COLUMBUS DAY 4.0

BIG DATA FOR .NET AND SQL

(AZURE DATA LAKE)

PLAN

- BIG DATA
- Azure Cloud
- Azure Data Lake
 - Azure Data Lake Store
 - Azure Data Lake Analytics
- U-SQL
- Azure Data Lake Live Azure Demo

BIG DATA

- **3V**
- 4V(Veracity)

3Vs of Big Data

The Structure of Big Data

Source: http://www.tsmtutorials.com/2016/06/data-and-information-basics.html

Schema-on-Read vs Schema-on-Write

SCHEMA-ON-WRITE (RDBMS):

- Create static DB schema
- Transform data into RDBMS
- Query data in RDBMS format

New columns must be added explicitly before new data can propagate into the system.

SCHEMA-ON-READ (HADOOP OR ADLS):

- Copy data in its native format
- Create schema + parser
- Query Data in its native format (does ETL on the fly)

New data can start flowing any time and will appear retroactively once the schema/parser properly describes it.

Why Big Data?

Why Big Data?

	Rank	Brand	Brand Value	1-Yr Value Change	Brand Revenue	Company Advertising	Industry
	#1	Apple	\$154.1 B	6%	\$233.7 B	\$1.8 B	Technology
Coogle	#2	Google	\$82.5 B	26%	\$68.5 B	\$3.2 B	Technology
Microsoft	#3	Microsoft	\$75.2 B	9%	\$87.6 B	\$1.9 B	Technology
(couled a	#4	Coca-Cola	\$58.5 B	4%	\$21.9 B	\$4 B	Beverages
	#5	Facebook	\$52.6 B	44%	\$17.4 B	\$281 M	Technology

Source: http://www.forbes.com/powerful-brands/list/

Most Valuable Companies in the Fortune 500

MARKET VALUE RANK ▼	COMPANY	INDUSTRY	MARKET VALUE (\$BIL)
1	Apple	Computers, Office Equipment	534
2	Alphabet	Internet Services and Retailing	507
3	Microsoft	Computer Software	413
4	Exxon Mobil	Petroleum Refining	326
5	Facebook	Internet Services and Retailing	321
6	Berkshire Hathaway	Insurance: Property and Casualty (Stock)	312
7	Johnson & Johnson	Pharmaceuticals	288
8	General Electric	Diversified Financials	271
9	Amazon.com	Internet Services and Retailing	250
10	Wells Fargo	Commercial Banks	242

Source: S&P Capital IQ FORTUNE

Cloud Service Models and Azure

Azure Services

http://azureplatform.azurewebsites.net/en-us/

Azure Data Lake

Mike Rys

Saveen Reddy

Data Lake Appoach

Ingest all data regardless of requirements

Store all data in native format without schema

definition

Do analysis
Using analytic
engines like Hadoop

From: M. Rys Presentation

Azure Data Lake

Azure Data Lake

Microsoft

Overview of Azure Data Lake Store

- Built for Hadoop
 - WebHDFS-compatible REST interface
- Unlimited storage, petabyte files
- Performance-tuned for big data analytics
- Highly-available and secure
- Integrates with HDInsight, Cloudera, Hortonworks
- Supports files and folders objects

A VERY BIG FILE

- 1 2 3 4 5
 - -

 - | 2 | 3 | 4 | 5 |

 | 2 | 3 | 4 | 5 |

ADL Store Basics

- Files are split apart into Extents (250 MB)
- For availability and reliability, extents are replicated (3 copies).
- Enables:
 - Parallel read
 - Parallel write

From: S. Reddy Presentation

15

11/30/2016 AUTHOR: TOMASZ KRAWCZYK

Working with Azure Data Lake Store

- Local computer
 - Azure Portal
 - Azure PowerShell
 - Azure Cross-platform CLI
 - Using Data Lake Tools for Visual Studio
- Azure Storage Blob
 - Azure Data Factory
 - AdlCopy tool
 - DistCp running on HDInsight cluster
- Streamed data
 - Azure Stream Analytics
 - Azure HDInsight Storm
- Relational data
 - Apache Sqoop
 - Azure Data Factory

Azure Data Explorer

Azure Data Lake Store Pricing

Storage Prices

Storage is available in Pay-as-you-Go and monthly commitment packages.

Pay-as-You-Go

USAGE	PRICE /MONTH
First 100 TB	€0.0329 per GB
Next 100 TB to 1,000 TB	€0.032 per GB
Next 1,000 TB to 5,000 TB	€0.0312 per GB
Over 5,000 TB	Contact Us

Transaction Prices

The following prices apply to transactions performed against your data. The same transaction rates apply for both Pay-as-You-Go as well as Monthly Commitment Packages.

USAGE	PRICE
Write operations (per 10,000)	€0.0422
Read operations (per 10,000)	€0.0034
Delete operations	Free

Azure Data Lake Analytics

A distributed analytics service built on Apache YARN that dynamically scales to your needs

Pay PER QUERY & Scale PER QUERY

FEDERATED QUERY across Azure data sources

Includes **U-SQL**, a language that unifies the benefits of SQL with the expressive power of C#

No limits to **SCALE**

Optimized to work with ADL STORE

Work across all your cloud Data

Data Lake Analytics Pricing

Pricing Details

Pay-as-You-Go:

Pay-as-You-Go lets you pay by the second with no long-term commitments.

USAGE	PREVIEW PRICE (UNTIL DECEMBER 31ST, 2016)	GA PRICE (STARTING JANUARY 1ST, 2017)
Analytics Unit	€0.8433/hr	€1.6866/hr
Completed Job	€0.0211 / Job	Free

 $JobCost = (seconds \times ADLU)/3600 + Completed Job Cost + Data Lake Transactions Cost$

11/30/2016 AUTHOR: TOMASZ KRAWCZYK 21

Azure Data Lake Analytics Unit

Parallelism N = N ADLAUs

1 ADLAU ~=

•A VM with 2 cores and 6

GB of memory

Data Lake Tools for Visual Studio

DINNER

U –SQL A new language for Big Data

Familiar syntax to millions of SQL & .NET developers

Unifies declarative nature of SQL with the imperative power of C#

Unifies structured, semistructured and unstructured data

Distributed query support over all data

From: M. Rys Presentation

U-SQL SCRIPT

DECLARE (Optional)

EXTRACT (or SELECT)

Apply Schema on read

OUTPUT (or INSERT)

U-SQL Meta Data Catalog

■ Data Lake Analytics ▲ datalakelab ■ U-SQL Databases ■ StackOverflow ▲ Assemblies AzureDataLake.DevStr.Formats ☐ AzureDataLake.DevStr.StackOverflow Data Sources Procedures Schemas Table Types Table Valued Functions Tables UKCrimes master

Jobs Jobs

■ Storage Accounts

adlstorelab (Default)

▼ 🕖 datalakelab master StackOverflow ▼ Tables sof.TechStats Views Table Valued Functions Procedures Assemblies Credentials

UKCrimes

External Data Sources

U-SQL DECLARE VARIABLES

```
DECLARE @text1 string = "Columbus Day";
DECLARE @text2 string = @"Columbus Day";
DECLARE @text3 char = 'a';
DECLARE @text4 string = "BEGIN" + @text1 + "END";
DECLARE @text5 string = string.Format("BEGIN{0}END", @text1);
DECLARE @text6 string = string.Join(" ", new String[]{@text1, "4.0"});
DECLARE @numeric1 sbyte = 0;
DECLARE @numeric2 short = 1;
DECLARE @numeric3 int = 2;
DECLARE @numeric4 long = 3L;
DECLARE @numeric5 float = 4.0f;
DECLARE @numeric6 double = 5.0;
DECLARE @d1 DateTime = System.DateTime.Parse("1979/03/31");
DECLARE @d2 DateTime = DateTime.Now;
DECLARE @misc1 bool = true;
DECLARE @misc2 Guid = System.Guid.Parse("BEF7A4E8-F583-4804-9711-7E608215EBA6");
DECLARE @misc4 byte [] = new byte[] { 0, 1, 2, 3, 4};
```

U-SQL EXTRAXTORS and OUTPUTTERS

- Csv
- Text
- Tsv

U-SQL FILESETS

```
DECLARE @inputCrimes = @"mySamples/UKCrimes/{Date:yyyy}-
{Date:MM}/{Input}-street.csv";
@crimes =
                                                                                           Name
                                                                                                                                 File Size (Logical)
                                                                   Quick Access
                                                                                                                                                   Modified
     EXTRACT CrimeID string,
               Month string,
                                                                                                2011-01-avon-and-somerset-street.csv
                                                                                                                                 2.201 KB
                                                                                                                                                   10/17/2016 9:55:39 AM

    adl://adlstorelab.azureda

                ReportedBy string,
                                                                                                                                 818,752 bytes
                                                                                              2011-01-bedfordshire-street.csv
                                                                                                                                                   10/17/2016 9:55:40 AM
                FallsWithin string,
                                                                    Assemblies
                                                                                              2011-01-btp-street.csv
                                                                                                                                 256,571 bytes
                                                                                                                                                   10/17/2016 9:55:41 AM
                Longitude string,
                                                                       catalog
                                                                                              2011-01-cambridgeshire-street.csv
                                                                                                                                 1,045,674 bytes
                                                                                                                                                   10/17/2016 9:55:42 AM
                Latitude string,
                                                                                                                                 702,035 bytes
                                                                    2011-01-cheshire-street.csv
                                                                                                                                                   10/17/2016 9:55:43 AM
                Location string,
                                                                                              2011-01-city-of-london-street.csv
                                                                                                                                 101,646 bytes
                                                                                                                                                   10/17/2016 9:55:44 AM
                LSOACode string,
                                                                         IISLogs
                LSOAName string,
                                                                                                                                 1,017,147 bytes
                                                                                                2011-01-cleveland-street.csv
                                                                                                                                                   10/17/2016 9:55:45 AM
                                                                          Images
                CrimeType string,
                                                                                                                                 587,995 bytes
                                                                                                2011-01-cumbria-street.csv
                                                                                                                                                   10/17/2016 9:55:45 AM
                                                                           StackOverflow
                LastOutcomeCategory string,
                                                                                              2011-01-derbyshire-street.csv
                                                                                                                                 1,354 KB
                                                                                                                                                   10/17/2016 9:55:47 AM
                                                                         ■ UK
                Context string,
                                                                                                2011-01-devon-and-cornwall-street.csv
                                                                                                                                 1.458 KB
                                                                                                                                                   10/17/2016 9:55:48 AM
                Date DateTime,
                                                                       2011-01-dorset-street.csv
                                                                                                                                 426,502 bytes
                                                                                                                                                   10/17/2016 9:55:49 AM
               Input string
                                                                             2010-12
                                                                                                2011-01-durham-street.csv
                                                                                                                                 910,700 bytes
                                                                                                                                                   10/17/2016 9:55:50 AM
     FROM @inputCrimes
                                                                             2011-01
                                                                                                2011-01-dyfed-powys-street.csv
     USING Extractors.Csv(silent
                                                                                                                                 508,403 bytes
                                                                                                                                                   10/17/2016 9:55:51 AM
false,skipFirstNRows:1);
```

Virtual columns

WORKSHOP 1

Azure Data Lake

https://github.com/rkostrzewski/usql-workshop

U-SQL FILTERING

- ROWSET(s)
- TABLE(s)
- WHERE
- AND & OR
- ==,>=,!= (C# OPERATOR(s))
- CONTAINS (C# string)

U-SQL ROWSETS

```
@postCodes =
                                                                                          Rowset
   EXTRACT id string,
           postcode string,
           latitude string,
           longitude string
   FROM @inputPostCodes
   USING Extractors.Csv(skipFirstNRows:1);
@topCities =
                                                                                          Rowset
   EXTRACT id int,
           name string,
           population string,
           postcode string
   FROM @input10topCities
   USING Extractors.Text(delimiter : ';');
                                                                                          Rowset
@topCitiesWithGPS =
   SELECT tc.name,tc.population, pc.latitude,pc.longitude
   FROM @topCities AS to
        JOIN
            @postCodes AS pc
        ON pc.postcode == tc.postcode;
```

WORKSHOP 2

U-SQL ARRAY and MAP

```
SQL.ARRAY<T> == IList<T>
```

```
SQL.MAP<T,U> ==IDictionary<T,U>
```

```
@ds =
    SELECT content, fileName, new SQL.MAP<int, string>() AS
colors
    FROM @rs;
\omegads =
    PROCESS @ds
    PRODUCE content, colors, fileName
             READONLY fileName
    USING new ImageColorsProcessor(4);
@ds =
    SELECT fileName,
           order.
           colorName
    FROM @ds
         CROSS APPLY
             EXPLODE(colors) AS colors(order, colorName);
```

U-SQL SORTING

ROWSET

OUPUT

```
OUTPUT @ds
TO "result.csv"
ORDER BY fileName,
order
USING Outputters.Csv();
```

SELECT with ORDER BY requires a FETCH FIRST

WORKSHOP 3

USQL -AGGREGATIONS

GROUP BY

HAVING

AGGREGATIONS

- MAX
- MIN
- SUM
- MAX
- MIN
- SUM
- -ARRAY_AGG

```
@output =
    SELECT
        MAX(Duration) AS DurationMax,
        MIN(Duration) AS DurationMin,
        AVG(Duration) AS DurationAvg,
        SUM(Duration) AS DurationSum,
        VAR(Duration) AS DurationVarianve,
        STDEV(Duration) AS DurationStDev,
    FROM @searchlog
    GROUP BY Region
    HAVING DurationMin > 1;
```

U-SQL WINDOW FUNCTIONS

RANKING FUNCTIONS

- RANK
- DENSE_RANK
- NTILE
- ROW NUMBER

ANALIYTIC WINDOW FUNCTIONS

- CUME_DIST
- PERCENT_RANK
- PERCENTILE CONT
- PERCENTILE_DISC
- CUME_DIST

```
@result =
SELECT
    *,
    ROW_NUMBER() OVER (PARTITION BY Vertical ORDER BY
Latency) AS RowNumber,
    RANK() OVER (PARTITION BY Vertical ORDER BY Latency)
AS Rank,
    DENSE_RANK() OVER (PARTITION BY Vertical ORDER BY
Latency) AS DenseRank
FROM @querylog;
```

WORKSHOP 4

U-SQL DATABASES AND SCHEMES

U-SQL TABLES

- MANAGED TABLES and EXTERNAL TABLES
- ONLY INSERT
- CONSISTS OF FOUR THINGS:
 - A NAME
 - COLUMNS
 - A CLUSTERED INDEX
 - PARTITIONING SCHEME

```
DROP TABLE IF EXISTS vehiclesP;
CREATE TABLE vehiclesP(
    vehicle_id int
    , entry_id long
    , event_date DateTime
    , latitude float
    , longitude float
    , speed int
    , direction string
    , trip_id int?
    , INDEX idx CLUSTERED (vehicle_id ASC)
        PARTITIONED BY (event_date)
        DISTRIBUTED BY HASH (vehicle_id) INTO 4
);
```

U-SQL VIEWS and FUNCTIONS

VIEWS

```
CREATE VIEW IF NOT EXISTS vCrimes
    AS

EXTRACT CrimeID string,
         Month string,
         Date DateTime,
         Input string

FROM @"\UKCrimesCities\{Date:yyyy}-{Date:MM}\{Input}-street.csv"

USING Extractors.Csv(silent : false,
    skipFirstNRows : 1);
```

FUNCTIONS (TVF)

```
CREATE FUNCTION tvf Crimes(@input string)
RETURNS @result TABLE(CrimeID string,
Month string)
AS
BEGIN
    @crimes =
    EXTRACT CrimeID string,
            Month string
    FROM @input
    USING Extractors.Csv(silent : false,
skipFirstNRows:1);
    @result = SELECT CrimeID,
            Month
            Input FROM @crimes;
    END;
```

U-SQL JOINS

- INNER JOIN
- FULL OUTER JOIN
- LEFT OUTER JOIN
- RIGHT OUTER JOIN
- CROSS JOIN
- LEFT SEMIJOIN (IN)
- RIGHT SEMIJOIN (IN)
- LEFT ANTISEMIJOIN (NOT IN)
- RIGHT ANTISEMIJOIN (NOT IN)

U-SQL C# METHODS

```
public static double ComputeDistance(double sLat, double
sLong, double dLat, double dLong)

{
    var locA = new GeoCoordinate(sLat, sLong);
    var locB = new GeoCoordinate(dLat, dLong);
    return locA.GetDistanceTo(locB); // metres
}
```

C# Method

IExtractor

```
[SqlUserDefinedExtractor(AtomicFileProcessing = true)]
   public class BinaryContentExtractor : IExtractor
       public override IEnumerable<IRow> Extract(IUnstructuredReader input, IUpdatableRow output)
           using (var ms = new MemoryStream())
               input.BaseStream.CopyTo(ms);
               var content = ms.ToArray();
               output.Set(0, content);
               yield return output.AsReadOnly();
```

U-SQL USING ASSEMBLIES


```
DECLARE @myAssemblyPath string =
@"D:\Repos\AzureDataLake.DevStr.Formats\bin\Debug\";

DECLARE @myAssemblyName string =
@myAssemblyPath+"AzureDataLake.DevStr.Formats.dll";

CREATE DATABASE IF NOT EXISTS Extractors;

USE DATABASE Extractors;

DROP ASSEMBLY IF EXISTS MyExtractors;

CREATE ASSEMBLY MyExtractors

FROM @myAssemblyName;
```

U-SQL USING ASSEMBLIES

```
DECLARE @imgFile string = @"D:\Help\BIGDATA\Images\{fileName}.jpg";
                                                                                             Reference
USE DATABASE Extractors;
REFERENCE ASSEMBLY MyExtractors;
USING BinaryExtractor = AzureDataLake.DevStr.Formats.BinaryContentExtractor;
REFERENCE ASSEMBLY ImageUtils. ImageUtils;
                                                                                                  Alias
USING ImageColorsProcessor = AzureDataLake.DevStr.ImageUtils.ImageColorProducer;
@rs =
   EXTRACT content byte[],
           fileName string
   FROM @imgFile
                                                                                       External Extractor
   USING new BinaryExtractor();
@ds =
   SELECT content, fileName, new SQL.MAP<int, string>() AS colors
   FROM @rs;
@ds =
   PROCESS @ds
                                                                                        External Processor
   PRODUCE content, colors, fileName
           READONLY fileName
   USING new ImageColorsProcessor(4);
```

U-SQL

WORKSHOP 5

COFFEE BREAK

Azure Data Lake Analytics

Azure Data Lake Analytics Jobs Execution

U-SQL Script -> Job Graph Logical -> Physical Plan

Each square = "a vertex" represents a fraction of the total

Vertexes in each SuperVertex (aka "Stage) are doing the same operation on a different part of the same data.

Visualized as a "Job Graph"

From: S. Reddy Presentation

Azure Data Lake Analytics Jobs

Data Lake Analytics - AU Usage

Azure Data Lake Analytics

AZURE DEMO

Azure Data Lake

