CHAPITRE III PRÉDICTEURS LINÉAIRES

Cycle pluridisciplinaire d'études supérieures Université Paris sciences et lettres

I. PRÉLIMINAIRES

NOTATION. — Pour $d \geqslant 1$ un entier et $x, x' \in \mathbb{R}^d$, on note $\langle x, x' \rangle = \sum_{j=1}^d x_j x_j'$ le produit scalaire canonique.

NOTATION. — Pour $w \in \mathbb{R}^d$ et $b \in \mathbb{R}$, on note :

$$g_{w,b}: \mathbb{R}^d \longrightarrow \mathbb{R} \ x \longmapsto \langle w, x \rangle + b.$$

Il s'agit des applications affines de \mathbb{R}^d dans \mathbb{R} . On note $\mathscr{L}_d=\{g_{w,b}\}_{\substack{w\in\mathbb{R}^d\\b\in\mathbb{R}}}$ l'ensemble de ces applications.

Définition. — Prédicteurs linéaires. — Soit $f \in \mathcal{F}(\mathbb{R}^d, \mathbb{R})$. f est un prédicteur linéaire s'il est de la forme $f = \phi \circ g$ avec $g \in \mathcal{L}_d$ et $\phi \colon \mathbb{R} \to \mathbb{R}$ quelconque.

REMARQUE. — La fonction φ étant quelconque, un *prédicteur* linéaire n'est pas nécessairement une *application* linéaire.

EXEMPLE. — Classifieurs linéaires. — On note sign la fonction donnant le signe strict d'un nombre réel, c'est-à-dire :

$$\forall x \in \mathbb{R}, \quad \operatorname{sign}(x) = \begin{cases} 1 & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ -1 & \text{si } x < 0. \end{cases}$$

Pour $(w,b)\in\mathbb{R}^d\times\mathbb{R}$, on note $h_{w,b}$ le classifieur linéaire associé, qui est défini par :

$$b_{w,b} = \operatorname{sign} \circ g_{w,b}.$$

On note $\mathcal{H}_d=\{h_{w,b}\}_{\substack{w\in\mathbb{R}^d\\b\in\mathbb{R}}}$. Un classifieur linéaire partitionne l'espace en deux demi-espaces séparés par un hyperplan :

- l'hyperplan est constitué de l'ensemble des points $x \in \mathbb{R}^d$ tels que $\langle w, x \rangle + b = 0$ (ce qui équivaut à $h_{w,b}(x) = 0$); on dit également que l'hyperplan est d'équation $\langle w, x \rangle + b = 0$;
- l'un des demi-espaces est d'équation $\langle w, x \rangle + b > 0$ et correspond aux points $x \in \mathbb{R}^d$ pour lesquels $h_{w,b}(x)$ prédit l'étiquette +1;
- l'autre demi-espace est d'équation $\langle w, x \rangle + b < 0$ et correspond aux points $x \in \mathbb{R}^d$ pour lesquel $h_{w,b}$ prédit l'étiquette -1.

La figure ci-après représente l'hyperplan et les deux demi-espaces dans le cas simple où $\mathcal{Z}=\mathbb{R}^2, w=(-1,1)$ et b=1. On peut voir que w s'interprète comme un vecteur normal à l'hyperplan d'équation $\langle w,x\rangle+b=0$ et indique (par son sens) l'hyperplan d'équation $\langle w,x\rangle+b>0$.

2. RÉGRESSION LINÉAIRE

On considère dans ce paragraphe $\mathscr{Z}=\mathbb{R}^d$, $\mathscr{Y}=\mathbb{R}$, et pour classe de prédicteurs $\mathscr{F}=\mathscr{L}_d$ (l'ensemble des applications affines). La fonction de perte $\ell\colon\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ est à choisir; le plus souvent, il s'agira de la perte quadratique $\ell(y,y')=(y-y')^2$, et on rencontre également la perte norme absolue $\ell(y,y')=|y-y'|$.

DÉFINITION. — Régression linéaire aux moindres carrés. — Soit $n \ge 1$ et $(x_i, y_i)_{i \in [n]} \in \mathcal{S}(\mathcal{X}, \mathcal{Y})$ un échantillon d'apprentissage. L'algorithme de régression linéaire aux moindres carrés donne le prédicteur :

$$\hat{f} = \mathop{\arg\min}_{f \in \mathcal{L}_d} \left\{ \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 \right\}.$$

Autrement dit, \hat{f} est le minimiseur du risque empirique 1 associé à la classe \mathcal{L}_d et à la perte quadratique.

^{1.} voir la définition dans le Chapitre I.

3. CLASSIFICATION BINAIRE: PERCEPTRON

On considère dans ce paragraphe $\mathscr{X}=\mathbb{R}^d$ et $\mathscr{Y}=\{-1,+1\}$. Il s'agit donc d'un cadre de classification binaire. La classe de prédicteur considérée est celle des classifieurs linéaires : $\mathscr{F}=\mathscr{H}_d$.

Remarque. — Soit $(w,b) \in \mathbb{R}^d \times \mathbb{R}$. Un exemple $(x,y) \in \mathbb{R}^d \times \{-1,1\}$ est correctement prédit par $h_{b,w}$ si et seulement si :

$$\begin{array}{ll} h_{b,w}(x) = y &\iff & (\langle w, x \rangle + b) \text{ et } y \text{ sont du même signe \$trict} \\ &\iff & y(\langle w, x \rangle + b) > 0. \end{array}$$

Exemple. — On reprend l'exemple où $\mathscr{X}=\mathbb{R}^2$, w=(-1,1) et b=1. On représente ci-après un échantillon de 4 exemples où les étiquettes (égales à +1 ou -1) sont signalées par des signes + et -. Les trois points en vert correspondent aux exemples bien prédits par $b_{b,w}$ et les points rouges à ceux qui sont mal prédits.

DÉFINITION. — Séparabilité linéaire. — Soit $n \ge 1$. Un échantillon $(x_i, y_i)_{i \in [n]} \in \mathcal{S}(\mathbb{R}^d, \{-1, 1\})$ est linéairement séparable s'il existe un classifieur linéaire $h \in \mathcal{H}_d$ tel que :

$$\forall i \in [n], \quad b(x_i) = y_i.$$

Exemple. — L'échantillon de gauche est linéairement séparable tandis que celui de droite ne l'est pas.

Définition. — Perceptron. — Soit $(x_i, y_i)_{i \in [n]} \in \mathcal{S}(\mathbb{R}^d, \{-1, 1\})$ un échantillon d'apprentissage. L'algorithme Perceptron est itératif.

- Initialisation : $w^{(1)} = 0 \in \mathbb{R}^d$ et $b^{(1)} = 0$.
- À chaque étape $t\geqslant 1$, on considère le classifieur (temporaire) $\hat{b}^{(t)}=b_{w^{(t)},b^{(t)}}.$
 - S'il existe $i \in [n]$ tel que

$$\hat{b}^{(t)}(x_i) \neq y_i \quad (\iff \quad y_i \left(\left\langle w^{(t)}, x_i \right\rangle + b^{(t)} \right) \leqslant 0),$$

alors on pose:

$$w^{(t+1)} = w^{(t)} + y_i x_i$$
 et $b^{(t+1)} = b^{(t)} + y_i$.

— Sinon, s'algorithme s'arrête et renvoie le classifieur $\hat{h}=\hat{h}^{(t)}.$

REMARQUE. — Une intuition sur le fonctionnement de l'algorithme Perceptron est la suivante. L'algorithme souhaite minimiser le nombre d'exemples mal prédits, c'est-à-dire d'indices $i \in [n]$ tels que :

$$y_i(\langle w, x \rangle + b) \leqslant 0,$$

où (w,b) désigne ici les paramètres de l'étape courante. S'il existe un tel exemple, on peut voir que la mise à jour des paramètres $w \leftarrow w + y_i x_i$ et $b \leftarrow b + y_i$ fait augmenter la quantité y_i ($\langle w, x \rangle + b$), pour essayer de la rendre positive.

Théorème. — Si l'échantillon d'apprentissage est linéairement séparable, l'algorithme Perceptron s'arrête. Alors, le classifieur renvoyé prédit correctement chaque exemple de l'échantillon d'apprentissage.

REMARQUE. — Si l'échantillon d'apprentissage n'est pas linéairement séparable, l'algorithme ne s'arrête pas. En pratique, on peut forcer l'arrêt à l'aide d'une *condition d'arrêt*, comme par exemple un nombre maximal d'étapes.

4. CLASSIFICATION BINAIRE: RÉGRESSION LOGISTIQUE

On se place dans le cadre du paragraphe précédent, c'est-à-dire $\mathscr{Z}=\mathbb{R}^d$, $\mathscr{Y}=\{-1,1\}$ et la classe de prédicteurs considérée est celle des classifieurs linéaires : $\mathscr{F}=\mathscr{H}_d$.

DÉFINITION. — *Régression logistique*. — Soit $(x_i, y_i)_{i \in [n]} \in \mathcal{S}(\mathbb{R}^d, \{-1, 1\})$ un échantillon d'apprentissage. La régression logistique donne le classifieur $h_{\hat{w}}$ \hat{h} où :

$$(\hat{w}, \hat{b}) = \operatorname*{arg\,min}_{(w,b) \in \mathbb{R}^d \times \mathbb{R}} \left\{ \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp \left(-y_i (\langle w, x_i \rangle + b) \right) \right) \right\}.$$

REMARQUE. — La quantité $\log (1 + \exp (-y_i(\langle w, x_i \rangle + b)))$ pénalise d'autant plus l'exemple (x_i, y_i) qu'il est loin dans le mauvais demi-espace.

REMARQUE. — La régression logistique peut être vue comme une minimisation du risque empirique dans un problème auxiliaire ² de régression (voir TD).

^{2.} Un problème *auxiliaire* est un autre problème, en lien avec le problème initial, que l'on considère.