МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО, МЛАДЕЖТА И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

МАТЕМАТИКА

23.05.2012 Г. – ВАРИАНТ 1

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

1. Кое от числата принадлежи на интервала [-1; 1]?

$$\mathbf{A)} \ \left(\frac{1}{5}\right)^{-2}$$

B)
$$-\left(\frac{1}{2}\right)^{-3}$$

$$\Gamma$$
) $625^{-\frac{1}{4}}$

2. Числената стойност на израза $\sqrt{625} - \sqrt{81}$ е равна на:

Б)
$$2\sqrt[4]{34}$$

$$\Gamma$$
) $\sqrt{34}$

3. Допустимите стойности на израза $\frac{3+x}{\sqrt{3-x}} + \frac{1}{3x}$ са:

A)
$$x \in (-\infty; 3)$$

b)
$$x \in (-\infty; 3]$$

B)
$$x \in (-\infty; 3]$$
 B) $x \in (-\infty; 0) \cup (0; 3)$

$$\Gamma$$
) $x \in (3, \infty)$

4. Решенията на неравенството $\frac{x^2-4}{2x} \ge 0$ са:

A)
$$(-\infty; -2] \cup [2; \infty)$$

b)
$$(-\infty; -2] \cup (0; 2]$$

B)
$$[-2; 0] \cup [2; \infty)$$

$$\Gamma$$
) $[-2; 0) \cup [2; \infty)$

5. Равенството $\frac{1}{4}$. 6 $\log_6 x = x - 6$ е вярно за x равно на:

B)
$$7\frac{1}{2}$$

F) 8

6. За корените x_1 и x_2 на уравнението $-0.5x^2 + 22.5x - 2 = 0$ е вярно, че:

A)
$$x_1 > 0$$
 u $x_2 < 0$

b)
$$x_1 < 0$$
 u $x_2 < 0$

B)
$$x_1 > 0$$
 u $x_2 > 0$

$$\Gamma) x_1 = -x_2$$

7. Два от корените на уравнението $ax^4 + bx^2 + c = 0$ са $-\frac{1}{3}$ и 2. Другите му корени са:

A)
$$-\frac{1}{2}$$
 u 3 **b)** $-\frac{2}{3}$

b)
$$-\frac{2}{3}$$

$$\Gamma$$
) -2 и $\frac{1}{3}$

- 8. За $\alpha = -\frac{\pi}{6}$ стойността на израза $\sin 3\alpha \cos 2\alpha$ е:
- **A)** $-\frac{3}{2}$
- **b**) $-\frac{1}{2}$
- $\mathbf{B}) \frac{1}{2}$

- Γ) $\frac{3}{2}$
- 9. В равнобедрен $\triangle ABC$ с основа AB=8 cm е вписана окръжност. Центърът Oна окръжността дели височината CH в отношение 5:2. Дължината на AC е равна на:
- **A)** 6 cm
- **Б**) 10 cm
- **B**) 16 cm
- **Γ**) 20 cm

C

- **10.** Върху хипотенузата AB на правоъгълния $\triangle ABC$ е взета точка H, така че $\angle HCB = \angle CAB = \alpha$. Ако AC = b, то диаметърът на описаната окръжност около $\triangle HCB$ е равен на:
- A) b. $\sin \alpha$
- **b**) $b \cdot \cos \alpha$
- **B)** $b.tg\alpha$ Γ) $\frac{1}{2}b.tg\alpha$

- B(3;5)A(0;2)x 0
- 11. На чертежа са построени графиките съответно на квадратната функция f(x) и на линейната функция g(x). Тези графики се пресичат в точките A(0;2) и B(3;5). Решенията на неравенството f(x) > g(x) са числата от интервала:
- A) $(-\infty;0)$

Б) (0:3)

B) $(-\infty;0)\cup(3;\infty)$

- **Γ**) (3:∞)
- 12. Коя от формулите задава общия член $a_n,\ n\!\in\mathbb{N}$ на редицата на всички естествени числа, които при деление на 3 дават остатък 2?
- **A)** $a_{n} = 3n + 2$
- **B**) $a_n = 3n 1$ **B**) $a_n = 3n 2$ Γ) $a_n = n^2 + 1$

Ĥ

- 13. Ако за аритметична прогресия е известно, че $a_2 + a_6 = 3$ и сборът на първите 13члена е равен на 26, то намерете разликата на прогресията.
- A) $\frac{1}{6}$

Б) $\frac{1}{2}$

B)1

- **Г**) 6
- 14. Клоун разполага с 2 различни панталона, 3 вида ризи, 5 различни маски за лице и 2 перуки в различен цвят. По колко различни начини той може да избере комплект от панталон, риза, маска и перука за едно представление пред публика?
- **A)** 12

- **Б**) 24
- **B**) 30

 Γ) 60

15. В таблицата са дадени измерените температури на 25.04.2012 г. в 12 часа на обяд в няколко български града. С колко градуса се различава модата от средната стойност на температурите в статистическия ред от данни?

t°	10°	15°	20°	25°
(измерена температура по С)				
n	3	4	1	2
(брой градове с t° по C)				

A) c 1°

Б) с 4°

- B) c 6°
- Γ) c 11°

16. Страната на ромб е 12 cm и острият му ъгъл е 60° . Радиусът на вписаната в ромба окръжност е равен на:

- **A)** 3 cm
- **b**) $3\sqrt{3}$ cm
 - **B**) 6 cm
- Γ) 6 $\sqrt{3}$ cm

17. Четириъгълникът *ABCD* е вписан в окръжност и

 $\angle DAB = 120^{\circ}$. Aro BD = 12cm u $\angle ABC = \angle ADC$, to

диагоналът AC е равен на:

- **A)** $8\sqrt{3}$ cm **B)** $8\sqrt{2}$ cm
- **B**) $6\sqrt{3}$ cm
- Γ) $4\sqrt{3}$ cm

18. Даден е $\triangle ABC$, за който $AC = 3 \,\mathrm{cm}$, $BC = 6 \,\mathrm{cm}$ и $\angle ACB = 120^{\circ}$. Дължината на ъглополовящата $CL(L \in AB)$ e:

- **A)** 2 cm
- **b**) 3cm

- **B)** $2\sqrt{3}$ cm Γ) $2\sqrt{7}$ cm

19. Трапецът $ABCD(AB \parallel CD)$ със страни AB = 10, BC = 7, CD = 4 и AD = 5 е с лице, равно на:

A) $2\sqrt{6}$

- **Б**) $6\sqrt{6}$
- **B**) $14\sqrt{6}$
- Γ) $42\sqrt{6}$

20. В $\triangle ABC$ симетралата на страната AB пресича страната BC в точка M така, че BM : CM = 5:2. Ако CH ($H \in AB$) е височина в $\triangle ABC$, намерете отношението AH:HB.

- **A)** 1:5
- **Б**) 3:5
- **B)** 3:7
- Γ)2:7

<u>Отговорите на задачите от 21. до 25. включително запишете в свитъка за свободните отговори!</u>

- 21. Намерете стойността на израза $\left(\sin\frac{\alpha}{2} + \cos\frac{\alpha}{2}\right)^2 \left(1 + \sin\alpha\right)^{-1}$, ако $\sin\alpha \neq -1$.
- **22.** Да се реши уравнението $\sqrt{2x^2 x 2} = -x$.
- 23. Даден е изпъкнал n –ъгълник. Броят на всички отсечки с краища измежду върховете му е 45. Да се намери броят n на върховете на многоъгълника.
- 24. Група младежи решили да изпратят писма по Интернет с пожелания за късмет. Първия ден всеки от тях изпратил пожелания на петима свои приятели. Втория ден всеки от получилите пожеланието го препратил на други петима свои приятели и т.н., като всеки, получил пожелание предния ден, препращал пожеланието на петима свои приятели следващия ден. При тези условия в края на петия ден броят на изпратените пожелания бил 12500. Колко са младежите от групата, започнали инициативата?
- **25.** Намерете лицето на правоъгълен триъгълник с хипотенуза 5 cm и сбор от дължините на катетите 6 cm.

<u>Пълните решения с необходимите обосновки на задачите от 26. до 28. включително</u> запишете в свитъка за свободните отговори!

26. За допустимите стойности на х докажете тъждеството

$$\left(\frac{1}{\cos 2x} - tg2x\right) \left(\sin x + \cos x\right) = \sqrt{2}\sin\left(\frac{\pi}{4} - x\right).$$

- 27. Краищата на отсечка $AB = 3 \,\mathrm{cm}$ са центрове на две окръжности, като радиусът на окръжността с център A е по-малък от радиуса на окръжността с център B. Радиусите са избрани случайно от пет отсечки с дължини $1 \,\mathrm{cm}$, $2 \,\mathrm{cm}$, $4 \,\mathrm{cm}$, $5 \,\mathrm{cm}$ и $9 \,\mathrm{cm}$. Намерете броя на възможностите двете окръжности да имат поне една обща точка и вероятността построените окръжности да имат две общи точки?
- **28.** Четириъгълникът ABCD със страна BC = 7 е вписан в окръжност с диаметър 25 и център точката O, която лежи на страната AB. Лицето на $\triangle ACD$ е равно на 108. Да се намерят лицето и периметърът на четириъгълника.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0\;,\;\;a\neq 0$$
 $D=b^2-4ac\;\;x_{1,2}=rac{-b\pm\sqrt{D}}{2a}\;\;$ при $D\geq 0$ $ax^2+bx+c=a\big(x-x_1\big)\big(x-x_2\big)\;\;$ Формули на Виет: $x_1+x_2=-rac{b}{a}\;\;x_1x_2=rac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \neq 0$ е парабола с връх точката $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$

Корен. Степен и логаритъм

Комбинаторика

Брой на пермутациите на n елемента: $P_n = n.(n-1)...3.2.1 = n!$

Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$

Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{k.(k-1)...3.2.1}$

Вероятност за настъпване на събитието A:

$$p(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}}, \quad 0 \le p(A) \le 1$$

Прогресии

Аритметична прогресия: $a_n = a_1 + (n-1)d$ $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$

Геометрична прогресия: $a_n = a_1.q^{n-1}$ $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}, \ q \neq 1$

Формула за сложна лихва: $K_{\scriptscriptstyle n} = K.q^{\scriptscriptstyle n} = K.\left(1 + \frac{p}{100}\right)^{\scriptscriptstyle n}$

Зависимости в триъгълник и успоредник

Правоъгълен триъгълник:
$$c^2=a^2+b^2$$
 $S=\frac{1}{2}ab=\frac{1}{2}ch_c$ $a^2=a_1c$ $b^2=b_1c$

$$h_c^2 = a_1 b_1$$
 $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

Произволен триъгълник:

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$$
 $b^{2} = a^{2} + c^{2} - 2ac\cos\beta$ $c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$ $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

Формула за медиана:

$$m_a^2 = \frac{1}{4} \left(2b^2 + 2c^2 - a^2 \right) \qquad m_b^2 = \frac{1}{4} \left(2a^2 + 2c^2 - b^2 \right) \qquad m_c^2 = \frac{1}{4} \left(2a^2 + 2b^2 - c^2 \right)$$

Формула за ъглополовяща: $\frac{a}{b} = \frac{n}{m}$ $l_c^2 = ab - mn$

Формула за диагоналите на успоредник: $d_1^2 + d_2^2 = 2a^2 + 2b^2$

Формули за лице

Триъгълник:
$$S=\frac{1}{2}ch_c$$
 $S=\frac{1}{2}ab\sin\gamma$ $S=\sqrt{p(p-a)(p-b)(p-c)}$ $S=pr$ $S=\frac{abc}{4R}$

Успоредник: $S = ah_a$ $S = ab\sin\alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник: $S = \frac{1}{2}d_1d_2\sin\varphi$

Описан многоъгълник: S = pr

Тригонометрични функции

α°	0°	30°	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$tg\alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\operatorname{cotg} \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	90°-α	90°+α	180° – α
sin	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$
tg	$-\operatorname{tg}\alpha$	$\cot g \alpha$	$-\cot g \alpha$	$-tg\alpha$
cotg	$-\cot g \alpha$	$tg\alpha$	$-\operatorname{tg}\alpha$	$-\cot g \alpha$

$$\begin{split} &\sin\left(\alpha\pm\beta\right) = \sin\alpha\cos\beta\pm\cos\alpha\sin\beta &\cos\left(\alpha\pm\beta\right) = \cos\alpha\cos\beta\mp\sin\alpha\sin\beta \\ & tg\left(\alpha\pm\beta\right) = \frac{tg\,\alpha\pm tg\,\beta}{1\mp tg\,\alpha\,tg\,\beta} &\cot\left(\alpha\pm\beta\right) = \frac{\cot\alpha\cot\beta\mp1}{\cot\beta\pm\cot\alpha} \\ &\sin2\alpha = 2\sin\alpha\cos\alpha &\cos2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha \\ &tg\,2\alpha = \frac{2tg\,\alpha}{1-tg^2\,\alpha} &\cot2\alpha = \frac{\cot^2\alpha-1}{2\cot g\,\alpha} \\ &\sin^2\alpha = \frac{1}{2}(1-\cos2\alpha) &\cos^2\alpha = \frac{1}{2}(1+\cos2\alpha) \\ &\sin^2\alpha = \frac{1}{2}(1-\cos2\alpha) &\sin\alpha - \sin\beta = 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ &\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} &\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ &1-\cos\alpha = 2\sin^2\frac{\alpha}{2} &1+\cos\alpha = 2\cos^2\frac{\alpha}{2} \\ &\sin\alpha\sin\beta = \frac{1}{2}(\cos(\alpha-\beta) - \cos(\alpha+\beta)) &\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha-\beta) + \cos(\alpha+\beta)) \\ &\sin\alpha\cos\beta = \frac{1}{2}(\sin(\alpha+\beta) + \sin(\alpha-\beta)) \end{split}$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО, МЛАДЕЖТА И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

Математика – 23 май 2012 г.

ВАРИАНТ 1

Ключ с верните отговори

Въпроси с изборен отговор

Въпрос №	Верен отговор	Брой точки
1	Γ	2
2	В	2
3	В	2 2 2
4	Γ	2
5	Γ	2
6	В	2
7	Γ	2
8	A	2 2
9	Б	2
10	В	2
11	В	3
12	Б	3 3 3
13	A	
14	Γ	3
15	A	3 3 3
16	Б	3
17	A	
18	A	3 3 3
19	В	3
20	В	
21	1	4
22	x = -1	4
23	n = 10	4
24	4	4
25	$S = \frac{11}{4} \text{cm}^2 = 2\frac{3}{4} \text{cm}^2 = 2,75 \text{cm}^2$	4
26		10
27	<u> </u>	10
	Брой 5, $P = \frac{1}{5}$	
28	$S_{ABCD} = 192 \text{ w } P_{ABCD} = 62$	10

Въпроси с решения

26. Критерии за оценяване на задача 26

Първи начин:

1. (1 точка)
$$\frac{1}{\cos 2x} - tg \, 2x = \frac{1 - \sin 2x}{\cos 2x}.$$

2. (2 точки)
$$\frac{1-\sin 2x}{\cos 2x} = \frac{(\sin x - \cos x)^2}{\cos^2 x - \sin^2 x}.$$

3. (2 точки)
$$\frac{(\sin x - \cos x)^2}{\cos^2 x - \sin^2 x} = \frac{(\cos x - \sin x)}{(\cos x + \sin x)}.$$

4. (1 точки)
$$\frac{\cos x - \sin x}{\cos x + \sin x}.(\sin x + \cos x) = \cos x - \sin x.$$

5. (3 точки)
$$\cos x - \sin x = \cos x - \cos \left(\frac{\pi}{2} - x\right) = 2\sin \left(\frac{\pi}{4}\right)\sin \left(\frac{\pi}{4} - x\right)$$
.

6. (1 точки)
$$2\sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}-x\right) = \frac{2\sqrt{2}}{2}\sin\left(\frac{\pi}{4}-x\right) = \sqrt{2}\sin\left(\frac{\pi}{4}-x\right)$$
.

Втори начин:

1. (1 точка)
$$\left(\frac{1}{\cos 2x} - tg \, 2x\right) \left(\sin x + \cos x\right) - \sqrt{2} \sin \left(\frac{\pi}{4} - x\right) = 0$$

2. (2 точки)
$$\frac{1-\sin 2x}{\cos 2x} (\sin x + \cos x) - \sqrt{2} \left(\sin \frac{\pi}{4} \cos x - \cos \frac{\pi}{4} \sin x\right) = 0.$$

3. (3 точки)
$$\frac{1-2\sin x \cos x}{\cos^2 x - \sin^2 x} (\sin x + \cos x) - \cos x + \sin x = 0$$
.

4. (2 точки)
$$\frac{1-2\sin x \cos x}{\cos x - \sin x} - \cos x + \sin x = 0.$$

5. (1 точка)
$$\frac{1 - 2\sin x \cos x - \cos^2 x + \sin x \cos x + \sin x \cos x - \sin^2 x}{\cos x - \sin x} = 0.$$

6. (1 точки) Сведено до
$$0 = 0$$

27. Критерии за оценяване на задача 27.

1. (4 точки) Нека $AB=3\,\mathrm{cm}$ е дадената отсечка, а $k_A\left(A;\,r_A\right)$ и $k_B\left(B;\,r_B\right)$ са двете окръжности с радиуси $r_A< r_B$. Окръжностите ще имат точно една обща точка тогава и само тогава, когато $r_A+r_B=3$ или $r_B-r_A=3$. Благоприятните възможности за избора на радиусите са три – числата 1 и 2, или 1 и 4, или 2 и 5.

2. (3 точки) Окръжностите ще имат две общи точки тогава и само тогава, когато числата 3, r_A и r_B са дължини на страните на триъгълник. Благоприятните възможности за избора на радиусите са две – числата 2 и 4 или 4 и 5.

3. (1 точка) Броят на възможностите двете окръжности да имат поне една обща точка е равен на сбора от възможности да имат точно една обща точка с тези да имат точно 2 общи точки. Този брой е 5.

4. (1 точка) Всички възможни избори за дължини на r_A и r_B са $C_5^2 = \frac{5.4}{1.2} = 10$.

5. (1 точка) Търсената вероятност е $P = \frac{2}{10} = \frac{1}{5}$.

28. Критерии за оценяване на задача 28

1. (1 точка) Определяне на $\it AB$ -диаметър,

$$\angle ACB = \angle ADB = 90^{\circ}$$
, $\angle ADC > 90^{\circ}$.

2. (1 точка) Намиране на AC = 24.

3. (1 точка) Намиране на $S_{ABC} = 84\,$ и $S_{ABCD} = 192\,$.

4. (2 точки)
$$\sin \angle ABC = \sin \angle ADC = \frac{24}{25}$$
, $\cos \angle ADC = -\cos \angle ABC = -\frac{7}{25}$.

5. (1 точка) Намиране на AD.DC = 225 .

6. (1 точка) Намиране на $AD^2 + CD^2 = 450$.

7. (2 точки) Намиране на AD = DC = 15 или AD + DC = 30.

8. (1 точка) Намиране на $P_{ABCD} = 62$.