

Lecture 14 - Laplace Transform

Analysis Techniques

Circuit Excitation	Method of Solution	
dc (w/ switches)	DC/Transient analysis	
ac	Phasor-domain analysis (Steady state only)	
Periodic waveform	Fourier series + Phasor-domain (Steady state only)	
Waveform	Laplace transform (transient + steady state)	

2

Laplace Transform Technique

[Source: Berkeley]

Laplace Transform- First glance

 We assume no initial energy stored at t=0

$$\frac{v(t)}{R} + \frac{1}{L} \int_0^t v(x) dx + C \frac{dv(t)}{dt} = I_{dc} u(t).$$

$$\frac{V(s)}{R} + \frac{1}{L} \frac{V(s)}{s} + C[sV(s) - v(0^{-})] = I_{dc} \left(\frac{1}{s}\right)$$

$$V(s)\left(\frac{1}{R} + \frac{1}{sL} + sC\right) = \frac{I_{\rm dc}}{s}$$

$$V(s) = \frac{I_{dc}/C}{s^2 + (1/RC)s + (1/LC)}. \longrightarrow v(t) = \mathcal{L}^{-1}\{V(s)\}.$$

The French Newton Pierre-Simon Laplace (Late 1700)

- Developed mathematics in astronomy, physics, and statistics
- Began work in calculus which led to the Laplace Transform
- Focused later on celestial mechanics
 - One of the first scientists to suggest the existence of black holes

What are Laplace Transforms?

$$F(s) = \int_0^\infty f(t)e^{-st}dt \qquad F(s) = \mathcal{L}[f(t)]$$

$$f(t) = \frac{1}{2\pi i} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s) e^{st} ds \qquad f(t) = \mathcal{L}^{-1}[F(s)]$$

- Note in $f(t) \rightarrow F(s)$, t is integrated and s is variable.
- *t* is real, *s* is complex! $s = \sigma + j\omega$
- Assume f(t)=0 for all *t* < 0
- Conversely, $F(s) \rightarrow f(t)$, t is variable and s is integrated.

TABLE 12.1 An Abbreviated List of Laplace Transform Pairs

Туре	$f(t) \ (t > 0 -)$	F(s)
(step)	u(t)	$\frac{1}{s}$
(ramp)	t	$\frac{1}{s^2}$
(exponential)	e^{-at}	$\frac{1}{s+a}$
(sine)	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
(cosine)	$\cos \omega t$	$\frac{s}{s^2+\omega^2}$
(damped ramp)	te^{-at}	$\frac{1}{(s+a)^2}$
(damped sine)	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
(damped cosine)	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$

s-domain

$$\mathbf{F}(\mathbf{s}) = \mathcal{L}[f(t)] = \int_{0^{-}}^{\infty} f(t) e^{-\mathbf{s}t} dt,$$

Lecture 14

Example: Step Function

Example: Exponential Function

$$f(t) = e^{-at}$$

$$\mathcal{L}[f(t)] = \frac{1}{S+a}$$

Operation	f(t)	F(s)
Multiplication by a constant	Kf(t)	KF(s)
Addition/subtraction	$f_1(t) + f_2(t) - f_3(t) + \cdots$	$F_1(s) + F_2(s) - F_3(s) + \cdots$
First derivative (time)	$\frac{df(t)}{dt}$	$sF(s) - f(0^-)$
Second derivative (time)	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0^-) - \frac{df(0^-)}{dt}$
nth derivative (time)	$\frac{d^n f(t)}{dt^n}$	$s^{n}F(s) - s^{n-1}f(0^{-}) - s^{n-2}\frac{df(0^{-})}{dt}$ $- s^{n-3}\frac{df^{2}(0^{-})}{dt^{2}} - \dots - \frac{d^{n-1}f(0^{-})}{dt^{n-1}}$
Time integral	$\int_0^t f(x) dx$	$- s^{n-3} \frac{df^{2}(0^{-})}{dt^{2}} - \dots - \frac{d^{n-1}f(0^{-})}{dt^{n-1}}$ $\frac{F(s)}{s}$
Translation in time	f(t-a)u(t-a), a > 0	$e^{-as}F(s)$
Translation in frequency	$e^{-at}f(t)$	F(s + a)
Scale changing	f(at), a > 0	$\frac{1}{a}F\left(\frac{s}{a}\right)$
First derivative (s)	tf(t)	$-\frac{dF(s)}{ds}$
nth derivative (s)	$t^n f(t)$	$(-1)^n \frac{d^n F(s)}{ds^n}$
s integral	$\frac{f(t)}{t}$	$\int_{0}^{\infty} F(u) du$

Homogeneity and Additivity

$$\mathcal{L}[a_1 f_1(t)] = a_1 \mathcal{L}[f_1(t)] = a_1 F_1(s)$$

$$\mathcal{L}[a_1f_1(t) + a_2f_2(t)] = a_1\mathcal{L}[f_1(t)] + a_2\mathcal{L}[f_2(t)] = a_1F_1(s) + a_2F_2(s)$$

here a_1 and a_2 are constants

Important implication:

$$\sum_{k=1}^{k} i_k(t) = 0 \quad \iff \quad \sum_{k=1}^{k} I_k(s) = 0$$

$$\sum_{k=1}^{k} u_k(t) = 0 \quad \iff \quad \sum_{k=1}^{k} U_k(s) = 0$$

Differentiation

$$\mathcal{L}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0_{-})$$

$$\mathcal{L}[f^{(n)}(t)] = s^n F(s) - s^{n-1} f(0_-) - s^{n-2} f^{(1)}(0_-) - \dots - f^{(n-1)}(0_-)$$

$$= s^n F(s) - \sum_{k=0}^{n-1} s^k f^{(n-1-k)}(0_-)$$

Initial and final value

$$\mathcal{L}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0_{-})$$

Integration

$$\mathcal{L}\left[\int_{0_{-}}^{t} f(\tau)d\tau\right] = \frac{1}{s}F(s)$$

Translation in the Time Domain

$$\mathcal{L}[f(t-\tau)\ u(t-\tau)] = e^{-s\tau}F(s)$$

Example

$$f(t) = A[[u(t-a) - u(t-b)]$$

$$F(s) = A \mathcal{L}[u(t-a) - u(t-b)] = \frac{A}{S}(e^{-as} - e^{-bs})$$

Translation in Frequency domain

$$\mathcal{L}[e^{\alpha t}f(t)]=F(s-\alpha)$$

Example

$$\mathcal{L}\left[\sin \omega t\right] = \frac{\omega}{s^2 + \omega^2}$$

$$\mathcal{L}\left[\sin \omega t\right] = \frac{\omega}{s^2 + \omega^2} \qquad \mathcal{L}\left[e^{-\alpha t}\sin \omega t\right] = \frac{\omega}{\left(s + \alpha\right)^2 + \omega^2}$$

Applying the Laplace Transform

 We assume no initial energy stored at t=0

$$\frac{v(t)}{R} + \frac{1}{L} \int_0^t v(x) dx + C \frac{dv(t)}{dt} = I_{dc} u(t).$$

$$\frac{V(s)}{R} + \frac{1}{L} \frac{V(s)}{s} + C[sV(s) - v(0^{-})] = I_{dc} \left(\frac{1}{s}\right)$$

$$V(s)\left(\frac{1}{R} + \frac{1}{sL} + sC\right) = \frac{I_{\rm dc}}{s}$$

$$V(s) = \frac{I_{dc}/C}{s^2 + (1/RC)s + (1/LC)}. \longrightarrow v(t) = \mathcal{L}^{-1}\{V(s)\}.$$

V-I relations of R,L,C

• R
$$U_R(s) = RI_R(s)$$

$$I_L(s) = \frac{i_L(0_-)}{s} + \frac{1}{sL}U_L(s)$$

•C
$$I_C(s) = sCU_C(s) - Cu_C(0_-)$$

Properties of the Laplace transform $(f(t) = 0 \text{ for } t < 0^{-})$.

Property	f(t)		$\mathbf{F}(\mathbf{s}) = \mathbf{\mathcal{L}}[f(t)]$
1. Multiplication by cons	stant $K f(t)$	\leftrightarrow	K F(s)
2. Linearity $K_1 f_1$	$t) + K_2 f_2(t)$	\leftrightarrow	$K_1 \mathbf{F}_1(\mathbf{s}) + K_2 \mathbf{F}_2(\mathbf{s})$
3. Time scaling f	(at), a > 0	\leftrightarrow	$\frac{1}{a} \mathbf{F} \left(\frac{\mathbf{s}}{a} \right)$
4. Time shift $f(t)$	-T) $u(t-T)$	\leftrightarrow	$e^{-Ts} \mathbf{F}(\mathbf{s}), T \ge 0$
5. Frequency shift	$e^{-at} f(t)$	\leftrightarrow	$\mathbf{F}(\mathbf{s}+a)$
6. Time 1st derivative	$f' = \frac{df}{dt}$	\leftrightarrow	$\mathbf{s} \; \mathbf{F}(\mathbf{s}) - f(0^-)$
7. Time 2nd derivative	$f'' = \frac{d^2f}{dt^2}$	\leftrightarrow	
8. Time integral	$\int_{0^{-}}^{t} f(\tau) d\tau$		5
9. Frequency derivative	t f(t)	\leftrightarrow	$-\frac{d}{d\mathbf{s}}\mathbf{F}(\mathbf{s})$
10. Frequency integral	$\frac{f(t)}{t}$	⇔	$\int_{\mathbf{s}}^{\infty} \mathbf{F}(\mathbf{s}') \ d\mathbf{s}'$

Lecture 14

Inverse Transforms

In principle, we can recover f from F via

$$f(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F(S) e^{st} ds$$

Surprisingly, this formula isn't really useful!

What is more common/useful as follows:

$$F(s) = \frac{P(s)}{Q(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

Generally

$$F(s) = \frac{P(s)}{Q(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

 a_i and b_i are real constants, and the exponents m,n are positive integers

- If m<n, proper rational function
- If m>n, improper rational function

Partial Fraction Expansion

• Let F(s) be proper rational function, then

$$F(s) = \frac{P(s)}{Q(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

$$F(s) = \frac{P(s)}{Q(s)} = \frac{K_1}{s - p_1} + \frac{K_2}{s - p_2} + \dots + \frac{K_n}{s - p_n} = \sum_{j=1}^n \frac{K_j}{s - p_j}$$

 $p_j(j=1, 2, ..., n)$ are the roots of equation Q(s)=0

 $K_i(j=1, 2, ..., n)$ are unknown constants

Partial Fraction Expansion with Real Distinct Roots

$$F(s) = \frac{P(s)}{Q(s)} = \frac{K_1}{s - p_1} + \frac{K_2}{s - p_2} + \dots + \frac{K_n}{s - p_n} = \sum_{j=1}^n \frac{K_j}{s - p_j}$$

Case I:

If the roots are real, $p_i \neq p_j$ for $\forall i \neq j$

$$K_{j} = \lim_{s \to p_{j}} (s - p_{j}) F(s) = (s - p_{j}) F(s) \Big|_{s = p_{j}}$$

Exercise

$$F(s) = \frac{s^2 + 3s + 5}{s^3 + 6s^2 + 11s + 6}$$

$$F(s) = \frac{s^2 + 3s + 5}{(s+1)(s+2)(s+3)} = \frac{K_1}{s+1} + \frac{K_2}{s+2} + \frac{K_3}{s+3}$$

Partial Fraction Expansion with Multiple Roots

- Case II:
- If Q(s) has multiple roots

$$F(s) = \frac{K_{11}}{s - p_1} + \frac{K_{12}}{(s - p_1)^2} + \dots + \frac{K_{1r}}{(s - p_1)^r} + \frac{K_{r+1}}{s - p_{r+1}} \dots + \frac{K_n}{s - p_n}$$

$$K_{1r} = (s - p_1)^r F(s) \Big|_{s=p_1}$$

$$K_{1(r-1)} = \frac{d}{ds} [(s - p_1)^r F(s)]_{s=p_1}$$

$$K_{1(r-2)} = \frac{1}{2!} \frac{d^2}{ds^2} [(s - p_1)^r F(s)]_{s=p_1}$$

$$\vdots$$

$$K_{11} = \frac{1}{(r-1)!} \frac{d^{r-1}}{ds^{r-1}} [(s - p_1)^r F(s)]_{s=p_1}$$
Lecture 14

Exercise

$$F(s) = \frac{10s^2 + 4}{s(s+1)(s+2)^2}$$

$$F(s) = \frac{K_{11}}{s} + \frac{K_{21}}{s+1} + \frac{K_{31}}{s+2} + \frac{K_{32}}{(s+2)^2}$$

$$f(t) = [1 - 14e^{-t} + (13 + 22t)e^{-2t}]u(t)$$

Partial Fraction Expansion with Complex Roots

Case III:

If F(s) has a pole of p_1 expressed by a complex number, then it must have a complex root P_2 as a conjugate of P_1

$$p_{1} = \alpha + j\omega \quad p_{2} = p_{1}^{*} = \alpha - j\omega$$

$$F(s) = \frac{K_{1}}{s - (\alpha + j\omega)} + \frac{K_{2}}{s - (\alpha - j\omega)}$$

$$K_{1} = [s - (\alpha + j\omega)]F(s)|_{s = \alpha + j\omega}$$

$$K_{2} = [s - (\alpha - j\omega)]F(s)|_{s = \alpha - j\omega} \quad K_{2} = K_{1}^{*} = |K_{1}|e^{-j\varphi_{K}}$$

$$f(t) = K_1 e^{(\alpha + j\omega)t} + K_2 e^{(\alpha - j\omega)t} = |K_1| e^{\alpha t} [e^{j(\omega t + \varphi_K)} + e^{-j(\omega t + \varphi_K)}]$$
$$= 2|K_1| e^{\alpha t} \cos(\omega t + \varphi_K)$$

Partial Fraction Expansion with Complex Roots

• Example:
$$F(s) = \frac{s^2 + 3s + 7}{(s^2 + 4s + 13)(s + 1)}$$

$$p_1 = -2 + j3, \quad p_2 = -2 - j3, \quad p_3 = -1$$

$$F(s) = \frac{K_1}{s - (-2 + j3)} + \frac{K_1^*}{s - (-2 - j3)} + \frac{K_3}{s + 1}$$

$$K_3 = \frac{s^2 + 3s + 7}{s^2 + 4s + 13} \Big|_{s=-1} = 0.5$$

Application to Integrodifferential Equations

- The Laplace transform is useful in solving linear integrodifferential equations.
 - Initial conditions are automatically taken into account.

Use the Laplace transform to solve the differential equation

$$\frac{d^2v(t)}{dt^2} + 6\frac{dv(t)}{dt} + 8v(t) = 2u(t)$$

subject to v(0) = 1, v'(0) = -2.

$$[s^{2}V(s) - sv(0) - v'(0)] + 6[sV(s) - v(0)] + 8V(s) = \frac{2}{s}$$

$$V(s) = \frac{s^2 + 4s + 2}{s(s+2)(s+4)} = \frac{\frac{1}{4}}{s} + \frac{\frac{1}{2}}{s+2} + \frac{\frac{1}{4}}{s+4} \qquad v(t) = \frac{1}{4}(1 + 2e^{-2t} + e^{-4t})u(t)$$

Quiz find f(t)

$$F(s) = \frac{2s^3 + 33s^2 + 93s + 54}{s(s+1)(s^2 + 5s + 6)}.$$

$$F(s) = \frac{14s^2 + 56s + 152}{(s+6)(s^2 + 4s + 20)}.$$