Logique:

exercice1: unification

Donnez l'unificateur le plus général, si possible, unifiant chacune des pairs de phrases suivantes. Les variables des deux phrases ne sont pas indépendantes, donc s'il y a une variable qui est utilisée dans les deux phrases, elle ne peut pas être renommée différemment dans une des phrases.

a)
$$r(f(y), y, x)$$
 et $r(x, f(a), f(v))$
b) $p(1, x, 2)$ et $p(y, f(y), 2)$

c)
$$q(g(x, y), x)$$
 et $q(z, f(y))$

exercice2: résolution

En supposant la base de connaissances suivante, prouvez à l'aide de l'algorithme de résolution que *C*(3) est vrai.

$$A(x, y) \wedge B(y) \Rightarrow C(x)$$

$$D(x) \Rightarrow B(x)$$

$$E(y) \Rightarrow A(y, x)$$

D(7)

E(3)

exercice3: expression et résolution

- 1. Mettre les déclarations suivantes sous forme clausale :
- a) Si l'unicorne est mythique, il est immortel,
- b) Si l'unicorne n'est pas mythique, alors c'est un mammifère mortel;
- c) Si l'unicorne est immortel ou mammifère, alors il a des cornes;
- d) L'unicorne est magique s'il a des cornes.
- 2. Pouvez-vous prouver à l'aide des déclarations ci-dessus que l'unicorne est mythique ? Que l'unicorne est magique ? Comment ?

On peut utiliser (MYT(x): x est mythique, MOR(x): x est mortel, MAM(x): x est mammifère, COR(x): x a des cornes et MAG(x): x est magique. On sait a priori que x est un unicorne)

Apprentissage

Exercice4:

Des chercheurs psychologues ont obtenus les données suivantes concernant le fait qu'un étudiant haïsse un examen ou pas. Les attributs considérés sont masochiste, peureux et idiot.

masochiste	peureux	idiot	Hait Examen?
oui	oui	oui	oui
oui	non	non	non
non	oui	oui	non
non	oui	non	oui

- On veut construire un arbre de décision parfait (ID3 sur l'échantillon donné) pour prédire Hait Examen ? Calculez les valeurs de la fonction **Gain** pour choisir le meilleur premier test. Donnez les détails du calcul.
- Donnez un arbre de décision parfait qui a comme premier test celui que vous avez choisi précédemment. Est-ce qu'il y a un meilleur arbre (moins profond) ? Si c'est le cas, donnez-le.
- . Est-ce que avec le perceptron linéaire à seuil $(w_0, w_1, w_2, w_3) = (-0.5, 0, 1, 0)$ on peut aussi classifier correctement l'échantillon ? Justifiez (Dessiner le perceptron et tester les exemples). (oui=1, non=0) , fonction d'activation : f(x) = 1 si x > 0, f(x) = 0 sinon.

indication:

$$log1 = 0$$
, $log2=1$, $0*log0 = 0$, $log1/3 = -1.585$, $log2/3 = -0.585$, $log2/5 = -1.322$, $log3/5=-0.737$ $log(x*y) = log(x) + log(y)$, $log(x/y) = log(x) - log(y)$

exercice5: Effectuez un tour de l'algorithme de rétropropagation des erreurs et indiquez la valeur des nouveaux poids pour : \mathbf{w}_{21} , \mathbf{w}_{25} , \mathbf{w}_{32} , \mathbf{w}_{42} . Vous devez présenter tous les calculs. La valeur de la constante d'apprentissage est $\eta = 0.05$. La fonction d'activation est la fonction suivante :

$$f = \begin{cases} 1 & \text{si } \sum_{i=0}^{n} w_i \cdot x_i > 0 \\ -1 & \text{sinon} \end{cases}$$

Annexe : Algorithme de rétropropagation des erreurs

Pour chaque exemple d'entraînement

- · Calculer les sorties du réseau
- Pour toutes les unités de sortie k, calculer l'erreur δ_k de la façon suivante:

$$\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k)$$

• Pour toutes les unités cachées h, calculer l'erreur δ_h de la façon suivante:

$$\delta_h \leftarrow o_h (1 - o_h) \sum_{k \in sorties} w_{kh} \delta_k$$

• Mettre à jour tous les poids w_{ji} de la façon suivante:

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$

ou

$$\Delta w_{ii} = \eta \delta_i x_{ii}$$