Abschnitt 3

Formale Grundlagen der Computerlinguistik

Vorbemerkung zu diesem Abschnitt

- Der folgende Abschnitt wiederholt Teile der formalen Inhalte der Vorlesung, teilweise mit leichten Variationen, Erläuterungen und Aufgaben.
- Die Folien der Übung sind dabei als Kommentar zu den Vorlesungsfolien zu verstehen.
- D.h. die Definitionen der Vorlesung gelten uneingeschränkt, die Übung dient lediglich zum vertieften Verständnis.

Unterabschnitt 1

Mengen

Grundlegendes zu Mengen

- Informal: Eine Menge ist eine ungeordnete Zusammenfassung mathematischer "Objekte"
- Man unterscheidet lediglich, ob ein Objekt Element einer Menge ist oder nicht. D.h. Mengen kennen weder eine Reihenfolge noch Mehrfachvorkommen ihrer Elemente.

$$M = \{1, a, 3\} = \{1, 3, a\} = \{1, a, 3, a\}$$

$$a \in M$$

Mengen definieren

Es gibt zwei grundlegende Arten, Mengen zu definieren: **Extensional**, durch Auflistung aller Elemente:

$$M_1 = \{1, a, 3\}$$

Intensional, Festlegung von Eigenschaften, die ein Element konstituieren:

$$M_2 = \{x \mid x \text{ ist eine gerade Zahl}\}$$

 $M_2 = \{2n \mid n \in \mathbb{N}_+\}$

Teilmengen

• Seien A und B zwei Mengen. A ist Teilmenge von B, wenn alle Element von A auch Element von B sind. Symbolisch: $A \subseteq B$

$$\begin{array}{l} \textit{A} = \{1, 2, 3\} \\ \textit{B} = \{1, 2, 3, 4, 5, 6\} \end{array}$$

Mengengleichheit und echte Teilmengen

- Zwei Mengen A und B sind gleich, wenn alle Elemente in A auch in B sind, d.h. wenn A ⊆ B und B ⊆ A. Symbolisch: A = B
- Sonst sind A und B ungleich $(A \neq B)$.
- A ist **echte Teilmenge** von B, wenn A eine Teilmenge von B ist, beide Mengen aber nicht gleich sind. Symbolisch: $A \subset B$.

Leere Menge und Kardinalität

- Die Leere Menge ist die Menge, die kein Element enthält.
 Symbolisch: {} oder Ø
- Die Kardinalität einer Menge M ist die Anzahl ihrer Elemente.
 Symbolisch: |M|. Z.B.:
 - $|\{a,b,c\}| = 3$
 - $|\{a,b,c,a\}| = ???$
 - |Ø| =???
 - |{{}}| =???

Durchschnitt und Vereinigung

Seien A und B zwei Mengen.

• Der **Durchschnitt** von *A* und *B* ist die Menge, die alle Objekte enthält, die Element beider Mengen sind. Symbolisch:

$$A \cap B := \{x | x \in A \text{ und } x \in B\}$$

 Die Vereinigung von A und B ist die Menge, die alle Objekte enthält, die Element mindestens einer der beiden Mengen sind. Symbolisch:

$$A \cup B := \{x | x \in A \text{ oder } x \in B\}$$

Aufgabe zu Durchschnitt und Vereinigung

Seinen $M_1 = \{1,2,3\}$, $M_2 = \{a,b,c\}$, $M_3 = \{1,3,b\}$ und $M_4 = \{1,2,c\}$ Mengen.

- 1. $M_1 \cup M_2 = ?$
- 2. $M_3 \cup M_4 = ?$
- 3. $M_1 \cap M_3 = ?$
- 4. $M_1 \cap M_4 = ?$
- 5. $M_3 \cap M_4 = ?$
- 6. $M_1 \cup M_2 \cup M_3 = ?$
- 7. $M_1 \cap M_2 \cap M_3 \cap M_4 = ?$

Verallgemeinerung von Durchschnitt und Vereinigung

Seien $M_1, M_2, M_3, ... M_n$ Mengen.

 Die Verallgemeinerung des Durchschnitts dieser Mengen ist die Menge, deren Elemente Element jeder dieser Mengen sind.

$$\bigcap_{i \in \{1,2,3,...n\}} M_i = \bigcap_{i=1}^n M_i := \{x | x \in M_i \text{ für alle } i \in \{1,2,3,...n\}\}$$

 Die Verallgemeinerung der Vereinigung dieser Mengen ist die Menge, deren Elemente Element von mindestens einer dieser Mengen sind.

$$\bigcup_{i \in \{1,2,3,...n\}} M_i = \bigcup_{i=1}^n M_i := \{x | x \in M_i \text{ für mind. ein } i \in \{1,2,3,...n\}\}$$

Potenzmenge

Sei M eine Menge.

- Die Menge aller Teilmengen von *M* heißt **Potenzmenge** von M.
- Statt $\wp(M)$ kann auch 2^M geschrieben werden.

Unterabschnitt 2

Relationen

Tupel

- Ein *n*-Tupel ist eine Zusammenfassung von *n* (nicht notwendigerweise unterschiedlichen) mathematischen Objekten.
- Im Gegensatz zu Mengen wird nun die Reihenfolge der Objekte beachtet.

$$(1,2,3) \neq (3,2,1) \neq (3,2,1,1)$$

• Ein 2-Tupel wird oft auch Paar genannt.

Kartesisches Produkt

Seien M_1 , M_2 , ..., M_n Mengen (nicht notwendigerweise unterschiedlich).

- Informal: Ein kartesisches Produkt dieser Mengen ist eine Menge von n-Tupeln, wobei jede Komponente dieser Tupel immer aus einer bestimmten Menge kommt.
- Formal: $M_1 \times M_2 \times ... \times M_n := \{(m_1, m_2, ..., m_n) | m_i \in M_i, 1 \le i \le n\}$

Bildquelle: https://de.wikipedia.org/wiki/Kartesisches_Produkt (CC-BY-SA 3.0)

Aufgabe zum Kartesischen Produkt

$$A = \{1, 2\}, B = \{\alpha, \beta\}, C = \{\triangle, \Box\}$$

- 1. $A \times B = ?$
- 2. $A \times C = ?$
- 3. $B \times C = ?$
- 4. $A \times B \times C = ?$
- **5.** $A \times A = ?$

Relationen

Seien A und B Mengen.

- Eine Relation ρ zwischen A und B ist eine Teilmenge des kartesischen Produkts A × B.
- D.h. $\rho \subseteq A \times B$
- Statt $(a,b) \in \rho$ kann man auch $a \rho b$ schreiben

Relationen: Beispiel

- M = {Anna, Bruno, Cesar, Detlev}
- liebt = {(Anna, Bruno), (Bruno, Anna), (Cesar, Anna), (Detlev, Cesar)}
- Anna liebt Bruno bzw. (Anna, Bruno) ∈ liebt
- Aber: (Cesar, Detlev) ∉ liebt

Aufgabe zu Relationen

Gegeben sei folgende Menge:

```
M = {Gänsebraten_mit_Rotkohl_und_Klöße,
Würstchen_mit_Kartoffelsalat,
Schweinefleisch,Rotkohl, Mayonnaise, Kartoffeln,
Stärke, Eiweiß, Fett, Ballaststoffe}
```

Definieren sie die Relation **beinhaltet** $\subseteq M \times M$

Produkt von Relationen

Sei M eine Menge und seien $\rho, \sigma \in M \times M$ zwei Relationen.

• Das **Produkt** von ρ und σ ist definiert als

$$\rho\sigma := \{(x,z) \mid (x,y) \in \rho, \ (y,z) \in \sigma\}$$

 Informal handelt es sich dabei um eine Menge von Paaren, wobei die erste Komponente von einem Element aus ρ stammt und die zweite Komponente von einem Element aus σ, sodass die zweite Komponente des ρ-Elements gleich der ersten Komponente des σ-Elements ist.

Beispiele für Produkte von Relationen

$$A = \{1,2,3\}, B = \{\alpha,\beta,\gamma\}, C = \{\triangle,\Box,\bigcirc\}$$

$$R = \{(1,\alpha), (2,\beta)\}, S = \{(\alpha,\triangle), (\beta,\Box), (\beta,\bigcirc)\}$$

$$RS = \{(1,\triangle), (2,\Box), (2,\bigcirc)\}$$

$$M = \{Anna, Bruno, Cesar\}$$
 $Freund = \{(Anna, Bruno), (Bruno, Cesar)\}$
 $Freund Freund = \{(Anna, Cesar)\}$
 $= Freund^2$

Reflexive und Transitive Hülle von Relationen

Sei M eine Menge und $\rho \subseteq M \times M$ eine Relation.

- Die **Diagonale** von ρ ist definiert als $\rho^0 := \{(m, m) \mid m \in M\}$

- Die **transitive Hülle** von ρ ist definiert als

$$\rho^+:=\bigcup_{i\geq 1}=\rho^1\cup\rho^2\cup\rho^3\cup...$$

• Die **reflexive und transitive Hülle** von ρ ist definiert als

$$\rho^* := \bigcup_{i>0} = \rho^0 \cup \rho^1 \cup \rho^2 \cup \rho^3 \cup \dots$$

Aufgabe zur Reflexiven und Transitiven Hülle von Relationen

Betrachten Sie erneut das Beispiel des Weihnachtsessen:

```
M = {Gänsebraten_mit_Rotkohl_und_Klöße,
Würstchen_mit_Kartoffelsalat,
Schweinefleisch,Rotkohl, Mayonnaise, Kartoffeln,
Stärke, Eiweiß, Fett, Ballaststoffe}
```

Geben Sie die transitive Hülle der beinhaltet-Relation an.

Aufgabe zur Reflexiven und Transitiven Hülle von Relationen

$$M = \{a, b, c, d\}$$
 $ho = \{(a, b), (b, c), (c, d), (d, a)\}$
 $ho^0 =$
 $ho^1 =$
 $ho^2 =$
 $ho^3 =$
 $ho^4 =$