Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.10.25

Key words: Polya Thm, SDR

Recall:

 $N(k_1, \dots k_m) = \sharp$ colorings of C^X under G s.t. there are k_i elements of X have color c_i , $\sum_{i \in [m]} \check{k_i} = |X| = n$

Weight Function: define $\omega: C \longrightarrow \mathbb{R}, \forall f \in C^X, \ \omega(f) = \prod_{x \in X} \omega(f(x))$ Weighted Burnside Lemma: $\sum_{i \in [N(G)]} \omega(\Omega_i) = \frac{1}{|G|} \sum_{g \in G} \sum_{x \in Fix(g)} \omega(x)$

Theorem 1. (G, C^X) , $\omega : C^X \longrightarrow \mathbb{R}$ as defined above. $\mathcal{F} =$ $\{all\ orbits\ in\ C^X\},\ then$

$$\sum_{F \in \mathcal{F}} \omega(F) = P_G(\sum_{c \in C} \omega(c), \sum_{c \in C} \omega(c)^2, \cdots, \sum_{c \in C} \omega(c)^n).$$

Corollary 1.

$$P_G(\sum_{i=1}^m y_i, \sum_{i=1}^m y_i^2, \cdots, \sum_{i=1}^m y_i^n) = \sum_{k_1 + \dots + k_m = n} N(k_1, \dots, k_m) y_1^{k_1} \cdots y_m^{k_m}.$$

proof of thm1:

 $\forall g \in G$, let k = k(g) be the number of cycles of g and A_1, \dots, A_k be the set of elements of each cycle. For $f \in Fix(g)$, suppose $f(x) = c_i$,

if
$$x \in A_i, i \in [k]$$
. Then $\omega(f) = \prod_{i=1}^k (\omega(c_i)^{|A_i|})$. So

$$\sum_{f \in Fix(g)} \omega(f) = \sum_{(c_1, \cdots, c_k) \in C^k} (\prod_{i=1}^k (\omega(c_i)^{|A_i|})) = \prod_{i=1}^k (\sum_{c \in C} \omega(c)^{|A_i|}).$$

Denote $type(g) = (\lambda_1(g), \dots, \lambda_n(g))$, then

$$\sum_{f \in Fix(g)} \omega(f) = \prod_{i=1}^{n} (\sum_{c \in C} \omega(c)^{i})^{\lambda_{i}(g)}$$

By weighted Burnside Lemma,

$$\sum_{F \in \mathcal{F}} \omega(F) = \frac{1}{|G|} \sum_{g \in G} \sum_{f \in Fix(g)} \omega(f)$$

$$= \frac{1}{|G|} \sum_{g \in G} (\prod_{i=1}^{n} (\sum_{c \in C} \omega(c)^{i})^{\lambda_{i}(g)})$$

$$= P_{G}(\sum_{c \in C} \omega(c), \sum_{c \in C} \omega(c)^{2}, \dots, \sum_{c \in C} \omega(c)^{n}).$$

Def: (G, X), (H, Y), where $X \cap Y = \emptyset$. Let $G \times H = \{(g, h) : g \in G, h \in H\}$, define $(g, h) : X \cup Y \longrightarrow X \cup Y$ by

$$(g,h)*(a) = \begin{cases} g*a, & if \ a \in X \\ h*a, & if \ a \in Y. \end{cases}$$

Then $G \times H$ is permutation group of $X \cup Y$.

Lemma 1.
$$(G \times H, X \cup Y), |X| = n, |Y| = m$$
. Then
$$P_{G \times H}(x_1, \dots, x_n, y_1, \dots, y_m) = P_G(x_1, \dots, x_n) P_H(y_1, \dots, y_m)$$

Ex: prove the lemma.

Distribution Problem:

 \overline{n} balls with r colors, n_i balls with color i, $\sum_{i=1}^r n_i = n$, put them into m boxes: B_1, \dots, B_m , s.t. there are k_i balls in B_j , $\sum_{i=1}^m k_i = n$

- (1) If $n_i = 1, i \in [r]$ and r = n, then it is an ordered partition problem, s.t. the i-th part is of size $k_i, i \in [m]$, so $\frac{n!}{k_1! \cdots k_m!}$
- (2) In general, it is a coloring problem as follows. X_1, \dots, X_r , where $|X_i| = n_i$ with permutation group G_i , since each ball in X_i are considered to be the same, $G_i = S_{n_i}$. So we have a group action $S_{n_1} \times \dots \times S_{n_r}$ over $X_1 \cup \dots \times X_r$. By lemma 1, it has cycle index $\prod_{i=1}^r P_{s_i}(x_1, \dots, x_{n_i})$. then

total number of distributions= $\prod_{i=1}^{r} P_{s_{n_i}}(m, \dots, m)$ $N(k_1, \dots, k_n) = [y_1^{k_1} \dots y_m^{k_m}] \prod_{i=1}^{n} P_{S_{n_i}}(\sum_{l=1}^{m} y_l, \dots, \sum_{l=1}^{m} y_l^{n_i})$

- (3) If r = 1, all balls have same color, $n_1 = n$, then total the number of distributions is the number of sols to $k_1 + \cdots + k_m = n, k_i \geq 0.i.e. \binom{n+m-1}{m-1} = \binom{n+m-1}{n}$. Since cycle index is $P_{s_n}(x_1, \dots, x_n)$, so $P_{s_n}(m, \dots, m) = \binom{n+m-1}{n}$, so $\prod_{i=1}^r P_{s_{n_i}}(m, \dots, m) = \prod_{i=1}^r \binom{n_i + m 1}{n_i}.$
- (4) r = n, $n_i = 1$, the number of n different balls into m membered boxes.

$$\prod_{i=1}^{n} P_{s_1}(m) = \prod_{i=1}^{n} m = m^n.$$

$$N(k_1, \dots, k_m) = \frac{n!}{k_1! \dots k_m!} = [y_1^{k_1} \dots y_m^{k_m}] (\prod_{i=1}^{n} P_{s_1}(\sum_{i=1}^{m} y_i))$$

$$= [y_1^{k_1} \dots y_m^{k_m}] (\sum_{i=1}^{m} y_i)^n$$

(5) The number of putting a, a, b, b into boxes $A, B. r = 2, n_1 = n_2 = 2$.

$$\prod_{i=1}^{2} P_{s_{n_i}}(2,2) = {2+2-1 \choose 2}^2 = 9.$$

(6) The number of putting a, a, b, b, c, c into boxes A, B, C. s.t. 3 balls in A, 2 balls in B, 1 ball in C.

$$P_{s_2}(x_1, x_2) = \frac{1}{2}(x_1^2 + x_2).$$

$$P_{s_2}(y_1 + y_2 + y_3, y_1^2 + y_2^2 + y_3^2) = \frac{1}{2}[(y_1 + y_2 + y_3)^2 + y_1^2 + y_2^2 + y_3^2].$$
$$[y_1^3 y_2^2 y_3][P_{s_2}(y_1 + y_2 + y_3, y_1^2 + y_2^2 + y_3^2)]^3 = 15.$$

Note:

- (1) numbered balls and numbered boxes: vectors
- (2) unnumbered balls and numbered boxes: #solutions to $\sum_{i=1}^{m} k_i = n$
- (3) numbered balls and unnumbered boxes: stirling number
- (4) unnumbered balls and unnumbered boxes: integer partition

SDR

Def: A system of distinct representatives(SDR) for a sequence of set S_1, S_2, \dots, S_m (are not necessarily distinct) is a sequence of distinct elements x_1, \dots, x_m , s.t. $x_i \in S_i, i \in [m]$.

<u>Theorem</u>1.(Hall's marriage Theorem) The sets of S_1, S_2, \dots, S_m has a SDR iff $|\bigcup_{i \in I} S_i| \ge |I|$ for $I \subset [m]$ (Hall's condition) i.e. for $\forall k \in [m]$, the union of any k sets has at least k elements.

proof:

 $\overline{\longrightarrow}$ If S_1, S_2, \dots, S_m have a SDR x_1, \dots, x_m , then $\forall I \subset [m], |\cup_{i \in I} S_i| \geq |\{x_i, i \in I\}| = |I|$.

 \Leftarrow Prove by induction on m. The case m=1 is clear. Assume the claim holds for any collection with < m sets.

- if for all $I \subseteq [m], |\cup_{i \in I} S_i| > |I|$, take $x \in S_1$ as its representative, let $S_i' = S_i \setminus \{x\}, i = 2, \cdots, m$. then for all $I \subset [2, m], |\cup_{i \in I} S_i'| \geq |I|$. by assumption S_2', \cdots, S_m' have a SDR x_2, \cdots, x_m . then x_1, \cdots, x_m is a SDR of S_1, \cdots, S_m .
- if for some $I \subsetneq [m], |\cup_{i\in I} S_i| = |I| = k$ for some k. by recording $S_i, i \in [m]$, we may assume $|\cup_{i=1}^k S_i| = k$. by assumption, S_1, \dots, S_k have a SDR x_1, \dots, x_k . Let $S_i' = S_i \setminus \{x_1, \dots, x_k\}, i \in [k+1, m]$. then for all $I \subset [k+1, m], |\cup_{i\in I} S_i'| \geq |I|$, if not,

 $|(\cup_{i\in I}S_i)\cup(\cup_{j=1}^kS_j)|<|I|+k$, a contradiction. So by assumption $S'_{k+1},S'_{k+2},\cdots,S'_m$ have a SDR x_{k+1},\cdots,x_m , then x_1,x_2,\cdots,x_m is a SDR of S_1,S_2,\cdots,S_m .

Corollary 1. |X| = n, $|S_i| = r$, $S_i \subset X$, $i \in [m].s.t. |\{i : x \in S_i\}| = d$ for all $x \in X$. If $m \le n$, then S_1, \dots, S_m have a SDR.

proof:

Consider the incidence matrix $M = (m_{x,i})$ of $S_i, i \in [m]$. That is M is a 0-1 matrix with |X| rows labeled by elements $x \in X$, and with m column labeled by $i \in [m]$, such that $m_{x,i} = 1$ iff $x \in S_i$, count the number of 1 in M. we have dn = mr, then $m \le n$ implies $d \le r$. Suppose S_1, \dots, S_m don't have a SDR, by Hall's Theorem, $\exists k$ sets S_{i_1}, \dots, S_{i_k} for some $k \in [m]$,

$$|Y| = |S_{i_1} \cup \dots \cup S_{i_k}| < k$$

 $\forall x \in Y$, let $d_x = |\{j \in [k] : x \in S_{i_j}\}| \leq d$. count the number of 1 in rows labeled by $x \in Y$ and columns $i_j, j \in [k]$.

$$rk = \sum_{j=1}^{k} |S_{i_j}| = \sum_{x \in Y} d_x \le d|Y| < dk.$$

a contradiction.