Атмосфера

Условие

Введем декартову систему координат (x,y,z) связанную с точкой на поверхности Земли, вращающейся вместе с поверхностью. Все рассуждения будут относительно северного полушария. Направим единичные вектора $\hat{i}-c$ запада на восток, $\hat{j}-c$ юга на север, \hat{k} – вверх и обозначим $u=\dot{x},$ $v=\dot{y},$ $\omega=\dot{z}.$ Также ведем следующие обозначения:

- \vec{R} вектор минимального расстояния между осью вращения Земли и точкой (x,y,z), направленный от оси к точке
- а радиус Земли
- ϕ широта, λ долгота
- Ω циклическая частота вращения Земли вокруг своей оси
- 1. Землю с хорошей точностью можно считать шаром постоянной плотности, но сейчас мы оценим отличие Земли от шара постоянной плотности с точки зрения значения гравитационного поля. Пусть гравитационное поле на полюсах Земли g_0 . Как в первом приближении должно отличаться g в точке (ϕ, λ) от g_0 , если считать, что поверхность Земли находится в механическом равновесии?

Далее будем считать Землю шаром неравномерной плотности с грав. полем $g(\phi,\lambda)$. Рассмотрим некоторое тело в нашей системе кооридинат, двигающееся в поле $\vec{g}(\phi,\lambda)$ так, что в любой момент времени $x^2+y^2+z^2\ll a^2$.

- 2. Найдите \dot{u} , в ответе выразите R через a и ϕ . Как будет выглядеть выражение для \dot{u} в случае, когда $\omega=0$?
- 3. Найдите \dot{v} и $\dot{\omega}$.
- 4. Теперь предположим, что движение некоторого тела происходит исключительно при z=0 (т.е. действет сила, компенсирующая вертикальную состовляющую силы Кориолиса), а $u \ll \Omega R$. Напишите уравнение движения тела, если в начальный момент его положение: (0,0,0), а скорость (V,0,0).

Теперь перейдем от рассмотрения абстрактного тела к рассмотрению возудного пакета, который двигается в некотором стационарном поле скоростей. Введем обозначние для его вектора скорости $\vec{U}=\hat{i}u+\hat{j}v+\hat{k}\omega$.

5. Запишите II закон Ньютона для воздушного пакета (на него действует множество сил) и спроецируйте векторное уравнение на оси $x,\ y,\ z$. В каждом из полученых скалярных уравнений сделайте оценку порядка каждого члена и принебрежения исходя из следющих характерных параметров атмосферных явлений на широте $\phi_0=45^\circ.$

U	10 m/s	характерная горизонтальная скорость
W	1 cm/s	характерная вертикальная скорость
L	$10^{6} { m m}$	характерный горизонтальный размер
H	$10^4 \mathrm{m}$	характерный вертикальный размер
$\delta P/\rho$	$10^3 \text{ m}^2/\text{s}^2$	масштабы горизонтальных изменений давления
L/U	$10^{6} { m s}$	характерное время

Путем дальнейших менее очевидных оценок можно получить, что при горизонтальном движении поведение воздуха сходно с поведением несжимамой жидкости (при вертикальном изменение плотности обязательно учитывать!).

Снова будем рассматривать только горизонтальное движение. Введем вектор $V=\hat{i}u+\hat{j}v$ и единичные вектора \hat{t} и \hat{n} такие, что \hat{t} сонаправлен с \vec{V} , а \hat{n} перпендиклярен ему и ориентирован к центру кривизны. Путь, пройденый воздушным пакетом обозначим за s.

- 6. Используя результаты 5-го пункта напишите векторное уравнение на $d\vec{V}/dt$. Далее спроецируйте его на вектора \hat{n} и \hat{t} . Покажите, что случай p=const совпадает со случаем, описаным в пункте 4.
- 7. Рассмотрим частный случай, когда dV/dt=0. Решите уравнение относительно V, какие математические ограничения накладываются на V? Нарисуйте баланс силы давления, ценробежной силы и силы Кориолиса для каждого из решений в двух случаях: dp/dn < 0 и dp/dn > 0, отметьте область высокого или низкого давления находится в центре кривизны в каждом из случаев.
- 8. Укажите на аномальные решения, учитывая, что для северного полушария характерны только потоки двух типов: закрученные против часовой стрелки вокруг области низкого давления (циклоны) и закрученные по часовой стрелке вокруг области высокого давления с числом Россби $Ro = |\frac{V}{fR}| < 1/2$ (антициклоны).

Решение

1. Пусть \vec{R} - вектор, перпендикулярный оси вращения, тогда

$$\vec{g} = \vec{g_0} - \Omega^2 \vec{R}$$

2. Запишем ЗСМИ в ИСО, причем составляющей вдоль оси вращения, она очевидно сохраняется.

$$\left(\Omega + \frac{u}{R}\right) \cdot R^2 = \left(\Omega + \frac{u + \delta u}{R + \delta R}\right) \cdot (R + \delta R)^2$$

отсюда следует, что

$$\delta u = -2\Omega \cdot \delta R - \frac{u}{R} \cdot \delta R, \quad R = a \cdot \cos \phi, \ \delta R = -\delta y \cdot \sin \phi$$

значит

$$\dot{u} = 2\Omega v \sin \phi + \frac{uv}{a} \tan \phi$$

3. Запишем II закон Ньютона в плоскости (\hat{y}, \hat{z})

$$\vec{A} = \left(\Omega + \frac{u}{R}\right)^2 \vec{R} - \Omega^2 \vec{R} = \frac{2\Omega u}{R} \vec{R} + \frac{u^2}{R^2} \vec{R}$$

отсюда найдем

$$\dot{v} = -2\Omega u \sin \phi - \frac{u^2}{a} \tan \phi$$
 $\dot{\omega} = 2\Omega u \cos \phi + \frac{u^2}{a}$

4. Обозначим $2\Omega \sin \phi$ за f, тогда

$$\dot{u} = fv \qquad \dot{v} = -fu$$

можно заметить, что система этих уравнений вкупе с начальными условиями описывает движение по окружности радиуса V/f с центром (0,V/f) с постоянной скоростью V т.е.

$$x = \frac{V}{f}\sin ft$$
 $y = \frac{V}{f}(\cos ft - 1)$

5. Запишем II закон Ньютона

$$\frac{d\vec{U}}{dt} = -2\vec{\Omega} \times \vec{U} - \frac{1}{\rho} \nabla p + \vec{g_0} + \vec{F_r}$$

$$\frac{d\vec{U}}{dt} = \hat{i}\frac{du}{dt} + \hat{j}\frac{dv}{dt} + \hat{k}\frac{d\omega}{dt} + u\frac{d\hat{i}}{dt} + v\frac{d\hat{j}}{dt} + \omega\frac{d\hat{k}}{dt}$$

Последовательно запишем первые 3 члена последнего выражения

$$\begin{split} \frac{d\hat{i}}{dt} &= u \frac{\partial \hat{i}}{\partial x} = \frac{u}{a \cos \phi} \left(\hat{j} \sin \phi - \hat{k} \cos \phi \right) \\ \frac{d\hat{j}}{dt} &= \frac{\partial \hat{j}}{\partial x} u + \frac{\partial \hat{j}}{\partial y} v = -\frac{u \tan \phi}{a} \hat{i} - \frac{v}{a} \hat{k} \\ \frac{d\hat{k}}{dt} &= \frac{\partial \hat{k}}{\partial x} u + \frac{\partial \hat{k}}{\partial y} v = \frac{u}{a} \hat{i} + \frac{v}{a} \hat{j} \end{split}$$

спроецируем на оси

$$x: \quad \frac{du}{dt} - \frac{uv\tan\phi}{a} + \frac{u\omega}{a} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + 2\Omega v\sin\phi - 2\Omega\omega\cos\phi + F_{rx}$$

$$y: \quad \frac{dv}{dt} + \frac{u^2\tan\phi}{a} + \frac{v\omega}{a} = -\frac{1}{\rho}\frac{\partial p}{\partial y} - 2\Omega u\sin\phi + F_{ry}$$

$$z: \quad \frac{d\omega}{dt} - \frac{u^2 + v^2}{a} = -\frac{1}{\rho}\frac{\partial p}{\partial z} + 2\Omega u\cos\phi - g + F_{rz}$$

Оценка даст приближенные уравения

$$x: \quad \frac{du}{dt} = fv - \frac{1}{\rho} \frac{\partial p}{\partial x}$$

$$y: \quad \frac{dv}{dt} = -fu - \frac{1}{\rho} \frac{\partial p}{\partial y}$$

$$z: \quad 0 = \frac{1}{\rho} \frac{\partial p}{\partial z} + g$$

причем выражение для du/dt имеет следующий вид:

$$\frac{du}{dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \omega \frac{\partial u}{\partial z}$$

для dv/dt и $d\omega/dt$ аналогично

6. пишем

$$\frac{d\vec{V}}{dt} = -f\hat{k} \times \vec{V} - \frac{1}{\rho} \left(\hat{i} \frac{\partial p}{\partial x} + \hat{j} \frac{\partial p}{\partial y} \right)$$

теперь раскладываем на координаты

$$\frac{d\vec{V}}{dt} = \frac{d(\hat{t}V)}{dt} = \hat{t}\frac{dV}{dt} + \hat{n}\frac{V^2}{R}$$

И

$$-f\hat{k} \times \vec{V} = -fV\hat{n}$$

а градиент не зависит от выбора кооридинат, значит

$$t: \quad \frac{dV}{dt} = -\frac{1}{\rho} \frac{\partial p}{\partial s}$$
$$n: \quad \frac{V^2}{R} + fv = -\frac{1}{\rho} \frac{\partial p}{\partial n}$$

7. решением второго уравнения будут неотрицитаельные, вещественные корни V.

$$V = -\frac{fR}{2} \pm \sqrt{\frac{f^2R^2}{4} - \frac{R}{\rho}\frac{\partial p}{\partial n}}$$

меняя знак $\frac{\partial p}{\partial n}$ и R можно получить 8 корней, из которых только 4 будут подходить:

$$\frac{\partial p}{\partial n} < 0, R < 0, + \quad \frac{\partial p}{\partial n} > 0, R > 0, + \quad \frac{\partial p}{\partial n} > 0, R < 0, + \quad \frac{\partial p}{\partial n} > 0, R < 0, -$$

8. c и d - аномальные или в формулах:

$$\frac{\partial p}{\partial n} < 0, R < 0, + \frac{\partial p}{\partial n} > 0, R < 0, +$$