Theory of Automata – Home Work 1

Name – Akshay Kumar Singh

R11603620

1. Show that $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$

Sol: We aim to show any $x \in (A \cap B) \cup C$, $x \in (A \cup C) \cap (B \cup C)$ By definition of Union, $x \in (A \cap B) \cup C$ means $x \in (A \cap B)$ or $x \in C$ Thus, we aim to show i) $x \in (A \cap B)$, then $x \in (A \cup C) \cap (B \cup C)$ and

- 1. If $x \in (A \cap B)$, then by definition of intersection, $x \in A$ and $x \in B$;
- 2. Because $x \in A$, $x \in (A \cup C)$ (by the definition of union)
- 3. Because $x \in B$, $x \in (B \cup C)$ (by the definition of union)
- 4. Hence, $x \in (A \cup C) \cap (B \cup C)$ (by the definition of intersection)

Also, ii) $x \in C$, then $x \in (A \cup C) \cap (B \cup C)$

- 1. Because $x \in C$, $x \in (A \cup C)$ (by definition of union)
- 2. Because $x \in C$, then $x \in (B \cup C)$ (by definition of union)
- 3. Because $x \in (A \cup C)$ and $x \in (B \cup C)$, $x \in (A \cup C) \cap (B \cup C)$ (by the definition of intersection)

Hence, $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$

2. Write each of the followings explicitly

a). $\emptyset \times \{1,2\} = \{(\emptyset,1), (\emptyset,2)\}$

b).
$$2^{\{1,2\}} \times \{1,2\} = \{\emptyset, \{(1,2)\}\} \times \{1,2\} = \{(\emptyset,1), (\emptyset,2), (\{1,2\},1), (\{1,2\},2)\}$$

3. Let $f: A \mapsto B$. Show that the following relation R is an equivalence relation on $A: (a, b) \in R$ if and only if f(a) = f(b).

Sol: To show that a relation is an equivalence relation, we must show that it is a) reflexive, b) symmetric, and c) transitive.

To show a relation is equivalence, we must show that it is reflexive, symmetric and transitive.

- a) To do this, we must show that f(a) = f(a). This is true, since equality is reflexive.
- b) Given that f(a) = f(b), we must show that f(b) = f(a). This is true, since equality is **symmetric**.
- c) Given that f(a) = f(b) and that f(b) = f(c), we can conclude that f(a) = f(c),

since equality is transitive.

Hence, the given relation is equivalence relation.

4. Let R_1 and R_2 be any two partial orders on the same set A. Show that $R_1 \cap R_2$ is a partial order.

Sol: R1 and R1 and R2 and R2 are by definition subsets of $S \times S$ which are reflexive, antisymmetric, and transitive. Now we need to check that $R1 \cap R2$ is also reflexive, antisymmetric, and transitive.

- **Reflexive:** Since (a,a) must be in both R1 and R2 for any $a \in S$, (a,a) will also be in $R1 \cap R2$, so it is reflexive.
- Antisymmetric: Now, this is a conditional property.
 If (a,b)∈R1∩R2 and (b,a)∈R1∩R2, it must be the case that a=b. Since we know that this property is satisfied for both R1 and R2, it must also hold for R1∩R2.
- **Transitivity:** Likewise, since we know that the transitive property holds for both R1 and R2, there can be no two elements $(a,b)\in R1\cap R2$ and $(b,c)\in R1\cap R2$ without it also being the case that $(a,c)\in R1\cap R2$.

Hence, $R_1 \cap R_2$ is a partial order.

5. Show that any function from a finite set to itself contains a cycle. Sol: To prove that any function from a finite set to itself contains a cycle

Suppose there are n nodes i.e., $(a_1, a_2,...a_n)$, there must be at least one node that would be appear twice. (**Pigeonhole Principle**)

-
$$(a_1, a_2, ..., a_i, a_{i+1}, ..., a_j = a_i, a_{j+1}, ..., a_n).$$

When there are n+1 nodes, that creates a cycle, due to repetition.

Hence, function from a finite set to itself contains a cycle.ßß