```
In [50]:
```

```
import pandas as pd
import seaborn as sns
import numpy as np
from scipy.stats import chi2_contingency
import matplotlib.pyplot as plt
from IPython.display import display
from scipy.stats import ttest_rel, ttest_ind
%matplotlib inline
```

Read various probabilty tables

```
In [6]:

df = pd.DataFrame()
files_xls = ["../ProbTable2009.xlsx", "../ProbTable2010.xlsx"]
```

```
In [7]:

for f in files_xls:
    data = pd.read_excel(f, 'Sheet1')
    df = df.append(data)
```

```
In [11]:

df.head()
df.tail()
```

Out[11]:

	P(+ -)tick	P(+)tick	P(+ -)1s	P(+)1s	P(+ -)3s	P(+)3s	P(+ -)5s	P
20101227	0.507582	0.485210	0.625322	0.510298	0.595684	0.508787	0.567832	0.
20101228	0.520866	0.486997	0.577957	0.488425	0.542905	0.483188	0.516506	0.
20101229	0.524385	0.500110	0.569021	0.493001	0.535066	0.494421	0.504714	0.
20101230	0.611123	0.513879	0.649875	0.521865	0.615385	0.523026	0.581476	0.
20101231	0.595550	0.530233	0.626106	0.509939	0.597641	0.505829	0.565960	0.

Break down data into various periods

```
In [28]:
Prob_df_period_wise = []
events = ['20090101' ,'20090831', '20091203', '20101231']

for event in range (0,len(events)-1):
    print(event)
    Prob_df_period_wise.append( df[(df.index.astype(str) < events[event+1]) &
    (df.index.astype(str) > events[event])])

0
1
2
In [ ]:
```

t-test analysis

- 1. Paired two-sample for P(+) vs P(+|-) for various timespans
- 2. Independent pair wise on various pairs of events for various timespans

```
In [31]:
timespans = ['tick','1s', '3s', '5s', '10s', '20s', '30s', '1T', '5T']
len(Prob df period wise)
Out[31]:
3
In [38]:
# 1. Paired two-sample
for period in range(0, len(Prob df period wise)):
    print("======Period:",period)
    for timespan in timespans:
        print("======Timespan:",timespan)
        print(ttest_rel(Prob_df_period_wise[period]['P(+|-)'+timespan].values,
Prob_df_period_wise[period]['P(+)'+timespan].values))
======Period: 0
======Timespan: tick
Ttest relResult(statistic=25.084662438354322, pvalue=5.64056984698
0332e-57)
======Timespan: 1s
Ttest relResult(statistic=86.50329372824099, pvalue=5.398306041472
0381e-135)
=======Timespan: 3s
Ttest relResult(statistic=39.829878734145417, pvalue=2.66539861793
99894e-84)
=======Timespan: 5s
Ttest relResult(statistic=17.348080735100176, pvalue=2.02371142466
53406e-38)
```

```
======Timespan: 10s
Ttest relResult(statistic=-7.3755982519526766, pvalue=8.6883543726
699117e-12)
======Timespan: 20s
Ttest relResult(statistic=-19.926082180596584, pvalue=5.8256584365
828949e-45)
======Timespan: 30s
Ttest relResult(statistic=-21.642275859739154, pvalue=4.0495382478
584349e-49)
======Timespan: 1T
Ttest relResult(statistic=-22.190808109890728, pvalue=2.0532753220
315099e-50)
======Timespan: 5T
Ttest relResult(statistic=-6.2238868021949001, pvalue=4.1812820968
361782e-09)
======Period: 1
======Timespan: tick
Ttest relResult(statistic=12.393130854418043, pvalue=2.60562000447
29847e-18)
======Timespan: 1s
Ttest relResult(statistic=43.310344803335909, pvalue=1.62476615355
97941e-47)
=======Timespan: 3s
Ttest relResult(statistic=24.077724845786371, pvalue=7.53922453381
07648e-33)
=======Timespan: 5s
Ttest relResult(statistic=9.6308565380049256, pvalue=7.36586807354
55334e-14)
=======Timespan: 10s
Ttest relResult(statistic=-4.3161204257170303, pvalue=5.9235121574
403415e-05)
======Timespan: 20s
Ttest relResult(statistic=-13.542846531031405, pvalue=4.8148376530
324894e-20)
======Timespan: 30s
Ttest relResult(statistic=-11.905022055458758, pvalue=1.4924292496
208181e-17)
=======Timespan: 1T
Ttest relResult(statistic=-10.493332678487299, pvalue=2.7361289254
82784e-15)
=======Timespan: 5T
Ttest relResult(statistic=-4.2348691704845782, pvalue=7.8397573173
269889e-05)
======Period: 2
======Timespan: tick
Ttest_relResult(statistic=28.720698871110475, pvalue=8.90154301268
61532e-84)
=======Timespan: 1s
Ttest relResult(statistic=76.15562054292171, pvalue=1.387526730032
5609e-183)
======Timespan: 3s
Ttest_relResult(statistic=40.736413536010339, pvalue=7.97772507376
53167e-117)
======Timespan: 5s
Ttest relResult(statistic=18.421850875406928, pvalue=1.58646864873
00354e-49)
======Timespan: 10s
```

```
Ttest relResult(statistic=-7.9416223020736645, pvalue=5.5188423549
02323e-14)
======Timespan: 20s
Ttest relResult(statistic=-22.188050616001128, pvalue=1.2540416463
292966e-62)
======Timespan: 30s
Ttest relResult(statistic=-24.237463292175487, pvalue=1.6750016629
698999e-69)
=======Timespan: 1T
Ttest relResult(statistic=-23.467435581013333, pvalue=6.0627748715
883474e-67)
======Timespan: 5T
Ttest relResult(statistic=-6.8260802427540082, pvalue=5.8158789443
086625e-11)
In [54]:
# 2. Independent two-sample across periods
for timespan in timespans:
    print("==== timespan:", timespan)
    print("==== Perio 0 vs Period 1====")
    print(ttest ind(Prob df period wise[0]['P(+|-)'+timespan].values,Prob df p
eriod_wise[1]['P(+)'+timespan].values))
    print("==== Perio 1 vs Period 2====")
    print(ttest ind(Prob df period wise[0]['P(+|-)'+timespan].values,Prob df p
eriod wise[1]['P(+)'+timespan].values))
    print("==== Perio 0 vs Period 2====")
    print(ttest_ind(Prob_df_period_wise[0]['P(+|-)'+timespan].values,Prob_df_p
eriod wise[1]['P(+)'+timespan].values))
==== timespan: tick
==== Perio 0 vs Period 1====
Ttest indResult(statistic=11.679105524813352, pvalue=8.14597659072
56268e-25)
==== Perio 1 vs Period 2====
Ttest indResult(statistic=11.679105524813352, pvalue=8.14597659072
56268e-25)
==== Perio 0 vs Period 2====
Ttest indResult(statistic=11.679105524813352, pvalue=8.14597659072
56268e-25)
==== timespan: 1s
==== Perio 0 vs Period 1====
Ttest indResult(statistic=45.281866778323689, pvalue=3.61763205585
84532e-113)
==== Perio 1 vs Period 2====
Ttest indResult(statistic=45.281866778323689, pvalue=3.61763205585
84532e-113)
==== Perio 0 vs Period 2====
Ttest indResult(statistic=45.281866778323689, pvalue=3.61763205585
84532e-113)
==== timespan: 3s
==== Perio 0 vs Period 1====
Ttest indResult(statistic=21.472690534256973, pvalue=8.47706290199
25396e-56)
==== Perio 1 vs Period 2====
Ttest_indResult(statistic=21.472690534256973, pvalue=8.47706290199
```

```
25396e-56)
==== Perio 0 vs Period 2====
Ttest_indResult(statistic=21.472690534256973, pvalue=8.47706290199
25396e-56)
==== timespan: 5s
==== Perio 0 vs Period 1====
Ttest indResult(statistic=9.7131039361975944, pvalue=8.94657142442
06251e-19)
==== Perio 1 vs Period 2====
Ttest indResult(statistic=9.7131039361975944, pvalue=8.94657142442
06251e-19)
==== Perio 0 vs Period 2====
Ttest indResult(statistic=9.7131039361975944, pvalue=8.94657142442
06251e-19)
==== timespan: 10s
==== Perio 0 vs Period 1====
Ttest indResult(statistic=-2.9873379111903069, pvalue=0.0031348538
332521929)
==== Perio 1 vs Period 2====
Ttest indResult(statistic=-2.9873379111903069, pvalue=0.0031348538
332521929)
==== Perio 0 vs Period 2====
Ttest indResult(statistic=-2.9873379111903069, pvalue=0.0031348538
332521929)
==== timespan: 20s
==== Perio 0 vs Period 1====
Ttest indResult(statistic=-8.7574985120592341, pvalue=5.4983406571
586983e-16)
==== Perio 1 vs Period 2====
Ttest indResult(statistic=-8.7574985120592341, pvalue=5.4983406571
586983e-16)
==== Perio 0 vs Period 2====
Ttest indResult(statistic=-8.7574985120592341, pvalue=5.4983406571
586983e-16)
==== timespan: 30s
==== Perio 0 vs Period 1====
Ttest indResult(statistic=-9.3154510240004456, pvalue=1.3384444251
269895e-17)
==== Perio 1 vs Period 2====
Ttest indResult(statistic=-9.3154510240004456, pvalue=1.3384444251
269895e-17)
==== Perio 0 vs Period 2====
Ttest indResult(statistic=-9.3154510240004456, pvalue=1.3384444251
269895e-17)
==== timespan: 1T
==== Perio 0 vs Period 1====
Ttest_indResult(statistic=-8.4167186047700646, pvalue=5.0511116457
251918e-15)
==== Perio 1 vs Period 2====
Ttest indResult(statistic=-8.4167186047700646, pvalue=5.0511116457
251918e-15)
==== Perio 0 vs Period 2====
Ttest indResult(statistic=-8.4167186047700646, pvalue=5.0511116457
251918e-15)
==== timespan: 5T
==== Perio 0 vs Period 1====
Ttest indResult(statistic=-1.264546279562887, pvalue=0.20737810161
```

```
26012)
==== Perio 1 vs Period 2====
Ttest_indResult(statistic=-1.264546279562887, pvalue=0.20737810161
26012)
==== Perio 0 vs Period 2====
Ttest_indResult(statistic=-1.264546279562887, pvalue=0.20737810161
26012)
In []:
In []:
```

Backup

Box plots, period wise

```
In [53]:
```

```
display(Prob_df_period_wise[0].boxplot())
plt.show()
display(Prob_df_period_wise[1].boxplot())
plt.show()
display(Prob_df_period_wise[2].boxplot())
plt.show()
```

<matplotlib.axes. subplots.AxesSubplot at 0x1213eef28>

<matplotlib.axes._subplots.AxesSubplot at 0x120f29ba8>

<matplotlib.axes._subplots.AxesSubplot at 0x120f3d9b0>

T11 •	In	[]	:
----------	----	-----	---