Chapitre 37

Espaces préhilbertiens.

Sommaire.

1	Produits scalaires.	1
2	Norme associée à un produit scalaire.	3
3	Orthogonalité.3.1 Vecteurs orthogonaux, familles orthogonales3.2 Orthogonal d'une partie3.3 Bases orthonormées d'un espace euclidien	6
4	Projection orthogonale sur un sous-espace de dimension finie. 4.1 Projeté orthogonal	9 10
5	Exercices.	12

Les propositions marquées de \star sont au programme de colles.

Dans ce chapitre, E désignera un \mathbb{R} -espace vectoriel, les scalaires sont **réels**.

1 Produits scalaires.

Définition 1: Produit scalaire.

On appelle **produit scalaire** sur E toute application

$$\langle .,. \rangle : \begin{cases} E \times E & \to & \mathbb{R} \\ (x,y) & \mapsto & \langle x,y \rangle \end{cases}$$

• bilinéaire : $\forall (x, x', y, y') \in E^4$, $\forall (\lambda, \mu) \in \mathbb{R}^2$, $\begin{cases} \langle \lambda x + \mu x', y \rangle &= \lambda \langle x, y \rangle + \mu \langle x', y \rangle \\ \langle x, \lambda y + \mu y' \rangle &= \lambda \langle x, y \rangle + \mu \langle x, y' \rangle \end{cases}$

• symétrique : $\forall x, y \in E, \langle x, y \rangle = \langle y, x \rangle.$

• définie : $\forall x \in E, \ \langle x, x \rangle = 0 \Longrightarrow x = 0_E.$

• positive : $\forall x \in E, \ \langle x, x \rangle \ge 0.$

Pour x, y deux vecteurs de $E, \langle x, y \rangle$ est une nombre réel, appelé produit scalaire de x et y.

Définition 2: Espaces préhilbertiens, euclidiens.

Si $\langle .,. \rangle$ est un produit scalaire sur E, le couple $(E, \langle .,. \rangle)$ est appelé **espace préhilbertien**. Un espace préhilbertien de dimension finie est appelé **espace euclidien**.

Proposition 3

L'application $\langle .,. \rangle$ qui à $x=(x_1,...,x_n)$ et $y=(y_1,...,y_n)$ associe

$$\langle x, y \rangle := \sum_{i=1}^{n} x_i y_i,$$

est un produit scalaire sur \mathbb{R}^n , dit produit scalaire canonique.

Quitte à identifier \mathbb{R}^n et $M_{n,1}(\mathbb{R})$ (on écrit les *n*-uplets comme des matrices colonnes), on peut calculer le produit scalaire canonique à l'aide d'un produit matriciel :

$$\forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad \forall Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \boxed{\langle X, Y \rangle = X^\top Y}.$$

Preuve:

Symétrie: $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} y_i x_i = \langle y, x \rangle$. Bilinéarité: Par symétrie, la linéarité à gauche suffit.

Soient $X, X', Y \in M_{n,1}(\mathbb{R}), \lambda, \mu \in \mathbb{R}$.

$$\langle \lambda X + \mu X', Y \rangle = (\langle X + \mu X')^{\top} Y = \lambda X^{\top} Y + \mu X'^{\top} Y = \lambda \langle X, Y \rangle + \mu \langle X', Y \rangle$$

Positive:

$$\langle x, x \rangle = \sum_{i=1}^{n} x_i^2 \ge 0.$$

Définie: Supposons $\langle x, x \rangle = 0$, alors $\sum_{i=1}^{n} x_i^2 = 0$, nombres positifs qui somment à 0, tous les x_i sont nuls.

Proposition 4

L'application $\langle .,. \rangle$ qui à deux matrices $A=(a_{i,j})$ et $B=(b_{i,j})$ de matrices de $M_{n,p}(\mathbb{R})$ associe

$$\langle A, B \rangle = \sum_{i=1}^{n} \sum_{j=1}^{p} a_{i,j} b_{i,j}.$$

est un produit scalaire sur $M_{n,p}(\mathbb{R})$, dit **produit scalaire canonique.**

On peut exprimer le produit scalaire de A et B ainsi :

$$\langle A, B \rangle = \operatorname{Tr}(A^{\top}B)$$

Preuve:

On a:

$$\operatorname{Tr}(A^{\top}B) = \sum_{j=1}^{p} \left[A^{\top}B \right]_{j,j} = \sum_{j=1}^{p} \sum_{i=1}^{n} \left[A^{T} \right]_{j,i} \left[B \right]_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{p} a_{i,j} b_{i,j}$$

Symétrie: Claire.

Bilinéarité: Suffisante à droite.

Soient $A, B, B' \in M_{n,p}(\mathbb{R})$ et $\lambda, \mu \in \mathbb{R}^2$.

$$\langle A, \lambda B + \mu B' \rangle = \operatorname{Tr}(A^{\top}(\lambda B + \mu B')) = \operatorname{Tr}(\lambda A^{\top} B + \mu A^{\top} B')$$
$$= \lambda \operatorname{Tr}(A^{\top} B) + \mu \operatorname{Tr}(A^{\top} B') = \lambda \langle (A, B) + \mu \langle (A, B').$$

Positivité:

$$\langle A, A \rangle = \sum_{i,j} a_{i,j}^2 \ge 0$$

Définie: Supposons $\langle A, A \rangle = 0$, somme de termes positifs est nulle : les termes sont nuls.

Proposition 5

Soient $a, b \in \mathbb{R}$ tels que a < b.

L'application $\langle .,. \rangle$ qui à $(f,g) \in \mathcal{C}([a,b],\mathbb{R})^2$ associe

$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t)dt,$$

est un produit scalaire sur $\mathcal{C}([a,b],\mathbb{R})$.

Preuve:

Symétrie: Soient $f, g \in \mathcal{C}([a, b], \mathbb{R})$.

$$\langle f, g \rangle = \int_a^b f(t)g(t)dt = \int_a^b g(t)f(t)dt = \langle f, g \rangle.$$

Bilinéarité: La linéarité à gauche suffit.

Soient $f, \widetilde{f}, g \in \mathcal{C}([a, b], \mathbb{R})$ et $\lambda, \mu \in \mathbb{R}$.

$$\langle \lambda f + \mu \widetilde{f}, g \rangle = \int_{a}^{b} (\lambda f(t) + \mu \widetilde{f}(t)) g(t) dt$$
$$= \lambda \int_{a}^{b} f(t) g(t) dt + \mu \int_{a}^{b} \widetilde{f}(t) g(t) dt$$
$$= \lambda \langle f, g \rangle + \mu \langle \widetilde{f}, g \rangle$$

Positivité: Soit $f \in \mathcal{C}([a, b], \mathbb{R})$.

$$\langle f, f \rangle = \int_a^b f^2(t) dt \ge 0$$
. car f^2 positive, cpm et $a < b$.

Définie: Soit $f \in \mathcal{C}([a,b],\mathbb{R})$ telle que $\langle f,f \rangle = 0$.

$$\int_a^b f^2(t) dt = 0 \Longrightarrow \forall t \in [a, b], \ f^2(t) = 0 \quad \text{car } f^2 \text{ positive, continue et } a < b.$$

Donc $\forall t \in [a, b], f(t) = 0.$

Exemple 6: Un produit scalaire intégral sur l'espace des polynômes.

Pour P et Q deux polynômes de $\mathbb{R}[X]$, on note

$$\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt.$$

Vérifier que l'application $\langle .,. \rangle$ est un produit scalaire sur $\mathbb{R}[X]$.

Solution:

Symétrie: Évidente.

Bilinéarité: Pareil que sur $\mathcal{C}([a,b],\mathbb{R})$.

Positivité: Pareil.

Définie: Soit $P \in \mathbb{R}[X]$ tel que $\langle P, P \rangle = 0$.

$$\int_{0}^{1} P^{2}(t) dt = 0 \Longrightarrow \forall t \in [0, 1], \ P^{2}(t) = 0 \quad \text{car } P^{2} > 0, \text{ continue et } 0 < 1.$$

Donc $\forall t \in [0,1], P(t) = 0$, alors P a une infinité de racines, il est **nul**.

2 Norme associée à un produit scalaire.

Définition 7

On appelle norme associée au produit scalaire $\langle .,. \rangle$ l'application

$$\|\cdot\|: \begin{cases} E & \to & \mathbb{R}_+ \\ x & \mapsto & \|x\| := \sqrt{\langle x, x \rangle} \end{cases}$$

Remarque: Bien définie car $\langle x, x \rangle$ est positif pour tout $x \in E$.

Exemple 8

Pour tout $x = (x_1, ... x_n) \in \mathbb{R}^n$, la norme de x vaut

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

Cette norme est souvent écrite en physique dans les cas n=2 et n=3:

Pour
$$\vec{u}(x,y)$$
, $\|\vec{u}\| = \sqrt{x^2 + y^2}$ et pour $\vec{v}(x,y,z)$, $\|\vec{v}\| = \sqrt{x^2 + y^2 + z^2}$.

Proposition 9: Faits élémentaires.

Soit $\|\cdot\|$ la norme associée au produit scalaire $\langle .,. \rangle$ sur E.

- 1. Le vecteur nul est le seul vecteur de norme 0.
- 2. Pour tout $x \in E$, pour tout réel λ , on a $||\lambda x|| = |\lambda| \cdot ||x||$.
- 3. Si x est non nul, $\frac{x}{\|x\|}$ est de norme 1.

Preuve

Soit $(E, \langle ., . \rangle)$ préhilbertien.

1. • On a $||0_E||^2 = \langle 0_{\mathbb{R}} 0_E, 0_E \rangle = 0_{\mathbb{R}} \langle 0_E, 0_E \rangle = 0_{\mathbb{R}}$, donc $||0_E|| = 0$.

• Soit $x \in E$ tel que ||x, x|| = 0, alors $\langle x, x \rangle = 0$ et x = 0 par définition.

On a bien $\forall x \in E$, $||x|| = 0 \iff x = 0$.

2. Soit $x \in E$, $\lambda \in \mathbb{R}$

$$\|\lambda x\|^2 = \langle \lambda x, \lambda x \rangle = \lambda^2 \langle x, x \rangle$$
 donc $\|\lambda x\| = |\lambda| \cdot \|\langle x, x\|$

Donc $\forall x \in E, \ \forall \lambda \in \mathbb{R}, \ \|\lambda x\| = |\lambda| \cdot \|x\|.$

3. Soit $x \in E \setminus \{0_E\}$, sa norme est non nulle.

$$\left\|\frac{x}{\|x\|}\right\| = \frac{1}{\|x\|}\|x\| = \frac{\|x\|}{\|x\|} = 1.$$

Proposition 10: Identités remarquables.

Soit $\|\cdot\|$ la norme associée à $\langle .,. \rangle$ sur E. Soient $x,y \in E$.

- 1. $||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$ et $||x y||^2 = ||x||^2 2\langle x, y \rangle + ||y||^2$.
- 2. $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$.
- 3. $\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 \|x y\|^2)$

Preuve:

1.

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x + y \rangle + \langle y, x + y \rangle$$
$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$
$$= ||x^2|| + 2\langle x, y \rangle + ||y||^2$$

 $\mathrm{Donc}:$

$$||x - y||^2 = ||x + (-y)||^2 = ||x||^2 + 2\langle x, -y \rangle + ||-y||^2 = ||x||^2 - 2\langle x, y \rangle + ||y||^2$$

2. On somme les deux :

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

3. On différencie les deux :

$$||x + y||^2 - ||x - y||^2 = 4\langle x, y \rangle \Longrightarrow \langle x, y \rangle = \frac{1}{4} (||x + y||^2 - ||x - y||^2)$$

Exemple 11: Avec n vecteurs.

Développer $\left\|\sum_{k=1}^n x_k\right\|^2$, pour n vecteurs $x_1,...,x_n$ de $(E,\langle.,.\rangle)$.

Solution:

On a:

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \left\langle \sum_{i=1}^{n} x_i, \sum_{j=1}^{n} x_j \right\rangle = \sum_{i=1}^{n} \left\langle x_i, \sum_{j=1}^{n} x_j \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \left\langle x_i, x_j \right\rangle$$
$$= \sum_{i=1}^{n} \left\langle x_i, x_i \right\rangle + \sum_{i < j} \left\langle x_i, x_j \right\rangle + \sum_{i > j} \left\langle x_i, x_j \right\rangle$$

Or,
$$\sum_{i>j} \langle x_i, x_j \rangle = \sum_{j< i} \langle x_j, x_i \rangle = \sum_{i< j} \langle x_i, x_j \rangle$$
. Conclusion :

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{i=1}^{n} \|x_i\|^2 + 2 \sum_{i < j} \langle x_i, x_j \rangle.$$

Théorème 12: Inégalité de Cauchy-Schwarz.

Soit $\|\cdot\|$ la norme associée au produit scalaire $\langle .,. \rangle$ sur E, alors :

$$\forall (x,y) \in E^2 \quad |\langle x,y \rangle| \le ||x|| \cdot ||y||.$$

Cette inégalité est une égalité ssi (x,y) est liée ssi $y=0_E$ ou $\exists \alpha \in \mathbb{R} : x=\alpha y$.

Preuve:

Soient $x, y \in E^2$.

Cas (x, y) liée.

• Supposons $x = 0_E$.

D'une part, $|\langle x, y \rangle| = |\langle 0_E, y \rangle| = 0$.

D'autre part, $||x|| ||y|| = ||0_E|| ||y|| = 0$.

Il y a égalité dans ce sous-cas.

• Supposons $\exists \alpha \in \mathbb{R} \mid y = \alpha x$.

D'une part, $|\langle x, y \rangle| = |\langle x, \alpha x \rangle| = |\alpha| ||x||^2$.

D'autre part, $||x|| ||y|| = ||x|| ||\alpha x|| = |\alpha| ||x||^2$.

Il y a égalité dans ce sous-cas.

Bilan: dans le cas (x, y) liée, l'égalité est vraie.

Cas (x, y) libre.

On introduit $f: \lambda \mapsto ||x + \lambda y||^2$, c'est un polynôme de degré 2.

En effet, pour $\lambda \in \mathbb{R}$, $f(\lambda) = \|x + \lambda y\|^2 = \|y\|^2 \lambda^2 + 2\langle x, y \rangle \lambda + \|x\|^2$.

De plus, puisque $y \neq 0$, par séparation, $||y|| \neq 0$ et f est vraiment de degré 2.

On remarque de surcroît que f prend des valeurs strictement positives.

En effet, on a clairement que $\forall \lambda \in \mathbb{R}, \|x + \lambda y\|^2 \ge 0$.

De plus, $||x + \lambda y|| \neq 0$ car sinon, on aurait que le vecteur est nul, ce qui est impossible puisque (x, y) est libre.

Alors, le discriminant de f est strictement négatif.

Notons $\Delta = (2\langle x, y \rangle)^2 - 4\|y\|^2 \|x\|^2 = 4(\langle x, y \rangle)^2 - \|x\|^2 \|y\|^2 < 0.$

Ainsi, $\langle x, y \rangle^2 < ||x||^2 ||y||^2$, puis en appliquant la racine strictement croissante :

On a $\langle x, y \rangle < ||x|| ||y||$.

Exemple 13: Des inégalités de Cauchy-Schwarzenigger écrites au carré.

• Soient $(a_1,...,a_n) \in \mathbb{R}^n$ et $(b_1,...,b_n) \in \mathbb{R}^n$. En utilisant le produit scalaire canonique :

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

• Soient f et g dans $\mathcal{C}([a,b],\mathbb{R})$. En utilisant le produit scalaire 5.

$$\left(\int_a^b f(t)g(t)dt\right)^2 \le \left(\int_a^b f(t)^2 dt\right) \left(\int_a^b g(t)^2 dt\right)$$

Proposition 14: Inégalité triangulaire.

Soit $\|\cdot\|$ la norme associée au produit scalaire $\langle .,. \rangle$ sur E. Alors,

$$\forall (x,y) \in E^2, \quad ||x+y|| \le ||x|| + ||y||.$$

Il s'agit d'une égalité ssi x et y sont positivement liés; ssi $y = 0_E$ ou $\exists \alpha \in \mathbb{R}_+ : x = \alpha y$.

Preuve:

Soit $x, y \in E^2$. Différence des carrés :

$$(\|x\| + \|y\|)^2 - \|x + y\|^2 = \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 - \|x\|^2 - 2\langle x, y \rangle - \|y\|^2$$

$$= 2 (\|x\|\|y\| - \langle x, y \rangle) \ge 0 \quad \text{d'après Cauchy-Schwarz.}$$

Alors:

$$||x + y||^2 \le (||x|| + ||y||)^2$$
 donc $||x + y|| \le ||x|| + ||y||$

Supposons que ||x+y|| = ||x|| + ||y||. Alors $\langle x,y \rangle = ||x|| ||y||$, puis, d'après l'égalité dans Cauchy-Schwarz :

$$\begin{cases} \langle x, y \rangle \ge 0 \\ |\langle x, y \rangle| = ||x|| ||y||. \end{cases}$$

Alors (x, y) est liée.

1er cas: $x = 0_e$.

2eme cas: $\exists \alpha \in \mathbb{R} \mid y = \alpha x$.

Alors $\langle x, \alpha x \rangle \ge 0$ et $\alpha ||x^2|| \ge 0$ puisque $||x||^2 > 0$, on a $\alpha \in \mathbb{R}_+$.

Supposons que x,y sont positivement liés.

Sous-cas 1: $x = 0_E$, alors ||x + y|| = ||y|| = ||x|| + ||y||.

Sous-cas 2: $\exists \alpha \in \mathbb{R}_+ \mid y = \alpha x$, alors $||x + y|| = ||(1 + \alpha)x|| = |\underbrace{1 + \alpha}_{>0}| \cdot ||x|| = ||x|| + ||\alpha x|| = ||x|| + ||y||$.

Corrolaire 15

$$\forall (x,y) \in E^2 \quad |||x|| - ||y||| \le ||x - y||.$$

Remarque: La fonction norme est 1-lipschitzienne.

Définition 16: Distance euclidienne.

Soit $\|\cdot\|$ la norme associée au produit scalaire $\langle .,., \rangle$ sur E.

On appelle distance euclidienne entre deux vecteurs x et y de E le nombre positif :

$$d(x,y) = ||x - y||.f$$

3 Orthogonalité.

3.1 Vecteurs orthogonaux, familles orthogonales.

Définition 17: Vecteurs orthogonaux.

Deux vecteurs d'un espace préhilbertien sont dits **orthogonaux** si leur produit scalaire est nul.

Exemple 18

- ullet Couples de vecteurs orthogonaux de \mathbb{R}^2 pour le produit scalaire canonique.
- Dans l'espace $(C(0, 2\pi), \mathbb{R})$ muni du produit scalaire de 5, les vecteurs cos et sin sont orthogonaux.
- Diagonales d'un losange, dans un espace quelconque : si x et y ont même norme, alors x+y et x-y sont orthogonaux.

Proposition 19

Le vecteur nul est l'unique vecteur orthogonal à tous les vecteurs d'un espace préhilbertien.

Preuve

- Soit $x \in E$. $\langle 0_E, x \rangle = 0$ car $y \mapsto \langle y, x \rangle$ est une forme linéaire.
- Soit $x \in E \mid \forall y \in E, \ \langle x, y \rangle = 0$. En particulier, $\langle x, x \rangle = 0$: par définition, $x = 0_E$.

Définition 20

Soit $(x_1,...,x_n) \in E^n$ une famille de vecteurs de E.

On dit que c'est une **famille orthogonale** si ses vecteurs sont orthogonaux deux-à-deux :

$$\forall 1 \leq i, j \leq n \ i \neq j \Longrightarrow \langle x_i, x_j \rangle = 0.$$

On parle de famille **orthonormée** si de plus, tous ses vecteurs sont de norme 1 :

$$\forall 1 \le i \le n \ \|x_i\| = 1.$$

Proposition 21

Soit $(x_1, ..., x_n) \in E^n$.

$$(x_1,...,x_n)$$
 est orthonormée $\iff \forall i,j \in [1,n] \ \langle x_i,x_j\rangle = \delta_{i,j}.$

Preuve:

$$(x_1,...,x_n)$$
 orthonormée $\iff \forall i,j \in [1,n], \ \langle x_i,x_j \rangle = \begin{cases} 0 & \text{si } i \neq j \\ \|x_i\|^2 & \text{sinon} \end{cases}$

Dans $M_n(\mathbb{R})$ muni du produit scalaire $(A, B) \mapsto \operatorname{Tr}(A^{\top}B)$ la base canonique est orthonormée : Pour $i, j, k, l \in [\![1, n]\!] : \langle E_{i,j}, E_{k,l} \rangle = \operatorname{Tr}(E_{i,j}^{\top}E_{k,l}) = \operatorname{Tr}(E_{j,i}E_{k,l}) = \delta_{i,k}\operatorname{Tr}(E_{j,l}) = \delta_{i,k}\delta_{j,l} = \delta_{(i,j),(k,l)}$. Bien orthonormée.

Proposition 22: Renormalisation.

Si $(x_i, ..., x_n)$ est une famille orthogonale de E, constituée de vecteurs non nuls, on peut poser

$$\forall i \in [1, n] \ e_i := \frac{x_i}{\|x_i\|}.$$

Alors la famille $(e_1, ..., e_n)$ est orthonormée.

Preuve:

Tous les e_i sont de norme 1 (évident).

Montrons qu'ils sont orthogonaux : soient $i, j \in [1, n]$ avec $i \neq j$.

$$\langle e_i, e_j \rangle = \left\langle \frac{x_i}{\|x_i\|}, \frac{x_j}{\|x_j\|} \right\rangle = \frac{1}{\|x_i\| \cdot \|x_j\|} \cdot \langle x_i, x_j \rangle = 0.$$

Proposition 23

Une famille orthogonale formée de vecteurs non nuls est libre.

Notamment, les familles orthonormées sont libres.

Preuve:

Soit $(x_1,...,x_n)$ une famille orthogonale de vecteurs non nuls de E.

Soient $\lambda_1, ..., \lambda_n \in \mathbb{R}$ tels que $\sum_{i=1}^n \lambda_i x_i = 0_E$.

Soit $k \in [1, n]$ fixé, alors :

$$\left\langle \sum_{i=1}^n \lambda_i x_i, \ x_k \right\rangle = \sum_{i=1}^n \lambda_i \langle x_i, x_k \rangle = \lambda_k ||x_k||^2 = 0.$$

En effet, $\langle \sum_{i=1}^{n} \lambda_i x_i, x_k \rangle = \langle 0_E, x_i \rangle = 0_E$.

Donc $\lambda_k = 0 \text{ car } x_k \neq 0_E : ||x_k||^2 \neq 0.$

Proposition 24: Théorème de Pythagore.

Soit $(x_1,...,x_n)$ une famille orthogonale d'un espace préhilbertien pour lequel on note $\|\cdot\|$ la norme associée au produit scalaire. Alors :

 $\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{i=1}^{n} \|x_i\|^2.$

Preuve:

On a:

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \left\langle \sum_{i=1}^{n} x_i, \sum_{j=1}^{n} x_j \right\rangle = \sum_{i=1}^{n} \left\langle x_i, \sum_{j=1}^{n} x_j \right\rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \left\langle x_i, x_j \right\rangle = \sum_{i=1}^{n} \left\langle x_i, x_i \right\rangle + \sum_{i \neq j} \underbrace{\left\langle x_i, x_j \right\rangle}_{= 0}$$
$$= \sum_{i=1}^{n} \|x_i\|^2.$$

3.2 Orthogonal d'une partie.

Définition 25

Soit X une partie de E. On appelle **orthogonal** de X et on note X^{\perp} l'ensemble des vecteurs orthogonaux à tous les éléments de X, c'est-à-dire

$$X^{\perp} = \{ y \in E : \forall x \in X, \langle x, y \rangle = 0 \}.$$

Exemple 26: Conséquences immédiates de la définition.

Si X et Y sont deux parties de E,

- 1. $X \subset Y \Longrightarrow Y^{\perp} \subset X^{\perp}$.
- 2. $X \subset (X^{\perp})^{\perp}$

Solution:

1. Supposons $X \subset Y$ et $z \in Y^{\perp}$, alors pour $x \in X$, $\langle x, z \rangle = 0$ car $x \in X \subset Y$ et $z \in Y^{\perp}$. Donc $z \in X^{\perp}$.

2. Soit $x \in X$, pour $y \in X^{\perp}$, $\langle x, y \rangle = 0$ donc $x \in (X^{\perp})^{\perp}$.

Exemple 27: Se ramener à un sous-espace vectoriel.

$$\forall X \in \mathcal{P}(E), \quad X^{\perp} = (\operatorname{Vect}(X))^{\perp}$$

Solution:

Soit $X \in \mathcal{P}(E)$.

On a $X \subset \operatorname{Vect}(X)$, par décroissance de l'orthogonal, on a $(\operatorname{Vect}(X))^{\perp} \subset X^{\perp}$.

Soit $y \in X^{\perp}$, et $x \in \text{Vect}(x) : \exists n \in \mathbb{N}^* \ \exists (x_1, ..., x_n) \in X^n \ \exists (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n \ | \ x = \sum_{i=1}^n \lambda_i x_i$. Alors $\langle x, y \rangle = \sum_{i=1}^n \lambda_i \langle x_i, y \rangle = 0$ car $y \in X^{\perp}$. Donc $y \in (\text{Vect}(X))^{\perp}$.

Proposition 28

Si X est une partie de $(E, \langle ., . \rangle)$, alors X^{\perp} est un sous-espace vectoriel de E.

Si F est un sous-espace vectoriel de E, alors F^{\perp} est un sous-espace vectoriel de E en somme directe avec F.

Preuve:

1. Avec la caractérisation :

 $\overline{\text{On}}$ a $0_E \in X^{\perp}$. En effet, 0_E est orthogonal à tout vecteur (de X).

Soient $(\lambda, \mu) \in \mathbb{R}^2$ et $u, v \in (X^{\perp})^2$. Montrons que $\lambda u + \mu v \in X^{\perp}$.

Pour $x \in X$, on a $\langle \lambda u + \mu v, x \rangle = \lambda \langle u, x \rangle + \mu \langle v, x \rangle = \lambda \cdot 0 + \mu \cdot 0 = 0$. Donc $\lambda u + \mu v \in X^{\perp}$.

1. Autre preuve :

On a $X^{\perp} = \{ y \in E \ \forall x \in X, \ \langle x, y \rangle = 0 \}$. On pose $\varphi_x : y \mapsto \langle y, x \rangle$ pour $x \in X$ donné.

Alors $X^{\perp} = \{ y \in E \mid \forall x \in X, \ \varphi_x(y) = 0 \} = \{ y \in E \mid \forall x \in X, \ y \in \text{Ker}(\varphi_x) \} = \bigcap_{x \in X} \text{Ker}(\varphi_x).$

C'est un sev comme intersection de sev puisque φ_x est une forme linéaire non nulle si $x \neq 0$.

Si $x = 0_E$, Ker φ_x est un hyperplan et Ker $\varphi_0 = E$.

 $\boxed{2}$. Soit F un sev de E.

Soit $x \in X \cap X^{\perp}$, alors $\langle x, x \rangle = 0$ donc $x = 0_E$.

Exemple 29: Reconnaître un «vecteur normal» à un hyperplan.

• Soit $(a, b, c) \neq (0, 0, 0)$. On considère le plan :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid ax + by + cz = 0\}.$$

Écrire F sous la forme $Vect(u)^{\perp}$ où u est un vecteur de \mathbb{R}^3 à expliciter. Sait-on prouver que $F^{\perp} = \text{Vect}(u)$?

• On considère le sev :

$$G = \{ M \in M_n(\mathbb{R}) \operatorname{Tr}(M) = 0 \}.$$

Écrire G sous la forme $\operatorname{Vect}(U)^{\perp}$ où U est une matrice de $M_n(\mathbb{R})$ à expliciter. Sait-on prouver que $G^{\perp} = \text{Vect}(U)$.

Solution:

On a:

$$F = {\overrightarrow{u} \in \mathbb{R}^3 \mid \langle (a, b, c), \overrightarrow{u} \rangle = 0} = \text{Vect}(a, b, c)^{\perp}.$$

On a:

$$G = \{ M \in M_n(\mathbb{R}) \mid \text{Tr}(I_n^{\perp} M) = 0 \} = \{ M \in M_n(\mathbb{R}) \mid \langle I_n, M \rangle = 0 \} = \text{Vect}(I_n)^{\perp}$$

Bases orthonormées d'un espace euclidien.

Théorème 30

Dans un espace euclidien de dimension non nulle, il existe des bases orthonormées.

Preuve:

Par récurrence sur la dimension de l'espace :

Initialisation: Soit E un espace euclidien de dimension 1.

Soit $x \in E \setminus \{0_E\}$. Alors $\left(\frac{x}{\|x\|}\right)$ est libre car non nul, c'est une base car dimE = 1, orthonormée par construction.

Hérédité: Soit $n \in \mathbb{N}^*$ tel que le théorème soit vrai, soit E euclidien de dimension n+1.

Soit $x \in E \setminus \{0_E\}$, $H = \{y \in E \mid \langle y, x \rangle = 0\}$, c'est un hyperplan de E comme noyau d'une forme linéaire.

On munit H du produit scalaire induit par E, c'est donc un espace euclidien de dimension n.

Par hypothèse, il a une b.o.n., qu'on complète par $\frac{x}{\|x\|}$ pour obtenir une b.o.n. de E.

En effet, elle est orthonormée car la base de H est orthonormée et $\frac{x}{\|x\|}$ est de norme 1.

C'est une base car elle est libre (orthogonaux deux-à-deux et avec $\frac{x}{\|x\|} \in H^{\perp}$) et de cardinal n+1. **Conclusion:** Par récurrence, le théorème est vrai pour tout $n \in \mathbb{N}^*$.

Proposition 31

Si E est de dimension finie et que $(e_1,...,e_n)$ en est une base orthonormée, alors

$$\forall x \in E \quad x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i.$$

Preuve:

Soit $x \in E$, il existe donc $(\lambda_1, ..., \lambda_n) \in \mathbb{R}^n \mid x = \sum_{i=1}^n \lambda_i e_i$.

Pour $j \in [1, n]$:

$$\langle x, e_j \rangle = \left\langle \sum_{i=1}^n \lambda_i e_i, e_j \right\rangle = \sum_{i=1}^n \lambda_i \langle e_i, e_j \rangle = \lambda_j.$$

Corrolaire 32

Si E est de dimension finie et que $(e_1,...,e_n)$ en est une base orthonormée, alors pour $(x,y) \in E^2$:

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x, e_i \rangle \langle y, e_i \rangle$$
 et $||x||^2 = \sum_{i=1}^{n} \langle x, e_i \rangle^2$

Preuve:

On a:

$$\langle x,y\rangle = \left\langle \sum_{i=1}^{n} \langle x,e_i\rangle e_i, \sum_{j=1}^{n} \langle y,e_j\rangle e_j \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle x,e_i\rangle \langle y,e_j\rangle \langle e_i,e_j\rangle = \sum_{i=1}^{n} \langle x,e_i\rangle \langle y,e_i\rangle$$
$$\|x\|^2 = \langle x,x\rangle = \sum_{i=1}^{n} \langle x,e_i\rangle^2$$

Exemple 33

4 Projection orthogonale sur un sous-espace de dimension finie.

4.1 Projeté orthogonal.

Définition 34

Soit $(E, \langle ., . \rangle)$ un espace préhilbertien et F un sev de dimension finie.

Alors F^{\perp} est un supplémentaire de F dans E :

$$E = F \oplus F^{\perp}$$

La projection sur F parallèlement à F^{\perp} est notée ici p_F et appelé **projecteur orthogonal** de F.

Si
$$(e_1,...,e_p)$$
 est une base orthonormée de F , alors $p_F(x) = \sum_{i=1}^p \langle x, e_i \rangle e_i$

Preuve:

Par analyse-synthèse, supposons que x se décompose sur $F+F^{\perp}$: $\exists y,z\in F\times F^{\perp}$ x=y+z.

F est de dimension finie, il admet une b.o.n. $(e_1,...,e_p)$, et $y = \sum_{i=1}^p \langle y,e_i \rangle e_i$.

On sait que $x - y \in F^{\perp}$: $\langle x - y, e_i \rangle = 0$ donc $\langle x, e_i \rangle - \langle y, e_i \rangle = 0$ donc $\langle x, e_i \rangle = \langle y, e_i \rangle$.

Donc $y = \sum_{i=1}^{p} \langle x, e_i \rangle, e_i$, évidemment, z = x - y.

On a bien l'unicité.

Synthèse : on pose $y = \sum_{i=1}^{p} \langle x, e_i \rangle e_i, z = x - y$.

On a bien $y \in F$ et y + z = x.

Montrons que $x - y \in F^{\perp}$. Soit $f \in F$, $f = \sum_{i=1}^{p} \langle f, e_i \rangle e_i$.

$$\langle x - y, f \rangle = \left\langle x - y, \sum_{i=1}^{p} \langle f, e_i \rangle e_i \right\rangle = \sum_{i=1}^{p} \langle f, e_i \rangle (\langle x, e_i \rangle - \langle y, e_i \rangle) = 0.$$

Car $\langle y, e_i \rangle$ est la coordonnée de y sur $e_i : \langle x, e_i \rangle$ par définition.

Conclusion : tout $x \in E$ se décompose de manière unique sur $F + F^{\perp}$.

Corrolaire 35: Inégalité de Bessel.

Soit $(E, \langle .,. \rangle)$ un espace préhilbertien et F un sous-espace vectoriel de dimension finie. Alors,

$$\forall x \in E \quad ||p_F(x)|| \le ||x||.$$

Preuve:

Soit $x \in E$, alors $x = p_F(x) + (x - p_F(x))$.

On a donc $||x||^2 = ||p_F(x)||^2 + ||x - p_F(x)||^2$ et $||x||^2 - ||p_F(x)||^2 = ||x - p_F(x)|| \ge 0$.

Par passage à la racine, $||p_F(x)|| \le ||x||$.

Corrolaire 36

Soit E un espace euclidien et F un sev de E. Alors

$$\dim\left(F^{\perp}\right) = \dim(E) - \dim(F).$$

Preuve:

On sait que $E = F \oplus F^{\perp}$ car F de dimension finie.

Donc $\dim(E) = \dim(F) + \dim(F^{\perp})$ donc $\dim(F^{\perp}) = \dim(E) - \dim(F)$.

Proposition 37: La question du bi-orthogonal (Hors-programme).

Soit $(E, \langle ., . \rangle)$ un espace préhilbertien et F un sous-espace vectoriel de E tel que $F \oplus F^{\perp} = E$. On a

$$(F^{\perp})^{\perp} = F.$$

Le projecteur orthogonal sur F^{\perp} est le projecteur sur F^{\perp} parallèlement à F, de sorte que

$$\forall x \in E, \ X = p_F(x) + p_{F^{\perp}}(x).$$

Tout ceci est vrai en particulier lorsque F est de dimension finie, et donc dans le cas où E est euclidien.

On a déja prouvé que $F \subset (F^{\perp})^{\perp}$.

Montrons l'inclusion réciproque sous l'hypothèse $E = F \oplus F^{\perp}$.

Soit $x \in (F^{\perp})^{\perp}$. $\exists ! (x_F, x_{F^{\perp}}) \in F \times F^{\perp} \mid x = x_F + x_{F^{\perp}}$.

D'une part $\langle x, x_{F^{\perp}} \rangle = 0$ car $x \in (F^{\perp})^{\perp}$ et $x_F \in F^{\perp}$.

D'autre part, $\langle x, x_{F^{\perp}} \rangle = \langle x_F + x_{F^{\perp}}, x_{F^{\perp}} \rangle = \langle x_F, x_{F^{\perp}} \rangle + \langle x_{F^{\perp}}, x_{F^{\perp}} \rangle = \|x_{F^{\perp}}\|^2$.

On obtient $||x_{F^{\perp}}||^2 = 0$ donc $x_{F^{\perp}} = 0_E$ donc $x = x_F \in F$. On a bien $(F^{\perp})^{\perp} \subset F$, par double inclusion, $(F^{\perp})^{\perp} = F$.

4.2Distance à un sous-espace de dimension finie.

Définition 38

Soit $(E, \langle ., . \rangle)$ un espace préhilbertien, F un sous-espace de E et $x \in E$ un vecteur.

On appelle **distance** de x à F, que l'on pourra noter d(x, F) le réel positif

$$d(x,F) = \inf_{y \in F} ||x - y||.$$

Remarque: La borne a un sens car $\{||x-y||, y \in F\}$ est non vide $||x-0_F||$ et minoré par 0.

Proposition 39

Soit $(E,\langle .,.\rangle)$ un espace préhilbertien. Soit F un sous-espace de dimension finie. On a

$$d(x,F) = ||x - p_F(x)||$$
.

La distance au sous-espace est donc atteinte : $||x - p_F(x)|| = \min_{y \in F} ||x - y||$, et le projeté orthogonal $p_F(x)$ est l'unique vecteur de F qui réalise le minimum.

Preuve:

Notons $y_0 = p_F(x)$ (existe car F est de dimension finie) et considérons $y \in F$. Puisque $x - y_0$ appartient à F^{\perp} et que $y - y_0$ appartient à F, le théorème de Pythagore donne

$$||x - y||^2 = ||x - y_0 + y_0 - y||^2 = ||x - y_0||^2 + ||y_0 - y||^2 \ge ||x - y_0||^2.$$

Avec égalité ssi $||y_0 - y|| = 0$.

On a donc bien prouvé que $||x - y|| \ge ||x - y_0||$ avec égalité ssi $y = y_0$.

Corrolaire 40: Distance à un sous-espace, dans un espace de dimension finie.

Soit $(E, \langle ., . \rangle)$ un espace euclidien et F un sous-espace vectoriel de E.

Pour tout vecteur x de E, on a

$$d(x,F) = ||p_{F^{\perp}}(x)||.$$

Preuve:

Pour $x \in E$, $d(x, F) = ||x - p_F(x)|| = ||p_{F^{\perp}}(x)||$.

Construction de b.o.n.: algorithme d'orthonormalisation de Gram-Schmidt.

Exemple 41: Comprendre d'abord pour deux vecteurs.

On orthonormalise une famille libre (u_1, u_2) , en illustrant.

Solution:

On pose $e_1 := \frac{u_1}{\|u_1\|}$ a un sens car $u_1 \neq 0$ (famille libre).

Notons $F = \text{Vect}(u_1)$, alors $e_2 := \frac{u_2 - p_F(u_2)}{\|u_2 - p_F(u_2)\|}$

Proposition 42: Algorithme d'orthonormalisation de Gram-Schmidt.

Soit E un espace préhilbertien. Soit $(u_1, ..., u_n)$ une famille libre de vecteurs de E $(n \ge 2)$. Il est possible de définir des vecteurs $e_1, ..., e_n$ tels que

$$\forall k \in [1, nrg, (e_1, ..., e_k)]$$
 est une b.o.n de $Vect(u_1, ..., u_k) := F_k$.

Le procédé de construction est le suivant : on commence par poser

$$e_1 := \frac{u_1}{\|u_1\|}.$$

Pour $k \in [1, n-1]$, si $e_1, ..., e_k$ sont construits, on pose $e_{k+1} = \frac{v_{k+1}}{\|v_{k+1}\|}$, où

$$v_{k+1} := u_{k+1} - p_{F_k}(u_{k+1}) = u_{k+1} - \sum_{i=1}^k \langle u_{k+1}, e_i \rangle e_i.$$

Le procédé mis en oeuvre pour passer de $(u_1,...,e_n)$ à $(e_1,...,e_n)$ est appelé algorithme d'orthonormalisation de Gram-Schmidt et on dit que l'on a orthonormalisé la famille $(u_1,...,u_n)$

Preuve:

Pour k = 1, on a déjà $e_1 = \frac{u_1}{\|u_1\|}$ bien défini et $\text{Vect}(e_1) = \text{Vect}(u_1)$. Soit $k \geq 1$, supposons $e_1, ..., e_k$ bien construits.

Alors par définition : $v_{k+1} = u_{k+1} - p_{F_k}(u_{k+1})$ avec $F_k = \text{Vect}(u_1, ..., u_k)$.

Par définition du projeté orthogonal, $v_{k+1} \in F_k^{\perp}$. En particulier, $\forall i \in [1, k] \ \langle v_{k+1}, e_i \rangle = 0$.

Supposons que $v_{k+1} = 0$, alors $u_{k+1} = p_{F_k}(u_{k+1}) \in \text{Vect}(u_1, ..., u_k)$, absurde car famille libre. On a bien $v_{k+1} \neq 0$, on pose $e_{k+1} = \frac{v_{k+1}}{\|v_{k+1}\|}$.

On sait déjà que $(e_1, ..., e_k)$ est orthonormée.

De plus, $||e_{k+1}|| = 1$ et pour $i \in [1, k]$, $\langle e_{k+1}e_i \rangle = \langle \frac{v_{k+1}}{||v_{k+1}||} = 0 \rangle$.

C'est bien orthonormé.

Alors $(e_1, ..., e_{k+1})$ est libre, or $F_{k+1} = \text{Vect}(u_1, ..., u_{k+1})$ donc $\dim F_{k+1} = k+1$, c'est une b.o.n.

Exemple 43

Orthonormaliser la famille (u_1, u_2, u_3) où $u_1 = (2, -1, 1), u_2 = (-1, 1, 1), u_3 = (1, 1, 1).$ Solution: l'algorithme donne (e_1, e_2, e_3) tels que:

$$e_1 = \frac{1}{\sqrt{6}}(2, -1, 1), \quad e_2 = \frac{1}{\sqrt{21}}(-1, 2, 4), \quad e_3 = \frac{1}{\sqrt{14}}(2, 3, -1).$$

Exemple 44: Matrice de passage.

Soit $(u_1,...,u_n)$ une base d'un espace euclidien et $(e_1,...,e_n)$ la b.o.n. obtenue en appliquant l'algorithme de Gram-Schmidt. Expliquer pourquoi la matrice de passage de la première à la seconde est triangulaire supérieure.

Solution:

Avec $e_k \in \text{Vect}(u_1, ..., u_k)$.

$$P_{B,B'} = \begin{pmatrix} \dots & a_{1,k} & \dots \\ \dots & \vdots & \dots \\ \dots & a_{k,k} & \dots \\ \dots & 0 & \dots \\ \dots & \vdots & \dots \\ \dots & 0 & \dots \end{pmatrix}$$

Proposition 45: Théorème de la b.o.n. incomplète.

Dans un espace euclidien, toute famille orthonormée peut être complétée en une b.o.n.

Projeté orthogonal et calcul de distance : la pratique.

Méthode : Projeter un vecteur sur F avec une b.o.n.

Soit F un sous-espace vectoriel de dimension finie d'un espace préhilbertien E et $x \in E$.

Pour calculer $p_F(x)$, projeté orthogonal de x sur F, on peut

- 1. Se donner une b.o.n. $(e_1, ..., e_p)$ de F.
- 2. Utiliser la formule $p_F(x) = \sum_{i=1}^p \langle x, e_i \rangle e_i$.

Méthode : Projeter un vecteur sur F lorsqu'on a une base quelconque de F.

Soit F un sous-espace vectoriel de dimension finie d'un espace préhilbertien E et $x \in E$.

Pour calculer $p_F(x)$, projeté orthogonal de x sur F, on peut

- 1. Se donner une base $(u_1, ..., u_p)$ de F.
- 2. Introduire $(\lambda_1, ..., \lambda_p)$, p-uplet des coordonnées de $p_F(x)$ sur $(u_1, ..., u_p)$.
- 3. Écrire le système des $\forall i \in [1, p] \langle x p_F(x), u_i \rangle = 0$.
- 4. Résoudre le système linéaire.

Exemple 46: Distance à un hyperplan en dimension finie.

Soit u un vecteur non nul d'un espace euclidien E et x un vecteur de E.

- 1. Justifier que $Vect(u)^{\perp}$ est un hyperplan. Quel nom peut-on donner à u?
- 2. Notons $H = \text{Vect}(u)^{\perp}$ et D = Vect(u). Lequel de $p_H(x)$ ou de $p_D(x)$ est le plus facile à calculer en premier ?
- 3. Justifier que la distance de x à H est $d(x,H) = \frac{|\langle x,u\rangle|}{\|u\|}$.
- 4. Application : montrer que la distance d'un vecteur $x=(x_0,y_0,z_0)\in\mathbb{R}^3$ à un plan vectoriel P d'équation ax + by + cz = 0 $(a, b, c) \neq (0, 0, 0)$ vaut

$$d(x,P) = \frac{|ax_0 + by_0 + cz_0|}{\sqrt{a^2 + b^2 + c^2}}.$$

Solution:

- 1. $\operatorname{Vect}(u)$ est une droite car $u \neq 0$, $\operatorname{Vect}(u)^{\perp}$ est un supplémentaire de $\operatorname{Vect}(u)$ car de dimension finie, c'est un hyperplan.
- 2. $p_D(x)$ est plus facile à calculer en premier car D est de dimension 1.
- 3. On a $d(x, H) = ||x p_H(x)|| = ||p_D(x)||$.

Une b.o.n. de D est $(\frac{u}{\|u\|})$. Alors $p_D(x) = \langle x, \frac{u}{\|u\|} \rangle \frac{u}{\|u\|} = \frac{\langle x, u \rangle}{\|u\|^2} u$.

Finalement, $d(x, H) = ||p_D(x)|| = \frac{|\langle x, u \rangle|}{||u||}$.

4. On a $P = \{x \in \mathbb{R}^3 \mid \langle x, (a, b, c) \rangle = 0\} = \text{Vect}(a, b, c)^{\perp}$. P est un hyperplan de R^3 . On a $d(x, P) = \frac{|\langle x, (a, b, c) \rangle|}{\|(a, b, c)\|} = \frac{ax_0 + by_0 + cz_0}{\sqrt{a^2 + b^2 + c^2}}$.

Exemple 47

Calculer le nombre

$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^1 (e^x - ax - b)^2 \mathrm{d}x$$

Solution:

Pour $(a,b) \in \mathbb{R}^2$, on note $f_{a,b} : x \mapsto ax + b$.

$$\int_0^1 (e^x - ax + b)^2 dx = \int_0^1 (\exp - f_{a,b})^2 = \|\exp - f_{a,b}\|^2.$$

C'est la norme associée au produit scalaire intégral sur $\mathcal{C}([0,1])$ (5).

Il s'agit donc de calculer $d(\exp, F)$ où $F = \{f_{a,b} : x \mapsto ax + b, (a,b) \in \mathbb{R}^2\}$.

On a $F = \text{Vect}(\text{id}_{\mathbb{R}}, 1)$, c'est un plan de base (id, 1).

Soient $\lambda, \mu \in \mathbb{R} \mid p_F(\exp) = \lambda \mathrm{id} + \mu \mathbb{1}$. On pose le système

$$\begin{cases} \langle \exp -p_F(\exp), id \rangle &= 0\\ \langle \exp -p_F(\exp), 1 \rangle &= 0 \end{cases}$$

D'une part, $\langle \exp -p_F(\exp), id \rangle = \int_0^1 x e^x dx - \lambda \int_0^1 x^2 dx - \mu \int_0^1 x dx = I - \frac{\lambda}{3} - \frac{\mu}{2}$ où $I = \int_0^1 x e^x dx$. D'autre part, $\langle \exp -p_F(\exp), 1 \rangle = J - \frac{\lambda}{2} - \mu$.

$$\begin{cases} \frac{1}{3}\lambda + \frac{1}{2}\mu = I \\ \frac{1}{2}\lambda + \mu = J \end{cases} \iff \begin{cases} 2\lambda + 3\mu = 6I \\ 3\lambda + 6\mu = 6J \end{cases} \iff \begin{cases} \lambda = 12I - 6J \\ \mu = 4J - 6I \end{cases}$$

Reste à calculer I, J et $\int_0^1 (\exp{-\lambda id} - \mu)^2$.

Exercices. 5

Exercice 1: 37.6

Montrer que pour tout $(x_1, ..., x_n) \in \mathbb{R}^n$, $(\sum_{i=1}^n x_i)^2 \le n \sum_{i=1}^n x_i^2$.

Pour quels n-uplets a-t-on égalité ?

Solution:

Soit $x=(x_1,...,x_n)\in\mathbb{R}^n$ et y=(1,...,1). On applique Cauchy-Schwarz pour le produit scalaire canonique :

$$\left(\sum_{i=1}^{n} x_i \cdot 1\right)^2 \le \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} 1^2\right)$$

ça marche.

On a égalité ssi (x, y) est liée ssi y = 0 ou $\exists \lambda \in \mathbb{R} \mid x = \lambda y$ ssi les x_i sont égaux.

Exercice 2: 37.7

Soient $x_1,...,x_n \in \mathbb{R}_+^*$ tels que $\sum_{i=1}^n x_i = 1$. Montrer que $\sum_{i=1}^n \frac{1}{x_i} \ge n^2$. Étudier l'égalité.

Solution:

On a
$$\sum_{i=1}^n \frac{1}{x_i} = \sum_{i=1}^n \left(\frac{1}{\sqrt{x_i}}\right)^2 = ||u||^2$$
 où $u := \left(\frac{1}{\sqrt{x_1}}, ..., \frac{1}{\sqrt{x_n}}\right)$.

Posons $v := (\sqrt{x_1}, ..., \sqrt{x_n})$ de norme $||v||^2 = \sum_{i=1}^n (\sqrt{x_i})^2 = 1$ par hypothèse.

Donc $\langle u, v \rangle = \sum_{i=1}^{n} \frac{1}{\sqrt{x_i}} \sqrt{x_i} = n$.

Donc $(\langle u,v\rangle)^2 \leq \|u\|^2 \|v\|$ donc $n^2 \leq \sum_{i=1}^n \frac{1}{x_i}$ d'après Cauchy-Schwarz.

Cas d'égalité: ssi (x,y) est liée, ssi $\exists \alpha \in \mathbb{R} \mid y = \alpha x$. Avec la condition $\sum_{i=1}^{n} x_i = 1$, on trouvera un unique vecteur pour le cas d'égalité : $(\frac{1}{n},...,\frac{1}{n})$.