Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Yu, Tang, Rao, Huang, Zhou & Lu

Presented by

William Guimont-Martin

Master's Student

Self-Supervised Learning (SSL)

- Labeling data is hard and costly
- Generate its own supervision from the data
 - No label needed
- Pre-training tasks
- <u>Self-supervised learning: The dark matter</u>
 <u>of intelligence</u> by Yann LeCun

Pre-training: BERT's Masked language modeling

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

Pre-training: Masked Autoencoder

Transformers in NLP

- Attention Is All You Need (2017)
- Revolution in NLP
 - GPT-3 (Generative Pre-trained Transformer 3)
 - 175 billion parameters
 - 499 billion tokens
 - BERT (Bidirectional Encoder Representations from Transformers)
 - 110 million parameters

Figure 1: The Transformer - model architecture.

Transformers

The quick brown fox jumps over the lazy dog

- Can attend everywhere
 - Less inductive biases than CNN
- O(n^2)
 - Limits the number of tokens
- Set to Set
 - Positional encoding

Input: The quick brown fox jumps over the lazy dog

Output: The quick brown fox jumps over the lazy dog

Transformers

The quick brown fox jumps over the lazy dog

The lazy dog jumps over the quick brown fox

BERT

Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Tokenization

- Naive approach
 - O(n^2)
- Patches
 - Farthest Point Sampling
 - Like in PointNet++
 - kNN
 - Center the patch
 - Mini-PointNet

Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Discrete Variational Autoencoder

- Variational autoencoder
 - Discrete tokens
- Patches -> Tokens
 - Fixed vocabulary of geometric "words"
 - Points embeddings form a "sentence"

The Tokenizer {5, 26, 1967, ...,49}

Discrete Variational Autoencoder

- Variational autoencoder
 - Discrete tokens
- Patches -> Tokens
 - Fixed vocabulary of geometric "words"
 - Points embeddings form a "sentence"

The Tokenizer

- DGCNN
 - Build a kNN graph
 - EdgeConv
 - Rince and repeat in feature space
- Mix local and global information

The Decoder

- Tokens -> Patches
- DGCNN between tokens
 - Take the whole "sentence" into account
- FoldingNet to reconstruct the point cloud

FoldingNet

• Point clouds as folded plane

Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Masked Point Modeling

- Block Masking
- Mask 25%-45% of tokens

Auxiliary pre-training: Point Patch Mixing

- Similar to CutMix
- Cut and past point patch from different models
- Predict the original token

Jinlai Zhang, Lyujie Chen, Bo Ouyang, Binbin Liu, Jihong Zhu, Yujing Chen, Yanmei Meng, and Danfeng Wu. Point-cutmix: Regularization strategy for point cloud classification. arXiv preprint arXiv:2101.01461, 2021.

Contrastive Learning

- Another kind of SSL
- MoCo

Pre-training with Point-BERT

Classification

- Pre-training on ShapeNet
- Test on ModelNet40
- OcCo = completion of occlusion

Table 1. Comparisons of Point-BERT with of state-of-the-art models on ModelNet40. We report the classification accuracy (%) and the number of points in the input. [ST] and [T] represent the standard Transformers models and Transformer-based models with some special designs and more inductive biases, respectively.

Method	#point	Acc.
PointNet [39]	1k	89.2
PointNet++ [40]	1k	90.5
SO-Net [24]	1k	92.5
PointCNN [25]	1k	92.2
DGCNN [60]	1k	92.9
DensePoint [28]	1k	92.8
RSCNN [45]	1k	92.9
[T] PTC [11]	1k	93.2
[T] PointTransformer [72]	_	93.7
[ST] NPTC [11]	1k	91.0
[ST] Transformer	1k	91.4
[ST] Transformer + OcCo [58]	1k	92.1
[ST] Point-BERT	1k	93.2
[ST] Transformer	4k	91.2
[ST] Transformer + OcCo [58]	4k	92.2
[ST] Point-BERT	4k	93.4
[ST] Point-BERT	8k	93.8

Few-Shot Classification

- K-way N-shot
 - K classes
 - N samples
- Fine-tuning

Table 2. **Few-shot classification results on ModelNet40.** We report the average accuracy (%) as well as the standard deviation over 10 independent experiments.

	5-way		10-way	
	10-shot	20-shot	10-shot	20-shot
DGCNN-rand [58] DGCNN-OcCo [58]	31.6 ± 2.8 90.6 ± 2.8	40.8 ± 4.6 92.5 ± 1.9	19.9 ± 2.1 82.9 ± 1.3	16.9 ± 1.5 86.5 ± 2.2
DGCNN-rand* DGCNN-OcCo* Transformer-rand Transformer-OcCo Point-BERT	91.9 ± 3.3 87.8 ± 5.2 94.0 ± 3.6	93.4 ± 3.2 93.9 ± 3.1 93.3 ± 4.3 95.9 ± 2.3 96.3 ± 2.7	84.6 ± 5.5 89.4 ± 5.1	90.9 ± 5.1 91.3 ± 4.6 89.4 ± 6.3 92.4 ± 4.6 92.7 ± 5.1

Ablation Study

Table 5. **Ablation study.** We investigate the effects of different designs and report the classification accuracy (%) after fine-tuning on ModelNet40. All models are trained with 1024 points.

Pretext tasks	MPM	Point Patch Mixing	Moco	Acc.
Model A				91.41
Model B	✓			92.58 ↑
Model C	✓	✓		92.91 ↑
Model D	✓	✓	✓	93.24 ↑
Augmentation	mask type	mask ratio	replace	Acc.
Model B	block mask	[0.25, 0.45]	No	92.58
Model B	block mask	[0.25, 0.45]	Yes	91.81↓
Model B	rand mask	[0.25, 0.45]	No	92.34↓
Model B	block mask	[0.55, 0.85]	No	92.52↓
Model D	block mask	[0.25, 0.45]	No	93.16
Model D	block mask	[0.25, 0.45]	Yes	92.58↓
Model D	rand mask	[0.25, 0.45]	No	92.91 ↓
Model D	block mask	[0.55, 0.85]	No	92.59↓

Questions?

Want more transformers?

• Talk I gave last semester on <u>Transformers in Computer Vision</u> (French)

A Quick Review on QKV Attention

- Query
- Key
- Value

Scaled Dot-Product Attention

