

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

FIG. - 1.

FIG. - 2.

FIG. - 3.

on Oct 27 14:18:11 1984

931154

Argument Map in DNA Strand ssarv2
from the '/v/lib/6mers' file.
Translation shown at open reading frames.

FIGURE 4
Page 1 of 12

-|||
mb0ff-f-mb0ff=1 ||-----|||-----|||-----|||-----|||-----|||
binI bgIIII sacI narf xmnI pstI
binI ava1-2 scaI sacI sacI binI
binI ecor5 scaI af111 hind111 mbo11-1
ecor5

---|||
---hind111 ---ahafII ---pstI ---bstXI ---ahafII ---apai
mbo11-1 ava3 aha111 mbo11-1 sphI hind111 mbo11-1 avr2
mbo11-1 pvu11 pstI pvu11 tthIIII-2
tthIIII-2

---|-|
---mb0ff=2 ---mb0ff=1 ---mb0ff=1 ---scat ---ava3 ---tthIIII-2
mbo11-1 bstXI aha111 tthIIII-2 ecor5
mbo11-1 bgl11 bal1 bstXI binI
bgl11 mbo11-1

---|-|---|-|
---binI ---bstXI ---mb0ff=1 ---ahafII ---hpa1 ---kpnI ---mb0ff=1
tthIIII-2 pvu11 aha111 aha111 mbo11-1 ava3
tthIIII-2

----|-|
----kpnI ---mb0ff=1 ---bstXI ---mb0ff=1 ---af111 ---hind111
scaI pvu11 xmnI scaI aha111 mbo11-1
ava3 bal1 binI mbo11-1
xba1 binI

-|-|
-ndei ---avr2 ---avr2 ---mb0ff=1 ---ecori ---avr2 ---mb0ff=1
scaI binI af111 mbo11-1 mbo11-1
binI avr2 xba1 scaI mlu1 hind111
nco1 mstII
mstII

-|-|
-scat ---ndei ---binI ---mb0ff=1 ---seuf ---mb0ff=1
mb0ff=1 mbo11-1 mbo11-1
mb0ff=1 bgl11 pvu11
mbo11-1

-|-|
---mb0ff=1 ---mb0ff=2 ---msfII ---|-|
mstII mbo11-1 binI avr2 mbo11-1
mbo11-1

Figure 4

Page 2 of 12

931154

mb011-1
mb011-1
mb011-1
mb011-1
bg111
mb011-2
aval-2
mb011-1
mb011-1
aval-1
tth1111-2
xh01
mst11
mb011-1
bin1
mb011-1
kpn1

1 CTGGAAAGGGCTAATTGGTCCAAAGAAGACAAGAGATCCTGATCTGTGGATCTACCAAC
GACCTTCCC GATTAAACCAGGGTTCTTCTGTTCTAGGAACTAGACACCTAGATGGTGTG
26 mbo11, 50 binI,
63 ACAAGGCCTACTTCCTGATTGGCAGAATTACACACCAGGGCCAGGGATCAGATATCCACT
TGTTCGATGAAGGGACTAACCGTCTTAATGTGTGGTCCCGGTCCCTAGTCTATAGGTGA
107 binI, 113 ecor5,
123 GACCTTGGATGGTGCTTCAAGCTAGTACCACTAGTTGAGCCAGAGAAGGTAGAAGAGGCCAA
CTGGAAACCTTACACAGTCGATCATGGTCAACTCGGTCTTCCATCTTCTCCGGTT
172 mbo11,
183 TGAAGGAGAGAACACAGCTTGTACACCCATGAGCCTGATGGGATGGAGGACGCGGA
ACTTCCTCTTGTGCAACAATGTGGGATACTCGGACGTACCCCTACCTCCTGCGCCT
243 GAAAAGTGTAGTGTGGAGGTTGACAGCAAACTAGCATTTCATCACATGGCCCGAGA
CTTTCTTACAATCACACCTCCAAACTGTCGTTGATCGTAAAGTAGTGTACCGGGCTCT
296 ava1,
303 GCTGCATCCGGAGTACTACAAAGACTGCTGACATCGAGCTTCTACAAGGGACTTTCCGC
CGACGTAGGCCTCATGATGTTCTGACGACTGTAGCTGAAAGATGTTCCCTGAAAGGCG
314 sca1,
363 TGGGGACTTCCAGGGAGGCCTGGCCTGGCGGGACTGGGAGTGGCGTCCCTCAGATGC
ACCCCTGAAAGGTCCCTCCGACCCGGCCCTGACCCCTCACCGCAGGGAGTCTACG
423 TGCATATAAGCAGACTGCTTTTGCCCTGTA CTTGGGACTGGGAGTGGCGTCCCTCAGATGC
ACGTATATTGCTGACGAAAAACGGACATGACCCAGAGAGACCAATCTGGCTAGACTC
474 bgl111,
483 CCTGGGAGCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAGCTTGCCTT
GGACCCCTCGAGAGACCGATTGATCCCTGGGTGACGAATTGGAGTTATTGCAACGGAA.
488 sac1, 518 ahl111, 532 hind111,
543 GAGTGCTTCAAGTAGTGTGCCCCGCTGTTGTGACTCTGGTAACTAGAGATCCCTCA
CTCACGAAGTTCATCACACACGGGACACAACACTGAGACCATTTGATCTCTAGGGAGT
603 GACCCCTTTAGTCAGTGTGGAAAAAAATCTCTAGCAGTGGCGCCCGAACAGGGACGCGAAAG
CTGGGAAATCAGTCACACCTTTAGAGATGTCACCGCGGGCTTGTCCCTGCGCTTTC
639 nar1,
663 CGAAAGTAGAACAGAGGGAGCTCTCGACGCGAGACTCGGCTTGTGAAGCGCGCACAG
GCTTTCATCTGGTCTCGAGAGAGCTGCGTCTGAGCCGAACGACTTCGCGCGTGTGTC
680 sac1,
723 CAAGAGGGCGAGGGGCGGCACGTGGTGAGTACGCCAATTTTGA CAGCGGAGGCTAGAAG
GTTCTCCGCTCCCCGCGCTGACCACTCATGCGGTTAAAAACTGATCGCCTCCGATCTTC
783 GAGAGAGAGATGGGTGCGAGAGCGTGGTATTAAAGCGGGGAGAATTAGATAAAATGGGAA
CTCTCTCTACCCACGCTTCGCGACCCATAATTGCCCCCTTTAATCTATTACCC

843 LysIleArgLeuArgProGlyGlyLysLysTyrLysLeuLysHisIleValTrpAla
 AAAATTGGTTAACGGCCAGGGGGAAAGAAAAATAAAGTAAAACATATAGTATGGGCA
 TTTAAGCCAATTCCGGTCCCCCTTCTTTTATATTCAATTGTATATCATAACCGT

 903 SerArgGluLeuGluArgPheAlaValAsnProGlyLeuLeuGluThrSerGluGlyCys
 AGCAGGGAGCTAGAACGATTGCAGTCATCCTGGCCTGTTAGAAACATCAGAAGGCTGC
 TCGTCCCTCGATCTTGCTAACCGTCAGTTAGGACGGACAATCTTGTAGTCTTCCGACG
 959 pst1,

 963 ArgGlnIleLeuGlyGlnLeuGlnProSerLeuGlnThrGlySerGluGluLeuArgSer
 AGACAAATAATTGGGACAGCTACAGCCATCCCTCAGACAGGATCAGAAGAACTTAGATCA
 TCTGTTATAACCCTGTCATGTCGGTAGGGAAAGTCTGTCTAGTCTTGAATCTAGT
 1002 bin1, 1008 mbo11,

 1023 LeuTyrAsnThrValAlaThrLeuTyrCysValHisGlnArgIleAspValLysAspThr
 TTATATAATACTAGTAGCAACCTCTATTGTGTACATCAAAGGATAGATGTAAAAGACACC
 AATATATTATGTATCGTTGGGAGATAACACATGTAGTTCTATCTACATTTCCTGTGG

 1083 LysGluAlaLeuGluLysIleGluGluGlnAsnLysSerLysLysLysAlaGlnGln
 AAGGAAGCTTAGAGAAGATAGAGGAAGGAGCAAACAAAAGTAAGAAAAAGGACAGCAA
 TTCCCTCGAAATCTCTATCTCGTTGGTGTTCATTCTTCCGTGTT
 1087 hind111, 1097 mbo11, 1107 mbo11, p25

 1143 AlaAlaAlaAlaAlaAlaGlyThrGlyAsnSerSerGlnValSerGlnAsnTyrProIleVal
 GCAGCAGCTGCAGCTGGCACAGGAAACAGCAGCCAGGTAGCCAAATTACCCATAGTG
 CGTCGTCGACGTCGACCGTGTCCCTTGTGTCGGTCCAGTCGGTTTAATGGGATATCAC
 1147 pvu11, 1150 pst1, 1153 pvu11, 1156 tthIII1,

 1203 GlnAsnLeuGlnGlyGlnMetValHisGlnAlaIleSerProArgThrLeuAsnAlaTrp
 CAGAACCTACAGGGCAAATGGTACATCAGGCCATATCACCTAGAACCTTAAATGCACTGG
 GTCTGGATGTCCCCGTTACCATGTAGTCGGTATAGTGGATCTTGAAATTACGTAC
 1250 aha111, 1255 ava3,

 1263 ValLysValValGluGluLysAlaPheSerProGluValIleProMetPheSerAlaLeu
 GTAAAAAGTAGTAGAAGAAAAGGCTTCAGCCCAGAAGTAATACCCATGTTTCAGCATT
 CATTTCATCATCTTCTTTCCGAAAGTCGGTCTTCATTATGGGTACAAAGTCGTAAT
 1275 mbo11,

 1323 SerGluGlyAlaThrProGlnAspLeuAsnThrMetLeuAsnThrValGlyGlyHisGln
 TCAGAAGGAGGCCACCCCACAAGATTAAACACCATGCTAAACACAGTGGGGACATCAA
 AGTCTTCCTCGGTGGGGTGTCTAAATTGTGGTACGATTGTGTCACCCCCCTGTAGTT
 1346 aha111,

 1383 AlaAlaMetGlnMetLeuLysGluThrIleAsnGluGluAlaAlaGluTrpAspArgVal
 GCAGCCATGCAAATGTTAAAGAGACTATCAATGAGGAAGCTGCAGAATGGGATAGAGTG
 CGTCGGTACGTTACAATTCTCTGATAGTTACTCCTCGACGTCTTACCCATCTCAC
 1423 pst1,

 1443 HisProValHisAlaGlyProIleAlaProGlyGlnMetArgGluProArgGlySerAsp
 CATCCAGTGCATGCAGGGCCTATTGCACCAAGGCTAAAGAGAACCAAGGGAAAGTGA
 GTAGGTACGTCACGTCCCGGATAACGTGGTCCGGTTACTCTTGGTCCCCCTCACTG
 1451 sph1,

 1503 IleAlaGlyThrThrSerThrLeuGlnGluGlnIleGlyTrpMetThrAsnAsnProPro
 ATAGCAGGAACTACTAGTACCCCTCAGGAACAAATAGGATGGATGACAAATAATCCACCT
 TATCGTCCTGATGATCATGGGAAGTCCTGTTATCCTACCTACTGTTATTAGGTGGA

 1563 IleProValGlyGluIleTyrLysArgTrpIleIleLeuGlyLeuAsnLysIleValArg
 ATCCCCAGTAGGAGAAATCTATAAAAGATGGATAATCCTGGGATTAAATAAAATAGTAAGA
 TAGGGTCATCCTCTTAGATATTTCTACCTATTAGGACCCATAATTATTCATTCT

 1623 MetTyrSerProThrSerIleLeuAspIleArgGlnGlyProLysGluProPheArgAsp
 ATGTATAGCCTACCAAGCATTCTGGACATAAGACAAGGACCAAAGGAACCCCTTAGAGAT
 TACATATCGGGATGGTCGAAGACCTGTATTCTGTTCTGGTTCTGGAAATCTCTA
 1636 bstXI,

 1683 TyrValAspArgPheTyrLysThrLeuArgAlaGluGlnAlaSerGlnAspValLysAsn
 TATGTAGACCGGTTCTATAAAACTCTAAAGAGGCCAACAGCTCACAGGATGTAAGAAAT
 ATACATCTGCCAACAGATATTTGAGATTCTCGGTTGTTCAAGTGTCTACATTTTTA
 1720 hind111,

931154

1743 TrpMetThrGluThrLeuLeuValGlnAsnAlaAsnProAspCysLysThrIleLeuLys
 TGGATGACAGAAACCTTGTGGTCCAAAATGCAACACCAGATTGTAAGACTATTTAAAAA
 ACCTACTGTCTTGGAACACCAGGTTTACGTTGGTCTAACATTCTGATAAAAATTT
 1796 aha111,

1803 AlaLeuGlyProAlaAlaThrLeuGluGluMetMetThrAlaCysGlnGlyValGlyGly
 GCATTGGGACCGAGCAGCTACACTAGAAAGAAATGATGACAGCATGTCAGGGAGTGGGGGG
 CGTAACCCCTGGTCGTGATGTGATCTCTTACTACTGTCGTACAGTCCCTCACCCCCCT
 1827 mbo11,

1863 ProGlyHisLysAlaArgValLeuAlaGluAlaMetSerGlnValThrAsnProAlaAsn
 CCCGGCCATAAAGCAAGAGTTTGGCTGAAGCCATGAGCCAAGTAACAAATCCAGCTAAC
 GGGCCGGTATTCGTTCTCAAAACCAGCTTCGGTACTCGGTTCATTGTTAGGTCGATTG
 p18

1923 IleMetMetGlnArgGlyAsnPheArgAsnGlnArgLysThrValLysCysPheAsnCys
 ATAATGATGAGCAGAGAGGCAATTAGGAAACCAAGAAAGACTGTTAAGTGTTCATTGT
 TATTACTACGTCTCTCCGTTAAAATCCTGGTTCTGACAATTACAAAGTTAAC
 1983 GlyLysGluGlyHisIleAlaLysAsnCysAsnGlnArgLysThrValLysCysPheAsnCys
 GGCAAAGAAGGGCACATAGCCAAAATTGCAAGGGCCCCTAGGAAAAAGGGCTGTTGGAGA
 CCGTTTCTTCCCCTGTTACGGTTAAACGTCCCCGGGATCCTTTCCCGACAACCTCT
 2014 apa1, 2019 avr2,

2043 CysGlyArgGluGlyHisGlnMetLysAspCysThrGluArgGlnAlaAsnPheLeuGly
 TGTTGGAAAGGGAGGGACACCAATGAAAGATTGCACGTGAGAGACAGGCTAATTAGGG
 ACACCTTCCCTTCTGTGGTTACTTTCTAACGTGACTCTGTCCGATTAAAAAATCCC
 2102 mbo11,

2103 LysIleTrpProSerTyrLysGlyArgProGlyAsnPheLeuGlnSerArgProGluPro
 AAGATCTGGCCTTCTACAAGGGAAAGGCCAGGGAAATTCTCAGAGCAGACAGAGGCCA
 TCTAGACCGGAAGGATGTTCCCTCCGGTCCCTAAAAGAAGTCTCGTCTGGTCTCGGT
 2104 bg111, 2141 mbo11,

2163 ThrAlaProProGluGluSerPheArgPheGlyGluGluLysThrThrProSerGlnLys
 ACAGCCCCACCAAGAGAGCTTCAGGTTGGGAGGAGAAAACAACCTCCCTCAGAAG
 TGTCGGGGTGGTCTTCTCTCGAAGTCCAAACCCCTCCTCTTGTTGAGGGAGAGCTTC
 2175 mbo11,

2223 GlnGluProIleAspLysGluLeuTyrProLeuThrSerLeuArgSerLeuPheGlyAsn
 CAGGAGCCGATAGACAAGGAACTGTATCCTTAACCTCCCTCAGATCACTCTTGGCAAC
 GTCCCTGGCTATCTGTTCTGACATAGGAAATTGAAGGGAGTCTAGTGAGAAACGTTG
 2283 AspProSerSerGlnOC
 GACCCCTCGTCACAATAAGGATAGGGGGGCAACTAAAGGAAGCTCTATTAGATAACAGGA
 CTGGGGAGCAGTGTATTCCCTATCCCCCGTTGATTCTCGAGATAATCTATGTCCT
 2342 MetAsnLeuProGlyLysTrpLysProLysMetIle
 GCAGATGATACAGTATTAGAAGAAATGAATTGCAAGGAAATGGAAACCAAAATGATA
 CGTCTACTATGTCATAATCTTCTTACTAAACGGTCTCTTACCTTTGGTTTACTAT
 2360 mbo11, 2375 bstXI,

2402 GlyGlyIleGlyGlyPheIleLysValArgGlnTyrAspGlnIleProValGluIleCys
 GGGGGAAATTGGAGGTAACTCAAAGTAAGACAGTACGATCAGATAACCTGTAGAAATCTGT
 CCTCTAACCTCCAAAATAGTTCTGCTAGTCTATGGACATCTTAGACA
 2462 GlyHisLysAlaIleGlyThrValLeuValGlyProThrProValAsnIleIleGlyArg
 GGACATAAAAGCTATAAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAAGA
 CCTGTATTCGATATCCATGTCATAATCATCCTGGATGTGGACAGTTGTATTAAACCTCT
 2517 mbo11,

2522 AsnLeuLeuThrGlnIleGlyCysThrLeuAsnPheProIleSerProIleGluThrVal
 AATCTGTTGACTCAGATTGGTGTACTTTAAATTCCCATAGTCCTATTGAAACTGTA
 TTAGACAACGTGAGTCTAACCAACATGAAATTAAAGGGTAATCAGGATAACTTGACAT
 2548 aha111, 2577 tthIII1,

2582 ProValLysLeuLysProGlyMetAspGlyProLysValLysGlnTrpProLeuThrGlu
 CCAGTAAAATTAAAGCCAGGAATGGATGGGCCAAAAGTTAGCAATGGCCATTGACAGAA
 GGTCTATTAAATTGGTCTTACCTACCGGGTTTCAATTGTTACCGGTAACGTGCTT
 2627 bai1, 2639 mbo11,

2642 GluLysIleLysAlaLeuValGluIleCysThrGluMetGluLysGluGlyLysIleSer
 GAAAAAAATAAAAGCATTAGTAGAGATATGTACAGAAATGGAAAAGGAAGGGAAAATTCA
 CTTTTTATTTCTGTAATCATCTATACATGTCTTACCTTTCCCTTTAAAGT

2702 LysIleGlyProGluAsnProTyrAsnThrProValPheAlaIleLysLysLysAspSer
 AAAATTGGGCCTGAAAATCCATAACAATACTCCAGTATTTGCTATAAAAGAAAAAAGACAGT
 TTTTAACCCGGACTTTAGGTATGTTATGAGGTCAAAACGATATTCTTTCTGTCA
 2759 sca1,
 2762 ThrLysTrpArgLysLeuValAspPheArgGluLeuAsnLysArgThrGlnAspPheTrp
 ACTAAATGGAGAAAAGTAGTTAGTCAAGAGAACTTAATAAAAGAACTCAAGACTTCTGG
 TGATTTACCTCTTTGATCATCTAAAGTCTTGAATTATTTCTTGAGTTCTGAAGACC
 2822 GluValGlnLeuGlyIleProHisProGlnGlyOC
 GAAGTTCAGTTAGGAATAACACACCCCGCAGGGTAAAAAAAAAGAAAAAAATCAGTAACAGTA
 CTCAGTCATCCTATGGTGTGGCGTCCCATAATTCTTTAGTCATTGTCA
 2882 TTGGATGTGGGTGATGCATACTTTCAAGTCCCTAGATAAAAGACTTAGAAAGTATACTG
 AACCTACACCCACTACGTATGAAAGTCAGGGAACTATTTCTGAAATCTTCATATGAC
 2895 ava3,
 2943 CATTACCATACCTAGTATAAACAAATGAGACACCCAGGGATTAGATATCAGTACAATGTGG
 MetArgHisGlnGlyLeuAspIleSerThrMetTrp
 GTAAATGGTATGGATCATATTGTTACTCTGTGGTCCCTATCTATAGTCATGTTACACC
 2985 ecor5,
 3003 LeuProGlnGlyTrpLysGlySerProAlaIlePheGlnSerSerMetThrLysIleLeu
 CTGCCACAGGGATGGAAAGGATCACCAAGCAATATTCAAAGTAGCATGACAAAAATCTTA
 GACGGTGTCCCTACCTTCTAGTGGTCGTTATAAGGTTCATCGTACTGTTTAGAAT
 3003 tthIII1, 3006 bstXI, 3021 binI,
 3063 GluProPheArgLysGlnAsnProAspIleValIleTyrGlnTyrMetAspAspLeuTyr
 GAGCCTTTAGAAAACAGAATCCAGACATAGTTATCTATCAATACATGGATGATTGTAT
 CTCGGAAAATCTTTGTCTTAGGTCTGTATCAATAGATAGTTATGTACCTACTAACATA
 3123 ValGlySerAspLeuGluIleGlyGlnHisArgThrLysIleGluGluLeuArgGlnHis
 GTAGGATCTGACTTAGAAATAAGGGCAGCAGTACAAGACAAAAATAGAGGAACACTGAGACAGCAT
 CATCCTAGACTGAATCTTATCCCGTCGTTCTGTTTATCTCCTGACTCTGTCGTA
 3126 binI, 3171 tthIII1,
 3183 LeuLeuArgTrpGlyPheThrThrProAspLysLysHisGlnLysGluProProPheLeu
 CTGTTGAGGTGGGGATTACACACACCAGACAAAAACATCAGAAAGAACCTCCATTCTT
 GACAACCTCCACCCCTAAATGGTGTGGTCTGTTTTGTAGTCTTCTGGAGGTAAAGGAA
 3234 bstXI,
 3243 TrpMetGlyTyrGluLeuHisProAspLysTrpThrValGlnProIleMetLeuProGlu
 TGGATGGGTATGAACCTCCATCCTGATAAAATGGACAGTACAGCCTATAATGCTGCCAGAA
 ACCTACCCAAACTTGAGGTAGGACTATTACCTGTCATGTCGGATATTACGACGGTCTT
 3303 LysAspSerTrpThrValAsnAspIleGlnLysLeuValGlyLysLeuAsnTrpAlaSer
 AAAGACAGCTGGACTGTCAATGACATAAGAAGTAGTGGAAAATTGAATTGGCAAGT
 TTTCTGTCGACCTGACAGTTACTGTATGTCCTCAATCACCCCTTAACTAACCGTTCA
 3308 pvu11,
 3363 GlnIleTyrAlaGlyIleLysValLysGlnLeuCysLysLeuLeuArgGlyThrLysAla
 CAGATTATGCAGGGATTAAAGTAAAGCAGTTATGTAACCTCCTAGAGGAACCAAAGCA
 GTCTAAATACGTCCTAAATTCTGTCATAACATTGAGGAATCTCCTGGTTCTG
 3423 LeuThrGluValIleProLeuThrGluGluAlaGluLeuGluLeuAlaGluAsnArgGlu
 CTAACAGAAAGTAATACCAACTAACAGAAGAAGCAGAGCTAGAAACTGGCAGAAAAACAGGGAG
 GATTGTCTTCATTATGGTGTCTCGTCTCGATCTGACCGTCTTGTCCCT
 3447 mbo11,
 3483 IleLeuLysGluProValHisGluValTyrTyrAspProSerLysAspLeuValAlaGlu
 ATTCTAAAAGAACCAAGTACATGGAGTATATTGACCCATCAAAAGACTTAGTAGCAGAA
 TAAGATTCTTCTGGTCATGTACTTCATATAACTGGTAGTTCTGAATCATCGTCTT
 3543 IleGlnLysGlnGlyGlnTrpThrTyrGlnIleTyrGlnGluProPheLysAsn
 ATACAGAACAGGGGCAAGGCCAATGGACATATCAAATTATCAAGAGCCATTAAAAAT
 TATGTCCTCGTCCCCGTTCCGGTTACCTGTATAGTTAAATAGTTCTCGGTAAATTAA
 3594 aha111,
 3603 LeuLysThrGlyLysTyrAlaArgMetArgGlyAlaHisThrAsnAspValLysGlnLeu
 CTGAAAACAGGAAAGTATGCAAGGATGAGGGGTGCCACACTAATGATGTAACAGTTA
 GACTTTGTCCTTCATACGTTCTACTCCCCACGGGTGTGATTACTACATTGTCAT
 3659 hpa1,

3663 ThrGluAlaValGlyLysValSerThrGluSerIleValIleTrpGlyLysIleAspLys
 ACAGAGGCAGTGCACAGAAAGCATAGTAATATGGGGAAAGATTCTAAATGTCCTCGTCACGTTTCATAGGTGTCTTCGTATCATTATAACCCCTTCTAAGGATT
 TGTCCTCGTCACGTTTCATAGGTGTCTTCGTATCATTATAACCCCTTCTAAGGATT

 3723 PheLysLeuProIleGlnLysGluThrTrpGluAlaTrpTrpMetGluTyrTrpGlnAla
 TTTAAACTACCCATACAAAAGGAAACATGGGAAGCATGGTGGATGGAGTATTGGCAAGCT
 AAATTGATGGGTATGTTCTTGTACCCCTCGTACCACTACCTCATAACCCTCGA
 3723 aha111,

 3783 ThrTrpIleProGluTrpGluPheValAsnThrProProLeuValLysLeuTrpTyrGln
 ACCTGGATTCCCTGAGTGGGAGTTGTCAATACCCCTCCCTAGTGAATTATGGTACCAAG
 TGGACCTAAGGACTCACCCCTCAAACAGTTATGGGGAGGGAACTCACTTAATACCATGGTC
 3835 kpn1,

 3843 LeuGluLysGluProIleValGlyAlaGluThrPheTyrValAspGlyAlaAlaAsnArg
 TTAGAGAAAGAACCCATAGTAGGAGCAGAAACTTTCTATGTAGATGGGGCAGCTAATAGG
 AATCTCTTCTTGGGTATCATCCTCGTCTTGAAAGATACTACATCTACCCCTCGATTATCC

 3903 GluThrLysLeuGlyLysAlaGlyTyrValThrAspArgGlyArgGlnLysValValSer
 GAGACTAAATAGGAAAGCAGGATATGTTACTGACAGAGGAAGACAAAAAGTTGTCTCC
 CTCTGATTTAATCCTTCTCGTCTATAACAATGACTGTCTCCTCTGTTTCAACAGAGG
 3943 mbo11,

 3963 IleAlaAspThrThrAsnGlyLysThrGluLeuGlnAlaIleHisLeuAlaLeuGlnAsp
 ATAGCTGACACAACAAATCAGAAGACTGAATTACAAGCAATTCTAGCTTGCAGGAT
 TATCGACTGTGTTAGTCTTCTGACTTAATGTTAGTCAAGTCAGAAACGTCCTA
 3983 mbo11,

 4023 SerGlyLeuGluValAsnIleValThrAspSerGlnTyrAlaLeuGlyIleIleGlnAla
 TCGGGATTAGAAGTAAACATAGTAACAGACTCACATAATGCATTAGGAATCATTCAAGCA
 AGCCCTAATCTTCATTGTATCATTGTGAGTGTATACTGTAATCCTTAGTAAGTTCGT
 4060 ava3,

 4083 GlnProAspLysSerGluSerGluLeuValSerGlnIleIleGluGlnLeuIleLysLys
 CAACAGATAAGAGTGAATCAGAGTTAGTCAGTCAAATAATAGAGCAGTTAATAAAAAAG
 GTTGGTCTATTCTCACTTAGTCAGTTATTATCTCGTCAATTATTTTTC

 4143 GluLysValTyrLeuAlaTrpValProAlaHisLysGlyIleGlyGlyAsnGluGlnVal
 GAAAAGGTCTACCTGGCATGGTACCGACACAAAGGAATTGGAGGGAAATGAACAAAGTA
 CTTTCCAGATGGACCGTACCCATGGTCGTGTTCTTAACCTCCTTACTTGTTCAT
 4163 kpn1,

 4203 AspLysLeuValSerAlaGlyIleArgLysValLeuPheLeuAsnGlyIleAspLysAla
 GATAAAATTAGTCAGTGCTGGAAATCAGGAAAGTACTATTTTGAAATGGAATAGATAAGGCC
 CTATTTAATCAGTCACGACCTTAGTCCTTCTAGTCAATTAAACCTCTCGTACCTTATCTATTCCGG
 4232 sca1,

 4263 GlnGluGluHisGluLysTyrHisSerAsnTrpArgAlaMetAlaSerAspPheAsnLeu
 CAAGAAGAACATGAGAAATATCACAGTAATTGGAGAGCAATGGCTAGTGATTAAACCTG
 GTTCTTCTTGACTCTTATAGTGTCTTAACCTCTCGTACCGATCAACTAAATTGGAC
 4266 mbo11,

 4323 ProProValValAlaLysGluIleValAlaSerCysAspLysCysGlnLeuLysGlyGlu
 CCACCTGTAGTAGCAAAAGAAATAGTAGCCAGCTGTGATAATGTCAAGCTAAAGGAGAA
 GGTGGACATCATCGTTCTTATCATCGGTCGACACTATTACAGTCGATTTCCTCT
 4352 pvu11,

 4383 AlaMetHisGlyGlnValAspCysSerProGlyIleTrpGlnLeuAspCysThrHisLeu
 GCCATGCATGGACAAAGTAGACTGTAGTCCAGGAATATGGCAACTAGATGTACACATCTA
 CGGTACGTACCTGTTCTGACATCAGGTCTTATACCGTTGATCTAACATGTGTAGAT
 4386 ava3, 4410 bstXI, 4439 xba1,

 4443 GluGlyLysIleIleLeuValAlaValHisValAlaSerGlyTyrIleGluAlaGluVal
 GAAGGAAAAATTATCCTGGTAGCAGTTCTAGTAGCCAGTGGATATATAAGAGCAGAAGTT
 CTTCTTTAAATAGGACCATCGTCAAGTACATCGGTCACCTATATCTCGTCTTCAA
 4497 xmn1,

 4503 IleProAlaGluThrGlyGlnGluThrAlaTyrPheLeuLeuLysLeuAlaGlyArgTrp
 ATTCCAGCAGAGACAGGGCAGGAAACAGCATATTTCTCTAAATTAGCAGGAAAGATGG
 TAAGGTGTCGTCCTGTCCTTGTGATCTAACAGAGAATTAAATCGTCCTTCTAC
 4555 mbo11, 4560 bal1,

4563 ProValLysThrIleHfsThrAspAsnGlySerAsnPheThrSerThrThrValLysAla
CCAGTAAAAACAAATACATACAGACAATGGCAGCAATTCAACCAGTACTACGGTTAAGGCC
GGTCATTTTGTATGTCTGTTACCGTCGTTAAAGTGGCATGATGCCAATTCCGG

4605 sca1,

4623 AlaCysTrpTrpAlaGlyIleLysGlnGluPheGlyIleProTyrAsnProGlnSerGln
GCCTGTTGGTGGGCAGGGATCAAGCAGGAATTGGCATTCCCTACAATCCCCAAAGTC
CGGACAACCACCCGTCCTAGTTCGTCCTTAAACCGTAAGGGATGTTAGGGGTTTCAGTT

4639 binI,

4683 GlyValValGluSerMetAsnAsnGluLeuLysLysIleIleGlyGlnValArgAspGln
GGAGTAGTAGAATCTATGAATAATGAATTAAAGAAAATTATAGGACAGGTAAAGAGATCAG
CCTCATCATCTAGATACTTATTACTTAATTCTTTAATATCCTGTCCTTCTCTAGTC

4743 AlaGluHisLeuLysThrAlaValGlnMetAlaValPheIleHisAsnPheLysArgLys
GCTGAACACCTTAAGACAGCAGTACAATGGCAGTATTCACTCCAGAATTAAAGAAAA
CGACTTGTGGATTCTGTCGTATGTTACCGTCATAAGTAGGTGTTAAATTCTTCTT

4752 af111, 4791 aha111,

4803 GlyGlyIleGlyGlyTyrSerAlaGlyGluArgIleValAspIleIleAlaThrAspIle
GGGGGGATTGGGGGATACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATA
CCCCCCTAACCCCCCTATGTCACGTCCTTCTTATCATCTGTATTATCGTTGTCTGTAT

4863 GlnThrLysGluLeuGlnLysGlnIleThrLysIleGlnAsnPheArgValTyrTyrArg
CAAACCTAAAGAACTACAAAGCAAATTACAAAAATTCAAAATTTCGGGTTATTACAGG
GTTTGATTTCTTGATGTTTCGTTAATGTTAAAGTTAAAGCCCCAAATAATGTC

4923 AspAsnLysAspProLeuTrpLysGlyProAlaLysLeuLeuTrpLysGlyGluGlyAla
GACAACAAAGATCCCCTTGGAAAGGACCAGCAAGCTCTGGAAAGGTGAAGGGGCA
CTGTTGTTCTAGGGGAAACCTTCTGGTCGTTCTGAAGAGACCTTCACTTCCCCGT

4956 hind111,

4983 ValValIleGlnAspAsnSerAspIleLysValValProArgArgLysAlaLysIleIle
GTAGTAATAACAGATAATAGTGACATAAAAGTAGTGCAAGAAGAAAAGCAAAATCATT
CATCATTATGTTCTATTACTGTATTTCATCACGGTTCTTCTTTGTTAGTAA

5023 mbo11,

5043 MetGluAsnArgTrpGlnValMetIleValTrpGlnValAspArgMetArgIle
ArgAspTyrGlyLysGlnMetAlaGlyAspAspCysValAlaSerArgGlnAspGluAsp
AGGGATTATGGAAAACAGATGGCAGGTGATGATTGTGTGGCAAGTAGACAGGATGAGGAT
TCCCTAACCTTGTCTACCGTCCACTAAACACACCCTCATCTGCTACTCCTA

5103 ArgTrpTrpLysSerLeuValLysHisHisMetTyrIleSerLysLysAlaLysGlyTrp
AM
TAGAACATGGAAAAGTTTAGTAAACACCATATGTATATTCAAAGAAAAGCTAAAGGATGG
ATCTTGTACCTTCAAAATCATTTGTGGTATACATATAAGTTCTTCGATTTCTTAC

5131 nde1,

5163 PheTyrArgHisHisTyrGluSerThrHisProArgValSerSerGluValHisIle
TTTATAGACATCACTATGAAAGTACTCATCCAAGAGTAAGTCAGAAAGTACACATC
AAAATATCTGTAGTGTACTTCACTGAGTAGGTTCTCATCAAGTCTCATGTGTAG

5185 sca1,

5221 ProLeuGlyAspAlaLysLeuValIleThrThrTyrTrpGlyLeuHisThrGlyGluArg
CCCCTAGGGGATGCTAAATTGGTAATAACACATATTGGGGCTGCACTACAGGAGAAAGA
GGGGATCCCCTACGATTTAACCATATTGTGTATAACCCAGACGTATGTCCTTTCT

5223 avr2,

5281 GluTrpHisLeuGlyGlnGlyValAlaIleGluTrpArgLysLysLysTyrSerThrGln
GAATGGCATTGGCCAGGGAGTCGCCATAGAATGGAGGAAAAAGAAATAGCACACAA
CTTACCGTAAACCCGGTCCCTCAGCGGTATCTTACCTCTTTCTTATATCGTGTGTT

5341 ValAspProGlyLeuAlaAspGlnLeuIleHisLeuHisTyrPheAspCysPheSerGlu
GTAGACCCCTGGCCTAGCAGACCAACTAATTCTCATCTGCATTATTTGATTGTTTCAAGAA
CATCTGGGACGGATCGTCTGGTTGATTAAGTAGACGTAATAAAACTAACAAAAAGTCTT

5401 SerAlaIleLysAsnAlaIleLeuGlyTyrArgValSerProArgCysGluTyrGlnAla
TCTGCTATAAAAGATGCCATATTAGGATATAAGAGTTAGTCCTAGGTGTGAATATCAAGCA
AGACGATATTTTACGGTATAATCCTATATCTCAATCAGGATCCACACTATAGTTCGT

5440 avr2,

5461 GlyHisAsnLysValGlySerLeuGlnTyrLeuAlaLeuAlaLeuIleThrProLys
GGACATAACAAGGTAGGATCTCTACAATACCTGGCACTAGCAGCATTAAACACCAAA
CCTGTATTGTTCCATCCTAGAGATGTTAGAACCGTGATCGTCGTAATTATGTTGGTTT

5476 binI,

5521 LysThrLysProProLeuProSerValLysLysLeuThrGluAspArgTrpAsnLysPro
 AAGACAAAGCCACCTTGCCTAGTGTAAAGAAACTGACAGAGGGATAGATGGAACAAAGCCC
 TTCTGTTCGGTGGAAACGGATACAATTCTTGTACTGTCCTATCTACCTTGGTCGG

 5581 GlnLysThrLysGlyHisArgGlySerHisThrMetAsnGlyHisAM
 CAGAAGACCAAGGGCCACAGAGGGAGGCCATACAATGAATGGACACTAGAGCTTTAGAGG
 GTCTTCTGGTTCCCGGTGTCTCCCTCGGTATGTTACTTACCTGTGATCTGAAAATCTCC
 5583 mbo11,

 5641 AGCTTAAGAGAGAAGCTGTTAGACATTTCTAGGCCATGGCTCCATAGCTTAGGACAAT
 TCGAATTCTCTCTCGACAATCTGTAAGGATCCGGTACCGAGGTATCGAATCCTGTTA
 5643 af111, 5670 avr2, 5676 nco1,

 5701 ATATCTATGAAAActTATGGGGATACTTGGGAGGTGGAAAGGCCATAATAAGAATTCTGC
 TATAGATACTTGAATACCCCTATGAACCCGTCTCACCTTCGGTATTATTCTTAAGACG
5752 ecor1,

 5761 AACAACTGCTGTTATTCAATTCAAGAATTGGGTGTCAACATAGCAGAATAGGCATTATT
 TTGTTGACGACAAATAAGTAAAGTCTTAACCCACAGTTGATCGTCTTATCCGTAAATAAG

 5821 AACAGAGGAGAGCAAGAAGAAATGGAGCCAGTAGATCCTAATCTAGAGGCCCTGGAAAGCAT
 TTGTCCTCTCGTTCTTACCTCGGTATCTAGGATTAGATCTCGGGACCTTCGTA
 5836 mbo11, 5862 xba1,

 5881 CCAGGAAGTCAGCCTAGGACTGCTTGTAAACAATTGCTATTGTAAGGAGTGTGCTTCA
 GGTCTTCAGTCGGATCCTGACGAACATTGTTAACGATAACATTTCACAACGAAAGTA
 5893 avr2,

 5941 TGCTACGCGTGTTCACAAGAAAAGGCTTAGGCATCTCCTATGGCAGGAAGAAGCGGAGA
 ACGATGCGCACAAAGTGTCTTCCGAATCCGTAGAGGATACCGTCCTCTCGCCTCT
 5945 mlu1, 5988 mbo11,

 6001 CAGCGACGAAGAGCTCCCTAGGACAGTCAGACTCATCAAGCTCTCTATCAAAGCAGTAA
 GTCGCTGCTCTCGAGGAGTCCTGTCAGTCTGAGTAGTTGAAAGAGATAGTTCGTCATT
 6008 mbo11, 6011 sac1, 6016 mstII, 6038 hind111,

 6061 GTAGTAAATGTAATGCAATCTTACAAATATTAGCAATAGTATCATTAGTAGTAGTAGCA
 CATCATTACATTACGTAGAAATGTTATAATCGTTATCATAGTAATCATCATCATCGT

 6121 ATAATAGCAATAGTTGTGGACCATACTGACTCATAGAATATAGGAAATATTAAGACAA
 TATTATCGTTATCAACACACCTGGTATCATGAGTATCTTATATCCTTTATAATTCTGTT
 6147 sca1,

 6181 AGAAAATAGACAGATTAAATTGATAGAATAAGAGAAAAGCAGAAGACAGTGGCAATGAAA
 TCTTTATCTGCTAAATTAACTATCTTATTCTCTTTTCGTCTCTGTCACCGTTACTTT
 6222 mbo11,

 6241 ValLysGlyThrArgArgAsnTygGlnHisLeuTrpArgTrpGlyThrLeuLeuLeuGly
 GTGAAGGGGACCAAGGAGGAATTATCAGCACTTGTGGAGATGGGGCACCTTGCTCCTGG
 CACTCCCCCTGGTCTCTCCTTAATAGTCGTGAACACCTCTACCCCGTGGAACGAGGAACCC

 6301 MetLeuMetIleCysSerAlaThrGluLysLeuTrpValThrValTygTyrGlyValPro
 ATGTTGATGATCTGTAGTGCCTACAGAAAAATTGTGGGTCAACAGTTTATTATGGAGTACCT
 TACAACACTAGACATCACGATGTCTTTAACACCCAGTGTCAAATAACACCTCATGGAA

 6361 ValTrpLysGluAlaThrThrLeuPheCysAlaSerAspAlaArgAlaTygAspThr
 GTGTGGAAAGAAGCAACTACCACTCTATTGTGTGCATCAGATGCTAGAGGCATATGATA
 CACACCTTCTCGTTGATGGTGGAGATAAAACACGTAAGTCTACGATCTCGTATACTATGT
 6410 nde1,

 6421 GluValHisAsnValTrpAlaThrHisAlaCysValProThrAspProAsnProGlnGlu
 GAGGTACATAATGTTGGGCCACACATGCCGTGTACCCACAGACCCCCAACCAAGAA
 CTCCATGTATTACAAACCCGGTGTGTACGGACACATGGGTGTCTGGGTTGGTGTCTT

 6481 ValValLeuGlyAsnValThrGluAspPheAsnMetTrpLysAsnAsnMetValGluGln
 GTAGTATTGGGAAATGTGACAGAAAATTAAACATGTGGAAAAATAACATGGTAGAACAG
 CATCATACCCCTTACACTGTCTTTAAATTGTACACCTTTTATTGTACCATCTTGTC

 6541 MetGlnGluAspIleIleSerLeuTrpAspGlnSerLeuLysProCysValLysLeuThr
 ATGCAGGAGGATAATAATCAGTTATGGGATCAAAGCTAAAGCCATGTGAAAATAACC
 TACGTCTCCTATATTAGTCAAATAACCCCTAGTTCGGTACACATTTAATTGG
 6567 bin1,

ENV

5601 ProLeuCysValThrLeuAsnCysThrAspLeuGlyLysAlaThrAsnThrAsnSerSer
 CCACTCTGTGTTACTTTAAATTGCACTGATTGGGGAAAGGCTACTAACATACCAATAGTAGT
 GGTGAGACACAATGAAATTAAACGTGACTAAACCCCTTCGATGATTATGGTTATCATCA
 6615 aha111,
 5661 AsnTrpLysGluGluIleLysGlyGluIleLysAsnCysSerPheAsnIleThrThrSer
 AATTGGAAAGAAGAAATAAAAGGAGAAATAAAAAGCTGCTCTTCAATATCACCAACAAGC
 TTAACCTTTCTTCTTATTTCTTACGTGACGAGAAAGTTAGTGGTGTGCG
 6670 mbo11,
 5721 IleArgAspLysIleGlnLysGluAsnAlaLeuPheArgAsnLeuAspValValProIle
 ATAAGAGATAAGATTCAAGAAAGAAAATGCACCTTTCGTAACCTTGATGTTAGTACCAATA
 TATTCTCTATTCTAAGTCTTACGTGAAAAAGCATTGGAACATACATCATGGTTAT
 5781 AspAsnAlaSerThrThrThrAsnTyrThrAsnTyrArgLeuIleHisCysAsnArgSer
 GATAATGCTAGTACTACTACCAACTATACCAACTATAGGTTGATACATGTAAACAGATCA
 CTATTACGATCATGATGGTTGATATGGTTGATATCCAACATGTAAACATTGTCTAGT
 6790 sca1,
 5841 ValIleThrGlnAlaCysProLysValSerPheGluProIleProIleHisTyrCysThr
 GTCATTACACAGGCCTGTCAGAAAGGTATCATTGAGCCAATTCCCATAACATTATTGTACC
 CAGTAATGTCAGTCCGGACAGGTTCCATAGTAAACTCGGTTAAGGGTATGTAATAACATGG
 6851 stu1,
 5901 ProAlaGlyPheAlaIleLeuLysCysAsnAsnLysThrPheAsnGlyLysGlyProCys
 CCGGCTGGTTTGCATCTAAAGTGTAAATAATAAAACGTTCAATGGAAAAGGACCATGT
 GGCCGACCAAAACGCTAACAGATTTCACATTATTATTGCAAGTTACCTTCTGGTACA
 5961 ThrAsnValSerThrValGlnCysThrHisGlyIleArgProIleValSerThrGlnLeu
 ACAAAATGTCAGCACAGTACAATGTACACATGGAATTAGGCCAATAGTGTCAACTCAACTG
 TGTTTACAGTCGTGTCATGTTACATGTGACCTTAATCCGGTTATCACAGTTGAGTTGAC
 7021 LeuLeuAsnGlySerLeuAlaGluGluGluValValIleArgSerAspAsnPheThrAsn
 CTGTTAAATGGCAGTCTAGCAGAGAAAGAGGTAGTAATTAGATCTGACAATTTCACGAAC
 GACAATTACCGTCAGATCGTCTTCTCCATCATTAATCTAGACTGTTAAAGTGCTTG
 7042 mbo11, 7045 mbo11, 7060 bgl11,
 7081 AsnAlaLysThrIleIleValGlnLeuAsnGluSerValAlaIleAsnCysThrArgPro
 AATGCTAAAACCATAATAGTACAGCTGAATGAATCTGTAGCAATTAACTGTACAAGACCC
 TTACGATTTGGTATTATCATGTCGACTTACTAGACATCGTTAATTGACATGTTCTGGG
 7102 pvu11,
 7141 AsnAsnAsnThrArgLysSerIleTyrIleGlyProGlyArgAlaPheHisThrThrGly
 AACACAATAACAAGAAAAAGTATCTATATAGGACCAAGGGAGAGCATTCTACAAACAGGA
 TTGTTGTTATGTTCTTTCATAGATATATCCTGGTCCCTCTCGTAAAGTATGTTCTGG
 7199 mbo11,
 7201 ArgIleIleGlyAspIleArgLysAlaHisCysAsnIleSerArgAlaGlnTrpAsnAsn
 AGAATAATAGGAGATAAGAAAAGCACATTGTAACATTAGTAGAGCACAATGGATAAAC
 TCTTATTATCCTCTATATTCTTCTGTGTAACATTGTAATCATCTCGTGTACCTTATTG
 7261 ThrLeuGluGlnIleValLysLysLeuArgGluGlnPheGlyAsnAsnLysThrIleVal
 ACTTTAGAACAGATAGTTAAAAAAATTAAAGAGAACAGTTGGGAATAATAAAACAATAGTC
 TGAAATCTTGTCTATCAATTCTTAAATTCTCTGTCAAACCCCTATTATTTGTTATCAG
 7321 PheAsnGlnSerSerGlyGlyAspProGluIleValMetHisSerPheAsnCysArgGly
 TTTAATCAATCCTCAGGAGGGACCCAGAAATTGTAATGCACAGTTAAATTGAGGG
 AAATTAGTTAGGAGTCCTCCCCCTGGGTCTTAACATTACGTGTCAAAATTAAACATCTCCC
 7331 mstII,
 7381 GluPhePheTyrCysAsnThrThrGlnLeuPheAsnAsnThrTrpArgLeuAsnHisThr
 GAATTCTACTGTAATACAACACAACACTGTTAAATAACATGGAGGTTAAATCACACT
 CTTAAAAAGATGACATTATGTTGTTGACAAATTATTATGTAACCTCCAATTAGTGTGA
 7441 GluGlyThrLysGlyAsnAspThrIleIleLeuProCysArgIleLysGlnIleIleAsn
 GAAGGAACTAAAGGAAATGACACAATCATACTCCCAGTGTAGAATAAAACAAATTATAAAC
 CTTCTTGATTCTTACTGTGTTAGTATGAGGGTACATCTTATTGTTAAATTG
 7501 MetTrpGlnGluValGlyLysAlaMetTyrAlaProProIleGlyGlnIleSerCys
 ATGTGGCAGGAAAGTAGGAAAGCAATGTATGCCCCCTCCCATTGGAGGACAAATTAGTTGT
 TACACCGTCCTCATCCTTCTGTTACATACGGGGAGGGTAACCTCCTGTTAAATCAACA
 7561 SerSerAsnIleThrGlyLeuLeuLeuThrArgAspGlyGlyThrAsnValThrAsnAsp
 TCATCAAATATTACAGGGCTGCTATTAAACAAGAGATGGTGGTACAAATGTAACATGAC
 AGTAGTTATAATGTCGGACGATAATTGTTCTACACCACCATGTTACATTGATTACTG

Figure 4
Page 10 of 12

7621 ThrGluValPheArgProGlyGlyGlyAspMetArgAspAsnTrpArgSerGluLeuTyr
 ACCGAGGTCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAAATTATA
 TGGCTCCAGAAGTCTGGACCTCCTCTATACTCCCTGTTAACCTCTCACTTAATATA
 7628 mbo11,
 7681 LysTyrLysValIleLysIleGluPheLeuGlyIleAlaProThrLysAlaLysArgArg
 AAATATAAAAGTAATAAAAATTGAACCATTAGGAATAGCACCCACCAAGGCAGAGAGA
 TTTATATTCATTATTTAACCTGGTAATCCTTATCGTGGTGGTCCGTTCTCTCT
 7736 mbo11,
 7741 ValValGlnArgGluLysArgAlaValGlyIleValGlyAlaMetPheLeuGlyPheLeu
 GTGGTGCAGAGAGAAAAAGAGCAGTGGGAATAGTAGGAGCTATGTTCTTGGTTCTG
 CACACGTCTCTCTTCTCGTACCCCTTATCATCCTCGATAACAAGGAACCAAGAAC
 7801 GlyAlaAlaGlySerThrMetGlyAlaValSerLeuThrLeuThrValGlnAlaArgGln
 GGAGCAGCAGGAAGCACTATGGCGCAGTGTATTGACGCTGACGGTACAGGCCAGACAA
 CCTCGTCGTCCTTCGTGATAACCCCGTACAGTAACTGCGACTGCCATGTCGGTCTGTT
 7861 LeuLeuSerGlyIleValGlnGlnGlnAsnAsnLeuLeuArgAlaIleGluAlaGlnGln
 TTATTGTCGGTATAAGTGCACAGCAGAACAACTTGTGAGGGCTATTGAGGGCGCAACAA
 AATAACAGACCATATCACGTTGTCGTCTGTTAACGACTCCCATAACTCCGGTGTGTT
 7921 HisLeuLeuGlnLeuThrValTyrGlyIleLysGlnLeuGlnAlaArgValLeuAlaVal
 CATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAGTCCTGGCTGTG
 GTAGACAACTGGTGTGAGTGTGAGCCCCGTAGTTCGTCGAGGTCCGTTCTCAGGACCGACAC
 7981 GluArgTyrLeuArgAspGlnGlnLeuLeuGlyIleTrpGlyCysSerGlyLysLeuIle
 GAAAGATACCTAACGGATCAACAGCTCCTAGGGATTGGGGTTGCTCTGGAAAACCTATT
 CTTCTATGGATTCCCTAGTTGTCGAGGATCCCTAAACCCAAACGAGACCTTTGAGTAA
 7989 mstII, 7995 binI, 8007 avr2,
 8041 CysThrThrAlaValProTrpAsnAlaSerTrpSerAsnLysSerLeuGluAspIleTrp
 TGCAACACTGCTGCTTGGAAATGCTAGTTGGAGTAATAATCTCTGGAAAGACATTGG
 ACGTGGTGACGACACGGAACCTACGATCAACCTCATTATTAGAGACCTCTGTAAACC
 8089 mbo11,
 8101 AspAsnMetThrTyrMetGlnTrpGluArgGluIleAspAsnTyrThrAsnThrIleTyr
 GATAACATGACCTGGATGCACTGGAAAGAGAAATTGACAATTACACAAACACAATATA
 CTATTGTAAGTGGACCTACGTACCCCTTCTTTACTGTTAATGTGTTGTATATG
 8161 ThrLeuLeuGluGluSerGlnAsnGlnGluLysAsnGluGlnGluLeuLeuGluLeu
 ACCTTACTTGAAGAACATCGCAGAACCAACAAAGAAAAGAATGAAACAAGAAATTAGAATTG
 TGGAAATGAACTTCTTAGCGTCTGGTTGTTCTTTCTTACTTGTCTTAATAATCTTAAC
 8170 mbo11,
 8221 AspLysTrpAlaSerLeuTrpAsnTrpPheSerIleThrAsnTrpLeuTrpTyrIleLys
 GATAAGTGGGCAAGTTGTGGAATTGGTTAGCATACAAACTGGCTGGTATATAAAG
 CTATTCACCGTTCAAACACCTAACAAATCGTATTGTTGACCGACACCATATATTC
 8281 IlePheIleMetIleValGlyGlyLeuValGlyLeuArgIleValPheAlaValLeuSer
 ATATTCTAAATGATAGTAGGAGGCTTGGTAGGTTAAGAATAGTTTGCTGTGCTTCT
 TATAAGTATTACTATCATCCTCCGAACCATCCAAATTCTTACAAACGACACGAAAGA
 8341 IleValAsnArgValArgGlnGlyTyrSerProLeuSerPheGlnThrArgLeuProVal
 ATAGTGAATAGAGTTAGGCAGGGATACTCACCATTGTCAATTGACACCCTCCAGTC
 TATCACTTATCTCAATCCGTCCTATGAGTGGTAACAGTAAAGTCTGGCGGGAGGGTCAG
 8400 avai,
 8401 ProArgGlyProAspArgProAspGlyIleGluGluGluGlyGlyGluArgAspArgAsp
 CCGAGGGGACCCGACAGGCCGACGGGAATCGAAGAAGAAGGTGGAGAGAGACAGAGAC
 GGCTCCCTGGCTGTCGGCTGCCTTAGCTTCTTCCACCTCTCTGTCTG
 8431 mbo11, 8434 mbo11,
 8461 ArgSerValArgLeuValAspGlyPheLeuAlaLeuIleTrpGluAspLeuArgSerLeu
 AGATCCGTTGATTAGTGGATGGATTCTTAGCACTTATCTGGAAAGATCTGCGGAGCCTG
 TCTAGGCAAGCTAACCTACGTAAGAACATCGTGAATAGACCCTCTAGACGCCCTCGGAC
 8503 mbo11, 8505 bg111,
 8521 CysLeuPheSerTyrArgArgLeuArgAspLeuLeuIleAlaAlaArgThrValGlu
 TGCCCTTCTCAGCTACCGCCGCTTGAGAGACTTAACTCTTGATTGAGCAGCGAGGACTGTGGAA
 ACGGAGAAGTCGATGGCGCGAACCTCTCTGAATGAGAAACTAACGTCGCTCTGACACCTT
 8525 mbo11,

Figure 4
Page 11 of 12

3581 IleLeuGlyHisArgGlyTrpG...AlaLeuLysTyrTrpTrpSerLeuLeuG...nTyrTrp
ATTCTGGGGCACAGGGGGTGGGAAGCCCTCAAATATTGGTGGAGTCCTGCAGTATTGG
TAAGACCCCCGTGCCCCCACCCTCGGGAGTTATAACCACCTCAGAGGACGTCATAACC
8629 pst1,

9641 IleGlnGluLeuLysAsnSerAlaValSerTrpLeuAsnAlaThrAlaIleAlaValThr
ATTCAGGAACCTAAAGAATAGTGTGTTAGCTGGCTAACGCCACAGCTATAGCAGTAAC
TAAGTCCTTGATTTCTTATCACGACAATCGACCGAGTTGGGTGTCGATATCGTCATTGA

9701 GluGlyThrAspArgValIleGluValAlaGlnArgAlaTyrArgAlaIleLeuHisIle
GAGGGGACAGATAGGGTTATAGAAGTAGCACAAAGAGCTTATAGAGCTATTCTCCACATA
CTCCCCTGTCTATCCCAATATCTCATCGTGTTCCTCGAATATCTCGATAAGAGGTGTAT

3761 HisArgArgIleArgGlnGlyLeuGluArgLeuLeuLeuOC MetGlyGlyLysTrpSer
CATAGAAGAATTAGACAGGGCTTGGAAAGGCTTTGCTATAAGATGGGTGGCAAGTGGTCA
GTATCTTCTTAATCTGTCGGAACCTTCCGAAAACGATATTCTACCCACCGTTACCAAG
8765 mbo11,

8822 LysArgSerMetGlyGlyTrpSerAlaIleArgGluArgMetArgArgAlaGluProArg
AAACGTAGTATGGGTGGATGGTCTGCTATAAGGAAAGAATGAGACGAGCTGAGCCACGA
TTTGCATCATACCCACCTACCAGACGATATTCCCTTCTACTCTGCTCGACTCGGTGCT

8882 AlaGluProAlaAlaAspGlyValGlyAlaValSerArgAspLeuGluLysHisGlyAla
GCTGAGCCAGCAGCAGATGGGTGGAGCAGTATCTGAGACCTGGAAAAACATGGAGCA
CGACTCGGTCGTCGTACCCCCACCCCTCGTCATAGAGCTCTGGACCTTTGTACCTCGT
8883 tthIII, 8916 ava1 xho1,

8942 IleThrSerSerAsnThrAlaAlaAspCysAlaTrpLeuGluAlaGlnGlu
ATCACAAAGTAGCAATACAGCAGCTACTAATGCTGATTGTGCTGGCTAGAACGACAAGAG
TAGTGTTCATCGTTATGTCGATGATTACGACTAACACGGACCGATCTCGTGTTC

9002 GluGluGluValGlyPheProValArgProGlnValProLeuArgProMetThrTyrLys
GAGGAAGAGGGTGGGTTTCCAGTCAGACCTCAGGTACCTTAAGACCAATGACTTACAAG
CTCCTCTCCACCCAAAAGGTCACTGGAGTCCATGGAAATTCTGGTTACTGAATGTT
9005 mbo11, 9029 mstII, 9034 kpn1,

9062 AlaAlaLeuAspIleSerHisPheLeuLysGluLysGlyGlyLeuGluGlyLeuIleTrp
GCAGCTTAGATATTAGCCACTTTTAAAGAAAAGGGGGACTGGAAAGGGCTAATTGG
CGTCGAAATCTATAATCGGTGAAAAATTCTTCCCCCTGACCTTCCGATTAAACC
9085 aha111,

9122 SerGlnArgArgGlnGluIleLeuAspLeuTrpIleTyrHisThrGlnGlyTyrPhePro
TCCCCAAAGAAGACAAGAGATCCTGATCTGTGGATCTACCACACACAAGGCTACTTCCCT
AGGGTTCTCTGTTCTCTAGGAACCTAGACACCTAGATGGTGTGTGATGAAGGG
9129 mbo11, 9153 binI,

9182 AspTrpGlnAsnTyrThrProGlyProGlyIleArgTyrProLeuThrPheGlyTrpCys
GATTGGCAGAATTACACACCAGGGCCAGGGATCAGATATCCACTGACCTTGGATGGTGC
CTAACCGTCTTAATGTGTGGTCCCGGTCTAGTCTATAGGTGACTGGAAACCTACCAAC
9210 binI, 9216 ecor5,

9242 PheLysLeuValProValGluProGluLysValGluGluAlaAsnGluGlyGluAsnAsn
TTCAGCTAGTACCAAGTTGAGCCAGAGAAGGTAGAAGAGGGCAATGAAGGAGAGAACAAAC
AAGTCGATCATGGTCAACTCGGTCTTCCATCTTCTCCGGTTACTTCCCTCTTTGTT
9275 mbo11,

9302 SerLeuLeuHisProMetSerLeuHisGlyMetGluAspAlaGluLysGluValLeuVal
AGCTGTTACACCCCTATGAGCCTGCATGGATGGAGGGACGCCGAGAAAGAAGTGTAGTG
TCGAACAATGTGGGATACTCGGACGTACCTACCTCCCTGCCTCTTCTTCAACATCAC

9362 TrpArgPheAspSerLysLeuAlaPheHisHisMetAlaArgGluLeuHisProGluTyr
TGGAGGTTTGACAGCAAACACTAGCATTTCATCACATGGCCCGAGAGCTGCATCCGGAGTAC
ACCTCCAAACTGTCGTTGATCGAAAGTAGTGTACCGGGCTCTCGACGTAGGCCTCATG
9399 ava1, 9417 sca1,

9422 TyrLysAspCysOP
TACAAAGACTGCTGACATCGAGCTTCTACAAGGGACTTCCGCTGGGGACTTCCAGGG
ATGTTTCTGACGACTGTAGCTCGAAAGATGTTCCCTGAAAGGCGACCCCTGAAAGGTCCC
9482 AGGCGTGGCCTGGGGACTGGGGAGTGGCGTCCCTCAGATGCTGCATATAAGCAGCTG
TCCGCACCGGACCCGCCCTGACCCCTCACCCGAGGGAGTCTACGACGTATATTGTCGAC
9536 pvu11,

9542 CTTTTGCCTGTACTGGGTCTC, GGTAGACCAAGATCTGAGCCTGGGAGC. TCTGGC
AAAAAACGGACATGACCCAGAGAGACCAATCTGGCTAGACTCGGACCCTCGAGAGACCG
9576 bg111, 9590 sac1,
9602 TAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTG
ATTGATCCCTGGGTGACGAATTGGAGTTATTTCGAACGGAACTCACGAAGTTCATCAC
9620 af111, 9634 hind111,
9662 TGTGCCCGTCTGGTGTGACTCTGGTAACTAGAGAGATCCCTCAGACCCCTTTAGTCAGTG
ACACGGGCAGACAACACACTGAGACCATTGATCTCTAGGGAGTCTGGGAAAATCAGTCAC
9722 TGGAAAAATCTCTAGCAG
ACCTTTTAGAGATCGTC

931154

FIGURE 5
1 OF 4

FIGURE 5
2 of 4

931154

01 931154

FIGURE 5
4 of 4

931154

digestion with
KpnI and EcoRI

digestion with
EcoRI and KpnI

ligation

FIG. 6.

931154

Figure 7

931154

8
FIG.

FIG. 9

Figure 10

ARV GAG p16 - synthetic Parts A and B

5' ^{arv 234}
 MetGlnArgGlyAsnPheArgAsnGlnArgLysThrValLysCysPheAsnCysGlyLys
 TATTATGCAAAGAGGTAACTTCAGGGATCAAAGAAAGACCGTTAAGTGTTCAACTGTGGTAAG
 ATAATACTGTTCTCCATTGAAGTCCTTAGTTCTTCTGGCAATTACAAAGTTGACACCATT
 3' ^{arv 235}
 10 mn11, 23 hin1, 5'

 63 GluGlyHisIleAlaLysAsnCysArgAlaProArgLysLysAlaCysTrpArgCysGly
 GAAGGTACACATCGCTAACAACTGTAGAGCTCAAGAAAGAAGGCTTGGAGATGTGGT
 CTCCAGTGTAGCGATTCTTGACATCTCGAGGTTCTTCTTCCGAACAAACCTCTACACCA
 76 dde1, 88 ban2 hgiA hgiJ11 sac1 sdul, 89 alu1,

 123 ArgGluGlyHisGlnMetLysAspCysThrGluArgGlnAlaAsnPheLeuGlyLysIle
 AGAGAAGGTACACAAATGAAGGACTGTACCGAAAGACAAGCTAACCTCTGGGTAAAGATC
 TCTCTTCCAGTGGTTACTTCCATGGCTTCTGATTGAAGAACGTTAGGTCTGGTCTTGGTTGGCGA
 129 bstE2, 131 hph, 148 rsal, 161 alu1, 178 bgl11 xho2, 179
 sau3a,

 183 TrpProSerTyrLysGlyArgProGlyAsnPheLeuGlnSerArgProGluProThrAla
 TGCCCATCTTACAAGGGTAGACCAGGTAACTTCTTGCAATCCAGACCAGAACCAACCGCT
 ACCGGTAGAAATGTTCCATCTGGTCCATTGAAGAACGTTAGGTCTGGTCTTGGTTGGCGA
 183 bal1 cfr1 hae1, 184 hae111, 199 acc1, 204 apy1 ecor11 sc
 rF1,

 243 ProProGluGluSerPheArgPheGlyGluGluLysThrThrProSerGlnLysGlnGlu
 CCACCTGAAGAAAGTTTCAAGGTAACTTCTTGCAATCCAGACCAGAACCAACCGCT
 GGTGGACTTCTTCAAAGTCCAAGCCACTTCTTTCTGGTGGGGTAGAGTTTCGTTCT
 249 mbo11, 267 hph, 270 mbo11,

 303 ProIleAspLysGluLeuTyrProLeuThrSerLeuArgSerLeuPheGlyAsnAspPro
 CCAATCGACAAGGAATTGTACCCATTGACCTCTTGAGATCCTTGTTCGGTAACGATCCC
 GGTTAGCTGTTCTTAACATGGGTAACTGGAGAAAATCTAGGAACAAGCCATTGCTAGGG
 307 taq1, 320 rsal, 331 mn11, 339 xho2, 340 sau3a, 357 sau3a
 , 361 mn11, 362 ava1 xho1,

 363 SerSerGlnOP AM
 TCGAGCCAATGATAG
 AGCTCGGTTACTATCAGCT
 363 taq1, 377 acc1 hind11 sal1

PYK Promoter

Met Ser Arg Glu Asp Cys Ser Ala Thr Glu Lys Leu Ile Phe Val Tyr Gly Val Pro Val S1
ATG CTAG AAT CGA GTIAG GCT TAC AGA AAA ATG TGG GTT CA CAG CTT TAA TAT GAG TAC CTC G

PYK · Terminator

11

Nucleotide
positions
relative to
FIGURE 5.

		Met Ile Asp Lys Ala Gln Glu Glu His Glu Lys Tyr His Ser Asn Trp
	1	AGGXAACAG::::ATGAT:GA:AAGGCACAAGAAGAACATGAGAAATATCACAGTAATTGG TCCXTTGTC::::TACTA:CT:TTCCGTGTTCTTCTTGTACTCTTATAGTGTCACTAAC
		32 mbo11, 38 nla111,
3820	62	Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val Ala Ser AGAGCCATGGCTAGTGATTTAACCTGCCACCTGTAGCAGAAAAGAAATAGTAGGCCAGC TCTCGGTACCGATCACTAAAATTGGACGGTGGACATCATCGTTTCTTATCATCGGTCG
		66 nco1, 67 nla111, 118 nspBII pvu11, 119 alu1,
3880	122	Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly TGTGATAAAATGTCAGCTAAAAGGAGAAGCCATGCATGGACAAAGTAGACTGTAGTCAGGA ACACTATTTACAGT ^{CG} ATTTCTCTTCGGTACGTACCTGTT ^{CG} TACGTACATCTGACATCAG ^{GT} CCT
		135 alu1, 151 nla111, 152 nsi1 ava3, 155 nla111, 164 acc1, 1 76 apy1 bstXII ecor11 scrF1,
3940	182	Ile Trp Gln Leu Asp Cys Thr His Leu Glu Gly Lys Ile Ile Leu Val Ala Val His Val ATATGGCAACTAGATTGTACACATCTAGAAGGAAAAATTATCCTGGTAGCAGTTCATGTA TATACCGTTGATCTAACATGTGTAGATCTTCCTTTAA TAGGACCATCGTCAAG ^{AT} ACAT
		198 rsaI, 205 xbaI, 223 apy1 ecor11 scrF1, 236 nla111,
4000	242	Ala Ser Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr GCCAGTGGATATATAAGCAGAAGTTATTCCAGCAGAGACAGGGCAGGGAAACAGCATAT CGGTACCTATATATCTTCGTCTTCAATAAGGT ^{CG} TCTGTCCCCTTGT ^{CG} TATA
		263 xmn1,
4060	302	Phe Leu Leu Lys Leu Ala Gly Arg Trp Pro Val Lys Thr Ile His Thr Asp Asn Gly Ser TTTCTCTTAAAATTAGCAGGAAGATGCCAGTAAAAACAAATACACAGACAATGGCAGC AAAGAGAATTAAATCGT ^{CC} CTACCGGT ^{CG} TCTTGTATGT ^{CG} TCTGT ^{CC} GT ^{CG} TATA
		321 mbo11, 326 bal1 cfr1 hae1, 327 hae111, 357 bbv fnu4h1,
4120	362	Asn Phe Thr Ser Thr Val Lys Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe AATTTCACCAGTACTACGGTTAAGGCCGCTGTTGGTGGCAGGGATCAAGCAGGAATT TTAAAGTGGT ^{CG} CATGATGCCATT ^{CC} GGCGAACACCACCCGT ^{CC} CTAGTT ^{CG} TCTTAA
		366 hph, 371 sca1, 372 rsaI, 385 hae111, 386 fnu4h1 nsb11, 4 05 binI, 406 dpn1 sau3a,
4180	422	Gly Ile Pro Tyr Asn Pro Gln Ser Gln Gly Val Val Glu Ser Met Asn Asn Glu Leu Lys GGCATTCCCTACAATCCCCAAAGTCAAGGAGTAGTAGAATCTATGAATAATGAATTAAAG CCGTAAAGGGATGTTAGGGTTTCAGTTCTCATCATCTTAGATACTTATTACTTAATTTC
		423 bsm1, 458 hinf1,
4240	482	Lys Ile Ile Gly Gln Val Arg Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala AAAAATTATAGGACAGGTAAAGAGATCAGGCTGAACACCTTAAGACAGCAGTACAAATGGCA TTTAATATCCTGTCCATTCTAGTCCGACTTGT ^{GG} AATTCTGT ^{CG} T ^{GT} ATGTTACCGT
		503 dpn1 sau3a, 518 af111, 530 rsaI,
4300	542	Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser Ala Gln Glu Arg GTATTCA ^{TC} CACAAATT ^{TT} AAAAGAAAAGGGGGATTGGGGATA ^{AC} AGTGCAGGGGAAAGA CATAAAGTAGGTGTTAAAATT ^{TT} CTTCCCCCTAACCCCTATGT ^{CG} TACGT ^{CC} CTTCT
		547 fok1, 557 aha111,
4360	602	Ile Val Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile Thr Lys ATAGTAGACATAATAGCAACAGACATACAAACTAAAGAACTACAAAAGCAAATTACAAA TATCATCTGTATTATCGTTGT ^{GT} TATGTTGATTCTGATGTTCTGTTAA ^{AT} GT ^{TT} TT
		605 acc1,
	662	Ile Gln Asn Phe Arg Val Tyr Tyr Arg Asp Asn Lys Asp Pro Leu Trp Lys Gly Pro Ala ATT ^{CAAA} ATT ^{TT} CGGGTTATTACAGGGACAAACAAAGAT ^{CC} CTTGGAAAGGACCA

931154

4480 722 LYSLeuLeuIlePheGluGlyAlaValValIleGlnAspAsnSerAspIleLysVal
AAGCTTCTCTGGAAAGGTGAAGGGGGCAGTAGTAATAACAAAGTAATAGTGACATAAAAGTA
TTCGAAGAGACCTTTCACTCCCCGTCACTATTATGTTCTATTATCACTGTATTCAT
722 hind111, 723 alu1, 737 hph,

4540 782 ValProArgArgLysAlaLysIleIleArgAspTyrGlyLysGlnMetAlaGlyAspAsp
GTGCCAAGAAGAAAAAGCAAAAATCATTAGGGATTATGGAAAACAGATGGCAGGTGATGAT
CACGGTTCTTCTTTCTGTTTTAGTAATCCCTAACCTTTGTCTACCGTCCACTACTA
789 mbo11, 833 hph,

4600 842 CysValAlaSerArgGlnAspGluAspAM
TGTGTGGCAAGTAGACAGGATGAGGATTAGTCGACGGAATTCTTAGTAAAAACACC
ACACACCGTTCATCTGTCCTACTCCTAACAGCTGCCTTAAGAAATCATTGTGG
852 acc1, 859 fok1, 863 mn11, 871 acc1 hind11 sal1, 872 taq1
, 878 ecor1,

FIGURE 12

2 of 2

931154

FIGURE 13

931154

FIGURE 14

931154

SD

MetAlaThrLysAlaValCysValLeuLysGlyAspGlyProValGlnGlyIleIleAsn
1 CTTGGCGACGAAGGCCGTGCTGCTGAAGGGCGACGGCCCAGTCAGGGCATCATCAAT
CCGTGCTTCCGGCACCGCACGACTCCCCGCTGCCGGTCACGTCCCCTAGTAGTTA

PheGluGlnLysGluSerAsnGlyProValLysValTrpGlySerIleLysGlyLeuThr
62 TTGAGCGAGAAGGAAAGTAATGGACCGTGAAGGTGTGGGGAAAGCATTAAAGGACTGACT
AAGCTCGTCTTCCTTCTTACCTGGTCACTTCCACCCCCCTCGTAATTTCCTGACTGA

GluGlyLeuHisGlyPheHisValHisGluPheGlyAspAsnThrAlaGlyCysThrSer
122 GAAGGCCTGCATGGATTCCATGTTGAGTTGGAGATAATACAGCAGGCTGTACCACT
CTTCCGGACGTACCTAACGGTACAAGTACTCAAACCTCTATTATGTCGTCCGACATGGTCA

AlaGlyProHisPheAsnProLeuSerArgLysHisGlyGlyProLysAspGluGluArg
182 GCAGGTCCCTCATTTAATCCTCTATCCAGAAAACACGGTGCCGAAAGGATGAAGAGAGG
CGTCCAGGAGTGAATTAGGGAGATAGGTCTTTGTGCCACCCGGTTCCCTACTTCTCTCC

HisValGlyAspLeuGlyAsnValThrAlaAspLysAspGlyValAlaAspValSerIle
242 CATGTTGGAGACTTGGCAATGTGACTGCTGACAAAGATGGTGTGGCCGATGTGTCTATT
GTACAACCTCTGAACCCGTTACACTGACGTGTTCTACCACACGGCTACACAGATAA

GluAspSerValIleSerLeuSerGlyAspHisCysIleIleGlyArgThrIeuValVal
302 GAAGATTCTGTGATCTCACTCTCAGGAGACCATGCACTGGCCGCACACTGGTGGTC
CTTCTAACACACTAGAGTGAAGAGTCCTCTGGTAACGTAGTAACCGGCGTGTGACCACAG

HisGluLysAlaAspAspLeuGlyLysGlyGlyAsnGluGluSerThrLysThrGlyAsn
362 CATGAAAAAGCAGATGACTTGGCAAGGTGGAAATGAAGAAAGTACAAGACAGGAAAC
GTACTTTTCGTCTACTGAACCCGTTCCACCTTACTTCTTCATGTTCTGTCCCTTG

ENV 5B

AlaGlySerArgLeuAlaCysGlyValIleGlyIleAlaMetAlaIleGluAlaGlnGln
422 GCTGGAAAGTCGTTGGCTTGGTGTAAATTGGGATGCCATGGCTATCGAAAGCTCAACAA
CGACCTTCAGCRAACCGAACCCACATTAAACCTAGCGGTAACCGATAGCTTCGAGTTGTT

HisLeuLeuGlnLeuThrValTrpGlyIleLysGlnLeuGlnAlaArgValLeuAlaVal
482 CACTTGCTGCACTTGACCGTTGGGTATCAAGCAGTTGCAGGCTAGAGTTGGCTGTT
GTGAACGACGTCACTGGCAACCCATAGTCGTCAACGTCCGATCTCAAAACCGACAA

GluArgTyrLeuArgAspGlnGlnLeuLeuGlyIleTrpGlyCysSerGlyLysLeuIle
542 GAAAGATACTTGAGAGATCACAATTGTTGGGTATCTGGGGTGTCTGGTAAGTTGATT
CTTTCTATGAACCTCTAGTTGTTAACACCCATAGACCCCCAACAGACCCRTCAACTAA

CysThrThrAlaValProTrpAsnAlaSerTrpSerAsnLysSerLeuGluAspIleTrp
602 TGTACCACCGCTGTCCTGGAACGCTTCTGGCTAACAGTCTTGGAAAGACATCTGG
ACATGGTGGCGACAGGGACCTTGCAGAACRAGATTGTTCAAGAACCTCTGTAGACC

AspAsnMetThrTrpMetGlnTrpGluArgGluIleAspAsnTyrThrAsnThrIleTyr
662 GACAACATGACCTGGATGCAATGGGAAAGAGAAATCGACAACTACACCAACACCATCTAC
CTGTTGTAATGGACCTACGTTACCCCTCTCTTCTAGCTGTTGATGTGGTTGTGGTAGATG

ThrLeuLeuGluGluSerGlnAsnGlnGlnLysAsnGluGlnGluLeuLeuGluLeu
722 ACCTTGTTGGAGGAATCTCAAAACCAACRAGAAAAGAACGAAACRAGAATTGTTGGAAATTG
TGGAACACCTCCTTAGAGTTGGTGTCTTCTGCTTGTCTAACACCTTAAC

AspLysTrpAlaSerLeuTrpAsnTrpPheSerIleThrAsnTrpAM
782 GACAAGTGGCAAGCTGTGGAACCTGGTCTCTATCACCAACTGGTAG
CTGTTCACCCGTTCGAACACCTTGACCAAGAGATAGTGGTTGACCATCAGCT

Translated Mol. Weight = 30414.22

FIGURE 15

87 931154

FIGURE 16

1 of 2

17 931154

FIGURE 16

FIGURE 17

07 931154

FIGURE 18

FIGURE 19

FIGURE 20

87 931154

FIGURE 21

07 931154

10
 Met Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His Gln
 C ATG CCT ATA GTG CAG AAT CTG CAG GGG CAA ATG GTA CAT CAG
 20
 Ala Ile Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Val Glu
 GCC ATA TCA CCT AGA ACT TTA AAT GCT TGG GTA AAA GTA GTA GAA
 30
 40
 Ala Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Ser Ala Leu
 GAA AAG GCT TTC AGC CCA GAA GTA ATA CCC ATG TTT TCA GCA TTA
 50
 Ser Glu Gly Ala Thr Pro Gln Asp Leu Asn Thr Met Leu Asn Thr
 TCA GAA GGA GCC ACC CCT CAA GAT TTA AAC ACC ATG CTA AAC ACA
 60
 70
 Val Gly Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Thr Ile
 GTG GGG GGA CAT CAA GCA GCC ATG CAA TGA AAA GAG ACT ATC
 80
 Asn Glu Glu Ala Ala Glu Trp Asp Arg Val His Pro Val His Ala
 AAT GAG GAG GCT GCC GAA TGG GAT AGA GTG CAT CCA GTG CAT GCA
 90
 100
 Gly Pro Ile Ala Pro Gly Gln Met Arg Glu Pro Arg Gly Ser Asp
 GGG CCT ATT GCA CCA GGC CAA ATG AGA GAA CCA AGG GGA AGT GAC
 110
 Ile Ala Gly Thr Thr Ser Thr Leu Gln Glu Gln Ile Gly Trp Met
 ATA GCA GGA ACT ACT AGT ACC CTT CAG GAA CAA ATA GGA TGG ATG
 120
 130
 Thr Asn Asn Pro Pro Ile Pro Val Gly Glu Ile Tyr Lys Arg Trp
 ACA AAT AAT CCA CCT ATC CCA GTA GGA GAA ATC TAT AAA AGA TGG
 140
 Ile Ile Leu Gly Leu Asn Lys Ile Val Arg Met Tyr Ser Pro Thr
 ATA ATC CTG GGA TTA AAT AAA ATA GTA AGA ATG TAT AGC CCT ACC
 150
 160
 Ser Ile Leu Asp Ile Arg Gln Gly Pro Lys Glu Pro Phe Arg Asp
 AGC ATT CTG GAC ATA AGA CAA GGA CCA AAG GAA CCC TTT AGA GAT
 170
 Tyr Val Asp Arg Phe Tyr Lys Thr Leu Arg Ala Glu Gln Ala Ser
 TAT GTA GAC CGG TTC TAT AAA ACT CTA AGA GCC GAA CAA GCT TCA
 180
 190
 Gln Asp Val Lys Asn Trp Met Thr Glu Thr Leu Leu Val Gln Asn
 CAG GAT GTA AAA AAT TGG ATG ACA GAA ACC TTG TTG GTC CAA AAT
 200
 220
 Ala Asn Pro Asp Cys Lys Thr Ile Leu Lys Ala Leu Gly Pro Ala
 GCA AAC CCA GAT TGT AAG ACT ATT TTA AAA GCA TTG GGA CCA GCA
 210
 230
 Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val Gly Gly
 GCT ACA CTA GAA GAA ATG ATG ACA GCA TGT CAG GGA GTG GGG GGA
 240
 Pro Gly His Lys Ala Arg Val Leu OP
 CCC GGG CAT AAA GCA AGA GTT TTG TGA TAG

Translaced Mol. Weight = 25700.75

FIGURE 22

931154

FIGURE 23

-->
IaThrLysAla
CTACAAAGGCT
TACCGATTTCCGA

87 931154

1383 ValCysValLeuLysGlyAspGlyProValGlnGlyIleIleAsnPheGluGlnLysGlu
GTTTGTTTGTGGGGTGCAGGGCCCAGTCAGGTATTATAACTTCGAGCAGAAGGAA
CAAAACACAAAACCTCCACTGCCGGTCAAGTCCATAATAATTGAAGCTCGTCTCCCT

1443 SerAsnGlyProValIlysValTrpGlySerIleLysGlyLeuThrGluGlyLeuIleGly
AGTAATGGACCAGTGAGGTGTGGGGAAAGCATTAAGGACTGACTGAAGGCCATGGATGGA
TCATTACCTGGTCACTTCCACACCCCTCGTAATTCTGACTGACTTCCGGACGTACCT

1503 PhenylisValIHisGluPheGlyAspAsnThrAlaGlyCysThrSerAlaGlyProHisPhe
TTCCATGTTCATGAGTTGGAGATAATAACAGCAGGCTGTACCGTGCAGGTCTCACTTT
(AAGGTACAAGTACTCAAACCTCTATTATGTCGTCGACATGGTCACGTCAGGAGTGAA

1563 AsnProLeuSerArgLysHisGlyGlyProLysAspGluGluArgHisValGlyAspLeu
AATCCCTCATCCAGAAAACACGGTGGGCCAAAGGATGAAGAGAGGCTGTGGAGACTTG
TTAGGAGATAGGTCTTGTGCCACCCGGTTCTACTTCTCTCCGTACAACCTCTGAAC

1623 GlyAsnValIleAlaAspLysAspGlyValAlaAspValSerIleGluAspSerValIle
GGCAATGTGACTGCTGACAAAGATGGTGTGGCCGATGTGTCATTGAAGATTCTGTGATC
CCGTACACTGACGACTGTTCTACACACCCGGTACACAGATAACTCTAAAGACACTAG

1683 SerLeuSerGlyAspHisCysIleIleGlyArgThrLeuValValHisGluLysAlaAsp
TCACTCTCAGGAGACCATTCGATCATGGCCGCACACTGGTGGTCCATGAAAAGCAGAT
AGTGAGAGTCTCTGGTAAACGTAGTAACCGGGCTGTGACCACCCAGGTACTTTTCGTCTA

1743 AspLeuGlyLysGlyGlyAsnGluGluSerThrLysTheGlyAsnAlaGlySerArgLeu
GACTTGGCAAGGGTGGAAATGAAGAACGAAACAGGAAACGCTGGAAAGTCGTTTG
CTGAACCCGTTTCCACCTTACTCTTCTCATGTTCTGTCCTTGCACCTTCAGCAAC

1803 Linker --> p31 -->
AlaCysGlyValIleGlyIleAlaGlnAsnSerGlyValGlyAlaMetAlaMetAlaSer
GCTTGTGGTGAATTGGGATCGCCAGAAATCAGGTGTGGAGCCATGGCCATGGCTAGT
CGAACACACATTAAACCTTAGCGGGTCTTAAGTCCACACCTCGGTACCGGTACCGATCA

1863 AspPheAsnLeuProProValValAlaLysGluIleValAlaSerCysAspLysCysGin
GATTTAACCTGCCACCTGTAGTAGCAGGAAATAGTAGCAGCTGTGATAATGTCA
CTAAAAATTGGACGGTGGACATCATCGTTTCTTATCATCGTCGACACTATTACAGTC

1923 LeuLysGlyGluAlaMetHisGlyGlnValAspCysSerProGlyIleTrpGlnLeuAsp
CTAAAAGGAGAACGCATGGACAAGTAGACTGTAGTCAGGAATATGCCAACTAGAT
GATTTTCTCTCGGTACGTACCTGTTCATCTGACATCAGGTCTTACACGTTGATCTA

1983 CysThrHisLeuGluGlyLysIleIleLeuValAlaValHisValAlaSerGlyTyrile
TGTACACATCTAGAAGGAAAATATCCTGGTAGCAGTCATGTAGCCAGTGGATATATA
ACATGTGTAGATCTCTCTTTAATAGGACCATCGTCAAGTACATCGGTACCTATATAT

2043 GluAlaGluValIleProAlaGluThrGlyGlnGluThrAlaTyrPheLeuLeuLysLeu
GAAGCAGAAGTTATCCAGCAGAGACAGGGCAGGAAACAGCATATTTCTCTAAATA
CTTCGTTCAATAAGTCGTCTGTCCCCGTCTTGTGCTATAAAAGAGAATTAAAT

2103 AlaGlyArgTrpProValIlysThrIleHisThrAspAsnGlySerAsnPheThrSerThr
GCAGGAAAGATGGCCAGTAAAACAATACATACAGACAATGGCAGCAATTTCACCAAGTACT
CGTCCTCTACCGGTCACTTTGTTATGTATGTCGTTACCGTCGTTAAAGTGGTCATGA

2163 ThrValIysAlaAlaCysTrpTrpAlaGlyIleLysGlnGluPheGlyIleProTyrAsn
ACGGTTAAGGCCGCTGTTGGGGCAGGGATCAAGCAGGAATTGGCATTCCCTACAT
TGCCCAATTCCGGCGGACAACCACCCGTCCTAGTCGTCCTTAAACCGTAAGGGATGTTA

2223 ProGlnSerGlnGlyValValGluSerMetAsnAsnGluLeuLysLysIleIleGlyGln
CCCCAAAGTCAGGAGTAGTAGAATCTATGAAATAATGAATTAAAGAAAATTAGGACAG
GGGTTTCAGTTCTCATCTTAGATACTTATTACTTAATTCTTTAATATCCTGTC

2283 ValArgAspGlnAlaGluHistoleuLysThrAlaValGlnMetAlaValPhenylHisAsn
GTAAGAGATCAGGCTGAAACCTTAAGACAGCAGTACAAATGGCAGTATTCATCCAAAT
CATTCTCTAGTCGACTTGTGAAATTCTGTCATGTTACCGTCATAAGTAGGTGTTA

2343 PheLysArgLysGlyGlyIleGlyGlyTyrSerAlaGlyGluArgIleValAspIleIle
TTTAAAGAAAAGGGGGATTGGGGATACAGTGAGGGAAAGAATAGTAGACATAATA
AAATTCTTCTTCCCCCTAACCCCTATGTCACGTCCCCCTTCTTATCATCTGTTATT

2403 AlaThrAspIleGinThrLysGluLeuGlnLysGlnIleThrLysIleGlnAsnPheArg
GCACACAGACATAACAAACTAAAGAACTACAAAAGCAATTACAAAATTCAAAATTTCGG
CGTTGTCGTATGTTGATTTCTGATGTTCTGTTAAAGTTAAAGTTAAAGGCC

2463 ValTyrTyrArgAspAsnLysAspProLeuTrpLysGlyProAlaLysLeuLeuTrpLys
GTTTATTACAGGGACACAAAGATCCCCTTGGAAAGGACAGCAGCAAGCTCTCTGGAAA
CAAATAATGTCCTGTTGTTCTAGGGGAAACCTTCTGTCGTTCAAGGAGACCTT

2523 GlyGluGlyAlaValValIleGlnAspAsnSerAspIleLysValValProArgArgLys
GGTGAAGGGCAGTAGATAACAAAGATAATAGTGACATAAAAGTAGTGTGCAAGAAGAAA
CCACTTCCCCGTCACTATTATGTTCTATTACTGTTACCTACAGGTTCTTCTT

2583 AlaLysIleIleArgAspTyrGlyLysGlnMetAlaGlyAspAspCysValAlaSerArg
GCAAAATCATTAGGGATTATGAAAACAGATGGCAGGTGATGATTGTGTCAGTACA
CGTTTTAGTAATCCCTAACCTTTGTCACCGTCCACTACTAACACACCGTCACT

2643 GlnAspGluAspAM
CAGGATGAGGATTAG
GTCCTACTCTTAATC

FIGURE 24

931154

FIGURE 25

07 931154

FIGURE 27

87 931154

FIGURE 28

07 931154

FIGURE 29

01 931154

FIGURE 30

81 931154

FIGURE 31

931154

FIG.1

FIG.2

FIG.3

931154

Argument Map in DNA Strand ssarv2
from the '/v/lib/6mers' file.
Translation shown at open reading frames.

mbol1-1 mbol1-1 !----- !----- !----- !----- !----- !----- !----- !-----
binI binI aval-2 bgI11 nar1 xmnl pst1 binI
scal sacl af111 hind111 mbol1-1
ecor5

hind111 ahal11 pst1 bstXI ahal11 apa1
mbol1-1 ava3 ahal11 hind111 mbol1-1 avr2
mbol1-1 sph1
pvull
pst1
pvull
tthIIII-2

mbol1-2 mbol1-1 mbol1-1 scal ava3 tthIIII-2
mbol1-1 bstXI ahal11 ecors
mbol1-1 tthIIII-2 bstXI binI
bgI11 ball
mbol1-1

binI bstXI mbol1-1 ahal11 kpn1 mbol1-1
tthIIII-2 pvull hpa1 ahal11 mbol1-1
av3

kpn1 mbol1-1 bstXI mbol1-1 af111 hind111
scal pvull xmnl scal ahal11 mbol1-1
av3 ball
xba1 binI

FIG. 4A

931154

-!----!
ndel avr2 !----!
scal binI mbol1-1 ecor1 avr2 mbol1-1
mbol1-1 af111 avr2 xbaI sac1
ncol ncol mbol1-1 mbol1-1 mlul hind111
mstII

-!----!
scal mbo11-1 ndel binI mbol1-1 stu1
mbol1-1 ahal11 scal mbol1-1
mbol1-1 bg111 pvu11

-!----!
mbol1-1 mstII mbol1-2 mbol1-1 mstII
mbol1-1 binI avr2
mbol1-1 mbo11-1

!----!
mbol1-1 aval-2 pst1 mbol1-1 aval-1 ahal11
mbol1-1 mbol1-1 tth111-2 mbol1-1 binI
mbol1-1 bg111 xhol mstII binI
mbol1-2 kpn1

-!----!
ecor5 aval-2 pvu11
mbol1-1 scal bg111
binI sac1 af111
hind111

FIG. 4B

1 CTGGAAGGGCTAATTGGTCCAAAGAACAGAGATCCTGATCTGTGGATCTACCAAC
 GACCTTCCCATTAAACCAGGGTTCTTCTGTTCTAGGAACCTAGAACCTAGATGGTGTG
 26 mb011, 50 bin1,
 63 ACAAGGCTACTTCCCTGATTGGCAGAATTACACACCAGGGCCAGGGATCAGATATCCACT
 TGTTCGATGAAGGGACTAACCGTCTTAATGTGTGGTCCCGGCTAGTCTATAGGTGA
 107 bin1, 113 ecor5,
 123 GACCTTGGATGGTCTCAAGCTAGTACCAAGCTTGGAGCCAGAGAACGGTAGAAGAGGCCAA
 CTGGAAACCTACCAACGAAGTTGATCATGGTCAACTCGGTCTTCCATCTTCTCCGGTT
 172 mb011,
 183 TGAAGGAGAGAACAAACAGCTTGTACACCCATGAGCCTGCATGGGATGGAGGACGCCA
 ACTTCCTCTTGTGACAAATGTGGGATACTCGGACGTACCCCTACCTCCTGCGCCT
 243 GAAAGAAGTGTAGTGTGGAGGTTGACAGCAAACTAGCATTGATCACATGGCCCAGA
 CTTCTTCACAATCACACCTCCAAACTGTGTTGATCGTAAAGTAGTGTACCGGGCTCT
 296 aval,
 303 GCTGCATCCGGAGTACTACAAAGACTGCTGACATCGAGCTTCTACAAGGGACTTCCGC
 CGACGTAGGCCCTCATGATGTTCTGACGACTGTAGCTGAAAGATGTTCCCTGAAAGGCG
 314 scal,
 363 TGGGGACTTCCAGGGAGGCGTGGCTGGCGGGACTGGGAGTGGCGTCCCTCAGATGC
 ACCCTGAAAGGTCCCTCCGACCGGACCCGCCCTGACCGCAGGGAGTCTACG
 423 TGCATATAAGCAGACTGCTTTGCCTGACTGGGCTCTCTGGTTAGACAGATCTGAG
 ACGTATATTGCTGACGAAAAACGGACATGACCCAGAGAGACCAATCTGGTCTAGACTC
 474 bgl11,
 483 CCTGGGAGCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAGCTTGCCTT
 GGACCCCTCGAGAGACCGATTGATCCCTGGGTGACGAATTGGAGTTATTGAAACGGAA
 488 sac1, 518 af111, 532 hind111,
 543 GAGTGCTTCAAGTAGTGTGCCGTCTGTTGTGACTCTGGTAACTAGAGATCCCTCA
 CTCACGAAGTTCATCACACACGGCAGACAACACACTGAGACCAATTGATCTAGGGAGT
 603 GACCTTTAGTCAGTGTGGAAAAATCTCTAGCAGTGGCGCCCGAACAGGGACGCGAAAG
 CTGGGAAAATCAGTCACACCTTTAGAGATCGTCA_{CC}CGGGCTTGTCCCTGCGCTTC
 639 nar1,
 663 CGAAAGTAGAACCAAGAGGGAGCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGAACAG
 GCTTCATCTGGTCTC_{CC}CGAGAGAGCTGCGTCTGAGCCGAACGACTTCGCGCGTGTGTC
 680 sac1,
 723 CAAGAGGGCGAGGGGGCGGCAGTGGTGAGTACGCCAATTTTGACTAGCGGAGGCTAGAACAG
 GTTCTCCGCTCCCCGCCGCTGACCACTCATGCCGTTAAAAACTGATGCCCTCGATCTTC
 783 GAGAGAGAGATGGGTGCGAGAGCGTGGTATTAGCGGGGGAGAATTAGATAAATGGGAA
 CTCTCTCTACCCACGCTCTCGCAGCCATAATTGCCCTCTTAATCTATTACCC_{TT}
 MetGlyAlaArgAlaSerValLeuSerGlyGlyGluLeuAspLysTrpGlu GAG

FIG. 4C

843 LysIleArgLeuArgProGlyGlyLysLysTyrLysLeuLysHisIleValTrpAla
 AAAATTGGTTAAGGCCAGGGGGAAAGAAAAATATAAGTTAAACATATAGTATGGGCAT
 TTTTAAGCAATTCCGGTCCCCTTCTTTTATTCATTTGTATATCATACCGT
 903 SerArgGluLeuGluArgPheAlaValAsnProGlyLeuLeuGluThrSerGluGlyCys
 AGCAGGGAGCTAGAACGATTGCAGTCATCCTGGCCTGTTAGAAACATCAGAAGGCTGC
 TCGTCCCTCGATCTTGCTAACCGTCAGTTAGGACCGGACAATCTTGTAGTCTCCGACG
 959 pst1,
 963 ArgGlnIleLeuGlyGlnLeuGlnProSerLeuGlnThrGlySerGluGluLeuArgSer
 AGACAAATATTGGGACAGCTACAGCCATCCCTCAGACAGGATCAGAAGAACATTAGATCA
 TCTGTTATAACCCTGTCGATGTCGGTAGGGAGTCTGTCCTAGTCTTGAATCTAGT
 1002 binI, 1008 mbo11,
 1023 LeuTyrAsnThrValAlaThrLeuTyrCysValHisGlnArgIleAspValLysAspThr
 TTATATAATACAGTAGCAACCCCTCTATTGTGTACATCAAAGGATAGATGTAAAAGACACC
 AATATATTATGTCATCGTGGGAGATAACACATGTAGTTCCCTATCTACATTTCTGTGG
 1083 LysGluAlaLeuGluLysIleGluGluGlnAsnLysSerLysLysLysAlaGlnGln
 AAGGAAGCTTAGAGAAGATAGAGGAAGAGCAAAACAAAGTAAGAAAAAGGCACAGCAA
 TTCCTTCGAAATCTCTTCTATCTCCTCTCGTTTGTTCATTCTTCCGTGCGTT
 1087 hindIII, 1097 mbo11, 1107 mbo11,
 1143 AlaAlaAlaAlaAlaAlaGlyThrGlyAsnSerSerGlnValSerGlnAsnTyrProIleVal
 GCAGCAGCTGCAGCTGGCACAGGAAACAGCAGCCAGGTAGCCAAAATTACCTATAGTG
 CGTCGTCGACGTCGACCGTGTCCCTTGTGTCGGTCCAGTCGGTTAATGGGATATCAC
 1147 pvu11, 1150 pst1, 1153 pvu11, 1156 tthIII,
 1203 GlnAsnLeuGlnGlyGlnMetValHisGlnAlaIleSerProArgThrLeuAsnAlaTrp
 CAGAACCTACAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTAAATGCATGG
 GTCTGGATGTCCCCGTTACCATGTAGTCCGGTATAGTGGATCTTGAATACGTACC
 1250 ahall11, 1255 ava3,
 1263 ValLysValValGluGluLysAlaPheSerProGluValIleProMetPheSerAlaLeu
 GTAAAAGTAGTAGAAGAAAAGGCTTCAGCCCAGAAGTAAATACCCATGTTTCAGCATTAA
 CATTTCATCATCTCTTCCGAAAGTCGGGTCTCATTATGGGTACAAAAGTCGTAAT
 1275 mbo11,
 1323 SerGluGlyAlaThrProGlnAspLeuAsnThrMetLeuAsnThrValGlyGlyHisGln
 TCAGAAGGGAGCCACCCACAAAGATTTAACACCATGCTAAACACAGTGGGGGACATCAA
 AGTCTTCCTCGGTGGGGTGTTCATTATGGGTACGATTGTGTCACCCCCCTGTAGTT
 1346 ahall11,
 1383 AlaAlaMetGlnMetLeuLysGluThrIleAsnGluGluAlaAlaGluTrpAspArgVal
 GCAGCCATGCAAATGTTAAAGAGACTATCAATGAGGAAGCTGCAGAATGGGATAGAGTG
 CGTCGGTACGTTACAATTTCTGATAGTTACTCCTCGACGTCTTACCCATCTCAC
 1423 pst1,
 1443 HisProValHisAlaGlyProIleAlaProGlyGlnMetArgGluProArgGlySerAsp
 CATCCAGTGCATGCAGGGCCTATTGCACCGAGGCCAAATGAGAGAACAAGGGGAAGTGAC
 GTAGGTCACTGTACGTCCCAGATAACGTGGTCCGGTTACTCTCTGGTCCCTCACTG
 1451 sph1,

FIG. 4D

1503 IleAlaGlyThrThrSerThrLeuGlnGluGlnIleGlyTrpMetThrAsnAsnProPro
 ATAGCAGGAACACTACTAGTACCCCTCAGGAACAAATAGGATGGATGACAATAATCCACCT
 TATCGTCCTTGATGATCATGGGAAGTCCTTGTATCCTACCTACTGTTATTAGGTGGA
 1563 IleProValGlyGluIleTyrLysArgTrpIleIleLeuGlyLeuAsnLysIleValArg
 ATCCCAGTAGGAGAAATCTATAAAAGATGGATAATCCTGGGATTAATAAATAAAATAGTAAGA
 TAGGGTCATCCTCTTGTAGATATTTCTACCTATTAGGACCTAATTATTTATCATTCT
 1623 MetTyrSerProThrSerIleLeuAspIleArgGlnGlyProLysGluProPheArgAsp
 ATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAAGGAACCCCTTAGAGAT
 TACATATCAGGGATGGTCGTAAAGACCTGTATTCTGGTTCTGGGAAATCTCTA
 1636 bstXI,
 TyrValAspArgPheTyrLysThrLeuArgAlaGluGlnAlaSerGlnAspValLysAsn
 1683 TATGTAGACCGGGTTCTATAAAACTCTAAAGAGCCGAACAAGCCTCACAGGATGTAAAAAT
 ATACATCTGGCCAAGATATTTGAGATTCTCGGCTTGTCAAGTGTACATTTTTA
 1720 hindIII,
 TrpMetThrGluThrLeuLeuValGlnAsnAlaAsnProAspCysLysThrIleLeuLys
 1743 TGGATGACAGAACCTTGTGGTCCAAATGCAAACCCAGATTGTAAGACTATTTAAAA
 ACCTACTGTCTTGGAACACCAGGTTTACGTTGGGTCTAACATTCTGATAAAAATTT
 1796 aha111,
 AlaLeuGlyProAlaAlaThrLeuGluGluMetMetThrAlaCysGlnGlyValGlyGly
 1803 GCATTGGGACCAGCAGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTGGGGGA
 CGTAACCCCTGGTCGTGATGTGATCTCTTACTACTGTCGTACAGTCCTACCCCCCT
 1827 mbol1,
 ProGlyHisAlaArgValLeuAlaGluAlaMetSerGlnValThrAsnProAlaAsn
 1863 CCCGGCCATAAAGCAAGAGTTTGGCTGAAGCCATGAGCCAAGTAACAAATCCAGCTAAC
 GGGCCGGTATTCGTTCTCAAAACCGACTTCGGTACTCGGTTATTGTTAGGTCGATTG
p18
 1923 IleMetMetGlnArgGlyAsnPheArgAsnGlnArgLysThrValLysCysPheAsnCys
 ATAATGATGCAGAGAGGCCATTAGGAACCAAAGAAAGACTGTTAAGTGTTCATTG
 TATTACTACGTCTCCGTTAAATCCTGGTTCTGACAATTACAAAGTTAAC
 1983 GlyLysGluGlyHisIleAlaLysAsnCysArgAlaProArgLysLysGlyCysTrpArg
 GGCAAAGAAGGGCACATAGCCAAAAATTGCAGGGCCCTAGGAAAAAGGGCTGGAGA
 CCGTTCTCCCGTGTACGGTTAACGTCGGGGATCCTTTCCGACAACCTCT
 2014 apal, 2019 avr2,
 CysGlyArgGluGlyHisGlnMetLysAspCysThrGluArgGlnAlaAsnPheLeuGly
 2043 TGTGGAAGGGAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTAGGG
 ACACCTCCCTCTGTGGTTACTTCTAACGTGACTCTGTCGGATTAAAAATCCC
 2102 mbol1,
 LysIleTrpProSerTyrLysGlyArgProGlyAsnPheLeuGlnSerArgProGluPro
 2103 AAGATCTGGCCTTCTACAAGGGAGGGCAGGGAAATTCTCAGAGCAGACAGAGCCA
 TTCTAGACCGGAAGGATGTTCCCTCCGGTCCCTAAAGAAGTCTCGTCTGGTCTCGGT
 2104 bglII, 2141 mbol1,

FIG. 4E

2163 ThrAlaProProGluGluSerPheArgPheGlyGluGluLysThrThrProSerGlnLys
 ACAGCCCCACCAGAAGAGAGCTTCAGGTTGGGGAGGAGAAACACTCCCTCTCAGAAG
 TGTGGGGTGGTCTCTCTCGAACGTCACCAACCCCTCCTCTTTGTTGAGGGAGAGTCTC
 2175 mbo11,
 GlnGluProIleAspLysGluLeuTyrProLeuThrSerLeuArgSerLeuPheGlyAsn
 2223 CAGGAGCCGATAGACAAGGAACCTGTATCCTTAACCTCCCTCAGATCACTCTTGCAAC
 GTCCTCGGCTATCTGTTCTGACATAGGAAATTGAAGGGAGTCTAGTGAGAAACCGTTG
 AspProSerSerGlnOC
 2283 GACCCCTCGTCACAATAAGGATAGGGGGCAACTAAAGGAAGCTCTATTAGATAACAGGA
 CTGGGGAGCAGTGTATTCCCTATCCCCCGTTGATTCCTTCGAGATAATCTATGTCCT
 MetAsnLeuProGlyLysTrpLysProLysMetIle
 2342 GCAGATGATACTAGTATTAGAAGAAATGAATTGCCCCAGGAAATGGAAACCAAAATGATA
 CGTCTACTATGTCTAAATCTTCTTACTAAACGTCCTTACCTTGGTTTACTAT
 2360 mbo11, 2375 bstXI,
 GlyGlyIleGlyGlyPheIleLysValArgGlnTyrAspGlnIleProValGluIleCys
 2402 GGGGGAAATTGGAGGTTTATCAAAGTAAGACAGTACGATCAGATACTGTAGAAATCTGT
 CCCCCTTAACCTCCAAAATAGTTCATCTGTCTAGTCTATGGACATCTTAGACA
 GlyHisLysAlaIleGlyThrValLeuValGlyProThrProValAsnIleIleGlyArg
 2462 GGACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAAGA
 CCTGTATTTCGATATCCATGTCATAATCATCCTGGATGTGGACAGTTGTATTAAACCTCT
 2517 mbo11,
 AsnLeuLeuThrGlnIleGlyCysThrLeuAsnPheProIleSerProIleGluThrVal
 2522 ATCTGTTGACTCAGATTGGTTGACTTTAAATTCCCCATTAGTCCTATTGAAACTGTA
 TTAGACAACGTCTAACCAACATGAAATTAAAGGGTAATCAGGATAACTTGTACAT
 2548 aha111, 2577 tth111,
 ProValLysLeuLysProGlyMetAspGlyProLysValLysGlnTrpProLeuThrGlu
 2582 CCAGTAAAATTAAAGCCAGGAATGGATGGCCAAAAGTTAACGAAATGGCCATTGACAGAA
 GGTCTATTAAATTTCGGCTTACCTACCGGGTTTCAATTGTTACCGGTAACGTCT
 2627 ball, 2639 mbo11,
 GluLysIleLysAlaLeuValGluIleCysThrGluMetGluLysGluGlyLysIleSer
 2642 GAAAAAAATAAAAGCATTAGTAGAGATATGTACAGAAATGGAAAAGGAAGGGAAAATTCA
 CTTTTTATTTCGTAATCATCTCTATACATGTTACCTTTCTCCCTTTAAAGT
 2702 LysIleGlyProGluAsnProTyrAsnThrProValPheAlaIleLysLysAspSer
 AAAATTGGGCCTGAAAATCCATACAATACTCCAGTATTGCTATAAAGAAAAAGACAGT
 TTTAACCCGGACTTTAGGTATGTTATGAGGTACAAACGATATTCTTTCTGTCA
 2759 scal,
 ThrLysTrpArgLysLeuValAspPheArgGluLeuAsnLysArgThrGlnAspPheTrp
 2762 ACTAAATGGAGAAAATAGTAGATTTCAGAGAACTTAATAAAAGAAACTCAAGACTTCTGG
 TGATTTACCTCTTGATCATCAAAGTCTCTGAATTATTTCTTGAGTTCTGAAGACC
 2822 GluValGlnLeuGlyIleProHisProGlnGlyOC
 GAAGTTCAAGTTAGGAATACCAACCCGCAGGGTTAAAAAAAGAAAAAAATCAGTAACAGTA
 CTTCAAGTCATCCTATGGTGTGGCGTCCAATTTTCTTTAGTCATTGTCAT

FIG. 4F

2882 TTGGATGTGGGTGATGCATACTTTCAGTCCCTAGATAAAGACTTAGAAAGTATACTG
AACCTACACCCACTACGTATGAAAAGTCAGGGAATCTATTCTGAAATCTTCATATGAC

2895 ava3,

2943 CATTACCATACCTAGTATAAACAAATGAGACACCAGGGATTAGATATCAGTACAATGTGG
GTAAATGGTATGGATCATATTGTTACTCTGTGGTCCCTAATCTATAGTCATGTTACACC

POL

2985 ecor5,

3003 LeuProGlnGlyTrpLysGlySerProAlaIlePheGlnSerSerMetThrLysIleLeu
CTGCCACAGGGATGGAAAGGATCACCAAGCAATATTCAAAGTAGCATGACAAAAATCTTA
GACGGTGTCCCTACCTTCTAGTGGTCGTATAAGGTTTCACTCGTACTGTTTTAGAAT
3003 tthIIII, 3006 bstXI, 3021 binI,

3063 GluProPheArgLysGlnAsnProAspIleValIleTyrGlnTyrMetAspAspLeuTyr
GAGCCTTTAGAAAACAGAACATCCAGACATAGTTATCTATCAATACATGGATGATTGTAT
CTCGGAAAATCTTTGTCTAGGTCTGTATCAATAGATAGTTATGTACCTACTAAACATA

3123 ValGlySerAspLeuGluIleGlyGlnHisArgThrLysIleGluGluLeuArgGlnHis
GTAGGATCTGACTTAGAAAATAGGGCAGCATAGAACAAAAATAGAGGAACAGACAGCAT
CATCCTAGACTGAATCTTATCCCGTCGTCTGTTTTATCTCCTTGACTCTGTGTA
3126 binI, 3171 tthIIII,

3183 LeuLeuArgTrpGlyPheThrThrProAspLysLysHisGlnLysGluProProPheLeu
CTGTTGAGGTGGGGATTACACACCAGAACAAAAACATCAGAAAGAACCTCCATTCCCT
GACAACCTCCACCCCTAAATGGTGTGGTCTGTTTTGTAGTCTTCTGGAGGTAAAGGAA
3234 bstXI,

3243 TrpMetGlyTyrGluLeuHisProAspLysTrpThrValGlnProIleMetLeuProGlu
TGGATGGGTATGAACCTCCATCCTGATAAAATGGACAGTACAGCCTATAATGCTGCCAGAA
ACCTACCCAATACTTGAGGTAGGACTATTTACCTGTATGTCGGATATTACGACGGTCTT

3303 LysAspSerTrpThrValAsnAspIleGlnLysLeuValGlyLysLeuAsnTrpAlaSer
AAAGACAGCTGGACTGTCAATGACATACAGAACGTTAGTGGAAAATTGAATTGGCAAGT
TTCTGTGACCTGACAGTTACTGTATGTCTCAATCACCCCTTTAACCTAACCGTCA
3308 pvuII,

3363 GlnIleTyrAlaGlyIleLysValLysGlnLeuCysLysLeuLeuArgGlyThrLysAla
CAGATTATGCAGGGATAAAGTAAAGCAGTTATGTAACCTCCTAGAGGAACCAAAGCA
GTCTAAATACGTCCCTAATTCTTCATTGTCATACATTGAGGAATCTCCTGGTTCGT

3423 LeuThrGluValIleProLeuThrGluGluAlaGluLeuGluLeuAlaGluAsnArgGlu
CTAACAGAAGTAATACCACTAACAGAACAGCAGAGCTAGAACTGGCAGAAAACAGGGAG
GATTGTCTTCATTATGGTGATTGTCTTCTCGTCTCGATCTGACCGTCTTGTCCCTC
3447 mboll,

3483 IleLeuLysGluProValHisGluValTyrTyrAspProSerLysAspLeuValAlaGlu
ATTCTAAAAGAACCAAGTACATGAAGTATATTATGACCCATCAAAGACTTAGTAGCAGAA
TAAGATTTCTGGTCATGTACTTCATATAACTGGTAGTTCTGAATCATCGTCTT

3543 IleGlnLysGlnGlyGlnGlyGlnTrpThrTyrGlnIleTyrGlnGluProPheLysAsn
ATACAGAACGAGGGGCAAGGCCATGGACATATCAAATTATCAAGAGGCCATTAAAAAT
TATGTCTTCGTCCTCGTACCTGTATAGTTAAATAGTTCTCGGTAAATTTTTA

3594 ahal11,

FIG. 4G

3603 LeuLysThrGlyLysTyrAlaArgMetArgGlyAlaHisThrAsnAspValLysGlnLeu
 CTGAAAACAGGAAAGTATGCAAGGGATGAGGGGTGCCACACTAATGATGAAAAACAGTTA
 GACTTTGTCCTTCATACGTTCTACTCCCCACGGGTGTGATTACTACATTGGTCAAT
 3659 hpa1,
 3663 ThrGluAlaValGlnLysValSerThrGluSerIleValIleTrpGlyLysIleProLys
 ACAGAGGCAGTGCACAAAGTATCCACAGAAAGCATAGTAATATGGGGAAAGATTCTAA
 TGTCTCCGTACGTTTCATAGGTGTCTTCGTATCATTATAACCCTTCTAAGGATT
 3723 PheLysLeuProIleGlnLysGluThrTrpGluAlaTrpTrpMetGluTyrTrpGlnAla
 TTTAAACTACCCATACAAAAGGAAACATGGGAAGCATGGTGGATGGAGTATTGGCAAGCT
 AAATTTGATGGGTATGTTTCCTTGACCCCTCGTACCCACCTACCTCATAACCGTTCGA
 3723 aha111,
 3783 ThrTrpIleProGluTrpGluPheValAsnThrProProLeuValLysLeuTrpTyrGln
 ACCTGGATTCCCTGAGTGGGAGTTGTCAAATACCCCTCCCTTAGTGAAATTATGGTACCAAG
 TGGACCTAAGGACTCACCTCAAACAGTTATGGGGAGGGAATCACTTAATAACCATGGTC
 3835 kpn1,
 3843 LeuGluLysGluProIleValGlyAlaGluThrPheTyrValAspGlyAlaAlaAsnArg
 TTAGAGAAAGAACCCATAGTAGGAGCAGAAACTTCTATGTAGATGGGCAGCTAATAGG
 AATCTCTTCTGGGTATCATCCTCGTCTTGAAAGATACTACACCCGTCGATTATCC
 3903 GluThrLysLeuGlyLysAlaGlyTyrValThrAspArgGlyArgGlnLysValValSer
 GAGACTAAATTAGGAAAGCAGGATATGTTACTGACAGAGGAAGACAAAAGTTGTCTCC
 CTCTGATTTAATCCTTTCTGTCCTATACAATGACTGTCTCTGTTTCAACAGAGG
 3943 mbol1,
 3963 IleAlaAspThrThrAsnGlnLysThrGluLeuGlnAlaIleHisLeuAlaLeuGlnAsp
 ATAGCTGACACAACAAATCAGAAGACTGAATTACAAGCAATTCTAGCTTGAGGAT
 TATCGACTGTGTTAGTCTGACTTAATGTTAGTCAAGTCCTAGTAAGTCGAAACGTCCTA
 3983 mbol1,
 4023 SerGlyLeuGluValAsnIleValThrAspSerGlnTyrAlaLeuGlyIleIleGlnAla
 TCGGGATTAGAAGTAAACATAGTAACAGACTCACAAATATGCATTAGGAATCATTCAAGCA
 AGCCCTAATCTCATTGTATCATTGTCTGAGTGTATACGTAATCCTTAGTAAGTTCG
 4060 ava3,
 4083 GlnProAspLysSerGluSerGluLeuValSerGlnIleIleGluGlnLeuIleLysLys
 CAACCAGATAAGAGTGAATCAGAGTTAGTCAGTCAAATAATAGAGCAGTTAATAAAAAG
 GTTGGTCTATTCTCACTTAGTCTCAATCAGTCAGTTATTATCTCGTCAATTATTTTC
 4143 GluLysValTyrLeuAlaTrpValProAlaHisLysGlyIleGlyGlyAsnGluGlnVal
 GAAAAGGTCTACCTGGCATGGTACCAAGCACACAAAGGAATTGGAGGAAATGAACAAAGTA
 CTTTCCAGATGGACCGTACCCATGGTCGTGTTCTAACCTCCTTACTTGTTCAT
 4163 kpn1,
 4203 AspLysLeuValSerAlaGlyIleArgLysValLeuPheLeuAsnGlyIleAspLysAla
 GATAAAATTAGTCAGTGCCTGGAAATCAGGAAAGTACTATTTGAATGGAATAGATAAGGCC
 CTATTTAATCAGTCACGACCTAGTCCTTACATGATAAAAACCTACCTTATCTATTCCGG
 4232 scal,

FIG. 4H

4263 GlnGluGluHisGluLysTyrHisSerAsnTrpArgAlaMetAlaSerAspPheAsnLeu
 CAAGAAGAACATGAGAAATATCACAGTAATTGGAGAGCAATGGCTAGTGATTAAACCTG
 GTTCTTGTACTCTTATAGTGT[^]CATTAACCTCGTTACCGATCACTAAAATTGGAC
 4266 mb011,
 ProProValValAlaLysGluIleValAlaSerCysAspLysCysGlnLeuLysGlyGlu
 4323 CCACCTGTAGTAGCAAAAGAAATAGTAGCCAGCTGTGATAAAATGTCAGCTAAAGGAGAA
 GGTGGACATCATCGTTTCTTATCATCGGTC[^]GACACTATTACAGTCGATTTCCCTCT
 4352 pvu11,
 AlaMetHisGlyGlnValAspCysSerProGlyIleTrpGlnLeuAspCysThrHisLeu
 4383 GCCATGCATGGACAAGTAGACTGTAGTCCAGGAATATGGCAACTAGATTGTACACATCTA
 CGGTACGTACCTGTTCATCTGACATCAGGTC[^]CCTATACCGTTGATCTAACATGTGTA[^]GAT
 4386 ava3, 4410 bstXI, 4439 xba1,
 GluGlyLysIleIleLeuValAlaValHisValAlaSerGlyTyrIleGluAlaGluVal
 4443 GAAGGAAAAATTATCCTGGTAGCAGTTCATGTAGCCAGTGGATATAGAACAGAACAGTT
 CTTCCTTTAAAGGACCATCGTCAAGTACATCGGTACCTATATCTTCGTC[^]TTCAA
 4497 xmn1,
 IleProAlaGluThrGlyGlnGluThrAlaTyrPheLeuLeuLysLeuAlaGlyArgTrp
 4503 ATTCCAGCAGAGACAGGGCAGGAAACAGCATATTTCTCTAAATTAGCAGGAAGATGG
 TAAGGTCGTC[^]TCTGTCCCCTTGT[^]CGTATAAAAGAGAATTAAATCGTC[^]TTCTACC
 4555 mb011, 4560 ba11,
 ProValLysThrIleHisThrAspAsnGlySerAsnPheThrSerThrThrValLysAla
 4563 CCAGTAAAACAATACATACAGACAATGGCAGCAATT[^]ACCGTACTACGGTTAAGGCC
 GGT[^]CATTTTGTATGTATGTC[^]TGTACCGTC[^]GTAAAGTGGCATGCAATTCCGG
 4605 scal,
 AlaCysTrpTrpAlaGlyIleLysGlnGluPheGlyIleProTyrAsnProGlnSerGln
 4623 GCCTGTTGGTGGCAGGGATCAAGCAGGAATTGGCATTCCCTACAATCCCCAAAGTC[^]
 CGGACAACCACCGTCC[^]CTAGTTGTC[^]CTAAACCGTAAGGGATGTTAGGGTTTCAGTT
 4639 b1n1,
 GlyValValGluSerMetAsnAsnGluLeuLysLysIleIleGlyGlnValArgAspGln
 4683 GGAGTAGT[^]AGAATCTATGAATAATGAATTAAAGAAAATTATAGGACAGGTAAAGAGATCAG
 CCTCATCATCTT[^]AGATACTTATTACTTAATTCTTTAATATCCTGTC[^]ATTCTCTAGTC
 4743 AlaGluHisLeuLysThrAlaValGlnMetAlaValPheIleHisAsnPheLysArgLys
 GCTGAACACCTTAAGACAGCAGTACAAATGGCAGTATT[^]CATCCACAATTAAAGAAAA
 CGACTTGT[^]GGATTCTGTC[^]GTACGTTACCGTCATAAGTAGGTGTTAAATTCTTT
 4752 alf11, 4791 aha111,
 480 SerAlaGlyGluArgIleValAspIleIleAlaThrAspIle
 AGTG[^]CAGGGGAAAGAAATAGTAGACATAATAGCAACAGACATA
 STCACGT[^]CCCTTCTTATCATCTGTATTATCGTTGTCTGTAT
 486 *afp 11* LysGlnIleThrLysIleGlnAsnPheArgValTyrTyrArg
 AAAGCAAATTACAAAATTCAAAATTTCGGGTTATTACAGG
 TTGTTAATGTTAAAGTTAAAAGCCAAATAATGTCC

FIG. 4 I

4923 AspAsnLysAspProLeuTrpLysGlyProAlaLysLeuLeuTrpLysGlyGluGlyAla
 GACAACAAAGATCCCCTTGGAAAGGACCAGCAAAGCTCTGGAAAGGTGAAGGGGCA
 CTGTTGTTCTAGGGAAACCTTCCTGGTCGTTCTGAAGAGACCTTCCACTTCCCCT
 4956 hind111,
 4983 ValValIleGlnAspAsnSerAspIleLysValValProArgArgLysAlaLysIleIle
 GTAGTAATAACAAGATAATAGTGACATAAAAGTAGTGCCAAGAAGAAAAGCAAAATCATT
 CATCATTATGTTCTATTATCACTGTATTTCATCACGGTTCTTCTCGTTTTAGTAA
 5023 mbo11,
 5043 MetGluAsnArgTrpGlnValMetIleValTrpGlnValAspArgMetArgIle
 ArgAspTyrGlyLysGlnMetAlaGlyAspAspCysValAlaSerArgGlnAspGluAsp
 AGGGATTATGGAAAACAGATGGCAGGTGATGATTGTGTCAGTAGACAGGATGAGGAT
 TCCCTAACCTTTGTCTACCGTCCACTACTAACACACCCTCATCTGCCTACTCCTA
 ArgTreTrpLysSerLeuValLysHisHisMetTyrIleSerLysLysAlaLysGlyTrp
 5103 AM TAGAACATGGAAAAGTTAGTAAACACCATATGTATATTCAAAGAAAGCTAAAGGATGG
 ATCTTGTACCTTTCAAATCATTTGTGGTATACATATAAAGTTCTTCGATTTCTTACCC
 5131 ndel,
 5163 PheTyrArgHisHisTyrGluSerThrHisProArgValSerSerGluValHisIle
 TTTTATAGACATCACTATGAAAGTACTCATCCAAAGAGTAAGTTAGAAGTACACATC
 AAAATACTCTGAGTAGTTCTCATTCAAGTCTTATGTGTAG
 5185 scal,
 5221 ProLeuGlyAspAlaLysLeuValIleThrThrTyrTrpGlyLeuHisThrGlyGluArg
 CCCCTAGGGGATGCTAAATTGGTAATAACACATATTGGGGTCTGCATACAGGAGAAAGA
 GGGGATCCCCTACGATTAAACCATTATTGTGATAACCCCCAGACGTATGTCCTCTTCT
 5223 avr2,
 5281 GluTrpHisLeuGlyGlnGlyValAlaIleGluTrpArgLysLysTyrSerThrGln
 GAATGGCATTGGGCCAGGGAGTCGCCATAGAACATGGAGGAAAAAGAAATATAGCACACAA
 CTTACCGTAAACCGGTCCCTCAGCGGTATCTTACCTCTTTCTTATATCGTGTGTT
 5341 ValAspProGlyLeuAlaAspGlnLeuIleHisLeuHisTyrPheAspCysPheSerGlu
 GTAGACCCTGGCCTAGCAGACCAACTAATTCTGCATTATTGTTGATGAGACGTAAACAAAGTCT
 CATCTGGGACCGGATCGTCTGGTTGATTAAGTAGACGTAAACAAACTAACAAAAAGTCTT
 5401 SerAlaIleLysAsnAlaIleLeuGlyTyrArgValSerProArgCysGluTyrGlnAla
 TCTGCTATAAAATGCCATATTAGGATATAGAGTTAGTCCTAGGTGTGAATATCAAGCA
 AGACGATATTCTACGGTATAATCCTATATCTCAATCAGGATCCACACTTATAGTCGT
 5440 avr2,
 5461 GlyHisAsnLysValGlySerLeuGlnTyrLeuAlaLeuAlaLeuIleThrProLys
 GGACATAACAAAGGTAGGATCTCTACAATACTTGGCACTAGCAGCATTAAACACCAAA
 CCTGTATTGTTCCATCTAGAGATGTTATGAACCGTGATCGTCGTAATTATTGTGGTTT
 5476 binI,
 5521 LysThrLysProProLeuProSerValLysLysLeuThrGluAspArgTrpAsnLysPro
 AAGACAAAGCCACCTTGCCTAGTGTAAAGAAACTGACAGAGGATAGATGGAACAAGCCC
 TTCTGTTGGTGGAAACGGATACAATTCTTGACTGTCTCCTATCTACCTTGTTCGGG

FIG. 4J

5581 GlnLysThrLysGlyHisArgGlySerHisThrMetAsnGlyHisAM
 CAGAAGACCAAGGGCCACAGAGGGAGCCATACAATGAATGGACACTAGAGCTTTAGAGG
 GTCTTCTGGTTCCCGGTGTCTCCCTCGGTATGTTACTTACCTGTATCGAAAATCTCC
 5583 mbo11,

5641 AGCTTAAGAGAGAACGCTGTTAGACATTTCTAGGCCATGGCTCCATAGCTTAGGACAAT
 TCGAATTCTCTTCGACAATCTGTAAGGATCCGGTACCGAGGTATCGAATCCTGTTA
 5643 af111, 5670 avr2, 5676 nco1,

5701 ATATCTATGAAACTTATGGGGATACTTGGGCAGGGAGTGGAAAGCCATAATAAGAATTCTGC
 TATAGATACTTGAATACCCCTATGAACCCGTCTCACCTCGGTATTATTCTTAAGACG
 5752 ecor1,

5761 AACAACTGCTTTATTCAATTCAAGAATTGGGTGTCAACATAGCAGAATAGGCATTATT
 TTGTTGACGACAAATAAGTAAAGTCTTAACCCACAGTTGATCGTCTTATCCGTAAAG
 5821 AACAGAGGAGAGCAAGAAGAAATGGAGCAGTAGATCCTAATCTAGAGCCCTGGAAAGCAT
 TTGTCCTCTCGTTCTTACCTCGGTATCTAGGATTAGATCTGGGACCTCGTA
 5836 mbo11, 5862 xba1,

5881 CCAGGAAGTCAGCCTAGGACTGCTTGTAAACAATTGCTATTGAAAAAGTGTGCTTCAT
 GGTCCTTCAGTCGGATCCTGACGAACATTGTTAACGATAACATTTCACAACGAAAGTA
 5893 avr2,

5941 TGCTACGCGTCTTACAAGAAAAGGCTAGGCATCTCCTATGGCAGGAAGAAGCGGAGA
 ACGATGCGACAAAGTGTCTTCCGAATCGTAGAGGATACCGTCTTCTCGCCTCT
 5945 mlu1, 5988 mbo11,

6001 CAGCGACGAAGAGCTCCTCAGGACAGTCAGACTCATCAAGCTCTATCAAAGCAGTAA
 GTCGCTGCTCTCGAGGAGTCCTGTCAGTCTGAGTAGTTGAAAGAGATAGTTGTCATT
 6008 mbo11, 6011 sac1, 6016 mstII, 6038 hindIII,

6061 GTAGTAAATGTAATGCAATCTTACAATATTAGCAATAGTATCATTAGTAGTAGCA
 CATCATTACATTACGTTAGAAATGTTATAATCGTTATCATAGTAATCATCATCGT
 6121 ATAATAGCAATAGTTGTGGACCAGTACTCATAGAATATAGGAAATATTAAGACAA
 TATTATCGTTATCAACACACCTGGTATCATGAGTATCTTATATCCTTTATAATTCTGTT
 6147 scal,

6181 AGAAAATAGACAGATTAATTGATAGAATAAGAGAAAAAGCAGAAGACAGTGGCAATGAAA
 TCTTTATCTGCTAACTACTATCTTATTCTCTTCTGTCTGTACCGTTACTTT
 6222 mbo11,

6241 ValLysGlyThrArgArgAsnTyrGlnHisLeuTrpArgTrpGlyThrLeuLeuLeuGly
 GTGAAGGGGACCAAGGAGGAATTATCAGCATTGAGATGGGGCACCTTGCTCCTGGG
 CACTTCCCCTGGTCCTCTTAATAGTCGTGAACACCTCTACCCCGTGGAACGAGGAACCC
 MetLeuMetIleCysSerAlaThrGluLysLeuTrpValThrValTyrTyrGlyValPro
 6301 ATGTTGATGATCTGAGTGTACAGAAAAATTGGGGTCACAGTTATTATGGAGTACCT
 TACAACACTAGACATCACGATGTCTTTAACACCCAGTGTCAAATAACCTCATGGA

ENV

FIG. 4K

6361 ValTrpLysGluAlaThrThrLeuPheCysAlaSerAspAlaArgAlaTyrAspThr
 GTGTGGAAAGAAGCAACTACCACTCTATTTGTGCATCAGATGCTAGAGCATATGATACA
 CACACCTTCTCGTTGAGATAAAACACGTAGTCTACGATCTCGTATACTATGT
 6410 ndel,
 6421 GluValHisAsnValTrpAlaThrHisAlaCysValProThrAspProAsnProGlnGlu
 GAGGTACATAATGTTGGGCCACACATGCCTGTACCCACAGACCCCACAAAGAA
 CTCCATGTATTACAAACCCGGTGTGTACGGACACATGGGTGTCTGGGGTGGTCT
 6481 ValValLeuGlyAsnValThrGluAsnPheAsnMetTrpLysAsnAsnMetValGlnGln
 GTAGTATTGGAAATGTGACAGAAAATTAACTATGTGGAAAAATAACATGGTAGAACAG
 CATCATAACCCTTACACTGTCTTTAAAATTGTACACCTTTATTGTACCATCTTGTC
 6541 MetGlnGluAspIleIleSerLeuTrpAspGlnSerLeuLysProCysValLysLeuThr
 ATGCAGGAGGATAATCAGTTATGGGATCAAAGCCTAAAGCCATGTGTAAATTAAACC
 TAGTCCTCCTATATTAGTCAAATAC~~C~~TAGTTGGATTTCGGTACACATTAAATTGG
 6567 binI,
 6601 ProLeuCysValThrLeuAsnCysThrAspLeuGlyLysAlaThrAsnThrAsnSerSer
 CCACTCTGTGTTACTTAAATTGCACTGATTGGGAAGGCTACTAATACCAATAGTAGT
 GGTGAGACACAATGAAATTAAACGTGACTAAACCCCTCCGATGATTATGGTTATCATCA
 6615 ahall11,
 6661 AsnTrpLysGluGluIleLysGlyGluIleLysAsnCysSerPheAsnIleThrThrSer
 ATTGGAAAGAAGAAAATAAAAGGAGAAATAAAACTGCTCTTCAATATCACCAACAAAGC
 TTAACCTTCTTCTTATTTCCTCTTATTGGTACGAGAAAGTTATAGTGGTGTTCG
 6670 mbol11,
 6721 IleArgAspLysIleGlnLysGluAsnAlaLeuPheArgAsnLeuAspValValProIle
 ATAAGAGATAAGATTAGAAAGAAAATGCACTTTTCGTACCTTGATGTAGTACCAATA
 TATTCTCTATTCTAAGTCTTCTTACGTAAAAAGCATTGAACTACATCATGGTTAT
 6781 AspAsnAlaSerThrThrAsnTyrThrAsnTyrArgLeuIleHisCysAsnArgSer
 GATAATGCTAGTACTACTACCAACTATACCAACTATAGGTTGATACATTGTAACAGATCA
 CTATTACGATCATGATGGTTGATATGGTTGATATCCAACATGTAACATTGTCTAGT
 6790 scal,
 6841 ValIleThrGlnAlaCysProLysValSerPheGluProIleProIleHisTyrCysThr
 GTCATTACACAGGCCCTGTCCAAAGGTATCATTTGAGCCAATTCCCATACATTATTGTACC
 CAGTAATGTGTCCGGACAGGTTCCATAGTAAACTCGGTTAAGGGTATGTAATAACATGG
 6851 stul,
 6901 ProAlaGlyPheAlaIleLeuLysCysAsnAsnLysThrPheAsnGlyLysGlyProCys
 CGGGCTGGTTTGCATTCTAAAGTGTATAATAAAACGTTCAATGGAAAAGGACCATGT
 GGCGACCAAAACGCTAACGATITCACATTATTGGCAAGTTACCTTCTGGTACA
 6961 ThrAsnValSerThrValGlnCysThrHisGlyIleArgProIleValSerThrGlnLeu
 ACAAAATGTCAGCACAGTACAATGTACACATGGAATTAGGCCAATAGTGTCAACTCAACTG
 TGTTTACAGTCGTGTACATGTGTACCTTAATCGGTTATCACAGTTGAGTTGAC
 7021 LeuLeuAsnGlySerLeuAlaGluGluGluValValIleArgSerAspAsnPheThrAsn
 CTGTTAAATGGCAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTGACAATTTCACGAAC
 GACAATTACCGTCAGATCGTCTTCTCCATATTAACTAGACTGTTAAAGTGCTTG
 7042 mbol11, 7045 mbol11, 7060 bgll11,

FIG. 4L

7081 AsnAlaLysThrIleIleValGlnLeuAsnGluSerValAlaIleAsnCysThrArgPro
 AATGCTAAAACCATAATAGTACAGCTGAATGAATCTGTAGCAATTAACTGTACAAGACCC
 TTACGATTTGGTATTATCATGTCGACTTAAGACATCGTTAATTGACATGTTCTGGG
 7102 pvuII,
 7141 AsnAsnAsnThrArgLysSerIleTyrIleGlyProGlyArgAlaPheHisThrThrGly
 AACAAACAATAAAGAAAAAGTATCTATATAGGACCAGGGAGAGCATTCAACACAGGA
 TTGTTGTTATGTTCTTTCATAGATATATCCTGGTCCCTCTCGTAAAGTATGTTGTCCT
 7199 mboII,
 7201 ArgIleIleGlyAspIleArgLysAlaHisCysAsnIleSerArgAlaGlnTrpAsnAsn
 AGAATAATAGGAGATAAGAAAAAGCACATTGTAACATTAGTAGAGCACAAATGGAATAAC
 TCTTATTATCCTCTATATTCTTTGTTAACATTGTAATCATCTCGTGTACCTTATTG
 7261 ThrLeuGluGlnIleValLysLysLeuArgGluGlnPheGlyAsnAsnLysThrIleVal
 ACTTTAGAACAGATAAGTAAAAAAATTAAAGAGAACAGTTGGAAATAATAAAACAAATAGTC
 TGAAATCTTGTCATCAATTTTAATTCTTGTCAAACCCATTATTATTTGTTATCAG
 7321 PheAsnGlnSerSerGlyGlyAspProGluIleValMetHisSerPheAsnCysArgGly
 TTTAATCAATCCTCAGGAGGGGCCAGAAATTGTAATGCACAGTTTAATTGTAGAGGG
 AAATTAGTTAGGAGTCCTCCCCCTGGGTCTTAAACATTACGTGTCAAACATTAAACATCTCC
 7331 mstII,
 7381 GluPhePheTyrCysAsnThrThrGlnLeuPheAsnAsnThrTrpArgLeuAsnHisThr
 GAATTTTCTACTGTAATAACACAACTGTTATAATACATGGAGGTTAAATCACACT
 CTTAAAAAGATGACATTATGTTGTTGACAATTATTATGTAACCTCCAATTAGTGTGA
 7441 GluGlyThrLysGlyAsnAspThrIleIleLeuProCysArgIleLysGlnIleIleAsn
 GAAGGAACTAAAGGAAATGACACAATCATACTCCCATGTAGAAATAAACAAATTATAAAC
 CTTCCCTGATTTCTTACTGTTAGTATGAGGGTACATCTATTGTTAAATTGTAACCTCC
 7501 MetTrpGlnGluValGlyLysAlaMetTyrAlaProProIleGlyGlnIleSerCys
 ATGTGGCAGGAAGTAGGAAAAGCAATGTATGCCCTCCCATGGAGGACAAATTAGTTGT
 TACACCGTCCCTCATCCTTGTACATACGGGGAGGGTAACCTCTGTTAAATCAACA
 7561 SerSerAsnIleThrGlyLeuLeuLeuThrArgAspGlyGlyThrAsnValThrAsnAsp
 TCATCAAATATTACAGGGCTGCTATTAAACAAGAGATGGGGTACAAATGTAACATGAC
 AGTAGTTATAATGTCGGACGATAATTGTTCTTACACCACATGTTACATTGATTACTG
 7621 ThrGluValPheArgProGlyGlyAspMetArgAspAsnTrpArgSerGluLeuTyr
 ACCGAGGTCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATAT
 TGGCTCCAGAAGTCTGGACCTCCTCTATACTCCCTGTTAACCTCTTACCTTAATATA
 7628 mboII,
 7681 LysTyrLysValIleLysIleGluProLeuGlyIleAlaProThrLysAlaLysArgArg
 AAATATAAAAGTAATAAAAATTGAACCATAGGAATAGCACCCACCAAGGCAAAGAGAAGA
 TTTATATTCTATTATTTAACCTGGTAATCCTTACCGTGGGTGGTCCGTTCTCT
 7736 mboII,
 7741 ValValGlnArgGluLysArgAlaValGlyIleValGlyAlaMetPheLeuGlyPheLeu
 GTGGTGCAGAGAGAAAAAGAGCAGTGGGAATAGTAGGAGCTATGTTCTGGTTCTTG
 CACCAACGTCTCTCTTCTCGTACCCATTACATCCTCGATAACAAGGAACCCAAAGAAC
 7801 GlyAlaAlaGlySerThrMetGlyAlaValSerLeuThrLeuThrValGlnAlaArgGln
 GGAGCAGCAGGAAGCACTATGGCGCAGTGTCAATTGACGCTGACGGTACAGGCCAGACAA
 CCTCGTCGTCCTCGTACCCCGGTACAGTAACCTGCGACTGCCATGTCGGTCTGTT

FIG. 4M

7861 LeuLeuSerGlyIleValGlnGlnGlnAsnAsnLeuLeuArgAlaIleGluAlaGlnGln
 TTATTGTCTGGTATAGTGCACAGCAGAACATTGCTGAGGGCTATTGAGGCGAACAA
 AATAACAGACCATATCACGTTGTCGTCTGTTAACGACTCCGATAACTCCGCGTTGTT

 HisLeuLeuGlnLeuThrValTrpGlyIleLysGlnLeuGlnAlaArgValLeuAlaVal
 7921 CATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAGTCCTGGCTGTG
 GTAGACAACGTTGAGTGTCAAGACCCGTAGTCGAGGTCCGTTCTCAGGACCGACAC

 GluArgTyrLeuArgAspGlnGlnLeuLeuGlyIleTrpGlyCysSerGlyLysLeuIle
 7981 GAAAGATACCTAAGGGATCAACAGCTCCTAGGGATTGGGTTGCTCTGAAAACCTCATT
 CTTTCTATGGATTCCCTAGTTGTCGAGGATCCCTAAACCCCAACGAGACCTTTGAGTAA

 7989 mstII, 7995 binI, 8007 avr2,

 8041 CysThrThrAlaValProTrpAsnAlaSerTrpSerAsnLysSerLeuGluAspIleTrp
 TGCACCACTGCTGCGCTTGAATGCTAGTTGGAGTAATAATCTCTGGAAGACATTGG
 ACGTGGTGACGACACGGAACCTACGATCACCTCATTATTAGAGACCTCTGTAAACC

 8089 mbolI,

 AspAsnMetThrTrpMetGlnTrpGluArgGluIleAspAsnTyrThrAsnThrIleTyr
 8101 GATAACATGACCTGGATGCAGTGGAAAGAGAAATTGACAATTACACAAACACAATATAC
 CTATTGACTGGACCTACGTCAACCTTCTTTACTGTTAATGTGTTGTTATATG

 ThrLeuLeuGluGluSerGlnAsnGlnGluLysAsnGluGlnGluLeuLeuGluLeu
 8161 ACCTTACTTGAAAGATCGCAGAACCAACAAGAAAAGAATGAAACAAGAAATTATTAGAATTG
 TGGAAATGAAACTTCTTAGCGTCTGGTTGTTCTTACTTGTCTTAATAATCTTAAC

 8170 mbolI,

 AspLysTrpAlaSerLeuTrpAsnTrpPheSerIleThrAsnTrpLeuTrpTyrIleLys
 8221 GATAAGTGGGCAAGTTGTGAATTGGTTAGCATAACAACTGGCTGTGGTATATAAAG
 CTATTCAACCGTTCAAACACCTAACCAAATCGTATTGTTGACCGACACCATATATTC

 IlePheIleMetIleValGlyGlyLeuValGlyLeuArgIleValPheAlaValLeuSer
 8281 ATATTCTATAATGATAGTAGGAGGCTGGTAGGTTAAGAATAGTTTGCTGTGCTTCT
 TATAAGTATTACTATCATCCTCCGAACCATCCAAATTCTTATCAAAACGACACGAAAGA

 IleValAsnArgValArgGlnGlyTyrSerProLeuSerPheGlnThrArgLeuProVal
 8341 ATAGTGAATAGAGTTAGGCAGGGATACTCACCATTGTCATTTCAGACCCGCCCTCCAGTC
 TATCACTTATCTCAATCCGTCCTATGAGTGGTAACAGTAAAGTCTGGCGGAGGGTCAG

 8400 aval,

 8401 ProArgGlyProAspArgProAspGlyIleGluGluGluGlyGlyGluArgAspArgAsp
 CGGAGGGGACCCGACAGGCCGACGGAAATCGAAGAAGAAGGTGGAGAGAGAGACAGAGAC
 GGCTCCCTGGCTGTCGGCTGCCTAGCTTCTTCCACCTCTCTGTCTG

 8431 mbolI, 8434 mbolI,

 ArgSerValArgLeuValAspGlyPheLeuAlaLeuIleTrpGluAspLeuArgSerLeu
 8461 AGATCCGTTGATTAGTGGATGGATTCTTAGCACTTATCTGGGAAGATCTCGGGAGCCTG
 TCTAGGCAGCTAACCTACCTAACGAAATCGTGAATAGACCCTCTAGACGCCCTCGGAC

 8503 mbolI, 8505 bgI1I,

 8521 CysLeuPheSerTyrArgArgLeuArgAspLeuLeuLeuIleAlaAlaArgThrValGlu
 TGCCCTTCAGCTACCGCCGCTTGAGAGACTTACTCTTGAATTGAGCGAGGACTGTGGAA
 ACGGAGAAGTCGATGGCGCGAACCTCTGAATGAGAACTAACGTCGCTCCTGACACCTT

 8525 mbolI,

FIG. 4N

8581 IleLeuGlyHisArgGlyTrpGluAlaLeuLysTyrTrpTrpSerLeuLeuGlnTyrTrp
 ATTCTGGGGCACAGGGGGTGGGAAGGCCCTCAAATATTGGTGAGTCCTGCAGTATTGG
 TAAGACCCCGTGTCCCCACCCCTCGGGAGTTATAACCACCTCAGAGGACGTCAAA
 8629 pst1,
 8641 IleGlnGluLeuLysAsnSerAlaValSerTrpLeuAsnAlaThrAlaIleAlaValThr
 ATTCAGGAACATAAGAATAGTGCTTAGCTGGCTAACGCCACAGCTATAGCAGTAAC
 TAAGTCCTGATTTCTTATCACGACAATCGACCGAGTTGCGGTGTCGATATCGTATTGA
 8701 GluGlyThrAspArgValIleGluValAlaGlnArgAlaTyrArgAlaIleLeuHisIle
 GAGGGGACAGATAGGGTTATAAGTAGCACAAAGAGCTTATAGAGCTATTCTCACATA
 CTCCCCGTCTATCCAATATCTCATCGTGTCTCGAATATCTCGATAAGAGGTGTAT
 8761 HisArgArgIleArgGlnGlyLeuGluArgLeuLeuLeuOC MetGlyGlyLysTrpSer
 CATAGAAGAATTAGACAGGGCTTGGAAAGGCTTTGCTATAAGATGGGTGGCAAGTGGTCA
 GTATCTTTTAATCTGTCGGAACCTTCCGAAACGATATTCTACCCACCGTTACCGAGT
 8765 mbo11,
 8822 LysArgSerMetGlyGlyTrpSerAlaIleArgGluArgMetArgArgAlaGluProArg
 AAACGTAGTATGGGTGGATGGTCTGCTATAAGGGAAAGAATGAGACGAGCTGAGCCACGA
 TTTGCATCATACCCACCTACCAAGACGATATTCCCTTCTTACTCTGCTCGACTCGGTGCT
 8882 AlaGluProAlaAlaAspGlyValGlyAlaValSerArgAspLeuGluLysHisGlyAla
 GCTGAGCCAGCAGCAGATGGGTGGAGCAGTATCTGAGACCTGGAAAAACATGGAGCA
 CGACTCGGTCGTCTACCCACCCCTCGTCATAGAGCTCTGGACCTTTGTACCTCGT
 8883 tthIIII, 8916 aval xhol,
 8942 IleThrSerSerAsnThrAlaAlaThrAsnAlaAspCysAlaTrpLeuGluAlaGlnGlu
 ATCACAAGTAGCAATACAGCAGCTACTAATGCTGATTGTGCTGGCTAGAAGCACAAGAG
 TAGTGTTCATCGTTATGTCGTCGATGATTACGACTAACACGGACCGATCTCGTGTTC
 9002 GluGluGluValGlyPheProValArgProGlnValProLeuArgProMetThrTyrLys
 GAGGAAGAGGTGGGTTTCCAGTCAGACCTCAGGTACCTTAAGACCAATGACTTACAAG
 CTCCCTCTCCACCCAAAAGGTCAGTCAGTCTGGAGTCATGGAAATTCTGGTTACTGAATGTT
 9005 mbo11, 9029 mstII, 9034 kpn1,
 9062 AlaAlaLeuAspIleSerHisPheLeuLysGluLysGlyGlyLeuGluGlyLeuIleTrp
 GCAGCTTAGATATTAGCCACTTTAAAGAAAAGGGGGACTGGAAGGGCTAATTTGG
 CGTCGAAATCTATAATCGGTGAAAATTTTTCTTTCCCCCTGACCTCCGATTAAACC
 9085 aha111,
 9122 SerGlnArgArgGlnGluIleLeuAspLeuTrpIleTyrHisThrGlnGlyTyrPhePro
 TCCCAAAAGAACAGAGATCCTGATCTGTTGACTACCACACACAAGGCTACTCCCT
 AGGGTTTCCTCTGTTCTAGGAACTAGACACCCTAGATGGTGTGTCCGATGAAGGGA
 9129 mbo11, 9153 binI,
 9182 AspTrpGlnAsnTyrThrProGlyProGlyIleArgTyrProLeuThrPheGlyTrpCys
 GATTGGCAGAATTACACACCAGGGCCAGGGATCAGATTCCACTGACCTTGGATGGTGC
 CTAACCGTCTTAATGTGTGGTCCCGGTCTAGTCTATAGGTGACTGGAAACCTACCACG
 9210 binI, 9216 ecor5,

FIG. 40

PheLysLeuValProValGluProGluLysValGluGluAlaAsnGluGlyGluAsnAsn
 9242 TTCAAGCTAGTACCACTGGTCAACTCGGTCTTCCAT^{TTCTCGGTTACTTCCTCTTGTTG}
 AAGTCGATCATGGTCAACTCGGTCTTCCAT^{TTCTCGGTTACTTCCTCTTGTTG}
 9275 mbo11,
 SerLeuLeuHisProMetSerLeuHisGlyMetGluAspAlaGluLysGluValLeuVal
 9302 AGCTTGTACACCCTATGAGCTGCATGGGATGGAGGACGCGGAGAAAGAAGTGTAGTG
 TCGAACAAATGTGGGATACTCGGACGTACCCCTACCTCCTGCACGCTTTCTTACAATCAC
 TrpArgPheAspSerLysLeuAlaPheHisHisMetAlaArgGluLeuHisProGluTyr
 9362 TGGAGGTTTGACAGCAAACTAGCATTTCATCACATGGCCGAGAGCTGCATCCGGAGTAC
 ACCTCCAAACTGTCGTTGATCGTAAAGTAGTGTACCGGGCTCTCGACGTAGGCC^{CATG}
 9399 ava1, 9417 sca1,
 TyrLysAspCysOP
 9422 TACAAAGACTGCTGACATCGAGCTTCTACAAGGGACTTCCGCTGGGACTTTCCAGGG
 ATGTTTCTGACGACTGTAGCTGAAAGATGTTCCCTGAAAGGCACCCCTGAAAGGTCCC
 9482 AGGCGTGGCCTGGGCGGGACTGGGAGTGGCGTCCCTCAGATGCTGCATATAAGCAGCTG
 TCCGCACCGGACCCGCCCTGACCCCTCACCGCAGGGAGTCTACGACGTATATTGTCGAC
 9536 pvu11,
 9542 CTTTTGCCTGTACTGGGTCTCTCTGGTAGACCAGATCTGAGCCTGGAGCTCTGGC
 GAAAAACGGACATGACCCAGAGAGACCAATCTGG^TCTAGACTCGGAC^CCTGAGAGACCG
 9576 bg111, 9590 sac1,
 9602 TAACTAGGGAACCCACTGCTTAAGCCTAATAAGCTTGCCTGAGTGCTCAAGTAGTG
 ATTGATCCCTGGGTGACGAATT^{CGGAGTT}TCGAACGGA^ACTCACGAAGTTCATCAC
 9620 af111, 9634 hind111,
 9662 TGTGCCGTCTGTTGACTCTGGTA^{ACTAGAGAGATCCCTCAGACCC}TTTAGTCAGTG
 ACACGGGCAGACAACACACTGAGACCATTGATCTAGGGAGTCTGGAAAATCAGTCAC
 9722 TGGAAAAATCTCTAGCAG
 ACCTTTTAGAGATCGTC

FIG. 4P

-453 U3 → CTGGAAGGGCTAATTGGTCCAAAGAACAGAGATCCTGATCTGGATCTACAC
 ACACAAGGCTACTTCCCTGATTGGCAGAATTACACACCAGGGCCAGGGATCAGATATCCA
 -333 CTGACCTTGATGGTCTTCAAGCTAGTACAGTTGAGCCAGAGAAGGTAGAAGAGGCC L
 AATGAAGGAGAGAACAAACAGCTTACCCCTATGAGCCTGCATGGGATGGAGGACGCG
 -214 GAGAAAGAAGTGTAGTGTGGAGGTTGACAGCAAACTAGCATTACATCACATGGCCC GA T
 GAGCTGCATCCGGAGTACTACAAAGACTGCTGACATCGAGCTTCTACAAGGGACTTCCG
 -93 CTGGGGACTTCAGGGAGGCCTGGCGGGACTGGGGAGTGGCGTCCCTCAGATG R
 CTGCATATAAGCAGCTGCTTTGCCTGACTG ← U3 R → GGCTCTCTGGTTAGACCAGATCTGAG R
 28 CCTGGGAGCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAGCTTGCCTT
 ← R U5 → GAGTGCTTCA AGTAGTGTGTGCCGTCTGTTGTGACTCTGGTAAGAGATCCCTCA
 148 GACCCTTTAGTCAGTGTGGAAAAATCTCTAGCAG ← U5 TGGCGCCGAACAGGGACGCGAAA
 GCGAAAGTAGAACCAAGAGGAGCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACAG
 268 CAAGAGGCAGGGCGGGCGACTGGTGAGTACGCCAATTTGACTAGCGGAGGCTAGAAG 17
 MetGlyAlaArgAlaSerValLeuSerGlyGlyGluLeuAspLysTrpGlu
 GAGAGAGAGATGGGTGCGAGAGCGTCGGTATTAGCGGGGGAGAATTAGATAAATGGGAA
 388 LysIleArgLeuArgProGlyGlyLysLysTyrLysLeuLysHisIleValTrpAla 57
 AAAATTGGTTAAGGCCAGGGGGAAAGAAAAATATAAGTAAACATATAGTATGGCA
 SerArgGluLeuGluArgPheAlaValAsnProGlyLeuLeuGluThrSerGluGlyCys
 AGCAGGGAGCTAGAACGATTGCAAGTCAGTCATCCTGGCTGTTAGAACATCAGAAGGCTGC
 ArgGlnIleLeuGlyGlnLeuGlnProSerLeuGlnThrGlySerGluGluLeuArgSer
 508 AGACAAATATTGGGACAGCTACAGCCATCCCTCAGACAGGATCAGAAGAACTTAGATCA 97
 LeuTyrAsnThrValAlaThrLeuTyrCysValHisGlnArgIleAspValLysAspThr
 TTATATAATACAGTAGCAACCCTCTATTGTGTACATCAAAGGATAGATGTAAGAACAC
 628 LysGluAlaLeuGluLysIleGluGluGlnAsnLysSerLysLysLysAlaGlnGln 137
 AAGGAAGCTTAGAGAAGATAGAGGAAGAGCAAAACAAAGTAAGAAAAAGGCACAGCAA
 AlaAlaAlaAlaAlaGlyThrGlyAsnSerSerGlnValSerGlnAsnTyrProIleVal
 GCAGCAGCTGCAAGCTGGCACAGGAAACAGCAGCCAGGTCAAGCCAAAATTACCTATAGTG
 748 CAGAACCTACAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTAAATGCATGG 177
 ValLysValValGluGluLysAlaPheSerProGluValIleProMetPheSerAlaLeu
 GTAAAAGTAGAGAAGAAAGGCTTCAGCCCAGAAGTAATACCCATGTTTCAGCATTTA
 868 SerGluGlyAlaThrProGlnAspLeuAsnThrMetLeuAsnThrValGlyGlyHisGln
 TCAGAAGGAGCCACCCACAAGTTAACACCATGCTAAACACAGTGGGGGACATCAA

FIG. 5A

AlaAlaMetGlnMetLeuLysGluThrIleAsnGluGluAlaAlaGluTrpAspArgVal 217 G
 GCAGCCATGCAAATGTTAAAGAGACTATCAATGAGGAAGCTGCAGAATGGGATAGAGTG
 HisProValHisAlaGlyProIleAlaProGlyGlnMetArgGluProArgGlySerAsp 988 A
 988 CATCCAGTGCATGCAGGGCCTATTGCACCAGGCCAAATGAGAGAACCAAGGGAAAGTGAC
 IleAlaGlyThrThrSerThrLeuGlnGluGlnIleGlyTrpMetThrAsnAsnProPro 257 G
 ATAGCAGGAACCTACTAGTACCCCTCAGGAACAAATAGGATGGATGACAAATAATCCACCT
 IleProValGlyGluIleTyrLysArgTrpIleIleLeuGlyLeuAsnLysIleValArg 1108 G
 1108 ATCCCAGTAGGAGAAATCTATAAAAGATGGATAATCCTGGGATTAAATAAAATAGTAAGA
 MetTyrSerProThrSerIleLeuAspIleArgGlnGlyProLysGluProPheArgAsp 297
 ATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAAGGAACCTTAGAGAT
 TyrValAspArgPheTyrLysThrLeuArgAlaGluGlnAlaSerGlnAspValLysAsn 1228
 1228 TATGTAGACCGGTTCTATAAAACTCTAAGAGCCGAACAGCTTCACAGGATGTAAAAAAAT
 TrpMetThrGluThrLeuLeuValGlnAsnAlaAsnProAspCysLysThrIleLeuLys 337
 TGGATGACAGAACCTTGGTCCAAAATGCAAACCCAGATTGTAAGACTATTTAAAAA
 AlaLeuGlyProAlaAlaThrLeuGluGluMetMetThrAlaCysGlnGlyValGlyGly 1348
 1348 GCATTGGGACCAGCAGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTGGGGGA
 ProGlyHisLysAlaArgValLeuAlaGluAlaMetSerGlnValThrAsnProAlaAsn 377
 CCCGGCCATAAGCAAGAGTTTGGCTGAAGCCATGAGCCAAGTAACAAATCCAGCTAAC
 IleMetMetGlnArgGlyAsnPheArgAsnGlnArgLysThrValLysCysPheAsnCys 1468
 1468 ATAATGATGCAAGAGAGGCAATTAGAACAAAGAAAGACTGTTAAGTGTTCATTGT
 GlyLysGluGlyHisIleAlaLysAsnCysArgAlaProArgLysLysGlyCysTrpArg 417
 GGCAAAGAAGGGCACATAGCCAAAATTGCAAGGGCCCTAGGAAAAGGGCTTGGAGA
 CysGlyArgGluGlyHisGlnMetLysAspCysThrGluArgGlnAlaAsnPheLeuGly 1588
 1588 PhePheArgG
 TGTTGAAGGGAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTAGGG
 LysIleTrpProSerTyrLysGlyArgProGlyAsnPheLeuGlnSerArgProGluPro 457
 IuAspLeuAlaPheLeuGlnGlyLysAlaArgGluPheSerSerGluGlnThrArgAla 23
 AAGATCTGGCCTTCACAGGGAGGCCAGGGATTTCAGAGCAGACAGGCCA
 ThrAlaProProGluGluSerPheArgPheGlyGluGluLysThrThrProSerGlnLys 1708
 AsnSerProThrArgArgGluLeuGlnValTrpGlyGlyGluAsnAsnSerLeuSerGluA
 ACAGCCCCACCAAGAGAGCTTCAGGTTGGGAGGAGAAACAACTCCCTCTCAGAAAG
 GlnGluProIleAspLysGluLeuTyrProLeuThrSerLeuArgSerLeuPheGlyAsn 497
 laGlyAlaAspArgGlnGlyThrValSerPheAsnPheProGlnIleThrLeuTrpGln 63
 CAGGAGCCGATAGACAAGGAACGTATCCTTAACCTCCCTCAGATCACTCTTGGCAAC
 AspProSerSerGlnOC 0
 ArgProLeuValThrIleArgIleGlyGlyGlnLeuLysGluAlaLeuLeuAspThrGlyA 1828 L
 1828 GACCCCTCGTCACAATAAGGATAGGGGGCAACTAAAGGAAGCTCTATTAGATAACAGGAG
 laAspAspThrValLeuGluGluMetAsnLeuProGlyLysTrpLysProLysMetIle 103
 CAGATGATACTAGTATTAGAAGAAATGAATTGCCAGGAAATGGAAACCAAAATGATAG
 GlyGlyIleGlyGlyPheIleLysValArgGlnTyrAspGlnIleProValGluIleCysG 1948
 1948 GGGGAATTGGAGGTTTATCAAAGTAAGACAGTACGATCAGATACTGTAGAAATCTGTG

FIG. 5B

1yHisLysAlaIleGlyThrValLeuValGlyProThrProValAsnIleIleGlyArg 143
 GACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAA
 AsnLeuLeuThrGlnIleGlyCysThrLeuAsnPheProIleSerProIleGluThrValP
 2068 ATCTGTTGACTCAGATTGGTTGTACTTAAATTCCCCATTAGTCCTATTGAAACTGTAC
 roValLysLeuLysProGlyMetAspGlyProLysValLysGlnTrpProLeuThrGlu 183
 CAGTAAAATTAAAGCCAGGAATGGATGCCAAAGTTAACATGGCATTGACAGAAG
 GluLysIleLysAlaLeuValGluIleCysThrGluMetGluLysGluGlyLysIleSerL
 2188 AAAAATAAAGCATTAGTAGAGATATGTACAGAAATGGAAAAGGAAGGGAAAATTTC
 ysIleGlyProGluAsnProTyrAsnThrProValPheAlaIleLysLysLysAspSer 223
 AAATTGGGCCTGAAAATCCATACAATACTCCAGTATTGCTATAAGAAAAAGACAGTA
 ThrLysTrpArgLysLeuValAspPheArgGluLeuAsnLysArgThrGlnAspPheTrpG
 2308 CTAAATGGAGAAAAGTAGTTAGATTCAGAGAACTTAATAAGAACTCAAGACTTCTGGG
 luValGlnLeuGlyIleProHisProAlaGlyLeuLysLysLysSerValThrVal 263
 AAGTCAGTTAGGAATACCACACCCCGCAGGGTTAAAAAGAAAAATCAGAACAGTAT
 LeuAspValGlyAspAlaTyrPheSerValProLeuAspLysAspPheArgLysTyrThrA
 2428 TGGATGTGGGTGATGCATACTTTCAGTCCCTTAGATAAAGACTTTAGAAAGTATACTG
 laPheThrIleProSerIleAsnAsnGluThrProGlyIleArgTyrGlnTyrAsnVal 303
 CATTACCATACCTAGTATAACAATGAGACACCAGGGATTAGATATCAGTACAATGTGC
 LeuProGlnGlyTrpLysGlySerProAlaIlePheGlnSerSerMetThrLysIleLeuG
 2548 TGCCACAGGGATGGAAAGGATCACAGCAATATTCAAAGTAGCATGACAAGATCTTAG
 luProPheArgLysGlnAsnProAspIleValIleTyrGlnTyrMetAspAspLeuTyr 343
 AGCCTTTAGAAAACAGAACATCCAGACATAGTTATCTATCAATACATGGATGATTGTATG
 ValGlySerAspLeuGluIleGlyGlnHisArgThrLysIleGluGluLeuArgGlnHisL
 2668 TAGGATCTGACTTAGAAATAGGGCAGCATAAGACAAAAATAGAGGAACAGACAGCATC
 euLeuArgTrpGlyPheThrProAspLysLysHisGlnLysGluProProPheLeu 383
 TGTTGAGGTGGGGATTACACACCAGACAAAAACATCAGAAAGAACCTCCATTCTTT
 TrpMetGlyTyrGluLeuHisProAspLysTrpThrValGlnProIleMetLeuProGluL
 2788 GGATGGGTTATGAACTCCATCCTGATAAAATGGACAGTACAGCCTATAATGCTGCCAGAAA
 ysAspSerTrpThrValAsnAspIleGlnLysLeuValGlyLysLeuAsnTrpAlaSer 423
 AAGACAGCTGGACTGTCAATGACATAAGTTAGTGGAAAATTGAATTGGCAAGTC
 GlnIleTyrAlaGlyIleLysValLysGlnLeuCysLysLeuLeuArgGlyThrLysAlaL
 2908 AGATTATGCAGGGATTAAAGTAAAGCAGTTATGTAACACTCCTTAGAGGAACCAAGCAC
 euThrGluValIleProLeuThrGluGluAlaGluLeuGluLeuAlaGluAsnArgGlu 463 P
 TAACAGAAGTAATACCACTAACAGAACAGAGCTAGAACCTGGCAGAAAACAGGGAGA
 IleLeuLysGluProValHisGluValTyrTyrAspProSerLysAspLeuValAlaGluI
 3028 TTCTAAAAGAACAGTACATGAAGTATATTGACCCATCAAAGACTTAGTAGCAGAAA
 leGlnLysGlnGlyGlnGlyGlnTrpThrTyrGlnIleTyrGlnGluProPheLysAsn 503 O
 TACAGAACAGGGCAAGGCCATGGACATATCAAATTATCAAGAGCCATTAAACATC
 LeuLysThrGlyLysTyrAlaArgMetArgGlyAlaHisThrAsnAspValLysGlnLeuT
 3148 TGAAAACAGGAAAGTATGCAAGGATGAGGGGTGCCACACTAATGATGTAACACAGTTAA
 hrGluAlaValGlnLysValSerThrGluSerIleValIleTrpGlyLysIleProLys 543 L
 CAGAGGCAGTGCAAAAGTATCCACAGAACAGCATAGTAATATGGGGAAAGATTCTAAAT

FIG. 5C

PheLysLeuProIleGlnLysGluThrTrpGluAlaTrpTrpMetGluTyrTrpGlnAlaT
 3268 TTAAACTACCCATACAAAAGGAAACATGGGAAGCATGGTGGATGGAGTATTGGCAAGCTA
 hrTrpIleProGluTrpGluPheValAsnThrProProLeuValLysLeuTrpTyrGln 583
 CCTGGATTCCCTGAGTGGGAGTTGTCAATACCCCTCCCTAGTGAAATTATGGTACCAAGT
 LeuGluLysGluProIleValGlyAlaGluThrPheTyrValAspGlyAlaAlaAsnArgG
 3388 TAGAGAAAGAACCCATAGTAGGAGCAGAAACTTCTATGTAGATGGGCAGCTAATAGGG
 IuThrLysLeuGlyLysAlaGlyTyrValThrAspArgGlyArgGlnLysValValSer 623
 AGACTAAATTAGGAAAAGCAGGATATGTTACTGACAGAGGAAGACAAAAAGTTGTCTCCA
 IleAlaAspThrThrAsnGlnLysThrGluLeuGlnAlaIleHisLeuAlaLeuGlnAspS
 3508 TAGCTGACACAACAAATCAGAAGACTGAATTACAAGCAATTCTAGCTTTGCAGGATT
 erGlyLeuGluValAsnIleValThrAspSerGlnTyrAlaLeuGlyIleIleGlnAla 663
 CGGGATTAGAAGTAAACATAGTAACAGACTCACAAATATGCATTAGGAATCATTCAAGCAC
 GlnProAspLysSerGluSerGluLeuValSerGlnIleIleGluGlnLeuIleLysLysG
 3628 AACCAAGATAAGAGTGAATCAGAGTTAGTCAGTCAAATAATAGAGCAGTTAATAAAAAGG
 IuLysValTyrLeuAlaTrpValProAlaHisLysGlyIleGlyGlyAsnGluGlnVal 703
 AAAAGGTCTACCTGGCATGGGTACCAAGCACACAAAGGAATTGGAGGAATGAACAAGTAG
 AspLysLeuValSerAlaGlyIleArgLysValLeuPheLeuAsnGlyIleAspLysAlaG
 3748 ATAAATTAGTCAGTGCTGGAATCAGGAAAGTACTATTTTGAAATGGAATAGATAAGGCC
 IuGluGluHisGluLysTyrHisSerAsnTrpArgAlaMetAlaSerAspPheAsnLeu 743
 AAGAAGAACATGAGAAATATCACAGTAATTGGAGAGCAATGGCTAGTGATTTAACCTGC
 ProProValValAlaLysGluIleValAlaSerCysAspLysCysGlnLeuLysGlyGluA
 3868 CACCTGTAGTAGCAAAAGAAATAGTAGGCCAGCTGTGATAATGTCAGCTAAAGGAGAAG
 IaMetHisGlyGlnValAspCysSerProGlyIleTrpGlnLeuAspCysThrHisLeu 783
 CCATGCATGGACAAGTAGACTGTAGTCCAGGAATATGGCAACTAGATTGTACACATCTAG
 GluGlyLysIleIleLeuValAlaValHisValAlaSerGlyTyrIleGluAlaGluValI
 3988 AAGGAAAAATTATCCTGGTAGCAGTTCATGTAGCCAGTGGATATATAGAACAGAGTTA
 leProAlaGluThrGlyGlnGluThrAlaTyrPheLeuLeuLysLeuAlaGlyArgTrp 823
 TTCCAGCAGAGACAGGGCAGGAAACAGCATATTTCTCTAAAATTAGCAGGAAGATGGC
 ProValLysThrIleHisThrAspAsnGlySerAsnPheThrSerThrThrValLysAlaA
 4108 CAGTAAAAACAATACATACAGACAATGGCAGCAATTTCACCAGTACTACGGTTAAGGCCG
 laCysTrpTrpAlaGlyIleLysGlnGluPheGlyIleProTyrAsnProGlnSerGln 863
 CCTGTTGGTGGGCAGGGATCAAGCAGGAATTGGCATTCCCTACAATCCCCAAAGTCAG
 GlyValValGluSerMetAsnAsnGluLeuLysLysIleIleGlyGlnValArgAspGlnA
 4228 GAGTAGTGAATCTATGAATAATGAATTAAAGAAAATTAGGACAGGTAAGAGATCAGG
 IaGluHisLeuLysThrAlaValGlnMetAlaValPheIleHisAsnPheLysArgLys 903
 CTGAACACCTTAAGACAGCAGTACAAATGGCAGTATTCCACAATTAAAAGAAAAG
 GlyGlyIleGlyGlyTyrSerAlaGlyGluArgIleValAspIleIleAlaThrAspIleG
 4348 GGGGGATTGGGGATACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATA
 InThrLysGluLeuGlnLysGlnIleThrLysIleGlnAsnPheArgValTyrTyrArg 943
 AACTAAAGAACTACAAAAGCAAATTACAAAATTCAAAATTTCGGGTTTATTACAGGG

FIG. 5D

AspAsnLysAspProLeuTrpLysGlyProAlaLysLeuLeuTrpLysGlyGluGlyAlaV
 4468 ACAACAAAGATCCCCTTGGAAAGGACCAGCAAAGCTCTGGAAAGGTGAAGGGGCAG
 aValIleGlnAspAsnSerAspIleLysValValProArgArgLysAlaLysIleIle 983
 TAGTAATAACAAGATAATAGTGCACATAAAAGTAGTGCAAGAAGAAAAGCAAAATCATT
 ArgAspTyrGlyLysGlnMetAlaGlyAspAspCysValAlaSerArgGlnAspGluAspA
 4588 GGGATTATGGAAAACAGATGGCAGGTGATTGTGTGGCAAGTAGACAGGATGAGGATT
 M
 AGAACATGGAAAAGTTAGTAAAACACCATATGTATATTCAAAGAAAGCTAAAGGATGG
 4708 TTTTATAGACATCACTATGAAAGTACTCATCCAAGAGTAAGTCAGAAGTACACATCCCC
 CTAGGGGATGCTAAATTGTAATAACAACATATTGGGGTCTGCATACAGGAGAAAGAGAA
 4828 TGGCATTGGGCCAGGGAGTCGCCATAGAACATGGGAGAAAAGAAATAGCACACAAGTA
 GACCCCTGGCCTAGCAGACCAACTAATTCTGCATTATTTGATTGTTTCAGAATCT
 4948 GCTATAAAAATGCCATATTAGGATATAGAGTTAGCCTAGGTGTGAATATCAAGCAGGA
 CATAACAAGGTAGGATCTACAATACTGGCACTAGCAGCATTAAACACCAAAAAAG
 5068 ACAAAAGCCACCTTGCCTAGTGTAAAGAAACTGACAGAGGATAGATGGAACAAGCCCCAG
 AAGACCAAGGGCCACAGAGGGAGCCATACAATGAATGGACACTAGAGCTTTAGAGGAGC
 5188 TTAAGAGAGAAGCTTTAGACATTTCTAGGCCATGGCTCATAGCTTAGGACAATATA
 TCTATGAAACTTATGGGATACTTGGCAGGAGTGGAAAGCCATAATAAGAATTCTGCAAC
 5308 AACTGCTTTATTCAATTCAAAGATTGGGTGTCAACATAGCAGAATAGGCATTATTCAAC
 AGAGGAGAGCAAGAAGAAATGGAGCCAGTAGATCCTAATCTAGAGCCCTGGAAGCAGC
 5428 GGAAGTCAGCCTAGGACTGCTTGTAACAATTGCTATTGTAAAAAGTGTGCTTCATTGC
 TACCGTGTTTCACAAGAAAAGGCTTAGGCATCTCTATGGCAGGAAGAAGCAGGAGACAG
 5548 CGACGAAGAGCTCCTCAGGACAGTCAGACTCATCAAGCTCTATCAAAGCAGTAAGTA
 GTAAATGTAATGCAATCTTACAAATATTAGCAATAGTATCATTAGTAGTAGCAATA
 5668 ATAGCAATAGTTGTGGACCATAGTACTCATAGAATATAGGAAAATATTAAGACAAAGA
 AAATAGACAGATTAATTGATAGAATAAGAGAAAAAGCAGAAGACAGTGGCAATGAAAGTG MetLysVal 3
 LysGlyThrArgArgAsnTyrGlnHisLeuTrpArgTrpGlyThrLeuLeuLeuGlyMet
 5788 AAGGGGACCAAGGAGGAATTATCAGCACTTGTGGAGATGGGGCACCTGCTCCTGGGATG
 LeuMetIleCysSerAlaThrGluLysLeuTrpValThrValTyrTyrGlyValProVal
 TTGATGATCTGTAGTGCTACAGAAAAATTGTGGGTACAGTTTATTATGGAGTACCTGTG 43
 TrpLysGluAlaThrThrLeuPheCysAlaSerAspAlaArgAlaTyrAspThrGlu
 5908 TGGAAGAAGCAACTACCACTCTATTTGTGCATCAGATGCTAGAGCATATGATAACAGAG
 ValHisAsnValTrpAlaThrHisAlaCysValProThrAspProAsnProGlnGluVal
 GTACATAATGTTGGGCCACACATGCCTGTGACCCACAGACCCACACAGAAGTA 83

FIG. 5E

6028 ValLeuGlyAsnValThrGluAsnPheAsnMetTrpLysAsnAsnMetValGluGlnMet
 GTATTGGGAAATGTGACAGAAAATTAAACATGTGGAAAATAACATGGTAGAACAGATG
 GlnGluAspIleIleSerLeuTrpAspGlnSerLeuLysProCysValLysLeuThrPro 123
 CAGGAGGATATAATCAGTTATGGGATCAAAGCCTAAAGCCATGTGTAATAACCCCA
 6148 LeuCysValThrLeuAsnCysThrAspLeuGlyLysAlaThrAsnThrAsnSerSerAsn
 CTCTGTGTTACTTAAATTGCACTGATTGGGAAGGCTACTAATACCAATAGTAGTAAT
 TrpLysGluGluIleLysGlyGluIleLysAsnCysSerPheAsnIleThrThrSerIle 163
 TGAAAGAAGAAATAAAAGGAGAAATAAAACTGCTTTCAATATCACCAACAGCATA
 6268 ArgAspLysIleGlnLysGluAsnAlaLeuPheArgAsnLeuAspValValProIleAsp
 AGAGATAAGATTCAAGAAAGAAAATGCACCTTTCTGTAACCTTGATGTAGTACCAATAGAT
 AsnAlaSerThrThrAsnTyrThrAsnTyrArgLeuIleHisCysAsnArgSerVal 203
 AATGCTAGTACTACTACCAACTATACCAACTATAGGTTGATACATTGTAACAGATCAGTC
 6388 IleThrGlnAlaCysProLysValSerPheGluProIleProIleHisTyrCysThrPro
 ATTACACAGGCCGTGTCAGGAAAGGTATCATTTGAGCCAATTCCCATACATTATTGTACCCG
 AlaGlyPheAlaIleLeuLysCysAsnAsnLysThrPheAsnGlyLysProCysThr 243 E
 GCTGGTTTGCATTCTAAAGTGTAAATAATAACGTTCAATGGAAAAGGACCATGTACA
 6508 AsnValSerThrValGlnCysThrHisGlyIleArgProIleValSerThrGlnLeuLeu
 AATGTCAGCACAGTACAATGTACACATGGAATTAGGCCAATAGTGTCAACTCAACTGCTG
 LeuAsnGlySerLeuAlaGluGluGluValValIleArgSerAspAsnPheThrAsnAsn 283 N
 TTAAATGGCAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTGACAATTTCACGAACAAT
 6628 AlaLysThrIleIleValGlnLeuAsnGluSerValAlaIleAsnCysThrArgProAsn
 GCTAAAACCATAATAGTACAGCTGAATGAATCTGTAGCAATTAACTGTACAAGACCCAA
 AsnAsnThrArgLysSerIleTyrIleGlyProGlyArgAlaPheHisThrThrGlyArg 323 V
 AACAAATACAAGAAAAAGTATCTATATAGGACCAGGGAGAGCATTCAACACAGGAAGA
 6748 IleIleGlyAspIleArgLysAlaHisCysAsnIleSerArgAlaGlnTrpAsnAsnThr
 ATAATAGGAGATATAAGAAAAGCACATTGTAACATTAGTAGAGCACAAATGGAATAACACT
 LeuGluGlnIleValLysLysLeuArgGluGlnPheGlyAsnAsnLysThrIleValPhe 363
 TTGAAACAGATAGTTAAAAAAATTAAAGAGAACAGTTGGGAATAATAAAACAATAGTCTT
 6868 AsnGlnSerSerGlyGlyAspProGluIleValMetHisSerPheAsnCysArgGlyGlu
 AATCAATCCTCAGGAGGGACCCAGAAATTGTAATGCACAGTTTAATTGTAGAGGGAA
 PhePheTyrCysAsnThrThrGlnLeuPheAsnAsnThrTrpArgLeuAsnHisThrGlu 403
 TTTTCTACTGTAATACAACACAACACTGTTAATAATACATGGAGGTTAAATCACACTGAA
 6988 GlyThrLysGlyAsnAspThrIleIleLeuProCysArgIleLysGlnIleIleAsnMet
 GGAACCTAAAGGAAATGACACAATCATCTCCCATGTAGAATAAAACAAATTATAAACATG
 TrpGlnGluValGlyLysAlaMetTyrAlaProProIleGlyGlyGlnIleSerCysSer 443
 TGGCAGGAAGTAGGAAAAGCAATGTATGCCCTCCATTGGAGGACAAATTAGTTGTTCA
 7108 SerAsnIleThrGlyLeuLeuLeuThrArgAspGlyGlyThrAsnValThrAsnAspThr
 TCAAATATTACAGGGCTGCTATTAAACAAGAGATGGTGGTACAAATGTAACATGACACC
 GluValPheArgProGlyGlyGlyAspMetArgAspAsnTrpArgSerGluLeuTyrLys 483
 GAGGTCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATAAA

FIG. 5F

TyrLysValIleLysIleGluProLeuGlyIleAlaProThrLysAlaLysArgArgVal
 7228 TATAAAGTAATAAAAATTGAACCATTAGGAATAGCACCCACCAAGGCAAAGAGAAGAGTG
 ValGlnArgGluLysArgAlaValGlyIleValGlyAlaMetPheLeuGlyPheLeuGly 523
 GTGCAGAGAGAAAAAGAGCAGTGGGAATAGTAGGAGCTATGTTCCCTGGGTTCTGGGA
 AlaAlaGlySerThrMetGlyAlaValSerLeuThrLeuThrValGlnAlaArgGlnLeu
 7348 GCAGCAGGAAGCACTATGGCGCAGTGTCAATTGACGCTGACGGTACAGGCCAGACAATT
 LeuSerGlyIleValGlnGlnGlnAsnAsnLeuLeuArgAlaIleGluAlaGlnGlnHis 563
 TTGTCGGTATAGTCAACAGCAGAACAAATTGCTGAGGGCTATTGAGGCGAACAAACAT
 LeuLeuGlnLeuThrValTrpGlyIleLysGlnLeuGlnAlaArgValLeuAlaValGlu
 7468 CTGTTGCAACTCACAGTCTGGGCATCAAGCAGCTCCAGGCAAGAGTCCTGGCTGTGGAA
 ArgTyrLeuArgAspGlnGlnLeuLeuGlyIleTrpGlyCysSerGlyLysLeuIleCys 603
 AGATACTAACGGGATCAACAGCTCCTAGGGATTGGGTTGCTCTGGAAAACCTCATTTGC
 ThrThrAlaValProTrpAsnAlaSerTrpSerAsnLysSerLeuGluAspIleTrpAsp
 7588 ACCACTGCTGTGCCTTGGAAATGCTAGTTGGAGTAATAATCTCTGGAAAGACATTGGGAT
 AsnMetThrTrpMetGlnTrpGluArgGluIleAspAsnTyrThrAsnThrIleTyrThr 643
 AACATGACCTGGATGCAGTGGAAAGAGAAATTGACAATTACACAAACACAATATACACC
 LeuLeuGluGluSerGlnAsnGlnGluLysAsnGluGlnGluLeuLeuGluLeuAsp
 7708 TTACTTGAAGAACATCGCAGAACCAACAAGAAAGAAATGACAACAAGAATTATTAGAATTGGAT
 LysTrpAlaSerLeuTrpAsnTrpPheSerIleThrAsnTrpLeuTrpTyrIleLysIle 683
 AAGTGGGCAAGTTGTGGATTGGTTAGCATAACAAACTGGCTGTGGTATATAAAGATA
 PheIleMetIleValGlyGlyLeuValGlyLeuArgIleValPheAlaValLeuSerIle
 7828 TTCATAATGATAGTAGGAGGCTTGGTAGGTTAACGAAATAGTTTGCTGTGCTTCTATA E
 ValAsnArgValArgGlnGlyTyrSerProLeuSerPheGlnThrArgLeuProValPro 723
 GTGAATAGAGTTAGGCAGGGATACTCACCATTGTCATTTCAGACCCGCTCCCAGTCCCG N
 ArgGlyProAspArgProAspGlyIleGluGluGluGlyGluArgAspArgAspArg
 7948 AGGGGACCCGACAGGCCGACGGAATCGAAGAAGAAGGTGGAGAGAGACAGAGACAGA V
 SerValArgLeuValAspGlyPheLeuAlaLeuIleTrpGluAspLeuArgSerLeuCys 763
 TCCGTTGATTAGTGGATGGATTCTAGCACTATCTGGGAAGATCTGCGGAGCCTGTGC
 LeuPheSerTyrArgArgLeuArgAspLeuLeuLeuIleAlaAlaArgThrValGluIle
 8068 CTCTTCAGCTACCGCCGCTTGAGAGACTTACTCTTGATTGAGCGAGGACTGTGGAAATT
 LeuGlyHisArgGlyTrpGluAlaLeuLysTyrTrpTrpSerLeuLeuGlnTyrTrpIle 803
 CTGGGGCACAGGGGGTGGGAAGCCCTCAAATATTGGTGGAGTCTCCTGCAGTATTGGATT
 GlnGluLeuLysAsnSerAlaValSerTrpLeuAsnAlaThrAlaIleAlaValThrGlu
 8188 CAGGAACCTAAAGAATAGTGTGTTAGCTGGCTAACGCCACAGCTATAGCAGTAACGAG
 GlyThrAspArgValIleGluValAlaGlnArgAlaTyrArgAlaIleLeuHisIleHis 843
 GGGACAGATAGGGTTATAGAAGTAGCACAAAGAGCTTATAGAGCTATTCTCCACATACAT
 ArgArgIleArgGlnGlyLeuGluArgLeuLeuLeuOC
 8308 AGAAGAAATTAGACAGGGCTTGGAAAGGCTTTGCTATAAGATGGTGGCAAGTGGTCAA
 ACGTAGTATGGTGGATGGCTGCTATAAGGAAAGAATGAGACGAGCTGAGCCACGAGC

FIG. 5G

8428 TGAGCCAGCAGCAGATGGGTGGGAGCAGTATCTCGAGACCTGGAAAAACATGGAGCAAT
 CACAAGTAGCAATAACAGCAGCTACTAATGCTGATTGTGCCTGGCTAGAACAGCACAAGAGGA
 8548 GGAAGAGGTGGGTTTCAGTCAGACCTCAGGTACCTTAAGACCCAATGACTTACAAGGC
 AGCTTAGATATTAGCCACTTTAAAAGAAAAGGGGGGA U3 → CTGGAAAGGGCTAATTGGT L
 8667 CCCAAAGAACAGAGATCCTGATCTGTGGATCTACCACACACAAGGCTACTCCCTG T
 ATTGGCAGAATTACACACCCAGGGCCAGGGATCAGATATCCACTGACCTTGGATGGTGCT R
 8787 TCAAGCTAGTACCAAGTTGAGCCAGAGAAGGTAGAACAGAGGCCAATGAAGGAGAGAACACA
 GCTTGTACACCTATGAGCCTGCATGGATGGAGGACGCGGAGAAAGAAGTGTAGTGT
 8907 GGAGGTTGACAGCAAACTAGCATTCATCACATGGCCCGAGAGCTGCATCCGGAGTACT
 ACAAAAGACTGCTGACATCGAGCTTCTACAAGGGACTTCCGCTGGGACTTCCAGGGA
 9027 GGCCTGGCCTGGCGGGACTGGGAGTGGCGTCCCTCAGATGCTGCATATAAGCAGCTGC
 ← U3 R → TTTTGCCTGTAUTG GGTCTCTGGTTAGACCAGATCTGAGCCTGGAGCTCTGGC
 9146 TAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCA AGTAGT ← R U5 →
 GTGTGCCGTCTGTTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTAGTCAGT
 9265 GTGGAAAAATCTCTAGCAG ← U5

FIG. 5H

87 931154

digestion with KpnI and EcoRI

digestion with EcoRI and KpnI

ligation

FIG. 6

FIG. 7

87 931154

	ptac 5 Promotor	Met Ile Val ATGATCGTA
748	GlnAsnLeuGlnGlyGlnMetValHisGlnAlaIleSerProArgThrLeuAsnAlaTrp CAGAACATCTGCAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCATGG	
	VaI Lys VaI Val Glu Glu Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Ser Ala Leu GTAAAAAGTAGTAGAAGAAAAGGCTTCAGCCCAGAAGTAATACCCATGTTTCAGCATTA	181
868	Ser Glu Gly Ala Thr Pro Gln Asp Leu Asn Thr Met Leu Asn Thr Val Glu Gly His Gln TCAGAAGGAGGCCACCCCCACAAGATTAAACACCATGCTAACACACAGTGCCCCGGGACATCAA	
	Ala Ala Met Gln Met Leu Lys Glu Thr Ile Asn Glu Glu Ala Ala Glu Trp Asp Arg Val GCAGGCCATGCAAATGTTAAAAGAGACTATCAATGAGGAAGCTGCAGAATGGGATAGAGTG	221
988	His Pro Val His Ala Gly Pro Ile Ala Pro Gly Gln Met Arg Glu Pro Arg Gly Ser Asp CATCCAGTGCATGCAGGGCCTATTGCACCAAGGCCAAATGAGAGAACCAAAGGGGAAGTGAC	
	Ile Ala Gly Thr Thr Ser Thr Leu Gln Glu Gln Ile Gly Trp Met Thr Asn Asn Pro Pro ATAGCAGGAACACTAGTACCTTCAGGAACAAATAGGATGGATGACAAATAATCCACCT	261
1108	Ile Pro Val Glu Gly Glu Ile Tyr Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys Ile Val I Arg ATCCCAGTAGGAGAAATCTATAAAAGATGGATAATCCTGGGATTAAATAAAATAGTAAGA	
	Met Tyr Ser Pro Thr Ser Ile Leu Asp Ile Arg Gln Gly Pro Lys Glu Pro Phe Arg Asp ATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAGGAACCCCTTAGAGAT	301
1228	Tyr Val Asp Arg Phe Tyr Lys Thr Leu Arg Ala Glu Gln Ala Ser Gln Asp Val Lys Asn TATGTAGACC GGTTCTATAAAACTCTAACAGAGCCGAAACAGCTTCACAGGATGTAAAAAT	
	Trp Met Thr Glu Thr Leu Leu Val Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile Leu Lys TGGATGACAGAAACCTTGTTGGTCCAAATGCAAACCCAGATTGTAAGACTATTTAAAAA	341
1348	Ala Leu Gly Pro Ala Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val Gly Gly GCATTGGGACCAGCAGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTGGGGGA	
	Pro Gly His Lys Ala Arg Val Leu Stop Stop CCC GG GCATAAGCAAGAGTTGTGATAG	
	ptac 5	

FIG. 8

	ptac 5 Promotor	MetIleVal 141 ATGATCGTA
--	-----------------	----------------------------

748 GlnAsnLeuGlnGlyGlnMetValHisGlnAlaIleSerProArgThrLeuAsnAlaTrp
CAGAACATCTGCAGGGCAATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCATGG
 ValLysValValGluGluLysAlaPheSerProGluValIleProMetPheSerAlaLeu 181
 GTAAAAGTAGTAGAAGAAAAGGCTTCAGCCCAGAAGTAATACCCATGTTTCAGCATTA G
 SerGluGlyAlaThrProGlnAspLeuAsnThrMetLeuAsnThrValGlyGlyHisGln
 868 TCAGAAGGAGCCACCCACAAGATTAAACACCAGCTAAACACAGTGGGGGACATCAA
 AlaAlaMetGlnMetLeuLysGluThrIleAsnGluGluAlaAlaGluTrpAspArgVal 221
 GCAGCCATGCAAATGTTAAAGAGACTATCAATGAGGAAGCTGCAGAATGGGATAGAGTG
 HisProValHisAlaGlyProIleAlaProGlyGlnMetArgGluProArgGlySerAsp
 988 CATCCAGTGCATGCAGGGCCTATTGCACCAGGCCAAATGAGAGAACCAAGGGAAAGTGAC A
 IleAlaGlyThrThrSerThrLeuGlnGluGlnIleGlyTrpMetThrAsnAsnProPro 261
 ATAGCAGGAACACTAGTACCCCTTCAGGAACAAATAGGATGGATGACAAATAATCCACCT
 IleProValGlyGluIleTyrLysArgTrpIleIleLeuGlyLeuAsnLysIleValArg
 1108 ATCCCAGTAGGGAGAAATCTATAAAAGATGGATAATCCTGGGATTAAATAAAATAGTAAGA G
 MetTyrSerProThrSerIleLeuAspIleArgGlnGlyProLysGluProPheArgAsp 301
 ATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAGGAACCCCTTAGAGAT
 TyrValAspArgPheTyrLysThrLeuArgAlaGluGlnAlaSerGlnAspValLysAsn
 1228 TATGTAGACCGGTTCTATAAAACTCTAAGAGGCCAACAGCTTCACAGGATGTAAAAAT
 TrpMetThrGluThrLeuLeuValGlnAsnAlaAsnProAspCysLysThrIleLeuLys 341
 TGGATGACAGAAACCTTGTGGTCCAAATGCAAACCCAGATTGTAAGACTATTTAAAAA
 AlaLeuGlyProAlaAlaThrLeuGluGluMetMetThrAlaCysGlnGlyValGlyGly
 1348 GCATTGGGACCAGCAGCTACACTAGAAGAAATGACAGCATGTCAGGGAGTGGGGGGA
 ProGlyHisLysAlaArgValLeuAlaGluAlaMetSerGlnValThrAsnProAlaAsn 381
 CCCGGCCATAAAGCAAGAGTTTGGCTGAAGCCATGAGCCAAGTAACAAATCCAGCTAAC
 IleMetMetGlnArgGlyAsnPheArgAsnGlnArgLysThrValLysCysPheAsnCys
 1468 ATAATGATGCAGAGAGGCAATTAGAACCAAGAAAGACTGTTAAGTGTTCATTGT
 GlyLysGluGlyHisIleAlaLysAsnCysArgAlaProArgLysLysGlyCysTrpArg 421
 GGCAAGAAGGGCACATAGCCAAAAATTGCAGGGCCCTAGGAAAAGGGCTGGAGA
 CysGlyArgGluGlyHisGlnMetLysAspCysThrGluArgGlnAlaAsnPheLeuGly
 1588 TGTGGAAGGGAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTAGGG PhePheArgG
 LysIleTrpProSerTyrLysGlyArgProGlyAsnPheLeuGlnSerArgProGluPro 461
 IuAspLeuAlaPheLeuGlnGlyLysAlaArgGluPheSerSerGluGlnThrArgAla 23
 AAGATCTGGCCTTCCTACAAGGGAAAGGCCAGGGATTTCAGGTTGGGGAGGAGAAACAACTCCCTCAGAAC
 ThrAlaProProGluGluSerPheArgPheGlyGluGluLysThrThrProSerGlnLys
 AsnSerProThrArgArgGluLeuGlnValTrpGlyGlyGluAsnAsnSerLeuSerGluA
 1708 ACAGCCCCACCAAGAGAGCTTCAGGTTGGGGAGGAGAAACAACTCCCTCAGAAC
 GlnGluProIleAspLysGluLeuTyrProLeuThrSerLeuArgSerLeuPheGlyAsn 501
 laGlyAlaAspArgGlnGlyThrValSerPheAsnPheProGlnIleThrLeuTrpGln 63
 CAGGAGCCGATAGACAAGGAACGTATCCTTAACCTCCCTCAGATCACTCTTGGCAAC

FIG. 9A

AspProSerSerGlnOC
 ArgProLeuValThrIleArgIleGlyGlyGlnLeuLysGluAlaLeuLeuAspThrGlyA
 1828 GACCCCTCGTCACAATAAGGATAGGGGGCAACTAAAGGAAGCTCTATTAGATACAGGAG

IaAspAspThrValLeuGluGluMetAsnLeuProGlyLysTrpLysProLysMetIle 103
 CAGATGATACAGTATTAGAACAGAATTGCAAGGAAATGGAAACCAAAAATGATAG

GlyGlyIleGlyGlyPheIleLysValArgGlnTyrAspGlnIleProValGlulIleCysG
 1948 GGGGAATTGGAGGTTTATCAAAGTAAGACAGTACGATACCTGTAGAAATCTGTG

lyHisLysAlaIleGlyThrValLeuValGlyProThrProValAsnIleIleGlyArg 143
 GACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAA

AsnLeuLeuThrGlnIleGlyCysThrLeuAsnPheProIleSerProIleGluThrValP
 2068 ATCTGTTGACTCAGATTGGTTACTTTAAATTCCCCATTAGTCCTATTGAAACTGTAC

roValLysLeuLysProGlyMetAspGlyProLysValLysGlnTrpProLeuThrGlu 183
 CAGTAAAATTAAAGCCAGGAATGGATGGCCCAAAGTTAACATGGCCATTGACAGAAG

GluLysIleLysAlaLeuValGluIleCysThrGluMetGluLysGluGlyLysIleSerL
 2188 AAAAATAAAAGCATTAGTAGAGATATGTACAGAAATGGAAAGGGAAAATTCAA

ysIleGlyProGluAsnProTyrAsnThrProValPheAlaIleLysLysLysAspSer 223
 AAATTGGGCCTGAAATCCATACAATACTCCAGTATTGCTATAAGAAAAAGACAGTA

ThrLysTrpArgLysLeuValAspPheArgGluLeuAsnLysArgThrGlnAspPheTrpG
 2308 CTAAATGGAGAAAATCTAGTAGATTCTAGAGAACTTAATAAAAGAACTCAAGACTTCTGGG

luValGlnLeuGlyIleProHisProAlaGlyLeuLysLysLysSerValThrVal 263
 AAGTTCACTTAGGAATACCACACCCCGCAGGGTTAAAAAGAAAAACTCAGAACAGTAT

LeuAspValGlyAspAlaTyrPheSerValProLeuAspLysAspPheArgLysTyrThrA
 2428 TGGATGTGGGTGATGCATACTTTAGTCCCTAGATAAGACTTTAGAAAGTACTG

laPheThrIleProSerIleAsnAsnGluThrProGlyIleArgTyrGlnTyrAsnVal 303
 CATTACCATACCTAGTATAAACATGAGACACCAGGGATTAGATATCAGTACAATGTG

LeuProGlnGlyTrpLysGlySerProAlaIlePheGlnSerSerMetThrLysIleLeuG
 2548 TGCCACAGGGATGGAAAGGATACCAAGCAATATTCAAAGTAGCATGACAAAAATCTTAG

luProPheArgLysGlnAsnProAspIleValIleTyrGlnTyrMetAspAspLeuTyr 343
 AGCCTTTAGAAAACAGAACATCCAGACATAGTTATCTATCAATACATGGATGATTGTATG

ValGlySerAspLeuGluIleGlyGlnHisArgThrLysIleGluGluLeuArgGlnHisL
 2668 TAGGATCTGACTTAGAAATAGGGCAGCATAGAACAAAAATAGAGGAACAGCAGC

euLeuArgTrpGlyPheThrThrProAspLysLysHisGlnLysGluProProPheLeu 383
 TGTGAGGTGGGGATTACCAACCCAGACAAAAACATCAGAAAGAACCTCCATTCTTT

TrpMetGlyTyrGluLeuHisProAspLysTrpThrValGlnProIleMetLeuProGluL
 2788 GGATGGGTTATGAACTCCATCTGATAAAATGGACAGTACAGCCTATAATGCTGCCAGAAA

ysAspSerTrpThrValAsnAspIleGlnLysLeuValGlyLysLeuAsnTrpAlaSer 423
 AAGACAGCTGGACTGTCAATGACATACAGAACAGTTAGTGGAAAATTGAATTGGCAGAGTC

GlnIleTyrAlaGlyIleLysValLysGlnLeuCysLysLeuLeuArgGlyThrLysAlaL
 2908 AGATTATGCAGGGATTAAAGTAAGCAGTTATGTAACACTCCTAGAGGAACCAAGCAC

euThrGluValIleProLeuThrGluGluAlaGluLeuGluLeuAlaGluAsnArgGlu 463 P
 TAACAGAACAGTAATACCACTAACAGAACAGCAGAGCTAGAACTGGCAGAAAACAGGGAGA O
 L

931154

IleLeuLysGluProValHisGluValTyrTyrAspProSerLysAspLeuValAlaGluI
3028 TTCTAAAAGAACCGAGTACATGAAGTATAATTATGACCCATCAAAGACTTAGTAGCAGAAA
leGlnLysGlnGlyGlnGlyGlnTrpThrTyrGlnIleTyrGlnGluProPheLysAsn 503
TACAGAAGCAGGGGCAAGGCCATGGACATATCAAATTATCAAGAGCCATTTAAAAATC
LeuLysThrGlyLysTyrAlaArgMetArgGlyAlaHisThrAsnAspValLysGlnLeut
3148 TGAAAACAGGAAAGTATGCAAGGATGAGGGGTGCCACACTAATGATGTAAAACAGTT
hrGluAlaValGluLysValSerThrGluSerIleValIleTrpGlyLysIleProLys 543
ptac 5

FIG. 9C

ARV GAG p16 - synthetic Parts A and B

FIG. 10

PYK Promoter

MetSer
ATGTCT

ArgIleAspCysSerAlaThrGluLysLeuTrpValThrValTyrTyrGlyValProVal 51
AGAATCGAT GTAGTGCTACAGAAAAATTGTGGGTACAGTTATTATGGAGTACCTGTG

5908 TrpLysGluAlaThrThrThrLeuPheCysAlaSerAspAlaArgAlaTyrAspThrGlu
 ValHisAsnValTrpAlaThrHisAlaCysValProThrAspProAsnProGlnGluVal 91
 GTACATAATGTTTGGGCCACACATGCCTGTGACCCACAGACCCCCAACCCACAAGAAGTA

6028 ValLeuGlyAsnValThrGluAsnPheAsnMetTrpLysAsnAsnMetValGluGlnMet
 CAGGAGGATAATCAGTTATGGATCAAAGCCTAAAGCCATGTGAAACATGGTAGAACAGATG 131
 LeuCysValThrLeuAsnCysThrAspLeuGlyLysAlaThrAsnThrAsnSerSerAsn
 CTCTGTGTTACTTAAATTGCACTGATTGGGAAGGCTACTAATACCAATAGTAGTAAT 171
 TrpLysGluGluIleLysGlyGluIleLysAsnCysSerPheAsnIleThrThrSerIle
 TGGAAAGAAGAAAATAAGGAGAAATAAAAAACTGCTCTTCAATATCACCAACAGCATA

6268 ArgAspLysIleGlnLysGluAsnAlaLeuPheArgAsnLeuAspValValProIleAsp
 AATGCTAGTACTACTACCAACTATACCAACTATAGGTTGATACATTGTAACAGATCAGTC 211
 IleThrGlnAlaCysProLysValSerPheGluProIleProIleHisTyrCysThrPro
 6388 ATTACACAGGCCCTGTCCAAGGTATCATTGAGCCAATTCCCACACATTATTGTACCCG
 AlaGlyPheAlaIleLeuLysCysAsnAsnLysThrPheAsnGlyLysGlyProCysThr 251
 GCTGGTTTGCGATTCTAAAGTGTAAATAAAACGTTCAATGGAAAAGGACCATGTACA

FIG. 11A

6508 AsnValSerThrValGlnCysThrHisGlyIleArgProIleValSerThrGlnLeuLeu
 AATGTCAGCACAGTACAATGTACACATGGAATTAGGCCAATAGTGTCAACTCACTGCTG
 LeuAsnGlySerLeuAlaGluGluGluValValIleArgSerAspAsnPheThrAsnAsn 291
 TTAAATGGCAGTCTAGCAGAAGAGAGGTAGTAATTAGATCTGACAATTCACGAAACAT
 6628 AlaLysThrIleIleValGlnLeuAsnGluSerValAlaIleAsnCysThrArgProAsn
 GCTAAAACCATAATAGTACAGCTGAATGAATCTGTAGCAATTAACTGTACAAGACCCAAC
 AsnAsnThrArgLysSerIleTyrIleGlyProGlyArgAlaPheHisThrThrGlyArg 331
 AACAAATACAAGAAAAAGTATCTATATAGGACCAGGGAGAGCATTCAACACAGGAAGA
 IleIleGlyAspIleArgLysAlaHisCysAsnIleSerArgAlaGlnTrpAsnAsnThr
 6748 ATAATAGGAGATATAAGAAAAGCACATTGTAACATTAGTAGAGCACAATGGAATAACACT
 LeuGluGlnIleValLysLysLeuArgGluGlnPheGlyAsnAsnLysThrIleValPhe 371
 TTAGAACAGATAGTTAAAAAATTAAAGAGAACAGTTGGAAATAATAAAACAATAGTCTT
 6868 AsnGlnSerSerGlyGlyAspProGluIleValMetHisSerPheAsnCysArgGlyGlu
 AATCAATCCTCAGGAGGGGACCCAGAAATTGTAATGCACAGTTAATTGTAGAGGGGAA E
 PhePheTyrCysAsnThrThrGlnLeuPheAsnAsnThrTrpArgLeuAsnHisThrGlu 411
 TTTTCTACTGTAATACAACACAACGTTAATAATACATGGAGGTTAAATCACACTGAA
 GlyThrLysGlyAsnAspThrIleIleLeuProCysArgIleLysGlnIleIleAsnMet
 6988 GGAACTAAAGGAAATGACACAATCATCTCCATGTAGAATAAAACAAATTATAAACATG N
 TrpGlnGluValGlyLysAlaMetTyrAlaProProIleGlyGlyGlnIleSerCysSer 451
 TGGCAGGAAGTAGGAAAAGCAATGTATGCCCTCCATTGGAGGACAATTAGTTGTTCA
 7108 SerAsnIleThrGlyLeuLeuLeuThrArgAspGlyGlyThrAsnValThrAsnAspThr
 TCAAATATTACAGGGCTGCTATTAAACAAGAGATGGTGGTACAAATGTAACATGACACC
 GluValPheArgProGlyGlyGlyAspMetArgAspAsnTrpArgSerGluLeuTyrLys 491
 GAGGTCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATAAA V
 7228 TyrLysValIleLysIleGluProAsnSerValSer
 TATAAAGTAATAAAATTGAACCAATT CGTATCTTGA PYK Terminator

FIG. 11B

Nucleotide positions relative to Figure 5.	Met Ile Asp Lys Ala Gln Glu Glu His Glu Lys Tyr His Ser Asn Trp
	1 AGGXAACAG:::ATGAT:GA:AAGGCACAAGAAGAACATGAGAAAATATCACAGTAATTGG TCCXTTGTC:::TACTA:CT:TTCCGTGTTCTTCTTGTACTCTTATAGTGTCAATTAACC
	32 mbo11, 38 nla111,
3820	62 Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val Ala Ser AGAGCCATGGCTAGTGATTTAACCTGCCACCTGTAGTAGC AAAAGAAATAGTAGGCCAGC TCTCGGTACCGATCACTAAAATTGGACGGTGGACATCATCGTTTCTTATCATCGGTTC
	66 nco1, 67 nla111, 118 nspBII pvu1, 119 alu1,
3880	122 Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly TGTGATAAAATGTCAGCTAAAGAGAAGGCCATGCATGGACAAGTAGACTGTAGTCAGGA ACACTATTACAGTCGATTTCTCTCGTACGTACCTGTTACATCTGACATCAGGTCCT
	135 alu1, 151 nla111, 152 ns11 ava3, 155 nla111, 164 acc1, 1 76 apyl bstXI ecor11 scrF1,
3940	182 Ile Trp Gln Leu Asp Cys Thr His Leu Glu Gly Lys Ile Ile Leu Val Ala Val His Val ATATGGCAACTAGATTGTACACATCTAGAAGGAAAAATTATCTGGTAGCAGTTCATGTA TATACCGTTGATCTAACATGTGTAGATCTCCTTTAATAGGACCATCGTCAAGTACAT
	198 rsal, 205 xba1, 223 apyl ecor11 scrF1, 236 nla111,
4000	242 Ala Ser Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr GCCAGTGGATAATAGAACAGAAGTTATCCAGCAGAGACAGGGCAGGAAACAGCATAT CGGTACCTATATATCTTCGTCTCAATAAGGTCGTCCTGTCCCCGTCCTTGTGTCGATA
	263 xmn1,
4060	302 Phe Leu Leu Lys Leu Ala Gln Gly Arg Trp Pro Val Lys Thr Ile His Thr Asp Asn Gly Ser TTTCTCTAAAATTAGCAGGAAGATGGCCAGTAAAAACAATACATACAGACAATGGCAGC AAAGAGAATTTAATCGTCCTCTACCGGTCACTTTGTTATGTATGTCTGTTACCGTCG
	321 mbo11, 326 ball cfr1 hae1, 327 hae111, 357 bbv fnu4h1,
4120	362 Asn Phe Thr Ser Thr Thr Val Lys Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe AATTCACCAGTACTACGGTTAAGGCCGCTGTTGGTGGCAGGGATCAAGCAGGAATT TTAAAGTGGTCATGATGCCATTCCGGCGACAACCACCCGTCCTAGTCGTCCTTAAA
	366 hph, 371 scal, 372 rsal, 385 hae111, 386 fnu4h1 nsb11, 4 05 bin1, 406 dpn1 sau3a,
4180	422 Gly Ile Pro Tyr Asn Pro Gln Ser Gln Gly Val Val Glu Ser Met Asn Asn Glu Leu Lys GGCATTCCCTACAATCCCCAAAGTCAGGAGTAGTAGAATCTATGAATAATGAATTAAAG CCGTAAGGGATGTTAGGGGTTCAAGTCCCTCATCTTAGATACTTATTACTTAATTTC
	423 bsm1, 458 hinf1,
4240	482 Lys Ile Ile Gln Val Arg Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala AAAATTATAGGACAGGTAAAGAGATCAGGCTGAACACCTTAAGAACAGCAGTACAAATGGCA TTTAATATCCTGTCCATTCTAGTCGACTTGTGGAATTCTGTCGTATGTTACCGT
	503 dpn1 sau3a, 518 af111, 530 rsal,
4300	542 Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser Ala Gly Glu Arg GTATTCACTCCACAATTAAAGAAAAGGGGGATTGGGGGATACAGTGCAGGGGGAAAGA CATAAAGTAGGTGTTAAATTCTTTCCCCCTAACCCCTATGTCACGTCCCCTTCT
	547 fok1, 557 ahal11,

FIG. 12A

4360 602 IleValAspIleIleAlaThrAspIleGlnThrLysGluLeuGlnLysGlnIleThrLys
 602 ATAGTAGACATAATAGCAACAGACATACAAACTAAAGAACTACAAAAGCAAATTACAAAA
 TATCATCTGTATTATCGTTGTCTGTATGTTGATTCTTGATGTTTCGTTAATGTTT
 605 acc1,
 4420 662 IleGlnAsnPheArgValTyrTyrArgAspAsnLysAspProLeuTrpLysGlyProAla
 662 ATTCAAAATTTTGGGTTTATTACAGGGACAACAAAGATCCCCTTGGAAAGGACAGCA
 TAAGTTTAAAAGCCAAATAATGTCCTGTTGTTCTAGGGAAACCTTCCTGGTCGT
 697 xho2, 698 dpn1 sau3a, 713 asu1 ava2,
 4480 722 LysLeuLeuTrpLysGlyGluGlyAlaValValIleGlnAspAsnSerAspIleLysVal
 722 AAGCTTCTCTGGAAAGGTGAAGGGGCAGTAGTAATACAAGATAATAGTGACATAAAAGTA
 TTCAAGAGACCTTCCACTTCCCCTCATCATTATGTTCTATTATCACTGTATTTCAT
 722 hind111, 723 alu1, 737 hph,
 4540 782 ValProArgArgLysAlaLysIleIleArgAspTyrGlyLysGlnMetAlaGlyAspAsp
 782 GTGCCAAGAAGAAAAGCAAAATCATTAGGGATTATGGAAAACAGATGGCAGGTGATGAT
 CACGGTTCTCTTTCTGTTTAGTAATCCCTAACCTTTGTCTACCGTCCACTACTA
 789 mbo11, 833 hph,
 4600 842 CysValAlaSerArgGlnAspGluAspAM
 842 TGTGTGGCAAGTAGACAGGGATGAGGATTAGTCGACGGAATTCTTAGTAAAACACC
 ACACACCGTTCACTGTCTACTCCCTAACCTAGCTGCCTTAAGAAAATCATTTGTGG
 852 acc1, 859 fok1, 863 mn11, 871 acc1 hind11 sal1, 872 taql
 , 878 ecor1,

FIG. 12B

FIG. 13

931154

FIG. 14

SOD

Met Ala Thr Lys Ala Val Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly Ile Ile Asn
 1 CATGGCGACGAAGGCCGTGCGTGCTGAAGGGCGACGGGCCAGTGCAGGGCATCATCAAT
 CGCTGCTTCGGCACACGCACGACTTCCGCTGCCGGTCACGTCCGTAGTAGTTA

Phe Glu Gln Lys Glu Ser Asn Gly Pro Val Lys Val Trp Gly Ser Ile Lys Gly Leu Thr
 62 TTCGAGCAGAAGGAAAGTAATGGACCAGTGAAGGTGTGGGAAGCATTAAAGGACTGACT
 AAGCTCGTCTCCTTCATTACCTGGTCACTCCACACCCCTTCGTAATTCTGACTGA

Glu Gly Leu His Gly Phe His Val His Glu Phe Gly Asp Asn Thr Ala Gly Cys Thr Ser
 122 GAAGGCCTGCATGGATTCCATGTTCATGAGTTGGAGATAATACAGCAGGCTGTACCAAGT
 CTTCCGGACGTACCTAACGGTACAAGTACTCAAACCTCTATTATGTCGTCCGACATGGTCA

Ala Gly Pro His Phe Asn Pro Leu Ser Arg Lys His Gly Gly Pro Lys Asp Glu Glu Arg
 182 GCAGGTCCTCACTTTAATCCTCTATCCAGAAAACACGGTGGGCCAAAGGATGAAGAGAGG
 CGTCCAGGAGTCAAATTAGGAGATAGGTCTTTGTGCCACCCGGTTCTACTTCTCTCC

His Val Gly Asp Leu Gly Asn Val Thr Ala Asp Lys Asp Gly Val Ala Asp Val Ser Ile
 242 CATGTTGGAGACTGGGCAATGTGACTGCTGACAAAGATGGTGTGGCCATGTGTCTATT
 GTACAAACCTCTAACCCGTTACACTGACACTGTTCTACCACACCCGGTACACAGATAA

Glu Asp Ser Val Ile Ser Leu Ser Gly Asp His Cys Ile Ile Gly Arg Thr Leu Val Val
 302 GAAGATTCTGTGATCTCACTCTCAGGAGACCATTGCATCATTGGCCGACACTGGTGGTC
 CTTCTAACAGACACTAGAGTGAGAGTCTCTGGTAACGTAGTAACCGGGTGTGACCAACAG

His Glu Lys Ala Asp Asp Leu Gly Lys Gly Asn Glu Glu Ser Thr Lys Thr Gly Asn
 362 CATGAAAAAGCAGATGACTTGGGCAAAGGTGGAAATGAAGAAAAGTACAAGACAGGAAAC
 GIACTTTTCGCTACTGAACCCGTTCCACCTTACTTCTTCATGTTCTGTCCTTG

ENV 5B

Ala Gly Ser Arg Leu Ala Cys Gly Val Ile Gly Ile Ala Met Ala Ile Glu Ala Gln Gln
 422 GCTGGAAAGTCGTTGGCTTGTTGTAATTGGGATGCCATGGCTATCGAAGCTAACAA
 CGACCTTCAGCAAACCGAACACCACATTAACCCATAGCGGTACCGATACTTCGAGTTGTT

His Leu Leu Gln Leu Thr Val Trp Gly Ile Lys Glu Gln Ala Arg Val Leu Ala Val
 482 CACTTGCTGCAGTTGACCGTTGGGGTATCAAGCAGTTGCAGGCTAGAGTTGGCTGTT
 GTGAACGACGTCAACTGGCAAACCCATAGTTGTTAACAAACCCATAGACCCAAACAAGACCATTCAACTAA

Glu Arg Tyr Leu Arg Asp Glu Gln Leu Leu Gly Ile Trp Gly Cys Ser Gly Lys Leu Ile
 542 GAAAGATACTTGAGAGATCAACAATTGGGGTATCTGGGGTTGTTCTGGTAAGTTGATT
 CTTCTATGAACCTCTAGTTGTTAACAAACCCATAGACCCAAACAAGACCATTCAACTAA

Cys Thr Thr Ala Val Pro Trp Asn Ala Ser Trp Ser Asn Lys Ser Leu Glu Asp Ile Trp
 602 TGTACCAACCGCTGTTCCCTGGAACGCTTCTGGCTAACAAAGTCTTGGAAAGACATCTGG
 ACATGGTGGCGACAAGGGACCTTGCAGAACCAACAGATTGTTAGAAACCTCTGTAGACC

Asp Asn Met Thr Trp Met Gln Trp Glu Arg Glu Ile Asp Asn Tyr Thr Asn Thr Ile Tyr
 662 GACAACATGACCTGGATGCAATGGGAAAGAGAAATCGACAACACTACACCAACACCATCTAC
 CTGTTGACTGGACCTACGTTACCCCTTCTCTTGTAGCTGTTAGTTGTTGAGATG

Thr Leu Leu Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Glu Leu
 722 ACCTTGGTGGAGGAATCTCAAAACCAACAAGAAAAGAACGAACAAGAAATTGTTGGAAATTG
 TGGAACACCTCCTTAGAGTTGGTTCTTCTTGCTTGTCTTAACAAACCTTAAC

Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Ser Ile Thr Asn Trp AM
 782 GACAAGTGGGCAAGCTTGTGAACTGGTTCTATCACCAACTGGTAG
 CTGTTCACCGTTGAAACACCTTGACCAAGAGATAGTGGTTGACCATCAGCT

Translated Mol. Weight = 30414.22

FIG. 15

87 931154

FIG. 16A

01 931154

FIG. 16B

931154

FIG. 17

931154

FIG. 18

931154

FIG.19

FIG. 20

FIG. 21

FIG. 22A

931154

Ile Ala Gly Thr Thr 110
ATA GCA GGA ACT ACT Ser Thr Leu Gln Glu Gln Ile Gly Trp Met
ATA GCA GGA ACT ACT AGT ACC CTT CAG GAA CAA ATA GGA TGG ATG

120
Thr Asn Asn Pro Pro Ile Pro Val Gly Glu 130
ACA AAT AAT CCA CCT ATC CCA GTA GGA GAA ATC TAT AAA AGA TGG

Ile Ile Leu Gly Leu Asn Lys Ile Val Arg Met Tyr Ser Pro Thr 140
ATA ATC CTG GGA TTA AAT AAA ATA GTA AGA ATG TAT AGC CCT ACC

Ser Ile Leu Asp Ile Arg Gln Gly Pro Lys 160
AGC ATT CTG GAC ATA AGA CAA GGA CCA AAG GAA CCC TTT AGA GAT

Tyr Val Asp Arg Phe Tyr Lys Thr Leu Arg Ala Glu Gln Ala Ser 170
TAT GTA GAC CGG TTC TAT AAA ACT CTA AGA GCC GAA CAA GCT TCA

Gln Asp Val Lys Asn Trp Met Thr Glu Thr 190
CAG GAT GTA AAA AAT TGG ATG ACA GAA ACC TTG TTG GTC CAA AAT

Ala Asn Pro Asp Cys Lys Thr Ile Leu Lys Ala Leu Gly Pro Ala 200
GCA AAC CCA GAT TGT AAG ACT ATT TTA AAA GCA TTG GGA CCA GCA

Ala Thr Leu Glu Glu Met Met Thr Ala Cys 220
GCT ACA CTA GAA GAA ATG ATG ACA GCA TGT CAG GGA GTG GGG GGA

Pro Gly His Lys Ala Arg Val Leu OP 230 232
CCC GGG CAT AAA GCA AGA GTT TTG TGA TAG

Translated Mol. Weight = 25700.75

FIG. 22B

FIG. 23

SOD-->
 Met Ala Thr Lys Ala
 ATGGCTACAAAGGCT
 TACCGATGTTCCGA

1383 Val Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly Ile Ile Asn Phe Glu Gln Lys Glu
 GTTTGTGTTTGAAGGGTGACGGCCCAGTCAGGTATTATAACTTCGAGCAGAAGGAA
 CAAACACAAA ACTTCCC ACTGCCGGTCAAGTCCATAATAATTGAAGCTCGTCTCCCTT

1443 Ser Asn Gly Pro Val Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu Gly Leu His Gly
 AGTAATGGACCAGTGAAGGTGTGGGGAAAGCATTAAAGGACTGACTGAAGGCCTGCATGGA
 TCATTACCTGGTCACTTCCACACCCCTCGTAATTCCCTGACTGACTTCCGGACGTACCT

1503 Phe His Val His Glu Phe Gly Asp Asn Thr Ala Gly Cys Thr Ser Ala Gly Pro His Phe
 TTCCATGTCATGAGTTGGAGATAATACAGCAGGCTGTACCAAGTGCAGGTCTCACTTT
 AAGGTACAAGTACTCAAACCTCTATTATGTCGTCCGACATGGTCACGTCCAGGAGTGAAC

1563 Asn Pro Leu Ser Arg Lys His Gly Gly Pro Lys Asp Glu Glu Arg His Val Gly Asp Leu
 AATCCTCTATCCAGAAAACACGGTGGGCCAAAGGATGAAGAGAGGCATGTTGGAGACTTG
 TTAGGAGATAGGTCTTTGTGCCACCCGGTTCCACTTCTCTCCGTACAACCTCTGAAC

1623 Gly Asn Val Thr Ala Asp Lys Asp Gly Val Ala Asp Val Ser Ile Glu Asp Ser Val Ile
 GGCAATGTGACTGCTGACAAAGATGGTGTGGCCGATGTGCTATTGAAGATTCTGTGATC
 CCGTTACACTGACGACTGTTCTACCACACCGGCTACACAGATAACTTCTAACAGACACTAG

1683 Ser Leu Ser Gly Asp His Cys Ile Ile Gly Arg Thr Leu Val Val His Glu Lys Ala Asp
 TCACTCTAGGAGACCATTGCATCATTGGCCGCACACTGGTGGTCCATGAAAAAGCAGAT
 AGTGAGAGTCCTCTGGTAACGTAGTAACCGGCGTGTGACCACCAAGGTACTTTCTGCTA

1743 Asp Leu Gly Lys Gly Gly Asn Glu Glu Ser Thr Lys Thr Gly Asn Ala Gly Ser Arg Leu
 GACTTGGCAAAGGTGGAAATGAAGAAAGTACAAGACAGGAAACGCTGGAAAGTCGTTTG
 CTGAACCCGTTCCACCTTACTTCTCATGTTCTGTCCTTGCACCTTCAGCAAAC

1803 linker --> p31 -->
 Ala Cys Gly Val Ile Gly Ile Ala Gln Asn Ser Gly Val Gly Ala Met Ala Met Ala Ser
 GCTTGTGGTGAATTGGGATGCCACCTGTAGTAGCAAAAGAAATAGTAGCCAGCTGTGATAAAATGTCAG
 CGAACACCACTTAACCTAGCGGGTCTAACGTCCACAAACCTCGGTACCGGTACCGATCA

1863 Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln
 GATTTAACCTGCCACCTGTAGTAGCAAAAGAAATAGTAGCCAGCTGTGATAAAATGTCAG
 CTAAAATTGGACGGTGGACATCATCGTTTCTTATCATCGGTCGACACTATTTACAGTC

1923 Leu Lys Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Asp
 CTAAGGAGAAGCCATGCATGGACAAGTAGACTGTAGTCCAGGAATATGGCAACTAGAT
 GATTTCCCTTTCGGTACGTACCTGTTCATCTGACATCAGGTCCTATACCGTTGATCTA

FIG. 24A

1983 CysThrHisLeuGluGlyLysIleIleLeuValAlaValHisValAlaSerGlyTyrIle
 TGTACACATCTAGAAGGAAAAATTATCCTGGTAGCAGTCATGTAGCCAGTGGATATATA
 ACATGTGTAGATCTCCTTTAATAGGACCATCGTCAAGTACATCGGTACACCTATATAT

 2043 GluAlaGluValIleProAlaGluThrGlyGlnGluThrAlaTyrPheLeuLeuLysLeu
 GAAGCAGAAGTTATTCCAGCAGAGACAGGGCAGGAAACAGCATATTTCTCTAAAATTA
 CTTCGTCTTCATAAGGTCGTCTGTCCCCTTGTGTATAAAAGAGAATTTAAT

 2103 AlaGlyArgTrpProValLysThrIleHisThrAspAsnGlySerAsnPheThrSerThr
 GCAGGAAGATGGCCAGTAAAAACAATACATACAGACAATGGCAGCAATTCCACAGTACT
 CGTCCTTCTACCGGTCTTTGTATGTCTGTGTACCGTCGTTAAACCGTAAGGGATGTTA

 2163 ThrValLysAlaAlaCysTrpTrpAlaGlyIleLysGlnGluPheGlyIleProTyrAsn
 ACGGTTAAGGCCGCTGTTGGTGGGCAGGGATCAAGCAGGAATTGGCATTCCCTACAAT
 TGCCAATTCCGGCGGACAACCACCCGTCCTAGTTCTGTAAACCGTAAGGGATGTTA

 2223 ProGlnSerGlnGlyValValGluSerMetAsnAsnGluLeuLysLysIleIleGlyGln
 CCCCAAAGTCAGGAGTAGTAGAATCTATGAATAATGAATTAAAGAAAATTAGGACAG
 GGGGTTTCAGTCCTCATCATCTTAGATACTTATTACTTAATTCTTTAATATCCTGTC

 2283 ValArgAspGlnAlaGluHisLeuLysThrAlaValGlnMetAlaValPheIleHisAsn
 GTAAGAGATCAGGCTAACACCTTAAGACAGCAGTACAAATGGCAGTATTCCACAAAT
 CATTCTCTAGTCCGACTTGIGGAATTCTGTCGTATGTTACCGTCATAAGTAGGTGTTA

 2343 PheLysArgLysGlyGlyIleGlyGlyTyrSerAlaGlyGluArgIleValAspIleIle
 TTTAAAGAAAAGGGGGGATTGGGGATACAGTGCAGGGAAAGAATAGTAGACATAATA
 AAATTCTTTCCCCCTAACCCCTATGTCACGCCCCCTTCTTATCATCTGTATTAT

 2403 AlaThrAspIleGlnThrLysGluLeuGlnLysGlnIleThrLysIleGlnAsnPheArg
 GCAACAGACATACAAACTAAAGAACTACAAAAGCAAATTACAAAAATTCAAAATTTCGG
 CGTTGTCTGTATGTTGATTCTTGATGTTTCGTTAATGTTTAAGTTTAAAGTTTAAAGGCC

 2463 ValTyrTyrArgAspAsnLysAspProLeuTrpLysGlyProAlaLysLeuLeuTrpLys
 GTTATTACAGGGACAACAAAGATCCCCTTGGAAAGGACAGCAAAGCTCTGGAAA
 CAAATAATGTCCTGTTCTAGGGAAACCTTCGTTCAAGAGACCTT

 2523 GlyGluGlyAlaValValIleGlnAspAsnSerAspIleLysValValProArgArgLys
 GGTGAAGGGGAGTAGTAATACAAGATAATAGTGACATAAAAGTAGTGCAAGAAGAAAA
 CCACTTCCCCGTATCATTATGTTCTATTACTGTATTTCATCACGGTTCTTCTTT

 2583 AlaLysIleIleArgAspTyrGlyLysGlnMetAlaGlyAspAspCysValAlaSerArg
 GCAAAATCATTAGGGATTATGGAAAACAGATGGCAGGTGATGATTGTGGCAAGTAGA
 CGTTTTAGTAATCCCTAACCTTTGTCTACCGTCCACTACTAACACACCGTTCATCT

 2643 GlnAspGluAspDAM
 CAGGATGAGGATTAG
 GTCCTACTCCTAAC

FIG. 24B

931154

FIG. 25

Sequence of SOD/env-4

SOD -->

Met Ala Thr Lys Ala Val Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly Ile Ile Asn
 1 CATGGCGACGAAGGCCGTGTGCGTGCTGAAGGGCAGCGGCCAGTGCAGGGCATCATCAAT
 CGCTGCTTCCGGCACACGCACGACTTCCCCTGCTGCCGGTCACGTCCCGTAGTAGTTA

Phe Glu Gln Lys Glu Ser Asn Gly Pro Val Lys Val Trp Gly Ser Ile Lys Gly Leu Thr
 62 TT CGAGCAGAAGGAAAGTAATGGACCAGTGAAGGTGTGGGAAGCATTAAAGGACTGACT
 AAGCTCGTCTTCCTTCATTACCTGGTCACTTCCACACCCCTTCGTAATTTCCTGACTGA

Glu Gly Leu His Gly Phe His Val His Glu Phe Gly Asp Asn Thr Ala Gly Cys Thr Ser
 122 GAAGGCCCTGCATGGATTCCATGTTCATGAGTTGGAGATAATAACAGCAGGCTGTACCAAGT
 CTTCCGGACGTACCTAACGGTACAAGTACTCAAACCTCTATTATGTCGTCGACATGGTCA

Ala Gly Pro His Phe Asn Pro Leu Ser Arg Lys His Gln Gly Pro Lys Asp Glu Glu Arg
 182 GCAGGTCTCACTTTAACCTCTATCCAGAAAAACACGGTGGGCCAAAGGATGAAGAGAGG
 CGTCCAGGAGTGAAATTAGGAGATAGGTCTTTGTGCCACCCGGTTTCACTTCTCTCC

His Val Gln Asp Leu Gln Asn Val Thr Ala Asp Lys Asp Gly Val Ala Asp Val Ser Ile
 242 CATGTTGGAGACTTGGCAATGTGACTGCTGACAAAGATGGTGTGGCCGATGTGTCATT
 GTACAACCTCTGAACCCGTTACACTGACGACTGTTCTACCACACCGGCTACACAGATAA

Glu Asp Ser Val Ile Ser Leu Ser Gly Asp His Cys Ile Ile Gly Arg Thr Leu Val Val
 302 GAAGATTCTGTGATCTCACTCTCAGGAGACCATTGCATCATTGGCCGACACTGGTGGTC
 CTTCTAAGACACTAGAGTGAGAGTCCTGGTAACGTAGTAACCGGGTGTGACCAACAG

His Glu Lys Ala Asp Asp Leu Gln Lys Gly Gln Asn Glu Glu Ser Thr Lys Thr Gln Asn
 362 CATGAAAAAGCAGATGACTTGGCAAAAGGTGGAAATGAAGAAAGTACAAAGACAGGAAAC
 GTACTTTTCGTCTACTGAACCCGTTCCACCTTACTTCTTICATGTTCTGTCCTTG

Env4-->

Ala Gly Ser Arg Leu Ala Cys Gly Val Ile Glu Ile Ala Met Glu Val Val Ile Arg Ser
 422 GCTGGAAAGTCGTTGGCTTGTGGTGTATTGGGATGCCATGGAGGTAGTAATTAGATCT
 CGACCTTCAGCAAACCGAACACACCATAACCCCTAGCGGTACCTCCATCTTAATCTAGA

Asp Asn Phe Thr Asn Asn Ala Lys Thr Ile Ile Val Gln Leu Asn Glu Ser Val Ala Ile
 482 GACAATTTCACGAACAATGCTAAAACCATAATAGTACAGCTGAATGAATCTGTAGCAATT
 CTGTTAAAGTGCTTGTACGATTGGTATTATCATGTCGACTTACTTAGACATCGTTAA

Asn Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile Tyr Ile Gln Pro Gly Arg Ala
 542 AACTGTACAAGACCCAACAACAATAACAAGAAAAAGTATCTATATAGGACCAAGGGAGAGCA
 TTGACATGTTCTGGGTTGTTATGTTCTTTCATAGATATATCCTGGCCCTCGT

FIG. 26A

602 PheHisThrThrGlyArgIleIleGlyAspIleArgLysAlaHisCysAsnIleSerArg
 TTTCATACAAACAGGAAGAATAATAGGAGATATAAGAAAAGCACATTGTAACATTAGTAGA
 AAAGTATGTTGTCCTTCTTATTATCCTCATATTCTTTCGTGTAACATTGTAATCATCT
 AlaGlnTrpAsnAsnThrLeuGluGlnIleValLysLysLeuArgGluGlnPheGlyAsn
 GCACAATGGAATAAACACTTAAAGAACAGATAGTTAAAAAAATTAAAGAGAACAGTTGGGAAT
 CGTGTACCTTATTGTGAAATCTGTCTATCAATTTTAAATTCTCTGTCAAACCCCTTA
 AsnLysThrIleValPheAsnGlnSerSerGlyGlyAspProGluIleValMetHisSer
 AATAAAACAATAGTCTTAACTAATCCTCAGGAGGGGACCCAGAAATTGTAATGCACAGT
 TTATTTGTTATCAGAAATTAGTTAGGAGTCCTCCCTGGGTCTTAAACATTACGTGTCA
 PheAsnCysArgGlyGluPhePheTyrCysAsnThrThrGlnLeuPheAsnAsnThrTrp
 TTTAATTGAGAGGGGAAATTTTCTACTGTAATACAACACAACTGTTAAATAATACATGG
 AAATTAAACATCTCCCCCTAAAGATGACATTATGTTGTTGACAAATTATTATGTACCG
 ArgLeuAsnHisThrGluGlyThrLysGlyAsnAspThrIleIleLeuProCysArgIle
 AGGTTAAATCACACTGAAGGAACTAAAGGAAATGACACAATCATACTCCCAGTACAATA
 TCCAATTAGTGTGACTTCCTGATTTCTTACTGTGTTAGTATGAGGGTACATCTTAT
 LysGlnIleIleAsnMetTrpGlnGluValGlyLysAlaMetTyrAlaProProlleGly
 AACAAATATAAACATGTGGCAGGAAGTAGGAAAAGCAATGTATGCCCTCCATTGG
 TTGTTAATATTGTACACCGTCCTCATCCTTCGTTACATACGGGAGGGTAACCT
 GlyGlnIleSerCysSerSerAsnIleThrGlyLeuLeuLeuThrArgAspGlyGlyThr
 GGACAAATTAGTTGTCATCAAATATTACAGGGCTGCTATTAAACAAGAGATGGTGGTACA
 CCTGTTAATCAACAAGTAGTTATAATGTCGGACGATAATTGTTCTTACACCACCATGT
 AsnValThrAsnAspThrGluValPheArgProGlyGlyAspMetArgAspAsnTrp
 ATGTAACATAATGACACCGAGGTCTCAGACCTGGAGGAGGAGATATGAGGGACAATTGG
 TTACATTGATTACTGTGGCTCCAGAAGTCTGGACCTCCTCTATACTCCCTGTTAAC
 ArgSerGluLeuTyrLysTyrLysValIleLysIleGluProLeuGlyIleAlaProThr
 AGAAGTGAATTATAAAATATAAGTAATAAAAATTGAACCATTAGGAATAGCACCCACC
 TCTTCACTTAATATATTATTCATTATTTAACTTGGTAATCCTATCGTGGGTGG
 LysAlaLysArgArgValValGlnArgGluLysArgOP OP
 1142 AAGGCCAAAGAGAAGAGTGGTGCAGAGAGAAAAAGATGATGAAGCTTG
 TTCCGTTCTCTCACACGCTCTTTTCTACTACTTCGAACAGCT

FIG. 26B

FIG. 27

931154

FIG. 28

931154

FIG. 29

01 931154

FIG. 30

931154

FIG.31a

FIG.31b