TD 18 - Séries numériques

 $\mathbf{Exercice} \; \mathbf{1} : \mathsf{D\'eterminer} \; \mathsf{la} \; \mathsf{nature} \; \mathsf{des} \; \mathsf{s\'eries} \; \sum u_n \; \mathsf{suivantes}$

a)
$$u_n = \tan \frac{1}{n} - \sin \frac{1}{n}$$
 b) $u_n = \frac{\sqrt{n+1} - \sqrt{n}}{n^2}$ c) $u_n = \frac{\sin n}{n^3}$ d) $u_n = \frac{n^n}{2n}$

Exercice 2 : Déterminer la nature des séries $\sum a_n$ suivantes :

a)
$$a_n = \ln\left(\frac{n^3 + 1}{n^3 + 2}\right)$$
 b) $a_n = \int_0^1 t^n \sin(\pi t) dt$ c) $a_n = \ln\left(\frac{2}{\pi} \operatorname{Arctan}\left(\frac{n^2 + 1}{n}\right)\right)$ d) $a_n = \frac{2^n + n}{\ln n + 3^n}$, e) $a_n = \frac{n!}{n^n}$, f) $a_n = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)$,

Exercice 3: Montrer que $\sum e^{-\sqrt{n}}$ est convergente. On pourra étudier $\lim_{n \to +\infty} n^2 e^{-\sqrt{n}}$.

Exercice 4: Déterminer la nature des séries $\sum a_n$ suivantes et en cas de convergence, calculer leur somme :

a)
$$a_n = \frac{1}{\sqrt{n-1}} - \frac{2}{\sqrt{n}} + \frac{1}{\sqrt{n+1}}$$
, b) $a_n = \int_0^1 (-1)^n \frac{e^{-nx}}{1+e^x} dx$, c) $a_n = \frac{\cos n}{2^n}$, d) $a_n = \frac{2}{(2n+1)(2n+3)}$. e) $a_n = \ln\left(1 + \frac{2}{n(n+3)}\right)$. f) $a_n = \frac{2}{n(n^2-1)}$.

Exercice 5: Soit I un intervalle fermé de \mathbb{R} et $f:I\longrightarrow I$ une fonction telle que

$$\forall x,y \in I, \qquad |f(x) - f(y)| \leqslant k|x-y| \text{ avec } 0 < k < 1.$$

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0\in I$ et $\forall n\in\mathbb{N}, \quad u_{n+1}=f(u_n).$

- 1. Montrer que la fonction f est continue sur I et que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie.
- 2. Montrer que la série de terme général $u_{n+1}-u_n$ est convergente. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge.
- 3. Montrer qu'il existe un unique réel $\alpha \in I$ tel que $f(\alpha) = \alpha$.

Exercice 6: Soit $\alpha > 0$, on définit la suite $(u_n)_{n \in \mathbb{N}}$ par $u_0 = \alpha$ et pour $n \in \mathbb{N}$, $u_{n+1} = u_n e^{-\frac{1}{u_n}}$.

- 1. Étudier la suite (u_n) .
- 2. Comparer la série $\sum u_n$ à une série géométrique et en déduire sa nature.

Exercice 7: On pose
$$u_0=v_0=0$$
 et pour tout $n\in\mathbb{N}^*,$ $u_n=\sum_{k=1}^n\frac{1}{k}-\ln n$ et $v_n=u_n-u_{n-1}.$

- 1. Déterminer un équivalent de (v_n) et en déduire la nature de $\sum v_n$.
- 2. En déduire que la suite (u_n) est convergente.

Exercice 8: On considère la suite (a_n) définie pour tout $n \in \mathbb{N}^*$, par $a_n = n! \frac{e^n}{n^n \sqrt{n}}$.

- 1. Déterminer un équivalent de $b_n = \ln\left(\frac{a_{n+1}}{a_n}\right)$. En déduire la nature de $\sum b_n$.
- 2. En déduire que a_n admet une limite finie L quand n tend vers $+\infty$. On admet que $L=\sqrt{2\pi}$.
- 3. En déduire un équivalent de n!.
- 4. Déterminer alors un équivalent de $\binom{2n}{n}$.

Exercice 9: Utiliser une comparaison série-intégrale pour étudier $\sum \frac{1}{k \ln(k)}$ et $\sum \frac{1}{k \ln^2(k)}$