Curve Sketching - Polynomial and Rational Functions

For each of the following functions, perform a complete curve analysis. Note: Some of the solutions are provided but not all.

1. For each of the following functions state the factored form of the equation, the degree, calculate the *y*-intercept, state the *x*-intercepts and their multiplicities, the end behaviour, domain and range (if possible). Then, sketch the function neatly.

a)
$$f(x) = (x+1)(x-2)$$

a)
$$f(x) = (x+1)(x-2)$$

b) $y = (x+2)(x-1)(x+3)$
c) $y = (x-2)(x+3)(x+1)(x-4)$
d) $f(x) = (1-x)(x+2)^2$
e) $g(x) = -(x^2 - 6x + 9)(x+1)^3$
f) $h(x) = -2(x-3)^3(2x-1)$
g) $y = x^3 - x^2 + 2x - 2$
h) $f(x) = x^3 + 3x^2 - 4$

e)
$$g(x) = -(x^2 - 6x + 9)(x+1)^3$$

g)
$$y = x^3 - x^2 + 2x - 2$$

i)
$$g(x) = -4x^4 + 38x^3 - 126x^2 + 162x - 54$$

b) y = (x+2)(x-1)(x+3)

d)
$$f(x) = (1-x)(x+2)^2$$

f)
$$h(x) = -2(x-3)^3(2x-1)^3$$

h)
$$f(x) = x^3 + 3x^2 - 4$$

2. For each of the following functions write the fully factored and simplified equations, state the **coordinates** of all Removable Discontinuities (holes), Intercepts (x and y), and domain & range (if possible). Then, sketch a detailed graph.

a)
$$f(x) = \frac{2x+1}{x-1}$$

c)
$$f(x) = \frac{5}{2x^2 - 5x - 3}$$

e)
$$y = \frac{x^2 - 4}{x^3 - 1}$$

g)
$$g(x) = \frac{x^2 - 5x + 6}{x - 5}$$

b)
$$f(x) = \frac{25 - x^2}{x^2 - 6x + 5}$$

d)
$$f(x) = \frac{3x^2 - 12x + 12}{x^2 - 4}$$

f)
$$f(x) = \frac{2x^2 - 7x - 4}{x^2 - 16}$$

MHF4U1 Curve Sketch Reveiw

ANSWERS:

1.a)degree = 2; y-int = -2; x-ints = -1, 2; as
$$x \to \infty$$
, $f(x) \to \infty$ and as $x \to -\infty$, $f(x) \to \infty$

b) degree = 3; y-int = -6; x-ints = -2, 1, -3; as
$$x \to \infty$$
, $y \to \infty$ and as $x \to -\infty$, $y \to -\infty$

c) degree = 4; y-int = 24; x-ints = 2, -3, -1, 4; as
$$x \to \infty$$
, $y \to \infty$ and as $x \to -\infty$, $y \to \infty$

d) degree = 3; y-int = -4; x-ints = 1, -2 (order 2); as
$$x \to \infty$$
, $f(x) \to -\infty$ and as $x \to -\infty$, $f(x) \to \infty$ (**NOTE**: must factor -ive out in first set of brackets)

e) degree = 5; y-int = -9; x-ints = 3 (order 2), -1(order 3); as
$$x \to \infty$$
, $g(x) \to -\infty$ and as $x \to -\infty$, $g(x) \to \infty$

f) degree = 4; y-int = -54; x-ints = 3 (order 3),
$$\frac{1}{2}$$
; as $x \to \infty$, $h(x) \to -\infty$ and as $x \to -\infty$, $h(x) \to -\infty$

2. a) eq'n is already factored/simplified

RD: none
$$x$$
-int: $(-0.5, 0)$ y -int: $(0, -1)$

VA:
$$x = 1$$
 (as $x \to 1^-$, $f(x) \to -\infty$, as $x \to 1^+$, $f(x) \to \infty$)

HA:
$$y = 2$$
 (as $x \to -\infty$, $f(x) \to 2$ from below, as $x \to \infty$, $f(x) \to 2$ from above)

domain:
$$\{x \in R \mid x \neq 1\}$$
 range: $\{y \in R \mid y \neq 2\}$

b)
$$f(x) = \frac{(5+x)(5-x)}{(x-5)(x-1)} = \frac{-(x+5)}{x-1}, x \neq 5$$

RD:
$$(5, -2.5)$$
 x -int: $(-5, 0)$ y -int: $(0, 5)$

VA:
$$x = 1$$
 (as $x \to 1^-$, $f(x) \to \infty$, as $x \to 1^+$, $f(x) \to -\infty$)

HA:
$$y = -1$$
 (as $x \to -\infty$, $f(x) \to -1$ from above, as $x \to \infty$, $f(x) \to -1$ from below) domain: $\{x \in R \mid x \neq 1, 5\}$ range: $\{y \in R \mid y \neq -1, -2.5\}$

c)
$$f(x) = \frac{5}{(2x+1)(x-3)}$$

RD: none
$$x$$
-int: none y -int: $(0,-1.667)$

VA:
$$x = -0.5 \text{ (as } x \to -0.5^-, f(x) \to -\infty, \text{ as } x \to -0.5^+, f(x) \to \infty)$$

$$x = 3 (as x \rightarrow 3^-, f(x) \rightarrow -\infty, as x \rightarrow 3^+, f(x) \rightarrow \infty)$$

HA:
$$y = 0$$
 (as $x \to -\infty$, $f(x) \to 0$ from above, as $x \to \infty$, $f(x) \to 0$ from above)

domain:
$$\{x \in R \mid x \neq -0.5, 3\}$$
 range: $\{y \in R \mid y \leq -0.816, 0 < y\}$

d)
$$f(x) = \frac{3(x-2)(x-2)}{(x-2)(x+2)} = \frac{3(x-2)}{x+2}, x \neq 2$$

R.D.
$$(2,0)$$
; *y*-int $(0,-3)$;

V.A.
$$x = -2$$
 (as $x \to -2^-$, $f(x) \to \infty$, as $x \to -2^+$, $f(x) \to -\infty$,);

H.A.
$$y = 3$$
 (as $x \to -\infty$, $f(x) \to 3$ from above, as $x \to \infty$, $f(x) \to 3$ from below) domain: $\{x \in R \mid x \neq \pm 2\}$ range: $\{y \in R \mid y \neq 0,3\}$