Задача 1. «Ошибочная разминка»

В результате действия случайных или неслучайных факторов при проведении измерений величины X, результат получается неточным, с погрешностью ΔX . Случайные изменения относительно среднего значения называют флуктуациями. Диапазон значений, которые может принимать случайная величина, записывают в виде $X = X_0 \pm \Delta X$, а точность измерений при этом характеризуют относительной погрешностью $\delta = \Delta X / X_0$.

1.1. «Из пушки по...»

Как известно, максимальная дальность полета снарядов s_0 наблюдается при стрельбе под углом $\alpha_0 = 45^\circ$ (если местность, где происходит стрельба, плоская и можно пренебречь сопротивлением воздуха). Скорость вылета снаряда из пушки испытывает флуктуации (например, потому, что в них разное количество пороха), и поэтому при стрельбе под углом $\alpha_0 = 45^\circ$ снаряды летят на расстояние $s_0 \pm \Delta s_0$. Чему будет равна неточность Δs попадания в цель при стрельбе под другими углами α ? Изобразите примерный график зависимости $\Delta s(\alpha)$.

1.2. «Пружинные весы»

Для изготовления пружинных весов взяли пружину некоторой жесткости и массы и отградуировали шкалу согласно закону Гука F=-kx. При измерении веса тела массой M_0 показание пружинных весов оказалось завышенным и равным $P=M_0g+\Delta P_0$. Чему будет равна относительная ошибка измерения веса δ при помощи таких весов? Постройте примерный график зависимости относительной ошибки от массы взвешиваемого тела.

1.3. «Гальванометр»

В гальванометре стрелка отклоняется по шкале пропорционально силе тока, протекающего через него. Максимальное отклонение стрелки достигается при силе тока $I_{\rm max}$. Гальванометр имеет собственное сопротивление, значение которого может находиться в диапазоне $R\pm \Delta R$, причем. $\Delta R << R$ Из гальванометра можно сделать вольтметр, подключив к нему последовательно достаточно большое сопротивление R_V , или амперметр, подключив к нему параллельно сопротивление R_A . Чему равны максимальные погрешности ΔU и ΔI этих приборов? Изобразите примерные графики зависимости относительной погрешности напряжения, измеренного вольтметром, от сопротивления R_V и относительной погрешности силы тока, измеренной амперметром, от сопротивления R_A .

1.4. «Термометр»

При помощи термометра, имеющего теплоемкость C_0 и находящегося при комнатной температуре T_0 , измеряют температуру горячей воды массой m и удельной теплоемкостью c, находящейся в калориметре при температуре T. Чему будет равна относительная ошибка измерения температуры δ , вносимая термометром? Изобразите примерные графики зависимости относительной погрешности δ от измеряемой температуры воды T и от массы воды в калориметре m.

1.5. «Лазерный зайчик»

Лазер расположен на большом расстоянии L от длинной прямой стены. Тонкий лазерный луч направлен перпендикулярно стене ($\phi_0 = 0$). Из-за внешних вибраций направление лазерного луча испытывает малые флуктуации, и лазерный «зайчик» бегает по стене в пределах $\pm \Delta x_0$. В каких пределах $\pm \Delta x$ будет смещаться пятно от лазера по стене, если луч направлен под углом ϕ ? Изобразите примерный график зависимости $\Delta x(\phi)$.

