

Faculty of Veterinary and Agricultural Sciences

Contraction of Cardiac and Smooth Muscle

Dr Babatunde Ayodele awodeleb@unimelb.edu.au

VETS30015 / VETS90121

Cardiac muscle contraction

Similar to skeletal muscle

- Contractile force generated by sarcomere
- Role of calcium

Differences

- Not initiated by neuronal input
- All cells are electrically coupled
- Long action potential

Structure of cardiac muscle

- Mononucleate muscle cells
- Relatively short fibres
- Branching and interdigitate
- Arranged in series and parallel
- Z lines, M lines, A bands, I bands are present

Intercalated Disk

Two regions

- Transverse portion, aligned with Z line, desmosomes, mechanical cohesion
- Lateral portion, parallel to myofilaments, rich in gap junctions, low resistance pathways

Three (3) types of heart muscle cells

1. Cells of myocardium

2. Rhythmically active self excitatory "pacemaker" cells

3. Purkinje fibres, specialised conducting pathways which enhance spread of localised excitation

Excitation contraction coupling

- AP spreads along plasma membrane and invades T tubules
- This opens voltage sensitive Ca⁺⁺ channels in T-tubule membrane
- Diffusion of <u>extra-cellular</u> calcium

Excitation contraction coupling

- Extracellular Ca⁺⁺ stimulates release of Ca⁺⁺ from SR
- Results in contraction (systole)
- Strength of contraction dependent on presence and concentration of extracellular Ca⁺⁺

Cardiac muscle force - Contractility

- Influenced by
 - Ca⁺⁺ levels
 - Hormones (epinephrine)
 - Nervous (autonomic)
 - Extent of stretch
 - Cardiac muscle operates in a range of lengths shorter than optimal

Smooth Muscle Contraction

- Contraction is mediated by actin and myosin crossbridge cycling
- Undefined sarcomere structure
- Cells bound together by basement membrane and transmits force
- Lack T-tubules
 - Small membrane invaginations called <u>caveoli</u>
 - SR if rudimentary

Dense bodies

- Actin filaments attached to dense bodies
- Dense bodies are attached to membrane
- Linked by diagonal network of intermediate filaments (desmin)

Smooth Muscle

- Thick filaments
 - Myosin
- Thin filaments
 - Actin, tropomyosin and calmodulin
 - NO Troponin
- Myosin heads along entire length

Multi-unit Smooth Muscle

- Individual cells
- Discrete innervation
 - Individual activity
- Few gap junctions
- Poor response to stretch
- Minimal response to hormones
- Ciliary muscle of eye, large airways of lung

(a) Multi-unit smooth muscle

(b) Single-unit smooth muscle

© 2011 Pearson Education, Inc.

Single-Unit Smooth Muscle

- Visceral (function not anatomy)
- Network of closely apposed cells acting as a single unit
- Direct stimulation of only a few
- Multiple adherence points (desmosomes)
- Linked electrically by gap junctions

(a) Multi-unit smooth muscle

(b) Single-unit smooth muscle

© 2011 Pearson Education, Inc.

Single-Unit Smooth Muscle

- Respond to
 - Neural signals
 - Hormones
 - Mechanical stretch
 - Local "pacemaker" potentials
- Muscles of uterus, intestinal tract, bile duct, small blood vessels

(a) Multi-unit smooth muscle

(b) Single-unit smooth muscle

© 2011 Pearson Education, Inc.

Innervation

- Three types
 - Extrinsic: both sympathetic and parasympathetic
 - Intrinsic: short neurons forming plexuses (networks) with tissue
 - Afferent sensory: autonomic reflexesa

Innervation

- No neuromuscular junction
- Branching of fibres with "varicosities" that contains vesicles with neurotransmitter (both acetylcholine and norepinephrine)
- Neurotransmitter is released into interstitial fluid and then diffuses
- Potential for both sympathetic and parasympathetic input
- Modulatory rather than inducing

Non-neural activation

 Hormones can open and/or close ion channels changing membrane potential

 Chemical stimuli can cause release of Ca++ from SR without a change in membrane potential

- Other influences
 - Decreased oxygen, pH, body temperature

Ca⁺⁺ regulation of smooth muscle contraction

 Ca⁺⁺ regulates cross bridge formation and thus cycling

- BUT different from skeletal muscle
 - Control of Ca++ levels
 - Influence on cross bridge formation (myosin)

Control of cytosolic Ca++

Ca++ and the cross bridge

Smooth muscle lacks troponin

 Cross bridge binding modulated by Ca++ dependent phosphorylation of myosin

© 2011 Pearson Education, Inc.

Ca⁺⁺ and the cross bridge

Faculty of Veterinary and Agricultural Sciences

Contraction of Cardiac and Smooth Muscle

Dr Babatunde Ayodele awodeleb@unimelb.edu.au

VETS30015 / VETS90121