Empirical Significance of Learning in a New Keynesian Model with Firm-Specific Capital

James Murray Indiana University

October 5, 2007

- Rational Expectations: agents have knowledge of economy's structure, all parameters, distribution of shocks.
- Learning: Agents form expectations with least squares forecasts.
- Popular assumption: agents use the correct specification.
- Misspecifications
 - Some variables in economy are unobservable to agents...
 - Agents ignore multi-variate structure, use univariate methods.
 - Agents use additional variables

Learning vs. Rational Expectations

- Rational Expectations: agents have knowledge of economy's structure, all parameters, distribution of shocks.
- Learning: Agents form expectations with least squares forecasts.
- Popular assumption: agents use the correct specification.
- Misspecifications
 - Some variables in economy are unobservable to agents.
 - Agents ignore multi-variate structure, use univariate methods
 - Agents use additional variables

Learning vs. Rational Expectations

- Rational Expectations: agents have knowledge of economy's structure, all parameters, distribution of shocks.
- Learning: Agents form expectations with least squares forecasts.
- Popular assumption: agents use the correct specification.
- Misspecifications
 - Some variables in economy are unobservable to agents.
 - Agents ignore multi-variate structure, use univariate methods
 - Agents use additional variables

Learning vs. Rational Expectations

- Rational Expectations: agents have knowledge of economy's structure, all parameters, distribution of shocks.
- Learning: Agents form expectations with least squares forecasts.
- Popular assumption: agents use the correct specification.
- Misspecifications:
 - Some variables in economy are unobservable to agents.
 - Agents ignore multi-variate structure, use univariate methods.
 - Agents use additional variables.

Learning and Monetary Models

- Prolonged inflation following a shock:
 - Orphanides and Williams (RED 2005).
- Bad monetary policy prescriptions:
 - Orphanides and Williams (JEDC 2005), Primiceri (QJE 2006)
- Output and inflation persistence
 - Milani (2005)

Learning and Monetary Models

- Prolonged inflation following a shock:
 - Orphanides and Williams (RED 2005).
- Bad monetary policy prescriptions:
 - Orphanides and Williams (JEDC 2005), Primiceri (QJE 2006).
- Output and inflation persistence
 - Milani (2005)

Learning and Monetary Models

- Prolonged inflation following a shock:
 - Orphanides and Williams (RED 2005).
- Bad monetary policy prescriptions:
 - Orphanides and Williams (JEDC 2005), Primiceri (QJE 2006).
- Output and inflation persistence:
 - Milani (2005).

- Initial beliefs can play a major role.
- Orphanides and Williams (JEDC 2005)
 - Central Bank began under-estimating natural rate of unemployment.
- Primiceri:
 - Central Bank began under-estimating unemployment and inflation persistence.
- Milani:
 - Many initial beliefs set to pre-sample VAR(1).
 - Assumes lower inflation persistence, sensitivity of output to inflation.
 - Assumes shocks are observable, sets initial impacts to zero
- Missing from empirical literature:
 - Systematic way for specifying initial conditions.
 - Estimate initial conditions
 - Sensitivity analysis to initial conditions.

- Initial beliefs can play a major role.
- Orphanides and Williams (JEDC 2005):
 - Central Bank began under-estimating natural rate of unemployment.
- Primiceri:
 - Central Bank began under-estimating unemployment and inflation persistence.
- Milani:
 - Many initial beliefs set to pre-sample VAR(1).
 - Assumes lower inflation persistence, sensitivity of output to inflation
 - Assumes shocks are observable, sets initial impacts to zero
- Missing from empirical literature:
 - Systematic way for specifying initial conditions
 - Estimate initial conditions.
 - Sensitivity analysis to initial conditions.

- Initial beliefs can play a major role.
- Orphanides and Williams (JEDC 2005):
 - Central Bank began under-estimating natural rate of unemployment.
- Primiceri:
 - Central Bank began under-estimating unemployment and inflation persistence.
- Milani:
 - Many initial beliefs set to pre-sample VAR(1)
 - Assumes lower inflation persistence, sensitivity of output to inflation
 - Assumes shocks are observable, sets initial impacts to zero
- Missing from empirical literature:
 - Systematic way for specifying initial conditions
 - Estimate initial conditions.
 - Sensitivity analysis to initial conditions.

- Initial beliefs can play a major role.
- Orphanides and Williams (JEDC 2005):
 - Central Bank began under-estimating natural rate of unemployment.
- Primiceri:
 - Central Bank began under-estimating unemployment and inflation persistence.
- Milani:
 - Many initial beliefs set to pre-sample VAR(1).
 - Assumes lower inflation persistence, sensitivity of output to inflation.
 - Assumes shocks are observable, sets initial impacts to zero.
- Missing from empirical literature:
 - Systematic way for specifying initial conditions.
 - Estimate initial conditions.
 - Sensitivity analysis to initial conditions.

- Initial beliefs can play a major role.
- Orphanides and Williams (JEDC 2005):
 - Central Bank began under-estimating natural rate of unemployment.
- Primiceri:
 - Central Bank began under-estimating unemployment and inflation persistence.
- Milani:
 - Many initial beliefs set to pre-sample VAR(1).
 - Assumes lower inflation persistence, sensitivity of output to inflation.
 - Assumes shocks are observable, sets initial impacts to zero.
- Missing from empirical literature:
 - Systematic way for specifying initial conditions.
 - Estimate initial conditions.
 - Sensitivity analysis to initial conditions.

- Use the rational expectations solution.
 - Benefit: Initial conditions are consistent with model.
 - Draw back: Learning dynamics are small near the RE equilibrium. (Williams 2003).
- Assume limited information set.
 - Agents cannot observe realizations of stochastic shocks
 - Initialize beliefs of remaining coefficients equal to RE solution
 - Benefit: more realistic.
- Using limited information, set initial beliefs to pre-sample least squares estimates.
 - Benefit: Most likely to mirror actual beliefs.
 - Draw back: sometimes so far from RE the learning model is unstable (Slobodyan and Wouters 2007).
- Jointly estimate initial conditions.
 - Draw back: many additional parameters, over-fitting problem.

- Use the rational expectations solution.
 - Benefit: Initial conditions are consistent with model.
 - Draw back: Learning dynamics are small near the RE equilibrium. (Williams 2003).
- Assume limited information set.
 - Agents cannot observe realizations of stochastic shocks.
 - Initialize beliefs of remaining coefficients equal to RE solution.
 - Benefit: more realistic.
- Using limited information, set initial beliefs to pre-sample least squares estimates.
 - Benefit: Most likely to mirror actual beliefs.
 - Draw back: sometimes so far from RE the learning model is unstable (Slobodyan and Wouters 2007).
- Jointly estimate initial conditions.
 - Draw back: many additional parameters, over-fitting problem.

- Use the rational expectations solution.
 - Benefit: Initial conditions are consistent with model.
 - Draw back: Learning dynamics are small near the RE equilibrium. (Williams 2003).
- Assume limited information set.
 - Agents cannot observe realizations of stochastic shocks.
 - Initialize beliefs of remaining coefficients equal to RE solution.
 - Benefit: more realistic.
- Using limited information, set initial beliefs to pre-sample least squares estimates.
 - Benefit: Most likely to mirror actual beliefs.
 - Draw back: sometimes so far from RE the learning model is unstable (Slobodyan and Wouters 2007).
- Jointly estimate initial conditions.
 - Draw back: many additional parameters, over-itting problem.

- Use the rational expectations solution.
 - Benefit: Initial conditions are consistent with model.
 - Draw back: Learning dynamics are small near the RE equilibrium. (Williams 2003).
- Assume limited information set.
 - Agents cannot observe realizations of stochastic shocks.
 - Initialize beliefs of remaining coefficients equal to RE solution.
 - Benefit: more realistic.
- Using limited information, set initial beliefs to pre-sample least squares estimates.
 - Benefit: Most likely to mirror actual beliefs.
 - Draw back: sometimes so far from RE the learning model is unstable (Slobodyan and Wouters 2007).
- Jointly estimate initial conditions.
 - Draw back: many additional parameters, over-fitting problem.

• Linear Dynamic Stochastic General Equilibrium models:

$$\Omega_0 x_t = \Omega_1 x_{t-1} + \Omega_2 E_t^* x_{t+1} + \Psi v_t$$

$$v_t = Av_{t-1} + \epsilon_t$$

- x_t vector of time t macroeconomic variables, observable to agents at following time period.
- z_t : vector of time t shocks, possibly observable to agents in current period.
- Rational expectations solution:

$$x_t = Gx_{t-1} + Mv_t$$

Linear Dynamic Stochastic General Equilibrium models:

$$\Omega_0 x_t = \Omega_1 x_{t-1} + \Omega_2 E_t^* x_{t+1} + \Psi v_t$$

$$v_t = Av_{t-1} + \epsilon_t$$

- x_t vector of time t macroeconomic variables, observable to agents at following time period.
- z_t: vector of time t shocks, possibly observable to agents in current period.
- Rational expectations solution:

Linear Dynamic Stochastic General Equilibrium models:

$$\Omega_0 x_t = \Omega_1 x_{t-1} + \Omega_2 E_t^* x_{t+1} + \Psi v_t$$

$$v_t = Av_{t-1} + \epsilon_t$$

- x_t vector of time t macroeconomic variables, observable to agents at following time period.
- z_t: vector of time t shocks, possibly observable to agents in current period.
- Rational expectations solution:

Linear Dynamic Stochastic General Equilibrium models:

$$\Omega_0 x_t = \Omega_1 x_{t-1} + \Omega_2 E_t^* x_{t+1} + \Psi v_t$$

$$v_t = Av_{t-1} + \epsilon_t$$

- x_t vector of time t macroeconomic variables, observable to agents at following time period.
- z_t: vector of time t shocks, possibly observable to agents in current period.
- Rational expectations solution:

$$x_t = Gx_{t-1} + Mv_t$$

- Agents estimate elements of G and M by least squares.
- Information at available at time t: x_{t-1} , v_t :
 - X_t : vector of regressors: $X'_t = [1 \ x'_{t-2} \ v'_{t-1}]$.
 - Y_t : vector of dependent variables: $Y_t = x_{t-1}$.
- When v_t is observable, I suppose agents know A.
- Let Φ_t vector of least squares estimates of the coefficients in matrices G and M.
- Ordinary Least Squares estimate of ϕ_t :

$$\Phi_t' = \left(\frac{1}{t-1} \sum_{\tau=2}^t X_\tau X_\tau'\right)^{-1} \left(\frac{1}{t-1} \sum_{\tau=2}^t X_\tau Y_\tau'\right)$$

- ullet Agents estimate elements of G and M by least squares.
- Information at available at time t: x_{t-1} , v_t :
 - X_t : vector of regressors: $X'_t = [1 \ x'_{t-2} \ v'_{t-1}]$.
 - Y_t : vector of dependent variables: $Y_t = x_{t-1}$.
- When v_t is observable, I suppose agents know A.
- Let Φ_t vector of least squares estimates of the coefficients in matrices G and M.
- Ordinary Least Squares estimate of ϕ_t :

$$\Phi'_{t} = \left(\frac{1}{t-1} \sum_{\tau=2}^{t} X_{\tau} X'_{\tau}\right)^{-1} \left(\frac{1}{t-1} \sum_{\tau=2}^{t} X_{\tau} Y'_{\tau}\right)$$

- ullet Agents estimate elements of G and M by least squares.
- Information at available at time $t: x_{t-1}, v_t$:
 - X_t : vector of regressors: $X'_t = [1 \ x'_{t-2} \ v'_{t-1}]$.
 - Y_t : vector of dependent variables: $Y_t = x_{t-1}$.
- When v_t is observable, I suppose agents know A.
- Let Φ_t vector of least squares estimates of the coefficients in matrices G and M.
- Ordinary Least Squares estimate of ϕ_t :

$$\Phi_t' = \left(\frac{1}{t-1} \sum_{\tau=2}^t X_\tau X_\tau'\right)^{-1} \left(\frac{1}{t-1} \sum_{\tau=2}^t X_\tau Y_\tau'\right)$$

- ullet Agents estimate elements of G and M by least squares.
- Information at available at time $t: x_{t-1}, v_t$:
 - X_t : vector of regressors: $X'_t = [1 \ x'_{t-2} \ v'_{t-1}]$.
 - Y_t : vector of dependent variables: $Y_t = x_{t-1}$.
- When v_t is observable, I suppose agents know A.
- Let Φ_t vector of least squares estimates of the coefficients in matrices G and M.
- Ordinary Least Squares estimate of ϕ_t :

$$\Phi_t' = \left(\frac{1}{t-1} \sum_{\tau=2}^t X_\tau X_\tau'\right)^{-1} \left(\frac{1}{t-1} \sum_{\tau=2}^t X_\tau Y_\tau'\right)$$

- Agents estimate elements of G and M by least squares.
- Information at available at time t: x_{t-1} , v_t :
 - X_t : vector of regressors: $X'_t = [1 \ x'_{t-2} \ v'_{t-1}]$.
 - Y_t : vector of dependent variables: $Y_t = x_{t-1}$.
- When v_t is observable, I suppose agents know A.
- Let Φ_t vector of least squares estimates of the coefficients in matrices G and M.
- Ordinary Least Squares estimate of ϕ_t :

- ullet Agents estimate elements of G and M by least squares.
- Information at available at time $t: x_{t-1}, v_t$:
 - X_t : vector of regressors: $X'_t = [1 \ x'_{t-2} \ v'_{t-1}]$.
 - Y_t : vector of dependent variables: $Y_t = x_{t-1}$.
- When v_t is observable, I suppose agents know A.
- Let Φ_t vector of least squares estimates of the coefficients in matrices G and M.
- Ordinary Least Squares estimate of ϕ_t :

$$\Phi_t' = \left(\frac{1}{t-1} \sum_{\tau=2}^t X_{\tau} X_{\tau}' \right)^{-1} \left(\frac{1}{t-1} \sum_{\tau=2}^t X_{\tau} Y_{\tau}' \right)$$

• Recursive form:

$$\Phi_t = \Phi_{t-1} + g_t(Y_t - \Phi_{t-1}X_t)X_t'R_t^{-1}$$

$$R_t = R_{t-1} + g_t(X_t X_t' - R_{t-1})$$

- Where $g_t = 1/(t-1)$.
- OLS learning: dynamics disappear in the long run.
- Constant gain learning: $g_t = g$.

Recursive form:

$$\Phi_t = \Phi_{t-1} + g_t(Y_t - \Phi_{t-1}X_t)X_t'R_t^{-1}$$

$$R_t = R_{t-1} + g_t(X_t X_t' - R_{t-1})$$

- Where $g_t = 1/(t-1)$.
- OLS learning: dynamics disappear in the long run.
- Constant gain learning: $g_t = g$.

• Recursive form:

$$\Phi_t = \Phi_{t-1} + g_t(Y_t - \Phi_{t-1}X_t)X_t'R_t^{-1}$$

$$R_t = R_{t-1} + g_t(X_t X_t' - R_{t-1})$$

- Where $g_t = 1/(t-1)$.
- OLS learning: dynamics disappear in the long run.
- Constant gain learning: $g_t = g$.

Recursive form:

$$\Phi_t = \Phi_{t-1} + g_t (Y_t - \Phi_{t-1} X_t) X_t' R_t^{-1}$$

$$R_t = R_{t-1} + g_t(X_t X_t' - R_{t-1})$$

- Where $g_t = 1/(t-1)$.
- OLS learning: dynamics disappear in the long run.
- Constant gain learning: $g_t = g$.

Recursive form:

$$\Phi_t = \Phi_{t-1} + g_t (Y_t - \Phi_{t-1} X_t) X_t' R_t^{-1}$$

$$R_t = R_{t-1} + g_t(X_t X_t' - R_{t-1})$$

- Where $g_t = 1/(t-1)$.
- OLS learning: dynamics disappear in the long run.
- Constant gain learning: $g_t = g$.

• Recursive form:

$$\Phi_t = \Phi_{t-1} + g_t (Y_t - \Phi_{t-1} X_t) X_t' R_t^{-1}$$

$$R_t = R_{t-1} + g_t(X_t X_t' - R_{t-1})$$

- Where $g_t = 1/(t-1)$.
- OLS learning: dynamics disappear in the long run.
- Constant gain learning: $g_t = g$.

Motivation for Constant Gain Learning

- Learning dynamics persist in the long run.
 - Reasonable approximation to a rolling window estimation procedure.
 - Typically 30-50 year windows are used in forecasting quarterly macroeconomic variables.
 - Johnston Williamson (2007): data available for U.S. output and price level back to 1790.
- Swanson and White (RES 1997):
 - Adaptive estimation procedures out-perform non-adaptive procedures.
 - Multivariate procedures out-perform univariate procedures.
 - Linear models out-perform non-linear models.
 - Adaptive, multivariate, linear models outperform professional forecast surveys.

Motivation for Constant Gain Learning

- Learning dynamics persist in the long run.
- Reasonable approximation to a rolling window estimation procedure.
 - Typically 30-50 year windows are used in forecasting quarterly macroeconomic variables.
 - Johnston Williamson (2007): data available for U.S. output and price level back to 1790.
- Swanson and White (RES 1997):
 - Adaptive estimation procedures out-perform non-adaptive procedures.
 - Multivariate procedures out-perform univariate procedures.
 - Linear models out-perform non-linear models.
 - Adaptive, multivariate, linear models outperform professional
 - forecast surveys.

Motivation for Constant Gain Learning

- Learning dynamics persist in the long run.
- Reasonable approximation to a rolling window estimation procedure.
 - Typically 30-50 year windows are used in forecasting quarterly macroeconomic variables.
 - Johnston Williamson (2007): data available for U.S. output and price level back to 1790.
- Swanson and White (RES 1997):
 - Adaptive estimation procedures out-perform non-adaptive procedures.
 - Multivariate procedures out-perform univariate procedures.
 - Linear models out-perform non-linear models.
 - Adaptive, multivariate, linear models outperform professional forecast survives.

- Learning dynamics persist in the long run.
- Reasonable approximation to a rolling window estimation procedure.
 - Typically 30-50 year windows are used in forecasting quarterly macroeconomic variables.
 - Johnston Williamson (2007): data available for U.S. output and price level back to 1790.
- Swanson and White (RES 1997):
 - Adaptive estimation procedures out-perform non-adaptive procedures.
 - Multivariate procedures out-perform univariate procedures.
 - Linear models out-perform non-linear models.
 - Adaptive, multivariate, linear models outperform professional forecast surveys.

- Learning dynamics persist in the long run.
- Reasonable approximation to a rolling window estimation procedure.
 - Typically 30-50 year windows are used in forecasting quarterly macroeconomic variables.
 - Johnston Williamson (2007): data available for U.S. output and price level back to 1790.
- Swanson and White (RES 1997):
 - Adaptive estimation procedures out-perform non-adaptive procedures.
 - Multivariate procedures out-perform univariate procedures
 - Linear models out-perform non-linear models.
 - Adaptive, multivariate, linear models outperform professional forecast surveys.

- Learning dynamics persist in the long run.
- Reasonable approximation to a rolling window estimation procedure.
 - Typically 30-50 year windows are used in forecasting quarterly macroeconomic variables.
 - Johnston Williamson (2007): data available for U.S. output and price level back to 1790.
- Swanson and White (RES 1997):
 - Adaptive estimation procedures out-perform non-adaptive procedures.
 - Multivariate procedures out-perform univariate procedures.
 - Linear models out-perform non-linear models.
 - Adaptive, multivariate, linear models outperform professional forecast surveys.

- Learning dynamics persist in the long run.
- Reasonable approximation to a rolling window estimation procedure.
 - Typically 30-50 year windows are used in forecasting quarterly macroeconomic variables.
 - Johnston Williamson (2007): data available for U.S. output and price level back to 1790.
- Swanson and White (RES 1997):
 - Adaptive estimation procedures out-perform non-adaptive procedures.
 - Multivariate procedures out-perform univariate procedures.
 - Linear models out-perform non-linear models.
 - Adaptive, multivariate, linear models outperform professional forecast surveys.

- Learning dynamics persist in the long run.
- Reasonable approximation to a rolling window estimation procedure.
 - Typically 30-50 year windows are used in forecasting quarterly macroeconomic variables.
 - Johnston Williamson (2007): data available for U.S. output and price level back to 1790.
- Swanson and White (RES 1997):
 - Adaptive estimation procedures out-perform non-adaptive procedures.
 - Multivariate procedures out-perform univariate procedures.
 - Linear models out-perform non-linear models.
 - Adaptive, multivariate, linear models outperform professional forecast surveys.

Examine two popular specifications

- Standard three equation model: IS equation, Phillips curve, monetary policy. Woodford (2003).
- ② Add endogenous capital. Woodford (IJCB 2005).
- Details behind IS equation:
 - Utility maximizing consumers
 - Habit formation in utility function (source of persistence)
 - Intertemporal substitution
 - Goods market clearing
- Details behind the Phillips curve:
 - Profit maximizing firms
 - Sticky prices
 - Price indexation (source of persistence)
 - Labor market clearing.
- Monetary Policy (Taylor rule):
 - Interest rate set in respond to output gap, inflation, past
 interest rate

- Examine two popular specifications
 - Standard three equation model: IS equation, Phillips curve, monetary policy. Woodford (2003).
 - 2 Add endogenous capital. Woodford (IJCB 2005).
- Details behind IS equation:
 - Utility maximizing consumers
 - Habit formation in utility function (source of persistence)
 - Intertemporal substitution
 - Goods market clearing
- Details behind the Phillips curve:
 - Profit maximizing firms
 - Sticky prices
 - Price indexation (source of persistence)
 - Labor market clearing.
- Monetary Policy (Taylor rule):
 - Interest rate set in respond to output gap, inflation, past

- Examine two popular specifications
 - Standard three equation model: IS equation, Phillips curve, monetary policy. Woodford (2003).
 - 2 Add endogenous capital. Woodford (IJCB 2005).
- Details behind IS equation:
 - Utility maximizing consumers
 - Habit formation in utility function (source of persistence)
 - Intertemporal substitution
 - Goods market clearing
- Details behind the Phillips curve:
 - Profit maximizing firms.
 - Sticky prices
 - Price indexation (source of persistence)
 - Labor market clearing.
- Monetary Policy (Taylor rule):
 - Interest rate set in respond to output gap, inflation, past

- Examine two popular specifications
 - Standard three equation model: IS equation, Phillips curve, monetary policy. Woodford (2003).
 - Add endogenous capital. Woodford (IJCB 2005).
- Details behind IS equation:
 - Utility maximizing consumers.
 - Habit formation in utility function (source of persistence).
 - Intertemporal substitution.
 - Goods market clearing.
- Details behind the Phillips curve:
 - Profit maximizing firms.
 - Sticky prices.
 - Price indexation (source of persistence).
 - Labor market clearing.
- Monetary Policy (Taylor rule):
 - Interest rate set in respond to output gap, inflation, past

- Examine two popular specifications
 - Standard three equation model: IS equation, Phillips curve, monetary policy. Woodford (2003).
 - Add endogenous capital. Woodford (IJCB 2005).
- Details behind IS equation:
 - Utility maximizing consumers.
 - Habit formation in utility function (source of persistence).
 - Intertemporal substitution.
 - Goods market clearing.
- Details behind the Phillips curve:
 - Profit maximizing firms.
 - Sticky prices.
 - Price indexation (source of persistence).
 - Labor market clearing.
- Monetary Policy (Taylor rule):

- Examine two popular specifications
 - Standard three equation model: IS equation, Phillips curve, monetary policy. Woodford (2003).
 - Add endogenous capital. Woodford (IJCB 2005).
- Details behind IS equation:
 - Utility maximizing consumers.
 - Habit formation in utility function (source of persistence).
 - Intertemporal substitution.
 - Goods market clearing.
- Details behind the Phillips curve:
 - Profit maximizing firms.
 - Sticky prices.
 - Price indexation (source of persistence).
 - Labor market clearing.
- Monetary Policy (Taylor rule):
 - Interest rate set in respond to output gap, inflation, past interest rate.

- Output is produced with labor and capital.
- Investment is subject to adjustment cost.
- Capital depreciates at a constant rate.
- Firm specific capital
 - No perfect capital rental market
 - Capital cannot be transferred between firms
 - Individual capital stocks affect an individual firm's margina costs.

- Output is produced with labor and capital.
- Investment is subject to adjustment cost.
- Capital depreciates at a constant rate.
- Firm specific capital
 - No perfect capital rental market
 - Capital cannot be transferred between firms
 - Individual capital stocks affect an individual firm's marginal costs.

- Output is produced with labor and capital.
- Investment is subject to adjustment cost.
- Capital depreciates at a constant rate.
- Firm specific capital
 - No perfect capital rental market.
 - Capital cannot be transferred between firms
 - Individual capital stocks affect an individual firm's marginal costs.

- Output is produced with labor and capital.
- Investment is subject to adjustment cost.
- Capital depreciates at a constant rate.
- Firm specific capital
 - No perfect capital rental market.
 - Capital cannot be transfered between firms.
 - Individual capital stocks affect an individual firm's marginal costs.

- Output is produced with labor and capital.
- Investment is subject to adjustment cost.
- Capital depreciates at a constant rate.
- Firm specific capital
 - No perfect capital rental market.
 - Capital cannot be transferred between firms.
 - Individual capital stocks affect an individual firm's marginal costs.

- Output is produced with labor and capital.
- Investment is subject to adjustment cost.
- Capital depreciates at a constant rate.
- Firm specific capital
 - No perfect capital rental market.
 - Capital cannot be transfered between firms.
 - Individual capital stocks affect an individual firm's marginal costs.

- Output is produced with labor and capital.
- Investment is subject to adjustment cost.
- Capital depreciates at a constant rate.
- Firm specific capital
 - No perfect capital rental market.
 - Capital cannot be transfered between firms.
 - Individual capital stocks affect an individual firm's marginal costs.

- Specification 1: Three equation model (without capital)
 - Natural interest rate shock.
 - Cost-push shock.
 - Monetary policy shock.
- Specification 2: Model with capital
 - Preference shock
 - Technology shock
 - Investment technology shock
 - Monetary policy shock.

- Specification 1: Three equation model (without capital)
 - Natural interest rate shock.
 - Cost-push shock.
 - Monetary policy shock.
- Specification 2: Model with capital
 - Preference shock.
 - Technology shock.
 - Investment technology shock.
 - Monetary policy shock.

- Estimate two NK specifications by maximum likelihood.
- For each specification, estimate five expectations frameworks:
 - Rational Expectations
 - ② Learning with RE solution for initial Φ_t , R_t .
 - Learning with limited information set

- Solution:
- Elimited information set with pre-sample coefficients
- Limited information set with estimated initial conditions

- Estimate two NK specifications by maximum likelihood.
- For each specification, estimate five expectations frameworks:
 - Rational Expectations
 - ② Learning with RE solution for initial Φ_t , R_t .
 - Learning with limited information set.
 - Shocks are unobservable.
 - Initial coefficients on remaining variables set equal to RE solution.
 - 4 Limited information set with pre-sample coefficients.
 - 5 Limited information set with estimated initial conditions.

- Estimate two NK specifications by maximum likelihood.
- For each specification, estimate five expectations frameworks:
 - Rational Expectations
 - 2 Learning with RE solution for initial Φ_t , R_t .
 - Learning with limited information set.
 - Shocks are unobservable
 - Initial coefficients on remaining variables set equal to RE solution.
 - 4 Limited information set with pre-sample coefficients.
 - 5 Limited information set with estimated initial conditions

- Estimate two NK specifications by maximum likelihood.
- For each specification, estimate five expectations frameworks:
 - Rational Expectations
 - **2** Learning with RE solution for initial Φ_t , R_t .
 - 3 Learning with limited information set.
 - Shocks are unobservable.
 - Initial coefficients on remaining variables set equal to RE solution.
 - 4 Limited information set with pre-sample coefficients.
 - 5 Limited information set with estimated initial conditions

- Estimate two NK specifications by maximum likelihood.
- For each specification, estimate five expectations frameworks:
 - Rational Expectations
 - **2** Learning with RE solution for initial Φ_t , R_t .
 - Learning with limited information set.
 - Shocks are unobservable.
 - Initial coefficients on remaining variables set equal to RE solution.
 - 4 Limited information set with pre-sample coefficients.
 - 5 Limited information set with estimated initial conditions.

- Estimate two NK specifications by maximum likelihood.
- For each specification, estimate five expectations frameworks:
 - Rational Expectations
 - 2 Learning with RE solution for initial Φ_t , R_t .
 - 3 Learning with limited information set.
 - Shocks are unobservable.
 - Initial coefficients on remaining variables set equal to RE solution.
 - 4 Limited information set with pre-sample coefficients.
 - 5 Limited information set with estimated initial conditions

- Estimate two NK specifications by maximum likelihood.
- For each specification, estimate five expectations frameworks:
 - Rational Expectations
 - **2** Learning with RE solution for initial Φ_t , R_t .
 - Learning with limited information set.
 - Shocks are unobservable.
 - Initial coefficients on remaining variables set equal to RE solution.
 - Limited information set with pre-sample coefficients.
 - Limited information set with estimated initial conditions.

Learning algorithm for constant gain least squares:

$$\Phi_t = \left(\sum_{\tau=0}^{t-1} (1-g)^t X_{t-\tau} X_{t-\tau}'\right)^{-1} \left(\sum_{\tau=0}^{t-1} (1-g)^\tau X_{t-\tau} Y_{t-\tau}'\right)$$

 Learning gain g estimated jointly with parameters of New Keynesian model.

Learning algorithm for constant gain least squares:

$$\Phi_t = \left(\sum_{\tau=0}^{t-1} (1-g)^t X_{t-\tau} X_{t-\tau}'\right)^{-1} \left(\sum_{\tau=0}^{t-1} (1-g)^\tau X_{t-\tau} Y_{t-\tau}'\right)$$

 Learning gain g estimated jointly with parameters of New Keynesian model.

Learning algorithm for constant gain least squares:

$$\Phi_t = \left(\sum_{\tau=0}^{t-1} (1-g)^t X_{t-\tau} X_{t-\tau}'\right)^{-1} \left(\sum_{\tau=0}^{t-1} (1-g)^\tau X_{t-\tau} Y_{t-\tau}'\right)$$

• Learning gain g estimated jointly with parameters of New Keynesian model.

Specification 1:

- \bullet Y_t vector includes output gap, inflation rate, federal funds rate.
- X_t vector includes constant, previous period's output gap, inflation rate, federal funds rate..

• Specification 2:

- Y_t vector includes consumption, capital stock, inflation rate federal funds rate.
- X_t vector includes constant, previous period's consumption capital stock, inflation rate, federal funds rate.
- All these variables expressed as percentage deviation from the steady state.
- Data on capital stock constructed using data on investment.

Specification 1:

- Y_t vector includes output gap, inflation rate, federal funds rate.
- X_t vector includes constant, previous period's output gap, inflation rate, federal funds rate..
- Specification 2:
 - Y_t vector includes consumption, capital stock, inflation rate federal funds rate.
 - X_t vector includes constant, previous period's consumption, capital stock, inflation rate, federal funds rate.
 - All these variables expressed as percentage deviation from the steady state.
 - Data on capital stock constructed using data on investment.

- Specification 1:
 - Y_t vector includes output gap, inflation rate, federal funds rate.
 - X_t vector includes constant, previous period's output gap, inflation rate, federal funds rate..
- Specification 2:
 - Y_t vector includes consumption, capital stock, inflation rate federal funds rate.
 - X_t vector includes constant, previous period's consumption, capital stock, inflation rate, federal funds rate.
 - All these variables expressed as percentage deviation from the steady state.
 - Data on capital stock constructed using data on investment.

Specification 1:

- Y_t vector includes output gap, inflation rate, federal funds rate.
- X_t vector includes constant, previous period's output gap, inflation rate, federal funds rate..

Specification 2:

- Y_t vector includes consumption, capital stock, inflation rate, federal funds rate.
- X_t vector includes constant, previous period's consumption, capital stock, inflation rate, federal funds rate.
- All these variables expressed as percentage deviation from the steady state.
- Data on capital stock constructed using data on investment.

- Specification 1:
 - \bullet Y_t vector includes output gap, inflation rate, federal funds rate.
 - X_t vector includes constant, previous period's output gap, inflation rate, federal funds rate..
- Specification 2:
 - Y_t vector includes consumption, capital stock, inflation rate, federal funds rate.
 - X_t vector includes constant, previous period's consumption, capital stock, inflation rate, federal funds rate.
 - All these variables expressed as percentage deviation from the steady state.
 - Data on capital stock constructed using data on investment.

- Specification 1:
 - \bullet Y_t vector includes output gap, inflation rate, federal funds rate.
 - X_t vector includes constant, previous period's output gap, inflation rate, federal funds rate..
- Specification 2:
 - Y_t vector includes consumption, capital stock, inflation rate, federal funds rate.
 - X_t vector includes constant, previous period's consumption, capital stock, inflation rate, federal funds rate.
 - All these variables expressed as percentage deviation from the steady state.
 - Data on capital stock constructed using data on investment.

Pre-sample Initial Conditions

- Specification 1:
 - \bullet Y_t vector includes output gap, inflation rate, federal funds rate.
 - X_t vector includes constant, previous period's output gap, inflation rate, federal funds rate..
- Specification 2:
 - Y_t vector includes consumption, capital stock, inflation rate, federal funds rate.
 - X_t vector includes constant, previous period's consumption, capital stock, inflation rate, federal funds rate.
 - All these variables expressed as percentage deviation from the steady state.
 - Data on capital stock constructed using data on investment.

Pre-sample Initial Conditions

- Specification 1:
 - \bullet Y_t vector includes output gap, inflation rate, federal funds rate.
 - X_t vector includes constant, previous period's output gap, inflation rate, federal funds rate..
- Specification 2:
 - Y_t vector includes consumption, capital stock, inflation rate, federal funds rate.
 - X_t vector includes constant, previous period's consumption, capital stock, inflation rate, federal funds rate.
 - All these variables expressed as percentage deviation from the steady state.
 - Data on capital stock constructed using data on investment.

- Quarterly data for 1960:Q1 through 2005:Q4.
- Pre-sample data: Quarterly data for 1954:Q1 through 1959:Q4.
- Specification 1: Model with no capital:
 - CBO measure of the output gap
 - Annualized quarterly inflation rate of the GDP deflater
 - Annualized quarterly federal funds rate.
- Specification 2: Endogenous capital:
 - Real private consumption expenditures per capita
 - Real gross private domestic investment per capita.
 - Output is defined as the sum of consumption and investment
 - Annualized quarterly inflation rate of the GDP deflator
 - Annualized quarterly federal funds rate.
- Consumption and Investment: trend growth rate removed.

- Quarterly data for 1960:Q1 through 2005:Q4.
- Pre-sample data: Quarterly data for 1954:Q1 through 1959:Q4.
- Specification 1: Model with no capital:
 - CBO measure of the output gap
 - Annualized quarterly inflation rate of the GDP deflater
 - Annualized quarterly federal funds rate.
- Specification 2: Endogenous capital:
 - Real private consumption expenditures per capita
 - Real gross private domestic investment per capita
 - Output is defined as the sum of consumption and investment
 - Annualized quarterly inflation rate of the GDP deflator
 - Annualized quarterly federal funds rate.
- Consumption and Investment: trend growth rate removed.

- Quarterly data for 1960:Q1 through 2005:Q4.
- Pre-sample data: Quarterly data for 1954:Q1 through 1959:Q4.
- Specification 1: Model with no capital:
 - CBO measure of the output gap.
 - Annualized quarterly inflation rate of the GDP deflater.
 - Annualized quarterly federal funds rate.
- Specification 2: Endogenous capital:
 - Real private consumption expenditures per capita
 - Real gross private domestic investment per capita
 - Output is defined as the sum of consumption and investment
 - Annualized quarterly inflation rate of the GDP deflator
 - Annualized quarterly federal funds rate.
- Consumption and Investment: trend growth rate removed.

- Quarterly data for 1960:Q1 through 2005:Q4.
- Pre-sample data: Quarterly data for 1954:Q1 through 1959:Q4.
- Specification 1: Model with no capital:
 - CBO measure of the output gap.
 - Annualized quarterly inflation rate of the GDP deflater.
 - Annualized quarterly federal funds rate.
- Specification 2: Endogenous capital:
 - Real private consumption expenditures per capita.
 - Real gross private domestic investment per capita.
 - Output is defined as the sum of consumption and investment.
 - Annualized quarterly inflation rate of the GDP deflator.
 - Annualized quarterly federal funds rate.
- Consumption and Investment: trend growth rate removed.

- Quarterly data for 1960:Q1 through 2005:Q4.
- Pre-sample data: Quarterly data for 1954:Q1 through 1959:Q4.
- Specification 1: Model with no capital:
 - CBO measure of the output gap.
 - Annualized quarterly inflation rate of the GDP deflater.
 - Annualized quarterly federal funds rate.
- Specification 2: Endogenous capital:
 - Real private consumption expenditures per capita.
 - Real gross private domestic investment per capita.
 - Output is defined as the sum of consumption and investment.
 - Annualized quarterly inflation rate of the GDP deflator.
 - Annualized quarterly federal funds rate.
- Consumption and Investment: trend growth rate removed.

No Capital: RE vs. Learning (RE Init.)

		Ca	se 1	Ca	se 2
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.4241	0.1216
Inverse IES	σ	0.5152	0.4401	0.5236	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0001	0.0002
Price Indexation	γ	0.9900	0.0634	0.9901	0.0907
MP Persistence	$ ho_r$	0.9207	0.0207	0.9207	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.4949	0.1967
MP Inflation	ψ_{π}	1.9994	0.0000	1.9995	0.0000
Nat. Rate Pers.	$ ho_n$	0.8488	0.0684	0.8489	0.0645
Cost Push Pers.	$ ho_u$	0.0000	0.0692	0.0000	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.0736	0.0741
Cost Push Std. Dev.	$\sigma_{\it u}$	0.0029	0.0002	0.0029	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.9905	1.2739
Learning Gain	g	_	_	0.0067	0.0070
Log-likelihood			-459.9390		-459.5154
MSE Output Gap			0.6087		0.6061
MSE Inflation			1.3313		1.3269
MSE Fed. Funds Rate			1.6480		1.6519

		Ca	se 1	Ca	se 2
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.4241	0.1216
Inverse IES	σ	0.5152	0.4401	0.5236	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0001	0.0002
Price Indexation	γ	0.9900	0.0634	0.9901	0.0907
MP Persistence	$ ho_r$	0.9207	0.0207	0.9207	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.4949	0.1967
MP Inflation	ψ_{π}	1.9994	0.0000	1.9995	0.0000
Nat. Rate Pers.	$ ho_n$	0.8488	0.0684	0.8489	0.0645
Cost Push Pers.	$ ho_u$	0.0000	0.0692	0.0000	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.0736	0.0741
Cost Push Std. Dev.	$\sigma_{\it u}$	0.0029	0.0002	0.0029	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.9905	1.2739
Learning Gain	g	_	_	0.0067	0.0070
Log-likelihood			-459.9390		-459.5154
MSE Output Gap			0.6087		0.6061
MSE Inflation			1.3313		1.3269
MSE Fed. Funds Rate			1.6480	100 1 3 1	1.6519

		Ca	se 1	Ca	se 2
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.4241	0.1216
Inverse IES	σ	0.5152	0.4401	0.5236	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0001	0.0002
Price Indexation	γ	0.9900	0.0634	0.9901	0.0907
MP Persistence	$ ho_r$	0.9207	0.0207	0.9207	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.4949	0.1967
MP Inflation	ψ_π	1.9994	0.0000	1.9995	0.0000
Nat. Rate Pers.	$ ho_n$	0.8488	0.0684	0.8489	0.0645
Cost Push Pers.	$ ho_u$	0.0000	0.0692	0.0000	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.0736	0.0741
Cost Push Std. Dev.	$\sigma_{\it u}$	0.0029	0.0002	0.0029	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.9905	1.2739
Learning Gain	g	_	_	0.0067	0.0070
Log-likelihood			-459.9390		-459.5154
MSE Output Gap			0.6087		0.6061
MSE Inflation			1.3313		1.3269
MSE Fed. Funds Rate			1.6480		1.6519

No Capital: Forecast Errors

Rational Expectations Inflation

Fed Funds Rate

Learning with RE Initial Conditions Output gap (0.9993)

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

		Ca	se 1	Ca	se 3
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.3027	0.1216
Inverse IES	σ	0.5152	0.4401	0.2251	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0004	0.0002
Price Indexation	γ	0.9900	0.0634	0.9999	0.0907
MP Persistence	$ ho_r$	0.9207	0.0207	0.9131	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.4762	0.1967
MP Inflation	ψ_π	1.9994	0.0000	1.9865	0.0000
Nat. Rate Pers.	$ ho_n$	0.8488	0.0684	0.8413	0.0645
Cost Push Pers.	$ ho_u$	0.0000	0.0692	0.0002	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.2736	0.0741
Cost Push Std. Dev.	$\sigma_{\it u}$	0.0029	0.0002	0.0054	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.9539	1.2739
Learning Gain	g	_	_	0.0042	0.0070
Log-likelihood			-459.9390		-458.8326
MSE Output Gap			0.6087		0.6032
MSE Inflation			1.3313		1.3371
MSE Fed. Funds Rate			1.6480		1.6378

		Ca	se 1	Ca	se 3
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.3027	0.1216
Inverse IES	σ	0.5152	0.4401	0.2251	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0004	0.0002
Price Indexation	γ	0.9900	0.0634	0.9999	0.0907
MP Persistence	$ ho_r$	0.9207	0.0207	0.9131	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.4762	0.1967
MP Inflation	ψ_π	1.9994	0.0000	1.9865	0.0000
Nat. Rate Pers.	$ ho_{n}$	0.8488	0.0684	0.8413	0.0645
Cost Push Pers.	$ ho_u$	0.0000	0.0692	0.0002	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.2736	0.0741
Cost Push Std. Dev.	$\sigma_{\it u}$	0.0029	0.0002	0.0054	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.9539	1.2739
Learning Gain	g	_	-	0.0042	0.0070
Log-likelihood			-459.9390		-458.8326
MSE Output Gap			0.6087		0.6032
MSE Inflation			1.3313		1.3371
MSE Fed. Funds Rate			1.6480		1.6378

		Ca	se 1	Ca	se 3
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.3027	0.1216
Inverse IES	σ	0.5152	0.4401	0.2251	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0004	0.0002
Price Indexation	γ	0.9900	0.0634	0.9999	0.0907
MP Persistence	$ ho_r$	0.9207	0.0207	0.9131	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.4762	0.1967
MP Inflation	ψ_π	1.9994	0.0000	1.9865	0.0000
Nat. Rate Pers.	$ ho_{n}$	0.8488	0.0684	0.8413	0.0645
Cost Push Pers.	$ ho_u$	0.0000	0.0692	0.0002	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.2736	0.0741
Cost Push Std. Dev.	$\sigma_{\it u}$	0.0029	0.0002	0.0054	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.9539	1.2739
Learning Gain	g	_	_	0.0042	0.0070
Log-likelihood			-459.9390		-458.8326
MSE Output Gap			0.6087		0.6032
MSE Inflation			1.3313		1.3371
MSE Fed. Funds Rate			1.6480		1.6378

		Ca	se 1	Ca	se 3
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.3027	0.1216
Inverse IES	σ	0.5152	0.4401	0.2251	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0004	0.0002
Price Indexation	γ	0.9900	0.0634	0.9999	0.0907
MP Persistence	$ ho_r$	0.9207	0.0207	0.9131	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.4762	0.1967
MP Inflation	ψ_{π}	1.9994	0.0000	1.9865	0.0000
Nat. Rate Pers.	$ ho_{n}$	0.8488	0.0684	0.8413	0.0645
Cost Push Pers.	$ ho_{\it u}$	0.0000	0.0692	0.0002	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.2736	0.0741
Cost Push Std. Dev.	$\sigma_{\it u}$	0.0029	0.0002	0.0054	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.9539	1.2739
Learning Gain	g	_	_	0.0042	0.0070
Log-likelihood			-459.9390		-458.8326
MSE Output Gap			0.6087		0.6032
MSE Inflation			1.3313		1.3371
MSE Fed. Funds Rate			1.6480		1.6378

No Capital: Forecast Errors

Rational Expectations Inflation

Fed Funds Rate

Learning Without Observable Shocks

Output gap (0.9846) Inflation (0.9960) Fed Funds Rate (0.9996)

		Ca	se 1	Ca	se 4
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.5293	0.1216
Inverse IES	σ	0.5152	0.4401	0.2502	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0064	0.0002
Price Indexation	γ	0.9900	0.0634	0.9989	0.0907
MP Persistence	$ ho_r$	0.9207	0.0207	0.8454	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.3200	0.1967
MP Inflation	ψ_π	1.9994	0.0000	1.5109	0.0000
Nat. Rate Pers.	$ ho_n$	0.8488	0.0684	0.6810	0.0645
Cost Push Pers.	$ ho_u$	0.0000	0.0692	0.4419	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.5835	0.0741
Cost Push Std. Dev.	$\sigma_{\scriptscriptstyle \it U}$	0.0029	0.0002	0.0086	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.8862	1.2739
Learning Gain	g	_	_	0.0828	0.0070
Log-likelihood			-459.9390		-573.3274
MSE Output Gap			0.6087		0.7989
MSE Inflation			1.3313		2.7104
MSE Fed. Funds Rate			1.6480		_ 1.7396

	Ca	se 1	Ca	se 4
Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
η	0.4221	0.1062	0.5293	0.1216
σ	0.5152	0.4401	0.2502	0.4865
κ	0.0001	0.0002	0.0064	0.0002
γ	0.9900	0.0634	0.9989	0.0907
$ ho_r$	0.9207	0.0207	0.8454	0.0214
ψ_{y}	0.4946	0.1901	0.3200	0.1967
ψ_π	1.9994	0.0000	1.5109	0.0000
$ ho_n$	0.8488	0.0684	0.6810	0.0645
$ ho_{u}$	0.0000	0.0692	0.4419	0.0608
σ_n	0.0751	0.0706	0.5835	0.0741
$\sigma_{\it u}$	0.0029	0.0002	0.0086	0.0003
σ_r	0.0030	0.0001	0.0030	0.0001
π^*	5.9904	1.2374	5.8862	1.2739
g	_	_	0.0828	0.0070
		-459.9390		-573.3274
		0.6087		0.7989
		1.3313		2.7104
		1.6480		1.7396
	η σ κ γ ρ_r ψ_y ψ_π ρ_n σ_n σ_u σ_r π^*	$\begin{array}{c c} \text{Parameter} & \text{Estimate} \\ \hline \eta & 0.4221 \\ \sigma & 0.5152 \\ \kappa & 0.0001 \\ \gamma & 0.9900 \\ \rho_r & 0.9207 \\ \psi_y & 0.4946 \\ \psi_\pi & 1.9994 \\ \rho_n & 0.8488 \\ \rho_u & 0.0000 \\ \sigma_n & 0.0751 \\ \sigma_u & 0.0029 \\ \sigma_r & 0.0030 \\ \pi^* & 5.9904 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

		Ca	se 1	Ca	se 4
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.5293	0.1216
Inverse IES	σ	0.5152	0.4401	0.2502	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0064	0.0002
Price Indexation	γ	0.9900	0.0634	0.9989	0.0907
MP Persistence	$ ho_r$	0.9207	0.0207	0.8454	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.3200	0.1967
MP Inflation	ψ_π	1.9994	0.0000	1.5109	0.0000
Nat. Rate Pers.	$ ho_n$	0.8488	0.0684	0.6810	0.0645
Cost Push Pers.	$ ho_{u}$	0.0000	0.0692	0.4419	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.5835	0.0741
Cost Push Std. Dev.	$\sigma_{\scriptscriptstyle \it U}$	0.0029	0.0002	0.0086	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.8862	1.2739
Learning Gain	g	_	_	0.0828	0.0070
Log-likelihood			-459.9390		-573.3274
MSE Output Gap			0.6087		0.7989
MSE Inflation			1.3313		2.7104
MSE Fed. Funds Rate			1.6480	10000	1.7396

		Ca	se 1	Ca	se 4
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.5293	0.1216
Inverse IES	σ	0.5152	0.4401	0.2502	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0064	0.0002
Price Indexation	γ	0.9900	0.0634	0.9989	0.0907
MP Persistence	ρ_r	0.9207	0.0207	0.8454	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.3200	0.1967
MP Inflation	ψ_{π}	1.9994	0.0000	1.5109	0.0000
Nat. Rate Pers.	ρ_n	0.8488	0.0684	0.6810	0.0645
Cost Push Pers.	$ ho_u$	0.0000	0.0692	0.4419	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.5835	0.0741
Cost Push Std. Dev.	$\sigma_{\scriptscriptstyle U}$	0.0029	0.0002	0.0086	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.8862	1.2739
Learning Gain	g	_	_	0.0828	0.0070
Log-likelihood			-459.9390		-573.3274
MSE Output Gap			0.6087		0.7989
MSE Inflation			1.3313		2.7104
MSE Fed. Funds Rate			1.6480	4 DF	1.7396

No Capital: Forecast Errors

Rational Expectations Inflation

Fed Funds Rate

Learning with Pre-sample Initial Conditions

		Ca	se 1	Ca	se 5
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.3052	0.1216
Inverse IES	σ	0.5152	0.4401	0.1960	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0001	0.0002
Price Indexation	γ	0.9900	0.0634	0.9893	0.0907
MP Persistence	$ ho_r$	0.9207	0.0207	0.9193	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.4944	0.1967
MP Inflation	ψ_π	1.9994	0.0000	1.9992	0.0000
Nat. Rate Pers.	$ ho_{n}$	0.8488	0.0684	0.8488	0.0645
Cost Push Pers.	$ ho_{\it u}$	0.0000	0.0692	0.0000	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.2310	0.0741
Cost Push Std. Dev.	$\sigma_{\it u}$	0.0029	0.0002	0.0054	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.9894	1.2739
Learning Gain	g	_	-	0.0000	0.0070
Log-likelihood			-459.9390		-449.3276
MSE Output Gap			0.6087		0.5679
MSE Inflation			1.3313		1.2922
MSE Fed. Funds Rate			1.6480		_ 1.6486

		Case 1		Case 5	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.3052	0.1216
Inverse IES	σ	0.5152	0.4401	0.1960	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0001	0.0002
Price Indexation	γ	0.9900	0.0634	0.9893	0.0907
MP Persistence	$ ho_r$	0.9207	0.0207	0.9193	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.4944	0.1967
MP Inflation	ψ_{π}	1.9994	0.0000	1.9992	0.0000
Nat. Rate Pers.	$ ho_n$	0.8488	0.0684	0.8488	0.0645
Cost Push Pers.	$ ho_u$	0.0000	0.0692	0.0000	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.2310	0.0741
Cost Push Std. Dev.	$\sigma_{\it u}$	0.0029	0.0002	0.0054	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.9894	1.2739
Learning Gain	g	_	_	0.0000	0.0070
Log-likelihood			-459.9390		-449.3276
MSE Output Gap			0.6087		0.5679
MSE Inflation			1.3313		1.2922
MSE Fed. Funds Rate			1.6480		1.6486

		Case 1		Case 5	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.4221	0.1062	0.3052	0.1216
Inverse IES	σ	0.5152	0.4401	0.1960	0.4865
Phillips Slope	κ	0.0001	0.0002	0.0001	0.0002
Price Indexation	γ	0.9900	0.0634	0.9893	0.0907
MP Persistence	$ ho_r$	0.9207	0.0207	0.9193	0.0214
MP Output	ψ_{y}	0.4946	0.1901	0.4944	0.1967
MP Inflation	ψ_π	1.9994	0.0000	1.9992	0.0000
Nat. Rate Pers.	$ ho_n$	0.8488	0.0684	0.8488	0.0645
Cost Push Pers.	$ ho_{\it u}$	0.0000	0.0692	0.0000	0.0608
Nat. Rate Std. Dev.	σ_n	0.0751	0.0706	0.2310	0.0741
Cost Push Std. Dev.	$\sigma_{\it u}$	0.0029	0.0002	0.0054	0.0003
MP Std. Dev.	σ_r	0.0030	0.0001	0.0030	0.0001
SS Inflation	π^*	5.9904	1.2374	5.9894	1.2739
Learning Gain	g	_	_	0.0000	0.0070
Log-likelihood			-459.9390		-449.3276
MSE Output Gap			0.6087		0.5679
MSE Inflation			1.3313		1.2922
MSE Fed. Funds Rate			1.6480		1.6486

Rational Expectations Inflation

Fed Funds Rate

Output gap (0.9682)

Learning with Estimated Initial Conditions

Inflation (0.9896) Fed Funds Rate (0.9997)

Rational Expectations Cost Push

Policy Shock

Learning with RE Initial Conditions Nat. Rate (0.9996) Cost Push (0.9965)

Policy Shock (1.0000)

Rational Expectations Cost Push

Policy Shock

Learning Without Observable Shocks

Nat. Rate (0.9731) Cost Push (0.9932)

Policy Shock (0.9995)

Rational Expectations Cost Push

Policy Shock

Nat. Rate (0.3652)

Learning with Pre-sample Initial Conditions Cost Push (0.6110) Policy Shock (0.9619)

Rational Expectations Cost Push

Policy Shock

Learning with Estimated Initial Conditions Nat. Rate (0.9769)

Cost Push (0.9832)

Policy Shock (0.9998)

No Capital: Evolution of Expectations

Learning with RE Initial Conditions Output Gap Inflation

No Capital: Evolution of Expectations

-0.04

Rational Expectations

Output Gap

Inflation

Learning with Pre-sample Initial Conditions Output Gap Inflation

Output Gap

Inflation

Learning with Estimated Initial Conditions Output Gap Inflation

Rational Expectations

Endogenous Capital: RE vs. Learning (RE Init.)

		Case 1		Case 2	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.9181	0.1017
Inverse IES	σ	0.3432	0.7774	0.3432	0.7967
Capital Share	α	0.3584	0.1189	0.3584	0.1219
Cons / Output	c_y	0.8753	0.0044	0.8753	0.0044
Cost Capital Adj.	ϕ	6.9883	1.4836	6.9883	2.8850
Phillips Slope	κ	0.0090	0.0036	0.0090	0.0039
Price Indexation	γ	0.0001	0.0768	0.0001	0.0769
MP Persistence	ρ_r	0.7481	0.0472	0.7481	0.0570
MP Output	ψ_y	0.1003	0.0379	0.1003	0.0379
MP Inflation	ψ_{π}	1.0014	0.1195	1.0014	0.1219
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9716	0.0134
Pref. Shock Pers.	ρξ	0.5647	0.1159	0.5647	0.1160
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9050	0.0435
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.0094	0.0044
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.0306	0.0099
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.3587	0.2741
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0033	0.0003
SS Inflation	π*	0.2209	4.2127	0.2209	4.2253
SS Output (\$10,000)	y*	1.4085	0.0212	1.4085	0.0213
Learning gain	g	_	_	0.0000	0.0147
Log-likelihood			-2391.5472		-2391.5472
MSE Consumption		ĺ	7285.1049	ĺ	7285.1049
MSE Investment			14454.2922		14454.2922
MSE Inflation			1.2633		1.2633
MSE Fed. Funds Rate			1.7499		1.7499

Endogenous Capital: RE vs. Learning (RE Init.)

		Case 1		Case 2	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.9181	0.1017
Inverse IES	σ	0.3432	0.7774	0.3432	0.7967
Capital Share	α	0.3584	0.1189	0.3584	0.1219
Cons / Output	c _y	0.8753	0.0044	0.8753	0.0044
Cost Capital Adj.	ϕ	6.9883	1.4836	6.9883	2.8850
Phillips Slope	κ	0.0090	0.0036	0.0090	0.0039
Price Indexation	γ	0.0001	0.0768	0.0001	0.0769
MP Persistence	ρ_r	0.7481	0.0472	0.7481	0.0570
MP Output	ψ_y	0.1003	0.0379	0.1003	0.0379
MP Inflation	ψ_{π}	1.0014	0.1195	1.0014	0.1219
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9716	0.0134
Pref. Shock Pers.	ρξ	0.5647	0.1159	0.5647	0.1160
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9050	0.0435
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.0094	0.0044
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.0306	0.0099
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.3587	0.2741
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0033	0.0003
SS Inflation	π*	0.2209	4.2127	0.2209	4.2253
SS Output (\$10,000)	y*	1.4085	0.0212	1.4085	0.0213
Learning gain	g	-	-	0.0000	0.0147
Log-likelihood			-2391.5472		-2391.5472
MSE Consumption		1	7285.1049	7285.1049	
MSE Investment			14454.2922	14454.2922	
MSE Inflation			1.2633	1.2633	
MSE Fed. Funds Rate			1.7499		1.7499

		Case 1		Case 2	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.9181	0.1017
Inverse IES	σ	0.3432	0.7774	0.3432	0.7967
Capital Share	α	0.3584	0.1189	0.3584	0.1219
Cons / Output	c_y	0.8753	0.0044	0.8753	0.0044
Cost Capital Adj.	$\dot{\phi}$	6.9883	1.4836	6.9883	2.8850
Phillips Slope	κ	0.0090	0.0036	0.0090	0.0039
Price Indexation	γ	0.0001	0.0768	0.0001	0.0769
MP Persistence	ρ_r	0.7481	0.0472	0.7481	0.0570
MP Output	ψ_{V}	0.1003	0.0379	0.1003	0.0379
MP Inflation	ψ_{π}	1.0014	0.1195	1.0014	0.1219
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9716	0.0134
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.5647	0.1160
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9050	0.0435
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.0094	0.0044
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.0306	0.0099
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.3587	0.2741
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0033	0.0003
SS Inflation	π*	0.2209	4.2127	0.2209	4.2253
SS Output (\$10,000)	у*	1.4085	0.0212	1.4085	0.0213
Learning gain	g	_	-	0.0000	0.0147
Log-likelihood			-2391.5472		-2391.5472
MSE Consumption		1	7285.1049	l	7285.1049
MSE Investment			14454.2922		14454.2922
MSE Inflation		1	1.2633	l	1.2633
MSE Fed. Funds Rate			1.7499		1.7499

Endogenous Capital: Forecast Errors

33/48

Consumption

Rational Expectations

Fed. Funds

Investment

Consumption (1.0000)

Learning with RE Initial Conditions Inflation (1.0000)

Fed. Funds (1.0000)

Investment (1.0000)

		Case 1		Case 3	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.8393	0.1888
Inverse IES	σ	0.3432	0.7774	0.3771	0.8493
Capital Share	α	0.3584	0.1189	0.3870	0.2697
Cons / Output	c_y	0.8753	0.0044	0.8987	0.0000
Cost Capital Adj.	$\dot{\phi}$	6.9883	1.4836	6.9747	2.1739
Phillips Slope	κ	0.0090	0.0036	0.0158	0.0065
Price Indexation	γ	0.0001	0.0768	0.0007	0.0774
MP Persistence	ρ_r	0.7481	0.0472	0.8031	0.0365
MP Output	ψ_{V}	0.1003	0.0379	0.1005	0.0478
MP Inflation	ψ_{π}	1.0014	0.1195	1.0285	0.1656
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9689	0.0461
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.6644	0.1550
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9182	0.0050
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.1133	0.0708
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.1026	0.0189
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.3532	0.1867
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0031	0.0001
SS Inflation	π*	0.2209	4.2127	3.8982	1.4266
SS Output (\$10,000)	у*	1.4085	0.0212	1.4200	0.0181
Learning gain	g	-	_	0.0052	0.0019
Log-likelihood			-2391.5472		-2320.0228
MSE Consumption		7285.1049		9532.5647	
MSE Investment		l	14454.2922	l	11044.5295
MSE Inflation		1.2633		1.2455	
MSE Fed. Funds Rate		l	1.7499	l	1.6766

21	/	ΛС
э4	/	4≿
	/	

		Ca	se 1	Case 3	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.8393	0.1888
Inverse IES	σ	0.3432	0.7774	0.3771	0.8493
Capital Share	α	0.3584	0.1189	0.3870	0.2697
Cons / Output	c_{ν}	0.8753	0.0044	0.8987	0.0000
Cost Capital Adj.	ϕ	6.9883	1.4836	6.9747	2.1739
Phillips Slope	κ	0.0090	0.0036	0.0158	0.0065
Price Indexation	γ	0.0001	0.0768	0.0007	0.0774
MP Persistence	ρ_r	0.7481	0.0472	0.8031	0.0365
MP Output	ψ_{V}	0.1003	0.0379	0.1005	0.0478
MP Inflation	ψ_{π}	1.0014	0.1195	1.0285	0.1656
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9689	0.0461
Pref. Shock Pers.	ρε	0.5647	0.1159	0.6644	0.1550
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9182	0.0050
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.1133	0.0708
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.1026	0.0189
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.3532	0.1867
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0031	0.0001
SS Inflation	π*	0.2209	4.2127	3.8982	1.4266
SS Output (\$10,000)	y*	1.4085	0.0212	1.4200	0.0181
Learning gain	g	_	-	0.0052	0.0019
Log-likelihood			-2391.5472		-2320.0228
MSE Consumption		7285.1049		l	9532.5647
MSE Investment		14454.2922			11044.5295
MSE Inflation		l	1.2633	l	1.2455
MSE Fed. Funds Rate		l	1.7499	l	1.6766

		Case 1		Case 3	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.8393	0.1888
Inverse IES	σ	0.3432	0.7774	0.3771	0.8493
Capital Share	α	0.3584	0.1189	0.3870	0.2697
Cons / Output	c _y	0.8753	0.0044	0.8987	0.0000
Cost Capital Adj.	φ	6.9883	1.4836	6.9747	2.1739
Phillips Slope	κ	0.0090	0.0036	0.0158	0.0065
Price Indexation	γ	0.0001	0.0768	0.0007	0.0774
MP Persistence	ρ_r	0.7481	0.0472	0.8031	0.0365
MP Output	ψ_{V}	0.1003	0.0379	0.1005	0.0478
MP Inflation	ψ_{π}	1.0014	0.1195	1.0285	0.1656
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9689	0.0461
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.6644	0.1550
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9182	0.0050
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.1133	0.0708
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.1026	0.0189
Pref. Shock Std. Dev.	$\sigma_{\mathcal{E}}$	0.3587	0.2699	0.3532	0.1867
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0031	0.0001
SS Inflation	π*	0.2209	4.2127	3.8982	1.4266
SS Output (\$10,000)	у*	1.4085	0.0212	1.4200	0.0181
Learning gain	g	-	-	0.0052	0.0019
Log-likelihood			-2391.5472		-2320.0228
MSE Consumption		l	7285.1049		9532.5647
MSE Investment		l	14454.2922		11044.5295
MSE Inflation		l	1.2633		1.2455
MSE Fed. Funds Rate		l	1.7499		1.6766

		Ca	se 1	Case 3	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.8393	0.1888
Inverse IES	σ	0.3432	0.7774	0.3771	0.8493
Capital Share	α	0.3584	0.1189	0.3870	0.2697
Cons / Output	c_y	0.8753	0.0044	0.8987	0.0000
Cost Capital Adj.	ϕ	6.9883	1.4836	6.9747	2.1739
Phillips Slope	κ	0.0090	0.0036	0.0158	0.0065
Price Indexation	γ	0.0001	0.0768	0.0007	0.0774
MP Persistence	ρ_r	0.7481	0.0472	0.8031	0.0365
MP Output	ψ_{V}	0.1003	0.0379	0.1005	0.0478
MP Inflation	ψ_{π}	1.0014	0.1195	1.0285	0.1656
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9689	0.0461
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.6644	0.1550
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9182	0.0050
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.1133	0.0708
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.1026	0.0189
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.3532	0.1867
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0031	0.0001
SS Inflation	π^*	0.2209	4.2127	3.8982	1.4266
SS Output (\$10,000)	у*	1.4085	0.0212	1.4200	0.0181
Learning gain	g	-	_	0.0052	0.0019
Log-likelihood	Log-likelihood		-2391.5472		-2320.0228
MSE Consumption			7285.1049		9532.5647
MSE Investment		14454.2922		l	11044.5295
MSE Inflation		1.2633			1.2455
MSE Fed. Funds Rate		1.7499		1.6766	

		Ca	se 1	Case 3	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.8393	0.1888
Inverse IES	σ	0.3432	0.7774	0.3771	0.8493
Capital Share	α	0.3584	0.1189	0.3870	0.2697
Cons / Output	c_y	0.8753	0.0044	0.8987	0.0000
Cost Capital Adj.	$\dot{\phi}$	6.9883	1.4836	6.9747	2.1739
Phillips Slope	κ	0.0090	0.0036	0.0158	0.0065
Price Indexation	γ	0.0001	0.0768	0.0007	0.0774
MP Persistence	ρ_r	0.7481	0.0472	0.8031	0.0365
MP Output	ψ_{V}	0.1003	0.0379	0.1005	0.0478
MP Inflation	ψ_{π}	1.0014	0.1195	1.0285	0.1656
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9689	0.0461
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.6644	0.1550
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9182	0.0050
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.1133	0.0708
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.1026	0.0189
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.3532	0.1867
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0031	0.0001
SS Inflation	π*	0.2209	4.2127	3.8982	1.4266
SS Output (\$10,000)	y*	1.4085	0.0212	1.4200	0.0181
Learning gain	g	-	_	0.0052	0.0019
Log-likelihood		-2391.5472			-2320.0228
MSE Consumption			7285.1049		9532.5647
MSE Investment		14454.2922			11044.5295
MSE Inflation		1.2633		l	1.2455
MSE Fed. Funds Rate		1.7499		l	1.6766

		Ca	Case 1		Case 3	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.	
Habit Formation	η	0.9181	0.1007	0.8393	0.1888	
Inverse IES	σ	0.3432	0.7774	0.3771	0.8493	
Capital Share	α	0.3584	0.1189	0.3870	0.2697	
Cons / Output	c _y	0.8753	0.0044	0.8987	0.0000	
Cost Capital Adj.	$\dot{\phi}$	6.9883	1.4836	6.9747	2.1739	
Phillips Slope	κ	0.0090	0.0036	0.0158	0.0065	
Price Indexation	γ	0.0001	0.0768	0.0007	0.0774	
MP Persistence	ρ_r	0.7481	0.0472	0.8031	0.0365	
MP Output	ψ_{V}	0.1003	0.0379	0.1005	0.0478	
MP Inflation	ψ_{π}	1.0014	0.1195	1.0285	0.1656	
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9689	0.0461	
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.6644	0.1550	
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9182	0.0050	
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.1133	0.0708	
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.1026	0.0189	
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.3532	0.1867	
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0031	0.0001	
SS Inflation	π*	0.2209	4.2127	3.8982	1.4266	
SS Output (\$10,000)	у*	1.4085	0.0212	1.4200	0.0181	
Learning gain	g	-	_	0.0052	0.0019	
Log-likelihood			-2391.5472		-2320.0228	
MSE Consumption		l	7285.1049	ĺ	9532.5647	
MSE Investment	ivestment		14454.2922		11044.5295	
MSE Inflation		1.2633			1.2455	
MSE Fed. Funds Rate		l	1.7499	I	1.6766	

	Ca	Case 1		Case 3	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.8393	0.1888
Inverse IES	σ	0.3432	0.7774	0.3771	0.8493
Capital Share	α	0.3584	0.1189	0.3870	0.2697
Cons / Output	c _y	0.8753	0.0044	0.8987	0.0000
Cost Capital Adj.	ϕ	6.9883	1.4836	6.9747	2.1739
Phillips Slope	κ	0.0090	0.0036	0.0158	0.0065
Price Indexation	γ	0.0001	0.0768	0.0007	0.0774
MP Persistence	ρ_r	0.7481	0.0472	0.8031	0.0365
MP Output	ψ_{V}	0.1003	0.0379	0.1005	0.0478
MP Inflation	ψ_{π}	1.0014	0.1195	1.0285	0.1656
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9689	0.0461
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.6644	0.1550
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9182	0.0050
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.1133	0.0708
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.1026	0.0189
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.3532	0.1867
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0031	0.0001
SS Inflation	π*	0.2209	4.2127	3.8982	1.4266
SS Output (\$10,000)	у*	1.4085	0.0212	1.4200	0.0181
Learning gain	g	-	-	0.0052	0.0019
Log-likelihood			-2391.5472		-2320.0228
MSE Consumption		l	7285.1049		9532.5647
MSE Investment		l	14454.2922		11044.5295
MSE Inflation			1.2633		1.2455
MSE Fed. Funds Rate			1.7499		1.6766

Endogenous Capital: Forecast Errors

35/48

Consumption

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 201

Rational Expectations Inflation

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Learning Without Observable Shocks

		Ca	se 1	Case 4	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.7685	0.2555
Inverse IES	σ	0.3432	0.7774	0.6433	1.7938
Capital Share	α	0.3584	0.1189	0.3177	0.3785
Cons / Output	c_y	0.8753	0.0044	0.8944	0.0036
Cost Capital Adj.	$\dot{\phi}$	6.9883	1.4836	6.8234	2.6605
Phillips Slope	κ	0.0090	0.0036	0.0113	0.0035
Price Indexation	γ	0.0001	0.0768	0.0877	0.1071
MP Persistence	ρ_r	0.7481	0.0472	0.8975	0.0382
MP Output	ψ_{V}	0.1003	0.0379	0.1565	0.1132
MP Inflation	ψ_{π}	1.0014	0.1195	1.0462	0.1866
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.8205	0.0357
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.9007	0.0286
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9999	0.0000
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.3079	0.1910
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.1064	0.0133
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.4362	0.4727
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0032	0.0001
SS Inflation	π*	0.2209	4.2127	0.0035	0.9250
SS Output (\$10,000)	у*	1.4085	0.0212	1.4074	0.0089
Learning gain	g	_	_	0.0060	0.0012
Log-likelihood			-2391.5472		-2506.8255
MSE Consumption		l	7285.1049		9584.1202
MSE Investment		l	14454.2922		44510.7805
MSE Inflation		l	1.2633		3.5212
MSE Fed. Funds Rate		l	1.7499		1.5378

		Ca	se 1	Case 4	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.7685	0.2555
Inverse IES	σ	0.3432	0.7774	0.6433	1.7938
Capital Share	α	0.3584	0.1189	0.3177	0.3785
Cons / Output	c _y	0.8753	0.0044	0.8944	0.0036
Cost Capital Adj.	ϕ	6.9883	1.4836	6.8234	2.6605
Phillips Slope	κ	0.0090	0.0036	0.0113	0.0035
Price Indexation	γ	0.0001	0.0768	0.0877	0.1071
MP Persistence	ρ_r	0.7481	0.0472	0.8975	0.0382
MP Output	ψ_{V}	0.1003	0.0379	0.1565	0.1132
MP Inflation	ψ_{π}	1.0014	0.1195	1.0462	0.1866
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.8205	0.0357
Pref. Shock Pers.	ρξ	0.5647	0.1159	0.9007	0.0286
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9999	0.0000
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.3079	0.1910
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.1064	0.0133
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.4362	0.4727
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0032	0.0001
SS Inflation	π*	0.2209	4.2127	0.0035	0.9250
SS Output (\$10,000)	y*	1.4085	0.0212	1.4074	0.0089
Learning gain	g	_	-	0.0060	0.0012
Log-likelihood			-2391.5472		-2506.8255
MSE Consumption		7285.1049			9584.1202
MSE Investment		14454.2922			44510.7805
MSE Inflation		1	1.2633	l	3.5212
MSE Fed. Funds Rate		1.7499		1.5378	

		Ca	se 1	Case 4	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.7685	0.2555
Inverse IES	σ	0.3432	0.7774	0.6433	1.7938
Capital Share	α	0.3584	0.1189	0.3177	0.3785
Cons / Output	c _y	0.8753	0.0044	0.8944	0.0036
Cost Capital Adj.	ϕ	6.9883	1.4836	6.8234	2.6605
Phillips Slope	κ	0.0090	0.0036	0.0113	0.0035
Price Indexation	γ	0.0001	0.0768	0.0877	0.1071
MP Persistence	ρ_r	0.7481	0.0472	0.8975	0.0382
MP Output	ψ_{V}	0.1003	0.0379	0.1565	0.1132
MP Inflation	ψ_{π}	1.0014	0.1195	1.0462	0.1866
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.8205	0.0357
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.9007	0.0286
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9999	0.0000
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.3079	0.1910
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.1064	0.0133
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.4362	0.4727
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0032	0.0001
SS Inflation	π^{*}	0.2209	4.2127	0.0035	0.9250
SS Output (\$10,000)	y*	1.4085	0.0212	1.4074	0.0089
Learning gain	g	-	-	0.0060	0.0012
Log-likelihood			-2391.5472		-2506.8255
MSE Consumption		l	7285.1049		9584.1202
MSE Investment		14454.2922			44510.7805
MSE Inflation		l	1.2633		3.5212
MSE Fed. Funds Rate		l	1.7499		1.5378

		Case 1		Case 4	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.7685	0.2555
Inverse IES	σ	0.3432	0.7774	0.6433	1.7938
Capital Share	α	0.3584	0.1189	0.3177	0.3785
Cons / Output	c_y	0.8753	0.0044	0.8944	0.0036
Cost Capital Adj.	φ	6.9883	1.4836	6.8234	2.6605
Phillips Slope	κ	0.0090	0.0036	0.0113	0.0035
Price Indexation	$ \gamma $	0.0001	0.0768	0.0877	0.1071
MP Persistence	ρ_r	0.7481	0.0472	0.8975	0.0382
MP Output	ψ_y	0.1003	0.0379	0.1565	0.1132
MP Inflation	ψ_{π}	1.0014	0.1195	1.0462	0.1866
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.8205	0.0357
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.9007	0.0286
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9999	0.0000
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.3079	0.1910
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.1064	0.0133
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.4362	0.4727
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0032	0.0001
SS Inflation	π*	0.2209	4.2127	0.0035	0.9250
SS Output (\$10,000)	у*	1.4085	0.0212	1.4074	0.0089
Learning gain	g	-	-	0.0060	0.0012
Log-likelihood	Log-likelihood		-2391.5472		-2506.8255
MSE Consumption			7285.1049		9584.1202
MSE Investment			14454.2922		44510.7805
MSE Inflation			1.2633		3.5212
MSE Fed. Funds Rate			1.7499		1.5378

Endogenous Capital: Forecast Errors

37/48

Consumption 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 201

Rational Expectations Inflation

Fed. Funds

Investment

Learning with Pre-sample Initial Conditions

Consumption (0.8813)

-1500

		Case 1		Case 5	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.8564	6.7771
Inverse IES	σ	0.3432	0.7774	0.1667	16.3052
Capital Share	α	0.3584	0.1189	0.3662	0.6600
Cons / Output	c _y	0.8753	0.0044	0.8851	0.0122
Cost Capital Adj.	ϕ	6.9883	1.4836	6.9999	0.0001
Phillips Slope	κ	0.0090	0.0036	0.0287	0.0201
Price Indexation	γ	0.0001	0.0768	0.0002	0.3186
MP Persistence	ρ_r	0.7481	0.0472	0.9136	0.0641
MP Output	ψ_{V}	0.1003	0.0379	0.1296	0.2032
MP Inflation	ψ_{π}	1.0014	0.1195	1.0089	0.4514
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9582	0.0411
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.1614	0.1110
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9075	0.0902
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.0609	0.0920
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.0709	0.0220
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.0918	0.2118
MP Shock Std. Dev.	σ_r^2	0.0033	0.0002	0.0030	0.0001
SS Inflation	π^*	0.2209	4.2127	0.2202	4.7265
SS Output (\$10,000)	y*	1.4085	0.0212	1.4177	0.0783
Learning gain	g	-	-	0.0005	0.0018
Log-likelihood			-2391.5472		-2237.0404
MSE Consumption		l	7285.1049	ĺ	6702.3679
MSE Investment		14454.2922		l	6304.4836
MSE Inflation		1.2633		ĺ	1.1815
MSE Fed. Funds Rate		l	1.7499	l	1.4896

Endogenous Capital: RE vs. Learning (Estimated)

		Ca	se 1	Case 5		
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.	
Habit Formation	η	0.9181	0.1007	0.8564	6.7771	
Inverse IES	σ	0.3432	0.7774	0.1667	16.3052	
Capital Share	α	0.3584	0.1189	0.3662	0.6600	
Cons / Output	c _y	0.8753	0.0044	0.8851	0.0122	
Cost Capital Adj.	ϕ	6.9883	1.4836	6.9999	0.0001	
Phillips Slope	κ	0.0090	0.0036	0.0287	0.0201	
Price Indexation	γ	0.0001	0.0768	0.0002	0.3186	
MP Persistence	ρ_r	0.7481	0.0472	0.9136	0.0641	
MP Output	ψ_{V}	0.1003	0.0379	0.1296	0.2032	
MP Inflation	ψ_{π}	1.0014	0.1195	1.0089	0.4514	
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9582	0.0411	
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.1614	0.1110	
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9075	0.0902	
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.0609	0.0920	
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.0709	0.0220	
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.0918	0.2118	
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0030	0.0001	
SS Inflation	π*	0.2209	4.2127	0.2202	4.7265	
SS Output (\$10,000)	у*	1.4085	0.0212	1.4177	0.0783	
Learning gain	g	-	-	0.0005	0.0018	
Log-likelihood			-2391.5472		-2237.0404	
MSE Consumption			7285.1049	6702.3679		
MSE Investment		l	14454.2922		6304.4836	
MSE Inflation		l	1.2633		1.1815	
MSE Fed. Funds Rate		I	1.7499	1.4896		

Endogenous Capital: RE vs. Learning (Estimated)

		Ca	se 1	Case 5	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.8564	6.7771
Inverse IES	σ	0.3432	0.7774	0.1667	16.3052
Capital Share	α	0.3584	0.1189	0.3662	0.6600
Cons / Output	c_y	0.8753	0.0044	0.8851	0.0122
Cost Capital Adj.	$\dot{\phi}$	6.9883	1.4836	6.9999	0.0001
Phillips Slope	κ	0.0090	0.0036	0.0287	0.0201
Price Indexation	γ	0.0001	0.0768	0.0002	0.3186
MP Persistence	ρ_r	0.7481	0.0472	0.9136	0.0641
MP Output	ψ_y	0.1003	0.0379	0.1296	0.2032
MP Inflation	ψ_{π}	1.0014	0.1195	1.0089	0.4514
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9582	0.0411
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.1614	0.1110
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9075	0.0902
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.0609	0.0920
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.0709	0.0220
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.0918	0.2118
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0030	0.0001
SS Inflation	π*	0.2209	4.2127	0.2202	4.7265
SS Output (\$10,000)	у*	1.4085	0.0212	1.4177	0.0783
Learning gain	g	-	_	0.0005	0.0018
Log-likelihood			-2391.5472		-2237.0404
MSE Consumption		l	7285.1049	6702.367	
MSE Investment		l	14454.2922	6304.4836	
MSE Inflation		l	1.2633		1.1815
MSE Fed. Funds Rate		l	1.7499	l	1.4896

Endogenous Capital: RE vs. Learning (Estimated)

		Case 1		Case 5	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.8564	6.7771
Inverse IES	σ	0.3432	0.7774	0.1667	16.3052
Capital Share	α	0.3584	0.1189	0.3662	0.6600
Cons / Output	c_y	0.8753	0.0044	0.8851	0.0122
Cost Capital Adj.	$\dot{\phi}$	6.9883	1.4836	6.9999	0.0001
Phillips Slope	κ	0.0090	0.0036	0.0287	0.0201
Price Indexation	γ	0.0001	0.0768	0.0002	0.3186
MP Persistence	ρ_r	0.7481	0.0472	0.9136	0.0641
MP Output	ψ_{V}	0.1003	0.0379	0.1296	0.2032
MP Inflation	ψ_{π}	1.0014	0.1195	1.0089	0.4514
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9582	0.0411
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.1614	0.1110
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9075	0.0902
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.0609	0.0920
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.0709	0.0220
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.0918	0.2118
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0030	0.0001
SS Inflation	π*	0.2209	4.2127	0.2202	4.7265
SS Output (\$10,000)	у*	1.4085	0.0212	1.4177	0.0783
Learning gain	g	_	_	0.0005	0.0018
Log-likelihood			-2391.5472		-2237.0404
MSE Consumption			7285.1049		6702.3679
MSE Investment			14454.2922	6304.4836	
MSE Inflation			1.2633		1.1815
MSE Fed. Funds Rate			1.7499		1.4896

		Case 1		Case 5	
Description	Parameter	Estimate	Std. Dev.	Estimate	Std. Dev.
Habit Formation	η	0.9181	0.1007	0.8564	6.7771
Inverse IES	σ	0.3432	0.7774	0.1667	16.3052
Capital Share	α	0.3584	0.1189	0.3662	0.6600
Cons / Output	c_{ν}	0.8753	0.0044	0.8851	0.0122
Cost Capital Adj.	$\dot{\phi}$	6.9883	1.4836	6.9999	0.0001
Phillips Slope	κ	0.0090	0.0036	0.0287	0.0201
Price Indexation	γ	0.0001	0.0768	0.0002	0.3186
MP Persistence	ρ_r	0.7481	0.0472	0.9136	0.0641
MP Output	ψ_{V}	0.1003	0.0379	0.1296	0.2032
MP Inflation	ψ_{π}	1.0014	0.1195	1.0089	0.4514
Tech. Shock Pers.	ρ_z	0.9716	0.0133	0.9582	0.0411
Pref. Shock Pers.	ρ_{ξ}	0.5647	0.1159	0.1614	0.1110
Inv. Shock Pers.	ρ_{μ}	0.9050	0.0426	0.9075	0.0902
Tech. Shock Std. Dev.	σ_z	0.0094	0.0041	0.0609	0.0920
Inv. Shock Std. Dev.	σ_{μ}	0.0306	0.0070	0.0709	0.0220
Pref. Shock Std. Dev.	σ_{ξ}	0.3587	0.2699	0.0918	0.2118
MP Shock Std. Dev.	σ_r	0.0033	0.0002	0.0030	0.0001
SS Inflation	π*	0.2209	4.2127	0.2202	4.7265
SS Output (\$10,000)	у*	1.4085	0.0212	1.4177	0.0783
Learning gain	g	_	_	0.0005	0.0018
Log-likelihood			-2391.5472		-2237.0404
MSE Consumption		l	7285.1049	l	6702.3679
MSE Investment			14454.2922		6304.4836
MSE Inflation			1.2633		1.1815
MSE Fed. Funds Rate		1.7499		1.4896	

Endogenous Capital: Forecast Errors

39/48

Consumption

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 201

Rational Expectations

Fed. Funds

Investment

Learning with Estimated Initial Conditions

Consumption (0.8977)

Inflation (0.9843)

Fed. Funds (0.9245)

Investment (0.6910)

Preference

Rational Expectations

Investment

Policy Shock

Preference (1.0000)

Learning with RE Initial Conditions Technology (1.0000)

Investment (1.0000)

Policy Shock

Endogenous Capital: Evolution of Shocks

41/48

Preference

Rational Expectations Technology

Investment

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Preference (0.8697)

Learning Without Observable Shocks Technology (0.6534)

Investment (-0.8120)

Policy Shock (0.9867)

Preference

Rational Expectations

Investment

Policy Shock

Learning with Pre-sample Initial Conditions

Preference (0.7522)

Technology (0.5440)

Investment (-0.6584)

Policy Shock (0.8697)

Rational Expectations

Endogenous Capital: Evolution of Shocks

43/48

Preference

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Technology

Preference (0.8200)

Learning with Estimated Initial Conditions Technology (0.8365)

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Investment (-0.7371)

Policy Shock (0.8917)

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Learning with RE Initial Conditions

Rational Expectations

Capital Stock

Output

Consumption

Inflation

Learning Without Using Shocks Capital Stock

Output

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Consumption

Learning with Pre-sample Initial Conditions

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Learning with Estimated Initial Conditions

Summary of findings:

- Learning does not better explain data.
- No capital: negligible differences in forecast errors, shocks, and expectations.
- Making shocks unobservable causes MLE to predict more volatile shocks.
- Best fitting models: Learning without observable shocks.
- Worst fitting models: Pre-sample initial conditions.
- Unobservable shocks creates less volatile expectations.
- Learning expectations about capital stock causes opposite predictions for investment shocks.

Learning failures:

- Fails to explain persistence.
- Fails to explain Great Inflation / Great Moderation.

Summary of findings:

- Learning does not better explain data.
- No capital: negligible differences in forecast errors, shocks, and expectations.
- Making shocks unobservable causes MLE to predict more volatile shocks.
- Best fitting models: Learning without observable shocks.
- Worst fitting models: Pre-sample initial conditions.
- Unobservable shocks creates less volatile expectations.
- Learning expectations about capital stock causes opposite predictions for investment shocks.

Learning failures:

- Fails to explain persistence
 - Fails to explain Great Inflation / Great Moderation

Conclusion

- Summary of findings:
 - Learning does not better explain data.
 - No capital: negligible differences in forecast errors, shocks, and expectations.
 - Making shocks unobservable causes MLE to predict more volatile shocks.
 - Best fitting models: Learning without observable shocks.
 - Worst fitting models: Pre-sample initial conditions.
 - Unobservable shocks creates less volatile expectations.
 - Learning expectations about capital stock causes opposite predictions for investment shocks.
- Learning failures:
 - Fails to explain persistence.
 - Fails to explain Great Inflation / Great Moderation

- Summary of findings:
 - Learning does not better explain data.
 - No capital: negligible differences in forecast errors, shocks, and expectations.
 - Making shocks unobservable causes MLE to predict more volatile shocks.
 - Best fitting models: Learning without observable shocks.
 - Worst fitting models: Pre-sample initial conditions.
 - Unobservable shocks creates less volatile expectations.
 - Learning expectations about capital stock causes opposite predictions for investment shocks.
- Learning failures:
 - Fails to explain persistence.
 - Fails to explain Great Inflation / Great Moderation

- Summary of findings:
 - Learning does not better explain data.
 - No capital: negligible differences in forecast errors, shocks, and expectations.
 - Making shocks unobservable causes MLE to predict more volatile shocks.
 - Best fitting models: Learning without observable shocks.
 - Worst fitting models: Pre-sample initial conditions.
 - Unobservable shocks creates less volatile expectations.
 - Learning expectations about capital stock causes opposite predictions for investment shocks.
- Learning failures:
 - Fails to explain persistence.
 - Fails to explain Great Inflation / Great Moderation

- Summary of findings:
 - Learning does not better explain data.
 - No capital: negligible differences in forecast errors, shocks, and expectations.
 - Making shocks unobservable causes MLE to predict more volatile shocks.
 - Best fitting models: Learning without observable shocks.
 - Worst fitting models: Pre-sample initial conditions.
 - Unobservable shocks creates less volatile expectations.
 - Learning expectations about capital stock causes opposite predictions for investment shocks.
- Learning failures:
 - Fails to explain persistence.
 - Fails to explain Great Inflation / Great Moderation

- Summary of findings:
 - Learning does not better explain data.
 - No capital: negligible differences in forecast errors, shocks, and expectations.
 - Making shocks unobservable causes MLE to predict more volatile shocks.
 - Best fitting models: Learning without observable shocks.
 - Worst fitting models: Pre-sample initial conditions.
 - Unobservable shocks creates less volatile expectations.
 - Learning expectations about capital stock causes opposite predictions for investment shocks.
- Learning failures:
 - Fails to explain persistence.
 - Fails to explain Great Inflation / Great Moderation

- Summary of findings:
 - Learning does not better explain data.
 - No capital: negligible differences in forecast errors, shocks, and expectations.
 - Making shocks unobservable causes MLE to predict more volatile shocks.
 - Best fitting models: Learning without observable shocks.
 - Worst fitting models: Pre-sample initial conditions.
 - Unobservable shocks creates less volatile expectations.
 - Learning expectations about capital stock causes opposite predictions for investment shocks.
- Learning failures:
 - Fails to explain persistence
 - Fails to explain Great Inflation / Great Moderation

Conclusion

- Summary of findings:
 - Learning does not better explain data.
 - No capital: negligible differences in forecast errors, shocks, and expectations.
 - Making shocks unobservable causes MLE to predict more volatile shocks.
 - Best fitting models: Learning without observable shocks.
 - Worst fitting models: Pre-sample initial conditions.
 - Unobservable shocks creates less volatile expectations.
 - Learning expectations about capital stock causes opposite predictions for investment shocks.

Learning failures:

- Fails to explain persistence.
- Fails to explain Great Inflation / Great Moderation.

- Summary of findings:
 - Learning does not better explain data.
 - No capital: negligible differences in forecast errors, shocks, and expectations.
 - Making shocks unobservable causes MLE to predict more volatile shocks.
 - Best fitting models: Learning without observable shocks.
 - Worst fitting models: Pre-sample initial conditions.
 - Unobservable shocks creates less volatile expectations.
 - Learning expectations about capital stock causes opposite predictions for investment shocks.
- Learning failures:
 - Fails to explain persistence.
 - Fails to explain Great Inflation / Great Moderation.

- Summary of findings:
 - Learning does not better explain data.
 - No capital: negligible differences in forecast errors, shocks, and expectations.
 - Making shocks unobservable causes MLE to predict more volatile shocks.
 - Best fitting models: Learning without observable shocks.
 - Worst fitting models: Pre-sample initial conditions.
 - Unobservable shocks creates less volatile expectations.
 - Learning expectations about capital stock causes opposite predictions for investment shocks.
- Learning failures:
 - Fails to explain persistence.
 - Fails to explain Great Inflation / Great Moderation.

