

MITS6005

Big Data

Copyright © 2015 - 2019, Victorian Institute of Technology.

The contents contained in this document may not be reproduced in any form or by any means, without the written permission of VIT, other than for the purpose for which it has been supplied. VIT and its logo are trademarks of Victorian Institute of Technology.

Session 5b

Data Ingestion

Copyright © 2015 - 2019, Victorian Institute of Technology.

The contents contained in this document may not be reproduced in any form or by any means, without the written permission of VIT, other than for the purpose for which it has been supplied. VIT and its logo are trademarks of Victorian Institute of Technology.

Data Lake – What is it

Introduction

- Concept of Data lake took off with the advent of Big Data technologies and remains a fluid evolving concept at this time.
- Data Lake is an enterprise level repository of data on commodity hardware, running Big data applications like HADOOP.
- Data originates from multiple applications in the enterprise and is kept available "As Is" in pre-categorized and premanipulated state.
- Raw Data is then refined and made available based on the needs of an organization.
- Data lake Implementation projects originate because of the desire to integrate and store massive data sets at a single centralized location to enable cross functional analytics or to lay the basis for building the functional marts, Departmental sandboxes or enterprise warehouse.

Value - Unlocking the Value of Data Earlier

Business user community is typically very data "savvy" and will be able to exploit and derive value from data much earlier in the cycle creating new opportunities

Data Lake Guiding Principles

- Keep original drivers and objectives "top of mind" and communicate them regularly:
 - "Enable easy integration of new data sources..."
 - "Minimize dependency on costly hardware..."
- Business engagement is essential to understand how data is created and used
- Adapt Incremental implementation approach to Succeed Fast or Fail Fast
- Constantly evaluate tendency to fall back into "old habits": Avoid "But that's how we have always done it..."
- Just-enough data governance necessary to prevent data lakes turning into data swamps
- Select right tool for the job to provide better business value as fast as possible
- Collect metadata for the not only Ingestion automation, but for Data Catalog as a perquisite of Ingesting Data into the Data Lake
- Industry data models must be informed by "the art of the possible" as dictated by source system data structures and business use
- Establish and automate patterns for the ingestion of data into the Data Lake and out of the Data Lake
- Measure data quality upon Ingestion through implementing processes that immediately generate data profiles after ingestion. Create a data quality dashboard in a tool like Tableau to provide visibility into actual data quality

The Data Lake Paradigm

	Data Lake	Data Warehouse
Data Breadth and Depth	 Store Everything As-is, With Complete History Structured, Semi-Structured and Unstructured 	 The Data Warehouse With Aggregated Subsets Content Management Systems With Limited Metadata
Consumption Model	 Let Business Decide What They Need - On-Demand Views Support Rapid Change 	Pre-Defined Views, Curated By Experts.Long Change Cycles.
Business Driven	 Search Using Business Terminology Provide Data Lineage and History Tracking and Visualization 	 Structured - Tables, Views, Reports. Limited Context Unstructured - Key-Word Search
Data Quality	 Data Quality Is Known And Tracked. Data Is Available In Various States from Raw to Fully Conformed and Standardized 	 Data Available Only After Fully Conformed and Standardized Quality Metrics Often Not Available
Tools	BYO Data Analysis Tools	 Fixed Set Of Business Intelligence Tools

Characteristics of Traditional DA vs. Big Data

Characteristics	Traditional BI	Big Data
Data volume	Typically Terabytes	Tens to Hundreds of Terabytes, to Petabytes
Velocity of change in scope	Slower	Faster. Can adapt to frequent change of analytics needs
Total Cost of Ownership	TOC tends to be expensive	TOC tends to be lower due to lower cost storage and Open source tools
Source data diversity, variety	Lower	Higher
Analysis driven	Typically supports known analytics and required reporting	Inherently supports the data analysis and data discovery process by certain users
Requirements driven	Most of the time	Rarely
Exploration & discovery	Some of the time	Most of the time
Structure of queries	Robust	Un-structured
Accuracy of Results	Deterministic	Approximated
Availability of results	Slower (longer batch cycles)	Faster
Stored data	Schema is required to write data	No pre-defined schema is required

How things are different

Data Acquisition Methodologies

Traditional Data Management

Data is managed as part of a project, analytic, or other workflow

"Big Data" Data Management

- Data sources are ingested raw (potentially enriched for identifier resolution, searchabilty, quality, etc.)
- Data Services and Access Control move data between storage data stores and consolidate data for analytical data stores

A principle shared by firms with successful Big Data capabilities is providing as much raw data as possible in an easy to consume, trusted manner

Traditional Data Integration

Traditional Data Integration

Schema-on-Write (RDBMS):

- Prescriptive Data Modeling:
 - Create static DB schema
 - Transform data into RDBMS
 - Query data in RDBMS format
- New columns must be added explicitly before new data can propagate into the system.
- Tend to be quite expensive and slow to change
- Limited in terms of the scalability and processing the data as rapidly as the business wants
- Good for Known Unknowns (Repetition)

Modern Day Data Lake Architecture

Modern Day Data Lake Architecture

Schema-on-Read (Hadoop):

- Descriptive Data Modeling:
 - Copy data in its native format
 - Create schema + parser
 - Query Data in its native format (does ETL on the fly)
- New data can start flowing any time and will appear retroactively once the schema/parser properly describes it.
- Flexibility and Scalability
- Rapid Data Ingestion
- Good for Unknown Unknowns (Exploration)

Data Lake Integration - Strategy & Planning

Different views or perspectives on the Data Management Architecture will facilitate understanding of recommendations and implications

Business Architecture

- Business Capability View: Business and management processes, their strategic objectives and required data analytics capabilities
- Operating Model / Functional View: Description of key policies, procedures and governance models (committees, review and approval points) required to achieve business objectives
- Organizational View: Description of teams, staffing requirements and reporting relationships in order to support the operational model

Technology Architecture

- Logical and physical blueprints for enabling technology capabilities (i.e., Hadoop and/or EDW repositories, Information Asset Inventory & Navigator)
- Vendor strategy and technology product selections

Data Architecture and Acquisition Strategy

- Identification of structured and unstructured data to expose for analytics, and their data sources
- Strategy / approach for conforming to data dictionary / ontology
- Prioritization and schedule for pre-provisioning data into production environment

Physical Infrastructure Support Architecture

- Organizational and process model for how to support end users in a production environment
- Includes model for help desk and ticket resolution, environment monitoring, provisioning and access control
 management, and financial chargeback/recovery
- · Organizational model and Production Service Definition

Key Capabilities

Rapid Data Provisioning:

Automated, Metadata configure, data ingestion process sources new data in days

EDH Platform: Scalable and Agile Standards-based data management and analytic processing capability

Data Curation and

Quality: Data quality is measured, tracked, and improved.

Data Catalog: Businessfocused data dictionary with Google-like search capabilitie<u>s</u>

Scalable Data

Governance: Data governance enabled by the architecture.

Integrated Data Security:

Leverage Tokenization and Encryption to secure critical data

Holistic View of Member, Provider: Single view of high-value

data.

Sharing: BI/Analytics Portal provides shared access to critical analytical content and best practice information

Collaborative Knowledge

Business Authored Reporting and Dashboards: Data Discovery and Visualization tools enable better understanding of data, thus enabling better corporate performance

Business Enabled Analytics: Data Scientists are able to prepare data sets, perform advanced analytics, and publish their results

Enterprise Information Management Platform

Integration - Analytics Driven Approach

Key Facts

- Business initiated programs
- Business outcome and value drives priorities
- Analytics-Ready dataset, the priority
- Earlier challenges include cross-domain and cross systems integration
 - Claims matching with Membership
 - Merging Membership from multiple source systems

Integration - Domain Driven Approach

Key Facts

- IT initiated programs
- IT value drives priorities
- Building an Enterprise level data model, a first priority
- Earlier challenges include cross systems integration
 - Merging Membership from multiple source systems

Initiate

- Requirements Analysis
- Epics/Features Defined Groomed Backlog
- Architecture Defined
- Platform Stood Up
- Testing Approach
 Defined

Release Definition

- 8 Weeks Release
- 5 Two-Week Sprints
- 4 Build Sprints
- 1 HIP Sprint
- HIP Sprint Reserved for
 - Technical Debt
 - Utility Building
 - Sprint Planning

Typical Release

Succeed Fast or Fail Fast

Data Movement & Zones

Data Ingestion

- Process of Moving Data to the Data Lake
- Once Ingested, Data is Available
 - For Processing and Distribution
 - Discovery
 - Analytics
- Key Decisions
 - Streaming vs. Batch
 - Traditional vs. Metadata Driven

Batch vs. Streaming

Batch Processing

- Similar to Traditional data integration processing
- Good for groups or snapshots of data
- Time lag in data availability

Stream Processing

- Fast-data
- Real-time needs
 - Fraud detection
 - Order processing
- Minimal lag in data availability
- Can be more scalable

Traditional vs. Metadata Driven Ingestion

Benefits of Metadata Driven Ingestion

- Extremely scalable (in development time) over 100s and 1000s of tables
- Increased consistency and supportability
- Increased quality of data
- Quick time to value: 5-10x faster than custom coding or point-to-point usage of ETL tools

Data Acquisition and Ingestion Detail

High-Performance Streaming Ingestion

Catalog - Search & Explore Data

Masking & Encryption

- Source data in database, data warehouse and various other structures
- Healthcare firm requires both masking (one-way) and encryption/ decryption for various sensitive data elements
- Leveraging Active Directory and LDAP, organization controls which users can see what degree of sensitive data— all 100% transparent and automatic to users

Security & Audit

Users & Governance

The Zones within the architecture service different user groups within the analytical community

Governance and security is applied during data movement across zones and within the zones

data access rules

datasets

Operating Models

An essential component of enterprise data strategy will be a detailed approach for supporting and operating the future state

Mission statements and guiding principles for organizational change

Identification and definition of all services to be offered

Organizational patterns for Management & Governance, Data, Analytics and Technology

Standard templates to define new projects and track progress

Roles & Responsibilities for industry standard job descriptions and skill requirements

Playbooks that describe workflows for the services and procedures for production support activities

Templates for estimating and amortizing build and support costs for hardware, software, etc.

services/resources

Online intranet/extranet communication and collaboration resources to support platform operations, BAU and break-fix operations

Operating Framework on Data Lake Architecture

Governance:

Establish rules, policies and standards to protect, exploit and maximize the value of information in the organization

Metadata:

Define a business metadata strategy that is key in harmonizing information across disparate data sources and for consistent use of information by business users.

Enterprise Models:

Data need analysis, authoritative sources, standard data structures

Data Integration:

Evaluate data integration needs and make decisions around consistent use of EII, EAI,ETL

Master Data Management:

Provide a gold copy of reference data to the enterprise.

Tools and Technologies:

Standardizing tools and technologies based on best of breed tools.

Data Quality:

Implement on-going processes to measure and improve the timeliness, accuracy and consistency of the data.

Presentation:

Strategy to allow users to access information in a user-friendly manner.

Data Access:

Provide standard ways of sharing data with applications, business intelligence tools and downstream applications.

Enterprise Content Mgmt:

Provide a platform for delivery, storage and search for structured and un-structured data

Security:

Provide access to data based on roles using common technologies for access management and security management across different layers.

