# Logistic Regression

## Logistic regression

- ▶ When response variable is measured/counted, regression can work well.
- ▶ But what if response is yes/no, lived/died, success/failure?
- ▶ Model *probability* of success.
- Probability must be between 0 and 1; need method that ensures this.
- Logistic regression does this. In R, is a generalized linear model with binomial "family":

```
glm(y ~ x, family="binomial")
```

Begin with simplest case.

## **Packages**

```
library (MASS)
library(tidyverse)
library(marginaleffects)
library(broom)
library(nnet)
library(conflicted)
conflict prefer("select", "dplyr")
conflict prefer("filter", "dplyr")
conflict prefer("rename", "dplyr")
conflict_prefer("summarize", "dplyr")
```

## The rats, part 1

Rats given dose of some poison; either live or die:

dose status

- 0 lived
- 1 died
- 2 lived
- 3 lived
- 4 died
- 5 died

### Read in:

```
my_url <- "http://ritsokiguess.site/datafiles/rat.txt"</pre>
rats <- read_delim(my_url, " ")</pre>
rats
# A tibble: 6 \times 2
   dose status
  <dbl> <chr>
      0 lived
      1 died
3
    2 lived
4
    3 lived
5
   4 died
      5 died
```

## Basic logistic regression

► Make response into a factor first:

```
rats2 <- rats %>% mutate(status = factor(status))
rats2
# A tibble: 6 \times 2
  dose status
  <dbl> <fct>
    0 lived
2 1 died
3
 2 lived
 3 lived
 4 died
5
6
  5 died
 then fit model:
```

status.1 <- glm(status ~ dose, family = "binomial", data =</pre>

## Output

#### summary(status.1)

Null deviance: 8.3178 on 5 degrees of freedom Residual deviance: 6.7728 on 4 degrees of freedom AIC: 10.773

Number of Fisher Scoring iterations: 4

## Interpreting the output

- ▶ Like (multiple) regression, get tests of significance of individual x's
- Here not significant (only 6 observations).
- "Slope" for dose is negative, meaning that as dose increases, probability of event modelled (survival) decreases.

# Output part 2: predicted survival probs

```
cbind(predictions(status.1)) %>%
  select(dose, estimate, conf.low, conf.high)
```

```
dose estimate conf.low conf.high
1 0 0.8434490 0.137095792 0.9945564
2 1 0.7331122 0.173186479 0.9729896
3 2 0.5834187 0.168847561 0.9061463
4 3 0.4165813 0.093853680 0.8311524
5 4 0.2668878 0.027010413 0.8268135
6 5 0.1565510 0.005443589 0.8629042
```

# On a graph



### The rats, more

- ▶ More realistic: more rats at each dose (say 10).
- Listing each rat on one line makes a big data file.
- Use format below: dose, number of survivals, number of deaths.

```
    dose
    lived
    died

    0
    10
    0

    1
    7
    3

    2
    6
    4

    3
    4
    6

    4
    2
    8

    5
    1
    9
```

- 6 lines of data correspond to 60 actual rats.
- ► Saved in rat2.txt.

### These data

```
my_url <- "http://ritsokiguess.site/datafiles/rat2.txt"
rat2 <- read_delim(my_url, " ")
rat2</pre>
```

```
# A tibble: 6 x 3
    dose lived died
    <dbl> <dbl> <dbl> 1
    0    10    0
    2    1    7    3
    3    2    6    4
    4    3    4    6
    5    4    2    8
    6    5    1    9
```

## Response matrix:

- Each row contains *multiple* observations.
- Create *two-column* response with cbind:
  - #survivals in first column,
  - #deaths in second.

# Fit logistic regression

constructing the response in the glm:

```
rat2.1 <- glm(cbind(lived, died) ~ dose, family = "binomia"
```

### Output

Call:

Significant effect of dose now:

data = rat2

```
summary(rat2.1)
```

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.3619 0.6719 3.515 0.000439 ***

dose -0.9448 0.2351 -4.018 5.87e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27.530 on 5 degrees of freedom

glm(formula = cbind(lived, died) ~ dose, family = "binomia"

## Predicted survival probs

```
new <- datagrid(model = rat2.1, dose = 0:5)
cbind(predictions(rat2.1, newdata = new)) %>%
  select(estimate, dose, conf.low, conf.high)
```

```
estimate dose conf.low conf.high
1 0.9138762 0 0.73983042 0.9753671
2 0.8048905 1 0.61695841 0.9135390
3 0.6159474 2 0.44876099 0.7595916
4 0.3840526 3 0.24040837 0.5512390
5 0.1951095 4 0.08646093 0.3830417
6 0.0861238 5 0.02463288 0.2601697
```

# On a picture

```
plot_predictions(rat2.1, condition = "dose")
```



#### Comments

- Significant effect of dose.
- Effect of larger dose is to decrease survival probability ("slope" negative; also see in decreasing predictions.)
- Confidence intervals around prediction narrower (more data).

## Multiple logistic regression

- With more than one x, works much like multiple regression.
- Example: study of patients with blood poisoning severe enough to warrant surgery. Relate survival to other potential risk factors.
- ➤ Variables, 1=present, 0=absent:
  - survival (death from sepsis=1), response
  - shock
  - malnutrition
  - alcoholism
  - age (as numerical variable)
  - bowel infarction
- ► See what relates to death.

## Read in data

ш : ОС ... - - - - - - - - -

```
my_url <-
   "http://ritsokiguess.site/datafiles/sepsis.txt"
sepsis <- read_delim(my_url, " ")
sepsis</pre>
```

| # A tibble: 106 x 6 |               |               |                |                 |             |             |  |  |
|---------------------|---------------|---------------|----------------|-----------------|-------------|-------------|--|--|
|                     | ${\tt death}$ | ${\tt shock}$ | ${\tt malnut}$ | ${\tt alcohol}$ | age         | bowelinf    |  |  |
|                     | <dbl></dbl>   | <dbl></dbl>   | <dbl></dbl>    | <dbl></dbl>     | <dbl></dbl> | <dbl></dbl> |  |  |
| 1                   | 0             | 0             | 0              | 0               | 56          | 0           |  |  |
| 2                   | 0             | 0             | 0              | 0               | 80          | 0           |  |  |
| 3                   | 0             | 0             | 0              | 0               | 61          | 0           |  |  |
| 4                   | 0             | 0             | 0              | 0               | 26          | 0           |  |  |
| 5                   | 0             | 0             | 0              | 0               | 53          | 0           |  |  |
| 6                   | 1             | 0             | 1              | 0               | 87          | 0           |  |  |
| 7                   | 0             | 0             | 0              | 0               | 21          | 0           |  |  |
| 8                   | 1             | 0             | 0              | 1               | 69          | 0           |  |  |
| 9                   | 0             | 0             | 0              | 0               | 57          | 0           |  |  |
| 10                  | 0             | 0             | 1              | 0               | 76          | 0           |  |  |
|                     |               |               |                |                 |             |             |  |  |

# Make sure categoricals really are

```
sepsis %>%
  mutate(across(-age, \(x) factor(x))) -> sepsis
```

# The data (some)

### sepsis

```
A tibble: 106 \times 6
   death shock malnut alcohol
                                    age bowelinf
   <fct> <fct> <fct> <fct> <fct> <fct> <dbl> <fct>
                                     56 0
 1 0
                 0
          0
 2 0
                                     80 0
 3 0
                                     61 0
                                     26 0
 5 0
                                     53 0
 6 1
                                     87 0
 7 0
                                     21 0
 8 1
                                     69 0
          0
 9 0
                                     57 0
          0
10 0
                                     76 0
# i 96 more rows
```

### Fit model

```
sepsis.1 <- glm(death ~ shock + malnut + alcohol + age +
  bowelinf,
family = "binomial",
data = sepsis
)</pre>
```

## Output part 1

Call:

### summary(sepsis.1)

```
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.75391 2.54170 -3.838 0.000124 ***
shock1
        3.67387 1.16481 3.154 0.001610 **
malnut1 1.21658 0.72822 1.671 0.094798 .
alcohol1 3.35488 0.98210 3.416 0.000635 ***
    0.09215 0.03032 3.039 0.002374 **
age
bowelinf1 2.79759
                    1.16397 2.403 0.016240 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '
```

glm(formula = death ~ shock + malnut + alcohol + age + bowe

family = "binomial", data = sepsis)

## Removing malnut

```
sepsis.2 <- update(sepsis.1, . ~ . - malnut)
tidy(sepsis.2)</pre>
```

```
# A tibble: 5 x 5
 term
           estimate std.error statistic p.value
 <chr>
              <dbl>
                      <dbl>
                               <dbl>
                                      <dbl>
1 (Intercept) -8.89
                     2.32
                               -3.84 0.000124
2 shock1 3.70 1.10
                             3.35 0.000797
3 alcohol1 3.19 0.917
                               3.47 0.000514
4 age
           0.0898
                     0.0292
                               3.07 0.00211
5 bowelinf1
             2.39
                     1.07
                               2.23 0.0260
```

Everything significant now.

#### Comments

- ▶ Most of the original x's helped predict death. Only malnut seemed not to add anything.
- Removed malnut and tried again.
- Everything remaining is significant (though bowelinf actually became less significant).
- All coefficients are positive, so having any of the risk factors (or being older) increases risk of death.

```
Predictions from model without "malnut"
    A few (rows of original dataframe) chosen "at random":
   sepsis \%% slice(c(4, 1, 2, 11, 32)) -> new
```

```
new
# A tibble: 5 \times 6
  death shock malnut alcohol
                                   age bowelinf
  <fct> <fct> <fct> <fct> <fct> <fct> <dbl> <fct>
1 0
                                    26.0
2.0 0
                                    56 0
```

3 0 0 80 0 0 66 1 5 1 49 0

1 0.001415347 6.272642e-05 0.03103047 2 0.020552383 4.102504e-03 0.09656596

estimate

```
cbind(predictions(sepsis.2, newdata = new)) %>%
 select(estimate, conf.low, conf.high, shock:bowelinf)
```

conf.low conf.high shock malnut alcohol

4 1 0

#### Comments

- Survival chances pretty good if no risk factors, though decreasing with age.
- Having more than one risk factor reduces survival chances dramatically.
- Usually good job of predicting survival; sometimes death predicted to survive.

## Another way to assess effects

```
of age:
new <- datagrid(model = sepsis.2, age = seq(30, 70, 10))
new
    shock alcohol bowelinf age rowid
1     0     0     0     30     1
2     0     0     0     40     2
3     0     0     0     50     3
4     0     0     0     60     4</pre>
```

0 70 5

# Assessing age effect

```
cbind(predictions(sepsis.2, newdata = new)) %>%
  select(estimate, shock:age)
```

# Assessing shock effect

```
new <- datagrid(shock = c(0, 1), model = sepsis.2)
new

alcohol    age bowelinf shock rowid
1     0 51.28302     0     0     1
2     0 51.28302     0     1     2

cbind(predictions(sepsis.2, newdata = new)) %>%
    select(estimate, death:shock)
```

```
1 0.01354973 0 0
2 0.35742607 0 1
```

estimate death shock

# Assessing proportionality of odds for age

- An assumption we made is that log-odds of survival depends linearly on age.
- Hard to get your head around, but basic idea is that survival chances go continuously up (or down) with age, instead of (for example) going up and then down.
- In this case, seems reasonable, but should check:

## Residuals vs. age

-1-

25

```
sepsis.2 %>% augment(sepsis) %>%
  ggplot(aes(x = age, y = .resid, colour = death)) +
  geom_point()

death

death

of
g
1
```

### Comments

- No apparent problems overall.
- Confusing "line" across: no risk factors, survived.

# Probability and odds

For probability p, odds is p/(1-p):

| Prob | Odds                   | Log-odds | Words      |
|------|------------------------|----------|------------|
| 0.5  | $0.5 \ / \ 0.5 = 1.00$ | 0.00     | even money |
| 0.1  | 0.1 / 0.9 = 0.11       | -2.20    | 9 to 1     |
| 0.4  | 0.4 / 0.6 = 0.67       | -0.41    | 1.5 to 1   |
| 8.0  | 0.8 / 0.2 = 4.00       | 1.39     | 4 to 1 on  |
|      |                        |          |            |

- ► Gamblers use odds: if you win at 9 to 1 odds, get original stake back plus 9 times the stake.
- Probability has to be between 0 and 1
- Odds between 0 and infinity
- ► Log-odds can be anything: any log-odds corresponds to valid probability.

### Odds ratio

- ➤ Suppose 90 of 100 men drank wine last week, but only 20 of 100 women.
- Prob of man drinking wine 90/100 = 0.9, woman 20/100 = 0.2.
- Odds of man drinking wine 0.9/0.1=9, woman 0.2/0.8=0.25.
- **Ratio** of odds is 9/0.25 = 36.
- ▶ Way of quantifying difference between men and women: "odds of drinking wine 36 times larger for males than females'."

### Sepsis data again

Recall prediction of probability of death from risk factors:

#### sepsis

| # A tibble: 106 x 6 |             |             |                |             |             |             |  |  |  |
|---------------------|-------------|-------------|----------------|-------------|-------------|-------------|--|--|--|
|                     | death       | shock       | ${\tt malnut}$ | alcohol     | age         | bowelinf    |  |  |  |
|                     | <fct></fct> | <fct></fct> | <fct></fct>    | <fct></fct> | <dbl></dbl> | <fct></fct> |  |  |  |
| 1                   | 0           | 0           | 0              | 0           | 56          | 0           |  |  |  |
| 2                   | 0           | 0           | 0              | 0           | 80          | 0           |  |  |  |
| 3                   | 0           | 0           | 0              | 0           | 61          | 0           |  |  |  |
| 4                   | 0           | 0           | 0              | 0           | 26          | 0           |  |  |  |
| 5                   | 0           | 0           | 0              | 0           | 53          | 0           |  |  |  |
| 6                   | 1           | 0           | 1              | 0           | 87          | 0           |  |  |  |
| 7                   | 0           | 0           | 0              | 0           | 21          | 0           |  |  |  |
| 8                   | 1           | 0           | 0              | 1           | 69          | 0           |  |  |  |
| 9                   | 0           | 0           | 0              | 0           | 57          | 0           |  |  |  |
| 10                  | 0           | 0           | 1              | 0           | 76          | 0           |  |  |  |
| # :                 | i 96 m      | ore ro      | ws             |             |             |             |  |  |  |

# Multiplying the odds

Can interpret slopes by taking "exp" of them. We ignore intercept.

```
sepsis.2.tidy %>%
mutate(exp_coeff=exp(estimate)) %>%
select(term, exp_coeff)
```

### Interpretation

- These say "how much do you multiply odds of death by for increase of 1 in corresponding risk factor?" Or, what is odds ratio for that factor being 1 (present) vs. 0 (absent)?
- ▶ Eg. being alcoholic vs. not increases odds of death by 24 times
- One year older multiplies odds by about 1.1 times. Over 40 years, about  $1.09^{40}=31$  times.

#### Odds ratio and relative risk

- Relative risk is ratio of probabilities.
- ▶ Above: 90 of 100 men (0.9) drank wine, 20 of 100 women (0.2).
- $\triangleright$  Relative risk 0.9/0.2=4.5. (odds ratio was 36).
- When probabilities small, relative risk and odds ratio similar.
- ▶ Eg. prob of man having disease 0.02, woman 0.01.
- **Relative risk** 0.02/0.01 = 2.

#### Odds ratio vs. relative risk

Odds for men and for women:

```
(od1 <- 0.02 / 0.98) # men
```

[1] 0.02040816

```
(od2 <- 0.01 / 0.99) # women
```

- [1] 0.01010101
  - Odds ratio

```
od1 / od2
```

- [1] 2.020408
  - ▶ Very close to relative risk of 2.

# More than 2 response categories

- With 2 response categories, model the probability of one, and prob of other is one minus that. So doesn't matter which category you model.
- With more than 2 categories, have to think more carefully about the categories: are they
- ordered: you can put them in a natural order (like low, medium, high)
- nominal: ordering the categories doesn't make sense (like red, green, blue).
- R handles both kinds of response; learn how.

# Ordinal response: the miners

- ▶ Model probability of being in given category or lower.
- Example: coal-miners often suffer disease pneumoconiosis. Likelihood of disease believed to be greater among miners who have worked longer.
- Severity of disease measured on categorical scale: none, moderate, severe.

#### Miners data

#### Data are frequencies:

| Exposure | None | Moderate | Severe |
|----------|------|----------|--------|
| 5.8      | 98   | 0        | 0      |
| 15.0     | 51   | 2        | 1      |
| 21.5     | 34   | 6        | 3      |
| 27.5     | 35   | 5        | 8      |
| 33.5     | 32   | 10       | 9      |
| 39.5     | 23   | 7        | 8      |
| 46.0     | 12   | 6        | 10     |
| 51.5     | 4    | 2        | 5      |

### Reading the data

Data in aligned columns with more than one space between, so:

```
my_url <- "http://ritsokiguess.site/datafiles/miners-tab.tr
freqs <- read_table(my_url)</pre>
```

# The data

#### freqs

| # | A tibble:   | 8 x 4       | 1                |             |
|---|-------------|-------------|------------------|-------------|
|   | Exposure    | None        | ${\tt Moderate}$ | Severe      |
|   | <dbl></dbl> | <dbl></dbl> | <dbl></dbl>      | <dbl></dbl> |
| 1 | 5.8         | 98          | 0                | 0           |
| 2 | 15          | 51          | 2                | 1           |
| 3 | 21.5        | 34          | 6                | 3           |
| 4 | 27.5        | 35          | 5                | 8           |
| 5 | 33.5        | 32          | 10               | 9           |
| 6 | 39.5        | 23          | 7                | 8           |
| 7 | 46          | 12          | 6                | 10          |
| 8 | 51.5        | 4           | 2                | 5           |

# **Tidying**

```
freqs %>%
  pivot_longer(-Exposure, names_to = "Severity", values_to
  mutate(Severity = fct_inorder(Severity)) -> miners
```

#### Result

#### miners

```
# A tibble: 24 x 3
   Exposure Severity
                      Freq
      <dbl> <fct> <dbl>
        5.8 None
                        98
       5.8 Moderate
 3
       5.8 Severe
4
       15
            None
                        51
 5
       15 Moderate
6
       15 Severe
       21.5 None
                        34
8
       21.5 Moderate
                         6
9
       21.5 Severe
                         3
10
       27.5 None
                        35
# i 14 more rows
```

# Plot proportions against exposure

```
miners %>%
  group_by(Exposure) %>%
  mutate(proportion = Freq / sum(Freq)) -> prop
prop
 A tibble: 24 x 4
```

```
# Groups: Exposure [8]
  Exposure Severity Freq proportion
     <dbl> <fct> <dbl>
                            <dbl>
       5.8 None
                     98
       5.8 Moderate
3
      5.8 Severe
                     51
4
      15 None
                           0.944
5
      15 Moderate 2
                            0.0370
6
      15 Severe
                            0.0185
                     34
                           0.791
      21.5 None
8
      21.5 Moderate 6
                            0.140
                      3
                            0.0698
      21.5 Severe
```

### Reminder of data setup

#### miners

```
# A tibble: 24 x 3
   Exposure Severity
                      Freq
      <dbl> <fct> <dbl>
        5.8 None
                        98
       5.8 Moderate
 3
       5.8 Severe
      15
            None
                        51
 5
      15 Moderate
 6
      15 Severe
      21.5 None
                        34
8
      21.5 Moderate
                         6
9
      21.5 Severe
                         3
10
      27.5 None
                        35
# i 14 more rows
```

# Fitting ordered logistic model

Use function polr from package MASS. Like glm.

```
sev.1 <- polr(Severity ~ Exposure,
  weights = Freq,
  data = miners
)</pre>
```

```
Output: not very illuminating
   sev.1 <- polr(Severity ~ Exposure,
     weights = Freq,
     data = miners,
     Hess = TRUE
   summary(sev.1)
   Call:
   polr(formula = Severity ~ Exposure, data = miners, weights
       Hess = TRUE
   Coefficients:
```

Value Std. Error t value Exposure 0.0959 0.01194 8.034

Intercepts: Value Std. Error t value

None | Moderate 3.9558 0.4097 9.6558

#### Does exposure have an effect?

Fit model without Exposure, and compare using anova. Note 1 for model with just intercept:

```
sev.0 <- polr(Severity ~ 1, weights = Freq, data = miners)
anova(sev.0, sev.1)</pre>
```

Likelihood ratio tests of ordinal regression models

```
Response: Severity

Model Resid. df Resid. Dev Test Df LR stat.

1 1 369 505.1621

2 Exposure 368 416.9188 1 vs 2 1 88.24324

Pr(Chi)

1
2 0
```

Exposure definitely has effect on severity of disease.

### Another way

What (if anything) can we drop from model with exposure?

```
drop1(sev.1, test = "Chisq")
```

Single term deletions

Nothing. Exposure definitely has effect.

# Predicted probabilities 1/2

46

51.5

8

```
freqs %>% select(Exposure) -> new
new
# A tibble: 8 x 1
  Exposure
     <dbl>
       5.8
1
2
      15
3
      21.5
   27.5
4
5
   33.5
6
      39.5
```

### Predicted probabilities 2/2

```
cbind(predictions(sev.1, newdata = new)) %>%
 select(group, estimate, Exposure) %>%
 pivot wider(names from = group, values from = estimate)
# A tibble: 8 x 4
 Exposure None Moderate Severe
    <dbl> <dbl> <dbl> <dbl> <dbl>
      5.8 0.968 0.0191 0.0132
  15 0.925 0.0433 0.0314
3
  21.5 0.869 0.0739 0.0569
4
  27.5 0.789 0.114 0.0969
5
     33.5 0.678 0.162 0.160
6
     39.5 0.542 0.205 0.253
     46 0.388 0.224 0.388
     51.5 0.272 0.210 0.517
8
```

# Plot of predicted probabilities

```
plot_predictions(model = sev.1, condition = c("Exposure",
    geom_point(data = prop, aes(x = Exposure, y = proportion
```

# The graph



#### Comments

- Model appears to match data well enough.
- As exposure goes up, prob of None goes down, Severe goes up (sharply for high exposure).
- So more exposure means worse disease.

### Unordered responses

- ▶ With unordered (nominal) responses, can use generalized logit.
- Example: 735 people, record age and sex (male 0, female 1), which of 3 brands of some product preferred.
- Data in mlogit.csv separated by commas (so read\_csv will work):

```
my_url <- "http://ritsokiguess.site/datafiles/mlogit.csv"
brandpref <- read_csv(my_url)</pre>
```

# The data (some)

#### brandpref

```
A tibble: 735 x 3
   brand
           sex
                  age
   <dbl> <dbl> <dbl>
                   24
                   26
3
                   26
                   27
5
                   27
6
                   27
                   27
8
                   27
9
                   27
10
                   27
   725 more rows
```

### Bashing into shape

sex and brand not meaningful as numbers, so turn into factors:

```
brandpref %>% count(sex)
```

### Fitting model

We use multinom from package nnet. Works like polr.

```
library(nnet)
levels(brandpref$sex)
[1] "female" "male"
brands.1 <- multinom(brand ~ age + sex, data = brandpref)</pre>
# weights: 12 (6 variable)
initial value 807,480032
iter 10 value 702,990572
final value 702.970704
converged
```

### Can we drop anything?

▶ Unfortunately drop1 seems not to work:

```
drop1(brands.1, test = "Chisq", trace = 0)
```

trying - age

Error in if (trace)  $\{: argument is not interpretable as log$ 

So, fall back on fitting model without what you want to test, and comparing using anova.

# Do age/sex help predict brand? 1/3

Fit models without each of age and sex:

```
brands.2 <- multinom(brand ~ age, data = brandpref)</pre>
# weights: 9 (4 variable)
initial value 807.480032
iter 10 value 706.796323
iter 10 value 706.796322
final value 706.796322
converged
brands.3 <- multinom(brand ~ sex, data = brandpref)</pre>
```

# weights: 9 (4 variable)
initial value 807.480032
final value 791.861266
converged

```
Do age/sex help predict brand? 2/3 anova(brands.2, brands.1)
```

Likelihood ratio tests of Multinomial Models

```
Response: brand

Model Resid. df Resid. Dev Test Df LR stat.

1 age 1466 1413.593
2 age + sex 1464 1405.941 1 vs 2 2 7.651236

Pr(Chi)
1
2 0.02180496

anova(brands.3, brands.1)
```

Likelihood ratio tests of Multinomial Models

```
Response: brand

Model Resid. df Resid. Dev Test Df LR stat.

1 sex 1466 1583.723
```

# Do age/sex help predict brand? 3/3

- age definitely significant (second anova)
- sex significant also (first anova), though P-value less dramatic
- ► Keep both.
- Expect to see a large effect of age, and a smaller one of sex.

### Another way to build model

▶ Start from model with everything and run step:

```
step(brands.1, trace = 0)
```

```
trying - age
trying - sex
```

```
Call:
multinom(formula = brand ~ age + sex)
```

Coefficients:

```
(Intercept) age sexmale 2 -11.25127 0.3682202 -0.5237736
```

3 -22.25571 0.6859149 -0.4658215

ATC: 1417.941

► Final model contains both age and sex so neither could be removed.

### Making predictions

Find age 5-number summary, and the two sexes:

#### summary(brandpref)

```
brand sex age
1:207 female:466 Min. :24.0
2:307 male :269 1st Qu.:32.0
3:221 Median :32.0
Mean :32.9
3rd Qu.:34.0
Max. :38.0
```

Space the ages out a bit for prediction (see over).

#### **Combinations**

4 26 male 4 5 28 female 5 6 28 male 6 7 30 female 7

8 30 male

### The predictions

```
cbind(predictions(brands.1, newdata = new)) %>%
  select(group, estimate, age, sex) %>%
 pivot_wider(names_from = group, values_from = estimate)
# A tibble: 8 x 5
   age sex
  <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
     24 female 0.915 0.0819 0.00279
    24 male 0.948 0.0502 0.00181
3
    26 female 0.834 0.156 0.0100
4
    26 male 0.894 0.0990 0.00674
5
    28 female 0.696 0.271 0.0329
6
    28 male 0.793 0.183 0.0236
    30 female 0.500 0.407 0.0933
    30 male 0.625 0.302 0.0732
8
```

#### Comments

- Young males prefer brand 1, but older males prefer brand 3.
- Females similar, but like brand 1 less and brand 2 more.
- A clear brand effect, but the sex effect is less clear.

### Making a plot

I thought plot\_predictions doesn't work as we want, but I was (sort of) wrong about that:



### Making it go

▶ We have to include group in the condition:

plot\_predictions(brands.1, condition = c("age", "group"))



#### For each sex

If we add the other variable to the end, we get facets for sex:

plot\_predictions(brands.1, condition = c("age", "group", "s



### A better graph

- but the male-female difference was significant. How?
- don't actually plot the graph, then plot the right things:

# The graph



### Digesting the plot

- Brand vs. age: younger people (of both genders) prefer brand
   1, but older people (of both genders) prefer brand
   (Explains significant age effect.)
- ▶ Brand vs. sex: females (solid) like brand 1 less than males (dashed), like brand 2 more (for all ages).
- Not much brand difference between genders (solid and dashed lines of same colours close), but enough to be significant.
- Model didn't include interaction, so modelled effect of gender on brand same for each age, modelled effect of age same for each gender. (See also later.)

### Alternative data format

Summarize all people of same brand preference, same sex, same age on one line of data file with frequency on end:

#### brandpref

```
A tibble: 735 \times 3
   brand sex
                   age
   <fct> <fct> <dbl>
1 1
         male
                    24
2 1
         male
                    26
3 1
         male
                   26
4 1
         female 27
5 1
         female 27
6 3
         female
                   27
         male
                    27
8 1
                    27
         male
9
         female
                    27
10 1
         male
                    27
 i 725 more rows
```

# Getting alternative data format

8

10

28 female 3 28 male 1

28 m212 3

```
brandpref %>%
 group_by(age, sex, brand) %>%
 summarize(Freq = n()) %>%
 ungroup() -> b
b
 A tibble: 65 x 4
    age sex brand Freq
  <dbl> <fct> <fct> <int>
     24 male 1
2 26 male 1
3
  27 female 1
   27 female 3
5
  27 male 1
     28 female 1
                        6
   28 female 2
```

## Fitting models, almost the same

- ▶ Just have to remember weights to incorporate frequencies.
- Otherwise multinom assumes you have just 1 obs on each line!
- Again turn (numerical) sex and brand into factors:

```
b %>%
  mutate(sex = factor(sex)) %>%
  mutate(brand = factor(brand)) -> bf
b.1 <- multinom(brand ~ age + sex, data = bf, weights = Fred)
b.2 <- multinom(brand ~ age, data = bf, weights = Fred)</pre>
```

### P-value for sex identical

```
anova(b.2, b.1)
```

Likelihood ratio tests of Multinomial Models

```
Response: brand
```

```
Model Resid. df Resid. Dev Test Df LR stat.

1 age 126 1413.593

2 age + sex 124 1405.941 1 vs 2 2 7.651236
Pr(Chi)

1
2 0.02180496
```

Same P-value as before, so we haven't changed anything important.

```
Trying interaction between age and gender
```

```
brands.4 <- update(brands.1, . ~ . + age:sex)</pre>
```

```
# weights: 15 (8 variable)
initial value 807.480032
iter 10 value 703.191146
iter 20 value 702.572260
iter 30 value 702.570900
iter 30 value 702.570893
iter 30 value 702.570893
final value 702.570893
converged
```

```
anova(brands.1, brands.4)
```

Likelihood ratio tests of Multinomial Models

```
Response: brand

Model Resid. df Resid. Dev Test Df

age + sex 1464 1405.941
```

# Make graph again

# Not much difference in the graph



# Compare model without interaction

