武汉大学 2023-2024 第二学期

概率统计 (48学时)期终试题(A卷)

一. 选择题 (18分, 每题3分)

1. 如果 P(A) + P(B) > 1,则 事件 A = B 必定()。

	(A) 独立	(B) 不独立	(C) 相容	(D) 不相容	
2.	已知人的血型为(的概率为()		〉别是 0.4、0.3、	0.2、0.1。现任选 4 人	,则4人血型全不相同
	(<i>A</i>) 0.0024	$(B) 0.0024^4$	(C) 0. 24	(D) 0.24^2	
3.	设 $(X,Y) \sim f(X,Y)$	$(x,y) = \begin{cases} 1/\pi, & x^2 + \\ 0, & \exists \end{cases}$	$y^2 < 1$, $y \le X$	与Y为()。	
	(A) 独立同分布	的随机变量	(B) 独立不同:	分布的随机变量	
	(C) 不独立同分	布的随机变量	(D) 不独立也 ²	不同分布的随机变量	
4.	某人射击直到中	靶为止,已知每次射击	后中靶的概率为 0.	75,则射击次数的数学	期望与方差分别为()
	$(A) \ \frac{4}{3} = \frac{9}{4};$	$(B) \ \frac{4}{3} = \frac{9}{16};$	$(C) \ \frac{1}{4} = \frac{9}{4};$	(D) $\frac{4}{3} = \frac{4}{9}$.	
5.	设 X_1, X_2 是取自 A	$V(\mu,1)$ 的样本,以下	μ 的四个估计量。	中最有效的是 ()。	
	$(A) \hat{\mu}_1 = \frac{1}{2} X_1 +$	$\frac{1}{2}X_2$; (B) $\hat{\mu}_2 = \frac{1}{3}$	$X_1 + \frac{2}{3}X_2$; (C)	$\hat{\mu}_3 = \frac{1}{4} X_1 + \frac{3}{4} X_2; ($	(D) $\hat{\mu}_4 = \frac{2}{5}X_1 + \frac{3}{5}X_2$.
6.	设 X_1, X_2, \cdots, X_n	来自总体 $N(\mu_0,\sigma^2)$ 日	的样本。检验假设	$H_0: \sigma^2 \le 10^2, \ H_1: \sigma^2$	$^2 > 10^2$ 时,取统计量
	$\chi^2 = \frac{1}{10^2} \sum_{i=1}^n (X_i - \mu_i)^2$	u ₀) ² ,拒绝域为()	$(\alpha = 0.1)$.		
	$(A) \chi^2 \le \chi^2_{0.1}($	$n); (B) \chi^2 \geq \chi_{0.}^2$	$_{1}(n);$ (C) χ^{2}	$\leq \chi^2_{0.05}(n); (D) \chi^2$	$\geq \chi^2_{0.05}(n).$
二	、填空题(32分,	每题4分)			
1.	设随机事件 A , B	互不相容, 且 P(A) =	$= 0.3, P(\overline{B}) = 0$.6,则 $P(B \overline{A}) = \underline{\hspace{1cm}}$	o
2.	设随机变量 X 服从	从(-2, 2)上的均匀	分布,则随机变量	$tY = X^2$ 的概率密度函	数为 $f_{_{Y}}(y) =。$
3.	已知男子寿命大于 60 岁的概率为		大于 50 岁的概率	医为 85%。若某人今年已	50岁,则他的寿命大于
4.	己知二维随机变量	±(X,Y)的联合分布的	函数为 $F(x, y)$,	试用联合分布函数表示	概率
	$P(a < X \le b, a$	$\langle Y \leq b \rangle =$	°		

5. 设随机变量(X,Y)的联合分布律为

若 E(XY) = 0.8,则 cov(X, Y) =_____。

6. 设随机变量
$$X_i \sim \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$
, $i = 1, 2$, $P(X_1 X_2 = 0) = 1$, 则 $P(X_1 = X_2) = \underline{\qquad}$.

7. 设随机变量 X 和 Y 的期望分别为 -2 和 2 ,方差分别为 1 和 4 , $\rho_{xy} = -0.5$,由切比雪夫不等式,

$$P(|X+Y| \ge 6) \le$$

8. 设
$$X_1, X_2, \dots, X_6$$
来自总体 $N(0,1)$ 的样本,设 $Y = a(X_1 + X_2)^2 + b(X_3 + X_4 + X_5 + X_6)^2$,则当 $a =$ _____, $b =$ _____ 时, Y 服从自由度为______ 的_____分布。

- 三、计算与应用题(每题10分,共50分)
- 1. 包装机把白色和淡黄色的乒乓球混装入盒子,每盒装5只,已知每盒内装有的白球的个数是等可能的。
 - (1) 从某一盒子内取一球,求取到白球的概率;
 - (2) 若取到的是白球,求此盒中装的全是白球的概率。
- 2、设二维随机变量(X,Y)的联合密度函数为 $f(x,y) = \begin{cases} cx & 0 \le y \le x \le 1 \\ 0 & \text{其他} \end{cases}$
 - (1) 求边缘密度函数 $f_X(x)$ 与 $f_Y(y)$; (2) X 与 Y 是否相互独立? (3) 计算 P(X+Y>1)。
- 3. 某食堂出售 15 元、18 元、20 元三种价格的盒饭,售出三种盒饭的概率分别为 0.2, 0.5, 0.3。
 - (1) 已知某天共售出300盒,用中心极限定理求这天收入在5350元至5450元之间的概率;
 - (2) 若三种盒饭的利润分别为 3 元、4 元和 5 元,问一天需要售出多少份盒饭,才能以 95%的概率保证 利润在 1000 元以上($\Phi(1.65)=0.95$)。
- 4. 设总体 X 的概率密度为 $f(x) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta \\ 0, & 其它 \end{cases}$, θ 是未知参数, X_1, X_2, \cdots, X_n 是来自 X 的样本。
 - (1) 求 θ 的矩估计量 $\hat{\theta}$, 和最大似然估计量 $\hat{\theta}$, ;(2) 讨论矩估计量 $\hat{\theta}$, 和最大似然估计量 $\hat{\theta}$, 是否无偏。
- 5. 轴承内环的锻压零件的高度服从正态分布。 现从某天生产的产品中抽取 25 只内环,其平均高度 x=30.18 毫米,样本标准差 s=0.6 毫米。正常生产时的零件平均高度为 30 毫米,标准差不超过 0.5 毫米。试在显著性水平为 $\alpha=0.05$ 的条件下,检验这天生产是否正常。

$$(t_{0.05}(24) = 1.712, t_{0.025}(24) = 2.064, \chi_{0.95}^{2}(24) = 13.85, \chi_{0.05}^{2}(24) = 36.42)$$