# For Whom the Bell Tolls

# Sergey Feranchuk

(self-employed; residence: Smolensk, Russia; e-mail: feranchuk@gmail.com)

January 15, 2021

to my mother

#### **Abstract**

Речь в работе идет о соотношении периодических ритмов с нерегулярными. Более узко, для микро-экосистем почвы, периодические пожары приводят к обновлению экосистем, как и намеренное регулярное освобождение от посевов, для сельскохозяйстенных земель. Образцы почвы, и из человека - посмотрели состав микроорганизмов. Смотрели "по крупному", обзорно.

В таком взгляде много общего, между разными сообществами микроорганизмов. То что бы можно было тут увидеть - признаки нестабильности, скрытой накопившейся нестабильности вследствии изменений режима периодичных воздействий на микросообщества в последние десятиления.

## 1 Введение

- "прорыв" в микробиологии позволил увидеть больше в том что относися к микроорганизмам, акценты в описаниии причин и следствий привычных явлений в этом свете другие.
- в микробных сообществах есть общее, прагматически, микроорганизмы с земли, микроорганизмы с растений и животных переносятся легко и адаптируются быстрее чем "хозяева".
- что касается "пахотного цикла", эффект от его прекращения и сокращения, сказался бы на том общем, что есть во всех вышеупомянутых типах сообществ.
- долгосрочное накопление напряжения такого рода, как ожидается по постановке вопроса, как и любое накопление напряжения, имеет следствием риск "взрыва", "обвала", крупномасштабного кризиса.
- В арсенале науки нет инструметов, чтобы с достоверностью обнаржить и проанализировать ход событий в переходный к кризисному период.
- Теория фракталов один из методов который применим к таким явлениям, как эмпирическое описание с заведомо недостатоверным результатом.
- Вопрос заведомо остается открытым и любые другие рациональные методы его исследовать приемлем, соразмерно с осмысленнстью полученных результатов.

Для прояснения ответов на поставленный вопрос были использованы, выборочно, эксперименты по определению генетического материалу микробных сообществ, сделанные разными учеными, в разное время и по разным причинам. Данные для обработки были скачаны из репозиториев, где они были депонированы теми, кто ставил эти эксперименты,

Таблица 1: перечислены шесть использованных образцов

| <del></del>      | ~       |      | ^                   |  |  |
|------------------|---------|------|---------------------|--|--|
| Порядковый номер | Страна  | Год  | Описание            |  |  |
| 1                | Англия  | 2003 | почва из пойме реки |  |  |
| 2                | Канада  | 2013 | обработанная земля  |  |  |
| 3                | Израиль | 2014 | фекалии             |  |  |
| 4                | Англия  | 2015 | микробиом легких    |  |  |
| 5                | Израиль | 2015 | почва пустыни       |  |  |
| 6                | Израиль | 2019 | песчаная почва      |  |  |

# 2 Результаты и обсуждение

#### Соотношение "царств" организмов, по образцам и по годам

На рисунке 1 - соотношение крупных групп организмов, состав более детально групп описан в таблице ниже.



Рис. 1 Coomношение состава групп организмов, по образцам - колонки соответстуют образцам

Таблица 2.

| Состав, как характеристика                                   |
|--------------------------------------------------------------|
| Mollusca, Arthopoda                                          |
| Chlorophyta,Streptophyta                                     |
| 95% - 100% Saccharomycotina (yeast)                          |
| Euglenozoa, Rhodophyta, Haptophyta, Glaucophyta, Cryptophyta |
| Cercozoa,Strametopiles,Alveolata                             |
|                                                              |

На рисунке выделены красным группы, включающие паразитические организмы, потенциально вызывающие хронические трудно излечимые расстройства здоровья.

Это, в образцах 1,6 - Nematoda, в образце 4 - Platyhelmintes, паразитические черви; в образцах 1,2, как следы - Microsporidia, паразитические организмы, выживающие внутри клеток хозяина, и многоклеточные подобно грибам; в образце 1 - Apicomplexa, в образце 6 - Haplosporida и следы Cnidaria - микроорганизмы, отнесенные к Alveolata, для которых характерно многообразие паразитических циклов,

## Сравнение "царств" по кривым распределения численности

Так называемые "распределения численности видов", в экологии, - по сравнению их формы можно выявить особенности экосистем, хотя из моделей для описания их формы, никакая не универсальна, как это обсуждалось в [1]. Кривые распределения численности для разных групп, по всем образцам совместно, показаны на рис. 2, и то что при этом интересует - как форма кривой соотносится с потенциальной неустойчивостью экосистемы.



Рис. 2 Кривые распределения численности, по группам организмов;

#### Интерпретация 1: теоретические модели



Рис. 3 смещение частоты колебаний и смещение модельных распределений численности, в модели Ципфа-Парето (обведено рамкой) и модели Больцмана, при разных знаках коэффициента  $\lambda$  в ан-гармоническом осцилляторе

В форме кривых распределения численности, в болшей или меньшей степени, применимы как модель "закона Ципфа-Парето", так и модель распределения Больцмана. Обе модели, которые в других ситуациях применимы вполне явно, выражают соотношение между линейным возрастанием "энергии" системы, от уровня к уровню, и экспоненциальным убыванием "заселенности" уровней; в распределении Ципфа-Парето "энергия" вводится неявно и выражается по логарифмическому закону.

Сводя вопрос сравнения численности видов к сравнению неустойчивости групп при сменах времен года, месяцев, дней и ночей, сменах дождей и яснй погоды, сменах полноводных паводков на маловодные при разливах рек - то что и определяет избыток питания в экологических нишах и под-группах, и "заселенность" в этих нишах - признаки искажения такой периодичности, индуцируимые через обратную связь, были бы признаком неусточивости.

Для минимально простого описания искажений периодичности, подойдет модель осциллятора с малым дополнением, внесенным в закон движения, так что в колебаниях такого "не-гармонического" осциллятора проявляются отклонения от гармонического закона - то что может являеться признаком потенциальной неустойчивости.

В квантовом описании, уровни энергии такого осциллятора зависят от квантового числа не вполне линейно. Используя формулу для расчета уровней энергии, предложенную в [2], через поправки к модели Ципфа-Парето и модели Больцмана на рис. 2 показано, как отклонения от периодичности проявлялись бы в кривых распределения видов.

Нарастающая периодичность соответствует положительному знаку в не-гармоничной поправке в модели осциллятора ( $\hat{H}=p^2+x^2+\lambda x^4$ ), замедляющаяся перидичность - отрицательному знаку. Само событие кризиса в этой модели не описывается и не предсказывается. Эмпирически, колебания с нарастающим периодом - это

признак риска кризиса [3]. В рамках самой модели квантового ангармонического осциллятора, "сбой" его движения возможен при отрицательном  $\lambda$ , через тоннельный переход в один из двух сегментов с отрицательной энергией за пределами области колебаний.

# Интерпретация 2: сравнение с системой регуляции генов

Для генов, отсортированных по уровню экспрессии, на диаграммах - и как общее правило, и в представленных результатах - отделяется группа генов с высоким уровнем. Для остальных выполняется, в целом или частично, правило Ципфа-Мандельброта, линейная форма зависимости экспрессии от порядкового номера, построенной в логарифмических координатах.



Рис. 4 Распределение уровней экспрессии генов. розовые линии - мыши на голодном пайке, по сравнению с контролем

По оценке фрактальной размерности суточного ритма, у самок различие проявляется более заметно, и в противоположном, чем у самцов, направлении:

|             | самцы   | самки   |
|-------------|---------|---------|
| голодные    | 1.00225 | 1.00622 |
| не голодные | 1.00263 | 1.00108 |

#### Выводы

Подводя итоги, отклононения от равновесия, следуя представленным интерпретациям, возмоны в двух направлениях, условно обозначенных ниже А и Б:

А - ускорение циклов и колебаний, то что грозит риском кризиса по типу "внезапного обвала". Характерно для самок в поисках еды и самцов, в достаточной степнени сытых.

Б - замедление циклов и колебаний, где риском является "угасание" и "растворение". Не говоря о разнообразных группах одноклеточных организмов, про которые мало известно, для трех царст живого направления их отклонения, по диаграммам численности, показны ниже:

|          | многочисленные виды | редкие и малочисленные виды |
|----------|---------------------|-----------------------------|
| Животные | A                   | A                           |
| Растения | A                   | Б                           |
| Грибы    | Б                   | A                           |

#### 3 Методы

Брали образцы где эксперимент был поставлен как полно-геномное секвенирование микробного сообщества, на секвенаторах одной и той же торговой марки. Смотрели на состав сообщества по рибосомной РНК, кроме бактерий у которых эта РНК отличается. Обработку делали в два приема - отбирали из общего пула фрагмены искомой РНК, и аккуратно сравнивали их с базой рРНК организмов, отнесенных каждый к какой-либо такономической категории согласно принятой классиификации.

Ниже указаны формальные характеристики шести использованных образцов:

|   | Sample ID   | Bases | Reads | Location      | Date            | 18S RRNAs |  |  |
|---|-------------|-------|-------|---------------|-----------------|-----------|--|--|
| 1 | ERR981203   | 5.3G  | 10M   | 51.83N 0.21E  | 2002.06.23      | 1517(*)   |  |  |
| 2 | SRR6030929  | 2.4G  | 6.1M  | 42.98N 81.24W | 2013            | 125002(*) |  |  |
| 3 | ERR588716   | 8.2M  | 159K  | Israel        | 2014 or earlier | 848       |  |  |
| 4 | ERR970400   | 4.2G  | 13M   | 51.61N 3.95E  | 2015.01.01      | 18747 (*) |  |  |
| 5 | SRR7642476  | 77M   | 128K  | 30.78N 34.76E | 2015.08.20      | 4231      |  |  |
| 6 | SRR12806764 | 48M   | 97K   | 31.86N 34.72E | 2019.02.25      | 116666    |  |  |

Составление референсной бызы 18S RRNA:

cat ssu\_jan03.tsv | bash -c 'while read line; do if [ "\${line:0:4}" == "tax," ]; then if [ "\${line:5:5}" == "Eukar" ]; then if [ "\$f" == "2" ]; then echo "\$i" "\${line:5}; i='echo \$i + 1 | bc'; f="1"; fi;fi; else if [ "\$f" == "1" ]; then if [ "\${line:5}" != "" ]; then echo \${line:5}; f="2"; fi; fi; fi; done; ' | awk '{ if (  $$2 == "Eukaryota;" || ( p == "Eukaryota;" && length( $0 ) > 100 ) ) { print $0 }; p = $2 }' | awk '{ if ( p != $2 ) { print $0 }; p = $2 }' > rrna_euk.fa$ 

cat \$sample | awk '{ print substr( \$1, 1, length( \$1 ) - 1 ) }' | bash -c 's="";c=0;while read line; do if [ "\$line" != "\$s" ]; then if [ "\$s" != "" ]; then echo "\$s' : \$c,"; fi; s=\$line; c=1; else c='echo "\$c+1" | bc'; fi; done;

sort \$sample | bash -c 's="";c=0;while read line; do if [ "\$line" != "\$s" ]; then if [ "\$s" != "" ]; then echo "\$s \$c"; fi; s=\$line; c=1; else c='echo "\$c+1" | bc'; fi; done;' | awk '{ print \$3 " "\$(NF-1) " " \$NF }' | sort - | bash -c 's="";b="";c=0;while read line; do if [ "\${line:0:5}" != "\${s:0:5}" ]; then h='echo \$s lawk """"{print \$1}""""; echo "\$h \$b"; c=0; s=\${line}; else n='echo \$line | awk """"{print \$NF}""""; if [ \$n -gt \$c ]; then c=\$n; b='echo \$line | awk """"{ print \$(NF-1) }""""; fi; fi; done; h='echo \$s lawk """"{print \$1}""""; echo "\$h \$b""

Обработка образцов:

head -n 4000000 \$sample.fastq >t0.fastq

sortmerna –ref ssu.fa,ssu.idx –reads t0.fastq –aligned t1 –sam

cat t1.sam | awk ' print ">" \$1"

n" \$10' > t2.fa

blastn -db ssu.db -query t2.fa -evalue 1e-2 -task blastn -max\_target\_seqs 1 -out t3.tsv -outfmt "6 sallseqid" out=test-\$sample

mv \$out.tsv t3.tsv

cat t3.tsv | while read line; do t='grep ">\$line " ssu.fa'; echo \$t:1 »\$out.txt; done; cat \$out.txt | awk ' gsub(/[0-9]/,""); gsub( "; ", "," ); print ' | sort >\$out.csv

cat  $\text{sout.csv} \mid \text{awk -F "," 'print } 2 \text{ " } 3 \text{ '| bash -c 's="";c=0;while read line; do if [ "$line" != "$s" ]; then if [ "$c" != "0" ]; then echo " '$s' : $c,"; fi; s=$line; c=1; else c='echo "$c+1" | bc'; fi; done; echo " '$s' : $c";';$ 

Таблица 3: *Количество аннотированных фрагментов рРНК по группам в каждом* из образцов

| рразцов<br>Taxonomy(*)                 | 1    | 2    | 3   | 4   | 5     | 6     |
|----------------------------------------|------|------|-----|-----|-------|-------|
| Acanthamoebidae Acanthamoeba           | 2    | 4    |     | 1   |       |       |
| Alveolata Apicomplexa                  | 12   |      |     | 14  |       |       |
| Alveolata Ciliophora                   |      |      |     | 2   | 9     | 1     |
| Alveolata Haplosporida                 |      | 4    |     |     |       | 5406  |
| Cercozoa Cercomonadida                 |      | 2    |     |     |       |       |
| Cercozoa Chlorarachniophyceae          | 4307 | 197  | 5   | 108 | 876   | 14637 |
| Cryptophyta Cryptomonadaceae           | 91   |      |     | 9   | 389   | 382   |
| Cryptophyta Teleaulax                  |      | 2    |     |     |       |       |
| Diplomonadida Hexamitidae              | 19   | 5    |     | 2   |       |       |
| environmental samples                  | 357  | 50   | 35  | 25  | 1206  | 1490  |
| Euglenozoa Euglenida                   | 407  | 84   |     | 46  |       | 1     |
| Euglenozoa Kinetoplastida              | 2072 | 785  | 4   | 270 | 1206  | 5343  |
| Fungi Ascomycota                       | 3343 | 1044 |     | 347 | 11860 | 60992 |
| Fungi Basidiomycota                    |      |      | 48  | 3   | 4     |       |
| Fungi Chytridiomycota                  |      |      |     | 1   |       |       |
| Fungi Microsporidia                    | 1    | 12   |     | 3   | 2     | 12    |
| Fungi Zygomycota                       | 5    | 8    |     |     | 1     |       |
| Glaucocystophyceae Glaucocystales      | 77   | 56   |     | 12  | 2890  | 5020  |
| Glaucocystophyceae Gloeochaetales      | 244  | 8    | 8   | 9   | 5042  | 1845  |
| Granuloreticulosea Foraminifera        | 3    |      |     |     |       |       |
| Haptophyceae Isochrysidales            | 317  | 103  | 11  | 24  | 33    | 19    |
| Haptophyceae unclassified Haptophyceae | 17   | 2    |     | 1   | 32    | 24    |
| Metazoa Acanthocephala                 |      |      |     |     |       | 1     |
| Metazoa Arthropoda                     | 382  | 12   |     | 13  | 2424  | 627   |
| Metazoa Chordata                       |      | 2    |     | 5   |       |       |
| Metazoa Cnidaria                       |      |      |     |     |       | 6     |
| Metazoa Mollusca                       | 475  | 91   |     | 22  | 8907  | 3641  |
| Metazoa Myxozoa                        |      |      |     | 8   |       | 2     |
| Metazoa Nematoda                       |      | 15   |     |     |       | 38    |
| Metazoa Platyhelminthes                | 26   |      |     |     |       | 13    |
| Metazoa Porifera                       |      |      |     |     | 6     |       |
| Parabasalidea Trichomonadida           | 2    |      |     | 1   |       |       |
| Rhodophyta Bangiophyceae               | 2962 | 541  | 43  | 175 | 714   | 801   |
| Rhodophyta Florideophyceae             | 232  | 227  | 16  | 88  | 148   | 110   |
| stramenopiles Bacillariophyta          | 125  | 47   | 3   | 10  | 3091  | 312   |
| stramenopiles Chrysophyceae            | 41   | 10   | 1   | 1   | 3     | 3     |
| stramenopiles Olisthodiscus            | 379  | 29   |     | 17  | 28    | 78    |
| stramenopiles Oomycetes                |      | 2    |     |     |       |       |
| stramenopiles Phaeophyceae             | 33   | 6    |     |     | 1     |       |
| stramenopiles Placididea               | 303  | 136  | 57  | 48  | 33139 | 17046 |
| Viridiplantae Chlorophyta              | 1636 | 401  | 478 | 139 | 1563  | 2569  |
| Viridiplantae Streptophyta             | 876  | 315  | 137 | 113 | 7886  | 4583  |

<sup>(\*)</sup> Таксономия согласно версии ЕВІ, 2-й и 3-й уровни.

Кривые численности:

```
e.g, SAR:
```

grep -E 'Cercozoalstrametopiles|Alveolata|Acanthamoeba' test\*.txt|sort|awk' { print \$1 }' | bash -c 's="";c=0;while read line; do if [ "\$line" != "\$s" ]; then if [ "\$s" != "" ]; then echo \$c; fi; s=\$line; c=1; else c='echo "\$c+1" | bc'; fi; done; echo \$c' | sort -g | awk '{ s = \$0 "" s } END { print s }' | awk '{ s = ""; for ( i=1; i <= NF; i++ ) { s = s "" | log(i)/log(NF) "," log(si)/log(s1) }; print s }'

Unharmonic oscillator

classical system: awk '{ lambda=\$1; x = 1; v = 0; dt = 0.01; s =""; for ( i = 1; i < 5000; i++) { x = x + v \* dt; v = v - x \* (1 + lambda \* x \* x) \* dt; if ( i % 50 == 0 ) { s = s " " ( i \* dt ) "," x; }; print s }'

C code:

void solve\_cubic( double h, double g, double \*e1 ) { double d = atan2( sqrt( pow( h, 3 ) - g \* g ), -g ) / 3.; double c = sqrt( h ) \* cos( c ); \*e1 = 2 \* c; }

int main( int argc, char \*\*argv ) { double lambda = atof( argv[1] ); double nmax = atoi( argv[2] ); double omega\_n; int n; for ( n = 0; n < nmax; n++ ) { solve\_cubic( 1. / 3., -3. \* lambda \* ( 1. + 2. \* n + 2. \* n \* n ) / ( 1. + 2. \* n ), &omega\_n ); printf( "%.2f ", ( 1. / 4. ) \* ( 3. \* omega\_n + 1. / omega\_n )\* ( n + 1. / 2 ) ); } }

Rna-seq

rank-abundance

for ft in FAL MAL FCR MCR; do for cn in 28 29 30; do cat RNAseq\_WT\$ft.csv | awk -F "," -v cn=\$cn -v i=0 '{ if (\$cn > 0 && i > 0 ) print \$cn; i = i + 1 }' | sort -g -r | awk -v sname="""\$ft\$cn"" 'BEGIN { print sname ":["; s = ""; i = 0 } { i = i + 1; if ( ( i % 20 ) == 0 ) { print s ","; s = \$1 } else { if (i > 1) { s = s "," \$1; } else { s = \$1 } }; END { print s "," } ">rnase\_distributions.txt; done; done;

fractal dimension:

fdim='awk "\$awkcmd" | sort -g | head -n \$median | tail -n 1'

#### 4 References

- Feranchuk, S., Belkova, N., et al., Evaluating the use of diversity indices to distinguish between microbial communities with different traits. Res. Microbiol., 2018
- 2. Feranchuk, I., Komarov, L., et al., Operator method in the problem of quantum unharmonic oscillator, Annals of Phys., 1995
- 3. Nottale, L., Scale relativity and fractal space-time: theory and applications, arxiv.org, 2008