Validation of satellite observations for monitoring long-term changes in air quality in cities

<u>Karn Vohra</u>¹, Eloïse A Marais², William J Bloss¹, Peter Porter³

¹University of Birmingham, United Kingdom;

²University of Leicester, United Kingdom;

³Birmingham City Council, Birmingham, United Kingdom

kxv745@student.bham.ac.uk

TARGET CITIES & POLLUTANTS IN UNITED KINGDOM

40,000 early deaths each year in UK attributed to *fine* particles and NO₂ pollution

Birmingham

Population^A – 1.13 Mn Area – 268 km² Premature deaths^B - **900**

£6 billion -Associated health cost to UK each year

London

Population^A – 8.82 Mn Area – 1572 km² Premature deaths^B –

London

^A Population for mid 2017; Source Office for National Statistics

^B Figures by Royal College of Physicians and King's College London

LONG-TERM RECORD OF NO₂ FROM OZONE MONITORING INSTRUMENT (OMI)

OMI/Aura NO₂ Cloud-Screened Total and Tropospheric Column L3 Global Gridded 0.25 degree x 0.25 degree V3

Temporal coverage: 2004-10-01 - Present

DEFRA NO₂ coverage (2017)

Mean OMI NO₂ (2017)

Satellite overpass time: 1345 LT

Nadir-viewing UV/Visible 270-500nm

Retrieval of NO₂

- Concentration along the viewing path (SCD)
- Use AMF to compute the vertical column (VCD)

SURFACE MONITORING OF NO, IN BIRMINGHAM AND LONDON

VALIDATION OF SATELLITE OBSERVATIONS

Area-weighted mean

Satellite vs Surface NO₂ (Birmingham)

(*March 2011 – September 2016*)

Mean concentration of spatially correlated sites

Satellite vs Surface NO₂ (London)

(January 2005 – April 2018)

> Long-term record of OMI NO₂ can be used to monitor long-term changes in city-wide NO₂

LONG-TERM TRENDS IN CITY-WIDE MONTHLY MEAN OMI NO₂

- Significant decline in OMI NO₂
 (and precursor NO_x emissions)
- ➤ Trends in OMI NO₂ for London (3.3 %/year) are steeper than trends in surface NO₂ for London (1.8 %/year)

OMI NO₂ trends for Birmingham (2005-2017)

OMI NO₂ trends for London (2005-2017)

MULT-YEAR MEANS OF OMI NO2 VCD IN BIRMINGHAM AND LONDON

> OMI NO₂ decreased by 40% for Birmingham and by 43% for London (2005-2017)

Colour legend (OMI NO_2) (x 10^{15} molecules cm⁻²)

CONCLUSION

- ➤ Consistent satellite and ground-based NO₂ give us confidence to apply satellite observations to monitor air quality in Birmingham and London
- ➤ OMI NO₂ declined by 40% in Birmingham and 43% in London from 2005 to 2017

NEXT STEPS

- > Apply the same approach to New Delhi and Kanpur
- ➤ Interpret NO_x emission trends with a model
- > Apply the same approach to other pollutants:

SO₂, formaldehyde, ammonia

> Validate Defra air quality monitoring tools