

SLPs' Level of Preparedness When Working with Interpreters

Fermina Yat

Table of Contents

OI Background O2
Data Cleaning

O3 Results

O4Reflections

Background

Section 1

Assessing medical condition...

Loading data...

91%

System review loaded

Background

The study evaluates how prepared speech-language pathologists (SLPs) are to collaborate with interpreters in treating multilingual children with communication disorders in school settings. A survey was conducted in hopes of assessing this.

- Survey was divided into four sections
 - Demographics
 - Experience
 - Working With Interpreters
 - Preparedness

Research Question

 How do school-based speech-language pathologists perceive their level of preparedness to work with interpreters when working with multilingual children with possible communication disorders in elementary schools on Long Island, New York?

Problem

 Studies have shown that SLPs often find themselves unprepared to handle multilingual students.

Purpose

 The study aims to enhance educational and therapeutic outcomes for multilingual children, ensuring they receive effective support.

Data Cleaning

Section 2

Data Cleaning

```
### SPECIFY COLUMNS TO FOCUS DN focus_columns = ['q11', 'q29', 'q30', 'q31', 'q32', 'q34', 'q36', 'q45', 'q54']

# FILTER DATAFRAME

# FILTER DATAFRAME
```

Data Cleaning

```
# MAP RESPONSES FOR Q11
experience_mapping = {
    'Less than one year': 1, # Less than one year
    '11-15 \t\t': 2. # 11-15 years
df['q11'] = df['q11'].replace(experience_mapping)
# MAP RESPONSES FOR Q29, Q30, Q31, Q54
frequency_mapping = {
    'Always': 4
df['q29'] = df['q29'].replace(frequency_mapping)
df['q30'] = df['q30'].replace(frequency_mapping)
df['q31'] = df['q31'].replace(frequency_mapping)
df['q54'] = df['q54'].replace(frequency_mapping)
agreement_mapping = {
    'Strongly Disagree': 1,
    'Strongly Agree': 5
df['q32'] = df['q32'].replace(agreement_mapping)
df['q34'] = df['q34'].replace(agreement_mapping)
df['q36'] = df['q36'].replace(agreement_mapping)
df['q45'] = df['q45'].replace(agreement_mapping)
```

Data Cleaning

```
# PRINTING SELECTED COLUMNS
print("Filtered DataFrame with Selected Columns:")
print(df_focus.head(41))
                                                                                                                                                                                           Python
# MAP RESPONSES 011
df_focus['q11'] = df_focus['q11'].replace(experience_mapping)
# MAP RESPONSES 029, 030, 031, 054
df_focus['q29'] = df_focus['q29'].replace(frequency_mapping)
df_focus['q30'] = df_focus['q30'].replace(frequency_mapping)
df_focus['q31'] = df_focus['q31'].replace(frequency_mapping)
df_focus['q54'] = df_focus['q54'].replace(frequency_mapping)
# MAP RESPONSES Q32, Q34, Q36, Q45
df focus['q32'] = df focus['q32'].replace(agreement_mapping)
df_focus['q34'] = df_focus['q34'].replace(agreement_mapping)
df focus['q36'] = df focus['q36'].replace(agreement mapping)
df_focus['q45'] = df_focus['q45'].replace(agreement_mapping)
print("Mapped DataFrame:")
print(df_focus.head(41))
                                                                                                                                                                                           Python
# DROP ROWS WITH NAN VALUES IN SPECIFIED COLUMNS
columns_to_check = ['q11', 'q29', 'q30', 'q31', 'q32', 'q34', 'q36', 'q45', 'q54']
df_cleaned = df_focus.dropna(subset=columns_to_check)
print(f"Number of rows after dropping NaN in specific columns: {len(df_cleaned)}")
print(df_cleaned)
                                                                                                                                                                                           Python
```


Data Cleaning Output

SLP PROJECT

Results

Section 3

Chi-Square

```
pip install scipy
                                                                                                                                                                                                   Python
import pandas as pd
from scipy.stats import chi2_contingency
df_cleaned['FrequencyScore'] = df_cleaned[['q29', 'q30', 'q31']].sum(axis=1)
def map frequency(score):
    if score <= 6: # LOW FREQUENCY
   elif score <= 9: # MEDIUM FREQUENCY
df_cleaned['FrequencyLevel'] = df_cleaned['FrequencyScore'].apply(map_frequency)
experience_mapping = {
   2: "Moderate Experience", # CORRESPONDS d, e
    3: "High Experience" # CORRESPONDS f, g
df_cleaned['ExperienceGroup'] = df_cleaned['q11'].map(experience_mapping)
contingency_table = pd.crosstab(df_cleaned['ExperienceGroup'], df_cleaned['FrequencyLevel'])
print("Contingency Table:")
print(contingency_table)
from scipy.stats import chi2_contingency
chi2, p, dof, expected = chi2_contingency(contingency_table)
print("\nChi-Square Test Results:")
print(f"Chi-Square Statistic: {chi2}")
print(f"P-Value: {p}")
print("Expected Frequencies:")
print(expected)
                                                                                                                                                                                                   Python
```

Key Findings

- P-Value = 0.073
- Indicates no significant association between years of experience and frequency of interpreter use.
- Closeness to 0.05

 indicates that there may be
 other factors influencing
 interpreter use.

Other Factors

Further exploration of factors could yield insights on improving interpreter use among speech-language pathologists.

- Education
- Training Resources
- Cultural Competency
 Workplace Environment

ndications

One-Way ANOVA

```
import pandas as pd
from scipy.stats import f_oneway
# Step 1: CALCULATE PREPAREDNESS SCORE - SUM OF Q32, Q34, and Q36
df_cleaned['PreparednessScore'] = df_cleaned[['q32', 'q34', 'q36']].sum(axis=1)
# FREQUENCY OF WORKSHOPS (Q54)
groups = [df_cleaned[df_cleaned['q54'] == value]['PreparednessScore'] for value in df_cleaned['q54'].unique()]
# ONE WAY ANOVA
f_stat, p_value = f_oneway(*groups)
print("One-Way ANOVA Results:")
print(f"F-Statistic: {f_stat}")
print(f"P-Value: {p_value}")
import seaborn as sns
import matplotlib.pyplot as plt
sns.boxplot(x='q54', y='PreparednessScore', data=df_cleaned)
plt.xlabel('Frequency of Workshops (Q54)')
plt.ylabel('Preparedness Score')
plt.title('Preparedness Score by Frequency of Workshops')
plt.show()
                                                                                                                                                                                                   Python
```

Key Findings

- F = 10.31, P Value = .000107, p < .05)
- The one-way ANOVA reveals a significant relationship between workshop frequency during graduate programs and participants' perceived preparedness.

Meaning

- Participants who attended workshops "Often" or "Always" reported higher preparedness levels then those with lower workshop attendance.
- Frequent workshop opportunities during graduate programs play a critical role in readiness to work with interpreters.

ndications

Two-Way ANOVA

```
pip install statsmodels
                                                                                                                                                                                                    Python
import statsmodels.api as sm
from statsmodels.formula.api import ols
import matplotlib.pyplot as plt
import seaborn as sns
                                                                                                                                                                                                    Python
# COMPUTE PREPAREDNESS SCORE
df_cleaned['PreparednessScore'] = df_cleaned[['q32', 'q34', 'q36']].sum(axis=1)
# TWO-WAY ANOVA
model = ols('PreparednessScore ~ C(q45) * C(q54)', data=df_cleaned).fit()
anova_table = sm.stats.anova_lm(model, typ=2)
# DISPLAY RESULTS
print("Two-Way ANOVA Results:")
print(anova_table)
# VISUALIZE INTERACTION EFFECT
sns.boxplot(
    x='q54', y='PreparednessScore', hue='q45', data=df_cleaned, palette='Set3'
plt.title("Preparedness Score by Workshop Frequency and Quality")
plt.xlabel("Frequency of Workshops (Q54)")
plt.ylabel("Preparedness Score")
plt.legend(title="Quality of Workshops (Q45)", bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
                                                                                                                                                                                                     Python
```

Key Findings

- When investigating the main effect of workshop frequency on preparedness scores, we found a significant p-value (.0016< 0.05), indicating that frequent workshops are associated with higher levels of preparedness.
- When examining the main effect of workshop quality on preparedness scores, we found no significant impact, indicated by p-value of 1.
- The interaction effect between workshop frequency and quality is not statistically significant, but the p-value of 0.064 suggests a trend toward significance, warranting further investigation with a larger dataset.

Reflections

Section 4

Conclusions

- Time spent data cleaning vs. statistical analysis.
- Found that preparation beforehand made cleaning and analysis easier.
- Many different ways to group questions.
- Weeks of preparation before any coding even took place.

