Package 'EHPGS'

June 17, 2023

BGS	The Bayesian Gibbs sampling algorithm	
Index		7
	EHPGS	5 6
R top	BGS	1
•	enNote 7.2.2	
Encodii	ng UTF-8	
_	s MASS,stats,utils,BGLR,sommer	
_	Is $R (>= 3.5.0)$	
License	e GPL (>= 3)	
	otion We propose a GS-based approach to identify potential parental lines and superior hybrid combines from a breeding population composed of hybrids produced by a half diallel mating scheme.	
Mainta	iner Szu-Ping, Chen <r09621108@ntu.edu.tw></r09621108@ntu.edu.tw>	
Author	Szu-Ping, Chen; Chih-Wei, Tung; Pei-Hsien, Wang; Chen-Tuo, Liao	
Date 20	022-12-15	
Version	0.1.0	
Title E	valuation of hybrid performance in plant breeding via genomic selection	

Description

Type Package

The Bayesian Gibbs sampling algorithm

2 BGS

Usage

```
BGS(
  pheno,
  KA,
  KD,
  mu.ini = 0,
  ga.ini = 0,
  gd.ini = 0,
  vE.ini = 1,
  vA.ini = 0,
  vD.ini = 0,
  iter = 5000,
  m = 1,
  S_star,
  nu_star = 5,
  cat.itr = TRUE
)
```

Arguments

pheno	A numeric vector of phenotype which include all the lines in relationship matrix.
KA	Additive relationship matrix.
KD	Dominance relationship matrix.
mu.ini	Initial values for the constant term.
ga.ini	Initial values for the additive genotypic value.
gd.ini	Initial values for the dominance genotypic value
vE.ini	Initial values for the error variance.
vA.ini	Initial values for the additive variance.
vD.ini	Initial values for the dominance variance.
iter	Number of iteration in each chain.
m	Number of independent chain.
S_star	The shape of freedom of the variance components for the prior distribution of a scaled inverse Chi square.
nu_star	The degree of freedom of the variance components for the prior distribution of a scaled inverse Chi square.
cat.itr	A boolean variable determines whether to print out the iteration number.

Value

This function will return the MCMC value of additive genotypic value ($g_A;ga$), dominance genotypic value ($g_D;gd$), constant term (mu;mu), and variance components(additive variance;vA, dominance variance;vD, error variance;vE)

Examples

```
KA <- kinship(train.geno)
Xd <- replace(train.geno,train.geno==0,99)
Xd <- replace(Xd,Xd==1,0)
Xd <- replace(Xd,Xd==-1,0)</pre>
```

EHPGS 3

```
Xd <- replace(Xd,Xd==99,1)

KD <- kinship(Xd)

KA <- KA +diag(10^(-9),nrow = nrow(KA), ncol = ncol(KA))

KD <- KD +diag(10^(-9),nrow = nrow(KD), ncol = ncol(KD))

result <- BGS(pheno =train.pheno$F1.weight,KA = KA,KD = KD,mu.ini = 0,ga.ini = 0,gd.ini = 0,

vE.ini = 1,vA.ini = 0.5,vD.ini = 0.5,iter = 100,m = 1,S_star = 0.5*var(train.pheno$F1.weight),nu_star = 5)</pre>
```

EHPGS

Evaluation of hybrid performance in plant breeding via genomic selection

Description

Evaluation of hybrid performance in plant breeding via genomic selection

Usage

```
EHPGS(
  num.F1,
  num.P,
  train.pheno,
  train.geno,
  parent.geno,
  train.in.test = NULL,
 method = "BGS",
  mu.ini = NULL,
  ga.ini = 0,
  gd.ini = 0,
  vE.ini = 1,
  vA.ini = 0.5,
  vD.ini = 0.5,
  iter = 10000,
  m = 5,
  burnIn = 500,
  thin = 5
)
```

Arguments

num.F1	An integer number of superior hybrid combinations are select.
num.P	An integer number of potential parental lines are select.
train.pheno	A numeric vector of training set's phenotype.
train.geno	A numerical matrix of training set's genotype. Matrix is coded as -1,0 and 1 for Minor, Hetero, and Major, respectively.
parent.geno	A numerical matrix of parental lines' genotype. Matrix is coded as -1,0 and 1 for Minor, Hetero, and Major, respectively.
train.in.test	A character vector of lines' names which are both in training set and half-diallel design.

4 kinship

method	Select the method used to build the model, including BGS, BGLR, and sommer.
mu.ini	Initial values for the constant term for BGS method.
ga.ini	Initial values for the additive genotypic value for BGS method.
gd.ini	Initial values for the dominance genotypic value for BGS method.
vE.ini	Initial values for the error variance for BGS method.
vA.ini	Initial values for the additive variance for BGS method.
vD.ini	Initial values for the dominance variance for BGS method.
iter	Number of iteration in each chain for BGS or BGLR method.
m	Number of independent chain for BGS method.
burnIn	An integer number of burn-in for BGLR method.
thin	An integer number of thinning for BGLR method.

Value

This function will return 3 data frames, F1.out includes the top n GEBV F1s (n=num.F1) and its GEBV,SCA,MPH, and BPH. P.out includes the top m GEBV parents (m=num.P) and its GEBV,GCA. V.out includes the estimate of constant term and variance components (additive variance,dominance variance,and error variance)

Examples

```
EHPGS(num.F1=15,num.P=5,train.pheno=train.pheno$F1.weight,train.geno,parent.geno[1:10,],
train.in.test=rownames(train.geno),mu.ini=NULL,
ga.ini = 0,gd.ini = 0,vE.ini = 1,vA.ini = 0.5,vD.ini = 0.5,iter = 100,m = 1)
```

kinship Relationship matrix

Description

This function calculate additive and dominance relationship matrix.

Usage

kinship(X)

Arguments

Χ

A numerical matrix of genotype. If is additive relationship matrix can be coded as -1,0,and 1. If is dominance relationship matrix can be coded as 0,1,and 0 (row: sample; column: marker).

Value

K A numerical matrix (relationship matrix)

Examples

```
KA <- kinship(train.geno)</pre>
```

parent.geno 5

parent.geno

Genotype information of parental lines

Description

Genotype information of parental lines. This data was published by Wu et al. (2019) < doi.org/10.3835/plantgenome2018.

Usage

```
parent.geno
```

Format

A numeric matrix with 142 rows (parental lines) and 4,521 columns (SNPs).

Examples

```
data(parent.geno)
```

train.geno

Genotype information of training set.

Description

Genotype information of hybrids used to construct a prediction model. This data was published by Wu et al. (2019) <doi.org/10.3835/plantgenome2018.10.0082>

Usage

train.geno

Format

A numeric matrix with 119 rows (Hybrid of half diallel design) and 4,512 columns (SNPs).

Examples

```
data(train.geno)
```

6 train.pheno

train.pheno

Phenotype

Description

Fruit weight (kg) of samples. This data was published by Wu et al. (2019) <doi.org/10.3835/plantgenome2018.10.0082>

Usage

train.pheno

Format

A numeric data frame with four columns representing the hybrids, parent names, and their corresponding phenotypes.

Examples

data(train.pheno)

Index

```
* datasets
    parent.geno, 5
    train.geno, 5
    train.pheno, 6

BGS, 1

EHPGS, 3

kinship, 4

parent.geno, 5

train.geno, 5

train.pheno, 6
```