Decoder

Binary input of 4 bits is decoded to give corresponding decimal value

Truth table:

	INP	UTS			OUTPUTS														
Α	В	С	D	X ₀	X ₁	X ₂	X ₃	X ₄	Xs	X ₆	X7	Xg	X ₉	X ₁₀	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Block Diagram:

Verilog code:

```
module decoder (output reg [0:15] out, input [0:3] in);
    // thread to decode input
    always @ (in) begin
        // check which input and give corresponding output
        case (in)
            4'b0000 : out = 16'b00000000000000001;
            4'b0001 : out = 16'b00000000000000010;
            4'b0010 : out = 16'b0000000000000100;
            4'b0011 : out = 16'b0000000000001000;
            4'b0100 : out = 16'b0000000000010000;
            4'b0101 : out = 16'b0000000000100000;
            4'b0110 : out = 16'b000000001000000;
            4'b0111 : out = 16'b0000000010000000;
            4'b1000 : out = 16'b00000001000000000;
            4'b1001 : out = 16'b00000010000000000;
            4'b1010 : out = 16'b00000100000000000;
            4'b1011 : out = 16'b0000100000000000;
            4'b1100 : out = 16'b0001000000000000;
            4'b1101 : out = 16'b00100000000000000;
            4'b1110 : out = 16'b0100000000000000;
            4'b1111 : out = 16'b10000000000000000;
            default: out = 16'b00000000000000000;
        endcase
    end
endmodule
```

Explanation:

Using behavioral modelling the behaviour of the circuit is coded using switch cases for the in variable giving corresponding out variable values.