

Description

The VSM130N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 130A$ $R_{DS(ON)} < 6.8 m\Omega @ V_{GS} = 10V$ (Typ:5.3 m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM130N10-TC	VSM130N10	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	130	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	92	А
Pulsed Drain Current	I _{DM}	500	А
Maximum Power Dissipation	P _D	285	W
Derating factor		1.9	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	1100	mJ

Shenzhen VSEEI Semiconductor Co., Ltd

Parameter	Symbol	Limit	Unit	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	
Thermal Characteristic				
Thermal Resistance,Junction-to-Case ^(Note 2)	R _{0JC}	0.53	°C/W	

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)		•				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3.0	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	5.3	6.8	mΩ
Forward Transconductance	G FS	V _{DS} =5V,I _D =20A	40	-	-	S
Dynamic Characteristics (Note4)	•		•			
Input Capacitance	C _{lss}	V _{DS} =50V,V _{GS} =0V,	-	7100	-	PF
Output Capacitance	C _{oss}		-	413	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	333	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}		-	31	-	nS
Turn-on Rise Time	t _r	V_{DD} =50V, R_L =2.5 Ω V_{GS} =10V, R_{GEN} =3 Ω	-	24	-	nS
Turn-Off Delay Time	$t_{d(off)}$		-	45	-	nS
Turn-Off Fall Time	t _f		-	27	-	nS
Total Gate Charge	Qg	- V _{DS} =50V,I _D =65A,	-	170	-	nC
Gate-Source Charge	Q _{gs}		-	38	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	65	-	nC
Drain-Source Diode Characteristics		•				
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =40A	-	0.85	1.2	V
Diode Forward Current (Note 2)	Is		-	-	130	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =20A	-	65	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	110	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition:Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=1mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

gure 7 Capacitance vs Vds Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 ID Current- JunctionTemperature

Figure 11 Normalized Maximum Transient Thermal Impedance