Supplementary File of Manuscript "Optimal Defense Resource Allocation Considering Nonlinear Attack Cost in Power Systems" to IEEE Transactions on Industrial Informatics

I. PROOF OF LEMMA 1

Proof: The proof consists of two parts: (a) Firstly, if a certain ϕ^* and a specific b_{α} together form a feasible solution for (10), then there must exist a b_{β} such that ϕ^* and b_{β} together form a feasible solution for (12). (b) Conversely, if a certain ϕ^* and a certain b_{β} together form a feasible solution for (12), then there must exist a specific b_{α} such that ϕ^* and b_{α} together form a feasible solution for (10).

(a) First, assuming that a certain ϕ^* and a specific b_{α} comprise a feasible solution for (10). Then clearly we have

$$\boldsymbol{h}_{j}^{T}[\phi_{1}^{*}f_{1}(b_{\alpha,1}),\dots,\phi_{m}^{*}f_{m}(b_{\alpha,m})]^{T} \geq R, \ \forall j \in \mathcal{N}$$

$$(1)$$

which indicates that

$$\boldsymbol{h}_{i}^{T} \boldsymbol{\phi}^{*} > 0, \ \forall j \in \mathcal{N}$$
 (2)

Then, recalling the fact that for each i, $\tilde{f}_i(\cdot)$ is a monotonically increasing function over the feasible region, and combining (14) and (23), there must exists a $b_{\beta} \leq b_{max}$ such that

$$\mathbf{h}_{j}^{T}[\phi_{1}^{*}\tilde{f}_{1}(b_{max,1}), \dots, \phi_{m}^{*}\tilde{f}_{m}(b_{max,m})]^{T}$$

$$\geq \mathbf{h}_{j}^{T}[\phi_{1}^{*}\tilde{f}_{1}(b_{\beta,1}), \dots, \phi_{m}^{*}\tilde{f}_{m}(b_{\beta,m})]^{T}$$

$$\geq R, \ \forall j \in \mathcal{N}$$

$$(3)$$

which indicates that ϕ^* and b_{β} comprise a feasible solution for (12).

(b) Conversely, let's assume that a certain ϕ^* and a specific b_{β} together form a feasible solution for (12). Therefore, we have

$$\boldsymbol{h}_{j}^{T}[\phi_{1}^{*}\tilde{f}_{1}(b_{\beta,1}),\dots,\phi_{m}^{*}\tilde{f}_{m}(b_{\beta,m})]^{T} \geq R, \ \forall j \in \mathcal{N}$$

$$(4)$$

which indicates that

$$\boldsymbol{h}_{j}^{T} \boldsymbol{\phi}^{*} > 0, \ \forall j \in \mathcal{N}$$
 (5)

Then, recalling that for each i, $f_i(\cdot)$ is a continuous, non-negative function that crosses the origin within the feasible region, and combining (13) and (26), there must exist a $\mathbf{b}_{\alpha} \leq \mathbf{b}_{\gamma}$ such that

$$\mathbf{h}_{j}^{T}[\phi_{1}^{*}f_{1}(b_{\gamma,1}), \dots, \phi_{m}^{*}f_{m}(b_{\gamma,m})]^{T}$$

$$\geq \mathbf{h}_{j}^{T}[\phi_{1}^{*}f_{1}(b_{\alpha,1}), \dots, \phi_{m}^{*}f_{m}(b_{\alpha,m})]^{T}$$

$$\geq R, \ \forall j \in \mathcal{N}$$

$$(6)$$

which indicates that ϕ^* and b_{α} comprise a feasible solution for (10). Hence, Lemma 1 is proven.