CP315: Introduction to Scientific Computing

BY SCOTT KING

Dr. Ilias Kotsireas

1 Introduction

CP315 is a set of methods for solving mathematical problems with computers; fair enough - we will be using Maple and MatLab. Fundamental operations that are used: addition and multiplication. These are needed to evaluate a polynomial at a specific value. As we know, polynomials are basic objects in scientific computing \rightsquigarrow efficient evaluation.

1.1 Polynomial Evaluation

Consider a general, fourth-degree polynomial:

$$P(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4$$

- i. Find $P(\frac{1}{2})$ naively requires substituting $\frac{1}{2}$ into $P(x) \leadsto 10$ multiplications and 4 additions comes to a total of 14 operations.
- ii. Store powers of $\frac{1}{2}$ progressively \rightsquigarrow 3 multiplications (from the powers) + 4 multiplications (from the coefficients) and 4 additions. The new total is 11 operations.
- iii. Horner's Method: Rewrite P(x) "backwards":

$$P(x) = c_0 + x(c_1 + x(c_2 + x(c_3 + x(c_4))))$$

This brings it down to 8 total operations.

Fact: A degree d polynomial can be a evaluated in d multiplications and d additions.

Portfolio Part 1: Implement Horner's Method in Maple and/or MatLab.

1.1.1 Variation on the Theme

Evaluate:

$$P(x) = x^5 + x^8 + x^{11} + x^{14}$$

$$= x^5 (1 + x^3 + x^6 + x^9)$$

$$= x^5 (1 + x^3 (1 + x^3 + x^6))$$

$$= x^5 (1 + x^3 (1 + x^3 (1 + x^3)))$$

We get a total of 6 multiplications by 3 additions, thus 9 operations.

Overview of Calculus

Theorem 1. Intermediate Value Theorem

If f(x) is continuous in [a, b] then $\forall y$, such that, $f(a) \leq y \leq f(b) \exists c$, such that $a \leq c \leq b$ and f(c) = y.

Corollary 2. If f(a), f(b) < 0, then $\exists c$, such that f(c) = 0. Where c is a root of f(x) = 0.

Theorem 3. Mean Value Theorem

If f(x) is differentiable in [a,b] then $\exists c$, such that $f'(c) = \frac{f(a) - f(b)}{b-a}$. Thus, there is a point where we will be able to calculate the slope at c.

Corollary 4. Rolle's Theorem

If f(x) is differentialable at [a,b] then $\exists c$, such that $a \le c \le b$ and f'(c) = 0.

Theorem 5. Taylor's Theorem

If f(x) is (k+1)-differentiable in $[x_0, x]$, $\exists c$, such that:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{k+1}(x_0)}{(k+1)!}(x - x_0)^{k+1} + R$$

where $R = \frac{f^{(k+1)}(c)}{(k+1)!}(x-x_0)^{k+1}$, is the remainder. If we know $f(x_0)$, then we can find nearby values f(x) as a polynomial of degree k.

Example 6. $f(x) = \sin(x)$. Find a degree-4 Taylor polynomial (approximation) about $x_0 = 0$.

$$P_4(x) = x - \frac{x^3}{6}$$

with a remainder is $R = \frac{x^5}{120}\cos(c)$. Now, we need to estimate the size of the remainder term:

$$|R| \le \frac{|x|^5}{120}$$

If $|x| \le 10^{-4}$ then $|R| \le \frac{10^{-20}}{120}$. This tells us that for all numbers $\le 10^{-4}$, R is close to zero and thus the Taylor approximation is accurate.

Theorem 7. Mean Value Theorem for Integrals

If f is continuous in [a,b] and g is integrable in [a,b] and does not change sign in [a,b] then, $\exists c$ such that $a \le c \le b$ and

$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx$$

Note: This helps because this result gives us a way to evaluate $\int f(x)g(x)$ - as there is no defined way to do this.

2 Floating Point Representation of Real Numbers (R)

IEEE 754 is a standard to model floating point arithmetic on a computer. The problem is that we have finite-precision memory locations to represent infinite-precision numbers, YIKES.

IEEE 754 is a set of binary representations of real numbers.

A floating point, or real, number has three parts:

- 1. Sign (\pm) s
- 2. Mantissa (AKA significant digits) m
- 3. Exponent e

These three parts are stored in a word. There are three common precision types:

- 1. Single: 32 bits, (s: 1, m: 8, e: 23)
- 2. Double: 64 bits (s: 1, m: 11, e: 52)
- 3. Long-double: 80 bits, (s: 1, m: 15, e: 64)

Definition 8. A normalized IEEE 754 floating point number is the following:

$$\pm 1.b_1b_2...b_N \times 2^p$$

where p is an M-bit binary number; where

$$b_i \in \{0, 1\}, i = 1, ..., N$$

Example 9. 9 decimal and we want to convert to an IEEE FLP number.

$$9 \rightarrow 1001 \text{ (binary)}$$

+1 . 001×2^3
 $N = 3$
 $P = 3$

Multiplication by power of $2 \equiv a$ shift.

Typical double precision parameters in C/MatLab: M = 11, N = 52.

Example 10. We want to represent 1.

$$\begin{array}{ll} 1 & \leadsto & 0001 \\ +1 & . & 0...0_{52} \times 2^0 \, (52 \, {\rm zeroes}) \end{array}$$

What is the "next" number we can represent? The answer is: $+1.0...0_{51}1 \times 2^0 \rightsquigarrow 1 + 2^{-52}$, this is 51 zeroes.

Definition 11. Machine epsilon, $E_{\rm mach}$, is the distance between 1 and the smallest FLP number greater than 1.

Remark 12. For IEEE 754, double precision, we have $E_{\rm mach} = 2^{52}$.

2.1 IEEE Nearest Rounding Rule

Example 13. 9.4 in decimal $\rightarrow 1001.\overline{0110}$

The binary representation of
$$0.4 \approx \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^6} + \frac{1}{2^7} + \dots = \sum_{k=1}^{\infty} \left(\frac{1}{2^{4k+2}} + \frac{1}{2^{4k+3}} \right)$$

We need to fit this precision number in 52 bits.

$$1.001011001100110...01100\times 2^3$$

We have the three bits in the beginning following by 12 sets of 0110:

$$3 \, \mathrm{bits} + 12 \times 4 \, \mathrm{bits} = 51 \, \mathrm{bits}$$

RMR: Look at the 53rd bit to the right of the radix point: $\left\{ \begin{smallmatrix} 1 \to \operatorname{add} 1 \operatorname{to} \operatorname{bit} 52 \\ 0 \to \operatorname{do} \operatorname{nothing} \end{smallmatrix} \right.$

So in our example: 53rd bit is 1, so we add 1 to 52.

Thus, 9.4 is represented as:

$$+1.0010110\,\mathbf{1}\times2^3$$

which is actually $9.4 + 0.2 \times 2^{-49}$ in decimal.

Remark 14. The IEEE double precision number associated with 9.4 using RNR is:

$$fl(9.4) = 9.4 + 0.2 \times 2^{-49}$$

where 0.2×2^{-49} is the error.

Definition 15.

$$x_c = \text{computed value of } x$$
absolute error $= |x_c - x|$
relative error $= \frac{|x_c - x|}{|x|}$

Remark 16. Relative error in IEEE 754 is bounded by:

$$\frac{|fl(x) - x|}{|x|} \le \frac{1}{2} E_{\text{mach}}$$

2.2 Loss of Significant Digits

Example 17. $E_1 = \frac{1 - \cos(x)}{\sin^2(x)}$ and $E_2 = \frac{1}{1 + \cos(x)}$. $\therefore E_1 = E_2$ in exact arithmetic. Evaluate E_1 and E_2 numerically for x = 1.000..., x = 0.100..., x = 0.010...

Remark 18. For values of $x < 10^{-5}$, E_1 losses significant digits. For $x < 10^{-8}$, E_1 has no correct significant digits. Well, we are subtracting numbers that are nearly equal.

Example 19. $x^2 + 9^{12}x - 3 = 0$, with a = 1, $b = 9^{12}$, c = -3.

$$\Delta = \sqrt{b^2 - 4ac}$$

$$x = \frac{-b \pm \Delta}{2a}$$

$$\oplus \rightarrow x = \frac{-b + b}{2a} = 0$$

But how?! We need to restructure the formula, using the conjugate quantity:

$$\frac{-b + \sqrt{\Delta}}{2a} \times \left(\frac{-b + \sqrt{\Delta}}{-b + \sqrt{\Delta}}\right)$$

$$= \frac{\Delta - b^2}{2a(b + \sqrt{\Delta})^2}$$

$$= \frac{-4ac}{2a(b + \sqrt{\Delta})}$$

$$= \frac{-2c}{b + \sqrt{\Delta}}$$

Note: This formula only applies for degree-2 polynomials.

3 Equation Solving

- We will explore iterative methods to locate solutions of f(x) = 0
- Convergence, complexity

We are also going to look at three different methods of solving equations:

- 1. Bisection
- 2. Fixed-point
- 3. Newtons's method

3.1 Bisection Method

- We are looking to solve f(x) = 0
- Means find r, st f(r) = 0
- Existence of r: IVT

Steps:

- 1. Find [a, b] st $f(a) \times f(b) < 0$
- 2. Then, $\exists r : a < r < b \text{ st } f(r) = 0$

Example 20. $f(x) = x^3 + x - 1$, we know f(0) = -1, f(1) = 1 and thus:

$$\leadsto \exists r \in [0, 1] \text{ st } f(r) = 0$$

Also:

$$f\!\left(\frac{1}{2}\right)\!<0 \leadsto f\!\left(\frac{1}{2}\right)\!\times f(1) < 0 \leadsto r \in \!\left[\frac{1}{2},1\right]$$

Next step in the interation:

$$f\!\left(\frac{1}{2}\right) > 0 \leadsto f(0) \times f\!\left(\frac{1}{2}\right) < 0 \leadsto r \in \left[0, \frac{1}{2}\right]$$

And thus we know:

$$f\!\left(\frac{1}{2}\right) < 0$$

We now know that $\frac{1}{2} < f(\frac{1}{2}) < 1$. We know can check the midpoint of $\left[\frac{1}{2}, 1\right]$ which is $\frac{3}{4}$. Next interation:

$$f\!\left(\frac{3}{4}\right) \! > \! 0 \leadsto r \in \! \left\lceil \frac{1}{2}, \frac{3}{4} \right\rceil$$

Portfolio Part 2: Implement Bisection Method in Maple and/or MatLab.

Algorithm 1

```
Bisection Method  \begin{aligned} &\textbf{Input: f, a, b st. } f(a) \times f(b) < 0; \ \text{tolerance } (\epsilon) \text{ - e} \\ &\textbf{Output: approximate root r, in } [a,b], \ f(r) = 0 \end{aligned}  while (b-a)/2 > e do  r = (a+b)/2 \\ &\text{if } f(r) = 0 \text{ then return r} \\ &\text{if } f(a) * f(r) < 0 \\ &\text{b=r} \\ &\text{else} \\ &\text{a=r} \\ &\text{return } (a+b)/2 \end{aligned}
```

Example 16 cont.

ϵ	$\#\mathtt{while}\ \mathrm{step}$	approx r
10^{-4}	13	0.6823
10^{-5}	16	0.6823
10^{-6}	19	0.68232
10^{-7}	23	0.68232780

Definition 21. An approximate solution is correct to p decimal places if the error

$$|x_c - r| < \frac{1}{2} 10^{-p}$$

3.1.1 Error Analysis

- Start [a, b]
- After n bisection steps $[a_n, b_n]$

$$x_c = \frac{a_n + b_n}{2} \leadsto |x_c - r| < \frac{b - a}{2^{n+1}}$$

Question 22. How many bisection steps are needed to compute a solution correct to 6 decimal places?

Answer. Error after n bisection steps: $\frac{1}{2^{n+1}}$ and thus

$$\frac{1}{2^{n+1}} < \frac{1}{2}10^{-6}$$

$$10^{6} < 2^{n}$$

$$\log(10^{6}) < \log(2^{n})$$

$$6 \times \log(10) < n \times \log(2)$$

$$6 < n \times \log(2)$$

$$19.9 < n$$

And thus we need 20 steps to compute 0.739085.

3.2 Fixed-Point Iteration

Definition 23. r is a fixed point (fp) of a function g(x), iff g(r) = r.

Example 24. $g(x) = x^3$. We have three fixed points: $0, \pm 1$.

Observation. Finding a fp of $g(x) \Leftrightarrow$ solving the equation: g(x) - x = 0 where we can define g(x) - x as f(x).

Algorithm 2

FPI

Input: f(x) = g(x) - x, initial guess, x_0

Output: approximate solution of f(x) = 0, (ie. a fp of g(x))

for
$$i = 0..k$$

 $x_{i+1}=g(x_i)$

If the sequence x_0, x_1, x_2, \dots converges to a value, r, then r is a fp of g(x). For some j: $|x_{j+1}-x_j| < E$.

Question 25. Can any fct, f(x) be written as g(x) - x?

Answer. Yes, and often in more ways than one.

Example 26. $x^2 + x - 1 = 0$

$$x = 1 - x^3 \tag{1}$$

$$x = (1 - x)^{\frac{1}{3}} \tag{2}$$

$$x = \frac{1 + 2x^3}{1 + 3x^2} \tag{3}$$

Use fp iterations with $x_0 = 0.5$.

- 1. The interates flip-flop from 0 to 1, **no convergence**
- 2. The iterates converge to 0.6823 in 25 iterations

Explanation: |g'(r) > 1, <1|

Example 27.

$$g_1(x) = -\frac{3}{2}x + \frac{5}{2}$$
 with $r = 1$ and $|g_1'(1)| = \frac{3}{2} > 1$
 $g_2(x) = -\frac{1}{2}x + \frac{3}{2}$ with $r = 1$ and $|g_2'(1)| = \frac{1}{2} < 1$

Thus, we have $x_{i+1} = g_1(x_i)$. Consider $g(x) \leadsto$

$$x_{i+1} - 1 = -\frac{3}{2}(x_i - 1)$$

denote by $e_i = |1 - x_i|$ then $e_{i+1} = \frac{3}{2} e_i \leadsto$ error increases, divergent.

Consider $g_2(x)$ with $x_{i+1} = g_2(x_i) \rightsquigarrow$

$$x_{i+1} - 1 = -\frac{1}{2}(x_i - 1)$$

then $e_{i+1} = \frac{1}{2} e_i$. 1

Definition 28. Denote by e_i , the error at step i, of an iterative method.

$$e_i = |r - x_i|$$

The method converges linearly with rate, S, if:

$$\lim_{i \to \infty} \frac{e_{i+1}}{e_i} = S$$

and S < 1.

Observation. f-p iteration for $g_2(x)$ converges linearly with rate $S = \frac{1}{2}$.

Theorem 29. Assume g is differentiable.

$$\begin{split} g(r) = & \quad r \quad \text{ and } r \text{ is an fp of } g \\ |g'(r)| = & \quad S < 1 \end{split}$$

Then, the fp iteration for g, conerges linearly with rate, S to r. For initial guesses, x_0 , sufficiently close to r.

Example 30. $f(x) = x^3 + x - 1$ in the form of g(x) = x.

- 1. $g_1(x) = 1 x^3$, now $|g_1'(x)| = 3x^2 \longrightarrow x = 0.6823 \longrightarrow >1$
- 2. $g_2(x) = (1-x)^{\frac{1}{3}}$, now $|g_2'(x)| = \frac{1}{3}(1-x)^{-\frac{2}{3}} + 1 \longrightarrow x = \dots \longrightarrow <1$: converges
- 3. $g_3(x) = \frac{1+2x^3}{1+3x^2}$, now $|g_3'(x)| = \frac{(6x^2)(1+3x^2)+(6x)(1+2x^3)}{(1+3x^2)^2} \longrightarrow x = \dots \longrightarrow 0 < 1$ We have a linear convergence with rate, S = 0

3.2.1 Stopping Criteria for FPI

Where do we need to stop the iteration?

1. Bounded absolute error:

$$|x_{i+1} - x_i| < \mathbf{E}$$

2. Bounded relative error:

$$\frac{|x_{i+1} - x_i|}{|x_{i+1}|} < \mathbf{E}$$

Example 31. $\begin{cases} g(x) = \frac{x + \frac{2}{x}}{2} \\ x_0 = 1 \end{cases}$. Set up FPI as g(x) = x.

$$g(\sqrt{2}) = \frac{\sqrt{2} + \frac{2}{\sqrt{2}}}{2} = \sqrt{2}$$

3.2.2 Forward and Backward Error

Example 32. $f(x) = x^3 - 2x^2 + \frac{4}{3}x - \frac{8}{27}$. Use the bisection method to compute a root with 6 correct significant digits. We have f(0) f(1) < 0 and $f(\frac{2}{3}) = 0$.

Observation. 16 steps \rightarrow 0.6666641. We cannot get the 6th digit correct.

IEEE double precision, there are many float point numbers within 10^{-5} of the correct root $r = \frac{2}{3}$.

Definition 33. Suppose a function, f, with root r and f(r) = 0. Also, x_a is an approximation to r computed by a root-finding method.

Backwards error (BE): $|f(x_a)|$

Forward error (FE): $|r - x_a|$

BE amount by which we need to change f(x) so that x_a is a solution. FE amount by which we need to change the approximate solution to make it correct.

Remark 34. The problem we encountered with the previous example is that the BE is near $E_{\rm mach} = 10^{-16}$ and the $FE \approx 10^{-5}$.

Definition 35. Multiple Roots

f, a differentiable function, with root r and f(r) = 0 if

$$o = f(r) = f'(r) = f''(r) = \dots = f^{(m-1)}(r)$$

and $f^{(m)}(r) \neq 0$. Then, f, has a root of multiplicity m, at r; where r is a multiple root of order m of f.

$$\begin{cases} m = 1; r \text{ single root} \\ m = 2; r \text{ double root} \\ m = 3; r \text{ triple root} \end{cases}$$

Example 36. $f(x) = x^2$, has a double root at x = 0.

$$\begin{array}{rcl} f(0) & = & 0 \\ f'(0) & 2x|_{x=0} & =0 \\ f''(0) & = & 2 \neq 0 \end{array}$$

9

Also, $f(x) = x^3$ has a triple root at x = 0.

Geometric Intuition.

Graph of $f(x) = \left(x - \frac{2}{3}\right)^3$.

 $\frac{2}{3}$ is a triple root. The graph is [supposed to be] flat around the triple root.

Consequence. Large disparity between BE and FE.

$$BE \ll FE$$

where BE is the vertical dimension and FE is the horizantal dimension.

Example 37. $f(x) = \sin(x) - x$ has a triple root at r = 0 and $x_a = 0.001$ is the approx. root. Compute BE and FE.

BE:
$$|r - x_a| = 10^{-3}$$

FE: $|f(x_a)| = |\sin(0.001) - 0.001|$
 $\approx 1.6667 \times 10^{-10}$

Stopping Criteria. Either make FE small or make BE small.

Bisection:
$$\begin{cases} \text{BE: known} \\ \text{FE: } < \frac{b-a}{2} \end{cases}$$

> if
$$abs(f(x_a)) < E$$
 then ...
> if $abs(\frac{b-a}{2}) < E$ then ...

$$\label{eq:BE:known} \text{Fixed point:} \left\{ \begin{array}{l} \text{BE:known} \\ \text{FE:not known} \end{array} \right.$$

3.2.3 Wilkinson Polynomial

$$W(x) = (x-1)(x-2)...(x-20)$$
$$= \prod_{i=1}^{20} (x-i)$$

It has 20 (simple) roots, x=1,...,20. To compute numerical approximations to the roots of the expanded W(x) is very hard. $W(x)=x^{20}\pm...$

3.2.4 Sensitivity of Root Finding

A problem is called sensitive if small errors in the input (the eq. we are solving). This leads to large errors in the output (solution).

We need to measure how far a root is moved when the eq. is changed (perturbed).

Proposition 38. Supposed, we change $f(x) \to f(x) + \epsilon g(x)$.

Let Δ_r be the corresponding change to the root r.

$$f(r + \Delta_r) + \epsilon g(r + \Delta_r) = 0$$

D-d-d-d-drop the Taylor and neglect the higher order terms (H.O.T).

$$\Delta_r \approx -\frac{\epsilon g(r)}{f'(r)}$$

for $\epsilon \ll f'(r)$.

Example 39. Estimate the largest root of

$$P(x) = \left(\prod_{i=1}^{6} (x-i)\right) - 10^{-6}x^{7}$$

Get all emotional and used the sensitivity formula.

$$\epsilon = -10^{-6}$$

$$g(x) = x^{7}$$

$$f(x) = P(x)$$

Now:

$$\Delta_r \approx \frac{\epsilon \, 6^7}{5!} = -2332.8 \, \epsilon$$

and thus:

$$6 + \Delta_r = 6.0023$$

3.3 Newton's Method

Problem. Find a root of a fn, f(x) = 0.

The first thing we need to do is start with an initial guess of x_0 . Draw the tangent line to f at x_0 and identify the point where the tangent intersects with the x-axis.

We can get the equation of the tangent line at $(x_0, f(x_0))$.

$$y - f(x_0) = f'(x_0)(x - x_0)$$

where $f'(x_0)$ is the slope. The intersection of the above equation and the x-axis $\rightsquigarrow y = 0$, we obtain:

$$x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Algorithm 3

Input: f(x), x_0 (initial guess)

Ouput: approximation to root r st f(r) = 0

The way it would iterate:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

where i = 0, 1, 2, ...

Example 40. $f(x) = x^3 + x - 1$.

First compute $f'(x) = 3x^2 + 1$. Newton iteration is:

$$x - \frac{f(x)}{f'(x)} = x - \frac{x^3 + x - 1}{3x^2 + 1}$$
$$= \frac{2x^3 + 1}{3x^2 + 1}$$

Thus we have a generalized form: $x_{i+1} = \frac{2x_i^3 + 1}{3x_i^2 + 1}$ with $x_0 = 0.1$.

We can perform 6 iterations to give you the root with the correct 8 significant digits: 0.68232780.

Definition 41. Denote e, as the error at step i: $|r - x_i|$.

The iterative method converges quadratically \iff

$$\lim_{i \to \infty} \frac{e_{i+2}}{e_i^2} = M$$

Remark 42. If f(r) = 0, and f'(r) = 0, then Newton's method converges quadratically to r and thus, $M = \frac{f''(r)}{2 f'(r)}$, where M denotes the rate of convergence.

3.3.1 Newton's Method Can Fail

Example 43. $f(x) = 4x^4 - 6x^2 - \frac{11}{4} = 0$ with $x_0 = \frac{1}{2}$ (bi-quadratic equation). We then have the Newton iteration being:

$$x_{i+1} = x_i - \frac{f(x_i)}{16x_i^3 - 12x_i}$$

$$x_1 = -\frac{1}{2}$$

$$x_2 = \frac{1}{2}$$

$$x_3 = \frac{1}{2}$$

$$x_4 = -\frac{1}{2}$$
.

$$x_2 = \frac{1}{2}$$

$$x_3 = \frac{1}{2}$$

There is no convergence. Roots are ± 1.3667 . We have an even function st f(x) = f(-x) and thus

$$f\!\left(\frac{1}{2}\right)\!=f\!\left(-\frac{1}{2}\right)\!=-4$$

12

The tangent lines at $(\frac{1}{2}, 4)$ and $(-\frac{1}{2}, 4)$ will intersect at the x-axis at $-\frac{1}{2}, \frac{1}{2}$.

Example 44. $f(x) = \sin(2x)$, with $x_0 = 0.75$. Newton's method converges to the root -2π . We converge to and missed the closer root, 0.

Why? This occurs, if $f(x_i)$ is very small, then the tangent line is almost horizantal.

Example 45. $f(x) = x e^x$. Newton iteration with $x_0 = 2$. The Newton iteration is:

$$x_{i+1} = x_i - \frac{x_i e^{-x_i}}{e^{x_i} - x_i e^{-x_i}} = \frac{x_i^2}{x_i - 1}$$

$$x_1 = 4$$

$$x_2 = \frac{16}{3}$$

$$x_3 = \dots$$

$$\vdots$$

This converges to infinity and thus fails.

3.3.2 Multivariate Newton's Method

Example 46. $f_1(x_1, x_2) = x_1^2 + x_2^2 - 8x_1 - 4x_2 + 11 = 0$ and $f_2(x_1, x_2) = x_1^2 + x_2^2 - 20x_1 + 75 = 0$.

These equations give us two circles. We need to solve the system $\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$. The solution of the system will give us the two points where the circles intersect (twice).

Let's start with the initial condition $(x_1^{\circ}=2, x_2^{\circ}=4)$. First step: compute 4 partial derivatives.

$$\begin{array}{rcl} \frac{\delta f_1}{\delta x_1} &=& 2x_1 - 8\\ \frac{\delta f_2}{\delta x_1} &=& 2x_2 + 20 \end{array}$$

And then:

$$\frac{\delta f_1}{\delta x_2} = 2x_2 - 4$$

$$\frac{\delta f_2}{\delta x_2} = 2x_2$$

This gives us: $f_1(x_1^{\circ}, x_2^{\circ}) = -1$ and $f_2(x_1^{\circ}, x_2^{\circ}) = 55$. We can then put these values in a Jacobian matrix: $J(x_1, x_2) = (f_1, f_2) =$

$$\begin{pmatrix} 2x_1-8 & 2x_2-4 \\ 2x_1-20 & 2x_2 \end{pmatrix}$$

We need compute it's value at (2,4). This gives us:

$$J_{(f_1,f_2)}(2,4) = \begin{pmatrix} -4 & 4 \\ -16 & 8 \end{pmatrix}$$

To compute the next iterate (x_1^1, x_2^1) . To do this, we compute:

$$x_1^1 = x_1^{\circ} + \Delta x_1 x_2^1 = x_2^{\circ} + \Delta x_2$$

Now solve:

$$\begin{pmatrix} -4 & 4 \\ -16 & 8 \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -55 \end{pmatrix}$$

Using the values of $\Delta x_1 = 7.125$ and $\Delta x_2 = 7.375$. This gives us:

$$x_1^1 = 2 + 7.125 = 9.125$$

 $x_2^1 = 4 + 7.375 = 11.375$

This converges in 8 iterations.

Algorithm 4

Input:
$$f_1(x_1,...,x_n)=0$$
 (square system of non-linear equations)
 \vdots $f_n(x_1,...,x_n)=0$ ϵ , initial point $(x_1^\circ,...,x_n^\circ)$

Output: Approx. solution $\overrightarrow{r}=(r_1,...,r_n)$ st $f_1(\overrightarrow{r})=...=f_n(\overrightarrow{r})=0$ i = 1 while $(\left|f_j(\overrightarrow{r})\right|\geq \text{eps, j}=1)$ do
 $i=i+1$ solve system of linear eqs
$$J_{(f_1:::f_n)}(x_1^i; :::; x_n^i)\binom{\Delta x_1}{\Delta x_2}=\binom{-f_1(\overrightarrow{x^i})}{\vdots}$$
 $x_j^{(i)}=x_j^{(i-1)}+\Delta x_j$, j=1..n

Let's talk Jacobian dude.

Jacobian $n \times n$ Matrix

$$J_{(f_1,...,f_n)}(x_1,...,x_n) = \begin{pmatrix} \frac{\delta f_1(\overrightarrow{x})}{\delta x_1} & \dots & \frac{\delta f_1(\overrightarrow{x})}{\delta x_n} \\ \vdots & \ddots & \vdots \\ \frac{\delta f_n(\overrightarrow{x})}{\delta x_1} & \dots & \frac{\delta f_n(\overrightarrow{x})}{\delta x_n} \end{pmatrix}$$

3.4 Secant Method (root-finding without derivatives)

We want to replace the tangent with the *secant* line:

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

So we replace the tangent line with a discrete approximation.

Algorithm 5

Input: f(x), x_0 , x_1 , ϵ (two initial guesses) Output: approximation to the root, r

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} = x_i - f(x_i) \frac{1}{f'(x_i)}$$

Where i = 1, 2, 3, ...

Error Analysis:

If $f'(r) \neq 0$ (simple root), and the secant method converges, then $e_{i+1} \approx c e_i^{\phi}$. This is called superlinear convergence.

We have the golden ratio, $\phi = \frac{1+\sqrt{5}}{2} \approx 1.6$

4 Systems of Linear Equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

In an $n \times n$ system, there are n equations and n variables. The <u>matrix form</u> of a system:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & & \vdots & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Solution methods:

Direct methods:

- Gauss elimination
- Gauss-Jordan
- LU decomposition

Iterative methods:

- Jacobi
- Gauss-Seidel
- Relaxtion

4.1 Vector, Matrix Norms

If we have $\overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, we need to measure the size of \overrightarrow{x} by the *Euclidean* norm:

$$\left\| \overrightarrow{x} \right\| = \sqrt{x_1^2 + \dots x_n^2}$$

Then we have the L_p norm:

$$\left\| \overrightarrow{x} \right\| = p \sqrt{|x_1|^p + \dots + |x_n|^p}$$

The following results occur:

$$p=1 \implies \text{sum of absolute values of the elements of } \overrightarrow{x}$$
 $p=2 \implies L_p = \text{Euclidean norm}$
 $p=\infty \implies \max |x_i|$

We can denote $A = (a_{ij})$, where A is an $m \times n$ matrix (rows \times columns).

We have the *Frobenius* norm:

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2}$$

where the $||A||_F$ has $m \times n$ terms.

p-norms:

$$||A||_p = \max ||A\overrightarrow{x}||_p$$

where $\|\overrightarrow{x}\| = 1$.

Next, we look at 4 square matrices $n \times n$:

$$||A||_2 = \max \lambda_i$$

where i = 1, ..., n. λ_i are the eigenvalues of A.

Next, the *spectral* norm:

$$||A||_1 = \max_{1 \le j \le n} \left(\sum_{i=1}^n |a_{ij}| \right)$$

 $||A||_{\infty} = \max_{1 \le i \le n} \left(\sum_{j=1}^m |a_{ij}| \right)$

4.1.1 Norm Inequalities

- 1. $||A||_2 \le ||A||_F \le \sqrt{n} ||A||_2$
- 2. $\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_2 \le \sqrt{n} \|A\|_{\infty}$
- 3. $\frac{1}{\sqrt{n}} \|A\|_1 \le \|A\|_2 \le \sqrt{n} \|A\|_1$

4.1.2 Solution Concepts

Remember: $A \times \overrightarrow{x} = \overrightarrow{b}$ where the sizes are $n \times n, n \times 1$ and $n \times 1$ respectively.

- 1. If $\overrightarrow{b} = \overrightarrow{0}$ then it is a homogeneous system
 - Trivial solution of $\overrightarrow{x} = \overrightarrow{0}$
 - A non-trivial solution exists if det(A) = 0
- 2. If $\stackrel{\rightarrow}{b} \neq \stackrel{\rightarrow}{0}$, then it is a <u>non-homogeneous</u> system, denoted as *augmented* matrix

$$A' = \left[A/\overrightarrow{b}\right]$$

16

- System has a solution \iff rank(A) = rank(A')
- Solution is unique if rank(A) = n; A is considered **full rank**

• If rank(A) < n, then it is denoted as **inconsistent**

Definition 47. Linearly dependent rows and equations

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ 8 & 1 & -1 \end{pmatrix} \rightsquigarrow \begin{cases} r_1 \\ r_2 \\ r_3 \end{cases}$$

And we have: $2r_1 + 3r_2 = r_3$. And r_1 , r_2 and r_3 are linearly dependent.

4.2 Rank and Nullspace of a Matrix $(A: m \times n)$

We can have:

$$\begin{split} \operatorname{range}(A) &= \left\{\overrightarrow{y} \in \mathbb{R}^m \text{: } \overrightarrow{y} = A \, \overrightarrow{x} \text{,for some } \overrightarrow{x} \in \mathbb{R}^n \right\} \\ \operatorname{rank}(A) &= \operatorname{dim}(\operatorname{range}(A)) \\ \operatorname{nullspace}(A) &= \left\{\overrightarrow{x} \in \mathbb{R}^n \text{: } A \, \overrightarrow{x} = \overrightarrow{0} \right\} \end{split}$$

Theorem 48. $\dim(\text{nullspace}(A)) + \text{rank}(A) = n$

Where the rank(A) is the maximum, linearly independent number of rows.

Definition 49. A is a full rank if

$$rank(A) = min(m, n)$$

A is rank-defficient if

$$\operatorname{rank}(A) < \min(m, n)$$

4.3 Cramer's Method

We have $A\overrightarrow{x} = \overrightarrow{b}$ where A is an $n \times n$ matrix. We define:

$$A_i = \left(\begin{array}{c} \vdots \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{array} \right) \vdots$$

with i=1,...,n. Then, we can have $x_i=\frac{|A_i|}{|A|}$ with i=1,...,n.

Example 50. Given:

$$x_1 - x_2 + x_3 = 3$$

$$x_1 + x_2 - x_3 = 0$$

$$3x_1 + 2x_2 + 2x_3 = 5$$

That looks like:

$$|A| = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & 2 \end{pmatrix} = 1 \times \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix} - (-1) \times \begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix} + 1 \times \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$

17

We then have:

$$|A_1| = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 1 & -1 \\ 15 & 2 & 2 \end{pmatrix} = 12, x_1 = \frac{|A_1|}{|A|} = \frac{12}{12} = 1$$

Next:

$$|A_2| = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 0 & -1 \\ 3 & 15 & 2 \end{pmatrix} = 24, x_2 = \frac{24}{12} = 2$$

And:

$$|A_3| = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & 0 \\ 3 & 2 & 15 \end{pmatrix} = 48, x_3 = \frac{48}{12} = 4$$

4.4 Gauss Elimination

The **strategy** is reduce to [upper] triangular form, and then run back substitution. This reduction is carried out by *elementary row operations*:

- Multiply divide by any row or constant value
- Any row can be added/subtracted to/from any row
- Interchange rows

Example 51. Suppose we have the system:

$$2x_1 - x_2 + x_3 = 4$$
$$4x_1 + 3x_2 - x_3 = 6$$
$$3x_1 + 2x_2 + 2x_3 = 15$$

Use elementary row operations to obtain:

$$x_3 = 4$$

$$x_2 = 2$$

$$x_1 = 1$$

4.4.1 Determinant Computation via GEM

If we have $A \times \overrightarrow{x} = \overrightarrow{b}$ and by GE we reduce it to $A \times \overrightarrow{x} = \overrightarrow{b}$. We can then say:

$$\det(A) = \det(\stackrel{\sim}{A})$$

We can then define the property:

$$\det(B) = \prod_{i=1}^{n} b_{i_i}$$

where B is triangular. From the previous example, we have

$$\det(A) = 2 \times 5 \times \frac{13}{5} = 26$$

where those numbers come from the diagonal of the [upper] triangle matrix.

4.5 Gauss-Jordan

It is an extension of GEM. Use a pivot to reduce (to 0). Element below and above the main diagonal - apply back substitution as needed.

$$A \stackrel{\mathrm{GJ}}{\leadsto} I_n$$

4.5.1 Inverse Matrix Computation via GJE

$$(A|I_n)^{GJ}_{\leadsto}(I_n|A^{-1})$$

Example 52. refer to paper

4.6 LU Decomposition

$$A = L \times U$$

Where L is a lower triangular matrix and U is a lower triangular matrix. We can start by saying A has n^2 elements, L has $\frac{n(n+1)}{2}$ and U has $\frac{n(n+1)}{2}$.