Introduction 1

1. History

(a)stochastic optimization(SP):

$$\max_{\mathbf{x}\in X}\mathbf{E}_{F_{\epsilon}}[h(\mathbf{x},\epsilon)]$$

- $-F_{\epsilon}$ (distribution function) need to be exact, otherwise result in sub-optimal solutions
- -no robustness in the error of distribution; need to much computation

(b)(static) robust optimization:

$$\max_{\mathbf{x} \in X} \min_{\epsilon \in support} h(\mathbf{x}, \epsilon)$$

-intractable: include too much unrealistic distribution(single point) on support set (the solution may not be realistic to worst case)

(c)distributional robust optimization(DRO):

- -also named as DRSP(distributional robust stochastic programming)
- -an intermediate approach between SP and robust optimization

2. Model

(a)prerequisite:

-known certain observed samples

eg: sum-of-squares polynomial density functions of known degrees/ a fixed distance, which measured by KL divergence, from a nominal distribution

-known certain training data

eg: data-driven sets with statistical hypothesis tests

-other statistical information

eg: higher-order moments; conditional probabilities; conditional moments; marginal distributions

(b)properties:

-uncertain exact distribution is unknown, fictitious, decision-making problems, datadriven optimization, apply to worst case

pros: uncertain, fictitious

 $\begin{cases} pros: & uncertain, fictitious \\ cons: & pathological discrete distribution \end{cases}$

(c)classes:

#1: continuous action space; learn optimal strategy (make decision)

#2 : under Wasserstein metric, change to finite convex programs(eg tractable linear programs/ conic program)

#3:data-driven optimization

(d)composition:

$$\max_{\mathbf{x} \in X} \min_{F_{\epsilon} \in D} \mathbf{E}_{F_{\epsilon}}[h(\mathbf{x}, \epsilon)]$$

Here, D is a set of distributions and the purpose is to give best $\mathbf{x} \in X$. In order to choose a proper D, following things need to be taken into account:

- -tractability
- -practical(statistical) meanings
- -performance (eg: the potential loss comparing to the benchmark cases)

3. Software

ROME

4. Comparison with other methods

By the use of several carefully designed data structures, DRO provides at little extra cost compared to empirical risk minimization & stochastic gradient methods

2 Application

1. Finance

(a)data source:

```
portfolio optimization problem (insurance company);
risk aggregation problem (insurance company);
price-post learning
```

(b)origin:

DRO method comes from risk-managing decision-make optimization with portfolio problem

2. Engineering

(a)purpose:

give out power generation solution by minimizing cost

Main point

$1. 2018_Klerk_SIAM$

- (a)introduce a sets(sum-of-squares polynomial density functions of known degrees) instead of pathological distribution
- (b)apply to portfolio optimization problem and risk aggregation problem

2. **2018**_Gao_book

- (a) give method to choose distributional function
- (b) give simple algorithms for local optima
- (c) extend to optimization problems: orthogonal constraints and coupled constraints over simplex set and polytopes
- (d)explain by convergence rate and examples

3. 2018_Esfahani_MP

- (a) under Wasserstein metric and ball, change DOR to finite convex programs(eg: tractable linear programs)
- (b)global optimization techniques
- (c) apply to mean-risk portfolio optimization

4. 2018_Bertsimas_MP

- (a)data-driven distributionally function
- (b)apply to portfolio management

5. **2017_Ye_ppt**

(a)stochastic optimization

$$\max_{\mathbf{x} \in X} \mathbf{E}_{F_{\epsilon}}[h(\mathbf{x}, \epsilon)]$$

 F_{ϵ} (distribution function) need to be exact, otherwise result in sub-optimal solutions

(b)(static)robust optimization

$$\max_{\mathbf{x} \in X} \min_{\epsilon \in support} h(\mathbf{x}, \epsilon)$$

Robust to any distribution, but may make bad decision in worst-case

(c)DRO

intermediate approach: robustness in the error of distribution; provide realistic nonsingle-point distribution on the support

6. 2017_Chen_IEEE

- (a) distance-based distributionally robust unit commitment (DB-DRUC)
- (b)apply to wind power generation
- (c)minimize the expected cost under the worst case wind distributions (fixed distance from a nominal distribution)

$7. 2017_{\mathrm{Wang_arXiv}}$

- (a) optimal power flow
- (b)risk term(objective function): penalties for load shedding, wind generation curtailment and line overload
- (\mathbf{b}) ambiguity set: second-order moment and Wasserstein distance(change to conic program)
- (c)test systems: 5-bus/IEEE 118-bus/ Polish 2736-bus

8. 2016_Namkoong_AINIP

- (a) give calibrated confidence intervals on performance
- (b) weight more on observations (loss)
- (c)stochastic gradient method is a little better than DRO