## Part 1: Solve the following recurrences using substitution method.

We can use the substitution method to establish either upper or lower bounds on a recurrence equation.

```
1) T(n)=T(n-3)+3 \lg n.
            Our guess: T(n) = O(n \lg n)
            Prove T(n) \le cn \lg n \text{ for } c > 0
    For n=1,
    T(1) = T(1-3) + 3 \lg 1
         = -2 + 3(0)
         = -2
    Inductive step:
    Upper Bound T(n) < =cn \lg n \text{ for } c>0
    T(n) = T(n-3) + 3 \lg n.
        <= (cn lg n - 3) + 3 lg n
        \leq Ig n ((cn - 3) + 3))
        <= cn lg n (for c >0)
    Therefore T(n) = O(n \log n)
2) T(n)=4T(n/3) + n
            Our guess: T(n) = O(n ^ Ig_3 4)
            Prove T(n) \le cn^{\log_3} 4 for c > 0
    For n=1,
    T(1) = > 4 ((n ^ log_3 4)/3) + n
         => n(4/3 n^{\log_3 4} + 1)
    This proves T(n) is not <= cn^log<sub>3</sub> 4
    Improved guess:
    Upper Bound T(n) \le cn^{\log_3 4} - 3n c > 0
    Inductive step:
    T(n) = 4T(n/3) + n
         \leq 4(c (n/3)^{\log_3 4} - (3n/3)) + n
         \leq 4c (n/3)^{\log_3 4} - 4n + n
         <= 4c (n/3)^log<sub>3</sub>4 - 3n
    Therefore T(n) = O(n \cdot \log_3 4 - 3n)
```

```
3) T(n)=T(n/2) + T(n/4) + T(n/8) + n
           Our guess: T(n) = O(n)
           Prove T(n) \le cn for c > 0
   For n=1,
   T(1) = T(n/2) + T(n/4) + T(n/8) + n
        = 1/2 +1/4 +1/8 +1
        = 23/8
   Inductive step:
   Upper Bound T(n) <= dn
   T(n) = T(n/2) + T(n/4) + T(n/8) + cn
       <= dn/2 +dn/4 +dn/8 +cn
       <= dn(7/8) + cn
       <= n (7d/8 + c)
   d(7/8) \le 0 which is therefore c \ge +d \frac{7}{8}
   T(n)=O(n)
   Lower Bound T(n) >= dn
   T(n)=T(n/2)+T(n/4)+T(n/8)+cn
        >= dn/2 +dn/4 +dn/8 +cn
        >= dn(7/8) + cn
        >= n (7d/8 +c)
   d(7/8) +c >= 0
   Therefore T(n)=\Omega(n)
4) T(n)=4T(n/2)+n^2
           Our guess: T(n) = O(n^2)
           Prove T(n) \le cn^2 for c > 0
   For n=1,
```

$$T(1) = 4T(n/2) + n^2$$
  
= 4(1/2) + 1^2  
= 3

### **Inductive step:**

$$T(n)= 4T(n/2)+n^2$$
  
 $<= 4 c (n/2)^2 + n^2$   
 $<= c n^2 + n^2$   
 $<= n^2 (c+1)$   
This proves  $T(n)$  is not  $<= cn^2$ 

# Improved guess

$$T(n) < = cn^2 - n , c>0$$

$$T(n) = 4T(n/2) + n$$

$$<= 4(c(n/2)^2 - (n/2)) + n$$

$$<= cn^2 - 2n + n$$

$$<= cn^2 - n$$
Therefore  $T(n) = O(n^2)$ 

### Part 2: Radix sort on strings

## 1. Modified insertion sort algorithm

The function "radix sort" uses insertion sort algorithm to sort string. The "insertion sort" function is the improvised version and insertion sort ori is the original function.

Homework 2

```
void radix sort(char** A, int I, int r, int* A len)
int k = 0;
for(int i = 0; i <= r; i++)
        if(A_len[i] > k)
                         k = A len[i];
                 }
for(int i=k-1; i>=0; i--)
        {
        int d=i;
        insertion_sort(A,I,r,d,A_len);
        }
}
void insertion_sort(char** A, int I, int r, int d, int* A_len)
 int i;
 char* key;
 int temp len;
 for (int j = I+1; j \le r; j++)
  {
    key = A[j];
    temp_len=A_len[j];
    i = j - 1;
    int ascii1=0;
    int ascii2=0;
    if(d < A len[i])
     ascii1= (int)(A[i][d]);
    if(d < A len[j])
     ascii2= (int)key[d];
    while ((i \ge 1) \&\& (ascii1 \ge ascii2))
     {
```

```
A[i+1] = A[i];
     A_len[i+1]=A_len[i];
     i = i - 1;
     ascii1 = 0;
     if(d < A len[i] && i >= I)
     ascii1= (int)(A[i][d]);
     }
    A[i+1] = key;
    A_len[i+1]=temp_len;
  }
}
3. Counting sort algorithm for strings.
void radix_sort_count(char** A,char** D, int I, int r,int* A_len)
{
int max = 0;
for(int i = 0; i <= r; i++)
        if(A_{en}[i] > max)
                max = A_{len[i]};
        }
for(int i=max-1;i>=0;i--)
        {
        int d=i;
        int k=256;
        counting_sort(A,D,k,r,d,A_len);
D = A;
void counting_sort(char** A, char** B, int k, int n, int d, int* A_len)
int c[k];
int newLen[n+1];
        for(int i=0;i<=k;i++)
        {
```

```
c[i]=0;
        }
        for(int j=0;j<=n;j++)
        {
                int asc=48;
                if(d<A_len[j])
                asc=int(A[j][d]);
                c[asc]=c[asc]+1;
        for(int i=1;i<=k;i++)
                c[i]=c[i]+c[i-1];
        for(int j = n; j >= 0; j--)
        {
                int asc=48;
                if(d < A_{en[j]})
                        asc=(int)(A[j][d]);
                B[c[asc]-1] = A[j];
                newLen[c[asc]-1]=A_len[j];
                c[asc] = c[asc] - 1;
        for(int c=0;c<=n;c++)
                A[c] = B[c];
                A_len[c]=newLen[c];
}
```

- 2. Modified insertion sort algorithm. Measure runtime performance.
- 4. Radix sort algorithm. Measure runtime performance.

The results for Question 2 and 4 are depicted in the below table and line chart which shows the variation of time for various inputs.

| Input | Input n | Q2                      |                                | Q4                      |                   |
|-------|---------|-------------------------|--------------------------------|-------------------------|-------------------|
| m     |         | Random<br>Generator(ms) | Radix using insertion sort(ms) | Random<br>Generator(ms) | Counting sort(ms) |
| 25    | 10000   | 2                       | 13                             | 1                       | 22                |
| 50    | 10000   | 4                       | 38                             | 3                       | 48                |
| 75    | 10000   | 6                       | 63                             | 4                       | 27                |
| 25    | 25000   | 3                       | 22                             | 2                       | 48                |
| 50    | 25000   | 11                      | 83                             | 4                       | 55                |
| 75    | 25000   | 20                      | 148                            | 7                       | 72                |
| 25    | 50000   | 7                       | 50                             | 3                       | 89                |
| 50    | 50000   | 29                      | 111                            | 8                       | 116               |
| 75    | 50000   | 26                      | 211                            | 12                      | 132               |
| 25    | 75000   | 10                      | 62                             | 6                       | 139               |
| 50    | 75000   | 26                      | 159                            | 14                      | 161               |
| 75    | 75000   | 38                      | 318                            | 17                      | 215               |
| 25    | 100000  | 15                      | 101                            | 9                       | 181               |
| 50    | 100000  | 35                      | 224                            | 16                      | 231               |
| 75    | 100000  | 43                      | 347                            | 24                      | 269               |

