EE1001 Foundations of Digital Techniques

Logic

Tutorial 1 (with answer)

KF Tsang

Validity and Soundness of Argument
Propositional Logic
Conditionals

 Determine the validity and soundness of the following arguments:

Argument 1

CityU is in Hong Kong.
Hong Kong is in Europe.
Therefore, CityU is in Europe.

Ans: Valid and Unsound

Argument 2

All CityU students are smart.
Albert is smart.
Therefore, Albert is a CityU student.

Ans: Invalid and Unsound

Argument 3

All lions are mammals.

No mammals are creatures with scales.

Therefore, no lions are creatures with scales.

Ans: Valid and Sound

Argument 4

No monkeys are animals.

All blossom trees are monkeys.

Therefore, no blossom trees are animals.

Ans: Valid and Unsound

There are two types of phones:

Question:

Are A and B ordinary or hijacked? Use truth table to justify.

Ans:

Let p = "A is an ordinary phone", and q = "B is an ordinary phone". Then $p \lor \sim q$ = "either A is ordinary or B is hijacked"

p	q	<i>p</i> ∨~ <i>q</i>	A's Message
Т	Т	Т	Fulfill
Т	F	Т	Not fulfill
F	Т	F	Fulfill
F	F	Т	Not fulfill

"A=ordinary & B= hijacked" does not fulfill the A's message

"A=hijacked & B=ordinary", the A's message must be false

Hijacked phone muse give false messages

: Two possible solutions: (1) "A and B are ordinary phone"; (2) "A is hijacked and B is ordinary."

There are two types of phones:

I asked A a question: Is either of you an ordinary phone? Then A replies "No"

Question:

Are A and B ordinary or hijacked? Use truth table to justify.

Ans:

Let p = "A is an ordinary phone", and q = "B is an ordinary phone". Then $p \lor q$ = "either A or B is ordinary"

p	q	p∨q	A's reply
Т	Т	Т	Yes
Т	F	Т	Yes
F	Т	Т	No /
F	F	F	Yes

This is the only possible solution that satisfies the given condition

∴ A is a hijacked phone and B is an ordinary phone.

Use the Theorem of Logical Equivalences in lecture notes to verify that

$$\sim (p \land (\sim p \lor q)) \equiv \sim (p \land q)$$

State the reason of each step.

Ans:

$$\begin{array}{ll} \sim (p \land (\sim p \lor q)) & \equiv \sim p \lor \sim (\sim p \lor q) & (\text{De Morgan's law}) \\ & \equiv \sim p \lor (p \land \sim q) & (\text{De Morgan's law \& double negative law}) \\ & \equiv (\sim p \lor p) \land (\sim p \lor \sim q) & (\text{Distributive law}) \\ & \equiv \mathbf{t} \land (\sim p \lor \sim q) & (\text{Negation law}) \\ & \equiv (\sim p \lor \sim q) & (\text{Identity law}) \\ & \equiv \sim (p \land q) & (\text{De Morgan's law}) \end{array}$$

You can verify it using the truth table, but the computing complexity grows <u>exponentially</u> with the number of variables

				-
р	q	(~p∨q)	~(p∧(~p∨q))	~(p∧q)
T	Т	Т	F	F
T	F	F	Т	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т

 $\sim (p \land (\sim p \lor q))$ and $\sim (p \land q)$ always have the same truth values, so they are logically equivalent

- a) Rewrite "I say what I mean" in if-then form.
- b) Rewrite "I mean what I say" in if-then form.
- c) Are they logically equivalent? Explain the logical relation between them

Ans:

- a) If I mean something, then I say it.
- b) If I say something, then I mean it.
- c) Let p = "I mean something", and q = "I say something". Then, $p \rightarrow q$ = "If I mean something, then I say it." $q \rightarrow p$ = "I say something, then I mean it."

: They are not logically equivalent. They are the converse of each other.

Without using a truth table, determine whether $\sim (\sim p \lor (p \lor q)) \rightarrow q$ is a tautology or contradiction.

Ans:

```
 \begin{array}{lll} \hbox{$\sim$(\sim$p$ \lor (p$ \lor q))$} \to q & \equiv \hbox{$\sim$(\sim$(\sim$p$ \lor (p$ \lor q)))$} \lor q & \text{(Definition of $\rightarrow$)} \\ & \equiv (\hbox{$\sim$p$ \lor (p$ \lor q))$} \lor q & \text{(Double negative law)} \\ & \equiv ((\hbox{$\sim$p$ \lor p)$} \lor q) \lor q & \text{(Associative law)} \\ & \equiv (\textbf{t} \lor q) \lor q & \text{(Negation law)} \\ & \equiv \textbf{t} \lor q & \text{(Universal bound law)} \\ & \equiv \textbf{t} & \text{(Universal bound law)} \\ \end{array}
```