Higher-Order and Tuple-Based Massively-Parallel Prefix Sums

Sepideh Maleki*, Annie Yang, and Martin Burtscher

Denartment of Computer Science

The rising STAR of Texas

Prefix Sum

Given an array of values (integer or real values)

 Compute the array whose elements are the sum of all previous elements from the original array

 A prefix scan is a generalization of the prefix sum where the operation doesn't have to be addition

Some Scan Operators

Operator	Identity element	Example
+	0	X + 0 = X
Min	Maximum Representative value	$Min(X, \infty) = X$
Max	Minimum Representative value	$Max(X, -\infty) = X$
Multiply	1	X * 1 = X
Logical Or	FALSE	X FALSE = X
Logical AND	TRUE	X && TRUE = X

Uses of Prefix Sums and Scans

- Fundamental building block of parallel algorithms
 - Can be computed efficiently in parallel in log(n) steps
 - Help parallelize many seemingly serial algorithms
- Examples
 - Buffer allocation
 - Radix sort
 - Quicksort
 - String comparison
 - Lexical analysis

- Run-length encoding
- Histograms
- Polynomial evaluation
- Stream compaction
- Data compression

Highlights

- GPU-friendly algorithm for prefix scans called SAM
- Novelties and features
 - Higher-order support that is communication optimal
 - Tuple-value support with constant workload per thread
 - Carry propagation scheme with O(1) auxiliary storage
 - Implemented in unified 100-statement CUDA kernel
- Results
 - Outperforms CUB by up to 2.9-fold on higher-order and by up to 2.6-fold on tuple-based prefix sums

Data Compression

- Data compression algorithms
 - Data model predicts next value in input sequence and emits difference between actual and predicted value
 - Coder maps frequently occurring values to produce shorter output than infrequent values
- Delta encoding
 - Widely used data model
 - Computes difference sequence (i.e., predicts current value to be the same as previous value in sequence)
 - Used in image compression, speech compression, etc.

Delta Coding

- Delta encoding is embarrassingly parallel
- Delta decoding appears to be sequential
 - Decoded prior value needed to decode current value
- Prefix sum decodes delta encoded values
 - Decoding can also be done in parallel

Input sequence

1, 2, 3, 4, 5, 2, 4, 6, 8, 10

Difference sequence (encoding) 1, 1, 1, 1, 1, -3, 2, 2, 2, 2

Prefix sum (decoding)

1, 2, 3, 4, 5, 2, 4, 6, 8, 10

Extensions of Delta Coding

Higher orders

- Higher-order predictions are often more accurate
 - First order
 - Second order
 - Third order

- $out_k = in_k in_{k-1}$
- $out_k = in_k 2 \cdot in_{k-1} + in_{k-2}$
- $out_k = in_k 3 \cdot in_{k-1} + 3 \cdot in_{k-2} in_{k-3}$

Tuple values

- Data frequently appear in tuples
 - Two-tuples
 - Three-tuples

- $X_0, Y_0, X_1, Y_1, X_2, Y_2, ..., X_{n-1}, Y_{n-1}$
- $X_0, Y_0, Z_0, X_1, Y_1, Z_1, ..., X_{n-1}, Y_{n-1}, Z_{n-1}$

Problem and Solution

- Conventional prefix sums are insufficient
 - Do not decode higher-order delta encodings
 - Do not decode tuple-based delta encodings
- Prior work
 - Requires inefficient workarounds to handle higherorder and tuple-based delta encodings
- SAM algorithm and implementation
 - Directly and efficiently supports these generalizations
 - Even supports combination of higher orders and tuples

Work Efficiency of Prefix Sums

- Sequential prefix sum requires only a single pass
 - 2n data movement through memory
 - Linear O(n) complexity

```
1  out[0] = 0
2  for i from 1 to n do
3  out[i] = out[i - 1] + in[i - 1]
```

- Parallel algorithm should have same complexity
 - \circ O(n) applications of the sum operator

Hierarchical Parallel Prefix Sum

Standard Prefix-Sum Implementation

- Based on 3-phase approach
- Reads and writes every element twice
 - 4n main-memory accesses
- Auxiliary array is stored in global memory
 - Calculation is performed across blocks
- High-performance implementations
 - Allocate and process several values per thread
- Thrust and CUDPP use this hierarchical approach

SAM Base Implementation

- Intra-block prefix sums
 - Computes prefix sum of each chunk conventionally
 - Writes local sum of each chunk to auxiliary array

- Writes ready flag to second auxiliary array
- Inter-block prefix sums
 - Reads local sums of all prior chunks
 - Adds up local sums to calculate carry
 - Updates all values in chunk using carry
 - Writes final result to global memory

Pipelined Processing of Chunks

Carry Propagation Scheme

- Persistent-block-based implementation
 - Same block processes every kth chunk
 - Carries require only O(1) computation per chunk

- Circular-buffer-based implementation
 - Only 3k elements needed at any point in time
 - Local sums and ready flags require O(1) storage
- Redundant computations for latency hiding
 - Write-followed-by-independent-reads pattern
 - Multiple values processed per thread (fewer chunks)

Higher-order Prefix Sums

Higher-order Prefix Sums

 Higher-order difference sequences can be computed by repeatedly applying first order

 Input values
 1, 2, 3, 4, 5, 2, 4, 6, 8, 10

 First order
 1, 1, 1, 1, 1, -3, 2, 2, 2, 2

 Second order
 1, 0, 0, 0, 0, -4, 5, 0, 0, 0

- Prefix sum is the inverse of order-1 differencing
 - K prefix sums will decode an order-k sequence
- No direct solution for computing higher orders
 - Must use iterative approach
 - Other codes' memory accesses proportional to order

Higher-order Prefix Sums (cont.)

- SAM is more efficient
 - Internally iterates only the computation phase
 - Does not read and write data in each iteration
 - Requires only 2n main-memory accesses for any order
- SAM's higher-order implementation
 - Employs multiple sum arrays, one per order
 - Each sum array is an O(1) circular buffer
 - Needs O(1) non-Boolean ready 'flags'
 - Uses counts to indicate iteration of current local sum

Tuple-based Prefix Sums

Tuple-based Prefix Sums

- Data may be tuple based $x_0, y_0, x_1, y_1, ..., x_{n-1}, y_{n-1}$
- Other codes have to handle tuples as follows
 - Reordering elements, compute, undo reordering
 - Slow due to reordering and may require extra memory

$$\begin{aligned} x_{0}, x_{1}, ..., x_{n-1} &\mid y_{0}, y_{1}, ..., y_{n-1} \\ \Sigma_{0}^{0} x_{i}, \Sigma_{0}^{1} x_{i}, ..., \Sigma_{0}^{n-1} x_{i} &\mid \Sigma_{0}^{0} y_{i}, \Sigma_{0}^{1} y_{i}, ..., \Sigma_{0}^{n-1} y_{i} \\ \Sigma_{0}^{0} x_{i}, \Sigma_{0}^{0} y_{i}, \Sigma_{0}^{1} x_{i}, \Sigma_{0}^{1} y_{i}, ..., \Sigma_{0}^{n-1} x_{i}, \Sigma_{0}^{n-1} y_{i} \end{aligned}$$

- Defining a tuple data type as well as the plus operator
 - Slow for large tuples due to excessive register pressure

Tuple-based Prefix Sums (cont.)

- SAM is more efficient
 - No reordering
 - No special data types or overloaded operators
 - Always same amount of data per thread
- SAM's tuple implementation
 - Employs multiple sum arrays, one per tuple element
 - Each sum array is an O(1) circular buffer
 - Uses modulo operations to determine which array to use
 - Still employs single O(1) Boolean flag array

Experimental Methodology

- Evaluate following prefix sum implementations
 - Thrust library (from CUDA Toolkit 7.5)
 - 4n memory accesses
 - CUDPP library 2.2

• <i>4n</i> memory	accesses
--------------------	----------

CU	B library	1.5.	1
----------------------	------------------	------	---

2n memory accesses

SAM 1.1

2n memory accesses

GPU	GeForce Titan X	Tesla K40c
Architecture	Maxwell	Kepler
PE	3072	2880
Multiprocessors	24	15
Persistent Blocks	48	30
Global Memory	12 GB	12 GB
Peak Bandwidth	336 GB/s	288 GB/s

Performance Evaluation

Prefix Sum Throughputs (Titan X)

- SAM and CUB outperform the other approaches (2n vs. 4n)
- For 64-bit values, throughputs are about half (but same GB/s)
- SAM matches cudaMemcpy throughput at high end (264 GB/s)
 - Surprising since SAM was designed for higher orders and tuples

Prefix Sum Throughputs (K40)

- K40 throughputs are lower for all algorithms
- SAM is faster than Thrust/CUDPP on medium and large inputs
- CUB outperforms SAM by 50% on large inputs on 32-bits ints
 - SAM's implementation is not a particularly good fit for this older GPU

Higher-order Throughputs (Titan X)

- Throughputs decrease as order increases due to more iterations
- SAM's performance advantage increases with higher orders
 - Always executes 2n global memory accesses
 - Outperforms CUB by 52% on order 2, 78% on order 5, and 87% on order 8

Higher-order Throughputs (K40)

- CUB outperforms SAM on orders 2 and 5, but not on order 8
 - Again, SAM's relative performance increases with higher orders
- SAM's relative performance over CUB is higher on 64-bit values
 - Baseline advantage of CUB over SAM is smaller for 64-bit values

Tuple-based Throughputs (Titan X)

- Throughputs decrease with larger tuple sizes due to extra work
- SAM's performance advantage increases with larger tuple sizes
 - Larger tuples increase register pressure in CUB but not in SAM
 - SAM is 17% slower on 2-tuples but 20% faster on 5-tuples and 34% faster on 8-tuples

Tuple-based Throughputs (K40)

- SAM outperforms CUB on 8-tuples (and larger tuples)
 - Again, SAM's relative performance increases with larger tuple sizes
- The benefit of SAM over CUB is higher with 64-bit values
 - SAM already outperforms CUB on 5-tuples

Summary

- SAM directly supports generalized prefix scans
 - Higher-order prefix scans
 - Tuple-based prefix scans
- SAM performance on Maxwell and Kepler GPUs
 - Reaches cudaMemcpy throughput on large inputs
 - Outperforms all alternatives by up to 2.9x on ordereight and by up to 2.6x on eight-tuple prefix sums
 - SAM's relative performance increases with higher orders and larger tuple sizes

Question?

Contact Info: Smaleki@txstate.edu

http://cs.txstate.edu/~burtscher/research/SAM/

- Acknowledgments
 - National Science Foundation
 - NVIDIA Corporation
 - Texas Advanced Computing Center

