Therren: if for in differentiable function over the convex set X C IR? then I (n) in convex over X iff $f(\alpha^2)$ $f(\alpha') + \nabla^T f(\alpha') (\alpha^2 - \alpha')$ for all x', x2 C X. Proof: - Given - f(a) is convex over X For all χ' , $\chi^2 \in \chi$ and for all $\chi \in (0,1]$ $f(\chi \chi^2 + (-\chi) \chi') \langle \chi f(\chi^2) + (-\chi) f(\chi') \rangle$

Pooblen:- (P) Consider equality constrind problem Min $f(\alpha)$ Such that $h_j(\alpha) = 0$, $j = 1, 2, \dots, r < \eta$ In 1760 Lagrange transformed this contrained fromblery forblery to an unconstrained fromblery By ving Lagrange Multiplier); To fungulate Lagrange fun fr j=1,2,..., r $L(x,x) = f(x) + \sum_{j=1}^{\infty} \lambda_j h_j(x) = f(x) + \lambda^T h(x)$

The equality constrained forblery (P) for f & h; E C' and assume that the Jacobian Matrix [] zo of rank's. The necessary cond for interior local Minimum, at of equality constrained problem (P) in. 1x munt consincide with the stationary foint
(1x, x*) of Lagrange function L OR: there exist $a \nearrow^*$ such that $\frac{\partial L}{\partial x_i} \left(x^*, x^* \right) = 0 \quad , \quad \vec{\tau} = 1, 2, ..., n \quad k \quad \frac{\partial L}{\partial \lambda_j} \left(x^*, x^* \right) = 0$ $for \quad j = 1, 2, ..., n$

Given: (1) f & hj E C' il follows an interior local min at x=xx To foore: - for 7=x*, Jx subthul $\frac{\partial L(x^*, \lambda^*)}{\partial x^*} = 0, \ \dot{z} = 1, 2, ..., n;$ $X = \frac{\partial x_i}{\partial \lambda_j} (x^*, \lambda^*) = 0, \quad j = 1, 2, \dots, \infty$

 $dh_j = \nabla T h_j(x^*) dx = 0, \quad j = 1, 2, \dots, r.$ Coonsider the Lagrange fun $L(x,x) = f(x) + \sum_{j=1}^{\infty} \lambda_j h_j(n)$ The differential of $L^{\frac{1}{2}}$, yaken by $JL = Jf + \sum_{j=1}^{r} \lambda_j Qh_j$ $\frac{\partial L}{\partial x_1} = 0$ $\frac{\partial L}{\partial x_2} = 0$ $\frac{\partial L}{\partial x_1} = 0$ $\frac{\partial L}{\partial x_2} = 0$ $\frac{\partial L}{\partial x_2} = 0$ $\frac{\partial L}{\partial x_1} = 0$ $\frac{\partial L}{\partial x_2} = 0$ h(x) = 0 . z.e; h(x*+dx) = 0(as the constrained satisfies) dr such Halt

Choose Lagrange multipliers λ_j , j=1,2,...,7Such that at χ^* $\frac{\partial L}{\partial x_{j}}(x^{*},\lambda) = \frac{\partial f}{\partial x_{j}}(x^{*}) + \left[\frac{\partial h}{\partial x_{j}}(x^{*})\right]^{T}\lambda = 0$ $\dot{f} = 1,2,...,r.$ The solution of this system provides the vector x. Here the r' variables, xj, j=1,2,..., r may be any appropriate set of r'variables foron the set 74, == 1,2,...,n. A unique solution for x* exists as it is assumed that \[\frac{\partial}{\partial} \times \times \frac{\partial}{\partial} \times \frac{\partial}{\partial} \times \frac{\partial}{\partial} \times \frac{\partial}{\partial} \times \frac{\partial}{\partial} \times \times \frac{\partial}{\partial} \times \times \frac{\partial}{\partial} \times \frac{\partial}{\part They the equation (3) reduces to

 $dL = \frac{\partial L}{\partial x_{r+1}} \left(x^*, \chi^* \right) dx_{r+1} + \frac{\partial L}{\partial x_n} \left(\chi^*, \chi^* \right) dx_n = 0$ Again consider the constraints h; (x) = 0, j = 1, 2, ..., r Tet there equations one considered as a system of V-Equations 27 the unknowns 24,221..., Xx there dependent unknowns can be so fuld for in terms of xx+1, xx+2, ..., xn. Hence the latter (n-o) variables are the independent variables. For any choice of these independent variables

the other independent variables $x_1, x_2, ..., x_n$ and

determined by Ralry $h(n) = [h_1(x), ..., h_n(n)]^T$

In foorticulon 2nt, to 2n may be vorried

One-by-one at 2x and it follows from (5) That $\frac{\partial L}{\partial x_j}(x^*, \lambda^*) = 0$, $j = \sigma + 1$, $\sigma + 2$, ..., η and, Loyether with (4) & constraint, h(x)=0. interior local minimum can be written on $\begin{cases}
\frac{\partial L}{\partial x_{i}} \left(x^{*}, x^{*} \right) = 0 & \forall z = 1, 2, ..., \gamma \\
\frac{\partial L}{\partial x_{j}} \left(x^{*}, x^{*} \right) = 0 & \forall j = 1, 2, ..., \gamma
\end{cases}$ $\nabla_{\mathcal{A}} L(x^*, x^*) = 0 \quad \text{a.} \quad \nabla_{\mathcal{A}} L(x^*, x^*) = 0$

