• Summary of this assignment

어떤 방향이 있는 그래프에 속한 모든 정점의 쌍 (u, v)에 대해서 u에서 v로, v에서 u로 도달 가능할 때 이를 "Strongly Connected" 그래프라고 한다. 그리고 한 방향 그래프가 주어졌을 때 그 그래프에 속한 Strongly Connected Subgraph 중 가장 큰 것을 Strongly Connected Component라고 한다. 이번 과제에서는 한 방향 그래프가 주어졌을 때 모든 SCC를 구하는 알고리즘을 구현해볼 것이다. 단 한 번은 인접 리스트로, 다른 한 번은 인접 행렬로 그래프를 표현하여 각각 알고리즘을 구현해볼 것이다. 각각의 그래프 표현 방식은 한 정점의 이웃 정점을 방문하는 시간 복잡도가 다르기 때문에 이와 관련된 대부분의 알고리즘도 그래프의 표현 방식에 따라 시간 복잡도가 달라지게 된다. 이를 검증하기 위해, 이번 과제에서 각각의 방식으로 알고리즘을 구현해보고, 그 실행시간의 차이를 직접 비교 분석해볼 것이다.

• Development environment

(1) 사용 언어: Python 3.6.7

(2) 실험 환경: Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-45-generic x86_64)

(3) 실험 방법 : python3 main.py

• Running time of my algorithms on four input test data

<main.pv> 코드의 runtime 함수는 해당 함수를 해당 인자로 호출하고 그 실행시간을 측정한다.

	인접 리스트 기반 알고리즘 (초)	인접 행렬 기반 알고리즘 (초)
in1.txt	0.0017857644706964493	0.01953496504575014
in2.txt	0.005971070379018784	0.06342738494277
in3.txt	0.008579152636229992	0.1346438778564334
in4.txt	0.010210799984633923	0.2497715801000595

Runtime of algorithm based on adjacency list (sec): 0.0017857644706964493
Runtime of algorithm based on adjacency array (sec): 0.01953496504575014

Runtime of algorithm based on adjacency list (sec): 0.005971070379018784 Runtime of algorithm based on adjacency array (sec): 0.06342738494277

Runtime of algorithm based on adjacency list (sec) : 0.008579152636229992 Runtime of algorithm based on adjacency array (sec) : 0.1346438778564334

Runtime of algorithm based on adjacency list (sec): 0.010210799984633923 Runtime of algorithm based on adjacency array (sec): 0.2497715801000595

▶ 차례대로 in1.txt, in2.txt, in3.txt, in4.txt에 대하여 두 알고리즘의 실행 시간을 측정한 결과

• Analyze the result (Check if my algorithms show expected time complexity)

	V = 정점의 개수	E = 간선의 개수	V + E	V ²
in1.txt	250	600	850	62500
in2.txt	500	1200	1700	250000
in3.txt	750	1800	2550	562500
in4.txt	1000	2400	3400	1000000

▶입력 데이터 크기

▶ 인접 리스트 기반 알고리즘 실행 시간 : 인접 리스트로 구현하면 DFS는 O(|V|+|E|)의 시간이 걸리기 때문에 DFS에 기반한 이 알고리즘의 시간 복잡도도 O(|V|+|E|)라고 예상하고 그래프를 그렸더니 예상과 똑같이 |V|+|E|에 대하여 실행시간이 거의 선형적임을 볼 수 있었다.

- ▶ 인접 행렬 기반 알고리즘 실행 시간 : 인접 행렬로 구현하면 DFS는 $O(|V|^2)$ 의 시간이 걸리기 때문에 DFS에 기반한 이 알고리즘의 시간 복잡도도 $O(|V|^2)$ 라고 예상하고 그래프를 그렸더니 예상과 똑같이 $|V|^2$ 에 대하여 실행시간이 거의 선형적임을 볼 수 있었다.
- : 두 알고리즘은 예상 시간 복잡도를 그대로 가지면서 올바르게 구현되었다.