. Đáp án khác

Đáp án:

1 B 4 A 7 A

2 A 5 B 8 D (8/3)

3 C 6 C 9 B