A et B désignent deux événements d'un univers Ω .

- $A\cap \overline{B}$ et $A\cap B$ forment une partition de A $P(A)=P(A\cap \overline{B})+P(A\cap B)$
- $A\cap B$ et $\overline{A}\cap B$ forment une partition de B $P(B)=P(A\cap B)+P(\overline{A}\cap B)$

On en déduit le tableau croisé suivant :

	В	$\overline{\mathbf{B}}$	Total
A	$P(A\cap B)$	$P(A\cap \overline{B})$	P(A)
$\overline{\mathbf{A}}$	$P(\overline{A}\cap B)$	$P(\overline{A}\cap \overline{B})$	$P(\overline{A})$
Total	P(B)	$P(\overline{B})$	1

a. Recopiez et complétez le tableau ci-dessous.

	В	$\overline{\mathbf{B}}$	Total
A	0,1		0,35
$\overline{\mathbf{A}}$			
Total	$0,\!55$		

b. Recopiez et complétez le tableau ci-dessous.

	В	$\overline{\mathbf{B}}$	Total
A			
$\overline{\mathbf{A}}$		$\frac{1}{3}$	$\frac{1}{2}$
Total		$\frac{5}{12}$	

and A et B désignent deux événements d'un univers Ω . On donne $P(A)=0,47,\ P(B)=0,36$ et $P(A\cap B)=0,18$. Calculez $P(A\cap \overline{B}),\ P(\overline{A}\cap B)$ et $P(\overline{A}\cap \overline{B})$.

A et B désignent deux événements d'un univers Ω .

On donne $P(B)=\frac{5}{12}$, $P(\overline{A}\cap B)=\frac{1}{6}$ et $P(A\cap \overline{B})=\frac{1}{2}$.

Calculez $P(A \cap B)$, P(A) et $P(\overline{A} \cap \overline{B})$.

A et B désignent deux événements d'un univers Ω . On a :

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- **a.** On donne P(A)=0.2, P(B)=0.6 et $P(A\cup B)=0.65$. Calculez $P(A\cap \overline{B})$.
- **b.** On donne $P(\overline{A} \cup \overline{B}) = \frac{5}{6}$, $P(\overline{A}) = \frac{1}{2}$ et $P(\overline{B}) = \frac{5}{9}$. Calculez $P(A \cap B)$.

E5

A et B désignent deux événements d'un univers Ω . On note $P_A(B)$ la probabilité que B se réalise sachant que A est réalisé.

$$P_A(B) = rac{P(A\cap B)}{P(A)}$$

C'est une probabilité dite conditionelle.

- **a.** On donne $P(A \cup B) = 0.92$, P(A) = 0.6 et P(B) = 0.52. Calculez $P_A(B)$.
- **b.** On donne $P(A\cap B)=\frac{1}{5}$, $P(A\cap \overline{B})=\frac{1}{4}$ et $P(\overline{B})=\frac{13}{20}$. Calculez $P_{\overline{A}}(B)$.
- Durant une année on a pu mesurer le nombre de jours de pluie et le nombre de jours de vent fort. On a obtenu les résultats suivants :
- $40\,\%$ des jours sont des jours de pluie ;
- Trois quarts des jours de pluie sont des jours de vent fort;
- Parmi les jours non venteux, $20\,\%$ sont des jours de pluie ;
- $\frac{2}{5}$ des jours sont des jours sans pluie ni vent fort.

On choisit un jour de l'année au hasard. On appelle A l'événement "le jour choisi est pluvieux" et B l'événement "le jour choisi est venteux".

- a. Traduisez ces informations en probabilités.
- b. On a choisi un jour sans pluie. Calculez la probabilité que ce jour soit venteux.
- **c.** Calculez la probabilité que le jour choisi soit pluvieux et venteux.
- **d.** On a choisi un jour venteux. Calculez la probabilité que ce jour soit pluvieux.