Teoría de Cuerpos Curso 2023-2024

Ejercicios

Ejercicio 1. Hallar el polinomio mínimo de $\sqrt{2} + \sqrt{5}$ sobre \mathbb{Q} .

Solución. Llamemos $\alpha = \sqrt{2} + \sqrt{5}$. Entonces

$$\alpha^2 = 7 + 2\sqrt{2}\sqrt{5},$$

es decir,

$$\alpha^2 - 7 = 2\sqrt{10}$$

Elevando al cuadrado,

$$\alpha^4 + 49 - 14\alpha^2 = 40,$$

así que un polinomio en $\mathbb{Q}[X]$ que anula a α es $f(X) = X^4 - 14X^2 + 9$. Veamos que $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{5})$. La contencion \subset es clara; para la otra, probemos que $\sqrt{2}, \sqrt{5} \in \mathbb{Q}(\alpha)$. Se tiene que $\alpha^2 = 7 + 2\sqrt{10} \in \mathbb{Q}(\alpha)$, luego $\sqrt{10} \in \alpha$, así que $\sqrt{10}\alpha = 2\sqrt{5} + 5\sqrt{2} \in \mathbb{Q}(\alpha)$, y entonces $2\sqrt{5} + 5\sqrt{2} - 2\alpha = 3\sqrt{2} \in \mathbb{Q}(\alpha)$, luego $\sqrt{2} \in \mathbb{Q}(\alpha)$ y $\sqrt{5} = \alpha - \sqrt{2} \in \mathbb{Q}(\alpha)$.

Tenemos entonces que $[\mathbb{Q}(\sqrt{2}+\sqrt{5}):\mathbb{Q}]=[\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}]=4$ (se prueba fácilmente que $\sqrt{5}\not\in\mathbb{Q}(\sqrt{2})$ y de ahí la última igualdad sale sola). La conclusión es que $X^4-14X^2+9=\mathrm{Irr}(\alpha,X,\mathbb{Q})$, pues es un polinomio mónico de grado mínimo que anula a α .

Ejercicio 2. Sea u un elemento trascendente sobre un cuerpo \mathbb{F} . Probar que no existe ningún cuerpo \mathbb{K} tal que $\mathbb{F} \subseteq \mathbb{K} \subseteq \mathbb{F}(u)$ con $[\mathbb{K} : \mathbb{F}]$ finito.

Solución. Sea u un elemento trascendente sobre \mathbb{F} y considérese una torre de extensiones

$$\mathbb{F} \subseteq \mathbb{K} \subseteq \mathbb{F}(u)$$

Veamos que $[\mathbb{K} : \mathbb{F}] = \infty$. Para ello, se va a probar que u es algebraico sobre \mathbb{K} . Sea $v \in \mathbb{K}$ con $v \notin \mathbb{F}$. Como $v \in \mathbb{F}(u)$, existen $p(X), q(X) \in \mathbb{F}[X]$ tales que

$$v=\frac{p(u)}{q(u)},$$

luego q(u)v - p(u) = 0 y entonces q(X)v - p(X) es un polinomio en $\mathbb{K}[X]$ que anula a u. Como u es algebraico sobre \mathbb{K} , entonces $[\mathbb{K}(u):\mathbb{K}] < \infty$ y por tanto $[\mathbb{F}(u):\mathbb{K}] < \infty$. Pero es que $[\mathbb{F}(u):\mathbb{F}] = \infty$ por ser u trascendente sobre \mathbb{F} , luego $[\mathbb{K}:\mathbb{F}] = \infty$.

Ejercicio 3. Sea $\xi = 1_{\frac{2\pi}{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Probar que $i \notin \mathbb{Q}(\sqrt{2}, \xi)$.

Solución. Consideremos las torres de extensiones

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt{2}, \xi)$$
 y $\mathbb{Q} \subset \mathbb{Q}(\xi) \subset \mathbb{Q}(\sqrt{2}, \xi)$

Se tiene que

- $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2$ porque $X^2 2 \in \mathbb{Q}[X]$ es mónico e irreducible (no tiene raíces en \mathbb{Q}) y anula a $\sqrt{2}$.
- $[\mathbb{Q}(\xi):\mathbb{Q}] = 2$ porque $X^2 + X + 1 \in \mathbb{Q}[X]$ es mónico e irreducible (pues $X^3 1 = (X 1)(X^2 + X + 1)$ y 3 es primo) y anula a ξ .
- $[\mathbb{Q}(\sqrt{2},\xi):\mathbb{Q}(\sqrt{2})]$ no puede ser mayor que 2 porque $X^2+X+1\in\mathbb{Q}(\sqrt{2})[X]$ y anula a ξ . Tampoco puede ser 1 porque entonces sería $\mathbb{Q}(\sqrt{2},\xi)=\mathbb{Q}(\sqrt{2})$, que es imposible porque en $\mathbb{Q}(\sqrt{2},\xi)$ hay números complejos y en $\mathbb{Q}(\sqrt{2})$ no. Por tanto, $[\mathbb{Q}(\sqrt{2},\xi):\mathbb{Q}(\sqrt{2})]=2$.

En consecuencia,

$$[\mathbb{Q}(\sqrt{2},\xi):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\xi):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q})] = 2 \cdot 2 = 4$$

Como $\{1, \sqrt{2}\}$ es base de $\mathbb{Q}(\sqrt{2})$ y $\{1, \xi\}$ es base de $\mathbb{Q}(\xi)$, entonces una base de $\mathbb{Q}(\sqrt{2}, \xi)$ como \mathbb{Q} -espacio vectorial se obtiene multiplicando los elementos de las bases anteriores, quedando $\{1, \sqrt{2}, \xi, \xi\sqrt{2}\}$.

Supongamos, por reducción al absurdo, que $i \in \mathbb{Q}(\sqrt{2}, \xi)$. Entonces existen $a, b, c, d \in \mathbb{Q}$ tales que

$$\begin{split} i &= a + b\sqrt{2} + c\xi + d\xi\sqrt{2} \\ &= a + b\sqrt{2} + c\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) + d\sqrt{2}\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) \\ &= a + b\sqrt{2} - \frac{c}{2} + i\frac{c\sqrt{3}}{2} - \frac{d\sqrt{2}}{2} + i\frac{d\sqrt{6}}{2} \\ &= a + b\sqrt{2} - \frac{c}{2} - \frac{d\sqrt{2}}{2} + i\left(\frac{c\sqrt{3} + d\sqrt{6}}{2}\right) \end{split}$$

Comparando las partes imaginarias, debe cumplirse

$$\frac{c\sqrt{3}+d\sqrt{6}}{2}=1,$$

luego

$$c\sqrt{3} + d\sqrt{6} = 2$$

Se distinguen varios casos:

• Si $c \neq 0$ y $d \neq 0$, elevando al cuadrado se obtiene

$$(c\sqrt{3} + d\sqrt{6})^2 = 4 \iff 3c^2 + 6d^2 + 2cd\sqrt{18} = 4 \iff \sqrt{18} = \frac{4 - 3c^2 - 6d^2}{2cd} \in \mathbb{Q},$$

que es imposible.

• Si c = 0 y $d \neq 0$, entonces

$$d\sqrt{6}=2$$
.

y al dividir por d se obtiene $\sqrt{6} \in \mathbb{Q}$, que es imposible.

• Si $c \neq 0$ y d = 0, entonces

$$c\sqrt{3}=2$$
.

y al dividir por c se obtiene $\sqrt{3} \in \mathbb{Q}$, que es imposible.

• El caso c = 0, d = 0 tampoco es posible, evidentemente.

En cualquier caso obtenemos una contradicción, luego $i \notin \mathbb{Q}(\sqrt{2}, \xi)$.

Ejercicio 4. Sea $\mathbb{F} \subset \mathbb{K}$ una extensión de cuerpos, sea $f(X) \in \mathbb{K}[X]$ irreducible y de grado n, sea \mathbb{L} el cuerpo de descomposición de f(X) sobre \mathbb{K} y sean $u_1, ..., u_t$ las raíces de f(X) en \mathbb{L} . Demostrar que $[\mathbb{F}[u_1, ..., u_t] : \mathbb{F}]$ es múltiplo de n.

Solución. Sin perder generalidad, se va a suponer que f(X) es un polinomio mónico. Así,

$$f(X) = a_0 + a_1 X + ... + a_{n-1} X^{n-1} + X^n$$

Sean v_1, \dots, v_n las n raíces de f(X) en \mathbb{L} (no necesariamente distintas). Entonces

$$f(X) = (X - v_1) \dots (X - v_n),$$

y por tanto los coeficientes de f(X) son suma, resta y producto de los v_i , con $i \in \{1, ..., n\}$. Esto nos dice

$$\mathbb{F}[a_0, a_1, \dots, a_{n-1}, v_1, \dots, v_n] = \mathbb{F}[v_1, \dots, v_n] = \mathbb{F}[u_1, \dots, u_t]$$

Así, tenemos la torre de extensiones

$$\mathbb{F} \subset \mathbb{F}[a_0, a_1, \dots, a_{n-1}, u_1] \subset \mathbb{F}[u_1, \dots, u_t]$$

Como f(X) es un polinomio mónico e irreducible en $\mathbb{F}[a_0, a_1, \dots, a_{n-1}][X]$ y anula a u_1 , entonces

$$[\mathbb{F}[a_0, a_1, \dots, a_{n-1}, u_1] : \mathbb{F}] = n,$$

y en consecuencia,

$$[\mathbb{F}[u_1,\ldots,u_t]\colon\mathbb{F}]=n\cdot[\mathbb{F}[u_1,\ldots,u_t]\colon\mathbb{F}[a_0,a_1,\ldots,a_{n-1},u_1]],$$

concluyéndose que $[\mathbb{F}[u_1,\ldots,u_t]:\mathbb{F}]$ es múltiplo de n.

Ejercicio 5. Sea $\mathbb{F} \subset \mathbb{K}$ una extensión de cuerpos normal y finita y sea $f(X) \in \mathbb{F}[X]$ irreducible. Probar que todos los polinomios de la factorización de f(X) como producto de irreducibles en $\mathbb{K}[X]$ tienen el mismo grado.

Solución. Factoricemos f(X) como producto de irreducibles en $\mathbb{K}[X]$:

$$f(X) = f_1(X) \dots f_k(X)$$

Sea $i \in \{2,3,...,k\}$ (si fuese k = 1 no hay nada que probar) y veamos que $f_1(X)$ y $f_i(X)$ tienen el mismo grado.

En primer lugar, como la extensión $\mathbb{F} \subset \mathbb{K}$ es normal y finita, entonces existe $g(X) \in \mathbb{F}[X]$ tal que \mathbb{K} es el cuerpo de descomposición de g(X) sobre \mathbb{F} . Ahora, si \mathbb{L} es el cuerpo de descomposición de f(X)g(X) sobre \mathbb{F} , entonces $\mathbb{K} \subset \mathbb{L}$, pues todas las raíces de g(X) están en \mathbb{L} .

Por otra parte, sean $\alpha, \beta \in \mathbb{L}$ raíces de $f_1(X)$ y $f_i(X)$, respectivamente. Como $f(X) = \operatorname{Irr}(\alpha, X, \mathbb{F})$ (no hay problema en suponer que f(X) es mónico) y β es raíz de f(X), por el teorema de extensión, existe un único isomorfismo $\sigma \colon \mathbb{F}[\alpha] \to \mathbb{F}[\beta]$ extensión de $id \colon \mathbb{F} \to \mathbb{F}$ con $\sigma(\alpha) = \beta$. Además, tenemos que \mathbb{L} es el cuerpo de descomposición de f(X) sobre $\mathbb{F}[\alpha]$ y también es el cuerpo de descomposición de $f^{\sigma}(X) = f(X)$ sobre $\mathbb{F}[\beta]$, así que existe un isomorfismo $\overline{\sigma} \colon \mathbb{L} \to \mathbb{L}$ que extiende a σ .

$$\mathbb{F} \xrightarrow{id} \mathbb{F}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{F}[\alpha] \xrightarrow{\sigma} \mathbb{F}[\beta]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{L} \xrightarrow{\overline{\sigma}} \mathbb{L}$$

Como además $\mathbb{F} \subset \mathbb{K} \subset \mathbb{L}$ y las extensiones $\mathbb{F} \subset \mathbb{K}$ y $\mathbb{F} \subset \mathbb{L}$ son normales, entonces $\overline{\sigma}(\mathbb{K}) \subset \mathbb{K}$. Así, tenemos que $f_1^{\overline{\sigma}}(X)$ es un polinomio mónico e irreducible en $\mathbb{K}[X]$ que anula a $\overline{\sigma}(\alpha) = \sigma(\alpha) = \beta$. Pero $f_i(X)$ es otro polinomio mónico e irreducible en $\mathbb{K}[X]$ que anula a β , luego $f_i(X) = f_1^{\overline{\sigma}}(X)$, y como $\overline{\sigma}$ preserva los grados (pues es un isomorfismo), se concluye que $f_1(X)$ y $f_i(X)$ tienen el mismo grado.

Ejercicio 6. Sea $\mathbb{F} \subset \mathbb{K}$ una extensión algebraica de cuerpos con $\mathbb{K} = \mathbb{F}[S]$ y tal que $[F[s]: \mathbb{F}] \leq 2$ para todo $s \in S$. Demostrar que la extensión es normal.

Solución. Sea $f(X) \in \mathbb{F}[X]$ un polinomio irreducible y sea $\alpha \in \mathbb{K}$ una raíz de f(X). Veamos que todas las raíces de f(X) están en \mathbb{K} .

Como $\alpha \in \mathbb{F}[S]$, existe $p(X_1, ..., X_k) \in \mathbb{F}[X_1, ..., X_k]$ tales que $\alpha = p(s_1, ..., s_k)$, con $s_1, ..., s_k \in S$. Así, tenemos una extensión de cuerpos $\mathbb{F} \subset \mathbb{F}[s_1, ..., s_k]$ y $\alpha \in \mathbb{F}[s_1, ..., s_k]$. Veamos que esta extensión es normal.

Dado $i \in \{1, ..., k\}$, sea $g_i(X) = \operatorname{Irr}(s_i, X, \mathbb{F})$. Como $[F[s_i]: \mathbb{F}] \leq 2$, entonces la extensión $\mathbb{F} \subset \mathbb{F}[s_i]$ es normal y por tanto todas las raíces de $g_i(X)$ están en $\mathbb{F}[s_i]$. Así, si consideramos

$$g(X) = \prod_{i=1}^n g_i(X),$$

tenemos que todas las raíces de g(X) están en $\mathbb{F}[s_1,...,s_k]$, luego este es el cuerpo de descomposición de g(X) sobre \mathbb{F} y por tanto la extensión $\mathbb{F} \subset \mathbb{F}[s_1,...,s_k]$ es normal.

Para terminar, como $\alpha \in \mathbb{F}[s_1,...,s_k]$ es raíz de f(X) y la extensión $\mathbb{F} \subset \mathbb{F}[s_1,...,s_k]$ es normal, entonces todas las raíces de f(X) están en $\mathbb{F}[s_1,...,s_k]$ y por tanto están en \mathbb{K} , concluyéndose que la extensión $\mathbb{F} \subset \mathbb{K}$ es normal.

Ejercicio 7. Sea $f(X) \in \mathbb{F}[X]$ un polinomio irreducible y separable de grado n, sea \mathbb{K} el cuerpo de descomposición de f(X) sobre \mathbb{F} y sea $\alpha \in \mathbb{K}$ una raíz de f(X).

- (a) Dada otra raíz $\beta \in \mathbb{F}[\alpha]$ de f(X), demostrar que existe $g(X) \in \mathbb{F}[X]$ de grado menor que n y con $g(\alpha) = \beta$.
- (b) Demostrar que si γ es raíz de f(X), entonces $g(\gamma)$ también lo es.
- (c) ξEs cierto el resultado del apartado anterior si f(X) es separable pero no irreducible?

Solución.

- (a) Como $f(X) = \operatorname{Irr}(\alpha, X, \mathbb{F})$ y $\operatorname{deg}(f(X)) = [\mathbb{F}[\alpha] \colon \mathbb{F}] = n$, entonces $\{1, \alpha, \dots, \alpha^{n-1}\}$ es una base de $\mathbb{F}[\alpha]$ como \mathbb{F} -espacio vectorial, luego $\beta = a_0 + a_1\alpha + \dots + a_{n-1}\alpha^{n-1}$ para ciertos $a_0, a_1, \dots, a_{n-1} \in \mathbb{F}$. El polinomio $g(X) = a_0 + a_1X + \dots + a_{n-1}X^{n-1} \in \mathbb{F}[X]$ es de grado menor que $n \neq g(\alpha) = \beta$.
- (b) Sea $\gamma \in \mathbb{K}$ otra raíz de f(X). Por el teorema de extensión, existe un isomorfismo $\sigma \colon \mathbb{F}[\alpha] \to \mathbb{F}[\gamma]$ que extiende a $id \colon \mathbb{F} \to \mathbb{F}$ y con $\sigma(\alpha) = \gamma$.

$$\mathbb{F} \xrightarrow{id} \mathbb{F}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{F}[\alpha] \xrightarrow{\sigma} \mathbb{F}[\gamma]$$

Como $\beta = \alpha_0 + \alpha_1 \alpha + ... + \alpha_{n-1} \alpha^{n-1}$, entonces

$$\sigma(\beta) = a_0 + a_1 \sigma(\alpha) + \dots + a_{n-1} \sigma(\alpha)^{n-1} = a_0 + a_1 \gamma + \dots + a_{n-1} \gamma^{n-1} = g(\gamma)$$

Por otra parte, se observa que $\mathbb{F}[\beta] = \mathbb{F}[\alpha]$ porque $\mathbb{F}[\beta] \subset \mathbb{F}[\alpha]$ (por ser $\beta \in \mathbb{F}[\alpha]$) y la dimensión de ambos como \mathbb{F} -espacios vectoriales es la misma: el grado de f(X). Así, como $f(X) = \operatorname{Irr}(\beta, X, \mathbb{F})$ y tenemos un isomorfismo $\sigma \colon \mathbb{F}[\beta] \to \mathbb{F}[\gamma]$, entonces $\sigma(\beta) = g(\gamma)$ es raíz de $f^{\sigma}(X) = f(X)$.

(c) Si f(X) es separable pero no irreducible, entonces el resultado no es cierto. En efecto, tomemos $f(X) = (X-1)(X-2) \in \mathbb{Q}[X]$. El polinomio g(X) = X+1 es de grado menor que el de f(X) y verifica g(1) = 2. Sin embargo, g(2) = 3 no es raíz de f(X).

Ejercicio 8. Sea $\mathbb{F} \subset \mathbb{K}$ una extensión algebraica de cuerpos con $\mathbb{K} = \mathbb{F}[a_1, ..., a_n]$ y tal que $a_i^2 \in \mathbb{F}$ para todo $i \in \{1, ..., n\}$. Supóngase que la característica de \mathbb{F} es distinta de 2 y que $[\mathbb{K} : \mathbb{F}] = 2^n$. Demostrar que $a_1 + ... + a_n$ es un elemento primitivo de la extensión.

Solución. Lo primero que se va a probar es que $[\mathbb{F}[a_1,\ldots,a_i]\colon\mathbb{F}[a_1,\ldots,a_{i-1}]]=2$ para todo $i\in\{1,\ldots,n\}$ (se entiende que para i=1 la igualdad es $[\mathbb{F}[a_1]\colon\mathbb{F}]=2$). Nótese que $X^2-a_i^2\in\mathbb{F}[X]$ es un polinomio que anula a a_i , luego $[\mathbb{F}[a_1,\ldots,a_i]\colon\mathbb{F}[a_1,\ldots,a_{i-1}]]\leq 2$. Por reducción al absurdo, supongamos que existe $i_0\in\{1,\ldots,n\}$ tal que $[\mathbb{F}[a_1,\ldots,a_{i_0}]\colon\mathbb{F}[a_1,\ldots,a_{i_0-1}]]=1$. Por comodidad en la notación, supongamos que $i_0=n$ (no se pierde ninguna generalidad). Entonces

$$[\mathbb{K}:\mathbb{F}] = \underbrace{[\mathbb{F}[a_1]:\mathbb{F}]}_{\leq 2} \cdot \underbrace{[\mathbb{F}[a_1,a_2]:\mathbb{F}[a_1]]}_{\leq 2} \cdot \ldots \cdot \underbrace{[\mathbb{F}[a_1,\ldots,a_{n-1}]:\mathbb{F}[a_1,\ldots,a_{n-2}]]}_{\leq 2} \cdot \underbrace{[\mathbb{K}:\mathbb{F}[a_1,\ldots,a_{n-1}]]}_{=1} \leq 2^{n-1}$$

Esto es imposible porque $[\mathbb{K}:\mathbb{F}]=2^n$. Así, para cada $i\in\{1,\ldots,n\}$ es $[\mathbb{F}[a_1,\ldots,a_i]:\mathbb{F}[a_1,\ldots,a_{i-1}]]=2$ y en consecuencia

$$X^{2} - a_{i}^{2} = Irr(a_{i}, X, \mathbb{F}[a_{1}, \dots, a_{i-1}])$$

Las raíces de este polinomio son a_i y $-a_i$ (y son distintas porque son no nulas y la característica de \mathbb{F} no de 2). En el caso i=1, por el teorema de extensión, hay exactamente dos inmersiones de $\mathbb{F}[a_1]$

en $\mathbb{F}[a_1]$ que extienden a $id: \mathbb{F} \to \mathbb{F}$, y vienen dadas por $\sigma_{j_1}(a_1) = (-1)^{j_1}a_1$, $j_1 \in \{0,1\}$. Para i=2, hay exactamente dos inmersiones de $\mathbb{F}[a_1,a_2]$ en $\mathbb{F}[a_1,a_2]$ que extienden a $\sigma_{j_1}: \mathbb{F}[a_1] \to \mathbb{F}[a_1]$, y vienen dadas por $\sigma_{j_1,j_2}(a_2) = (-1)^{j_2}a_2$, $j_2 \in \{0,1\}$, y se verifica $\sigma_{j_1,j_2}(a_1+a_2) = (-1)^{j_1}a_1 + (-1)^{j_2}a_2$. Continuamos este razonamiento hasta llegar a i=n.

Sea $I = \{1,2\}^n$ y, dado $(j_1,\ldots,j_n) \in I$, llamemos τ_{j_1,\ldots,j_n} a la restricción de σ_{j_1,\ldots,j_n} a $\mathbb{F}[a_1+\ldots+a_n]$. Es claro que τ_{j_1,\ldots,j_n} es una inmersión de $\mathbb{F}[a_1+\ldots+a_n]$ en \mathbb{K} , pues es la restricción de $\sigma_{j_1,\ldots,j_n} \in \operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$. Así,

$$\tau_{j_1,\dots,j_n} \colon \mathbb{F}[a_1 + \dots + a_n] \longrightarrow \mathbb{K}$$

$$a_1 + \dots + a_n \longmapsto (-1)^{j_1} a_1 + \dots + (-1)^{j_n} a_n$$

Veamos que todas estas inmersiones son distintas. Por reducción al absurdo, supóngase que existen $(j_1,...,j_n),(k_1,...,k_n) \in I$ tales que

$$\tau_{i_1,\ldots,i_n}(a_1+\ldots+a_n)=\tau_{k_1,\ldots,k_n}(a_1+\ldots+a_n)$$

Entonces

$$(-1)^{j_1}a_1 + (-1)^{j_2}a_2 + \dots + (-1)^{j_n}a_n = (-1)^{k_1}a_1 + (-1)^{k_2}a_2 + \dots + (-1)^{k_n}a_n,$$

es decir,

$$\left((-1)^{j_1} + (-1)^{k_1+1}\right)a_1 + \dots + \left((-1)^{j_n} + (-1)^{k_n+1}\right)a_n = 0$$

El coeficiente de cada a_i es 0, 2 o -2, así que podemos reordenar la suma para que se tenga

$$\left((-1)^{j_1} + (-1)^{k_1+1}\right)a_1 + \dots + \left((-1)^{j_s} + (-1)^{k_s+1}\right)a_s = 0$$

para algún $s \in \mathbb{N}$ con $s \le n$. El coeficiente de cada a_i ahora es 2 o -2. Si el coeficiente de a_i es 2, llamamos $b_i = a_i$, y en otro caso, $b_i = -a_i$. Tenemos entonces

$$2b_1 + \ldots + 2b_s = 0$$

Como la característica de F no es 2, debe ser

$$b_1 + \ldots + b_s = 0$$
,

Esto implica $a_s \in \mathbb{F}[a_1, \dots, a_{s-1}]$, que no puede ser porque $[F[a_1, \dots, a_s]: \mathbb{F}[a_1, \dots, a_{s-1}]] = 2$. Así, queda probado que que todas las inmersiones τ_{j_1, \dots, j_n} son distintas, luego hay al menos 2^n inmersiones de $\mathbb{F}[a_1 + \dots + a_n]$ en \mathbb{K} que extienden a $id: \mathbb{F} \to \mathbb{F}$. Pero un teorema visto en clase nos permite afirmar que el número de estas inmersiones es menor o igual que $[\mathbb{F}[a_1 + \dots + a_n]: \mathbb{F}]$, y por tanto es menor o igual que $[\mathbb{K}: \mathbb{F}] = 2^n$. La única posibilidad es que sea $[\mathbb{F}[a_1 + \dots + a_n]: \mathbb{F}] = 2^n$, concluyéndose que $\mathbb{K} = \mathbb{F}[a_1 + \dots + a_n]$.

Ejercicio 9. Hallar todos los ángulos $\alpha \in \mathbb{Q}$ entre 0° y 360° tales que $\cos(\alpha) \in \mathbb{Q}$.

Solución. Sea $\alpha \in \mathbb{Q}$ un ángulo entre 0° y 360° con $\cos(\alpha) \in \mathbb{Q}$. En primer lugar, se va a probar que $\xi = \cos(\alpha) + i \operatorname{sen}(\alpha)$ es una raíz primitiva n-ésima de la unidad para algún $n \in \mathbb{N}$.

En efecto, como $\alpha \in \mathbb{Q}$ está medido en grados y $0^{\circ} \le \alpha \le 360^{\circ}$, podemos escribir $\alpha = \frac{360^{\circ}}{n}$ para cierto $n \in \mathbb{N}$, de forma que $\xi = 1_{\frac{2\pi}{n}}$, que es una raíz primitiva n-ésima de la unidad.

Consideremos la torre de extensiones $\mathbb{Q} \subset \mathbb{Q}[\cos(\alpha)] \subset \mathbb{Q}[\xi]$. Se tiene que

- (a) $[\mathbb{Q}[\cos(\alpha)]: \mathbb{Q}] = 1$ porque $\cos(\alpha) \in \mathbb{Q}$.
- $(b) \ \left[\mathbb{Q}[\xi] \colon \mathbb{Q}[\cos(\alpha)]\right] \leq 2 \ \text{porque} \ \mathbb{Q}[\xi] = \mathbb{Q}[\cos(\alpha), \sin(\alpha)] \ \text{y} \ X^2 + \cos^2\alpha 1 \in \mathbb{Q}[\cos(\alpha)][X] \ \text{anula a } \sin(\alpha).$

Por tanto, $[\mathbb{Q}[\xi]: \mathbb{Q}] \leq 2$. Pero ξ es una raíz primitiva n-ésima de la unidad, así que $[\mathbb{Q}[\xi]: \mathbb{Q}] = \phi(n)$, y por tanto $\phi(n) = 2$ o $\phi(n) = 1$. Hallemos todos los $n \in \mathbb{N}$ tales que $\phi(n) = 2$ o $\phi(n) = 1$.

Si $n \neq 1$, factorizamos n: supongamos que $n = p_1^{n_1} \dots p_k^{n_k}$. Entonces

$$\phi(n) = 2 \iff p_1^{n_1} \dots p_k^{n_k} \left(\frac{p_1 - 1}{p_1} \right) \dots \left(\frac{p_k - 1}{p_k} \right) = 2 \iff p_1^{n_1 - 1} \dots p_k^{n_k - 1} (p_1 - 1) \dots (p_k - 1) = 2$$

De esto se deduce que uno de los miembros del producto anterior debe ser 2 y el resto debe ser 1, y esto nos dice que hay, como mucho, dos primos distintos. Ahora se distinguen dos casos:

- (a) El 2 está en $p_1^{n_1-1}p_k^{n_k-1}$. Entonces todos los p_i-1 son iguales (valen 1), luego solo hay un primo distinto y debe ser 2. Además, como $2^{n_1-1}=2$, ha de ser $n_1=2$. La conclusión de este caso es que n=4
- (b) El 2 está en $(p_1-1)...(p_k-1)$. Ahora podrían haber uno o dos primos distintos. Supongamos primero que son dos. Entonces $p_1=3$, $p_2=2$ y

$$p_1^{n_1-1}p_2^{n_2-1}\cdot 2\cdot 1=2,$$

luego $p_1^{n_1-1}=p_2^{n_2-1}=1$, o sea, $n_1=1$ y $n_2=1$. La conclusión de este caso es que n=6. Si solo hubiese un primo distinto, tendría que ser $p_1=3$, y además

$$p_1^{n_1-1} \cdot 2 = 2,$$

de donde $n_1 - 1 = 1$. La conclusión de este caso es que n = 3.

Por otra parte,

$$\phi(n) = 1 \iff p_1^{n_1-1} \dots p_k^{n_k-1} (p_1-1) \dots (p_k-1) = 1,$$

luego todos los miembros del producto anterior valen 1. Esto nos dice que solo hay un primo distinto (que debe ser 2 para que se tenga $p_1 - 1 = 1$) y además $n_1 - 1 = 0$, es decir, $n_1 = 1$. La conclusión de este caso es que n = 2.

Lo que se ha probado es que

$$\phi(n) \in \{1,2\} \iff n \in \{1,2,3,4,6\}$$

Además, para todos estos valores de n se tiene que $\cos(\frac{360^{\circ}}{n}) \in \mathbb{Q}$. Los ángulos pedidos serían entonces 60° , 90° , 120° , 180° y 360° .

Ejercicio 10. Sea \mathbb{F} un cuerpo de característica p, sea $\mathbb{F} \subset \mathbb{K}$ una extensión de cuerpos y sea $a \in \mathbb{K}$ un elemento algebraico sobre \mathbb{F} . Demostrar que a es separable sobre \mathbb{F} si y solo si $\mathbb{F}[a] = \mathbb{F}[a^p]$.

Solución. Supongamos que a es separable sobre \mathbb{F} . Sea $n=[\mathbb{F}[a]:\mathbb{F}]$ y veamos que $[\mathbb{F}[a^p]:\mathbb{F}]=n$. Para ello, se probará que hay n inmersiones de $\mathbb{F}[a^p]$ en $\overline{\mathbb{K}}$ que extienden a $id:\mathbb{F}\to\mathbb{F}$, donde $\overline{\mathbb{K}}$ es la clausura normal de la extensión $\mathbb{F}\subset\mathbb{K}$. Como a es separable sobre \mathbb{F} , el número de extensiones de $\mathbb{F}[a]$ en $\overline{\mathbb{K}}$ que extienden a $id:\mathbb{F}\to\mathbb{F}$ es n.

$$\mathbb{F} \xrightarrow{id} \mathbb{F}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{F}[a] \xrightarrow{\sigma_i} \overline{\mathbb{K}}$$

Para cada $i \in \{1, ..., n\}$ la aplicación

$$\tau_i : \mathbb{F}[a^p] \longrightarrow \overline{\mathbb{K}}$$
$$a^p \longmapsto \sigma_i(a^p)$$

es una \mathbb{F} -inmersión (por ser la restricción de una \mathbb{F} -inmersión) de $\mathbb{F}[a^p]$ en $\overline{\mathbb{K}}$. Veamos que todas las τ_i son distintas. Por reducción al absurdo, supongamos que existen $i, j \in \{1, ..., n\}$ con $\sigma_i(a^p) = \sigma_j(a^p)$, es decir, $\sigma_i(a)^p = \sigma_j(a)^p$. Entonces

$$\sigma_i(a)^p - \sigma_i(a)^p = 0,$$

o lo que es lo mismo, por ser \mathbb{F} de característica p,

$$(\sigma_i(a) - \sigma_i(a))^p = 0,$$

luego $\sigma_i(a) = \sigma_j(a)$ y esto nos dice que i = j, pues las inmersiones σ_i quedan totalmente determinadas por la imagen de a. En consecuencia, como las inmersiones τ_i quedan totalmente determinadas por la imagen de a^p , podemos afirmar que son todas distintas, luego el número de inmersiones de $\mathbb{F}[a^p]$ en \mathbb{K} que extienden a $id : \mathbb{F} \to \mathbb{F}$ es al menos n. Por otro lado, este número es menor o igual que $[\mathbb{F}[a^p] : \mathbb{F}]$, que, a su vez, es menor o igual que $[\mathbb{F}[a] : \mathbb{F}] = n$. La única posibilidad es que sea $[\mathbb{F}[a^p] : \mathbb{F}] = n$, así que $\mathbb{F}[a] = \mathbb{F}[a^p]$.

Recíprocamente, supongamos que a no es separable sobre \mathbb{F} y veamos que $\mathbb{F}[a^p] \subsetneq \mathbb{F}[a]$. Sea

$$f(X) = Irr(a, X, \mathbb{F}) = a_0 + a_1 X + ... + a_{n-1} X^{n-1} + X^n$$

Como f(X) es irreducible y no separable, entonces f'(X) = 0, es decir,

$$a_1 + 2a_2X + ... + (n-1)a_{n-1}X^{n-2} + nX^n = 0$$

Esto nos dice que si $i \in \{1, ..., n\}$ no es múltiplo de p, entonces $a_i = 0$. En consecuencia,

$$f(X) = a_0 + a_p X^p + ... + a_{(s-1)p} X^{(s-1)p} + X^{sp},$$

con sp = n. Sea

$$g(X) = a_0 + a_n X + ... + a_{(s-1)n} X^{s-1} + X^s$$

Entonces $g(X) \in \mathbb{F}[X]$ es un polinomio mónico e irreducible (por ser f(X) irreducible) que anula a a^p , luego $g(X) = \operatorname{Irr}(a^p, X, \mathbb{F})$. En consecuencia,

$$[\mathbb{F}[a^p]: \mathbb{F}] = \deg(g(X)) = s < sp = \deg(f(X)) = [\mathbb{F}[a]: \mathbb{F}],$$

concluyéndose que $\mathbb{F}[a^p] \subsetneq \mathbb{F}[a]$.

Ejercicio 11. Sea $\mathbb{F} \subset \mathbb{K} \subset \mathbb{L}$ una torre de extensiones con $[\mathbb{K} : \mathbb{F}] = n$ y sea $\sigma : \mathbb{F} \to \mathbb{L}$ una inmersión. Demostrar que si la extensión $\mathbb{F} \subset \mathbb{K}$ no es separable, entonces el número de inmersiones $\overline{\sigma} : \mathbb{K} \to \mathbb{L}$ que extienden a σ es menor que n.

Solución. Se sabe que:

- (a) La extensión $\mathbb{F} \subset \mathbb{K}$ es separable si y solo si existe una extensión de cuerpos $\mathbb{L} \subset \mathbb{L}'$ tal que el número de inmersiones de \mathbb{K} en \mathbb{L}' que extienden a σ es $[\mathbb{K} : \mathbb{F}]$.
- (b) Dada una extensión $\mathbb{L} \subset \mathbb{L}'$, el número de inmersiones de \mathbb{K} en \mathbb{L}' que extienden a σ es menor o igual que $[\mathbb{K} : \mathbb{F}]$.

Como la extensión $\mathbb{F} \subset \mathbb{K}$ no es separable, por (a), para toda extensión de cuerpos $\mathbb{L} \subset \mathbb{L}'$ se tiene que el número de inmersiones de \mathbb{K} en \mathbb{L}' que extienden a σ es distinto de $[\mathbb{K} : \mathbb{F}]$. Es más, por (b), el número de estas inmersiones debe ser menor que $[\mathbb{K} : \mathbb{F}]$. En particular, tomando $\mathbb{L}' = \mathbb{L}$, el número de inmersiones de \mathbb{K} en \mathbb{L} que extienden a σ es menor que $[\mathbb{K} : \mathbb{F}] = n$.

Ejercicio 12. Sea $\sigma: \mathbb{Q}(i\sqrt{3}) \to \mathbb{Q}(i\sqrt{3})$ el automorfismo dado por $\sigma(i\sqrt{3}) = -i\sqrt{3}$. Sea α una raíz de $X^4 - 2X^2 + 4 \in \mathbb{Q}[X]$. Determinar el número de inmersiones $\overline{\sigma}: \mathbb{Q}(i\sqrt{3}, \alpha) \to \mathbb{C}$ que extienden α σ .

Solución. Como la extensión $\mathbb{Q} \subset \mathbb{Q}(i\sqrt{3},\alpha)$ es separable (ya que \mathbb{Q} es perfecto) y $\mathbb{Q}(i\sqrt{3})$ es un cuerpo intermedio de la extensión, entonces $\mathbb{Q}(i\sqrt{3}) \subset \mathbb{Q}(i\sqrt{3},\alpha)$ también es separable y, en consecuencia, el número de inmersiones de $\mathbb{Q}(i\sqrt{3},\alpha)$ en \mathbb{C} coincide con $[\mathbb{Q}(i\sqrt{3},\alpha):\mathbb{Q}(i\sqrt{3})]$. Por otra parte, como se tiene $(\alpha^2)^2 - 2\alpha^2 + 4 = 0$, entonces

$$\alpha^2 \in \left\{ \frac{2 + \sqrt{4 - 16}}{2}, \frac{2 - \sqrt{4 - 16}}{2} \right\} = \left\{ 1 + i\sqrt{3}, 1 - i\sqrt{3} \right\}$$

De aquí se deduce que alguno de los polinomios $X^2-1-i\sqrt{3}$ o $X^2-1+i\sqrt{3}$, ambos en $\mathbb{Q}(i\sqrt{3})[X]$, anula a α , así que

$$[\mathbb{Q}(i\sqrt{3},\alpha):\mathbb{Q}(i\sqrt{3})] \leq 2$$

De hecho, el grado de la extensión es 2, pues si llamamos $f(X) = \operatorname{Irr}(\alpha, X, \mathbb{Q}(i\sqrt{3}))$, tenemos que α es una raíz de f(X), luego $\overline{\alpha}$ también lo es, y como $\alpha^2 \in \mathbb{C}$, entonces $\alpha \in \mathbb{C}$, así que $\overline{\alpha} \neq \alpha$ y, al tener dos raíces distintas, el grado de f(X) no puede ser 1. En consecuencia, $[\mathbb{Q}(i\sqrt{3},\alpha):\mathbb{Q}(i\sqrt{3})] = 2$ y el número de inmersiones de $\mathbb{Q}(i\sqrt{3},\alpha)$ en \mathbb{C} que extienden a σ es 2.

Ejercicio 13. Sea $\mathbb{F} \subset \mathbb{K}$ una extensión de Galois finita. Sea $G = \operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$ y sea $u \in \mathbb{K}$. Demostrar que existe $m \in \mathbb{N}$ tal que

$$\prod_{\sigma \in G} (X - \sigma(u)) = \operatorname{Irr}(u, X, \mathbb{F})^m$$

Solución. Sea

$$f(X) = \prod_{\sigma \in G} (X - \sigma(u))$$

Si $\tau \in G$, entonces

$$\tau(f(X)) = \prod_{\sigma \in G} (X - \tau \circ \sigma(u)) = f(X),$$

donde se ha usado que la aplicación

$$\Psi \colon G \to G$$
$$\sigma \mapsto \tau \circ \sigma$$

es biyectiva. Por tanto, $f(X) \in \mathbb{K}^G[X]$, y como la extensión es finita y de Galois, entonces $\mathbb{K}^G = \mathbb{F}$, luego $f(X) \in \mathbb{F}[X]$. Como f(X) es un polinomio en $\mathbb{F}[X]$ que anula a u, se tiene f(X) | $Irr(u, X, \mathbb{F})$. Factoricemos f(X) como producto de irreducibles:

$$f(X) = f_1(X) \dots f_m(X)$$

Dado $i \in \{1, \dots, m\}$, cualquier raíz de $f_i(X)$ es de la forma $u_i = \sigma_i(u)$ con $\sigma_i \in G$, y como u es raíz de $Irr(u, X, \mathbb{F})$, entonces $\sigma_i(u) = u_i$ también lo es. Tenemos entonces que todas las raíces de $f_i(X)$ son raíces de $Irr(u, X, \mathbb{F})$, así que $f_i(X) \mid Irr(u, X, \mathbb{F})$. Pero ambos son mónicos e irreducibles, luego $f_i(X) = Irr(u, X, \mathbb{F})$ y concluimos que

$$f(X) = \prod_{i=1}^{m} \operatorname{Irr}(u, X, \mathbb{F}) = \operatorname{Irr}(u, X, \mathbb{F})^{m}$$

Ejercicio 14. Sea \mathbb{F} un cuerpo, sea $f(X) \in \mathbb{F}[X]$ un polinomio irreducible y separable y sea \mathbb{K} el cuerpo de descomposición de f(X) sobre \mathbb{F} . Si $\operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$ es abeliano, demostrar que $\mathbb{K} = \mathbb{F}[a]$ para cualquier raíz $a \in \mathbb{K}$ de f(X).

Solución. Sean u_1, \ldots, u_t las raíces de f(X). Como la extensión $\mathbb{F} \subset \mathbb{K}$ es de Galois (ya que \mathbb{K} es el cuerpo de descomposición de un polinomio separable sobre \mathbb{F}), entonces $n = \#\text{Gal}_{\mathbb{F}}(\mathbb{K}) = [\mathbb{K} : \mathbb{F}]$. Veamos que $\mathbb{K} = \mathbb{F}[u_1]$. Para ello, se va a demostrar que el número de inmersiones de $\mathbb{F}[a]$ en \mathbb{K} es al menos n.

Si $\sigma \in \operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$, entonces $\sigma|_{\mathbb{F}[u_1]}$ es una inmersión de $\mathbb{F}[u_1]$ en \mathbb{K} que extiende a $id : \mathbb{F} \to \mathbb{F}$. Veamos que cada elemento de $\operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$ restringido a $\mathbb{F}[u_1]$ proporciona una inmersión diferente.

Sean $\sigma, \tau \in \operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$ con $\sigma(u_1) = \tau(u_1)$ y veamos que $\sigma = \tau$. Para ello, basta probar que $\sigma(u_i) = \tau(u_i)$ para todo $i \in \{2, \ldots, n\}$, pues $\mathbb{K} = \mathbb{F}[u_1, \ldots, u_n]$ y por tanto cada elemento de $\operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$ queda totalmente determinado por la imagen de u_1, \ldots, u_n . Sea $i \in \{2, \ldots, n\}$. Por el teorema de extensión, existe una única \mathbb{F} -inmersión $\overline{\rho} \colon \mathbb{F}[u_1] \to \mathbb{K}$ con $\overline{\rho}(u_1) = u_i$, que puede extenderse a un isomorfismo $\rho \in \operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$ por ser \mathbb{K} el cuerpo de descomposición de un polinomio sobre \mathbb{F} . Como $\rho(u_1) = u_i$, aplicando σ y usando que $\operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$ es abeliano,

$$\sigma(u_i) = \sigma \circ \rho(u_1) = \rho \circ \sigma(u_1) = \rho \circ \tau(u_1) = \tau \circ \rho(u_1) = \tau(u_i)$$

Esto implica $\sigma = \tau$ y por tanto hay al menos n \mathbb{F} -inmersiones de $\mathbb{F}[u_1]$ en \mathbb{K} . Pero el número de estas inmersiones es menor o igual que $[\mathbb{F}[u_1]:\mathbb{F}]$, que, a su vez, es menor o igual que $[\mathbb{K}:\mathbb{F}] = n$. La conclusión es que $[\mathbb{F}[u_1]:\mathbb{F}] = n$ y por tanto $\mathbb{K} = \mathbb{F}[u_1]$.

Ejercicio 15. Sea \mathbb{F} un cuerpo finito y sea $\mathbb{F} \subset \mathbb{K}$ una extensión de cuerpos de grado n. Demostrar que para cada divisor d de n existe un único cuerpo intermedio de grado d entre \mathbb{F} y \mathbb{K} .

Solución. Si # $\mathbb{F} = p^k$ y [$\mathbb{K} : \mathbb{F}$] = n, entonces

- (a) la extensión es cíclica por un teorema visto en clase;
- (b) $\#\mathbb{K} = p^{nk}$, así que \mathbb{K} es el cuerpo de descomposición del polinomio $f(X) = X^{p^{nk}} X \in \mathbb{F}[X]$, que es separable porque f'(X) = -1 y mcd(f(X), f'(X)) = -1.

Por tanto, la extensión $\mathbb{F} \subset \mathbb{K}$ es finita, de Galois y cíclica. Por ser cíclica, $\operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$ tiene un único subgrupo de orden d para cada divisor d de n, o lo que es lo mismo, en virtud del teorema fundamental, la extensión $\mathbb{F} \subset \mathbb{K}$ tiene un único cuerpo intermedio de grado d para cada divisor d de n.

Ejercicio 16. Sea \mathbb{F} un cuerpo finito.

- (a) Sea $f(X) \in \mathbb{F}[X]$ un polinomio irreducible de grado n. Probar que f(X) se descompone totalmente en cualquier extensión de \mathbb{F} de grado n.
- (b) Sea $f(X) \in \mathbb{F}[X]$ un polinomio cuya factorización en producto de irreducibles es

$$f_4(X)g_4(X)g_3(X)h_5(X),$$

donde $\deg(f_4(X)) = \deg(g_4(X)) = 4$, $\deg(g_3(X)) = 3$ y $\deg(h_5(X)) = 5$. Calcular el orden de $\operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$, donde \mathbb{K} es el cuerpo de descomposición de f(X) sobre \mathbb{F} .

Solución.

- (a) Sea u una raíz de f(X) en su cuerpo de descomposición sobre \mathbb{F} . La extensión $\mathbb{F} \subset \mathbb{F}[u]$ es normal (toda extensión finita de un cuerpo finito es normal) y por tanto f(X) se descompone totalmente en $\mathbb{F}[u]$, luego $\mathbb{F}[u]$ es el cuerpo de descomposición de f(X) sobre \mathbb{F} . Pero $[\mathbb{F}[u]:\mathbb{F}]=n$ y $\mathbb{F}[u]$ es, salvo isomorfismo, el único cuerpo con $\#\mathbb{F}[u]=p^{nk}$ elementos (donde $\#F=p^k$). En consecuencia, si $\mathbb{F} \subset \mathbb{K}$ es cualquier extensión de grado n, entonces \mathbb{K} y $\mathbb{F}[u]$ son isomorfos, y como f(X) se descompone totalmente en $\mathbb{F}[u]$, también lo hace en \mathbb{K} .
- (b) Nótese que toda extensión finita de un cuerpo finito es de Galois, luego $\#\text{Gal}_{\mathbb{F}}(\mathbb{K}) = [\mathbb{K} : \mathbb{F}]$. Sean $\alpha, \beta, \gamma \in \mathbb{K}$ raíces de $f_4(X)$, $g_3(X)$ y $h_5(X)$, respectivamente. Por el apartado anterior,
 - $f_4(X)$ y $g_4(X)$ se descomponen totalmente en $\mathbb{F}[\alpha]$;
 - $g_3(X)$ se descompone totalmente en $\mathbb{F}[\beta]$;
 - $h_5(X)$ se descompone totalmente en $\mathbb{F}[\gamma]$.

Por tanto, el cuerpo de descomposición de f(X) sobre \mathbb{F} es $\mathbb{F}[\alpha, \beta, \gamma]$. Como $[\mathbb{F}[\alpha]: \mathbb{F}] = 4$, $[\mathbb{F}[\beta]: \mathbb{F}] = 3$, $[\mathbb{F}[\alpha]: \mathbb{F}] = 5$ y 3, 4 y 5 son primos relativos, entonces

$$[\mathbb{F}[\alpha,\beta,\gamma]:\mathbb{F}]=3\cdot 4\cdot 5=60,$$

concluyéndose que $Gal_{\mathbb{F}}(\mathbb{K})$ tiene orden 60.

Ejercicio 17. Construir un cuerpo finito \mathbb{F} que tenga 125 elementos. ¿Existe alguna extensión \mathbb{K} de \mathbb{F} de grado 4?

Solución. Dado un $n \in \mathbb{N}$ con $\operatorname{mcd}(n,5) = 1$, se sabe que \mathbb{F}_{5^3} es el cuerpo de descomposición de $X^n - 1$ sobre $\mathbb{Z}_5[X]$, con 3 el menor natural tal que $5^3 \equiv 1 \mod n$. El problema se reduce a encontrar un n adecuado. Puede tomarse, por ejemplo, n = 31, así que el cuerpo pedido es $\mathbb{Z}_5(\xi)$, donde ξ es una raíz primitiva 31-ésima de la unidad.

Cualquier extensión $\mathbb{F} \subset \mathbb{K}$ con $[\mathbb{K} : \mathbb{F}] = 4$ es tal que $\#\mathbb{K} = 125^4 = 5^{12}$. También se sabe que $\mathbb{F}_{p^n} \subset \mathbb{F}_{p^m}$ si y solo si n divide a m. Como 3 divide a 12, sí existe alguna extensión \mathbb{K} de \mathbb{F} de grado 4: basta tomar cualquier cuerpo con 125^4 elementos.

Ejercicio 18. Encontrar una extensión de Galois de Q de grado 15 y con grupo de Galois cíclico.

Solución. Lo primero que hay que observar es que el grupo de Galois de la extensión buscada tendrá grado 15 y el único grupo de grado 15 es \mathbb{Z}_{15} (pues $15=3\cdot 5, 3$ y 5 son primos y 3 no divide a 5-1=4). El problema se reduce entonces a encontrar una extensión de Galois de grado 15. Para ello, primero buscaremos extensiones de Galois de grado 3 y 5.

Para hallar la extensión de grado 3, buscamos un cuerpo intermedio en una extensión del tipo $\mathbb{Q} \subset \mathbb{Q}[\xi]$, donde ξ es una raíz primitiva n-ésima de la unidad de forma que $\phi(n)$ sea múltiplo de 3. Lo más sencillo es tomar n=7.

Tomemos entonces una raíz primitiva séptima de la unidad, ξ . Como $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}[\xi]) \approx \mathbb{Z}_6$, hay un subgrupo normal H de orden 2 (por ser cíclico, existe un único subgrupo de orden d para cada divisor d de 6, y por ser abeliano, todo subgrupo es normal). Por el teorema fundamental, la extensión $\mathbb{Q} \subset \operatorname{Inv}(H)$ es de grado 3 y de Galois (normal porque H es un subgrupo normal; separable porque \mathbb{Q} es perfecto).

Razonando análogamente, si τ es una raíz primitiva onceava de la unidad, entonces $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}[\tau]) \approx \mathbb{Z}_{10}$ y por tanto existe un subgrupo normal K de orden 2. Por el teorema fundamental, la extensión $\mathbb{Q} \subset \operatorname{Inv}(K)$ es de grado 5 y de Galois.

Lo siguiente será hallar elementos primitivos de ambas extensiones. Empecemos por la de grado 3. Los elementos de $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}[\xi])$ son de la forma

$$\sigma_k \colon \mathbb{Q}[\xi] \longrightarrow \mathbb{Q}[\xi]$$
$$\xi \longmapsto \xi^k$$

para $k \in \{1, 2, 3, 4, 5, 6\}$. Calculamos el orden de los elementos:

$$\circ \sigma_1 = 1$$
, $\circ \sigma_2 = 3$, $\circ \sigma_3 = 6$, $\circ \sigma_4 = 3$, $\circ \sigma_5 = 6$, $\circ \sigma_6 = 2$

Por tanto, $H = \langle \sigma_6 \rangle$, y tenemos que hallar el cuerpo Inv $\langle \sigma_6 \rangle$. Una base de $\mathbb{Q}[\xi]$ es $\{1, \xi, \xi^2, \xi^3, \xi^4, \xi^5\}$. Así, dados $a, b, c, d, e, f \in \mathbb{Q}$, se tiene que

$$\sigma_{6}(a+b\xi+c\xi^{2}+d\xi^{3}+e\xi^{4}+f\xi^{5}) = a+b\xi^{6}+c\xi^{5}+d\xi^{4}+e\xi^{3}+f\xi^{2}$$

$$= a-b-b\xi-b\xi^{2}-b\xi^{3}-b\xi^{4}-b\xi^{5}+c\xi^{5}+d\xi^{4}+e\xi^{3}+f\xi^{2}$$

$$= a-b-b\xi+(f-b)\xi^{2}+(e-b)\xi^{3}+(d-b)\xi^{4}+(c-b)\xi^{5}$$

donde se ha usado que $\xi^6 = -1 - \xi - \xi^2 - \xi^3 - \xi^4 - \xi^5$ porque $X^6 + X^5 + X^4 + X^3 + X^2 + X + 1 = Irr(\xi, X, \mathbb{Q})$. En consecuencia,

$$\sigma_{6}(a+b\xi+c\xi^{2}+d\xi^{3}+e\xi^{4}+f\xi^{5}) = a+b\xi+c\xi^{2}+d\xi^{3}+e\xi^{4}+f\xi^{5} \iff \begin{cases} a=a-b\\ -b=b\\ f-b=c\\ e-b=d\\ d-b=e\\ c-d=f \end{cases}$$

$$\iff b=0, c=f, d=e$$

Por tanto,

$$\operatorname{Inv}\langle \sigma_6 \rangle = \left\{ a + c(\xi^2 + \xi^5) + d(\xi^3 + \xi^4) : a, c, d \in \mathbb{Q} \right\} \stackrel{(*)}{=} \mathbb{Q}[\xi^2 + \xi^5, \xi^3 + \xi^4]$$

La contención ⊂ en (*) es trivial, y la contención ⊃ casi que también, pues

$$\{a + c(\xi^2 + \xi^5) + d(\xi^3 + \xi^4) : a, c, d \in \mathbb{Q}\}$$

es un cuerpo que contiene a \mathbb{Q} , a $\xi^2 + \xi^5$ y a $\xi^3 + \xi^4$, y $\mathbb{Q}[\xi^2 + \xi^5, \xi^3 + \xi^4]$ es el menor cuerpo verificando esta propiedad. Observamos además que $\xi^2 + \xi^5 \not\in \mathbb{Q}$, pues si existiese $q \in \mathbb{Q}$ tal que $\xi^2 + \xi^5 = q$, entonces ξ sería raíz del polinomio $X^5 + X^2 - q \in \mathbb{Q}[X]$, y esto es imposible porque $[\mathbb{Q}[\xi]: \mathbb{Q}] = 6 > 5$. Así, tenemos la torre de extensiones

$$\mathbb{Q} \subset \mathbb{Q}[\xi^2 + \xi^5] \subset \mathbb{Q}[\xi^2 + \xi^5, \xi^3 + \xi^4] = \operatorname{Inv}\langle \sigma_6 \rangle$$

Como [Inv $\langle \sigma_6 \rangle$: \mathbb{Q}] = 3, que es primo, entonces [$\mathbb{Q}[\xi^2 + \xi^5]$: \mathbb{Q}] $\in \{1,3\}$. Pero este grado no puede ser 1 porque $\xi^2 + \xi^5 \notin \mathbb{Q}$, así que

$$\operatorname{Inv}\langle\sigma_6\rangle=\mathbb{Q}[\xi^2+\xi^5]$$

Vamos ahora con la extensión de grado 5; el procedimiento va a ser totalmente análogo. Los elementos de $Gal_{\mathbb{Q}}(\mathbb{Q}[\tau])$ son de la forma

$$\mu_k \colon \mathbb{Q}[\tau] \longrightarrow \mathbb{Q}[\tau]$$
$$\tau \longmapsto \tau^k$$

para $k \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Calculamos el orden de los elementos:

$$\circ \mu_1 = 1, \quad \circ \mu_2 = 10, \quad \circ \mu_3 = 5, \quad \circ \mu_4 = 5, \quad \circ \mu_5 = 5, \quad \circ \mu_6 = 10 \quad \circ \mu_7 = 10, \quad \circ \mu_8 = 10, \quad \circ \mu_9 = 5, \quad \circ \mu_{10} = 2$$

Por tanto, $K = \langle \mu_{10} \rangle$, y tenemos que hallar el cuerpo Inv $\langle \mu_{10} \rangle$. Llegados a este punto, se ve venir que las cuentas a realizar van a resultar bastante desagradables, así que simplemente se afirma que

$$\operatorname{Inv}\langle\mu_{10}\rangle = \mathbb{Q}[\tau_2 + \tau_9]$$

Llamando $\alpha = \xi^2 + \xi^5$, $\beta = \tau^2 + \tau^9$, tenemos que la extensión

$$\mathbb{Q} \subset \mathbb{Q}[\alpha, \beta] = \mathbb{K}$$

es de orden 15 (pues $\operatorname{mcd}(n,m)=1$) y es de Galois (es normal porque es el cuerpo de descomposición de f(X)g(X), donde $f(X)=\operatorname{Irr}(\alpha,X,\mathbb{Q})$ y $g(X)=\operatorname{Irr}(\beta,X,\mathbb{Q})$; es separable porque \mathbb{Q} es perfecto). Aunque ya se ha razonado que $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{K})$ es cíclico, lo demostramos de otra manera: construyamos un generador de $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{K})$. Como $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}[\alpha]) \approx \mathbb{Z}_3$ y $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}[\alpha]) \approx \mathbb{Z}_{10}$, existen $\sigma_1 \in \operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}[\alpha])$, $\sigma_2 \in \operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}[\beta])$ tales que

$$\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}[\alpha]) = \langle \sigma_1 \rangle \qquad \text{y} \qquad \operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}[\beta]) = \langle \sigma_2 \rangle$$

En primer lugar, nótese que

$$15 = [\mathbb{Q}[\alpha, \beta] : \mathbb{Q}] = [\mathbb{Q}[\alpha, \beta] : \mathbb{Q}[\alpha]] \cdot [\mathbb{Q}[\alpha] : \mathbb{Q}] = [\mathbb{Q}[\alpha, \beta] : \mathbb{Q}[\alpha]] \cdot 3,$$

lo que implica $[\mathbb{Q}[\alpha,\beta]:\mathbb{Q}[\alpha]] = 5$ y por tanto $Irr(\beta,X,\mathbb{Q}) = Irr(\beta,X,\mathbb{Q}[\alpha])$.

Por otro lado, tenemos que $\alpha' = \sigma_1(\alpha)$ es raíz de $\operatorname{Irr}^{id_{\mathbb{Q}}}(\alpha, X, \mathbb{Q}) = \operatorname{Irr}(\alpha, X, \mathbb{Q})$, luego $\sigma_1 \colon \mathbb{Q}[\alpha] \to \mathbb{Q}[\alpha]$ es el único isomorfismo que extiende a $id_{\mathbb{Q}}$ y con $\sigma_1(\alpha) = \alpha'$ (nótese que $\sigma_1(\mathbb{Q}[\alpha]) = \mathbb{Q}[\alpha]$ porque la extensión es normal). Además, como $\beta' = \sigma_2(\beta)$ es raíz de $\operatorname{Irr}(\beta, X, \mathbb{Q}) = \operatorname{Irr}(\beta, X, \mathbb{Q}[\alpha]) = \operatorname{Irr}^{\sigma_1}(\beta, X, \mathbb{Q}[\alpha])$, existe un único isomorfismo $\sigma \colon \mathbb{Q}[\alpha, \beta] \to \mathbb{Q}[\alpha, \beta]$ que extiende a σ_1 y con $\sigma(\beta) = \beta'$.

$$\begin{array}{ccc}
\mathbb{Q} & \xrightarrow{id} & \mathbb{Q} \\
\downarrow & & \downarrow \\
\mathbb{Q}[\alpha] & \xrightarrow{\sigma_1} & \mathbb{Q}[\alpha] \\
\downarrow & & \downarrow \\
\mathbb{Q}[\alpha, \beta] & \xrightarrow{\sigma} & \mathbb{Q}[\alpha, \beta] \\
\alpha & \longmapsto & \alpha' \\
\beta & \longmapsto & \beta'
\end{array}$$

Tenemos entonces que $\sigma \in \operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}[\alpha, \beta])$, y como σ_1 tiene orden 3 y σ_2 tiene orden 5, se deduce que σ tiene orden $\operatorname{mcm}(3,5) = 15$. Pero

$$\#Gal_{\mathbb{Q}}(\mathbb{Q}[\alpha,\beta]) = [\mathbb{Q}[\alpha,\beta]:\mathbb{Q}] = 15,$$

así que es un grupo cíclico.

Ejercicio 19. Sea $\mathbb{K} = \mathbb{Q}(\sqrt{3}, \sqrt{3} + \sqrt[3]{3}, \sqrt[3]{3} + \sqrt[5]{3})$ $y \mathbb{L} = \mathbb{K}(\xi_{15})$, donde ξ_{15} es una raíz primitiva quinceava de la unidad.

- (a) Calcular $[\mathbb{K}:\mathbb{Q}]$.
- (b) $i Es \mathbb{Q} \subset \mathbb{K} \text{ normal?}$
- (c) Demostrar que \mathbb{L} es la clausura normal de $\mathbb{Q} \subset \mathbb{K}$.
- (d) Demostrar que $\sqrt{3} \notin \mathbb{Q}(\xi_5)$, donde ξ_5 es una raíz primitiva quinta de la unidad. Ayuda: obsérvese que $\sqrt{5} \in \mathbb{Q}(\xi_5)$.
- (e) Usar(d) para comprobar que $[L: \mathbb{Q}] = 240$.
- (f) ¿Es el polinomio ciclotómico $\Phi_{15}(X)$ irreducible sobre \mathbb{K} ?
- (g) Sea $G = \operatorname{Gal}_{\mathbb{Q}}(\mathbb{L})$. Probar que G tiene subgrupos normales H_1 y H_2 de orden 60 tales que G / H_1 es cíclico y G / H_2 es isomorfo a $C_2 \times C_2$.
- (h) Probar que G tiene un subgrupo no normal de orden 48.
- (i) ¿Es G abeliano?
- (j) Calcular el subgrupo de G correspondiente a la extensión intermedia $\mathbb K$ en el teorema fundamental. Solución.
 - (a) Veamos primero que $\mathbb{K} = \mathbb{Q}(\sqrt{3}, \sqrt[3]{3}, \sqrt[5]{3})$. La contención \subset es trivial. Para la otra, como $\sqrt{3} + \sqrt[3]{3} \in \mathbb{K}$ y $\sqrt{3} \in \mathbb{K}$, entonces $\sqrt{3} + \sqrt[3]{3} \sqrt{3} = \sqrt[3]{3} \in \mathbb{K}$. Usando esto y el hecho de que $\sqrt[3]{3} + \sqrt[5]{3} \in \mathbb{K}$ obtenemos que $\sqrt[3]{3} + \sqrt[5]{3} \sqrt[3]{3} = \sqrt[5]{3} \in \mathbb{K}$. Como $\sqrt{3}, \sqrt[3]{3}, \sqrt[5]{3} \in \mathbb{K}$, entonces $\mathbb{Q}(\sqrt{3}, \sqrt[3]{3}, \sqrt[5]{3}) \subset \mathbb{K}$.

Hallamos ahora el grado de la extensión. Se tiene que

- $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}] = 2$, pues $X^2 3$ es mónico e irreducible (Eisenstein con p = 3) y anula a $\sqrt{3}$.
- $[\mathbb{Q}(\sqrt[3]{3}): \mathbb{Q}] = 3$, pues $X^3 3$ es mónico e irreducible (Eisenstein con p = 3) y anula a $\sqrt[3]{3}$.
- $[\mathbb{Q}(\sqrt[5]{3}): \mathbb{Q}] = 5$, pues $X^5 3$ es mónico e irreducible (Eisenstein con p = 3) y anula a $\sqrt[5]{3}$.

Por ser 2, 3 y 5 coprimos,

$$[\mathbb{K}:\mathbb{Q}] = [\mathbb{Q}(\sqrt{3}, \sqrt[3]{3}, \sqrt[5]{3}):\mathbb{Q}] = 2 \cdot 3 \cdot 5 = 30$$

(b) Se tiene que $[\mathbb{Q}(\sqrt{3},\sqrt[3]{3},\sqrt[5]{3}): \mathbb{Q}(\sqrt{3},\sqrt[3]{3})] \leq 5$, pues $X^5 - 3 \in \mathbb{Q}(\sqrt{3},\sqrt[3]{3})[X]$ anula a $\sqrt[5]{3}$. Asimismo, $[\mathbb{Q}(\sqrt{3},\sqrt[3]{3}): \mathbb{Q}(\sqrt{3})] \leq 3$, pues $X^3 - 3 \in \mathbb{Q}(\sqrt{3})[X]$ anula a $\sqrt[3]{3}$. Además, $[\mathbb{Q}(\sqrt{3}): \mathbb{Q}] = 2$ como se ha visto antes. Por tanto,

$$30 = [\mathbb{Q}(\sqrt{3}, \sqrt[3]{3}, \sqrt[5]{3}) \colon \mathbb{Q}] = [\mathbb{Q}(\sqrt{3}, \sqrt[3]{3}, \sqrt[5]{3}) \colon \mathbb{Q}(\sqrt{3}, \sqrt[3]{3})] [\mathbb{Q}(\sqrt{3}, \sqrt[3]{3}) \colon \mathbb{Q}(\sqrt{3})] [\mathbb{Q}(\sqrt{3}) \colon \mathbb{Q}] \le 5 \cdot 3 \cdot 2 = 30$$

Debe ser entonces

$$[\mathbb{Q}(\sqrt{3}, \sqrt[3]{3}, \sqrt[5]{3}) : \mathbb{Q}(\sqrt{3}, \sqrt[3]{3})] = 5,$$
 $[\mathbb{Q}(\sqrt{3}, \sqrt[3]{3}) : \mathbb{Q}(\sqrt{3})] = 3$

La primera igualdad nos dice que $\operatorname{Irr}(\sqrt[5]{3},X,\mathbb{Q}(\sqrt{3},\sqrt[3]{3}))=X^5-3$, que tiene como raíces a $\xi_5^k\sqrt[5]{3}$, donde $k\in\{0,1,2,3,4\}$. Como al menos una de estas raíces es compleja y en $\mathbb{Q}(\sqrt{3},\sqrt[3]{3},\sqrt[5]{3})$ no hay elementos complejos, tenemos que la extensión $\mathbb{Q}(\sqrt{3},\sqrt[3]{3})\subset\mathbb{Q}(\sqrt{3},\sqrt[3]{3},\sqrt[5]{3})$ no es normal, y, por tanto, la extensión $\mathbb{Q}\subset\mathbb{Q}(\sqrt{3},\sqrt[3]{3},\sqrt[5]{3})=\mathbb{K}$ tampoco lo es.

(c) Se va a utilizar a lo largo del ejercicio que $\mathbb{K}(\xi_{15}) = \mathbb{K}(\xi_3, \xi_5)$, igualdad que es cierta porque mcd(3,5) = 1.

Sea \mathbb{L}' la clausura normal de la extensión $\mathbb{Q} \subset \mathbb{K}$. Recuperamos del apartado anterior la igualdad $[\mathbb{Q}(\sqrt{3},\sqrt[3]{3}):\mathbb{Q}(\sqrt{3})]=3$, que nos dice que $X^3-3=\mathrm{Irr}(\sqrt[3]{3},X,\mathbb{Q}(\sqrt{3}))$. Las raíces de este polinomio son $\xi_3^k\sqrt[3]{3}$, $k\in\{0,1,2\}$. Como \mathbb{L}' debe contener a los elementos $\xi_3^k\sqrt[3]{3}$, en particular, contiene a $\sqrt[3]{3}$ y a $\xi_3\sqrt[3]{3}$, luego también contiene a ξ_3 .

Asimismo, como las raíces del polinomio $X^5-3=\operatorname{Irr}(\sqrt[5]{3},X,\mathbb{Q}(\sqrt{3},\sqrt[3]{3}))$ son $\xi_5^k\sqrt[5]{3}, k\in\{0,1,2,3,4\}$, entonces en \mathbb{L}' también deben estar ξ_5 y $\sqrt[5]{3}$. Evidentemente, también debe estar $\sqrt{3}$ (porque es raíz de $X^2-3=\operatorname{Irr}(\sqrt{3},X,\mathbb{Q})$).

Pero $\mathbb{L} = \mathbb{Q}(\sqrt{3}, \sqrt[3]{3}, \sqrt[5]{3}, \xi_3, \xi_5)$ es, por definición, el menor cuerpo que contiene a \mathbb{Q} , $\sqrt{3}$, $\sqrt[5]{3}$, así que basta comprobar que la extensión $\mathbb{Q} \subset \mathbb{L}$ es normal para que se tenga $\mathbb{L} = \mathbb{L}'$. Pero esto es trivial porque \mathbb{L} contiene a todas las raíces los polinomios $X^2 - 3$, $X^3 - 3$ y $X^5 - 3$, luego es el cuerpo de descomposición del producto de los tres sobre \mathbb{Q} . En consecuencia, la extensión $\mathbb{Q} \subset \mathbb{L}$ es normal y $\mathbb{L} = \mathbb{L}'$.

- (*d*) Lo primero que observamos es que $\sqrt{3} \notin \mathbb{Q}(\sqrt{5})$. En efecto, supóngase que existen $a, b \in \mathbb{Q}$ tales que $\sqrt{3} = a + b\sqrt{5}$ (se está usando que $[\mathbb{Q}(\sqrt{5}):\mathbb{Q}] = 2$). Se distinguen tres casos:
 - Si a=0, entonces $\sqrt{3}=b\sqrt{5}$ y $3=5b^2=5\frac{m^2}{n^2}$ $(m,n\in\mathbb{N},\operatorname{mcd}(m,n)=1)$, luego $3n^2=5m^2$ y esto es imposible porque $\operatorname{mcd}(n,m)=1$.
 - Si b = 0, entonces $\sqrt{3} = a \in \mathbb{Q}$, que es imposible.
 - Si $a \neq 0$, $b \neq 0$, al elevar al cuadrado en $\sqrt{3} b\sqrt{5} = a$ se obtiene $3 + 5b^2 2b\sqrt{15} = a^2$, luego

$$\sqrt{15} = -\frac{a^2 - 5b^2 - 3}{2b} \in \mathbb{Q},$$

que es imposible.

Al llegarse a contradicción en todos los casos, hay que admitir que $\sqrt{3} \notin \mathbb{Q}(\sqrt{5})$ y, en consecuencia, $[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}(\sqrt{5})] \ge 2$. De hecho, $[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}(\sqrt{5})] = 2$ porque $X^2 - 3$ anula a $\sqrt{3}$. Por reducción al absurdo, supongamos que $\sqrt{3} \in \mathbb{Q}(\xi_5)$. Como también es $\sqrt{5} \in \mathbb{Q}(\xi_5)$, entonces $\mathbb{Q}(\sqrt{3},\sqrt{5}) \subset \mathbb{Q}(\xi_5)$. Pero $[\mathbb{Q}(\sqrt{3},\sqrt{5}) \subset \mathbb{Q}] = 4$ y $[\mathbb{Q}(\xi_5):\mathbb{Q}] = \phi(5) = 4$, así que $\mathbb{Q}(\sqrt{3},\sqrt{5}) = \mathbb{Q}(\xi_5)$ y esto es imposible porque en $\mathbb{Q}(\xi_5)$ hay números complejos y en $\mathbb{Q}(\sqrt{3},\sqrt{5})$ no.

- (e) Vamos a probar que $\xi_3 \not\in \mathbb{Q}(\xi_5, \sqrt{3})$. Para ello, se va a demostrar que las extensiones $\mathbb{Q} \subset \mathbb{Q}(\xi_5, \sqrt{3})$ y $\mathbb{Q} \subset \mathbb{Q}(\xi_5, \xi_3, \sqrt{3})$ tienen distintos grupos de Galois. En primer lugar, como $\xi_3 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, entonces $\mathbb{Q}(\xi_5, \xi_3, \sqrt{3}) = \mathbb{Q}(\xi_5, i, \sqrt{3})$.
 - Los elementos de $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\xi_5,\sqrt{3}))$ quedan totalmente determinados por

$$\sigma_{ij}(\xi_5) = \xi_5^i,$$
 $\sigma_{ij}(\sqrt{3}) = (-1)^j \sqrt{3},$

con $i \in \{1, 2, 3, 4\}, j \in \{0, 1\}$. Se comprueba fácilmente que hay 3 elementos de orden 2.

■ Los elementos de $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\xi_5,i,\sqrt{3}))$ quedan totalmente determinados por

$$\sigma_{ijk}(\xi_5) = \xi_5^i, \qquad \qquad \sigma_{ijk}(i) = (-1^j)i, \qquad \qquad \sigma_{ijk}(\sqrt{3}) = (-1)^k \sqrt{3},$$

con $i \in \{1,2,3,4\}, j \in \{0,1\}, k \in \{0,1\}$. Se comprueba fácilmente que hay más de 3 elementos de orden 2.

Con todo esto puede afirmarse que $\xi_3 \notin \mathbb{Q}(\xi_5, \sqrt{3})$, así que

$$[\mathbb{Q}(\xi_5, \xi_3, \sqrt{3}): \mathbb{Q}] = [\mathbb{Q}(\xi_5, \xi_3, \sqrt{3}): \mathbb{Q}(\xi_5, \sqrt{3})][\mathbb{Q}(\xi_5, \sqrt{3}): \mathbb{Q}] = 2 \cdot 8 = 16,$$

y como $[\mathbb{Q}(\sqrt[3]{3}):\mathbb{Q}] = 3$, $[\mathbb{Q}(\sqrt[5]{3}):\mathbb{Q}] = 5$ y 3, 5 y 16 son primos relativos, entonces

$$[L: \mathbb{Q}] = [\mathbb{Q}(\sqrt{3}, \sqrt[3]{3}, \sqrt[5]{3}, \xi_3, \xi_5): \mathbb{Q}] = 3 \cdot 5 \cdot 16 = 240$$

(f) Sí, porque

$$[\mathbb{L} : \mathbb{K}] = [\mathbb{K}(\xi_{15}) : \mathbb{K}] = \frac{[\mathbb{L} : \mathbb{Q}]}{[\mathbb{K} : \mathbb{Q}]} = \frac{240}{30} = 8 = \phi(15)$$

y $\Phi_{15}(X)$ es un polinomio de grado $\phi(15)$ que anula a ξ_{15} , luego es su polinomio mínimo sobre \mathbb{K} y, en consecuencia, es irreducible.

(g) Consideremos la torre de extensiones

$$\mathbb{Q} \subset \mathbb{Q}(\xi_5) \subset \mathbb{L}$$

Como $[\mathbb{Q}(\xi_5)\colon\mathbb{Q}]=4$ y $[\mathbb{L}\colon\mathbb{Q}(\xi_5)]=\frac{[\mathbb{L}\colon\mathbb{Q}]}{[\mathbb{Q}(\xi_5)\colon\mathbb{Q}]}=60$, por el teorema fundamental, $H_1=\mathrm{Gal}_{\mathbb{Q}(\xi_5)}(\mathbb{L})$ es un subgrupo de $\mathrm{Gal}_{\mathbb{Q}}(\mathbb{L})$ de orden 60. De hecho, como la extensión $\mathbb{Q}\subset\mathbb{Q}(\xi_5)$ es normal (pues $\mathbb{Q}(\xi_5)$ es el cuerpo de descomposición sobre \mathbb{Q} de X^5-1), entonces el subgrupo es normal y, además,

$$\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\xi_5)) = \operatorname{Gal}_{\mathbb{Q}}(\mathbb{L}) / \operatorname{Gal}_{\mathbb{Q}(\xi_5)}(\mathbb{L}) = G / H_1$$

Pero $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\xi_5)) \cong \mathbb{Z}_5^* \cong \mathbb{Z}_4$, que es cíclico, así que $G \setminus H_1$ también lo es.

Por otra parte, consideremos la torre de extensiones

$$\mathbb{Q} \subset \mathbb{Q}(\xi_3, \sqrt{3}) \subset \mathbb{L}$$

Como $[\mathbb{Q}(\xi_3,\sqrt{3})\colon\mathbb{Q}]=4$ y $[\mathbb{L}\colon\mathbb{Q}(\xi_3,\sqrt{3})]=\frac{[\mathbb{L}\colon\mathbb{Q}]}{[\mathbb{Q}(\xi_3,\sqrt{3})\colon\mathbb{Q}]}=60$, aplicando el teorema fundamental, $H_2=\operatorname{Gal}_{\mathbb{Q}(\xi_3,\sqrt{3})}(\mathbb{L})$ es un subgrupo de $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{L})$ de orden 60. Es más, como la extensión $\mathbb{Q}\subset\mathbb{Q}(\xi_3,\sqrt{3})$ es normal (pues $\mathbb{Q}(\xi_3,\sqrt{3})$ es el cuerpo de descomposición sobre \mathbb{Q} de $(X^3-1)(X^2-3)$), entonces el subgrupo es normal y, además,

$$\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\xi_3,\sqrt{3})) = \operatorname{Gal}_{\mathbb{Q}}(\mathbb{L}) / \operatorname{Gal}_{\mathbb{Q}(\xi_3,\sqrt{3})}(\mathbb{L}) = G / H_2$$

Veamos que $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\xi_3,\sqrt{3})) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Sus elementos vienen dados por

$$\sigma_{ij}(\xi_3) = \xi_3^i, \qquad \qquad \sigma_{ij}(\sqrt{3}) = (-1)^j \sqrt{3},$$

con $i \in \{1,2\}$ y $j \in \{1,2\}$. Calculando el orden de los elementos, se obtiene

$$\circ \sigma_{11} = 2, \qquad \circ \sigma_{12} = 1, \qquad \circ \sigma_{21} = 2, \qquad \circ \sigma_{22} = 2,$$

Los únicos grupos de orden 4 son \mathbb{Z}_4 y $\mathbb{Z}_2 \times \mathbb{Z}_2$, y como no hay elementos de orden 4, debe ser $Gal_{\mathbb{Q}}(\mathbb{Q}(\xi_3,\sqrt{3})) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

(h) Consideremos la torre de extensiones

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt[5]{3}) \subset \mathbb{L}$$

Como $[\mathbb{Q}(\sqrt[5]{3}):\mathbb{Q}]=5$ y $[\mathbb{L}:\mathbb{Q}(\sqrt[5]{3})]=\frac{[\mathbb{L}:\mathbb{Q}]}{[\mathbb{Q}(\sqrt[5]{3}):\mathbb{Q}]}=48$, por el teorema fundamental, $H=\operatorname{Gal}_{\mathbb{Q}(\sqrt[5]{3})}(\mathbb{L})$ es un subgrupo de $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{L})$ de orden 48. Es más, como la extensión $\mathbb{Q}\subset\mathbb{Q}(\sqrt[5]{3})$ no es normal (pues $\operatorname{Irr}(\sqrt[5]{3})=X^5-3$ tiene como raíces a $\xi_5^k\sqrt[5]{3}$, $k\in\{0,1,2,3,4\}$, y en $\mathbb{Q}(\sqrt[5]{3})$ no hay números complejos), entonces H no es un subgrupo normal de G.

- (i) *G* no es abeliano, pues si lo fuese, todos sus subgrupos serían normales, y esto no se tiene por el apartado anterior.
- (j) El subgrupo de G correspondiente a la extensión $\mathbb{F} \subset \mathbb{K}$ es $\mathrm{Gal}_{\mathbb{K}}(\mathbb{L})$, que es un subgrupo de G de orden $[\mathbb{L} \colon \mathbb{K}] = \frac{[\mathbb{L} \colon \mathbb{Q}]}{[\mathbb{K} \colon \mathbb{Q}]} = 8$. Como $\mathbb{L} = \mathbb{K}(\xi_{15})$, un automorfismo $\sigma \in \mathrm{Gal}_{\mathbb{K}}(\mathbb{L})$ queda totalmente determinado por la imagen de ξ_{15} , $\sigma(\xi_{15})$, que debe ser una raíz de $\mathrm{Irr}(\xi_{15}, X, \mathbb{K}) = \Phi_{15}(X)$ (esta igualdad se razonó en el apartado (f)). Las raíces de $\Phi_{15}(X)$ son las raíces primitivas quinceavas, es decir, los elementos de la forma ξ_{15}^k , donde $k \in \mathbb{N}$ es tal que $\mathrm{mcd}(15, k) = 1$. Así, $\sigma(\xi_{15}) = \xi_{15}^k$ y observamos que el orden de σ coincide con el orden de κ en $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$. La conclusión es que $\mathrm{Gal}_{\mathbb{K}}(\mathbb{L}) = \mathbb{Z}_{15}^*$.

Ejercicio 20. Sean $\alpha, \beta \in \mathbb{C}$ tales que $[\mathbb{Q}(\alpha): \mathbb{Q}] = 2 = [\mathbb{Q}(\beta): \mathbb{Q}]$ y $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\beta)$.

- (a) Calcular $[\mathbb{Q}(\alpha, \beta): \mathbb{Q}]$.
- (b) Determinar $Gal_{\mathbb{Q}}(\mathbb{Q}(\alpha, \beta))$.
- (c) Encontrar $\alpha' \in \mathbb{Q}(\alpha, \beta)$ tal que $\mathbb{Q}(\alpha') = \mathbb{Q}(\alpha)$ y $\alpha'^2 \in \mathbb{Q}$.
- (d) Probar que la aplicación $f: \mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha)$ dada por $f(a+b\alpha') = a-b\alpha'$ es un isomorfismo de anillos.
- (e) Encontrar $\gamma \in \mathbb{Q}(\alpha, \beta)$ tal que $\mathbb{Q}(\gamma)$ es el tercer cuerpo intermedio de la extensión $\mathbb{Q}(\alpha, \beta)$.
- (f) Demostrar que $\mathbb{Q}(\alpha + c\beta) = \mathbb{Q}(\alpha, \beta)$ para cualquier $c \in \mathbb{Q}$ no nulo.

Solución.

(a) Sean $f(X) = \operatorname{Irr}(\alpha, X, \mathbb{Q})$ y $g(X) = \operatorname{Irr}(\beta, X, \mathbb{Q})$. Tenemos que $\deg(f(X)) = \deg(g(X)) = 2$. Por tanto, $[\mathbb{Q}(\alpha, \beta) \colon \mathbb{Q}(\alpha)] \le 2$ ($g(X) \in \mathbb{Q}(\alpha)[X]$ anula a β y es de grado 2). El grado de la extensión no puede ser 1 porque $\mathbb{Q}(\alpha) \ne \mathbb{Q}(\beta)$, luego $[\mathbb{Q}(\alpha, \beta) \colon \mathbb{Q}(\alpha)] = 2$ y entonces

$$[\mathbb{Q}(\alpha,\beta)\colon\mathbb{Q}] = [\mathbb{Q}(\alpha,\beta)\colon\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha)\colon\mathbb{Q}] = 4$$

(b) Las raíces de f(X) son $\alpha, \overline{\alpha} \in \mathbb{Q}(\alpha)$, mientras que las raíces de g(X) son $\beta, \overline{\beta} \in \mathbb{Q}(\beta)$. Además, por ser $[\mathbb{Q}(\alpha, \beta) \colon \mathbb{Q}(\alpha)] = 2$, tenemos $g(X) = \operatorname{Irr}(\beta, X, \mathbb{Q}(\alpha))$. Con todo esto, podemos construir los elementos de $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\alpha, \beta))$. Sean $\alpha_1 = \alpha$, $\alpha_2 = \overline{\alpha}$, $\beta_1 = \beta$, $\beta_2 = \overline{\beta}$.

$$\mathbb{Q} \xrightarrow{id} \mathbb{Q}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Q}(\alpha) \xrightarrow{\sigma_i} \mathbb{Q}(\alpha)$$

$$\alpha \longmapsto \alpha_i$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Q}(\alpha, \beta) \xrightarrow{\sigma_{ij}} \mathbb{Q}(\alpha, \beta)$$

$$\alpha \longmapsto \alpha_i$$

$$\beta \longmapsto \beta_j$$

Nótese que

$$\circ \sigma_{11} = 1$$
, $\circ \sigma_{12} = 2$, $\circ \sigma_{21} = 2$, $\circ \sigma_{22} = 2$,

luego $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\alpha,\beta)) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

(c) Si $f(X) = X^2 + bX + a$, entonces

$$\alpha \in \left\{ \frac{-b + \sqrt{b^2 - 4a}}{2}, \frac{-b - \sqrt{b^2 - 4a}}{2} \right\}$$

Es claro que $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{b^2 - 4a})$, luego basta tomar $\alpha' = \sqrt{b^2 - 4a}$.

(d) Sea $f: \mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha)$ la aplicación dada por $f(c + d\alpha') = c - d\alpha'$. Nótese que f está bien definida porque $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha')$ y $\{1, \alpha'\}$ es una base de $\mathbb{Q}(\alpha')$ como \mathbb{Q} -espacio vectorial. Supongamos que

$$\alpha = \frac{-b + \sqrt{b^2 - 4a}}{2} = -\frac{b}{2} + \frac{1}{2}\alpha'$$

Entonces

$$f(\alpha) = \frac{b}{2} - \frac{1}{2}\alpha' = \frac{-b - \sqrt{b^2 - 4ac}}{2} = \overline{\alpha}$$

En consecuencia, $f: \mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha)$ es una aplicación que extiende a la identidad en \mathbb{Q} y que verifica $f(\alpha) = \overline{\alpha}$. Como α y $\overline{\alpha}$ son raíces de $f(X) = \operatorname{Irr}(\alpha, X, \mathbb{Q})$, existe un único isomorfismo de $\mathbb{Q}(\alpha)$ en $\mathbb{Q}(\overline{\alpha}) = \mathbb{Q}(\alpha)$ que extiende a la identidad en \mathbb{Q} y que envía α en $\overline{\alpha}$. Pero f es precisamente esta aplicación, así que, en particular, es un isomorfismo.

(e) Como $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\alpha,\beta)) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, hay tantas extensiones intermedias en la extensión $\mathbb{Q} \subset \mathbb{Q}(\alpha,\beta)$ como subgrupos en $\mathbb{Z}_2 \times \mathbb{Z}_2$. Los subgrupos propios de $\mathbb{Z}_2 \times \mathbb{Z}_2$ son $\mathbb{Z}_2 \times \{0\}$, $\{0\} \times \mathbb{Z}_2$, $\langle (1,1) \rangle$. Hay que identificar los elementos de $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\alpha,\beta))$ con los de $\mathbb{Z}_2 \times \mathbb{Z}_2$: se observa que $\mathbb{Z}_2 \times \{0\} \cong \langle \sigma_{21} \rangle$ y $\{0\} \times \mathbb{Z}_2 \cong \langle \sigma_{12} \rangle$, luego los subgrupos propios de $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\alpha,\beta))$ serían $\langle \sigma_{21} \rangle$, $\langle \sigma_{12} \rangle$ y $\langle \sigma_{22} \rangle$. Los cuerpos intermedios que corresponden a estos subgrupos son $\operatorname{Inv}(\langle \sigma_{12} \rangle)$, $\operatorname{Inv}(\langle \sigma_{21} \rangle)$ y $\operatorname{Inv}(\langle \sigma_{22} \rangle)$. Dos de estos cuerpos son $\mathbb{Q}(\alpha)$ y $\mathbb{Q}(\beta)$, y el tercero es el que buscamos. Se comprueba fácilmente que $\mathbb{Q}(\alpha) = \operatorname{Inv}(\langle \sigma_{12} \rangle)$ y que $\mathbb{Q}(\beta) = \operatorname{Inv}(\langle \sigma_{21} \rangle)$. Hallemos $\operatorname{Inv}(\langle \sigma_{22} \rangle)$. Sea $a_1 + a_2\alpha + a_3\beta + a_4\alpha\beta \in \mathbb{Q}(\alpha,\beta)$. Se tiene que

$$\sigma_{22}(a_1 + a_2\alpha + a_3\beta + a_4\alpha\beta) = a_1 + a_2\alpha + a_3\beta + a_4\alpha\beta \Longleftrightarrow a_1 + a_2\overline{\alpha} + a_3\overline{\beta} + a_4\overline{\alpha}\overline{\beta} = a_1 + a_2\alpha + a_3\beta + a_4\alpha\beta \tag{*}$$

En un apartado anterior se probó que $\alpha' = \alpha - \overline{\alpha}$ es tal que $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha')$ y $\alpha'^2 \in \mathbb{Q}$. Análogamente se demuestra que $\beta' = \beta - \overline{\beta}$ es tal que $\mathbb{Q}(\beta) = \mathbb{Q}(\beta')$ y $\beta'^2 \in \mathbb{Q}$. Seguimos con la cadena de equivalencias anterior:

$$(*) \iff a_1 + a_2(\alpha - \alpha') + a_3(\beta - \beta') + a_4(\alpha - \alpha')(\beta - \beta') = a_1 + a_2\alpha + a_3\beta + a_4\alpha\beta$$

$$\iff a_1 + a_2\alpha - a_2\alpha' + a_3\beta - a_3\beta' + a_4\alpha\beta - a_4\alpha\beta' - a_4\alpha'\beta + a_4\alpha'\beta' = a_1 + a_2\alpha + a_3\beta + a_4\alpha\beta$$

$$\iff -a_4(\alpha'\beta + \alpha\beta') - a_2\alpha' - a_3\beta' + a_4\alpha'\beta' = 0$$

$$(**)$$

Nótese que $\mathbb{Q}(\alpha',\beta') = \mathbb{Q}(\alpha,\beta)$ y una base suya como \mathbb{Q} -espacio vectorial es $\{1,\alpha',\beta',\alpha'\beta'\}$. Sería bastante conveniente escribir $\alpha'\beta - \alpha\beta'$ en términos de α' , β' y $\alpha'\beta'$ para tener una combinación lineal nula de los elementos de la base. Pero α , α' , β , β' son de la forma

$$\alpha = -\frac{b}{2} + \frac{1}{2}\sqrt{b^2 - 4a}, \quad \alpha' = \sqrt{b^2 - 4a}, \quad \beta = -\frac{c}{2} + \frac{1}{2}\sqrt{c^2 - 4d}, \quad \beta' = \sqrt{c^2 - 4d},$$

con $a, b, c, d \in \mathbb{Q}$. Por tanto,

$$\begin{split} \alpha'\beta + \alpha\beta' &= -\frac{c}{2}\sqrt{b^2 - 4a} + \frac{1}{2}\sqrt{b^2 - 4a}\sqrt{c^2 - 4d} - \frac{b}{2}\sqrt{c^2 - 4d} + \frac{1}{2}\sqrt{b^2 - 4a}\sqrt{c^2 - 4d} \\ &= -\frac{c}{2}\sqrt{b^2 - 4a} - \frac{b}{2}\sqrt{c^2 - 4d} + \sqrt{b^2 - 4a}\sqrt{c^2 - 4d} \\ &= -\frac{c}{2}\alpha' - \frac{b}{2}\beta' + \alpha'\beta' \end{split}$$

En consecuencia,

$$(**) \iff a_4 \frac{c}{2} \alpha' + a_4 \frac{b}{2} \beta' - a_2 \alpha' - a_3 \beta' = 0 \iff \left(a_4 \frac{c}{2} - a_2 \right) \alpha' + \left(a_4 \frac{b}{2} - a_3 \right) \beta' = 0$$

$$\iff a_2 = a_4 \frac{c}{2}, \ a_3 = a_4 \frac{b}{2}$$

Así,

$$\operatorname{Inv}(\langle \sigma_{22} \rangle) = \left\{ a_1 + a_4 \frac{c}{2} \alpha + a_4 \frac{b}{2} \beta + a_4 \alpha \beta \colon a_1, a_4 \in \mathbb{Q} \right\} = \left\{ a_1 + a_4 \left(\frac{c}{2} \alpha + \frac{b}{2} \beta + \alpha \beta \right) \colon a_1, a_4 \in \mathbb{Q} \right\}$$

Se tiene que

$$\frac{c}{2}\alpha + \frac{b}{2}\beta + \alpha\beta = -\frac{bc}{4} + \frac{c}{4}\alpha' - \frac{b\not e}{4} + \frac{b}{4}\beta' + \frac{b\not e}{4} - \frac{b}{4}\beta' - \frac{c}{4}\alpha' + \frac{1}{4}\alpha'\beta' = -\frac{bc}{4} + \frac{1}{4}\alpha'\beta'$$

Por tanto,

$$\operatorname{Inv}(\langle \sigma_{22} \rangle) = \mathbb{Q}(-bc + \alpha'\beta') = \mathbb{Q}(\alpha'\beta')$$

- (*f*) Sea $q \in \mathbb{C}$ con $q \neq 0$ y veamos que $\mathbb{Q}(\alpha + q\beta) = \mathbb{Q}(\alpha, \beta)$.
 - Veamos que $\mathbb{Q}(\alpha + q\beta) \neq \mathbb{Q}$. Si existiese $q' \in \mathbb{Q}$ con $\alpha + q\beta = q'$, entonces $\alpha = q' q\beta \in \mathbb{Q}(\beta)$, que es imposible porque $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\beta)$.

- Veamos que $\mathbb{Q}(\alpha + q\beta) \neq \mathbb{Q}(\alpha)$. Si fuese $\mathbb{Q}(\alpha + q\beta) = \mathbb{Q}(\alpha)$, entonces $\alpha + q\beta \in \mathbb{Q}(\alpha)$ y $\alpha \in \mathbb{Q}(\alpha)$, luego $\alpha + q\beta \alpha = q\beta \in \mathbb{Q}(\alpha)$, y como $q \neq 0$, sería $\beta \in \mathbb{Q}(\alpha)$, que es imposible porque $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\beta)$.
- Veamos que $\mathbb{Q}(\alpha + q\beta) \neq \mathbb{Q}(\beta)$. Si fuese $\mathbb{Q}(\alpha + q\beta) = \mathbb{Q}(\beta)$, entonces $\alpha + q\beta \in \mathbb{Q}(\beta)$ y $q\beta \in \mathbb{Q}(\beta)$, luego $\alpha + q\beta q\beta = \alpha \in \mathbb{Q}(\beta)$, que también es imposible porque $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\beta)$.
- Veamos que $\mathbb{Q}(\alpha + q\beta) \neq \mathbb{Q}(\alpha'\beta')$. Se tiene que

$$a + q\beta = -\frac{b}{2} + \frac{1}{2}\alpha' + q\left(-\frac{c}{2} + \frac{1}{2}\beta'\right) = -\frac{b}{2} - \frac{cq}{2} + \frac{1}{2}\alpha' + \frac{q}{2}\beta' = q' + \frac{1}{2}\alpha' + \frac{q}{2}\beta',$$

donde $q' \in \mathbb{Q}$. Por tanto,

$$\mathbb{Q}(\alpha + q\beta) = \mathbb{Q}(q' + \frac{1}{2}\alpha' + \frac{q}{2}\beta') = \mathbb{Q}(\alpha' + q\beta')$$

Por reducción al absurdo, supongamos que $\mathbb{Q}(\alpha' + q\beta') = \mathbb{Q}(\alpha'\beta')$. Entonces

$$(\alpha' + \alpha \beta')\alpha'\beta' = \alpha'^2\beta' + \alpha \alpha'\beta'^2 \in \mathbb{Q}(\alpha'\beta')$$

Pero $\alpha'^2 \in \mathbb{Q}$, así que podemos dividir por α'^2 (que es no nulo porque si fuese $\sqrt{b^2-4a}=0$ entonces $\alpha \in \mathbb{Q}$, que es falso). Así, $\beta'+q\alpha'\frac{\beta'^2}{\alpha'^2} \in \mathbb{Q}(\alpha'\beta')$. Pero también es $\beta'^2 \in \mathbb{Q}$, luego $q'=(q\frac{\alpha'^2}{\beta'^2})^{-1} \in \mathbb{Q}$ y por tanto $q'\beta'+\alpha' \in \mathbb{Q}(\alpha'\beta')$. Tenemos entonces $\alpha'+q\beta' \in \mathbb{Q}(\alpha'\beta')$ y $\alpha'+q'\beta' \in \mathbb{Q}(\alpha'\beta')$, así que al restarlos y dividir por q-q' (que es no nulo, probablemente) se obtiene $\beta' \in \mathbb{Q}(\alpha'\beta')$, luego $\mathbb{Q}(\beta) = \mathbb{Q}(\beta') = \mathbb{Q}(\alpha'\beta)$ y esto es imposible por el apartado anterior.

Como no hay más cuerpos intermedios en la extensión $\mathbb{Q} \subset \mathbb{Q}(\alpha, \beta)$, no queda más remedio que admitir que $\mathbb{Q}(\alpha + q\beta) = \mathbb{Q}(\alpha, \beta)$.

Ejercicio 21. Encontrar todos los subgrupos de $Gal_{\mathbb{F}}(\mathbb{K})$, siendo \mathbb{K} el cuerpo de descomposición de f(X) sobre \mathbb{F} , donde

(a)
$$\mathbb{F} = \mathbb{Q}(i), f(X) = X^6 - 1;$$

(b)
$$\mathbb{F} = \mathbb{O}$$
, $f(X) = X^{10} - 1$.

Solución.

(a) Si ξ es una raíz primitiva sexta de la unidad, el cuerpo de descomposición de \mathbb{F} sobre f(X) es $\mathbb{K} = \mathbb{F}(\xi) = \mathbb{Q}(i,\xi)$. Veamos que $i \not\in \mathbb{Q}(\xi)$, lo que nos ayudará a calcular el grado de la extensión. Como $\xi = \cos(60^\circ) + i \sec(60^\circ) = \frac{1}{2} + i \frac{\sqrt{3}}{2}$, entonces $i \frac{\sqrt{3}}{2} \in \mathbb{Q}(\xi)$, y si fuese $i \in \mathbb{Q}(\xi)$, tendríamos $\sqrt{3} \in \mathbb{Q}(\xi)$, y como $[\mathbb{Q}(\xi) \colon \mathbb{Q}] = \phi(6) = 2 = [\mathbb{Q}(\sqrt{3}) \colon \mathbb{Q}]$, luego $\mathbb{Q}(\sqrt{3}) = \mathbb{Q}(\xi)$ y esto es imposible porque $\mathbb{Q}(\sqrt{3}) \subset \mathbb{R}$ y hemos supuesto que $i \in \mathbb{Q}(\xi)$. Por tanto, $[\mathbb{Q}(i,\xi) \colon \mathbb{Q}(\xi)] = 2$ (es menor o igual que 2 porque $X^2 + 1$ anula a i; no puede ser 1 por lo que se acaba de probar). En consecuencia,

$$[\mathbb{Q}(i,\xi):\mathbb{Q}] = [\mathbb{Q}(i,\xi):\mathbb{Q}(\xi)][\mathbb{Q}(\xi):\mathbb{Q}] = 4$$

Si $\sigma \in \operatorname{Gal}_{\mathbb{Q}(i)}(\mathbb{Q}(i,\xi))$, entonces $\sigma(\xi)$ es una raíz de $\operatorname{Irr}(\xi,X,\mathbb{Q}(i)) = \operatorname{Irr}(\xi,X,\mathbb{Q}) = \Phi_6(X)$ (igualdad que se tiene porque $[\mathbb{Q}(i,\xi):\mathbb{Q}(i)] = 2$), es decir, solo hay dos posibilidades, $\sigma(\xi) = \xi$ y $\sigma(\xi) = \xi^5$. Se tiene que $\operatorname{Gal}_{\mathbb{F}}(\mathbb{K}) \cong \mathbb{Z}_2$ y el único subgrupo propio es $\langle \sigma \rangle$, donde $\sigma \in \operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$ es tal que $\sigma(\xi) = \xi^5$.

Como $\operatorname{Gal}_{\mathbb{Q}(i)}(K)$ es un grupo abeliano, todos los subgrupos son normales, luego todos los cuerpos intermedios $\mathbb{Q}(i) \subset \mathbb{E} \subset \mathbb{K}$ son tales que $\mathbb{Q}(i) \subset \mathbb{E}$ es normal. Pero $\mathbb{Q} \subset \mathbb{Q}(i)$ también es normal (es de grado 2), así que $\mathbb{Q} \subset \mathbb{E}$ es normal.

(b) Se verifica que $\mathbb{K} = \mathbb{Q}(\xi)$, donde ξ es una raíz primitiva décima de la unidad. Además, se tiene $\operatorname{Gal}_{\mathbb{F}}(\mathbb{K}) \cong \mathbb{Z}_{10}^* = \{1,3,7,9\}$, que es isomorfo a \mathbb{Z}_4 porque 3 tiene orden 4. Por tanto, como $\operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$ es cíclico, existe un único subgrupo de orden d para cada divisor d de 4, es decir, solo hay un subgrupo no trivial y este es de orden 2. Basta tomar el subgrupo generado por cualquier elemento de $\operatorname{Gal}_{\mathbb{F}}(\mathbb{K})$ de orden 2, que puede hallarse fácilmente.

Por ser $Gal_{\mathbb{F}}(\mathbb{K})$ un grupo abeliano, todos los cuerpos intermedios $\mathbb{Q} \subset \mathbb{E} \subset \mathbb{K}$ verifican que $\mathbb{Q} \subset \mathbb{E}$ es normal.

Ejercicio 22. Sean α la raíz real de X^3 – 2 en \mathbb{C} , ξ_6 una raíz primitiva sexta de la unidad, $\mathbb{F} = \mathbb{Q}(\alpha)$ y $\mathbb{K} = \mathbb{Q}(\alpha, \xi_6)$.

- (a) Comprobar que \mathbb{K} es la clausura normal de $\mathbb{Q} \subset \mathbb{F}$.
- (b) ¿Existe un elemento primitivo de $\mathbb{Q} \subset \mathbb{K}$?
- (c) ¿Se puede dar un polinomio $f(X) \in \mathbb{Q}[X]$ tal que \mathbb{F} sea el cuerpo de descomposición de f(X) sobre \mathbb{Q} ? ¿Y para $\mathbb{Q} \subset \mathbb{K}$?
- (d) Calcular $Gal_{\mathbb{Q}}(\mathbb{F})$.
- (e) Calcular $[\mathbb{K}:\mathbb{Q}]$ y |G|, donde $G = \operatorname{Gal}_{\mathbb{Q}}(\mathbb{K})$.
- (f) Determinar el orden del subgrupo H de G correspondiente a \mathbb{F} en el teorema fundamental.
- (g) Demostrar que G tiene un subgrupo normal S tal que G / S es isomorfo a \mathbb{Z}_6^* .
- (h) ¿Se pueden encontrar dos subgrupos de G de orden 2?

Solución.

(a) Las raíces de X^3-2 son $\xi_3^k\sqrt[3]{2}$, donde $k\in\{0,1,2\}$ y ξ_3 es una raíz primitiva tercera de la unidad. Se tiene entonces $\alpha=\sqrt[3]{2}$. Además,

$$\xi_3 = \cos(120^\circ) + i \operatorname{sen}(120^\circ) = -\frac{1}{2} + i \frac{\sqrt{3}}{2}, \qquad \qquad \xi_6 = \cos(60^\circ) + i \operatorname{sen}(60^\circ) = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$

En consecuencia, $\mathbb{K} = \mathbb{Q}(\alpha, \xi_6) = \mathbb{Q}(\alpha, \xi_3)$. Observamos además que la clausura normal de $\mathbb{Q} \subset \mathbb{Q}(\alpha)$ contiene a α , luego debe contener a todas las raíces de $X^3 - 2$. En particular, también contiene a $\xi_3 \alpha$, y dividiendo por α obtenemos que debe contener a ξ_3 . Pero, por definición, $\mathbb{K} = \mathbb{Q}(\alpha, \xi_3)$ es el menor cuerpo que contiene a \mathbb{Q} , α y ξ_3 , y además la extensión $\mathbb{Q} \subset \mathbb{K}$ es normal (pues \mathbb{K} es el cuerpo de descomposición de $X^3 - 2$ sobre \mathbb{Q}). Concluimos que \mathbb{K} es la clausura normal de $\mathbb{Q} \subset \mathbb{Q}(\alpha)$.

- (b) Como \mathbb{Q} es perfecto, entonces la extensión $\mathbb{Q} \subset \mathbb{K}$ es separable, y como es finita, el teorema del elemento primitivo asegura la existencia de un elemento primitivo de dicha extensión.
- (c) Para la extensión $\mathbb{Q} \subset \mathbb{Q}(\alpha)$ no existe ningún polinomio $f(X) \in \mathbb{Q}[X]$ tal que $\mathbb{Q}(\alpha)$ sea el cuerpo de descomposición de f(X) sobre \mathbb{Q} . En efecto, si existiese un polinomio en estas condiciones, entonces la extensión $\mathbb{Q} \subset \mathbb{Q}(\alpha)$ sería normal, pero esto es falso porque α es raíz de $X^3 2 \in \mathbb{Q}(\alpha)$ y las otras dos raíces de α no están en $\mathbb{Q}(\alpha)$, pues son complejas y $\mathbb{Q}(\alpha) \subset \mathbb{R}$.

En cuanto a la extensión $\mathbb{Q} \subset \mathbb{K}$, tenemos que $\mathbb{K} = \mathbb{Q}(\alpha, \xi_3)$ es el cuerpo de descomposición de $X^3 - 2 \in \mathbb{Q}[X]$ sobre \mathbb{Q} .

- (d) Cualquier automorfismo $\sigma \colon \mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha)$ que extienda a $id \colon \mathbb{Q} \to \mathbb{Q}$ debe enviar α en una raíz de $\operatorname{Irr}^{id}(\alpha,X,\mathbb{Q}) = X^3 2$. Las raíces de este polinomio son α , $\xi_3\alpha$ y $\xi_3^2\alpha$. Pero $\xi_3\alpha$ y $\xi_3^2\alpha$ no están en $\mathbb{Q}(\alpha)$ (son números complejos), así que la única posibilidad es que $\sigma(\alpha) = \alpha$ y, en consecuencia, σ es la identidad. En resumen: $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{F}) = \{id\}$.
- (e) Tenemos que $[\mathbb{Q}(\alpha, \xi_3): \mathbb{Q}(\alpha)] \le 2$, ya que $X^2 + X + 1$ anula a ξ_3 . Pero no puede ser 1 porque $\xi_3 \notin \mathbb{Q}(\alpha)$, luego $[\mathbb{Q}(\alpha, \xi_3): \mathbb{Q}(\alpha)] = 2$ y, en consecuencia,

$$[\mathbb{K}\colon\mathbb{Q}]=[\mathbb{Q}(\alpha)\colon\mathbb{Q}][\mathbb{Q}(\alpha,\xi_3)\colon\mathbb{Q}(\alpha)]=6$$

La extensión $\mathbb{Q} \subset \mathbb{K}$ es normal y separable, luego es de Galois y, en consecuencia, $|G| = [\mathbb{K} : \mathbb{Q}] = 6$.

(f) El subgrupo pedido es $H = \operatorname{Gal}_{\mathbb{P}}(\mathbb{K}) = \operatorname{Gal}_{\mathbb{Q}(\alpha)}(\mathbb{Q}(\alpha, \xi_3))$. Un automorfismo $\sigma \colon \mathbb{Q}(\alpha, \xi_3) \to \mathbb{Q}(\alpha, \xi_3)$ que extiende a $id \colon \mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha)$ queda totalmente determinado por la imagen de ξ_3 , que es enviado a una raíz de $\operatorname{Irr}(\xi_3, X, \mathbb{Q}(\alpha)) = \operatorname{Irr}(\xi_3, X, \mathbb{Q}) = X^2 + X + 1$, donde en la primera igualdad se ha usado que $[\mathbb{Q}(\alpha, \xi_3) \colon \mathbb{Q}(\alpha)] = 2$. Las raíces de este polinomio son ξ_3 y ξ_3^2 , así que hay dos posibles automorfismos: la identidad y el determinado por $\sigma(\xi_3) = \xi_3^2$. Tenemos entonces

$$H = \{id, \sigma\} \cong \mathbb{Z}_2$$

(g) Consideremos la torre de extensiones

$$\mathbb{Q} \subset \mathbb{Q}(\xi_3) \subset \mathbb{Q}(\alpha, \xi_3)$$

Sea $S = \operatorname{Gal}_{\mathbb{Q}(\xi_3)}(\mathbb{Q}(\alpha, \xi_3))$. Como la extensión $\mathbb{Q} \subset \mathbb{Q}(\xi_3)$ es normal (pues $\mathbb{Q}(\xi_3)$ es el cuerpo de descomposición de $X^3 - 1$ sobre \mathbb{Q}), por el teorema fundamental, S es un subgrupo normal de G y además

$$\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\xi_3)) \cong G_{/S}$$

Pero $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\xi_3)) \cong \mathbb{Z}_3^* \cong \mathbb{Z}_6^*$, donde el último isomorfismo se tiene porque \mathbb{Z}_3^* y \mathbb{Z}_6^* son grupos de $\phi(3) = \phi(6) = 2$ elementos.

(h) Se prueba fácilmente que los elementos de G vienen dados por

$$\sigma_{ij}(\alpha) = \xi_3^i \alpha, \qquad \qquad \sigma_{ij}(\xi_3) = \xi_3^j,$$

con $i \in \{0, 1, 2\}, j \in \{1, 2\}$. También se comprueba fácilmente que

$$\circ \sigma_{01} = 1,$$
 $\circ \sigma_{02} = 2,$ $\circ \sigma_{11} = 3,$ $\circ \sigma_{12} = 2,$ $\circ \sigma_{21} = 3,$ $\circ \sigma_{22} = 2$

Se tiene entonces que $G \cong S_3$ (los grupos de orden 6 son S_3 y \mathbb{Z}_6 , y no hay elementos de orden 6), y en S_3 hay tres subgrupos distintos de orden 2, así que la respuesta a la pregunta del enunciado es afirmativa.

Ejercicio 23. Sea F⊂ K una extensión finita, de Galois y de grado n con grupo de Galois

$$G = {\sigma_1, \sigma_2, \dots, \sigma_n}$$

Demostrar que $\gamma \in \mathbb{K}$ es un elemento primitivo de $\mathbb{F} \subset \mathbb{K}$ si y solo si

$$\sigma_1(\gamma), \sigma_2(\gamma), \dots, \sigma_n(\gamma)$$

son todos diferentes.

Solución. Supongamos que $\mathbb{K} = \mathbb{F}(\gamma)$. Cada automorfismo $\sigma \in G$ queda totalmente determinado por la imagen de γ , que debe ser enviado a una raíz de $f(X) = \operatorname{Irr}(\gamma, X, \mathbb{F})$ que esté en $\mathbb{F}(\gamma)$. Pero $\mathbb{F} \subset \mathbb{F}(\gamma)$ es normal, así que todas las raíces de f(X) están en $\mathbb{F}(\gamma)$, y f(X) es separable (pues la extensión es de Galois), así que tiene $[\mathbb{F}(\alpha) \colon \mathbb{F}]$ raíces distintas. Y, además, $[\mathbb{F}(\alpha) \colon \mathbb{F}] = \#G = n$ por ser la extensión de Galois. La conclusión es que las raíces de f(X) son

$$\sigma_1(\gamma), \sigma_2(\gamma), \ldots, \sigma_n(\gamma),$$

y además son todas distintas.

Recíprocamente, supongamos que existe $\gamma \in \mathbb{K}$ tal que

$$\sigma_1(\gamma), \sigma_2(\gamma), \dots, \sigma_n(\gamma)$$

son todas diferentes, y veamos que $\mathbb{K} = \mathbb{F}(\gamma)$. Basta comprobar que

$$[\mathbb{F}(\gamma):\mathbb{F}] = [\mathbb{K}:\mathbb{F}] = \#G = n$$

Para cada $i \in \{1,2,\ldots,n\}$, $\overline{\sigma}_i = \sigma_i\big|_{\mathbb{F}(\gamma)}$ es una inmersión de $\mathbb{F}(\gamma)$ en \mathbb{K} , y además, como cada una de estas inmersiones queda totalmente determinada por la imagen de γ , por hipótesis, todas las inmersiones $\overline{\sigma}_i$ son diferentes. Así, el número de inmersiones de $\mathbb{F}(\gamma)$ en \mathbb{K} es al menos $n \geq [\mathbb{F}(\alpha) : \mathbb{F}]$. Pero también se sabe que el número de inmersiones de $\mathbb{F}(\gamma)$ en \mathbb{K} que extienden a $id : \mathbb{F} \to \mathbb{F}$ es menor o igual que $[\mathbb{F}(\gamma) : \mathbb{F}]$ (nótese que \mathbb{K} contiene al cuerpo de descomposición de $\mathrm{Irr}(\gamma,X,\mathbb{F})$ sobre \mathbb{F} porque la extensión $\mathbb{F} \subset \mathbb{K}$ es normal, y por tanto puede aplicarse el resultado sobre el número de inmersiones). Todo esto nos dice que

$$n = [\mathbb{F}(\gamma) \colon \mathbb{F}],$$

concluyéndose que $\mathbb{K} = \mathbb{F}(\gamma)$.

Ejercicio 24. Sea p un número primo y sea f(X) un factor irreducible de $X^{p^n} - X$ en $\mathbb{Z}_p[X]$.

- (a) $\lambda Qué$ se puede decir sobre el grado de f(X)?
- (b) Sea α una raíz de f(X) en algún cuerpo de descomposición. Determinar los grados de los factores irreducibles de f(X) en $\mathbb{Z}_p(\alpha)[X]$.
- (c) ¿Cuántas extensiones intermedias tiene el cuerpo de descomposición de f(X) sobre \mathbb{Z}_p ?
- (d) Si d es un entero que divide a n, ¿existe un factor irreducible de X^{p^n} X cuyo grupo de Galois sea cíclico γ de orden d?
- (e) Si d es un entero que divide a n, ¿existe un factor irreducible de X^{p^n} X cuyo grupo de Galois sea isomorfo a S_d ?

Solución.

(a) Veamos que $m = \deg(f(X))$ divide a n. Sea \mathbb{K} el cuerpo de descomposición de $X^{p^n} - X$ sobre \mathbb{Z}_p y sea \mathbb{F} el cuerpo de descomposición de f(X) sobre \mathbb{Z}_p . Sabemos que $\#\mathbb{K} = p^n$ y que f(X) divide a $X^{p^n} - X$, luego $\mathbb{F} \subset \mathbb{K}$ y tenemos la torre de extensiones

$$\mathbb{Z}_p \subset \mathbb{F} \subset \mathbb{K}$$

Además, $[\mathbb{F}\colon \mathbb{Z}_p]=m$, ya que podemos considerar cualquier raíz $\alpha\in\mathbb{F}$ de f(X) y tenemos que la extensión $\mathbb{Z}_p\subset\mathbb{Z}_p(\alpha)$ es normal, así que $\mathbb{Z}_p(\alpha)$ es el cuerpo de descomposición de f(X) sobre \mathbb{Z}_p , es decir, $\mathbb{F}=\mathbb{Z}_p(\alpha)$. Tenemos entonces

$$n = [\mathbb{K} : \mathbb{Z}_p] = [\mathbb{K} : \mathbb{F}][\mathbb{F} : \mathbb{Z}_p] = [\mathbb{K} : \mathbb{F}] \cdot \deg(f(X)),$$

luego m divide a n.

- (b) Como se ha visto en el apartado anterior, $\mathbb{Z}_p(\alpha)$ es el cuerpo de descomposición de f(X) sobre \mathbb{Z}_p . Pero además f(X) es separable (porque \mathbb{Z}_p es finito y, por tanto, perfecto), así que todos los factores irreducibles de f(X) en $\mathbb{Z}_p(\alpha)[X]$ tienen grado 1.
- (c) El cuerpo de descomposición de f(X) sobre \mathbb{Z}_p es $\mathbb{Z}_p(\alpha)$, y sabemos que toda extensión finita de un cuerpo finito es cíclica. Además, la extensión es de Galois, así que

$$\#\operatorname{Gal}_{\mathbb{Z}_p}(\mathbb{Z}_p(\alpha)) = [\mathbb{Z}_p(\alpha) \colon \mathbb{Z}_p] = m$$

Por tanto, como $\operatorname{Gal}_{\mathbb{Z}_p}(\mathbb{Z}_p(\alpha))$ es cíclico, existe un único subgrupo de orden d para cada divisor d de m, luego, por el teorema fundamental, existe un único cuerpo intermedio de la extensión $\mathbb{Z}_p \subset \mathbb{Z}_p(\alpha)$ para cada divisor d de m.

- (d) Veamos que sí existe. Sea d un divisor de n. Sabemos que en la factorización de $X^{p^n} X$ aparecen todos los polinomios mónicos sobre \mathbb{Z}_p de grado un divisor de n. En particular, existe un factor irreducible de $X^{p^n} X$ de grado d, y, repitiendo los razonamientos anteriores, su grupo de Galois es cíclico y de grado d.
- (e) Como se ha visto en los apartados anteriores, todo factor irreducible de $X^{p^n} X$ tiene grupo de Galois cíclico, así que no puede ser isomorfo a S_d para ningún divisor d de n.

Ejercicio 25. Sean α , β raíces reales positivas de $X^4 - 2$ y $X^6 - 2$ respectivamente, y sea $\mathbb{K} = \mathbb{Q}(\alpha, \beta)$.

- (a) Probar que $\frac{\alpha}{\beta}$ es un elemento primitivo de $\mathbb{Q} \subset \mathbb{K}$.
- (b) Demostrar que el polinomio mínimo de α sobre $\mathbb{Q}(\beta)$ es $X^2 \sqrt{2}$.
- (c) $\not\in Existe \ \sigma \in Gal_{\mathbb{Q}}(\mathbb{K}) \ tal \ que \ \sigma(\beta) = -\beta$?
- (d) Demostrar que $\mathbb{K}^{\operatorname{Gal}_{\mathbb{Q}}(\mathbb{K})} = \mathbb{Q}(\beta)$.

(e) Explicar por qué la clausura normal de $\mathbb{Q} \subset \mathbb{K}$ es

$$\mathbb{L} = \mathbb{O}(i, \sqrt{3}, \sqrt[3]{2}, \sqrt[4]{2})$$

- (f) Calcular [\mathbb{L} : \mathbb{Q}].
- (g) Demostra que existe un polinomio irreducible $f(X) \in \mathbb{Q}[X]$ de grado 12 con grupo de Galois soluble y de orden 48. ¿Son las raíces de este polinomio construibles con regla y compás?
- (h) Sea $G = \operatorname{Gal}_{\mathbb{Q}}(\mathbb{L})$. Encontrar dos subgrupos H_1 , H_2 de G de orden 6 tales que H_1 sea un subgrupo normal y H_2 no lo sea.
- (i) Probar que existe un subgrupo normal S de G tal que G / S es isomorfo a \mathbb{Z}_{19}^* .
- (j) $Es H_1$ un subgrupo de S?

Solución. Las raíces de X^4-2 son $\sqrt[4]{2}$, $-\sqrt[4]{2}$, $i\sqrt[4]{2}$ y $-i\sqrt[4]{2}$, mientras que las raíces de X^6-2 son $\xi^k\sqrt[6]{2}$, $k \in \{0,1,2,3,4,5\}$, donde ξ es una raíz primitiva sexta de la unidad. Por tanto, $\alpha = \sqrt[4]{2}$ y $\beta = \sqrt[6]{2}$.

(a) Veamos que $\alpha, \beta \in \mathbb{Q}(\frac{\alpha}{\beta})$, lo que probará que $\frac{\alpha}{\beta}$ es un elemento primitivo de la extensión. Se tiene que

$$\left(\frac{\alpha}{\beta}\right)^{12} = \frac{8}{4} = 2,$$

luego $(\frac{\alpha}{\beta})^3$ es una raíz de X^4-2 . Como α y β son reales y positivos, entonces $(\frac{\alpha}{\beta})^3$ también lo es. Pero α es la única raíz real y positiva de X^4-2 , así que $(\frac{\alpha}{\beta})^3=\alpha\in\mathbb{Q}(\frac{\alpha}{\beta})$ y de aquí se sigue inmediatamente que $\mathbb{Q}(\frac{\alpha}{\beta})=\mathbb{Q}(\alpha,\beta)$.

(*b*) Como $X^2 - \sqrt{2} \in \mathbb{Q}(\beta)[X]$ (pues $\beta^3 = \sqrt{2}$) y anula a α , entonces $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\beta)] \le 2$. Veamos que este grado es 2. Si fuese 1, entonces $\mathbb{Q}(\beta) = \mathbb{Q}(\alpha, \beta) = \mathbb{Q}(\frac{\alpha}{\beta})$ y tenemos la torre de extensiones

$$\mathbb{Q} \subset \mathbb{Q}(\alpha) \subset \mathbb{Q}(\beta)$$

Esto no tiene ningún sentido porque $[\mathbb{Q}(\alpha):\mathbb{Q}]=4$ (X^4-2 es irreducible por Eisenstein), que no divide a $[\mathbb{Q}(\beta):\mathbb{Q}]=6$ (X^6-2 es irreducible por Eisenstein). Por tanto, $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\beta)]=2$ y entonces $X^2-\sqrt{2}=\mathrm{Irr}(\alpha,X,\mathbb{Q}(\beta))$.

- (c) Un automorfismo $\sigma \colon \mathbb{Q}(\alpha,\beta) \to \mathbb{Q}(\alpha,\beta)$ debe enviar β en una raíz de $\mathrm{Irr}(\beta,X,\mathbb{Q}(\alpha))$, que es un polinomio de grado $[\mathbb{Q}(\alpha,\beta)\colon\mathbb{Q}]=\frac{[\mathbb{Q}(\alpha,\beta)\colon\mathbb{Q}]}{[\mathbb{Q}(\alpha)\colon\mathbb{Q}]}=3$. Pero las raíces de este polinomio son β , γ y $\overline{\gamma}$ para algún $\gamma \in \mathbb{C}$, y no puede ser $\gamma \in \mathbb{R}$ porque entonces $\mathrm{Irr}(\beta,X,\mathbb{Q}(\alpha))$, que es separable por ser \mathbb{Q} perfecto, tendría una raíz doble. Como $-\beta \in \mathbb{R}$ y $\beta \neq -\beta$, todo esto nos dice que $-\beta$ no puede ser raíz de $\mathrm{Irr}(\beta,X,\mathbb{Q}(\alpha))$, así que no existe ningún $\sigma \in \mathrm{Gal}_{\mathbb{Q}}(\mathbb{K})$ que envíe β en $-\beta$.
- (d) Sea $G = \operatorname{Gal}_{\mathbb{Q}}(\mathbb{K})$ y veamos que $\mathbb{K}^G = \mathbb{Q}(\beta)$. Por el apartado anterior, si $\sigma \in G$, entonces $\sigma(\beta) = \beta$ (no puede ser $\sigma(\beta) = \gamma$ o $\sigma(\beta) = \overline{\gamma}$ porque $\mathbb{Q}(\alpha, \beta) \subset \mathbb{R}$ y $\gamma \in \mathbb{C} \setminus \mathbb{R}$). Esto nos dice que $\mathbb{Q}(\beta) \subset \mathbb{K}^G$. Consideremos la torre de extensiones

$$\mathbb{Q}(\beta) \subset \mathbb{K}^G \subset \mathbb{K}$$

Como $[\mathbb{Q}(\alpha,\beta)\colon\mathbb{Q}(\beta)]=2$, entonces solo hay dos posibilidades: $\mathbb{Q}(\beta)=\mathbb{K}^G$ o $\mathbb{K}^G=\mathbb{K}$. La segunda igualdad nos diría que todo elemento de G es el grupo trivial, y esto es imposible porque las raíces de $X^2-2=\operatorname{Irr}(\alpha,X,\mathbb{Q}(\beta))$ son $\alpha,-\alpha\in\mathbb{K}$, así que la aplicación $\sigma\colon\mathbb{K}\to\mathbb{K}$ determinada por $\sigma(\alpha)=-\alpha$, $\sigma(\beta)=\beta$ es un automorfismo distinto de la identidad. Por tanto, debe ser $\mathbb{Q}(\beta)=\mathbb{K}^G$.

(e) La clausura normal de la extensión, \mathbb{L} , es el cuerpo de descomposición sobre \mathbb{Q} del polinomio $(X^4-2)(X^6-2)$, cuyas raíces son

$$\sqrt[4]{2}$$
, $-\sqrt[4]{2}$, $i\sqrt[4]{2}$, $-i\sqrt[4]{2}$, $\sqrt[6]{2}$, $\xi\sqrt[6]{2}$, $\xi^2\sqrt[6]{2}$, $\xi^3\sqrt[6]{2}$, $\xi^4\sqrt[6]{2}$, $\xi^5\sqrt[6]{2}$

Es claro que $\mathbb{L} = \mathbb{Q}(i, \xi, \sqrt[4]{2}, \sqrt[6]{2})$. Pero

$$\xi = \cos(60^\circ) + i \operatorname{sen}(60^\circ) = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$

De aquí se deduce fácilmente que

$$\mathbb{L} = \mathbb{Q}(i, \sqrt{3}, \sqrt[4]{2}, \sqrt[6]{2})$$

- (f) Se tiene que $[\mathbb{Q}(\sqrt{3}, \sqrt[4]{2}): \mathbb{Q}] = 8$ (tiene que dividir a 4 porque $[\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}] = 4$; no puede ser 4 porque $\sqrt[4]{2} \notin \mathbb{Q}(\sqrt{3})$, como se prueba fácilmente). Por tanto, como 8 y $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}] = 3$ son coprimos, entonces $[\mathbb{Q}(\sqrt{3}, \sqrt[4]{2}, \sqrt[3]{2}): \mathbb{Q}] = 24$. Y como $\mathbb{Q}(\sqrt{3}, \sqrt[4]{2}, \sqrt[3]{2}) \subset \mathbb{R}$, entonces $[\mathbb{Q}(i, \sqrt{3}, \sqrt[4]{2}, \sqrt[3]{2}): \mathbb{Q}] = 48$.
- (g) Observamos que la extensión $\mathbb{Q} \subset \mathbb{L}$ es de Galois, luego $G = \operatorname{Gal}_{\mathbb{Q}}(\mathbb{L})$ es de orden $48 = [\mathbb{L} : \mathbb{Q}]$, y es soluble porque la extensión $\mathbb{Q} \subset \mathbb{L}$ es claramente radical. Tratamos de encontrar una torre de extensiones

$$\mathbb{Q} \subset \mathbb{E} \subset \mathbb{L}$$

de forma que $\mathbb{Q} \subset \mathbb{E}$ sea de Galois y de grado 12. Por el teorema fundamental, esto es equivalente a encontrar un subgrupo normal H de G de orden 4. Por el primer teorema de Sylow ($|G| = 2^4 \cdot 3$), existe un subgrupo H de orden $2^2 = 4$, y como los grupos de orden 4 son abelianos, H es un subgrupo normal de G. En consecuencia, la extensión $\mathbb{Q} \subset \operatorname{Inv}(H)$ es de Galois. En particular, es primitiva, luego existe $u \in \mathbb{L}$ tal que $\operatorname{Inv}(H) = \mathbb{Q}(u)$ y el polinomio buscado es $f(X) = \operatorname{Irr}(u, X, \mathbb{Q})$.

Veamos que una raíz v de f(X) no es construible con regla y compás. Como la extensión $\mathbb{Q} \subset \mathbb{Q}(u)$ es normal, entonces $v \in \mathbb{Q}(u)$; de hecho, $\mathbb{Q}(u) = \mathbb{Q}(v)$. Además, v es construible con regla y compás si y solo existe una cadena de cuerpos

$$\mathbb{Q} = \mathbb{F}_0 \subset \mathbb{F}_1 \subset \ldots \subset \mathbb{F}_s$$

con $v \in \mathbb{F}_s$ y $[\mathbb{F}_k : \mathbb{F}_{k-1}]$, $k \in \{1, 2, ..., s\}$. Pero si $v \in \mathbb{F}_s$, entonces tenemos la torre de extensiones

$$\mathbb{Q} \subset \mathbb{Q}(v) \subset \mathbb{F}_s$$

Esto carece de sentido porque $[\mathbb{F}_s:\mathbb{Q}]$ es potencia de dos y $[\mathbb{Q}(v):\mathbb{Q}]=12$ es múltiplo de 3.

- (h) De nuevo por causa del teorema fundamental, encontrar subgrupos en G de orden 6 es lo mismo que encontrar torres de extensiones $\mathbb{Q} \subset \mathbb{E} \subset \mathbb{L}$ tales que $[\mathbb{E} \colon \mathbb{Q}] = 8$. Hay que encontrar una extensión que sea normal y otra que no lo sea. Para la normal, basta considerar $\mathbb{E} = \mathbb{Q}(i, \sqrt[4]{2})$ (como se comprueba fácilmente), y para la otra, puede escogerse $\mathbb{E}' = \mathbb{Q}(\sqrt{3}, \sqrt[4]{2})$ (como se comprueba aún más fácilmente). Los subgrupos buscados son $\mathrm{Gal}_{\mathbb{F}}(\mathbb{L})$ y $\mathrm{Gal}_{\mathbb{E}}(\mathbb{L})$.
- (i) Una raíz primitiva doceava de la unidad es

$$\tau = \cos(30^\circ) + i \operatorname{sen}(30^\circ) = \frac{\sqrt{3}}{2} + i \frac{1}{2}$$

Considérese la torre de extensiones

$$\mathbb{Q} \subset \mathbb{Q}(i,\sqrt{3}) \subset \mathbb{L}$$

Como $[\mathbb{Q}(\tau)\colon\mathbb{Q}]=\phi(12)=4=[\mathbb{Q}(i,\sqrt{3})\colon\mathbb{Q}]$ y $\tau\in\mathbb{Q}(i,\sqrt{3})$, entonces $\mathbb{Q}(\tau)=\mathbb{Q}(i,\sqrt{3})$ y tenemos que $\mathrm{Gal}_{\mathbb{Q}}(\mathbb{Q}(i,\sqrt{3}))\cong\mathbb{Z}_{12}^*$ y la extensión $\mathbb{Q}\subset\mathbb{Q}(i,\sqrt{3})$ es de Galois. Aplicando el teorema fundamental, $S=\mathrm{Gal}_{\mathbb{Q}(i,\sqrt{3})}(\mathbb{L})$ es un subgrupo normal de G y además

$$\mathbb{Z}_{12}^* \cong \operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(i,\sqrt{3})) \cong G/S$$

(j) Como $\mathbb{Q}(i,\sqrt{3}) \not\subset \mathbb{Q}(i,\sqrt[4]{2})$, entonces H_1 no es un subgrupo de S.