Power Usage in Data-Intensive Applications using MapReduce over MPI

Presenter: Paula Olaya

It is not all about runtimes

As we build workflows for data analytics, execution times are still traditional metrics of success

Measuring and modeling performance is our bread and butter

But about power usage?

Measuring performance versus power usage

Measuring Power Usage

Building workflows for data analytics

- Measuring performance versus power usage
- Collaborators: P. Balaji (ANL), H. Jagode (ICL), Anthony Danalis (ICL)

Data Analytics in HPC

 Data analytics and data-intensive workloads are gaining representation at peta- and exascale

MapReduce has gained the most traction in the

HPC community

Mimir: a novel MapReduce over MPI framework

Mimir tackles:

- Skewed data
- Imbalance in memory usage
- Loss in data scalability

by implementing three optimizations:

- Combiner optimizations
- Dynamic repartitions
- Split method to handle datasets with superkeys

Mimir: Optimizations and Benchmarks

Optimizations	Benchmarks
 Combiner Optimizations Dynamic Partitions Superkeys and Splitting 	 WordCount (WC): Number of each unique word. Octree Clustering (OC): clustering algorithm for points in a three-dimensional space Breadth-First Search (BFS): Traversal algorithm that generates a tree rooted at a source vertex Join: Combines data from two or more tables by certain conditions

Mimir: Optimizations and Benchmarks

Benchmarks:

Octree clustering (OC)

Optimizations:

- **Combiner Optimizations**
- **Dynamic Partition**
- **Superkeys and Splitting**

System:

Tianhe-2 128 24-core nodes

Mimir: Optimizations and Benchmarks

Benchmarks:

Join

Optimizations:

- Combiner Optimizations
- Dynamic Partition
- Superkeys and Splitting

System:

Tianhe-2 128 24-core nodes

Mimir: Power vs Performance

Optimizations:

- W/o local combiner
- With local combiner

Benchmarks:

Word count (WC)

System:

Data:

- 72 unique words (4B72)

Data exhibits up to a 99% combinability rate before the shuffling

Mimir: Power vs Performance

Data combinability ranges from 99% (4B72) to 10% (4B50M)

4B words, 72 unique words

5K unique words

4B words, 28M unique words

Summary

- Optimizations on Mimir offer significant time and power performance benefits
- Power usage gives insight into data management patterns indistinguishable by runtime performance
 - Data analytics workflows are different than compute intensive workflows
 - The challenge is how to capture (and model) what factors that result in power usage