Rappresentazioni soluzioni agli esercizi per natale

Second'anno di matematica, SNS

December 29, 2015

Soluzioni agli esercizi

Esercizio 1

Siano k, e n due interi positivi. Per ogni $\sigma \in S_k$ denotate con $\omega(\sigma)$ il numero di orbite di σ su $\{1, \ldots, k\}$. Dimostrate la formula:

$$\frac{1}{k!} \sum_{\sigma \in S_k} n^{\omega(\sigma)} = \binom{n+k-1}{k}$$

Soluzione 1.1

Soluzione 1.2

Esercizio 2

Calcolate la scomposizione in fattori irriducibili dei prodotti di tutte le possibili coppie di rappresentazioni irriducibili di S_4 .

Soluzione 2.1

Soluzione 2.2

Esercizio 3

- (a) Sia $\rho: G \to \operatorname{GL}(V)$ una rappresentazione irriducibile di un gruppo G. Dimostrate che l'immagine del centro di G è contenuta nel sottogruppo dei multipli dell'identità.
- (b) Dimostrate che ogni sottogruppo finito di \mathbb{C}^* è ciclico
- (c) Se un gruppo finito ha una rappresentazione fedele irriducibile, allora il suo centro è ciclico. Nota: una rappresentazione ρ di G è fedele se ρ : $G \to \mathrm{GL}(V_{\rho})$ è iniettivo.

Soluzione 3.1

Soluzione 3.2

Esercizio 4

Se ρ è una rappresentazione irriducibile di S_5 di grado 5 e $s \in S_5$ è un 5-ciclo, fate vedere che $\rho(s)$ ha come autovalori tutte e sole le radici quinte dell'unità.

Soluzione 4.1

Soluzione 4.2

Esercizio 5

Trovare la tavola dei caratteri di A_4 .

Soluzione 5.1 Do per noto che le classi di coniugio di A_4 siano rappresentate da id, (12)(34), (123), (132) (si fa a conti ricordandosi che le classi di coniugio di A_n sono o quelle di S_n oppure quelle di S_n spezzate a metà).

 A_4 ha 12 elementi e 4 classi di coniugio. Inoltre so che non è abeliano (quindi ha almeno una rappresentazione di dimensione ≥ 2) e ammette sicuramente la rappresentazione banale. Facendo i casi si vede che l'unico modo di fare 12 sommando quattro quadrati con questi constraint è $12 = 3^2 + 3 \cdot 1^2$. Andiamo quindi a cercare tre omomorfismi di A_4 in \mathbb{C}^* per poi completare la tabella per ortogonalità.

Notiamo che A_4 è generato dalla classe di coniugio di (123). Infatti se conosco il valore di χ su questa classe so che $\chi(132) = \chi((123))^2$ e poi completo per omomorfismo. Siccome (123) ha ordine tre e stiamo cercando rappresentazioni di grado 1, si ha che $\chi(123)$ è un radice terza dell'unità. Ci sono quindi al più tre possibilità per un tale omomorfismo. Ciò significa che li abbiamo trovati tutti.

Completando per ortogonalità si ricava:

$numero\ di\ elementi$	1	3	4	4
classi di conj.	id	(12)(34)	(123)	(132)
χ_{id}	1	1	1	1
χ_a	1	1	ζ	ζ^2
χ_b	1	1	ζ^2	ζ
χ_g	3	-1	0	0

Soluzione 5.2

Esercizio 6

Trovare la tavola dei caratteri di D_4, D_5 .

Soluzione 6.1

Soluzione 6.2

Esercizio 7

Sia T un tetraedro di centro nell'origine, e sia $G \subseteq O_3$ il gruppo delle trasformazioni ortogonali che portano T in se stesso. Numerando in qualche modo i vertici di T da 1 a 4, otteniamo un'azione di G su $\{1, 2, 3, 4\}$.

- (a) Fate vedere che questo dà un'identificazione di G con S_4 .
- (b) Fate vedere che il sottogruppo di G delle matrici con determinante positivo corrisponde ad A₄.
- (c) Scomponete la rappresentazione per permutazioni corrispondente agli spigoli del tetraedro come rappresentazione di A_4 .

Soluzione 7.1

Soluzione 7.2

Esercizio 8

Soluzione 8.1

Soluzione 8.2

Esercizio 9

Soluzione 9.1

Soluzione 9.2

Idee utili per gli esercizi