EGZAMIN WSTĘPNY Z MATEMATYKI

Zestaw składa się z 30 zadań. Zadania 1–10 oceniane będą w skali 0–2 punkty, zadania 11–30 w skali 0–4 punkty. Czas trwania egzaminu — 240 minut.

Powodzenia!

- 1. Funkcję kwadratową y=(x+3)(1-x) przedstawić w postaci kanonicznej. Naszkicować jej wykres.
- 2. Rozwiązać równanie $5^x \cdot 5^{x^2} \cdot 5^{x^3} = \frac{1}{5}$.
- 3. Rozwiązać równanie $\log_{\frac{1}{3}}(|x|-1) > 2.$
- 4. Dla jakich parametrów $a \in R$ równanie $\cos^2 x = \frac{2a}{a-2}$ ma rozwiązanie?
- 5. Naszkicować wykres funkcji $y = x \log_{x^2} |x|$.
- 6. Wyznaczyć te wartości x, dla których punkty A(5,5), B(1,3) i C(x,0) są współliniowe.
- 7. Wskazać większą z liczb 0, 4(9) i $\sin\left(\frac{101}{6}\pi\right)$.
- 8. Napisać równanie stycznej do wykresu funkcji $f(x) = \sqrt{2x-3}$ w punkcie o odciętej $x_0 = 6$.
- 9. Dana jest funkcja $f(x) = \cos^2 x$. Narysować wykres funkcji y = f'(x) w przedziale $\langle 0; \pi \rangle$.
- 10. Zbadać monotoniczność funkcji $f(x) = x + \frac{1}{x}$.
- 11. Dany jest ciąg (a_n) , gdzie $a_n = \frac{(n!)^2}{(2n)!}$. Obliczyć $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.
- 12. Rozwiązać nierówność $g(f(x)) \ge 1$, jeśli $f(x) = 3^x$ i $g(x) = \sin x$.
- 13. Wyznaczyć wszystkie wielokąty wypukłe, w których liczba przekątnych jest 3 razy większa od liczby wierzchołków.
- 14. Rozwiązać równanie $|\cos x| = \cos x + 2\sin x$ w przedziale $\langle 0; 2\pi \rangle$.
- 15. Rozwiązać nierówność $\frac{x^3 x + 6}{x^2} \geqslant 0$.