Prof. G. de Cesare Esame di Elettronica Ingegneria Informatica/Automatica 20 gennaio 2020

- 1 Dato il circuito, in cui v_s è un generatore di tensione di piccolo segnale determinare:
 - a. La tensione di uscita V_{OUT} in continua;
 - b. il punto di lavoro di M_1 e M_2 ;
 - c. il guadagno di tensione a centro banda $A_V = v_{OUT}/v_S$;

 $R_G = 50\Omega$, $R_I = 2k\Omega$, $R_2 = 3k\Omega$, $R_{DI} = 1k\Omega$, $R_{D2} = 1k\Omega$, $R_S = 2k\Omega$, $R_L = 2k\Omega$, $V_{DD} = 5V$, $C_I = C_2 = \infty$ $M_I = M_2 = \{V_T = 1V, K = 0.5 \text{mA/V}^2, \lambda = 0\}$

Prof. G. de Cesare Esame di Elettronica Ingegneria Informatica/Automatica 13 febbraio 2020

1 Dato il circuito, in cui v_{in} è un generatore di tensione di piccolo segnale determinare il guadagno di tensione a centro banda $A_v = v_{out}/v_{in}$

$$R_I = R_2 = R_3 = 1 \text{k}\Omega$$
, $R_4 = 5 \text{k}\Omega$, $R_D = 2 \text{k}\Omega$, $R_L = 20 \text{k}\Omega$, $V_{bias} = 1 \text{V}$; $V_{DD} = 10 \text{V}$, $C_I = \infty$ $M_I = \{V_T = 1 \text{V}, K = 0.5 \text{mA/V}^2, \lambda = 0\}$

Amplificatore Operazionale ideale; $L^+ = |L^-| = 10 \text{ V}$

Prof. G. de Cesare Esame di Elettronica (telematico) Ingegneria Informatica/Automatica 11 maggio 2020

GRUPPO 1

1) Del circuito seguente, considerando in ingresso l'impulso di corrente riportato in figura, e considerando l'op-amp ideale, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{OUT} .

OA ideale con $L^{+} = -L^{-} = 12V$

 $R_1 = 3 \text{ k}\Omega$; $R_2 = 5 \text{ k}\Omega$; C = 50 nF

Prof. G. de Cesare Esame di Elettronica Ingegneria Informatica/Automatica 11 maggio 2020

GRUPPO 2

1) Del circuito seguente, considerando in ingresso l'impulso di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{OUT} .

OA ideale con $L^{+} = -L^{-} = 12V$

 $R_1 = 2 \text{ k}\Omega; \quad R_2 = 8 \text{ k}\Omega; \quad C = 50 \text{ nF}$

Prof. G. de Cesare Esame di Elettronica Ingegneria Informatica/Automatica 11 maggio 2020

GRUPPO 3

Del circuito seguente, considerando in ingresso l'impulso di tensione riportato in figura, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{OUT} .

Prof. G. de Cesare Esame di Elettronica Ingegneria Informatica/Automatica 18 giugno 2020

TURNO 1

Del circuito seguente, considerando in ingresso l'impulso di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare l'andamento nel tempo della tensione di uscita V_{OUT} .

OA ideale con
$$L^{+} = -L^{-} = 12V$$
 $M_{I} = (K = 0.5 \text{ mA/V}^{2}; V_{T} = 1 \text{ V}; \lambda = 0)$

$$V_{DD} = 5V$$
 $R_1 = R_2 = R_D = 1k\Omega;$ $C = 1 \mu F$

Prof. G. de Cesare Esame di Elettronica Ingegneria Informatica/Automatica 18 giugno 2020

TURNO 2

Del circuito seguente, considerando in ingresso l'impulso di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare l'andamento nel tempo della tensione di uscita $V_{\it OUT}$.

OA ideale con
$$L^{+} = -L^{-} = 12V$$

OA ideale con
$$L^{+} = -L^{-} = 12V$$
 $M_{I} = (K = 0.5 \text{ mA/V}^{2}; V_{I} = 1 \text{ V}; \lambda = 0)$

$$V_{nn} = 5V$$
 $R_n = 1kC$

$$V_{DD} = 5$$
V $R_1 = R_D = 1$ k Ω ; $R_2 = 2$ k Ω ; $R_3 = 10$ k Ω ; $C = 10$ nF

Prof. G. de Cesare Esame di Elettronica Ingegneria Informatica/Automatica 16 luglio 2020

Dato il circuito seguente in cui v_{sig} è un generatore di piccolo segnale, determinare il valore di R_D per avere un guadagno di tensione $A_v = v_{out}/v_{sig}$ = -12.

 A_I ideale, con $L^+ = -L^- = 12$;

Q₁: $V_T = 1 \text{ V}$; $K = 0.5 \text{ mA/V}^2$; $\lambda = 0$;

 $R_I = 1 \text{ k}\Omega;$

 $R_2 = 2 \text{ k}\Omega;$

 $R_{sig} = 1 \text{ k}\Omega;$ $R_L = 4 \text{ k}\Omega;$

 $V_I = 1 \text{ V}$

 $V_{DD} = 12 \text{ V};$

 $C = \infty$

Prova scritta Elettronica 10/09/2020 Prof. de Cesare

Del circuito seguente, considerando in ingresso il gradino di tensione V_{in} riportato in figura, calcolare e graficare l'andamento nel tempo della tensione di uscita V_{out} . Considerare nulla la tensione ai capi del condensatore per t<0.

OA ideale con
$$L^+ = -L^- = 10V$$

OA ideale con
$$L^{+} = -L^{-} = 10V$$
 $Q_{I} = (K = 0.5 \text{ mA/V}^{2}; V_{T} = 1 \text{ V}; \lambda = 0)$

$$V_{DD} = 10 \text{V}$$

$$R_S = 0.5 \text{ k}\Omega;$$
 $R_I = 1 \text{k}\Omega;$ $C = 1 \text{ }\mu\text{F}$

$$\mathbf{R}_{I} = 1 \mathrm{k}\Omega;$$

$$C = 1 \text{ uF}$$

Elettronica 22 ottobre 2020

Del circuito seguente

-calcolare il valore della resistenza di Drain R_D per avere una tensione di uscita in continua $V_{OUT} = 0V$; -con il valore ottenuto di R_D calcolare il guadagno di tensione per piccolo segnali $A_v = v_{out}/v_{in}$.

OA ideale con
$$L^{+} = -L^{-} = 12$$
V $M_{I} = (K = 0.5 \text{ mA/V}^{2}; V_{T} = 2 \text{ V}; \lambda = 0)$
 $R_{G} = 5\text{k}\Omega$ $R_{S} = 0.5\text{k}\Omega$ $R_{I} = 1\text{k}\Omega$ $R_{2} = 5\text{k}\Omega$; $C = \infty$ $V_{DD} = 5\text{ V}$