Q-Learning: Deep Deterministic Policy Gradient

Zander Zemliak CMSI 5350 December 6, 2022

Overview of Topics

- I. Introduction to Reinforcement Learning (RL)
- II. RL algorithm: Q-Learning
- III. Deep Q-Learning
- IV. DQN Algorithm: DeepDeterministic Policy Gradient(DDPG)
- V. Stock Trading Agent built Using the DDPG Algorithm

Reinforcement Learning

Introduction to RL

- RL is one of the main disciplines of machine learning.
- Differences between the three main ML disciplines:
 - Supervised learning is concerned with learning an approximate mapping between an input and an output using a labeled dataset.
 - Unsupervised learning is concerned with finding a pattern in unlabeled data.
 - RL agents learn by interacting with their environment.
- RL agents main objective is to take actions that maximize reward.
- A dog learns that when it sits on command it gets a treat.

Markov Decision Process (MDP)

- MDP is an essential framework for RL, it is a mathematical model of decision making where the outcomes can be partly arbitrary or under control.
- Four main components for MDP: states, actions, effects of actions on future states, effects of actions on future rewards.

Agriculture ex: How much to plant given the current state of water and soil?

Brief MDP Math

- An MDP can be described as: MDP = (S, A, T, R, γ)
 - S = set of possible states
 - A = set of possible actions
 - T = set of transition probabilities where the probability of going from s to s' is described as P(s'|s, a).
 - \circ R = set of rewards
 - \circ γ = discount factor (determines how much agent cares about future rewards and is necessary for algorithm convergence)
- We will use the Bellman equation to evaluate the max current and future reward:

$$V(s) = \max_{a} (R(s, a) + \gamma V(s'))$$

• The value for our current state, **V(s)**, is equal to the action which maximizes current reward in state **s** with action **a** plus the value of the next state **s**'.

Q-Learning

Q-Learning

- Q-learning is a value based RL algorithm that attempts to learn the quality (Q) of actions in particular states that are defined by future value.
- The mapping of action to state is known as the policy (π) and these values are stored in a Q-table with two columns: state-action pair and value.
- Agents choose actions in certain states that result in the highest reward Q*(s,a).
- Q-table values are updated using TD:

$$Q_{new}(s, a) = Q(s, a) + \alpha \left[\frac{R(s,a) + \gamma max_a Q(s', a=a)}{Q(s', a=a)} - Q(s, a) \right]$$

- TD target looks very familiar to Bellman equation...
- This will converge towards π*

Deep Q-Learning

Deep Q-Learning

- Very similar idea to Q-Learning but instead of using a Q-table with (state, action)
 pairs mapped to a Q-value for choosing actions, we have a neural network that maps
 input states to (action, Q-value) pairs.
- Since in real life we could have many (state, action) pairs for a given environment, it is better to use a NN for a large state space because of its generalizability.

Training a DQN

- DQN training works by taking an action via epsilon-greedy, observing the episode of that action, storing it in memory, and then sampling from the replay memory to update main prediction NN.
- We use two networks: a main and target network
 - Main NN: Where our Q-values are derived
 - Target NN: Same parameters as the main NN however, this network is not trained. It is synchronized with the main NN after N steps. This allows us to train the main NN with a single target thus making training stable.
- Weights are updated in the main network via the Q-Learning Loss function:

$$L(\theta) = \frac{\text{Target Q value}}{((r + \gamma max_{a_{t+1}}Q(s_{t+1}, a_{t+1}; \theta^{target}))} - Q(s, a; \theta^{pred}))^2$$

Training a DQN

DQN Algorithm: Deep Deterministic Policy Gradient (DDPG)

DDPG Overview

- Q-Learning and Deep Q-Learning are great for environments that have discrete action-state spaces. But, what if our action-state space is continuous?
- What if the amount of actions we can take in any given state is not finite?
- Remember, the ultimate goal of our agent is to choose the best action for any state:

$$\pi(s) = a^*(s)$$

where;
$$a^*(s) = \operatorname{argmax}_a Q(s, a)$$

- To solve this issue of having a continuous action-state space, DDPG uses an actor network and critic network.
 - Actor network: Responsible for mapping state to a*
 - Critic network: Responsible for mapping (s, a*) tuple to Q(s, a)

DDPG Training

- The actor network is trained to maximize the Q-value from the critic network so its update rule uses gradient ascent.
- The critic network is updated using the traditional Q-Learning Loss function with.
- Similar to DQN, each actor and critic network both have target networks to help with stabilizing learning.

DDPG Algorithm Steps

- 1. Initialize actor θ params (π net), critic ϕ params (Q net), and empty replay buffer B
- 2. Set target params equal to their respective main networks (just like DQ Learning)
- 3. Repeat until convergence:
 - a. Observe state s and get a* from critic and execute a*
 - b. Observe state s', get reward r, and set d = is in terminal state (0=no, 1=yes)
 - c. Store episode (s, a, r, s', d) in replay buffer
 - d. If d = 1 reset environment parameters otherwise continue
 - e. If time to update:
 - i. For however many updates:
 - 1. Get sample batch from B
 - 2. Compute target via Bellman: $y(r, s', d) = r + \gamma(1-d)Q_{\phi_{target}}(s', \pi_{\theta_{target}})$
 - Update critic net via one step of GD using y(r, s', d)
 - 4. Update actor net via one step of GA using: $Q_{\phi}(s, \pi_{\theta}(s))$
 - 5. Update target networks with their respective main network

DDPG Example: Stock Trading Agent

Problem Justification

- Managing a portfolio of stocks to create a comfortable return can be very difficult:
 - Emotions can impact one's due diligence on a planned strategy.
 - Trading in live time can be stressful.
 - You don't know what you're doing.
- Because the stock market changes every second of everyday, the state space is extremely large. DDPG is intended for large state spaces.
- Using DDPG, we can potentially find a viable trading strategy within the vast complexities of the financial markets.

Problem Overview

Some Stuff for Q-Learning:

- Actions: buy, sell, or hold a stock.
- State space: N stocks we are interested in that have features such as closing, high, low, volume, day of week, rsi, ema, sma, etc..
- Reward: Return of stock of trade.
- Therefore, overall goal of agent is to maximize trading returns

Data:

- We will use the 30 stocks from the Dow 30 and use the overall return of the Dow 30 in a given year as the baseline for our agent.
- For training, we will use 10 years of historical data from each of the 30 stocks.
- For validation and backtesting, we will use 1 year of historical data from the 30 stocks.

Dataset

		W . W	20	92	00 W 2			72								
120.000	open	high	low	close	adjcl	volume	tic	day	macd	boll_ub	boll_lb	rsi_30	cci_30	dx_30	close_30_sma	close_60_sma
date																
2009-01-02	3.067143	3.251429	3.041429	3.241071	2.762747	746015200	AAPL		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	3.241071	3.241071
2009-01-02	58.590000	59.080002	57.750000	58.990002	44.219173	6547900	AMGN	4	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	58.990002	58.990002
2009-01-02	18.570000	19.520000	18.400000	19.330000	15.418568	10955700	AXP	4	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	19.330000	19.330000
2009-01-02	42.799999	45.560001	42.779999	45.250000	33.941097	7010200	BA	4	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	45.250000	45.250000
2009-01-02	44.910000	46.980000	44.709999	46.910000	31.729940	7117200	CAT	4	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	46.910000	46.910000
2022-03-31	517.099976	521.890015	509.670013	509.970001	506.568329	3979700	UNH	3	9.082670	525.617835	475.733175	57.179088	102.187053	34.560233	490.984004	481.827002
2022-03-31	223.910004	225.919998	220.440002	221.770004	220.463120	10759500	٧	3	2.785993	233.259210	187.598787	53.368487	85.681562	12.340181	212.350666	216.093500
2022-03-31	51.660000	51.750000	50.930000	50.939999	48.878143	31027600	VZ	3	-0.600788	54.738811	49.623188	42.542530	-93.798458	24.604509	52.704333	52.972667
2022-03-31	45.290001	45.740002	44.169998	44.770000	43.221767	23284700	WBA	3	-0.360896	48.792783	45.911217	39.979683	-177.475807	26.487251	46.905000	49.042667
2022-03-31	148.789993	150.539993	148.179993	148.919998	147.737213	9054600	WMT	3	2.213517	149.642543	138.487459	58.973003	144.878746	45.338909	141.572668	140.756834
[97481 rows x 16 columns]																
and a second	open	high	low	close	adjcl	volume	tic	day	macd	boll_ub	bol1_1b	rsi_30	cci_30	dx_30	close_30_sma	close_60_sma
date																
2009-01-02	3.067143	3.251429	3.041429	3.241071	2.762747	746015200	AAPL	4	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	3.241071	3.241071
2009-01-02	58.590000	59.080002	57.750000	58.990002	44.219173	6547900	AMGN	4	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	58.990002	58.990002
2009-01-02	18.570000	19.520000	18.400000	19.330000	15.418568	10955700	AXP	4	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	19.330000	19.330000
2009-01-02	42.799999	45.560001	42.779999	45.250000	33.941097	7010200	ВА	4	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	45.250000	45.250000
2009-01-02	44.910000	46.980000	44.709999	46.910000	31.729940	7117200	CAT	4	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	46.910000	46.910000
	517.099976	521.890015	509.670013	509.970001	506.568329	3979700	UNH	3	9.082670	525.617835	475.733175	57.179088	102.187053	34.560233	490.984004	481.827002
and the second second second	223.910004	225.919998	220.440002	221.770004	220.463120	10759500	v	3	2.785993	233.259210	187.598787	53.368487	85.681562	12.340181	212.350666	216.093500
2022-03-31	51.660000	51.750000	50.930000	50.939999	48.878143	31027600	٧Z		-0.600788	54.738811	49.623188	42.542530	-93.798458	24.604509	52.704333	52.972667
2022-03-31	45.290001	45.740002	44.169998	44.770000	43.221767	23284700	WBA		-0.360896	48.792783	45.911217		-177.475807	26.487251	46.905000	49.042667
	148.789993	150.539993	148.179993	148.919998	147.737213	9054600	WMT	- 3	2.213517	149.642543	138.487459	58.973003	144.878746	45.338909	141.572668	140.756834
2022-03-31	140.707773	130.337773	140.1/7773	140.717770	14/./3/213	7054000	WINT		2.21351/	147.042545	130.40/437	30.773003	144.0/0/40	40.000707	141.5/2000	140.750054

Results

Results

- Model performed poorly when compared to the Dow Index.
- Model appears to have adopted a FOMO strategy.

- Annual Returns (backtested on August 2021 to October 2022):
 - DOW Index Return: +1.68%
 - DDPG Backtest: -8.74%

DDPG model did not perform as poorly as the S&P 500 though: -17.09%

Future Improvements

- Adjusting hyperparameters:
 - Changing learning rate
 - Lowering batch sample size
 - Lowering the number of steps.
- Using different features for training (deeper research into technical indicators).
- Using a different set of stocks that have a lot more volatility.
- Try using one stock?

Thank you! Questions?