ITI107 – Assignment

Adelene Ng

1 Introduction

In this project, we develop a solution to detect and classify which group of mammals an image belongs to. In particular, we want to identify <u>lions, tigers and cheetahs</u> in an image or video using the Tensorflow 2 Object Detection API.

2 Dataset

The images are collected by doing an image Google search (Figure 1).

Figure 1 - Google Image Search for "Lions"

To download the images returned by Google, I installed a Chrome Extension, <u>Fatkun Batch</u> Download Image, from the Chrome Web Store (Figure 2).

Figure 2 - Chrome Web Store - "Fatkun" Batch Download Image Extension Software

When installed, the "Fatkun" Batch Download Image can be invoked by clicking on the icon shown in (Figure 3) (red rectangle):

Figure 3 – "Fatkun" Batch Download Image

Figure 4 – Select "Fatkun" Batch Download Image (highlighted in RED)

Figure 5 – Select "Download (Current Tab)"

Next, select the "Fatkun" Batch Download Image option from the drop down (Figure 4) and click "Download (Current Tab)" Figure 5

Figure 6 - Click "Select All" followed by "Download" to retrieve the images for training

Click "Select All" followed by pressing the "Download" button shown in Figure 6.

Once the 3 sets of image classes (lions, tigers and cheetahs) have been downloaded, these will have to be labelled. I use <u>Labellmg</u> for this purpose. An example of the labeling is shown in Figure 7.

Figure 7 – Selecting an image for labelling

Figure 8 – Label Finalization

Table 1 shows a breakdown of the images collected from the Internet:

Image Class	Total
lions	265
tigers	201
cheetahs	328
TOTAL	794

Table 1 – Image Class Breakdown

3 Model Training

For this project, I am using the "EfficientDet D0 512x512" pre-trained model. The reason for choosing this is because I want to incorporate real time object detection. It is fast however; it will not be as accurate. I chose the "D0" family because of training speed as well over the other series "D1", ..., "D7".

3.1 Baseline Parameters (Run 2)

For the baseline run, Table 2 shows the parameters that I have used for the initial baseline training.

In the baseline run, the <code>number</code> of <code>classes</code> is changed to 3. We want to be able to detect: lions, tigers and cheetahs. The 'batch <code>size</code>' was changed to 4 to fit the amount of GPU memory I had on my laptop. I also reduced the 'num_steps' to 100000 and changed the 'fine_tune_checkpoint_type' from <code>classification</code> to detection. This is because the images supplied usually have multiple objects (of different classes), and object detection allows us to identify all the objects and the positions of each of them. <code>use_bfloat16</code> was changed from <code>true</code> to <code>false</code> as I do not have a TPU.

I also had to change the directory to point to the location where label_map.pbtxt, train.record, val.record, ckpt-0 was stored.

Hyperparameter Name	Old	New Value
	Value	
num_classes	90	3
batch_size	128	4
fine_tune_checkpoint		D:/Users/ng_a/TensorFlow/workspace/training_cust om/pre-trained-models/efficientdet_d0_coco17_tpu-32/checkpoint/ckpt-0
num_steps	300000	100000
fine_tune_checkpoint_t	classific	detection
ype	ation	
use_bfloat16	True	false
train_input_reader/labe		D:/Users/ng_a/TensorFlow/workspace/training_cust om/data/label_map.pbtxt
train_input_reader/inpu t_path		D:/Users/ng_a/TensorFlow/workspace/training_cust om/data/train.record
eval_input_reader/label _map_path		D:/Users/ng_a/TensorFlow/workspace/training_cust om/data/label_map.pbtxt
eval_input_reader/inpu t_path		D:/Users/ng_a/TensorFlow/workspace/training_cust om/data/val.record

Table 2 - Baseline Hyperparameters

3.2 Experimental Run 3

Hyperparameter Name	Old Value	New Value
	loss { localization loss {	loss { localization loss {
	weighted_smooth_l1 {	<pre>weighted_smooth_l1 {</pre>
	} classification loss {	} classification loss {
	<pre>weighted_sigmoid_focal {</pre>	<pre>bootstrapped_sigmoid { alpha: 0.25</pre>

```
gamma: 1.5
    alpha: 0.25
}
classification_weight: 1.0
1.0
localization_weight: 1.0
}
localization_weight: 1.0
}
```

Table 3 – Hyper-parameters for experimental run3

In this experiment, I changed the classification_loss to bootstrapped_sigmoid, (Table 3) so that as the model improves over time, its predictions can be trusted more and I can use these predictions to mitigate the damage of noisy/incorrect labels.

3.3 Experimental Run 4

11	OLIV-I	Name Wales
Hyperparamet	Old Value	New Value
er Name		
	anchor_generator {	anchor_generator {
	<pre>multiscale_anchor_generator { min_level: 3 max_level: 7 anchor_scale: 4.0 aspect_ratios: 1.0 aspect_ratios: 2.0 aspect_ratios: 0.5 scales_per_octave: 3 } }</pre>	<pre>multiscale_anchor_generator { min_level: 3 max_level: 7 anchor_scale: 4.0 aspect_ratios: 1.0 aspect_ratios: 2.0 aspect_ratios: 0.25 aspect_ratios: 0.75 scales_per_octave: 3 }</pre>
	<pre>data_augmentation_options { random_horizontal_flip { } } data_augmentation_options { random_scale_crop_and_pad_to_sq uare { output_size: 512 scale_min: 0.10000000149011612 scale_max: 2.0 }</pre>	<pre>data_augmentation_options { random_scale_crop_and_pad_to_sq uare { output_size: 512 scale_min: 0.5 scale_max: 2.0 } }</pre>

Table 4 – Hyper-parameters for experimental run 4

Here, I change anchors to best fit shapes of objects in my custom dataset. I added <code>aspect_ratios</code>, **0.25** and **0.75**. The former translates to 4 high whereas the latter translates to 1.33 high. I also removed <code>random_horizontal_flip</code> as images taken are usually not mirrored around the horizon. The <code>scale_min</code> attribute within <code>random_scale_crop_pad_to_square</code> was changed to **0.5** (Table 4).

3.4 Experimental Run 5

Hyperparameter Name	Old Value	New Value
	<pre>train_config {</pre>	train_config {
		<pre> data_augmentation_options { normalize_image {</pre>
	}	original_minval: 0.0

Hyperparameter Name	Old Value	New Value	
		original_maxval: 255.0 target_minval: -1.0 target_maxval: 1.0	
		} } }	

Table 5 – Hyper-parameters for experimental run5

In this experimental run, I try image augmentation, in particular, image normalization. I map the original values (0.0, 255.0) to (-1.0, 1.0). See Table 5

3.5 Experimental Run 6

Hyperparameter Name	Old Value	New Value
	<pre>post_processing { batch_non_max_suppression { score_threshold: 9.99999993922529e-09 iou_threshold: 0.5 max_detections_per_class: 100 max_total_detections: 100 } score converter: SIGMOID</pre>	<pre>post_processing { batch_non_max_suppression { score_threshold: 0.2 iou_threshold: 0.5 max_detections_per_class: 30 max_total_detections: 90 } score_converter: SIGMOID</pre>
	<pre>train_config { max_number_of_boxes: 100</pre>	<pre>train_config { max_number_of_boxes: 90</pre>

Table 6 - Hyper-parameters for experimental run6

In this run, I change the batch_non_max_suppression parameters.

score_threshold: defines a minimum confidence score for classification, which should be reached so the proposal won't be filtered out. The default value is a value close to 0, i.e. all proposals are accepted. I set the value to **0.2** because eliminating those proposals that are most likely to be incorrect leads to more stable training.

max_detections_per_class: I set the value to the maximum number of objects for a single class (10) times the number on anchors (number of aspect_ratios) (3): 30

```
max_total_detections was set to max_detections_per_class \times total number of classes: 30 \times 3 = 90
```

max_number_of_boxes is set to the same number as max_total_detections: 90. See
Table 6

4 Results

Experimental Run	mAP
Baseline	0.856
Run3	0.791

Experimental Run	mAP
Run4	0.847
Run5	0.001
Run6	0.727

Table 7 - mAP for the different experimental runs

Table 7 summarizes the mAP values for the different experiments that were carried out. The baseline run show the best results.

Sections 4.1 - 4.5 analyses the results from the different experimental runs. Each show the mAP, loss as well as the evaluation images.

4.1 Baseline Run 2

Average Precision	(AP) @[IoU=0.50:0.95	area= all	maxDets=100 l = 0.573
Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.856
Average Precision	(AP) @[IoU=0.75	area= all	maxDets=100] = 0.646
Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = -1.000
Average Precision	(AP) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.165
Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.586
Average Recall	(AR) @[IoU=0.50:0.95	area= all	maxDets= 1] = 0.457
Average Recall	(AR) @[IoU=0.50:0.95	area= all	maxDets= 10] = 0.650
Average Recall	(AR) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.693
Average Recall	(AR) @[IoU=0.50:0.95	area= small	maxDets=100] = -1.000
Average Recall	(AR) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.361
Average Recall	(AR) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.703
<pre>INFO:tensorflow:Eva</pre>	l metrics at step 29300		_

Figure 9 – Evaluation results from baseline experiment

The mAP results from this run are shown in Figure 9. This shows the best results from the 5 experimental runs.

One possible reason why not much tuning is really needed is because the objects to be detected are quite similar to the domain of the original dataset and is not from a completely different domain for example, X-ray images.

Also, the size of the target dataset is not very big (about 800 images). The network probably will not learn much from training more layers, so it will tend to overfit the new data. So, less fine-tuning is needed.

The loss is shown in Figure 10 and evaluation images are shown in Table 8.

Figure 10 - Loss for baseline experiment

Table 8 – Evaluation Images from baseline run

Since this experimental run shows the best mAP value from the 5 runs, I used the model from this run against a test image. Figure 11 show the result of running the detector on the test image. All objects (lion, cheetah and tiger) that we want this model to detect has been successfully detected. The scores are relatively good too: lion shows a probability of 0.89, cheetah 0.70 and tiger 0.91 respectively.

Figure 11 - Results of running this model against a test image

This model does not do too well on real time object detection as shown in the attached video. Lions were detected with scores between 50% - 80% but it also makes false detections in certain frames too (bottom of frame with no lion yet model says it is a lion @ 7s – 10s into video). Cheetah detection was not so good (about 50% - 80%). It was missed completely in certain frames (@ 43s, @52s – 56s). YOLO v4 might be a better pre-trained model to use in this case.

4.2 Run 3

Average Precision	(AP) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.461
Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.791
Average Precision	(AP) @[IoU=0.75	area= all	maxDets=100] = 0.490
Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = -1.000
Average Precision	(AP) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.210
Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.472
Average Recall	(AR) @[IoU=0.50:0.95	area= all	maxDets= 1] = 0.407
Average Recall	(AR) @[IoU=0.50:0.95	area= all	maxDets= 10] = 0.588
Average Recall	(AR) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.641
Average Recall	(AR) @[IoU=0.50:0.95	area= small	maxDets=100] = -1.000
Average Recall	(AR) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.400
Average Recall	(AR) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.652
:NFO:tensorflow:Eva	l metrics at step 38800		

Figure 12 - Evaluation results from experiment run 3

In this run, I changed the loss function to bootstrapped sigmoid.

The mAP results from this run are shown in Figure 12.

Figure 13 shows the loss and Table 9 shows the evaluation images from experimental run 3.

Figure 13 – Loss from experimental run 3

Table 9 – Evaluation Images from experimental run 3

4.3 Run 4

Average Precision	(AP) @[IoU=0.50:0.	95 area= all	maxDets=100] = 0.546
Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.847
Average Precision	(AP) @[IoU=0.75	area= all	maxDets=100 = 0.619
Average Precision	(AP) @[IoU=0.50:0.	95 area= small	maxDets=100] = -1.000
Average Precision	(AP) @[IoU=0.50:0.	95 area=medium	maxDets=100] = 0.334
Average Precision	(AP) @[IoU=0.50:0.	95 area= large	maxDets=100] = 0.553
Average Recall	(AR) @[IoU=0.50:0.	95 area= all	maxDets= 1] = 0.446
Average Recall	(AR) @[IoU=0.50:0.	95 area= all	maxDets= 10] = 0.636
Average Recall	(AR) @[IoU=0.50:0.	95 area= all	maxDets=100] = 0.686
Average Recall	(AR) @[IoU=0.50:0.	95 area= small	maxDets=100] = -1.000
Average Recall	(AR) @[IoU=0.50:0.	95 area=medium	maxDets=100] = 0.461
Average Recall	(AR) @[IoU=0.50:0.	95 area= large	maxDets=100] = 0.694
<pre>[NFO:tensorflow:Eva</pre>	l metrics at step 40	300	-

Figure 14 - Evaluation results from experiment run 4

In this run, I changed the aspect ratios and removed random horizontal flip which randomly flips input images. I remove this since this is not relevant in this case. For aspect ratio, I removed the anchor box that is 2 high and added anchor boxes 1.33 and 4 high. This may not be that relevant as most of the images are more wide than high. Having said that, this set of hyper-parameters came close to the mAP values of the baseline run (Figure 14).

Figure 15 shows the loss and Table 10 shows the evaluation images from experimental run 4.

Figure 15 – Loss from experimental run 4

Table 10 – Evaluation Images from experimental run 4

4.4 Run 5

Average Precision	(AP) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.000	
Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.001	
Average Precision	(AP) @[IoU=0.75	area= all	maxDets=100] = 0.000	
Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = -1.000	
Average Precision	(AP) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.000	
Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.001	
Average Recall	(AR) @[IoU=0.50:0.95	area= all	maxDets= 1] = 0.000	
Average Recall	(AR) @[IoU=0.50:0.95	area= all	maxDets= 10] = 0.024	
Average Recall	(AR) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.104	
Average Recall	(AR) @[IoU=0.50:0.95	area= small	maxDets=100] = -1.000	
Average Recall	(AR) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.000	
Average Recall	(AR) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.105	
INFO:tensorflow:Eval metrics at step 22900				

Figure 16 - Evaluation results from experiment run 5

In this experimental run, image normalization was applied. However, the mAP values became worse instead of improving as training times increased (Figure 16). This is because for EfficientDet, input pre-processing is included as part of the model, and EfficientDet models expect their inputs to be float tensors of pixels with values in the [0-255] range.

Figure 17 shows the loss and Table 11 shows the evaluation images from experimental run 5.

Figure 17 – Loss from experimental run 5

Table 11 – Evaluation images from experimental run 5

4.5 Run 6

Average Precision	(AP) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.479	
Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.727	
Average Precision	(AP) @[IoU=0.75	area= all	maxDets=100] = 0.529	
Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = -1.000	
Average Precision	(AP) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.177	
Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.491	
Average Recall	(AR) @[IoU=0.50:0.95	area= all	maxDets= 1] = 0.440	
Average Recall	(AR) @[IoU=0.50:0.95	area= all	maxDets= 10] = 0.558	
Average Recall	(AR) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.559	
Average Recall	(AR) @[IoU=0.50:0.95	area= small	maxDets=100] = -1.000	
Average Recall	(AR) @[IoU=0.50:0.95		maxDets=100] = 0.211	
Average Recall	(AR) @[IoU=0.50:0.95		maxDets=100] = 0.571	
INFO:tensorflow:Eval metrics at step 28800				

Figure 18 - Evaluation results from experiment run 6

In the last experimental run, I decided to change the parameters in the post-processing step. Object detectors tend to generate hundreds of proposals. Most of them will not be accepted and will be eliminated. I decided to change the parameters that control model proposals. I changed the <code>score_threshold</code> from the default value close to 0 to 0.2. Setting the parameters allow the model to have an idea how many objects to expect and what their density is. This leads to better performance and will lower the chance of overfitting.

The mAP values from this run are shown in Figure 18. However, the values are not as good as the baseline run.

Figure 19 show the loss and Table 12 show the evaluation images from experimental run 6.

Figure 19 – Loss from experimental run 6

Table 12 - Evaluation images from experimental run 6

5 Conclusion

To conclude, I used the pre-trained model, 'EfficientDet D0 512x512' to train a lion, tiger and cheetah detector. Five experiments were run.

In the baseline experiment, I only changed the batch size, number of steps to train, number of classes (equal to the number of objects I want to detect), changed 'classification' to 'detection'.

For each of the different experimental runs, I changed the following:

- Run 3 loss function
- Run 4 anchor boxes
- Run 5 image normalization
- Run 6 NMS parameters

The best mAP value was obtained using the baseline run. Minimal tuning was required because the objects to be detected were quite similar to the domain of the original dataset and is not from a completely different domain for example, X-ray images.