Assignment #4 CIS 427/527

Group 2

February 3, 2016

1

Complete the proof of soundness of propositional logic (given in val Dalen, Lemma 1.5.1) with the case of \rightarrow_E .

Solution

 $\text{IH: } \overset{D}{\varphi} \text{ and } \varphi \overset{D'}{\Rightarrow} \psi \text{ are derivations. For each } \gamma, \gamma' \text{ containing the hypothesis of D,D', } \gamma \models \varphi \text{ and } \gamma' \models \varphi \Rightarrow \psi.$

$$\gamma'' \supseteq \gamma \cup \gamma'$$

Then $\gamma'' \models \varphi$ and $\gamma'' \models \varphi \Rightarrow \psi$.

$$\gamma'' \models \varphi \land (\varphi \Rightarrow \psi)$$
$$\gamma'' \models \psi \text{ (Modus ponens)}$$

2

Prove the soundness of the \vee rules ($\vee I$ and $\vee E$).

Solution

 (V_i) asd

3

Do we have $\models (p \rightarrow q) \lor (q \rightarrow r)$?

Solution

р	q	r	$(p \rightarrow q)$	$ (q \rightarrow r) $	$(p \to q) \lor (q \to r)$
0	0	0	1	1	1
0	0	1	1	1	1
0	1	1	1	0	1
0	1	1	1	1	1
1	0	1	0	1	1
1	0	1	0	1	1
1	1	1	1	0	1
1	1	1	1	1	1

4

Do we have $(q \to (p \lor (q \to p))) \lor \neg (p \to q) \models p$?

Solution

If both p and q are false, we have $q \to (p \lor (q \to p)) \lor \neg (p \to q) = 1$ while p = 0, breaking the semantic entailment.

5

Assuming the soundness and completeness of natural deduction for propositional logic, suppose that you need to show that ϕ is not a semantic consequence of $\phi_1, \phi_2, ..., \phi_n$, but that you are only allowed to base your argument on the use of natural deduction rules. Which judgement would you need to prove in order to guarantee that $\phi_1, \phi_2, ..., \phi_n \not\models \phi$? Do you need completeness and soundness for this to work out?

Solution

6

Consider the following axiom based system, called Hilbert system:

$$\begin{aligned} (\phi \to (\psi \to \phi)) \\ ((\phi \to (\psi \to \sigma)) &\to ((\phi \to \psi) \to (\phi \to \sigma))) \\ ((\neg \phi \to \neg \psi) &\to ((\neg \phi \to \psi) \to \phi)) \end{aligned}$$

Combined with the Modus Ponens inference rule, which corresponds to the elimination rule of the implication connective.

Prove according to this system the judgement $\vdash \phi \rightarrow \phi$.

Solution

$$\frac{((\phi \to (\psi \to \sigma)) \to ((\phi \to \psi) \to (\phi \to \sigma))) \qquad (\phi \to (\psi \to \phi))}{((\varphi \to (\psi \to \varphi)) \to (\varphi \to \varphi)))} \text{ Let } \psi = \psi \to \varphi \text{ and } \sigma = \varphi \qquad (\phi \to (\psi \to \phi))$$

7

Consider classical logic given in the handout "Natural deduction in sequent form" in Figure 5. Prove the following judgements:

```
\vdash \phi \lor \neg \phi (This is called Law of Excluded Middle). ((\phi \to \psi) \to \phi) \to \phi (This is called Peirce's Law).
```

Solution

8

Prove the following judgements:

A
$$\rightarrow$$
 B \rightarrow A
(A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow (A \rightarrow C)
(A \wedge B \rightarrow C) \rightarrow (A \rightarrow B \rightarrow C)
(A \rightarrow B \rightarrow C) \rightarrow (A \wedge B \rightarrow C)
Annotate each proof with lambda-terms.

Solution

$$\begin{array}{c} A \rightarrow B \rightarrow A \\ (\lambda x: A.\ \lambda y: B.\ x) \\ (A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow (A \rightarrow C) \\ (\lambda x: A \rightarrow B \rightarrow C.\ \lambda y: A \rightarrow B.\ \lambda z: A.\ x\ z\ (y\ z)) \end{array}$$

 $\begin{array}{l} (A \wedge B \rightarrow C) \rightarrow (A \rightarrow B \rightarrow C) \\ (\lambda x : A \wedge B \rightarrow C. \ \lambda y : A. \ \lambda z : B. \ x(y * z)) \\ (A \rightarrow B \rightarrow C) \rightarrow (A \wedge B \rightarrow C) \\ (\lambda x : A \rightarrow B \rightarrow C. \ \lambda y : A \wedge B. \ x(\mathrm{fst} \ y)(\mathrm{snd} \ y)) \end{array}$