

L2 PEIP - 2016/2017

HLMA 410 - Session 1

Le sujet est constitué de 5 exercices. Il est possible d'admettre et d'utiliser des résultats de l'énoncé pour répondre aux questions suivantes. Aucun document de cours ni matériel électronique n'est autorisé. Une attention particulière sera portée à la clarté de la rédaction et à la précision des références au cours.

Exercice 1.

Soit A et B deux événements aléatoires. On introduit la variable aléatoire $\chi = \mathbbm{1}_A \mathbbm{1}_B$ et on suppose que $\mathbb{E}[\chi] = 1/4$

- 1. Calculer la probabilité de l'événement $A \cap B$.
- 2. Illustrer sur un exemple que la seule connaissance de $\mathbb{E}[\chi]$ ne permet pas de calculer les probabilités des événements A et B.

Exercice 2.

On dispose de deux dés D_e et D_t . Le dé D_e est équilibré. Le dé D_t est truqué si bien que la probabilité d'obtenir un 6 est 1/2 alors que les autres valeurs sont équiprobables.

- 1. Pour $i \in \{1, ..., 6\}$ calculer la probabilité de l'événement " D_e donne la valeur i."
- 2. Pour $i \in \{1, ..., 6\}$ calculer la probabilité de l'événement " D_t donne la valeur i."

Dans la suite de l'exercice, on considère l'expérience où on prend l'un des deux dés au hasard que l'on lance. On observe alors le résultat obtenu.

- 3. Calculer les probabilités des événements A= "le résultat est pair" et B= "le résultat est un multiple de 3."
- 4. Les événements A et B sont-ils indépendants ?
- 5. On suppose que le résultat obtenu est 6. Quelle est la probabilité d'avoir pris le dé D_t ?

Exercice 3.

On se donne l'application:

- 1. Montrer que q est une forme quadratique.
- 2. En appliquant l'algorithme de Gauss, décomposer la forme q en une combinaison de carrés.
- 3. Quelle est la forme polaire de q? Quelle est la signature de la forme q?

Exercice 4.

On se donne $\Gamma = (I, \phi)$ l'arc paramétré de \mathbb{R}^2 où $I = \mathbb{R}$ et

$$\phi: \mathbb{R} \longmapsto \mathbb{R}^2$$

$$t \longmapsto \begin{pmatrix} \cos(t)^2 \\ (1+\sin(t))\cos(t) \end{pmatrix}$$

1. Montrer que Γ est un arc C^{∞} 2π -périodique. On a alors, pour $t \in \mathbb{R}$:

$$\phi'(t) = \begin{pmatrix} -\sin(2t) \\ -\sin(t) + \cos(2t) \end{pmatrix} \quad \phi"(t) = \begin{pmatrix} -2\cos(2t) \\ -\cos(t) - 2\sin(2t) \end{pmatrix} \quad \phi^{(3)}(t) = \begin{pmatrix} 4\sin(2t) \\ \sin(t) - 4\cos(2t) \end{pmatrix}$$

- 2. Déterminer $t_0 \in [0, 2\pi]$ tel que $\phi'(t_0) = 0$. Quelle est la nature du point $\phi(t_0)$ et la tangente au support de Γ en ce point ?
- 3. L'arc Γ admet-il des points d'inflexion?
- 4. Dresser les tableaux de variations des applications composantes de ϕ sur $[0, 2\pi]$.
- 5. Représenter le support de Γ dans un repère orthonormé en incluant les éléments calculés précédemment.

Exercice 5.

Dans cet exercice, étant donné r > 0, on note:

$$D_r = \{(x, y) \in \mathbb{R}^2 \text{ t.q. } x^2 + y^2 < r^2\} \qquad \overline{D}_r = \{(x, y) \in \mathbb{R}^2 \text{ t.q. } x^2 + y^2 \le r^2\}$$

Dans la première partie de cet exercice, on se donne $f: D_2 \to \mathbb{R}$ et on suppose que f satisfait:

$$f \in C^2(D_2), \quad \frac{\partial^2 f}{\partial x^2}(x, y) + \frac{\partial^2 f}{\partial y^2}(x, y) > 0 \quad \forall (x, y) \in D_1.$$
 (H)

- 1. Justifier en une phrase que la restriction de f à \overline{D}_1 (notée $f_{\overline{D}_1}$ dans la suite) est bornée et atteint ses bornes.
- 2. On se donne $(x_0, y_0) \in D_1$.
 - (2.a) Donner le développement limité à l'ordre 2 de f en (x_0, y_0) .
 - (2.b) En considérant $t \mapsto f(x_0 + t^2, y_0 + t^2)$ pour t proche de 0, montrer que $f_{\overline{D}_1}$ ne peut pas atteindre son maximum en (x_0, y_0) .
- 3. On suppose maintenant que $f_{\overline{D}_1}$ atteint son maximum en $(x_0, y_0) \in \overline{D}_1 \setminus D_1$. On introduit:

$$f_{\Gamma}: \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto f(\cos(t), \sin(t))$$

- (3.a) Justifier qu'il existe $t_0 \in \mathbb{R}$ tel que $(x_0, y_0) = (\cos(t_0), \sin(t_0))$ puis que f_{Γ} admet un maximum local en t_0 .
- (3.b) En déduire que

$$y_0 \frac{\partial f}{\partial x}(x_0, y_0) - x_0 \frac{\partial f}{\partial y}(x_0, y_0) = 0.$$

(3.c) Quelle propriété satisfont alors les vecteurs $\nabla f(x_0, y_0)$ et (x_0, y_0) ?

Dans la deuxième partie de l'exercice, on pose:

$$f(x,y) = \frac{y}{(x-4)^2 + y^2} + \frac{1}{2}(x^2 + y^2), \quad \forall (x,y) \in \mathbb{R}^2 \setminus \{(4,0)\}$$

On rappelle qu'on peut utiliser les résultats de la première partie de l'exercice même sans avoir répondu à ces questions.

- (4.a) Justifier que f satisfait (H).
- (4.b) En déduire que $f_{\overline{D}_1}$ est bornée et atteint ses bornes puis que sa valeur maximale ne peut pas être atteinte en un $(x_0, y_0) \in D_1$.
- (4.c) Soit $(x_0, y_0) \in \overline{D}_1 \setminus D_1$ tel que $f_{\overline{D}_1}$ est maximale en (x_0, y_0) . Trouver une équation satisfaite par (x_0, y_0) . Puis, en utilisant que $y_0 = 1 x_0^2$, montrer que $x_0 = 4/17$.