Basic Data Concepts:

Relational Data Models

Objectives

Objective
Utilize relational
model and relational
algebra

Relational Data Model

A relational database consists of a collection of tables, each of which is assigned a unique name

Relational Data Model

Domains

Let D₁,D₂,...,D_n be
 sets of atomic values

N-Tuple

- ordered sequence $(d_1,d_2,...,d_n)$ s.t. $d_i \in D_i$

Relation

- n attributes is a set of n-tuples, which is a subset of the Cartesian product of the domains of the attributes
- D₁ × ... × D₁ where D₁
 is the domain of the
 in attribute

Relational Database

A relational database is a set of relations.

- The tuples in a relation are unordered.
- There are no duplicate elements in a set

Algorithm

- |D_i| denote the cardinality (number of values) of domain D_i
- Cartesian product:
 |D₁| * |D₂| * ... * |D_n|

Example Relation

ID	Name	Major
1111	Student1	CSE
2222	Student2	EEE
3333	Student3	CSE
4444	Student4	EEE
5555	Student5	CSE

Query Language

Procedural/Imperative Language

Instructs the system to perform a sequence of operators to compute a result

Relational Algebra

Non-Procedural/Declarative Language

Tells what data is to be retrieved but does not tell the system how to retrieve the data

Relational Calculus SQL