Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/GB05/001036

International filing date: 18 March 2005 (18.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: GB

Number: 0406278.2

Filing date: 19 March 2004 (19.03.2004)

Date of receipt at the International Bureau: 26 May 2005 (26.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

I also certify that the attached copy of the request for grant of a Patent (Form 1/77) bears an amendment, effected by this office, following a request by the applicant and agreed to by the Comptroller-General.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed American

Dated 11 April 2005

Executive Agency of the Department of Trade and Industry

Patents Form 1/77 nts Act 1977 Rule 16)

22MAR04 E882566-1 D02246 .P01/7700 0.00-0406278.2 ACK

The Patent Office

Cardiff Road Newport South Wales NP10 8QQ

LONDON

Request for grant of a patent (See the notes on the back of this form. You can also get

an explanatory leaflet from the Patent Office to help you fill in

this form)

Your reference P019657GB RWP 0406278.2 Patent application number (The Patent Office will fill this part in) First Inertia Switch Limited Full name, address and postcode of the or of 2 Columbus Drive each applicant (underline all surnames) Summit Avenue Southwood, Farnborough, Hampshire GU14 0NZ United Kingdom 449769004 Patents ADP number (if you know it) If the applicant is a corporate body, give the United Kingdom country/state of its incorporation Fuel Level Sensor Title of the invention D Young & Co Name of your agent (if you have one) D Young & Co 120 Holborn "Address for service" in the United Kingdom 21 New Fetter Lane to which all correspondence should be sent London LONDON EC1N 2DY (including the postcode) EC4A 1DA

Patents ADP number (if you know tt)

59006

Priority: Complete this section if you are declaring priority from one or more earlier patent applications, filed in the last 12 months. Country

Priority application number (if you know it)

Date of filing (day / month / year)

Divisionals, etc: Complete this section only if this application is a divisional application or resulted from an entitlement dispute (see note f) Number of earlier UK application

Date of filing (day / month / year)

Is a Patents Form 7/77 (Statement of inventorship and of right to grant of a patent) Yes required in support of this request? Answer YES if:

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- any named applicant is a corporate body. Otherwise answer NO (See note d)

Patents Form 1/77

Accompanying documents: A patent application
must include a description of the invention.
Not counting duplicates, please enter the number
of pages of each item accompanying this form:

Continuation sheets of this form 0

Description 6

Claim(s) 2

Abstract

Drawing(s) 2 + 2 = 0

If you are also filing any of the following, state how many against each item.

Priority documents 0

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for a preliminary examination and search (Patents Form 9/77)

Request for a substantive examination
(Patents Form 10/77)

Any other documents (please specify)

11. I/We request the grant of a patent on the basis of this application.

Signature(s)

b Junge Co

Date 19 March 2004

12. Name, daytime telephone number and e-mail address, if any, of person to contact in the United Kingdom

Richard Pratt

023 8071 9500

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered YES in part 8, a Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- Part 7 should only be completed when a divisional application is being made under section 15(4), or when an application is being made under section 8(3), 12(6) or 37(4) following an entitlement dispute. By completing part 7 you are requesting that this application takes the same filing date as an earlier UK application. If you want the new application to have the same priority date(s) as the earlier UK application, you should also complete part 6 with the priority details.

10

15

20

25

30

Fuel Level Sensor

The present invention relates to a fuel level sensor.

US-A-6593734, the disclosure of which is incorporated herein, discloses a magnetic position sensor having a stator and a movable part. The stator has two soft magnetic pieces defining an air gap which contains a magnetosensitive probe, for example a Hall effect sensor, for measuring the variation in induction in the gap. The moveable part comprises a yoke of soft magnetic material displaceable parallel to the magnetic pieces of the stator and a magnet partly embedded in the yoke. The magnet's poles are parallel to the pieces of the stator. Movement of the magnet relative to the stator varies the magnetic field in the air gap and the magnetosensitive probe produces a signal representing the position of the magnet relative to the stator.

Most fuel level sensors, currently in use, use a float connected by a pivoted arm to a conductive wiper which moves along an electrically resistive strip. This causes the resistance of the sensor to change with the movement of the wiper. The change in current through the strip indicates variations in fuel level. These sensors operate inside the fuel tank, often attached to an assembly containing the fuel pump. The wiper and resistive strip are exposed to the fuel. The fuel level sensor is expected to operate reliably for a long period of time. However, the strip is continually rubbed by the wiper, some fuels are corrosive, and it has been found that cleaner fuels aggravate wear. Also, to keep the contact of the wiper clean and to burn off films deposited by the fuel on the sensor, an operating current of tens of milliamps is often used.

The present invention provides a fuel level sensor having a magnetic position sensor connected to an arm for attachment to a float, wherein the magnetic position sensor comprises a stator and a movable part, the stator having two soft magnetic pieces defining an air gap which contains a magnetosensitive probe for measuring the variation in induction in the gap, the moveable part comprises a yoke of soft magnetic material displaceable parallel to the magnetic pieces of the stator and a magnet joined to the yoke, the poles of the magnet being polarised perpendicularly to the direction of movement of the moveable part relative to the stator.

10

15

20

25

30

Suitably, the magnet's poles are parallel to the pieces of the stator. Movement of the magnet relative to the stator varies the magnetic field in the air gap and the magnetosensitive probe produces a signal representing the position of the magnet relative to the stator.

Suitably, the magnet is partly embedded in a cavity in the yoke.

Such a magnetic position sensor has a stator and moveable part which do not contact each other thus avoiding wear due to rubbing of two parts. The use of a magnetic sensor having a magnetosensitive probe, for example a Hall effect sensor, reduces the current consumption. The current consumption is further reduced because there is no need to provide a current to burn off films deposited by the fuel or to keep wiper contacts clean.

Fuel level sensors are often positioned in close proximity to the fuel pump to facilitate assembly in the fuel tank. It is a feature of the present invention that it provides robust immunity to magnetic fields caused either by pump motor magnetic fields or proximity to of ferrous casings or supports. These fields may influence other sensing techniques, for instance those which rely on magnetic flux orientation detection more readily and can require additional magnetic shielding.

In an embodiment, the magnetosensitive probe is Hall effect sensor. In a currently preferred embodiment, the Hall effect sensor is part of an Integrated Circuit (IC) also having an arithmetic circuit and some memory.

The IC may be pre-programmed to set minimum and maximum outputs to reduce mechanical errors.

In an embodiment, the IC has two power leads which also act a signalling leads to indicate the fuel level. The IC converts the position signal from the magnetic position sensor to a binary, Pulse Code Modulated, signal which is a modulation of power supply current, for example 5mA for one level and 10mA for the other.

Modern vehicles have at least one computer for instruments and engine management. In an embodiment of the invention, the vehicle's computer converts the fuel level signal from the fuel level sensor to an instrument reading taking account of the shape of the fuel tank. Alternatively, the IC, of which the Hall sensor forms part, may include a means for calibrating the output of the fuel level sensor to suit the shape of a fuel tank. Such means may be a programmable device, for example a look up

15

20

25

30

table, which can be programmed according the shape of any fuel tank. Thus any need to design different sensors for different fuel tanks (apart from programming) may be avoided.

The IC may also provide other information, for example fault indication and/or part identification. The IC may also provide other signal processing, for example temperature compensation.

For a better understanding of the present invention, reference will now be made, by way of example, to the accompanying drawings in which:

Figure 1 is a schematic view of a magnetic position sensor;

Figure 2 is a schematic view of a fuel level sensor incorporating a sensor as shown in Figure 1; and

Figure 3, is a block diagram of the fuel level sensor of Figure 2.

The sensor of Figure 1 is provided with a fixed stator (1) and a part (2) which is movable in the direction OX, with a useful stroke Xc over which the delivered signal has great linearity.

The stator is provided with two stator pieces (3, 4) of a soft magnetic material in the form of annular quadrants. Movable part (2) has a soft iron yoke (5) of semiannular form. Stator pieces (3, 4) and yoke (5) define between them a primary air gap (7). Yoke (5) has a cavity (6) in which there is housed a magnet (8) magnetized perpendicular to air gap (7), or in radial direction in the present case.

The stator has two ferromagnetic pieces (3, 4) spaced apart by a secondary air gap (9) of length F, in which there is placed a magneto-sensitive probe (10). The two stator pieces (3, 4) are joined by nonmagnetic pieces made of brass, for example, and are aligned in the same cylindrical surface, whose axis is the axis of rotation of the movable part.

The stroke Xc is the width of the angular arc travelled by the movable part over the mean radius Rm of the magnetized part. The stroke of the magnet extends by $\pm Xc/2$ relative to the center of the secondary air gap, in which the magneto-sensitive probe is disposed perpendicular to the primary air gap.

The movable part (2) is provided with a yoke (5) of soft magnetic material and a permanent magnet (8) partly embedded in yoke (5). Magnet (8) is polarized radially,

10

15

20

25

or in other words perpendicular to OX. Movable part (2) is displaced parallel to stator pieces (3, 4) at a constant minimal distance Yo measured perpendicular to OX.

Permanent magnet (8) is partly embedded in a cavity situated substantially at the center of movable yoke (5), on the side of stator pieces (3, 4), at a depth e such that 0.1 L<e<0.9 L, where L is the thickness of magnet (8) in the polarization direction. Depth e is determined in such a manner as to optimize the characteristics of the sensor.

Permanent magnet (8) is displaced together with yoke (5) parallel to stator pieces (3, 4) at a constant minimum distance E-L, where E is the distance between the stator pieces and the cavity bottom, measured perpendicular to OX. Yoke (5) is situated at a minimum distance from the stator equal to Yo=E-e, which is larger than E-L.

Width Xs of stator pieces (3, 4) measured over the means radius Rm of magnet (8) is greater than or equal to Xc, preferably substantially equal to Xc+2 E', in order to obtain a signal with great linearity over the entire stroke Xc, where E' ranges between e/4 and E.

Preferably the width of the cavity in movable yoke (5) and of magnet (8), measured over the mean radius Rm of magnet (8), is larger than or equal to Xc+F, preferably substantially equal to Xc+F+2 E'.

According to an advantageous modification, the width of movable yoke (5) measured over the mean radius Rm of magnet (8) is equal to at least 3 Xc+F+6 E'.

According to an advantageous modification, the L/E ratio is greater than or equal to 0.5, and preferably greater than or equal to 0.75.

According to an advantageous modification, the Xs/E ratio is relatively large, preferably greater than 8.

According to an advantageous modification, magnet (8), movable yoke (5) and ferromagnetic stator pieces (3, 4) have the same length Z measured along the axis perpendicular to the direction of magnetization and to the direction of displacement OX, and preferably greater than or equal to 3 E.

These advantageous modifications make it possible to define a sensor with an optimal geometry and volume of magnet (8) adapted to the desired measurement range.

10

15

20

25

30

Magneto-sensitive probe (10) can be a Hall-effect probe, a magneto-resistive probe, a magnetic transistor, etc. What is important is that the delivered signal depends as linearly as possible on the magnetic induction in which this element is placed.

Permanent magnet (8) can be of different types, and preferably there will be used a magnet (8) of samarium-cobalt or NdFeB, or possibly even a magnet (8) of A1NiCo or ferrite type, etc. It has a reversible permeability close to 1, and preferably less than 1.2, in order to obtain good linearity of the signal. It will be preferable to choose a magnet (8) with a low temperature coefficient.

The ferromagnetic stator parts and movable yoke (5) can be made of iron-nickel, iron-silicon, pure iron, etc.

It is not necessary to introduce a guide piece for magnet (8), since it is directly fixed on movable yoke (5). The embedding of magnet (8) is yoke (5) also makes it possible to reduce the sensitivity of the sensor to the quality of bonding of magnet (8), and it facilitates placement of the magnet on yoke (5) during production operations.

It is possible to minimize the volume of magnet (8) or to increase the induction variation ΔB and thus the signal-to-noise ratio.

The depth e of the cavity provided in movable yoke (5) is chosen judiciously in order to increase, relative to the case without cavity (e=0), with an identical magnet (8) and the same overall outside dimensions, the magnetic induction delivered by the magnetic circuit to magneto-sensitive probe (10), and/or in order to improve the linearity of the sensor along the stroke.

The embedding of permanent magnet (8) modifies the distribution and amplitude of leakage fluxes, and thus makes it possible to influence the linearity of the sensor. It can be shown that the linearity varies as a function of the depth of cavity (6) in which permanent magnet (8) is partly embedded.

Referring to Figure 2, the fuel level sensor 42 comprises a base frame 40 which may be a plastics moulding. The base frame 40 supports the stator 1 comprising the pole pieces 3,4 defining the air gap 9 in which is the Hall effect sensor 10. The base frame 40 also supports a lead frame 14 of electrical connectors connecting to the Hall effect sensor. The yoke 5 has the magnet 8 partly embedded in the cavity 6. The yoke

10

15

20

25

pivots on a bearing 41. The yoke is connected to an arm 12 for attachment to a float (not shown).

6

Referring to Figure 3, the fuel level sensor 42 comprises the Hall effect sensor 16 which is connected to an analogue to digital (A/D) converter 18. The output of the A/D converter is connected to a signal processor 20 which is for example a digital processor including an arithmetic circuit and memory M, 22. The output of the processor is connected to a Pulse Code Modulator 24 which binary modulates the current flowing in power supply leads 28 connected to terminals T. The binary symbols may be currents of 5mA and 10mA for example, although any other suitable values may be used. A power supply 26 supplies DC to the elements 16, 18, 20 and 24 unaffected by the modulation of the current in the leads 28.

In a preferred example of Figure 3 the Hall effect sensor 9 is part of an IC also comprising the A/D converter 18 and the processor 20, and optionally also the modulator 24.

The memory 22 may store a look up table LUT for calibrating the output of the Hall effect sensor with the shape of the fuel tank. The processor 20 addresses the LUT in accordance with the output of the Hall sensor 16 reads out values which, for example, are a linearly related to the volume of fuel in the tank regardless of the shape of the tank.

Alternatively, a vehicle may have a computer for operating the vehicle instruments including the fuel gauge, and which stores such a look up table and the processor supplies to the computer via the modulator 24 the "raw" output of the Hall sensor.

The processor 20 may provide other functions for example one or more of: fault indication: part identification; and temperature compensation.

The fuel level sensor 42 may be part of a fuel pump.

Whilst the example of Figure 3 uses digital signal processing, another example of the fuel level sensor provides an analogue signal representing fuel level.

10

15

20

25

30

CLAIMS

- 1. A fuel level sensor having a magnetic position sensor connected to an arm for attachment to a float, wherein the magnetic position sensor comprises a stator and a movable part, the stator having two soft magnetic pieces defining an air gap which contains a magnetosensitive probe for measuring the variation in induction in the gap, the moveable part comprising a yoke of soft magnetic material displaceable parallel to the magnetic pieces of the stator, and a magnet partly embedded in a cavity in the yoke facing the stator, the poles of the magnet being polarized perpendicularly to direction of movement of the moveable part relative to the stator.
- 2. A sensor according to claim 1, wherein the magnetosensitive probe is a Hall effect sensor.
- 3. A sensor according to claim 2, further comprising a signal processor for processing a signal produced by the magnetic position sensor and representing the position of the moveable part relative to the stator.
- 4. A sensor according to claim 3, wherein the signal processor and the magnetosensitive probe are parts of the same integrated circuit.
- 5. A sensor according to claim 3, or 4, wherein the sensor has two power terminals and the signal processor is operable to output the signal representing the position of the moveable part relative to the stator on the power terminals.
- 6. A sensor according to claim 5 wherein the said signal is a Pulse Code Modulated signal.
- 7. A sensor according to claim 3, 4, 5, or 6, wherein the signal processor is operable to provide fault indication and/or part identification.
- 8. A sensor according to claim 3, 4, 5, 6, or 7, wherein the signal processor is operable to provide temperature compensation.
- 9. A sensor according to any preceding claim in combination with a fuel pump.

- 10. A sensor according to any one of claims 3 to 9, wherein the signal processor is programmable to calibrate the output of the sensor to the shape of a fuel tank.
- 11. A vehicle comprising a sensor according to any preceding claim.
- 12. A vehicle comprising a computer and a sensor according to any one of claims 1 to 10, wherein the said computer is arranged to calibrate the output of the sensor to the shape of a fuel tank of the vehicle.
 - 13. A sensor substantially as hereinbefore described with reference to the accompanying drawings.
- 10 14. A vehicle comprising a sensor according to claim 13.

ABSTRACT

FUEL LEVEL SENSOR

A fuel level sensor comprises a magnetic position sensor attached to an arm for carrying a float.

[Figure 2]

5

Figure 2.

13 APR 2005 Received in Patents International Unit

,