ET4 147: Signal Processing for Communications

Spring 2020

Homework (deadline 8 May)

This homework consists of two parts: (a) generating and studying an instantaneous MIMO model and (b) deriving a convolutive model with a single source and a single receiver. Make a short report containing the required Matlab files, plots, explanations, and answers, and turn it in on the deadline (after the class) or by e-mail. In case something is unclear, assistance is given by Pim van der Meulen, room HB17.130 (during office hours), e-mail: P.Q.vanderMeulen@tudelft.nl.

You may work in groups of two, unless you prefer to work alone.

Instantaneous model

- 1. Make Matlab subroutines to
 - (a) generate the array response $\mathbf{a}(\theta)$ of a uniform linear array with M elements and spacing Δ wavelengths to a source coming from direction θ degrees;

(b) plot the spatial response of a given beamformer **w** as a function of the direction θ of a source with array response $\mathbf{a}(\theta)$;

(c) generate a data matrix $\mathbf{X} = \mathbf{A}_{\theta}\mathbf{S} + \mathbf{N}$ as function of the directions $\boldsymbol{\theta} = [\theta_1 \cdots \theta_d]^{\mathrm{T}}$, number of antennas M, number of samples N, and signal-to-noise ratio (SNR) in dB (the SNR is defined as the ratio of the source power of a single user over the noise power). \mathbf{S} and \mathbf{N} are respectively a $d \times N$ and $M \times N$ random zero-mean complex Gaussian matrix;

function X = gen_data(M,N,Delta,theta,SNR)

- 2. Test your routines on a few scenarios (1 or 2 sources, varying directions, varying number of antennas, varying number of samples) and make plots of the spatial responses (try to reproduce the graphs in chapter 1).
- 3. Plot the singular values of **X**. Investigate the behavior of the singular values for varying DOA separation, number of antennas, number of samples, SNR.

Convolutive model

- 1. Make Matlab subroutines to
 - (a) generate a rate- $\frac{1}{P}$ sampled version of the pulse g(t), as shown in the figure, but delayed over an arbitrary delay $\tau \in [0,1)$, i.e., generate $\mathbf{g}(\tau) = [g(0-\tau)\ g(\frac{1}{P}-\tau)\ \cdots\ g(L-\frac{1}{P}-\tau)]^{\mathrm{T}}$, where L is chosen such that the complete pulse is contained in $\mathbf{g}(\tau)$ for any $\tau \in [0,1)$;

(b) construct a rate- $\frac{1}{P}$ sampled version of the channel response h(t) resulting from the sum of r paths with delays $\boldsymbol{\tau} = [\tau_1 \ \cdots \ \tau_r]^{\mathrm{T}} \ (\tau_i \in [0,1))$ and gains $\boldsymbol{\beta} = [\beta_1 \ \cdots \ \beta_r]^{\mathrm{T}}$, i.e., construct $\mathbf{h} = [h(0) \ h(\frac{1}{P}) \ \cdots \ h(L-\frac{1}{P})]^{\mathrm{T}}$;

(c) construct a source sequence $\mathbf{s} = [s_1 \ s_2 \ \cdots \ s_N]^T$, where every entry is a random QPSK symbol. The corresponding analog sequence is $s_{\delta}(t) = \sum_k s_k \delta(t-k)$;

(d) construct a rate- $\frac{1}{P}$ sampled version of the output $x(t) = h(t) * s_{\delta}(t)$, i.e, construct $\mathbf{x} = [x(0) \ x(\frac{1}{P}) \ \cdots \ x(N - \frac{1}{P})]^{\mathrm{T}};$

function
$$x = gen_data1(h,s,P,N)$$

Hint: You can use the Matlab conv command. You will need to extend s to $\mathbf{s}_{ext} = [s_1 \ 0 \ \cdots 0 \ s_2 \ 0 \cdots \ 0 \ \cdots \ s_N \ 0 \cdots \ 0]^{\mathrm{T}}$. This is done with the command kron(s,[1;zeros(P-1,1)]).

- 2. Test your routines for $\tau = [0.1 \ 0.6]^{\mathrm{T}}$ and $\beta = [1e^{j\phi_1} \ 0.7e^{j\phi_2}]^{\mathrm{T}}$ with random ϕ_1 and ϕ_2 . Take an oversampling factor of P = 5 and a burst length of N = 50. Make a plot of the real and imaginary part of \mathbf{h} and \mathbf{x} . Can you detect the source \mathbf{s} from \mathbf{x} by visual inspection?
- 3. Construct the corresponding data matrix

$$\mathbf{X} = \begin{bmatrix} x(0) & x(1) & \cdots & x(N-1) \\ x(\frac{1}{P}) & x(1+\frac{1}{P}) & \cdots & x(N-1+\frac{1}{P}) \\ \vdots & \vdots & & \vdots \\ x(\frac{P-1}{P}) & x(1+\frac{P-1}{P}) \cdots & x(N-1+\frac{P-1}{P}) \end{bmatrix} : P \times N$$

What is the rank of X? Explain.