

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
21. Oktober 2004 (21.10.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/090296 A1

- (51) Internationale Patentklassifikation⁷: F01N 3/08,
3/20, F02D 41/02
- (21) Internationales Aktenzeichen: PCT/EP2004/001824
- (22) Internationales Anmeldedatum:
25. Februar 2004 (25.02.2004)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
103 15 593.7 5. April 2003 (05.04.2003) DE
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): DAIMLERCHRYSLER AG [DE/DE]; Epplestrasse 225, 70567 Stuttgart (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (*nur für US*): DUVINAGE, Frank [DE/DE]; Weiherstrasse 45/1, 73230 Kirchheim (DE). KEPPELER, Berthold [DE/DE]; Teckstrasse 45/6, 73277 Owen (DE). KRUTZSCH, Bernd [DE/DE]; Eichendorffstrasse 8, 73770 Denkendorf (DE). PAULE, Markus [DE/DE]; Matreier Strasse 10, 71404 Korb (DE).
- (74) Anwälte: KOCHER, Klaus-Peter usw.; DaimlerChrysler AG, Intellectual Property Management, 70546 Stuttgart (DE).
- (81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

[Fortsetzung auf der nächsten Seite]

(54) Title: DEVICE AND METHOD FOR EXHAUST GAS AFTERTREATMENT

(54) Bezeichnung: ABGASNACHBEHANDLUNGSEINRICHTUNG UND -VERFAHREN

WO 2004/090296 A1

(57) Abstract: The invention relates to an exhaust gas aftertreatment device comprising a reforming unit (1) for producing hydrogen by means of water vapour reforming, partial oxidation of hydrocarbons, and/or mixed forms of said processes. The inventive device is characterised in that the reforming unit is arranged directly in the main exhaust gas flow of an internal combustion engine. The water vapour and residual oxygen required for the reforming preferably come from the exhaust gas. In order to provide the required reducing agents, the predominantly lean-operated combustion device of which the exhaust gas is aftertreated is temporarily switched over to the rich operation mode, enabling reforming by means of the inventive reforming reactor with the hydrocarbons in the exhaust gas.

(57) Zusammenfassung: Die erfindungsgemäße Abgasnachbehandlungseinrichtung mit einer Reformierungseinheit (1) zur Erzeugung von Wasserstoff durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon zeichnet sich dadurch aus, dass die Reformierungseinheit direkt im Hauptabgasstrom eines Verbrennungsmotors angeordnet ist. Der für die Reformierung notwendige Wasserdampf und Restsauerstoff stammen bevorzugt aus dem Abgas. Die Bereitstellung der erforderlichen Reduktionsmittel besteht darin, die vorwiegend mager betriebene Verbrennungseinrichtung, deren Abgas nachbehandelt wird, kurzzeitig auf Fettbetrieb umzustellen, wodurch eine Reformierung mittels erfindungsgemäsem Reformierungsreaktor mit den im Abgas vorhandenen Kohlenwasserstoffen ermöglicht wird.

— mit geänderten Ansprüchen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Abgasnachbehandlungseinrichtung und -verfahren

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Abgasnachbehandlung für mobile Anwendungen nach dem Oberbegriff des Anspruchs 1 bzw. des Anspruchs 11.

Für die Nutzung von Kraftfahrzeugen mit Otto- und insbesondere Dieselmotoren ist die Einhaltung entsprechender gesetzlicher Emissionsvorschriften unabdingbar. In diesem Zusammenhang wird die katalytische NO_x-Reduktion mit Wasserstoff als vorteilhaft angesehen. Diese katalytische Entfernung von Stickoxiden aus den Verbrennungsabgasen von Kraftfahrzeugen wird unter Einsatz von Wasserstoff an geeigneten Katalysatoren nach der Reaktion $2\text{NO} + 2\text{H}_2 \rightarrow \text{N}_2 + 2\text{H}_2\text{O}$ durchgeführt.

Bei einem Teil der bekannten Verfahren zur Entfernung von Stickoxiden nach der NO_x-Reduktion wird der für die Reaktion benötigte Wasserstoff im Fahrzeug mitgeführt, z.B. über Drucktanks, Flüssig-Wasserstoftanks oder Metallhydridspeicher. An diesem Verfahren ist nachteilig, dass für die Wasserstoffmitführung große, schwere Behälter benötigt werden, die darüber hinaus eine eng limitierte Kapazität aufweisen, so dass kurze Nachfüllintervalle notwendig sind.

In der EP 537 968 A1 ist eine Vorrichtung zur katalytischen Reduktion von Stickoxiden in Abgasen von Kraftfahrzeugen unter Zufuhr von Wasserstoff bekannt. Die Wasserstofferzeugung erfolgt an Bord des Kraftfahrzeugs durch partielle Oxidation oder Reformierung von Methanol an einem entsprechendem Katalysator. Das Aufheizen der Katalysatoren erfolgt dadurch, dass sie in dem heißen Abgasstrom des Motors angeordnet sind.

Aus der DE 101 20 097 A1 ist eine Abgasreinigungsanlage in einem Fahrzeug mit einem Reformierungsreaktor zur Extraktion von Wasserstoff aus Kraftstoff bekannt, bei welcher der Wasserstoff einem Abgasstrom einer Abgasleitung einer Brennkraftmaschine stromauf eines Abgaskatalysators zuführbar ist. Der Reformierungsreaktor weist eine Zuführeinrichtung für Sauerstoff und/oder Wasser auf und ist mit einem Nebenzweig der Abgasleitung verbunden, wobei Sauerstoff und Wasser zur Reformierung in Form eines Abgasteilstroms über den Nebenzweig zuführbar sind.

Um die Anordnung der jeweiligen Komponenten zur Abgasreinigung in den vorgenannten Patentdokumenten realisieren zu können, muss ein entsprechender großer Bauraum für die Abgasnachbehandlungsvorrichtung vorgesehen werden, die daher relativ unhandlich ist.

Aufgabe der Erfindung ist daher die Angabe eines Verfahrens bzw. einer Vorrichtung zur Abgasnachbehandlung, mit welcher sich eine Bauraumoptimierung im Hinblick auf eine kompaktere Bauweise realisieren lässt.

Die Erfindung löst dieses Problem durch die Bereitstellung einer Abgasnachbehandlungseinrichtung mit den Merkmalen des Anspruchs 1 sowie eines Abgasnachbehandlungsverfahrens mit den Merkmalen des Anspruchs 11.

Die erfindungsgemäße Abgasnachbehandlungseinrichtung mit einer Reformierungseinheit zur Erzeugung von Wasserstoff durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon zeichnet sich dadurch aus, dass die Reformierungseinheit direkt im Hauptabgasstrom eines Verbrennungsmotors angeordnet ist. Der für die Reformierung notwendige Wasserdampf und Restsauerstoff stammen bevorzugt aus dem Abgas. Die Bereitstellung der erforderlichen Reduktionsmittel besteht darin, die vorwiegend mager betriebene Verbrennungseinrichtung, deren Abgas nachbehandelt wird, kurzzeitig auf Fettbetrieb umzustellen, wodurch eine Refor-

mierung mittels erfindungsgemäßem Reformierungsreaktor mit den im Abgas vorhandenen Kohlenwasserstoffen ermöglicht wird. Hierzu sind bereits verschiedene spezifische Maßnahmen zur Steuerung des Luft/Kraftstoff-Verhältnisses, auch kurz als Luftverhältnis λ bezeichnet, vorgeschlagen worden, siehe z.B. die Offenlegungsschriften EP 0 560 991 A1 und DE 196 26 835 A1.

In der Reformierungseinheit findet unter Anwesenheit von Restsauerstoff eine exotherme partielle Oxidation bzw. unter Abwesenheit von Sauerstoff eine endotherme Dampfreformierung statt. Die Kombination beider Prozesse, die eine ausgeglichene Wärmebilanz kennzeichnet, bezeichnet man als autotherme Reformierung. Der Reformierungsreaktor kann ferner auch als sogenannter autothermer Reformierungsreaktor, kurz ATR-Reaktor, betrieben werden.

Bei der Reformierung werden die Kohlenwasserstoffe im Abgas im wesentlichen in ein CO- und H₂-haltiges Gasgemisch (Synthesegas) umgewandelt. Die hier vorliegenden Reduktionsmittel Wasserstoff (H₂), Kohlenmonoxid (CO) und/oder unverbrannte Kohlenwasserstoffe (HC) werden im weiteren zur Reduzierung von Stickoxiden eingesetzt.

Die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren zur Abgasnachbehandlung erlauben durch den Einsatz eines Reformierungsreaktors bzw. einer Reformierungseinheit im Abgasvollstrom eine Optimierung der Synthesegasausbeute im Fettbetrieb, welche in äußerst vorteilhafter Weise zu einer Verbesserung der NO_x- und Schwefel-Regeneration der NO_x-Speicherkatalysatoren sowie zu einer Reduzierung der auftretenden HC-Emissionen führt. Zusätzlich kann die NH₃-Ausbeute im Fettbetrieb auf dem NO_x-Speicherkatalysator optimiert werden.

Ein zyklischer Fettbetrieb kann entweder innermotorisch (z.B. Kraftstoffnacheinspritzung in den Brennraum des Verbrennungs-

motors oder Androsselung), durch eine Sekundäreinspritzung in den Abgasstrom vor dem Reformierungsreaktor und/oder durch eine Kombination von beidem realisiert werden. Im Fettbetrieb anfallendes NO_x wird unter den Bedingungen der Reformierung weitgehend reduktiv abgebaut.

Im Magerbetrieb verhält sich der Reformierungsreaktor wie ein im Abgasbereich üblicher Oxidationskatalysator, der im sauerstoffreichen Abgas die gasförmigen Emissionen (HC, CO, NO_x) reduziert. Um einen schnellen Kaltstart zu ermöglichen, kann die Reformierungseinheit mit einer Beheizungsfunktion, z.B. elektrisch, mittels Flammglühkerze, etc., ausgestattet sein.

Optional kann gemäß Anspruch 9 nach der Reformierungseinheit eine Abgasrückführung vorgesehen sein. Im Fettbetrieb ($\lambda < 1$) kann somit Reformat der motorischen Verbrennung zugeführt werden. Dies führt in vorteilhafter Weise zu einer Verminde-
rung der Rohemissionen und gleichzeitig zu einem geringeren Kraftstoffverbrauch.

In einer Weiterbildung nach Anspruch 2 ist im Hauptabgasstrom stromab der Reformierungseinheit der mindestens eine Abgaskatalysator angeordnet, der bevorzugt ein NO_x-Speicherkatalysator ist, welcher bei Durchströmung mit magerem Abgas dem Abgas Stickoxide durch Speicherung entzieht und bei Durchströmung mit reduzierendem Abgas durch Reduktion der gespeicherten Stickoxide N₂ erzeugt. Zusätzlich kann durch die Wahl geeigneter Betriebsparameter NH₃ erzeugt werden. Des Weiteren ist stromab des NO_x-Speicherkatalysators mindestens ein weiterer Abgaskatalysator angeordnet, der bevorzugt ein SCR-Katalysator ist, welcher im Abgas enthaltene Stickoxide unter Verwendung von NH₃, welches mittels Stickoxidspeicher-
katalysator erzeugt wurde, reduziert bzw. überschüssiges NH₃ einspeichert und danach im Magerbetrieb als Reduktionsmittel zur Verfügung stellt.

In einer Ausgestaltung nach Anspruch 3 ist im Hauptabgasstrom stromab der Reformierungseinheit der mindestens eine Abgaskat-

talsator angeordnet, der bevorzugt ein SCR-Katalysator ist, welcher im Abgas enthaltene Stickoxide unter Verwendung von NH₃, welches mittels Stickoxidspeicherkatalysator erzeugt wurde, reduziert. Ferner ist stromab des SCR-Katalysators mindestens ein weiterer Abgaskatalysator angeordnet, der bevorzugt ein NO_x-Speicherkatalysator ist, welcher bei Durchströmung mit magerem Abgas dem Abgas Stickoxide durch Speicherung entzieht und bei Durchströmung mit reduzierendem Abgas durch Reduktion der gespeicherten Stickoxide N₂ erzeugt.

Der Einsatz von Stickoxidspeicherkatalysatoren, auch als NO_x-Speicherkatalysatoren oder NO_x-Adsorberkatalysatoren bzw. abgekürzt als NSK bezeichnet, ist zur nachmotorischen Stickoxidminderung bei mager betriebenen Brennkraftmaschinen allgemein bekannt. Magerbetriebsphasen der Brennkraftmaschine entsprechen Adsorptionsphasen des Stickoxidspeicherkatalysators, in welchen er Stickstoffmonoxid (NO) in Stickstoffdioxid (NO₂) oxidiert und als Nitrate zwischenspeichert. Während kurzzeitiger, periodischer Regenerations- bzw. Desorptionsphasen wird der Stickoxidspeicherkatalysator von den eingespeicherten Nitraten befreit, indem diese zu Stickstoffdioxid und anschließend Stickstoffmonoxid umgewandelt werden. Letzteres wird dann durch geeignete Reduktionsmittel zu Stickstoff reduziert.

Bei diesem abwechselnden Adsorptions-/Desorptionsbetrieb sind einige Problempunkte zu beachten. So können abhängig von der Katalysatortemperatur, der Abgaszusammensetzung und der Materialzusammensetzung des Stickoxidspeicherkatalysators in der Regenerationsphase erhebliche Mengen des Schadgases Ammoniak (NH₃) durch Reaktion von Wasserstoff mit Stickstoffmonoxid und/oder Stickstoffdioxid entstehen. Beim Übergang von magerer auf fette Abgasatmosphäre besteht die Gefahr eines unerwünschten Stickoxid-Durchbruchs aufgrund schlagartiger Nitratzerersetzung, wenn nicht ausreichend rasch Reduktionsmittel in entsprechender Menge bereitgestellt wird. Beim Übergang

von fetter auf magere Abgasatmosphäre kann durch exotherme Verbrennungsreaktionen eine Erwärmung des Stickoxidspeicher-katalysators mit der Folge auftreten, dass bereits gebildete Nitrate wieder zersetzt und vorübergehend nicht mehr einge-speichert werden können, was einen unerwünschten Stickoxid-Schlupf verursachen kann. Eine effiziente Stickoxidminderung ist mit dieser NO_x-Speicherkatalysatortechnik auf einen relati-v schmalen Temperaturbereich etwa zwischen 200°C und 400°C begrenzt, da bei geringerer Temperatur die Oxidation von NO zu NO₂ gehemmt ist und bei höherer Temperatur die gebildeten Nitrate nicht mehr stabil in signifikanter Menge gespeichert werden können und sich das thermodynamische Gleichgewicht zwischen NO und NO₂ zunehmend auf die Seite des Stickstoffmo-noxids verschiebt. Erfahrungsgemäß ergibt sich durch die Bereitstellung von Synthesegas günstigerweise eine verbesserte NO_x-Regeneration bei niedrigerer Temperatur, welche sich wie-derum vorteilhaft auf das Alterungsverhalten und die Effi-zienz des NO_x-Speicherkatalysators auswirkt.

Typische NO_x-Speicherkatalysatoren enthalten Erdalkali- und Alkalimetalle, die für ihre Stickoxid-Speicherfähigkeit be-kannt sind. Unter mageren Bedingungen werden die Stickoxide wie folgt umgesetzt:

Unter fetten Abgasbedingungen wird Stickstoffdioxid wieder aus dem Speicher desorbiert und direkt mit dem im Abgas vor-handenen Kohlenmonoxid zu Stickoxid umgesetzt:

Die Umschaltzeiten zwischen Mager- und Fettbetrieb des Motors hängen von der eingesetzten Speichermaterialmenge, den NO_x-Emissionen und den für alle katalysierten Reaktionen typischen Parametern, wie Gasdurchsatz und Temperatur, ab.

Ein weiterer Problempunkt ist bei Verwendung schwefelhaltiger Kraftstoffe die sogenannte Schwefelvergiftung des NO_x-Speicherkatalysators durch Einspeichern von Sulfaten, die gegenüber den Nitraten stabiler sind und sich in den NO_x-Regenerationsphasen nicht zersetzen. Zur Sulfatentfernung werden daher üblicherweise von Zeit zu Zeit spezielle Desulfatisierungsphasen bei erhöhter Abgastemperatur und fetter Abgaszusammensetzung durchgeführt, siehe z.B. die Offenlegungsschrift DE 198 27 195 A1. Auch hier ergibt sich gemäß der Erfindung durch die Bereitstellung von Synthesegas günstigerweise beim NO_x-Speicherkatalysator eine verbesserte Schwefel-Regeneration bzw. -entfernung bei ebenfalls niedrigerer Temperatur, welche sich wiederum vorteilhaft auf das Alterungsverhalten des NO_x-Speicherkatalysators auswirkt. Bei der Desulfatisierung kann das Schadgas Schwefelwasserstoff (H₂S) entstehen, dessen Emission vermieden werden sollte. Dazu wird z.B. in der Patentschrift DE 100 25 044 C1 eine Zufuhr von Sekundärluft in den Abgasstrang während der Desulfatisierungsphasen vorgeschlagen, um den Schwefelwasserstoff in einem nachgeschalteten Oxidationskatalysator zu oxidieren.

In einer entsprechenden Steuerungseinheit, die z.B. auch zur Steuerung der Verbrennungseinrichtung, wie einer Brennkraftmaschine, dienen kann, sind bevorzugt Funktionen implementiert, die über die Notwendigkeit und Möglichkeit einer gezielten NH₃-Erzeugung entscheiden und die Betriebsparameter, insbesondere die Dauer und Anfettungstiefe bei der NSK-Regeneration, geeignet vorgeben. Typischerweise kann die NH₃-Bildung durch ein kleineres Luftverhältnis und eine längere Regenerationsdauer verstärkt werden, sofern die Temperatur des NO_x-Speicherkatalysators im Bereich möglicher NH₃-Bildung liegt. Darüber hinaus kann der Betrieb der Verbrennungsein-

richtung während der NSK-Regeneration in an sich bekannter Weise so eingestellt werden, dass eine hohe NO_x-Rohemission derselben erzielt und dadurch die NH₃-Bildung am NO_x-Speicherkatalysator weiter verstärkt wird.

Durch geeignete Anordnung der Komponenten kann die auftretende maximale Temperaturbelastung der einzelnen Komponenten den spezifischen Erfordernissen angepasst werden. Zudem kann durch geeignete Anordnung sichergestellt werden, dass die Temperaturen der einzelnen Komponenten im Fahrbetrieb in einem für die jeweilige Funktion günstigen Bereich liegen. Der für die Regeneration des NO_x-Speicherkatalysators erforderliche Fettbetrieb kann durch innermotorische Maßnahmen oder eine zusätzliche nachmotorische Einbringung von Reduktionsmitteln (z.B. Kraftstoff in den Abgasstrang vor dem Reformer), im weiteren als Sekundäreinspritzung bezeichnet, realisiert werden.

Die nachmotorische Zufuhr von Reduktionsmittel stromaufwärts des NO_x-Speicherkatalysators kann auch dazu genutzt werden, bei Motorbetrieb mit magerem Abgas fette Bedingungen zur NSK-Regeneration einzustellen. Dies geschieht vorzugsweise bei Motorbetrieb zwischen $\lambda=1.0$ und $\lambda=1.2$, da andernfalls die zuführende Reduktionsmittelmenge zu groß ist. Hierbei ergibt sich als Vorteil, dass üblicherweise im Bereich zwischen $\lambda=1.0$ und $\lambda=1.2$ eine hohe NO_x-Rohemission auftritt, während diese bei Luftverhältnissen $\lambda<1$ deutlich niedriger ist. Somit kann dieses Verfahren dazu dienen, bei der NSK-Regeneration eine hohe NO_x-Emission und damit eine starke NH₃-Bildung zu erzielen.

Zur Vermeidung hoher CO- und HC-Emissionen während NSK-Regenerationen mit $\lambda<1$ kann vor einem nachgeschalteten Oxidationskatalysator bei Bedarf eine Sekundärlufteinblasung erfolgen. Die Sekundärluft kann z.B. durch eine elektrisch an-

getriebene Sekundärluftpumpe oder einen Kompressor bereitgestellt werden oder bei aufgeladenen Motoren nach Verdichter entnommen werden.

Ein weiteres bekanntes Abgasnachbehandlungsverfahren ist das sogenannte selektive katalytische Reduktionsverfahren, abgekürzt als SCR-Verfahren bezeichnet. Hierbei wird dem Abgas zwecks Stickoxidreduktion ein selektiv wirkendes Reduktionsmittel zugegeben, typischerweise Ammoniak. Der Ammoniak wird in einem entsprechenden Denitrierungskatalysator, abgekürzt als SCR-Katalysator bezeichnet, zwischengespeichert und von diesem dazu verwendet, im Abgas enthaltene Stickoxide (NO_x) katalytisch unter Bildung von Stickstoff und Wasser zu reduzieren. Die Effektivität von SCR-Katalysatoren ist bei niedrigeren Temperaturen stark vom Verhältnis NO/NO_2 abhängig, mit einem Effektivitätsmaximum bei einem NO_2 -Anteil von ca. 50% für Temperaturen unterhalb von 200°C und deutlich reduzierter Effektivität bei geringerem NO_2 -Anteil. Bei höheren Temperaturen oberhalb von ca. 400°C wird die Stickoxidreduktion durch Oxidation von Ammoniak limitiert, außerdem nimmt mit zunehmender Temperatur die Ammoniak-Speicherkapazität des SCR-Katalysators ab. Insgesamt ergibt sich für solche SCR-Systeme ein taugliches Temperaturfenster zur effizienten Stickoxidminderung von etwa 250°C bis etwa 550°C. SCR-Katalysatoren unterliegen einer thermischen Alterung und sollten nicht mit Temperaturen über ca. 700°C bis 750°C belastet werden. Durch das im SCR-Katalysator gespeicherte NH_3 können die Magerphasen verlängert werden und führen damit vorteilhafterweise zu einer Kraftstoffeinsparung und gleichzeitig zu einem verbesserten Alterungsverhalten des NSK-Katalysators. Es hat sich gezeigt, dass der SCR-Katalysator auch eingesetzt werden kann, um eine beispielsweise bei der Desulfatisierung entstehende H_2S -Emission zu vermeiden. Versuche haben ergeben, dass ein SCR-Katalysator aufgrund seiner spezifischen Eigenschaften auch bei fetter Abgaszusammensetzung

zung ($\lambda < 1$) bei der Desulfatisierung auftretenden Schwefelwasserstoff zu SO₂ oxidieren kann. Hierdurch kann eine unangenehme Geruchsbelästigung vermieden werden.

Als weitere Besonderheit können SCR-Katalysatoren bei niedrigen Temperaturen unverbrannte Kohlenwasserstoffe (HC) zwischenspeichern und diese, sofern sie Vanadiumpentoxid (V₂O₅) enthalten, bei fetten Bedingungen ($\lambda < 1$) auch oxidieren. Hierdurch kann üblicherweise der Reduktionsmittel-Durchbruch bei der NSK-Regeneration vermindert werden und aufgrund seiner Eigenschaft, bei niedrigen Temperaturen auch Kohlenwasserstoffe zu speichern ferner zu einer Verringerung der HC-Emissionen nach dem Kaltstart beitragen. Insbesondere die Emission von möglicherweise krebserregenden Kohlenwasserstoffen wie Benzol, Toluol, Ethylbenzol und Xylol kann verringert werden, die bei fetten Bedingungen am NO_x-Speicherkatalysator entstehen können. Die bei niedrigen Temperaturen gespeicherten HC werden bei höheren Temperaturen wieder freigesetzt und können am SCR-Katalysator oder einem nachgeschalteten Oxidationskatalysator oxidiert werden. Die zur Oxidation von unverbrannten Kohlenwasserstoffen am SCR-Katalysator notwendigen hohen Temperaturen führen jedoch zu einer Verschlechterung des Alterungsverhaltens. Dieses kann durch die Erfindung überwunden werden, da durch den Einsatz der Reformereinheit im Vollstrom, die gleichzeitig als Reformer oder Reformatezeugungseinheit fungiert, kann der Synthesegasanteil im Fettbetrieb erhöht werden bei gleichzeitiger Verringerung der HC-Emissionen. Dies führt als ein weiterer Vorteil zu einem verbesserten Alterungsverhalten des SCR-Katalysators.

Typische SCR-Katalysatoren enthalten V₂O₅, TiO₂ und wenigstens eine der Komponenten aus der Gruppe Wolframoxid, Molybdänoxid, Siliciumdioxid und Zeolithen.

In einer weiteren vorteilhaften Ausbildung nach Anspruch 10 zur nachmotorischen Partikelminderung ist die Reformierungseinheit als katalytischer Rußpartikelfilter ausgebildet. Dieser katalytisch aktive Dieselpartikelfilter ist als Wanddurchströmer ausgeführt. Die Reformierungseinheit dient somit in äußerst vorteilhafter Weise gleichzeitig zum einen als Reformer, zum anderen als Partikelfilter. Dies führt neben der Anordnung im Vollstrom und dem Wegfall einer zusätzlichen Filtereinheit zu einer wesentlich kompakteren Bauweise. Durch die Kombination bzw. Integration von zwei der genannten Funktionalitäten in einem Bauteil kann außerdem eine deutliche Reduzierung des Bauraumbedarfs erzielt werden.

Dieser Partikelfilter hält die emittierten Partikel mit einer hohen Effektivität zurück. Eine Regeneration des Filters kann durch verschiedene Maßnahmen erreicht werden. Da Dieselruß bei erhöhten Temperaturen abbrennt, kann man zum einen die Abgastemperaturen (z.B. durch Kraftstoffnacheinspritzung in den Abgasstrang) bzw. die Filtertemperaturen erhöhen oder zum anderen die Rußzündtemperaturen durch eine katalytische Beschichtung oder durch die Additivierung des Kraftstoffs erniedrigen auf Bereiche < 400°C, wobei die Reduktion der Zündtemperatur zu einer Verkürzung der notwendigen Nacheinspritzzeit bzw. zu einer Reduktion der Nacheinspritzmenge führt. Eine Kombination verschiedener Regenerationsmethoden ist ebenso möglich. Generell sind beschichtete Partikelfilter im Hinblick auf Emissionen während der Regenerationsphase einer Additivierung des Kraftstoffs deutlich überlegen. Beim Abbrennen der Rußschicht, für die Abgastemperaturen oberhalb von 550°C erforderlich bildet sind, bildet sich aus dem Ruß CO₂ und Wasserdampf. Soweit das den Partikelfilter erreichen-de Abgas NO₂ enthält, erfolgt auch bereits im Temperaturbereich von etwa 250°C bis 400°C eine Rußoxidation durch Reaktion mit NO₂ (CRT-Effekt).

Die gleichzeitig als Partikelfilter fungierende Reformierungseinheit enthält als Trägermaterial eines Abgaskatalysatoren einen keramischen Monolithen, beispielsweise aus Cordierit, einer Keramik mit der Summenformel $2\text{MgO} \times 2\text{Al}_2\text{O}_3 \times 5\text{SiO}_2$, Siliciumcarbid (SIC) oder andere geeignete Materialien. Die katalytische Beschichtung enthält im wesentlichen Trägeroxide, weitere oxidische Komponenten, wie z.B. Ceroxid und Edelmetalle, die als wässrige Beschichtung, auch Washcoat genannt, auf den keramischen Monolithen aufgebracht werden. Als Trägeroxide können beispielsweise Al_2O_3 , SiO_2 , TiO_2 , Zeolithen oder Mischungen davon verwendet werden, wobei ferner Elemente der Seltenen Erden oder Zr, auch in Form von Oxiden, zur Erhöhung der spezifischen Oberfläche vorhanden sein können. In der Praxis haben sich besonders die Edelmetalle als wirksame Katalysatoren herausgestellt, insbesondere Pt, Rh, Pd, Ir, Ru sowie Ni.

Die Aufheizung des NO_x -Speicherkatalysators zur Desulfatisierung sowie des Partikelfilters zur thermischen Regeneration kann durch innermotorische Maßnahmen, u.a. Kraftstoffnacheinspritzung in den Brennraum, erfolgen. Die Regeneration des NO_x -Speicherkatalysators erfolgt mittels des im Reformer entstandenen H₂ und CO. Neben der gezielt erhöhten Abgastemperatur führen im Abgas verbleibende, unvollständig verbrannte Kohlenwasserstoffe zu einer zusätzlichen Exothermie auf einem optional motornah angeordneten Katalysator, wodurch die Abgastemperatur weiter angehoben wird. Zusätzlich oder alternativ kann auch eine Zufuhr von Reduktionsmitteln (z.B. Kraftstoff) im Abgasstrang direkt vor der oder vor den aufzuheizenden Komponenten bzw. vor einem diesen Komponenten vorgeschalteten Oxidationskatalysator erfolgen. Dies hat den Vorteil, dass die Wärmeverluste durch Aufheizung weiterer vorgeschalteter Komponenten sowie Wärmeverluste durch Abkühl-

lung in der Abgasleitung verringert werden. Hierdurch wird der Energieaufwand und damit der Kraftstoff-Mehrverbrauch für die Aufheizung auf ein Minimum beschränkt. Ein weiterer Vorteil ist, dass auf diese Weise weitere vorgeschaltete Komponenten nicht mit hohen Abgastemperaturen belastet werden und somit deren thermische Alterung auf ein Minimum beschränkt werden kann. Außerdem wird vermieden, dass weitere vorgeschaltete Komponenten, z.B. ein vorgeschalteter NO_x-Speicherkatalysator, aufgrund der Aufheizung das für eine gute Effizienz erforderliche Temperaturfenster verlassen.

Im Fall eines katalytisch beschichteten Partikelfilters besteht ein weiterer Vorteil darin, dass die Kraftstoff-Umsetzung wegen der hohen Wärmekapazität des Partikelfilters auch beispielsweise nach längeren Schubphasen des Verbrennungsmotors mit niedriger Abgastemperatur weiterhin möglich ist. Bei einem konventionellen Katalysator besteht dagegen die Gefahr, dass aufgrund der geringen Wärmekapazität die Temperatur unter vergleichbaren Bedingungen unter die Anspringtemperatur sinkt und somit keine katalytische Umsetzung der Kohlenwasserstoffe mehr möglich ist. Generell sind statt der Zufuhr von Reduktionsmittel (z.B. Kraftstoff) vor einem Katalysator auch andere Verfahren zur Aufheizung anstelle der nachmotorischen Zufuhr von Reduktionsmittel möglich. Wie beispielsweise eine elektrische Beheizung des Partikelfilters/Reformers als in der Praxis übliche Maßnahmen zu nennen.

In einer weiteren Besonderheit nach Anspruch 4 ist im Hauptabgasstrom stromab des Reformierungsreaktors der mindestens eine Abgaskatalysator angeordnet, wobei der Abgaskatalysator die Funktionen eines NO_x-Speicher- und SCR-Katalysators aufweist. Durch die Kombination bzw. Integration beider Funktionalitäten in einem Bauteil kann wiederholt eine deutliche Reduzierung des Bauraumbedarfs erzielt werden.

In einer bevorzugten Ausbildung gemäß Anspruch 5 ist stromab hinter dem jeweils letzten Abgaskatalysator ein Oxidationskatalysator angeordnet.

In einer weiteren Ausgestaltung gemäß Anspruch 6 ist unmittelbar hinter der Reformierungseinheit in Hauptströmungsrichtung des Abgases ein Drei-Wege-Katalysator angeordnet.

In einer anderen vorteilhaften Weiterbildung der Erfindung nach Anspruch 7 ist im Hauptabgasstrom stromab der Reformierungseinheit der mindestens eine Abgaskatalysator angeordnet, der bevorzugt ein NOX-Katalysator ist. Der NOX-Katalysator kann beispielsweise als Trägermaterial Zeolith, Al_2O_3 und/oder Perowskit enthalten, als katalytisch aktive Komponente z.B. Pt, Cu oder andere geeignete Metalle.

Gemäß einer weiteren vorteilhaften Ausbildung nach Anspruch 8 ist vor oder hinter dem NOX-Katalysator ein NO_x-Speicherkatalysator angeordnet.

Das Verfahren zum Betreiben einer Abgasnachbehandlungseinrichtung gemäß Anspruch 11 erlaubt eine Reduzierung von Stickoxiden in Abgasen von Kraftfahrzeugen durch Reduktion an einem Katalysator, in dem Wasserstoff zugeführt wird, wobei der für die Stickoxid-Reduktion benötigte Wasserstoff an Bord des Kraftfahrzeugs durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon erzeugt wird. Hierbei wird erfindungsgemäß die Reformierung direkt im Hauptabgasstrom eines Verbrennungsmotors durchgeführt. Der für die Reformierung notwendige Wasserdampf und Restsauerstoff stammt bevorzugt aus dem Abgas.

In einer Ausgestaltung des Verfahrens gemäß Anspruch 12 wird die Temperatur der Reformierungseinheit über das Luft/Kraftstoffverhältnis eingestellt, wobei die aktuelle Sauerstoffkonzentration im Abgas mit Hilfe einer Breitbandlambdasonde ermittelt wird.

In einem Verfahren nach Anspruch 13 wird erfindungsgemäß die Reformierungseinheit bei einem Luft/Kraftstoff-Verhältnis im Bereich von etwa $0,5 < \lambda < 1,0$ betrieben.

Ferner wird gemäß einer Weiterbildung des Verfahrens nach Anspruch 14 eine dem Reformierungsreaktor zugeführte Kraftstoffmenge innermotorisch, durch eine Sekundäreinspritzung und/oder durch eine Kombination aus beidem eingestellt.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.

Weitere Vorteile und Ausgestaltungen der Erfindung gehen aus den Ansprüchen und der Beschreibung hervor. Insbesondere ergeben Vorteile durch geeignete Kombination bzw. Integration von verschiedenen Katalysatorkomponenten wie nachstehend erläutert.

Die Erfindung ist nachstehend anhand einer Zeichnung näher beschrieben, dabei zeigen in beispielhafter und schematischer Weise:

Fig. 1 eine Blockdiagrammdarstellung einer Abgasnachbehandlungsvorrichtung im Vollstrom, die hintereinandergeschaltet eine Reformierungs-/Partikelfilttereinheit, einen NO_x-Speicherkatalysator und SCR-Katalysator aufweist,

Fig. 2 eine Blockdiagrammdarstellung einer Abgasnachbehandlungsvorrichtung im Vollstrom, die hintereinandergeschaltet eine Reformierungs-/Partikelfilttereinheit und einen integrierten Abgaskatalysator mit NO_x-

Speicherkatalysator- und SCR-Katalysator-Funktion aufweist,

Fig. 3 eine Blockdiagrammdarstellung einer Abgasnachbehandlungsvorrichtung im Vollstrom, die hintereinander geschaltet eine Reformierungs-/Partikelfilttereinheit, einen Drei-Wege-Katalysator, einen NO_x-Speicher-katalysator und einen SCR-Katalysator aufweist,

Fig. 4 eine Blockdiagrammdarstellung einer Abgasnachbehandlungsvorrichtung im Vollstrom, die hintereinander geschaltet eine Reformierungs-/Partikelfilttereinheit und einen HC-DENO_x-Speicherkatalysator aufweist.

Die Abgasnachbehandlungseinrichtung von Fig. 1 beinhaltet in Abgasströmungsrichtung hinter einer Brennkraftmaschine (nicht dargestellt) im Vollstrom des Abgasstrangs 4 nacheinander eine Reformierungseinheit 1, die gleichzeitig als Partikelfilter wirkt, einen NO_x-Speicherkatalysator 2 und einen SCR-Katalysator 3 als abgasreinigende Komponenten. Eine nicht näher dargestellt Steuereinheit dient zur Steuerung der Brennkraftmaschine, bei der es sich bevorzugt um einen Dieselmotor handelt, und der Abgasnachbehandlungseinrichtung. Des Weiteren können nicht weiter dargestellte Temperatursensoren, NO_x-Sensoren, Lambdasonden, eine Einrichtung zur Zufuhr von Sekundärluft und Drucksensoren an geeigneten Stellen des Abgasstrangs 4 angeordnet sein. Eine Einrichtung zur nachmotorischen Zufuhr von Reduktionsmittel 5, auch als Sekundäreinspritzung bezeichnet, ist stromauf der Reformierungseinheit 1 angeordnet.

Die Brennkraftmaschine liefert Abgas, das unter anderem NO_x, Partikel, CO und HC als unverbrannte Kohlenwasserstoffe enthält. Im Magerbetrieb ($\lambda > 1$) verhält sich die Reformierungs-

einheit 1 wie eine normaler Oxidationskatalysator und CO und HC werden zu CO₂ und H₂O oxidiert. Die im Abgas vorhandenen Partikel werden im der gleichzeitig als Partikelfilter wirkenden Reformierungseinheit 1 zurückgehalten. Ein Teil der im Partikelfilter angesammelten Rußpartikel wird durch Reaktion mit NO₂ oxidiert, wobei NO₂ zu NO reduziert wird. Falls nach dem NO_x-Speicherkatalysator 2 noch Stickoxide im Abgas enthalten sein sollten, so liegen diese meist in Form von NO vor. Im Magerbetrieb wird NO_x als Nitrat im NO_x-Speicherkatalysator 2 gespeichert. Die Reformierungseinheit 1 liefert im Fettbetrieb ($\lambda < 1$) ein CO und H₂-haltiges Synthesegasgemisch mit einem verringerten HC-Gehalt. Im Fettbetrieb wird dann eingelagertes NO_x desorbiert und mit Synthesegas bzw. CO und/oder HC zu N₂ reduziert. Daneben wird noch Ammoniak gebildet nach der Gleichung $3,5\text{H}_2 + \text{NO}_2 \rightarrow \text{NH}_3 + 2\text{H}_2\text{O}$. Diese NH₃ kann direkt das auch im Fettbetrieb entstandene NO_x an der nachfolgenden SCR-Stufe 3 nach der Gleichung $4\text{NH}_3 + 3\text{NO}_2 \rightarrow 3,5\text{N}_2 + 6\text{H}_2\text{O}$ reduzieren. Überschüssiger Ammoniak wird im SCR-Katalysator 3 adsorptiv abgespeichert. Dadurch kann vorhandenes NO_x bereits im Magerbetrieb teilweise umgesetzt werden. Hierdurch können die Magerphasen verlängert werden mit dem Vorteil der Kraftstoffeinsparung und einer Verbesserung des Alterungsverhaltens des NO_x-Speicherkatalysator 2. Optional kann nach der Reformierungseinheit und vor dem NO_x-Speicherkatalysator 2 eine Abgasrückführung (nicht dargestellt) vorgesehen sein. Damit kann im Fettbetrieb Reformat der motorischen Verbrennung zugeführt werden. Dies führt zu einer Verminderung der Rohemissionen und verringert gleichzeitig den Kraftstoffverbrauch. Die Temperaturregelung der Reformierungseinheit 1 erfolgt im Fettbetrieb durch eine Variation des Lambdas. Für einen schnellen Kaltstart kann die Reformierungseinheit mit einer Beheizungsfunktion (z.B. elektrisch, Flammglühkerze etc.) versehen sein.

Optional kann auch die Reihenfolge von NO_x-Speicherkatalysator 2 und einen SCR-Katalysator 3 als abgasreinigende Komponenten miteinander vertauscht sein, mit der Folge, dass die Reduktion von NO_x am SCR-Katalysator 3 statt mit NH₃ mit H₂ bzw. Reformat stattfindet.

Ein beiden Versionen nachgeschalteter Oxidationskatalysator mit Sauerstoffspeicherfunktion setzt die bei der Umschaltung von Mager- auf Fettbetrieb noch übriggebliebenen Kohlenwasserstoff mittels eingespeichertem O₂ um. Dem Oxidationskatalysator kann noch eine nicht dargestellte Einrichtung zur Zufuhr von Sekundärluft vorgeschaltet sein.

Um an den abgasreinigenden Komponenten, insbesondere am NO_x-Speicherkatalysator 2 und am SCR-Katalysator 3, ausreichende Temperaturen auch bei Niedriglastbetrieb und damit eine bestmögliche NO_x-Minderung zu erzielen, können Heizmaßnahmen angewendet werden. Diese können innermotorisch sein, z.B. eine Spätverlegung der Haupteinspritzung oder Nacheinspritzung in den Brennraum, oder auch nachmotorisch durch Zufuhr von Reduktionsmittel vor der Reformierungseinheit 1 zur Exothermierzeugung, sofern der NO_x-Speicherkatalysator 2 eine ausreichende Temperatur zur Umsetzung des Reduktionsmittels erreicht hat. Die Abgasleitung kann ferner thermisch isoliert sein, um Wärmeverluste aus dem Abgas zu minimieren. Beispielsweise kann eine Luftspalt-Isolation verwendet werden. Weitere Maßnahmen zur Erhöhung der Abgastemperatur können sein: Erhöhung der Leerlaufdrehzahl, Verlängerung der Nachglühzeit, Zuschalten zusätzlicher elektrischer Verbraucher oder eine Erhöhung der AGR-Rate. Die oben genannten Maßnahmen können beispielsweise durch eine Steuereinheit zur Steuerung von Motor bzw. Abgasreinigungskomponenten in Abhängigkeit der eingehenden Temperatur-Signale oder mittels Modell gesteuert sein. In der Steuereinheit sind beispielsweise Modelle für

die NO_x-Rohemission, das NO_x-Speicherverhalten des NO_x-Speicherkatalysators 2, die NH₃-Bildung am NO_x-Speicherkatalysator 2 und die NH₃-Speicherung im SCR-Katalysator 3 hinterlegt, in denen u.a. die Kriterien für eine NSK-Regeneration festgelegt sind. Auf Basis verschiedener Sensorsignale kann eine Adaption der Modelle an den aktuellen Alterungszustand der Katalysatoren erfolgen.

In regelmäßigen Abständen sind thermische Regenerationen der auch als Partikelfilter wirkenden Reformierungseinheit 1 notwendig, damit sich durch die Rußablagerungen nicht der Durchflußwiderstand erhöht und damit die Motorleistung herabgesetzt wird. Die Rußschicht wird abgebrannt, wobei sich aus dem Ruß CO₂ und Wasserdampf bildet. Zur Rußverbrennung sind normalerweise Temperaturen oberhalb von 550°C erforderlich. Mit einem katalytisch ausgelegten Rußfilter gelingt es jedoch, die Rußzündtemperatur in den Bereich unter 400°C zu senken. Die Reaktion läuft ähnlich wie beim CRT-System ab, d.h. es wird NO zu NO₂ umgewandelt, das mit dem Ruß reagiert. Zur Aufheizung des Partikelfilters 1 kann beispielsweise die nachmotorische Zufuhr von Reduktionsmittel genutzt werden.

Das in Fig. 2 dargestellte Ausführungsbeispiel unterscheidet sich von demjenigen der Fig. 1 darin, dass die Abgasreinigungskomponenten NO_x-Speicherkomponente 2 und der im Vollstrom nachfolgend angeordnete einen SCR-Katalysator 3 zu einem integrierten Abgaskatalysator 6 zusammengefasst sind. Dies hat den Vorteil, dass der Temperaturabfall in der Abgasleitung der bei hintereinandergeschalteten Katalysatoren auftritt, bei einer integrierten Lösung entfällt. Vorteilhaft ist in jedem Fall, dass durch diese Maßnahme der Bauraumbedarf erheblich reduziert ist. Außerdem erreichen beide funktionelle Komponenten nach dem Kaltstart sehr schnell die erforderliche Betriebstemperatur, so dass keine zusätzlichen Heizmaßnahmen erforderlich sind, die eine Erhöhung des Kraft-

stoffverbrauchs zur Folge hätten. Im integrierten Stickoxid-speicher- und SCR-Katalysator wird ein wesentlicher Teil der im Abgas enthaltenen Stickoxide zwischengespeichert, ein übriger Teil durch dort zwischengespeicherten Ammoniak reduziert. Auch hier kann ein Oxidationskatalysator mit Sauerstoffspeicherfunktion mit einer diesem Katalysator vorgesetzten Einrichtung zur Zufuhr von Sekundärluft nachgeschaltet sein.

Der in integrierter Form vorliegende Abgaskatalysator kann generell in Form eines als Vollextrudates ausgeführten Wabenkörpers vorliegen; das heißt, die Komponenten des Katalysators werden zu einer extrudierfähigen Masse verarbeitet und dann zu Wabenkörpern extrudiert. Ein solcher Katalysator besteht durchgehend aus Katalysatormasse und wird daher auch als Vollkatalysator bezeichnet. Im vorliegenden Fall kann die SCR-Katalysatorkomponente 3 zu einem Wabenkörper extrudiert sein und die NO_x-Speicherkatalysatorkomponente 2 in Form einer Beschichtung auf die Wände der Strömungskanäle aufgebracht sein. Die hierfür anzuwendenden Techniken sind dem Fachmann bekannt. Der NO_x-Speicherkatalysator 2 und der SCR-Katalysator 3 können jedoch auch in Form einer Beschichtung auf die Wände der Strömungskanäle von katalytisch inerten Tragkörpern in Wabenform aufgebracht sein. Die inerten Tragkörper bestehen bevorzugt aus Cordierit. In einer weiteren Ausführungsform des Katalysators werden die NO_x-Speicherkatalysatorkomponente 2 und die SCR-Katalysatorkomponente 3 in zwei separaten Schichten auf den inerten Tragkörper aufgebracht, wobei bevorzugt die NO_x-Speicherkatalysatorkomponente 2 in der unteren, direkt auf dem Tragkörper liegenden Schicht und die SCR-Katalysatorkomponente 3 in der oberen Schicht angeordnet ist, welche direkt mit dem Abgas in Kontakt tritt.

Der in Fig. 1 bereits beschriebenen Abgasnachbehandlungseinheit mit einer Reformierungseinheit 1, die gleichzeitig als Partikelfilter wirkt, einem NO_x-Speicherkatalysator 2 und einem SCR-Katalysator 3 als abgasreinigende Komponenten zeigt als weitere Ausführung in dem Beispiel von Fig. 3 einen direkt dem NSK-Katalysator 2 vorgeschalteten Drei-Wege-Katalysator (TWC) 7. Dieser fungiert zum einen als zusätzlicher NH₃-Erzeuger, indem er mit dem von der Reformierungseinheit 1 gelieferten H₂ bzw. Reformat zur Reduktion von Stickoxiden beiträgt, zum anderen ist er aufgrund seiner Sauerstoffspeicherfunktion in der Lage, unverbrannte Kohlenwasserstoff aufzuoxidieren und trägt somit zu einer merklichen Effektivitätssteigerung des SCR-Katalysators 3 bei. Auch in diesem Ausführungsbeispiel kann der SCR-Katalysator 3 dem NO_x-Speicherkatalysator 2 vorgeschaltet sein, so daß der TWC-Katalysator 7 dem SCR-Katalysator vorgeschaltet ist. In einer weiteren Variante können die beiden Komponenten SCR-Katalysator 3 und NO_x-Speicherkatalysator als integrierter Abgaskatalysator 6 ausgeführt sein, denen der TWC-Katalysator 7 vorgeschaltet ist.

Fig. 4 zeigt eine weitere Variante einer Abgasnachbehandlungseinrichtung, in der hinter der Reformierungseinheit 1 ein HC-DENOX-Katalysator 8 im Vollstrom des Abgasstrangs nachgeordnet ist. Er ersetzt die Variante „NSK-Katalysator mit nachgeordnetem SCR-Katalysator“, wobei er die Stickoxidreduktion mittels HC katalysiert. Um den Umsatz von Stickoxiden noch zu maximieren, kann unmittelbar vor oder hinter dem HC-DENOX-Katalysator ein NO_x-Speicherkatalysator 2 angeordnet sein.

DaimlerChrysler AG

Patentansprüche

1. Abgasnachbehandlungseinrichtung an Bord eines Kraftfahrzeugs, umfassend eine Reformierungseinheit (1) zur Erzeugung von Wasserstoff durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon und mindestens einen Abgaskatalysator, wobei der für die Reformierung notwendige Wasserdampf und Restsauerstoff bevorzugt aus dem Abgas stammt, *d a d u r c h g e k e n n z e i c h n e t*, dass die Reformierungseinheit (1) direkt im Hauptabgasstrom (4) eines Verbrennungsmotors angeordnet ist.
2. Abgasnachbehandlungseinrichtung nach Anspruch 1, *d a d u r c h g e k e n n z e i c h n e t*, dass im Hauptabgasstrom (4) stromab der Reformierungseinheit (1) der mindestens eine Abgaskatalysator angeordnet ist, der bevorzugt ein NO_x-Speicherkatalysator (2) ist, welcher bei Durchströmung mit magerem Abgas dem Abgas Stickoxide durch Speicherung entzieht und bei Durchströmung mit reduzierendem Abgas durch Reduktion der gespeicherten Stickoxide N₂ erzeugt und weiterhin stromab des NO_x-Speicherkatalysators (2) mindestens ein weiterer Abgaskatalysator angeordnet ist, der bevorzugt ein SCR-Katalysator (3) ist, welcher im Abgas enthaltene Stickoxide unter Verwendung von NH₃, welches mittels Stickoxidspeicherkatalysator erzeugt wurde, reduziert.
3. Abgasnachbehandlungseinrichtung nach Anspruch 1, *d a d u r c h g e k e n n z e i c h n e t*, dass im Hauptabgasstrom (4) stromab der Reformierungseinheit (1) der mindestens eine Abgaskatalysator angeordnet ist, der bevorzugt ein SCR-Katalysator (3) ist, welcher

im Abgas enthaltene Stickoxide unter Verwendung von NH₃, welches mittels Stickoxidspeicherkatalysator erzeugt wurde, reduziert und weiterhin stromab des SCR-Katalysators (3) mindestens ein weiterer Abgaskatalysator angeordnet ist, der bevorzugt ein NO_x-Speicherkatalysator (2) ist, welcher bei Durchströmung mit magerem Abgas dem Abgas Stickoxide durch Speicherung entzieht und bei Durchströmung mit reduzierendem Abgas durch Reduktion der gespeicherten Stickoxide N₂ erzeugt.

4. Abgasnachbehandlungseinrichtung nach Anspruch 1, durch gekennzeichnet, dass im Hauptabgasstrom (4) stromab der Reformierungseinheit (1) der mindestens eine Abgaskatalysator angeordnet ist, wobei der Abgaskatalysator die Funktionen eines NO_x-Speicher- und SCR-Katalysators (6) aufweist.
5. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 2 bis 4, durch gekennzeichnet, dass stromab hinter dem jeweils letzten Abgaskatalysator ein Oxidationskatalysator angeordnet ist.
6. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 2 bis 5, durch gekennzeichnet, dass unmittelbar hinter der Reformierungseinheit in Hauptströmungsrichtung des Abgases ein Drei-Wege-Katalysator (7) angeordnet ist.
7. Abgasnachbehandlungseinrichtung nach Anspruch 1, durch gekennzeichnet, dass im Hauptabgasstrom (4) stromab der Reformierungseinheit (1) der mindestens eine Abgaskatalysator angeordnet ist, der bevorzugt ein DENOX-Katalysator (8) ist.

8. Abgasnachbehandlungseinrichtung nach Anspruch 7,
d a d u r c h g e k e n n z e i c h n e t ,
dass vor oder hinter dem DENOX-Katalyator (8) ein NO_x-
Speicherkatalysator (2) angeordnet ist.
9. Abgasnachbehandlungseinrichtung nach einem der Ansprüche
1 bis 8,
d a d u r c h g e k e n n z e i c h n e t ,
dass nach der Reformierungseinheit (1) eine Abgasrückfüh-
rung vorgesehen ist.
10. Abgasnachbehandlungseinrichtung nach einem der Ansprüche
1 bis 9,
d a d u r c h g e k e n n z e i c h n e t ,
dass die Reformierungseinheit (1) als katalytisch aktiver
Rußpartikelfilter ausgebildet ist.
11. Verfahren zum Betreiben einer Abgasnachbehandlungsein-
richtung nach Anspruch 1 zur Reduzierung von Stickoxiden
in Abgasen von Kraftfahrzeugen durch Reduktion an einem
Katalysator unter Zuführung von Wasserstoff, wobei der
für die Stickoxid-Reduktion benötigte Wasserstoff an Bord
des Kraftfahrzeugs durch Wasserdampfreformierung, par-
tielle Oxidation von Kohlenwasserstoffen und/oder Misch-
formen davon erzeugt wird, wobei der für die Reformierung
notwendige Wasserdampf und Restsauerstoff aus dem Abgas
stammt, d a d u r c h g e k e n n z e i c h n e t ,
dass die Reformierung direkt im Hauptabgasstrom (4) eines
Verbrennungsmotors durchgeführt wird.
12. Verfahren nach Anspruch 11,
d a d u r c h g e k e n n z e i c h n e t ,
dass die Temperatur der Reformierungseinheit (1) über das
Luft/Kraftstoffverhältnis eingestellt wird, wobei die ak-
tuelle Sauerstoffkonzentration im Abgas mit Hilfe einer
Breitbandlambdasonde ermittelt wird.

13. Verfahren nach Anspruch 12,
d a d u r c h g e k e n n z e i c h n e t ,
dass die Reformierungseinheit (1) bei einem Luft/Kraft-
stoffverhältnis im Bereich von etwa $0,5 < \lambda < 1,0$ betrie-
ben wird.
14. Verfahren nach Anspruch 13,
d a d u r c h g e k e n n z e i c h n e t ,
dass eine der Reformierungseinheit (1) zugeführte Kraft-
stoffmenge innermotorisch, durch eine Sekundäreinsprit-
zung (5) und/oder durch eine Kombination aus beidem ein-
gestellt wird.

GEÄNDERTE ANSPRÜCHE

[beim Internationalen Büro am 06 Juli. 2004 (06.07.04) eingegangen,
ursprüngliche Ansprüche 1-14 durch geänderte Ansprüche 1-13 ersetzt]

Neue Patentansprüche

1. Abgasnachbehandlungseinrichtung an Bord eines Kraftfahrzeugs, umfassend eine direkt im Hauptabgasstrom (4) eines Verbrennungsmotors angeordnete Reformierungseinheit (1) zur Erzeugung von Wasserstoff durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon und mindestens einen Abgaskatalysator, wobei der für die Reformierung notwendige Wasserdampf und Restsauerstoff bevorzugt aus dem Abgas stammt, dadurch gekennzeichnet, dass im Hauptabgasstrom (4) stromab der Reformierungseinheit (1) der mindestens eine Abgaskatalysator angeordnet ist, der bevorzugt ein NO_x-Speicherkatalysator (2) ist, welcher bei Durchströmung mit magerem Abgas dem Abgas Stickoxide durch Speicherung entzieht und bei Durchströmung mit reduzierendem Abgas durch Reduktion der gespeicherten Stickoxide N₂ erzeugt und weiterhin stromab des NO_x-Speicherkatalysators (2) mindestens ein weiterer Abgaskatalysator angeordnet ist, der bevorzugt ein SCR-Katalysator (3) ist, welcher im Abgas enthaltene Stickoxide unter Verwendung von NH₃, welches mittels Stickoxidspeicherkatalysator erzeugt wurde, reduziert.
2. Abgasnachbehandlungseinrichtung an Bord eines Kraftfahrzeugs, umfassend eine direkt im Hauptabgasstrom (4) eines Verbrennungsmotors angeordnete Reformierungseinheit (1) zur Erzeugung von Wasserstoff durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon und mindestens einen Abgaskatalysator, wobei

der für die Reformierung notwendige Wasserdampf und Restsauerstoff bevorzugt aus dem Abgas stammt, dadurch gekennzeichnet, dass im Hauptabgasstrom (4) stromab der Reformierungseinheit (1) der mindestens eine Abgaskatalysator angeordnet ist, der bevorzugt ein SCR-Katalysator (3) ist, welcher im Abgas enthaltene Stickoxide unter Verwendung von NH₃, welches mittels Stickoxidspeicherkatalysator erzeugt wurde, reduziert und weiterhin stromab des SCR-Katalysators (3) mindestens ein weiterer Abgaskatalysator angeordnet ist, der bevorzugt ein NO_x-Speicherkatalysator (2) ist, welcher bei Durchströmung mit magerem Abgas dem Abgas Stickoxide durch Speicherung entzieht und bei Durchströmung mit reduzierendem Abgas durch Reduktion der gespeicherten Stickoxide N₂ erzeugt.

3. Abgasnachbehandlungseinrichtung an Bord eines Kraftfahrzeugs, umfassend eine direkt im Hauptabgasstrom (4) eines Verbrennungsmotors angeordnete Reformierungseinheit (1) zur Erzeugung von Wasserstoff durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon und mindestens einen Abgaskatalysator, wobei der für die Reformierung notwendige Wasserdampf und Restsauerstoff bevorzugt aus dem Abgas stammt, dadurch gekennzeichnet, dass im Hauptabgasstrom (4) stromab der Reformierungseinheit (1) der mindestens eine Abgaskatalysator angeordnet ist, wobei der Abgaskatalysator die Funktionen eines NO_x-Speicher- und SCR-Katalysators (6) aufweist.
4. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass stromab hinter dem jeweils letzten Abgaskatalysator ein Oxidationskatalysator angeordnet ist.

5. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 1 bis 4,
d a d u r c h g e k e n n z e i c h n e t ,
dass unmittelbar hinter der Reformierungseinheit in Hauptströmungsrichtung des Abgases ein Drei-Wege-Katalysator (7) angeordnet ist.
6. Abgasnachbehandlungseinrichtung an Bord eines Kraftfahrzeuges, umfassend eine direkt im Hauptabgasstrom (4) eines Verbrennungsmotors angeordnete Reformierungseinheit (1) zur Erzeugung von Wasserstoff durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon und mindestens einen Abgaskatalysator, wobei der für die Reformierung notwendige Wasserdampf und Restsauerstoff bevorzugt aus dem Abgas stammt,
d a d u r c h g e k e n n z e i c h n e t ,
dass im Hauptabgasstrom (4) stromab der Reformierungseinheit (1) der mindestens eine Abgaskatalysator angeordnet ist, der bevorzugt ein NOX-Katalysator (8) ist.
7. Abgasnachbehandlungseinrichtung nach Anspruch 6,
d a d u r c h g e k e n n z e i c h n e t ,
dass vor oder hinter dem NOX-Katalysator (8) ein NO_x-Speicherkatalysator (2) angeordnet ist.
8. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 1 bis 7,
d a d u r c h g e k e n n z e i c h n e t ,
dass nach der Reformierungseinheit (1) eine Abgasrückführung vorgesehen ist.
9. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 1 bis 8,
d a d u r c h g e k e n n z e i c h n e t ,
dass die Reformierungseinheit (1) als katalytisch aktiver Rußpartikelfilter ausgebildet ist.

10. Verfahren zum Betreiben einer Abgasnachbehandlungseinrichtung nach Anspruch 1, 2, 3 oder 6 zur Reduzierung von Stickoxiden in Abgasen von Kraftfahrzeugen durch Reduktion an einem Katalysator unter Zuführung von Wasserstoff, wobei der für die Stickoxid-Reduktion benötigte Wasserstoff an Bord des Kraftfahrzeugs durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon erzeugt wird, wobei der für die Reformierung notwendige Wasserdampf und Restsauerstoff aus dem Abgas stammt, dadurch gekennzeichnet, dass die Reformierung direkt im Hauptabgasstrom (4) eines Verbrennungsmotors durchgeführt wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Temperatur der Reformierungseinheit (1) über das Luft/Kraftstoffverhältnis eingestellt wird, wobei die aktuelle Sauerstoffkonzentration im Abgas mit Hilfe einer Breitbandlambdasonde ermittelt wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Reformierungseinheit (1) bei einem Luft/Kraftstoffverhältnis im Bereich von etwa $0,5 < \lambda < 1,0$ betrieben wird.
13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass eine der Reformierungseinheit (1) zugeführte Kraftstoffmenge innermotorisch, durch eine Sekundäreinspritzung (5) und/oder durch eine Kombination aus beidem eingestellt wird.

1/1

Fig. 1**Fig. 2****Fig. 3****Fig. 4**

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/001824

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 F01N3/08 F01N3/20 F02D41/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 F01N F02D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 00/76637 A (NISSELROOIJ PETRUS FRANCISCUS ;GASTEC NV (NL); BOUWMAN WILLEM HEND) 21 December 2000 (2000-12-21) page 4, line 13 -page 6, line 35 page 11, line 9 - line 15 ---	1,7,9, 11-14
X	EP 1 226 861 A (OMG AG & CO KG) 31 July 2002 (2002-07-31)	1,11-14
A	column 3, line 6 -column 5, line 6; figures 1-3 ---	2-10, 12-14
A	EP 1 027 919 A (FORD GLOBAL TECH INC) 16 August 2000 (2000-08-16) column 7, line 16 -column 8, line 44; figure 1 ---	2-4 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

9 June 2004

Date of mailing of the international search report

23/06/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Schmitter, T

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP2004/001824

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 957 242 A (DAIMLER CHRYSLER AG) 17 November 1999 (1999-11-17) column 4, line 4 - line 27; figure 1 ----	2-10, 12-14
A	EP 1 211 394 A (NISSAN MOTOR) 5 June 2002 (2002-06-05) abstract; figure 1 ----	1,11
A	JONES M R ET AL: "EXHAUST-GAS REFORMING OF HYDROCARBON FUELS" SAE TECHNICAL PAPER SERIES, SOCIETY OF AUTOMOTIVE ENGINEERS, WARRENDALE, PA, US, 1993, pages 223-234, XP008010384 ISSN: 0148-7191 abstract -----	1,11

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/001824

Patent document cited in search report	Publication date		Patent family member(s)		Publication date
WO 0076637	A 21-12-2000	NL AU CA CN EP JP WO	1012296 C2 5579600 A 2374647 A1 1355721 T 1204458 A1 2003530982 T 0076637 A1		12-12-2000 02-01-2001 21-12-2000 26-06-2002 15-05-2002 21-10-2003 21-12-2000
EP 1226861	A 31-07-2002	DE EP JP US	10104160 A1 1226861 A1 2002242667 A 2002116920 A1		14-08-2002 31-07-2002 28-08-2002 29-08-2002
EP 1027919	A 16-08-2000	US EP JP	6182443 B1 1027919 A2 2000230414 A		06-02-2001 16-08-2000 22-08-2000
EP 0957242	A 17-11-1999	DE DE EP JP JP US	19820828 A1 59900369 D1 0957242 A2 3108919 B2 2000027634 A 6176079 B1		18-11-1999 06-12-2001 17-11-1999 13-11-2000 25-01-2000 23-01-2001
EP 1211394	A 05-06-2002	JP EP US	2002161735 A 1211394 A2 2002062641 A1		07-06-2002 05-06-2002 30-05-2002

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/001824

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 F01N3/08 F01N3/20 F02D41/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 F01N F02D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 00/76637 A (NISSELROOIJ PETRUS FRANCISCUS ;GASTEC NV (NL); BOUWMAN WILLEM HEND) 21. Dezember 2000 (2000-12-21) Seite 4, Zeile 13 -Seite 6, Zeile 35 Seite 11, Zeile 9 - Zeile 15 ---	1,7,9, 11-14
X	EP 1 226 861 A (OMG AG & CO KG) 31. Juli 2002 (2002-07-31)	1,11-14
A	Spalte 3, Zeile 6 -Spalte 5, Zeile 6; Abbildungen 1-3 ---	2-10, 12-14
A	EP 1 027 919 A (FORD GLOBAL TECH INC) 16. August 2000 (2000-08-16) Spalte 7, Zeile 16 -Spalte 8, Zeile 44; Abbildung 1 ---	2-4 -/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmelde datum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmelde datum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmelde datum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

9. Juni 2004

23/06/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Schmitter, T

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/001824

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 957 242 A (DAIMLER CHRYSLER AG) 17. November 1999 (1999-11-17) Spalte 4, Zeile 4 - Zeile 27; Abbildung 1 ---	2-10, 12-14
A	EP 1 211 394 A (NISSAN MOTOR) 5. Juni 2002 (2002-06-05) Zusammenfassung; Abbildung 1 ---	1,11
A	JONES M R ET AL: "EXHAUST-GAS REFORMING OF HYDROCARBON FUELS" SAE TECHNICAL PAPER SERIES, SOCIETY OF AUTOMOTIVE ENGINEERS, WARRENDALE, PA, US, 1993, Seiten 223-234, XP008010384 ISSN: 0148-7191 Zusammenfassung -----	1,11

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/001824

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 0076637	A	21-12-2000	NL	1012296 C2		12-12-2000
			AU	5579600 A		02-01-2001
			CA	2374647 A1		21-12-2000
			CN	1355721 T		26-06-2002
			EP	1204458 A1		15-05-2002
			JP	2003530982 T		21-10-2003
			WO	0076637 A1		21-12-2000
EP 1226861	A	31-07-2002	DE	10104160 A1		14-08-2002
			EP	1226861 A1		31-07-2002
			JP	2002242667 A		28-08-2002
			US	2002116920 A1		29-08-2002
EP 1027919	A	16-08-2000	US	6182443 B1		06-02-2001
			EP	1027919 A2		16-08-2000
			JP	2000230414 A		22-08-2000
EP 0957242	A	17-11-1999	DE	19820828 A1		18-11-1999
			DE	59900369 D1		06-12-2001
			EP	0957242 A2		17-11-1999
			JP	3108919 B2		13-11-2000
			JP	2000027634 A		25-01-2000
			US	6176079 B1		23-01-2001
EP 1211394	A	05-06-2002	JP	2002161735 A		07-06-2002
			EP	1211394 A2		05-06-2002
			US	2002062641 A1		30-05-2002