Hash-Based Indexes

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Introduction

As for any index, 3 alternatives for data entries **k***:

- Data record with key value k
- 2. < k, rid of data repord with sea rollike y value k>
- 3. < k, list o with search key k > https://eduassistpro.github.io/
- Add WeChat edu_assist_pro
 Hash-based indexes ar t for equality
 selections. Cannot support range searches.
- Static and dynamic hashing techniques exist;
 trade-offs similar to ISAM vs. B+ trees.

Static Hashing

- # primary pages (index data entry pages) fixed, allocated sequentially, never deallocated; overflow pages if needed.
- h(k) mod Mghhucket to which data entry with key k b uckets)

 https://eduassistpro.github.io/

h(key) mod N A dd We Chat edu_assist_pro

key

h

N-1

Primary bucket pages

Overflow pages

Static Hashing (Contd.)

- Buckets contain data entries.
- Hash function works on search key field of record r. Must distribute values over range 0 ...
 M-1.
 - Assignment Project Exam Help
 h(key) = (a * s well.
 - a and b are https://eduassistpro.github.io/how to tune h.
 Add WeChat edu_assist_pro
- Long overflow chains can and degrade performance.
 - Keep 80% full initially and/or re-hashing
 - Extendible and Linear Hashing: Dynamic techniques to fix this problem.

Extendible Hashing

- Situation: Bucket (primary page) becomes full.
 Why not re-organize file by doubling # of buckets?
 - Reading Aarsig wuriting Palbjoag & Sxisnex dehs ive!
 - Idea: Use d https://eduassistpro.github.io/ ry, splitting just the bucket thatdower(lbwt edu_assist_pro
 - Directory much smaller than file, so doubling it is much cheaper. Only one page of data entries is split. Ensure no overflow page!
 - Trick lies in how hash function is adjusted!

- * **Insert**: If bucket is full, **split** it (allocate new page, re-distribute).
- * *If necessary*, double the directory. (As we will see, splitting a bucket does not always require doubling; we can tell by comparing *global depth* with *local depth* for the split bucket.)

Insert h(r)=20 (Causes Doubling)

After inserting h(r)=20

Points to Note

- 20 = binary 10100. Last **2** bits (00) cannot tell us *r* belongs in A or A2. Last 3 bits can tell us the which bucket.
 - Global depth of directe Profest Exampits peded to tell which bucket
- Local depth of https://eduassistpro.gitbubeio/mine if an entry belongs to this bucket.

 Add WeChat edu_assist_pro

 • When does bucket split cau ry doubling?
- - Before insert, local depth of bucket = global depth. Insert causes *local depth* to become > *global depth*; directory is doubled by copying it over and 'fixing' pointer to split image page. (Use of least significant bits enables efficient doubling via copying of directory!)

Directory Doubling

Least Significant VS. Most Significant

Why use least significant bits in directory?

- Hard to decide where to start
- Quite biased in the most significant bids

Comments on Extendible Hashing

- If directory fits in memory, equality search answered with one disk access; else two.
 - 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as data entries) and 25,000 directory elements; chances are https://eduassistpro.github.io/
 - Directory gro
 distribution of hash
 values is skeweddwethat edu_assistgero
 - Multiple entries with same hash value cause problems!
- <u>Delete</u>: If removal of data entry makes bucket empty, can be merged with 'split image'. If each directory element points to same bucket as its split image, can halve directory.

$$2^{N}$$
, 2^{N+1} , 2^{N+2} , 2^{N+4} , 2^{N+5}

N = 100
Assignment Project Exam Help

https://eduassistpro.github.io/ 00, 000, 0000, Add WeChat edu_assist_pro

2¹⁰¹

23/3/20

Linear Hashing

- This is another dynamic hashing scheme, an alternative to Extendible Hashing.
- LH handles the problem of long overflow chains without using is direct bryjean dynamidtes duplicates.
- *Idea*: Use a f https://eduassistpro.gn្កាន្តរៀច/h₁, h₂, ...
 - h_i(key) = h(key) mod(2ⁱN); Add WeChat edu_assist_pro
 - h is some hash function (ra
 0 to N-1)
 - If N = 2^{d0} , for some d0, \mathbf{h}_i consists of applying \mathbf{h} and looking at the last di bits, where di = d0 + i.
 - \mathbf{h}_{i+1} doubles the range of \mathbf{h}_i (similar to directory doubling)

Linear Hashing (Contd.)

- Directory avoided in LH by using overflow pages, and choosing bucket to split round-robin.
 - Splitting proceeds in <u>rounds</u>. Round ends when all N_R initial (for r https://eduassistpro.glthBbckets 0 to Next-1 have bee
 - Current round number is edu_assist_pro
 - Search: To find bucket for data entry r, find $h_{Level}(r)$:
 - If $\mathbf{h}_{Level}(r)$ in range `Next to N_R ', r belongs here.
 - Else, r could belong to bucket $\mathbf{h}_{Level}(r)$ or bucket $\mathbf{h}_{Level}(r) + N_R$; must apply $\mathbf{h}_{Level+1}(r)$ to find out.

Overview of LH File

In the middle of a round.

Linear Hashing (Contd.)

- Insert: Find bucket by applying $\mathbf{h}_{Level} / \mathbf{h}_{Level+1}$:
 - If bucket to insert into is full:
 - Add overflow page and insert data entry.
 - (Maybe) Split Mext hucket end incremently
 Next.
- Can choose any crhttps://eduassistpro.github.io/
- Since buckets are salit round not edu_assistowro chains don't develop!
- Doubling of directory in Extendible Hashing is similar; switching of hash functions is *implicit* in how the # of bits examined is increased.

Usually, when a new overflow page is created.

Example of Linear Hashing

Insert 43*

Insert 37 29

Insert 34 66 22

Insert 50

LH Described as a Variant of EH

- The two schemes are actually quite similar:
 - Begin with an EH index where directory has N elements. Assignment Project Exam Help
 - Use overflow https://eduassistpro.github.io/
 - First split is at irectory being doubled at this point. Chat edu_assist_1,NP1>, <2,N+2>, ... are the same. So, need only create directory element N, which differs from 0, now.
 - When bucket 1 splits, create directory element N+1, etc.
- So, directory can double gradually. Also, primary bucket pages are created in order. If they are

Summary

- Hash-based indexes: best for equality searches, cannot support range searches.
- Static Hashing can lead to long overflow chains.
- Extendible Has w pages by splitting a full https://eduassistpro.gidata.ie/ntry is to be added to it. Approvise that edu_assist/ippoverflow pages.)
 - Directory to keep track of buckets, doubles periodically.
 - Can get large with skewed data; additional I/O if this does not fit in main memory.

Summary (Contd.)

- Linear Hashing avoids directory by splitting buckets round-robin, and using overflow pages.
 - Overflow pages not likely to be long.
 - Duplicates handled easily exam Help
 - Space utiliz
 Hashing, sin https://eduassistpro.github.io/ dense data

 Add WeChat edu_assist_pro
 - Can tune criterion for triggering splits to trade-off slightly longer chains for better space utilization.
- For hash-based indexes, a skewed data distribution is one in which the hash values of data entries are not uniformly distributed!