Middle East Technical University Department of Mechanical Engineering

ME 310 – Numerical Methods Fall 2014

Study Problems - 3*

Assigned on 27.11.2014
Prepared by İlteriş Berke Harmancı – Eren Demircan
*Will not be collected/graded.

1. Employ the following methods to find the maximum of the function given as,

$$f(x) = -x^4 - 2x^3 - 8x^2 - 5x + 48$$

- a) Parabolic Interpolation with $x_0 = -2$, $x_1 = -1$, $x_2 = 1$ and 4 iterations. Employ new point selection sequence as in the secant method.
- b) Newton's method with initial guess of $x_0 = -1$ and $\varepsilon_s = 1\%$

[Adapted from Applied Numerical Methods for Engineers, Steven Chapra]

- 2. Use least-squares regression to fit
 - a) a straight line
 - b) a power equation
 - c) a saturation-growth-rate equation
 - d) a parabola

To the given data below and decide whether any one of the curve fits is superior to others. Justify your reasoning.

X	5	10	15	20	25	30	35	40	45	50
у	17	24	31	33	37	37	40	40	42	41

[Adapted from Applied Numerical Methods for Engineers, Steven Chapra]

3. Given the data

х	1.6	2	2.5	3.2	4	4.5
f(x)	2	8	14	15	8	2

Calculate f(2.8) using Newton's interpolating polynomials of order 1 through 3. Compute the finite divided differences as in Fig. 18.5 of the textbook.

[Adapted from Applied Numerical Methods for Engineers, Steven Chapra]