Problems regarding Fourier Series

1.

Consider the periodic square wave x(t) shown in Fig.

- (a) Determine the complex exponential Fourier series of x(t).
- (b) Determine the trigonometric Fourier series of x(t).

(a) Let

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \qquad \omega_0 = \frac{2\pi}{T_0}$$

Using Eq. (5.102b), we have

$$c_{k} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) e^{-jk\omega_{0}t} dt = \frac{1}{T_{0}} \int_{-T_{0}/4}^{T_{0}/4} A e^{-jk\omega_{0}t} dt$$

$$= \frac{A}{-jk\omega_{0}T_{0}} (e^{-jk\omega_{0}T_{0}/4} - e^{jk\omega_{0}T_{0}/4})$$

$$= \frac{A}{-jk2\pi} (e^{-jk\pi/2} - e^{jk\pi/2}) = \frac{A}{k\pi} \sin\left(\frac{k\pi}{2}\right)$$

Thus,

$$c_k = 0 k = 2m \neq 0$$

$$c_k = (-1)^m \frac{A}{k\pi} k = 2m + 1$$

$$c_0 = \frac{1}{T_0} \int_0^{T_0} x(t) dt = \frac{1}{T_0} \int_0^{T_0/2} A dt = \frac{A}{2}$$

Hence,

$$c_0 = \frac{A}{2}$$
 $c_{2m} = 0, m \neq 0$ $c_{2m+1} = (-1)^m \frac{A}{(2m+1)\pi}$

and we obtain

$$x(t) = \frac{A}{2} + \frac{A}{\pi} \sum_{m=-\infty}^{\infty} \frac{(-1)^m}{2m+1} e^{j(2m+1)\omega_0 t}$$

2.

Consider the periodic impulse train $\delta_{T_0}(t)$ shown in Fig. 5-12 and defined by

$$\delta_{T_0}(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_0)$$

- (a) Determine the complex exponential Fourier series of $\delta_{T_0}(t)$.
- (b) Determine the trigonometric Fourier series of $\delta_{T_0}(t)$.
- (a) Let

$$\delta_{T_0}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \qquad \omega_0 = \frac{2\pi}{T_0}$$

Since $\delta(t)$ is involved, we use Eq. to determine the Fourier coefficients and we obtain

$$c_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} \delta(t) e^{-jk\omega_0 t} dt = \frac{1}{T_0}$$

Hence, we get

$$\delta_{T_0}(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_0) = \frac{1}{T_0} \sum_{k=-\infty}^{\infty} e^{jk\omega_0 t}$$
 $\omega_0 = \frac{2\pi}{T_0}$

(b) Let

$$\delta_{T_0}(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos k \omega_0 t + b_k \sin k \omega_0 t \right) \qquad \omega_0 = \frac{2\pi}{T_0}$$

Since $\delta_{T_0}(t)$ is even, $b_k = 0$, and by Eq. a_k are given by

$$a_k = \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} \delta(t) \cos k \,\omega_0 t \, dt = \frac{2}{T_0}$$

Thus, we get

$$\delta_{T_0}(t) = \frac{1}{T_0} + \frac{2}{T_0} \sum_{k=1}^{\infty} \cos k \omega_0 t$$
 $\omega_0 = \frac{2\pi}{T_0}$