Tai Duc Nguyen - ECEC 487 - 11/15/2019

Homework 8

- Written Homework
 - Problem 8.1 in Textbook Page 513
 - What are the two choices for reference distribution?
 - How close can the two distributions get before the gap statistic fails to differentiate them?
 - Iteration 1: Mean1 = [0,0] Mean2 = [0,5]. N = 500. Unit variance
 - Iteration 2: Mean1 = [0,0] Mean2 = [0,3]. N = 500. Unit variance
 - Iteration 1: Mean1 = [0,0] Mean2 = [0,2]. N = 500. Unit variance
 - Iteration 1: Mean1 = [0,0] Mean2 = [0,2.3]. N = 500. Unit variance
 - Reference code

Written Homework

Problem 8.1 in Textbook Page 513

Find the Edit distance between the word "poem" and its misspelled version "poten." Draw the optimal path.

Reading: R. Tibshirani, G. Walther, and T. Hastie, **"Estimating the number of clusters in a dataset via the gap statistic,"** Journal of the Royal Statistical Society, vol. 63, pp. 411 - 423, 2001.

What are the two choices for reference distribution?

Two choices for the reference distribution is:

- Uniform distribution in the range of the entire observed data set.
- Use PCA on the data. On each columns, and generate a uniform distribution over the range of such column.

How close can the two distributions get before the gap statistic fails to differentiate them?

Using MATLAB's function evalclusters, the gap statistic plot is shown with each iteration below:

Iteration 1: Mean1 = [0,0] Mean2 = [0,5]. N = 500. Unit variance

The gap statistic plot clearly shows that the optimum number of cluster is 2.

Iteration 2: Mean1 = [0,0] Mean2 = [0,3]. N = 500. Unit variance

The gap statistic plot clearly shows that the optimum number of cluster is 2.

Iteration 1: Mean1 = [0,0] Mean2 = [0,2]. N = 500. Unit variance

The gap statistic plot clearly shows that the optimum number of cluster is 1. Hence, the **gap** statistic fail to differentiates the 2 clusters

Iteration 1: Mean1 = [0,0] Mean2 = [0,2.3]. N = 500. Unit variance

The gap statistic plot shows that the optimum number of cluster is 2 (very slightly), but the MATLAB's algorithm fail to distinguish the 2 clusters

Reference code

```
%% Tai Duc Nguyen - ECEC 487 - 11/15/2019 clear all; close all;
```

```
seed = 0
randn('seed', seed);
%% How close can the two distributions get before the gap statistic fail
M1 = [0 \ 0];
M2 = [2.3 \ 0];
S = [1 \ 0; \ 0 \ 1];
N = 500;
X1 = mvnrnd(M1, S, N);
X2 = mvnrnd(M2, S, N);
X = [X1; X2];
Y = [ones(N,1); ones(N,1)*2];
figure
scatter(X1(:,1), X1(:,2), 'g.');
hold on
scatter(X2(:,1), X2(:,2), 'k.');
E = evalclusters(X, 'kmeans', 'gap', 'KList', [1:3], 'Distance', 'sqEucl
for i=1:size(X,1)
    if E.OptimalY(i) == 1
        plot(X(i,1), X(i,2), 'ko', 'MarkerSize',7, 'LineWidth', 1)
    else
        plot(X(i,1), X(i,2), 'go', 'MarkerSize',7, 'LineWidth', 1)
    end
end
hold off
figure
plot(E)
```