Kinetic Energy Operator in Quantum Mechanics

The kinetic energy operator in one dimension is defined as:

$$\hat{T}=-rac{\hbar^2}{2m}rac{d^2}{dx^2},$$

where:

- ħ: Reduced Planck's constant.
- m: Mass of the particle.
- $rac{d^2}{dx^2}$: The second derivative with respect to position, representing how the wavefunction $\psi(x)$ changes curvature.

In the **Schrödinger equation**, this operator appears as part of the Hamiltonian, which governs the total energy of the system:

$$\hat{H}\psi(x) = E\psi(x), \quad \hat{H} = \hat{T} + \hat{V},$$

where \hat{T} is the kinetic energy operator, and \hat{V} is the potential energy operator.

In the problem of the particle in a box with an infinite potential well, the potential energy V(x) inside the box is zero. Thus, the Hamiltonian simplifies to:

Discretizing the Kinetic Energy Operator

To solve the Schrödinger equation numerically, we need to approximate the second derivative $\frac{d^2}{dx^2}$ using finite difference methods.

1. Finite Difference Approximation

The second derivative of a function $\psi(x)$ at a grid point x_i can be approximated using the central difference formula:

$$\left.rac{d^2\psi}{dx^2}
ight|_{x_i}pproxrac{\psi_{i-1}-2\psi_i+\psi_{i+1}}{\Delta x^2},$$

where:

- ullet $\psi_i=\psi(x_i)$ is the value of the wavefunction at the i-th grid point.
- Δx : Spacing between adjacent grid points.

This formula results in a tridiagonal matrix when applied to all grid points in the domain.

2. Constructing the Laplacian Matrix

The finite difference approximation for the second derivative leads to the **Laplacian operator** (a matrix representation of $\frac{d^2}{dx^2}$):

$$L = rac{1}{\Delta x^2} egin{bmatrix} -2 & 1 & 0 & \cdots & 0 \ 1 & -2 & 1 & \cdots & 0 \ 0 & 1 & -2 & \cdots & 0 \ dots & dots & dots & \ddots & dots \ 0 & 0 & 0 & \cdots & -2 \end{bmatrix}.$$

Here:

- ullet The main diagonal contains -2 (representing the $-2\psi_i$ term).
- ullet The sub- and superdiagonals contain 1 (representing the ψ_{i-1} and ψ_{i+1} terms).

The second derivative of a function $\psi(x)$ is central to many physical problems, including the Schrödinger equation. Using the finite difference method, we approximate the second derivative at a point x_i as:

$$\left.rac{d^2\psi}{dx^2}
ight|_{x_i}pproxrac{\psi_{i-1}-2\psi_i+\psi_{i+1}}{\Delta x^2}.$$

Here:

- ψ_{i-1} : The value of the function at the point to the **left** of x_i .
- ψ_i : The value of the function at x_i (the point of interest).
- ψ_{i+1} : The value of the function at the point to the **right** of x_i .
- Δx : The spacing between adjacent grid points.

This formula comes from a Taylor expansion around x_i and is accurate to second order $(O(\Delta x^2))$.

Representing the Second Derivative as a Matrix

For a discretized domain with N points, the second derivative operator is represented by a tridiagonal matrix acting on a vector of function values. Let's build this step by step.

1. Matrix Form of the Second Derivative

For a grid with N points, let $\psi = [\psi_1, \psi_2, \dots, \psi_N]^T$ represent the wavefunction values at the grid points. The second derivative operator can be written as a matrix multiplication:

$$rac{d^2 \psi}{dx^2} pprox rac{1}{\Delta x^2} egin{bmatrix} -2 & 1 & 0 & 0 & \cdots & 0 \ 1 & -2 & 1 & 0 & \cdots & 0 \ 0 & 1 & -2 & 1 & \cdots & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & \cdots & 1 & -2 & 1 \ 0 & 0 & \cdots & 0 & 1 & -2 \ \end{pmatrix} egin{bmatrix} \psi_1 \ \psi_2 \ \psi_3 \ dots \ \psi_{N-1} \ \psi_N \ \end{pmatrix}.$$

2. Components of the Matrix

- Main Diagonal (-2): Represents the $-2\psi_i$ term for each grid point.
- Off-Diagonals (1): Represent the ψ_{i-1} and ψ_{i+1} contributions from the neighboring points.
- Boundary Conditions: At the edges (x=0 and x=L), the wavefunction $\psi(x)$ is zero for an infinite potential well. This means the boundary points are implicitly excluded from the matrix.