Statistical Data Analysis, Lecture 4

dr. Dennis Dobler

Vrije Universiteit Amsterdam

24 February 2021

Topics in this course

intro

•0

- Summarizing data
- Exploring distributions
- Density estimation
- Bootstrap methods
- Nonparametric tests
- Analysis of categorical data
- Multiple linear regression

Chapter 4: Density estimation

Contents of Chapter 4:

- Kernel density estimators
- Choice of kernel and bandwidth
- Cross-validation
- Other density estimators
- Multivariate density estimation

Kernel density estimation (continued)

Choice of kernel and bandwidth (4)

Objective criterion for choosing K, h: minimizers of mean integrated squared error (MISE):

$$extit{MISE}(\hat{f}) = \int extit{MSE}(\hat{f}(t))dt = \int extit{var}(\hat{f}(t))dt + \int (E\hat{f}(t) - f(t))^2 dt.$$

Choice of kernel and bandwidth (4)

Objective criterion for choosing K, h: minimizers of mean integrated squared error (MISE):

$$extit{MISE}(\hat{f}) = \int extit{MSE}(\hat{f}(t)) dt = \int extit{var}(\hat{f}(t)) dt + \int (E\hat{f}(t) - f(t))^2 dt.$$

Lemma

For all n, h,

$$\int var(\hat{f}(t))dt \leq \frac{1}{nh} \int K(x)^2 dx.$$

Choice of kernel and bandwidth (4)

Objective criterion for choosing K, h: minimizers of mean integrated squared error (MISE):

$$extit{MISE}(\hat{f}) = \int extit{MSE}(\hat{f}(t))dt = \int extit{var}(\hat{f}(t))dt + \int (E\hat{f}(t) - f(t))^2 dt.$$

Lemma

For all n, h,

$$\int var(\hat{f}(t))dt \leq \frac{1}{nh} \int K(x)^2 dx.$$

Lemma

Assume f twice continuously differentiable. As $h \downarrow 0$,

$$\int (E\hat{f}(t)-f(t))^2dt \approx \frac{h^4}{4}\int (f''(t))^2dt.$$

Choice of kernel and bandwidth (5)

Choice kernel/bandwidth

000000

$$extit{MISE}(\hat{f}) \lesssim rac{1}{nh} \int K(x)^2 dx + rac{h^4}{4} \int (f''(t))^2 dt.$$

$\mathsf{Theorem}$

Assume f twice continuously differentiable. Optimal bandwidth:

$$h_{opt} = \left\{ \int K(x)^2 dx \right\}^{1/5} \left\{ \int (f''(t))^2 \right\}^{-1/5} n^{-1/5}.$$

Re-inserting h_{opt} , $MISE(\hat{f})$ minimized by minimizing $\int K(x)^2 dx$.

Choice of kernel and bandwidth (5)

$$extit{MISE}(\hat{f}) \lesssim rac{1}{nh} \int K(x)^2 dx + rac{h^4}{4} \int (f''(t))^2 dt.$$

$\mathsf{Theorem}$

Assume f twice continuously differentiable. Optimal bandwidth:

$$h_{opt} = \left\{ \int K(x)^2 dx \right\}^{1/5} \left\{ \int (f''(t))^2 \right\}^{-1/5} n^{-1/5}.$$

Re-inserting h_{opt} , $MISE(\hat{f})$ minimized by minimizing $\int K(x)^2 dx$. Minimizing kernel: Epanechnikov kernel

$$K_{\rm e}(x) = \frac{3}{4\sqrt{5}}(1 - \frac{1}{5}x^2)$$
 if $-\sqrt{5} \le x \le \sqrt{5}$; 0 otherwise.

Choice of kernel and bandwidth (6)

$$h_{opt} = \left\{ \int K(x)^2 dx \right\}^{1/5} \left\{ \int (f''(t))^2 \right\}^{-1/5} n^{-1/5}.$$

 \Rightarrow Upper bound:

$$MISE(\hat{f}) \lesssim \frac{5}{4} \cdot n^{-4/5} \Big\{ \int K(x)^2 dx \Big\}^{4/5} \Big\{ \int (f''(t))^2 \Big\}^{1/5}$$

Choice of kernel and bandwidth (6)

$$h_{opt} = \left\{ \int K(x)^2 dx \right\}^{1/5} \left\{ \int (f''(t))^2 \right\}^{-1/5} n^{-1/5}.$$

 \Rightarrow Upper bound:

$$MISE(\hat{f}) \lesssim \frac{5}{4} \cdot n^{-4/5} \Big\{ \int K(x)^2 dx \Big\}^{4/5} \Big\{ \int (f''(t))^2 \Big\}^{1/5}$$

 \Rightarrow Choice of K not too important unless

$$\label{eq:Kernel} \left\{ \, \int K(x)^2 dx \right\} \, / \, \left\{ \, \int K_e(x)^2 dx \right\} \gg 1.$$

E.g.
$$\left\{ \int K_{Gauss}(x)^2 dx \right\} / \left\{ \int K_e(x)^2 dx = \frac{\frac{1}{2\sqrt{\pi}}}{\sqrt{5} \cdot \frac{3}{25}} \right\} \approx 1.05$$
 $\Rightarrow K_{Gauss}$ almost as good as K_e .

Choice of kernel and bandwidth (7)

$$h_{opt} = \left\{ \int K(x)^2 dx \right\}^{1/5} \left\{ \int (f''(t))^2 \right\}^{-1/5} n^{-1/5}.$$

What to do with $\int (f''(t))^2 dt$? (f'' unknown!)

Choice of kernel and bandwidth (7)

$$h_{opt} = \left\{ \int K(x)^2 dx \right\}^{1/5} \left\{ \int (f''(t))^2 \right\}^{-1/5} n^{-1/5}.$$

What to do with $\int (f''(t))^2 dt$? (f'' unknown!)

Assume f belongs to parametric class of distributions.

E.g.,
$$f_{\mu,\sigma^2}(t) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right)$$
.

 $\Rightarrow \int (f''(t))^2 dt \approx 0.212\sigma^{-5}$; estimate σ by sample standard deviation. Using normal kernel, $h_{opt} \approx 1.06\hat{\sigma} n^{-1/5}$.

opt .

Adjust if true density multimodal/strongly fluctuating (see syllabus).

000000

Choice of kernel and bandwidth (8)

Recall Example Melting points (°C) of 59 samples of beewax. Using Gaussian kernel, $h_{opt} \approx 1.06 \cdot 0.442 \cdot 0.347 \approx 0.163$. (> 0.1383, automatic choice by R.)

KDE, beewax data, Gaussian kernel bandwidth h=h opt= 0.16283

Cross-validation

Another way to bandwidth: cross-validation (or out-of-sample testing). Objectively, without assumptions on distributions.

Choose minimizer h^* of integrated squared error (ISE):

$$ISE(\hat{f}) = \int (\hat{f}(t) - f(t))^2 dt = \int \hat{f}(t)^2 dt - 2 \int \hat{f}(t) f(t) dt + \int f(t)^2 dt,$$

i.e. minimize

$$R(\hat{f}) = \int \hat{f}(t)^2 dt - 2 \int \hat{f}(t) f(t) dt.$$

Depends on f ...

$$R(\hat{f}) = \int \hat{f}(t)^2 dt - 2 \int \hat{f}(t) f(t) dt.$$

Replace $R(\hat{f})$ by estimate $\hat{R}(\hat{f})$ independent of f.

Minimize $\hat{R}(\hat{f})$ w.r.t. h.

$$R(\hat{f}) = \int \hat{f}(t)^2 dt - 2 \int \hat{f}(t) f(t) dt.$$

Replace $R(\hat{f})$ by estimate $\hat{R}(\hat{f})$ independent of f.

0000

Minimize $\hat{R}(\hat{f})$ w.r.t. h.

If $X_1, \ldots, X_n, Y \stackrel{i.i.d.}{\sim} F$ with density f,

$$E(\hat{f}(Y) \mid X_1, \ldots, X_n) = \int \hat{f}(t)f(t)dt.$$

$$R(\hat{f}) = \int \hat{f}(t)^2 dt - 2 \int \hat{f}(t) f(t) dt.$$

Replace $R(\hat{f})$ by estimate $\hat{R}(\hat{f})$ independent of f.

Minimize $\hat{R}(\hat{f})$ w.r.t. h.

If $X_1, \ldots, X_n, Y \stackrel{i.i.d.}{\sim} F$ with density f,

$$E(\hat{f}(Y) \mid X_1, \ldots, X_n) = \int \hat{f}(t)f(t)dt.$$

 \Rightarrow Use $Y = X_i$; estimate f by $X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n \rightsquigarrow "\hat{f}_{-i}"$.

$$R(\hat{f}) = \int \hat{f}(t)^2 dt - 2 \int \hat{f}(t) f(t) dt.$$

Replace $R(\hat{f})$ by estimate $\hat{R}(\hat{f})$ independent of f.

0000

Minimize $\hat{R}(\hat{f})$ w.r.t. h.

If $X_1, \ldots, X_n, Y \stackrel{i.i.d.}{\sim} F$ with density f,

$$E(\hat{f}(Y) \mid X_1,\ldots,X_n) = \int \hat{f}(t)f(t)dt.$$

 \Rightarrow Use $Y = X_i$; estimate f by $X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n \leadsto "\hat{f}_{-i}"$. Repeat for each i = 1, ..., n, then average:

$$\frac{1}{n}\sum_{i=1}^{n}\hat{f}_{-i}(X_i)\approx\int\hat{f}(t)f(t)dt.$$

Leads to
$$\hat{R}(\hat{f}) = \int \hat{f}(t)^2 dt - \frac{2}{n} \sum_{i=1}^n \hat{f}_{-i}(X_i)$$
.

Minimize $h \mapsto \hat{R}(\hat{f}) \Rightarrow h^*$.

Caution: always verify that h^* is reasonable! ($h^* = 0$ is possible.)

Leads to $\hat{R}(\hat{f}) = \int \hat{f}(t)^2 dt - \frac{2}{n} \sum_{i=1}^n \hat{f}_{-i}(X_i)$.

Minimize $h \mapsto \hat{R}(\hat{f}) \Rightarrow h^*$.

Caution: always verify that h^* is reasonable! ($h^* = 0$ is possible.)

KDE, beewax data, Gaussian kernel bandwidth h= 0.0725

Cross-validation: not always good results!

Other density estimators

Other density estimators (1)

Choice kernel/bandwidth

Problem: kernel density estimates possibly positive in undesirable regions. E.g. positive random variables, Gaussian kernel $\Rightarrow \hat{f}(t) > 0$ for all t < 0.

Other D F

000

Possible solutions (for positive sample x_1, \ldots, x_n):

- Transform data: $y_i = \log(x_i)$, derive KDE \hat{f}_v for y-sample. Transform back: $\hat{f}_{x}(t) = \frac{1}{t}\hat{f}_{v}(\log t)$.
- 2 Symmetrize: \hat{f}_s KDE based on sample $x_1, -x_1, \dots, x_n, -x_n$. Then use $t \mapsto 2 \cdot \hat{f}_s(t)$ for t > 0, and 0 otherwise.
- **3** Not good: just set $\hat{f}(t)$ to 0 for t < 0, and rescale to density.

Other density estimators (2)

Problem for multimodal densities with heavy tails: resulting KDE could be oversmoothed, could make estimate unimodal.

Example: Mixture of 3 different normal distributions

Other density estimators (2)

Choice kernel/bandwidth

Problem for multimodal densities with heavy tails: resulting KDE could be oversmoothed, could make estimate unimodal.

Other D.E.

000

Example: Mixture of 3 different normal distributions

Possible solution: variable KDE $\hat{f}_v(t) = \frac{1}{n} \sum_{i=1}^n \frac{1}{hd_i} K\left(\frac{t-X_i}{hd_i}\right)$.

 d_i : measure of degree of isolation of X_i , e.g. k-th nearest neighbor distance.

Multivariate density estimators

Multivariate density estimators (1)

Choice kernel/bandwidth

Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} F$ be random vectors, density f.

KDE:
$$\hat{f}(t) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{\det H}} K(H^{-1/2}(t - X_i));$$

K: multivariate density, e.g. multivariate standard normal,

H: positive definite bandwidth matrix.

Multivariate density estimators (1)

Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} F$ be random vectors, density f.

KDE:
$$\hat{f}(t) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{\det H}} K(H^{-1/2}(t - X_i));$$

K: multivariate density, e.g. multivariate standard normal,

H: positive definite bandwidth matrix.

Example: Mixture of 3 different multivariate normal distributions

to finish

To summarize

Today we discussed

- Kernel density estimators
- Choice of kernel and bandwidth
- Cross-validation
- Other density estimators
- Multivariate density estimation

Next week bootstrap!