Aplicações de Redes Neurais

Computação Natural Gisele L. Pappa

Aplicações...

- Jogos
- Compressão de imagens
- Previsão de tendências na bolsa de valores
 (Trabalho realizado nessa disciplina e publicado no IJCNN 2009, Leonardo C. Martinez, Diego N. Da Hora João M. Palotti, Gisele L. Pappa)

Redes Neurais e Jogos

Super Mario World Super Mario Kart

NEAT Neuroevolution of Augmenting Topologies

NEAT

• Utiliza um método evolucionário para encontrar a topologia e os pesos da rede

• Como vocês representariam o genótipo?

Genótipo

Genome (Genotype)								
	Node 1 N Sensor S				Node 5 Hidden			
Genes	In 1 Out 4 Weight 0. Enabled Innov 1	In 2 Out 4 Weight DISAB Innov	-0.5 We	n 3 ut 4 sight 0.5 nabled nnov 3	Out 5 Weight 0.2 Enabled	Weight 0.4 Enabled	Out 5 Weight 0.6 Enabled	In 4 Out 5 Weight 0.6 Enabled Innov 11

Mutação

 Pode ocorrer tanto na estrutura quanto nas conexões

Informação Histórica e Cruzamento

Especiação

- Introduzida para garantir diversidade
- Estruturas de rede menores são otimizadas mais rápidamente
 - Inserção de novos genes raramente causa melhoras
- Topologias de rede similares pertencem a mesma espécie

Especiação

- Número de genes compartilhados (de acordo com informação histórica) são utilizados para criar as espécies
- Quanto menos genes dois indivíduos compartilham, menos compatíveis eles são
- Distância entre genomas:

Excess genes Disjoint genes
$$\delta = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \cdot \overline{W}.$$
Número de genes do maior genoma Média da diferenças dos pesos de genes equivalentes

Especiação

- Espécies criadas utilizando um limiar considerando a distância
- Usa fitness sharing

Inicialização da população

- Ao invés de ser aleatória, considera inicialmente que todas as redes tem zero neurônios na camada escondida
- Rede cresce apenas quando mutações estruturais acontecem.

MarI/O - NeuralEvolution

- Entradas
 - Representação do cenário
- Saídas
 - 8 botões de controle

Compressão de Imagens

Paul Watta, Brijesh Desaie, Norman Dannug, Mohamad Hassoun (1996)

Compressão de imagens

- Como seria a representação?
- Utiliza uma rede bottleneck
 - Camada de saída e entrada em o mesmo número de neurônios
 - Camada intermediária tem um número menor de neurônios, que determina a taxa de compressão
- A rede é treinada para aprender uma função identidade

Arquitetura de uma rede neural do tipo bottleneck

- A rede pode ser utilizada para compressão se for dividida em duas partes.
- Um transmissor codifica e transmite a saída da camada escondida. Um receptor recebe e decodifica as saídas da camada escondida (16 nesse exemplo), gerando 64 valores de saída
- Como a função identidade é implementada, a imagem original é obtida

- Embora a rede bottleneck reduze 64 entradas para 16, nenhuma compressão ocorreu.
 - 64 entradas originais representam pixels de 8 bits
 - As saídas da camada escondida são valores reais entre
 1 e 1.
- Compressão real só vai ocorrer se as saídas da camada escondidas foram *aproximadas* antes de serem transmitidas.

• Quantificação utilizando 3 bits para codificar cada entrada

Treinamento

- Imagens de 256x256 pixels são utilizadas
- Na fase de treinamento, são extraídas de cada imagem regiões de 8x8 pixels. Essas regiões são escolhidas aleatoriamente
 - Gera um par de inteiros aleatórios (entre 0 e 248) que representarão a parte superior esquerda e inferior direita da região
- Os valores dos pixels da região selecionada são mapeados em um número real, construindo uma entrada de 64 dimensões para a rede

Treinamento

Conversão de Pixel para Real e Real para Pixel

Cada pixel é convertido em real e forma as 64 entradas da rede

Validação

• Feita com as mesmas imagens, mas agora regiões de 8x8 são extraídas sequencialmente das imagens.

 Demo: http://neuron.eng.wayne.edu/ bpImageCompression9PLUS/bp9PLUS.html

Previsão do mercado de ações

Previsão de tendências em Mercados de Ações

- Prever tendências no mercado de ações e usar essas previsões para ajudar o investidor no processo de tomada de decisão
- Bolsa Utilizada BM&F Bovespa

■ Average Daily Financial Volume (x 10^3 US\$)

Problema

- Responder três perguntas essenciais:
 - 1. Como fazer previsões?
 - 2. Como avaliar a qualidade dessas previsões?
 - 3. Como converter as previsões em lucro?

1. Como fazer previsões?

Stock market characteristics	ANNs Capabilities
> dynamic, complex, evolutive, chaotic and random nature	✓ work with uncertain, incomplete and/or insufficient data, which changes fast over short periods of
➤ high degree of uncertainty	time
> large amount of data	✓ easily deal with irregularities
> noisy and non-linear data	✓ find patterns, including non- linear relationships

2. Como avaliar a qualidade dessas previsões?

- Métricas de Avaliação Clássicas
 - Mean Absolute Percentage Error (MAPE)
 - Mean Squared Error (MSE)
- Novas métricas de Avaliação
- 3. Como converter as previsões em lucro?
- Day-Trading System

Características da Rede

- Multi-layer feed-forward com back-propagation
- 3 camadas e função logística
- 100.000 épocas
- Taxa de aprendizado de 0,01
- Outputs
 - Preços mais altos e baixos previstos para o dia em questão

Arquitetura do sistema

Entradas

- Análise fundamentalista vs técnica
 - Análise Fundamentalista:

The stock prices reflect the macro-economical, political and administrative scenarios of the company.

Análise Técnica:

All the necessary information about the future of stock prices can be found in the past prices.

Number of Inputs	Description
1	Opening price of the current day
20 (10)	Opening, closing, lowest and highest prices last 5 days
8 (2)	Bollinger Bands (closing)
4 (2)	Exponential Moving Average (lowest and highest)

Sistema Day-trade

- Composto de:
 - Um conjunto de regras para iniciar ou terminar uma transação
 - Mecanismo de controle de risco
 - Esquema de gerenciamento de dinheiro
 - Constraints do mercado de ações

Métricas de Avaliação

- Evaluation metrics
 - Annualized (percentage) Return (AR):

$$AR = 100 \text{ x } [(FC/IC)^{(362,25/D)} - 1]$$

- FC Final Capital obtained
- IC Initial Capital invested
- D number of Days
- Maximum Drawdown
- Average number of daily trades

Experimentos

- Petrobras PN (PETR4) and Vale R Doce PNA (VALE5)
- Training set (1128 periods)
 - From October 8th, 2003 to April 30th, 2008
- Testing set (150 periods)
 - From May 2nd to December 2nd 2008
- Real world constraints:
 - Brokerage comission rates: R\$ 15,00 (US\$ 8,20)
 - Slippage: 0,1%
 - Multiple round lot: 100
 - Volume

Number of Inputs	MAPE (Lowest)	MAPE (Highest)		
PETR4				
15	$1,86 \pm 1,84\%$	$1,84 \pm 1,39\%$		
25	$1,94 \pm 1,98\%$	$1,33 \pm 1,30\%$		
33	$1,91 \pm 2,06\%$	$1,33 \pm 1,40\%$		
VALE5				
15	$1,73 \pm 1,91\%$	$1,44 \pm 1,21\%$		
25	$1,86 \pm 1,89\%$	$1,51 \pm 1,57\%$		
33	$1,86 \pm 1,98\%$	$1,48 \pm 1,31\%$		

Performance of the ANN according to the Mean Absolute Percentage Error (and standard deviation)

Number of Inputs	AR (%)	Drawdown (%)	Avg. Trades per Day		
PETR4					
15	92,47	22,60	1,91		
25	23,18	31,61	1,93		
33	65,51	24,62	1,94		
VALE5					
15	130,52	13,70	1,97		
25	118,97	14,25	1,94		
33	46,27	19,76	1,97		

Performance of the Trading System using ANNs

Number of Inputs	AR (%)	Drawdown (%)	Avg. Trades per Day		
PETR4					
15	423,56	17,11	3,37		
25	130,49	23,34	3,40		
33	302,05	23,03	3,38		
VALE5					
15	260,51	15,02	3,12		
25	158,16	15,17	3,23		
33	121,62	19,67	3,19		

Performance of the improved Trading System using ANNs

Conclusões

- Predicting the lowest and highest stock prices is a good thing to do
- High profitability
 - Annualized return greater than 250% and drawdown smaller than 20% for PETR4 e
 VALE5
- Future Work
 - Test a larger number of inputs to the ANN
 - Combine a set of metrics to guide the training process of the ANN

Referências

• Kenneth O. Stanley and Risto Miikkulainen. 2002. Efficient Reinforcement Learning Through Evolving Neural Network Topologies. In GECCO '02, 569-577.

Demos

 http://www.hopesandfears.com/hopes/ culture/video-games/214439-mari-oprogram-super-mario

https://www.youtube.com/watch? v=S9Y_I9vY8Qw

 http://www.cs.utexas.edu/users/kstanley/ demos.html