Pizzaseminar zur Kategorientheorie

1. Übungsblatt

- **Aufgabe 1:** a) Gib die Kategorie zu deinem Lieblingsgebiet an: Was sind ihre Objekte, was ihre Morphismen? Was sind ihre initialen und terminalen Objekte?
 - b) Gib eine formale Definition folgender Kategorie:

Was genau sind also die Objekte und die Morphismen? Wie lautet die Kompositionsvorschrift?

- c) Zeige: Identitätsmorphismen in Kategorien sind eindeutig, d. h. sind id_X und id_X beides Identitätsmorphismen für ein Objekt X einer Kategorie \mathcal{C} , so gilt $\mathrm{id}_X=\mathrm{id}_X$.
- **Aufgabe 2:** Sei $f: X \to Y$ eine Abbildung zwischen Mengen.
 - a) Zeige: Es ist f genau dann ein Monomorphismus, wenn f injektiv ist.
 - b) Zeige: Es ist f genau dann ein Epimorphismus, wenn f surjektiv ist. Tipp: Widerspruchsbeweis oder geeignete Abbildungen nach $\mathcal{P}(\{\star\}) = \{\emptyset, \{\star\}\}$ betrachten.
- **Aufgabe 3:** Seien $f: X \to Y$ und $g: Y \to Z$ Morphismen einer beliebigen Kategorie \mathcal{C} .
 - a) Zeige: Ist $g \circ f$ ein Monomorphismus, so ist auch f ein Monomorphismus.
 - b) Dein Beweis von a) funktioniert in allen Kategorien, daher auch in \mathcal{C}^{op} . Was besagt er dann?
- **Aufgabe 4:** Ein *Isomorphismus* $f:X\to Y$ in einer Kategorie ist ein Morphismus, zu dem es einen Morphismus $g:Y\to X$ mit

$$g \circ f = \mathrm{id}_X, \quad f \circ g = \mathrm{id}_Y$$

gibt. Statt "g" schreibt man auch " f^{-1} ".

- a) Zeige: Die Isomorphismen in der Kategorie der Gruppen sind genau die üblichen Gruppenisomorphismen.
- b) Zeige: In beliebigen Kategorien sind Isomorphismen stets Mono- und Epimorphismen, aber die Umkehrung gilt nicht.

Tipp: Für die Rückrichtung kann man ein Gegenbeispiel in einer überschaubaren Kategorie angeben.

Aufgabe 5: Sei G eine Gruppe. Bastele auf sinnvolle Art und Weise aus G eine Kategorie – so, dass die Gruppenverknüpfung eine Rolle spielt. (Diese Kategorie wird oft mit "BG" bezeichnet und ist in der algebraischen Topologie wichtig.)