ASSIGNMENT ON [COMPUTER VISION]			
Souleymane Bore	African Institute for	Deadline	
[Your Code]	AIMS Mathematical Sciences SENEGAL	[Date, Time]	
May 25, 2025	700	2024-2025	
Lecturer: [Dr Jordan Felicien Masakuna]			

Project Report: Image Classification with CNN and Web Deployment

1. Project Objective

This project involves designing, training, and deploying two medical image classification models using **PyTorch** and **TensorFlow**, and integrating these models into a web application built with **Flask**. The user can upload an image, select a model, and view the predicted class.

2. Data

Dataset: Breast Cancer Dataset

It consists of two subsets: **training** and **testing**.

3. Processing Pipeline

- Image resizing to 50x50 pixels
- Conversion to tensors and normalization
- Data augmentation: rotations, flips, zoom
- Data split: 70% training, 20% validation, 10% testing

4. Designed Models

a. PyTorch

CNN model with 3 convolutional layers, ReLU activations, MaxPooling, Dropout, and a fully connected layer with Sigmoid activation. Optimizer: Adam.

b. TensorFlow (Keras)

Similar architecture with Conv2D, MaxPooling, Dropout, and Sigmoid activation. Optimizer: Adam, Loss function: Binary Crossentropy.

Run with:

- python train.py --framework torch
- python train.py --framework tensorflow

5. Model Saving

• PyTorch: soulaymane_model.torch

• TensorFlow: soulaymane_model.tensorflow

6. Web Interface (Flask)

The interface includes:

• A combo box to select a model

• An image upload field

• A label displaying the prediction

Technologies: Flask, HTML/CSS, torch.load(), tf.keras.models.load_model()

7. Deployment

• Platform: Local

• GitHub link: https://github.com/soulaymane/brain-tumor-cnn-classifier

• All files (models, code, interface) were uploaded and successfully tested.

8. Results

Framework	Accuracy	Training Time	Model Size
PyTorch	91.2%	$\sim 6 \min$	1.6 MB
TensorFlow	96.5%	$\sim 10 \min 30s$	2.4 MB

Table 1: Performance comparison between the two CNN models

Observation: Both models achieve comparable results, with a slight performance advantage for the TensorFlow model.

9. Model Predictions (Visualization)

Figure 1: Prediction using PyTorch model

Figure 2: Prediction using TensorFlow model

Figure 3: Prediction result (PyTorch)

Figure 4: Prediction result (Tensor-Flow)

9. ZIP File Content

- Project_rapport.pdf
- train.py, model_torch.py, model_tensorflow.py
- app.py, templates/index.html, static/styles.css
- souleymane_model.torch, souleymane_model.tensorflow