

Service Request No:R1807955

Russell Anderson Casella Waste - Hyland 4 Chenell Drive Suite 200 Concord, NH 03301

Laboratory Results for: Hyland Facility - Baseline Parameters

Dear Russell,

Enclosed are the results of the sample(s) submitted to our laboratory August 21, 2018 For your reference, these analyses have been assigned our service request number **R1807955**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7472. You may also contact me via email at Janice.Jaeger@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Janice Jaeger Project Manager

Jaman Story

CC: Jon Brandes

Narrative Documents

Client: Casella Waste Systems (Hampden ME) Service Request: R1807955

Project: Hyland Facility - Baseline Parameters Date Received: 08/21/2018

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV, validation deliverables including all summary forms and associated raw data. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt:

One water sample was received for analysis at ALS Environmental on 08/21/2018. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The sample was received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Metals:

Method 6010C, R1807955-001: The Relative Percent Difference (RPD) for the serial dilution test of one or more analytes was above the method control limits which indicates the presence of physical or chemical interference for analysis of these analytes in this sample matrix. Exceedances have been flagged.

General Chemistry:

Method SM5210B, R1807955-001: The sample was initially analyzed within holding time, however the dilution series did not meet the limit for residual oxygen of at least 1 mg/L. The sample was repeated out of holding time. Both results are reported and should be considered as estimated.

Volatiles by GC/MS:

Approved by

No significant anomalies were noted with this analysis.

Jaman Say

Date 09/21/2018

Sample Receipt Information

Client: Casella Waste Systems (Hampden ME) Service Request:R1807955

Project: Hyland Facility - Baseline Parameters

SAMPLE CROSS-REFERENCE

 SAMPLE #
 CLIENT SAMPLE ID
 DATE
 TIME

 R1807955-001
 Condensate-0818
 8/20/2018
 1010

A	Client:	Cas	ella	/On-	-Site					·			С	Н	Α	N	0	f	С	U S	S T	0	D	Υ			Page/_ of/_
ALS				rdma , NY							Proj	ect:		Н	ylaı	nd F	aci	lity	- B	asel	ine	Par	am	ete	rs		Method of Shipment
ALS-Environmental 1565 Jefferson Rd, Bldg 300, Suite 360	Project Manager			nde			n B	rand	des		Telephone No. Email: jonb@on-sitehs.com							ups									
Rochester, NY 14623 585.288.5380			,	К.	-1-1-		_ n_				-			,		,						<u> </u>		,			Special Detection Limit/Reporting
	1			IVI	atrix		Pr	sv.	1		l			ļ					<u>a</u>			1					
Sample I.D.	Lab Sample No.	No. of Containers	Soil	Water	Air	Other	Yes	2	Sampling Date	Sampling Time	GC;MS VOC's 8260 (HCI)	BOD (NP)	T-Cn (NaOH)	Alkalinity (NP)	Total Color (NP)	T-Metals (Baseline) (HNO3)	Hardness (HNO3)	TOC & Phenois (H2SO4)	TDS, Cr+6, NO3, Br, Cl, SO4 (NP)	NH3, TKN, COD (H2SO4)							PDF to Lance and On- Site, and EDD to On-Site.
Condensate-0818		//		X			X	X	8-20-18	1010	X	X	X	X	Х	X	X	X	X	X							
<u> </u>																-	ļ	_			\dashv					\vdash	1
																-										-	1
											ļ																
*								_			-				_	_					\dashv	\dashv] ဖ
											 										\dashv	_				\vdash	×
•]~
											-				_	_						\dashv				╁	¥ ¥
		 	.												-						\dashv					 	
																											<u></u>
:		<u> </u>	<u>.</u>					<u> </u>							<u></u>	<u></u>											1
	No			Date			Tim		Temperatur		(C:	- D	Osia t	Ice				No	ice								
Reling, by sampler (Sign & Print Name)	Dyte			8-3	201		1 11171		45	Received b		gn &	Print	wam	ie)												Lab Work No.
Relinquished by				Date	•		Tɨm	е		Received b	у																
Relinquished by				Date	•		Tim	e	-	Received b	y			_]
Relinquished by				Date)		Tim	е		Received b	y lab	oraro	7	5* <u> </u>				Date	Ilir	/	,:	Time		##	ن -		
· · · · · · · · · · · · · · · · · · ·					*					0					•			1	/ · ·		1	Rigin	elle V nd F		79 : 数: 	5:	5 Parameters

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r16.dec

Cooler Receipt and Preservation Check Form

3/12/18

Project/Clie	ent				Folde	er Number				<u></u>					
Cooler receive	111	118	by:		_	COURIER:	ALS (UPS	FEDE	X VEL	OCI	TY	CLIE	NT	
1 Were Cu	stody seals on	outside of cooler	r?	(N (Y	5a Perch	lorate s	amples	have rec	uired he	adsp	ace?	Ī	Y N	1 (NA)
2 Custody	papers proper	ly completed (in	k, signe	d)? (Ý) N	5b Did V	OA via	s, Alk,c	r Sulfide	e have si	g* b	ubble	es? (\(\bar{Y}\)	NA NA
3 Did all bo	ottles arrive in	good condition (unbrok	en)? (N	6 Where	did the	bottles	originat	e?	Αſ	.S/RC	<u></u>	CLIE	NT
		Ice Gel packs	prese		N	i		eived as			ncor	e	5035s	et (1	V)
3. Temperatur	e Readings	Date: 8/2/	18	Time:	11.45	ID:	K#)	IR#9		From:	Ter	np B	ank	Samp	ole Bottle
Observed Te	emp (°C)	14,7		4.9		7.4									
Correction F		+1.0		+1.0											
Corrected Te		5.4		5.9	1	1.8									
	Type of bottle	cursu.		$\frac{1}{2}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Within 0-6°0		(Y) N		(Y)	N '	W W	Y	N	Y	N		Z N		Y	
If<0°C, wer	e samples froz	en? Y N		Y	N	Y N	Y	N	Y	N	}	/ N	J	Y	N
&Client A	Approval to R	note packing/iconsum Samples:	e condi LOL	Stand	ding App			at drop-	•	escribed ient noti		-		Same I	Day Rule
(Section Street)	· 我	第一种作用的操作与使力电影	rija Kayas	.450 PK 57	September 2	earnissee a - ank	Color digram	14 Sept. 18	A STATE OF THE	eco exc.	, e,	学大学 "虚	a reger	HELDES.	The Family
9. V 10. E 11. V	Vere all bottle Did all bottle la Vere correct co	ervation Check** labels complete (bels and tags agr ontainers used for	(i.e. ana ee with the test	lysis, p custoo ts indi	dy paper: cated?		/3	555 (§ & (¥	by: ES ES	NO NO NO					
		s acceptable (no						_	ES	NO	_		(N/A	
13. A	Air Samples: C	assettes / Tubes	Intact v	vith M	1S? C	anisters Pressur			redlar®	Bags Inf	late		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N/A	Final
	Air Samples: C Lot of test		Intact v	vith M		anisters Pressur	Exp	Sampl	redlar® e ID	Bags Inf Vol.			Adde	N/A N/A	Final
13. A	Air Samples: C Lot of test paper	Reagent	Preserv Yes	vith M	IS? Ca	anisters Pressur ceived	Exp		redlar® e ID	Bags Inf			Added	N/A N/A	Final pH
13. A pH ≥12	Air Samples: C Lot of test	Reagent NaOH	Intact v	vith M	IS? Carlot Rec	anisters Pressur ceived 90853		Sampl	redlar® e ID	Bags Inf Vol.			Added	N/A	
13. A pH ≥12 ≤2	Air Samples: C Lot of test paper	Reagent NaOH HNO3	Preserv Yes	vith M ved? No	IS? Carlot Rec	anisters Pressur ceived	Exp	Sampl Adjus	redlar® e ID	Bags Inf Vol.		Lot A			
13. A pH ≥12	Air Samples: C Lot of test paper	Reagent NaOH	Preserv Yes	vith M ved? No	IS? Carlot Rec	anisters Pressur ceived 90853	Exp	Sampl Adjus	redlar® e ID ted	Bags Inf Vol.		Lot A	Added		
13. A pH ≥12 ≤2 ≤2	Air Samples: C Lot of test paper	Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest	Preserv Yes	vith M ved? No	Lot Red	anisters Pressur ceived 90853 2055 00072 tify for 3day	Exp	Sampl Adjus	redlar® e ID ted	Bags Inf Vol.		Lot A			
13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	Air Samples: C Lot of test paper	Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest FOCN Pheriol, 625,	Preserv Yes	vith M ved? No	IS? Care Lot Real Part I Part	anisters Pressur ceived 90853 2055 00042	Exp	Sampl Adjus	redlar® e ID ted	Bags Inf Vol.		Lot A			
13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual	Air Samples: C Lot of test paper	Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN	Preserv Yes	vith M ved? No	IS? Care Lot Real Part I Part	anisters Pressur ceived 90863 10062 tify for 3day tact PM to add 1625, 608,	Exp	Sampl Adjus	redlar® e ID ted	Bags Inf Vol.		Lot A			
13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	Air Samples: C Lot of test paper	Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN Phenol, 625, 608pest, 522	Preserv Yes	vith M ved? No	IS? Care Lot Real Part I Part	anisters Pressur ceived 90863 10062 tify for 3day tact PM to add 1625, 608,	Exp	Sampl Adjus	rediar® e ID ted	Bags Inf Vol. Added	nu ;	Lot a	lyusi	dusis.	рН
13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	Air Samples: C Lot of test paper	Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	Preserv Yes	vith M ved? No	IS? Carlot Real Part Annual Pa	anisters Pressur ceived 90853 1055 10042 tify for 3day tact PM to add 1625, 608, corbic (phenol).	Exp	Sampl Adjus	rediar® e ID ted supple	Bags Inf Vol. Added	test test	Lot A	lyusi	dusis.	рН
13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-) Bottle lot Explain al	numbers: Discrepancie	Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN Phenot, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate	Preserve Yes Ves Ves Ves Ves Ves Ves Ves	with M ved? No - ** IF-6	No=Not If +, con Na ₂ S ₂ O ₃ CN), asc	anisters Pressur ceived 90853 1055 00042 tify for 3day tact PM to add (625, 608, corbic (phenol).	Exp 6/19	**VOA Otherw are chec	redlar® e ID ted s and 166 ise, all botcked (not j	Bags Inf Vol. Added well Audie 4 Not to be titles of all: just represent	test test	ed befiles with ves).	lyusi	lysis. S BU FL D HC LL SU	pH servatives JLK DT GFB 3541 BB ARRS

Miscellaneous Forms

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Approved	New Jersey ID # NY004	294100 A/B
DoD ELAP #65817	New York ID # 10145	Pennsylvania ID# 68-786
Florida ID # E87674	North Carolina #676	Rhode Island ID # 158
		Virginia #460167

¹ Analyses were performed according to our laboratory NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alselobal.com/locations/americas/north-america/usa/new-vork/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Client: Casella Waste Systems (Hampden ME) Service Request: R1807955

Project: Hyland Facility - Baseline Parameters

 Sample Name:
 Condensate-0818
 Date Collected:
 08/20/18

 Lab Code:
 R1807955-001
 Date Received:
 08/21/18

Sample Matrix: Water

Analysis Method	Extracted/Digested By	Analyzed By
351.2	NSMITH	GNITAJOUPPI
410.4		JQUACKENBUSH
7196A		MROGERSON
8260C		KRUEST
9012B	MROGERSON	GNITAJOUPPI
9056A		BKALKMAN
9066		BBOWE
ASTM D6919-09		BKALKMAN
SM 2120 B-2001(2011)		BKALKMAN
SM 2320 B-1997(2011)		CWOODS
SM 2340 B-1997(2011)		NA
SM 2540 C-1997(2011)		KAWONG
SM 5210 B-2001(2011)		AFELSER
SM 5310 C-2000(2011)		CWOODS

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

Sample Results

Volatile Organic Compounds by GC/MS

Analytical Report

Client:Casella Waste Systems (Hampden ME)Service Request:R1807955Project:Hyland Facility - Baseline ParametersDate Collected:08/20/18 10:10Sample Matrix:WaterDate Received:08/21/18 15:45

 Sample Name:
 Condensate-0818
 Units: ug/L

 Lab Code:
 R1807955-001
 Basis: NA

Volatile Organic Compounds by GC/MS using NYS DEC ASP HT

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1,2-Tetrachloroethane	130 U	130	6.3	25	08/23/18 13:25	
1,1,1-Trichloroethane (TCA)	130 U	130	6.3	25	08/23/18 13:25	
1,1,2,2-Tetrachloroethane	130 U	130	5.0	25	08/23/18 13:25	
1,1,2-Trichloroethane	130 U	130	6.3	25	08/23/18 13:25	
1,1-Dichloroethane (1,1-DCA)	130 U	130	5.0	25	08/23/18 13:25	
1,1-Dichloroethene (1,1-DCE)	130 U	130	7.0	25	08/23/18 13:25	
1,2,3-Trichloropropane	130 U	130	8.3	25	08/23/18 13:25	
1,2-Dibromo-3-chloropropane (DBCP)	130 U	130	12	25	08/23/18 13:25	
1,2-Dibromoethane	130 U	130	5.0	25	08/23/18 13:25	
1,2-Dichlorobenzene	130 U	130	5.0	25	08/23/18 13:25	
1,2-Dichloroethane	130 U	130	5.0	25	08/23/18 13:25	
1,2-Dichloropropane	130 U	130	5.3	25	08/23/18 13:25	
1,4-Dichlorobenzene	21 J	130	6.0	25	08/23/18 13:25	
2-Butanone (MEK)	5000	250	20	25	08/23/18 13:25	
2-Hexanone	28 ј	250	8.5	25	08/23/18 13:25	
4-Methyl-2-pentanone	160 J	250	7.3	25	08/23/18 13:25	
Acetone	4400	250	53	25	08/23/18 13:25	
Acrylonitrile	2500 U	2500	21	25	08/23/18 13:25	
Benzene	8.8 J	130	5.0	25	08/23/18 13:25	
Bromochloromethane	130 U	130	8.3	25	08/23/18 13:25	
Bromodichloromethane	130 U	130	7.8	25	08/23/18 13:25	
Bromoform	130 U	130	9.0	25	08/23/18 13:25	
Bromomethane	130 U	130	18	25	08/23/18 13:25	
Carbon Disulfide	10 J	250	7.8	25	08/23/18 13:25	
Carbon Tetrachloride	130 U	130	8.5	25	08/23/18 13:25	
Chlorobenzene	130 U	130	5.0	25	08/23/18 13:25	
Chloroethane	130 U	130	5.8	25	08/23/18 13:25	
Chloroform	130 U	130	7.0	25	08/23/18 13:25	
Chloromethane	130 U	130	7.0	25	08/23/18 13:25	
Dibromochloromethane	130 U	130	5.0	25	08/23/18 13:25	
Dibromomethane	130 U	130	5.0	25	08/23/18 13:25	
Methylene Chloride	130 U	130	12	25	08/23/18 13:25	
Ethylbenzene	41 J	130	5.0	25	08/23/18 13:25	
Iodomethane	250 U	250	30	25	08/23/18 13:25	
Styrene	9.4 J	130	5.0	25	08/23/18 13:25	
Tetrachloroethene (PCE)	130 U	130	7.0	25	08/23/18 13:25	
Toluene	75 ј	130	5.0	25	08/23/18 13:25	
Trichloroethene (TCE)	130 U	130	5.0	25	08/23/18 13:25	
Trichlorofluoromethane (CFC 11)	130 U	130	6.8	25	08/23/18 13:25	
Vinyl Acetate	250 U	250	33	25	08/23/18 13:25	
Vinyl Chloride	130 U	130	5.5	25	08/23/18 13:25	
cis-1,2-Dichloroethene	130 U	130	6.5	25	08/23/18 13:25	
cis-1,3-Dichloropropene	130 U	130	7.5	25	08/23/18 13:25	

Printed 9/21/2018 11:01:24 AM

Analytical Report

Client:Casella Waste Systems (Hampden ME)Service Request:R1807955Project:Hyland Facility - Baseline ParametersDate Collected:08/20/18 10:10

Sample Matrix: Water Date Received: 08/21/18 15:45

 Sample Name:
 Condensate-0818
 Units: ug/L

 Lab Code:
 R1807955-001
 Basis: NA

Volatile Organic Compounds by GC/MS using NYS DEC ASP HT

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
m,p-Xylenes	78 Ј	130	5.3	25	08/23/18 13:25	
o-Xylene	35 J	130	5.0	25	08/23/18 13:25	
trans-1,2-Dichloroethene	130 U	130	6.5	25	08/23/18 13:25	
trans-1,3-Dichloropropene	130 U	130	7.5	25	08/23/18 13:25	
trans-1,4-Dichloro-2-butene	130 U	130	8.5	25	08/23/18 13:25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	08/23/18 13:25	
Dibromofluoromethane	106	89 - 119	08/23/18 13:25	
Toluene-d8	103	87 - 121	08/23/18 13:25	

Metals

METALS - 1 INORGANIC ANALYSIS DATA PACKAGE

Client: Casella Waste Systems (Hampden M Service Request: Condensate-0818

Project No.: R1807955 Date Collected: 8/20/2018

Project Name: Date Received: 8/21/2018

Matrix: WATER Units: ug/L

Basis:

Sample Name: Condensate-0818 Lab Code: R1807955-001

	Analysis			Dil.			
Analyte	Method	PQL	MDL	Factor	Result	С	Q
Aluminum	6010C	100	64.0	1.0	7650		
Antimony	6010C	60.0	5.8	1.0	88.2		
Arsenic	6010C	10.0	3.9	1.0	261		E
Barium	6010C	20.0	6.9	1.0	330		
Beryllium	6010C	3.0	0.220	1.0	0.400	J	
Boron	6010C	200	16.0	1.0	18.5	J	
Cadmium	6010C	5.0	0.590	1.0	5.0	ŭ	
Mercury	7470A	0.200	0.077	1.0	7.6		
Calcium	6010C	1000	220	1.0	4070		
Chromium	6010C	10.0	1.4	1.0	13.0		
Cobalt	6010C	50.0	1.8	1.0	5.9	J	
Copper	6010C	20.0	6.3	1.0	22.5		
Iron	6010C	100	48.0	1.0	13800		
Lead	6010C	50.0	2.5	1.0	12.1	J	
Magnesium	6010C	1000	130	1.0	2420		
Manganese	6010C	10.0	5.1	1.0	270		
Nickel	6010C	40.0	2.6	1.0	7.6	J	
Potassium	6010C	2000	200	1.0	1560	J	
Selenium	6010C	10.0	4.6	1.0	10.0	Ū	
Silver	6010C	10.0	0.570	1.0	10.0	Ū	
Sodium	6010C	1000	170	1.0	356	J	
Thallium	6010C	10.0	6.6	1.0	10.0	U	
Vanadium	6010C	50.0	1.7	1.0	14.3	J	
Zinc	6010C	20.0	9.4	1.0	681		

% Solids: 0.0

Comments:

General Chemistry

Analytical Report

Client: Casella Waste Systems (Hampden ME) **Project:**

Hyland Facility - Baseline Parameters

Sample Matrix: Water

Condensate-0818

Sample Name: Lab Code:

R1807955-001

Service Request: R1807955

Date Collected: 08/20/18 10:10

Date Received: 08/21/18 15:45

Basis: NA

Inorganic Parameters

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Alkalinity, Total as CaCO3	SM 2320 B-1997(2011)	4920	mg/L	8.0	4.0	4	08/28/18 05:18	NA	
Ammonia as Nitrogen, undistilled	ASTM D6919-09	1850	mg/L	15	3	3000	09/12/18 04:43	NA	
Biochemical Oxygen Demand									
(BOD)	SM 5210 B-2001(2011)	>1200	mg/L	2.0	-	1	08/22/18 09:39	NA	
Biochemical Oxygen Demand									
(BOD)	SM 5210 B-2001(2011)	2630	mg/L	20	-	10	08/29/18 13:55	NA	*
Bromide	9056A	1.0 U	mg/L	1.0	0.4	10	08/21/18 18:43	NA	
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	65	mg/L	10	0.5	10	09/07/18 14:57	NA	
Chemical Oxygen Demand, Total	410.4	4040	mg/L	50	33	10	09/14/18 16:47	NA	
Chloride	9056A	2.0 U	mg/L	2.0	0.2	10	08/21/18 18:43	NA	
Chromium, Hexavalent	7196A	0.10 U	mg/L	0.10	0.04	10	08/21/18 19:06	NA	
Color, True	SM 2120 B-2001(2011)	280	ColorUnits	10	-	10	08/21/18 17:20	NA	
Cyanide, Total	9012B	0.010 U	mg/L	0.010	0.002	1	08/28/18 12:38	08/27/18	
Hardness, Total as CaCO3	SM 2340 B-1997(2011)	20.1	mg/L	6.62	-	1	NA	NA	
Nitrate as Nitrogen	9056A	1.0 U	mg/L	1.0	0.04	10	08/21/18 18:43	NA	
Nitrogen, Total Kjeldahl (TKN)	351.2	1470	mg/L	80	30	4	09/11/18 12:34	09/10/18	
pH of Color Analysis	SM 2120 B-2001(2011)	8.16	pH Units	-	-	10	08/21/18 17:20	NA	
Phenolics, Total Recoverable	9066	4.95	mg/L	0.50	0.19	100	08/30/18 13:45	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	135	mg/L	59	21	1	08/24/18 12:30	NA	
Sulfate	9056A	73.5	mg/L	2.0	0.2	10	08/21/18 18:43	NA	

QC Summary Forms

Volatile Organic Compounds by GC/MS

QA/QC Report

Client: Casella Waste Systems (Hampden ME) Service Request: R1807955

Project: Hyland Facility - Baseline Parameters

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS using NYS DEC ASP HT

Analysis Method: 8260C

Extraction Method: EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85-122	89-119	87-121
Condensate-0818	R1807955-001	97	106	103
Method Blank	RQ1808803-04	98	108	104
Lab Control Sample	RQ1808803-03	101	107	103

Analytical Report

Client: Casella Waste Systems (Hampden ME) Service Request: R1807955

Project:Hyland Facility - Baseline ParametersDate Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ1808803-04
 Basis: NA

Volatile Organic Compounds by GC/MS using NYS DEC ASP HT

Analysis Method: 8260C **Prep Method:** EPA 5030C

1,1,1,2-Tetrachloroethane 5.0 U 5.0 U 5.0 U 0.25 1 08/23/18 12:32 1,1,1-Trichloroethane (TCA) 5.0 U 5.0 U 0.25 1 08/23/18 12:32 1,1,2,2-Tetrachloroethane 5.0 U 5.0 U 0.20 1 08/23/18 12:32 1,1,2-Trichloroethane 5.0 U 5.0 U 0.25 1 08/23/18 12:32 1,1-Dichloroethane (1,1-DCA) 5.0 U 5.0 U 0.20 1 08/23/18 12:32 1,2,3-Trichloropropane 5.0 U 5.0 U 0.28 1 08/23/18 12:32 1,2-Dibromo-3-chloropropane (DBCP) 5.0 U 5.0 U 0.45 1 08/23/18 12:32
1,1,2,2-Tetrachloroethane 5.0 U 5.0 U 0.20 1 08/23/18 12:32 1,1,2-Trichloroethane 5.0 U 5.0 U 0.25 1 08/23/18 12:32 1,1-Dichloroethane (1,1-DCA) 5.0 U 5.0 U 0.20 1 08/23/18 12:32 1,1-Dichloroethene (1,1-DCE) 5.0 U 5.0 U 0.28 1 08/23/18 12:32 1,2,3-Trichloropropane 5.0 U 5.0 U 0.33 1 08/23/18 12:32 1,2-Dibromo-3-chloropropane (DBCP) 5.0 U 5.0 U 0.45 1 08/23/18 12:32
1,1,2-Trichloroethane 5.0 U 5.0 U 5.0 U 0.25 1 08/23/18 12:32 1,1-Dichloroethane (1,1-DCA) 5.0 U 5.0 U 0.20 I 08/23/18 12:32 1,1-Dichloroethene (1,1-DCE) 5.0 U 5.0 U 0.28 I 08/23/18 12:32 1,2,3-Trichloropropane 5.0 U 5.0 U 0.33 I 08/23/18 12:32 1,2-Dibromo-3-chloropropane (DBCP) 5.0 U 5.0 U 0.45 I 08/23/18 12:32
1,1,2-Trichloroethane 5.0 U 5.0 U 5.0 U 0.25 1 08/23/18 12:32 1,1-Dichloroethane (1,1-DCA) 5.0 U 5.0 U 0.20 1 08/23/18 12:32 1,1-Dichloroethene (1,1-DCE) 5.0 U 5.0 U 0.28 1 08/23/18 12:32 1,2,3-Trichloropropane 5.0 U 5.0 U 0.33 1 08/23/18 12:32 1,2-Dibromo-3-chloropropane (DBCP) 5.0 U 5.0 U 0.45 1 08/23/18 12:32
1,1-Dichloroethane (1,1-DCA) 5.0 U 5.0 U 0.20 1 08/23/18 12:32 1,1-Dichloroethene (1,1-DCE) 5.0 U 5.0 U 0.28 1 08/23/18 12:32 1,2,3-Trichloropropane 5.0 U 5.0 U 0.33 1 08/23/18 12:32 1,2-Dibromo-3-chloropropane (DBCP) 5.0 U 5.0 U 0.45 1 08/23/18 12:32
1,1-Dichloroethene (1,1-DCE) 5.0 U 5.0 U 5.0 U 0.28 I 08/23/18 12:32 1,2,3-Trichloropropane 5.0 U 5.0 U 0.33 I 08/23/18 12:32 1,2-Dibromo-3-chloropropane (DBCP) 5.0 U 5.0 U 0.45 I 08/23/18 12:32
1,2,3-Trichloropropane 5.0 U 5.0 U 0.33 I 08/23/18 12:32 1,2-Dibromo-3-chloropropane (DBCP) 5.0 U 5.0 U 0.45 I 08/23/18 12:32
1,2-Dibromo-3-chloropropane (DBCP) 5.0 U 5.0 0.45 1 08/23/18 12:32
1,2-Dibromoethane 5.0 U 5.0 0.20 1 08/23/18 12:32
1,2-Dichlorobenzene 5.0 U 5.0 0.20 1 08/23/18 12:32
1,2-Dichloroethane 5.0 U 5.0 0.20 1 08/23/18 12:32
1,2-Dichloropropane 5.0 U 5.0 0.21 1 08/23/18 12:32
1,4-Dichlorobenzene 5.0 U 5.0 0.24 1 08/23/18 12:32
2-Butanone (MEK) 10 U 10 0.78 1 08/23/18 12:32
2-Hexanone 10 U 10 0.34 1 08/23/18 12:32
4-Methyl-2-pentanone 10 U 10 0.29 1 08/23/18 12:32
Acetone 10 U 10 2.1 1 08/23/18 12:32
Acrylonitrile 100 U 100 0.84 1 08/23/18 12:32
Benzene 5.0 U 5.0 0.20 1 08/23/18 12:32
Bromochloromethane 5.0 U 5.0 0.33 1 08/23/18 12:32
Bromodichloromethane 5.0 U 5.0 0.31 1 08/23/18 12:32
Bromoform 5.0 U 5.0 0.36 1 08/23/18 12:32
Bromomethane 5.0 U 5.0 0.70 1 08/23/18 12:32
Carbon Disulfide 10 U 10 0.31 1 08/23/18 12:32
Carbon Tetrachloride 5.0 U 5.0 0.34 1 08/23/18 12:32
Chlorobenzene 5.0 U 5.0 0.20 1 08/23/18 12:32
Chloroethane 5.0 U 5.0 0.23 1 08/23/18 12:32
Chloroform 5.0 U 5.0 0.28 1 08/23/18 12:32
Chloromethane 5.0 U 5.0 0.28 1 08/23/18 12:32
Dibromochloromethane 5.0 U 5.0 0.20 1 08/23/18 12:32
Dibromomethane 5.0 U 5.0 0.20 1 08/23/18 12:32
Methylene Chloride 5.0 U 5.0 0.47 1 08/23/18 12:32
Ethylbenzene 5.0 U 5.0 0.20 1 08/23/18 12:32
Iodomethane 10 U 10 1.2 1 08/23/18 12:32
Styrene 5.0 U 5.0 0.20 1 08/23/18 12:32
Tetrachloroethene (PCE) 5.0 U 5.0 0.28 1 08/23/18 12:32
Toluene 5.0 U 5.0 0.20 1 08/23/18 12:32
Trichloroethene (TCE) 5.0 U 5.0 0.20 1 08/23/18 12:32
Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.27 1 08/23/18 12:32
Vinyl Acetate 10 U 10 1.3 1 08/23/18 12:32
Vinyl Chloride 5.0 U 5.0 0.22 1 08/23/18 12:32
cis-1,2-Dichloroethene 5.0 U 5.0 0.26 1 08/23/18 12:32
cis-1,3-Dichloropropene 5.0 U 5.0 0.30 1 08/23/18 12:32

Printed 9/21/2018 11:01:25 AM

Analytical Report

Client: Casella Waste Systems (Hampden ME) Service Request: R1807955

Project:Hyland Facility - Baseline ParametersDate Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ1808803-04Basis: NA

Volatile Organic Compounds by GC/MS using NYS DEC ASP HT

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
m,p-Xylenes	5.0 U	5.0	0.21	1	08/23/18 12:32	
o-Xylene	5.0 U	5.0	0.20	1	08/23/18 12:32	
trans-1,2-Dichloroethene	5.0 U	5.0	0.26	1	08/23/18 12:32	
trans-1,3-Dichloropropene	5.0 U	5.0	0.30	1	08/23/18 12:32	
trans-1,4-Dichloro-2-butene	5.0 U	5.0	0.34	1	08/23/18 12:32	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	08/23/18 12:32	
Dibromofluoromethane	108	89 - 119	08/23/18 12:32	
Toluene-d8	104	87 - 121	08/23/18 12:32	

QA/QC Report

Client:Casella Waste Systems (Hampden ME)Service Request: R1807955Project:Hyland Facility - Baseline ParametersDate Analyzed: 08/23/18

Sample Matrix: Water

Printed 9/21/2018 11:01:25 AM

Lab Control Sample Summary Volatile Organic Compounds by GC/MS using NYS DEC ASP HT

Units:ug/L Basis:NA

Lab Control Sample

RQ1808803-03

Analytical

	Anaryucar				
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1,2-Tetrachloroethane	8260C	17.5	20.0	87	76-129
1,1,1-Trichloroethane (TCA)	8260C	18.7	20.0	93	75-125
1,1,2,2-Tetrachloroethane	8260C	17.5	20.0	88	78-126
1,1,2-Trichloroethane	8260C	20.4	20.0	102	82-121
1,1-Dichloroethane (1,1-DCA)	8260C	20.0	20.0	100	80-124
1,1-Dichloroethene (1,1-DCE)	8260C	19.0	20.0	95	71-118
1,2,3-Trichloropropane	8260C	18.0	20.0	90	75-118
1,2-Dibromo-3-chloropropane (DBCP)	8260C	16.1	20.0	80	55-136
1,2-Dibromoethane	8260C	19.1	20.0	96	82-127
1,2-Dichlorobenzene	8260C	17.7	20.0	89	80-119
1,2-Dichloroethane	8260C	21.5	20.0	107	71-127
1,2-Dichloropropane	8260C	19.3	20.0	97	80-119
1,4-Dichlorobenzene	8260C	16.9	20.0	84	79-119
2-Butanone (MEK)	8260C	19.3	20.0	96	61-137
2-Hexanone	8260C	18.6	20.0	93	63-124
4-Methyl-2-pentanone	8260C	20.7	20.0	104	66-124
Acetone	8260C	17.8	20.0	89	40-161
Acrylonitrile	8260C	103	100	103	71-130
Benzene	8260C	19.6	20.0	98	79-119
Bromochloromethane	8260C	18.8	20.0	94	81-126
Bromodichloromethane	8260C	20.1	20.0	100	81-123
Bromoform	8260C	18.4	20.0	92	65-146
Bromomethane	8260C	17.6	20.0	88	42-166
Carbon Disulfide	8260C	18.6	20.0	93	66-128
Carbon Tetrachloride	8260C	18.7	20.0	93	70-127
Chlorobenzene	8260C	16.7	20.0	83	80-121
Chloroethane	8260C	17.3	20.0	86	62-131
Chloroform	8260C	20.1	20.0	101	79-120
Chloromethane	8260C	20.5	20.0	102	65-135
Dibromochloromethane	8260C	20.0	20.0	100	72-128
Dibromomethane	8260C	20.7	20.0	104	80-118
Methylene Chloride	8260C	18.1	20.0	91	73-122
Ethylbenzene	8260C	16.3	20.0	82	76-120
1 . 1 0/01/0010 11 01 05 AM			G . T	10,0000	477.422

Superset Reference: 18-0000477432 rev 00

QA/QC Report

Client: Casella Waste Systems (Hampden ME)

Project: Hyland Facility - Baseline Parameters

Sample Matrix: Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS using NYS DEC ASP HT

Units:ug/L Basis:NA

Service Request: R1807955

Date Analyzed: 08/23/18

Lab Control Sample

RQ1808803-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Iodomethane	8260C	18.0	20.0	90	18-160
Styrene	8260C	18.0	20.0	90	80-124
Tetrachloroethene (PCE)	8260C	16.5	20.0	83	72-125
Toluene	8260C	18.7	20.0	93	79-119
Trichloroethene (TCE)	8260C	19.0	20.0	95	74-122
Trichlorofluoromethane (CFC 11)	8260C	21.3	20.0	106	71-136
Vinyl Acetate	8260C	19.3	20.0	97	52-174
Vinyl Chloride	8260C	20.7	20.0	104	74-159
cis-1,2-Dichloroethene	8260C	18.6	20.0	93	80-121
cis-1,3-Dichloropropene	8260C	19.1	20.0	95	77-122
m,p-Xylenes	8260C	32.9	40.0	82	80-126
o-Xylene	8260C	16.3	20.0	82	79-123
trans-1,2-Dichloroethene	8260C	18.9	20.0	94	73-118
trans-1,3-Dichloropropene	8260C	19.2	20.0	96	71-133
trans-1,4-Dichloro-2-butene	8260C	16.6	20.0	83	39-137

Metals

METALS

-3-

BLANKS

Contract:	R1807955					
Lab Code:		Case No.:	SAS No.:	SDG NO.:	Condensate-0	
Preparation	n Blank Matrix	(soil/water):	WATER			
Dronorotio	n Blank Concon	tration Unita (ug/I	nnt on ma/ka). HC/I			

	Initial Calib. Blank	alib.		nu	ing Calibrati		Preparation Blank					
Analyte	ug/L	С	1	С	2	С	3	С		С	1	М
Aluminum	64.00	U	64.00	U	64.00	υ	64.00	U	64.000	U	P	· [
Antimony	5.80	U	5.80	U	5.80	บ	5.80	Ū	5.800	U	P	?
Arsenic	3.90	Ū	3.90	Ū	3.90	ŭ	3.90	Ū	3.900	Ū	P	<u>?</u>
Barium	6.90	Ū	6.90	Ū	6.90	ŭ	6.90	Ū	6.900	Ū	P	<u>, </u>
Beryllium	0.22	Ū	0.22	Ū	0.22	ŭ	0.22	Ū	0.300	J	P	<u>, </u>
Boron	16.00	Ū	16.00	Ū	16.00	Ū	16.00	ŭ	16.000	Ū	P	<u>?</u>
Cadmium	0.59	Ū	0.59	Ū	0.59	ŭ	0.59	Ū	0.590	Ū	P	<u>, </u>
Mercury	0.077	Ū	0.077	Ū	0.077	ŭ	0.077	Ū	0.077	Ū	С	cv
Calcium	220.00	Ū	220.00	Ū	220.00	ŭ	220.00	Ū	220.000	U	P	?
Chromium	1.40	Ū	1.40	Ū	1.40	ŭ	1.40	Ū	1.400	U	P	<u>, </u>
Cobalt	1.80	Ū	1.80	Ū	1.80	ŭ	1.80	Ū	1.800	Ū	P	<u>, </u>
Copper	6.30	Ū	6.30	Ū	6.30	ŭ	6.30	Ū	6.300	Ū	P	<u>, </u>
Iron	48.00	Ū	48.00	Ū	48.00	ŭ	48.00	Ū	48.000	U	P	?
Lead	2.50	Ū	2.50	Ū	2.50	ŭ	-2.80	J	-3.700	J	P	?
Magnesium	130.00	מ	130.00	Ū	130.00	ט	130.00	a	130.000	ŭ	P	<u>?</u> [
Manganese	5.10	Ū	5.10	Ū	5.10	ŭ	5.10	Ū	5.100	U	P	?
Nickel	2.60	Ū	2.60	Ū	2.60	ŭ	2.60	Ū	2.600	Ū	P	<u>, </u>
Potassium	200.00	Ū	200.00	Ū	200.00	ŭ	200.00	Ū	200.000	U	P	·
Selenium	4.60	Ū	-6.50	J	4.60	ŭ	4.60	Ū	7.200	J	P	?
Silver	0.57	U	0.57	U	0.57	ŭ	0.57	Ū	0.570	U	P	,
Sodium	170.00	Ū	170.00	Ū	170.00	Ū	170.00	Ū	181.300	J	P	<u>, </u>
Thallium	6.60	U	6.60	U	6.60	U	6.60	Ū	6.600	U	P	,
Vanadium	1.70	U	1.70	U	1.70	U	1.70	U	-2.600	J	P	·
Zinc	9.40	U	9.40	U	9.40	U	9.40	U	9.400	U	P	<u>, </u>

Comments:

METALS

-3-

BLANKS

Contract:	R1807955					
Lab Code:		Case No.:	SAS No.:		SDG NO.:	Condensate-0
Preparation	Blank Matrix	(soil/water):	WATER			
Preparation	Blank Concent	ration Units (ug/I	, ppt, or mg/kg):	UG/L		

	Initial Calib. Blank		Conti	inu	ing Calibrati	Blank ug/L		Preparation Blank				
Analyte	ug/L	С	1	С	2	С	3	С		С	М	1
Aluminum	İ		64.00	U	64.00	Ū		Ì	Ī		P	ī
Antimony		iii	5.80	υ	5.80	ŭ				Ì	P	T
Arsenic		i	3.90	U	3.90	บ					P	i
Barium		ii	6.90	Ū	6.90	บ					P	i
Beryllium		ii	0.22	ŭ	0.22	บ					P	i
Boron		ii	16.00	Ū	16.00	υ					P	T
Cadmium		ii	0.59	ŭ	0.59	บ					P	T
Mercury		ii	0.077	Ū	0.077	บ					CV	7
Calcium		ii	220.00	Ū	220.00	บ					P	ī
Chromium		ii	1.40	U	1.40	บ					P	ī
Cobalt		i	1.80	Ū	1.80	U					P	ī
Copper			6.30	U	6.30	บ					P	ī
Iron		İ	48.00	Ū	48.00	υ					P	Ī
Lead		i	2.50	ŭ	2.50	บ					P	可
Magnesium		İ	130.00	Ū	130.00	υ					P	Ī
Manganese		İ	5.10	Ū	5.10	υ					P	T
Nickel		ii	2.60	ŭ	2.60	บ					P	i
Potassium		i	200.00	U	200.00	บ					P	i
Selenium			4.60	U	7.50	J					P	寸
Silver		i	0.57	U	0.57	υ	l i				P	可
Sodium		i	170.00	U	170.00	U					P	可
Thallium		ii	6.60	U	6.60	υ	l i				P	寸
Vanadium		ii	1.70	ŭ	1.70	U				i	P	寸
Zinc		ii	9.40	υ	9.40	ŭ				i i	P	T

Comments:

METALS -6-DUPLICATES

	SA	MΡ	LE	NO	
--	----	----	----	----	--

Contract:	R1807955			DLCSW	
Lab Code:		Case No.:	SAS No.:	SDG NO.:	Condensate-0
Matrix (so	il/water):	WATER	Lev	rel (low/med):	LOW
% Solids fo	or Sample:	0.0	% Solids fo	or Duplicate:	0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	М
Aluminum	1	1910		189	0	1		P
Antimony	1	472		47	4	0		P
Arsenic	1	43		4	2	2		P
Barium	I	2040		203	0	0		P
Beryllium	[50		5	0	0		P
Boron	1	1010		100	0	1		P
Cadmium	I	52		5	2	0		P
Chromium	I	205		20	3	1		P
Cobalt	1	520		51	5	1		P
Copper	I	249		24	6	1		P
Iron	1	1000		98	6	1		P
Lead	I	514		50	8	1		P
Magnesium	I	2000		198	0	1		P
Manganese	I	504		49	9	1		P
Nickel	1	513		50	6	1		P
Potassium	1	19200		1910	0	1		P
Selenium	[1070		106	0	1		P
Silver	1	50		5	0	0		P
Sodium		19200		1910	0	1		P
Thallium	1	1910		189	0	1		P
Vanadium		495		49	0	1		P
Zinc		529		51	4	3		P

Comments:		

METALS -6-DUPLICATES

SA	MPI	LΕ	N	Э.
SA	MPI	J.C.	IA(J,

Contract:	R1807955			DLCSW	
Lab Code:		Case No.:	SAS No.:	SDG NO.:	Condensate-0
Matrix (soi	.1/water):	WATER		Level (low/med):	LOW
% Solids fo	or Sample:	0.0	% Soi	lids for Duplicate:	0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	м
Calcium		198	80		1940	2		P

Comments:

METALS

-7-

LABORATORY CONTROL SAMPLE

Aqueous LCS	S Source:	CPI			
Solid LCS S	Source:				
Lab Code:		Case No.:	SAS No.:	SDG NO.:	Condensate-0
Contract:	R1807955				

	Aqueous	(ug/L				Solid	(mg/K	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Aluminum	2000	1910	96					
Antimony	500	472	94					
Arsenic	40	43	108					
Barium	2000	2040	102					
Beryllium	50	50	100					
Boron	1000	1010	101					
Cadmium	50	52	104					
Mercury	1.000	0.892	89					
Calcium	2000	1980	99					
Chromium	200	205	102					
Cobalt	500	520	104					
Copper	250	249	100					
Iron	1000	1000	100					
Lead	500	514	103					
Magnesium	2000	2000	100					
Manganese	500	504	101					
Nickel	500	513	103					
Potassium	20000	19200	96					
Selenium	1010	1070	106					
Silver	J 50	50	100					
Sodium	20000	19200	96					
Thallium	2000	1910	96					
Vanadium	J 500	495	99					
Zinc	500	529	106					

Comments:			

METALS

-7-

LABORATORY CONTROL SAMPLE

Aqueous LC	S Source:	CPI			
Solid LCS	Source:				
Lab Code:		Case No.:	SAS No.:	SDG NO.:	Condensate-0
Contract:	R1807955				

	Aqueous	s (ug/L				Solid	(mg/K	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Aluminum	2000	1890	94					
Antimony	500	474	95					
Arsenic	40	42	105					
Barium	2000	2030	102					
Beryllium	J 50	50	100					
Boron	1000	1000	100					
Cadmium	50	52	104					
Calcium	2000	1940	97					
Chromium	200	203	102					
Cobalt	500	515	103					
Copper	250	246	98					
Iron	1000	986	99					
Lead	500	508	102					
Magnesium	2000	1980	99					
Manganese	500	499	100					
Nickel	500	506	101					
Potassium	20000	19100	96					
Selenium	1010	1060	105					
Silver	50	50	100					
Sodium	20000	19100	96					
Thallium	2000	1890	94					
Vanadium	500	490	98					
Zinc	500	514	103			l İ		

Comments:			

General Chemistry

Analytical Report

Client: Casella Waste Systems (Hampden ME) Service Request: R1807955

Project:Hyland Facility - Baseline ParametersDate Collected: NASample Matrix:WaterDate Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: R1807955-MB1

Inorganic Parameters

								Date	
Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Alkalinity, Total as CaCO3	SM 2320 B-1997(2011)	2.0 U	mg/L	2.0	1.0	1	08/28/18 02:32	NA	
Ammonia as Nitrogen, undistilled	ASTM D6919-09	0.0008 J	mg/L	0.0050	0.0008	1	09/12/18 03:22	NA	
Biochemical Oxygen Demand									
(BOD)	SM 5210 B-2001(2011)	2.0 U	mg/L	2.0	-	1	08/22/18 17:46	NA	
Bromide	9056A	0.10 U	mg/L	0.10	0.04	1	08/21/18 18:28	NA	
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	0.2 J	mg/L	1.0	0.05	1	09/07/18 14:13	NA	
Chemical Oxygen Demand, Total	410.4	5.0 U	mg/L	5.0	3.3	1	09/14/18 16:47	NA	
Chloride	9056A	0.20 U	mg/L	0.20	0.02	1	08/21/18 18:28	NA	
Chromium, Hexavalent	7196A	0.010 U	mg/L	0.010	0.004	1	08/21/18 19:05	NA	
Color, True	SM 2120 B-2001(2011)	1.0	ColorUnits	1.0	-	1	08/21/18 17:20	NA	
Cyanide, Total	9012B	0.010 U	mg/L	0.010	0.002	1	08/28/18 12:13	08/27/18	
Nitrate as Nitrogen	9056A	0.10 U	mg/L	0.10	0.004	1	08/21/18 18:28	NA	
Nitrogen, Total Kjeldahl (TKN)	351.2	0.20 U	mg/L	0.20	0.08	1	09/11/18 12:25	09/10/18	
Phenolics, Total Recoverable	9066	0.0050 U	mg/L	0.0050	0.0019	1	08/30/18 13:45	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	10 U	mg/L	10	4	1	08/24/18 12:30	NA	
Sulfate	9056A	0.20 U	mg/L	0.20	0.02	1	08/21/18 18:28	NA	

Analytical Report

Client: Casella Waste Systems (Hampden ME) Service Request: R1807955

Project:Hyland Facility - Baseline ParametersDate Collected: NASample Matrix:WaterDate Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: R1807955-MB2

Inorganic Parameters

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Biochemical Oxygen Demand (BOD)	SM 5210 B-2001(2011)	2.0 U	mg/L	2.0	1	08/29/18 19:44	

QA/QC Report

Client: Casella Waste Systems (Hampden ME)

Project:

Sample Matrix: Water

Hyland Facility - Baseline Parameters

Date Received: 08/21/18 **Date Analyzed:**08/21/18 - 09/07/18

Service Request:R1807955

Date Collected: 08/20/18

Duplicate Matrix Spike Summary General Chemistry Parameters

Sample Name: Condensate-0818 Units:mg/L Lab Code: R1807955-001 Basis:NA

> **Matrix Spike Duplicate Matrix Spike** R1807955-001MS R1807955-001DMS

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Chromium, Hexavalent	7196A	0.10 U	0.84	1.00	84 *	0.66	1.00	66 *	85-115	23*	20
Carbon, Total Organic	SM 5310 C-2000(2011)	65	155	100	90	179	100	114	48-135	14	20
(TOC)											

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:Casella Waste Systems (Hampden ME)Service Request:R1807955ProjectHyland Facility - Baseline ParametersDate Collected:08/20/18

Sample Matrix: Water Date Received: 08/21/18

Date Analyzed: 08/21/18

Replicate Sample Summary General Chemistry Parameters

Sample Name: Condensate-0818 Units: ColorUnits

Lab Code: R1807955-001 **Basis:** NA

Duplicate Sample

R1807955ample 001DUP

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Casella Waste Systems (Hampden ME) Service Request: R1807955

ProjectHyland Facility - Baseline ParametersDate Collected:08/20/18Sample Matrix:WaterDate Received:08/21/18

Date Analyzed: 08/21/18

Replicate Sample Summary General Chemistry Parameters

Sample Name: Condensate-0818 Units: pH Units

Lab Code: R1807955-001 **Basis:** NA

Duplicate Sample

R1807955-Sample 001DUP

Analyte Name Analysis Method MRL Result Result Average RPD RPD Limit

pH of Color Analysis SM 2120 B-2001(2011) - 8.16 8.16 <

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Casella Waste Systems (Hampden ME)

Project: Hyland Facility - Baseline Parameters

Sample Matrix: Water

Service Request: R1807955

Date Analyzed: 08/21/18 - 09/14/18

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample

R1807955-LCS1

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits	
Alkalinity, Total as CaCO3	SM 2320 B-1997(2011)	22.0	20.0	110	80-120	
Ammonia as Nitrogen, undistilled	ASTM D6919-09	0.500	0.500	100	90-110	
Biochemical Oxygen Demand (BOD)	SM 5210 B-2001(2011)	213	198	108	85-115	
Bromide	9056A	0.950	1.00	95	80-120	
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	9.76	10.0	98	80-121	
Chemical Oxygen Demand, Total	410.4	509	500	102	90-110	
Chloride	9056A	2.05	2.00	102	80-120	
Chromium, Hexavalent	7196A	0.104	0.100	104	80-120	
Cyanide, Total	9012B	0.0908	0.100	91	85-115	
Nitrate as Nitrogen	9056A	1.02	1.00	102	80-120	
Nitrogen, Total Kjeldahl (TKN)	351.2	2.42	2.50	97	90-110	
Phenolics, Total Recoverable	9066	0.0377	0.0400	94	85-115	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	904	914	99	90-110	
Sulfate	9056A	2.06	2.00	103	80-120	

QA/QC Report

Client: Casella Waste Systems (Hampden ME)

Project: Hyland Facility - Baseline Parameters **Date Analyzed:** 08/28/18 - 08/29/18

Sample Matrix: Water

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Service Request: R1807955

Lab Control Sample

R1807955-LCS2

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Biochemical Oxygen Demand (BOD)	SM 5210 B-2001(2011)	189	198	96	85-115
Cyanide, Total	9012B	0.543	0.600	90	85-115