Computer Programming on Geosciences

N-body Simulation

Gauss Chang[†] December 17, 2024

†Department of Physics NATIONAL TAIWAN UNIVERSITY

OUTLINE

- 1. Background
- 2. Algorithm
- 3. Simulation Setup
- 4. Results

- 5. Conclusion
- 6. Discussion
- 7. Bibliography

Background

BACKGROUND: INSPIRATION

BACKGROUND: N-BODY PROBLEM

The n-body problem seeks to predict the motions of a group of celestial objects interacting gravitationally.

It involves determining their interactive forces and true orbital trajectories over time, given their initial positions, velocities, and other properties.

Figure 1: The N body problem.

BACKGROUND: N-BODY PROBLEM

- Classical Mechanics: Focuses on celestial dynamics like planetary motion and star clusters, using Newtonian physics.
- General Relativity: Adds complexity by considering spacetime distortions caused by massive objects.
- Applications: Includes understanding the solar system, star clusters, and galaxy dynamics.
- Simplified Cases: The restricted three-body problem is a notable special case.
- Solving the n-body problem often requires numerical simulations due to the lack of general analytical solutions.

Algorithm

ALGORITHM: NEWTON'S LAW OF GRAVITATION

$$\mathbf{F} = \frac{Gm_1m_2}{|\mathbf{r_1} - \mathbf{r_2}|^3} (\mathbf{r_1} - \mathbf{r_2}) \tag{1}$$

- G: Gravitational constant
- m_1, m_2 : Masses of the two bodies
- r₁, r₂: Position vectors of the bodies
- The force F exerted on m₁ by m₂ is attractive and along the line connecting the two masses.
- · Elastic Collision.

ALGORITHM: BARNES-HUT ALGORITHM[1]

• **Motivation:** Direct N-body simulations are $O(N^2)$, which is costly for large N.

Key Idea:

- Use a hierarchical spatial decomposition (quadtree in 2D, octree in 3D).
- Group distant particles into cells and approximate their collective influence by a single mass located at their center of mass.
- Elastic Collision

Figure 2: BarnesHut tree.

ALGORITHM: BARNES-HUT ALGORITHM

Figure 3: BarnesHut tree (2D).

ALGORITHM: BARNES-HUT ALGORITHM

Figure 4: BarnesHut tree (3D).[1]

ALGORITHM: BARNES-HUT ALGORITHM

1. Build the Tree:

- Start with the entire simulation domain as the root.
- Recursively subdivide the domain into smaller cells until each leaf node contains only a few particles.

2. Compute Mass Properties:

 For each node, compute total mass and center of mass of all particles in its subtree.

3. Force Calculation:

- For a given particle, traverse the tree.
- If a node is sufficiently "far away," approximate all its particles by the node's center of mass.
- Otherwise, descend into its children for finer resolution.

ALGORITHM: DIRECT N-BODY VS. BARNES-HUT

• Direct *N*-Body Simulation:

- Complexity: $O(N^2)$
- Each particle interacts directly with every other particle.
- Provides high accuracy but is computationally expensive.

Barnes–Hut Approximation:

- Complexity: $O(N \log N)$ on average
- Trades a small loss in accuracy for a significant gain in efficiency.
- Accuracy can be tuned via the opening angle θ : a smaller θ means more accuracy but higher cost.

Background

ALGORITHM: TIME INTEGRATION

 Simple 'Euler method', which updates the position and velocity for a given particle by timestep Δt via

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \dot{\mathbf{x}}(t) \cdot \Delta t \tag{2}$$

$$\dot{\mathbf{x}}\left(t + \Delta t\right) = \dot{\mathbf{x}}\left(t\right) + \ddot{\mathbf{x}}\left(t\right) \cdot \Delta t \tag{3}$$

ullet From the Taylor expansion of the position and its time derivatives at time $t+\Delta t$

$$\mathbf{x}_{1} = \mathbf{x}_{0} + \frac{1}{2} (\dot{\mathbf{x}}_{0} + \dot{\mathbf{x}}_{1}) \Delta t + \frac{1}{12} (\mathbf{a}_{0} - \mathbf{a}_{1}) \Delta t^{2} + O(\Delta t^{5})$$
 (4)

$$\dot{\mathbf{x}}_{1} = \dot{\mathbf{x}}_{0} + \frac{1}{2} (\mathbf{a}_{0} + \mathbf{a}_{1}) \Delta t + \frac{1}{12} (\dot{\mathbf{a}}_{0} - \dot{\mathbf{a}}_{1}) \Delta t^{2} + O(\Delta t^{5})$$
 (5)

Simulation Setup

SIMULATION SETUP: INITIAL CONDITION

Generate N particle randomly.

- Mass is randomly assigned between $1\sim 2$.
- Position (r_x, r_y, r_z) is randomly assigned between $-\frac{L}{2} \sim \frac{L}{2}$.
- Velocity (v_x, v_y, v_z) is randomly assigned between $-1 \sim 1$.
- Radius (r) is randomly assigned between $0.001 \sim 0.05$.
- No initial acceleration.

SIMULATION SETUP: INITIAL CONDITION

Figure 5: Initial particle distribution.

Results

RESULTS: METRICS FOR EVALUATE SIMULATION RESULTS

I use the two conservation laws to check if the simulation has broken.

- Conservation of total energy, $\sum E = \sum (T + V)$ of the system.
- \bullet Conservation of total angular Momentum, $\sum L.$

Record $\sum E$ and $\sum \mathbf{L}$ in every simulation step, and plot against time.

Background Algorithm Simulation Setup Results Conclusion Discussion Bibliography

○○○ ○○○○○○ ○○ ○○ ○○ ○○ ○○

Figure 6: Energy v.s. Time when n = 32.

Background Algorithm Simulation Setup Results Conclusion Discussion Bibliography

○○○ ○○○○○○ ○○ ○○ ○○ ○○ ○○ ○○ ○○

Figure 7: Energy v.s. Time when n = 64.

Background Algorithm Simulation Setup Results Conclusion Discussion Bibliography

○○○ ○○○○○○ ○○ ○○ ○○○ ○○○ ○○○ ○○○ ○○

Figure 8: Energy v.s. Time when n = 128.

Background Algorithm Simulation Setup Results Conclusion Discussion Bibliography

○○○ ○○○○○○ ○○ ○○ ○○○ ○○○ ○○○ ○○

Figure 9: Energy v.s. Time when n = 256.

Background Algorithm Simulation Setup Results Conclusion Discussion Bibliography

○○○ ○○○○○○ ○○○ ○○○ ○○○ ○○○ ○○○ ○○

Figure 10: Angular Momentum v.s. Time when n = 32.

Background Algorithm Simulation Setup Results Conclusion Discussion Bibliography

○○○ ○○○○○○ ○○○ ○○○ ○○○ ○○○ ○○○ ○○○

Figure 11: Angular Momentum v.s. Time when n = 64.

Background Algorithm Simulation Setup Results Conclusion Discussion Bibliography

Figure 12: Angular Momentum v.s. Time when n = 128.

Background Algorithm Simulation Setup Results Conclusion Discussion Bibliography

○○○ ○○○○○○ ○○ ○○ ○○ ○○ ○○

Figure 13: Angular Momentum v.s. Time when n = 256.

RESULTS: ANIMATION

https://www.youtube.com/watch?v=QOyjhbGaQ2A

Conclusion

CONCLUSION: CONSERVATION OF ENERGY

- Energy conservation breaks down for $N \ge 256$.
 - Happens when *N* is large, a while after simulation.
 - Sometimes after a large amount of collision.
 - Finer time-stepping can temporarily fix the issue.
- Implications:
 - While acceptable for small N, these issue may limit the suitability of the algorithm for high-precision, large N studies requiring strict conservation.

CONCLUSION: CONSERVATION OF ANGULAR MOMENTUM

- Observed very slight fluctuations in angular momentum across all n:
 - Angular momentum conservation is much more stable than total rnergy.
 - Possible reason is collision does not affect angular momentum.

CONCLUSION: FUTURE IMPROVEMENTS

- Future improvements:
 - Implement adaptive time-stepping to better handle interactions in larger systems.
 - Explore higher precision arithmetic to reduce numerical drift.

Discussion

 Background
 Algorithm
 Simulation Setup
 Results
 Conclusion
 Discussion
 Bibliography

 0000
 00000000
 000
 000000000
 000
 000
 00
 00

DISCUSSION: COMPARISON WITH ACTUAL RESEARCH

 In this project, I managed to push my particle number to N ≤ 256, but it has already been done 60 years ago.

Figure 14: The increase in particle number over the past 80 years.^[2]

DISCUSSION: WAYS TO ACCELERATE SIMULATION

For many simulations, such as the **n-body**, multiple nested loops are used. And Python is very slow in looping.

- Use 'for' loop instead of 'while' loop. 'for' loop is slightly faster.
- Use "Numba" decorator.
- Harness PyTorch GPU (not so useful in I/O intensive work.)
- Migrate entire project to Fortran.

Background Algorithm Simulation Setup Results Conclusion Discussion Bibliography

○○○ ○○○○○○ ○○○ ○○○ ○○○ ○○○ ○○○

DISCUSSION: WAYS TO ACCELERATE SIMULATION

Figure 15: Flow chart if the Python code is slow.

Bibliography

BIBLIOGRAPHY I

A hierarchical O(N log N) force-calculation algorithm.

Nature, 324(6096):446-449, December 1986.

W. Dehnen and J. I. Read.

N-body simulations of gravitational dynamics.

The European Physical Journal Plus, 126(5):55, May 2011.

Lars Nylons, Mark Harris, and Jan Prins.

Fast n-body simulation with cuda.

GPU gems, 3:62-66, 2007.

Sverre J Aarseth.

Direct methods for n-body simulations.

In Multiple time scales, pages 377-418. Elsevier, 1985.

BIBLIOGRAPHY II

Cosmological N-body simulations and their analysis. University of Washington, 2001.

Erich Elsen, Vaidyanathan Vishal, Mike Houston, Vijay Pande, Pat Hanrahan, and Eric Darve. N-body simulations on gpus.

arXiv preprint arXiv:0706.3060, 2007.

Daniel J Eisenstein and Piet Hut. Hop: a new group-finding algorithm for n-body simulations.

The Astrophysical Journal, 498(1):137, 1998.

BIBLIOGRAPHY III

Edmund Bertschinger and James M Gelb.

Cosmological n-body simulations.

Computers in Physics, 5:164–175, 1991.

Evangelista Athanassoula.

On the nature of bulges in general and of box/peanut bulges in particular: input from n-body simulations.

Monthly Notices of the Royal Astronomical Society, 358(4):1477–1488, 2005.