P42

MKP-KP Series

METALLIZED AND FILM-FOIL POLYPROPYLENE CAPACITOR

Typical applications: timing, LC-filters (i.e.:TELECOM, measurement equipment).

PRODUCT CODE: P42

P42

Case A

7.5x7.5max 7.5x7.5max 1.3x1 1.3x1

Case B

Case C

Case D

All dimensions are in mm.

Upon request different leads can be provided up to a minimum of 2.5mm (only for A, B and C constructions).

GENERAL TECHNICAL DATA

Dielectric: polypropylene film.

Plates: KP: tin foil;

MKP:aluminium layer deposited by evaporation

under vacuum.

Winding: non-inductive type.
Leads: tinned wire.

Protection: plastic case, thermosetting resin filled.

Box material is solvent resistant and flame

retardant according to UL94 V0.

Marking: series (P.42 for KP; 1.42 for MKP), outer foil,

capacitance, tolerance, D.C. rated voltage,

manufacturing date code.

Climatic category: 55/085/56 IEC 60068-1

Related documents:

KP: IEC 60384-13; DIN 41380 T4 MKP: IEC 60384-16; DIN 45910 T23

P42 MKP-KP Series

METALLIZED AND FILM-FOIL POLYPROPYLENE CAPACITOR

PRODUCT CODE: P42

ELECTRICAL CHARACTERISTICS

Rated voltage (V_p): 63 Vdc

Category voltage (V_c): up to +85°C V_c=V_R

Capacitance range (pF):

KP CAPACITORS		
CASE A	100 to 9200	
CASE B	100 to 21000	
CASE C	21001 to 44200	

MKP CAPACITORS		
CASE A	5001 to 75000	
CASE B	5001 to 120000	
CASE C	120000 to 237000	
CASE D	210000 to 432000	

Capacitance values:

values in compliance with IEC 63 Norms and as E192 series.

Capacitance tolerances:

±1% (F); ±1.25% (A); ±2% (G); ±2.5% (H);

with a min. ±1 pF (Z).

Total self inductance:

max 1 nH per 1 mm lead and capacitor length.

Temperature coefficient:

-(150±70) ppm/°C for C≤5000pF -(200±100) ppm/°C for C>5000pF

Dissipation factor (DF):

tgδ 10⁻⁴ at +25°C ±5°C

KHz	C≤33nF	C≤100nF	C>100nF
1	≤ 3	≤ 3	≤ 5
100	≤ 20	≤ 50	≤ 100

Insulation resistance:

Test conditions

Temperature: +25°C±5°C

Voltage charge time: 1 min

Voltage charge: 10Vdc

Performance

≥20x10⁴ MΩ for C≤120nF ≥24000 s for C>120nF

Test voltage between terminations:

KP: 2.5xV_{R} MKP: 1.6xV_{R} applied for 2 s at +25°C±5°C

Maximum pulse rise time (dv/dt)

C (pF)	dv/dt (V/μs)	K ₀ (V²/μs)
≤ 9000	50	6300
≤ 21000	40	5000
≤ 120000	10	1300
> 120000	5	630

TEST METHOD AND PERFORMANCE

Damp heat, steady state:

Test conditions

Temperature: +40°C±2°C
Relative humidity (RH): 93%
Test duration: 56 days

Performance

Capacitance change $|\Delta C/C|$: $\leq 0.5\%$ +1pF Insulation resistance: $\geq 5.10^4 \, \text{M}\Omega$ for C $\leq 120 \, \text{nF}$ $\geq 6000 \, \text{s}$ for C $> 120 \, \text{nF}$

Endurance:

Test conditions

Temperature: $+85^{\circ}\text{C}\pm2^{\circ}\text{C}$ Test duration: 2000 h
Voltage applied: 1.5xV_{R}

Performance

Capacitance change |∆C/C|: ≤0.5% +1pF

DF change ($\Delta t g \delta$): $\leq 20 x 10^{-4} \text{ for C} \leq 0.1 \mu F$

 $\leq 30 \times 10^{-4}$ for C $> 0.1 \mu$ F measured at 100kHz.

The typical capacitance variation after 8000 hours

is±0.6%

Resistance to soldering heat:

Test conditions

Solder bath temperature: +260°C±5°C Dipping time (with heat screen):5 s±1 s

Performance

Capacitance change |∆C/C|: ≤0.5% +1pF

Thermal shock:

Test conditions

Temperature: -40°C ...+85°C

Cycles: nr. 5

Performance

Capacitance change |∆C/C|: ≤0.5% +1pF

Long term stability:

Test conditions

Temperature: +40°C±2°C
Relative humidity (RH): 70% max
Test duration: 2 years

Performance

Capacitance change |∆C/C|: ≤0.5% +1pF

RELIABILITY:

KP	MKP
ZR	ZR
Z = 30 FIT	Z = 80 FIT
R = 10 ⁵ hours	R = 10⁵ hours

¹ FIT = 1x10⁻⁹ failure/comp.x h.

05/2007 150