Notes on Eigenvalues and Eigenvectors

gaotang

Fall 2021

1 General concept

• Definition

Let V be a vector space of dimension n, and let $T:V\to V$ be a linear transformation

The scalar $\lambda \in \mathbb{R}$ is an eigenvalue of T if there is a non-zero vector $v \in V$ such that

$$T(v) = \lambda v;$$

such a vector is called an eigenvecto of T, with corresponding eigenvalue $\lambda.$

- The geometric intuition for eigenvector is that some special vectors in the domain of T such that would only stretch itself when doing matrix multiplication with a certain matrix. Such vectors are called eigen vectors and the degree of "stretching" is called eigenvalues.
- The set

$$E_{\lambda} = \{ v \in V : T(v) = \lambda v \}$$

is called the *eigenspace* corresponding to λ . Eigenspace is a subspace of V because it contains the zero vector, and closed under vector addition and scalar multiplication

• Definition

The characteristic polynomial of the linear transformation $T: V \to V$ is the polynomial f_T (which we write here in the variable λ) given by

$$f_T(\lambda) = det(\lambda I - T),$$

where $I:V\to V$ is the identity transformation. Here we are thinking of $\lambda I-T$ as a new linear transformation from V to V, defined by

$$(\lambda I - T)(v) = \lambda v - T(v)$$
 for all $v \in V$

• The above definition leads us a systematic way of finding eigenvalues. If v is an eigenvector of T with corresponding eigenvalue λ , then,

$$(\lambda I - T)(v) = 0$$

since here we assume the nonzero eigenvector exists, then the linear transformation $\lambda I - T$ has a nontrivial kernel, hence it is not invertible, and we thus have

$$det(\lambda I - T) = 0$$

Conversely, reversing the arugment shows that if the determinant is 0, then λ is an eigenvalue of T. This shows that the eigenvalues of T are just the roots of the characteristic polynomial of T

• Definition

Let λ be an eigenvalue of T.

The algebraic multiplicity "almu(λ)" of λ is the number of times that λ occurs as a root of the characteristic polynomial f_T of T; that is, the largest power of the root.

The geometric multiplicity "gemu(λ)" of λ is the dimension of the corresponding eigenspace E_{λ}

• Definition - Diagonalization

A linear transformation $T: V \to V$ of the finite-dimensional vector space V is said to be diagonalizable if there there is a basis B of V such that $[T]_B$ is diagnoal. A square matrix A is said to be diagonalizable if the linear transformation T_A is diagonalizable, or equivalently if A is similar to a diagonal matrix

2 Understanding of the concept

- Eigenvectors that are of distinct eigenvalues are linearly independent
- The intersection of two eigenvectors that have distinct eigenvalues is only the zero vector
- A linear transformation $T:V\to V$ of the finite-dimensional vector space V is diagonalizable if and only if there is a basis B of V consisting of eigenvectors of T (Such a basis of V is called an *eigenbasis* of T)
- An $n \times n$ square matrix A is diagonalizable if and only if there is a basis B of \mathbb{R}^n consisting of eigenvectors of A (Such a basis of V is called an eigenbasis of T)

- \bullet In either of the above cases, the matrix is similar to the diagonal matrix that all of the entries are eigenvalues