WHAT IS CLAIMED IS:

1. A device for implanting autologous vascular smooth muscle cells transduced with a gene of interest in a patient, comprising:

a tubular elongate member having a wall, which wall has an interior surface, an exterior surface, and pores therein;

the autologous smooth muscle cells transduced with the gene of interest immobilized within the pores and upon the interior surface of the wall to form a tubular smooth muscle cell complex having an interior surface; and

autologous vascular endothelial cells adherent to the interior surface of the tubular smooth muscle cell complex.

- 2. A device as in claim 1, wherein the tubular elongate member is comprised of a porous synthetic material.
- 3. A device as in claim 2, wherein the porous synthetic material is polytetrafluoroethylene (PTFE), dacron or nylon.
 - 4. A device as in claim 3, wherein the tubular elongate member is a vascular graft.
 - 5. A device as in claim 1, wherein the autologous vascular smooth muscle cells are transduced with a gene encoding erythropoietin.
 - 6. A device as in claim 1, wherein the vascular smooth muscle cells are transduced with a gene encoding granulocyte colony stimulating factor or granulocyte macrophage colony stimulating factor.
 - 7. A device as in claim 1, wherein the vascular smooth muscle cells are transduced with a gene encoding Factor IX.

1

2

1

2

3

7

8

9

10

11

12 13

1

2 3 8. A device as in claim 1, wherein the transduced cells constitutively express an anticoagulant.

- 9. A device as in claim 1, wherein the transduced autologous vascular smooth muscle cells are immobilized to the tubular elongate member with a polymer.
- 10. A device as in claim 9, wherein the polymer is collagen or fibronectin.
- 11. A method for introducing a gene of interest to a patient comprising:

engrafting a device as in claim 1 into the patient's vascular system, wherein the transduced vascular smooth muscle cells contain the gene operably linked to a promoter for expression.

- 12. A method as in claim 11, wherein the gene encodes erythropoietin, granulocyte colony stimulating factor, granulocyte macrophage colony stimulating factor, or Factor IX.
- 13. A method as in claim 11, wherein the device is engrafted into the patient's arterial system.
 - 14. A method for treating anemia in a patient, comprising engrafting a device as in claim 1 into the patient's vascular system, wherein the transduced autologous smooth muscle cells express erythropoietin.
- 1 15. The method of claim 14, wherein the device is engrafted into the patient's arterial system.
 - 16. A method for treating an occlusion of a blood vessel in a patient, comprising engrafting a device as in claim 1 into the occluded blood vessel bypassing the occlusion, wherein the transduced cells constitutively express an anticoagulant protein.

John

1

2

3

1

1

2

3 4

5

1	17. A method as in claim 16, wherein the
2	anticoagulant is a plasminogen activator or antithrombin-III.
1	18. A method as in claim 17, wherein the
2	plasminogen activator is alteplase or urokinase.
1	19. A method for treating or preventing diabetes in
2/W	a patient, comprising engrafting a device as in claim 1 into
3/V	the patient, wherein the transduced cells constitutively
0.40	express an insulin or proinsulin polypeptide.
7	
1 /	20. A method for treating or preventing a disease
2/1	in a mammal, comprising:
13/	removing vascular endothelial cells and vascular
1	smooth muscle cells from the mammal;
1/5	transducing the smooth muscle cells with a gene
6	which encodes a product for treating or preventing the
7	disease, operably linked to a promoter;
8	immobilizing on a tybular elongate porous vascular
9	graft device the transduced smooth muscle cells within the
10	pores and interior surface of the graft;
11	coating the interfor of the graft device having
12	immobilized thereon the transduced smooth muscle cells with
13	the endothelial cells; and
14	engrafting the device having the immobilized
15	transduced smooth muscle cells and endothelial cells into the
16	vasculature of the mamma to treat or prevent the disease.
	\int
1	21. The method of claim 20, further comprising the
2	step of cultivating the vascular smooth muscle cells obtained
3	from the mammal in a medium containing autologous serum prior
4	to immobilizing the cells on the vascular graft.
_	
3 ¹ / ₂)	22. The method of claim 21, further comprising the
72/	step of cultivating the vascular endothelial cells obtained in

a medium containing autologous serum prior to coating the

vascular graft.