Data Analytics - Challenge

The goal of this challenge is to analyze a restaurant invoices. Some celles are already implemented, you just need to **run** them. Some other cells need you to write some code.

Start the challenge by running the two following cells:

```
In [1]: import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
```

```
In [2]: tips_df = pd.read_csv("https://raw.githubusercontent.com/mwaskom/seaborn-da
```

PDisplay the 10 first rows of the dataset (no need to sort)

Reveal solution

```
In [3]: # Your code here
tips_df.head(10)
```

Out[3]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
5	25.29	4.71	Male	No	Sun	Dinner	4
6	8.77	2.00	Male	No	Sun	Dinner	2
7	26.88	3.12	Male	No	Sun	Dinner	4
8	15.04	1.96	Male	No	Sun	Dinner	2
9	14.78	3.23	Male	No	Sun	Dinner	2

? How many days per week is the restaurant open?

Reveal solution

```
In [4]: # Your code here
    day_work = tips_df['day'].unique().tolist()
    print("il y a : ",len(day_work)," jours/semaine ou le restaurant est ouvert
    il y a : 4 jours/semaine ou le restaurant est ouvert, qui sont : ['Su n', 'Sat', 'Thur', 'Fri']
```

What day of the week is there more bills? Plot this with a Seaborn Countplot.

Reveal solution

```
In [5]: # Your code here
    day_more_total_bill = tips_df['day'].value_counts()
    day_more_total_bill
```

```
Out[5]: Sat 87
Sun 76
Thur 62
Fri 19
```

Name: day, dtype: int64

c'est le samedi

```
In [6]: # Your plot here
    order = day_more_total_bill.index
    sns.countplot(tips_df, x='day',order=order)
```

Out[6]: <AxesSubplot:xlabel='day', ylabel='count'>

 $\ref{eq:continuous}$ Try to do some other countplots, varying x with one of the categorical column (sex , smoker , time)

```
In [7]: # Your first plot here
# To add a cell, you can go in the menu and do Insert > Insert cell below
```

```
In [8]: sns.countplot(tips_df, x='sex')
```

Out[8]: <AxesSubplot:xlabel='sex', ylabel='count'>


```
In [9]: sns.countplot(tips_df, x='smoker')
```

Out[9]: <AxesSubplot:xlabel='smoker', ylabel='count'>


```
In [10]: sns.countplot(tips_df, x='time')
```

Out[10]: <AxesSubplot:xlabel='time', ylabel='count'>

? Let's plot the distribution of total_bill based on a given category. Start with day :

```
sns.catplot(data=tips_df, x='day', y='total_bill', kind="box")
```

- 1. Change the value of x with one of the categorical column of the dataset and the value of kind ("bar", "box", "violin", "boxen")
- 2. Change the value of y with one of the numerical column of the dataset

```
In [11]: # Your experiments here
sns.catplot(data=tips_df, x='day', y='total_bill', kind="box")
```

Out[11]: <seaborn.axisgrid.FacetGrid at 0x7f41907128d0>

In [12]: sns.catplot(data=tips_df, x='day', y='total_bill', kind="violin")

Out[12]: <seaborn.axisgrid.FacetGrid at 0x7f41906e5a90>

In [13]: sns.catplot(data=tips_df, x='sex', y='total_bill', kind="boxen")

Out[13]: <seaborn.axisgrid.FacetGrid at 0x7f4190663b38>


```
In [14]: sns.catplot(data=tips_df, x='sex', y='total_bill', kind="bar")
```

Out[14]: <seaborn.axisgrid.FacetGrid at 0x7f4190789898>

In [15]: sns.catplot(data=tips_df, x='sex', y='total_bill', kind="boxen")

Out[15]: <seaborn.axisgrid.FacetGrid at 0x7f419055d4a8>

In [16]: sns.catplot(data=tips_df, x='sex', y='total_bill', kind="violin")

Out[16]: <seaborn.axisgrid.FacetGrid at 0x7f41904c6f60>

In [17]: sns.catplot(data=tips_df, x='smoker', y='total_bill', kind="bar")

Out[17]: <seaborn.axisgrid.FacetGrid at 0x7f41904035f8>


```
In [18]: sns.catplot(data=tips_df, x='sex', y='total_bill', kind="violin")
```

Out[18]: <seaborn.axisgrid.FacetGrid at 0x7f419040c550>

In [19]: sns.catplot(data=tips_df, x='sex', y='total_bill', kind="boxen")

Out[19]: <seaborn.axisgrid.FacetGrid at 0x7f4190375ef0>


```
In [20]: sns.catplot(data=tips_df, x='sex', y='total_bill', kind="box")
```

Out[20]: <seaborn.axisgrid.FacetGrid at 0x7f4190309ef0>

PLet's use seaborn.FacetGrid

(https://seaborn.pydata.org/generated/seaborn.FacetGrid.html)

- 1. Run the cell below. What do you observe?
- 2. Change col in the first line with another column (e.g. "time"). Run the cell again. What do you observe?

```
In [21]: g = sns.FacetGrid(tips_df, col="day")
g.map(plt.hist, "total_bill")
```

Out[21]: <seaborn.axisgrid.FacetGrid at 0x7f41902f5e80>


```
In [22]: g = sns.FacetGrid(tips_df, col="time")
g.map(plt.hist, "total_bill")
```

Out[22]: <seaborn.axisgrid.FacetGrid at 0x7f418ffd7860>

? Let's continue with FacetGrid and add a row="smoker" parameter. How many cells do you get in the plot?

Reveal solution

```
In [23]: # Your code here
g = sns.FacetGrid(tips_df, row="smoker")
g.map(plt.hist, "total_bill")
```

Out[23]: <seaborn.axisgrid.FacetGrid at 0x7f418ffd7780>

Correlation

Let's start looking for correlation between columns in the dataset.

? What is your intuition about the relationship between the columns tip and total_bill?

Je pense qu'il y a une correlation positive entre les deux variables

? Let's look at the data to see if our intuition is correct. We will do a **scatterplot** with x being total_bill and y the tip.

? Another way of looking at this data is to use a <u>seaborn.jointplot</u> (https://seaborn.pydata.org/generated/seaborn.jointplot.html).

? A very useful tool to **identify** correlations is the <u>seaborn.pairplot</u> (https://seaborn.pydata.org/generated/seaborn.pairplot.html):

In [26]: sns.pairplot(tips_df, height=2, hue="smoker")

Out[26]: <seaborn.axisgrid.PairGrid at 0x7f418fc5cd30>

Regression

We are not doing Machine Learning yet but we can use <u>seaborn.lmplot</u> (https://seaborn.pydata.org/generated/seaborn.lmplot.html) to graphically read a linear correlation between two columns:

In [27]: sns.lmplot(x="total_bill", y="tip", col="smoker", data=tips_df)

Out[27]: <seaborn.axisgrid.FacetGrid at 0x7f4190541b70>

Good job!

Save your notebook, go back to the **Le Wagon - Learn** platform to upload your progress. A quiz awaits you!