(1) A function $f : \mathbb{R} \to \mathbb{R}$ is called *contractive* if there exists 0 < K < 1 such that $|f(x) - f(y)| \le K|x - y|$ holds for any $x, y \in \mathbb{R}$. You'll show that any contractive map on \mathbb{R} has a unique fixed point. (a) Pick any $x_1 \in \mathbb{R}$. Construct a sequence (x_n) recursively via $x_{n+1} := f(x_n)$. Prove that such sequence (x_n) is a Cauchy sequence, therefore is convergent. (b) Moreover, prove that the limit x^* of (x_n) is a fixed point of f, i.e. $f(x^*) = x^*$. (Hint: First, show that $\lim f(x_n) = x^*$ by the construction of (x_n) . On the other hand, show that $\lim f(x_n) = f(x^*)$ by the fact that f is contractive.) (c) Prove that f has a unique fixed point. Let $[x_2-x_1]=M$, then $[y_3-x_2]=|f(x_2)-f(x_1)| \in k[x_3-x_1]=kM$, Similarly, $|x_{n+1}-x_n| \leq \kappa^{n-1} M$. $\forall n$. For any 200, Choose Noo large enough st known < E. Then Ynymy N, we have: . | Xn - Xm | ≤ [Xm+1 - Xm | + [Xm+2 - Xm+1] + < Km-1 M + Km. M + ... $= \frac{k^{M-1} \cdot M}{1-k} < \frac{k^{M-1} \cdot M}{1-k} < \xi.$. (Note: 0 < k < 1). Hence (Xn) is Cauchy. [(b) let IIm Xn = xx. Then $x^* = \lim_{x \to 1} x_{n+1} = \lim_{x \to 1} f(x_0)$, by construction of (x_0) . Claim: $\lim_{x \to \infty} f(x_n) = f(x^*)$. (then we have $f(x^*) = x^*$). A: Since linx,=xt, YESO, 3NDO St. 1xn-x*1<2 4 n>N $\Rightarrow |f(x_n)-f(x^*)| \leq k|x_n-x^*| < k\epsilon < \epsilon. \forall n > N.$ (c) If $f(x^*)=x^*$ and $f(y^*)=y^*$, then $|x^* - y^*| = |f(x^*) - f(y^*)| \le |x^* - y^*| < |x^* - y^*|$

(2) Let $\{S_{\alpha}\}$ be a collection of (possibly infinitely many) subsets of a set S. Pro
--

- (a) The complement of union is the intersection of complements: $(\cup_{\alpha} S_{\alpha})^c = \bigcap_{\alpha} (S_{\alpha}^c)$.
- (b) The complement of intersection is the union of complements: $(\cap_{\alpha} S_{\alpha})^c = \bigcup_{\alpha} (S_{\alpha}^c)$.

$$(\alpha) \quad \chi \in (\bigcup_{\alpha} S_{\alpha})^{\zeta} \iff \chi \notin \bigcup_{\alpha} S_{\alpha} \iff \chi \notin S_{\alpha} \quad \forall \alpha$$

$$(\alpha) \quad \chi \in (\bigcup_{\alpha} S_{\alpha})^{\zeta} \iff \chi \notin S_{\alpha} \quad \forall \alpha \iff \chi \in \bigcap_{\alpha} S_{\alpha}^{c}.$$

(b)
$$\chi \in (\Omega_{S\alpha})^{c} \Leftrightarrow \chi \notin \Omega_{S\alpha} \Leftrightarrow \exists \alpha \text{ s.t. } \chi \notin S\alpha$$

$$\Leftrightarrow \exists \alpha \text{ s.t. } \chi \in S_{\alpha} \Leftrightarrow \chi \in U_{S\alpha}.$$

(3) Prove that in a metric space:

- (a) The union of (possibly infinitely many) open subsets is open.
- (b) The intersection of *finitely many* open subsets is open.
- (c) The intersection of (possibly infinitely many) closed subsets is closed.
- (d) The union of *finitely many* closed subsets is closed.
- (e) Find a counterexample of (a) if 'open' is replaced by 'closed'; find a counterexample of (c) if 'closed' is replaced by 'open'.

Since Ux open, Fr >0 sit. Br(x) \subset Ux,

(b) Ui, ..., Un open sets. Want: nu; open.

$$\Rightarrow \mathcal{B}_{r}(x) \subseteq \mathcal{O}(u; \cdot, \cdot)$$

(c)(d): Follows from #2 and #3 (2)(b). []

(e):

• $\{[-1+\frac{1}{n}, 1-\frac{1}{n}]\}_{n \in \mathbb{N}}$. collection of closed subsets of \mathbb{R} . United the set of \mathbb{R} .

· { (-1/n, 1/n) } new isllection of open subsets of R.

(-1/n, 1/n) = 503 Not open.

(4) Let (S,d) be a metric space, and $K \subseteq S$ be a compact subset. Prove that K is bounded (i.e. there exist $x \in K$ and R > 0 such that $K \subseteq B_R(x)$).

{Bulx): xek} is an open cover of K.

Since K upt, 3 xi, ..., xiek wit K = Û Bylxi)

Define R:= 1+ Max {d(x1, xi)}

Claim: K = BR(X2). (therefore K is ledd.)

F: Stra KC & Br(xi), Yxek, Breien

sit. XE BILX;).

• if i=1, then $x \in B_1(x_1) \subseteq B_R(x_1)$

• if $2 \le i \le n$, then $d(x_1, x_2) \le d(x_1, x_i) + d(x_i, x_i)$

=> Xe Br(x1). T

 $<1+d(x_i,x_i)\leq R$.

(5) Let (S,d) be a metric space, $K\subseteq S$ be a compact subset, and $C\subseteq S$ be a closed
subset. Prove that $C\cap K$ is a compact subset of S . (Hint: First show that $C\cap K$
is a closed subset of S . Now let $\{U_{\alpha} : \alpha \in I\}$ be an open cover of $C \cap K$, then
$\{U_{\alpha}: \alpha \in I\} \cup \{(C \cap K)^c\}$ is an open cover of the compact set K .)

Claim: CNK is closed subset of S.

pf: We proved in class that compact ⇒ closed.

so K is a closed subset of S.

the claim then follows from #3(c). □

Claim: CNK is a cpt. subset of S.

pf: Let ? Ua? be any open cover of Cnk.

Then {Ua} v {(Cnk) } is an open cover of k.

⇒ 3. d1, ---, dn st.

 $\mathsf{K} \subseteq \mathsf{M}_{\mathsf{A}^{\mathsf{I}}} \circ \mathsf{M}_{\mathsf{A}^{\mathsf{I}}} \circ \mathsf{M}_{\mathsf{A}^{\mathsf{I}}} \circ \mathsf{M}_{\mathsf{A}^{\mathsf{I}}} \circ \mathsf{M}_{\mathsf{C}} \mathsf{M}_{\mathsf{C}} \circ \mathsf{M}_{\mathsf{C}} \circ \mathsf{M}_{\mathsf{C}} \circ \mathsf{M}_{\mathsf{C}} \mathsf{M}_{\mathsf{C}}$

 \Rightarrow $Cnk \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_n} \cup (Cnk)^{C}$.

⇒ Cnk ⊆ Ux, v... v Uxn. Since

Cnk and (Cnk) are disjoint.

