

Technische Universität Berlin Fakultät II Mathematik und Naturwissenschaften

Bachelorarbeit

im Studiengang Physik

zur Erlangung des akademischen Grades Bachelor of Science

Thema: Raumzeitliche Dynamik von optisch angeregten

Exzitonen in Quantumwells

Autor: Halgurd Taher

halgurdtaher@hotmail.com

MatNr. 338603

Version vom: 15. Juni 2015

Betreuer: Prof. Dr. Andreas Knorr
 Betreuer: Dr. Marten Richter

Zusammenfassung

Abstract

Inhaltsverzeichnis

Αŀ	bbildungsverzeichnis	3					
Τā	abellenverzeichnis	3					
1	Einleitung						
2	Theoretische Grundlagen 2.1 Bloch-Theorem	4 4 4 6 6 6					
3	Numerische Ergebnisse 3.1 Lösung der Eigenwertgleichugn	6 6					
4	Ausblick						
5	Fazit						
Lit	teraturverzeichnis	7					
Αı	Anhang						

Abbildungsverzeichnis

Tabellenverzeichnis

1 Einleitung

2 Theoretische Grundlagen

2.1 Bloch-Theorem

2.2 Effektive-Massen-Näherung

Teilchen im periodischen Ionenpotential $V(\vec{r})$ eines Kristall verhalten sich wie freie Teilchen mit einer effektiven Masse m_{eff} . Die statonäre Einteilchen-Schrödingergleichung

$$\mathcal{H}\psi_{\lambda,\vec{k}}(\vec{r}) = \left(-\frac{\hbar^2}{2m}\Delta_{\vec{r}} + V(\vec{r})\right)\psi_{\lambda,\vec{k}}(\vec{r}) = E_{\lambda,\vec{k}}\psi_{\lambda,\vec{k}}(\vec{r})$$
(2.2.1)

wird dann in dieser Näherung zu:

$$\mathcal{H}\psi_{\lambda,\vec{k}}(\vec{r}) = \left(-\frac{\hbar^2}{2m_{eff}}\Delta_{\vec{r}}\right)\psi_{\lambda,\vec{k}}(\vec{r}) = E_{\lambda,\vec{k}}\psi_{\lambda,\vec{k}}(\vec{r})$$
(2.2.2)

mit

$$E_{\lambda,\vec{k}} \approx E_{\lambda}(\vec{k}_0) + \frac{\hbar^2 \vec{k}^2}{2m_{eff}}$$
 (2.2.3)

2.3 Exzitonen Schrödingergleichung

Die Effektive-Massen-Näherung wird nun benutzt um die stationäre Exzitonen Schrödingergleichung aufzustellen. Sei $\psi(\vec{r_e}, \vec{r_h})$ die Zweiteilchenwellenfunktion eines Exzitons mit der Elektronen- bzw. Lochkoordinate $\vec{r_e}$ bzw. $\vec{r_h}$. Diese Wellenfunktion wird in Elektron- und Lochwellenfunktion separiert:

$$\psi(\vec{r}_e, \vec{r}_h) = \psi_{L,\vec{k}}(\vec{r}_e)\psi_{V,\vec{k}}(\vec{r}_h)$$
 (2.3.1)

wobei der Index L bzw. V für Leitungs- bzw. Valenband stehen. Mit einem zusätzlichen Potential $V(\vec{r}_e, \vec{r}_h)$ ist der Zweiteilchen-Hamiltonian im Halbleiter gegeben durch

$$\mathcal{H} = \mathcal{H}_e + \mathcal{H}_h + V(\vec{r}_e, \vec{r}_h) \tag{2.3.2}$$

und es gilt

$$\mathcal{H}_e \psi_{L\vec{k}}(\vec{r}_e) = E_{L\vec{k}} \psi_{L\vec{k}}(\vec{r}_e) \tag{2.3.3}$$

$$\mathcal{H}_h \psi_{V,\vec{k}}(\vec{r}_h) = E_{V,\vec{k}} \psi_{V,\vec{k}}(\vec{r}_h) \tag{2.3.4}$$

$$\mathcal{H}\psi(\vec{r_e}, \vec{r_h}) = [\mathcal{H}_e + \mathcal{H}_h + V(\vec{r_e}, \vec{r_h})] \psi_{L,\vec{k}}(\vec{r_e}) \psi_{V,\vec{k}}(\vec{r_h})$$
(2.3.5)

$$= \left[E_{L,\vec{k}} + E_{V,\vec{k}} + V(\vec{r}_e, \vec{r}_h) \right] \psi (\vec{r}_e, \vec{r}_h)$$
 (2.3.6)

$$= \left[E_L(\vec{k}_0) + \frac{\hbar^2 \vec{k}^2}{2m_{e,eff}} + E_V(\vec{k}_0) + \frac{\hbar^2 \vec{k}^2}{2m_{h,eff}} \right] \psi(\vec{r}_e, \vec{r}_h)$$
 (2.3.7)

$$= \left[E_L(\vec{k}_0) - \frac{\hbar^2 \Delta_{\vec{r}_e}}{2m_{e,eff}} + E_V(\vec{k}_0) - \frac{\hbar^2 \Delta_{\vec{r}_h}}{2m_{h,eff}} \right] \psi(\vec{r}_e, \vec{r}_h)$$
 (2.3.8)

(2.3.9)

Betrachtet man einen direkten Halbleiter mit $E_{\lambda}(\vec{k}_0) = E_{\lambda}(0)$ und setzt den Energienullpunkt auf $E_V(0)$ so erhält man die stationöre Schrödingergleichung für das Exziton im Potential $V(\vec{r}_e, \vec{r}_h)$

$$\mathcal{H}\psi\left(\vec{r}_{e},\vec{r}_{h}\right) = \left[E_{G} - \frac{\hbar^{2}\Delta_{\vec{r}_{e}}}{2m_{e,eff}} - \frac{\hbar^{2}\Delta_{\vec{r}_{h}}}{2m_{h,eff}} + V(\vec{r}_{e},\vec{r}_{h})\right]\psi\left(\vec{r}_{e},\vec{r}_{h}\right) = E\psi\left(\vec{r}_{e},\vec{r}_{h}\right) \quad (2.3.10)$$

$$(2.3.11)$$

mit der Bandlückenenergie E_G .

Es ist zweckmäßig, eine Transformation in das Schwerpunktsystem \vec{R} (Schwerpunkt-koordinate) und \vec{r} (Relativkoordinate) durchzuführen

$$\psi\left(\vec{r}_{e}, \vec{r}_{h}\right) \to \psi\left(\vec{R}, \vec{r}\right)$$

$$\mathcal{H}_{0} := -\frac{\hbar^{2}}{2M} \vec{\Delta}_{\vec{R}} - \frac{\hbar^{2}}{2\mu} \vec{\Delta}_{\vec{r}} + V\left(\vec{R}, \vec{r}\right),$$

mit den Transformaitonen

$$M = m_e + m_h$$

$$\mu = \frac{m_e m_h}{M}$$

$$\vec{r} = \vec{r_e} - \vec{r_h}$$

$$\vec{R} = \frac{m_e \vec{r_e} + m_h \vec{r_h}}{M}.$$

Im Schwerpunktsystem erhält man damit die Eigenwertgleichung

$$\mathcal{H}_0\psi\left(\vec{R},\vec{r}\right) = \left[\frac{-\hbar^2\Delta_{\vec{r}}}{2M} - \frac{\hbar^2\Delta_{\vec{R}}}{2\mu} + V(\vec{R},\vec{r})\right]\psi\left(\vec{R},\vec{r}\right) = (E - E_G)\psi\left(\vec{R},\vec{r}\right) \quad (2.3.12)$$

5 Fazit

2.4 Optische Anregung

Regt man das exzitonische System mit einem äußerem Lichtfeld an, so erhält man in Rotating Wave Approximation (RWA) und Dipolnäherung eine modifizierte Schrödingergleichung:

$$i\hbar\partial_t\psi(\vec{r},\vec{R},t) = \mathcal{H}_0\psi(\vec{r},\vec{R},t) + \mathcal{Q}$$

- 2.5 Zeitliche Entwicklung
- 2.6 Wellenpaketdynamik
- 3 Numerische Ergebnisse
- 3.1 Lösung der Eigenwertgleichugn
- 3.2 Dynamik bei Gaußförmiger Anregung
- 4 Ausblick
- 5 Fazit

Literaturverzeichnis 7

Literaturverzeichnis

Anhang 8

Anhang