Terminale

Fiches

Document intégralem	ent écrit par Ismaila	a Mbodji.	
IsmailaMbodji pour p ion à apporter? Rendez-vou	lus de ressources et	t d'informations.	ntactez-moi

Table des matières

1	Calcul de probabilité	1
2	Conseils généraux	2
3	Éléments de symétrie d'une courbe	5
4	Fonction racine n-ième	8
5	Limites	0

1 Calcul de probabilité

Propriété 1. — Soient *A* et *B* deux événements :

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

— Soient A un événement et \overline{A} son événement contraire :

$$P(\overline{A}) = 1 - P(A)$$

Définition 2. Lorsque tous les événements élémentaires de l'univers Ω ont la même probabilité; on dit qu'il y a **équiprobabilité**.

Propriété 3. Dans un cas d'équiprobabilité, la probabilité d'un événement *A* est :

$$P(A) = \frac{\text{card}A}{\text{card}\Omega}$$

2 Conseils généraux

2 Conseils généraux

Dans cette fiche un peu différente, je liste quelques conseils de préparation pour réussir l'épreuve de Mathématiques au Baccalauréat Sénégalais.

☒ Conseils aux Professeurs

1. Clarifier les attentes de l'épreuve

- Étudier les annales des 5 dernières années pour cerner les types d'exercices.
- Mettre en évidence les exercices de type 1 (techniques), 2 (guidés) et 3 (ouvert ou contextualisé).
- Rappeler la structure de l'épreuve : durée, barème, exigences de présentation.

2. Former aux méthodes, pas seulement au contenu

- Exiger une rédaction rigoureuse, surtout en géométrie et analyse.
- Insister sur les justifications des résultats, même obtenus à la calculatrice.
- Travailler la lecture fine et l'interprétation des énoncés.

3. Développer l'autonomie

- Proposer des devoirs blancs en temps réel.
- Encourager l'auto-évaluation et l'analyse d'erreurs.
- Introduire une progression des difficultés dans les exercices donnés.

4. Mettre en place des rituels pédagogiques

- Commencer chaque cours par un rappel de méthode ou une mini-question.
- Encourager l'usage du brouillon structuré.
- Distribuer des fiches de méthodes par thème.

5. Accompagner jusqu'au jour J

- Fournir une fiche de révision finale synthétique.
- Corriger les erreurs récurrentes de manière collective.
- Simuler des épreuves orales pour les séries concernées.

3 Conseils généraux

☒ Conseils aux Élèves

1. Maîtriser les bases

 Apprendre par cœur les formules essentielles : trigonométrie, dérivées, primitives, identités remarquables.

- Bien comprendre les concepts : fonction, variation, vecteurs, probabilités.

2. Travailler régulièrement et efficacement

- Réviser 1h de maths par jour au minimum en période de révision.
- Alterner entre cours, fiches personnelles et exercices corrigés.

3. Résoudre intelligemment

- Lire chaque énoncé deux fois.
- Identifier ce qui est donné, ce qui est demandé.
- Passer les questions trop difficiles, y revenir après.

4. Rédiger proprement

- Écrire lisiblement, aérer la copie.
- Justifier chaque réponse importante.
- Employer un vocabulaire mathématique précis.

5. Gérer son temps le jour de l'examen

- Ne pas passer plus de 45 minutes sur un seul exercice.
- Garder 10 à 15 minutes pour se relire.
- Commencer par l'exercice le mieux maîtrisé.

6. Être mentalement prêt

- Apprendre à gérer le stress par la respiration ou des rituels positifs.
- Se projeter en situation de réussite : visualisation mentale.

4 Conseils généraux

Matériel recommandé pour le jour J

- Stylos (bleu/noir), crayon, gomme, règle, compas.
- Calculatrice autorisée (mode examen activé).
- Une montre ou repère d'horloge visible.

« Le succès au Bac ne dépend pas seulement du talent, mais surtout du travail, de la méthode, et de la persévérance. »

/

3 Éléments de symétrie d'une courbe

Soit f une fonction numérique et \mathscr{C} sa courbe représentative dans un repère orthogonal.

I - Axe de symétrie

Pour montrer que la droite Δ d'équation x=a est un axe de symétrie de la courbe \mathscr{C} , on peut utiliser l'une des méthodes suivantes :

- Démontrer que : $\forall x \in D_f$ on a $2a x \in D_f$ et f(a x) = f(x)
- Démontrer que : $\forall x \in D_f$ on a $a x \in D_f$, $a + x \in D_f$ et f(2a x) = f(a + x)
- Démontrer que : la fonction g(x) = f(a x) est paire.

Dans ce cas on peut restreindre l'étude de f à $[a, +\infty[\cap D_f]$ et on obtient la courbe complète par symétrie par rapport à la droite Δ .

II - Centre de symétrie

Pour montrer que le point I(a,b) est un axe de symétrie de la courbe \mathscr{C} , on peut utiliser l'une des méthodes suivantes :

- Démontrer que : $\forall x \in D_f$ on a $2a x \in D_f$ et f(2a x) + f(x) = 2b
- Démontrer que : $\forall x \in D_f$ on a $a x \in D_f$, $a + x \in D_f$ et f(a x) + f(a + x) = 2b
- Démontrer que : la fonction g(x) = f(a x) + b est impaire.

Dans ce cas on peut restreindre l'étude de f à $[a, +\infty[\cap D_f]$ et on obtient la courbe complète par symétrie par rapport à I.

III - Fonction périodique

Définition 1. Une fonction f est dite**périodique de période** t (ou t- périodique) ssi :

- · t est non nul,
- · pour tout $x \in D_f$, x + t et x t sont dans D_f et f(x + t) = f(x).

On dit que t est une période de f, et la plus petite période strictement positive est la période de f. En général la période est notée T.

Pour tout x de D_f et tout **entier relatif** k, f(x + kT) = f(x).

Conséquences Pour représenter graphiquement une fonction f de période T, il suffit de :

- choisir un intervalle I de longueur T inclus dans D_f ;
- tracer (en rouge)la partie \mathscr{C} de la courbe de f restreinte à cet intervalle I:
- translater la partie $\mathscr C$ par les translations de vecteurs $(kT)\vec{i}$ avec k entier relatif.

Cas des fonctions trigonométriques

- Les fonctions $x \mapsto \cos x$ et $x \mapsto \sin x$ sont périodiques de période 2π c'est à dire : $\cos(x + 2\pi) = \cos x$ et $\sin(x)$
- La fonction $x \mapsto \tan x$ est périodique de période π c'est à dire : $\tan(x + \pi) = \tan x$

Cas général:

Les fonctions $x \mapsto \cos(ax + b)$ et $x \mapsto \sin(ax + b)$ ont pour période $T = \frac{2\pi}{|a|}$

La fonction $x \mapsto \tan(ax + b)$ a pour période $T = \frac{\pi}{|a|}$

Réduction de domaine d'étude

- Si f est T-périodique alors on peut restreindre le domaine d'étude à tout domaine du type $[a, a+T] \cap D_f$ pour tout réel a, ainsi on obtient la courbe complète de f sur ce domaine.
- Si f est T-périodique et paire (resp. impaire) alors on peut restreindre le domaine d'étude au domaine $\left[0, \frac{T}{2}\right] \cap D_f$ ainsi on obtient la courbe complète sur $\left[-\frac{T}{2}, \frac{T}{2}\right] \cap D_f$ par symétrie par rapport à l'axe des ordonnées (resp. par symétrie par rapport à O origine du repère).
- Si f est T-périodique et $\mathscr C$ admet un axe de symétrie Δ (resp. un centre de symétrie I) alors on peut restreindre le domaine d'étude au domaine $\left[a, a + \frac{T}{2}\right] \cap D_f$ ou au domaine $\left[a - \frac{T}{2}, a\right] \cap D_f$ ainsi on obtient la courbe complète sur $\left[a-\frac{T}{2}, a+\frac{T}{2}\right]\cap D_f$ par symétrie par rapport à l'axe Δ (resp. par symétrie par rapport un point I).

Exercice 2. On considère la fonction f définie par : $f(x) = \frac{\sin x}{\sin x + \cos x}$

- 1. Déterminer D_f et puis montrer que f est de période π .
- 2. Montrer que le point $A(-\frac{\pi}{4}; \frac{1}{2})$ est un centre de symétrie de \mathscr{C}_f . En déduire un domaine simple pour l'étude de f

1. f(x) existe $\Leftrightarrow \sin x + \cos x \neq 0$ Démonstration.

$$\Leftrightarrow \sin x \neq -\cos x$$

$$\Leftrightarrow \sin x \neq \sin(x - \frac{\pi}{2})$$

$$\Leftrightarrow x \neq \frac{3\pi}{4} + k\pi, k \in \mathbb{Z}$$

Montrons que π est la période de f.

$$x \in D_f \Leftrightarrow x \neq \frac{3\pi}{4} + k\pi \Leftrightarrow x + \pi \neq \frac{\pi}{4} + k\pi \Leftrightarrow x + \pi \in D_f.$$

$$x \in D_f \Leftrightarrow x \neq \frac{3\pi}{4} + k\pi \Leftrightarrow x - \pi \neq -\frac{\pi}{4} + k\pi \Leftrightarrow x - \pi \in D_f$$

$$x \in D_f \Leftrightarrow x \neq \frac{3\pi}{4} + k\pi \Leftrightarrow x + \pi \neq \frac{7\pi}{4} + k\pi \Leftrightarrow x + \pi \in D_f.$$

$$x \in D_f \Leftrightarrow x \neq \frac{3\pi}{4} + k\pi \Leftrightarrow x - \pi \neq -\frac{\pi}{4} + k\pi \Leftrightarrow x - \pi \in D_f.$$

$$f(x + \pi) = \frac{\sin(x + \pi)}{\sin(x + \pi) + \cos(x + \pi)} = \frac{-\sin x}{-\sin x - \cos x} = \frac{\sin x}{\sin x + \cos x} = f(x)$$

2.
$$2a - x = -\frac{\pi}{2} - x$$

$$x \in D_f \Leftrightarrow x \neq \frac{3\pi}{4} + k\pi \Leftrightarrow -\frac{\pi}{2} - x \neq -\frac{7\pi}{4} + k\pi \Leftrightarrow -\frac{\pi}{2} - x \in D_f$$

$$\Leftrightarrow 2a - x \in D_f$$

$$f(2a-x) + f(x) = \frac{\sin(-\frac{\pi}{2} - x)}{\sin(-\frac{\pi}{2} - x) + \cos(-\frac{\pi}{2} - x)} + \frac{\sin x}{\sin x + \cos x}$$

$$f(2a-x)+f(x) = \frac{\cos x}{\cos x + \sin x} + \frac{\sin x}{\sin x + \cos x} = 1$$

Donc le point A est bien un centre de symétrie de \mathscr{C}_f .

Proposons un d'étude de f.

f est de période $T=\pi$ et l'abscisse du centre de symétrie est $a=-\frac{\pi}{4}$, on peut appliquer la

formule $\begin{bmatrix} a, a + \frac{T}{2} \end{bmatrix} \cap D_f$ $\begin{bmatrix} -\frac{\pi}{4}, -\frac{\pi}{4} + \frac{\pi}{2} \end{bmatrix} \cap D_f = \begin{bmatrix} -\frac{\pi}{4}, \frac{\pi}{4} \end{bmatrix} \cap D_f = \end{bmatrix} - \frac{\pi}{4}, \frac{\pi}{4} \end{bmatrix}$ Conclusion: on peut étudier f sur $\begin{bmatrix} -\frac{\pi}{4}, \frac{\pi}{4} \end{bmatrix}$ puis obtenir la courbe complète par symétrie par rapport à A sur $\begin{bmatrix} -\frac{3\pi}{4}, -\frac{\pi}{4} \end{bmatrix} \cup \begin{bmatrix} -\frac{\pi}{4}, \frac{\pi}{4} \end{bmatrix}$.

4 Fonction racine n-ième

Théorème 1 (et définition). $n \in \mathbb{N}^*$

La fonction $x \mapsto x^n$ est continue et strictement croissante sur \mathbb{R}_+ donc elle est bijective de \mathbb{R}_+ vers \mathbb{R}_+ et admet une bijection réciproque appelée *fonction racine n-ième* et notée $x \mapsto x^{\frac{1}{n}}$ ou $x \mapsto \sqrt[n]{x}$.

Exemple 2. $-\sqrt[1]{x} = x$,

- $\sqrt[2]{x} = \sqrt{x} = x^{\frac{1}{2}}$ (racine carrée),
- $\sqrt[3]{x} = x^{\frac{1}{3}}$ appelée la racine cubique de x.

Notation 3.

$$\sqrt[n]{x^p} = (x^p)^{\frac{1}{n}} = x^{\frac{p}{n}}$$

Résolution de l'équation $x^n = a$

- si *n* est pair et $a \ge 0$ alors $x = \sqrt[n]{a}$ ou $x = -\sqrt[n]{a}$
- si *n* est impair et $a \ge 0$ alors $x = \sqrt[n]{a}$
- si n est pair et a < 0 alors pas de solution.
- si *n* est impair et $a \le 0$ alors $x = -\sqrt[n]{-a}$

Exemple 4. 1. $x^3 = 8 \iff x = \sqrt[3]{8} = 8^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} = 2$

2.
$$x^3 + 1 = 0 \iff x^3 = -1 \iff x = -\sqrt[3]{1} = -1$$

3.
$$x^4 = 3 \iff x = \sqrt[4]{3}$$
 ou $x = -\sqrt[4]{3}$

Fonction puissance d'exposant rationnel

Définition 5. r étant un nombre rationnel non nul, on appelle *fonction puissance d'exposant* r, la fonction :

$$\begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & \mathbb{R}_+ \\ x & \longmapsto & x^r \end{array}$$

Propriété 6. 1. r et r' étant des nombres rationnels non nuls, x et y des réels strictement positifs.

/

$$-x^r \times y^r = (xy)^r$$

$$-(x^r)^{r'} = x^{rr'}$$

$$-\frac{x^r}{y^r} = (\frac{x}{y})^r$$

$$--x^r \times x^{r'} = x^{r+r'}$$

- La fonction $x \mapsto x^r$ est dérivable sur \mathbb{R}_+^* et $(x^r)' = rx^{r-1}$.
- La fonction u^r est définie ssi $u \ge 0$.
- Si u est dérivable et strictement positive sur I alors la fonction u^r est dérivable sur *I* et $(u^r)' = ru'u^{r-1}$.

Exemple 7.
$$f(x) = \sqrt[3]{2x+1}$$

$$f(x)$$
 existe $\Leftrightarrow 2x + 1 \Leftrightarrow x \ge -\frac{1}{2}$ donc f est dérivable sur $\left] -\frac{1}{2}$, $+\infty \right[$

$$f(x)$$
 existe $\Leftrightarrow 2x + 1 \Leftrightarrow x \ge -\frac{1}{2}$ donc f est dérivable sur $\left] -\frac{1}{2}, +\infty \right[$
 $f(x) = \sqrt[3]{2x+1} = (2x+1)^{\frac{1}{3}} \Longrightarrow f'(x) = \frac{2}{3}(2x+1)^{-\frac{2}{3}} = \frac{2}{3\sqrt[3]{(2x+1)^2}}$

10 Limites

Limites 5

I - Limite d'une fonction composée

Soient a, bet c des réels ou $+\infty$ ou $-\infty$.

Propriété 1. Si
$$\lim_{x\to a} f(x) = b$$
 et $\lim_{x\to b} g(x) = c$ alors $\lim_{x\to a} g(f(x)) = c$

Exemple 2. Calculons
$$\lim_{x \to +\infty} \cos\left(\frac{\pi x}{2x+1}\right)$$
 La fonction $x \mapsto \cos\left(\frac{\pi x}{2x+1}\right)$ est la composée $g \circ f$ où $f: x \mapsto \frac{\pi x}{2x+1}$ et $g: x \mapsto \cos x \lim_{x \to +\infty} \frac{\pi x}{2x+1} = \lim_{x \to +\infty} \frac{\pi x}{2x} = \frac{\pi}{2}$ et $\lim_{x \to \frac{\pi}{2}} \cos x = 0$ ODonc $\lim_{x \to +\infty} \cos\left(\frac{\pi x}{2x+1}\right) = 0$

Remarque 3. En pratique pour calculer $\lim g(f(x))$ on peut faire un changement de variable en posant par exemple X = f(x) et la limite devient $\lim_{X \to b} g(X)$. L'objectif du changement de variable dans un calcul de limites lorsqu'on est en présence d'une forme indéterminée(FI), est de se ramener à une limite connue (limite usuelle ou limite déjà calculée)

Exemple 4. Pour calculer
$$\lim_{x \to +\infty} x \sin\left(\frac{\pi}{x}\right)$$
 On peut poser $X = \frac{\pi}{x}$ et la limite devient $\lim_{x \to 0} \pi \frac{\sin X}{X} = \pi \text{Donc } \lim_{x \to +\infty} x \sin\left(\frac{\pi}{x}\right) = \pi$

II - Théorèmes de comparaison

Théorème 1 (Minoration et majoration)

Théorème 5. Soit f et g deux fonctions telles que $f(x) \le g(x)$.

- Si $\lim_{x \to a} f(x) = +\infty$ alors $\lim_{x \to a} g(x) = +\infty$ Si $\lim_{x \to a} g(x) = -\infty$ alors $\lim_{x \to a} f(x) = -\infty$

11 Limites

Théorème 2 (ou théorème des gendarmes

Théorème 6. Soient f, g et h trois fonctions et l un réel tels que $h(x) \le f(x) \le g(x)$. Si $\lim_{x \to a} h(x) = \lim_{x \to a} g(x) = l$ alors $\lim_{x \to a} f(x) = l$

Théorème 3

Théorème 7. Soit f et g deux fonctions et l un réel telles que $|f(x)-l| \le g(x)$. Si $\lim_{x\to a} g(x) = 0$ alors $\lim_{x\to a} f(x) = l$

Utilisation de la dérivée

Théorème 8. Si
$$\lim_{x \to a} f'(x) = l$$
 (fini ou infini) alors $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l$

Exemple 9. Pour calculer $\lim_{x\to 1} \frac{x^5 + \cos(2\pi x) - 2}{x-1}$, on peut procéder comme suit :

$$\lim_{x \to 1} \frac{x^5 + \cos(2\pi x) - 2}{x - 1} = \lim_{x \to 1} (x^5 + \cos(2\pi x))' = \lim_{x \to 1} 5x^4 - 2\pi \sin(2\pi x) = 5$$

/