Lab6: Logistic Regression and Metrics

DataLab

2025.09.25

• Brief Review: Logistic Regression

- Common Evaluation Metrics for Binary Classification
 - Confusion Matrix
 - Soft Classifiers ROC Curve

- Brief Review: Logistic Regression
- Common Evaluation Metrics for Binary Classification
 - Confusion Matrix
 - Soft Classifiers ROC Curve

Logistic Regression

Logistic Regression + Regularization

• 把 regularization term 加到 loss 內,讓模型在學 weights 的時候,會傾向選擇 比較簡單的模型。

$$\arg \max_{w} \log P(X \mid w) - \frac{\alpha}{2} ||w||^{2}$$

• Brief Review: Logistic Regression

- Common Evaluation Metrics for Binary Classification
 - Confusion Matrix
 - Soft Classifiers ROC Curve

 It is important to know how the model make wrong prediction

 In binary classification, confusion matrix is a common tool to analyze the predictions

- It is important to know how the model make wrong prediction.
- e.g. 檢測絕症
 - 寧可讓多一點人到 TP & FP,也不要讓 FN 很高
 - i.e. TPR higher

$$TPR = \frac{TP}{TP + FN}$$
 $FPR = \frac{FP}{FP + TN}$

Precision(PRE) & Recall Rate(REC)

$$PRE = \frac{TP}{TP + FP}$$
, (the higher, the better)

$$REC = \frac{TP}{TP + FN} = TPR$$
. (the higher, the better)

• F-1 Score

$$F_1 = 2 \frac{(PRE * REC)}{PRE + REC}$$
, (the higher, the better)

Precision(PRE) & Recall Rate(REC)

$$PRE = \frac{TP}{TP + FP}$$
, (the higher, the better)

$$REC = \frac{TP}{TP + FN} = TPR$$
. (the higher, the better)

• F-1 Score

$$F_1 = 2 \frac{(PRE * REC)}{PRE + REC}$$
, (the higher, the better)

• Brief Review: Logistic Regression

- Common Evaluation Metrics for Binary Classification
 - Confusion Matrix
 - Soft Classifiers ROC Curve

ROC Curve

 ROC curve analyze the performance for every threshold in soft classifiers

• In X-axis
$$FPR = \frac{FP}{FP + TN}$$

• In Y-axis
$$TPR = \frac{TP}{TP + FN}$$

1	
1	
0.87	θ
0.64	₩
:	
-0.88	
-0.93	
-1	

ROC Curve

 ROC curve analyze the performance for every threshold in soft classifiers

• In X-axis
$$FPR = \frac{FP}{FP + TN}$$

• In Y-axis
$$TPR = \frac{TP}{TP + FN}$$

AUC

- AUC (Area Under the ROC Curve)
 - ROC can be quantified using AUC

100

Homework

• Homework: Lab06

- Lab06: Logistic Regression, Metrics

Reference

- https://bookdown.org/ccwang/medical-statistics6/section-43.html
- https://bookdown.org/ccwang/medical statistics6/bernoulli.html
- https://bookdown.org/ccwang/medical_statistics6/binomial.html
- https://bookdown.org/ccwang/medical-statistics6/likelihood-definition.html
- https://en.wikipedia.org/wiki/Sensitivity and specificity
- https://commons.wikimedia.org/w/index.php?curid=109730045
- https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
- https://medium.com/acing-ai/what-is-auc-446a71810df9
- https://github.com/dariyasydykova/open-projects/tree/master/ROC animation