Análisis Factorial

Maisy Samai Vázquez Sánchez

2022-05-21

Análisis Factorial

Introducción

El análisis factorial sirve para explicar un conjunto de variables observadas a través de un grupo de variables no observadas. Ayuda a la reducción de dimensionalidad. Se utiliza en la reducción de los datos para identificar un pequeño número de factores que explique la varianza observada en un número mayor de variables manifestadas.

Matriz de trabajo

1.- Se trabajó con la matriz **statex77**, extraída del paquete *datos* que se encuentra precargado en R, es una matriz de datos cuantitativos y contiene información de los de EU.

```
x<-as.data.frame(state.x77)
```

2.- Quitar los espacios de los nombres de las variables de las columnas 4 y 6 para no tener problemas.

```
colnames(x)[4]="Life.Exp"
colnames(x)[6]= "HS.Grad"
```

3.- Separa n (estados) y p (variables), para en una tener el número de individuos y en la otra el número de variables.

```
n<-dim(x)[1]
p<-dim(x)[2]</pre>
```

La matriz cuenta con 50 observaciones y 8 variables. Como se mencionó, la matriz de datos es cuantitativa.

3.- Nombre de las variables.

```
colnames(x)
```

```
## [1] "Population" "Income" "Illiteracy" "Life.Exp" "Murder"
## [6] "HS.Grad" "Frost" "Area"
```

4.- Se buscan datos perdidos en la matriz.

```
anyNA(x)
```

[1] FALSE

No se encuentran valores nulos en la matriz.

4.- Generación de un scater plot para la visualización de variables originales.

```
pairs(x, col="#CD1076", pch=19, main=",Matriz original")
```

,Matriz original

Se puede observar como la mayoria de las variables tienen una relación muy baja e incluso negativa.

Transformación de alguna variables.

1.- Aplicamos logaritmo para las columnas $1,\!3$ y 8

```
x[,1]<-log(x[,1])
colnames(x)[1]<-"Log-Population"

x[,3]<-log(x[,3])
colnames(x)[3]<-"Log-Illiteracy"

x[,8]<-log(x[,8])
colnames(x)[8]<-"Log-Area"</pre>
```

2.-Gráfico scater para la visualización de la matriz original con 3 variables que se incluyeron.

```
pairs(x,col="#CD1076", pch=19, main="Matriz original")
```


Nota: Como las variables tiene diferentes unidades de medida, se implementa la matriz de correlaciones para estimar la matriz de carga.

Reducción de la dimensionalidad.

Análsis Factorial de componentes principales (PCFA).

1.- Calcular la matriz de medias y de correlaciones. ## Matriz de medias

```
mu<-colMeans(x)
mu
                           Income Log-Illiteracy
## Log-Population
                                                        Life.Exp
                                                                          Murder
     7.863443e+00
                                                    7.087860e+01
##
                    4.435800e+03
                                    3.128251e-02
                                                                   7.378000e+00
##
          HS.Grad
                            Frost
                                        Log-Area
     5.310800e+01
                    1.044600e+02
##
                                    1.066237e+01
```

Matriz de correlaciones.

```
R < -cor(x)
##
                Log-Population
                                    Income Log-Illiteracy
                                                          Life.Exp
                                                                      Murder
## Log-Population
                    1.00000000 0.034963788
                                              0.28371749 -0.1092630 0.3596542
## Income
                    0.03496379 1.000000000
                                             -0.35147773   0.3402553   -0.2300776
## Log-Illiteracy
                    0.28371749 -0.351477726
                                              1.00000000 -0.5699943 0.6947320
## Life.Exp
                   -0.10926301 0.340255339
                                             -0.56999432 1.0000000 -0.7808458
## Murder
                    0.35965424 -0.230077610
                                              0.69473198 -0.7808458 1.0000000
## HS.Grad
                   -0.32211720 0.619932323
                                             -0.66880911 0.5822162 -0.4879710
## Frost
                   -0.45809012 0.226282179
                                             0.08541473 -0.007462068
                                             -0.05830524 -0.1086351 0.2963133
## Log-Area
##
                   HS.Grad
                                Frost
                                         Log-Area
## Log-Population -0.3221172 -0.45809012 0.085414734
                 ## Income
## Log-Illiteracy -0.6688091 -0.67656232 -0.058305240
## Life.Exp
                 0.5822162  0.26206801 -0.108635052
## Murder
                -0.4879710 -0.53888344 0.296313252
## HS.Grad
                 1.0000000 0.36677970 0.196743429
## Frost
                 0.3667797 1.00000000 -0.021211992
## Log-Area
                 0.1967434 -0.02121199 1.000000000
1.- Calcular los valores y vectores propios.
eR<-eigen(R)
2.- Valores propios
eigen.val<-eR$values
eigen.val
## [1] 3.6796976 1.3201021 1.1357357 0.7517550 0.6168266 0.2578511 0.1366186
## [8] 0.1014132
3.- Vectores propios
eigen.vec<-eR$vectors
eigen.vec
##
              [,1]
                         [,2]
                                    [,3]
                                              [,4]
                                                          [,5]
                                                                    [,6]
## [1,] -0.23393451 -0.41410075 0.50100922 0.2983839 0.58048485
                                                               0.0969034
## [2,] 0.27298977 -0.47608715 0.24689968 -0.6449631 0.09036625 -0.3002708
## [4,] 0.39805075 -0.04655529 0.38842376 0.4191134 -0.26287696 -0.3565095
## [5,] -0.44229774 -0.27640285 -0.21639177 -0.2610739 0.02383706
                                                               0.1803894
## [6,] 0.41916283 -0.36311753 -0.06807465 -0.1363534 -0.34015424 0.3960855
## [7,] 0.36358674 0.21893783 -0.37542494 -0.1299519 0.59896253 -0.3507630
## [8,] -0.03545293 -0.58464797 -0.57421867 0.4270918 -0.06252285 -0.3012063
##
             [,7]
                        [,8]
## [1,] -0.1777562 -0.23622413
```

```
## [2,] 0.3285840 0.12483849

## [3,] -0.3268997 -0.39825363

## [4,] -0.3013983 0.47519991

## [5,] -0.4562245 0.60970476

## [6,] -0.4808140 -0.40675672

## [7,] -0.4202943 -0.06001175

## [8,] 0.2162424 -0.05831177
```

4.- Calcular la proporción de variabilidad

```
prop.var<-eigen.val/sum(eigen.val)
prop.var</pre>
```

```
## [1] 0.45996220 0.16501277 0.14196697 0.09396938 0.07710332 0.03223139 0.01707733 ## [8] 0.01267665
```

5.- Calcular la proporción de variabilidad acumulada

```
prop.var.acum<-cumsum(eigen.val)/sum(eigen.val)
prop.var.acum</pre>
```

```
## [1] 0.4599622 0.6249750 0.7669419 0.8609113 0.9380146 0.9702460 0.9873233 ## [8] 1.0000000
```

Estimacion de la matriz de carga

Nota: Se estima la matriz de carga usando los autovalores y autovectores. Se aplica la rotación varimax.

Se hace la primera estimación de Lamda mayúscula y se calcula multiplicando la matriz de los 3 primeros autovectores por la matriz diagonal formada por la raíz cuadrada de los primeros 3 autovalores.

```
L.est.1<-eigen.vec[,1:3] %*% diag(sqrt(eigen.val[1:3]))
L.est.1</pre>
```

```
##
             [,1]
                        [,2]
                                   [,3]
## [1,] -0.44874575 -0.47578394
                             0.53393005
       0.52366367 -0.54700365
## [2,]
                             0.26312322
## [3,] -0.87386900 0.04729332
                             0.13063856
## [4,]
       0.76356236 -0.05349003 0.41394671
## [5,] -0.84843932 -0.31757498 -0.23061066
## [6,]
       0.80406070 -0.41720642 -0.07254777
       ## [7,]
## [8,] -0.06800771 -0.67173536 -0.61195003
```

Rotación varimax

```
L.est.1.var<-varimax(L.est.1)
L.est.1.var
```

```
## $loadings
##
  Loadings:
               [,2]
##
        [,1]
                       [,3]
## [1,]
                        0.840
##
  [2,]
         0.785 - 0.106
                       0.121
## [3,] -0.665
                        0.583
## [4,]
         0.763 0.384 -0.168
   [5,] -0.573 -0.528
                       0.517
   [6,]
         0.825 -0.202 -0.323
##
  [7,]
         0.281
                       -0.794
##
   [8,]
               -0.906
##
##
                    [,1]
                         [,2]
## SS loadings
                  2.744 1.300 2.091
## Proportion Var 0.343 0.163 0.261
## Cumulative Var 0.343 0.506 0.767
##
## $rotmat
##
               [,1]
                         [,2]
                                     [,3]
## [1,] 0.7824398 0.1724744 -0.5983649
## [2,] -0.5274231 0.6944049 -0.4895169
## [3,] 0.3310784 0.6986089 0.6342970
```

Estimación de la matriz de los errores

1.- Estimación de la matriz de perturbaciones

```
Psi.est.1<-diag(diag(R-as.matrix(L.est.1.var$loadings))**% t(as.matrix(L.est.1.var$loadings))))
Psi.est.1
##
        [,1]
              [,2]
                    [,3]
                          [,4]
                                 [,5]
                                      [,6]
                                            [,7]
## [3,] 0.0000000 0.0000000 0.2170499 0.0000000 0.0000000 0.000000 0.0000000
## [4,] 0.0000000 0.0000000 0.0000000 0.2427595 0.0000000 0.000000 0.0000000
 \hbox{\tt [8,]} \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 
##
##
## [1,] 0.000000
## [2,] 0.0000000
## [3,] 0.0000000
## [4,] 0.0000000
## [5,] 0.0000000
## [6,] 0.0000000
## [7,] 0.0000000
## [8,] 0.1696637
```

2.- Se utiliza el método Análisis de factor principal (PFA) para estimación de autovalores y autovectores.

```
RP
##
              Log-Population
                              Income Log-Illiteracy Life.Exp
                                                           Murder
## Log-Population
                 0.71282441 0.034963788
                                      0.28371749 -0.1092630 0.3596542
## Income
                 0.03496379 \quad 0.642670461 \quad -0.35147773 \quad 0.3402553 \quad -0.2300776
## Log-Illiteracy 0.28371749 -0.351477726 0.78295012 -0.5699943 0.6947320
## Life.Exp
               ## Murder
## HS.Grad
                                      -0.66880911 0.5822162 -0.4879710
                -0.32211720 0.619932323
## Frost
               -0.45809012 0.226282179
                                      ## Log-Area
                                      -0.05830524 -0.1086351 0.2963133
                0.08541473 -0.007462068
                HS.Grad
                           Frost
                                   Log-Area
## Log-Population -0.3221172 -0.45809012 0.085414734
## Income
              ## Log-Illiteracy -0.6688091 -0.67656232 -0.058305240
## Life.Exp 0.5822162 0.26206801 -0.108635052
## Murder
             -0.4879710 -0.53888344 0.296313252
## HS.Grad
             0.8258380 0.36677970 0.196743429
## Frost
              0.3667797 0.70979126 -0.021211992
## Log-Area
              0.1967434 -0.02121199 0.830336270
```

Calculo de la matriz de autovalores y autovectores.

```
eRP<-eigen(RP)
```

Autovalores

RP<-R-Psi.est.1

```
eigen.val.RP<-eRP$values
eigen.val.RP

## [1] 3.46137648 1.10522195 0.88152416 0.48705680 0.35360597 0.02813553
## [7] -0.06758176 -0.11380367
```

Autovectores

```
eigen.vec.RP<-eRP$vectors
eigen.val.RP

## [1] 3.46137648 1.10522195 0.88152416 0.48705680 0.35360597 0.02813553
## [7] -0.06758176 -0.11380367
```

Proporcion de variabilidad

```
prop.var.RP<-eigen.val.RP/ sum(eigen.val.RP)
prop.var.RP

## [1] 0.564152306 0.180134556 0.143675179 0.079382934 0.057632455
## [6] 0.004585668 -0.011014811 -0.018548286
```

Proporcion de variabilidad acumulada

```
prop.var.RP.acum<-cumsum(eigen.val.RP)/ sum(eigen.val.RP)
prop.var.RP.acum

## [1] 0.5641523 0.7442869 0.8879620 0.9673450 1.0249774 1.0295631 1.0185483
## [8] 1.0000000</pre>
```

Estimación de la matriz de cargas con rotación varimax

Rotacion varimax

```
L.est.2.var<-varimax(L.est.2)
```

Estimación de la matriz de covarianzas de los errores.

Obtencion de los scores de ambos métodos

PCFA

```
FS.est.1<-scale(x)%*% as.matrix(L.est.1.var$loadings)
FS.est.1
```

```
[,2]
##
                       [,1]
                                              [,3]
## Alabama
                -5.84072356 -1.3993671511 4.0008109
## Alaska
                 2.12443806 -3.6163397014 -1.3435941
## Arizona
                -0.77245459 -1.1030150088
                                        1.7864181
## Arkansas
                -4.26961555 -0.1287634469 1.8680205
## California
                1.57843978 -1.6386262821 3.0959757
## Colorado
                 3.35619481 -0.5747409714 -1.9955520
## Connecticut
                 2.96609993 2.5265114588 -1.0120520
## Delaware
                 0.15111765 2.2707877284 -1.3473631
## Florida
                -0.91278118 -0.8518787165 3.2141818
## Georgia
                -5.10406769 -1.5374188978 3.5972606
## Hawaii
                 1.68679592 2.0782245763 0.6972161
## Idaho
                1.93931571 0.0374520725 -2.6403015
## Illinois
                 0.36572803 -0.9730363911 1.3246992
                 ## Indiana
## Iowa
                 ## Kansas
                 3.22079390 0.2206198504 -1.7333568
## Kentucky
                -3.97957229 -0.1711842990 1.8581455
## Louisiana
                -6.15095874 -1.1449716511 4.2193388
## Maine
                 0.38912287  0.9352663421 -2.8385772
## Maryland
                 ## Massachusetts
                 1.95531363 1.9508870989 -0.0699601
## Michigan
                 0.06109118 -0.8995742724 1.1610156
## Minnesota
                 3.83625590 0.7199310360 -2.2609012
                -6.73875213 -1.1336057288 3.0124928
## Mississippi
## Missouri
                -0.63621057 -0.5673516660 0.5606479
## Montana
                 1.70022911 -0.7530855537 -2.9827203
## Nebraska
                3.31393569 0.5702899251 -2.6630094
## Nevada
                1.83953234 -2.1624547546 -2.8632403
## New Hampshire 1.76672303 1.8835104424 -3.2522623
```

```
## New Jersey
                 1.23076573 1.5154423999 0.6483326
## New Mexico
                -2.42369795 -1.2184859435 0.1095350
## New York
                -0.55160991 -0.8431042602 2.9025469
## North Carolina -4.53932589 -0.7126552652
                                         2.8168209
## North Dakota
                 3.26810535
                           1.0664889529 -3.5180166
## Ohio
                 0.67643704 -0.0394642439 0.5816740
## Oklahoma
                -0.43628926 0.0293430043 0.2108486
## Oregon
                 2.64633236 -0.0126633017 -0.6563722
## Pennsylvania
                -0.06313819 0.0425262164 0.8538298
## Rhode Island
                 0.25059508 4.0533333045 -1.3779994
## South Carolina -6.20030464 -0.7067780563 3.0142562
## South Dakota
                 ## Tennessee
                -3.75602365 -0.3764569265
                                        2.4225536
## Texas
                -2.74825842 -2.0176142597 4.0126966
## Utah
                 3.40911641 0.2638533973 -3.0642167
## Vermont
                 1.26368503
                           1.7670538099 -3.5748058
## Virginia
                -1.45435214 -0.4332714574 1.8388594
## Washington
                 2.95298764 0.0002978623 -0.1436737
## West Virginia -3.41599674
                           0.5649932020 0.5132111
## Wisconsin
                 ## Wyoming
                 1.92267355 -0.8906222579 -3.6087703
```

PFA

```
FS.est.2<-scale(x)%*% as.matrix (L.est.2.var$loadings)
FS.est.2
```

```
##
                      [,1]
                                  [,2]
                                           [,3]
## Alabama
                -5.69766092 -1.133005866 3.9030908
## Alaska
                1.77921500 -3.310049553 -1.2425530
## Arizona
               -0.80948635 -1.007423566
                                      1.6833688
## Arkansas
               -4.04451164 -0.036340306
                                      1.8899610
## California
                1.28900772 -1.589528660 2.7938220
## Colorado
                3.21256763 -0.645092519 -1.9103448
## Connecticut
                2.85639977 2.291700954 -1.1152442
## Delaware
                0.22491218 2.168332191 -1.3109174
## Florida
                -1.04778981 -0.760012075 2.9630979
## Georgia
                -5.04193484 -1.243399542 3.4848855
## Hawaii
                1.64548810 1.848120424 0.5487863
## Idaho
                1.99602286 -0.067186945 -2.4442739
## Illinois
                0.17329771 -0.870927790 1.1838509
## Indiana
                ## Iowa
                ## Kansas
                           0.071725764 -1.6894853
                3.13617617
## Kentucky
                -3.82119443 -0.051170443
                                      1.8492550
## Louisiana
               -5.97309240 -0.880509145 4.1021292
## Maine
                ## Maryland
## Massachusetts
                           1.761365924 -0.1964750
                1.91021424
               -0.07208772 -0.823049544 1.0671998
## Michigan
## Minnesota
                3.74953682  0.518054623  -2.2104937
## Mississippi
               -6.45121865 -0.852611917 3.0320154
```

```
## Missouri
              -0.64446964 -0.519762510 0.5472506
## Montana
                1.72574501 -0.752576236 -2.7507980
## Nebraska
                3.28773039 0.392513546 -2.5439122
## Nevada
                 1.69672312 -1.994626548 -2.6292009
## New Hampshire 1.87991014 1.704867403 -3.0632652
                1.10782292 1.425042094 0.4638907
## New Jersey
## New Mexico
                 -2.26112419 -1.086582245 0.2653217
## New York
                 -0.72255151 -0.744949928 2.6624378
## North Carolina -4.42441540 -0.513264749 2.7372284
## North Dakota 3.22068093 0.897031063 -3.3556310
## Ohio
                 0.59453054 -0.051780182 0.4905274
## Oklahoma
                -0.36512462 0.000708499 0.2244101
## Oregon
                 2.56050584 -0.129810062 -0.6934180
## Pennsylvania
                -0.10451900 0.054229408 0.7553645
## Rhode Island
                  0.40356926 3.785456289 -1.3760426
## South Carolina -5.98815271 -0.435831413 2.9745853
## South Dakota 2.60764548 0.683975660 -3.7117087
## Tennessee
              -3.63769564 -0.249263663 2.3593673
## Texas
                -2.80670233 -1.827474308 3.8156526
                 3.44131011 0.069209103 -2.8669774
## Utah
## Vermont
                 1.44160727 1.580578146 -3.3086066
## Virginia
                 -1.50774364 -0.328200587 1.7151967
## Washington
                 2.81601549 -0.109025242 -0.2503494
## West Virginia -3.18525955 0.632647668 0.5745805
## Wisconsin
                 2.55487697 0.699000994 -1.5141208
## Wyoming
                  1.92835024 -0.866073018 -3.3204601
```

Graficamos ambos scores

```
par(mfrow=c(2,1))
```

Factor I y II

scores con factor I y II con PCFA

Factor I y III

scores con factor I y III con PCFA

Factor II y III

```
pl3<-plot(FS.est.1[,2], FS.est.1[,3], xlab="Segundo factor",
    ylab="Tercer factor", main="scores con factor II y III con PCFA",
    pch=19, col="#CD1076")
text(FS.est.1[,2], FS.est.1[,3], labels = rownames(x), pos=4, col="#CD1076")</pre>
```

scores con factor II y III con PCFA

