Math 302/600 Spring 2015 Homework #11

Due May 7, Thu. in class

- 1. Let $f_n:[1,2]\to\mathbb{R}$ be defined by $f_n(x)=\frac{x}{(x+1)^n}$.
 - (1) Determine if $\sum_{n=1}^{\infty} f_n(x)$ is uniformly convergent on A = [1, 2].
 - (2) Determine if $\int_1^2 \left(\sum_{n=1}^\infty f_n(x)\right) dx = \sum_{n=1}^\infty \int_1^2 f_n(x) dx$.
- 2. Let $A = [-a, a] \subset \mathbb{R}$ with a > 0, and let

$$f_n(x) = \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!}, \quad x \in \mathbb{R}.$$

- (1) Use the Weierstrass M-test to show uniform convergence of the series $\sum_{n=1}^{\infty} f_n$ on A.
- (2) Let f_* be the limit function of the series on A, i.e., $f_*(x) = \sum_{n=1}^{\infty} f_n(x)$. Is f_* differentiable on (-a,a)? If so, is $f'_*(x) = \sum_{n=1}^{\infty} f'_n(x)$ on (-a,a)? Prove your answers.
- 3. Find the largest possible constant $r \in (0,1)$ such that the function $f:[0,r] \to [0,r]$ defined by $f(x) = x^2$ is a contraction.
- 4. Let $(V, \|\cdot\|)$ be a complete normed vector space and its induced metric $d(x, y) = \|x y\|$ for $x, y \in V$. Let $f: V \to V$ be a linear mapping/function, i.e., $f(x + y) = f(x) + f(y), \forall x, y \in V$ and $f(\alpha x) = \alpha f(x)$ for all $x \in V$ and $\alpha \in \mathbb{R}$. You may assume the following facts without proof: f(0) = 0 and $f(x y) = f(x) f(y), \forall x, y \in V$.
 - (1) Show that f is a contraction if and only if there exists a constant C with 0 < C < 1 such that $||f(x)|| \le C||x||$ for all $x \in V$.
 - (2) Let $x_0 \in V$ be arbitrary, and define the sequence (x_n) recursively by $x_n = f(x_{n-1}), n \in \mathbb{N}$. Show that (x_n) converges to the zero vector in V.
- 5. Let the constant K satisfy 0 < K < 1. Consider the linear function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$f(x) = \frac{K}{\sqrt{2}} (x_1 + x_2, x_2 - x_1), \quad \forall \ x = (x_1, x_2) \in \mathbb{R}^2.$$

In the following, you may use the results of Problem 4.

- (1) Show that when the 2-norm (i.e., $\|\cdot\|_2$) is used, f is a contraction.
- (2) Show that when the 1-norm (i.e., $\|\cdot\|_1$) is used, f is not a contraction if $\frac{1}{\sqrt{2}} < K < 1$.
- (3) Let $x^0 = (x_1^0, x_2^0) \in \mathbb{R}^2$ be arbitrary. Define the sequence (x^k) as $x^k = f(x^{k-1})$, $k \in \mathbb{N}$. Explain why the sequence (x^k) is convergent when the 2-norm is used. (*Note:* recall that $(\mathbb{R}^2, \|\cdot\|_2)$ is complete.)
- (4) Show that the sequence defined in (3) is convergent when the 1-norm is used. (*Hint:* use the equivalence of norms on a Euclidean space shown in Problem 2 of Homework #8.)
- \star This example shows that the contractive property is a *sufficient* condition for convergence but not a necessary one.

The following extra problems are for Math 600 students only:

6. Let $f_n: \mathbb{R} \to \mathbb{R}$ be

$$f_n(x) = \frac{(-1)^{n+1}x}{n}.$$

Let A be a bounded set in \mathbb{R} . Show that the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on A. (*Hint*: use the Cauchy criterion.)

7. Suppose that each $f_n : \mathbb{R} \to \mathbb{R}$ is continuous on the set A, and (f_n) converges to f_* uniformly on A. Let (x_n) in A converge to $x_* \in A$. Show that $(f_n(x_n))$ converges to $f_*(x_*)$.