Employment Analysis

Leala Darby

03/11/2020

First load all required packages:

```
library(car)
library(tseries)
library(astsa)
```

Load in the data:

```
dat <- read.csv("employment_data.csv", fileEncoding = 'UTF-8-BOM')
head(dat)</pre>
```

```
##
     Observation.times Time.series.values
## 1
                Feb-78
                                    5985.7
## 2
                Mar-78
                                    6040.6
                Apr-78
                                    6054.2
## 3
## 4
                May-78
                                    6038.3
## 5
                Jun-78
                                    6031.3
## 6
                Jul-78
                                    6036.1
```

Create a time series object from the data and plot

```
ts_dat_test <- ts(dat[, 2], start = c(1978, 2), end = c(2020, 8), frequency = 12)
plot.ts(ts_dat_test)
abline(v = 1993, col = "blue")
abline(v = 2020, col = "blue")</pre>
```


Instructed to truncate data from January 1993 to December 2019 (inclusive)

```
So we only need rows 180-503.
```

```
trunc_dat <- dat[180:503,]
ts_dat <- ts(trunc_dat[, 2], start = c(1993, 1), end = c(2019, 12), frequency = 12)
plot.ts(ts_dat)</pre>
```


plot.ts(diff(ts_dat))

The trend in mean is readily observable. Difficult to determine a trend in variance - there appears to be frequent changes, which are easier to see after incorporating lags of 1. Check statistically for stationarity using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, which has the following hypotheses [...]:

```
kpss.test(ts_dat)
```

```
## Warning in kpss.test(ts_dat): p-value smaller than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: ts_dat
## KPSS Level = 5.4937, Truncation lag parameter = 5, p-value = 0.01
```

The small p-value indicates that we should reject the null and conclude that the ts is not stationary.

As a rough test of constant variance (Levene's isn't really valid because time series data isn't independent)

```
length(ts_dat)
```

```
## [1] 324
```

```
Group <- c(rep(1,81), rep(2, 81), rep(3, 81), rep(4, 81))
leveneTest(ts_dat, Group)</pre>
```

```
## Warning in leveneTest.default(ts_dat, Group): Group coerced to factor.
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 7.2516 0.0001013 ***
## 320
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The small p-value of 0.0001013 confirms that the data exhibits heteroscedasticity. Therefore we will perform a log transformation to attempt to reduce this:

```
log_ts_dat <- log(ts_dat)
plot.ts(cbind(ts_dat, log_ts_dat))</pre>
```

cbind(ts_dat, log_ts_dat)


```
leveneTest(log_ts_dat, Group)

## Warning in leveneTest.default(log_ts_dat, Group): Group coerced to factor.

## Levene's Test for Homogeneity of Variance (center = median)

## Df F value Pr(>F)

## group 3 1.4631 0.2245

## 320
```

At a significance level of 5%, the p-value above of 0.2245 provides very weak evidence and we fail to reject the null hypothesis of equal variance among groups. Thus the heteroscedasticity has been reduced.

Next, to reduce the trend in mean, apply differencing of 1 lag to our TS with stabilised variance:

```
f_ts_dat <- diff(log_ts_dat, 1)
plot.ts(cbind(ts_dat, log_ts_dat, f_ts_dat))</pre>
```

cbind(ts_dat, log_ts_dat, f_ts_dat)

To confirm constant mean and variance and a Gaussian distribution for the time series, a Shapiro-Wilk normality test is performed:

```
hist(f_ts_dat)
```

Histogram of f_ts_dat

shapiro.test(f_ts_dat)

```
##
## Shapiro-Wilk normality test
##
## data: f_ts_dat
## W = 0.96138, p-value = 1.534e-07
```

The small p-value indicates likely non-normality, but this test isn't really valid for TS. Instead, check statistically for stationarity using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test:

```
kpss.test(log_ts_dat)
```

```
## Warning in kpss.test(log_ts_dat): p-value smaller than printed p-value

##
## KPSS Test for Level Stationarity
##
## data: log_ts_dat
## KPSS Level = 5.4933, Truncation lag parameter = 5, p-value = 0.01

kpss.test(f_ts_dat)
```

Warning in kpss.test(f_ts_dat): p-value greater than printed p-value

```
##
## KPSS Test for Level Stationarity
##
## data: f_ts_dat
## KPSS Level = 0.064047, Truncation lag parameter = 5, p-value = 0.1
```

The final ts has a high p-value of 0.1, which is statistically significant at a significance level of 5%. Therefore we fail to reject the null hypothesis, and have reasonable evidence that the final ts is stationary.

Next, the ACF and PACF of the differenced ts are plotted in order to estimate p and q.

acf2(f_ts_dat)

Seasonal patterns are clear, more strongly in the ACF plot. Will fit a SARIMA(p,d,q)(P,D,Q)_s model.

The data being monthly and the ACF plot having its highest peaks at lags h = 12, 24, 36, 48 implies a seasonal trend of 12 would be a good choice. Slow decay over these four peaks suggests there is a difference between seasons. To remove this trend, difference the ts on the seasonal lag:

```
ts_dat_12 <- diff(f_ts_dat, 12)
kpss.test(ts_dat_12) #Big enough to call stationary

## Warning in kpss.test(ts_dat_12): p-value greater than printed p-value

##
## KPSS Test for Level Stationarity
##
## data: ts_dat_12
## KPSS Level = 0.025427, Truncation lag parameter = 5, p-value = 0.1

acf2(ts_dat_12)</pre>
```



```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] ## ACF -0.27 0.12 0.00 0.03 0.05 -0.03 0.05 -0.10 0.17 -0.10 0.11 -0.38 0.06 ## PACF -0.27 0.05 0.05 0.04 0.07 -0.01 0.03 -0.09 0.12 -0.02 0.07 -0.38 -0.16 ## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] ## ACF 0.00 -0.14 0.08 -0.16 0.12 -0.15 0.05 -0.11 0.03 0.04 -0.02 0.04
```

```
## PACF 0.03 -0.09 0.04 -0.07 0.05 -0.09 -0.08 -0.01 0.02 0.09 -0.11 -0.07 ## [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] ## ACF -0.12 0.13 -0.06 0.11 -0.11 0.13 0.00 0.05 0.05 -0.08 -0.01 -0.02 ## PACF -0.09 -0.04 0.05 0.06 -0.02 0.02 -0.05 0.04 0.04 0.05 -0.16 -0.07 ## [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] ## ACF 0.08 -0.09 -0.02 0.02 0.02 0.00 -0.08 0.04 -0.08 -0.01 -0.04 ## PACF -0.03 -0.04 -0.06 0.05 0.04 0.02 -0.09 0.01 0.02 -0.09 -0.14
```

First examine these plots at seasonal lags h = 1S(=12), 2S,... Strong peak at 1S in both the ACF and PACF. Might indicate: 1) ACF and PACF both tail off at seasonal lags after spikes at 1S in both, suggesting P = 1 and Q = 1 2) ACF cuts off after lag 1S and PACF tails off at seasonal lags, suggesting P = 0 and Q = 1 3) ACF tails off at seasonal lags and PACF cuts off after lag 1s, suggesting P = 1 and Q = 0 So $0 \le P \le 1$ and $0 \le Q \le 1$.

Now examine at h = 1, 2, ..., 11 to estimate p and q. This is kind of hard? They don't really seem to tail/cut off in either plot. Try: 1) ACF and PACF both tail off, suggesting p = q = 1 2) ACF cuts off and PACF tails off: p = 0 and q = 1 3) ACF tails off and PACF cuts off: p = 1 and q = 0

```
sarima(log_ts_dat, p = 1, d = 1, q = 1, P = 1, D = 1, Q = 1, S = 12) #AICc -8.161924
```

```
## initial value -5.504137
## iter
          2 value -5.599083
## iter
          3 value -5.658866
## iter
          4 value -5.662290
## iter
          5 value -5.666833
## iter
          6 value -5.671616
## iter
          7 value -5.673051
## iter
          8 value -5.673605
## iter
          9 value -5.673704
## iter
         10 value -5.673742
         11 value -5.673767
## iter
         12 value -5.673873
  iter
         13 value -5.673902
  iter
         14 value -5.673916
## iter
         15 value -5.673927
## iter
## iter
         16 value -5.673931
         16 value -5.673931
## iter
## iter 16 value -5.673931
## final value -5.673931
## converged
## initial
            value -5.656482
## iter
          2 value -5.658138
          3 value -5.659588
## iter
          4 value -5.660390
## iter
## iter
          5 value -5.660497
## iter
          6 value -5.660506
          7 value -5.660510
## iter
          8 value -5.660514
## iter
          9 value -5.660520
## iter
         10 value -5.660523
## iter
         11 value -5.660523
## iter
## iter
         12 value -5.660523
         13 value -5.660523
## iter
         13 value -5.660523
## iter
```

```
## iter 13 value -5.660523
## final value -5.660523
## converged
```


-0.2909 0.1496 -1.9448 0.0527

-0.0220 0.1530 -0.1436 0.8859

ar1 ## ma1

```
0.0975 0.0904 1.0787 0.2816
## sar1
## sma1 -0.6923 0.0682 -10.1501 0.0000
##
## $AIC
## [1] -8.162316
##
## $AICc
## [1] -8.161924
##
## $BIC
## [1] -8.104245
# ttable says ma1 coeff has highest p-value. removing this:
sarima(log_ts_dat, p = 1, d = 1, q = 0, P = 1, D = 1, Q = 1, S = 12) #AICc -8.168226
## initial value -5.504137
## iter 2 value -5.629051
## iter 3 value -5.662992
## iter 4 value -5.665957
## iter 5 value -5.673409
       6 value -5.673859
## iter
## iter 7 value -5.673905
## iter 8 value -5.673908
        9 value -5.673909
## iter
## iter 10 value -5.673910
## iter 10 value -5.673910
## iter 10 value -5.673910
## final value -5.673910
## converged
## initial value -5.656550
## iter 2 value -5.658467
## iter 3 value -5.660091
## iter 4 value -5.660386
## iter 5 value -5.660475
## iter 6 value -5.660489
## iter 6 value -5.660489
## iter 6 value -5.660489
```

final value -5.660489

converged


```
## $AICc
## [1] -8.168226
##
## $BIC
## [1] -8.122003
# ttable says sar1 coeff has highest p-value. removing this:
sarima(log_ts_dat, p = 1, d = 1, q = 0, P = 0, D = 1, Q = 1, S = 12) #AICc -8.1709777
## initial value -5.493660
## iter 2 value -5.650636
## iter 3 value -5.665285
## iter 4 value -5.669238
## iter 5 value -5.670283
## iter 6 value -5.670338
## iter 7 value -5.670339
## iter 8 value -5.670339
## iter 8 value -5.670339
## iter 8 value -5.670339
## final value -5.670339
## converged
## initial value -5.658068
        2 value -5.658608
## iter
## iter 3 value -5.658636
## iter 4 value -5.658637
## iter 4 value -5.658637
## iter 4 value -5.658637
## final value -5.658637
```

converged


```
## [1] -8.170977
##
## $BIC
## [1] -8.136251
```

acf2(ts_dat_4)

Is the standardised residuals plot problematic? The normal Q-Q plot has 2 outliers. The ljung-Box statistic is passable at lag 20.

What if the patterns are quarterly, not yearly?

```
ts_dat_4 <- diff(f_ts_dat, 4)
kpss.test(ts_dat_4) # Again, big enough to call stationary

## Warning in kpss.test(ts_dat_4): p-value greater than printed p-value

##
## KPSS Test for Level Stationarity
##
## data: ts_dat_4
## KPSS Level = 0.016543, Truncation lag parameter = 5, p-value = 0.1</pre>
```


[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

Struggling with the logic here, but the models are marginally better according to AICc

```
sarima(log_ts_dat, p = 1, d = 1, q = 1, P = 3, D = 1, Q = 3, S = 4) #AICc: -8.299593
```

```
## initial value -4.081505
## iter
         2 value -4.727549
## iter
         3 value -5.271372
## iter
         4 value -5.302587
         5 value -5.440285
## iter
## iter
         6 value -5.496142
## iter
         7 value -5.534411
## iter
          8 value -5.544453
         9 value -5.549042
## iter
        10 value -5.560586
## iter
        11 value -5.584249
## iter
        12 value -5.597707
## iter
## iter
        13 value -5.626723
## iter
        14 value -5.639339
        15 value -5.652357
## iter
## iter
       16 value -5.665787
## iter
        17 value -5.674638
## iter
        18 value -5.685247
## iter
        19 value -5.686633
## iter 20 value -5.687953
## iter
        21 value -5.688028
        22 value -5.688609
## iter
## iter
        23 value -5.694614
## iter
        24 value -5.696183
## iter
        25 value -5.698291
        26 value -5.699727
## iter
        27 value -5.700334
## iter
        28 value -5.700680
## iter
## iter
        29 value -5.700839
## iter 30 value -5.700915
## iter 31 value -5.701019
## iter 32 value -5.701090
## iter 33 value -5.701108
## iter 34 value -5.701109
## iter 34 value -5.701109
## iter 34 value -5.701109
## final value -5.701109
```

```
## converged
## initial value -5.617842
  iter
          2 value -5.625830
          3 value -5.626010
##
  iter
##
   iter
          4 value -5.628487
## iter
          5 value -5.630207
## iter
          6 value -5.631186
          7 value -5.631803
## iter
## iter
          8 value -5.632193
##
          9 value -5.632516
  iter
  iter
         10 value -5.632932
         11 value -5.633241
##
   iter
         12 value -5.633335
##
   iter
         13 value -5.633357
   iter
## iter
         14 value -5.633371
## iter
         15 value -5.633393
##
         16 value -5.633415
  iter
         17 value -5.633425
## iter
         18 value -5.633426
         18 value -5.633426
## iter
## final value -5.633426
## converged
```


\$fit

```
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
      Q), period = S), include.mean = !no.constant, transform.pars = trans, fixed = fixed,
##
      optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
## Coefficients:
                     ma1
                             sar1
                                      sar2
                                              sar3
                                                      sma1
                                                              sma2
                                                                       sma3
            ar1
##
        -0.3000 -0.0201 -0.9757 -0.9652 0.0289 0.0285 -0.0727
                                                                    -0.6568
## s.e.
        0.1451
                  0.1490
                           0.1010
                                    0.1007 0.0992 0.0845
                                                             0.0480
                                                                     0.0554
##
## sigma^2 estimated as 1.17e-05: log likelihood = 1344.42, aic = -2670.84
## $degrees_of_freedom
## [1] 311
##
## $ttable
##
                    SE t.value p.value
       Estimate
        -0.3000 0.1451 -2.0673 0.0395
        -0.0201 0.1490 -0.1349 0.8928
## ma1
## sar1 -0.9757 0.1010 -9.6646 0.0000
## sar2 -0.9652 0.1007 -9.5880 0.0000
## sar3
       0.0289 0.0992
                         0.2915 0.7709
        0.0285 0.0845
                         0.3372 0.7362
## sma1
## sma2 -0.0727 0.0480 -1.5135 0.1312
## sma3 -0.6568 0.0554 -11.8555 0.0000
## $AIC
## [1] -8.294544
##
## $AICc
## [1] -8.293115
##
## $BIC
## [1] -8.189305
sarima(log_ts_dat, p = 1, d = 1, q = 0, P = 2, D = 1, Q = 3, S = 4) #AICc: -8.305847
## initial value -4.081256
## iter 2 value -4.591308
## iter 3 value -4.920286
## iter 4 value -5.126698
## iter
       5 value -5.153228
## iter
       6 value -5.381005
## iter
        7 value -5.431987
## iter
       8 value -5.560837
## iter
        9 value -5.583815
## iter 10 value -5.645621
## iter 11 value -5.665060
## iter 12 value -5.672307
## iter 13 value -5.677953
## iter 14 value -5.679613
## iter 15 value -5.680558
## iter 16 value -5.680821
## iter 17 value -5.683850
```

```
## iter 18 value -5.684054
## iter
         19 value -5.684066
         20 value -5.684067
         20 value -5.684067
## iter
## iter
         20 value -5.684067
## final value -5.684067
## converged
## initial value -5.621352
## iter
          2 value -5.621695
          3 value -5.625546
## iter
## iter
          4 value -5.627344
          5 value -5.628543
## iter
          6 value -5.630693
  iter
## iter
          7 value -5.632693
## iter
          8 value -5.633256
## iter
          9 value -5.633272
## iter
         10 value -5.633279
         10 value -5.633279
## iter 10 value -5.633279
## final value -5.633279
## converged
```


\$fit ## ## Call:

```
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, d))
##
       Q), period = S), include.mean = !no.constant, transform.pars = trans, fixed = fixed,
##
       optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
## Coefficients:
##
             ar1
                    sar1
                             sar2
                                     sma1
                                               sma2
                                                        sma3
         -0.3164 -1.005 -0.9945 0.0478
                                           -0.0712
##
                                                     -0.6575
                   0.006
## s.e.
         0.0549
                           0.0032 0.0499
                                             0.0480
                                                      0.0545
##
## sigma^2 estimated as 1.171e-05: log likelihood = 1344.37, aic = -2674.75
## $degrees_of_freedom
## [1] 313
##
## $ttable
##
        Estimate
                     SE
                          t.value p.value
## ar1
                          -5.7650 0.0000
         -0.3164 0.0549
## sar1 -1.0050 0.0060 -168.0239
                                   0.0000
## sar2 -0.9945 0.0032 -312.9062 0.0000
## sma1
         0.0478 0.0499
                           0.9596
                                   0.3380
## sma2 -0.0712 0.0480
                          -1.4841 0.1388
## sma3 -0.6575 0.0545 -12.0661 0.0000
##
## $AIC
## [1] -8.306675
## $AICc
## [1] -8.305847
##
## $BIC
## [1] -8.224823
What if the patterns are bi-monthly?
ts_dat_2 <- diff(f_ts_dat, 2)</pre>
kpss.test(ts_dat_2) # Again, big enough to call stationary
## Warning in kpss.test(ts_dat_2): p-value greater than printed p-value
  KPSS Test for Level Stationarity
##
##
## data: ts_dat_2
## KPSS Level = 0.037237, Truncation lag parameter = 5, p-value = 0.1
acf2(ts_dat_2)
```



```
## ACF -0.44 -0.29 0.47 -0.38 -0.03 0.34 -0.05 -0.36 0.47 -0.26 -0.43 0.89 ## PACF -0.44 -0.20 0.01 -0.41 -0.37 -0.34 0.23 -0.43 0.53 -0.62 -0.17 0.12 ## ACF -0.42 -0.23 0.44 -0.37 -0.02 0.33 -0.05 -0.34 0.44 -0.25 -0.39 0.84 ## PACF 0.09 0.04 0.00 -0.06 0.01 -0.10 0.09 0.01 0.01 -0.18 -0.10 0.06 ## ACF -0.41 -0.20 0.42 -0.37 -0.01 0.30 -0.05 -0.32 0.42 -0.22 -0.38 0.78 ## ACF -0.04 0.04 -0.05 0.06 -0.04 -0.02 0.01 -0.02 0.04 0.02 0.02 0.02 ## [,37] [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] ## ACF -0.39 -0.18 0.40 -0.36 -0.01 0.05 0.06 0.07 0.01 -0.08 0.01 0.02 0.02
```

Again, this logic is a bit tricky Seasonal: ACF tails off, PACF cuts off \rightarrow P=5 Lags h = 1 One or both tail off, p=q=1?

sarima(log_ts_dat, p = 1, d = 1, q = 1, P = 5, D = 1, Q = 0, S = 2) #AICc -8.122763, ttable says to rem

```
## initial value -4.254801

## iter 2 value -4.777723

## iter 3 value -4.998184

## iter 4 value -5.122359

## iter 5 value -5.280841

## iter 6 value -5.353363

## iter 7 value -5.497746
```

```
## iter
        8 value -5.510340
## iter
        9 value -5.533942
## iter 10 value -5.554532
## iter 11 value -5.561559
## iter 12 value -5.562301
## iter 13 value -5.562840
## iter 14 value -5.563453
## iter 15 value -5.563664
## iter 16 value -5.564776
## iter 17 value -5.564946
## iter
       18 value -5.564951
## iter
        19 value -5.564994
## iter 20 value -5.565042
## iter 21 value -5.565167
## iter 22 value -5.565374
## iter 23 value -5.565675
## iter 24 value -5.565763
## iter 25 value -5.565872
## iter 26 value -5.565883
## iter 27 value -5.565884
## iter 27 value -5.565884
## iter 27 value -5.565884
## final value -5.565884
## converged
## initial value -5.517183
        2 value -5.517320
## iter
## iter
        3 value -5.517601
## iter
        4 value -5.517659
## iter
        5 value -5.517966
        6 value -5.518091
## iter
        7 value -5.518295
## iter
## iter
         8 value -5.518338
## iter
         9 value -5.518383
## iter 10 value -5.518423
## iter
        11 value -5.518431
## iter 12 value -5.518435
## iter 13 value -5.518442
## iter 14 value -5.518446
## iter 15 value -5.518448
## iter 16 value -5.518450
## iter 16 value -5.518450
## final value -5.518450
## converged
```



```
##
## $AIC
## [1] -8.12387
##
## $AICc
## [1] -8.122763
##
## $BIC
## [1] -8.03017
sarima(log_ts_dat, p = 1, d = 1, q = 0, P = 5, D = 1, Q = 0, S = 2) #AICc -8.129134
## initial value -4.254801
        2 value -4.669800
## iter
## iter
        3 value -4.994879
## iter
        4 value -5.084156
        5 value -5.084377
## iter
## iter
        6 value -5.182845
## iter
        7 value -5.410068
       8 value -5.459143
## iter
## iter
        9 value -5.521054
## iter 10 value -5.547250
## iter 11 value -5.556718
## iter 12 value -5.559060
## iter 13 value -5.562707
## iter 14 value -5.564062
## iter 15 value -5.564571
## iter 16 value -5.565220
## iter 17 value -5.565574
## iter 18 value -5.565695
## iter 19 value -5.565800
## iter 20 value -5.565812
## iter 21 value -5.565827
## iter 22 value -5.565833
## iter 22 value -5.565833
## iter 22 value -5.565833
## final value -5.565833
## converged
## initial value -5.517132
## iter 2 value -5.517239
       3 value -5.517552
## iter
## iter
       4 value -5.517769
       5 value -5.517954
## iter
## iter
        6 value -5.518092
## iter
        7 value -5.518183
## iter
        8 value -5.518274
## iter
        9 value -5.518324
## iter 10 value -5.518360
## iter 11 value -5.518376
## iter 12 value -5.518380
## iter 13 value -5.518385
## iter 14 value -5.518390
## iter 14 value -5.518390
## final value -5.518390
```


The residuals look better here, but Ljung-Box is worse