

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS DOCENTE: NIKOLA KAMBUROV

AYUDANTE: MATÍAS DÍAZ

MAT2555 - Análisis Funcional

Tarea 3 - Omar Neyra, Sebastián Sánchez

PROBLEMA 1 -

Sea (Ω, M, μ) un espacio de medida y suponga que $f \in L^{p_0}(\mu) \cap L^{\infty}(\mu)$ para algún $p_0 \in [1, \infty)$. Pruebe que $f \in L^p$ para todo $p \ge p_0$ y que

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p.$$

SOLUCIÓN El caso $p = p_0$ es directo, así que supongamos que la desigualdad es estricta y denotemos $p' := p - p_0 > 0$. Notando que $|f(x)| \le ||f||_{\infty}$ tenemos que

$$\int |f|^p = \int |f|^{p_0} |f|^{p'} \le \int |f|^{p_0} ||f||_{\infty}^{p'} \le ||f||_{\infty}^{p'} ||f||_{p_0}^{p_0} \tag{1}$$

Todas las cantidades son positivas, así que tomando raíz obtenemos que

$$||f||_{p} \le ||f||_{\infty}^{p'/p} ||f||_{p_{0}}^{p_{0}/p} < \infty, \tag{2}$$

pues la norma uniforme y p_0 están acotadas. Tomando límite se ve directamente que

$$\lim_{p \to \infty} ||f||_p \le ||f||_{\infty} \tag{3}$$

pues $p'/p = 1 - p_0/p \rightarrow 1$ y $p_0/p \rightarrow 0$ cuando $p \rightarrow \infty$.

Para la otra dirección, consideremos $\varepsilon > 0$. Luego,

$$\begin{split} \|f\|_p &= \left(\int |f|^p\right)^{1/p} \\ &\geq \left(\int_{\{|f|+\varepsilon>\|f\|_\infty\}} |f|^p\right)^{1/p} \\ &\geq \left(\int_{\{|f|+\varepsilon>\|f\|_\infty\}} (\|f\|_\infty - \varepsilon)^p\right)^{1/p} \geq (\|f\|_\infty - \varepsilon)\mu(\{|f|+\varepsilon>\|f\|_\infty\})^{1/p}. \end{split}$$

Notar que $\mu(\{|f|+\varepsilon>\|f\|_{\infty}\})<\infty$ pues $f\in L^p$. Tomando límite tenemos que $\lim_{p\to\infty}\|f\|_p\geq \|f\|_{\infty}-\varepsilon$. Como ε es arbitrario, se concluye el resultado.

Para todo $a \in \mathbb{R}$ construya una función $f_a \in L^{\infty}(\mathbb{R})$ con $||f_a - f_b||_{L^{\infty}(\mathbb{R})} \ge 1$ cuando $a \ne b$. Demuestre que esto implica que $L^{\infty}(\mathbb{R})$ no es separable.

SOLUCIÓN Para cada $a \in \mathbb{R}$ definamos $f_a(x) = \mathbb{1}_{[a,\infty)}(x)$. Claramente $f_a \in L^{\infty}(\mathbb{R})$ para todo $a \in \mathbb{R}$. Sea $b \neq a \in \mathbb{R}$. Supongamos sin perdida de generalidad que a < b. Luego, $(a,b) \neq \emptyset$ y por lo tanto $(f_a - f_b)(x) = 1$ para todo $x \in (a,b)$. Concluimos que, ya que (a,b) es un conjunto de medida no nula, $\|f_a - f_b\|_{\infty} \geq 1$.

Supongamos por contradicción que $L^{\infty}(\mathbb{R})$ es separable. Sea $U:=\{u_n\}_{n\in\mathbb{N}}\subseteq L^{\infty}(\mathbb{R})$ denso. Definamos $B_a:=B_{1/2}(f_a)\subseteq L^{\infty}(\mathbb{R})$. Notemos que la intersección

$$B_a \cap U$$

es no vacía para a lo más numerables valores de a. Luego, el conjunto $S := \{a \in \mathbb{R} : B_a \cap U = \emptyset\}$ es no vacío. Se tiene enconces que el conjunto $\bigcup_{a \in S} B_a$ es un conjunto abierto y luego

$$||f_b - u_n||_{\infty} \ge \frac{1}{2} \, \forall b \in S, n \in \mathbb{N}.$$

Esto contradice la densidad de U, por lo que tenemos lo pedido.

Suponga que el espacio de medida (Ω, M, μ) es σ -finito. Decimos que una sucesión $f_n \in L^p$ converge débilmente a $f \in L^p$ si $c(f_n) \to c(f)$ para todo $c \in (L^p)^*$. Escribimos $f_n \to f$ en L^p .

(a) Demuestre que $f_n \rightharpoonup f$ en L^p , $p \in [1, \infty)$, si y solo si

$$\int f_n g \to \int f g$$

para toda $g \in L^q$, con 1/p + 1/q = 1.

- (b) Pruebe que cuando $f_n \rightharpoonup f$ en L^p , $||f||_p \le \liminf_{n\to\infty} ||f_n||_p$
- (c) (Compacidad débil de L^p) Sea $p \in (1, \infty)$ y suponga que L^q es separable. Pruebe que si $\sup_n \|f_n\|_p < \infty$, entonces existe $f \in L^p$ y una sucesión $f_{n_k} \in L^p$ tal que $f_{n_k} \rightharpoonup f$.
- (d) De un contraejemplo del ítem anterior cuando p = 1.

SOLUCIÓN

(a) \implies : Notamos que para todo $g \in L^q$, el mapa $\Phi \colon L^p \to \mathbb{K}$ dado por $a \mapsto \int ag$ define un funcional lineal acotado. En efecto, la linealidad es directa por la linealidad de la integral y la cota sale por Hölder:

$$|\Phi(a)| \le \int |ag| \le ||a||_p ||g||_q < \infty.$$

Luego, la convergencia débil nos da que

$$\lim_{n\to\infty}\Phi(f_n)=\Phi(f)\Rightarrow \lim_{n\to\infty}\int f_ng=\int fg.$$

 \Leftarrow : Por el teorema de representación de Riesz para espacios de funciones integrables, para todo $T \in (L^p)^*$ existe $h \ge 0$ en L^q tal que

$$T(a) = \int ah.$$

Por la hipótesis, se sigue que

$$\lim_{n\to\infty} T(f_n) = \lim_{n\to\infty} \int f_n h = \int f h = T(f).$$

(b) Sea $x' \in (L^p)^*$ de norma 1 tal que $|x'(f)| = ||f||_p$. Esto lo podemos pedir por Hahn-Banach. Por hipótesis, se cumple que $x'(f_n) \to x'(f)$. Se sigue que:

$$||f||_p = \left| x'(f) \right| = \left| \lim_{n \to \infty} x'(f_n) \right| \le \liminf_{n \to \infty} \left| x'(f_n) \right| \le \liminf_{n \to \infty} \left| x' \right| ||f_n||_p = \liminf_{n \to \infty} ||f_n||_p.$$

(c) Recordemos que para $1 , <math>L^q \cong (L^p)^*$. Luego, $(L^p)^*$ es separable. Tomemos $(\phi_n)_{n \in \mathbb{N}}$ en $(L^p)^*$ denso y numerable. Luego, $(\phi_1(f_n))_n$ define una sucesión acotada de números en el cuerpo. Se sigue que existe una subsecuencia $f_{n,1}$ tal que $\phi_1(f_{n,1}) \to c_1 \in \mathbb{K}$. De manera inductiva tenemos secuencias $(f_{n,k})_n \subset (f_{n,k-1})_n$ tal que

$$\phi_k(f_{n,k}) \to c_k \in \mathbb{K}$$
.

Definamos la secuencia diagonal $f_{n_k} = f_{n_k,n_k}$. Luego, para todo $n \in \mathbb{N}$:

$$\phi_n(f_{n_k}) \xrightarrow{n_k \to \infty} c_n \in \mathbb{K}.$$

Definamos $f = \lim_{n \to \infty} f_{n_k}$. Notar que $\phi_n(f_{n_k}) \to \phi_n(f)$. Sea $\varepsilon > 0$ y tomemos $g \in (L^p)^*$. Por densidad de las ϕ_n , existe un $N_1 > 0$ tal que:

$$\|\phi_N-g\|_{p^*}<\frac{\varepsilon}{3}.$$

Por otro lado, existe N_1 tal que:

$$|\phi_n(f_{n_k}) - \phi_n(f)| < \frac{\varepsilon}{3}$$

para $n_k > N_1$. Tomando $N > \max(N_0, N_1)$ nos da que:

$$|g(f)-g(f_{n_k})| \leq \underbrace{|g(f)-\phi_n(f)|}_{\leq \|g-\phi_n\|} + |\phi_n(f_{n_k})-\phi_n(f)| + \underbrace{|\phi_n(f_{n_k})-g(f_{n_k})|}_{\leq \|g-\phi_n\|} \leq \varepsilon.$$

(d) Sea $(f_n)_{n\in\mathbb{N}}\subseteq L^1([0,1])$ definidas por $f_n(t)=n\mathbb{1}_{[0,1/n]}(t)$. Claramente, para $n\in\mathbb{N}$

$$||f_n||_1 = \int_0^1 |f(t)| dt = \int_0^{1/n} |n| dt = 1.$$

Luego, $\sup_{n\in\mathbb{N}} ||f_n||_1 < \infty$. Notemos que para toda $g \in C([0,1]) \subseteq L^{\infty}([0,1])$,

$$\int_{0}^{1} u_{n}(t)g(t)dt = n \int_{0}^{1/n} g(t)dx.$$

Como g es continua en [0, 1/n], este alcanza su maximo y su minimo en el intervalo. Luego,

$$\int_{0}^{1/n} g(t)dt \le \frac{1}{n} \max_{t \in [0, 1/n]} g(t);$$

$$\int_{0}^{1/n} f(t) dt \ge \frac{1}{n} \max_{t \in [0, 1/n]} g(t)$$

$$\int_0^{1/n} g(t)dt \ge \frac{1}{n} \min_{t \in [0, 1/n]} g(t),$$

y te tendría que $\int_0^1 f_n(t)g(t)dt \to g(0)$.

Sea $(f_{n_k})_k$ una subsucesión. Supongamos por contradicción que existe $f \in L^1([0,1])$ tal que $f_{n_k} \rightharpoonup f$. Se debe cumplir que

$$\int_0^1 f_{n_k}(x)\varphi(t)dt \to \int_0^1 f(t)\varphi(t)dt$$

para toda $\varphi \in L^{\infty}([0,1])$. Por lo anterior, si tomamos $\psi \in C([0,1])$,

$$\int_0^1 f_{n_k}(x) \psi(t) dt \to \psi(0),$$

y por unicidad del limite, f cumple que $\int_0^1 f(t) \psi(t) dt = \psi(0)$ para cualquier ψ continua.

Tomemos $(\psi_n)_{n\in\mathbb{N}}\subseteq C([0,1])\subseteq L^\infty([0,1])$ tales que $\psi_n(t)=(1-t)^n$. Se tiene que $\int_0^1 f(t)\psi_n(t)dt=\psi_n(0)=1$ para cualquier $n\in\mathbb{N}$, por lo que $\psi_n(0)\xrightarrow{n\to\infty}1$. Notemos que para todo $n\in\mathbb{N}$, $\psi_n(t)\leq 1$, $t\in[0,1]$ por lo que, como $u\in L^1([0,1])$, por el TCD,

$$\begin{split} 1 &= \lim_{n \to \infty} \psi_n(0) \\ &= \lim_{n \to \infty} \int_0^1 f(t) \psi_n(t) dt \\ &\stackrel{\mathsf{TCD}}{=} \int_0^1 f(t) \lim_{n \to \infty} \psi_n(t) dt. \end{split}$$

Como $\psi_n \to \psi$, con $\psi(t) = \mathbb{1}_{\{0\}}(t)$ puntualmente,

$$\int_0^1 f(t) \lim_{n \to \infty} \psi_n(t) dt = 0$$

. Esta contradicción demuestra que no existe tal f, por lo que tenemos lo pedido.

Sean $(\Omega_i, \mathcal{M}_i, \mu_i)$, i = 1, 2 dos espacios de medida σ -finita y sea $K : \Omega_1 \times \Omega_2 \to \mathbb{K}$ una función $\mu_1 \otimes \mu_2$ medible. Fije $1 \le q \le \infty$.

(a) Suponga que $K \ge 0$. Utilice la propiedad isométrica de la correspondencia entre $(L^p)^*$ y L^q para demostrar la *Desigualdad integral de Minkowski*:

$$\left\| \int_{\Omega_2} K(\cdot, y) d\mu_2(y) \right\|_{L^q(\Omega_1, \mu_1)} \le \int_{\Omega_2} \| K(\cdot, y) \|_{L^q(\Omega_1, \mu_1)} d\mu_2(y).$$

(b) Pruebe que la desigualdad se cumple también cuando $K(\cdot,y) \in L^q(\Omega_1,\mu_1)$ para todo $y \in \Omega_2$.

SOLUCIÓN

(a) Notemos que $\mu_1 \times \mu_2$ es σ -finita. Para p=1 basta aplicar Tonelli. Supongamos que p>1. Sea $\Omega_n \uparrow \Omega_1 \times \Omega_2$ tal que $\mu_1 \times \mu_2(\Omega_n) < \infty$. Sea Φ el mapa:

$$\Phi \colon L^q(\Omega_1 \times \Omega_2) \to (L^p(\Omega_1 \times \Omega_2))^*$$
$$g \mapsto \langle \cdot, g \rangle$$

donde $g \in L^q(\Omega_1 \times \Omega_2)$. Sabemos que Φ es un isomorfismo isométrico porque $p \in [1, \infty)$ y $\mu_1 \times \mu_2$ es σ -finito.

Sea $s_n \in \Omega_n$ una función simple. Notar que $s_n \in L^q(\Omega_n)$ y $\int s_n(\cdot, x_2) \in L^q(\Omega_n^{x_1})$. Tomemos $g \in L^p(\Omega_n^{x_1})$ de norma 1. Luego,

$$\left| \Phi^{x_1} \left(\int s_n(\cdot, x_2) d\mu_2 \right) (g) \right| = \left| \left\langle \int s_n(\cdot, x_2), g \right\rangle \right|$$

$$\leq \int_{\Omega_1} \int_{\Omega_2} |s_n(x_1, x_2) g(x_2)|$$

$$\stackrel{\text{tonelli}}{=} \int_{\Omega_2} \int_{\Omega_1} |s_n(x_1, x_2) g(x_2)|$$

$$\stackrel{\text{h\"{o}lder}}{\leq} \int_{\Omega_2} ||s_n(\cdot, x_2)||_q$$

Dado que Φ es isometría, se tiene que

$$\left\|\Phi(\int s_n(\cdot,x_2)d\mu_2\right\|_{p^*} = \left\|\int s_n(\cdot,x_2)d\mu_2\right\|_{q}$$

y se concluye el resultado. Dado que $K \ge 0$ y es medible, existe una sucesión de funciones simples que convergen a K monotonamente. Combinando el procedimiento anterior concluimos que vale para K.

(b) Aplicando el mapa Φ sobre K se sigue lo pedido como se muestra arriba para funciones simples. Esto ya que el mapa Φ es isometría entre L^q y $(L^p)^*$ y no importa el signo.

Sea μ_i , ν_i medidas σ -finitas en (Ω_i, M_i) tales que $\nu_i \ll \mu_i$ para i = 1, 2. Pruebe que la medida producto $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ y que la derivada de Radon-Nikodým:

$$\left[\frac{d(v_1 \times v_2)}{d(\mu_1 \times \mu_2)}\right] = \left[\frac{dv_1}{d\mu_1}\right](x_1) \left[\frac{dv_2}{d\mu_2}\right](x_2)$$

SOLUCIÓN Denotemos por $h_i := [dv_i/d\mu_i]$ y por $H = [d(v_1 \times v_2)/d(\mu_1 \times \mu_2)]$. Además, pongamos $\Pi_{\alpha} = \alpha_1 \times \alpha_2$.

 $\Pi_{\nu} \ll \Pi_{\mu}$: Sea $E \in \Pi_{M}$ un medible en el producto. Supongamos que $\Pi_{\mu}(E) = 0$. Denotemos por E^{\bullet}, E_{\bullet} a las secciones en Ω_{2} y Ω_{1} , respectivamente. Luego (usando que las medidas son σ -finitas):

$$0 = \Pi_{\mu}(E) = \int_{\Omega_{1}} \mu_{2}(E^{x_{1}}) d\mu_{1}(x_{1}) = \int_{\Omega_{2}} \mu_{1}(E_{x_{2}}) d\mu_{2}(x_{2})$$

$$\implies \mu_{1}(E_{\bullet}) = 0 \lor \mu_{2}(E^{\bullet}) = 0$$

$$\implies \nu_{1}(E_{\bullet}) = 0 \lor \nu_{2}(E^{\bullet}) = 0$$

$$\implies \Pi_{\nu}(E) = \int_{\Omega_{1}} \nu_{2}(E^{x_{1}}) d\nu_{1}(x_{1}) = \int_{\Omega_{2}} \nu_{1}(E_{x_{2}}) d\nu_{2}(x_{2}) = 0.$$

 $\underline{H(x_1,x_2)} = h_1(x_1)h_2(x_2)$: Para toda $f \in L^1(\Pi_{\mu})$ se tiene:

$$\int_{\Omega_1 \times \Omega_2} f \, d\Pi_{\nu} = \int_{\Omega_1 \times \Omega_2} f H \, d\Pi_{\mu} \tag{4}$$

Por otro lado:

$$\int_{\Omega_{1}\times\Omega_{2}} f d\Pi_{V} \stackrel{\text{fubini}}{=} \int_{\Omega_{1}} \left(\int_{\Omega_{2}} f dv_{2} \right) dv_{1}$$

$$\stackrel{\text{RN}}{=} \int_{\Omega_{1}} \left(\int_{\Omega_{2}} f h_{2}(x_{2}) d\mu_{2}(x_{2}) \right) h_{1}(x_{1}) d\mu_{1}(x_{1})$$

$$= \int_{\Omega_{1}} \left(\int_{\Omega_{2}} f h_{1}(x_{1}) h_{2}(x_{2}) d\mu_{2}(x_{2}) \right) d\mu_{1}(x_{1})$$

$$\stackrel{\text{fubini}}{=} \int_{\Omega_{1}\times\Omega_{2}} f h_{1}(x_{1}) h_{2}(x_{2}) d\Pi_{\mu}$$
(5)

Restando (4) y (5) nos da que:

$$H(x_1, x_2) = h_1(x_1)h_2(x_2)$$
 c.t.p. en $\Omega_1 \times \Omega_2$.

Pruebe que si Y es un espacio vectorial de dimensión finita en un espacio normado X, entonces Y tiene un *complemento cerrado*, i.e. existe un subespacio cerrado Z tal que $X = Y \oplus Z$.

SOLUCIÓN Sea $e_1, \ldots, e_n \subset X$ una base de Y. Podemos definir $f_i \in Y^*$ tales que

$$f_i(e_i) = \delta_{ii}$$
.

Por Hahn-Banach, podemos extender cada f_i a una extensión $g_i \in X^*$. Definamos $Z := \bigcap_{i=1}^n \ker g_i$. Sea $x \in X$. Tomemos $y = \sum_{i=1}^n g_i(x)e_i \in Y$. Tenemos que para cada $j = 1, \dots, n$,

$$g_j(y) = \sum_{i=1}^n g_j(e_i)g_i(x) = \sum_{i=1}^n f_j(e_i)g_i(x) = g_j(x),$$

Por lo que $g_j(x-y)=0$ para $j=1,\ldots,n\Rightarrow x-y\in Z$. Como $x\in X$ arbitrario, X=Y+Z. Falta demostrar que $Y\cap Z=\{0\}$. Esto es directo ya que si $x\in Y\cap Z$, entonces $x=\sum_{i=1}^n\alpha_ie_i,\ \alpha_i\in \mathbb{K}$. Luego, ya que $x\in Z$, para $j=1,\ldots,n$,

$$0 = f_j(x) = \sum_{i=1}^n \alpha_i f_j(e_i) = \alpha_j. \Rightarrow x = 0.$$

Sea $x_o(t) \in X = C([0,1])$ una función continua fija y sea $L = Gen(x_0)$. Defina en L el funcional lineal

$$f(x) := \lambda$$
 si $x = \lambda x_0$.

- (a) Pruebe que $||f||_{L^*} = 1$
- (b) De acuerdo con el teorema de Hahn-Banach, f se puede extender a un funcional $F \in X^*$ con norma $\|F\|_{X^*} = 1$. Es la extensión única si
 - $x_0(t) = t$;
 - $x_0(t) = 1 2t$?

SOLUCIÓN

(a) Se tiene que

$$||f||_{L^*} = \sup_{\|y\|_{\infty} \neq 0} \frac{|f(y)|}{\|y\|}$$

$$= \sup_{\lambda \neq 0} \frac{|f(\lambda x_0)|}{\|\lambda x_0\|_{\infty}}$$

$$= \sup_{\lambda \neq 0} \frac{|\lambda|}{|\lambda| \|x_0\|_{\infty}} = 1.$$

(b) $\boxed{x_0(t)=t}$ Veamos que el funcional de evaluación $\tilde{f}(x)=x(1)\in X^*$ es el único funcional lineal que extiende f. Sea $F\in X^*$ una extensión de f. Sea $\varphi\in X$ tal que $\varphi(t)=0$ para $t\in [1-\delta,1]$, para algún $\delta>0$. Veamos que $F(\varphi)=0$. Por contradicción, supongamos sin perdida de generalidad que $F(\varphi)>0$. Definamos $\psi_{\varepsilon}(t)=t+\varepsilon\varphi(t)$ (Si $F(\varphi)<0$, lo definimos como $\psi_{\varepsilon}(t)=t-\varepsilon\varphi(t)$). Para ε suficientemente pequeño, $\|\psi_{\varepsilon}\|_{\infty}\leq 1$, pero por linealidad,

$$|F(\psi_{\varepsilon})| = |F(t) + \varepsilon F(\varphi)| > 1,$$

lo que contradice que $||F||_{X^*} = 1$.

Veamos ahora que para $\varphi \in X$ tales que $\varphi(1) = 0$, se cumple que $F(\varphi) = 0$. Sea $(\varphi_n)_{n \in \mathbb{N}} \subseteq X$ tal que $\varphi_n \to \varphi$ uniforme, y con $\varphi_n(t) = 0$ para $t \in [1 - \delta_n, 1]$. Por continuidad de F,

$$F(\varphi) = \lim_{n \to \infty} F(\varphi_n) = 0.$$

Finalmente, se tiene que F(x) = x(1) para todo $x \in X$ ya que definiendo $\varphi(t) = x(t) - x(1)t$, como $\varphi(1) = 0$,

$$0 = F(\varphi) = F(x) - x(1) \Rightarrow F(x) = x(1).$$

Como $x \in X$ arbitrario, concluimos que $F = \tilde{f}$, que es lo que queríamos demostrar.

• $x_0(t) = 1 - 2t$ Basta notar que los funcionales de evaluación $f_1, f_2 \in X^*$ tales que $f_1(x) = x(0), f_2(x) = -x(1)$ cumplen que para $y = \lambda x_0 \in L$,

$$f_1(y) = y(0) = \lambda x_0(0) = \lambda,$$

 $f_2(y) = -y(1) = -\lambda x_0(1) = \lambda.$

Además, es claro que $||f_i||_{X^*}=1$, i=1,2 ya que para todo $a\in[0,1]$, $|x(a)|\leq ||x||_{\infty}\Rightarrow ||f_i||_{X^*}\leq 1$ y las funciones constantes $x_1(t)=1$, $x_2(t)=-1$ realizan el supremo para f_1,f_2 , respectivamente.

Suponga que *X* es un espacio de Banach.

- (a) Pruebe que X es reflexivo si y solo si X^* es reflexivo.
- (b) Demuestre que si X^* es separable, entonces X es separable. (Sugerencia: Para cada $n \in \mathbb{N}$, escoja $x_n \in X$ con $||x_n|| = 1$ y $|f_n(x_n)| \ge \frac{1}{2} ||f_n||$, donde $f_n \in X^*$ es un subconjunto contable denso, y demuestre (por contradicción) que $Gen_{\mathbb{K}_c}(\{x_n\}_n) = X$, donde $Gen_{\mathbb{K}_c}(S)$ denota el conjunto de combinaciones lineales finitas de S, con coeficientes en $\mathbb{K}_c = \mathbb{Q}$ cuando $\mathbb{K} = \mathbb{R}$ y $\mathbb{K}_c = \mathbb{Q} + i\mathbb{Q}$ cuando $\mathbb{K} = \mathbb{C}$. Note que la combinación de esta proposición y la Pregunta 2 muestra que, en general, $(L^{\infty})^* \not\cong L^1$.

SOLUCIÓN Denotemos $X^{(0)} := X$ y $X^{(i)} := (X^{(i-1)})^*$ para i > 0.

(a) \Longrightarrow : Supongamos que $X^{(0)}$ es reflexivo. Entonces, el mapa

$$J^{(0)}: X^{(0)} \to X^{(2)}$$
 $x \mapsto ev_x: X^{(1)} \to \mathbb{K}$
 $x^{(1)} \mapsto x^{(1)}(x)$

es un isomorfismo isométrico. Queremos probar lo mismo para el mapa:

$$J^{(1)}: X^{(1)} \to X^{(3)}$$

$$x^{(1)} \mapsto ev_{x^{(1)}}: X^{(2)} \to \mathbb{K}$$

$$x^{(2)} \mapsto x^{(2)}(x^{(1)}).$$

Para esto, basta probar que es sobrevectivo.

Dado que $J^{(0)}$ es sobreyectivo, todo elemento $x_0^{(2)} \in X^{(2)}$ se puede escribir como $J^{(0)}(x_0)$ para algún $x_0 \in X$. Sea $x^{(3)} \in X^{(3)}$ se tiene que

$$x^{(3)}(x_0^{(2)}) = x^{(3)}(J^{(0)}(x_0)) = (x^{(3)} \circ J^{(0)})(x_0)$$

Denotemos por $x^{(1)} := x^{(3)} \circ J^{(0)} \in X^{(1)}$. Luego,

$$x^{(3)}(x_0^{(2)}) = x^{(1)}(x_0) = J^{(0)}(x_0)(x^{(1)}) = x_0^{(2)}(x^{(1)}).$$

Y el último término lo podemos expresar como $J^{(1)}(x^{(1)})(x^{(2)}_0)$. Esto demuestra la sobreyectividad.

 \sqsubseteq : Supongamos que $X^{(1)}$ es reflexivo. Definamos $J^{(0)}, J^{(1)}$ de la misma manera. Supongamos por contradicción que $J^{(0)}(X) \neq X^{(2)}$. Por Hahn-Banach, existe $f \in X^{(3)}$ no nulo con

 $f(x)\equiv 0$ para todo $x\in J^{(0)}(X)$. Como $X^{(1)}$ es reflexivo, el mapa $J^{(1)}$ es un isomorfismo isometrico, por lo que existe $g\in X^{(1)}$ con $f=J^{(1)}(g)$. Luego, para todo $X\in X^{(0)}$

$$0 = f(J^{(0)}(x))$$

$$= J^{(1)}(g) \Big(J^{(0)}(x)\Big)$$

$$= J^{(0)}(x)(g)$$

$$= g(x).$$

Luego, $g \equiv 0 \Rightarrow f \equiv 0$, lo que es una contradicción.

(b) Supongamos X^* separable. Consideremos la esfera unitaria en X^*

$$S^{(1)} := \left\{ \left\| x^{(1)} \right\| = 1 \right\}.$$

Luego, $S^{(1)}$ también es separable. Sean $\left\{x_n^{(1)}\right\}_{n\in\mathbb{N}}$ elementos densos y numerables. Asociemos, para cada n, un elemento $x_n\in X$ tal que $0<\delta\leq\left|x_n^{(1)}(x_n)\right|\leq 1$. Probaremos que esos x_n son densos (en el sentido del espacio generado) en X. Buscando una contradicción, supongamos que no lo son. Entonces existe un $x^{(1)}\in S^{(1)}$ tal que $x^{(1)}$ se anula en todo $U=\mathrm{Gen}_{\mathbb{K}_c}(\{x_n\})$ pero no es nulo fuera de U. (equivalentemente, existe un abierto en $X\setminus U$ y podemos definir un funcional que se anule en todo menos ese abierto. Reescalando lo podemos pedir unitario). Por densidad en $S^{(1)}$, existe N tal que $\left\|x^{(1)}-x_N^{(1)}\right\|>\delta/2$. Luego,

$$\delta \le \left| x_N^{(1)}(x_N) \right| = \left\| x_N^{(1)}(x_N) - x^{(1)}(x_N) \right\| \le \delta/2.$$

Dada la contradicción, concluimos que $x^{(1)}$ es nulo en X y por lo tanto los $\text{Gen}_{\mathbb{K}_c}(\{x_n\})$ es denso y numerable en X.

La numerabilidad viene de la numerabilidad de los coeficientes y las sumas finitas del generado. La densidad viene de la densidad de los coeficientes y lo que acabamos de probar.