Classifying age categories of Abalones using physical features

What was done:

Using a classic k-nearest-neighbours classification system, we approximated the age categories of the abalone in the given data set. A two-class classification system was chosen (Abalone-2) as it made calculating performance metrics much simpler in terms of determining which class was the positive or negative class. In this case, the "young" class (rings \leq 10) was assigned as 0, and the "old" class (rings \geq 11) assigned as 1.

Through some observation, it was found that the sex of an abalone alone is a poor indicator of determining the number of rings of an abalone has, and does little to differentiate a "young" and "old" abalone. Furthermore, the length, which is the most intuitive attribute when thinking of a way to determine the age of an abalone, was not alone indicative of the number of rings. Thus the other attributes had to be considered as well to create a useful measure of distance or difference between young and old.

In practice, it was found that the sex is useful in distinguishing infant abalone and "adult" abalone, as Infants were much more likely to be small and thus have fewer rings, this was fairly obvious but worth noting. "Adult" abalone were considered to be any abalone that was Male or Female. The "What was found" or results section will discuss in more detail what this means for the classifier.

Using the k-fold cross validation method, the original data set was split into k partitions, 1 partition was used as the test set, and the remaining k-1 sets were used as the training set. This partitioning was repeated k times so each partition had a chance to shine as the test set while the others took a seat as the training set. Each data point in the test set was assessed, and a list of its k nearest neighbours, sorted by score, was retrieved from the training set. Its predicted class was decided mostly by a majority vote, and in the case of a draw, the first item in the list of neighbours is drawn.

What was found:

Several similarity/distance metrics were used to determine the nearest neighbours, including Manhattan distance, Euclidean distance, and cosine (dis)similarity. Cosine dissimilarity was determined as 1-cosine similarity, for the sake of allowing 1 sorting method to sort all types of metrics regardless of means of calculation since we want a lower score to mean greater similarity, and cosine similarity works exactly opposite to that.

Of the available metrics, perhaps the least useful was cosine dissimilarity, as it seemed like most data points lie in approximately the same "line". Thus many of the data points that "point" in the same "direction" but have different magnitudes will be seen to be the same from the perspective of the cosine dissimilarity. This is supported by intuition, as an abalone grows, given the same conditions, you would expect it to grow proportionally in all dimensions.

In preliminary testing, it was found that completely excluding the sex of an abalone in determining an abalone's age resulted in somewhat acceptable accuracy, with approximately a 5% decrease in the accuracy of the classifier. Upon converting the sex into a 0 or 1 depending if it was an Infant or Male/Female (or Adult for short) and re-including it in the metric, the accuracy on average improved greatly but became slightly more varied, but not significant enough to be a concern.

Marvin Lai – 754672 Machine Learning Project 1

Likewise, the Manhattan distance as a metric of accuracy was not as effective and results varied too unreliably to be used. The exact cause for this is unknown. Perhaps it is due to the attributes being all of slightly different scales, and thus a somewhat insignificant difference in one attribute can be seen as a large difference in the overall comparison of two attributes. While the exact reason for the unreliability is unknown, the results proved too unreliable to make confident estimations.

In the end and by process of elimination, the metric settled for was the Euclidean distance between two vectors as this was found to be both the most reliable and most accurate.

Selecting the k value for k-fold cross validation and (a different) k for k-nearest neighbours was simply a matter of re-running the test multiple times with varying values for both k's. Ultimately it was found that k = 19 for k-fold with k = 7 for k-nearest neighbours worked to obtain the most accurate results. The results of which can be perused in the Appendix at your pleasure, with the appropriate grid highlighted to show the most accurate k values obtained of the values tested.

As such, the recommendations to be made based of the experimentation is to use k-fold with a value of k = 19, using k-nearest neighbours with a value of k = 7, and a distance metric of Euclidean distance because it provided the most reliable results and also the other metrics produced slightly more unreliable results.

Appendix and Raw numbers

<u>Note:</u> Positives were considered Old abalone, Negatives Young. Therefore Specificity (spe) represents the percentage of times the model predicts young abalone out of the times it predicts a young abalone, sensitivity is likewise same as the above but for old abalone.

	7	11	19	21
5	Splits: 7 nn 5	Splits: 11 nn 5	Splits: 19 nn 5	Splits: 21 nn 5
	acc: 0.7337008628954937	acc: 0.731590309426721	acc: 0.7325162220620043	acc: 0.7385762385762386
	err: 0.26629913710450626	err: 0.268409690573279	err: 0.2674837779379957	err: 0.26142376142376145
	pre: 0.7070457354758962	pre: 0.7030075187969925	pre: 0.7001223990208079	pre: 0.704
	sen: 0.39557399723374825	sen: 0.3887733887733888	sen: 0.39722222222222	sen: 0.4265927977839335
	spe: 0.913059427732942	spe: 0.913059427732942	spe: 0.9099595736861448	spe: 0.9045689019896831
7	Splits: 7 nn 7	Splits: 11 nn 7	Splits: 19 nn 7	Splits: 21 nn 7
	acc: 0.7370565675934804	acc: 0.7371072199568242	acc: 0.7433309300648883	acc: 0.7251082251082251
	err: 0.26294343240651963	err: 0.26289278004317584	err: 0.25666906993511174	err: 0.27489177489177485
	pre: 0.69222222222222	pre: 0.7285902503293807	pre: 0.7328339575530587	pre: 0.6817625458996328
	sen: 0.43173943173943174	sen: 0.3832293832293832	sen: 0.4073560027758501	sen: 0.38680555555555557
	spe: 0.8984976181751557	spe: 0.9244314013206163	spe: 0.9213235294117647	spe: 0.9043414275202355
	•	•		•
11	Splits: 7 nn 11	Splits: 11 nn 11	Splits: 19 nn 11	Splits: 21 nn 11
	acc: 0.7404122722914669	acc: 0.7335092348284961	acc: 0.7317952415284787	acc: 0.7301587301587301
	err: 0.2595877277085331	err: 0.26649076517150394	err: 0.26820475847152125	err: 0.2698412698412699
	pre: 0.734375	pre: 0.7133592736705577	pre: 0.7055137844611529	pre: 0.7275320970042796
	sen: 0.3908523908523909	sen: 0.3819444444444444	sen: 0.3898891966759003	sen: 0.35392088827203333
	spe: 0.9252473433492122	spe: 0.9190179552949799	spe: 0.9135075450864925	spe: 0.9297018770702982
17	Splits: 7 nn 17	Splits: 11 nn 17	Splits: 19 nn 17	Splits: 21 nn 17
	acc: 0.7281879194630873	acc: 0.7169585032381867	acc: 0.7317952415284787	acc: 0.7318422318422318
	err: 0.27181208053691275	err: 0.28304149676181334	err: 0.26820475847152125	err: 0.26815776815776815
	pre: 0.7048748353096179	pre: 0.6890156918687589	pre: 0.7256267409470752	pre: 0.7363112391930836
	sen: 0.370242214532872	sen: 0.3342560553633218	sen: 0.3618055555555555	sen: 0.3541233541233541
	spe: 0.9178584525119179	spe: 0.919970631424376	spe: 0.9276001470047777	spe: 0.932596685082873