RIPRIS

10/522537

1

DT05 Rec'd PCT/PTO 2 7 JAN 2005

DESCRIPTION

ANISOTROPICALLY CONDUCTIVE CONNECTOR, PROBE MEMBER, AND WAFER INSPECTION APPARATUS AND WAFER INSPECTION METHOD

5

TECHNICAL FIELD

The present invention relates to an anisotropically conductive connector suitable for use in conducting electrical inspection of a plurality of integrated circuits 10 formed on a wafer in a state of the wafer, a probe member equipped with this anisotropically conductive connector, a wafer inspection apparatus equipped with this probe member, and a wafer inspection method using this probe member, and particularly to an anisotropically conductive connector suitable for use in conducting electrical inspection of 15 integrated circuits, which are formed on a wafer, a diameter of which is, for example, 8 inches or greater and a total number of electrodes to be inspected in the integrated circuits formed thereon is at least 5,000, in a 20 state of the wafer, a probe member equipped with this anisotropically conductive connector, a wafer inspection apparatus equipped with this probe member, and a wafer inspection method using this probe member.

25

BACKGROUND ART

In the production process of semiconductor integrated circuit devices, after a great number of integrated

circuits are formed on a wafer formed of, for example, silicon, each of these integrated circuits is generally subjected to a probe test that basic electrical properties thereof are inspected, thereby sorting defective integrated circuits. This wafer is then cut, thereby forming semiconductor chips. Such semiconductor chips are contained and sealed in respective proper packages. Each of the packaged semiconductor integrated circuit devices is further subjected to a burn-in test that electrical properties thereof are inspected under a high-temperature environment, thereby sorting semiconductor integrated circuit devices having latent defects.

In such electrical inspection of integrated circuits, such as the probe test or the burn-in test, a probe member for electrically connecting each of electrodes to be inspected in an object of inspection to a tester is used. As such a probe member, is known a member composed of a circuit board for inspection, on which inspection electrodes have been formed in accordance with a pattern corresponding to a pattern of electrodes to be inspected, and an anisotropically conductive elastomer sheet arranged on this circuit board for inspection.

15

20

As such anisotropically conductive elastomer sheets, those of various structures have heretofore been known.

25 For example, Japanese Patent Application Laid-Open No.

93393/1976 discloses an anisotropically conductive elastomer sheet (hereinafter referred to as "dispersion")

type anisotropically conductive elastomer sheet") obtained by uniformly dispersing metal particles in an elastomer, and Japanese Patent Application Laid-Open No. 147772/1978 discloses an anisotropically conductive elastomer sheet (hereinafter referred to as "uneven distribution type anisotropically conductive elastomer sheet") obtained by unevenly distributing conductive magnetic particles in an elastomer to form a great number of conductive parts extending in a thickness-wise direction thereof and an insulating part for mutually insulating them. Further, Japanese Patent Application Laid-Open No. 250906/1986 discloses an uneven distribution type anisotropically conductive elastomer sheet with which, a difference in level defined between the surface of each conductive part and an insulating part is formed.

In the uneven distribution type anisotropically conductive elastomer sheet, since the conductive parts are formed in accordance with a pattern corresponding to a pattern of electrodes to be inspected of an integrated circuit to be inspected, it is advantageous compared with the dispersion type anisotropically conductive elastomer sheet in that electrical connection between electrodes can be achieved with high reliability even to an integrated circuit small in the arrangement pitch of electrodes to be inspected, i.e., center distance between adjacent electrodes to be inspected.

In such an uneven distribution type anisotropically

conductive elastomer sheet, it is necessary to hold and fix it in a particular positional relation to a circuit board for inspection and an object of inspection in an electrically connecting operation to them.

Sheet is flexible and easy to be deformed, and so it is low in handling property. In addition, with the miniaturization or high-density wiring of electric products in recent years, integrated circuit devices used therein tend to increase in number of electrodes and arrange electrodes at a high density as the arrangement pitch of the electrodes becomes smaller. Therefore, the positioning and the holding and fixing of the uneven distribution type anisotropically conductive elastomer sheet are going to be difficult upon its electrical connection to electrodes to be inspected of the object of inspection.

In the burn-in test on the other hand, there is a problem that even when the necessary positioning, and holding and fixing of the uneven distribution type anisotropically conductive elastomer sheet to an integrated circuit device has been realized once, positional deviation between conductive parts of the uneven distribution type anisotropically conductive elastomer sheet and electrodes to be inspected of the integrated circuit device occurs when they are subjected to thermal hysteresis by temperature change, since coefficient of thermal expansion is greatly different between a material (for example,

20

25

silicon) making up the integrated circuit device that is the object of inspection, and a material (for example, silicone rubber) making up the uneven distribution type anisotropically conductive elastomer sheet, as a result, the electrically connected state is changed, and thus the stably connected state is not retained.

5

10

15

20

25

In order to solve such a problem, an anisotropically conductive connector composed of a metal-made frame plate having an opening and an anisotropically conductive sheet arranged in the opening of this frame plate and supported at its peripheral edge by an opening edge about the frame plate has been proposed (see Japanese Patent Application Laid-Open No. 40224/1999).

This anisotropically conductive connector is generally produced in the following manner.

As illustrated in Fig. 23, a mold for molding an anisotropically conductive elastomer sheet composed of a top force 80 and a bottom force 85 making a pair therewith is provided, a frame plate 90 having an opening 91 is arranged in alignment in this mold, and a molding material with conductive particles exhibiting magnetism dispersed in a polymeric substance-forming material, which will become an elastic polymeric substance by a curing treatment, is fed into a region including the opening 91 of the frame plate 90 and an opening edge thereabout to form a molding material layer 95. Here, the conductive particles P contained in the molding material layer 95 are in a state

dispersed in the molding material layer 95.

Both top force 80 and bottom force 85 in the mold respectively have molding surfaces composed of a plurality of ferromagnetic substance layers 81 or 86 formed in

5 accordance with a pattern corresponding to a pattern of conductive parts of an anisotropically conductive elastomer sheet to be molded and non-magnetic substance layers 82 or 87 formed at other portions than the portions at which the ferromagnetic substance layers 81 or 86 have been

10 respectively formed, and are arranged in such a manner that their corresponding ferromagnetic substance layers 81 and 86 oppose to each other.

A pair of, for example, electromagnets are then arranged on an upper surface of the top force 80 and a lower surface of the bottom force 85, and the 15 electromagnets are operated, thereby applying a magnetic field having higher intensity at portions between ferromagnetic substance layers 81 of the top force 80 and their corresponding ferromagnetic substance layers 86 of 20 the bottom force 85, i.e., portions to become conductive parts, than the other portions, to the molding material layer 95 in the thickness-wise direction of the molding material layer 95. As a result, the conductive particles P dispersed in the molding material layer 95 are gathered at 25 the portions where the magnetic field having the higher intensity is applied in the molding material layer 95, i.e., the portions between the ferromagnetic substance layers 81

of the top force 80 and their corresponding ferromagnetic substance layers 86 of the bottom force 85, and further oriented so as to align in the thickness-wise direction of the molding material layer. In this state, the molding material layer 95 is subjected to a curing treatment, whereby an anisotropically conductive elastomer sheet composed of a plurality of conductive parts, in which the conductive particles P are contained in a state oriented so as to align in the thickness-wise direction, and an insulating part for mutually insulating these conductive parts is molded in a state that its peripheral edge has been supported by the opening edge about the frame plate, thereby producing an anisotropically conductive connector.

5

10

According to such an anisotropically conductive 15 connector, it is hard to be deformed and easy to handle because the anisotropically conductive elastomer sheet is supported by the metal-made frame plate, and a positioning mark (for example, a hole) is formed in the frame plate in advance, whereby the positioning and the holding and fixing 20 to an integrated circuit device can be easily conducted upon an electrically connecting operation to the integrated circuit device. In addition, a material low in coefficient of thermal expansion is used as a material for forming the frame plate, whereby the thermal expansion of the 25 anisotropically conductive sheet is restrained by the frame plate, so that positional deviation between the conductive parts of the uneven distribution type anisotropically

conductive elastomer sheet and electrodes to be inspected of the integrated circuit device is prevented even when they are subjected to thermal hysteresis by temperature change. As a result, a good electrically connected state can be stably retained.

5

10

25

By the way, in a probe test conducted for integrated circuits formed on a wafer, a method that a wafer is divided into a plurality of areas, in each of which 16 or 32 integrated circuits among a great number of integrated circuits have been formed, a probe test is collectively performed on all the integrated circuits formed in an area, and the probe test is successively performed on the integrated circuits formed in other areas has heretofore been adopted.

In recent years, there has been a demand for collectively performing a probe test on, for example, 64 or 124 integrated circuits, or all integrated circuits among a great number of integrated circuits formed on a wafer for the purpose of improving inspection efficiency and reducing inspection cost.

In a burn-in test on the other hand, it takes a long time to individually conduct electrical inspection of a great number of integrated circuit devices because each integrated circuit device that is an object of inspection is fine, and its handling is inconvenient, whereby inspection cost becomes considerably high. From such reasons, there has been proposed a WLBI (Wafer Lebel Burn-

in) test in which the burn-in test is collectively performed on a great number of integrated circuits formed on a wafer in the state of the wafer.

When a wafer that is an object of inspection is of large size of, for example, at least 8 inches in diameter, and the number of electrodes to be inspected formed thereon is, for example, at least 5,000, particularly at least 10,000, however, the following problems are involved when the above-described anisotropically conductive connector is applied as a probe member for the probe test or WLBI test, since a pitch between electrodes to be inspected in each integrated circuit is extremely small.

Namely, in order to inspect a wafer having a diameter of, for example, 8 inches (about 20 cm), it is necessary to use an anisotropically conductive elastomer sheet having a diameter of about 8 inches as an anisotropically conductive connector. However, such an anisotropically conductive elastomer sheet is large in the whole area, but each conductive part is fine, and the area proportion of the surfaces of the conductive parts to the whole surface of the anisotropically conductive elastomer sheet is low. It is therefore extremely difficult to surely produce such an anisotropically conductive elastomer sheet. Accordingly, yield is extremely lowered in the production of the anisotropically conductive elastomer sheet. As a result, the production cost of the anisotropically conductive elastomer sheet increases, and in turn, the inspection cost

increases.

5

10

15

20

25

When the above-described anisotropically conductive connector is used as a prove member for the probe test or WLBI test of a wafer, the following problems are involved.

In the probe test, the method that a wafer is divided into two or more areas, and the probe test is collectively performed on integrated circuits formed in each of the divided areas is used as described above. When the probe test is performed on integrated circuits formed at a high degree of integration on a wafer having a diameter of 8 inches or 12 inches, it is required to conduct a step of an inspection process in plural times as to one wafer.

Accordingly, in order to conduct the probe test on a great number of wafers, the anisotropically conductive elastomer sheet used is required to have high durability in repeated use.

In the WLBI test, on the other hand, the anisotropically conductive elastomer sheet are, at the conductive parts thereof, held with pressure by electrodes to be inspected in a wafer that is an object of inspection and inspection electrodes of the circuit board for inspection, and exposed to a high-temperature environment for a long period of time in this state. Accordingly, the anisotropically conductive elastomer sheet is required to have high durability even when it is used repeatedly under such severe conditions.

From such a point of view, those having durability

are selected as materials for the anisotropically conductive elastomer sheet, i.e., an elastic polymeric substance and conductive particles, used in the probe test or WLBI test of a wafer.

5 Even when those having durability are selected as materials for the anisotropically conductive elastomer sheet, individual products actually obtained often become low in durability. The reason for it is considered to be attributable to the fact that the projected height, the 10 oriented state of the conductive particles, the proportion of the conductive particles, and the like vary in each of the conductive parts of the anisotropically conductive elastomer sheet. As a means for investigating the projected height, the oriented state of the conductive 15 particles, the proportion of the conductive particles, and the like in the respective conductive parts without damaging the anisotropically conductive elastomer sheet, there is nothing other than a means of visual judging. Such means involves a problem that not only objective 20 judgment becomes impossible, but also production cost of the anisotropically conductive elastomer sheet increases because the operation itself is extremely complicated. addition, since the durability of the anisotropically conductive elastomer sheet cannot be judged by an ordinary 25 conduction test, the degree of the durability is clarified for the first time, in reality, by using the anisotropically conductive elastomer sheet.

The coefficient of linear thermal expansion of a material making up the wafer, for example, silicon is about $3.3 \times 10^{-6}/\mathrm{K}$. On the other hand, the coefficient of linear thermal expansion of a material making up the anisotropically conductive elastomer sheet, for example, silicone rubber is about $2.2 \times 10^{-4}/\mathrm{K}$. Accordingly, when a wafer and an anisotropically conductive elastomer sheet each having a diameter of 20 cm at 25°C are heated from 20°C to 120°C, a change of the wafer in diameter is only 0.0066 cm in theory, but a change of the anisotropically conductive elastomer sheet in diameter amounts to 0.44 cm.

When a great difference is created between the wafer and the anisotropically conductive elastomer sheet in the absolute quantity of thermal expansion in a plane direction as described above, it is extremely difficult to prevent positional deviation between electrodes to be inspected in the wafer and the conductive parts in the anisotropically conductive elastomer sheet upon the WLBI test even when the peripheral edge of the anisotropically conductive elastomer sheet is fixed by a frame plate having an equivalent coefficient of linear thermal expansion to the coefficient of linear thermal expansion to the wafer.

As probe members for the WLBI test, are known those in which an anisotropically conductive elastomer sheet is

25 fixed on to a circuit board for inspection composed of, for example, a ceramic having an equivalent coefficient of linear thermal expansion to the coefficient of linear

thermal expansion of the wafer (see, for example, Japanese Patent Application Laid-Open Nos. 231019/1995 and 5666/1996, etc.). In such a probe member, as means for fixing the anisotropically conductive elastomer sheet to the circuit board for inspection, a means that peripheral portions of the anisotropically conductive elastomer sheet are mechanically fixed by, for example, screws or the like, a means that it is fixed with an adhesive or the like, and the like are considered.

5

However, in the means that the peripheral portions of the anisotropically conductive elastomer sheet are fixed by the screws or the like, it is extremely difficult to prevent positional deviation between the electrodes to be inspected in the wafer and the conductive parts in the anisotropically conductive elastomer sheet for the same reasons as the means of fixing to the frame plate as described above.

On the other hand, in the means of fixing with the adhesive, it is necessary to apply the adhesive only to the insulating part in the anisotropically conductive elastomer sheet in order to surely achieve electrical connection to the circuit board for inspection. Since the anisotropically conductive elastomer sheet used in the WLBI test is small in the arrangement pitch of the conductive parts, and a clearance between adjacent conductive parts is small, however, it is extremely difficult in fact to do so. In the means of fixing with the adhesive also, it is

impossible to replace only the anisotropically conductive elastomer sheet with a new one when the anisotropically conductive elastomer sheet suffers from trouble, and so it is necessary to replace the whole probe member including the circuit board for inspection. As a result, increase in inspection cost is incurred.

When the probe test or WLBI test of a wafer is conducted by using the anisotropically conductive connector, the anisotropically conductive elastomer sheet thereof is held with pressure by the wafer that is an object of inspection and the circuit board for inspection, whereby the conductive parts formed by an elastic polymeric substance are deformed under pressure, thereby achieving electrical connection between electrodes to be inspected of the wafer, which is the object of inspection, and the inspection electrodes of the circuit board for inspection.

In the electrical connection between electrodes to be inspected of the wafer, which is the object of inspection, and the inspection electrodes of the circuit board for inspection, when the projected height of the respective electrodes to be inspected and the projected height of the respective inspection electrodes vary, pressurizing force applied to the respective conductive parts in the anisotropically conductive connector varies, whereby, in the respective conductive parts, the degree of deformation under pressure varies according to the intensity of the pressurizing force applied to the respective conductive

parts, so that the electrical connection between the electrodes to be inspected and the inspection electrodes of the circuit board for inspection is achieved. Such function of the anisotropically conductive connector will hereinafter be referred to as "level difference-absorbing ability".

Since the level difference-absorbing ability of the anisotropically conductive connector is created by the tendency to deform under pressure that the elastic polymeric substance forming the conductive parts has, greater pressurizing force is required for achieving electrical connection to all the electrodes to be inspected as a difference in projected height between the respective electrodes to be inspected and a difference in projected height between the respective inspection electrodes become greater. When the difference in projected height between the respective electrodes to be inspected and the difference in projected height between the respective inspection electrodes are too great, it is difficult to achieve the electrical connection to all the electrodes to be inspected.

10

15

20

25

The projected height of individual conductive parts formed by an elastic polymeric substance in an anisotropically conductive connector may vary in some cases.

Since an anisotropically conductive connector great in the difference in projected height between respective conductive parts has low level difference-absorbing ability,

considerably great pressurizing force is required for achieving electrical connection, by such anisotropically conductive connector, to all electrodes to be inspected of a wafer that is an object of inspection, or difficulty is encountered on the achievement of electrical connection to all the electrodes to be inspected.

5

When a wafer that is an object of inspection is of large size of, for example, at least 8 inches in diameter, and the number of electrodes to be inspected formed thereon is, for example, at least 5,000, particularly at least 10 10,000, an anisotropically conductive connector used in the inspection of such a wafer is required to have an extremely great number of conductive parts. Therefore, the anisotropically conductive connector for inspecting such a 15 wafer is pressurized by great pressurizing force for achieving electrical connection to all the electrodes to be inspected upon inspection. In order to achieve the electrical connection to all the electrodes to be inspected, still greater pressurizing force is required as a 20 difference in projected height between the respective electrodes to be inspected and a difference in projected height between the respective inspection electrodes become greater.

As a probe member for wafer inspection, is known that

25 obtained by arranging an anisotropically conductive

connector and a sheet-like connector in this order on a

circuit board for inspection. The sheet-like connector in

this probe member have projected surface electrodes (bumps) formed by plating, and the surface electrodes are brought into contact with respective electrodes to be inspected, thereby achieving electrical connection to the electrodes to be inspected. Since the surface electrodes in such a sheet-like connector vary in the projected height thereof, and the difference in projected height between the respective surface electrodes is comparatively great, the level difference-absorbing ability of the anisotropically conductive connector becomes extremely important in the probe member having such a sheet-like connector.

5

10

In the inspection of a wafer having a large area of 8 inches or greater in diameter, in which the number of electrodes to be inspected is extremely great, a large-15 sized mechanism is required as a pressurizing mechanism installed in a wafer inspection apparatus for inspecting the wafer when the pressurizing force required for achieving the electrical connection to all the electrodes to be inspected becomes great. As a result, the whole 20 wafer inspection apparatus becomes a large scale. Therefore, it is desired that the probe member used in the wafer inspection apparatus can achieve electrical inspection to all the electrodes to be inspected by small pressurizing force. Accordingly, it is desired that the 25 anisotropically conductive connector used in such a probe member be little in the difference in projected height between the respective conductive parts and high in the

level difference-absorbing ability and can achieve the electrical inspection to all the electrodes to be inspected by small pressurizing force.

DISCLOSURE OF THE INVENTION

5

10

The present invention has been made on the basis of the foregoing circumstances and has as its first object the provision of an anisotropically conductive connector, by which good conductivity is retained over a long period of time even when it is used repeatedly over many times, or even when it is used repeatedly under a high-temperature environment.

A second object of the present invention is to provide an anisotropically conductive connector suitable 15 for use in conducting electrical inspection of a plurality of integrated circuits formed on a wafer in a state of the wafer, by which positioning, and holding and fixing to the wafer can be conducted with ease even when the wafer, which is an object of inspection, has a large area of, for 20 example, 8 inches or greater in diameter, and the pitch of electrodes to be inspected in the integrated circuits formed is small, and moreover good conductivity is retained over a long period of time even when it is used repeatedly over many times, or even when it is used repeatedly under a 25 high-temperature environment.

A third object of the present invention is to provide an anisotropically conductive connector that a good

electrically connected state is stably retained even with environmental changes such as thermal hysteresis by temperature change, in addition to the above objects.

A fourth object of the present invention is to

5 provide a probe member, by which positioning, and holding and fixing to a wafer, which is an object of inspection, can be conducted with ease even when the wafer has a large area of, for example, 8 inches or greater in diameter, and the pitch of electrodes to be inspected in the integrated circuits formed is small, and moreover good conductivity is retained over a long period of time, thermal durability is high, and long service life is achieved even when it is used repeatedly over many times, or even when it is used repeatedly under a high-temperature environment.

A fifth object of the present invention is to provide a wafer inspection apparatus and a wafer inspection method for conducting electrical inspection of a plurality of integrated circuits formed on a wafer in a state of the wafer using the above probe member.

15

A sixth object of the present invention is to provide an anisotropically conductive connector and a probe member, which are high in durability in repeated use when a probe test is performed on integrated circuits formed at a high degree of integration on a wafer having a diameter of 8 inches or 12 inches.

A seventh object of the present invention is to provide an anisotropically conductive connector and a probe

member, which are high in durability in repeated use when a probe test is performed on integrated circuits having projected electrodes and formed at a high degree of integration on a wafer having a large area.

5

10

An eighth object of the present invention is to provide an anisotropically conductive connector high in level difference—absorbing ability and, by which a probe member and a wafer inspection apparatus that can achieve electrical connection to all electrodes to be inspected by small pressurizing force even in inspection of a wafer having a large area of, for example, 8 inches or greater in diameter and at least 5,000 electrodes to be inspected can be constructed.

According to the present invention, there is thus

15 provided an anisotropically conductive connector comprising
an elastic anisotropically conductive film, in which a
plurality of conductive parts for connection extending in a
thickness-wise direction of the film have been formed,

wherein the elastic anisotropically conductive film

20 has initial properties that supposing that the total number
of the conductive parts for connection is Y, an electric
resistance of the conductive part for connection in a state
that a load of Y x 1 g has been applied to the elastic
anisotropically conductive film in a thickness-wise

25 direction thereof is R_{1g}, and an electric resistance of the
conductive part for connection in a state that a load of Y
x 6 g has been applied to the elastic anisotropically

conductive film in the thickness-wise direction is R_{6g} , the number of conductive parts for connection that a value of R_{1g} is lower than 1 Ω is at least 90% of the total number of the conductive parts for connection, the number of conductive parts for connection that a value of R_{6g} is lower than 0.1 Ω is at least 95% of the total number of the conductive parts for connection, and the number of conductive parts for connection that a value of R_{6g} is at least 0.5 Ω is at most 1% of the total number of the conductive parts for connection.

According to the present invention, there is also provided an anisotropically conductive connector suitable for use in conducting electrical inspection of each of a plurality of integrated circuits formed on a wafer in a state of the wafer, which comprises:

a frame plate, in which a plurality of anisotropically conductive film-arranging holes each extending in a thickness-wise direction of the frame plate have been formed correspondingly to electrode regions, in which electrodes to be inspected have been arranged, in all or part of the integrated circuits formed on the wafer, which is an object of inspection, and a plurality of elastic anisotropically conductive films arranged in the respective anisotropically conductive film-arranging holes in this frame plate and each supported by the peripheral edge about the anisotropically conductive film-arranging hole,

wherein each of the elastic anisotropically
conductive films is composed of a functional part having a
plurality of conductive parts for connection arranged
correspondingly to the electrodes to be inspected in the

integrated circuits formed on the wafer, which is the
object of inspection, containing conductive particles
exhibiting magnetism at a high density and extending in the
thickness-wise direction of the film and an insulating part
mutually insulating these conductive parts for connection,

and a part to be supported integrally formed at a
peripheral edge of the functional part and fixed to the
peripheral edge about the anisotropically conductive filmarranging hole in the frame plate, and

wherein the elastic anisotropically conductive film 15 has initial properties that supposing that the total number of the conductive parts for connection is Y, an electric resistance of the conductive part for connection in a state that a load of Y x 1 g has been applied to the elastic anisotropically conductive film in a thickness-wise 20 direction thereof is R_{1q} , and an electric resistance of the conductive part for connection in a state that a load of Y x 6 g has been applied to the elastic anisotropically conductive film in the thickness-wise direction is R6g, the number of conductive parts for connection that a value of R_{1g} is lower than 1 Ω is at least 90% of the total number 25 of the conductive parts for connection, the number of conductive parts for connection that a value of R_{6g} is

lower than 0.1 Ω is at least 95% of the total number of the conductive parts for connection, and the number of conductive parts for connection that a value of R_{6g} is at least 0.5 Ω is at most 1% of the total number of the conductive parts for connection.

5

15

20

25

In the anisotropically conductive connector according to the present invention, the coefficient of linear thermal expansion of the frame plate may preferably be at most 3 x $10^{-5}/K$.

According to the present invention, there is further provided a probe member suitable for use in conducting electrical inspection of each of a plurality of integrated circuits formed on a wafer in a state of the wafer, which comprises:

a circuit board for inspection, on the surface of which inspection electrodes have been formed in accordance with a pattern corresponding to a pattern of electrodes to be inspected of the integrated circuits formed on the wafer, which is an object of inspection, and the above-described anisotropically conductive connector arranged on the surface of the circuit board for inspection.

In the probe member according to the present invention, it may be preferable that the coefficient of linear thermal expansion of the frame plate in the anisotropically conductive connector be at most 3 x 10^{-5} /K, and the coefficient of linear thermal expansion of a base material making up the circuit board for inspection be at

most 3 x $10^{-5}/K$.

5

20

25

In the probe member, a sheet-like connector composed of an insulating sheet and a plurality of electrode structures each extending through in a thickness-wise direction of the insulating sheet and arranged in accordance with a pattern corresponding to the pattern of the electrodes to be inspected may be arranged on the anisotropically conductive connector.

According to the present invention, there is still

further provided a wafer inspection apparatus for

conducting electrical inspection of each of a plurality of

integrated circuits formed on a wafer in a state of the

wafer, which comprises the probe member described above,

wherein electrical connection to the integrated circuits

formed on the wafer, which is an object of inspection, is

achieved through the probe member.

According to the present invention, there is yet still further provided a wafer inspection method comprising electrically connecting each of a plurality of integrated circuits formed on a wafer to a tester through the probe member described above to perform electrical inspection of the integrated circuits formed on the wafer.

According to the anisotropically conductive connector of the present invention, the elastic anisotropically conductive film has the specific initial properties, so that the conductive parts for connection are prevented from markedly increasing the electric resistance thereof, and

the necessary conductivity is retained over a long period of time even when it is used repeatedly over many times, or even when it is used repeatedly under a high-temperature environment.

According to the anisotropically conductive connector for wafer inspection, in the frame plate, a plurality of the anisotropically conductive film-arranging holes are formed correspondingly to the electrode regions, in which electrodes to be inspected have been formed, in all or part of the integrated circuits formed on the wafer, which is the object of inspection, and the elastic anisotropically conductive film is arranged in each of the anisotropically conductive film-arranging holes, so that it is hard to be deformed and easy to handle, and the positioning and the holding and fixing to the wafer can be easily conducted in an electrically connecting operation to the wafer.

Since the elastic anisotropically conductive film arranged in each of the anisotropically conductive film-arranging holes in the frame plate may be small in area, the individual elastic anisotropically conductive films are easy to be formed. In addition, since the elastic anisotropically conductive film small in area is little in the absolute quantity of thermal expansion in a plane direction of the elastic anisotropically conductive film even when it is subjected to thermal hysteresis, the thermal expansion of the elastic anisotropically conductive film in the plane direction is surely restrained by the

frame plate by using a material having a low coefficient of linear thermal expansion as that for forming the frame plate. Accordingly, a good electrically connected state can be stably retained even when the WLBI test is performed on a large-area wafer.

5

10

15

20

25

According to the anisotropically conductive connector, a difference in projected height between the respective conductive parts for connection is small, the level difference-absorbing ability is high, and electrical connection to all electrodes to be inspected in a wafer, which is an object of inspection, is achieved by small pressurizing force.

According to the probe member and wafer inspection apparatus constructed by using the anisotropically conductive connector high in level difference-absorbing ability, electrical connection to all electrodes to be inspected can be achieved by small pressurizing force in the inspection of a wafer having a large area of a diameter of 8 inches or greater and at least 5,000 electrodes to be inspected.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a plan view illustrating an exemplary anisotropically conductive connector according to the present invention.

Fig. 2 is a plan view illustrating, on an enlarged scale, a part of the anisotropically conductive connector

shown in Fig. 1.

5

10

20

25

Fig. 3 is a plan view illustrating, on an enlarged scale, an elastic anisotropically conductive film in the anisotropically conductive connector shown in Fig. 1.

Fig. 4 is a cross-sectional view illustrating, on an enlarged scale, the elastic anisotropically conductive film in the anisotropically conductive connector shown in Fig. 1.

Fig. 5 is a cross-sectional view illustrating the construction of an apparatus for measuring an electric resistance value R.

Fig. 6 is a cross-sectional view illustrating a state that a molding material has been applied to a mold for molding elastic anisotropically conductive films to form molding material layers.

Fig. 7 is a cross-sectional view illustrating, on an enlarged scale, a part of the mold for molding elastic anisotropically conductive films.

Fig. 8 is a cross-sectional view illustrating a state that a frame plate has been arranged through spacers between a top force and a bottom force in the mold shown in Fig. 6.

Fig. 9 is a cross-sectional view illustrating a state that molding material layers of the intended form have been formed between the top force and the bottom force in the mold.

Fig. 10 is a cross-sectional view illustrating, on an enlarged scale, the molding material layer shown in Fig. 9.

Fig. 11 is a cross-sectional view illustrating a state that a magnetic field having a strength distribution has been applied to the molding material layer shown in Fig. 10 in a thickness-wise direction thereof.

Fig. 12 is a cross-sectional view illustrating the construction of an exemplary wafer inspection apparatus using the anisotropically conductive connector according to the present invention.

Fig. 13 is a cross-sectional view illustrating the construction of a principal part of an exemplary probe member according to the present invention.

Fig. 14 is a cross-sectional view illustrating the construction of another exemplary wafer inspection apparatus using the anisotropically conductive connector according to the present invention.

15

Fig. 15 is a plan view illustrating, on an enlarged scale, an elastic anisotropically conductive film in an anisotropically conductive connector according to another embodiment of the present invention.

Fig. 16 is a plan view illustrating, on an enlarged scale, an elastic anisotropically conductive film in an anisotropically conductive connector according to a further embodiment of the present invention.

Fig. 17 is a top view of a wafer for test used in 25 Examples.

Fig. 18 illustrates a position of a region of electrodes to be inspected in an integrated circuit formed

on the wafer for test shown in Fig. 17.

Fig. 19 illustrates the electrodes to be inspected in the integrated circuit formed on the wafer for test shown in Fig. 17.

Fig. 20 is a top view of a frame plate produced in Example.

Fig. 21 illustrates, on an enlarged scale, a part of the frame plate shown in Fig. 20.

Fig. 22 illustrates a molding surface of a mold 10 produced in Example on an enlarged scale.

Fig. 23 is a cross-sectional view illustrating a state that a frame plate has been arranged within a mold in a process for producing a conventional anisotropically conductive connector, and moreover a molding material layer has been formed.

[Description of Characters]

- 1 Probe member, 2 Anisotropically conductive connector,
- 3 Pressurizing plate, 4 Wafer mounting table,
- 5 Heater, 6 Wafer, 7 Electrodes to be inspected,
- 20 10 Frame plate,

15

- 11 Anisotropically conductive film-arranging holes,
- 15 Air circulating holes, 16 Positioning holes,
- 20 Elastic anisotropically conductive films,
- 20A Molding material layers, 21 Functional parts,
- 25 22 Conductive parts for connection,
 - 23 Insulating part, 24 Projected parts,
 - 25 Parts to be supported,

- 26 Conductive parts for non-connection,
- 27 Projected parts,
- 30 Circuit board for inspection,
- 31 Inspection electrodes,
- 5 41 Insulating sheet, 40 Sheet-like connector,
 - 42 Electrode structures, 43 Front-surface electrode parts,
 - 44 Back-surface electrode parts, 45 Short circuit parts,
 - 50 Chamber, 51 Evacuation pipe, 55 O-rings,
 - 60 Mold, 61 Top force, 62 Base plate,
- 10 63 Ferromagnetic substance layers,
 - 64 Non-magnetic substance layers, 64a Recessed parts,
 - 65 Bottom force, 66 Base plate,
 - 67 Ferromagnetic substance layers,
 - 68 Non-magnetic substance layers, 68a Recessed parts,
- 15 69a, 69b Spacers,
 - 71 Cell, 72 Side wall material,
 - 73 Lid material, 73H Through-hole,
 - 74 Magnet, 75 Electrode part,
 - 76 Electric resistance meter,
- 20 80 Top force, 81 Ferromagnetic substance layers,
 - 82 Non-magnetic substance layers,
 - 85 Bottom force, 86 Ferromagnetic substance layers,
 - 87 Non-magnetic substance layers,
 - 90 Frame plate, 91 Opening, 95 Molding material layer
- 25 P Conductive particles.

BEST MODE FOR CARRYING OUT THE INVENTION

The embodiments of the present invention will hereinafter be described in details.

[Anisotropically conductive connector]

Fig. 1 is a plan view illustrating an exemplary

anisotropically conductive connector according to the present invention, Fig. 2 is a plan view illustrating, on an enlarged scale, a part of the anisotropically conductive connector shown in Fig. 1, Fig. 3 is a plan view illustrating, on an enlarged scale, an elastic

anisotropically conductive film in the anisotropically conductive connector shown in Fig. 1, and Fig. 4 is a cross-sectional view illustrating, on an enlarged scale, the elastic anisotropically conductive film in the anisotropically conductive film in the anisotropically conductive shown in Fig. 1.

15

20

25

The anisotropically conductive connector shown in Fig. 1 is that used in conducting electrical inspection of each of, for example, a plurality of integrated circuits formed on a wafer in a state of the wafer and has a frame plate 10 in which a plurality of anisotropically conductive film-arranging holes 11 (indicated by broken lines) each extending through in the thickness-wise direction of the frame plate have been formed as illustrated in Fig. 2. The anisotropically conductive film-arranging holes 11 in this frame plate 10 are formed in accordance with electrode regions, in which electrodes to be inspected have been formed, in all the integrated circuits formed on the wafer that is an object of inspection. Elastic anisotropically

conductive films 20 having conductivity in the thickness—wise direction are arranged in the respective anisotropically conductive film—arranging holes 11 in the frame plate 10 in a state they are each supported by the peripheral edge about the anisotropically conductive film—arranging hole 11 in the frame plate 10 and in a state independent of adjacent anisotropically conductive films 20. In the frame plate 10 of this embodiment are formed air circulating holes 15 for circulating air between the anisotropically conductive connector and a member adjacent thereto when a pressurizing means of a pressure reducing system is used in a wafer inspection apparatus, which will be described subsequently. In addition, positioning holes 16 for positioning to the wafer, which is the object of inspection, and a circuit board for inspection are formed.

Each of the elastic anisotropically conductive films
20 is formed by an elastic polymeric substance and, as
illustrated in Fig. 3, has a functional part 21 composed of
a plurality of conductive parts 22 for connection each
20 extending in the thickness-wise direction (direction
perpendicular to the paper in Fig. 3) of the film and an
insulating part 23 formed around the respective conductive
parts 22 for connection and mutually insulating these
conductive parts 22 for connection. The functional part 21
25 is arranged so as to be located in the anisotropically
conductive film-arranging hole 11 in the frame plate 10.
The conductive parts 22 for connection in the functional

part 21 are arranged in accordance with a pattern corresponding to a pattern of the electrodes to be inspected in the integrated circuit formed on the wafer, which is the object of inspection, and electrically connected to the electrodes to be inspected in the inspection of the wafer.

5

10

15

At a peripheral edge of the functional part 21, a part 25 to be supported, which has been fixed to and supported by the periphery about the anisotropically conductive film-arranging hole 11 in the frame plate 10, is formed integrally and continuously with the functional part 21. More specifically, the part 25 to be supported in this embodiment is shaped in a forked form and fixed and supported in a closely contacted state so as to grasp the periphery about the anisotropically conductive film-arranging hole 11 in the frame plate 10.

In the conductive parts 22 for connection in the functional part 21 of the elastic anisotropically conductive film 20, conductive particles P exhibiting

20 magnetism are contained at high density in a state oriented so as to align in the thickness-wise direction as illustrated in Fig. 4. On the other hand, the insulating part 23 does not contain the conductive particles P at all or scarcely contain them. In this embodiment, the part 25 to be supported in the elastic anisotropically conductive film 20 contains the conductive particles P.

In the embodiment illustrated, projected parts 24

protruding from other surfaces than portions, at which the conductive parts 22 for connection and peripheries thereof are located, are formed at those portions on both sides of the functional part 21 in the elastic anisotropically conductive film 20.

5

The thickness of the frame plate 10 varies according to the material thereof, but is preferably 25 to 600 $\mu\text{m}\,,$ more preferably 40 to 400 $\mu\text{m}\,.$

If this thickness is smaller than 25 μm , the strength 10 required upon use of the resulting anisotropically conductive connector is not achieved, and the anisotropically conductive connector tends to be low in the durability. In addition, such stiffness as the form of the frame plate is retained is not achieved, and the handling 15 property of the anisotropically conductive connector becomes low. If the thickness exceeds 600 μ m on the other hand, the elastic anisotropically conductive films 20 formed in the anisotropically conductive film-arranging holes 11 become too great in thickness, and it may be 20 difficult in some cases to achieve good conductivity in the conductive parts 22 for connection and insulating property between adjacent conductive parts 22 for connection.

The form and size in a plane direction of the anisotropically conductive film-arranging holes 11 in the frame plate 10 are designed according to the size, pitch and pattern of electrodes to be inspected in a wafer that is an object of inspection.

No particular limitation is imposed on a material for forming the frame plate 10 so far as it has such stiffness as the resulting frame plate 10 is hard to be deformed, and the form thereof is stably retained. For example, various kinds of materials such as metallic materials, ceramic materials and resin materials may be used. When the frame plate 10 is formed by, for example, a metallic material, an insulating film may be formed on the surface of the frame plate 10.

5

Specific examples of the metallic material for forming the frame plate 10 include metals such as iron, copper, nickel, chromium, cobalt, magnesium, manganese, molybdenum, indium, lead, palladium, titanium, tungsten, aluminum, gold, platinum and silver, and alloys or alloy steels composed of a combination of at least two of these metals.

Specific examples of the resin material forming the frame plate 10 include liquid crystal polymers and polyimide resins.

20 The frame plate 10 may preferably exhibit magnetism at least at the peripheral portion about the anisotropically conductive film-arranging holes 11 thereof, i.e., a portion supporting the elastic anisotropically conductive film 20 in that the conductive particles P can 25 be caused to be contained with ease in the part 25 to be supported in the elastic anisotropically conductive film 20 by a process which will be described subsequently.

Specifically, this portion may preferably have a saturation magnetization of at least $0.1~\text{Wb/m}^2$. In particular, the whole frame plate 10 may preferably be formed by a magnetic substance in that the frame plate 10 is easy to be produced.

Specific examples of the magnetic substance forming such a frame plate 10 include iron, nickel, cobalt, alloys of these magnetic metals, and alloys or alloy steels of these magnetic metals with any other metal.

5

20

When the anisotropically conductive connector is used in the WLBI test, it is preferable to use a material having a coefficient of linear thermal expansion of at most 3 x 10^{-5} /K, more preferably -1×10^{-7} to 1×10^{-5} /K, particularly preferably 1×10^{-6} to 8×10^{-6} /K as a material for forming the frame plate 10.

Specific examples of such a material include invar alloys such as invar, Elinvar alloys such as Elinvar, and alloys or alloy steels of magnetic metals, such as superinvar, covar and 42 alloy.

In the anisotropically conductive connector according to the present invention, the elastic anisotropically conductive film 20 has initial properties shown in the following (1) to (3).

(1) Supposing that the total number of the conductive parts 22 for connection is Y, and an electric resistance of the conductive part 22 for connection in a state that a load of Y x 1 g has been applied to the elastic anisotropically conductive film 20 in a thickness-wise direction thereof is R_{1g} , the number of conductive parts for connection that a value of R_{1g} is lower than 1 Ω is at least 90% of the total number of the conductive parts for connection.

5

10

If the number of conductive parts for connection that a value of R_{1g} is lower than 1 Ω is less than 90% of the total number of the conductive parts for connection, it is difficult to retain the necessary conductivity when the resulting anisotropically conductive connector is used repeatedly over many times, or when it is used repeatedly under a high-temperature environment.

(2) Supposing that an electric resistance of the conductive part 22 for connection in a state that a load of Y x 6 g has been applied to the elastic anisotropically conductive film 20 in the thickness-wise direction is R_{6g} , the number of conductive parts for connection that a value of R_{6g} is lower than 0.1 Ω is at least 95% of the total number of the conductive parts for connection.

If the number of conductive parts for connection that a value of R_{6g} is lower than 0.1 Ω is less than 95% of the total number of the conductive parts for connection, it is difficult to retain the necessary conductivity when the resulting anisotropically conductive connector is used repeatedly over many times, or when it is used repeatedly under a high-temperature environment.

(3) The number of conductive parts for connection that a value of R_{6g} is at least 0.5 Ω is at most 1%,

preferably at most 0.5%, more preferably at most 0.1%, particularly preferably 0% of the total number of the conductive parts for connection.

If the number of conductive parts for connection that a value of R_{6g} is at least 0.5 Ω is too great, the resulting anisotropically conductive connector cannot be actually used in the inspection of a wafer.

The overall thickness (thickness of the conductive part 22 for connection in the illustrated embodiment) of

10 the elastic anisotropically conductive film 20 is preferably 50 to 2,000 µm, more preferably 70 to 1,000 µm, particularly preferably 80 to 500 µm. When this thickness is 50 µm or greater, an elastic anisotropically conductive film 20 having sufficient strength is provided with

15 certainty. When this thickness is 2,000 µm or smaller on the other hand, conductive parts 22 for connection having necessary conductive properties are provided with certainty.

The projected height of each projected part 24 is preferably at least 10% in total of the thickness in the projected part 24, more preferably at least 20%. Projected parts 24 having such a projected height are formed, whereby the conductive parts 22 for connection are sufficiently compressed by small pressurizing force, so that good conductivity is surely achieved.

20

25 The projected height of the projected part 24 is preferably at most 100%, more preferably at most 70% of the shortest width or diameter of the projected part 24.

Projected parts 24 having such a projected height are formed, whereby the projected parts are not buckled when they are pressurized, so that the prescribed conductivity is surely achieved.

The thickness (thickness of one of the forked portions in the illustrated embodiment) of the part 25 to be supported is preferably 5 to 250 μ m, more preferably 10 to 150 μ m, particularly preferably 15 to 100 μ m.

5

10

It is not essential to form the part 25 to be supported in the forked form, and it may be fixed to only one surface of the frame plate 10.

The elastic polymeric substance forming the elastic anisotropically conductive films 20 is preferably a heat-resistant polymeric substance having a crosslinked structure. Various materials may be used as curable polymeric substance-forming materials usable for obtaining such a crosslinked polymeric substance. However, liquid silicone rubber is preferred.

type and condensation type. However, the addition type liquid silicone rubber is preferred. This addition type liquid silicone rubber is that cured by a reaction of a vinyl group with an Si-H bond and includes a one-pack type (one-component type) composed of polysiloxane having both vinyl group and Si-H bond and a two-pack type (two-component type) composed of polysiloxane having a vinyl group and polysiloxane having an Si-H bond. In the present

invention, addition type liquid silicone rubber of the twopack type is preferably used.

As the addition type liquid silicone rubber, is used that having a viscosity of preferably 100 to 1,250 Pa·s, more preferably 150 to 800 Pa·s, particularly preferably 5 250 to 500 Pa·s at 23 $^{\circ}$ C. If this viscosity is lower than 100 Pa·s, precipitation of the conductive particles in such addition type liquid silicone rubber is easy to occur in a molding material for obtaining the elastic anisotropically 10 conductive films 20, which will be described subsequently, so that good storage stability is not obtained. In addition, the conductive particles are not oriented so as to align in the thickness-wise direction of the molding material layer when a parallel magnetic field is applied to 15 the molding material layer, so that it may be difficult in some cases to form chains of the conductive particles in an even state. If this viscosity exceeds 1,250 Pa·s on the other hand, the viscosity of the resulting molding material becomes too high, so that it may be difficult in some cases 20 to form the molding material layer in the mold. addition, the conductive particles are not sufficiently moved even when a parallel magnetic field is applied to the molding material layer. Therefore, it may be difficult in some cases to orient the conductive particles so as to 25 align in the thickness-wise direction.

The viscosity of such addition type liquid silicone rubber can be measured by means of a Brookfield type

viscometer.

5

10

When the elastic anisotropically conductive films 20 are formed by a cured product (hereinafter referred to as "cured silicon rubber") of the liquid silicone rubber, the cured silicone rubber preferably has a compression set of at most 10%, more preferably at most 8%, still more preferably at most 6% at 150°C. If the compression set exceeds 10%, chains of the conductive particles P in the conductive part 22 for connection is disordered when the resulting anisotropically conductive connector is used repeatedly under a high-temperature environment. As a result, it is difficult to retain the necessary conductivity.

In the present invention, the compression set of the cured silicone rubber can be measured by a method in accordance with JIS K 6249.

The cured silicone rubber forming the elastic anisotropically conductive films 20 preferably has a durometer A hardness of 10 to 60, more preferably 15 to 60, particularly preferably 20 to 60 at 23°C. If the durometer A hardness is lower than 10, the insulating part 23 mutually insulating the conductive parts 22 for connection is easily over-distorted when pressurized, and it may be difficult in some cases to retain the necessary insulating property between the conductive parts 22 for connection. If the durometer A hardness exceeds 60 on the other hand, pressurizing force of a considerably heavy load is required

for giving proper distortion to the conductive parts 22 for connection, so that for example, a wafer, which is an object of inspection, tends to cause great deformation or breakage.

In the present invention, the durometer A hardness of 5 the cured silicone rubber can be measured by a method in accordance with JIS K 6249.

Further, the cured silicone rubber for forming the elastic anisotropically conductive films 20 preferably has tear strength of at least 8 kN/m, more preferably at least 10 kN/m, still more preferably at least 15 kN/m, particularly preferably at least 20 kN/m. If the tear strength is lower than 8 kN/m, the resulting elastic anisotropically conductive films 20 tend to deteriorate 15 durability when they are distorted in excess.

10

20

25

In the present invention, the tear strength of the cured silicone rubber can be measured by a method in accordance with JIS K 6249.

As the addition type liquid silicone rubber having such properties, may be used that marketed as liquid silicone rubber "KE2000" series or "KE1950" series from Shin-Etsu Chemical Co., Ltd.

In the present invention, a proper curing catalyst may be used for curing the addition type liquid silicone rubber. As such a curing catalyst, may be used a platinumcontaining catalyst. Specific examples thereof include publicly known catalysts such as platinic chloride and

salts thereof, platinum-unsaturated group-containing siloxane complexes, vinylsiloxane-platinum complexes, platinum-1,3-divinyltetramethyldisiloxane complexes, complexes of triorganophosphine or phosphite and platinum, acetyl acetate platinum chelates, and cyclic diene-platinum complexes.

5

10

20

The amount of the curing catalyst used is suitably selected in view of the kind of the curing catalyst and other curing treatment conditions. However, it is generally 3 to 15 parts by weight per 100 parts by mass of the addition type liquid silicone rubber.

In order to improve the thixotropic property of the addition type liquid silicone rubber, adjust the viscosity, improve the dispersion stability of the conductive

15 particles or provide a base material having high strength, a general inorganic filler such as silica powder, colloidal silica, aerogel silica or alumina may be contained in the addition type liquid silicone rubber as needed.

No particular limitation is imposed on the amount of such an inorganic filler used. However, the use in a too large amount is not preferred because the orientation of the conductive particles P by a magnetic field cannot be sufficiently achieved.

As the conductive particles P contained in the

25 conductive parts 22 for connection and the parts 25 to be

supported in each of the elastic anisotropically conductive

films 20, may preferably be used particles obtained by

coating the surfaces of core particles (hereinafter also referred to as "magnetic core particles") exhibiting magnetism with a high-conductive metal.

The term "high-conductive metal" as used herein means a metal having an electric conductivity of at least 5 x 10^6 $\Omega^{-1}\text{m}^{-1}$ at 0% .

The magnetic core particles for obtaining the conductive particles P preferably have a number average particle diameter of 3 to 40 $\mu m\,.$

The number average particle diameter of the magnetic core particles means a value measured by a laser diffraction scattering method.

When the number average particle diameter is 3 µm or greater, conductive parts 22 for connection, which are easy to be deformed under pressure, low in resistance value and high in connection reliability can be easily obtained.

When the number average particle diameter is 40 µm or smaller on the other hand, fine conductive parts 22 for connection can be easily formed, and the resultant conductive parts 22 for connection tend to have stable conductivity.

Further, the magnetic core particles preferably have a BET specific surface area of 10 to 500 $\rm m^2/kg$, more preferably 20 to 500 $\rm m^2/kg$, particularly preferably 50 to 400 $\rm m^2/kg$.

When the BET specific surface area is $10~\text{m}^2/\text{kg}$ or greater, plating can be surely conducted on such magnetic

25

core particles in a required amount because the magnetic core particles have a sufficiently wide area capable of being plated. Accordingly, conductive particles P high in conductivity can be obtained, and stable and high

5 conductivity is achieved because a contact area between the conductive particles P is sufficiently wide. When the BET specific surface area is 500 m²/kg or smaller on the other hand, such magnetic core particles do not become brittle, so that they do not break when physical stress is applied,

10 and stable and high conductivity is retained.

Further, the magnetic core particles preferably have a coefficient of variation of particle diameter of at most 50%, more preferably at most 40%, still more preferably at most 30%, particularly preferably at most 20%.

In the present invention, the coefficient of variation of particle diameter is a value determined in accordance with the expression: $(\sigma/Dn) \times 100$, wherein σ is a standard deviation value of the particle diameter, and Dn is a number average particle diameter of the particles.

When the coefficient of variation of particle diameter is 50% or lower, conductive parts 22 for connection, which are narrow in scatter of conductivity, can be formed because the uniformity of particle diameter is high.

20

As a material for forming the magnetic core particles, may be used iron, nickel, cobalt, a material obtained by coating such a metal with copper or a resin, or the like.

Those having a saturation magnetization of at least 0.1 Wb/m^2 may be preferably used. The saturation magnetization thereof is more preferably at least 0.3 Wb/m^2 , particularly preferably at least 0.5 Wb/m^2 . Specific examples of the material include iron, nickel, cobalt and alloys thereof.

When this saturation magnetization is at least 0.1 Wb/m², the conductive particles P can be easily moved in the molding material layers for forming the elastic anisotropically conductive films 20 by a process, which will be described subsequently, whereby the conductive particles P can be surely moved to portions to become conductive parts for connection in the respective molding material layers to form chains of the conductive particles P.

10

15

As the high-conductive metal to be coated on the surfaces of the magnetic core particles, may be used gold, silver, rhodium, platinum, chromium or the like. Among these, gold is preferably used in that it is chemically stable and has a high electric conductivity.

In the conductive particles P, a proportion [(mass of high-conductive metal/mass of core particles) x 100] of the high-conductive metal to the core particles is preferably at least 15 % by mass, more preferably 25 to 35 % by mass.

If the proportion of the high-conductive metal is
lower than 15 % by mass, the conductivity of such
conductive particles P is markedly deteriorated when the
resulting anisotropically conductive connector is used

repeatedly under a high-temperature environment. As a result, the necessary conductivity cannot be retained.

In the conductive particles P, the thickness t of the coating layer formed of the high-conductive metal, which is calculated out in accordance with the following equation (1), is preferably at least 50 nm, more preferably 100 to 200 nm:

Equation (1) $t = [1/(Sw \cdot \rho)] \times [N/(1 - N)]$

5

wherein t is the thickness (m) of the coating layer formed of the high-conductive metal, Sw is a BET specific surface area (m²/kg) of the core particles, ρ is a specific gravity (kg/m³) of the high-conductive metal, and N is a value of (mass of the high-conductive metal/total mass of the conductive particles).

- The above-described equation (1) is derived in the following manner.
 - (i) Supposing that the mass of the magnetic core particles is Mp (kg), the surface area S (m^2) of the magnetic core particles is determined by:
- S = $Sw \cdot Mp$ Equation (2)
 - (ii) Supposing that the mass of the coating layer
 formed of the high-conductive metal is m (kg), the volume
 (V) of the coating layer is determined by:

 $V = m/\rho$ Equation (3)

(iii) Assuming that the thickness of the coating layer is uniform even over all the surfaces of the conductive particles, t = V/S. When the equations (2) and

(3) are substituted into this equation, the thickness t of the coating layer is determined by:

 $t = (m/\rho)/(Sw \cdot Mp) = m/(Sw \cdot \rho \cdot Mp)$ Equation (4)

(iv) Since N is a ratio of the mass of the coating
5 layer to the total mass of the conductive particles, the
value of N is determined by:

N = m/(Mp + m) Equation (5)

(v) A numerator and a denominator in the right side of the equation (5) are divided by Mp to give

10 N = (m/Mp)/(1 + m/Mp). Multiply both sides by (1 + m/Mp), and the product is

N(1 + m/Mp) = m/Mp, and in its turn,

N + N(m/Mp) = m/Mp. When N(m/Mp) is shifted to the right side,

N = m/Mp - N(m/Mp) = (m/Mp)(1 - N) is given. Divide both sides by (1 - N), and

N/(1 - N) = m/Mp is given.

Accordingly, the mass Mp of the magnetic core particles is determined by:

20 Mp = m/[N/(1 - N)] = m(1 - N)/N Equation (6)

(vi) The equation (6) is substituted into the
equation (4) to derive

 $t = 1/[Sw \cdot \rho \cdot (1 - N)/N] = [1/(Sw \cdot \rho)] \times [N/(1 - N)].$

When this thickness t of the coating layer is at

least 50 nm, the conductivity of such conductive particles

P is not markedly lowered because the high-conductive metal
exists in a high proportion on the surfaces of the

conductive particles P even when the ferromagnetic substance forming the magnetic core particles migrates into the high-conductive metal forming the coating layer in the case where the resulting anisotropically conductive connector is used repeatedly under a high-temperature environment. Thus, the prescribed conductivity is retained.

The BET specific surface area of the conductive particles P is preferably 10 to $500 \text{ m}^2/\text{kg}$.

5

When this BET specific surface area is 10 m²/kg or

greater, the surface area of the coating layer becomes
sufficiently great, so that the coating layer great in the
total mass of the high-conductive metal can be formed.
Accordingly, particles high in conductivity can be obtained.
In addition, stable and high conductivity can be achieved
because a contact area among the conductive particles P is
sufficiently wide. When this BET specific surface area is
500 m²/kg or smaller on the other hand, such conductive
particles do not become brittle, and thus they do not break
when physical stress is applied thereto, and the stable and
high conductivity is retained.

The number average particle diameter of the conductive particles P is preferably 3 to 40 $\mu\text{m}\,,$ more preferably 6 to 25 $\mu\text{m}\,.$

When such conductive particles P are used, the
resulting elastic anisotropically conductive films 20
become easy to be deformed under pressure. In addition,
sufficient electrical connection is achieved between the

conductive particles P in the conductive parts 22 for connection in the elastic anisotropically conductive films 20.

No particular limitation is imposed on the form of the conductive particles P. However, they are preferably in the form of a sphere or star, or a mass of secondary particles obtained by agglomerating these particles in that these particles can be easily dispersed in the polymeric substance-forming material.

10 The conductive particles P preferably have an electric resistance value R, which will be described subsequently, of at most 0.3 Ω , more preferably at most 0.1 Ω .

Electric resistance value R:

5

The electric resistance value is a value determined after preparing a paste composition by kneading 0.6 g of the conductive particles and 0.8 g of liquid rubber, arranging this paste composition between a pair of electrodes arranged so as to oppose to each other with a clearance of 0.5 mm and each having a diameter of 1 mm, applying a magnetic field of 0.3 T between the pair of the electrodes, and leaving the electrodes to stand in this state until the electric resistance value between the pair of the electrodes becomes stable.

25 Specifically, the electric resistance value R is measured in the following manner.

Fig. 5 illustrates an apparatus for measuring an

electric resistance value R. Reference numeral 71 indicates a ceramic cell in which a sample chamber S is formed, and the cell is constructed by a cylindrical side wall material 72 and a pair of lid members 73 each having a through-hole 73H at its center. Reference numeral 74 designates a pair of conductive magnets each having an electrode part 75, which is in the form protruding from the surface thereof, and fitted to the through-hole 73H in the lid member 73. Each magnet is fixed to the lid member 73 10 in a state that the electrode part 75 has been fitted into the through-hole 73H in the lid member 73. Reference numeral 76 indicates an electric resistance meter connected to each of the pair of the magnets 74. The sample chamber S of the cell 71 is in the form of a disk having a diameter 15 d1 of 3 mm and a thickness d2 of 0.5 mm, and the inner diameter of the through-hole 73H in the lid member 73, i.e., the diameter r of the electrode part 75 of the magnet 74 is 1 mm.

The paste composition described above is filled into

the sample chamber S of the cell 71, and an electric
resistance value between the electrodes 75 of the magnets

74 is measured by the electric resistance meter 76 while
applying a parallel magnetic field of 0.3 T between the
electrodes 75 of the magnets 74 in the thickness-wise

direction of the sample chamber S. As a result, the
conductive particles dispersed in the paste composition are
gathered between the electrodes 75 of the magnets 74 by the

effect of the parallel magnetic field and oriented so as to align in the thickness-wise direction. With the movement of the conductive particles, the electric resistance value between the electrodes 75 of the magnets 74 lowers and then becomes a stable state, thereby measuring an electric resistance value at this time. The time from the time the parallel magnetic field has been applied to the paste composition up to the time the electric resistance value between the electrodes 75 of the magnets 74 has reached the stable state varies according to the kind of the conductive particles. However, an electric resistance value after 500 seconds have elapsed from the application of the parallel magnetic field to the paste composition is generally measured as the electric resistance value R.

5

10

15

When the electric resistance value R is at most 0.3 Ω , conductive parts 22 for connection having high conductivity can be surely obtained.

The content of water in the conductive particles P is preferably at most 5 % by mass, more preferably at most 3 % 20 by mass, still more preferably at most 2 % by mass, particularly preferably at most 1 % by mass. By satisfying such conditions, bubbling can be prevented or inhibited upon the curing treatment in the preparation of the molding material or the formation of the elastic anisotropically conductive films 20.

The conductive particles P may be those obtained by treating surfaces thereof with a coupling agent such as a

silane coupling agent. By treating the surfaces of the conductive particles P with the coupling agent, the adhesion property of the conductive particles P to the elastic polymeric substance is enhanced. As a result, a conductive material high in durability is obtained.

5

10

15

20

25

The amount of the coupling agent used is suitably selected within limits not affecting the conductivity of the conductive particles P. However, it is preferably such an amount that a coating rate (proportion of an area coated with the coupling agent to the surface area of the conductive particles) of the coupling agent on the surfaces of the conductive particles P amounts to at least 5%, more preferably 7 to 100%, still more preferably 10 to 100%, particularly preferably 20 to 100%.

Such conductive particles P may be obtained in accordance with, for example, the following process.

Particles are first formed from a ferromagnetic material in accordance with a method known per se in the art, or commercially available particles of a ferromagnetic substance are provided. The particles are subjected to a classifying treatment to prepare magnetic core particles having a necessary particle diameter.

In the present invention, the classification treatment of the particles can be conducted by means of, for example, a classifier such as an air classifier or sonic classifier.

Specific conditions for the classification treatment

are suitably preset according to the intended number average particle diameter of the magnetic core particles, the kind of the classifier, and the like.

Surfaces of the magnetic core particles are then treated with an acid and further washed with, for example, purified water, thereby removing impurities such as dirt, foreign matter and oxidized films present on the surfaces of the magnetic core particles. Thereafter, the surfaces of the magnetic core particles are coated with a high-conductive metal, thereby obtaining conductive particles.

10

20

25

As the acid used for treating the surfaces of the magnetic core particles, may be mentioned hydrochloric acid or the like.

As a method for coating the surfaces of the magnetic

15 core particles with the high-conductive metal, may be used electroless plating, displacement plating or the like.

However, the method is not limited to these methods.

A process for producing the conductive particles by the electroless plating or displacement plating will be described. The magnetic core particles subjected to the acid treatment and washing treatment are first added to a plating solution to prepare a slurry, and electroless plating or displacement plating on the magnetic core particles is conducted while stirring the slurry. The particles in the slurry are then separated from the plating solution. Thereafter, the particles separated are subjected to a washing treatment with, for example,

purified water, thereby obtaining conductive particles with the surfaces of the magnetic core particles coated with the high-conductive metal.

Alternatively, primer plating may be conducted on the surfaces of the magnetic core particles to form a primer plating layer, and a plating layer formed of the high-conductive metal may be then formed on the surface of the primer plating layer. No particular limitation is imposed on the process for forming the primer plating layer and the plating layer formed thereon. However, it is preferable to form the primer plating layer on the surfaces of the magnetic core particles by the electroless plating and then form the plating layer formed of the high-conductive metal on the surface of the primer plating layer by the displacement plating.

No particular limitation is imposed on the plating solution used in the electroless plating or displacement plating, and various kinds of commercially available plating solutions may be used.

Since conductive particles having a great particle diameter may be produced due to aggregation of the magnetic core particles upon the coating of the surfaces of the particles with the high-conductive metal, the resultant conductive particles are preferably subjected to a classification treatment as needed. By the classification treatment, the conductive particles having the expected particle diameter can be surely obtained.

As examples of a classifier used for conducting the classification treatment of the conductive particles, may be mentioned those exemplified as the classifier used in the classification treatment for preparing the magnetic core particles.

The proportion of the conductive particles P contained in the conductive parts 22 for connection in the functional part 21 is preferably 10 to 60%, more preferably 15 to 50% in terms of volume fraction. If this proportion is lower than 10%, it may be impossible in some cases to obtain conductive parts 22 for connection sufficiently low in electric resistance value. If this proportion exceeds 60% on the other hand, the resulting conductive parts 22 for connection are liable to be brittle, so that elasticity required of the conductive parts 22 for connection may not be achieved in some cases.

The proportion of the conductive particles P contained in the parts 25 to be supported varies according to the content of the conductive particles in the molding material for forming the elastic anisotropically conductive films 20. However, it is preferably equivalent to or more than the proportion of the conductive particles contained in the molding material in that the conductive particles P are surely prevented from being contained in excess in the conductive parts 22 for connection located most outside among the conductive parts 22 for connection in the elastic anisotropically conductive film 20. It is also preferably

at most 30% in terms of volume fraction in that parts 25 to be supported having sufficient strength are provided.

The anisotropically conductive connector described above may be produced, for example, in the following manner.

5

10

A frame plate 10 composed of a magnetic metal, in which anisotropically conductive film-arranging holes 11 have been formed correspondingly to a pattern of electrode regions, in which electrodes to be inspected have been formed, of integrated circuits in a wafer that is an object of inspection, is first produced. As a method for forming the anisotropically conductive film-arranging holes 11 in the frame plate 10, may be used, for example, an etching method or the like.

A molding material for molding elastic

anisotropically conductive films with conductive particles exhibiting magnetism dispersed in addition type liquid silicone rubber is then prepared. As illustrated in Fig. 6, a mold 60 for molding elastic anisotropically conductive films is provided, and the conductive paste composition as

a molding material for elastic anisotropically conductive films is applied to the respective molding surfaces of a top force 61 and a bottom force 65 in the mold 60 in accordance with a necessary pattern, namely, an arrangement pattern of elastic anisotropically conductive films to be

formed, thereby forming molding material layers 20A.

Here, the mold 60 will be described specifically. This mold 60 is so constructed that the top force 61 and

the bottom force 65 making a pair therewith are arranged so as to be opposed to each other.

In the top force 61, ferromagnetic substance layers 63 are formed in accordance with a pattern antipodal to an arrangement pattern of the conductive parts 22 for 5 connection in each of the elastic anisotropically conductive films 20 to be molded on the lower surface of a base plate 62, and non-magnetic substance layers 64 are formed at other portions than the ferromagnetic substance 10 layers 63 as illustrated, on an enlarged scale, in Fig. 7. The molding surface is formed by these ferromagnetic substance layers 63 and non-magnetic substance layers 64. Recessed parts 64a are formed in the molding surface of the top force 61 corresponding to the projected parts 24 in the 15 elastic anisotropically conductive films 20 to be molded.

In the bottom force 65 on the other hand,

ferromagnetic substance layers 67 are formed in accordance
with the same pattern as the arrangement pattern of the
conductive parts 22 for connection in the elastic

20 anisotropically conductive films 20 to be molded on the
upper surface of a base plate 66, and non-magnetic
substance layers 68 are formed at other portions than the
ferromagnetic substance layers 67. The molding surface is
formed by these ferromagnetic substance layers 67 and non
25 magnetic substance layers 68. Recessed parts 68a are
formed in the molding surface of the bottom force 65
corresponding to the projected parts 24 in the elastic

anisotropically conductive films 20 to be molded.

5

10

The respective base plates 62 and 66 in the top force 61 and bottom force 65 are preferably formed by a ferromagnetic substance. Specific examples of such a ferromagnetic substance include ferromagnetic metals such as iron, iron-nickel alloys, iron-cobalt alloys, nickel and cobalt. The base plates 62, 66 preferably have a thickness of 0.1 to 50 mm, and are preferably smooth at surfaces thereof and subjected to a chemical degreasing treatment or mechanical polishing treatment.

As a material for forming the ferromagnetic substance layers 63, 67 in both top force 61 and bottom force 65, may be used a ferromagnetic metal such as iron, iron-nickel alloy, iron-cobalt alloy, nickel or cobalt. The

15 ferromagnetic substance layers 63, 67 preferably have a thickness of at least 10 μm. When this thickness is at least 10 μm, a magnetic field having a sufficient intensity distribution can be applied to the molding material layers 20A. As a result, the conductive particles can be gathered at a high density at portions to become conductive parts 22 for connection in the molding material layers 20A, and so conductive parts 22 for connection having good conductivity can be provided.

As a material for forming the non-magnetic substance

25 layers 64, 68 in both top force 61 and bottom force 65, may

be used a non-magnetic metal such as copper, a polymeric

substance having heat resistance, or the like. However, a

polymeric substance cured by radiation may preferably be used in that the non-magnetic substance layers 64, 68 can be easily formed by a technique of photolithography. As a material thereof, may be used, for example, a photoresist such as an acrylic type dry film resist, epoxy type liquid resist or polyimide type liquid resist.

5

10

As a method for coating the molding surfaces of the top force 61 and bottom force 65 with the molding material, may preferably be used a screen printing method. According to such a method, the molding material can be easily applied according to a necessary pattern, and a proper amount of the molding material can be applied.

As illustrated in Fig. 8, the frame plate 10 is then arranged in alignment on the molding surface of the bottom 15 force 65, on which the molding material layers 20A have been formed, through a spacer 69a, and on the frame plate 10, the top force 61, on which the molding material layers 20A have been formed, is arranged in alignment through a spacer 69b. These top and bottom forces are superimposed 20 on each other, whereby molding material layers 20A of the intended form (form of the elastic anisotropically conductive films 20 to be formed) are formed between the top force 61 and the bottom force 65 as illustrated in Fig. 9. In each of these molding material layers 20A, the 25 conductive particles P are contained in a state dispersed throughout in the molding material layer 20A as illustrated in Fig. 10.

As described above, the spacers 69a and 69b are arranged between the frame plate 10, and the bottom force 65 and the top force 61, respectively, whereby the elastic anisotropically conductive films of the intended form can be formed, and adjacent elastic anisotropically conductive films are prevented from being connected to each other, so that a great number of anisotropically conductive films independent of one another can be formed with certainty.

5

A pair of, for example, electromagnets are then 10 arranged on the upper surface of the base plate 62 in the top force 61 and the lower surface of the base plate 66 in the bottom force 65, and the electromagnets are operated, whereby a magnetic field having higher intensity at portions between the ferromagnetic substance layers 63 of the top force 61 and their corresponding ferromagnetic 15 substance layers 67 of the bottom force 65 than surrounding regions thereof is formed because the top force 61 and the bottom force 65 have the ferromagnetic substance layers 63 and 67, respectively. As a result, in the molding material 20 layers 20A, the conductive particles P dispersed in the molding material layers 20A are gathered at portions to become the conductive parts 22 for connection, which are located between the ferromagnetic substance layers 63 of the top force 61 and their corresponding ferromagnetic substance layers 67 of the bottom force 65, and oriented so 25 as to align in the thickness-wise direction of the molding material layers as illustrated in Fig. 11. In the abovedescribed process, the frame plate 10 is composed of the magnetic metal, so that a magnetic field having higher intensity at portions between the frame plate 10, and the respective top force 61 and the bottom force 65 than vicinities thereof is formed. As a result, the conductive particles P existing above and below the frame plate 10 in the molding material layers 20A are not gathered between the ferromagnetic substance layers 63 of the top force 61 and the ferromagnetic substance layers 67 of the bottom force 65, but remain retained above and below the frame plate 10.

10

In this state, the molding material layers 20A are subjected to a curing treatment, whereby the elastic anisotropically conductive films 20 each composed of a 15 functional part 21, in which a plurality of conductive parts 22 for connection containing the conductive particles P in the elastic polymeric substance in a state oriented so as to align in the thickness-wise direction are arranged in a state mutually insulated by an insulating part 23 20 composed of the elastic polymeric substance, in which the conductive particles P are not present at all or scarcely present, and a part 25 to be supported, which is continuously and integrally formed at a peripheral edge of the functional part 21 and in which the conductive 25 particles P are contained in the elastic polymeric substance, are formed in a state that the part 25 to be supported has been fixed to the periphery about each

anisotropically conductive film-arranging hole 11 of the frame plate 10, thereby producing an anisotropically conductive connector.

5

In the above-described process, the intensity of the external magnetic field applied to the portions to become the conductive parts 20 for connection and the portion to become the parts 25 to be supported in the molding material layers 20A is preferably an intensity that it amounts to 0.1 to 2.5 T on the average.

The curing treatment of the molding material layers
20A is suitably selected according to the material used.
However, the treatment is generally conducted by a heat
treatment. When the curing treatment of the molding
material layers 20A is conducted by heating, it is only

15 necessary to provide a heater in an electromagnet.
Specific heating temperature and heating time are suitably
selected in view of the kinds of the polymeric substanceforming material forming the molding material layer 20A,
and the like, the time required for movement of the

20 conductive particles P, and the like.

According to the anisotropically conductive connector of the present invention, the elastic anisotropically conductive films 20 have the specific initial properties, so that the conductive parts 22 for connection are prevented from markedly increasing the electric resistance thereof, and the necessary conductivity is retained over a long period of time even when it is used repeatedly under a

high-temperature environment.

5

10

Since the part 25 to be supported is formed at the peripheral edge of the functional part 21 having the conductive parts 22 for connection in each of the elastic anisotropically conductive films 20, and this part 25 to be supported is fixed to the periphery about the anisotropically conductive film-arranging hole 11 in the frame plate 10, the anisotropically conductive connector is hard to be deformed and easy to handle, so that the positioning and the holding and fixing to a wafer, which is an object of inspection, can be easily conducted in an electrically connecting operation to the wafer.

Since the respective anisotropically conductive filmarranging holes 11 in the frame plate 10 are formed 15 correspondingly to the electrode regions, in which electrodes to be inspected have been arranged, in integrated circuits formed on a wafer, which is an object of inspection, and the elastic anisotropically conductive film 20 arranged in each of the anisotropically conductive 20 film-arranging holes 11 may be small in area, the individual elastic anisotropically conductive films 20 are easy to be formed. In addition, since the elastic anisotropically conductive film 20 small in area is little in the absolute quantity of thermal expansion in a plane 25 direction of the elastic anisotropically conductive film 20 even when it is subjected to thermal hysteresis, the thermal expansion of the elastic anisotropically conductive film 20 in the plane direction is surely restrained by the frame plate by using a material having a low coefficient of linear thermal expansion as that for forming the frame plate 10. Accordingly, a good electrically connected state can be stably retained even when the WLBI test is performed on a large-area wafer.

Since the above-described anisotropically conductive connector is obtained by subjecting the molding material layers 20A to the curing treatment in a state that the 10 conductive particles P have been retained in the portions to become the parts 25 to be supported in the molding material layers 20A by, for example, applying a magnetic field to those portions in the formation of the elastic anisotropically conductive films 20, the conductive 15 particles P existing in the portions to become the parts 25 to be supported in the molding material layers 20A, i.e., portions located above and below the peripheries about the anisotropically conductive film-arranging holes 11 in the frame plate 10 are not gathered at the portions to become 20 the conductive parts 22 for connection. As a result, the conductive particles P are prevented from being contained in excess in the conductive parts 22 for connection, which are located most outside among the conductive parts 22 for connection in the resulting elastic anisotropically 25 conductive films 20. Accordingly, there is no need of reducing the content of the conductive particles P in the molding material layers 20A, so that good conductivity is

achieved with certainty in all the conductive parts 22 for connection in the elastic anisotropically conductive films 20, and moreover insulating property between adjacent conductive parts 22 for connection can be achieved with certainty.

Since the positioning holes 16 are formed in the frame plate 10, positioning to the wafer, which is the object of inspection, or the circuit board for inspection can be easily conducted.

10 Since the air circulating holes 15 are formed in the frame plate 10, air existing between the anisotropically conductive connector and the circuit board for inspection is discharged through the air circulating holes 15 in the frame plate 10 at the time the pressure within a chamber is 15 reduced when that by the pressure reducing system is utilized as the means for pressing the probe member in a wafer inspection apparatus, which will be described subsequently, whereby the anisotropically conductive connector can be surely brought into close contact with the 20 circuit board for inspection, so that the necessary electrical connection can be achieved with certainty. [Wafer inspection apparatus]

Fig. 12 is a cross-sectional view schematically illustrating the construction of an exemplary wafer

inspection apparatus making use of the anisotropically conductive connector according to the present invention.

This wafer inspection apparatus serves to perform

electrical inspection of each of a plurality of integrated circuits formed on a wafer in a state of the wafer.

The wafer inspection apparatus shown in Fig. 12 has a probe member 1 for conducting electrical connection of each of electrodes 7 to be inspected of a wafer 6, which is an object of inspection, to a tester. As also illustrated on an enlarged scale in Fig. 13, the probe member 1 has a circuit board 30 for inspection, on the front surface (lower surface in Fig. 12) of which a plurality of 10 inspection electrodes 31 have been formed in accordance with a pattern corresponding to a pattern of the electrodes 7 to be inspected of the wafer 6 that is the object of inspection. On the front surface of the circuit board 30 for inspection is provided the anisotropically conductive 15 connector 2 of the construction illustrated in Figs. 1 to 4 in such a manner that the conductive parts 22 for connection in the elastic anisotropically conductive films 20 of the connector are opposed to and brought into contact with the inspection electrodes 31 of the circuit board 30 20 for inspection, respectively. On the front surface (lower surface in Fig. 12) of the anisotropically conductive connector 2 is provided a sheet-like connector 40, in which a plurality of electrode structures 42 have been arranged in an insulating sheet 41 in accordance with the pattern 25 corresponding to the pattern of the electrodes 7 to be inspected of the wafer 6 that is the object of inspection, in such a manner that the electrode structures 42 are

opposed to and brought into contact with the conductive parts 22 for connection in the elastic anisotropically conductive films 20 of the anisotropically conductive connector 2, respectively.

On the back surface (upper surface in the figure) of the circuit board 30 for inspection in the probe member 1 is provided a pressurizing plate 3 for pressurizing the probe member 1 downward. A wafer mounting table 4, on which the wafer 6 that is the object of inspection is

mounted, is provided below the probe member 1. A heater 5 is connected to each of the pressurizing plate 3 and the wafer mounting table 4.

As a base material for making up the circuit board 30 for inspection, may be used any of conventionally known

15 various base materials. Specific examples thereof include composite resin materials such as glass fiber-reinforced epoxy resins, glass fiber-reinforced phenol resins, glass fiber-reinforced polyimide resins and glass fiber-reinforced bismaleimidotriazine resins, and ceramic

20 materials such as glass, silicon dioxide and alumina.

When a wafer inspection apparatus for performing the WLBI test is constructed, a material having a coefficient of linear thermal expansion of at most 3 x 10^{-5} /K, more preferably 1 x 10^{-7} to 1 x 10^{-5} /K, particularly preferably 1 x 10^{-6} to 6 x 10^{-6} /K is preferably used.

Specific examples of such a base material include Pyrex glass, quartz glass, alumina, beryllia, silicon

25

carbide, aluminum nitride and boron nitride.

The sheet-like connector 40 in the probe member 1
will be described specifically. This sheet-like connector
40 has a flexible insulating sheet 41, and in this

5 insulating sheet 41, a plurality of electrode structures 42
extending in the thickness-wise direction of the insulating
sheet 41 and composed of a metal are arranged in a state
separated from each other in a plane direction of the
insulating sheet 41 in accordance with the pattern

10 corresponding to the pattern of the electrodes 7 to be
inspected of the wafer 6 that is the object of inspection.

Each of the electrode structures 42 is formed by integrally connecting a projected front-surface electrode part 43 exposed to the front surface (lower surface in the figure) of the insulating sheet 41 and a plate-like backsurface electrode part 44 exposed to the back surface of the insulating sheet 41 to each other by a short circuit part 45 extending through in the thickness-wise direction of the insulating sheet 41.

15

No particular limitation is imposed on the insulating sheet 41 so far as it has insulating property and is flexible. For example, a resin sheet formed of a polyamide resin, liquid crystal polymer, polyester, fluororesin or the like, or a sheet obtained by impregnating a cloth woven by fibers with any of the above-described resins may be used.

No particular limitation is also imposed on the

thickness of the insulating sheet 41 so far as such an insulating sheet 41 is flexible. However, it is preferably 10 to 50 μm , more preferably 10 to 25 μm .

As a metal for forming the electrode structures 42, may be used nickel, copper, gold, silver, palladium, iron or the like. The electrode structures 42 may be any of those formed of a single metal, those formed of an alloy of at least two metals and those obtained by laminating at least two metals as a whole.

On the surfaces of the front-surface electrode part

43 and back-surface electrode part 44 in the electrode

structure 42, a film of a metal, chemically stable and

having high conductivity, such as gold, silver or palladium

is preferably formed in that oxidation of the electrode

parts is prevented, and electrode parts small in contact

resistance are obtained.

The projected height of the front-surface electrode part 43 in the electrode structure 42 is preferably 15 to 50 μ m, more preferably 15 to 30 μ m in that stable electrical connection to the electrode 7 to be inspected of the wafer 6 can be achieved. The diameter of the front-surface electrode part 43 is preset according to the size and pitch of the electrodes to be inspected of the wafer 6 and is, for example, 30 to 80 μ m, preferably 30 to 50 μ m.

20

The diameter of the back-surface electrode part 44 in the electrode structure 42 may be greater than the diameter of the short circuit part 45 and smaller than the

arrangement pitch of the electrode structures 42 and is preferably great as much as possible, whereby stable electrical connection to the conductive part 22 for connection in the elastic anisotropically conductive film 20 of the anisotropically conductive connector 2 can also be achieved with certainty. The thickness of the back—surface electrode part 44 is preferably 20 to 50 μ m, more preferably 35 to 50 μ m in that the strength is sufficiently high, and excellent repetitive durability is achieved.

5

10

The diameter of the short circuit part 45 in the electrode structure 42 is preferably 30 to 80 μ m, more preferably 30 to 50 μ m in that sufficiently high strength is achieved.

The sheet-like connector 40 can be produced, for example, in the following manner.

More specifically, a laminate material obtained by laminating a metal layer on an insulating sheet 41 is provided, and a plurality of through-holes extending through in the thickness-wise direction of the insulating sheet 41 are formed in the insulating sheet 41 of the laminate material in accordance with a pattern corresponding to a pattern of electrode structures 42 to be formed by laser machining, dry etch machining or the like. This laminate material is then subjected to photolithography and plating treatment, whereby short

photolithography and plating treatment, whereby short circuit parts 45 integrally connected to the metal layer are formed in the through-holes in the insulating sheet 41,

and at the same time, projected front-surface electrode parts 43 integrally connected to the respective short circuit parts 45 are formed on the front surface of the insulating sheet 41. Thereafter, the metal layer of the laminate material is subjected to a photo-etching treatment to remove a part thereof, thereby forming back-surface electrode parts 44 to form the electrode structures 42, whereby the sheet-like connector 40 is provided.

In such an electrical inspection apparatus, a wafer 6, 10 which is an object of inspection, is mounted on the wafer mounting table 4, and the probe member 1 is then pressurized downward by the pressurizing plate 3, whereby the respective front-surface electrode parts 43 in the electrode structures 42 of the sheet-like connector 40 15 thereof are brought into contact with their corresponding electrodes 7 to be inspected of the wafer 6, and moreover the respective electrodes 7 to be inspected of the wafer 6 are pressurized by the front-surface electrodes parts 43. In this state, each of the conductive parts 22 for 20 connection in the elastic anisotropically conductive films 20 of the anisotropically conductive connector 2 are respectively held and pressurized by the inspection electrodes 31 of the circuit board 30 for inspection and the front-surface electrode parts 43 of the electrode 25 structures 42 of the sheet-like connector 40 and compressed in the thickness-wise direction of the elastic anisotropically conductive films 20, whereby conductive

paths are formed in the respective conductive parts 22 for connection in the thickness-wise direction thereof. As a result, electrical connection between the electrodes 7 to be inspected of the wafer 6 and the inspection electrodes 31 of the circuit board 30 for inspection is achieved. Thereafter, the wafer 6 is heated to a prescribed temperature through the wafer mounting table 4 and the pressurizing plate 3 by the heater 5. In this state, necessary electrical inspection is performed on each of a plurality of integrated circuits in the wafer 6.

5

10

According to such a wafer inspection apparatus, electrical connection to the electrodes 7 to be inspected of the wafer 6, which is the object of inspection, is achieved through the probe member 1 having the above—

15 described anisotropically conductive connector 2.

Therefore, positioning, and holding and fixing to the wafer can be conducted with ease even when the pitch of the electrodes 7 to be inspected is small, and moreover the necessary electrical inspection can be stably performed

20 over a long period of time even when the apparatus is used repeatedly under a high-temperature environment.

Since each of the elastic anisotropically conductive films 20 in the anisotropically conductive connector 2 is small in its own area, and the absolute quantity of thermal expansion in a plane direction of the elastic anisotropically conductive film 20 is little even when it is subjected to thermal hysteresis, the thermal expansion

of the elastic anisotropically conductive film 20 in the plane direction thereof is surely restrained by the frame plate by using a material having a low coefficient of linear thermal expansion as that for forming the frame plate 10. Accordingly, a good electrically connected state can be stably retained even when the WLBI test is performed on a large-area wafer.

Fig. 14 is a cross-sectional view schematically illustrating the construction of another exemplary wafer inspection apparatus making use of the anisotropically conductive connector according to the present invention.

10

15

This wafer inspection apparatus has a box-type chamber 50 opened at the top thereof, in which a wafer 6 that is an object of inspection is received. An evacuation pipe 51 for evacuating air within the chamber 50 is provided in a sidewall of this chamber 50, and an evacuator (not illustrated) such as, for example, a vacuum pump, is connected to the evacuation pipe 51.

A probe member 1 of the same construction as the

20 probe member 1 in the wafer inspection apparatus shown in

Fig. 12 is arranged on the chamber 50 so as to air-tightly

close the opening of the chamber 50. More specifically, an

elastic O-ring 55 is arranged in close contact on an upper

end surface of the sidewall in the chamber 50, and the

25 probe member 1 is arranged in a state that the

anisotropically conductive connector 2 and sheet-like

connector 40 thereof have been housed in the chamber 50,

and the periphery of the circuit board 30 for inspection thereof has been brought into close contact with the O-ring. Further, the circuit board 30 for inspection is held in a state pressurized downward by a pressurizing plate 3 provided on the back surface (upper surface in the figure) thereof.

A heater 5 is connected to the chamber 50 and the pressurizing plate 3.

In such a wafer inspection apparatus, the evacuator 10 connected to the evacuation pipe 51 of the chamber 50 is driven, whereby the pressure within the chamber 50 is reduced to, for example, 1,000 Pa or lower. As a result, the probe member 1 is pressurized downward by the atmospheric pressure, whereby the O-ring 55 is elastically 15 deformed, and so the probe member 1 is moved downward. As a result, electrodes 7 to be inspected of the wafer 6 are respectively pressurized by their corresponding frontsurface electrode parts 43 in electrode structures 42 of the sheet-like connector 40. In this state, the conductive 20 parts 22 for connection in the elastic anisotropically conductive films 20 of the anisotropically conductive connector 2 are respectively held and pressurized by the inspection electrodes 31 of the circuit board 30 for inspection and the front-surface electrode parts 43 in the 25 electrode structures 42 of the sheet-like connector 40 and compressed in the thickness-wise direction of the elastic anisotropically conductive films 20, whereby conductive

paths are formed in the respective conductive parts 22 for connection in the thickness-wise direction thereof. As a result, electrical connection between the electrodes 7 to be inspected of the wafer 6 and the inspection electrodes 31 of the circuit board 30 for inspection is achieved. Thereafter, the wafer 6 is heated to a prescribed temperature through the chamber 50 and the pressurizing plate 3 by the heater 5. In this state, necessary electrical inspection is performed on each of a plurality of integrated circuits in the wafer 6.

5

10

According to such a wafer inspection apparatus, the same effects as those in the wafer inspection apparatus shown in Fig. 12 are brought about. In addition, the whole inspection apparatus can be miniaturized because any large-15 sized pressurizing mechanism is not required, and moreover the whole wafer 6, which is the object of inspection, can be pressed by even force even when the wafer 6 has a large area of, for example, 8 inches or greater in diameter. addition, since the air circulating holes 15 are formed in 20 the frame plate 10 in the anisotropically conductive connector 2, air existing between the anisotropically conductive connector 2 and the circuit board 30 for inspection is discharged through the air circulating holes 15 of the frame plate 10 in the anisotropically conductive 25 connector 2 at the time the pressure within the chamber 50 is reduced, whereby the anisotropically conductive connector 2 can be surely brought into close contact with

the circuit board 30 for inspection, so that the necessary electrical connection can be achieved with certainty.

[Other embodiments]

The present invention is not limited to the abovedescribed embodiments, and such various changes or modifications as described below may be added thereto.

5

(1) In the anisotropically conductive connector, conductive parts for non-connection that are not to be electrically connected to any electrode to be inspected in a wafer may be formed in the elastic anisotropically conductive films 20 in addition to the conductive parts 22 for connection. An anisotropically conductive connector having elastic anisotropically conductive films, in which the conductive parts for non-connection have been formed, will hereinafter be described.

Fig. 15 is a plan view illustrating, on an enlarged scale, an elastic anisotropically conductive film in an anisotropically conductive connector according to another embodiment of the present invention. In the elastic

20 anisotropically conductive film 20 of this anisotropically conductive connector, a plurality of conductive parts 22 for connection that are electrically connected to electrodes to be inspected in a wafer, which is an object of inspection, and extend in the thickness-wise direction

25 (direction perpendicular to the paper in Fig. 15) of the film are arranged in the functional part 21 thereof, so as to align in 2 rows in accordance with a pattern

corresponding to a pattern of the electrodes to be inspected. These conductive parts 22 for connection respectively contain conductive particles exhibiting magnetism at a high density in a state oriented so as to align in the thickness-wise direction and are mutually insulated by an insulating part 23, in which the conductive particles are not contained at all or scarcely contained.

Conductive parts 26 for non-connection that are not to be electrically connected to any electrode to be inspected in the wafer, which is the object of inspection, and extend in the thickness-wise direction are formed between the conductive parts 22 for connection located most outside in a direction that the conductive parts 22 for connection are arranged and the frame plate 10. The conductive parts 26 for non-connection contain the conductive particles exhibiting magnetism at a high density in a state oriented so as to align in the thickness-wise direction and are mutually insulated from the conductive parts 22 for connection by an insulating part 23, in which the conductive particles are not contained at all or scarcely contained.

In the embodiment illustrated, projected parts 24 and projected parts 27 protruding from other surfaces than portions, at which the conductive parts 22 for connection and peripheries thereof are located, and portions, at which the conductive parts 26 for non-connection and peripheries thereof are located, are formed at those portions on both

sides of the functional part 21 in the elastic anisotropically conductive film 20.

At the peripheral edge of the functional part 21, a part 25 to be supported that is fixed to and supported by the peripheral edge about the anisotropically conductive film-arranging hole 11 in the frame plate 10 is integrally and continuously formed with the functional part 21, and the conductive particles are contained in this part 25 to be supported.

Other constitutions are basically the same as those in the anisotropically conductive connector shown in Figs. 1 to 4.

Fig. 16 is a plan view illustrating, on an enlarged scale, an elastic anisotropically conductive film in an 15 anisotropically conductive connector according to a further embodiment of the present invention. In the elastic anisotropically conductive film 20 of this anisotropically conductive connector, a plurality of conductive parts 22 for connection that are electrically connected to 20 electrodes to be inspected in a wafer, which is an object of inspection, and extend in the thickness-wise direction (direction perpendicular to the paper in Fig. 16) of the film are arranged so as to align in accordance with a pattern corresponding to a pattern of the electrodes to be 25 inspected. These conductive parts 22 for connection respectively contain conductive particles exhibiting magnetism at a high density in a state oriented so as to

align in the thickness-wise direction and are mutually insulated by an insulating part 23, in which the conductive particles are not contained at all or scarcely contained.

Among these conductive parts 22 for connection, 2 conductive parts 22 for connection, which are located at the center and adjoin each other, are arranged at a clearance greater than a clearance between other adjacent conductive parts 22 for connection. A conductive part 26 for non-connection that is not to be electrically connected to any electrode to be inspected in the wafer, which is the object for inspection, and extends in the thickness-wise direction is formed between the 2 conductive parts 22 for connection, which are located at the center and adjoin each other. This conductive part 26 for non-connection contains the conductive particles exhibiting magnetism at a high density in a state oriented so as to align in the thickness-wise direction and is mutually insulated from the conductive parts 22 for connection by an insulating part 23, in which the conductive particles are not contained at all or scarcely contained.

10

15

20

25

In the embodiment illustrated, projected parts 24 and projected parts 27 protruding from other surfaces than portions, at which the conductive parts 22 for connection and peripheries thereof are located, and a portion, at which the conductive part 26 for non-connection and a periphery thereof are located, are formed at those portions on both sides of the functional part 21 in the elastic

anisotropically conductive film 20.

At the peripheral edge of the functional part 21, a part 25 to be supported that is fixed to and supported by the peripheral edge about the anisotropically conductive film-arranging hole 11 in the frame plate 10 is integrally and continuously formed with the functional part 21, and the conductive particles are contained in this part 25 to be supported.

Other specific constitutions are basically the same

10 as those in the anisotropically conductive connector shown
in Figs. 1 to 4.

The anisotropically conductive connector shown in Fig. 15 and the anisotropically conductive connector shown in Fig. 16 can be produced in a similar manner to the 15 process for producing the anisotropically conductive connector shown in Figs. 1 to 4 by using a mold composed of a top force and a bottom force, on which ferromagnetic substance layers have been respectively formed in accordance with a pattern corresponding to an arrangement 20 pattern of the conductive parts 22 for connection and conductive parts 26 for non-connection in the elastic anisotropically conductive films 20 to be formed, and nonmagnetic substance layers have been formed at portions other than the ferromagnetic substance layers, in place of 25 the mold shown in Fig. 7.

More specifically, according to such a mold, a pair of, for example, electromagnets are arranged on an upper

surface of a base plate in the top force and a lower surface of a base plate in the bottom force, and the electromagnets are operated, whereby in molding material layers formed between the top force and the bottom force, conductive particles dispersed in portions to become the functional parts 21 in the molding material layers are gathered at portions to become the conductive parts 22 for connection and the portions to become the conductive parts 26 for non-connection, and oriented so as to align in the thickness-wise direction of the molding material layers. On the other hand, the conductive particles located above and below the frame plate 10 in the molding material layers remain retained above and below the frame plate 10.

10

In this state, the molding material layers are 15 subjected to a curing treatment, whereby the elastic anisotropically conductive films 20 each composed of the functional part 21, in which a plurality of the conductive parts 22 for connection and conductive parts 26 for nonconnection containing the conductive particles in the 20 elastic polymeric substance in a state oriented so as to align in the thickness-wise direction are arranged in a state mutually insulated by the insulating part 23 composed of the elastic polymeric substance, in which the conductive particles are not present at all or scarcely present, and 25 the part 25 to be supported, which is continuously and integrally formed at a peripheral edge of the functional part 21 and in which the conductive particles are contained in the elastic polymeric substance, are formed in a state that the part 25 to be supported has been fixed to the periphery about each anisotropically conductive film-arranging hole 11 of the frame plate 10, thereby producing the anisotropically conductive connector.

The conductive parts 26 for non-connection in the anisotropically conductive connector shown in Fig. 15 are each obtained by applying a magnetic field to portions to become the conductive parts 26 for non-connection in the molding material layer upon the formation of the elastic anisotropically conductive film 20 to gather the conductive particles existing between the portions to become the conductive parts 22 for connection, located most outside in the molding material layer, and the frame plate 10 at the portions to become the conductive parts for non-connection, and subjecting the molding material layer to a curing treatment in this state. Thus, upon the formation of the elastic anisotropically conductive film 20, the conductive particles are prevented from being gathered in excess in the portions to become the conductive parts 22 for connection, which are located most outside in the molding material layer. Accordingly, even when the respective elastic anisotropically conductive films 20 to be formed have comparatively many conductive parts 22 for connection, it is surely prevented to contain an excessive amount of the conductive particles in the conductive parts 22 for connection located most outside in the elastic

10

15

20

25

anisotropically conductive film 20.

The conductive parts 26 for non-connection in the anisotropically conductive connector shown in Fig. 16 are each obtained by, upon the formation of the elastic 5 anisotropically conductive film 20, applying a magnetic field to the portion to become the conductive part 26 for non-connection in the molding material layer to gather the conductive particles existing between the 2 adjacent portions to become the conductive parts 22 for connection 1.0 arranged at a greater clearance in the molding material layer, at the portion to become the conductive part 26 for non-connection, and subjecting the molding material layer to a curing treatment in this state. Thus, upon the formation of the elastic anisotropically conductive film 20, the conductive particles are prevented from being gathered in excess at the 2 adjacent portions to become the conductive parts 22 for connection arranged at a greater clearance in the molding material layer. Accordingly, even when the respective elastic anisotropically conductive 20 films 20 to be formed have at least 2 conductive parts 22 for connection arranged at a greater clearance, it is surely prevented to contain an excessive amount of the conductive particles in these conductive parts 22 for connection.

25 (2) In the anisotropically conductive connector, the projected parts 24 in the elastic anisotropically conductive films 20 are not essential, and one or both

surfaces may be flat, or a recessed portion may be formed.

- (3) A metal layer may be formed on the surfaces of the conductive parts 22 for connection in the elastic anisotropically conductive films 20.
- 5 (4) When a non-magnetic substance is used as a base material of the frame plate 10 in the production of the anisotropically conductive connector, a means of plating peripheries about the anisotropically conductive filmarranging holes 11 in the frame plate 10 with a magnetic 10 substance or coating them with a magnetic paint to apply a magnetic field thereto, or a means of forming ferromagnetic substance layers in the mold 60 corresponding to the parts 25 to be supported of the elastic anisotropically conductive films 20 to apply a magnetic field thereto may 15 be utilized as a means for applying the magnetic field to portions to become the parts 25 to be supported in the molding material layers 20A.
 - (5) The use of the spacer is not essential in the formation of the molding material layers, and spaces for forming the elastic anisotropically conductive films may be surely retained between each of the top force and bottom force, and the frame plate by any other means.

20

(6) In the probe member, the sheet-like connector 40 is not essential, and the elastic anisotropically conductive films 20 in the anisotropically conductive connector 2 may be brought into contact with a wafer, which is an object of inspection, to achieve electrical

connection.

10

15

20

25

(7) In the anisotropically conductive connector according to the present invention, the anisotropically conductive film-arranging holes in the frame plate thereof may be formed correspondingly to electrode regions, in which electrodes to be inspected have been arranged, in part of integrated circuits formed on a wafer, which is an object of inspection, and the elastic anisotropically conductive film may be arranged in each of these anisotropically conductive film-arranging holes.

According to such an anisotropically conductive connector, a wafer can be divided into two or more areas to collectively perform the probe test on integrated circuits formed in each of the divided areas.

More specifically, it is not essential to collectively perform inspection on all the integrated circuits formed on the wafer in the wafer inspection process using the anisotropically conductive connector according to the present invention or the probe member according to the present invention.

In the burn-in test, inspection time required of each of integrated circuits is as long as several hours, and so high time efficiency can be achieved when the inspection is conducted collectively on all integrated circuits formed on a wafer. In the probe test on the other hand, inspection time required of each of integrated circuits is as short as several minutes, and so sufficiently high time efficiency

can be achieved even when a wafer is divided into 2 or more areas, and the probe test is conducted collectively on integrated circuits formed in each of the divided areas.

As described above, according to the method that electrical inspection is conducted every area divided as to integrated circuits formed on a wafer, when the electrical inspection is conducted as to integrated circuits formed at a high degree of integration on a wafer having a diameter of 8 inches or 12 inches, the numbers of inspection electrodes and wires of the circuit board for inspection used can be reduced compared with the method that the inspection is conducted collectively on all the integrated circuits, whereby the production cost of the inspection apparatus can be reduced.

5

10

15

20

Since the anisotropically conductive connector according to the present invention or the probe member according to the present invention is high in durability in repeated use, the frequency to replace the anisotropically conductive connector suffers from trouble with a new one becomes low when it is used in the method that the electrical inspection is conducted every area divided as to integrated circuits formed on the wafer, so that inspection cost can be reduced.

(8) The anisotropically conductive connector
25 according to the present invention or the probe member according to the present invention may also be used in inspection of a wafer, on which integrated circuits having

projected electrodes (bumps) formed of gold, solder or the like have been formed, in addition to the inspection of a wafer, on which integrated circuits having flat electrodes formed of aluminum have been formed.

5

10

15

20

25

Since the electrode formed of gold, solder or the like is hard to form an oxidized film on its surface compared with the electrode composed of aluminum, there is no need of pressurizing such an electrode under a load required for breaking through the oxidized film in the inspection of the wafer, on which the integrated circuit having such projected electrodes have been formed, so that the inspection can be performed in a state that the conductive parts for connection of an anisotropically conductive connector have been brought into direct contact with the electrodes to be inspected without using any sheet-like connector.

When inspection of a wafer is conducted in a state that conductive parts for connection of an anisotropically conductive connector have been brought into direct contact with the projected electrodes, which are electrodes to be inspected, the conductive parts for connection undergo abrasion or permanent compressive deformation by being pressurized by the projected electrodes when the anisotropically conductive connector is used repeatedly. As a result, increase in electric resistance and connection failure to the electrodes to be inspected occur in the

conductive parts for connection, so that it has been

necessary to replace the anisotropically conductive connector by a new one at a high frequency.

According to the anisotropically conductive connector according to the present invention or the probe member

5 according to the present invention, however, the necessary conductivity is retained over a long period of time even when the wafer, which is an object of inspection, is a wafer having a diameter of 8 inches or 12 inches, on which integrated circuits have been formed at a high degree of integration, since the anisotropically conductive connector or probe member is high in durability in repeated use, whereby the frequency to replace the anisotropically conductive connector with a new one becomes low, and so the inspection cost can be reduced.

15 <Examples>

The present invention will hereinafter be described specifically by the following examples. However, the present invention is not limited to these examples.

[Production of wafer for test]

20 As illustrated in Fig. 17, 393 square integrated circuits L in total, which each had dimensions of 8 mm x 8 mm, were formed on a wafer 6 made of silicon (coefficient of linear thermal expansion: 3.3 x 10⁻⁶/K) and having a diameter of 8 inches. Each of the integrated circuits L formed on the wafer 6 has a region A of electrodes to be inspected at its center as illustrated in Fig. 18. In the region A of the electrodes to be inspected, as illustrated

in Fig. 19, 50 rectangular electrodes 7 to be inspected each having dimensions of 200 µm in a vertical direction (upper and lower direction in Fig. 19) and 50 µm in a lateral direction (left and right direction in Fig. 19) are arranged at a pitch of 100 µm in a line in the lateral direction. The total number of the electrodes 7 to be inspected in the whole wafer 6 is 19,650. All the electrodes to be inspected are electrically connected to a common lead electrode (not illustrated) formed at a peripheral edge of the wafer 6. This wafer will hereinafter be referred to as "Wafer W1 for test".

Further, 393 integrated circuits (L), which had the same construction as in the Wafer W1 for test except that each two electrodes of every second electrode from an outermost electrode (7) to be inspected, among the 50 electrodes (7) to be inspected in the integrated circuit (L) were electrically connected to each other, and no common lead electrode was formed, were formed on a wafer (6). The total number of the electrodes to be inspected in the whole wafer is 19,650. This wafer will hereinafter be referred to as "Wafer W2 for test".

Further, 225 square integrated circuits L in total, which each had dimensions of 6.5 mm x 6.5 mm, were formed on a wafer made of silicon and having a diameter of 6 inches. Each of the integrated circuits formed on the wafer has a region of electrodes to be inspected at its center. In the region of the electrodes to be inspected,

50 rectangular electrodes to be inspected each having dimensions of 100 μm in a vertical direction and 50 μm in a lateral direction are arranged at a pitch of 100 μm in 2 lines (the number of electrodes to be inspected in a line:

- 25) in the lateral direction. A clearance between electrodes to be inspected adjacent in the vertical direction is 350 μ m. Every two electrodes among the 50 electrodes to be inspected are electrically connected to each other. The total number of the electrodes to be
- inspected in the whole wafer is 11,250. All the electrodes to be inspected are electrically connected to a common lead electrode formed at a peripheral edge of the wafer. This wafer will hereinafter be referred to as "Wafer W3 for test".
- Further, 225 integrated circuits, which had the same construction as in the Wafer W3 for test except that every two electrodes among the 50 electrodes to be inspected in the integrated circuit were electrically connected to each other and no lead electrode was formed, were formed on a wafer. The total number of the electrodes to be inspected in the whole wafer is 11,250. This wafer will hereinafter be referred to as "Wafer W4 for test".

[Preparation of magnetic core particles]

- (1) Preparation of Magnetic Core Particles [A]
- Commercially available nickel particles (product of Westaim Co., "FC1000") were used to prepare Magnetic Core Particles [A] in the following manner.

An air classifier "Turboclassifier TC-15N"

(manufactured by Nisshin Engineering Co., Ltd.) was used to subject 2 kg of the nickel particles to a classification treatment under conditions of a specific gravity of 8.9, an 5 air flow of 2.5 m³/min, a rotor speed of 1,600 rpm, a classification point of 25 µm and a feed rate of nickel particles of 16 g/min, 1.8 kg of nickel particles were collected, and 1.8 kg of these nickel particles were subjected to another classification treatment under conditions of a specific gravity of 8.9, an air flow of 2.5 m³/min, a rotor speed of 3,000 rpm, a classification point of 10 µm and a feed rate of nickel particles of 14 g/min, thereby collecting 1.5 kg of nickel particles.

A sonic sifter "SW-20AT Model" (manufactured by 15 Tsutsui Rikagaku Kiki Co., Ltd.) was then used to subject 120 g of the nickel particles classified by the air classifier to a further classification treatment. Specifically, 4 sieves each having a diameter of 200 mm and respectively having opening diameters of 25 μ m, 20 μ m, 16 20 μm and 8 μm were superimposed on one another in this order from above. Each of the sieves was charged with 10 g of ceramic balls having a diameter of 2 mm, and 20 g of the nickel particles were placed on the uppermost sieve (opening diameter: 25 μ m) to subject them to a 25 classification treatment under conditions of 55 Hz for 12 minutes and 125 Hz for 15 minutes, thereby collecting nickel particles captured on the lowest sieve (opening

diameter: 8 μ m). This process was conducted repeatedly 25 times in total, thereby preparing 110 g of Magnetic Core Particles [A].

Magnetic Core Particles [A] thus obtained had a number average particle diameter of 10 μ m, a coefficient of variation of the particle diameter of 10%, a BET specific surface area of 0.2 x 10³ m²/kg and a saturation magnetization of 0.6 Wb/m².

(2) Preparation of Magnetic Core Particles [B] to Magnetic
10 Core Particles [H]:

The following Magnetic Core Particles [B] to Magnetic Core Particles [H] were prepared in the same manner as in the preparation of Magnetic Core Particles [A] except that the conditions of the air classifier and the sonic sifter were changed.

Magnetic Core Particles [B]:

5

15

20

Magnetic core particles composed of nickel and having a number average particle diameter of 12 μ m, a coefficient of variation of the particle diameter of 30%, a BET specific surface area of 0.1 x 10³ m²/kg and a saturation magnetization of 0.6 Wb/m².

Magnetic Core Particles [C]:

Magnetic core particles composed of nickel and having a number average particle diameter of 10 μ m, a coefficient of variation of the particle diameter of 10%, a BET specific surface area of 0.03 x 10³ m²/kg and a saturation magnetization of 0.6 Wb/m².

Magnetic Core Particles [D]:

Magnetic core particles composed of nickel and having a number average particle diameter of 9 μm , a coefficient of variation of the particle diameter of 28%, a BET specific surface area of 0.05 x 10^3 m²/kg and a saturation magnetization of 0.6 Wb/m².

Magnetic Core Particles [E]:

5

10

Magnetic core particles composed of nickel and having a number average particle diameter of 6 μ m, a coefficient of variation of the particle diameter of 30%, a BET specific surface area of 0.5 x 10^3 m²/kg and a saturation magnetization of 0.6 Wb/m².

Magnetic Core Particles [F]:

Magnetic core particles composed of nickel and having a number average particle diameter of 10 μ m, a coefficient of variation of the particle diameter of 20%, a BET specific surface area of 0.05 x 10³ m²/kg and a saturation magnetization of 0.6 Wb/m².

Magnetic Core Particles [G]:

Magnetic core particles composed of nickel and having a number average particle diameter of 10 μ m, a coefficient of variation of the particle diameter of 15%, a BET specific surface area of 0.15 x 10³ m²/kg and a saturation magnetization of 0.6 Wb/m².

25 Magnetic Core Particles [H]:

Magnetic core particles composed of nickel and having a number average particle diameter of 8 $\mu\text{m},$ a coefficient

of variation of the particle diameter of 25%, a BET specific surface area of $0.15 \times 10^3 \, \text{m}^2/\text{kg}$ and a saturation magnetization of $0.6 \, \text{Wb/m}^2$.

[Preparation of Conductive Particles]

5

10

15

20

(1) Preparation of Conductive Particles [a]:

Into a treating vessel of a powder plating apparatus, were poured 100 g of Magnetic Core Particles [A], and 2 L of 0.32N hydrochloric acid were added. The resultant mixture was stirred to obtain a slurry containing Magnetic Core Particles [A]. This slurry was stirred at ordinary temperature for 30 minutes, thereby conducting an acid treatment for Magnetic Core Particles [A]. Thereafter, the slurry thus treated was left at rest for 1 minute to precipitate Magnetic Core Particles [A], and a supernatant was removed.

To Magnetic Core Particles [A] subjected to the acid treatment, were added 2 L of purified water, and the mixture was stirred at ordinary temperature for 2 minutes. The mixture was then left at rest for 1 minute to precipitate Magnetic Core Particles [A], and a supernatant was removed. This process was conducted repeatedly further twice, thereby conducting a washing treatment for Magnetic Core Particles [A].

To Magnetic Core Particles [A] subjected to the acid

treatment and washing treatment, were added 2 L of a

plating solution containing gold in a proportion of 20 g/L.

The temperature of the treating vessel was raised to 90°C,

and the contents were stirred, thereby preparing a slurry. While stirring the slurry in this state, Magnetic Core Particles [A] were subjected to displacement plating with gold. Thereafter, the slurry was left at rest while allowing it to cool, thereby precipitating particles, and a supernatant was removed to prepare Conductive Particles [a].

5

20

To Conductive Particles [a] thus obtained, were added 2 L of purified water, and the mixture was stirred at ordinary temperature for 2 minutes. Thereafter, the 10 mixture was left at rest for 1 minute to precipitate Conductive Particles [a], and a supernatant was removed. This process was conducted repeatedly further twice, and 2 L of purified water heated to 90°C were added to the particles, and the mixture was stirred. The resultant slurry was filtered through filter paper to collect Conductive Particles [a]. Conductive Particles [a] thus obtained were dried in a dryer preset at 90°C.

Conductive Particles [a] thus obtained had a number average particle diameter of 12 μm , a BET specific surface area of 0.25 x 10^3 m²/kg, a thickness t of the coating layer of 111 nm, a value N of (mass of gold forming the coating layer)/(total mass of Conductive Particles [a]) of 0.3 and an electric resistance value R of 0.025 Ω .

(2) Preparation of Conductive Particles [b]:

25 Conductive Particles [b] were prepared in the same
manner as in the preparation of Conductive Particles [a]
except that Magnetic Core Particles [B] were used in place

of Magnetic Core Particles [A], and the content of gold in the plating solution of gold was changed.

Conductive Particles [b] thus obtained had a number average particle diameter of 13 μm , a BET specific surface area of 0.12 x 10^3 m²/kg, a thickness t of the coating layer of 146 nm, a value N of (mass of gold forming the coating layer)/(total mass of Conductive Particles [b1]) of 0.22 and an electric resistance value R of 0.1 Ω .

(3) Preparation of Conductive Particles [c]:

5

25

10 Conductive Particles [c] were prepared in the same manner as in the preparation of Conductive Particles [a] except that Magnetic Core Particles [C] were used in place of Magnetic Core Particles [A], and the content of gold in the plating solution of gold was changed.

Conductive Particles [c] thus obtained had a number average particle diameter of 14 μm , a BET specific surface area of 0.04 x 10³ m²/kg, a thickness t of the coating layer of 192 nm, a value N of (mass of gold forming the coating layer)/(total mass of Conductive Particles [c]) of 0.10 and an electric resistance value R of 0.12 Ω .

(4) Preparation of Conductive Particles [d]:

Conductive Particles [d] were prepared in the same manner as in the preparation of Conductive Particles [a] except that Magnetic Core Particles [D] were used in place of Magnetic Core Particles [A], and the content of gold in the plating solution of gold was changed.

Conductive Particles [d] thus obtained had a number

average particle diameter of 10 μ m, a BET specific surface area of 0.06 x 10³ m²/kg, a thickness t of the coating layer of 90 nm, a value N of (mass of gold forming the coating layer)/(total mass of Conductive Particles [d]) of 0.08 and an electric resistance value R of 0.15 Ω .

(5) Preparation of Conductive Particles [e]:

5

10

15

Conductive Particles [e] were prepared in the same manner as in the preparation of Conductive Particles [a] except that Magnetic Core Particles [E] were used in place of Magnetic Core Particles [A], and the content of gold in the plating solution of gold was changed.

Conductive Particles [e] thus obtained had a number average particle diameter of 7 μ m, a BET specific surface area of 0.7 x 10³ m²/kg, a thickness t of the coating layer of 58 nm, a value N of (mass of gold forming the coating layer)/(total mass of Conductive Particles [e]) of 0.35 and an electric resistance value R of 0.25 Ω .

(6) Preparation of Conductive Particles [f]:

Conductive Particles [f] were prepared in the same

20 manner as in the preparation of Conductive Particles [a]

except that Magnetic Core Particles [F] were used in place
of Magnetic Core Particles [A], and the content of gold in
the plating solution of gold was changed.

Conductive Particles [f] thus obtained had a number average particle diameter of 11 μ m, a BET specific surface area of 0.06 x 10³ m²/kg, a thickness t of the coating layer of 128 nm, a value N of (mass of gold forming the

coating layer)/(total mass of Conductive Particles [f]) of 0.11 and an electric resistance value R of 0.18 Ω .

(7) Preparation of Conductive Particles [g]:

Conductive Particles [g] were prepared in the same manner as in the preparation of Conductive Particles [a] except that Magnetic Core Particles [G] were used in place of Magnetic Core Particles [A], and the content of gold in the plating solution of gold was changed.

Conductive Particles [g] thus obtained had a number average particle diameter of 12 μ m, a BET specific surface area of 0.17 x 10³ m²/kg, a thickness t of the coating layer of 135 nm, a value N of (mass of gold forming the coating layer)/(total mass of Conductive Particles [g]) of 0.28 and an electric resistance value R of 0.015 Ω .

(8) Preparation of Conductive Particles [h]:

15

20

25

Conductive Particles [h] were prepared in the same manner as in the preparation of Conductive Particles [a] except that Magnetic Core Particles [H] were used in place of Magnetic Core Particles [A], and the content of gold in the plating solution of gold was changed.

Conductive Particles [h] thus obtained had a number average particle diameter of 10 μ m, a BET specific surface area of 0.16 x 10³ m²/kg, a thickness t of the coating layer of 61 nm, a value N of (mass of gold forming the coating layer)/(total mass of Conductive Particles [h]) of 0.15 and an electric resistance value R of 0.08 Ω .

The properties of the conductive particles prepared

and the properties of the magnetic core particles used in the conductive particles are shown collectively in the following Table 1.

Table 1

		Prop	erties of n	Properties of magnetic core particles used	icles used		Properties of conductive particles	conductiv	e particles	
	Kind	Number average	Number Coefficient of average variation of particle	BET specific surface area	Saturation average	Number average	BET specific surface area	Thickness of coating	Thickness Value N of of (mass of gold)/	Electric resistance
Conductive particles		diameter (µm)		(m² /kg)	(w b/m²)	diameter (µm)	. (m² /kg)		conductive particles)	R (Q)
[a]	[A]	10	01	0.2×10^3	9 0	1.2	0.25×10^{1}	=	0.3	0.025
[b]	[8]	1.2	3.0	0.1×10³	9 .0	61	0.12×10³	146	0.22	0.1
[0]	[0]	1.0	10	0.03×10^{3}	0.6	14	0.04×10^{3}	192	0. 1	0.12
[p]	[0]	6	8 2	0.05×10^{3}	9 0	0.1	0.06×10^{3}	0 6	0.08	0.15
[e]	(E)	9	3.0	0.5×10³	0.6	1	0.7×10^{3}	5.8	0.35	0.25
[f]	王	0	0.2	0.05×10³	0.6	=	0.06×10^{3}	128	0.11	0.18
[8]	[9]	10	1.5	0.15×10³	0.6	1.2	0.17×10^{3}	135	0.28	0.0 1 5
[h]	EE	8	2.5	0.15×10³	0.6	10	0. I 6×10³	0 1	0.15	0.08

[Polymeric substance-forming material]

10

20

25

Addition type liquid silicone rubber of a two-pack type that the viscosity of Liquid A is 250 Pa·s, the viscosity of Liquid B is 250 Pa·s, the compression set of a cured product thereof at 150°C is 5%, the durometer A hardness of the cured product is 32, and the tear strength of the cured product is 25 kN/m was provided as a polymeric substance-forming material. This addition type liquid silicone rubber will be referred to as "Silicone Rubber (1)".

The properties of the addition type liquid silicone rubber were determined in the following manner.

(i) Viscosity of addition type liquid silicone rubber:

A viscosity at 23 \pm 2°C was measured by a Brookfield viscometer.

(ii) Compression set of cured silicone rubber:

Solution A and Solution B in addition type liquid silicone rubber of the two-pack type were stirred and mixed in proportions that their amounts become equal. After this mixture was then poured into a mold and subjected to a defoaming treatment by pressure reduction, a curing treatment was conducted under conditions of 120°C for 30 minutes, thereby producing a columnar body having a thickness of 12.7 mm and a diameter of 29 mm and composed of cured silicone rubber. The columnar body was post-cured under conditions of 200°C for 4 hours. The columnar body thus obtained was used as a specimen to measure its

compression set at 150 \pm 2°C in accordance with JIS K 6249. (iii) Tear strength of cured silicone rubber:

A curing treatment and post-curing of addition type liquid silicone rubber were conducted under the same conditions as in the item (ii), thereby producing a sheet having a thickness of 2.5 mm. A crescent type specimen was prepared by punching from this sheet to measure its tear strength at 23 \pm 2°C in accordance with JIS K 6249.

(iv) Durometer A hardness:

10 Five sheets produced in the same manner as in the item (iii) were stacked on one another, and the resultant laminate was used as a specimen to measure its durometer A hardness at 23 ± 2°C in accordance with JIS K 6249.

[Production of anisotropically conductive connector for WLBI test]

(1) Production of frame plate:

20

A total of 80 frame plates each having a diameter of 8 inches and 393 anisotropically conductive film-arranging holes formed correspondingly to the respective regions of the electrodes to be inspected in Wafer W2 for test were produced under the following conditions in accordance with the construction shown in Figs. 20 and 21.

A material of these frame plates 10 is covar (saturation magnetization: 1.4 Wb/m²; coefficient of linear thermal expansion: 5 x 10^{-6} /K), and the thickness thereof is 60 μ m.

The anisotropically conductive film-arranging holes

11 each have dimensions of 5,250 μm in a lateral direction (left and right direction in Figs. 20 and 21) and 320 μm in a vertical direction (upper and lower direction in Figs. 20 and 21).

A circular air circulating hole 15 is formed at a central position between anisotropically conductive film-arranging holes 11 adjacent in the vertical direction, and the diameter thereof is 1,000 μm .

(2) production of spacer:

5

20

Two spacers for molding elastic anisotropically conductive films, which each have a plurality of throughholes formed correspondingly to the regions of the electrodes to be inspected in Wafer W2 for test, were produced under the following conditions. A material of these spacers is stainless steel (SUS304), and the thickness thereof is 20 μm.

The through-hole corresponding to each region of the electrodes to be inspected has dimensions of 6,000 μm in the lateral direction and 1,200 μm in the vertical direction.

(3) Production of mold:

A mold for molding elastic anisotropically conductive films was produced under the following conditions in accordance with the construction shown in Figs. 7 and 22.

A top force 61 and a bottom force 65 in this mold respectively have base plates 62 and 66 made of iron and each having a thickness of 6 mm. On the base plate, 62, 66

ferromagnetic substance layers 63 (67) for forming conductive parts for connection and ferromagnetic substance layers 63a (67a) for forming conductive parts for nonconnection, which are made of nickel, are arranged in accordance with a pattern corresponding to a pattern of the electrodes to be inspected in Wafer W1 for test. More specifically, the dimensions of each of the ferromagnetic substance layers 63 (67) for forming conductive parts for connection are 40 μ m (lateral direction) x 200 μ m (vertical direction) x 100 μ m (thickness), and 50 ferromagnetic substance layers 63 (67) are arranged at a pitch of 100 μm in a line in the lateral direction. The ferromagnetic substance layers 63a (67a) for forming conductive parts for non-connection are arranged outside the ferromagnetic substance layers 63 (67) located most outside in a direction that the ferromagnetic substance layers 63 (67) are arranged. The dimensions of each of the ferromagnetic substance layers 63a (67a) are 60 μ m (lateral direction) x 200 μ m (vertical direction) x 100 μ m (thickness).

5

10

15

Corresponding to the regions of the electrodes to be inspected in Wafer W2 for test, are formed 393 regions in total, in each of which 50 ferromagnetic substance layers 63 (67) for forming conductive parts for connection and 2 ferromagnetic substance layers 63a (67a) for forming conductive parts for non-connection have been formed. In the whole base plate, are formed 19,650 ferromagnetic substance layers 63 (67) for forming conductive parts for

connection and 786 ferromagnetic substance layers 63a (67a) for forming conductive parts for non-connection.

Non-magnetic substance layers 64 (68) are formed by subjecting dry film resists to a curing treatment. The dimensions of each of recessed parts 64a (68a), at which the ferromagnetic substance layer 63 (67) for forming the conductive part for connection is located, are 60 µm (lateral direction) x 210 µm (vertical direction) x 25 µm (depth), the dimensions of each of recessed parts 64b (68b), at which the ferromagnetic substance layer 63a (67a) for forming the conductive part for non-connection is located, are 90 µm (lateral direction) x 260 µm (vertical direction) x 25 µm (depth), and the thickness of other portions than the recessed parts is 125 µm (the thickness of the recessed parts: 100 µm).

(4) Production of Anisotropically Conductive Connectors
(A1) to (A10):

The above-described frame plate, spacers and mold were used to form elastic anisotropically conductive films in the frame plate in the following manner.

20

25

To 100 parts by mass of Silicone Rubber (1) were added and mixed 30 parts by mass of Conductive Particles [a]. Thereafter, the resultant mixture was subjected to a defoaming treatment by pressure reduction, thereby preparing a molding material for molding elastic anisotropically conductive films.

The molding material prepared was applied to the

surfaces of the top force and bottom force of the mold by screen printing, thereby forming molding material layers in accordance with a pattern of the elastic anisotropically conductive films to be formed, and the frame plate was superimposed in alignment on the molding surface of the bottom force through the spacer on the side of the bottom force. Further, the top force was superimposed in alignment on the frame plate through the spacer on the side of the top force.

The molding material layers formed between the top
force and the bottom force were subjected to a curing
treatment under conditions of 100℃ for 1 hour while
applying a magnetic field of 2 T to portions located
between the corresponding ferromagnetic substance layers in
the thickness-wise direction by electromagnets, thereby
forming an elastic anisotropically conductive film in each
of the anisotropically conductive film-arranging holes of
the frame plate.

The elastic anisotropically conductive films thus

20 obtained will be described specifically. Each of the
elastic anisotropically conductive films has dimensions of
6,000 µm in the lateral direction and 1,200 µm in the
vertical direction. In a functional part in each of the
elastic anisotropically conductive films, 50 conductive

25 parts for connection are arranged at a pitch of 100 µm in a
line in the lateral direction. The dimensions of each of
the conductive parts for connection are 40 µm in the

lateral direction, 200 μm in the vertical direction and 150 μm in thickness. The thickness of the insulating part in the functional part is 100 μm . Conductive parts for non-connection are arranged between the conductive parts for connection located most outside in the lateral direction and the frame plate. The dimensions of each of the conductive parts for non-connection are 60 μm in the lateral direction, 200 μm in the vertical direction and 150 μm in thickness. The thickness (thickness of one of the forked portions) of the part to be supported in each of the elastic anisotropically conductive films is 20 μm .

5

10

15

Anisotropically conductive films were respectively formed in 10 frame plates to produce a total of 10 anisotropically conductive connectors. These anisotropically conductive connectors will hereinafter be referred to as Anisotropically Conductive Connector (A1) to Anisotropically Conductive Connector (A10).

The parts to be supported and the insulating parts in the functional parts of the elastic anisotropically

20 conductive films in each of Anisotropically Conductive

Connector (A1) to Anisotropically Conductive Connector

(A10) were observed. As a result, it was confirmed that the conductive particles are present in the parts to be supported and that the conductive particles are scarcely

25 present in the insulating parts in the functional parts.

(5) Production of Anisotropically Conductive Connectors

(B1) to (B10):

Ten anisotropically conductive connectors were produced in the same manner as in Anisotropically Conductive Connectors (A1) to (A10) except that Conductive Particles [b] were used in place of Conductive Particles [a]. These anisotropically conductive connectors will hereinafter be referred to as Anisotropically Conductive Connector (B1) to Anisotropically Conductive Connector (B10).

The parts to be supported and the insulating parts in

the functional parts of the elastic anisotropically
conductive films in each of Anisotropically Conductive

Connector (B1) to Anisotropically Conductive Connector

(B10) were observed. As a result, it was confirmed that
the conductive particles are present in the parts to be

supported and that the conductive particles are scarcely
present in the insulating parts in the functional parts.

(6) Production of Anisotropically Conductive Connectors

(C1) to (C10):

Ten anisotropically conductive connectors were

20 produced in the same manner as in Anisotropically

Conductive Connectors (A1) to (A10) except that Conductive

Particles [c] were used in place of Conductive Particles

[a]. These anisotropically conductive connectors will

hereinafter be referred to as Anisotropically Conductive

25 Connector (C1) to Anisotropically Conductive Connector

(C10).

The parts to be supported and the insulating parts in

the functional parts of the elastic anisotropically conductive films in each of Anisotropically Conductive Connector (C1) to Anisotropically Conductive Connector (C10) were observed. As a result, it was confirmed that the conductive particles are present in the parts to be supported and that the conductive particles are scarcely present in the insulating parts in the functional parts.

(7) Production of Anisotropically Conductive Connectors (D1) to (D10):

5

Ten anisotropically conductive connectors were produced in the same manner as in Anisotropically Conductive Connectors (A1) to (A10) except that Conductive Particles [d] were used in place of Conductive Particles [a]. These anisotropically conductive connectors will hereinafter be referred to as Anisotropically Conductive Connector (D10).

The parts to be supported and the insulating parts in the functional parts of the elastic anisotropically

20 conductive films in each of Anisotropically Conductive

Connector (D1) to Anisotropically Conductive Connector

(D10) were observed. As a result, it was confirmed that the conductive particles are present in the parts to be supported and that the conductive particles are scarcely

25 present in the insulating parts in the functional parts.

(8) Production of Anisotropically Conductive Connectors

(E1) to (E10):

Ten anisotropically conductive connectors were produced in the same manner as in Anisotropically Conductive Connectors (A1) to (A10) except that Conductive Particles [e] were used in place of Conductive Particles [a]. These anisotropically conductive connectors will hereinafter be referred to as Anisotropically Conductive Connector (E1) to Anisotropically Conductive Connector (E10).

The parts to be supported and the insulating parts in

the functional parts of the elastic anisotropically
conductive films in each of Anisotropically Conductive

Connector (E1) to Anisotropically Conductive Connector

(E10) were observed. As a result, it was confirmed that
the conductive particles are present in the parts to be

supported and that the conductive particles are scarcely
present in the insulating parts in the functional parts.

(9) Production of Anisotropically Conductive Connectors

(F1) to (F10):

Ten anisotropically conductive connectors were

20 produced in the same manner as in Anisotropically

Conductive Connectors (A1) to (A10) except that Conductive

Particles [f] were used in place of Conductive Particles

[a]. These anisotropically conductive connectors will

hereinafter be referred to as Anisotropically Conductive

25 Connector (F1) to Anisotropically Conductive Connector

(F10).

The parts to be supported and the insulating parts in

the functional parts of the elastic anisotropically conductive films in each of Anisotropically Conductive Connector (F1) to Anisotropically Conductive Connector (F10) were observed. As a result, it was confirmed that the conductive particles are present in the parts to be supported and that the conductive particles are scarcely present in the insulating parts in the functional parts.

(10) Production of Anisotropically Conductive Connectors (G1) to (G10):

Ten anisotropically conductive connectors were produced in the same manner as in Anisotropically Conductive Connectors (A1) to (A10) except that Conductive Particles [g] were used in place of Conductive Particles [a]. These anisotropically conductive connectors will hereinafter be referred to as Anisotropically Conductive Connector (G1) to Anisotropically Conductive Connector (G10).

The parts to be supported and the insulating parts in the functional parts of the elastic anisotropically conductive films in each of Anisotropically Conductive Connector (G1) to Anisotropically Conductive Connector (G10) were observed. As a result, it was confirmed that the conductive particles are present in the parts to be supported and that the conductive particles are scarcely present in the insulating parts in the functional parts. (11) Production of Anisotropically Conductive Connectors (H1) to (H10):

20

25

Ten anisotropically conductive connectors were produced in the same manner as in Anisotropically Conductive Connectors (A1) to (A10) except that Conductive Particles [h] were used in place of Conductive Particles [a]. These anisotropically conductive connectors will hereinafter be referred to as Anisotropically Conductive Connector (H1) to Anisotropically Conductive Connector (H10).

The parts to be supported and the insulating parts in

the functional parts of the elastic anisotropically
conductive films in each of Anisotropically Conductive

Connector (H1) to Anisotropically Conductive Connector

(H10) were observed. As a result, it was confirmed that
the conductive particles are present in the parts to be

supported and that the conductive particles are scarcely
present in the insulating parts in the functional parts.

[Production of anisotropically conductive connector for
probe test]

(1) Production of frame plate:

A frame plate having a diameter of 6 inches and 225 anisotropically conductive film-arranging holes formed correspondingly to the respective regions of the electrodes to be inspected in Wafer W3 for test was produced under the following conditions.

A material of this frame plate is covar (saturation magnetization: 1.4 Wb/m²; coefficient of linear thermal expansion: 5 x $10^{-6}/K$), and the thickness thereof is 80 μ m.

The anisotropically conductive film-arranging holes each have dimensions of 2,740 μm in a lateral direction and 600 μm in a vertical direction.

A circular air circulating hole is formed at a central position between anisotropically conductive film-arranging holes adjacent in the vertical direction, and the diameter thereof is 1,000 $\mu m\,.$

(2) production of spacer:

Two spacers for molding elastic anisotropically

conductive films, which each have a plurality of throughholes formed correspondingly to the regions of the
electrodes to be inspected in Wafer W2 for test, were
produced under the following conditions.

A material of these spacers is stainless steel (SUS304), and the thickness thereof is 30 μm_{\odot}

The through-hole corresponding to each region of the electrodes to be inspected has dimensions of 3,500 μm in the lateral direction and 1,400 μm in the vertical direction.

20 (3) Production of mold:

A mold for molding elastic anisotropically conductive films was produced under the following conditions.

A top force and a bottom force in this mold respectively have base plates made of iron and each having a thickness of 6 mm. On the base plate, ferromagnetic substance layers for forming conductive parts for connection and ferromagnetic substance layers for forming

conductive parts for non-connection, which are made of nickel, are arranged in accordance with a pattern corresponding to a pattern of the electrodes to be inspected in Wafer W3 for test. More specifically, the dimensions of each of the ferromagnetic substance layers for forming conductive parts for connection are 50 μm (lateral direction) x 100 μ m (vertical direction) x 100 μ m (thickness), and 50 ferromagnetic substance layers are arranged at a pitch of 100 μm in 2 lines (the number of ferromagnetic substance layers in a line: 25; clearance between ferromagnetic substance layers adjacent in the vertical direction: 350 µm) in the lateral direction. ferromagnetic substance layers for forming conductive parts for non-connection are arranged outside the ferromagnetic substance layers located most outside in a direction that the ferromagnetic substance layers are arranged. dimensions of each of the ferromagnetic substance layers are 50 μ m (lateral direction) x 200 μ m (vertical direction) x 100 μ m (thickness).

10

15

Corresponding to the regions of the electrodes to be inspected in Wafer W2 for test, are formed 225 regions in total, in each of which 50 ferromagnetic substance layers for forming conductive parts for connection and 2 ferromagnetic substance layers for forming conductive parts for non-connection have been formed. In the whole base plate, are formed 11,250 ferromagnetic substance layers for forming conductive parts for connection and 450

ferromagnetic substance layers for forming conductive parts for non-connection.

Non-magnetic substance layers are formed by subjecting dry film resists to a curing treatment. dimensions of each of recessed parts, at which the 5 ferromagnetic substance layer for forming the conductive part for connection is located, are 50 μ m (lateral direction) x 100 μ m (vertical direction) x 25 μ m (depth), the dimensions of each of recessed parts, at which the 10 ferromagnetic substance layer for forming the conductive part for non-connection is located, are 50 µm (lateral direction) x 200 μ m (vertical direction) x 25 μ m (depth), and the thickness of other portions than the recessed parts is 125 μ m (the thickness of the recessed parts: 100 μ m). 15 (4) Production of Anisotropically Conductive Connectors

The above-described frame plate, spacers and mold were used to form elastic anisotropically conductive films in the frame plate in the following manner.

(A11) to (A20):

To 100 parts by mass of Silicone Rubber (1) were added and mixed 30 parts by mass of Conductive Particles [a]. Thereafter, the resultant mixture was subjected to a defoaming treatment by pressure reduction, thereby preparing a molding material for molding elastic anisotropically conductive films.

The molding material prepared was applied to the surfaces of the top force and bottom force of the mold by

screen printing, thereby forming molding material layers in accordance with a pattern of the elastic anisotropically conductive films to be formed, and the frame plate was superimposed in alignment on the molding surface of the bottom force through the spacer on the side of the bottom force. Further, the top force was superimposed in alignment on the frame plate through the spacer on the side of the top force.

The molding material layers formed between the top

10 force and the bottom force were subjected to a curing

treatment under conditions of 100°C for 1 hour while

applying a magnetic field of 2 T to portions located

between the corresponding ferromagnetic substance layers in

the thickness-wise direction by electromagnets, thereby

15 forming an elastic anisotropically conductive film in each

of the anisotropically conductive film-arranging holes of

the frame plate.

The elastic anisotropically conductive films thus obtained will be described specifically. Each of the elastic anisotropically conductive films has dimensions of 3,500 µm in the lateral direction and 1,400 µm in the vertical direction. In a functional part in each of the elastic anisotropically conductive films, 50 conductive parts for connection are arranged at a pitch of 100 µm in 2 lines (the number of conductive parts for connection in a line: 25; clearance between conductive parts for connection adjacent in the vertical direction: 350 µm) in the lateral

direction. The dimensions of each of the conductive parts for connection are 50 µm in the lateral direction, 100 µm in the vertical direction and 190 µm in thickness. The thickness of the insulating part in the functional part is 140 µm. Conductive parts for non-connection are arranged between the conductive parts for connection located most outside in the lateral direction and the frame plate. The dimensions of each of the conductive parts for non-connection are 50 µm in the lateral direction, 200 µm in the vertical direction and 190 µm in thickness. The thickness (thickness of one of the forked portions) of the part to be supported in each of the elastic anisotropically conductive films is 30 µm.

5

10

15

Anisotropically conductive films were respectively formed in 10 frame plates to produce a total of 10 anisotropically conductive connectors. These anisotropically conductive connectors will hereinafter be referred to as Anisotropically Conductive Connector (A11) to Anisotropically Conductive Connector (A20).

The parts to be supported and the insulating parts in the functional parts of the elastic anisotropically conductive films in each of Anisotropically Conductive Connector (A11) to Anisotropically Conductive Connector (A20) were observed. As a result, it was confirmed that the conductive particles are present in the parts to be supported and that the conductive particles are scarcely present in the insulating parts in the functional parts.

(5) Production of Anisotropically Conductive Connectors (D11) to (D20):

5

10

15

20

Ten anisotropically conductive connectors were produced in the same manner as in Anisotropically Conductive Connectors (All) to (A20) except that Conductive Particles [d] were used in place of Conductive Particles [a]. These anisotropically conductive connectors will hereinafter be referred to as Anisotropically Conductive Connector (D11) to Anisotropically Conductive Connector (D20).

The parts to be supported and the insulating parts in the functional parts of the elastic anisotropically conductive films in each of Anisotropically Conductive Connector (D20) were observed. As a result, it was confirmed that the conductive particles are present in the parts to be supported and that the conductive particles are scarcely present in the insulating parts in the functional parts.

(6) Production of Anisotropically Conductive Connectors (E11) to (E20):

Ten anisotropically conductive connectors were produced in the same manner as in Anisotropically Conductive Connectors (A11) to (A20) except that Conductive Particles [e] were used in place of Conductive Particles

[a]. These anisotropically conductive connectors will hereinafter be referred to as Anisotropically Conductive Connector

(E20).

(G11) to (G20):

5

10

The parts to be supported and the insulating parts in the functional parts of the elastic anisotropically conductive films in each of Anisotropically Conductive Connector (E11) to Anisotropically Conductive Connector (E20) were observed. As a result, it was confirmed that the conductive particles are present in the parts to be supported and that the conductive particles are scarcely present in the insulating parts in the functional parts.

(7) Production of Anisotropically Conductive Connectors

Ten anisotropically conductive connectors were produced in the same manner as in Anisotropically Conductive Connectors (A11) to (A20) except that Conductive Particles [g] were used in place of Conductive Particles [a]. These anisotropically conductive connectors will hereinafter be referred to as Anisotropically Conductive Connector (G11) to Anisotropically Conductive Connector (G20).

The parts to be supported and the insulating parts in the functional parts of the elastic anisotropically conductive films in each of Anisotropically Conductive Connector (G11) to Anisotropically Conductive Connector (G20) were observed. As a result, it was confirmed that the conductive particles are present in the parts to be supported and that the conductive particles are scarcely present in the insulating parts in the functional parts.

[Production of circuit board for inspection for WLBI test]

Alumina ceramic (coefficient of linear thermal expansion: $4.8 \times 10^{-6}/K$) was used as a base material to produce a circuit board for inspection, in which inspection electrodes had been formed in accordance with a pattern corresponding to the pattern of the electrodes to be inspected in Wafer W2 for test. This circuit board for inspection is rectangular with dimensions of 30 cm x 30 cm as a whole. The inspection electrodes thereof each have dimensions of 60 μ m in the lateral direction and 200 μ m in the vertical direction. This circuit board for inspection will hereinafter be referred to as "Inspection Circuit Board T1".

10

[Production of circuit board for inspection for probe test]

A glass-reinforced epoxy resin was used as a base material to produce a circuit board for inspection, in which inspection electrodes had been formed in accordance with a pattern corresponding to the pattern of the electrodes to be inspected in Wafer W4 for test. This circuit board for inspection is rectangular with dimensions of 16 cm x 16 cm as a whole. The inspection electrodes thereof each have dimensions of 50 µm in the lateral direction and 100 µm in the vertical direction. This circuit board for inspection will hereinafter be referred to as "Inspection Circuit Board T2".

[Production of sheet-like connector for WLBI test]

A laminate material obtained by laminating a copper

layer having a thickness of 15 μ m on one surface of an insulating sheet formed of polyimide and having a thickness of 20 μ m was provided, and 19,650 through-holes each extending through in the thickness-wise direction of the insulating sheet and having a diameter of 30 μm were formed in the insulating sheet of the laminate material in accordance with a pattern corresponding to the pattern of electrodes to be inspected in Wafer W2 for test by subjecting the insulating sheet to laser machining. 10 laminate material was then subjected to photolithography and plating treatment with nickel, whereby short circuit parts integrally connected to the copper layer were formed in the through-holes in the insulating sheet, and at the same time, projected front-surface electrode parts 15 integrally connected to the respective short circuit parts were formed on the front surface of the insulating sheet. The diameter of each of the front-surface electrode parts was 40 µm, and the height from the surface of the insulating sheet was 20 μm . Thereafter, the copper layer 20 of the laminate material was subjected to a photo-etching treatment to remove a part thereof, thereby forming rectangular back-surface electrode parts each having dimensions of 60 μ m x 210 μ m. Further, the front-surface electrode parts and back-surface electrode parts were 25 subjected to a plating treatment with gold, thereby forming electrode structures, thus producing a sheet-like connector. This sheet-like connector will hereinafter be referred to

as "Sheet-like Connector M1".

[Production of sheet-like connector for probe test]

A laminate material obtained by laminating a copper layer having a thickness of 15 μ m on one surface of an insulating sheet formed of polyimide and having a thickness of 20 μ m was provided, and 11,250 through-holes each extending through in the thickness-wise direction of the insulating sheet and having a diameter of 30 μm were formed in the insulating sheet of the laminate material in 10 accordance with a pattern corresponding to the pattern of electrodes to be inspected in Wafer W2 for test by subjecting the insulating sheet to laser machining. laminate material was then subjected to photolithography and plating treatment with nickel, whereby short circuit 15 parts integrally connected to the copper layer were formed in the through-holes in the insulating sheet, and at the same time, projected front-surface electrode parts integrally connected to the respective short circuit parts were formed on the front surface of the insulating sheet. The diameter of each of the front-surface electrode parts 20 was 40 μm , and the height from the surface of the insulating sheet was 20 μ m. Thereafter, the copper layer of the laminate material was subjected to a photo-etching treatment to remove a part thereof, thereby forming 25 rectangular back-surface electrode parts each having dimensions of 20 μ m x 60 μ m. Further, the front-surface electrode parts and back-surface electrode parts were

subjected to a plating treatment with gold, thereby forming electrode structures, thus producing a sheet-like connector. This sheet-like connector will hereinafter be referred to as "Sheet-like Connector M2".

- 5 [Test for initial properties of elastic anisotropically conductive film]
- (1) Anisotropically conductive connector for WLBI test:

 The initial properties of elastic anisotropically conductive films in each of Anisotropically Conductive

 Connectors (A1) to (A10), Anisotropically Conductive Connectors (B1) to (B10), Anisotropically Conductive Connectors (C1) to (C10), Anisotropically Conductive Connectors (D1) to (D10), Anisotropically Conductive Connectors (E1) to (E10), Anisotropically Conductive Connectors (F1) to (F10), Anisotropically Conductive Connectors (G1) to (G10) and Anisotropically Conductive Connectors (H1) to (H10) were determined in the following manner.

Wafer W1 for test was arranged on a test table, and
the anisotropically conductive connector was arranged on
this Wafer W1 for test in alignment in such a manner that
each of the conductive parts for connection thereof is
located on the respective electrodes to be inspected of
Wafer W1 for test. Inspection Circuit Board T1 was then
arranged on this anisotropically conductive connector in
alignment in such a manner that each of the inspection
electrodes thereof is located on the respective conductive

parts for connection of the anisotropically conductive connector. Further, Inspection Circuit Board T1 was pressurized downward under a load of 19.65 kg (load applied to every conductive part for connection: 1 g on the average). An electric resistance between each of the 19,650 inspection electrodes in Inspection Circuit Board T1 and the lead electrode of Wafer W1 for test was successively measured at room temperature (25°C) to record the electric resistance value measured as an R_{1g} value of 10 the conductive part for connection in the anisotropically conductive connector, thereby counting the number of conductive parts for connection that R_{1g} was lower than 1 Ω to calculate out a proportion of the conductive parts for connection that R_{1g} was lower than 1 Ω to all the 15 conductive parts for connection.

Further, an electric resistance between each of the 19,650 inspection electrodes in Inspection Circuit Board T1 and the lead electrode of Wafer W1 for test was successively measured in the same manner as described above except that the load for pressurizing the Inspection Circuit Board T1 was changed to 117.9 kg (load applied to every conductive part for connection: 6 g on the average) to record the electric resistance value measured as an R_{6g} value of the conductive part for connection in the 25 anisotropically conductive connector, thereby counting the number of conductive parts for connection that R_{6g} was lower than 0.1 Ω and the number of conductive parts for

connection that R_{6g} was 0.5 Ω or higher to calculate out proportions of the conductive parts for connection that R_{6g} was lower than 0.1 Ω and proportions of the conductive parts for connection that R_{6g} was 0.5 Ω or higher to all the conductive parts for connection.

The results are shown in Tables 2 and 3.

Table 2

	Proportion of conductive parts for connection that R _{1g} was lower than 1Ω (%)	Proportion of conductive parts for connection that Reg was lower than 0.1 Q	Proportion of conductive parts for connection that R _{st} was 0.5 Ω or higher (%)
Anisotropically conductive connector (A 1) Anisotropically conductive connector (A 2) Anisotropically conductive connector (A 3) Anisotropically conductive connector (A 4) Anisotropically conductive connector (A 5) Anisotropically conductive connector (A 6) Anisotropically conductive connector (A 7) Anisotropically conductive connector (A 8) Anisotropically conductive connector (A 9) Anisotropically conductive connector (A 9) Anisotropically conductive connector (A 10)	1 0 0 1 0 0 1 0 0 9 9 1 0 0 1 0 0 9 8 1 0 0 1 0 0	1 0 0 1 0 0	0 0 0 0 0 0 0
Anisotropically conductive connector (B 1) Anisotropically conductive connector (B 2) Anisotropically conductive connector (B 3) Anisotropically conductive connector (B 4) Anisotropically conductive connector (B 5) Anisotropically conductive connector (B 6) Anisotropically conductive connector (B 7) Anisotropically conductive connector (B 8) Anisotropically conductive connector (B 9) Anisotropically conductive connector (B 10)	5414127355 899998999	9 7 9 7 9 9 7 9 9 2 9 3 9 6 9 6 9 8	2. 0 0. 5 0. 8 0. 6 0. 02 0
Anisotropically conductive connector (C 1) Anisotropically conductive connector (C 2) Anisotropically conductive connector (C 3) Anisotropically conductive connector (C 4) Anisotropically conductive connector (C 5) Anisotropically conductive connector (C 6) Anisotropically conductive connector (C 7) Anisotropically conductive connector (C 8) Anisotropically conductive connector (C 9) Anisotropically conductive connector (C 10)	43984517139 656665564	8 4 7 66 8 8 1 9 5 9 1 8 8 9 7	0. 5 0. 8 0. 4 0. 8 0. 0 3 1. 5 2. 1 0. 8 0. 7
Anisotropically conductive connector (D 1) Anisotropically conductive connector (D 2) Anisotropically conductive connector (D 3) Anisotropically conductive connector (D 4) Anisotropically conductive connector (D 5) Anisotropically conductive connector (D 6) Anisotropically conductive connector (D 7) Anisotropically conductive connector (D 8) Anisotropically conductive connector (D 9) Anisotropically conductive connector (D 10)	4 1 4 2 4 3 4 1 4 6 4 2 4 1 4 7 4 3 4 1	7 6 3 9 5 3 9 5 8 8 7 9 9 6 8 9 6 8 7 6	2. 4 0. 8 1. 7 2. 2 6. 2 4. 8 0. 5 6. 1 2. 5 2. 3

Table 3

	Proportion of conductive parts for connection that R _{1E} was lower than 1Ω	Proportion of conductive parts for connection that Reg was lower than 0.1 Q	Proportion of conductive parts for connection that Rex was 0.5 \(\Omega \) or higher
Anisotropically conductive connector (E 1) Anisotropically conductive connector (E 2) Anisotropically conductive connector (E 3) Anisotropically conductive connector (E 4) Anisotropically conductive connector (E 5) Anisotropically conductive connector (E 6) Anisotropically conductive connector (E 7) Anisotropically conductive connector (E 8) Anisotropically conductive connector (E 9) Anisotropically conductive connector (E 10)	1 9 1 6 1 9 1 8 2 0 1 7 1 5 1 8 1 1	6 5 5 2 9 7 2 1 0 5 8 5 6 4 5	1 8 2 0 1 9 1 7 1 5 2 1 2 3 1 6 2 7 2 4
Anisotropically conductive connector (F 1) Anisotropically conductive connector (F 2) Anisotropically conductive connector (F 3) Anisotropically conductive connector (F 4) Anisotropically conductive connector (F 5) Anisotropically conductive connector (F 6) Anisotropically conductive connector (F 7) Anisotropically conductive connector (F 8) Anisotropically conductive connector (F 9) Anisotropically conductive connector (F 10)	5102413350	8 0 7 7 0 7 6 2 7 8 8 7 7 8 7 7 8	5. 55 8.1 1.62 4.0 5.5 6.6
Anisotropically conductive connector (G 1) Anisotropically conductive connector (G 2) Anisotropically conductive connector (G 3) Anisotropically conductive connector (G 4) Anisotropically conductive connector (G 5) Anisotropically conductive connector (G 6) Anisotropically conductive connector (G 7) Anisotropically conductive connector (G 8) Anisotropically conductive connector (G 9) Anisotropically conductive connector (G 10)	99988998171	0 4 9 9 8 9 9 8 9 9 8 9 8 9 8 9 8 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 9 9 9 8 9 9 9 9 9 8 9 9 9	0 0 1. 1 0. 5 0. 0 1 0. 1 0. 6 0. 0 3
Anisotropically conductive connector (H 1) Anisotropically conductive connector (H 2) Anisotropically conductive connector (H 3) Anisotropically conductive connector (H 4) Anisotropically conductive connector (H 5) Anisotropically conductive connector (H 6) Anisotropically conductive connector (H 7) Anisotropically conductive connector (H 8) Anisotropically conductive connector (H 9) Anisotropically conductive connector (H 10)	988721 9888999888	9999899967	0. 2 0. 5 0. 04 1. 5 3. 5 2. 2 0. 0 3 3. 7 2. 2 2. 5

(2) Anisotropically conductive connector for probe test:

The initial properties of elastic anisotropically conductive films in each of Anisotropically Conductive Connectors (All) to (A20), Anisotropically Conductive Connectors (D11) to (D20), Anisotropically Conductive Connectors (E11) to (E20) and Anisotropically Conductive Connectors (G11) to (G20) were determined in the following manner.

Wafer W3 for test was arranged on a test table, and 10 the anisotropically conductive connector was arranged on this Wafer W3 for test in alignment in such a manner that each of the conductive parts for connection thereof is located on the respective electrodes to be inspected of Wafer W3 for test. Inspection Circuit Board T2 was then 15 arranged on this anisotropically conductive connector in alignment in such a manner that each of the inspection electrodes thereof is located on the respective conductive parts for connection of the anisotropically conductive connector. Further, Inspection Circuit Board T2 was 20 pressurized downward under a load of 11.25 kg (load applied to every conductive part for connection: 1 g on the average). An electric resistance between each of the 11,250 inspection electrodes in Inspection Circuit Board T2 and the lead electrode of Wafer W3 for test was 25 successively measured at room temperature (25°C) to record the electric resistance value measured as an R_{1g} value of the conductive part for connection in the anisotropically

conductive connector, thereby counting the number of conductive parts for connection that R_{1g} was lower than 1 Ω to calculate out a proportion of the conductive parts for connection that R_{1g} was lower than 1 Ω to all the conductive parts for connection.

5

Further, an electric resistance between each of the 11,250 inspection electrodes in Inspection Circuit Board T2 and the lead electrode of Wafer W3 for test was successively measured in the same manner as described above 10 except that the load for pressurizing the Inspection Circuit Board T2 was changed to 67.5 kg (load applied to every conductive part for connection: 6 g on the average) to record the electric resistance value measured as an R_{6q} value of the conductive part for connection in the 15 anisotropically conductive connector, thereby counting the number of conductive parts for connection that R_{6q} was lower than 0.1 Ω and the number of conductive parts for connection that R_{6g} was 0.5 Ω or higher to calculate out proportions of the conductive parts for connection that R_{6g} 20 was lower than 0.1 Ω and proportions of the conductive parts for connection that R_{6g} was 0.5 Ω or higher to all the conductive parts for connection.

The results are shown in Table 4.

Table 4

	1		
*	Proportion of conductive parts for connection that R _{1g} was lower than 1Ω	Proportion of conductive parts for connection that R _{FE} was lower than 0.1 Ω	Proportion of conductive parts for connection that Reg. was 0.5 Q or higher
	(/0/	(///	(707
Anisotropically conductive connector (A11) Anisotropically conductive connector (A12) Anisotropically conductive connector (A13) Anisotropically conductive connector (A14) Anisotropically conductive connector (A15) Anisotropically conductive connector (A16) Anisotropically conductive connector (A17) Anisotropically conductive connector (A18) Anisotropically conductive connector (A19) Anisotropically conductive connector (A20)	1 0 0 9 9 1 0 0 1 0 0 1 0 0 1 0 0 9 9 1 0 0 9 9	1 0 0 1 0 0	0 0 0 0 0 0 0
Anisotropically conductive connector (D11) Anisotropically conductive connector (D12) Anisotropically conductive connector (D13) Anisotropically conductive connector (D13) Anisotropically conductive connector (D15) Anisotropically conductive connector (D16) Anisotropically conductive connector (D17) Anisotropically conductive connector (D18) Anisotropically conductive connector (D18) Anisotropically conductive connector (D19) Anisotropically conductive connector (D20)	3871985623 5445555555	8 3 5 6 9 8 8 9 7 6 2 9 9 0	1. 3 2. 1 1. 6 1. 8 1. 5 3. 2 1. 8 2. 3 1. 6 1. 9
Anisotropically conductive connector (E11) Anisotropically conductive connector (E12) Anisotropically conductive connector (E13) Anisotropically conductive connector (E14) Anisotropically conductive connector (E15) Anisotropically conductive connector (E16) Anisotropically conductive connector (E17) Anisotropically conductive connector (E18) Anisotropically conductive connector (E19) Anisotropically conductive connector (E20)	3 2 7 8 5 9 2 2 2 3 5 4 3 9 2 5 4 3 9	6 4 6 7 6 6 5 6 6 7 6 6 8 7 6 6 8 5	1. 3 1. 8 2. 1 1. 8 1. 6 1. 9 1. 8 2. 0 1. 8
Anisotropically conductive connector (G 11) Anisotropically conductive connector (G 12) Anisotropically conductive connector (G 13) Anisotropically conductive connector (G 14) Anisotropically conductive connector (G 15) Anisotropically conductive connector (G 16) Anisotropically conductive connector (G 17) Anisotropically conductive connector (G 18) Anisotropically conductive connector (G 19) Anisotropically conductive connector (G 20)	9 7 9 9 9 6 1 0 4 9 6 9 8 9 6 9 6 9 6	999999999999	0. 1 0. 3 0. 5 0. 1 0. 3 0. 2 0. 4 0. 6 1. 1 0. 8

[Durability test under high-temperature environment]
(1) Test 1:

A durability test under a high-temperature environment was conducted, in the following manner, as to the anisotropically conductive connectors shown in the following Table 5.

Wafer W2 for test was arranged on a test table equipped with an electric heater, and the anisotropically conductive connector was arranged on this Wafer W2 for test 10 in alignment in such a manner that each of the conductive parts for connection thereof is located on the respective electrodes to be inspected of Wafer W2 for test. Inspection Circuit Board T1 was then arranged on this anisotropically conductive connector in alignment in such a 15 manner that each of the inspection electrodes thereof is located on the respective conductive parts for connection of the anisotropically conductive connector. Further, Inspection Circuit Board T1 was pressurized downward under a load of 158 kg (load applied to every conductive part for 20 connection: about 8 g on the average). The test table was then heated 125°C. After the temperature of the test table became stable, an electric resistance between 2 inspection electrodes electrically connected to each other through the anisotropically conductive connector and Wafer W2 for test 25 among the 19,650 inspection electrodes in Inspection Circuit Board T1 was successively measured to record a half of the electric resistance value measured as an electric

resistance (hereinafter referred to as "conduction resistance") of the conductive part for connection in the anisotropically conductive connector, thereby counting the number of conductive parts for connection that the conduction resistance was 1 Ω or higher. Thereafter, the anisotropically conductive connector was left to stand for 1 hour in this state and then cooled to room temperature. Thereafter, the pressure against the circuit board for inspection was released.

The above-described process was regarded as a cycle, and the cycle was continuously repeated 500 times in total.

15

20

25

In the above-described test, those that the conduction resistance of the conductive parts for connection is 1 Ω or higher are difficult to be actually used in electrical inspection of integrated circuits formed on a wafer.

The results of the above test are shown in the following Table 5. In the following Table 5, the anisotropically conductive connectors indicated as Example have initial properties that the number of conductive parts for connection that the R_{1g} value is lower than 1 Ω is at least 90% of the total number of the conductive parts for connection, the number of conductive parts for connection that the R_{6g} value is lower than 0.1 Ω is at least 95% of the total number of the conductive parts for connection, and the number of conductive parts for connection that the R_{6g} value is 0.5 Ω or higher is 0% of the total number of

the conductive parts for connection.

(2) Test 2:

A durability test under a high-temperature environment was conducted in the following manner, as to the anisotropically conductive connectors shown in the following Table 6.

Wafer W2 for test was arranged on a test table equipped with an electric heater, Sheet-like Connector M1 was arranged on Wafer W2 for test in alignment in such a 10 manner that each of the front-surface electrode parts thereof is located on the electrodes to be inspected of the wafer for test, the anisotropically conductive connector was arranged on Sheet-like Connector M1 in alignment in such a manner that each of the conductive parts for 15 connection thereof is located on the back-surface electrode parts in Sheet-like Connector M1, and Inspection Circuit Board T1 was pressurized downward under a load of 158 kg (load applied to every conductive part for connection: about 8 g on the average). The test table was then heated 20 125°C. After the temperature of the test table became stable, an electric resistance between 2 inspection electrodes electrically connected to each other through the anisotropically conductive connector and Wafer W2 for test among the 19,650 inspection electrodes in Inspection 25 Circuit Board T1 was successively measured to record the conduction resistance of the conductive part for connection in the anisotropically conductive connector, thereby

counting the number of conductive parts for connection that the conduction resistance was 1 Ω or higher. Thereafter, the anisotropically conductive connector was left to stand for 1 hour in this state and then cooled to room temperature. Thereafter, the pressure against the circuit board for inspection was released.

The above-described process was regarded as a cycle, and the cycle was continuously repeated 500 times in total.

In the above-described test, those that the conduction resistance of the conductive parts for connection is 1 Ω or higher are difficult to be actually used in electrical inspection of integrated circuits formed on a wafer.

10

The results of the above test are shown in the following Table 6. In the following Table 6, the anisotropically conductive connectors indicated as Example have initial properties that the number of conductive parts for connection that the R_{1g} value is lower than 1 Ω is at least 90% of the total number of the conductive parts for connection, the number of conductive parts for connection that the R_{6g} value is lower than 0.1 Ω is at least 95% of the total number of the conductive parts for connection, and the number of conductive parts for connection that the R_{6g} value is 0.5 Ω or higher is 0% of the total number of the conductive parts for connection.

Table 5

igher (count)	0 0 2 0 0	0 0	9 0	0 1 2	0 3 2	368	1 3 8	366	5.6 1278	32 2452	1	62 3456	874 8698	046 7648	1	-	1	1	54 2678	148 3648	68 1894	846 -	2 9 6 -	452 -	6 1 0
Number of conductive parts for connection that conduction resistance was 1 Q or higher (count)	300 4	0	0	0	0	9 9 2	1 2 3	0	356 7	654 10	6952	162 7	402 18	526 20	5784	1	1	1	234 6	296 10	114 5	868 58	1468 6	1106 64	2 4 2 4 2
onduction res	200	0	0	0	0	0	0	0	128	278	1420	3.4	98	184	1198	3894	6648	1	1 2 0	156	8 2	124	1 5 8	134	5 Y U
nection that c	100	0	0	0	. 0	0	0	0	6.2	7.4	622	4	·1 2	6 8	278	991	1594	2898	5.8	5.6	9	4.6	5 6	4 8	1 1 0
e parts for con	5 0	0	0	0	0	0	0	0	3.4	5 2	2 9 2	0	2	3.4	136	526	892	578	4 0	3 6	0	9 2	3.8	3 6	4.9
of conductive	2 0	0	0	0 .	0	0	0	0	0	4	3.6	0	0	4	14	2 9	9 2	6 8	0	0	0	0	0	0	ď
Number	_	0	0	0	0	0	0	0	0	0	4	0	0	0	0	1.0	0	0	0	0	0	0	0	0	U
	Number of cycles hisotropically conductive connector	(A1)	(A2)	(A4)	(A7)	(B4)	(B 8)	(C1)	(B3)	(B8)	(C1)	(C3)	(D2)	(D 8)	(E1)	(E8)	(月4)	(F7)	(C4)	(67)	(8 S)	(H1)	(H2)	(H 2)	(H)
	Anisotro	Comparative example																							

Table 6

	T	Τ.	Τ	T	Τ	Π	Π	Т	9	0	Т	Π	T	Т			Π	Τ		∞	0	Π	T	Τ	T
r (count)	5 0 0	0	C	6 2	1	10	102	4 0	4 1 4	253	1		ı	1	1	ı	1	1	ŀ	653	-	1	1	ı	
1 D or higher (count)	4 0.0	0	0	2 4	3 2	2 6	8 9	8	1660	1004	1	8002	-	1.			1	1	2640	1428	2 3 8.9	1			i
esistance was	300	0	0	0	2	4	2 2	0	726	352	6534	1568	7.568	6574	1			1	1288	5 2 8	588	4860	3920	2400	9 1 5 6
Number of conductive parts for connection that conduction resistance was 1	200	0	0	0	0	0	0	0	368	164	1436	3 9 2	1502	1496	5978	5092	1		622	2 3 2	162	9 6 8	984	8 5 0	1278
onnection that	100	0	0	0	0	0	0	0	126	9 8	398	8 6	302	406	1264	836	3958	2692	326	9 8	5 8	1 2 6	186	120	264
ve parts for co	5 0	0	0	0	0	0	0	0	9 2	5 6	198	6 6	124	156	526	402	1856	966	126	3	1 6	2 5	7 8	2 9	8 4
r of conductiv	2 0	0	0	0	0	0	0	0	36	9	3 6	4	2.4	3.8	126	89	142	8 8	9 2	8	0	0	3.6	2	1 8
Numbe	-	0	0	0	0	0	0	0	0	0	9	0	0	4	8 9	80	1 2	4	0	0	0	0	4	0	0
	Number of cycles Anisotropically conductive connector	(A3)	(.A.5.)	(A6)	(A9)	(B2)	(B10)	(63)	(BI)	(B5)	(9)	(C10)	(D4)	(D8)	(E2)	(E5)	(F3)	(F6)	(G 5)	(99)	(010)	(H 0)	(H3)	(H7)	(H8)
	nisotropi			əlqn	nex3		Сомрагатіче ехамріе																		

(3) Consideration:

As apparent from the results shown in Tables 5 and 6, it was confirmed that according to the anisotropically conductive connectors of Examples, good conductivity is achieved in the conductive parts for connection in the elastic anisotropically conductive films even when the pitch of the conductive parts for connection is small, a good electrically connected state is stably retained even with environmental changes such as thermal hysteresis by temperature change, and moreover good conductivity is retained over a long period of time even when they are used repeatedly under a high-temperature environment.

It was also confirmed that according to the anisotropically conductive connectors of Examples,

electrical connection to all electrodes to be inspected can be achieved by small pressurizing force even when an electrically connecting operation to a wafer having a great number of electrodes to be inspected is conducted through a sheet-like connector, and so the anisotropically conductive connectors are high in level difference-absorbing ability.

[Durability test in repeated use]

(1) Test 3:

10

25

A durability test in repeated use was conducted in the following manner, as to the anisotropically conductive connectors shown in the following Table 7.

Wafer W4 for test was arranged on a test table equipped with an electric heater, and the anisotropically

conductive connector was arranged on this Wafer W4 for test in alignment in such a manner that each of the conductive parts for connection thereof is located on the respective electrodes to be inspected of Wafer W4 for test.

5 Inspection Circuit Board T2 was arranged on this anisotropically conductive connector in alignment in such a manner that each of the inspection electrodes thereof is located on the respective conductive parts for connection of the anisotropically conductive connector. Further,

10 Inspection Circuit Board T2 was pressurized downward under a load of 90 kg (load applied to every conductive part for connection: about 8 g on the average). A conduction resistance of the conductive parts for connection in the anisotropically conductive connector was measured at room temperature (25°C) to count the number of conductive parts for connection that the conduction resistance was 1 Ω or

After the temperature of the test table was raised to 85°C in a state that Inspection Circuit Board T2 had been pressurized as it is, and the anisotropically conductive connector was held for 1 minute, a conduction resistance of the conductive parts for connection in the anisotropically conductive connector was measured to count the number of conductive parts for connection that the conduction resistance was 1 Ω or higher. After the pressure against the circuit board for inspection was released, the test

higher. The above-described process is referred to as

"Process (i)".

table was cooled to room temperature. The above-described process is referred to as "Process (ii)".

The above-described Processes (i) and (ii) were regarded as a cycle, and the cycle was continuously repeated 500 times in total.

In the above-described test, those that the conduction resistance of the conductive parts for connection is 1 Ω or higher are difficult to be actually used in electrical inspection of integrated circuits formed on a wafer.

The number of conductive parts for connection that the conduction resistance was 1 Ω or higher at 85 $^{\circ}$ C are shown in the following Table 7. In the following Table 7, the anisotropically conductive connectors indicated as 15 Examples have initial properties that the number of conductive parts for connection that the R_{1g} value is lower than 1 Ω is at least 90% of the total number of the conductive parts for connection, the number of conductive parts for connection that the R_{6g} value is lower than 0.1 Ω 20 is at least 95% of the total number of the conductive parts for connection, and the number of conductive parts for connection that the R_{6q} value is 0.5 Ω or higher is at most 0.1% of the total number of the conductive parts for connection.

10

Table 7

Number of conductive parts for connection that conduction resistance was 1 Q or higher at 85°C (count)	1000 5000 10000 20000 30000 40000 50000	0 0 0	0 0 0	8 1 9 0	0 4 16	3 6 2 9 3 4 > 5 0 0 0 not measured	7 6.2 3 2 6 8 > 5 0 0 0 not measured	2.564 > 5000 not measured not measured	3 2 8 > 5 0 0 0 not measured not measured not measured
on that conduction	00000 20	0	0	0	0	5 2 5	8 2 7	152 25	3 2 8 > 5
ts for connectic	5 0 0 0	0	0	0	0	0.	89	9 7	4 8
onductive par	1000	. 0	0	0	0	0	4	0	2
Number of c		0	0	0	0	0	0	0	0
	Number of cycles Anisotropically conductive connector	(A 1 1)	(A 8)	вхЗ (С — 1)	(614)	(D 1)	(D 2)	vitereq	Com (E12)

(2) Consideration:

5

As apparent from the results shown in Table 7, it was confirmed that according to the anisotropically conductive connectors of Examples, good conductivity is achieved in the conductive parts for connection in the elastic anisotropically conductive films even when the pitch of the conductive parts for connection is small, and moreover good conductivity is retained even when they are used repeatedly over many times.

It was also confirmed that according to the anisotropically conductive connectors of Examples, electrical connection to all electrodes to be inspected can be achieved by small pressurizing force even when an electrically connecting operation to a wafer having a great number of electrodes to be inspected is conducted through a sheet-like connector, and so the anisotropically conductive connectors are high in level difference-absorbing ability.

EFFECTS OF THE INVENTION

According to the anisotropically conductive connectors of the present invention, the elastic anisotropically conductive film has the specific initial properties, so that the conductive parts for connection are prevented from markedly increasing the electric resistance thereof, and the necessary conductivity can be retained over a long period of time even when they are used repeatedly over many times, or even when they are used

repeatedly under a high-temperature environment.

According to the anisotropically conductive connectors for wafer inspection of the present invention, the part to be supported is formed at the peripheral edge of the functional part having the conductive parts for connection in each of the elastic anisotropically conductive films, and this part to be supported is fixed to the periphery about the anisotropically conductive filmarranging hole in the frame plate, so that the anisotropically conductive connectors are hard to be deformed and easy to handle, and the positioning and the holding and fixing to a wafer, which is an object of inspection, can be easily conducted in an electrically connecting operation to the wafer.

15 Since the respective anisotropically conductive filmarranging holes in the frame plate are formed correspondingly to the electrode regions, in which electrodes to be inspected have been formed, of integrated circuits in a wafer, which is an object of inspection, and 20 the elastic anisotropically conductive film arranged in each of the anisotropically conductive film-arranging holes may be small in area, the individual elastic anisotropically conductive films are easy to be formed. addition, since the elastic anisotropically conductive film 25 small in area is little in the absolute quantity of thermal expansion in a plane direction of the elastic anisotropically conductive film even when it is subjected

to thermal hysteresis, the thermal expansion of the elastic anisotropically conductive film in the plane direction is surely restrained by the frame plate by using a material having a low coefficient of linear thermal expansion as that for forming the frame plate. Accordingly, a good electrically connected state can be stably retained even when the WLBI test is performed on a large-area wafer.

According to the probe members of the present invention, positioning, and holding and fixing to a wafer, which is an object of inspection, can be conducted with ease in an electrically connecting operation to the wafer, and moreover the necessary conductivity can be retained over a long period of time even when they are used repeatedly over many times, or even when they are used repeatedly under a high-temperature environment.

10

15

20

25

According to the wafer inspection apparatus and wafer inspection method of the present invention, electrical connection to electrodes to be inspected of a wafer, which is an object of inspection, is achieved through the probe member, so that positioning, and holding and fixing to the wafer can be conducted with ease even when the pitch of the electrodes to be inspected is small. In addition, the necessary electrical inspection can be stably performed over a long period of time even when the apparatus is used repeatedly over many times or used repeatedly under a high-temperature environment.

According to the anisotropically conductive

connectors of the present invention, a difference in projected height between the respective conductive parts for connection is small, the level difference-absorbing ability is high, and electrical connection to all electrodes to be inspected in a wafer, which is an object of inspection, can be achieved by small pressurizing force.

According to the probe members and wafer inspection apparatus constructed by using the anisotropically conductive connector high in level difference-absorbing ability according to the present invention, electrical connection to all electrodes to be inspected can be achieved by small pressurizing force in the inspection of a wafer having a large area of a diameter of 8 inches or greater and at least 5,000 electrodes to be inspected.