QVQ:	Αŝ	= Y	<=>	(×·	-ŝ)	e N	u(A)									
(⇒) Saber	405	aue	e val	en	an	bas	ia	ualc	lad	eS:						
		+					<									
: × A } \$ A \$	= Y															
LAŶ	= Y															
Luego	A	x =	χ́A	=>		Α×	· _ A	^	= 0							
				⇒)A	(- × - - × -	ŵ)	= 0	>						
				=>	,	(×-	· \$)	e 1	lu (CA						
(<=) Sabem		a	(v 3	\ - 1	N., C 1											
Sabem	102	que	CX - X) = 1	VO C	\).										
(x-\$)	EN	(A) u	=>		A(x	⟨- ×̂) =	0								
			=>		×A	- A	x =	0								
			=>				Α×									
			=>	>	Αŝ	=	Y			Α× =	= Y	por	hit	20+0	251S	

QVQ:]! X +q AX = Y <=> Nu(A) = {0} (\Rightarrow) Sabenos que x es la única solución al problema de cuadrados minimos: Ax = Y. Supongamos que Nu(A) ≠ {o}. Luego existe x̂ ∈ Nu(A) no nulo. $\Delta(x-\hat{x}) = Ax - A\hat{x} = y - 0 = y$ Entonces (x-x) x x también es solución. Absurdo pues nay una única solución al problema de cuadrados mínimos. .. Nu(A) = {03 (≔) Sabemos que Nu(A) = {0}. Supongamos que el problema de cuadrados mínimos no tiene solución única. Existen X, x distintos ta Ax = y , Ax = y Por la deno anterior: Ax=y \ Ax= y <=> (x-x) \in Nu(A). \Rightarrow $\times - \hat{x} \neq 0 \land (x - \hat{x}) \in Nu(A)$ × ≠ ŵ : 3! x +q Ax = y