

MATCP_Formulário_Estatística

1. Distribuições Discretas

Quadro de Distribuição

X _i	<i>X</i> ₁	X ₂	 X _n	
$P(X=X_i)=p_i$	$p_{_1}$	p_2	 p_n	

$$P_1$$
) $p_i \ge 0$, $i = 1, 2, 3, ...$

$$P_2)\sum_i p_i = 1$$

Função de Probabilidade	Função de distribuição
$f(x) = P(X = x) = \begin{cases} 0, & x \neq x_i \\ p_i, & x = x_i \end{cases}$	$F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$
Esperança matemática ou valor médio	Variância e desvio padrão
$\mu = E(X) = \sum x_i f(x_i) = \sum x_i p_i$	$\sigma^2 = V(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$
i i	$= \sum_{i} x_{i}^{2} f(x_{i}) - \mu^{2} e \sigma = +\sqrt{V(X)}$

1.1 Distribuição Binomial - $X \sim B_i(n, p)$

Função de Probabilidade	Função de distribuição
	$F(x) = P(X \le x) = \sum_{i=1}^{n} C_{x_i} p^{x_i} q^{n-x_i}$
$\begin{cases} f(x) = \\ \end{cases}$ 0 , $x \neq 0,1,2,,n$	$x_i \leq x$
$f(x) = \begin{cases} 0, & x \neq 0,1,2,,n \\ C_x^n p^x q^{n-x}, & x = 0,1,2,,n \end{cases}$	
onde $q = 1 - p e$ $C_x^n = \frac{n!}{p!(n-p)!}$	
Esperança matemática ou valor médio	Variância e desvio padrão
$\mu = E(X) = \sum x_i f(x_i) = np$	$\sigma^2 = V(X) = E[(X - \mu)^2] = npq$
i	$\sigma = +\sqrt{npq}$

1.2 Distribuição de Poisson - $X \sim P_o(\mu)$

Função de Probabilidade	Função de distribuição
$f(x) = \begin{cases} 0 & x \neq 0,1,2,,n, \\ e^{-\mu} \frac{\mu^{x}}{x!}, & x = 0,1,2,, \end{cases}$	$F(x) = P(X \le x) = \sum_{x_i \le x} e^{-\mu} \frac{\mu^{x_i}}{x_i!}$
Esperança matemática ou valor médio	Variância e desvio padrão
$\mu = E(X) = \sum x_i f(x_i) = \mu$	$\sigma^2 = V(X) = E[(X - \mu)^2] = \mu$
i	$\sigma = +\sqrt{\mu}$

2. Distribuições Contínuas

Função densidade de probabilidade	Função de distribuição
$f(x) \notin f.d.p sse \begin{cases} f(x) \ge 0 & x \in \\ \int_{-\infty}^{+\infty} f(x) dx = 1 \end{cases}$ $P(a < X < b) = P(a \le X \le b) = \int_{a}^{b} f(x) dx (b \ge a)$	$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$
Esperança matemática ou valor médio	Variância e desvio padrão
$\mu = E(X) = \int_{-\infty}^{+\infty} x f(x) dx$	$\sigma^{2} = V(X) = E[(X - \mu)^{2}] = E(X^{2}) - \mu^{2}$ $= \int_{-\infty}^{+\infty} x^{2} f(x) dx - \mu^{2} e \sigma = +\sqrt{V(X)}$

2.1 Distribuição Normal - $\chi \sim N(\mu, \sigma^2)$

Função densidade de	Função de distribuição
probabilidade	$\begin{pmatrix} x \\ c \end{pmatrix} = \left(\frac{y-\mu}{x}\right)^2 \qquad \left(x-\mu\right)$
	$F(x) = P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\left(\frac{y-\mu}{\sigma}\right)^{2}} dy \approx \Phi\left(\frac{x-\mu}{\sigma}\right)$
1 $-\left(\frac{x-\mu}{\sigma}\right)^2$	$\int_{-\infty}^{\infty} \sigma \sqrt{2\pi}$
$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\left(\frac{x-\mu}{\sigma}\right)^2} \forall x \in R$	
Esperança matemática ou valor	Variância e desvio padrão
médio $E(X) = \mu$	$V(X) = \sigma^2$
$P(X \le a) = \Phi\left(\frac{a - \mu}{\sigma}\right)$	$P(a < X < b) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$

Aditividade da Distribuição Normal

Se $\{X_1, X_2, ..., X_n\}$ são v.a's independentes tais que $X_i \sim N(\mu_i, \sigma_i^2)$, i = 1, 2, ..., nentão

$$Y = \sum_{i=1}^{n} a_{i} X_{i} \sim N(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}), \quad a_{i} \in [1, 2, ..., n]$$

Casos particulares

1)
$$Y = \sum_{i=1}^{n} X_i \sim N(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2)$$

2)
$$X_1 \sim N(\mu_1, \sigma_1^2)$$
e $X_2 \sim N(\mu_2, \sigma_2^2)$ então $X_1 \pm X_2 \sim N(\mu_1 \pm \mu_2, \sigma_1^2 + \sigma_2^2)$

3) Se
$$X_i \sim N(\mu, \sigma^2)$$
, $i = 1, 2, ..., n$ então $Y = \sum_{i=1}^n X_i \sim N(n\mu, n\sigma^2)$

Teorema do Limite Central

Se $\{X_1, X_2, ..., X_n\}$ são v.a's independentes tais que $E(X_i) = \mu_i$, $V(X_i) = \sigma_i^2$, i = 1, 2, 3, ..., n e

então
$$Y = \sum_{i=1}^{n} X_i \xrightarrow{D.} N\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

Obs: É considerada uma boa aproximação para $n \ge 30$

Amostragem

Distribuição da média amostral e diferença de médias amostrais	Distribuição da proporção amostral e diferença de proporções amostrais		
$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} \sim N(\mu; \frac{\sigma^{2}}{n}) , n \ge 30$	$\hat{P} = \frac{X}{n} \sim N(p; \frac{pq}{n}) \qquad n \ge 30$		
$\overline{X}_1 - \overline{X}_2 \sim N(\mu_1 - \mu_2; \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}), n_1 \ge 30$	$\hat{P}_1 - \hat{P}_2 \sim N \left(p_1 - p_2; \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2} \right), n_1 \ge 30$		

Média e variância de uma amostra (dados classificados)

$$\overline{x} = \frac{\sum_{i=1}^{k} x_i n_i}{n}$$

$$s^2 = \frac{n \sum_{i=1}^{k} x_i^2 n_i - \left(\sum_{i=1}^{k} x_i n_i\right)^2}{n(n-1)}$$
(Para dados não classificados fazer $n_i = 1$)

Intervalos de Confiança

$$z_c = \Phi^{-1}(1 - \frac{\alpha}{2})$$

Grau de confiança (%)	99.73	99	98	96	95.45	95	90	80	68.27	50
Coeficiente de confiança z _c	3	2.58	2.33	2.05	2	1.96	1.645	1.28	1	0.675

	σ^2	Tipo de população(s)	Intervalo de confiança
Média	Conhecida Normal Ou qualquer ($n \ge 30$)		$\left] \overline{X} - Z_c \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_c \frac{\sigma}{\sqrt{n}} \right[$
	Desconhecida	Qualquer (n≥30)	$\left] \overline{x} - z_c \frac{\sigma}{\sqrt{n}}, \overline{x} + z_c \frac{\sigma}{\sqrt{n}} \right[\sigma \approx S$
Proporção		Bernoulli	$\left] \hat{p} - z_c \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}; \hat{p} + z_c \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right[\qquad n \ge 30$
Diferença de médias	Conhecidas	Normais ou quaisquer ($n_1 \ge 30 \ {\rm e} \ n_2 \ge 30$)	
	Desconhecidas $\sigma_1^2 \neq \sigma_2^2$	Quaisquer $(n_1 \ge 30 \text{ e } n_2 \ge 30)$	
	Desconhecidas $\sigma_1^2 = \sigma_2^2$	Normais $(n_1 \ge 30 \text{ e } n_2 \ge 30)$	$\sigma_{1}^{2} \approx s_{1}^{2} \sigma_{2}^{2} \approx s_{2}^{2}$ $\bar{x}_{1} - \bar{x}_{2} - z_{c} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}, \ \bar{x}_{1} - \bar{x}_{2} + z_{c} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$
			$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$
Diferença de proporções		Bernoulli	$ \hat{\hat{p}}_1 - \hat{p}_2 - z_c \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}, \hat{p}_1 - \hat{p}_2 + z_c \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}} $
			$n_1 \ge 30^{\text{ e}} n_2 \ge 30$

MATCP 19/20 Formulário de Estatística pg. 4

Testes de Hipóteses

Valores de z_{c}

Significância (α)	0.01	0.02	0.04	0.05	0.1	0.2	Tipo de
							teste
$z_c = \Phi^{-1}(1-\alpha)$	2.33	2.05	1.75	1.645	1.28	0.84	Unilateral à direita
$z_c = \Phi^{-1} \left(1 - \frac{\alpha}{2} \right)$	2.575	2.33	2.05	1.96	1.645	1.28	Bilateral

Testes de hipóteses para a média de uma população

Teste de média unilat	eral	Teste de média Bilateral	σ^2	Tipo de população	Estatística de teste
$H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$ $RC_z =]-\infty, -z_c$	$H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$ $RC = \exists z + \infty [$	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$ $RC_z =]-\infty, -z_c[\cup]z_c, +\infty[$	Conhecida	Normal Ou qualquer (n≥30)	$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$
$ne_z - 1 \infty, z_c$	$\mathcal{L}_{Z} = \mathbf{J}^{2}_{c}, \mathcal{L}_{\infty}$		Desconhecida $\sigmapprox extstyle ex$	Qualquer $(n \ge 30)$	

Testes de hipóteses para diferença de médias de duas populações

Teste de diferença de médias unilateral		Teste de média Bilateral	σ_1^2, σ_2^2	Tipo de populações	Estatística de teste
$H_0: \mu_1 - \mu_2 = k$ $H_1: \mu_1 - \mu_2 < k$	$H_0: \mu_1 - \mu_2 = k$ $H_1: \mu_1 - \mu_2 > k$	$H_0: \mu_1 - \mu_2 = k$ $H_1: \mu_1 - \mu_2 \neq k$ $RC = \left[-\infty, -z_c\right] \cup \left[z_c, +\infty\right]$	Conhecidas	Normal Ou qualquer (n≥30)	$Z = \frac{\overline{X}_{1} - \overline{X}_{2} - k}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$
$Rc =]-\infty, -z_c[$	$Rc =]z_c, +\infty[$, -c[-]-c/. [Desconhecidas $\sigma_1^2 \approx s_1^2, \sigma_2^2 \approx s_2^2$	Qualquer (n≥30)	

Testes de hipóteses para a proporção de uma população

Teste de proporção unilateral		Teste de proporção Bilateral	Tipo	Estatística de teste
			de	
			populaçã	
			0	
$H_0: p = p_0$	$H_0: p = p_0$	$H_0: p = p_0$	Bernoulli	$\hat{P} - p_0$
			<i>n</i> ≥ 30	$Z = \frac{1}{\sqrt{1 - \frac{P_0}{Q_0}}}$
$H_1: p < p_0$	$H_1: p > p_0$	$H_1: p \neq p_0$		$ p_{0}(1-p_{0}) $
$Rc =]-\infty, -z_c[$	$Rc =]z_c, +\infty[$	$Rc =]-\infty, -z_c[\cup]z_c, +\infty[$		$\sqrt{\frac{n}{n}}$

Testes de hipóteses para a diferença de proporções de duas populações

Teste de diferença de proporções unilateral	Teste de diferença de proporções bilateral	Tipo de populações	Estatística de teste
$H_0: p_1 - p_2 = k$ $H_0: p_1 - p_2 = k$ $H_1: p_1 - p_2 < k$ $H_1: p_1 - p_2 > k$ $Rc =]-\infty, -z_c[$ $Rc =]z_c, +\infty[$	$H_0: \rho_1 - \rho_2 = k$ $H_1: \rho_1 - \rho_2 \neq k$ $RC_z = \left] -\infty, -z_c \right[\cup \left] z_c, +\infty \right[$	Bernoulli $n_1 \ge 30$ $n_2 \ge 30$	$Z = \frac{\hat{p}_{1} - \hat{p}_{2} - k}{\sqrt{\frac{\hat{p}_{1}(1 - \hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1 - \hat{p}_{2})}{n_{2}}}}$ $Z = \frac{\hat{P}_{1} - \hat{P}_{2} - k}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$ $\hat{p} = \frac{n_{1}\hat{p}_{1} + n_{2}\hat{p}_{2}}{n_{1} + n_{2}} \text{ se k=0}$

Tipos de Erro

Erro	Probabilidade
Tipo I	$P(Erro\ tipol) = P(rejeitar\ H_0\ \ H_0\ verdadeira) = \alpha$
Tipo II	$\beta = P(Erro\ tipo\ II) = P(não\ rejeitar\ H_0 \mid H_0\ falsa)$

Potência do teste: $1 - \beta = P(rejeitar \ H_0 \mid H_0 \ falsa)$

Regressão Linear Simples

Sistema normal de equações	Estimativa dos parâmetros da reta de regressão
$\begin{cases} \hat{a} \cdot n + \hat{b} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} \\ \hat{a} \sum_{i=1}^{n} x_{i} + \hat{b} \sum_{i=1}^{n} x^{2}_{i} = \sum_{i=1}^{n} x_{i} y_{i} \end{cases}$	$\begin{cases} \hat{b} = \frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right) - n \cdot \overline{x} \cdot \overline{y}}{\sum_{i=1}^{n} x_{i}^{2} - n \cdot \overline{x}^{2}} & \text{ou} \qquad \begin{cases} \hat{b} = \frac{S_{xy}}{S_{xx}} \\ \hat{a} = \overline{y} - \hat{b} \cdot \overline{x} \end{cases} \end{cases}$

Produtos cruzados	Erros e Variabilidade	Correlação
$s_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \left(\sum_{i=1}^{n} x_i^2\right) - n \cdot \overline{x}^2$	$SE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = S_{yy} - \hat{b}S_{xy}$	$\hat{\rho} = \hat{b} \sqrt{\frac{S_{xx}}{S_{yy}}}$
$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \left(\sum_{i=1}^{n} y_i^2\right) - n \cdot \overline{y}^2$	$SR = \sum_{i=1}^{n} (\hat{y} - \overline{y})^2 = \frac{S^2_{xy}}{S_{xx}}$	V 33
n	$\sum_{n=0}^{\infty} (n-1)^2$	Obs:
$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \left(\sum_{i=1}^{n} x_i y_i\right) - n \cdot \overline{x} \cdot \overline{y}$	$SI = \sum_{i=1}^{\infty} (y_i - y) = S_{yy}$	$SR = \hat{\rho}^2 ST$
	ST = SE + SR	$SE = (1 - \hat{\rho}^2)ST$

$$\hat{\sigma}_{\varepsilon}^{2} = \frac{1}{n-2} (1 - \hat{\rho}^{2}) S_{yy} \qquad Obs: \hat{\sigma}_{\varepsilon}^{2} = \frac{SE}{n-2}$$

I.C. Y=a+bX	Estatística	Erro
Parâmetro ${f a}$ $\hat a \pm \Delta$	$T_{a} = \frac{\hat{a} - a}{\hat{\sigma}_{\varepsilon} \sqrt{\frac{1}{n} + \frac{\overline{x}^{2}}{S_{xx}}}} \sim t_{n-2}$	$\Delta = t_{\alpha/2} \hat{\sigma}_{\varepsilon} \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}}}$
Parâmetro $oldsymbol{b}$ $\hat{b}\pm\Delta$	$T_b = \frac{\hat{b} - b}{\hat{\sigma}_{e} / \sqrt{S_{xx}}} \sim t_{n-2}$	$\Delta = t_{\alpha/2} \hat{\sigma} \sqrt{\frac{I}{S_{xx}}}$
Média de Y $_0$: $_{E(Y_{_{\! artheta}})}$ $\hat{Y}_{_{\! artheta}}\pm\Delta$	$T = \frac{\hat{Y}_0 - E(Y_0)}{\hat{\sigma}_{e} \sqrt{\frac{I}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}}$	$\Delta = t_{\alpha/2} \hat{\sigma}_{\varepsilon} \sqrt{\frac{1}{n} + \frac{\left(x_0 - \overline{x}\right)^2}{S_{xx}}}$

Previsão de Y	$Y_0 - \hat{Y}_0$	1 (-)2
$\hat{Y}_0 \pm \Delta$	$T = \frac{0}{2\pi \left(1 + \left(x_0 - \overline{x}\right)^2\right)} \sim t_{n-2}$	$\Delta = t_{\alpha/2} \hat{\sigma}_{\varepsilon} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - x)}{S}}$
	$S_{\varepsilon}\sqrt{1+\frac{1}{n}+\frac{1}{S_{xx}}}$	N^{2} N^{2} N^{2} N^{2}