

Performance metrics

K.S.Srinivas

Department of Computer Science and Engineering

Performance metrics

Srinivas K S.

Associate Professor, Department of Computer Science

Performance Metrics

PES UNIVERSITY ONLINE

- 1.Accuracy
- 2.Precision
- 3.Recall
- 4. Specificity
- 5. Receiver Operating Characteristics (ROC)
- 6.Area Under Curve (AUC)

Aftertithenies to the tempolar end of a class or probability.

Confusion Matrix

- 1. True Positive
- 2. True Negatives
- 3. False Positive
- 4. False Negatives

Coeffices indutorionag discristicamenta dall lay fierbliococi, vogels in fight passed / entropy in the confidence of th

It is a simple way to lay out ,how many predicted categories or classes were correctly predicted and how many were not.

Confusion Matrix

class A correctly predicted as class A

class B correctly predicted as class B

suppose our classification model has two class class A(apple) and class B (all other fruits)
essentially the confusion matrix is keeping track of

Confusion Matrix

predicted as class A a positive class
A predicted as class A

the poser occrec passifive tamord modern degest twee cacteras to delicon (apple) and class B (all other fruits)

essentially the confusion matrix is keeping track of our false positive and false negative are as follows

GOAL

As many predictions as possible More true then false

Confusion Matrix

NOTE:

FP and FN are type 1 and type 2 error respectively (same as what you learn't in IDS course in 3rd sem)

TELLISS SEAS INDIVISE VIOLENTIAL RECIENTIAL SEASON POR PROPRIED P thattischa & Organizastri obsodnee of Carist 64-1200 vd. d.o. Ovfer oliver citizes s B the draw-yenfaters grid with predictions from our model as below and along x axis we represent predicted values and a radiotrogram awis reper preparies ignits a 400 u 710 v 211 u 00 s

N	class A	class B
200	100	100

- • 60mod she flathed bijnet it veloes mite on atter praedictied coorditism plassations in the edatas
- setow many predictions were 30 of the data object were correctly properly made from each class predicted as negative class B as in the but if your classification is binary data set or of type one vs all you can assign the target class as +ve class

Accuracy

Accuracy is given by,

Accuracy=
$$\frac{TP + TN}{(TP + TN + FP + FN)}$$

Accuracy in classification problems is the number of correct predictions made by the model over all kinds predictions made.

Accuracy is generally a good measure when the target variable classes are nearly balanced.

Precision and Recall

Precision is given by,

Precision=
$$\frac{TP}{(TP+FP)}$$

Precision: How many +ve cases did we catch?

Recall: How many did we miss? (sensitivity)

Recall is given by,

Recall=
$$\frac{TP}{(TP+FN)}$$

Specificity and F1 score

Specificity is given by,

Specificity=
$$\frac{TN}{(TN+FP)}$$

F1 score is given by,

F1 score=
$$\frac{2*(recall*precision)}{(recall+precision)}$$

Specificity: How many -ve cases did we catch?

Recall: The harmonic mean of precision and recall.

Metrics calculations

N : 200	Predicted: CLASS A	Predicted: CLASS B	CLASSIFICA- TION OVERALL	
Actual: CLASS A	TP 60	FP 40	100	precision
Actual: CLASS B	FN 70	TN 30	100	
TRUTH OVERALL	130	70	200	
	recall	specificity		accuracy

consider the following confusion matrix Let us calculate all the metrics we discussed till now

ROC -Receiver Operating Characteristics

thirdfitta hospithing mental britished wetgethe detaber of the leed of leed were for the post of the property of the property

- the y axis has two categories- obese and not obese
- the blue dots represent sample who are obese
- the red dots represent sample that are not obese
- along x axis we have weights

ROC -Receiver Operating Characteristics

Threshold	TPR	FPR
0 (all sample classified obese)	1	1
0.3	1	0.75
0.4	1	0.5
0.6	0.75	0.25
0.7	0.75	0
0.9	0.5	0

THE REPORT OF THE PARTY OF THE

this means the new threshold is better then the first one

- y axis represents true positive rate (TPR) that is sensitivity
- x axis represents False positive rate (FPR) that is specificity

AUC -Area Under The Curve

Three Attications the color of the color of

THANK YOU

K.S.Srinivas srinivasks@pes.edu

+91 80 2672 1983 Extn 701