Section 7.4

Trigonometric Functions of General Angles

Let θ be any angle in standard position, and let (a, b) denote the coordinates of any point, except the origin (0, 0), on the terminal side of θ . If $r = \sqrt{a^2 + b^2}$ denotes the distance from (0, 0) to (a, b), then the **six trigonometric functions** of θ are defined as the ratios

$$\sin \theta = \frac{b}{r}$$
 $\cos \theta = \frac{a}{r}$ $\tan \theta = \frac{b}{a}$
 $\csc \theta = \frac{r}{b}$ $\sec \theta = \frac{r}{a}$ $\cot \theta = \frac{a}{b}$

provided no denominator equals 0. If a denominator equals 0, that trigonometric function of the angle θ is not defined.

y r (a, b) b xCopyright © 2012 Pea

and so on.

Finding the Exact Values of the Six Trigonometric Functions of θ , Given a Point on the Terminal Side

Find the exact value of each of the six trigonometric functions of a positive angle θ if (4, -3) is a point on its terminal side.

$$a = 4$$
 and $b = -3$ so $r = \sqrt{a^2 + b^2} = \sqrt{16 + 9} = 5$
 $\sin \theta = \frac{b}{r} = -\frac{3}{5}$ $\cos \theta = \frac{a}{r} = \frac{4}{5}$ $\tan \theta = \frac{b}{a} = -\frac{3}{4}$
 $\csc \theta = \frac{r}{b} = -\frac{5}{3}$ $\sec \theta = \frac{r}{a} = \frac{5}{4}$ $\cot \theta = \frac{a}{b} = -\frac{4}{3}$

Finding the Exact Values of the Six Trigonometric Functions of Quadrantal Angles

Find the exact values of each of the six trigonometric functions of

(a)
$$\theta = 0 = 0^{\circ}$$

$$\sin 0 = \sin 0^{\circ} = \frac{b}{r} = \frac{0}{1} = 0 \qquad \cos 0 = \cos 0^{\circ} = \frac{a}{r} = \frac{1}{1} = 1$$

$$\tan 0 = \tan 0^{\circ} = \frac{b}{a} = \frac{0}{1} = 0 \qquad \sec 0 = \sec 0^{\circ} = \frac{r}{a} = \frac{1}{1} = 1$$

Since the y-coordinate of P is 0, csc 0 and cot 0 are not defined.

Finding the Exact Values of the Six Trigonometric Functions of Quadrantal Angles

Find the exact values of each of the six trigonometric functions of

$$(b) \theta = \frac{\pi}{2} = 90^{\circ}$$

$$\sin \frac{\pi}{2} = \sin 90^{\circ} = \frac{b}{r} = \frac{1}{1} = 1 \qquad \cos \frac{\pi}{2} = \cos 90^{\circ} = \frac{a}{r} = \frac{0}{1} = 0$$

$$\csc \frac{\pi}{2} = \csc 90^{\circ} = \frac{r}{b} = \frac{1}{1} = 1 \qquad \cot \frac{\pi}{2} = \cot 90^{\circ} = \frac{a}{b} = \frac{0}{1} = 0$$

Since the x-coordinate of P is 0, $\tan \frac{\pi}{2}$ and $\sec \frac{\pi}{2}$ are not defined.

Finding the Exact Values of the Six Trigonometric Functions of Quadrantal Angles

Find the exact values of each of the six trigonometric functions of

(c)
$$\theta = \pi = 180^{\circ}$$

$$\sin \pi = \sin 180^\circ = \frac{0}{1} = 0 \qquad \cos \pi = \cos 180^\circ = \frac{-1}{1} = -1$$

$$\tan \pi = \tan 180^\circ = \frac{0}{-1} = 0 \qquad \sec \pi = \sec 180^\circ = \frac{1}{-1} = -1$$

Since the y-coordinate of P is 0, csc π and cot π are not defined.

Finding the Exact Values of the Six Trigonometric Functions of Quadrantal Angles

Find the exact values of each of the six trigonometric functions of

(d)
$$\theta = \frac{3\pi}{2} = 270^{\circ}$$

$$\sin\frac{3\pi}{2} = \sin 270^\circ = \frac{-1}{1} = -1 \qquad \cos\frac{3\pi}{2} = \cos 270^\circ = \frac{0}{1} = 0$$
$$\csc\frac{3\pi}{2} = \csc 270^\circ = \frac{1}{-1} = -1 \qquad \cot\frac{3\pi}{2} = \cot 270^\circ = \frac{0}{-1} = 0$$

Since the x-coordinate of P is 0, $\tan \frac{3\pi}{2}$ and $\sec \frac{3\pi}{2}$ are not defined.

heta (Radians)	heta (Degrees)	$\sin heta$	$\cos heta$	an heta	$\csc \theta$	$\sec heta$	$\cot heta$
0	0°	0	1	0	Not defined	1	Not defined
$\frac{\pi}{2}$	90°	1	0	Not defined	1	Not defined	0
π	180°	0	-1	0	Not defined	-1	Not defined
$\frac{3\pi}{2}$	270°	-1	0	Not defined	-1	Not defined	0

Two angles in standard position are said to be **coterminal** if they have the same terminal side.

Using a Coterminal Angle to Find the Exact Value of a Trigonometric Function

Find the exact value of each of the following:

(c)
$$\tan \frac{9\tau}{4}$$

(a)
$$\sin 390^{\circ}$$
 (b) $\cos 420^{\circ}$ (c) $\tan \frac{9\pi}{4}$ (d) $\sec \left(-\frac{7\pi}{4}\right)$ (e) $\csc(-270^{\circ})$

$$= \sin 30^{\circ} = \frac{1}{2}$$

$$= \tan \frac{\pi}{4} = 1$$

$$= \csc 90^{\circ} = 1$$

(e)
$$\csc(-270^{\circ})$$

$$= \sin 30^{\circ} = \frac{1}{2}$$

$$=\tan\frac{\pi}{4}=1$$

$$= \csc 90^{\circ} = 1$$

–270°

θ degrees	$oldsymbol{ heta}$ radians
$\sin(\theta + 360^{\circ}k) = \sin\theta$	$\sin(\theta + 2\pi k) = \sin\theta$
$\cos(\theta + 360^{\circ}k) = \cos\theta$	$\cos(\theta + 2\pi k) = \cos\theta$
$\tan(\theta + 360^{\circ}k) = \tan\theta$	$\tan(\theta + 2\pi k) = \tan\theta$
$\csc(\theta + 360^{\circ}k) = \csc\theta$	$\csc(\theta + 2\pi k) = \csc\theta$
$\sec(\theta + 360^{\circ}k) = \sec\theta$	$\sec(\theta + 2\pi k) = \sec\theta$
$\cot(\theta + 360^{\circ}k) = \cot\theta$	$\cot(\theta + 2\pi k) = \cot\theta$
where k is any integer.	

3 Determine the Signs of the Trigonometric Functions of an Angle in a Given Quadrant

θ in quadrant II, a < 0, b > 0, r > 0

$$\sin \theta = \frac{b}{r} > 0 \qquad \cos \theta = \frac{a}{r} < 0 \qquad \tan \theta = \frac{b}{a} < 0$$

$$\csc \theta = \frac{r}{b} > 0 \qquad \sec \theta = \frac{r}{a} < 0 \qquad \cot \theta = \frac{a}{b} < 0$$

	Quadrant of $ heta$	$\sin \theta$, $\csc \theta$	$\cos \theta$, $\sec \theta$		ta	an $ heta$, cot			
	1	Positive	Positive		Positive				
	II	Positive	Negative		Negative				
	III	Negative	Negative		Positive				
	IV	Negative	Positive		Negative				
	У			+	<i>y</i>	+	sir	ne	
	II (- , +)	l (+, +)		_		_ X	cosecant		
$\sin \theta > 0$, $\csc \theta > 0$ others negative		All positive							
011	ioro nogativo			-	<i>y</i> •	+	CO	sine	
			X	_		+ X	se	cant	
	III (-, -)	IV (+, -)			1				
	$\theta > 0$, cot $\theta > 0$ ners negative	$\cos \theta > 0$, $\sec \theta > 0$ others negative	0 		<i>y</i> ,	<i>y</i>		tangent	
						_ X	CO	tangent	

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Finding the Quadrant in Which an Angle Lies

If $\sin q > 0$ and $\cos q < 0$, name the quadrant in which the angle q lies.

For sinq > 0 an angle must be in quadrant I or II.

For $\cos q < 0$ an angle must be in quadrant II or III.

Therefore, this angle must lie in quadrant II.

Let θ denote a nonacute angle that lies in a quadrant. The acute angle formed by the terminal side of θ and either the positive *x*-axis or the negative *x*-axis is called the **reference angle** for θ .

Finding Reference Angles

Find the reference angle for each of the following angles:

(c)
$$\frac{9\pi}{4}$$

(a)
$$150^{\circ}$$
 (b) -45° (c) $\frac{9\pi}{4}$ (d) $-\frac{5\pi}{6}$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

THEOREM

Reference Angles

If θ is an angle that lies in a quadrant and if α is its reference angle, then

$$\sin \theta = \pm \sin \alpha$$
 $\cos \theta = \pm \cos \alpha$ $\tan \theta = \pm \tan \alpha$
 $\csc \theta = \pm \csc \alpha$ $\sec \theta = \pm \sec \alpha$ $\cot \theta = \pm \cot \alpha$

where the + or - sign depends on the quadrant in which θ lies.

Using the Reference Angle to Find the Exact Value of a Trigonometric Function

Find the exact value of each of the following trigonometric functions using reference angles.

(a)
$$\sin 135^{\circ}$$
 (b) $\cos 600^{\circ}$

y ∤

60°

600°

(c)
$$\cos \frac{17\pi}{6}$$

(c)
$$\cos \frac{17\pi}{6}$$
 (d) $\tan \left(-\frac{\pi}{3}\right)$

$$\sin 135^\circ = \sin 45^\circ = \frac{\sqrt{2}}{2}$$

$$\cos\frac{17\pi}{6} = -\cos\frac{\pi}{6} = -\frac{\sqrt{3}}{2}$$

 $\cos 600^{\circ} = -\cos 60^{\circ} = -\frac{1}{2}$

$$\tan\left(-\frac{\pi}{3}\right) = -\tan\frac{\pi}{3} = -\sqrt{3}$$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Finding the Values of the Trigonometric Functions of Any Angle

- If the angle θ is a quadrantal angle, draw the angle, pick a point on its terminal side, and apply the definition of the trigonometric functions.
- If the angle θ lies in a quadrant:
 - **1.** Find the reference angle α of θ .
 - **2.** Find the value of the trigonometric function at α .
 - **3.** Adjust the sign (+ or -) of the value of the trigonometric function based on the quadrant in which θ lies.

Finding the Exact Values of Trigonometric Functions

Given that $\cos \theta = -\frac{2}{3}, \frac{\pi}{2} < \theta < \pi$, find the exact value of each of the remaining trigonometric functions.

The angle θ lies in quadrant II, so we know that $\sin \theta$ and $\csc \theta$ are positive and the other four trigonometric functions are negative. If α is the reference angle for θ ,

then
$$\cos \alpha = \frac{2}{3} = \frac{\text{adjacent}}{\text{hypotenuse}}$$
.

Now assign the appropriate signs to each of these values to find the values of the trigonometric functions of θ .

$$\sin \theta = \frac{\sqrt{5}}{3} \qquad \cos \theta = -\frac{2}{3} \qquad \tan \theta = -\frac{\sqrt{5}}{2}$$
$$\csc \theta = \frac{3\sqrt{5}}{5} \qquad \sec \theta = -\frac{3}{2} \qquad \cot \theta = -\frac{2\sqrt{5}}{5}$$

.

EXAMPLE Finding the Exact Values of Trigonometric Functions

If $\tan \theta = -4$ and $\sin \theta < 0$, find the exact value of each of the remaining trigonometric functions of θ .

Since $\tan \theta = -4 < 0$ and $\sin \theta < 0$, it follows that θ lies in quadrant IV.

Assign the appropriate sign to each of these to obtain the values of the trigonometric functions of θ .

$$\sin \theta = -\frac{4\sqrt{17}}{17} \qquad \cos \theta = \frac{\sqrt{17}}{17} \qquad \tan \theta = -4$$

$$\csc \theta = -\frac{\sqrt{17}}{4} \qquad \sec \theta = \sqrt{17} \qquad \cot \theta = -\frac{1}{4}$$