Modelo de regressão logística e Modelos de risco proporcionais (Cox)

Modelos prognósticos

Modelos prognósticos

Prognóstico significa prever, predizer ou estimar a probabilidade ou risco de condições futuras.

. . .

Na área da saúde, prognóstico comumente relaciona-se à probabilidade ou risco de um **indivíduo** desenvolver um particular estado de saúde (um desfecho) ao longo de um período de tempo específico, baseado na presença ou ausência de um perfil clínico.

. . .

Regressão linear, logística e de risco (análise de sobrevida) são métodos comuns utilizados na pesquisa clínica para relatar covariáveis e desfechos.

Modelos prognósticos

A regressão linear é o método padrão para desfechos contínuos.

. .

A regressão logística é adequada para desfechos binários

. . .

Quando desfechos binários são medidos **prospectivamente**, eles também são associados com um tempo para o evento. Neste caso, a **regressão logística** ou a **análise de sobrevida** podem ser adequadas.

Modelos de regressão linear

Na regressão linear, ajustamos um modelo do tipo

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_i X_i + \varepsilon$$

. . .

• Pressuposto importante: a variável Y era de natureza contínua e seguia uma distribuição normal.

. . .

O modelo se preocupava em estimar (ou predizer) o valor médio de Y dado um certo conjunto de valores das variáveis explicativas.

Modelos de regressão linear

Em um modelo de regressão linear, as variáveis explicativas podem ser **contínuas** ou **dicotômicas**.

. . .

O **coeficiente** para uma covariável contínua depende, em grande parte, das unidades, e a **magnitude** só pode ser interpretada em um **contexto clínico**.

. . .

Se um pesquisador quer saber a **mudança esperada na resposta** para um aumento de 10 unidades (ou qualquer outro aumento) em uma covariável contínua, ele pode simplesmente multiplicar o coeficiente (e os limites de confiança) por 10.

. . .

Para covariáveis dicotômicas, o coeficiente é interpretado como a diferença na resposta que seria vista, em média, entre os dois níveis da covariável.

Exemplo

Descrição da base de dados

O NHANES (National Health and Nutrition Examination Survey) é um estudo populacional dos EUA que contém dados de saúde.

. . .

Vamos estimar um modelo de regressão linear múltiplo usando os dados do NHANES, incluindo covariáveis clínicas e demográficas.

Descrição da base de dados

Usaremos a pressão arterial sistólica (PAS) como variável dependente e as seguintes variáveis independentes:

- IMC (quanto maior o IMC, maior pode ser a pressão arterial?)
- Idade (o envelhecimento está associado ao aumento da PAS?)
- Sexo (homens têm maior PAS que mulheres?)
- Horas de sono à noite (SleepHrsNight) (dormir mais pode diminuir a PAS?)
- Nível de colesterol total (TotChol) (colesterol elevado está associado a maior PAS?)
- Tabagismo (SmokeNow) (fumantes têm PAS mais alta?)

Preparação

Carregando os pacotes R

```
pacman::p_load(
NHANES,
tidyverse,
car,
lmtest,
mfx
)
```

Carregando os dados

Manipulação dos dados

```
# Renomear variáveis para facilitar
colnames(dados) <- c("PAS", "IMC", "Idade", "Sexo", "Colesterol", "HorasDeSonoNoite", "Fuman
# Transformar Sexo e Fumante em fatores
dados$Sexo <- as.factor(dados$Sexo)</pre>
dados$Fumante <- as.factor(dados$Fumante)</pre>
# Estrutura dos dados
dados %>%
str()
tibble [2,940 x 7] (S3: tbl_df/tbl/data.frame)
                   : int [1:2940] 113 113 113 112 111 127 128 152 122 144 ...
                   : num [1:2940] 32.2 32.2 32.2 30.6 23.7 ...
$ IMC
$ Idade
                   : int [1:2940] 34 34 34 49 66 58 33 60 57 44 ...
$ Sexo
                   : Factor w/ 2 levels "female", "male": 2 2 2 1 2 1 2 2 1 2 ...
                   : num [1:2940] 3.49 3.49 3.49 6.7 4.99 4.78 5.59 6.39 5.04 5.61 ...
$ Colesterol
$ HorasDeSonoNoite: int [1:2940] 4 4 4 8 7 5 6 6 8 4 ...
                   : Factor w/ 2 levels "No", "Yes": 1 1 1 2 1 2 1 1 1 2 ...
 $ Fumante
```

Ajuste do modelo

```
# Ajustar modelo de regressão linear múltiplo
modelo_multiplo <- lm(PAS ~ IMC + Idade + Sexo + Colesterol + HorasDeSonoNoite + Fumante, dat
# Resumo do modelo
summary(modelo_multiplo)</pre>
```

Call:

lm(formula = PAS ~ IMC + Idade + Sexo + Colesterol + HorasDeSonoNoite +
 Fumante, data = dados)

Residuals:

Min 1Q Median 3Q Max -56.440 -9.003 -1.070 8.170 83.997

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	88.82356	2.63293	33.736	< 2e-16	***
IMC	0.17376	0.04634	3.750	0.000181	***
Idade	0.42727	0.01868	22.876	< 2e-16	***
Sexomale	4.91074	0.59226	8.292	< 2e-16	***
Colesterol	1.46760	0.27216	5.392	7.5e-08	***
${\tt HorasDeSonoNoite}$	-0.42090	0.21150	-1.990	0.046674	*
FumanteYes	0.63493	0.62894	1.010	0.312811	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.86 on 2933 degrees of freedom Multiple R-squared: 0.1956, Adjusted R-squared: 0.194 F-statistic: 118.9 on 6 and 2933 DF, p-value: < 2.2e-16

Interpretação do modelo

	Variável	Coeficiente () p-valor Interpretação
Intercepto	88,82	< 0,001	Valor médio da PAS quando todas as va
IMC	$0,\!17$	< 0,001	A cada aumento de 1 unidade no IMC, a PAS aumenta, em méc
Idade	$0,\!42$	< 0,001	A cada ano a mais de idade, a PAS
Sexo (Masculino)	4,91	< 0,001	O sexo masculino foi associado a uma PAS 4,91 mmH
Colesterol	$1,\!47$	< 0,001	Para cada aumento de 1 mg/dL no colestero
Horas de sono	-0,42	0,047	Para cada aumento de 1 h dormida a noite
Fumante (Sim)	0,64	0,312	Não significativo (p > 0.05), indicando que o tabagismo não

Variável dependente (desfecho) binária

E se a variável dependente y for binária?

- Doença (presente = 1/ausente = 0)
- Morto = 1/Vivo = 0

. . .

Aqui, Y=1 corresponde ao sucesso, ou seja, a ocorrência do evento e Y=0 corresponde ao fracasso, ou seja, à não ocorrência do evento.

. . .

Temos então que a média de Y é igual a p, sendo p a proporção de vezes que Y assume o valor 1. Assim,

$$p = P(Y = 1) = P(sucesso)$$

Variável dependente (desfecho) binária

A regressão logística é um modelo estatístico que permite estimar a probabilidade p da ocorrência de um determinado desfecho categórico (Y) em função de um ou mais preditores (X), que podem ser contínuos ou categóricos.

. . .

Vamos a um exemplo...

Variável dependente (desfecho) binária

Considere a população de bebês com baixo peso ao nascer (definido como < 1750g) que estão confinados em uma unidade de tratamento intensivo neonatal, entubados durante as primeiras 12 semanas de vida e sobreviventes por, no mínimo, 28 dias.

Na amostra de 223 bebês extraída da população original, 76 foram diagnosticados com displasia broncopulmonar (BPD). Os restantes 147 não tinham a doença.

Seja Y uma variável aleatória dicotômica, de forma que

$$Y = \begin{cases} 0 & \text{Ausência de BPD} \\ 1 & \text{Presença de BPD} \end{cases}$$

Variável dependente (desfecho) binária

A probabilidade estimada de que um bebê dessa população desenvolva BPD é a **proporção** amostral de bebês com BPD, ou seja,

$$\hat{p} = \frac{76}{223} = 0,341$$

. . .

Podemos suspeitar que alguns fatores, maternos ou neonatais, devem afetar a probabilidade de um bebê em particular desenvolver BPD.

. . .

O conhecimento da presença ou ausência desses fatores pode:

- aumentar a precisão de nossa estimativa de p,
- desenvolverintervenções para reduzir essa probabilidade.

Variável dependente (desfecho) binária

• Um fator interessante poderia ser o peso de nascimento de um bebê, que chamaremos de X.

. . .

• Se a variável Y fosse **contínua**, poderíamos começar a análise contruindo um diagrama de dispersão entre as variáveis X e Y.

Peso(g)	n	BPD	p
0-950	68	49	0,721
951-1350	80	18	$0,\!225$
1351-1750	75	9	0,120
223	223	76	0,341

Variável dependente (desfecho) binária

• Parece que a probabilidade de desenvolver BPD aumenta à medida que o peso do bebê ao nascer diminui e vice-versa.

. . .

• Como parece haver uma relação entre estas duas variáveis, podemos usar o peso ao nascer de uma criança para nos ajudar a prever a probabilidade de que ela desenvolva BPD.

Função logística

A primeira estratégia poderia ser ajustar um modelo da forma

$$p = \beta_0 + \beta_1 x$$

onde x representa o peso ao nascer.

. . .

Sob inspeção, este modelo não é viável, uma vez que p é uma probabilidade, podendo assumir, portanto, valores entre 0 e 1.

. . .

O termo $\beta_0 + \beta_1 x$, ao contrário, pode assumir valores fora desse intervalo.

Função logística

Uma alternativa seria ajustar o modelo

$$p = e^{\beta_0 + \beta_1 x}$$

Essa expressão garante que a estimativa de p é sempre positiva.

. . .

No entanto, este modelo também é inadequado, uma vez que pode produzir valores maiores que 1.

Função logística

Podemos então, ajustar um modelo da forma

$$p = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

. . .

Esta expressão, conhecida como **função logística**, não admite valores negativos nem maiores que 1.

Função logística

Lembre-se de que, se um evento ocorre com probabilidade p, a **chance** a seu favor é de $\frac{p}{1-p}$ para 1.

. . .

Assim, se um **sucesso** ocorre com probabilidade

$$p = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}},$$

Função logística

a chance em favor de sucesso é

$$\frac{p}{1-p} = \frac{\frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}}{\frac{1}{1 + e^{\beta_0 + \beta_1 x}}} = e^{\beta_0 + \beta_1 x}$$

. .

Tomando o logaritmo natural de cada lado dessa equação,

$$\underbrace{\ln\left(\frac{p}{1-p}\right)}_{\text{logit}} = \ln(e^{\beta_0+\beta_1 x}) = \beta_0 + \beta_1 x$$

Modelo de regressão logística

Modelar uma probabilidade p com uma função logística é **equivalente** a ajustar um modelo de regressão linear onde a variável dependente contínua y foi substituída pelo logaritmo neperiano da **chance** de ocorrência de um evento **dicotômico**.

. . .

Em vez de assumir que a relação entre p e X é **linear**, assume-se que a relação entre $\ln\left(\frac{p}{1-p}\right)$ e X é **linear**.

. . .

Essa técnica é conhecida como regressão logística.