Who Needs These Operators Anyway: Top Quality Planning with Operator Subset Criteria

Michael Katz Shirin Sohrabi
IBM Research AI, Yorktown Heights, NY, USA

Introduction: Classical Planning and Beyond

An FDR Planning task is 5-tuple $\Pi = \langle V, A, cost, I, G \rangle$:

- ► V: finite set of multi-valued (finite-domain) state variables
- ► A: finite set of actions of form ⟨pre, eff⟩ (preconditions/effects; partial variable assignments)
- $ightharpoonup cost: A \mapsto \mathbb{R}^{0+}$ captures action cost
- ► /: initial state (variable assignment)
- ► G: goal description (partial variable assignment)

 \mathcal{P}_{Π} is the set of all plans for Π

Cost-optimal: find one single plan $\pi \in \mathcal{P}_{\Pi}$ minimizing summed action cost

Top-quality planning [Katz et al., AAAI 2020]:

Given: planning task Π , natural number q

Find: the set of plans $P = \{ \pi \in \mathcal{P}_{\Pi} \mid cost(\pi) \leq q \}$.

Quotient top-quality planning [Katz et al., AAAI 2020]:

Given: planning task Π , equiv. relation N over its set of plans \mathcal{P}_{Π} , natural number q Find: $P \subseteq \mathcal{P}_{\Pi}$ such that $\bigcup_{\pi \in P} N[\pi]$ is the solution to the top-quality planning.

This. $r \subseteq r$ is such that $\bigcup_{\pi \in P} rv[\pi]$ is the se

Unordered Top-quality Planning:

$$\mathsf{U}_{\mathsf{\Pi}} = \{(\pi, \pi') \mid \pi, \pi' \in \mathcal{P}_{\mathsf{\Pi}}, \ \mathsf{MS}(\pi) = \mathsf{MS}(\pi')\}.$$

Challenges in Top-quality Planning

- Top-quality set of plans can be quite large, sometimes infinite
- Unordered top-quality does not help in cases of infinite solution sizes
- ► Even in unordered top-quality planning, plans can be unnecessarily long

Contributions

- ► Novel computational problem *subset top-quality planning*
- Solution (plan sets) are provably finite
- ► Planner based on task reformulation: extending ForbidIterative framework
- ► Theoretically stricter reformulation, forbidding more plans
- Simpler and easier to solve: more tasks where solution is found
- Solution set sizes are mostly the same

Subset Top-quality Planning

Subset Top-quality Planning Problem

Given: planning task Π and a natural number q

Find: a set of plans $P \subseteq \mathcal{P}_{\Pi}$ such that $\forall \pi \in P$, $cost(\pi) \leq q$, and

 $\forall \pi' \in \mathcal{P}_{\Pi} \setminus P \text{ with } cost(\pi') \leq q, \quad \exists \pi \in P \text{ such that }$

 $\mathsf{MS}(\pi) \subset \mathsf{MS}(\pi')$

Theorem (Finite Solution Size)

Given a planning task Π and a natural number q, a smallest subset top-quality planning problem solution P is of finite size.

Proof hint: cycle-free plans

Subset Top-quality Planners

ForbidIterative Subset Top-quality Planning Algorithm

Input:

Planning task Π , quality bound q

 $P \leftarrow \emptyset$

 $\Pi' \leftarrow \Pi$

 π ← shortest cost-optimal plan of Π'

while $cost(\pi) \leq q$ do

 $\overline{\pi} \leftarrow \mathsf{MAPPLANBACK}(\pi)$

 $P \leftarrow P \cup \{\overline{\pi}\} \cup \{\pi' \mid \pi' \sim \overline{\pi}, \mathsf{MS}(\pi') \neq \mathsf{MS}(\overline{\pi})\}\$

 $\Pi' \leftarrow \Pi_{\mathcal{M}^+}^-$, where $\mathcal{M} = \{ \mathsf{MS}(\pi') \mid \pi' \in P \}$ $\pi \leftarrow \mathsf{shortest} \; \mathsf{cost-optimal} \; \mathsf{plan} \; \mathsf{to} \; \Pi'$

return P

Solution, initially empty

- Remove aux operatorsExtend with symmetries
 - ⊳ Reformulate

Reformulation: MSQ

Variables

- ightharpoonup additional variable \overline{v} checking off multisets in \mathcal{M}
- ightharpoonup additional counting variables \overline{v}_o per operator in multisets

Init & Goal

- $ightharpoonup \overline{v}$ variable: initially 0, in goal $|\mathcal{M}|$
- $ightharpoonup \overline{v}_{o}$ variables: initially 0, not in goal

Operators

- ▶ per original operator: copies with additional pre and effects counting the number of appearances (up to max value in \mathcal{M}), while \overline{v} is at its initial value
- additional operators: checking off multisets once original goal is reached

X Y

 $\Pi' = \Pi$

✓ Fuel A, move X Y, Fuel A
$$\mapsto \Pi' = \Pi_{\mathcal{M}^+}^-$$

- ✓ Fuel A, move X Y, Fuel B
- X Fuel A, move X Y, Fuel A
- X Fuel A, move X Y, Fuel A, Fuel B
- X Fuel A, move X Y, Fuel B, Fuel A

Reformulation: SQ

Variables

- ▶ additional variable \overline{v} checking off sets in \mathcal{M} ($|\mathcal{M}|+1$ values)
- ightharpoonup additional binary variables \overline{v}_o per operator in sets

Init & Goal

- $ightharpoonup \overline{v}$ variable: initially 0, in goal $|\mathcal{M}|$
- $ightharpoonup \overline{V}_O$ variables: initially 0, not in goal

Operators

- ▶ per original operator: additional pre and effects, setting $\overline{V}_0 = 1$ if in \mathcal{M} ,
 - while \overline{v} is at its initial value
- additional operators: checking off sets once original goal is reached

Fuel A, move X Y, Fuel B

 $\Pi' = \Pi$

- ✓ Fuel A, move X Y, Fuel A

Evaluation

Experimental Setting

- Comparing unordered top-quality planner to the suggested reformulations
- While they solve different problems, we compare in how many cases a solution could be found
- Compare solution size

Coverage on IPC domains

Domain	top-uQ	top-MSQ	top-SQ
childsnack14	0	6	6
data-network18	0	4	4
elevators08	0	2	2
gripper	5	16	16
miconic	15	17	16
movie	1	0	0
openstacks08	2	1	1
parcprinter08	25	24	24
parcprinter11	18	17	17
pipesworld-notankage	8	7	7
psr-small	45	45	47
satellite	2	4	4
scanalyzer08	4	6	6
scanalyzer11	1	3	3
sokoban08	0	0	1
storage	11	9	10
Sum	337	361	364

Solution Size

Summary and Future Work

- Introduced a new computational problem in top-quality planning
- ► Introduced planners based on planning task reformulation
- Shown the new planners to be more practical than existing (unordered) top-quality planners
- ► Future: improve the coverage of existing top-quality planners, for all computational problems