TRAITEMENT DES IMAGES

Introduction Echantillonnage

Michel Roux

Traitement des images - introduction

- Qu'est-ce qu'une image ?
- Résolution spatiale et transformée de Fourier
- Quantification et histogramme

Qu'est-ce qu'une image?

- Le support d'un message
- Un signal (2D continu) d'une mesure physique
 - Imagerie passive (intensité colorimétrique),
 - Imagerie active (transmission des rayons X, radiation élecgtromagnétique, ...)
- D'autres dimensions:
 - Mesure volumétriques (images médicales 3D)
 - 2D ½ (images stéréo + intensité)
 - Vidéo (2D+t)
 - 3D+t (séquences d'images 3D)

Qu'est qu'une image numérique?

- Une image numérique (2D) est une matrice définie par : sa résolution (en relation avec le nombres de pixels)
 - sa profondeur (nombre de valeurs potentielles pour chaque pixel)
 - Sa palette (look up table (LUT))

Une image numérique

Différents types d'images

Image	Application	Taille	Canaux
Télévision	Visiophonie	256 x 256	1
	HD TV Ultra HD TV	720 x 625 1920 x 1080 3840 x 2160	3 3 3
Bio-medical	Tomographie (IRM) Radiographie	512 x 512 x 256 4096 x 4096	1 (12bits) 1 (12bits)
Remote Sensing	1970-1980 1985-1990 1990-2000 2000-2010	2000 x 3000 6000 x 6000 15000 x 15000 24000 x 24000	3-7 3-20 3-256 3-256
Vidéo, Robot vision, Surveillance, Grand public	Quality control, Sport Automatic driving Surveillance, Tracking	160 x 120 640 x 480 1920 x 1080	3 3-4 3

Passage d'un espace continu à un espace numérique

- Numérisation d'une image
 - Échantillonnage (nombre de pixels)
 - Quantification (nombre de bits par pixel)

Passage d'un espace continu à un espace numérique

- Numérisation d'une image
 - Échantillonnage (nombre de pixels)
 - Quantification (nombre de bits par pixel)

Espace discret

- Image numérique → représentation matricielle, échantillonnage de R² ou R³ dans Z² ou Z³
- Deux approches possibles :
 - Plonger Zⁿ dans Rⁿ, puis traitement dans un espace supposé continu,
 - Définition des traitements directement dans l'espace discret.

Espace discret: pavage et maillage

 Pavage : partition de l'espace continu Rⁿ en cellules élémentaires

Contraintes:

- Capteurs physiques (structures régulières)
- Utilisation de la représentation (régularité, simplicité)

Espace discret: pavage et maillage

Génération d'un pavage

- Par distribution de points (régulier ou irrégulier), et attribution d'un territoire à chaque point (ex : propagation),
- Par répartition de cellules : modèle de cellule (convexe), et juxtaposition des cellules

Espace discret : pavage et maillage

Génération d'un pavage

- Par distribution de points (régulier ou irrégulier), et attribution d'un territoire à chaque point (ex : propagation),
- Par répartition de cellules : modèle de cellule (convexe et régulière), et juxtaposition des cellules

Espace discret: pavage et maillage

Dualité entre pavage et maillage

Maillage: segments entre les points distribués sur l'espace

- Voisinage élémentaire → connexité
- Image discrète ⇔ graphe (nœuds = pixels, arcs = voisins)

- noeuds du graphe
- ___ arcs définissant les voisins et la connexité

- noeuds du graphe
- __ arcs définissant les voisins et la connexité

• Aussi en 3D: 6, 18 et 26 connexités

Théorie des graphes

- Chemin: suite de sommets du graphe tels que deux sommets consécutifs soient voisins (lié par un arc)
 - 4-chemin et 8-chemin
- Composante connexe: ensemble de points S tel que pour tout couple de points (P,Q) de S, il existe un chemin d'extrémités P et Q et dont tous les points sont dans S
 - composantes 4-connexes et composantes 8-connexes

Chemins et composantes connexes

- Chemin 4-connexe
- --- Chemin 8-connexe

- Fond
- Objets

2 composantes 4-connexes

1 composante 8-connexe

Chemins et composantes connexes : paradoxe

Théorème de Jordan

Toute courbe simple fermée sépare l'espace en deux composantes connexes, l'intérieur et l'extérieur de la courbe

- Chemin 4-connexe
- Points intérieurs (composante 8-connexe)

Théorème de Jordan discret

- Dualité 4- et 8-connexité : changement de connexité quand on passe de l'objet à son complémentaire
 - courbe en 4-connexité ⇔ fond en 8-connexité

Théorème : sur une trame carrée, tout 4-chemin (respectivement 8-chemin) simple fermé sépare l'espace en deux composantes 8-connexes (respectivement 4-connexes), l'intérieur et l'extérieur.

- 6-connexité : pas de paradoxe
- Extension en 3D
 - Théorème de Jordan avec une surface simple fermée,
 - Dualité 6- et 26- connexité

Traitement des images - introduction

- Qu'est-ce qu'une image ?
- Résolution spatiale et transformée de Fourier
- Quantification et histogramme
- Filtrage linéaire

Résolution : vision vs. image numérique

Résolution

- La vision humaine est capable de discerner (en stéréo) des objets très petits et des objets très grands,
- L'image numérique à une résolution fixe, déterminée par le nombre de pixels de l'image.

Échantillonnage

- Préserver les fréquences spatiales (théorie de Shannon, transformation de Fourier 2D),
- Préserver le contenu de l'image : dépend de l'application (tests psycho-visuels, taille du plus petit élément à détecter, ...),
- Objets fractals.

Échantillonnage et information exemple intuitif

Aliasing 1D : fausses fréquences

Transformée de Fourier 2-D

- Transformée de Fourier = signal projeté sur des sinusoïdes 2D complexes
- Domaine fréquentiel = visualisation nouvelle de l'information contenue dans une image

$$\hat{G}(\nu,\mu) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} g(n,m) e^{-j2\pi \left(n\nu + m\mu\right)}$$

$$g(n,m) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} \hat{G}(\nu,\mu) e^{j2\pi(n\nu + m\mu)} d\nu d\mu$$

Transformée de Fourier = signal complexe (module + phase)

Transformée de Fourier Discrète 2D

TFD 2D

$$F(k,l) = \frac{1}{N} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f(i,j) e^{-i2\pi (\frac{ki}{N} + \frac{lj}{N})}$$

- nombres de fréquences = nombre de pixels
- f(i,j) est l'image dans le domaine spatial.
- le terme exponentiel est la fonction de base dans l'espace des fréquences pour chaque point F(k,l).

TFD 2D

- *F*(0,0) correspond à l'intensité moyenne
- F(N/2-1, N/2-1) représente la plus haute fréquence
- Transformée de Fourier inverse :

$$f(i,j) = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} F(k,l) e^{i2\pi(\frac{ki}{N} + \frac{lj}{N})}$$

TFD 2D

$$F(k,l) = \frac{1}{N} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f(i,j) e^{-i2\pi (\frac{ki}{N} + \frac{lj}{N})}$$

Formule de séparation de la TFD 2D:

$$P(k,j) = \frac{1}{N} \sum_{i=0}^{N-1} f(i,j) e^{-i2\pi \frac{ki}{N}}$$

$$F(k,l) = \frac{1}{N} \sum_{j=0}^{N-1} P(k,j) e^{-i2\pi \frac{lj}{N}}$$

Décroît le temps de calcul.

FFT

- Transformée de Fourier rapide (FFT)
 - Complexité № est réduite à Mog₂ N.
 - Limitée à des images de dimensions : $N = 2^n$.
- La FFT est complexe
 - Parties réelle/imaginaire ou amplitude/phase
 - L'amplitude reliée à la géométrie (éléments fréquentiels),
 - La phase est reliée à la position spatiale,
 - Transformée inverse : besoin de l'amplitude et de la phase,
 - Si l'image est réelle alors la FFT est à symétrie centrale

Transformée de Fourier 2-D discrète : des exemples simples

Lignes verticales de 2 pixels de large

Transformée de Fourier

DFT: des exemples simples

- Lignes verticales :
 - Pas de variation le long de l'axe y,
 - Variation selon l'axe x en relation avec la fréquence spatiale des lignes.

- Pic dans Fourier P(k,l), interprétation:
 - |P(k,l)| relié à la fréquence du signal
 - (O,P(K,I)) perpendiculaire à la direction des lignes

FTD: exemples simples

FTD: exemples réels

Image originale

Amplitude de la TFD

Logarithme de l'amplitude

FTD: exemples réels

FTD: exemples réels

DFT real examples

FTD: information de la phase

Phase de la FTD

Transformée inverse en n'utilisant que l'amplitude

- La valeur de chaque point détermine la phase de la fréquence correspondante,
- L'information de phase est cruciale pour reconstruire l'image dans le domaine spatial

Propriétés de la TFD

$$\hat{G}(v + p, \mu + q) = \hat{G}(v, \mu) \quad (p, q) \in ZxZ$$

$$TFD(\alpha g(n, m) + \beta h(n, m)) = \alpha \hat{G}(v, \mu) + \beta \hat{H}(v, \mu)$$

$$TFD(g(\pm n, \pm m)) = \hat{G}(\pm v, \pm \mu)$$

$$TFD(g^*(n, m)) = \hat{G}^*(v, \mu)$$

$$TFD(g(n, m) e^{-j2\pi(nv_0 + m\mu_0)}) = \hat{G}(v - v_0, \mu - \mu_0)$$

$$TFD(g(n, m) ** h(n, m)) = \hat{G}(v, \mu) \hat{H}(v, \mu)$$

$$TFD(g(n, m) h(n, m)) = \hat{G}(v, \mu) ** \hat{H}(v, \mu)$$

Retour à l'échantillonnage

 Doit être effectué à une fréquence au moins 2 fois supérieure à la plus haute fréquence du signal (fréquence de Nyquist),

 Ou l'image doit être filtrée à une fréquence inférieure à la moitié de la fréquence d'échantillonnage.

Image originale et spectre

Image sous-échantillonnée et spectre

Comparaiseon des images

Image originale

Image sous-échantillonnée

Sous-échantillonnage

- Pour éviter l'aliasing
 - Filtre passe-bas (suppression de toutes les fréquences supérieures à Fe'/2)
 - Effet de flou, mais pas d'artefact introduit

Anti-Aliasing: Example

Traitement des images - introduction

- Qu'est-ce qu'une image ?
- Résolution spatiale et transformée de Fourier
- Quantification et histogramme

Profondeur d'une image

Représentation binaire : b bits, 2^b niveaux

Profondeur : Vision et Image Numérique

- Sensibilité de notre vision
 - Limitée à 6 ou 8 bits par composantes couleur, i.e. max 24 bits
 - Vision: du violet (350nm) au rouge (700nm)
- Images numériques
 - Profondeur plus importante (imagerie médicale, télédétection, ...)
 - Longueurs d'onde : des IRM (0,001nm) aux images micro-ondes (100000nm, étude de la neige)
 - Visualisation: 8 bits = 256 niveaux de gris
 (0 pour le noir et 255 pour le blanc)

Visible domain

Puech William Université Montpellier II - Nîmes

Histogramme d'une image

- Histogramme : distribution des niveaux de gris
 - F(x) = nombre de pixels ayant le niveau de gris x
 - Si normalisé = probabilité du niveau de gris
- Utilisation
 - Relèvement de contraste
 - Classification

Histogramme: exemple

Les modes de l'histogramme peuvent correspondre à des régions d'intérêt (nuages, parties des bateaux, etc.)

Histogramme ... ATTENTION!

Histogramme ... ATTENTION!

Etirement d'histogramme

Étirement linéaire

Égalisation d'histogramme (histogramme plat)

Espaces couleur

• Espace RGB (3 types de phosphores pour l'excitation des couleurs sur un écran)

Colours (cont.)

- Industrie de l'impression : CYM(K) Cyan Yellow
 Magenta (conversion de et vers RGB)
- Teinte (hue), Saturation, Intensité (HSI): artistes, vision

Couleurs (suite)

- YUV: luminance, chrominances (TV)
 - Décorrélation des composantes
 - Y contient l'essentiel de l'information

```
Y=0.299R+0.587G+0.114B
U=-0.147R-0.289G+0.437B
V=0.615R-0.515G-0.100B
```

Composition colorée

- Une composition couleur est une image couleur produite par combinaison optique d'images multibandes par projection à travers des filtres.
- Composition colorée vraie : les couleurs de l'image sont les mêmes que celles de l'objet imagé.
- Composition colorée fausse: les couleurs de l'images ne correspondent pas aux couleurs réelles de l'objet (telles que vues par nos yeux).

TM 7,4,1

TM 5,4,3

TM 5,7,2

TM 4,3,2

Traitement des images - introduction

- Qu'est-ce qu'une image ?
- Résolution spatiale et transformée de Fourier
- Quantification et histogramme
- Filtrage linéaire

Propriété :F(aI+bJ)=aF(I)+bF(J)

- Espace image : convolutiony=x*h
- Domaine de Fourier : multiplication
 Y=XH

Convolution:

- déplacement d'une fenêtre de quelques pixels (e.g. 3x3, 5x5, etc.) sur chaque pixel de l'image,
- application d'un calcul impliquant tous les pixels dans la fenêtre,
- remplacement de la valeur du pixel central par la nouvelle valeur calculée,
- les calculs se font avec les valeurs initiales des pixels.

Domaine image (h noyau de convolution)

$$y(n,m) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} h(k,l)x(n-k,m-l)$$

Domaine fréquentiel

$$Y(f_{x}, f_{y}) = H(f_{x}, f_{y})X(f_{x}, f_{y})$$

Filtre passe-bas :
 suppression du bruit
 (dans les hautes fréquences)

- Filtrage passe-haut ou passe-bande :
 - Sélection des fréquences d'intérêt
 - Hautes fréquences (contours)
 - Fréquences spécifiques (analyse de texture)

Filtre passe-haut = détection de contours

rayures du zèbre : hautes fréquences

herbes: basses fréquences

Filtrage non-linéaire

- Filtres spécifiques
 - filtre médian : la sortie du filtre est la valeur médiane dans une fenêtre donnée,
 - Min / Max : morphologie mathématique
 - filtre de Nagao
- Filtre linéaire "délinéarisé"
 - Moyenne adaptative,
 - Filtre du gradient inverse,
 - Filtre bilatéral

Filtre médian

Filtre de Nagao

Filtre de la moyenne adaptative

Filtre du gradient inverse

Filtre bilatéral

Ce filtre correspond à la combinaison d'un noyau spatial et d'un noyau radiométrique (c'est ce terme qui rend le filtre non-linéaire)

$$f(x_0) = \frac{\sum_{x_j \in \Omega} i(x_j) g_s(||x_j - x_0||) h_r(|i(x_j) - i(x_0)|)}{\sum_{x_j \in \Omega} g_s(||x_j - x_0||) h_r(|i(x_j) - i(x_0)|)}$$

Le plus souvent on choisit des noyaux gaussiens pour le noyau spatial et le noyau radiométrique.