

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Lineare Algebra I

Winter-Semester 2020/2021

Musterlösung zu Übungsblatt 11

01.02.21

Aufgabe 1 (Bestimmung der Determinante)

(10 Punkte)

Bestimmen Sie die Determinante der Matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & -2 \\ 1 & 0 & 0 & -2 & -1 \\ -3 & 0 & 4 & 4 & -3 \\ 2 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 4 & 3 \end{pmatrix}.$$

Ist diese Matrix invertierbar?

Lösung zu Aufgabe 1

Wir wenden den Entwicklungssatz von Laplace auf die dritte Spalte an:

$$\det(A) = (-1)^{(3+3)} \cdot 4 \cdot \det(\operatorname{St}_{(3,3)}(A)) = 4 \cdot \det \begin{pmatrix} 0 & 1 & 0 & -2 \\ 1 & 0 & -2 & -1 \\ 2 & 0 & 0 & 0 \\ 1 & -1 & 4 & 3 \end{pmatrix}$$

Nun können wir den Entwicklungssatz auf die dritte Zeile anwenden und benutzen, dass sich die Determinante nicht ändert, wenn man eine Zeile zu einer anderen addiert:

$$\det(A) = 4 \cdot (-1)^{(3+1)} \cdot 2 \cdot \det\left(\begin{pmatrix} 1 & 0 & -2 \\ 0 & -2 & -1 \\ -1 & 4 & 3 \end{pmatrix} \xrightarrow{2}_{+} \right) = 8 \cdot \det\left(\begin{pmatrix} 1 & 0 & -2 \\ 0 & -2 & -1 \\ -1 & 0 & 1 \end{pmatrix}\right)$$

Nun entwickeln wir nach der 2. Spalte:

$$\det(A) = 8 \cdot (-1)^{(2+2)} \cdot (-2) \cdot \det\left(\begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix}\right) = -16 \cdot (1 \cdot 1 - (-1) \cdot (-2)) = 16$$

Da $det(A) \neq 0$ gilt, ist A nach Vorlesung invertierbar.

(10 Punkte)

Es seien V,W endlichdimensionale \mathbb{K} -Vektorräume der Dimension n>0 und $\varphi\colon V\to W$ eine lineare Abbildung.

- a) Beweisen Sie: Für jede geordnete Basis B von V und jede geordnete Basis C von W gilt: φ ist ein genau dann ein Isomorphismus von Vektorräumen wenn $\det(M_{C,B}(\varphi)) \neq 0$ gilt.
- b) Angenommen, φ ist ein Isomorphismus. Beweisen Sie, dass man für jeden Wert $\lambda \in \mathbb{K} \setminus \{0\}$ geordnete Basen B und C finden kann, sodass $\det(M_{C,B}(\varphi)) = \lambda$ gilt.
- c) Beweisen Sie, dass $\det(\lambda A) = \lambda^n \det(A)$ für alle $\lambda \in \mathbb{K}, A \in \mathbb{K}^{n \times n}$ gilt.

Lösung zu Aufgabe 2

a) Wir betrachten das kommutierende Diagramm

$$\begin{array}{c} V \stackrel{\varphi}{\longrightarrow} W \\ \text{(\cdot)_{B}} \downarrow & \downarrow \text{(\cdot)_{C}} \\ \mathbb{K}^{n} \stackrel{\varphi_{A}}{\longrightarrow} \mathbb{K}^{n} \end{array}$$

aus Satz 4.3.11., wobei $A = M_{C,B}(\varphi)$ die Darstellungsmatrix von φ bezeichnet und φ_A die Linksmultiplikation mit A sei. Die Koordinaten-Abbildungen $(\cdot)_B$ und $(\cdot)_C$ sind Isomorphismen, damit gilt

$$\varphi = ((\cdot)_{C})^{-1} \circ \varphi_{A} \circ (\cdot)_{B}$$
$$\varphi_{A} = (\cdot)_{C} \qquad \circ \varphi \quad \circ ((\cdot)_{B})^{-1}$$

Aus der Vorlesung wissen wir, dass A genau dann invertierbar ist, wenn $\det(A) \neq 0$ gilt. Die Abbildung φ_A ist genau dann invertierbar (d.h. ein Vektorraum-Isomorphismus), wenn die Matrix A invertierbar ist, denn dann gilt $(\varphi_A)^{-1} = \varphi_{(A^{-1})}$. Wenn eine der Abbildungen φ oder φ_A ein Isomorphismus ist, so auch die andere, denn in diesem Fall gilt

$$(\varphi_A)^{-1} = (\cdot)_B \qquad \circ \varphi^{-1} \qquad \circ ((\cdot)_C)^{-1}$$
bzw.
$$\varphi^{-1} = ((\cdot)_B)^{-1} \circ (\varphi_A)^{-1} \circ (\cdot)_C$$

Isgesamt haben wir also die Äquivalenz

 $\det(A) \neq 0 \iff A \text{ invertierbar} \iff \varphi_A \text{ ist ein Iso.} \iff \varphi \text{ ist ein Iso.}$

gezeigt.

b) Wir wählen zunächst eine geordnete Basis $B=(b_1,\ldots,b_n)$ von V. Wenn φ ein Isomorphismus ist, dann ist auch $C=(\varphi(b_1),\ldots,\varphi(b_n))$ eine Basis von W. In diesem Fall gilt $\det(M_{C,B}(\varphi))=\det(\mathbb{1}_n)=1$.

Für ein beliebiges $\lambda \in \mathbb{K} \setminus \{0\}$ ist auch $\tilde{B} = (\lambda b_1, b_2, b_3, \dots, b_n)$ eine Basis und die Abbildungsmatrix bzgl. dieser neuen Basis ist

$$\det(M_{\mathbf{C},\tilde{\mathbf{B}}}(\varphi)) = \det \begin{pmatrix} \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} \end{pmatrix} = \lambda$$

c) Da die Determinante multilinear in den Zeilen ist, können wir pro Zeile den Faktor λ aus $\det(\lambda A)$ herauziehen und erhalten $\lambda^n \det(A)$.

Es sei \mathbb{K} ein Körper mit $1 \neq -1$. Wir nennen

$$\tilde{S}_n = \left\{ A \in \mathbb{K}^{n \times n} \,\middle|\, A^\top = -A \right\}$$

den Raum der schiefsymmetrischen $n \times n$ -Matrizen.

- a) Beweisen Sie: \tilde{S}_n ist ein Untervektorraum von $\mathbb{K}^{n \times n}$.
- b) Beweisen Sie: $\mathbb{K}^{n \times n} = \tilde{S}_n \oplus S_n$ ist eine direkte Summe, wobei S_n den Raum der symmetrischen Matrizen (Siehe Blatt 8) bezeichnet.
- c) Bestimmen Sie die Dimension von \tilde{S}_n .
- d) Beweisen Sie: Falls n ungerade ist, ist jede schiefsymmetrische Matrix nicht invertierbar. Hinweis: Was ist die Determinante einer solchen Matrix?
- e) Geben Sie für $\mathbb{K} = \mathbb{R}$ ein Beispiel für eine Matrix $A \in \tilde{S}_4$ an, die invertierbar ist.

Lösung zu Aufgabe 3

- a) Wir überprüfen die Axiome eines Untervektorraumes.
 - i Es ist $0 \in \tilde{S}_n$.
 - ii Sind A, B schiefsymmetrisch, dann ist A + B auch schiefsymmetrisch. Denn der (i, j)-te Eintrag von A + B ist die Summe der (i, j)-ten Einträge von A, B. Diese sind das negative vom jeweiligen (j, i)-Eintrag. Also ist auch deren Summe das negative der Summe der (j, i)-Einträge.
 - iii Mit einer ähnlichen Argumentation folgt auch, dass das skalare Vielfache einer schiefsymmetrischen Matrix schiefsymmetrisch ist.
- b) Wir zeigen zuerst, dass die Summe $S_n + \tilde{S}_n$ den Vektorraum $\mathbb{K}^{n \times n}$ aufspannt. Ist $A \in \mathbb{K}^{n \times n}$ dann ist

$$A = \frac{A + A^\top}{2} + \frac{A - A^\top}{2}$$

und $\frac{A+A^{\top}}{2} \in S_n$ sowie $\frac{A-A^{\top}}{2} \in \tilde{S}_n$. Damit gilt $S_n + \tilde{S}_n = \mathbb{K}^{n \times n}$. Nun gilt weiterhin $S_n \cap \tilde{S}_n = \{0\}$. Also ist die Summe direkt.

c) Nach obiger direkter Summe folgt

$$\dim(\tilde{S}_n) = \dim(\mathbb{K}^{n \times n}) - \dim(S_n) = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}.$$

d) Da $A^{\top} = -A$ können wir berechnen

$$\det(A) = \det(A^{\top}) = \det(-A) = (-1)^n \det(A) = -\det(A).$$

Damit folgt det(A) = 0.

e) Die schiefsymmetrische Matrix

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix}$$

hat vollen Rang, ist also invertierbar.

Es sei $\mathbb K$ ein Körper und V ein endlich-dimensionaler $\mathbb K$ -Vektorraum. Wir betrachten die Menge

$$Alt^n(V, \mathbb{K}) := \{ \omega \colon V^n \to \mathbb{K} \, | \, \omega \text{ ist alternierend} \}.$$

- a) Beweisen Sie: Die Menge $Alt^n(V,\mathbb{K})$ ist ein Untervektorraum von \mathbb{K}^{V^n} .
- b) Beweisen Sie: Ist $n > \dim(V)$, dann $Alt^n(V, \mathbb{K}) = \{0\}$.
- c) Bestimmen Sie die Dimension von $Alt^n(V, \mathbb{K})$ im Fall n = 1.
- d) Bestimmen Sie die Dimension von $Alt^n(V, \mathbb{K})$ im Fall $n = \dim(V)$. Hinweis: Satz 5.3.12 könnte hilfreich sein.

Lösung zu Aufgabe 4

- a) Wir überprüfen die Axiome eines Untervektorraumes: Dazu sei $v \in V^n$ mit $v_i = v_j$ für zwei Indices i < j.
 - i $0 \in \mathbb{K}^{V^n}$ ist offenbar multilinear. Außerdem 0(v) = 0. Also $0 \in Alt^n(V, \mathbb{K})$.
 - ii Sind $\omega, \tau \in Alt^n(V, \mathbb{K})$ dann ist auch $\omega + \tau$ multilinear. Weiterhin ist $(\omega + \tau)(v) = \omega(v) + \tau(v) = 0$.
 - iii Sind $\lambda \in \mathbb{K}, \omega \in Alt^n(V, \mathbb{K})$ dann ist $\lambda \omega$ multilinear. Weiterhin $(\lambda \omega)(v) = \lambda \omega(v) = 0$.
- b) Sind $\omega \in Alt^n(V, \mathbb{K}), v \in V^n$ dann sind v_1, \ldots, v_n aus Dimensionsgründen linear abhängig. Aus Korollar 5.2.6 folgt $\omega(v) = 0$. Also ist ω die Nullabbildung.
- c) Im Fall n=1 ist die Eigenschaft alternierend nichtssagend. Aus der Multilinearität folgt $Alt^1(V,\mathbb{K})=V^*$. Dann ist

$$\dim(Alt^1(V,\mathbb{K})) = \dim(V^*) = \dim(V).$$

d) Wähle eine geordnete Basis b_1, \ldots, b_n von V. Dann gibt es einen Isomorphismus $\Phi : \mathbb{K}^n \to V$,

$$e_i \mapsto b_i$$
. Sowie einen Isomorphismus $\Psi : \mathbb{K}^{n \times n} \to (\mathbb{K}^n)^n$, $(a_{ij})_{ij} \mapsto \begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \cdots \\ a_{nn} \end{pmatrix}$.

Ist $\omega \in Alt^n(V, \mathbb{K})$ dann ist $\omega' := \omega \circ \Phi^{\times n} \circ \Psi : \mathbb{K}^{n \times n} \to \mathbb{K}$ multilinear und alternierend in den Spalten. Dann ist entweder $\omega = 0$ oder $\frac{1}{\omega'(\mathbb{I}_n)}\omega'$ erfüllt die zweite Bedingung aus Satz 5.3.12. Also $\omega' = \omega'(\mathbb{I}_n)$ det. Das impliziert $Alt^n(V, \mathbb{K})$ wird von det $\circ \psi^{-1} \circ (\Phi^{\times n})^{-1}$ erzeugt. Damit folgt $\dim(Alt^n(V, \mathbb{K})) = 1$.

Weitere Ankündigungen

Evaluation der Vorlesung, Übung und Tutorien

Sie können bis zum 12.02.2021 um 23:00 an der Evaluation der Vorlesung, Übung und Tutorien teilnehmen. Die Umfrage dauert etwa 10 Minuten und enthält Fragen zur Qualität der Veranstaltungen sowie die Möglichkeit, anonym Feedback und Kritik abzugeben.

- Evaluation der Vorlesung: https://onlineumfrage.kit.edu/evasys/online.php?p=G6FZ9
- Evaluation der Übung und Tutorien: https://onlineumfrage.kit.edu/evasys/online.php?p=VA7NJ

Wir bitten um eine möglichst zahlreiche Teilnahme, sodass wir und Ihre Tutoren repräsentative Ergebnisse erhalten.

Fakultätslehrpreise

Einmal pro Jahr und Fakultät vergibt das KIT einen Fakultätslehrpreis für herausragende Lehre. Auf Bitte des Studiendekans weisen wir darauf hin, dass Sie – als Studierende – Kandidaten für diesen Preis nominieren können.

Weitere Informationen über die Fakultätslehrpreise finden Sie auf der Seite

http://www.math.kit.edu/fakmath/seite/fakultaetslehrpreis_2022/de

Vorschläge können bis zum 31.10.2021 an den Studiendekan gerichtet werden.