Indian Institute of Technology Roorkee MAN-001 (Mathematics-I) Autumn Semester: 2019-20

Assignment-8: (Applications of Multiple Integrals)

- 1. Find the area inside the circle $r = a \sin \theta$ and outside the cardioid $r = a(1 \cos \theta)$.
- 2. Find the area bounded by the circles $r = a\cos\theta$ and $r = a\sin\theta$.
- 3. Find the value of the triple integral $\iint_R xydxdydz$ where R is the cylindrical solid $x^2 + y^2 \le 1$ with $0 \le z \le 1$.
- 4. Evaluate $\iiint_R \sqrt{x^2 + y^2} dx dy dz$, where *R* is the solid bounded by the right circular cone $x^2 + y^2 = z^2$, z > 0 and the planes z = 0 and z = 1.
- 5. Using the definition of average value of a function f(x, y, z) over a solid region D as $\frac{1}{vol.\ of\ D} \iiint_D f(x, y, z) dv$, find the average value of the function f(x, y, z) = x + y + z over the sphere $x^2 + y^2 + z^2 = 4$.
- 6. Find the volume bounded above by the sphere $x^2 + y^2 + z^2 = a^2$ and below by the cone $x^2 + y^2 = z^2$.
- 7. Find the volume bounded by the surfaces $z = 4 x^2 \frac{1}{4}y^2$ and $z = 3x^2 + \frac{y^2}{4}$.
- 8. Find the volume of the wedge intercepted between the cylinder $x^2 + y^2 = 2ax$ and planes z = mx, z = nx, (m > n).
- 9. Evaluate $\iiint z^2 dx dy dz$ over the volume bounded by the cylinder $x^2 + y^2 = a^2$ and the paraboloid $x^2 + y^2 = z$ and the plane z = 0.
- 10. Find the centre of gravity of the area bounded by the parabola $y^2 = x$ and the line x + y = 2.
- 11. Find the mass of a plate in the form of one loop of lemniscate $r^2 = a^2 \cos 2\theta$ if the density varies as the square of the distance from the pole.
- 12. A solid has the shape determined by the graphs of the cylinder |x| + |y| = 1 and the planes z = 2 and z = 4. Find its mass if the density is given by $\rho(x, y, z) = kz$, where k is a constant. Also find the moment of inertia of the solid about the z-axis.

Answers: 1.
$$a^2 \left(1 - \frac{\pi}{4}\right)$$
; 2. $\frac{a^2}{4} \left(\frac{\pi}{2} - 1\right)$; 3.0; 4. $\frac{\pi}{6}$; 5. 0; 6. $\frac{2\pi a^3}{3} \left(1 - \frac{1}{\sqrt{2}}\right)$;

7.
$$4\sqrt{2}\pi$$
; **8.** $(m-n)\pi a^3$; **9.** $\frac{\pi}{12}a^8$; **10.** $\left(\frac{8}{5}, -\frac{1}{2}\right)$; **11.** $\frac{ka^4\pi}{16}$; **12.** $12k$, $4k$.