

Integrating Semantics and Neighborhood Information with Graph-Driven Generative Models for Document Retrieval

Zijing Ou, Qinliang Su, Jianxin Yu, Bang Liu, Jingwen Wang, Ruihui Zhao, Changyou Chen, Yefeng Zheng

June 16, 2021

Learning Binarized Document Representations

Motivation:

Reducing similarity-computation and storage-cost in large scale information retrieval.

Goal:

➤ Learning a mapping from an input document x to a Binary representation b that capture its semantic meaning.

Semantics-Preserving Hashing

- Lean a binary code that preserves semantic meaning;
- ➤ The more semantic information is preserved, the more similarity of codes derived from semantic-similar documents appears.

Neighborhood-Preserving Hashing

- > Lean a binary code that preserves proximity;
- ➤ Aim to retain the neighborhood information, such that similar codes can be produced for neighboring documents.

Learning Binarized Document Presentations

Semantics-Preserving Hashing (SPH)

The document can be modeled by a generative model

$$p(x,z) = p_{\theta}(x|z)p(z),$$

- > Semantics can be captured by likelihood function $p_{\theta}(x|z)$;
- ➤ Due to the *i*. *i*. *d*. assumption, the model can be trained by maximized joint distribution of *N* documents:

$$P(X,Z) = \prod_{k=1}^{N} p_{\theta}(x_k|z_k) p(z_k).$$

Neighborhood-Preserving Hashing (NPH)

- Assume the **affinity matrix** $A = [a_{ij}]$ of the documents is available;
- ➤ Proximity can be preserved in the binary code *b* by optimizing the following minimization problem

$$\sum_{ij} a_{ij} ||b_i - b_j||^2;$$

Therefore similar codes can be retained between neighboring documents.

How to simultaneously preserve the two types of information?

Heuristic Strategies

Combining two objectives together:

$$E_{q_{\varphi}(z,x)}[\log p_{\theta}(x|z)] - KL[q_{\varphi}(z|x)||p(x)] + \sum_{ij} a_{ij}||z_i - z_j||^2$$
Semantics Preserving Neighborhood Preserving

Imposing codes to generate neighbors:

$$E_{q_{\varphi}(z,x)}[\log p_{\theta}(N(x)|z)] - KL[q_{\varphi}(z|x)||p(x)]$$

Generate neighbors as well

- ➤ Above methods lack basic principles to guide the integrated process of semantics and neighborhood information.
- ➤ How to simultaneously preserve the two types of information in a unified framework?

Preserving Semantic and Neighborhood Information

Rewrite SPH:

To simultaneously preserve semantic and neighborhood information, we first rewrite SHP method in compact form

$$p_{\theta}(X,Z) = p_{\theta}(X|Z)p_{I}(Z),$$

- For efficient training, the prior p(Z) is generally selected as diagonal Gaussian $p_I(Z) = N(Z; 0, I_N \otimes I_d)$,
- ightharpoonup Under the variational inference framework, by introducing approximate posterior $q_{\varphi}(Z|X)$, we can maximize the lower bound of $\log p(X)$ to train SHP model

$$L = E_{q_{\varphi}(Z|X)}[\log p_{\theta}(X|Z)] - KL[q_{\varphi}(Z|X)||p_{I}(Z)].$$

Note that:

- The likelihood $p_{\theta}(X|Z) = \prod_{k=1}^{N} p_{\theta}(x_k|z_k)$ can effectively capture semantic information;
- Inspired by the property of covariance matrix in Gaussian, the neighborhood information can be introduced by using a <u>non-diagonal</u> Gaussian prior.

Preserving Semantic and Neighborhood Information

Introduce Neighborhood Information:

Figure Given an affinity matrix A, using $\lambda \in [0,1)$ to control correlation strength, the **neighborhood** information can be described as

$$I_N + \lambda A$$
,

ightharpoonup To introduce neighborhood information, we can require that the representation Z are drawn from the following Gaussian

$$p_G(Z) = N(Z; 0, (I_N + \lambda A) \otimes I_d),$$

However, compute the ELBO containing this neighborhood aware prior is inefficient, as the computation $KL[q_{\varphi}(Z|X)||p_{G}(Z)]$ involves the term of

$$((I_N + \lambda A) \otimes I_d)^{-1}$$
.

 λa_{32}

 λa_{32}

 X_2

 X_1

0

0

 X_3

Approximation with One Spanning Tree:

- Let $G \triangleq (V, E)$ denote the corresponding graph of matrix A, where $V = \{1, 2, ..., N\}$ is the set of documents indices; and $E = \{(i, j) | a_{ij} \neq 0\}$ is the set of connections between documents;
- From the graph G, a spanning tree $T \triangleq (V, E_T)$ can be obtained easily;
- ➤ We aim to propose a new prior that only captures partial neighborhood information, with the associated special structure being able to facilitate the training process.

Tree-type Prior:

➤ To capture neighborhood information and facilitate training process, we construct a **tree-type prior** as

$$p_T(Z) = \prod_{i \in V} p_G(z_i) \prod_{(i,j) \in E} \frac{p_G(z_i, z_j)}{p_G(z_i)p_G(z_j)},$$

 $ightharpoonup p_G(z_i,z_j)$ and $p_G(z_i)$ represent the one- and two- variable marginal distributions of $p_G(Z)$.

Tree-type Posterior:

Following the tree-type priors, a tree-type posterior is also constructed as

$$q_T(Z|X) = \prod_{i \in V} q_{\varphi}(z_i|x_i) \prod_{(i,j) \in E} \frac{q_{\varphi}(z_i, z_j|x_i, x_j)}{q_{\varphi}(z_i|x_i) q_{\varphi}(z_i|x_i)},$$

ho $q_{\varphi}(z_i, z_j | x_i, x_j)$ is defined to be Gaussian, with its mean defined as $[\mu_i; \mu_j]$ and the covariance matrix defined as

$$\begin{bmatrix} diag(\sigma_i^2) & diag(\gamma_{ij} \odot \sigma_i \odot \sigma_j) \\ diag(\gamma_{ij} \odot \sigma_i \odot \sigma_j) & diag(\sigma_i^2) \end{bmatrix},$$

 γ_{ij} controls the correlation strength between z_i and z_j , whose element are restricted in (0,1] to ensure positive correlation.

Efficient Training:

> By using the tree-type prior and posterior, the ELBO can be expressed as

$$L_{T} = \sum_{i \in V} E_{q_{T}(z_{i}|x_{i})}[\log p_{\theta}(x_{i}|z_{i})] - KL[q_{\varphi}(z_{i}|x_{i})||p_{G}(z_{i})]$$

$$+ \sum_{(i,j) \in E_{T}} KL[q_{\varphi}(z_{i},z_{j}|x_{i},x_{j})||p_{G}(z_{i},z_{j})]$$

$$- KL[q_{\varphi}(z_{i}|x_{i})||p_{G}(z_{i})] - KL[q_{\varphi}(z_{j}|x_{j})||p_{G}(z_{j})]$$

➤ Therefore the ELBO is broken down into the terms involving single or pairwise variables.

Extend to Multiples Spanning Trees:

- From the graph G, we can construct a set of M spanning trees $T_G = \{T_1, ..., T_M\}$.
- Based on the set of spanning trees, a mixture-distribution prior and posterior can be defined as

$$p_{MT}(Z) = \frac{1}{M} \sum_{T \in T_G} p_T(Z), \qquad q_{MT}(Z|X) = \frac{1}{M} \sum_{T \in T_G} q_T(Z|X);$$

By applying log-sum inequality, the EBLO can be further lower bounded as

$$L_{MT} = \frac{1}{M} \sum_{T \in T_G} E_{q_T(Z|X)} [\log p_{\theta}(X|Z)] - KL[q_T(Z|X)||p_T(Z)]$$

$$= \frac{1}{M} \sum_{T \in T_G} L_T$$

Details of Modeling

- \triangleright Variational Encoder $q_{\varphi}(z_i|x_i)$
 - take single document as input, and outputs the mean and variance of Gaussian distribution $[\mu_i; \sigma_i^2] = f_{\omega}(x_i)$.
- Correlation Encoder
 - take pairwise documents as input, and outputs the correlation coefficient $\gamma_{ij} = f_{\varphi}(x_i, x_j)$.
- **Solution** Generative Decoder $p_{\theta}(x_i|z_i)$
 - lacktriangle take the latent variable z_i as input and output the document x_i .

Experiments: Setup

- ➤ **Datasets:** we evaluate the proposal method on three benchmarks: Reuters21579, 20Newsgroups, TMC;
- \triangleright **TFIDF features** are utilized as input x for documents;
- The neighbors are selected as the top-k similar item for each document based on cosine similarity of TFIDF;
- ➤ We employ precision as the evaluation metric: the percentage of documents among the top 100 retrieved ones that belong to the same label (topic) with the query document.

Experiments: Semantic Hashing Evaluation

Method	Reuters				TMC				20Newsgroups			Avg	
	16bits	32bits	64bits	128bits	16bits	32bits	64bits	128bits	16bits	32bits	64bits	128bits	
SpH	0.6340	0.6513	0.6290	0.6045	0.6055	0.6281	0.6143	0.5891	0.3200	0.3709	0.3196	0.2716	0.5198
STH	0.7351	0.7554	0.7350	0.6986	0.3947	0.4105	0.4181	0.4123	0.5237	0.5860	0.5806	0.5443	0.5662
VDSH	0.7165	0.7753	0.7456	0.7318	0.6853	0.7108	0.4410	0.5847	0.3904	0.4327	0.1731	0.0522	0.5366
NbrReg	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.4120	0.4644	0.4768	0.4893	0.4249
NASH	0.7624	0.7993	0.7812	0.7559	0.6573	0.6921	0.6548	0.5998	0.5108	0.5671	0.5071	0.4664	0.6462
GMSH	0.7672	0.8183	0.8212	0.7846	0.6736	0.7024	0.7086	0.7237	0.4855	0.5381	0.5869	0.5583	0.6807
AMMI	0.8173	0.8446	0.8506	0.8602	0.7096	0.7416	0.7522	0.7627	0.5518	0.5956	0.6398	0.6618	0.7323
CorrSH	0.8212	0.8420	0.8465	0.8482	0.7243	0.7534	0.7606	0.7632	0.5839	0.6183	0.6279	0.6359	0.7355
SNUH	0.8320	0.8466	0.8560	0.8624	0.7251	0.7543	0.7658	0.7726	0.5775	0.6387	0.6646	0.6731	0.7474

■ Perform on three datasets consistently better than baselines in most experimental settings.

Experiments: Impact of Introducing Correlations

Ablati	on Study	16bits	32bits	64bits	128bits
Reuters	SNUH _{ind}	0.7823	0.8094	0.8180	0.8385
	SNUH _{prior}	0.8043	0.8295	0.8431	0.8460
	SNUH	0.8320	0.8466	0.8560	0.8624
TMC	SNUH _{ind}	0.6978	0.7307	0.7421	0.7526
	SNUH _{prior}	0.7177	0.7408	0.7518	0.7528
	SNUH	0.7251	0.7543	0.7658	0.7726
NG20	SNUH _{ind}	0.4806	0.5503	0.6017	0.6060
	SNUH _{prior}	0.5443	0.6071	0.6212	0.6014
	SNUH	0.5775	0.6387	0.6646	0.6731

■ By taking the **correlations** into account in the prior and posterior, significant **improvements** of SNUH can be observed.

Experiments: Effect of Spanning Trees

Compared to not using any correlation, one tree alone can bring significant performance gains.

Experiments: Qualitative Analysis

Distance	Category	Title/Subject
query	hockey	NHL PLAYOFF RESULTS FOR GAMES PLAYED 4-21-93
1	hockey	NHL PLAYOFF RESULTS FOR GAMES PLAYED 4-19-93
10	hockey	NHL Summary parse results for games played Thur, April 15, 1993
20	hockey	AHL playoff results (4/15)
50	forsale	RE: == MOVING SALE ===
70	hardware	Re: Quadra SCSI Problems?
90	politics.misc	Re: Employment (was Re: Why not concentrate on child molesters?

Conclusions

- ➤ We proposed an effective and efficient semantic hashing method to preserve both the semantics and neighborhood information of documents.
- > we applied a graph-induced Gaussian prior to model the two types of information in a unified framework.
- To facilitate training, a tree structure approximation was further developed to decompose the ELBO into terms involving only singleton or pairwise variables.
- Extensive evaluations demonstrated that our model significantly outperforms baseline methods by incorporating both the semantics and neighborhood information.

Thanks for Listening!

