算法竞赛个人模板

 Cu_OH_2

2024年8月11日

E	录	6	树论 18 6.1 LCA
1	通用 1.1 基础框架 1.2 实用代码 1.3 编译指令 1.4 常犯错误	1 1 1 1	6.2 树的直径 18 6.3 树哈希 18 6.4 树链剖分 19 6.5 树上启发式合并 19 6.6 点分治 20
2	动态规划 2.1 单调队列优化多重背包	1 1 1 2	图论 21 7.1 2-SAT 21 7.2 Bellman-Ford 算法 22 7.3 Dijkstra 算法 22 7.4 Dinic 算法 22 7.5 Floyd 算法 23
3	字符串 3.1 KMP 算法 3.2 扩展 KMP 算法 3.2 扩展 KMP 算法 3.3 字典树 3.4 AC 自动机 3.5 后缀自动机 3.6 回文自动机 3.7 Manacher 算法 3.8 最小表示法 3.9 字符串哈希	2 2 3 3 3 4 5 5 5	7.6 Kosaraju 算法 23 7.7 Tarjan 算法 24 7.8 圆方树 25 7.9 K 短路 25 7.10 SSP 算法 26 7.11 原始对偶算法 27 7.12 Prim 算法 27 7.13 Kruskal 算法 28 7.14 Kruskal 重构树 28 7.15 Hierholzer 算法 29
4	数学 4.1 快速模 4.2 快速幂 4.3 矩阵快速幂 4.4 矩阵求逆 4.5 排列奇偶性 4.6 线性基 4.7 高精度 4.8 连续乘法逆元 4.9 数论分块 4.10 欧拉函数 4.11 线性素数筛 4.12 欧几里得算法 + 扩展欧几里得算法 4.13 中国剩余定理 4.14 扩展中国剩余定理 4.15 多项式 4.16 哥德巴赫猜想 4.17 组合数学公式	6 6 6 6 6 7 7 7 7 8 8 8 9 9	8.1 平面坐标旋转 8.2 平面最近点对 8.3 平面叉乘 30 杂项算法 9.1 普通莫队算法 9.2 带修改莫队算法 9.3 莫队二次离线 9.4 整体二分 9.5 三分 9.6 离散化 9.7 快速排序 9.8 枚举集合 9.9 CDQ 分治 + CDQ 分治 = 多维偏序 9.10 CDQ 分治 + 数据结构 = 多维偏序
5	数据结构 5.1 哈希表 5.2 ST表 5.3 并查集 5.4 笛卡尔树 5.5 树状数组 5.6 二维树状数组 5.7 线段树 5.8 历史最值线段树 5.9 动态开点线段树 5.10 可持久化线段树	12 12 12 13 13 13 14 14 14 15 16	

1 通用

1.1 基础框架

```
#include<bits/stdc++.h>
using namespace std;
using ll = long long;

void solve()
{
    return;
}

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    int T = 1;
    //cin >> T;
    while (T--) solve();
    return 0;
}
```

1.2 实用代码

```
// debug 常用宏
#define debug(x) cout << #x << " = " << x << endl
// 本地文件读写
freopen("A.in", "r", stdin);
freopen("A.out", "w", stdout);
// builtin 系列位运算
 _builtin_ffs(x); // 最低位1是第几位 (从1开始, 不存在则0)
 _builtin_clz(x)/__builtin_clzll(x); // 前导高0的个数
_builtin_ctz(x)/__builtin_ctzll(x); // 末尾低0的个数
 _builtin_popcount(x)/__builtin_popcountll(x); // 1的个数
__builtin_parity(x); // 1的个数的奇偶性
// 最高位 1 的位置 (从0开始,注意x不能为0)
__lg(x);
// long double 用浮点函数后面加1
sqrtl(x)/fabsl(x)/cosl(x);
// 随机数生成器 (C++11, 返回unsigned/ull)
mt19937 mt(time(0));
mt19937_64 mt64(time(0));
mt64():
shuffle(v.begin(), v.end(), mt);
// 读入包含空格的一行字符串
getline(cin, str);
// 优先队列自定义比较函数
priority_queue<T, vector<T>, decltype(cmp)> pq1(cmp); // lambda函数
priority_queue<T, vector<T>, decltype(&cmp)> pq1(cmp); // 普通函数
```

1.3 编译指令

- 1. 支持 C++14: -std=c++14
- 2. STL debug: -D_GLIBCXX_DEBUG
- 3. 内存错误检查: -fsanitize=address
- 4. 未定义行为检查: -fsanitize=undefined

1.4 常犯错误

- 1. 爆 long long
- 2. 数组首尾边界未初始化

- 3. 组间数据未清空重置
- 4. 交互题没用 endl
- 5. size()参与减法导致溢出
- 6. for(j) 循环写成 ++i
- 7. 输入没写全/输入顺序错
- 8. 输入浮点数导致超时
- 9. n 和 m 混淆

2 动态规划

2.1 单调队列优化多重背包

```
* 时间复杂度: O(nm)
* 说明: dp[j]只有可能从dp[j-k*w[i]]转移来
const int N = 100005;
const int M = 40005;
11 n, m; //种数、容积
11 v[N], w[N], k[N]; //价值、体积、数量
11 dp[M]; //使用i容积的最大价值
struct Node
   11 key, id;
}:
void solve()
   cin >> n >> m;
   for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i] >> k[i];
for (int i = 1; i <= n; ++i)</pre>
       vector<deque<Node>> dq(w[i]);
       auto key = [&](int j) { return dp[j] - j / w[i] * v[i]; }; // dp[j]在比較基准下的指标
       auto join = [&](int j) //dp[j] 入队
           auto& q = dq[j % w[i]];
           while (q.size() && key(j) >= q.back().key) q.pop_back();
           q.push_back({ key(j),j });
           return;
       for (int j = m; j >= max(011, m - k[i] * w[i]); --j) join(j);
for (int j = m; j >= w[i]; --j)
           auto& q = dq[j % w[i]];
           while (q.size() && q.front().id >= j) q.pop_front();
if (j - k[i] * w[i] >= 0) join(j - k[i] * w[i]);
           dp[j] = max(dp[j], q.front().key + j / w[i] * v[i]);
   11 ans = 0;
   for (int i = 0; i <= m; ++i) ans = max(ans, dp[i]);</pre>
   cout << ans << '\n';</pre>
   return;
```

2.2 二进制分组优化多重背包

```
11 n, m; //种数、容积
11 dp[M]; //使用i容积的最大价值
void solve()
   cin >> n >> m:
   vector<Item> items;
   11 x, y, z;
   for (int i = 1; i <= n; ++i)
      11 b = 1;
      cin >> x >> y >> z;
       while (z > b)
          items.push_back({ x * b, y * b });
       items.push_back({ x * z, y * z });
   for (auto e : items)
       for (int i = m; i >= e.w; --i)
      {
          dp[i] = max(dp[i], dp[i - e.w] + e.v);
   11 \text{ ans} = 0;
   for (int i = 0; i <= m; ++i) ans = max(ans, dp[i]);</pre>
   cout << ans << '\n';</pre>
```

2.3 动态 DP

```
* 时间复杂度: O(qlogn)
* 说明:
* 1. 以CF1814E为例。
* 2. 如果转移只涉及相邻两个位置,可以尝试将转移方程表示为矩阵乘法。
const int N = 200005;
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f3f3;
struct SegTree
  struct Node
     int lef, rig;
     array<array<11, 2>, 2> mat;
  }:
  vector<Node> tree;
  void update(int src)
     for (int i = 0; i < 2; ++i)
     {
        for (int j = 0; j < 2; ++j)
           auto v1 = tree[src << 1].mat[i][1] + tree[src << 1 |</pre>
               1].mat[1][j];
           auto v2 = tree[src << 1].mat[i][0] + tree[src << 1 |</pre>
               1].mat[1][j];
           auto v3 = tree[src << 1].mat[i][1] + tree[src << 1 |</pre>
               1].mat[0][i];
           tree[src].mat[i][j] = min({ v1, v2, v3 });
        }
     return;
  }
  void settle(int src, ll val)
     tree[src].mat[1][1] = val;
     tree[src].mat[0][0] = 0;
     tree[src].mat[0][1] = tree[src].mat[1][0] = INFLL;
  SegTree(int x) { tree.resize(x * 4 + 1); }
  void build(int src, int lef, int rig, ll arr[])
     tree[src].lef = lef;
     tree[src].rig = rig;
     if (lef == rig)
```

```
settle(src, arr[lef]);
           return;
       int mid = lef + (rig - lef) / 2;
build(src << 1, lef, mid, arr);
build(src << 1 | 1, mid + 1, rig, arr);</pre>
       update(src);
       return;
   void modify(int src, int pos, ll val)
       if (tree[src].lef == tree[src].rig)
           settle(src, val);
       int mid = tree[src].lef + (tree[src].rig - tree[src].lef) /
       if (pos <= mid) modify(src << 1, pos, val);</pre>
       else modify(src << 1 | 1, pos, val);</pre>
       update(src);
       return;
   11 query() { return tree[1].mat[1][1] * 2; }
int n, q, k;
11 a[N], x;
void solve()
    for (int i = 1; i <= n - 1; ++i) cin >> a[i];
    SegTree sgt(n - 1);
   sgt.build(1, 1, n - 1, a);
   cin >> q;
    for (int i = 1; i <= q; ++i)
       cin >> k >> x;
       sgt.modify(1, k, x);
       cout << sgt.query() << '\n';</pre>
   return:
```

3 字符串

3.1 KMP 算法

```
* 时间复杂度: O(n)
* 说明:
* 1. 字符串下标从0开始
* 2. nxt[i]表示t[i]失配时下一次匹配的位置
* 3. nxt[n]在匹配中无必要作用, 但构成前缀数组
* 4. 前缀数组pi[i]=nxt[i+1]+1, 代表前缀t[0,i]的最长前后缀长度
struct KMP
  string t;
  vector<int> nxt:
  KMP() {}
  KMP(const string& str) { init(str); }
  void init(const string& str)
     t = str;
     nxt.resize(t.size() + 1);
     nxt[0] = -1;
     for (int i = 1; i <= t.size(); ++i)</pre>
        int now = nxt[i - 1];
        while (now != -1 && t[i - 1] != t[now]) now = nxt[now];
        nxt[i] = now + 1;
     return;
  int first(const string& s)
     int ps = 0, pt = 0;
```

```
while (ps < s.size())</pre>
          while (pt != -1 && s[ps] != t[pt]) pt = nxt[pt];
          if (pt == t.size()) return ps - t.size();
       return -1;
   }
   vector<int> every(const string& s)
       vector<int> v;
       int ps = 0, pt = 0;
       while (ps < s.size())</pre>
          while (pt != -1 && s[ps] != t[pt]) pt = nxt[pt];
          ps++, pt++;
          if (pt == t.size())
             v.push_back(ps - t.size());
             pt = nxt[pt];
      return v;
   }
};
```

3.2 扩展 KMP 算法

```
* 时间复杂度: O(n)
* 说明:
* 1. 字符串下标从0开始
* 2. z[i]代表后缀i与母串的最长公共前缀
* 3. 该算法还可以求模式串与文本串每个后缀的LCP
struct ExKMP
   string t;
   vector<int> z:
   ExKMP(const string& str)
      t = str;
      z.resize(t.size());
      z[0] = t.size();
      int 1 = 0, r = -1;
      for (int i = 1; i < t.size(); ++i)</pre>
         if (i <= r \&\& z[i - 1] < r - i + 1) z[i] = z[i - 1];
         else
            z[i] = max(0, r - i + 1);
            while (i + z[i] < t.size() \&\& t[z[i]] == t[i + z[i]]) z
          if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
   }
   vector<int> lcp(const string& s)
      vector<int> res(s.size());
      int l = 0, r = -1;
      for (int i = 0; i < s.size(); ++i)</pre>
         if (i \le r \&\& z[i - 1] \le r - i + 1) res[i] = z[i - 1];
         else
            res[i] = max(0, r - i + 1);
             while (i + res[i] < s.size() && res[i] < t.size() && t[
                  res[i]] == s[i + res[i]]) res[i]++;
         if (i + res[i] - 1 > r) l = i, r = i + res[i] - 1;
   }
};
```

3.3 字典树

```
* 1.字典树也即前缀树,每个结点代表一个前缀
* 2.字母表变化只需要修改映射函数F()
* 3.若需要遍历trie树可以用out数组记录出边降低复杂度
struct Trie
   const int ALPSZ = 26;
   vector<vector<int>> trie;
   vector<int> tag;
   //vector<vector<int>> out;
   int F(char c) { return c - 'a'; }
   Trie() { init(); }
   void init()
      create():
      return;
      trie.push_back(vector<int>(ALPSZ));
      tag.push_back(0);
      //out.push_back(vector<int>());
      return trie.size() - 1;
   void insert(const string& t)
      int now = 0;
      for (auto e : t)
         if (!trie[now][F(e)])
            int newNode = create();
            //out[now].push_back(F(e));
            trie[now][F(e)] = newNode;
         now = trie[now][F(e)];
         tag[now]++;
      }
      return;
   int count(const string& pre)
      int now = 0;
      for (auto e : pre)
         now = trie[now][F(e)];
         if (now == 0) return 0;
      return tag[now];
};
```

3.4 AC 自动机

```
* 时间复杂度: O(alpsz*sigma(len(t))+len(s))
* 说明:
* 1.本模板以小写英文字母为字母表举例,修改字母表可以通过修改F()函数完成。
* 2.Trie图优化:建立fail指针时,fail指针指向的结点有可能依然失配,需要多
* 次跳转才能到达匹配结点。可以将所有结点的空指针补全,置为该结点的端转
* 終点。此时根据BFS序,在计算tr[x][i]的fail指针时,fail[x]一定已遍历
* 过,且tr[fail[x]][i]一定存在,要么为fail[x]接收i的后继状态,要么为
* tr[x][i]的跪转終点。无论哪种情况,fail[tr[x][i]]都可以直接置为
* 3.last优化: 多模式匹配过程中,对于文本串的每个前缀s',沿fail指针路径寻
* 找为s'后缀的模式串,途中可能经过无贡献的模式串真前缀结点; last优化使
* 得跳转时跳过真前缀结点直接到达上方第一个模式串结点。last数组可以完全
* 替代fail数组。
* 4. 树上差分优化: 统计每种模式串出现次数时, 每匹配到一个模式串都要向上跳
* 转一次,这个过程相当于区间加一,可以用更新差分数组代替,最后再计算前
* 缀和即可。
struct ACAM
    vector<vector<int>> trie; //trie树指针
    vector<int> tag; //标记数组
    vector<int> fail; //失配函数
    vector<int> last; //跳转路径上一个模式串结点
    vector<int> cnt; //计数器
    const int ALPSZ = 26; //字母表大小
    int ord; //结点个数
```

```
inline int F(char c) { return c - 'a'; }
   ACAM() { init(); }
   void init()
      ord = -1;
      newNode();
   int newNode()
      trie.push_back(vector<int>(ALPSZ));
      tag.push_back(0);
      return ++ord;
   void addPat(const string& t)
      int now = 0;
      for (auto e: t)
         if (!trie[now][F(e)]) trie[now][F(e)] = newNode();
         now = trie[now][F(e)];
      tag[now]++;
      return;
   void buildAM()
   {
      fail.resize(ord + 1);
      last.resize(ord + 1);
      cnt.resize(ord + 1);
      queue<int> q;
      for (int i = 0; i < 26; ++i)
          //第一层结点的fail指针都指向0, 不需要处理
         if (trie[0][i]) q.push(trie[0][i]);
      while (q.size())
         int now = q.front();
         q.pop();
          for (int i = 0; i < 26; ++i)
            int son = trie[now][i];
            if (son)
                fail[son] = trie[fail[now]][i];
                if (tag[fail[son]]) last[son] = fail[son];
                else last[son] = last[fail[son]];
                q.push(trie[now][i]);
            else trie[now][i] = trie[fail[now]][i];
         }
      }
      return;
   int count(const string& s) //统计出现的模式串种数
      int now = 0, ans = 0;
      for (auto e : s)
         now = trie[now][F(e)];
         int p = now;
         while (p) //累加树上差分
            ans += tag[p];
            p = last[p];
      return ans;
   }
};
```

3.5 后缀自动机

```
State(): maxlen(0), link(-1) { next.resize(26); }
};
vector<State> node;
vector<ll> cnt; //子串出现次数 (endpos集合大小) int now; //接收上一个字符到达的结点
int size; //当前结点个数
inline int F(char c) { return c - 'a'; }
SAM(int x)
   node.resize(x * 2 + 5);
cnt.resize(x * 2 + 5);
   now = 0; //从根节点开始转移
   size = 1; //建立一个代表空串的根节点
void extend(char c)
   int nid = size++;
   cnt[nid] = 1;
   node[nid].maxlen = node[now].maxlen + 1;
   int p = now;
   while (p != -1 \&\& node[p].next[F(c)] == 0)
   {
      node[p].next[F(c)] = nid;
      p = node[p].link;
   if (p == -1) node[nid].link = 0; //连向根结点
   {
       int ori = node[p].next[F(c)];
      if (node[p].maxlen + 1 == node[ori].maxlen) node[nid].link
             = ori;
      {
          //将ori结点的一部分拆出来分成新结点split
          int split = size++;
          node[split].maxlen = node[p].maxlen + 1;
          node[split].link = node[ori].link;
node[split].next = node[ori].next;
          while (p != -1 \&\& node[p].next[F(c)] == ori)
             node[p].next[F(c)] = split;
             p = node[p].link;
          node[ori].link = node[nid].link = split;
      }
   now = nid:
   return;
void build(const string& s)
   for (auto e : s) extend(e);
   return;
void DFS(int x, vector<vector<int>>& son)
   for (auto e : son[x])
      DFS(e, son);
      cnt[x] += cnt[e]; //link树上父节点endpos为所有子结点endpos之
   return;
void count() //计算endpos大小
   //建立link树
   vector<vector<int>> son(size);
   for (int i = 1; i < size; ++i) son[node[i].link].push_back(i)</pre>
   //在link树上dfs
   DFS(0, son);
   return;
11 substr() //本质不同子串个数
   11 \text{ res} = 0:
   for (int i = 1; i < size; ++i)</pre>
      res += node[i].maxlen - node[node[i].link].maxlen;
   return res:
```

```
};
```

3.6 回文自动机

```
,
* 时间复杂度: 0(n)
* 说明:
* 1.每个结点代表一个本质不同回文串。link链: 多字串->单字符->偶根->奇根。
struct PAM
  struct State
     int len; //长度
     int link; //最长回文后缀结点
     vector<int> next; //两边加上某字符时对应的结点
     State() { next.resize(26); }
     State(int x, int y): len(x), link(y) { next.resize(26); }
  vector<State> node;
  vector<ll> cnt; //本质不同回文串出现次数
  int now; //接收上一个字符到达的结点
  int size; //当前结点个数
  inline int F(char c) { return c - 'a'; }
  PAM(int x)
     node.resize(x + 3);
     node[0] = State(-1, 0); //奇根, link无意义
     node[1] = State(0, 0); //偶根, link指向奇根
     cnt.resize(x + 3);
     now = 0; //第一个字符由奇根转移
     size = 2;
  }
  void build(const string& s)
     auto find = [&](int x, int p) //寻找x后缀中左方为s[p]的最长回文
       while (p - node[x].len - 1 < 0 \mid \mid s[p] != s[p - node[x].
           len - 1]) x = node[x].link;
       return x:
     };
     for (int i = 0; i < s.size(); ++i)</pre>
       now = find(now, i);
       if (!node[now].next[F(s[i])]) //对应结点不存在则需要新建
          int nid = size++:
          node[nid].len = node[now].len + 2; //新建状态结点
          node[nid].link = 1; //若now=0, 对应结点为单字符, 指向偶根
          node[now].next[F(s[i])] = nid;
       now = node[now].next[F(s[i])];
       cnt[now]++;
     for (int i = size - 1; i \ge 2; --i) cnt[node[i].link] += cnt[
         i]; //数量由母串向子串传递
     return:
  }
};
```

3.7 Manacher 算法

```
for (int i = 0; i < s.size(); ++i)</pre>
           if (i > rig) r = 1;
           else r = min(odd[lef + rig - i], rig - i) + 1; //利用对称位
                 署答案
           while (i - r >= 0 \&\& i + r < s.size() \&\& s[i - r] == s[i + r] == s[i + r]
           r]) r++; //暴力扩展
odd[i] = --r; //记录答案
           if (i + r > rig) lef = i - r, rig = i + r; //扩展lef,rig范
       lef = 0, rig = -1;
       for (int i = 0; i + 1 < s.size(); ++i)</pre>
           if (i + 1 > rig) r = 1;
else r = min(even[lef + rig - i - 1], rig - i) + 1;
           while (i + 1 - r) = 0 \& i + r < s.size() \& s[i + 1 - r]
                == s[i + r]) r++;
           if (i + r > rig) lef = i + 1 - r, rig = i + r;
       return;
   }
};
```

3.8 最小表示法

```
* 时间复杂度: O(n)
* 说明: 求循环rotate得到的n种表示中字典序最小的一种
const int N = 300005:
int n, a[N];
void solve()
  cin >> n;
  for (int i = 1; i <= n; ++i) cin >> a[i];
  auto norm = [](int x) { return (x - 1) % n + 1; };
  int p1 = 1, p2 = 2, len = 1;
  while (p1 <= n && p2 <= n & len <= n)
     if (a[norm(p1 + len - 1)] == a[norm(p2 + len - 1)]) len++;
     else if (a[norm(p1 + len - 1)] < a[norm(p2 + len - 1)]) p2 +=
     len, len = 1;
else p1 += len, len = 1;
     if (p1 == p2) p1++;
  int ans = min(p1, p2);
  return;
```

3.9 字符串哈希

```
* 时间复杂度: O(n)
* 说明:
* 1. 亨符串传入前必须处理为下标从1开始的模式!
* 2. 可以O(log)比较字典序、O(nlog^2)/O(nlog)求最长公共子串
const int M1 = 998244389;
const int M2 = 998244391:
const int B1 = 31:
const int B2 = 29:
const int N = 1000005;
struct Base
  array<11, N> pow{};
   Base(int base, int mod)
      for (int i = 1; i <= N - 1; ++i)
        pow[i] = pow[i - 1] * base % mod;
   const 11 operator[](int idx) const { return pow[idx]; }
} p1(B1, M1), p2(B2, M2);
struct Hash
```

```
vector<ll> hash1, hash2;
   void build(const string& s)
      int n = s.size() - 1;
      hash1.resize(n + 1);
      hash2.resize(n + 1);
      for (int i = 1; i <= n; ++i)
        return;
   11 merge(ll x, ll y) { return x << 31 | y; }</pre>
  11 calc(int lef, int rig)
      ll res1 = (hash1[rig] - hash1[lef - 1] * p1[rig - lef + 1] %
          M1 + M1) % M1;
      ll res2 = (hash2[rig] - hash2[lef - 1] * p2[rig - lef + 1] %
          M2 + M2) % M2;
      return merge(res1, res2);
  }
};
```

4 数学

4.1 快速模

4.2 快速幂

```
/**********************
,
* 时间复杂度: 0(logn)
 说明:
* 1. 特殊情况下需要对res和a的初值进行取模,注意p不可取模
* 2. 利用费马小定理求乘法逆元时注意仅当mod为质数时有效
* 3. 若p較大且mod为质数可以将p对mod-1\pi模
11 qpow(11 a, 11 p, 11 mod)
  11 \text{ res} = 1;
  while (p)
     if (p & 1) res = res * a % mod;
     a = a * a % mod;
     p >>= 1
  return res:
}
11 inv(11 a, 11 mod)
  return qpow(a, mod - 2, mod);
```

4.3 矩阵快速幂

```
int n;
   vector<vector<ll>> a:
   Square(int n): n(n) { a.resize(n, vector<ll>(n)); }
   void unit()
       for (int i = 0; i < n; ++i)
         a[i][i] = 1;
       return;
   }
};
Square mult(const Square& lhs, const Square& rhs)
   assert(lhs.n == rhs.n);
   int n = lhs.n;
   Square res(n);
   for (int i = 0; i < n; ++i)
       for (int j = 0; j < n; ++j)
          for (int k = 0; k < n; ++k)
             res.a[i][j] += lhs.a[i][k] * rhs.a[k][j] % MOD;
             res.a[i][j] %= MOD;
      }
   return res;
Square qpow(Square a, 11 p)
   int n = a.n;
   Square res(n);
   res.unit();
   while (p)
      if (p & 1) res = mult(res, a);
      a = mult(a, a);
      p >>= 1:
   return res;
```

4.4 矩阵求逆

```
* 时间复杂度: O(n^3)
* 说明: 初等变换消元
const int MOD = 1e9 + 7;
ll qpow(ll a, ll p)
  11 \text{ res} = 1;
  while (p)
     if (p & 1) res = res * a % MOD;
     a = a * a % MOD;
     p >>= 1;
  return res:
11 inv(11 x) { return qpow(x, MOD - 2); }
struct Square
  int n;
  vector<vector<ll>> a;
  Square(int n): n(n) { a.resize(n, vector<ll>(n)); }
  void unit()
     for (int i = 0; i < n; ++i)</pre>
        for (int j = 0; j < n; ++j)
           a[i][j] = (i == j);
     return;
```

```
bool inverse()
      Square rig(n);
      rig.unit();
      for (int i = 0; i < n; ++i)</pre>
          // 找到第i列最大值所在行
          ll tar = i;
          for (int j = i + 1; j < n; ++j)
             if (abs(a[j][i]) > abs(a[tar][i])) tar = j;
          // 与第i行交换
          if (tar != i)
             for (int j = 0; j < n; ++j)
                swap(a[i][j], a[tar][j]);
                swap(rig.a[i][j], rig.a[tar][j]);
          // 不可逆
          if (a[i][i] == 0) return 0;
          11 iv = inv(a[i][i]);
          for (int j = 0; j < n; ++j)
             if (i == j) continue;
11 t = a[j][i] * iv % MOD;
             for (int k = i; k < n; ++k)
                a[j][k] += MOD - a[i][k] * t % MOD;
                a[j][k] %= MOD;
             for (int k = 0; k < n; ++k)
                rig.a[j][k] += MOD - rig.a[i][k] * t % MOD;
                rig.a[j][k] %= MOD;
             }
          ,
// 归-
          for (int j = 0; j < n; ++j)
             a[i][j] *= iv;
             a[i][j] %= MOD;
             rig.a[i][j] *= iv;
             rig.a[i][j] %= MOĎ;
      for (int i = 0; i < n; ++i)
          for (int j = 0; j < n; ++j)
             a[i][j] = rig.a[i][j];
      return 1;
   }
};
```

4.5 排列奇偶性

```
inv ^= 1;
}
return;
}
```

4.6 线性基

```
,
* 时间复杂度:插入O(b)/求最大异或和O(b)
* 说明:
* 1. 可以求子序列最大异或和
* 2. v中非零元素表示一组线性基
* 3. 线性基大小表征线性空间维数
const int N = 55:
const int B = 50;
template<int bit>
struct LinearBasis
   vector<ll> v;
  LinearBasis() { v.resize(bit); }
   void insert(ll x)
      for (int i = bit - 1; i >= 0; --i)
        if (x >> i & 111)
        {
           if (v[i]) x ^= v[i];
           {
              v[i] = x;
              break;
        }
     return;
  11 qmax()
     11 \text{ res} = 0;
     for (int i = bit - 1; i >= 0; --i)
        if ((res ^ v[i]) > res) res ^= v[i];
     return res;
  void merge(const LinearBasis<bit>& b)
     for (auto e : b.v) insert(e);
     return;
};
```

4.7 高精度

```
· 时间复杂度: 0(n)/0(n^2)
* 说明: 待完善, 注意复杂度
const int N = 5005;
struct Large
  array<11, N> ar{};
  int len = 0;
  Large() {}
  Large(ll x)
     int p = 0;
     while (x)
       ar[p++] = x % 10;
       x /= 10;
     updateLen();
  Large(const string& s)
     for (int i = 0; i < s.size(); ++i)</pre>
```

```
ar[i] = s[s.size() - 1 - i] - '0';
   updateLen();
}
void updateLen()
   len = ar.size();
   for (int i = ar.size() - 1; i >= 0; --i)
       if (ar[i]) break;
       len = i;
   return;
}
Large& operator=(const Large& rhs)
   for (int i = 0; i < ar.size(); ++i) ar[i] = rhs.ar[i];</pre>
   updateLen();
   return *this;
Large operator+(const Large& rhs) const
   Large res;
   for (int i = 0; i < ar.size(); ++i) res.ar[i] = ar[i] + rhs.</pre>
         ar[i];
   for (int i = 0; i < ar.size() - 1; ++i)</pre>
       res.ar[i + 1] += res.ar[i] / 10;
       res.ar[i] %= 10;
   res.updateLen();
   return res;
}
Large& operator+=(const Large& rhs)
   for (int i = 0; i < ar.size(); ++i) ar[i] += rhs.ar[i];
for (int i = 0; i < ar.size() - 1; ++i)</pre>
       ar[i + 1] += ar[i] / 10;
       ar[i] %= 10;
   updateLen();
   return *this;
}
Large operator-(const Large& rhs) const
   Large res;
for (int i = 0; i < ar.size(); ++i) res.ar[i] = ar[i] - rhs.</pre>
         ar[i];
   for (int i = 0; i < ar.size() - 1; ++i)</pre>
       if (res.ar[i] < 0)
           res.ar[i] += 10;
           res.ar[i + 1]--;
   res.updateLen();
   return res;
Large operator*(const 11 rhs) const
   for (int i = 0; i < ar.size(); ++i) res.ar[i] = ar[i] * rhs;
for (int i = 0; i < ar.size() - 1; ++i)</pre>
       if (res.ar[i] > 9)
           res.ar[i + 1] += res.ar[i] / 10;
           res.ar[i] %= 10;
   res.updateLen();
   return res;
}
Large& operator*=(const 11 rhs)
   for (int i = 0; i < ar.size(); ++i) ar[i] *= rhs;
for (int i = 0; i < ar.size() - 1; ++i)</pre>
   {
       if (ar[i] > 9)
           ar[i + 1] += ar[i] / 10;
```

```
ar[i] %= 10;
          }
      updateLen();
   Large operator*(const Large& rhs) const
       Large res;
      Large dup = *this;
      for (int i = 0; i < rhs.len; ++i)</pre>
          res += dup * rhs.ar[i];
          dup *= 10;
       return res;
   Large& operator*=(const Large& rhs)
       *this = *this * rhs;
      return *this;
};
ostream& operator<<(ostream& out, const Large& large)</pre>
   if (large.len == 0)
      out << '0';
      return out;
   for (int i = large.len - 1; i >= 0; --i) out << large.ar[i];</pre>
   return out;
```

4.8 连续乘法逆元

4.9 数论分块

4.10 欧拉函数

```
/*********************
* 时间复杂度: O(sqrt(n))
* 说明:
* 1. 欧拉函数的性质:
* I.phi(x)=x*Π((p[i]-1)/p[i]), p[i]为x的第i个质因数;
* II. 若x为质数:
* i%x==0 => phi(i*x)=x*phi(i)
* i%x!=0 => phi(i*x)=(x-1)*phi(i)
* 2. 若求[1,r]内的欧拉函数,可以先筛出sqrt(r)以内的质数,用这些质数
//求n的欧拉函数,类似于质因数分解
int phi(int n)
  int res = n;
  for (int i = 2; i * i <= n; i++)
    if (n % i == 0) res = res / i * (i - 1);
    while (n % i == 0) n /= i;
  if (n > 1) res = res / n * (n - 1);
  return res;
}
```

4.11 线性素数筛

```
* 时间复杂度: O(n)
* 说明:
* 1. 筛出x以内所有质数
* 2. sieve[i]表征i是否为合数
struct PrimeSieve
  vector<int> sieve;
  vector<ll> prime;
  void build(int x)
     sieve.resize(x + 1);
     sieve[1] = 1;
     for (int i = 2; i <= x; ++i)
        if (sieve[i] == 0) prime.push_back(i);
        for (auto e : prime)
          if (e > x / i) break;
          sieve[i * e] = 1;
          if (i % e == 0) break;
       }
     return;
  }
};
```

4.12 欧几里得算法 + 扩展欧几里得算法

```
ll gcd(ll a, ll b)
   return b == 0 ? a : gcd(b, a % b);
}
ll exgcd(ll a, ll b, ll& x, ll& y)
   if (b == 0) { x = 1, y = 0; return a; }
   11 d = exgcd(b, a % b, x, y);
   11 newx = y, newy = x - a / b * y;
   x = newx, y = newy;
   return d;
ll inv(ll a, ll mod)
   11 x, y;
    exgcd(a, mod, x, y);
   return x;
11 a, b, x, y, g;
void solve()
   cin >> a >> b;
   g = exgcd(a, b, x, y);
auto M = [](11 x, 11 m) {return (x % m + m) % m; };
cout << M(x, b / g) << '\n';</pre>
```

4.13 中国剩余定理

```
* 时间复杂度: 0(nlogn)
* 说明:
* 1.解模数互质的线性同余方程组,一定有解
* 2.爆longlong时可能需要快速乘 (模数过大也可能爆精度)
struct CRT
   vector<pair<ll, ll>> f;
   inline 11 norm(11 x, 11 mod) { return (x % mod + mod) % mod; }
   11 qmul(11 a, 11 b, 11 mod)
   {
      //a = norm(a, mod);
      //b = norm(b, mod);
ll res = a * b - (ll)((ld)a / mod * b + 1e-8) * mod;
      return norm(res, mod);
   11 exgcd(ll a, ll b, ll& x, ll& y)
      if (b == 0)
      {
         x = 1, y = 0;
         return a;
      11 d = exgcd(b, a % b, x, y);
      11 newx = y, newy = x - a / b * y;
      x = newx, y = newy;
      return d:
   11 inv(ll a, ll mod)
      11 x, y;
      exgcd(a, mod, x, y);
      return norm(x, mod);
   void insert(ll r, ll m)
      f.push_back({ r, m });
      return;
   11 work()
      11 \text{ mul} = 1, \text{ ans} = 0;
      for (auto e : f) mul *= e.second;
      for (auto e : f)
         11 m = mul / e.second;
11 c = m * inv(m, e.second);
         ans += c * e.first;
      return norm(ans, mul);
```

```
}; <sup>}</sup>
```

4.14 扩展中国剩余定理

```
* 时间复杂度: O(nlogV)
* 说明:
* 1.扩展中国剩余定理,解模数不互质的线性同余方程组,可能无解
struct ExCRT
   vector<pair<11, 11>> f;
   inline 11 norm(11 x, 11 mod) { return (x % mod + mod) % mod; }
   11 qmul(11 a, 11 b, 11 mod)
       a = norm(a, mod);
       b = norm(b, mod);
       11 \text{ res} = 0;
       while (b)
          if (b & 1) res = (res + a) % mod;
          a = (a + a) \% mod;
          b >>= 1;
       return res:
   ll exgcd(ll a, ll b, ll& x, ll& y)
       if (b == 0)
       {
          x = 1, y = 0;
          return a;
       il d = exgcd(b, a % b, x, y);
ll newx = y, newy = x - a / b * y;
       x = newx, y = newy;
       return d;
   void insert(ll r, ll m)
       f.push_back({ r, m });
       return;
   pair<ll, ll> work()
      11 x, y;
while (f.size() >= 2)
          pair<ll, ll> f1 = f.back();
          f.pop_back();
pair<ll, 11> f2 = f.back();
          f.pop_back();
          // n % m1 = r1, n % m2 = r2
          // => n = x * m1 + r1 = y * m2 + r2

// => x * m1 - y * m2 = r2 - r1
          11 g = exgcd(f1.second, f2.second, x, y);
11 c = f2.first - f1.first;
          if (c % g) return { -1, -1 }; // 无解
          x = qmul(x, c / g, f2.second / g); // 輸入可能为负, 输出非负
ll m = f1.second / g * f2.second; // m = lcm(m1, m2)
          11 r = (x * f1.second + f1.first) % m; // r = norm(x) * m1
                 + r1
          f.push_back({ r, m });
       return f.front();
   }
};
```

4.15 多项式

```
if (x >= MOD) x -= MOD;
   return x;
template<class T> T power(T a, 11 b)
   T res = 1;
   for (; b; b /= 2, a *= a)
      if (b % 2) res *= a;
   return res;
}
struct Z
   Z(int x = 0): x(nrm(x)) \{\}
   Z(11 x): x(nrm(x % MOD)) {}
   int val() const { return x; }
   Z operator-() const { return Z(nrm(MOD - x)); }
   Z inv() const
       assert(x != 0);
      return power(*this, MOD - 2);
   Z& operator*=(const Z& rhs)
       x = 11(x) * rhs.x % MOD;
      return *this;
   Z& operator+=(const Z& rhs)
      x = nrm(x + rhs.x);
      return *this;
   Z& operator-=(const Z& rhs)
      x = nrm(x - rhs.x);
      return *this;
   Z& operator/=(const Z& rhs) { return *this *= rhs.inv(); }
   friend Z operator*(const Z& lhs, const Z& rhs)
      Z res = 1hs;
      res *= rhs;
      return res;
   friend Z operator+(const Z& lhs, const Z& rhs)
      Z res = 1hs:
      res += rhs:
      return res;
   friend Z operator-(const Z& lhs, const Z& rhs)
      Z res = 1hs;
      res -= rhs;
      return res:
   friend Z operator/(const Z& lhs, const Z& rhs)
      Z res = 1hs;
      res /= rhs;
      return res;
   friend istream& operator>>(istream& is, Z& a)
      11 v;
      is >> v;
      a = Z(v);
   friend ostream& operator<<(ostream& os, const Z& a) { return os
        << a.val(); }
vector<int> rev;
vector<Z> roots{ 0, 1 };
void dft(vector<Z>& a)
   int n = a.size();
   if (rev.size() != n)
      int k =
                builtin ctz(n) - 1;
      rev.resize(n);
       for (int i = 0; i < n; i++) rev[i] = rev[i >> 1] >> 1 | (i \& i)
            1) << k;
```

```
for (int i = 0; i < n; i++)</pre>
       if (rev[i] < i) swap(a[i], a[rev[i]]);</pre>
   if (roots.size() < n)</pre>
       int k = __builtin_ctz(roots.size());
       roots.resize(n);
       while ((1 << k) < n)
          Z = power(Z(3), (MOD - 1) >> (k + 1));
for (int i = 1 << (k - 1); i < (1 << k); i++)
              roots[2 * i] = roots[i];
roots[2 * i + 1] = roots[i] * e;
       }
   for (int k = 1; k < n; k *= 2)
       for (int i = 0; i < n; i += 2 * k)
       {
           for (int j = 0; j < k; j++)
              Z u = a[i + j];
              Z v = a[i + j + k] * roots[k + j];
              a[i + j] = u + v;
              a[i + j + k] = u - v;
       }
   }
   return;
}
void idft(vector<Z>& a)
   int n = a.size();
   reverse(a.begin() + 1, a.end());
   dft(a);
   Z inv = (1 - MOD) / n;
   for (int i = 0; i < n; i++) a[i] *= inv;</pre>
   return:
}
struct Poly
   vector<Z> a;
   Poly() {}
   explicit Poly(int size): a(size) {}
   Poly(const vector<Z>& a): a(a) {}
   Poly(const initializer_list<Z>& a): a(a) {}
   int size() const { return a.size(); }
   void resize(int n) { a.resize(n); }
   Z operator[](int idx) const
       if (idx < size()) return a[idx];</pre>
       else return 0;
   Z& operator[](int idx) { return a[idx]; }
   Poly mulxk(int k) const
       auto b = a;
       b.insert(b.begin(), k, 0);
       return Poly(b);
   Poly modxk(int k) const
       k = min(k, size());
       return Poly(vector<Z>(a.begin(), a.begin() + k));
   Poly divxk(int k) const
       if (size() <= k) return Poly();</pre>
       return Poly(vector<Z>(a.begin() + k, a.end()));
   friend Poly operator+(const Poly& a, const Poly& b)
       vector<Z> res(max(a.size(), b.size()));
       for (int i = 0; i < res.size(); i++) res[i] = a[i] + b[i];</pre>
       return Poly(res);
   friend Poly operator-(const Poly& a, const Poly& b)
       vector<Z> res(max(a.size(), b.size()));
       for (int i = 0; i < res.size(); i++) res[i] = a[i] - b[i];</pre>
       return Poly(res);
```

```
friend Poly operator-(const Poly& a)
   vector<Z> res(a.size());
   for (int i = 0; i < res.size(); i++) res[i] = -a[i];</pre>
   return Poly(res);
friend Poly operator*(Poly a, Poly b)
   if (a.size() == 0 || b.size() == 0) return Poly();
   if (a.size() < b.size()) swap(a, b);</pre>
   if (b.size() < 128)</pre>
       Poly c(a.size() + b.size() - 1);
for (int i = 0; i < a.size(); i++)
           for (int j = 0; j < b.size(); j++) c[i + j] += a[i] * b</pre>
                [j];
       return c;
   int sz = 1, tot = a.size() + b.size() - 1;
   while (sz < tot) sz *= 2;
   a.a.resize(sz);
   b.a.resize(sz);
   dft(a.a):
   dft(b.a);
    for (int i = 0; i < sz; ++i) a.a[i] = a[i] * b[i];
   idft(a.a);
   a.resize(tot);
   return a;
friend Poly operator*(Z a, Poly b)
    for (int i = 0; i < b.size(); i++) b[i] *= a;
   return b;
friend Poly operator*(Poly a, Z b)
    for (int i = 0; i < a.size(); i++) a[i] *= b;
   return a;
Poly& operator+=(Poly b) { return (*this) = (*this) + b; }
Poly& operator-=(Poly b) { return (*this) = (*this) - b; }
Poly& operator*=(Poly b) { return (*this) = (*this) * b; }
Poly& operator*=(Z b) { return (*this) = (*this) * b; }
Poly deriv() const
   if (a.empty()) return Poly();
   vector<Z> res(size() - 1);
   for (int i = 0; i < size() - 1; ++i) res[i] = (i + 1) * a[i +
          11:
   return Poly(res);
Poly integr() const
   vector<Z> res(size() + 1);
   for (int i = 0; i < size(); ++i) res[i + 1] = a[i] / (i + 1);
   return Poly(res);
Poly inv(int m) const
   Poly x{ a[0].inv() };
   int^{-}k = 1;
   while (k < m)
       k *= 2;
       x = (x * (Poly{ 2 }) - modxk(k) * x)).modxk(k);
    return x.modxk(m);
Poly log(int m) const { return (deriv() * inv(m)).integr().modxk(
     m); }
Poly exp(int m) const
   Poly x{ 1 };
   int k = 1;
   while (k < m)
   {
       k *= 2;
       x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k);
   return x.modxk(m);
Poly pow(int k, int m) const
   while (i < size() && a[i].val() == 0) i++;</pre>
   if (i == size() || 1LL * i * k >= m) return Poly(vector<Z>(m)
         );
   Z v = a[i];
```

```
auto f = divxk(i) * v.inv();
return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) *
           power(v, k);
   Poly sqrt(int m) const
      Poly x{ 1 };
      int k = 1;
      while (k < m)
         k *= 2;
          x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((MOD + 1) / 2)
      return x.modxk(m);
   Poly mulT(Poly b) const
      if (b.size() == 0) return Poly();
      int n = b.size();
      reverse(b.a.begin(), b.a.end());
      return ((*this) * b).divxk(n - 1);
   vector<Z> eval(vector<Z> x) const
      if (size() == 0) return vector<Z>(x.size(), 0);
      const int n = max(int(x.size()), size());
      vector<Poly> q(4 * n);
      vector<Z> ans(x.size());
      x.resize(n);
      function<void(int, int, int)> build = [&](int p, int l, int r
          if (r - l == 1) q[p] = Poly{ 1, -x[l] };
         else
          {
             int m = (1 + r) / 2;
build(2 * p, 1, m);
build(2 * p + 1, m, r);
             q[p] = q[2 * p] * q[2 * p + 1];
         }
      };
      build(1, 0, n);
      function<void(int, int, int, const Poly&)> work = [&](int p,
           int 1, int r, const Poly& num)
          if (r - 1 == 1)
             if (1 < ans.size()) ans[1] = num[0];</pre>
          else
             work(1, 0, n, mulT(q[1].inv(n)));
      return ans:
   }
};
```

4.16 哥德巴赫猜想

- 1. 大于等于 6 的整数可以写成三个质数之和
- 2. 大于等于 4 的偶数可以写成两个质数之和
- 3. 大于等于7的奇数可以写成三个奇质数之和

4.17 组合数学公式

1.
$$C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$$

2.
$$H_n = \frac{1}{n+1}C_{2n}^n$$

3.
$$S(n,m) = S(n-1,m-1) + mS(n-1,m)$$

4.
$$s(n,m) = s(n-1,m-1) + (n-1)s(n-1,m)$$

5 数据结构

5.1 哈希表

```
* 时间复杂度: 0(1)
* 说明:
* 1. 自定义随机化哈希函数,降低碰撞概率
#include<bits/stdc++.h>
#include<unordered_map>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
using namespace std;
using 11 = long long;
using namespace __gnu_pbds;
struct CustomHash
  static uint64_t splitmix64(uint64_t x)
     x += 0x9e3779b97f4a7c15:
     x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
     return x ^ (x >> 31);
  size_t operator()(uint64_t x) const
      static const uint64 t FIXED RANDOM = chrono::steady clock::
          now().time_since_epoch().count();
     return splitmix64(x + FIXED_RANDOM);
};
unordered_map<11, 11, CustomHash> mp;
gp_hash_table<11, 11, CustomHash> ht;
```

5.2 ST 表

```
* 时间复杂度: 建表O(nlogn)/查询O(1)
* 说明: 可重复贡献问题[f(r,r)=r]的静态区间查询, 一般是最值/gcd
struct ST
   int sz;
   vector<vector<ll>> st;
   ST(int x) { init(x); }
   void init(int x)
      st.resize(32, vector<ll>(sz + 1));
   void build(ll arr[])
      for (int i = 1; i <= sz; ++i) st[0][i] = arr[i];</pre>
      int lg = __lg(sz);
      for (int i = 1; i <= lg; ++i)
          for (int j = 1; j <= sz; ++j)
             st[i][j] = st[i - 1][j];
if (j + (1 << (i - 1)) <= sz)
                st[i][j] = max(st[i][j], st[i - 1][j + (1 << (i - 1)
      }
   11 query(int lef, int rig)
      int len = _
                  _lg(rig - lef + 1);
      return max(st[len][lef], st[len][rig - (1 << len) + 1]);</pre>
};
```

5.3 并查集

```
* 时间复杂度: 查找近似0(1)/合并近似0(1)
* 说明: 路径压缩/启发式合并保证时间复杂度
struct DSU
  vector<int> f;
  vector<int> v; //集合大小
  DSU(int x)
     f.resize(x + 1);
     v.resize(x + 1);
     for (int i = 1; i <= x; ++i) f[i] = i;
     for (int i = 1; i <= x; ++i) v[i] = 1;
  int find(int id) { return f[id] == id ? id : f[id] = find(f[id]);
       }
  void merge(int x, int y)
     int fx = find(x), fy = find(y);
if (fx == fy) return;
     if (v[fx] > v[fy]) swap(fx, fy);
     f[fx] = fy;
     v[fy] += v[fx];
     return:
  }
};
```

5.4 笛卡尔树

```
,
* 时间复杂度: 0(n)
* 说明:
* 1. 按照第一关键字顺序传入,按照第二关键字大小构建
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f;
struct CarTree
  vector<pair<11, 11>> v;
  vector<int> ls, rs;
  int sz;
  CarTree(): v(1, { -INFLL, -INFLL }), sz(0) {}
  void insert(ll a, ll b)
  {
     v.push_back({ a, b });
     SZ++;
     return:
  }
  void build()
     ls.resize(v.size());
     rs.resize(v.size());
     stack<int> stk;
     stk.push(0);
     for (int i = 1; i <= sz; ++i)
       while (v[stk.top()].second > v[i].second) stk.pop();
       ls[i] = rs[stk.top()];
       rs[stk.top()] = i;
       stk.push(i);
     return;
  }
};
```

5.5 树状数组

```
int lowbit(int x) { return x & -x; }
   Fenwick() {}
   Fenwick(int x) { init(x); }
   void init(int x)
      tree.resize(sz + 1);
   void add(int dst, ll v)
      while (dst <= sz)
         tree[dst] += v;
         dst += lowbit(dst);
      return;
   11 pre(int dst)
      11 \text{ res} = 0;
      while (dst)
      {
         res += tree[dst];
         dst -= lowbit(dst);
      return res;
   il rsum(int lef, int rig) { return pre(rig) - pre(lef - 1); }
   void build(ll arr[])
      for (int i = 1; i <= sz; ++i)
         tree[i] += arr[i];
         int j = i + lowbit(i);
        if (j <= sz) tree[j] += tree[i];</pre>
      return;
   }
};
· 时间复杂度: 建立0(n)/修改0(logn)/查询0(logn)
struct Fenwick
   int sz;
   vector<ll> tree;
   vector<int> tag;
   int now:
   int lowbit(int x) { return x & -x; }
   Fenwick(int x)
      sz = x;
      tree.resize(sz + 1);
      tag.resize(sz + 1);
      now = 0;
   void clear()
      now++;
      return;
   void add(int dst, ll v)
      while (dst <= sz)</pre>
      {
         if (tag[dst] != now) tree[dst] = 0;
         tree[dst] += v;
         tag[dst] = now;
         dst += lowbit(dst);
      return;
   11 pre(int dst)
      11 \text{ res} = 0;
      while (dst)
         if (tag[dst] == now) res += tree[dst];
         dst -= lowbit(dst);
      return res;
   11 rsum(int lef, int rig) { return pre(rig) - pre(lef - 1); }
   void build(ll arr[])
```

```
{
    for (int i = 1; i <= sz; ++i)
    {
        tree[i] += arr[i];
        int j = i + lowbit(i);
        if (j <= sz) tree[j] += tree[i];
    }
    return;
}</pre>
```

5.6 二维树状数组

```
* 时间复杂度: 修改O(log^2n)/查询O(log^2n)
* 说明: 普通树状数组的二维版, 维护矩阵
************
struct Fenwick2
  int sz;
  vector<vector<ll>> tree;
  inline int lowbit(int x) { return x & -x; }
  Fenwick2(int x)
     tree.resize(sz + 1, vector<ll>(sz + 1));
  void add(int x, int y, ll val)
     for (int i = x; i <= sz; i += lowbit(i))</pre>
        for (int j = y; j <= sz; j += lowbit(j))</pre>
           tree[i][j] += val;
     return:
  }
  11 pre(int x, int y)
     11 \text{ res} = 0;
     for (int i = x; i >= 1; i -= lowbit(i))
        for (int j = y; j >= 1; j -= lowbit(j))
           res += tree[i][j];
     return res:
  }
  11 sum(int x1, int y1, int x2, int y2)
     return pre(x2, y2) - pre(x1 - 1, y2) - pre(x2, y1 - 1) + pre(
          x1 - 1, y1 - 1);
  }
};
```

5.7 线段树

```
ll rw = tree[src << 1 | 1].rig - tree[src << 1 | 1].lef + 1;
ll lv = tree[src << 1].val + tree[src << 1].tag * lw;</pre>
      11 rv = tree[src << 1 | 1].val + tree[src << 1 | 1].tag * rw;</pre>
      tree[src].val = lv + rv;
       return;
   // 下传标记并消耗
   void pushdown(int src)
       if (tree[src].lef < tree[src].rig)</pre>
       {
          tree[src << 1].tag += tree[src].tag;
tree[src << 1 | 1].tag += tree[src].tag;</pre>
       11 wid = tree[src].rig - tree[src].lef + 1;
       tree[src].val += tree[src].tag * wid;
       tree[src].tag = 0;
   void build(int src, int lef, int rig, ll arr[])
       tree[src] = { lef, rig, arr[lef], 0 };
       if (lef == rig) return;
       int mid = lef + (rig - lef) / 2;
       build(src << 1, lef, mid, arr);</pre>
       build(src << 1 | 1, mid + 1, rig, arr);
       update(src);
       return;
   void build(int src, int lef, int rig)
       tree[src] = { lef, rig, 0, 0 };
       if (lef == rig) return;
       int mid = lef + (rig - lef) / 2;
       build(src << 1, lef, mid);</pre>
       build(src << 1 | 1, mid + 1, rig);
       update(src);
       return:
   void modify(int src, int lef, int rig, ll val)
       if (lef <= tree[src].lef && tree[src].rig <= rig)</pre>
          tree[src].tag += val;
          return;
       pushdown(src);
       if (lef <= tree[src << 1].rig) modify(src << 1, lef, rig, val</pre>
       if (rig >= tree[src << 1 | 1].lef) modify(src << 1 | 1, lef,</pre>
            rig, val);
       update(src);
       return;
   11 query(int src, int lef, int rig)
       pushdown(src);
       if (lef <= tree[src].lef && tree[src].rig <= rig) return tree</pre>
            [src].val;
       11 res = 0;
       if (lef <= tree[src << 1].rig) res += query(src << 1, lef,</pre>
            rig);
       if (rig >= tree[src << 1 | 1].lef) res += query(src << 1 | 1,</pre>
             lef, rig);
       return res;
 *************************
* 时间复杂度: 建立O(n)/询问O(logn)/修改O(logn)
struct SegTree
   struct Node
       int lef, rig;
      int val;
   vector<Node> tree;
   SegTree() {}
   SegTree(int x) { tree.resize(x * 4 + 1); }
```

```
// 由子节点及其标记更新父节点
   void update(int src)
      tree[src].val = tree[src << 1].val + tree[src << 1 | 1].val;</pre>
      return;
   }
   void build(int src, int lef, int rig, ll arr[])
      tree[src] = { lef, rig, arr[i] };
      if (lef == rig) return;
int mid = lef + (rig - lef) / 2;
      build(src << 1, lef, mid, arr);</pre>
      build(src << 1 | 1, mid + 1, rig, arr);</pre>
      update(src);
      return;
   */
   void build(int src, int lef, int rig)
      tree[src] = { lef, rig, 0 };
      if (lef == rig) return;
      int mid = lef + (rig -
      build(src << 1, lef, mid);</pre>
      build(src << 1 | 1, mid + 1, rig);
      update(src);
      return:
   }
   void assign(int src, int pos, ll val)
      if (tree[src].lef == tree[src].rig)
      {
          tree[src].val = val;
          return;
      if (pos <= tree[src << 1].rig) assign(src << 1, pos, val);</pre>
      else assign(src << 1 | 1, pos, val);</pre>
      update(src);
      return:
   }
   11 query(int src, int lef, int rig)
      if (lef <= tree[src].lef && tree[src].rig <= rig) return tree</pre>
           [src].val;
      11 \text{ res} = 0;
      if (lef <= tree[src << 1].rig) res += query(src << 1, lef,</pre>
      return res;
   }
};
* 时间复杂度: 建立O(n)/询问O(logn)/修改O(logn)
struct SegTree
   struct Node
       int lef, rig;
      11 val, tag;
   vector<Node> tree;
   SegTree() {}
   SegTree(int x) { tree.resize(x * 4 + 1); }
   // 由子节点及其标记更新父节点
   void update(int src)
      ll lv = tree[src << 1].val + tree[src << 1].tag;
ll rv = tree[src << 1 | 1].val + tree[src << 1 | 1].tag;</pre>
      tree[src].val = max(lv, rv);
      return;
   // 下传标记并消耗
   void pushdown(int src)
      if (tree[src].lef < tree[src].rig)</pre>
      {
          tree[src << 1].tag += tree[src].tag;</pre>
          tree[src << 1 | 1].tag += tree[src].tag;</pre>
```

```
tree[src].val += tree[src].tag;
       tree[src].tag = 0;
       return;
   }
   void build(int src, int lef, int rig, ll arr[])
       tree[src] = { lef, rig, arr[lef], 0 };
       if (lef == rig) return;
       int mid = lef + (rig - lef) / 2;
       build(src << 1, lef, mid, arr);
build(src << 1 | 1, mid + 1, rig, arr);</pre>
       update(src);
       return;
   void build(int src, int lef, int rig)
       tree[src] = { lef, rig, 0, 0 };
       if (lef == rig) return;
       int mid = lef + (rig - lef) / 2;
       build(src << 1, lef, mid);
build(src << 1 | 1, mid + 1, rig);</pre>
       update(src);
       return;
   void modify(int src, int lef, int rig, ll val)
       if (lef <= tree[src].lef && tree[src].rig <= rig)</pre>
           tree[src].tag += val;
          return;
       pushdown(src);
       if (lef <= tree[src << 1].rig) modify(src << 1, lef, rig, val</pre>
       if (rig >= tree[src << 1 | 1].lef) modify(src << 1 | 1, lef,</pre>
            rig, val);
       update(src);
       return;
   11 query(int src, int lef, int rig)
       pushdown(src);
       if (lef <= tree[src].lef && tree[src].rig <= rig) return tree</pre>
             [src].val;
       11 \text{ res} = 0:
       if (lef <= tree[src << 1].rig) res = max(res, query(src << 1,</pre>
              lef, rig));
       if (rig >= tree[src << 1 | 1].lef) res = max(res, query(src</pre>
             << 1 | 1, lef, rig));
       return res;
   }
   int bis(int src, ll tar)
       pushdown(src);
       if(tree[src].val < tar) return tree[src].rig + 1;</pre>
       if(tree[src].lef == tree[src].rig) return tree[src].lef;
       if(tree[src << 1].val + tree[src << 1].tag >= tar) return bis
             (src << 1, tar);
       else return bis(src << 1 | 1, tar);</pre>
};
```

5.8 历史最值线段树

```
vector<Node> tree:
   inline ll merge(ll x, ll y) { return min(x, y); } //最大还是最小
   inline void affect(ll& x, ll y) { x = merge(x, y); } //取最值
   inline void update(int src) //由子节点及其标记更新父节点
       11 lv = tree[src << 1].mval + merge(tree[src << 1].mtag, 0);</pre>
      11 rv = tree[src << 1 | 1].mval + merge(tree[src << 1 | 1].</pre>
            mtag, 0);
       tree[src].mval = merge(lv, rv);
       return;
   inline void push(int src) //下传标记并消耗
       if (tree[src].lef < tree[src].rig)</pre>
          affect(tree[src << 1].mtag, tree[src << 1].tag + tree[src</pre>
               1.mtag);
          affect(tree[src << 1 | 1].mtag, tree[src << 1 | 1].tag +
               tree[src].mtag);
          tree[src << 1].tag += tree[src].tag;</pre>
          tree[src << 1 | 1].tag += tree[src].tag;</pre>
       tree[src].mval += merge(tree[src].mtag, 0);
       tree[src].mtag = tree[src].tag = 0;
   inline void mark(int src, ll val) //更新标记
   {
       tree[src].tag += val;
       affect(tree[src].mtag, tree[src].tag);
       return:
   }
   SegTree() {}
   SegTree(int x) { init(x); }
   void init(int x) { tree.resize(x * 4 + 1); }
   void build(int src, int lef, int rig)
      tree[src] = { lef, rig, 0, 0, 0 };
      if (lef == rig) return;
       int mid = lef + (rig - lef) / 2;
       build(src << 1, lef, mid);</pre>
      build(src << 1 | 1, mid + 1, rig);</pre>
       update(src);
       return:
   void modify(int src, int lef, int rig, ll val)
       if (lef <= tree[src].lef && tree[src].rig <= rig)</pre>
          mark(src, val);
          return;
      push(src);
       if (lef <= tree[src << 1].rig) modify(src << 1, lef, rig, val</pre>
       if (rig >= tree[src << 1 | 1].lef) modify(src << 1 | 1, lef,</pre>
           rig, val);
       update(src);
       return;
   11 query(int src, int lef, int rig)
       if (lef <= tree[src].lef && tree[src].rig <= rig) return tree</pre>
            [src].mval;
      11 \text{ res} = 0;
       if (lef <= tree[src << 1].rig) res = merge(res, query(src <<</pre>
            1, lef, rig));
       if (rig >= tree[src << 1 | 1].lef) res = merge(res, query(src</pre>
             << 1 | 1, lef, rig));
       return res;
  }
};
```

5.9 动态开点线段树

```
int ls = 0, rs = 0;
      11 val = 0, tag = 0;
   vector<Node> tree;
   int ord:
   SegTree(int x)
      tree.resize(x * 64 + 1);
      ord = 1;
   void push(int src, int lef, int rig)
       if (lef < rig)</pre>
          if (!tree[src].ls) tree[src].ls = ++ord;
          if (!tree[src].rs) tree[src].rs = ++ord;
          tree[tree[src].ls].tag += tree[src].tag;
          tree[tree[src].rs].tag += tree[src].tag;
      tree[src].val += tree[src].tag * (rig - lef + 1);
      tree[src].tag = 0;
   void modify(int src, int lef, int rig, int l, int r, ll val)
       if (lef >= 1 && rig <= r)</pre>
          tree[src].tag += val;
          return;
       int mid = lef + (rig - lef) / 2;
       if (1 <= mid)</pre>
          if (!tree[src].ls) tree[src].ls = ++ord;
          modify(tree[src].is, lef, mid, l, r, vai);
       if (r >= mid + 1)
      {
          if (!tree[src].rs) tree[src].rs = ++ord;
          modify(tree[src].rs, mid + 1, rig, l, r, val);
      tree[src].val += (min(rig, r) - max(lef, l) + 1) * val;
      return:
   11 query(int src, int lef, int rig, int l, int r)
      push(src, lef, rig);
       if (lef >= 1 && rig <= r) return tree[src].val;</pre>
      11 res = 0;
       int mid = lef + (rig - lef) / 2;
       if (1 <= mid)
          if (!tree[src].ls) tree[src].ls = ++ord;
          res += query(tree[src].ls, lef, mid, l, r);
      if (r >= mid + 1)
          if (!tree[src].rs) tree[src].rs = ++ord;
          res += query(tree[src].rs, mid + 1, rig, 1, r);
       return res;
   }
};
```

5.10 可持久化线段树

```
vector<Node> tree:
vector<int> root;
int size:
11 L, R;
int _build(ll 1, ll r, ll a[])
   int now = size++;
   if (1 == r) tree[now].val = a[1];
   else
       11 m = 1 + (r - 1) / 2;
       tree[now].ls = _build(l, m, a);
tree[now].rs = _build(m + 1, r, a);
       tree[now].val = tree[tree[now].ls].val + tree[tree[now].rs
   return now;
void init(ll l, ll r, int cnt, ll a[]) //建初始树
   L = 1, R = r;
   tree.resize(cnt * 32 + 5);
   root.push_back(_build(L, R, a));
void init(ll l, ll r, int cnt) //建一个空根
   L = 1, R = r;
   tree.resize(cnt * 32 + 5);
   root.push_back(0);
   return;
void assign(int ver, 11 pos, 11 val) { root.push_back(_assign(
root[ver], L, R, pos, val, 0)); }
int _assign(int src, ll l, ll r, ll pos, ll val, ll tag)
   int now = size++;
   tree[now] = tree[src];
   tag += tree[now].tag;
   if (1 == r) tree[now].val = val - tag;
   else
   {
       11 m = 1 + (r - 1) / 2;
       if (pos <= m) tree[now].ls = _assign(tree[now].ls, 1, m,</pre>
            pos, val, tag);
       else tree[now].rs = _assign(tree[now].rs, m + 1, r, pos,
            val, tag);
   }
   return now:
void modify(int ver, 11 lef, 11 rig, 11 val) { root.push_back(
    _modify(root[ver], L, R, lef, rig, val)); }
    _modify(int src, 11 1, 11 r, 11 lef, 11 rig, 11 val)
   int now = size++;
   tree[now] = tree[src];
   if (lef <= 1 && r <= rig) tree[now].tag += val;</pre>
   else if (1 <= rig && r >= lef)
       tree[now].val += val * (min(rig, r) - max(lef, l) + 1);
       11 m = 1 + (r - 1) / 2;
       if (lef <= m) tree[now].ls = _modify(tree[now].ls, l, m,</pre>
            lef, rig, val);
       if (rig > m) tree[now].rs = _modify(tree[now].rs, m + 1, r
            , lef, rig, val);
   return now;
11 query(int ver, 11 lef, 11 rig) { return _query(root[ver], L, R
     , lef, rig, 0); }
11 _query(int src, ll l, ll r, ll lef, ll rig, ll tag)
   tag += tree[src].tag;
   if (lef <= 1 && r <= rig) return tree[src].val + (r - 1 + 1)</pre>
         * tag;
   else if (1 <= rig && r >= lef)
       int m = 1 + (r - 1) / 2;
       11 \text{ res} = 0;
       if (lef <= m) res += _query(tree[src].ls, l, m, lef, rig,</pre>
            tag);
       if (rig > m) res += _query(tree[src].rs, m + 1, r, lef,
            rig, tag);
       return res;
   else return 0;
```

5.11 李超线段树

```
* 时间复杂度: 建立0(n)/修改0(log^2n)/查询0(logn)
* 说明:
* 1. 谨慎使用, 注意浮点数精度和结点初始化问题
* 2. 标记永久化, 整条链每一层的值都可能是答案
const int N = 100005;
const double EPS = 1e-9;
struct Seg
   double k, b;
   int lef, rig;
   void init(int x0, int y0, int x1, int y1)
      lef = x0, rig = x1;
       if(x0 == x1)
       {
          k = 0, b = max(y0, y1);
       else
       {
          k = double(y1 - y0) / (x1 - x0);
          b = y0 - x0 * k;
   double at(int x) { return k * x + b; }
} seg[N];
struct LCSegTree
   struct Node
       int lef, rig, id;
   vector<Node> tree:
   LCSegTree(int x) { tree.resize(x * 4 + 1); }
   void build(int src, int lef, int rig)
       tree[src] = { lef, rig, 0 };
      if (lef == rig) return;
int mid = (lef + rig) / 2;
      build(src << 1, lef, mid);
build(src << 1 | 1, mid + 1, rig);</pre>
       return;
   void add(int src, int id)
      if (seg[id].lef <= tree[src].lef && seg[id].rig >= tree[src].
          update(src, id);
          return;
       if (seg[id].lef <= tree[src << 1].rig) add(src << 1, id);</pre>
       if (seg[id].rig >= tree[src << 1 | 1].lef) add(src << 1 | 1,</pre>
            id);
       return;
   bool compare(int id1, int id2, int x)
       if (id1 == 0) return 1;
       if (id2 == 0) return 0;
       double r1 = seg[id1].at(x);
```

```
double r2 = seg[id2].at(x);
       if (fabs(r1 - r2) < EPS) return id2 < id1;</pre>
       else return r2 > r1 + EPS:
   void update(int src, int id)
       int mid = (tree[src].lef + tree[src].rig) / 2;
       if (compare(tree[src].id, id, mid)) swap(tree[src].id, id);
       if (tree[src].lef == tree[src].rig) return;
       if (compare(tree[src].id, id, tree[src].lef)) update(src <</pre>
       if (compare(tree[src].id, id, tree[src].rig)) update(src << 1</pre>
             | 1, id);
       return;
   int query(int src, int x)
       if (tree[src].lef == tree[src].rig) return tree[src].id;
       if (x <= tree[src << 1].rig)</pre>
          int r = query(src << 1, x);
          if (compare(r, tree[src].id, x)) return tree[src].id;
       else
      {
          int r = query(src \ll 1 \mid 1, x);
          if (compare(r, tree[src].id, x)) return tree[src].id;
          else return r;
   }
};
```

6 树论

6.1 LCA

```
/*********************
* 时间复杂度: O(logm)
* 说明: 适用于有根树
const int N = 500005;
vector<int> node[N];
struct LCA
  vector<int> d; //到根距离
  vector<vector<int>> st:
  void dfs(int x)
      for (auto e : node[x])
        if (e == st[x][0]) continue;
        d[e] = d[x] + 1;
        st[e][0] = x;
        dfs(e);
      return:
  }
  void build(int sz)
               _lg(sz);
      for (int i = 1; i <= lg; ++i)
         for (int j = 1; j \le sz; ++j)
           if (d[j] >= (1 << i))</pre>
               st[j][i] = st[st[j][i - 1]][i - 1];
        }
      return;
  LCA(int x, int root)
      d.resize(x + 1);
      st.resize(x + 1, vector<int>(32));
      dfs(root);
```

```
build(x):
   }
   int query(int a, int b)
      if (d[a] < d[b]) swap(a, b);</pre>
      int dif = d[a] - d[b];
      for (int i = 0; dif >> i; ++i)
          if (dif >> i & 1) a = st[a][i];
      if (a == b) return a;
      else
          for (int i = 31; i >= 0; --i)
          {
             while (st[a][i] != st[b][i])
                 a = st[a][i];
                b = st[b][i];
          return st[a][0];
   }
};
```

6.2 树的直径

```
* 时间复杂度: O(N)
* 说明:
* 1.距离任一点最远的点一定是直径的一端
* 2.任一点距所有叶的最远距离对应的叶一定是直径端点
struct Edge { int to; ll v; };
vector<Edge> node[N];
pair<int, ll> farthest(int id, ll d, int pa)
  pair<int, 11> ret = { id,d };
  for (auto e : node[id])
     pair<int, ll> res;
     if (e.to != pa) res = farthest(e.to, d + e.v, id);
     if (res.second > ret.second) ret = res;
  return ret:
int n, m;
void solve()
  cin >> n >> m;
  int u, v;
  11 w;
  for (int i = 1; i <= m; ++i)
     cin >> u >> v >> w;
     node[u].push_back({ v,w });
     node[v].push_back({ u,w });
  int s = farthest(1, 0, -1).first;
  auto res = farthest(s, 0, -1);
  int t = res.first:
  11 d = res.second;
  return;
```

6.3 树哈希

```
int n, root;
    vector<vector<int>> node;
    vector<int> hav;
    map<vector<int>, int> mp;
    int ord = 0;
    void getTree(vector<int>& p)
       n = p.size() - 1;
        node.clear();
        node.resize(n + 1);
        hav.clear();
        hav.resize(n + 1);
        root = -1;
        for (int i = 1; i <= n; ++i)</pre>
        {
           if (p[i])
              node[p[i]].push_back(i);
              node[i].push_back(p[i]);
           else root = i;
        }
        return;
    }
    void getD(int id, int pa, vector<int>& sz, vector<int>& d)
    {
       sz[id] = 1;
        int res = 0;
        for (auto e : node[id])
           if (e != pa)
              getD(e, id, sz, d);
              sz[id] += sz[e];
              res = max(res, sz[e]);
           }
        if (id == root) d[id] = res;
        else d[id] = max(res, n - sz[id]);
        return:
    }
    vector<int> center()
        vector<int> res;
        vector<int> sz(n + 1), d(n + 1);
        int mnn = n;
       getD(root, -1, sz, d);
for (int i = 1; i <= n; ++i) mnn = min(mnn, d[i]);</pre>
        for (int i = 1; i \leftarrow n; ++i) if (d[i] == mnn) res.push_back(i
             );
       return res;
    }
    vector<int> hash(vector<int>& p)
       vector<int> res:
        getTree(p);
        auto v = center();
        for (auto e : v) dfs(e, -1), res.push_back(hav[e]);
        sort(res.begin(), res.end());
        return res;
    int hash(vector<int>& p, int root)
    {
       getTree(p);
        dfs(root, -1);
        return hav[root];
    void dfs(int id, int pa)
        vector<int> v;
        for (auto e : node[id])
           if (e != pa)
           {
              dfs(e, id);
               v.push_back(hav[e]);
        sort(v.begin(), v.end());
        if (mp.count(v) == 0) mp[v] = ++ord;
        hav[id] = mp[v];
       return;
    }
|};
```

6.4 树链剖分

```
* 时间复杂度: O(nlogn)
* 说明: 维护树上两点间路径相关性质, 也可求LCA。
****************
const int N = 100005;
vector<int> node[N];
struct HLD
   vector<int> pa, dep, sz, hson;
   vector<int> top, dfn, rnk;
   int ord = 0;
   HLD(int x, int root)
      pa.resize(x + 1):
      dep.resize(x + 1);
      sz.resize(x + 1);
      hson.resize(x + 1):
      top.resize(x + 1);
      dfn.resize(x + 1):
      rnk.resize(x + 1);
      build(root);
      decom(root);
   void build(int x)
      sz[x] = 1;
      int mxsz = 0;
      for (auto e : node[x])
         if (e != pa[x])
             pa[e] = x;
             dep[e] = dep[x] + 1;
             build(e);
             sz[x] += sz[e];
             if (sz[e] > mxsz)
                mxsz = sz[e];
                hson[x] = e;
         }
       return;
   void decom(int x)
      top[x] = x;
      dfn[x] = ++ord;
      rnk[ord] = x;
       if (hson[pa[x]] == x) top[x] = top[pa[x]];
      for (auto e : node[x]) if (e == hson[x]) decom(e);
for (auto e : node[x]) if (e != pa[x] && e != hson[x]) decom(
           e);
      return;
   }
   int lcm(int u, int v)
      while (top[u] != top[v])
      {
         if (dep[u] < dep[v]) v = pa[top[v]];</pre>
         else u = pa[top[u]];
      if (dep[u] < dep[v]) return u;</pre>
      else return v;
   }
};
```

6.5 树上启发式合并

```
* 2. 用dfn序代替递归的贡献计算和清除可以优化常数
const int N = 100005:
vector<int> node[N];
int n;
ll a[N];
struct DsuOnTree
   struct State
      vector<int> cnt;
      map<int, 11> mp;
      State() { init(); }
      void init() { cnt.resize(1e5 + 1); }
      void add(ll val)
         if (cnt[val]) mp[cnt[val]] -= val;
         if (mp[cnt[val]] == 0) mp.erase(cnt[val]);
          cnt[val]++;
         mp[cnt[val]] += val;
         return;
      void del(ll val)
         mp[cnt[val]] -= val;
          if (mp[cnt[val]] == 0) mp.erase(cnt[val]);
         cnt[val]--;
         if (cnt[val]) mp[cnt[val]] += val;
         return;
      il ans() { return mp.rbegin()->second; }
   } state;
   vector<int> big; //每个结点的重子
  vector<int> sz; //每个子树的大小
vector<ll> ans; //每个子树的答案
   const int root = 1:
   DsuOnTree()
      big.resize(n + 1);
      sz.resize(n + 1):
      ans.resize(n + 1);
   void dfs0(int x, int p)
      sz[x] = 1;
      for (auto e : node[x])
         if (e == p) continue;
         dfs0(e, x);
         sz[x] += sz[e];
         if (sz[big[x]] < sz[e]) big[x] = e;</pre>
      return:
   void del(int x, int p) //删除子树贡献
      state.del(a[x]);
      for (auto e : node[x])
         if (e == p) continue;
         del(e, x);
      return;
   void add(int x, int p) //计算子树贡献
      state.add(a[x]);
      for (auto e : node[x])
         if (e == p) continue;
         add(e, x);
      return;
   void dfs(int x, int p, bool keep)
      for (auto e: node[x]) //计算轻子子树答案
         if (e == big[x] || e == p) continue;
         dfs(e, x, 0);
      if (big[x]) dfs(big[x], x, 1); //计算重子子树答案和贡献
      for (auto e : node[x]) //计算轻子子树贡献
         if (e == big[x] || e == p) continue;
```

add(e, x);

```
state.add(a[x]); //计算自己贡献
      ans[x] = state.ans(); //计算答案
      if (keep == 0) del(x, p); //删除子树贡献
   void work()
      dfs0(root, 0);
      dfs(root, 0, 0);
};
void solve()
   for (int i = 1; i <= n; ++i) cin >> a[i];
   for (int i = 1; i <= n - 1; ++i)
      cin >> u >> v;
      node[u].push_back(v);
      node[v].push_back(u);
   DsuOnTree dot;
   dot.work();
   for (int i = 1; i <= n; ++i) cout << dot.ans[i] << ' ';
   cout << endl;</pre>
   return;
```

6.6 点分治

```
* 时间复杂度: 处理结点次数为0(nlogn)
* 说明:
* 1. 以重心为根分治子树, 再计算经过重心的路径
* 2. 重心为最大子树大小最小的结点
* 3. 通常用于树上路径计数问题
const int N = 100005;
const int D[3][2] = { -1, 0, 1, -1, 0, 1 };
int n, sz[N], maxd[N];
string s;
vector<int> node[N];
bool vis[N];
multiset<pair<int, int>> st;
void getRoot(int x, int fa, int sum, int& root)
   sz[x] = 1, maxd[x] = 0;
   for (auto e : node[x])
      if (vis[e] || e == fa) continue;
      getRoot(e, x, sum, root);
sz[x] += sz[e];
      maxd[x] = max(maxd[x], sz[e]);
   maxd[x] = max(maxd[x], sum - sz[x]);
   if (maxd[x] < maxd[root]) root = x;</pre>
   return;
void dfs(int x, int fa, pair<int, int> p)
   p.first += D[s[x] - 'a'][0];
   p.second += D[s[x] - 'a'][1];
   st.insert(p);
   for (auto e : node[x])
      if (vis[e] || e == fa) continue;
      dfs(e, x, p);
   return;
11 work(int x)
   11 \text{ res} = 0;
   multiset<pair<int, int>> ns;
   for (auto e : node[x])
      if (vis[e]) continue;
      dfs(e, x, make_pair(0, 0));
```

```
for (auto p : st)
          pair<int, int> inv;
          inv.first = -(p.first + D[s[x] - 'a'][0]);
          inv.second = -(p.second + D[s[x] - 'a'][1]);
          if (inv == make_pair(0, 0)) res++;
          res += ns.count(inv);
       for (auto p : st) ns.insert(p);
       st.clear();
   return res;
}
11 divide(int x)
   11 \text{ res} = 0;
   vis[x] = 1;
   res += work(x);
   for (auto e : node[x])
       if (vis[e]) continue;
       int root = 0;
      getRoot(e, x, sz[e], root);
      res += divide(root);
   return res;
}
void solve()
   cin >> n >> s;
   s = ' ' + s;
   for (int i = 1; i <= n - 1; ++i)
       int u, v;
      cin >> u >> v;
      node[u].push_back(v);
      node[v].push_back(u);
   maxd[0] = n + 1;
   int root = 0;
   getRoot(1, 0, n, root);
   cout << divide(root) << '\n';</pre>
   return:
```

7 图论

7.1 2-SAT

```
* 时间复杂度: O(N+M)
* 说明:
* 1. 以P4782为例
const int N = 2000005:
vector<int> node[N];
struct Tarjan
  int sz, cnt, ord;
  stack<int> stk;
  vector<vector<int>> g; //新图
  vector<int> dfn, low, id, val;
  Tarjan(int x)
     sz = x; //点数
    cnt = 0; //强连通分量个数
    ord = 0; //时间戳
    dfn.resize(sz + 1); //dfs序
    low.resize(sz + 1); //能到达的最小dfn
     id.resize(sz + 1); //对应的强连通分量编号
    val.resize(sz + 1); //新图点权
  void dfs(int x)
     stk.push(x);
     dfn[x] = low[x] = ++ord;
     for (auto e : node[x])
       if (dfn[e] == 0)
```

```
dfs(e);
              low[x] = min(low[x], low[e]);
          else if (id[e] == 0)
              low[x] = min(low[x], low[e]);
          }
       if (dfn[x] == low[x]) //x为强连通分量的根
          while (dfn[stk.top()] != low[stk.top()])
              id[stk.top()] = cnt;
              stk.pop();
          id[stk.top()] = cnt;
          stk.pop();
       return;
   void shrink()
       for (int i = 1; i <= sz; ++i)
          if (id[i] == 0) dfs(i);
       return;
   void rebuild()
       for (int i = 1; i <= sz; ++i)
           for (auto e : node[i])
              if (id[i] != id[e]) g[id[i]].push_back(id[e]);
       return;
   }
};
struct TwoSat
   int sz:
   vector<int> res;
   inline int negate(int x)
       if (x > sz) return x - sz;
       else return x + sz;
   TwoSat(int x)
       sz = x;
       res.resize(sz + 1);
   bool work()
       Tarjan tj(sz * 2);
       tj.shrink();
       for (int i = 1; i <= sz; ++i)
          if (tj.id[i] == tj.id[negate(i)]) return 0;
       for (int i = 1; i <= sz; ++i)
          res[i] = tj.id[i] < tj.id[negate(i)];</pre>
       return 1;
   }
};
void solve()
   cin >> n >> m;
    for (int i = 1; i <= m; ++i)
       bool a, b;
      11 x, y;
       cin >> x >> a >> y >> b;
       node[x + a * n].push_back(y + (!b) * n);
node[y + b * n].push_back(x + (!a) * n);
   TwoSat ts(n);
   if (!ts.work()) cout << "IMPOSSIBLE\n";</pre>
   else
       cout << "POSSIBLE\n";</pre>
```

```
for (int i = 1; i <= n; ++i) cout << ts.res[i] << ' ';
}
return;
}</pre>
```

7.2 Bellman-Ford 算法

```
* 时间复杂度: O(NM)
* 说明:
* 1. 适用于带负权边的单源最短路问题
* 2. 可判断负环, negCir()要在work()后调用
const int N = 1505;
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f3;
struct Edge {11 to, v;};
vector<Edge> node[N];
struct BellmanFord
   int sz;
   vector<ll> dis;
   BellmanFord(int x)
      sz = x;
      dis.resize(sz + 1, INFLL);
   void work(int s)
      for (int i = 1; i <= sz - 1; ++i)
          for (int j = 1; j <= sz; ++j)</pre>
             for (auto e : node[j])
                dis[e.to] = min(dis[e.to], dis[j] + e.v);
         }
      return:
  }
   bool negCir()
      for (int i = 1; i <= sz; ++i)
         for (auto e : node[i])
             if (dis[e.to] > dis[i] + e.v) return 1;
      return 0;
  }
};
```

7.3 Dijkstra 算法

```
return d > p1.d;
   };
   int sz;
   vector<int> vis;
   vector<ll> dis;
   Dijkstra(int x)
       vis.resize(sz + 1);
       dis.resize(sz + 1, INFLL);
   void work0(int s)
       priority_queue<NodeInfo> pq;
       dis[s] = 0;
       pq.push({ s,0 });
       while (pq.size())
          int now = pq.top().id;
          pq.pop();
          if (vis[now] == 0)
              vis[now] = 1; //被取出一定是最短路
              for (auto e : node[now])
                 if (vis[e.to] == 0 \&\& dis[e.to] > dis[now] + e.v)
                    dis[e.to] = dis[now] + e.v;
                    pq.push({ e.to,dis[e.to] });
             }
         }
       return;
   }
   void workS(int s)
       auto take = [&](int x)
          vis[x] = 1:
          for (auto e : node[x])
             dis[e.to] = min(dis[e.to], dis[x] + e.v);
          return;
       dis[s] = 0;
       take(s);
       for (int i = 1; i <= sz - 1; ++i)
          11 mnn = INFLL:
          int id = 0;
for (int j = 1; j <= sz; ++j)</pre>
              if (vis[j] == 0 && dis[j] < mnn)</pre>
                 mnn = dis[j];
                 id = j;
          if (mnn == INFLL) return;
          take(id);
       return;
   }
};
```

7.4 Dinic 算法

```
int to; //终点
   int rev; //反向边对其起点的编号
   11 cap; //残量
   Edge() {}
   Edge(int to, int rev, ll cap) :to(to), rev(rev), cap(cap) {}
};
vector<Edge> node[N];
void AddEdge(int from, int to, ll cap)
   int x = node[to].size();
   int y = node[from].size();
   node[from].push_back(Edge(to, x, cap));
   node[to].push_back(Edge(from, y, 0));
}
struct Dinic
   vector<int> dep; //每个点所属层深度
   vector<int> done; //每个点下一个要处理的邻接边
   aueue<int> a:
   Dinic(int x)
   {
      dep.resize(sz + 1);
      done.resize(sz + 1);
   bool bfs(int s, int t) //建立分层图
      for (int i = 1; i \le sz; ++i) dep[i] = 0;
      q.push(s);
      dep[s] = 1;
      done[s] = 0;
      bool f = 0;
      while (q.size())
         int now = q.front();
         q.pop();
         if (now == t) f = 1; //到达终点说明存在增广路
         for (auto e : node[now])
            if (e.cap && dep[e.to] == 0) //还有残量且未访问过
               q.push(e.to);
               done[e.to] = 0; //有增广路, 需要重新处理
               dep[e.to] = dep[now] + 1;
         }
      }
      return f;
   }
   11 dfs(int x, int t, 11 flow) //统计增广路总流量
      if (x == t || flow == 0) return flow; //找到汇点或断流
      11 rem = flow; //结点x当前剩余流量
      for (int i = done[x]; i < node[x].size() && rem; ++i)</pre>
         done[x] = i; //前i-1条边已经搞定, 不会再有增广路
         auto& e = node[x][i];
         if (e.cap && dep[e.to] == dep[x] + 1)//还有残量且为下一层
            ll inflow = dfs(e.to, t, min(rem, e.cap)); //计算流向e.
                 to的最大流量
            if (inflow == 0) dep[e.to] = 0; //e.to无法流入, 本次增广
            e.cap -= inflow; //更新残量
            node[e.to][e.rev].cap += inflow; //更新反向边
            rem -= inflow; //消耗流量
         }
      return flow - rem;
   }
   11 work(int s, int t)
      11 \text{ aug} = 0, \text{ ans} = 0;
      while (bfs(s, t))
         while (aug = dfs(s, t, INFLL))
            ans += aug;
```

```
return ans;
};
```

7.5 Floyd 算法

```
* 时间复杂度: O(N^3)
* 说明: 多源最短路、最短路计数、最小环计数
const int N = 505;
const int MOD = 998244353;
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f;
int n, m;
11 cnt[N][N]; // 最短路条数
11 dis[N][N]; // 最短路长度
ll edg[N][N]; // 边长
void solve()
   cin >> n >> m;
   for (int i = 1; i <= n; ++i)
       for (int j = 1; j <= n; ++j)
          if (i == j) dis[i][j] = 0;
          else dis[i][j] = INFLL;
          cnt[i][j] = 0;
          edg[i][j] = 0;
   for (int i = 1; i <= m; ++i)
       int u, v, w;
      cin >> u >> v >> w;
      dis[u][v] = edg[u][v] = w;
      cnt[u][v] = 1;
   map<11, 11> ans;
   for (int k = 1; k <= n; ++k)
       // 用指向最大编号点的边作为一个环的代表
       for (int i = 1; i < k; ++i)</pre>
       {
          if (edg[i][k] && cnt[k][i])
             ans[edg[i][k] + dis[k][i]] += cnt[k][i];
             ans[edg[i][k] + dis[k][i]] %= MOD;
       // 最短路计数
       for (int i = 1; i <= n; ++i)
          for (int j = 1; j <= n; ++j)
             if (dis[i][k] + dis[k][j] < dis[i][j])</pre>
                dis[i][j] = dis[i][k] + dis[k][j];
                 cnt[i][j] = cnt[i][k] * cnt[k][j] % MOD;
             else if (dis[i][j] == dis[i][k] + dis[k][j])
                 cnt[i][j] += cnt[i][k] * cnt[k][j] % MOD;
                 cnt[i][j] %= MOD;
         }
      }
   if (ans.empty()) cout << "-1 -1\n";
else cout << ans.begin()->first << ' ' << ans.begin()->second <</pre>
   return;
```

7.6 Kosaraju 算法

```
vector<int> node[N];
struct Kosaraiu
   int sz, index = 0;
   vector<int> vis, ord;
   vector<vector<int>> rev;
   vector<int> id; //强连通分量编号
   Kosaraju(int x)
      sz = x;
      vis.resize(sz + 1);
      id.resize(sz + 1);
      rev.resize(sz + 1);
      ord.resize(1);
      for (int i = 1; i <= sz; ++i)
          for (auto e : node[i])
             rev[e].push_back(i);
      for (int i = 1; i <= sz; ++i) if (vis[i] == 0) dfs1(i);</pre>
      for (int i = sz; i >= 1; --i) if (id[ord[i]] == 0) index++,
            dfs2(ord[i]);
   }
   void dfs1(int x)
      vis[x] = 1;
      for (auto e : node[x])
          if (vis[e] == 0) dfs1(e);
      ord.push_back(x);
      return;
   }
   void dfs2(int x)
      id[x] = index;
      for (auto e : rev[x])
          if (id[e] == 0) dfs2(e);
      return:
   }
};
```

7.7 Tarjan 算法

```
时间复杂度: O(n+m)
* 说明:
* 1.求有向图强连通分量+缩点
* 2. 求无向图点双连通分量和割点
* 3.求无向图边双连通分量和割边
struct SCC
  int sz, cnt, ord;
  stack<int> stk:
  vector<int> dfn, low, id;
  vector<vector<int>> g; // 新图
  SCC(int x)
     sz = x; // 点数
     cnt = 0; // 连通分量个数
ord = 0; // 时间戳
     dfn.resize(sz + 1); // dfs序
low.resize(sz + 1); // 能到达的最小dfn
     id.resize(sz + 1); // 连通分量编号
  void dfs(int x)
     stk.push(x);
     dfn[x] = low[x] = ++ord;
     for (auto e : node[x])
        if (dfn[e] == 0) // 未访问过
           dfs(e);
           low[x] = min(low[x], low[e]);
        else if (id[e] == 0) // 在栈中
```

```
low[x] = min(low[x], dfn[e]);
         }
      if (dfn[x] == low[x]) // x为强连通分量的根
         cnt++;
         while (stk.top() != x)
             id[stk.top()] = cnt;
             stk.pop();
         id[stk.top()] = cnt;
         stk.pop();
      }
      return;
   void shrink()
      for (int i = 1; i <= sz; ++i)
         if (id[i] == 0) dfs(i);
      return;
   void rebuild()
      g.resize(cnt + 1);
      for (int i = 1; i <= sz; ++i)
          for (auto e : node[i])
             if (id[i] != id[e]) g[id[i]].push_back(id[e]);
      return;
   }
};
struct VBCC
   int sz, ord;
   stack<int> stk;
   vector<int> dfn, low, tag;
   vector<vector<int>> bcc;
   VBCC(int x)
      sz = x; // 点数
      ord = 0; // 时间戳
      dfn.resize(sz + 1); // dfs序
      low.resize(sz + 1); // 能到达的最小dfn tag.resize(sz + 1); // 是否割点
   void dfs(int x, int fa)
      stk.push(x);
      dfn[x] = low[x] = ++ord;
      int son = 0;
      for (auto e : node[x])
         if (dfn[e] == 0) // 未访问过
             son++;
             dfs(e, x);
             low[x] = min(low[x], low[e]);
             if (low[e] >= dfn[x]) // x可能是割点
                if (fa) tag[x] = 1; // 不是dfs的根,则为割点
                bcc.emplace_back();
                while (stk.top() != e)
                    bcc.back().push_back(stk.top());
                    stk.pop();
                bcc.back().push_back(stk.top());
                stk.pop();
                bcc.back().push_back(x);
         else if (e != fa) // 祖先
         {
             low[x] = min(low[x], dfn[e]);
      if (fa == 0 && son >= 2) tag[x] = 1; // 特判dfs根是否为割点
      if (fa == 0 && son == 0) bcc.emplace_back(1, x); // 特判dfs根
            是否单独为一个分量
      return;
   void work()
```

```
for (int i = 1; i <= sz; ++i)
          if (dfn[i]) continue;
          while (stk.size()) stk.pop();
          dfs(i, 0);
      return;
   }
};
struct EBCC
   int sz, ord;
   vector<int> dfn, low, tag, vis;
   vector<vector<int>> bcc;
   EBCC(int x, int y)
      sz = x; // 点数
      ord = 0; // 时间戳
      dfn.resize(sz + 1); // dfs序
      low.resize(sz + 1); // 能到达的最小dfn vis.resize(sz + 1); // 是否已加入连通分量
      tag.resize(y + 1); // 是否割边
   void dfs0(int x, int fa)
      dfn[x] = low[x] = ++ord;
      for (auto e : node[x])
      {
          if (dfn[e.to] == 0) // 未访问过
             dfs0(e.to, x);
             low[x] = min(low[x], low[e.to]);
             if (low[e.to] > dfn[x]) tag[e.id] = 1; // 是割边
          else if (e.to != fa) // 祖先
             low[x] = min(low[x], dfn[e.to]);
      return:
   void dfs(int x)
      bcc.back().push_back(x);
      vis[x] = 1;
      for (auto e : node[x])
          if (vis[e.to]) continue;
          if (tag[e.id]) continue;
          dfs(e.to);
      return;
   void work()
      for (int i = 1; i <= sz; ++i)
          if (dfn[i]) continue;
          dfs0(i, 0);
      for (int i = 1; i <= sz; ++i)
          if (vis[i]) continue;
          bcc.emplace_back();
          dfs(i);
      return;
};
```

7.8 圆方树

```
RSTree(int x)
       cnt = x; // 方点编号
       sz = x; // 点数
ord = 0; // 时间戳
       dfn.resize(sz + 1); // dfs序
low.resize(sz + 1); // 能到达的最小dfn
       g.resize(sz * 2 + 1); // 圆方树
   void dfs(int x, int fa)
       stk.push(x);
       dfn[x] = low[x] = ++ord;
       for (auto e : node[x])
          if (dfn[e] == 0) // 未访问过
              dfs(e, x);
              low[x] = min(low[x], low[e]);
              if (low[e] >= dfn[x])
                 while (stk.top() != e)
                     g[cnt].push_back(stk.top());
                     g[stk.top()].push_back(cnt);
                     stk.pop();
                 g[cnt].push_back(stk.top());
                 g[stk.top()].push_back(cnt);
                 stk.pop();
                 g[cnt].push_back(x);
                 g[x].push_back(cnt);
             }
          else if (e != fa) // 祖先
             low[x] = min(low[x], dfn[e]);
       return;
   void work()
       for (int i = 1; i <= sz; ++i)
          if (dfn[i]) continue;
          while (stk.size()) stk.pop();
          dfs(i, 0);
       return;
   }
};
```

7.9 K 短路

```
* 时间复杂度: O(NklogN)
* 说明:利用A*算法。以估价函数值优先搜索,第k次访问某结点即k短路。
const int N = 1005:
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f3f3;
struct E
  11 to, v;
};
struct V
  11 id, d;
  bool operator<(const V& v) const { return d > v.d; }
int n, m, k;
vector<E> node[N];
struct Dijkstra
  vector<ll> d;
  vector<int> vis;
  priority_queue<V> pq;
   vector<vector<E>> rev;
  void rebuild()
```

```
for (int i = 1; i <= sz; ++i)
          for (auto e : node[i])
              rev[e.to].push_back({ i,e.v });
       return;
   Dijkstra(int x, int s)
       sz = x;
       d.resize(sz + 1, INFLL);
       vis.resize(sz + 1);
       rev.resize(sz + 1);
       rebuild();
       d[1] = 0;
       pq.push({ 1,0 });
       while (pq.size())
          auto now = pq.top();
          pq.pop();
           if (vis[now.id]) continue;
          vis[now.id] = 1;
          for (auto e : rev[now.id])
              if (vis[e.to] == 0 && d[e.to] > d[now.id] + e.v)
                 d[e.to] = d[now.id] + e.v;
                 pq.push({ e.to, d[e.to] });
         }
      }
  }
};
void solve()
   cin >> n >> m >> k;
   int u, v, w;
for (int i = 1; i <= m; ++i)</pre>
       cin >> u >> v >> w:
       node[u].push_back({ v,w });
   Dijkstra dj(n, n);
   priority_queue<V> pq;
   vector<int> vis(n + 1):
   pq.push({ n,dj.d[n] });
vector<ll> ans(k, -1);
   while (pq.size())
       auto now = pq.top();
       pq.pop();
       if (now.id == 1 && vis[now.id] < k) ans[vis[now.id]] = now.d;</pre>
       vis[now.id]++;
       for (auto e : node[now.id])
          if (vis[e.to] >= k) continue;
          pq.push({ e.to,now.d - dj.d[now.id] + e.v + dj.d[e.to] });
   for (int i = 0; i < k; ++i) cout << ans[i] << '\n';</pre>
   return;
```

7.10 SSP 算法

```
vector<Edge> node[N]:
void addEdge(int from, int to, 11 cap, 11 cost)
   int x = node[to].size();
   int y = node[from].size();
   node[from].push_back(Edge(to, x, cap, cost));
   node[to].push_back(Edge(from, y, 0, -cost));
   return;
struct SSP
   int sz;
   vector<ll> dis; //源点到i的最小单位流量费用
   vector<int> vis;
   vector<int> done; //每个点下一个要处理的邻接边
   queue<int> q;
   11 minc, maxf;
   SSP(int x)
   {
      dis.resize(sz + 1);
      vis.resize(sz + 1);
      done.resize(sz + 1);
      minc = maxf = 0;
   bool spfa(int s, int t) //寻找单位流量费用最小的增广路
      vis.assign(sz + 1, 0);
      done.assign(sz + 1, \theta);
      dis.assign(sz + 1, INFLL);
      dis[s] = 0;
      q.push(s);
      vis[s] = 1;
      while (q.size())
         int now = q.front();
         q.pop();
         vis[now] = 0;
         for (auto e : node[now])
            if (e.cap && dis[e.to] > dis[now] + e.cost) //还有残量且
                 可松弛
               dis[e.to] = dis[now] + e.cost;
               if (vis[e.to] == 0) q.push(e.to), vis[e.to] = 1;
        }
      return dis[t] != INFLL;
   ll dfs(int x, int p, int t, ll flow) //沿增广路计算流量和费用
      if (x == t || flow == 0) return flow; //找到汇点或断流
      vis[x] = 1; //防止零权环死循环
      11 rem = flow; //结点x当前剩余流量
      for (int i = done[x]; i < node[x].size() && rem; ++i)</pre>
         done[x] = i; //前i-1条边已经搞定, 不会再有增广路
         auto& e = node[x][i];
         if (e.to != p && vis[e.to] == 0 && e.cap && dis[e.to] ==
              dis[x] + e.cost)
            ll inflow = dfs(e.to, x, t, min(rem, e.cap)); //计算流向
                 e.to的最大流量
            e.cap -= inflow; //更新残量
            node[e.to][e.rev].cap += inflow; //更新反向边
            rem -= inflow; //消耗流量
      vis[x] = 0; //出递归栈后可重新访问
      return flow - rem;
   void work(int s, int t)
      11 \text{ aug} = 0;
      while (spfa(s, t))
         while (aug = dfs(s, 0, t, INFLL))
            maxf += aug;
            minc += dis[t] * aug;
```

```
}
return;
}
};
```

7.11 原始对偶算法

```
* 时间复杂度: O(MlogMF) (伪多项式, 与最大流有关)
 说明:
* 1. 求最小费用最大流
* 2.无法处理负环,需要提前排除
const int N = 5005:
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f3;
struct Edge
  int to; //终点
   int rev; //反向边对其起点的编号
   11 cap; //残量
   11 cost; //单位流量费用
   Edge() {}
   Edge(int to, int rev, ll cap, ll cost) :to(to), rev(rev), cap(cap
       ), cost(cost) {}
};
vector<Edge> node[N];
void addEdge(int from, int to, ll cap, ll cost)
   int x = node[to].size();
   int y = node[from].size();
   node[from].push_back(Edge(to, x, cap, cost));
   node[to].push_back(Edge(from, y, 0, -cost));
struct PrimalDual
   struct NodeInfo
   {
      int id:
      bool operator < (const NodeInfo& p1) const</pre>
      {
        return d > p1.d;
  };
   int sz;
   vector<ll> h; //势能
   vector<int> vis;
   vector<int> done; //每个点下一个要处理的邻接边
   vector<ll> dis;
   aueue<int> q;
  priority_queue<NodeInfo> pq;
  11 minc, maxf;
  PrimalDual(int x)
      sz = x:
      h.resize(sz + 1, INFLL);
      vis.resize(sz + 1);
      done.resize(sz + 1):
      dis.resize(sz + 1);
      minc = maxf = 0:
   void spfa(int s) //求初始势能
      h[s] = 0;
      q.push(s);
      vis[s] = 1;
      while (q.size())
         auto now = q.front();
         q.pop();
         vis[now] = 0;
         for (auto e : node[now])
            if (e.cap && h[e.to] > h[now] + e.cost)
               h[e.to] = h[now] + e.cost;
               if (vis[e.to] == 0) q.push(e.to), vis[e.to] = 1;
```

```
}
      }
      return:
   bool dijkstra(int s, int t)
      dis.assign(sz + 1, INFLL);
      vis.assign(sz + 1, 0);
      done.assign(sz + 1, 0);
      dis[s] = 0;
      pq.push({ s,0 });
       while (pq.size())
         int now = pq.top().id;
         pq.pop();
         if (vis[now] == 0)
         {
             vis[now] = 1; //被取出一定是最短路
             for (auto e : node[now])
                ll cost = e.cost + h[now] - h[e.to];
                if (vis[e.to] == 0 && e.cap && dis[e.to] > dis[now]
                     + cost)
                   dis[e.to] = dis[now] + cost;
                   pq.push({ e.to,dis[e.to] });
            }
         }
      vis.assign(sz + 1, 0); //还原vis
      return dis[t] != INFLL;
   11 dfs(int x, int t, 11 flow) //沿增广路计算流量和费用
      if (x == t || flow == 0) return flow; //找到汇点或断流
      vis[x] = 1; //防止零权环死循环
ll rem = flow; //结点x当前剩余流量
      for (int i = done[x]; i < node[x].size() && rem; ++i)</pre>
         done[x] = i; //前i-1条边已经搞定, 不会再有增广路
         auto& e = node[x][i];
if (vis[e.to] == 0 && e.cap && e.cost == h[e.to] - h[x])
              //势能差等于费用表明是最短路
             ll inflow = dfs(e.to, t, min(rem, e.cap)); //计算流向e.
                  to的最大流量
             e.cap -= inflow; //更新残量
             node[e.to][e.rev].cap += inflow; //更新反向边
             rem -= inflow; //消耗流量
      vis[x] = 0; //出递归栈后可重新访问
      return flow - rem;
   void work(int s, int t)
      spfa(s);
      11 aug = 0;
      while (dijkstra(s, t))
         for (int i = 1; i <= sz; ++i) h[i] += dis[i]; //更新势能
         while (aug = dfs(s, t, INFLL))
             maxf += aug;
             minc += aug * h[t];
      return;
   }
};
```

7.12 Prim 算法

```
const 11 INFIL = 0x3f3f3f3f3f3f3f3f3f3f
struct Edge {ll to, v;};
vector<Edge> node[N];
int n, m;
struct Prim
   int sz;
   vector<int> vis;
   vector<ll> dis;
   Prim(int x)
      vis.resize(sz + 1);
      dis.resize(sz + 1, INFLL);
   11 work()
      int now = 1;
      11 ans = 0;
      for (int i = 1; i <= sz - 1; ++i)
          vis[now] = 1;
          for (auto e : node[now])
             dis[e.to] = min(dis[e.to], e.v);
          11 mnn = INFLL;
          for (int j = 1; j <= sz; ++j)
             if (vis[j] == 0 && dis[j] < mnn)</pre>
                mnn = dis[j];
                now = j;
             }
          if (mnn == INFLL) return 0; //不连通
          ans += mnn;
      return ans:
  }
};
```

7.13 Kruskal 算法

```
* 时间复杂度: O(MlogM)
* 说明:
* 1.选边法最小生成树,适用于稀疏图
* 2.注意考虑图不连通的情况
const int N = 5005;
const int M = 200005;
struct Edge
  11 x, y, v;
  bool operator <(const Edge& e)</pre>
     return v < e.v;</pre>
};
Edge e[M];
int n, m;
11 kruskal()
  DSU dsu(n);
  11 ans = 0;
  sort(e + 1, e + 1 + m);
for (int i = 1; i <= m; ++i)
     if (dsu.find(e[i].x) != dsu.find(e[i].y))
        ans += e[i].v;
        dsu.merge(e[i].x, e[i].y);
     }
  return ans;
}
```

7.14 Kruskal 重构树

```
* 时间复杂度: 建立O(N)/查询O(logN)
* 说明:
* 1.用于解决最小瓶颈路问题
* 2.考虑了初始图不连通的问题
* 3.注意n=1特殊情况 (不用建树)
const int N = 100005;
struct DSU
   vector<int> f;
   void init(int x)
      f.resize(x + 1);
for (int i = 1; i <= x; ++i) f[i] = i;</pre>
      return:
   int find(int id) { return f[id] == id ? id : f[id] = find(f[id]);
   void attach(int x, int y) //将fx连向fy, 不按秩合并
      int fx = find(x), fy = find(y);
      f[fx] = fy;
      return;
};
struct LCA
   vector<int> d;
   vector<vector<int>> st;
   void dfs(int x, vector<vector<int>>& son)
      for (auto e : son[x])
         d[e] = d[x] + 1;
         st[e][0] = x;
         dfs(e, son);
      return;
   void build(int x)
      int lg = int(log2(x));
      for (int i = 1; i <= lg; ++i)
         for (int j = 1; j <= x; ++j)
         {
            if (d[j] >= (1 << i))
               st[j][i] = st[st[j][i - 1]][i - 1];
         }
      return;
   void init(int x)
      d.resize(x + 1);
      st.resize(x + 1, vector<int>(32));
      return;
   int query(int x, int y)
      if (d[x] < d[y]) swap(x, y);
      int dif = d[x] - d[y];
for (int i = 0; dif >> i; ++i)
         if (dif >> i & 1) x = st[x][i];
      if (x == y) return x;
      for (int i = 31; i >= 0; --i)
         while (st[x][i] != st[y][i])
            x = st[x][i];
            y = st[y][i];
      return st[x][0];
   }
};
struct Edge
   11 x, y, v;
```

```
bool operator<(const Edge& rhs) const { return v < rhs.v; }</pre>
} edg[N];
struct KrsRebTree
   int size; //当前结点数, 最多为n*2-1
   vector<vector<int>> son; //子结点
   vector<ll> val; //点权
   LCA lca;
  DSU dsu;
   void build(int n, int m)
      son.resize(n * 2);
      val.resize(n * 2);
      dsu.init(n * 2 - 1);
      size = n;
      sort(edg + 1, edg + 1 + m);
      for (int i = 1; i <= m && size < n * 2 - 1; ++i)
         int fx = dsu.find(edg[i].x);
         int fy = dsu.find(edg[i].y);
         if (fx == fy) continue;
         size++;
         dsu.attach(fx, size);
         dsu.attach(fy, size);
          son[size].push_back(fx);
         son[size].push_back(fy);
         val[size] = edg[i].v;
      lca.init(size);
      for (int i = n + 1; i <= size; ++i)
         if (dsu.find(i) == i) lca.dfs(i, son); //对所有树的根dfs
      lca.build(size);
      return;
   11 query(int x, int y)
      if (dsu.find(x) == dsu.find(y)) return val[lca.query(x, y)];
      else return -1;
  }
};
```

7.15 Hierholzer 算法

8 计算几何

8.1 平面坐标旋转

```
struct Point
{
    double x, y;

    void rotate(double rad)
    {
        double newx = x * cos(rad) - y * sin(rad);
        double newy = x * sin(rad) + y * cos(rad);
        x = newx;
        y = newy;
        return;
    }

    void rotate(Point p, double rad)
    {
        Point rela = { x - p.x,y - p.y };
        rela.rotate(rad);
        x = rela.x + p.x;
        y = rela.y + p.y;
        return;
    }
};
```

8.2 平面最近点对

```
* 时间复杂度: O(nlogn)
const int N = 400005;
const double INF = 1e100;
double sqr(double x) { return x * x; }
struct Point
   double x, y;
   double dis(const Point& rhs) { return sqrt(sqr(x - rhs.x) + sqr(y
          - rhs.y)); }
   bool operator<(const Point& rhs) { return x < rhs.x; }</pre>
} p[N];
double work(int lef, int rig)
   if (lef == rig - 1) return INF;
int mid = lef + (rig - lef) / 2;
   double midx = p[mid].x;
   double low = min(work(lef, mid), work(mid, rig));
   int lp = lef, rp = mid;
   vector<Point> v;
   while (lp < mid || rp < rig)</pre>
      if (lp < mid && (rp == rig || p[rp].y > p[lp].y)) v.push_back
            (p[1p++]);
      else v.push_back(p[rp++]);
   for (int i = lef; i < rig; ++i) p[i] = v[i - lef];</pre>
   v.clear():
   for (int i = lef; i < rig; ++i)</pre>
      if (fabs(p[i].x - midx) < low) v.push_back(p[i]);</pre>
   for (int i = 1; i < v.size(); ++i)</pre>
       for (int j = i - 1; j >= 0; --j)
          if (v[i].y - v[j].y >= low) break;
         low = min(low, v[i].dis(v[j]));
   return low;
void solve()
   int n;
   cin >> n;
   for (int i = 1; i <= n; ++i) cin >> p[i].x >> p[i].y;
   sort(p + 1, p + 1 + n);
   cout << fixed << setprecision(4) << work(1, n + 1) << '\n';
   return;
* 时间复杂度: 0(nlogn)
```

```
说明: P7883 (整数),分治/归并排序,需要注意距离和距离的平方
const int N = 400005:
const 11 INF = 0x3f3f3f3f3f3f3f3f3;
11 sqr(11 x) { return x * x; }
struct Point
   11 x,
   11 dd(const Point& rhs) { return sqr(x - rhs.x) + sqr(y - rhs.y);
   bool operator<(const Point& rhs) { return x < rhs.x; }</pre>
} p[N];
11 work(int lef, int rig)
   if (lef == rig - 1) return INF;
int mid = lef + (rig - lef) / 2;
   11 \text{ midx} = p[\text{mid}].x;
   11 low = min(work(lef, mid), work(mid, rig));
   int lp = lef, rp = mid;
   vector<Point> v;
   while (lp < mid || rp < rig)</pre>
       if (lp < mid && (rp == rig || p[rp].y > p[lp].y)) v.push_back
            (p[lp++]);
       else v.push_back(p[rp++]);
   for (int i = lef; i < rig; ++i) p[i] = v[i - lef];
   v.clear();
   for (int i = lef; i < rig; ++i)</pre>
       if (sqr(abs(p[i].x - midx)) < low) v.push_back(p[i]);</pre>
   for (int i = 1; i < v.size(); ++i)</pre>
       for (int j = i - 1; j >= 0; --j)
          if (sqr(v[i].y - v[j].y) >= low) break;
          low = min(low, v[i].dd(v[j]));
      }
   }
   return low:
}
void solve()
   int n;
   cin >> n;
   for (int i = 1; i <= n; ++i) cin >> p[i].x >> p[i].y;
   sort(p + 1, p + 1 + n);
   cout << work(1, n + 1) << '\n';
   return:
```

8.3 平面叉乘

9 杂项算法

9.1 普通莫队算法

```
const int N = 50005:
const int M = 50005:
11 n, m, k, a[N], BLOCK;
11 ans[M];
struct Q
   ll l, r, id;
   bool operator<(const Q& rhs) const
       //奇偶化排序优化常数
       int lb = 1 / BLOCK, rb = rhs.1 / BLOCK;
      if (lb == rb)
         if (r == rhs.r) return 0;
else return (r < rhs.r) ^ (lb & 1);</pre>
       else return lb < rb;</pre>
} q[M];
void solve()
   cin >> n >> m >> k;
   BLOCK = n / sqrt(m); //块大小
   for (int i = 1; i <= n; ++i) cin >> a[i];
   //离线处理询问
   for (int i = 1; i <= m; ++i) q[i].id = i, cin >> q[i].l >> q[i].r
   sort(q + 1, q + 1 + m);
   //计算首个询问答案
   vector<int> cnt(k + 1);
   for (int i = q[1].1; i <= q[1].r; ++i) cnt[a[i]]++;</pre>
   11 \text{ res} = 0;
   for (int i = 1; i <= k; ++i) res += cnt[i] * cnt[i];</pre>
   ans[q[1].id] = res;
   //开始转移
   ll l = q[1].l, r = q[1].r;
   auto del = [&](int p)
      res -= cnt[a[p]] * cnt[a[p]];
      cnt[a[p]]--
      res += cnt[a[p]] * cnt[a[p]];
      return;
   };
   auto add = [&](int p)
      res -= cnt[a[p]] * cnt[a[p]];
      cnt[a[p]]++;
      res += cnt[a[p]] * cnt[a[p]];
      return;
   for (int i = 2; i <= m; ++i)
      while (r < q[i].r) add(++r);
      while (r > q[i].r) del(r--);
      while (1 < q[i].1) del(1++);
       while (1 > q[i].1) add(--1);
      ans[q[i].id] = res;
   for (int i = 1; i <= m; ++i) cout << ans[i] << '\n';</pre>
```

9.2 带修改莫队算法

```
if (r / BLOCK == rhs.r / BLOCK) return t < rhs.t;</pre>
          else return r / BLOCK < rhs.r / BLOCK;</pre>
       else return 1 / BLOCK < rhs.1 / BLOCK;</pre>
} q[M];
struct C
  11 p, o, v;
} c[M];
11 n, m, a[N], ans[N];
void solve()
   cin >> n >> m;
   BLOCK = pow(n, 2.0 / 3);
   for (int i = 1; i <= n; ++i) cin >> a[i];
   11 \text{ mxx} = \text{*max\_element(a + 1, a + 1 + n);}
   // 离线处理询问
   char op;
   11 t = 0, ord = 0, u, v;
   for (int i = 1; i <= m; ++i)
      cin >> op >> u >> v;
if (op == 'R') c[++t] = { u, a[u], v }, a[u] = v;
       else ord++, q[ord] = { u, v, ord, t };
   sort(q + 1, q + 1 + ord);
   // 计算首个询问答案
   vector<ll> cnt(mxx + 1);
   ll res = 0, l = q[1].l, r = q[1].r, nowt = t;
   auto del = [&](int p)
       cnt[a[p]]--;
      if (cnt[a[p]] == 0) res--;
      return:
   };
   auto add = [&](int p)
       cnt[a[p]]++;
       if (cnt[a[p]] == 1) res++;
      return;
   };
   auto chg = [&](int p, 11 v)
       if (p >= 1 && p <= r) del(p);</pre>
       a[p] = v;
       if (p >= 1 \&\& p <= r) add(p);
      return:
   while (nowt > q[1].t) a[c[nowt].p] = c[nowt].o, nowt--;
   for (int i = 1; i <= r; ++i) add(i);</pre>
   ans[q[1].id] = res;
   // 开始转移
   for (int i = 2; i <= ord; ++i)</pre>
       for (int j = q[i - 1].t + 1; j \leftarrow q[i].t; ++j) chg(c[j].p, c[
       for (int j = q[i - 1].t; j > q[i].t; --j) chg(c[j].p, c[j].o)
       while (r < q[i].r) add(++r);
       while (r > q[i].r) del(r--);
       while (1 < q[i].1) del(1++);
       while (1 > q[i].1) add(--1);
       ans[q[i].id] = res;
   for (int i = 1; i <= ord; ++i) cout << ans[i] << '\n';
   return;
}
int main()
   ios::sync_with_stdio(0);
   cin.tie(0);
   cout.tie(0);
   int T = 1;
   // cin >> T;
   while (T--) solve();
   return 0;
}
```

9.3 莫队二次离线

```
* 时间复杂度: O(nsqrt(n))
  说明: 莫队转移超过0(1)时, 将所有转移离线并利用贡献可拆分性快速预处理
const int B = 14;
const int N = 100005;
11 n, m, k;
ll a[N], BLOCK;
struct Q
   11 1, r, id, ans;
   bool operator<(const Q& rhs) const</pre>
      int lb = 1 / BLOCK, rb = rhs.1 / BLOCK;
      if (1b == rb)
         if (r == rhs.r) return 0;
else return (r < rhs.r) ^ (lb & 1);</pre>
      else return 1b < rb;
} q[N];
void solve()
   cin >> n >> m >> k;
   BLOCK = sqrt(n);
   for (int i = 1; i <= n; ++i) cin >> a[i];
   for (int i = 1; i <= m; ++i)
       cin >> q[i].l >> q[i].r;
      q[i].id = i;
      q[i].ans = 0;
   sort(q + 1, q + 1 + m);
   q[0].1 = 1, q[0].r = 0, q[0].ans = 0;
   int lef = 1, rig = 0;
   array<vector<vector<int>>, 2> req{ vector<vector<int>>(n + 1),
        vector<vector<int>>(n + 1) };
   for (int i = 1; i <= m; ++i)
      if (rig < q[i].r) req[0][lef].push_back(i), rig = q[i].r;</pre>
      if (lef > q[i].1) req[1][rig].push_back(i), lef = q[i].1;
      if (rig > q[i].r) req[0][lef].push_back(i), rig = q[i].r;
      if (lef < q[i].1) req[1][rig].push_back(i), lef = q[i].1;</pre>
   vector<ll> tar;
   for (int i = 0; i < (1 << B); ++i)
      if (__builtin_popcount(i) == k) tar.push_back(i);
   vector<ll> cnt(1 << B), pre(n + 2), suf(n + 2);
   for (int i = 1; i <= n; ++i)
      pre[i] = cnt[a[i]];
      for (auto e : req[0][i])
       {
          if (q[e - 1].r < q[e].r)</pre>
             for (int j = q[e - 1].r + 1; j \leftarrow q[e].r; ++j) q[e].ans
                   -= cnt[a[j]];
         }
          else
             for (int j = q[e].r + 1; j \leftarrow q[e - 1].r; ++j) q[e].ans
                   += cnt[a[j]];
         }
      for (auto e : tar) cnt[a[i] ^ e]++;
   fill(cnt.begin(), cnt.end(), 011);
   for (int i = n; i >= 1; --i)
      suf[i] = cnt[a[i]];
      for (auto e : req[1][i])
         if (q[e - 1].l > q[e].l)
             for (int j = q[e - 1].l - 1; j >= q[e].l; --j) q[e].ans
                   -= cnt[a[j]];
          else
             for (int j = q[e].l - 1; j >= q[e - 1].l; --j) q[e].ans
                   += cnt[a[j]];
```

```
}
for (auto e : tar) cnt[a[i] ^ e]++;

}
lef = 1, rig = 0;
for (int i = 1; i <= m; ++i)
{
    q[i].ans += q[i - 1].ans;
    while (rig < q[i].r) q[i].ans += pre[++rig];
    while (lef > q[i].1) q[i].ans -= suf[--lef];
    while (rig > q[i].r) q[i].ans -= pre[rig--];
    while (lef < q[i].1) q[i].ans -= suf[lef++];
}
vector<ll> ans(m + 1);
for (int i = 1; i <= m; ++i) ans[q[i].id] = q[i].ans;
for (int i = 1; i <= m; ++i) cout << ans[i] << '\n';
return;
}
</pre>
```

9.4 整体二分

```
* 时间复杂度: 框架O(qlogm)
* 说明:
* 1. 对多个需要二分解决的询问同时二分
* 2. 二分对象为答案值域,但也将询问序列分到两个值域区间中
* 3.对于区间[1,r)的check不能到达O(q)/O(m),应只考虑[1,r)中的值或询问
* 4.注意分到右半区间的询问目标值要削减
* 5.注意值域区间和询问区间的开闭
* 6.注意必要时对元素值去重
const int N = 300005;
struct Fenwick { /*带时间戳树状数组*/ }fen;
struct Discret { /*离散化*/ }D;
struct Q
   int 1, r, k, id;
}q[N];
int n, m;
pair<int, int> a[N];
int ans[N];
void bis(int lef, int rig, int ql, int qr)
   if (lef == rig - 1)
       for (int i = ql; i < qr; ++i) ans[q[i].id] = lef;</pre>
       return;
   int mid = lef + rig >> 1;
for (int i = lef; i < mid; ++i)</pre>
       fen.add(a[i].second, 1);
   queue<Q> q1, q2;
for (int i = q1; i < qr; ++i)</pre>
       int cnt = fen.rsum(q[i].1, q[i].r);
if (cnt < q[i].k) q2.push({ q[i].1,q[i].r,q[i].k - cnt,q[i].</pre>
            id });
       else q1.push(q[i]);
   int qm = ql + q1.size();
for (int i = ql; i < qr; ++i)</pre>
       if (q1.size()) q[i] = q1.front(), q1.pop();
       else q[i] = q2.front(), q2.pop();
   fen.clear();
   bis(lef, mid, ql, qm);
   bis(mid, rig, qm, qr);
   return;
}
void solve()
   fen.init(n);
   for (int i = 1; i <= n; ++i)</pre>
       cin >> a[i].first;
       a[i].second = i;
       D.insert(a[i].first);
```

```
}
D.work();
for (int i = 1; i <= n; ++i) a[i].first = D[a[i].first];
sort(a + 1, a + 1 + n);
for (int i = 1; i <= m; ++i)
{
    cin >> q[i].1 >> q[i].r >> q[i].k;
    q[i].id = i;
}
bis(1, n + 1, 1, m + 1);
for (int i = 1; i <= m; ++i) cout << D.v[ans[i] - 1] << '\n';
return;
}</pre>
```

9.5 三分

```
* 时间复杂度: 0(logn)
* 说明: 注意凹还是凸
*******
// 浮点数三分
ld tes(ld lef, ld rig)
   if (fabs(lef - rig) < 1e-7) return lef;</pre>
   ld midl = lef + (rig - lef) / 3;
ld midr = rig - (rig - lef) / 3;
   ld resl = check(midl), resr = check(midr);
   if (resl > resr) return tes(lef, midr);
   else return tes(midl, rig);
// 整数三分 [1,r]
ll tes(ll lef, ll rig)
   if (lef == rig) return lef;
   11 mid1 = lef + (rig - lef) / 3;
11 midr = rig - (rig - lef) / 3;
   11 resl = check(midl), resr = check(midr);
   if (resl >= resr) return tes(lef, midr - 1);
   else return tes(midl + 1, rig);
```

9.6 离散化

```
* 时间复杂度: O(logn)
* 说明: 注意起始序号
struct Discret
   vector<ll> v;
   void insert(ll val)
   {
     v.push_back(val);
     return;
   void work()
     sort(v.begin(), v.end());
     v.erase(unique(v.begin(), v.end()), v.end());
     return:
  void clear()
     v.clear();
     return:
  11 operator[](11 val)
     return lower_bound(v.begin(), v.end(), val) - v.begin();
};
```

9.7 快速排序

```
const int N = 100005:
int n:
ll a[N];
int median(int x, int y, int z)
    if (a[x] > a[y] \&\& a[z] > a[y]) return a[x] > a[z] ? z : x;
    else if (a[x] < a[y] && a[z] < a[y]) return a[x] < a[z] ? z : x;
    else return y;
}
void QuickSort(int lef, int rig)//[lef, rig]
    if (rig <= lef) return;</pre>
    int mid = lef + (rig - lef) / 2;
int pivot = median(lef, mid, rig);
   int pivot = measure,
swap(a[pivot], a[lef]);
lof: //第一个等于基准的值
    for (int i = lef + 1; i <= rig; ++i)</pre>
       if (a[i] < a[lef]) swap(a[i], a[++lp]);</pre>
   swap(a[lef], a[lp]);
                           ·个等于基准的值
    int rp = lp; //最后-
    for (int i = lp + 1; i <= rig; ++i)
       if (a[i] == a[lp]) swap(a[i], a[++rp]);
    QuickSort(lef, lp - 1);
    QuickSort(rp + 1, rig);
    return;
```

9.8 枚举集合

```
* 时间复杂度: 0(枚举对象个数)
* 说明: 枚举子集、超集、固定大小集合
struct EnumSet
  vector<int> subset(int x) // 枚举x的子集
     vector<int> res;
     for (int i = x; i >= 1; i = (i - 1) & x) res.push_back(i);
     res.push_back(0);
     return res;
  }
  vector<int> kset(int b, int k) // 枚举b位大小为k的集合
     vector<int> res:
     int now = (1 << k) - 1;</pre>
     while (now < (1 << b))
     {
        res.push_back(now);
        int lowbit = now & -now;
        int x = now + lowbit;
int y = ((now & ~x) / lowbit) >> 1;
        now = x \mid y;
     return res;
  }
  vector<int> superset(int x, int b) // 枚举x的b位超集
     vector<int> res;
     for (int i = x; i < (1 << b); i = (i + 1) | x) res.push_back(
         i);
     return res;
  }
};
```

9.9 CDQ 分治 + CDQ 分治 = 多维偏序

```
大小归并,同时计算左部前n-2维全0元素对右部前n-2维全1元素的贡献
const int N = 100005:
struct Elem
   11 a, b, c;
   ll cnt, id;
   bool xtag;
   bool operator!=(const Elem& e) const
      return a != e.a || b != e.b || c != e.c;
}e[N], ee[N], eee[N];
int n, k, ans[N], res[N];
bool bya(const Elem& e1, const Elem& e2)
   if (e1.a == e2.a && e1.b == e2.b) return e1.c < e2.c;</pre>
   else if (e1.a == e2.a) return e1.b < e2.b;</pre>
   else return e1.a < e2.a;</pre>
void cdq2(int lef, int rig)
   if (lef == rig - 1) return;
   int mid = lef + rig >> 1;
   cdq2(lef, mid);
   cdq2(mid, rig);
   int p1 = lef, p2 = mid, now = lef;
   int sum = 0;
   while (now < rig)
      //左半部分xtag为0的可以贡献右半部分xtag为1的
      if (p2 == rig || p1 < mid && ee[p1].c <= ee[p2].c)</pre>
          eee[now] = ee[p1++];
         sum += eee[now].cnt * (eee[now].xtag == 0);
      else
      {
         eee[now] = ee[p2++];
         res[eee[now].id] += sum * (eee[now].xtag == 1);
      now++:
   for (int i = lef; i < rig; ++i) ee[i] = eee[i];</pre>
   return;
void cdq1(int lef, int rig)
   if (lef == rig - 1) return;
   int mid = lef + rig >> 1;
   cdq1(lef, mid);
   cdq1(mid, rig);
   int p1 = lef, p2 = mid, now = lef;
   while (now < rig)</pre>
      if (p2 == rig || p1 < mid && e[p1].b <= e[p2].b)</pre>
         ee[now] = e[p1++];
         ee[now].xtag = 0;
      else
      {
          ee[now] = e[p2++];
          ee[now].xtag = 1;
      now++;
   for (int i = lef; i < rig; ++i) e[i] = ee[i];</pre>
   cdq2(lef, rig);
   return;
void solve()
   cin >> n >> k;
   vector<Elem> ori(n);
   for (int i = 0; i < n; ++i)
      cin >> ori[i].a >> ori[i].b >> ori[i].c;
      ori[i].cnt = 1;
   sort(ori.begin(), ori.end(), bya);
   int cnt = 0;
   for (auto& x : ori)
```

9.10 CDQ 分治 + 数据结构 = 多维偏序

```
* 时间复杂度: O(nlog^(d-1)n)
* 说明:
* 1. 每降一维需要乘O(logn)时间
* 2. 适用于高维偏序等小元素对大元素有贡献的问题
* 3. 元素需要提前去重
* 4. 注意小于等于和小于做法不同,如分治顺序与排序复原/mid的移动
* 5. 贡献有顺序要求如dp时,先左再合并再右
* 6. 有时需要离散化才能利用数据结构
const int N = 100005:
struct Fenwick { /*带时间戳最大值树状数组*/ }fen;
struct Discret { /*离散化*/ }D;
struct Elem
   11 a, b, c;
   11 w, dp;
   bool operator!=(const Elem& e) const { return a != e.a || b != e.
        b || c != e.c; }
int n;
bool bya(const Elem& e1, const Elem& e2)
   if (e1.a == e2.a && e1.b == e2.b) return e1.c < e2.c;</pre>
   else if (e1.a == e2.a) return e1.b < e2.b;
   else return e1.a < e2.a;</pre>
}
bool byb(const Elem& e1, const Elem& e2)
   if (e1.b == e2.b) return e1.c < e2.c;</pre>
   else return e1.b < e2.b;</pre>
void cdg(int lef, int rig)
   if (e[lef].a == e[rig - 1].a) return;
int mid = lef + (rig - lef) / 2;
   // 需要保证e[mid-1].a和e[mid].a不同
   if (e[lef].a == e[mid].a)
      while (e[lef].a == e[mid].a) mid++;
   }
   else
   {
      while (e[mid - 1].a == e[mid].a) mid--;
   // 解决左半
   cdq(lef, mid);
   // 解决合并
   sort(e + lef, e + mid, byb);
   sort(e + mid, e + rig, byb);
   int p1 = lef, p2 = mid;
   while (p2 < rig)
      while (p1 < mid && e[p1].b < e[p2].b)</pre>
          fen.add(D[e[p1].c], e[p1].dp);
      e[p2].dp = max(e[p2].dp, e[p2].w + fen.pres(D[e[p2].c] - 1));
```

```
fen.clear():
   // 解决右半
   sort(e + mid, e + rig, bya); // 复原排序
   cdq(mid, rig);
   return;
void solve()
   cin >> n:
   vector<Elem> ori(n);
   for (int i = 0; i < n; ++i)</pre>
       cin >> ori[i].a >> ori[i].b >> ori[i].c >> ori[i].w;
       ori[i].dp = ori[i].w;
       D.insert(ori[i].c);
   D.work();
   fen.init(D.v.size());
   sort(ori.begin(), ori.end(), bya);
   int cnt = 0;
   for (auto& x : ori)
       if (cnt == 0 || e[cnt] != x) e[++cnt] = x;
       else e[cnt].dp = e[cnt].w = max(e[cnt].w, x.w);
   cdq(1, cnt + 1);
   11 \text{ ans} = 0;
   for (int i = 1; i <= cnt; ++i) ans = max(ans, e[i].dp);</pre>
   cout << ans << '\n';</pre>
   return;
}
```

10 博弈论

10.1 Fibonacci 博弈

10.2 Wythoff 博弈

10.3 Green Hackenbush 博弈

```
* 1. 有一棵有根树,两人轮流选择一个子树删除,删除根结点的人失败。
* 2. 有一颗有根树,两人轮流删除一条边以及不与根相连的部分,无边可删
* 的人失败。
* 3. 结论: 以边为对象: 叶结点父边sg值为1, 中间结点父边sg值为所有邻接
* 边sg值异或和+1; 以点为对象: 叶结点sg值为0, 其他结点sg值为所有邻接
* 点sg值+1的异或和。
void dfs(int x, int fa)
{
    sg[x] = 0;
    for (auto e : node[x])
    {
        if (e == fa) continue;
            dfs(e, x);
            sg[x] ^= sg[e] + 1;
    }
    return;
}
```