Nom:	
Prénom:	
Numéro d'étudiant(e):	
	LU2MA

${ m LU2MA220} \,\, 2020 \hbox{--} 2021 \,\, { m CC9}$

Résumé

Durée: 15 minutes

Les résultats doivent être justifiés avec soin. Si vous faites appel à un théorème du cours, il doit être énoncé avec précision. Aucun document n'est autorisé.

Question 1. On a vu dans le cours que si A est un anneau commutatif, alor il en est de même pour l'anneau de polynômes $A[T] = \{a_0 + a_1 T + \dots + a_d T^d \mid d \ge 0, a_i \in A\}$ en une variable à coefficients dans A. Posons $B := \mathbb{C}[T]$.

- 1. L'anneau B est-il un corps?
- 2. Déterminer si les sous-ensembles $R_1, R_2 \subseteq B$ sont des sous-anneaux de B:
 - a. $R_1 := \{a_0 + a_1 T + \dots + a_d T^d \mid a_0 \in \mathbb{Z}, a_{i>0} \in \mathbb{R}\}$, c'est-à-dire, le sous-ensemble des polynômes $a_0 + a_1 T + \dots + a_d T^d$ dont le coefficient $a_0 \in \mathbb{Z}$ et les autres coefficients $a_i \in \mathbb{R}$ pour tout $i \in \mathbb{N}_{>0}$.
 - b. $R_2 := \{a_0 + a_1 T + \dots + a_d T^d \mid a_0 \in \mathbb{R}, a_{i>0} \in \mathbb{Z}\}$, c'est-à-dire, le sous-ensemble des polynômes $a_0 + a_1 T + \dots + a_d T^d$ dont le coefficient $a_0 \in \mathbb{R}$ et les autres coefficients $a_i \in \mathbb{Z}$ pour tout $i \in \mathbb{N}_{>0}$.

Réponse.

- 1. Non. Il suffit de montrer que $T \in \mathbb{C}[T] \setminus \{0\}$ n'est pas inversible. En effet, pour tout $f \in \mathbb{C}[T]$, si $f \neq 0$, alors $\deg(Tf(T)) = 1 + \deg f \geq 1$, donc $Tf(T) \neq 1$.
- 2. En effet, R_1 est un sous-anneau mais R_2 n'est pas un sous-anneau.
 - a. Par définition, $0,1\in R_1$. Pour tout $f,g\in R_1$, choisissons un entier $n>\max\{\deg f,\deg g\}$, alors on peut écrire $f(T)=\sum_{k=0}^n a_k T^k$ et $g(T)=\sum_{k=0}^n b_k T^k$ où $a_0,b_0\in\mathbb{Z}$ et $a_i,b_i\in\mathbb{R}$ pour $i=1,\ldots,n$. Donc $(f-g)(T)=\sum_{k=0}^n (a_k-b_k)\,T^k\in R_1$ parce que $a_0-b_0\in\mathbb{Z}$ et $a_i-b_i\in\mathbb{R}$ pour $i=1,\ldots,n$, et $(fg)(T)=\sum_{k=0}^{2n} T^k\sum_{j=0}^{\min\{k,n\}} a_j\,b_{k-j}\in R_1$ parce que $a_0\,b_0\in\mathbb{Z}$ et pour k>1, on a $\sum_{j=0}^{\min\{k,n\}} a_j\,b_{k-j}\in\mathbb{R}$. En conclusion, $R_1\subseteq B$ est un sous-anneau.
 - b. On trouve que $1/2, T \in R_2$ mais $(1/2) T \notin R_2$, donc $R_2 \subseteq B$ n'est pas un sous-anneau.