Practice

For
$$f(x) = \sin\left(\frac{\pi}{x}\right)$$
, $\lim_{x\to 0} f(x)$ does not exist.

Sol

Consider two sequences \boldsymbol{s}_n and \boldsymbol{t}_n satisfy

$$\frac{\pi}{s_n} = -\frac{\pi}{2} - 2n\pi, \frac{\pi}{t_n} = \frac{\pi}{2} + 2n\pi, \forall n \in \mathbb{N}$$

i.e.

$$s_n = \frac{\pi}{-\frac{\pi}{2} - 2n\pi} = \frac{2}{-1 - 4n},$$

$$t_n = \frac{\pi}{\frac{\pi}{2} + 2n\pi} = \frac{2}{1 + 4n}.$$

We have $f(s_n)=-1$ and $f(t_n)=1$ for all $n\in\mathbb{N}.$ Conclude that $\lim_{x\to 0}f(x)$ does not exist.