Continuity of Probabilities

Theorem (Monotone Convergence Theorem For Probability Measures): Let $\{A_n\}_{n=1}^{\infty}$, be a collection in the probability space (Ω, \mathcal{F}, P)

- (i) If $An \subseteq A_{n+1}$ for all $n \in IN$, then $\lim_{n \to \infty} P(A_n) = P(\bigcup_{n=1}^{\infty} A_n)$
- (ii) If $A_{n+1} \subseteq A_n$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} P(A_n) = P(\bigcap_{n \to \infty} A_n)$.

Example: Let X be a RV with $X(\omega) \in IR$ for all $\omega \in \Omega$ Let $An = \{ \omega : X(\omega) \ge n \} = [n, \infty)$. Then clearly for all $n \in IN$, $[n+1, \infty) \subseteq [n, \infty)$, so by MCT, $\lim_{n \to \infty} P(A_n) = P(\bigcap_{n=1}^{\infty} A_n) = P(\emptyset) = 0$.

Let $B_n = \{ \omega : X(\omega) \geqslant \frac{1}{n} \} = [\frac{1}{n}, \infty)$. Then clearly, for all $n \in \mathbb{N}$, $[\frac{1}{n}, \infty) \in [\frac{1}{n+1}, \infty)$, so by MCT $\lim_{n\to\infty} P(B_n) = P(0,\infty) > 0$.

Note: If $A_n \subseteq A_{n+1}$ for all $n \in \mathbb{N}$, then for all $w \in \Omega$ $1_{A_n}(w) \leq 1_{A_{n+1}}(w)$ so $\lim_{n \to \infty} 1_{A_n}(w)$ exists and equals $1_{A_n}(w)$, where $A = \bigcup_{n=1}^{\infty} A_n$.

Limit Events Definition: Let $(x_n)_{n=1}^{\infty}$ be a sequence in 12. (i) We define the limit superior as n-100 of the Sequence (xn h=1 by $\lim_{n\to\infty} x_n = \lim_{n\to\infty} \sup_{k > n} x_k$ lii) We define the limit inferior as n→∞ of the sequence (xn) n=1 by liminf $x_n = \lim_{n \to \infty} \inf_{k \ge n} x_k$. Example: Let (xn) n=1 be the sequence $x_n = (-1)^n \left(\frac{n+1}{n}\right) \quad \forall n \in \mathbb{N}$ $X_1 = -\lambda$, $X_2 = \frac{3}{2}$, $X_3 = -\frac{4}{3}$, $X_4 = \frac{5}{4}$, ... SUP $X_1 = \frac{3}{4}$ SUP $X_2 = \frac{3}{4}$ SUP $X_3 = \frac{3}{4}$ SUP $X_4 = \frac{5}{4}$ SUP $X_4 = \frac{5}{4}$ SUP Thus, taking $n \to \infty$, $\lim_{n \to \infty} x_n = 1$. Example: $\lim_{n\to\infty} (-n^3) = -\infty$, $\lim_{n\to\infty} (n^3) = \infty$. Example: Let $L = \{ x \in [-\infty, \infty] : \lim_{k \to \infty} x_{n_k} = x \text{ for some } \}$ subsequence (Xnk) =1 }. L is called the space of all extended real numbers with a convergent subsequence. Note limsup Cn = sup L Remark: TFAE about limit superiors (a) $\limsup_{n\to\infty} x_n = \overline{x}$

(b) For every \$>0, {k: Xk> x+&} is finite and

```
\{k: x_k > \overline{x} - \epsilon\} are finite.
Remark: - liminf xn = limsup (-xn)
Remark: lim xn exists if and only if limsup xn = liminf
Definition: Let {An} CF. Define
    (i) \limsup_{n\to\infty} A_n = \bigcap_{\substack{n=1\\ k=n}}^{\infty} \bigcup_{k=n}^{\infty} A_k \in \mathcal{F}

(ii) \liminf_{n\to\infty} A_n = \bigcup_{\substack{n=1\\ k=n}}^{\infty} A_k \in \mathcal{F}
WE lingup An => YneIN WE U Ax
               €) ∃K≯R S.A. W E AK
               \Leftrightarrow \{k: \omega \in A_k\} is infinite.
so limsup An is the set of all w s.t. An occurs
 infinitely often (i.o.). Similarly.
  W ∈ lim inf An 	⇒ ∃nein such that we An
                      = IneIN s.t. WEAR YK>n
                      = | k: W # A k 1 is finite
so liminf An is the set of all w such that An occurs
 for all but finitely many n. (a.a). ABFM
Remark: limsup Ac = (liminf An)
Proposition: Let {An3n=1 ⊆ F, let
      \overline{A} = \lim_{n \to \infty} A_n \qquad \underline{A} = \lim_{n \to \infty} A_n
Then YWE 2
     1LA (W) = limsup 1LAn(W)
     11 A (W) = liminf 11 An (W).
```

Proof: Let WED. The set L = {0,1}. So • $\lim_{n} \mathcal{L}_{A_n}(\omega) = 1 \iff \text{there exists a subsequence}$ n_{κ} such that $I_{n_{\kappa}}(\omega) = 1$. $\rightleftharpoons \omega$ is in infinitely many An's \iff $1/4 (\omega) = 1$ • $\lim_{n \to \infty} 1_{A_n}(\omega) = 1 \Leftrightarrow \text{there is no subsequence } n_k such$ that $1_{n_E}(\omega) = 0 \iff \omega \in \{A_n : aa\}$ (=) $1_A(\omega) = 1$ Proposition: Let { An } = = F $p(\liminf_{n \to \infty} A_n) \leq \liminf_{n \to \infty} p(A_n) \leq \limsup_{n \to \infty} p(A_n) \leq p(\limsup_{n \to \infty} A_n)$ $\lim \sup_{n \to \infty} A_n = \bigcap_{n \to \infty} B_n, \quad \text{where } B_n = \bigcap_{k=n}^{\infty} A_k, \quad \text{so}$ Bny, ⊆ Bn Yne IN, so by MCT $\lim_{n\to\infty} P(B_n) = P(\bigcap_{n=1}^{\infty} B_n) = P(\lim_{n\to\infty} A_n)$ = limsup p(Bn) > limsup p(An) (An = Bn) Theorem (Borel-Cantelli Lemma): Let { Ansin & F (i) If $\sum_{n=1}^{\infty} P(A_n)$ converges, then $P(A_n) = 0$ i.o. (ii) If I PLAN diverges and {An In=, are independent. Then $P(A_n) = 1$ i.o. Proof: (i) limsup An = 10 U Ax & U An #NEIN. So now P(limsup An) = P(U Ak) = = P(Ak) ->0, N->0.