Week 2 Lab

Emily Shepherd

2022-09-03

The data we are exploring consists of twelve variables related to 14 countries that have been democracies since World War II

- 1. Percent Reduction of Gini Coefficient(Gini_Reduction): The average percent reduction of the gini coefficient is reported for each county. The gini coefficient is a measure of inequality. It varies from 0 to 1. The value is 0 when income is evenly distributed. The value is 1 when all income is held by the top decile.
- 2. Pretax and Transfer Inequality(Wage_Ineq): This is measured as the proportion of an earner in the 90th percentile of the earners with median income.
- 3. Partinsanship: The measure of partinsanship varies from 0 to 1, with left being 0 and right being 1. A perfectly balanced government would have a measure of 0.5.
- 4. Voter Turnout: The percent of eligible citizens who actually vote in elections.
- 5. Unionization: This is a measure of union density within the country.
- 6. Constitutional Veto Points (Veto_Points):This is a composite measure of availability of a veto option, based on the structure of government.
- 7. Electoral System: Each country's government was categorized as majoritarian or proportional. A country with a majoritarian system had a value of 0 and proportional had a 1.
- 8. Left Fragmentation (Left_Frag): This is calculated by one minus the sum of the squared seat shares of left-wing parties.
- 9. Right Overrepresentation (Right_Over): The difference between the legistlative seat share of right-wing parties and thier share of the vote.
- 10. Real per capita Income (Inc_per_Capita): This is the income per capita in 1985 dollars.
- 11. Female Labor Force Participation (Fem_Labor): This is the percentage of female workforce participants in the working age population.
- 12. Unemployment: This is the unemployment rate.

Below you will find the data frame for all the variables:

mydata

##		Country	Gini_Reduction	Wage_Ineq	Partinsans	hip	Voter_Turnout
##	1	Australia	23.97	1.70	0	.47	84
##	2	Austria	NA	NA	0	.30	87
##	3	Belgium	35.56	1.64	0	.36	88
##	4	Canada	21.26	1.82	0	.36	68
##	5	Denmark	37.89	1.58	0	.35	84
##	6	Finland	35.17	1.68	0	.30	79
##	7	France	25.36	1.94	0	.40	66
##	8	Germany	18.70	1.70	0	.39	81
##	9	Ireland	NA	NA	0	.42	75
##	10	Italy	12.13	1.63	0	.37	93
##	11	Japan	NA	NA	0	.78	71
##	12	Netherlands	30.59	1.64	0	.31	85
		New Zealand	NA	NA		.43	85
	14	Norway	27.52	1.50	0	.15	80
		Sweden	37.89	1.58		.17	84
	16	U.K.	22.67	1.78	0	.52	76
	17	U.S.	17.60	2.07		.40	56
##			Veto_Points E	lectoral_Sy	-		
##		46				0.39	
##		54				0.18	
##		48				0.34	
##		30				0.18	
##		67				0.40	
##		53				0.18	
##	7	18				0.10	
##		34				0.13	
##		48				0.33	
	10	34				0.20	
		31				0.22	
	12	33				0.18	
	13	23	0			0.40	
	14 15	54 67				0.02 0.40	
	16						
	17	42 23				0.08 0.00	
##	1 /		ta Fem Labor Uı	nemployment		0.00	-0.17
##	1	1090	_	4.63			
##		83		2.76			
##		89		7.89			
##		116		6.91			
##		99		6.83			
##		86		4.48			
##		94		4.57			
##		97		4.86			
##		58		9.09			
	10	77		8.12			
##		79		1.77			
	12	92		4.62			
	13		NA 47	N.F			
	14	98		2.28			
##	15	99		6.83			
1							

## 16	9282	54	5.01
## 17	13651	53	5.74

Here are some summary statistics of Unemployment:

```
mean(na.omit(mydata$Unemployment))
```

```
## [1] 5.399375
```

```
median(na.omit(mydata$Unemployment))
```

```
## [1] 4.935
```

```
max(na.omit(mydata$Unemployment))
```

```
## [1] 9.09
```

Here are some summary statistics of Real Income Per Capita:

```
mean(na.omit(mydata$Inc_Per_Capita))
```

```
## [1] 15589.69
```

median(na.omit(mydata\$Inc_Per_Capita))

```
## [1] 9383.5
```

```
max(na.omit(mydata$Inc_Per_Capita))
```

```
## [1] 109099
```

Below you will find a table of summary statistics for all twelve variables:

```
stargazer(mydata, type = "text", title = "Descriptive Statistics", digits = 1, median =
TRUE, out = "table.txt")
```

<i>t</i> =========						
# Statistic	N	Mean	St. Dev.	Min	Median	Max
# # Gini_Reduction						
# Wage_Ineq	13	1.7	0.2	1.5	1.7	2.1
# Partinsanship	17	0.4	0.1	0.1	0.4	0.8
# Voter_Turnout	17	78.9	9.4	56	81	93
# Unionization	17	41.5	14.8	18	42	67
# Veto_Points	17	1.2	1.5	0	1	5
# Left_Frag	17	-0.1	0.2	-0.4	-0.1	0.2
# Right_Over	17	0.1	0.3	-0.4	0.1	1.0
# Inc_Per_Capita	16	15,589.7	24,994.4	5,807	9,383.5	109,099
# Fem_Labor	17	50.2	8.9	35	51	66
# Unemployment	16	5.4	2.1	1.8	4.9	9.1