ΕΡΓΑΣΙΑ # 3 Επιστροφή 23-2-200

1. Ένα σώμα μάζας m είναι εξαρτημένο από το άκρο μιας αβαρούς ράβδου, το άλλο άκρο της οποίας είναι στερεωμένο σε ακλόνητο σημείο. Στο σημείο στήριξης, η ράβδος μπορεί να κινείται. Η ράβδος στηρίζεται σε 2 ελατήρια σταθερής ελατηρίου k1 και k2 αντίστοιχα. Να βρεθούν οι εξισώσεις κίνησης του συστήματος και το είδος της κίνησης.

2. Να βρεθούν οι εξισώσεις κίνησης για το σύστημα των τροχαλιών του σχήματος. Οι τροχαλίες έχουν μάζα και επομένως θεωρήστε ότι η ροπή αδράνειάς τους είναι I₁ και I₂ αντίστοιχα.

- 3. Ένας δίσκος μάζας Μ και ακτίνας R κυλά χωρίς ολίσθηση προς το κατώτερο μέρος ενός κεκλιμένου επιπέδου γωνίας κλίσης α με την οριζόντια διεύθυνση. Ο δίσκος έχει ένα μικρό αβαρή άξονα αμελητέας ακτίνας. Από τον άξονα αυτό κρέμεται ένα εκκρεμές μήκους I<R στο ελεύθερο άκρο του οποίου είναι εξαρτημένη μια μάζα m. Θεωρήστε ότι η κίνηση του εκκρεμούς λαμβάνει χώρα στο επίπεδο του δίσκου. Να βρεθούν η Lagrangian και οι εξισώσεις κίνησης του συστήματος.
- **4.** Το παρακάτω σχήμα δείχνει ένα απλό εκκρεμές (μάζας m, μήκους *l*) του οποίου το σημείο στήριξης P βρίσκεται στην περιφέρεια ενός τροχού (κέντρο O, ακτίνα R) ο οποίος περιστρέφεται

με σταθερή γωνιακή ταχύτητα ω. Τη χρονική στιγμή t=0, το σημείο P είναι στην ίδια οριζόντια θέση με το κέντρο, Ο, του τροχού και στα δεξιά του. Να γραφεί η Lagrangian και η εξίσωση κίνησης για την γωνία φ. [Υπόδειξη: Θα πρέπει να είστε προσεκτικοί όταν γράψετε την κινητική ενέργεια. Ένας ασφαλής τρόπος είναι να γράψετε την θέση της μάζας του εκκρεμούς τη στιγμή t και να παραγωγίσετε]. Ελέγξτε ότι τα αποτελέσματά σας έχουν νόημα για την ειδική περίπτωση που ω=0.

5. Μια χάντρα γλυστρά κατά μήκος ενός λείου σύρματος το οποίο είναι λυγισμένο στο σχήμα παραβολής $z=cr^2$ (όπως στο σχήμα). Η χάντρα περιστρέφεται σε ένα κύκλο ακτίνας R όταν το σύρμα περιστρέφεται γύρω από τον κατακόρυφο άξονα συμμετρίας του με γωνιακή ταχύτητα ω. Βρείτε τη τιμή του c.

