И. А. ТАЙМАНОВ

ЛЕКЦИИ ПО ДИФФЕРЕНЦИАЛЬНОЙ ГЕОМЕТРИИ

ІІ. РИМАНОВА ГЕОМЕТРИЯ

И. А. Тайманов

Лекции по дифференциальной геометрии. II. Риманова геометрия

Учебное пособие

Новосибирск 2005 Тайманов И. А. Лекции по дифференциальной геометрии. II. Риманова геометрия: Учеб. пособие.

Данное пособие содержит введение в риманову геометрию и является продолжением предыдущего пособия, посвященного дифференциальной геометрии кривых и поверхностей в трехмерном евклидовом пространстве. Они основаны на лекциях автора по дифференциальной геометрии, прочитанных на механико-математическом факультете Новосибирского государственного университета в весенних семестрах 1997 и 1998 годов, причем изложение в главах 1 и 2 данного пособия расширено по сравнению с прочитанным курсом для большей полноты изложения.

Пособие предназначено для студентов и аспирантов.

Эти лекции были изданы в НГУ в 1998 г. В данном тексте исправлены опечатки и некоторые неточности.

Глава 1. Гладкие многообразия

§1. Топологические пространства

Топологическим пространством называется множество точек X, в котором отмечены подмножества называемые *открытыми* и при этом выполняются следующие условия:

- 1) объединение любого числа открытых множеств открыто;
- 2) пересечение конечного числа открытых множеств открыто;
- 3) все множество X и его пустое подмножество открыты.

Дополнение к открытому множеству называется *замкнутым* множеством.

Чтобы задать на множестве точек X *топологию* (структуру топологического пространства) иногда проще не указывать все открытые множества, а лишь задать их аддитивные образующие: семейство открытых множеств называется $\mathit{basoй}$, если любое открытое множество представимо как объединение множеств из этого семейства.

Особенно удобно использовать базы для определения топологии на метрических пространствах. А именно, метрикой на множестве X называется такая функция

$$\rho: X \times X \to \mathbf{R},$$

что выполнены следующие условия:

- 1) $\rho(x, y) = \rho(y, x)$;
- 2) $\rho(x,x) = 0$ и $\rho(x,y) > 0$ при $x \neq y$;
- 3) $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$ (неравенство треугольника).

Метрическим пространством называется множество точек X с метрикой ρ и топологией, определенной базой, состоящей из всевозможных открытых шаров $B_{x,\varepsilon} = \{y \in X : \rho(x,y) < \varepsilon\}, x \in X, \varepsilon > 0.$

Другой способ введения топологии состоит в ее индуцировании: подмножество $Y\subset X$ топологического пространства X наделено undyцированной топологией, при которой множество $V\subset Y$ открыто, если и только если оно представимо в виде пересечения $V=U\cap Y$, где U открыто в X. Впоследствии, под топологией на подмножествах топологических пространств мы всегда будем, если не оговорено противное, понимать индуцированную топологию.

Задание топологии определяет между точками отношение близости:

— окрестностью точки $x \in X$ называется любое открытое множество U, содержащее x: $x \in U,$

и определяет понятие непрерывности отображения X в Y:

- отображение $f: X \to Y$ топологических пространств называется непрерывным в точке $x \in X$, если для любой окрестности V точки f(x) существует окрестность U точки x такая, что $f(U) \subset V$;
- отображение $f: X \to Y$ топологических пространств называется nenpepuвным, если выполняется одно из следующих эквивалентных условий:
 - а) отображение f непрерывно в каждой точке из X,
- б) для любого открытого множества $V\subset Y$ его прообраз $f^{-1}(V)\subset X$ открыт.

Задача 1. Доказать эквивалентность условий a) и б) из определения непрерывного отображения.

Непрерывное отображение $f:X\to \mathbf{R}$ называется $\mathit{непрерывной}$ $\mathit{функ-ичей}.$

Для отображений метрических пространств понятие непрерывности явно обобщает определение непрерывной функции на отрезке.

Задача 2. Отображение $f: X \to Y$ метрических пространств непрерывно в точке $x \in X$, если и только если для любого $\varepsilon > 0$ существует такое $\delta > 0$, что, если $\rho_X(x,x') < \delta$, то $\rho_Y(f(x),f(x')) < \varepsilon$.

Пусть

$$\rho(x,y) = \sqrt{\sum_{i=1}^{n} (x^i - y^i)^2}$$

расстояние между точками $x = (x^1, ..., x^n)$ и $y = (y^1, ..., y^n)$ в евклидовом пространстве \mathbf{R}^n . Тогда метрическая топология на \mathbf{R}^n является обычной топологией, известной из курса математического анализа ([3]).

Введем некоторые классы топологических пространств:

- пространство X называется $xayc\partial op\phi oвым$, если для любой пары различных точек $x,y\in X$ существуют их окрестности U и V, которые не пересекаются друг с другом: $x\in U,y\in V,U\cap V=\emptyset$;
- пространство X называется cessnum, если оно не представимо в виде объединения двух непересекающихся непустых подмножеств, каждое из которых открыто и замкнуто одновременно;
- пространство X называется линейно связным, если любую пару различных точек $x,y\in X$ можно соединить непрерывной кривой, т.е. существует такое непрерывное отображение $f:[0,1]\to X$, что f(0)=x,f(1)=y.

Пусть X топологическое пространство и $\{U_{\alpha}\}_{{\alpha}\in A}$ такое семейство его подмножеств, индексированное элементами множества A, что объединение U_{α} совпадает с X:

$$X = \bigcup_{\alpha \in A} U_{\alpha}.$$

В этом случае семейство $\{U_{\alpha}\}$ называется *покрытием* X. Если $\{U_{\beta}\}_{{\beta}\in B}$ такое подсемейство (т.е. $B\subset A$), что оно само является покрытием, то оно называется *подпокрытием* покрытия $\{U_{\alpha}\}_{{\alpha}\in A}$. Если все множества U_{α} открыты, то покрытие называется *открытым*. Следующее понятие является исключительно важным в топологии и анализе:

- пространство X называется *компактным*, если из любого его открытого покрытия можно выделить конечное подпокрытие;
 - компактное хаусдорфово пространство называется компактом.

Примерами компактов являются отрезки $[a,b] \subset \mathbf{R}, -\infty < a,b < \infty$ (лемма Гейне–Бореля; см., например, [3]).

Задача 3. Подмножество X евклидова пространства \mathbf{R}^n компактно, если и только если оно замкнуто в \mathbf{R}^n и ограничено (полностью содержится в конечном кубе $\{|x| \leq N\}$ для некоторого $N < \infty$).

Задача 4. Если $f: X \to Y$ непрерывное отображение и X компактно, то его непрерывный образ f(X) компактен.

Из утверждений задач 3 и 4 вытекает следующее свойство.

Задача 5. Если $f: X \to \mathbf{R}$ непрерывная функция и X компактно, то f достигает своих максимума и минимума: существуют точки $x_{\min}, x_{\max} \in X$ такие, что $f(x_{\min}) \leq f(x) \leq f(x_{\max})$ для всех $x \in X$.

Перечисленные свойства (хаусдорфовость, линейная связность, связность, компактность) являются топологическими инвариантами, т.е. они одни и те же у пространств, неразличимых как топологические пространства без каких-либо дополнительных структур. Это понятие неразличимости формализуется следующим образом:

- пространства X и Y гомеоморфны, если существуют непрерывные отображения $f: X \to Y$ и $g: Y \to X$ такие, что они взаимно обратны: $gf: X \to X$ и $fg: Y \to Y$ тождественные отображения X и Y соответственно. Такие отображения f и g называются гомеоморфизмами;
- свойство mononoruчески инвариантно, если из того, что оно выполняется для пространства X следует, что оно выполняется для любого пространства Y, которое гомеоморфно X.

§2. Гладкие многообразия и отображения

Топологическим n-мерным многообразием называется хаусдорфово пространство M, каждая точка которого имеет окрестность гомеоморфную области из \mathbf{R}^n .

Открытое покрытие $\{U_{\alpha}\}$ многообразия M такое, что для каждого его элемента U_{α} задан гомеоморфизм φ_{α} с областью W_{α} из \mathbf{R}^{n} :

$$\varphi_{\alpha}:W_{\alpha}\to U_{\alpha}$$

называется amлacom. Каждый такой гомеоморфизм φ_{α} задает в области U_{α} локальные координаты. А именно, если $x=(x^1,\ldots,x^n)\in \mathbf{R}^n$, то локальные координаты точки $\varphi_{\alpha}(x)$ это x^1,\ldots,x^n . В пересечении координатных областей U_{α} и U_{β} локальные координаты связаны ϕ ункциями перехода:

$$x_{\alpha}^{i} = f_{\alpha\beta}^{i}(x_{\beta}^{1}, \dots, x_{\beta}^{n}),$$

где $f_{\alpha\beta} = \varphi_{\alpha}^{-1} \varphi_{\beta}$.

 Γ ладкая структура класса C^k на топологическом многообразии задается таким атласом, что для него все функции перехода непрерывно дифференцируемы k раз. Многообразие с таким покрытием называется гладким (класса гладкости C^k), а соответствующие локальные координаты — гладкими. В дальнейшем под "гладкостью" мы будем для простоты понимать C^∞ -гладкость.

Отображения $f_{\alpha\beta}$ обратимы, так как их композиция $f_{\alpha\beta}f_{\beta\alpha}$ является тождественным отображением, и следовательно их якобианы всюду невырождены:

$$\det\left(\frac{\partial f_{\alpha\beta}^i}{\partial x_{\beta}^j}\right) = \det\left(\frac{\partial x_{\alpha}^i}{\partial x_{\beta}^j}\right) \neq 0.$$

Согласно теореме о дифференцировании сложной функции, если на пересечении $U_{\alpha} \cap U_{\beta}$ задана функция f класса гладкости C^k по переменным x^i_{α} , то она имеет тот же класс гладкости по переменным x^j_{β} . Это позволяет определить понятие *гладкого отображения*:

— отображение гладких многообразий $f:M\to N$ имеет класс гладкости C^k , если по отношению к гладким локальным координатам x^i на M и y^j на N оно задается вектор-функцией $(y^1,\ldots,y^m)=f(x^1,\ldots,x^n)$ класса гладкости C^k .

Гладкие отображения $f: M \to \mathbf{R}$ называются гладкими функциями, а гладкие отображения $\gamma: [a,b] \to M$ — гладкими путями.

Заметим, что определение гладкости отображения $f:M\to N$ опирается на гладкие структуры и на M, и на N. Если на одном и том же топологическом многообразии X заданы две различные гладкие структуры, то мы получаем два различных гладких многообразия M_1 и M_2 . Гладкие структуры считаются совпадающими, если тождественные отображения $M_1\to M_2$ и $M_2\to M_1$ являются гладкими.

Многообразия M и N называются $\partial u \phi \phi e o mop \phi n u m u$, если существуют гладкие отображения $f: M \to N$ и $g: N \to M$, такие что они взаимно обратны, т.е. отображения $fg: N \to N$ и $gf: M \to M$ тождественны.

Такие гладкие гомеоморфизмы f и g называются $\partial u \phi \phi e o mop \phi u s ma mu. ¹ Пусть <math>\gamma(t)$ гладкий путь в M. Тогда в локальной системе координат $\{x_{\alpha}^{i}\}$ путь записывается в виде

$$t \to (x_{\alpha}^1(t), \dots, x_{\alpha}^n(t))$$

и его вектор скорости в точке $\gamma(t)$ равен

$$\dot{\gamma}(t) = (\dot{x}_{\alpha}^{1}(t), \dots, \dot{x}_{\alpha}^{n}(t)).$$

В другой локальной системе координат $\{x^i_\beta\}$ путь и его вектор скорости имеют вид

$$t \to (x^1_{\beta}(t), \dots, x^n_{\beta}(t)), \quad \dot{\gamma}(t) = (\dot{x}^1_{\beta}(t), \dots, \dot{x}^n_{\beta}(t)).$$

Отсюда мы выводим формулу, связывающую записи векторов скорости в различных системах координат:

$$\dot{\gamma}(t) = (\dot{x}_{\beta}^{1}(t), \dots, \dot{x}_{\beta}^{n}(t)) = \left(\frac{\partial x_{\beta}^{1}}{\partial x_{\alpha}^{j}} \dot{x}_{\alpha}^{j}(t), \dots, \frac{\partial x_{\beta}^{n}}{\partial x_{\alpha}^{j}} \dot{x}_{\alpha}^{j}(t)\right),\,$$

что влечет

$$\dot{x}^i_\beta = \frac{\partial x^i_\beta}{\partial x^j_\alpha} \dot{x}^j_\alpha.$$

Здесь ради краткости, как в [7] и всюду в дальнейшем, если один и тот же индекс повторяется дважды в одном выражении — как верхний и как нижний, то по нему подразумевается суммирование.

Векторы скорости путей в M являются касательными векторами к M и вектор $\dot{\gamma}(t)$ касателен в точке $\gamma(t)$:

— касательным вектором к n-мерному многообразию M в точке x называется объект, записываемый в локальных координатах $\{x^i_\alpha\}$ набором чисел v^i_α и такой, что его запись w^j_β в другой системе координат

$$\begin{aligned} z_1^{6k-1} + z_2^3 + z_3^2 + z_4^2 + z_5^2 &= 0, \\ |z_1|^2 + |z_2|^2 + |z_3|^2 + |z_4|^2 + |z_5|^2 &= 1, \end{aligned}$$

при $k = 1, \dots, 28$ (здесь z_1, \dots, z_5 комплекснозначные координаты в $\mathbf{C}^5 \approx \mathbf{R}^{10}$).

 $^{^1}$ Известно, например, что существует бесконечно много попарно недиффеоморфных гладких многообразий, гомеоморфных ${\bf R}^4$ (при $n \neq 4$ — такие многообразия единственны с точностью до диффеоморфизма), а на топологическом пространстве S^7 гомеоморфном единичной семимерной сфере в ${\bf R}^8$ ($S^7=\{v\in {\bf R}^8: |v|=1\}$) — двадцать восемь различных (с точностью до диффеоморфизма) гладких структур. Все эти структуры на S^7 реализуются на подмногообразиях ${\bf R}^{10}$, задаваемых уравнениями

 $\{x_{\beta}^{j}\}$ удовлетворяет уравнению

$$w_{\beta}^{j} = \frac{\partial x_{\beta}^{j}}{\partial x_{\alpha}^{i}} v_{\alpha}^{i}. \tag{1}$$

Касательные векторы в точке x образуют n-мерное векторное пространство, которое называется κ асательным пространством T_xM в точке x. Каждая система координат задает в касательном пространстве базис, обозначаемый через

$$\partial_1 = \frac{\partial}{\partial x^1}, \dots, \partial_n = \frac{\partial}{\partial x^n}$$
 (2)

и такой, что вектор скорости \dot{x} разлагается как

$$\dot{x} = \dot{x}^1 \partial_1 + \ldots + \dot{x}^n \partial_n.$$

Многообразие *ориентируемо*, если существуют такие координатные области U_{α} , покрывающие все многообразие, что на пересечении $U_{\alpha} \cap U_{\beta}$ любой пары областей выполняется неравенство

$$\det\left(\frac{\partial x_{\alpha}^{i}}{\partial x_{\beta}^{j}}\right) > 0.$$

Если многообразие связно и ориентируемо, то считая базис $\partial/\partial x_{\alpha}^{1}$, ..., $\partial/\partial x_{\alpha}^{n}$ положительно или отрицательно ориентированным, мы задаем ориентацию во всех касательных пространствах, полагая базисы $\partial/\partial x_{\beta}^{1}$, ..., $\partial/\partial x_{\beta}^{n}$ положительно или отрицательно ориентированными соответственно. Если на многообразии выбрана какая-то ориентация, то оно называется *ориентированным*.

Гладкое отображение $f:M\to N$ определяет индуцированное линейное отображение

$$f_*: T_xM \to T_{f(x)}N,$$

при котором вектор скорости пути $\gamma(t)$ переходит в вектор скорости пути $f(\gamma(t))$. Выберем в окрестности x локальные координаты $\{x^i\}$ и в окрестности f(x) локальные координаты $\{y^j\}$. Тогда отображение f записывается в виде

$$y^j = f^j(x^1, \dots, x^n)$$

и мы получаем

$$\dot{f}^{j}(\gamma(t)) = \frac{\partial f^{j}}{\partial x^{i}} \dot{x}^{i}(t).$$

Значит в данных координатах отображение f_* записывается в виде

$$v^i \to w^j = \frac{\partial f^j}{\partial x^i} v^i.$$

Подпространство N является k-мерным nodмногообразием M, если для каждой точки $x \in N$ существует такая окрестность U с локальными координатами x^1, \ldots, x^n , что пересечение $U \cap N$ выделяется уравнениями $x^1 = \ldots = x^{n-k} = 0$. Считая при этом $y^1 = x^{n-k+1}, \ldots, y^k = x^n$ локальными координатами на N, мы задаем на N структуру гладкого многообразия.

Введем следующее важное понятие:

— гладкое отображение $F: M \to N$ регулярно в точке $x \in M$, если при записи в каких-то (а значит и любых) локальных координатах $y^j = F^j(x^1, \dots, x^n), j = 1, \dots, k$ ранг якобиана в точке x максимален:

$$\operatorname{rank}\left(\frac{\partial F^j}{\partial x^i}\right) = \left\{ \begin{array}{ll} \dim M & \text{при } \dim M \leq \dim N \\ \dim N & \text{при } \dim M > \dim N \end{array} \right..$$

Если это условие выполнено, то точка x называется peryлярной точкой отображения F.

Примерами подмногообразий являются регулярные множества нулей гладких отображений.

Лемма 1 Пусть на n-мерном многообразии M задано гладкое отображение $F: M \to \mathbf{R}^{n-k}$ и множество его нулей $M_0 = F^{-1}(0)$ состоит из регулярным точек. Тогда M_0 гладкое подмногообразие M.

Доказательство. Пусть $x \in M_0$. Тогда в окрестности x

$$\operatorname{rank}\left(\frac{\partial F^j}{\partial x^i}\right) = n - k,$$

где $\{x^i\}$ координаты на M. Без ограничения общности можно считать, что в точке x минор, отвечающий x^1,\ldots,x^{n-k} ненулевой. По теореме о неявной функции ([3, 7]) в малой окрестности $U\subset M$ точки x определены функции ψ_1,\ldots,ψ_{n-k} такие, что F(x)=0, если и только если $x^1=\psi_1(x^{n-k+1},\ldots,x^n),\ldots,x^{n-k}=\psi_{n-k}(x^{n-k+1},\ldots,x^n)$. Примем теперь

$$\hat{x}^1 = x^1 - \psi_1(x^{n-k+1}, \dots, x^n), \dots,$$
$$\hat{x}^{n-k} = x^{n-k} - \psi_1(x^{n-k+1}, \dots, x^n),$$

$$\hat{x}^{n-k+1} = x^{n-k+1}, \dots, \hat{x}^n = x^n$$

за локальные координаты в окрестности V точки x. В них $V \cap M_0$ выделяется уравнениями $\hat{x}^1 = \ldots = \hat{x}^{n-k} = 0$. Лемма 1 доказана.

Эта лемма дает большой запас примеров гладких многообразий, которые могут строиться как подмногообразия других, уже известных. При $M = \mathbf{R}^N$ мы получаем гладкие подмногообразия евклидова пространства (см. §4 в [7]).

Если существует гладкое отображение $f: N \to M$ такое, что

- 1) f задает гомеоморфизм N и $f(N) \subset M$;
- 2) в каждой точке $x \in N$ отображение f_* является вложением касательных пространств.

Такое отображение f называется вложением N в M. Если выполнено только условие 2, то отображение f называется погружением.

Лемма 2 Если $f: N \to M$ вложение, то f(N) подмногообразие M и $f: N \to f(N)$ диффеоморфизм.

Доказательство. В локальных координатах $\{y^j\}$ на N и $\{x^j\}$ на M вложение f записывается как $x^j=x^j(y^1,\ldots,y^n)$ и, так как точка x регулярна для f,

$$\operatorname{rank}\left(\frac{\partial x^j}{\partial y^i}\right) = k.$$

Без ограничения общности считаем, что в окрестности x

$$\det\left(\frac{\partial x^j}{\partial y^i}\right)_{1\leq i,j\leq k}\neq 0.$$

Тогда по теореме об обратной функции ([3, 7]) в малой окрестности U точки f(x) определены гладкие функции $\varphi_1, \ldots, \varphi_n$ такие, что $y^j = \varphi_j(x^1, \ldots, x^k)$ при $1 \leq j \leq k$, если и только если $x^j = x^j(y^1, \ldots, y^k)$. Теперь возьмем

$$F: U \to \mathbf{R}^{n-k}$$

в виде

$$F^{j}(x^{1},...,x^{n}) = x^{k+j} - x^{k+j}(\varphi_{1}(x^{1},...,x^{k}),...,\varphi_{k}(x^{1},...,x^{k})).$$

Множество нулей F совпадает по построению с $f(N) \cap U$ и на нем F регулярно. Применяя лемму 1, завершаем доказательство леммы 2.

Пусть $f: M \to \mathbf{R}$ гладкая функция на многообразии M и множество ее нулей M_0 регулярно. Тогда M_0 подмногообразие, разделяющее M на

две части, где f < 0 и f > 0. В этом случае замкнутая область N, выделяемая неравенством $f(x) \geq 0$, называется многообразием с краем $\partial N = M_0$. Если удалить из многообразия с краем N его край ∂N , то мы получим подмногообразие $N \setminus \partial N \subset M$, размерность которого совпадает с размерностью M и называется размерностью многообразия с краем. Если многообразие с краем n-мерно, то его граница является (n-1)-мерным многообразием без края.

Отображение $f:N_1\to N_2$ многообразий с краем $N_1\subset M_1$ и $N_2\subset M_2$, выделяемых в M_1 и M_2 неравенствами, называется гладким, если существует открытая область $U\subset M_1$ такая что $N_1\subset U$ и f продолжается до гладкого отображения $g:U\to M_2$.

Аналогично случаю многообразий без края определяется диффеоморфизм многообразий с краем и мы заметим, что, если N является n-мерным многообразием с краем, то каждая точка его границы имеет окрестность диффеоморфную пересечению n-мерного шара $\{|x|<1\}\subset \mathbf{R}^n$ с полупространством $x^n>0$.

Если многообразие не имеет края и компактно, то оно называется *замкнутым*.

Определим каноническую гладкую структуру на прямом произведении гладких многообразий. Пусть $\{U_{\alpha}\}$ покрытие M областями с координатами $\{x_{\alpha}^i\}$ и $\{V_{\beta}\}$ покрытие N областями с координатами $\{y_{\beta}^j\}$. Тогда $\{U_{\alpha} \times V_{\beta}\}$ образует покрытие $M \times N$ областями, в которых примем $\{x_{\alpha}^1, \ldots, x_{\alpha}^k, y_{\beta}^1, \ldots, y_{\beta}^l\}$ за гладкие координаты (здесь $k = \dim M, l = \dim N$). В дальнейшем под гладким многообразием $M \times N$ будем понимать данное многообразие.

Задача 6. Пусть \mathbf{R}_1 и \mathbf{R}_2 две прямые с координатами x и y соответственно. Пусть X множество, полученное из этих прямых отождествлением точек $x \in \mathbf{R}_1$ и $y \in \mathbf{R}_2$ при x = y и $x \neq 0$. Прямые \mathbf{R}_j естественным образом вкладываются в $X \colon p_j \colon \mathbf{R}_j \to X$. Введем на X топологию, положив $U \subset X$ открытым, если и только если его прообразы $p_1^{-1}(U) \subset \mathbf{R}_1$ и $p_2^{-1}(U) \subset \mathbf{R}_2$ открыты. Показать, что X обладает всеми свойствами гладкого многообразия, кроме хаусдорфовости.

§3. Тензоры

Гладкие многообразия около каждой точки устроены так же как евклидовы пространства и функции на многообразиях гладкие, если они гладкие как функции от локальных координат. Дополнительное условие, связывающее локальные и глобальные объекты, состоит в том, что записи касательных векторов в различных координатах связаны формулой (1). Пусть $f:M\to \mathbf{R}$ гладкая функция на M. В координатах $\{x^i_\alpha\}$ ее градиент grad f имеет вид

$$v^{\alpha} = \left(\frac{\partial f}{\partial x_{\alpha}^{1}}, \dots, \frac{\partial f}{\partial x_{\alpha}^{n}}\right),$$

а в координатах $\{x^i_{\beta}\}$ —

$$w^{\beta} = \left(\frac{\partial f}{\partial x_{\beta}^{1}}, \dots, \frac{\partial f}{\partial x_{\beta}^{n}}\right) = \left(\frac{\partial f}{\partial x_{\alpha}^{i}} \frac{\partial x_{\alpha}^{i}}{\partial x_{\beta}^{1}}, \dots, \frac{\partial f}{\partial x_{\alpha}^{i}} \frac{\partial x_{\alpha}^{i}}{\partial x_{\beta}^{n}}\right).$$

Формула, связывающая записи градиента в различных координатах, отличается от (1) и это объясняется следующим образом.

Ковектором в точке x называется объект, записываемый в локальных координатах $\{x^i_\alpha\}$ набором чисел v^α_i и такой, что его запись w^β_j в другой системе координат $\{x^j_\beta\}$ удовлетворяет уравнению

$$w_j^{\beta} = \frac{\partial x_{\alpha}^i}{\partial x_{\beta}^j} v_i^{\alpha}. \tag{3}$$

Теперь мы заключаем, что

Лемма 3 Градиент функции является ковектором.

Производная функции в направлении касательного вектора v равна $(\operatorname{grad} f)_i v^i$, не зависит от системы координат и является линейной функцией на касательном пространстве. Последнее утверждение верно для всех ковекторов.

Лемма 4 Ковектор w в точке $x \in M$ является линейной функцией на касательном пространстве T_xM , записываемой в локальных координатах формулой $w(v) = w_i v^i$.

Доказательство. Достаточно показать, что значение w(v) не зависит от выбора локальных координат. Но из (1) и (3) следует, что

$$w_i^{\beta} v_{\beta}^i = \frac{\partial x_{\alpha}^j}{\partial x_{\beta}^i} w_j^{\alpha} \frac{\partial x_{\beta}^i}{\partial x_{\alpha}^k} v_{\alpha}^k,$$

и, так как

$$\frac{\partial x_{\alpha}^{j}}{\partial x_{\beta}^{i}} \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{k}} = \frac{\partial x_{\alpha}^{j}}{\partial x_{\alpha}^{k}} = \delta_{k}^{j},$$

мы получаем

$$w(v) = w_i^{\beta} v_{\beta}^i = w_k^{\alpha} v_{\alpha}^k.$$

Лемма 4 доказана.

Из леммы 4 вытекает следующее утверждение.

Лемма 5 Ковекторы в точке $x \in M$ образуют линейное пространство T_x^*M размерности $n = \dim M$, сопряженное к касательному пространству T_xM .

Пространство T_x^*M называется кокасательным.

Обобщением векторов и ковекторов являются тензоры:

— mensopom типа (k,l) в точке $x \in M$ называется такой объект $T^{i_1...i_k}_{j_1...j_k}$, что его записи в различных системах координат связаны формулой

$$^{(\beta)}T^{i_1\dots i_k}_{j_1\dots j_l} = \frac{\partial x^{i_1}_{\beta}}{\partial x^{r_1}_{\alpha}} \dots \frac{\partial x^{i_k}_{\beta}}{\partial x^{r_k}_{\alpha}} \frac{\partial x^{s_1}_{\alpha}}{\partial x^{j_1}_{\beta}} \dots \frac{\partial x^{s_l}_{\alpha}}{\partial x^{j_l}_{\beta}} ^{(\alpha)}T^{r_1\dots r_k}_{s_1\dots s_l}; \tag{4}$$

— семейство тензоров, гладко зависящее от точки $x \in M$, называется гладким mензорным nолем на M.

Из этого определения видно, что касательный вектор является тензором типа (1,0), а градиент функции — типа (0,1). Так как векторы v сами являются линейными функциями на ковекторах w вида v(w) = w(v), то тензоры T типа (k,l) являются линейными функциями от k ковекторов $u^{(m)}$ и l векторов $v_{(n)}$:

$$T(u^{(1)}, \dots, u^{(k)}, v_{(1)}, \dots, v_{(l)}) = T_{j_1 \dots j_l}^{i_1 \dots i_k} u_{i_1}^{(1)} \dots u_{i_k}^{(k)} v_{(1)}^{j_1} \dots v_{(l)}^{j_l}.$$

Теперь формула (4) поаргументно выводится из формул (1) и (3), которые для касательных векторов и градиентов функций вытекают из теоремы о дифференцировании сложной функции.

Формула (4) очевидна для тензорных произведений тензоров валентностей (1,0) и (0,1): тензор $A\otimes B$ валентности (k+p,l+q) называется *тензорным произведением* тензоров A и B валентностей (k,l) и (p,q), соответственно, если

$$(A \otimes B)_{j_1...j_l s_1...s_q}^{i_1...i_k r_1...r_p} = A_{j_1...j_l}^{i_1...i_k} \cdot B_{s_1...s_q}^{r_1...r_p}.$$

Если задать в каждом касательном пространстве T_xM скалярное произведение (v_1,v_2) (для поверхностей в ${\bf R}^3$ — первую квадратичную

форму ([7])), то мы получим метрику g_{ij} , являющуюся тензором типа (0,2):

$$(v_1, v_2) = g_{ij} v_1^i v_2^j.$$

Касательные векторы — пары (x,v) вида $x \in M, v \in T_xM$ — образуют касательное расслоение TM.

Теорема 1 На касательном расслоении TM к n-мерному многообразию M существует структура гладкого многообразия такая, что

- а) проекция $\pi: TM \to M$ является гладким отображением;
- б) для любой точки $x \in M$ существует окрестность U такая, что ее прообраз $\pi^{-1}(U)$ диффеоморфен прямому произведению $U \times \mathbf{R}^n$: $f: \pi^{-1}(U) \to U \times \mathbf{R}^n$, и при этом $\pi(f^{-1}(x,v)) = x$, где $x \in U, v \in \mathbf{R}^n$ (диффеоморфизм f согласован c проектированием).

Доказательство. Для каждой точки $x \in M$ возьмем какую-то координатную окрестность U_{α} с координатами $(x_{\alpha}^{1}, \ldots, x_{\alpha}^{n})$. Пусть W_{α} множество векторов v, касательных к точкам из U. Введем на координаты $(x_{\alpha}^{1}, \ldots, x_{\alpha}^{n}, v_{\alpha}^{1}, \ldots, v_{\alpha}^{n})$, где $v \in T_{x}M$ раскладывается по базису (2) как $v = v_{\alpha}^{i} \partial_{i}$.

Заметим, для покрытия $\{U_{\alpha}\}$ многообразия M семейство W_{α} образует покрытие TM и, считая координаты $(x_{\alpha}^1,\ldots,x_{\alpha}^n,v_{\alpha}^1,\ldots,v_{\alpha}^n)$ гладкими, мы вводим на M структуру гладкого многообразия, удовлетворяющее всем утверждениям теоремы.

Теорема 1 доказана.

В дальнейшем под гладкой структурой на TM мы будем понимать структуру, построенную в доказательстве теоремы 1.

Аналогично доказывается, что на множестве ковекторов в точках M- кокасательном расслоении T^*M к многообразию M- существует структура гладкого многообразия такая, что проекция $\pi:T^*M\to M$ является гладкой и для любой точки $x\in M$ существует окрестность U такая, что ее прообраз $\pi^{-1}(U)$ диффеоморфен прямому произведению $U\times \mathbf{R}^n$, где $n=\dim M$.

§4. Вложение гладких многообразий в евклидовы пространства

В начале 20-го века под гладким многообразием понимали регулярное множество нулей отображения $f: \mathbf{R}^n \to \mathbf{R}^k$, т.е. то, что сейчас называется подмногообразием евклидова пространства. Внутреннее опре-

деление, данное в §2, в действительности не является более общим. А именно имеет место следующая теорема Уитни:

каждое гладкое n-мерное многообразие c счетной базой (т.е. имеющее cчетную базу открытых множеств) вкладывается в \mathbf{R}^{2n} .

Мы ограничимся доказательством более простого утверждения.

Теорема 2 Пусть M замкнутое гладкое многообразие. Тогда существует его вложение $\varphi: M \to \mathbf{R}^N$ в евклидово пространство достаточно большой размерности.

Доказательство. Можно ограничиться случаем связного многообразия и считать, что оно n-мерно.

Прежде всего для каждого R>0 построим гладкое отображение ψ_R пространства ${\bf R}^n$ в единичную сферу $S^n=\{y\in {\bf R}^{n+1}: |y|=1\}\subset {\bf R}^{n+1}$ такое, что

- 1) ψ_R диффеоморфно переводит внутренность круга $\{|x| < R\}$ на дополнение к полюсу $P = (0, \dots, 0, 1) \in S^n$;
 - 2) ψ_R отображает множество $\{|x| \geq 1\}$ в полюс $(0,\dots,0,1) \in S^n$. Сделаем это в два этапа:
- 1) Отобразим диффеоморфно внутренность круга $\{|x| < R\}$ на все \mathbf{R}^n так, что граница круга отобразится в "бесконечно удаленную точку". Для этого достаточно взять отображение

$$f_R: (x^1, \dots, x^n) \to (\tau x^1, \dots, \tau x^n),$$

где $\tau = \exp(1/(R^2 - |x|^2));$

2) Отобразим диффеоморфно \mathbf{R}^n на дополнение к полюсу $P \in S^n$ так, что "бесконечно удаленная точка" перейдет в полюс. Для этого реализуем \mathbf{R}^n как гиперплоскость $\{y^{n+1}=-1\}\subset \mathbf{R}^{n+1}$ и рассмотрим стереографическую проекцию π , отображающую точку $y\in S^n$ в пересечение прямой, проходящей через y и P, с плоскостью $\{y^{n+1}=-1\}$. Отображение π^{-1} имеет вид

$$\pi^{-1}(x^1, \dots, x^n) = (\theta x^1, \dots, \theta x^n, 1 - 2\theta),$$

где $\theta = 4/(4 + |x|^2)$.

Искомое отображение ψ_R на $\{|x| < R\}$ принимает вид $\psi_R = \pi^{-1} f_R$ и продолжается гладко на все \mathbf{R}^n как $\psi_R(x) = P$ при $|x| \ge 1$.

Покроем теперь M координатными областями U_{α} так, что каждая область U_{α} диффеоморфна шару $|x| < R_{\alpha}$. Многообразие M компактно

и поэтому можно выбрать конечное подпокрытие U_1, \dots, U_k . Для каждой области U_j определим отображение

$$\varphi_j = \psi_{R_i} : M \to S^n$$

и рассмотрим отображение

$$\varphi: M \to \mathbf{R}^N, \ N = (n+1)k$$

вида

$$\varphi(x) = (\varphi_1(x), \dots, \varphi_k(x)).$$

Отображение φ является вложением. Действительно, если $x \neq y$, то выполняется по крайней мере одна из ситуаций

- 1) существует область U_j такая, что $x, y \in U_j$, и тогда $\varphi_j(x) \neq \varphi_j(y)$;
- 2) существует область U_j такая, что $x \in U_j$ и $y \in M \setminus U_j$, и тогда опять $\varphi_j(x) \neq \varphi_j(y)$.

Если $x\in U_j$, то φ_{j*} имеет ранг n и поэтому задает вложение касательного пространства T_xM .

Теорема 2 доказана.

Глава 2. Римановы многообразия

§5. Метрический тензор

Пусть M гладкое многообразие и в касательном пространстве к каждой его точке задано скалярное произведение, которое в координатах на касательном расслоении записывается с помощью симметричного тензора g_{ij} :

$$v, w \in T_x M \to (v, w) = g_{ij} v^i w^j \in \mathbf{R}, \quad g_{ij} = g_{ji}.$$

Предположим, что $g_{ij}(x)$ непрерывно зависит от $x \in M$. Такое многообразие называется римановым, а тензор g_{ij} называется метрическим тензором (или метрикой). Если метрика гладко зависит от x, то риманово многообразие называется гладким.

Простейшим примером являются подмногообразия в \mathbf{R}^n .

Пусть $f: M \to \mathbf{R}^n$ вложение многообразия M в \mathbf{R}^n . Определим на M метрику $(\cdot,\cdot)_f$, индуцированную вложением. Пусть $v,w \in T_xM$ и $f_*(v), f_*(w) \in T_{f(x)}\mathbf{R}^n$. Положим

$$(v,w)_f = (f_*(v), f_*(w)),$$

где (\cdot, \cdot) обычное скалярное произведение в \mathbb{R}^n . В случае поверхностей в \mathbb{R}^3 метрический тензор, индуцированный вложением, называется первой квадратичной формой ([7]).

Более обще следующее определение: если $f: M \to N$ гладкое вложение M в риманово многообразие N, то метрика

$$(v, w)_f = (f_*(v), f_*(w))_N,$$

где $(\cdot,\cdot)_N$ метрика на N, называется undyuupoванной вложением f. Из теоремы 2 вытекает

Следствие 1 На каждом замкнутом гладком многообразии существует гладкая риманова метрика.

Другой технически важный тензор g^{ij} связан с метрическим тензором следующим соотношением:

$$g^{ij}g_{jk} = \begin{cases} 1, & \text{если } i = k \\ 0, & \text{если } i \neq k \end{cases},$$

которым он однозначно и определяется.

Обобщением римановой метрики является понятие псевдоримановой метрики: пусть тензор g_{ij} симметричен, но не обязательно положительно определен, а задающая его матрица имеет k положительных и (n-k) отрицательных собственных значений, где $\dim M=n$. Тогда он задает ncesdopumanosy метрику сигнатуры (k,n-k). Простейшим примером является ncesdoesknudoso npocmpancmso $\mathbf{R}^{k,n-k}$, диффеоморфное \mathbf{R}^n и оснащенное в каждой касательной плоскости псевдоскалярным произведением

$$(v, w)_{k,n-k} = v^1 w^1 + \ldots + v^k w^k - v^{k+1} w^{k+1} - \ldots - v^n w^n.$$

Частный случай — пространство $\mathbf{R}^{1,3}$ — называется *пространством Мин-ковского* и исключительно важен в физике (см. главу 3).

§6. Аффинная связность и ковариантное дифференцирование

Формулы (4), связывающие записи тензоров в разных системах координат, как правило нелинейны по координатам на многообразии и поэтому не зависящее от координат определение дифференцирований тензоров требует введения аффинных связностей.

Пусть M гладкое многообразие.

Пусть задана функция, которая в каждой точке $x \in M$ сопоставляет каждому векторному полю v на M и каждому вектору $w \in T_x M$ новый касательный вектор

$$v, w \to \nabla_w v \in T_x M \tag{5}$$

и при этом выполняются следующие условия

1) отображение (5) линейно по обеим аргументам:

$$\nabla_{\alpha_1 w_1 + \alpha_2 w_2} v = \alpha_1 \nabla_{w_1} v + \alpha_2 \nabla_{w_2} v,$$

$$\nabla_w(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \nabla_w v_1 + \alpha_2 \nabla_w v_2, \quad \alpha_1, \alpha_2 \in \mathbf{R};$$

2) если $f: M \to \mathbf{R}$ гладкая функция, то

$$\nabla_{fw}v = f\nabla_w v, \quad \nabla_w fv = D_w f v + f\nabla_w v,$$

где $D_w f$ — производная функции f в направлении вектора w.

Такая функция называется аффинной связностью, а ее значение $\nabla_w v$ — ковариантной производной векторного поля v в направлении вектора w.

Если для гладких векторных полей v и w векторное поле $\nabla_w v$ тоже гладко, то связность называется гладкой. В дальнейшем мы будем подразумевать все связности гладкими.

Заметим, что для определения связности не требуется, чтобы многообразие M было римановым.

В координатах связность записывается через символы Кристоффеля Γ_{ij}^k . А именно, пусть x^1, \ldots, x^n координаты в области из M и $\partial_1, \ldots, \partial_n$ соответствующие им поля векторов (2), образующие базисы в касательных пространствах. Определим символы Кристоффеля по формуле

$$\nabla_{\partial_i} \partial_j = \Gamma_{ij}^k \partial_k. \tag{6}$$

Из определения связности следует, что для любых векторных полей $v=v^i\partial_i$ и $w=w^j\partial_i$ ковариантная производная имеет вид

$$\nabla_w v = \nabla_{w^j \partial_j} \left(v^i \partial_i \right) = w^j \nabla_{\partial_j} \left(v^i \partial_i \right) =$$

$$w^{j} \left(\frac{\partial v^{k}}{\partial x^{j}} \partial_{k} + v^{i} \nabla_{\partial_{j}} \partial_{i} \right) = w^{j} \left(\frac{\partial v^{k}}{\partial x^{j}} + v^{i} \Gamma_{ji}^{k} \right) \partial_{k},$$

и в итоге мы получаем

$$(\nabla_w v)^k = w^j \left(\frac{\partial v^k}{\partial x^j} + v^i \Gamma_{ji}^k \right). \tag{7}$$

Из этих выкладок следует, что символы Кристоффеля однозначно задают связность. Более того, из них же следует, что символы Кристоффеля не являются тензорами. Покажем это.

Пусть y^1, \ldots, y^n другие координаты в той же области и $\tilde{\partial}_1, \ldots, \tilde{\partial}_n$ отвечающие им координатные векторные поля. Из теоремы о дифференцировании сложной функции следует, что

$$\partial_i = \frac{\partial}{\partial x^i} = \frac{\partial y^j}{\partial x^i} \frac{\partial}{\partial y^j} = \frac{\partial y^j}{\partial x^i} \tilde{\partial}_j.$$

Подставим это в (6):

$$\Gamma^{k}_{ij}\partial_{k} = \nabla_{\partial_{i}}\partial_{j} = \nabla_{\partial_{i}}\left(\frac{\partial y^{k}}{\partial x^{j}}\tilde{\partial}_{k}\right) = \frac{\partial^{2}y^{k}}{\partial x^{i}\partial x^{j}}\tilde{\partial}_{k} + \frac{\partial y^{k}}{\partial x^{i}}\frac{\partial y^{l}}{\partial x^{j}}\nabla_{\tilde{\partial}_{k}}\tilde{\partial}_{l} = \left(\frac{\partial^{2}y^{m}}{\partial x^{i}\partial x^{j}} + \frac{\partial y^{k}}{\partial x^{i}}\frac{\partial y^{l}}{\partial x^{j}}\tilde{\Gamma}^{m}_{kl}\right)\tilde{\partial}_{m} = \left(\frac{\partial^{2}y^{m}}{\partial x^{i}\partial x^{j}} + \frac{\partial y^{k}}{\partial x^{i}}\frac{\partial y^{l}}{\partial x^{j}}\tilde{\Gamma}^{m}_{kl}\right)\frac{\partial x^{p}}{\partial y^{m}}\partial_{p}$$

и окончательно получаем

$$\Gamma_{ij}^{p} = \frac{\partial^{2} y^{m}}{\partial x^{i} \partial x^{j}} \frac{\partial x^{p}}{\partial y^{m}} + \frac{\partial y^{k}}{\partial x^{i}} \frac{\partial y^{l}}{\partial x^{j}} \frac{\partial x^{p}}{\partial y^{m}} \tilde{\Gamma}_{kl}^{m}.$$

Отсюда следует, что

- символы Кристоффеля преобразуются как тензоры только при линейных заменах координат;
- величина $T^k_{ij} = \Gamma^k_{ij} \Gamma^k_{ji}$ является тензором (и называется тензором кручения).

Ковариантное дифференцирование распространяется на все тензоры следующим образом.

Если f функция на M, то естественно считать, что

$$\nabla_w f = w^j \frac{\partial f}{\partial x^j},$$

т. е. ковариантная производная совпадает с производной функции в направлении поля w. Пусть u ковекторное поле на M. Тогда $f=u_iv^i,$ значение u на v, гладкая функция и

$$\nabla_w f = w^j \frac{\partial (u_i v^i)}{\partial r^j}.$$

Делая естественное предположение, что ковариантное дифференцирование удовлетворяет правилу Лейбница

$$\nabla_w(u_i v^i) = (\nabla_w u)_i v^i + u_i (\nabla_w v)^i,$$

выводим из (7)

$$(\nabla_w u)_i = w^j \frac{\partial u_i}{\partial x^j} - \Gamma^k_{ji} w^j u_k.$$

Легко заметить, что любой тензор валентности (k,l) представляется в виде линейной комбинации элементарных тензоров вида

$$T_{j_1...j_l}^{i_1...i_k} = A_{(1)}^{i_1} \dots A_{(k)}^{i_k} A_{j_1}^{(k+1)} \dots A_{j_l}^{(k+l)},$$

т. е. тензорных произведений тензоров валентности (0,1) или (1,0). Теперь предполагая, что ковариантное дифференцирование удовлетворяет следующему правилу Лейбница

$$\nabla_w(A \otimes B) = (\nabla_w A) \otimes B + A \otimes (\nabla_w B),$$

и зная его действие на векторах и ковекторах, можно выписать его действие на любом тензорном поле. При этом

— ковариантная производная тензора является тензором.

Задача 7. Показать, что определенное таким образом ковариантное дифференцирование тензоров валентности (0,2) имеет вид

$$\nabla_w g_{ij} = w^k \frac{\partial g_{ij}}{\partial x^k} - w^k \left(\Gamma^l_{ki} g_{lj} + \Gamma^l_{kj} g_{il} \right).$$

Заметим, что мы стартовали с определения ковариантного дифференцирования векторных полей и нигде не предполагали, что многообразие риманово. В таком виде определение связности может быть введено на любом гладком векторном расслоении, т. е. таком многообразии E, на котором определено гладкое отображение $\pi: E \to B$ такое, что

1) существует покрытие B областями U_{α} такое, что для для каждой такой области существует такой диффеоморфизм

$$p_{\alpha}:\pi^{-1}(U)\to U\times F,$$

что F векторное пространство, которое одно и то же для всех α , и диффеоморфизм p_{α} согласован с проектированием:

$$\pi(p_{\alpha}^{-1}(x,v)) = x, \quad x \in U, \ v \in F;$$

2) если пересечение $U_{\alpha} \cap U_{\beta}$ таких областей непусто, то отображение

$$p_{\alpha}p_{\beta}^{-1}: (U_{\alpha}\cap U_{\beta})\times F \to (U_{\alpha}\cap U_{\beta})\times F$$

имеет вид $(x,v) \to (x,A_x(v))$, где A_x принадлежат какой-то подгруппе G группы GL(F) всех обратимых линейных отображений F в себя. В этом случае E называется пространством расслоения, B базой, G структурной группой расслоения, а F слоем расслоения. Простейшим, после прямого произведения $M \times F$, примером является касательное расслоение к n-мерному многообразию M: его слой изоморфен \mathbf{R}^n , структурная группа — $GL(n,\mathbf{R})$, и отображение π сопоставляет касательному вектору точку касания (теорема 1).

Связность определяет параллельный перенос в расслоении. Пусть γ : $[0,T] \to B$ гладкий путь на базе расслоения. Тогда векторное поле v(t) (т.е. функция от t со значениями в слоях расслоения: $v(t) \in \pi^{-1}(\gamma(t))$) называется параллельным вдоль γ , если $\pi(v(t)) = \gamma(t)$ для любого t и выполняется уравнение

$$\frac{Dv}{\partial t} = \nabla_{\dot{\gamma}} v = 0. \tag{8}$$

Расписывая левую часть, получаем, что параллельность эквивалентна выполнимости для каждого $i=1,\ldots,n$ уравнения

$$\left(\frac{Dv}{\partial t}\right)^i = \dot{\gamma}^k \left(\frac{\partial v^i}{\partial x^k} + \Gamma^i_{kj} v^j\right) = 0.$$

Для любого заданного начального условия v(0) уравнение (8) однозначно разрешимо, так как имеет первый порядок, и говорится, что v(1) получен из v(0) параллельным переносом вдоль γ .

§7. Римановы связности

Пусть M является гладким римановым многообразием с метрикой g_{ij} и на его касательном расслоении задана аффинная связность.

Лемма 6 Следующие утверждения эквивалентны:

1) Для любого векторного поля w на M

$$\nabla_w q_{ii} = 0$$
;

2) Если $\gamma(t)$ гладкая кривая на M и v и w параллельные векторные поля вдоль γ , то их скалярное произведение постоянно вдоль γ :

$$\frac{d}{dt}(v(t), w(t)) = 0;$$

3) Если $\gamma(t)$ гладкая кривая на M и v и w векторные поля вдоль γ , то

$$\frac{d}{dt}(v(t), w(t)) = (\nabla_{\dot{\gamma}} v, w) + (v, \nabla_{\dot{\gamma}} w).$$

Доказательство. Прежде всего распишем $\frac{d}{dt}(v(t), w(t))$ в локальных координатах и, используя задачу 7, получим его инвариантный вид:

$$\frac{d}{dt}(v(t), w(t)) = \frac{d}{dt} \left(g_{ij} v^i w^j \right) =$$

$$\frac{dg_{ij}}{dt} v^i w^j + g_{ij} \frac{dv^i}{dt} w^j + g_{ij} v^i \frac{dw^j}{dt} =$$

$$\left(\nabla_{\dot{\gamma}} g_{ij} + \Gamma^k_{li} \dot{\gamma}^l g_{kj} + \Gamma^k_{lj} \dot{\gamma}^l g_{ik} \right) v^i w^j + g_{ij} \frac{dv^i}{dt} w^j + g_{ij} v^i \frac{dw^j}{dt} =$$

$$\nabla_{\dot{\gamma}} g_{ij} v^i w^j + g_{ij} \left(\frac{dv^i}{dt} + \Gamma^i_{lk} \dot{\gamma}^l v^k \right) w^j + g_{ij} v^i \left(\frac{dw^j}{dt} + \Gamma^j_{lk} \dot{\gamma}^l w^k \right) =$$

$$\nabla_{\dot{\gamma}} g_{ij} v^i w^j + (\nabla_{\dot{\gamma}} v, w) + (v, \nabla_{\dot{\gamma}} w).$$

Из последней формулы ясно, что 1) влечет 3). То, что 2) следует из 3) очевидно. Осталось доказать, что 2) влечет 1). Выберем произвольную точку $x \in M$ и произвольные векторы $u, v, w \in T_x M$. Выпустим из x кривую в направлении u и продолжим (однозначно) v и w до параллельных векторных полей на кривой. Из 2) следует, что $\nabla_u g_{ij} v^i w^j = 0$. Так как все данные взяты произвольно, то отсюда следует 1).

Лемма 6 доказана.

Если связность удовлетворяет одному из условий 1—3) леммы 6, то она называется cosmecmnoù c mempuroù.

Другой важный класс связностей — симметрические: связность *сим-метрична*, если ее тензор кручения тождественно равен нулю

$$T_{ij}^k = \Gamma_{ij}^k - \Gamma_{ji}^k = 0.$$

Это тождество очевидно эквивалентно следующему утверждению для любой пары векторных полей u и v выполняется соотношение

$$\nabla_u v - \nabla_v u = [u, v], \tag{9}$$

где

$$[u,v]^{i} = u^{j} \frac{\partial v^{i}}{\partial x^{j}} - v^{j} \frac{\partial u^{i}}{\partial x^{j}}$$

коммутатор векторных полей u и v. Эквивалентность доказывается прямыми выкладками.

Имеет место следующая теорема:

Теорема 3 На каждом римановом многообразии существует и единственна связность, которая совместна с метрикой и симметрична. Ее символы Кристоффеля имеют вид

$$\Gamma_{ij}^{k} = \frac{1}{2} g^{kl} \left(\frac{\partial g_{il}}{\partial x^{j}} + \frac{\partial g_{jl}}{\partial x^{i}} - \frac{\partial g_{ij}}{\partial x^{l}} \right). \tag{10}$$

Доказательство. Пусть $x \in M$, а $\partial_1, \dots, \partial_n$ базис в $T_x M$, отвечающий координатам x^1, \dots, x^n . Тензор g_{ij} имеет вид $g_{ij} = (\partial_i, \partial_j)$. Выпустим из x кривую в направлении ∂_l . Из леммы 6 следует, что в точке x выполняется равенство

$$\frac{d}{dt}(\partial_i, \partial_j) = \frac{\partial g_{ij}}{\partial x^l} = (\nabla_{\partial_l} \partial_i, \partial_j) + (\partial_i, \nabla_{\partial_l} \partial_j).$$

Переставляя i, j, l и принимая во внимание, что связность симметрична $(\nabla_{\partial_i}\partial_j = \nabla_{\partial_j}\partial_i$ и т. д.), получим три линейных уравнения на $(\nabla_{\partial_l}\partial_i, \partial_j)$, $(\nabla_{\partial_i}\partial_j, \partial_l)$ и $(\nabla_{\partial_j}\partial_l, \partial_i)$. Эти уравнения имеют единственное решение

$$(\nabla_{\partial_i}\partial_j,\partial_l) = \frac{1}{2} \left(\frac{\partial g_{jl}}{\partial x^i} + \frac{\partial g_{li}}{\partial x^j} + \frac{\partial g_{ij}}{\partial x^l} \right)$$

и, расписывая его, получим

$$\Gamma_{ij}^{m}g_{lm} = \frac{1}{2} \left(\frac{\partial g_{jl}}{\partial x^{i}} + \frac{\partial g_{li}}{\partial x^{j}} + \frac{\partial g_{ij}}{\partial x^{l}} \right).$$

Умножив обе части последнего равенства на g^{kl} и просуммировав по l, получим (10).

Можно показать прямыми выкладками, что связность (10) симметрична и совместна с метрикой.

Теорема 3 доказана.

Эта теорема является обобщением теоремы 11 из [7] (в которой речь шла о поверхностях в \mathbf{R}^3) на произвольные римановы многообразия. Случай поверхностей в \mathbf{R}^3 подсказывает следующую конструкцию таких связностей. Пусть M риманово многообразие с симметричной связностью ∇ совместной с метрикой. Пусть N подмногообразие в M с индуцированной метрикой. Рассмотрим векторное поле v на N и пусть $w \in T_x N$. Ковариантная производная $\nabla_w v$ не обязана касаться N, поэтому разложим ее на компоненты

$$\nabla_w v = \tilde{\nabla}_w v + B(w, v),$$

где $\tilde{\nabla}_w v \in T_x N$, а вектор B(w,v) ортогонален к $T_x N$. Верны следующие утверждения, которые мы изложим без доказательства:

- $-\tilde{\nabla}$ определяет на N симметричную связность, совместную c индуцированной метрикой;
- -B симметричный билинейный оператор на касательном расслоении к N со значениями в ортогональных дополнениях к T_xN .

В случае поверхностей в ${\bf R}^3$ ([7]) символы Кристоффеля определяются именно с помощью такой процедуры из тривиальной связности на ${\bf R}^3$ ($\Gamma^k_{ij}=0$ для евклидовых координат), а вторая квадратичная форма, умноженная на вектор нормали к поверхности, совпадает с B.

§8. Кривизна

Пусть M многообразие с связностью в касательном расслоении и пусть U область на M с локальными координатами x^1, \ldots, x^n . Пусть $x \in M$. Для простоты предположим, что координаты x равны $(0, \ldots, 0)$.

Рассмотрим в области U маленький квадрат, стороны которого являются отрезками в этих координатах и последовательно соединяют точки $x=(0,0,\ldots),\,y=(\varepsilon,0,\ldots),\,z=(0,\varepsilon,\ldots),\,s=(\varepsilon,\varepsilon,\ldots),$ где \ldots обозначает нули. Определим два оператора $T_{1\varepsilon}$ и $T_{2\varepsilon}$ из T_xM в T_sM : $T_{1\varepsilon}$ состоит в параллельном переносе вдоль границы квадрата из x в y, а затем из y в s, а $T_{2\varepsilon}$ состоит в параллельном переносе вдоль границы квадрата из x в y, а затем из y в y

В общем случае $T_{1\varepsilon}(w) \neq T_{2\varepsilon}(w)$ и разность этих векторов описывается *кривизной связности*. Понятие кривизны определяется для любой связности на любом векторном расслоении, однако общее определение опирается на теорию групп и алгебр Ли (см., например, [1]) и мы поэтому ограничиваемся случаем связности на касательном расслоении.

Найдем $T_{1\varepsilon}(w)-T_{2\varepsilon}(w)$ с точностью до членов малого порядка по ε . Обозначим оператор параллельного переноса из x в y через τ_1 , а оператор параллельного переноса из y в s через τ_2 . Все касательные векторы будем разлагать по базисам $\partial_1, \ldots, \partial_n$ в касательных пространствах.

Из (8) следует, что

$$\tau_1(w)^k = w^k - \varepsilon \Gamma_{1j}^k(x) w^j + O(\varepsilon^2),$$

$$\tau_2(\tilde{w})^k = \tilde{w}^k - \varepsilon \Gamma_{2j}^k(y_1) \tilde{w}^j + O(\varepsilon^2) =$$

$$\tilde{w}^k - \varepsilon \left(\Gamma_{2j}^k(x) + \varepsilon \frac{\partial \Gamma_{2j}^k(x)}{\partial x^1}\right) \tilde{w}^j + O(\varepsilon^2).$$

Члены порядка ε^2 тоже легко оценить: w является решением уравнения (8) вида $\dot{w}=Aw$ и подставляя вместо A и w их ряды Тейлора, получим

$$w(\varepsilon) = w(0) - A(0)w(0)\varepsilon - (\dot{A}(0)w(0) + A(0)\dot{w}(0))\frac{\varepsilon^2}{2} + O(\varepsilon^3).$$

Теперь, когда ясно, как производить все выкладки, мы приведем окончательный ответ:

$$T_{1\varepsilon}(w)^k - T_{2\varepsilon}(w)^k = \left(-\frac{\partial \Gamma_{2j}^k}{\partial x^1} + \frac{\partial \Gamma_{1j}^k}{\partial x^2} + \Gamma_{2l}^k \Gamma_{1j}^l - \Gamma_{1l}^k \Gamma_{2j}^l\right) w^j \cdot \varepsilon^2 + O(\varepsilon^3).$$

Последнее выражение упрощается как

$$T_{1\varepsilon}(w) - T_{2\varepsilon}(w) = (\nabla_{\partial_2} \nabla_{\partial_1} - \nabla_{\partial_1} \nabla_{\partial_2}) w \cdot \varepsilon^2 + O(\varepsilon^3). \tag{11}$$

Эти вычисления приводят к введению *тензора кривизны*, являющегося линейной функцией от трех векторных полей u,v и w:

$$R(u, v)w = (\nabla_v \nabla_u - \nabla_u \nabla_v + \nabla_{[u,v]})w.$$

(очевидно, что $[\partial_i, \partial_j] = 0$).

Лемма 7 Значение R(u,v)w в точке x зависит только от значений u,v,w в x u отображение

$$R: T_xM \times T_xM \times T_xM \to T_xM$$

линейно зависит от каждого из аргументов, т.е. R_{ijk}^l тензор, где

$$(R(u,v)w)^l = R^l_{ijk}u^iv^jw^k,$$

$$R_{ijk}^{l} = -\frac{\partial \Gamma_{jk}^{l}}{\partial x^{i}} + \frac{\partial \Gamma_{ik}^{l}}{\partial x^{j}} + \Gamma_{jm}^{l} \Gamma_{ik}^{m} - \Gamma_{im}^{l} \Gamma_{jk}^{m}. \tag{12}$$

Доказательство. Прямыми вычислениями доказывается, что, если умножить какое-то из трех полей — например, поле u — на гладкую функцию f, то R(fu,v)w=fR(u,v)w. Разлагая теперь поля по базисам $\{\partial_i\}$ и применяя это свойство, получаем

$$R(u^{i}\partial_{i}, v^{j}\partial_{j})(w^{k}\partial_{k}) = u^{i}v^{j}w^{k} \cdot R(\partial_{i}, \partial_{j})\partial_{k},$$

что завершает доказательство леммы 7.

Инфинитезимальным вариантом (11) является следующая лемма.

Лемма 8 Пусть ${\bf r}: U \to M$ погружение поверхности M и x,y координаты на поверхности. Тогда

$$\frac{D}{\partial x}\frac{D}{\partial y} - \frac{D}{\partial y}\frac{D}{\partial x} = R(\mathbf{r}_x, \mathbf{r}_y).$$

Здесь через $D/\partial x$ и $D/\partial y$ обозначены операторы полной производной (8) вдоль координатных линий на поверхности. Лемма доказывается прямым расписыванием левых и правых частей формулы в локальных координатах и мы оставляем это в качестве упражнения.

Тензор кривизны удовлетворяет многим дополнительным соотношениям.

Лемма 9 1) R(u, v)w = -R(v, u)w;

2) Если связность симметрична, то

$$R(u,v)w + R(v,w)u + R(w,u)v = 0;$$

3) Если на M задана риманова метрика и связность совместна с ней, то

$$(R(u,v)w,z) = -(R(u,v)z,w);$$

4) Если на M задана риманова метрика и связность совместна с ней и симметрична, то

$$(R(u,v)w,z) = (R(w,z)u,v).$$

Доказательство. Утверждение 1 очевидно.

Так как R тензор, то утверждение 2 достаточно доказать для попарно коммутирующих (например координатных) полей. Тогда

$$R(u,v)w + R(v,w)u + R(w,u)v =$$

$$(-\nabla_u\nabla_v w + \nabla_v\nabla_u w) + (-\nabla_v\nabla_w u + \nabla_w\nabla_v u) + (-\nabla_w\nabla_u v + \nabla_u\nabla_w v)$$

и, применяя (9), показываем, что правая часть этой формулы тождественно равна нулю.

Утверждение 3 состоит в кососимметричности (R(u,v)w,z) относительно w и z, что очевидно эквивалентно тождеству (R(u,v)w,w)=0. Так как R тензор, то опять можно ограничиться случаем, когда [u,v]=0. В этом случае, обозначая через D_u и D_v дифференцирования функций в направлении полей u и v и учитывая совместность связности с метрикой, получаем

$$D_u D_v(w, w) = D_u(\nabla_v(w, w)) = 2D_u(\nabla_v w, w) =$$

$$2\nabla_{u}(\nabla_{v}w, w) = 2(\nabla_{u}\nabla_{v}w, w) + 2(\nabla_{u}w, \nabla_{v}w)$$

и аналогично

$$D_v D_u(w, w) = 2(\nabla_v \nabla_u w, w) + 2(\nabla_u w, \nabla_v w).$$

Так как [u,v]=0, то $D_uD_v=D_vD_u$ и мы получаем

$$(D_u D_v - D_v D_u)(w, w) = -(R(u, v)w, w) = 0,$$

что и требовалось доказать.

Утверждение 4 следует из 1), 2) и 3). Мы опустим этот комбинаторный вывод. Лемма 9 доказана.

Определим тензор

$$R_{ijkl} = R_{ijk}^m g_{ml}, (13)$$

по которому тензор кривизны восстанавливается однозначно. Соотношения из леммы 9 накладывают на него серьезные ограничения, которые мы сформулируем в виде задачи.

Задача 8. Предположим, что связность на римановом многообразии M симметрична и совместна с метрикой. Если $\dim M=2$, то тензор (13) полностью определяется одной своей компонентой — R_{1212} , а, если $\dim M=3$ — шестью.

Из леммы 9 вытекает также, что, если $u,v \in T_xM$ и σ двумерное подпространство в T_xM , порожденное u и v, то величина

$$K(\sigma) = \frac{(R(u, v)u, v)}{(u, u)(v, v) - (u, v)^2}$$

зависит только от σ . Она называется *секционной кривизной* вдоль двумерного направления σ .

Лемма 10 Пусть M- двумерная поверхность в ${\bf R}^3$ с индуцированной метрикой и связность на ней совместна с метрикой и симметрична. Тогда ее секционная кривизна K (вдоль двумерного касательного пространства) совпадает с гауссовой кривизной.

Доказательство. Пусть $p \in M$. Так как ни гауссова кривизна, ни секционная кривизна не зависят от выбора локальных координат, то для доказательства достаточно показать, что эти величины, посчитанные в какой-то специальной системе координат, совпадают.

Выберем в \mathbf{R}^3 ортонормированные координаты (x^1, x^2, x^3) так, что поверхность в окрестности точки p устроена как график функции $x^3 = f(x^1, x^2)$. Тогда $g_{ii} = 1 + f_i^2$, $g_{12} = f_1 f_2$ и

$$K = \frac{f_{11}f_{22} - f_{12}^2}{1 + f_1^2 + f_2^2},$$

где нижние индексы у f обозначают дифференцирование по x^i (задачи 5 и 7 из [7]). Это выражение еще больше упростится, если мы направим ось x^3 по нормали к поверхности в точке p: тогда $\operatorname{grad} f(p) = 0$. В частности, мы получим, что в точке p

$$K = f_{11}f_{22} - f_{12}^2$$

и все символы Кристоффеля равны нулю. Тогда из (10) и (12) следует, что

$$R_{1212} = \frac{\partial^2 g_{12}}{\partial x^1 \partial x^2} - \frac{1}{2} \left(\frac{\partial^2 g_{11}}{\partial x^2 \partial x^2} + \frac{\partial^2 g_{22}}{\partial x^1 \partial x^1} \right) =$$
$$f_{11} f_{22} + f_{12}^2 - \frac{1}{2} \cdot 4f_{12}^2 = f_{11} f_{22} - f_{12}^2.$$

Отсюда следует, что в данных координатах и секционная, и гауссова кривизны равны $f_{11}f_{22}-f_{12}^2$ и следовательно совпадают.

Лемма 10 доказана.

§9. Геодезические

Пусть в касательном расслоении к гладкому многообразию M задана аффинная связность. Γ еодезической называется кривая x(t), удовлетворяющая уравнению

$$\frac{D\dot{x}}{\partial t} = \nabla_{\dot{x}}\dot{x} = 0. \tag{14}$$

В дальнейшем мы будем считать, что многообразие M риманово и связность совместна с метрикой и симметрична. В этом случае уравнение геодезических принимает вид

$$\ddot{x}^i + \Gamma^i_{ik} \dot{x}^j \dot{x}^k = 0 \tag{15}$$

и также, как и для поверхностей в ${f R}^3$, показывается, что

- геодезические в точности совпадают с решениями уравнений Эйлера-Лагранжа для функции Лагранжа $L(x,\dot{x})=g_{ij}\dot{x}^i\dot{x}^j;$
- геодезические, являются натурально параметризованными ($|\dot{x}| = const$) экстремалями функционала длины кривой (см. §11 в [7]).

В касательном расслоении введем естественные координаты $x^1, ..., x^n, v^1, ..., v^n$ как и при доказательстве теоремы 1. В них уравнение (15) записывается как система обыкновенных дифференциальных уравнений первого порядка

$$\dot{x}^i = v^i, \quad \dot{v}^i = -\Gamma^i_{jk}(x)v^jv^k.$$

К ней применима теорема о существовании и единственности обыкновенного дифференциального уравнения ([6]), что влечет следующее утверждение.

Пемма 11 Для каждой точки $x \in M$ риманова многообразия M существуют такая ее окрестность U и такая постоянная $\varepsilon > 0$, что для любой точки $y \in U$ и любого вектора $v \in T_yM$ длины $< \varepsilon$ существует и единственна геодезическая $\gamma : (-1,1) \to M$, удовлетворяющая начальным условиям

$$\gamma(0) = y, \quad \dot{\gamma}(0) = v. \tag{16}$$

Доказательство. Формально из "теоремы о существовании и единственности . . . " следует, что для некоторой окрестности W точки $(x,0) \in TM$ существует такое $\delta > 0$, что для любой точки $(y,v) \in W$ существует и единственна геодезическая $\gamma_1: (-\delta,\delta) \to M$ с начальными данными (16).

Выберем теперь такое $\varepsilon_1>0$ и такую окрестность $U\subset M$ точки x, что $(y,v)\in W$ при $y\in U, |v|<\varepsilon_1$. Из (15) следует, что, если кривая $\tilde{\gamma}(t)$ геодезическая, то для любой постоянной C кривая $\hat{\gamma}(t)=\tilde{\gamma}(Ct)$ тоже геодезическая. Примем теперь $\varepsilon=\delta\varepsilon_1$ и $\gamma(t)=\gamma_1(\delta t)$. Лемма 11 доказана.

Из леммы 11 следует, что для любой точки $x \in M$ в малом шаре $B_{x,\varepsilon} = \{v \in T_x M : |v| < \varepsilon\}$ определено отображение

$$\exp_x: B_{x,\varepsilon} \to M$$
,

сопоставляющее точке (x,v) конец геодезической $\gamma(1)$. Для начала применим это отображение для доказательства следующего факта.

Лемма 12 Для каждой точки $x \in M$ существует окрестность V и постоянная $\eta > 0$ такие, что

- 1) каждые две точки из V соединяет одна и только одна геодезическая длины $\leq \eta$ и эта геодезическая гладко зависит от концевых точек;
- 2) для каждой точки $y \in V$ отображение \exp_y отображает шар $B_{y,\eta} \subset T_y M$ диффеоморфно на окрестность y в M.

Доказательство. Рассмотрим функцию

$$F: \tilde{U} \to M \times M$$
.

где $\tilde{U}\subset TM$ область, образованная точками (x,v), где $x\in U$ и $|v|<\varepsilon$, и $F(x,v)=(x,\exp_x(v))$. Его производные в точке (x,0) имеют вид

$$\frac{\partial F^i}{\partial x^j} = \delta^i_j, \quad \frac{\partial F^{i+n}}{\partial x^j} = \delta^i_j, \quad \frac{\partial F^i}{\partial v^j} = 0, \quad \frac{\partial F^{i+n}}{\partial v^j} = \delta^i_j,$$

где $F = (F^1, \dots, F^{2n})$ и $i = 1, \dots, n$. Так как якобиан этого отображения в точке (x,0) невырожден, то по теореме об обратной функции в малой окрестности точки (x,x) это отображение обратимо.

Выберем такую область $\tilde{U}'\subset \tilde{U}$, образованную точками (x,v), где $x\in U'$ и $|v|<\eta$, что на ней отображение F действует диффеоморфно на образ. Найдем теперь такую окрестность $V\subset M$ точки x, что $V\times V\subset F(\tilde{U}')$. Легко заметить, что эта окрестность и будет искомой, так как длина отрезка геодезической γ от x до $\exp_x(v)$ равна |v| (это следует из натуральной параметризации геодезических).

Лемма 12 доказана.

В окрестности V точки x введем координаты, сопоставив точке $y \in M$ координаты (v^1, \ldots, v^n) , где $\exp_x(v) = y$. Эти координаты называются seodesuveckumu.

Лемма 13 Для геодезических координат все символы Кристоффеля в точке х равны нулю:

$$\Gamma^i_{jk}(x) = 0.$$

Доказательство. В геодезических координатах уравнение геодезической $\gamma(t)$ с начальными данными $\gamma(0)=x$ и $\dot{\gamma}(0)=v$ имеет вид $\gamma(t)=tv$. Расписывая для такой геодезической уравнение (15), получаем

$$\Gamma^i_{jk} v^j v^k = 0$$

вдоль геодезической. Так как в точке x направление v может быть выбрано произвольным, символы Кристоффеля в ней тождественно равны нулю. Лемма 13 доказана.

Лемма 14 Пусть σ двумерная плоскость в $T_x M$ и пусть $\Sigma = \exp_x(\sigma \cap B_{x,\eta})$ вложенная двумерная поверхность, образованная геодезическими, выпущенными в направлениях касательных к σ , и оснащенная индуцированной метрикой. Тогда гауссова кривизна поверхности Σ в точке х совпадает с секционной кривизной M в точке x в двумерном направлении σ .

Доказательство. Выберем в $T_x M$ такой базис $\partial_1, \dots, \partial_n$, что $(\partial_i, \partial_j) = g_{ij}(x) = \delta_{ij}$ и построим по отношению к этому базису геодезические координаты в V. Без ограничения общности будем считать, что σ натянуто на векторы ∂_1 и ∂_2 .

Так как в точке x все символы Кристоффеля равны нулю и $g_{11}g_{22}-g_{12}^2=1$, то гауссова кривизна Σ в точке x (вычисляемая по метрике, согласно теореме Гаусса (см. §9 в [7])) равна

$$K = \frac{\partial^2 g_{12}}{\partial x^1 \partial x^2} - \frac{1}{2} \frac{\partial^2 g_{11}}{\partial x^2 \partial x^2} - \frac{1}{2} \frac{\partial^2 g_{22}}{\partial x^1 \partial x^1}.$$

Выражение для секционной кривизны $K(\sigma)$ тоже значительно упрощается:

$$K(\sigma) = -\frac{\partial \Gamma_{12}^2}{\partial x^1} + \frac{\partial \Gamma_{11}^2}{\partial x^2}.$$

Расписывая последнее выражение, с использованием (10), получаем

$$R_{1212} = \frac{\partial^2 g_{12}}{\partial x^1 \partial x^2} - \frac{1}{2} \frac{\partial^2 g_{11}}{\partial x^2 \partial x^2} - \frac{1}{2} \frac{\partial^2 g_{22}}{\partial x^1 \partial x^1}.$$

Лемма 14 доказана.

При малых t геодезические $\exp_x(tv)$ остаются в окрестности V (см. лемму 12) и при этом сферы $S_{x,\tau}=\{v\in T_xM: |v|=\tau<\eta\}=\partial B_{x,\tau}$ являются вложенными подмногообразиями в M.

Лемма 15 Геодезические $\exp_x(tv)$ ортогональны сферам $\exp_x(S_{x,\tau})$.

Доказательство. Пусть v(s) произвольная гладкая кривая на сфере $S_{x,\eta/2}$. Достаточно доказать, что для поверхности $f(s,t) = \exp_x(tv(s))$ векторные поля $f_t = \partial f/\partial t$ и $f_s = \partial f/\partial s$ всюду ортогональны.

Прежде всего покажем, что

$$\frac{D}{\partial t}(f_s, f_t) = 0.$$

Так как связность совместна с метрикой, то

$$\frac{D}{\partial t}(f_s, f_t) = \left(\frac{D}{\partial t}f_s, f_t\right) + \left(f_s, \frac{D}{\partial t}f_t\right).$$

Из симметричности связности следует, что для любой погруженной поверхности f(s,t) выполняется тождество (проверямое разложением по базису)

$$\frac{D}{\partial t}f_s = \frac{D}{\partial s}f_t.$$

Так как при фиксированных s кривые f(s,t) геодезические, то $Df_t/\partial t = 0$ и мы окончательно выводим

$$\frac{D}{\partial t}(f_s, f_t) = \left(\frac{D}{\partial s}f_t, f_t\right) = \frac{1}{2}\frac{D}{\partial s}(f_t, f_t) = \frac{1}{2}\frac{d}{ds}|v(s)|^2 = 0.$$

Но $f_s = 0$ при t = 0 и, следовательно, $(f_s, f_t) = 0$ при t = 0, а значит и всюду. Лемма 15 доказана.

Эта лемма является частным случаем более общего утверждения: пусть Σ гиперповерхность в M и f(s,t) семейство геодезических, параметризованных точками $s \in \Sigma$ и t, причем при $f(s,0) \in \Sigma$ и вектор $\partial f(s,0)/\partial t$ ортогонален Σ (т.е. ортогонален касательному пространству к Σ). Тогда при всех t эти геодезические ортогональны поверхностям $\Sigma_t = \{f(s,t) : s \in \Sigma\}.$

Координаты x^1, \ldots, x^n в области W называются полугеодезическими, если

- 1) при каждом наборе $y=(x^1,\ldots,x^{n-1})$ кривая $\gamma_y(x^n)=\{y=\mathrm{const}\}$ является геодезической, причем $|\partial\gamma_y/\partial x^n|=1$;
- 2) метрический тензор удовлетворяет условиям $g_{in}=0$ при $i=1,\ldots,(n-1)$ и $g_{nn}=1.$

Лемма 16 Пусть $x \in M$ и V окрестность, даваемая леммой 12. Тогда

- 1) в шаре $\exp_x(B_{x,\eta}) \setminus x$ существуют полугеодезические координаты;
- 2) пусть γ_y единственная геодезическая, лежащая в V, соединяющая x и $y \in V$ и имеющая длину $\leq \eta$. Для любой кусочно-гладкой кривой $\omega: [0,T] \to M$, соединяющей x и y и лежащей в V, длина ω не меньше длины γ_y и равна ей только в случае, когда она $\omega = \gamma_y$ (возможно, после натуральной перепараметризации ω).

Доказательство. Выберем в качестве $x^1, ..., x^{n-1}$ координаты на сфере $S_{x,1}, x^n$ рассмотрим натуральный параметр на геодезических, выходящих из x. Полученные координаты будут полугеодезическими (для поверхностей существует и иной вывод, который мы дали в [7] (лемма 15)).

Доказательство утверждения 2 сходно доказательству теоремы 17 из [7]. Запишем $\dot{\omega}$ в полугеодезических координатах и положим $w_1=(\dot{\omega}^1,\ldots,\dot{\omega}^{n-1},0),\ w_2=(0,\ldots,0,\dot{\omega}^n).$ Пусть y^n-n -ая координата точки y. Тогда

length
$$(\gamma_y) = y^n$$
, $\int_0^T w_2 dt = y^n$,
length $(\omega) = \int \sqrt{(w_1, w_1) + (w_2, w_2)} dt \ge \int \sqrt{(w_2, w_2)} dt \ge y^n$

и очевидно, что минимум длин ω достигается при случае $w_1=0, w_2=$ const. В этом случае он равен y^n , а кривая совпадает с γ_u .

Лемма 16 доказана.

Теорема 4 Если путь $\omega : [0,T] \to M$, параметризованный длиной дуги, не длиннее любого другого пути из $\omega(0)$ в $\omega(T)$, то он является геодезической.

Доказательство теоремы 4 просто: для любой точки $x=\omega(t)$ малая окрестность пути лежит в области V (см. леммы 12 и 16) и имеет длину меньше η . По лемме 16 этот отрезок является геодезической. Следовательно вся кривая ω является геодезической.

В случае евклидова пространства геодезическими являются прямые линии и, как показывает теорема 4, для общего риманова многообразия геодезические являются естественным аналогом прямых, как кратчайших линий.

Глава 3. Некоторые примеры римановых многообразий и их приложений

§10. Плоскость Лобачевского

Пусть R^2 двумерная евклидова плоскость с ортонормированными координатами x и y (в тензорных обозначениях x будем считать первой координатой, а y второй).

Рассмотрим верхнюю полуплоскость $\mathcal{H} = \{(x,y): y>0\}$ и введем на ней другую метрику

$$g_{11} = g_{22} = \frac{1}{y^2}, \quad g_{12} = 0,$$

которая в более привычном в теории поверхностей виде записывается как

$$\frac{dx^2 + dy^2}{y^2}. (17)$$

Легко посчитать с помощью (10), что

$$\Gamma_{11}^2 = \frac{1}{y}, \quad \Gamma_{12}^1 = \Gamma_{21}^1 = \Gamma_{22}^2 = -\frac{1}{y}$$

и остальные символы Кристоффеля равны нулю.

Уравнения геодезических примут вид

$$\ddot{x} - \frac{2}{y}\dot{x}\dot{y} = 0,$$

$$\ddot{y} + \frac{1}{y}(\dot{x}^2 - \dot{y}^2) = 0.$$

Мы знаем, что длина вектора скорости сохраняется (из определения геодезических следует, что $D(\dot{\gamma},\dot{\gamma})/\partial t=2(D\dot{\gamma}/\partial t,\dot{\gamma})=0)$, и поэтому величина

 $I_1 = \frac{\dot{x}^2 + \dot{y}^2}{y^2}$

(квадрат этой длины) является первым интегралом. Другой первый интеграл, как можно проверить, равен

$$I_2 = x + \frac{\dot{y}}{\dot{x}}y.$$

Задача 9. Пусть γ геодезическая и ее вектор скорости $v(t) = \dot{\gamma}(t)$ в точке $\gamma(t)$ не вертикален. Проведем через точку $\gamma(t)$ прямую l(t) (в евклидовой метрике на \mathbf{R}^2), которая ортогональна вектору v(t). Тогда x-координата точки пересечения l(t) с осью Ox равна I_2 .

Теорема 5 Геодезические плоскости Лобачевского (в терминах евклидовой метрики на ${\bf R}^2$) это

- 1) лучи ортогональные оси Ox;
- 2) полуокружности, лежащие в верхней полуплоскости и входящие в ось Ox под углом $\pi/2$.

Задача 10. Доказать теорему 5.

Из теоремы 5 следует

Лемма 17 Любые две точки из \mathcal{H} соединяются геодезической и причем только одной.

Фундаментальное свойство плоскости Лобачевского следующее

Теорема 6 Секционная кривизна \mathcal{H} постоянна и равна -1.

Задача 11. Доказать теорему 6.

Введение абстрактной римановой метрики на верхней полуплоскости существенно, так как по теореме Гильберта не существует погружения

верхней полуплоскости в ${\bf R}^3$, при котором индуцированная метрика была бы равна (17).

На \mathcal{H} действует группа $PSL(2,\mathbf{R})=SL(2,\mathbf{R})/\mathbf{Z}_2$. Группа $SL(2,\mathbf{R})$ состоит из вещественных (2 × 2)-матриц

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

таких, что

$$ad - bc = 1. (18)$$

Она содержит подгруппу \mathbf{Z}_2 , образованную матрицами

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \quad \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$$

и эта подгруппа нормальна. Фактор-группа $SL(2,\mathbf{R})/\mathbf{Z}_2$ и обозначается через $PSL(2, \mathbf{R})$. Ее действие на \mathcal{H} имеет следующий вид

$$z = x + iy \to A(z) = \frac{az + b}{cz + d}, \quad A \in PSL(2, \mathbf{R}).$$
(19)

Действительно, следующие утверждения проверяются прямыми вычислениями

Задача 12. Показать, что

- 1) если $\operatorname{Im} z > 0$, то $\operatorname{Im} \frac{az+b}{cz+d} > 0$; 2) $A_2(A_1(z)) = (A_2 \cdot A_1)(z)$;
- 3) матрица

$$\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

задает преобразование, обратное к (19);

4) подгруппа Г, порожденная матрицами

$$\left(\begin{array}{cc}
\cos\varphi & -\sin\varphi \\
\sin\varphi & \cos\varphi
\end{array}\right),$$

состоит в точности из тех элементов, которые оставляют точку (0,1)

Выберем следующую параметризацию $SL(2, \mathbf{R})$. Так как $a^2 + c^2 \neq 0$, то можно считать, что

$$a = r\cos\varphi, \quad c = r\sin\varphi.$$

Тогда условие (18) записывается как $r\cos\varphi \cdot d - r\sin\varphi \cdot b = 1$ и его общее решение, зависящее от одного параметра $s \in \mathbf{R}$, имеет вид

$$b = -r^{-1}\sin\varphi + s\cos\varphi, \quad d = r^{-1}\cos\varphi + s\sin\varphi.$$

Параметры r, s, φ однозначно задают элементы $SL(2, \mathbf{R})$.

Задача 13. Если рассмотреть a,b,c,d как вещественные координаты в пространстве ${\bf R}^4$, отождествленным с пространством вещественных (2×2) -матриц, то уравнение (18) задает гладкое подмногообразие $SL(2,{\bf R})\subset {\bf R}^4$, а построенные выше параметры r,s,φ являются гладкими координатами.

Заметим, что в $\S 4$ из [7] мы доказали аналогичное утверждение для групп O(n).

Найдем преобразования из $PSL(2, \mathbf{R})$, переводящие точку $z = \lambda + i\mu$ в точку i. Задающие его матрицы из $SL(2, \mathbf{R})$ выделяются условиями

$$\lambda = -\frac{ab + cd}{a^2 + c^2}, \quad \mu = \frac{1}{a^2 + c^2}$$

и, используя данную выше параметризацию, получаем, что это в точности матрицы с

$$r = \frac{1}{\sqrt{\mu}}, \quad s = -\frac{\lambda}{\sqrt{\mu}}.$$
 (20)

Пемма 18 Любая точка из \mathcal{H} преобразованием из $PSL(2,\mathbf{R})$ может быть переведена в точку (0,1), а следовательно и в любую другую точку. Пространство \mathcal{H} естественным образом отождествляется с пространством $PSL(2,\mathbf{R})/\Gamma$ левых смежных классов $PSL(2,\mathbf{R})$ по подгруппе Γ .

Доказательство. Для любой точки $z=\lambda+i\mu\in\mathcal{H}$ согласно (20) строится преобразование $A\in PSL(2,\mathbf{R})$ такое, что A(z)=i. Пусть $z_1,z_2\in\mathcal{H}$ и $A_1(z_1)=A_2(z_2)=i$, тогда $A_2^{-1}A_1(z_1)=z_2$.

Предположим, что $B_1(i)=B_2(i)$. Тогда $B_2^{-1}B_1(i)=i$ и значит $B_2^{-1}B_1\in \Gamma$. Очевидно, что, если $B_2^{-1}B_1\in \Gamma$, то $B_1(i)=B_2(i)$. Условие $B_2^{-1}B_1\in \Gamma$ эквивалентно тому, что $B_2\Gamma=B_1\Gamma$, т.е. тому, что эти левые смежные классы совпадают. Так как $PSL(2,\mathbf{R})(i)=\mathcal{H}$, то отсюда следует, что $\mathcal{H}=PSL(2,\mathbf{R})/\Gamma$.

Лемма 18 доказана.

Пусть группа G действует на многообразии M, т.е. задано отображение

$$G \times M \to M$$
 (21)

вида $(g,x) \to g(x)$, причем $g_1(g_2(x)) = (g_1 \cdot g_2)(x)$ для любых $g_1,g_2 \in G$ и e(x) = x, где e единица группы G. Предположим также, что

- 1) группа G является гладким многообразием;
- 2) отображение (21) гладкое;
- 3) для любой пары точек $x_1, x_2 \in M$ существует хотя бы один элемент $g \in G$ такой, что $g(x_1) = x_2$.

Если эти условия выполняются, то M называется однородным пространством группы G и естественно отождествляется с пространством левых смежных классов G/Γ_x группы G по стационарной подгруппе любой точки x ($\Gamma_x = \{g \in G : g(x) = x\}$).

Теперь лемма 18 формулируется следующим образом: \mathcal{H} является однородным пространством группы $PSL(2, \mathbf{R})$.

Однородные пространства являются важным классом многообразий с глубоко развитой теорией ([1]). В римановой геометрии представляет интерес случай, когда группа G действует изометриями: отображение $f: M \to M$ изометрично, если для любой гладкой кривой γ ее длина сохраняется $\operatorname{length}(f(\gamma)) = \operatorname{length}(\gamma)$. Это, очевидно, эквивалентно тому, что отображение $f_*: TM \to TM$ сохраняет длины всех векторов.

Лемма 19 Группа $PSL(2, \mathbf{R})$ действует на \mathcal{H} изометриями.

Доказательство. Запишем метрику (17) в форме

$$\frac{dz\,d\bar{z}}{(\operatorname{Im}z)^2}.$$

Длины векторов сохраняются преобразованием A тогда и только тогда, когда

$$\frac{dz\,d\bar{z}}{(\operatorname{Im}z)^2} = \frac{dA(z)\,d\overline{A(z)}}{(\operatorname{Im}A(z))^2}.$$
(22)

Действительно, любой вектор $v \in T_z M$ записывается в виде $w \partial + \bar{w} \bar{\partial}$, где $\partial = \frac{1}{2} (\partial_x - i \partial_y)$. Отображение A_* действует на касательных векторах как

$$A_*(\partial) = \frac{\partial A(z)}{\partial z} \partial, \quad A_*(\bar{\partial}) = \frac{\partial \overline{A(z)}}{\partial \bar{z}} \bar{\partial},$$
$$|A_*(v)|^2 = \frac{\partial A(z)}{\partial z} \frac{\partial \overline{A(z)}}{\partial \bar{z}} \frac{w\bar{w}}{(\operatorname{Im} A(z))^2} \quad \text{if} \quad |v|^2 = \frac{w\bar{w}}{(\operatorname{Im} z)^2},$$

т.е. условие (22) доказано.

Прямыми вычислениями устанавливается. что

$$\operatorname{Im} A(z) = \frac{\operatorname{Im} z}{|cz+d|^2}, \quad \frac{\partial A(z)}{\partial z} = \frac{1}{(cz+d)^2}$$

и, подставляя эти выражение в правую часть (22), устанавливаем, что длины векторов сохраняются любым $A \in PSL(2, \mathbf{R})$.

Лемма 19 доказана.

Теорема 7 Группа $PSL(2, \mathbf{R})$ состоит из всех изометричных преобразований \mathcal{H} , сохраняющих ориентацию.

Доказательство. Изометрия переводит геодезические в геодезические. Пусть T некоторая изометрия \mathcal{H} , сохраняющая ориентацию, и T(i)=z. Построим отображение $A\in PSL(2,\mathbf{R})$ такое, что A(i)=z. Тогда TA^{-1} изометрия, оставляющая точку i на месте. По лемме 17 каждая точка из \mathcal{H} соединяется с i геодезической и притом только одной. Поэтому так как изометрия переводит геодезические в геодезические, то отображение TA^{-1} полностью определяется порождаемым поворотом $T_i\mathcal{H}\to T_i\mathcal{H}$ и каждый такой поворот однозначно определяет изометрию. Но все такие изометрии принадлежат Γ и значит $TA^{-1}\in \Gamma$. Отсюда следует, что $T\in PSL(2,\mathbf{R})$. Теорема 7 доказана.

Плоскость Лобачевского встречается во многих областях математики. Мы ограничимся указанием одного из наиболее важных ее свойств — она является моделью неевклидовой геометрии.

Известная "пятая аксиома Евклида" гласит:

- если заданы прямая l и точка x на плоскости и x не лежит на l, то через x проходит и притом только одна прямая параллельная l.

Попытки вывести эту аксиому из других аксиом евклидовой геометрии привели к созданию неевклидовых геометрий. А именно, в 1825 году Лобачевский показал, что эта аксиома действительно независима от других и более того существуют двумерные геометрии, для которых выполняются все аксиомы евклидовой геометрии кроме "пятой" и следующее утверждение (аксиома Лобачевского):

— в условиях "пятой аксиомы" через точку x проходит две различные прямые параллельные l.

Из этого утверждения Лобачевский вывел, что таких прямых должно быть бесконечно много и что сумма углов треугольника в такой геометрии должна быть меньше π . Несколько позже и независимо к таким же выводам пришел Бойяи. Классическое изложение геометрии Лобачевского дано например в [2].

Плоскость Лобачевского является простейшей моделью такой геометрии.

Действительно, понимая под прямыми геодезические, а под их параллельностью отсутствие пересечения, мы можем показать, что на пространстве \mathcal{H} , гомеоморфном двумерной плоскости, реализуется геометрия, удовлетворяющая всем аксиомам Евклида, кроме "пятой". Из теоремы 5 следует, что для этой геометрии выполняется аксиома Лобачевского. Ось Ox является при этом "бесконечно удаленной" — длина любой кривой примыкающей к ней бесконечна: это следует из расходимости интеграла $\int dy/y$ при стремлении нижнего предела интегрирования к нулю.

Легко проверить, что суммы углов геодезических треугольников будут меньше π . Это однако следует и из формулы Гаусса—Бонне, доказательство которой, данное в §12 в [7], проходит без изменений для любых двумерных римановых многообразий.

§11. Псевдоевклидовы пространства и их приложения в физике

Пусть $R^{1,n}$ псевдоевклидово пространство с координатами x^0, x^1, \ldots, x^n и метрикой

$$(dx^{0})^{2} - (dx^{1})^{2} - \dots - (dx^{n})^{2}.$$
 (23)

В касательном пространстве к каждой точке задано псевдоскалярное произведение

$$(v, w)_{1,n} = v^0 w^0 - v^1 w^1 - \dots - v^n w^n.$$

Линейные преобразования, сохраняющие это скалярное произведение, образуют группу O(1,n). Группы O(1,n) обобщают группы O(n) и их элементы задаются $((n+1)\times (n+1))$ -матрицами A, удовлетворяющими условиям

$$A^* \cdot \begin{pmatrix} 1 & 0 \\ 0 & -E_n \end{pmatrix} \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & -E_n \end{pmatrix}, \tag{24}$$

где E_n единичная $(n \times n)$ -матрица (доказательство этого факта аналогично доказательству леммы 4 из [7]).

Задача 14. Доказать, что в пространстве $((n+1)\times (n+1))$ -матриц уравнения (24) выделяют гладкое многообразие размерности n(n+1)/2 (Указание: см. доказательство аналогичного факта для групп O(n) в §4 из [7]).

Пространство $R^{1,3}$ возникает в физике и является "пространством" событий в специальной теории относительности — npocmpancmsom-spe-менем (оно также называется $npocmpancmsom\ Munkosckofo$). Координа-

ты x^1 , x^2 , x^3 являются пространственными, а координата $x^0 = ct$ временной (здесь c скорость света и t время). Поэтому, если $(v,v)_{1,3} < 0$, то вектор v называется $npocmpancmeenhonodoбным, если <math>(v,v)_{1,3} > 0 - epe-$ мениподобным, и, если $(v,v)_{1,3} = 0 - ceemoesum$. Последнее определение имеет под собой следующую физическую основу:

— скорость света в любой системе координат одинакова и равна с. Поэтому, если x(t) кривая в ${\bf R}^{1,3}$, вдоль которой распространяется световой луч, то

$$c^{2} - \left(\frac{dx^{1}}{dt}\right)^{2} - \left(\frac{dx^{2}}{dt}\right)^{2} - \left(\frac{dx^{3}}{dt}\right)^{2} = 0.$$

Группа O(n) имеет две компоненты связности состоящие из преобразований, сохраняющих ориентацию, и преобразований, обращающих ориентацию (т.е. с $\det A = 1$ и с $\det A = -1$). Группа O(1,n) имеет четыре компоненты: каждое семейство преобразований, сохраняющих или обращающих ориентацию, разбивается еще на две компоненты в зависимости от того, обращает преобразование "направление времени" или нет: $(e_0, A(e_0))_{1,3} < 0$ или $(e_0, A(e_0))_{1,3} > 0$, где e_0 базисный вектор, отвечающий координате x^0 .

Задача 15. Показать, что группа O(1,1) состоит из преобразований, заданных матрицами

$$\left(\begin{array}{cc} \varepsilon \cosh \varphi & \varepsilon \sinh \varphi \\ \delta \sinh \varphi & \delta \cosh \varphi \end{array}\right), \quad \varphi \in \mathbf{R},$$

где $\varepsilon, \delta=\pm 1, \, \cosh \varphi=(e^{\varphi}+e^{-\varphi})/2$ и $\sinh \varphi=(e^{\varphi}-e^{-\varphi})/2$. При $\varepsilon>0$ направление времени сохраняется, а при $\varepsilon<0$ — обращается. При $\varepsilon\delta=1$ ориентация сохраняется, а при $\varepsilon\delta=-1$ — обращается.

Рассмотрим теперь следующую задачу. Пусть заданы две системы координат — K с координатами ct, x^1, x^2, x^3 и \tilde{K} с координатами $c\tilde{t}, \tilde{x}^1, \tilde{x}^2, \tilde{x}^3$. Предположим, что при $t=\tilde{t}=0$ они совпадают и система \tilde{K} движется вдоль оси Ox^1 с постоянной скоростью v (по отношению к системе координат K). Как найти формулы перехода от одной системы к другой ?

В галилеевой механике время универсально: $t=\tilde{t},$ и формулы перехода имеют простой вид

$$x^1 = \tilde{x}^1 + vt, \quad x^2 = \tilde{x}^2, \quad x^3 = \tilde{x}^3.$$

В специальной теории относительности постулируется сохранение расстояния (в метрике (23)) между событиями — точками пространства—

времени. Отсюда следует, что преобразование от одной системы координат задается элементом группы Пуанкаре — группы всех движений ${\bf R}^{1,3}$. Эта группа порождена сдвигами и элементами O(1,3).

Так как начала координат совпадают по условию координат совпадали, переход от K к \tilde{K} задается преобразованием из O(1,3). Если мы непрерывно уменьшим скорость v до нуля, то мы получим тождественное преобразование — значит искомое преобразование сохраняет и ориентацию, и направление времени (лежит в одной компоненте с тождественным). Так как, очевидно, оно затрагивает только координаты t, x^1 и \tilde{t}, \tilde{x}^1 , то оно имеет вид

$$ct = c\tilde{t} \cosh \varphi + \tilde{x}^1 \sinh \varphi,$$

$$x^1 = c\tilde{t} \sinh \varphi + \tilde{x}^1 \cosh \varphi, \ x^2 = \tilde{x}^2, \ x^3 = \tilde{x}^3.$$

При $\tilde{x}^1=0$ мы получаем

$$ct = c\tilde{t} \cosh \varphi, \quad x^1 = c\tilde{t} \sinh \varphi$$

и в итоге

$$\frac{x^1}{ct} = \tanh \varphi.$$

Но точка $\tilde{x}^1 = \tilde{x}^2 = \tilde{x}^3 = 0$ движется вдоль оси Ox^1 с постоянной скоростью v и значит

$$\frac{x^1}{ct} = \frac{v}{c} = \tanh \varphi.$$

Так как

$$\cosh \varphi = \frac{1}{\sqrt{1 - \tanh^2 \varphi}}, \quad \sinh \varphi = \frac{\tanh \varphi}{\sqrt{1 - \tanh^2 \varphi}},$$

то мы получаем окончательную форму преобразований Лоренца

$$t = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \left(\tilde{t} + \tilde{x}^1 \frac{v}{c^2} \right), \quad x = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \left(\tilde{x}^1 + v\tilde{t} \right).$$

При v очень малой по сравнению с скоростью света

$$\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \approx 1$$

и преобразования Галилея дают достаточно хорошее приближенное описание физической системы.

Преобразования Лоренца имеют наглядные следствия.

Собственной длиной объекта называется его длина в той системе координат, в которой он покоится. Пусть нам дан стержень собственной длины Δl , покоящийся в системе координат K и при этом его концы имеют координаты $x^1=a,b$, где $b-a=\Delta l$. В системе координат \tilde{K} его длина другая — из преобразований Лоренца следует, что в каждый фиксированный момент времени \tilde{t} разность \tilde{x}^1 -координат его концов равна

$$\Delta \tilde{l} = \sqrt{1 - \frac{v^2}{c^2}} \cdot \Delta l,$$

т.е. линейный размер стержня сокращается в направлении скорости движения системы координат \tilde{K} .

Аналогичный популярный "парадокс" состоит и в сокращении времени. Пусть в системе координат \tilde{K} покоятся часы. Разница во времени между двумя событиями в одной и той же точке пространства $(\tilde{x}^1, \tilde{x}^2, \tilde{x}^3)$ фиксированы) в этой системе координат равно $\Delta \tilde{t}$. А разница во времени между этими событиями в системе координат K равно

$$\Delta t = \frac{\Delta \tilde{t}}{\sqrt{1 - \frac{v^2}{c^2}}},$$

т.е. время в движущейся системе координат изменяется медленнее, чем в неподвижной.

Общая теория относительности, созданная в работах Эйнштейна, потребовала привлечения уже всего аппарата римановой геометрии и в значительной степени стимулировала ее развитие см. [5])

Список литературы

- [1] Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия. Методы и приложения. Москва: Наука, 1986.
- [2] Ефимов Н. В. Высшая геометрия. Москва: Наука, 1978.
- [3] Зорич В. А. Математический анализ. Москва: Наука, 1981.
- [4] Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. Москва: Наука, 1976.
- [5] Ландау Л. Д., Лифшиц Е. М. Теория поля. Москва: Наука, 1988.
- [6] Понтрягин Л. С. Обыкновенные дифференциальные уравнения. Москва: Наука, 1969.
- [7] Тайманов И. А. Лекции по дифференциальной геометрии. І. Кривые и поверхности. Новосибирск: НГУ, 1998.

Мы ограничились указанием только наиболее доступной и знакомой для студентов литературы. Хорошая библиография по топологии, геометрии и их приложениям дана в [1].