Sumber-sumber Emisi GRK Di Atmosfer

Kelompok 8 - K2

Farida Norma G Naila Safina K 12121059

12221123

13522053

Erdianti Wiga P Malvin Jumagar S Asyifa Ladya N 13622091

19022125

Apa itu gas rumah kaca?

Gas Rumah Kaca (GRK) adalah gas-gas di atmosfer yang mampu menyerap dan memancarkan radiasi inframerah, sehingga menyebabkan efek rumah kaca.

Tanpa GRK, **Bumi akan terlalu dingin** untuk dihuni.

Namun, **aktivitas manusia** menyebabkan **peningkatan konsentrasi GRK** sehingga memperkuat efek rumah kaca.

73% Energi (Pembakaran bahan bakar fosil)

18% Pertanian, Kehutanan, dan Penggunaan Lahan (AFOLU)

5% Industri (proses non-energi)

3% Limbah

Mengapa penting membahas sumber emisi GRK?

GRK berperan dalam **pemanasan global** dan **perubahan iklim**

Konsentrasi GRK **terus meningkat** drastis karena **aktivitas manusia**

Pemahaman sumber emisi penting untuk **strategi mitigasi**

Sumber Utama Emisi CO₂

Pembakaran Bahan Bakar Fosil

Merupakan penyumbang terbesar emisi CO₂ global. Digunakan di sektor:

- Industri: manufaktur semen, baja, kimia.
- Pembangkit Listrik: terutama yang berbahan bakar batu bara, minyak, gas.
- Transportasi: kendaraan pribadi, truk, pesawat, kapal.

Deforestasi dan Perubahan Penggunaan Lahan

- Penebangan hutan mengurangi kemampuan bumi menyerap CO₂.
- Pembakaran vegetasi menghasilkan
 CO₂ langsung ke atmosfer.
- Pengalihfungsian hutan ke lahan pertanian/permukiman juga melepas karbon tersimpan di tanah dan biomassa.

Data Global Emisi CO₂

Menurut data dari World Resources Institute (2023), emisi gas rumah kaca global berasal dari lima sektor ekonomi utama:

Sektor Energi: Menyumbang sekitar 75,7% dari total emisi gas rumah kaca global. Ini mencakup:

- Produksi Listrik dan Panas: 29,7%
- Transportasi: 13,7%
- Manufaktur dan Konstruksi: 12,7%
- Bangunan: 6,6%
- Pertanian, Kehutanan, dan Penggunaan Lahan (AFOLU): Menyumbang sekitar 2,7% dari total emisi, setelah memperhitungkan penyerapan karbon oleh hutan dan lahan.

Emisi CO₂ telah meningkat pesat sejak Revolusi Industri, dengan peningkatan signifikan berasal dari pembakaran bahan bakar fosil dan perubahan penggunaan lahan.

Contoh Nyata Sumber Emisi CO₂

Pembangkit Listrik Tenaga Batu Bara:

- Contoh: PLTU Suralaya (Indonesia), salah satu yang terbesar di Asia Tenggara.
- Satu unit bisa menghasilkan jutaan ton CO₂ per tahun.
- Energi batu bara = paling karbon-intensif.

Kendaraan Bensin & Diesel:

- Mobil pribadi = penyumbang utama emisi CO₂ sektor transportasi.
- Setiap liter bensin yang dibakar menghasilkan ±2.3 kg CO₂.

Kota-Kota Industri:

 Contoh: Shanghai, Houston, atau Jakarta — pusat manufaktur dan konsumsi energi tinggi.

Jenis Utama Gas Rumah Kaca

Karbon Dioksida (CO₂)

Metana (CH₄)

Dinitrogen Oksida (N₂O)

Gas-gas Fluorinasi (HFCs, PFCs, SF₆)

Karbon Dioksida (CO₂)

Kontributor terbesar terhadap pemanasan global, yaitu sebesar ~76%

Masa tinggal di atmosfer selama 300-1000 tahun

- Pembakaran batu bara, minyak, gas alam
- Deforestasi
- Produksi semen

Metana (CH₄)

Kontribusi terhadap pemanasan global sebesar ~16%

Masa tinggal di atmosfer selama ± 12 tahun

- Pertanian (terutama ternak)
- Lahan basah
- Pertambangan batu bara
- Pengelolaan limbah
- Tempat sampah
- Industri gas & minyak

Dinitrogen Oksida (N2O)

Kontribusi terhadap pemanasan global sebesar ~6%

Masa tinggal di atmosfer selama <u>+</u> 114 tahun

- Pertanian (pupuk nitrogen)
- Pembakaran bahan bakar fosil
- Pengolahan limbah

Gas-gas Fluorinasi (HFCs, PFCs, SF₆)

Kontribusi terhadap pemanasan global sebesar ~2%

Masa tinggal di atmosfer hingga ribuan tahun

- Refrigeran (AC, kulkas)
- Aerosol
- Busa isolasi
- Peralatan listrik

Sumber Utama Emisi CH4

Peternakan Sapi - Fermentasi Enterik

Mikroorganisme di dalam sistem pencernaan sapi mengurai serat kasar dari pakan, menghasilkan CH₄ yang dilepaskan melalui sendawa. Emisi metana dari fermentasi enterik sapi potong di Indonesia mencapai sekitar 1.066,63 Gg CH₄ per tahun.

Pengelolaan Limbah (TPA)

Limbah organik di tempat pembuangan akhir (TPA) yang **terdekomposisi secara anaerobik** menghasilkan CH₄. Metode **penimbunan terbuka** memperparah emisi karena minimnya pengelolaan. Contoh: TPA Bantar Gebang (Jakarta), TPA Suwung (Bali), dan TPPAS Sarimukti (Jawa Barat).

Sektor Minyak dan Gas Bumi

Kegiatan eksplorasi dan produksi minyak/gas bumi melepaskan CH₄ melalui **kebocoran infrastruktur, venting, dan pembakaran tidak sempurna**. Metana dari sektor ini memiliki potensi pemanasan global (GWP) 84 kali lebih tinggi daripada CO₂ dalam 20 tahun.

Sumber Utama Emisi CH4

Gunung Lumpur dan Rayap

Gunung lumpur dan rayap melepaskan metana ke atmosfer: gunung lumpur dari **pelapukan organik bawah tanah**, rayap dari **pencernaan bahan organik**.

Pertambangan Batubara

Metana yang terperangkap dalam lapisan batu bara dilepaskan selama proses penambangan dan transportasi. Emisi ini seringkali sulit dikendalikan dan berkontribusi pada pemanasan global.

Lahan Basah Alami (Rawa, Gambut, dan Danau)

Proses anaerobik (tanpa oksigen) yang terjadi ketika bahan organik (rawa dan gambut) terurai di lingkungan basah menghasilkan metana yang dilepaskan ke atmosfer. Pada lahan sawah yang tergenang air, kondisi anaerobik memungkinkan bakteri metanogenik menguraikan bahan organik dan menghasilkan metana. Indonesia memiliki ekosistem rawa gambut yang luas, sehingga berkontribusi signifikan terhadap emisi metana alami.

Sumber Emisi N20

Proses Alami

Sebagian besar emisi N2O berasal dari proses alami yang terjadi di lingkungan. Yaitu denitrifikasi, nitrifikasi, oksidasi bakteri amonia, dan proses laut.

Pertanian

Sektor pertanian merupakan kontributor utama emisi N2O. Penggunaan **pupuk nitrogen** dalam pertanian mengakibatkan **pelepasan N2O dari tanah**.

Beberapa industri, seperti **industri kimia dan produksi asam nitrat**, juga menyumbang pada emisi N2O. Proses kimia yang melibatkan senyawa nitrogen, seperti amonia atau nitrat, dapat menghasilkan N2O sebagai produk sampingan.

Sumber Emisi N20

Limbah dan Pengolahan Limbah

Bakteri dalam instalasi pengolahan limbah dapat memproduksi N2O saat menguraikan bahan organik yang terkandung dalam limbah.

Proses Pembakaran

N2O dapat dihasilkan melalui reaksi kompleks dalam pembakaran bahan bakar, terutama pada suhu dan tekanan tinggi.

Sumber Emisi Gas-Gas Fluorinasi

	Jenis Gas Fluorinasi	Sumber Emisi Utama	Keterangan
	HFCs	AC, Kulkas, Pompa Panas, Foam, Aerosol	Emisi saat kebocoran alat pendingin, pembuangan tidak benar
	PFCs	Industri Aluminium, Semikonduktor	Emisi proses elektroda karbon (misalnya CF4)
	SF ₆	Industri Listrik (Isolator), Semikonduktor	Sangat kuat sebagai gas rumah kaca
	NF ₃	Manufaktur Semikonduktor & Solar Panel	Emisi tak sempurna dari proses etching
	F ₂ , HF, CIF ₃	Proses Industri (Fluorinasi Kimia, Pemrosesan Bahan Bakar Nuklir)	Umumnya dikendalikan tapi bisa bocor

Distribusi Global Emisi GRK

Jika melihat dari **sisi sejarah**, gambaran penyumbang emisi secara **global** adalah sebagai berikut:

Sedangkan pada tahun **2023**, berdasarkan *Emissions Gap Report 2023*, **negara penyumbang** GRK dilaporkan sebagai berikut

Apa tindakan kita?

Source: NASA

Actions

Reduce, Reuse, Recycle

Setiap produk yang kita beli menyumbang karbon emisi dalam proses produksi

Renewable Energy

Sumber yang didapatkan dari alam menyumbang **hampir nol** gas emisi dalam prosesnya

Policy and Advocacy

Lakukan *Carbon Pricing*untuk mengurangi emisi
GRK dengan cara
mengenakan pajak untuk
setiap unit GRK yang
dihasilkan

Fix the system, not just the lightbulbs.

