	CASE[Z]: $\forall x \in Z$, $(x \in B_n) = (x \in A_n)$, let n
	be an arbitmen inteses = 3,
	Assume that the hypothesis is correct such that
	N= 6+1 For some interes k and sub b in for a in (B)
	Bantl & Z
	27 bn +1 6 Z
	$2) b \frac{b+1}{K} + 1 \qquad E Z$
	2> b(b/K+1/k)+1 EZ +4
	$= 7 b^{2}/k + b/k + 1 \in \mathbb{Z}$
	Conterdiction
	MING IN A
	- b and (641) are coppine so if a K exsists such
	that (b+1) can be divises into an interes h, the same k
	can not divide b into an interex, so theber a contradiction.
	7 + 4 7 3 3 5
	.: Since case [] and case [2] Is false, An is not a
Proper	Subset of Bn and Bn is not a Subset of An So An and
	Bu must be disjoint people
	morary of the west on a set there of and resource !