МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6 по дисциплине «Машинное обучение»

Тема: Кластеризация (DBSCAN, OPTICS)

Студент гр. 8303	Гришин К. И.
Преподаватель	 Жангиров Т.Р.

Санкт-Петербург

Цель работы

Ознакомиться с методами кластеризации из библиотеки Sklearn.

Ход выполнения работы

Загрузка данных

1. Скачать датасет по ссылке:

https://www.kaggle.com/arjunbhasin2013/ccdata.

2. Загрузить данные в датафрейм (табл. 1)

	0	1	2	4	5
BALANCE	40.901	3202.467	2495.149	817.714	1809.829
BALANCE_FREQUENCY	0.818	0.909	1.000	1.000	1.000
PURCHASES	95.40	0.00	773.17	16.00	1333.28
ONEOFF_PURCHASES	0.00	0.00	773.17	16.00	0.00
INSTALLMENTS_PURCHASES	95.40	0.00	0.00	0.00	1333.28
CASH_ADVANCE	0.000	6442.945	0.000	0.000	0.000
PURCHASES_FREQUENCY	0.167	0.000	1.000	0.083	0.667
ONEOFF_PURCHASES_FREQUENCY	0.000	0.000	1.000	0.083	0.000
PURCHASES_INSTALLMENTS_FREQUENCY	0.083	0.000	0.000	0.000	0.583
CASH_ADVANCE_FREQUENCY	0.00	0.25	0.00	0.00	0.00
CASH_ADVANCE_TRX	0	4	0	0	0
PURCHASES_TRX	2	0	12	1	8
CREDIT_LIMIT	1000.0	7000.0	7500.0	1200.0	1800.0
PAYMENTS	201.802	4103.033	622.067	678.335	1400.058
MINIMUM_PAYMENTS	139.510	1072.340	627.285	244.791	2407.246
PRC_FULL_PAYMENT	0.000	0.222	0.000	0.000	0.000
TENURE	12	12	12	12	12

Таблица 1. Первые пять наблюдений. Наблюдения представлены столбцами.

DBSCAN

1. Проведена кластеризация методом k-средних (рис. 1)

k_means

Рисунок 1. Кластеризация методом K-Means. Данные приведены к размерности 2.

- 2. Стандартизировать данные
- 3. Проведена кластеризация методом DBSCAN

Cluster labels: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1}

Total clusters: 36

Non-clustered data: 0.7512737378415933

Без предварительной настройки более 75% данных остались не кластеризованными.

4. Графики зависимости количества кластеров и процента некластеризованных наблюдений от максимальной рассматриваемой дистанции (рис. 2)

Рисунок 2. Количество кластеров и процент некластеризованных данных от максимальной рассматриваемой дистанции.

5. Графики зависимости количества кластеров и процента некластеризованных наблюдений от минимального количества точек, образующих кластер (рис. 3)

Рисунок 3. Количество кластеров и процент некластеризованных данных от минимального количества точек, образующих кластер.

6. Определены значения параметров *eps* и *min_samples* для которых количество кластеров от 5 до 7, а процент некластеризованных наблюдений не превышает 12%.

В промежутке eps=[0.1, 3.0] и min_samples=[2, 30] найдены значения для которых количество кластеров находится в промежутке от 5 до 7, а количество некластеризованных данных не превышает 12% (табл. 2)

	min_samples	eps	non_clustered	clusters
0	3	2.0	0.062876	6
1	3	2.6	0.030917	5
2	3	2.7	0.027096	5
3	3	2.9	0.022233	5
4	3	3.0	0.019569	5
5	4	1.7	0.102478	5

Таблица 2. Результаты поиска наиболее подходящих параметров.

Наиболее подходящими параметрами выбраны eps=3.0, $min_samples=3$. При таких вводных, наименьший процент некластеризованных данных.

7. Визуализация данных с пониженной размерностью.

Проведена кластеризация данных, после чего размерность понижена до 2 с помощью метода главных компонент (рис. 4).

Рисунок 4. Результат кластеризации методом DBSCAN. eps=3.0, min_samples=3.

Параметры, которые принимает DBSCAN представлены в таблице 3.

Параметр	Описание	
eps: float	Максимальное расстояние между наблюдениями, чтобы они счи-	
= 0.5	тались соседними (радиус окрестности наблюдения	
min_samples: int	Количество наблюдений вокруг точки, чтобы считать ее базовой	
= 5		
metric: string¹ or callable	Метрика вычисления расстояния	
= "euclidean"		
metric_params: dict	Набор параметров для метрики, заданной функцией	
= None		
algorithm: string²	Алгоритм поиска ближайших соседей	
= "auto"		
leaf_size: int	Размер листьев дерева алгоритмов BallTree и KDTree	
= 30		
p: float	Параметр для метрики Минковского	
= None		
n_jobs: int	Количество параллельных рутин, в которых вычисляются ближай-	
= None	шие соседи1 означает использование всех процессоров	

Таблица 3. Параметры метода DBSCAN

1: метрики scikit-learn['cityblock', 'cosine', 'euclidean', '11', '12', 'manhattan']; метрики scipy.spatial.distance['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule']

2: алгоритмы ['auto', 'ball tree', 'kd tree', 'brute']

OPTICS

1. Параметры метода *OPTICS* (табл. 4)

Параметр	Описание	
max_eps: float	Максимальное расстояние между наблюдениями, чтобы они	
= ∞	считались соседними (радиус окрестности наблюдения)	
min_samples: int > 1 or float (0,1)	Количество наблюдений вокруг точки, чтобы считать ее базо-	
= 5	вой	
metric: string ¹ or callable	Метрика вычисления расстояния	
= "minkowski"		
p: int	Параметр для метрики Минковского	
= 2		
metric_params: dict	Набор параметров для метрики, заданной функцией	
= None		
cluster_method: ("xi", "dbscan")	Метод извлечения кластеров	
= "xi"		
eps: float	Максимальное расстояние между наблюдениями, чтобы они	
= None	считались соседними (радиус окрестности наблюдения). Ис-	
	пользуется при cluster_method='dbscan'	
xi: float(0,1)	Определяет минимальную крутизну на графике достижимо-	
= 0.5	сти, который составляет границу кластера. Используется при	
	cluster_method='xi'	
predecessor_correction: bool	Коррекция кластеров в соответствии с предшественниками,	
= True	рассчитанными <i>OPTICS</i> .	
	Используется при cluster_method='xi'	
min_cluster_size: int > 0 of float(0, 1)	Минимальное количество выборок в кластере <i>OPTICS</i> , выра-	
= None	женное в виде абсолютного числа доли от количества выбо-	
	рок. Используется при cluster_method='xi'	
algorithm: string ²	Алгоритм поиска ближайших соседей	
= "auto"	2 47 407	
leaf_size: int	Размер листьев дерева алгоритмов <i>BallTree</i> и <i>KDTree</i>	
=30		
memory: string or object ³	Используется для кеширования дерева вычислений. Являясь	
= None	строкой, определяет путь кеширования	
n_jobs: int	Количество параллельных рутин, в которых вычисляются бли-	
= None	жайшие соседи1 означает использование всех процессоров	

Таблица 4. Параметры метода OPTICS

1: метрики scikit-learn['cityblock', 'cosine', 'euclidean', '11', '12', 'manhattan']; метрики scipy.spatial.distance['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule']

2: алгоритмы ['auto', 'ball tree', 'kd tree', 'brute']

3: Объект с интерфейсом joblib. Memory

зультатам пункта 6 *DBSCAN*. Вручную найдены параметры max_eps=2.0, min_samples=3, которые удовлетворяют условию. С метрикой по умолчанию ("minkowski", p=2) происходит кластеризация на 6 кластеров 6.3% некластеризованных данных.

2. Параметры max_eps и min_samples, при которых результаты близки к ре-

3. Визуализация полученных результатов (рис. 5), а также график достижимости (рис. 6).

Рисунок 5. Данные, кластеризованные методом *OPTICS* с метрикой Минковского. $max_eps=2.0, min_samples=3.$

Рисунок 6. График достижимости с метрикой Минковского.

4. Исследование работы OPTICS при различных метриках.

Метрика «euclidean» рисунки 7 и 8.

Рисунок 7. Данные, кластеризованные методом *OPTICS* с метрикой *euclidean*. $max_eps{=}2.0, min_samples{=}3.$

Рисунок 8. График достижимости с метрикой euclidean.

Метрика «canberra» рисунки 9 и 10.

Рисунок 9. Данные, кластеризованные методом *OPTICS* с метрикой *canberra*. $max_eps{=}2.0, min_samples{=}3.$

Рисунок 10. График достижимости с метрикой *canberra*.

Метрика «chebyshev» рисунки 11 и 12.

Рисунок 11. Данные, кластеризованные методом *OPTICS* с метрикой *chebyshev*. $max_eps{=}2.0, min_samples{=}3$

Рисунок 12. График достижимости с метрикой *chebyshev*.

Метрика «manhattan» рисунки 13 и 14.

Рисунок 13. Данные, кластеризованные методом *OPTICS* с метрикой *manhattan*. $max_eps{=}2.0, min_samples{=}3.$

Рисунок 14. График достижимости с метрикой *manhattan*.

Метрика «sqeuclidean» рисунки 15 и 16.

Рисунок 15. Данные, кластеризованные методом *OPTICS* с метрикой *sqeuclidean*. $max_eps{=}2.0, min_samples{=}3.$

Рисунок 16. График достижимости с метрикой sqeuclidean.

Метрика «minkowski» при p=3 рисунки 17, 18.

Рисунок 17. Данные, кластеризованные методом OPTICS с метрикой minkowski p=3. $max_eps=2.0, min_samples=3.$

Рисунок 18. График достижимости с метрикой minkowski p=3.

Результаты исследования различных метрик представлены в таблице 5.

Метрика	Количество кластеров	Процент выпавших наблюдений
minkowski	7	3.11
euclidean	6	6.31
canberra	60	46.41
chebyshev	2	1.33
manhattan	55	39.50
sqeuclidean	25	15.17

Таблица 5. Результат исследования различных метрик *OPTICS* при *max_eps*=2.0, *min_samples*=3.

Вывод

В ходе лабораторной работы были изучены методы кластеризации *DBSCAN* и *OPTICS*.

DBSCAN опирается на два параметра, которые определяют его работу: максимальный радиус наблюдений, и количество точек на радиус, составляющих базовое состояние. Алгоритм среди всех точек ищет ту, в радиусе которой находится достаточно соседей, чтоб считать ее базовой, затем рассматриваются радиусы соседних точек и так пока не появится новых соседей. После чего ищутся следующие точки, которые удовлетворяют начальным условиям.

ОРТІСЅ куда менее опирается на заданные параметры создает граф достижимости. Выбрав из точек подходящие ядра, начинают рассматриваться соседи. Если отобразить график расстояния от кластера до следующего соседа, то можно заметить, что данные, которые разбиты на несколько облаков представятся на таком графике в виде «долин» и «пиков». Пики на таком графике определяют разграничение кластеров. Если горизонтальной линией обрезать значение максимального расстояния, то можно получить искомые кластеры. Однако более удачным методом является определение скачков значений достижимых расстояний.

Для данного набора данных оба метода не являются удачным решением, поскольку данные представляют собой единое облако.