

<u>Course</u> > <u>Unit 4:</u> ... > <u>Lec. 7:</u> ... > 15. Exe...

15. Exercise: The hat problem

Exercises due Feb 28, 2020 05:29 IST Completed

Exercise: The hat problem

2.0/2.0 points (graded)

Consider the hat problem, with n=10. What is the expected value of $X_3X_6X_7$?

$$\mathbf{E}\left[X_{3}X_{6}X_{7}\right] = \boxed{1/720}$$
 \checkmark Answer: 0.00139

Solution:

By symmetry, this is the same as $\mathbf{E}[X_1X_2X_3]$. Since the product $X_1X_2X_3$ is either zero or one, this is the same as

$$\mathbf{P}(X_1X_2X_3=1) = \mathbf{P}(X_1=1) \cdot \mathbf{P}(X_2=1 \mid X_1=1) \cdot \mathbf{P}(X_3=1 \mid X_1=X_2=1).$$

By thinking in terms of the sequential description of the process, we have seen that $\mathbf{P}(X_1=1)=1/10$ and $\mathbf{P}(X_2=1\mid X_1=1)=1/9$. By a similar argument, given that the first two people obtained their own hats, the third person is faced with 8 hats, one of which is his/her own, and has probability $\mathbf{P}(X_3=1\mid X_1=X_2=1)=1/8$ of picking it. Thus, the final answer is $(1/10)\cdot(1/9)\cdot(1/8)$.

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 4: Discrete random variables:Lec. 7: Conditioning on a random variable; Independence of r.v.'s / 15. Exercise: The hat problem

Show all posts ✓ by recent activity	/ ~
	26
Another approach to this problem There are a total of n! possibilities. Out of those n! possibilities, in how many of those does persons 3, 6 and	3
Why don't we take into account other peoples' actions?	2
Solution to this problem is not complete to my opinion 1 solved this problem rather intuitively and struggled to understand the solution. I think it should state some	3M ⁻
? Hint on how to do this problem? I've watched the previous lecture several times. But am struggling. Is the question, what is the expected valu	3
? Clarification for answer grading Hi I have got the solution and correct till 4 decimal places. The answer showed 5th decimal place and graded	7
Wrong answer displayed Answer is giving Probability directly of hats whereas questions asks Expectation .ls Probability is same as exp	4
? <u>Guidance please</u> Is this problem asking for the expected value of the product of the three rv's, X3, X6, X7? If so, what is the m	3M ⁻
? I'm of two minds here If we are assuming that X i are independent (as was discussed in lecture), can this not be a question of count	3
Independence of RVs As stated in the lecture, these RVs are NOT independent right? I.e. X3, X6 and X7 are NOT independent?	2

© All Rights Reserved

