Domande Informatica Teorica

1. Cos'è un problema di decisione?

Solution: Un problema di decisione è una domanda a cui rispondere *Sì* o *No*. Formalmente, è costituito da 3 elementi:

- Nome del problema
- Istanza degli oggetti considerati
- Domanda, ovvero proprietà che gli oggetti possono o meno soddisfare
- 2. Come dimostrare l'esistenza di problemi non decidibili, senza mostrarne un esempio?

Solution: Per studiare la decidibilità di un problema Π ci sono due possibili approcci:

• Trovare un programma P_{Π} che calcola la funzione soluzione

$$\Phi_{\Pi}: D \to \{0, 1\} \text{ t.c. } \Phi_{\Pi}(x) = \begin{cases} 1 & \text{se } p(x) \\ 0 & \text{se } \neg p(x) \end{cases}$$

di conseguenza $\Phi_{\Pi} \in \mathcal{T}$

• Se $\Phi_{\Pi} \in \mathcal{T}$, allora esiste un programma che la calcola

Di conseguenza, i problemi risolvibili PROG sono isomorfi alle funzioni calcolabili, quindi numerabili, mentre tutti i possibili problemi sono rappresentati dalle funzioni da \mathbb{N} a \mathbb{N} (dato quanto già visto), isomorfe a $\mathbb{N}^{\mathbb{N}}$, quindi:

$$\mathrm{DATI} \sim \mathrm{PROG} \sim \mathbb{N} \nsim \mathbb{N}_{+}^{\mathbb{N}}$$

Per dimostrare che DATI $\sim \mathbb{N}$: serve una funzione tale che permetta una biezione tra dati e \mathbb{N} , come la funzione coppia di Cantor

$$\langle _, _ \rangle : \mathbb{N} \times \mathbb{N} \to \mathbb{N}^+$$

(banalmente estendibile a tutto \mathbb{N}).

Per dimostrare che PROG $\sim \mathbb{N}$: una volta definito un sistema di calcolo e i relativi comandi, si può mostrare una codifica per questi che porta a una biezione con \mathbb{N} .

Alternativamente, un problema di decisione può essere comparato al riconoscimento di un linguaggio $L \subseteq \Sigma^*$, per un alfabeto Σ di conseguenza:

- Il numero possibile di linguaggi è $P(\Sigma^*) \sim \mathbb{R}$
- I sistemi di calcolo sono in quantità PROG $\sim \mathbb{N}$

Per forza devono esistere linguaggi non decidibili.

3. Il problema dell'arresto: definizione e dimostrazione.

Solution: Definizione del problema dell'arresto:

- Nome: AR
- Istanza: $x, y \in \mathbb{N}$
- Domanda: $\varphi_y(x) \downarrow$?

Teorema 0.1. AR è indecidibile.

Dimostrazione. Assumiamo per assurdo che AR sia decidibile, allora esiste una funzione soluzione

$$\Phi_{AR}(x,y) = \begin{cases} 0 & \text{se } \varphi_y(x) \uparrow \\ 1 & \text{se } \varphi_y(x) \downarrow \end{cases}$$

Valutando il caso in cui x = y

$$\Phi_{AR}(x,x) = \begin{cases} 0 & \text{se } \varphi_x(x) \uparrow \\ 1 & \text{se } \varphi_x(x) \downarrow \end{cases}$$

Visto che $\Phi_{AR} \in \mathcal{T}$, anche la funzione

$$f(x) = \begin{cases} 0 & \text{se } \Phi_{AR}(x) = 0 \equiv \varphi_x(x) \uparrow \\ \varphi_x(x) + 1 & \text{se } \Phi_{AR}(x) = 1 \equiv \varphi_x(x) \downarrow \end{cases} \in \mathcal{T}$$

Sia $\alpha \in \mathbb{N}$ la codifica di A tale che $\varphi_{\alpha} = f$. Valutiamo φ_{α} in α :

$$\varphi_{\alpha}(\alpha) = \begin{cases} 0 & \text{se } \varphi_{\alpha}(\alpha) \uparrow \\ \varphi_{\alpha}(\alpha) + 1 & \text{se } \varphi_{\alpha}(\alpha) \downarrow \end{cases}$$

Ma tale funzione non può esistere:

- Nel primo caso $\varphi_{\alpha}(\alpha) = 0$ se $\varphi_{\alpha}(\alpha) \uparrow$, ma è una contraddizione
- Nel secondo caso $\varphi_{\alpha}(\alpha) = \varphi_{\alpha}(\alpha) + 1$, ma tale relazione non vale per nessum naturale

Siamo a un assurdo, AR è indecidibile.

4. Sistemi di calcolo visti in Teoria della Calcolabilità.

Solution: I sistemi di calcolo visti sono:

- Sistema RAM: infiniti registri, R_0 contiene l'output, R_1 l'input, si ha un program counter L, le istruzioni sono
 - Incremento: $R_k \leftarrow R_k + 1$
 - Decremento: $R_k \leftarrow R_k 1$
 - Salto condizionato: if $R_k = 0$ goto m, con $m \in \{1, \ldots, |P|\}$
- Sistema WHILE: 21 registri, x_0 output, x_1 input, sono presenti dei comandi base:
 - $-x_k := x_j + 1$
 - $-x_k := x_j \div 1$
 - $-x_k := 0$
 - e dei comandi definiti induttivamente:
 - Comando composto

begin
$$C_1, \ldots, C_n$$
 end

dove ogni ${\cal C}_i$ è un qualsiasi comando

- Comando while

while
$$x_k \neq 0$$
 do C

dove C è un qualsiasi comando

Di conseguenza, un programma WHILE è un comando composto

5. Approfondimento su RAM (struttura, istruzioni, stato prossimo, computazione)

Solution: Il sistema RAM permette infiniti registri, tra i quali R_0 contiene l'output e R_1 l'input, si ha inoltre un program counter L per tenere traccia dell'istruzione da eseguire. Un programma P è un insieme ordinato di istruzioni.

Le istruzioni sono:

- Incremento: $R_k \leftarrow R_k + 1$
- Decremento: $R_k \leftarrow R_k 1$

• Salto condizionato: if $R_k = 0$ goto m, con $m \in \{1, ..., |P|\}$

Ogni istruzione fa passare la macchina da uno stato a un altro; la semantica operazione di un'istruzione è formata dalla coppia degli stati prima e dopo l'istruzione.

La computazione del programma P è una sequenza di stati S_i , infinita se non termina, altrimenti si ha uno stato finale S_{fin} in cui viene posto in R_0 il risultato della computazione.

Lo stato è una funzione

$$S: \{L, R_i\} \to \mathbb{N}$$

ovvero, che dato un registro e un valore del program counter L, restituisce il contenuto del registro.

Uno stato finale S_{fin} è un qualsiasi stato tale che S(L) = 0.

Lo stato iniziale è tale che

$$S_{init}(R_i) = \begin{cases} 1 & \text{se } R_i = L \\ n & \text{se } R_i = R_1 \\ 0 & \text{altrimenti} \end{cases}$$

Per definire l'esecuzione del programma si usa la funzione stato prossimo

$$\delta: STATI \times PROG \rightarrow STATI_{\perp}$$

tale che

$$\delta(\mathcal{S}, P) = \mathcal{S}'$$

Dove S rappresenta lo stato in seguito all'esecuzione del comando P.

La funzione è tale che:

- Se S(L) = 0, $S' = \bot$ in quanto l'esecuzione è terminata
- Se S(L) > |P| non si ha una terminazione esplicita, quindi

$$\mathcal{S}'(R) = \begin{cases} 0 & \text{se } R = L \\ \mathcal{S}(R_i) & \text{altrimenti} \end{cases}$$

- Se $1 \leq \mathcal{S}(L) \leq |P|$, si considera l'istruzione $\mathcal{S}(L)$ -esima:
 - incremento/decremento su R_k :

$$\mathcal{S}'(R) = \begin{cases} \mathcal{S}(R) + 1 & \text{se } R = L \\ \mathcal{S}(R) \pm 1 & \text{se } R = R_k \\ \mathcal{S}(R) & \text{altrimenti} \end{cases}$$

 $-\,$ salto condizionato su R_k

$$S'(R) = \begin{cases} m & \text{se } R = L \land R_k = 0\\ S(L) + 1 & \text{se } R = L \land R_k \neq 0\\ S(R) & \text{altrimenti} \end{cases}$$

L'esecuzione di un programma genera una sequenza di stati, definita secondo la funzione $\delta.$

6. Come abbiamo definito la potenza computazionale F(RAM).