Institut für Mathematik

Numerik für Informatiker - Übungsblatt 2.1

Aufgabe 3: (Programmierung)

- (A) Erzeugen Sie spezielle Vektoren im \mathbb{R}^n , n:
 - (i) Nullvektor und Vektor aus Einsen bestehend (lesen Sie n vorher ein und suchen Sie mehrere Möglichkeiten),
 - (ii) gleichverteilter Zufallsvektor und normalverteilter Zufallvektor,
 - (iii) Vektor (5.33, -3.1, 0.7) und

Vektor
$$\begin{pmatrix} -5.17 \\ -2.34 \\ 0.21 \end{pmatrix}$$

- (iv) Vektor $(3, 6, 9, \dots, 36)$.
- (B) Erzeugen Sie spezielle Matrizen im $\mathbb{R}^{n \times n}$:
 - (i) Einheitsmatrix, Nullmatrix, Hilbert-Matrix und magisches Quadrat (lesen Sie n vorher ein),

(ii) Matrix
$$\begin{pmatrix} -5.1 & 0.07 & 4.6 \\ 5.2 & -2.9 & 7.3 \\ -0.5 & 4 & 77.5 \end{pmatrix}$$
.

- (C) Testen Sie die Möglichkeiten der Multiplikation zweier Vektoren $a, b \in \mathbb{R}^4$ (Skalar-produkt, komponentenweise Multiplikation).
- (D) Berechnen Sie das Produkt einer Matrix $M \in \mathbb{R}^{4\times 4}$ mit einem Vektor $b \in \mathbb{R}^4$.
- (E) Schreiben Sie ein Skript-File mit der Eingabe zweier Vektoren, testen Sie die Dimensionen und geben Sie bei Bedarf eine Fehlermeldung aus oder berechnen Sie die Summe und geben Sie den Summenvektor aus.
- (F) Schreiben Sie eine MatLab-Funktion zur Ermittlung der betragsgrössten Komponente eines übergebenen Vektors.

Aufgabe 4: (Programmierung)

Programmieren Sie die Lösung der Aufgabe 2 des 1. Übungsblatts mit MatLab / Octave:

- (a) Eingabe der in 2(a) aufgestellten Matrix A und des Vektors b = m.
- (b) Berechnung der Matrix B und des Vektors c aus Aufgabe 2(b) und Lösung des linearen Gleichungssystems Bx = c mit der in MatLab bzw. Octave zur Verfügung gestellten Standardfunktion "\" und Ausgabe des Lösungsvektors x.
- (c) Wie hoch sind die Reparaturkosten voraussichtlich für eine 5 Jahre alte Maschine mit 1000 Arbeitsstunden?