Modbus_RTU RS232 communication protocol

Version: Nov 2021 Version 1.0

Modbus_RTU communication protocol

- Communication data format
- Frame format
- Device register address
- > Fault code table
- Warning code description
- CRC checking algorithm

Communication data format

During communication, the data is returned with the form of words (WORD— 2 bytes). Each word is returned, the high byte is first and the low byte is last. If two words are returned continuously (such as long integer), the high word comes first, and the lower word comes last.

Data type	Number of registers	Number of bytes	Description	
Character type	1	1	Send back two characters at a time, if	
			there are less than two, use 0 to supple	
Integer	1	2	Send back at one time, high byte first,	
			low byte last	
Long integer	2	4	sent back in two words, with the high	
			word in the front and the low word in	
			the back	

Frame format

Register content querying (function code 03H)

The start and end address of the query must be a complete data block from the start address to end address, otherwise the returned data is incorrect. For example: the start address of the register of the device serial number is 186 and the length is 12, the start address cannot be between 186 to 198 when querying. As the same, the end address (start address + the number of read registers) cannot fall in this range (186 to 198)

Sending frame format of the host computer

Byte Order	Code	Example	Description
0	Device address	01H	Device address (1~247)
1	03H	03H	Function code
2	Start register address high byte	00H	Register address high 8 bits
3	Starting register address low byte	10H	Register address low 8 bits
4	High byte of the number of registers	00H	High 8 bits of the number of registers
5	Low byte of the number of registers	02H	Low 8 bits of the number of registers
6	High byte of CRC16 checking	C0H	CRC16 checking high 8 bits
7	low byte of CRC16 checking	СВН	CRC16 checking low 8 bit

Returning frame format after the lower computer parses successfully

Byte order	Code	Description
0	Device address	Device address (1~247)
1	03H	Function code
2	Number of returned data bytes(N)	N = number of registers*2
3	High byte of the first register data	
4	Low byte of the first register data	
	Nth register data high byte	
	Nth register data low byte	
N+3	High byte of CRC16 checking	
N+4	Low byte of CRC16 checking	

Returning frame format after the lower computer parses error data

Tretaining mame remar	and the ferror company	parete errer aanta
Byte order	Code	Description
0	Device address	Device address (1~247)
1	03H	Function code
2	Number of returned data bytes(N)	N = number of registers*2
3	The First 0	returns a total of Nth 0
4	The Second 0	
	The N+1th 0	
	The Nth 0	
N+3	High byte of CRC16 checking	
N+4	Low byte of CRC16 checking	

Reading register data for example:

Reading the data from the effective value of the mains voltage (start register 202) to the average value of the mains power, where the mains voltage returns 220.0v, the mains frequency returns 50.0Hz, and the average value of mains power returns 1200w

Host computer: 01 03 00 CA 00 03 25 F5

Lower computer: 01 03 06 08 FC 13 88 04 B0 F7 F3

Register content setting (function code 10H)

Sending frame format of the host computer

Byte Order	Code	Example	Description
0	Device address	01H	address range(1~247)
1	10H	10H	Function code
2	High byte of start register address	01H	Register address high 8 bits
3	Low byte of Start register address	10H	Register address low 8 bits
4	High byte of the number of registers	00H	High 8 bits of the number of registers (Constantly equal to 0)
5	Low byte of the number of registers	02H	Low 8 bits of the number of registers
6	Number of bytes to be written (N)		N = number of registers*2
7	High byte of the first register data		
8	Low byte of the first register data		
	High byte of the Nth register data		
	Low byte of the Nth register data		
N+7	High byte of CRC16 checking		CRC16 checking high 8 bits
N+8	Low byte of CRC16 checking		CRC16 checking low 8 bits

Returning frame format after the lower computer parses successfully

Byte Order	Code	Example	Description
0	Device address	01H	address range (1~247)
1	10H	10H	Function code
2	High byte of start register address	01H	Register address high 8 bits
3	Low byte of start register address	10H	Register address low 8 bits
4	High byte of the number of registers	00H	High 8 bits of the number of registers (Constantly equal to 0)
5	Low byte of the number of registers	02H	Low 8 bits of the number of registers
6	High byte of CRC16 checking	41H	CRC16 checking high 8 bits
7	Low byte of CRC16 checking	F1H	CRC16 checking low 8 bits

Returning frame format after the lower computer parses error data

Byte Order	Code	Description
0	Device address	address range(1~247)
1	90H	Function code
2	Error Code	Error Code
3	High byte of CRC16 checking	CRC16 check high 8 bits
4	Low byte of CRC16 checking	CRC16 check low 8 bits

Error code description

Code	Description
01H	Read-only register
03H	Write data beyond the acceptable range
07H	Registers are not allowed to be modified in the current working mode

Writing register data for example:

Set the output voltage (start register 320) as 220v Host computer: 01 10 01 40 00 01 08 98 BE 3A Lower computer: 01 10 01 40 00 01 01 E1

Device register address

R: it could be only-read and 03 H command could be supported.

W: it could be only-written and 10 H command could be supported.

➤ Int: integer; Long: long integer; UInt: unsigned integer; ULong: unsigned long integer; ASC: ASCII code

> Max: Maximum value; Min: Minimum value

All addresses are expressed with decimal in the following table

Data Name	Unit	Data	Initial	Number of	Read	Remarks
		format	Address	registers		
Fault code		ULong	100	2	R	32-bit fault code, each
						bit corresponds to a fault
						code, see the fault code
						table for details, fault
						code 1 corresponds to
						bit1, fault code 2
						corresponds to bit2, and
						so on
Reserve			102	2		Reserve address
Reserve			104	2		Reserve address
Reserve			106	2		Reserve address
Obtain warning code		ULong	108	2	R/W	32-bit warning code see
						the warning code
						description for details
Reserve			110	62		Reserve address
Reserve			171	1		Reserve address
Reserve			172	12	R	Reserve address
Invalid data		UInt	184	1	R	
Reserve			185	1		Reserve address
Series NO.		ASC	186	12	R	
Reserve			198	2		Reserve address
Invalid data		UInt	200	1		Internal command
Working Mode		UInt	201	1	R	0: Power On Mode

	<u> </u>	Ī		1	1	
						1: Standby mode
						2: Mains mode
						3: Off-Grid mode
						4: Bypass mode
						5: Charging mode
						6: Fault mode
Effective mains voltage	0.1V	Int	202	1	R	
Mains Frequency	0.01Hz	Int	203	1	R	
Average mains power	1w	Int	204	1	R	
Affective inverter voltage	0.1V	Int	205	1	R	
Affective inverter current	0.1A	Int	206	1	R	
Inverter frequency	0.01Hz	Int	207	1	R	
Average inverter power	1W	Int	208	1	R	Positive numbers
						indicate inverter output,
						negative numbers
						indicate inverter input
Inverter charging power	1W	Int	209	1	R	
Output effective voltage	0.1V	Int	210	1	R	
Output effective Current	0.1A	Int	211	1	R	
Output frequency	0.01Hz	Int	212	1	R	
Output active power	1W	Int	213	1	R	
Output apparent power	1VA	Int	214	1	R	
Battery average voltage	0.1V	Int	215	1	R	
Battery average Current	0.1A	Int	216	1	R	
Battery average power	1w	Int	217	1	R	
invalid data			218	1		Internal command
PV average voltage	0.1V	Int	219	1	R	
PV average Current	0.1A	Int	220	1	R	
Reserve			221	2		Reserve address
PV average power	1W	Int	223	1	R	
PV charging average power	1W	Int	224	1	R	
load percentage	1%	Int	225	1	R	
DCDC Temperature	1℃	Int	226	1	R	
Inverter Temperature	1℃	Int	227	1	R	
Reserve			228	1		Reserve address
Battery percentage	1%	Ulnt	229	1	R	
Invalid Data			230	1		Internal command
Reserve			231	1		Reserve address
Battery average current	0.1A	Int	232	1	R	Positive number means
	J,					charging, negative
						number means
						discharging
Inverter charging average	0.1A	Int	233	1	R	
o.to. o.targing avorago	J. 17 t	1		I .	L .,	

current						
PV charging average	0.1A	Int	234	1	R	
current						
Invalid Data			235	1		Internal command
Invalid Data			236	1		Internal command
Reserve			237	63		Reserve address
Output Mode		Uint	300	1	R/W	0:Single;
output mode		- Cirit	000	'	1,0,0	1: Parallel;
						2: 3 Phase-P1
						3: 3 Phase-P2
						4: 3 Phase-P3
Output priority		Uint	301	1	R/W	0: Utility-PV-Battery
Output priority		Oiiit	301	'	IN/VV	1:PV-Utility-Battery
						2: PV-Battery-Utility
Input voltage range		Uint	302	1	R/W	0: Wide range
input voitage range		Oiiit	302	'	IN/VV	1: Narrow range
D		Llint	202	1	DAM	
Buzzer mode		Uint	303	1	R/W	0: Mute in all situations;
						1: Sound when the input
						source is changed or
						there is a specific
						warning or fault;
						2: Sound when there is a
						specific warning or fault;
						3: Sound when fault
						occurs;
Reserve			304	1	R/W	Reserve address
LCD backlight		Uint	305	1	R/W	0: Timed off;
						1: Always on;
LCD automatically returns		Uint	306	1	R/W	0: Do not return
to the homepage						automatically;
						1: Automatically return
						after 1 minute;
Energy-saving mode		Uint	307	1	R/W	0: Energy-saving mode
						is off;
						1: Energy-saving mode
						is on;
Overload automatic restart		Uint	308	1	R/W	0: Overload failure will
						not restart;
						1: Automatic restart after
						overload failure;
Over temperature		Uint	309	1	R/W	0: Over temperature
automatic restart						failure will not restart;
						1: Automatic restart after
						over-temperature fault

				Ι.	544	
Overload transfer to bypass		Uint	310	1	R/W	0: Disable;
enabled						1: Enable;
Reserve			311	2		Reserve address
Battery Eq mode is enabled		Uint	313	1	R/W	0: Disable;
						1: Enable;
Reserve			314	2		Reserve address
Reserve			316	1		Reserve address
Reserve			317	3		Reserve address
Output voltage	0.1v	Uint	320	1	R/W	
Output frequency	0.01Hz	Uint	321	1	R/W	
Reserve			322	1		Reserve address
Battery overvoltage	0.1V	Uint	323	1	R/W	
protection point						
Max charging voltage	0.1V	Uint	324	1	R/W	
Floating charging voltage	0.1V	Uint	325	1	R/W	
Battery discharge recovery	0.1V	Uint	326	1	R/W	
point in mains mode			5_5			
Battery low voltage	0.1V	Uint	327	1	R/W	
protection point in mains						
mode						
Reserve			328	1		Reserve address
Battery low voltage	0.1V	Uint	329	1	R/W	
protection point in off-grid						
mode						
Reserve			330	1		Reserve address
Battery charging priority		Uint	331	1	R/W	0: Utility priority;
, , ,						1: PV priority;
						2: PV is at the same
						level as the Utility;
						3: Only PV charging is
						allowed
Maximum charging current	0.1A	Uint	332	1	R/W	
Maximum mains charging	0.1A	Uint	333	1	R/W	
current						
Eq Charging voltage	0.1V	Uint	334	1	R/W	
	O. I V		1		l	
bat_eq_time I		Uint	335	1	R/W	Range: 0~900
bat_eq_time Eq Timeout exit	min	Uint	335 336	1		Range: 0~900 Range: 0~900
Eq Timeout exit	min min	Uint			R/W	Range: 0~900
Eq Timeout exit Two Eq charging intervals	min		336 337	1		Range: 0~900 Range:1~90
Eq Timeout exit	min min	Uint	336	1	R/W	Range: 0~900

Reserve			405	1		Reserve address
Turn on mode		Uint	406	1	R/W	0: Can be turn-on locally
						or remotely
						1: Only local turn-on
						2: Only remote turn-on
Reserve			407	13		Reserve address
Remote switch		Uint	420	1	R/W	0: Remote shutdown
						1: Remote turn-on
Invalid data			421	1		Internal command
Reserve			422	3		
Reserve			425			
Exit the fault mode		Uint	426		W	1: Exit the fault
						state(only when the
						inverter enters the fault
						mode, it could be
						available)
Invalid data			427	1		Internal command
Reserve			428	22		Reserve address
			450	7		Internal command
Reserve			457	3		Reserve address
Reserve			460	1		Reserve address
Reserve			461	1		Reserve address
Invalid data			462	6		Reserve address
Reserve			468	32		Reserve address
			500	34		Internal command
Reserve			534	66		Reserve address
			600	34		Internal command
Reserve			634	7		Reserve address
Reserve			641	2		Reserve address
Rated Power	W	Uint	643	1	R	
Reserve			644	1		Reserve address
Reserve			645	55		Reserve address
Reserve			700	2		Reserve address
Reserve			702	1		Reserve address
Reserve			703	26		Reserve address
Reserve			729	16		Reserve address
Reserve			745	s		Reserve address

Fault code table

Fault Code	Description
1	Over temperature of inverter module
2	Over temperature of DCDC module
3	Battery over voltage
4	Over temperature of PV module
5	Output short circuited
6	Over Inverter voltage
7	Output over load
8	Bus over voltage
9	Bus soft start times out
10	PV over current
11	PV over voltage
12	Battery over current
13	Inverter over current
14	Bus low voltage
15	Reserve
16	Inverter DC component is too high
17	Reserve
18	The zero bias of Output current is too large
19	The zero bias of inverter current is too large
20	The zero bias of battery current is too large
21	The zero bias of PV current is too large
22	Inverter low voltage
23	Inverter negative power protection
24	The host in the parallel system is lost
25	Synchronization signal abnormal in the parallel system
26	The battery type is incompatible
27	Parallel versions are incompatible

Warning code description

The system warning is a 32-bit unsigned long integer. Each bit corresponds to a warning. Each bit can be masked by the warning mask. After masking, the corresponding warning will not be read on the LCD, and it won't be read through commands.

Warning code table

Warming code table				
Warming code	Description			
bit 0	Reserve			
bit 1	Mains waveform abnormal			
bit 2	Reserve			
bit 3	Mains low voltage			
bit 4	Mains over frequency			
bit 5	Mains low frequency			
bit 6	PV low voltage			

Over temperature
Battery low voltage
Battery is not connected
Overload
Battery Eq charging
Battery is discharged at a low voltage and it has not been
charged back to the recovery point
Output power derating
Fan blocked
PV energy is too low to be use
Parallel communication interrupted
Output mode of Single and Parallel systems is
inconsistent
Battery voltage difference of parallel system is too large
Reserve

• CRC checking algorithm

Reference model: CRC-16/MODBUS X16+X15+X2+1

C language code

```
const char auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
```

```
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
};
const char auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06,
0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD,
0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A,
0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,
0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3,
0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,
0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29,
0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,
0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60,
0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67,
0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,
0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E,
0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,
0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,
0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,
0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B,
0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,
0x43, 0x83, 0x41, 0x81, 0x80, 0x40
};
unsigned short sModbusCrc16(INT8U *chMsg, INT16U dataLen)
{
    unsigned char ubCRCHi = 0xFF;
    unsigned char ubCRCLo = 0xFF;
    unsigned char duwIndex;
    while (dataLen --)
    {
        duwIndex = 0xff&(ubCRCHi ^ *chMsg++);
        ubCRCHi = 0xff&(ubCRCLo ^ auchCRCHi[duwIndex]);
        ubCRCLo = auchCRCLo[duwIndex];
    }
    return (ubCRCHi << 8 | ubCRCLo);
```