МЕТОД ГЛАВНЫХ КОМПОНЕНТ (PRINCIPAL COMPONENT ANALYSIS, PCA)

Цель: хотим придумать новые признаки, каким-то образом выражающиеся через старые, причем новых признаков хочется получить меньше, чем старых. Сегодня будем рассматривать только случай, когда новые признаки **линейно** выражаются через старые.

Постановка задачи:

- \bullet $x_1, ..., x_n$ исходные числовые признаки
- $z_1, ..., z_d$ новые числовые признаки, $d \le n$

Хотим:

- 1. чтобы новые числовые признаки z_j линейно выражались через исходные признаки x_i
- 2. чтобы при переходе к новым признакам было потеряно наименьшее количество исходной информации

1. чтобы новые числовые признаки z_j линейно выражались через исходные признаки x_i

$$\begin{cases} z_1 = u_{11}x_1 + \dots + u_{1n}x_n \\ z_2 = u_{21}x_1 + \dots + u_{2n}x_n \\ \dots \\ z_d = u_{d1}x_1 + \dots + u_{dn}x_n \end{cases}$$

<u>Геометрическая интерпретация:</u> новые признаки z_i — это проекции исходных признаков x_i на некоторые векторы (компоненты) u.

1. чтобы новые числовые признаки z_j линейно выражались через исходные признаки x_i

Геометрически это означает, что мы проецируем пространство признаков размерности n на некоторое линейное подпространство размерности d:

ПОЯСНЕНИЕ: ПРОЕКЦИЯ

ullet Проекция вектора x на вектор (компоненту) u_i : (x,u_i)

ullet Проекция выборки X на компоненту u_i : Xu_i

2. чтобы при переходе к новым признакам было потеряно наименьшее количество исходной информации.

Дисперсия выборки, посчитанная в новых признаках, показывает, как много информации нам удалось сохранить после понижения размерности, поэтому дисперсия в новых признаках должна быть максимальной.

ПРИМЕР

Хотим спроецировать двумерные данные X на одномерный вектор u так, чтобы дисперсия проекции Xu была максимальной:

ПРИМЕР

Хотим спроецировать двумерные данные X на одномерный вектор u так, чтобы дисперсия проекции Xu была максимальной:

ПОСТАНОВКА ЗАДАЧИ

Будем искать такие компоненты $u_1, u_2, ..., u_d$, что:

- 1) Они ортогональны, т.е. $(u_i, u_j) = 0$
- **2)** Они нормированы, т.е. $||u_i|| = 1$
- 3) дисперсия проекции выборки на них максимальна:

$$D(Xu_i) \to \max_{u_i}$$
 , $i = 1, ..., d$

ВАЖНОЕ ДЕЙСТВИЕ

Центрируем исходные данные, то есть вычтем из каждого признака его среднее значение.

ДИСПЕРСИЯ ПРОЕКЦИИ

• Мы уже выяснили, что проекция выборки X на компоненту u_i :

 Xu_i

ullet Тогда проекция выборки на первые d компонент, задаваемых столбцами матрицы U_d :

 XU_d

ДИСПЕРСИЯ ПРОЕКЦИИ

ullet Мы уже выяснили, что проекция выборки X на компоненту u_i :

$$Xu_i$$

ullet Тогда проекция выборки на первые d компонент, задаваемых столбцами матрицы U_d :

$$XU_d$$

• Тогда дисперсия проекции – это след <u>ковариационной</u> матрицы:

$$tr((XU_d)^T(XU_d)) = \sum_{i=1}^{a} ||Xu_i||^2 \to \max_{u}$$

• Будем искать первую компоненту, u_1 :

$$\begin{cases} \left| \left| X u_1 \right| \right|^2 \to \max_{u_1} \\ \left| \left| u_1 \right| \right|^2 = 1 \end{cases}$$

• Будем искать первую компоненту, u_1 :

$$\begin{cases} \left| \left| X u_1 \right| \right|^2 \to \max_{u_1} \\ \left| \left| u_1 \right| \right|^2 = 1 \end{cases}$$

Решение:

$$L(u_1, \lambda) = ||Xu_1||^2 + \lambda(||u_1||^2 - 1)$$

• Будем искать первую компоненту, u_1 :

$$\begin{cases} \left| \left| X u_1 \right| \right|^2 \to \max_{u_1} \\ \left| \left| u_1 \right| \right|^2 = 1 \end{cases}$$

Решение:

$$L(u_1, \lambda) = ||Xu_1||^2 + \lambda(||u_1||^2 - 1)$$

•
$$\frac{\partial L}{\partial u_1} = ?$$

• Будем искать первую компоненту, u_1 :

$$\begin{cases} \left| \left| X u_1 \right| \right|^2 \to \max_{u_1} \\ \left| \left| u_1 \right| \right|^2 = 1 \end{cases}$$

Решение:

$$L(u_1, \lambda) = ||Xu_1||^2 + \lambda(||u_1||^2 - 1)$$

•
$$\frac{\partial L}{\partial u_1} = 2X^TXu_1 + 2\lambda u_1 = 0 \Rightarrow X^TXu_1 = -\lambda u_1$$
 - собств.в-р.

• Будем искать первую компоненту, u_1 :

$$\begin{cases} \left| \left| Xu_1 \right| \right|^2 \to \max_{u_1} \\ \left| \left| u_1 \right| \right|^2 = 1 \end{cases}$$

Решение:

$$L(u_1, \lambda) = ||Xu_1||^2 + \lambda(||u_1||^2 - 1)$$

- $\frac{\partial L}{\partial u_1} = 2X^TXu_1 + 2\lambda u_1 = 0 \Rightarrow X^TXu_1 = -\lambda u_1$ собств.в-р.
- $||Xu_1||^2 = u_1^T X^T X u_1 = \lambda u_1^T u_1 = \lambda \to \max_{u_1}$ max собств. значение.

• Будем искать первую компоненту, u_1 :

$$\begin{cases} \left| |Xu_1| \right|^2 \to \max_{u_1} \\ \left| |u_1| \right|^2 = 1 \end{cases}$$

Ответ:

 u_1 - собственный вектор матрицы ковариаций $X^T X$ с максимальным собственным значением.

ПРОЕКЦИИ МЕТОДА ГЛАВНЫХ КОМПОНЕНТ

- Пусть X матрица объект-признак для исходных признаков.
- Метод главных компонент делает проекцию исходных объектов на гиперплоскость некоторой размерности d.

Теорема. Базисные векторы этой гиперплоскости — это собственные векторы матрицы X^TX (матрица ковариаций), соответствующие d её наибольшим собственным значениям.

КОНСТРУКТИВНОЕ ПОСТРОЕНИЕ БАЗИСА В РСА

- Находим вектор $u_1 = argmax_u \big(D(Xu)\big)$ и нормируем его: $u_1 o rac{u_1}{||u_1||}$
- Находим вектор $u_2 = argmax_u \big(D(Xu) \big)$ такой, что $(u_1,u_2) = 0$ и нормируем его: $u_2 o rac{u_2}{||u_2||}$
- Находим вектор $u_3=argmax_uig(D(Xu)ig)$ такой, что $(u_1,u_3)=(u_2,u_3)=0$ и нормируем его: $u_3 o \frac{u_3}{||u_3||}$.

И т.д.

Получаем ортонормированный базис $\{u_1, u_2, \dots, u_d\}$.

ПРОЕКЦИЯ НА ГИПЕРПЛОСКОСТЬ

ПРИМЕНЕНИЕ МЕТОДА

• Когда главные компоненты найдены, можно проецировать на них и новые данные:

$$Z' = X'U_d$$
.

ДОЛЯ ОБЪЯСНЕННОЙ ДИСПЕРСИИ

• Упорядочим собственные значения матрицы $X^T X$ по убыванию: $\lambda_1 \geq \lambda_2 \geq \dots > \lambda_n \geq 0$.

• Доля дисперсии, объяснённой j-й компонентой (explained variance ratio):

$$\delta_j = \frac{\lambda_j}{\sum_{i=1}^n \lambda_n}$$

• Доля дисперсии, объясняемой первыми *k* компонентами:

$$\delta = \frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_n} = \frac{\sum_{i=1}^k \lambda_i}{\sum_{i=1}^n \lambda_n}$$

ВЫБОР ЧИСЛА ГЛАВНЫХ КОМПОНЕНТ

• Эффективная размерность выборки — это наименьшее целое m, при котором доля необъясненной дисперсии

$$E_m = \frac{||ZU^T - X||^2}{||X||^2} = \frac{\lambda_{m+1} + \dots + \lambda_n}{\sum_{i=1}^n \lambda_i} \le \varepsilon$$

Критерий крутого склона:

ПРИМЕР: FACES DATASET

FACES DATASET (ГЛАВНЫЕ КОМПОНЕНТЫ)

ВОССТАНОВЛЕННОЕ ИЗОБРАЖЕНИЕ

PCA in a nutshell

1. correlated hi-d data

2. center the points

3. compute covariance matrix

h u
h 2.0 0.8 cov(h,u) =
$$\frac{1}{n} \sum_{i=1}^{n} h_i u_i$$

$$\begin{pmatrix}
2.0 & 0.8 \\
0.8 & 0.6
\end{pmatrix} \begin{pmatrix} e_h \\ e_u \end{pmatrix} = \lambda_e \begin{pmatrix} e_h \\ e_u \end{pmatrix}$$

$$\begin{pmatrix}
2.0 & 0.8 \\
0.8 & 0.6
\end{pmatrix} \begin{pmatrix} f_h \\ f_u \end{pmatrix} = \lambda_f \begin{pmatrix} f_h \\ f_u \end{pmatrix}$$
eig (cov (data))

7. uncorrelated low-d data 6. project data points to those eigenvectors

Copyright © 2014 Victor Lavrenko

pick m<d eigenvectors w. highest eigenvalues

СИНГУЛЯРНОЕ РАЗЛОЖЕНИЕ MATPИЦЫ (SINGULAR VALUE DECOMPOSITION, SVD)

Теорема. Матрицу $A \in \mathbb{R}^{m \times n}$ можно представить в виде $A = U\Sigma V^T$,

- ullet где $U \in \mathbb{R}^{m imes m}$, $V \in \mathbb{R}^{n imes n}$ ортогональные матрицы,
- $\Sigma \in \mathbb{R}^{m \times n}$ диагональная матрица с ненулевыми элементами $\sigma_i = \sqrt{\lambda_i}$, где λ_i собственные значения матрицы $A^T A$.

СИНГУЛЯРНОЕ РАЗЛОЖЕНИЕ МАТРИЦЫ (SVD)

Теорема. Матрицу $A \in \mathbb{R}^{m \times n}$ можно представить в виде $A = U \Sigma V^T$,

- ullet где $U \in \mathbb{R}^{m imes m}$, $V \in \mathbb{R}^{n imes n}$ ортогональные матрицы,
- $\Sigma \in \mathbb{R}^{m \times n}$ диагональная матрица с ненулевыми элементами $\sigma_i = \sqrt{\lambda_i}$, где λ_i собственные значения матрицы A^TA .

При этом

- ullet Столбцы матрицы U являются собственными векторами матрицы AA^T
- ullet Столбцы матрицы V являются собственными векторами матрицы A^TA .

SINGULAR VALUE DECOMPOSITION

• При $m \leq n$:

• При m > n:

СВЯЗЬ SVD И РСА

Пусть X — матрица объект-признак, для которой мы хотим снизить размерность и $X = U\Sigma V^T$ её SVD-разложение.

Тогда:

- Столбцы матрицы V это собственные векторы матрицы X^TX , т.е. векторы v_1, \dots, v_n главные компоненты.
- Столбцы матрицы $U\Sigma$ это новые признаки, то есть, проекции исходных признаков на главные компоненты Z = Xv

$$(X = U\Sigma V^{T} \Leftrightarrow U\Sigma = XV).$$

• Сингулярные числа матрицы Σ — это корни из собственных чисел матрицы X^TX .

СВЯЗЬ SVD И РСА

- Столбцы матрицы V это собственные векторы матрицы X^TX , т.е. векторы v_1, \dots, v_n главные компоненты.
- ullet Столбцы матрицы $U\Sigma$ это новые признаки z=Xv ($X=U\Sigma V^{\mathrm{T}} \Leftrightarrow U\Sigma=XV$).
- Сингулярные числа матрицы Σ это корни из собственных чисел матрицы X^TX .

Для снижения размерности берем первые k столбцов матрицы U и верхний $k \times k$ -квадрат матрицы Σ , тогда матрица $U_k \Sigma_k$ содержит k новых признаков, соответствующих первым k главным компонентам.

ЧТО ЛУЧШЕ: PCA ИЛИ SVD?

- Существуют вычислительные трудности с нахождением собственных значений, в этом недостаток РСА.
- Существует итерационный алгоритм для нахождения SVD (без нахождения собственных значений)

http://www.machinelearning.ru/wiki/index.php?title=Простой_ит ерационный_алгоритм_сингулярного_разложения.

Поэтому вычислительно эффективнее использовать SVD при прочих равных.