CSE 431/531: Algorithm Analysis and Design (Fall 2024) Graph Basics

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

Outline

- Graph Basics
 - Graph Notations
 - Types of Graphs

2 Connectivity and Graph Traversal

Outline

- Graph Basics
 - Graph Notations
 - Types of Graphs

2 Connectivity and Graph Traversal

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs

(Undirected) Graph G = (V, E)

- V: set of vertices (nodes);
- ullet E: pairwise relationships among V;
 - \bullet (undirected) graphs: relationship is symmetric, E contains subsets of size 2

(Undirected) Graph G = (V, E)

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- ullet E: pairwise relationships among V;
 - \bullet (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{3,7\},\{3,8\},\{4,5\},\{5,6\},\{7,8\}\}$

Directed Graph G = (V, E)

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- ullet E: pairwise relationships among V;
 - ullet directed graphs: relationship is asymmetric, E contains ordered pairs

Directed Graph G = (V, E)

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- ullet E: pairwise relationships among V;
 - ullet directed graphs: relationship is asymmetric, E contains ordered pairs
 - $E = \{(1,2), (1,3), (3,2), (4,2), (2,5), (5,3), (3,7), (3,8), (4,5), (5,6), (6,5), (8,7)\}$

Abuse of Notations

- For (undirected) graphs, we often use (i,j) to denote the set $\{i,j\}$.
- We call (i, j) an unordered pair; in this case (i, j) = (j, i).

• $E = \{(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7), (3,8), (4,5), (5,6), (7,8)\}$

- Social Network : Undirected
- Transition Graph: Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected

Representation of Graphs

_				4				
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
	0					0	0	1
8	0	0	1	0	0	0	1	0

- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - ullet A is symmetric if graph is undirected

Representation of Graphs

1: 2 3 6: 5
2: 1 3 4 5 7 8
3: 1 2 5 7 8
4: 2 5 8: 3 7

5: 2-3-4-6

- Adjacency matrix
 - $n \times n$ matrix, A[u,v]=1 if $(u,v) \in E$ and A[u,v]=0 otherwise
 - A is symmetric if graph is undirected
- Linked lists
 - ullet For every vertex v, there is a linked list containing all neighbors of v.

Representation of Graphs

- 1: 2 3 6: 5 2: 1 3 4 5 7: 3 8 3: 1 2 5 7 8 8: 3 7
- $5{:}\, \boxed{2\,\,|\,3\,\,|\,4\,\,|\,6\,\,} \qquad d:(2,4,5,2,4,1,2,2)$

- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - A is symmetric if graph is undirected
- Linked lists
 - ullet For every vertex v, there is a linked list containing all neighbors of v.
 - When graph is static, can use array of variant-length arrays.

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage		
time to check $(u,v) \in E$		
time to list all neighbors of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	
time to check $(u,v)\in E$		
time to list all neighbors of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$		
time to list all neighbors of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	
time to list all neighbors of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbors of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbors of \boldsymbol{v}	O(n)	

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbors of \boldsymbol{v}	O(n)	$O(d_v)$

Outline

- Graph Basics
 - Graph Notations
 - Types of Graphs

Connectivity and Graph Traversal

Path Graph (or Linear Graph)

Def. An undirected graph G=(V,E) is a path if the vertices can be listed in an order $\{v_1,v_2,...,v_n\}$ such that the edges are the $\{v_i,v_{i+1}\}$ where i=1,2,...,n-1.

Path graphs are connected graphs.

Cycle Graph (or Circular Graph)

Def. An undirected graph G=(V,E) is a cycle if its vertices can be listed in an order $v_1,v_2,...,v_n$ such that the edges are the $\{v_i,v_{i+1}\}$ where i=1,2,...,n-1, plus the edge $\{v_n,v_1\}$.

• The degree of all vertices is 2.

Tree

Def. An undirected graph G=(V,E) is a tree if any two vertices are connected by exactly one path. Or the graph is a connected acyclic graph.

 Most important type of special graphs: most computational problems are easier to solve on trees or lines.

Complete Graph

Def. An undirected graph G=(V,E) is a complete graph if each pair of vertices is joined by an edge.

• A complete graph contains all possible edges.

Planar Graph

Def. An undirected graph G = (V, E) is a planar graph if its vertices and edges can be drawn in a plane such that no two of the edges intersect.

 Most computational problems have good solutions in a planar graph.

Directed Acyclic Graph (DAG)

Def. A directed graph G=(V,E) is a directed acyclic graph if it is a directed graph with no directed cycles

• DAG is equivalent to a partial ordering of nodes.

Bipartite Graph

Def. An undirected graph G=(V,E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u,v)\in E$, either $u\in L,v\in R$ or $v\in L,u\in R$.

Outline

- Graph Basics
 - Graph Notations
 - Types of Graphs

Connectivity and Graph Traversal

Connectivity Problem

Input: graph G = (V, E), (using linked lists)

two vertices $s,t\in V$

Output: whether there is a path connecting s to t in G