- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

Why to apply dimensionality reduction?

- Curse of dimensionality:
 - Increases the risk of overfitting
 - Reduces the speed
 - Reduces the accuracy
 - Reduces explainability
- Visualisation
- Types of dimensionality reduction:
 - Feature extraction
 - Feature selection

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

Models overview

- Feature Selection
- Feature Extraction

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

Principal Component Analysis (PCA)

- Unsupervised
- Creates linear combinations
- New features are orthogonal
- Maximizes variance by considering the variance of each feature
- Features are ranked in order of their variance
- Needs feature scaling
- Only works for continuous features
- Kernel PCA for non-linear separable datasets

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

	Cumulative Variance Ratio	Explained Variance Ratio
0	0.449303	0.449303
1	0.639841	0.190538
2	0.728390	0.088549
3	0.793421	0.065031
4	0.847024	0.053603
5	0.887960	0.040937
6	0.910797	0.022837
7	0.928059	0.017262
8	0.941753	0.013694
9	0.953757	0.012004
10	0.964381	0.010623
11	0.972419	0.008038
12	0.979418	0.006999
13	0.984170	0.004751
14	0.987257	0.003087

https://www.youtube.com/watch?v=FgakZw6K1QQ

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

Linear Discriminant Analysis (LDA)

- Supervised
- Creates linear combinations
- New features are orthogonal
- Maximizes separability between classes by considering the information of classes
- Features are ranked in order of their separability between classes
- Doesn't need feature scaling
- Only works for continuous features

Linear Discriminant Analysis (LDA)

https://www.youtube.com/watch?v=azXCzI57Yfc

Linear Discriminant Analysis (LDA)

	Cumulative Variance Ratio	Explained Variance Ratio
0	0.667519	0.667519
1	1.000000	0.332481

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

PCA vs LDA

- Unsupervised
- Creates linear combinations
- New features are orthogonal
- Maximizes variance by considering the variance of each feature
- Features are ranked in order of their variance
- Only works for continuous features
- · Needs feature scaling

- Supervised
- Creates linear combinations
- · New features are orthogonal
- Maximizes separability between classes by considering the information of classes
- Features are ranked in order of their separability between classes
- Only works for continuous features
- · Doesn't need feature scaling

Kernel PCA for non-linear separable datasets

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

Feature Selection

Copyright @ MachineLearningMastery.com

https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/

Feature Selection

Copyright @ MachineLearningMastery.com

https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

Variance Threshold

- Unsupervised
- Removes features whose values don't change much from observation to observation
- Needs feature scaling (but it can't be Standard Scaler)
- Works for both continuous and one hot encoded features

Variance Threshold

Toy example:

from sklearn.feature_selection import VarianceThreshold
df_selected, df_removed = variance_threshold_selector(X_train, 0.01)

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

Chi-Squared Test

- Supervised
- Removes features whose that don't effect the dependent variable
- Needs feature scaling (but it can't be Standard Scaler)
- Only works for one hot encoded features
- Only works for classification

Chi-Squared Test

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

Correlation threshold

- Supervised/Unsupervised
- Removes features that are not highly correlated with the dependent variable
- Removes features that are highly correlated with each other
- Needs feature scaling
- "Works" for both continuous and one hot encoded features
- Works for both regression and classification
- Specific for categorical features:

https://towardsdatascience.com/the-search-for-categorical-correlation-a1cf7f1888c9

Correlation threshold

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

- -0.6

relevant_features = cor_target[cor_target > 0.5]

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

-0.4

-0.6

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

Backward Elimination

- Supervised
- Start with all features and remove one at a time using the p-value
- Not recommended
- Needs feature scaling
- Works for both continuous and one hot encoded features
- Works for both regression and classification
- Model example: Ordinary Least Squares

Backward Elimination

```
CRIM
         1.086810e-03
                                    CRIM
                                               1.074747e-03
                                                                       CRIM
                                                                                   1.010438e-03
ZΝ
         7.781097e-04
                                    ΖN
                                               7.193806e-04
                                                                       7N
                                                                                   7.542759e-04
INDUS
         7.382881e-01
                                     INDUS
                                               7.379887e-01
                                                                       CHAS
                                                                                   1.551469e-03
CHAS
          1.925030e-03
                                    CHAS
                                               1.862634e-03
                                                                       NOX
                                                                                   1.209413e-06
NOX
          4.245644e-06
                                    NOX
                                               1.967110e-06
                                                                       RM
                                                                                   2.889779e-19
RM
         1.979441e-18
                                     RM
                                               3.365945e-19
                                                                       DIS
                                                                                   6.837043e-15
AGE
         9.582293e-01
                                    DIS
                                               5.027955e-14
DIS
          6.013491e-13
                                                                       RAD
                                                                                   2.996799e-06
                                     RAD
                                               4.750539e-06
RAD
         5.070529e-06
                                                                       TAX
                                                                                   5.214237e-04
                                    TAX
                                               1.099120e-03
TAX
         1.111637e-03
                                                                       PTRATTO 9.235063e-13
                                     PTRATIO 1.099178e-12
PTRATTO
         1.308835e-12
                                                                                   5.565743e-04
                                               5.444689e-04
         5.728592e-04
                                                                       LSTAT
                                                                                   2.140586e-25
                                               2.569688e-25
                                    LSTAT
LSTAT
         7.776912e-23
                                    dtype: float64
                                                                       dtype: float64
dtype: float64
                                    0.7379887092915616
                                                                       0.0015514692639118284
0.9582293092057567
                                    INDUS
AGE
                                                                       CHAS
```

['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']

['CRIM', 'ZN', 'CHAS', 'NOX', 'RM', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

Recursive Feature Elimination (RFE)

- Supervised
- Recursively prunes the number of features until the desired number of features is reached
- Needs feature scaling
- Works for both continuous and one hot encoded features
- Works for both regression and classification
- Model examples: any model that has either coef_ or featyre_importances_ attribute

Recursive Feature Elimination (RFE)

Possible optimum number of features: 11 Score with 11 features: 0.675177

Score

- 1 0.521805
- 3 0.598559
- 2 0.606979
- 4 0.618632
- 6 0.628443
- 5 0.630139
- 7 0.641448
- 8 0.647980
- 9 0.655982
- 10 0.663581
- 12 0.673230
- 13 0.673383
- 11 0.675177

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

Embedded Method

- Supervised machine learning algorithms that perform feature selection automatically
- Needs feature scaling
- Works for both continuous and one hot encoded features
- Works for both regression and classification

Embedded Method

```
coef = pd.Series(reg.coef_, index = df.drop('MEDV', axis=1).columns)
print("Lasso picked", str(sum(coef != 0)), "variables and eliminated the other", str(sum(coef == 0)), "variables")
```

Lasso picked 12 variables and eliminated the other 1 variables

- Why to apply dimensionality reduction?
- Models overview
- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - PCA vs LDA
- Feature Selection
 - Filter Method
 - Variance Threshold
 - Chi-Squared Test
 - Correlation Threshold
 - Wrapper Method
 - Backward Elimination
 - Recursive Feature Elimination (RFE)
 - Embedded Method
- Final thoughts

Final thoughts

- Filter method is less accurate
- Backward Elimination performs poorly
- Wrapper and Embedded methods give more accurate results but are compututionally expensive, these methods are suited when you have lesses features (about 20)

Final thoughts

	Feature	Variance	Chi-Squared	Correlation	Backward	RFE	Lasso	Total
1	TAX	True	True	True	True	True	True	6
2	PTRATIO	True	True	True	True	True	True	6
3	LSTAT	True	True	True	True	True	True	6
4	ZN	True	True	False	True	True	True	5
5	RM	True	True	False	True	True	True	5
6	RAD	True	True	False	True	True	True	5
7	NOX	True	True	False	True	True	True	5
8	DIS	True	True	False	True	True	True	5
9	CRIM	False	True	False	True	True	True	4
10	CHAS	True	False	False	True	True	True	4
11	В	True	False	False	True	True	True	4
12	INDUS	True	True	False	False	False	True	3
13	AGE	True	True	False	False	False	False	2