

	form	Of	compi	uter	langu	lage	that	is u	sed in
	prog	jram	design						
A Flowch	iart i	is a	dia	rama	ti c	redre	sental	ion (of an
approach.			,	1					
in order.									
Components	3:								
① Term	inator	Spe	cifies.	the	star	t au	nd en	d of	a pro
			Star	t/End)2>	Term	inator	~	
					1				
② Para	llelogra	im: F	or to	aking	inpu	it o	r sho	wing	outpu
		4			Ir	iput /	Outpu	t	
3 Proc	ess:	Opera	itions	and	proc	esses	ke	liye.	
				, i + 1	or	fo	r loof		
					1	1			
4 Decis	ion Mo	iking:	(Dian	mond	Shape)			
			4/:-	is Tr	ue /i	nout(i); /		
				Y					
			False	V					
			(_er	(a)					
5 Cir	cle:	Connec	.tors (To be					LSS
					Jui	10000	/metho	ods)	
(6) Arro	ows: C	Code	ka P	ravaa	h dil	khane	ke 1	iye.	
Y 1111									

New	CONCEPT:	% (modulo)	operator	
	Gives	the remainder	after division	a/b.
	° a% b	= Remainder o	of a/b.	
	Eg: 5%2			
	6% 4 =			
	8 % 4			
	* 4% 9	= 4 when	a>b, a%b=0	λ.
		, n is even		
	else n is oda	\ .		
Exa	MPLE: Chec	k if n is	even or odd.	
		·		
		(Start)		
		\int		
		/input(a)		
		is Ye	s /print"Yes"/	
		2 % 2 = 0	Print les	
		No		
		Print "No"/	→ (End)	
Ev	Te	n cositava	negative or z	4.5.0
EXF	IMPLE: IS	Tr positive,	riegative of 2	20.
		(Start)		
		Input(n)		
		is Ye.	S	
		(n>0?	s > /Print "+ve"/	
		No		
		is ye	S	
		n<0	print "-ve"	
		•		

Source (C++	Code -)	→ [Compile	r	→ Bir	nary 1 M Code	lachine
				Compu	iter		
				Executes (•exe)			
)		
	Read more abou	t Compilers here: <u>h</u>	nttps://www.geeksf	orgeeks.org/introduc	ction-to-compiler	<u>rs/</u>	