УДК 519.63

КРИТЕРИИ ГОМЕОМОРФИЗМА В ТЕОРИИ ПОСТРОЕНИЯ СЕТОК¹⁾

© 2012 г. М. Ф. Прохорова

(620990 Екатеринбург, ул. С. Ковалевской, 16, ИММ УрО РАН, УрФУ) e-mail: pmf@imm.uran.ru
Поступила в редакцию 05.04.2011 г.
Переработанный вариант 14.12.2011 г.

Доказываются некоторые общие критерии гомеоморфности для непрерывных отображений топологических многообразий, а также критерии диффеоморфности для гладких отображений гладких многообразий, полезные при разработке алгоритмов построения сеток для численных расчетов в областях сложной конфигурации. Приводятся приложения этих критериев к проблемам, возникающим при построении двумерных и трехмерных сеток. Библ. 8.

Ключевые слова: построение разностных сеток, гомеоморфизм, диффеоморфизм.

ВВЕДЕНИЕ

При разработке алгоритмов построения сеток для численных расчетов в областях сложной конфигурации необходимо использовать (см., например, [1], [2]) различные критерии для определения того, является ли непрерывное отображение гомеоморфизмом или гладкое — диффеоморфизмом. Такие критерии для ограниченных областей в \mathbb{R}^n были предложены в [3], [4]. К сожалению, некоторые теоремы в [3], [4] неверны, а доказательства некоторых других неполны (подробности см. в последнем разд. [5]).

В настоящей статье формулируются и доказываются некоторые общие критерии гомеоморфности для непрерывных отображений топологических многообразий (разд. 1), а также критерии диффеоморфности для гладких отображений гладких многообразий (разд. 2).

Для использования теорем 1, 4—8 каждого из разд. 1, 2 необходимо проверять только локальные условия на отображение. В теоремах 2, 3, 9 имеется одно глобальное условие на отображение: в теореме 2 оно относится к прообразу какой-нибудь одной точки; в теоремах 3 и 9 это глобальное условие связано с ограничением отображения на край многообразия, в то время как ограничение на внутренность многообразия должно удовлетворять только локальному условию.

Теоремами 1.9 и 2.9 можно пользоваться, в частности, в ситуации, когда компактное n-мерное многообразие X отображается в \mathbb{R}^n .

В разд. 3 приводятся некоторые приложения этих критериев к проблемам, возникающим при построении двумерных и трехмерных сеток, ориентированные на простоту и удобство использования.

Для удобства читателя, занимающегося численными методами, а не топологией, в статье приведены определения основных топологических понятий, фигурирующих в формулировках теорем. Более детально с ними можно ознакомиться, например, в [6]—[8].

1. ТОПОЛОГИЧЕСКИЕ МНОГООБРАЗИЯ

Пусть X и Y— топологические пространства. Непрерывное отображение $f: X \longrightarrow Y$ называется *погружением*, если у каждой точки $x \in X$ существует окрестность U такая, что ограничение $f|_U$ есть гомеоморфизм U на f(U). Заметим, что f(U) не обязано быть открытым подмножеством пространства Y.

¹⁾Работа выполнена при частичной финансовой поддержке РФФИ (коды проектов 09-01-00173-а и 09-01-00139-а), проекта ориентированных фундаментальных исследований УрО РАН и Программы фундаментальных исследований Отделения математики РАН.

Статья печатается по материалам конференции NUMGRID2011.

Хаусдорфово топологическое пространство X называется n-мерным топологическим многообразием, если X может быть покрыто счетным числом открытых подмножеств, каждое из которых гомеоморфно либо \mathbb{R}^n , либо полупространству $\mathbb{R}^n_+ = \{(x_1, ..., x_n) : x_i \in \mathbb{R}, x_1 \geq 0\}$.

Точки $x \in X$, имеющие окрестность, гомеоморфную \mathbb{R}^n , называются внутренними. Подпространство X, состоящее из точек, не являющихся внутренними, называется краем ∂X многообразия X. Край n-мерного многообразия является (n-1)-мерным многообразием без края (т.е. $\partial \partial X = \emptyset$).

Основная часть результатов статьи основана на теореме 8 из [5]. Для упрощения формулировок будем рассматривать здесь только компактные многообразия; в этом случае данная теорема принимает следующую форму.

Теорема 1.1. Пусть X и Y — связные топологического многообразия одинаковой размерности, X компактно, $f: X \longrightarrow Y$ — непрерывное отображение, $f(\partial X) \subseteq \partial Y$, $f|_{\partial X}$ и $f|_{X \setminus \partial X}$ — погружения. Тогда f является конечнолистным накрытием.

Замечания. 1. Условие " $f|_{\partial X}$ является погружением" означает, что каждая точка $x \in \partial X$ имеет окрестность U в ∂X такую, что $f|_{U}$ — гомеоморфизм U на f(U). Таким образом, U открыто в ∂X , но *не является* открытым подмножеством многообразия X.

- 2. Условие " $f|_{\partial X}$ и $f|_{X \cap \partial X}$ являются погружениями" слабее условия "f является погружением".
- 3. Напомним, что непрерывное отображение $f\colon X\longrightarrow Y$ называется накрытием, если каждая точка $y\in Y$ обладает окрестностью V такой, что f гомеоморфно отображает каждую связную компоненту $f^{-1}(V)$ на V. Для накрытия $f\colon X\longrightarrow Y$ со связным Y мощность прообраза $f^{-1}(y)$ одна и та же для всех точек $y\in Y$; если она равна $m,m\in\mathbb{N}$, то f называется m-листным накрытием. В нашем случае f конечнолистно вследствие компактности многообразия X.

Приводимые ниже теоремы 1.2—1.8 являются следствиями теоремы 1.1.

- **Теорема 1.3.** Пусть X, Y связные топологические многообразия одинаковой размерности с непустыми краями, X компактно, $f: X \longrightarrow Y$ непрерывное отображение, инъективно отображающее ∂X в ∂Y такое, что ограничение $f|_{X \cap X}$ является погружением. Тогда f является гомеоморфизмом X на Y.

Доказательство. Погружение $f|_{\partial X}$ задает непрерывное биективное отображение компактного топологического пространства ∂X в $f(\partial X)$, и поэтому является гомеоморфизмом на $f(\partial X)$ и, тем более, погружением. Для каждой внутренней точки x многообразия X ее образ лежит в некотором подмножестве Y, гомеоморфном \mathbb{R}^n , так что f(x) не может лежать в ∂Y . Таким образом, каждая точка $y \in f(\partial X)$ имеет одноэлементный прообраз, $f|_{X\setminus\partial X}, f|_{\partial X}$ — погружения, и f — гомеоморфизм X на Y по теореме 1.1.

Теорема 1.4. Пусть X, Y u f : X \longrightarrow Y yдовлетворяют условиям теоремы 1.1, u никакая собственная подгруппа конечного индекса группы $\pi_1(Y)$ не изоморфна $\pi_1(X)$. Тогда f является гомеоморфизмом X на Y.

Замечания

- 1. Если Yодносвязно, то $\pi_1(Y)$ тривиальна и не имеет собственных подгрупп, так что выполнено последнее условие теоремы.
- 2. Напомним, что фундаментальной группой $\pi_1(X)$ топологического пространства X называется группа классов эквивалентности петель в X с фиксированной базовой точкой; две петли эквивалентны, если существует гомотопия из одной петли в другую. Пространство называется односвязным, если его фундаментальная группа тривиальна (т.е. любые две петли гомотопны). Подгруппа называется собственной, если она не совпадает со всей группой. Индексом подгруппы H группы G называется число смежных классов H в G (в частности, собственная подгруппа это подгруппа индекса, большего 1).

Доказательство. По теореме 1.1, f является накрытием, так что f индуцирует инъективный гомоморфизм $\pi_1(X) \longrightarrow \pi_1(Y)$. Это накрытие конечнолистно, так что образ $\pi_1(X)$ в $\pi_1(Y)$ является подгруппой конечного индекса. Если никакая собственная подгруппа конечного индекса группы $\pi_1(Y)$ не изоморфиа $\pi_1(X)$, то этот гомоморфизм является изоморфизмом. Следовательно, f является гомеоморфизмом X на Y.

Напомним, что эйлеровой характеристикой топологического пространства X называется альтернированная сумма его чисел Бетти $\chi(X) = \sum_{k=0}^{\infty} (-1)^k b_k(X)$ в случае, если эта сумма корректно определена (т.е. все числа Бетти b_k конечны, и только конечное число из них отлично от нуля). Для компактного топологического многообразия X эта сумма корректно определена и равна $\chi(X) = \sum_{k=0}^{\infty} (-1)^k c_k(X)$, где c_k — количество k-мерных клеток в клеточной декомпозиции многообразия X.

Доказательство. По теореме 1.1, f является m-листным накрытием для некоторого натурального числа m. Поэтому $\chi(X) = m\chi(Y)$. Принимая во внимание условие теоремы, получаем m = 1. Следовательно, f является однолистным накрытием, т.е. гомеоморфизмом X на Y.

Теорема 1.6. Пусть X, Y u f: X \longrightarrow Y удовлетворяют условиям теоремы 1.1, края X, Y непусты u имеют одно u то же число компонент связности: $\partial X = \bigsqcup_{i=1}^k A_i$, $\partial Y = \bigsqcup_{i=1}^k B_i$. Пусть, кроме того, для некоторой компоненты связности $A_j \subseteq \partial X$ u содержащей ее образ компоненты связности $B_j \subseteq \partial Y$ никакая собственная подгруппа конечного индекса группы $\pi_1(B_j)$ не изоморфна $\pi_1(A_j)$. Тогда f является гомеоморфизмом X на Y.

Доказательство. Образ любой внутренней точки $x \in X$ лежит в некотором подмножестве Y, гомеоморфном \mathbb{R}^n , так что f(x) не может лежать в ∂Y . Поэтому $f^{-1}(\partial Y) = \partial X$. Каждая компонента края A_i связна, так что $f(A_i)$ содержится в некотором $B_{i'}$. Отсюда и из сюръективности f получаем, что прообраз каждой компоненты связности ∂Y является одной компонентой связности ∂X . В частности, $f^{-1}(B_i) = A_i$.

По теореме 1.1, f является m-листным накрытием, так что $f|_{A_j}$, рассматриваемое как отображение из A_j в B_j , также является m-листным накрытием. Если $\pi_1(B_j)$ не содержит собственной подгруппы конечного индекса, изоморфной $\pi_1(A_j)$, то $f|_{A_j}$ является гомеоморфизмом A_j на B_j , m=1, и, следовательно, f является гомеоморфизмом X на Y.

Как следствие теоремы 1.6 имеет место

Теорема 1.7. Пусть X, Y u f: $X \longrightarrow Y$ удовлетворяют условиям теоремы 1.1, края многообразий X, Y непусты u имеют одно u то же число компонент связностu, причем как минимум одна u3 компонент связностu ∂Y односвязна. Тогда f является гомеоморфизмом X на Y.

не существует натурального числа $m \ge 2$ такого, что $\chi(A_i) = m\chi(B_i)$ для всех i = 1, ..., k. (1)

Тогда f является гомеоморфизмом X на Y.

Доказательство. По теореме 1.1, f есть m-листное накрытие для некоторого натурального m. Как и в доказательстве теоремы 1.6, $f^{-1}(\partial Y) = \partial X$, и $f|_{A_i}$, рассматриваемое как отображение из A_i в $f(A_i)$, также является m-листным накрытием, причем каждое $f(A_i)$ является компонентой связности ∂Y . Следовательно, $\chi(A_i) = m\chi(f(A_i))$, и, перенумеровав, если надо, компоненты связности ∂Y с совпадающими эйлеровыми характеристиками, мы получаем $f(A_i) = B_i$ вследствие убывающего порядка $\chi(A_i)$ и $\chi(B_i)$. Так что $\chi(A_i) = m\chi(B_i)$ и, принимая во внимание условие теоремы, получаем m = 1. Таким образом, f является однолистным накрытием и, следовательно, гомеоморфизмом X на Y.

В приведенных выше теоремах требовалось, чтобы край X отображался в край Y. Теорема 10 из [5] свободна от этого условия; для компактного многообразия X она принимает вид

Теорема 1.9. Пусть X, Y- связные топологические многообразия одинаковой размерности, X компактно, Y односвязно, $f: X \longrightarrow Y$ является погружением, и ограничение f на каждую компоненту связности ∂X инъективно. Тогда f является гомеоморфизмом X на Y.

2. ГЛАДКИЕ МНОГООБРАЗИЯ

Пусть X есть n-мерное топологическое многообразие. Картой многообразия X называется гомеоморфизм φ открытой области $U \subset X$ на \mathbb{R}^n или \mathbb{R}^n_+ . Две карты $\varphi: U \longrightarrow V$, $\varphi': U' \longrightarrow V'$ называются C^r -согласованными, если отображение $\varphi' \circ \varphi^{-1}$ и обратное ему являются C^r -гладкими на своей области определения. C^r -структурой на X называется покрытие X попарно C^r -согласованными картами. Две C^r -структуры на X считаются эквивалентными, если их объединение также является C^r -структурой.

 C^r -многообразием (многообразием класса гладкости C^r) называется n-мерное топологическое многообразие X с заданной на нем C^r -структурой (более точно, классом эквивалентности таких структур).

Непрерывное отображение $f: X \longrightarrow X'$, где X, X' суть C^r -многообразия, называется *гладким отображением* класса C^r , или C^r -отображением, если для любой пары карт $\varphi: U \longrightarrow V$, $\varphi': U' \longrightarrow V'$ ($U \subset X, U' \subset X'$) отображение $\varphi' \circ f \circ \varphi^{-1} C^r$ -гладко на своей области определения.

 C^r -диффеоморфизмом называется биективное C^r -отображение, обратное к которому также является гладким класса C^r .

Результаты разд. 1 нетрудно переформулировать для гладкого случая. Приведем здесь их гладкие варианты. Всюду ниже $r \ge 1$.

Теорема 2.1. Пусть X и Y — связные C^r -многообразия равной размерности, X компактно, $f: X \longrightarrow Y$ есть C^r -отображение, чей дифференциал df невырожден всюду на X ($m.e. \operatorname{rang}(df) \equiv \dim X$), $uf(\partial X) \subseteq \partial Y$. Тогда f — гладкое накрытие.

Теорема 2.3. Пусть X, Y- связные C^r- многообразия одинаковой размерности с непустыми краями, X компактно, $f: X \longrightarrow Y$ есть C^r- отображение, чей дифференциал df невырожден всюду на $X \backslash \partial X$, инъективно отображающее ∂X в ∂Y . Тогда f является гомеоморфизмом X на Y, $af|_{X \backslash \partial X}$ является C^r- диффеоморфизмом $X \backslash \partial X$ на $Y \backslash \partial Y$. Если же df невырожден на всем X, то f является C^r- диффеоморфизмом X на Y.

Теорема 2.4. Пусть X, Y u f : $X \longrightarrow Y$ удовлетворяют условиям теоремы 2.1, u никакая собственная подгруппа конечного индекса группы $\pi_1(Y)$ не изоморфна $\pi_1(X)$. Тогда f является C^r -диффеоморфизмом X на Y.

Теорема 2.7. Пусть X, Y u f: $X \longrightarrow Y$ удовлетворяют условиям теоремы 2.1, края многообразий X, Y непусты u имеют одно u то же число компонент связностu, причем как минимум одна u3 компонент связностu ∂Y 0 односвязна. Тогда f является C^r -диффеоморфизмом X на Y.

Теорема 2.8. Пусть X, Y и $f: X \longrightarrow Y$ удовлетворяют условиям теоремы 2.1, края многообразий X, Y непусты и имеют одно и то же число компонент связности: $\partial X = \bigsqcup_{i=1}^k A_i$, $\partial Y = \bigsqcup_{i=1}^k B_i$, где компоненты пронумерованы в порядке невозрастания их эйлеровых характеристик, и выполняется условие (1). Тогда f является C^r -диффеоморфизмом X на Y.

Теорема 2.9. Пусть X, Y— связные C^r -многообразия одинаковой размерности, X компактно, Y односвязно, $f \in C^r(X, Y)$ есть C^r -отображение, дифференциал которого невырожден на X, и ограничение f на каждую компоненту связности ∂X инъективно. Тогда f является C^r -диффеоморфизмом X на f(X).

3. НЕКОТОРЫЕ ПРИЛОЖЕНИЯ

В численных вычислениях очень часто используются двумерные и трехмерные решетки, так что мы опишем использование наших критериев для этих ситуаций более подробно.

В двумерном случае удобно пользоваться теоремами 1.5 и 2.5.

Напомним, что *родом д замкнутой ориентируемой поверхности* называется число ручек, которые нужно приделать к сфере, чтобы получить эту поверхность. Аналогично, *родом д компактной ориентируемой поверхности* с непустым краем называется число ручек, которые нужно приделать к диску или диску с дырками для получения поверхности.

Эйлерова характеристика замкнутой ориентируемой поверхности X рода g равна $\chi(X)=2-2g$. Каждая дырка уменьшает эйлерову характеристику на 1, т.е. эйлерова характеристика сферы с g ручками и b дырками равна 2-2g-b. Эйлерова характеристика компактной неориентируемой поверхности равна половине эйлеровой характеристики ее двулистного ориентируемого накрытия.

Следовательно, если компактные поверхности X и Yгомеоморфны и отличны от кольца, тора, ленты Мебиуса и бутылки Клейна, то теоремы 1.5 и 2.5 дают условие, при котором f будет гомеоморфизмом или диффеоморфизмом соответственно.

В трехмерном случае полезны теоремы 1.8 и 2.8. Заметим, что условие (1) выполняется в одном простом частном случае, а именно, когда по крайней мере одна компонента связности ∂Y гомеоморфна сфере (теоремы 1.7, 2.7 также описывают этот случай).

Кроме того, в трехмерном случае можно использовать различные варианты теорем 1.8, 2.8:

Теорема 3.1. Пусть X, Y — компактные связные трехмерные топологические многообразия, их края непусты и состоят из одного и того же числа компонент связности, по крайней мере одна из которых не гомеоморфна ни тору, ни бутылке Клейна. Тогда имеет место следующая альтернатива:

- 1) либо наборы $(\chi(A_i))$ и $(\chi(B_i))$ совпадают (с учетом кратностей),
- 2) либо эти два набора различны.

В первом случае любое отображение $f: X \longrightarrow Y$, удовлетворяющее условиям теоремы 1.1, является гомеоморфизмом X на Y. Во втором случае X и Y негомеоморфны.

Теорема 3.2. Пусть X, Y — компактные связные трехмерные C^r -многообразия, их края непусты и состоят из одного и того же числа компонент связности, по крайней мере одна из которых не гомеоморфна ни тору, ни бутылке Клейна. Тогда имеет место следующая альтернатива:

- 1) либо наборы $(\chi(A_i))$ и $(\chi(B_i))$ совпадают (с учетом кратностей),
- 2) либо эти два набора различны.

В первом случае любое отображение $f: X \longrightarrow Y$, удовлетворяющее условиям теоремы 2.1, является C^r -диффеоморфизмом X на Y. Во втором случае X и Y негомеоморфны.

Доказательство. Второй случай очевиден. Для доказательства первого случая достаточно использовать теорему 1.8 и тот факт, что замкнутая поверхность нулевой эйлеровой характеристики есть либо тор, либо бутылка Клейна.

Заметим, что все эти результаты применимы в том числе и тогда, когда X, Y вложены в \mathbb{R}^3 , т.е. X, Y являются замыканиями ограниченных открытых областей в \mathbb{R}^3 , ограниченных локально плоскими поверхностями. В этом случае применимы теоремы 3.1, 3.2, за единственным исключением: когда X, Y являются полноториями, из которых, возможно, удалены еще одно или несколько полноторий. В этом исключительном случае можно использовать теоремы 1.2, 1.3 и их гладкие аналоги — теоремы 2.2, 2.3. Кроме того, могут быть полезны теоремы 1.4, 2.4, если удаляемые полнотория образуют нетривиальное зацепление в объемлющем полнотории.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ushakova O.V.* On Nondegeneracy of Three-Dimensional Grids // Proc. Steklov Inst. Math. 2004. Suppl. 1. P. S78—S100.
- 2. *Ushakova O.V.* Nondegeneracy conditions for different types of grids // Advances in Grid Generation. Ed. O.V. Ushakova. New York: Nova Science, 2007. P. 241–278.
- 3. *Бобылев Н.А., Иваненко С.А., Исмаилов И.Г.* Несколько замечаний о гомеоморфных отображениях // Матем. заметки. 1996. Т. 60. № 4. С. 593—596.
- 4. *Бобылев Н.А., Иваненко С.А., Казунин А.В.* О кусочно-гладких гомеоморфных отображениях ограниченных областей и их приложениях к теории сеток // Ж. вычисл. матем. и матем. физ. 2003. Т. 43. № 6. С. 808—817
- 5. *Prokhorova M.F.* Homeomorphism problems arising in the theory of grid generation // Proc. Steklov Inst. Math. 2008. Suppl. 1. P. S165–S182.
- 6. Рохлин В.А., Фукс Д.Б. Начальный курс топологии. Геометрические главы. М.: Наука, 1977.
- 7. Фоменко А.Т., Фукс Д.Б. Курс гомотопической топологии. М.: Наука, 1989.
- 8. Дольд А. Лекции по алгебраической топологии. М.: Мир, 1976.