







## **PROBLEMA**

# Classificação de chances de sobrevivência de Cavalos

O trabalho aqui descrito, usa a base de dados de Horse Colic. A BD oferece 27 diferentes atributos relacionados com a saúde de cavalos, e três classes, que indicam se o animal conseguiu sobreviver, morreu ou teve que ser aplicada a eutanásia como efeito de seu estado de saúde.



O alvo é de reforçar os conhecimentos sobre Data Mining e Machine Learning, e criar modelos que tentem prognosticar se um cavalo pode sobreviver de acordo ao seu estado de saúde atual

### **BASE DE DADOS**

- A base de dados foi entregada em dois arquivos, <u>horse.csv</u>
  e <u>horsetest.csv</u>.
- Juntaram-se num Dataframe só, pois isso facilitava o analise e pré-processamento.
- A base dados inicialmente contém 388 casos, 27 atributos e indicadores médicos e 3 classes.
- Entre as 27 dimensões se incluem dados categóricos (16), numéricos(7) e inclusive codificados(3).



#### **BASE DE DADOS**

- Na revisão dos valores nulos foram achados 3 Atributos que estavam com falta de más da metade dos valores.
   As colunas foram eliminadas da base de dados.
- Na folia de explicação de atributos foi indicado que as colunas 'hospital\_number', 'respiratory\_rate' e 'cp\_data', não forneciam informação relevante ou duvidosa, por tanto foram eliminadas da base de dados também
- Assim mesmo, eliminados os casos com 50% ou mais de atributos faltantes.
- A classe 'Euthanazed' foi eliminada e os dados foram trocados por 'died'.

| ATRIBUTO              | Valores Nulos |
|-----------------------|---------------|
| nasogastric_reflux_ph | 321           |
| abdomo_appearance     | 209           |
| abdomo_protein        | 258           |







#### Balanceamento

Após tirar as filas e colunas com muitos dados nulos temos uma Base de dados com o seguinte balance

> lived: 222 (59.7%) died: 150 (40.3%) TOTAL 372 Casos

22 Atributos, 1 coluna de 2 classes

Não há necessidade de resampling pois a base esta suficientemente balanceada.



## ANALISE EXPLORATÓRIA

#### Separação de Bases



A base de Dados é então dividida para fazer Treinamento com o 80% dos dados, o 20% restante será usado como Prova do funcionamento dos modelos de **Machine Learning** 





MISSING VALUES POR COLUNA

A abordagem dos dados nulos foi de usar a **moda** nos atributos categóricos e a **média** nos atributos numéricos.

Tirando as referências da **Base de Treino**. Isto com o fim de evitar adicionar uma tendência que interfira com a avaliação do modelo mais na frente

| surgery               | 0   |
|-----------------------|-----|
| age                   | 0   |
| rectal_temp           | 66  |
| pulse                 | 19  |
| respiratory_rate      | 63  |
| temp_of_extremities   | 53  |
| peripheral_pulse      | 72  |
| mucous_membrane       | 41  |
| capillary_refill_time | 21  |
| pain                  | 51  |
| peristalsis           | 38  |
| abdominal_distention  | 52  |
| nasogastric_tube      | 111 |
| nasogastric_reflux    | 118 |
| rectal_exam_feces     | 120 |
| abdomen               | 137 |
| packed_cell_volume    | 24  |
| total_protein         | 31  |
| surgical_lesion       | 0   |
| lesion_1              | 0   |
| lesion_2              | 0   |
| lesion_3              | 0   |
| result                | 0   |

## **ANALISE EXPLORATÓRIA**

Lesões

6 1 1 2

No caso das colunas referentes ás lesões (1,2 e 3), a informação estava 'codificada', cada número representa um local, tipo, subtipo e código específico, respectivamente.

Foi considerada informação importante e se fez uma função que separasse a informação corretamente em **quatro colunas novas para cada lesão.** 

As colunas originais foram eliminadas





#### **BARRAS**

Gráfico de barras com atributos categóricos.

No atributo abdome foi claro ver que ter o abdômen distendido tem uma proporção maior de casos de morte.

Os diagramas de dispersão, comparando dois atributos numéricos não deixaram ver algum tipo de separação obvia entre classes

#### **DISPERSÃO**





#### **HISTOGRAMA**

Se fizeram histogramas com os atributos numéricos

O mais relevante na inspeção visual foi o pulso: Os dados apontam que a proporção de cavalos com pulso alto e morreram é maior do que ao contrário.







#### **MACHINE LEARNING**

#### Cada modelo foi Treinado e validado 4 vezes:

- 1. Base de dados
- 2. Base de dados e modelo otimizado com GridSearch
- 3. Base de dados normalizada (Scaled Sc)
- 4. Base de dados normalizada (Scaled Sc) e modelo otimizado com GridSearch

#### Foram usados 3 métricas de Avaliação:

- 1. Accuracy
  - 2. Kappa
    - 3. F1

A Otimização foi feita tendo em conta a métrica de F1 (binária) para TODOS os modelos

## **MACHINE LEARNING**

Arvore de decisão (AD)

Random Forest(RF)

**SVM** 

KNN

Regressão Logística (LR)

| Modelos      | Accuracy | Карра | F1    |
|--------------|----------|-------|-------|
| AD           | 0.813    | 0.611 | 0.844 |
| AD Sc        | 0.813    | 0.611 | 0.844 |
| AD tuned     | 0.853    | 0.682 | 0.887 |
| AD tuned Sc  | 0.787    | 0.54  | 0.833 |
| KNN          | 0.787    | 0.574 | 0.805 |
| KNN Sc       | 8.0      | 0.599 | 0.819 |
| KNN tuned    | 0.84     | 0.663 | 0.87  |
| KNN tuned Sc | 0.907    | 0.807 | 0.921 |
| LR           | 0.84     | 0.655 | 0.875 |
| LR Sc        | 0.813    | 0.598 | 0.854 |
| LR tuned     | 0.84     | 0.655 | 0.875 |
| LR tuned Sc  | 0.813    | 0.598 | 0.854 |
| RF           | 0.907    | 0.804 | 0.923 |
| RF Sc        | 0.907    | 0.804 | 0.923 |
| RF tuned     | 0.893    | 0.775 | 0.913 |
| RF tuned Sc  | 0.893    | 0.778 | 0.911 |
| SVM          | 0.88     | 0.751 | 0.899 |
| SVM Sc       | 0.787    | 0.545 | 0.83  |



Random Forest demostrou ser o modelo mais eficiente em todas as avaliações

### **MACHINE LEARNING**



Neste gráfico podemos enxergar de uma melhor maneira a avaliação dos modelos e suas métricas





## **CONCLUSÕES**

O KNN Otimizado com Base de Dados normalizada obteve a terceira melhor avaliação, além disso, sem diferencias significativas com os primeiros dois. Na minha opinião pessoal, este sería o modelo a escolher pois gera menor custo computacional do que RF.

Todos os modelos de **Random Forest** conseguiram melhores avaliações, estranhamente teve piores resultados quando foi otimizado. Possivelmente o parâmetro mais relevante é o número mínimo de folhas, o qual não foi incluso na otimização



## **CONCLUSÕES**

Conseguiu-se que os modelos tivessem uma efectividade superior ao 80%. Conseguiu-se o objetivo de criar um modelo que consiga prognosticar se um cavalo pode sobreviver de acordo ao seu estado de saúde atual com sucesso.

Testaram-se diferentes modelos de **Machine Learning** vistos em aula, e o trabalho outorgou um grande desafio que enriqueceu os conhecimentos da aula e de programação.

