

Detection of Online Sexism

Babak Bayani (12347302)

Arash Behaein (12324255)

Aditi chauhan (12347667)

Juliane Leibhammer (12408344)

- Overview of the task
- II. Model Training
 - A. RoBERTa
 - B. Logistic Regression
- III. Analysis
 - A. Guidelines and Relabeling
 - B. Key Words and Key Patterns
 - C. Fine tuned RoBERTa again
- IV. Results
- V. Challenges
- VI. Next Steps

Overview of the task

Objective:

Perform binary classification of short social media utterances to detect sexism (sexist/not sexist)

Dataset:

EDOS Dataset (annotated part)

Models Used:

- Roberta: Robustly optimized BERT for various NLP tasks.
- Logistic Regression: Quantitative and Qualitative Results, Tokenization.

Date Preprocessing

- Text Cleaning
 - Lowercasing, removing special characters
- Label Encoding (converting labels to binary format)
- Train-validation-test split (Based on the already provided column in dataset.)

Date Exploration

- Label Distribution
 - Imbalanced Dataset (more non-sexist comments)
- Data analysis
 - Most common words

Model Training - Roberta

- Pre-trained Limitations: General datasets, lacks task-specific optimization.
- Fine-Tuning Benefits:
 - Adapts pre-trained weights for binary classification.
 - Adds a classification head for task-specific predictions.
 - Improves accuracy, precision, and recall on custom labels.
- Steps for Fine-Tuning:
- 1. Pre-process and tokenize data for RoBERTa.
- 2. Add classification head for binary output.
- 3. Train model using the **training set (DF_train)** and validate on **development set (DF_dev)**.
- Evaluate on the test set (DF_test) with metrics like accuracy, F1 score, and balanced accuracy.

RoBERTa Evaluation

Performance Matrix:

Accuracy	Precision	Recall			Misclassification Rate
87.38%	74.76%	72.37%	73.55%	82.27%	12.62%

Test Set Classification Report:

Class	Precision	Recall	F1 Score	Support
0 (Sexist)	91%	92%	92%	3030
1 (Non-sexist)	75%	72%	74%	970

Challenges in Classification:

•Misspellings: Example: "this bicth should be stoped."

•Context Loss: Lack of tone or subtleties leads to errors.

•Bias in Pre-trained Weights: Requires domain-specific fine-tuning.

Model Training – Logistic Regression

Accuracy: 0.800

■ Balanced Accuracy: 0.762

■ Weighted F1: 0.806

Recall: 0.686

■ Precision: 0.575

Logistic Regression - Evaluation

- Text Pattern Analysis
 - most common tokens in sexist samples "bitch", "female", "women"
 - most common tokens in not-sexist samples "women", "like", "girls"
 - "sex" is often in missclassified non-sexist
- Imbalanced data effects performance
 - Model performs well for non-sexist class but struggles with the minority sexist class.
- Tokenization challenges lead to loss of critical context
 - Original Text: most here would fuck her
 - Tokenized Text: ['fuck']

Analysis

When analyzing the results we had problems with the given labeling of the dataset

Guidelines for Sexism

- Gender-Based Stereotyping and Generalizations
 Sexist Example: "Women are too emotional to be leaders."
- Derogatory Language, Objectification, and Questioning Capabilities
 Sexist Example: "She only got promoted because of her looks."
- Gender-Based Gatekeeping and Traditional Gender Roles
 Sexist Example: "Women don't belong in tech."
- Double Standards and Dismissal of Gender-Specific Issues
 Sexist Example: "He's ambitious, but she's bossy."

Problems of Relabeling

S.no	Text	Original label	Sexist (votes)	Not sexist (votes)
1	years from now shell complain that she was forced into exploiting her sexuality in order to feed herself and sue mankind maga feminismiscancer	1	2	2
2	this is true you should only approach a girl without a greenlight if you dont mind being treated like a homeless man at a car dealership	1	2	2
3	this establishment pussy couldnt fight his way out of his lace panties	1	2	2
4	Go to bankok youll have women sucking in your white boobies	0	2	2

Key words

- Commonly Co-Occurring Words:
 - Derogatory words: "bitch", "slut", "whore", "cunt"
 - Physical descriptors: "tits", "ass", "fat"
 - Blame-focused words: "feminists", "women", "they"
 - Power-related terms: "dominant", "submission", "control"
- Slang
 - Thots = that ho over there
 - Smv = sexual market value
 - Tranny = offensive word for transgender person

Key patterns

- Derogatory Adjectives + Women/Female-Specific Terms
 - [insult] + [woman/female noun]

"Stupid women", "dirty slut", "clueless white women", "fat commie slut"

[adjective] + [body part]

"Nice tits", "big ass", "titless butless hag"

- Blame or Resentment Language
 - [women/they] + [negative trait]

"Women are full of shit" "women don't know how to date"

[blame noun] + women/feminism

"White women are to blame" "feminism is cancer"

Key patterns

Sexual Objectification

Action-focused patterns:

"Whores out her pussy" "obsess over sex" "fuck her too"

Body-focused patterns:

"Nice tits" "fatass who insists her rolls"

Judgments on behavior:

"Regret the sex to make it rape" "faithful while I stay a whore"

Universal declarations:

- "Any woman can get laid no matter what"
- "All women are attracted to bullies"

Key patterns

Dominance-focused patterns:

"Masculine dominant presence" "men are more successful"

Submission-focused patterns:

"Women should submit" "feminists defend second-class citizen ideology"

Mocking terms:

"Hopeless thots" "lace panties" "shedemon"

Fine-tuning of RoBERTa on relabeld Dataset

- The original fine_tuned_roberta model shows strong performance with good accuracy, precision, recall, and F1 scores.
- The **fine_tuned_roberta_v2** with the original test set has a slightly lower accuracy but a higher recall for Class (sexist), which means it better identifies instances of Class (sexist) but at the cost of some of it's precision.
- The fine_tuned_roberta_v2 with the GPT generated test set has a notably poor performance, especially for Class (sexist), with very low recall and balanced accuracy, indicating it struggles to fit to the GPT-generated data.

RoBERTa vs. Logistic Regression

METRIC	Logistic Regression	RoBERTa (Pre- trained)	RoBERTa (Fine-tuned)	RoBERTa(Chat GPT test set)
Accuracy	80.07%	87.38%	84.05%	55.0%
Precision	57.46%	74.76%	63.43%	100.0%
Recall	68.65%	72.37%	80.82%	10.0%
F1 Score	62.56%	73.55%	71.08%	18.18%
Balanced Accuracy	76.19%	82.27%	82.95%	55.0%
Misclassification	19.93%	12.62%	15.95%	45.0%

Challenges

- Relabeled the dataset of 101 samples
- Created a guideline definition of SEXISM.
- Lack of context, Cultural diversity, Pov as different genders.
- Understanding of slangs thots, Smv,tranny,dyke.
- Understanding the fine line between Abusive, offensive, racist, psycotic languages or statements.
- Should words like bitch, cunt, pussy, hoe, in a statement make it sexist?
- Who said the statement (M/F/Q) to whom (M/F/Q) ?
- Praises, Appreciation, Sarcasm, Sugar coated words to be considered sexism?

Next Steps

- Train the model on a more obvious datasets such as the GPTgenerated one that we used for better specifying the basis of sexism.
- Providing the model with specific words and tags that should be classified as sexist.
 - thots = that ho over there
 - smv = sexuell market value
 - tranny=offensive word for Transgender person
- Including emojies, and defining their meaning.
- Defining abbreviations and acronyms.
- Finding a base line to differentiate the concept of Sexism, Racism and Offensive.

Thank you for your attention