MA110 - Linear Algebra & Differential Equations: Quiz 1 Answer Key

Name: Mr. Anderson Roll No. THE1

Code: X Max. marks: 20
Tutorial Batch: Do To February 2nd, 2024

Instructions

- 1. Failure to follow instructions will result in a deduction of 2 marks.
- 2. Only answers written in the boxes provided will be graded. Be careful when entering your answers, you will not be given a spare question paper in case you make mistakes.
- 3. Please write your roll no., division and tutorial batch on the answer sheet. Exams without roll numbers will be awarded ZERO marks.
- 4. No work is required to be shown. You may work out the details in the rough sheets, which will not be collected.
- 5. In Questions (6) (9), one or more options are correct. The correct options should be entered in the given boxes as follows: (a), or (a), (c), etc. The marking scheme followed is:
 - (i) All correct options, and no incorrect options chosen: 2 marks
 - (ii) Some correct options, and no incorrect options chosen: 1 mark
 - (iii) If even one chosen option is incorrect: 0 marks

Exams Begins

(1) A solution to x + 2y - z = 6 in \mathbb{R}^3 is $\begin{bmatrix} (0\ 3\ 0)^T \end{bmatrix}$. The geometric object given by the set of all solutions is a plane in \mathbb{R}^3 ,

The geometric object given by the set of all solutions is a plane in \mathbb{R}^3 , and a subspace of \mathbb{R}^3 parallel to it is given by x + 2y - z = 0. [2]

(2) Let D be a 5×6 matrix with pivot columns 1, 4, 5, and $C = P_{12}P_{23}D$. Then the number of pivots of C is $\boxed{3}$ and the pivot columns of C will be $\boxed{1, 4, 5,}$.

Note: Permuting rows does not change the columns in which the pivots occur.

(3) Let be $C = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & -1 \\ 0 & 6 & n \end{pmatrix}$ where n is the last digit of your roll number. [2] Then $C = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & -1 \\ 0 & 6 & n \end{pmatrix}$. The echelon form of C is $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & n+2 \end{pmatrix}$.

Note: Replace n by the last digit of your roll number.

- (4) Let $A = \begin{pmatrix} 1 & 2 & 2 & 5 \\ 2 & 4 & -1 & 0 \\ 0 & 0 & 5 & 10 \end{pmatrix}$. The rank of A is $\boxed{2}$, the number of special solution(s) of Ax = 0
 - is $\boxed{2}$, and the special solution(s) is/are $\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} -1\\0\\-2\\1 \end{bmatrix}$. $\boxed{2}$

[2]

Note: Calculate!

(5) Fill in the blanks with the correct answer from the given options:

Let \mathcal{P} be the set of all polynomials in X with real coefficients. Let $S = \{ f \in \mathcal{P} : \deg(f) = 2 \text{ or } f = 0 \}$. Then:

S is closed under scalar multiplication. (OPTIONS: is/is not).

S is not a subspace of \mathcal{P} . (Options: is/is not).

NOTE: Not closed under vector addition, $x^2 + (-x^2 + x) = x \notin \mathcal{P}$.

- (6) Let $S = \{(x, y) \in \mathbb{R}^2 \mid xy > 0\}$. Which of the following imply that S is not a subspace of \mathbb{R}^2 ? a) S is not closed under addition.
 - b) S is not closed under scalar multiplicate
 - b) S is not closed under scalar multiplication. c) (0,0) is not an element of S.
 - d) S is not a subset of \mathbb{R}^2 .

The correct options are (a), (b), (c). [2]

NOTE: S is not closed under addition $(1,1)+(-2,-1)=(-1,0) \notin S$ which implies S is not a subspace, S is not closed under scalar multiplication, $0.(1,1)=(0,0) \notin S$ and S does not contain (0,0). In this example, S is a subset of \mathbb{R}^2 and hence (d) will not imply that S is not a subspace.

(7) Which of the following is the rank of a matrix F ?
a) The number of free variables in $Fx = 0$.
b) The number of columns of F containing a pivot.
c) The number of non-zero rows of the row reduced form of F

 \overrightarrow{d}) The number of rows of F containing a pivot.

e) The number of non-zero columns in the row reduced form of F.

The correct options are
$$(b)$$
, (c) , (d) . [2]

Note: Any row or column can contain at most one pivot.

- (8) Let \mathcal{M} be the vector space of 2×2 matrices with real entries, under the standard operations. Which of the following is a subspace of \mathcal{M} ?
 - a) The set of all skew-symmetric 2×2 matrices.
 - b) The set of all scalar multiples of $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
 - c) The set of all non-invertible 2×2 matrices.

d) The set
$$\left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
.

The correct options are $\left[(a), (b) \right]$.

The correct options are $\lfloor (a), (b) \rfloor$. [2] NOTE: Verify that the set of all scalar multiples are of the form $\begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix}$, for all $\lambda \in \mathbb{R}$ and will be

closed under linear combinations.

Skew symmetric matrices are closed under linear combinations.

The matrices e_{11} and e_{22} are not invertible, but their sum is identity which is invertible, hence the set in c) is not a subspace.

The set in part (d) is not closed under scalar multiples.

(9) Which of the following are valid row reduced forms for 3 by 4 matrices?

a)
$$\begin{pmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
The correct options are (b) , (c) .

NOTE: The pivot columns are of the form e_i in the reduced form.

(10) Let
$$F = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 3 & 0 \\ 7 & -9 & -4 \end{pmatrix}$$
 [3]

(i) A special solution to
$$Fx = 0$$
 is (a) $\begin{pmatrix} -2 & 0 & 1 \end{pmatrix}^T$

(ii) A vector b such that
$$Fx = b$$
 is consistent (b) $\begin{pmatrix} -3 & 2 & 0 \end{pmatrix}^T$

(iii) The particular solution to
$$Fx = \begin{pmatrix} 3 & -3 & 3 \end{pmatrix}^T$$
 is
 (c) $\begin{pmatrix} 3 & 2 & 0 \end{pmatrix}^T$ (d) $\begin{pmatrix} -2 & -2 & 1 \end{pmatrix}^T$

Match each option on the left with the correct option on the right:

$$(i) - \boxed{(d)} \qquad (ii) - \boxed{(b)} \qquad (iii) - \boxed{(c)}$$

Note: Calculate!