```
From last time:

A group is a pair (G,*), where G is a set and * is

a binary operation on G, satisfying:

1) * is associative, (identity element)

2) Fee G s.t. VgeG, e*g=g*e=g, and

(existence of identity)

3) VgeG, Theg s.t. g*h=h*g=e.

(existence of inverses)
```

Examples:

Notational conventions:

(G, *) <>> G
order of G

finite group: 161<00

	additive	multiplicative
group G	notation	notation
9*h	9th	<u>gh</u>
<u></u>	J	J
identity e	O	1
		-1
inverse of g	-9	9-1
	<u> </u>	<u> </u>
9*9* *9	ng = 9+ 9+ + 9	9"= 9.99
n-times	n-times	n-times
(nein)		
<u> </u>	09=0	9° = 1
	,	J
	-n g= (-g)+ ··· + (-g)	$\partial_{-\mu} = \left(\partial_{-\mu} \right) \cdot \dots \cdot \left(\partial_{-\mu} \right)$
	n-times	n-times

Basic properties that all groups satisfy
Let G be a group (written multiplicatively).

1) Uniqueness of identity:

If $e, \tilde{e} \in G$ are identity elements, then $e=\tilde{e}$.

PF: Suppose e and & are identity elements.

Then
$$e = e\tilde{e}$$
 (\tilde{e} is an identity)
$$= \tilde{e}$$
 (e is an identity)

2) Uniqueness of inverses:

Suppose $g \in G$. If $h_i h \in G$ are inverses of g then h = h.

Pf: Suppose hand hare inverses of g.

Then h=eh (existence of identity) = $(\tilde{h}g)h$ (\tilde{h} is an inverse of g)

= h (gh) (associativity)

= he (h is an inverse of g)

 $=\widetilde{h}$ (def. of e)

3) Cancellation Lows

If g,h, a ∈ G satisfy ag=ah, or if they satisfy ga=ha, then g=h.

Pf:

If
$$ag = ah$$
 then
$$a^{-1}(ag) = a^{-1}(ah)$$

$$\Rightarrow (a^{-1}a)g = (a^{-1}a)h$$

$$\Rightarrow g(aa^{-1}) = h(aa^{-1})$$

$$\Rightarrow eg = eh$$

$$\Rightarrow ge = he$$

 \Rightarrow q = h.

4) Generalized associativity

⇒ g=h.

YneiN and Yg,,..., gneG, the value of gigz...gn does not depend on the choice of where to put parenthesis.

(ex:
$$n=4$$
) $(g_1g_2)(g_3g_4)=g_1(g_2(g_3g_4))=(g_1(g_2g_3))g_4=\cdots$)
Pf: ... (tricky) induction on $n...$

5) If g, h ∈ G and gh=e then h=g-1.

Pf: Only need to check that hg=e.

We have that

hg= e(hg) (existence of identity)

=
$$(g^{-1}g)(hg)$$
 (existence of inverses)

= $(g^{-1}(gh))g$ (gen. assoc.)

= $(g^{-1}e)g$ (gh=e, by assumption)

= $g^{-1}g$ (def. of e)

= e (def. of g^{-1})

Since $gh=hg=e$, we conclude that $h=g^{-1}$. \square

6)
$$\forall g \in G$$
, $(g^{-1})^{-1} = g$.
Pf: By the definition of g^{-1} ,
 $g(g^{-1}) = (g^{-1})g = e$.
This implies that $(g^{-1})^{-1} = g$.

Pf: Observe that

$$(gh)(h^{-1}g^{-1}) = g(hh^{-1})g^{-1}$$
 (gen. assoc.)
= geg^{-1}
= gg^{-1}
= e

Note: If G is non-Abelian than it is not true that $\forall g, h \in G$, $(gh)^{-1} = g^{-1}h^{-1}$.

Ex:
$$G = GL_z(IR)$$
, $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

Then:
$$AB = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$$
 $(AB)^{-1} = \begin{pmatrix} \frac{1}{2} & -1 \\ 0 & 1 \end{pmatrix}$

$$A^{-1} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, \quad B^{-1} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{and} \quad$$

$$B^{-1}A^{-1} = \begin{pmatrix} \frac{1}{2} & -1 \\ 0 & 1 \end{pmatrix} = (AB)^{-1}, \text{ but}$$

$$A^{-1}B^{-1} = \begin{pmatrix} \frac{1}{2} & -2 \\ 0 & 1 \end{pmatrix} \neq (AB)^{-1}.$$