Gusi

Asymptotic notations were the mathematical notations used to describe the veunning time of an algorithm when the Input dends downed a particular blue Or ca climiting Value.

Eg - In bubble sort, when the Input averay is calready secreted, the time taken by algorithm is clinear i.e the best case (I natation) (omega natation)

But when the Input averag is in ververse Condition. the algorithm clakes the maximum time to start the element in e the worst case (Big - O natation)

when the Input averay is neither swelld now In reverse ander, then it takes average time (O-natation) (Theta natation)

2 1+1+ ... k time

1. 2k >= n

taking dog both side

Kulog2 = logw

 $\left[\log_b(x) = \frac{\log_a(x)}{\log_a(b)}\right]$ k = logn

logz

 $K = clog_2 n$

O (logn)

Q2-

$$T(n) = \begin{cases} 3T(n-1) & n \\ 1 & n \end{cases}$$
 $T(n) = 3T(n-1) - 0$

let $n = n-1$

Ruthing n an eq (1)

 $T(n-1) = 3T(n-2) - 0$

Ruthing (2) an (1)

 $T(n) = 3^2T(n-2) - 0$

Let $n = n-2$

Ruthing n an eq (1)

 $t(n) = 3T(n-2) - 0$

Putting n an eq (1)

 $t(n) = 3T(n-2) - 0$

Ruthing n an eq (1)

 $t(n) = 3T(n-2) - 0$
 $t(n) = 3T(n-3)$
 $t(n) = 3^{k}T(n-k)$

Let $n-k = 0$
 $n = k$
 $t(n) = 3^{n}T(0)$

= 0(3h)

Gusz -

$$T(n) = \begin{cases} 2T(n-1)-1 & n>0 \\ 1 & n=0 \end{cases}$$

$$T(n) = 2T(n-1)-1 & 0$$

$$let n = n-1 & lin & eq 0$$

$$T(n-1) = 2T(n-2)-1 & -2$$

$$kut & dhis & below & lin & eq 0$$

$$T(n) = 2 \left(2T(n-2)-1\right]-1$$

$$T(n) = 4T(n-2)-2-2 & -3$$

$$let n = n-2$$

$$T(n-2) = 2T(n-3)-1 & -4$$

$$kut & dhis & below & lin & eq 3$$

$$T(n) = 4\left[2T(n-3)-1\right]-2-1$$

$$T(n) = 8T(n-3)-4-2-1$$

$$T(n) = 2^{k}T(n-k)-2^{k-1}-2^{k-2}-2^{k}$$

$$kut n-k = 0$$

$$n = k$$

$$T(n) = 2^{n}T(0)-2^{n-1}-2^{0}$$

$$= 2^{n}-\left[2^{n-1}+2^{n-2}+\dots 2^{0}\right]$$

$$= 2^{n}\left[1-\left(1-\left(\frac{1}{2}\right)^{n}\right)^{2}\right]$$

$$= 2^{n}\left[1-\left(1-\left(\frac{1}{2}\right)^{n}\right]$$

$$= 2^{n}\left[1-1+\left(\frac{1}{2}\right)^{n}\right]$$

$$= 2^{n}\left(\frac{1}{2}\right)^{n}=1$$

$$= 0 (1)$$

$$= 2^{n}\left(1-1+\left(\frac{1}{2}\right)^{n}\right)$$

Gus6 -

Gusz_ for K=K42 K= 1,2,4,8, --- 12 GP, a = 1 v= 2 = a (wh-1) Cer-1 $= 1(2^{k}-1)$ n = 2k =) clogn = K j° K clog n * clog n * clog n clogn logn & logw O(n* clogn * clogn) O(nlog2n) Gus8 T(n) = T(n/3) + n2 $a=1, b=3 f(n)=n^2$ $c = log_3 1 = 0$

=) $n^{0}=1 > [f(n) = n^{2}]$

TCn) = 0(n2)

(Jusq. for
$$u^{2} = 1 = 1$$
) $f = 1,2,3,4 - ... = 1$

for $f^{2} = 2 = 1$) $f = 1,3,5 - ... = 1$

for $(f^{2} = 1) = 1$) $f^{2} = 1$
 $for (f^{2} = 1) = 1$
 fo