CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

EXAMPLE: ANALYSIS

$$T_A = x_1 Q_B$$
 $Q_A(t+1) = Q_A(t) \oplus x_1 Q_B(t)$
 $T_B = x_0 Q_A$ $Q_B(t+1) = Q_B(t) \oplus x_0 Q_A(t)$
 $z(t) = x_1(t) Q'_B(t)$

• STATE-TRANSITION AND OUTPUT FUNCTIONS

PS		Inp	out					
Q_AQ_B		x_1	x_0		x_1x_0			
	00	01	10	11	00	01	10	11
00	00	00	00	00	0	0	1	1
01	01	01	11	11	0	0	0	0
10	10	11	10	11	0	0	1	1
11	11	10	01	00	0	0	0	0
		Q_A	$\overline{Q_B}$			Ź	z	
		N	S			Out	put	

• CODING:

_	Q_B	l	-	$\overline{x_1}$	x_0	x
0	0	S_0	-	0	0	\overline{a}
0	0 1 0	S_1			1	
1	0	S_2		1	0	c
1	1	S_3		1	1	d

HIGH-LEVEL DESCRIPTION:

Input: $x(t) \in \{a, b, c, d\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

Functions: The state-transition and output functions

PS		x				x			
	a	b	c	d	a	b	c	d	
S_0	S_0	S_0	S_0	S_0	0	0	1	1	
S_1	S_1	S_1	S_3	S_3	0	0	0	0	
S_2	S_2	S_3	S_2	S_3	0	0	1	1	
S_3	1777	S_2							
	NS				;	z			

State Diagram

EXAMPLE: ANALYSIS

$$J_A = x'Q'_B + xQ_A$$

 $J_B = Q_A$
 $Q_A(t+1) = Q_AK'_A + Q'_AJ_A$
 $= Q_AQ'_B + Q'_A(x'Q'_B + xQ_A)$
 $= Q'_B(Q_A + x')$
 $X_B = x'Q'_A$
 $Z = Q_A + Q'_B$
 $Q_B(t+1) = Q_BK'_B + Q'_BJ_B$

• STATE-TRANSITION AND OUTPUT FUNCTIONS

PS	N	Output	
	x = 0	x = 1	\overline{z}
Q_AQ_B	Q_AQ_B	Q_AQ_B	
00	10	00	1
01	00	01	0
10	11	11	1
11	01	01	1

• STATE CODING

$\overline{Q_A}$	Q_B	S
0	0	S_0
0	1	S_1
1	0	S_2
1	1	S_3

HIGH-LEVEL DESCRIPTION

Input: $x(t) \in \{0, 1\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

Functions: The state-transition and output functions

PS	Input					
	x = 0	x = 1				
S_0	S_2	S_0	1			
S_0 S_1	S_0	S_1	0			
S_2	S_3	S_3	1			
S_3	S_1	S_1	1			
	N	S	2			

State Diagram

EXAMPLE: DESIGN MODULO-5 COUNTER

USE T FLIP-FLOPS

Input: $x(t) \in \{0, 1\}$

Output: $z(t) \in \{0, 1, 2, 3, 4\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3, S_4\}$

Initial state: $s(0) = S_0$

Functions: Counts modulo-5, i.e.,

(0,1,2,3,4,0,1,2,3,4,0...),

State Diagram:

z	z_2	z_1	z_0
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0

PS	Inp	out	Input		
$Q_2Q_1Q_0$	x = 0	x = 1	x = 0	x = 1	
000	000	001	000	001	
001	001	010	000	011	
010	010	011	000	001	
011	011	100	000	111	
100	100	000	000	100	
	N	S	T_2T	T_1T_0	

$$T_0$$
: X
 $0 \ 1 \ 1 \ 0$
 $0 \ 1 \ 1 \ 0$
 Q_2
 $0 \ 0 \ - \ - \ Q_0$

$$T_2 = T_1 = T_0 =$$

Example: Pattern Detector

Input: $x(t) \in \{0, 1\}$ Output: $z(t) \in \{0, 1\}$

Function:
$$z(t) = \begin{cases} 1 & \text{if } x(t-3,t) = 1101 \\ 0 & \text{otherwise} \end{cases}$$

BINARY DECODERS

HIGH-LEVEL DESCRIPTION:

Inputs: $\underline{x} = (x_{n-1}, \dots, x_0), x_j \in \{0, 1\}$

Enable $E \in \{0,1\}$

Outputs: $\underline{y} = (y_{2^{n}-1}, \dots, y_{0}), y_{i} \in \{0, 1\}$

Function: $y_i = \begin{cases} 1 & \text{if } (x=i) \text{ and } (E=1) \\ 0 & \text{otherwise} \end{cases}$

3-INPUT BINARY DECODER

E	x_2	x_1	x_0	x	y_7	y_6	y_5	y_4	y_3	y_2	y_1	y_0
1	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	1	1	0	0	0	0	0	0	1	0
1	0	1	0	2	0	0	0	0	0	1	0	0
1	0	1	1	3	0	0	0	0	1	0	0	0
1	1	0	0	4	0	0	0	1	0	0	0	0
1	1	0	1	5	0	0	1	0	0	0	0	0
1	1	1	0	6	0	1	0	0	0	0	0	0
1	1	1	1	7	1	0	0	0	0	0	0	0
0	_	-	-	ı	0	0	0	0	0	0	0	0

BINARY SPECIFICATION:

 $\begin{array}{ll} \text{Inputs:} & \underline{x}=(x_{n-1},\ldots,x_0), \quad x_j \in \{0,1\} \\ & E \in \{0,1\} \\ \text{Outputs:} & \underline{y}=(y_{2^n-1},\ldots,y_0), \quad y_i \in \{0,1\} \end{array}$

IMPLEMENTATION OF 2-INPUT DECODER

$$y_0 = x_1' x_0' E$$
 $y_1 = x_1' x_0 E$ $y_2 = x_1 x_0' E$ $y_3 = x_1 x_0 E$

DECODER USES

Clicker Question

Which one is correct?

- A) $Z_1 = x_2 x_1' x_0 + x_2 x_1 x_0$
- B) $Z_1 = x_2' x_1 x_0 + x_2' x_1' x_0'$
- C) $Z_0 = x_2 x_1 x_0 + x_2 x_1' x_0'$
- D) $Z_2 = x_2' x_1' x_0 + x_2 x_1' x_0$
- E) none

Example

$x_2x_1x_0$	z_2	z_1	z_0
000	0	1	0
001	1	0	0
010	0	0	1
011	0	1	0
100	0	0	1
101	1	0	1
110	0	0	0
111	1	0	0

Coincident Decoder

Tree Decoder

EXAMPLE: 6-INPUT DECODER

