

« Automating IT Operations Using Machine Learning » Sept – Nov 2016

Ajinkya CHANDRAYAN

Data Scientist - Département Solutions Globales
INEO DIGITAL

engie

Content

Preprocessing Feature creation / processing Models Features importance Final blend **Tools and frameworks** Source code

Preprocessing

Label Encoding

It is used to transform non-numerical labels to numerical labels.

Language	Python
Library	sklearn.preprocessing; LabelEncoder
Variables	ini, codeClosing,libjob,consumer,ArDailyStatConsumer, VALDailyStatConsumer, VARDailyStatConsumer
Sample script	fullData['ini'] = number.fit_transform(fullData['ini'].astype('str'))

Treatment of missing values in variables

The data description states that the Resource Plan before January 2015 was not available, which means that the 'slot' field will have no data for the jobs before January 2015. This missing data has been treated by filling in the **mean** values.

Replacing NaN with 0

Feature Creation / Processing (1/2)

 Create «year», «month», «day», «week», «day of the week», «hour», «minute» from the date variables.

Language	Python
Library	Pandas
Variables	datdeb, dateCalcul, datdealversion
Sample script	dt = pd.to_datetime(fullData.datdeb).dt fullData["datdeb_Year"] = dt.year

Create «milliseconds» from date variables.

Language	Python					
Library	Pandas, Numpy					
Variables	dateCalcul, tradeDate, datcrever, Datmodver					
Sample script	df1=pd.to_datetime(fullData['dateCalcul']) fullData["dateCalculMS"]= df1.astype(np.int64) // 10**9					

Feature Creation / Processing (2/2)

Creating «dealtype_count» and «fin_count»

The deals dataset contains the number of deals traded each day by «dealtype». The data description highlights that the number of deals traded each day can be helpful for the model precision.

Language	Python				
Library	Pandas, Numpy				
Variables	dealtype, count				
Sample script	deals = deals.groupby(['tradeDate','dealtype']).mean().squeeze().unstack().add_suffix('_count') df1 = deals.replace(np.nan,0, regex=True) deals['fin_count'] = deals.apply(lambda row: row['CHC_count'] + row['CPT_count']+ row['CSH_count'] + row['CSHCO_count'] + row['EXFLEX_count']+ row['EXOSCP_count'] + row['EXSCP_count'] + row['FUTCO_count'] + row['GEFWD_count'] + row['GEFWI_count'] + row['GEOPT_count'] + row['GESWA_count'] + row['GETRA_count'] + row['OCH_count'] + row['OPA_count'] + row['OPC_count'] + row['OPTMO_count'] + row['PECUR_count'] + row['STOK_count'] + row['SWA_count'] + row['SWF_count'] + row['SWT_count'] + row['TER_count'] + row['TSC_count'], axis=1)				

Models (1/2)

- This challenge was an opportunity to experiment on some new libraries and approaches.
- In the initial phase I experimented on the H2O library which gave very good results.
- The H2O library is rich and can allow training the models within the available resources.

H2O Library

Language	R Programming				
Library	h2o				
Approach	Ensemble learning				
Algorithms	GLM, Random Forest, GBM				
Highest Score	13.6542046128				

_

Models (2/2)

- In the final stages of the challenge, I moved on to the xgboost library, which is quite popular amongst the kagglers and a personal favourite that almost, always ensures good result.
- I experimented xgboost library with the bag of models approach which after some rounds of parameters tuning gave the highest score.

Library XGBOOST

Language	R Programming
Library	Xgboost
Approach	Bag of models
Algorithms	Gradient tree boosting
Highest Score	12.3187479036

Features Importance

- For feature importance, I experimented on the Boruta algorithm during this challenge.
- Boruta is a feature selection algorithm. Precisely, it works as a wrapper algorithm around Random Forest.

Language		R Programming																
Library		Boruta																
codtypjob ini cntope cntcpl codmdljob libjob isincremental referencejobid isbatchmode idParam codeClosing codscenario isusecachedeal	25.138846 27.35746 70.250920 71.197920 53.932561 55.743290 39.074359 40.142600 16.087546 12.438281 13.883126 14.118241 16.995208 17.736341 33.812611 34.597221 43.750994 43.668531 23.521509 25.338461 31.388452 30.91121	minImp maxImp 8 12.911324 16.337305 7 3.808829 32.057937 6 61.231584 76.894304 2 45.257485 59.435008 0 30.969667 45.325027 5 7.493510 45.588435 9 12.265184 14.762873 4 11.268129 18.53668 3 19.365210 42.557718 2 34.310573 56.690496 5 7.900929 30.4488458 2 29.334952 35.012042 8 4.642970 6.251165	1.0 Confirmed	Importance		<u> </u>	°	- -	8 -	, == •		•	•	•	. <u>∓</u> l	8		3
VALDailyStatConsumer	19.310960 19.73297 23.617142 23.96930 10.531338 11.29608	4 14.354455 16.883566 1 14.296433 22.516132 6 20.431533 25.953979 1 3.814953 12.788028 5 15.440343 16.870240	1.0 Confirmed 1.0 Confirmed 1.0 Confirmed 0.9 Confirmed 1.0 Confirmed		shadowMin — shadowMean —	shadowMax — isusecachedeal —	Ibjob Ibjob	codtypjob –	usecacheparam — lyStatConsumer —	referencejobid —	isusecachefix —	codeClosing —	Ē	conscenario – isbatchmode –	codmdijob –	idParam —	cntope	

Final Blend

• The final model was trained by tuning the hyper parameters after performing different experiments and submissions.

Language	R Programming				
Library	Xgboost				
Approach	Bag of models				
Algorithms	Gradient tree boosting				
Total number of models	50				
Final Calculation	Mean of all models				
Parameters	shrinkage(eta), rounds, depth, gamma, min.child, colsample.bytree, subsample				
Features	all				

Tools and Frameworks

Language Python, R Programming, SQL

Tools Jupyter Notebook, R Studio, DB Browser for SQLite

Librairies (Python) Pandas, Numpy, ScikitLearn, csv

Librairies (R Programming) dplyr,data.table,lubridate,ggplot2,sqldf,xgboost,h2o,boruta

Source Code

All code : Python + R Programming + SQL

• Final datasets (train, test) used for model training & submission :

https://github.com/ajinkyachandrayan/Data-Science-Challenge-1/blob/master/train_GEM_1_x.zip

https://github.com/ajinkyachandrayan/Data-Science-Challenge-1/blob/master/test_GEM_1_x.zip