Homework 3

Started: Oct 20 at 4:37pm

Quiz Instructions

This homework consists of a collection of multiple choice questions.

More than one answer may be correct. You should select all the correct answers to get the points.

, [Question 1	3 pts
	Suppose we have a binary classification problem with $m{n}$ features. Each feature in $m{c}$	
	problem can take one of three values A, B or C. How many binary classifiers are poover this feature space?	ossible
	$lacksquare$ 2^n 3^{2^n}	
	\bigcirc 3^n	
	\bigcirc 2^{3^n}	

>	Question 2	3 pts
	How many disjunctions are possible with n Boolean features if we do not allow any negations?	
	$\bigcap n^2$	
	\bigcirc 2^{2^n}	
	$\bigcap n$	

\bigcirc 2^n			

An m-of-n function is defined as follows: Select a *fixed* subset of Boolean variables of size n. The function returns true for inputs where m of these chosen variables are true.

Which of the following statements are correct about m-of-n functions?

Every conjunction without negations can be represented as a m-of-n function

Every disjunction without negations can be represented as a m-of-n function

Every Boolean function can be represented as a m-of-n function

m-of-n functions can be represented by linear classifiers

Which of the following statements about decision trees are correct?

Every Boolean function can be represented as a decision tree

Every Boolean function can be represented by a unique decision tree

Real valued features have to be discretized to use them with decision trees

Decision trees represent only linearly separable functions

Question 5

Suppose we know that

$$P(X=A)=\tfrac{1}{16},$$

$$P(X=B)=\tfrac{1}{16},$$

$$P(X=C)=\tfrac{1}{8},$$

$$P(X=D)=\frac{1}{4},$$

$$P(X=E)=rac{1}{2}$$

Select all statements that are correct.

- These probabilities give the maximum possible value of the entropy of X
- Entropy(X) = 1.875
- Entropy(X) = 1.0
- These probabilities give the minimum possible value of the entropy of X
- Question 6 3 pts

Which of the following statements about the ID3 algorithm are correct?

- It is an online algorithm.
- It assumes that the training set is chosen uniformly at random from the instance space.
- It will always find a decision tree that will fit any training set.
- It is a batch algorithm.
- Question 7 3 pts

Suppose we have three features (x1, x2 and x3) and a label y that can be either A or B. We have the following training set:

0 0 0 B

0 1 1 A

1 1 0 B

1 0 1 B
This data is not linearly separable.
$igcap$ The entropy of the label is $2+rac{3}{4}{ m log}_2~3$
$igspace{ igspace{1.5mm} }$ The entropy of the label is $2-rac{3}{4}{ m log}_23$
This data is linearly separable

Question 8
If your training data has a missing feature value, which of the following approaches can be used to handle it in the ID3 algorithm?
✓ Use fractional feature values representing the proportion of training examples that take each value.
✓ Discard the training example because we can't use it for training.
✓ Use the most common value of that feature among the other examples that share the same label.
✓ Use the most common value of that feature among the other examples.

Question 9	3 pts
A learning algorithm is said to overfit its training data if:	
Its hypothesis space is too small to express the data.	
Its hypothesis space contains the true concept function	
Its training error is more than its generalization error.	
Its training error is less than its generalization error	

Question 10	3 pts
Use the following data with features x1, x2 and labels y and select all state correct.	ements that are
x1 x2 y	
0 0 1	
0 1 -1	
1 1 1	
This function can not be represented by a decision tree.	
This function can be represented by a decision tree.	
This function can be represented by a linear threshold unit.	
This function can not be represented by a linear threshold unit.	

Que	stion 11	3 pt
Which separ	n of the following Boolean functions with variables x_1, x_2, x_3, x_4 are linearly able?	
\checkmark	Label is true if any two out of $oldsymbol{x_1}$, $oldsymbol{x_2}$ or $oldsymbol{x_4}$ are true	
\checkmark	$x_1 ee eg x_2$	
	Label is true when an even number of x's are true.	

You have a dataset on which you ran the Perceptron algorithm. You find that the algoridoesn't stop making mistakes. Which of the following may help?	lgorithm

	Delete examples where the algorithm makes mistakes and try again.
\checkmark	Transform the data using a non-linear feature transformation.
✓	Run multiple epochs over shuffled versions of the data.

Question 13	3 p
Which of the following linear threshold units is equivalent to the following Boolean function: $x_1 \lor x_2 \lor x_3$?	
${\color{red} {m igstar} \hspace{05in} Sgn(x_1+x_2+x_3-1)}$	
$ \boxed{ \qquad sgn(x_1+x_2+x_3+1) }$	
$ \boxed{ \qquad sgn(-x_1-x_2-x_3+1) }$	

Question 14	3 pts
You have been hired as a machine learning consultant by a local company build a classifier whether a customer who received an email promotion will purchase or not. What can you say about this problem?	
It is a regression problem	
It is a binary classification problem	
It is a multi-class classification problem	

Question 15

Which of the following statements are true about the least mean square regression?

	Stochastic gradient descent will converge to a better optimum than gradient descent
\checkmark	The weights can be obtained analytically without requiring an optimization algorithm.
	Gradient descent will never converge to the optimum weights
	Gradient descent can eventually converge to the optimum weights if the algorithm runs long enough.

Question 16	3 pt
How many mistakes will the Halving algorithm make on disjunctions with n Boolean	
features where every variable has to be negated?	
\bigcirc $O(2^n)$	
$\bigcirc O(\log n)$	
\bigcirc $O(n^2)$	
\bigcirc $O(n)$	

Question 17	3 pts
How many k-disjunctions are possible with n Boolean variables if we do not allow negations?	
$\binom{n}{k}$	
$\bigcirc 2^k \binom{n}{k}$	
\bigcirc 3^k	
	How many k-disjunctions are possible with n Boolean variables if we do not allow negations?

\bigcirc 2 ^k			

Question 18	3 pts
Which of the following statements is true about the original Perceptron algorithm?	
It is an online algorithm	
✓ It learns a linear classifier	
It is a batch algorithm	
It is a mistake bound algorithm	

	For a negative example, after the update, the dot product of the new weights and the example will be higher than it was before.
	For a positive example, after the update, the dot product of the new weights and the example will be lower than it was before.
$ \checkmark $	For a negative example, after the update, the dot product of the new weights and the example will be lower than it was before.

Question 21	3 pts
Consider the Boolean conjunction with two input features that is represented by th following data set:	е
x1 x2 y	
0 0 0	
0 1 0	
1 0 0	
1 1 1	
What is the margin of this data set?	
$\frac{1}{2}$	
\bigcirc $\sqrt{2}$	
<u> </u>	
$\frac{1}{2\sqrt{2}}$	

Question 22	3 pts
According to the Perceptron mistake bound, what is the maximum number mistake that the Perceptron algorithm make on a disjunction in n dimensions?	S

	\bigcirc $O(n^2)$	
	$lacksquare O(2^n)$	
	$\bigcap O(\log(n))$	
	1	
) 	Question 23	3 pts
	Which of the following assumptions are used to formalize the PAC model of learnal	oility?
	Examples are presented in a sequence to the learning algorithm	
	✓ Training examples are drawn independently of each other	
	Training examples could be generated by an adversary	
	Future examples will be drawn from the same fixed distribution as the training examples	
>	Question 24	3 pts
	Which of the following statements are true?	
	The Halving algorithm can be used to learn a linear classifier.	
	The Halving algorithm gives the best possible mistake bound for all Boolean functions.	
	No Boolean function can be learned under the mistake bound model.	
	The mistake bound model is only applicable for linear classifiers	
\supset	Question 25	3 pts

Consider the fo	ollowing dataset with four features (x1, x2, x3, x4) and a label y:
x1 x2 x3 x4 y	
1 0 1 1 0	
1 1 0 0 1	
0 0 0 1 0	
1 1 1 1 1	
	has the highest information gain?
	has the highest information gain?
Which feature	has the highest information gain?
Which feature x2	has the highest information gain?

Quiz saved at 5:26pm Submit Quiz