1F,2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China.

Tel: +86-755-27559792 Report No.: GTI20140490F-1 Fax: +86-755-86116468

Page 1 of 60

TEST REPORT

Product Name: WCDMA Mobile Phone

Trademark NUU

Model/Type reference NU-3S

Listed Model(s) NU-3S series

model NU-3S, except for body color, RAM and LOGO to

meet different customer requirements

FCC ID...... 2ADINNUUNU3S

FCC Part 22: PUBLIC MOBILE SERVICES Test Standards:

FCC Part 24: PERSONAL COMMUNICATIONS SERVICES

Applicant Sun Cupid Technology (HK) Ltd.

16/F, CEO Tower, 77 Wing Hong St, Cheung Sha Wan, Address of Applicant....:

Kowloon, Hong Kong

Date of Receipt Oct.20, 2014

Date of Test Date...... Oct.20, 2014 - Nov.13, 2014

Data of Issue. Nov.14, 2014

Test result	Pass *
-------------	--------

^{*} In the configuration tested, the EUT complied with the standards specified above

Equipment: WCDMA Mobile Phone

Model Name: NU-3S

Manufacturer: Sun Cupid Technology (Shenzhen) Ltd.

Manufacturer Address: 10A, No.3 Bldg, China Academy of Sci & Tech Development, No.1 High-Tech South St. Nanshan district, Shenzhen, China.

Power Source: DC 3.7V from 2050mAh Li-ion battery

Input: 100-240VAC, 50/60Hz 0.2A MAX
Output: 5V==1.0A

Compiled By:

(Allen Wang)

Allen Wang

Reviewed By:

(Tony Wang)

Approved By:

(Walter Chen)

This test report consists of 60 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by GTI. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to GTI within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

	Table of Contents	Page
1. SU	UMMARY	
1.1.	Test Standards	
1.2.	TEST DESCRIPTION	
1.3.	TEST FACILITY	
1.4.	MEASUREMENT UNCERTAINTY	
2. GI	ENERAL INFORMATION	(
2.1.	Environmental conditions	6
2.2.	GENERAL DESCRIPTION OF EUT	6
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	·····
2.4.	Measurement Instruments List	
3. TE	EST ITEM AND RESULTS	9
3.1.	CONDUCTED EMISSIONS TEST	(
3.2.	CONDUCTED OUTPUT POWER	12
3.3.	Occupy Bandwidth	14
3.4.	OUT OF BAND EMISSION AT ANTENNA TERMINALS	23
3.5.	BAND EDGE COMPLIANCE	34
3.6.	RADIATED POWER MEASUREMENT	39
3.7.	RADIATED SPURIOUS EMISSION	43
3.8.	FREQUENCY STABILITY	49
4. EU	UT TEST PHOTO	52
5. PH	HOTOGRAPHS OF EUT CONSTRUCTIONAL	52

1. SUMMARY

1.1. Test Standards

FCC Part 22 (10-1-13 Edition): PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24(10-1-13 Edition): PUBLIC MOBILE SERVICES

<u>TIA/EIA 603 D June 2010:</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

<u>KDB971168 D01:2013-06-07</u> Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems

<u>ANSI C63.4:2009:</u> Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.2. Test Description

Test Item	Section in CFR 47	Result
AC Power Conducted Emission	Part 15.207	Pass
	Part 2.1046	
RF Output Power	Part 22.913 (a)(2)	Pass
	Part 24.232 (c)	
Peak-to-Average Ratio	Part 24.232 (d)	Pass
Modulation Characteristics	Part 2.1047	Pass
	Part 2.1049	
99% & -26 dB Occupied Bandwidth	Part 22.917	Pass
	Part 24.238	
	Part 2.1051	
Spurious Emissions at Antenna Terminal	Part 22.917 (a)	Pass
	Part 24.238 (a)	
	Part 2.1053	
Field Strength of Spurious Radiation	Part 22.917 (a)	Pass
	Part 24.238 (a)	
Out of hand amission Rand Edge	Part 22.917 (a)	Door
Out of band emission, Band Edge	Part 24.238 (a)	Pass
Frequency stability vs. temperature	Part 2.1055(a)(1)(b)	Pass
Frequency stability vs. voltage	Part 2.1055(d)(1)(2)	Pass

Note:

- 1. The measurement uncertainty is not included in the test result.
- 2. This EUT owns two SIM cards, after we perform the pre-test for these two SIM cards; we found the SIM 1 is the worst case, so its result is recorded in this report.

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen General Testing & Inspection Technology Co., Ltd.

Add: 1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9783A

The 3m alternate test site of Shenzhen GTI Technology Co., Ltd.EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Aug, 2011.

FCC-Registration No.: 214666

Shenzhen GTI Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 214666, Sep 19, 2011

1.4. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements—and is documented in the Shenzhen General Testing & Inspection Technology Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for General Testing & Inspection laboratory is reported:

Measurement Uncertainty	Notes
25 Hz	(1)
0.57 dB	(1)
2.20 dB	(1)
1.60 dB	(1)
3.39 dB	(1)
4.24 dB	(1)
5.16 dB	(1)
5.54 dB	(1)
	(1)
	(1)
	(1)
	(1)
	25 Hz 0.57 dB 2.20 dB 1.60 dB 3.39 dB 4.24 dB 5.16 dB

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	WCDMA Mobile Phone	
Model/Type reference:	NU-3S	
Power supply:	DC 3.7V from 2050mAh Li-ion battery	
Adapter information:	Model: HNFG050100UU	
	Input: 100-240VAC, 50/60Hz 0.2A MAX	
	Output: 5V===1.0A	
Hardware version:	UA1209 VER.A	
Software version:	3S-US-01	
2G		
Operation Band:	GSM850, PCS1900	
Supported Type:	GSM/GPRS/EGPRS	
Power Class:	GSM850:Power Class 4	
	PCS1900:Power Class 1	
Modulation Type:	GMSK for GSM/GPRS	
medalation type:	GMSK/8PSK(only downlink) for EGPRS	
GSM Release Version	R99	
GPRS Multislot Class	12	
EGPRS Multislot Class	12	
WCDMA		
Operation Band:	FDD Band II & Band V	
Power Class:	Power Class 3	
Modulation Type:	QPSK for WCDMA/HSUPA/HSDPA	
WCDMA Release Version:	R8	
HSDPA Release Version:	Category 14	
HSUPA Release Version:	Category 6	
DC-HSUPA Release Version:	Not Supported	

Shenzhen General Testing & Inspection Technology Co., Ltd.

1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China
Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

2.3. Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CUM200 used to control the EUT staying in continuous transmitting and receiving mode for testing.

Test Frequency:

GSM	l 850	PCS1900		
Channel Frequency (MHz) Channel		Channel	Frequency (MHz)	
128	824.20	512	1850.20	
190	836.60	661	1880.00	
251	848.80	810	1909.80	

FDD E	Band II	FDD E	Band V
Channel	Channel Frequency (MHz) Channel		Frequency (MHz)
9262	1852.4	4132	826.40
9400	1880.0	4182	836.60
9538	1907.6	4233	846.60

2.4. Measurement Instruments List

Output	Output Power (Radiated) & Radiated Spurious Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	EMI Test Receiver	R&S	ESCI	100967	Dec 27, 2014	
2	High pass filter	Compliance Direction systems	BSU-6	34202	Oct 25,2015	
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec 27, 2014	
4	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4181	Dec 27, 2014	
5	Spectrum Analyzer	HP	8563E	02052	Dec 27, 2014	
6	Horn Antenna	Schwarzbeck	BBHA 9120D	648	Dec 27, 2014	
7	Horn Antenna	Schwarzbeck	BBHA 9120D	649	Dec 27, 2014	
8	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec 27,2014	
9	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25842	Dec 27,2014	
10	Pre-Amplifier	HP	8447D	1937A03050	Dec 26, 2014	
11	Pre-Amplifier	EMCI	EMC051835	980075	Dec 27, 2014	
12	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 26, 2014	
13	Signal Generator	Agilent	N5182A	1019356	Dec. 26, 2014	
14	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	March,15,2015	
15	Antenna Mast	UC	UC3000	N/A	N/A	
16	Turn Table	UC	UC3000	N/A	N/A	
17	Cable	Schwarzbeck	Cable002		Dec. 26,2014	
18	Cable	Schwarzbeck	Cable003		Dec. 26,2014	

Shenzhen General Testing & Inspection Technology Co., Ltd.

1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China
Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

AC Pov	AC Power Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	LISN	R&S	ENV216	101112	Dec. 26, 2014	
2	LISN	R&S	ENV216	101113	Dec. 26, 2014	
3	EMI Test Receiver	R&S	ESCI	100920	Dec. 26, 2014	
4	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	March,15,2015	
5	Cable	Schwarzbeck	Cable001		Dec. 26, 2014	

	Output Power(Conducted) & Occupied Bandwidth & Emission Bandwidth & Band Edge Compliance & Conducted Spurious Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Power Meter	Anritsu	ML2487B	110553	July 10,2015	
2	Power Sensor	Anritsu	MA2411B	100345	July 10,2015	
3	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	March,15,2015	
4	Spectrum Analyzer	Rohde & Schwarz	FSU	100105	Dec. 27, 2014	
5	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 26, 2014	

Freque	Frequency Stability					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	March,15,2015	
2	Spectrum Analyzer	Rohde & Schwarz	FSU	100105	Dec. 27, 2014	
3	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 26, 2014	
4	Climate Chamber	ESPEC	EL-10KA	05107008	Oct 25,2015	

Note: 1. The Cal. Interval was one year.

^{2.} The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emissions Test

LIMIT:

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

TEST CONFIGURATION

TEST PROCEDURE

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.4-2009.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2009.
- 4 If a EUT received DC power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Note: We tested all modes and recorded the worst case at GSM850

MEASUREMENT RESULT: "GTI14111412_fin"

1:38PM						
				Detector	Line	PE
iz asµv	αВ	авич	ав			
0 43.80	10.0	56	12.2	QP	L1	GND
0 43.10	10.0	56	12.9	QP	L1	GND
0 35.60	10.3	56	20.4	QP	L1	GND
0 36.00	10.4	56	20.0	QP	L1	GND
0 37.40	10.5	56	18.6	QP	L1	GND
	dBμV dBu dBu dBu dBu dBu dBu dBu dBu	ty Level Transd dBμV dB dB d3.80 10.0 43.10 10.0 35.60 10.3 36.00 10.4	Transd Limit dBμV dB dBμV dBμν dB dBμV dB dBμν dBμν	ty Level dBμV Transd dB dBμV Limit dB dBμV Margin dB 00 43.80 10.0 56 12.2 10 43.10 10.0 56 12.9 10 35.60 10.3 56 20.4 10 36.00 10.4 56 20.0	ty Level dBμV Transd dB dBμV Limit dB dB Margin dB Detector dB 00 43.80 10.0 56 12.2 QP 00 43.10 10.0 56 12.9 QP 00 35.60 10.3 56 20.4 QP 00 36.00 10.4 56 20.0 QP	ty Level dBμV Transd dB dBμV Limit dB dBμV Margin dB Detector Line dBμV 10 43.80 10.0 56 12.2 QP L1 10 43.10 10.0 56 12.9 QP L1 10 35.60 10.3 56 20.4 QP L1 10 36.00 10.4 56 20.0 QP L1

MEASUREMENT RESULT: "GTI14111412_fin2"

11/14/2014 1:	:38PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.398000	36.90	9.9	48	11.0	AV	L1	GND
0.530000	35.10	9.9	46	10.9	AV	L1	GND
0.614000	36.50	9.9	46	9.5	AV	L1	GND
0.620000	34.30	9.9	46	11.7	AV	L1	GND

Test mode: GSM850 Polarization: Ν SCAN TABLE: "Voltage (9K-30M) FIN1"
Short Description: 150K-30M Voltage Level [dBµ√] 60 40 20 10 2M 150k 300k 400k 600k 800k 1M ЗМ 4M 5M 6M 20M 30M Frequency [Hz] x x x MES GTI14111413_fin MEASUREMENT RESULT: "GTI14111413_fin"

11/14/2014 1:	42PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.200000	27 40	0 0	Ε0	00.7	0.0	3.7	CNID
0.390000	37.40	9.9	58	20.7	QP	N	GND
0.608000	38.80	9.9	56	17.2	QP	N	GND
0.692000	37.30	10.0	56	18.7	QP	N	GND
1.574000	33.10	10.3	56	22.9	QP	N	GND
2.234000	32.00	10.4	56	24.0	QP	N	GND

MEASUREMENT RESULT: "GTI14111413_fin2"

1	11/14/2014 1:	42PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHZ	dBuV	dB	dBuV	dB			

	0.390000	32.10	9.9	48	16.0	AV	N	GND
	0.608000	33.50	9.9	46	12.5	AV	N	GND
	0.740000	31.60	10.0	46	14.4	AV	N	GND
					100		177	
	3.662000	26.80	10.5	46	19.2	AV	N	GND

3.2. Conducted Output Power

LIMIT:

GSM850/WCDMA Band V: 7W PCS1900/WCDMA Band II: 2W

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure the maximum PK burst power and maximum Avg. burst power.

TEST RESULTS

EUT Mode	Channel	Frequency (MHz)	Avg.Burst Power (dBm)	Peak-to-Average Ratio (dB)	Limit (dBm)	Result
GSM 850	128	824.20	32.57	/		
(GMSK)	190	836.60	32.41	/	38.45	Pass
(GIVIOIT)	251	848.80	32.39	/		
GPRS850	128	824.20	32.54	/	38.45	Pass
(GMSK,1Slot)	190	836.60	32.29	/		
(OMOR, FOIOt)	251	848.80	32.25	/		
EGPRS850	128	824.20	32.36	/		
(GMSK,1Slot)	190	836.60	32.47	1	38.45	Pass
(GIVIOIX, TOIOI)	251	848.80	32.57	1		
PCS1900	512	1850.20	30.23	0.34		
(GMSK)	661	1880.00	30.47	0.37	33.01	Pass
(CiviCit)	810	1909.80	30.55	0.40		

512 30.24 0.35 1850.20 **GPRS1900** 33.01 **Pass** 661 1880.00 30.65 0.41 (GMSK,1Slot) 810 1909.80 30.31 0.36 512 1850.20 30.14 0.40 **EGPRS1900** 661 1880.00 30.78 0.39 33.01 **Pass** (GMSK,1Slot) 810 1909.80 30.25 0.42 9262 1852.40 23.54 3.27 WCDMA Band II 33.01 **Pass** 9400 1880.00 23.66 3.35 (QPSK) 9538 1907.60 23.24 3.27 4132 826.40 23.23 / WCDMA Band V **Pass** 4183 836.60 23.47 38.45 / (QPSK) 4233 846.60 23.78

Note: 1.Peak-to-Average Ratio= maximum PK burst power-maximum Avg. burst power.

3.3. Occupy Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW≥3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (KHz)	-26dB bandwidth (KHz)
00110-0	128	824.20	239.58	312.50
GSM 850 (GMSK)	190	836.60	241.19	311.70
(Giriort)	251	848.80	244.39	310.10
000000	128	824.20	241.19	311.70
GPRS850 (GMSK,1Slot)	190	836.60	242.79	310.90
	251	848.80	241.19	313.30
5000000	128	824.20	241.19	312.50
EGPRS850 (GMSK,1Slot)	190	836.60	239.58	311.70
	251	848.80	241.99	311.70
D004000	512	1850.20	246.80	316.51
PCS1900 (GMSK)	661	1880.00	249.20	313.30
(Gillort)	810	1909.80	245.99	312.50
00004000	512	1850.20	245.19	318.11
GPRS1900 (GMSK,1Slot)	661	1880.00	245.99	315.71
(Simort, 10iot)	810	1909.80	245.99	318.11
500004000	512	1850.20	245.99	313.30
EGPRS1900 (GMSK,1Slot)	661	1880.00	244.39	316.51
(Simort, 10iot)	810	1909.80	244.39	313.30
WCDMA Band II	9262	1852.4	4246.80	4855.77
(QPSK)	9400	1880.0	4166.67	4679.49
(&1 517)	9538	1907.6	4132.69	4695.51
	4132	826.4	4166.67	4695.51
WCDMA Band V (QPSK)	4183	836.6	4166.67	4695.51
(=:	4233	846.6	4246.79	4775.64

3.4. Out of band emission at antenna terminals

LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set at 1MHz; sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.
- 3. For the out of band: Set the RBW = 1MHz VBW ≥ 3 times RBW, Start=30MHz, Stop= 10th harmonic.

TEST RESULTS

Remark: we test all modulation type and record worst case at Voice mode.

Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

15GHz~20GHz

10GHz~15GHz

3.5. Band Edge compliance

LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. Set the RBW=5 KHz, VBW = 50KHz, Span=1MHz Sweep time= Auto for 2G system measurement.
- 3. Set the RBW=5 KHz, VBW = 50KHz, Span=1MHz Sweep time= Auto for 3G system measurement.

TEST RESULTS

		GSI	M850		
Channel	Fraguency	Max Measure	ement Results	Limit	
Number	Frequency (MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict
128	824.20	823.98	-13.59	-13.00	Pass
251	848.80	849.01	-13.36	-13.00	Pass
Ref 10 dBm	*RBW 5 *VBW 50 *Att 20 dB *SWT 30) kHz -13.59 dBm	Ref 10 dBm *	*RBW 5 kHz *VBW 50 kHz *Att 20 dB 'SWT 300 ms	Marker 1 [T1] -13.36 dBm 849.009615385 MHz
1 PF -10 D1 -13 dBm20 D1 -13 dBm20 D1 -13 dBm20 D1 -13 dBm20 D130 D1	100 kHz/	DATE OF THE SEASON OF THE SEAS	-0 D1 -13 dBm -1-20 D1	100 kHz/	EXT 3DB

Tel.: (86)755-27588991 F

Fax: (86)755-86116468

Http://www.sz-ctc.com.cn

PCS1900 Measurement Results Channel Frequency Limit Verdict Frequency Number (MHz) Values (dBm) (dBm) (MHz) 1850.20 512 1850.00 -13.68 -13.00 Pass 1909.80 810 1910.00 -13.85 -13.00 **Pass %** Marker 1 [T1] -13.85 dBm 1.910003205 GHz * VBW 50 kHz * SWT 300 ms *VBW 50 kHz *SWT 300 ms of the project of the second public property or the project of Span 1 MHz

Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

Center 821.5 MHz

WCDMA Band V Measurement Results Frequency Channel Limit Verdict Frequency Number (MHz) Values (dBm) (dBm) (MHz) 4132 826.4 -22.23 -13.00 823.99 **Pass** Pass 4233 846.6 849.00 -17.51 -13.00 *RBW 50 kHz *VBW 100 kHz *SWT 800 ms *RBW 50 kHz *VBW 100 kHz *SWT 800 ms **%** in which was the war of

Center 851.5 MHz

3.6. Radiated Power Measurement

LIMIT

GSM850/WCDMA Band V: 7W ERP PCS1900/WCDMA Band II: 2W EIRP

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be

adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

Report No.: GTI20140490F-1

- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, and the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. An amplifier should be connected to the Signal Source output port. And the cable should be connecting between the Amplifier and the Substitution Antenna. The cable loss (PcI), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below:
 - Power(EIRP)=PMea- PAg Pcl + Ga
 - We used N5182A microwave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substitution test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga
- 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
 - ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

GSM

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
	420	V	32.55		
	128	Н	30.21		Dana
GSM850	100	V	32.25	20.45	
(GMSK)	190	Н	28.98	38.45	Pass
	251	V	32.48		
	251	Н	28.69		
	128	V	32.33		Pass
		Н	28.69	38.45	
GPRS850	190	V	32.47		
(GMSK)		Н	28.52		
	251	V	32.36		
		Н	28.21		
	128	V	32.25		
	120	Н	28.22		
EGPRS850	190	V	32.54	20 15	Pass
(GMSK)	190	Н	28.32	38.45	F d 3 5
	251	V	32.54		
	251	Н	28.24		

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	540	V	29.95		
	512	Н	26.54		Dana
PCS1900	661	V	29.36	33.01	
(GMSK)	001	Н	26.55	33.01	Pass
	810	V	29.36		
	010	Н	26.48		
	512	V	29.32		Pass
		Н	27.45	33.01	
GPRS1900	661	V	29.68		
(GMSK)		Н	26.44		
	810	V	29.59		
		Н	26.65		
	512	V	29.55		
	312	Н	25.14		
EGPRS 1900	661	V	30.26	33.01	Pass
(GMSK)	001	Н	27.69	33.01	F d 3 3
	810	V	30.66		
	010	Н	26.48		

WCDMA:

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
WCDMA Band II (QPSK)	9262	V	23.57	33.01	Pass
		Н	19.36		
	9400 -	V	23.26		
		Н	18.45		
		V	23.61		
		Н	19.30		

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
WCDMA Band V (QPSK)	4132	V	23.65	38.45	Pass
		Н	18.48		
	4182 —	V	23.26		
		Н	18.25		
		V	23.69		
		Н	18.48		

3.7. Radiated Spurious Emission

LIMIT

-13dBm

TEST CONFIGURATION

TEST RESULTS

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, and the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. An amplifier should be connected to the Signal Source output port. And the cable should be connecting between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

We used SMF100A microwave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substitution test; The measurement results are amend as described below:

Power(EIRP)=PMea- Pcl + Ga

7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Remark: we test all modulation type and record worst case at Voice mode.

GSM850							
Oh a maal	Frequency	Frequency Spurious En		Limeit (dDms)	Doordt		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
128	1648.40	Vertical	-23.56				
	2472.60	Vertical	-35.47				
	3296.80	Vertical	-44.36	-13.00	Pass		
	4121.00	Vertical	-48.66				
	4945.20	Vertical					
128	1648.40	Horizontal	-29.66				
	2472.60	Horizontal	-37.61				
	3296.80	Horizontal	-41.65	-13.00	Pass		
	4121.00	Horizontal	-46.98				
	4945.20	Horizontal					
	1673.20	Vertical	-24.58				
	2509.80	Vertical	-36.39	-13.00			
	3346.40	Vertical	-46.99		Pass		
	4183.00	Vertical	-48.47				
400	5019.60	Vertical					
190	1673.20	Vertical	-29.69				
	2509.80	Horizontal	-36.47				
	3346.40	Horizontal	-44.23	-13.00	Pass		
	4183.00	Horizontal	-46.78				
	5019.60	Horizontal					
	1697.60	Vertical	-24.15				
	2546.40	Vertical	-36.35				
	3395.20	Vertical	-46.44	-13.00	Pass		
	4244.00	Vertical	-48.74				
054	5092.80	Vertical					
251	1697.60	Horizontal	-30.23				
	2546.40	Horizontal	-35.64				
	3395.20	Horizontal	-47.57	-13.00	Pass		
	4244.00	Horizontal	-46.69				
	5092.80	Horizontal					

Remark:

- 1. The emission behavior belongs to narrowband spurious emission.
- 2. Remark"---" means that the emission level is too low to be measured
- 3. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

		PCS	S1900		
Chanal	Frequency Spurious E		Emission	Limeit (dDae)	Danult
Channel '	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3700.40	Vertical	-25.26		
	5550.60	Vertical	-34.15		
	7400.80	Vertical	-43.55	-13.00	Pass
	9251.00	Vertical	-47.10		
E40	11101.20	Vertical			
512	3700.40	Horizontal	-30.26		
	5550.60	Horizontal	-35.47		
	7400.80	Horizontal	-43.72	-13.00	Pass
	9251.00	Horizontal	-45.86		
	11101.20	Horizontal			
	3760.00	Vertical	-23.26		
	5640.00	Vertical	-35.41		
	7520.00	Vertical	-45.78	-13.00	Pass
	9400.00	Vertical	-47.69		
004	11280.00	Vertical			
661	3760.00	Horizontal	-29.63		
	5640.00	Horizontal	-36.25		
	7520.00	Horizontal	-44.11	-13.00	Pass
	9400.00	Horizontal	-46.38		
	11280.00	Horizontal			
	3819.60	Vertical	-24.15		
	5729.40	Vertical	-36.35		
	7639.20	Vertical	-46.44	-13.00	Pass
	9549.00	Vertical	-48.74		
810	11458.80	Vertical			
010	3819.60	Horizontal	-30.25		
	5729.40	Horizontal	-35.36		
	7639.20	Horizontal	-47.25	-13.00	Pass
	9549.00	Horizontal	-46.25		
ļ	11458.80	Horizontal			

Remark:

- 1. The emission behavior belongs to narrowband spurious emission.
- 2. Remark"---" means that the emission level is too low to be measured
- 3. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

WCDMA Band II Spurious Emission Frequency Channel Limit (dBm) Result (MHz) Polarization Level (dBm) 1652.80 Vertical -25.26 2479.20 Vertical -34.152479.20 Vertical -43.55 -13.00**Pass** -47.10 Vertical 3305.60 4132.00 Vertical 4132 1652.80 Horizontal -30.26 2479.20 -35.47 Horizontal 2479.20 Horizontal -43.72-13.00**Pass** 3305.60 Horizontal -45.86 4132.00 Horizontal ---1673.20 Vertical -23.26 2509.80 Vertical -35.41 2509.80 Vertical -45.78-13.00**Pass** 3346.40 Vertical -47.69 4183.00 Vertical 4182 1673.20 Horizontal -29.63 2509.80 Horizontal -36.252509.80 Horizontal -44.11 -13.00**Pass** 3346.40 Horizontal -46.38 4183.00 Horizontal ---1693.20 Vertical -24.15 2539.80 Vertical -36.35 2539.80 Vertical -46.44 -13.00Pass Vertical -48.74 3386.40 4233.00 Vertical 4233 1693.20 Horizontal -30.252539.80 Horizontal -35.36 2539.80 Horizontal -47.25-13.00Pass 3386.40 Horizontal -46.25 4233.00 Horizontal

Remark:

- 1. The emission behavior belongs to narrowband spurious emission.
- 2. Remark"---" means that the emission level is too low to be measured
- 3. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Tel.: (86)755-27588991

WCDMA Band V Spurious Emission Frequency Channel Limit (dBm) Result (MHz) Polarization Level (dBm) 1652.80 Vertical -28.25 2479.20 Vertical -35.262479.20 Vertical -43.64 -13.00**Pass** Vertical -47.22 3305.60 4132.00 Vertical 4132 1652.80 Horizontal -30.36 2479.20 -34.78 Horizontal 2479.20 Horizontal -44.66 -13.00**Pass** 3305.60 Horizontal -46.98 4132.00 Horizontal ---1673.20 Vertical -24.23 2509.80 Vertical -36.36 2509.80 Vertical -45.87 -13.00**Pass** 3346.40 Vertical -47.63 4183.00 Vertical 4182 1673.20 Horizontal -28.65 2509.80 Horizontal -36.36 2509.80 Horizontal -44.25 -13.00**Pass** 3346.40 Horizontal -46.45 4183.00 Horizontal ---1693.20 Vertical -25.48 2539.80 Vertical -37.26 2539.80 Vertical -47.59 -13.00**Pass** Vertical 3386.40 -49.624233.00 Vertical 4233 1693.20 Horizontal -29.372539.80 Horizontal -35.66 2539.80 Horizontal -47.58-13.00**Pass** -46.48 3386.40 Horizontal 4233.00 Horizontal

Remark:

- 4. The emission behavior belongs to narrowband spurious emission.
- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

3.8. Frequency stability

LIMIT

2.5ppm

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25[°]C operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to −30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.
- 7. Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Remark: we test all modulation type and record worst case at Voice mode.

Reference Frequency: GSM850 Middle channel=190 channel=836.6MHz						
Voltage (V)	Temperature	Frequer	ncy error	Limit (ppm)	Result	
voltage (v)	(℃)	Hz	ppm	Еши (ррш)		
	-30	57	0.068			
	-20	48	0.057			
	-10	52	0.062	2.5	Pass	
	0	48	0.057			
3.70	10	39	0.047			
	20	44	0.053			
	30	51	0.061			
	40	53	0.063			
	50	49	0.059			
4.25	25	55	0.066			
End point 3.40	25	35	0.042			

Http://www.sz-ctc.com.cn

Reference Frequency: PCS1900 Middle channel=661 channel=1880MHz						
Voltage (V)	Temperature	Frequer	ncy error	Limit (nnm)	Result	
	(℃)	Hz	ppm	Limit (ppm)		
	-30	69	0.037			
	-20	55	0.029			
	-10	48	0.026			
	0	57	0.030			
3.70	10	50	0.027			
	20	54	0.029	2.5	Pass	
	30	41	0.022			
	40	45	0.024			
	50	50	0.027			
4.25	25	52	0.028			
End point 3.40	25	49	0.026			

Reference Frequency: WCDMA Band II Middle channel=9400 channel=1880MHz						
Voltage (V)	Temperature	Frequer	ncy error	Limit (ppm)	Result	
	(℃)	Hz	ppm	Еппи (ррпі)	Nesuit	
	-30	55	0.029			
	-20	54	0.029			
	-10	55	0.029			
	0	48	0.026			
3.70	10	50	0.027			
	20	51	0.027	2.5	Pass	
	30	54	0.029			
	40	56	0.030			
	50	55	0.029			
4.25	25	48	0.026			
End point 3.40	25	52	0.028			

Reference Frequency: WCDMA Band V Middle channel=4182 channel=836.6MHz						
Voltage (V)	Temperature	Frequer	ncy error	Limit (nnm)	Result	
voltage (v)	(℃)	Hz	ppm	Limit (ppm)	Result	
	-30	50	0.060			
	-20	47	0.056		Pass	
	-10	49	0.059	2.5		
	0	55	0.066			
3.70	10	48	0.057			
	20	49	0.059			
	30	51	0.061			
	40	50	0.060			
	50	52	0.062			
4.25	25	47	0.056			
End point 3.40	25	48	0.057			

4. EUT TEST PHOTO

Radiated Emission

5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL

External Photos of EUT

Internal Photos of EUT

Tel.: (86)755-27588991 Fax:

Fax: (86)755-86116468

Http://www.sz-ctc.com.cn

