离散数学(2023)作业 15 - 格

离散数学教学组

Problem 1

下图给出了6个偏序集的哈斯图。判断其中哪些是格。如果不是格,请说明理由。

答案: (a)(c)(f) 是格,(b)(d)(e) 不是格。在(b) 中 $\{d,e\}$ 没有最大下界,在(d) 中 $\{d,e\}$ 没有最大下界,在(e) 中 $\{a,b\}$ 没有最大下界。

Problem 2

针对 Problem I 中的每个格,如果格中的元素存在补元,则求出这些补元。

答案:

- (a) a与d互为补元,其他元素没有补元。
- (c) a = f 互为补元, b 的补元是 c 和 d, c 的补元是 b 和 e, d 的补元是 b 和 e, e 的补元是 c 和 d。
- (f) a与 f 互为补元, b与 e 互为补元, c与 d 没有补元。

Problem 3

说明 Problem I 中的每个格是否为分配格、有补格和布尔格,并说明理由。

答案:

- (a) 是分配格,因为任何链都是分配格;不是有补格和布尔格,因为b与c没有补元。
- (c) 不是分配格,因为含有5元子格与五角格同构;是有补格,每个元素都有补元;不是布尔格,因为不是分配格。
- (f) 是分配格,因为不含有与钻石格和五角格同构的子格;不是有补格和布尔格,因为c与d没有补元。

Problem 4

给定由集合 $S = \{1, 2, 3, 5, 6, 10, 15, 30\}$ 及整除关系构成的偏序集 (S, |):

- **I.** 画出 (S, ||) 的哈斯图,并判定集合 $A = \{2, 3, 5, 6\}$ 的上确界、下确界是否存在,如存在请给出;
- 2. 判定该偏序集(S, |)是否构成格;若是格,是否构成分配格、有补格、布尔代数;
- **3.** 若 (S, |) 为格,请判定 $(\{1, 2, 15, 30\}, |)$ 和 $(\{1, 2, 3, 30\}, |)$ 是否为 (S, |) 定子格并说明理由。

答案:

I. 上确界、下确界均存在,上确界 $Sup(\{(2,3,5,6)\}) = 30$,下确界 $Inf(\{(2,3,5,6)\}) = 1$ 。

- 2. 偏序集(S, |)构成格,构成分配格、有补格、布尔代数。
- **3.** $(\{1,2,15,30\},|)$ 构成 (S,|) 的子格,因为其各元素的上下确界均对自身封闭; $(\{1,2,3,30\},|)$ 构成格,但不是 (S,|) 的子格,因为 $2 \land 3 = 6 \notin \{1,2,3,30\}$,不符合子格的定义。

Problem 5

设L是格, $a,b,c \in L$,且 $a \leq b \leq c$,证明 $a \vee b = b \wedge c$ 。

答案: 由 $a \leq b$ 得 $a \vee b = b$, 由 $b \leq c$ 得 $b = b \wedge c$, 因此 $a \vee b = b \wedge c$.

Problem 6

设L是格,求以下公式的对偶式:

- I. $a \wedge (a \vee b) \leq a$
- **2.** $a \lor (b \land c) \preceq (a \lor b) \land (a \lor c)$
- 3. $b \lor (c \land a) \preceq (b \lor c) \land a$

答案:

- I. $a \vee (a \wedge b) \succeq a$
- **2.** $a \wedge (b \vee c) \succeq (a \wedge b) \vee (a \wedge c)$
- 3. $b \wedge (c \vee a) \succeq (b \wedge c) \vee a$

Problem 7

设 $< L, \preceq >$ 是格,任取 $a \in L$,令 $S = \{x | x \in L \land x \preceq a\}$,证明 $< S, \preceq >$ 是 L 的子格。

答案: 因为 $a \in S$,所以 S 非空。任取 $x,y \in S$,则有 $x \preceq a,y \preceq a$ 。因此,有 $x \land y \preceq x \preceq a,x \lor y \preceq a \lor a \preceq a$ 。故运算封闭,得证。

Problem 8

证明在任意格中, 均有

- I. $x \vee (y \wedge z) \preceq (x \vee y) \wedge (x \vee z)$
- **2.** $x \wedge (y \vee z) \succeq (x \wedge y) \vee (x \wedge z)$

答案:

- I. 显然,我们有 $x \preceq (x \lor y)$ 和 $x \le (x \lor z)$,并且 $(y \land z) \preceq y \preceq (x \lor y)$ 和 $(y \land z) \preceq z \preceq (x \lor z)$ 。故我们有 $x \preceq (x \lor y) \land (x \lor z)$ 和 $(y \land z) \preceq (x \lor y) \land (x \lor z)$,得证。
- 2. 由对偶原理直接可得。

Problem 9

设 $\langle L, \wedge, \vee, 0, 1 \rangle$ 是有界格,证明 $\forall a \in L$,有

$$a \land 0 = 0, a \lor 0 = a, a \land 1 = a, a \lor 1 = 1$$

答案:

- $a \land 0 \preceq 0, 0 \preceq 0$, 且 $0 \preceq a \Rightarrow 0 \preceq a \land 0$, 根据反对称性 $a \land 0 = 0$;
- $a \leq a \vee 0, 0 \leq a$, 且 $a \leq a \Rightarrow a \vee 0 \leq a$, 根据反对称性 $a \vee 0 = a$;
- $a \land 1 \preceq a, a \preceq a$, 且 $a \preceq 1 \Rightarrow a \preceq a \land 1$, 根据反对称性 $a \land 1 = a$;
- $1 \leq a \vee 1, 1 \leq 1$, 且 $a \leq 1 \Rightarrow a \vee 1 \leq 1$, 根据反对称性 $a \vee 1 = 1$.

Problem 10

求证: 在格 $< L, \times, \oplus >$ 中,若 $a \times (b \oplus c) = (a \times b) \oplus (a \times c)$,则 $a \oplus (b \times c) = (a \oplus b) \times (a \oplus c)$ 。

答案: 证明:

$$(a \oplus b) \times (a \oplus c) = ((a \oplus b) \times a) \oplus ((a \oplus b) \times c)$$
$$= a \oplus (c \times (a \oplus b))$$
$$= a \oplus ((c \times a) \oplus (c \times b))$$
$$= (a \oplus (a \times c)) \oplus (b \times c)$$
$$= a \oplus (b \times c)$$