Вычисления на видеокартах

Курсовая работа студента 351 группы А. А. Григорьева

Саратовский государственный университет им. Н. Г. Чернышевского

Кафедра математической кибернетики и компьютерных наук

Научный руководитель: доцент Семенов М. С.

2019г.

- Понять, какие алгоритмы эффективнее исполнять на видеокартах;
- Изучить типовую архитектуру видеокарты, научиться оптимизировать алгоритмы;
- Получить практический опыт разработки программ на видеокартах с помощью OpenCL;
- Провести исследование производительности параллельных программ на различных видеокартах.

Центральный процессор — небольшое количество «умных» ядер

Видеокарта — большое количество «простых» ядер

Выделяют следующие особенности вычислительных устройств в видеокарте:

- массовый параллелизм;
- единый указатель на инструкции;
- быстрое обращение к локальной и регистровой памяти;
- медленное обращение к «глобальной» памяти;

При разработке алгоритмов стоит учитывать:

- разбиение на рабочие группы, минимальная синхронизация между ними;
- сокрытие задержки при обращении к памяти в рабочих группах;
- правильное ветвление;
- использование локальной памяти и регистров для быстрого доступа к памяти;

Создана хостовая часть программы и kernel для выполнения следующих алгоритмов:

- сумма двух векторов;
- нахождение максимальной суммы на префиксе массива;
- транспонирование матрицы*;
- умножение матриц*.
- * реализованы обычные и эффективные версии kernel.

Дано: массивы A, B из N чисел

Задача: заполнить результирующий массив N поэлементными суммами векторов A, B

Решение демонстрирует базовые возможности программирования с помощью OpenCL

Дано: массив A из N целых чисел

Задача: найти максимальную сумму на префиксах массива А

Для решения используется локальная память, барьеры, рекурсивное выполнение kernel

Дано: матрица A размерности N imes M

Задача: найти транспонированную матрицу A^T

Решена двумя способами:

- Простой N доступов к глобальной памяти для вычисления N элементов;
- ② Эффективный $2 \times N$ доступов к «глобальной» памяти для вычисления N^2 элементов за счет использования локальной памяти

Рис.: Транспонирование матрицы с использованием «плиток» в локальной памяти

Дано: матрица A размерности $N \times K$, матрица B размерности $K \times M$

Задача: найти матрицу С — произведение матриц А и В

Решена двумя способами:

- Простой N^3 доступов к глобальной памяти для вычисления N^2 элементов;
- ullet Эффективный $3 \times N$ доступов к «глобальной» памяти для вычисления N^2 элементов за счет использования локальной памяти

Рис.: Транспонирование матрицы с использованием «плиток» в локальной памяти

Устройство	Алгоритм	Размер р.группы/данных	Время работы, мкс
NVIDIA Geforce 1050 Ti	Сумма векторов	1/2097152	25026
NVIDIA Geforce 560 Ti	Сумма векторов	1/2097152	44150
NVIDIA Geforce 1050 Ti	Сумма векторов	128/2097152	14345
NVIDIA Geforce 560 Ti	Сумма векторов	128/2097152	29097
NVIDIA Geforce 1050 Ti	Макс. префикс	128/2097152	17345
NVIDIA Geforce 560 Ti	Макс. префикс	128/2097152	32097
NVIDIA Geforce 1050 Ti	О. транспонирование	$32 \times 32/4096 \times 2048$	21648
NVIDIA Geforce 560 Ti	О. транспонирование	$32 \times 32/4096 \times 2048$	36519
NVIDIA Geforce 1050 Ti	Умножение матриц	1 × 1	577230
NVIDIA Geforce 560 Ti	Умножение матриц	1 × 1	1274058
NVIDIA Geforce 1050 Ti	О. Умножение матриц	$K \times 16$	27290
NVIDIA Geforce 560 Ti	О. Умножение матриц	$K \times 16$	49821

В результате курсовой работы:

- изучены особенности программирования на видеокартах с использованием OpenCL;
- рассмотрены возможности оптимизации алгоритмов на видеокартах;
- проведены вычисления для разных конфигураций рабочих групп, возможных алгоритмов и видеокарт.

- https://www.nvidia.com/content/PDF/fermi-white-papers/ NVIDIA's Next Generation CUDA Compute Architecture: Fermi
- A. Munshi, B. R. Gaster, T. G. Mattson, J. Fung, D. Ginsburg
 OpenCL Programming Guide
 Ann Arbor, Michigan: 2012.
- http://opencl.ru/node/8 Введение | OpenCL
- https://www.khronos.org/registry/OpenCL/specs/
 The OpenCL Specification

https://compscicenter.ru/courses/video-cards-computation/

Введение в OpenCL. Архитектура видеокарты

https://docs.nvidia.com/gameworks/content/developertools/

Achieved Occupancy

- https://software.intel.com/ru-ru/articles/ Неоднородные рабочие группы OpenCL 2.0
- https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/
 clEnqueueNDRangeKernel

https://compscicenter.ru/courses/video-cards-computation/

Умножение матриц | Вычисления на видеокартах

https://www.karlrupp.net/2016/08/flops-per-cycle-for FLOPs per Cycle for CPUs, GPUs and Xeon Phis

СПАСИБО ЗА ВНИМАНИЕ!