Conditional distribution for jointly normal Gaussian random variables

Joaquín Rapela

May 18, 2025

Theorem 1 Let \mathbf{x} and \mathbf{y} be jointly normally-distributed random vectors with

$$E\left\{ \left(\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array} \right) \right\} = \left(\begin{array}{c} \boldsymbol{\mu}_{x} \\ \boldsymbol{\mu}_{y} \end{array} \right)$$
$$Cov\left\{ \left(\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array} \right) \right\} = \left(\begin{array}{cc} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{array} \right)$$

where Σ_{yy} is assumed to be non-singular. Then the conditional distribution of \mathbf{x} given \mathbf{y} is normal with mean vector

$$E\{\mathbf{x}|\mathbf{y}\} = \boldsymbol{\mu}_x + \Sigma_{xy}\Sigma_{yy}^{-1}(\mathbf{y} - \boldsymbol{\mu}_y)$$

and covariance matrix

$$Cov\{\mathbf{x}|\mathbf{y}\} = \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx}$$