TD Optimisation Convexe Caractérisation à l'ordre 0 de la convexité

Guillaume TOCHON

Majeure IMAGE

Exercice: Courbes de niveau et lieux de sous niveau

On rappelle que la courbe de niveau r d'une fonction $f: \mathbb{R}^n \to \mathbb{R}$ est l'ensemble $\mathcal{C}_r(f) = \{\mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) = r\}$, et le lieu de sous niveau r est l'ensemble $\mathcal{C}_{\leq r}(f) = \{\mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) \leq r\}$.

- 1. Dessiner la courbe de niveau 1 $C_1(f)$ et le lieu de sous niveau 2 $C_{\leq 2}(f)$ de la fonction $f: \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto x_1^2 + 4x_2^2$.
- 2. Même question pour la fonction $g: \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto x_1 x_2$.

Exercice: Ensemble convexe

On rappelle qu'une partie $A \subset \mathbb{R}^n$ est convexe si et seulement si $\forall \mathbf{x}, \mathbf{y} \in A, \forall t \in [0, 1], t\mathbf{x} + (1 - t)\mathbf{y} \in A$

1. Démontrer (proprement, ça va de soi...) que l'intersection de deux ensembles convexes est un ensemble convexe.

Exercice: Hyperplan d'appui

On rappelle qu'un hyperplan d'appui d'une partie A en un point $\mathbf{x} \in \partial A$ de son bord est un hyperplan \mathcal{H} défini par un vecteur normal \mathbf{n} tel que $\mathbf{x} \in \mathcal{H}$, et $\forall \mathbf{y} \in A, \langle \mathbf{n}, \mathbf{y} - \mathbf{x} \rangle \leq 0$.

- 1. Déterminer un hyperplan d'appui pour un point de $\mathcal{C}_{\leq 2}(f)$ défini dans l'exercice précédent.
- 2. Dessiner une partie de \mathbb{R}^2 qui n'admet d'hyperplan d'appui en aucun point de son bord.

Exercice : Caractérisation à l'ordre 0 de la convexité

On rappelle la caractérisation à l'ordre 0 de la convexité : une fonction f est convexe si et seulement si son domaine de définition est une partie convexe, et $\forall \mathbf{x}, \mathbf{y} \in D_f$, $\forall t \in [0, 1]$, $f(t\mathbf{x} + (1-t)\mathbf{y}) \leq t f(\mathbf{x}) + (1-t)f(\mathbf{y})$

- 1. Démontrer que la fonction $f: x \mapsto x^2$ vérifie la caractérisation à l'ordre 0 de la convexité.
- 2. Démontrer (par récurrence) l'inégalité de Jensen : étant donné une fonction f convexe,

$$\mathbf{x}_1, \dots \mathbf{x}_p \in D_f \text{ et } \lambda_1, \dots, \lambda_p > 0 \text{ avec } \sum_{i=1}^p \lambda_i = 1, \text{ on a } f\left(\sum_{i=1}^p \lambda_i \mathbf{x}_i\right) \leq \sum_{i=1}^p \lambda_i f(\mathbf{x}_i).$$

Exercice: Combinaison de fonctions convexes

Soient f_1, \ldots, f_p des fonctions convexes. Démonter que :

- 1. La somme pondérée $\sum_{i=1}^{p} \omega_i f_i$ par des poids positifs $\omega_i \geq 0$ est une fonction convexe.
- 2. Le maximum des fonctions f_i max_i f_i est une fonction convexe.
- 3. Toute fonction sous linéaire $(f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y}))$ et $f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$ pour $\lambda > 0$ est convexe.