Assignment 1.Rmd

Irfan Kanat June 26, 2017

This is an assignment to evaluate your learning during the week. For each module there is a section in this document. Answer each question below the question and create an R Markdown document for submission.

1 - Installation

In order to be able to create and render R Markdown documents you should have successfully installed R. Hence your submission will be counted as proficiency in installation of R.

2 - Reporting

Successfully rendering this document (after answering questions) counts as proof that you have learned how to create R Markdown documents. In later assignments you will need to create your own R Markdown documents.

3 - Introduction

Variables, Operators

- a Replace the metadata in the document header to declare you as the author, and change the date to current date (Pst, it is at the very top of this file).
- b Create a variable named id with the last 4 digits of your student number.

```
id<-1234
```

c - Multiply the id variable by 5 and save it in a variable called idX5.

```
idX5<-id*26
```

Dataframes

For the following questions, get R to execute the following command.

```
admitData <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
admitData <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")</pre>
```

d - display the first 3 rows of the admitData.

```
admitData[1:3,]
```

```
## admit gre gpa rank
## 1 0 380 3.61 3
## 2 1 660 3.67 3
## 3 1 800 4.00 1
```

e - Display rows where rank is equal to 1.

admitData[admitData\$rank==1,]

##	admit	gre	gpa	rank
## 3	1	800	4.00	1
## 7	1	560	2.98	1
## 12	0	440	3.22	1
## 13	1	760	4.00	1
## 15	1	700	4.00	1
## 20	1	540	3.81	1
## 26	1	800	3.66	1
## 27	1	620	3.61	1
## 30	0	520	3.29	1
## 35	0	360	3.14	1
## 37	0	580	3.25	1
## 68	0	620	3.30	1
## 69	0	580	3.69	1
## 70	0	800	3.73	1
## 79	0	540	3.12	1
## 80	1	620	4.00	1
## 89	0	700	3.28	1
## 92	1	720	3.64	1
## 107	1	700	3.56	1
## 114	0	600	3.22	1
## 119	1	800	3.70	1
## 127	1	600	3.54	1
## 140	1	600	3.58	1
## 149	1	480	2.91	1
## 150	0	740	3.31	1
## 151	1	800	3.74	1
## 158	1	480	3.58	1
## 166	0	700	4.00	1
## 203	1	700	4.00	1
## 205	1	600	3.89	1
## 207	0	740	3.54	1
## 208	1	640	3.63	1
## 217	0	340	2.90	1
## 218	1	460	3.64	1
## 219	0	460	2.98	1
## 223	1	480	3.02	1
## 235	1	800	3.53	1
## 242	1	520	3.81	1
## 245	0	540	3.04	1
## 274	0	660	3.32	1
## 278	1	580	3.58	1
## 287	1	800	3.22	1
## 294	0	800	3.97	1
## 295	0	480	2.55	1
## 297	0	560	3.16	1
## 307	1	540	3.17	1
## 320	0	540	3.28	1
## 326	0	680	3.90	1
## 333	0	420	2.96	1
## 336	1	620	3.71	1
## 339	0	540	3.20	1

```
## 356
           1 760 2.81
## 358
           0 720 3.31
                          1
           1 520 4.00
## 361
## 362
           1 540 3.49
                          1
## 365
           1 560 3.36
## 369
           0 580 4.00
## 373
           1 680 2.42
## 374
           1 620 3.37
                          1
## 384
           0 660 4.00
                          1
## 386
           0 420 3.02
                          1
```

Functions

f - get R to calculate the square root of idX5 variable (sqrt is your friend).

```
sqrt(idX5)
## [1] 179.1201
g - get R to calculate the mean of GRE scores in admitData.
mean(admitData$gre)
## [1] 587.7
```

4 - Packages

h - Install and load the psych package in memory.

```
install.packages("psych", repos = "http://cran.us.r-project.org")

## Installing package into '/home/db/R/x86_64-pc-linux-gnu-library/3.2'

## (as 'lib' is unspecified)

##

## The downloaded source packages are in

## '/tmp/Rtmp3NBIQr/downloaded_packages'

library(psych)
```

i - Use the describe() function (should be loaded to memory with psych package) with ${\bf admitData}$ to get descriptive statistics.

```
describe(admitData)
```

```
sd median trimmed
         vars
                n
                    mean
                                                    mad
                                                           min max
                                                                    range
                                                                            skew
                                    0.0
                                                          0.00
## admit
            1 400
                    0.32
                            0.47
                                            0.27
                                                   0.00
                                                                      1.00
                                                                            0.78
                                                                  1
            2 400 587.70 115.52 580.0 589.06 118.61 220.00 800 580.00 -0.14
## gre
## gpa
            3 400
                    3.39
                            0.38
                                    3.4
                                           3.40
                                                   0.40
                                                          2.26
                                                                 4
                                                                      1.74 - 0.21
## rank
            4 400
                    2.48
                            0.94
                                    2.0
                                           2.48
                                                   1.48
                                                          1.00
                                                                 4
                                                                      3.00 0.10
##
         kurtosis
                    se
## admit
            -1.39 0.02
            -0.36 5.78
## gre
## gpa
            -0.60 0.02
## rank
            -0.91 0.05
```

5 - Import Data

for the following questions, go to Zillow.com's data site and obtain **ZRI Summary:** Multifamily, SFR, Condo/Co-op (Current Month) dataset by zip code.

j - Save the imported dataset into a **zillow** data.frame.

zillow<-read.csv("http://files.zillowstatic.com/research/public/Zip/Zip_Zri_AllHomesPlusMultifamily_Sum</pre>

k - Calculate the mean Zillow Rent Index (ZRI)

```
mean(zillow$Zri)
```

[1] 1509.323

BONUS

This is a bit harder, if you feel adventurous combine insights from question e and question g to calculate the mean ZRI for the state of Ohio.

```
mean(zillow[zillow$State=="OH", "Zri"])
```

[1] 1089.942