Eleos: Exit-Less OS Services for SGX Enclaves

Meni Orenbach

Marina Minkin
Pavel Lifshits
Mark Silberstein

Accelerated Computing Systems Lab

Haifa, Israel

What do we do?

Improve performance: I/O intensive & memory demanding SGX enclaves **Why?**

Cost of SGX execution for these applications is high **How?**

In-enclave System Calls & User Managed Virtual Memory

Results

Eleos vs vanilla SGX

2x Throughput: memcached & face verification servers

Even for 5x available enclave memory

Available for Linux, Windows*

(*) Without Eleos, these applications crash in Windows enclaves

- Background
- Motivation
- Overhead analysis
- Eleos design
- Evaluation

- Secured execution environment
- Reversed sandbox
- Small TCB
- Private code & data
 - Confidentiality
 - Integrity
 - Freshness
- Only CPU is trusted

Operating system

- Secured execution environment
- Reversed sandbox
- Small TCB
- Private code & data
 - Confidentiality
 - Integrity
 - Freshness
- Only CPU is trusted

- Secured execution environment
- Reversed sandbox
- Small TCB
- Private code & data
 - Confidentiality
 - Integrity
 - Freshness
- Only CPU is trusted

- Secured execution environment
- Reversed sandbox
- Small TCB
- Private code & data
 - Confidentiality
 - Integrity
 - Freshness
- Only CPU is trusted

- Secured execution environment
- Reversed sandbox
- Small TCB
- Private code & data
 - Confidentiality
 - Integrity
 - Freshness
- Only CPU is trusted

- Secured execution environment
- Reversed sandbox
- Small TCB
- Private code & data
 - Confidentiality
 - Integrity
 - Freshness

• O

Lets look at How to secure server applications with enclaves

Untrusted (Host & OS)

Trusted (Enclave)

Untrusted (Host & OS)

Trusted (Enclave)

Untrusted memory Unsecured access

Untrusted (Host & OS)

Trusted (Enclave)

Untrusted memory Unsecured access

Dedicated SGX mem Limited to: 128 MB Secured access

Untrusted (Host & OS)

Trusted (Enclave)

Host app

Wait for network requests

Untrusted (Host & OS)

Trusted (Enclave)

Wait for network requests

SGX enclaves should be fast

- ISA extensions
- Implemented in HW & Firmware
- Same CPU HW
- In-cache execution suffers no overheads

SGX enclaves should be fast

- ISA extensions
- Implemented in HW & Firmware
- Same CPU HW
- In-cache execution suffers no overheads

Executing a Key-Value Store in enclave is <u>slower</u>

Executing a Key-Value Store in enclave is <u>slower</u>

Throughput: Slowdown factor

Executing a Key-Value Store in enclave is <u>slower</u>

Throughput: Slowdown factor

- Background
- Motivation
- Overhead analysis
- Eleos design
- Evaluation

Eleos does better!

Throughput: Slowdown factor

Eleos does better!

Throughput: Slowdown factor

Eleos: Exit-less services

Exit-less system calls with RPC infrastructure **Exit-less** SGX paging

Eleos: Exit-less services

Exit-less system calls with RPC infrastructure

Exit-less SGX paging

Background: SGX paging

Background: SGX paging

Background: SGX paging

Enclave Trusted

Page table

SGX driver Untrusted Fault handler

System mem

Decrypted

SGX mem

Encrypted

Since SGX memory is small paging is not as rare as in native applications What are the overheads?

Enclave Trusted

Page table

SGX driver Untrusted Fault handler

System mem SGX mem Decrypted **Encrypted**

Wanted: In-enclave virtual memory management

No more exits!

Enclave Trusted

Page table

SGX driver Untrusted Fault handler

SGX mem

System mem

Enclave Trusted

52

Enclave Trusted

Enclave Trusted

Enclave secret foo(): System mem s_ptr<int> p = Trusted suvm malloc(1024); *p = 1;SGX mem Software Address translation Template class: SecuredPointer. Page table Fault handler Meni Orenbach, Technion 22 May@Systor' 2017

55

22 May@Systor' 2017

Meni Orenbach, Technion

Enclave Trusted

Enclave Trusted

Wait...Software based VM management?

Based on software address translation on GPUs, ActivePointers [ISCA'2016]

SUVM key contributions

Multi-threaded

Compared to SGX:

Fast path: up to 20% overheads

Slow path: Eliminates costs of exits

	1 Thread	4 Threads
READ	5.5x	7x
WRITE	3.5x	5.9x

Throughput speedup

Software address translation offers new optimizations

- Customized page size
- Customized eviction policy
- Multi-enclave memory coordination
- Write-back only dirty pages
- Sub-page direct access to backing store

Software address translation offers new optimizations

- Customized page size
- Customized eviction policy

Virtual Machine ballooning

- Multi-enclave memory coordination
- Write-back only dirty pages
- Sub-page direct access to backing store

Software address translation offers new optimizations

- Customized page size
- Customized eviction policy

Virtual Machine ballooning

- Multi-enclave memory coordination
- Write-back only dirty pages
- Sub-page direct access to backing store

- Background
- Motivation
- Overhead analysis
- Eleos design
- Evaluation

Biometric Identity checking server

Face Workload verification generator server 10Gb NIC **450MB DB** (5X SGX mem) Meni Orenba 22 May@Systor' 2017

Biometric Identity validating server

Speedup compared to vanilla SGX

Biometric Identity validating server

Speedup compared to vanilla SGX

Biometric Identity validating server

Speedup compared to vanilla SGX

Biometric Identity validating server

Speedup compared to vanilla SGX

Memcached

Workload Generator (memaslap)

Memcached Graphene LibOS [Eurosys'2014]

10Gb NIC GET(

22 May@Systor' 201

500MB DB (5.5X SGX mem)

Memcached

Speedup compared to vanilla SGX (500 MB)

■ Eleos (500MB DB) ■ vanilla SGX (20MB DB)

Server threads

Memcached

Speedup compared to vanilla SGX (500 MB)

■ Eleos (500MB DB) ■ vanilla SGX (20MB DB)

Disclaimer: Eleos+Graphene is 3x slower than native

Take aways

- Eleos eliminates enclave exits costs
- Eleos available for Windows and Linux
 - Makes memory demanding applications available on Windows today
- Eleos takes a modularize approach
 - Memory demanding app? Link to SUVM
 - I/O intensive app? Link to RPC
 - Maintaining small TCB

Operating System

Eleos Insight: Enclave-centric OS services

Take aways (2)

- Eleos adapts 'accelerator-centric management'
 - System calls: GPUfs [ASPLOS'13], GPUnet [OSDI'14]
 - Virtual memory: ActivePointers [ISCA'16]
- We can do more!
 - Asynchronous DMA host copies
 - Non-blocking enclave launches

More information at:

"SGX Enclaves as Accelerators" [Systex'16]

Thank you

Code is available at:

https://github.com/acsl-technion/eleos

Backup slides