REVIEW SHEET 13, Math 540, Summer 2021, Melody Chan Due Weds June 30 at 11:59pm Eastern Time

Submit all of the following on Gradescope, and don't forget to tag each answer to its page. I put a copy of this review sheet in the Overleaf folder.

For each of the linear operators T in questions (1)–(7) of Review Sheet 12:

- (a) I claim that p(T) = 0 for some nonzero polynomial $p(z) \in \mathcal{P}_2(\mathbb{R})$ of degree at most 2. Find such a polynomial p(z).
- (b) Factor p(z) into linear factors over \mathbb{R} if possible.¹
- (c) If p(z) does factor into linear factors $p(z) = c(z \lambda_1)(z \lambda_2)$ for $c, \lambda_1, \lambda_2 \in \mathbb{R}$, then we argued in class that at least one of λ_1, λ_2 must be an eigenvalue of T. Identify which one(s) of λ_1 and λ_2 are in fact eigenvalues of T, in accordance with your answers in Review Sheet 12.

Example: $T: \mathbb{R}^2 \to \mathbb{R}^2$ is projection to the nearest point on the line y = x.

Answer

Let
$$p(z) = z^2 - z$$
. Then $p(T) = T^2 - T = 0$.

We may factor p(z) = z(z - 1). Therefore, at least one of the numbers 0, 1 are eigenvalues of T. In fact, both 0 and 1 are eigenvalues of T, as shown on Review Sheet 12.

(1) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is reflection across the line y = x.

(2) $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ is 180° degree rotation about the origin.

¹In other words, if possible, write $p(z) = c(z - \lambda_1)(z - \lambda_2)$ for some *real* numbers c, λ_1, λ_2 . This may not always be possible; in class we stated that it can always be done provided you allow c, λ_1 , and λ_2 to be *complex* numbers.

(3) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is 60° degree counterclockwise rotation about the origin.

(4) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is given by T(x,y) = (x+y, x+y).

(5) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is given by "walking vertically to the line y = x." That is, T(x,y) = (x,x).

(6) $T: \mathbb{R}^3 \to \mathbb{R}^3$ is projection to the *xy*-plane. That is, T(x, y, z) = (x, y, 0).

(7) $T: \mathbb{R}^3 \to \mathbb{R}^3$ is 180° rotation about the x-axis.