

RTL_EXERCISE_1 BOUND FLASHER

Author	VO TRUNG KIEN
Date	2024/03/05
Version	1.1

Contents

1. Interface	
2. Functional implementation.	
3. Internal implementation.	6
3.1. Overall	6
3.2. State Machine	7
4 History	8

1. Interface

Figure 1: The figure of Bound Flasher System

Signal	Width	In/Out	Description
flick	1	In	Input signal; when the output (led) turns ON
			gradually, at LED [5] or LED [10] of state 3 or
			state 5, if flick = 1 then the led_output will
			turn OFF gradually again to the min led of the
			previous state, except the final state.
reset	1	In	Reset signal; LOW-ACTIVE; if reset = 0 then
			the system will restart to the initial state;
			"reset" is asynchronous signal and it does not
			depend on the clock signal.
clock	1	In	Clock signal, the system operates state
			transition based on the rising edge of the clock
			signal
led_output	16	Out	16-bit led output from led_output[0] to
			led_output[15]; led_output[0] is the least
			significant bit and led_output[15] is the most
			significant bit.

Table 1: Description of signals in Bound Flasher

2. Functional implementation.

- Implement a 16-bits LEDs system
- System's Operation base on three input signal
 - Reset
 - Clock
 - Flick
- The system specification
 - Clock signal is provided for system inspire of function status. The function operate state's transition at positive edge of the clock signal.
 - Reset signal:
 - LOW-ACTIVE Reset = 0: System is restarted to Initial State.
 - HIGH-ACTIVE Reset = 1: System is started with initial state.
- Flick signal: special input for controlling state transfer.
- At the initial state, all lamps are OFF. If flick signal is ACTIVE, the flasher start operating:
 - The lamps are turned ON gradually from LEDs [0] to LEDs [5].
 - The LEDSs are turned OFF gradually from LEDs [5] to LEDs [0].
 - The LEDSs are turned ON gradually from LEDs [0] to LEDs [10].
 - The LEDSs are turned OFF gradually from LEDs [10] to LEDs [5].
 - The LEDSs are turned ON gradually from LEDs [5] to LEDs [15].
 - The LEDSs are turned OFF gradually from LEDs [15] to LEDs [0].
 - Finally, the lamps are turned ON then OFF simultaneously (blink), return to the initial state.
- Additional condition: At each kickback point (lamp[5] and lamp[10]), if flick signal is ACTIVE, the lamps will turn OFF gradually again to the min lamp of the previous state, then continue operation as above description.
- For simplicity, kickback points are considered only when the lamps are turned ON gradually, except the first state.

- Some insulations:
 - When flick = 0 at kickback points

• When flick = 1 at kickback points (lamp[5])

3. Internal implementation.

3.1. Overall.

Figure 3.1: Block diagram of Bound Flasher

Block	Description		
"control flick signal"	Using a flag signal to check if there is a flag signal (flick == 1)		
combinational logic block	at "kick-back points" (at lamp [5] or lamp [10] of state 3 or		
	state5). If flick signal is active the it will control the state to		
	change to kick-back states.		
"control state"	If flick signal equal to 1 the system will operate then it change to		
combinational logic block	state 1 and operates normally until final state. Additional		
	condition state only changes to kick-back states and then change		
	to previous state wheneven it receive the flick = 1 at kick-back		
	points.		
D-FF(0)	Synchronize the input signal state[3:0] with the rising edge		
	clock. The clock signal will control the stateR[3:0] which mean		
	the real state assigned parallel by the state in the system. The rst		
	signal is the active-low asynchronous signal whenever $rst = 0$ the		
	stateR will be reset immediate to the initial state.		
"control stateR and	Using the stateR[3:0] signal to control the led_output[15:0]		
led_output" combinational	signal whenever $rst = 0$ the all the leds will be turned off		
logic block	immediately.		
D-FF(1)	Synchronize the input led_output[15:0] with the rising edge		

clock, then the led_buffer[15:0] will be assigned at the output.	
Whenever $rst = 0$ the all the leds will be turned off immediately.	

Table 3.1: Block diagram of Bound Flasher Description

3.2. State Machine

Figure 3.2: State Machine of Bound Flasher

Variable name	Description
reset	Asynchronous signal input. When reset = 0, the state will return to the initial state.
flick	At the initial state flick = 1 to operate at the state 3 or state 5 if flick = 1 at lamp [5] or lamp [10] it will change to kickback states and it will operate normally at the rest of cases with flick = 1 or flick = 0.
lamps	lamp[5] and lamp[10] represent the special case of additional condition for the kickback states.

Table 3.2: variable name of State machine

State name	Description		
State 0	All LEDs is OFF (16 bits output=lamp [0:15] =0). If flick = 1, then state will change to State 1, while flick = 0 it will stay at State 0.		
State 1	The lamps turned ON from lamp [0]to lamp [5] gradually, if reset = 0, the state will return to State 0. If lamp [5] is ON, the state will change to State 2.		
State 2	The lamps turned OFF from lamp [5] to lamp [0] gradually, if reset = 0, the state will return to State 0. If lamp [0] is OFF, the state will return to State 3.		
State 3	The lamps turned ON from lamp [0]to lamp [10] gradually, if		
	flick = 1 && (lamp $[5] = 1 \parallel lamp [10] = 1$), the state will change to		
	kickback1. If reset = 0, the state will return to State 0. If lamp [10]		
	is ON and no kickback point, the state will change to State 4.		
kickback1	The lamps turned OFF from lamp [5] or lamp [10] gradually to		
	lamp [0], if reset = 0, the state will return to State 0. If lamp [0] is		
	OFF, the state will return to State 2.		
State 4	The lamps turned OFF from lamp [10]to lamp [5] gradually, if reset		
	= 0, the state will return to State 0. If lamp [5] is OFF, the state will		
	change to State 5.		
State 5	The lamps turned ON from lamp [5]to lamp [15] gradually, if		
	flick = 1 && (lamp $[5] = 1 \parallel lamp [10] = 1$), the state will change to		
	kickback2. If reset = 0, the state will return to State 0. If lamp [15]		
	is ON and no kickback point, the state will change to State 6.		

State 6	The lamps turned OFF from lamp [15] to lamp [0] gradually, if	
	reset = 0, the state will return to State 0. If lamp [0] is OFF, the	
	state will return to State 7.	
State 7	All the lamps are turned ON then OFF simultaneously (blink) then	
	return to State 0. If reset = 0 , the state will return to State 0.	

Table 3.3: state name of State machine

4. History

Date	Author	Modified part	Description
2024/03/05	VO TRUNG KIEN	All	New creation