Cloud computing

Tiago Heinrich

UniSociesc Joinville

21/05/2020

Cloud computing

- Disponibilidade sob demanda de recursos (armazenamento e processamento)
- Termo utilizado para descrever data centers
- Predominantes, com funções distribuídas em vários locais ou limitadas a uma única organização
 - Github ou Dropbox
- Disponibilidade de redes de alta capacidade e armazenamento por um baixo custo
- Ampla adoção da virtualização, arquitetura orientada a serviços (SOA) (com o Linux sendo o sistema operacional mais utilizado)

Introdução

- O termo Cloud surgiu na ARPANET em 1977 para a comunicação (posteriormente Internet)
- Em 1993 o termo foi utilizado para plataformas de computação distribuída (Apple e AT&T)
- A computação em nuvem foi popularizada com a Amazon (2006), seguido do Google (2008), Microsoft Azure (2010) e IBM (2011)

Introdução

- Permitir que os usuários se beneficiem de todas essas tecnologias, sem a necessidade de conhecimento profundo ou experiência
- Reduzir custos e ajudar os usuários com obstáculos de TI
- Ambiente:
 - *Grid* recursos computacionais amplamente distribuídos (heterogêneo e geograficamente disperso)
 - Fog computing arquitetura que usa dispositivos de borda para realizar uma quantidade substancial de computação
 - Mainframe usado principalmente por organizações para aplicações críticos e processamento de dados em massa (poder de processamento)

Características

- A agilidade para o provisionamento, adição ou expansão de recursos de infraestrutura
- As reduções de custo pelo provedor de nuvem
- Permite que os usuários acessem sistemas usando um navegador da web, independentemente de sua localização
- Não precisa ser instalado no computador de cada usuário
- Desempenho, Disponibilidade, Escalabilidade e Segurança

Modelos de serviço

- Os provedores de computação em nuvem oferecem seus "serviços" de acordo com modelos diferentes
- Frequentemente retratados como camadas em uma pilha
- Não precisam estar relacionados

Infrastructure as a service (IaaS)

- APIs de alto nível usadas para abstrair vários detalhes de baixo nível da infraestrutura
- Por exemplo: rede, recursos de computação física, particionamento de dados, dimensionamento, segurança e backup
- Contêineres são executados em partições isoladas de um único kernel

Platform as a service (PaaS)

- Ambiente de desenvolvimento para desenvolvedores de aplicações
- Normalmente incluindo sistema operacional, ambiente de execução em linguagem de programação, banco de dados e servidor da web
- Sem necessidade de gerenciar diretamente as camadas de hardware e software subjacentes (armazenamento)

Software as a service (SaaS)

- Usuários obtêm acesso ao software aplicativo e aos bancos de dados
- Provedores gerenciam a infraestrutura e as plataformas que executam os aplicativos
- software sob demanda e geralmente é precificado com base no pagamento por uso (aplicações de modelo de preços geralmente é mensal ou anual)

Modelos de serviço

Cloud Clients

Web browser, mobile app, thin client, terminal emulator, ...

Application

SaaS

CRM, Email, virtual desktop, communication, games, ...

PaaS

Execution runtime, database, web server, development tools, ...

laaS

Virtual machines, servers, storage, load balancers, network, ...

. Ire Platform

Infrastructure

Modelos de serviço

Modelos

- Private cloud
 - Infraestrutura operada exclusivamente para uma única organização
 - Decisões sobre os recursos existentes
 - Exigindo alocações de espaço, hardware e controles para os ambientes (problemas com segurança e refrigeração)
- Public cloud
 - Os serviços são renderizados em uma rede aberta para uso público
 - O acesso é geralmente via Internet (Exemplo: AWS, Oracle, Microsoft e Google)
- Hybrid cloud

Segurança e privacidade

- Preocupações de privacidade porque o provedor de serviços pode acessar os dados que estão na nuvem a qualquer momento
 - Dropbox ou Drive
 - Encrypt data? mas tenho um hypervisor no meio do caminho (SGX)
- Interfaces e APIs inseguras, perda e vazamento de dados e falha de hardware

Limitações

- Opções de personalização limitadas
- Cloud é mais barato
- Necessidades Legais (Os provedores de nuvem geralmente decidem sobre as políticas de gerenciamento)
- Privacidade e confidencialidade

- Ambiente especializado para hospedagem de recursos computacionais
- Preocupação com redundância, escalabilidade e segurança

- Preocupação com redundância, escalabilidade e segurança
- Anos 90

• Em 2005

- Múltiplas conexões por servidor
- Ambiente com rede de dados e armazenamento separados

- Servidores Rack
- Altura em unidades de rack (1U, 2U, 4U)
- 40 NVIDIA Turing GPUs em 8U

- Google Servers:
 - Estimado em 2016 2.5 milhões de servers
 - Utiliza versão altamente personalizada do Debian (GNU/Linux)
 - Gerações de CPU que oferecem o melhor desempenho por dólar

2 x CPUs

- Custos de operação de todo o servidor, e o consumo de energia da CPU
- É estimado: dois processadores, uma quantidade considerável de RAM distribuída por 8 slots DIMM e pelo menos dois discos rígidos SATA
- Os servidores são abertos, para que mais servidores possam caber em um rack
- Com uma bateria de 12 volts para reduzir custos e melhorar a eficiência de energia

- Alta densidade computacional
- Alta demanda por energia e refrigeração

- Servicos de Data Center:
 - Empresa que provê serviços de Data Center a outras empresas
 - Exemplo: Tivit, Telefonica, Locaweb, UOL
- Privados:
 - Uso primário: atender as necessidades da própria empresa
 - Exemplo: Google, Microsoft, UOL, Amazon

Modelos de Negócios

- Três principais modelos:
 - Hospedagem de servidores (Co-Location Service Provider)
 - Aluguel de servidores e espaço em disco (Managed Services Provider)
 - Hospedagem de aplicações web (Application Service Provider)

Problemas da abordagem atual de Data Centers:

- Dimensionados para picos
- Recursos adicionais podem ser providos se máquinas adicionais ficarem Ligadas
- I/O consume boa parte do tempo das máquinas ligadas
- Green IT: Impacto ambiental desta infraestrutura

Tipos de Virtualização

Emulação:

- Máquina virtual simula um hardware com CPU diferente do hardware físico
- Hypervisor precisa converter instruções
- SO funciona sem modificações
- Exemplo:
 - Android → bluestack
 - Playstation 2 (PCSX-R) ou nintendo 64 (Mupen64Plus ou Higan)
 - Multiple Arcade Machine Emulator → MAME
 - DOS emulator → DOSBox

Tipos de Virtualização

Virtualização Nativa:

- Máquina virtual simula um hardware com mesma CPU do hardware físico
- Hypervisor precisa controlar instruções, sem convertê-las
- SO funciona sem modificações
- Exemplo:
 - VMWare

Virtualização Assistida por Hardware:

- Hardware auxilia no isolamento das máquinas virtuais
- Hardware se encarrega de partes da virtualização via software

Tipos de Virtualização

Paravirtualização:

- Hardware auxilia no isolamento das máquinas virtuais
- Hardware se encarrega de partes ineficientes e/ou complexas da virtualização via software
- SO precisa ser desenvolvido para se acoplar ao hypervisor
- Exemplo: Xen

Contêiner:

Uso de contêiner para isolar um processo dentro do SO