1. Given $E, R_k, R_t > 0$, $R_t > R_k$, find R > 0 such that the voltage

$$u(R) = \frac{ER}{R + R_k} - \frac{ER}{R + R_t}$$

is largest and calculate the maximum value.

Check by drawing graphs of u(R)

2. Given $k_v, k_e, r > 0$, find q > 0 such that annual cost (=vuotuiset kustannukset)

$$c(q) = k_v \cdot \frac{q}{2} + k_e \cdot \frac{r}{q}, \quad q > 0$$

is smallest. Calculate also the smallest value Check your formulas by drawing graphs of c(q)

> Tuotetta myydään tasaisesti siten, että myyjän varastossa olevien tuotteiden määrä ajan funktiona on kuvion mukainen.

tuotteiden lukumäärä

Myyjä siis tilaa tavaraa erissä, joiden suuruus on q, ja varaston koko on keskimäärin q/2. Oletetaan, että tuotetta myydään r kpl vuodessa, vuotuiset varastossapitokustannukset ovat keskimäärin $k_v \in /$ kpl ja jokaisen erän toimituskustannukset (kuljetus, toimistotyö yms.) ovat eräkoosta riippumatta $k_e \in /$ erä. Määritä niin sanottu optimaalinen eräkoko q_0 , joka tekee vuotuiset kustannukset mahdollisimman pieniksi. Kuinka suuret vuotuiset kustannukset tällöin ovat?

3. A cylindrical container, radius r, height h. Volume $V = \pi r^2 h$, area $A = \pi r^2 + 2\pi r h$

For fixed area A, find r and h such that volume V is largest. Calculate also the maximum value. Check by drawing graphs.

4. Given a and b, find h such that the sum of distances s = MA + MB + MC is smallest and calculate the smallest value

Check by drawing graphs, notice two possibilities

5. Given h, L and v > 1, find x = AQ such that the traveling time PQB is smallest, when PQ is traveled at speed 1 and QB at speed v. Calculate also the smallest traveling time.

Check by drawing graphs, notice two possibilities.

6. Given m, R, k, M, b > 0, find $\omega > 0$ such that the amplitude

$$A(\omega) = \frac{m R\omega^2}{\sqrt{(k - M\omega^2)^2 + (b\omega)^2}}$$

is largest

Check by drawing graphs, notice two possibilities

