Topics

- ML
- Haskell
- F#

ML (Meta Language)

- A static-scoped functional language with syntax that is closer to Pascal than to Lisp
- Uses type declarations, but also does type
 inferencing to determine the types of undeclared
 variables
- It is strongly typed (whereas Scheme is essentially typeless) and has no type coercions
- Does not have imperative-style variables
- Its identifiers are untyped names for values
- Includes exception handling and a module facility for implementing abstract data types
- Includes lists and list operations

ML Specifics

- A table called the evaluation environment stores the names of all identifiers in a program, along with their types (like a run-time symbol table)
- Function declaration form:

```
fun name (formal parameters) = expression;
e.g., fun cube(x : int) = x * x * x;
```

- The type could be attached to return value, as in fun cube(x): int = x * x * x;
- With no type specified, it would default to int (the default for numeric values)
- User-defined overloaded functions are not allowed, so if we wanted a cube function for real parameters, it would need to have a different name

ML selection

```
if expression then then_expression else else_expression
```

where the first expression must evaluate to a Boolean value

 Pattern matching is used to allow a function to operate on different parameter forms

```
fun fact(0) = 1
| fact(1) = 1
| fact(n : int) : int = n * fact(n - 1)
```

Lists
 Literal lists are specified in brackets

```
[3, 5, 7]
[] is the empty list
CONS is the binary infix operator, ::
    4 :: [3, 5, 7], which evaluates to [4, 3, 5, 7]
CAR is the unary operator hd
CDR is the unary operator tl
fun length([]) = 0
    | length(h :: t) = 1 + length(t);

fun append([], lis2) = lis2
    | append(h :: t, lis2) = h :: append(t, lis2);
```

• The val statement binds a name to a value (similar to DEFINE in Scheme)

```
val distance = time * speed;
```

- As is the case with DEFINE, val is nothing like an assignment statement in an imperative language
- If there are two val statements for the same identifier, the first is hidden by the second
- val statements are often used in let constructs

```
val radius = 2.7
val pi = 3.14159
in
  pi * radius * radius
end;
```

- filter
 - A higher-order filtering function for lists
 - Takes a predicate function as its parameter, often in the form of a lambda expression
 - Lambda expressions are defined like functions, except with the reserved word fn

```
filter(fn(x) => x < 100, [25, 1, 711, 50, 100]);
This returns [25, 1, 50]
```

- map
 - A higher-order function that takes a single parameter, a function
 - Applies the parameter function to each element of a list and returns a list of results

```
fun cube x = x * x * x;

val cubeList = map cube;

val newList = cubeList [1, 3, 5];

This sets newList to [1, 27, 125]
```

- Alternative: use a lambda expression

```
val newList = map (fn x => x * x * x, [1, 3, 5]);
```

- Function Composition
 - Use the unary operator, ∘

```
val h = g \circ f;
```

Haskell

- Similar to ML (syntax, static scoped, strongly typed, type inferencing, pattern matching)
- Different from ML (and most other functional languages) in that it is *purely* functional (e.g., no variables, no assignment statements, and no side effects of any kind)

Syntax differences from ML

```
fact 0 = 1

fact 1 = 1

fact n = n * fact (n - 1)

fib 0 = 1

fib 1 = 1

fib (n + 2) = fib (n + 1) + fib n
```

Function Definitions with Different Parameter Ranges

```
fact n
   | n == 0 = 1
   | n == 1 = 1
   | n > 0 = n * fact(n - 1)
 sub n
   | n < 10 = 0
| n > 100 = 2
    otherwise = 1
 square x = x * x
```

 Because Haskell support polymorphism, this works for any numeric type of x

Haskell Lists

List notation: Put elements in brackets

- Length: #
 - e.g., #directions is 4
- Arithmetic series with the .. operator
 - **e.g.**, [2, 4..10] **is** [2, 4, 6, 8, 10]
- Catenation is with ++
 - **e.g.,** [1, 3] ++ [5, 7] results in [1, 3, 5, 7]
- CONS, CAR, CDR via the colon operator
 e.g., 1:[3, 5, 7] results in [1, 3, 5, 7]

Haskell (continued)

Pattern Parameters

```
product [] = 1
product (a:x) = a * product x
- Factorial:
```

fact n = product [1..n]

List Comprehensions (Chapter 6)

```
[n * n * n | n < - [1..50]]
```

The qualifier in this example has the form of a *generator*. It could be in the form of a test

```
factors n = [i | i < -[1..n `div` 2], n `mod` i == 0]
```

The backticks specify the function is used as a binary operator

Quicksort

```
sort [] = []
sort (h:t) =
    sort [b | b ← t; b <= h]
++ [h] ++
    sort [b | b ← t; b > h]
```

Illustrates the concision of Haskell

Lazy Evaluation

- A language is strict if it requires all actual parameters to be fully evaluated
- A language is nonstrict if it does not have the strict requirement
- Nonstrict languages are more efficient and allow some interesting capabilities – infinite lists
- Lazy evaluation Only compute those values that are necessary
- Positive numbers

```
positives = [0..]
```

Determining if 16 is a square number

```
member [] b = False

member(a:x) b=(a == b)||member x b

squares = [n * n | n \leftarrow [0..]]

member squares 16
```

Member Revisited

The member function could be written as:

```
member b [] = False
member b (a:x)=(a == b) || member b x
```

 However, this would only work if the parameter to squares was a perfect square; if not, it will keep generating them forever. The following version will always work:

F#

- Based on Ocaml, which is a descendant of ML and Haskell
- Fundamentally a functional language, but with imperative features and supports OOP
- Has a full-featured IDE, an extensive library of utilities, and interoperates with other .NET languages
- Includes tuples, lists, discriminated unions, records, and both mutable and immutable arrays
- Supports generic sequences, whose values can be created with generators and through iteration

Sequences

```
let x = seq {1..4};;
```

- Generation of sequence values is lazy

```
let y = seq {0..10000000};;
Sets y to [0; 1; 2; 3;...]
```

- Default stepsize is 1, but it can be any number

```
let seq1 = seq {1..2..7}
Sets seq1 to [1; 3; 5; 7]
```

Iterators to create sequences

```
let cubes = seq {for i in 1..4 -> (i, i * i * i)};;
Sets cubes to [(1, 1); (2, 8); (3, 27); (4, 64)]
```

Functions

If named, defined with let; if lambda expressions, defined with fun

```
(fun a b -> a / b)
```

- No difference between a name defined with let and a function without parameters
- The extent of a function is defined by indentation

```
let f =
    let pi = 3.14159
    let twoPi = 2.0 * pi
    twoPi;;
```

- Functions (continued)
 - If a function is recursive, its definition must include the rec reserved word
 - Names in functions can be outscoped, which ends their scope

```
let x4 x =
    let x = x * x
    let x = x * x
```

The first let in the body of the function creates a new version of x; this terminates the scope of the parameter; The second let in the body creates another x, terminating the scope of the second x

- Functional Operators
 - Pipeline (|>)
 - A binary operator that sends the value of its left operand to the last parameter of the call (the right operand)

The return value is [10; 20]

- Functional Operators (continued)
 - Composition (>>)
 - Builds a function that applies its left operand to a given parameter (a function) and then passes the result returned from the function to its right operand (another function)

The F# expression $(f >> g) \times is$ equivalent to the mathematical expression g(f(x))

- Why F# is Interesting:
 - It builds on previous functional languages
 - It supports virtually all programming methodologies in widespread use today
 - It is the first functional language that is designed for interoperability with other widely used languages
 - At its release, it had an elaborate and well– developed IDE and library of utility software

Announcements

• Exam #2

- Write two small programs (one in C++, and the other in Smalltalk)
- Similar to Assignments 5&6, but on a small scale.
- Take-home exam
- Assignment #7
 - Same shape project in Scheme
 - Due on April 12, Monday
 - Weight: 6%