МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра инженерной психологии и эргономики

Т.Ф. Михнюк

ТЕСТЫ

по курсу "Охрана труда"

Содержание

1. Георетические основы охраны труда	3
2. Управление охраной труда	6
3. Гигиена производственной среды	11
3.1 Оздоровление воздушной производственной среды	12
3.2. Производственное освещение	19
3.3 Механические колебания	25
3.3.1 Вибрация	25
3.3.2 Акустический шум	28
3.3.3 Ультра- и инфразвуковые колебания	35
3.4. Электромагнитные излучения	37
3.4.1 Ультрафиолетовые излучения	44
3.4.2 Инфракрасные излучения	45
3.4.3 Лазерные излучения	46
4. Производственная безопасность (техника безопасности)	49
4.1 Электробезопасность	50
4.2. Защита от опасных и вредных факторов при работе с компьютерами	59
4.3 Требования безопасности при работе с радиоэлектронным оборудо-	62
ванием	
4.4 Требования безопасности при устройстве и обслуживании установок	64
и сооружений связи и радификации. Меры безопасности при организа-	
ции и производстве работ в подземных кабельных сооружениях	
4.5 Требования безопасности к сосудам и системам, работающим под	
давлением	72
5 Основы пожарной безопасности	76

ОХРАНА ТРУДА

ТЕСТЫ

1. Теоретические основы охраны труда

- 1. Что является предметом охраны труда?
 - а*) Исследование состояния условий труда, оценка рисков производственного травматизма и профессиональной заболеваемости, разработка и использование комплекса мер для повышения безопасности и улучшения гигиены производственной среды.
 - б) Выявление опасных и вредных производственных факторов, их источников, оценка уровня риска травмирования и заболеваемости и внедрение методов и средств, способствующих сохранению здоровья и высоких спортивных результатов работающих.
 - в) Оценка потенциальных опасностей и вредностей, обусловленных производством, последование их негативного воздействия на работающих и внедрение комплекса мер по поддержанию хорошего самочувствия и высокой работоспособности персонала.
 - г) Анализ производственного оборудования и технологий по травмоопасности для персонала. Разработка и внедрение более безопасного технологического оборудования, устройств и средств защиты.
- 2. Что является целью охраны труда?
 - а) Создание безопасных и безвредных условий труда.
 - б) Улучшение условий труда и повышение культуры производства.
 - в*) Снижение производственного травматизма и профессиональной заболеваемости.
 - г) Сокращение социально-экономических потерь, обусловленных недостаточной квалификацией нанимателей и работников.
- 3. Какие основные производственные причины обусловливают значительные социальные (гибель и травмирование работников) и экономические (снижение прибыли, повышение себестоимости продукции) потери предприятий (компаний и т.п.)?
 - а) Недостаточный уровень профессиональной подготовки, в том числе в области охраны труда, руководителей-организаторов производства, специалистов и работающих. Неблагоприятные погодные условия.
 - б) Нарушение трудовой и технологической дисциплины, неисправность технологического оборудования и средств защиты, применение в больших объемах крупногабаритного оборудования.
 - в*) Недостаточный уровень подготовки в области охраны труда, пренебрежительное отношение к требованиям безопасности, нарушение

- трудоохранного законодательства, низкий технический уровень оборудования и эффективности защитных средств, их неисправность.
- г) Нарушение трудовой и технологической дисциплины, недостаточный уровень подготовки административно-технических работников в области охраны труда, отсутствие материальных средств для приобретения средств защиты.
- 4. В чем суть экономического ущерба, обусловленного условиями труда?
 - а*) Экономический ущерб это выражение в денежной форме фактических или возможных потерь..
 - б) Это выражение материальных потерь работников.
 - в) Это снижение средней заработной платы производственного персонала.
 - г) Это выраженное в денежной форме снижение производительности труда.
- 5. В чем суть социального ущерба от неблагоприятных условий труда?
 - а) Это ущерб, который не подлежит точной количественной оценке.
 - б) Это ущерб, выраженный в снижении уровня жизни работников.
 - в*) Это ущерб, наносимый здоровью работников.
 - г) Это ущерб, не поддающийся денежной оценке.
- 6. Что означает по сути риск, как один из приемов оценки производственных опасностей (или вредностей)?
 - а) Риск это действие наугад.
 - б*) Риск это частота реализации опасностей.
 - в) Риск это нечто, что может произойти, а может и не произойти.
 - г) Риск это принятие решения.
- 7. Какие принципы обеспечения производственной безопасности относятся к техническим?
 - а) Это принципы, использующие в основном физико-химические законы.
 - б) Принцип защиты расстоянием, принцип деструкции, слабого звена, защиты временем.
 - в) Принцип прочности, слабого звена, экранирования, защиты расстоянием.
 - г*) Принцип слабого звена, стимулирования, компенсации.
- 8. Какие принципы обеспечения производственной безопасности относятся к организационным?
 - а*) Принцип защиты временем, нормирования, эргономичности.
 - б) Принцип системности, нормирования, эффективности.

- в) Принцип снижения опасности, эргономичности нормирования, компенсации.
- г) Принцип ликвидации, снижения опасности, защиты временем.
- 9. Реализация каких основных методов позволяет обеспечить безопасность персонала?
 - а*) Метод пространственного или временного разделения рабочей зоны и зоны действия опасного фактора, метод нормализации рабочей зоны, метод приемов и средств, направленных на адаптацию человека к соответствующей среде.
 - б) Метод дистанционного управления технологическим процессом, использование промышленных роботов, средств индивидуальной защиты.
 - в) Метод применения приемов и средств, направленных на адаптацию человека к соответствующей производственной среде, обучение персонала, профессиональный отбор.
 - г) Метод пространственного или временного разделения рабочей зоны и зоны действия опасного фактора, профессиональный отбор, обучение.
- 10. Что является предметом дисциплины «Психология безопасности»?
 - а) Исследование психических процессов, оказывающих влияние на безопасность людей.
 - б) Исследование психических свойств человека.
 - в) Исследование психических состояний человека.
 - г) Исследование психических процессов, свойств и состояний человека.
- 11. Какие основные виды совместимостей необходимо обеспечить для успешного функционирования системы «человек-технологический процесс (машина)-произ-водственная среда»?
 - а) Информационная, биофизическая, энергетическая, пространственная, техническая.
 - б) Биофизическая, энергетическая, информационная, антропометрическая, эстетическая.
 - в*) Информационная, технико-эстетическая, пространственноантропометрическая, энергетическая, биофизическая.
 - г) Биофизическая, биохимическая, информационная, пространственно-антропологическая, энергетическая.
- 12. Какие основные анализаторные системы (анализаторы) позволяют человеку хорошо ориентироваться в окружающей среде и осуществлять с ней двухстороннюю связь?
 - а) Зрительный и слуховой анализаторы; вибрационная и болевая чувствительность; физико-химический анализатор; обоняние и вкус.

- б*) Двигательный, зрительный, слуховой анализаторы; вибро- и болевая чувствительность; обоняние, вкус.
- в) Тактильный, двигательный, зрительный, слуховой и физико-химический анализаторы; обоняние, вкус.
- г) Вибро- и болевая чувствительность, обоняние, вкус; зрительный, слуховой, вкусовой, тактильный анализаторы.

2. Управление охраной труда

- 1. Какие составляющие включает в себя механизм управления охраной труда?
 - а*) Методы управления, виды деятельности (функции), органы управления.
 - б) Органы управления, объекты управления, виды, деятельности.
 - в) Органы управления, законодательные и нормативно-правовые акты, объекты управления.
 - г) Государственные, отраслевые и местные органы управления.
- 2. Какие основные методы используются для управления охраной труда?
 - а) Различные способы воздействия на поведение и деятельность управляемых объектов.
 - б*) Административные, экономические, социально-психологические.
 - в) Организационные, технические, социально-психологические.
 - г) Организационно-психологические, инженерно-технические, материальные.
- 3. Какие меры (инструменты) используют административные методы управления охраной труда?
 - а) Постановления и руководства, принимаемые государственными органами по охране труда, применение средств защиты.
 - б) Руководство организационно-хозяйственными мероприятиями по реализации проводимой государством трудоохранной политики, планы социально-экономического развития.
 - в*) Трудоохранное законодательство, система стандартов, норм правил, осуществление руководства по реализации трудоохранной политики государства.
 - г) Мониторинг состояния производственной среды, соблюдение трудоохранного законодательства, применение наиболее эффективных средств защиты, международное сотрудничество.
- 4. Какие механизмы (рычаги) объединяют экономические методы управления?
 - а*) Механизмы, создающие материальную заинтересованность работодателей в управлении условий труда.
 - б) Стоимостные рычаги: компенсационные выплаты за несчастные случаи, травматизм и заболеваемость, дополнительные отпуска.

- в) Штрафы за нарушение трудоохранного законодательства и риски травмирования, привлечение и сверхурочным работам.
- г) Льготное налогообложение, льготное кредитование, субсидирование, привлечение к уголовной ответственности.
- 5. Что представляет собой социально-психологические методы управления охраной труда?
 - а) Меры поощрительного характера за хорошие условия труда.
 - б) Меры принудительного характера путем воздействия на нарушителей трудоохранного законодательства.
 - в*) Это методы морального стимулирования.
 - г) Это методы, использующие любые механизмы для улучшения условий труда и повышения культуры производственной среды.
- 6. Какие основные принципы включает в себя концепция государственного управления охраной труда в Республике Беларусь?
 - а) Принцип обеспечения приоритета жизни и здоровья работников по отношению к результатам трудовой деятельности, обеспечение качественной экологической обстановки.
 - б) Принцип социального партнерства в рамках соглашений на республиканском, отраслевом и местном уровнях, принцип защиты временем.
 - в) Принцип обеспечения гарантий права работников на охрану труда, полной ответственности нанимателей за сохранение здоровья работающих и обеспечение семейного благополучия производственного персонала.
 - г*) Принципы социального партнерства, приоритета жизни и здоровья работников по отношению к результатам хозяйствования, обеспечения гарантий права работников на охрану труда, полной ответственности нанимателей за сохранение здоровья работающих.
- 7. Какими субъектами на различных уровнях в Республике Беларусь осуществляется государственное управление охраной труда?
 - а) На республиканском уровне администрацией Президента; на отраслевом уровне местными исполнительными и распорядительными органами.
 - б*) На республиканском уровне Правительством или уполномоченными им республиканскими органами; на отраслевом – республиканскими органами; на территориальном – местными исполнительными и распорядительными органами.
 - в) На республиканском уровне Президентом; на отраслевом республиканскими органами госуправления, иными государственными организациями, подчиненными Правительству; на территориальном уровне местными исполнительными и распорядительными органами.

- г) На республиканском уровне Верховным Советом; на отраслевом Правительством; на местном районными и сельскими советами.
- 8. Что представляет собой система управления охраной труда (СУОТ) на предприятии?
 - а*) Это система подготовки, принятия и реализации комплекса мер по обеспечению здоровых и безопасных условий труда.
 - б) Это комплекс мер, включающего в себя правовые, социальноэкономические, организационные, технические, направленные на обеспечении экологической и производственной безопасности граждан.
 - в) Это комплекс мер, включающего в себя правовые, инженернотехнические, психофизиологические и реабилитационные, обеспечивающие благоприятные условия труда и высокий доход работающих.
 - г) Это комплекс мер, включающего в себя правовые, инженернотехнические, санитарно-гигиенические, лечебно-профилактические, требующие значительных материальных затрат на их реализацию.
- 9. Какие производственные подразделения (структуры) являются объектом управления СУОТ?
 - а) Деятельность администрации предприятия (руководителей производства всех уровней).
 - б) Деятельность отдела охраны труда (бюро), службы главного инженера.
 - в*) Деятельность структурных подразделений, функциональных служб и отдельных работников.
 - г) Деятельность экологической лаборатории предприятия.
- 10. Органы управления охраной труда на предприятии.
 - а*) Службы руководителя предприятия (главного инженера, технического директора) и руководителей производственных подразделений и служб предприятия.
 - б) Службы руководителей производственных подразделений и служб предприятия.
 - в) Служба руководителя предприятия (помощники и заместители руководителя).
 - г) Вышестоящие органы управления (министерство, ведомство).
- 11. Что является правовой основой системы управления охраной труда на предприятии?
 - а) Нормы, правила, инструкции, разработанные на предприятии.
 - б) Межотраслевые и отраслевые нормативные акты, стандарты.
 - в*) Законодательство о труде, нормативно-правовые и нормативно-технические правовые акты.

- г) Трудовой кодекс, стандарты безопасности.
- 12. Какие законодательные акты образуют тредооохранное законодательство?
 - а) Конституция Республики Беларусь (РБ), Концепция государственной политики РБ в области охраны труда.
 - б*) Конституция РБ, Трудовой кодекс, законы безопасности.
 - в) Трудовой кодекс, Закон об охране труда.
 - г) Конституция РБ, Трудовой кодекс, нормативно правовые акты.
- 13. Какие виды надзора и контроля за соблюдением законодательства о труде осуществляются в Республике Беларусь?
 - а*) Государственный надзор, административный надзор и общественный надзор.
 - б) Государственный надзор, ведомственный надзор и административный надзор.
 - в) Государственный надзор, Правительственный надзор и общественный надзор.
 - г) Государственный надзор, Прокурорский надзор и общественный надзор.
- 14. Какие органы (структуры) осуществляют государственный надзор по вопросам охраны труда?
 - а) Специально уполномоченные органы и инспекции, Правительство.
 - б) Правительство и уполномоченные им инспекции.
 - в*) Специальные органы и инспекции, в том числе Государственная инспекция по руду и социальной защите населения, Госпроматомнадзор, Госсаннадзор и др.
 - г) Госпроматомнадзор, Госэнергонадзор, Госпожарнадзор, руководители предприятий и организаций.
- 15. Какие виды инструктажей проводятся по вопросам охраны труда со всеми поступающими на работу и работающими?
 - а) Вводный, на рабочем месте, внеплановый, специальный.
 - б*) Вводный, первичный на рабочем месте, повторный, внеплановый, целевой.
 - в) Первичный на рабочем месте, вторичный на рабочем месте, внеплановый, целевой.
 - г) Вводный, первичный, повторный, специальный.
- 16. В каких случаях при расследовании несчастного случая оформляется акт по форме H-1?
 - а) Если будет установлено, что несчастный случай произошел при совершении потерпевшим проступка, содержащего признаки уголовной

- ответственности, а также по причинам неблагоприятной производственной среды.
- б) Если будет установлено, что несчастный случай произошел по причине нарушения трудового процесса либо административного правонарушения.
- в) Если в процессе расследования будет установлено, что несчастный случай обусловлен исключительно состоянием здоровья потерпевшего.
- г*) Если будет установлено, что несчастный случай обусловлен условиями труда, т.е. будет выявлены организационные, технические, санитарно-гигиенические и иные причины.
- 17. В каких случаях при расследовании несчастного случая оформляется акт по форме НП?
 - а) Если будет установлено, что несчастный случай произошел при совершении потерпевшим уголовного наказуемого деяния либо административного правонарушения, а также при выходе из строя технологического оборудования.
 - б) Если будет установлено, что несчастный случай произошел в результате уголовно наказуемых деяний либо по причине нарушения технологического процесса, неблагоприятной производственной среды.
 - в*) Если не будут выявлены организационные, технические, санитарногигиенические и иные причины, связанные с организацией трудового процесса или с состоянием производственной среды.
 - г) Если будет установлено, что несчастный случай обусловлен состоянием производственной среды и нарушением трудовой и технологической дисциплины.
- 18. Какие несчастные случаи на производстве подлежат специальному расследованию?
 - а) Одиночные, произошедшие одновременно с двумя и более работни-ками
 - б*) Групповые, со смертельным и тяжелым исходом.
 - в) Одиночны и со смертельным исходом.
 - г) Только со смертельным и тяжелым исходом.
- 19. В течение какого времени акты формы Н-1 и формы НП с документами расследования должны храниться у нанимателя, у которого взят на учет несчастный случай?
 - а) В течение 5 лет.
 - б) В течение 30 лет.
 - в) В течение 15 лет.
 - г) В течение 45 лет.

- 20. Какие относительные статистические показатели (коэффициенты) используются для оценки уровня травматизма?
 - а) Коэффициент частоты, годовой коэффициент частоты, общий коэффициент травматизма.
 - б) Общий коэффициент травматизма на предприятии, годовой коэффициент травматизма.
 - в*) Коэффициент частоты, тяжести и общего травматизма на предприятии.
 - г) Коэффициент общего травматизма на предприятии за пять лет и коэффициент тяжести.
- 21. Какие методы излучения и анализа причин производственного травматизма используются на практике?
 - а) Методы, основанные на материалах статистики (статистический, групповой и др.), а также лабораторный, аналитический и сравнительный.
 - б*) Собственно статистический, групповой, топографический, экономический, а также методы, основанные на результатах технического обследования (технический, монографический и др.).
 - в) Методы, основанные на результатах технического обследования (например, лабораторные), а также групповой, аналитический и сравнительный.
 - г) Аналитический, сравнительный, статистический, экономический и монографический.
- 22. К каким видам ответственности могут быть привлечены работники и наниматели за нарушения законодательства по охране труда?
 - а*) Дисциплинарной, административной, материальной и уголовной.
 - б) Дисциплинарной, уголовной, материальной и судебной.
 - в) Дисциплинарной, административной, уголовной и правовой.
 - г) Административной, дисциплинарной, уголовной, материальной и трудоохранной.

3. Гигиена производственной среды

- 1. Как определяется гигиена производственной среды?
 - а) Это комплекс мер, способов и средств, повышающих культуру производства.
 - б) Это меры (инженерно-технические, санитарные) по обеспечению безопасных и безвредных условий труда.
 - в) Это меры (технические, санитарно-гигиенические), обеспечивающие благоприятный микроклимат в производственных помещениях.
 - г*) Это система организационных, санитарных, инженерно-технических мероприятий, способов и средств, предотвращающих (снижающих) риск профессиональной заболеваемости.

- 2. Какова цель гигиены производственной среды?
 - а*) Снизить риск различных заболеваний, обусловленных условиями труда.
 - б) Снизить риск травмирования работающих.
 - в) Обеспечить оптимальные условия труда.
 - г) Снизить уровень вредных и опасных факторов, повысить культуру производства.

3.1 Оздоровление воздушной производственной среды

- 1. Какие факторы формируют благоприятную, здоровую воздушную среду?
 - а) Газовый состав воздуха, его температур, отсутствие опасности электропоражения.
 - б) Параметры микроклимата, конденсация аэроионов, качество освещения.
 - в*) Параметры микроклимата, газовый состав воздуха, концентрация аэроионов.
 - г) Газовый состав воздуха, степень его загрязненности, качество освещения, наличие излучений.
- 2. Какой газовый состав атмосферного воздуха, наиболее благоприятен для человека?
 - a) Азот (32%), кислород (25%), углекислый газ (25%), инертные газы (17%), прочие газы (1,0%).
 - 6*) Азот (28,08%), кислород (20,95%), углекислый газ (0,03%), инертные газы (0,93%), прочие газы (0,01%).
 - в) Азот (68,08%), кислород (22,93%), углекислый газ (0,03%), инертные газы (2,95%), остальное прочие газы.
 - г) Азот (62%), кислород (18%), углекислый газ (3,0%), остальное прочие газы.
- 3. Какой основной состав загрязнителей воздуха от радиоэлектронного производства?
 - а*) СО, СО₂, SO₂, N_nO_m , углеводороды (C_nH_m), альдегиды (фенол, формальдегид), пары минеральных кислот, аэрозоли.
 - б) Аэрозоли, оксиды и диоксиды углерода (CO, CO₂), диоксид серы (SO₂), оксиды азота (N_nO_m), пары тяжелых металлов, радионуклиды (K^{40} , U^{238}).
 - в) Углеводороды (C_nH_m) , альдегиды (фенол, формальдегид), CO, CO_2 , SO_2 , NO_2 , бензапирен $(C_{12}H_{20})$.
 - г) Оксиды и диоксиды углерода, азота, серы, хлорфторуглеводороды (ХФУ), цезий (137), стронций (90), плутоний (238).

- 4. Какие основные факторы загрязненности производственной среды формируют риск профессиональной заболеваемости?
 - a^*) Объемная концентрация вредных веществ в зоне дыхания (C, мг/м³), время действия вредного вещества (t, г), химический состав и физические свойства вещества (например, растворимость).
 - б) Химическое разнообразие веществ, их концентрация в воздухе, наличие физических факторов, особенности их воздействия на организм.
 - в) Значительное отличие уровней параметров микроклимата от оптимальных и допустимых значений. Присутствие в воздухе больших концентраций вредных веществ.
 - г) Несоответствие нормам уровней физических и химических факторов техногенной природы.
- 5. В чем заключается гигиеническая оценка загрязнения воздушной производственной среды?
 - а) В выявлении состава загрязняющих веществ, их источников и особенностей воздействия их на организм работающих.
 - б*) В сравнении фактических концентраций загрязняющих веществ $(C_{\phi a \kappa \tau}, \kappa \Gamma/m^3)$ с предельно допустимыми концентрациями $(C_{\Pi J K}, \kappa \Gamma/m^3)$.
 - в) В сравнении состояния здоровья работающих в условиях загрязнения воздушной среды и за пределами производства.
 - г) В определении класса опасности вредных веществ и их особенностей взаимодействия друг с другом (синергизм, антагонизм, суммация).
- 6. В чем суть предельно допустимого выброса (ПДВ. т/г) объёма вредного вещества в атмосферу отдельным источником загрязнения?
 - а) Это нормативная величина, определяющая качество производственной среды, уровень работоспособности и самочувствие персонала.
 - б*) Это нормативная величина, характеризующая объем вредных веществ, выбрасываемых в атмосферу отдельными источниками загрязнения за единицу времени, превышение которой ведет к повышению предельно допустимой концентрации в среде, окружающей источник.
 - в) Это количество загрязняющего вещества, выбрасываемого отдельными источниками за единицу времени, превышение которого ведет к неблагоприятным последствиям на рабочих местах (в рабочей зоне).
 - г) Это величина объема вредных веществ, выбрасываемых в атмосферу источниками загрязнения, превышение которой может вызвать ухудшение здоровья работающих и риск ухудшения здоровья людей.
- 7. На какие классы по степени опасности подразделяются вредные вещества?
 - а) Опасные, вредные и безопасные
 - б) І класс, ІІ класс, ІІІ класс.
 - в*) І класс (ПДК<0,1 мг/м³), ІІ класс (ПДК=0,1 1,0 мг/м³), ІІІ класс (ПДК=1,0 10,0 мг/м³), ІV класс (ПДК>100 мг/м³).

- г) І класс (чрезвычайно опасные), ІІ класс (высокоопасные), ІІІ класс (умеренно опасные), ІV класс (малоопасные), V класс (безопасные).
- 8. Какие наиболее выраженные типы (особенности) комбинированного (сочетанного) воздействия вредных веществ на организм человека следует учитывать при гигиенической оценке условий труда?
 - а*) Синергизм, антагонизм, суммация.
 - б) Мутагенность, сенсибилизация, токсичность.
 - в) Канцерогенность, суммация, синергизм.
 - г) Риск негативного воздействия на центральную нервную систему, сердечно-сосудистую систему, эндокринную систему.
- 9. Какие основные способы и средства оздоровления воздушной среды являются наиболее эффективными и получили наибольшее распространение?
 - а) Совершенствование технологических процессов, внедрение комплексной механизации и автоматизации производственных процессов, применение индивидуальных средств защиты.
 - б*) Гигиеническая стандартизация химического сырья, совершенствование технологий, обеспечение герметичности аппаратуры и коммуникаций, применение эффективной вентиляции.
 - в) Внедрение комплексной механизации и автоматизации производственных процессов, применение эффективной вентиляции, искусственных ионизаторов воздуха.
 - г) Совершенствование технологий, внедрение комплексной механизации и автоматизации технологических процессов, применение эффективного кондиционирования воздуха рабочей зоны.
- 10. С какой целью осуществляется ионизация воздуха рабочей зоны (производственного помещения)?
 - а) Для создания определенной концентрации аэроионов в рабочем помещении.
 - б) Для обеспечения определенного соотношения положительных и отрицательных ионов в воздухе производственного помещения.
 - в*) Для поддержания хорошего самочувствия и высокой работоспособности персонала.
 - г) Для профилактики утомления, повышения производительности труда, снижения риска травмирования и возникновения пожаров.
- 11. Какие методы и средства применяются для нормализации ионного режима воздушной среды в производственных помещениях?
 - а) Использование центрального и автономного кондиционирования воздуха, применение приточно-вытяжной вентиляции.
 - б) Применение эффективной общей и местной вентиляции, искусственных ионизаторов (высоковольтных, индукционных, радиационных).

- в*) Применение искусственных ионизаторов, эффективной приточновытяжной вентиляции.
- г) Применение радиационных ионизаторов, эффективной вытяжной вентиляции, влажной уборки помещения (не реже трех раз за смену).
- 12. Какие минимально-необходимые и оптимальные значения количества лег-ких ионов обеих полярностей рекомендуются нормами в воздушной среде про-изводственных помещений?
 - а) Минимальное число ионов в 1 см 3 воздуха: $n^+=400$; $n^-=400$.
 - 6*) Минимальное число $n^+=400$; $n^-=600$, оптимальное число $n^+=1500$ 3000; $n^-=3000$ 5000.
 - в) Минимальное число $n^+=200$; $n^-=200$, оптимальное число $n^+=1500$ 3000; $n^-=3000$ 5000.
 - г) Минимальное число $n^+=10000$; $n^-=10000$, оптимальное число $n^+=1500-3000$; $n^-=3000-5000$.
- 13. Какими физическими параметрами воздуха характеризуются метеорологические условия труда (микроклимат)?
 - а) Температурой (t, 0 C), влажностью (ϕ , %), скоростью движения (V, м/с), интенсивностью теплового облучения работающих (I, $B\tau/m^2$), освещенностью (E, лк).
 - б) Температурой, влажностью, скоростью движения, барометрическим давлением.
 - в) Температурой, относительной влажностью, скоростью движения, концентрацией аэронов, освещенностью.
 - г*) Температурой, относительной влажностью, скоростью движения воздуха и интенсивностью теплового облучения работающих.
- 14. Какие факторы влияют на формирование микроклимата в производственных помещениях?
 - а) Наличие источников теплообразования, солнечная радиация, кратность воздухообмена в помещении, энергозатраты при выполнении физических нагрузок.
 - б*) Наличие источников теплообразования (оборудование, персонал, солнечная радиация), кратность воздухообмена в помещении.
 - в) Наличие источников теплообразования (технологическое оборудование, персонал), солнечная радиация, кратность воздухообмена в помещении, наличие световых проемов.
 - г) Наличие источников теплообразования, солнечная радиация, наличие световых проемов (верхнего освещения через световые фонари), кратность воздухообмена в помещении.

- 15. Какие критерии используются при гигиеническом нормировании микроклимата, т.е. при регламентации оптимальных или допустимых значений его параметров?
 - а) Период года, категории работ по энергозатратам, избытки явного тепла, сменность работы.
 - б*) Период года, категории работ по энергозатратам, избытки явного теп-
 - в) Категории работ по энергозатратам, напряженность умственного труда, избытки явного тепла.
 - г) Напряженность умственного и тяжесть физического труда, период года, избытки явного тепла.
- 16. Какие периоды года установлены нормами в качестве гигиенических критериев при нормировании параметров микроклимата?
 - а*) Теплый, холодный, переходный.
 - б) Летний, зимний, осеннее-весенний.
 - в) Летний, зимний, осенний.
 - г) Летний, зимний, весенний.
- 17. На какие категории подразделяются физические работы в зависимости от общих энергозатрат?
 - а) I категория (легкие), II категория (средней тяжести), III категория (тяжелые), IV категория (сверхтяжелые).
 - б*) I, II, III категории, соответственно, легкие, средней тяжести, тяжелые.
 - в) Легкие (I категория), средней тяжести (II категория), тяжелые (III категория), умеренно тяжелые (IV категория).
 - г) Легчайшие (IA категория), легкие (I категория), средней тяжести (II категория), тяжелые (III категория).
- 18. В чем суть понятия «избыточное явное тепло»?
 - а*) Это остаточное количество тепла, поступающего в помещение за вычетом теплопотерь.
 - б) Это тепло, которое оказывает наибольшее влияние на параметры микроклимата в помещении.
 - в) Это остаточное тепло, оставшееся в помещении после прекращения работы теплоисточников.
 - г) Это остаточное тепло от теплопотерь, которое уже не влияет на параметры микроклимата.
- 19. Какие способы и средства применяются для нормализации микроклимата в производственных помещениях?
 - а) Кондиционирование и ионизация воздуха, отопление и вентиляция помешения.

- б) Отопление помещения, кондиционирование и ионизация воздуха, устройство эффективной вентиляции.
- в*) Отопление, кондиционирование воздуха и вентиляция помещений.
- г) Ионизация и кондиционирование воздуха, отопление, устройство искусственного или естественного освещения.
- 20. С какой целью применяется вентиляция производственных помещений.
 - а) Для создания на рабочих местах и в рабочей зоне наиболее благоприятного микроклимата, аэроионизации, снижения радиационного уровня.
 - б*) Для удаления из помещения избыточного тепла, влаги, вредных газов и паров, создания благоприятного микроклимата и ионного состава воздуха.
 - в) Для удаления из помещения избыточного тепла, влаги, химических и других загрязнителей, создания благоприятных зрительных условий труда и микроклимата.
 - г) Для создания благоприятного микроклимата, ионного состава воздуха, благоприятных зрительных и акустических условий труда.
- 21. Какие принципы (методы) применяются для осуществления воздухообмена в помещении (или виды вентиляции)?
 - а) Естественным путем через вентиляционные каналы, фрамуги, форточки за счет разности температур и давлений воздуха внутри помещений в различных зонах помещения, а также с помощью вентиляторов и эжекторов.
 - б) Применение специальных устройств (вентиляторов, фрамуг, форточек) для естественной вентиляции (аэрации) и использование механической вентиляции с помощью эжекторов и кондиционеров.
 - в) Применение крупногабаритного оборудования, естественной и механической вентиляции.
 - г*) Применение естественной (организованной и неорганизованной) и механической вентиляции.
- 22. Какие основные недостатки естественной вентиляции?
 - а) Зависимость ее эффективности от габаритов помещения.
 - б*) Зависимость от температуры наружного воздуха, силы и направления ветра.
 - в) Зависимость от периода года и размеров помещения.
 - г) Зависимость ее эффективности от высоты (этажности) помещения и температуры внутреннего воздуха.
- 23. Каковы преимущества искусственной механической вентиляции по сравнению с естественной?
 - а*) Она позволяет подавать воздух в любую зону помещения или удалять его из мест образования различных вредностей.

- б) В системах механической вентиляции можно предусматривать устройства для подогрева, увлажнения и очистки воздуха от пыли, его ионизацию. Она более экономична.
- в) Механическая вентиляция позволяет подавать и удалять из помещений больше объема воздуха без применения вентиляторов, эжекторов и кондиционеров.
- г) В системах механической вентиляции можно применять калориферы, фильтры и другие устройства для подачи или удаления из помещения аэроионов, радиоактивных частиц.
- 24. В каких случаях может применяться механическая приточно-вытяжная вентиляция с рециркуляцией, т.е. повторным использованием воздуха?
 - а) Если в помещении отсутствуют источники загрязняющих веществ и производственный персонал.
 - б) Если в помещении вредные вещества относятся к I классу по степени опасности и отсутствует естественная вентиляция.
 - в*) Если в помещении отсутствуют вредные вещества I, II и III класса, а концентрация веществ относящихся к IV классу по степени опасности составляет 30% предельно допустимой концентрации.
 - г) Если рабочие места оборудованы местной приточной вентиляцией.

25. Какие основные требования предъявляются к вентиляционным системам?

- а) Объем приточного воздуха ($L_{прит}$, M^3/Ψ) должен соответствовать объему воздуха, удаляемого из помещения ($L_{выт}$, M^3/Ψ); приток воздуха должен подаваться в те зоны помещения, где объем выделения вредностей максимальный, а удаление из зон с минимальным их выделением; вентсистемы не должны созвать дополнительные опасности.
- 6*) Объем приточного воздуха ($L_{прит}$, M^3/Ψ) должен соответствовать объему воздуха, удаляемого из помещения ($L_{выт}$, M^3/Ψ); приток воздуха должен подаваться в те рабочие зоны помещения, где объем выделения вредностей минимальный, а удаление из зон с максимальным их выделением; вентсистемы не должны созвать дополнительные опасности.
- в) $L_{\text{прит}}$, $\text{м}^3/\text{ч} > L_{\text{выт}}$, $\text{м}^3/\text{ч}$; приточный воздух должен подаваться на рабочие места персонала; приток воздуха должен подаваться в нижнюю часть помещения, а удаление из верхней части.
- г) Вентсистемы не должны создавать дополнительных опасностей; объем приточного воздуха ($L_{прит}$, $m^3/ч$) должен быть меньше удаляемого объема воздуха ($L_{выт}$, $m^3/ч$); приток воздуха должен быть достаточно очищенным.

3.2. Производственное освещение

- 1.В каком диапазоне частот (длин волн) электромагнитные колебания вызывают световые ощущения?
 - а) От 0,2 до 0,75 мкм.
 - 6*) От 0,38 до 0,78 мкм.
 - в) От 0,75 до 1,4 мкм.
 - г) От 0,2 до 100 мкм.
- 2. Какие цветовые ощущения могут вызывать световые волны различной длины?
- а*) Фиолетовый цвет (0,38-0,45 мкм);, синий (0,455-0,470 мкм);, голубой (0,47-0,50 мкм);, зеленый (0,50-0,55 мкм);, желтый (0,55-0,59); оранжевый (0,59-0,61); красный (0,61-0,78 мкм).
 - б) Фиолетовый, синий, голубой, зеленый, желтый, красный, черный.
 - в) Фиолетовый, синий, голубой, зеленый, желтый, красный, белый.
- г) Фиолетовый, синий, голубой, зеленый, желтый, красный, оранжевобелый.
- 3. Какой цвет обладает наибольшей чувствительностью (видностью) в дневное время?
 - а) Фиолетовый (0.38 0.45 мкм).
 - б) Оранжевый (0,59 0,61 мкм).
 - в*) Желтый (0,55 0,59 мкм).
 - г) Красный (0,61 0,78мкм).
- 4. Какой цвет обладает наибольшей чувствительностью (видностью) в ночное время или в сумерках?
 - а) Фиолетовый (0,38-0,45 мкм).
 - б) Оранжевый (0,59 0,61 мкм).
 - в*) Зелено-голубой (0,47 0,55 мкм).
 - г) Красно-оранжевый (0,59 0,78мкм).
- 5. В чем заключается положительное влияние света на жизнедеятельность человека?
- а) В сохранении здоровья, высокой работоспособности, в возможности снижения энергетических затрат при выполнении физических нагрузок.
- б*)В сохранении здоровья, высокой работоспособности, повышении про-изводительности труда.
- в) В улучшении эмоционального состояния человека, снижении нагрузки на центральную и сердечно-сосудистую системы.
- г) В сохранении здоровья, в улучшении обмена веществ, в работе желудочно-кишечного тракта.

- 6. Какие виды освещения в зависимости от источников света применяются на производстве?
 - а) Освещение от ламп накаливания и в результате солнечной радиации.
 - б) Естественное и от газорязрядных ламп.
 - в) Естественное и искусственное.
 - г*) Искусственное, естественное и совмещенное.
- 7. Какими преимуществами характеризуется естественное освещение по сравнению с искусственным?
- а) Естественное освещение экономичнее искусственного и более надежное, во время вспышек на Солнце свет содержит жесткое ультрафиолетовое излучение положительно влияющее на здоровье людей.
- б*) Естественное освещение обладает более широким спектром электромагнитных колебаний, исключает монотонность световой обстановки. Оно характеризуется высокой диффузностью.
- в) Естественное освещение положительно влияет на психофизиологическое состояние человека, обеспечивает хороший зрительный контакт с внешней средой. Оно более надежно на протяжении всех суток.
- г) Естественное освещение обладает хорошей цветопередачей, позволяет более равномерно освещать неровные поверхности, в меньшей степени по сравнению с искусственным создает тени. Оно дешевле искусственного и может использоваться в любых помещениях и в любое время суток.
- 8. Какие источники искусственного освещения более предпочтительны: лампы накаливания или газорязрядные лампы?
- а) Лампы накаливания, т.к. они имеют меньшую стоимость по сравнению с газорязрядными лампами и более широкий спектр частот.
- б*) Газорязрядные лампы, т.к. они характеризуются большей светоотдачей, более длительным сроком службы и более широким спектром частот.
- в) Газорязрядные лампы низкого давления, т.к. они обладают более широким спектром частот, позволяют усиливать отдельные цвета, характеризуются удобством в эксплуатации и более низкой стоимостью по сравнению с лампами накаливания.
- г) Лампы накаливания, т.к. они более удобны в эксплуатации, более дешевы и, практически, без искажения передают цвета и оттенки желтого и красного частей светового спектра, что способствует лучшей цветопередаче по всему оптическому спектру.
- 9. Какие виды искусственного освещения применяются на практике?
 - а) Общее, местное и комбинированное.
 - б) Общее локализованное и распределенное, а также местное.
 - в*) Общее и комбинированное.
 - г) Местное в системе комбинированного и местное.

- 10. Каким может быть по конструкции естественное освещение?
 - а) Боковым, одно-и двухсторонним.
 - б) Боковым и верхним.
 - в) Боковым и комбинированным.
 - г*) Комбинированным, верхним и боковым.
- 11. При каких работах применяется комбинированное искусственное освещение?
 - а) При выполнении работ малой и грубой точности.
 - б) При выполнении сварочных операций на конвейере.
 - в) При выполнении работ высокой и средней точности.
 - г*) При выполнении работ очень высокой и наивысшей точности.
- 12. Какими количественными характеристиками оценивается естественное освещение?
- а) Яркостью, освещенностью, коэффициентом естественной освещенности.
 - б) Коэффициентом естественной освещенности, освещенностью.
 - в*) Коэффициентом естественной освещенности.
 - г) Коэффициентом освещенности, коэффициентом отражения.
- 13. Какими количественными характеристиками оценивается искусственное освещение?
 - а*) Освещенностью.
 - б) Освещенностью и наименьшим размером объекта различения.
 - в) Освещенностью и разрядом зрительных работ.
 - г) светлостью фона и контрастностью фона и объекта различения.
- 14. Какими показателями (количественными характеристиками) оценивается совмещенное освещение?
- а) Коэффициентом естественной освещенности при включенном искусственном освещении.
- б*) Коэффициентом естественной освещенности при выключенном искусственном освещении.
- в) Коэффициентом естественной освещенности в дневное время и освещенностью в темное время суток.
- г) Коэффициентом естественной освещенности и коэффициентом отражения от внутренних ограждающих конструкций (стен, потолка, пола и т.д.).
- 15. Как рассчитывается коэффициент естественной освещенности в производственном помещении с односторонним боковым освещением?
- а) Отношением освещенности, измеренной на любом рабочем месте внутри помещения к освещенности, измеренной снаружи помещения при открытом небосводе и умноженным на 100%.

- б*) Отношением освещенности, измеренной на расстоянии один метр от отражающей конструкции (стены), наиболее удаленной от световых проемов к освещенности, измеренной снаружи помещения и умноженным на 100%.
- в) Отношением освещенности, измеренной на рабочем месте с наихудшим освещением к освещенности, измеренной снаружи помещения и умноженным на 100%.
- г) Отношением освещенности, измеренной снаружи помещения к освещенности, измеренной на любом рабочем месте внутри помещения и умноженным на 100%.
- 16. В каком месте выбирается контрольная точка для измерения гигиенической оценки искусственного освещения при общем равномерном освещении?
 - а) На рабочем месте, удаленном от световых проемов.
 - б) На рабочем месте с выполнением наиболее точных зрительных работ.
- в) На всех рабочих местах и определением среднего значения освещенности.
- г*) На рабочем месте с худшим освещением, но где должна быть обеспечена нормируемая освещенность.
- 17. Какие исходные данные необходимы для определения нормированных значений коэффициента естественной освещенности (К.Е.О.) при естественном производственном освещении.
- а*) Номы К.Е.О. устанавливаются в зависимости от характеристики зрительной работы (разряда зрительной работы) и от конструктивного исполнения освещения.
- б) Номы К.Е.О. устанавливаются в зависимости от характеристики зрительной работы, светлости фона, величины контраста объекта различения с фоном и периода года.
- в) Номы К.Е.О. устанавливаются в зависимости от разряда и подразряда зрительной работы, наименьшего размера объекта различения и тяжести выполняемых работ.
- г) Номы К.Е.О. устанавливаются в зависимости от конструктивного исполнения освещения, точности выполняемых работ и геометрических размеров помещения.
- 18. В чем суть гигиенической оценки зрительных условий труда (производственного освещения)?
- а) Гигиеническая оценка зрительных условий труда заключается в определении самочувствия работников и степени утомления зрительного анализатора при выполнении работ различной точности.
- б) Производственное освещение оценивается по величине освещенности при искусственном освещении и по величине коэффициента естественной освещенности при естественном и совмещенном освещении.

- в*) Гигиеническая оценка освещения заключается в сравнении фактических значений нормируемых его характеристик с нормативами.
- г) Оценка зрительных условий труда заключается в выборе количественных значений освещенности либо коэффициента естественной освещенности, соответственно для искусственного, естественного и совмещенного освещения.
- 19. В каких помещениях и местах строительными нормами разрешено применять для освещения лампы накаливания?
 - а) В помещениях большой высоты с комбинированным освещением.
 - б) В помещениях, где проводятся работы малой точности.
- в) В помещениях, где нужно усилить цветопередачу в желтом и красном частях светового спектра частот.
 - г*) В помещениях с временным пребыванием людей.
- 20. Какими основными недостатками характеризуются газоразрядные лампы низкого давления (люминисцентные).
- а) Они являются источниками акустического шума, неустойчиво работают при минусовых температурах воздуха, характеризуются низкой цветоотдачей и незначительной шириной спектра частот.
- δ^*) Они неустойчиво работают при низких температурах (ниже 0^0 C), требуют дополнительного регулировочного устройства наладки, имеют значительный коэффициент пульсации светового потока и др.
- в) При их использовании необходимо отопление помещения, эффективная вентиляция и токонепроводящие полы.
- г) Они могут применяться только при комбинированном освещении и при выполнении высоко точных зрительных работ.
- 21. Какие типы люминисцентных ламп получили наиболее широкое применение для производственного освещения благодаря улучшенной цветопередаче и более низкому коэффициенту пульсации.
 - а) ЛД, ЛБ, ЛТБ.
 - б) ЛДЦ, ЛБ, ЛХБ.
 - в*) ЛДЦ, ЛХБ, ЛТБ.
 - г) ЛХБ, ЛД, ЛТД.
- 22. По каким причинам строительными нормами запрещено применение на производстве только местного освещения?
- а) Из-за трудности обеспечения на рабочих местах нормированного значения освещенности.
 - б) Из-за повышения опасности возникновения пожара на рабочих местах.
- в*) Из-за возникновения в рабочей зоне теней от перемещающихся объектов и возможности возникновения стробоскопического эффекта.

- г) Из-за стробоскопического эффекта вращающихся и невращающихся частей технологического оборудования и недостаточной четкости освещения негоризонтальных поверхностей.
- 23. Какую часть нормированного значения освещенности (E_H) на рабочих местах при комбинированном искусственном освещении должны обеспечивать местные светильники?
 - а) 50% от E_H
 - б) 25% от Ен
 - в) 75% от E_н
 - Γ^*) 90% ot E_H
- 24. К чему сводится проектирование и расчет естественного освещения в про-изводственных помещениях?
 - а) К расчету коэффициента естественной освещенности (К.Е.О.).
- б) К расчету освещенности внутри помещения в нужной контрольной точке.
- в*) К расчету требуемой площади световых проемов, исходя из нормированного значения К.Е.О. для определенных зрительных работ.
 - г) К расчету площади помещения и световых проемов.
- 25. К чему сводится расчет искусственного освещения при системах общего или комбинированного (общее + местное) освещения?
- а) Выбору системы освещения, выбору светильников и размещению их в плане и по высоте помещения, расчету нормируемого значения освещенности $(E_H, \pi \kappa)$.
- δ^*) Выбору системы освещения, выбору светильников и размещению их в плане и по высоте помещения, расчету светового потока ламп и выбору типовых ламп, которые обеспечат требуемую освещенность рабочих мест помещений (E_H , πk).
- в) Расчету площади световых проемов (оконных либо верхних фонарей) и определению нормируемого значения освещенности ($E_{\rm H}$, лк), исходя из характеристики зрительных работ.
- г) Определению нормируемого значения освещенности ($E_{\rm H}$, лк) на рабочих местах, расчету количества светильников и рабочих мест в проектируемом помещении.
- 26. Какие методы применяются для расчета необходимого светового потока для обеспечения требуемой освещенности (Е_н, лк) на рабочих местах?
 - а*) Метод светового потока, точечный метод, метод Ватт.
- б) Метод расчета по коэффициенту использования светового потока, точечный метод и метод кBт.
- в) Метод светового потока (по коэффициенту использования светового потока), точечный метод и метод расчета коэффициента пульсации.

- г) Метод расчета по коэффициенту использования светового потока, метод светового потока, метод Ватт.
- 27. Какие воздействия на организм человека могут оказывать различные цвета?
- а) Угнетать функцию центральной нервной системы (ЦНС), вызывать аритмию сердечной деятельности.
 - б*) Успокаивать, раздражать, оказывать возбуждающее действие.
- в) Вызывать рефлекс самозащиты, стимулировать активность деятельности, вызывать мелькания.
- г) Уменьшать физическое напряжение, успокаивать пульс, регулировать ритм дыхания и работу желудочно-кишечного тракта.
- 28. Какие цвета (цвет) оказывают возбуждающее действие на организм человека, стимулируют к активной деятельности?
 - а) Зеленый, синий, голубой.
 - б*) Красный, оранжевый.
 - в) Желтый, белый.
 - г) Черный, зеленый.
- 29. Какие цвета (цвет) оказывают негативное воздействие на ЦНС, снижают настроение?
 - а*) Белый, черный.
 - б) Желтый, зеленый.
 - в) Красный, оранжевый.
 - г) Синий, голубой.

3.3 Механические колебания

- 1. Какие колебания относятся к механическим?
 - а) Низкочастотные электромагнитные колебания, колебания промышленной частоты (50 Гц), инфразвук.
 - б) Низкочастотные вибрации, технологические и транспортные колебания, ультразвук.
 - в*) Вибрация, акустический шум, инфра- и ультразвуковые колебания.
 - г) Колебания грунта, цокольных этажей зданий и других строительных конструкций.

3.3.1 Вибрация

- 2. Как определяется вибрация как колебательный процесс?
 - а*) Это процесс, при котором отдельные элементы механических и других систем периодически проходят через положение равновесия.
 - б) Это процесс, при котором переносимая энергия может оказывать неблагоприятное воздействие на человека.

- в) Это колебательный процесс, при котором начинают вибрировать отдельные элементы технологического оборудования.
- г) Это совокупность различных по амплитуде и частоте колебаний корпусов технологического оборудования и строительных конструкций.
- 3. Основные физические параметры вибрации.
 - а*) Частота колебаний (f, Γ ц), амплитуда (A, м), виброскорость (V, м/с), виброускорение (W, м/с²).
 - б) Виброскорость (V, M/c) и виброускорение $(W, M/c^2)$.
 - в) Частота колебаний (f, Гц) и виброскорость (V, м/с).
 - г) Амплитуда (A, м) и уровень виброскорости (L_v, дБ).
- 4. Основные причины вибрации.
 - а*) Неуравновешенные силы воздействия (динамические воздействия).
 - б) Непостоянные скорости работы технологического оборудования.
 - в) Наличие в технологическом оборудовании подшипников скольжения, зубчатых передач, вальцовочного оборудования.
 - г) Недостаточная смазка трущихся поверхностей, разбалансировка вращающихся масс, отсутствие мер по устранению возможности генерации вибрации.
- 5. Как подразделяется вибрация по источнику возникновения?
 - а) Естественная, вызванная природными процессами и явлениями и техногенная, обусловленная работой производственного оборудования.
 - б*) Транспортная, транспортно-технологическая и технологическая.
 - в) Постоянная, переменная, смешанная.
 - г) Общая и местная (локальная).
- 6. Посредством каких органов и систем человек воспринимает ощущение вибрации?
 - а) Благодаря зрительному и тактильному анализаторам.
 - б) Из-за ощущения тряски внутренних органов.
 - в) Из-за ощущений в конечностях, возникающих при вибрации рабочих поверхностей, полов и технологического оборудования.
 - г*) Посредством воздействия колебательных движений на кожный покров, нервно-мышечную и костную ткань.
- 7. Как подразделяется вибрация по способу передачи на работающих?
 - а*) Общую и местную (или локальную).
 - б) Тональную и широкополосную.
 - в) Низкочастотную и высокочастотную.
 - г) Действующую на нижние конечности и на руки человека.

- 8. Какие негативные последствия воздействия на человека может вызвать общая вибрация, передающаяся через опорные поверхности на тело сидящего или стояшего человека?
 - а) Головные боли, чувство голода, ухудшение зрения и слуха.
 - б) Расстройство аппетита, тошнота, повышенная жажда.
 - в) Появление внутренних болей, расстройство желудочно-кишечного тракта, слухового анализатора.
 - г*) Головные боли, нарушение сна, тошнота, ощущение тряски внутренних органов.
- 9. Какие функциональные нарушения могут возникнуть у человека при длительном воздействии локальных вибраций?
 - а*) Спазмы сосудов, ухудшение периферического кровообращения, ограничение подвижности суставов, атрофия мышц.
 - б) Спазмы сосудов сердца, снижение болевой чувствительности, окостенение сухожилий, нарушение функции опорно-двигательного аппарата.
 - в) Спазмы сосудов конечностей, нарушение функции опорнодвигательного аппарата, отложение солей в суставах.
 - г) Спазмы сосудов головного мозга, повышение кровяного давления, нарушение обмена веществ, разрывы внутренних органов из-за резонанса, потеря слуха.
- 10. Какими физическими параметрами оценивается воздействие вибрации на организм человека?
 - a^*) Среднеквадратичные значения виброскорости (V, м/c), виброускорение (W, м/c²) и логарифмические уровни виброскорости (L_v, дБ).
 - б) Частота колебаний (f, Γ ц), амплитуда (A, м) и логарифмические уровни виброскорости (L_v , дБ).
 - в) Среднеквадратичные значения виброскорости (V, м/c), амплитуда (A, м) и логарифмические уровни виброскорости (L_v, дБ).
 - г) Частота колебаний (f, Γ ц), амплитуда (A, м), виброскорость (V, м/c) и виброускорение (W, м/c²).
- 11. Основные принципы, методы и средства обеспечения вибробезопасности условий труда.
 - а) Автоматизация и механизация производственных процессов, использование вибробезопасной техники и оборудования, использование спецодежды.
 - б*) Снижение возможности виброгенерации в источнике и снижении вибрации на путях ее распространения.
 - в) Применение вибропоглощения и виброизоляции, использование средств индивидуальной защиты.

- г) Применение виброзащитной обуви и одежды, снижение числа оборотов вращающихся масс, установка технологического оборудования на амортизаторы.
- 12. Возможные инженерно-технические решения снижения генерации вибрации в источнике.
 - а*) Выбор кинематических и технических схем, где динамические воздействия могут быть сниженными.
 - б) Замена штамповки прессованием, равномерно вращающегося механизма кривошипно-шатунным.
 - в) Замена подшипников скольжения, подшипниками качения, ременных передач зубчатыми.
 - г) Балансировка вращающихся масс, улучшение качества обработки поверхностей, устранение люфтов, замена сварки клепкой, вальцовки ударной правкой.
- 13. Какие методы применяют на практике для снижения вибрации на путях ее распространения?
 - а*) Вибропоглощение, виброизоляция, виброгашение, исключение резонансных режимов.
 - б) Вибродемпфирование, путем покрытия вибрирующих поверхностей материалами с большим внутренним сопротивлением (сплавы цветных металлов, полимерные и резиноподобные материалы), применение поглощающих экранов.
 - в) Установкой технологического оборудования на массивные основания (фундаменты), увеличение жесткости систем, установка поглощающих преград.
 - г) Введение в колебательные системы упругой связи, препятствующей передаче вибрации от источника к смежным элементам конструкции или человеку (пружинные, резиновые и другие виброизоляторы, гибкие вставки в коммуникации воздуховодов), широкое использование поглощающих экранов.

3.3.2 Акустический шум

- 1. Определение акустического шума.
 - а) Совокупность различных по силе и частоте звуков, возникающих при работе технологического оборудования и движении транспорта.
 - б) Вращающиеся движения частиц в упругих средах, обусловленных динамическими воздействиями в механических и аэрогидродинамических системах.
 - в*) Совокупность различных по силе и частоте колебательных движений частиц в упругих средах, вызывающих звуковые ощущения.

- г) Волновые колебания воздушной среды, вызванные вибрирующими поверхностями.
- 2. В каком диапазоне частот механические колебания частиц в упругих средах воспринимаются слуховым анализатором человека как звуковые?
 - а) от 16 до 20 тыс. Гц.
 - б) от 16 Гц до 20 Гц.
 - в*) от 16-20 Гц до $20-22\cdot10^3$ Гц.
 - г) от 10-20 Гц до $25 \cdot 10^3$ Гц.
- 3. Какие бывают акустические шумы по происхождению?
 - а*) Механические, электромагнитные и аэрогидродинамические.
 - б) Аэрогидродинамические, природные и механические.
 - в) Естественные и техногенные.
 - г) Низкочастотные, среднечастотные и высокочастотные.
- 4. Основные причины возникновения механических акустических шумов.
 - а*) Динамические воздействия в сочленяющихся частях механических узлов.
 - б) Трения сочленяющихся частей различных механизмов, отсутствие смазки, грубая обработка поверхностей.
 - в) Вибрация технологического оборудования, средств защиты, и их неисправность.
 - г) Отсутствие средств по звукоизоляции и звукопоглощению шума в механических узлах.
- 5. Основные причины возникновения аэро- и гидродинамических шумов.
 - а) Большие скорости движения газовоздушных и жидких смесей по трубопроводам.
 - б*) Пульсации давления транспортируемых по трубопроводам газообразных и жидких смесей.
 - в) Вибрация трудопроводов, по которым транспортируются газообразные и жидкие смеси.
 - г) Наличие в трубопроводах различного рода повреждений.
- 6. Основные причины возникновения электромагнитных акустических шумов.
 - а) Отсутствие электромагнитных экранов магнитопроводов различного назначения (в трансформаторах, дросселях и т.п.).
 - б) Возникновение вокруг магнитопроводов электромагнитного поля звуковой частоты.
 - в*) Растяжение и изгиб элементов пластинчатых магнитопроводов в переменных электромагнитных полях.
 - г) Недостаточная звукоизоляция магнитопроводов (в трансформаторах, дросселях и т.п.)

- 7. Какие профессиональные заболевания могут возникать у работников, хронически подвергающихся акустическим шумам, превышающим нормативные значения?
 - а) Психологические отключения.
 - б) Заболевание сердечно-сосудистой системы.
 - в) Заболевание желудочно-кишечного тракта.
 - г*) Тугоухость (снижение функции слухового анализатора).
- 8. Как принято называть симптомокомплекс функциональных отклонений в различных системах организма человека при храническом воздействии на него акустического шума?
 - а) Болезнь века.
 - б) Болезнь Альцгеймера.
 - в) Шумовой дискомфорт.
 - г*) Шумовая болезнь.
- 9. Какова величина порога слышимости акустического шума по интенсивности на частотах, близких к 1000 Гц?
 - a) 10^{-10} BT/m^2 .
 - 6) 10^{-14} BT/m^2 .
 - B^*) 10 ⁻¹² BT/ M^2 .
 - Γ) 10⁻¹⁸ BT/ M^2 .
- 10. Какие физические характеристики акустического шума используются при измерении и оценке условий труда?
 - а*) Логарифмические уровни интенсивности или силы звука (L_I , дБ) и звукового давления (L_p , дБ), уровни звука (L_A , дБ·A).
 - б) Уровни интенсивности (силы звука и звукового давления в Bт/м².
 - в) Октавные уровни звукового давления в дБ.
 - г) Уровни звука в дБ·А.
- 11. Какие акустические шумы по частоте оказывают на здоровье человека более выраженное негативное воздействие?
 - а*) Высокочастотные, выше 1000 Гц.
 - б) Шумы с частотами, близкими 1000 Гц.
 - в) Низкочастотные шумы, ниже 1000 Гц.
 - г) Постоянные шумы.
- 12. Как подразделяются акустические шумы по характеру (ширине) спектра?
 - а) Узкополосные, широкополосные.
 - б*) Тональные, широкополосные.
 - в) Низкочастотные, широкополосные.
 - г) Высокочастотные, среднечастотные и низкочастотные.

- 13. Как подразделяются акустические шумы по временным характеристикам?
 - а*) Постоянные, уровни звука которых в течение рабочего дня изменяются не более чем на 5 дБ·А и непостоянные.
 - б) Постоянные, частота которых в течение рабочего дня изменяется не более чем на одну октаву и непостоянные.
 - в) Постоянные, частота и уровни звука которых в течение рабочего дня остаются неизменными и непостоянными.
 - г) Колеблющиеся, импульсные и прерывистые.
- 14. В чем заключается принцип гигиенической оценки акустического шума в рабочей зоне (на рабочем месте)?
 - а*) В сопоставлении фактических значений (измеренных или рассчитанных) количественных характеристик шума с допустимыми значениями.
 - б) Оценка шума осуществляется в зависимости от самочувствия работающих.
 - в) Оценка шума осуществляется на основании расчета максимально возможных его уровней и сравнениями их с допустимыми и самочувствия руководителя.
 - г) На основании самочувствия административных работников (начальника цеха, мастера и т.п.).
- 15. На каких частотах измеряется фактическое значение октавных уровней звукового давления?
 - а*) На среднегеометрической частоте октавы.
 - б) На среднеквадратичной частоте.
 - в) На среднеарифметической частоте.
 - г) На среднестатистической частоте.
- 16. По каким критериям установлены нормативные значения акустического шума на рабочих местах?
 - а) В зависимости от геометрических размеров производственного помещения.
 - б) В зависимости от количества работающих.
 - в) В зависимости от соотношения работающих женского и мужского пола.
 - г*) В зависимости от вида трудовой деятельности и типичности рабочих мест.
- 17. Какие принципы используются на практике для улучшения (нормализации) акустических условий труда?
 - а) Принцип «слабого звена» в источнике образования шумов.

- б) Принцип «защиты расстоянием» на пути распространения звуковой волны.
- в*) Снижение шума в источнике и на пути распространения звуковой волны.
 - г) Организационный принцип (обучение и подбор кадров).
- 18. Какие меры или технические решения являются наиболее эффективными для снижения возможности образования акустических механических шумов в источнике?
 - а) Ограждение технологического оборудования звукоизолирующими и звукопоглощающими кожухами.
 - б) Облицовка внутренних поверхностей ограждающих конструкций производственного помещения (стен, потолка) звукопоглощающими конструкциями.
 - в*) Исключение или снижение динамических воздействий в сочленяющихся частях механических узлов.
 - г) Оборудование производственного помещения звукопоглощающими кулисами и штучными звукопоглотителями.
- 19. Какие методы борьбы с акустическими шумами применяются на пути распространения звуковой волны?
 - а) Виброизоляция технологического шумящего оборудования.
 - б) Применение коллективных и индивидуальных средств защиты.
 - в*) Звукоизоляция и звукопоглощение.
 - г) Увеличение звукопоглощающего фонда производственного помещения и уменьшение единиц технологического оборудования.
- 20. Каким образом и с применением каких средств реализуется на практике звукоизоляция как одни из методов борьбы с шумами?
 - а*) С помощью устройства различных преград (экраны, кожухи, перегородки, выгородки и т.п.)
 - б) С помощью акустических экранов и акустической обработки внутренних поверхностей ограждающих конструкций помещения.
 - в) С помощью устройства звукопоглощающих экранов и других преград на пути распространения звуковой волны.
 - г) Применением изолирующих материалов и устройств, подвешиваемых над источниками шума.
- 21. Каким образом и с применением каких средств реализуется на практике звукопоглощение как один из методов борьбы с шумами на пути его распространения?
 - а) Применением пористых материалов, укрывающих шумящее технологическое оборудование со стороны источника шума.

- б) Применением резиноподобных материалов и сплавов с большим внутренним сопротивлением.
- в*) Акустической обработкой внутренних поверхностей ограждающих конструкций производственного помещения, используя звукопоглощающие строительные конструкции.
- г) Использованием звукопоглощающих матов и других конструкций путем размещения их на ограждающих конструкциях производственного помещения.
- 22. Какие характеристики акустических преград (экрана, кожуха, перегородки и т.п.) в большей степени определяют эффективность их звукоизоляции?
 - а) Размер преграды и частота звуковой волны.
 - б) Материал преграды и ее собственная частота.
 - в) Плотность материала (кг/м³), из которого изготовлена преграда и толщина звукопоглощающего материала.
 - Γ^*) Поверхностная плотность преграды (кг/м²) и частота звуковой волны.
- 23. Каким показателем (параметром, свойством) характеризуется акустическое качество любого помещения в т.ч. производственного?
 - а) Длительностью сохранения стоячих волн, образующихся в результате отражения звукового излучения.
 - б) Габаритами помещения: соотношения ширины и длины помещения, величины индекса помещения.
 - в*) Временем реверберации.
 - г) Коэффициентами отражения и поглощения звуковой энергии ограждающими конструкциями помещения.
- 24. О каком времени идет речь в выражении «время реверберации», характеризующему акустическое качество помещения?
 - а) Это время, в течение которого уровни шума в закрытом помещении после выключения источника шума снижается до предельно допустимого значения.
 - б*) Это время, в течение которого уровни шума в закрытом помещении после выключения источника шума снижается на 60 дБ.
 - в) Это время, в течение которого звуковая волна от источника достигает противоположной ограждающей конструкции помещения и уменьшается в 10^6 раз.
 - г) Это время, в течение которого человек может находиться без заметных нарушений здоровья в звуковом поле, уровень звука которого достигает 120 дБ.

- 25. Какие материалы и устройства применяются в качестве звукопоглощающих при акустической обработке производственных помещений и устройстве звукопоглощающих преград?
 - а*) Ультратонкое стекловолокно, капроновое волокно, минеральная вата, пористые синтетические материалы, строительные облицовочные плиты с перфорированной поверхностью.
 - б) Все пористые материалы, стекловата, древесные опилки, пористый кирпич.
 - в) Конструкции (емкости) правильной геометрической формы, заполненные звукопоглощающим материалом с плотно заделованными швами, а также конструкции в виде кулис.
 - г) Все пористые материалы, пенопласт, пористый поливинилхлорид, медные сплавы с большим внутренним трением.
- 26. От каких характеристик звукопоглощающих конструкций (строительных акустических плит) зависит эффективность и частотный спектр поглощаемой звуковой волны?
 - а) Размеров плиты (ширины, длины, толщины) и звукопоглощающих характеристик пористого или волокнистого материала, которым заполнена плита.
 - б) От наличия или отсутствия перфорации на корпусе плиты и используемого материала.
 - в*) От диаметра перфорационных отверстий на корпусе плиты, процента перфорации корпуса и поглощающего материала, которым заполнена плита.
 - г) От диаметра пористых пустот в звукопоглощаемом материале и его количества в одной плите (т.е. объем плиты).
- 27. Для получения наибольшего эффекта от акустической обработки внутренних поверхностей помещения какой минимальный процент общей площади этих поверхностей следует покрыть звукопоглощающими плитами (или другими конструкциями)?
 - а) Не менее 90 %.
 - б*) Не менее 60 %.
 - в) Не менее половины (50 %).
 - г) Желательно все 100 %.
- 28. В каких точках помещения (зонах) достигается наибольший эффект от акустической обработки помещения?
 - а*) В зоне отраженного звука.
 - б) В зоне прямого звука.
 - в) На границе зон отраженного и прямого звука.
 - г) В пределах рабочего места.

- 29. Какие индивидуальные средства рекомендуется применять работающим в случаях, когда применение других мер борьбы с шумами недостаточно или невозможно?
 - а) Средства внутреннего типа (вкладыши типа «беруши», наушники, шлемы и др.).
 - б) Средства наружного типа (наушники, шлемы, каски, респираторы, маски).
 - в*) Средства внутреннего и наружного типов: различного рода вкладыши, наушники, шлемы, каски, пневмокостюмы.
 - г) Индивидуальные внутренние и наружные средства по защите головного мозга, сердечно-сосудистой системы и желудочно-кишечного тракта.
- 30. Какие организационные мероприятия применяются на практике для снижения риска заболеваемости работающих в условиях шума?
 - а*) Защита временем, путем оптимизации режима труда и отдыха.
 - б) Защита расстоянием, путем удаления источников шума от рабочих мест и применения средств защиты.
 - в) Сокращением количества работающих, подбор кадров, обучение.
 - г) Организацией производства только в первую смену.
- 31. Какие методы и средства применяются на практике для снижения аэродинамических шумов?
 - а) Применение поглощающих и отражающих глушителей, установленных в сечениях истечения газов (трудопроводах) и меры по снижению возможности генерации акустических шумов в источнике.
 - б) Покрытие наружных поверхностей воздуховодов, трубопроводов звукопоглощающими материалами.
 - в) Укрытие источников аэродинамических шумов звукопоглощающими кожухами и другими устройствами.
 - г*) Применением активных, реактивных и комбинированных глушителей шума, устанавливаемых в сечениях истечения газов.

3.3.3 Ультра- и инфразвуковые колебания

- 1. С какой частотой механические колебания относятся к ультразвуковому диапазону?
 - а*) С частотой, превышающей 20 22 кГц.
 - б) С частотой, не выше 22 кГц.
 - в) С частотой, в пределах 20 30 кГц.
 - г) С частотой, при которой слуховой анализатор человека не воспринимает колебания.

- 2. Основные методы и средства снижения вредного воздействия ультразвука на организм человека.
 - а) Снижение рабочих частот до акустического диапазона, применение звукоизолирующих кожухов и экранов, использование дистанционного управления техпроцессом.
 - б*) Повышение рабочих частот, применение изолирующих экранов и кожухов, механизация и автоматизация техпроцессов.
 - в) Снижение рабочих частот ниже акустического диапазона, рационализация режима труда и отдыха.
 - г) Использование дистанционного управления ультразвуковыми технологическими установками; инструктаж и обучение персонала; применение наушников, респираторов и других средств индивидуальной защиты.
- 3. С какими частотами механические колебания относятся к инфразвуковым?
 - а) Колебания, частотный спектр которых не превышает 20-22 кГц.
 - б) Колебания, которые вызывают угнетение высшей нервной деятельности, нарушают функцию сердечно-сосудистой системы.
 - в) С частотами, близкими собственной частоте внутренних орагнов человека (сердца, желудка, почек и др.).
 - Γ^*) Колебания, частотный спектр которых не превышает $16-20~\Gamma$ ц.
- 4. Естественные и техногенные источники инфразвуковых колебаний.
 - а*) Цунами, торнадо, землетрясения, крупногабаритное технологическое оборудование.
 - б) Морские приливы и отливы, извержения вулканов, ручной электрифицированный инструмент.
 - в) Торнадо, цунами, шум листвы, гроза, работа турбин, компрессоров, пожары.
 - г) Вулканические извержения, землетрясения, проливной дождь, метель, промышленные вентиляционные установки, холодновысадочное и штамповочное оборудование.
- 5. Основные негативные последствия воздействия инфразвука на организм человека.
 - а) Утомляемость, головокружение, нарушение сна и аппетита, снижение функции зрительного аппарата, онкологические заболевания.
 - б*) Психические расстройства, нарушение функции центральной нервной системы, головокружение. Возникновение чувства тревожности, беспокойства.
 - в) Нарушение периферического кровообращения, функции опорнодвигательного аппарата и зрительного анализатора.
 - г) Нарушение функции центральной нервной системы, сердечно-сосудистой системы, нарушение сна.

- 6. Какие мероприятия могут быть эффективными для снижения неблагоприятного воздействия инфразвука?
 - а) Реализация методов звукоизоляции и звукопоглощения.
 - б) Реализация методов для снижения инфразвуковых колебаний на пути распространения.
 - в*) Устранение причин образования инфразвука в источнике, повышение жесткости конструкций больших размеров, устранение низкочастотных вибраций.
 - г) Применение глушителей реактивного типа (резонансных и камерных), индивидуальных средств защиты (наушники, респираторы, спец. очки).

3.4. Электромагнитные излучения

- 1. Что представляет собой с физической точки зрения электромагнитное поле (ЭМП)?
 - а*) Особую форму материи.
 - б) Совокупность частиц.
 - в) Пространство заполненное аэроионами.
 - г) Колебательный процесс.
- 2. В каком виде может существовать ЭМП?
 - а*) В виде движущихся фотонов или электромагнитных волн.
 - б) В виде движущихся корпускулярных частиц.
 - в) В виде движущихся аэроионов.
 - г) В виде движущихся электронов и позитронов.
- 3. Чем отличается (какими характеристиками) неионизирующая область электромагнитных колебаний от ионизирующей?
 - а) Тем, что ионизирующие колебания способны ионизировать среду, т.е. создавать в ней заряженные частицы (атомы, молекулы).
 - б*) Энергией фотонов.
 - в) Скоростью распространения.
 - г) Плотностью потока энергии, частот.
- 4. С какой скоростью распространяются электромагнитные волны (или фотоны) в свободном пространстве (воздухе)?
 - а) 300 км/с.
 - б*) 300000 км/с.
 - в) 300 км/мин.
 - г) 300000 км/ч.

- 5. Каким соотношением связаны между собой длина волны λ , частота колебаний f и скорость распространения электромагнитных волн в воздухе (c)?
 - a) $\lambda = c \cdot f$.
 - δ) λ = f/c.
 - $c*) c = \lambda \cdot f$.
 - Γ) $f = \lambda / c$.
- 6. Какому значению равна длина волны (λ) промышленной частоты (f = 50 Гц)?
 - а) 300 км.
 - б) 6,0 км.
 - в) 9,5 км.
 - г*) 6000 км.
- 7. На каком расстоянии (r) от источника ЭМП (генератора) находится ближняя зона или зона индукции, в которой электрическое и магнитное поля практически независимыми друг от друга?
 - a*) $r \le \lambda / 2 \pi$.
 - 6) $r > \lambda / 2 \pi$.
 - B) $r \le \lambda / 4 \pi$.
 - Γ) $r > \lambda / 4 \pi$.
- 8. На каком расстоянии (r) от источника ЭМП находится дальняя зона или зона излучения, в которой бегущая электромагнитная волна уже сформирована?
 - a*) $r > \lambda / 2 \pi$.
 - 6) $r \le \lambda / 2 \pi$.
 - B) $r = \lambda / 2 \pi$.
 - $_{\Gamma})\;r>\lambda\,/\;4\;\pi.$
- 9. Какими количественными характеристиками оценивается поле в зоне индукции, где бегущая электромагнитная волна еще не сформирована?
 - а) Плотностью потока энергии, B_T/M^2 .
 - б) Напряженностью электрической составляющей поля, В/м.
 - в) Напряженностью магнитной составляющей поля, А/м.
 - Γ^*) Напряженностью электрической (E) и магнитной (H) составляющих, соответственно в B/M и A/M.
- 10. Какими количественными характеристиками оценивается сформировавшаяся бегущая электромагнитная волна (в зоне излучения)?
 - а*) Интенсивностью (I) или плотностью потока энергии (ППЭ) в Вт/м².
 - б) Напряженностью магнитной составляющей поля, (Н), А/м.
 - в) Напряженностью электрической составляющей поля, (Е), В/м.
 - г) Напряженностью электрической и магнитной составляющих (Е и Н).
- 11. Основные естественные (природные) источники электромагнитных полей, формирующих электромагнитный фон Земли.

- а) Излучения мирового океана, солнечная радиация.
- б) Излучения Галактик, литосферы, живых организмов.
- в) Геомагнитное поле, электрическое поле Земли, радионуклиды.
- г*) Солнечная радиация, излучения космического пространства, электрическое поле Земли, геомагнитное поле.
- 12. На какие диапазоны частот подразделяются радиочастотные электромагнитные излучения в гигиенической практике?
 - а*) Высокочастотный, ультравысокочастотный и сверхвысокочастотный.
 - б) Низкочастотный, среднечастотный и длинночастотный.
 - в) Сверхчастотный, ультрачастотный, экстравысокочастотный.
 - г) Высокочастотный, низкочастотный, среднечастотный.
- 13. Какой диапазон частот электромагнитных излучений соответствует сверхвысоким частотам (СВЧ)?
 - а) 30 Гц 300 ГГц.
 - б) 30 МГц 300 ГГц.
 - в*) 300 МГц 300 ГГц.
 - Γ) 30 к Γ ц 300 М Γ ц.
- 14. По каким формулам рассчитываются ожидаемые уровни напряженностей электрической (E, B/м) и магнитной составляющих электромагнитных излучений в диапазоне от 30 кГц до 300 МГц?

$$\begin{array}{ll} a \hbox{*}) \ E = \frac{I \cdot L}{2\pi \xi \varpi \tau^3} \,, \ B/\text{m}; & H = \frac{I \cdot L}{4\pi \cdot \tau^2} \,, \ A/\text{m}. \\ \\ \hbox{6)} \ E = \frac{I \cdot L}{4\pi \cdot \tau^2} \,, \ B/\text{m}; & H = \frac{I \cdot L}{2\pi \xi \cdot \varpi \tau^3} \,, \ A/\text{m}. \\ \\ \hbox{B)} \ E = \sqrt{\frac{\Im \cdot H_{\text{E}n\partial}}{T}} \,, \ B/\text{m}; & H = \sqrt{\frac{\Im \cdot H_{\text{H}n\partial}}{T}} \,, \ A/\text{m}. \\ \\ \hbox{\Gamma)} \ E = \frac{I \cdot L}{2\pi \xi \varpi \tau^3} \,, \ B/\text{m}; & H = \sqrt{\frac{\Im \cdot H_{\text{H}n\partial}}{T}} \,, \ A/\text{m}. \end{array}$$

15. По какой формуле рассчитывается предельно допустимое значение плотности потока энергии ($\Pi_{n\partial}$) в рабочей зоне (на рабочем месте) в диапазоне сверхвысоких частот (св. 300 МГц – до 300 ГГц)?

a*)
$$\Pi_{n\partial} = \kappa \frac{\Im \cdot H_{\Pi_{n\partial}}}{T}$$
, BT/M^2 .

δ)
$$\Pi_{n\partial} = \frac{Pucm}{4\pi \cdot \tau^2}$$
, BT/M^2 .

B)
$$\Pi_{n\partial} = \frac{Pucm \cdot q}{4\pi \cdot \tau^2}$$
, BT/M².

$$\Gamma$$
) $\Pi_{n\partial} = \frac{Pucm \cdot q \cdot F_3}{4\pi \cdot \tau^2}$, BT/M^2 .

- 16. Какое действие, в общем виде, оказывают электромагнитные поля на живые организмы?
 - а) Термическое, биологическое, бактерицидное.
 - б*) Тепловое и нетепловое (специфическое).
 - в) Эритемное, бактерицидное и аллергическое.
 - г) Термическое, мутагенное и канцерогенное.
- 17. Какой диапазон радиочастот наиболее вреден для человека?
 - а) Высокочастотный.
 - б) Ультравысокочастотный.
 - в*) Сверхвысокочастотный.
 - г) Метровый диапазон.
- 18. Как оцениваются (с точки зрения вредности и опасности) электромагнитные поля в высокочастотном и ультравысокочастотном диапазонах? Какие при этом количественные характеристики используются?
 - а) Путем сравнения измеренных фактических значений напряженности электрической составляющей поля ($E_{\text{факт.}}$) в рабочей зоне или на рабочем месте с предельно допустимой напряженностью ($E_{\text{пд}}$).
 - б) Путем сравнения измеренного значения напряженности магнитной составляющей поля $(H_{\phi a \kappa \tau})$ с предельно допустимой напряженностью $(H_{n \pi})$.
 - в*) Путем сравнения $E_{\phi a \kappa \tau.}$ и $\, H_{\phi a \kappa \tau} \, c \, E_{\pi \pi} \, u \, H_{\pi \pi}.$
 - г) Путем сравнения измеренного значения плотности потока энергии с предельно допустимым значением, т.е. $\Pi\Pi \Theta_{\phi a \kappa \tau}$ с $\Pi\Pi \Theta_{n \pi}$.
- 19. Какая количественная характеристика ЭМП в диапазоне СВЧ используется для его оценки в рабочей зоне (на рабочем месте)?
 - а) Интенсивность в Bт/м², напряженность электрической составляющей в B/м.
 - 6*) Интенсивность или плотность потока энергии в BT/M^2 .
 - в) Интенсивность в BT/M^2 и напряженность магнитной составляющей в A/M.
 - г) Интенсивность в $B T/m^2$ и напряженность электрической и магнитной составляющих, соответственно в B/m и A/m.
- 20. Какие инженерно-технические способы и средства применяются для снижения интенсивности ЭМП в рабочей зоне (или рабочем месте)?
 - а) Уменьшение напряженности или плотности потока энергии за счет уменьшения размеров источника, использование ослабителей мощно-

- сти и согласованных нагрузок, применение средств коллективной и индивидуальной защиты, экранирование.
- б) Экранирование, уменьшение количественных характеристик поля, уменьшение количества работающих, применение средств индивидуальной и коллективной защиты.
- в*) Экранирование, снижение количественных характеристик поля, использование аттенюаторов и согласованных нагрузок, средств коллективной и индивидуальной защиты.
- г) Экранирование вентиляционных систем, применение металлических сеток, метализованных обоев, штор, защитных очков, «защита расстоянием и временем».
- 21. Какие физические явления используются при применении электромагнитных экранов?
 - а) Поглощение электромагнитной энергии (ЭМЭ) ограждающими конструкциями производственного помещения и рабочего места, отражение ЭМЭ от внутренних поверхностей помещения.
 - б) Отражение ЭМЭ от предметов, технологического оборудования и других преград на пути распространения ЭМЭ, поглощение ЭМЭ этими предметами и оборудованием.
 - в) Отражение и поглощение ЭМЭ средствами коллективной и индивидуальной защиты.
 - г*) Поглощение ЭМЭ материалом экрана и ее отражение от поверхности экрана.
- 22. Чем обусловлено поглощение энергии электромагнитной волны материалом экрана?
 - а*) Электромагнитными свойствами (диэлектрической проницаемостью, электрической проводимостью).
 - б) Электромагнитными свойствами среды распространения электромагнитной волны (диэлектрической проницаемостью, волновым сопротивлением, физической плотностью материала).
 - в) Интенсивностью или напряженностью электромагнитного поля, толщиной экрана.
 - г) Электрической проводимостью материала экрана, его удельным сопротивлением и плотностью.
- 23. Чем обусловлено отражение электромагнитной волны от поверхности экранирующего устройства?
 - а) Размерами устройства, его плотностью по сравнению с плотностью среды распространения.
 - б*) Величиной несоответствия электрической проводимости или волнового сопротивления среды распространения волны и материала экрана.

- в) Конструкцией экрана, его размерами, размерами ячеек металлической сетки.
- г) Способностью экранов преимущественно отражать электромагнитную энергию, а не поглощать.
- 24. Что такое «глубина проникновения» электромагнитной волны в толщу материала экрана?
 - а) Это глубина на которой электромагнитная энергия (ЭМЭ) полностью поглощается материалом экрана.
 - б*) Это глубина, на которой ЭМЭ волны снижается в е (2,71) раз.
 - в) Это глубина, на которой ЭМЭ волны снижается в $\lambda/2\pi$ раз.
 - г) Это глубина, на которой дальнейшее снижение интенсивности поля невозможно.
- 25. Из какого материала изготавливаются преимущественно поглощающие электромагнитные экраны?
 - а) Из диэлектрических материалов (гетинакса, текстолита, синтетических пористых материалов).
 - б) Из материалов, обладающих хорошей электрической проводимостью (металлы, их сплавы).
 - в*) Из материалов, изготовленных на основе диэлектрипов с электропроводящими добавками.
 - г) Из пористых и волокнистых материалов, обладающих высоким электрическим сопротивлением.
- 26. Из каких материалов изготавливают преимущественно отражающие электромагнитные экраны?
 - а*) Из металлов и их сплавов (бронза, латунь, сталь, дюралюминий).
 - б) Из диэлектриков и полупроводников.
 - в) Из синтетических материалов, имеющих высокую плотность.
 - г) Из материалов пористых, волокнистых (поливинилхлорид, пенопласт, древесно-волокнистые плиты).
- 27. Какие индивидуальные средства применяются для защиты от электромагнитных полей при работах в антенном поле, проведении испытательных и наладочных работ на объектах, устранении аварийных ситуаций и т.п.?
 - а) Комбинезоны, халаты, капюшоны, изготовленные из диагональной ткани и радиозащитные очки.
 - б) Комбинезоны, халаты и другие виды специальной одежды, изготовленные из огнеупорной хлопчатобумажной ткани, радиозащитные очки со специальными стеклами.
 - в) Специальная одежда, обувь и перчатки, изготовленные из синтетической ткани с высоким удельным сопротивлением, затененные очки.

- г*) Комбинезоны, халаты, капюшоны, изготовленные из ткани, содержащей слой из радиотехнической ткани, имеющей электропроводящую сетку, очки из стекла с металлическим напылением.
- 28. Что является источниками постоянного магнитного поля на производстве?
 - а) Электромагниты промышленной частоты, литые и металлокерамические магниты.
 - б*) Электромагниты постоянного тока, литые и металлокерамические магниты.
 - в) Литые и металлокерамические магниты и электромагниты однофазного электропитания.
 - г) Литые и металлокерамические магниты и геомагнитное поле.
- 29. Что является источниками переменного магнитного поля на производстве?
 - а*) Линии электропередач промышленной частоты, токоведущие части и линии электропитания технологического оборудования.
 - б) Электрические сети (трехфазные, однофазные, сети постоянного тока) и провода электропитания технологического оборудования.
 - в) Технологическое оборудование, электропитание которого осуществляется выпрямительными установками.
 - г) Электрическое поле Земли, линии электропитания технологического оборудования, трансформаторы и дроссели.
- 30. Какие основные физические характеристики магнитных полей используются при их гигиенической оценке?
 - а) Магнитная индукция (B, T_{π}), поток магнитной индукции (Φ , B_{δ}), напряженность (H, A/M).
 - б) Магнитная сила, магнитная индукция, поток магнитной индукции.
 - в*) Магнитная индукция и напряженность постоянного либо переменного магнитного поля.
 - г) Напряженность поля и поток магнитной индукции.
- 31. Какие основные способы и средства защиты от магнитных полей применения на практике?
 - а) Установки, являющиеся источниками магнитных полей (МП) располагаются друг от друга и других рабочих мест не менее 10 м; «магнитомягкие» материалы (трансформаторное железо, кремневая сталь и др.) располагаются на расстоянии не менее 10 м от источников магнитного поля; намагниченные материалы хранятся в специальных приспособлениях («ярмах»).
 - б) Экраны из ферромагнитных материалов; «ярма» для замыкания магнитных полей; источники МП располагаются друг от друга и рабочих мест не ближе 1,5 2,0 м; «магнитомягкие» материалы располагаются на расстоянии не менее 1,5 2,0 м от источников МП.

- B^*) Источники МП располагаются друг от друга и других рабочих мест не менее 1,5-2,0 м; «магнитомягкие» материалы располагаются на расстоянии не менее 1,5-2,0 м от источников МП; намагниченные материалы хранятся в «ярмах».
- г) Экраны из металла и металлосплавов (сталь, медь, алюминий, бронза, латунь); расстояние между источниками МП и другими рабочими местами не менее 10 м; расположение «магнитомягких» материалов от источников МП не менее 10 м; применение «ярма» при хранении намагниченных материалов.

3.4.1 Ультрафиолетовые излучения

- 1. Какую спектральную область электромагнитных излучений занимают ультрафиолетовые излучения?
 - а*) Область, лежащую между самыми длинными волнами рентгеновского излучения и самыми короткими волнами видимого спектра (менее 0,28 мкм до 0,4 мкм).
 - б) От 0,28 мкм до 0,32 мкм.
 - в) От 0,32 мкм до 0,4 мкм.
 - г) От 0,2 мкм до 1000 мкм.
- 2. Что является источниками ультрафиолетового излучения (У Φ) в природе и на производстве?
 - а) УФ излучения содержатся в солнечной радиации, радиации Галактик, при извержении вулканов, на производстве ламп накаливания, излучения при сварке.
 - б*) Солнечная радиация, газоразрядные лампы, лампы накаливания, сварочные аппараты, плазменные горелки.
 - в) Радиация Солнца и Галактик, морские приливы и отливы, лампы на-каливания, СВЧ-установки, плазменные горелки, сварочные аппараты.
 - г) Излучения при землетрясениях, радиация Солнца и Галактик, лампы накаливания и люминесцентные лампы, плазменные горелки, СВЧустановки, сварочные аппараты.
- 3. Какие биоэффекты могут вызывать ультрафиолетовые излучения?
 - а) Термическое, электролитическое и бактерицидное.
 - б) Раздражающее и возбуждающее.
 - в) Раздражающее, возбуждающее и эритемное.
 - г*) Эритемное и бактерицидное.
- 4. Какое действие на организм человека может вызвать ультрафиолетовое излучение?
 - а*) Эритемное и канцерогенное; конъюнктивит, кератит.

- б) Пигментацию кожи, накожные раковые заболевания, язвенную болезнь желудочно-кишечного тракта, кератит, конъюнктивит.
- в) Эритемное, канцерогенное, опухоли головного мозга, кератит, коньюктивит, отравление.
- г) «Загар» (фотохимическую реакцию кожи), поражение клеток коры головного мозга, кератит, коньюктивит.
- 5. Какие количественные параметры (характеристики) применяются для оценки эритемного и бактерицидного действия ультрафиолетового излучения?
 - а) Ватты, бакты (Вт, б).
 - б) Эры, бакты, ватты (эр, б, Вт).
 - в*) Эры, бакты (эр, б).
 - г) Ватты, килоВатты, бакты (Вт, кВт, б).
- 6. В чем заключается защита работников от ультрафиолетового излучения (УФ-излучения)?
 - а*) Спецодежда, защитные очки различной степени прозрачности в области УФ-излучения, плексиглас, тяжелое стекло.
 - б) Спецодежда (халаты, комбинезоны, шлемофоны), маски с откидными светофильтрами, радиозащитные очки.
 - в) Спецодежда (комбинезоны, халаты, х/б костюмы, вибродемпфирующая обувь), очки с применением кварцевого стекла.
 - г) Спецодежда (комбинезоны, х/б костюмы из радиотехнической ткани), резиновая обувь, диэлектрические перчатки.

3.4.2 Инфракрасные излучения

- 1. Какую спектральную область электромагнитных излучений занимают инфракрасные излучения (ИК-излучения)?
 - а) С длиной волны короче волны оптического диапазона, т.е. с λ <0,75 мкм.
 - 6*) C длиной волны длиннее волны оптического диапазона , т.е. λ от 0,75 до 1000 мкм.
 - в) С длиной волны короче волны ультрафиолетового диапазона, т.е. с λ от 0,2 до 0,4 мкм.
 - г) С длиной волны длиннее рентгеновского излучения , т.е. с $\lambda \ge 0,2$ мкм.
- 2. Каким образом проявляется негативное воздействие ИК-излучения на организм человека (открытые участки кожи)?
 - а*) В виде ожога кожи, расширения просвета капилляров и увеличения пигментации кожи, ожог кожи век, помутнение хрусталика.
 - б) Хроническое воспаление век, помутнение хрусталика, расстройство желудочно-кишечного тракта.

- в) Спазмы зрачка, ожог сетчатки, нарушение функции центральной нервной системы.
- г) Эритема и ожог кожи век, нарушение функции сердечно-сосудистой системы и дыхания.
- 3. Каким показателем оценивается ИК-излучение?
 - а) Напряженностью поля, B/м и температурой нагретых поверхностей, ${}^{0}C$
 - б) Мощностью излучения, Вт и температурой нагретых поверхностей, ${}^{0}\mathrm{C}$
 - в*) Интенсивностью, $B_{\text{т}}/\text{м}^2$ и температурой нагретых поверхностей, ${}^{0}\text{C}$.
 - г) Длиной волны, мкм и температурой нагретых поверхностей технологического оборудования.
- 4. Какие наиболее распространенные средства защиты от ИК-излучения применяются на практике?
 - а*) Оградительные устройства отражающие или поглощающие конструкции экраны (из алюминия, белой жести, закаленного стекла с пленочным окисло-оловянным покрытием, металлической сетка, армированное стекло).
 - б) Отражающие и поглощающие экраны (из плексигласа, текстолита, эбонита, минеральной ваты, стекловаты).
 - в) Отражающие и поглощающие экраны (из металлов и их сплавов, металлических сеток, асбеста, войлока).
 - г) Оградительные устройства экраны из закаленного стекла с пленочным окисло-оловянным покрытием и легированными добавками, армированное стекло, пенопласт, пористый повинилхлорид.
- 5. Какие средства индивидуальной защиты могут применяться для снижения воздействия на работников ИК-излучения?
 - а) Стальные, бронзовые и пластмассовые маски, защитные очки, наголовные маски с откидными экранами.
 - б*) Защитные очки, каски с откидными экранами, фибровые и дюралевые каски.
 - в) Бронзовые и латунные каски, защитные очки с металлическим покрытием стекол, кожаные рукавицы.
 - г) Фибровые и дюралевые каски, спецодежда из x/б ткани армированная металлической сеткой, защитные очки из кварцевого стекла.

3.4.3 Лазерные излучения

1. В каких диапазонах частотного спектра электромагнитных излучений могут работать лазеры (оптические квантовые генераторы) – источники лазерных излучений?

- а) В рентгеновском диапазоне, т.е. в диапазоне с длиной волны $\lambda < 0,2$ мкм и в ультразвуковом диапазоне с f > 20-22 к Γ ц.
- б) В инфракрасном диапазоне с λ от 0,75 до 1000 мкм и в радиочастотном диапазоне с $\lambda > 1000$ мкм.
- в*) В ультрафиолетовом диапазоне (λ от 0,2 мкм до 0,4 мкм), видимом (λ от 0,4 до 0,75 мкм) и инфракрасном (λ от 0,75 мкм до 1000 мкм).
- г) В видимом (λ от 0,4 мкм до 0,75 мкм), инфракрасном (λ >1000 мкм).
- 2. В каких сферах народного хозяйства нашли применение оптические квантовые генераторы (ОКГ)?
 - а) В промышленности для обработки материалов, медицине, военном деле, науке, сельском и лесном хозяйстве.
 - б*) В промышленности для резки, точечной сварки, сверления отверстий, в хирургии глаза, нейрохирургии, в волоконнооптических линиях связи.
 - в) В промышленности для ковки и закалки изделий из металлов в самолетостроении, в военном деле и в биологических науках.
 - г) В промышленности для обработки полупроводниковых и синтетических материалов, в диагностике заболеваемости, восстановлении функции центральной нервной системы.
- 3. Какие эффекты могут вызвать лазерные излучения при их воздействии на организм человека?
 - а) Первичные (органические изменения в облучаемых тканях) и вторичные (нарушение ориентации в пространстве, снижение иммунитета.
 - б) Первичные (снижение функции центральной нервной системы, сердечно-сосудистой системы, трофической функции) и вторичные (ожоги на открытых участках тела, катаракта).
 - в*) Первичное (нарушение органики, омертвление кожи) и вторичное (функциональные нарушения в центральной нервной системе, сердечно-сосудистой системе).
 - г) Первичные биоэффекты (функциональные нарушения зрительного и слухового анализаторов, трофической функции) и вторичные (катаракта, помутнение хрусталика глаза, ожоги кожи).
- 4. Какие органы и системы организма человека наиболее критичны (чувствительны) к лазерным воздействиям?
 - а) Центральная нервная система и сердечно-сосудистая система.
 - б) Центральная нервная система и открытые участки тела (кожа).
 - в) Центральная нервная система и глаза.
 - г*) Открытые участки тела (кожа) и глаза.

- 5. Какие параметры лазерного излучения используются для их гигиенической оценки?
 - a^*) Энергетическая экспозиция (H, Дж/м²), энергетическая освещенность (E, $B\tau/m^2$), энергия (W, Дж), мощность излучения (P, $B\tau$).
 - б) Энергетическая экспозиция (H, $Дж/м^2$) и энергетическая освещенность (E, Bt/m^2).
 - в) Энергия (W, Дж) и мощность (P, Вт) лазерного излучения.
 - г) Энергетическая экспозиция (H, Дж/м²) и мощность (P, Вт) лазерного излучения.
- 6. На какие классы по степени опасности подразделяются оптические квантовые генераторы (лазеры)?
 - а) Первый (полностью безопасные лазеры, когда выходное излучение не представляет опасности при облучении глаз и кожи) и второй классы (излучение представляет опасность при облучении кожи или глаз человека прямым излучением).
 - б) Первый (полностью безопасные лазеры) и второй классы (излучение представляет опасность при облучении глаз прямым и диффузно отраженным излучением и при облучении кожи прямым излучением).
 - в) Первый (полностью безопасные лазеры) и второй классы (диффузно отраженное излучение представляет опасность для глаз и кожи).
 - г*) Первый (полностью безопасные лазеры), второй (излучение представляет опасность при облучении кожи и глаз человека только прямым излучением), третий (излучение представляет опасность при облучении глаз прямым и диффузно-отраженным излучением и при облучении кожи только прямым излучением) и четвертый классы (диффузно отраженное излучение представляет опасность для лаз и кожи).
- 7. Какие организационно-планировочные мероприятия применяются для защиты от лазерных излучений?
 - а) Допуск к работе лиц, прошедших обучение, медицинское освидетельствование, инструктаж; выделение или ограждение лазероопасной зоны дисциплинарными барьерами; окраска внутренних поверхностей помещения в цвета с малым коэффициентом отражения, дистанционное управление работой лазера, применение резиновых диэлектрических перчаток, ковриков и т.п.
 - б) Рациональное с точки зрения безопасности размещение рабочих мест и лазерного оборудования, размещение в помещении не более одного лазера, направление луча на огнестойкую и неотражающую стенку, использование слуховой и зрительной сигнализации.
 - в) Медицинское освидетельствование и инструктаж лиц, допущенных к работе, окраска внутренних поверхностей помещения в цвета с малым коэффициентом отражения, применение защитных очков и масок с откидными экранами.

- г*) Допуск к работе лиц, прошедших обучение и инструктаж; рациональное размещение рабочих мест и лазерного оборудования, окраска внутренних поверхностей помещения в цвета с малым коэффициентом отражения, направление луча на огнестойкую и неотражающую стенку.
- 8. Какие основные инженерно-технические способы и средства применяются для обеспечения лазеробезопасных условий труда для персонала на лазеротехнологических установках?
 - а) Уменьшение мощности источника (если позволяет технология), укрытие генератора и лампы накачки светонепроницаемым экраном, использование на участке взрывозащищенного электрооборудования.
 - б) Укрытие генератора и лампы накачки лазеронепроницаемым экраном; Устройство блокировки, исключающей работу генератора при открытом или снятом кожухе, использование спецодежды (костюмы, халаты) из чисто белой х/б ткани.
 - в) Устройство блокировки защитных кожухов и входных дверей, при срабатывании которых отключается от электропитания генератор лазера; передача лазерного луча к мишени по световодам или по ограниченному непрозрачным для лазерного луча экраном пространству; применение эффективной вентиляции помещения и окраска внутренних поверхностей помещения в светлые тона с большим коэффициентом отражения.
 - г*) Уменьшение мощности источника, укрытие генератора и лампы накачки лазеронепроницаемым экраном, устройство блокировки кожуха и входных дверей, применение сигнальных устройств, использование защитных очков, щитков и спецодежды из темной ткани.

4. Производственная безопасность (техника безопасности)

- 1. Что является предметом техники безопасности?
 - а) Исследование причин снижения работоспособности, ухудшения самочувствия и профессиональной заболеваемости.
 - б*) Выявление производственных опасностей, их источников, оценка риска травмирования и разработка комплекса мер по снижению вероятности несчастных случаев, аварий, катастроф и т.п.
 - в) Изучение производственного процесса, культуры производства, причин несчастных случаев и профессиональной заболеваемости.
 - г) Анализ условий труда, выявление травмоопасных операций, техпроцессов с целью сокращения производственного травматизма и профзаболеваемости.

- 2. Каковы цели техники безопасности?
 - а) Улучшить условия труда, снизить профессиональную заболеваемость.
 - б) Выявить опасные и вредные факторы, их источники, оценить риск травмирования и заболеваемости производственного персонала.
 - в*) Снижение количества несчастных случаев на производстве, аварий, катастроф и риска травмирования и гибели работников.
 - г) Снижение социально-экономических потерь, обусловленных неблагоприятными условиями труда, авариями и пожарами.
- 3. Какие основные причины производственного травматизма?
 - а) Недостаточная квалификация работников, пренебрежение ими требований безопасности, нарушение инструкций и правил пожарной безопасности.
 - б) Отсутствие у работников достаточного опыта и навыков в работе, недисциплинированность, неисправность технологического оборудования, использование легковоспламеняющихся и горючих жидкостей.
 - в) Низкий уровень профессиональной подготовки работников, неисправность средств защиты, несоответствие санитарным нормам показателей (характеристик) производственной среды, нарушение количественного соотношения мужчин и женщин на производственных участках.
 - г*) Недостаточная квалификация работников, нарушение трудоохранного законодательства, низкий технический уровень и неисправность технологического оборудования, неудовлетворительная гигиена производственной среды, физические и нервно-психические нагрузки.

4.1 Электробезопасность

- 1. Чем отличается электрический ток от других производственных опасностей?
 - а) Скоростью воздействия.
 - б) Смертельным исходом.
 - в*) Невозможностью обнаружения его дистанционно без приборов.
 - г) Возможностью реанимации пострадавшего после электрического удара.
- 2. В каких случаях человек (работник) может быть поражен электрическим током?
 - а) Находясь на рабочем месте или вблизи технологического оборудования, стоя на токопроводящих полах.
 - б) Прикасаясь к корпусам технологического оборудования, без использования изолирующих средств защиты.
 - в) Прикасаясь к токоведущим частям оборудования, находящимся в аварийном состоянии.

- г*) При замыкании электрического тока через тело человека (например, при однофазном прикосновении одной рукой, стоя на земле или касаясь каких-либо заземленных конструкций).
- 3. Какие виды поражения может вызвать электрический ток, протекая через тело человека?
 - а) Судорожное сокращение мышц, местные повреждения поверхностных тканей тела человека (ожоги, порезы и т.п.), нарушение функции опорно-двигательного аппарата, головокружение.
 - б) Потеря сознания, нарушение функции сердечно-сосудистой системы и функции опорно-двигательного аппарата, потеря аппетита.
 - в) Нагрев мышечной, нервной, костной и других тканей тела человека, судорожное сокращение мышц, электролитическое разложение биологических жидкостей (крови, лимфы и т.п.).
 - г*) Электрические травмы, электрические удары.
- 4. Какие факторы влияют на исход поражения электрическим током?
 - а*) Величина тока, длительность воздействия, род тока, частота состояния организма, физико-химическая характеристика производственной среды (помещения), путь протекания тока через тело.
 - б) Величина напряжения, род тока, частота, путь протекания тока через тело человека, схема электрической сети, наличие защитного заземления и зануления, других способов защиты.
 - в) Величина напряжения, длительность воздействия, умение оказывать первую (доврачебную) помощь, возможность прикосновения к открытым токоведущим частям (проводам, клеммам и т.п.).
 - г) Величина тока, напряжения, схема электрической сети (трехфазная трехпроводная, трехфазная четырехпроводная и т.п.), режим нейтрали сети по отношению к земле (нейтраль изолирована от земли или заземлена), род тока, его частота, психофизиологическое состояние человека.
- 5. Какие способы применяются для реанимации пострадавших от электрического тока?
 - а*) Искусственное дыхание и непрерывные массаж сердца, используя методы «изо рта в рот» («изо рта в нос»).
 - б) Вдувание воздуха в легкие пострадавшего методом «изо рта в рот», «изо рта в нос» с помощью трубок или других приспособлений, массаж мышц грудной клетки путем легкого надавливания, стимуляция сердца путем интенсивного сгибания рук пострадавшего.
 - в) Искусственное дыхание путем интенсивного сгибания рук пострадавшего, положив его на спину и освободив рот от посторонних предметов, закрытый массаж сердца путем легкого ритмичного надавливания на переднюю грудную клетку.

- г) Вентиляция легких пострадавшего путем вдувания в них через нос или через рот воздуха из легких оказывающего помощь, прямой массаж сердца и ритмичное сгибание ног.
- 6. Какие трехфазные сети по схеме (количество проводов) и режиму нейтрали относительно земли (изолирована, заземлена) применяются на практике для электропитания технологического оборудования, приборов, устройств, бытовой техники и т.п.?
 - а) Трехфазные трехпроводные с заземленной нейтралью; трехфазные четырехпроводные с заземленной нейтралью; трехфазные четырехпроводные с изолированной нейтралью;
 - б*) Трехфазные четырехпроводные с заземленной нейтралью; трехфазные четырехпроводные с изолированной нейтралью; трехфазные трехпроводные с изолированной нейтралью;
 - в) Трехфазные трехпроводные с изолированной нейтралью; трехфазные четырехпроводные с заземленной нейтралью; трехфазные трехпроводные с заземленной нейтралью.
 - г) Трехфазные четырехпроводные с заземленной нейтралью; трехфазные трехпроводные с изолированной нейтралью; трехфазные трехпроводные с заземленной нейтралью.
- 7. Какие основные факторы влияют на сопротивление изоляции фазных проводов по отношению к земле (z) в сетях, изолированных от земли (трехфазные с изолированной от земли нейтралью, двухпроводные переменного и постоянного тока с изолированными от земли выводами, полюсами и т.п.).
 - а) продолжительность сети, величина напряжения в сети.
 - б) Удельное сопротивление грунта, место проложения сети (кабельная или воздушная).
 - в) Величина напряжения в сети, количество проводов в сети (трехпроводные, четырехпроводные).
 - г*) Продолжительность сети, количество ответвлений.
- 8. В чем заключается оценка риска электротравмирования при эксплуатации электрических сетей и потребителей электроэнергии?
 - а) В измерении или расчете максимально-возможного тока через тело человека в конкретной ситуации.
 - б) В самочувствии человека, попавшего под действие электрического тока различной величины напряжения.
 - в) В ответной реакции организма человека на действие тока при отсутствии мер защиты.
 - г*) В сравнении максимально-возможных значений тока через тело человека или напряжения прикосновения с их допустимыми значениями.

- 9. Какая величина сопротивления тела человека (Rh) принимается при расчетах ожидаемых токов электропоражения в зависимости от величины напряжения прикосновения (U_{np})?
 - а) Rh=6 кОм (при $U_{np}>50$ В) и Rh=1 кОм (при $U_{np}\le50$ В)
 - б) Rh=1 кОм (при $U_{np}>127~B$) и Rh=6 кОм (при $U_{np}\le127~B$)
 - в) Rh=1 кОм (при $U_{mp}>220 \text{ B}$) и Rh=6 кОм (при $U_{mp}\leq 220 \text{ B}$)
 - Γ^*) Rh=1 кОм (при $U_{np}>50$ В) и Rh=6 кОм (при $U_{np}\leq50$ В)
- 10. При каких значениях сопротивления фазных проводов по отношению к земле (Z) трехфазная трехпроводная сеть с изолированной нейтралью с напряжением до 1000 В находится, как принято считать, в нормальном режиме работы?
 - а*) Z≥500 кОм (больше либо равно)
 - б) Z≥6 кОм (больше либо равно)
 - в) Z≥750 кОм (больше либо равно)
 - г) Z≥1 мОм (больше либо равно)
- 11. Каково назначение повторного заземления нейтрального провода трехфазной четырехпроводной сети с заземленной нейтралью при применении зануления?
 - а*) Для снижения опасности электропоражения персонала при несрабатывании отключающего устройства зануления из-за нарушения цепи тока короткого замыкания.
 - б) Для снижения сопротивления заземления нейтрали источника (генератора, трансформатора) и повышения надежности работы зануления.
 - в) Для обеспечения безопасности работника при его прикосновению к зануленному корпусу в аварийном режиме работы сети.
 - г) Для обеспечения безопасности персонала, работающего на зануленном устройстве, при разрыве защитного проводника сети (нейтрального провода).
- 12. Какие основные факторы и характеристики сети влияют на опасность электропоражения при однофазном прикосновении человека в трехфазной трехпроводной сети с изолированной нейтралью?
 - а*) Напряжение сети, сопротивление изоляции фазных проводов по отношению к земле.
 - б) Психофизиологическое состояние работника, напряжение сети, род тока, путь протекания тока через тело человека.
 - в) Напряжение сети, ток через тело человека, продолжительность воздействия, удельное сопротивление грунта.
 - г) Напряжение сети, ток через тело человека, наличие защитных мер.
- 13. Какие основные технические способы применяются в электроустановках для защиты от поражения электрическим током?

- а) Защитное заземление, зануление, применение низких (малых) напряжений для электропитания оборудования.
- б) Применение изолирующих (основных и дополнительных), отражающих и вспомогательных средств, устройств защитного отключения (УЗО).
- в) Защитное заземление, зануление, применение изолирующих средств, автотрансформаторов для понижения напряжения.
- г) Применение низких (малых) напряжений электропитания, понижающих трансформаторов, двойной изоляции.

14. Какие требования предъявляются к занулению для его надежной работы?

- а) Обязательное применение повторного заземления нейтрали. Ток короткого замыкания в цепи «фаза-нуль» не должен превышать значение тока срабатывания защиты (например, перегорания плавкой вставки предохранителя).
- б*) Обязательное применение повторного заземления нейтрали. Недопустимо включение в зануляющий проводник коммутирующих устройств. Ток короткого замыкания в цепи зануления должен превышать ток срабатывания защиты.
- в) ток короткого замыкания в цепи зануления при замыкании напряжения электропитания на зануленный корпус должен превышать значение тока срабатывания защиты. Сопротивление зануляющего проводника должно быть не менее 0,1 Ом.
- г) Сопротивление зануления нейтральной точки источника напряжения (трансформатора, генератора) не должно превышать 2,4 Ом или 8 Ом соответственно для линейных напряжений 660, 380 и 220 В; в зануляющий проводник запрещается включать какие-либо коммутирующие устройства (предохранители, выключатели, кнопки и т.п.).
- 15. Каково назначение заземления нейтрали источника напряжения (трансформатора, генератора)?
 - а) Для увеличения тока короткого замыкания петли «фаза-нуль» при замыкании фазы на зануленный корпус, что повышает надежность срабатывания отключающего устройства при занулении.
 - б) Для повышения надежности работы зануления в случае разрыва нейтрального провода четырехпроводной сети.
 - в) Для обеспечения возможности использовать такую сеть для однофазных и трехфазных потребителей.
 - г*) Для снижения опасности электропоражения при переходе сети в аварийный режим (т.е. замыкании одной фазы на землю).
- 16. Для повышения электробезопасности трехфазных сетей с изолированной нейтралью напряжением до 1000 В какое минимальной значение сопротивле-

ния изоляции фазных проводов по отношению к земле $(Z_A,\ Z_B,\ Z_C)$ следует обеспечить?

- а*) Не менее 500 кОм.
- б) Не более 4 Ом
- в) Не более 1 мОм.
- г) Не более 500 кОм.
- 17. В каких трехфазных сетях с изолированной нейтралью легче обеспечивается требуемая изоляция проводов по отношению к земле?
 - а) В воздушных и кабельных линиях большой протяженности.
 - б) В любых сетях с напряжением не превышающим 1000 В.
 - в) В подземных кабельных линиях по сравнению с воздушными.
 - г*) В любых сетях небольшой протяженности.
- 18. Укажите правильные значения величины сопротивления заземления нейтрали источника напряжения (трансформатора, генератора) в трехфазных четырехпроводных сетях с заземленной нейтралью?
 - а) 2,4,8 Ом в зависимости от наличия повторных заземлений нейтрали (5,10,20 Ом).
 - б*) 2,4,8 Ом в зависимости от напряжения сети (соответственно 660/380, 380/220, 220/127 В).
 - в) 2,4,8 Ом в зависимости от мощности сети (соответственно 100 кВт*A, более 100 кВт*A, свыше 500 кВт*A).
 - г) 2,4,8 Ом в зависимости от напряжения сети (соответственно 220/127, 380/220, 660/380 В).
- 19. По каким критериям (требованиям) выбирается схема трехфазной сети (количество проводов) и режим нейтрали по отношению к земле (изолирована, заземлена) для электропитания технологического оборудования (электроустановок)?
 - а) По электробезопасности и мощности технологического оборудования
 - б*) По удобству эксплуатации (технологичности) или приемлемости для потребления сети и степени безопасности.
 - в) По степени безопасности и величине напряжения электропитания технологического оборудования.
 - г) По приемлемости (удобству) для потребителя и количеству потребителей.
- 20. Какими преимуществами (для потребителя) обладают трехфазные четырехпроводные сети с зануленной нейтралью по сравнению с трехфазными трехпроводными сетями с изолированной нейтралью?

- а*) Лучшей технологичностью (в большей степени удовлетворяет потребности потребителя), большей безопасностью в аварийном состоянии.
- б) Такие сети более безопасны в аварийном режиме работы и более надежны в обеспечении потребителя энергией.
- в) Такие сети более экономичны по сравнению с сетями с изолированной нейтралью, и в работе более безопасны.
- г) Такие сети позволяют применять зануление, что обеспечивает надежную защиту работников, кроме того, они позволяют потребителю использовать однофазное и трехфазное напряжение.
- 21. Какие основные технические способы используются в электроустановках (потребителях электрической энергии) для снижения риска электротравмирования?
 - а) Повышения сопротивления изоляции проводов электрической сети по отношению к земле; применение сетей с более низким напряжением, применение изолирующих, ограждающих и вспомогательных защитных средств.
 - б*) Применение защитного заземления, зануления, устройств защитного отключения.
 - в) Применение двойной изоляции, выравнивание потенциалов на корпусах электроустановок и основании (поверхности грунта), на котором стоит человек; использование помещений без признаков повышенной опасности.
 - г) Применение изолирующих, ограждающих и вспомогательных защитных средств, применение устройств защитного отключения.
- 22. Какие явления используются для снижения опасности электропоражения при применении защитного зануления?
 - а) Автоматическое снижение напряжения на заземленном корпусе установки относительно земли за счет малого значения сопротивления заземляющего устройства и уменьшения падения напряжения на заземлении.
 - б) Автоматическое снижение напряжения на заземленном корпусе установки относительно земли за счет малого значения сопротивления заземления до значения $U_n = I_3 * R_3$ и заземляющего устройства в месте с наименьшим удельным сопротивлением грунта.
 - в) Автоматическое снижение напряжения на заземленном корпусе установки относительно земли за счет малого значения сопротивления заземляющего устройства и вынос его в зону электротехнической земли.
 - Γ^*) Автоматическое снижение напряжения на заземленном корпусе до значения $U_n = I_3 * R_3$ и выравнивании потенциалов на заземленном корпусе и основании (поверхности грунта), на котором стоит человек.

- 23. Какой технический принцип используется при занулении оборудования для снижения риска электропоражения?
 - а) Принцип «надежности».
 - б) Принцип «системности».
 - в*) Принцип «слабого звена».
 - г) Принцип «защиты расстоянием».
- 24. Каким образом при занулении электроустановок обеспечивается защита работника от электропоражения при замыкании напряжения сети на корпус?
 - а*) Возникновение тока короткого замыкания в цепи электропитания, значительно превышающего величину рабочего тока, приводит к срабатыванию отключающего устройства, последовательно включенного в эту цепь, и отключает поврежденную установку от сети.
 - б) Благодаря образованию значительного тока в цепи замыкания электропитания, на зануленный корпус снижается напряжение прикосновения человека к такому корпусу.
 - в) Благодаря образованию короткого замыкания в цепи электропитания и уменьшения тока через тело человека.
 - г) Замыкание электропитания (например, одной фазы) на зануленный корпус создает условия, при которых ток в большей степени будет замыкаться на источник через цепь короткого замыкания, а не через тело человека.
- 25. Укажите, при каких минимальных значениях электропитания (50 Гц) потребителей (приборов, устройств) следует заземлять или занулять их корпуса в помещениях: 1) без признаков повышенной опасности электропитания; 2) с наличием признаков повышенной опасности; 3) с наличием признаков особой опасности по поражению электрическим током.
 - a) 1) 380 B, 2) 42 B, 3) 42 B.
 - 6) 1) 440 B, 2) 220 B, 3) 127 B.
 - в) 1) 220 B, 2) 127 B, 3) 42 В.
 - г) 1) 380 B, 2) 220 B, 3) 12 В.
- 26. В каком из представленных вариантов указано правильное значение сопротивления защитного заземления?
 - a) 8 Ом в сетях напряжением 220/127 В; 4 Ом в сетях напряжением 380/200 В; 2 Ом в сетях напряжением 660/380 Ом.
 - б) Не менее 4 Ом в сетях мощностью до 100 кВ*А и не менее 10 Ом в сетях мощностью более 100 кВ*А.
 - в*) 10 Ом в маломощных сетях (до 100 кВ*А) и 4 Ом в сетях мощность которых превышает 100 кВ*А.
 - г) Не менее 4 Ом во всех случаях.

- 27. Какие значения сопротивления повторного заземления нейтрали (при занулении) в трехфазных четырехпроводных сетях соответствуют нормальным?
 - a^*) $r_{\text{повт}}$ =5,10,20 Ом (соответственно U_{π} =660,380,220 В).
 - б) $r_{\text{повт}}$ =4,10,20 Ом (соответственно U_{π} =660/380, 380/220, 220/127 В).
 - в) $r_{\text{повт}}$ =2,4,8 Ом (соответственно U_{π} =660,380,220 В).
 - г) $r_{\text{повт}}$ =2,5,10 Ом (соответственно U_{π} =660/380, 380/220, 220/127 В).
- 28. Укажите правильное значения предельно допустимых токов электропоражения при нормальном (неаварийном) и аварийном режимах работы установок и устройств потребителей электрической энергии промышленной частоты (50 Гц).
 - а*) Неаварийный режим: $Ih_{\Pi Д}$ ≤1,0 мA; аварийный режим: $Ih_{\Pi Д}$ ≤6,0 мA.
 - б) Неаварийный режим: $Ih_{\Pi \Pi} \le 0.3 \text{ мA}$; аварийный режим: $Ih_{\Pi \Pi} \le 1.5 \text{ мA}$.
 - в) Неаварийный режим: $Ih_{\Pi J} \le 6,0$ мА; аварийный режим: $Ih_{\Pi J} \le 0,3$ мА.
 - г) Неаварийный режим: $Ih_{\Pi \Pi} \le 0.3 \text{ мA}$; аварийный режим: $Ih_{\Pi \Pi} \le 1.0 \text{ мA}$.
- 29. Укажите правильные значение предельно допустимых значений напряжения прикосновения ($U_{\Pi P\Pi J}$) при нормальном (неаварийном) и аварийном режимах работы установок и устройств потребителях электрической энергии промышленной частоты
 - а) Неаварийный режим 12 В; аварийный режим 6 В.
 - б*) Неаварийный режим 2 В; аварийный режим 42 В.
 - в) Неаварийный режим 127 В; аварийный режим 220 В.
 - г) Неаварийный режим 220 В; аварийный режим 380 В.
- 30. Какие трехфазные сети по количеству проводов (трехпроводные и четырехпроводные) относительно земли (изолирована, заземлена) более безопасны в нормальном (неаварийном) режиме работы при однофазном прикосновении?
 - а*) Трехфазные трехпроводные с изолированной нейтралью.
 - б) Трехфазные четырехпроводные с заземленной нейтралью.
 - в) Трехфазные трехпроводные с заземленной нейтралью.
 - г) Все трехфазные сети с заземленной нейтралью.
- 31. Какие трехфазные сети по количеству проводов (трехпроводные и четырехпроводные) и режиму нейтрали относительно земли (изолирована, заземлена) более опасны в аварийном состоянии (замыкание одной из фаз на землю через небольшое сопротивление) при однофазном прикосновении?
 - а) Трехфазные трехпроводные с заземленной нейтралью.
 - б) Трехфазные четырехпроводные с заземленной нейтралью.
 - в*) Трехфазные трехпроводные с изолированной нейтралью.
 - г) Все трехфазные сети с заземленной нейтралью.

4.2. Защита от опасных и вредных факторов при работе с компьютерами

- 1. Какие факторы работы на компьютере могут оказывать негативное влияние на здоровье пользователей ЭВМ и увеличивать риск профессиональной заболеваемости?
 - а) Повышенное зрительное напряжение, психологические перегрузки, длительное неизменное положение тела при работе, опасность электропоражения и отравления углекислотой.
 - б) Повышенное зрительное напряжение, психологические перегрузки, электромагнитные излучения, ультрафиолетовое излучение, гамма-излучение.
 - в*) Зрительное перенапряжение, умственные перегрузки, длительное неизменное положение тела в процессе работы, статистическое электричество, рентгеновское излучение.
 - г) Повышенное напряжение зрительного и слухового анализаторов, умственные перегрузки, длительное неизменное положение тела на рабочем месте, геомагнитное поле, рентгеновское излучение.
- 2. Какие профессиональные заболевания пользователей ЭВМ (ПК) могут быть связаны (обусловлены) условиями труда?
 - а) Заболевания органов зрения, центральной нервной системы, сердечно-сосудистой системы, желудочно-кишечного тракта, опорнодвигательного аппарата.
 - б) Катаракта, опухоли мозга, аритмия сердечной деятельности (тахи-или брадикардия), нарушение психики и ограничение двигательной функции.
 - в) Заболевание органов зрения и пищеварения, нарушение функции центральной нервной системы, желудочно-кишечного тракта, трофической функции (облысение).
 - г*) Заболевание органов зрения, центральной нервной системы, сердечно-сосудистой системы, желудочно-кишечного тракта, кожных заболеваний.
- 3. На каком минимальном расстоянии от пользователя рекомендуется располагать монитор ПК?
 - а) 30 см от пользователя.
 - 6*) 50 см от пользователя.
 - в) 75 см от пользователя.
 - г) 60 см от пользователя.
- 4. Какое *оптимальное* время установлено для наблюдения за экраном видеотерминала?
 - а*) Не превышающее 2 ч за смену.
 - б) Не превышающее 3 ч за смену.

- в) Не превышающее 4 ч за смену.
- г) Не превышающее 2,5 ч за смену.
- 5. Какое *допустимое* время установлено для наблюдения за экраном видеотерминала?
 - а*) Не превышающее 3 ч за смену.
 - б) Не превышающее 4 ч за смену.
 - в) Не превышающее 5 ч за смену.
 - г) Не превышающее 6 ч за смену.
- 6. При какой продолжительности наблюдения за экраном видеотерминала принято считать напряженностью первой степени?
 - а) Свыше 6 ч.
 - б) Свыше 4 ч.
 - в*) Свыше 3 ч.
 - г) Свыше 5 ч.
- 7. При какой продолжительности наблюдения за экраном видеотерминала принять считать напряженностью второй степени?
 - а) Свыше 7 ч.
 - б) Свыше 6 ч.
 - в*) Свыше 4 ч.
 - г) Свыше 5 ч.
- 8. На каком уровне должны находиться глаза оператора относительно центра или высоты экрана ВДТ при его вертикальном расположении?
 - а*) Уровень глаз оператора должен приходиться на центр или 2/3 высоты экрана.
 - б) Ниже центра, но не ниже 1/3 высоты экрана.
 - в) Выше центра, но не выше 2/3 высоты экрана.
 - г) Уровень глаз оператора должен приходиться на центр высоты экрана.
- 9. Какое минимальное значение К.Е.О. должно обеспечивать естественное освещение через световые проемы в помещениях с ВДТ и ПЭВМ?
 - a) 2 %.
 - б) 3 %.
 - в) 2,5 %.
 - **Γ***) 1,5 %.
- 10. Какая должна быть освещенность поверхности стола в зоне размещения документов при работе на ПК?
 - а) 200 250 лк.
 - 6*) 300 500 лк.
 - в) 150 200 лк.

- Γ) 250 300 лк.
- 11. Какая освещенность должна быть на поверхности стола в компьютерных классах всех типов учебных заведений?
 - а) 300 лк.
 - б*) 400 лк.
 - в) 450 лк.
 - г) 500 лк.
- 12. Какая освещенность должна быть на экране ВДТ в компьютерных классах?
 - а) 150 лк.
 - б) 250 лк.
 - в) 300 лк.
 - г*) 200 лк.
- 13. Какая площадь на одно рабочее место с ВДТ и ПЭВМ должна быть обеспечена согласно нормам?
 - a) $4,0 \text{ m}^2$.
 - б) 5.0 м^2 .
 - B^*) 6,0 M^2 .
 - Γ) 3,0 M^2 .
- 14. Какое минимальное значение объема помещения компьютерного класса в учебных заведениях должно быть обеспечено на обдно рабочее место с ВДТ и ПЭВМ?
 - a) 16 m^3 .
 - $\vec{6}$) 17 м³.
 - $^{\circ}$ 20 $^{\circ}$ $^{\circ}$.
 - Γ^*) 18 M^3 .
- 15. Какое максимальное время занятий в дисплейных классах установлено для первокурсников?
 - а*) 2 ч.
 - б) 3 ч.
 - в) 1,5 ч.
 - г) 2,5 ч.
- 16. Какое максимальное время занятий в дисплейных классах установлено для студентов старших курсов при соблюдении регламентированных перерывов и профилактических мероприятий (упражнения для глаз, физкультминуток и физкультпауз)?
 - а) 2 академических часа.
 - б*) 3 академических часа.
 - в) 4 академических часа.
 - г) 2,5 академических часа.

4.3. Требования безопасности при работе с радиоэлектронным оборудованием

- 1. Какие виды работ могут производиться с радиоэлектронным оборудованием?
- а) Управление, техническое обслуживание, сборка, разборка, регулировка.
 - б) Ремонт, наладка, управление, уничтожение.
- в) Экспериментальные работы, проверка надежности, техническое обслуживание.
- г*) Управление, техническое обслуживание, ремонт, наладка, экспериментальные работы.
- 2. Какой минимальный объем производственного помещения для работ с РЭО должен приходиться на одного работника (научного сотрудника, студента)?
 - a^*) He menee 15 M^3 .
 - б) Не менее 20 м^3 .
 - в) He менее 18 м^3 .
 - Γ) Не менее 25 M^3 .
- 3. Какая минимальная площадь помещения лаборатории должна приходиться на одного научного работника или студента?
 - a) He menee 6 m^3 .
 - 6*) Не менее 4,5 м³.
 - в) He менее 5 м^3 .
 - Γ) Не менее 4 M^3 .
- 4. В каких помещениях по признакам опасности поражения электрическим током могут осуществляться работы с РЭО?
 - а) В помещениях без признаков особой опасности.
 - б) В помещениях без признаков повышенной опасности.
 - в*) В помещениях без признаков повышенной и особой опасности.
- г) В помещениях сухих, нежарких, имеющих токонепроводящие полы и относительную влажность воздуха не более 75%.
- 5. В каких помещениях могут размещаться установки, являющиеся источниками ВЧ, УВЧ и СВЧ диапазонов излучений?
- а*) С капитальными стенами и перекрытиями на верхнем этаже угловых частей здания.
- б) С металлическими стенами и перекрытиями на первом этаже угловых частей здания.
- в) С кирпичными стенами и деревянными перекрытиями на верхнем этаже угловых частей здания.
 - г) Только в помещениях цокольного этажа здания.

- 6. В случаях, когда оборудование располагается на столах, какие минимальные проходы должны быть между торцами столов и между столом и стеной?
 - а*) 70 и 50 см, соответственно.
 - б) 50 и 70 см, соответственно.
 - в) 1,0 и 0,5 м, соответственно.
 - г) 0,5 и 1,0 м, соответственно.
- 7. На каком минимальном расстоянии от приборов отопления должны находиться рабочие места с РЭО?
 - а) Не ближе 0,5 м.
 - б*) Не ближе 1,0 м.
 - в) Не ближе 75 см.
 - г) Не ближе 1,5 м.
- 8. С каким максимальным коэффициентом пульсаций должны применяться люминесцентные лампы для искусственного освещения помещений с РЭО?
 - а) Не превышающие 30%.
 - б) Не превышающие 25%.
 - в*) Не превышающие 10%.
 - г) Не превышающие 5%.
- 9. Какие квалификационные группы по технике безопасности присваиваются радиотехническому персоналу, осуществляющему эксплуатацию, ремонт, наладку, управление, техническое обслуживание, экспериментальные работы с РЭО, имеющему контакт с другими электроустановками, аппаратурой управления и связи?
 - а*) От I до V.
 - б) От II до IV.
 - в) От III до IV.
 - г) От II до V.
- 10. В каких случаях присваивается І квалификационная группа по технике безопасности (каким работникам, лицам)?
- a^*) Лицам, которым при выполнении технических операций не требуется проводить работы внутри оборудования.
 - б) Лицам, которые выполняют только техническое обслуживание РЭО.
- в) Лицам, которые допущены к выполнению только эксплуатационных работ.
 - г) Лицам, которые выполняют только монтажные работы.
- 11. В каких случаях допускается работа персонала без специальной проверки знаний по технике безопасности и присвоения I квалификационной группы?
- а) Только на таком оборудовании, в котором нет электрических цепей и устройств с напряжением переменного тока выше 220 В.

- б) Выше 127 В.
- в) Выше 42 В.
- г*) Выше 12 В.

4.4 Меры безопасности при устройстве и обслуживании установок и сооружений связи и радиофикации

- 1. Каковы основные причины несчастных случаев на предприятиях связи?
 - а) Недостаточный уровень квалификации работников в области охраны труда, грубое нарушение требований трудоохранного законодательства, высокое техническое состояние станционного и линейного хозяйства связи.
 - б) Пренебрежение требованиями безопасности, отсутствие опыта и навыков безопасной организации труда, недостаточное количество работников.
 - в*) Недостаточный уровень квалификации, недостаточный опыт работы, пренебрежительное отношение к требованиям безопасности, недисциплинированность и небрежность, низкий технический уровень средств связи и низкая эффективность защитных средств и их неисправность.
 - Г) Недостаточный уровень образования и квалификации работников в области гигиены и безопасности труда, нарушение требований трудоохранного законодательства, недостаточное освещение проезжей части улиц.
- 2. Каких размеров должны применяться диэлектрические резиновые коврики, располагаемые перед стойками различных технических средств связи на коммуникационных станциях?
 - а) Шириной не менее 0,75 м и длиной, соответствующей длине стойки.
 - б*) Шириной не менее 0,5 м и длиной, соответствующей длине стойки.
 - в) Шириной не менее 0,75 м и длиной 1,5 м.
 - г) Шириной не менее 0,75 м и длиной 2,0 м.
- 3. Кто имеет право на снятие вывешенного на ключах и кнопках, с помощью которого снято напряжение дистанционного питания, предупредительного плаката «Не включать работают люди!» и включать напряжение?
 - а) Только лица, вывесившие этот плакат и отключившие напряжение.
 - б) Только руководитель предприятия, где выполняются работы, после завершения работ.
 - в*) Только лицо, вывесившее плакат или по поручению другое лицо после получения сообщения об окончании работ.
 - г) Мастер или бригадир (старший в бригаде) после получения сообщений об окончании работ.

- 4. Каким образом должны разряжаться жилы международного кабеля после выключения напряжения дистанционного питания со стороны необслуживаемых и обслуживаемых усилительных пунктов (ОУП и НУП)?
 - а*) Должны быть разряжены на землю.
 - б) Путем короткого замыкания жил кабеля.
 - в) Путем подачи на жилы постоянного напряжения.
 - г) Должны быть разряжены на другие кабели.
- 5. Какие средства защиты должны применяться при электрических измерениях международного кабеля и в других подобных случаях?
 - а) Диэлектрические перчатки, шлемофоны, диэлектрические резиновые коврики.
 - б*) Диэлектрические перчатки, защитные очки.
 - в) Диэлектрические перчатки, наушники, очки.
 - г) Диэлектрические перчатки, инструмент с изолированными рукоятками.
- 6. Каким образом следует проверять отсутствие электрического заряда на жилах кабеля?
 - а) С помощью наличия ощущения действия электрического тока на руки работника при прикосновении к оголенным жилам кабеля.
 - б) С помощью электрической лампы накаливания, подсоединенной к жиле кабеля и к заземлению.
 - в) С помощью электрической лампы накаливания либо вольтметра.
 - г*) с помощью вольтметра или индикатора напряжения.
- 7. Как следует поступить для обеспечения безопасности кабеля или других линий связи во время грозы?
 - а*) Прекратить все работы.
 - б) Жилы кабеля закоротить между собой и заземлить.
 - в) Кабель или другие линии связи обесточить.
 - г) Установить предупредительные знаки «Гроза».
- 8. Какие сведения должны быть указаны в письменном распоряжении (наряде) на производство монтажных, ремонтных, наладочных работ и испытание аппаратуры высокочастотного уплотнения городских и сельских телефонных станции, на кабельных линиях, вводах и т.п.
 - а) Производитель работ, допускающийся к работе, состав бригады, категория работ (с полным снятием напряжения, с частичным или без снятия напряжения), а также организационные и технические мероприятия, обеспечивающие безопасность работ, и заявления членов бригады (письменные) на согласие.

- б) Производитель работ, состав бригады, краткая характеристика членов бригады, категория работ, а также организационные и технические мероприятия, обеспечивающие безопасность работ.
- в) Производитель работ, его краткая характеристика, состав бригады, а также организационные и технические мероприятия, обеспечивающие безопасность работ.
- г*) Производитель работ, состав бригады, категория работ, а также организационные и технические мероприятия, вытекающие из конкретных условий работы, обеспечивающие безопасность работ.
- 9. В каком составе должны производиться аварийные работы на неотключенном оборудовании с применением основных и дополнительных изолирующих средств?
 - а) В составе одного лица.
 - б*) В составе двух лиц.
 - в) Бригадой из двух работников.
 - г) Бригадой из трех работников.
- 10. В каком соотношении должны устраиваться приточная и вытяжная вентиляция по объему воздуха в помещениях систем электропитания аппаратуры связи (выпрямительные, генераторные)?
 - а*) Количество приточного воздуха $(L_{прит}, M^3/4)^0$ следует принимать с коэффициентом 1,1 к количеству вытяжного воздуха $(L_{выт}, M^3/4)$
 - б) $L_{выт} = 1, 1L_{прит}$
 - в) $L_{прит} = 1,25 L_{выт}$
 - Γ) $L_{\text{выт}}=1,25L_{\text{прит}}$
- 11. На какой высоте над крышей должны возвышаться вентиляционные каналы из помещений систем электропитания (выпрямительные, генераторные)?
 - а*) Должны возвышаться над крышей на 1,5 м.
 - б) На 2,0 м.
 - в) На 2,5 м.
 - г) На 1,0 м
- 12. Какую максимальную концентрацию водорода в воздухе в щелочных аккумуляторных помещениях должна обеспечивать вентиляция?
 - а) Не более 0,5% по объему, но не менее двухкратного обмена воздуха в час.
 - б*) Не более 0,7% по объему, но не менее двухкратного обмена воздуха в час.
 - в) Не более 1,0% по объему, но не менее двухкратного обмена воздуха в час
 - г) Не более 1,5% по объему, но не менее двухкратного обмена воздуха в час.

- 13. Какую предельно-опустимую концентрацию тумана серной кислоты должна обеспечивать вентиляция в кислотных помещениях?
 - а) 0.5 мг/м^3 на уровне 1.5 м от пола.
 - б) $0,75 \text{ мг/м}^3$ на уровне 1,5 м от пола.
 - B^*) 1,0 мг/м³ на уровне 1,5 м от пола.
 - г) $1,25 \text{ мг/м}^3$ на уровне 1,5 м от пола.
- 14. Разрешается ли размещать в одном помещении кислотные и щелочные аккумуляторы?
 - а) Да, разрешается при их небольшом количестве.
 - б) Разрешается, если кислотных аккумуляторов в два раза больше чем щелочных.
 - в) Разрешается, если кислотных аккумуляторов в два раза меньше чем щелочных.
 - г*) Размещать кислотные и щелочные аккумуляторы в одном помещении запрещается.

Раздел 5. Основы пожарной безопасности

- 15. Какой краской должны окрашиваться потолок, стены, оконные рамы, двери, металлические конструкции, стеллажи и другие части помещения, где установлены кислотные аккумуляторные батареи?
 - а) Щелочеупорной краской.
 - б) Масляной краской.
 - в*) Кислотоупорной краской.
 - г) Водоэмульсионной краской.
- 16. Где (в каком месте) должны устанавливаться выключатели, штепсельные розетки и предохранители в аккумуляторных помещениях?
 - а) На левой стороне стены от входной двери.
 - б) На правой стороне стены от входной двери.
 - в) На любой стене у двери на высоте 1,5 м от пола.
 - Γ^*) Вне аккумуляторного помещения.
- 17. С каким максимальным напряжением электропитания должна использоваться переносная герметичная лампа для осмотра аккумуляторов?
 - а) Напряжением не выше 220 В.
 - б) Напряжением не выше 127 В.
 - в*) Напряжением не выше 42 В.
 - г) Напряжением не выше 12 В.
- 18. Какие нейтрализующие растворы в закрытых сосудах должны находиться в близи аккумуляторных помещений?

- а*) 5-10 % раствор питьевой воды для нейтрализации кислоты или 5-10 % раствор борной кислоты или уксусной эссенции для нейтрализации шелочи.
- б) Соответственно 15-20 % раствор питьевой соды и 15-20 % раствор борной кислоты или уксусной эссенции.
- в) 2-4 % раствор питьевой соды и 2-4 % раствор борной кислоты или уксусной эссенции.
- г) 1-3 % раствор питьевой соды и 1-3 % раствор борной кислоты или уксусной эссенции.
- 19. Каким образом осуществляя составление кислотного электролита?
 - а) Путем вливания (понемногу) воды в сосуд, постоянно перемешивая раствор с кислотой, металлической или стеклянной палочкой.
 - б) Понемногу вливая кислоту в сосуд с водой, постоянно перемешивая раствор деревянной палочкой.
 - в*) Понемногу вливая кислоту в воду, перемешивая раствор стеклянной палочкой.
 - г) Понемногу вливая воду в сосуд с кислотой, перемешивая раствор деревянной палочкой.
- 20. Спустя какое время после окончания заряда аккумуляторов, можно осуществлять пайку пластин в аккумуляторном помещении?
 - а) Не раньше, чем через 4,5 часа.
 - б*) Не раньше, чем через 1,5 часа.
 - в) Не раньше, чем через 3,0 часа.
 - г) Не раньше, чем через 2,0 часа.
- 21. Какие огнетушители могут использоваться для тушения пожара в помещениях центральных и базовых станций?
 - а) Химические пенные и аэрозольные.
 - б) Порошковые и химические пенные.
 - в*) Углекислотные и аэрозольные.
 - г) Углекислотно-бромэтиловые и химические пенные.
- 22. С какими группами по электробезопасности допускаются члены бригады по производству всех работ по техническому обслуживанию объектов радиотелефонной связи?
 - а) Производитель работ (старший по бригаде при выполнении работ двумя лицами) должен иметь группу по электробезопасности не ниже III, а остальные члены бригады не ниже II.
 - б*) Производитель работ должен иметь группу по электробезопасности не ниже IV, а остальные члены бригады не ниже III.
 - в) Соответственно II и I.

- г) Производитель работ и члены бригады должны иметь группу по электробезопасности не ниже II.
- 23. Какое расстояние между ступенями должно быть у лестниц и стремянок, используемых при обслуживании и ремонте электрооборудования и радиооборудования?
 - а*) Не менее 0,25 м и более 0,4 м.
 - б) Не менее 0,205 м и более 0,4 м.
 - в) Не менее 0,25 м и более 0,5 м.
 - г) Не менее 0,25 м и более 0,3 м.
- 24. Какая максимальная длина лестниц допускается для приставной лестницы при выполнении работ, когда работник стоит на ступеньке?
 - а) Не должна превышать 3 м.
 - б) Не должна превышать 4 м.
 - в*) Не должна превышать 5 м.
 - г) Не должна превышать 6 м.
- 25. Под каким максимальным углом к плоскости основания следует устанавливать приставные лестницы?
 - $a*) 70^0 75^0$.
 - $60^{\circ} 70^{\circ}$
 - $(B)50^0-60^0$.
 - Γ) $75^0 80^0$.
- 26. Какие виды работ на воздушных линиях связи и проводного вещания относятся к работам с повышенной опасностью?
 - а) Устройство, переоборудование и ремонт пересечений линий связи (ЛС) и радиофикации (РФ) с контактными проводами трамваев и троллейбусов, электрифицированными железными дорогами, с фидерными линиями РФ I класса и шоссе I класса.
 - б) Работы в местах сближения воздушных ЛС и РФ с воздушными линиями электропередач любого напряжения, установка и замена опор, подвеска и демонтаж проводов и линий в населенных пунктах и прилегающей территории.
 - в*) Устройство, переоборудование и ремонт пересечений ЛС и РФ с контактными проводами трамваев и троллейбусов, электрифицированными передачами дорогами, фидерными линиями РФ I класса, с воздушными линиями электропередач любого назначения.
 - г) Устройство мачтовых переходов, замена оконечных, угловых, кабельных и других опор, работы по ликвидации аварий, а также выполнение работ в обеденный перерыв.

- 27. В каких случаях допускается совместная подвеска на общих опорах проводов радиофикации (РФ) и проводов электросети?
 - а) Только проводов РФ II класса и проводов электросети напряжением 220/127 В.
 - б*) Только проводов РФ II класса и проводов электросети напряжением 380/220 В.
 - в) Проводов РФ I класса и проводов электросети напряжением 660/380 В.
 - г) Только проводов РФ I класса и проводов электросети напряжением 380/220 В.
- 28. На каком расстоянии на опоре подвешиваются нижний провод электросети и верхний провод радиофикации?
 - а) Не менее 2 м.
 - б) Не менее 2,5 м.
 - в*) Не менее 1,5 м.
 - г) Не менее 1,0 м.
- 29. Каким образом проверяется отсутствие постороннего напряжения на проводах линий связи (ЛС) и радиофикации (РФ) при их пересечении (сближении) с линиями электропередачи, с контактными сетями электрифицированных железных дорог напряжением выше 1000 В.
 - а) На ощупь стоя на земле.
 - б) Индикатором напряжения.
 - в) Вольтметром.
 - г*) Сначала высоковольтным индикатором, а затем с помощью индикатора низкого напряжения.
- 30. С какими опасностями связана работа в подземных кабельных сооружениях?
- а*) С опасностью отравления углекислым газом, возможностью образования взрывоопасной смеси метана с воздухом.
- б) С опасностью образования взрывоопасной смеси кислорода воздуха с этанолом, отравления угарным газом (СО).
- в) С опасностью отравления угарным газом, опасностью возгорания этанола.
- г) C опасностью отравления диоксидом серы (SO_2) и опасностью взрыва смеси метана с воздухом.
- 31. В каком составе допускается работа бригады со спуском в подземные кабельные сооружения (смотровые устройства, кабельные колодцы)?
 - а) Не менее двух человек.
 - б) Не менее четырех человек, из которых двое страхующих.
 - в*) Не менее трех работающих, из которых двое страхующих.
 - г) Не менее пяти человек, из которых трое страхующих.

- 32. На присутствие каких газов должен быть проверен воздух в подземных сооружениях?
 - а) На наличие угарного газа (CO) и диоксида серы (SO₂).
 - б) На наличие углекислого газа (СО) и паров этанола.
 - в) На наличие диоксида серы (SO₂) и паров этанола.
 - Γ^*) На наличие CO_2 и метана.
- 33. На какую глубину подземного сооружения должен опускаться рукав вентилятора или компрессора при принудительной вентиляции помещения колодца?
 - а*) На глубину, не достигающей дна колодца на 0,25 м.
 - б) На 0,5 м.
 - в) На 0,1 м.
 - г) На 0,15 м.
- 34. Из какого материала следует применять инструмент при открывании люка колодца?
 - а) Из стали.
 - б*) Из цветных металлов (или их сплавов).
 - в) Из чугуна.
 - г) Из любого металла.
- 35. На присутствие в воздухе колодца какого газа в первую очередь делается проверка с помощью газоанализатора?
- а) На присутствие кислорода (которого в чистом виде должно быть не менее 20%).
 - б) На присутствие углекислого газа.
 - в*) На присутствие метана.
 - г) На присутствие паров этанола.
- 36. Работники какой службы должны проводить все работы по ликвидации загазованности смотровых устройств взрывоопасными газами?
 - а) Работники предприятий связи.
 - б) Работники, выполняющие работы в этих подземных сооружениях.
- в) Специальной бригадой работников, подчиненной непосредственно министру связи.
 - г*) Только работники службы газового хозяйства.
- 37. На какое максимальное напряжение должны использоваться переносные электрические светильники, используемые для освещения подземных смотровых устройств?
 - а) Не выше 42 В.
 - б) Не выше 127 В.
 - в*) Не выше 12 В.
 - г) Не выше 220 В.

4.5. Требования безопасности к сосудам, работающим под давлением

- 1. Что понимается под сосудом, работающим под давлением?
- а*) Герметически закрытая емкость, предназначенная для производства некоторых технологических процессов, хранения и перевозки сжатых, сжиженных и растворенных газов и жидкостей под давлением.
- б) Герметически закрытый сосуд, предназначенный для хранения и использования на производстве горючих газов, легковоспламеняющихся жидкостей (ЛВЖ), горючих жидкостей (ГЖ).
- в) Герметически закрытый сосуд с горючими газами, ЛВЖ и ГЖ, предназначенный для перевозки этих веществ.
- г) Герметически закрытый сосуд, предназначенный для хранения ЛВЖ, ГЖ и горючих газов.
- 2. В чем заключается опасность эксплуатации сосудов и систем, находящихся под давлением?
- а*) В потере механической прочности стенок обечайки сосуда (коррозия, перегрев, наличие трещин и т.п.) и возможности последующего взрыва, разрушения оборудования, здания, травмирования и отравления работников.
- б) Возможности взрыва, пожара, химического отравления персонала, остановки сердца и дыхания.
- в) Из-за нарушения герметичности сосуда или системы, возможного образования взрывоопасной смеси воздуха и токсичных сжатых, сжиженных и растворенных газов или жидкостей.
- г) В возможности взрыва, пожара и разрушения технологического оборудования, здания и в ухудшении условий труда.
- 3. Какие устройства и установки, находящиеся под давлением, наиболее широко применяются в промышленности?
- а) Трубопроводы, баллоны для растворенных газов, сосуды для сжиженных газов, емкости для воды.
- б) Трубопроводы, баллоны для хранения сжиженных газов, сосуды для сжатых газов, емкости для хранения огнегасительных веществ и материалов.
- в*) Трубопроводы, баллоны для хранения и перевозки сжатых, сжиженных и растворенных газов, сосуды для сжиженных газов, а также компрессоры и котлы, используемые для ведения химических и тепловых процессов.
- г) Трубопроводы, баллоны, емкости для сжиженных газов, а также сосуды для ведения химических, тепловых и биологических процессов.
- 4. Какой арматурой в соответствии с Правилами должны снабжаться сосуды, работающие под давлением?
- а) Запорным приспособлением для отключения сосуда от трубопровода, манометром, предохранительным клапаном, измерителем скорости движения газа.

- б*) Приспособлением для удаления находящегося в сосуде газа или жидкости, запорным предохранительным клапаном для отключения сосуда от трубопровода, манометром, предохранительным клапаном.
- в) Манометром и приспособлением для установки контрольного манометра, запорным приспособлением, предохранительным клапаном, измерителем скорости движения жидкости.
- г) Предохранительным клапаном, манометром, измерителем скорости движения газа или жидкости, запорным приспособлением для отключения сосуда от трубопровода, приспособлением для удаления находящегося в сосуде газа или жидкости.
- 5. Какому виду технического освидетельствования до пуска в эксплуатацию (периодически, в процессе эксплуатации и после ремонта) должны подвергаться сосуды, находящиеся под давлением?
- а) Наружному осмотру, гидравлическому или пневматическому испытанию на герметичность.
- б*) Внутреннему и наружному осмотру и гидравлическому испытанию на прочность и плотность.
- в) Наружному осмотру, пневматическому испытанию на прочность и плотность.
- г) Внутреннему осмотру, пневматическому испытанию и на соответствие емкости сосуда.
- 6. Какие сосуды подлежат регистрации в органах Государственного надзора?
- a^*) У которых произведение вместимости на давление превышает 1000 МПа; сосуды, работающие под давлением едких, ядовитых и взрывоопасных сред при температуре 200^{0} С и выше, а произведение вместимости на давление равно 50 МПа и более.
- б) У которых произведение вместимости на давление превышает 1500 МПа; сосуды, работающие под давлением едких, ядовитых и взрывоопасных сред при температуре 200^{0} С и выше, а произведение вместимости на давление равно 50 МПа и более.
- в) У которых произведение вместимости на давление превышает 500 МПа; сосуды, работающие под давлением едких, ядовитых и взрывоопасных сред при температуре 200^{0} С и выше, а произведение вместимости на давление равно 50 МПа и более.
- г) У которых произведение вместимости на давление превышает 1000 МПа; сосуды, работающие под давлением едких, ядовитых и взрывоопасных сред при температуре 200^{0} С и выше, а произведение вместимости на давление равно 75 МПа и более.
- 7. Какие сосуды по давлением не регистрируются в органах Государственного надзора?

- а) Сосуды (баллоны), предназначенные для транспортирования и хранения сжиженных, сжатых и растворенных газов вместимостью до 50 л.
- б) Сосуды (баллоны), предназначенные для транспортирования и хранения сжиженных, сжатых и растворенных газов вместимостью до 75 л.
- в*) Сосуды (баллоны), предназначенные для транспортирования и хранения сжиженных, сжатых и растворенных газов вместимостью до 100 л.
- г) Сосуды (баллоны), предназначенные для транспортирования и хранения сжиженных, сжатых и растворенных газов вместимостью до 125 л.
- 8. Кем выдается разрешение на пуск в работу сосудов, регистрируемых в органах Госнадзора?
 - а) Руководителем предприятия.
- б) Руководителем структурного подразделения, где будут эксплуатироваться сосуды.
 - в) Главным инженером или главным технологом
 - г*) Инспектором местного органа Госнадзора.
- 11. Какие данные должны быть выбиты на верхней сферической части каждого баллона?
- а*) Товарный знак изготовителя; номер баллона; фактическая масса порожнего баллона; дата изготовления и год следующего освидетельствования; рабочее давление; пробное гидравлическое давление; вместимость баллона; клеймо отдела технического контроля (ОТК) изготовителя.
- б) Товарный знак изготовителя; номер баллона; масса наполненного баллона; дата изготовления и год следующего освидетельствования; рабочее давление; пробное гидравлическое давление; вместимость баллона; клеймо ОТК изготовителя.
- в) Товарный знак изготовителя; номер баллона; масса порожнего баллона; дата изготовления и год следующего освидетельствования; рабочее давление; пробное гидравлическое давление; вместимость баллона; клеймо ОТК изготовителя.
- г) Товарный знак изготовителя; номер баллона; масса порожнего баллона; дата изготовления и год следующего освидетельствования; рабочее давление; пробное пневматическое давление; вместимость баллона; клеймо ОТК изготовителя.
- 12. С какой периодичностью должны подвергаться освидетельствованию баллоны, находящиеся в эксплуатации?
 - а) Не реже чем через 2 года.
 - б) Не реже чем через 4 года.
 - в) Не реже чем через 3 года.
 - г*) Не реже чем через 5 лет.

- 13. С какой периодичностью должны подвергаться освидетельствованию баллоны, которые предназначены для наполнения газами, вызывающими коррозию (хлор, сероводород, фосген, сернистый ангидрид, хлористый водород и т.п.), а также баллоны для сжатых и сжиженных газов, применяемых в качестве топлива для транспортных средств?
 - а*) Не реже чем через 2 года.
 - б) Не реже чем через 1 год.
 - в) Не реже чем через 3 года.
 - г) Не реже чем через 6 месяцев.
- 14. В какой цвет должна окрашиваться наружная поверхность баллона для водорода, и какой должен быть текст надписи на нем?
 - а*) Темно-зеленый, водород.
 - б) Черный, водород.
 - в) Красный, водород.
 - г) Голубой, водород.
- 15. В какой цвет должна окрашиваться наружная поверхность баллона для сжатого воздуха, и какой должен быть текст надписи на нем?
 - а*) Черный, сжатый воздух.
 - б) Темно-зеленый, сжатый воздух.
 - в) Красный, сжатый воздух.
 - г) Желтый, сжатый воздух.
- 16. В какой цвет должна окрашиваться наружная поверхность баллона для кислорода, и какой должен быть текст надписи на нем?
 - а*) Голубой, кислород.
 - б) Красный, кислород.
 - в) Черный, кислород.
 - г) Желтый, кислород.
- 17. На каком расстоянии от радиатора отопления и других отопительных приборов и печей должны находиться баллоны с газом, установленные в помещениях?
 - а) Не менее 4м.
 - б) Не менее 3м.
 - в) Не менее 2м.
 - **г***) Не менее 1м.
- 18. При каком остаточном давлении газа в баллоне запрещается его дальнейшая эксплуатация?
 - а) Не менее 0.025МПа (0.25 кгс/см^2) .
 - 6*) Не менее 0,05МПа (0,5 кгс/см²).
 - в) Не менее 0,1МПа $(1,0 \text{ кгс/см}^2)$.

- г) Не менее 0,075МПа $(0,75 \text{ кгс/см}^2)$.
- 19. В каких условиях должны храниться баллоны с ядовитыми газами?
 - а*) В специальных закрытых помещениях.
 - б) На открытом воздухе.
 - в) В цокольных этажах помещений.
 - г) В укрытиях от атмосферных осадках и солнечных лучей.
- 20. В каком положении должны храниться наполненные баллоны с насаженными на них башмаками?
 - а) В любом положении.
 - б) Только в горизонтальном положении.
 - в*) В вертикальном положении.
 - г) В вертикальном положении башмаками вниз.
- 21. Каким образом могут храниться баллоны с башмаками на открытых площадках?
- а*) В штабелях с прокладками из веревки, деревянных брусьев или резины между горизонтальными рядами.
 - б) На деревянных рамах или стеллажах вертикально.
 - в) В штабелях с прокладками между баллонами.
 - г) В штабелях не более двух горизонтальных рядов.
- 22. Какая максимальная высота штабеля допускается при укладке баллонов в штабеля?
 - а) Не более 1,0м.
 - б*) Не более 1,5м.
 - в) Не более 2,0м.
 - г) Не более 2,5м.

5. Основы пожарной безопасности

- 1. В чем заключается социально-экономический ущерб от пожаров?
 - а) В ухудшении экологической обстановки вблизи очагов пожара.
 - б) В выходе из строя дорогостоящего технологического оборудования и в снижении качества среды обитания.
 - в*) В травмировании и гибели людей, в нанесении материальных потерь.
 - г) В нанесении вреда здоровью работающих из-за ухудшения качества производственной и экологической среды.
- 2. Основные причины пожаров

- а) Халатное и неосторожное обращение с огнем, неисправность отопительных и вентиляционных систем, нарушение технологических процессов, оставление без присмотра выключенными из электрической сети нагревательных приборов.
- б) Курение, разогрев деталей открытым огнем; неисправность котельных, отопительных приборов, печей; самовоспламенение или самовозгорание некоторых веществ и материалов; отсутствие круглосуточной охраны предприятий и других объектов.
- в) Неосторожное обращение с огнем; разогрев деталей открытым огнем; неисправность отопительных и вентиляционных систем, искрение в электрических аппаратах, машинах, короткие замыкания и перегрузки проводов и обмоток электрических устройств; отсутствие на рабочих местах качественного освещения.
- г*) Халатное и неосторожное обращение с огнем, неисправность отопительных и вентиляционных систем, самовоспламенение или самовозгорание некоторых веществ и материалов при нарушении правил их хранения и использования; различные причины электрического характера.

3. Что такое горение?

- а) Это физико-химический процесс взаимодействия горючего вещества и окислителя, сопровождающийся выделением тепла, излучением света и радиации.
- б*) Это физико-химический процесс взаимодействия горючего вещества и окислителя, сопровождающийся выделением тепла и излучением света.
- в) Это сложный физический процесс, при котором возможно самовозгорание, вспышка или взрыв.
- г) Это химический процесс окисления веществ, материалов и смесей, сопровождающийся с выделением искр, тепла, лучистой энергии и ионизирующих излучений.
- 4. Наличие каких компонентов необходимо, чтобы начался процесс горения?
 - а) Работника, горючего вещества или горючей смеси и источника поджигания.
 - б) Горючего вещества или горючей смеси, достаточной температуры окружающей среды и окислителя.
 - в*) Горючего вещества, окислителя и источника поджигания.
 - г) Горючей смеси или горючего вещества, низкого атмосферного давления, окислителя и источника поджигания.

5. С каких видов реакции может начаться процесс горения?

а) Со вспышки, т.е. быстрого окисления горючей смеси, не сопровождающегося образованием сжатых газов; возгорания, т.е. возникнове-

- ния горения под воздействием источника зажигания либо окислителя.
- б) С самовоспламенения или самовозгорания в результате резкого увеличения скорости экзотермических реакций от воздействия тепловых процессов окисления или жизнедеятельности микроорганизмов; со вспышки или взрыва в результате низкой температуры.
- в) Со вспышки, воспламенения, т.е. возгорания, сопровождающегося появлением пламени; со взрыва, т.е. чрезвычайно быстрого химического превращения, самовозгорающегося с выделением энергии и образования сжатых газов, способных производить механическую и умственную работу
- г*) Со вспышки, возгорания, воспламенения, самовозгорания, самовоспламенения, взрыва.
- 6. Как определяется понятие «пожар»?
 - а*) Это неконтролируемое горение, наносимое обществу социальный и материальный ущерб.
 - б) Это неконтролируемое горение вне специального очага, оказывающее негативное воздействие на окружающую среду.
 - в) Это физико-химическая реакция взаимодействия каких-либо хозяйственных или общественных объектов с окислителем, выражающаяся в их уничтожении.
 - г) Это неконтролируемое горение вне специального очага, загрязняющее воздушную среду и разрушающее озоновый слой.
- 7. От чего зависят взрыво- и пожароопасные свойства веществ и материалов?
 - а) От их физико-химических свойств, условий хранения и их горючести.
 - б*) От их агрегатного состояния, физико-химических свойств, условий хранения.
 - в) От их плотности, горючести, огнестойкости и их агрегатного состояния.
 - г) От того, являются ли они газообразными, жидкими, твердыми, как и где хранятся, наличия источников поджигания.
- 8. Какие основные показатели характеризуют пожарную опасность газов (газообразных веществ)?
 - а*) Концентрационные приделы воспламенения, энергия зажигания, температура горения, нормальная скорость распространения пламени.
 - б) Плотность, верхний и нижний концентрационные пределы воспламенения, энергия зажигания, температура горения.
 - в) Наличие примесей, концентрационные пределы воспламенения, нормальная скорость распространения пламени.
 - г) Концентрационные пределы воспламенения, энергия зажигания, температура горения, ненормальная скорость распространения пламени.

- 9. Какие основные показатели характеризуют пожарную опасность жидкостей?
 - а) Температурные пределы воспламенения, температура вспышки, температура воспламенения, концентрационные пределы воспламенения и взрыва.
 - б*) Концентрационные пределы воспламенения или температурные пределы воспламенения, температура вспышки и воспламенения.
 - в) Нижний и верхний концентрационные пределы воспламенения, температура вспышки и взрыва.
 - г) Температурные пределы воспламенения, температура возгорания и температура самовозгорания.
- 10. Какие жидкости относятся к легковоспламеняющимся (ЛВЖ)?
 - а) Температура вспышки которых выше 45° С (масла, мазуты, глицерин).
 - б) Температура вспышки которых не превышает 28° С.
 - в) Температура вспышки которых больше 28° С.
 - г*) Температура вспышки которых не превышает 45° С (спирты, ацетон, бензин).
- 11. Какие жидкости относятся к горючим (ГЖ)?
 - a^*) Температура вспышки которых более 45° С (масла, мазуты, глицерин).
 - б) Температура вспышки которых менее 45° С (ацетон, бензин).
 - в) Температура вспышки которых более 28° С.
 - г) Температура вспышки которых менее 28° С.
- 12. Какие основные показатели характеризуют пожаро- взрывоопасные свойства пылей (аэрозолей)?
 - а) Концентрация пылевоздушной смеси, наличие источника зажигания с достаточной тепловой энергией, размер пылинок, их температура и температура наружного воздуха.
 - б) Концентрация пылей в воздухе, наличие источника зажигания, горючесть пыли, ее плотность в воздухе.
 - в*) Концентрация пылевоздушной смеси, наличие источника зажигания с достаточной тепловой энергией, размер пылинок.
 - г) Концентрация пылей в воздухе, наличие источника зажигания с достаточной тепловой энергией, размер пылинок (длина, ширина, толщина), их скорость осаждения.
- 13. Какие показатели характеризуют пожарную опасность негорючих веществ и материалов?
 - а) Температура их обработки, выделение искр, пламени, лучистого тепла, потеря несущей способности, горючесть, огнестойкость.

- б*) Температура их обработки, возможность выделения искр, пламени, лучистого тепла, потеря несущей способности, разрушение.
- в) Возможность образования искр, выделение пламени, лучистого тепла, света, легкость механической обработки, огнестойкость.
- г) Температура обработки, выделение лучистого тепла, механическая прочность, способность к электризации.
- 14. На какие категории подразделяются производства (производственные помещения) по взрыво- пожарной опасности?
 - а*) А (взрывопожароопасные), Б (взрывопожароопасные), В1-В4 (пожароопасные), Г1, Г2, Д.
 - б) А, Б, В, Г, Д, Е.
 - в) А, Б, В, Г, Д, Е, Ё.
 - г) А, Б, В, Г, Ж, З.
- 15. Как определяется пожарная безопасность какого-либо объекта (здания, помещения, установки и т.п.)?
 - а) Это состояние, при котором предусмотрены все противопожарные мероприятия и имеется пожарная служба.
 - б*) Это состояние, при котором помимо профилактических мер против возникновения пожара, на объекте предусмотрены меры и средства борьбы с пожаром.
 - в) Это состояние, при котором возникновение пожара на данном объекте невозможно.
 - г) Это состояние объекта, при котором предусмотрено оснащение его средствами пожаротушения и имеется пожарная бригада.
- 16. Какие профилактические мероприятия предусматриваются для предупреждения возникновения пожара на промышленных предприятиях?
 - а) Организационные, эксплуатационные, технические, режимные, экономические.
 - б) Организационные, технологические, режимные, лечебно-профилактические.
 - в*) Организационные, эксплуатационные, технические, режимные.
 - г) Технические, организационно-планировочные, режимные, социально-психологические.
- 17. Какое электрооборудование относится к взрывозащищенному?
 - а*) Оборудование, эксплуатация которого во взрывоопасных средах, не может привести к взрывам и пожарам.
 - б) Оборудование, которое не может взрываться при его эксплуатации во взрывоопасных средах (взрывоопасных помещениях и около взрывоопасных наружных установок).

- в) Оборудование, в котором предусмотрены меры, исключающие подачу на него электропитания при потенциальной возможности взрыва.
- г) Оборудование (электромоторы, светильники и т.п.), в котором предусмотрены устройства защитного отключения, защищающие его при замыкании на его корпус напряжения электропитания.
- 18. Что представляют собой системы пожарной сигнализации?
 - а) Это комплекс технических средств для своевременного оповещения руководителя предприятия и структурного подразделения о месте возникновения пожара.
 - б) Это информационная система, способная в течение короткого времени оповестить администрацию предприятия о пожаре и передать о нем сигнал пожарной команде.
 - в*) Это системы, состоящие из пожарных извещателей, линий связи, приемной станции.
 - г) Это системы, состоящие из ручных или автоматических извещателей (датчиков), линий проводной или сотовой связи и первичных средств пожаротушения.
- 19. Каково назначение пожарной сигнализации?
 - а*) Для своевременного оповещения о времени и месте возникновения пожара и принятия мер по его ликвидации.
 - б) Она предназначена для своевременного оповещения администрации предприятия о месте и времени возникновения пожара.
 - в) Она предназначена для своевременного оповещения районной администрации (исполнительный комитет) о месте и времени возникновения пожара.
 - г) Для своевременного оповещения пожарной части района (города) о месте и времени возникновения пожара.
- 20. От каких основных характеристик строительных материалов и конструкций (зданий, сооружений) определяется их пожарная безопасность?
 - а) Горючесть материалов и конструкций.
 - б*) Возгораемость и огнестойкость.
 - в) Способности самовозгорания или самовоспламенения без постороннего источника зажигания.
 - г) Способности к возгоранию или воспламенению при наличии постороннего источника зажигания.
- 21. Как подразделяются строительные конструкции по возгораемости?
 - а) На негорючие, которые под воздействием огня или высоких температур не возгораются и не обугливаются (бетон, кирпич) и на горючие, которые способны самостоятельно гореть после удаления источника зажигания (лесоматериалы).

- б) На трудногорючие, которые способны возгораться и гореть только при постоянном воздействии на них постороннего источника зажигания и на конструкции, способные возгораться от разряда электростатического разряда.
- в) На конструкции, способные возгораться от разряда молнии и постороннего источника зажигания.
- г*) На негорючие, трудногорючие и горючие.

22. Как определяется огнестойкость строительной контрукции?

- а) Это способность конструкции длительное время (не менее суток) противостоять воздействию высокой температуры в условиях пожара.
- б) Это способность конструкции сопротивляться воздействию высокой температуры в условиях пожара не менее одной недели.
- в*) Это способность строительных конструкций сопротивляться воздействию высокой температуры пожара и выполнять при этом свои эксплуатационные функции.
- г) Это способность конструкции во время пожара выполнять свои функции (обеспечивать работу технологического оборудования и т.п.).

23. Как определяется «предел огнестойкости»?

- а*) Это время, по истечении которого конструкция теряет несущую или ограждающую способность.
- б) Это отрезок времени, в течение которого строительная конструкция полностью разрушается.
- в) Это время, необходимое для восстановления несущей или ограждающей способности конструкции.
- г) Это время, необходимое для замены конструкции, утратившей свои способности сопротивляться пожару, новой конструкцией.

24. По каким признакам судят о потере конструкцией несущей или ограждающей способности в условиях пожара?

- а) Образовании в конструкции сквозных трещин или отверстий, через которые могут проходить работающие.
- б) Повышенная температура на обогреваемой поверхности конструкции в среднем более, чем на 140° С; потеря конструкцией несущей способности; образование сквозных трещин (или отверстий).
- в*) Потеря конструкцией несущей способности; повышенная температура на необогреваемой поверхности конструкции более чем на 140° C; образование в конструкции сквозных отверстий.
- г) Образование в конструкции не сквозных трещин; повышенная температура на обогреваемой стороне более 140° С; потеря конструкцией своей несущей способности.

- 25. Какие противопожарные мероприятия применяются на территории промышленных предприятий с целью ограничения распространения и расширения пожара?
 - а*) Зонирование территории предприятия; устройство противопожарных разрывов между зданиями, преград.
 - б) Устройство брандмауэров, зонирование территории, устройство противопожарных зон.
 - в) Устройство различных противопожарных преград, брандмауэров, зонирование территории предприятия.
 - г) Устройство противопожарных разрывов между зданиями, брандмауэров, водяных завес.
- 26. Какие противопожарные мероприятия применяются в зданиях (корпусах) промышленных предприятий с целью ограничения распространения и расширения пожара с этажа на этаж и по горизонтали?
 - а) Устройство противопожарных разрывов между зданиями, противопожарных люков.
 - б) Устройство противопожарных зон, перегородок, группирование про- изводственных объектов в отдельные комплексы.
 - в*) Устройство различных преград (брандмауэров, перегородок, дверей, люков, водяных завес и т.п.).
 - г) Устройство глухой негорючей стены с пределом огнестойкости не менее 2,5 ч, пересекающую здание вдоль или поперек, зонирование территории предприятия.
- 27. Каким образом достигается прекращение горения при пожарах?
 - а) Путем прекращения поступления в зону горения кислорода воздуха, воды и горючих веществ.
 - б) Путем снижения поступления кислорода воздуха, воды и горючих веществ до значений, при которых горение не происходит.
 - в) Путем охлаждения зоны горения ниже температуры самовоспламенения или понижения температуры горючего вещества ниже температуры воспламенения, подачи в зону горения струи кислорода.
 - г*) Путем прекращения поступления в зону горения кислорода воздуха и горючих веществ, снижения их концентрации, охлаждения зоны горения; разбавления горючей смеси негорючими веществами, механического срыва пламени.
- 28. Какие огнегасительные вещества получили наибольшее распространение для тушения пожаров?
 - а*) Вода, газы (углекислый газ, азот, газы или легкоиспаряющиеся жидкости), химические и воздушно-механические пены, порошковые составы.

- б) Вода, водяной пар, углекислый газ, азот, химические и физические пены, порошки, песок, брезент.
- в) Вода, водяной пар, газы (CO, N_2O_3), порошковые составы, легкоиспаряющиеся жидкости, брезент, кошма.
- г) Вода, водяной пар, химические и физические пены, газы (CO, N₂O₃), легкоиспаряющиеся жидкости.
- 29. Чем обусловливаются высокие огнегасительные свойства воды?
 - а) Большой теплоемкостью, высокой термической стойкостью и универсальностью (способностью гасить любые горящие вещества и материалы).
 - б) Значительным увеличением объема парообразования, высокой термической стойкостью и незначительным поглощением тепла из зоны горения.
 - в*) Охлаждающим действием, разбавлением горючей среды и механическим воздействием на горящее вещество и срывом пламени.
 - г) Охлаждающим действием на горящие вещества (среды), механическим воздействием на очаг горения и способностью тушить легковоспламеняющиеся и горючие жидкости.
- 30. В каких случаях нельзя использовать воду в качестве огнегасительного вешества?
 - а) Для тушения нефтепродуктов и других жидкостей (ЛВЖ, ГЖ) с плотностью меньше единицы, а также электроустановок в помещениях без признаков повышенной опасности по электробезопасности.
 - б*) Для тушения нефтепродуктов, ЛВЖ, ГЖ, электросетей и других электрических установок, находящихся под напряжением, а также тушения карбита кальция, щелочных металлов и металлоорганических соединений.
 - в) Для тушения нефтепродуктов, ЛВЖ, ГЖ, электрических установок и электросетей, находящихся в отключенном состоянии от источника напряжения, а также металлоорганических соединений.
 - г) Для тушения нефтепродуктов, ЛВЖ, ГЖ и других горючих жидкостей с плотностью меньше единицы, а также электросетей и других электроустановок, находящихся под напряжением.
- 31. Какие огнегасительные вещества можно эффективно применять для тушения различных электроустановок, находящихся под напряжением?
 - а) Дистиллированную воду, углекислоту (как в газообразном состоянии, так и в сниженном), азот, инертные газы.
 - б) Дистиллированную воду, водяной пар, воздушно-механические пены и углекислый газ.
 - в) Водяной пар, углекислый газ, воздушно-механические пены, порошковые составы.

- г*) Углекислый газ (в т.ч. в сниженном состоянии), азотом, а также инертные газы.
- 32. Какие огнегасительные вещества применяются для тушения нефтепродуктов, легковоспламеняющихся и горючих жидкостей, а также крупных пожаров?
 - а*) Химические и воздушно-механические пены, пеногенераторные порошки.
 - б) Вода, химические и воздушно-механические пены, пеногенераторные порошки.
 - в) Водяной пар, химические и воздушно-механические пены, пеногенераторные порошки.
 - г) Пеногенераторные порошки (ПГП, ПГПС), химические пены, порошковые составы на основе карбонатов и бикарбонатов натрия и калия.
- 33. Какие огнегасительные вещества и средства применяются для тушения небольших горящих поверхностей (небольших очагов горения)?
 - а) Вода, различного рода покрывала (асбестовые полотна, брезент и др.), сухой чистый песок, пеногенераторные порошки.
 - б*) Различного рода покрывала, сухой чистый песок.
 - в) Водяной пар, различные покрывала, сухой чистый и просеянный песок.
 - г) Вода, различные покрывала, пеногенераторные порошки, воздушномеханические пены.
- 34. Как подразделяются средства пожаротушения?
 - а) Первичные, вторичные, троичные.
 - б*) Первичные, стационарные, передвижные.
 - в) Водяного тушения, водо-пенного тушения, газового тушения, порошкового тушения, комбинированные.
 - г) Спринклерные, дренчерные и комбинированные.
- 35. Какие средства пожаротушения относятся к первичным?
 - а) Огнетушители, гидропомпы (поршневые насосы), ведра, спринклерные и дренчерные установки.
 - б) Спринклерыне и дренчерные установки, бочки с водой, ящики с песком, асбестовые полотна.
 - в*) Огнетушители, гидропомпы, ведра, ящики с песком, войлочные маты, асбестовые полотна.
 - г) Огнетушители, внутренний и наружный пожарный водопровод, ведра, бочки с водой.
- 36. Как подразделяются огнетушители по используемым в них огнегасительным вешествам?

- а) Химические пенные (ОХП), воздушно-пенные (ОВП), углекислотные (ОУ), воздушно-механические.
- б) Химические пенные, физические углекислотно-бромэтиловые, порошковые (ОПС).
- в*) Химические пенные, воздушно-пенные, углекислотные, углекислотно-бромэтиловые, порошковые.
- г) Химические, воздушно-механические пенные, углекислтные, углекислотно-бромэтиловые, порошковые.
- 37. Какие огнетушители можно использовать для тушения горящих потребителей электрической энергии (электроустановок) и электросетей, находящихся под напряжением?
 - а) Углекислотные, углекислотно-бромэтиловые и воздушно-пенные.
 - б*) Углекислотные, углекислотно-бромэтиловые.
 - в) Порошковые, воздушно-пенные и углекислотные.
 - г) Углекислотные, углекислотно-бромэтиловые и воздушно-пенные.
- 38. На кого возлагается ответственность за обеспечение пожарной безопасности на предприятии?
 - а) На руководителей структурных подразделений и на главного инженера.
 - б) На главного энергетика (механика) и руководителей структурных подразделений.
 - в) На начальника отдела (бюро) охраны труда и руководителей структурных подразделений.
 - г*) На руководителя предприятия и руководителей структурных подразделений.
- 39. На какую структуру в Республике Беларусь возложены функции республиканского органа государственного управления по обеспечению пожарной безопасности?
 - а) На Совет Министров и администрацию Президента.
 - б) На все министерства, кроме министерства сельского хозяйства.
 - в) На Верховный Совет Республики.
 - г*) На Министерство по чрезвычайным ситуациям.
- 40. Что является правовой основой системы пожарной безопасности и государственного пожарного надзора в Республике Беларусь?
 - а) Комплекс государственных мероприятий, представляющего нормативно-правовые акты.
 - б) Комплекс постановлений, правил, инструкций по пожарной безопасности.
 - в) Директивные документы Министерства по чрезвычайным ситуациям (МЧС).

- г*) Закон Республики Беларусь «О пожарной безопасности».
- 41. Какими правами наделена пожарная инспекция государственного пожарного надзора департамента МЧС по надзору?
 - а) Посещения всех предприятий, организаций и учреждений в любое время и требовать от их администрации любой документации о деятельности предприятия, налагать штрафы на нарушителей противопожарного режима.
 - б) Налагать штрафы на нарушителей требований пожарной безопасности, проводить действия в качестве органов дознания, приостанавливать частично или полностью нерентабельные производства, находящиеся в пожароугржающем состоянии.
 - в*) Налагать штрафы на нарушителей требований пожарной безопасности, проводить действия для выявления виновников пожара, приостанавливать частично или полностью объекты, находящиеся в неудовлетворительном противопожарном состоянии.
 - г) Налагать штрафы на виновных в возникновении пожара, увольнять руководителей структурных подразделений, в чьем ведении находятся объекты в неудовлетворительном противопожарном состоянии.