Feuille 3 - Sous-espaces vectoriels

Soit E un \mathbb{K} -ev (avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). On a :

$$F$$
 est un sev de $E \iff \begin{cases} 0_E \in F \\ \forall \lambda \in \mathbb{K}, \forall x, y \in F, \lambda x + y \in F \end{cases}$

Si de plus, G et H sont deux sev de E, on a :

Solit deux sev de
$$E$$
, on a:

$$E = F \oplus G \iff \begin{cases} F \cap G = \{0\} \text{ et } E = F + G \\ \forall x \in E, \exists (x_F, x_G) \in F \times G, x = x_F + x_G \\ \iff \forall x \in E, \exists! (x_F, x_G) \in F \times G, x = x_F + x_G \end{cases}$$

Exercice 1:

Soit E l'ensemble des fonctions continues de \mathbb{R} et $a \in E$. Déterminer si les parties suivantes de E sont des sous-espaces vectoriels :

$$E_1 = \{ y \in E \mid y' + a(x)y = 0 \}$$
 $E_2 = \{ y \in E \mid y' + a(x)y = x \}$

Soient maintenant $E=\mathbb{R}[X]$ et $n\in\mathbb{N}$. L'ensemble $\{P\in E\mid \deg(P)=n\}$ est-il un sousespace vectoriel de E ? De même, est-ce que l'ensemble $\{P\in E\mid \deg(P)\leq n\}$ est un sousespace vectoriel de E ?

Exercice 2:

Soient $E = \mathcal{C}(\mathbb{R}, \mathbb{R})$ et $n \in \mathbb{N}$. Pour tout $k \in [1, n]$, on pose $\alpha_k \in \mathbb{R}$ tels que les α_i sont tous différents et on définit $f_{\alpha_k} \in E$ définie par $\forall x \in \mathbb{R}$, $f_{\alpha_k}(x) = e^{\alpha_k x}$

Montrer que la famille $(f_{\alpha_k})_{k \in [1,n]}$ est libre dans E.

Exercice 3:

L'ensemble $D = \{(x, y) \in \mathbb{R}^2 \mid (x + y)(x - 2y) = 0\}$ est-il un sous-espace vectoriel de \mathbb{R}^2 ?

Exercice 4:

Soit $E = \mathcal{C}(\mathbb{R}, \mathbb{R})$. Soit F l'ensemble des fonctions π -périodiques, et G l'ensemble des fonctions convergeant vers 0 en $+\infty$.

- 1) Montrer que F et G sont des sous-espaces vectoriels de E.
- 2) Montrer que $F \cap G = \{0_E\}$.
- 3) Montrer que F et G ne sont pas supplémentaires dans E. (On pourra par exemple considérer la fonction identité).