CLAIMS

28

2	
3	We claim:
4	
5	A heating element comprising:
6	a substrate;
7	a conductive layer disposed over the substrate to define a first
8	conductive trace and a second conductive trace with a spacer therebetween;
9	and
10	a resistive layer covering the first conductive trace, the second
11	conductive trace and the spacer, wherein the resistive layer at least partially
12	electrically connects the first and the second conductive traces.
13	
14	2. A heating element according to Claim 1, wherein the resistive layer has a first
15	surface abutting the conductive traces and the spacer, and a second surface
16	opposite the first surface, wherein the second surface is at least substantially planar.
17	
18	3. A heating element according to Claim 2, wherein each of the conductive traces
19	has a sidewall facing the other conductive trace, the sidewall being at least
20	substantially perpendicular to the first surface of the resistive layer.
21	
22	4. A heating element according to Claim 1, wherein the spacer is made of the
23	same material as the resistive layer.
24	
25	5. A heating element according to Claim 1, wherein the spacer comprises an
26	electrically insulating material selected from a group consisting of BPSG, PSG,
27	TEOS, and silicon nitride.

1	6.	A heating element according to Claim 1, wherein the spacer and the		
2	conductive traces have respective surfaces abutting the resistive layer, the surfaces			
3	being at least substantially coplanar with respect to each other.			
4				
5	7.	A heating element according to Claim 6, wherein the surfaces are chemical		
6	mech	nanically polished.		
7				
8	8.	A heating element according to Claim 1, wherein the substrate comprises an		
9	insulating layer on which the conductive layer is disposed over.			
10				
11	9.	A heating element according to Claim 8, wherein the spacer is a protruding		
12	part of the insulating layer.			
13				
14	10.	A heating element according to Claim 1, wherein the resistive layer is at least		
15	substantially uniformly thick.			
16				
17				
18	11.	A fluid ejection device comprising:		
19		a substrate;		
20		a conductive layer disposed over the substrate to define a first		
21		conductive trace and a second conductive trace with a spacer therebetween;		
22		a resistive layer covering the first conductive trace, the second		
23		conductive trace and the spacer, wherein the resistive layer at least partially		
24		electrically connects the first and the second conductive traces; and		
25		a barrier layer adjacent the resistive layer that defines a fluid chamber		
26		in which fluid may be heated and ejected therefrom.		
27				
28	12.	A printhead comprising:		
29		a substrate;		

a substrate;

1		a conductive layer disposed over the substrate to define a first
2		conductive trace and a second conductive trace with a spacer therebetween;
3		a resistive layer covering the first conductive trace, the second
4		conductive trace and the spacer, wherein the resistive layer at least partially
5		electrically connects the first and the second conductive traces; and
6		a barrier layer adjacent the resistive layer that defines a firing chamber
7		in which fluid may be heated and ejected therefrom.
8		
9	13.	A print cartridge comprising:
10		a fluid reservoir; and
11		a printhead fluidically coupled with the fluid reservoir, wherein the
12		printhead comprises a substrate; a conductive layer disposed over the
13		substrate to define a first conductive trace and a second conductive trace with
14		a spacer therebetween; a resistive layer covering the first conductive trace, the
15		second conductive trace and the spacer, wherein the resistive layer at least
16		partially electrically connects the first and the second conductive traces; and a
17		barrier layer adjacent the resistive layer that defines a firing chamber in which
18		fluid from the reservoir may be heated and ejected therefrom.
19		
20	14.	A method of manufacturing a heating element comprising:
21		forming a conductive layer to define a first conductive trace and a
22		second conductive trace over a substrate, the first conductive trace being
23		separated from the second conductive trace by a spacer; and
24		forming a resistive layer on the conductive layer to cover the first
25		conductive trace, the second conductive trace and the spacer, wherein the
26		resistive layer at least partially electrically connects the first conductive trace
27		and the second conductive trace.
28		
29	15.	A method according to Claim 14, wherein forming a conductive layer

30

comprises:

ı		ionning a conductive layer on a substrate,		
2		removing a portion of the conductive layer to define the first conductive		
3		trace, the second conductive trace and a void therebetween;		
4		filling the void with an electrically insulating material; and		
5		planarizing at least a surface of the electrically insulating material such		
6		that the surface is at least substantially coplanar with corresponding surfaces		
7		of the conductive traces.		
8				
9				
10	16.	A method according to Claim 15, wherein the electrically insulating material is		
11	selected from a group of materials consisting of BPSG, PSG, TEOS, and silicon			
12	nitrid	e.		
13		\cdot		
14	17.	A method according to Claim 15, wherein planarizing comprises chemical		
15	mech	nanical polishing.		
16				
17	18.	A method according to Claim 14, wherein forming a conductive layer		
18	comprises:			
19		forming an insulating layer on the substrate;		
20		removing portions of the insulating layer to define a protruding portion		
21		flanked by two shoulder portions;		
22		forming a conductive layer on the insulating layer to cover the		
23	•	protruding portion and the shoulder portions; and		
24		planarizing a surface of the conductive layer to expose the protruding		
25		portion to thereby separate the first conductive trace from the second		
26		conductive trace.		
27				
28	19.	A method according to Claim 14, wherein the resistive layer is at least		

29

substantially uniformly thick.