

CREINTORS AUTOMATION SOLUTIONS PVT.LTD.

PRESENTS

HONOR'S PROGRAM IN PLC PROGRAMMING

Syllabus of Course

1. Basics of PLC

2. PLC Programming

3. SCADA Programming

Logic gates are Electronic circuits that operates one or more input signals to produce an output signal. The output signal of a gate is simple boolean operations of its input signal and any boolean function can be represented in the form of gate.

There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR. The AND gate is so named because, if 0 is called "false" and 1 is called "true," the gate acts in the same way as the logical "and" operator.

INP	JTS			OUT	PUTS		
A	В	AND	NAND	OR	NOR	EXOR	EXNOR
0	Ö	0		Ö		0	
0		0			0		0
	Ö	0		1	0		0
			0		O	Ö	1

AND Logic

Input 1	Input 2	Output
0	0	0
0	1	0
1	0	0
1	1	1

NAND Logic

Input 1	Input 2	Output
0	0	1
0	1	1
1	0	1
1	1	0

False True

OR Logic

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1	1	1

NOR Logic

Input 1	Input 2	Output
0	0	1
0	1	0
1	0	0
1	1	0

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1	1	0

Input 1	Input 2	Output
0	0	1
0	1	0
1	0	0
1	1	1

GATE Logic

NOT Gate

NOT gate is also called as Inverter or Buffer.

NOT Truth Table		
A	Q	
0	1	
1	0	

