

Contents

1 Ayudantía 1 (12/08)

2

Chapter 1

Ayudantía 1 (12/08)

- 1. Sea X un conjunto infinito.
 - (a) Sea $p \in X$ un punto arbitrario en X, demuestre que

$$\tau_1 = \{ U \subset X : U = \emptyset \text{ o } p \in U \}$$

es una topología en X. Esta es conocida como topología del punto particular.

Proof.

• Claramente
$$\varnothing, X \in \tau_1$$
.
• $U_{\alpha} \in \tau_1 \Rightarrow p \in U_{\alpha} \Rightarrow p \in \bigcup_{\alpha \in I} U_{\alpha} \Rightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \tau_1$.
• $U_1, \dots, U_n \in \tau_1 \Rightarrow p \in U_i \Rightarrow p \in \bigcap_{i=1}^n U_i \Rightarrow \bigcap_{i=1}^n U_i \in \tau_1$.

(b) Sea $p \in X$ un punto arbitrario en X, demuestre que

$$\tau_2 = \{ U \subset X : U = X \text{ o } p \notin U \}$$

es una topología en X. Esta es conocida como topología del punto excluido.

- Claramente $\varnothing, X \in \tau_2 \ (p \notin \varnothing)$. $U_\alpha \in \tau_2 \Rightarrow p \notin U_\alpha \Rightarrow p \notin \bigcup U_\alpha \Rightarrow \bigcup_n U_\alpha \in \tau_2$. $U_1, \dots, U_n \in \tau_2 \Rightarrow p \notin U_i \Rightarrow p \notin \bigcap_{i=1}^n U_i \Rightarrow \bigcap_{i=1}^n U_i \in \tau_2$.
- (c) Determine cuando

$$\tau_3 = \{ U \subset X : U = X \text{ o } X \setminus U \text{ es infinito} \}$$

es una topología en X.

Proof. Si $p \in X \Rightarrow \{p\}^c$ es infinito $\Rightarrow \{p\}$ es abierto. Si τ_3 es topología y $q \in X$, entonces

$$\bigcup_{p\neq q}\{p\}=X\setminus\{q\}\Rightarrow (X\setminus\{q\})^c=\{q\}$$

es infinito. Contradicción! ** Es decir, τ_3 no es topología. \square

2. Sea $K = \{\frac{1}{n} : n \in \mathbb{N}\}$ y \mathcal{B}_K la colección de intervalos abiertos $(a, b) \subset \mathbb{R}$ y de conjuntos de la forma (a, b) - K. Es decir,

$$\mathcal{B}_K = \{(a,b) : a,b \in \mathbb{R}\} \cup \{(a,b) - K\}.$$

(a) Pruebe que \mathcal{B}_K es una base para X. Denotamos por \mathbb{R}_K la topología generada.

Proof.

- $t \in \mathbb{R}, \ \exists (a,b) \subset \mathbb{R} : \ t \in (a,b) \subset \mathcal{B}_K;$
- Notar que la intersección de elementos de la base es un elemento de la base

$$(a,b) \cap (c,d) = (c,b)$$

 $(a,b) - K \cap (c,d) = (c,b) - K$
 $(a,b) - K \cap (c,d) - K = (c,b) - K.$

(b) Considere las siguientes topologías en \mathbb{R} :

 $\tau_1 = \text{topología estándar en } \mathbb{R}$

 $\tau_2 = \text{topología } \mathbb{R}_K$

 $\tau_3 = \text{topología cofinita en } \mathbb{R}$

 $\tau_4 = \text{topología con } (-\infty, a) = \{x : x < a\} \text{ como base.}$

Determine, para cada una de estas topologías, cual de las otras contiene.

3. Se
aXconjunto, denotamos por $\tau_{\rm cof}(X)$ a la topología cofinita en
 X. Demuestre que

$$\tau_{\rm cof}(X \times Y) \subseteq \tau_{\rm cof}(X) \times \tau_{\rm cof}(Y),$$

es decir, la topología producto de las topologías cofinitas es más finita que la topología cofinita en $X\times Y.$ De un ejemplo en que estas topologías no son iguales.

Proof. Sea $U \in \tau_{cof}(X \times Y)$ Entonces,

$$U = X \times Y - \{(a_1, b_1), \dots, (a_n, b_n)\} = \bigcap_{i=1}^n X \times Y - \{(a_i, b_i)\}.$$

Queremos ver que $X \times Y - \{(a,b)\}$ es abierto en $\tau_{\rm cof}(X) \times \tau_{\rm cof}(Y)$. Notar que $\mathcal{B} = \{U \times V : U \in \tau_{\rm cof}(X), V \in \tau_{\rm cof}(Y)\}$ es una base para $\tau_{\rm cof}(X) \times \tau_{\rm cof}(Y)$. Sea $(c,d) \in X \times Y - \{(a,b)\}$. Supongamos que $c \neq a$.

$$(c,d) \in \underbrace{X \setminus \{a\}}_{\in \tau_{\mathrm{cof}}(X)} \times \underbrace{Y}_{\in \tau_{\mathrm{cof}}(Y)} \subseteq X \times Y - \{(a,b)\}.$$

X infinito. Luego,

$$W = X \times Y \setminus \{a\} \in \tau_{cof}(X) \times \tau_{cof}(Y).$$

Pero $W^c = X \times \{a\}$ no es finito. Por lo tanto $W \in \tau_{\text{cof}}(X \times Y)$. Entonces $\tau_{\text{cof}}(X \times Y) \subsetneq \tau_{\text{cof}}(X) \times \tau_{\text{cof}}(Y)$.