

Try again once you are read	A	Try again	once	you	are	rea	d	y
-----------------------------	---	-----------	------	-----	-----	-----	---	---

Grade received 70% Latest Submission Grade 70% To pass 80% or higher

Try again

1.	True/False: Suppose you learn a word embedding for a vocabulary of 60000 words. Then the embedding vectors
	could be 60000 dimensional, so as to capture the full range of variation and meaning in those words.

1/1 point

- False
- True

⊘ Correct

No, the dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors range between 50 and 1000.

2. True/False: t-SNE is a linear transformation that allows us to solve analogies on word vectors.

0 / 1 point

- True
- False

⊗ Incorrect

t-SNE is a non-linear dimensionality reduction technique.

3. Suppose you downtoad a pre-trained word embedding which has been trained on a huge corpus of text, fod then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

Fal	Se

✓ Correct

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic" would contain a positive/happy connotation which will probably make your model classify the sentence as a "1".

4. Which of these equations do you think should hold for a good word embedding? (Check all that apply)

1/1 point

$$ightharpoonup e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$$

✓ Correct Yes!

$$oxed{ } e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$$

$$oxed{e} e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$$

$$ightharpoonup e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$$

Yes!

	<u>L'Expand</u>	
	✓ CorrectGreat, you got all the right answers.	
5.	Let A be an embedding matrix, and let o_{4567} be a one-hot vector corresponding to word 4567. Then to get the embedding of word 4567, why don't we call $A*o_{4567}$ in Python?	1 / 1 point
	None of the answers are correct: calling the Python snippet as described above is fine.	
	This doesn't handle unknown words (<unk>).</unk>	
	\bigcirc The correct formula is A^T*o_{4567}	
	It is computationally wasteful.	
	∠ [¬] Expand	
	✓ CorrectYes, the element-wise multiplication will be extremely inefficient.	
6.	When learning word embeddings, words are automatically generated along with the surrounding words.	0 / 1 point
	☐ False	
	True	
	∠ [¬] Expand	
	No, we pick a given word and try to predict its surrounding words or vice versa.	
7.	In the word2vec algorithm, you estimate $P(t\mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.	1/1 point

 $\bigcirc \ c$ is the one word that comes immediately before t

	igcup c is the sequence of all the words in the sentence before t				
	left c and t are chosen to be nearby words.				
	$\bigcirc \ c$ is a sequence of several words immediately before t				
	∠ [¬] Expand				
	⊘ Correct				
8.	Suppose you have a 10000 word vocabulary, and are learning 100-dimensional word embeddings. The word2vec model uses the following softmax function:	1/1 point			
	$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{10000} e^{ heta_t^T e_c}}$				
	True/False: After training, we should expect $ heta_t$ to be very close to e_c when t and c are the same word.				
	False				
	☐ True				
	∠ [¬] Expand				
9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:	0 / 1 point			
	$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$				
	True/False: $ heta_i$ and e_j should be initialized to 0 at the beginning of training.				
	☐ False				

True

No, \$\$\theta_i\$\$ and \$\$e_j\$\$ should be initialized randomly at the beginning of training.

10. You have trained word embeddings using a text dataset of s_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of s_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?

- \bigcirc $s_1 << s_2$

⊘ Correct

\$\$s_1\$\$ should transfer to \$\$s_2\$\$