EXPERIMENT NO.5 COMBINATIONAL CIRCUIT DESIGN USING K-MAPS

SUBMITTED TO:

Dr. Ubaid Ullah Fayyaz

SUBMITTED BY:

Hammad Jafar

2022-EE-176

UNIVERSITY OF ENGINEERING & TECHNOLOGY, LAHORE

Truth Table:

charachters	A2	A1	A0	an. 0	an. 1	an. 2	an.3	an.4	an.5	an.6	an.7
0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	0	1	1	1	1	1	1
2	0	1	0	1	1	0	1	1	1	1	1
3	0	1	1	1	1	1	0	1	1	1	1
4	1	0	0	1	1	1	1	0	1	1	1
5	1	0	1	1	1	1	1	1	0	1	1
6	1	1	0	1	1	1	1	1	1	0	1
7	1	1	1	1	1	1	1	1	1	1	0

K-maps:

Circuit diagram using Vivado:

Delay in Synthesis:

Name	Slack ^1	Levels	Routes	High Fanout	From	To	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
Path 1	00	3	2	8	b[0]	an_2	6.836	5.230	1.606	00	input port clock
4 Path 2	00	3	2	8	b[2]	an_3	6.805	5.199	1.606	00	input port clock
4 Path 3	00	3	2	8	b[2]	an_7	6.804	5.199	1.606	00	input port clock
Path 4	00	3	2	7	a[1]	seg_f	6.798	5.192	1.606	00	input port clock
Path 5	00	3	2	7	a[1]	seg_b	6.792	5.187	1.606	.00	input port clock
Path 6	00	3	2	7	a[1]	seg_a	6.792	5.186	1.606	00	input port clock
∿ Path 7	00	3	2	8	b[0]	an_5	6.789	5.184	1.606	00	input port clock
4 Path 8	00	3	2	8	b[0]	an_4	6.788	5.182	1.606	00	input port clock
4 Path 9	00	3	2	7	a[3]	seg_d	6.784	5.178	1.606	00	input port clock
Path 10	00	3	2	8	b[0]	an_6	6.779	5.173	1.606	00	input port clock

Delay in Implementation:

Name	Slack ^1	Levels	Routes	High Fanout	From	To	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
Path 1	00	3	2	8	b[1]	an_6	11.080	5.339	5.741	00	input port clock
4 Path 2	00	3	2	7	a[2]	seg_a	10.407	5.414	4.993	00	input port clock
Path 3	00	3	2	7	a[2]	seg_b	10.150	5.159	4.991	00	input port clock
3 Path 4	00	3	2	8	b[1]	an_7	10.114	5.400	4.714	00	input port clock
3 Path 5	00	3	2	8	b[1]	an_2	10.110	5.192	4.917	00	input port clock
Path 6	00	3	2	8	b[1]	an_3	9.927	5.406	4.521	00	input port clock
4 Path 7	00	3	2	7	a[2]	seg_f	9.832	5.397	4.434	00	input port clock
∿ Path 8	00	3	2	8	b[1]	an_0	9.649	5.382	4.268	00	input port clock
♣ Path 9	00	3	2	7	a[3]	seg_d	9.623	5.382	4.241	00	input port clock
Path 10	00	3	2	7	a[2]	seg_e	9.298	5.137	4.161	00	input port clock

Resource Utilization:

4. IO and GT Specific

1	Site Type	1	Used	1	Fixed	1	Available	1	Util%	1
†	Bonded IOB	J	22	J	0	J	210	1	10.48	Ţ
1	Bonded IPADs	1	0	1	0	1	2	1	0.00	1
1	PHY_CONTROL	1	0	1	0	1	6	1	0.00	1
1	PHASER_REF	1	0	1	0	1	6	1	0.00	1
1	OUT_FIFO	1	0	1	0	1	24	1	0.00	1
1	IN_FIFO	1	0	1	0	1	24	1	0.00	1
1	IDELAYCTRL	1	0	1	0	1	6	1	0.00	1
Ï	IBUFDS	î	0	1	0	1	202	Ī	0.00	1
Ţ	PHASER_OUT/PHASER_OUT_PHY	J	0	J	0	J	24	1	0.00	1
1	PHASER_IN/PHASER_IN_PHY	1	0	1	0	1	24	1	0.00	1
1	IDELAYE2/IDELAYE2_FINEDELAY	1	0	1	0	1	300	1	0.00	1
1	ILOGIC	1	0	1	0	1	210	1	0.00	1
1	OLOGIC	1	0	1	0	1	210	1	0.00	1
+		+		+		+		-+		-+

7. Primitives

I	Ref Name	1	Used	T	Functional Category
1	OBUF	1	15	1	10
ı	LUT3	1	8	1	LUT
1	LUT4	1	7	1	LUT
1	IBUF	1	7	1	IO

System Verilog Code:

```
module lab5source(
    input logic [3:0] a,
    input logic [2:0] b,
    output logic seg_a, seg_b, seg_c, seg_d, seg_e, seg_f, seg_g,
    output logic an_0, an_1, an_2, an_3, an_4, an_5, an_6, an_7
    );
    assign seg_a=(a[3]|~a[1]) & (~a[2]|~a[1]) & (a[3]|~a[2]|~a[0]) & (~a[3]|a[0]) & (~a[3]|a[2]|a[1]) & (a[2]|a[0]);
    assign seg_b=(a[3]|a[1]|a[0]) & (a[2]|a[0]) & (a[3]|~a[0]) & (a[3]|~a[0]) & (a[3]|~a[0]) & (a[2]|a[0]);
    assign seg_c=(~a[3]|a[1]) & (~a[2]|a[1]|~a[0]) & (a[2]|~a[1]|~a[0]) & (a[3]|a[2]|a[0]) & (~a[2]|~a[1]|a[0]);
    assign seg_e=(a[2]|a[0]) & (~a[2]|a[0]) & (~a[3]|~a[1]) & (~a[1]|a[0]);
    assign seg_g=(~a[3]|a[1]) & (~a[2]|a[0]) & (a[1]|a[0]) & (a[3]|~a[2]|a[1]) & (~a[3]|a[2]);
    assign seg_g=(~a[3]|a[2]) & (~a[1]|a[0]) & (~a[3]|~a[0]) & (a[2]|~a[1]) & (a[3]|~a[2]|a[1]);
    assign an_0= b[2]|b[1]|b[0];
    assign an_1= b[2]|b[1]|b[0];
    assign an_3= b[2]|~b[1]|b[0];
    assign an_3= b[2]|~b[1]|b[0];
    assign an_5= ~b[2]|b[1]|b[0];
    assign an_6= ~b[2]|b[1]|b[0];
    assign an_6= ~b[2]|b[1]|b[0];
    assign an_7= ~b[2]|b[1]|b[0];
    assign an_7= ~b[2]|b[1]|b[0];
    assign an_7= ~b[2]|b[1]|b[0];
    assign an_7= ~b[2]|b[1]|b[0];
```