

Universidade de Aveiro

Departamento de Eletrónica, Telecomunicações e Informática

Compiladores

Exame teórico 1 modelo	
• • • • • • • • • • • • • • • • • • • •	
NºMec:	Nome:

1. Sobre o alfabeto $A = \{a, b, c\}$, considere a linguagem L_1 , definida pelo autómato finito M_1 , a linguagem L_2 , definida pela gramática regular G_2 (cujo símbolo inicial é S_2), e a linguagem L_3 .

- (a) Das seguintes afirmações, assinale as verdadeiras.
- (b) Considerando que L(e) representa a linguagem descrita pela expressão regular e, das seguintes afirmações, assinale as verdadeiras.
- (c) Das seguintes gramáticas, assinale aquela(s) que simultaneamente seja(m) regular(es) e represente(m) a linguagem L_3 .

 - $\begin{array}{|c|c|c|c|}\hline S \rightarrow a \, b \, c \, C \\ C \rightarrow B \mid c \, C \\ B \rightarrow \varepsilon \mid b \, b \, B \\ \hline \end{array}$

(d) Determine um autómatos finito determinista equivalente a M_1 .

(e) Obtenha um **autómato finito**, determinista ou não determinista, mas **não generalizado**, que reconheça a linguagem $L_5 = L_1 \cdot L_2$. Apresente os passos intermédios e/ou o raciocínio adequados para justificar a sua resposta.

 $S_2 \to a X$ $X \to b \mid b c b X \mid b S_2$

Assumindo, que Li e La são representados por Mi= (A,Q,, 9,, 8,, F1) e Ma= (A,Q,, 92, 82, F2) respetivomente.

O AFNO M5 que representa L5=L1·L2 será: K5=(A,Q,UQ2,91,8,U82U(F,×121×1921),F2)

(f) Obtenha uma **expressão regular** que reconheça a linguagem L_1 . Apresente os passos intermédios e/ou o raciocínio adequados para justificar a sua resposta.

......Área de resposta

(g) Mostre que $L_3 \subset L_1$. (Note que se trata do subconjunto em sentido estrito (\subset) e não em sentido lato (\subseteq).) Apresente os passos intermédios e/ou o raciocínio adequados para justificar a sua resposta.

2. Sobre o alfabeto $A = \{ \mathtt{a}, \mathtt{b}, \mathtt{c} \},$ considere a linguagem

$$R = \{ \, \omega \in A^* \, : \, |\omega| \geq 1 \ \wedge \ \#(\mathtt{a},\omega) \not\in \mathrm{par} \ \wedge \ \#(\mathtt{b},\omega) < 2 \, \}.$$

onde $|\omega|$ representa o número de letras da palavra ω e $\#(\mathbf{x},\omega)$ é uma função que devolve o número de ocorrências da letra \mathbf{x} em ω .

(.) Projete um autómato finito, determinista ou não determinista, mas não generalizado, que reconheça a linguagem R.

Nota: VX_0- #a & por e #b=0 VX_1- #a & por e #b=1 X_2- #a & impor e #b=0 X_3- #a & impor e #b=1