How <u>not</u> to construct functional brain networks

Onerva Korhonen
NIMEG Group Meeting
5.10.2022

Network: a model of connections & interactions

Internet, public transport, social networks

Tomás Saraceno: Algo-R(h)i(y)thm

Network: a model of connections & interactions

Internet, public transport, social networks

Nodes: network's basic elements

Web pages, stops, people

Tomás Saraceno: Algo-R(h)i(y)thm

Network: a model of connections & interactions

Internet, public transport, social networks

Nodes: network's basic elements

Web pages, stops, people

Links: connections between nodes

Web links, transport lines, social relationships

Tomás Saraceno: Algo-R(h)i(y)thm

Network: a model of connections & interactions

Internet, public transport, social networks

Nodes: network's basic elements

Web pages, stops, people

Links: connections between nodes

- Web links, transport lines, social relationships
- Weights?

Tomás Saraceno: Algo-R(h)i(y)thm

Network: a model of connections & interactions

Internet, public transport, social networks

Nodes: network's basic elements

Web pages, stops, people

Links: connections between nodes

- Web links, transport lines, social relationships
- Weights?
- Direction?

Tomás Saraceno: Algo-R(h)i(y)thm

Why is the brain a network?

Brain: 10¹¹ neurons, 10¹⁴ synapses

Fig: de Santos-Sierra et al. 2014, published under CC BY 4.0

Why is the brain a network?

Brain: 10¹¹ neurons, 10¹⁴ synapses

Network neuroscience

(Bassett & Muldoon 2016, Bassett & Sporns 2017)

- 1. Understand the healthy brain
- 2. Find causes of diseases
- Broad scales:
 - Molecule neuron brain area human
 - Milliseconds years
- Different brain networks:
 - Structural: anatomic connections
 - Functional: temporal coactivation
 - Effective: causality

Functional brain networks: how-to?

Network from Nummenmaa et al. 2014, *Neurolmage*, by permission

Functional brain networks: how-to?

Network from Nummenmaa et al. 2014, *Neurolmage*, by permission

The problem of node definition

No natural candidates above the scale of neurons

- => huge variation in node definition
- Number of nodes: from < 100 to 10⁵

Node definition affects network properties (e.g. Wang et al. 2009)

Common strategies (for a review, Korhonen et al. 2021, section 3.2):

- voxels/vertices
- random clumps of voxels/vertices
- Regions of Interest (ROIs): collections of voxels/vertices

Voxels vs ROIs

Voxels:

- fMRI imaging resolution
- noisy signals?
- ~10.000 nodes
- large computational load

More on this:

- Korhonen et al. 2017
- Ryyppö et al. 2018

ROIs:

- collections of voxels
- defined by anatomy, function, connectivity, ...
- homogeneous (= all voxels are similar)?
- ROI time series to represent voxel dynamics:

$$X_I = \frac{1}{N_I} \sum_{i \in I} x_i$$

Violent?

How homogeneous are ROIs?

- Spatial consistency
- = measure of functional homogeneity:

$$\varphi_{spat}(I) = \frac{1}{N_I(N_I - 1)} \sum_{i,i' \in I} C(x_i, x_{i'})$$

- Straightforward to calculate
- Easy to interpret

Correlates with ROI size & connectivity

Spatial consistency changes in time

Spatial consistency changes in time

Spatiotemporal consistency

= stability of spat. consistency

ROIs have rich internal connectivity structure

Ryyppö et al., 2018. Network Neuroscience

ROIs have rich internal connectivity structure

ROIs have rich internal connectivity structure

Consistency predicts topology

Hub vs non-hub:

Accuracy:
Training 60.39%
Test 60.23%
(> Random 50.03%)

Hubs have lower internal density, high φ_{st} , and uniform in-ROI correlations

Provincial vs connector hub

Accuracy: Training 53.23% Test 52.57% (> Random 50.38%)

 φ_{spat} , varying correlations, and φ_{st} predict provincial role

Low internal density = connector hub

(On-going, with T. Nurmi, M. Hakonen, I. Jääskeläinen & M. Kivelä)

Based on multilayer networks (= different connections in the same network), for review: Kivelä et al. 2014

Based on multilayer networks (= different connections in the same network), for review: Kivelä et al. 2014

Layers = time windows

ROIs optimized inside layers for maximal homogeneity (voxel-level clustering)

Based on multilayer networks (= different connections in the same network), for review: Kivelä et al. 2014

- 1. Layers = time windows
 - ROIs optimized inside layers for maximal homogeneity (voxel-level clustering)
 - Intralayer links = Pearson correlation

Based on multilayer networks (= different connections in the same network), for review: Kivelä et al. 2014

- 1. Layers = time windows
- 2. ROIs optimized inside layers for maximal homogeneity (voxel-level clustering)
 - Intralayer links = Pearson correlation
- 4. Interlayer links = spatial overlap

Based on multilayer networks (= different connections in the same network), for review: Kivelä et al. 2014

- Layers = time windows
 - ROIs optimized inside layers for maximal homogeneity (voxel-level clustering)
 - Intralayer links = Pearson correlation
- Interlayer links = spatial overlap

Questions:

- How do ROIs change over time? Splitting, merging, disappearing?
- State changes?
- What about Alzheimer's disease?

Conclusions

- It's not trivial to construct a functional brain network
 - Node definition?
 - Not covered today: preprocessing, space, thresholding, link definition, multilayers in multiple-person neuroscience?
 - Know your methods!
- Currently used nodes functionally inhomogeneous
 - Data lost in averaging
 - Can we trust observed connectivity?
- Homogeneity changes in time
 - Changes relate to function
- Low homogeneity isn't a technical flaw
 - ⇒ Can't be fixed by new static nodes

⇒ Flexible nodes needed!

References

- **Alakörkkö, T., Saarimäki, H., Glerean, E., Saramäki, J., & Korhonen, O.** 2017. Effects of spatial smoothing on functional brain networks. *European Journal of Neuroscience* 46(9).
- Bassett, D. S. & Sporns, O. 2017. Network Neuroscience. *Nature Neuroscience* 20(3).
- de Santos-Sierra, D., Sendiña-Nadal, I., Leyva, I., Almendral, J. A., Anava, S., Ayali, A., Papo, D., &
- **Boccaletti, S.** 2014. Emergence of small-world anatomical networks in self-organizing clustered neuronal cultures. *PLoS One* 9(1): e85828.
- Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. 2014. Multilayer networks. *Journal of Complex Networks* 2(3).
- **Korhonen, O., Saarimäki, H., Glerean, E., Sams, M., & Saramäki, J.** 2017. Consistency of Regions of Interest as nodes of fMRI functional brain networks. *Network Neuroscience* 1(3).
- **Korhonen, O., Zanin, M., Papo, D.,** 2021. Principles and open questions in functional brain network reconstruction. *Human Brain Mapping* 42(11).
- **Muldoon, S. F. & Bassett, D. S.** 2016. Network and multilayer network approaches to understanding human brain dynamics. *Philosophy of Science* 82(5).
- Nummenmaa, L., Saarimäki, H., Glerean, E., Gostopoulos, A., Jääskeläinen, I. P., Hari, R., & Sams, M. 2014. Emotional speech synchronizes brains across listeners and engages large-scale dynamic brain networks. *NeuroImage* 102.
- Ryyppö, E., Glerean, E., Brattico, E., Saramäki, J., & Korhonen, O. 2018. Regions of Interest as nodes of dynamic functional brain networks. *Network Neuroscience* 2(4)
- Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., ... He, Y. 2009. Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. *Human Brain Mapping* 30(5).

korhonen/presentations/blob/master/nimeg_051022.pdf