CWRU DSCI351-451: Homework 2

Prof.:Roger French, TA: JiQi Liu
04 September, 2018

Contents

2.1.0.0.1 HW2, 5 points, 5 questions
2.1.0.1 1. (1/2 pt.) R Calculator:
2.1.0.2 2. (1/2 pt.) Data Basics: OpenIntroStats Exercise 1.7 1n Chapter 1, pg. 57.
2.1.0.2.1 OIS Exercise 1.7 Fisher's irises
2.1.0.2.2 (2a) How many cases were included in the data?
2.1.0.2.3 (2b) How many numerical variables are included in the data?
2.1.0.2.4 (2c) How many categorical variables are included in the data,
2.1.0.3 3. (1 pt.) Examining Numerical Data:. Factory defective rate
2.1.0.3.1 (3a) Calculate the mean for these data
2.1.0.3.2 (3b) Calculate the standard deviation for these data,
2.1.0.4 4. (1 pt.) Examining Numerical Data: OpenIntroStats Exercise 1.47 in
Chapter 1, pg 66
2.1.0.4.1 Exercise 1.47 Means and SDs
2.1.0.5 5. (1/2 pt.) For Loops
2.1.0.6 6. (1/2 pt.) Normal Distribution:
2.1.0.6.1 OpenIntroStats Exercise 3.2 in Chapter 3, pg 158
2.1.0.7 Links

2.1.0.0.1 HW2, 5 points, 5 questions.

- Due Tuesday September 11th
 - Before Class
- Answers to these problems may be in the back of the book (OIStats-v3),
 - so you can check your work.
- The grading is done on how you show your thinking,
 - explain yourself and
 - show your Rcode and
 - the output you got from your code.
- Code style is important
 - Follow Rstudio code diagnostics notices
 - And the Google R Style Guide
 - Also available in your class repo, cheat sheets

To be done as an Rmd file,

- where you turn in
 - the Rmd file and
 - the compiled pdf showing your work.
 - and the R script of IntroR.R

You will want to produce a report type format

- (html and pdf type document) to turn in.
- And not an ioslides or beamer (slide type) compiled output.
 - These are presentation formats, and can be fussy

Also are you backing up your git repo

- in a second and third location,
- to avoid corruption problems?

2.1.0.1 1. (1/2 pt.) R Calculator:

In the 1-Assignments/hw/hw2 folder in your repo,

- You will find an R script with some basic R variable problems.
- Complete these using proper R commands in your R script file

 and submit the solution.
- Don't forget attribution, versioning and licensing.

2.1.0.2 2. (1/2 pt.) Data Basics: OpenIntroStats Exercise 1.7 1n Chapter 1, pg. 57.

Answer this in this Rmd file and

- explain what you are doing,
- i.e. show your R code and work.

2.1.0.2.1 OIS Exercise 1.7 Fisher's irises.

Sir Ronald Aylmer Fisher was

- An English statistician, evolutionary biologist, and geneticist
- Who worked on a data set that contained
 - sepal length and width, and petal length and width
 - from three species of iris flowers
 - * (setosa, versicolor and virginica).
- There were 50 flowers from each species in the data set.

2.1.0.2.2 (2a) How many cases were included in the data?

Show you R code!

2.1.0.2.3 (2b) How many numerical variables are included in the data?

- Indicate what they are, and
- if they are continuous or discrete.

2.1.0.2.4 (2c) How many categorical variables are included in the data,

- and what are they?
- List the corresponding levels (categories).

2.1.0.3 3. (1 pt.) Examining Numerical Data: Factory defective rate.

A factory quality control manager decides

- to investigate the percentage of defective items produced each day.
- Within a given work week (Monday through Friday)
 - the percentage of defective items produced was
 - * 2%, 1.4%, 4%, 3%, 2.2%.

2.1.0.3.1 (3a) Calculate the mean for these data.

• Show your R code!

2.1.0.3.2 (3b) Calculate the standard deviation for these data,

• showing each step in detail.

2.1.0.4 4. (1 pt.) Examining Numerical Data: OpenIntroStats Exercise 1.47 in Chapter 1, pg 66.

2.1.0.4.1 Exercise 1.47 Means and SDs.

For each part, compare distributions (1) and (2)

• based on their means and standard deviations.

You do not need to calculate these statistics;

• simply state how the means and the standard deviations compare.

Make sure to explain your reasoning.

• Hint: It may be useful to sketch dot plots of the distributions.

2.1.0.5 5. (1/2 pt.) For Loops

Using a for loop

- complete the problem below in the given code space
- Create a data frame of
 - the average temperature (Temp) and
 - wind speeds (Wind) for each month
- The data frame must have 3 columns -
 - average temperature,
 - average wind speed, and
 - month number (5, 6, etc.),
- colnames are up to you

You may only use one for loop - You may not hard code (i.e. type in manually) - the number of each month -Hint: you may find the unique() function useful

```
data("airquality")
head(airquality)
```

```
##
     Ozone Solar.R Wind Temp Month Day
## 1
        41
                190 7.4
                            67
        36
## 2
                118 8.0
                            72
                                    5
                                        2
## 3
        12
                149 12.6
                            74
                                    5
                                        3
## 4
        18
                313 11.5
                            62
                                    5
                                        4
## 5
                 NA 14.3
                                    5
                                        5
        NA
                            56
## 6
        28
                 NA 14.9
                                        6
                            66
```

str(airquality)

```
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
```

```
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : int 5 5 5 5 5 5 5 5 5 ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
```

2.1.0.6 6. (1/2 pt.) Normal Distribution:

2.1.0.6.1 OpenIntroStats Exercise 3.2 in Chapter 3, pg 158.

Area under the curve, II:

What percent of a standard normal distribution N (mu = 0, sigma = 1)

- is found in each region?
- Be sure to draw a graph.

Four parts of this problem.

- (a) For Z > -1.13
- (b) For Z < 0.18
- (c) For Z > 8
- (d) For |Z| < 0.5

2.1.0.7 Links

http://www.r-project.org

http://rmarkdown.rstudio.com/