5 通道自校正电容式触摸感应芯片 规格书

1.概述

XW05A 是 5 键的电容式触摸感应芯片, I^{2} C 串口模式输出与一对一模式输出。芯片采用 SOP16 环保封装

1.1应用

◆ 用于电视机、音响、显示器、玩具等家电和娱乐设备与工业控制设备

1.2 特点

- 极高的灵敏度,可穿透 13mm 的玻璃,感应到手指的触摸
- 超强的抗干扰和 ESD 能力,不加任何器件即可通过人体 8000v 实验
- 外围电路简单,最少只需一个 4.7nf 电容,芯片即可正常工作
- 外围寄生电容自动校正
- 工作电压范围: 2.5~5.5 V
- SOP16 环保封装

1.3 封装

芯片引脚图

1.4 管脚定义、

NO.	PADNAME	Descrption	NO.	PADNAME	Descrption
1	GND	电源地	16	VDD	正电源
2	C1	内部平衡电容接口	15	SDA	I ² C 通讯数据线
3	CSEL	灵敏度调节电容接口	14	SCL	I ² C 通讯时钟线
4	PAD0		13	OUTO	通道0输出(OD)输出
5	PAD1	触摸按键(不用的引脚 悬空)	12	OUT1	通道1输出(OD)输出
6	PAD2		11	OUT2	通道2输出(OD)输出
7	PAD3		10	OUT3	通道3输出(OD)输出
8	PAD4		9	OUT4	通道4输出(OD)输出

OUTO 到 OUT4 分别为 PADO 到 PAD4 的对应输出端口,OUT(X)端口为高阻和低电平两种状态,当触摸按键按下时输出低电平,放开按键输出端口恢复为高阻。

【 OUT(X)端口需要接上拉电阻 】

1.5 典型应用

- 1. C1是内部平衡电容,取值范围是 1nf~10nf 。建议使用 4.7nf 。
- 2. CSEL 是灵敏度设置电容,电容值越小灵敏度越高,不接电容时灵敏度最高,电容值最大 100pF,电容的选取根据应用的环境,接触感应盘的大小折中考虑。

2.绝对最大值

参数	范围	单位
VDD 电压	-0.3~6.0	V
输入输出电压	-0.3~6.0	V
工作温度范围	-40~85	$^{\circ}$
存储温度范围	-55~150	$^{\circ}$
ESD, HUM	≥8000	V

3. 电气参数特性(无特殊说明, Ta=25℃, VDD=5V)

符号	参数描述	条件	最小值	典型值	最大值	单位
VDD	工作电压		2.5		5.5	V
I_sleep	睡眠模式工作电流			90		uA
I_vdd	工作电流	VDD=3.0V		0.8		mA
		VDD=5.0V		1.6		mA
T_init	上电初始化时间			400		mS
CSEL	灵敏度电容		0		100	pF
F_br	I ² C 最大波特率			400		KBit/S

4.功能描述

4.1 初始化

芯片上电复位后,只需约 400mS 就可以计算出环境参数和自动校正按键走线长度,按键检测功能开始工作。

4.2 自动校正功能

芯片内置自动校正功能,芯片能够根据外部环境的变化,自动调整电容的大小,检测到按键时停止自动校正,进入按键判决过程,从检测到按键开始,经过大约 30~60 秒,芯片重新进入自动校正状态,意味着检测按键有效的时间为 30~60 秒,按键时间超过这个时间,感应电容计入外部环境电容。

4.3 I2C接口

XW05A 支持 I²C 总线传输协议。I²C 是一种双向、两线通讯接口,分别是串行数据线 SDA 和串行时钟线 SCL。两根线都必须通过一个上拉电阻接到电源。XW05A 只支持读取操作。

总线上发送数据的器件被称作发送器,接收数据的器件被称作接收器。控制信息交换的器件被称作主器件,受主器件控制的器件则被称作从器件。主器件产生串行时钟 SCL,控制总线的访问状态、产生 START 和 STOP 条件。XW05A 芯片在总线中作为从器件工作。

只有当总线处于空闲状态时才可以启动数据传输。每次数据传输均开始于 START 条件,结束于 STOP 条件。信息以字节(8 位)为单位传输,第 9 位时由接收器产生应答。

4.3.1 起始和停止条件

数据和时钟线都为高则称总线处在空闲状态。当 SCL 为高电平时 SDA 的下降沿(高到低)叫做起始条件(START,简写为 S), SDA 的上升沿(低到高)则叫做停止条件(STOP,简写为 P)。

4.3.2 位传输

每个时钟脉冲传送一位数据。SCL 为高时 SDA 必须保持稳定,因为此时 SDA 的改变被认为是控制信号。位传输参见图

4.3.3 应答

总线上的接收器每接收到一个字节就产生一个应答,主器件必须产生一个对应的额外的 时钟脉冲,见

接收器拉低 SDA 线表示应答,并在应答脉冲期间保持稳定的低电平。当主器件作接收器时,必须发出数据传输结束的信号给发送器,即它在最后一个字节之后的应答脉冲期间不会产生应答信号(不拉低 SDA)。这种情况下,发送器必须释放 SDA 线为高以便主器件产生停止条件。

4.3.4 器件寻址

在起始条件使能芯片读写操作后,主器件要求有 8 位的器件地址信息,由 7bit 芯片地址加 1bit READ 命令构成,具体数值见下表。

芯片地址 A[6:0]	41H
读命令 A[6:0]+READ	83H

4.3.5 完整通信过程

下图是 XW05A 的一次完整读取数据的通信过程。主器件先发送一个开始信号,然后发送 8 位器件地址 (7 位芯片地址+1 位读命令);当从器件给 1 位 "0"为应答信号后,主器件开始读取从 PAD0 至 PAD4 的按键数据,随后主器件发送 1 位 "1"为无应答信号,并紧接发送 1 个停止信号结束通信过程。当按键按下,相对应 PAD 的数据为 0,例如 PAD4 被按下,则图中的 PAD4 读到的数据为低电平,否则为高电平。

4.4 睡眠模式

为了降低芯片的待机功耗,约 80 秒没有检测到按键,芯片进入睡眠省电模式。按键的采样间隔时间变长,VDD 电流减小,芯片功耗降低,睡眠模式下,一旦检测到按键,芯片立即退出睡眠模式,进入正常工作模式。

如果需要取消睡眠模式,让芯片长期处于工作状态,只需在 SDA 脚位,每 20s 的时间间隔以内,给芯片的 SDA 脚位灌入一个低电平信号,即可。

5.外围电路和注意事项

XW05A 的外围电路很简单,只需少量电容电阻元件, 1.5 是 XW05A 的典型应用电路。

5.1 内部平衡电容和灵敏度调节电容

C1 电容和 CSEL 电容建议采用精度 10%的 NPO 材质电容,在 PCB 板 layout 时,请将 C1 电容和 CESL 电容尽量贴近 IC 放置。

5.2 灵敏度电容和按键检测 PAD 大小以及介质材料与厚度选择

常用的介质有 玻璃、亚克力、塑料、陶瓷等,用户可以根据自己的实际使用情况选择合适的材料及厚度,按照材料的不同和 PCB 板的布局来决定按键 PAD 的大小和电容 CSEL 的值。隔离介质越厚,要求使用的 CSEL 电容越小(增大检测的灵敏度),同时要求适当加大按键检测 PAD 的面积。反之,隔离介质越薄,适当增大 CSEL 电容,增加系统的抗干扰能力,一般建议在 0 和 100pF 之间由小到大地选择合适的电容。

一般情况下,按键检测 PAD 面积可以在 3mm*3mm~30mm*30mm 之间,每个感应盘的面积保持接近,以确保灵敏度相同。感应盘可以是任何形状的导体,建议使用直径大于 10mm的圆形金属片或边长 10mm 的正方形金属片。常用的感应盘有 PCB 板上的铜箔、平顶圆柱弹簧、金属片和导电橡胶等。

5.3 VDD 电源电压注意事项

XW05A 测量的是电容的微小变化,要求电源的纹波和噪声要小,要注意避免由电源串入的外界强干扰。尤其是应用于高噪声环境时,必须能有效隔离外部干扰及电压突变,要求电源有较高稳定度,应尽量远离高压大电流的器件区域或者加屏蔽。如果电源文波幅度较大

时,建议对电源做特别处理,比如增加滤波或采用 78L05 组成的稳压线路。在某些特定的应用场合,要尽可能的让触摸电路远离某些功能电路,比如收音机,RF等。

6.封装尺寸信息(SOP16L)

Comple of	Dimensions In Millimeters				
Symbol	MIN	ТҮР	MAX		
Α			1.75		
A1	0.05		0.225		
A2	1.3	1.4	1.5		
А3	0.60	0.65	0.70		
b	0.39		0.48		
b1	0.38	0.41	0.43		
С	0.21		0.26		
c1	0.19	0.20	0.21		
D	9.70	9.90	10.10		
E	5.80	6.00	6.20		
E1	3.70	3.90	4.10		
е	1.27BSC				
L	0.50		0.80		
L1	1.05BSC				
θ	0		8°		

注: BSC: Basic Spacing between Centers(中心基本距离), IC 引脚之间的宽度。

6 XW05A