1 Overview and Review, 8/23/16

1.1 Overview

Class field theory provides a dictionary between abelian extensions of a given number field F (i.e. Galois extensions of F with abelian Galois group) and intrinsic data about the number field, e.g. the class group of the ring of integers, $Cl(\mathcal{O}_F)$. For instance, if we let H be the union of all abelian extensions of F that are everywhere unramified, we have $Gal(H/F) \cong Cl(\mathcal{O}_F)$.

However, class field theory does not construct these abelian extensions, except for two classical constructions which were already known:

- 1. $F = \mathbb{Q}$, which has $H = \mathbb{Q}(\mu_{\infty})$, where we have adjoined all the roots of unity. This is Kronecker-Weber theorem.
- 2. F a quadratic imaginary extension of \mathbb{Q} .

This is not so bad, however, since it turns out that class field theory can actually yield information about non-abelian extensions!

1.2 Topics

- Review local and global fields.
- Group and Galois cohomology.
- Local class field theory and local duality (important!).
- Global class field theory and global duality.
- Applications (Iwasawa theory).

1.3 Review

1.3.1 First Example

Let L/K be a finite Galois extension. Let \mathfrak{P} be an unramified prime of L lying over \mathfrak{p} , so that $\mathfrak{p}\mathcal{O}_L = \prod \mathfrak{P}_i^{e_i}$ with all $e_i = 1$.

Lemma 1.3.1. There is an element $\operatorname{Fr}_{\mathfrak{P}}$ of $\operatorname{Gal}(L/K)$ such that

1) $\operatorname{Fr}_{\mathfrak{P}}(\mathfrak{P}) = \mathfrak{P}$, i.e. $\operatorname{Fr}_{\mathfrak{P}}$ is in the decomposition group of \mathfrak{P} .

2) Fr_{\mathfrak{P}} acts on $\mathcal{O}_L/\mathfrak{P}$ as $x \to x^{N(\mathfrak{p})}$.

Remark 1. Note that $\mathcal{O}_K/\mathfrak{p}$ is a finite field of order $N(\mathfrak{p})$, which has the Frobenius automorphism that does precisely what 2 does. We should think of $\operatorname{Fr}_{\mathfrak{P}}$ as a lift of that map to $\mathcal{O}_L/\mathfrak{P}$.

Proof. We will construct $\operatorname{Fr}_{\mathfrak{P}}$ explicitly. Let $\alpha \in \mathcal{O}_L$ satisfying

- 1. α generates $(\mathcal{O}_L/\mathfrak{P})^{\times}$, and
- 2. for all $\mathfrak{P}^o \neq \mathfrak{P}$ above \mathfrak{p} , $\alpha \in \mathfrak{P}^o$.

Set
$$F(X) = \prod_{\sigma \in Gal(L/K)} (X - \sigma \alpha) \in \mathcal{O}_K[X]$$
. Then $F(\alpha) = 0$, so $F(\alpha^{N(\mathfrak{p})}) = F(\alpha)^{N(\mathfrak{p})} = 0$.

Then for some σ , $\alpha^{N(\mathfrak{p})} \equiv \sigma \alpha \pmod{\mathfrak{P}}$. Then we claim that $\sigma \mathfrak{P} = \mathfrak{P}$. Otherwise, $\sigma^{-1} \mathfrak{P} \neq \mathfrak{P}$, so $\alpha \in \sigma^{-1} \mathfrak{P}$, so $\sigma \alpha \in \mathfrak{P}$. So $\alpha^{N(\mathfrak{p})} \equiv 0 \pmod{\mathfrak{P}}$, a contradiction.

Then for all $x \in \mathcal{O}_L/\mathfrak{P}$, we can write $x = \alpha^i + b$, for some i and $b \in \mathfrak{P}$. Then

$$\sigma(x) = \sigma(\alpha^i) + \sigma(b) = \alpha^{iN(\mathfrak{p})} + \sigma(b) \equiv x^{N(\mathfrak{p})} \pmod{\mathfrak{P}}.$$

Now define $Fr_{\mathfrak{P}} := \sigma$. Uniqueness is left to the reader.

Remark 2. If $\mathfrak{P}^o = \tau(\mathfrak{P})$ for some $\tau \in \operatorname{Gal}(L/K)$, $\operatorname{Fr}_{\mathfrak{P}^o} = \tau \operatorname{Fr}_{\mathfrak{P}} \tau^{-1}$.

Recall that L/K being Galois means $\operatorname{Gal}(L/K)$ acts transitively on the primes \mathfrak{P} lying over \mathfrak{p} . So $\operatorname{Fr}_{\mathfrak{P}}$ is well-defined up to conjugation. If L/K is abelian, it is well-defined.

1.3.2 Fr $_{\mathfrak{P}}$ of Cyclotomic Field

Let $L = \mathbb{Q}(\zeta_n)$ be the *n*-th cyclotomic field, $K = \mathbb{Q}$. Then $\operatorname{Gal}(L/K) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$. Take p unramified in L/K, i.e. p not dividing n. Then Fr_p (we are in an abelian extension, so all $\operatorname{Fr}_{\mathfrak{P}}$ are the same). By definition, Fr_p is the σ such that $\sigma(\alpha) = \alpha^p \pmod{\mathfrak{P}}$, for all \mathfrak{P} over p.

Also characterized by $\tau(\zeta_n) = \zeta_n^p$ since

$$\tau \sum a_i \zeta_n^i = (\sum a_i \zeta_n^i)^p.$$

1.3.3 $\operatorname{Fr}_{\mathfrak{P}}$ of Quadratic Field

Here, we let $L = \mathbb{Q}(\sqrt{d})$ and K as before. Then $Gal(L/K) \cong \mathbb{Z}/2\mathbb{Z}$, and for p unramified in L, Fr_p corresponds to 1 if p splits in L, or -1 if p is inert in L. This means that

$$\operatorname{Fr}_p = \left(\frac{d}{p}\right).$$

This connection leads us to an extremely nice proof of the quadratic reciprocity for odd primes.

Theorem 1.3.2. Let
$$p \neq q$$
 be odd primes. Then $\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$.

Proof. Let $L = \mathbb{Q}(\zeta_p)$, $K = \mathbb{Q}$. Then Gal(L/K) is cyclic of order p-1, and so has a unique order two quotient which corresponds to a quadratic field F, where $F = \mathbb{Q}\left(\sqrt{(-1)^{\frac{p-1}{2}}p}\right)$.

Since q is unramified, we can consider Fr_q which corresponds to $q \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. Now we simply compute this quantity in two ways.

(i)
$$\operatorname{Fr}_q|_F = 1 \Leftrightarrow q^{\frac{p-1}{2}} \equiv 1 \pmod{p} \Leftrightarrow \left(\frac{q}{p}\right) = 1.$$

(ii) $\operatorname{Fr}_q|_F$ is also simply Fr_q for the quadratic extension F, hence equal to $\left(\frac{(-1)^{\frac{p-1}{2}}p}{q}\right)$ by the previous example.

1.4 First Case of Fermat's Last Theorem

Theorem 1.4.1. If p does not divide $|Cl(\mathbb{Q}(\zeta_p))|$, then $x^p + y^p = z^p$ has no integer solutions with p not dividing xyz.

The idea is that we can factor $\prod_i (x + \zeta_p^i y) = z^p$ in $\mathbb{Z}[\zeta_p]$. It turns out that regularity gives us that the LHS factors are p-th powers, the divisibility condition giving us that the factors are coprime.

Proof. We take p > 5, since we can easily prove the cases p = 3, 5 by looking at the equation modulo 9, 25 respectively. Without loss of generality, assume x, y, z are coprime and p does not divide x - y. If $x \equiv y \pmod{p}$ and $x \equiv -z \pmod{p}$, then $-2z^p \equiv z^p \pmod{p}$, a contradiction. So we must have one or the other.

First, prove the coprimeness of the factors. If a prime q of $\mathbb{Z}[\zeta_p]$ divides two factors $x + \zeta_p^k y$ for $k = i, j, i \neq j$. Then $q|(\zeta_p^i - \zeta_p^j)y$. Since p does not divide y, and $q|(\zeta_p^j - \zeta_p^i)x$, so $q|(\zeta_p^i - \zeta_p^j)$, the unique prime ideal over p. (Recall that $p\mathbb{Z}[\zeta_p] = (1 - \zeta_p)^{p-1}$). So $q = (1 - \zeta_p) = p$, so p|x + y, i.e. $x + y \in \mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$, so $x^p + y^p \equiv x + y \equiv 0 \pmod{p}$.

Hence, $(x + \zeta_p^i y) = J_i^p$ for some ideal J_i . But since p does not divide the class group, no element can have order p, hence J_i is principal. Then $x + \zeta_p^i y = u\alpha_i^p$ for some unit u. Dirichlet's unit theorem doesn't give us precise control over what the units look like, so we need to muck around with the following lemma.

Lemma 1.4.2. Let u be a unit. Then $u = \zeta_p^r \epsilon$ for a unit ϵ of the maximal real subfield of the p-th cyclotomic field.

Proof. Consider u/\bar{u} , an algebraic integer with norm 1 in all complex embeddings. This means u/\bar{u} is a root of unity, so

$$u/\bar{u} = \pm \zeta_p^s$$

for some s. If the sign is plus, let r be such that $2r \equiv s \pmod{p}$. It turns out that a minus sign gives us a contradiction.

So $x + \zeta_p^i y = \zeta_p^r \epsilon \alpha^p$. Conjugation gives us

$$x + \zeta_p^i y \equiv \zeta^r \epsilon \alpha$$

and

$$x + \zeta_p^{-i} y \equiv \zeta^{-r} \epsilon \alpha$$

modulo $p\mathbb{Z}[\zeta_p]$. Hence

$$\zeta_p^{-r}(x+\zeta_p^i y) \equiv \zeta^r(x+\zeta_p^{-i} y) \pmod{p\mathbb{Z}[\zeta_p]}.$$

We can conclude the proof from the following lemma.

Lemma 1.4.3. If $\alpha = a_0 + \cdots + a_{p-1}\zeta_p^{p-1}$, $a_i \in \mathbb{Z}$ not all zero, and if $\alpha \in m\mathbb{Z}[\zeta_p]$, $m \in \mathbb{Z}$, then $m|a_i$ for all i.