Batch Normalization

In this task, we implement batch normalization, which normalizes hidden layers and makes the training procedure more stable.

Reference: <u>Sergey Ioffe and Christian Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", ICML 2015. (https://arxiv.org/abs/1502.03167)</u>

```
In [2]: # As usual, a bit of setup
        import time
        import numpy as np
        import tensorflow as tf
        import matplotlib.pyplot as plt
        from data utils import get CIFAR10 data
        from implementations.layers import batchnorm forward
        %matplotlib inline
        plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
        plt.rcParams['image.interpolation'] = 'nearest'
        plt.rcParams['image.cmap'] = 'gray'
        # for auto-reloading external modules
        # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-i
        %load ext autoreload
        %autoreload 2
        def rel_error(x, y):
            """ returns relative error """
            return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y)))
        def print mean std(x,axis=0):
            print(' means: ', x.mean(axis=axis))
            print(' stds: ', x.std(axis=axis))
            print()
```

The autoreload extension is already loaded. To reload it, use: %reload ext autoreload

```
In [3]: # Load the (preprocessed) CIFAR10 data.
data = get_CIFAR10_data()
for k, v in data.items():
    print('%s: ' % k, v.shape)

X_train: (49000, 3, 32, 32)
y_train: (49000,)
X_val: (1000, 3, 32, 32)
y_val: (1000,)
X_test: (1000, 3, 32, 32)
y_test: (1000,)
```

Batch normalization: forward

In the file implementations/layers.py, implement the batch normalization forward pass in the function $batchnorm_forward$. Once you have done so, run the following to test your implementation.

Referencing the paper linked to above would be helpful!

```
In [4]: # A very simple example
        xtrain = np.array([[10], [20], [30]])
        xtest = np.array([[25]])
        # initialize parameters for batch normalization
        bn param = \{\}
        bn_param['mode'] = 'train'
        bn param['eps'] = 1e-4
        bn_param['momentum'] = 0.95
        # initialize the running mean as zero and the running variance as one
        bn_param['running mean'] = np.zeros([1, xtrain.shape[1]])
        bn_param['running_var'] = np.ones([1, xtrain.shape[1]])
        # gamma and beta do not make changes to the standardization result from the
        gamma = np.ones([1])
        beta = np.zeros([1])
        print('Before batch normalization, xtrain has ')
        print_mean_std(xtrain,axis=0)
        xnorm = batchnorm forward(xtrain, gamma, beta, bn_param)
        print('After batch normalization, xtrain has ')
        print mean std(xnorm,axis=0) # The mean and std should be 0 and 1 respective
        print('After batch normalization, the running mean and the running variance
        print(bn param['running mean']) # should be 1.0
        print(bn param['running var']) # should be 4.283
        for iter in range(1000):
            xnorm = batchnorm forward(xtrain, gamma, beta, bn param)
        print('After many iterations, the running mean and the running variance are
        print(bn param['running mean']) # should be 20, the mean of xtrain
        print(bn_param['running_var']) # should be 66.667, the variance of xtrain
        # enter test mode,
        bn param['mode'] = 'test'
        xtest norm = batchnorm forward(xtest, gamma, beta, bn param)
        print('Before batch normalization, xtest becomes ') # should be [[0.6123719]
        print(xtest norm)
        Before batch normalization, xtrain has
          means: [20.]
                  [8.16496581]
          stds:
        After batch normalization, xtrain has
          means:
                  [0.]
```

stds: [0.99999925]

```
After batch normalization, the running mean and the running variance are updated to [[1.]] [[4.28333333]] After many iterations, the running mean and the running variance are updated to [[20.]] [[66.6666667]] Before batch normalization, xtest becomes [[0.61237198]]
```

```
In [34]: # Compare with tf.layers.batch normalization
         # Simulate the forward pass for a two-layer network
         np.random.seed(15009)
         N, D1, D2, D3 = 200, 50, 60, 3
         X = np.random.randn(N, D1)
         W1 = np.random.randn(D1, D2)
         W2 = np.random.randn(D2, D3)
         a = np.maximum(0, X.dot(W1)).dot(W2)
         # initialize parameters for batch normalization
         bn param = \{\}
         bn_param['mode'] = 'train'
         bn_param['eps'] = 1e-4
         bn_param['momentum'] = 0.95
         bn param['running mean'] = np.zeros([1, a.shape[1]])
         bn_param['running_var'] = np.ones([1, a.shape[1]])
         # random gamma and beta
         gamma = np.random.rand(D3) + 1.0
         beta = np.random.rand(D3)
         # Setting up a tensorflow bn layer using the same set of parameters.
         tf.reset default graph()
         tfa = tf.placeholder(tf.float32, shape=[None, a.shape[1]])
         # used to control the mode
         is training = tf.placeholder with default(False, (), 'is training')
         # the axis setting is a little strange to me. But you can understand it as
         # the running mean
         tfa norm = tf.layers.batch normalization(tfa, axis=1, momentum=0.95, epsilo
                                                   beta initializer=tf.constant initi
                                                   gamma initializer=tf.constant init
                                                   moving mean initializer=tf.zeros i
                                                   moving variance initializer=tf.one
                                                   training=is training)
         # this operation is for undating running mean and running variance.
         update ops = tf.get collection(tf.GraphKeys.UPDATE OPS)
         session = tf.Session()
         # initialize parameters
         session.run(tf.global variables initializer())
         outputs = []
         nbatch = 3
         batch size=10
         for ibatch in range(nbatch):
```

```
# fetch the batch
a_batch = a[ibatch * batch_size : (ibatch + 1) * batch_size]

# batch normlaization with your implementation
a_nprun = batchnorm_forward(a_batch, gamma, beta, bn_param)

# batch normalization with the tensorflow layer. Also update the runnin
a_tfrun, _ = session.run([tfa_norm, update_ops], feed_dict={tfa: a_batc}

print("Training batch %d: difference from the two implementations is %f

# enterining test mode
bn_param['mode'] = 'test'

for ibatch in range(nbatch):
a_batch = a[ibatch * batch_size : (ibatch + 1) * batch_size]

a_nprun = batchnorm_forward(a_batch, gamma, beta, bn_param)

# run batch normalization in test mode. No need to update the running n
a_tfrun = session.run(tfa_norm, feed_dict={tfa: a_batch.astype(np.float)

print("Test batch %d: difference from the two implementations is %f" %
```

```
Training batch 0: difference from the two implementations is 0.000001 Training batch 1: difference from the two implementations is 0.000015 Training batch 2: difference from the two implementations is 0.000001 Test batch 0: difference from the two implementations is 0.000000 Test batch 1: difference from the two implementations is 0.000000 Test batch 2: difference from the two implementations is 0.000002
```

Fully Connected Nets with Batch Normalization

Now that you have a working implementation for batch normalization. Then you need to go back to your FullyConnectedNet in the file implementations/fc_net.py . Modify the implementation to add batch normalization.

When the use_bn flag is set, the network should apply batch normalization before each ReLU nonlinearity. The outputs from the last layer of the network should not be normalized.

Batchnorm for deep networks

Run the following to train a six-layer network on a subset of 1000 training examples both with and without batch normalization.

```
In [5]: from implementations.fc_net import FullyConnectedNet
        np.random.seed(15009)
        # Try training a very deep net with batchnorm
        hidden_dims = [100, 100, 100, 100, 100]
        num_train = 1000
        X_train = data['X_train'][:num_train]
        X_train = np.reshape(X_train, [X_train.shape[0], -1])
        y_train = data['y_train'][:num_train]
        X_val = data['X_val']
        X_{val} = np.reshape(X_{val}, [X_{val}.shape[0], -1])
        y_val = data['y_val']
        bn model = FullyConnectedNet(input size=X train.shape[1],
                                      hidden_size=hidden_dims,
                                      output size=10,
                                      centering data=True,
                                      use dropout=False,
                                      use_bn=True)
        # use an aggresive learning rate
        bn_trace = bn_model.train(X_train, y_train, X_val, y_val,
                                   learning rate=5e-4,
                                   reg=np.float32(0.01),
                                   keep prob=0.5,
                                   num iters=800,
                                   batch size=100,
                                   verbose=True) # train the model with batch normal
```

WARNING:tensorflow:From /Users/thomasklimek/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.

Instructions for updating:

Colocations handled automatically by placer.

WARNING:tensorflow:From /Users/thomasklimek/Downloads/comp150a2/implement ations/fc_net.py:213: batch_normalization (from tensorflow.python.layers. normalization) is deprecated and will be removed in a future version. Instructions for updating:

Use keras.layers.batch normalization instead.

WARNING:tensorflow:From /Users/thomasklimek/Downloads/comp150a2/implement ations/fc_net.py:138: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version. Instructions for updating:

Future major versions of TensorFlow will allow gradients to flow into the labels input on backprop by default.

See `tf.nn.softmax cross entropy with logits v2`.

WARNING:tensorflow:From /Users/thomasklimek/anaconda3/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math ops) is deprecated and will be removed in a future vers

```
ion.
Instructions for updating:
Use tf.cast instead.
iteration 0 / 800: objective 232.335617
iteration 100 / 800: objective 62.526760
iteration 200 / 800: objective 5.490889
iteration 300 / 800: objective 3.853646
iteration 400 / 800: objective 3.367236
iteration 500 / 800: objective 3.126927
iteration 600 / 800: objective 2.983306
iteration 700 / 800: objective 2.886577
```

Train a fully connected network without batch normalization

```
iteration 0 / 800: objective 232.582138 iteration 100 / 800: objective 206.320709 iteration 200 / 800: objective 176.051270 iteration 300 / 800: objective 89.852188 iteration 400 / 800: objective 145.754822 iteration 500 / 800: objective 149.130859 iteration 600 / 800: objective 32.878620 iteration 700 / 800: objective 67.951195
```

Run the following to visualize the results from two networks trained above. You should find that using batch normalization helps the network to converge much faster.

```
In [7]: def plot_training history(title, label, bl_plot, bn_plots, bl_marker='.', b
            """utility function for plotting training history"""
            plt.title(title)
            plt.xlabel(label)
            num_bn = len(bn_plots)
            for i in range(num_bn):
                label='batch normalization'
                if labels is not None:
                    label += str(labels[i])
                plt.plot(bn_plots[i], bn_marker, label=label)
            label='baseline'
            if labels is not None:
                label += str(labels[0])
            plt.plot(bl_plot, bl_marker, label=label)
            plt.legend(loc='lower center', ncol=num bn+1)
        plt.subplot(3, 1, 1)
        plot_training_history('Training loss','Iteration', baseline_trace['objectiv
                               [bn trace['objective history']], bl marker='o', bn ma
        plt.subplot(3, 1, 2)
        plot_training_history('Training accuracy','Epoch', baseline trace['train ac
                               [bn trace['train acc history']], bl marker='-o', bn m
        plt.subplot(3, 1, 3)
        plot training history('Validation accuracy', 'Epoch', baseline trace['val ac
                               [bn trace['val acc history']], bl marker='-o', bn mar
        plt.gcf().set size inches(15, 15)
        plt.show()
```


Batch normalization and initialization

We will now run a small experiment to study the interaction of batch normalization and weight initialization.

The first cell will train 8-layer networks both with and without batch normalization using different scales for weight initialization. The second cell will plot training accuracy, validation set accuracy, and training loss as a function of the weight initialization scale.

LIPING: I tried multiple configurations, but I did not find significant improvement from batch normalization. See if you can get clear improvement with your configurations.

```
In [ ]: | np.random.seed(231)
        # Try training a very deep net with batchnorm
        hidden_dims = [50, 50, 50, 50, 50, 50, 50]
        num_train = 10000
        X_train = data['X_train'][:num_train]
        X_train = np.reshape(X_train, [X_train.shape[0], -1])
        y_train = data['y_train'][:num_train]
        X_val = data['X_val']
        X_{val} = np.reshape(X_{val}, [X_{val}.shape[0], -1])
        y_val = data['y_val']
        bn net ws = {}
        baseline_ws = {}
        weight scales = np.logspace(-4, 0, num=20)
        for i, weight scale in enumerate(weight scales):
          print('Running weight scale=%f at round %d / %d' % (weight_scale, i + 1,
          bn model = FullyConnectedNet(input_size=X_train.shape[1],
                                      hidden_size=hidden_dims,
                                      output size=10,
                                      centering data=True,
                                      use_dropout=False,
                                      use bn=True)
          # use an aggresive learning rate
          bn net ws[weight scale] = bn model.train(X train, y train, X val, y val,
                                   learning rate=1e-2,
                                   reg=np.float32(1e-5),
                                   keep prob=0.5,
                                   num iters=1000,
                                   batch size=100,
                                   verbose=True) # train the model with batch normal
          model = FullyConnectedNet(input size=X train.shape[1],
                                   hidden size=hidden dims,
                                   output size=10,
                                   centering data=True,
                                   use dropout=False,
                                   use bn=True)
          # use an aggresive learning rate
          baseline_ws[weight_scale] = model.train(X_train, y_train, X_val, y_val,
                                     learning rate=1e-2,
                                     reg=np.float32(1e-5),
                                     num iters=1000,
                                     batch size=100,
                                     verbose=True)
```

Running weight scale=0.000100 at round 1 / 20 iteration 0 / 1000: objective 233.189835

```
iteration 100 / 1000: objective 213.591492
iteration 200 / 1000: objective 200.433151
iteration 300 / 1000: objective 187.779266
iteration 400 / 1000: objective 175.908569
iteration 500 / 1000: objective 169.276962
iteration 600 / 1000: objective 166.379684
iteration 700 / 1000: objective 158.826981
iteration 800 / 1000: objective 147.057220
iteration 900 / 1000: objective 145.747345
iteration 0 / 1000: objective 230.705185
iteration 100 / 1000: objective 217.186539
iteration 200 / 1000: objective 201.979187
iteration 300 / 1000: objective 196.978333
iteration 400 / 1000: objective 196.514465
iteration 500 / 1000: objective 188.552139
iteration 600 / 1000: objective 176.873596
iteration 700 / 1000: objective 168.814529
iteration 800 / 1000: objective 161.952850
iteration 900 / 1000: objective 161.383911
Running weight scale=0.000162 at round 2 / 20
iteration 0 / 1000: objective 231.216522
iteration 100 / 1000: objective 209.378464
iteration 200 / 1000: objective 199.480591
iteration 300 / 1000: objective 194.065536
iteration 400 / 1000: objective 179.163879
iteration 500 / 1000: objective 173.117477
iteration 600 / 1000: objective 168.215775
iteration 700 / 1000: objective 163.710190
iteration 800 / 1000: objective 161.352875
iteration 900 / 1000: objective 161.656372
iteration 0 / 1000: objective 234.763535
iteration 100 / 1000: objective 208.443909
iteration 200 / 1000: objective 201.943466
iteration 300 / 1000: objective 189.438141
iteration 400 / 1000: objective 182.224762
iteration 500 / 1000: objective 170.534744
iteration 600 / 1000: objective 158.194061
iteration 700 / 1000: objective 149.503693
iteration 800 / 1000: objective 141.042740
iteration 900 / 1000: objective 148.155731
Running weight scale=0.000264 at round 3 / 20
iteration 0 / 1000: objective 228.916122
iteration 100 / 1000: objective 210.585968
iteration 200 / 1000: objective 204.088882
iteration 300 / 1000: objective 195.176224
iteration 400 / 1000: objective 185.583130
iteration 500 / 1000: objective 177.081573
iteration 600 / 1000: objective 166.818222
iteration 700 / 1000: objective 167.466675
iteration 800 / 1000: objective 164.106979
iteration 900 / 1000: objective 157.886108
iteration 0 / 1000: objective 228.990707
iteration 100 / 1000: objective 210.425278
iteration 200 / 1000: objective 198.664307
iteration 300 / 1000: objective 202.191116
iteration 400 / 1000: objective 179.734634
iteration 500 / 1000: objective 176.176727
```

```
iteration 600 / 1000: objective 172.164612
iteration 700 / 1000: objective 166.659698
iteration 800 / 1000: objective 161.414749
iteration 900 / 1000: objective 157.705612
Running weight scale=0.000428 at round 4 / 20
iteration 0 / 1000: objective 230.535263
iteration 100 / 1000: objective 208.512253
iteration 200 / 1000: objective 199.176834
iteration 300 / 1000: objective 189.041626
iteration 400 / 1000: objective 182.453537
iteration 500 / 1000: objective 172.279465
iteration 600 / 1000: objective 172.149673
iteration 700 / 1000: objective 164.576614
iteration 800 / 1000: objective 159.812973
iteration 900 / 1000: objective 148.704346
iteration 0 / 1000: objective 230.348511
iteration 100 / 1000: objective 210.216080
iteration 200 / 1000: objective 202.613388
iteration 300 / 1000: objective 198.318893
iteration 400 / 1000: objective 191.446503
iteration 500 / 1000: objective 172.307831
iteration 600 / 1000: objective 168.532639
iteration 700 / 1000: objective 158.258255
iteration 800 / 1000: objective 163.867310
```

```
In [45]: # Plot results of weight scale experiment
         best train accs, bn best train accs = [], []
         best_val_accs, bn_best_val_accs = [], []
         final_train_loss, bn_final_train_loss = [], []
         for ws in weight scales:
           best train accs.append(max(baseline ws[ws]['train acc history']))
           bn best train accs.append(max(bn net ws[ws]['train acc history']))
           best_val_accs.append(max(baseline_ws[ws]['val_acc history']))
           bn best val accs.append(max(bn net ws[ws]['val acc history']))
           final train loss.append(np.mean(baseline ws[ws]['objective history'][-100
           bn final train loss.append(np.mean(bn net ws[ws]['objective history'][-10
         plt.subplot(3, 1, 1)
         plt.title('Best val accuracy vs weight initialization scale')
         plt.xlabel('Weight initialization scale')
         plt.ylabel('Best val accuracy')
         plt.semilogx(weight scales, best val accs, '-o', label='baseline')
         plt.semilogx(weight scales, bn best val accs, '-o', label='batchnorm')
         plt.legend(ncol=2, loc='lower right')
         plt.subplot(3, 1, 2)
         plt.title('Best train accuracy vs weight initialization scale')
         plt.xlabel('Weight initialization scale')
         plt.ylabel('Best training accuracy')
         plt.semilogx(weight scales, best train accs, '-o', label='baseline')
         plt.semilogx(weight scales, bn best train accs, '-o', label='batchnorm')
         plt.legend()
         plt.subplot(3, 1, 3)
         plt.title('Final training loss vs weight initialization scale')
         plt.xlabel('Weight initialization scale')
         plt.ylabel('Final training loss')
         plt.semilogx(weight_scales, final_train_loss, '-o', label='baseline')
         plt.semilogx(weight scales, bn final train loss, '-o', label='batchnorm')
         plt.legend()
         plt.gca().set ylim(120, 160)
         plt.gcf().set size inches(15, 15)
         plt.show()
```


Inline Question 1:

Describe the results of this experiment. How does the scale of weight initialization affect models with/without batch normalization differently, and why?

Answer:

batch normalization reduces train's dependency on weight initialization.

Batch normalization and batch size

We will now run a small experiment to study the interaction of batch normalization and batch size.

The first cell will train 6-layer networks both with and without batch normalization using different batch sizes. The second cell will plot training accuracy and validation set accuracy over time.

Here is a link about batch sizes in batch normalization: https://www.graphcore.ai/posts/revisiting-small-batch-training-for-deep-neural-networks)

```
In [46]: def run batchsize experiments():
             np.random.seed(15009)
             # Try training a very deep net with batchnorm
             hidden_dims = [50, 50, 50, 50, 50]
             num_train = 1000
             X train = data['X train'][:num train]
             X_train = np.reshape(X_train, [X_train.shape[0], -1])
             y_train = data['y_train'][:num_train]
             X_val = data['X_val']
             X_val = np.reshape(X_val, [X_val.shape[0], -1])
             y_val = data['y_val']
             num_epochs = 10
             batch\_sizes = [5,10,50]
             batch size = batch sizes[0]
             print('No normalization: batch size = ', 5)
             baseline = FullyConnectedNet(input_size=X_train.shape[1],
                                       hidden_size=hidden_dims,
                                       output_size=10,
                                       centering data=True,
                                       use_dropout=False,
                                       use bn=False)
             # use an aggresive learning rate
             baseline_trace = baseline.train(X_train, y_train, X_val, y_val,
                                              learning_rate=10**-3,
                                              reg=np.float32(1e-5),
                                              num iters=num train * num epochs // bat
                                              batch size=batch size,
                                              verbose=True) # train the model with ba
             bn_traces = []
             for i in range(len(batch sizes)):
                 batch size = batch sizes[i]
                 print('Normalization: batch size = ',batch size)
                 bn model = FullyConnectedNet(input size=X train.shape[1],
                                       hidden size=hidden_dims,
                                       output size=10,
                                       centering data=True,
                                       use dropout=False,
                                       use bn=True)
                  # use an aggresive learning rate
                 bn net trace = bn model.train(X train, y train, X val, y val,
```

```
iteration 0 / 2000: objective 11.514305
iteration 100 / 2000: objective 11.530845
iteration 200 / 2000: objective 11.489232
iteration 300 / 2000: objective 11.541492
iteration 400 / 2000: objective 11.467241
iteration 500 / 2000: objective 11.549950
iteration 600 / 2000: objective 11.446713
iteration 700 / 2000: objective 11.555372
iteration 800 / 2000: objective 11.426663
iteration 900 / 2000: objective 11.555120
iteration 1000 / 2000: objective 11.404947
iteration 1100 / 2000: objective 11.544064
iteration 1200 / 2000: objective 11.375858
iteration 1300 / 2000: objective 11.504647
iteration 1400 / 2000: objective 11.316720
iteration 1500 / 2000: objective 11.314795
iteration 1600 / 2000: objective 11.028091
iteration 1700 / 2000: objective 9.682540
iteration 1800 / 2000: objective 10.528840
iteration 1900 / 2000: objective 9.623591
Normalization: batch size = 5
iteration 0 / 2000: objective 11.261142
iteration 100 / 2000: objective 9.951454
iteration 200 / 2000: objective 9.884268
iteration 300 / 2000: objective 10.035322
iteration 400 / 2000: objective 9.217606
iteration 500 / 2000: objective 9.643195
iteration 600 / 2000: objective 9.521820
iteration 700 / 2000: objective 8.670181
iteration 800 / 2000: objective 9.517444
iteration 900 / 2000: objective 9.966735
iteration 1000 / 2000: objective 10.685647
iteration 1100 / 2000: objective 8.539443
iteration 1200 / 2000: objective 10.305301
iteration 1300 / 2000: objective 9.265452
iteration 1400 / 2000: objective 10.180280
iteration 1500 / 2000: objective 8.352707
iteration 1600 / 2000: objective 10.035075
iteration 1700 / 2000: objective 7.444477
iteration 1800 / 2000: objective 8.845722
iteration 1900 / 2000: objective 7.163485
Normalization: batch size = 10
```

```
iteration 0 / 1000: objective 22.895212
iteration 100 / 1000: objective 19.451822
iteration 200 / 1000: objective 15.644375
iteration 300 / 1000: objective 15.610549
iteration 400 / 1000: objective 12.603591
iteration 500 / 1000: objective 11.346120
iteration 600 / 1000: objective 10.628396
iteration 700 / 1000: objective 9.023713
iteration 800 / 1000: objective 9.023713
iteration 900 / 1000: objective 7.790090
Normalization: batch size = 50
iteration 0 / 200: objective 116.548073
iteration 100 / 200: objective 68.617027
```


Inline Question 2:

Describe the results of this experiment. What does this imply about the relationship between batch normalization and batch size? Why is this relationship observed?

Answer: