Discrete Random Variables

- 1. On a roulette wheel there are 37 numbers 0,1,,36. 18 numbers are black. If I bet 1 on black, I win 1 if a black number comes up, otherwise I lose my stake. Let X denote my winnings on one bet.
 - (i) Calculate E(X) and Var(X)

Suppose I make 6 such bets. Let Y denote my total winnings.

- (ii) Derive the distribution of Y.
- (iii) Calculate E(Y) and Var(Y)
- 2. The probability distribute of discrete random variable X is tabulated below. There are 5 possible outcome of X, i.e. 1, 2, 3, 4 and 5.

x_i	1	2	3	4	5
$p(x_i)$	0.30	0.20	k	0.10	0.20

- a. (1 Mark) Compute the value of k.
- b. (1 Mark) What is the expected value of X?
- c. (1 Mark) Given that $E(X^2) = 9.5$, compute the variance of X.
- 1. The probability distribution of discrete random variable X is tabulated below. There are 6 possible outcome of X, i.e. 0, 1, 2, 4, 8 and 10.

x_i	0	1	2	4	8	10
$P(x_i)$	0.25	0.15	0.25	0.15	k	0.10

- i. (1 marks) Compute the value for k.
- ii. (3 marks) Determine the expected value E(X).
- iii. (2 marks) Evaluate $E(X^2)$.
- iv. (3 marks) Compute the variance of random variable X.
- 2. Suppose X is a random variable with
 - $E(X^2) = 3.6$
 - P(X=2) = 0.6
 - P(X=3)=0.1
 - (a) The random variable takes just one other value besides 2 and 3. This value is greater than 0. What is this value?
 - (b) What is the variance of X?
- 3. Consider the random variables X and Y. Both X and Y take the values 0, 1 and 2. The joint probabilities for each pair are given by the following table.

	X = 0	X = 1	X=2
Y = 0	0.1	0.15	0.1
Y=1	0.1	0.1	0.1
Y=2	0.2	0.05	0.1

Compute the E(U) expected value of U, where U = X - Y. Given:

Suppose X is a random variable with

- $E(X^2) = 3.6$
- P(X=2) = 0.6
- P(X=3)=0.1

Questions:

- (a) The random variable takes just one other value besides 2 and 3. This value is greater than 0. What is this value?
- (b) What is the variance of X?

Part a

- Determine the missing value (let's call it k).
- First we determine the probability of that value.
- We know that $E(X^2) = 3.6$. Let use the approach for computing $E(X^2)$.

x_i	2	3	k
x_i^2	4	9	k^2
$p(x_i)$	0.6	0.1	

Part a

- Determine the missing value (let's call it k).
- First we determine the probability of that value.
- We know that $E(X^2) = 3.6$. Let use the approach for computing $E(X^2)$.

x_i	2	3	k
x_i^2	4	9	k^2
$p(x_i)$	0.6	0.1	0.3

x_i	2	3	k
x_i^2	4	9	k^2
$p(x_i)$	0.6	0.1	0.3

$$E(X^2) = \sum x_i^2 \cdot p(x_i) = 3.6$$

x_i	2	3	k
x_i^2	4	9	k^2
$p(x_i)$	0.6	0.1	0.3

$$E(X^2) = \sum x_i^2 \cdot p(x_i) = 3.6$$

$$(4 \times 0.6) + (9 \times 0.1) + (k^2 \times 0.3) = 3.6$$

x_i	2	3	k
x_i^2	4	9	k^2
$p(x_i)$	0.6	0.1	0.3

•
$$E(X^2) = \sum x_i^2 \cdot p(x_i) = 3.6$$

•
$$(4 \times 0.6) + (9 \times 0.1) + (k^2 \times 0.3) = 3.6$$

•
$$2.4 + 0.9 + (k^2 \times 0.3) = 3.6$$

•
$$(4 \times 0.6) + (9 \times 0.1) + (k^2 \times 0.3) = 3.6$$

•
$$2.4 + 0.9 + (k^2 \times 0.3) = 3.6$$

•
$$3.3 + 0.3k^2 = 3.6$$

•
$$(4 \times 0.6) + (9 \times 0.1) + (k^2 \times 0.3) = 3.6$$

•
$$2.4 + 0.9 + (k^2 \times 0.3) = 3.6$$

•
$$3.3 + 0.3k^2 = 3.6$$

•
$$0.3k^2 = 0.3$$

$$(4 \times 0.6) + (9 \times 0.1) + (k^2 \times 0.3) = 3.6$$

$$2.4 + 0.9 + (k^2 \times 0.3) = 3.6$$

$$3.3 + 0.3k^2 = 3.6$$

$$0.3k^2 = 0.3$$

$$k^2 = 1$$
 Therefore $k = 1$

Part b

Compute the variance of X

$$Var(x) = E(X^2) - \{E(X)\}^2$$

- We already know $E(X^2) = 3.6$
- Need to compute E(X).

Computing E(X)

$$\begin{array}{|c|c|c|c|c|c|} \hline x_i & 2 & 3 & 1 \\ \hline p(x_i) & 0.6 & 0.1 & 0.3 \\ \hline \end{array}$$

$$E(X) = \sum x_i \cdot p(x_i)$$

$$E(X) = (2 \times 0.6) + (3 \times 0.1) + (1 \times 0.3) = 1.8$$

Part b

Compute the variance of X

$$Var(X) = E(X^{2}) - \{E(X)\}^{2}$$

$$Var(X) = 3.6 - \{1.8\}^2$$

$$Var(X) = 3.6 - 3.24 = 0.36$$

Consider the random variables X and Y. X takes the values 0,1 and 2. Y takes the values 0 and 1. The joint probabilities for each pair are given by the following table.

	X = 0	X = 1	X=2
Y = 0	0.1	0.4	0.1
Y=1	0.1	0.1	0.2

- \bullet Compute the expected values of X and Y.
- Compute the E(X|Y=1)

Compute E(X) and E(Y).

First compute the marginal distributions.

	X = 0	X = 1	X=2	
Y = 0	0.1	0.4	0.1	
Y = 1	0.1	0.1	0.2	

Compute E(X) and E(Y).

First compute the marginal distributions.

	X = 0	X = 1	X=2	
Y = 0	0.1	0.4	0.1	0.6
Y = 1	0.1	0.1	0.2	0.4
	0.2	0.5	0.3	

Compute E(X)

	x_i	0	1	2
p	(x_i)	0.20	0.50	0.30

$$E(X) = \sum x_i \cdot p(x_i)$$

Compute E(X)

x_i	0	1	2
$p(x_i)$	0.20	0.50	0.30

$$E(X) = \sum x_i \cdot p(x_i)$$

$$E(X) = (0 \times 0.2) + (1 \times 0.5) + (2 \times 0.3) = 1.1$$

Compute E(X)

y_i	0	1
$p(y_i)$	0.60	0.40

$$E(Y) = \sum y_i \cdot p(y_i)$$

Compute E(X)

y_i	0	1
$p(y_i)$	0.60	0.40

$$E(Y) = \sum y_i \cdot p(y_i)$$

$$E(Y) = (0 \times 0.6) + (1 \times 0.4) = 0.4$$

Consider the random variables X and Y. Both X and Y take the values 0, 1 and 2. The joint probabilities for each pair are given by the following table.

	X = 0	X = 1	X=2
Y = 0	0.1	0.15	0.1
Y=1	0.1	0.1	0.1
Y=2	0.2	0.05	0.1

Compute the E(U) expected value of U, where U = X - Y.

Compute X - Y

	X = 0	X = 1	X=2
Y = 0	0.1	0.15	0.1
Y=1	0.1	0.1	0.1
Y=2	0.2	0.05	0.1

Compute X-Y

		U	X = 0	U	X = 1	U	X = 2
Y =	0	0	0.1	1	0.15	2	0.1
Y =	: 1	-1	0.1	0	0.1	1	0.1
Y =	: 2	-2	0.2	-1	0.05	0	0.1

Determine the probability of each outcome of U.

u_i	-2	-1	0	1	2
$p(u_i)$					

$$E(U) = \sum u_i \cdot p(u_i)$$

u_i	-2	-1	0	1	2
$p(u_i)$	0.20	0.15	0.30	0.25	0.10
$u_i \cdot p(u_i)$					

$$E(U) = \sum u_i \cdot p(u_i)$$

	u_i	-2	-1	0	1	2
	$p(u_i)$	0.20	0.15	0.30	0.25	0.10
ĺ	$u_i \cdot p(u_i)$	-0.40	-0.15	0.00	0.25	0.20

$$E(U) = \sum u_i \cdot p(u_i)$$

u_i	-2	-1	0	1	2
$p(u_i)$	0.20	0.15	0.30	0.25	0.10
$u_i \cdot p(u_i)$	-0.40	-0.15	0.00	0.25	0.20

$$E(U) = \sum u_i \cdot p(u_i)$$

u_i	-2	-1	0	1	2
$p(u_i)$	0.20	0.15	0.30	0.25	0.10
$u_i \cdot p(u_i)$	-0.40	-0.15	0.00	0.25	0.20

$$E(U) = -0.10$$

$$E(U) = \sum u_i \cdot p(u_i)$$

u_i	-2	-1	0	1	2
$p(u_i)$	0.20	0.15	0.30	0.25	0.10
$u_i \cdot p(u_i)$	-0.40	-0.15	0.00	0.25	0.20

$$E(U) = -0.10$$