Take Off with Data:

Spark Airlines' Journey to Outsmart Flight Delays

261 Final Project - Team 2-1

Heesuk Jang

Karsyn Lee

Stephanie Cabanela

Raymond Tang

Overview

O1 Abstract & Project Description

Abstract

At Spark Airlines, we believe in the transformative power of travel in connecting people to the world.

Our mission is to do the right thing for our **customers**, **communities**, **and planet**.

Business Use Case

Business Problem: Predicting departure flight delays

Why do we care?

At Spark Airlines, our mission is to do the right thing for our **customers**, **communities**, **and planet**.

Impact of flight delays:

- *Customers* → passenger dissatisfaction
- *Communities* → financial time and economic losses
- Planet → increase carbon emissions

Business Use Case

Business Problem: Predicting departure flight delays

Business Solution: Binary Classification Model

- My flight is scheduled to departure in 2 hours. Will there be a delay?
- Departure Delay >= 15 minutes

Business Metrics

Primary Metric:

• F2 Score (beta = 2.0)

$$F_{\beta} = (1 + \beta^2) \cdot rac{\operatorname{precision} \cdot \operatorname{recall}}{(\beta^2 \cdot \operatorname{precision}) + \operatorname{recall}}.$$

Secondary Metrics for Results based analysis:

- Recall
- Precision

Dataset

The Full Dataset

OTPW – joined dataset of ontime flight performance and weather data from 2015 – 2019

- 216 columns, 31.7 million rows
- data types: int, float, string, date, time features exist
- target variable = DEP_DEL15

Dataset

What did we focus on for Phase 2?

- 3 month OTPW: Jan 2015 March 2015 faster iterative development
 - o 216 columns, 1.4 million rows
- 1 year OTPW: Jan 2015 December 2015 evaluation on baseline model pipeline
 - o 216 columns, 11.6 million rows

02

EDA & Feature Engineering

Summary Statistics on the Selected Columns

column	description	count	mean	stddev	min	max
MONTH int		11623708	6.524	3.405	1	12
QUARTER int	Time-related features that capture the temporal context of flights. Seasonality and	11623708	2.508	1.107	1	4
YEAR int	specific days or periods (like weekends, holidays, or vacation seasons) can	11623708	2015.000	0.000	2015	2015
DAY_OF_MONTH int	significantly influence flight schedules and the likelihood of delays.	11623708	15.703	8.783	1	31
DAY_OF_WEEK int		11623708	3.927	1.989	1	7
DISTANCE float	The length of the flight can impact the likelihood of delays due to factors like fueling time and air traffic.	11623708	821.542	607.271	21	4983
DEP_DEL15 float	Target Variable	11451590	0.184	0.388	0	1
ELEVATION float	Airport elevation can affect aircraft performance, possibly influencing departure times.	11623708	251.928	398.849	0.3	2353.1
CRS_DEP_TIME int	The scheduled departure time and expected flight duration can be significant	11623708	1329.606	483.246	1	2359
CRS_ELAPSED_TIME fit	predictors of delays, especially during peak hours or longer flights.	11623696	141.594	75.172	18	718
DIVERTED float	Flights that have been diverted in the past may have a higher chance of future delays.	11623708	0.003	0.051	0	1
FLIGHTS float	The number of flights (frequency) could indicate busier periods more prone to delays.	11623708	1.000	0.000	1	1
DISTANCE_GROUP int	Grouping flights by distance can help identify delay patterns for short, medium, and long-haul flights.	11623708	3.759	2.392	1	11
DEST str	The departure and arrival airports can be crucial factors as some airports might have	11623708	n/a	n/a	ABE	YUM
ORIGIN str	higher instances of delays due to factors like traffic, weather, or operational issues.	11623708	n/a	n/a	ABE	YUM
OP_UNIQUE_CARRIER str	The airline operating the flight often influences delay patterns due to varying operational efficiencies and policies.	11623708	n/a	n/a	AA	WN
TAIL_NUM str	Specific aircraft might have different reliability or maintenance records, affecting departure punctuality.	11594302	n/a	n/a	7819A	N9EAMQ
HourlyWindSpeed int		11589326	8.893	5.344	0	67
HourlyPrecipitation float	Weather conditions at the time of the flight can significantly impact flight schedules,	9695354	0.003	0.031	0	5.76
HourlyRelativeHumidity int	with adverse weather often leading to delays.	11591308	60.385	21.465	1	100
HourlyVisibility float		11583804	9.390	1.881	0	99.42

Summary Statistics on the Selected Columns

column	count	mean	stddev	min	max
MONTH int	11623708	6.524	3.405	1	12
QUARTER int	11623708	2.508	1.107	1	4
YEAR int	11623708	2015.000	0.000	2015	2015
DAY_OF_MONTH int	11623708	15.703	8.783	1	31
DAY_OF_WEEK int	11623708	3.927	1.989	1	7
DISTANCE float	11623708	821.542	607.271	21	4983
DEP_DEL15 float	11451590	0.184	0.388	0	1
ELEVATION float	11623708	251.928	398.849	0.3	2353.1
CRS_DEP_TIME int	11623708	1329.606	483.246	1	2359
CRS_ELAPSED_TIME flt	11623696	141.594	75.172	18	718
DIVERTED float	11623708	0.003	0.051	0	1
FLIGHTS float	11623708	1.000	0.000	1	1
DISTANCE_GROUP int	11623708	3.759	2.392	1	11
DEST str	11623708	n/a	n/a	ABE	YUM
ORIGIN str	11623708	n/a	n/a	ABE	YUM
OP_UNIQUE_CARRIER str	11623708	n/a	n/a	AA	WN
TAIL_NUM str	11594302	n/a	n/a	7819A	N9EAMQ
HourlyWindSpeed int	11589326	8.893	5.344	0	67
HourlyPrecipitation float	9695354	0.003	0.031	0	5.76
HourlyRelativeHumidity int	11591308	60.385	21.465	1	100
HourlyVisibility float	11583804	9.390	1.881	0	99.42

Summary Statistics on the Selected Columns

Column Name	count	mean	stddev	min	max
CRS_DEP_TIME	6019064	1398.150132	478.7325967	1	2359
DISTANCE	6019064	855.1018351	619.6686513	25	4983
ELEVATION	6019064	250.9033566	405.2289741	0.3	2353.1
DAY_OF_WEEK_sin	6019064	0.009237530767	0.7077602777	-0.9749279122	0.9749279122
DAY_OF_WEEK_cos	6019064	-0.02663869855	0.705889937	-0.9009688679	1
CRS_DEP_HOUR_sin	6019064	-0.1910342823	0.7309022564	-1	1
CRS_DEP_HOUR_cos	6019064	-0.3496396667	0.5541119361	-1	1
DAY_HOUR_interaction	6019064	107.9863007	47.92791738	24	191
TIME_INTERVAL_OF_DAY	6019064	0.590492143	0.9047150268	0	3
DAY_OF_MONTH	6019064	15.71623445	8.757503842	1	31
MONTH	6019064	6.485082564	3.375486249	1	12
HourlyPrecipitation	5023508	0.004005035907	0.0358555068	0	10.14
HourlyRelativeHumidity	6001313	60.64908229	21.85803803	1	100
HourlyVisibility	5997882	9.429484471	1.814999919	0	99.42
HourlyWindSpeed	6000947	9.179732632	5.621403246	0	2237
CRS_ELAPSED_TIME	6019063	146.2590604	76.67994459	4	718
OP_UNIQUE_CARRIER	6019064	None	None	AA-US	WN
ORIGIN	6019064	None	None	ABE	YUM
DEST	6019064	None	None	ABE	YUM
TAIL_NUM	6019064	None	None	7819A	PLANET
CARRIER_SIZE	6019064	None	None	CARRIER_LARGE	CARRIER_SMALL
DAY_TYPE	6019064	None	None	weekday	weekend
DEGREE_VISIBILITY	6019064	None	None	HIGH_VISIBILITY	LOW_VISIBILITY
FL_DISTANCE_GROUP	6019064	None	None	DIST_LONG	DIST_SHORTEST
5_DAYS_DIST_FROM_Independence	6019064	967460.5849	177425.0239	-1	999999
7_DAYS_DIST_FROM_Christmas	6019064	956906.5988	203065.1122	-1	999999
7_DAYS_DIST_FROM_NewYear	6019064	974644.3416	157199.5208	0	999999
DIVERTED	6019064	0.003215948526	0.0566180778	0	1
dep_del15_2hr_before	6019064	0.8829175101	0.3215185805	0	1

LASSO Feature Selection

Features	Coefficients
CRS_DEP_TIME	0.035599072873419756
HourlyRelativeHumidity_imputed	0.018687284077983014
HourlyWindSpeed_imputed	0.009424083809546286
6_DAYS_DIST_FROM_NewYear_idx	0.007825974350104068
CRS_ELAPSED_TIME_imputed	0.003791426948673926
HourlyPrecipitation_imputed	0.002668667189096292
6_DAYS_DIST_FROM_Christmas_idx	0.0008842165651147551
3_DAYS_DIST_FROM_Independence_idx	0
FL_DISTANCE_GROUP_idx	0
DEGREE_VISIBILITY_idx	0
DAY_TYPE_idx	0
CARRIER_SIZE_idx	0
TAIL_NUM_idx	0
OP_UNIQUE_CARRIER_idx	0
DIVERTED	0
MONTH	0
DAY_OF_MONTH	0
DAY_HOUR_interaction	0
CRS_DEP_HOUR_cos	0
DAY_OF_WEEK_cos	0
DAY_OF_WEEK_sin	0
ELEVATION	0
DISTANCE	0
DEST_idx	-0.00007749139001021719
ORIGIN_idx	-0.0001549738987923603
HourlyVisibility_imputed	-0.009176450353314968
TIME_INTERVAL_OF_DAY	-0.009557272962663378
CRS_DEP_HOUR_sin	-0.06712880652735072

Pearson Correlation Analysis

EDA

Under-Sampling

- Imbalanced data significantly more observations were recorded where the flight was on time
- Non-delayed is 5x more than Delayed flights

Df_cleaned

Numeric Data

Data Pre-Processing

String Index

& One-Hot Encoding

Numeric & Categorical Variables

Categorical Data

This is the string index shown below.

One-Hot Encoding:

 $ABCD \Rightarrow 1234 \Rightarrow [000$

1,0100,...]

OP_UNIQUE_CARRIER_idx	ORIGIN_idx 🔺	DEST_idx 🔺
2	4	16
2	2	38
2	4	16

OP_UNIQUE_CARRIER	ORIGIN -	DEST
AA	LAX	JFK
AA	DFW	HNL
AA	LAX	JFK

EDA

Departure Delay Fact

• Delay Interval Distribution

- Early Departure: more than 50%
- o 0-15 Minute Delay: 19%

• Cause of Delay (in Minutes)

- Late Aircraft Delay: 44%
- o Carrier Delay: 35%
- National Air System Delay: 16%
- Weather Delay: 5%

EDA

Seasonality Analysis

- **Delay** by **Day of Year**
 - Holiday Effect:
 - July 4th
 - New Year's day
 - Christmas

Trend Analysis

- Delay by Day of Week
 - Days with the highest delays:
 - Thursday: 15%
 - Friday: 15%
 - Days with the lowest delays:
 - Sunday: 14%
 - Saturday: 12%
- Delay by Hour of Day
 - Time interval pattern:
 - Afternoon & evening (1 PM 7
 PM) with high delays
 - Early morning & night time with low delays
- Delay by Day of Month
- **Delay** by **Quarter**
- **Delay** by **Month**

Operational-associated

• Distance of the Flight:

Likelihood of delays due to factors like fueling time and air traffic.

 In general, shorter distances are associated with higher departure delays.

• Airline operation:

Often influence delay pattern due to varying operational efficiencies and policies.

- Top three airlines with the highest departure delay:
 - Southwest airlines
 - Delta airlines
 - American airlines

EDA

Weather-associated

- HourlyWindSpeed:
 The median wind speed for delayed flights is higher than that for non-delayed flights.
- **HourlyVisibility:**Notable difference with delayed flights having a lower median.
- HourlyPrecipitation: Instances of delay at higher precipitation levels.
- HourlyRelativeHumidity:
 The median relative humidity is higher for delayed flights.

Feature Engineering

Seasonality-based Features:

 The number of days before/after the most impactful holidays

5_DAYS_DIST_FROM_Independence

7_DAYS_DIST_FROM_NewYear

Time-based Features

 Capture the cyclical hidden trends in flight delays

del15_2hr_before: Delay 15 minutes or greater in the past 2 hours, not just the direct previous flight (1 = yes, 0 = no)

DAY_TYPE (1 = weekend, 0 = weekdays)

DAY_OF_WEEK_sin & DAY_OF_WEEK_cos

CRS_DEP_HOUR_sin & CRS_DEP_HOUR_cos

DAY_HOUR_interaction

Operational-based Features

 Influence on the logistics and management of flight operations

FL_DISTANCE_GROUP: Grouped by travel distance

CARRIER_SIZE: Carrier Size by the Number of Flights

03 Modeling Pipeline

Data Pre-Processing

Data Pre-Processing

Pre-Processing Step	Further Details
Remove outliers or missing values	
Feature selection	Use Pearson Correlation and LASSO to select relevant features.
Feature type casting	String to numeric, categorical, date/time.
Extra clean up	variable formatting and removal of canceled flights.
Train-test split	Specified further in next slide.
Data imputation	 Categorical Features - String Indexing and One-Hot Encoding for categorical features. Numeric Features - Create feature vectors & standardize using Standard Scaler with mean.

Cross Validation Split for Time

Series

- Train set 2015-2017 ~ 6 million rows (after undersampling)
- Val set 2018 ~ 7 million rows
- Test held-out set 2019 ~ 7.4 million rows

OTPW 5 Year Cross Validation

- 5 Folds 80/20 train/val per fold
- Train size per fold ~ 960k rows
- Val size per fold ~ 240k rows

5 Fold Blocking Time Series Cross Validation

Evaluation Metrics

Primary Metric:

• F2 Score

Secondary Metrics for Results based analysis:

- Recall
- Precision

Beta Value	5-fold CV F-Beta Score
1.1	0.6054
1.2	0.6059
1.3	0.6065
1.4	0.6072
1.5	0.6079
1.6	0.6087
1.7	0.6094
1.8	0.6101
1.9	0.6108
2.0	0.6114

Train / Test time series split and checkpoint to DeltaLake

(Took 7m)

Categorical Features: Stringldx **Coding &** merge in Vector **Assembler**

Numeric Features: **Normalizat** ion & Standard Scalar

Train

Binomial

Logistic

Regression

Model with

Cross-Valid

Grid Search

ation and

Time-Series Split

Parallel

Processing

Evaluation Metrics computation

(Took 45m)

(Took 5m) **Baseline Pipeline**

Come up with default layers **MLP NN** Grid Search tuning

Hyperparameter Tuning

Bayesian Optimization

XGBoost tuning

Advanced Pipeline

Decision Tree and Ensembles

Basic Decision Tree

- 1. Start from top
- 2. Make a decision
- 3. Split into branches
- 4. Keep asking
- 5. Leaf nodes

Random Forest Tree Ensemble

- 1. Build Multiple Trees
- 2. Randomness
- 3. Voting

Gradient Boosting Tree Ensemble

- 1. Building Trees
 Sequentially
- Learning from Errors
- 3. Combining Predictions

Multi-layer Perceptron Classifier

Multilayer perceptron classifier (MLPC) is a classifier based on the feedforward artificial neural network. MLPC consists of multiple layers of nodes. Each layer is fully connected to the next layer in the network.

- Layers = [31, 64, 32, 16, 8, 2]
- weights w and bias b with K+1 layers

$$\mathbf{y}(\mathbf{x}) = \mathbf{f}_{\mathbf{K}}(\dots \mathbf{f}_{2}(\mathbf{w}_{2}^{T}\mathbf{f}_{1}(\mathbf{w}_{1}^{T}\mathbf{x} + b_{1}) + b_{2})\dots + b_{K})$$

4 hidden layers (Sigmoid)

$$\mathrm{f}(z_i) = \frac{1}{1+e^{-z_i}}$$

- 1 output layer (Softmax)
- 2 Classes

$$\mathrm{f}(z_i) = \frac{e^{z_i}}{\sum_{k=1}^N e^{z_k}}$$

04 Results & Next Steps

Results

Training:

F2 Score: 0.6351

Recall: 0.6357

Precision: 0.6351

Validation:

F2 Score: 0.6114

Recall: 0.6216

Precision: 0.6282

Confusion Matrix:

	TRUE		
PREDICTION	Not Delayed (0)	Delayed (1)	
Not Delayed (0)	258,806 34.98%	113,751 15.37%	
Delayed (1)	166,211 22.47%	201,086 27.18%	

Results on Train vs Validation

Model Granularity	Best Hyperparameter	F2 Score	Recall	Precision	Training Time
Baseline	maxIter, [100], regParam, [0.01] elasticNetParam, [0.0]	Train: 0.6503 Val: 0.5476	Train: 0.6569 Val: 0.5497	Train: 0.6719 Val: 0.7939	9.495 min
Logistic w/ engineer features	maxIter, [100], regParam, [0.01] elasticNetParam, [0.0]	Train: 0.5488 Val: 0.5751	Train: 0.5181 Val: 0.5264	Train: 0.7196 Val: 0.9124	9.917 min
Basic Decision Tree	impurity, ['entropy'], maxDepth, [30] minWeightFractionPerNode, [0.08]	Train: 0.6215 Val: 0.6000	Train: 0.6130 Val: 0.5538	Train: 0.6583 Val: 0.9002	13.325 min
Gradient Boosting Tree Ensemble	maxIter, [100], maxDepth, [30] stepSize, [0.1] minWeightFractionPerNode, [0.08]	Train: 0.6204 Val: 0.6300	Train: 0.6009 Val: 0.5849	Train: 0.7128 Val: 0.9114	1.13 hrs
Random Forest Tree Ensemble	impurity, ['entropy'],numTrees, [50] maxDepth, [30], bootstrap, [True] minWeightFractionPerNode, [0.03]	Train: 0.5377 Val: 0.5399	Train: 0.5059 Val: 0.4894	Train: 0.7183 Val: 0.9194	21.6 min
Multilayer Perceptron NN	maxIter, [100], blockSize, [128] stepSize, [0.03]	Train: 0.5902 Val: 0.6075	Train: 0.5672 Val: 0.5614	Train: 0.7045 Val: 0.9047	3.11 hrs

Final Model Results on Test Set

- Re-train Gradient Boosting Tree Ensemble model on 2015-2018
- Held-Out Test on 2019

Model Granularity	Best Hyperparameter	F2 Score	Recall	Precision	Training Time
Gradient Boosting Tree	maxIter, [100] maxDepth, [30] stepSize, [0.1]	Train: 0.6203	Train: 0.6019	Train: 0.7069	1.48 hrs
Ensemble	minWeightFractionPerNode, [0.08]	Test: 0.6407	Test: 0.5969	Test: 0.9066	

Leakage

Model Granularity	F2 Score	Leakage?
Baseline	Train: 0.6503 Val: 0.5476	
Logistic added engineered features	Train: 0.5488 Val: 0.5751	
Basic Decision Tree	Train: 0.6215 Val: 0.6000	
Gradient Boosting Tree Ensemble	Train: 0.6204 Val: 0.6300	
Random Forest Tree Ensemble	Train: 0.5377 Val: 0.5399	

Results

Area under ROC curve

F Beta score: 0.5808588926654742

Confusion Matrix:

	Predicted	
TRUE	Not Delayed (0)	Delayed (1)
Not Delayed (0)	1034100	1189
	99.90%	0.60%
Delayed (1)	264704	1753
	99.30%	0.10%

Discussion of Results

Performance & Scalability Concerns

Performance & Scalability

- Used Delta Lake which gave efficiency boost over parquet
- We learned that utilizing cache() at the right places is very critical!
- Many Variables act as proxies for the others

Feature Engineering (cont'd)

Operational Features

- Distance wise (in Miles):
 - Short distance (1): < 749
 - Medium distance (2): >= 750 and < 1249
 - Long-haul distance (3): >= 1250

Weather-related Features

• High (0) or Low (1) *hourly visibility* with threshold of < 10

05 Conclusion & Next Steps

Concluding Remarks

- Best performing model
 - Gradient Boosting Tree Ensemble sequential complexity
- Number of features 31
 - Opportunity to slim down
- Next steps
 - Significant improvement on Precision
 - Less significant improvement on Recall

Top 10 Best Features - Based on LASSO Coeff.		
CRS_DEP_TIME		
HourlyRelativeHumudity_Imputed		
HourlyWindSpeed_imputed		
6_DAYS_DIST_FROM_NewYear_idx		
CRS_ELAPSED_TIME_imputed		
HourlyPrecipitation_imputed		
6_DAYS_DIST_FROM_Christmas_idx		
HourlyVisibility_imputed		
TIME_INTERVAL_OF_DAY		
CRS_DEP_HOUR_sin		

Future Work

- Advanced imputation & future work
 - Seasonal ARIMA more advanced approach
 - Currently debugging
- Anomaly outlier detection

Do you have any questions?

Contact:

Heesuk Jang – <u>jheesuk@ischool.berkeley.edu</u>

Karsyn Lee – <u>karsyn@ischool.berkeley.edu</u>

Stephanie Cabanela – <u>scabanela@ischool.berkeley.edu</u>

Raymond Tang – <u>raymond.tang@ischool.berkeley.edu</u>

Credits: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

Please keep this slide for attribution

