BLG202E —Final Exam Part 2 Spring 2021, Duration: 35 minutes

Instructions:

- Do NOT communicate with other people, including your friends, classmates, and family members!
- This is an open-book exam.
- Give your answers in English.
- Use an A4 paper for each question.
- Write the question number, your Name and İTÜ ID on the top of each page and sign all pages.
- Scan or take photo of your answers and upload them on Ninova within a pdf file <u>before the deadline</u>!
- There will be no extension for time without penalty. There will be a late submission option for 15 mins where you will lose 3 points for each late minute. Your latest submission will be considered only.
- Use last 10 minutes for submission.

Q 3) (25 pts) Let f(x) be a given function that can be evaluated at points $x_0 \pm h$ and $x_0 \pm 2h$, for any fixed value of h, 0 < h.

- a) (5 pts) Derive the three points formula for $f'(x_0)$ using Taylor series! (Hint: Taylor series $f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \dots + \frac{h^k}{k!}f^{(k)}(x_0) + \dots$
- **b) (5 pts)** What is the relationship between step size, *h*, and truncation error?
- c) (5 pts) If we apply the derived numerical derivative approximation algorithm in a computer system the total error is the sum of.....error anderror.
- **d) (10 pts)** In some cases, Taylor series may become difficult to apply to derive numerical differentiation formulas, why? Which alternative methods can be used to compute the derivative of a function?
- Q 4) (25 pts) The following table summarizes the basic quadrature rules and corresponding errors.

Method	Formula	Error
Midpoint	$(b-a)f(\frac{a+b}{2})$	$\frac{f''(\xi_1)}{24}(b-a)^3$
Trapezoidal	$\frac{b-a}{2}[f(a)+f(b)]$	$-\frac{f''(\xi_2)}{12}(b-a)^3$
Simpson	$\frac{b-a}{6}[f(a) + 4f(\frac{b+a}{2}) + f(b)]$	$-\frac{f^{\prime\prime\prime\prime}(\xi_3)}{90}\left(\frac{b-a}{2}\right)^5$

Use function $f(x) = (x^2 + 4x)$ for the following problems:

- (a) (5 pts) Compute exact value of $\int_1^5 f(x) dx$.
- **(b) (10 pts)** Approximate $\int_1^5 f(x) dx$ using Simpson quadrature rule. Find the absolute relative error.
- (c) (10 pts) Approximate $\int_1^5 f(x) dx$ using Trapezoidal quadrature rule. Find the absolute relative error.