1 复数

注:为排版方便,本文中的虚数单位 i 和数学常数 e 均使用斜体 i 和 e

对于复数 z = a + bi, 记实部虚部为:

$$\operatorname{Re} z = a$$
 $\operatorname{Im} z = b$

复数 a + bi 可类比平面向量 $\langle a, b \rangle$.

1.1 运算

$$\sqrt{-n} = \sqrt{n} \cdot i$$

对于 $z_1 = a_1 + b_1 i$, $z_2 = a_2 + b_2 i$:

$$z_1 \pm z_2 = (a_1 \pm b_2) + (b_1 \pm b_2)i$$

$$z_1 \cdot z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$$

$$z_1/z_2 = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{a_2 b_1 - a_1 b_2}{a_2^2 + b_2^2}i$$

记 z 的长度(模, 幅值) $|z| = \sqrt{a^2 + b^2}$:

$$|zw| = |z||w|$$
 $|z/w| = |z|/|w|$

记 $\overline{z} = a - bi$ 为 z = a + bi 的共轭复数:

$$\begin{split} |z| &= |\overline{z}| \\ z\overline{z} &= |z|^2 = a^2 + b^2 \\ \overline{z \pm w} &= \overline{z} \pm \overline{w} \\ \overline{z \cdot w} &= \overline{z} \cdot \overline{w} \qquad \overline{z/w} = \overline{z}/\overline{w} \\ \frac{1}{z} &= \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2} = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i \end{split}$$

1.2 欧拉公式

$$e^{i\theta} = \cos\theta + i\sin\theta$$

所以:

$$re^{i\theta} = r(\cos\theta + i\sin\theta)$$

等式右边被称为三角形式. θ 称 z 的辐角, 记作 $\operatorname{Arg} z$; |z| = r 为复数的长度(模). 等式左边称为复数的指数形式.

1.3 棣莫弗公式

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

从极坐标形式看这是显然的:

$$(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos n\theta + i \sin n\theta$$

2 微分方程

2.1 二阶常系数齐次

对于微分方程

$$\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = 0$$

记 $\frac{d}{dx} = D$, 于是:

$$D^2 + pD + q = 0$$

以 λ 代D,得到的方程即为二阶常系数齐次微分方程的特征方程:

$$\lambda^2 + p\lambda + q = 0$$

当特征方程解的情况不同时,对于通解形式也不同

1. 有两相异实根 λ_1 和 λ_2 时, 通解:

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

2. 有两相同实根 $\lambda_1 = \lambda_2$ 时, 通解:

$$y = e^{\lambda_1 x} (C_1 + C_2 x)$$

3. 有一对共轭复根 $\lambda = \alpha \pm \beta i$ 时, 通解:

$$e^{\alpha x}(C_1\cos\beta x + C_2\sin\beta x)$$

2.2 二阶常系数非齐次

对于微分方程

$$\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = \phi(x)e^{zx}$$

其中, $\phi(x)$ 为 m 次多项式, 其特解有如下形式:

$$Y(x) = P(x)e^{zx} = x^k Q(x)e^{zx}$$

其中, Q(x) 为 m 次多项式.

特解有三种情况:

- 1. 当 z 不是特征方程的根, P(x) 与 $\phi(x)$ 次数相同, 故设 $Y(x) = Q(x)e^{zx}$, 代 入 Y'' + pY' + q = 0 解出 Q(x)
- 2. 当 z 为一重根, P'(x) 与 $\phi(x)$ 次数相同, 故设 $Y(x)=xQ(x)e^{zx}$, 代入 Y''+pY'+q=0 解出 Q(x)
- 3. 当 z 为二重根, P''(x) 与 $\phi(x)$ 次数相同, 故设 $Y(x)=x^2Q(x)e^{zx}$, 代入 Y''+pY'+q=0 解出 Q(x)

解出特解 y_0 再与对于齐次方程的通解 y^* 相加,即得到二阶常系数非齐次方程的通解: $y = y_0 + y^*$.

3 其他常见微分方程通解

名称	形式	通解	解法
可分离变量型	$\frac{dy}{dx} = P(x)Q(y) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		分离变量
一阶线性齐次	$\frac{dy}{dx} + P(x)y = 0$	$y = Ce^{-\int P(x) dx}$	分离变量
一阶线性非齐次1	$\frac{dy}{dx} + P(x)y = Q(x)$	$y = \frac{1}{M(x)} \left[\int Q(x)M(x) dx + C \right]$	常数变易
	$\frac{d^2y}{dx^2} = f(x)$	$\iint f(x) dx dx$	积分两次
特殊二阶	$\frac{d^2y}{dx^2} = f(x, y')$		$\frac{dy}{dx} = P(x)$
	$\frac{d^2y}{dx^2} = f(y, y')$		$\frac{dy}{dx} = P(y)$

注:

1. 积分因子 $M(x) = e^{\int P(x) dx}$