EVOLUTIONARY NEURAL NETWORK

CHELSEA JOHN INTERNSHIP 2020 UNIVERSITY OF BONN

CONTENTS

- Introduction
- Grid Search For Deep Neural Network
 - With ADAM optimizer
 - With SGD optimizer
- Evolutionary Network
 - With max AUC
 - With min DeltaLoss
 - With both max AUC and Min DeltaLoss
 - Fine tuning
- Verifying the Best Genotype
- Conclusion

<u>AIM</u>: Separate Signal From Background Using Neural Networks

Signal: tZq

sFile: /cephfs/user/s6taholm/tHq/run/12-10-hadhad/out_12-10-tZq.root

Background: ttbar

bFile:/cephfs/user/s6taholm/tHq/run/12-10-hadhad/ttbar.root

Variables Used For Distinguishing tZq From ttbar:

eta_jf

- Forward jet eta

pt_jf

- Forward jet transverse momentum

mass_jf

- Forward jet mass

phi_jf

- Forward jet phi

• eta_b

- Eta of b

pt_b

- Transverse momentum of b

phi_b

- Phi of b

HvisMass

- Heavy Boson mass

M_met

- Mass of missing transverse energy

Reco w mass 1

- Reconstructed W-1 mass

Reco_w_mass_2

- Reconstructed W-2 mass

GRID SEARCH RESULTS

DEEP NEURAL NETWORK

NETWO	RK STRUCTURE
No: of nodes	[10 - 100]
Hidden layers	[1-4]
Epochs	[50 - 250]
Dropout	[0 - 0.9]
Batchsize	[10 - 1000]
activations	ReLu, ReLu, Sigmoid
Initialization	Lecun_normal

TRAINING SETUP					
K-fold splits	[1,2,3,4]				
Features	conf/tZq_VarList_ckirfel.txt				
Full Features	conf/tZq_VarList_ckirfel.txt				
evFrac	0.25				
UseBatchNorm	True				
Estop	None				

0	PTIMIZER
Optimizer	Adam , SGD
Learning rate	SGD: [0.01-0.99]
Decay	0
Momentum	SGD: [0 – 0.8]
Nesterov	True
Loss	Binary cross entropy

Graphs Analyzed

- Model Accuracy (Accuracy vs Epoch)
- Model loss (Loss vs Epoch)
- Response (Signal 1, Background 0)
- Receiver Operating Characteristic(ROC)

OPTIMIZER: ADAM

Epoch	Batch size	Hidden layers	No of nodes	K-fold splits	Dropout
[50,250]	[10,1000]	[1,4]	[10,100]	[1,4]	[0,0.9]
150	200	2	50	2	

OPTIMIZER: SGD

Epoch [50,250]	Batch size [10,1000]	Hidden layers [1,4]	No of nodes[10,100]	K-fold [1,4]	Dropout [0,0.9]	Learning rate[0.01,0.99]	Momentum [0,0.8]
200	20	2	40	3	0	0.95	0.3

EVOLUTIONARY NEURAL NETWORK

EVOLUTIONARY NEURAL NETWORK

The general implementation is as follows

- Step One:
 - Generate the initial population of individuals/genotypes randomly. (First generation)
- Step Two: Repeat the following breeding steps until termination:
 - Evaluate the fitness of each genotype in the generation, i.e. here using the Loss,
 Accuracy, ROC and Response graphs
 - Select the fittest genotype for reproduction(Parents) [selecting the best genotype]
 - Breed new genotypes through crossover /mixing and mutation operations to give birth to offspring.
 - Replace the least-fit genotypes of the generation with new genotypes

VARIABLES

TRAIN	IING SETUP
Optimizer	Adam
Initialization	random_uniform
Nesterov	True
Loss	Binary cross entropy
Decay	0
Momentum	0.001
Features	conf/tZq_VarList_ckirfel.txt
Full Features	conf/tZq_VarList_ckirfel.txt
evFrac	0.25
UseBatchNorm	True
Estop	None

HYPER PARAMETERS

Hyper parameter	No: of Selections	Start	Stop	Step
Layers[]	3	1	10	1
Nodes[]	3	1	100	5
Dropout[]	3	0	1	0.10
Learning rate[]	2	0.001	0.1	0.001
Epoch[]	2	50	500	50
Batch Size[]	2	100	2000	10
Activation function[]	2		['relu', 'elu	ı']

SELECTING BEST GENOTYPE: WITH MAX AUC

Gen	Mixing	Mutation	Epoch [50,500]	Batch [100,2000]	Layers [1,10]	Nodes [1,100]	K-fold splits	Dropout [0,1]	Activation [elu,relu]
3	5	5	480	440	7	91	2	0.1	Relu

SELECTING BEST GENOTYPE: WITH LEAST DELTALOSS

Gen	Mixing	Mutation	Epoch [50,500]	Batch [100,2000]	Layers [1,10]	Nodes [1,100]	K-fold splits	Dropout [0,1]	Activation [elu,relu]
3	5	5	210	1530	6	8	2	0.3	elu

False Positive Rate

SELECTING BEST GENOTYPE: USING AUC AND DELTALOSS

```
# sorting wrt to max AUC and min deltaLoss
  genotypeSummary 1 = genotypeSummary.sort values(by ='AUC', ascending = False)
  genotypeSummary 2 = genotypeSummary.sort values(by = 'deltaLoss', ascending = True)
  test1 index = genotypeSummary 1.index
 test2 index = genotypeSummary 2.index
  best index =[]
  print('AUC index: ',test1 index,'deltaLoss index: ',test2 index)
 for i in range(int(len(test2 index)/2)):
if test1 index[i] == test2 index[i]:
  best_index.append(test2_index[i])
if ( len(best index) > 0 and len(best index) < len(test2 index)):</pre>
   remaining index = [ elem for elem in test2_index if elem not in best_index ]
    final index = best index + remaining index
   print('final index:', final index)
     genotypeSummary = pd.DataFrame(genotypeSummary, index = final index)
 elif (len(best index) == len(test2 index)):
     genotypeSummary = pd.DataFrame(genotypeSummary, index = best index)
else:
     genotypeSummary = genotypeSummary_2
```

SELECTING BEST GENOTYPE: USING AUC AND DELTALOSS

Gen	Mixing	Mutation	Epoch [50,500]	Batch [100,2000]	Layers [1,10]	Nodes [1,100]	K-fold splits	Dropout [0,1]	Activation [elu,relu]
3	5	5	450	780	1	59	2	0.6	elu

Force Produce Plate

FINE TUNING THE BEST GENOTYPE

Epoch	Batch	Layers	Nodes	K-fold splits	Dropout	Activation
100	780	1	59	1	0.6	elu

VERIFYING BEST GENOTYPE

Best:

Gen	Mixing	Mutation	Epoch	Batch	Layers	Nodes	K-fold splits	Dropout	Activation
3	3	3	150	920	5	16	3	0.9	elu

VERIFYING BEST GENOTYPE

Check the mutation, mixing, and best results

Mixing:

Generation	layers	nodes	dropout	: lr	epoch	batchs	ize	activation
1	5	16	0.9	0.02	150	920	['elu',	'sigmoid']
1	3	56	0.9	0.02	150	920	['elu',	'sigmoid']
1	3	16	0.9	0.01	150	920	['elu',	'sigmoid']
2	5	16	0.9	0.01	150	920	['elu',	'sigmoid']
2	4	17	0.9	0.02	150	920	['elu',	'sigmoid']
2	3	16	0.9	0.01	150	920	['elu',	'sigmoid']
3	4	14	0.9	0.01	150	920	['elu',	'sigmoid']
3	3	17	0.9	0.02	150	920	['elu',	'sigmoid']
3	5	16	0.9	0.04	150	920	['elu',	'sigmoid']
4	1	14	0.9	0.02	150	920	['elu',	'sigmoid']
4	3	16	0.9	0.02	150	920	['elu',	'sigmoid']
4	5	17	0.9	0.04	150	920	['elu',	'sigmoid']

VERIFYING BEST GENOTYPE

Mutation:

Generation	layers	nodes	dropout	lr	epoch	batchs	size	activation
1	2	16	0.9	0.04	150	920	['elu',	'sigmoid']
1	4	55	0.9	0.01	150	920	['elu',	'sigmoid']
1	5	17	0.9	0.02	150	920	['elu',	'sigmoid']
2	1	14	0.9	0.04	150	920	['elu',	'sigmoid']
2	3	14	0.9	0.03	150	920	['elu',	'sigmoid']
2	5	17	0.9	0.01	150	920	['elu',	'sigmoid']
3	3	12	0.9	0.04	150	920	['elu',	'sigmoid']
3	2	17	0.9	0.03	150	920	['elu',	'sigmoid']
3	3	16	0.9	0.01	150	920	['elu',	'sigmoid']
4	1	16	0.9	0.02	150	920	['elu',	'sigmoid']
4	1	14	0.9	0.04	150	920	['elu',	'sigmoid']
4	4	14	0.9	0.01	150	920	['elu',	'sigmoid']

SOLUTIONS:

- Increasing the number of generations and genotypes in mutations and mixing
- Broaden the value range of parameters to give sufficient variety in mixing and mutation combinations
- Add early stopping

CONCLUSION:

- Evolutionary Neural Network can produce results faster than Grid Search
- Epoch, Batch size and Activation Function are added as input variables to the Evolutionary Neural Network(ENN)
- ENN results are improved by selecting Best Genotype using both AUC and deltaLoss values
- The genotypes created by mixing and mutation as well as the best genotype of each generation is written to a text file for later reference.
- ENN results can be improved further by increasing the number and phase space of genotypes created.
- It would be interesting to add EarlyStopping to ENN

Reference:

Alejandro Martín, Raúl Lara-Cabrera, Félix Fuentes-Hurtado, Valery Naranjo, David Camacho, EvoDeep: A new evolutionary approach for automatic Deep Neural Networks parametrisation, Journal of Parallel and Distributed Computing,