Appunti GAL

Nicolò Luigi Allegris

Matrici Simili Due matrici $A, A' \in \mathcal{M}_{n,n}(\mathbb{K})$ si chiamano simili se $\exists P \in \mathcal{M}_{n,n}(\mathbb{K})$ invertibile, t.c. $A' = P \cdot A \cdot P^{-1}$.

Prop Matrici simili hanno lo stesso determinante.

Endomorfismo Un endomorfismo di U è un applicazione lineare $f: U \to U$.

Determinante di un endomorfismo Sia $f: U \to U$ endomorfismo, Il determinante di f è dato da $det\left(\mathcal{M}_{\beta}^{\beta}(f)\right)$ dove β è una base di U.

Determinante di una composta Siano $f, g: U \to U$ endomorfismi, allora $det(f \circ g) = det(f) \cdot det(g)$

Prop $f: U \to U$ isomorfismo $\Leftrightarrow det(f) \neq 0$

1 Diagonalizzazione

Dato un endomorfismo $f:V\to V$ bisogna trovare una base β di V adattata a f, cioè tale che la matrice di f rispetto a β sia diagonale.

$$\mathcal{M}_{\beta}^{\beta}(f) = \begin{pmatrix} \alpha_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \alpha_n \end{pmatrix}$$

rendendo in questo modo il calcolo di f con prodotto matriciale della sua matrice associata facile. Una matrice è diagonalizzabile se e solo se è simile a una matrice diagonale.

Autovalori e Autovettori Sia $f: U \to U$ un endomorfismo.

- 1. Uno scalare $k \in \mathbb{K}$ si chiama autovalore di f se $\exists v \in V$ non nullo t.c. $f(v) = \alpha v$
- 2. Un vettore $V \in V$ si chiama autovettore di f se $v \neq 0$ e $\exists \alpha \in \mathbb{K}$ t.c. $f(v) = \alpha v$

Oss Diagonalizzare f equivale a trovare una base formata di autovettori.

Oss 0 autovalore $\Leftrightarrow ker(f) \neq 0 \Leftrightarrow f$ non è un isomorfismo.

Teorema Sia $f:V\to V$ un endomorfismo. Siano $v_1,...,v_k\in V$ autovettori di f corrispondenti ad autovalori distinti $\alpha_1,...,\alpha_k$. Allora $v_1,...,v_k$ sono linearmente indipendenti.

1.1 Come trovare autovalori

Oss $\alpha \in \mathbb{K}$ autovalore $\Leftrightarrow \exists v \in V, v \neq 0, t.c. f(v) = \alpha v \Leftrightarrow \exists v \neq 0 t.c. (f - \alpha \cdot id_V)(v) = 0 \Leftrightarrow ker (f - \alpha \cdot id_V) \neq 0 \Leftrightarrow det (f - \alpha \cdot id_V) = 0.$

Prop Sia $n = dimV \in \mathbb{N}$, allora $det(f - x \cdot id_V)$ è un polinomio in x di grado n. Inoltre

$$det(f - x \cdot id_V) = (-1)^n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + det(f)$$

dove $a_{n-1},...,a_1 \in \mathbb{K}$

Polinomio caratteristico $\mathcal{X}_f(x) = det(f - x \cdot id_V) \in \mathbb{K}[x]$ è il polinomio caratteristico di f. Per $A \in \mathcal{M}_{n,n}(\mathbb{K})$ il polinomio caratteristico di A è $\mathcal{X}_A(x) = det(A - x \cdot I_n)$.

Prop α è autovalore di $f \Leftrightarrow \mathcal{X}_f(\alpha) = 0$. (α è autovalore di $A \Leftrightarrow \mathcal{X}_A(\alpha) = 0$). \Rightarrow Gli autovalori sono radici del polinomio caratteristico.

Molteplicità Sia $f:V\to V$ endomorfismo, con $dim V\in\mathbb{N}$ e sia $\alpha\in\mathbb{K}$ un autovalore di f.

- 1. La molteplicità algebrica di α è il massimo $a \in \mathbb{N}$ t.c. $(x \alpha)^a$ sia divida $\mathcal{X}_f(x)$.
- 2. La molteplicità geometrica di α è $g=\dim\left(\ker\left(f-\alpha\cdot id_{V}\right)\right)$ che per il teorema del rango è: $n-rg\left(f-\alpha\cdot id_{V}\right)$
- 3. $\ker\left(f-\alpha\cdot id_V\right)=\{\text{autovettori associati a }\alpha\}\cup\{0\}$ sè l'autospazio associato ad $\alpha.$

Prop $1 \le g \le a$

Teorema

$$f$$
 è diagonalizzabile $\Leftrightarrow \sum_{i=1}^{n} g_i = n$

dove $g_1,...,g_n$ sono le molteplicità geometriche degli autovalori di f.

Cor f è diagonalizzabile se e solo se:

1.
$$\mathcal{X}_f(x) = (-1)^n \prod_{i=1}^k (x - \alpha_i)^{a_i}$$
, dove $\alpha_i \neq \alpha_j$ per $i \neq j$.

2.
$$g_i = a_i \forall i = 1, ..., k$$
.