Московский физико-технический институт

Лабораторная работа

Изучение электропроводности и определение удельного сопротивления полупроводников

выполнила студентка 654a группы ФЭФМ Карпова Татьяна

1 Цели работы

- 1. Ознакомиться с методикой измерения удельного сопротивления полупроводников (двухзондовый метод)
- 2. Определить удельное сопротивление исследуемого полупроводникового образца

2 Экспериментальная установка

Рис. 1: Принципиальная схема двухзондового метода измерения удельного сопротивления полупроводникового образца

Для определения удельного сопротивления полупроводников наиболее распространёнными являются двух- и четырёхзондовые методы. В данной работе используется двухзондовый компенсационный метод. К исследуемому образцу подведено в общей сложности четыре контакта (для исключения из расчётной формулы сопротивлений проводов). Принципиальная схема установки представлена на рис. 1.

3 Результаты измерений

Для снятия распределения потенциала вдоль образца один зонд остаётся неподвижным; передвигая второй зонд, проводят измерения напряжения. Результаты измерений представлены в таблице 1; график зависимости напряжения от смещения подвижного зонда представлен на рис. 2.

Таблица 1: Зависимость измеряемого напряжения от смещения подвижного зонда

$\triangle l, \mathrm{mm}$	0	0,25	0,5	0,75	1	1,25	1,5	1,75	2	2,25	2,5	2,75
U, mV	16,3	16,35	16,2	14,8	15	14,5	14,3	14,1	13,1	12,4	11,7	12,4
$\triangle l, \mathrm{mm}$	3	3,25	3,5	3,75	4	4,25	4,5	4,75	5	5,25	5,5	5,75
U, mV	11,4	11,5	10,2	9,5	9	8,5	9,3	8,4	7,3	6,5	6,5	6,1
$\triangle l, \mathrm{mm}$	6,25	6,5	6,75	7	7,25	7,5	7,75	8	8,25	8,5		
U, mV	6,4	5	4,8	4,3	3,7	3,2	2,3	1,8	1,9	0,5		

Рис. 2: Зависимость измеряемого напряжения от смещения подвижного зонда

4 Обработка результатов

4.1 Вывод расчётной формулы

Если U_x - падение напряжения между зондами 2 и 3 (см. рис. 1), а U_e - на эталонном сопротивлении, то

$$\frac{U_x}{U_e} = \frac{R_x}{R_e},\tag{1}$$

или

$$R_x = \frac{R_e}{U_e} U_x \tag{2}$$

Так как $R_x = \rho \frac{L}{S}$, то удельное сопротивление образца определяется по формуле

$$\rho = R_e \frac{U_x S}{U_e l} = \frac{U_x S}{I_e l},\tag{3}$$

где S — площадь поперечного сечения образца, I_e — эталонный ток, l — длина исследуемой части образца. Таким образом, напряжение на участке образца зависит от длины L участка и удельного сопротивления при постоянных значениях тока через образец и сечения образца:

$$U_x = IR_x = I\rho \frac{l}{S} \tag{4}$$

4.2 Расчёт удельного сопротивления полупроводникового образца

Наклон графика k составляет $-1,83\cdot10^{-6}$ V/ μ m = $-1,83\cdot10^{-3}$ V/mm (наклон отрицательный, так как измеряемая $\triangle l$ является отрицательной: в формуле (4) $l=L-\triangle l$, где L - начальная длина образца).

Тангенс угла наклона графика (рис. 2), согласно формуле (4), есть коэффициент пропорциональности между напряжением на участке образца и длиной этого участка: $k = \frac{I\rho}{S}$. Тогда удельное сопротивление ρ будет определяться по формуле

$$\rho = \frac{kS}{I} \tag{5}$$

Площадь поперечного сечения образца равна 36mm² (диаметр равен 6mm); эталонный ток в эксперименте был равен 100mA. Окончательно, удельное сопротивление образца равно

$$\rho = \frac{kS}{I} = \frac{1.9 \cdot 10^{-3} V / mm \cdot 36mm^2}{10^{-1} A} = 0.684\Omega \cdot mm = 6.84 \cdot 10^{-4} \Omega \cdot m \tag{6}$$

Приведём для сравнения удельные проводимости других материалов:

- \bullet медь (металл): $1.7 \cdot 10^{-8} \ \Omega \cdot m$
- графит (полупроводник): $3-60\cdot 10^{-5}~\Omega\cdot m$
- германий (полупроводник): $1 500 \cdot 10^{-3} \ \Omega \cdot m$
- стекло (диэлектрик): $10^9 1012 \ \Omega \cdot m$

Полученное нами значение $6.84\cdot 10^{-4}~\Omega\cdot m$ по порядку близко к значениям удельного сопротивления полупроводников. Стоит заметить, что в полупроводниках эта величина сильно зависит от наличия в исследуемом материале примесей и их концентрации. Можно предположить, что материал исследуемого образца – графит с примесями.

Также отметим, что график, хотя и имеет линейный характер, также содержит нелинейные участки: нелинейности возникают с периодом в $1.5-2~\mathrm{mm}$. Следовательно, исследуемый образец имеет неоднородную структуру.

5 Вывод

В ходе работы был изучен принцип двухзондового компенсационного метода измерения удельного сопротивления. Этим методом было определено удельное сопротивление образца полупроводника: оно получилось равным $6.84\cdot 10^{-4}~\Omega\cdot m$, что согласуется с табличными значениями для полупроводников. Также было обнаружено, что исследуемый образец имеет неоднородности.