DISCRETE

Discrete (countable//countably infinite)

- Probability Distribution (list of all possible values of X and their probabilities of occurring)
- $-0 \le P(X=x) \le 1$, for all of x
- $\sum P(X=x) = 1$, for all of x summed = 1
- $f(x) = \binom{n}{x} p^x (1-p)^{n-x}$ - Probability mass function:

Discrete Random Variables (X):

- **expected value** of a random variable \rightarrow E(X) \Leftrightarrow μ (theoretical mean) $\Leftrightarrow \sum x * P(X=x)$
- expectation of a function \rightarrow E[g(X)] \Leftrightarrow \sum g(x) * P(X=x) variance \rightarrow $\sigma^2 = \sum$ [(x-\mu)^2p(x)] \Leftrightarrow E[(X-\mu)^2] \Leftrightarrow E(X^2) [E(X)]^2

- standard deviation $\rightarrow \sigma = \sqrt{\sum [(x-\mu)^2 * P(X=x)]}$ $OR \sqrt{\sigma^2}$

Bernoulli Distribution (for using values that can only 1 or 0, independent, success or failure)

- X = 1 is a success, while X = 0 is a failure (where the 1 or 0 is x) · $\int_{2}^{4} cx^{3} dx \frac{P(X=x)}{D} = p^{x}(1-p)^{1-x}$

Binomial Distribution (number of successes in *n* (fixed) independent Bernoulli trials)

- P(Success) = p, P(Failure) = 1-p, x represents the number of successes in n trials
- successes in n trials $-(\mathbf{PMF}) \to \mathbf{P}(\mathbf{X} = \mathbf{x}) = \binom{n}{x} p^x (1-p)^{n-x}$ ALSO $\mathbf{X} \sim \mathbf{B}(\mathbf{n}, \mathbf{p})$
- $-\mu = np$ AND $\sigma^2 = np(1-p)$

Geometric Distribution (number of trials needed to get the *first* success in repeated Bernoulli trials)

- -X = number of trails needs to get first success
- x 1 is the number of failures $(1-p)^{x-1}$, xth trial is the first success (p)
- **(PMF)** \rightarrow P(X = x) = (1-p)^{x-1}*p, for x = 1,2,3,... $\mu = \frac{1}{p}$ AND $\sigma^2 = \frac{1-p}{p^2}$ AND mode is always 1
- <u>cumulative distribution function</u> -

 $F(x) = P(X \le x) = 1 - (1 - p)^x$, for x = 1,2,3,...

**over a range (i.e. - $P(X \le 3)$), add the values together

Poisson Distribution ([X] number of events in a fixed unit of time, volume, unit of measure) {Approximation}

- Events occur independently & randomly (**PMF**) $\rightarrow \frac{\lambda^x e^{-\lambda}}{x!}$ for x = 0,1,2,...
- Probability histogram will be skewed right as λ gets closers to zero and symmetrical as λ gets larger
- **over a range, add values together

*****Binomial and Poisson Relationship*****

- BD tends towards PD as n $\longrightarrow \infty$, p $\longrightarrow 0$, and np stays constant
- PD with $\lambda = np$ closely approximates the BD if n is large and p is

Negative Binomial Distribution (number of trails needed to get a fixed number of successes)

- X is the trial number for the rth success

for the rth success to occur on the xth trial

PMF
$$\Rightarrow$$
 $\binom{x-1}{r-1} p^{r-1} (1-p)^{(x-1)-(r-1)}$ $x = r, r+1,...$ $\mu = \frac{r}{p}$ AND $\sigma^2 = \frac{r(1-p)}{p^2}$

CONTINUOUS

Continuous (every value in an interval, including infinite decimal places)

Continuous Probability Distribution

- probability density function (pdf) is a model of a continuous random variable with a curve f(x)
- probabilities are areas under the curve P(a<X<b)
- -P(X=a) = 0
- -f(x) must be greater than 0 for all of x
- total area cannot be greater than 1 (area under curve)
- integrating will be necessary, vs summations
- to find the median, integrate from lower to M so that the total value is
- for the cumulative distribution function, integrate from lower to x for f(t), so the integral from lower bound to x, integrate t to find the value

$$-\mu = \int_{-\infty}^{\infty} x f(x) dx \qquad AND \qquad \sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

random variable $x = f(x) = cx^3$ for $2 \le x \le 4$, and the integral from negative inf to pos inf but be equal to one.

$$\rightarrow$$
 c = 1/60 (makes this entire thing sum to 1)

to find this same problem from P>3, integrate from 3 to

- Cumulative distribution function $\rightarrow \int_{2}^{x} \frac{1}{60} t^{3} dt$

Uniform Distribution

- f(x) constant over the possible values of x
- Area = range from a to b multiplied by f(x), sums to 1
- PDF $\rightarrow f(x)$ {1/b-a for c \leq x \leq d, and 0 else where}

- CDF
$$\rightarrow \frac{x-a}{b-a}$$
 for $a \le x \le b$

of for $x < a$

for $x > b$

-f(x) = 1/(b-a), mean AND median = b+a/2

 $-\sigma^2 = (1/12) (b-a)^2$

Weibull Distribution

-generalization of exponential distribution

$$-f(x) = \kappa \lambda^{\kappa} x^{\kappa - 1} e^{-(\lambda x)^{\kappa}}$$

x > 0, κ - scale param, λ - shape param

- PDF
$$\rightarrow \frac{k}{\lambda} \left(\frac{x-\theta}{\lambda}\right)^{k-1} e^{-\left(\frac{x-\theta}{\lambda}\right)^k}$$
- CDF $\rightarrow 1 - e^{-(x/\lambda)^k}$

$$F\{x\} = \{0 \text{ for } x \le 0; 1-e^{-(\lambda x)^n \kappa} \text{ for } x > 0\}$$

$$-\,\mu = \, \lambda \Gamma \left(1 + \frac{1}{k} \right) \hspace{0.5cm} \textit{AND} \hspace{0.5cm} \sigma^2 \! = \hspace{0.5cm} \lambda^2 \left[\Gamma \left(1 + \frac{2}{k} \right) - \left(\Gamma \left(1 + \frac{1}{k} \right) \right)^2 \right]$$

Exponential Distribution (time taken between two events occurring)

- λ = average number of events in one unit of time
- $-P(X>x) = e^{-\lambda x}, P(X<x) = 1 e^{-\lambda x}$
- $-\mu = 1/\lambda \ AND \ \hat{\sigma}^2 = 1/\lambda^2$

- PDF
$$\rightarrow \lambda e^{-\lambda x}$$
 $x \geq 0$,

$$-CDF \to 1 - e^{-\lambda x} \quad x \ge 0,$$

Otherwise 0, for x < 0 (For PDF and CDF)

Beta Distribution (modeling random probabilities and proportions)

- PDF
$$\rightarrow \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

for $0 \le x \le 1$, α shape param, $\beta > 0$

- CDF
$$\rightarrow \frac{B(x; \alpha, \beta)}{B(\alpha, \beta)} = I_x(\alpha, \beta)$$

- $\mu = \frac{\alpha}{\alpha + \beta} \frac{B(\alpha, \beta)}{AND} \sigma^2 = \frac{\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$

Normal Distribution

Z-score
$$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
 (Distance from mean, area is probability)
T-score $T = \frac{\bar{x} - \mu}{\frac{x}{r}}$

 \hat{p} - sample proportion (targets [estimate] the population proportion, p)

To re-standardize:
$$Z = \frac{x - \mu}{\sigma}$$
 (Maps to a ND with μ centered at 0, σ =1)

Central Limit Theorem

Requirements (with a population with μ and σ):

- n>30 (implies it is normally distributed)
- n≤30 and population is normally distributed, then sample is ND
- n≤30 and population distribution is unknown, other method

Test Statistic for Proportion, p:

When: Random Sample, np ≥ 10 , nq ≤ 10 , n, $\hat{p} = x/n$ (x = # of suc)

p-value = area in the tail(s) from the Z-value Always use Z-score

Estimate of Population Mean, μ:

When: Random Sample, σ known or unknown, & n >30 (& pop. ND) Point Estimate for $\mu = \overline{X}$

Margin of Error: E=
$$Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

The estimate =
$$\overline{X} \pm E$$
 ($\overline{X} - E < \mu < \overline{X} + E$)

When: Random Sample,
$$\sigma$$
 not known , and $n \ge 30$ (OR pop ND) Point Estimate for μ = \overline{X}

Point Estimate for
$$\mu = \overline{X}$$

Margin of Error: E=
$$T_{\alpha/2} \frac{s}{\sqrt{n}}$$

The estimate =
$$\overline{X} \pm E$$
 ($\overline{X} - E \le \mu \le \overline{X} + E$)

Confidence intervals with population variance, σ^2 :

Chi-Square:
$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

Confidence Interval $\frac{(n-1)s^2}{\chi_R^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_L^2}$

If $\alpha = 0.05$, X_L^2 at .975 on tables, X_R^2 at .025 on table, also uses degrees of freedom

Hypothesis Testing: (Testing whether or not a claim is valid)

Reject H_0 if p-value is $\leq \alpha$, Fail to Reject H_0 if p-value is $> \alpha$ Reject Ho if Z-value (calculated) falls in the Rejection Region, FTR otherwise (Traditional method); compare alpha Z-score with calculated Z-score

Proportions:

BASICS

$$P(X=x) \Leftrightarrow p(x)$$

 $E(X) = \mu$
 $var(X) = \sigma^2$

$$sd(X) = \sigma$$
Combinations formula \rightarrow $\binom{n}{x} = \frac{n!}{x! (n-x)!}$ (AKA Binomial coefficient)

Calculate T-score by table with degrees of freedom (n-1) and α ; $\alpha/2$ for two-tailed test

iid - independent and identically distributed random variables

n ≥ 30	n < 30
$Z_{lpha/2} rac{\sigma}{\sqrt{n}}$	
$Z_{\alpha/2} \frac{s}{\sqrt{n}}$	$T_{lpha/2} \frac{s}{\sqrt{n}}$
$Z_{lpha/2} rac{\sigma}{\sqrt{n}}$ (by CLT) $Z_{lpha/2} rac{s}{\sqrt{n}}$ (by CLT)	other method
	$Z_{lpha l 2} rac{s}{\sqrt{n}}$ $Z_{lpha l 2} rac{\sigma}{\sqrt{n}}$ (by CLT)

Examples:

Given 2 means and variances, the average of the two: $E(\bar{X})=(x_1+x_2)/2$ the variance being $(x_1+x_2)(1/2)^2$, the probability that the averages will be between two numbers = $(x_1 - \overline{X}) / \operatorname{sqrt}(\operatorname{Var}(\overline{X}) - (x_2 - \overline{X}) / \operatorname{sqrt}(\operatorname{Var}(\overline{X}))$ The probability that both are less than a number: x(the given number) - each x1 and x2 / sqrt(each of their variances). Take these two probability numbers and multiple them to get the probability.

Given a hypothesis (a claim), cut-off point, \bar{X} , and sd: the type 1 error is $P(\overline{X} \ge \text{cut-off point}) \mid H0 \text{ is true}) = P(Z \ge \text{cut-off - claim})$ number) / sd / sqrt(n). 1 - calc number = type 1 error (alpha) To find the power: $P(\bar{X} > \text{cut-off point}) \mid \text{mu} = \text{new claim } \#) = P$ $(Z \ge (\text{cut-off - new claim } \#) / (\text{sd}) / \text{sqrt(n)}.$ The p-value: $P(\overline{X} \ge \text{cut-off point}) \mid H0) = 1-P(Z \le \text{sample average -}$ mu) / sd / sqrt(n) (should be a percentage, between 0 and 1)

CI: check based on x_bar or x, calculate as usual

Claim: mu_a = mu_b, opp: mu_a < mu_b to find the n value, setup for z-score but solve for n, $n \ge \{(z_score)(sd)sqrt(2) / difference in mu)\}^2$