

GUÍA DE EJERCICIOS ALGEBRA VECTORIAL

 De acuerdo al esquema mostrado en la figura, resuelva las situaciones planteadas con los vectores allí dibujados.

$$\begin{split} \vec{O}_1 &= \vec{A} + \vec{C} \ , \\ \vec{O}_2 &= \vec{B} + \vec{D} - \vec{C} \ , \\ \vec{O}_3 &= 3\vec{i} - \vec{B} \ , \ \vec{O}_4 = \vec{A} - \vec{i} \ - \vec{j} \end{split}$$

b. Escriba el vector \vec{A} en función de los vectores \vec{i} , \vec{j} .

2) La figura muestra un cuerpo sobre el cuál actúan dos fuerzas \vec{F} y \vec{P} . Considere que el módulo de la fuerza \vec{F} es de 100~N~ y $\alpha=20^{\circ}$.

- b) Calcule el valor de \vec{P} tal que la suma de las componentes de ambas fuerzas, en la dirección vertical, sea nula.
- c) Calcule y dibuje el vector resultante.

3) Un vector situado en el plano XY tiene una magnitud de 35 unidades y forma un ángulo de 25° con el eje vertical. Exprese el vector en su forma cartesiana.

- 4) Dado los vectores $\vec{A} = 4\hat{i} + 6\hat{j}$, $\vec{B} = -6\hat{i} \hat{j}$. Encontrar:
 - a. El ángulo formado por los vectores $\vec{A} \ y \ \vec{B}$
 - b. Un vector unitario en la dirección del vector $2\vec{A} \vec{B}$

5) Sume gráficamente los tres vectores \vec{A} , \vec{B} y \vec{C} . Usando la ley del paralelogramo en forma consecutiva. Además reste en forma gráfica los vectores \vec{A} y \vec{B} . Mida en ambos casos el módulo del vector resultante y el ángulo que forma con respecto a un eje horizontal.

- 6) Un jinete cabalga en su caballo 5 km al Norte y luego 10 km al Este. Calcule el módulo, la dirección y el sentido de su desplazamiento.
- 7) Complete la siguiente tabla de vectores:

Coordenadas (x,y)	Forma Polar $(r, heta)$	Vectores Unitarios $(\hat{\pmb{i}},\hat{\pmb{j}})$
(1,)	r=3.16 , $ heta=$	
(5,2)	r= , $ heta=$	
(,)	r=3.60 , $ heta=146.31$	
(,-3)	$r = , \theta = \frac{7\pi}{4} rad$	
(,)	r=7.07 , $ heta=81.87$	
(,)	r= , $ heta=$	$4\hat{\iota} - 5\hat{\jmath}$

8) Considere los siguientes vectores:

$$\vec{A} = (3, -2), \ \vec{B} = (-1, -4), \ \vec{C} = (1, -5),$$

Calcule los siguientes vectores resultantes

a)
$$2\vec{A} - 3\vec{B} + 4\vec{C}$$

b)
$$\vec{A} - \vec{B} - \vec{C}$$

c)
$$\overrightarrow{(A} \cdot \overrightarrow{B})\overrightarrow{C}$$

d)
$$\vec{A}(\vec{B}\cdot\vec{C})$$

e)
$$(\overrightarrow{A} \cdot \overrightarrow{C})\overrightarrow{B}$$

9) La figura que se muestra a continuación representa un hexágono regular y un sistema de coordenadas cartesiano con origen en uno de sus vértices.

- a) Escriba el vector \vec{r} en función de los vectores \vec{A} y \vec{B} .
- b) Escriba el vector \vec{W} en función de los vectores \vec{B} , \vec{C} y \vec{D} .
- c) Existen otras soluciones para escribir los vectores \vec{r} y \vec{w} ?
- 10) ¿Cuáles de las siguientes frases son verdaderas o falsas?
 - a) _____ La suma de los vectores es conmutativa y asociativa.
 - b) _____ El producto punto siempre es perpendicular a los otros dos vectores.
 - c) _____ El producto punto de dos vectores es siempre un vector paralelo.
 - d) _____ El producto punto es conmutativo.
- 11) Considere los vectores \vec{A} , \vec{B} y \vec{C} que se muestran en la figura.

Utilice regla, escuadra y transportador para determinar cada uno de los vectores que se piden a continuación:

a.
$$\vec{A} + \vec{B}$$

b.
$$\vec{A} - \vec{B}$$

c.
$$\vec{A} + \vec{B} + \vec{C}$$

a.
$$\vec{A}+\vec{B}$$
 ; b. $\vec{A}-\vec{B}$ c. $\vec{A}+\vec{B}+\vec{C}$ d. $\vec{A}+\vec{B}-\vec{C}$

- 12) Considere el vector $\vec{O}_1 = -5\vec{i} + 3\vec{j}$ y determine su módulo. A continuación encuentre dos vectores en el plano X-Y que sean perpendiculares a \vec{O}_1 .
- 13) Considere los vectores $\vec{A}_1 = 4\vec{i} 13\vec{j}$ y $\vec{A}_2 = -\vec{i} + 3\vec{j}$. Determine el valor del ángulo que $\vec{A}_1 + \vec{A}_2$ forma con el vector \vec{i} y además el valor del ángulo que $\vec{A}_1 \vec{A}_2$ forma con el vector \vec{j} .
- 14) Una fuerza \vec{F} tiene las siguientes componentes: -3 N en el eje x y 4 N en el eje y. Obtenga el módulo y ángulo del vector respecto al eje x positivo.
- 15) ¿Para qué valores de lpha los vectores $\vec{K}=lpha\hat{i}-2\hat{j}+\hat{k}$ y $\vec{L}=2lpha\hat{i}+lpha\hat{j}-4\hat{k}$ son perpendiculares?
- 16) Nuestro amigo que camina a la vera de un río, observa nuevamente la balsa con el pescador sobre ella. La balsa está amarrada a las orillas del río mediante dos cuerdas, una de 5 m y la otra de 7 m. Nuestro personaje, estima que el rio empuja a la balsa con una fuerza de 200 N. Considerando que la distancia entre el punto de amarre de una orilla y la posición de la balsa sobre el río es de 3 m, calcule
- a. El ángulo que forman las cuerdas con la perpendicular al rio.
- b. La tensión en cada una de las cuerdas.
- 17) Dado los vectores \vec{A} y \vec{B} y el paralelogramo OMPN mostrado en la figura. Exprese los siguientes vectores en términos de operaciones entre \vec{A} y \vec{B} .

- a) $Oec{P}$;
- b) $Mec{P}$
- c) $P ec{N}$
- d) $N \vec{M}$
- 18)(*) Determine la proyección del vector $\vec{A}=3\hat{i}-\hat{j}+2\hat{k}$ sobre la recta que pasa por los puntos (4,5,1) y (5,7,3) . ¿Qué ángulo forma el vector \vec{A} con esta recta?
- 19)(*) Dados los vectores $\vec{A}=2\hat{i}-\hat{j}$, $\vec{B}=-\hat{i}+2\hat{j}$. Determine los módulos de estos vectores y los ángulos que forman con el eje X. Encuentre vectores unitarios en la dirección de \vec{A} y \vec{B} , respectivamente. Calcule la proyección del vector \vec{A} sobre \vec{B} . Calcule el área del triángulo que tiene por lados a los vectores \vec{A} y \vec{B} .
- 20) (*) La figura muestra dos fuerzas de módulos F=50N y P=25N . Considere que el eje x forma un ángulo de 30° con a la horizontal.
 - a) Dibuje el vector resultante de la suma de ambas fuerzas.
 - b) Encuentre la expresión analítica de ambas fuerzas respecto a los ejes x e y de la figura.
 - c) Realice la suma analítica de ambos vectores.

- 21) (*) El peso del bloque mostrado en la figura es P=200N y el ángulo de inclinación es $\alpha=20^\circ$.
- a. Encuentre la expresión analítica del peso \vec{P} utilizando los ejes del plano xy de la figura.
- b. Calcule el módulo del vector \vec{F} para que la suma de las fuerzas en la dirección horizontal al plano inclinado sea nula.

22) (*) Dados los vectores $\vec{D}=4\hat{i}-8\hat{j}+5\hat{k}$ y $\vec{R}=-8\hat{i}+10\hat{j}+2\hat{k}$, determine el ángulo que se forma entre ellos.

24) (*) Cuatro fuerzas de 25(N), 20(N), 8 (N) y 15(N), se representan por los vectores $\vec{a}, \vec{b}, \vec{c}$ y \vec{d} respectivamente.

- a. Escriba cada vector en su forma polar.
- b. Determine la dirección del vector resultante.
- 25) (*) Considere los vectores $\vec{A}_3=0.5\vec{i}+1.2\vec{j}$ y $\vec{A}_4=\vec{i}+9\vec{j}-4\vec{k}$. Obtenga:

a.
$$\vec{A}_3 \bullet \vec{A}_3$$

b.
$$\vec{A}_3 \bullet \vec{A}_4$$

26) (*) Considere los vectores $\vec{A}_m = \vec{i} + 2\vec{j} - 3\vec{k}$, $\vec{A}_n = 3\vec{i} + 7\vec{j} - \vec{k}$ y $\vec{A}_o = 3\vec{i} - \vec{j} + 3\vec{k}$. Evalúe la expresión:

$$\frac{(\vec{A}_m \bullet \vec{A}_o)(\vec{A}_o + \vec{A}_m)}{(\vec{A}_m \bullet \vec{A}_n) \left\| \vec{A}_m \right\|}$$

27) (*) A partir de los vectores que se muestran en la figura en que los módulos de \vec{A} , \vec{B} y \vec{C} son 10(u), 20(u) y 30(u) respectivamente, determine:

- b) Un vector \vec{D} tal que $2\vec{D} + \vec{B} 2\vec{A} = \vec{0}$
- 28) (*) La figura representa dos vectores velocidad en un instante de tiempo, cuyos módulos se miden en m/s. Escriba ambos vectores en forma canónica (analítica) y determine el módulo de la suma y resta de ambos.

29) (*) La figura de la izquierda representa un bloque cuyo peso es $\vec{w}=-8\hat{j}~N$ y está colgado por dos cuerdas ideales. La primera cuerda está sometida a una tensión denominada \vec{T}_1 cuyo módulo es 4~N y la segunda cuerda está sometida a una tensión \vec{T}_2 de módulo 6.93~N . La figura de la derecha representa lo que se denomina, "Diagrama de Fuerzas", es decir, la representación vectorial de las fuerzas en un sistema coordenado cartesiano.

- a. Determine los vectores $\vec{T_1}$ y $\vec{T_2}$ en su forma analítica.
- b. Calcule la suma de los vectores fuerza $\vec{F} = \vec{T_1} + \vec{T_2} + \vec{w}$
- 30) (*) Un deportista trota 50 m hacia el sur, gira 30° hacia el sur-este y trota 80 m más.
 - a. Represente mediante vectores cada desplazamiento del deportista.
 - b. Determine el módulo y dirección del vector desplazamiento total respecto del sur.
- 31) (*) Se disponen cuatro vectores unidos origen con extremo de manera que forman un rectángulo como se muestra en la figura. Las coordenadas de los vértices del rectángulo son A(0,0); B(2,4); C(0,5) y D(-2,1) respectivamente.

- a. Escriba cada vector en forma analítica.
- b. ¿Cuál es la longitud de los lados del rectángulo?
- c. ¿Cuánto vale la suma de estos cuatro vectores?
- 32) (**) Considere los siguientes vectores en el espacio.

$$\vec{A} = (a, 2, 4), \quad \vec{B} = (1, b, -1), \quad \vec{C} = (1, 3, c)$$

Encuentre los valores de a, b y c para que los tres vectores sean ortogonales mutuamente.

- 33) (**) Dados los vectores $\vec{A} = -\hat{i} + 3\hat{j} + z\hat{k}$, $\vec{B} = x\hat{i} + 6\hat{j} \hat{k}$ y $\vec{C} = 2\hat{i} 4\hat{j} + 3\hat{k}$
 - a. Si es \vec{A} paralelo a \vec{B} encuentre los valores de las incógnitas x, z
 - b. Determine un vector unitario paralelo a $ec{C}$
 - c. Hallar un vector en el plano XY perpendicular a $\, ec{C} \,$ y de módulo 5.
- 34) (**) La figura muestra las fuerzas de tensión de tres cuerdas. El módulo de la fuerza \vec{F}_3 es de 400N , $\alpha=30^\circ$ y $\beta=70^\circ$.

b. Encuentre la expresión analítica de las tres fuerzas respecto a los ejes usuales.

35) (**) La figura muestra un bloque sobre el que actúan tres fuerzas: el peso \vec{P} , la normal \vec{N} y una fuerza \vec{F} . El módulo del peso es de 30N, el módulo de \vec{F} es de 20N, y $\alpha=25^{\circ}$.

- a. Determine el módulo de la normal.
- b. Encuentre la expresión analítica de las tres fuerzas respecto a los ejes inclinados de la figura.
- c. Encuentre la expresión analítica de la suma de todos los vectores.
- 36) (**) Considere los vectores:

$$\vec{A} = \hat{i} + \hat{j} + \hat{k}$$
 y $\vec{B} = -\hat{i} + 2\hat{j} - 2\hat{k}$

Grafique ambos vectores, determine el área del triangulo que tiene por lados estos vectores y calcule el ángulo que forman.

37) (**) Se aplica una fuerza de $4\,kN$ a un anclaje de la forma mostrada en la figura, determine:

- b. Las componentes de la fuerza.
- c. La expresión de la fuerza en forma canónica.

38) (**)Considere los vectores:

$$\vec{H} = 2\hat{i} + 5\hat{j} + 3\hat{k}, \qquad \vec{M} = -\hat{i} + 2\hat{k} \quad y \quad \vec{P} = 5\hat{i} - 2\hat{k} - 4\hat{j}$$

Determine el ángulo entre los vectores $\vec{A} = 2\vec{H} - \vec{M}$

39) (**) Considere los vectores
$$\vec{B}_1 = \vec{i} + 2\vec{j} + 3\vec{k}$$
 y $\vec{B}_2 = \vec{i} + \vec{j} + \vec{k}$.

- a. Encuentre el ángulo que forma \vec{B}_1 con cada uno de los ejes del sistema de referencia. Grafique \vec{B}_1 y los ángulos calculados.
- b. Encuentre el ángulo que forman los vectores $\, \vec{B}_1 \,$ y $\, \vec{B}_2 \,$. Grafique sus resultados.
- 40) (**) Una caja rectangular tiene por dimensiones 6 cm , 4 cm y 8 cm, como se muestra en la figura.

8 ст

- Escriba las expresiones analíticas (o canónicas) para los vectores que corresponden a las posiciones de los vértices P y Q de la caja.
- b. ¿Qué ángulo que forman los vectores $\vec{P} \; y \; \vec{Q}$?
- (*) Dificultad regular, (**) Dificultad mayor.

Respuestas

1) b.
$$\vec{A} = 4\vec{i} + 3\vec{j}$$
 , c. $\vec{O}_5 = -11\vec{i} + 12\vec{j}$

2) a.
$$\vec{F} = 94.0\hat{i} + 34.2\hat{j} N$$
; b. $\vec{P} = -34.2\hat{j} N$.

3)
$$-14.8\hat{i} + 31.7\hat{j}$$

4) a.
$$\theta = 133.2^{\circ}$$
 b. $\hat{u} = 0.73\hat{i} + 0.68\hat{j}$

6) $11.18 \, Km, 26.56^{\circ}$ con respecto al Este.

7)

Coordenadas (x,y)	Forma Polar $(r, heta)$	Vectores Unitarios (\hat{i},\hat{j})
(1,3)	r=3.16 , $ heta=71.56$	$\hat{\imath} + 3\hat{\jmath}$
(5,2)	r=5.38 , $ heta=21.80$	$5\hat{\imath} + 2\hat{\jmath}$
(-3,2)	r=3.60 , $ heta=146.31$	$-3\hat{\imath}+2\hat{\jmath}$
(3,-3)	$r=4.24$, $\theta=\frac{7\pi}{4}rad$	$3(\hat{\imath}-\hat{\jmath})$
(-1,-7)	r=7.07 , $ heta=81.87$	$-\hat{\imath}-7\hat{\jmath}$
(4,-5)	r=6.40 , $ heta=308.66$	$4\hat{\iota} - 5\hat{\jmath}$

8) a)(13,
$$-12$$
), b) (3, -3), c) (5, -25), d) (57, -38), e) (-13 , -52)

9) a.
$$\vec{A} + \vec{B}$$
, b. $\vec{B} + \vec{C} + \vec{D}$, c. si

11) Aplicar el método del triángulo o del paralelogramo.

- 12) Respuesta: 5.83; por ejemplo: $-3\vec{i}-5\vec{j}$ y $6\vec{i}+10\vec{j}$, pero existen infinitos. ¿Está de acuerdo con esta última afirmación?
- 13) -106.7º v 159.0º.
- **14)** *Módulo 5 N y ángulo 126,87º*

15) Para
$$\alpha = 2$$
 y $\alpha = -1$

16) a)
$$\theta_1 = 30.96$$
 , $\theta_2 = 23.199$ b) $T_{5m} = 266.37N$, $T_{7m} = 159.82N$

17)
$$\vec{A} + \vec{B}$$
 ; \vec{B} ; $-\vec{A}$; $\vec{A} - \vec{B}$

18) 1.66,63.5°

19)
$$A = 2.23, B = 2.23, \theta_A = -26.56^{\circ}, \theta_B = 153.43^{\circ}$$
 $\hat{A} = \frac{2\hat{i} - \hat{j}}{\sqrt{5}}, \hat{B} = \frac{-\hat{i} + 2\hat{j}}{\sqrt{5}}, -1.78, area = 1.5$

20) b.
$$\vec{F} = 43.3.0\hat{i} + 25.0\hat{j} \ N$$
 , $\vec{P} = 12.5\hat{i} - 21.7\hat{j} \ N$; c. $\vec{F}_T = 55.8\hat{i} + 3.3\hat{j} \ N$.

21) a.
$$\vec{P} = -68.4\hat{i} - 187.9\hat{j} N$$
; b. $F = 68.4 N$.

23)
$$\vec{F}_R = -48,30\hat{i} + 2,94\hat{j}$$
 N, módulo 48,40 N y ángulo 176,52°

24) a.
$$\vec{a} = 25 \prec 50^{\circ}$$
, $\vec{b} = 20 \prec 0^{\circ}$, $\vec{c} = 8 \prec 120^{\circ}$ y $\vec{d} = 15 \prec 200^{\circ}$, b. $\theta = 49.4^{\circ}$

26)
$$\frac{-8\hat{i}-2\hat{j}}{5\sqrt{14}}$$

27) a.
$$-401,7$$
 b. $\vec{D} = -10\hat{j}$

28)
$$\vec{v}_1 = 6\sqrt{3} \ \hat{i} + 6\hat{j}, \quad \vec{v}_2 = -9 \ \hat{i} + 12\hat{j}$$
 m/s. Aprox. 18 y 20 m/s.

29) a.
$$\vec{T_1} = 3.46\hat{i} + 2\hat{j}, \quad \vec{T_2} = -3.46\hat{i} + 6\hat{j} \quad N$$
 b. $\vec{F} = \vec{0}$

30) 125.8 m ; 18.5º

31)
$$A\vec{B} = 2\hat{i} + 4\hat{j}$$
 : $B\vec{C} = -2\hat{i} + \hat{j}$: $C\vec{D} = -2\hat{i} - 4\hat{j}$: $D\vec{A} = 2\hat{i} - \hat{j}$: $\sqrt{20}$: $\sqrt{5}$: $\vec{0}$

33) a.
$$z = -\frac{1}{2}$$
 $x = -2$ b. $\hat{c} = 0.37\hat{i} - 0.74\hat{j} + 0.56\hat{k}$ c. $4.48i + 2.24j$ o $-4.48i - 2.24j$

34)
$$F_1=138.9N$$
 y $F_2=351.8N$; b. $\vec{F_1}=-120.3\hat{i}+69.5\hat{j}$ N , $\vec{F_2}=120.3\hat{i}+330.6\hat{j}$ N , y $\vec{F_2}=-400\,\hat{i}$ N .

35) a.
$$\left\| \vec{N} \right\| = 27.2N$$
 ; b. $\vec{P} = -12.7\hat{i} - 27.2\hat{j} \; N$, $\vec{N} = 27.2\hat{j} \; N$, y $\vec{N} = 20.0\hat{i} \; N$; c. $\vec{F}_T = 7.3\hat{i} \; N$.

36) area =
$$2.55 \,\mathrm{u}^2$$
, 101°

37) a.
$$\theta_x = 65^{\circ}$$
, $\theta_y = 45^{\circ}$, $\theta_z = 56^{\circ}$, b. (1698, 2830, 2264) N

c.
$$\vec{F} = 1698\hat{i} + 2830\hat{j} + 2264\hat{k}$$
 N

40)
$$\vec{P} = 4\hat{i} + 8\hat{j}$$
 ; $\vec{Q} = 4\hat{i} + 8\hat{j} + 6\hat{k}$; 33.9°