ТЕОРИЯ ВЕРОЯТНОСТЕЙ и МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Часть III. Математическая статистика

Оценки параметров линейной регрессионной модели по методу наименьших квадратов

Построение модели

Контроль расчетов

Проверка адекватности построенной модели

Построение доверительных интервалов для параметров регрессии

ЛИТЕРАТУРА

- 1. Карасев В.А., Богданов С.Н., Лёвшина Г.Д. Теория вероятностей и математическая статистика: Разд. 2. Математическая статистика: Учеб.-метод. Пособие. М. МИСиС, 2005. 117 с. № 1855. [печ.]
- 2. Карасев В.А., Лёвшина Г.Д. Теория вероятностей и математическая статистика: математическая статистика: практикум». М. Изд. Дом МИСиС, 2016. № 2770. [электрон.]
- 3. Данченков И.В., Карасев В.А. Математическая статистика: проверка гипотезы о виде закона распределения: практикум. М.: Изд. Дом НИТУ «МИСиС», 2017. 54 с. № 2976
- 3. Гмурман В.Е. Теория вероятностей и математическая статистика: учебное пособие для вузов. М.: Изд-во Юрайт, 2015. Работаем по: М.: Высшее образование, 2006. 479 с.
- 4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: учебное пособие для вузов. М.: Изд-во Юрайт, 2015.
 - 5. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ-ДАНА, 2004. 573 с.
- 6. Лебедев А.В., Фадеева Л.Н. Теория вероятностей и математическая статистика. М., 2018. 480 с. [электрон.], Фадеева Л. Н., Лебедев А.В. 2011 [печ.]
 - 7. Севастьянов Б.А. Курс теории вероятностей и математической статистики. М.: Наука, 1982. 256 с.
- 8. Ефимов А.В., Поспелов А.С. и др. Сборник задач по математике для втузов. Специальные курсы (ТВ. МС. МО. УрЧП). М., 1984. 608 с. [печ.]; В 4 ч. Ч. 4 (ТВ. МС). М., 2003. 432 с. [электрон., печ.]
 - 9. Фёрстер Э., Рёнц Б. Методы корреляционного и регрессионного анализа. М., 1983. 304 с.
 - 10. Лагутин М.Б. Наглядная математическая статистика. М., 2009. 472 с.
- 11. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс: Учеб. 6-е изд., перераб. и доп. –М.: Дело, 2004. 576 с.

Регрессия

Понятия регрессии и корреляции непосредственно связаны между собой. В то время как в корреляционном анализе оценивается сила стохастической связи, в регрессионном анализе исследуется ее форма.

Э.Фёрстер, Б. Рёнц [9], с. 18

Парная (простая) линейная регрессия

Линейной регрессией называется сведение наблюдаемой на опыте зависимости некоторой переменной (зависимой или объясняемой) от одной или более других переменных (независимых или объясняющих) к линейной (в предположении, что строгая линейная зависимость между ними нарушается случайными ошибками). Для проведения линейной регрессии часто используется метод наименьших квадратов.

В простейшем случае речь идет о двух переменных. Пусть x — независимая переменная, y — зависимая, и между ними существует следующая связь:

$$y_i = a + bx_i + \varepsilon_i$$

іде a и b — числовые коэффициенты, ε_i — случайные ошибки, $M\varepsilon_i=0$ и $D\varepsilon_i<\infty$. Задача состоит в том, чтобы по имеющимся наблюдениям $(x_1,\ y_1),\ (x_2,\ y_2),\ ...,\ (x_n,\ y_n)$ построить оценки для a и b.

Согласно методу наименьших квадратов необходимо решить следующую математическую задачу:

$$T = \sum_{i=1}^{n} (y_i - a - bx_i)^2 \rightarrow \min.$$

О термине «регрессия», работах Ф. Гальтона и Ч. Дарвина см. [9], с. 46.

У Гмурмана [3] (изд. 2006 г., с. 255-256, §4) все это звучит как

Отыскание параметров выборочного уравнения прямой линии среднеквадратичной регрессии по несгруппированным данным

Пусть изучается система количественных признаков (X,Y). В результате n независимых опытов получены n пар чисел $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.

Найдем по данным наблюдений выборочное уравнение прямой линии среднеквадратичной регрессии. Для определенности будем искать уравнение

$$\hat{y} = a + bx \tag{*_0}$$

регрессии Y на X.

«По несгруппированным данным» означает, что значения x признака X и соответствующие им значения признака Y наблюдались по одному разу (поэтому и группировать данные нет необходимости). Угловой коэффициент прямой линии регрессии Y на X называют выборочным коэффициентом регрессии Y на X. Гмурман обозначает его через ρ_{yx} , у нас он будет фигурировать ниже как \hat{b} .

Итак, будем искать выборочное уравнение прямой линии регрессии Y на X вида ($*_0$).

Подберем параметры a и b так, чтобы точки $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$, построенные по данным наблюдений, на плоскости xOy лежали как можно ближе к прямой $(*_0)$. Уточним смысл этого требования. Назовем отклонением разность

$$\hat{y}_i - y_i \ (i = 1, 2, ..., n),$$

где \hat{y}_i – вычисленная по уравнению ($*_0$) ордината, соответствующая наблюдаемому значению x_i ; y_i – наблюдаемая координата, соответствующая x_i .

Подберем параметры a и b так, чтобы сумма квадратов отклонений была минимальной (в этом состоит сущность метода наименьших квадратов). Так как каждое отклонение зависит от отыскиваемых параметров, то и сумма квадратов отклонений есть функция T этих параметров:

$$T = \sum_{i=1}^{n} (y_i - a - bx_i)^2,$$

которую и будем минимизировать:

$$T = \sum_{i=1}^{n} (y_i - a - bx_i)^2 \rightarrow \min$$

Далее придерживаемся изложения Фёрстера – Рёнца [9].

Запишем необходимые условия экстремума:

$$\frac{\partial T}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0,$$

$$\frac{\partial T}{\partial b} = -2\sum_{i=1}^{n} (y_i - a - bx_i)x_i = 0$$

ИЛИ

$$\sum_{i=1}^{n} (y_i - a - bx_i) = 0, \qquad \sum_{i=1}^{n} (y_i - a - bx_i) x_i = 0.$$

Раскроем скобки и получим (как это названо в [11], с. 35; см. также [9], с. 61) *стандартную форму* нормальных уравнений (для краткости уберем индексы суммирования у знака суммы Σ):

$$an + b\sum x_i = \sum y_i,$$
 $a\sum x_i + b\sum x_i^2 = \sum x_i y_i.$ (*)

Для применения правила Крамера удобнее расположить уравнения (*) друг под другом:

$$\begin{cases} an + b \sum x_i = \sum y_i \\ a \sum x_i + b \sum x_i^2 = \sum x_i y_i \end{cases}$$

Тогда решения $a = \hat{a}$, $b = \hat{b}$ системы будут иметь вид ([9], с. 62; начнем с \hat{b})

$$\hat{b} = \frac{\left| \frac{\sum x_i}{\sum x_i} \frac{\sum y_i}{\sum x_i y_i} \right|}{\left| \frac{\sum x_i}{\sum x_i} \frac{\sum x_i}{\sum x_i} \right|} = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - \sum x_i \sum x_i} = \frac{\overline{xy} - \overline{x} \overline{y}}{\overline{x^2} - \overline{x}^2} = \frac{\text{Cov}(x, y)_{\text{неиспр}}}{\text{Var}(x)_{\text{неиспр}}},$$

$$\hat{a} = \frac{\left| \sum_{x_i y_i} y_i \sum_{x_i z_i} x_i^2 \right|}{\left| \sum_{x_i} x_i \sum_{x_i z_i} x_i^2 \right|} = \frac{\sum_{x_i z_i} \sum_{x_i z_i} x_i^2 - \sum_{x_i z_i} x_i y_i}{n \sum_{x_i z_i} x_i^2 - \sum_{x_i z_i} x_i} = \frac{\overline{y} \overline{x^2} - \overline{x} \overline{x} \overline{y}}{\overline{x^2} - \overline{x}^2} \stackrel{\pm \overline{y} \overline{x}^2}{=} \overline{y} - \frac{\overline{x} \overline{y} - \overline{x} \overline{y}}{\overline{x^2} - \overline{x}^2} \overline{x} = \overline{y} - \hat{b} \overline{x}.$$

С использованием тождеств

$$\sum (y_i - \overline{y})(x_i - \overline{x}) = \sum x_i y_i - n\overline{x} \, \overline{y} = n(\overline{xy} - \overline{x} \, \overline{y})$$

И

$$\sum (x_i - \overline{x})^2 = \sum x_i^2 - n\overline{x} = n(\overline{x^2} - \overline{x}^2)$$

получаем следующие выражения для \hat{b} :

$$\hat{b} = \frac{\overline{xy} - \overline{x}\overline{y}}{\overline{x^2} - \overline{x}^2} = \frac{\text{Cov}(x, y)_{\text{HEUCIID}}}{\text{Var}(x)_{\text{HEUCIID}}} = \frac{\sigma_{xy}}{\sigma_x^2} = \frac{s_{xy}}{s_x^2},$$

где

$$\sigma_{x}^{2} = \frac{1}{n} \sum (x_{i} - \overline{x})^{2} = \overline{x^{2}} - \overline{x}^{2} = \text{Var}(x)_{\text{неиспр}} - \text{неисправленная выборочная дисперсия,}$$

$$\sigma_{xy} = \frac{1}{n} \sum (y_{i} - \overline{y})(x_{i} - \overline{x}) = \overline{xy} - \overline{x}\,\overline{y} = \text{Cov}(x, y)_{\text{неиспр}} - \text{неисправленная выборочная ковариация,}$$

$$s_{x}^{2} = \frac{1}{n-1} \sum (x_{i} - \overline{x})^{2} = \frac{n}{n-1} (\overline{x^{2}} - \overline{x}^{2}) = \frac{n}{n-1} \sigma_{x}^{2} - \text{исправленная выборочная дисперсия,}$$

$$s_{xy} = \frac{1}{n-1} \sum (y_{i} - \overline{y})(x_{i} - \overline{x}) = \frac{n}{n-1} (\overline{xy} - \overline{x}\,\overline{y}) = \frac{n}{n-1} \sigma_{xy} - \text{исправленная выборочная ковариация.}$$

И это действительно минимум

Еще раз

$$T = \sum_{i=1}^{n} (y_i - a - bx_i)^2 \to \min$$

$$T_a = -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0$$

$$T_b = -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0$$

$$T_b = -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0$$

$$D_b = \hat{b}$$

Берем вторые производные:

$$A = T_{aa} = -2\sum (-1) = 2n > 0$$

$$C = T_{bb} = 2\sum x_i^2 = 2n\overline{x}^2 > 0$$

$$B = \begin{cases} T_{ab} = 2\sum x_i = 2n\overline{x} \\ T_{ba} = 2\sum x_i = 2n\overline{x} \end{cases}$$

A, B, C и ниже D – это ностальгия по Б.П. Демидовичу (отд. VI, §7);

$$D = T_{aa}T_{bb} - (T_{ab})^2 = 4n^2(\overline{x^2} - \overline{x}^2) = 4n\sum_{i=1}^{n} (x_i - \overline{x})^2 > 0,$$

так как «значения X и соответствующие им значения Y наблюдались по одному разу» (Гмурман, с. 259), из чего следует, что существует i, такое что $x_i \neq \overline{x}$. Значит, согласно Демидовичу ($loc.\ cit.$),

$$D > 0, A > 0 (C > 0) \implies T$$
 имеет минимум в $(a,b) = (\hat{a},\hat{b}).$

Уравнение линейной регрессии

$$\hat{y} = \hat{a} + \hat{b}x =$$

$$= \overline{y} - \hat{b}\overline{x} + \hat{b}x = \overline{y} + \hat{b}(x - \overline{x})$$

Важный пример

На следующем примере из КБЛ [1] 2005 и КЛ [2] 2016 рассмотрим 1) (еще раз) построение линейной модели регрессии, 2) контроль расчетов, 3) проверку адекватности построенной модели и 4) построение доверительных интервалов для параметров регрессии.

(Постановку «по сгруппированным данным», множественную линейную регрессию, квадратичную регрессию, общую линейную регрессию постараемся здесь пока не рассматривать.)

Задача 1.25. Результаты экспериментов представлены в первых двух столбцах табл. 1.11. Экспериментальные значения *У* являются независимыми и равноточными. Построить линейную и квадратичную регрессионные модели.

Таблица 1.11 Условие задачи 1.25 и результаты расчета

	х	Y	$X = \frac{x - 0.6}{0.2}$	X-Y	χ^2	$Y_{\text{лин}}$	$\Delta Y_{\mathtt{лин}}$	$\Delta Y_{_{ m ЛИН}}^2$
	0,2	4,5	-2	-9,0	4	5,3	-0,8	0,64
	0,4	7,0	-1	-7,0	1	6,25	0,75	0,56
	0,6	8,0	0	0,0	0	7,2	0,8	0,64
	0,8	7,5	1	7,5	1	8,15	-0,65	0,42
	1,0	9,0	2	18,0	4	9,1	-0,1	0,04
Σ	3,0	36,0	0	9,5	10		0	2,30

Эта постановка заимствована из [2]. А вот следующая – из [1]:

Задача 1.25 Результаты экспериментов представлены в первых двух столбцах табл. 1.11. Экспериментальные значения *У* являются независимыми и равноточными. Построить линейную и квадратичную регрессионные модели.

 Таблица 1.11

 Исходные данные и результаты расчета (к задаче 1.25)

	х	Y	$X = \frac{x - 0.6}{0.2}$	$X \cdot Y$	X^2	$Y_{\scriptscriptstyle \mathrm{ЛИН}}$	$\Delta Y_{\text{лин}}$	$X \cdot \Delta Y_{\text{лин}}$	$\Delta Y_{\text{лин}}^2$
	0,2	4,5	- 2	- 9,0	4	5,3	-0,8	1,6	0,64
[0,4	7,0	- 1	- 7,0	1	6,25	0,75	- 0,75	0,56
	0,6	8,0	0	0,0	0	7,2	0,8	0,0	0,64
[0,8	7,5	1	7,5	1	8,15	- 0,65	- 0,65	0,42
	1,0	9,0	2	18,0	4	9,1	-0,1	- 0,2	0,04
Σ	3,0	36,0	0	9,5	10	_	0	0	2,30

Отличие — в столбце $X \cdot \Delta Y_{\text{лин}}$ (кстати, почему?). Будем следовать в основном изложению [2], так как оно было упрощено по сравнению с пособием [1], которое, тем не менее, также будет участником дискуссии.

1. Задача регрессии для линейной функции (теория)

Рассмотрим случай, когда уравнение регрессии (1.61) является линейной функцией

$$y = \beta_1 + \beta_2 x, \tag{1.69}$$

Уравнение (1.61) – это

$$y = f(x, \beta_1, \beta_2, ..., \beta_m) = \beta_1 \varphi_1(x) + \beta_2 \varphi_2(x) + ... + \beta_m \varphi_m(x)$$
. (1.61)

Упр. Как это увязывается с исходной постановкой на с. 5–8 выше?

т.е. базисные функции $\phi_1(x) = 1$, $\phi_2(x) = x$. В этом случае система (1.63) имеет вид

$$\begin{cases} \beta_1 n + \beta_2 \sum_{i=1}^n x_i = \sum_{i=1}^n Y_i, \\ \beta_1 \sum_{i=1}^n x_i + \beta_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n Y_i x_i. \end{cases}$$
(1.70)

Расчет упростится, если ввести замену $X=\frac{x-\overline{x}}{h}$ и рассматривать уравнение

$$y = B_1 + B_2 X = B_1 + B_2 \frac{x - \overline{x}}{h},$$
 (1.71)

где $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ — среднее арифметическое аргументов x; h выбирает-

ся из условия, чтобы значения X были целыми не имеющими общего множителя.

Уравнение (1.71) будем называть уравнением с кодированным переменным, в отличие от уравнения (1.69) с реальным пере-

 $\mathit{менным}.$ В этом случае $\sum_{i=1}^{n} X_{i} = 0\,$ и система (1.70) будет иметь вид

$$\begin{cases} B_1 n = \sum_{i=1}^n Y_i, \\ B_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n Y_i x_i. \end{cases}$$

Откуда имеем формулы для оценок коэффициентов регрессии уравнения с кодированным переменным:

$$\tilde{B}_{1} = \frac{\sum_{i=1}^{n} Y_{i}}{n}, \ \tilde{B}_{2} = \frac{\sum_{i=1}^{n} Y_{i} X_{i}}{\sum_{i=1}^{n} X_{i}^{2}}.$$
(1.72)

Упр. Что будет, если перейти к реальным переменным?

1а. Задача регрессии для линейной функции (решение задачи 1.25)

Сначала найдем решение задачи регрессии в кодированных значениях переменной x (1.71). Введем новую переменную по формуле $X = \frac{x - \overline{x}}{h}$, где $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{5} \cdot 3 = 0,6$. Если значения величины x - 0,6 поделить на число h = 0,2, то получатся целые значения, не

имеющие общего множителя. Поэтому $X = \frac{x - 0.6}{0.2}$.

По формулам (1.72) находим оценки коэффициентов линейной регрессии

$$\tilde{B}_1 = \frac{\sum_{i=1}^n Y_i}{n} = \frac{36}{5} = 7,2; \quad \tilde{B}_2 = \frac{\sum_{i=1}^n Y_i X_i}{\sum_{i=1}^n X_i^2} = \frac{9,5}{10} = 0,95.$$

Получили линейную модель регрессии

$$\hat{Y}_{max} = 7.2 + 0.95X$$
.

Уравнение линейной регрессии Y от реального переменного x найдем, сделав преобразование

$$Y_{\text{max}} = \beta_1 + \beta_2 x = 7,2 + 0,95 \frac{x - 0,6}{0,2} = 4,35 + 4,75x.$$

2. Контроль расчетов (теория)

Напомним:

$$\tilde{B}_{1} = \frac{\sum_{i=1}^{n} Y_{i}}{n}, \ \tilde{B}_{2} = \frac{\sum_{i=1}^{n} Y_{i} X_{i}}{\sum_{i=1}^{n} X_{i}^{2}}.$$
(1.72)

Для контроля расчетов удобно воспользоваться свойством отклонений $\Delta Y_i = Y_i - \tilde{Y}(x_i)$ экспериментальных результатов Y_i от рассчитанных по оценкам (1.72) значений функции регрессии $\tilde{Y}(x_i) = \tilde{B}_1 + \tilde{B}_2 x_i$:

$$\sum_{i=1}^{n} \Delta Y_i = 0 . \tag{1.73}$$

Пособие [1] добавляет к (1.73) еще одно условие контроля:

$$\sum_{i=1}^{n} X_i \Delta Y_i = 0$$

Теперь понятно, почему [1]-вариант таблицы 1.11 содержит столбец $X \cdot \Delta Y_{\text{лин}}$.

2а. Контроль расчетов (решение задачи 1.25)

Вернемся к полученной выше (с. 13) модели линейной регрессии в кодированных переменных:

Получили линейную модель регрессии

$$\hat{Y}_{mn} = 7,2+0,95X.$$

По полученной формуле вычисляем значения линейной функции регрессии $\widehat{Y}_{\text{лин}}$ при всех значениях аргумента X, а затем рассчитываем $\Delta Y_i = \widehat{Y}_i - \widehat{Y}_{i,\text{лин}}$ отклонения экспериментальных значений Y_i от значений $\widehat{Y}_{i,\text{лин}}$, полученных по функции регрессии. Контроль, согласно формуле $\sum_{i=1}^n \Delta Y_i = 0$, выполнен. Все расчеты приведены в табл. 1.11.

Это же касается и равенства $\sum_{i=1}^{n} X_i \Delta Y_i = 0$.

3. Проверка адекватности линейной модели (теория)

Регрессионная модель называется адекватной, если предсказанные по ней значения переменной Y согласуются с результатами эксперимента.

Для проверки адекватности регрессионной модели вычисляют остаточную дисперсию (так называемую дисперсию адекватности) по формуле

$$S_{\text{am}}^{2} = \frac{\sum_{i=1}^{n} (\Delta Y_{i})^{2}}{k_{\text{am}}}; \quad k_{\text{am}} = n - m,$$
 (1.66)

где ΔY_i — отклонения результатов экперимента Y_i от проверяемой модели регрессии; $k_{\rm ag}$ — число степеней свободы дисперсии адекватности; n — число точек, в которых проводился эксперимент; m — число оцениваемых параметров β_i в проверяемой модели.

Далее идет не с первого раза понимаемый текст:

Если истинная функция регрессии имеет тот же вид, что и рассматриваемая модель (например, так же, как и модель, представляет собой квадратичную функцию), то дисперсия адекватности служит несмещенной оценкой истинной дисперсии эксперимента и ее можно сравнивать с другими подобными оценками. В частности, может быть проведена независимая серия измерений для получения оценки дисперсии эксперимента $S^2_{_{3\rm KCR}}$. В этом случае $S^2_{_{3\rm KCR}}$ оценивает дисперсию эксперимента $D_{_{3\rm KCR}}$, $S^2_{_{\rm ag}}$ характеризует степень отклонения экспериментальных точек от регрессионной модели, т.е. оценивает некую дисперсию адекватности $D_{_{\rm ag}}$.

Проверка адекватности модели

заключается в проверке гипотезы H_0 : $D_{\mathsf{ад}} = D_{\mathsf{эксп}}$ при альтернативной гипотезе H_1 : $D_{\mathsf{ад}} > D_{\mathsf{эксп}}$ (если модель неадекватна, отклонения экспериментальных точек от модели будут больше погрешностей эксперимента). Таким образом, задача сводится к проверке гипотезы о равенстве дисперсий, которая решается с помощью критерия Фишера. Вычисляем отношение

$$F = S_{a\pi}^2 / S_{skem}^2. {(1.67)}$$

Если при заданном уровне значимости α отношение F окажется меньше квантили $F_{1-\alpha}(k_1,k_2)$, где $k_1=k_{\rm ag}$, $k_2=k_{\rm sacn}$, то рассматриваемая модель не противоречит результатам эксперимента и принимается; в противоположном случае модель отвергается с уровнем значимости α , как противоречащая результатам эксперимента.

Дисперсия адекватности (1.66) для проверки адекватности линейной регрессионной модели вычисляется по формуле

$$S_{\text{an}}^{2} = \frac{\sum_{i=1}^{n} (\Delta Y_{i})^{2}}{k_{\text{an}}}; \quad k_{\text{an}} = n - 2.$$
 (1.74)

За. Проверка адекватности линейной модели (решение задачи 1.26)

Задача 1.26 – продолжение задачи 1.25, как раз и посвященное адекватности модели:

Задача 1.26. В задаче 1.25 рассчитаны линейная и квадратичная модели регрессии. По отдельной независимой серии измерений получена несмещенная оценка дисперсии $S^2 = 0.32$ с числом степеней свободы k, равным 20. Проверить адекватность линейной и квадратичной моделей регрессии с уровнем значимости $\alpha = 0.05$.

Решение

Для нахождения дисперсии адекватности (1.66) необходимо вычислить сумму квадратов отклонений результатов эксперимента от функции регрессии $\sum \Delta Y^2$ для каждой модели регрессии. Для линейной модели эта сумма равна 2,3 (см. последний столбец табл. 1.11). Число точек, в которых проводился эксперимент, n=5; число оцениваемых параметров m=2, тогда $k_{\rm ag}=5-2=3$. Дисперсия адекватности (1.74) равна $S^2_{\rm ад \ лин}=2,3/3=0,767$. Для проверки гипотезы об адекватности линейной модели вычисляем критерий Фишера (1.67):

 $F = S_{\rm ag}^2 / S_{\rm эксп}^2 = 0,767/0,32 = 2,40$. Квантиль распределения Фишера $F_{0,95}(3;20) = 3,10$. Так как 2,4 < 3,1, то гипотеза об адекватности линейной модели принимается с уровнем значимости $\alpha = 0,05$.

Отметим, что адекватность квадратичной модели проверяется аналогично (соответствующие выкладки приводятся как в [1], так и в [2]). Но:

Квадратичную модель в данной задаче строить нецелесообразно. Так как линейная модель оказалась адекватной, ее уточнять не было необходимости.

Изложение было бы неполным без следующей таблицы, где пришлось поискать квантиль 3.10:

	Квантили распределения Фишера, $F_{_{p}}(k_{_{1}},k_{_{2}}),p=0.95$,95	
k_1	1	2	3	4	5	6	7	- 8	9	10	12	15	20
1	161,4	199,5	199,5	224,6	230,2	234,0	236,8	238,9	240,5	241,9	243,9	245,9	248,0
2	18,51	19,00	19,0	19,25	19,30	19,33	19,35	19,37	19,37	19,40	19,41	19,43	19,45
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,85	8,79	8,74	8,70	8,66
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,04	5,96	5,91	5,86	5,80
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,82	4,74	4,68	4,62	4,56
6	5,99	5,14	4,75	4,53	4,39	4,28	4,21	4,15	4,15	4,06	4,00	3,94	3,87
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,73	3,64	3,57	3,51	3,44
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,44	3,35	3,28	3,22	3,15
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,23	3,14	3,07	3,01	2,94
10	4.96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,07	2.98	2,91	2,85	2,77
11	4,84	3,98	3,59	3,36	3,20	3.09	3,01	2,95	2,95	2,85	2,79	2,72	2,65
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,85	2,75	2,69	2,62	2,54
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,77	2,67	2,60	2,53	2,46
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,70	2,60	2,53	2,46	2,39
15	4.54	3,68	3,29	3.06	2,90	2,79	2,71	2,64	2,64	2,54	2,43	2,40	2,33
16	4.49	3.63	3.24	3.01	2,85	2.74	2,66	2,59	2,59	2,49	2.42	2,35	2,28
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,55	2,45	2,38	2,31	2,23
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,51	2,41	2,34	2,27	2,19
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,48	2,38	2,31	2,23	2,16
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,45	2,35	2,28	2,20	2,12
21	4,32	3,47	3,07	2.84	2,68	2.57	2,49	2,42	2,42	2,32	2.25	2,18	2,10
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,40	2,30	2,23	2,15	2,07
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,37	2,27	2,20	2,13	2,05
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,36	2,25	2,18	2,11	2,03

4. Построение доверительных интервалов для параметров регрессии (теория)

Если результаты экспериментов независимы и подчиняются нормальному закону распределения с дисперсией σ^2 , то доверительный интервал с доверительной вероятностью $P=1-\alpha$ для каждого параметра $\tilde{\beta}_j$ можно определить неравенством

$$\left|\beta_j-\tilde{\beta}_j\right|<\epsilon_j \ \text{ или } \beta_j=\tilde{\beta}_j\pm\epsilon_j\,,$$
 где
$$\epsilon_j=t_{1-\alpha/2}(k)S\sqrt{a_{jj}}\ (j=1,2,...,m), \eqno(1.68)$$

здесь S^2 — несмещенная оценка дисперсии σ^2 с числом степеней свободы k; $t_{1-\alpha/2}(k)$ — квантиль распределения Стьюдента; a_{jj} — диагональный элемент матрицы A^{-1} , $\alpha=1-P$, P — доверительная вероятность.

Как было указано выше, если рассматриваемая модель регрессии адекватна, то дисперсия адекватности служит несмещенной оценкой истинной дисперсии эксперимента. Следовательно, в случае адекватности модели в формулу (1.68) в качестве оценки среднего квадратического отклонения S можно подставить корень из дисперсии адекватности $S_{\rm ag} = \sqrt{S_{\rm ag}^2}$.

В построенной регрессионной модели (1.61) некоторые коэффициенты могут быть незначимы, т.е. может выполняться гипотеза H_0 : $\beta_j = 0$. Для проверки этой гипотезы можно найти доверительный интервал для коэффициента β_j с уровнем значимости α . Если этот интервал «накрывает» значение $\beta_j = 0$, гипотеза H_0 принимается и коэффициент β_j признается незначимым, в противоположном случае коэффициент β_j значим.

Границы доверительных интервалов для параметров линейной функции регрессии с кодированным переменным (1.71) имеют вид

$$\tilde{B}_1 \pm \varepsilon_1$$
; $\varepsilon_1 = t_{1-\frac{\alpha}{2}}(k)\frac{S}{\sqrt{n}}$; $\tilde{B}_2 \pm \varepsilon_2$; $\varepsilon_2 = t_{1-\frac{\alpha}{2}}(k)\frac{S}{\sqrt{\sum_{i=1}^n X_i^2}}$. (1.75)

4а. Построение доверительных интервалов для параметров регрессии (решение задачи 1.27)

Задача 1.27 – продолжение задачи 1.25, как раз и посвященное построению доверительных интервалов для параметров регрессии (тем более, что, как выяснится ниже, переход от линейной к квадратичной регрессии необоснован и следовало бы остановиться на линейной регрессии):

Задача 1.27. В задаче 1.25 получено уравнение линейной и квадратичной модели регрессии. По отдельной независимой серии измерений получена несмещенная оценка дисперсии $S^2 = 0.32$ с числом степеней свободы k равным 20. Считая результаты экспериментов независимыми, равноточными и подчиняющимися нормальному закону распределения, построить доверительные интервалы для истинных значений коэффициентов обеих моделей с надежностью P = 0.95.

Решение

В задаче 1.25 получена линейная модель регрессии от кодированной переменной

$$y = \hat{B}_1 + \hat{B}_2 X = 7, 2 + 0,95 X.$$

Границы доверительных интервалов (1.75) для коэффициентов B_1 и B_2 при этом будут:

$$B_1 = 7, 2 \pm \varepsilon_1;$$

$$\varepsilon_1 = t_{1 - \frac{\alpha}{2}}(k) \frac{S}{\sqrt{n}} = t_{0,975}(20) \frac{\sqrt{0,32}}{\sqrt{5}} = 2,086 \frac{\sqrt{0,32}}{\sqrt{5}} = 0,52;$$

$$B_2 = 0,95 \pm \varepsilon_2; \qquad \varepsilon_2 = t_{1 - \frac{\alpha}{2}}(k) \frac{S}{\sqrt{\sum_{i=1}^n X_i^2}} = 2,086 \frac{\sqrt{0,32}}{\sqrt{10}} = 0,38.$$

Уравнение линейной регрессии от реального переменного х

$$y = \beta_1 + \beta_2 x = 4,35 + 4,75x$$
.

Границы доверительных интервалов для коэффициентов β_1 и β_2 находим по формулам (1.77):

$$\beta_{1} = 4,35 \pm \hat{\epsilon}_{1};$$

$$\hat{\epsilon}_{1} = t_{1-\frac{\alpha}{2}}(k) S \sqrt{\frac{1}{n} + \frac{\overline{x}^{2}}{h^{2} \sum_{i=1}^{n} X_{i}^{2}}} = 2,086\sqrt{0,32} \cdot \sqrt{\frac{1}{5} + \frac{0,36}{0,04 \cdot 10}} = 1,24;$$

$$\beta_{2} = 4,75 \pm \hat{\epsilon}_{2}; \qquad \hat{\epsilon}_{2} = t_{1-\frac{\alpha}{2}}(k) \frac{S}{h\sqrt{\sum_{i=1}^{n} X_{i}^{2}}} = 2,086 \frac{\sqrt{0,32}}{0,2\sqrt{10}} = 1,9.$$

Все то же самое разобрано для квадратичной модели. Пропуская соответствующие выкладки (они есть и в [1], и в [2]), приведем завершающий вывод:

Полуширина доверительного интервала для коэффициента B_3 оказалась больше абсолютной величины этого коэффициента, т.е. доверительный интервал для этого коэффициента накрывает значение $B_3 = 0$. В этом случае говорят, что коэффициент \tilde{B}_3 незначим, т.е. переход от линейной модели к квадратичной необоснован и следовало остановиться на линейной модели. Аналогичный вывод был получен при проверке адекватности полученных моделей регрессии.

ФОТО НА ЛЕКЦИИ

6.05.2025 BT BEPX 1240 1-556 MatbuMC / LEKYMA EDM-23- 85 KASAHYER A.B. 2 3.1. Cr. b. X = Pasmep A-pa detam , pacup-ha no Hopu 3Hy; M(x) = 5 cm, D(x) = 0,25 $P(A-p Hayday B327000 detam ot miraetel of mar. oxudamil ho abc. but <math>\leq 5mm$) = $P(X-M(x)) \leq P(X-M(x)) \leq P(X-M$ $P(M(x)-0.5 \le X \le M(x)+0.5) = P(4.5 \le X \le 5.5) =$ $= \phi_0\left(\frac{5.5-5}{0.5}\right) - \phi_0\left(\frac{4.5-5}{0.5}\right) = \phi_0(1) - \phi_0(-1) = 2\phi_0(1)$

Подготовка к экзаменационному билету.)

$$D(X)$$
 Со $V(X,Y)$ Со $V(X,Z)$ (М(X), М(Y), М(Z)) = (3,2; 4; 1,5). (со $V(X,Y)$ D(Y) Со $V(Y,Z)$ (со $V(Y,Z)$) (со $V(Y$