Измерване на специфичен топлинен капацитет на метали с калориметър

Лабораторно упражнение №3.11

Виолета Кабаджова, ККТФ, фак. номер: 3РН0600026

Физически Факултет, Софийски Университет "Св. Климент Охридски" 20 април 2023 г.

1 Теоритична част

 C_V наричаме моларен топлинен капацитет при постоянен обем - количеството топлина, което трябва да обмени 1 mol вещество при постоянен обем, за да се измени температурата му с един градус, $[C_V] = J/(mol \cdot K)$.

За единица маса се въвежда величината специфичен топлинен капацитет c_V - количеството топлина, което трябва да обмени термодинамична система с маса 1 kg, за да се измени температурата ѝ с един градус, $[c] = J/(kg \cdot K)$.

В настоящото упражнение изследваме металите алуминий (Al), месинг (CuZn) и желязо (Fe), нагрявайки ги то тяхната пределна температура и след това охлаждайки ги в калориметър с цел откриване на техния специфичен топлинен капацитет.

Изхождайки от формула 1 за количество топлина, което нагретият образец ще отдаде към калориметричната система, и уравнение 2 за количество топлина, което ще погълнат калориметърът и водата от нагретият образец, можем да изведем формула 3, определяща специфичния топлинен капацитет на различните образци. За температурите T_K - температурата на кипене на водата в стъклената чаша, T_M - равновесната температура и T_1 ($T_1 < T_M < T_K$) - температура на водата в калориметъра, ще бъде обяснено по-долу в експерименталната част.

$$Q_1 = c_o m_o (T_K - T_M) \tag{1}$$

$$Q_2 = c_B M_B (T_M - T_1) + C_K (T_M - T_1)$$
 (2)

$$c_o = \frac{(T_M - T_1)(c_B M_B + C_K)}{m_o(T_K - T_M)}$$
(3)

2 Експериментална част

Експериментът се състои в нагряването на стъклена чаша с вода до температура $100^{\circ}C$. Образците на металите (малки кубчета от съответния метал) се потапят в кипящата вода до затоплянето им до възможно найвисоката температура, която позволява съответния метал. След като се загреят до определената температура, образците се поставят в калориметъра, в който има поставена хладка вода. Течността в съда се разбърква

постоянно до достигане на равновесна температура, която бива отчетена в края.

2.1 Задача 1: Измерване на специфичен топлинен капацитет на метали

За определяне на специфичния топлинен капацитет използваме формула 3. С направата на действията, описани в началото на секция 2, записваме отчетени стойности в таблица 1. След всеки от експериментите сменяме водата в калориметъра и отчитаме масата ѝ наново. Използваните фиксирани величини (константи в рамките на експеримента) записваме в таблица 2. Абсолютната грешка в крайния резултат изчисляваме приблизително по формула 4. За определяне на масата на водата първо измерваме съда на калориметъра, докато е празен, и след като сме го напълнили с вода; разликата между двете стойности представлява масата на водата.

$$\frac{\Delta C}{C} = \frac{\Delta c_B}{c_B} + \frac{\Delta M_B}{M_B} + \frac{\Delta T_M}{T_M} + \frac{\Delta T_1}{T_1} + \frac{\Delta C_K}{C_K} + \frac{\Delta m_O}{m_O}$$
(4)

величина	Алуминий (Al)	Месинг (CuZn)	Желязо (Fe)
маса на образеца m_o , [g]	60.1	119.6	120.2
маса на водата M_B , [g]	236.9	242.8	258.7
максимална температура			
на образеца T_K , [°C]	96.8	96.6	95.1
равновесна температура T_M , [°C]	27	26	27
специфичен топлинен капацитет			
на образеца C , [J/kg.K]	1008 ± 182	384 ± 68	562 ± 99

Таблица 1: Измервания за трите метала

топлинен капацитет на калориметъра C_K	$66 \pm 1J/K$
специфичен топлинен капацитет на водата C_B	4187J/(g.K)
първоначална температура	
на водата в калориметъра T_1	23 °C

Таблица 2: Константни величини в рамките на експеримента