≜ Big Data Group Project **≜**

Recommender Systems & Pattern Discovery in E-Commerce

Project Title

SmartCart

Recommender System & Pattern Mining for E-Commerce Analytics

***** Objectives

In this group project, your team will simulate an e-commerce platform and implement both **Collaborative Filtering** and **Association Rule Mining** to:

- Recommend products to users based on past interactions and behaviors.
- Identify frequent purchase patterns.
- Visualize insights and evaluate recommendation quality.
- Benchmark your solution on performance and scalability.

Provided Dataset: ecommerce_user_data.csv

Each row in this CSV file represents a user's rating or interaction with a product:

UserID	ProductID	Rating	ProductCategory	Timestamp
U001	P123	5	Electronics	2024-09-01
U002	P876	3	Home	2024-09-03
				•••

You'll also receive a companion CSV file: product_details.csv:

ProductID	ProductName	Category
P123	Wireless Headphones	Electronics
P876	Blender	Home

Ջ Part 1: Data Preprocessing

- Load and clean the data using pandas.
- Convert ratings data into a user-item matrix.
- Handle missing data by filling unrated items appropriately.
- Group and aggregate purchase behaviors per user and category.

Part 2: User-Based Collaborative Filtering (Cosine Similarity)

- Implement cosine similarity to measure user similarity.
- Recommend products to users based on the preferences of their most similar users.
- Evaluate the **accuracy** of your recommendations using one or more:
 - o Precision / Recall @ K
 - Mean Average Precision (MAP)
 - Coverage and diversity metrics

☆ Part 3: Association Rule Mining (Apriori)

- Convert user-product purchase data into transactions.
- Implement the Apriori algorithm to find frequent itemsets.
- Generate **association rules** and evaluate them based on:
 - Support
 - o Confidence
 - o Lift
- Visualize frequent itemsets using bar charts or network diagrams.

Part 4: Analysis & Visualization

Create a dashboard or notebook that shows:

- User similarity heatmaps.
- Top-5 product recommendations for each user group.

Conceptual Questions (To be Answered in Your Report)

- 1. How does the sparsity of the data affect your recommender system's performance?
- 2. What kinds of product bundles were discovered in the association rules?
- 3. What improvements would you recommend for a real e-commerce system using your approach?

☑ Deliverables

- notebook_or_script.py or project_notebook.ipynb with all code.
- report.pdf (5-8 pages) summarizing your methods, visualizations, findings, and challenges.
- A brief README.md explaining how to run the code and where to find outputs.

Evaluation Rubric – SmartCart Project (100 points)

Category	Criteria	Max Points	Notes / Expectations
1. Data Preprocessing	- Clean and load datasets correctly - Create user-item matrix - Handle missing values - Aggregate user behavior by category	15	Code should show correct use of pandas and good data organization.
2. Collaborative Filtering	- Cosine similarity implementation - Top-N recommendations per user - Evaluation using Precision@K / Recall@K / MAP - Coverage or diversity included	15	Recommendations must be based on most similar users and evaluated properly.
3. Association Rule Mining	- Convert data into transaction format - Use Apriori correctly - Generate and evaluate rules with support, confidence, lift - Visualize results	15	Frequent itemsets and rules must be interpretable and meet thresholds.
4. Analysis & Visualization	- User similarity heatmap - Frequent itemsets chart - Recommendation outputs (e.g., table or CSV) - Insightful visual storytelling	15	Visuals should help explain the findings and add analytical value.
5. Report (report.pdf)	- Structure: intro, methods, results, insights, challenges - Addresses conceptual questions thoughtfully - Includes screenshots of visuals, if applicable - Shows understanding of tradeoffs and improvements	30	Should reflect critical thinking, not just descriptive summary.
6. Code Quality & Execution	- Code runs without errors - Modular, reusable functions - Commented and readable - Organized (e.g., consistent filenames, clear entry point)	5	Notebook or .py file should be easy to follow and maintain.
7. README File	- Clear instructions to run the project - Explains dependencies, file structure, and outputs - Concise and useful	5	Must help reviewers/instructors reproduce the results easily.

Provided Dataset:

You are provided with two offline datasets:

- ecommerce_user_data.csv contains user-product interactions and ratings
- product_details.csv contains product metadata including category

X Starter Notebook (Optional)

To help you get started, we've provided a **starter Jupyter notebook**.

♦ **Using this notebook is completely optional.** You are encouraged to use your own implementation and structure if preferred.