

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Facultad de Ciencias Físico Matemáticas

Inteligencia artificial

Determinantes de matrices

Docente:

Luis Angel Gutiérrez Rodríguez

Estudiante:

Jesús Roberto Dávila González 2063584

Grupo: 031

San Nicolas de los Garza, N.L, a 15 de febrero de 2025.

Cálculo de Determinantes mediante Diferentes Métodos

1. Método de Pivote (Expansión de Laplace)

Se tiene la matriz general:

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

El método de pivote (Expansión de Laplace) consiste en descomponer el determinante en términos de determinantes menores:

$$\det(A) = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
$$= a(ei - fh) - b(di - fg) + c(dh - eg)$$
$$= (aei + bfg + cdh) - (ceg + bdi + afh)$$

Este método se generaliza a matrices de cualquier tamaño.

2. Método de la Lluvia y Método de la Estrella (La regla de Sarrus)

El método de la lluvia (La regla de Sarrus) se basa en expandir la matriz copiando las dos primeras columnas a la derecha:

$$\left[\begin{array}{ccc|c} a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h \end{array}\right]$$

Luego, se suman los productos de las diagonales descendentes y se restan los productos de las diagonales ascendentes:

$$det(A) = (aei + bfg + cdh) - (ceg + bdi + afh)$$

El método de la estrella es idéntico al método de la lluvia, pero sin copiar las primeras dos columnas. Se observa que estos métodos son equivalentes al método de pivote.

3. Problema a Resolver

Aplique el método de la lluvia a la siguiente matriz 4×4 :

$$B = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$$

- 1. ¿Es posible aplicar el método de la lluvia a una matriz 4×4 ? Justifique su respuesta.
- 2. Si no es posible, explique por qué y qué método alternativo recomendaría para calcular el determinante.

Demostración:

A partir de la matriz *B* de 4 x 4, encontrar 4 submatrices de 3 x 3 de los cofactores a, b, c y d:

$$B_{a} = \begin{matrix} f & g & h \\ j & k & l \\ n & o & p \end{matrix}$$

$$B_{b} = \begin{matrix} e & g & h \\ k & l \\ m & o & p \end{matrix}$$

$$B_{c} = \begin{matrix} e & f & h \\ i & j & l \\ m & n & p \end{matrix}$$

$$B_{d} = \begin{matrix} e & f & g \\ i & j & k \\ m & n & o \end{matrix}$$

Una vez encontradas las submatrices, aplicamos el método de la lluvia (agregando el cofactor correspondiente) a cada una estas:

$$\det(B_a) = a(fkp + gln + hjo - nkh - olf - pjg)$$

$$\det(B_b) = -b(ekp + glm + hio - mkh - ole - pig)$$

$$\det(B_c) = c(ejp + flm + hin - mjh - nle - pif)$$

$$\det(B_d) = -d(ejo + fkm + gin - mjg - nke - oif)$$

Después desarrollamos la expresión de cada una de las determinantes y las sumamos para obtener el determinante de la matriz original:

$$\det(B_a) = afkp + agln + ahjo - ankh - aolf - apjg$$

$$\det(B_b) = bmkh + bole + bpig - bekp - bglm - bhio$$

$$\det(B_c) = cejp + cflm + chin - cmjh - cnle - cpif$$

$$\det(B_d) = dmjg + dnke + doif - dejo - dfkm - dgin$$

$$\Rightarrow$$

$$\det(B) = \det(B_a) + \det(B_b) + \det(B_c) + \det(B_d)$$

$$\det(B) = afkp + agln + ahjo - ankh - aolf - apjg + bmkh + bole + bpig - bekp - bglm - bhio \\ + cejp + cflm + chin - cmjh - cnle - cpif + dmjg + dnke + doif - dejo - dfkm \\ - dgin$$

Simplificando la expresión obtendríamos como resultado final:

$$\det(B_d) = afkp + agln + ahjo + bmkh + bole + bpig + cejp + cflm + chin + dmjg + dnke + doif - (ankh + aolf + apjg + bekp + bglm + bhio + cmjh + cnle + cpif + dejo + dfkm + dgin)$$