SEGIDAK. SEGIDA KONBERGENTEA

2014-2015 IKASTURTEA (EUSKERA TALDEA)

Informatika Ingeniaritzako Gradua Informatika Fakultatea Donostia

Ander Lopez

1 Segida Konbergentea

1.1 Propietatea.

 $\{a_n\}$ segida konbergentea bada, limite bakarra du.

Froga:

Demagun l_1 eta l_2 direla a_n segidaren bi limite desberdin, $l_1 \neq l_2$ beraz, $|l_1 - l_2| > 0$ da.

Har dezagun $\varepsilon_0 = \frac{|l_1 - l_2|}{3}$ erradioa.

Osa ditzagun $\varepsilon((l_1, \varepsilon_0))$ eta $\varepsilon(l_2, \varepsilon_0)$ inguruneak. Ingurune horiek disjuntuak dira, hau da, $\varepsilon(l_1, \varepsilon_0) \cap \varepsilon(l_2, \varepsilon_0) = \emptyset$

 $-l_1$ bada a_n segidaren limitea, $\varepsilon_0 > 0$ emanik, $\exists n(\varepsilon_0) \in \mathbb{N} / \forall n \geqslant n(\varepsilon_0)$ $a_n \in \varepsilon(l_1, \varepsilon_0)$

 $-l_2$ bada a_n segidaren limitea, $\varepsilon_0 > 0$ emanik,

$$\exists n_2(\varepsilon_0) \in \mathbb{N} / \forall n \geqslant n_2(\varepsilon_0) \qquad a_n \in \varepsilon(l_2, \varepsilon_0)$$

Hortik, $n_0(\varepsilon_0) = \max \{n_1(\varepsilon_0), n_2(\varepsilon_0)\}$ bada, $\forall n \ge n_0(\varepsilon_0)$ $a_n \in \varepsilon(l_1, \varepsilon_0) \cap \varepsilon(l_2, \varepsilon_0)$ ateratzen dugu.

Hori ezinezkoa da inguruneak disjuntuak direlako. Ondorioz, bi limiteak ezin dira ezberdinak izan.

Irudia 2:
$$a_{11}, \dots, a_{n}, a_{n+1}, \dots, \underbrace{a_{n}}_{a_{n}} a_{n}, a_{n+1}, \dots, \underbrace{a_{n}}_{a_{n}} a_{n} \underbrace{\epsilon(1_{1}, \epsilon_{0})}_{\epsilon(1_{1}, \epsilon_{0})}$$

1.2 Propietatea.

 $\{a_n\}$ segida konbergetea bada, bere azpisegida guztiak konbergenteak dira eta limite bera dute.

1.3 Propietatea.

 a_n segida konbergentea bada, segida bornatua da.

Froga: Demagun l dela a_n segidaren limitea

$$\forall \varepsilon > 0 \quad \exists n_0(\varepsilon) \in \mathbb{N} / \forall n \geqslant n_0(\varepsilon) \quad \underline{a_n \in \varepsilon(l, \varepsilon)} \text{ edo } \underline{a_n \in (l - \varepsilon, l + \varepsilon)}$$

edo
$$(l-\varepsilon) < a_n < (l+\varepsilon)$$

Horrek esan nahi du segidaren $\{a_{n0}, a_{n0+1}, ...\}$ azpimultzoa bornaturik dagoela. Bestalde, $\{a_1, a_2, ..., a_{n0-1}\}$ azpimultzoa finitua da, beraz bornatua da. Ondorioz, $\{a_n\}$ segida bi azpimultzo bornatuan banatu dugu, hau da, $\{a_n\}$ segida ere bornatua da.

1.4 Propietatea.

 $\{a_n\}$ segida konbergentearen limitea ez bada zero, segidaren gai batetik aurrera segidaren gai guztiak limitearen zeinua dute.

1.5 Propietatea.

 $\{a_n\}$ eta $\{b_n\}$ segida limite l bada eta $\forall n \geqslant n_0$ $a_n \leqslant C_n \leqslant b_n$ bada, $\{C_n\}$ segida ere konbergentea da eta bere limitea l da.

1.6 Adibidea.

 $\{sinn \mid aztertuko dugu:$

 $\{D_n\}=\{sinn\ /\ sinn\ >\ \frac{1}{2}\}=\{1,sin2,sin7,...\}$ konbergentea balitz, $\frac{1}{2}< l_1< 1$ litzateke.

 $\{E_n\} = \{sinn \mid sinn < \frac{-1}{2}\} = \{4, sin5, sin10, ...\}$ konbergentea balitz, $\frac{-1}{2} > l_2 > -1$ litzateke.

Hortaz, $l_1 \neq l_2$ lirateke. Ondorioz $\{sinn\}$ ezin da konbergentea izan.

Dibergentea izateko $\forall k > 0$ $\exists n_0(k) \in \mathbb{N} / \forall n > n_0(k)$ $a_n \in ext(\varepsilon(0, k)) \mid a_n \mid > k$

baina $\forall n \ sinn \in (-2,2)$, beraz, ezin da dibergentea izan.

Ondorioz $\{sinn\}$ oszilatzailea da edo $\not \exists \lim_{n \to \infty} sinn$

1.7 Adibidea.

$$a_n = \frac{n+2}{2n-1}$$

Seguida geroz eta txikiagoa da

$$a_n - a_{n+1} > 0$$

$$\frac{n+2}{2n-1} - \frac{(n+1)+2}{2(n+1)-1} > 0$$

$$\frac{n+2}{2n-1} - \frac{n+3}{2n+1} > 0$$

$$\frac{2n^2+n+4n+2-2n^2-6n+n+3}{4n^2-1}>0$$

$$\frac{5}{4n^2 - 1} > 0$$

Monotonoa da:

$$-a_1 = 3$$

$$-a_3 = 1$$

$$-a_{1000} = 0.501....$$

Beraz limitea 0,5 da. Eta konbergentea dela ere esan genezake:

$$0, 5 < a_n \leq 3$$

1.8 Adibidea.

$$a_{n+1} = \sqrt[3]{4 + (a_n)^2} \ n \geqslant 2$$

 a_1 izanik segida konbergentea alda?

$$n = 1, a_1 = 1 \leq 2$$

 $a_{n+1} \leq 2$ dela konprobatu behar dugu.

$$(a_n)^2 \leqslant 4 \Rightarrow 4 + (a_n)^2 \leqslant 4 + 4 = 8 \Rightarrow \sqrt[3]{4 + (a_n)^2} \leqslant \sqrt[3]{8} \Rightarrow a_{n+1} = \sqrt[3]{4 + (a_n)^2} \leqslant 2$$

Orain monotonoa dela ikusiko dugu.

$$a_{n+1} \geqslant a_n \Leftrightarrow \sqrt[3]{4 + (a_n)^2} \geqslant a_n \Leftrightarrow 4 + (a_n)^2 \geqslant (a_n)^3 \Leftrightarrow (a_n)^3 - (a_n)^2 - 4 \leqslant 0 \Leftrightarrow (a_n - 2)((a_n)^2 + (a_n) + 2) \leqslant 0$$

Lehen $0 \le a_n \le 2$ dela frogatu dugu beraz $a_{n+1} \ge a_n$ betetzen da.

Beraz Segida konbergentea da.

1.9 Adibidea.

 $\{a_n\}_{n=1}^{\infty}$ segida, segida konbergentea alda? Eta bere limitea?

Konbergentea izateko monotonoa eta bornatua izan behar du.

n ri balioak emanik ikus daiteke monotonoa dela beraz bornatua legoke.

Proba dezagun $0 < a_n \le 1$.

 $0 < a_n \leqslant 1$ bada orduan $0 < a_{n+1} \leqslant 1$ orduan suposatuz $0 < a_n \leqslant 1$ hau ere egia da

$$-1 \leqslant -a_n < 0$$

Biei 3a gehituz:

$$2 < 3 - a_n < 3 \Leftrightarrow \frac{1}{3} < \frac{1}{3 - a_n} < \frac{1}{2}$$

Orduan,
$$0 < a_{n+1} \le 1$$

Monotonoa alda?

$$a_{n+1} \leqslant a_n$$
:

$$\frac{1}{3 - a_n} \leqslant a_n \Leftrightarrow 1 \leqslant (3 - a_n)a_n \Leftrightarrow (a_n)^2 - 3a_n + 1 \leqslant 0$$

Beraz bai betetzen da eta beraz konbergentea da.

Limitea kalkulatuko dugu orain.

L deituko diogu a_n segidari:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{3 - a_{n-1}} = \frac{1}{3 - \lim_{n \to \infty} a_{n-1}}$$

L-k hau bete behar du:

$$L = \frac{1}{3-L} \Leftrightarrow L(3-L) = 1$$

$$x(3-x) = 1 \Leftrightarrow x^2 - 3x + 1 = 0$$

$$x = \frac{3 \pm \sqrt{9 - 4}}{2} = \frac{3 \pm \sqrt{5}}{2}$$

Beraz
$$L = \frac{3 - \sqrt{5}}{2} < 1$$

1.1 Segida Monotonoa

1.10 Definizioa.

 $a_n \subset \mathbb{R}$ segida emanik,

- a_n monotono gorakorra da $\forall n \ge n_0$ $a_n \le a_{n+1}$ betetzen bada.
- a_n hertsiki monotono gorakorra da $\forall n \ge n_0$ $a_n < a_{n+1}$ betetzen bada.
- a_n monotono beherakorra da $\forall n \ge n_0$ $a_{n+1} \le a_n$ betetzen bada.
- a_n hertsiki monotono beherakorra da $\forall n \ge n_0$ $a_{n+1} < a_n$ betetzen bada.

1.11 Adibidea.

- {1} segida monotono gorakorra eta beherakorra da.
- $\{\frac{n^2-1}{n^2}\}$ segida hertsiki monotono gorakorra da.
- $\{\frac{n^2+1}{n^2}\}$ segida hertsiki monotono beherakorra da.

1.12 Teorema.

Segida monotono bornatuak konbergenteak dira.

1.13 Adibidea.

$$\{(1+\frac{1}{n})^n\} \to e$$

Froga daiteke edozein n hartuta dagoela $2 \leq (1 + \frac{1}{n})^n < 3$, hau da, bornatua dela. Segida hertsiki monotono gorakorra da.

1.14 Adibidea.

$$a_n = \frac{2n-1}{n}$$
 segida monotonoa alda?

Ikus dezagun hau betetzen duen:

$$a_{n+1} - a_n > 0 \forall n \in \mathbb{N}$$

$$a_{n+1} - a_n = \frac{2(n+1) - 1}{n+1} - \frac{2n-1}{n} =$$

$$= \frac{2n+1}{n+1} - \frac{2n-1}{n} = \frac{(2n+1)*n - (n+1)(2n-1)}{(n+1)*1} = \frac{n^2 - n^2 + 1}{(n+1)*n} = \frac{1}{(n+1)*n} > 0$$

Bai, beraz monotonoa da.