

$$\frac{1}{3} - \frac{1}{2n} + \frac{1}{6n^2} \le A \le \frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2}$$

Divide [0,1] into n

Contral equal fieces

But each with width in

pick * Ci in each of

the subintervals correpording

to the the max of x2

on the subinterval.

$$= \frac{1}{2} \left[\frac{1}{n} \left(\frac{(2)^2}{n} \right)^2 + \left(\frac{n}{n} \right)^2 \right]$$

A must be $\frac{1}{3}$.

 $y = \frac{1}{x}$

0.6345 \le log Z \le 0.7595

Fix) \dot{b} a function defined on [a,b].

We divide [a,b] into n sub-intervals.

and form a partition $P_n = \{x_0 = a, x_1, x_2, \dots, x_n = k\}$ Choose $(i \in [x_{i-1}, x_i])$.

(i \dot{b} call a simple pt.

widths of the rectangles $\Delta x_i = \chi_i - \chi_{i-1}$

heights of of the rectangles: f(Ci)

 $A = \sum_{i=1}^{n} f(c_i) / 4 \chi_i$

A is an approximation of the area under the curve y=fax from a to b.

Σ f((i) Δχi is called the Riemann Sum of fover [9,6] with respect to the partition Pn and the sample If he choose Ci to correspond to the max of f on [Xi-1, Xi], then we get the "upper Riemann Sum", Sp. If we choose Ci to correspond to the min of form [Xi-1, Xi], then we get " the "lower Rie mann sun". Sp. $\lim_{m \to \infty} S_p = \lim_{m \to \infty} S_p = L,$ max 4xi-70 then we say that fib integrable on [a, b] and.

 $\int_{a}^{b} f_{(x)} dx = L = \lim_{\max \Delta X_{i} \to 0} \frac{n}{i=1} f(i) \Delta x_{i}$

Example:
$$f(x) = \{ 1, \text{ if } x \in \mathbb{Q}, \\ -1, \text{ if } x \notin \mathbb{Q}. \}$$

$$\overline{S_p} = \sum_{i=1}^{n} 1.4x_i$$

$$\sum_{i=1}^{N} (-1) \Delta \chi_i^i$$

If fix) is positive for all XETa, b], then we define the area bounded to by the curve y = f(x), x = a, x = b, y = 0, to be $\int_a^b f(x) dx$.

Theoren:	4	there z	àa	part-	tion	P	such tho	t
the	myser	and	love	r Rien	nann	Sum	for f	
Can	be	made	arbit	rarily	dos	١,	Hen	
f	3	made inte	grafle					

For all \$70, there exists a partition P & such that $\overline{S_p} - \underline{S_p} < \underline{\epsilon}.$

Properties of integrals.

0. If $f_{(x)} = C_e$ for all $x \in T_{a,b}$. then $\int_a^b f_{(x)} dx = C \cdot (b-a)$.

(2). If a < c < b and f is integrable on [a,b], then $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$.

- 3. If f and g of are both integrable on Ia, b J, and 2 is a constant, then $\int_{a}^{b} (x f(x) + g(x)) dx$
 - = $\alpha \int_a^b f_{iN} dx + \int_a^b g_{iN} dx$.
 - If $f(x) \ge 0$ for all $x \in Lab$] and $f(x) \ge 0$ integrable, then $\int_a^b f(x) dx \ge 0$.
 - O If fix 2 gix for all XE [a,b] and f and g are integrable on [a,b] then Safix dx Z Sa gix dx.
 - 6. If f is integrable on [a,b] and M = f(x) $f(x) \leq M$ for all $x \in [a,b]$, then f(b-a) $f(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a)$

Suppose a < f, we define $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx.$ and $\int_a^a f(x) dx = 0$. Def: Let f be a continuous function on [9,6] A function F with the properties 1) F à differentiable on (a, b). 2) $F'_{(x)} = f_{(x)}$ for all $x \in [a, b]$. is called a frimitive (or anti-derivative) of f. If F is a primitive of f, then Fix + C is also a frimitive of f for any constant C.

Example. If $f(x) = X^n$, then $F(x) = \frac{X^{n+1}}{n+1} + C$ \dot{y} an anti-clerivative of f, for all $21n \neq -$