MR.SPI-Robust.CI

ivanxu259

September 2023

1 Introduction

2 Algorithm

Here is an example of a simple algorithm:

Algorithm 1 Constructing A Robust CI via Searching and Sampling with Trimmed Initial Interval

Input: GWAS summary statistics of independent SNPs: $\{\gamma_{bj}, \sigma_{b\gamma j}, \Gamma_{bj}, \sigma_{b\Gamma j}\}_{1 \leq j \leq p}$; Sample sizes n_1 for the exposure and n_2 for the outcome; Threshold α^* for selecting relevant IVs; Significance level $\alpha \in (0,1)$; Sampling number M.

Output: The robust confidence interval CI_{robust} .

- 1: Estimate the set of relevant IVs \hat{S} and valid IVs \hat{V} as in Algorithm 1 with the resulting Voting Matrix: Vote.Mat.
- 2: Find L_{trim} and U_{trim} using -
 - 1. majority rule:

$$L_m = \min_{\substack{\hat{V}' \subset \hat{V} \\ |\hat{V}'| = \left\lceil \frac{|\hat{V}|}{2} \right\rceil}} \hat{\beta}_{\hat{V}'} - Z_{1-\frac{\alpha}{2}} \sqrt{\hat{Var}(\hat{\beta}_{\hat{V}'})}$$

$$U_m = \max_{\substack{\hat{V}' \subset \hat{V} \\ |\hat{V}'| = \left\lceil \frac{|\hat{V}|}{2} \right\rceil}} \hat{\beta}_{\hat{V}'} + Z_{1-\frac{\alpha}{2}} \sqrt{\hat{Var}(\hat{\beta}_{\hat{V}'})}$$

2. plural rule:

$$L_p = \min_{\substack{\hat{V}' \subset \hat{V} \\ |\hat{V}'| = \max_{l \in \hat{s}/\hat{V}} \mathbf{V} \mathbf{M}_l}} \hat{\beta}_{\hat{V}'} - Z_{1 - \frac{\alpha}{2}} \sqrt{\hat{Var}(\hat{\beta}_{\hat{V}'})}$$

$$U_p = \max_{\substack{\hat{V}' \subset \hat{V} \\ |\hat{V}'| = \max_{l \in \hat{s}/\hat{V}} \mathbf{V} \mathbf{M}_l}} \hat{\beta}_{\hat{V}'} + Z_{1 - \frac{\alpha}{2}} \sqrt{\hat{Var}(\hat{\beta}_{\hat{V}'})}$$

 $\hat{\beta}_{\hat{V}'}$ and $\hat{Var}(\hat{\beta}_{\hat{V}'})$ are calculated using equation (10) and equation (11) respectively and $VM_i = \sum_{i=1}^{|V|} Vote.Mat_i$

- 3: Use the initial interval $[L_m, U_m]$ or $[L_p, U_p]$ to obtain the corresponding grid set B.
- 4: Follow the steps 3-8 in Algorithm 2 to Construct the robust confidence interval CI_{robust}

$$CI_{trim} = [max(L_{robust}, L_{trim}), min(U_{robust}, U_{trim})]$$

3 Results

We compared the length and coverage of the CIs generated by the new methods with the current results generated by MR.SPI in 14 scenarios:

(S1):
$$\gamma = 0.25 \cdot (\mathbf{1}_5, -\mathbf{1}_5)^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_6, \mathbf{1}_4)^T$.

(S2):
$$\gamma = 0.25 \cdot (\mathbf{1}_5, -\mathbf{1}_5)^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_4, \mathbf{1}_3, -\mathbf{1}_3)^T$.

(S3):
$$\gamma = 0.25 \cdot (\mathbf{1}_5, -\mathbf{1}_5)^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_6, \mathbf{1}_2, 0.25, 0.25)^T$.

(S4):
$$\gamma = 0.25 \cdot (\mathbf{1}_5, -\mathbf{1}_5)^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_4, \mathbf{1}_2, 0.25, \mathbf{1}_2, -0.25)^T$.

(S5):
$$\gamma = 0.25 \cdot (\mathbf{1}_5, -\mathbf{1}_5)^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_6, \mathbf{0}.\mathbf{25}_4)^T$.

(S6):
$$\gamma = 0.25 \cdot (\mathbf{1}_5, -\mathbf{1}_5)^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_6, \mathbf{0}.\mathbf{25}_2, -\mathbf{0}.\mathbf{25}_2)^T$.

(S7):
$$\gamma = 0.25 \cdot (\mathbf{1}_5, -\mathbf{1}_5)^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_4, \mathbf{0}.\mathbf{25}_3, -\mathbf{0}.\mathbf{25}_3)^T$.

(C1):
$$\gamma = 0.25 \cdot (\mathbf{1}_{50}, -\mathbf{1}_{50})^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_{60}, \mathbf{1}_{40})^T$.

(C2):
$$\gamma = 0.25 \cdot (\mathbf{1}_{50}, -\mathbf{1}_{50})^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_{40}, \mathbf{1}_{30}, -\mathbf{1}_{30})^T$.

(C3):
$$\gamma = 0.25 \cdot (\mathbf{1}_{50}, -\mathbf{1}_{50})^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_{60}, \mathbf{1}_{20}, -\mathbf{0}.\mathbf{25}_{20})^T$.

(C4):
$$\gamma = 0.25 \cdot (\mathbf{1}_{50}, -\mathbf{1}_{50})^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_{40}, \mathbf{1}_{20}, \mathbf{0.25}_{10}, -\mathbf{1}_{20}, -\mathbf{0.25}_{10})^T$.

(C5):
$$\gamma = 0.25 \cdot (\mathbf{1}_{50}, -\mathbf{1}_{50})^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_{60}, \mathbf{0.25}_{40})^T$.

(C6):
$$\gamma = 0.25 \cdot (\mathbf{1}_{50}, -\mathbf{1}_{50})^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_{60}, \mathbf{0.25}_{20}, -\mathbf{0.25}_{20})^T$.

(C7):
$$\gamma = 0.25 \cdot (\mathbf{1}_{50}, -\mathbf{1}_{50})^T$$
 and $\pi = 0.25 \cdot (\mathbf{0}_{40}, \mathbf{0.25}_{30}, -\mathbf{0.25}_{30})^T$.

Table 1: Performance Metrics (1000 replications for scenarios S1-S7)

Scenario	Metrics	MR.SPI	S&S	Bound(M)	Bound(P)	Combined(M)	Combined(P)
S1	Coverage	0.938	0.999	1.000	1.000	0.999	0.999
	Length	0.081	0.164	0.144	0.142	0.141	0.139
S2	Coverage	0.942	0.991	0.985	0.987	0.980	0.981
	Length	0.106	1.263	0.157	0.215	0.150	0.193
S3	Coverage	0.950	0.999	0.999	0.996	0.998	0.995
	Length	0.080	0.164	0.145	0.184	0.141	0.149
S4	Coverage	0.715	0.998	0.967	0.967	0.966	0.966
	Length	0.102	0.209	0.167	0.166	0.159	0.158
S5	Coverage	0.903	0.979	0.960	0.965	0.953	0.957
	Length	0.080	0.172	0.146	0.133	0.129	0.121
S6	Coverage	0.893	0.994	0.996	0.991	0.992	0.986
	Length	0.081	0.175	0.148	0.154	0.141	0.138
S7	Coverage	0.485	0.431	0.698*	0.642	0.317	0.286
	Length	0.096	0.209	0.179	0.179	0.102	0.099

Note: In S7, none of the methods achieve 95% coverage. However, the new initial bound selected using Majority Rule was able to achieve the highest coverage(70%) with a shorter average CI length compared with Sampling&Searching.

Table 2: Performance Metrics (50 replications for scenarios C1-C7, NA represents intractable within 5000 runs using Genetic Algorithm)

Scenario	Metrics	MR.SPI	S&S	Bound(M)	Bound(P)	Combined(M)	Combined(P)
C1	Coverage	0.84	1.00	NA	1.00	NA	1.00
	Length	0.044	0.173	NA	0.154	NA	0.149
CO	Coverage	0.68	0.24	NA	0.78	NA	0.24
C2	Length	0.079	0.603	NA	0.263	NA	-0.142
Ca	Coverage	0.78	1.00	NA	1.00	NA	1.00
C3	Length	0.0432	0.164	NA	0.154	NA	0.220
C4	Coverage	0.62	1.00	NA	1.00	NA	1.00
	Length	0.057	0.361	NA	0.228	NA	0.158
OF.	Coverage	0.50	1.00	NA	0.98	NA	0.98
C5	Length	0.042	0.199	NA	0.155	NA	0.147
Ce	Coverage	0.58	1.00	NA	1.00	NA	1.00
C6	Length	0.045	0.255	NA	0.170	NA	0.167
C7	Coverage	0.02	0.76	NA	0.76	NA	0.32
	Length	0.054	0.313	NA	0.223	NA	0.218

Scenario	Metrics	MR.SPI	Robust	Robust.vote	Robust.gamma	Robust.combine
(0 1)	Coverage	0.89	1.00	1.00	1.00	1.00
$(0_8, 1_7)$	Length	0.074	0.163	0.163	0.190	0.189
$(0_6, 1_5, -1_4)$	Coverage	0.940	1.00	1.00	1.00	1.00
	Length	0.090	0.185	0.184	0.232	0.233
(0, 0,07)	Coverage	0.82	0.98	0.97	0.98	0.98
$(0_8, 0.25_7)$	Length	0.072	0.239	0.238	0.236	0.226
(0, 0.05, 0.05)	Coverage	0.53	0.79	0.96	0.90	0.98
$(0_6, 0.25_5, -0.25_4)$	Length	0.082	0.282	0.280	0.242	0.235
(0 1)	Coverage	0.87	1.00	1.00	1.00	1.00
$(0_{13}, 1_{12})$	Length	0.063	0.163	0.164	0.165	0.165
(0 1 1)	Coverage	0.01	0	0	0	0
$(0_9, 1_8, -1_8)$	Length	0.078	NA	NA	NA	NA
(0, 0.95.)	Coverage	0.77	0.99	0.98	0.95	0.99
$(0_{13}, 0.25_{12})$	Length	0.062	0.278	0.268	0.278	0.257
$(0_9, 0.25_8, -0.25_8)$	Coverage	0.02	0.34	0.36	0.68	0.61
	Length	0.070	0.352	0.341	0.345	0.333