Modèles stochastiques en finance MAP 552

École Polytechnique

Département de Mathématiques Appliquées

TP 1.1 Le modèle de Cox-Ross-Rubinstein

Ce TP est associé au Chapitre 2 du polycopié de cours. Lisez-le afin de procéder à l'implémentation demandée.

Une partie des points sera accordée à la présence de commentaires et à la bonne vectorisation du code sur au moins une dimension.

1. Considérons le modèle binomial à $n \ge 1$ périodes avec les coefficients d'évolution :

$$u_n := e^{\mu h_n + \sigma \sqrt{h_n}},$$

$$d_n := e^{\mu h_n - \sigma \sqrt{h_n}},$$

où $\mu > 0, \sigma > 0$ et $h_n := \frac{T}{n}$ pour tout $n \ge 1$ avec T > 0 la maturité. On note S_j^n le vecteur de \mathbb{R}^{j+1} des prix possibles à la date $1 \le j \le n$ défini par : $S_j^n(i) := S_0 u^{j-i} d^i$ pour $0 \le i \le j$ et $S_0 > 0$.

- (a) Écrire une fonction Sn(T, n, μ , σ , j) qui renvoie le vecteur S_i^n .
- (b) Considérons une option européenne de type call de maturité T>0 et de prix d'exercice K>0. Écrire une fonction Payoff(T, n, μ , σ , K) qui renvoie le vecteur des profils de gain à la maturité.
- (c) Soit $r \ge 0$ le taux d'intérêt sans risque (et constant). Écrire une fonction Calln(T, n, r, μ , σ , K) qui renvoie le prix de l'option européenne de type call ((option d'achat)) à la date 0.
- (d) À chaque date $t_j^n := jh_n$, on note Δ_j^n la stratégie de couverture. Écrire une fonction Deltan(T, n, r, μ , σ , K, j) qui renvoie le vecteur Δ_j^n .
- (e) Étudiez la dépendance du prix d'exercice K sur les résultats des fonctions Calln et Deltan, et commentez. Vous pouvez, par exemple, tester $K \in \{80, 81, \dots, 120\}$ sur un arbre à n = 50 périodes et avec les paramètres

$$\sigma = 30\%, \quad r = 5\%, \quad \mu = 10\%, \quad S_0 = 100, \quad T = 2.$$
 (1)

- 2. Nous comparons à la formule de Black Scholes (limite quand le nombre de périodes du modèle binomial tend vers l'infini).
 - (a) Écrire une fonction Call(T, r, σ , K) qui renvoie le prix à la date 0 d'une option européenne de type call avec la formule de Black-Scholes. Pour la fonction de répartition de la loi normale en Python, on pourra utiliser la fonction scipy.stats.norm.cdf de la bibliothèque scipy.
 - (b) Définir la fonction :

error(T, n, r, μ , σ , K) := Calln(T, n, r, μ , σ , K)/Call(T, r, σ , K) - 1,

puis tracer le graphique de cette erreur relative en fonction du nombre de périodes n et commentez. Vous pouvez utiliser les paramètres de (1) avec K = 105.