PovertyEmbedding: Utilizing Latent Embeddings of Wikipedia Articles to Predict Poverty

Team Members:
Bhuvan Hebbar (PES2UG23CS129)
Bikram Dutta (PES2UG23CS132)

1. Problem Statement

PovertyEmbedding aims to predict country-level poverty rates by leveraging **semantic** information extracted from Wikipedia country summaries.

While additional economic indicators such as GDP per capita and multidimensional poverty metrics (MPI) are incorporated to enhance the model's precision, the **core novelty** of this project lies in the **use of latent textual embeddings** generated from Wikipedia data.

These embeddings capture a country's socio-economic, historical, and geographic context, allowing the model to interpret qualitative information and combine it with quantitative metrics for improved poverty prediction.

2. Project Implementation and Methodology

The methodology was structured into three main phases:

- 1. Data Engineering
- 2. Exploratory Data Analysis (EDA) & Feature Selection
- 3. Model Training & Evaluation

This pipeline integrates natural-language-based semantic embeddings with structured socio-economic data.

2.1 Data Engineering

A. Wikipedia Country Summary Collection

• Implementation:

Using pycountry and wikipedia, summaries (≤800 characters) were collected for all valid countries.

Errors such as PageError and DisambiguationError were handled gracefully. The dataset was saved as wikipedia_countries.csv.

B. Wikipedia Country Embedding Generation

• Implementation:

The script encoded summaries using **SentenceTransformer** (all-MiniLM-L6-v2), creating **384-dimensional latent embeddings** representing each country's semantic context.

These were stored in wikipedia_country_embeddings.csv.

C. Integration with Economic and Poverty Data

Wikipedia embeddings were merged with:

- World Bank Poverty Rate (2018) target variable
- GDP per Capita economic baseline feature
- Multidimensional Poverty Index (MPI) supplementary indicators

All merges used inner joins to maintain consistency, yielding 67–96 usable country entries.

3. Data Insights and Feature Selection

Why Wikipedia Embeddings Are Central

- Wikipedia summaries embed **social**, **political**, **and economic cues** unavailable in numeric datasets.
- Embedding dimensions such as 161 (corr = 0.544) and 113 (corr = 0.506) correlated with MPI poverty rates showing that purely textual latent features carry significant

predictive power.

• These embeddings formed the **main input feature space**, supported by GDP and MPI values for grounding.

Feature Selection

- Standardized all numerical features using **StandardScaler**.
- Retained top **73 features** (embeddings + numeric indicators) based on correlation with the target.
- Split into train (80%) and test (20%) datasets (random_state = 42).

4. Model Training and Evaluation

4.1 Randomized Search Results

Model	Best Parameters	Best Cross-Validation R ²
Linear Regression	0	0.5621
Ridge Regression	{'alpha': 14.0494}	0.8227
ElasticNet	{'alpha': 0.3541, 'l1_ratio': 0.1079}	0.7606
SVR	{'C': 9.3187, 'epsilon': 0.0542, 'kernel': 'linear'}	0.8042

4.2 Final Test Performance

Model	Test R ²	Test MAE
Ridge Regression	0.8824	0.0297
ElasticNet	0.8000	0.0410
SVR	0.7862	0.0375
Linear Regression	-0.5434	0.0989

Best Model:

Ridge Regression ($\alpha = 14.05$)

 $R^2 = 0.8824$, MAE = 0.0297

Interpretation: The model explains 88% of variance in MPI-derived poverty rates with an average prediction error of just 0.03.

5. Error Analysis

- **Residuals:** Small and centered around 0 indicates low bias.
- Residual vs Predicted Plot: Random scatter shows no systematic over- or under-prediction.
- Max Residual: 0.0325 (Burkina Faso) → indicates strong accuracy across all samples.

6. Project Alignment Verification

The final notebook (ml_mini_project_129_132.ipynb) fully satisfies the objective:

"Utilizing Latent Embeddings of Wikipedia Articles to Predict Poverty."

Evidence of alignment:

- Wikipedia text was the **primary data source**, forming the **main latent feature set** through 384-dimensional embeddings.
- GDP and MPI were **secondary** structured features used to stabilize and contextualize predictions.
- Ridge Regression achieved strong performance, demonstrating that semantic signals from text embeddings can effectively model socio-economic phenomena such as poverty.

Conclusion:

The project's core achievement lies in transforming qualitative Wikipedia narratives into quantitative representations that accurately predict poverty — showing that **text-driven embeddings** can serve as powerful proxies for complex socio-economic patterns.