

Master in Computer Vision Barcelona

Project Module 6 Coordination Video Surveillance for Road Traffic Monitoring

J. Ruiz-Hidalgo / X. Giró

j.ruiz@upc.edu/xavier.giro@upc.edu

Motivation

- Vehicles play an important role in transportation systems.
- Most commonly used mean of transport.
- Problems: traffic jams, accidents, pollution, etc.

Road traffic monitoring and Advanced Driver Assistance
Systems (ADAS) are aimed to improve safety, efficiency
and comfort at road transportation by means of information
technologies.

Technical Project Goals

Learning goal

 To learn the basic concepts and techniques related to video sequences mainly for surveillance applications

Scope

- Use of statistical models to estimate the background information of the video sequence
- Use of deep learning techniques to detect the foreground
- Use optical flow estimations and compensations
- Track detections with tracking algorithms
- Analyze system performance evaluation

Applicability

 Any problem where video sequence analysis can be applied to obtain accurate automatic results

Project Flowchart

- Stages:
 - Background & foreground estimation
 - Model background using statistical models
 - Object detection & tracking
 - Extract foreground and uniquely identify them
 - Optical flow estimation
 - Improve tracking
 - Count cars, measure speed, track across different cameras

Methodology

- Students divided into groups of 4 people
- Semester is divided into 5 weeks
- Every week (Wednesday) students submit (GitHub) their homework
 - slides (google docs)
 - Include links to relevant files in the team's GitHub repository
 - code (github)
 - Intra group evaluation
- 1 hour class
 - ~30min devoted to discussions
 - Students present their results in class / Answer questions
 - ~30min to present next week's work

Timetable

https://mcv.uab.cat/m6-video-analysis/

Project Schedule

Week 1

- Introduction
- Datasets
- Evaluation metrics

Week 2

- Background estimation
- Stauffer & Grimson

Week 3

- Segmentation
- Object Detection
- Tracking

Week 4

- Optical flow
- Tracking

Week 5

- Multiple cameras
- Speed
- Al City Challenge

Week 6

Presentation workshop

Programming Language

- Python
 - Pycharm, Spyder
- OpenCV
 - Python interfaces
- Pytorch, keras

General tips: First steps in Python

- Tutorials in Python
 - Víctor Adell, Raúl Higueras, <u>UPC Python Cookbook</u>
 - Justin Johnson (Stanford University)

- Text editors with Python optimizations:
 - <u>PyCharm</u> (suggested)
 - Sublime Text
 - o Atom
 - Spyder
 - Enthought Canopy

General tips: First steps in Python

Axel Barroso, Sergio Sancho, Alejandro Nespereira & Marc Carné, <u>"Video surveillance for road traffic monitoring"</u>. Master in Computer Vision Barcelona 2017. <u>[slides] [report]</u>

As well as other projects from previous course editions:

2021, 2020, 2019, 2018, 2017, 2016

General tips: Get your Github education account

https://education.github.com/

Google cloud

- https://cloud.google.com
- Explanation slides

Datasets: NVIDIA AI CITY Challenge

- https://www.aicitychallenge.org/
 - 3.25 hours of videos from 40 cameras spanning 10 intersections
 - 5 scenarios: 3 training, 2 validation and 1 test
 - 229,680 bounding boxes for 666 distinct annotated vehicle identities.
 - Resolution 960p and 10fps.

Datasets: KITTI

- KITTI Vision Benchmark Suite
 - http://www.cvlibs.net/datasets/kitti
 - Optical flow ground truth

- TRAINING DATASET
 - 194 image **pairs** + optical flow ground truth
- TEST DATASET (subset)
 - 195 image **pairs** + optical flow ground truth

Project Evaluation

- The Project Development: PD
 - Weeks 1-4 (PD_i)
 - Delivered code + slides
 - Completion of tasks and optionals
 - Feedback and questions to professors in class
 - Week 5 (PD₅)
 - Full code + short report
- Intra-Group Evaluation:
 - Every week students quantize the % of workload done by each member of the team → Modify up to 50% of the grade
 - 2 weeks under grade 5 → split into a new team
- Final project presentation: $PP = 0.5 \cdot PP^{professor} + 0.5 \cdot PP^{students}$
- The final mark is $V = \sum_{i=1}^4 0.15 \cdot PD_i + 0.3 \cdot PD_5 + 0.1 \cdot PP$

- Introduction to video sequence analysis and evaluation
 - Understand and familiarize with the programing framework used in the project
 - Google cloud / python
 - Learn about the databases to be used
 - Practice the evaluation metrics
 - Read / write video sequences

- Background estimation
 - Model the background pixels of a video sequence using a simple statistical model to classify the background / foreground
 - Single Gaussian per pixel
 - Adaptive / Non-adaptive
 - The statistical model will be used to preliminary classify foreground
 - Comparison with more complex models
 - Stauffer and Grimson / deep learning frameworks

- Object Detection
 - Fine-tune object detection network
 - SSD, Faster R-CNN, YoLo
- Tracking
 - Simple overlap
 - Kalman filter
 - Siamese network

- Optical flow
 - Motion Estimation by computing optical flow
 - Optical flow used to improve object detection and tracking

- Multi camera tracking
 - Improve siamese network to track vehicles across cameras

Speed estimation

- Nvidia AI city challenge submission
 - 9th / 18th April!

