แผนการสอนประจำบทที่ 7

พอยน์เตอร์ (Pointer)

หัวข้อสำคัญ

- 1. ความหมายและการทำงานของพอยน์เตอร์
- 2. การประกาศตัวแปรพอยน์เตอร์
- 3. การแสดงตำแหน่ง และค่าของข้อมูลที่พอยน์เตอร์ชื้อยู่
- 4. พอยน์เตอร์กับอาร์เรย์
- อาร์เรย์ของพอยน์เตอร์
- 6. พอยน์เตอร์ของพอยน์เตอร์

วัตถุประสงค์เชิงพฤติกรรมการเรียนการสอน

- 1. ผู้เรียนสามารถอธิบายความหมายของพอยน์เตอร์และอาร์เรย์ได้
- 2. ผู้เรียนสามารถสามารถอธิบายการแสดงตำแหน่ง และค่าของข้อมูลของตัวแปลที่พอยน์เตอร์ชื้อยู่ได้
- 3. ผู้เรียนสามารถอธิบายความหมายอาร์เรย์ของพอยน์เตอร์ได้

วิธีการสอนและกิจกรรมการเรียนการสอน

- 1. การบรรยาย
- 2. การทำแบบฝึกหัด

สื่อที่ใช้ประกอบการสอน

- 1. เอกสารประกอบการสอน
- 2. เครื่องคอมพิวเตอร์
- เครื่องฉายภาพนิ่ง

การวัดและประเมินผล

- 1. สังเกตจากความสนใจของผู้เรียน
- 2. ประเมินจากการตอบคำถามของผู้เรียนและกิจกรรมในชั้นเรียน
- 3. การทำแบบฝึกหัดท้ายบท

บทที่ 7

พอยน์เตอร์ (Pointer)

7.1.พอยน์เตอร์ (Pointer)

เมื่อมีการประกาศตัวแปรใด ๆ ขึ้นในโปรแกรม คอมไพเลอร์ของ C จะจัดการจองพื้นที่ใน หน่วยความจำ ณ ตำแหน่งที่ว่างเพื่อเป็นที่เก็บข้อมูลของตัวแปรนั้นปกติผู้พัฒนาจะไม่ทราบว่าตำแหน่งที่เก็บ ข้อมูลนั้นอยู่ ณ ตำแหน่งใด หากต้องการทราบตำแหน่งของข้อมูลในหน่วยความจำ สามารถทำได้โดยการใช้ ตัวแปรประเภทตัวชี้หรือพอยน์เตอร์ (pointer) แสดงตำแหน่งของพื้นที่ในหน่วยความจำดังกล่าวได้

เมื่อมีการประกาศตัวแปรจำนวนเต็ม อักขระ และจำนวนจริง พร้อมกำหนดค่าเริ่มต้นดังต่อไปนี้

- 1. int number = 100;
- 2. char sex = 'M';
- 3. float gpa = 3.21;

การจำลองการจองพื้นที่ของคอมไพเลอรูและจำลองตำแหน่งของตัวแปรในหน่วยความจำแสดงดัง ภาพที่ 7.1 หมายเหตุ ใช้เครื่องหมาย # นำหน้าตำแหน่งบนหน่วยความจำ

ตัวแปร	ตำแหน่งบนหน่วยความจำ	ค่าข้อมูล
number	#1001	100
sex	#1005	'M'
gpa	#1006	3.21

ภาพ 7.1 จำลองการจองพื้นที่ในหน่วยความจำของตัวแปร

7.2.การประกาศตัวแปรพอยน์เตอร์

ชนิดข้อมูล เป็นชนิดของข้อมูลพอยน์เตอร์

ชื่อตัวแปร เป็นชื่อของตัวแปรพอยน์เตอร์

รูปแบบการประกาศ ตัวแปร Pointer	ตัวอย่าง
ชนิดข้อมูล *ชื่อตัวแปร;	int *pt_number; à ตัวแปรพอยเตอร์นี้จะชี้ไปยังชนิดข้อมูลที่เป็น <u>จำนวนเต็ม</u> char *pt_sex; à ตัวแปรพอยน์เตอร์นี้จะชี้ไปยังชนิดข้อมูลที่เป็น <u>ตัวอักษร</u> float *pt_gpa; à ตัวแปรพอยน์เตอร์นี้จะชี้ไปยังชนิดข้อมูลที่เป็น <u>จำนวนจริง</u>

7.3.การกำหนดค่าให้กับตัวแปรพอยน์เตอร์

การประกาศตัวแปรพอยน์เตอร์เพื่อชี้ไปยังตำแหน่งบนหน่วยความจำของตัวแปรชนิดต่างๆ การ ทำงานของพอยเตอร์จะทำงานดังกล่างได้นั้น <u>จำเป็นต้องให้ตัวแปรพอยเตอร์และตัวแปรที่ต้องการชี้ตำแหน่งมี</u> ชนิดข้อมูลชนิดเดียวกันเท่านั้น โดยตัวแปรแต่ละชนิดมีการจองพื้นที่ในหน่วยความจำดังต่อไปนี้

- 1. char จองพื้นที่ในหน่วยความจำไป 1 bytes
- 2. int จองพื้นที่ในหน่วยความจำไป 4 bytes
- 3. float จองพื้นที่ในหน่วยความจำไป 4 bytes

จากข้อมูลข้างต้นและจากภาพที่ 7.1 เมื่อมีการประกาศตัวแปรพอยเตอร์ที่ชี้ไปยังข้อมูลทั้ง 3 ชนิด เพิ่มเติมอีก 3 คำสั่ง ได้ดังต่อไปนี้ โดยภาพที่ 7.2 จำลองการจองพื้นที่ในหน่วยความจำของตัวแปรและตัวแปร พอยน์เตอร์ทั้ง 6 คำสั่งดังกล่าว

- 1. int number = 100;
- int *pt_number;
- 3. char sex = 'M';
- 4. char *pt sex;
- 5. float gpa = 3.21;
- 6. float *pt_gpa;

ตัวแปร	ตำแหน่งบนหน่วยความจำ	ชนิดข้อมูล	ค่าของข้อมูล	ตัวแปรพอยน์เตอร์
number	#1001	int	100	pt_number
sex	#1005	char	'M'	pt_sex
gpa	#1006	float	3.21	pt_gpa

ภาพ 7.2 จำลองการจองพื้นที่ในหน่วยความจำของตัวแปรและตัวแปรพอยน์เตอร์

รูปแบบกำหนดค่าให้กับตัวแปรพอยน์เตอร์	ตัวอย่าง
ตัวแปรพอยน์เตอร์ = <mark>&</mark> ชื่อตัวแปรที่ต้องการทราบตำแหน่ง;	<pre>pt_number =&number pt_sex =&sex pt_gpa =&gpa</pre>

หมายเหตุ ถ้าไม่ต้องการให้ตัวแปรพอยน์เตอร์ชี้ไปที่ตำแหน่งใดสามารถกำหนดให้พอยเตอร์มีค่า เท่ากับ NULL ได้ เช่น int *pt_number = NULL

7.3.1 การกำหนดค่าตัวแปรโดยใช้ตัวแปรพอยน์เตอร์แบบทางตรง

เมื่อกำหนดให้ตัวแปรชนิดตัวนวนเต็มชื่อ number = 100 และตัวแปรพอยน์เตอร์ชื่อ *pt_number ชี้ไปยังที่อยู่ของตัวแปร number จะใช้คำสั่ง 3 คำสั่งดังนี้

- 1. int number = 100;
- 2. int *pt numbere;
- 3. pt number = &number;

โดยภาพจำลองการอ้างที่อยู่และข้อมูลตัวแปร number โดยใช้ตัวแปรพอยน์เตอร์ *pt_number แสดงดังภาพ 7.3

number			umber	
ข้อมูล	100	_	#1001	ข้อมูล
ตำแหน่งบน หน่วยความจำ	#1001		#1111	ตำแหน่งบน หน่วยความจำ

ภาพ 7.3 จำลองภาพการอ้างที่อยู่ของตัวแปรพอยน์เตอร์ *pt number

ตัวแปรพอยน์เตอร์ เป็น ตัวแปรชนิดพอยน์เตอร์ที่สร้างไว้ ชื่อตัวแปรที่ต้องการทราบตำแหน่ง โดย<u>"ทั้งตัวแปรพอยน์เตอร์และตัวแปรที่ต้องการทราบตำแหน่งต้องเป็นประเภทข้อมูลชนิดเดียวกัน"</u> และการ แสดงผลข้อมูลใช้เ<mark>ครื่องหมาย %p</mark> เพื่อแสดงข้อมูลประเภทพอยน์เตอร์ (แสดงตำแหน่ง)

ตัวอย่างการใช้การกำหนดค่าและการแสดงผลของตัวแปรพอยน์เตอร์

```
โปรแกรม
1. ##include <stdio.h>
2. main()
3. {
4.
        int number = 100;
        int *pt_number;
5.
6.
        pt_number = &number;
        printf("address of counter is: %p\n", pt_number);
7.
8.
9.
        char sex = 'M';
        char *pt_sex;
10.
        pt sex = &sex;
11.
12.
        printf("address of sex is: %p\n", pt_sex);
13.
14.
        float gpa = 3.21;
15.
        float *pt_gpa;
16.
        pt_gpa = &gpa;
17.
        printf("address of gpa is: %p", pt gpa);
1. }
                                           ผลลัพธ์
```

7.3.2 การกำหนดค่าตัวแปรโดยใช้ตัวแปรพอยน์เตอร์แบบทางอ้อม

ตัวแปรพอยน์เตอร์ *pt_int ชี้ไปยังตัวแปร num ที่มีค่า 17 เมื่อต้องการให้ตัวแปร value มีค่าเท่ากับตัวแปร num ด้วย วิธีการคือกำหนดให้ value มีค่าเท่ากับ *pt_int โดยใช้คำสั่ง value = pt int; ดังภาพที่ 7.4 และตัวอย่างโปรแกรมด้านล่าง

ภาพ 7.4 จำลองภาพการกำหนดค่าตัวแปรโดยใช้ตัวแปรพอยน์เตอร์

ตัวอย่างการกำหนดค่าตัวแปรโดยใช้ตัวแปรพอยน์เตอร์

7.4.การแสดงค่าของข้อมูลที่ตัวแปรพอยน์เตอร์ชี้

ตัวแปรพอยน์เตอร์สามารถแสดงตำแหน่งข้อมูลของตัวแปรที่มีการชี้หรือมีการกำหนดค่าได้ นอกจากนี้ตัวแปรพอยน์เตอร์สามารถยังสามารถแสดงค่าที่อยู่ในตัวแปรที่พอย์เตอร์ชี้ได้อีกด้วย ซึ่งการแสดงผล ดังกล่าวต้องใช้คำสั่ง printf ควบคู่กันและกำหนดสัญลักษณ์การแสดงผลให้สอดคล้องกับชนิดของข้อมูลของ ตัวแปรด้วย

รูปแบบการแสดงค่าของข้อมูลที่ตัวแปรพอยน์เตอร์ชี้	ตัวอย่าง
printf("% <mark>format",*</mark> ตัวแปรพอยน์เตอร์);	printf("%d",* pt_number);
format คือ รูปแบบของชนิดตัวแปร	printf("%c",* pt_sex);
ioiiiat ผด จ๊กซกกุฎคุมกุญหางชาว	printf("%.2",* pt_gpa);

ตัวอย่างที่ 1 การแสดงค่าของข้อมูลที่ตัวแปรพอยน์เตอร์ชี้

```
โปรแกรม
1. #include <stdio.h>
   main()
3.
      int num = 17;
4.
5.
      int *pt_int;
      pt_int = #
6.
       printf("Value of num is %d\n",num);
       printf("Value pointer pt_int pointing is %d\n",*pt_int);
8.
       printf("Address of num is: %p\n", pt_int);
10. }
                                           ผลลัพธ์
```

ตัวอย่างที่ 2 การแสดงค่าของข้อมูลที่ตัวแปรพอยน์เตอร์ซึ้

โปรแกรม 1. #include <stdio.h> 2. main() 3. { 4. int val1 = 2, val2=3; 5. int *pt_val = &val1; 6. printf("Pointer pt_val is points to val1 at address: %p\n", pt_val); 7. printf("Value of val1 is %d and value of pt_val is %d too\n\n", val1, *pt_val); 8. pt_val = &val2; 9. printf("Now pointer pt_val is point to val2 at address %p\n", pt_val); 10. printf("Value of val2 is %d and now value of pt_val is %d too\n", val2, *pt_val); 11. } ***Bañwố** **Plant** **Pl

7.5.ตัวแปรพอยน์เตอร์กับอาร์เรย์

พอยน์เตอร์สามารถชี้ไปยังข้อมูลในแต่ละ index ของอาร์เรย์ได้ โดยการระบุ index ของอาร์เรย์ที่ ต้องการพอยน์เตอร์อ้างอิงถึง

ถ้าต้องการให้พอยน์เตอร์ชี้ไปยัง index แรกของอาร์เรย์ (index=0) ทำได้โดยกำหนดชื่อของอาร์เรย์ ให้กับตัวแปรพอยน์เตอร์โดยตรง คือ pt = no; หรือ pt = &no[0];

รูปแบบกำหนดค่าให้กับตัวแปรพอยน์เตอร์ชี้ไปยังอาร์เรย์	ตัวอย่าง
ตัวแปรพอยน์เตอร์ = <mark>&</mark> ชื่อตัวแปรอาร์เรย์[หมายเลขอินเด็กซ์];	pt =&no[1]; pt =&no[0]; หรือ pt =no; pt =&no[3*2];

7.5.1 พอยน์เตอร์และการเข้าถึงข้อมูลอาร์เรย์

ถ้ามีการกำหนดค่าของตัวแปรพอยน์เตอร์และตัวแปรอาร์เรย์ ดังต่อไปนี้

- 1. char no[4] = "com";
- 2. char *pt;
- 3. pt = no; หรือ pt = &no[0];

จากคำสั่งด้านบนแสดงภาพจำลองการจองพื้นที่ในหน่วยความจำได้ดังภาพ 7.5 ด้านล่างนี้

pt		no[0]	no[1]	no[2]	no[3]
#101	\neg	С	0	m	NULL
#1001	L,	#101	#102	#103	#104

ภาพ 7.5 จำลองภาพการจองพื้นที่ในหน่วยความจำของตัวแปรพอยน์เตอร์และอาร์เรย์

พอยน์เตอร์สามารถใช้การกระทำการทางคณิตศาสตร์ เช่น +, -, ++, -- เข้ามาจัดการกับการ เลื่อนตัวแปรพอยน์เตอร์ในอาร์เรย์ ดังนั้นการเลื่อนพอยน์เตอร์ไป 1 ตำแหน่ง คือ เลื่อนตำแหน่งใน หน่วยความจำไปเท่ากับขนาดของชนิดตัวแปรนั้น การจำลองการเลื่อนตำแหน่งของพอยน์เตอร์แสดงดังตาราง ด้านล่าง ดังภาพ 7.6

คำสั่ง				ผลลัพธ์			
1. char *pt;	pt						
	#1001						
2. char no[4] = "com";	pt		no[0]	no[1]	no[2]	no[3]	
			С	О	m	null	
	#1001		#101	#102	#103	#104	
3. pt = no;	pt		no[0]	no[1]	no[2]	no[3]	
	#101 _	٦١	С	0	m	null	
	#1001	Ļ	#101	#102	#103	#104	
4. pt = pt+2;	pt		no[0]	no[1]	no[2]	no[3]	
	#103 -		C	0	m	null	
	#1001		#101	#102	→ #103	#104	
5. pt = pt;	pt		no[0]	no[1]	no[2]	no[3]	
	#102		С	0	m	null	
	#1001		#101	→ #102	#103	#104	

ภาพ 7.6 จำลองการเลื่อนตำแหน่งของตัวแปรพอยน์เตอร์และอาร์เรย์

ตัวอย่างพอยน์เตอร์และการเข้าถึงข้อมูลอาร์เรย์-1

โปรแกรม 1. #include "stdio.h" 2. main() { 3. char data[9] = "Computer"; char *pt = data; 4. 5. printf("First element of data at address %p\n", &data[0]); 6. printf("and value of first element is: %c\n\n", *pt); 7. ++pt; 8. printf("pt point to address %p: value %c\n", pt, *pt); 9. --pt; 10. printf("pt point to address %p: value %c\n", pt, *pt); 11. pt = pt+5;12. printf("pt point to address %p: value %c\n", pt, *pt); 13. } ผลลัพธ์

ตัวอย่างพอยน์เตอร์และการเข้าถึงข้อมูลอาร์เรย์-2

โปรแกรม 1. #include "stdio.h" 2. main() { int data[9] = $\{10,20,30,40,50,60,70,80,90\}$; 4. int *pt = data; 5. printf("First element of data at address %p\n", &data[0]); 6. printf("and value of first element is: %d\n\n", *pt); 7. ++pt; 8. printf("pt point to address %p: value %d\n", pt, *pt); 9. --pt; 10. printf("pt point to address %p: value %d\n", pt, *pt); 11. pt = pt+5;12. printf("pt point to address %p: value %d\n", pt, *pt); 13. } ผลลัพธ์

7.3 อาร์เรย์ของพอยน์เตอร์

ตัวแปรพอยน์เตอร์ 1 ตัวแปร สามารถอ้างอิงไปยังตัวแปรอื่น ๆ ได้ ณ เวลาใดเวลาหนึ่งเพียงตัวแปร เดียวเท่านั้น หากต้องการให้พอยน์เตอร์ 1 ตัวแปร สามารถอ้างอิงไปยังตัวแปรอื่นๆ หลาย ๆ ตัวพร้อมกันใน เวลาเดียวกัน สามารถทำได้โดยการประยุกต์ตัวแปรพอยน์เตอร์ให้อยู่ในรูปแบบของอาร์เรย์ ส่วนการอ้างอิง รายการสมาชิกของอาร์เรย์ของพอยน์เตอร์ก็ต้องใส่ [หมายเลขอินเด็กซ์] เหมือนตัวแปรอาร์เรย์ทั่วไป

รูปแบบการประกาศอาร์เรย์ของพอยน์เตอร์	ตัวอย่าง
	int *pt[3]; ->การประกาศตัวแปร pt เป็นตัว
	แปรอาร์เรย์ของพอยน์เตอร์ชนิดจำนวนเต็ม
	ขนาด 3 เซลล์
ชนิดข้อมูล *ตัวแปรพอยน์เตอร์ [ขนาดของอาร์เรย์];	char *pt[10]; ->การประกาศตัวแปร pt เป็น
	ตัวแปรอาร์เรย์ของพอยน์เตอร์ชนิดตัวอักษร
	ขนาด 10 เซลล์

จากชุดคำสั่งของอาร์เรย์ของพอยน์เตอร์ประกอบด้วยการประกาศอาร์เรย์และการกำหนดค่าของ อาร์เรย์ของพอยน์เตอร์แสดงดังภาพ 7.7

คำสั่ง	ผลลัพธ์				
1. int num = 1, val = 2;	num	val			
	1	2			
	#101	#105			
2. int *pt[2];	pt[0]	pt[1]	num	val	
			1	2	
	#108	#112	#101	#105	
3. pt[0] = #	pt[0]	pt[1]	num	val	
	#101		1	2	
	#108	#112	#101	#105	
4. pt[1] = &val	pt[0]	pt[1]	num	val	
	#101	#105	→ 1	2	
	#108	#112	#101	#105	

ภาพที่ 7.7 จำลองการประกาศและการกำหนดค่าของอาร์เรย์ของพอยน์เตอร์

ตัวอย่างอาร์เรย์ของพอยน์เตอร์

```
โปรแกรม
1. #include<stdio.h>
   main(){
      int data[5] = \{1, 2, 3, 4, 5\};
      int *p data[5];
4.
5.
      int i;
      for(i=0; i<5; i++){
6.
7.
          p_data[i] = &data[i];
8.
          printf("Address of data[%d]: %p\n", i, p data[i]);
9.
          printf("Value of data[%d]: %d\n\n", i, *p data[i]);
10.
11. }
                                              ผลลัพธ์
```

7.6.พอยน์เตอร์ของพอยน์เตอร์

พอยน์เตอร์ของพอยน์เตอร์ เรียกอีกอย่างว่า indirect pointer เป็นตัวแปรพอยน์เตอร์ตัวหนึ่งที่ ทำหน้าที่ชี้ไปยังตัวแปรพอยน์เตอร์อีกตัวแทนที่จะชี้ไปยังตัวแปรอื่นโดยตรง หากต้องการทราบตำแหน่ง ของพอยน์เตอร์ของพอยน์เตอร์ต้องใช้ * จำนวน 2 ตัว ตอนประกาศตัวแปร และหากต้องการทราบ ตำแหน่งของพอยน์เตอร์ของพอยน์เตอร์ของพอยน์เตอร์ของพอยน์เตอร์ต้องใช้ * จำนวน 3 ตัว ตอนประกาศตัวแปร ดังนั้นเครื่องหมาย * จะเป็นจำนวนครั้งที่ชี้ไปยังตัวแปร

รูปแบบการประกาศ Indirect pointer	ตัวอย่าง
	int **pt_number;
ชนิดข้อมูล **ตัวแปรพอยน์เตอร์	char **pt_sex;
	int **pt_gpa;

จากชุดคำสั่งของพอยน์เตอร์ของพอยน์เตอร์ประกอบด้วยการประกาศอาร์เรย์และการกำหนดค่าของ พอยน์เตอร์แสดงดังภาพ 7.8

คำสั่ง	ผลลัพธ์				
char num = 'A';	num				
	Α				
	#200				
char *pt1;	pt1	nui	m		
		А			
	#300	#20	00		
char **pt2;	pt2	pt	1	num	
				Α	
	#400	#30	00	#200	
pt1 = #	pt2	pt	1	num	
		20	0 -	Α	
	#400	#30	00	→ #200	
pt2 = &pt1	pt2	pt	1	num	
	300 -	20	0 -	A	
	#400	#30	00	→ #200	

ภาพที่ 7.8 จำลองการประกาศและการกำหนดค่าของพอยน์เตอร์ของพอยน์เตอร์

ตัวอย่างพอยน์เตอร์ของพอยน์เตอร์

คำถามท้ายบทที่ 7

- 1. จงอธิบายความหมายและประโยชน์ของพอยน์เตอร์
- 2. จงอธิบายความหมายของสัญลักษณ์ %p ของพอยน์เตอร์
- 3. จงอธิบายความหมายพอยน์เตอร์ของพอยน์เตอร์
- 4. จงอธิบายความหมายของสัญลักษณ์ * ของ พอยน์เตอร์ของพอยน์เตอร์ (indirect pointer)
- 5. จงประมวลผลโปรแกรมต่อไปนี้พร้อมทั้งแสดงผลลัพธ์ของโปรแกรมที่ปรากฏบนหน้าจอคอมพิวเตอร์

โปรแกรม		ผลลัพธ์	
		(แสดงผลลัพธ์ตามบรรทัดบนหน้าจอคอมพิวเตอร์)	
1.	#include <stdio.h></stdio.h>		
2. main()			
3.	{	1	
4.	float arr[5] = {12.5, 10.0, 13.5, 90.5, 0.5};	2	
5.	float *ptr1 = &arr[0];	3	
6.	float *ptr2 = $ptr1 + 3$;		
7.	printf("%f ", *ptr2);	4	
8.	printf("%d", ptr2 - ptr1);	5	
9.	}		

6. จงแสดงผลลัพธ์ของโปรแกรมดังต่อไปนี้

โปรแกรม		ผลลัพธ์	
		(แ	สดงผลลัพธ์ตามบรรทัดบนหน้าจอคอมพิวเตอร์)
1. #include <stdio.< td=""><td>h></td><td></td><td></td></stdio.<>	h>		
2. main()		1	
3. {		1	
4. char data[8]	= "computer"; int i;	2.	
5. char *ptr = 8	kdata[0];	3.	
6. for (i=0;i<8;i+	-=2)		
7. printf("pt poi	nt to address %p: value	4.	
%c\n", ptr, *	otr);	5.	
8. ptr = ptr+1;	}		
9. }			

7. จงแสดงผลลัพธ์ของโปรแกรมดังต่อไปนี้

โปรแกรม		ผลลัพธ์	
		(แสดงผลลัพธ์ตามบรรทัดบนหน้าจอคอมพิวเตอร์)	
1. #include <stdio.h></stdio.h>			
2. main()		1	
3. {		1	
4.	int *ptr;	2	
5.	int num;	3	
6.		4	
7.	ptr = #		
8.	*ptr = 0;	5	
9.		6	
10.	printf("num = %d", num);		
11.	printf(" *ptr = %d\n", *ptr);	7	
12.		8	
13.	*ptr += 5;	9	
14.	printf("num = %d", num);	7	
15.	printf(" *ptr = %d\n", *ptr);	10	
16.		11	
17.	(*ptr)++;		
18.	printf("num = %d", num);	12	
19.	printf(" *ptr = %d\n", *ptr);		
20.			
21. }			

8.จงเติมโปรแกรมให้สมบูรณ์

```
First Element is at address: 00000000023FE30, value is: 10
Now pointer is point to address: 00000000023FE34, value is: 20
Now pointer is point to address: 00000000023FE38, value is: 30
Now pointer is point to address: 00000000023FE34, value is: 20
Now pointer is point to address: 00000000023FE3C, value is: 40
Now pointer is point to address: 00000000023FE30, value is: 10
```

```
1. #include<stdio.h>
2. main()
3. {
4.
       int data[5] = \{10,20,30,40,50\};
5.
       int *pt data;
        pt data = &data[0];
6.
7.
        printf("First Element is at address: %p, value is: %d\n", pt data, *pt data);
8.
        printf("Now pointer is point to address: %p, value is: %d\n", pt data, *pt data);
9.
10.
        printf("Now pointer is point to address: %p, value is: %d\n", pt data, *pt data);
11.
12.
        printf("Now pointer is point to address: %p, value is: %d\n", pt data, *pt data);
13.
14.
        printf("Now pointer is point to address: %p, value is: %d\n", pt data, *pt data);
15.
16.
        printf("Now pointer is point to address: %p, value is: %d\n", pt data, *pt data);
17.
18. }
```

9.จงเขียนโปรแกรมสำหรับวนรับค่าจากแป้นคีย์บอร์ดเป็นจำนวนเต็ม ชื่อ data[5] จำนวน 5 ค่าโดยใช้อาร์เรย์ และต้องใช้ **ตัวแปรพอยน์เตอร์ ชื่อ pt_data** ในการชี้ไปยังตำแหน่งของจำนวนเต็มที่รับค่ามา จากนั้นให้ นิสิตแสดงผลลัพธ์เป็นค่าและตำแหน่ง ของจำนวนเต็มที่รับเข้ามา โดยมีข้อกำหนดดังต่อไปนี้

- กำหนดให้มีการแสดงผลแบบย้อนกลับจากหลังสุดมายังหน้าสุด
- ใช้ตัวแปรพอยน์เตอร์ ชื่อ pt_data ในการแสดงผลเท่านั้น
- รูปแบบการแสดงผลดังตัวอย่างหน้าจอด้านล่าง

```
Insert Number 1: 10
Insert Number 2: 20
Insert Number 3: 30
Insert Number 4: 40
Insert Number 5: 50

---- Result ----
position 5 => address: 000000000062FE30 and value is: 50
position 4 => address: 000000000062FE2C and value is: 40
position 3 => address: 000000000062FE28 and value is: 30
position 2 => address: 000000000062FE24 and value is: 20
position 1 => address: 000000000062FE20 and value is: 10
```

- 10. จงเขียนโปรแกรมสำหรับวนรับค่าจากแป้นคีย์บอร์ดเป็น**จำนวนเต็ม ชื่อ data[10]** จำนวน 10 ค่าโดยใช้ อาร์เรย์และต้องใช้ **ตัวแปรอาร์เรย์ของพอยน์เตอร์ ชื่อ pt_data[10]** ในการชี้ไปยังตำแหน่งของ จำนวนเต็มที่รับค่ามา จากนั้นให้นิสิตแสดงผลลัพธ์เป็นค่าและตำแหน่ง ของจำนวนเต็มที่รับเข้ามา โดยมี ข้อกำหนดดังต่อไปนี้
 - กำหนดให้มีการแสดงผลแบบย้อนกลับจากหลังสุดมายังหน้าสุด
 - เลือกแสดงข้อมูลเฉพาะค่า index ของ pt_data ที่เป็นเลขคู่เท่านั้น
 - ใช้ตัวแปรพอยน์เตอร์ ชื่อ pt_data[10] ในการแสดงผลเท่านั้น
 - รูปแบบการแสดงผลดังตัวอย่างหน้าจอด้านล่าง

```
Insert Number Number 1:
Insert Number Number 2:
Insert Number Number 3:
Insert Number Number 4: 40
Insert Number Number 5:
Insert Number Number 6:
Insert Number Number 7:
Insert Number Number 8:
Insert Number Number 9:
Insert Number Number 10: 100
    - Result -
position 10 => address: 00000000062FE44 and value is: 100
position 8 => address: 00000000062FE3C and value is: 80
position 6 => address: 00000000062FE34 and value is: 60
position 4 \Rightarrow address: 000000000062FE2C and value is: 40
position 2 \Rightarrow address: 000000000062FE24 and value is:
```