#### Отговори – Модул III

### 1. Приложения на математическия анализ 1.0. Математически анализ - преговор......5

**1.** а) 
$$-\frac{1}{6}$$
; б) 2; в) 6; г) 2; д) 0; е) 3; **3.** –4; **4.** Прекъсната при  $x = 0$ ;

**5.** a) 
$$6x^2 - 6x + m^2$$
; б)  $\frac{x}{\sqrt{x^2 + 5m}}$ ; в)  $-\frac{\cos x}{a \sin^2 x}$ ; г)  $-\frac{1}{4\sqrt[4]{ax^5}}$ ; д)  $\frac{2\sqrt{x} + 3}{2\sqrt{x} + \sqrt{x}\left(\sqrt{x} + 1\right)}$ ; е)  $\frac{-4}{(x-2)^2}$ ;

**6.** a) 
$$5e^x$$
; 6)  $2e^{2x} + 2x$ ; B)  $e^x(x^2 + 2x + 3)$ ;  $r$ )  $-\frac{a}{x^2}e^{\frac{a}{x}}$ ;  $r$ )  $\frac{-2}{(x-1)^2}e^{\frac{x+1}{x-1}}$ ; e)  $-e^{-x}$ ;

7. a) 
$$2^x \ln 2$$
; б)  $2x + 2^x \ln 2$ ; в)  $\frac{2x^3 + 3^x (x \ln 3 - 1)}{x^2}$ ; г)  $2e^{2x} + 4^x \ln 4$ ; д)  $2\ln 5.5^{2x-1}$ 

e) 
$$\frac{3^x(\ln 3.x-3)}{x^4}$$
; **8.** a)  $\frac{x+1}{x}$ ; 6)  $\ln x+1$ ; B)  $\frac{1}{x+1}$ ; r)  $\frac{2}{x}$ ; д)  $\frac{2x}{x^2+1}$ ; e)  $\frac{1}{x\ln x}$ ; ж)  $\frac{2\ln x}{x}$ ; 3)  $-\frac{1}{x\ln^2 x}$ ;

и) 
$$\frac{1}{2x\sqrt{\ln x}}$$
; к)  $e^{x}\frac{x\ln x+1}{x}$ ; л)  $\frac{2x+2}{x^{2}+2x-3}$ ; м)  $\frac{1}{2x\sqrt{1+\ln x}}$ ; **9.** а)  $e^{x}(x^{2}+4x+7)$ ; б)  $\frac{2x+2}{x^{2}+2x+5}$ ;

**10.** a) 
$$\frac{1}{x \ln 10}$$
; б)  $\frac{2x}{(x^2 + 3) \ln 3}$ ; в)  $\log_2 x + \frac{1}{\ln 2}$ ; г)  $\frac{1}{\ln^2 2.x. \log_2 x}$ ;

**11.** a) 
$$\frac{1}{x}$$
; 6)  $-\frac{1}{x}$ ; B)  $\frac{1-x^2}{x(x^2+1)}$ ; r)  $\frac{2}{2x-3} - \frac{3}{3x+2}$ ; д)  $\frac{1}{x+1} + \frac{\cos x}{\sin x}$ ; **12.** a) 54; 6)  $\frac{\sqrt{2}+1}{2}$ ;

Входно ниво – Тест 1 и Тест 2 .....

**Tecm 1. 1.** 
$$-\frac{1}{2}$$
; **2.**  $\frac{5}{6}$ ; **3.**  $\frac{2}{3}$ ; **4.**  $-\frac{10}{7}$ ; **5.**  $\frac{1}{\sqrt{2x+1}}$ ; **6.**  $\frac{3}{2\sqrt{x}} + \frac{2}{x^2}$ ; **7.**  $e^x(4x^2+1)$ ; **8.**  $\frac{3}{x(x+3)}$ ; **9.** 2;

Оценяване. За всеки верен отговор по 2 точки. Оценка = (получени точки.100/18).

**Tecm 2. 1.** 8; **2.** 1; **3.** 
$$-\infty$$
; **4.** 2 и 3; **5.** 651; **6.**  $-\frac{1+\cos^2 x}{\sin^3 x}$ ; **7.**  $\frac{2x}{5-x^2}$ ; **8.** 1; **9.** 0;

Оценяване. За всеки верен отговор по 2 точки. Оценка = (получени точки.100/18).

# 

B) 
$$6 \ln 3x - v + 3 = 0$$
:

r) 
$$x-4y+8\ln 2-3=0$$

д) 
$$6(\sqrt{3}-1)x-12y+6(\sqrt{3}+1)-\pi(\sqrt{3}-1);$$
 **3.** a) 1; 4; 6)  $-\frac{1}{3}$ ; 1; **4.** a)  $\left(\frac{1}{2};\frac{\sqrt{3}}{2}\right)$ ,

$$6) -\frac{1}{3}; 1;$$

**4.** a) 
$$\left(\frac{1}{2}; \frac{\sqrt{3}}{2}\right)$$

$$\sqrt{3}x + 3y - 2\sqrt{3} = 0$$
; 6) (0, 1),  $y = 1$ ; B) (1,0),  $x = 1$ ; (-1,0),  $x = -1$ ; 5. a)  $4x + 4y - 7 = 0$ ,  $\alpha = \frac{3\pi}{4}$ ;

6) 
$$(2\sqrt{2}+3)x-y+3=0$$
,  $tg\alpha=2\sqrt{2}+3$ ; b)  $4x-2y+2-\pi=0$ ,  $tg\alpha=2$ ; r)  $x+y+4=0$ ,  $tg\alpha=-1$ ;

д) 
$$y = 1$$
,  $\alpha = 0$ ; e)  $x - y + 1 = 0$ ,  $\alpha = \frac{\pi}{4}$ ; ж)  $x - y - 1 = 0$ ,  $\alpha = \frac{\pi}{4}$ ;

$$\textbf{6. a)} \ \ (1;-3) \ , \qquad (2;-4) \ ; \qquad \textbf{6)} \ \ (-1;-1), \ \ (0;0) \ ; \qquad \textbf{B)} \ \left(\frac{1}{4};-\frac{1}{4}\right); \qquad \textbf{r)} \qquad (0,1), \qquad (\pi,-1) \ , \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ; \\ \qquad \qquad (2\pi,1) \ ; \qquad \qquad (2\pi,1) \ ;$$

д) 
$$(-1;20)$$
,  $(\sqrt{3};-24(\sqrt{3}+1))$ ,  $(-\sqrt{3};24(\sqrt{3}-1))$ ; **7.** a)  $a=2$ ; б)  $a=-\frac{1}{2}$ ;

1.2. Производни на функции от по-висок ред. Втора производна на функция ......14

**2.** a) 
$$\frac{-12}{(x-1)^4}$$
; 6)  $\frac{114}{(x+5)^4}$ ; B)  $\frac{6c^2(ad-bc)}{(cx+d)^4}$ ; **3.** a)  $\frac{-2}{x^2}$ ; 6)  $e^{\frac{1}{x}}(\frac{1}{x^4} + \frac{2}{x^3})$ ;

#### 1.4. Признаци за растене и намаляване на функция ......15

**3.** а) Расте в  $(-\infty; -4)$ , намалява в (-4; 2), расте в  $(2; +\infty)$ ; б) Расте в  $(-\infty; +\infty)$ ; в) Расте в  $(-\infty; +\infty)$ ; г) Намалява в  $(-\infty; -2)$ , расте в (-2; 3), намалява в  $(3; +\infty)$ ; д) Намалява в  $(-\infty; -3)$ , расте в (-3; -1), намалява в (-1; 2), расте в  $(2; +\infty)$ ; е) Расте в  $(-\infty; -1)$ , намалява

в 
$$(-1,1)$$
, расте в  $(1;+\infty)$ ; ж) Расте в  $(-\infty;+\infty)$ ; з) Расте в  $(-\infty;-1)$ , намалява в  $(-1;-\frac{2\sqrt{5}}{5})$ ,

расте в  $(-\frac{2\sqrt{5}}{5};\frac{2\sqrt{5}}{5})$  , намалява в  $(\frac{2\sqrt{5}}{5};1)$  , расте в  $(1;+\infty)$  ;

**4.** а) Расте в  $(-\infty;-1)$ , намалява в (-1;0), намалява в (0;1), расте в  $(1;+\infty)$ ; б) Намалява в  $(-\infty;-1)$ , расте в (-1;1), намалява в  $(1;+\infty)$ ; в) Намалява в  $(-\infty;0)$ , расте в  $(0;+\infty)$ ; г) Расте в  $(-\infty;-1)$ , расте в (-1;0), намалява в (0;1), намалява в  $(1;+\infty)$ ;

**5.** а) Расте в (-1;0) , намалява в (0;1) ; б) Намалява в  $(-\infty;-3)$  , расте в  $(1;+\infty)$  ; в) Расте в  $(2,\frac{5}{2})$  ; намалява в  $(\frac{5}{2},3)$  ; г) Намалява в  $(-\infty;1)$  , расте в  $(3;+\infty)$  ; д) Расте в  $(-\sqrt{3},0)$  ; намалява в  $(0,\sqrt{3})$  ; е) Намалява в  $(-\infty;0)$  , расте в  $(0;+\infty)$  ;

**6.** а) Намалява в  $(-\infty;-1)$ , расте в  $(0;+\infty)$ ; б) Намалява в  $(-\infty;-\frac{1}{2})$ , расте в  $(-\frac{1}{2};+\infty)$ ;

в) Намалява в 
$$(-\infty;-1)$$
 , расте в  $(0,\frac{1+\sqrt{5}}{2})$  ; намалява в  $(\frac{1+\sqrt{5}}{2},+\infty)$  ;

#### 1.5. Най-голяма и най-малка стойност на функция......17

 $f_{\min}=f(1)=-1$  ; б) Функцията няма локални екстремуми; в)  $f_{\max}=f(\frac{\pi}{18})=\frac{1}{2}-\frac{\pi\sqrt{3}}{12}$  ; **5.** а) расте в  $(-\infty,-2)$  ; намалява в (-2,0); расте в  $(0,+\infty)$  ;  $f_{\max}=f(-2)=3$  ;  $f_{\min}=f(0)=-1$  ; б) расте в

$$(-\infty,1)$$
; расте в  $(1,\frac{3}{2})$ ; намалява в  $(\frac{3}{2},2)$ ; намалява в  $(2,+\infty)$ ;  $f_{\max}=f\left(\frac{3}{2}\right)=-3$ .; в) намалява в

 $(-\infty, -1)$ ; намалява в (-1, 3); намалява в  $(3, +\infty)$ ; няма локални екстремуми;

**9.** a) 
$$\max_{[-3,3]} f(x) = f_{\text{max}} = f(-2) = 17$$
,  $\min_{[-3,3]} f(x) = f_{\text{min}} = f(2) = -15$ ;

$$\text{6)} \ \max_{[-3,4]} f(x) = f_{\max} = f(-2) = f(4) = 17 \ , \ \min_{[-3,4]} f(x) = f_{\min} = f(2) = -15 \ ; \ \text{b)} \ \max_{[-3,5]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(-2) = f(4) = 17 \ , \ \min_{[-3,4]} f(x) = f(2) = -15 \ ; \ \text{b)} \ \max_{[-3,5]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(2) = -15 \ ; \ \text{b)} \ \max_{[-3,5]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(2) = -15 \ ; \ \text{b)} \ \max_{[-3,5]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(2) = -15 \ ; \ \text{b)} \ \max_{[-3,5]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5) = 66 \ , \ \max_{[-3,4]} f(x) = f(5$$

$$\min_{[-3,5]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\max} = f(2) = 392 \; , \; \min_{[-2,3]} f(x) = f_{\min} = f(-1) = -391 \; ; \; \textbf{10.} \; \max_{[-3,5]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\max} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \max_{[-2,3]} f(x) = f_{\min} = f(2) = -15 \; ; \; \textbf{10.} \; \text{10.} \; \text$$

**14.** 
$$\frac{\sqrt{5}}{5}$$
; **15.** a)  $\ln 3$ ; 6)  $2 \ln \frac{3}{2}$ ; **16.** a) 1; 6) 0; B)  $\frac{1}{2} + \ln 2$ ; **17.** a)  $\min_{[-1,1]} f(x) = f_{\min} = f(0) = 1$ ,

$$\max_{[-1,1]} = f(-1) = \frac{281}{30}; \text{ f)} \quad \min_{[0,2]} f(x) = f_{\min} = f(0) = 1, \ \max_{[0,2]} = f(1) = \frac{49}{30}; \text{ b)} \quad \min_{[1,4]} f(x) = f(4) = -\frac{97}{15},$$

$$\max_{[1,4]} f(x) = f_{\max} = f(3) = \frac{19}{10}; \text{ 18. a) } \min_{[-2,-1]} f(x) = f_{\min} = f(\frac{-1-\sqrt{3}}{2}) = \frac{-9-6\sqrt{3}}{4},$$

$$\max_{\tiny{[-2,-1]}} f(x) = f(-2) = 0 \; ; \; \text{6)} \; \min_{\tiny{[-1,1]}} f(x) = f(-1) = -4 \; , \; \max_{\tiny{[-1,1]}} = f_{\max} = f(\frac{-1+\sqrt{3}}{2}) = \frac{-9+6\sqrt{3}}{4} \; ; \; \text{6.}$$

в) 
$$\min_{[-1,2]} f(x) = f(-1) = -4$$
,  $\max_{[-1,2]} = f(2) = 8$ ; **19.** а) намалява в  $(-\infty, -\frac{3}{2})$ , расте в  $(-\frac{3}{2}, +\infty)$ ;

$$f_{\min} = f(-\frac{3}{2}) = \frac{\sqrt{7}}{2}$$
 ; б) намалява в  $(-\infty, -2)$  , расте в  $(-2, +\infty)$  ;  $f_{\min} = f(-2) = 0$  ;

в) намалява в  $(-\infty, -4)$ , расте в  $(-1, +\infty)$ ; няма локални екстремуми;

r) 
$$\max f(x) = f(1) = 1$$
; **21.**  $\max_{[0,\frac{\pi}{2}]} f(x) = f(\frac{\pi}{3}) = \frac{\sqrt{5}}{2}$ ,  $\min_{[0,\frac{\pi}{2}]} f(x) = f(0) = f(\frac{\pi}{2}) = 1$ ;

**22.** а) расте в 
$$[-1,0]$$
, намалява в  $[0,1]$ ;  $\max_{[-1,1]} f(x) = f(0) = \frac{\sqrt{2}}{2}$ ,  $\min_{[-1,1]} f(x) = f(-1) = f(1) = \frac{\sqrt{3}}{3}$ ;

б) намалява в 
$$[-1,0]$$
, расте в  $[0,1]$ ;  $\min_{[-1,1]} f(x) = f(0) = \frac{\sqrt{2}}{2}$ ,  $\max_{[-1,1]} f(x) = f(-1) = f(1) = 1$ ;

#### 1.6. Изпъкналост и вдлъбнатост на функция. Инфлексни точки.......26

- **2.** а) f(x) е вдлъбната в  $(-\infty, -1)$ , изпъкнала в (-1, 2), вдлъбната в (2, 3) и изпъкнала в  $(3, +\infty)$ ;
- б) f(x) е изпъкнала в  $(-\infty, +\infty)$ ; в) f(x) е вдлъбната в  $(-\infty, -3)$ , изпъкнала в (-3, -2) и вдлъбната в  $(-2, +\infty)$ ;

**3.** а) 
$$x=-\frac{1}{2}$$
; б) Няма инфлексни точки; в)  $x=1$ ,  $x=2$ ; **5.** а)  $f_{\min}\left(\frac{1}{4}\right)=-8\frac{139}{256}$ ; изпъкнала в

$$(-\infty,-2)$$
 , вдлъбната в  $(-2,-\frac{1}{2})$  ; изпъкнала в  $(-\frac{1}{2},+\infty)$  инфлексни точи  $(-2,0)$  и  $(-\frac{1}{2},-5\frac{1}{16})$  ;

б) 
$$f_{\max} = f(-1) = 1$$
 ;  $f_{\min} = f\left(\frac{7}{3}\right) = -\frac{473}{27}$  ; вдлъбната в  $(-\infty, \frac{2}{3})$  ; изпъкнала в  $(\frac{2}{3}, +\infty)$  ; инфлексна

точка 
$$(\frac{2}{3}, \frac{-223}{27})$$
;

в) 
$$f_{\min}=f(-\frac{\sqrt{2}}{2})=-\frac{\sqrt{2}}{4}$$
 ,  $f_{\max}=f(\frac{\sqrt{2}}{2})=\frac{\sqrt{2}}{4}$  , вдълбната в  $(-\infty,-\frac{\sqrt{6}}{2})$  , изпъкнала в  $(-\frac{\sqrt{6}}{2},0)$  ,

вдлъбната в 
$$(0,\frac{\sqrt{6}}{2})$$
 , изпъкнала в  $(\frac{\sqrt{6}}{2},+\infty)$  ; инфлексни точки  $(-\frac{\sqrt{6}}{2},-\frac{\sqrt{6}}{8})$  ,  $(0,0)$  ,  $(\frac{\sqrt{6}}{2},\frac{\sqrt{6}}{8})$  ;

#### 

- **2.** а) x = 1 вертикална асимптота при  $x \to 1$  отляво и отдясно, y = 1 е хоризонтална асимптота при  $x \to -\infty$  и при  $x \to +\infty$ ;
- б) x=-2 вертикална асимптота  $x\to -2$  отляво и отдясно, y=3 е хоризонтална асимптота при  $x\to -\infty$  и при  $x\to +\infty$  ;
- в)  $x = -\frac{1}{2}$  вертикална асимптота  $x \to -\frac{1}{2}$  отляво и отдясно, y = 1 е хоризонтална асимптота при  $x \to -\infty$  и при  $x \to +\infty$  :
- г) x=2 вертикална асимптота  $x\to 2$  отляво и отдясно, y=-3 е хоризонтална асимптота при  $x\to -\infty$  и при  $x\to +\infty$  ;
- **3.** а)  $\max_{(-\infty,+\infty)} = f_{\max} = f(6) = 1$ ; инфлексия при  $x = 6 \sqrt{2}$  и  $x = 6 + \sqrt{2}$ ; y = 0 е хоризонтална асимптота при  $x \to -\infty$  и при  $x \to +\infty$ ;
- б)  $\max_{(-\infty,+\infty)} = f_{\max} = f(4) = 1$ ; инфлексия при  $x = 4 \sqrt{3}$  и  $x = 4 + \sqrt{3}$ ; y = 0 е хоризонтална асимптота при  $x \to -\infty$  и при  $x \to +\infty$ ;
- в)  $\max_{(-\infty,+\infty)} = f_{\max} = f(0) = 1$ ; инфлексия при x = -1 и x = 1; y = 0 е хоризонтална асимптота при

$$x \to -\infty$$
 и при  $x \to +\infty$ ; **4.** a)  $d = 0$ ; б)  $d > 0$ ,  $d \neq \frac{5}{3}$ ; в)  $d < 0$ ; **5.** a)  $a \in (1, +\infty)$ ; б)  $a \in (-\infty, o)$ ;

в)  $a \in (0,1)$  ; г) няма такива a;.

#### 

- **2.** а) x + y = 4; б) x + y = 6; в) 3x + y = 11; г) x + 2y + 22 = 0, нормалното уравнение на окръжността е  $(x 4)^2 + (y + 8)^2 = 20$ ;
- **4.** а) 3x+4y+21=0 в т. (1,-6), 4x-3y+3=0 в т. (-6,-7); б) 3x+y+25=0 в т. (-5,-10), x-3y-45=0 в т. (3,-14), нормалното уравнение на окръжността е  $(x-1)^2+(y+8)^2=40$ ;
- B) x-6y-25=0 B T. (7,-3), 6x+y-76=0 B T. (12,4);
- **5.** а) (3,3); допирателна в (5,-1) е 2x+y-9=0, допирателна в (-1,1) е x-2y+3=0;
- б) (0, 1); нормалното уравнение на окръжността е  $(x-1)^2 + (y-8)^2 = 25$ ; допирателна 4x + 3y 3 = 0 в (-3, 5), допирателна 3x 4y + 4 = 0 в (4, 4);
- в) (-7,6); нормалното уравнение на окръжността е  $x^2 + (y-5)^2 = 25$  допирателна 3x-4y+45=0 в (-3,9), допирателна 4x+3y+10=0 в (-4,2);
- г) (-8, 15); допирателна x+2y-22=0 в (4, 9), допирателна 2x+y-1=0 в (-2, 3);
- **7.** a)  $x + y \pm 10 = 0$ ; 6)  $y = \pm 3$ ; B) x + y 8 = 0, x + y + 16 = 0; **8.** B; **9.** A; **10.**  $\Gamma$ ;
- **12.** а) 3x + y 12 = 0; б) 4x + y 19 = 0, каноничното уравнение на елипсата е  $\frac{x^2}{19} + \frac{y^2}{57} = 1$ ;
- в)  $2\sqrt{2}x y 10 = 0$ ; г) x = 2, каноничното уравнение на елипсата е  $\frac{x^2}{4} + \frac{y^2}{9} = 1$ ;
- **14.** a) 3x + 2y 20 = 0, (2,4;6,4) u x = 4, (4,0); 6) 2x + y 16 = 0, (6,4) u y = 8, (0,8);
- B) 3x-2y+25=0, (-3,8) u 8x+3y-50=0, (4,6); r) x-2y+4=0, (-1;1,5) u x+2y-4=0,
- (1; 1,5); **15.** a) (0,3); 6) (3,6); B) (7,1); r) (-14,0); **17.** a)  $\frac{x^2}{9} + \frac{y^2}{3} = 1$ ; 6)  $\frac{x^2}{20} + \frac{y^2}{5} = 1$ ;
- B)  $\frac{x^2}{3} + y^2 = 1$ ; r)  $\frac{x^2}{45} + \frac{y^2}{9} = 1$ ; **19.** a)  $\frac{x^2}{42} + \frac{y^2}{7} = 1$ ; 6)  $\frac{x^2}{90} + \frac{y^2}{15} = 1$ ;
- **20.** а) x+6y-24=0 и  $\frac{x^2}{144}+\frac{y^2}{12}=1$ , допирна точка (6,3); x-2y-4=0 и  $\frac{x^2}{12}+y^2=1$ , допирна
- точка  $(3,-\frac{1}{2})$ ; б) x+6y-12=0 и  $\frac{x^2}{36}+\frac{y^2}{3}=1$ , допирна точка  $(3,\frac{3}{2})$ ; x+2y-12=0 и
- $\frac{x^2}{108} + \frac{y^2}{9} = 1$ , допирна точка  $(9, \frac{3}{2})$ ;
- **21.** a) 2x-9y-6=0; 6) x-y-6=0; B) 3x-4y-10=0; r) 2x-3y-7=0;
- **22.** a) 11x + 14y + 48 = 0,  $(\frac{22}{3}, \frac{7}{3})$  u 3x 2y 16 = 0, (6,1); 6) x = 6, (6,0) u 5x 8y + 18 = 0,
- (-10,-4); B) 7x+2y+48=0.  $(-7,\frac{1}{2})$  u x-y-6=0, (8,2); **23.** a) (-1,1); б) (-9,-5); B) (2,2);
- r) (12,6); **25.** a)  $\frac{x^2}{68} \frac{y^2}{17} = 1$ ; 6)  $\frac{x^2}{76} \frac{y^2}{19} = 1$ ; B)  $\frac{x^2}{45} \frac{y^2}{9} = 1$ ; **26.** a)  $\frac{x^2}{28} \frac{y^2}{7} = 1$ ; 6)  $\frac{x^2}{6} \frac{y^2}{2} = 1$ ;
- **27.** a) 2x-3y-11=0 и  $\frac{x^2}{55}-\frac{y^2}{11}=1$  допирна точка (10,3); 2x+3y+10=0 и  $\frac{x^2}{70}-\frac{y^2}{20}=1$

допирна точка (-14,6); б) x+2y+6=0 и  $\frac{x^2}{84}-\frac{y^2}{12}=1$  допирна точка (-14,4); x+y+6=0 и

- $\frac{x^2}{60} \frac{y^2}{24} = 1$  допирна точка (-10,4); **29.** a) 2x y + 2 = 0; б) 6x + y + 4 = 0; в) 10x y 52 = 0;
- r) 4x + y + 10 = 0; **31.** a) 2x y + 3 = 0, 4x y 3 = 0; 6) x + y + 7 = 0, x y 1 = 0; B) x + y = 0,
- $3x y = 0 \; ; \; \mathsf{r}) \; \; 12x + y 6 = 0 \; , \; 8x y + 6 = 0 \; ; \; \mathbf{32.} \; \mathsf{a}) \; \; (3,3) \; ; \; \mathsf{6}) \; \; (2,6) \; ; \; \mathsf{B}) \; \; (-6,6) \; ; \; \mathsf{r}) \; \; (-4,-12) \; ; \; \mathsf{r}) \; \; \mathsf{r}\rangle \; \; \mathsf{r$

**34.** a) 
$$y = x^2 + 4x - 5$$
; 6)  $y = x^2 + 8x + 8$ ; B)  $y = x^2 + 3$ ;

**35.** a) 
$$(2,4)$$
; б)  $(3,10)$ ; в)  $(-2,-12)$ ; г)  $(2,3)$ ;

## 1.9. Изследване на полиномни функции. Графика .......39

**2.** а) растяща в  $(-\infty, +\infty)$ , инфлексия в (1, 2);

б) четна, 
$$f_{\min} = f(-2) = f(2) = -1$$
,  $f_{\max} = f(0) = 3$ ; инфлексия при  $x_{1,2} = \pm \frac{2\sqrt{3}}{3}$ ;  $\lim_{x \to \pm \infty} f(x) = +\infty$ ;

в) 
$$f_{\min} = f(0) = f(2) = 2$$
 ,  $f_{\max} = f(1) = 3$  ; инфлексия при  $x = \frac{3 \pm \sqrt{3}}{3}$  ;  $\lim_{x \to +\infty} f(x) = +\infty$  ;

г) 
$$f_{\max}=f(-1)=\frac{21}{20}\,;\; f_{\min}=f(0)=0$$
 , инфлексия в  $x_1=\frac{1-\sqrt{33}}{8}\,,\; x_2=\frac{1+\sqrt{33}}{8}\,,\; x_3=2$  ,

 $\lim_{x \to -\infty} f(x) = -\infty; \lim_{x \to +\infty} f(x) = +\infty;$ 









д) 
$$f_{\min}=f(-2)=-rac{4}{3}$$
,  $f_{\max}=f(-rac{1}{2})=rac{95}{192}$ ,  $f_{\min}=f(2)=-rac{20}{3}$ ; инфлексни точки при  $x_1=-rac{4}{3}$  и

$$x_2 = 1 \, ; \qquad \lim_{x \to \pm \infty} f(x) = +\infty \, ; \qquad \text{e)} \quad f_{\min} = f(-2) = -\frac{5}{3} \, , \qquad f_{\max} = f(-\frac{1}{2}) = \frac{139}{192} \, , \qquad f_{\min} = f(3) = -\frac{45}{2} \, ,$$

$$\lim_{x\to\pm\infty}f(x)=+\infty\;;\;\;\text{ж})\;\;f_{\min}=f(-2)=f(1)=-1\;,\;\;f_{\max}=f(-\frac{1}{2})=\frac{17}{64}\;,\;\;\text{инфлексия}\;\;\mathsf{B}\quad x_{1,2}=\frac{-1\pm\sqrt{3}}{2}\;,$$

$$\lim_{x\to\pm\infty}f(x)=+\infty\;;\quad \text{3)}\;\;f_{\min}=f(-2)=\frac{7}{3}\;,\quad f_{\max}=f(-\frac{3}{2})=\frac{153}{64}\;,\quad f_{\min}=f(1)=-\frac{13}{6}\;,\quad \text{инфлексия}\quad \text{в}$$

 $x_{1,2} = \frac{-5 \pm \sqrt{31}}{6}$ ;  $\lim_{x \to \pm \infty} f(x) = +\infty$ ;









и) 
$$f_{\min} = f(0) = -4$$
,  $f_{\max} = f(2) = 0$ , инфлексия в  $(1, -2)$ ,  $\lim_{x \to -\infty} f(x) = +\infty$ ,  $\lim_{x \to +\infty} f(x) = -\infty$ ;

$$\text{ к) } f_{\min} = f(-2) = -\frac{13}{3} \,, \quad f_{\max} = f(\frac{1}{2}) = \frac{43}{192} \,, \quad f_{\min} = f(1) = \frac{1}{6} \,; \quad \text{инфлексия} \quad \text{в} \quad x_{\text{\tiny 1,2}} = \frac{-1 \pm \sqrt{31}}{6} \,;$$

$$\lim_{x\to\pm\infty}f(x)=+\infty\;;\text{ л})\;\;f_{\min}=f(-2)=-\frac{8}{3}\;,\;f_{\max}=f(0)=0\;,\;f_{\min}=f(1)=-\frac{5}{12}\;;\text{ инфлексия в }$$

$$x_{1,2} = \frac{-1 \pm \sqrt{7}}{3}$$
 ;  $\lim_{x \to \pm \infty} f(x) = +\infty$  ; м) четна,  $f_{\min} = f(0) = 0$  ,  $\lim_{x \to \pm \infty} f(x) = +\infty$  , няма инфлексни точки;

н) 
$$f_{\min}=f(1)=f(2)=0$$
 ,  $f_{\max}=f(\frac{3}{2})=\frac{1}{16}$  ; инфлексия при  $x_{1,2}=\frac{9\pm\sqrt{3}}{6}$  ;  $\lim_{x\to\pm\infty}f(x)=+\infty$  ;

#### ОТГОВОРИ – Модул III. Практическа математика











**3.** а)  $f'^{\nu}(x) = 24x$ , растяща в  $(-\infty, +\infty)$ , права;

б)  $f'''(x) = 12x^2 - 6$ ; четна; намаляваща в  $(-\infty,0)$ , растяща в  $(0,+\infty)$ ; изпъкнала в  $(-\infty,+\infty)$ ;  $f''''_{\min} = f'''(0) = -6$ ; в)  $f''(x) = 4x^3 - 6x$ ; нечетна; растяща в  $(-\infty,-\frac{\sqrt{2}}{2})$ , намаляваща в  $(-\infty,-\frac{\sqrt{2}}{2})$ , растяща в  $(\frac{\sqrt{2}}{2},+\infty)$ ; вдлъбната в  $(-\infty,0)$ , изпъкнала в  $(0,+\infty)$ ; инфлексна точка (0,0);  $f'''_{\max} = f''(-\frac{\sqrt{2}}{2}) = 2\sqrt{2}$ ,  $f'''_{\min} = f''(\frac{\sqrt{2}}{2}) = -2\sqrt{2}$ ; г)  $f'(x) = x^4 - 3x^2 + 2$ ; четна; намаляваща в  $(-\infty,-\frac{\sqrt{6}}{2})$ , растяща в  $(-\frac{\sqrt{6}}{2},0)$ , намаляваща в  $(0,\frac{\sqrt{6}}{2})$ , растяща в  $(\frac{\sqrt{6}}{2},+\infty)$ ; изпъкнала в  $(-\infty,-\frac{\sqrt{2}}{2})$ , вдлъбната в  $(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$ , изпъкнала в  $(\frac{\sqrt{2}}{2},+\infty)$ , инфлексни точки  $(-\frac{\sqrt{2}}{2},\frac{3}{4})$ ,  $(\frac{\sqrt{2}}{2},\frac{3}{4})$ ;  $f'_{\min} = f'(-\frac{\sqrt{6}}{2}) = f(\frac{\sqrt{6}}{2}) = -\frac{1}{4}$ ,  $f'_{\max} = f'(0) = 2$ ;

д) нечетна, растяща в  $(-\infty,-\sqrt{2})$ , намаляваща в  $(-\sqrt{2},-1)$ , растяща в (-1,1), намаляваща в  $(1,\sqrt{2})$ , растяща в  $(\sqrt{2},+\infty)$ ; вдлъбната в  $(-\infty,-\frac{\sqrt{6}}{2})$ , изпъкнала в  $(-\frac{\sqrt{6}}{2},0)$ , вдлъбната в  $(0,\frac{\sqrt{6}}{2})$ , изпъкнала в  $(\frac{\sqrt{6}}{2},+\infty)$ ; инфлексни точки  $(-\frac{\sqrt{6}}{2},-\frac{19\sqrt{6}}{40})$ , (0,0),  $(\frac{\sqrt{6}}{2},\frac{19\sqrt{6}}{40})$ ;  $f_{\max}=f(-\sqrt{2})=-\frac{4\sqrt{2}}{5}$ ,  $f_{\min}=f(-1)=-\frac{6}{5}$ ,  $f_{\max}=f(1)=\frac{6}{5}$ ,  $f_{\min}=f(\sqrt{2})=\frac{4\sqrt{2}}{5}$ ;











1.10. Изследване на дробно-линейна функция. Графика .......43

**2** а) вертикална асимптота x=1 , хоризонтална асимптота y=2 ; вдлъбната в  $(-\infty,1)$  , изпъкнала в  $(1,+\infty)$  ; б) вертикална асимптота x=4 , хоризонтална асимптота y=1 ; изпъкнала в  $(-\infty,4)$  , вдлъбната в  $(4,+\infty)$  ; в) вертикална асимптота x=-2 , хоризонтална асимптота y=3 ; вдлъбната в  $(-\infty,-2)$  , изпъкнала в  $(-2,+\infty)$  ; г) вертикална асимптота  $x=-\frac{2}{3}$  , хоризонтална асимптота  $y=\frac{4}{3}$  ; изпъкнала в  $(-\infty,-\frac{2}{3})$  , вдлъбната в  $(-\frac{2}{3},+\infty)$  ;









д) вертикална асимптота x=-3, хоризонтална асимптота y=-1; вдлъбната в  $(-\infty,-3)$ , изпъкнала в  $(-3,+\infty)$ ; е) вертикална асимптота  $x=-\frac{2}{3}$ , хоризонтална асимптота y=-2; изпъкнала в  $(-\infty,-\frac{2}{3})$ , вдлъбната в  $(-\frac{2}{3},+\infty)$ ; ж) вертикална асимптота x=1, хоризонтална асимптота y=-1; вдлъбната в  $(-\infty,1)$ , изпъкнала в  $(1,+\infty)$ ; з) вертикална асимптота x=3, хоризонтална асимптота  $y=-\frac{1}{2}$ ; изпъкнала в  $(-\infty,3)$ , вдлъбната в  $(3,+\infty)$ ;









**3.** а) Няма локални екстремуми, вертикална асимптота x=2; б)  $f'(x)=\frac{3x+1}{x-2}$ ; намалява в  $(-\infty,2)$  и в  $(2,+\infty)$ , вдлъбната в ;  $(-\infty,2)$ , изпъкнала в  $(2,+\infty)$ ; вертикална асимптота x=2, хоризонтална асимптота y=3;



**4.** а)  $f_{\text{max}} = f(5) = 24 \ln 2$ , вертикална асимптота x = -3; б)  $f'(x) = \frac{5-x}{x+3}$ ; намалява в  $(-\infty, -3)$  и в  $(-3, +\infty)$ , вдлъбната в ;  $(-\infty, -3)$ , изпъкнала в  $(-3, +\infty)$ ; вертикална асимптота x = -3, хоризонтална асимптота y = -1;



**5.** а) k=2 ; б) за всяко  $k \neq -16$  ; в) няма такива k; г) k=-7 ; **6.** а) k<1 ; б) k>1 ;

Приложения на математическия анализ. Общи задачи .......45

**1.** -16; **2.** 12; **3.** 3x + 4y - 3 = 0; **4.** 2x + 1; **5.**  $1, \frac{5}{3}$ ; **6.**  $(\frac{5}{2}, 1)$ ; **7.** а) Намалява в  $\left(-\infty, \frac{-3 - \sqrt{5}}{2}\right)$ , расте

в  $\left(\frac{-3-\sqrt{5}}{2},\frac{-3+\sqrt{5}}{2}\right)$ , намалява в  $\left(\frac{-3+\sqrt{5}}{2},2\right)$ , расте в  $(2,+\infty)$  ; б) Намалява в  $(-\infty,-3)$  , расте

в  $(0,+\infty)$ ; в) Намалява в  $(-\infty,0)$ , расте в  $(2,+\infty)$ ; г) Расте в  $(-\infty,-5-\sqrt{13})$ , намалява в  $(-5-\sqrt{13},5+\sqrt{13})$ , расте в  $(5+\sqrt{13},+\infty)$ ;

- **8.** а) Расте в  $(-\infty,1)$  , расте в (1,2) , намалява в (2,3) , намалява в  $(3,+\infty)$  ,  $f_{\max}=f(2)=0$  ;
- б) Расте в  $(-\infty,-1)$  , расте в  $\left(-1,\frac{1}{2}\right)$  , намалява в  $\left(\frac{1}{2},2\right)$  , намалява в  $(2,+\infty)$  ,  $f_{\max}=f\left(\frac{1}{2}\right)=-\frac{11}{9}$  ;
- в) Намалява в  $(-\infty, 2)$ , намалява в (2, 5), намалява в  $(5, +\infty)$ , няма локални екстремуми;
- г) Намалява в  $(-\infty, -2)$ , намалява в (-2, 3), намалява в  $(3, +\infty)$ , няма локални екстремуми;
- д) Намалява в  $(-\infty,0)$  , расте в  $(0,+\infty)$  , няма локални екстремуми; е) намалява в (0,1) , намалява
- в (1,e), расте в  $(e,+\infty)$ ,  $f_{\min}=f(e)=e$ ;
- **9.** Расте в  $(-\infty,0)$ , намалява в  $(0,+\infty)$ ,  $\max_{(-\infty,\infty)} f(x) = f_{\max} = f(0) = \frac{1}{\sqrt{2\pi}}$ , изпъкнала в  $(-\infty,-1)$ ,

вдлъбната в (-1,1) , изпъкнала в  $(1,+\infty)$  , инфлексни точки при  $x=\pm 1$  , хоризонтална асомптота

$$y=0$$
 ; **10.** Расте в  $\left(-1,-rac{\sqrt{3}}{3}
ight)$ , намалява в  $\left(-rac{\sqrt{3}}{3},0
ight)$ , расте в  $(1,+\infty)$ ,  $f_{\max}=f\left(-rac{\sqrt{3}}{3}
ight)=\lnrac{2\sqrt{3}}{9}$  ;

**11.** а) Намалява в  $(-\infty,\infty)$ , няма локални екстремуми, вдлъбната в  $(-\infty,-1)$ , изпъкнала в (-1,1), вдлъбната в  $(1,+\infty)$ , инфлексни точки в  $x=\pm 1$ ; б) Намалява в  $(-\infty,0)$ , расте в  $(0,+\infty)$ ,  $f_{\min}=f(0)=0$ , вдлъбната в  $(-\infty,-1)$ , изпъкнала в (-1,1), вдлъбната в  $(1,+\infty)$ , инфлексни точки

$$(-1, f(-1)) = (-1, \ln 2), \qquad (1, f(1)) = (1, \ln 2); \qquad \mathbf{13.} \ f_{\min} = f(4 - \sqrt{26}) = \frac{-3 - \sqrt{26}}{2},$$

$$f_{\max} = f(4+\sqrt{26}) = \frac{-3+\sqrt{26}}{2} \; ; \quad \text{14. a)} \; \; f_{\min} = f\left(\frac{\pi}{4} + (2k+1)\pi\right) = -\sqrt{2} \; , \quad f_{\max} = f\left(\frac{\pi}{4} + 2k\pi\right) = \sqrt{2} \; ,$$

$$k=0,\pm 1,\pm 2,\dots$$
; б)  $f_{\min}=0$ ,  $f_{\max}=\frac{2\sqrt{3}}{9}$ ; **15.** б)  $x=4k\pi$ ,  $k=0,\pm 1,\pm 2,\dots$ ; **16.** Намалява в

$$(-\infty,-1)\,, \quad \text{расте} \quad \mathrm{B} \quad \left(-1,-\frac{1}{2}\right), \quad \text{намалява} \quad \mathrm{B} \quad \left(-\frac{1}{2},0\right), \quad \text{расте} \quad \mathrm{B} \quad (0,+\infty)\;; \quad f_{\min}=f(-1)=1\;,$$

$$f_{\max} = f\left(-\frac{1}{2}\right) = e^{-\frac{1}{4}} + \frac{1}{4}$$
,  $f_{\min} = f(0) = 1$ ; **17.** а) растяща в  $(-\infty, 2)$ , намаляваща в  $(2, 3)$ ,

намаляваща в (3,4), растяща в  $(4,+\infty)$ ;  $f_{\max}=f(2)=1$ ,  $f_{\min}=f(4)=5$ ; вдлъбната в  $(-\infty,3)$ , изпъкнала в  $(3,+\infty)$ ; вертикална асимптота x=3; б) намаляваща в  $(-\infty,-1)$ , растяща в (-1,3), растяща в (3,7), намаляваща в  $(7,+\infty)$ ;  $f_{\min}=f(-1)=-1$ ,  $f_{\max}=f(7)=-17$ ; изпъкнала в  $(-\infty,3)$ , вдлъбната в  $(3,+\infty)$ ; вертикална асимптота x=3; в) растяща в  $(-\infty,-3)$ , намаляваща в (-3,-2), намаляваща в (-2,-1), растяща в  $(-1,+\infty)$ ;  $f_{\max}=f(-3)=-4$ ,  $f_{\min}=f(-1)=0$ ; вдлъбната в  $(-\infty,-2)$ , изпъкнала в  $(-2,+\infty)$ ; вертикална асимптота x=-2;

- **18.** а) инфлексна точка  $\left(-\frac{1}{3},\frac{20}{27}\right)$ ; б) инфлексна точка  $\left(-\frac{1}{2},\frac{7}{12}\right)$ ;
- в) инфлексна точка  $(-1,-\frac{1}{3})\,;$  г) инфлексна точка  $(-1,-\frac{7}{3})\,;$









**19.**  $y = -\frac{4}{5}x^3 + \frac{12}{5}x - \frac{8}{5}$ ; **20.** a = -1 и a = 2; **21.** чертеж; **22.** чертеж от а) до ж);



















- **24.** p = 0, q = 3;
- **25.** m=0 , n=-3 ,  $y=\frac{x^3}{4}-3x+2$  ;  $f_{\max}=f(-2)=6$  ,  $f_{\min}=f(2)=-2$  ; инфлексна точка  $(0,\,2)$  ;







- **26.** m=0 , n=-3 ,  $y=x^3-3x+2$  ;  $f_{\min}=f(-1)=4$  ,  $f_{\max}=f(1)=0$  , инфлексна точка  $(0,\,2)$  ;
- **27.** m = -1, n = -3,  $y = \frac{x^3}{3} x^2 3x + \frac{14}{3}$ ; **28.**  $a \neq 2$ ; **29.**  $a = \pm 2\sqrt[4]{3}$ ; **30.**  $-\frac{1}{3}$ ;
- **31.** При m>-1 f(x) има локален максимум при  $x=1-\sqrt{1+m}$  и локален минимум при  $x=1+\sqrt{1+m}$ ; При  $m\le-1$  f(x) няма локални екстремуми; При m>-1 f(x) има локален максимум за  $x=1-\sqrt{1+m}$  и локален минимум за  $x=1+\sqrt{1+m}$ . При всяко m f(x) има инфлексна точка при x=2.







- **32.** а) a=3; б) a=7; **33.** а) един двукратен  $x_{1,2}=-\frac{1}{3}$  и един прост  $x_3=-\frac{4}{3}$  корен; б) един корен в (-2,-1); в) три различни корена във всеки от интервалите (-4,-3), (-3,-1) и (-1,0); г) четири корена във всеки от интервалите (0,1), (1,2), (2,3), (3,4); д) пет корена във всеки от интервалите (-2,-1), (-1,0), (0,1), (1,2), (2,3); **34.** б) 4;
- **35.** а)  $f'^{v}(x) = 24x$ , растяща в  $(-\infty, +\infty)$ , права;
- б)  $f'''(x) = 12x^2 12$ ; четна; намаляваща в  $(-\infty,0)$ , растяща в  $(0,+\infty)$ ; изпъкнала в  $(-\infty,+\infty)$ ;  $f'''_{\min} = f'''(0) = -12$ ;

в)  $f''(x) = 4x^3 - 12x$ ; нечетна; растяща в  $(-\infty, -1)$ , намаляваща в (-1, 1), растяща в  $(1, +\infty)$ ; вдлъбната в  $(-\infty, 0)$ , изпъкнала в  $(0, +\infty)$ ; инфлексна точка (0, 0);  $f'''_{\max} = f''(-1) = 8$ ,  $f''_{\min} = f''(1) = -8$ ; г)  $f'(x) = x^4 - 6x^2 + 8$ ; четна; намаляваща в  $(-\infty, -\sqrt{3})$ , растяща в  $(-\sqrt{3}, 0)$ , намаляваща в  $(0, \sqrt{3})$ , растяща в  $(\sqrt{3}, +\infty)$ ; изпъкнала в  $(-\infty, -1)$ , вдлъбната в (-1, 1), изпъкнала в  $(1, +\infty)$ , инфлексни точки (-1, 3), (1, 3);  $f'_{\min} = f'(-\sqrt{3}) = f(\sqrt{3}) = -1$ ,  $f'_{\max} = f'(0) = 8$ ; д) нечетна, растяща в  $(-\infty, -2)$ , намаляваща в  $(-2, -\sqrt{2})$ , растяща в  $(-\sqrt{2}, \sqrt{2})$ , намаляваща в  $(\sqrt{2}, 2)$ , растяща в  $(2, +\infty)$ ; вдлъбната в  $(-\infty, -\sqrt{3})$ , изпъкнала в  $(-\sqrt{3}, 0)$ , вдлъбната в  $(0, \sqrt{3})$ , изпъкнала в  $(\sqrt{3}, +\infty)$ ; инфлексни точки  $(-\sqrt{3}, -\frac{19\sqrt{3}}{5})$ , (0, 0),  $(\sqrt{3}, \frac{19\sqrt{3}}{5})$ ;  $f_{\max} = f(-2) = -\frac{32}{5}$ ,  $f_{\min} = f(-\sqrt{2}) = -\frac{24\sqrt{2}}{5}$ ,  $f_{\max} = f(\sqrt{2}) = \frac{24\sqrt{2}}{5}$ ,  $f_{\min} = f(2) = \frac{32}{5}$ ;











**39.** При 
$$a>\frac{9}{4}$$
,  $\max_{[0,a]}f(x)=\frac{4}{4a-9}$ , при  $\frac{9}{4}< a \le 3$ ,  $\min_{[0,a]}f(x)=\frac{1}{a}$ , при  $a>3$ ,  $\min_{[0,a]}f(x)=\frac{1}{a^2-2a}$ ; **40.**  $\min_{[-3,3]}f(x)=\frac{1098}{4096}$ ,  $\max_{[-3,3]}f(x)=9216$ ; **41.**  $\max_{[0,a]}f(x)=1+\sqrt{2}$ ,  $\min_{[0,a]}f(x)=-\frac{5}{4}$ ; **42.**  $x-y-13=0$ ,  $x-y+7=0$ ; **43.**  $6\sqrt{5}$ ; **44.** a)  $10x+3y-32=0$ ; б)  $x=\sqrt{5}$ ; **8**)  $7x-\sqrt{7}y-35=0$ ; г)  $3\sqrt{5}x-10y-60=0$ ; д)  $3x+y+18=0$ ; е)  $x-y+6=0$ ; **45.** a)  $(-5,-1)$ ; б)  $(2,8)$ ; в)  $(-2,-7)$ ; г)  $(4,2)$ ; **46.** Г; **47.** 90°; **48.**  $(-2,0)$ ;

Приложения на математическия анализ – Тест 1 и Тест 2......54

**Тест 1. 1.**  $-\frac{1}{125}$ ; **2.** Расте в  $(-\infty,-1)$ , расте в  $\left(-1,-\frac{1}{2}\right)$ , намалява в  $\left(-\frac{1}{2},0\right)$ , намалява в  $(0,+\infty)$ ; **3.** x+2y-9=0; **4.** А; **5.**Г; **6.**Г; **7.**А; **8.**Б; **9.**А; **10.** Расте в  $(-\infty,-3)$ , намалява в (-3,3), расте в  $(3,+\infty)$ ,  $f_{\max}=f(-3)$ ,  $f_{\min}=f(3)$ , инфлексни точки в  $\pm\sqrt{3}$  и  $\frac{3}{2}$ ; **11.**  $f_{\max}=f(\frac{2}{3})=\frac{1}{27}$ ,  $f_{\min}=f(1)=0$ ,  $\lim_{x\to-\infty}f(x)=-\infty$ ,  $\lim_{x\to+\infty}f(x)=+\infty$ , инфлексия в  $(\frac{5}{6},\frac{1}{54})$ .

Оценяване. За всеки верен отговор по 2 точки. Оценка =(броя на точките.100/22).

**Тест 2. 1.**  $\frac{-27\sqrt{6}}{8}$ ; **2.** Расте в  $(-\frac{1}{2},\frac{1}{2})$ , намалява в  $(\frac{1}{2},+\infty)$ ; **3.** x-8y+29=0; **4.**  $\Gamma$ ; **5.**B; **6.**Б; **7.**A; **8.**Б; **9.** $\Gamma$ ; **10.** Намалява в  $(-\infty,-1)$ , намалява в (-1,0), расте в  $(0,+\infty)$ ,  $f_{\min}=f(0)=1$ , вдлъбната в  $(-\infty,-1)$ , изпъкнала в  $(-1,+\infty)$ ; няма инфлексни точки. **11.**  $f_{\max}=f(-6)=106$ ,  $f_{\min}=f(0)=-2$ ,  $\lim_{x\to\infty}f(x)=-\infty$ ,  $\lim_{x\to+\infty}f(x)=+\infty$ , инфлексия в (-3,52); Оценяване. За всеки верен отговор по 2 точки. Оценка =(броя на точките.100/22).

## Модул III. Практическа математика – ОТГОВОРИ 2. Геометрични модели 2.1. Екстремални задачи в равнината......58 **4.** равностранният триъгълник, $3\sqrt{3}\,r^2$ ; **5.** равностранният триъгълник, $3\sqrt{3}\,r^2$ ; **6.** равностранният триъгълник, $\frac{3\sqrt{3}R^2}{4}$ ; **7.** при $\alpha = \frac{\pi}{4}$ , $\frac{r}{R} = \sqrt{2} - 1$ ; **9.** $2R\sin\frac{2\pi}{9} = 2R\sin40^\circ$ ; **10.** AB = 2BC, $R^2$ ; 11. квадрат със страна $\sqrt{S}$ , $4\sqrt{S}$ ; 12. квадрат, $2R^2$ ; 13. $\frac{\pi}{3}$ , $12\sqrt{3}$ ; 14. $S(x) = \frac{c^2 \sin x \sin(x + \gamma)}{2 \sin x}$ , $0 < x < \pi - \gamma$ , $S_{\max} = \frac{c^2 \cos^2 \frac{\gamma}{2}}{2 \sin \gamma}$ ; **15.** $\frac{\pi}{3}$ , $\frac{3\sqrt{3}b^2}{4}$ ; **16.** отсечка, успоредна на AB с дължина $\frac{\sqrt{2}}{2}$ ; **17.** б) $\frac{\pi}{2}$ ; 2.2. Екстремални задачи в пространството ...... **3.** $\max V = \frac{2\sqrt{3}\pi R^3}{27}$ при $d = \frac{R\sqrt{3}}{2}$ ; **4.** $\frac{3p}{5}$ – бедра, $\frac{4p}{5}$ – основа; **5.** $\frac{12}{25}$ ; **6.** $\frac{2}{3}R$ , $\frac{4}{27}\pi R^2H$ ; 7. $V = \frac{5\pi}{3}x^2(3-x)$ , $x \in (0,3)$ , $V_{\text{max}} = \frac{20\pi}{3}$ ; 8. $MA = MC = \frac{2\sqrt{3}}{3}$ , $V = \frac{4\sqrt{3}}{27}$ ; 2.3. Комбинации от ротационни тела ..... **2.** а) $684\pi$ , $2448\pi$ ; б) $5400\pi$ , $3417\pi$ ; в) $5616\pi$ , $3417\pi$ ; г) $2520\pi$ , $4900\pi$ ; д) $\frac{13464\pi}{5}$ , $\frac{31212\pi}{5}$ ; **4.** a) $104\pi$ cm<sup>2</sup>, $48\sqrt{3}\pi$ cm<sup>3</sup>; 6) $44\pi$ cm<sup>2</sup>, $\frac{28\sqrt{3}\pi}{3}$ cm<sup>3</sup>; **5.** a) $16.8\pi$ , $9.6\pi$ ; 6) $62.4\pi$ , $32.8\pi$ ; $S_{AD} = \frac{\pi h}{a}(a^2 + b^2 + ad + bd), V_{AB} = \frac{\pi h^2(a+2b)}{2}, V_{CD} = \frac{\pi h^2(2a+b)}{2}, V_{AD} = \frac{\pi h^2(a^2+b^2+ab)}{2};$ **9.** а) Тялото е цилиндър с r=4 , l=h=6 , $S_1=48\pi$ , $V=96\pi$ ; б) Тялото се състои от пресечен конус с r=4 , R=8 , $h_{_{\mathrm{пр. K}}}=3$ , $l_{_{\mathrm{пр. K}}}=5$ и "върху него" цилиндър с r=4 , $l_{_{\mathrm{I}}}=h_{_{\mathrm{I}}}=1$ ; повърхнина $S = 148\pi$ и обем $V = 128\pi$ ; **10.** Тялото се състои от пресечен конус с r=2 , $R=\frac{5}{2}$ , $l_{\text{пр.к.}}=2$ , $h_{\text{пр.к.}}=\frac{\sqrt{15}}{2}$ и конус с $R=\frac{5}{2}$ , $h_{\kappa} = \frac{3\sqrt{15}}{2}$ , $l_{\kappa} = 2\sqrt{10}$ ; $S = (13 + 5\sqrt{10})\pi$ , $V = \frac{17\sqrt{15\pi}}{2}$ ; **11.** 24 cm, $4896\pi$ cm<sup>2</sup>. **12.** $199296\pi$ cm<sup>2</sup>; **13.** a) $S_a > S_b > S_c$ ; 6) $V_a > V_b > V_c$ ; **17.** a) $\cos \alpha = \sqrt[3]{3} - 1$ ; 6) $\frac{2\sqrt[3]{3} - \sqrt[3]{9} + \sqrt{2}\sqrt{2\sqrt[3]{9} - 3}}{\sqrt{4}}$ ; **18.** $\frac{5\sqrt{3}}{2}$ ; **20.** 4:25; **21.** $V_{c\phi}: V_{\kappa} = 1:2$ ; **22.** $V = \frac{4}{3}\pi h^3$ или $V = \frac{4}{3}\pi(\sqrt{5}-2)h^3$ ; **23.** $\frac{2\pi R^2(4-\sin^2\alpha)}{\sin^2\alpha}$ ; **24.** a) $\frac{1}{3}$ ; б) $\frac{8\sqrt{3}}{3}\pi R^2$ ; **25.** $\frac{\sqrt{2}}{16}\pi d^3$ ; **26.** $\cos \alpha = -\frac{3}{5}$ ;

**14.** 18; **15.** 13; **16.** 
$$R^3$$
; **17.**  $\frac{a}{2}$ ; **18.**  $12\sqrt{3}R^2$ ; **19.**  $18\sqrt{3}R^2$ ,  $6\sqrt{3}R^3$ ; **20.** a)  $R = \frac{h}{3}$ ; 6)  $R = h(\sqrt{2} - 1)$ ;

**21.** 
$$\frac{a\sqrt{6}}{12}$$
; **22.**  $R = \frac{ah}{a + \sqrt{12h^2 + a^2}}$ ; **23.**  $R = \frac{ah}{a + \sqrt{4h^2 + a^2}}$ ; **26.**  $\frac{h \operatorname{tg} \frac{\alpha}{2}}{\operatorname{tg} \alpha}$ ;

**27.** 
$$\frac{a\sqrt{2}\sin\alpha}{2}(1+\sqrt{1+\sin^2\alpha})$$
; **29.**  $\frac{32\pi}{3}$ ; **30.**  $15\sqrt{15}$ ; **31.** 6)  $\frac{28\sqrt{7}\pi}{3}$ ; **32.**  $\frac{\sqrt{2}}{4\pi}$ ; **33.**  $9+4\sqrt{2}+2\sqrt{5}$ ;

**34.** 
$$V = \frac{8\sqrt{3}R^3}{27}$$
,  $\cos \varphi = \frac{\sqrt{3}}{3}$ ; **36.**  $\frac{h}{1+\sqrt{1+2tg^2\beta}}$ ; **36.** 1:63; **37.** 500; **38.** 400 cm<sup>2</sup>

39. 
$$\frac{1}{\sin 2\alpha} \sqrt{\frac{B}{2\sin \varphi}}$$
; 40. 
$$\frac{8R^2 \cot^2 \frac{\beta}{2} \cos^2 \frac{\beta}{2}}{\sin \alpha \cos \beta}$$
;

Геометрични модели. Общи задачи......77

**1.** a) 
$$420\pi$$
 cm²; 6)  $\frac{1020}{13}\pi$  cm²; **2.** a)  $\sqrt{3}$ ; 6)  $2\sin\alpha$ ; **3.** a)  $\frac{2}{3}\pi S\sqrt{\frac{S\sqrt{3}}{2}} = \frac{2}{3}\pi S\sqrt{\frac{3S^2}{4}}$ ; 6)  $\frac{2\pi S\sqrt{S}}{3}$ ;

B) 
$$\frac{2\pi S\sqrt{S\sin 2\alpha}}{3}$$
; **4.**  $624\pi$  cm<sup>2</sup>,  $2112\pi$  cm<sup>3</sup>;

**5.** а)  $576\,\pi$  cm²,  $2112\,\pi$  cm³; б)  $912\,\pi$  cm²,  $2112\,\pi$  cm³; в)  $1426\,\pi$  cm²,  $4544\,\pi$  cm³; г)  $896\,\pi$  cm²,  $2604\,\pi$  cm³; д)  $650\,\pi$  cm²,  $1900\,\pi$  cm³;

**6.** 
$$\frac{42986\pi}{9}$$
 cm²,  $16020\pi$  cm³; **7.** 6; **8.**  $\frac{35}{8}$ ; **9.** 2; **10.**  $\frac{1}{\sin 2\alpha}\sqrt{(R-r)^2+4rR\cos^2\alpha}$ ;

**11.** 
$$V = \frac{1}{48}\pi l^3 \sin^4 \alpha \sin 2\alpha$$
,  $S_1 = \frac{1}{2}\pi l^2 \sin^3 \alpha \sin^2 \left(\frac{\pi}{4} + \frac{\alpha}{4}\right)$ ; **13.**  $\frac{288}{625}$ ;

**14.** a) 
$$\frac{\pi h^2}{3\sin^2\alpha} (2\sqrt{3\cos^2\alpha + 1} + 3\cos^2\alpha + 1)$$
, 6)  $\frac{32\pi h^3}{81\sin^6\alpha}$ ;

**15.** a) 
$$S = 6B$$
,  $V = 2B\sqrt{\frac{B}{\sin 2\alpha}} \cdot (\cos \alpha + \sin \alpha - 1)$ ; 6)  $\frac{4\pi B}{\sin 2\alpha} (3 + \sin 2\alpha - 2(\sin \alpha + \cos \alpha))$ ;

**16.** 
$$2\pi R^2 \sin 2\alpha .\cos \alpha .(\sin \alpha + 1)$$
,  $\frac{2}{3}\pi R^3 \sin^2 2\alpha .\cos^2 \alpha$ ; **17.** a)  $\frac{4000}{81}\pi$  cm<sup>3</sup>; 6) 3 cm;  $\frac{7\sqrt{5}}{9}R^2$ ;

**19.** 
$$\cos \alpha = \frac{1}{2}$$
 или  $\cos \alpha = \frac{1}{5}$ ; **20.** a)  $\frac{8k^2 \cdot \cos \beta \cdot \cos^2 \frac{\beta}{2}}{\sin \alpha}$ ; б)  $k \cdot \cos \beta \cdot \operatorname{tg} \frac{\beta}{2}$ ; **21.** a)  $\frac{2}{3}b^3 \cdot \cos^3 \frac{\alpha}{2} \cdot \operatorname{tg}\beta$ ;

6) 
$$\frac{b}{2\sin\frac{\alpha}{2}.\sin 2\beta}$$
; **22.**  $\frac{37}{81}R^3$ , **23.**  $\frac{28\sqrt{7}}{81}\pi b^3$ ; **24.**  $\frac{6\sqrt{3}}{\pi}$ ; **25.**  $12\sqrt{3}r^3$ ; **26.**  $\frac{4p^2(\sin\alpha+\cos\alpha-1)}{\sin\alpha+\cos\alpha+1}$ ;

**27.** 
$$\frac{1}{3}B\sqrt{B \operatorname{tg} \frac{\alpha}{2}} \cdot \operatorname{tg} \left(\frac{\pi}{4} - \frac{\alpha}{4}\right) \cdot \operatorname{cotg} \beta$$
; **28.**  $\frac{3\sqrt{3}(\sqrt{5}-2)}{5}$ ; **29.**  $\sqrt{2}-1$ ; **30.**  $\frac{4}{81}\pi R^3$ ; **31.**  $\frac{a\sqrt{3}(2-\sqrt{3})}{2}$ ;

**32.** 
$$6B$$
; **33.** 1 cm; **34.**  $\frac{b \sin \alpha \operatorname{tg} \frac{\beta}{2}}{2}$ ; **35.**  $\frac{h(\sqrt{-\cos 2\delta} + \cos 2\delta)}{2 \cos^2 \delta}$ ; **36.**  $2\sqrt{2}$ ; **37.**  $b\sqrt{\frac{11}{15}}$ ; **38.**  $\frac{9+\sqrt{3}}{26}$ ;

**39.** 
$$15\sqrt{7}$$
 cm<sup>3</sup>; **40.**  $\frac{\sqrt{2}}{2}b^3$ ; **41.**  $\frac{b^3}{\sqrt{3b-a}\sqrt{a^3+b^3-3a^2b+ab^2}}$ ; **42.** 2,5 cm; **43.**  $\frac{\sqrt{3}l^4}{32R^3}(4R^2-l^2)$ ;

**44.** 
$$\frac{100\sqrt{19}}{19}$$
; **45.** 3 cm; **46.** 2,5 cm; **47.**  $\frac{13\sqrt{41}}{8}$ ; **48.** a)  $\frac{2+\sqrt{3}}{12}(2Rh^2-h^3)$ ; 6)  $\frac{8(2+\sqrt{3})R^3}{81}$ ;

**49.** 
$$\frac{R\sqrt{4\sin^2 3\alpha - 1}}{2\sin 3\alpha}$$
;

**50.** a) 
$$\frac{\sqrt{3}}{96}a^3 \frac{\sin^3\frac{\alpha}{2}}{\sin^3\frac{\alpha-60^\circ}{2}\sin^3\frac{\alpha+60^\circ}{2}};$$
 6)  $\frac{\sqrt{3}\pi a^3}{54} \frac{1}{\cos^3\frac{\alpha}{2}\sin^3\left(\frac{\alpha-60}{2}\right)\sin^3\left(\frac{\alpha+60}{2}\right)};$  B)  $108^\circ;$ 

**51.** 
$$\frac{R^3}{3}\sin^2 2\alpha$$
; **52.** 6)  $\lg \angle (ABC, MBC) = \frac{3\sqrt{2}}{4}$ ; B)  $4(7+\sqrt{34})$  cm<sup>2</sup>,  $16$  cm<sup>3</sup>; **53.**  $288(2\pm\sqrt{3})$  cm<sup>3</sup>;

**54.** 
$$\frac{32}{81}\pi b^3$$
; **55.**  $\frac{2R\sin 3\alpha}{3\sin \alpha}$ ; **56.**  $\frac{b\sqrt{21}}{6}$ ; **57.**  $\frac{b\sin \alpha}{4\cos^2\frac{\alpha}{4}}$ ; **58.**  $\frac{a\sin \alpha}{1+\sin \alpha+\cos \alpha}$ ;

Геометрични модели – Тест 1 и Тест 2 .......

**Tecm 1. 1.**A; **2.**
$$\Gamma$$
; **3.**  $(56+24\sqrt{3})\pi$ ;  $\frac{224\sqrt{3}\pi}{3}$ ; **4.** $\Gamma$ ; **5.** $\Gamma$ ; **6.** $\Gamma$ ; **6.** $\Gamma$ ; **7.** $\Gamma$ ; **8.**  $\Gamma$ ; **9.**  $\Gamma$ ; **10.**  $\frac{\pi}{3}$ ;

Оценяване. За задачи от 1 до 9 по 2 точки, за задача 10 6 точки. Оценка =(броя на точките.100/24).

**Tecm 2. 1.** 
$$\Gamma$$
; **2.**  $\Gamma$ ; **3.**  $\Gamma$ ; **4.**  $\Gamma$ ; **4.**  $\Gamma$ ; **4.**  $\Gamma$ ; **5.**  $\Gamma$ ; **6.**  $\Gamma$ ; **8.**  $\Gamma$ ; **9.**  $\Gamma$ ; **10.**  $\Gamma$ ; 

2. a)

Оценяване. За задачи от 1 до 9 по 2 точки, за задача 10 6 точки. Оценка =(броя на точките.100/24).

#### 3. Емпирични разпределения

#### 3.3. Емпирично разпределение и описателни статистики, изключения (аутлаери)...........92

| 1. | $\mathcal{X}_{i}$ | 2    | 4    | 6    | 8    |
|----|-------------------|------|------|------|------|
|    | $f_{i}$           | 30   | 40   | 50   | 20   |
|    | $p_{i}$           | 0,21 | 0,29 | 0,36 | 0,14 |

| $\mathcal{X}_{i}$          | 1    | 2    | 3    | 4    | 5    | 7    |
|----------------------------|------|------|------|------|------|------|
| $f_{i}$                    | 4    | 4    | 4    | 5    | 5    | 2    |
| $p_{\scriptscriptstyle i}$ | 0,17 | 0,17 | 0,17 | 0,21 | 0,21 | 0,07 |

| б) | $\mathcal{X}_{i}$          | 25   | 27   | 30   |  |
|----|----------------------------|------|------|------|--|
|    | $f_{i}$                    | 6    | 8    | 10   |  |
|    | $p_{\scriptscriptstyle i}$ | 0,25 | 0,33 | 0,42 |  |

| 3) | $\mathcal{X}_i$            | 361 | 518  | 620  | 740  |
|----|----------------------------|-----|------|------|------|
|    | $f_{i}$                    | 9   | 12   | 14   | 10   |
|    | $p_{\scriptscriptstyle i}$ | 0,2 | 0,27 | 0,31 | 0,22 |

| ) | $\mathcal{X}_{i}$ | 23   | 24   | 25   |
|---|-------------------|------|------|------|
|   | $f_{i}$           | 8    | 21   | 7    |
|   | $p_{_i}$          | 0,22 | 0,59 | 0,19 |

**3.** 4; 3; 5; 4; 2;

**4.**  $F_{30}(x) = \{0, x \le 2; 0, 23, 2 < x \le 4; 0, 53, 4 < x \le 6; F(x) \}$ 

 $0.87.10 < x \le 11$ ; 1.11 < x



**7.** a) разходите на третата фирма са необичайно високи; б) дефектните изделия в цех E са необичайно ниски; в) продадените мобилни устройства в магазин B са необичайно ниски;

3.5. Анализ на диаграми – зависимост на две категорни променливи.......99 Класация П 2 RCДегустатор 3.6. Диаграма на разсейване. Корелационна зависимост ......100 4. линейна; 5. линейна; 6. няма зависимост; 7. няма зависимост; Емпирични разпределения – Тест 1 и Тест 2......102 **Tecm 1. 1.** a)  $x_i$  {32, 34, 35, 39};  $f_i$  {11, 15, 12, 18};  $p_i$  {0,24, 0,33, 0,26, 0,17};  $F_{46}(x) = \{0, x \le 32; 0.24, 32 < x \le 34; 0.57, 34 < x \le 35; 0.83, 35 < x \le 39; 1, 39 < x\};$ 6) ; r)  $N_{Me}=23$  , Me=34 ,  $N_{\mathcal{Q}_1}=12$  ,  $\mathcal{Q}_1=34$  ,  $N_{\mathcal{Q}_3}=34$  ,  $\mathcal{Q}_3=35$  ; Оценяване. За верен отговор на а), б) и в) – по 2 точки, за г) по 2 точки за медианата, първи и трети квартил. Оценка в точки = (получените точки.100/12); **Tecm 2. 1.** a)  $x_i$  {37, 38, 39, 40};  $f_i$  {12, 16, 11, 9};  $p_i$  {0,25, 0,33, 0,23, 0,19}; 6)  $F_{48}(x) = \{0, x \le 37; 0.25, 37 < x \le 38; 0.58, 38 < x \le 39; 0.81, 39 < x \le 40; 1, 40 < x\};$ r)  $N_{Me} = 24$ , Me = 38,  $N_{O_1} = 12$ ,  $Q_1 = 37$ ,  $N_{O_3} = 36$ ,  $Q_3 = 39$ ; Оценяване. За верен отговор на а), б) и в) – по 2 точки, за г) по 2 точки за медианата, първи и трети квартил. Оценка в точки = (получените точки.100/12); 4. Елементи от комбинаториката 4.1. Съединения с повторения ......104 **6.**  $9.10^8.9 = 81.10^8$ ; **7.**  $n^k$ ; **8.**  $9n^{k-1}$ ; **10.** 6)  $\widetilde{P}_7(4,2,1) = \frac{567}{2}$ ; B)  $\widetilde{P}_7(3,4) = 35$ ; **11.**  $\widetilde{P}_8(3,5) = \frac{8!}{3!5!} = 56$ ; **12.**  $\widetilde{P}_6(1,3,2) = \frac{6!}{1!2!3!} = 60$ ; **17.** a)  $\widetilde{C}_3^6 = 28$ ; 6)  $\widetilde{V}_3^6 = 729$ ; **18.**  $\widetilde{C}_5^{10} = 1001$ ; Елементи от комбинаториката. Общи задачи... **1.** а) 8; б) 81; в) 64; **2.** а) 10; б) 5; в) 2520; **3.** а) 4; б) 10; в) 6; г) 1; д) 5; е) 1; ж) n; **4.** а) 560; б) 32; 6; B) 84; **5.**  $\widetilde{P}_{12}(3,3,3,3) = \frac{12!}{6^4}$ ; **6.**  $\widetilde{V}_2^n = 2^n$ ; **7.**  $\widetilde{V}_{10}^4 = 1000$ ; **8.**  $\widetilde{V}_6^4 = 6^4 = 1296$ ; **9.**  $\widetilde{V}_2^7 = 2^7 = 128$ ; **10.** a)  $\widetilde{C}_{6}^{5} - \widetilde{C}_{5}^{5} = \frac{9!}{5!4!}$ ; 6)  $\widetilde{C}_{5}^{4} = 70$ ; **11.** a)  $\widetilde{V}_{2}^{4} = 2^{4} = 16$ ; 6)  $\widetilde{V}_{5}^{4} = 5^{4}$ ; B)  $\widetilde{V}_{5}^{4} - \widetilde{V}_{5}^{3} = 5^{4} - 5^{3} = 5.5^{3}$ ; **12.** a)  $\widetilde{P}_5(3,2) = \frac{5!}{3!2!}$ ; 6)  $\widetilde{P}_4(1,2,1) = \frac{4!}{2!}$ ; B)  $P_3 = 3!$ ; **13.** a)  $\widetilde{P}_8(3,1,4) = \frac{8!}{3!4!}$ ; 6)  $\widetilde{P}_n(1,n-1) = \frac{n!}{(n-1)!}$ ; B)  $\widetilde{P}_{2n+1}(2,n,n-1) = \frac{(2n+1)!}{2!n!(n-1)!}$ ; **14.**  $\widetilde{C}_5^7$ ; **15.**  $\widetilde{P}_{10}(3,5,2)$ ; **16.**  $\widetilde{P}_{6}(2,1,1,1,1)=360$ ; **17.**  $\widetilde{C}_{4}^{30}$ ; **19.**  $\widetilde{C}_{3}^{15}$ ; **20.** a)  $\widetilde{C}_{3}^{10}\widetilde{C}_{3}^{8}=2970$ ; **21.**  $\widetilde{P}_{10}(2,5,3)$ ; **22.**  $\widetilde{P}_9(5,4)$ ; **23.** a)  $\widetilde{C}_2^6$ ; 6)  $\widetilde{V}_2^6$ ; **24.**  $\widetilde{V}_5^3.2 = 5^3.2$ ; **25.**  $\widetilde{V}_6^3 - \widetilde{V}_6^2 = 6^2.5$ ; **26.**  $\widetilde{P}(1,1,1,2) = 60$ ; **27.**  $\widetilde{P}(1,3,2) = 60$ ; **28.**  $\widetilde{C}_3^{10}$ ; **29.** a)  $\widetilde{C}_3^{20}$ ; **30**  $\frac{3.\widetilde{C}_2^{40}}{\widetilde{C}_3^{40}}$  **31**  $\widetilde{C}_2^7$ ; **32** a)  $\frac{\widetilde{C}_1^{100}}{\widetilde{C}_1^{100}}$ , 6)  $\frac{2\widetilde{C}_1^{100}}{\widetilde{C}_3^{100}}$ ; Елементи от комбинаториката – Тест 1 и Тест 2...... **Tecm 1. 1. 3; 2. 9; 3. 21; 4. 81; 5. 60; 6. 500; 7. 243; 8. 455; 9. 6; 10.** Γ; Оценяване. За всеки верен отговор по 2 точки. Оценка в точки = (получените точки.100/20); **Тест 2. 1.** 4; **2.** 16; **3.** 5; **4.** 243; **5.** 120; **6.** 180; **7.** 1024; **8.** 66; **9.** 10; **10.** Б; Оценяване. За всеки верен отговор по 2 точки. Оценка в точки = (получените точки.100/20);

#### Отговори – Модул IV

#### 1. Вероятности

**1.** а) 
$$\frac{1}{2}$$
 ;  $\frac{1}{2}$  ;  $\frac{3}{8}$  ; б)  $\frac{1}{2}$  ;  $\frac{2}{3}$  ;  $\frac{1}{4}$  ; в)  $A$  и  $B$  не са независими;  $B$  и  $C$  не са независими

**3.** a) 
$$\frac{1}{4}$$
; б) 1; в)  $\frac{1}{3}$ ; **5.** a)  $\frac{1}{5}$ ; б)  $\frac{1}{3}$ ; в)  $\frac{7}{32}$ ; г)  $\frac{5}{11}$ ; д)  $\frac{2}{21}$ ; е)  $\frac{7}{11}$ ; **6.** a)  $\frac{1}{2}$ ; б)  $\frac{5}{6}$ ; в)  $\frac{2}{5}$ ;

7. 
$$\frac{2}{3}$$
; 10.  $\frac{1}{3} \left( \frac{3}{7} + \frac{4}{6} + \frac{5}{8} \right)$ ; 11.  $\frac{1}{3} \left( \frac{2}{6} + \frac{3}{6} + \frac{5}{7} \right)$ ;

**12.** a) 
$$\frac{1}{3} \left( \frac{C_3^2}{C_7^2} + \frac{C_4^2}{C_9^2} + \frac{C_5^2}{C_8^2} \right)$$
; б)  $\frac{1}{3} \left( \frac{C_3^2 + C_4^2}{C_7^2} + \frac{C_4^2 + C_5^2}{C_9^2} + \frac{C_5^2 + C_3^2}{C_8^2} \right)$ ; в)  $\frac{1}{3} \left( \frac{C_3^1 C_4^1}{C_7^2} + \frac{C_4^1 C_5^1}{C_9^2} + \frac{C_5^1 C_3^1}{C_8^2} \right)$ ;

**13.** a) 
$$\frac{1}{3} \left( \frac{C_5^2}{C_{12}^2} + \frac{C_4^2}{C_{10}^2} + \frac{C_8^2}{C_{11}^2} \right)$$
; б)  $\frac{1}{3} \left( \frac{C_5^2 + C_7^2}{C_{12}^2} + \frac{C_4^2 + C_6^2}{C_{10}^2} + \frac{C_8^2 + C_3^2}{C_{11}^2} \right)$ ; в)  $\frac{1}{3} \left( \frac{C_5^1 C_7^1}{C_{12}^2} + \frac{C_4^1 C_6^1}{C_{10}^2} + \frac{C_8^1 C_3^1}{C_{11}^2} \right)$ ;

**14.** a) 
$$\frac{1}{3} \left( \frac{C_4^2}{C_8^2} + \frac{C_3^2}{C_9^2} + \frac{C_5^2}{C_8^2} \right)$$
; б)  $\frac{1}{3} \left( \frac{C_4^2 + C_4^2}{C_8^2} + \frac{C_3^2 + C_6^2}{C_9^2} + \frac{C_5^2 + C_3^2}{C_8^2} \right)$ ; в)  $\frac{1}{3} \left( \frac{C_4^1 C_4^1}{C_8^2} + \frac{C_3^1 C_6^1}{C_9^2} + \frac{C_5^1 C_3^1}{C_8^2} \right)$ ;

**15.** а) образуват; б) образуват; **16.** а) 
$$A$$
 и  $B$  образуват пълна група; б)  $\frac{C_5^2}{C_5^2 + C_5^1 C_4^1}$ ;

**17.** a) не образуват; б) не образуват; **18.** например:  $A_i = \{$ броя на извадените i бели топки $\}$ ,

$$i=0,1,2,3\;;\;\; rac{C_6^3}{C_{11}^3}\;;\;\; rac{C_5^1C_6^2}{C_{11}^3}\;;\;\; rac{C_5^2C_6^1}{C_{11}^3}\;;\;\; rac{C_5^3}{C_{11}^3}\;;\;\; rac{C_5^3}{C_{11}^3}\;;\;\; 19.$$
 например:  $A_i=\{$ броя на извадените  $i$  бели топки $\}$ ,

$$i=0,1,2\,;\,\frac{1}{15}\,;\,\frac{8}{15}\,;\,\frac{2}{5}\,;\,\mathbf{20.}\;\mathbf{a})\;\,\frac{11}{36}\,;\,\frac{5}{9}\,;\,\frac{1}{6}\,:\,\mathbf{6})\;\,\frac{1}{5}\,;\,\mathbf{B})\;\,\frac{1}{3}\,;\,\mathbf{r})\;\,\frac{1}{11}\,;\;\,\mathbf{21.}\;\,\frac{2}{5}\,;\,\mathbf{22.}\;\,\frac{31}{55}\,;\,\mathbf{23.}\;\,\frac{8}{51}\,;\,\mathbf{24.}\;\,\frac{2}{5}\,;\,\mathbf{25.}\;\,\frac{271}{420}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;\,\frac{271}{55}\,;$$

**26.** 0,043; **27.** 
$$\frac{2}{7}$$
;

28. Двете деца имат равни вероятности да вземат шоколадов бонбон;

**1.** 
$$\frac{11}{34}$$
; **2.**  $\frac{3}{10}$ ; **3.**  $\approx 0.33$ ; **4.**  $\approx 0.04$ ; **5.**  $\frac{18}{43}$ ; **6.**  $\frac{1}{3}$ ; **7.**  $\frac{5}{16}$ ,  $\frac{1}{4}$ ,  $\frac{5}{16}$ ; **8.**  $\frac{4}{7}$ ; **9.** a) 0.33; 6) 0.67; **10.** 0.0705; **11.**  $\frac{16}{25}$ ; **12.**  $Y_9$ ;

#### 2. Случайна величина

2.1. Разпределение на дискретна крайна случайна величина. Примери на разпределения Функция на разпределение ......128

| 1. | X | 0              | 1        | 2               | 3        |
|----|---|----------------|----------|-----------------|----------|
|    | P | $\frac{1}{56}$ | 15<br>56 | <u>30</u><br>56 | 10<br>56 |

| 2. | X | 0                  | 1               | 2               | 3              |  |
|----|---|--------------------|-----------------|-----------------|----------------|--|
|    | P | <u>4</u> <u>56</u> | <u>24</u><br>56 | <u>24</u><br>56 | <u>4</u><br>56 |  |

| <b>3.</b> a) | X | 3          | 6          | 9          | 12         | 15       | 18       |
|--------------|---|------------|------------|------------|------------|----------|----------|
|              | P | <u>1</u> 6 | <u>1</u> 6 | <u>1</u> 6 | <u>1</u> 6 | <u>1</u> | <u>1</u> |

б) ; 
$$F(x) = \{0, \text{ при } x \le 3; \frac{1}{6}, \text{ при } 3 < x \le 6; \frac{1}{6} + \frac{1}{6} = \frac{2}{6}, \text{ при } 6 < x \le 9;$$
 
$$\frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6}, \text{ при } 9 < x \le 12; \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{4}{6}, \text{ при } 12 < x \le 15;$$
 
$$\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{5}{6}, \text{ при } 15 < x \le 18; \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{6}{6} = 1, \text{ при } 18 < x \}$$
 4. 
$$X = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{6} = \frac{1}{6} + \frac{1}{6} = \frac{1}{6}$$

- **6.** Стойностите на X са 0, 1, и 2. Съответните вероятности са  $\frac{45}{144}, \frac{78}{144}$  и  $\frac{21}{144};$
- **7.** Стойностите на X са  $2, 3, 4, 5, 6, 7, 8, 9, 10, 11, и 12. Съответните вероятности са <math>\frac{1}{36}$ ,  $\frac{2}{36}$ ,  $\frac{3}{36}$ ,

$$\frac{4}{36}$$
,  $\frac{5}{36}$ ,  $\frac{6}{36}$ ,  $\frac{5}{36}$ ,  $\frac{4}{36}$ ,  $\frac{3}{36}$ ,  $\frac{2}{36}$  и  $\frac{1}{36}$ ;

- **8.** Стойностите на X са 0, 1, и 2. Съответните вероятности са  $\frac{1}{3}, \frac{1}{3}$  и  $\frac{1}{3};$
- **9.** Стойностите на X са  $0,\,1,\,$ и 2. Съответните вероятности са  $\frac{15}{36},\,\frac{6}{36}$  и  $\frac{15}{36};$
- **10.** Стойностите на X са 0, 1, 2 и 3. Съответните вероятности са  $\frac{6}{36}$ ,  $\frac{6}{36}$ ,  $\frac{6}{36}$  и  $\frac{18}{36}$ ;
- **2.2.** Математическо очакване (средна стойност), определение и свойства .......132 **2.** а) 7; б) 1; в) 2; г) 2;
- 2.3. Дисперсия и стандартно отклонение на случайна величина .......134

**3.** a) 
$$DX = 26,25$$
;  $\sigma = \sqrt{26,25}$ ; б)  $DX = \frac{56}{9}$ ,  $\sigma = \frac{\sqrt{56}}{3}$ ; в)  $DX = 1$ ,  $\sigma = 1$ ; г)  $DX = \frac{5393}{1764} \approx 3,06$ ,  $\sigma \approx 1,75$ ; д)  $DX = \frac{80}{11}$ ,  $\sigma = \frac{4\sqrt{55}}{11}$ , e)  $DX = \frac{160}{49}$ ,  $\sigma = \frac{4\sqrt{10}}{7}$ ;

- 3. Биномно разпределение
- **5.** Стойностите на X са 0, 1, 2, 3 и 4. Съответните вероятности са  $\frac{256}{625}$ ,  $\frac{128}{625}$ ,  $\frac{96}{625}$ ,  $\frac{16}{625}$ ,  $\frac{1}{625}$ ;
- **6.** Стойностите на X са 0, 1, 2, 3 и 4. Съответните вероятности са  $\frac{1}{16}, \frac{4}{16}, \frac{6}{16}, \frac{4}{16}, \frac{1}{16};$
- 3.2. Свойства на биномното разпределение......138
- **2.** a) 2; 1,98;  $\approx$ 1,4; 6)  $\approx$ 3,33;  $\approx$ 1,11;  $\approx$ 1,05; B)  $\approx$ 2,29;  $\approx$ 0,98;  $\approx$ 0,99; r) 10; 9,8;  $\approx$ 3,13; **4.** 3; **5.** 3; **6.** 0; **8.** 199  $\leq$  n  $\leq$  219;
- 4.3. Основни свойства на нормалното разпределение......145
- **3.** a) 0,0228; б) 0,0228; в) 0,9999; г) 0,9344; д) 0,4772; **4.** 0,8661; **5.** a) 0,7258; б) 0,0718;
- **6.** a) 0,7745; б) 0,0062; **7.** a) 0,5859; б) 0,1056; в) 0,7734;**8.** a) 1,56; б) 0,58; в) 1,96; Γ) 3,08;
- **9.** a) 1,64; б) 1,96; в) 2,05; **10.** a) 1,96; б) 2,55; в) 1,5;
- 5. Статистически изводи

**2.**  $H_a$  : p < 0,2 ,  $\alpha$  = 0,05 а) няма основание да се отхвърли  $H_0$  ; б) нулевата хипотеза се отхвърля; **3.**  $H_a$  : p < 0,9 ,  $\alpha$  = 0,05 а) нулевата хипотеза се отхвърля; б) няма основание да се отхвърли  $H_0$  ; 5.2. Статистически изводи с модел нормално разпределение върху данни от измерване при конкретен експеримент ......151 **5.** а) няма основание да се отхвърли  $H_0$ ; б)  $H_0$  се отхвърля; **6.** а) няма основание да се отхвърли  $H_{\scriptscriptstyle 0}$ ; б) няма основание да се отхвърли  $H_{\scriptscriptstyle 0}$ . 6. Линеен модел на корелационна зависимост 6.1. Прост линеен модел – определяне на правата. Прогнозиране......153 Вероятности и анализ на данни – Общи задачи......157 1.  $\frac{21}{46}$ ; 2.  $\frac{C_{30}^3 C_{27}^2 + C_{30}^2 C_{70}^1 C_{28}^2 + C_{30}^1 C_{70}^2 C_{29}^2 + C_{70}^3 C_{30}^2}{C_{100}^3 C_{100}^2}$ ; 3.  $\approx 0,34$ ; 4. a)  $x_i$ : 10, 20, 50, 100, 200,  $p_i$ :  $\frac{2}{12}$ ,  $\frac{3}{12}$ ,  $\frac{4}{12}$ ,  $\frac{2}{12}$ ,  $\frac{1}{12}$ ; 6)  $F(x) = \{0, x \le 10; \frac{2}{12}, 10 < x \le 20; \frac{5}{12}, 20 < x \le 50;$  $\frac{9}{12}$ ,  $50 < x \le 100$ ;  $\frac{11}{12}$ ,  $100 < x \le 200$ ; 1, 200 < x}; B)  $EX \approx 56,67$ ; r)  $DX \approx 2738$ , (8); **5.**  $\frac{1}{C_{15}^3 C_{15}^3} (C_{10}^3 C_{10}^3 + C_{10}^2 C_5^1 C_{11}^3 + C_{10}^1 C_5^2 C_{12}^3 + C_5^3 C_{13}^3)$ ; **6.** 0,5; **7.** a)  $x_i : 1, 2, 3; p_i : \frac{11}{36}, \frac{9}{36}, \frac{16}{36};$  6) F(x)= { 0,  $x \le 1$ ;  $\frac{10}{36}$ ,  $1 < x \le 2$ ;  $\frac{20}{36}$ ,  $2 < x \le 3$ ; 1, 3 < x }; B)  $EX \approx 2,14$ ; r)  $DX \approx 0,73$ ; **8.** 3, 2,  $\sqrt{2}$ ; **9.** a) 0,24; б)  $\approx 0,24$ ; в) 2; **10.**  $\approx 0,57$ ; **11.** a) 0,1587; б) 0,5; в) 0,1587; г) 0,1587; 12. няма основание да се отхвърли нулевата хипотеза; 13. нулевата хипотеза се отхвърля; **14.**  $1277\,\hat{y}=-72+1161x\,;\,pprox45\,;\,$  **15.** няма основание да се отхвърли нулевата хипотеза; **16.** нулевата хипотеза се отхвърля; **17.**  $\frac{180}{1183}$ ; **18.** няма основание да се отхвърли нулевата хипотеза; 19. няма основание да се отхвърли нулевата хипотеза; 20. 2. Вероятности и анализ на данни – Тест 1 и Тест 2 ......159 **Тест 1. 1.** 0,45; **2.**  $\approx 0,39$ ; **3.** 0,37; **4.** а) Стойностите на X са  $11,\ 12,\ 21$  и 22. Съответните им вероятности са  $\frac{1}{4}$ ,  $\frac{1}{4}$ ,  $\frac{1}{4}$  и  $\frac{1}{4}$ ; б)  $F(x) = \{0, x \le 11, \frac{1}{4}, 11 < x \le 12, \frac{1}{2}, 12 < x \le 21, \frac{1}{4}, 11 < x \le 12, \frac{1}{4}, 11 < x \le 12, \frac{1}{4}, 11 < x \le 12, \frac{1}{4}, \frac{1}{4$  $\frac{3}{4}$ ,  $21 < x \le 22$ , 1, 22 < x}; **5.** a) 1,8; б) 0,56; в) 0,75; **6.** a) 2,4; б) 0,96; в) 3 или 2; **7.** a) 0,9521; 6)0,0004; **8.**; **9.**  $259\hat{y} = 790 + 227x$ ; 64; Оценяване. За всеки верен отговор по 2 точки. Оценка в точки = (получените точки.100/18); **Тест 2. 1.**  $\frac{26}{45}$ ; **2.** ;  $\approx 0.18$ ; **3.** 0.43; **4.** а) Стойностите на X са 0, 1, 2, 3, 4 и 5. Съответните им вероятности са  $\frac{6}{36}$ ,  $\frac{10}{36}$ ,  $\frac{8}{36}$ ,  $\frac{6}{36}$ ,  $\frac{4}{36}$ , и  $\frac{2}{36}$ ; б)  $F(x) = \{0, x \le 0; \frac{6}{36}, 0 < x \le 1, \frac{16}{36}, 1 < x \le 2,$  $\frac{24}{36}$ ,  $2 < x \le 3$ ,  $\frac{30}{36}$ ,  $3 < x \le 4$ ,  $\frac{34}{36}$ ,  $4 < x \le 5$ , 1, 5 < x}; **5.** a) 1,25; 6) 0,6; B) 0,77; **6.** a) 3,5; б) 1,05; в) 4; **7.** а) 0,8854; б) 0,0004; **8.** няма основание да се отхвърли нулевата хипотеза; **9.**  $1487\hat{y} = 2857 + 1242x$ ; 44; Оценяване. За всеки верен отговор по 2 точки. Оценка в точки = (получените точки.100/18);

## Таблица за площите под стандартната нормална крива



|     |        |        |        |        | 0 –    |        |        |        |        |        |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|     | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 80.0   | 0.09   |
| 0.0 | 0.0000 | 0.0040 | 0.0080 | 0.0120 | 0.0160 | 0.0199 | 0.0239 | 0.0279 | 0.0319 | 0.0359 |
| 0.1 | 0.0398 | 0.0438 | 0.0478 | 0.0517 | 0.0557 | 0.0596 | 0.0636 | 0.0675 | 0.0714 | 0.0753 |
| 0.2 | 0.0793 | 0.0832 | 0.0871 | 0.0910 | 0.0948 | 0.0987 | 0.1026 | 0.1064 | 0.1103 | 0.1141 |
| 0.3 | 0.1179 | 0.1217 | 0.1255 | 0.1293 | 0.1331 | 0.1368 | 0.1406 | 0.1443 | 0.1480 | 0.1517 |
| 0.4 | 0.1554 | 0.1591 | 0.1628 | 0.1664 | 0.1700 | 0.1736 | 0.1772 | 0.1808 | 0.1844 | 0.1879 |
| 0.5 | 0.1915 | 0.1950 | 0.1985 | 0.2019 | 0.2054 | 0.2088 | 0.2123 | 0.2157 | 0.2190 | 0.2224 |
| 0.6 | 0.2257 | 0.2291 | 0.2324 | 0.2357 | 0.2389 | 0.2422 | 0.2454 | 0.2486 | 0.2517 | 0.2549 |
| 0.7 | 0.2580 | 0.2611 | 0.2642 | 0.2673 | 0.2704 | 0.2734 | 0.2764 | 0.2794 | 0.2823 | 0.2852 |
| 8.0 | 0.2881 | 0.2910 | 0.2939 | 0.2967 | 0.2995 | 0.3023 | 0.3051 | 0.3078 | 0.3106 | 0.3133 |
| 0.9 | 0.3159 | 0.3186 | 0.3212 | 0.3238 | 0.3264 | 0.3289 | 0.3315 | 0.3340 | 0.3365 | 0.3389 |
| 1.0 | 0.3413 | 0.3438 | 0.3461 | 0.3485 | 0.3508 | 0.3531 | 0.3554 | 0.3577 | 0.3599 | 0.3621 |
| 1.1 | 0.3643 | 0.3665 | 0.3686 | 0.3708 | 0.3729 | 0.3749 | 0.3770 | 0.3790 | 0.3810 | 0.3830 |
| 1.2 | 0.3849 | 0.3869 | 0.3888 | 0.3907 | 0.3925 | 0.3944 | 0.3962 | 0.3980 | 0.3997 | 0.4015 |
| 1.3 | 0.4032 | 0.4049 | 0.4066 | 0.4082 | 0.4099 | 0.4115 | 0.4131 | 0.4147 | 0.4162 | 0.4177 |
| 1.4 | 0.4192 | 0.4207 | 0.4222 | 0.4236 | 0.4251 | 0.4265 | 0.4279 | 0.4292 | 0.4306 | 0.4319 |
| 1.5 | 0.4332 | 0.4345 | 0.4357 | 0.4370 | 0.4382 | 0.4394 | 0.4406 | 0.4418 | 0.4429 | 0.4441 |
| 1.6 | 0.4452 | 0.4463 | 0.4474 | 0.4484 | 0.4495 | 0.4505 | 0.4515 | 0.4525 | 0.4535 | 0.4545 |
| 1.7 | 0.4554 | 0.4564 | 0.4573 | 0.4582 | 0.4591 | 0.4599 | 0.4608 | 0.4616 | 0.4625 | 0.4633 |
| 1.8 | 0.4641 | 0.4649 | 0.4656 | 0.4664 | 0.4671 | 0.4678 | 0.4686 | 0.4693 | 0.4699 | 0.4706 |
| 1.9 | 0.4713 | 0.4719 | 0.4726 | 0.4732 | 0.4738 | 0.4744 | 0.4750 | 0.4756 | 0.4761 | 0.4767 |
| 2.0 | 0.4772 | 0.4778 | 0.4783 | 0.4788 | 0.4793 | 0.4798 | 0.4803 | 0.4808 | 0.4812 | 0.4817 |
| 2.1 | 0.4821 | 0.4826 | 0.4830 | 0.4834 | 0.4838 | 0.4842 | 0.4846 | 0.4850 | 0.4854 | 0.4857 |
| 2.2 | 0.4861 | 0.4864 | 0.4868 | 0.4871 | 0.4875 | 0.4878 | 0.4881 | 0.4884 | 0.4887 | 0.4890 |
| 2.3 | 0.4893 | 0.4896 | 0.4898 | 0.4901 | 0.4904 | 0.4906 | 0.4909 | 0.4911 | 0.4913 | 0.4916 |
| 2.4 | 0.4918 | 0.4920 | 0.4922 | 0.4925 | 0.4927 | 0.4929 | 0.4931 | 0.4932 | 0.4934 | 0.4936 |
| 2.5 | 0.4938 | 0.4940 | 0.4941 | 0.4943 | 0.4945 | 0.4946 | 0.4948 | 0.4949 | 0.4951 | 0.4952 |
| 2.6 | 0.4953 | 0.4955 | 0.4956 | 0.4957 | 0.4959 | 0.4960 | 0.4961 | 0.4962 | 0.4963 | 0.4964 |
| 2.7 | 0.4965 | 0.4966 | 0.4967 | 0.4968 | 0.4969 | 0.4970 | 0.4971 | 0.4972 | 0.4973 | 0.4974 |
| 2.8 | 0.4974 | 0.4975 | 0.4976 | 0.4977 | 0.4977 | 0.4978 | 0.4979 | 0.4979 | 0.4980 | 0.4981 |
| 2.9 | 0.4981 | 0.4982 | 0.4982 | 0.4983 | 0.4984 | 0.4984 | 0.4985 | 0.4985 | 0.4986 | 0.4986 |
| 3.0 | 0.4987 | 0.4987 | 0.4987 | 0.4988 | 0.4988 | 0.4989 | 0.4989 | 0.4989 | 0.4990 | 0.4990 |
| 3.1 | 0.4990 | 0.4991 | 0.4991 | 0.4991 | 0.4992 | 0.4992 | 0.4992 | 0.4992 | 0.4993 | 0.4993 |
| 3.2 | 0.4993 | 0.4993 | 0.4994 | 0.4994 | 0.4994 | 0.4994 | 0.4994 | 0.4995 | 0.4995 | 0.4995 |
| 3.3 | 0.4995 | 0.4995 | 0.4995 | 0.4996 | 0.4996 | 0.4996 | 0.4996 | 0.4996 | 0.4996 | 0.4997 |
| 3.4 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4998 |
| 3.5 | 0.4998 | 0.4998 | 0.4998 | 0.4998 | 0.4998 | 0.4998 | 0.4998 | 0.4998 | 0.4998 | 0.4998 |
|     |        |        |        |        |        |        |        |        |        |        |

#### Математика за 12. клас, профилирана подготовка

Донка Георгиева Гълъбова, Мая Пламенова Сидерова

Графичен дизайн Донка Гълъбова и Мая Сидерова Корица Кирил Чохаджиев и Диляна Чохаджиева

> Българска Първо издание, 2021 г. Формат 60х84/8, Печатни коли 23

Издателство "Веди.БГ ЕООД" София, ул. "Ал. Жендов" №6, ет.4/421 Тел. 02-971-47-82; 0888-95-98-13 e-mail: info@vedi.bg www.vedi.bg

ISBN 978-954-8857-55-0

Печат "СИМОЛИНИ 94"

София 2021 година