CIIC 4025 Analysis and Design of Algorithms

WILFREDO LUGO, PHD

- •What are biological Sequences?
 - O DNA/RNA
 - Nucleotide Base Sequences (e.g. Human Genome)
 - Proteins
 - Amino Acid Sequences

Image Source: https://www.news-medical.net/life-sciences/Amino-Acids-and-Protein-Sequences.aspx

- OWhy do we need to align the sequences?
 - Get more information about
 - Functional Relationships
 - Structural Relationships
 - Evolutionary Relationships
- Types of Alignments
 - Global Alignments
 - Tries to align an entire sequence
 - Align all letters from query and target
 - Suitable for closely related sequences
 - Local Alignments
 - Align regions having highest similarities
 - Align substrings of target with substring of queries
 - Suitable for more divergent sequences.

input string

HEAGAWGHEEAHGEGAE

PAWHEAEHE

Global alignment

HEAGAWGHEEAHGEGAE

Local alignment

AWGHEEAH

AW-HEAEH

- ODynamic Programing
 - Needleman-Wunsch Most common Global Alignment Algorithm
 - Smith-Waterman Most common Local Alignment Algorithm
- Needleman-Wunsch

$$F_{i,j} = max \begin{cases} F_{i-i,j-1} + S(A_i, B_j) & \longrightarrow \text{Scoring Matrix} \\ F_{i,j-1} + d & \longrightarrow \text{Gap Penalty} \end{cases}$$

$$F_{0,j} = d * j$$
 $F_{i,0} = d * i$
Initialization Step

Needleman-Wunsch

$$\circ S_1 = ATGCT$$

$$\circ S_2 = AGCT$$

Scoring Matrix

$$\circ S(A_i, B_i) = 1$$
, when $A_i = B_i$

$$\circ S(A_i, B_j) = -1$$
, when $A_i \neq B_j$

$$od = -2$$

$$F_{i,j} = max \begin{cases} F_{i-i,j-1} + S(A_i, B_j) & \longrightarrow \text{Scoring Matrix} \\ F_{i,j-1} + d & \longrightarrow \text{Gap Penalty} \end{cases}$$

$$F_{0,j} = d * j$$
 $F_{i,0} = d * i$
Initialization Step

$$= max \begin{cases} 0+1 \\ -2+-2 \\ -2+-2 \end{cases}$$

Scoring Matrix

- o $S(A_i, B_j) = 1$, when $A_i = B_j$
- o $S(A_i, B_j) = -1$, when $A_i \neq B_j$
- o d = -2

$$= max \begin{cases} -2 + -1 \\ 1 + -2 \\ -4 + -2 \end{cases}$$

• Final Matrix

		Α	T	G	С	Т
	0	-2	-4	-6	-8	-10
Α	-2	1	-1	-3	-5	-7
G	-4	-1	0	0	-2	-4
С	-6	-3	-2	-1	1	-1
Т	-8	-5	-2	-3	-1	2

OBacktracking

ATGCT A-GCT