main_App.mlapp

Diese MATLAB-Code definiert eine App main_App, die für die Bildverarbeitung verwendet wird. Die App-Oberfläche enthält verschiedene UI-Komponenten wie Schaltflächen und Achsen, um unterschiedliche Operationen auszuführen.

Eingabe:

- Bildauswahl: Der Benutzer wählt ein Bild aus, das in der GUI angezeigt und verarbeitet wird.
- Punktdefinition: Der Benutzer definiert fünf Punkte auf dem ausgewählten Bild.
- Reset: Der Benutzer kann die definierten Punkte zurücksetzen.
- Transformation starten: Der Benutzer kann die Transformation basierend auf den definierten Punkten starten.

Ausgabe:

- Bildanzeige: Das ausgewählte Bild wird in der GUI angezeigt.
- Punkte und Linien: Die definierten Punkte und die daraus resultierenden Linien werden auf dem Bild angezeigt.
- 3D-Transformation: Die Transformation des Bildes wird als 3D-Szene angezeigt.

CalculatePointCoordinates.m

Diese MATLAB-Funktion CalculatePointCoordinates berechnet acht Nicht-Kontrollpunkte, die später verwendet werden können, um das gegebene Bild zu schneiden.

Eingabe:

- image: Ein RGB- oder Graustufenbild.
- control_pts: Eine Matrix, die fünf Kontrollpunkte enthält:
 - o cpt 1: Kontrollpunkt oben links.
 - o cpt 2: Kontrollpunkt oben rechts.
 - o cpt_3: Kontrollpunkt unten rechts.
 - o cpt 4: Kontrollpunkt unten links.
 - o vp: Fluchtpunkt in der Mitte.

Ausgabe:

• pts: Eine Matrix, die acht berechnete Nicht-Kontrollpunkte enthält.

ImageCropping.m

Diese MATLAB-Funktion ImageCropping schneidet ein Bild basierend auf einem gegebenen Polygon aus.

Eingabe:

- image: Das Originalbild (kann RGB oder Graustufen sein).
- polygon: Eine Matrix, die die x- und y-Koordinaten der Eckpunkte des Polygons enthält.

Ausgabe:

• img_cropped: Das zugeschnittene Bild, das nur den Bereich innerhalb des Polygons enthält.

ProjectiveRectification.m

Diese MATLAB-Funktion ProjectiveRectification führt eine projektive Transformation auf fünf Bildern basierend auf angegebenen Kontroll- und Nicht-Kontrollpunkten durch. Ziel ist es, die Bilder so zu transformieren, dass sie in einem 3D-Raum richtig ausgerichtet sind.

Eingaben:

- control_pts: Eine 2x5-Matrix von Kontrollpunkten, wobei jede Spalte einen Kontrollpunkt darstellt.
- non_control_pts: Eine 2x8-Matrix von Nicht-Kontrollpunkten, wobei jede Spalte einen Nicht-Kontrollpunkt darstellt.
- img_front, img_left, img_right, img_top, img_bottom: Die fünf zu transformierenden Bilder.
- f: Die Brennweite.

Ausgaben:

• img_front_rectified, img_left_rectified, img_right_rectified, img_top_rectified, img_bottom_rectified: Die transformierten Bilder.

• geo: Ein Vektor, der die berechnete Tiefe, Höhe und Breite des 3D-Bildes enthält.

Transform3D.m

Diese MATLAB-Funktion Transform3D erstellt eine 3D-Szene und platziert ein Zielbild sowie sechs Flächenbilder (vorne, links, rechts, oben, unten) auf den entsprechenden 3D-Ebenen.

Eingaben:

- x, y: Koordinaten zur Platzierung des Zielbildes.
- img target: Zielbild.
- img front: Bild der Vorderseite.
- img left: Bild der linken Seite.
- img right: Bild der rechten Seite.
- img top: Bild der Oberseite.
- img bottom: Bild der Unterseite.

Augaben:

- Erstellung eines 3D-Fensters
- Platzierung des Zielbildes in der 3D-Szene
- Platzierung der Gesichterbilder in der 3D-Szene
- Achsen- und Gittereinstellungen
- Maus-Scroll-Rad-Ereignis
- Aktualisierung der Ansicht