

2. TTS model

- Tacotron2 띄우기
- Waveglow 띄우기
- grpc and rest 띄우기

1. TACOTRON2

1. tensorboard를 통한 최선의 모델 선택 방법 - alignment (attention)

- 가늘기 길게 이어져 있을 수록 좋음 (중간에 끊겨버리거나 일자로 줄이 가있는 경우 좋지 않음)
- 상단 동그라미 = 띄어쓰기 구간

1. TACOTRON2

1. tensorboard를 통한 최선의 모델 선택 방법 - gate

- Green Target = 정답지
- Red predict = 학습 결과물
 - → 초록색 = 빨간색일 수록 학습이 잘 된 것

1. TACOTRON2

1. tensorboard를 통한 최선의 모델 선택 방법 - mel spectrogram

- Predict = 학습 결과물
 - → 초록색 = 빨간색일 수록 학습이 잘 된 것

2. waveglow

1. tensorboard를 통한 최선의 모델 선택 방법 - waveform

- target = 정답지
- → predicted = target일 수록 학습이 잘나온 것

2. waveglow

1. tensorboard를 통한 최선의 모델 선택 방법 - audio

- predicted = 학습 결과물
- target = 정답지
 - → predicted = target일 수록 학습이 잘나온 것
- predicted에 금속음, 소음 등이 섞여있을 경우, 모델 합성 시 98%의 확률로 소음이 섞여 있음
 - → predicted에서 최대한 깨끗한 음성 선택 필요

1. 학습 모델 구조

- 학습 모델 구조
 - tacotron2 model, waveglow model, grpc, web으로 구성

1. tacotron2 학습

- Port
 - 2개의 모델과 grpc, web(tts-rest)는 각각의 포트가 필요
 - grpc와 web 포트는 방화벽이 뚫려있어야 함
 - tts properties : taco + wg model과 grpc의 관계 정보
 - tts-rest properties : grpc와 web의 관계 정보
 - ©□ tts properties와 tts-rest properties만 수정해주면 됨

1. tacotron2

docker run --gpus '"device=0"' -d -v /DATA1/tts/trained/tacotron2:/model -p 30101:30001 -e LC_ALL=C.UTF-8 -e TACOTRON2_MODEL=/model/CHECKPOINT_NAME -e TACOTRON2_THRESHOLD=0.1 -e TACOTRON2_MAX_DECODER_STEPS=1600 --name CONTAINER_NAME docker.maum.ai:443/brain/tacotron2:1.2.7-server

- device : 사용할 gpu num

- v: input data path (:docker model path)

- p:taco server port

- e: checkpoint name / t값 / s값

- name: container name

※ 옵션 기본값

TACOTRON2_THRESHOLD = 0.1

TACOTRON2_MAX_DECODER_STEPS = 1600

2. waveglow

docker run --gpus '"device=1"' -d -v /DATA1/tts/trained/waveglow:/model -p 35101:35001 -e LC_ALL=C.UTF-8 -e WAVEGLOW_MODEL=/model/waveglow_228000_SON -e WAVEGLOW_SIGMA=0.66 -e

WAVEGLOW_DENOISER_STRENGTH=0.01 -e WAVEGLOW_VOLUME=1.0 --name CONTAINER_NAME

docker.maum.ai:443/brain/waveglow:1.2.7-server

※ 옵션 기본값

WAVEGLOW_SIGMA = 0.66

WAVEGLOW_DENOISER_STRENGTH = 0.01

- 상단과 동일

3. grpc

docker run -d -p 9999:9999 -e LC_ALL=C.UTF-8 -e GRPC_ADDR_TACOTRON=172.17.0.1:30101 -e GRPC_ADDR_WAVEGLOW=172.17.0.1:35101 -e GRPC_ADDR_G2P=172.17.0.1:19001 -e MAX_SPEAKER=1 --name grpc_test docker.maum.ai:443/brain/tts:1.2.7-server

- d : daemon (백그라운드로 실행)
- p: grpc port num
- grpc_addr_taco : taco grpc ip:port
- grpc_addr_wav : waveglow grpc ip:port
- grpc_addr_kong : konglish grpc ip:port
- max_speaker: speaker 개수
- max_length: long text 처리를 위한 기준값

※ IP port 기본값

ENV GRPC_ADDR_TACOTRON=172.17.0.1:30001

ENV GRPC_ADDR_WAVEGLOW=172.17.0.1:35001

ENV GRPC_ADDR_KONGLISH=172.17.0.1:20001

ENV GRPC ADDR G2P=172,17.0.1:19001

2. waveglow

docker run -d -p 9998:9998 -e LC_ALL=C.UTF-8 -e GRPC_NAME_TTS=disaster -e GRPC_IP_TTS=172.17.0.1 -e GRPC_PORT_TTS=9999 --name CONTAINER_NAME_docker.maum.ai:443/brain/tts:1.2.5-rest

- GRPC_NAME_TTS = rest 흰페이지에 뜨는 speakerID 값
- p: server port
- name: tts-rest container name

※ 옵션 기본값

WAVEGLOW_SIGMA = 0.66

WAVEGLOW_DENOISER_STRENGTH = 0.01

