Paleoenvironmental Reconstruction of Two Paleoindian Sites in North-Central

New Mexico

Joshua Vallejos

Introduction

Background

remained stable between the Younger Dryas and the Early Holocene

H₁: The ratio of C₄ grasses to C₃ grasses was higher in the Early Holocene than in the Younger Dryas

Water Canyon

The Stable

Isotopes

Map showing Boca Negra Wash and Water Canyon

environment

Carbon = Habitat

Oxygen = Climate

¹⁸O vs ¹⁶O

These are taken up at a different rate

by C₃ and C₄ plants based on the

A higher ratio of ¹⁶O to ¹⁸O may

indicate a wetter climate

the habitat C₃, C₄, and CAM

Holocene H_1 : $\delta^{18}O$ will differ between the Younger Dryas and the Early Holocene

Rio Rancho

Albuquerque

Boca Negra

the Younger Dryas and the Early

Oxygen Oxygen exists in three naturally occurring Carbon Carbon exists in two stable forms in nature (12C and 13C) stable isotopes (18O, 17O, and 16O) Plants have evolved different ¹⁷O is not used in paleoenvironmental photosynthetic pathways for observing analyses carbon from the atmosphere depending on ¹⁶O is the most common isotope ¹⁸O to ¹⁶O ratios can provide proxy evidence for an animal's environment Bison do not feed on CAM There is no specific fractionation factor to (crassulacean acid metabolism) determine an environment based on δ^{18} O Plants (e.g., succulents) Environmental factors affect the value: Precipitation, temperature, altitude, latitude.. Lakes will have an average δ¹⁸O across the seasons while δ^{18} O in rivers varies

Methods

Center for Stable Isotopes

Bison tooth before and after drilling of the surface

Results

		Sample Number	FS Number	Project	LA Number	weight (mg)	δ ¹³ C‰	δ ¹⁸ Ο‰
		1	5029	41.901	134764	6.468	-0.44	-7.18
		2	5121	WC field school	134764	6.212	-2.63	-7.91
		3	5171	UNM field school	134764	6.561	-0.70	-5.47
		4	5140	WC field school	134764	6.114	-1.07	-6.64
		5	5080	41.901	134764	6.336	-5.83	-8.22
		6	5140	WC field school	134764	6.242	-2.78	-8.40
CCT		7	5102	41.901	134764	6.428	-0.38	-8.24
COL		8	5118	41.901	134764	6.994	-1.40	-7.09
Center for Stable Isotopes				WC field				
University of New Mexico		9	5125	school/41.901	134764	6.178	0.71	-7.29
HTTPS://ISCO-OP.UNM.EDU/CENTERS/CSI.HTML		10	5037	41.901	134764	6.45	0.01	-6.25
Doculto		11	5055	WC field school	134764	6.499	0.11	-4.64
Results		12	5013	41.901	134764	6.896	-1.69	-8.07
		13	5145	WC field school	134764	6.075	-1.33	-7.00
		14	5148	WC field school	134764	6.261	0.07	-4.49
Removed because of possible contamination ->		15	5151	WC field school	134764	6.575	-1.46	-5.47
		16	1198	WC 2012	134764	5.184	-2.13	-7.17
		17	1276	WC 2012	134764	6.89	0.24	-6.67

The average and range for δ^{13} C and δ^{18} O values for bison at Water Canyon and Boca Negra Wash

	Aver	Average		Range		
	$\delta^{13}C$	$\delta^{18}O$	$\delta^{13}C$	δ^{18} O		
Water Canyon	-1.20‰	-6.92‰	-5.83‰ – 0.71‰	-8.40‰ – - 4.49‰		
Boca Negra Wash	-1.89‰	-4.41‰	-8.38‰ – 1.12‰	-10.47‰ – - 0.60‰		

Carbon		Oxygen			
Mann-Whitney <i>U</i>	202	Mann-Whitney <i>U</i>	55.5		
Z	0.52455	Z	4.0991		
p	0.5999	р	< 0.01		

Statistics

Population A vs. B from Boca Negra Wash

Carbon				
Mann-Whitney <i>U</i>	0			
Z	3.4191			
р	< 0.01			

Results comparing Boca Negra Wash vs Water Canyon

compared to the M2 and M3 of the same animal, most likely due to the M1's utero enamel formation. I created Population A and B based on where they fell on the scatter plot and ran a Mann-Whitney U.

 C_3 -browsers vs C_4 -grazers according to Cerling et al.

Water Canyon

53% C₄ grazers and 47% C₃/C₄ grazers

Boca Negra Wash

52% C₄ grazers and 48% C₃/C₄ grazers

Conclusion

Carbon Oxygen H_o: δ¹⁸O will remain stable between the **Younger Dryas and** remained stable the Early Holocene between the Younger Dryas and H_1 : δ^{18} O will differ the Early Holocene H₁: The ratio of C₄ Younger Dryas and the Early Holocene grasses to C₃ grasses was higher in the early Holocene than in the Younger Dryas

Carbon Statistically similar Water Canyon: 53% C₄-grazers and 47% mixed C_3/C_4 -

grazers Boca Negra Wash: 52% C₄-grazers and 48% mixed C_3/C_4 grazers

C₃ and C₄ grasses habitat remained unchanged from the Younge Dryas into the **Early Holocene**

Oxygen Statistically different Water Canyon had "lighter" δ^{18} O compared to Boca Negra Wash Bison had a different source of water during

the Younger Dryas and Early Holocene

References Cited

Acknowledgments

I heartily acknowledge Dr. Bruce Huckell and Dr. Sherry Nelson, my Co-chairs for this Master's Project. Both were key in framing this project and seeing it through to its completion. I also thank my committee member, Dr. Emily Jones. Gratitude is extended to the Hibben Fellowship and the Moore Research Grant for the funding to pursue this research. Gratitude is also extended to the UNM Office of Contract Archaeology for letting me use their material for my research. Thanks to the Center for Stable Isotopes UNM, specifically Dr. Nelson, for using her lab to conduct my research. I especially thank Dr. Viorel Atudorei (Department of Earth and Planetary Science) for running my samples. And to my wonderful "cohort," who has always been there and has suffered through graduate school with me. We leaned hard on each other, and because of that, none of us fell. My excellent partner Katherine Peck for supporting me and making the maps. Lastly, to Paul and Brenda Vallejos, my loving and caring parents, encouraging me in everything I do and never thinking anything, even dyslexia, could stop me from following my dreams.