МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и инворматики Кафедра информационных систем управления

Отчет по лабораторной работе 2 Вариант 27

Выполнил: Карпович Артём Дмитриевич студент 3 курса 7 группы

> Преподаватель: Кваша Дарья Юрьевна

Формализация линейной оптимизационной задачи

Фирма специализируется на производстве высококачественных горных велосипедов одной модели. Спрос велосипедов в каждом месяце ограничен. Каждый раз, чтобы запустить производство, необходимо оплатить наладку оборудования. Производить можно не более одной партии в месяц. Предполагается, что производственные мощности фирмы неограничены.

Затраты на наладку производства составляют 5000 у.е., стоимость производства одной единицы составляет 100 у.е. Таким образом, производство партии из 1 велосипеда требует затрат в 5100 у.е., для производства партии из 10 велосипедов затраты составят $5000 + (10 \cdot 100) = 6000$ у.е. В табл. приводится прогноз ежемесячного спроса dt на велосипеды на следующий год.

-					
11,757	еме	CCTT	ere ei	r on	moo
	CIVIC	-214	пын	1 01	

Янв	Фев	Map	Апр	Май	Июн
400	400	800	800	1200	1200
Июл	Авг	Сен	Окт	Ноя	Дек
1200	1200	800	800	400	400

Известно, что на складе осталось 200 велосипедов с прошлого года. Удельная стоимость хранения в месяц составляет 5 у.е., вместимость склада неограничена. Задача менеджера — составить такой план производства и хранения велосипедов, чтобы удовлетворить спрос с минимальными суммарными затратами на год.

Построенная модель

```
set Months ordered;
param Month{Months} symbolic;
param Demand{Months};
param Setup_Cost;
param Unit_Cost;
param Storage_Cost;
param Initial_Inventory;
var Production{Months} integer >= 0;
var Storage{Months} integer >= 0;
var Current_inventory{Months} integer;
   sum{t in Months} (Setup_Cost + Unit_Cost * Production[t] + Storage_Cost * Storage[t]);
subject to Meet_Demand{t in Months}:
    Production[t] + Current_inventory[t] - Demand[t] = (if t > 1 then Demand[t-1] else 0);
subject to Inventory{t in Months}:
    Current_inventory[t] = Initial_Inventory + (if t > 1 then Production[t-1] else 0) - (if t > 1 then Demand[t-1] else 0) - Storage[t];
                                                                 Lab2.mod
set Months := 1 2 3 4 5 6 7 8 9 10 11 12;
param Demand :=
      1 400
       2 400
      3 800
      4 800
      5 1200
      6 1200
      7 1200
      8 1200
      9 800
      10 800
      11 400
      12 400;
param Month :=
      1 "Январь"
       2 "Февраль"
      3 "Март"
      4 "Апрель"
      5 "Май"
      6 "Июнь"
      7 "Июль"
      8 "Август"
      9 "Сентябрь"
      10 "Октябрь"
      11 "Ноябрь"
12 "Декабрь";
param Setup_Cost := 5000;
param Unit_Cost := 100;
param Storage_Cost := 5;
param Initial_Inventory := 200;
                                                                  Lab2.dat
```

```
reset;
model Lab2.mod;
data Lab2.dat;

option solver cplex;
solve;

printf "Суммарные затраты на год: %.2f y.e.\n", Total_Cost;
printf "План производства и хранения велосипедов:\n";
printf "Месяц\tПроизводство\tXранение\n";
for {t in Months} {
    printf "%s\t%d\t\t%d\n", Month[t], Production[t], Storage[t];
}

Lab2.run
```

Результат

```
Суммарные затраты на год: 1380000.00 у.е.
План производства и хранения велосипедов:
Месяц
       Производство
                        Хранение
Январь 200
                        0
Февраль 800
                        0
Март
        600
Апрель 1600
                        0
Май
        1000
                        0
Июнь
        2400
                        0
Июль
        1000
                        0
Август 2400
                        0
                600
                                0
Сентябрь
Октябрь 1600
                        0
Ноябрь 200
                        0
                        0
Декабрь 800
                              Результат работы программы
```

В результате выполнения модели вы получили оптимальное решение с общими затратами на год в размере 1.380.000 у.е. Это оптимальное решение показывает, что модель предлагает производить определенное количество велосипедов в каждом месяце, чтобы удовлетворить спрос и минимизировать затраты, но не требует хранения велосипедов.