Regression Analysis of Air Pollution and Mortality

STA-6013 Regression Analysis

Yahui Peng @ifg583

Date: 11/29/2021

1. Problem Description

The objective of this project is to seek to find the association between air pollution and mortality as well as to obtain a prediction equation for mortality as a function of the predictor variables. The dataset used is named 'Pollution Data 12rev n57 Version 2018' with all numeric data collected from 57 US cities. Below is the variable description and the header of the dataset:

y = Total age-adjusted mortality from all causes in deaths per 100,000 population

 $x_1 = \text{Mean annual precipitation (in inches)}$

 $x_2 = \text{Median number of school years completed for persons of age 25 years or older$

 x_3 = Percentage of the population that is nonwhite

 x_4 = Relative pollution potential of oxides of nitrogen

 x_5 = Relative pollution potential of sulfur dioxide

Note: Relative pollution potential is the product of the tons emitted per day per square kilometer and a factor correcting for the dimensions of and exposure to the given area.

Obs	City	y	×1	x2	g3	×4	x5
-1	San Jose, CA	790 73	13	12.2	ā	32	3
2	Wichita KS	829 76	28	12.1	7.5	2	1
1	San Diego, CA	839.71	10	12.1	5.9	66	20
4	Lancaster, PA	844.05	43	9.5	2.9	7	32
5	Minneapolis, MN	857.62	25	121	ō	11	26

We follow the PISEAS (Planning, Investigating, Specification, Estimation, Assess, and Selection) rule, a general system for performing a regression analysis except for 'P' since the data is designated here. MLR (multiple linear regression) is started with the most common OLS (ordinary least square) model. After investigation of the data, an increased power transformation on y is conducted based on Box-Cox test and estimate parameters are then obtained for specification of the fitted model. However, MSE (mean squared error) and R_{Adj}^2 of the model are not desirable. Also, adequacy checking using diagnostic measures indicate the assumptions on error term do not hold well. To improve the fit, possible outliers and influential points are identified by influential analyses. After removing one outlier, the model is refitted, making the assumptions on error term hold while MSE and R_{Adj}^2 do not improve much. Another transformation on y did not help much, likewise. Hence, we conclude that OLS model does not perform well on the data.

Since a model is supposed to be as informative as possible, deleting an outlier is not preferred or recommended. We try to accommodate it, such as downweighting it to a less impactful point, or almost to zero, by using WLS (weighted least square) model. Thus, the WLS model is fitted instead of the OLS one. To our delight, MSE, R_{Adj}^2 and even CV (coefficient variance) improved significantly with all observations kept. Finally, variable selection measures were performed to obtain the optimal model, and the prediction equation is

$$\hat{y} = 803.64449 + 2.33451x_1 + 2.28908x_3 - 0.12425x_4 + 0.42937x_5$$

We conclude *Mortality* is positively associated with mean annual precipitation, percentage of the population that is nonwhite, relative pollution potential of sulfur dioxide, and is negatively related to relative pollution potential of oxides of nitrogen.

Fortunately, multicollinearity was not observed throughout the whole regression analysis.

2. Investigation of the Data

The summary statistics for response and all predictors are shown in Table 1. x_3 , x_4 and x_5 show large standard deviance compared to the mean.

Table 1 Simple Summary Statistics

			Simp	le Statistics			
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
У	57	938.89702	55.79181	53517	7B2.37000	1113	ÿ
×1	57	36,96491	10 21023	2107	10.00000	BO 00000	x1
×2	57	10.93333	0.85802	623.20000	9.00000	12.30000	x2
я3	57	12.18246	10,72048	694,40000	0.80000	57,60000	*3
¥4.	57	24.59649	47.40210	1402	1.00000	319.00000	×4
x5	57	56.45614	63.89726	3218	1.00000	276 00000	x5.

The pairwise scatter plots are shown in Fig.1, suggesting y is positively associated with x_1, x_3 and x_5 , negatively associated with x_2 , and not obviously related to x_4 . However, considering the two leverage points in the plot of y vs x_4 , there might be association between the two variables. Moreover, there appear to no or little linear pairwise association among the five predictors.

Fig. 1 Paired Scatter Plots

Loess plots are obtained for all predictors using various smoothing parameters of 0.1, 0.2, 0.4, 0.6, 0.8 and 1. As seen in Fig.2, all predictors achieve the best Loess fit with smooth equals 0.6 or 0.8. However, the strong nonlinear trend with x_3 and x_4 suggests transformation of the original data, commonly on the power of response. To obtain the appropriate λ for y in the transformed form y^{λ} , Box-Cox analysis is recommended.

Observation 7, 17, 57 should be carefully scrutinized as possible outliers since they have a large x_4 or x_3 value and are off the trend of the majority data.

3. Specification of the Model

Base on preliminary judgments from the Investigation stage in Section 2 above, Box-Cox analysis suggests $y^{1.75}$ is a good transformation of the response. To simplify the prediction equation, we take value of 2, the nearest integer around 1.75, to be the proper order transformation on the response variable.

Therefore, the initial proposed MLR model is

$$y_i^2 = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} + \epsilon_i, \ i = 1, ..., n$$

For ith observation, y_i^2 is the response variable, all $x_{ij}s$ are predictors for j = 1, 2, 3, 4, 5, and ϵ_i is the error term. $\beta_{ij}s$ are parameters where β_{0j} is the response value when all predictors are set to zero, and other $\beta_{ij}s$ represent the change in y_i per unit change in x_{ij} .

The model assumptions are:

- 1. Linear relationship between response and predictors in coefficient β_{ij} , or $\beta_{ij} \neq 0$ for at least one j
- 2. Error term ϵ_i follows $N(0, \sigma^2)$. In other words, the probability distribution of ϵ_i shows normality and constant variance.
- 3. No or light multicollinearity among all predictors x_{ij} .

4. Estimation of the Appropriate Model

According to Table 2, the prediction equation is obtained with the parameter estimates as

 $\hat{\mathcal{Y}}_2 = 139629 + 866.83842x_1 - 2122.80478x_2 + 343.27633x_3 - 16.63512x_4 + 133.20095x_5$

The ANOVA analysis result given in Table 2 shows the p-value for F-test is smaller than 0.0001, indicating rejection of the H_0 that all $\beta_{ij}s=0$. The assumption (1) in Section 3 holds. A good CV of 8.71% shows the ratio of standard deviation to mean is low, suggesting a low variability in the data. However, a R_{Adi}^2 of 49.04% means less than 50% of the variability in the data can be explained by the model. Also, the MSÉ is 13922^2 , which is extremely large.

Analysis of Variance Sum of Source DE F Value Pr > F Squares Square Model 11413879112 2282775822 < .0001 51 9884331014 193810412 Corrected Total 21298210126 Root MSE 13922 R-Square 0 5359 Dependent Mean 159755 Adi R-Sq Coeff Var 8.71432

Table 2 ANOVA Analysis for the Initial Model

Read from the parameter estimates Table 3, the p-values obtained for x_2 and x_4 in t-test are greater than 0.05, indicating insignificant of these two variables at 0.05 level. The absolute value of β_2 is extremely large while that of $\hat{\beta}_4$ is too small in magnitude compared with other predictor coefficients, suggesting the model does not fit well.

All VIFs (variance inflation factors) are smaller than 2, meaning only moderate correlations are observed among the predictors. Therefore, the assumption (3) in Section 3 holds. Multicollinearity is not a concern for the data.

Table 3 Parameter Estimates for the Initial Model

				P	arameter	Estimate:	5			
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	Variance Inflation	95% Confid	ence Limits
Intercept	Intercept	1	139629	33991	4.11	0.0001	0	0	71389	207870
xt	x1	1	866 83842	237.71280	3.65	0:0006	0.45383	1,70211	389 61006	1344 06678
×2	x2	1	-2122 8047ā	2642 57367	-0.80	D 4255	-0.09340	1 48544	-7427 99279	3182 36322
x3	x3	1	343 27633	184.15581	1.86	0.0681	0.18870	1 12619	-26.43189	712 98455
x4	x4	1	-16.63512	50.81421	-0.33	D.7447	-0.04043	1.67640	-118 64690	85 37865
x5	x5	T	133.20095	33,63467	3.96	0.0002	0.43643	1 33460	65 67653	200 72537

Also, the collinearity diagnostics table with intercept adjusted in Table 4 further confirms it as

$$\kappa = \frac{\lambda_{max}}{\lambda_{min}} = \frac{1.90269}{0.37954} = 1.32 < 10$$

Table 4 Collinearity Diagnostics (intercept adjusted)

		Condition	Proportion of Variation										
Number	Eigenvalue	Index	ic†	12	s)	34	35						
1	1 90269	1 00000	0.12208	0.09084	0.02132	0.08798	0.00850						
-2	1.44511	1 14745	0.00071289	0.06619	0.14254	0.07239	0.23271						
3	0.83232	1 51195	0 00146	0.08551	0:71547	0.00625	0.15161						
4	0.44034	2.07869	0.33870	0:79730	Baroù û	0.04940	0.36311						
5	0.37954	2.23899	0.53705	0.00015162	8.11880	0.78396	0.20406						

Overall, the assumption (2) in Section 3 does not hold with the initial model. The poor R_{Adj}^2 and MSE indicate poor adequacy of the model.

5. Assessment of the Chosen Prediction Equation

Shapiro-Wilk test result and QQ-plot of R-student residual vs predicted value in Table 5 suggests rejection of H_0 in normality test and we conclude the normality assumption on the error term does not hold.

Table 5 Shapiro-Wilk Test on Normality

Fig. 4 shows the of R-student residual vs predicted value. The variance on error term has an outward-funnel pattern, likely caused by observation 57, a possible outlier with R-student residual value of less than -4. Therefore, we conclude the constant variance assumption on the error term does not hold, and the assumption (2) in Section 3 does not hold.

Fig. 4 R-student Residual vs Predicted Value

Influential analysis is summarized in Table 6. According to RStudent values in Fig. 4, observation 57 is an outlier. Next, H_{ii} , Cook'sD, DFFITS, and DFBETAS are evaluated to find out possible influential points.

Table 6 Influential Analysis Summary

										Output 5	talialica										
			Stri Error															DIFBE	TAN		
ine.	Dependent	Firedicied Value	Mean	88% (2	Mant	100, 10	Predict	Residual	Sto Error Franctium	Student	Contra D	N Neurossi	Hat Dieg	City	DENTA	anterpert.	et.	42	13	44	
7	117616	10680	or minday	7000	T10005	Terror I	1000	7907	12051	5.60	HIER	0.8178	0.5476	1 9407	10.0574	Triange	-0:1012	0.0171	-Directoria	TRATETO	0.047
2	1299000	140000	3754	100000	140-00	111007	1877142	14296	15600	100	0.019	1007	90781	1.0600	0.200	100791	0.7047	E 1000	0.0218	0.1775	q.
1	1200BF	136363	18472	11500f	13799	200.000	150007	-0.003	127/96	0.074	0.004	0.370H	371546	13107	d I SHE	20,044.0	10.1206	-0.0056	0.0087	10.0106	-gátta
A	DOING.	161978	8035	150575	1711111	102621	181006	29705	13127	2360	0.100	0.360	p.rine.	0.6712	0.8521	CREATE	0.0056	0.004000	0.4254	0.1786	0.09
5	116916	139924	2664	100000	147612	110900	18919	4910	+3390	-0.000	0.001	-0.2970	0.0760	1,0901	(0.008)	0.0159	0.0399	-01/7348	x 0115	0.0004	-0.694
-	110979	171291	16166	158514	70,000	140795	20100	34316	12462	2749	0.907	2 9486	0.1961	(7.5151	1.4564	0.9086	1.0057	-07464	2.1717	16,3932	0.480
7	127084	198186	152.70	110801	162758	100911	175420	1081	8577.8	-0.164	0.016	-0.1629	0.7768	5,0000	0.3037	10.0185	-0.0960	6,0247	2,0498	6,2724	30,670
10	119742	146396	3063	140168	152901	151796	175025	6853	13514	91490	0.002	-0.4884	0,0493	1.1515	-0.1100	-0.usb2	0.0602	6,0399	0,0096	9,0383	0.140
5	136655	131944	3455	120982	142790	101926	E 1007	7530	12908	0.818	0.012	0.8145	0.1538	1,2717	0.2617	Dures.	0.9851	0.0498	3.0160	-0.1401	0.5%
10	14/6/5	147562	2745	140552	53.01	199367	STATE	7364	13649	-0.534	0.003	-0.5299	0.0087	1-006	i3 1064	0.0349	88471	0.0188	0.0010	0.002	0.004
11	TAKATE	156345	3124	Neary	1000	127001	(book)	11944	13988	-9.500	0.007	-0.6784	0.0504	1,0816	41,7023	0.1946	0.094	-0.1034	0.0480	-0.0002	11,896
٦ź	140101	152976	:3404	1805	1000	1528176	1277	-0818	13484	-0.506	0.003	0.5017	20819	1.1040	101000	0.0056	-0.0481	0.093	0.0417	-0.0000	-0.000
12	180031	150433	- 360	100011	TENN	127530	TOUR	975	15439	-0.727	0.000	0.7234	0.085	11010	0.7912	20,0204	-0:1072	0.0284	23 1140	0.0074	9.00
14	147670	1.148576	301	149516	1000	110072	1.475	905,2125	13430	-0.067	0.000	-0.0088	TU ČERO	1200	90110	0.0117	-0.0031	-0.0132	0.0000	0.0048	-0.00
15	147750	158421	1328	15(0).0	104001	120531	187115	10071	1360	-0.788	-0.000	0.7850	10,0000	1.1060	0.7971	0.0002	0.0790	0.0470	3.6690	0.0001	q.mc
存	169080	158836	300	150000	155700	130151	1658	9795	13541	4.700	0,005	-0,7160	rineae	3.1191	D 1708.	Times.	D 1924	-0.0175	3 0608	h.test.t	71.00
17	151266	142646	6295	10070	165716	111000	173121	8616	1245	01994	-0.021	0.6905	112945	13973	0.3801	0,0000	0.0098	EDAGE	20133	10.2527	-0198
10	151301	164671	°,5141	154060	17696	104969	194900	tasta	12814	4.067	0.034	-1,0684	0.3527	1:1606	0.1630	4(100)21	0.0569	D408E	0.1835	a,imma	0.755
15	tstatt.	154726	3454	147793	18180	125832	10504	-3817	13486	-0.246	0.001	-0.2437	0,0616	1/19/5	-0.0624	0,6366	0.0011	0.0050	0.0346	-0.0071	000
20	151455	180989	2866	1.47B40	156046	194863	181089	-1514	1306	-6111	0.000	-0.1096	0.0007	1.1637	40.0205	0.0106	0.0055	0.0087	0.0000	0.00%	0.306
21	159665	149086	3426	142409	156184	120804	TRANS	#519	13488	6.320	0.001	83172	0.5806	1:1644	0.0805	0.5437	0.0024	0.0527	0.0193	-0.0252	-0.00
22	1542 (1	157066	280	152600	255	125631	185000	-3034	13727	-0.221	0.000	-0.2190	10.0278	1.1817	-0.0070	0.0146	-0.0024	-6.0185	0.0048	00112	-0.8%
22	154029	156663	3258	250031	100064	130649	18637	-4603	1305	-0.364	0,001	-0.3606	73.0048	1,1730	(0.066)	10,0409	-6/0572	-0.0302	0.0177	10.D*17	0.00
24	150309	100000	300	15536	767401	137500	759159	1961	T3489	-0.254	0.001	02914	73,0840	11910	6.0752	0.0009	0.0271	-0.0079	35,0376	3.0340	0.15
25	159007	1.001146	1,2901	180608	IRRUO.	100016	18074	259	53342	-0.463	0.001	-0.1611	0.3068	12997	10.0560	200416	-6332/8	-0.0414	00184	10.0007	-0.00
26	THEATE	102967	3485	1.47061	157900	124000	RECHT	660	10,090	3402	0.001	0.7504	0.0319	111413	0.0723	noule	0.0009	0.0284	0.0144	(AUTO)	El Sin
21	1994.93	157802	3727	148001	105164	100/00	Owner	1451	15444	2 100	0.000	D 1071	0.0737	12114	h gas	0.0073	0.0522	EDINE	3 0574	buss	-Bits
20	1955000	TURBOA	200	140015	155160	115993	177318	11/25	13536	0.537	0.007	U fibure	0.0856	110974	V120274	0.1119	Dairy.	4/1/78m	0.0416	(0.0071	-07979
22	AFGARG.	167305	-ENE	150673	175/835	152123	170007	(5074	1,039	-3.450	D Ditto	-D.A487	rimas	1,3421	F1 1/42%	11.0966	crossas	D. (D00)	3 07/92	amsı.	-Bine
20	160780	150900	2675	107549	19830	10MBC	TROPH	2611	19681	0.720	0.003	0.7168	75,000	1,0066	101104	10,00087	0.0003	0.0490	0.0630	-0.0190	-0.000
:31	163625	160207	40.6	155154	171307	134133	197911	ADE 6413	13329	0.330	0,000	0.0301	30,0603	1.7259	0.0004	30,0077	-0.0068	-0.0072	0.0015	0.0011	-6.00
22	185893	188960	3051	164773	1000	130805	10000	6063	13773	0.086	0.000	0.3800	10/02/13	11396	0.0585	10.0190	0.0059	-0.0164	0.0026	10,0054	-0.0%
32	185717	1507RE	12000	1,8306	-SERR	126106	1011067	12631	13687	0.816	-0.006	0.0162	0.0501	1.0080	0.2169	0.1351	0.00000	0.1545	dindan	-n.hass	-0.29
54	166339	164833	9197	150605	171202	196290	160576	398,6239	13501	0.029	0.000	0.0091	0.0600	1.1857	0.0067	U.0011	-0.0330	-0.0004	0.0058	-0.0023	0.00
135	106972	174562	200	188763	190301	148018	200106	9890	19019	-0.836	0.003	-08043	0.0400	1.1216	0.1946	0.0014	-0.0256	00437	0.0489	10.0000	-0.00
56	100277	181537	2994	140004	170170	132298	mul/e	4140	13248	0.356	0.002	0.3547	0.0945	1.9250	0.1148	10,0876	0.0149	-0.0741	-0.0712	a iresp	-0.000
TIT.	1075035	170904	1970	1584115	100774	ndroos	301106	2976	12764	-5.204	0.002	0.2020	0.7672	1.0400	0.1047	0.0064	0.0867	0.0009	0.0496	DENT	-0.04
38	100190	150370	2992	153725	15471.5	17Mast	(8/278	9600	19884	19465	0.003	0.6775	ET CIDOD	A FURN	0.10998	Doins.	0.215	D CRIMI	0.0446	70 72 71 76	10.00
20	100740	128128	lden	Literati	10000	101127	2010/201	7987	Intellé	-0-Sin	0.000	DSAFT	nama	1.1567	in essay	D.0252	0.0019	0.0290	0.0142	nmad	0.04
40	120700	102560	104	155711	154016	10509	1000	0670	1352	3.406	0.002	0.4929	0.0000	4 1010	0.4601	1,0000	0.0072	-0.0500	0.0010	BODDE	0.00
41	1006	150062	2965	101309	1901	A21694	-7807	19064	13607	1,400	0.046	5,6168	710464	0.0215	0.0000	73/1980	-0.0025	-0.1450	0.0118	0.007	-0.000
42	17:347%	159677	2065	155447	REU	131367	-90.007	1963	13798	1000	0.004	1.0089	0.0004	1.0213	0.1526	-omia	0.0347	0.0320	20078	indige.	(I ma
41	171500	174006	(5/7)	160606	104700	*44256	20100	per into	12886	0.000	0.000	h.000e	70 1455	1.2045	0.0000	20,0040	-0.0042	-0.0026	0.0000	10007	Oune
44	175196	105185	8521	171809	19501	154000	THOSE	-10090	12301	0.516	0.032	-03180	0.2049	1,3910	0.000	0.0884	-0.0095	-0.0500	0.0089	10.00011	-0.397
45	170100	17*156	381	185780	176691	140990	199715	5012	tasso	0.367	0.001	0.0600	0.0573	3.1511	0.0716	0.0110	0.0888	0.0000	-0.0544	in figures.	0.04
46	177165	180040	348)	147880	157107	121483	19120	20221	13701	1.77B	-0.017	10140	Diction	0.7900	0.1094	Dx1756	0.0597	-0.0381	0.1759	10.0558	-0.000
47	17/(430)	160056	3521	15/1995	160110	127952	189450	22964	1904	1,402	0.045	1.0014	11/11/20	0.8654	0.3059	20.196E	-0.0957	-0.1740	-0.0900	10,0110	-0.00
45	(7040)	16600	301	148601	100 HQ	100000	189436 18007A	50764	LMO	Haeo	0.009	1,0603	13.0444	1 (1296)	0.100	0.1966	0.0820	0.1740	7.0000	6,0170	-0.00
45	(7905)	177702	1979	67805	1175/01	147990	30396	2131	1000	3.164	0.001	0.16026	0.530	1.2010	0.365	0.0009	0.0161	0.000	3 0472	DIDES.	45.00
50	113800	100007	934	110961	10/12/0	14000	2000	1801	11000	3496	6,000	0.4973	0.6764	1216	0.000	0.0000	0.000	0.0000	77.06wa	0.000	0.00
81	102300	173M1C	- 000	1/4991	TERM	146777	COMMO!	7504	13233	-0.586	0.000	0.0000	D.COMD	1100	0.0991	DOM:	0.0001	0.0034	U.0356	0.0076	-0.05
52	10000	173916	9.44	177961	more	188177	2796	159	13237	-0.596	-0.000	0.0948	0.040	1,6107	(0.040)	10,0311	-0.0018	-0.0156	-0.0009	-0.0018	0.00
53	116040	170461	3759	182903	1750x71	141504	- Tripo	1510	13400	1786	-0.077	11662	0.000	1000	0.32%	D-1178	-0.0696	-0.0(10)	70.000.09	DESCO.	0.00
54		1/9/61	.375a		178017 182 82	191506	7900		13806	5,005	-0.017	0.0905	-	1,0000	0.0216	0.0074	-0.0166	-			
	11/7300		-	175000	203815	158158	-	1196 6896	12804		0.000		N 1542					0.0030	0.0289	0.0005	0.00
每	THE STATE OF	191706	/ 58th	191000		MENTE	22/807	78014	12846	3860 3666		0 69FC	D 1866	12473	(1,285)	TIRARE	0.0022	D 400 FE	0.0650 0.55ast	5 4676	0.198
.54	21A4W	178477	5421	146580	107 112	196475	180675	18914	10016	2 16E	7,987	5 4977	D 4500	0.4267	5 9552	1,9500	2.5754	-0.4951 (2897a	0.5949 4.7927	0.4676	1271

Leverage points are determined by $h_{ii} > 2p/n = (2)(6)/57 = 0.2105$, suggesting point 7, 44, 52 and 57 to be leverage points. Combined with previous finding the point 57 is an outlier, then it is likely to be influential.

Fig. 5 Plot of h_{ii}

Cook'sD value greatly exceeds Di > 1 for observation 57, suggesting it is influential.

The cutoff for $DFFITS_i$ is $|DFFITS_i| > 2\sqrt{p/n} = 2\sqrt{5/57} = 0.5923$. Observations 4, 6, 56, and 57 have values of $|DFFITS_i|$ that exceed this value, therefore are most likely influential.

The cutoff for $DFBETAS_i$ is $|DFBETAS_i| > 2/\sqrt{n} = 2/\sqrt{57} = 0.2649$, we immediately noticed that observation 57 has effect on all five parameters and intercept, and its effect on $\hat{\beta}_1$ and $\hat{\beta}_3$ is large. Point 56 has effect on all five parameters other than intercept. Point 4 has effect on intercept, $\hat{\beta}_2$, $\hat{\beta}_3$ and $\hat{\beta}_5$, especially for $\hat{\beta}_2$. Point 6 has effect on intercept, $\hat{\beta}_1$, $\hat{\beta}_2$ and $\hat{\beta}_4$, especially for intercept and $\hat{\beta}_1$. Point 18 has small effect on intercept and $\hat{\beta}_2$. Point 7 has small effect on $\hat{\beta}_4$. Point 44 has small effect on $\hat{\beta}_5$.

The cutoff for $COVRATIO_i$ is $1 \pm 3p/n = 1 \pm (3)(6)/57$, or 1.316 and 0.684. Note that the values of observation 6, 8, 15, 52, 56, and 57 clearly exceed these limits, indicating these points are influential. However, point 4 barely exceed the cutoff, so the influence of it, from a practically point of view, is fairly small.

Fig. 8 Plot of DFBETA

Adopting a diagnostic view, point 57 is clearly influential since it has effect on H_{ii} , RStudent, Cook'sD, $\hat{\beta}$, \hat{Y}_i and $COVRATIO_i$, point 56 have effect on $\hat{\beta}$, \hat{Y}_i and $COVRATIO_i$, and point 4, 6 have moderate effect on $\hat{\beta}$ and \hat{Y}_i . Hence, we conclude that point 57 are influential.

After removing the influential point 57, the model specified in Section 3 is refitted and analyzed as follows.

The ANOVA analysis result given in Table 7 shows the p-value for F-test is smaller than 0.0001, indicating rejection of the H_0 that all $\beta_{ij}s = 0$. The assumption (1) in Section 3 holds. A slightly decreased CV of 6.91% shows the ratio of standard deviation to mean is low, suggesting a low variability in the data. However, a slightly higher R_{Adj}^2 of 64.94% means only less than 70% of the variability in the data can be explained by the model. Also, the MSE of 11100² remains extremely large.

Table 7 ANOVA Analysis after Deleting the Outlier

		Ana	lysis of V	ariance		
Source	DF		Sum of Squares	Mean Square	F Value	Pr > F
Model	5	13168	5586677	2633117335	21.37	< 0001
Error	50	6160	0393749	123207875		
Corrected Tota	55	1932	5980426			
Boo	t MSE		11100	R-Square	0.6812	
7111	endent	Mean	160541	Adj R-Sq	0.6494	
Coe	ff Var		6.91405			

Read from the parameter estimates Table 8, the *p*-values obtained for x_1 , x_2 and x_4 in *t*-test are greater than 0.05, indicating insignificant of these three variables at 0.05 level, which will cause the model to be less informative due to great loss of predictors. The absolute value of $\hat{\beta}_2$ is extremely large while that of $\hat{\beta}_4$ and $\hat{\beta}_5$ are too small in magnitude compared with other predictor coefficients, suggesting the model does not fit well.

All VIFs are smaller than 3, meaning only moderate correlations are observed among the predictors. Therefore, the assumption (3) in Section 3 holds. Multicollinearity is not a concern for the data.

Table 8 Parameter Estimates after Deleting the Outlier

				P	arameter	Estimate:	5			
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	Variance Inflation	95% Confid	ence Limits
Intercept	intercept	1	173851	27808	6.25	<.0001	0	0	117998	229705
x4	81	- 1	378 71431	209.29784	1.81	0.0764	0.20507	2 01480	-41.6727B	799.10140
×2	1/2	-1	-4013.61098	2134 85271	-1.88	0.0659	-0.18495	1.51795	-8301 58885	274 36688
מ	x3	1.	1036 70608	193 56682	5.36	< 0001	0.49108	1.31872	647.91569	1425.49647
#4"	×4	1	-38,62336	40,71193	-0.95	0.3473	-0.09833	1 68523	-120.39568	43.14896
×5	x5	-1	99 10320	27 52533	3.60	0.0007	0.33981	1 39720	43.01695	154.38945

Shapiro-Wilk test result and QQ-plot of R-student residual vs predicted value in Table 9 indicates we fail to reject H_0 in normality test and we conclude the normality assumption on the error term hold.

Table 9 Shapiro-Wilk Test on Normality

Fig. 9 shows the of R-student residual vs predicted value. The variance on error term has an decent even pattern along size the zero line, suggesting the constant variance assumption on the error term holds. Therefore, the assumption (2) in Section 3 holds.

RStudent by Predicted for y trans1 3 0 RStudent 0 -1 0 0 0 0 -2 -3 140000 180000 200000 160000 Predicted Value

Fig. 9 R-student Residual vs Predicted Value

Overall, the assumptions (1), (2) and (3) in Section 3 all hold with the refitted model after deleting the outlier. And there is no sign of strong multicollinearity among the predictors. However, the decent R_{Adj}^2 of 64.94% and the poor MSE of 11100^2 indicate lack of adequacy of the refitted model.

Box-Cox analysis is performed again, and the result in Fig. 10 suggests $y^{1.5}$ is a proper transformation of the response after deleting the outlier. However, the R_{Adj}^2 and MSE do not improve much as shown in Table 10.

Table 10 ANOVA Analysis after Second Transformation on Response

		An	alysis of V	aria	ince			
Source	DF		Sum of Squares		Mean Square	F	Value	Pr>F
Model	5	3	14016453	62	803291		21.27	<.0001
Error	50	14	47645256	2	952905			
Corrected Total	55	48	31661709					
Root M	SE		1718.401	91	R-Squa	re	0 680	2
Depend	ent Mea	an 289		45	Adj R-S	q	0.648	2
Coeff V	ar		5.936	75				

Hence, we conclude MLR with an OLS model does not provide a desirable fit for the data, especially for the complete data. To make the model as informative as possible, we want to keep all the observations and consider WLS as a method to accommodate the outlier via downweighting it to a less impactful point, or almost to zero.

To our delight, read from Tabel 11 and Table 12, the ANOVA analysis shows the p-value for F-test is smaller than 0.0001, indicating rejection of the H_0 that all $\beta_{ij}s = 0$. A smaller CV of 0.17%, a higher R_{Adj}^2 of 71.62%, and a profoundly decreased MSE of 1.5448² are obtained. All VIFs are smaller than 3, meaning only moderate correlations are observed among the predictors. Therefore, multicollinearity is not a concern for the data. We conclude the WLS model provides a better fit to the data than the OLS model.

Table 11 ANOVA Analysis of the WLS Model

Table 12 Parameter Estimates of the WLS Model

				F	arameter	Estimate	5			
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr> t	Standardized Estimate	Variance Inflation	95% Confid	ence Limits
Intercept	Intercept	1	823.10440	50.03136	16.45	< 00001	0	0	722.66226	923.54654
x1	x1	-1	2.41085	0.48239	5.00	<.0001	0.61271	2 96529	1.44242	3 37929
x2	x2:	1	-1 85437	4.28649	-0.43	0.6671	-0 04280	1.93109	-10.45986	6.75112
×3	х3	H	2 15583	0.77624	2.78	0.0076	0.28730	2.11127	0.59747	3.71419
x4	x4	1	-0 11054	0.06866	-1:61	0:1137	-0.19447	2 88061	-0.24842	0.02735
x5	ж5	i i	0.42484	0.06398	8.64	<.0001	0.65790	1 93689	0.29639	0.55329

The weights obtained for the WLS model are listed in the below Table 13.

Table 13 Weights of the WLS Model

					- (Output Stati	etica					
Obs	Weight	Dependent Variable	Practicated value	Std Error Mean Predict	95% CI	L Mean	55% CL	. Predict	Reeldusi	Std Error Residual	Student Residual	COOKE
1	9 20E 04	791	838 0270	15/2658	105 3796	066 6744	732.8233	909.2307	45.2970	#6,664	0,971	Oth
2	19/9nE-04	824	304,5424	10.6461	863 1700	905,9057	763.750*	985,3067	60.7925	47.896	-1.289	0.51
5	@ 04E 04	840	838 6950	14/9088	E66,7851	668,828-	725,5140	9520775	1,0142	52.383	0.049	0.000
4	1.59E-03	24.	926 2275	11/0597	908/0042	950,4300	847,3607	1009	84.1775	39.151	2:287	0.000
.5	2,54E-02	956	B77,255	10.1033	586.3619	887,5185	312.4088	942,0016	-19 8152	20,499	0.677	0000
6	2 100 03	981	9719067	113160	948 (1186	994.2646	9002,1806	1048	110.0967	31.765	3.467	0.25
7	1,67E 02	682	(BEO 9691	11 6022	E40.2741	837,6641	936/2280	897.7101	2.1391	1/964	1.099	Pitto
3	9,75E 04	871	350.3097	0.1224	878.2559	908,8456	791,9117	350.1077	£1.19±7	48,790	0.405	0.00
3	1,220,03	872	857.7874	(9/22/49	627,2022	688 3520	761 9337	981.5711	13.9800	61,513	0.007	-0000
10	1.08E 01	974	397,6523	7,2586	ESS1/0000	912,2245	000219050	905 4995	13721	42557	0,549	020
11	1,50E-02	867	304,6846	5.3635	314,1174	935,6517	191,4655	368,3056	-27 4146	36,776	1 041	000
12	1.14E 02	96%	914 1361	5 5788	907 OCT 2	821 3700	1014 2469	944,1252	20.1961	14.026	7.500	0.000
13	5,05E 01	890	916.2022	5.7690	904/468	927.5150	671/0923	961.3721	20.5022	20.962	0.980	0000
14	2 86E 03	586	904 8722	6 6898	661 JA26	918 1017	(45.5052	964.4701	5 6122	2/1.189	0.199	CHARGE
15	1.44E 03	900	9246496	7:3946	909/7746	939 4645	841,4360	1005	26 0896	WLOSS	0.625	LIERO
16	4,6/1E 02	904	926,0807	4.9500	916 4516	936,5350	576.4175	976.305/6	12,2317	23,689	0.901	CLOW
17	1 4/E 03	912	85h 045h	99382	671 (1957	910.997	006,9578	975.1236	20.0544	59467	0.520	CHOICE
18	1 16E 03	612	937.5616	13:2788	913 3046	962,6884	844.4587	1031	38 1316	E3212	0.605	LILIE
19	1.56E 01	812	9*0.2902	6.2098	890,7964	926,7620	310,0146	990,5450	1,9190	30,286	0.050	acce
20	1 06E 03	812	9100004	6 9096	666 5496	925 8810	UNS.9837	1003	0.1296	WG (959	0.000	LIERU
21	7.56E-04	900	9106626	10.8358	D#2/5114	934,7905	796/9002	1.20	6.0775	56.1B5	0.40	CON
22	2,315 31	922	931/1340	4.9179	9212609	941,0070	866 0782	596.1050	9.2040	31,050	0.290	COM
25	1466.03	920	938 0876	6 6615	921 0747	9:8 3005	USC 7668	1017	11 8576	39.935	0.297	UNIO
24	7.18E-02	959	937,9126	(3.3322	925,2002	350,6250	913.3490	562.478E	-E.79/20	0.237	-1.051	0.100
25	2.67E+0*	905	924,6813	023990	904.0010	935,2817	935 8325	905 5305	0.0107	0.00782	7447	1554 321
26	7 DEE 04	908	921 8420	5 9541	900 (865)	939 6190	005,6160	1088	14 3872	50.492	0.255	UUU
-	1,54E 33	508	A COLUMN TO SERVICE	6.9289	699 a 573	935/5004	841 1805	3913973	\$0.9943		0.800	-
27	4 38E 04	941	9*7.5796	(0/70:0	- 17 19 19 19 19	939,3687	756 1160	1055	24 3040	73.046	01456	DEM
25	5 16E 03	946	907 6751 946 5670	101118	906.3E17	956 8802	902 (897	990,97659	0.3890	18.865	0.020	LIDE
	3,10E-03	951	911.8074	4.8304	902.5416	931,1502	056.3800	568.3W0	36.6026	27.365	1 420	DECKE
30												
-31	4.39E 04	95%	951 3972	10 3811	900 5 985	972.2682	UN11.6666	1925	2.1620	75.009	0.000	O.COV
25	8 58E 04	964	935,2000	7.2810	900 0126	98916471	025.2181	1042	19:2100	52.300	0.367	0.000
:35	3.55E 04	983	9298601	137017	904,3613	943,9350	B16.2778	1,001	24.3019	51,801	1.675	0.000
34	1430 03	569	980 6882	7.8510	945,7205	975 6460	077.2449	1044	1,4669	W1.205	0.008	14.5000
35	5,60E 04	961	969,7259	12.3012	985,0303	1014	056,9887	1921	28,7152	64,005	0.449	0.00
36	3,50E 03	962	3060900	(0.5564	904-9935	917,2870	365.7644	586,3956	26.2590	26,065	1.091	0.06
37	9.77E 04	968	994-1097	16 7379	860 5068	1022)	UNE.0537	1000	28:3097	WIL 1970	0.564	LAURIN
:38	7.09E 04	969	942.8847	9,8660	922/0579	962,6715	325,2987	1056	25,7952	56,361	0.458	data
35	4.46E 03	970	987 8021	6.856	974:7004	1001	9702.4826	1086	17-3021	20.226	0.760	OME
40	2 68E 04	971	956 8047	157740	92/01371	987 4724	762,6952	1149	18:3451	5/2/624	D15=	0.900
41	6,69E 04	972	905.0087	6.3803	E915024	925,1509	706.9436	1026	64/1332	50.273	1.101	0.904
42	9 (35 04)	560)	943,456/8	6.0841	927-2091	959 6905	1005.4350	1047	42,4902	50.510	heid	0.90
45	6.46E 03	969	983 2169	7.8351	987,4913	998 9425	929L4748	1025	605.0	19.135	0.343	USU
44	2,34E 03	981	1013	10,0763	591,0766	1005	945,2462	1001	FT-6216	29.891	0.721	0.01
45	4.29E 03	995	911 8674	52158	981,4173	982,3884	923,2899	1020	227521	22:014	G 986)	0.000
49	2,75E 01	990	910,0849	5,8949	55618819	321,5070	545,6749	970.5146	97.7951	26,999	5.027	0.755
47	1,06E 03	1002	9222990	6.7257	909,7767	935,7513	025 6152	1016	79.6210	47.201	1807	0.040
46	1 57E 03	1004	953,3512	6,9483	909,4019	967 3005	1072-8382	1088	50,1/100	3/1,869	1,007	£) ONE
45	1,78E-04	7006	1016	25.3907	584,3615	1067	776.1094	1254	0.4456	112.0	0.084	0,000
50	3,76E-03	1015	1007	Ø 1949	991/0463	7024	354,4412	1061	7.5419	21.747	0.318	1000
51	136E 04	5010	969.1126	(6/6715	9556431	7000)	LYNE 4466	1162	28.4974	10.712	0.345	LIKE
-52	1,18E-02	7025	7025	10.4390	1000	1000	393,3236	1064	5.8410	9,650	6aci)	0.03
55	3.08E-04	1000	385 abm.	(8.6013	8524945	1007	009.2747	1970	1559,30	#ILOG3	0.45	1.070
54	21/E 04	1000	1042	25,9990	969,0003	1094	821.9826	1282	11.8057	1052	0.113	1388
55	1.84E-02	7071	104E	12.6696	1019	1070	964,2821	1125	06,4024	35.931	0.755	0.01
劣	1.78E-04	+113	1002	25 7037	953 9546	1049	764,5821	1239	111.5181	(112	0.985	13.000
57	á 70E ús	780	986 4001	41.1751	966.777€	1071	589.3064	1405	208 SHET	200 €	1.003	000

6. Selection of Variable Subset

Stepwise selection and all possible regressions are used for variable selection of the WLS model at 0.05 level, the outputs are shown in Table 14 and Table 15, respectively. All of the three statistics, R_p^2 , C_p (close to p+1=6), and MS_{Res} optimize when x_1 , x_3 , x_4 and x_5 are included in the model, indicating we should remove x_2 in the final model.

Table 14 Backward Selection

				We	ight: wt2				
			Su	mmary of	Stepwise Sel	ection			
Step	Variable Entered	Variable Removed	Label	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F
1	ж5		x5	1	0.2545	0.2545	94.0797	18.78	<.0001
2	x1		x1	2	0.3988	0.6533	17.4088	62.10	< 0001
3	х3		х3	3	0.0662	0.7195	6.3446	12.51	0.0009
4	x4		x4	4	0.0211	0.7406	4.1872	4.22	0.0449

Table 15 All Possible Regressions

		C(p) Se	election Meth	nod		
	N	lumber of Ok	servations l	Read	57	
	:N	lumber of Ob	servations i	Used	57	
		W	eight: wt2			
Number in Model	C(p)	R-Square	Adjusted R-Square	M	SE	Variables in Model
4	4.1872	0.7406	0.7206	2.349	909	x1 x3 x4 x5
5	6.0000	0.7415	0.7162	2.386	540	x1 x2 x3 x4 x5
3	6.3446	0.7195	0.7036	2.49	197	x1 x3 x5
4	6.5901	0.7284	0.7075	2.45	937	x1 x2 x3 x5
4	11 7133	0.7024	0.6795	2.694	449	x1 x2 x4 x5
3	11 9304	0,6912	0,6737	2 743	347	x1 x2 x5
3	12.5085	0.6882	0.6706	2.769	950	x1 x4 x5
2	17 4088	0.6533	0.6404	3.023	316	x1 x5
4	28.9774	0.6149	0.5853	3.486	577	x2 x3 x4 x5
3	29 2262	0.6035	0.5811	3.522	224	x3 x4 x5

7. Conclusion

After using the OLS and WLS models, WLS is chosen as the best estimation method. And the final prediction equation is

$$\hat{y} = 803.64449 + 2.33451x_1 + 2.28908x_3 - 0.12425x_4 + 0.42937x_5$$

We conclude Mortality is positively associated with mean annual precipitation (x_1) , percentage of the population that is nonwhite (x_3) , relative pollution potential of sulfur dioxide (x_5) , and is negatively related to relative pollution potential of oxides of nitrogen (x_4) . However, Mortality is not associated with Median number of school years completed for persons of age 25 years or older (x_2) . An advantage of the WLS model is relatively even magnitudes of the predictor coefficients. A concern is the negative association between y and x_4 , but a reasonable explanation maybe the existed large composition of nitrogen oxides in the air we breathe. Further investigation should be focused on whether the outlier data is reliable, because it is influential to modeling.

8. Appendix

```
/* 1. import database */
filename reffile '/home/u49400069/Regression Analysis/Final_Project/Pollution_Mortality.xls';
proc import datafile=reffile
        dbms=xls
        out=work.pollution;
       getnames=yes;
run;
proc print data=work.pollution;run;
proc contents data=work.pollution; run;
/* 2. investigation of the data */
/* Boxplots */
data long;
  set pollution;
  array tm(*) x1 - x5;
  do i=1 to dim(tm);
    hour=compress(vname(tm(i)), 'kd');
    Value=tm(i);
    output;
  end;
  keep hour value;
run;
proc sgplot data=long;
```

```
vbox value / group=hour;
run;
proc sgplot data=have;
  vbox x1 x2 x3 x4 x5;
run;
* correlation table & scatter plots;
proc corr data=pollution plots=matrix(histogram nvar=all);
run;
* loess plots;
proc sgplot data=pollution;
        reg x=x1 y=y / clm cli;
run;
proc loess data=pollution;
        model y=x1/smooth=0.1 0.2 0.4 0.6 0.8 1.0;
run;
proc sgplot data=pollution;
        reg x=x2 y=y / clm cli;
run;
proc loess data=pollution;
        model y=x2/smooth=0.1 0.2 0.4 0.6 0.8 1.0;
run;
proc sgplot data=pollution;
```

```
reg x=x3 y=y / clm cli;
run;
proc loess data=pollution;
        model y=x3/smooth=0.1 0.2 0.4 0.6 0.8 1.0;
run;
proc sgplot data=pollution;
        reg x=x4 y=y / clm cli;
run;
proc loess data=pollution;
        model y=x4/smooth=0.1 0.2 0.4 0.6 0.8 1.0;
run;
proc sgplot data=pollution;
        reg x=x5 y=y / clm cli;
run;
proc loess data=pollution;
        model y=x5/smooth=0.1 0.2 0.4 0.6 0.8 1.0;
run;
/* 3. specification of the model */
* box-cox analysis and transformation on y;
proc transreg data=pollution;
        model boxcox(y)=identity(x1 x2 x3 x4 x5);
run;
```

```
data trans1;
       set pollution;
       y_trans1=y**2;
run;
/* 4. estimation of the appropriate model */
proc reg data=trans1 plots(label)=(cooksd RSTUDENTBYPREDICTED dfbetas dffits diagnostics
               observedbypredicted);
        model y_trans1=x1 x2 x3 x4 x5/
        alpha=.05 r p clb cli clm stb vif partial influence collinoint collin;
        output out=one r=resid student=sresid p=pred rstudent=rs r=y_res;
        run;
proc univariate data=one plot normal;
       var rs; * qqplot r-student residual vs predicted;
run;
/* 5. assessment of the chosen prediction equation */
* delete an outlier;
data pollution_new;
        set trans1 end=last;
        if not last then
               output;
run;
* refit the model;
proc reg data=pollution_new plots(label)=(cooksd RSTUDENTBYPREDICTED dfbetas dffits diagnostics
```

```
observedbypredicted);
        model y_trans1=x1 x2 x3 x4 x5/alpha=.05 r p clb cli clm stb vif partial
                influence collinoint collin;
        output out=one r=resid student=sresid p=pred rstudent=rs r=y_res;
        run;
proc univariate normal plot data=one;
        var rs; * qqplot r-student vs predicted;
run;
* box-cox analysis and transformation on y;
proc transreg data=pollution_new;
        model boxcox(y)=identity(x1 x2 x3 x4 x5);
run;
data trans2;
        set pollution_new;
       y_trans2=y**1.5;
run;
* refit the model;
proc reg data=trans2 plots(label)=(cooksd dfbetas dffits RSTUDENTBYPREDICTED diagnostics
observedbypredicted);
        model y_trans2=x1 x2 x3 x4 x5/alpha=.05 r p clb cli clm stb vif partial
                influence collinoint collin;
        output out=one r=resid student=sresid p=pred rstudent=rs r=y_res;
        run;
proc univariate normal plot data=one;
```

```
var rs; * qqplot r-student vs predicted;
run;
/* weighted Is est */
* step0: initial step;
proc reg data=pollution;
        model y=x1 x2 x3 x4 x5 / clb;
        output out=result1 p=yhat r=resid;
        run;
* step1: estimate standard dev. function;
data result1;
        set result1;
        absres=abs(resid);
run;
proc reg data=result1;
        model absres=x1 x2 x3 x4 x5;
        output out=step1 p=preds1 r=ress;
        run;
data step1;
        set step1;
       wt1=1/(preds1)**2;
run;
proc reg data=step1;
        model y=x1 x2 x3 x4 x5 /p clb;
        weight wt1;
```

```
output out=result2 p=wyhat r=wres;
        run;
* step2: estimate the standard dev. function;
data result2;
       set result2;
       abswres=abs(wres);
run;
proc reg data=result2;
        model abswres=x1 x2 x3 x4 x5;
        output out=step2 p=preds2;
        run;
data step2;
       set step2;
       wt2=1/(preds2)**2;
run;
proc reg data=step2 plots(label)=(RSTUDENTBYPREDICTED);
        model y=x1 x2 x3 x4 x5 /p r clb cli clm stb vif partial collinoint collin;
       weight wt2;
        output out=one r=resid student=sresid p=pred rstudent=rs r=y_res;
        run;
/* 6. variable selection */
* forward selection;
proc reg data=step2;
```

```
model y=x1 x2 x3 x4 x5 / selection=forward slentry=0.25;
        weight wt2;
        run;
* backward selection;
proc reg data=step2;
        model y=x1 x2 x3 x4 x5 / selection=backward slstay=0.1;
       weight wt2;
        run;
* stepwise selection;
proc reg data=step2;
        model y=x1 x2 x3 x4 x5 / selection=stepwise slentry=0.15 slstay=0.15;
       weight wt2;
        run;
* all possible selection;
proc reg data=step2;
        model y=x1 x2 x3 x4 x5 / selection=cp rsquare mse adjrsq p clm cli best=10;
       weight wt2;
        run;
```