Dipôle RL

Exercice 1 : Détermination de l'inductance d'une bobine dans une chaine électronique

On monte en série un conducteur ohmique de résistance $R=2K\Omega$ et une bobine d'inductance L et de résistance négligeable, on obtient un dipôle AB On applique entre les bornes de AB une tension triangulaire à l'aide d'un GBF (figure 2)

GBF figure 2 R USM

Dans l'intervalle de temps [0, 2ms], la tension entre les bornes de la bobine est $u_{AM}=-0,2V$ et la tension u_{BM} entre les bornes du conducteur ohmique est : $u_{BM}=5.10^3t$ (V)

- 1. Montrer que la relation entre u_{AM} et u_{BM} est de la forme : $u_{AM} = -\frac{L}{R} \cdot \frac{du_{BM}}{dt}$
- 2. Déduire la valeur de l'inductance L de la bobine

Exercice 2 : Détermination expérimentale de l'inductance L de la bobine

Pour déterminer expérimentalement l'inductance d'une bobine on réalise le montage suivant constitué de la bobine (B), du conducteur ohmique de résistance R

Une bobine (B) d'inductance L et d'un GBF délivrant une tension rectangulaire (figure 1) On visualise sur un oscilloscope les deux tensions $u_{AM}(t)$ dans la voie Y_1 et $u_{BM(t)}$ dans la voie Y_2 on obtient les deux oscillogrammes de la figure 2

Les données :

- La résistance du conducteur ohmique : $R = 5.10^3 \Omega$
- La sensibilité verticale : La voie $Y_1 \ S_{V1} = 0, 2V/div$, La voie $Y_2 \ S_{V2} = 5V/div$
- La sensibilité horizontale pour les deux voies : $S_h = 1ms/div$

- 1. Recopier le schéma de la figure 1 et montrer comment on branche l'oscilloscope pour visualiser les deux tensions $u_{AM}(t)$ et $u_{BM}(t)$
- 2. Montrer que l'expression de la tension $u_{AM}(t)$ s'écrit : $u_{AM} = -\frac{L}{R} \cdot \frac{du_{BM}}{dt}$
- 3. Montrer que la valeur de l'induction L de la bobine est L=0,15H

Exercice 3 :Etablissement du courant dans le circuit primaire :

On modélise le circuit primaire par le montage de la figure 2, où :

- G : Batterie de voiture assimilée à un générateur idéal de tension continue de f.é.m $E{=}12\mathrm{V}.$

- (b) : Bobine d'inductance L et de résistance interne $r=1,5\ \Omega$.
- (D) : Un conducteur ohmique équivalent au reste du circuit de résistance $R=4.5~\Omega$.
- K : Interrupteur

On ferme l'interrupteur K à l'instant t = 0, le circuit est alors traversé par un courant électrique i(t).

- 1. Recopier le circuit de la figure 2 et représenter dessus les tensions en convention récepteur.
- 2. Montrer que l'équation différentielle vérifiée par le courant i(t) s'écrit sous la forme : $\frac{di}{dt} + \frac{i}{\tau} = A$, en précisant les expressions de τ et A.
- 3. Montrer par analyse dimensionnelle que la constante τ est homogène à un temps.
- 4. La courbe de la figure 3 représente les variations de l'intensité du courant en fonction du temps.
- 4.1. Déterminer graphiquement la valeur de la constante de temps τ et celle de l'intensité I_0 du courant en régime permanent.
- 4.2. En déduire la valeur du coefficient d'inductance L de la bobine (b).

Exercice 3 :Etablissement du courant dans le circuit primaire :

<u>Exercices Suppléme</u>ntaires

Exercice 5 :l'énergie E emmagasinée par la bobine

On réalise le circuit électrique, schématisé sur la figure 1, qui comporte :

- Un générateur de tension de f.e.m. E=12V
- Une bobine d'inductance L et de résistance négligeable ;
- Deux conducteurs ohmiques de résistance $R=40\Omega$
- Un interrupteur K.

On ferme l'interrupteur K à l'instant t=0. Avec un système d'acquisition informatisé, on enregistre les courbes (C1) et (C2) représentant les tensions des voies A et B (voir figure2).

- 1. Identifier la courbe qui représente la tension $u_R(t)$ et celle qui représente $u_{PN}(t)$.
- 2. Déterminer la valeur de I_P l'intensité du courant électrique en régime permanent.
- 3. Vérifier que la valeur de la résistance r du conducteur ohmique est $r=8\Omega.$
- 4. Etablir l'équation différentielle régissant l'établissement du courant i(t)dans le circuit.

- 6. Déterminer la valeur de la constante du temps τ .
- 7. En déduire la valeur de l'inductance L de la bobine.
- 8. Trouver l'énergie E emmagasinée par la bobine à l'instant $t=\frac{\tau}{2}$

