Topic 3: Propositions

Ch1.1 Propositinal Logic

- The rules of logic are used to distinuish between valid and invalid mathematical arguments.
- A **proposition** is a sentence that declares a fact, that is either true or false, but not both.

TABLE 1 The Truth Table for the Negation of a Proposition.

p
¬p

T
F

F
T

TABLE 2 The Truth Table for the Conjunction of Two Propositions.		
p	q	$p \wedge q$
Т	T	T
T	F	F
F	T	F
F	F	F

TABLE 3 The Truth Table for the Disjunction of Two Propositions.		
p	q	$p \lor q$
T	T	T
T	F	T
F	T	T
F	F	F

TABLE 4 The Truth Table for the Exclusive Or of Two Propositions.		
p	\boldsymbol{q}	$p\oplus q$
T	T	F
T	F	Т
F	T	Т
F	F	F

TABLE 5 The Truth Table for the Conditional Statement $p \rightarrow q$.		
p	q	p o q
T	Т	T
T	F	F
F	T	T
F	F	T

TABLE 6 The Truth Table for the Biconditional $p \leftrightarrow q$.		
p	q	$p \leftrightarrow q$
Т	T	Т
T	F	F
F	T	F
F	F	Т

TABLE 8 Precedence of Logical Operators.		
Operator	Precedence	
¬	1	
^ V	2 3	
$\begin{array}{c} \rightarrow \\ \leftrightarrow \end{array}$	4 5	

- ullet p o q: "if p, then q." "if p, q." "q if p" "q when p" "p implies q" "p only if q"
- $p \leftrightarrow q$: "p iff q." $\equiv (p
 ightarrow q) \wedge (q
 ightarrow p)$

p
ightarrow q origin $= \neg q
ightarrow \neg p$ contrapositive

 $q \rightarrow p \; \; {\rm converse} = \neg p \rightarrow \neg q \; \; {\rm inverse}$

Appendix C-1: Logical Equivalence table; C-2: Logical Equivalence Conditional Statements; C-3: Logical Equivalence Biconditional Statements.

Topic 3: Propositions