maputils: Popsom Python Interface Module

This module is modeled after the R interface to popsom. For a more object-oriented approach see the documentation on the sklearn API.

map_build

Description

Construct a self-organizing map and return an object of class map.

Usage

Arguments

- data: A dataframe where each row contains an unlabeled training instance.
- labels: A vector or dataframe with one label for each observation in data.
- **xdim**: The x-dimension of the map.
- ydim: The y-dimension of the map.
- alpha: The learning rate, should be a value greater than zero and less or equal to one.
- train: The number of training iterations.
- normalize: Boolean switch indicating whether or not to normalize the
- seed: A seed value for repeatability of random initialization and selection.
- minimal: Boolean switch indicating whether to build a map_minimal or map object.

Details

The function map_build constructs an object of type map. The object contains two models: 1. **Self-organizing map model:** Expressed through its trained neurons. The quality of the fit can be ascertained by the convergence measure.

2. **Cluster model:** Expressed by the discovered centroids. The quality of this model is determined by the map convergence, within cluster sum of squares (wcss), and the between cluster sum of squares (bcss).

Value

An object of type map with the following member fields:

- data: Data frame containing the possibly normalized training data.
- labels: Vector of labels, one for each observation in data or NULL if no labels were given.

- xdim: The x-dimension of the neuron map.
- ydim: The y-dimension of the neuron map.
- alpha: The given learning rate for the neural network.
- train: The number of training iterations applied to the neural network.
- **neurons**: A list (data frame) of neurons for the network. Its dimensionality is the same as the training data. Two useful formulas:
 - To compute the (x,y) coordinate for the neuron in row rowix:

```
x = (rowix - 1) % map['xdim'] + 1
y = (rowix - 1) // map['xdim'] + 1
```

- To compute the row index from the (x,y)-position:

```
rowix = x + (y - 1) * map['xdim']
```

- heat: The representation of the map used for the starburst plot.
- fitted.obs: A list of indexes of the best matching neuron for each observation (row index into the neurons data frame).
- **centroids**: A data frame of (x,y)-locations indicating where each centroid is located. (Each centroid points to itself.)
- **unique.centroids**: A vector of unique centroid (x,y)-locations. (Hint: the length of this vector equals the number of clusters.)
- **centroid.labels**: A data frame mapping (x,y)-locations of actual centroids to their labels. If the training data is unlabeled, popsom generates a label for each centroid.
- label.to.centroid: A lookup table (hash) mapping labels to centroid indexes. Note that a label may be associated with multiple centroids.
- **centroid.obs**: A vector of lists of observations per centroid (indexed by the centroid number from **unique_centroids**). Each list contains row numbers from the **data** dataframe.
- **convergence**: A quality measure indicating how well the map fits the training data.
- wcss: The average "within cluster sum of squares" (variance within clusters).
- **bcss**: The "between cluster sum of squares" (variance between cluster centroids).

Notes

- If the minimal switch is set to True, then a map_minimal object is returned. This object only contains the trained neurons and the training parameters. Note that none of the more involved functions will work with this type of object.
- If your training data is unlabeled, popsom will automatically generate a label for each discovered centroid.

References

• VSOM: Efficient, Stochastic Self-Organizing Map Training Lutz Hamel, Intelligent Systems Conference (IntelliSys) 2018, K. Arai et al. (Eds.): Intelligent Systems and Applications, Advances in Intelligent Systems and Computing 869, pp. 805-821, Springer, 2018.

- Self-Organizing Map Convergence
 - Robert Tatoian and Lutz Hamel, *Proceedings of the 2016 International Conference on Data Mining (DMIN'16)*, pp. 92-98, July 25-28, 2016, Las Vegas, Nevada, USA, ISBN: 1-60132-431-6, CSREA Press.
- Evaluating Self-Organizing Map Quality Measures as Convergence Criteria

Gregory Breard and Lutz Hamel, *Proceedings of the 2018 International Conference on Data Science (ICDATA'18)*, Robert Stahlbock, Gary M. Weiss, Mahmoud Abou-Nasr (Eds.), ISBN: 1-60132-481-2, pp. 86-92, CSREA Press, 2018.

• SOM Quality Measures: An Efficient Statistical Approach Lutz Hamel, Proceedings of the 11th International Workshop WSOM 2016, Houston, Texas, USA, E. Merenyi et al. (Eds.), Advances in Self-Organizing Maps and Learning Vector Quantization, Advances in Intelligent Systems and Computing 428, Springer, pp. 49-59, DOI 10.1007/978-3-319-28518-4 4, 2016.

Examples

```
import pandas as pd
from popsom7 import maputils
from sklearn import datasets

iris = datasets.load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target_names[iris.target],columns=['species'])

## build a map
m = maputils.map_build(X, y, xdim = 15, ydim = 10, train = 10000, seed = 42)

## look at the characteristics of the map
maputils.map_summary(m)

## plot the map
maputils.map_starburst(m)
```

map_convergence

Description

Evaluate the quality of a SOM using embedding accuracy and estimated topographical accuracy.

Usage

```
map convergence (map, conf int = 0.95, k = 50, verb = True, ks = True)
```

Arguments

- map: An object of type map.
- **conf.int**: The confidence interval of the quality assessment.
- **k**: Number of samples to use in the computation of the estimated topographical accuracy.
- verb: If True, reports the two convergence components separately; otherwise, a linear combination of the two indices is reported.
- ks: If True, uses the Kolmogorov-Smirnov convergence test; otherwise, a test based on variance and means is performed.

Value

A single value or a pair of values: 1. Embedding accuracy 2. Estimated topographic accuracy

The structure of the return value depends on the verb switch.

References

• SOM Quality Measures: An Efficient Statistical Approach Lutz Hamel, Proceedings of the 11th International Workshop WSOM 2016, Houston, Texas, USA, E. Merenyi et al. (Eds.), Advances in Self-Organizing Maps and Learning Vector Quantization, Advances in Intelligent Systems and Computing 428, Springer, pp. 49-59, DOI 10.1007/978-3-319-28518-4 4, 2016.

```
import pandas as pd
from popsom7 import maputils
from sklearn import datasets

iris = datasets.load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target_names[iris.target],columns=['species'])
## build a map
m = maputils.map_build(X, y, xdim = 15, ydim = 10, train = 1000)
## map quality
maputils.map_convergence(m)
```

map_fitted

Description

Computes a vector of labels assigned to each of the observations in the training data through the constructed cluster model. If the training data is unlabeled, machine-generated labels are used.

Usage

```
map_fitted(map)
```

Arguments

• map: An object of type map.

Value

A vector of predicted labels, one for each observation in the training data.

Examples

```
import pandas as pd
from popsom7 import maputils
from sklearn import datasets

iris = datasets.load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target_names[iris.target],columns=['species'])
m = maputils.map_build(X, y, xdim = 15, ydim = 10, train = 10000)
fitted_labels = maputils.map_fitted(m)
```

map_marginal

Description

Generate a plot that shows the marginal probability distribution of the neurons and data.

Usage

```
map_marginal(map, marginal)
```

Arguments

- map: An object of type map.
- marginal: The name of a training data dimension or index.

Examples

```
import pandas as pd
from popsom7 import maputils
from sklearn import datasets

iris = datasets.load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target_names[iris.target],columns=['species'])
## build a map
m = maputils.map_build(X, y, xdim = 15, ydim = 10, train = 10000)
## display marginal distribution of dimension 1
maputils.map_marginal(m, 1)
```

map_position

Description

Compute the (x,y)-positions of points on the map.

Usage

```
map_position(map, points)
```

Arguments

- map: An object of type map.
- points: A data frame of points to be mapped.

Value

A data frame with (x,y)-positions. The data frame has two columns: - x-dim: The x-position of the corresponding point in the points data frame. - y-dim: The y-position of the corresponding point in the points data frame.

```
import pandas as pd
from popsom7 import maputils
from sklearn import datasets
```

```
iris = datasets.load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target_names[iris.target],columns=['species'])
m = maputils.map_build(X, y, xdim = 15, ydim = 10, train = 10000)
positions = maputils.map_position(m, X)
```

map_predict

Description

Compute classification labels for points in a given data frame using the underlying clustering model. If the training data is unlabeled, machine-generated labels are used.

Usage

```
map_redict(map, points)
```

Arguments

- map: An object of type map.
- points: A data frame of points to be classified.

Value

A data frame with classification results. The data frame has two columns: - **Label**: The assigned label to the observation at the same row in the **points** data frame. - **Confidence**: A confidence value assigned to the label prediction.

```
import pandas as pd
from popsom7 import maputils
from sklearn import datasets

iris = datasets.load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target_names[iris.target],columns=['species'])
m = maputils.map_build(X, y, xdim = 15, ydim = 10, train = 10000)
y_predict = maputils.map_predict(m, X)
```

map_significance

Description

Computes the relative significance of each feature and plots it.

Usage

```
map_significance(map, graphics = False, feature_labels = True)
```

Arguments

- map: An object of type map.
- graphics: A switch that controls whether a plot is generated or not.
- **feature.labels**: A switch to allow the plotting of feature names vs. feature indices.

Value

If graphics = False, a vector containing the significance for each feature is returned.

Note: A Bayesian approach is used to compute the relative significance of features based on variance.

References

• Bayesian Probability Approach to Feature Significance for Infrared Spectra of Bacteria

Lutz Hamel, Chris W. Brown, Applied Spectroscopy, Volume 66, Number 1, 2012.

```
import pandas as pd
from popsom7 import maputils
from sklearn import datasets

iris = datasets.load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target_names[iris.target],columns=['species'])
m = maputils.map_build(X, y, xdim = 15, ydim = 10, train = 10000)

## Display the relative feature significance graphically
maputils.map_significance(m)
```

map_starburst

Usage

map_starburst(map)

Arguments

• map: An object of type map.

Description

Generate a starburst representation of the clusters on the heat map for the self-organizing map model.

References

• Improved Interpretability of the Unified Distance Matrix with Connected Components

Lutz Hamel and Chris W. Brown, *Proceedings of the 7th International Conference on Data Mining (DMIN'11)*, July 18-21, 2011, Las Vegas, Nevada, USA, ISBN: 1-60132-168-6, pp. 338-343, CSREA Press, 2011.

Examples

```
import pandas as pd
from popsom7 import maputils
from sklearn import datasets

iris = datasets.load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target_names[iris.target],columns=['species'])
m = maputils.map_build(X, y, xdim = 15, ydim = 10, train = 10000)
maputils.map_starburst(m)
```

map_summary

Description

Generate a summary object for map objects.

Usage

```
map_summary(map, verb = True)
```

Arguments

- map: An object of type map.
- verb: A switch controlling the output.

Value

An object of type summary_map containing two structures: - training.parameters: A dataframe containing the parameters used to train the map. - quality.assessments: A dataframe containing the quality assessments of the map. In particular, it includes: - convergence: A linear combination of variance capture and topographic fidelity. A value close to 1 indicates a converged map. - separation: Computed as 1 - wcss / bcss, where a value close to 1 indicates well-separated clusters.

If verb is True, the summary_map object is formatted and printed to the screen; otherwise, it is returned as a data structure.

References

• Self-Organizing Map Convergence

Robert Tatoian and Lutz Hamel, *Proceedings of the 2016 International Conference on Data Mining (DMIN'16)*, pp. 92-98, July 25-28, 2016, Las Vegas, Nevada, USA, ISBN: 1-60132-431-6, CSREA Press.

```
import pandas as pd
from popsom7 import maputils
from sklearn import datasets

iris = datasets.load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target_names[iris.target],columns=['species'])

### build a map
m = maputils.map_build(X, y, xdim = 15, ydim = 10, train = 10000)

### compute a summary object and display it
s = maputils.map_summary(m, verb = False)
print(s)
```