Question 5 Solution:

Part a: Computing y,X, β and ϵ

$$\boldsymbol{y} = \begin{bmatrix} 27.3 \\ 42.7. \\ 38.7 \\ 4.5 \\ 23.0 \\ 166.3 \\ 109.7 \\ 80.1 \\ 150.7 \\ 20.3 \\ 189.7 \\ 131.3 \\ 404.2 \\ 149 \end{bmatrix} . \quad \boldsymbol{X} = \begin{bmatrix} 1 & 13.1 \\ 1 & 15.3 \\ 1 & 25.8 \\ 1 & 1.8 \\ 1 & 4.9 \\ 1 & 55.4 \\ 1 & 39.3 \\ 1 & 26.7 \\ 1 & 47.5 \\ 1 & 6.6 \\ 1 & 94.7 \\ 1 & 135.6 \\ 1 & 47.6 \end{bmatrix} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \quad \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_0 \\ \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \\ \epsilon_7 \\ \epsilon_8 \\ \epsilon_9 \\ \epsilon_{10} \\ \epsilon_{11} \\ \epsilon_{12} \\ \epsilon_{13} \end{bmatrix}$$

 $y = X\beta + \epsilon \ becomes,$

$$\begin{bmatrix} 27.3 \\ 42.7. \\ 38.7 \\ 4.5 \\ 23.0 \\ 166.3 \\ 109.7 \\ 80.1 \\ 150.7 \\ 20.3 \\ 189.7 \\ 131.3 \\ 404.2 \\ 149 \end{bmatrix} \begin{bmatrix} 1 & 13.1 \\ 1 & 15.3 \\ 1 & 25.8 \\ 1 & 1.8 \\ 25.8 \\ 1 & 4.9 \\ 1 & 4.9 \\ 1 & 4.9 \\ 1 & 39.3 \\ 1 & 26.7 \\ 1 & 47.5 \\ 20.3 \\ 1 & 66.6 \\ 189.7 \\ 1 & 135.6 \\ 1 & 47.6 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \\ + \begin{bmatrix} \epsilon_0 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \\ \epsilon_7 \\ \epsilon_8 \\ \epsilon_9 \\ \epsilon_{10} \\ \epsilon_{11} \\ \epsilon_{12} \\ \epsilon_{13} \end{bmatrix}$$

Part b: Solving the least squares estimator

```
```{r}
b = solve(t(X)%*%X, t(X)%*%y)
b
```

[,1]
[1,] -1.233836
[2,] 2.701553
```

Part c:

```
[,1]
 [1,] -6.8565106
 [2,] 2.3000724
 [3,] -29.7662361
 [4,] 0.8710405
 [5,] 10.9962256
[6,] 17.8677893
[7,] 4.7627957
 [8,] 9.2023660
 [9,] 23.6100596
[10,] 3.7035852
[11,] -64.9032511
[12,] -32.5310639
[13,] 39.1032233
[14,] 21.6399042
```

```
'``{r}
n = 14 #sample size
p = 2 #number of parameters
SSRes = sum(e^2)
ssquared = SSRes/(n-p)
ssquared
'```
[1] 777.1528
```

```
[,1] [1,] 74.40965
```

```
```{r}
H = X%*%a%*%t(X)
H
```

```
```{r}
z = e/sqrt(ssquared * (1 - diag(H)))
z[13]
...
[1] 2.104999
```

```
Part f:

| ```{r} |
| k = 1 |
| D = z^2 * (diag(H)/(1-diag(H))) * 1/(k+1) |
| D[13] |
| ```
| [1] 2.774008
```

Part g:

<u>Full explaination</u>: The Cook's distance certainly indicates it should be of some concern; however looking at the plot, it seems that the fit is actually okay. There is considerable evidence for heteroskedasticity — the variance increases with x (the design variable). Sea scallops has (by far) the largest x and so may be prone to a larger variance than the remaining points. The high Cook's distance therefore comes primarily from a very high leverage, rather than a bad fit to the model.

END OF ASSIGNMENT!!