大语言模型

轻量化微调

《大语言模型》编写团队: 唐天一

轻量化微调

▶ 训练时每张GPU显存占用计算公式:

- > 轻量化微调的目的
 - >减少模型训练参数量,从而降低显存占用
 - ▶同时尽可能接近全量微调的性能

冻结LLM参数,只微 调极少额外参数

► LoRA 更新参数W 过程如下

$$\triangleright W \leftarrow W + \Delta W = W + A \cdot B^T$$

- ► LoRA 微调显存占用情况
 - ▶ 模型: 2P + 2P_{LoRA}, 梯度: 2P_{LoRA}, 优化器: 12P_{LoRA}
 - ► 从 16P 减为 2P + 16P_{LoRA}

- \triangleright LoRA 用于注意力层的线性变换 W^{K} 和 W^{V}
 - $\phi_{LoRA} = 2 * 2LHR + 2 * 2LHR = 8LHR$ (R通常取16)
- \triangleright 以 LLaMA 7B 为例, $\phi \approx 6.7 \times 10^9$, $\phi_{LoRA} \approx 1.7 \times 10^7$, $\phi_{LoRA} \ll \phi$
 - ▶ 模型和优化器占用从 16P 降至 2P
 - ➤ 3090 24G 可以微调 7B 模型
- ➤ QLoRA: 量化参数矩阵, 用 4 比特存储模型参数
 - ▶ 模型占用从 2P 降至 0.5P
 - ➤ A6000 48G 可以微调 65B 模型

指令微调的资源开销

- ▶ LoRA微调 Alpaca-52K 所需的 A800 (80 G) 数量、批次大小和微调时间
 - ▶使用数据并行、ZeRO-3、BF16和激活重计算技术

模型	GPU 数量	批次大小	时间
LLaMA (7 B)	1	16	2.3 h
LLaMA (13 B)	1	8	3.8 h
LLaMA (33 B)	1	1	10.2 h
LLaMA (65 B)	2	1	26.0 h

> SFT 以及 LoRA 在下游应用中的适配

其他轻量化微调方法

- ▶ 适配器微调(Adaptor tuning)
- > 引入小型神经网络模块
- $\triangleright h = h + \sigma(h \cdot W^d) \cdot W^u$
 - $\succ W^d \in \mathbb{R}^{H \times R}, \ W^u \in \mathbb{R}^{R \times H}, \ R \ll H$

其他轻量化微调方法

- ▶前缀微调(Prefix tuning)
 - ▶在多头注意力层中添加前缀参数
- \triangleright Attention $(XW^Q, P^K \oplus XW^K, P^V \oplus XW^V)P^K, P^V \in \mathbb{R}^{L \times H}, L \otimes \mathbb{R} \otimes \mathbb{R}$

Prefix-Tuning: Optimizing Continuous Prompts for Generation, ACL 2021

其他轻量化微调方法

入不同轻量化方法的对比

- ▶ 适配器微调: 每层都加一个小网络, 加在两个核心组件后面
- ▶前缀微调:每层输入都加入prompt向量
- ▶ 提示微调: 只在输入层加入prompt向量
- ▶ LoRA 微调: 低秩分解学习权重增量部分

大语言模型

谢谢