Single-Step Retrosynthetic Reaction Prediction with Energy-Weighted Molecular Graphs

David Toomer | CS106X Fall 2019 | Jerry Cain

BACKGROUND

DRUG DISCOVERY

- Drug discovery is a process that is rapidly expanding in biomedicine and pharmacy
- For small drugs (molecules), drug discovery requires knowledge of how to synthesize the molecule
- Would be advantageous for individualized medicine

RETROSYNTHESIS

- Retrosynthesis: developing a reaction route to create a target molecule
- Often consists of various **decomposition reactions** navigated by different catalysts and environmental conditions → very time-consuming to predict by hand
- Could be aided using Computer-Aided Synthesis Prediction (CASP)

REPRESENTING MOLECULES

SMILES STRINGS

- Simplified Molecular-Input Line-Entry System (SMILES)
- Can represent any molecule (not unique)

[H] [C@] 12C=C[C@H] (0) [C@@H] 30c4c5c(C[C@H] 1N(C)CC[C@@] 235) ccc40

MOLFILE

- need to convert SMILES to a more informative data structure \rightarrow parsing
 - atoms and atom properties (charge, isotopes...)
 - bonds and bond energies, conjugated π -orbitals

MOLECULAR GRAPHS

 Molecules can be represented as graphs where nodes are atoms/functional groups and arc are bonds

SMILES PARSING: A FORMAL GRAMMAR

Parsing the SMILES with the grammar results in a molecule

REACTION PREDICTION: SPECTRAL CLUSTERING

MOLECULAR GRAPHS

- Molecules can be represented as undirected, weighted graphs
- Edge weights hold approximate bond dissociation energies
- Adjacency matrix holds all the connections (bonds) in the molecule
- Each entry in the adjacency matrix is weighted by its bond dissociation energy → weighted adjacency matrix

RETROSYNTHESIS PREDICTION PIPELINE:

GRAPH LAPLACIAN MATRIX AND SPECTRAL CLUSTERING

- Represent molecules as undirected, weighted graphs
- Edge weights hold approximate bond dissociation energies
- Can be represented as a Laplacian matrix \rightarrow spectral analysis reveals properties of the molecule
 - second-smallest eigenvalue = Fiedler value: shows the minimum graph cut to make two graphs
- Can use the Fiedler eigenvector of the Laplacian to make a spectral cut \rightarrow equivalent to breaking a bond = reaction!

$$D(i,i) = \sum_{i} W(i,j)$$

$$L = D - W = V\Lambda V^{-1}$$

$$\Lambda = diag(\lambda_i) \quad \lambda_i \ge 0$$

EXAMPLES

- Example 1: successful prediction of the formation of acetophenone (right) from benzene (left)
- Catalyst-independent prediction

- Example 2, 3, 4: unsuccessful prediction based on misclustering
- Clustering only off by one atom that is always part of the bond that is broken

SUMMARY

SUCCESSES

- Was able to parse SMILES into a custom data structure
- Used graphs to represent chemicals
- Spectral properties of the graph can represent chemical reactions → accurate for small molecules

IMPROVEMENTS

- Clustering molecules into more than one part by interpreting the next order eigenvector
- More accurate bond energy modeling

FUTURE IDEAS

- Sequentially perform retrosynthesis in order to represent multi-step retrosynthesis
- Predict forward reactions as well
- Validate SMILES for chemical accuracy
- Use GAMESS to create (x,y,z) coordinates for each atom

ACKNOWLEDGEMENTS

C++ library for linear algebra & scientific computing