

«Индустрия 4.0: управление техникой и персоналом в строительной организации»

Команда

Команда «Кибер-Котлеты», Московский государственный университет им. М.В. Ломоносова

Мария Борисова Капитан команды

Основной вклад: оценка рисков и экономической эффективности проекта. Поиск и анализ зависимостей.

Глеб Шевченко
Правое плечо капитана

Проведение анализа данных с приведением к интерпретируемому виду. Построение зависимостей.

Александр Лавров Талисман команды

Построение карты процесса управления техникой при строительстве объекта.

Татьяна Волочанинова Сердце команды

Графическое оформление проекта. Обоснование предоставленного решения и последствий внедрения.

Анализ процесса

Карта процесса управления техникой при строительстве объекта.

Выявлены следующие недостатки:

- Отсутствие данных по работе или простой 26 из 40 тракторов;
- Работа 1 трактора на предельных оборотах, а 13 на холостом ходу;
- Неравномерное распределение нагрузки;
- Высокая корреляция и прослеживание линейной зависимости между приведенными на слайде справа параметрами.

Выявлены следующие соотношения:

- Время движения = Время работы в движении;
- Время работы двигателя = Работа в движении + Без движения;
- Время работы под нагрузкой = Норм. обороты + Предельные обороты;
- Время с выключенным двигателем = Сутки - Время работы двигателя;
- Время работы двигателя = Работа с нагрузкой + На холостом ходу.

Анализ факторов, влияющих на выбор потенциального решения.

Основными факторами, определяющими эффективность процессов управления строительной техникой при строительстве промышленного объекта, были выбраны:

- Время работы двигателя в движении и без движения,
- Время работы двигателя на нормальных и предельных оборотах,
- Время работы двигателя на холостом ходу,
- Время работы двигателя под нагрузкой.

Сверху — график времени работы двигателя в движении каждого трактора в зависимости от даты.
Снизу — гистограмма распределения времени работы техники в движении.

Статистические параметры:

- Встречены единичные большие значения времени работы двигателя без движения и на холостом ходу. Данные показатели нужно минимизировать.
- Распределения работы на нормальных оборотах и под нагрузкой близки.

Выявлены тенденции:

- Большая часть работы была на нормальных оборотах;
- Малое количество техники работало на предельных оборотах, либо отсутствуют данные.

Выявлены тенденции:

- Большая часть работы с нагрузкой была непродолжительного времени;
- Присутствует работа на холостом ходу.

Выявлены особенности работы техники:

 Присутствует техника, которая большую часть времени работала в движении под нагрузкой, но при этом были моменты (дни) без работы.

Выявлены особенности работы техники:

 У некоторых единиц техники встречается работа без движения под нагрузкой и дни простоя.

- Встречается нестабильная работа техники как по времени в сутках, так и в месяце (пример, работа всего 4 дня за месяц);
- Присутствуют пропуски в данных.

Предложения в проект по внедрению/использованию новых технологий

Big Data

Облачные системы хранения данных (например, SCADA - систем); реализация блокчейн-систем для обеспечения надежности и безопасности данных

Искусственный интеллект

Компьютерное зрение (CV)
Контроль выполнения техники безопасности (ношение каски) и работы водителя (присутствие на месте), предупреждение об опасности в "слепых зонах" водителя (повышение безопасности работников)

Машинное обучение (ML)
Автоматический анализ облачных данных с возможностью в реальном времени отслеживать состояние техники (вести мониторинг систем),

логистика, поиск

оптимальной трассы

Интернет вещей IoT

Сбор данных в реальном времени с использованием датчиков, внедрение системы беспилотников для транспортировки запчастей (например, в случае аварии, когда это срочно)

Аддитивные технологии

Быстрые создание и сборка запчастей

Киберфизические системы

Использование коботов для проведения ремонтных работых в опасных для человека аварийных ситуациях, экзоскелетов - для снижения риска травм на производстве; построение цифрового двойника системы и процессов для предупреждения аварийных ситуаций

Использование IoT, Big Data, ML, CV:

- Качественный сбор и безопасное хранение информации;
- Быстрая обработка данных.

Эффект от применения:

- Предотвращение производственных травм;
- Уменьшение объема ремонта техники при ограничении неэффективной и предельной работе;
- Сокращение времени простоя отдельных единиц техники из-за быстрого расчета распределения производственных задач.

Данные технологии:

- не являются дорогостоящими для больших объектов;
- быстро окупятся при внедрении в процессы;
- имеют прямой положительный эффект в уменьшении времени и затрат строительных работ.

Использование киберфизических систем:

- Осуществление трудных ремонтных работ;
- Анализ объекта на предмет возникновения аварийных ситуаций.

Эффект от применения:

- Повышение эффективности человеческой деятельности;
- Увеличение безопасности работ с тяжелыми объектами и соответствующее уменьшение времени работ.

Отрицательные черты:

• Необходима оценка экономического эффекта от использования технологии.

Использование аддитивных технологий:

• Быстрое производство деталей на территории проведения работ.

Эффект от применения:

• Ускорение производства деталей.

Отрицательные черты:

• Данная технология является дорогостоящей и из-за этого может быть применена не на всех предприятиях.

Критерии отбора лучшего решения.

- Стоимость технологии;
- Простота внедрения и применения;
- Положительный эффект от применения;
- Влияние на уменьшение временных затрат процессов.

Итоги и результаты внедрения

Наиболее эффективное решение.

Применение технологий:

- Интернета вещей (IoT);
- Облачных систем (Big Data);
- Искусственного интеллекта для контроля процессов и анализа данных (ML, CV).

Команда

Команда «Кибер-Котлеты», Московский государственный университет им. М.В. Ломоносова

Мария Борисова Капитан команды

Основной вклад: оценка рисков и экономической эффективности проекта. Поиск и анализ зависимостей.

Глеб Шевченко Правое плечо капитана

Проведение анализа данных с приведением к интерпретируемому виду. Построение зависимостей.

Александр Лавров Талисман команды

Построение карты процесса управления техникой при строительстве объекта.

Татьяна Волочанинова Сердце команды

Графическое оформление проекта. Обоснование предоставленного решения и последствий внедрения.

Наш девиз два слова – оптимизируем любого!

Спасибо за внимание

Анализ

Статистика

	id	Пробег, км	Время работы двигателя, час:мин:сек	Время работы двигателя в движении, час:мин:сек	без движения,	Время работы двигателя на холостом ходу, час:мин:сек	нормальных оборотах,	Время работы двигателя на предельных оборотах, час:мин:сек	Время с выключенн ым двигателем, час:мин:сек	Время работы двигателя под нагрузкой, час:мин:сек	Начальный объём, л.1	Конечный объём, л.1
count	402.0	391.0	346.0	343.0	345.0	316.0	317.0	4.0	353.0	317.0	24.0	24.0
mean	540.90	73.35	32343.64	20528.78	12046.66	11218.5	24111.87	597.0	54694.18	24119.41	306.49	295.07
std	251.74	69.65	20288.34	14506.96	7914.54	9765.26	15756.20	675.70	20585.23	15747.84	125.39	121.32
min	113.0	0.01	198.0	32.0	203.0	184.0	143.0	13.0	13059.0	143.0	74.0	73.9
25%	341.0	13.28	15262.5	8057.0	6172.0	3882.75	10476.0	21.25	35055.0	10476.0	203.725	187.4
50%	611.5	59.07	30387.5	18909.0	11095.0	8738.0	23292.0	537.5	56413.0	23292.0	316.20	315.55
75%	734.0	120.65	52040.5	33059.5	17042.0	15645.5	36404.0	1113.25	71683.0	36404.0	411.425	381.025
max	939.0	354.59	73341.0	52920.0	37784.0	54724.0	61540.0	1300.0	86340.0	61540.0	496.0	496.8