MAT02035 - Modelos para dados correlacionados

Modelos lineares de efeitos mistos

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2019

 Nas aulas anteriores introduzimos modelos para dados longitudinais em que mudanças na resposta média, e as suas relações com covariáveis, podem ser expressas como

$$\mathsf{E}(Y_i|X_i) = X_i\beta.$$

- Nosso objetivo principal tem sido a inferência sobre os **parâmetros populacionais** de regressão β .
- Ainda, discutimos como a especificação deste modelo de regressão para dados longitudinais podem ser completada através de suposições adicionais a respeito da **estrutura** de $Cov(Y_i|X_i) = Cov(e_i) = \Sigma_i$.
- ▶ Nesta aula nós vamos considerar uma abordagem **alternativa**, mas proximamente relacionada, para analisar dados longitudinais utilizando **modelos lineares de efeitos mistos**.

- ▶ Ideia básica: algum subconjunto dos parâmetros de regressão varia aleatoriamente de um indivíduo para outro, respondendo assim por fontes de heterogeneidade natural na população.
- Característica distintiva: a resposta média é modelada como uma combinação de características da população β (efeitos fixos), que se supõe serem compartilhadas por todos os indivíduos, e efeitos indivíduo-específicos (efeitos aleatórios) que são exclusivos para um indivíduo em particular.
 - O termo misto é usado neste contexto para denotar que o modelo contém efeitos fixos e aleatórios.

Apesar de ser uma combinação de efeitos populacionais e individuais, o modelo linear de efeitos mistos nos conduz a um modelo para a resposta média marginal (média sobre a distribuição dos efeitos aleatórios) que pode ser expresso na forma familiar

$$\mathsf{E}(Y_i|X_i)=X_i\beta.$$

- No entanto, a introdução de efeitos aleatórios induz covariância entre as respostas e $\text{Cov}(Y_i|X_i) = \Sigma_i$ possui uma estrutura de efeitos aleatórios distinta.
 - Os modelos lineares de efeitos mistos distinguem explicitamente as fontes de variação entre indivíduos e intra-indivíduo.
- Além disso, a estrutura de covariância de efeitos aleatórios induzida pode frequentemente ser descrita com relativamente **poucos parâmetros**, independentemente do número e do momento das ocasiões de medição.

Comentários

- 1. Permitem a análise de **fontes de variação** entre indivíduos e intra-indivíduo nas respostas longitudinais.
- 2. Também é possível **prever** como as **trajetórias** de resposta **individuais** mudam ao longo do tempo.
 - Ex: trajetórias de crescimentos individuais.
- Flexibilidade em acomodar qualquer grau de desbalanceamento nos dados longitudinais, juntamente com sua capacidade de explicar a covariância entre as medidas repetidas de maneira relativamente parcimoniosa.

▶ Neste modelo, presume-se que cada indivíduo tenha um nível de resposta subjacente que persista ao longo do tempo

$$Y_{ij} = X'_{ij}\beta + b_i + \epsilon_{ij}, \tag{1}$$

em que b_i é o **efeito individual aleatório** e ϵ_{ij} é o erro amostral (ou de medição).

- ▶ b_i e ϵ_{ij} são ambos assumidos serem aleatórios, independentes um do outro, com média zero, e com variâncias, $\text{Var}(b_i) = \sigma_b^2$ e $\text{Var}(\epsilon_{ij}) = \sigma^2$, respectivamente.
- Observe que este modelo descreve a trajetória média da resposta ao longo do tempo para qualquer indivíduo (média condicional), $\mathsf{E}\left(Y_{ij}|b_i\right) = X'_{ij}\beta + b_i, \text{ além do perfil médio de resposta na população (média marginal), } \mathsf{E}\left(Y_{ij}\right) = X'_{ij}\beta, \text{ em que a média é com respeito a todos os indivíduos da população.}$

- ▶ Os erros de medição ou amostragem em (1) são indicados por ϵ_{ij} (epsilon) e não e_{ij} .
 - Essa alteração na notação é intencional e reflete diferenças nas interpretações de ϵ_{ij} e e_{ij} .
- Nas aulas anteriores, o erro e_{ij} representa o desvio de Y_{ij} da resposta média na população, X'_{ii}β.
- Nesta aula, o erro intra-indivíduo ϵ_{ij} representa o desvio de Y_{ij} da resposta média específica do sujeito, $X'_{ij}\beta + b_i$.
 - ▶ Os erros aleatórios, e_{ij} , foram **decompostos** em dois componentes aleatórios, $e_{ij} = b_i + \epsilon_{ij}$, um componente entre indivíduos e um componente intra-indivíduo.

Interpretação dos parâmetros no modelo (1)

- ightharpoonup Os parâmetros de regressão eta descreve padrões de mudança na resposta média ao longo do tempo (e suas relações com covariáveis) na população de interesse;
- Os b_i descreve como a tendência ao longo do tempo para i-ésimo indivíduo desvia da média da população.
 - ▶ b_i representa o desvio de um indivíduo do intercepto da média da população, depois que os efeitos das covariáveis foram contabilizados.
 - ▶ Quando combinado com os efeitos fixos, *b_i* descreve a trajetória média da resposta ao longo do tempo para qualquer indivíduo.

► Essa interpretação é aparente se expressarmos o modelo dado por (8.1) como

$$Y_{ij} = X'_{ij}\beta + b_i + \epsilon_{ij}$$

$$= \beta_1 X_{ij1} + \beta_2 X_{ij2} + \ldots + \beta_p X_{ijp} + b_i + \epsilon_{ij}$$

$$= \beta_1 + \beta_2 X_{ij2} + \ldots + \beta_p X_{ijp} + b_i + \epsilon_{ij}$$

$$= (\beta_1 + b_i) + \beta_2 X_{ij2} + \ldots + \beta_p X_{ijp} + \epsilon_{ij},$$

em que $X_{ij1}=1$ para todo i e j, e β_1 é um termo de intercepto fixo no modelo.

Como a média do efeito aleatório b_i é assumida como zero, b_i representa o desvio do *i*-ésimo intercepto do indivíduo $(\beta_1 + b_i)$ do intercepto da população, β_1 .

- O indivíduo A responde "mais alto" que a média da população e, portanto, possui um b_i positivo.
- ▶ O indivíduo B responde "mais baixo" que a média da população e tem um b_i negativo.

 A inclusão dos erros de medição, ε_{ij}, permite a resposta em qualquer ocasião variar aleatoriamente acima e abaixo das trajetórias indivíduo-específicas.

- Considere a covariância marginal entre as medidas repetidas no mesmo indivíduo.
- Quando calculada a média dos efeitos específicos do indivíduo, a média marginal de Yij é dada por

$$\mathsf{E}(Y_{ij}) = \mu_{ij} = X'_{ij}\beta.$$

- ▶ A covariância marginal entre Y_{ij} é definida em termos de desvios de Y_{ij} da média marginal μ_{ij} .
 - ▶ Por exemplo, na última Figura, esses desvios são positivos em todas as ocasiões de medição para o indivíduo A e negativos em todas as ocasiões de medição para o indivíduo B, indicando uma forte correlação positiva (marginalmente) entre as respostas ao longo do tempo.

▶ Para o modelo com interceptos aleatórios, a variância marginal de cada resposta é dada por

$$Var(Y_{ij}) = Var(X'_{ij}\beta + b_i + \epsilon_{ij})$$

$$= Var(b_i + \epsilon_{ij})$$

$$= Var(b_i) + Var(\epsilon_{ij})$$

$$= \sigma_b^2 + \sigma^2.$$

ightharpoonup Similarmente, a covariância marginal entre qualquer par de respostas Y_{ij} e Y_{ik} é dada por

$$Cov(Y_{ij}, Y_{ik}) = Cov(X'_{ij}\beta + b_i + \epsilon_{ij}, X'_{ik}\beta + b_i + \epsilon_{ik})$$

$$= Cov(b_i + \epsilon_{ij}, b_i + \epsilon_{ik})$$

$$= Cov(b_i, b_i) + Cov(b_i, \epsilon_{ik}) + Cov(\epsilon_{ij}, b_i) + Cov(\epsilon_{ij}, \epsilon_{ik})$$

$$= Var(b_i)$$

$$= \sigma_b^2.$$

Assim, a matriz de covariância marginal das medidas repetidas tem o seguinte padrão de **simetria composta**:

$$\operatorname{Cov}(Y_{i}) = \begin{pmatrix} \sigma_{b}^{2} + \sigma^{2} & \sigma_{b}^{2} & \sigma_{b}^{2} & \cdots & \sigma_{b}^{2} \\ \sigma_{b}^{2} & \sigma_{b}^{2} + \sigma^{2} & \sigma_{b}^{2} & \cdots & \sigma_{b}^{2} \\ \sigma_{b}^{2} & \sigma_{b}^{2} & \sigma_{b}^{2} + \sigma^{2} & \cdots & \sigma_{b}^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{b}^{2} & \sigma_{b}^{2} & \sigma_{b}^{2} & \cdots & \sigma_{b}^{2} + \sigma^{2} \end{pmatrix}.$$

▶ Dado que a covariância entre qualquer par de medidas repetidas é σ_b^2 , a correlação é

$$Corr(Y_{ij}, Y_{ik}) = \frac{\sigma_b^2}{\sigma_b^2 + \sigma^2}.$$

- ► Essa expressão simples para a correlação enfatiza um aspecto importante dos modelos de efeitos mistos: a introdução de um efeito individual aleatório, b_i, pode ser visto como induzir correlação entre as medidas repetidas.
- ▶ Embora o modelo de interceptos aleatórios seja o exemplo mais simples de um modelo linear de efeitos mistos, e a estrutura de covariância resultante geralmente não é apropriada para dados longitudinais, as ideias básicas podem ser generalizadas para fornecer um modelo muito versátil para a análise de dados longitudinais.

Extensão: Modelo de intercepto e inclinação aleatórios

 Considere um modelo com interceptos e inclinações que variam aleatoriamente entre indivíduos,

$$Y_{ij} = \beta_1 + \beta_2 t_{ij} + b_{1i} + b_{2i} t_{ij} + \epsilon_{ij}, \ j = 1, \ldots, n_i,$$

em que t_{ij} indica o tempo da j-ésima resposta no i-ésimo indivíduo.

- Este modelo postula que os indivíduos variam não apenas no nível de resposta da linha de base (quando $t_{i1}=0$), mas também em termos de alterações na resposta ao longo do tempo.
- Os efeitos das covariáveis (por exemplo, devido a tratamentos, exposições) podem ser incorporados permitindo que a média de interceptos e inclinações dependa das covariáveis.

Modelo de intercepto e inclinação aleatórios

Modelo de intercepto e inclinação aleatórios

Por exemplo, considere o estudo de dois grupos comparando um tratamento e um grupo controle:

$$Y_{ij} = \beta_1 + \beta_2 t_{ij} + \beta_3 \operatorname{trt}_i + \beta_4 t_{ij} \times \operatorname{trt}_i + b_{1i} + b_{2i} t_{ij} + \epsilon_{ij},$$

em que ${\rm trt}_i=1$ se o *i*-ésimo indivíduo é atribuído ao grupo de tratamento e ${\rm trt}_i=0$ caso contrário.

- ▶ O modelo pode ser reexpresso da seguinte maneira para o grupo controle e o grupo de tratamento, respectivamente:
 - ▶ **trt** = **0**: $Y_{ij} = (\beta_1 + b_{1i}) + (\beta_2 + b_{2i})t_{ij} + \epsilon_{ij}$,
 - ▶ **trt** = 1: $Yij = Y_{ij} = (\beta_1 + \beta_3 + b_{1i}) + (\beta_2 + \beta_4 + b_{2i})t_{ij} + \epsilon_{ij}$.

Modelo de intercepto e inclinação aleatórios

- considere a covariância induzida pela introdução de interceptos e inclinações aleatórios.
 - Assumindo $b_{1i} \sim N(0, \sigma_{b_1}^2), \ b_{2i} \sim N(0, \sigma_{b_2}^2)$ (com Cov $(b_{1i}, b_{2i}) = \sigma_{b_1, b_2}$) e $\epsilon_{ij} \sim N(0, \sigma^2)$, então

$$\begin{aligned} \mathsf{Var} \left(Y_{ij} \right) &= \mathsf{Var} \left(b_{1i} + b_{2i} t_{ij} + \epsilon_{ij} \right) \\ &= \mathsf{Var} \left(b_{1i} \right) + 2 t_{ij} \mathsf{Cov} \left(b_{1i}, b_{2i} \right) + t_{ij}^2 \mathsf{Var} \left(b_{2i} \right) + \mathsf{Var} \left(\epsilon_{ij} \right) \\ &= \sigma_{b_1}^2 + 2 t_{ij} \sigma_{b_1, b_2} + t_{ij}^2 \sigma_{b_2}^2 + \sigma^2. \end{aligned}$$

▶ Da mesma forma, pode ser demonstrado (para casa!) que

$$Cov(Y_{ij}, Y_{ik}) = \sigma_{b_1}^2 + (t_{ij} + t_{ik})\sigma_{b_1, b_2} + t_{ij}t_{ik}\sigma_{b_2}^2.$$

▶ Neste modelo, as variâncias e correlações (covariância) são expressas como uma **função explícita do tempo**, *t*_{ij}.

- ▶ Pode permitir que qualquer subconjunto dos parâmetros de regressão varie aleatoriamente.
- Usando a notação vetorial, o modelo linear de efeitos mistos pode ser expresso como

$$Y_{ij} = X'_{ii}\beta + Z'_{ii}b_i + \epsilon_{ij},$$

em que b_i é um vetor $(q \times 1)$ de efeitos aleatórios e Z_{ij} é o vetor de covariáveis que ligam os efeitos aleatórios a Y_{ij} .

- ▶ Nota: os componentes de Z_{ij} são um subconjunto das covariáveis em X_{ij} (ou seja, $q \le p$).
- ► Por exemplo, considere o modelo de interceptos e inclinações aleatórios apresentado anteriormente,

$$Y_{ij} = \beta_1 + \beta_2 t_{ij} + \beta_3 \operatorname{trt}_i + \beta_4 t_{ij} \times \operatorname{trt}_i + b_{1i} + b_{2i} t_{ij} + \epsilon_{ij}.$$

▶ Neste modelo, $X'_{ij} = \begin{bmatrix} 1 & t_{ij} & \operatorname{trt}_i & t_{ij} * \operatorname{trt}_{ij} \end{bmatrix}$ e $Z'_{ij} = \begin{bmatrix} 1 & t_{ij} \end{bmatrix}$.

- Em geral, qualquer componente pode variar aleatoriamente simplesmente incluindo a covariável correspondente em Z_{ij}.
- ▶ Supõe-se que os efeitos aleatórios, *b_i*, tenham uma distribuição normal multivariada com média zero e matriz de covariância denotada por *G*,

$$b_i \sim N(0, G)$$
.

▶ Por exemplo, no modelo de intercepto e inclinação aleatórios,

$$Y_{ij} = \beta_1 + \beta_2 t_{ij} + \beta_3 \operatorname{trt}_i + \beta_4 t_{ij} \times \operatorname{trt}_i + b_{1i} + b_{2i} t_{ij} + \epsilon_{ij}.$$

G é uma matriz 2×2 com componentes únicos $g_{11} = \text{Var}(b_{1i})$, $g_{12} = \text{Cov}(b_{1i}, b_{2i})$ e $g_{22} = \text{Var}(b_{2i})$.

Supõe-se que os erros intra-individual, ϵ_{ij} , tenham uma distribuição normal multivariada com média zero e matriz de covariância denotada por R_i ,

$$\epsilon_{ij} \sim N(0, R_i).$$

- ▶ **Nota:** geralmente, assume-se que $R_i = \sigma^2 I$, em que I é uma matriz identidade $(n_i \times n_i)$.
- Ou seja, quando $R_i = \sigma^2 I$, os erros ϵ_{ij} dentro de um indivíduo **não são correlacionados**, com variância homogênea.
 - "suposição de independência condicional".
- ► Em princípio, um modelo **estruturado** para *R*_i pode ser assumido, por exemplo, AR(1).

Médias condicionais e marginais

▶ No modelo linear de efeitos mistos,

$$Y_{ij} = X'_{ij}\beta + Z'_{ij}b_i + \epsilon_{ij},$$

existe uma distinção importante entre a média condicional,

$$\mathsf{E}(Y_{ij}|X_{ij},b_i) = X'_{ij}\beta + Z'_{ij}b_i,$$

e a média marginal,

$$E(Y_{ij}|X_{ij})=X'_{ij}\beta.$$

► A primeira descreve a resposta média para um indivíduo, o último descreve a resposta média calculada sobre os indivíduos.

Médias condicionais e marginais

A distinção entre as médias condicional e marginal é melhor compreendida com um exemplo simples.

► Considere o modelo simples de intercepto e inclinação aleatórios,

$$Y_{ij} = \beta_1 + \beta_2 t_{ij} + b_{1i} + b_{2i} t_{ij} + \epsilon_{ij}.$$

Nesse modelo, podemos distinguir a média condicional de um indivíduo,

$$\mathsf{E}(Y_{ij}|b_{1i},b_{2i}) = \beta_1 + \beta_2 t_{ij} + b_{1i} + b_{2i} t_{ij},$$

e a média marginal média dos indivíduos,

$$\mathsf{E}(Y_{ij}) = \beta_1 + \beta_2 t_{ij}.$$

Médias condicionais e marginais

Covariância condicional e marginal

- ► A variância e covariância também podem ser definidas em relação às médias condicionais e marginais.
- No modelo de efeitos lineares mistos,

$$Y_{ij} = X'_{ij}\beta + Z'_{ij}b_i + \epsilon_{ij},$$

a variância condicional, $\text{Var}\left(Y_{ij}|X_{ij},b_i\right)=\text{Var}\left(\epsilon_{ij}\right)=\sigma^2$ (quando $R_i=\sigma^2I$).

 \triangleright Em contraste, a covariância marginal do vetor de respostas Y_i é

$$Cov(Y_i|X_i) = Z_iGZ_i' + R_i = Z_iGZ_i' + \sigma^2I:$$

Nota: Essa matriz possui elementos fora da diagonal diferentes de zero (isto é, a introdução de efeitos aleatórios, b_i , induz correlação marginalmente entre os Y_i).

Covariância condicional e marginal

 A distinção entre (co)variâncias condicional e marginal é melhor compreendida considerando o modelo simples de intercepto e inclinação aleatórios,

$$Y_{ij} = \beta_1 + \beta_2 t_{ij} + b_{1i} + b_{2i} t_{ij} + \epsilon_{ij}.$$

- ▶ A variância condicional, $Var(Y_{ij}|b_{1i},b_{2i}) = Var(\epsilon_{ij}) = \sigma^2$, descreve a variância nas observações de um indivíduo em torno de sua média indivíduo-específica.
- A covariância marginal descreve a (co)variância das observações em relação à média marginal:

$$\begin{array}{rcl} \mathsf{Var}\left(Y_{ij}\right) & = & \sigma_{b_1}^2 + 2t_{ij}\sigma_{b_1,b_2} + t_{ij}^2\sigma_{b_2}^2 + \sigma^2, \\ \mathsf{Cov}\left(Y_{ij},Y_{ik}\right) & = & \sigma_{b_1}^2 + \left(t_{ij} + t_{ik}\right)\sigma_{b_1,b_2} + t_{ij}t_{ik}\sigma_{b_2}^2. \end{array}$$

Covariância condicional e marginal

Estimação: máxima verossimilhança

- ▶ Estimador de máxima verossimilhança de $\beta_1, \beta_2, \dots, \beta_p$ é o estimador de **mínimos quadrados generalizados** (MQG) e depende da covariância marginal entre as medidas repetidas.
- ▶ Em geral, não há expressão simples para o estimador de máxima verossimilhança dos componentes de covariância G e σ^2 (ou R) requer técnicas iterativas.
- Porque a estimativa de covariância de máxima verossimilhança é enviesada em amostras pequenas, usa-se a estimação de máxima verossimilhança restrita (REML).

- ► Indivíduos foram designados para um dos dois programas de levantamento de peso para aumentar a força muscular.
- ► Tratamento 1: o número de repetições dos exercícios foi aumentado à medida que os indivíduos se tornaram mais fortes.
- Tratamento 2: o número de repetições foi mantido constante, mas a quantidade de peso foi aumentada à medida que os indivíduos se tornaram mais fortes.
- ▶ As medidas de força corporal foram realizadas na linha de base e nos dias 2, 4, 6, 8, 10 e 12.
- Concentramo-nos apenas nas medidas de força obtidas na linha de base (ou no dia 0) e nos dias 4, 6, 8 e 12.

```
library(here)
library(haven)
library(tidyr)
library(ggplot2)
library(dplyr)
# Carregando o arquivo de dados
af <- read dta(
 file = here::here("data", "exercise.dta"))
```

```
A tibble: 37 \times 9
##
                                                              id group
                                                                                                                                                 y0
                                                                                                                                                                                          у2
                                                                                                                                                                                                                                    y4
                                                                                                                                                                                                                                                                              у6
                                                                                                                                                                                                                                                                                                                        у8
                                                                                                                                                                                                                                                                                                                                                           y10
                                                                                                                                                                                                                                                                                                                                                                                                     y12
##
                                         <dbl> <dbl >dbl > dbl > 
##
                           1
                                                                      1
                                                                                                               1
                                                                                                                                                 79
                                                                                                                                                                                           NA
                                                                                                                                                                                                                                     79
                                                                                                                                                                                                                                                                               80
                                                                                                                                                                                                                                                                                                                        80
                                                                                                                                                                                                                                                                                                                                                                 78
                                                                                                                                                                                                                                                                                                                                                                                                           80
##
                                                                     2
                                                                                                                                                 83
                                                                                                                                                                                           83
                                                                                                                                                                                                                                     85
                                                                                                                                                                                                                                                                               85
                                                                                                                                                                                                                                                                                                                        86
                                                                                                                                                                                                                                                                                                                                                                 87
                                                                                                                                                                                                                                                                                                                                                                                                           87
                           3
                                                                     3
                                                                                                               1
                                                                                                                                                                                           83
                                                                                                                                                                                                                                                                                                                                                                 83
##
                                                                                                                                                 81
                                                                                                                                                                                                                                    82
                                                                                                                                                                                                                                                                               82
                                                                                                                                                                                                                                                                                                                        83
                                                                                                                                                                                                                                                                                                                                                                                                           82
##
                           4
                                                                     4
                                                                                                                                                 81
                                                                                                                                                                                           81
                                                                                                                                                                                                                                    81
                                                                                                                                                                                                                                                                               82
                                                                                                                                                                                                                                                                                                                        82
                                                                                                                                                                                                                                                                                                                                                                 83
                                                                                                                                                                                                                                                                                                                                                                                                           81
                                                                     5
                                                                                                               1
                                                                                                                                                                                           81
                                                                                                                                                                                                                                    82
                                                                                                                                                                                                                                                                               82
                                                                                                                                                                                                                                                                                                                        82
                                                                                                                                                                                                                                                                                                                                                                 NA
                                                                                                                                                                                                                                                                                                                                                                                                           86
##
                           5
                                                                                                                                                 80
                                                                     6
                                                                                                               1
                                                                                                                                                 76
                                                                                                                                                                                           76
                                                                                                                                                                                                                                     76
                                                                                                                                                                                                                                                                               76
                                                                                                                                                                                                                                                                                                                        76
                                                                                                                                                                                                                                                                                                                                                                 76
                                                                                                                                                                                                                                                                                                                                                                                                           75
##
                           6
                           7
                                                                     7
                                                                                                               1
                                                                                                                                                 81
                                                                                                                                                                                                                                     83
                                                                                                                                                                                                                                                                                                                                                                 85
##
                                                                                                                                                                                           84
                                                                                                                                                                                                                                                                               83
                                                                                                                                                                                                                                                                                                                        85
                                                                                                                                                                                                                                                                                                                                                                                                           85
                           8
                                                                     8
                                                                                                                                                 77
                                                                                                                                                                                           78
                                                                                                                                                                                                                                     79
                                                                                                                                                                                                                                                                               79
                                                                                                                                                                                                                                                                                                                        81
                                                                                                                                                                                                                                                                                                                                                                 82
##
                                                                                                                                                                                                                                                                                                                                                                                                           81
##
                           9
                                                                     9
                                                                                                               1
                                                                                                                                                 84
                                                                                                                                                                                           85
                                                                                                                                                                                                                                     87
                                                                                                                                                                                                                                                                               89
                                                                                                                                                                                                                                                                                                                        NA
                                                                                                                                                                                                                                                                                                                                                                 NA
                                                                                                                                                                                                                                                                                                                                                                                                           86
##
                   10
                                                               10
                                                                                                                                                 74
                                                                                                                                                                                           75
                                                                                                                                                                                                                                     78
                                                                                                                                                                                                                                                                               78
                                                                                                                                                                                                                                                                                                                        79
                                                                                                                                                                                                                                                                                                                                                                 78
                                                                                                                                                                                                                                                                                                                                                                                                            78
                                                            with 27 more rows
##
```

6 1 y0

1 y0

6

##

```
names(af)[which(names(af) == "group")] <- "trt"</pre>
af.longo <- gather(data = af,
                    key = "tempo",
                    value = "fc", -id, -trt)
af.longo
## # A tibble: 259 \times 4
##
       id trt tempo fc
## <dbl> <dbl> <chr> <dbl>
## 1 1 1 y0
                     79
## 2 2 1 y0 83
## 3 3 1 y0
                      81
## 4 4 1 y0
                  81
## 5 5 1 y0 80
```

76

81

```
## 8 8 1 y0
                    77
## 9 9 1 y0
                    84
## 10 10 1 y0 74
## # ... with 249 more rows
af.longo <- subset(af.longo, tempo != "y2" & tempo != "y10")
af.longo$dia <- factor(af.longo$tempo,
                     labels = c(0, 12, 4, 6, 8)
af.longo$dia <- factor(af.longo$dia,
                     levels = c("0", "4", "6", "8", "12")
af.longo$tempo <- as.numeric(</pre>
 as.character(af.longo$dia))
af.longo$trt <- factor(af.longo$trt)
af.longo
```

```
## # A tibble: 185 x 5
##
        id trt tempo fc dia
##
     <dbl> <fct> <dbl> <fct>
##
                     0
                          79 0
   1
         1 1
       2 1
##
                         83 0
   3
     3 1
                     0
                         81 0
##
      4 1
##
                     0
                         81 0
   5
     5 1
                     0
                         80 0
##
##
      6 1
                     0
                         76 0
   6
       7 1
                     0
                         81 0
##
   8
         8 1
                     0
                         77 0
##
##
         9 1
                         84 0
        10 1
## 10
                          74 0
## # ... with 175 more rows
```



```
library(dplyr)
af.resumo <- af.longo %>%
  group_by(trt, dia) %>%
  summarise(fc.m = mean(fc, na.rm = T)) %>%
  mutate(dia = as.numeric(as.character(dia)))
p <- ggplot(data = af.resumo,</pre>
            mapping = aes(x = dia,
                           y = fc.m,
                           colour = trt)) +
  geom point() +
  geom_line() +
  labs(x = "Tempo (dias)",
       y = "Força corporal",
       colour = "Tratamento")
```

- Considere um modelo com intercepto e inclinação que variam aleatoriamente entre os indivíduos, e que permita que os valores médios do intercepto e da inclinação sejam diferentes nos dois grupos de tratamento.
- ▶ Para esse modelo, use o seguinte código:

- Com base nas estimativas dos efeitos fixos:
 - ▶ a taxa constante de aumento de força no grupo 1 é de 0,135 por dia
 - ▶ a taxa constante de aumento de força no grupo 2 é de 0,173 (0,35+0,038) por dia a diferença entre essas duas taxas, 0,038 (EP = 0,064) não é estatisticamente significante.
- ▶ Não parece haver diferenças entre os dois grupos em seu padrão de aumento de força.
- Exercício: ajuste o modelo de intercepto aleatório para os mesmos dados.

Bons estudos!

