Chapter 4 - Uncertainty in Al

4.1 What is Uncertainty in AI?

Definition of Uncertainty in Al

Uncertainty in AI refers to situations where an AI system lacks complete or perfect information to make decisions. In real-world applications, AI often has to deal with incomplete, noisy, or ambiguous data.

For example:

- A weather forecasting AI does not have perfect knowledge of atmospheric conditions.
- A medical diagnosis system cannot be 100% sure about a patient's illness without extensive testing.

Causes of Uncertainty in Al

Uncertainty arises due to several factors:

- Incomplete Information: Al may not have all the necessary data. (E.g., A self-driving car might not detect a pedestrian in foggy conditions.)
- 2. **Noisy Data:** Sensor readings or input data can be inaccurate. (E.g., A microphone picking up background noise.)
- Ambiguous Situations: Different interpretations can exist for the same data. (E.g., A chatbot struggling to understand a sarcastic remark.)

Why Al Must Handle Uncertainty?

- Al operates in dynamic and unpredictable environments.
- Al must make the best possible decisions despite missing or unreliable information.
- Handling uncertainty improves Al's adaptability and real-world usability.

4.2 Probabilistic Models

Probabilistic models help AI handle uncertainty by using probability theory to make informed decisions based on available data.

1. Bayesian Networks

A **Bayesian Network (BN)** is a probabilistic graphical model that represents variables and their dependencies using probability theory.

How Bayesian Networks Work:

- Variables are represented as nodes in a graph.
- Relationships (dependencies) between variables are shown as edges.
- Probabilities are assigned to each node to reflect uncertainty.

Example: Medical Diagnosis Using Bayesian Networks

- Variables: Symptoms (fever, cough) and diseases (flu, COVID-19).
- Al estimates the probability of a disease given observed symptoms.
- If a patient has a fever and cough, Al calculates the likelihood of flu vs. COVID-19 using probability rules.

Advantages of Bayesian Networks:

- Can make predictions with partial information.
- Models complex relationships between variables.

Limitations:

- Requires expert knowledge to construct accurate probability distributions.
- Computationally expensive for large datasets.

2. Markov Decision Processes (MDPs)

An **MDP** is a mathematical model used for decision-making in environments with randomness. It helps Al choose the best action considering possible future outcomes.

Key Components of MDPs:

- **States (S):** Different situations the Al can be in. (E.g., A robot's position in a warehouse.)
- Actions (A): Choices AI can make in each state. (E.g., Move left, right, forward.)
- Transition Model (T): Probability of moving to a new state after taking an action.
- Rewards (R): The benefit of taking an action in a state. (E.g., Delivering a package correctly.)

Example: Self-Driving Car Using MDPs

- State: The car's position on the road.
- Action: Turn left, right, or brake.
- Transition: If the car turns left, it may reach a new road segment.
- Reward: Avoiding accidents and reaching the destination safely.

Advantages of MDPs:

- Helps AI make decisions over multiple steps (long-term planning).
- Useful in robotics, autonomous vehicles, and game Al.

Limitations:

- Requires accurate probability estimates for transitions.
- Can become complex with too many states and actions.

4.3 Handling Uncertainty in AI Systems

Al must make the best possible decisions even when data is incomplete or unreliable.

1. How Al Makes Decisions with Incomplete Data

Al uses various strategies to reason under uncertainty:

- **Probabilistic Inference:** Al predicts missing data based on known probabilities (e.g., Predicting the next word in a sentence).
- **Sensor Fusion:** Al combines data from multiple sources to improve accuracy (e.g., Self-driving cars use cameras, radar, and LiDAR together).
- **Approximate Reasoning:** Al makes educated guesses when precise answers are unavailable (e.g., Virtual assistants answering vague questions).

2. Trade-offs Between Accuracy and Efficiency

Al must balance accuracy with computational cost:

- High Accuracy: More complex models (e.g., Deep learning models) can reduce uncertainty but require significant computing power.
- **High Efficiency:** Simplified models (e.g., Rule-based systems) run faster but may struggle with uncertainty.

• Compromise: Al often uses heuristics or approximation techniques to strike a balance.

Example: Al in Autonomous Drones

- A delivery drone must navigate unpredictable wind conditions.
- Al uses sensor data and probabilistic models to adjust its flight path.
- It prioritizes reaching the destination over perfectly optimal routes.