Bell's Palsy Severity Determination by Computer Vision and Machine Learning

UNIVERSITY

Facial Landmarks Extraction

Landmark prediction &

head tilt correction

23 24 25 26 27

29 30 31 32 33 32 33 28 40 41 42 43 44 34

Nolan Lwin

Advisors: Dr. Joshua Stough¹, Dr. Keith Buffinton², Dr. Arun Gadre³ ¹Department of Computer Science, ²Department of Mechanical Engineering, Bucknell University, Lewisburg, PA ³Geisinger Commonwealth Medical School, Geisinger Medical Center

Background & Motivation

- Goal: Develop computer vision and machine learning software to grade Facial Nerve Paralysis (FNP) and to assist diagnosis and recovery tracking.
- Observer bias commonly arises when FNP patients are seen and diagnosed by clinicians, as reported in [1], which showed that a machine learning (ML) based approach found less facial asymmetry in severe FNP patients and more asymmetry in healthy faces than clinicians.
- We hope to train an ML model that grades patient facial palsy severity on the House-Brackmann scale.

Machine Learning

Severity grading

Motion: Forehead - moderate to good function

Validating Landmark Detection

- Emotrics [2] claims to have accurate results under various conditions; however, small image changes, i.e., rotations or adding noise, lead to less accurate results.
- Applying test-time augmentation leads to better results by intentionally introducing random small rotations and/or noise and using the resulting median of the predicted landmarks.

Preliminary Results

- Difference between predicted landmarks and Ground Truth landmarks using the Toronto NeuroFace (TNF) Dataset [5].
- Calculation of RMSE to quantitatively compare landmark detection accuracy using various algorithm on one image.

Predictor	RMSE
Emotrics - 200px	7.986
Emotrics - 500px	4.364
Augmented Median	3.865

Conclusions

- Assessed the performance of a landmark predictor and applied test-time augmentation to improve accuracy.
- Using the NeuroFace dataset, preliminarily showed that the median of augmented points is more accurate.
- After acquiring more patient data, will train the model to provide FNP grading with the landmark points as input.

Feature Computation

- While feature computation can be used to train the ML algorithm to grade the severity of FNP, landmarks alone can be used in the training and may reduce structural bias.
- Features also serve informative purposes by highlighting certain characteristics (i.e., asymmetry in certain regions of the face) that are abnormal relative to healthy patients.

Approach

(Optional)

Facial Feature Computation

Distance calculation &

feature computation

mouth point	
Distance from the outer eye corner to the nose edge point	
Distance fror mouth point	n the nose edge point to the middle
	_
Description	Formula
Angle	$ \angle(P0, P9) $
Angle	$ \angle(P2,P7) $
Angle	$ \angle(P4,P5) $
Maximum value	$\max(L/M, M/L)$
Slope	m(P0, P9)
Slope	m(P2, P7)
Slope	m(P4, P5)
Angle	$ \angle(P10, P19) $
Maximum value	$\max(B_l/B_r, B_r/B_l)$
Maximum value	$\max(D/E, E/D)$
Maximum value	max(H/I.I/H)
	Distance from edge point Distance from mouth point Description Angle Angle Angle Angle Slope Slope Slope Slope Angle Maximum value Maximum value

Eye - complete closure with minimum effort Mouth - slight asymmetry Motion: Forehead - slight to moderate movement Eye - complete closure with effort; Mouth - slightly weak with maximum effort Motion: Forehead - none; eye - incomplete closure Mouth - asymmetric with maximum effort Motion: Forehead - none; eye - incomplete closure Mouth - slight movement mouth - slight movement

- Work in [2] demonstrated successful application of ML in determining whether a face is healthy or ill with FNP by using the ML-based software *Emotrics* [3] to automatically predict key facial landmarks from facial images and then computing facial features to determine health or illness.
- *Emotrics* [3] is used as a landmark detector after training on a dataset [4] consisting of 60 patients with a spectrum of types and severities of FNP.
- A landmark detector trained on the patient population minimizes potential model bias [5].

Feature Distribution: Healthy vs. Patient - Lip Puckering

References

- [1] Miller, Matthew Q., et al. "The Auto-eFACE: Machine Learning-Enhanced Program Yields Automated Facial Palsy Assessment Tool." Plastic and reconstructive surgery vol. 147, 2 (2021): 467-474. doi:10.1097/PRS.0000000000007572
- [2] Parra-Dominguez, et al. "Facial Paralysis Detection on Images Using Key Point Analysis." Appl. Sci. 2021, 11, 2435. https://doi.org/10.3390/app11052435
- [3] Guarin, Diego L., et al. "Toward an Automatic System for Computer-Aided Assessment in Facial Palsy." Facial plastic surgery & aesthetic medicine vol. 22, 1 (2020): 42-49. doi:10.1089/fpsam.2019.29000.gua
- [4] Greene, Jacqueline J., et al. "The spectrum of facial palsy: The MEEI facial palsy photo and video standard set." The Laryngoscope vol. 130, 1 (2020): 32-37. doi:10.1002/lary.27986
- [5] Bandini, Andrea, et al. "A New Dataset for Facial Motion Analysis in Individuals With Neurological Disorders." IEEE journal of biomedical and health informatics vol. 25, 4 (2021): 1111-1119. doi:10.1109/JBHI.2020.3019242