Fachbereich Mathematik & Informatik

Freie Universität Berlin

Prof. Dr. Ralf Kornhuber, Prof. Dr. Christof Schütte, Lasse Hinrichsen

4. Übung zur Vorlesung

Computerorientierte Mathematik I

WS 2020/2021

http://numerik.mi.fu-berlin.de/wiki/WS_2020/CoMaI.php

 $f(x) = O(x) \iff \lim_{x \to 0} \frac{f(x)}{x}$

Abgabe: Do., 17. Dezember 2020, 12:15 Uhr

- **1. Aufgabe** (4 TP)
 - a) Es seien Funktionen f(x) = o(x) und g(x) = o(x) für $x \to 0$ gegeben. Zeigen oder widerlegen Sie:

$$f(x) + g(x) = o(x)$$
 $f(x)/g(x) = o(x)$ $f(x)g(x) = o(x)$.

b) Beweisen Sie für x, $\operatorname{rd}(x) \neq 0$ die Beziehung

$$rd(x) = \times (1 + eps)$$

$$\frac{|x - \operatorname{rd}(x)|}{|x|} = \frac{|\operatorname{rd}(x) - x|}{|\operatorname{rd}(x)|} + o(eps) ,$$

wobei eps die Maschinengenauigkeit bezeichnet.

2. Aufgabe (4 TP) //

Berechnen Sie die relative und absolute Kondition der Funktionsauswertung bei $x \in \mathbb{R}$.

- a) $f(x) = \exp(x)$. Was passiert, wenn $x \to \pm \infty$?
- b) \sqrt{x} für x > 0. Was passiert, wenn $x \to 0$?
- c) f(x) = |1 x|. Was passiert, wenn x = 1? Was, wenn $x \to 1$?

Betrachten Sie das folgende (sehr simple) künstliche neuronale Netzwerk¹:

$$f_k(x) = \varphi(af_{k-1}(x) + b), \qquad f_0(x) = x,$$

mit $a, b \in \mathbb{R}$ und der "Aktivierungsfunktion" $\varphi(x) = \arctan(x)$. Die "Tiefe" des Netzwerks, $k \in \mathbb{N}$, sei beliebig, aber fest gewählt.

- a) Berechnen Sie $\kappa_{abs}(f_k, x)$ für $x \in \mathbb{R}$.
- b) Sei $|a| \leq 1$ und b beliebig. Zeigen Sie, dass

$$\kappa_{\text{abs}}(f_k, x) \le 1 \qquad \forall x \in \mathbb{R}.$$

c) Sei wieder $|a| \leq 1$ und gelte zusätzlich $b = \frac{2+\pi}{2}$. Zeigen Sie, dass

$$\kappa_{\rm rel}(f_k, x) \le \frac{4}{\pi} |x| \qquad \forall x \in \mathbb{R}.$$

4. Bonusaufgabe (Quiz) (1 Bonus TP/PP)

Formulieren Sie eine Frage zur Vorlesung. Falls Sie die Antwort wissen, geben Sie die richtige Antwort und 3 falsche Antwortmöglichkeiten an.

Allgemeine Hinweise

Die Punkte unterteilen sich in Theoriepunkte (TP) und Programmierpunkte (PP). Bitte beachten Sie die auf der Vorlesungshomepage angegebenen Hinweise zur Bearbeitung und Abgabe der Übungszettel, insbesondere der Programmieraufgaben.

¹ https://en.wikipedia.org/wiki/Artificial_neural_network

a) Es seien Funktionen f(x) = o(x) und g(x) = o(x) für $x \to 0$ gegeben. Zeigen oder widerlegen Sie:

$$f(x) + g(x) = o(x)$$
 $f(x)/g(x) = o(x)$ $f(x)g(x) = o(x)$.

b) Beweisen Sie für x, $rd(x) \neq 0$ die Beziehung

$$\frac{|x - \operatorname{rd}(x)|}{|x|} = \frac{|\operatorname{rd}(x) - x|}{|\operatorname{rd}(x)|} + o(eps) ,$$

wobei eps die Maschinengenauigkeit bezeichnet.

b) Beweisen Sie für x, $\operatorname{rd}(x) \neq 0$ die Beziehung

$$\frac{|x - \operatorname{rd}(x)|}{|x|} = \frac{|\operatorname{rd}(x) - x|}{|\operatorname{rd}(x)|} + o(eps) ,$$

wobei eps die Maschinengenauigkeit bezeichnet.

	zz, x-rd($\frac{ rd(x)-x }{ rd(x) } + o(ex)$	
	(=) x-rdu		
	(=) eps > 0 (x-	$\frac{ rd(x) }{ rd(x) } = \frac{1}{ rd(x) } = 0$	
(arze	x - rd(x)	$= \frac{ rd(x)-x }{ rd(x)-x } + O(eps) / \frac{ rd(x)-x }{ rd(x) }$	
	(X)	- Ird(x)/ - (Ird(x)/	
=	x-rol(x) _	$\frac{ rd(x)-x }{ rd(x) } = O(eps) / rd(x) = x(1+eps)$	
=	x - x(1+ E) X	$\frac{ \times(1+\varepsilon)-\times }{ \times(1+\varepsilon) } = c(eys)$	
<u>د</u>	x - x (1+eps)	$\frac{1}{x(1+eps)-x} = 0 (eps)$ $\frac{1}{x(1+eps)}$	
	1xeps1 -	x eps = 0 (eps) x (1+eps)	
=	lepsi -	eps = 0 (eps)	
•	eps - 1.	111695	
22	eps - 1+	11eps = 0 (eps)	

Berechnen Sie die relative und absolute Kondition der Funktionsauswertung bei $x \in \mathbb{R}$.

- a) $f(x) = \exp(x)$. Was passiert, wenn $x \to \pm \infty$?
- b) \sqrt{x} für x > 0. Was passiert, wenn $x \to 0$?
- c) f(x) = |1 x|. Was passiert, wenn x = 1? Was, wenn $x \to 1$?

Betrachten Sie das folgende (sehr simple) künstliche neuronale Netzwerk¹:

$$f_k(x) = \varphi(af_{k-1}(x) + b), \qquad f_0(x) = x,$$

mit $a, b \in \mathbb{R}$ und der "Aktivierungsfunktion" $\varphi(x) = \arctan(x)$. Die "Tiefe" des Netzwerks, $k \in \mathbb{N}$, sei beliebig, aber fest gewählt.

- a) Berechnen Sie $\kappa_{abs}(f_k, x)$ für $x \in \mathbb{R}$.
- b) Sei $|a| \le 1$ und b beliebig. Zeigen Sie, dass

$$\kappa_{\text{abs}}(f_k, x) \le 1 \qquad \forall x \in \mathbb{R}.$$

c) Sei wieder $|a| \leq 1$ und gelte zusätzlich $b = \frac{2+\pi}{2}.$ Zeigen Sie, dass

$$\kappa_{\rm rel}(f_k, x) \le \frac{4}{\pi} |x| \qquad \forall x \in \mathbb{R}.$$

