"Stroke Prediction Using Machine Learning: A Comparative Study On Model Performance"

Presented by: Neha Mahanand

Contents

1. Project Background

1. Introduction and Objective

2. Methods and Work flow

- 1. Dataset
- 2. Object Type Data
- 3. Correlation matrix
- 4. Preprocessing Encoding, Outlier detection and removal, Data cleaning
- 5. Model used
- 6. Methods incorporated
- 7. Performance Evaluation & Model Comparison
- 8. Classification Report Summary
- 9. Data Balancing Using SMOTE
- 10. Performance evaluation & Model Comparison After SMOTE
- 11. Classification Report Summary After Smote Technique
- 12. Class Metric 1
- 13. Hyperparameter Tuning Results

3. Results and Discussion

4. References

1. Project Background

1.1 Introduction & Objective

Stroke ranks as the world's second-leading cause of death.

Early detection is critical, as up to 80% of strokes are preventable.

2. Methods and Work Flow

2.1 Dataset

- The dataset is taken from Kaggle (by *Fedesoriano*)
- Data shape: (5110, 12)
- Rows=5110 and columns=12
- The target value/ output value is binary: 1 if the patient had a stroke or 0 if not

2.2 Object Type Data

- The columns with categorical features are explored graphically using for loop in VS Code using matplotlib.pyplot making it easier for visualization
- The gender distribution has a single value which belongs to category "other"

Graph 2: Distribution of gender

Graph 1: Distribution of ever_married status

Graph 3: Distribution of Residence_type

2.2 Object Type Data

Graph 4: Distribution of smoking_status

- The single value of "Other" from gender is removed
- The column "id" is dropped
- Present data shape (5109,11)

Graph 5: Distribution of work_type

2.3 Correlation Matrix

There is not much correlation between the numerical values as expected.

Fig 6: Correlation matrix of numerical features

2.4 Preprocessing – Encoding, Outlier detection and removal, Data cleaning

- Label Encoding (binary category features: gender, ever_married, Residence_type)
- One-Hot Encoding (multiple categorical features: Smoking_status, work_type)
- Dataset shape changed after encoding: (5109,16)

2. 4 Data Cleaning & Outlier Handling

Fig 7: Outlier detection graph

- Data Cleaning: There were 201 missing values in BMI column which was handled missing values (KNN Imputer).
- Outlier Handling: Detected and removed using IQR (IQR=Q3-Q1) on features like BMI, glucose which had outliers
- Visual **boxplots** for outliers before removal
- age: Found 0 outliers
- avg_glucose_level: Found 627 outliers
- bmi: Found 117 outliers
- After removal dataset shape: (4385,16)

2.5 Model Used

Models With Scaling

These models require feature scaling for optimal performance.

Models Without Scaling

These models do not require feature scaling and can handle raw data effectively.

- Logistic Regression
- > K-Nearest Neighbor (KNN) Algorithm
- ➤ Support Vector Machine (SVM)

- Decision Tree
- ➤ Naïve Bayes (Gaussian)
- > Random Forest

2.6 Methods Incorporated

- Train-Test Split: 70%-30%, stratified sampling
- Feature Scaling: StandardScaler applied to models needing normalization
- Baseline Models considered for comparison: Decision Tree, Random Forest, Naive Bayes, Logistic Regression, KNN, SVC
- Evaluation Metric: Accuracy, Classification Report, Confusion matrix

2.7 Model Comparison

Fig 8 : Model Accuracies

2.8 Classification Reports Summary

MODEL NAME	ACCURACY SCORE	PRECISION	RECALL	F1-SCORE	SUPPORT
DECISION TREE	000112				
0		0.96	0.96	0.96	1264
1	0.924	0.11	0.13	0.12	52
NAIVE BAYES					
0		1	0.48	0.65	1264
1	0.5	0.07	0.94	0.13	52
RANDOM FOREST					
0		0.96	1	0.98	1264
1	0.96	0.5	0.02	0.04	52
LOGISTIC REGRESSION					
0		0.96	1	0.98	1264
1	0.96	0	0	0	52
KNN					
0		0.96	1	0.98	1264
1	0.96	0	0	0	52
SVC					
0		0.96	1	0.98	1264
1	0.96	0	0	0	52

Table 1: Classification Report Comparison before SMOTE

- •Even though accuracies are high, this is misleading due to class imbalance in the test set (1264 vs 52)
- •Issue: The stroke detection (Class 1) performance is still poor.
- •Next step: Applying SMOTE on dataset and implementing model and identify the model with best performance.

1- STROKE

0- NO STROKE

2.9 Data Balancing Using SMOTE

• SMOTE, or Synthetic Minority Over-sampling Technique, is a machine learning technique used to address class imbalance in datasets by creating synthetic samples of the minority class, effectively balancing the dataset and potentially improving model performance.

2.10 Performance evaluation & Model Comparison After SMOTE

Fig 8: Model Accuracies after SMOTE

2.11 Classification Reports Summary After SMOTE Technique

MODEL NAME	ACCURACY SCORE	PRECISION	RECALL	F1-SCORE	SUPPORT
DECISION TREE					
0		0.96	0.95	0.96	1264
1	0.9225	0.11	0.13	0.12	52
NAIVE BAYES					
0		1	0.35	0.52	1264
1	0.3792	0.06	0.98	0.11	52
RANDOM FOREST					
0		0.96	0.99	0.98	1264
1	0.9567	0.22	0.04	0.07	52
LOGISTIC REGRESSION					
0		0.99	0.75	0.85	1264
1	0.7454	0.11	0.75	0.19	52
KNN					
0		0.97	0.9	0.93	1264
1	0.8777	0.1	0.27	0.15	52
SVC					
0		0.97	0.94	0.96	1264
1	0.9157	0.14	0.21	0.17	52

Table 2: Classification Report Comparison after SMOTE

2.12 Class Metric 1

Minority class 1 is given importance most of the disease prediction as the positive case is minority class.

Next, we apply hyper-parameter tuning for Logistic regression

MODEL NAME	PRECISION	RECALL	F1-SCORE	
DECISION TREE	0.11	0.13	0.12	
NAIVE BAYES	0.06	0.98	0.11	
RANDOM FOREST	0.22	0.04	0.07	
LOGISTIC REGRESSION	0.11	0.75	0.19	
KNN	0.1	0.27	0.15	
SVC	0.14	0.21	0.17	

Table 3: Classification Report Comparison after SMOTE of class 1 (minority)

2.13 Hyperparameter Tuning Results

Fig 9: Confusion matrix

3 Results

- The recall for class 1 (stroke) is 73%, which identifies most stroke correctly.
- But the precision is low 9%, which shows many false positives. It can be analyzed from confusion matrix as well.
- The data is imbalanced and which gives a misleadingly higher accuracy.
- F1 score and recall are more informative when compared to accuracy for the dataset used
- Entire code in <u>github link</u>.

4 References

- Okoye, Stella. (2024). Stroke Prediction and Contributing Factors Using Machine Learning. 10.13140/RG.2.2.27861.03045.
- Dataset link: https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
- Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Thank you