Лекція 22

Принцип максимуму гармонічних функцій

[6, стор. 97 - 111]

Теорема 1 (принцип максимуму гармонічних функцій) Якщо гармонічна в скінченій області функція досягає у внутрішній точці цієї області свого максимального або мінімального значення, то ця функція є тотожна константа.

Доведення Нехай u(x) гармонічна функція в обмеженій області Ω і досягає в точці $x_{\scriptscriptstyle 0}$ $\in \Omega$ свого максимального значення. Розглянемо кулю $U(x_{\scriptscriptstyle 0}, R_{\scriptscriptstyle 0})$ $\in \Omega$ максимально великого радіусу.

Оскільки $u(x_0) = \max_{x \in \Omega} u(x)$, то значення функції u(x), коли $x \in S(x_0, R_0)$ задовольняє нерівності $u(x) \le u(x_0)$.

Тобто ми прийшли до протиріччя з припущенням, що $\exists \xi \in S(x_{_0}, R_{_0})$, що $u(\xi) < u(x_{_0})$. Це означає, що $u(x) = u(x_{_0})$, $x \in S(x_{_0}, R_{_0})$.

Оскільки ця рівність має місце для кулі будь — якого радіусу $\pmb{R} \leq \pmb{R}_{\scriptscriptstyle 0}$, то це означає, що $\pmb{u}(\pmb{x}) \equiv \pmb{u}(\pmb{x}_{\scriptscriptstyle 0})$ коли $\pmb{x} \in \pmb{U}(\pmb{x}_{\scriptscriptstyle 0}, \pmb{R}_{\scriptscriptstyle 0})$.

Покажемо тепер, що функція ${\it u}(x)$ \equiv ${\it u}(x_{\scriptscriptstyle 0})$, коли x \in Ω .

Для цього виберемо довільну точку $m{x}^*\in\Omega$, то з'єднаємо її з точкою $m{x}_0$ ламаною. Побудуємо послідовність куль $m{U}(m{x}_i, m{R}_i), m{i}=0..N$ з такими властивостями: центри куль $m{x}_i, m{i}=1..N$ належать ламаній. $m{x}_{i+1}\in m{U}(m{x}_i, m{R}_i)\subset\Omega, \ m{i}=1,N$, $m{x}^*\in m{U}(m{x}_N, m{R}_N)$.

Оскільки центр кожної наступної кулі з номером i+1, лежить всередині кулі з номером i, то використовуючи метод математичної індукції, ми можемо

встановити властивість: якщо функція $u(x)\equiv u(x_{_0})$ коли $x\in U(x_{_i},R_{_i})$, то $u(x)\equiv u(x_{_0})$, коли $x\in U(x_{_{i+1}},R_{_{i+1}})$. Це означає, що $u(x)\equiv u(x_{_0})$, коли $x\in U(x_{_N},R_{_N})$. Зокрема, це означає, що $u(x^*)\equiv u(x_{_0})$. І теорема доведена.

Наслідки з принципу максимуму

Наслідок 1 Гармонічна функція відмінна від тотожної константи не досягає в скінченій області ні свого максимального ні свого мінімального значення.

Наслідок 2 Якщо функція гармонічна в області Ω і неперервна в $\overline{\Omega}$, то свої максимальне і мінімальне значення вона приймає на границі області.

Наслідок 3 Якщо функція гармонічна в області Ω і неперервна в $\overline{\Omega}$, то $\left|u(x)\right| \leq \max \left|u(x)\right|$.

Наслідок 4 Нехай u(x),v(x) - гармонічні функції в області Ω і має місце нерівність $u(x)\leq v(x),\ x\in S$, то $u(x)\leq v(x),\ x\in \Omega$.

Оператор Лапласа в циліндричній та сферичній системах координат

Якщо замість прямокутних координат x,y,z ввести ортогональні криволінійні координати q_1,q_2,q_3 за допомогою співвідношень

$$q_i = f_i(x, y, z), i = 1, 2, 3$$
 (5.8),

які дозволяють записати обернені перетворення

$$x = \varphi_1(q_1, q_2, q_3), \ y = \varphi_2(q_1, q_2, q_3), \ z = \varphi_3(q_1, q_2, q_3)$$
 (5.9).

Загальний вигляд оператора Лапласа в криволінійних координатах має вигляд:

$$\Delta u = \frac{1}{H_1 H_2 H_3} \left[\frac{\partial}{\partial q_1} \left(\frac{H_2 H_3}{H_1} \frac{\partial u}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{H_1 H_3}{H_2} \frac{\partial u}{\partial q_2} \right) + \frac{\partial}{\partial q_3} \left(\frac{H_2 H_1}{H_3} \frac{\partial u}{\partial q_3} \right) \right]$$
(5.10).

Де
$$\begin{cases} \boldsymbol{H}_{1}^{2} = \left(\frac{\partial \boldsymbol{\varphi}_{1}}{\partial \boldsymbol{q}_{1}}\right)^{2} + \left(\frac{\partial \boldsymbol{\varphi}_{2}}{\partial \boldsymbol{q}_{1}}\right)^{2} + \left(\frac{\partial \boldsymbol{\varphi}_{3}}{\partial \boldsymbol{q}_{1}}\right)^{2} \\ \boldsymbol{H}_{2}^{2} = \left(\frac{\partial \boldsymbol{\varphi}_{1}}{\partial \boldsymbol{q}_{2}}\right)^{2} + \left(\frac{\partial \boldsymbol{\varphi}_{2}}{\partial \boldsymbol{q}_{2}}\right)^{2} + \left(\frac{\partial \boldsymbol{\varphi}_{3}}{\partial \boldsymbol{q}_{2}}\right)^{2} \\ \boldsymbol{H}_{3}^{2} = \left(\frac{\partial \boldsymbol{\varphi}_{1}}{\partial \boldsymbol{q}_{3}}\right)^{2} + \left(\frac{\partial \boldsymbol{\varphi}_{2}}{\partial \boldsymbol{q}_{3}}\right)^{2} + \left(\frac{\partial \boldsymbol{\varphi}_{3}}{\partial \boldsymbol{q}_{3}}\right) \end{cases}$$
 (5.11).

<u>Для сферичної системи координат</u> $q_1 = r, q_2 = \theta, q_3 = \phi,$ Формули (5.9) мають вигляд $x = r \sin \theta \cos \phi, x = r \sin \theta \sin \phi, z = r \cos \theta, H_1 = 1, H_2 = r, H_3 = r \sin \theta$

Таким чином оператор Лапласа у сферичній системі координат матиме вигляд.

$$\Delta_{r,\varphi,\theta} u = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial u}{\partial r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial u}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \phi^2}$$
 (5.12).

Для циліндричної системи координат $q_1 = \rho, \ q_2 = \varphi, \ q_3 = z,$

Формули (5.9), (5.11) мають вигляд $x = \rho \cos \varphi$, $x = \rho \sin \varphi$, z = z

$$H_1 = 1, H_2 = \rho, H_3 = 1.$$

Оператор Лапласа в циліндричній системі координат має вигляд:

$$\Delta_{\rho,\phi,z} \boldsymbol{u} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \boldsymbol{u}}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \boldsymbol{u}}{\partial \phi^2} + \frac{\partial^2 \boldsymbol{u}}{\partial z^2}$$
 (5.13).

Якщо функція $m{u}$ не залежить від змінної $m{z}$, то отримуємо полярну систему координат і вираз оператора Лапласа в полярній системі координат:

$$\Delta_{\rho,\varphi} u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2}$$
 (5.14).

Перетворення Кельвіна гармонічних функцій.

Нехай функція $oldsymbol{u}$ гармонічна за межами кулі $oldsymbol{U}(0, oldsymbol{R})$, тоді функцію

$$v(y) = \left(\frac{R}{|y|}\right)^{n-2} u \left(\frac{R^2}{|y|^2} y\right)$$
 (5.15).

(в (5.15) використовується перетворення аргументу обернених радіус

векторів $x = \frac{R^2}{|y|^2}y$ або обернене $y = \frac{R^2}{|x|^2}x$) будемо називати перетворенням

Кельвіна гармонічної функції u(x) n - вимірному евклідовому просторі.

В подальшому будемо вважати, що R=1, цього завжди можна досягти шляхом зміни масштабу. Покажемо, що для n=3 перетворення Кельвіна v(y) гармонічної функції u(x) є гармонічною функцією аргументу y.

Легко показати, що перший доданок в операторі Лапласа (5.12) може бути записаний у вигляді $\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial u}{\partial r})=\frac{1}{r}\frac{\partial^2(ru)}{\partial r^2}$

Таким чином при $n=3,\ R=1$ (5.15) має вигляд $v(y)=\frac{1}{|y|}u\left(\frac{y}{|y|^2}\right)$. Оскільки

$$y = \frac{x}{|x|^2}$$
, а $x = \frac{y}{|y|^2}$, то $|y| = \frac{1}{|x|}$, або $v(y) = |x|u(x)$.

Покажемо, що функція $v(r',\theta,\varphi)=ru(r,\theta,\varphi)$. Де $r=rac{1}{r'}$, задовольняє рівнянню Лапласа, якщо $u(r,\theta,\varphi)$ - гармонічна функція.

Дійсно маємо

$$\begin{split} r\Delta_{r,\varphi,\theta}u &= \frac{\partial^{2}(ru)}{\partial r^{2}} + \frac{1}{r\sin\theta} \left[\frac{\partial}{\partial\theta} (\sin\theta \frac{\partial u}{\partial\theta}) + \frac{1}{\sin\theta} \frac{\partial^{2}u}{\partial\varphi^{2}} \right] = 0 = \\ &= \frac{\partial^{2}v}{\partial r^{2}} + \frac{1}{r^{2}\sin\theta} \left[\frac{\partial}{\partial\theta} (\sin\theta \frac{\partial v}{\partial\theta}) + \frac{1}{\sin\theta} \frac{\partial^{2}v}{\partial\varphi^{2}} \right] = r'^{2} \frac{\partial}{\partial r'} \left(r'^{2} \frac{\partial v}{\partial r'} \right) + \\ &\frac{r'^{2}}{\sin\theta} \left[\frac{\partial}{\partial\theta} (\sin\theta \frac{\partial v}{\partial\theta}) + \frac{1}{\sin\theta} \frac{\partial^{2}v}{\partial\varphi^{2}} \right] = r'^{4} \Delta_{r',\varphi,\theta} v(r',\theta,\varphi) = 0 \end{split}$$

При отриманні останньої рівності було враховано що $\frac{\partial v}{\partial r} = -r'^2 \frac{\partial v}{\partial r'}, \frac{\partial^2 v}{\partial r^2} = r'^2 \frac{\partial}{\partial r'} \left(r'^2 \frac{\partial v}{\partial r'} \right).$

Аналогічно тому, як було показана гармонічність $v(y) = \frac{1}{|y|} u \left(\frac{y}{|y|^2} \right)$ у

тривимірному евклідовому просторі, можна показати гармонічність функції $v\left(\,y\,\right) = u\!\left(\frac{y}{\left|\,y\,\right|^2}\,\right)$ у двовимірному евклідовому просторі.

Лекція 22

Гармонічність в нескінченно віддаленій точці та поведінка гармонічних функцій на нескінченості.

Означення Будемо говорити, що функція u(x) є гармонічною функцією в нескінченно віддаленій точці , якщо функція

$$v(y) = \begin{cases} \frac{1}{|y|} u \left(\frac{y}{|y|^2} \right), & n = 3 \\ u \left(\frac{y}{|y|^2} \right), & n = 2 \end{cases}$$

$$(5.16)$$

є гармонічною функцією в точці нуль. Легко бачити, що $v(y) = \begin{cases} |x|u(x), & n=3\\ u(x), & n=2 \end{cases}$

Теорема 2 (про поведінку гармонічних функцій в нескінченно віддалені точці в просторі) Якщо при n=3 функція u(x) гармонічна в нескінченно віддаленій точці, то при $|x| \to \infty$ функція прямує до нуля не повільніше $\frac{1}{|x|}$, а частинні похідні ведуть себе

як
$$\boldsymbol{D}^{\alpha}\boldsymbol{u}(\boldsymbol{x}) = \boldsymbol{O}\left(\frac{1}{|\boldsymbol{x}|^{1+|\alpha|}}\right).$$

Теорема 3 (про поведінку гармонічних функцій в нескінченно віддалені точці на площині) Якщо при n=2 функція u(x) гармонічна в нескінченно віддаленій точці, то при $|x| \to \infty$ функція u(x) обмежена, а частинні похідні ведуть себе як $D^{\alpha}u(x) = O\left(\frac{1}{|x|^{1+|\alpha|}}\right)$.

Гармонічні функції які мають поведінку на нескінченості визначену

теоремами 1 та 2 для тривимірного і двовимірного просторів називають регулярними на нескінченості гармонічними функціями , а відповідні оцінки умовами регулярності на нескінченості.

Единість гармонічних функцій

Нехай U(x) - гармонічна функція в обмеженій області Ω з границею S , тоді має місце рівності Діріхле

$$\iiint_{\Omega} |\mathbf{grad} U|^2 dx = \iint_{S} U \frac{\partial U}{\partial n} dS$$
 (5.17).

Нехай U(x) - гармонічна функція області $U(0,R)/\Omega$ з границями S та S(0,R) , де R як завгодно велике число, тоді має місце рівності Діріхле

$$\iiint_{U(0,R)/\Omega} |gradU|^2 dx = \iint_{S} U \frac{\partial U}{\partial n} dS + \iint_{S(0,R)} U \frac{\partial U}{\partial n} dS$$
 (5.18).

Для доведення рівності Дірихле (5.17) достатньо записати очевидну ціпочку рівностей.

$$0 = \iiint_{\Omega} U(x)\Delta U(x)dx = \iiint_{\Omega} U(x)div(gradU(x))dx = \iint_{S} U(x)(gradU(x),n)dS - \iiint_{\Omega} |gradU(x)|^{2}dx$$

Аналогічно можна довести і рівність (5.18)

При формулюванні теорем єдиності гармонічних функцій ми скрізь будемо припускати існування відповідної гармонічної функції, хоча сам факт існування гармонічної функції ми доведемо пізніше.

Теорема 4 (Перша теорема єдиності гармонічних функцій) Якщо в обмеженій області Ω , (або в області $\Omega' = R^3/\Omega$) існує гармонічна функція (або гармонічна функція регулярна на нескінченості), яка приймає на поверхні S задані значення, то така функція єдина.

Доведення Припустимо, що в області Ω існує принаймні дві гармонічні

функції, які приймають на поверхні S однакові значення $\begin{cases} \Delta u_i(x) = 0, \ x \in \Omega \\ u_i|_{x=0} = f, \ i=1,2 \end{cases}$

$$\begin{cases} \Delta u_i(x) = 0, & x \in \Omega \\ u_i|_{x \in S} = f, & i = 1, 2 \end{cases}$$

Для функції
$$\pmb{u}(\pmb{x}) = \pmb{u}_{_1}(\pmb{x}) - \pmb{u}_{_2}(\pmb{x})$$
 будемо мати задачу
$$\begin{cases} \Delta u(\pmb{x}) = 0, \ \pmb{x} \in \Omega \\ u\big|_{\pmb{x} \in S} = 0, \end{cases}$$

Застосуємо рівність Діріхле для функції u(x). Будемо мати

 $\iiint_{\Omega} |gradu|^2 dx = \iint_{\Omega} u \frac{\partial u}{\partial n} dS = 0$. Звідси маємо, що $gradu(x) \equiv 0, x \in \Omega$. Остання рівність означає, що $u(x)\equiv const, x\in\overline{\Omega}$, а оскільки $u(x)=0, x\in S$, $u(x) \equiv 0, x \in \Omega$. Тобто ми маємо, що $u_1(x) \equiv u_2(x)$.

Покажемо справедливість теореми для області Ω' .

Припускаючи існування двох регулярних гармонічних приймають на поверхні S однакові значення $\begin{cases} \Delta u_i(x) = 0, \ x \in \Omega' \\ u_i|_{x \in S} = f, \ i = 1,2 \end{cases}$ отримаємо для

функції
$$u(x) = u_1(x) - u_2(x)$$
 задачу
$$\begin{cases} \Delta u(x) = 0, \ x \in \Omega' \\ u\big|_{x \in S} = 0, \ u(x) = O\bigg(\frac{1}{|x|}\bigg), x \to \infty \end{cases}$$
 Застосуємо для $u(x)$ рівність (5.18)
$$\iiint_{U(0,R)/\Omega} \left| \operatorname{grad} u \right|^2 dx = \iint_S u \frac{\partial u}{\partial n} dS + \iint_{S(0,R)} u \frac{\partial u}{\partial n} dS = \iint_{S(0,R)} u \frac{\partial u}{\partial n} dS \ .$$

Спрямуємо радіус кулі ${\it R}$ до нуля і врахуємо умову регулярності на нескінченості $\iiint_{\Omega'} \left| gradu \right|^2 dx = \lim_{R \to \infty} \iint_{S(\Omega,R)} u \frac{\partial u}{\partial n} dS = \lim_{R \to \infty} O\left(\frac{1}{R^3}\right) \iint_{S(\Omega,R)} dS = 0$.

чином $u(x) \equiv const, x \in \Omega'$, а оскільки $u(x) = 0, x \in S$, TO $u_1(x) \equiv u_2(x), x \in \Omega'$

Теорема 5 (Друга теорема єдиності гармонічних функцій) Якщо в обмеженій області Ω , (або в області $\Omega' = \mathbf{R}^3/\Omega$) існує гармонічна функція (або гармонічна функція регулярна на нескінченості), яка приймає на поверхні S задані значення своєї нормальної похідної $\frac{\partial \pmb{u}}{\partial \pmb{n}}\Big|_{x\in S}$, то в області Ω вона визначається с точністю до адитивної константи, а в області Ω' вона єдина.

Доведення Припустимо, що в області Ω існує принаймі дві гармонічні функції, які приймають на поверхні S однакові значення нормальної похідної

$$\left\{ egin{aligned} \Delta \pmb{u}_i(\pmb{x}) &= 0, \;\; \pmb{x} \in \Omega \\ \left. rac{\partial \pmb{u}_i}{\partial \pmb{n}}
ight|_{\pmb{x} \in S} &= f, \;\; i = 1,2 \end{aligned}
ight.$$
 Для функції $\pmb{u}(\pmb{x}) = \pmb{u}_1(\pmb{x}) - \pmb{u}_2(\pmb{x})$ будемо мати

$$\left\{ egin{aligned} \Delta m{u}(m{x}) &= 0, \ m{x} \in \Omega \ \hline \partial m{u} \Big|_{m{x} \in S} &= 0, \end{aligned}
ight.$$
 Для функції $m{u}(m{x})$ використаємо рівність Дірихле

$$\iiint_{\Omega} \left| \operatorname{gradu} \right|^2 dx = \iint_{S} u \frac{\partial u}{\partial n} dS = 0, \quad \text{ тобто} \quad \operatorname{gradu}(x) \equiv 0, x \in \Omega, \quad \boldsymbol{u}(\boldsymbol{x}) \equiv \boldsymbol{const}.$$

Константа залишається невизначеною і таким сином $u_1(x) = u_2(x) + const$.

Покажемо справедливість теореми для області Ω' .

Припускаючи існування двох регулярних гармонічних функцій які

приймають на поверхні
$$S$$
 однакові значення
$$\begin{cases} \Delta \pmb{u}_i(\pmb{x}) = 0, \; \pmb{x} \in \Omega' \\ \frac{\partial \pmb{u}_i}{\partial \pmb{n}} \bigg|_{\pmb{x} \in S} = \pmb{f} \;, \; i = 1,2 \end{cases}$$
 отримаємо

для функції
$$\mathbf{u}(\mathbf{x}) = \mathbf{u}_{_1}(\mathbf{x}) - \mathbf{u}_{_2}(\mathbf{x})$$
 задачу
$$\begin{cases} \frac{\Delta \mathbf{u}(\mathbf{x}) = 0, \ \mathbf{x} \in \Omega'}{\frac{\partial \mathbf{u}}{\partial \mathbf{n}}\Big|_{\mathbf{x} \in S}} = 0, \end{cases}$$

Застосуємо для u(x) рівність (5.18)

$$\iiint_{U(0,R)/\Omega} |gradu|^2 dx = \iint_{S} u \frac{\partial u}{\partial n} dS + \iint_{S(0,R)} u \frac{\partial u}{\partial n} dS = \iint_{S(0,R)} u \frac{\partial u}{\partial n} dS.$$

Спрямуємо радіус кулі $\emph{\textbf{R}}$ до нуля і врахуємо умову регулярності на нескінченості. В результаті будемо мати

$$\iiint_{\Omega'} |gradu|^2 dx = \lim_{R \to \infty} \iint_{S(0,R)} u \frac{\partial u}{\partial n} dS = \lim_{R \to \infty} O\left(\frac{1}{R^3}\right) \iint_{S(0,R)} dS = 0$$

Таким чином $u(x)\equiv const, x\in\Omega'$, а оскільки $\lim_{x\to\infty}u(x)=0$, то $u(x)\equiv0$, а $u_1(x)\equiv u_2(x)$ Друга теорема єдиності доведена .

Теорема 6 (Третя теорема єдиності гармонічних функцій) Якщо в обмеженій області Ω , (або в області $\Omega' = R^3/\Omega$) існує гармонічна функція (або гармонічна функція регулярна на нескінченості), яка приймає на поверхні S задані значення лінійної комбінації нормальної похідної та функції $\frac{\partial u}{\partial n} + \alpha(x)u \Big|_{x \in S}$, $\alpha \ge 0$, то в області Ω та в області Ω' вона визначається єдиним чином.

Теорему 6 довести самостійно.

§ 6 Рівняння Гельмгольца, деякі властивості його розв'язків

[6, стор. 349 - 353], [1, стор. 438 - 441]

$$\begin{cases} a^{2} \Delta u(x,t) - \frac{\partial^{2} u}{\partial t^{2}} = -F(x,t), x \in \Omega, \\ l_{i} u|_{x \in S} = f(x,t) \end{cases}$$
(6.1).

В задачі (6.1) відсутні початкові умови у зв'язку з тим, що розглядаються спеціальні значення функції F(x,t) та f(x,t). А саме ми вважаємо, що ці функції є періодичними по аргументу t з однаковим періодом.

Покладемо, що
$$F(x,t) = F_1(x)\cos(\omega t) - F_2(x)\sin(\omega t)$$
,
$$f(x,t) = f_1(x)\cos(\omega t) - f_2(x)\sin(\omega t) \tag{6.2}$$

Можна очікувати, що в результаті доволі тривалої дії таких збурень розв'язок задачі при будь — яких початкових умовах теж буде періодичним , тобто $u(x,t) = V_1(x)\cos(\omega t) - V_2(x)\sin(\omega t) \,. \tag{6.3}$

Підставляючи (6.3) в задачу (6.1), отримаємо

$$\left(\Delta V_1 + \frac{\omega^2}{a^2} V_1\right) \cos(\omega t) - \left(\Delta V_2 + \frac{\omega^2}{a^2} V_2\right) \sin(\omega t) = -\frac{F_1}{a^2} \cos(\omega t) + -\frac{F_2}{a^2} \sin(\omega t)$$
$$\cos(\omega t) l_i V_1 \Big|_{v \in S} - \sin(\omega t) l_i V_2 \Big|_{v \in S} = f_1 \cos(\omega t) - f_2 \sin(\omega t)$$

Оскільки функції $\sin(\omega t),\cos(\omega t)$ - лінійно незалежні, то для амплітуди

 $V_i(x)$,i = 1,2 отримаємо рівняння Гельмгольца

$$\begin{cases}
\Delta V_{j}(x) + \frac{\omega^{2}}{a^{2}} = -\frac{F_{j}}{a^{2}}, & x \in \Omega, j = 1, 2 \\
\left| l_{i}V_{j} \right|_{x \in S} = f_{j}
\end{cases}$$
(6.4).

Аналогічний результат можна отримати, якщо ввести комплексну амплітуду $V=V_1+iV_2$, комплексну зовнішню силу та комплексну амплітуду граничної умови $F=F_1+iF_2,\ f=f_1+if_2.$

Шукаючи розв'язок (6.1) у вигляді
$$U(x,t) = V(x)e^{i\omega t}$$
 (6.5).

Отримаємо для комплексної амплітуди задача

$$\begin{cases}
\Delta V(x) + \frac{\omega^2}{a^2} = -\frac{F}{a^2}, & x \in \Omega, \\
l_i V|_{x \in S} = f
\end{cases}$$
(6.4')

Другим джерелом виникнення рівняння Гельмгольца є стаціонарне рівняння дифузії при наявності в середовище процесів , що ведуть до розмноження речовини. Такі процеси наприклад виникають при дифузії нейтронів. Рівняння має вигляд:

$$\Delta V(x) + \frac{c}{D}V(x) = 0 \tag{6.6}$$

Де D - коефіцієнт дифузії, c - швидкість розмноження нейтронів.

Суттєвою відмінністю граничних задач для рівняння Гельмгольца від граничних задач рівняння Лапласа полягає в можливому порушенні єдиності розв'язку як для внутрішніх так і для зовнішніх задач.

Розглянемо таку граничну задачу:

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + 2k^2 u = 0, \ 0 < x < \pi; \ 0 < y < \pi \\ u(0, y) = u(\pi, y) = u(x, 0) = u(x, \pi) = 0 \end{cases}$$
(6.7).

При ${\it k}=0$ задача (6.7) має лише тривіальний розв'язок, що випливає з першої теореми єдності гармонічних функцій.

Нехай, ${\it k}$ - ціле число. Неважко перевірити, що в цьому разі задача (6.7) має 10

нетривіальний розв'язок $u(x,y) = \sin(kx)\sin(ky)$, а це в свою чергу означає, що задача з неоднорідними граничними умовами та неоднорідне рівняння Гельмгольца

$$\begin{cases}
\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + 2k^{2}u = -F(x, y), & 0 < x < \pi; \ 0 < y < \pi \\
u(0, y) = \varphi_{1}(y), & u(1, y) = \varphi_{2}(y), & u(x, 0) = \psi_{1}(x), & u(x, 1) = \psi_{2}(x)
\end{cases}$$
(6.8)

має неєдиний розв'язок , який визначається з точністю до розв'язку однорідного рівняння, тобто з точністю до функції $A\sin(kx)\sin(ky)$.

Розглянемо приклад зовнішньої задачі для однорідного рівняння Гельмгольца

$$\begin{cases} \Delta u(x) + k^2 u = 0, |x| > \pi, x = (x_1, x_2, x_3) \\ u(x)|_{|x|=\pi} = 0, \ u(x) \xrightarrow{|x| \to \infty} 0 \end{cases}$$
 (6.9).

При $\pmb{k}=0$. Гранична задача має лише тривіальний розв'язок тотожньо рівний нулю, що випливає з другої теореми єдиності гармонічних функцій. У випадку, коли \pmb{k} - ціле ми маємо, що розв'язком граничної задачі (6.9) окрім тотожного нуля буде функція $\pmb{u}(\pmb{x})=\frac{\sin(\pmb{k}|\pmb{x})|}{4\pi|\pmb{x}|}$. Легко перевірити, що ця функція задовольняє як однорідному рівнянню Гельмгольца (це уявна частина фундаментального розв'язку) так і граничній умові на сфері і умові на нескінченості.

Наявність нетривіального розв'язку у однорідної задачі означає неєдиність розв'язку відповідної неоднорідної задачі.