SLT coding exercise #1

${\color{red} \textbf{Locally Linear Embedding}}_{\color{blue} \textbf{https://gitlab.vis.ethz.ch/vwegmayr/slt-coding-exercises}}$

Due on Monday, March 6th, 2017

Thilo Weber 11-944-477

SLT	coding	exercise	#1	Locally	Linear	Embedding
	country	CACICIDO	777 -	Locuity	Lincar	Linocaanis

Thilo Weber

Contents	
The Model	3
The Questions	4
The Implementation	6
Your Page	7

The Model

We have a data set on N points $\{\mathbf{x}_i\}_{i=1}^N$ of dimension D, $\mathbf{x}_i \in \mathbb{R}^D$. The goal is to find a non-linear embedding of these points in \mathbb{R}^d , where $d \ll D$. In Locally Linear Embeddingthis is done by first representing each data point as a function of its K nearest neighbors. The resulting reconstruction cost function is defined as:

$$\mathcal{E}(\mathbf{W}) = \sum_{i} ||\mathbf{x}_{i} - \sum_{j} w_{ij} \mathbf{x}_{i}||^{2},$$

where the weights $w_{ij} \neq 0$ only if \mathbf{x}_j is a nearest neighbor of \mathbf{x}_j and each row of the weight matrix \mathbf{W} sums up to 1, $\sum_j w_{ij} = 1$. The weights are calculated by minimizing the reconstruction cost function under these constraints. In the embedding step each point \mathbf{x}_i is mapped to a point $\mathbf{y}_i \in \mathbb{R}^d$ in the low dimensional space. The points \mathbf{y}_i are calculated by minimizing the embedding cost function defined as:

$$\Phi(\mathbf{y}_1,\ldots,\mathbf{y}_N) = \sum_i ||\mathbf{y}_i - \sum_j w_{ij}\mathbf{y}_i||^2.$$

The Questions

Answer (b), (d):

The results of applying the LLE algorithm on the MNIST data set for 2D & 3D embedding spaces and different numbers K of nearest neighbors are shown in Figure 1. For K=10 neighbors clusters of the different can be seen. Apart from the numbers 0 and 1 the handwritten digits are not clearly separable from each other.

Figure 1: LLE algorithm applied on N=1000 images of the MNIST data set. Each image has dimension D=784.

(a) Values of M matrix.

(b) Singular values of M matrix.

Figure 2: Investigation on M matrix for $d=2,\,K=10.$

The Implementation

Link to my git branch: https://gitlab.vis.ethz.ch/vwegmayr/slt-coding-exercises/tree/11-944-477/1_locally_linear_embedding.

Page 6 of 7

Your Page

Your Answer

11-944-477/1_locally_linear_embedding