Year 12 Acid and Bases

Question 1

(1 mark)

$$HSO_4^-$$
 (aq) + $H_2O(l)$ <===> H_3O^+ (aq) + SO_4^{2-} (aq)

In the equilibrium represented above, the species that act as bases include which of the following?

- I. HSO_4^-
- II. H_2O
- III. SO_4^2
 - (A) II only
 - (B) III only
 - (C) I and II
 - (D) I and III
 - (E) II and III

Question 2

(1 mark)

Which of the following is NOT a conjugate acid/base pair?

- (A) H_3PO_4/HPO_4^{2-}
- (B) H_2SO_4/HSO_4^-
- (C) H_2CO_3/HCO_3^-
- (D) NH_3/NH_2^-

Question 3

(1 mark)

The Brønsted-Lowry theory applies in both aqueous and non-aqueous systems.

The following reactions may take place in solvents other than water.

Which is NOT a Brønsted-Lowry reaction?

- (A) $NH_4^+ + NH_2^- \rightleftharpoons 2NH_3$
- (B) $CO_2 + OH^- \rightleftharpoons HCO_3^-$
- (C) $\text{HClO}_4 + \text{CH}_3\text{COOH} \rightleftharpoons \text{CH}_3\text{COOH}_2^+ + \text{ClO}_4^-$
- (D) $CH_3CH_2O^- + CH_3NH_3^+ \rightleftharpoons CH_3CH_2OH + CH_3NH_2$

Question 4
Define each of the following giving a <i>real</i> chemical equation to illustrate your definition.
(a) An Arrhenius base.
(2 marks)
(b) A Brønsted-Lowry base. (2 marks)
Question 5
(a) Is acetic acid a non-electrolyte, a weak electrolyte or a strong electrolyte? Why?
(2 marks)
(b) Is water a non-electrolyte, a weak electrolyte or a strong electrolyte? Why?
(2 marks)

Question 6

It is suggested that SO_2 which contributes to acid rain, could be removed from a stream of waste gases by bubbling the gases through 0.25 M KOH, thereby producing K_2SO_3 . Calculate the maximum mass of SO_2 that could be removed by 1000 L of the KOH solution?

(5 marks)

Question 7

24.0 mL of 0.150 mol L^{-1} NaOH is added to 25.0 mL of 0.150 mol L^{-1} HCl.

Calculate the pH of the final solution.

(7 marks)

Question 8

0.300 g of solid NaOH was added to 1.00 L of 5.00×10^{-3} mol L⁻¹ HNO₃.

(a) Which reactant was in excess? Explain your answer.

(5 marks)

(b) Assuming no volume change, what is the pH of the final solution?

(3 marks)