ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ МЕТОДОЛОГИИ МОДЕЛИРОВАНИЯ ПРИ ПРОВЕДЕНИИ ФИЗИЧЕСКИХ И ДИНАМИЧЕСКИХ ИСПЫТАНИЙ ПРИ ВВОДЕ В ЭКСПЛУАТАЦИЮ ЭНЕРГОБЛОКОВ АЭС С ВВЭР

<u>Ю.В. Саунин,</u> А.Н. Добротворский, А.В. Семенихин ОАО "Атомтехэнерго", Нововоронежский филиал, Нововоронеж, Россия

Введение. Настоящее время характеризуется резким возрастанием роли моделирования во всех сферах и отраслях науки и техники. Это обусловлено непрерывным развитием информационных технологий и созданием все более сложных технических систем. К таким системам относятся многие объекты атомной энергетики, и в том числе новые энергоблоки АЭС, вводимые и планируемые к вводу в эксплуатацию на нескольких площадках в соответствии с текущей "дорожной картой" строительства АЭС.

Среди целей приоритетных проектов, поддерживаемых на правительственном уровне, по направлению "Развитие суперкомпьютеров и грид-технологий" значится: "Разработка, создание и внедрение на базовых предприятиях атомной энергетики методов комплексного имитационного моделирования на суперЭВМ сложных технических объектов и систем, т.е. создание системы сквозного замкнутого компьютерного моделирования работы ядерных энергетических установок и АЭС в целом, включая моделирование аварийных ситуаций и их последствий". Достижение этой цели должно обеспечить среди прочего повышение безопасности эксплуатации ядерных энергетических установок различного назначения и сокращение затрат при сопровождении объектов атомной энергетики на всех этапах их жизненного пикла.

Достаточно понятные цели для решения поставленных общих задач требуют для их практического решения детализации и оценки реальных возможностей применения по сути новой методологии в конкретном производственном процессе. В данной работе анализируется один из этапов жизненного цикла АЭС с ВВЭР - процесс ввода в эксплуатацию и выполнение пусконаладочных процедур в соответствии с действующими нормами и правилами по безопасности в атомной энергетике. В этом процессе, не умаляя важность и значимость всех видов пусконаладочных работ (ПНР), акцентируется внимание на проведении наиболее сложных и трудоемких общеблочных испытаний, к которым относятся большинство физических и динамических испытаний (ФДИ). Дается краткое представление ФДИ, рассматривается состояние проблемы и ставится задача по использованию методологии моделирования при проведении ФДИ, предлагается вариант решения задачи путем разработки и внедрения автоматизированного рабочего места инженера-наладчика физика.

Особенности физических и динамических испытаний. Физическими и динамическими испытаниями в данной работе называются натурные испытания, которые проводятся при вводе в эксплуатацию энергоблока АЭС с целью подтверждению проектных физических, теплогидравлических характеристик и исследования поведения реакторной установки (РУ) и энергоблока в целом при переходных режимах, вызванных отключением основного технологического оборудования энергоблока. Из сложившейся практики проведения ПНР на АЭС с ВВЭР физические и динамические испытания по своим целям и особенностям методик проведения подразделяются на следующие группы:

- теплофизические испытания (ТФИ);
- физические испытания системы внутриреакторного контроля (ФИ СВРК);
- физические испытания аппаратуры контроля нейтронного потока (ФИ АКНП);
- режимные физические испытания (РФИ);
- физические испытания по определению нейтронно-физических характеристик активной зоны (ФИ НФХ);
 - физические ксеноновые испытания (ФКИ);

• динамические испытания (ДИ).

В свою очередь каждая группа ФДИ может подразделяться на виды испытаний, которые представляют конкретные испытания. Группы по количеству видов испытаний неравнозначны и могут включать от 2 до 15 видов испытаний. С учетом особенностей этапов ПНР и методик проведения испытаний виды испытаний могут дальше подразделяться на отдельные процедуры испытаний. Для представления особенностей ФДИ в таблице 1 приведены некоторые сведения по отдельным испытаниям в каждой из вышеупомянутых групп. В данной таблице приняты следующие сокращения для этапов и подэтапов ввода в эксплуатацию: XГО – холодно горячая обкатка, ФП - физический пуск, ЭП – энергетический пуск, ОПЭ – опытно-промышленная эксплуатация.

Таблица 1. Некоторые сведения по отдельным физическим и динамическим испытаниям

Наименование	Группа	Этапы и подэтапы ПНР	Требуемые режимы и состояния
Определение теплогидравлических характеристик 1-го контура	ТФИ	ХГО, ФП, все осваиваемые уровни мощности ЭП и ОПЭ	все возможные сочетания с работающими и отключенными ГЦН
Определение теплового баланса реакторной установки по 1-му и 2-му контуру	ТФИ	все осваиваемые уровни мощности ОПЭ	стационарные состояния с 4-мя, 3-мя и 2-мя работаю- щими ГЦН
Определение температурного поля теплоносителя на входе в активную зону	ФИ СВРК	ΧΓΟ, ΦΠ	расхолаживания через каждый работающий ПГ в состояниях с 4-мя, 3-мя и 2-мя работающими ГЦН
Проверка соответствия координат СВРД в активной зоне координатам СВРД, отображаемым в СВРК	ФИ СВРК	ОПЭ освоение уровня мощности (40- 50) %Nном	опускание и подъем отдельных выбранных ОР СУЗ
Проверка АКНП в части контроля мощности	ФИ АКНП	ФП, все осваиваемые уровни мощности ЭП и ОПЭ	стационарные состояния на всех осваиваемых уровнях мощности
Первый вывод реактора в критическое состояние	РФИ	ΦП	подъем групп ОР СУЗ, водообмен 1-го контура
Проверка режима подключения петли к 2-м и 3-м работающим	РФИ	ОПЭ освоение уровней мощности 75, 100 %Nном	состояния с 4-мя, 3-мя и 2-мя работающими ГЦН
Определение асимметрии размножаю- щих свойств активной зоны	ФИ НФХ	ФΠ	стационарное состояние
Определение температурного коэффициента реактивности	ФИ НФХ	ФП, ОПЭ освоение уровней мощности 40, 75, 100 % Nном	стационарные и квазиста- ционарные состояния
Проверка характеристик свободных аксиальных ксеноновых колебаний	ФКИ	ОПЭ, освоение уровней мощности 50, 75 %Nном	стационарные и квазиста- ционарные состояния в на- чале и в конце кампании
Испытания алгоритма подавления ксеноновых колебаний	ФКИ	ОПЭ, освоение уровней мощности 75, 100 % Nном	режимы после отключений основного оборудования
Испытания при отключении одного ГЦН из 4-х работающих и одного ГЦН из 3-х работающих	ди	ОПЭ, освоение уровней мощности 50, 75, 100 %Nном	переходные режимы с разным числом работающих ГЦН
Сброс нагрузки турбогенератора закрытием стопорных клапанов	ди	ОПЭ, освоение уровней мощности 75, 100 %Nном	переходные режимы с работой и без работы БРУ-К

Даже представленная краткая информация только по отдельным видам Φ ДИ уже позволяет судить об их сложности и трудоемкости. При более конкретном рассмотрении процесса выполнения Φ ДИ оценка уровня сложности и трудоемкости повышается. Весь процесс выполнения любой пусконаладочной работы, в том числе и выполнение Φ ДИ, разделяется на следующие этапы:

- I разработка пусконаладочной документации (ПНД);
- II подготовка и проведение испытания;
- III обработка полученной первичной информации и выпуск отчетной документации.

На 1-м этапе в качестве особенности можно отметить необходимость использования большого объема информации из разнообразной документации (нормативная, проектная, научно-техническая, отчетная и т.д.). При разработке ПНД особенно для энергоблоков новых и модернизируемых проектов исходя из методики испытания приходится рассматривать разные возможные варианты для проведения того или иного испытания. Выбор того или иного варианта связывается с многими факторами. Безусловно, что главным фактором является безопасность проведения испытания и возможность его проведения с минимальными технологическими ограничениями. Например, по методике испытания по проверке температурного поля теплоносителя 1-го контура на входе в активную зону требуется проведение расхолаживаний через отдельный парогенератор (ПГ). Исходя из технологических особенностей. расхолаживания можно провести разными способами. Основными являются либо увеличение отбора пара и выбранного $\Pi\Gamma$, либо увеличение подачи питательной воды в выбранный ПГ. Далее при выборе способа расхолаживания, конкретная реализация способа тоже может иметь несколько вариантов. Например, отбор и сброс пара из ПГ можно осуществлять по разным линиям (в атмосферу, в коллектор собственных нужд, конденсатор и т.д.) и через разные сбросные устройства (БРУ-А, БРУ-СН, БРУ-К и т.д.). Таким образом, не требуется особых доказательств, что уже на самом первом этапе процесса выполнения большинства ФДИ применение моделирования является прогрессивным и перспективным способом повышения качества и эффективности разрабатываемой ПНД. Это относится и к выбору конкретного способа проведения испытания, и к описанию шагов выполнения. Кроме этого, наличие соответствующего программно-технического обеспечения позволит существенно сократить трудозатраты и сроки, требуемые на разработку и согласование ПНД.

Что касается 2-го этапа, то уже сейчас при непосредственной подготовке к проведению многих ФДИ фактически нормативно требуется разработка "сценариев" испытания исходя из текущего состояния оборудования и особенностей предполагаемых состояний и режимов работы РУ. Безусловно, что проведение прогнозных модельных расчетов при разработке "сценариев" существенно повысит их качество и представительность. В свою очередь качественный сценарий должен значительно уменьшить вероятность неуспешного завершения испытания и необходимость в проведении повторных испытаний.

На 3-м этапе при выполнении обработки первичной информации, получаемой при проведении большинства ФДИ, также фактически уже сейчас требуется сопоставление полученных экспериментальных данных и модельных по конкретным реализованным состояниям. Это связано, с повышением точности представляемой информации штатными системами, например, в СВРК при восстановлении поля энерговыделения в активной зоне. В таких случаях, при требуемом сравнении экспериментальных и расчетных данных, использование аппроксимации по состояниям, включаемым в альбомы нейтронно-физических характеристик, явно снижает представительность получаемых оценок.

Кроме этого, многолетний опыт проведения ПНР на АЭС с ВВЭР показывает, что конструктивные особенности конкретного оборудования и расположения первичных преобразователей, а также особенности нейтронно-физических и теплогидравлических процессов приводят в некоторых случаях к некорректной обработке информации (неполный учет этих осо-

бенностей) в штатных системах контроля и управления (СКУ). В результате, оперативный персонал и/или автоматические регуляторы энергоблока могут неадекватно воздействовать на объект управления. Данное обстоятельство может привести к неэкономичной или к небезопасной эксплуатации РУ. Объективное изучение этих особенностей для более глубокого понимания происходящих в РУ процессов в разных режимах и нахождение возможностей их формализации в ходе ПНР с выдачей обоснованных рекомендаций по корректировке алгоритмов функционирования штатных СКУ также требует привлечение дополнительных модельных расчетов по нейтронно-физическим и теплогидравлическим кодам. В данном случае хорошо подходит пример с давно известной проблемой корректного определения температуры теплоносителя в горячих нитках 1-го контура в связи с наблюдаемым явлением температурной стратификации.

Подводя итог представлению особенностей Φ ДИ, можно заключить, что требуется принципиальное изменение сложившегося подхода и методологии проведения большинства Φ ДИ на всех этапах выполнения данных ПНР. Эта задача чрезвычайно актуальна и целями ее практического решения являются:

- разработка и внедрение в процесс ввода в эксплуатацию энергоблоков АЭС с ВВЭР современных программно-технического комплексов с включением компьютерного моделирования;
- оптимизация пусконаладочных режимов работы при вводе в эксплуатацию энерго-блоков АЭС с ВВЭР;
- более корректный учет ряда наблюдаемых явлений и эффектов для снижения неучтенных погрешностей и повышения представительности оперативных оценок протекающих в РУ процессов.

Состояние проблемы, предполагаемое решение и ожидаемые эффекты. Методология моделирования широко используется в других отраслях и при выполнении работ на других этапах жизненного цикла АЭС. Комплексным решением поставленной актуальной задачи по внедрению в практику выполнения Φ ДИ методологии моделирования является создание и использование автоматизированного рабочего места инженера- наладчика физика (АРМ ИН Φ).

В настоящее время подобием или приближением к АРМ ИНФ при проведении физических и динамических испытаний в ходе ПНР из отечественных разработок можно считать:

- системы экспериментального контроля для проведения физических и динамических испытаний, выполненные разными изготовителями (в частности ГНЦ ФЭИ) в разных конфигурациях для разных энергоблоков по заданиям НИЦ "Курчатовский институт" и ВНИИА-ЭС;
- программно-технические комплексы для обработки испытаний СПНИ разработки ОКБ «Гидропресс";
 - программа ИР в составе штатного ПО СВРК нового поколения;
- специализированное программное обеспечение для обработки комплексных испытаний СВРК и динамических испытаний разработки НВАТЭ.

Все эти комплексы решают определенные узкие задачи и при этом обладают общим основным недостатком — отсутствием возможностей моделирования и оперативного сравнения полученных данных с данными, получаемыми расчетами по сопряженным нейтроннофизическим и теплогидравлическим кодам, используемым при обоснованиях безопасности и т.д. Основными причинами такого недостатка является:

• - ограниченность ранее поставленных задач и возможностей используемых кодов;

- - применение старых подходов и методологии с учетом ограниченных возможностей вычислительной техники прошлого поколения;
- - неумение и/или незнание возможностей использования для модельных расчетов кодов нового поколения и/ или кодов других разработчиков, основанных на современных информационных технологиях с расширенными аналитическими возможностями (коды улучшенной оценки).

На основе анализа и ознакомления с доступной информацией и проведения консультаций для решения задачи создания АРМ ИНФ предполагается использовать программное обеспечение автоматизации построения пространственных моделей основных элементов реакторной установки, максимально приближенных к натуре, на основе системного кода АТНLЕТ. Как вариант рассматривается возможность использования системного кода КОР-САР. Подобный подход, как показывает практика, позволяет в сотни раз ускорить создание вариантных наборов исходных данных для вычислительных программ, что дает возможность вести детальную подготовку пусконаладочных операций и непрерывное сопровождение наладочных режимов с моделированием основных элементов установки на основе результатов расчетов стационарных и переходных режимов для каждого набора данных. Открывается возможность в рамках одного расчетного кода проводить комплексный расчет первого и второго контура установки с детализацией, обеспечивающей описание локальных параметров на уровне проводимых измерений.

Первым этапом при проведении работы предполагается верификация расчетных моделей на полученных при вводе в эксплуатацию натурных экспериментальных данных по ВВЭР-1000 различных проектов с различной географией 1-го контура, различными типами кассет, различным способом размещения внутриреакторных датчиков в стационарных и переходных режимах. Получение положительных результатов на большом количестве опытных данных должно стать отправной точкой для создания специализированного программного обеспечения отвечающего на потребности в разработке подробных сценариев развития технологических процессов и работы основного оборудования РУ при подготовке к проведению сложных общеблочных испытаний.

На следующем этапе разработки, исходя из отмеченных целей, предполагается анализ возможностей практического использования результатов модельных расчетов для повышения представительности выходной информации СВРК и других СКУ, влияющей на безопасность и экономичность эксплуатации РУ. По результатам анализа могут быть даны рекомендации и предложения по более корректному учету в алгоритмах функционирования штатных СКУ ряда наблюдаемых явлений и эффектов в РУ с ВВЭР, повышающих погрешность контролируемых параметров и создающих неоднозначность оценок протекающих в РУ процессов.

На заключительном этапе должна быть проведена интеграция различных составных частей и разработка специализированного программного обеспечения APM ИНФ на базе предложенной математической модели.

На основании опыта проведения ПНР основные качественные и количественные эффекты, которые можно ожидать от применения АРМ ИНФ в процессе ввода в эксплуатацию энергоблоков АЭС с ВВЭР на разных стадиях подготовки и проведения испытаний, а также и в других сопутствующих и параллельных процессах представлены в таблице 2. Безусловно, что в процессе накопления опыта использования АРМ ИН должны появиться новые возможности и другие эффекты.

Таблица 2. Ожидаемые эффекты от использования АРМ ИНФ с возможностью моделирования при выполнении ФДИ

Наименование процесса ПНР	Объекты использования	Качественный эффект	Количественный эффект
Подготовка испытаний	Программы и методики проведения испытаний. Программное обеспечение испытаний.	Возможность прогнозного анализа текущих условий проведения испытаний, разработки сценариев испытаний, построения графиков ожидаемого поведения основных параметров, учета особенностей выполнения аналогичных испытаний на других энергоблоках.	Сокращение затрат рабочего времени на подготовку испытаний: > 2 человеко-дня на одно испытание; > до 60 человеко-дней на один вводимый в эксплуатацию энергоблок.
Проведение испытаний	Расчетные процедуры оперативной обработки и представления результатов испытаний. Визуализация выходной информации.	Повышение культуры безопасности при вводе в эксплуатацию за счет открывшейся возможности переноса и акцентирования внимания на комплексном анализе работы оборудования РУ и энергоблока, соблюдении требований правил, норм и стандартов в части обеспечения безопасности при проведении сложных общеблочных испытаний.	Снижение трудозатрат на расчетные процедуры и визуализацию выходной информации: ➤ 0.5 человеко-дня на одно испытание; ➤ до 30 человеко-дней на один вводимый в эксплуатацию энергоблок.
Выпуск отчетной документации	Алгоритмы анализа результатов испытаний	Повышение качества и оперативности выпуска отчетной документации. Образование дополнительного резерва времени на принятие необходимых решений по результатам испытаний.	 Снижение трудозатрат на выпуск отчетной документации: ➤ 3 человеко-дня на одно испытание; ➤ до 90 человеко-дней на один вводимый в эксплуатацию энергоблок.
Использование в штатных системах контроля и управления	Алгоритмы расчетов в штатных системах контроля и управления	Возможность совершенствования алгоритмов расчетов в штатных системах контроля и управления за счет внедрения разработанного программного обеспечения в штатные системы контроля в качестве сервисных функций и его использования в режиме «on-line». Обоснованное уточнение и корректировка весов мощностей, рассчитываемых разными способами в расчете основного контролируемого параметра с помощью СВРК - средневзвешенной мощности реактора Возможность практического использования результатов модельных расчетов для повышения представительности выходной информации СВРК и других СКУ, влияющей на безопасность и экономичность эксплуатации РУ.	Снижение погрешности расчета средневзвешенной мощности реактора с 2% до 1-1.5%

Заключение. Оценка материальных и финансовых затрат на создание APM ИНФ, включающим программное обеспечение для проведения модельных расчетов, не входит в задачу настоящей работы. Однако, стоит отметить, что в настоящее время APM с элементами моделирования применяются буквально во всех сферах человеческой деятельности, в том числе и в атомной энергетике, частности, в научно-исследовательских и проектно-конструкторских организациях. Это свидетельствует о том, что затраты на создание и использование таких программно-технических средств окупаются. Поэтому использование возможностей современных информационных технологий на примере APM ИНФ при проведении ФДИ в процессе ввода в эксплуатацию энергоблоков АЭС особенно новых поколений, включающих передовые достижения информационных технологий, должно являться приоритетной задачей и в пусконаладочных организациях.