CODE: 13BS1003 SET-1
ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI
(AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, June-2017

ENGINEERING MATHEMATICS -III (Common to CE, ME, CSE, IT, ECE & EEE)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) Reduce the matrix $\begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$ to echelon form
 - b) Define the rank of matrix
 - c) Determine the eigen values of $\begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$
 - d) Write the nature of the Quadratic form $x_1^2 + x_2^2 + 0.1x_3^2$
 - e) Define Fourier transform
 - f) State Euler's coefficients in Fourier series of a function f(x) for $[0, 2\pi]$
 - g) Determine the Z-transform of Sin (nt).
 - h) State Damping rule of Z- transform
 - i) Determine the value of $\Gamma(\frac{5}{2})$
 - j) Define Beta function

PART-B

Answer one question from each unit

[5x12=60M]

UNIT-I

2. Determine the rank of a matrix A by reducing it to echelon form. 12M

$$A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$

(OR)

3. a) Apply Gauss elimination method to solve the system of equations 2x + 4y + z = 3, 3x + 2y - 2z = -2, x - y + z = 6

b) Find the value of 'b' such that the system 2x + y + 2z = 0, x + y + 3z = 0, 4x + 3y + bz = 0 has non trivial solutions

4. If
$$A = \begin{bmatrix} 2 & -1 & 0 \\ 3 & 1 & -1 \\ 2 & 0 & 3 \end{bmatrix}$$
, find A^{-1} using Cayley-Hamilton theorem and A^4

Reduce the quadratic form $3x^2 + 3y^2 + 3z^2 + 2xy + 2xz - 2yz$ to canonical 5. **12M** form by an orthogonal transformation

UNIT-III

- Find the Fourier series for $f(x)=e^x$, $0 < x < 2\pi$. 6. a) **6M** Find Fourier sine transform of $e^{-|x|}$. **6M** b)

(OR)

- Find the half range cosine series for f(x) = x for $[0, \pi]$. **6M**
 - b) Find the Fourier series to represent the function **6M** $f(x) = \sin x, -\pi < x < \pi.$

UNIT-IV

- 8. a) Find Z- transform of $2^n \sin n\theta$ **4M**
 - $Z^{-1} \left[\frac{z}{z^2 + 11z + 24} \right].$ b) **8M**

(OR)

- Determine the inverse Z-transform of $\frac{z^2}{z^2-4z+3}$ by convolution **6M** 9. a) theorem
 - Using Z transform, solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0$, $u_1 = 1$ b) **6M**

- 10. a) Show that $\beta(p,q) = \int_{0}^{1} \frac{uNIT-v}{(1+x)^{p+q}} dx$ **6M**
 - b) Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ **6M**

 $\int_{0}^{1} y^{q-1} \left(\log \frac{1}{y} \right)^{p-1} dy = \frac{\Gamma(p)}{q^{p}}, \text{ where p>0, q>0.}$ **4M** 11. a)

8M

b) State and prove the relation between beta and gamma functions.