Презентация к докладу

Рекомбинирование

Гузева И.Н.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Гузева Ирина Николаевна
- студентка НФИбд-01-22
- Российский университет дружбы народов
- · 1132226441@rudn.ru
- https://inguzeva.github.io/ru/

Введение

Актуальность темы

- Современные задачи в науке и технике становятся всё более сложными.
- Часто не существует одного универсального метода для их решения.
- Необходим поиск новых подходов, основанных на существующих решениях.

Что такое рекомбинирование?

- Это процесс объединения различных решений или идей для создания новых.
- В математическом моделировании приём, позволяющий комбинировать модели, алгоритмы или эвристики.

Зачем применять рекомбинирование?

Зачем применять рекомбинирование?

- **Расширение пространства поиска**: Рекомбинирование помогает исследовать более широкий набор решений.
- **Преодоление локальных минимумов**: Оно помогает избегать застревания на субоптимальных решениях.
- **Интеграция разных подходов**: Комбинирование разных методов повышает вероятность нахождения более эффективных решений.

Математическая формализация

Основная формула

$$P$$
(улучшение) $= rac{1}{n} \sum_{i=1}^n P$ (улучшение от p_i) (1)

где: - (n) — количество существующих решений, - ($P(y_1y_2 = 0 - p_i)$) — вероятность того, что рекомбинирование решения (p_i) приведёт к улучшению.

Области применения рекомбинирования

- Машинное обучение: Использование ансамблей моделей (Bagging, Boosting, Stacking).
- **Генетические алгоритмы**: Эволюционные алгоритмы для оптимизации гиперпараметров и параметров моделей.
- **Комбинаторные задачи**: Использование рекомбинирования в задачах маршрутизации и для нахождения решений задачи рюкзака.

Генетические алгоритмы (ГА)

Принципы работы

- 1. Инициализация популяции случайных решений.
- 2. **Оценка пригодности** (fitness).
- 3. Отбор лучших решений.
- 4. Рекомбинирование родителей для создания новых решений.
- 5. Мутации потомков для создания разнообразия.
- 6. Повторение цикла до нахождения оптимального решения.

Эволюционные стратегии и мутационные алгоритмы

Отличия от ГА

- Меньший акцент на рекомбинирование и больший на мутации.
- Эволюционные стратегии лучше подходят для непрерывных пространств решений.
- Комбинирование решений через **векторные операции** пример: весовая линейная комбинация родителей.

Особенности рекомбинации

- Комбинирование векторов признаков.
- Весовая линейная комбинация родителей:

$$x_{\text{\tiny HOBBIŇ}} = \alpha x_1 + (1 - \alpha)x_2 \tag{2}$$

где: - ([] [[0,1]]) — параметр, определяющий вес каждого из родителей.

Сравнительная таблица методов

Методы и их особенности

Таблица 1: Сравнение методов оптимизации, использующих рекомбинирование

		Основные		
Метод	Применение	операции	Преимущества	Недостатки
Генетиче-	Оптимизация,	Скрещивание,	Быстрое	Высокие
ские	ML	мутация, отбор	приближение к	вычислительные
алгоритмы			хорошим	затраты
			решениям	
Эволюци-	Биология,	Мутация,	Универсальность	Медленная
онные	инженерия	селекция		сходимость
стратегии				
Комб. опти-	Маршруты,	Перебор +	Высокая точность	Требует большой
мизация	задачи поиска	рекомбинация	решений	памяти и времени

Преимущества и недостатки:

Преимущества:

- Интеграция разнообразных подходов.
- Высокая гибкость в применении к различным задачам.
- Возможность быстрого расширения пространства поиска решений.

Недостатки:

- Не всегда приводит к улучшению: не все комбинации решений являются успешными.
- Требуется тщательный **контроль за выбором и балансом методов** (рекомбинирование и мутация).

Заключение

Заключение

- Рекомбинирование позволяет интегрировать эвристики и разнообразные подходы.
- Повышает шансы на нахождение нестандартных и эффективных решений.

Что важно помнить?

- Не все комбинации успешны важно правильно выбирать, что комбинировать.
- Требуется баланс между мутациями и рекомбинациями.

Перспективы:

- Применение в гибридных моделях (например, нейросети + эволюционные методы).
- · Использование в автоматическом проектировании алгоритмов (AutoML).

Спасибо за внимание!