Самостоятельная работа 4.

Тема. Многомерные массивы

Цель:

- получение навыков по определению многомерного статического и динамического массивов в программе;
- получение знаний по представлению в оперативной памяти статического и динамического двумерного массива;
- получение навыков по определению структуры данных для хранения данных задачи и ее наиболее оптимальной реализации;
- получение навыков по разработке алгоритмов операций на многомерном (двумерном массиве) в соответствии с задачей.

1. Требования к выполнению практической работы

В данной работе предлагается выполнить три задания.

Первое и второе задания реализуют решение одной задачи, но на разных структурах хранения: на двумерном статическом (задание 1) и двумерном динамическом (задание 2) соответственно.

В третьем задании требуется описать математическую модель задачи, определить структуру хранения данных, наиболее оптимальную для решаемой задачи, реализовать на основе многомерного вектора.

Оформить один отчет по всем выполненным заданиям.

2. Задание 1

Разработать АТД задачи варианта по управлению многомерными данными и реализовать на статическом многомерном массиве. Варианты задания представлены в табл. 8.

2.1. Требования к выполнению задания 1

1. Разработать АТД для задачи варианта.

Включить к описание АТД:

- 1) описание представления данных;
- 2) операции общие для всех вариантов:
- заполнения массива: с клавиатуры, датчиком случайных чисел;
- вывода массива на экран построчно.
- 3) Операции для решения задачи варианта;
- 2. Выполнить реализацию АТД. Для представления структуры данных задачи использовать статический многомерный массив. Реализацию структуры

- выполнить на основе типа данных struct (аналогично первым практическим работам).
- 3. Разработать тесты и выполнить тестирование программы.
- 4. Разработать и реализовать основную задачу варианта как отдельную функцию, возможно с параметрами. Реализовать управление вычислительным процессом через диалоговый интерфейс текстовое меню.

3. Задание 2

Разработать АТД задачи варианта по управлению многомерными данными и реализовать на динамическом многомерном массиве.

3.1. Требования к выполнению задания 2

- 1. Определить АТД задачи варианта (табл. 8), используя АТД задания 1. Добавить в АТД дополнительную операцию создания многомерного массива заданного размера. Размеры массива передаются через параметры.
- 2. Выполнить реализацию АТД. Требования к реализации АТД:
- 1) двумерный массив определить как двойной указатель;
- 2) для управления динамической памятью использовать аппарат языка C++ (операции new, delete).
- 3. Ввод размеров массива для хранения данных выполнить в основной программе (функция main).
- 4. Разработать программу задачи варианта. Используйте функции, разработанные в задании 1, возможно некоторые надо скорректировать в связи с изменением структуры представления.

3.2. Варианты задач к заданиям 1 и 2

Таблица 8. Варианты для заданий 1 и 2 практической работы 3

№	Условие задачи				
1.	Дана матрица размером n*n. Выполнить транспонирование матриц.				
2.	Дана матрица размером n*m и вектор. Умножить матрицу на вектор.				
3.	Даны две матрицы. Найти их сумму.				
4.	Даны две матрицы. Найти их разность.				
5.	Даны две матрицы. Найти их произведение.				
6.	Дана квадратная матрица. Определить, симметрична ли она относительно главной диагонали.				
7.	Дана квадратная матрица. Вывести ее элементы, обходя матрицу по часовой стрелке, начиная первой строки.				

	Дана квадратная матрица. Найти максимальное значение среди элементов,				
8.	расположенных между главной и побочной диагоналями (значения на диагоналях				
	не рассматриваем)				
	Дана квадратная матрица. Найти минимальное значение среди элементов,				
9.	расположенных под главной диагональю.				
10.	Дана квадратная матрица. Найти минимальное значение среди элементов,				
	расположенных над побочной диагональю.				
11.	Дана квадратная матрица. Найти минимальное значение среди элементов,				
	расположенных под побочной диагональю.				
10	Дана прямоугольная матрица. Сформировать массив индексов седловых точек				
12.	матрицы. Седловой точкой назовем элемент, который является наибольшим в				
	своей строке и наименьшим в столбце.				
13.	Дана прямоугольная матрица. Переместить минимальный элемент матрицы в ее				
	левый верхний угол, путем перестановки строк и столбцов.				
14.	Дано множество точек на плоскости, точки заданы своими координатами. Найти				
	наибольшее расстояние между этими точками.				
15.	Дана квадратная матрица. Найти в диагональ, среди параллельных главной, сумма				
	значений которой минимальна.				
16.	Дана квадратная матрица. Сформировать одномерный массив произведений				
	элементов главной и побочной диагоналей, имеющих одинаковый индекс строки.				
	Даны три вещественные прямоугольные матрицы A, B, C размером n*m каждая.				
	Вычислить величину:				
17.	$\frac{ A + B + C }{ A+B+C }$				
	' '				
	Где запись вида D обозначает алгоритм вычисления значения:				
	D =max(первой строки)+max(второй строки)++max(п-ой строки).				
	Дана матрица размером n*m и номер строки. Сформировать массив и включить в				
18.	его і-ый элемент значение, равное сумме максимального и минимального элемента				
	і-ой строки исходной матрицы.				
, -	Шахматная доска 8*8. Вводятся координаты ферзя. Отметить клетки (вставить				
19.	какое-то значение) поля доски, которые находятся под боем ферзя. Обращение к				
	полям доски выполнять по правилам игры в шахматы.				
	Дана целочисленная квадратная матрица. Определить:				
20.	1) сумму элементов в тех столбцах, которые не содержат отрицательных элементов				
	2) минимум среди сумм модулей элементов диагоналей, параллельных побочной				
	диагонали матрицы.				
	Дана целочисленная квадратная матрица порядка n. Найти номера строк, элементы				
21.	каждой из которых образуют монотонную последовательность (монотонно				
	убывающую или монотонно возрастающую).				
	Дана квадратная матрица. Найти определитель данной матрицы методом Гаусса.				
22.	Дана квадратная матрица. Найти определитель данной матрицы методом Гаусса.				

No	Условие задачи							
24.	Дана квадратная матрица. Найти среднее значение среди элементов, расположенны							
	на побочной и главной диагонали.							
	Клеточное поле размером т * п является результатом игры в крестики-нолики.							
25.	Проверить, не закончена ли игра выигрышем "крестиков". Выигрыш наступает при							
	образовании цепочки по горизонтали, вертикали или диагонали из 5 крестиков подряд.							
	Дана матрица размером n*m. Операция сглаживания матрицы дает новую матрицу							
26.	того же размера, каждый элемент которой получается, как среднее арифметическое							
20.	соседей соответствующего элемента исходной матрицы. Построить результат							
	сглаживания заданной матрицы.							
	Дана матрица а размером n*n, заполненная неотрицательными целыми числами.							
27.	Расстояние между двумя элементами a_{ij} и a_{pq} определено как $ i-p + j-q $. Требуется							
27.	заменить каждый нулевой элемент матрицы ближайшим ненулевым. Если есть две или							
	больше ближайших ненулевых ячейки, нуль должен быть оставлен.							
28.	Дана квадратная матрица, состоящая из натуральных чисел. Зеркально отразить							
20.	(транспонировать) ее элементы относительно побочной диагонали.							
	Дана квадратная матрица. Проверить, что в данной матрице произведение элементов,							
29.	стоящих над побочной диагональю, равно произведению элементов, стоящих над							
	главной диагональю.							
30.	Дана матрица размером n*m элементы которой заполнены цифрами от 0 до 9.							
	Требуется найти такой путь из клетки (1,1) в клетку (n, m), чтобы сумма цифр в							
	клетках, через которые он пролегает, была минимальной; из любой клетки ходить							
	можно только вниз или вправо.							

4. Задание 3

Разработать программу решения задачи варианта (табл. 9) по управлению многомерными данными и реализовать с применением шаблона <vector> библиотеки STL.

4.1. Требования к выполнению задания

1. Изучить задачу. Определить предметную область. Описать математическую модель решения задачи.

<u>Примечание.</u> Математическая модель = это описание решения задачи на языке математики, т.е. совокупность формул, которые определяют процесс решения задачи.

- 2. Определить структуру для хранения данных задачи. Изобразить структуру для понимания представления данных в памяти.
- 3. Определить АТД задачи.

Описать структуру представления данных задачи. Включить операции: заполнение структуры хранения исходными данными, вывода структуры данных, операции, представляющие процесс решения задачи.

4. Реализовать АТД.

Структуру хранения данных реализовать на основе шаблона <vector>, размеры определить при вводе с клавиатуры.

Реализовать все операции АТД.

Разработать тесты для тестирования программы.

- 5. Разработать программу, управляющую вычислительным процессом посредством текстового меню.
- 6. Определить объем памяти, требующийся программе для хранения данных.
- 7. Выполнить тестирование программы.

4.2. Варианты задач к заданию 3

Таблица 9. Варианты задач к заданию 3 практической работы 4

No	Условие задачи				
	Два выпуклых многоугольника на плоскости заданы координатами вершин в				
1.	порядке обхода границы. Определить площадь многоугольника и определить,				
	вложены ли они.				
	Из заданного на плоскости множества точек выбрать три различные точки так,				
2.	чтобы разность между площадью круга, ограниченного окружностью,				
2.	проходящей через эти три точки, и площадью треугольника с вершинами в этих				
	точках была минимальной.				
	Даны два множества точек на плоскости. Выбрать три различных точки первого				
3.	множества так, чтобы круг, ограниченный окружностью, проходящий через эти				
3.	три точки содержал все точки второго множества и имел минимальную				
	площадь.				
	Даны два множества точек на плоскости. Выбрать четыре различных точки				
4.	первого множества так, чтобы квадрат с вершинами в этих точках включал все				
	точки второго множества.				
	Даны два множества точек на плоскости. Выбрать три различных точки первого				
5.	множества так, чтобы треугольник с вершинами в этих точках, содержал все				
	точки второго множества и имел минимальную площадь.				
	Даны два множества точек на плоскости. Найти радиус и центр окружности,				
6.	проходящей через n (n>=3) точек первого множества и содержащей строго				
	внутри себя разное число точек первого и второго множества.				
	Даны два множества точек на плоскости. Из первого множества выбрать три				
7.	различные точки так, чтобы треугольник с вершинами в этих точках, содержал				
	(строго внутри себя) равное количество точек первого и второго множества.				

8.	На плоскости задано множество точек М и круг. Выбрать из М две различные
	точки так, чтобы наименьшим образом различались количества точек в круге,
	лежащие по разные стороны от прямой, проходящей через эти две точки.
	Дано 3n точек на плоскости, причем никакие три из них не лежат на одной
9.	прямой. Построить множество п треугольников с вершинами в этих точках так,
	чтобы никакие два треугольника не пересекались и не содержали друг друга.
	Выбрать три различных точки из множества точек на плоскости так, чтобы была
10.	минимальной разность между количеством точек, лежащих внутри и вне
	треугольника с вершинами в выбранных точках.
	Определить радиус и центр окружности, проходящей по крайней мере через три
11.	различные точки заданного множества точек на плоскости и содержащей
	внутри наибольшее количество точек этого множества.
	На плоскости заданы множество точек A и точка d вне его. Подсчитать
12.	количество различных неупорядоченных троек точек а, b, с из А таких, что
	четырехугольник abcd является параллелограммом.
	На плоскости заданы множество точек А и множество окружностей В. Найти
13.	две такие различные точки из А, что проходящая через них прямая пересекается
	с максимальным количеством окружностей из В.
	Задано множество точек на плоскости. Найти все четверки точек, являющихся
14.	вершинами квадратов. Найти квадрат, внутри которого лежит наибольшее
	количество точек множества.
15.	Определить радиус и центр окружности минимального радиуса, проходящего
13.	через три различные точки заданного множества точек на плоскости.
	Найти три треугольника с вершинами в заданном множестве точек на плоскости
16.	так, чтобы второй треугольник лежал строго внутри первого, а третий внутри
	второго.
	Дано множество точек на плоскости. Построить все возможные треугольники с
17.	вершинами в этом множестве точек и найти среди них такой, стороны которого
	пересекаются с максимальным количеством треугольников.
	На плоскости заданы множества точек и окружность радиусом R с центром в
18.	начале координат. Построить множество всех треугольников с вершинами в
10.	заданных точках, все три стороны которого пересекаются с окружностью, и
	найти среди них треугольник с минимальной стоимостью.
	Подсчитать количество равносторонних треугольников с различными длинами
19.	оснований и вершинами в заданном множестве точек на плоскости и
	определить, пересекаются ли они.
	Множество попарно различных плоскостей в трехмерном пространстве задано
20.	перечислением трех точек, через которые проходит каждая из плоскостей.
	Выбрать максимальное подмножество попарно непараллельных плоскостей.
	1

	Продолжение таол. 9					
№	Условие задачи					
	Дано множество из пятнадцати точек на плоскости. Выяснить верно ли, что для					
21.	каждой из этих пятнадцати точек найдется другая, что все остальные					
21.	тринадцать точек лежат по одну сторону от прямой, проходящей через эти					
	точки.					
	На плоскости задано множество точек с целочисленными координатами.					
	Необходимо найти количество отрезков, обладающих следующими					
	свойствами:					
22	1) оба конца отрезка принадлежат заданному множеству;					
22.	2) ни один конец отрезка не лежит на осях координат;					
	3) отрезок пересекается ровно с одной осью координат.					
	Напишите эффективную по времени и по используемой памяти программу для					
	решения этой задачи.					
23.	Найти решение системы линейных алгебраических уравнений методом Гаусса.					
	Текст вводится как последовательность символов, заканчивающаяся точкой.					
24.	Определить количество различных пар букв в этом тесте.					
	Дано множество из n (n – нечетное) точек на плоскости. Найти число медиан					
	этого множества точек на плоскости в предположении, что никакие три точки					
	не лежат на одной прямой.					
25.	Медианой множества, состоящего из четного числа точек на плоскости,					
	никакие три из которых не лежат на одной прямой, называется прямая, которая					
	делит множество на два подмножества одинаковой мощности.					
	Дана система линейных алгебраических уравнений AX=B. Найти решение					
	системы из п линейных уравнений, рассматривая ее как треугольную. Пример					
	треугольной системы с четырьмя переменными.					
	A11x1 + A12x2 + A13x3 + A14x4 = b1					
26.	A22x2 + A23x3 + A24x4 = b2					
	A33x3 + A34x4 = b3					
	A44x4 = b4					
	Сформировать вектор решений. При подготовке тестов привести систему к					
	треугольному виду вручную.					
	Дано множество точек на плоскости. Построить симметричное ему множество,					
27.	относительно прямой (Ах+Ву+С=0).					
	Дано множество из п точек на плоскости. Найти горизонтальную медиану этого					
28.	множества точек на плоскости в предположении, что никакие две точки не					
20.	лежат на одной горизонтальной прямой.					
	Дано конечное множество точек на плоскости. Нужно найти окружность					
29.	минимального радиуса такую, чтобы данные точки были внутри неё.					
	Дано множество из п точек на плоскости. Найти вертикальную медиану этого					
30.	множества точек на плоскости в предположении, что никакие две точки не					
50.	лежат на одной вертикальной прямой.					
	лежит на однои вертикальной примои.					

<u>Примечание.</u> Медианой множества точек на плоскости назовем прямую, которая делит множество на два подмножества одинаковой мощности.

5. Структура отчета

Все задания оформить в одном документе. Один титульный лист и одно оглавление.

В отчет по разработке отдельного задания включить:

- 1. Условие задачи, задание варианта, требования по выполнению.
- 2. Постановка задачи.
- 3. Математическая модель задачи.

Это описание задачи с применением математических формул, которые использует алгоритм для получения решения.

4. АТД задачи.

Описание АТД.

Представление структуры данных для задания 3.

- 5. Разработка и реализация задачи:
- 1) представить наборы тестов;
- 2) код программы и результаты тестирования.
- 6. После отчетов по всем заданиям привести выводы о полученных знаниях, умениях и навыках.

6. Контрольные вопросы

- 1. Какое хранение используется для статического двумерного массива?
- 2. Изобразите представление в памяти массива int X[3][3].
- 3. Приведите формулу формирования адреса ячейки X[1][1], если X хранит адрес A0.
- 4. Определите структуру для представления в программе данных по 40 точкам на плоскости.
- 5. Дана карта некоторого небольшого населенного пункта. На ней нанесены дома и тропинки их соединявшие. Дома пронумеровали натуральными числами. Приведите структуру для хранения карты населенного пункта.
- 6. Для хранения значений матрицы размером 2x4 решили использовать одномерный массив. Приведите код программы размещения данных матрицы в одномерном массиве.
- 7. Как определить в программе языка C++: двумерный динамический массив; трехмерный динамический массив?
- 8. Изобразите представление в памяти динамического двумерного массива A, к элементам которого доступ выполняется по формату A[i][i].

- 9. Какой массив в языке С++ называют свободным?
- 10. Приведите фрагмент программы, который реализует алгоритм формирования структуры для хранения нижней треугольной матрицы.
- 11. Определите тип для представления в памяти структуры множества точек на плоскости: на типе struct; на типе pair.

.