CSCI 335

Software Design and Analysis III Lecture 10: Splay Trees, B-Trees

Professor Anita Raja 10-03-22

2

Agenda

- AVL Trees
 - Failure of single rotation -> double rotations
 - Implementation: AVL Node, Insert, Balance, Deletion
- Splay Trees
- B-Trees

3

Amortized cost

Announcements

• HW1 grades and discussion in the next week

• HW2 posted

- Consider a sequence of M operations (insert/delete/find):
- Suppose that total cost is O(M * f(N))
 irrespective of the actual sequence of operations.
- ullet The average cost is O(f(N)) for each operation.
- This is called amortized running time.
- Caveat:

Individual operations in the sequence can be expensive though!

4

Amortized cost

- Worst-case bound on sequence of operations
- Consider a sequence of M operations(insert/delete/find)
 - What is the total cost?
 - What is the average cost per operation?

Amortized cost

- Consider a sequence of M operations (insert/delete/find):
- AVL tree:

5

- A sequence of M operations will cost O(M * logN)
- Each operation will not cost more than O (logN)
- On average each operation costs O (logN)

Amortized cost

- Consider a sequence of M operations (insert/delete/find):
- Example: binary search tree (regular unbalanced)
 - M operations can cost in the worst case O(M * N)
 - Amount of work proportional to height of tree maintain ordering property of BST for all subtrees.
 - Each operation will not cost more than O(N)
 - On average each operation costs O(N)

6

Splay tree

- \bullet A tree with amortized running time of O (logN)
- Some operations could be more expensive
- How can we achieve this?

8

7

Splay tree

- The trick is to rebalance the tree after a find() operation
- Bring the item returned by find() to the root while applying AVL rotations on the way to the root.
 - Similar idea of rotation as before except that we are a little more selective about how rotations are performed.
 - Rotate bottom-up along the access path.
 - Gives good time bound in theory and practical since when a node is accessed in many applications, it is likely to be accessed in the near future.

_

10

Splay tree

• Successive finds() of same element will be pretty fast.

• Amortized cost of sequence of M operations is O(logN).

• No need to store height information at each node.

• Other items are coming **closer** to the root.

9

Splay Trees: a simple idea that does not work

• After find() perform single-rotations bottom-up.

11

11 12

15 16

Splay Trees:

a simple idea that does not work

- There is a sequence of M operations requiring $\Omega(N)$ time (amortized).
- => we want logarithmic amortized time

Splay Trees: M operations requiring $\Omega(N)$ time

- Consider inserting 1,2,3, ..., N into an initially empty tree
 - Note that you splay on insertion (i.e. single AVL rotation)=>
 - Only left children
- Total time to build tree is O (N) (not bad)

18

17

19

Insert 1, 2, 3, 4, 5, 6, ..., N

20

Splay Trees: M operations requiring $\Omega(N)$ time

- Accessing the sequence 1,2,... is Ω (N^2) though...
- Run example:
 - Access 1 (time O(N)), then perform sequence of single rotations (time O(N))
 - Access 2 time O(N-1)...

23

Splaying

Rotate bottom-up on access, along access path

Let X a non-root node on access path at which we are rotating
if (parent of X is the root) { single rotation with root }
else {

Let P be parent of X, and G be the grandparent
Two cases (plus symmetries) to consider:

Case 1 (zig-zag): double rotation (see figure)
Case2 (zig-zig): (see figure)

Applet:
https://www.cs.usfca.edu/~galles/visualization/SplayTree.html

23

27 28

Example
Insert 1,...,7 -> then access 1
https://www.cs.usfca.edu/~galles/visualization/SplayTrec.html

30

29

Fundamental Property of Splay Trees

- When access paths are long, this leading to a longer-than-normal search time
 - Rotations tend to be good for future operations.
- When accesses are cheap, the rotations are not as good and can be had
- Extreme case is the initial tree formed by the insertions.
 - All the insertions were constant-time ops leading to a bad initial tree.
 - At that point, we had a very bad tree but were running ahead of schedule and had the compensation of less total running time.
 - Then a couple of really horrible accesses left a nearly balanced tree but the cost was that we had to give back some of the time that had been saved.
 - Chapter 11 show we are always on schedule never fall behind a pace of O(logN) per operation – even though there are occasionally bad operations.

Same example but w/ 32 nodes

31

Same example but w/ 32 nodes

39

Analysis

- Hard (see later chapter)
- In the example: Access of 2 -> N/4 of root, ..., up-to logN of root
- Fundamental properties:
 - When access paths are long, longer search time, but rotations good for future operations
 - When access is cheap, rotations not as good.
 - It can be proved that time is O(logN) per operation (amortized)
- Deletion?

41

- Much simpler to program with fewer cases
- No need to store balance information

41

42

Summary of Splay Trees

- Analysis of splay tree is difficult
 - Because it must take into account the ever changing structure of the tree.
- That said, splay trees are much simpler to program than most balanced search trees since
 - · there are fewer cases to consider and
 - no balance information to maintain.
- Empirical evidence suggests this means splay trees are faster code in practice.
- There are several variations of splay trees that can perform better in practice (See code example in Chapter 12)

43

Deletion

- 1. Access, bring node to top.
- 2. Delete creating two subtrees.
- 3. Access largest element in left tree, bring it to root with no right child.
- 4. Patch in right tree as right child

42

B-trees

- Scenario: Tree is large and can't fit into memory.
- Fact: Disk I/O is much slower than machine instruction (one disk access ~ 4M instructions).
- Assume that we have 10M records, each of 256 bytes, and key is 32 bytes.
- Solution?
 - AVL? (worst case is 1.44 logN, but each operation is costly).
 - We need even smaller trees :
 - M-ary tree has height log_M(N)

46

Definition of B-tree

- M-ary tree such that:
 - Data is stored at leaves.
 - The nonleaf nodes store up to M-1 keys to guide searching. Key i represents smallest key in subtree i+1.
 - Root is either a leaf or has between two and M children.
 - All nonleaf nodes (except root) have between M/2 and M children (up to half full).
 - All leaves are at same depth and have between L/2 and L data items for some L (up to half full).
- M, and L are determined based on disk block (one access should load a whole node).

48

47

48

50

Example

- Block size is 8,192 bytes
- Key is 32 bytes
- Internal nodes hold M-1 keys => 32(M-1) bytes plus M branches (4 bytes per branch) => total is 36M-32 bytes.
- Since 8,192 <= 36M-32 => M = 228.
- Data record is 256 bytes => 32 records on a block => L=32.
- So each leaf should hold between 16 to 32 records.
- Each internal node should have at least 114 branches.
- 10 million records => 625,000 leaves (10 million/16). In worst case leaves on level 4 (why?)
 - On average number of accesses is log_{M/2} (N)
 - Root and first levels could also be cached in memory...

50

49

Insertion

To insert:

52

- Put it in the appropriate leaf.
- If the leaf is full, break it in two, adding a child to the parent.
- If this puts the parent over the limit, split upwards recursively.
- If you need to split the root, add a new one with two children. This is the only way you add depth.

52

51

Example of insertion (55)

53 54

Deletion in M-ary trees

- Delete from appropriate leaf.
- If the leaf is below its minimum, adopt from a neighbor if possible.
- If that's not possible, you can merge with the neighbor. This causes the parent to lose a branch and you continue upward recursively.

56

55 56

Summary

- AVL:
 - Insertion
 - Deletion
 - Amortized cost
- Splay discussion
 - Zig-zag and zig-zig
- DeletionB-trees

D tice

57

Announcements

- Make progress on HW2
 - Read Blackboard discussion board hints/faqs and other responses before posting/emailing!
- HW1 grades released after class
- Feedback survey released this week.
- Midterm October 20, 2022 class time