The Coders' Club

Machine Learning: G1

Week 8: Assignment

Topics:

Unsupervised Learning
Principal Component Analysis

Some Additional Courses:

- Machine Learning Onramp (MathWorks)
 https://www.mathworks.com/learn/tutorials/machine-learning-onramp.
 httml
- Deep Learning Onramp (MathWorks)
 https://www.mathworks.com/learn/tutorials/deep-learning-onramp.htm
- Al From the Data Center to the Edge An Optimized Path Using Intel® Architecture (Intel AI)
 https://software.intel.com/en-us/ai/courses/data-center-to-edge
- Machine Learning (Intel)
 https://software.intel.com/en-us/ai/courses/machine-learning
- Deep Learning (Intel)
 https://software.intel.com/en-us/ai/courses/deep-learning

Unsupervised Learning

Q.1. For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.

- Given historical records, predict if tomorrow's weather will be sunny or rainy.
- From the user usage patterns on a website, figure out what different groups of users exist.
- Given many emails, you want to determine if they are spam or non-spam emails.
- Given a set of new articles from many different news websites, find out what are the main topics covered.

Q.2. Suppose we have three cluster centroids

$$\mu_1=egin{bmatrix}1\\2\end{bmatrix}$$
 , $\mu_2=egin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=egin{bmatrix}4\\2\end{bmatrix}$

Furthermore, we have a training example

$$x^{(i)} = egin{bmatrix} 3 \ 1 \end{bmatrix}$$
 .

After a cluster assignment step, what will c(i) be?

- $c^{(i)} = 1$
- $c^{(i)} = 3$
- c⁽ⁱ⁾ is not assigned
- $c^{(i)} = 2$

- Q.3. K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?
 - Feature scaling, to ensure each feature is on a compatible scale to the others.
 - Move the cluster centroids, where the centroids μ_k are updated.
 - Using the elbow method to choose K.
 - The cluster assignment step, where the parameters c⁽ⁱ⁾ are updated.
- Q.4. Suppose you have an unlabeled dataset $\{x^{(1)}, \ldots, x^{(m)}\}$. You run K-means with 50 different random initializations, and obtain 50 different clusterings of the data. What is the recommended way for choosing which one of these 50 clusterings to use?
 - Use the elbow method
 - Compute the distortion function $J(c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_k)$, and pick the one that minimizes this.
 - Plot the data and the cluster centroids, and pick the clustering that gives the most "coherent" cluster centroids.
 - Manually examine the clusterings, and pick the best one.
- Q.5. Which of the following statements are true? Select all that apply.
 - Once an example has been assigned to a particular centroid, it will never be reassigned to another different centroid.
 - K-means will always give the same results regardless of the initialization of the centroids.
 - On every iteration of K-means, the cost function (distortion function) $J(c^{(1)}, \ \dots, \ c^{(m)}, \ \mu_1, \ \dots, \ \mu_k) \text{ should either stay the same or decrease;}$ in particular, it should not increase.
 - A good way to initialize K-means is to select K (distinct) examples from the training set and set the cluster centroids equal to these selected examples.

Principal Component Analysis

Q.1. Consider the following 2D dataset:

Which of the following figures correspond to possible values that PCA may return for u⁽¹⁾ (the first eigenvector/first principal component)? Check all that apply (you may have to check more than one figure).

- Q.2. Which of the following is a reasonable way to select the number of principal components k? (Recall that n is the dimensionality of the input data and m is the number of input examples.)
 - Choose k to be the smallest value so that at least 1% of the variance is retained.
 - Choose k to be the smallest value so that at least 99% of the variance is retained.
 - Choose the value of k that minimizes the approximation error $\frac{1}{m}\sum_{i=1}^m\|x^{(i)}-x^{(i)}_{approx}\|^2$
 - Choose k to be 99% of n (i.e. k=0.99 * n, rounded to the nearest integer).
- Q.3. Suppose someone tells you that they ran PCA in such a way that "95% of the variance was retained." What is an equivalent statement to this?

$$\frac{\frac{1}{m}\sum_{i=1}^{m} \|\mathbf{x}^{(i)}\|^2}{\frac{1}{m}\sum_{i=1}^{m} \|\mathbf{x}^{(i)} - \mathbf{x}_{approx}^{(i)}\|^2} \ge 0.95$$

$$\frac{\frac{1}{m}\sum_{i=1}^{m}\|\mathbf{x}^{(i)}-\mathbf{x}_{approx}^{(i)}\|^{2}}{\frac{1}{m}\sum_{i=1}^{m}\|\mathbf{x}^{(i)}\|^{2}} \ge 0.95$$

$$\frac{\frac{1}{m}\sum_{i=1}^{m}\|x^{(i)}-x_{approx}^{(i)}\|^2}{\frac{1}{m}\sum_{i=1}^{m}\|x^{(i)}\|^2} \ge 0.05$$

$$\frac{\frac{1}{m}\sum_{i=1}^{m}\|\boldsymbol{x}^{(i)}-\boldsymbol{x}_{approx}^{(i)}\|^2}{\frac{1}{m}\sum_{i=1}^{m}\|\boldsymbol{x}^{(i)}\|^2} \leq 0.05$$

- Q.4. Which of the following statements are true? Check all that apply.
 - PCA is susceptible to local optima; trying multiple random initializations may help.
 - Given input data $x \in \mathbb{R}^n$, it makes sense to run PCA only with values of k that satisfy $k \le n$. (in particular, running it with k = n is possible but not helpful, and k > n does not make sense).
 - ullet Given only $z^{(i)}$ and U_{reduce} , there is no way to reconstruct any reasonable approximation to $x^{(i)}$.
 - Even if all the input features are on very similar scales, we should still perform mean normalization (so that each feature has zero mean) before running PCA.
- Q.5. Which of the following are recommended applications of PCA? Select all that apply.
 - Preventing overfitting: Reduce the number of features (in a supervised learning problem), so that there are fewer parameters to learn.
 - Data compression: Reduce the dimension of your data, so that it takes up less memory/disk space.
 - To get more features to feed into a learning algorithm
 - Data visualization: Reduce data to 2D (or 3D) so that it can be plotted.