Algorytm wieży Hanoi dla N-tej liczby wież

I. Opis algorytmu

Algorytm jest bardzo prosty i składa się tylko z trzech części! :)

- 1. Przeniesiemy dyski z początkowej wieży do wieży-buforów.
- 2. Stosujemy standardowy algorytm wieży Hanoi dla trzech wież.
- 3. Przenieś pierścienie z wieży-buforów do końcowej wieży.

1.

Na początku musimy określić liczbę buforów.

Dla klasycznego algorytmu Wieży Hanoi potrzebujemy 3 wież, stąd wszystkie pozostałe wieże są wieżami buforowymi.

 $K_b = K - 3$, gdzie K to całkowita liczba wież, a K_b - liczba buforów.

Aby wypełnić bufor dyskiem, potrzebujesz:

A. Przenieś jeden dysk do każdej wolnej wieży

B. Przenieś wszystkie uprzednio przesłane dyski do określonego bufora

C. Wykonaj punkty A i B dla wszystkich wolnych buforów

2.

Stosujemy klasyczny algorytm Wieży Hanoi, gdzie liczba pierścieni N

$$N = \frac{K^2 - K - 6}{2}$$

3.

Teraz musimy przenieść pierścienie z buforów do ostatniej wieży, aby to było wymagane:

A. Przenieś jeden dysk z bufora do wszystkich wolnych wież

B. Przenieś ostatni dysk z bufora do ostatniej wieży

C. Przenieś dyski z wcześniej wypełnionych wież do końcowej wieży.

D. Powtórz kroki od A do C dla wszystkich wypełnionych buforów

II. Tabela

	Kroki				
Dyski	4 wieże	5 wież	6 wież	7 wież	8 wież
7	25	24	-	-	-
8	41	25	-	-	-
9	73	27	-	-	-
10	137	31	-	-	-
11	265	39	-	-	-
12	521	55	42	-	-
13	1033	87	43	-	-
14	2057	151	45	-	-
15	4105	279	49	-	-
16	8201	535	57	-	-
17	16393	1047	73	-	-
18	32777	2071	105	64	-
19	65545	4119	169	65	-
20	131081	8215	297	67	-
21	262153	16407	553	71	-
22	524297	32791	1065	79	-
23	1048585	65559	2089	95	-
24	2097161	131095	4137	127	-
25	4194313	262167	8233	191	90
26	8388617	524311	16425	319	91
27	16777225	1048599	32809	575	93
28	33554441	2097175	65577	1087	97
29	67108873	4194327	131113	2111	105
30	134217737	8388631	262185	4159	121

III.

Złożoność algorytmu

 $N\,$ - liczba krążków;

K - liczby wież.

$$O(O_1(2^{N-\frac{K^2-K-6}{2}}-1)+2\times O_2(2\times (K+1)+1+O_2(K-1)))\,,$$
 gdzie: $O_2(1)=5,\;K>4,\;N\geq \frac{K^2-K-6}{2}$.

 O_1 - Złożoność dla klasycznego algorytmu wieży Hanoi dla $N=N-rac{K^2-K-6}{2}$

 ${\cal O}_2$ - Złożoność algorytmu wypełniania buforów