Metode Iterative pentru SEL

Valentin-Ioan VINTILĂ

Facultatea de Automatică și Calculatoare - CTI Universitatea POLITEHNICA București

21 martie 2023 (Lab. 4)

Cuprins

- Clarificări
- 2 Introducere
- Metoda lui Jacobi
- Metoda Gauss-Seidel
- Metoda suprarelaxării
- 6 Bibliografie

Clarif. 1 - Givens (din temă) (1)

Vrem factorizarea Givens a lui
$$A = \begin{bmatrix} 0 & -1 & 1 \\ 4 & 2 & 0 \\ 3 & 4 & 0 \end{bmatrix}$$

Pasul 1. Scăpăm de A_{21} , adică de $\begin{bmatrix} 0 & -1 & 1 \\ 4 & 2 & 0 \\ 3 & 4 & 0 \end{bmatrix}$

Vrem să scăpăm de A_{21} , deci formăm $G_{12} = \begin{bmatrix} \cos & \sin & 0 \\ -\sin & \cos & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Clarif. 1 - Givens (din temă) (2)

Factorizarea Givens pentru
$$A = \begin{bmatrix} 0 & -1 & 1 \\ 4 & 2 & 0 \\ 3 & 4 & 0 \end{bmatrix}$$

Pasul 1. Aplicăm $G_{12} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ pe $A: G_{12}A = \begin{bmatrix} 4 & 2 & 0 \\ 0 & 1 & -1 \\ 3 & 4 & 0 \end{bmatrix}$

Clarif. 1 - Givens (din temă) (4)

Givens pentru $A = \begin{bmatrix} 0 & -1 & 1 \\ 4 & 2 & 0 \\ 3 & 4 & 0 \end{bmatrix}$, stiind $G_{13}G_{12}A = \begin{bmatrix} 5 & 4 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 0 \end{bmatrix}$

 $\begin{cases} \cos = x_1/||\mathbf{x}|| = 1/\sqrt{5} \\ \sin = x_2/||\mathbf{x}|| = 2/\sqrt{5} \end{cases} \quad \text{A plicăm } G_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{5} & 2/\sqrt{5} \\ 0 & -2/\sqrt{5} & 1/\sqrt{5} \end{cases}$

Pasul 3. Scăpăm de $(G_{13}G_{12}A)_{32}$, adică de $\begin{bmatrix} 5 & 4 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 0 \end{bmatrix}$

Clarif. 2 - Condiționarea matricelor (1)

Să considerăm sistemul de ecuații liniare $A\mathbf{x} = \mathbf{b}$:

Soluția este evidentă: x = 2 și y = 0. Alterăm foarte putin vectorul b:

Efectul este **exagerat**: x = 1 și y = 1!

Clarif. 1 - Givens (din temă) (3)

Givens pentru
$$A = \begin{bmatrix} 0 & -1 & 1 \\ 4 & 2 & 0 \\ 3 & 4 & 0 \end{bmatrix}$$
, stiind $G_{12}A = \begin{bmatrix} 4 & 2 & 0 \\ 0 & 1 & -1 \\ 3 & 4 & 0 \end{bmatrix}$

Pasul 2. Scăpăm de
$$(G_{12}A)_{31}$$
, adică de $\begin{bmatrix} 4 & 2 & 0 \\ 0 & 1 & -1 \\ 3 & 4 & 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 1 \\ 1 & 1.001 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \Rightarrow \begin{cases} x + y & = 2 \\ x + 1.001y & = 2 \end{cases}$

 $\begin{bmatrix} 1 & 1 \\ 1 & 1.001 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 2.001 \end{bmatrix} \Rightarrow \begin{cases} x+y & = 2 \\ x+1.001y & = 2.001 \end{cases}$

Formăm $G_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos & \sin \\ 0 & -\sin & \cos \end{bmatrix}$, unde $\mathbf{x} = \begin{bmatrix} (G_{13}G_{12}A)_{22} \\ (G_{13}G_{12}A)_{332} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, așadar

6 4 0

Clarif. 1 - Givens (din temă) (5)

Am obtinut deci-

$$R = G_{23}G_{13}G_{12}A = \begin{bmatrix} 5 & 4 & 0 \\ 0 & \sqrt{5} & -1/\sqrt{5} \\ 0 & 0 & 2/\sqrt{5} \end{bmatrix}$$

Totodată, matricea Q se calculează usor:

$$Q = G_{12}^T G_{13}^T G_{23}^T = \dots$$

Definiție (norma matriceală)

Fie $||\cdot||_p$ o normă vectorială, $p\in[1,+\infty]$. Atunci, **norma matriceală** a matricei $A \in \mathbb{R}^{n \times n}$ $(n \in \mathbb{N}^*)$ se defineste drept:

$$||A||_p = \sup_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p}$$

NU folosim definitia, ci o consecintă a acesteia.

Clarif. 2 - Condiționarea matricelor (3)

Pentru norma euclidiană (p=2, deci $||\cdot||_2$, notată $||\cdot||$), vom folosi următoarea consecință a definiției anterioare:

$$||A|| = \sqrt{\lambda_{\mathsf{max}}(A^T A)}$$

Clarif. 2 - Condiționarea matricelor (4)

Definiție (numărul de condiționare)

Fie $A \in \mathbb{R}^{n \times n}$ o matrice nesingulară, $n \in \mathbb{N}^*$. Definim **numărul de** conditionare al matricei A drept:

$$\kappa(A) = ||A|| \cdot ||A^{-1}||$$

Ca o regulă $\mathit{după}$ $\mathit{ureche},$ pierdem până la aproximativ $\log_{10} \kappa(A)$ cifre de acuratețe pe lângă ceea ce pierde metoda în sine.

Clarif. 2 - Condiționarea matricelor (5)

Pe exemplul anterior,
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1.001 \end{bmatrix}$$
, deci $A^{-1} = \begin{bmatrix} 1001 & -1000 \\ -1000 & 1000 \end{bmatrix}$ Stim $A^TA = \begin{bmatrix} 2 & 2.001 \\ 2.001 & 2.002 \end{bmatrix}$, deci $\begin{cases} \lambda_1 \approx 0 \\ \lambda_2 = 4.002 \end{cases}$

Stim și
$$(A^{-1})^T A^{-1} = 10^6 \cdot \begin{bmatrix} 2.002 & -2.001 \\ -2.001 & 2 \end{bmatrix}$$
, deci $\begin{cases} \lambda_1' \approx 0.25 \\ \lambda_2' = 4.002 \cdot 10^6 \end{cases}$

Obținem $||A||=\sqrt{\lambda_2}=2.0005$, respectiv $||A^{-1}||=\sqrt{\lambda_2'}=2000.5$.

Astfel, $\kappa(A) = ||A|| \cdot ||A^{-1}|| = 4002$ - o valoare foarte mare!

G & (1)

Introducere (1)

Până acum am rezolvat sistemele prin metode directe (LU, G ș.a.).

Ce nu ne convine?

- Aceste metode au o complexitate de $O(n^3)$;
- 2 Acuratețea este greu de controlat.

Introducere (2)

Introducem acum metodele iterative:

- Aproximează soluția din ce în ce mai bine;
- ② Complexitatea depinde de numărul de numărul pașilor: $O(\alpha n^2)$.

Motorul metodelor (1)

Pornim de la un sistem de ecuații liniare, $A\mathbf{x} = \mathbf{b}$, unde $A \in \mathbb{R}^{n \times n}$, $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n \text{ si } n \in \mathbb{N}^*.$

Este evident că A poate fi scris ca o diferență de matrice. Cunoaștem așadar următoarele lucruri:

$$\begin{cases} A\mathbf{x} &= \mathbf{b} \\ A &= N - P \end{cases}$$

Motorul metodelor (2)

Înlocuim A în prima ecuație:

$$\begin{cases} A\mathbf{x} &= \mathbf{b} \\ A &= N - P \end{cases} \Rightarrow (N - P)\mathbf{x} = \mathbf{b}$$

Vrem să rămânem doar cu x. Presupunem că $\exists N^{-1}$, deci:

$$(N - P)\mathbf{x} = \mathbf{b} \Rightarrow N\mathbf{x} - P\mathbf{x} = \mathbf{b}$$
$$\Rightarrow N\mathbf{x} = P\mathbf{x} + \mathbf{b}$$
$$\Rightarrow \mathbf{x} = N^{-1}P\mathbf{x} + N^{-1}\mathbf{b}$$

G & @

Motorul metodelor (3)

Ce am obținut în scrierea $\mathbf{x} = N^{-1}P\mathbf{x} + N^{-1}\mathbf{b}$?

O modalitate de a-l scrie pe x față de el însuși!

Aplicând deci formula, presupunând că știm o aproximare de început, vom găsi o aproximare mai bună.

Putem apoi să folosim aproximarea obținută ca să găsim o aproximare și mai bună - de aici "metode iterative".

Motorul metodelor (4)

Amintim formula $\mathbf{x} = N^{-1}P\mathbf{x} + N^{-1}\mathbf{b}$. Notăm:

În aceste condiții, formula finală devine:

Numim această formulă forma matriceală

Condiția de convergență (1)

Metodele iterative NU converg întotdeauna!

• Vom nota aproximarea de la început cu $\mathbf{x}^{(0)}$, apoi $\mathbf{x}^{(1)}$ va fi aproximarea la primul pas, $\mathbf{x}^{(2)}$ la al doilea etc.;

Notăm G = N⁻¹P. denumită matrice de iteratie:

1 Mai notăm și $\mathbf{c} = N^{-1}\mathbf{b}$, numit vector de iterație.

 $\mathbf{x}^{(p+1)} = G\mathbf{x}^{(p)} + \mathbf{c}$

G & (a)

Descompunerea lui A

Teoremă (unicitatea descompunerii A = D - L - U)

O matrice $A \in \mathbb{R}^{n \times n}$, $n \in \mathbb{N}^*$, poate fi scrisă în mod unic sub forma:

$$A = D - L - U$$

unde D, L, U au fost alese astfel încât să reprezinte:

- D matrice diagonală;
- L matrice inferior triunghiulară;
- U matrice superior triunghiulară.

...dar de ce nu A = D + L + U?

Carl Gustav Jacob Jacobi

Pentru ca o metodă iterativă să conveargă, este imperios necesar ca raza

spectrală a matricei de iterație să fie subunitară. Matematic, $|\rho(G)| < 1$

6 4 0

Condiția de convergență (2)

Definiție (matrice diagonal dominantă)

Fie $A \in \mathbb{R}^{n \times n}$ o matrice pătratică oarecare, $n \in \mathbb{N}^*$. Aceasata se consideră diagonal dominantă dacă și numai dacă:

$$\boxed{|A_{ii}| \ge \sum_{j \ne i} |A_{ij}|}, \ \forall i \in \overline{1, n}$$

Matricele diagonal dominante converg întotdeauna (adică matricele lor de iterație au rază spectrală subunitară).

Metoda lui Jacobi (2)

Se poate desfășura forma matriceală $\mathbf{x}^{(p+1)} = G_{\mathsf{Jacobi}} \mathbf{x}^{(p)} + \mathbf{c}_{\mathsf{Jacobi}}$ pentru a se obține forma analitică.

Carl Gustav Jacob Jacobi (1804-1825)

Fără demonstrație, aceasta este:

$$x_{i}^{(p+1)} = \frac{b_{i} - \sum_{j=1, j \neq i}^{n} a_{ij} x_{j}^{(p)}}{a_{ii}}, \ \forall i = \overline{1, n}$$

Metoda lui Jacobi (1)

Avem un sistem oarecare $A\mathbf{x} = \mathbf{b}$, cu A scris drept A = N - P, respectiv drept A = D - L - U.

Metoda lui Jacobi alege:

$$\begin{cases} N = D \\ P = L + U \end{cases}$$

Vom scrie acum și G_{Jacobi} și $\mathbf{c}_{\mathsf{Jacobi}}$ cu aceste valori:

$$\begin{cases} G_{\mathsf{Jacobi}} = N^{-1}P = D^{-1}(L+U) \\ \mathbf{c}_{\mathsf{Jacobi}} = N^{-1}\mathbf{b} = D^{-1}\mathbf{b} \end{cases}$$

Cum implementăm?

Metoda lui Jacobi - implementare (3)

Implementarea este încărcată pe Teams - să vedem...

Metoda lui Jacobi - concluzii

O folosim în practică? NU - converge greu, după cum am observat!

Metoda Gauss-Seidel (1)

Avem un sistem oarecare $A\mathbf{x} = \mathbf{b}$, cu A scris drept A = N - P, respectiv drept A = D - L - U.

Metoda Gauss-Seidel alege:

$$\begin{cases} N = D - L \\ P = U \end{cases}$$

Vom scrie acum și $G_{Gauss-Seidel}$ și $\mathbf{c}_{Gauss-Seidel}$ cu aceste valori:

$$\begin{cases} G_{\text{Gauss-Seidel}} = N^{-1}P = (D-L)^{-1}U \\ \mathbf{c}_{\text{Gauss-Seidel}} = N^{-1}\mathbf{b} = (D-L)^{-1}\mathbf{b} \end{cases}$$

Metoda lui Jacobi - implementare (2)

Începem prin a defini două valori:

\odot Toleranța (not. ε) - diferența **minimă** dintre soluțiile a două iterații consecutive necesară pentru a continua cu algoritmul.

Cu alte cuvinte, oprim algoritmul când $||\mathbf{x}^{(p+1)} - \mathbf{x}^{(p)}|| < \varepsilon$.

Numărul maxim de iterații - este posibil să nu conveargă (suficient de repede) algoritmul, așadar îl oprim forțat mai devreme.

Metoda lui Jacobi - exercițiu rapid

Fie sistemul
$$\begin{bmatrix} 1 & 1 & 1 \\ -2 & 6 & 1 \\ -1 & 1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 9 \\ -6 \end{bmatrix} . \ \mathsf{Daca} \ \mathbf{x}^{(0)} = \mathbf{0}, \ \mathsf{rulati} \ \mathsf{codul}$$

pentru câteva iterații și observați la ce rezultat se ajunge după câteva iterații, de pildă 6.

Ne-am apropiat de soluția corectă?

Soluția era
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
, iar $\mathbf{x}^{(6)} = \begin{bmatrix} 1.0034 \\ 2.0855 \\ -0.9603 \end{bmatrix}$

Gauss și von Seidel

Carl Friedrich Gauss (1777-1855) Philipp Ludwig von Seidel (1821-1896)

Metoda Gauss-Seidel (2)

Prin desfășurarea formei matriceale

$$\mathbf{x}^{(p+1)} = G_{\text{Gauss-Seidel}} \mathbf{x}^{(p)} + \mathbf{c}_{\text{Gauss-Seidel}}$$
 se obține forma analitică.

Fără demonstrație, aceasta este:

$$\boxed{x_i^{(p+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(p+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(p)}}{a_{ii}}}, \ \forall i = \overline{1, n}$$

Deci, din punct de vedere al interpretării, folosim mereu cele mai recente valori pe care le avem.

Rapid, adaptati algoritmul Jacobi pentru a calcula Gauss-Seidel:

$$\boxed{x_i^{(p+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(p+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(p)}}{a_{ii}}}, \ \forall i = \overline{1, n}$$

Testați apoi același sistem: $\begin{bmatrix} 1 & 1 & 1 \\ -2 & 6 & 1 \\ -1 & 1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 9 \\ -6 \end{bmatrix}, \text{ cu } \mathbf{x}^{(0)} = \mathbf{0}.$ Considerați mai puține iterații (de exemplu 4).

Ce observați? Soluția era $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, iar GS a dat $\mathbf{x}^{(4)} = \begin{bmatrix} 0.9368 \\ 1.9768 \\ -1.0057 \end{bmatrix}$

Metoda Gauss-Seidel - concluzii

O folosim în practică? Oarecum - nu tocmai în această formă... Vedem imediat metoda suprarelaxării!

Metoda SOR (1)

unei constante $\omega \in (0,1)$.

metoda SOR, alegem:

Young și Frankel

David M. Young Jr. (1923-2008)

Stanley Phillips Frankel (1919-1978)

$$P = (1 - \omega)D + \omega U$$

Inovația față de Gauss-Seidel este introducerea pe cale **pur artificială** a

Rămânem la scrierea A=D-L-U, dar redefinim $\omega A=N-P$. Pentru

Vom scrie acum și G_{SOR} și \mathbf{c}_{SOR} cu aceste valori:

$$\begin{cases} G_{\text{SOR}} = N^{-1}P = (D - \omega L)^{-1} \left[(1 - \omega)D + \omega U \right] \\ \mathbf{c}_{\text{SOR}} = N^{-1}\mathbf{b} = (D - \omega L)^{-1} (\omega \mathbf{b}) \end{cases}$$

Metoda SOR - implementare

 $\omega = 0.85$. Considerati mai putine iterati

Pentru aceste prezentări, am utilizat:

Course ale lui Jun Lu.

Margaret Myers.

 $\left| x_i^{(p+1)} = (1 - \omega) x_i^{(p)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{i=1}^{i-1} a_{ij} x_j^{(p+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(p)} \right) \right|, \ \forall i = \overline{1, n}$

Rapid, adaptați algoritmul Gauss-Seidel pentru a calcula SOR:

Metoda SOR (2)

Forma analitică, cea care ne interesează de fapt, este asemănătoare cu Gauss-Seidel:

$$\boxed{x_i^{(p+1)} = (1-\omega)x_i^{(p)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(p+1)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(p)}\right)}, \ \forall i = \overline{1,n}$$

Să digerăm această ecuație:

- Termenul cu roșu este doar o scalare adusă metodei Gauss-Seidel, având o pondere $\omega \in (0,1)$;
- Termenul cu portocaliu este nou. Amintim că $\omega \in (0,1)$, deci $(1-\omega) \in (0,1)$. Deci, un fel de medie ponderată!

Testați apoi același sistem: $\begin{bmatrix} 1 & 1 & 1 \\ -2 & 6 & 1 \\ -1 & 1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 9 \\ -6 \end{bmatrix}, \text{ cu } \mathbf{x}^{(0)} = \mathbf{0} \text{ și}$

6 4 0

Bibliografie

Ce observați? Soluția era $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, iar SOR a dat $\mathbf{x}^{(2)} = \begin{bmatrix} 1.0870 \\ 1.9507 \\ -0.9438 \end{bmatrix}$

Metoda SOR - alegerea lui ω

Nu există o formulă concretă general valabilă pentru a calcula cea mai bună valoare a lui ω .

În anumite situații, David Young a demonstrat că:

$$\boxed{\omega_{\mathsf{opt}} = 1 + \left(\frac{\mu_{\mathsf{max}}}{1 + \sqrt{1 - \mu_{\mathsf{max}}^2}}\right)^2}$$

unde prin μ_{max} se înțelege valoarea proprie maximă a matricei G_{Jacobi} .

Cărțile Matrix Decomposition and Applications, respectiv Numerical

Articolul Successive Over-Relaxation (SOR) din Advanced Linear Algebra: Foundations to Frontiers scrisă de Robert van de Geijn și

Matrix Decomposition and its Modern Applications: A Rigorous First

Multumesc frumos pentru atenție!

Vă rog frumos să completați formularul de feedback!

