

IIC1253 — Matemáticas Discretas — 1' 2019

Ayudantía 5

Órdenes y relaciones de equivalencia

Problema 1

Sea A un conjunto. Demuestre que existen relaciones de equivalencia \sim_1 y \sim_2 sobre A tales que para toda relación de equivalencia \sim sobre A, se tiene que $\sim_1 \subseteq \sim \subseteq \sim_2$.

Solución propuesta.

La relación de equivalencia más pequeña es aquella que cumple con ser refleja y satisface tanto la simetría como transitividad de forma trivial por no contener aristas entre vértices diferentes. Es decir, tomamos la relación identidad

$$\sim_1 = \{(a, a) \mid a \in A\}$$

Como todo $(a,b) \in \sim_1$ es tal que a=b, entonces $(a,b) \in \sim$, para \sim cualquier relación de equivalencia, pues debe ser refleja. En consecuencia, $\sim_1 \subseteq \sim$.

La relación de equivalencia con más aristas es la relación completa:

$$\sim_2 = A \times A$$

En efecto, es refleja porque contiene todos los pares de la forma (a, a) con $a \in A$; es simétrica porque contiene ambas direcciones (a, b) y (b, a); es transitiva porque contiene todas las aristas posibles y al tener (a, b) y (b, c), también tiene (a, c).

Dado $(a,b) \in \sim$ para \sim relación de equivalencia cualquiera, es directo que $(a,b) \in \sim_2$ porque contiene todas las aristas en $A \times A$ y en consecuencia, $\sim \subseteq \sim_2$.

Problema 2

Sea P un conjunto de variables proposicionales, L(P) el conjunto de fórmulas proposicionales sobre las variables de P y defina la relación \leq sobre L(P) \mid_{\equiv} de la siguiente forma. Para cada $\alpha, \beta \in L(P)$, se tiene que

$$[\alpha]_{\equiv} \preceq [\beta]_{\equiv}$$
 si y solo si existe $\gamma \in L(P)$ tal que $(\alpha \land \gamma) \equiv \beta$

Demuestre que \leq es un orden parcial. ¿Es un orden total?

Solución propuesta.

Para probar que \leq es un orden parcial tenemos que probar que es una relación refleja, antisimétrica y transitiva.

Refleja. Dada la clase de equivalencia $[\alpha]_{\equiv}$, es claro que se relaciona consigo misma a través de \leq pues existe γ tal que

$$\alpha \wedge \gamma \equiv \alpha$$

Basta tomar $\gamma = \alpha$ o una conjunción de una cantidad arbitraria de α .

Antisimétrica. Dadas clases de equivalencia que cumplen $[\alpha]_{\equiv} \leq [\beta]_{\equiv}$ y $[\beta]_{\equiv} \leq [\alpha]_{\equiv}$, por la definición de \leq sabemos que existen fórmulas γ_1, γ_2 tales que

$$\begin{array}{ccc} \alpha \wedge \gamma_1 & \equiv & \beta \\ \beta \wedge \gamma_2 & \equiv & \alpha \end{array}$$

Sea \overline{v} una valuación cualquiera. Si $\beta(\overline{v})=1$, de la primera equivalencia sabemos que $\alpha(\overline{v})=\gamma_1(\overline{v})=1$. De forma análoga, si $\beta(\overline{v})=0$, de la segunda equivalencia sabemos que $\alpha(\overline{v})=0$. Como α y β tienen el mismo valor de verdad para cualquier valuación, entonces $\alpha\equiv\beta$. Luego, sus clases de equivalencia son iguales tal como debíamos mostrar:

$$[\alpha]_{=} = [\beta]_{=}$$

Transitiva. Dadas clases de equivalencia que cumplen $[\alpha]_{\equiv} \preceq [\beta]_{\equiv}$ y $[\beta]_{\equiv} \preceq [\delta]_{\equiv}$, sabemos que existen γ_1, γ_2 tales que

$$\begin{array}{ccc} \alpha \wedge \gamma_1 & \equiv & \beta \\ \beta \wedge \gamma_2 & \equiv & \delta \end{array}$$

Usando la primera equivalencia, deducimos de la segunda que

$$\alpha \wedge \gamma_1 \wedge \gamma_2 \equiv \delta$$

de forma que existe $\gamma_3 = \gamma_1 \wedge \gamma_2$ que permite afirmar que

$$[\alpha]_{=} \leq [\delta]_{=}$$

de forma que \leq es transitiva y con las demás propiedades es un orden parcial.

¿Es orden total? Tomemos como contraejemplo dos clases de equivalencia de fórmulas tales que no se pueden relacionar a través de \leq . Consideremos para las variables $p,q\in P$, $[p]_{\equiv}$ y $[q]_{\equiv}$. Si pudiéramos relacionarlas según $[p]_{\equiv} \leq [q]_{\equiv}$ entonces debiera existir γ tal que

$$p \wedge \gamma \equiv q$$

Para la valuación \overline{v} tal que $p(\overline{v}) = 0$ y $q(\overline{v}) = 1$, la conjunción $p \wedge \gamma$ siempre es falsa para cualquier γ , lo cual no permite que $p \wedge \gamma$ sea equivalente a q. Luego, no existe tal γ . Un argumento análogo justifica que tampoco estas clases se relacionan según $[q]_{\equiv} \preceq [p]_{\equiv}$, de forma que la relación \preceq no es conexa.

Problema 3

Sea $\{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,\ldots\}$ el conjunto de todas las palabras (strings) binarios y sea $u \cdot v$ la concatenación de dos palabras $u,v \in \{0,1\}^*$. Se define la relación $R \subseteq \{0,1\}^* \times \{0,1\}^*$:

$$(w_1, w_2) \in R \iff$$
 existen palabras u, v tales que $w_1 = u \cdot v$ y $w_2 = v \cdot u$

Demuestre que R es una relación de equivalencia sobre $\{0,1\}^*$. ¿Qué representan las clases de equivalencia de R?

Solución propuesta.

Para probar que R es relación de equivalencia, debemos mostrar que es refleja, simétrica y transitiva.

Refleja. Para mostrar que es refleja, basta notar que para la palabra a, podemos escoger u = a y $v = \epsilon$. Por las propiedades de la concatenación,

$$a = u \cdot v \wedge a = v \cdot u$$

por lo cual $(a, a) \in R$.

Simétrica. Para probar que es simétrica, tomemos $(a,b) \in R$. Sabemos que existen palabras u,v tales que $a = u \cdot v$ y $b = v \cdot u$. Claramente la elección u' = v, v' = u cumple que $b = u' \cdot v'$ y $a = v' \cdot u'$, de forma que $(b,a) \in R$ y R es simétrica.

Transitiva. Consideremos que $(a,b) \in R$ y $(b,c) \in R$. Sabemos que existen u,v,u',v' tales que

$$a = uv$$
 $b = vu$ $b = u'v'$ $c = v'u'$

Lo que tenemos que mostrar es una elección de división de a que forme c al intercambiar sus posiciones. Para motivar cómo construir tales u'', v'' tomemos el siguiente diagrama donde analizamos cómo operan las divisiones consecutivas. Los pasos (1), (3) y (5) representan una elección de segmentos y los pasos (2), (4) y (6) resultan de intercambiar las posiciones de tales segmentos. La línea diagonal se indica para ayudar a visualizar cómo se es el movimiento relativo de los segmentos de cada palabra.

Como $(a,b) \in R$ y $(b,c) \in R$, sabemos que existen elecciones u,v y u',v' para los pasos (1) y (3) respectivamente. Lo que nos muestra la intuición gráfica es que también existe una elección u'',v'' que permite ir directo de a a c y viceversa. Cabe notar que en el paso (3) se supuso que $|v| \ge |u'|$. Si esto no es así, el desarrollo procede de forma similar, pero el tamaño de los segmentos es distinto.

Sin pérdida de generalidad, supongamos que $|v| \ge |u'|$. La elección que podemos tomar es u'' = uu' y v'' tal que

$$a = u''v''$$

Esto lo consideramos pues viendo en el diagrama los pasos (4) y (5), donde vemos que u'' consiste en un cachito seguido de u'. Este cachito es u como se ve en el paso (2). Ahora, usando el cambio de a a b,

$$a = u''v''$$
 \Leftrightarrow $a = uu'v''$ def. de u''
 \Leftrightarrow $a = u(u'v'')$ agrupando $v = u'v''$
 \Leftrightarrow $b = u'v''u$ por $b = vu$

de donde deducimos que v' = v''u. Luego, partiendo de lo que sabemos sobre c,

$$\begin{array}{lll} c=v'u' & \Leftrightarrow & c=(v''u)u' & \text{por } v'=v''u \\ & \Leftrightarrow & c=v''(uu') & \text{agrupando} \\ & \Leftrightarrow & c=v''u'' & \text{por definición de } u'' \end{array}$$

lo que comprueba que la división u'' = uu' con a = u''v'' es tal que c = v''u'' de manera que $(a, c) \in R$.

Interpretación. La interpretación de las clases de equivalencia es que $[w]_R$ contiene a todas las palabras que se pueden obtener de w a través del intercambio de dos subpalabras obtenidas al dividir w en un punto. Claramente, todas las palabras en una misma clase deben tener el mismo largo.

Problema 4

Sea A un conjunto finito y no vacío. Para dos particiones S_1 y S_2 de A, se dice que S_1 es un refinamiento de S_2 si para todo $X \in S_1$, existe un $Y \in S_2$ tal que $X \subseteq Y$.

Sean R_1 y R_2 dos relaciones de equivalencia. Demuestre que $R_1 \subseteq R_2$ si y solo si $A \mid_{R_1}$ es un refinamiento de $A \mid_{R_2}$.

Solución propuesta.

Suponemos primero que $R_1 \subseteq R_2$. Elegimos un conjunto arbitrario $X = [x]_{R_1}$ de $A \mid_{R_1}$, con $x \in A$. Ahora veremos que existe $Y \in A \mid_{R_2}$ tal que $X \subseteq Y$. Sea $a \in X$, luego $(a,x) \in R_1$ (y (x,a) también, ya que es relación de equivalencia). Como $R_1 \subseteq R_2$, se tiene que $(a,x) \in R_2$ y entonces $a \in [x]_{R_2}$. Luego, tomando $Y = [x]_{R_2}$ se tiene que para todo X en $A \mid_{R_2}$ existe $Y \in A \mid_{R_2}$ tal que $X \subseteq Y$.

Ahora, supongamos que $A \mid_{R_1}$ es un refinamiento de $A \mid_{R_2}$. Sea $(a,b) \in R_1$, demostraremos que $(a,b) \in R_2$. Como $(a,b) \in R_1$ se tiene que $a \in [b]_{R_1}$ y $[b]_{R_1} \in A \mid_{R_1}$, esto implica que existe $Y = [y]_{R_2} \in A \mid_{R_2}$ tal que $[b]_{R_1} \subseteq Y$. Por lo tanto $a \in Y$ y $b \in Y$ (porque $b \in [b]_{R_1}$) y entonces $a,b \in [y]_{R_2}$. Como R_2 es de equivalencia, se tiene que $(a,b) \in [y]_{R_2}$.