Sporadic Symmetry

(The Remarkable Behaviour of the Mathieu Groups)

Scott Harper

MT5999 Presentation 17th April 2015

Sporadic Symmetry

(The Remarkable Behaviour of the Mathieu Groups)

Scott Harper

MT5999 Presentation 17th April 2015

2/9

It is a remarkable fact that ...

From Sphere Packings, Lattices and Groups by Conway and Sloane,

"At one point while working on this book we even considered adopting a special abbreviation for 'It is a remarkable fact that' since this phrase seemed to occur so often. But in fact we have tried to avoid such phrases and to maintain a scholarly decorum of language."

It is a remarkable fact that ...

From Sphere Packings, Lattices and Groups by Conway and Sloane,

"At one point while working on this book we even considered adopting a special abbreviation for 'It is a remarkable fact that' since this phrase seemed to occur so often. But in fact we have tried to avoid such phrases and to maintain a scholarly decorum of language."

Theorem

The symmetric group S_n has a non-trivial outer automorphism if and only if n = 6.

17th April 2015

Definition

Let G be a group acting on a set X. We say G acts

Definition

Let G be a group acting on a set X. We say G acts

• transitively if for all $x, y \in X$ there exists $g \in G$ such that xg = y;

Definition

Let G be a group acting on a set X. We say G acts

- transitively if for all $x, y \in X$ there exists $g \in G$ such that xg = y;
- k-transitively if for all sequences of distinct points $(x_1, \ldots, x_k), (y_1, \ldots, y_k) \in X^k$ there exists $g \in G$ such that $x_i g = y_i$;

Definition

Let G be a group acting on a set X. We say G acts

- transitively if for all $x, y \in X$ there exists $g \in G$ such that xg = y;
- k-transitively if for all sequences of distinct points $(x_1, \ldots, x_k), (y_1, \ldots, y_k) \in X^k$ there exists $g \in G$ such that $x_i g = y_i$;
- sharply *k*-transitively if the above *g* is the unique such element.

Theorem (The Classification of Finite Simple Groups)

Every finite simple group is isomorphic to one of the following groups:

- a cyclic group of prime order;
- an alternating group of degree at least 5;
- a simple group in one of the 16 families of groups of Lie type;
- one of the 26 sporadic simple groups.

Theorem (The Classification of Finite Simple Groups)

Every finite simple group is isomorphic to one of the following groups:

- a cyclic group of prime order;
- an alternating group of degree at least 5;
- a simple group in one of the 16 families of groups of Lie type;
- one of the 26 sporadic simple groups.

Theorem

Let G be a group acting k-transitively on a set. If G is not a symmetric or alternating group then $k \le 5$.

Theorem (The Classification of Finite Simple Groups)

Every finite simple group is isomorphic to one of the following groups:

- a cyclic group of prime order;
- an alternating group of degree at least 5;
- a simple group in one of the 16 families of groups of Lie type;
- one of the 26 sporadic simple groups.

Theorem

Let G be a group acting k-transitively on a set. If G is not a symmetric or alternating group then $k \le 5$. Moreover,

- if k = 5 then G is the Mathieu group M_{12} or M_{24} ;
- if k = 4 then G is the Mathieu group M_{11} or M_{23} .

Theorem (The Classification of Finite Simple Groups)

Every finite simple group is isomorphic to one of the following groups:

- a cyclic group of prime order;
- an alternating group of degree at least 5;
- a simple group in one of the 16 families of groups of Lie type;
- one of the 26 sporadic simple groups.

Theorem

Let G be a group acting k-transitively on a set. If G is not a symmetric or alternating group then $k \le 5$. Moreover,

- if k = 5 then G is the Mathieu group M_{12} or M_{24} ;
- if k = 4 then G is the Mathieu group M_{11} or M_{23} .

Note: M_{22} acts 3-transitively.

Steiner Systems

The affine plane $AG_2(3)$

Steiner Systems

The affine plane $AG_2(3)$

Definition

An S(t, k, v) Steiner system is a set X of v points and a set of k-element subsets of X such that any t points lie in a unique such subset.

Steiner Systems

The affine plane $AG_2(3)$

Definition

An S(t, k, v) Steiner system is a set X of v points and a set of k-element subsets of X such that any t points lie in a unique such subset.

Example

The affine plane $AG_2(3)$ is an S(2,3,9) Steiner system.

$$S(2,3,9)$$
 $AG_2(3)$

7/9

$$S(3,4,10)$$

 $S(2,3,9)$ $AG_2(3)$

- S(4,5,11)
- S(3,4,10)
- S(2,3,9) $AG_2(3)$

- S(5,6,12)
- S(4,5,11)
- S(3,4,10)
- S(2,3,9) $AG_2(3)$

- S(5,6,12) W_{12}
- S(4,5,11) W_{11}
- S(3,4,10) W_{10}
- S(2,3,9) $AG_2(3)$

S(5,6,12)	W_{12}	
S(4, 5, 11)	W_{11}	
<i>S</i> (3, 4, 10)	W_{10}	
S(2,3,9)	$AG_2(3)$	$Aut(AG_2(3))$
		II
		$AGL_2(3)$

```
S(5,6,12) W_{12}

S(4,5,11) W_{11}

S(3,4,10) W_{10}

S(2,3,9) AG_2(3) Aut(AG_2(3))

H \leq AGL_2(3)
```

$$S(5,6,12)$$
 W_{12} M_{12} := Aut(W_{12})
 $S(4,5,11)$ W_{11} Aut(W_{11})
 $S(3,4,10)$ W_{10} Aut(W_{10})
 $S(2,3,9)$ $AG_2(3)$ Aut($AG_2(3)$)
 H $\leq AGL_2(3)$

$$S(5,6,12)$$
 W_{12} M_{12} := Aut(W_{12})
 $S(4,5,11)$ W_{11} $(M_{12})_x$ \leq Aut(W_{11})
 $S(3,4,10)$ W_{10} Aut(W_{10})
 $S(2,3,9)$ $AG_2(3)$ Aut($AG_2(3)$)
 H \leq $AGL_2(3)$

$$S(5,6,12)$$
 W_{12} M_{12} := Aut(W_{12})
 $S(4,5,11)$ W_{11} $(M_{12})_x$ \leq Aut(W_{11})
 $S(3,4,10)$ W_{10} $(M_{12})_{xy}$ \leq Aut(W_{10})
 $S(2,3,9)$ $AG_2(3)$ Aut($AG_2(3)$)

H
 \leq AGL₂(3)

$$S(5,6,12)$$
 W_{12} M_{12} := Aut(W_{12})
 $S(4,5,11)$ W_{11} $(M_{12})_x$ \leq Aut(W_{11})
 $S(3,4,10)$ W_{10} $(M_{12})_{xy}$ \leq Aut(W_{10})
 $S(2,3,9)$ $AG_2(3)$ $(M_{12})_{xyz}$ \leq Aut($AG_2(3)$)
 H \leq $AGL_2(3)$

7/9

$$S(5,6,12)$$
 W_{12} M_{12} := Aut(W_{12})
 $S(4,5,11)$ W_{11} $(M_{12})_x$ \leq Aut(W_{11})
 $S(3,4,10)$ W_{10} $(M_{12})_{xy}$ \leq Aut(W_{10})
 $S(2,3,9)$ $AG_2(3)$ $(M_{12})_{xyz}$ \leq Aut($AG_2(3)$)
 H \leq $AGL_2(3)$

Theorem

Suppose that

- G acts transitively on X
- G_X acts k-transitively on $X \setminus \{x\}$, for some $x \in X$.

Then G acts (k+1)-transitively on X.

Theorem

Suppose that

- G acts transitively on X
- G_x acts sharply k-transitively on $X \setminus \{x\}$, for some $x \in X$.

Then G acts sharply (k + 1)-transitively on X.

7/9

Theorem

Suppose that

- G acts transitively on X
- G_x acts sharply k-transitively on $X \setminus \{x\}$, for some $x \in X$.

Then G acts sharply (k + 1)-transitively on X.

7/9

Theorem

Suppose that

- G acts transitively on X
- G_X acts sharply k-transitively on $X \setminus \{x\}$, for some $x \in X$.

Then G acts sharply (k + 1)-transitively on X.

7/9

Theorem

Suppose that

- G acts transitively on X
- G_x acts sharply k-transitively on $X \setminus \{x\}$, for some $x \in X$.

Then G acts sharply (k + 1)-transitively on X.

7/9

Theorem

Suppose that

- G acts transitively on X
- G_X acts sharply k-transitively on $X \setminus \{x\}$, for some $x \in X$.

Then G acts sharply (k + 1)-transitively on X.

7/9

Theorem

Suppose that

- G acts transitively on X
- G_X acts sharply k-transitively on $X \setminus \{x\}$, for some $x \in X$.

Then G acts sharply (k + 1)-transitively on X.

7/9

Witt Geometries and Mathieu Groups

Theorem

Suppose that

- G acts transitively on X
- G_X acts sharply k-transitively on $X \setminus \{x\}$, for some $x \in X$.

Then G acts sharply (k + 1)-transitively on X.

7/9

Witt Geometries and Mathieu Groups

Theorem

Suppose that

- G acts k-transitively on X for $k \ge 3$ and |X| not equal to 3 or 2^n
- G_X is simple, for some $X \in X$.

Then G is simple.

Witt Geometries and Mathieu Groups

Theorem

Suppose that

- G acts k-transitively on X for $k \ge 3$ and |X| not equal to 3 or 2^n
- G_X is simple, for some $X \in X$.

Then G is simple.

Scott Harper Sporadic Symmetry

• •

В

• b₁ • b₂ • • b₃ • b₄ • b₅ • b₆

В	C
 b₁ b₂ b₃ b₄ b₅ b₆ 	C ₁ • C ₂ • C ₃ • C ₄ • C ₅ • C ₆ •

G

$$\phi: g \mapsto g \mid_{B} \phi$$

$$\phi: g \mapsto g \mid_{B} \phi$$

The map ϕ is a homomorphism,

Scott Harper

$$\phi: g \mapsto g \mid_{B} \quad \phi \subseteq G$$

The map ϕ is a homomorphism, an injection

$$\phi: g \mapsto g \mid_{B} \phi$$

The map ϕ is a homomorphism, an injection and a surjection.

The map ϕ is a homomorphism, an injection and a surjection.

17th April 2015

8 / 9

Scott Harper Sporadic Symmetry

Fact: $\phi^{-1}\psi: S_B \to S_C$ is an isomorphism.

The map ϕ is a homomorphism, an injection and a surjection.

Fact:
$$\phi^{-1}\psi: S_B \to S_C$$
 is an isomorphism.

$$\phi: g \mapsto g \mid_{B} \oint_{G} \psi \quad \psi: g \mapsto g \mid_{C}$$

The map ϕ is a homomorphism, an injection and a surjection.

8 / 9

Fact:
$$\phi^{-1}\psi: S_B \to S_C$$
 is an isomorphism.

$$\phi: g \mapsto g \mid_{B} \oint_{G} \psi : g \mapsto g \mid_{C}$$

The map ϕ is a homomorphism, an injection and a surjection.

17th April 2015

Scott Harper S

Fact:
$$\phi^{-1}\psi: S_B \to S_C$$
 is an isomorphism.

Example:
$$\phi^{-1}\psi:(b_1\ b_2)\mapsto (c_1\ c_2)(c_3\ c_4)(c_5\ c_6)$$

$$\phi: g \mapsto g \mid_{B} \oint_{G} \psi : g \mapsto g \mid_{C}$$

The map ϕ is a homomorphism, an injection and a surjection.

8 / 9

$$S_{6} \xrightarrow{\beta} S_{B} S_{C}$$

$$\phi: g \mapsto g \mid_{B} \phi \downarrow_{G} \psi : g \mapsto g \mid_{C}$$

The map ϕ is a homomorphism, an injection and a surjection.

Fact: $\phi^{-1}\psi: S_B \to S_C$ is an isomorphism.

Example:
$$\phi^{-1}\psi:(b_1\ b_2)\mapsto (c_1\ c_2)(c_3\ c_4)(c_5\ c_6)$$

8 / 9

$$S_{6} \xrightarrow{\beta} S_{B} \qquad S_{C} \xrightarrow{\gamma} S_{6}$$

$$\phi : g \mapsto g \mid_{B} \qquad \phi \downarrow \qquad \psi : g \mapsto g \mid_{C}$$

The map ϕ is a homomorphism, an injection and a surjection.

Fact: $\phi^{-1}\psi: S_B \to S_C$ is an isomorphism.

Example:
$$\phi^{-1}\psi:(b_1\ b_2)\mapsto (c_1\ c_2)(c_3\ c_4)(c_5\ c_6)$$

8 / 9

$$S_{6} \xrightarrow{\beta} S_{B} S_{C} \xrightarrow{\gamma} S_{6}$$

$$\phi: g \mapsto g \mid_{B} \phi \downarrow_{G} \psi : g \mapsto g \mid_{C}$$

The map ϕ is a homomorphism, an injection and a surjection.

Fact: $\phi^{-1}\psi: S_B \to S_C$ is an isomorphism.

Example:
$$\phi^{-1}\psi:(b_1\ b_2)\mapsto (c_1\ c_2)(c_3\ c_4)(c_5\ c_6)$$

Fact: $\beta \phi^{-1} \psi \gamma : S_6 \to S_6$ is an isomorphism.

8 / 9

The map ϕ is a homomorphism, an injection and a surjection.

Fact: $\phi^{-1}\psi: S_B \to S_C$ is an isomorphism.

Example:
$$\phi^{-1}\psi:(b_1\ b_2)\mapsto (c_1\ c_2)(c_3\ c_4)(c_5\ c_6)$$

Fact: $\beta \phi^{-1} \psi \gamma : S_6 \to S_6$ is an isomorphism.

Example:
$$\phi^{-1}\psi: (1\ 2) \mapsto (1\ 2)(3\ 4)(5\ 6)$$

8 / 9

$$\begin{array}{c|cccc}
B & C \\
 & 1 \\
 & 2 \\
 & 3 \\
 & 4 \\
 & 5 \\
 & 6 \\
 & 6 \\
 & 6 \\
 & 6 \\
 & C_1 \\
 & C_2 \\
 & C_3 \\
 & C_3 \\
 & C_4 \\
 & C_4 \\
 & C_4 \\
 & C_4 \\
 & C_6 \\$$

$$S_{6} \xrightarrow{\beta} S_{B} \qquad S_{C} \xrightarrow{\gamma} S_{6}$$

$$\phi: g \mapsto g \mid_{B} \qquad \phi \qquad \psi: g \mapsto g \mid_{C}$$

The map ϕ is a homomorphism, an injection and a surjection.

Fact: $\phi^{-1}\psi: S_B \to S_C$ is an isomorphism.

Example:
$$\phi^{-1}\psi:(b_1\ b_2)\mapsto (c_1\ c_2)(c_3\ c_4)(c_5\ c_6)$$

Fact: $\beta \phi^{-1} \psi \gamma : S_6 \to S_6$ is an isomorphism.

Example:
$$\phi^{-1}\psi:(1\ 2)\mapsto (1\ 2)(3\ 4)(5\ 6)$$

So $\beta \phi^{-1} \psi \gamma$ is a non-trivial outer automorphism of S_6 .

Mathieu Groups

"These apparently sporadic simple groups would probably repay a closer examination than they have yet received."

(William Burnside)

Mathieu Groups

"These apparently sporadic simple groups would probably repay a closer examination than they have yet received."

(William Burnside)

Any questions?