Learning face reconstruction in the wild, with 3DMM

SEMINAR ON 9/23 YUDA QIU

Task

- ♦ Input: in-the-wild face image/ video/ image set
- ♦ Output: face geometry & face texture
- □ Lack of dense ground truth
- □III-posed

Model-based self-supervision (model-based decoder)

3DMM representation

$$S_{model} = \overline{S} + \sum_{i=1}^{m-1} \alpha_i s_i, \quad T_{model} = \overline{T} + \sum_{i=1}^{m-1} \beta_i t_i, \quad (1)$$

 $\vec{\alpha}, \vec{\beta} \in \Re^{m-1}$. The probability for coefficients $\vec{\alpha}$ is given by

$$p(\vec{\alpha}) \sim exp[-\frac{1}{2} \sum_{i=1}^{m-1} (\alpha_i / \sigma_i)^2],$$
 (2)

- PCA to build statistics model
- Analysis-by-synthesis manner

$$\mathbf{x} = (\underbrace{\boldsymbol{\alpha}, \, \boldsymbol{\delta}, \, \boldsymbol{\beta}}_{\text{face}}, \, \underbrace{\mathbf{T}, \, \mathbf{t}, \, \boldsymbol{\gamma}}_{\text{scene}})$$

A Morphable Model For The Synthesis Of 3D Faces

Volker Blanz

Thomas Vetter

Max-Planck-Institut für biologische Kybernetik, Tübingen, Germany*

Paper lists

- (CVPR 2017) Regressing robust and discriminative 3d morphable models with a very deep neural network
- ■(ICCV 2017) MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction
- **■**(CVPR 2018) Unsupervised Training for 3D Morphable Model Regression.
- ■(CVPR 2018) Self-supervised multi-level face model learning for monocular reconstruction at over 250 HZ
- **■**(CVPRW 2019, Best award) Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set.
- (CVPR 2019) GANFIT: Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction.
- **■**(CVPR 2019, oral) FML: Face Model Learning from Videos.

Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural Network

Anh Tuấn Trần¹, Tal Hassner^{2,3}, Iacopo Masi¹, and Gérard Medioni¹

¹ Institute for Robotics and Intelligent Systems, USC, CA, USA

² Information Sciences Institute, USC, CA, USA

³ The Open University of Israel, Israel

(a)

Faces in the wild to train the system

$$\widehat{\gamma} = \sum_{i=1}^{N} w_i \cdot \gamma_i$$
 and $\sum_{i=1}^{N} w_i = 1,$ (2)

where w_i are normalized per-image confidences provided by the CLNF facial landmark detector.

MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction

Ayush Tewari¹ Michael Zollhöfer¹ Hyeongwoo Kim¹ Pablo Garrido¹ Florian Bernard^{1,2} Patrick Pérez³ Christian Theobalt¹

¹Max-Planck-Institute for Informatics ² LCSB, University of Luxembourg ³Technicolor

Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz

CVPR 2018 (Oral)

```
A. Tewari <sup>1,2</sup> M. Zollhöfer <sup>1,2,3</sup> F. Bernard <sup>1,2</sup> P. Garrido <sup>1,2</sup> H. Kim <sup>1,2</sup> P. Perez <sup>4</sup> C.Theobalt <sup>1,2</sup>

<sup>1</sup>MPI Informatics <sup>2</sup>Saarland Informatics Campus <sup>3</sup>Stanford University <sup>4</sup>Technicolor
```


$$\mathbf{v}^{\mathrm{f}}(\mathbf{x}_g) = \mathbf{v}^{\mathrm{b}}(\boldsymbol{\alpha}) + \mathcal{F}_g(\boldsymbol{\delta}_g|\Theta_g) \in \mathbb{R}^{3N}$$
 (geometry), $\mathbf{r}^{\mathrm{f}}(\mathbf{x}_r) = \mathbf{r}^{\mathrm{b}}(\boldsymbol{\beta}) + \mathcal{F}_r(\boldsymbol{\delta}_r|\Theta_r) \in \mathbb{R}^{3N}$ (reflectance), $\mathbf{x} = (\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\delta}_g, \boldsymbol{\delta}_r, \mathbf{R}, \mathbf{t}, \boldsymbol{\gamma}, \Theta_g, \Theta_r) \in \mathbb{R}^{257 + 2C + |\Theta_g| + |\Theta_r|}$.

Overlay Illumination Geometry Input Reflectance Ours Tewari17

Unsupervised Training for 3D Morphable Model Regression

Kyle Genova^{1,2} Forrester Cole² Aaron Maschinot² Aaron Sarna² Daniel Vlasic² William T. Freeman^{2,3}

¹Princeton University ²Google Research ³MIT CSAIL

Input

No Batch Dist.

Full Model

 $L = L_{param} + L_{id} + \omega_{batch} L_{batch} + \omega_{loop} L_{loop}$

No Loopback

Input Ours Tran[29] MoFA[27]

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set

Yu Deng*1,2 Jiaolong Yang² Sicheng Xu^{3,2} Dong Chen² Yunde Jia³ Xin Tong²

¹Tsinghua University ²Microsoft Research Asia ³Beijing Institute of Technology

{v-denyu, jiaoyan, doch, xtong}@microsoft.com, {xusicheng, jiayunde}@bit.edu.cn

(a) Our framework

Coefficients:

a - identity

 δ - texture

pose

- lighting

c - identity confidence

(b) Training pipeline for single image 3D face reconstruction

(c) Training pipeline for multi-image 3D face reconstruction with shape aggregation

C-Net

Input Genova et al. Ours

Table 4. Multi-image reconstruction errors on MICC rendered images with different aggregation strategies (see text for details).

Shape error mean	1.97 ± 0.70
Shape averaging	1.78 ± 0.59
Our S1: Global Aggr. with c^j	1.71 ± 0.56
Our S2: Global Aggr. with $\sum_i c_i^j$	1.70 ± 0.55
Our S3: Max Conf. $j = \arg\max_{j} \sum c_{i}^{j}$	1.71 ± 0.50
Our S4: Elementwise Aggr. with c^{j}	1.67 ± 0.54

GANFIT: Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction

Baris Gecer^{1,2}, Stylianos Ploumpis^{1,2}, Irene Kotsia³, and Stefanos Zafeiriou^{1,2}

¹Imperial College London

²FaceSoft.io

³University of Middlesex

Input Images

Ours

Genova

[16]

A.T.Tran et al. [39]

Tewari et al. [36]

FML: Face Model Learning from Videos

Ayush Tewari¹ Florian Bernard¹ Pablo Garrido² Gaurav Bharaj² Mohamed Elgharib¹ Hans-Peter Seidel¹ Patrick Pérez³ Michael Zollhöfer⁴ Christian Theobalt¹

¹MPI Informatics, Saarland Informatics Campus ²Technicolor ³Valeo.ai ⁴Stanford University

Q&A