Supersymmetric Flux Vacua and Calabi-Yau Modularity

Richard Nally

Stanford University rnally@stanford.edu

February 9, 2021 Based on 2001.06022 + 2010.07285 $\mbox{w}/$ S. Kachru & W. Yang

Overview

- In string theory, we sometimes take six of the ten dimensions to be a Calabi-Yau threefold (CY3), i.e. a compact, Ricci-flat, Kahler manifold
- Analyzing the complex geometry has taught a great deal about string vacua
 - String dualities, strongly coupled field theories, etc
- \blacktriangleright On the other hand, mathematicians are currently interested in arithmetic geometry, i.e. the geometry of varieties over $\mathbb Q$
 - Langlands conjectures, Fermat's last theorem, etc
- ▶ Natural question: does this arithmetic point of view have anything to do with physics?
- ► This talk: Yes! Supersymmetric flux compactifications have rich arithmetic properties.
- ▶ A fascinating link between physics and an exciting area of math
- ▶ Related work: Moore '98, '04; Candelas et al '19; Yang '19, '20

Flux Compactifications

- ▶ Consider IIB string theory compactified on a CY3 X, with $h^{2,1}$ -d cpx structure moduli space \mathcal{M}
 - $ilde{H}^{3}(X) = H^{(3,0)}(X_{\phi}) \oplus H^{(2,1)}(X_{\phi}) \oplus H^{(1,2)}(X_{\phi}) \oplus H^{(0,3)}(X_{\phi})$
- ▶ IIB string theory has two-form gauge fields C and B with field strengths F, H, as well as axiodilaton τ , packaged as $G_3 \equiv F \tau H$
- ▶ There exist string compactifications where F, H have integral fluxes $f, h \in H^3(X, \mathbb{Z})$ through X [Becker-Becker '96, GKP, ...]
- ▶ Dynamics governed by a superpotential [Gukov-Vafa-Witten '99]

$$W=\int G_3\wedge\Omega$$

- Find flux vacua by solving $D_IW = 0$, where $I = \tau$, cpx structure moduli
- ▶ Fluxes f, h define a flux vacuum at a point $X_* \in \mathcal{M}$ with dilaton τ if

$$G_3 \in H^{2,1}(X_*) \oplus H^{0,3}(X_*)$$

Supersymmetric Flux Compactifications

- ▶ When W = 0, supersymmetry is preserved
 - "Supersymmetric flux vacua"
 - ► [GKP, DeWolfe-Giryavets-Kachru-Taylor '04, DeWolfe '05, ...]
- $W = \int G_3 \wedge \Omega \implies$ susy flux $\iff G_3 \in H^{2,1}(X_*)$

Susy flux constraint implies $f, h \in H^{2,1}(X_*) \oplus H^{1,2}(X_*)$

- Very rare: need to solve an overconstrained system of equations
 - ▶ Nevertheless, can come in isolated points or continuous families
- Somewhat analogous to the attractor equation [Moore '04]
 - ▶ A subset of attractors, "rank-two attractors", are known to have rich arithmetic properties [Moore '98, Candelas '19]
- This talk:

Do susy flux vacua enjoy special arithmetic properties?

Arithmetic Geometry

- ► So far, we've viewed the CY3 as a complex geometric object
- ► To study its arithmetic properties, need arithmetic geometry
- ▶ View some complex manifolds as "varieties" over ℚ
- lacktriangleright Simplest example: Tori \Longrightarrow elliptic curves over $\mathbb Q$

▶ All elliptic curves over ℚ can be written in Weierstrass form:

$$y^2 = x^3 + ax + b$$
 where $a, b \in \mathbb{Z}, x, y \in \mathbb{Q}$

- ▶ Invariants: $\Delta = -16(4a^3 + 27b^2)$, $j = 6912a^3/(4a^3 + 27b^2)$
- ▶ Curve is nonsingular unless $\Delta = 0$

Point Counts & Modularity

- lackbox We can also reduce a curve over $\mathbb Q$ mod a finite field $\mathbb F_p$
- ▶ The resulting curve will be nonsingular for all p other than the prime divisors of Δ
 - ► Good vs. bad primes
- ▶ Once we've reduced to \mathbb{F}_p , we can ask how many points there are on curve
 - ▶ Reduced equation has a finite number of solutions #(E,p)
 - Expected number of solutions $= p + 1 \sim |\mathbb{F}_p| + \mathsf{pt}$ at infinity
 - "Scatter coefficient" $a_p = p + 1 \#(E, p)$
- ightharpoonup The point counts a_p are the basic objects in arithmetic geometry
- Modularity theorem: [Wiles, Wiles-Taylor,...] for each elliptic curve E over Q, there exists a modular form $f_E(\tau) = \sum b_n e^{2\pi i n \tau}$ s.t. $a_p = b_p$ for all good p

Point counts give the Fourier coefficients of modular forms!

▶ More precisely, f_E is a weight-2 cusp form for some $\Gamma_0(N)$

Point Counts & Modularity

- ▶ Let's quickly do an example: $y^2 = x^3 4x$
- ▶ $j = 1728, \Delta = 4096 \implies$ only bad prime is p = 2
- ▶ Reduce over \mathbb{F}_3 to get $y^2 = x^3 + 2x$
 - 4 points: (x, y) = (0, 0), (1, 0), (2, 0) + pt at infinity
 - $a_3 = 3 + 1 4 = 0$
- ▶ Similarly, reduce over \mathbb{F}_5 to get $y^2 = x^3 + x$
 - Again, 4 points: (x, y) = (0, 0), (2, 0), (3, 0) + pt at infinity
 - $a_5 = 5 + 1 4 = 2$
- ► Consider weight-2 eigenform for $\Gamma_0(64)$, $f(\tau) = q + 2q^5 3q^9 + \cdots$
 - ▶ $b_3 = 0 = a_3$
 - ▶ $b_5 = 2 = a_5$
- ► Can check that this pattern continues for all primes p!

Rational Models

- ▶ So far we've skipped an important step: the choice of a rational model
- ▶ Over \mathbb{C} , tori are entirely classified by j, but over \mathbb{Q} there are infinitely many arithmetically inequivalent EC with the same j
- ▶ An explicit example: $\mathcal{E}: y^2 = x^3 4$ and $\mathcal{E}': y^2 = x^3 + 4$
 - ▶ Both have j = 0, so they are isomorphic over \mathbb{C}
 - ▶ Related by $y \rightarrow iy$, so they are not isomorphic over \mathbb{Q}
 - ► Called different "rational models" for the same torus
 - Over \mathbb{F}_7 , $\mathcal{E} \to y^2 = x^3 + 3$ and $\mathcal{E}' \to y^2 = x^3 + 4$
 - ▶ These have $a_7 = -5, 5$, respectively

Different rational models are associated to different eigenforms!

▶ In ordinary string theory, we never make this choice- work with CY3s defined up to ℂ-isomorphism!

A More Abstract Point of View

- ▶ This a rather concrete formulation of a beautiful abstract story
- ▶ The middle cohomology of a 2n-dimensional variety over \mathbb{Q} furnishes a b^n -dim'l rep of the group $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ of pointwise automorphisms of \mathbb{Q}
 - ▶ For an elliptic curve E, this gives us a 2d rep $\rho_2(E)$
- ▶ Similarly, cusp forms f are associated to 2d reps $\rho_2(f)$ of the same group
- ▶ A more abstract statement of the modularity theorem is that for all *E* there exists an *f* s.t.

$$\rho_2(E) = \rho_2(f)$$

► This language is how mathematicians usually think about the problem, and will be used later to help us relate this to string theory

Modularity of Threefolds

- ▶ Tori are CY 1-folds, so its natural to ask whether this can be generalized to higher-dim'l CYs
- ▶ Modularity for threefolds over ℚ is an active area of research
 - ► See e.g. [Meyer '05, Yui '12] for reviews
- ▶ What is a threefold over ℚ?
 - ▶ E.g. a projective hypersurface with all coefficients rational
 - ▶ $x_1^8 + x_2^8 + x_3^4 + x_4^4 + x_5^4 8\psi x_1 x_2 x_3 x_4 x_5 2\phi x_1^4 x_2^4 = 0 \subset \mathbb{P}(1, 1, 2, 2, 2)$ with $\psi, \phi \in \mathbb{Q}$
- ► Technically a much harder problem
 - ightharpoonup Computing the a_p numerically is computationally difficult
 - ▶ The associated Galois representations $\rho_{2+2h^{2,1}}$ are high-dimensional \iff hard to work with
- ▶ The best known results are for rigid threefolds (i.e. $h^{2,1} = 0$) over \mathbb{Q} ▶ $2 + 2h^{2,1} = 2$ ⇒ can use results from elliptic curves
- ► Theorem [Gouvea-Yui '09]: rigid threefolds over ℚ are weight-4 modular

Reducible Representations

- ► There's one other way we can get a 2d Galois rep out of a threefold: $\rho_{2+2h^{2,1}}$ can become reducible!
- ▶ If $\rho_{2+2h^{2,1}} = \rho_2 \oplus \rho_{2h^{2,1}}$, we can study ρ_2 directly
- ho_2 can sometimes be related to the rep associated to an elliptic curve [Gouvea-Yui '09]
- ▶ In this case, the threefold is modular, and associated to a weight-two cusp form [Wiles, ...]
- ▶ When does this happen? Subject to some technical assumptions,

Threefolds are weight-two modular whenever a 2d subspace of $H^3(X,\mathbb{Q})$ has Hodge type 2,1 + 1,2

Flux Modularity

- Supersymmetric flux vacua always have this type of split!
- ▶ Remember we had $f, h \in H^{2,1} \oplus H^{1,2}$. Then define

$$H_{\mathsf{flux}} = \mathbb{Q}f + \mathbb{Q}h \subset H^3(X_*, \mathbb{Q})$$

► Thus, we have our main result: [Kachru-RAN-Yang '20]

Supersymmetric flux compactifications over \mathbb{Q} are (conjecturally) modular, and associated to weight-two cusp forms!

► A similar argument shows that rank-two attractors over ℚ are associated to weight-four cusp forms [Candelas et al '19]

An Example: The CY3 in $\mathbb{P}(1,1,2,2,2)$

lacktriangle We can check this conjecture in a rich example: CY3 in $\mathbb{P}(1,1,2,2,2)$

$$x_1^8 + x_2^8 + x_3^4 + x_4^4 + x_5^4 - 8\psi x_1 x_2 x_3 x_4 x_5 - 2\phi x_1^4 x_2^4 = 0$$

- \blacktriangleright Susy flux vacua everywhere on the $\psi=$ 0 locus in moduli space [DeWolfe '05]
- lacktriangle For each rational ϕ , we we get a susy flux vacuum over $\mathbb Q$
 - lacktriangle Defining polynomial gives a rational model for each ϕ
- ▶ For each ϕ , we get a modular form for different $\Gamma_0(N)$
- ▶ Infinite number of examples to check!
- ▶ This can be done using point counts computed in [Kadir '04]

An Example: The CY3 in $\mathbb{P}(1,1,2,2,2)$

lacktriangle Explicit modular forms for numerical values of ϕ

ϕ	Bad primes	Modular form	
0	2	64.2.a.a	
1/2	2, 3	24.2.a.a	
3/5	2, 5	400.2.a.e	
11/8	2, 3, 19	57.2.a.c	
2	2, 3	192.2.a.a	
3	2	32.2.a.a	
7	2, 3	48.2.a.a	
9	2, 5	40.2.a.a	

- Forms are listed by their LMFDB labels- N indicated
- Strong evidence for flux modularity!

Flux Modularity and the Dilaton

- Obvious question: is there a physical interpretation?
- ▶ No obvious physical motivation for point counts, but can we at least get the elliptic curve?
- ▶ In addition to f, h, to define a susy flux vacuum we need a dilaton τ
- ▶ $\tau \in \mathbb{H}/\mathsf{SL}(2,\mathbb{Z})$, so you can think about it as the τ of a torus
 - This is the key insight underlying F-theory
- ▶ The dilaton is the τ of the elliptic curve associated to the modular form! [Candelas et al '19, Kachru-RAN-Yang '20]
- ► Ex: $\mathbb{P}(1,1,2,2,2)$
 - $j(\phi) = \frac{64\left(4\phi^2-3\right)^3}{\phi^2-1} \implies$ for each rational ϕ we get a rational value of j

F Theory and Sen's Weierstrass Model

- ▶ F-theory gives an explicit Weierstrass form corresponding to τ [Sen '09]
- ► For a susy flux, takes the form

$$y^2 = x^3 + (C - 3)x + (C - 2)$$

► $j(C) = 1728 \frac{4(C-3)^3}{C^2(4C-9)}$. Set $j(C) = j(\phi) \implies C(\phi) = \frac{9}{4\phi^2}$

$$y^2 = x^3 + \left(\frac{9}{4\phi^2} - 3\right)x + \left(\frac{9}{4\phi^2} - 2\right)$$

- ▶ For each rational ϕ , we get an elliptic curve over $\mathbb Q$ with the right j!
 - Can also be checked in several other examples
- ► These aren't the rational models that correspond to the eigenforms in the table we saw before. Can we do better?

F Theory and Rational Models

$$y^2 = x^3 + \left(\frac{9}{4\phi^2} - 3\right)x + \left(\frac{9}{4\phi^2} - 2\right)$$

- \blacktriangleright As $\phi \to 0$, we get a bad equation for our elliptic curve
- ▶ Resolve coordinate singularity by redefining $y \rightarrow \sqrt{ay}$

$$y^2 = x^3 + \left(\frac{9}{4\phi^2} - 3\right)a^2x + \left(\frac{9}{4\phi^2} - 2\right)a^3$$

- lacktriangle On the other hand, $\phi=0$ corresponds to the eigenform 64.2.a.a
 - $y^2 = x^3 + x$
- ▶ Pick *a* s.t. $\lim_{\phi \to 0} \left(\frac{9}{4\phi^2} 3 \right) a^2 = 1, \lim_{\phi \to 0} \left(\frac{9}{4\phi^2} 2 \right) a^3 = 0.$
 - $a(\phi) = \frac{2}{3}\phi$ works nicely!

$$y^2 = x^3 + \left(1 - \frac{4\phi^2}{3}\right)x + \left(\frac{2\phi}{3} - \frac{16\phi^3}{27}\right)$$

F Theory and Rational Models

φ	LMFDB label	Weierstrass Coefficients	Associated form
0	64.a4	{1,0}	64.2.a.a
1/2	24.a5	{2/3,7/27}	24.2.a.a
3/5	400.e4	{13/25, 34/125}	400.2.a.e
11/8	57.c3	{-73/48, -539/864}	57.2.a.c
2	192.a3	$\{-13/3, -92/27\}$	192.2.a.a
3	32.a1	$\{-11, -14\}$	32.2.a.a
7	48.a2	$\{-193/3, -5362/27\}$	48.2.a.a
9	40.a1	{-107, -426}	40.2.a.a

- ▶ By fixing choice of rational model at $\phi = 0$, we get out the rational models for all other ϕ for free!
- ► This is fairly surprising- a priori, F-theory doesnt know anything about rational models!

Conclusion

- String theory is usually framed in complex geometry, but in many cases arithmetic geometry is more exciting. Can we related this to physics?
- Yes! We have argued that supersymmetric flux compactifications over ℚ are modular
- ▶ Physical origins still unclear, but F theory provides a great hint
- ► An early sign of a beautiful relationship between string theory and arithmetic geometry?
- \triangleright Dream: physical interpretation of Fourier coefficients a_p

Thanks for listening!