



# Amaç ve Hedefler

- Bu dersin amacı:
  - □ Sayısal sistemleri tanımlamak
  - □ Sayısal tasarımın temel tasarım bloklarını tanımlamak
  - □ Temel blokların daha büyük sistemlerde nasıl kullanıldığını öğretmek
- Bu dersi başarıyla tamamlamış bir öğrenci:
  - □ Sayısal sistemlerin önemini anlamış olacak.
  - ☐ Bir sayısal devreyi tasarlayabilir hale gelecek.
  - □ Temel kombinezonsal ardışıl yapı taşlarını öğrenmiş olacak.
  - ☐ Büyük sayısal sistemlerin nasıl tasarlandığını öğrenmiş olacak.





# Kaynaklar

- Ders kitabı:
  - □ Digital Design, M. Morris Mano, Michael D. Ciletti,
  - □ Logic and Computer Design Fundamentals, 4/E, M. Morris Mano and Charles Kime, Prentice Hall, 2008
- Ders sunumu, ödevler ve duyurular: ninova



# Değerlendirme

- 1. Yıliçi Sınavı %25
  - □6. Hafta
- 2. Yıliçi Sınavı %25
  - □11. Hafta
- 5 Ödev %10
- Final Sınavı %40



# Dersin İçeriği

- 1. Sayısal Sistemler ve Bilgi
- 2. Kombinezonsal Devreler
- 3. Kombinezonsal Devre Tasarımı
- 4. Matematik Fonksiyonlar
- 5. Ardışıl Devre Elemanları
- 6. Ardışıl Devre Tasarımı



# Sayısal Sistem

 Ayrık zamanlı serbest giriş ve sistem durumu bilgilerini kullanarak ayrık zamanlı çıkış bilgisini üretir.





# Sayısal Sistemlerin Türleri

- Durum Kullanılmayan
  - □ Kombinezonsal sayısal sistem
    - Çıkış = f(Giriş)
- Durum Kullanılan Ardışıl sayısal sistem
  - Senkron
    - Durum belirli zamanlarda yenilenir
  - □ Asenkron
    - Durum her zaman yenilenir
  - □ Durum = f(Durum,Giriş)
  - ☐ Çıkış = f(Durum) veya or Çıkış = f(Durum,Giriş)



# Sayısal Sistem Örneği:

#### Bir Sayısal sayıcı:



Girişler: İleri say, Başa dön

Çıkışlar: Ekran

Durum: O an gösterilen değer



# Analog – Sayısal İşaretler

- Gerçek dünyada karşılaştığımız birçok fiziksel büyüklük (akım, gerilim, sıcaklık, ışık şiddeti vb.) değeri sürekli bir aralık içinde değişmektedir.
- Sınırlar arasındaki her türlü değeri alabilen bu tür işaretlere analog işaretler denir.
- Sayısal sistemlerde bilgi ayrık değerler alır.
- İkili sayısal işaretler belli bir anda sadece olası iki değerden birini alabilirler: 0-1, yüksek – alçak, açık – kapalı.

# Analog İşareti Sayısal İşarete Dönüştürme



10



#### Sayısal Sistemlerin Avantajları

- Bir sayısal sisteme aynı giriş kümesi defalarca uygulandığında hep aynı çıkış kümesi elde edilir.
  - Analog sistemler ise çevre koşullarından daha çok etkilenirler ve çıkışları değişiklik gösterebilir.
- Sayısal sistem tasarımı dayandığı matematiksel temeller açısından daha kolaydır.
- Sayısal sistemleri test etmek ve hatalardan arındırmak daha kolaydır.
- Esneklik ve programlanabilirlik

Sayısal Sistem Gerçekleme Aşamaları



11



#### Sayısal Kodlama

- Sayısal devreler yardımıyla üzerinde işlem yapılacak olan fiziksel büyüklüklere ve her türlü veriye ikili sayılar karşı düşürülür.
- Örneğin 8 basamaklı bir ikili sayı kullanarak
   28 tane (256) farklı "şey" ifade edebiliriz.
- Bir ikili değerin (örneğin 10001011) ne anlama geldiğine o değeri kullanacak olan sistem belirler. Bu değer bir sayı da olabilir, bir renk de, ...



# BCD (Binary Coded Decimal) İkili Kodlanmış Onlu Sayılar

- 0-9 arasındaki rakamlara 4 bitlik bir ikili kod karşı düşürülür.
- Artıklı Kodlamadır: 4 bit ile 16 farklı kodlama yapılabilmekte, ancak bunlardan sadece 10 tanesi kullanılmaktadır.

#### Doğal BCD:

| rnek:             |
|-------------------|
| ayı: 805          |
| od:1000 0000 0101 |
|                   |
|                   |
|                   |
|                   |

14



- Ağırlıklı Kodlama: Bitlerin konumlarına birer ağırlık verilir.
- Doğal ikili kodlama: Sayıların ağırlıklı kodlama ile 2 tabanında gösterilmesidir.
  - $\Box$  (11010)<sub>2</sub> =1·2<sup>4</sup>+1·2<sup>3</sup>+0·2<sup>2</sup>+1·2<sup>1</sup>+0·2<sup>0</sup>=26
  - Soldaki ilk basamağa en yüksek anlamlı bit (Most Significant Bit - MSB), sağdaki ilk basamağa en düşük anlamlı bit (Least Significant Bit - LSB) denir.
- Hamming Uzaklığı: n uzunluğundaki iki kod sözcüğünde aynı sırada olup değerleri farklı olan bileşenlerin sayısıdır.
  - □ 011 ile 101 arasındaki uzaklık 2 dir.
- Bitişik Kodlar: Birbirini izleyen sayılara karşı gelen kodlar arasındaki Hamming uzaklığı 1 ise o kodlama bitişiktir.
- Çevrimli Kodlar: Kodlama bitişik ve ayrıca son kod ile ilk kod arasında da Hamming uzaklığı 1 ise kod çevrimlidir.



# İşaretsiz Sayıların Gösterilmesi

Doğal ağırlıklı ikili kodlama kullanılır.

Örnek:  $215_{10}$ =(1101 0111)<sub>2</sub>= $12^7$ +1·2<sup>6</sup>+0·2<sup>5</sup>+1·2<sup>4</sup>+0·2<sup>3</sup>+1·2<sup>2</sup>+1·2<sup>1</sup>+ $12^0$ En yüksek anlamlı bit (MSB)

En düşük anlamlı bit (LSB)

8 bit ile ifade edilebilecek en büyük işaretsiz sayı:  $(1111\ 1111)_2=255_{10}$ 8 bit ile ifade edilebilecek en küçük işaretsiz sayı:  $(0000\ 0000)_2=0_{10}$ 



# Çok kullanılan tabanlar

| İsim      | Taban | Basamaklar                      |
|-----------|-------|---------------------------------|
| İkili     | 2     | 0,1                             |
| Sekizli   | 8     | 0,1,2,3,4,5,6,7                 |
| Onluk     | 10    | 0,1,2,3,4,5,6,7,8,9             |
| Onaltılık | 16    | 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F |

Onaltılık tabanda kullanılan 6 harf 10, 11, 12, 13, 14 ve 15 i gösterir.



17

#### Farklı tabanda sayıların gösterilimi

| Decimal   | Binary   | Octal    | Hexadecimal |
|-----------|----------|----------|-------------|
| (Base 10) | (Base 2) | (Base 8) | (Base 16)   |
| 00        | 00000    | 00       | 00          |
| 01        | 00001    | 01       | 01          |
| 02        | 00010    | 02       | 02          |
| 03        | 00011    | 03       | 03          |
| 04        | 00100    | 04       | 04          |
| 05        | 00101    | 05       | 05          |
| 06        | 00110    | 06       | 06          |
| 07        | 00111    | 07       | 07          |
| 08        | 01000    | 10       | 08          |
| 09        | 01001    | 11       | 09          |
| 10        | 01010    | 12       | 0A          |
| 11        | 01011    | 13       | 0B          |
| 12        | 01100    | 14       | 0C          |
| 13        | 01101    | 15       | 0D          |
| 14        | 01110    | 16       | 0E          |
| 15        | 01111    | 17       | 0F          |
| 16        | 10000    | 20       | 10          |

18



# Onluk tabandan diğer tabanlara dönüşüm

- •Sayıyı dönüştürülecek taban ile tekrarlı böl.
- •Kalanları ters sırada kayıt et.
- •Yeni tabanda basamaklar ters sırada kalanlardır.



#### Örnek:

# 46<sub>10</sub> sayısını 2 tabanına dönüştür

- 46 yı ikili tabana dönüştür
  - □ 46/2=23 kalan 0
  - □ 23/2=11 kalan 1
  - □ 11/2=5 kalan 1
  - □ 5/2=2 kalan 1
  - □ 2/2=1 kalan 0
  - □ 1/2=0 kalan 1
- Sonuç
  - □ 101110<sub>2</sub>

22

24



#### Örnek:

46<sub>10</sub> sayısını 16 tabanına dönüştür

- 46 yı 16 tabana dönüştür
  - □ 46/16=2 kalan 14
  - □ 2/16=0 kalan 2
- Sonuç
  - □ 2E<sub>16</sub>

# r tabanından onluk tabana dönüsüm

- Tabanın ilgili kuvveti ile basamakların çarpımını topla
- 101110₂ sayısını onluk taban çevir

$$1011102 = 1.32 + 0.16 + 1.8 + 1.4 + 1.2 + 0.1$$
$$= 32 + 8 + 4 + 2$$
$$= 46$$



# Sekizli/onaltılı (Octal/Hex) tabandan ikili ve geriye dönüşüm

- Sekizli (onaltılı) den İkili tabana:
  - □Her bir basamak ikili tabanda yazılır.
- İkiliden sekizli (onaltılı) tabanına:
  - □Basamaklar taban noktasından başlanarak iki tarafa doğru üçlü (dörtlü) gruplanır.
  - Her bir grup sekizli (onaltılı) tabanına dönüştürülür.



21

23

#### Örnek

- Sekizli (onaltılı) den İkili tabana:
  - □743.056<sub>8</sub>=111 100 011.000 101 110<sub>2</sub>
  - □ A49.0C6<sub>16</sub>=1010 0100 1001.0000 1100 0110<sub>2</sub>
- İkiliden sekizli (onaltılı) tabanına:
  - $\square 1 | 011 | 100 | 011.000 | 101 | 110 | 1_2 = 1343.0564_8$
  - $\Box 1|1010|0100|1001.0010|1100|0110|1_2=1A49.2C68_{16}$

# İkili taban kullanılarak sekizli den onaltılık tabanına dönüşüm

- Octal den ikili tabana dönüştür.
- Daha önce anlatıldığı gibi hez tabanına dönüştür.

# Ŋ

#### 2'nin özel kuvvetleri

- 2<sup>10</sup> (1024) Kilo, "K" ile gösterilir.
- 2<sup>20</sup> (1,048,576) Mega, "M" ile gösterilir.
- 2<sup>30</sup> (1,073, 741,824) Giga, "G" ile gösterilir.
- 2<sup>40</sup> (1,099,511,627,776 ) Tera, "T" ile gösterilir.

26



# İkili Lojik ve Kapılar

- ■İkili değişkenler iki değerden birini alırlar
- Lojik işlemler ikili değerler ve ikili değişkenler üzerinde çalışır
- ■Temel lojik işlemler VE, VEYA ve TÜMLEME dir
- ■Lojik kapılar lojik işlemleri gerçeklerler
- Boole Cebri: lojik fonksiyonları tanımlamak ve birbirine dönüştürmek için kullanılan matematik sistemidir
- Biz sayısal sistemlerin analizi ve tasarımının temelini oluşturan Boole cebrini inceleyeceğiz



#### İkili Değişkenler

- İkili değişkenlere farklı isimler verilebilir
  - □ Doğru/Yanlış
  - □ Açık/Kapalı
  - □ Evet/Hayır
  - □ 1/0
- Biz bu iki değeri göstermek için 1 ve 0'ı kullanacağız.



# Lojik İşlemler

- Temel üç lojik işlem:
  - □VE
  - □VEYA
  - □TÜMLEME
- VE (·) ile gösterilir
- VEYA (+) ile gösterilir
- TÜMLEME değişkenin üzerinde bir çizgi( ), değişkenden sonra () veya değişkenden önce (~) ile gösterilir



#### Gösterilim Örnekleri

■ Örnekler:

$$\Box Y = A \cdot B \implies "Y A ve B dir"$$

$$\Box z = x + y \Rightarrow$$
 "z x veya y dir"

$$\Box X = \overline{A} \Rightarrow$$
 "X A'nın tersidir"

Not:

1 + 1 = 2 ("bir artı bir ikidir)

1 + 1 = 1 ("1 veya 1 1'e eşittir")

ifadeleri birbirine eşit değildir.



# İşlem Tanımları

• İşlemler '0' ve '1' değerleri üzerinden tanımlanırlar.

| VE              | VEYA      | TÜMLEME       |
|-----------------|-----------|---------------|
| $0\cdot 0=0$    | 0 + 0 = 0 | $\bar{0} = 1$ |
| $0 \cdot 1 = 0$ | 0 + 1 = 1 | $\bar{1} = 0$ |
| $1 \cdot 0 = 0$ | 1 + 0 = 1 |               |
| $1 \cdot 1 = 1$ | 1 + 1 = 1 |               |



# Doğruluk Tabloları

- Doğruluk Tablosu bir fonksiyonun çıkış değerini bu fonksiyonun bütün mümkün olan giriş değerleri için gösteren tablo
- Örnek: Temel işlemlerin doğruluk tabloları

| VE |   |                 |  |  |
|----|---|-----------------|--|--|
| Χ  | Υ | $Z = X \cdot Y$ |  |  |
| 0  | 0 | 0               |  |  |
| 0  | 1 | 0               |  |  |
| 1  | 0 | 0               |  |  |
| 1  | 1 | 1               |  |  |

| VEYA |   |         |  |  |
|------|---|---------|--|--|
| Χ    | Υ | Z = X+Y |  |  |
| 0    | 0 | 0       |  |  |
| 0    | 1 | 1       |  |  |
| 1    | 0 | 1       |  |  |
| 1    | 1 | 1       |  |  |

| TÜMLEME |                    |  |  |
|---------|--------------------|--|--|
| Χ       | $Z = \overline{X}$ |  |  |
| 0       | 1                  |  |  |
| 1       | 0                  |  |  |
|         | _                  |  |  |

#### **Boole Cebri**

- B={0,1} kümesi üzerinde tanımlı
- İkili İşlemler : VE, VEYA (⋅, +)
- Birli İşlem: TÜMLEME (—)

#### Aksiyomlar

#### $a, b, c \in B$ olmak üzere

| <ol> <li>Kapalılık:</li> </ol>  | a + b = c                         | a ⋅ b=c                                     |
|---------------------------------|-----------------------------------|---------------------------------------------|
| <ol><li>Değişme:</li></ol>      | a + b = b + a                     | a · b=b · a                                 |
| 3. Dağılma: a+                  | $(b \cdot c) = (a+b) \cdot (a+c)$ | a · (b+c)=a · b+a · c                       |
| 4. Birleşme: a+                 | (b+c)=(a+b)+c                     | $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ |
| <ol><li>Etkisiz elema</li></ol> | an: a+0=a                         | a ⋅ 1=a                                     |
| 6. Tümleme:                     | a+a'=1                            | a ⋅ a ′=0                                   |

# Boole İşlemlerinin Sırası

- 1. Parantez
- 2. TÜMLEME
- 3. VE
- 4. VEYA
- Sonuç: VEYA ifadelerinin etrafında parantez vardır.
- •Örnek: F = A(B + C)(C + D)



#### Özellikler ve Teoremler

- Burada gösterilen tüm özellikler ve teoremler Boole cebrinin aksiyomları kullanılarak ispat edilebilir.
- 1. Yutma: a+1=1  $a \cdot 0=0$
- 2. Dönüşme: (a')'=a
- 3. Sabit kuvvet: a+a+...+a=a a · a · ... · a=a
- 4. Soğurma:  $a+a \cdot b=a$   $a \cdot (a+b)=a$
- 5. De Morgan Teoremi:  $(a+b)'=a' \cdot b'$   $(a \cdot b)'=a'+b'$
- 6. Genel De Morgan Teoremi:
  - $f'(X1,X2,...,Xn,0,1,+,\cdot) \Leftrightarrow f(X1',X2',...,Xn',1,0,\cdot,+)$

35

#### Örnek1: Boole Teoremlerinin İspatı

- $A + A \cdot B = A$  (Yutma) ispat adımları Aksiyomlar  $A + A \cdot B$   $X = X \cdot 1$
- $= A \cdot (1 + B)$   $X \cdot Y + X \cdot Z = X \cdot (Y + Z)$ (Dağılma)
- İspatları yapmamızın sebebi:
  - □ Boole cebrinin aksiyom ve teoremlerini kullanmayı öğrenmek
  - Boole fonksiyonlarıyla işlem yapmak için doğru aksiyom ve teoremi seçmeyi öğrenmek



#### Örnek2: Boole Teoremlerinin İspatı

■ AB + A'C + BC = AB + A'C (Consensus Theorem)

İspat adımları

Aksiyomlar

AB + A'C + BC

 $=AB + A'C + 1 \cdot BC$  1 . X = X $=AB + A'C + (A + A') \cdot BC$  X + X' = 1

=AB +A'C + ABC + A'BC X(Y + Z) = XY + XZ

=AB +ABC+ A'C+A'BC X + Y = Y + X=AB+A'(C+BC) X(Y + Z) = XY + XZ

=AB+A'C

P,

#### Örnek3: Boole Teoremlerinin İspatı

 $(\overline{X+Y})Z + X\overline{Y} = \overline{Y}(X+Z)$ 

İspat adımları

Aksiyomlar

 $(\overline{X+Y})Z+X\overline{Y}$ 

= X'Y'Z+XY' De Morgan Teoremi = (X'Z+X)Y' Dağılma

= (X'+X) (Z+X)Y'

Dağılma Dağılma

= (Z+X)Y'

Tümleme

37

38

# Boole Fonksiyonlarının Değerlendirilmesi

$$F1 = xy\overline{z}$$

$$F2 = x + \overline{y}z$$

$$F3 = \overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}$$

$$F4 = x\overline{y} + \overline{x}z$$

Giriş sayısı=n olmak üzere

 $2^{2^n}$  farklı n değişkenli Boole fonksiyonu tanımlanabilir.

| X | y | z | F1 | F2 | F3 | F4 |
|---|---|---|----|----|----|----|
| 0 | 0 | 0 | 0  | 0  | 1  | 0  |
| 0 | 0 | 1 | 0  | 1  | 0  | 1  |
| 0 | 1 | 0 | 0  | 0  | 0  | 0  |
| 0 | 1 | 1 | 0  | 0  | 1  | 1  |
| 1 | 0 | 0 | 0  | 1  | 1  | 1  |
| 1 | 0 | 1 | 0  | 1  | 1  | 1  |
| 1 | 1 | 0 | 1  | 1  | 0  | 0  |
| 1 | 1 | 1 | 0  | 1  | 0  | 0  |

#### Boole Fonksiyonlarının İndirgenmesi

■ Amaç en az sayıda değişken bırakmak.

AB+A'CD+A'BD+A'CD'+ABCD

$$= AB + ABCD + A'CD + A'CD' + A'BD$$

$$= AB + AB(CD) + A'C(D+D') + A'BD$$

$$= AB + A'C + A'BD = B(A + A'D) + A'C$$

- = B(A + D) + A'C
- 5 değişken



#### Kanonik Gösterilimler

- Kanonik gösterilimler nelerdir?
- Çarpım terimleri (Minterms) ve toplam terimleri (Maxterms)
- Çarpım terimleri ve toplam terimlerin indis ile gösterilimi
- Çarpımlar toplamı gösterilim
- Toplamlar çarpımı gösterilim
- Fonksiyonların tümlemelerinin gösterilimi
- Gösterilimler arası dönüşümler

#### Kanonik Gösterilimler

- Boole fonksiyonları aşağıdaki kolaylıkları sağlayacak bir gösterilimle tanımlanır:
  - □ Eşitliğin karşılaştırılması
  - □Doğruluk tablosu ile birebir olma
- Çok kullanılan kanonik gösterilimler:
  - □Çarpımlar toplamı
  - □Toplamlar çarpımı

4:



#### Çarpım terimleri

- Çarpım terimleri bütün değişkenlerin veya tümleyenlerinin göründüğü VE terimleridir.
- n değişkenli bir Boole fonksiyonunun 2<sup>n</sup> çarpım terimi vardır.
- Örnek: İki değişkenli bir Boole fonksiyonunun çarpım terimleri 2 x 2 = 4 tanedir:





#### Toplam terimleri

- Toplam terimleri bütün değişkenlerin veya tümleyenlerinin göründüğü VEYA terimleridir.
- n değişkenli bir Boole fonksiyonunun 2<sup>n</sup> toplam terimi vardır.
- Örnek: İki değişkenli bir Boole fonksiyonunun çarpım terimleri 2 x 2 = 4 tanedir:

$$X + \underline{Y}$$

$$X + \overline{Y}$$

$$\overline{\underline{X}} + \underline{\underline{Y}}$$



# Çarpım ve Toplam Terimleri

 Örnek: İki değişkenli çarpım ve toplam terimleri

| İndis | Çarpım Terimi              | Toplam Terimi                 |
|-------|----------------------------|-------------------------------|
| 0     | $\overline{x}\overline{y}$ | x + y                         |
| 1     | <del>x</del> y             | x + <del>y</del>              |
| 2     | x <del>y</del>             | <del>x</del> + y              |
| 3     | ху                         | $\overline{x} + \overline{y}$ |

 İndis hangi değişkeninin kendisinin hangi değişkenin tümleyeninin yer aldığını gösterir.



#### Normal Sıralama

- Çarpım ve toplam terimlerine bir sıra numarası karşılık düşer.
- Bu sıra numarası bir ikili sayı ile gösterilir.
- İkili sayının bitleri değişkenlerin kendisinin veya tümleyenin terim içinde yer alacağını gösterir.
- Çarpım ve toplam terimlerinin içinde değişkenler hep aynı sırada yer alırlar
- Örnek: a, b, c değişkenleri için:
  - $\Box$  Toplam terimleri: (a + b + c), (a + b + c)
  - □ Terimler: (b + a + c), a c b ve (c + b + a) normal sıralamada değiller.
  - □ Çarpım terimleri: a b c, a b c, a b c
  - □ Terimler : (a + c), b c ve (a + b) bütün değişkenleri içermiyorlar.

46



#### İndisin Kullanılma Sebebi

- İkili sayı ile gösterilen indis çarpım veya toplam terimindeki değişkenlerin kendisinin mi yoksa tümleyeninin mi kullanılacağını gösterir.
- Çarpım terimleri için:
  - □ "1" değişkenin kendisinin
  - □ "0" değişkenin tümleyeninin yer aldığını gösterir.
- Toplam terimleri için:
  - □ "0" değişkenin kendisinin
  - □ "1" değişkenin tümleyeninin yer aldığını gösterir.



# Üç değişken için indis örneği

- Değişkenler X, Y ve Z.
- Normal sıralama X, Y, Z.
- İndis 0<sub>10</sub>=(000)<sub>2</sub> ise çarpım teriminde bütün değişkenlerin tümleyeni görülür, toplam teriminde bütün değişkenlerin kendileri görülür.
- Çarpım terimi 0,  $m_0$  ile adlandırılır  $\overline{X}\overline{Y}\overline{Z}$  .
- Toplam terimi 0, M<sub>0</sub> ile adlandırılır (X + Y + Z).
- Çarpım terimi 6 ?
- Toplam terimi 6 ?

# İndis Örnekleri – Dört Değişken

| Indis | lkili | Çarpım           | Toplam                                  |
|-------|-------|------------------|-----------------------------------------|
| i     | Sayı  | $\mathbf{m}_{i}$ | $M_{i}$                                 |
| 0     | 0000  | abcd             | a+b+c+d                                 |
| 1     | 0001  | abcd             | ?                                       |
| 3     | 0011  | ?                | a+b+c+d                                 |
| 5     | 0101  | abcd             | $a+\overline{b}+c+\overline{d}$         |
| 7     | 0111  | ?                | $a+\bar{b}+\bar{c}+\bar{d}$             |
| 10    | 1010  | abcd             | $\bar{a}+b+\bar{c}+d$                   |
| 13    | 1101  | abēd             | ?                                       |
| 15    | 1111  | abcd             | $\bar{a} + \bar{b} + \bar{c} + \bar{d}$ |
|       |       |                  |                                         |

# Çarpım ve Toplam Terimlerinin İlişkisi

- DeMorganTeoremi  $\overline{x \cdot y} = \overline{x} + \overline{y}$  ve  $\overline{x + y} = \overline{x} \cdot \overline{y}$
- İki değişkenli örnek:  $\mathbf{M}_2 = \overline{\mathbf{x}} + \mathbf{y}$  ve  $\mathbf{m}_2 = \mathbf{x} \cdot \overline{\mathbf{y}}$ Yani  $\mathbf{M}_2$  m<sub>2</sub> nin tümleyenidir. m<sub>2</sub> de  $\mathbf{M}_2$  nin tümleyenidir.

$$M_i = \overline{M}_i$$
  $m_i = \overline{M}_i$ 

# Çarpımlar Toplamı Gösterilim

- Örnek:  $F_1(x,y,z) = m_1 + m_4 + m_7$
- $\blacksquare F_1 = \overline{X} \overline{y} z + x \overline{y} \overline{z} + x y z$

| Z + X | y Z   | + X   | . у | _     |   |       |                  |   |
|-------|-------|-------|-----|-------|---|-------|------------------|---|
| хух   | index | $m_1$ | +   | $m_4$ | + | $m_7$ | $= \mathbf{F}_1$ |   |
| 000   | 0     | 0     | +   | 0     | + | 0     | = 0              |   |
| 001   | 1     | 1     | +   | 0     | + | 0     | = 1              |   |
| 010   | 2     | 0     | +   | 0     | + | 0     | =0               |   |
| 011   | 3     | 0     | +   | 0     | + | 0     | =0               |   |
| 100   | 4     | 0     | +   | 1     | + | 0     | = 1              |   |
| 101   | 5     | 0     | +   | 0     | + | 0     | =0               |   |
| 110   | 6     | 0     | +   | 0     | + | 0     | =0               |   |
| 111   | 7     | 0     | +   | 0     | + | 1     | = 1              | 5 |
|       |       |       |     |       |   |       |                  |   |

# Çarpımlar Toplamı Örneği

- $F(A, B, C, D, E) = m_2 + m_9 + m_{17} + m_{23}$
- F(A, B, C, D, E) = A'B'C'DE'+A'BC'D'E+AB'C'D'E+AB'CDE

# Toplamlar Çarpımı Örneği

#### ■ Örnek:



# Toplamlar Çarpımı Örneği

- $F(A,B,C,D) = M_3 \cdot M_8 \cdot M_{11} \cdot M_{14}$
- F(A,B,C,D)=

(A+B+C'+D')(A'+B+C+D)(A'+B+C'+D')(A'+B'+C'+D)

# Çarpımlar Toplamı Gösterilim

- Her Boole fonksiyonu çarpımlar toplamı ile gösterilebilir.
  - □ Kullanılan çarpım terimleri doğruluk tablosundaki 1"lere karşılık düşer.
  - $\hfill \Box$ Çarpımlar toplamı şeklinde gösterilmemiş Boole fonksiyonlarında bütün terimleri değişkenlerin hepsi görülecek şekilde genişletmek gerekir. Bu eksik olan terim v ise terimi (  $_{\rm V}+_{\rm V}$  ) ile çarpılarak yapılır.
- Örnek: f = x + x y fonksiyonunun çarpımlar toplamı gösterilimini bulunuz.
  - □ Terimleri genişlet  $f = x(y + \overline{y}) + \overline{x} \overline{y}$
  - $\label{eq:force_force} \Box \text{ Terimleri dağıt:} \qquad \qquad f = xy + x\,\overline{y} + \overline{x}\,\,\overline{y}$
  - □ Çarpımlar toplamı şeklinde göster: f = m<sub>3</sub> + m<sub>2</sub> + m<sub>0</sub>

# Çarpımlar Toplamı Gösterilim Örneği

- Örnek:  $F = A + \overline{B}C$
- Üç değişken var: A, B, C
- Terimler eksik değişkenler ile genişletilir:

$$F = A(B + B')(C + C') + (A + A') B'C$$

$$= ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

$$= ABC + ABC' + AB'C + AB'C' + A'B'C$$

$$= M_7 + M_6 + M_5 + M_4 + M_1$$

$$= M_1 + M_4 + M_5 + M_6 + M_7$$



#### Çarpımlar Toplamının Kısa Gösterilimi

- Önceki örnekte  $F = A + \overline{B}C$  ile başladık.
- $F = m_1 + m_4 + m_5 + m_6 + m_7$  bulduk.
- Bu kısa olarak aşağıdaki gibi gösterilebilir:

$$F(A,B,C) = \Sigma_m(1,4,5,6,7)$$



### Toplamlar Çarpımı Gösterilimi

- Her Boole fonksiyonu toplamlar çarpımı ile gösterilebilir.
  - Kullanılan toplam terimleri doğruluk tablosundaki 0"lara karşılık düşer.
  - $\hfill\Box$  Toplamlar çarpımı şeklinde gösterilmemiş Boole fonksiyonlarında bütün terimleri değişkenlerin hepsi görülecek şekilde genişletmek gerekir. Bu eksik olan terim v ise terimi ( $_{V}$ .  $\overline{_{V}}$ ) ile toplanarak yapılır.
- Örnek:  $f(x, y, z) = x + \overline{x} \overline{y}$  fonksiyonunun toplamlar çarpımı ifadesini bulunuz.
  - Dağılma özelliğini kullan  $x + \overline{y} = (x + \overline{y})(x + \overline{y}) = 1 \cdot (x + \overline{y}) = x + \overline{y}$
  - □ Eksik olan değişken z'yi ekle  $x + \overline{y} + z \cdot \overline{z} = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$
  - □ Toplamlar çarpımı olarak göster:
    - $f = M_2 \cdot M_3$

--



# Toplamlar Çarpımı Örneği

 Aşağıdaki fonksiyonun toplamlar çarpımı gösterilimini bulunuz.

$$f(A, B, C) = A \overline{C} + BC + \overline{A} \overline{B}$$

$$\begin{split} &f{=}(AC'{+}BC{+}A') \ (AC'{+}BC{+}B') \\ &f{=}((AC'{+}B)(AC'{+}C){+}A')((AC'{+}B)(AC'{+}C){+}B') \\ &f{=}((A{+}B)(C'{+}B)(A{+}C)(C'{+}C){+}A')((A{+}B)(C'{+}B)(A{+}C)(C'{+}C){+}B') \\ &f{=}((A{+}B)(C'{+}B)(A{+}C){+}A') \ ((A{+}B)(C'{+}B)(A{+}C){+}B') \\ &f{=}(A{+}B{+}A')(C'{+}B{+}A')(A{+}C{+}A')(A{+}B{+}B')(C'{+}B{+}B')(A{+}C{+}B') \\ &f{=}(A'{+}B{+}C')(A{+}B'{+}C) \end{split}$$

 $f = M_5 \cdot M_2$ 



# Fonksiyonların Tümleyenleri

- Çarpımlar toplamı ile gösterilen bir fonksiyonun tümleyeni çarpımlar toplamında görünmeyen terimler kullanılarak ifade edilir.
- Ya da aynı indislere sahip toplamlar çarpımı ifade ile gösterilir.

• Örnek: 
$$F(x, y, z) = \Sigma_m(1, 3, 5, 7)$$
  
 $\overline{F}(x, y, z) = \Sigma_m(0, 2, 4, 6)$ 

$$\overline{F}(x, y, z) = \Pi_{M}(1, 3, 5, 7)$$

#### Boole Fonksiyonlarının Anahtar Devreleri İle Gerçeklenmesi

- Anahtarları Kullanarak
  - □ Girişler için:
    - lojik 1 anahtar kapalı
    - lojik 0 anahtar açık
  - □ Çıkışlar için:
    - lojik 1 ışık açık
  - lojik 0 <u>ışık kapalı</u>

    □ TÜMLEME
    - lojik 1 <u>anahtar açık</u>
    - lojik 0 <u>anahtar kapalı</u>



A C C = A

#### Boole Fonksiyonlarının Anahtar Devreleri İle Gerceklenmesi

Devreleri İle Gerçeklenmesi

Ornek:

Book Control

Ornek:



- Işık (E = 1) ise açıktır. (E = 0) ise kapalıdır.
  - ☐ Yol fonksiyonlarının toplamı:
    - f(A, B, C, D) = ABC'+AD
  - □ Kesitleme fonksiyonlarının çarpımı:
    - f(A, B, C, D) = A (B+D) (C'+D)

62

| Örnek: f <sub>AB</sub> =?                                              | <b>x</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | f <sub>AB</sub> |
|------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------|
| $\mathbf{x}_2$ $\mathbf{x}_4$                                          | 0                     | 0                     | 0                     | 0              | 0               |
|                                                                        | 0                     | 0                     | 0                     | 1              | 0               |
| $A \xrightarrow{X_1} A \xrightarrow{B} B$                              | 0                     | 0                     | 1                     | 0              | 0               |
| $ \sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ | 0                     | 0                     | 1                     | 1              | 0               |
| $X_{2'}$                                                               | 0                     | 1                     | 0                     | 0              | 0               |
| $\begin{bmatrix} x_1' & 0 & X_1 \end{bmatrix}$                         | 0                     | 1                     | 0                     | 1              | 0               |
|                                                                        | 0                     | 1                     | 1                     | 0              | 0               |
| لـــــــ                                                               | 0                     | 1                     | 1                     | 1              | 0               |
| · -                                                                    | 1                     | 0                     | 0                     | 0              | 0               |
|                                                                        |                       | 0                     | 0                     | 1              | 0               |
| $f_{AB} = \Sigma_{m}(10,11,13,15)$                                     | 1                     | 0                     | 1                     | 0              | 1               |
| $f_{AB} = \Pi_M(0,1,2,3,4,5,6,7,8,9,12,14)$                            |                       | 0                     | 1                     | 1              | 1               |
|                                                                        |                       | 1                     | 0                     | 0              | 0               |
|                                                                        |                       | 1                     | 0                     | 1              | 1               |
|                                                                        | 1                     | 1                     | 1                     | 0              | 0               |
|                                                                        | 1                     | 1                     | 1                     | 1              | 1               |



# Lojik Kapılar

- İlk bilgisayarlarda anahtarlar röleler tarafından kontrol edilen elektromanyetik alanlar yardımı ile açılıp kapanıyordu.
   Anahtarlar da akım yollarını açıp – kapamada kullanılıyorlardı.
- Daha sonra vakum tüpleri akım yollarını açıp kapamada rölelerin yerini aldılar.
- Günümüzde tranzistörler elektronik anahtarlar olarak kullanılmaktadır.



#### Lojik Kapılar ve sembolleri

- Lojik kapıların özel sembolleri vardır.
- Davranış biçimleri aşağıdaki gibidir.





#### Kapı Gecikmesi

- Fiziksel kapılarda bir veya birden fazla giriş değiştiğinde çıkış hemen değişmez.
- Girişlerden herhangi birindeki değişimden sonra çıkıştaki değişime kadar geçen süreye kapı gecikmesi denir ve t<sub>K</sub> ile gösterilir.





### Lojik Diyagramlar ve İfadeler

| -      |                                 |                       |
|--------|---------------------------------|-----------------------|
| Doğrul | luk Tablosu                     | Fonksiyon             |
| XYZ    | $F = X + \underline{A} \cdot Z$ | _                     |
| 000    | 0                               | F = X + Y Z           |
| 001    | 1                               |                       |
| 010    | 0                               | Lojik Diyagram        |
| 011    | 0                               | X                     |
| 100    | 1                               |                       |
| 101    | 1                               | $Y \longrightarrow F$ |
| 110    | 1                               | z                     |
| 111    | 1                               |                       |

- Boole fonksiyonları, doğruluk tabloları ve lojik diyagramlar aynı fonksiyonu gösterir.
- Her fonksiyonun doğruluk tablosu tektir. Ancak Boole fonksiyonu ve lojik diyagramı tek değildir. Bu gerçeklemede esneklik sağlar.

# Çarpımlar Toplamı Gösteriliminin İndirgenmesi

- Örnek:  $F(A,B,C) = \Sigma m(1,4,5,6,7)$
- Carpımlar toplamı ifade:

F = A'B'C + AB'C' + AB'C + ABC' + ABC

İndirgeme:

$$F = A'B'C + A (B'C' + B'C + BC' + BC)$$
  
= A'B'C + A (B' + B)(C' + C)  
= A'B'C + A 1 1  
= B'C + A

• İndirgenmiş ifade 3 değişken içerir.

# Çarpımlar Toplamı İfadenin VE/VEYA İki Seviyeli Gerçeklemesi • F'in iki ayrı gerçeklemesi



