

AD-R151 858 SIMULATION OF SPACE BASED RADAR SURVEILLANCE SYSTEMS 1/1
UNCLASSIFIED II: SOFTWARE TO PERF. (U) DEFENCE RESEARCH
ESTABLISHMENT OTTAWA (ONTARIO) N BROUSSEAU OCT 83
DREQ-TN-83-7 F/G 17/9 NL

END

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

AD-A151 858

FILE COPY

DEFENCE RESEARCH ESTABLISHMENT OTTAWA

TELETYPE NUMBER

Canadian

85 08 12 119

National
Defence Défense
nationale

SIMULATION OF SPACE BASED RADAR SURVEILLANCE SYSTEMS II: SOFTWARE TO PERFORM TIME OF REVISIT STUDIES

by

N. Brousseau
*Remote Sensing Section
Electronics Division*

Accession For	
NTIS	GRA&I
DTIC TAB	
Unannounced	
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail and/or Special
A-1	

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 83-7

PCN
33Y10

October 1983
Ottawa

ABSTRACT

A computer simulation of the coverage of satellite borne radars with mechanical and/or electronic scanning mode has been implemented in APL language. The number of revisits and the revisit time are calculated for a set of points of reference. The programs are producing either paper print-out or graphic displays on a Tektronix screen. This simulation is a component of a software package designed to study space based radar surveillance systems.

RÉSUMÉ

On présente une simulation par ordinateur en langage APL de la couverture de radars montés sur satellites à balayage électronique et/ou mécanique. Les programmes produisent une sortie imprimée ou affichent les données sur écran Tektronix. On calcule l'intervalle entre les visites et le nombre de revisites pour un ensemble de points de référence. Cette simulation fait partie d'un ensemble de logiciels destinés à l'analyse de systèmes de surveillance par radars montés sur satellites.

ACKNOWLEDGEMENT

The author would like to thank Mr. R.H. Martin and Dr. A.W. Bridgewater both from the Communications Research Center, for many helpful discussions.

TABLE OF CONTENTS

	<u>Page</u>
Abstract/Résumé	iii
Acknowledgement	v
Table of Contents	vi
List of Figures	vii
List of Tables	viii
Introduction	1
Function of Workspace TSATCO and SATCO	1
Mode of Operation	1
Reference Points	1
Example of the Results	2
List of Systems of Coordinates used in the programs	7
Description of the Systems of Coordinates	14
Units	16
Description of the input variables	17
Documentation of the Programs	19
Conclusion	60
References	60
Appendix I: List of Programs	A1-3
Appendix II: Listing of the Programs	B1-13
Appendix III: Flow Chart of CONTROL in TSATCO	C1-5
Appendix IV: Flow Chart of CONTROL in SATCO	D1-5

LIST OF FIGURES

	<u>Page</u>
Figure 1: Typical output of TSATCO	3
Figure 2: Relationship between rectangular and spherical coordinates and position of the fixed coordinates system	9
Figure 3: System of coordinates used to describe the motion of the satellites	10
Figure 4: Geographic coordinates	11
Figure 5: Spherical system of coordinates with the angle ϕ measured from the X axis	12
Figure 6: Topocentric system of coordinates	13
Figure 7: System of coordinates used to calculate the coverage area of the mechanical scanning system	15
Figure 8: Format of the SYSAT array	18
Figure 9: Rotations necessary to perform a transformation of coordinates	23
Figure 10: Definition of the true anomaly f	26
Figure 11: A reference point as seen from the satellite using the SXT or the SXE system of coordinates	38
Figure 12: Parameters used in the calculation of the coverage area	44
Figure 13: Electronic coverage area	45
Figure 14: Mechanical coverage area	47

LIST OF TABLES

Table 1: Typical Output of SATCO	4
--	---

Introduction

TSATCO and SATCO are two complementary workspaces whose function is to calculate, for a set of reference points, the number of revisit and the revisit time associated to a particular system of satellites described by the variable SYSAT. TSATCO generates a graphic display on a Tektronix screen and SATCO generates a print-out of a few variables of interest. TSATCO is used to check the results obtained from SATCO and to set-up the time interval that is appropriate to a particular situation. The components of the system of satellites are defined by the user through the definition of the variable SYSAT.

Function of the Workspace TSATCO and SATCO:

- Calculates the position of the satellites,
- Calculates the coverage area of the satellites,
- Checks if one or more of the check points are within the coverage areas,
- Computes the revisit times and the number of revisits, for every reference point,
- TSATCO displays the satellite position and the coverage area if the coverage area includes one of the reference points,
- SATCO prints a few parameters of interest,
- SATCO, at the end of one execution of CONTROL, is saved in a workspace named DATACO. The values of the revisit time and of the number of revisits are thus saved and it is possible to further process them, before another execution of CONTROL, with the program COURBE and HISTO.

Mode of Operation

The calculations are made at a regular time interval from a time origin, both are set by the operator. The calculations are separated in pockets of a certain number of time points such that the parallel processing capabilities of APL are used to the maximum without exceeding the available memory of the workspace. The number of time points processed in parallel is given by the variable NLIM that the user can change at will on line 22 and 21 of TSATCO and SATCO respectively.

Reference points:

The reference points are located at longitude 0 and latitude 90°, 80°, 70°, 60°, 50°, 40°, 30°, 20°, 10° and 0° in geographical coordinates (EGR system).

Example of Results

We included an example of the output of TSATCO (see Fig. 1) and SATCO (see Table 1) with

- starting time of the simulation: 0
- time increment: 5
- duration of the simulation: 150

We had a system of two satellites on the same circular polar orbit at an altitude of 300 km but spaced in time by 15 minutes. One of the satellites was of the mechanically scanning type and the other was of the electronically scanning type. The SYSAT array was:

300	300	-.5	.866	0	0	0	1	0	0	3	0
300	300	-.5	.866	0	0	0	1	15	1	3	90

Figure 1: Typical output of TSATCO

)WSID
IS SATCO
CONTROL
STARTING TIME OF THE SIMULATION=
]:
0
TIME INCREMENT=
]:
5
DURATION OF SIMULATION=
]:
150
POSITION OF THE OBSERVATION POINT
ALTITUDE ABOVE EARTH SURFACE=0
LONGITUDE=0
LATITUDE=0

NTP=2 IS=1 T=0
DFO=1 1 0 0 0 0 0 0 0 0
TREVS=
0 0 -26 -26 -26 -26 -26 -26 -26 -26
-26 -25 -26 -26 -26 -26 -26 -26 -26 -26
TREV=0 0 -26 -26 -26 -26 -26 -26 -26 -26
NREV=1 1 0 0 0 0 0 0 0 0

NTP=2 IS=1 T=5
DFO=0 1 1 0 0 0 0 0 0 0
TREVS=
0 0 5 -26 -26 -26 -26 -26 -26 -26
-26 -26 -25 -26 -26 -26 -26 -26 -26 -26
TREV=0 0 5 -26 -26 -26 -26 -26 -23 -26 -26
NREV=1 1 1 0 0 0 0 0 0 0

NTP=2 IS=2 T=75
DFO=1 1 0 0 0 0 0 0 0 0
TREVS=
0 0 5 -26 -26 -26 -26 -26 -26 -26
75 75 -26 -26 -26 -26 -26 -26 -26 -26
TREV=75 75 5 -26 -26 -26 -26 -26 -26 -26
NREV=2 2 1 0 0 0 0 0 0 0

NTP=1 IS=2 T=80
DFO=0 0 0 1 0 0 0 0 0 0
TREVS=
0 0 5 -26 -26 -26 -26 -26 -26 -26
75 75 -26 80 -26 -26 -26 -26 -26 -26
TREV=75 75 5 80 -26 -26 -26 -26 -26 -26
NREV=2 2 1 1 0 0 0 0 0 0

TABLE 1: TYPICAL OUTPUT OF SATCO

NTP=1 IS=2 T=85
DFD=0 0 0 0 0 1 0 0 0 0
TREVS=
0 0 5 -26 -26 -26 -26 -26 -26 -26
75 75 -26 80 -26 85 -26 -26 -26 -26
TREV=75 75 5 80 -26 85 -26 -26 -26 -26
NREV=2 2 1 1 0 1 0 0 0 0

NTP=2 IS=1 T=90
DFD=1 1 0 0 0 0 0 0 0 0
TREVS=
90 90 5 -26 -26 -26 -26 -26 -26 -26
75 75 -26 80 -26 85 -26 -26 -26 -26
TREV=90 90 5 80 -26 85 -26 -26 -26 -26
NREV=3 3 1 1 0 1 0 0 0 0

NTP=1 IS=2 T=90
DFD=0 0 0 0 0 0 1 0 0 0
TREVS=
90 90 5 -26 -26 -26 -26 -26 -26 -26
75 75 -26 80 -26 85 -26 90 -26 -26
TREV=90 90 5 80 -26 85 -26 90 -26 -26
NREV=3 3 1 1 0 1 0 1 0 0

NTP=3 IS=1 T=85
DFD=0 1 1 1 0 0 0 0 0 0
TREVS=
90 90 95 95 -26 -26 -26 -26 -26 -26
75 75 -26 80 -26 85 -26 90 -26 -26
TREV=90 90 95 95 -26 85 -26 90 -26 -26
NREV=3 3 2 2 0 1 0 1 0 0

NTP=1 IS=2 T=95
DFD=0 0 0 0 0 0 0 0 0 1
TREVS=
90 90 95 95 -26 -26 -26 -26 -26 -26
75 75 -26 80 -26 85 -26 90 -26 95
TREV=90 90 95 95 -26 85 -26 90 -26 95
NREV=3 3 2 2 0 1 0 1 0 1

NTP=3 IS=1 T=100
DFD=0 0 0 1 1 1 0 0 0 0
TREVS=
90 90 95 95 100 100 -26 -26 -26 -26
75 75 -26 80 -26 85 -26 90 -26 95
TREV=90 90 95 95 100 100 -26 90 -26 95
NREV=3 3 2 2 1 2 0 1 0 1

TABLE 1: TYPICAL OUTPUT OF SATCO

VTP=3 IS=1 T=105

DF0=0 0 0 0 0 1 1 1 0 0

TREV=

90 90 95 95 100 100 105 105 -26 -26

75 75 -26 80 -26 85 -26 90 -26 95

TREV=90 90 95 95 100 100 105 105 -26 95

NRREV=3 3 2 2 1 2 1 2 0 1

VTP=3 IS=1 T=110

DF0=0 0 0 0 0 0 1 1 1

TREV=

90 90 95 95 100 100 105 105 110 110

75 75 -26 80 -26 85 -26 90 -26 95

TREV=90 90 95 95 100 100 105 105 110 110

NRREV=3 3 2 2 1 2 1 2 1 2

VTP=1 IS=1 T=115

DF0=0 0 0 0 0 0 0 0 0 1

TREV=

90 90 95 95 100 100 105 105 110 110

75 75 -26 80 -26 85 -26 90 -26 95

TREV=90 90 95 95 100 100 105 105 110 110

NRREV=3 3 2 2 1 2 1 2 1 2

REV1=26 75 15

REV2=26 75 15

REV3=31 90

REV4=106 15

REV5=126

REV6=111 15

REV7=131

REV8=116 15

REV9=136

REV0=121 15

SY34T=

300 300 -0.5 0.866 0 0

0 0 1 0 0

3 0 -26 90

300 300 -0.5 0.866 0 0

0 0 1 15 1

3 90 -26 0

J43 SATCO
DATA0 SAVED 11:39 NOV 26, '81

TABLE 1: TYPICAL OUTPUT OF SATCO

List of the systems of coordinates used in the programs

Name	Center	Type	Rotation with the Earth	(a) Orientation of the axis
ERF	Earth	rectangular	No	Z-North Pole; X at 0° lat. and 0° long. at t=0; see Fig. 2.
ESF	Earth	spherical Z ^(b)	No	from ERF; see Fig. 2.
ERR	Earth	rectangular	Yes	Z-North Pole; X at 0° lat. and 0° long; at anytime
ESR	Earth	spherical Z ^(b)	Yes	From ERR, see Fig. 2.
ERE	Earth	rectangular	No	Z-perpendicular to the orbital plane; X toward perigee; see Fig. 3
ESE	Earth	spherical Z ^(b)	No	From ERE; see Fig. 2 and 3.
EGR	Earth	geographic	Yes	Altitude: from the center of the Earth; longitude, latitude; see Fig. 4
SRT	satellite	rectangular	-	topocentric (4); (see Fig. 3).
SST	satellite	spherical Z ^(b)	-	From SRT
SXT	satellite	spherical X ^(c)	-	From SRT (see Fig. 5)
SRE	satellite	rectangular	-	Z-perpendicular to the orbital plane; X in the direction of the movement (see Fig. 5).
SXE	satellite	spherical X ^(c)	-	From SRE (see Fig. 5).
ORR	point of observation	rectangular	Yes	Topocentric (see Fig. 6).

- (a) Yes means that the system of coordinates rotates with the Earth. No means that the system of coordinates does not rotate. It is just tied to the center of the Earth and assumed to keep a constant orientation relative to the stars. The movement of the Earth around the Sun are thus neglected.
- (b) Spherical coordinates with the angle ϕ measured from the Z axis (see Fig. 2).
- (c) Spherical coordinates with the angle ϕ measured from the X axis (see Fig. 5).

Figure 2: Relationship between rectangular and spherical coordinates and position of the fixed coordinates system

Figure 3: System of coordinates used to describe the motion of the satellites

Figure 4: Geographic coordinates

Figure 5: Spherical system of coordinates with the angle ϕ measured from the X axis

Figure 6: Topocentric system of coordinates

Description of the systems of coordinates

ERF: fixed system of rectangular coordinates centered on the Earth. The origin of the system is tied to the center of the Earth and the system of axis does not rotate with the Earth. The Z axis is pointing to the North Pole and the X axis, at time $t=0$, is pointing towards the point with longitude 0 and latitude 0. The movement of the Earth around the Sun is neglected because the simulation is to be used for short periods of time going from a few minutes to one day (see Fig. 2).

ESF: fixed system of spherical coordinates where R , θ and ϕ are defined in the usual way from ERF, ϕ is measured from the Z axis (see Fig. 2).

ERR: rotating system of rectangular coordinates. The origin of the system is tied to the center of the Earth and the system of axis does rotate with the Earth. The Z axis is pointing towards the point with longitude 0 and latitude 0 all the time.

ESR: rotating system of spherical coordinates where R , θ and ϕ are defined in the usual way from ERR, ϕ is measured from the Z axis (see Fig. 2).

ERE: fixed system of rectangular coordinates. The origin is at the center of the Earth, the Z axis is perpendicular to the orbital plane of the satellite and the X axis is pointing towards the perigee. The satellite turns in the positive direction.

ESE: fixed system of spherical coordinates. Where R , θ and ϕ are defined in the usual way from ERE. ϕ is measured from the Z axis and θ is the true anomaly (see Figs. 3 and 10).

EGR: rotating system of geographic coordinates. The origin is tied to the center of the Earth, the radial distance is measured from the origin. The latitude is positive in the Northern Hemisphere and negative in the Southern Hemisphere. The positive direction for the longitude is Eastward (see Fig. 4).

SRT: rectangular and topocentric system of coordinates centered on the satellite. The X axis is pointing away from the center of the Earth and the Z axis is pointing Northward (see Fig. 3 and 6).

SST: spherical system of coordinates centered on the satellite where R , θ and ϕ are defined in the usual way from SRT. ϕ is measured from the Z axis (see Fig. 1).

SXT: spherical system of coordinates centered on the satellite where R , θ and ϕ are defined from SRT, according to Fig. 5. ϕ is measured from the X axis.

SRE: rectangular system of coordinates centered on the satellite. Z is perpendicular to the orbital plane and Y is tangent to the orbit (see Fig. 7).

Figure 7 : System of coordinates used to calculate the coverage area of the mechanical scanning system

SXE: spherical system of coordinates centered on the satellite where R, θ and ϕ are defined from SRE according to Fig. 5. ϕ is measured from the X axis.

ORR: rotating topocentric rectangular system of coordinates. The origin of the system is at the point of observation. The X axis is pointing away from the center of the Earth and the Z axis is pointing Northward (see Fig. 6).

Units

The units used in that workspace are:

- for the time: minutes
- for distance: kilometers
- for angle: degree
- for speed: kilometers/minute.

Description of the input variables

SYSAT: contains the parameters of the satellite orbits and the type of radar set carried by the satellite. The format of SYSAT is illustrated in Figure 8. The type of scanning performed by the radar is set in column 10: 0 stands for electronic scanning and 1 stands for mechanical scanning (see Fig. 8).

SATellite NO.	PERIGEE km.	APG JEE km.	DIRECTION COSINE NORMAL TO THE ORBITAL PLANE			DIRECTION COSINE GREAT AXIS POINTING TO THE PERIGEE			START TIME (MIN.)	RADAR TYPE	ANGLE FROM THE GRAZING ANGLE DEGREE	WIDTH OF THE SCAV. DEGREE
			X	Y	Z	X	Y	Z				
1												
2												

Figure 8: Format of the SYSAT array

Documentation of the programs

The documentation of the programs contains, for each program, the list of the input variable, their dimension, their nature, their source program, system of coordinates and units. A list of the output variables, their dimensions, their nature, their destination program, the system of coordinates and their units is also provided. It is also stated, for every variable, between the parenthesis following its name, if the variable is global (G), local dummy (LD) or local result (LR).

ANGR

Function: calculates the polar angle associated to a vector who has certain component X and Y.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
AX(LD)	number	X component of the vector	TVRCSP ANGROT	rectangular	unitless
AY(LD)	number	Y component of the vector	TVRCSP ANGROT	rectangular	unitless

ANGR

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
ARED(G)	number	polar angle associated to the components X and Y of a vector	ANGROT TVRCSD	-	radians

ANGRV

Function: calculates the polar angle associated to each vector having certain components X and Y.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
AX(LD)	vector	contains the X components of the vectors	TRECSPX	rectangular	unitless
AY(LD)	vector	contains the Y components of the vectors	TRECSPX	rectangular	unitless

ANGRV

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
AREP(LR)	vector	contains the polar angle of the vectors	TRECSPX	-	radian

ANGROT

Function: calculates the three rotations around the axis Y, X and Z that are needed to go from a system XYZ to a system X'Y'Z'
(see Fig. 9). The rotation matrix necessary to make the transformation and the inverse transformation are calculated.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
VZ(LD)	vector (3)	coordinates of Z' in the XYZ system	*	rectangular	unitless
VX(LD)	vector (3)	coordinates of X' in the XYZ system	*	rectangular	unitless
AREP(G)	number	angle associated to a vector having a certain X and Y coordinate.	ANGR	-	radians
RX(G)	3 x 3	Matrix of rotation that executes a rotation of PHX around the X axis.	RAX	rectangular	unitless
RY(G)	3 x 3	Matrix of rotation that executes a rotation of PHY around the Y axis.	RAY	rectangular	unitless
RZ(G)	3 x 3	Matrix of rotation that executes a rotation of PHZ around the Z axis.	RAZ	rectangular	unitless

Figure 9: Rotations necessary to perform a transformation of coordinates

ANGROT

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
MR(G)	(3 x 3)	matrix of rotation that transforms X'Y'Z' into XYZ	*	rectangular	unitless
IMR(G)	(3 x 3)	matrix of rotation that transforms XYZ into X'Y'Z'	*	rectangular	unitless

*The routine ANGROT is used by the programs: BAR, OPO, POSSAT, TOPO, TOPOF.

BROWNS

Function: calculates the angle f (the true anomaly, see Fig. 10)
associated to an input vector containing various time for
a certain orbit.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
MT(LD)	vector(NT)	contains the time	POSSAT	-	minutes
E(G)	vector(NS)	eccentricity of the orbit	POSSAT	-	unitless
NT(G)	number	number of time point	POSSAT	-	unitless
NS(G)	number	number of satellite	POSSAT	-	unitless

BROWNS

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
$f^*(LR)$	vector(NT)	true anomaly	POSSAT	ESE	radians

* f is given by a transcendental equation: the Brown's method,
as described in reference 1, has been used to solve T.

Figure 10: Definition of the true anomaly f

COURBE

Function: draws the curve specified by the vector VV.

Input Variables	Dimensions	Nature	Source
VV(LD)	vector of any length	contains the points to be plotted	user definition

no output variable

EARTH

Function: draws a circle that represents the Earth. That program has no input and no output variables.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
REF(3)	(10 x 3)	contains the location of the reference points	CONTROL	ESR	kilometer radian

no output variable

HISTO

Function: draws the histogram of a vector

Input Variables	Dimensions	Nature	Source
VV(LD)	vector of any length	contains the values contributing to the histogram	user definition

no output variable

OPO

Function: calculates the matrix of rotation that transforms a ERF into a SRT or vice versa

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
P0(LD)	vector (3)	position of the origin of the SRT system in the ERF system	CONTROL POSSAT	ERF	km.
IMR(G)	(3 x 3)	matrix of rotation to transform ERF into SRT	ANGROT	-	unitless

OPO

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
MRO(LR)	(3 x 3)	matrix of rotation to transform ERF into SRT or ERF into ORR	CONTROL	-	unitless
MR(G)	(3 x 3)	matrix of rotation to transform SRT into ERF	POSSAT	-	unitless

POSSAT

Function: calculates the position of the satellite in the ERF and the ORR system of coordinate. It also calculates translations and matrix of rotation to be used in later calculations.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
PT(LD)	vector(3)	vector containing the starting time, the time interval and the termination time of the simulation	CONTROL	-	minutes
SYSAT(G)	(NS, 11)	contains the parameters of the orbit of the satellites	user defined	-	see Fig. 7
F(G)	(NS,NT)	true anomaly	BROWNS	-	radians
MR(G)	(3 x 3)	matrix to go from the ERE to the ERF system (line 12)	ANGROT	-	unitless
MR(G)	(3 x 3)	matrix to go from the SXT to the ERF system (line 13)	OPO	-	unitless
MR(G)	(3 x 3)	matrix to go from the SXT to the ERE system (line 14)	ANGROT	-	unitless
MRO(G)	(NTx3x3)	matrix to go from the ERF to the ORR system	TOPO	-	unitless
XDR,YDR ZDR(G)	number	translation to go from ERF to ORR	TOPO	-	km

POSSAT

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
MRO(G)	(NT,3,3)	matrix to go from the ERF to the ORR system.	POSSAT TDE, TDM	-	unitless
MTR(G)	(NT,NS,3)	translation to go from ERF to ORR	POSSAT TDE, TDM, TFM, TFE	-	unitless
PSG(G)	(3,NS,NT)	satellite position in the ERF system	CONTROL	-	km
PSO(G)	(3,NS,NT)	satellite position in the ORR system	CONTROL	-	km
MRS(G)	(NS,NT,3,3)	matrix to go from the SXT to the ERF system	TDE, TDM	-	unitless
MRSE(G)	(NS,NT,3,3)	matrix to go from the SXE to the ERE system	TDM	-	unitless

RAX

Function: to produce a matrix of rotation of an angle AR around the X axis.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
AR(LD)	number	angle of rotation	ANGROT	-	radians

RAX

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
RX(G)	3 x 3	matrix of rotation of an angle AR around the axis XI.	ANGROT	-	unitless

RAY

Function: To produce a matrix of rotation of an angle AR around the Y axis.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
AR(LD)	number	angle of rotation	ANGROT	-	radian

RAY

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
RY(G)	(3 x 3)	matrix of rotation of an angle AR around the axis Y.	ANGROT	-	unitless

RAZ

Function: to produce a matrix of rotation of an angle AR around the Z axis.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
AR(LD)	number	angle of rotation	ANGROT	-	radians

RAZ

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
RZ(G)	3 x 3	matrix of rotation of an angle AR around the axis Z	ANGROT	-	unitless

function to transform the coordinate of the reference points from the ESR system to the SSX system

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
PSX(0)	vector (3)	origin of the SSX system (position of the satellite)	CONTROL	ERF	km.
PRS(LD)	10 x 3	position of the reference points	CONTROL	ESR	km.
T(G)	number	time	CONTROL	-	min.
PRS(G)	10 x 3	position of reference points	TSPHREC	ERR	km.
PRS(G)	10 x 3	position of reference points	VOPOC	SRT	km.
PSX(G)	10 x 3	position of reference points	TRECSPX	SXT	km. radians

(b)

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Unit.
PSX(G)	10 x 3	position of reference points	CONTROL STATE	SXT	km. radians
PDS(G)	vector (10)	angle between the nadir and the azimuth position of the reference point (see Fig. 11)	CONTROL STATE	SXT	radians

S = POSITION OF THE SATELLITE, ORIGIN OF THE SYSTEM OF COORDINATE
R.P. = REFERENCE POINT

Figure 11: A reference point as seen from the satellite using the SXT or the SXE system of coordinates

PRSM

Function: to transform the coordinate of the reference points from the ESR system to the SSE system

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
VPS(LD)	vector (3)	origin of the SSE system (position of the satellite)	CONTROL	ERF	km.
PRS(L)	10 x 3	position of reference points	CONTROL	ESR	km.
T(G)	number	time	CONTROL	-	min.
PRS(G)	10 x 3	position of reference points	TSPHREC	ERR	km.
PRS(G)	10 x 3	position of reference points	VOPOE	SRE	km.
PSX(G)	10 x 3	position of reference points	TRECSPX	SXE	km., radians

PRSM

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
PSX(G)	10 x 3	position of reference points	CONTROL STATM	SXE	km., radians
PDS(G)	vector (10)	angle between the nadir and the azimuth position of the reference point (see Fig. 11)	CONTROL STATM	SXE	radians

STATE

Function: Establish, for the electronic scanning mode, if the reference points are within or out of the coverage area. The revisit time and the number of revisits are calculated when needed.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
PSX(G)	(10, 3)	position of reference points	PRSE CONTROL	SXT	km., radians
PDS(G)	vector (10)	angle between the nadir and the azimuth position of the reference points	CONTROL PRSE	SXT	radians
VGAN(G)	vector (10)	angle between the nadir and the outside border of the coverage area	TFE	SXT	radians
RDMAX(G)	vector (10)	distance between the satellite and the plane containing the outside border of the coverage area	TFE	SRT	km.

STATE

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
REV1(G)	vector (10)	each component contains the number of revisits associated to the corresponding reference point.	-	-	-
REV1(G)	vector	revisit time for reference point 1	-	-	min.
REV2(G)	"	" 2	-	-	"
REV3(G)	"	" 3	-	-	"
REV4(G)	"	" 4	-	-	"
REV5(G)	"	" 5	-	-	"
REV6(G)	"	" 6	-	-	"
REV7(G)	"	" 7	-	-	"
REV8(G)	"	" 8	-	-	"
REV9(G)	"	" 9	-	-	"
REV0(G)	"	" 10	-	-	"

STATM

Function: Establish, for the mechanical scanning mode, if the reference points are within or out of the coverage area. The revisit time and the number of revisits are calculated when needed.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
PSX(G)	(10, 3)	position of reference points	PRSM CONTROL	SXE	km., radians
PDS(G)	vector (10)	angle between the nadir and the azimuth position of the reference points	CONTROL PRSM	SXE	radians
VGAN(G)	vector (10)	angle between the nadir and the outside border of the coverage area	TFM	SXE	radians
RDMAX(G)	vector (10)	distance between the satellite and the plane containing the outside border of the coverage area	TFM	SRE	km.
WSCAN(G)	vector (10)	width of the scan line	user defined in SYSAT	SXE	degrees

STATM

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
NREV(G)	vector (10)	each component contains the number of revisits associated to the corresponding reference point.	-	-	-
REV1(G)	vector	revisit time for reference point 1	-	-	min.
REV2(G)	"	" 2	-	-	"
REV3(G)	"	" 3	-	-	"
REV4(G)	"	" 4	-	-	"
REV5(G)	"	" 5	-	-	"
REV6(G)	"	" 6	-	-	"
REV7(G)	"	" 7	-	-	"
REV8(G)	"	" 8	-	-	"
REV9(G)	"	" 9	-	-	"
REV0(G)	"	" 10	-	-	"

SYSVEC

Function: To calculate from an initial vector a system of vectors located at N degrees from each other. That routine may be used to find the parameters to be put in SYSAT as direction cosine of the normal to the orbit.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
V(1,0)	vector (3)	initial vector		ERF	
N(1,0)	number	number of vectors			
AN(1,0)	number	angle between the vectors (degrees)			

SYSVEC

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
S(G)	N X 3	each row contains one of the new vectors		ERE	

TDE

Function: calculates the position of the borders of the coverage area
and displays them (electronic scanning) See Figures 12 and 13.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
R ² (G)	number	distance from the satellite to the center of the Earth	TFE CONTROL	-	km.
XRC(G)	vector (2)	distance between the center of the Earth and the planes containing the boundaries of the coverage area	TFE CONTROL	-	km.
RRC(G)	vector (2)	radius of the boundaries of the coverage area	TFE CONTROL	-	km.
MRS(G)	NSxNTx3x3	matrix to go from the SRT to the ERF system	POSSAT	-	-
MRO(G)	NTx3x3	matrix to go from the ERF to the ORR system	POSSAT	-	-
TRS0(G)	vector (3)	translation to go from a SRT to a ORR system	TFE	-	km.
IS	number	Index of the satellite	CONTROL	-	-
IN	number	Index of the time point	CONTROL	-	-

No output variable

Figure 12: Parameters used in the calculation of the coverage area

Figure 13: Electronic coverage area

TM

Function: calculates the position of the borders of the coverage area and displays them (mechanical scanning) (see Figure 14).

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
NSCAN	number	angular width of the scan	user def. in SYSAT	-	degrees
XRC*(G)	vector (2)	distance between the center of the Earth and the planes containing the boundaries of the coverage area*	TEM	SRT	m.
RRC*(G)	vector (2)	radius of the boundaries of the coverage area	TEM	-	km.
MRSE(G)	NSxNTx3x3	matrix to go from the SRE to the ERF system	POGSAT	-	-
MRO(G)	NTx3x3	matrix to go from the ERF to the ORR system	POGSAT	-	-
TRS0(G)	vector (3)	translation to go from a SRT to a ORR system	TEM	-	km.
IS	number	Index of the satellite	CONTROL	-	-
IT	number	Index of the time point	CONTROL	-	-

No output variable

*see Figure 12

Figure 14: Mechanical coverage area

TFE

Function: calculates some of the parameters used in the calculation of the position of the borders of the coverage areas for the electronic scanning

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
PSS(G)	(3,NS,NT)	position of the satellite	POSSAT	ERF	km.
ALD(G)	number	angle from the grazing angle for the outside border of the coverage area	CONTROL	-	radians
R(G)	number	radius of the Earth	CONTROL	-	km.
NS(G)	number	number of satellites	-	-	-
NT(G)	number	number of time points	-	-	-
IS	number	Index of the satellite	CONTROL	-	-
IN	number	Index of the time point	CONTROL	-	-

(P)

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
PAN+(G)	number	angle from the grazing angle for the inside border of the coverage area**	STATE	-	radians
GAN+(G)	number	angle from the grazing angle for the outside border of the coverage area**	STATE	-	radians
XRC*(G)	vector (3)	distance between the center of the Earth and the planes containing the boundaries of the coverage area*	TDE	-	km.
RRC*(G)	vector (3)	radius of the boundaries of the coverage area	TDE	-	km.
RMAX*(G)	number	distance between the satellite and the outside border of the coverage area	STATE	-	km.

** see Figure 12

* see Figure 14

TFM

Function: calculates some of the parameters used in the calculation of the position of the borders of the coverage areas for the mechanical scanning (see Figures 12 and 14)

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
POSS(G)	(3,NS,NT)	position of the satellite	POSSAT	ERF	km.
ALD(G)	number	angle from the grazing angle for the outside border of the coverage area	CONTROL	-	radians
R(G)	number	radius of the Earth	CONTROL	-	km.
NS(G)	number	number of satellites	-	-	-
NT(G)	number	number of time points	-	-	-
IS	number	Index of the satellite	CONTROL	-	-
IN	number	Index of the time point	CONTROL	-	-

TDM

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
PAN(G)	number	angle from the grazing angle for the inside border of the coverage area	STATM	-	radians
CAN(G)	number	angle from the grazing angle for the outside border of the coverage area	STATM	-	radians
XRC(G)	vector (2)	distance between the center of the Earth and the planes containing the boundaries of the coverage area	TDM	-	km.
RRC(G)	vector (2)	radius of the boundaries of the coverage area	TDM	-	km.
RDMAX(G)	number	distance between the satellite and the outside border of the coverage area	STATM	-	km.

TGEOSPH

Function: transforms a GEO system into a ESR system.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
MCO(L)	$N^* \times 3$	coordinate of a point in the GEO system	BAR	ESR	km; degrees

TGFOSPH

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
MRC(LR)	$N^* \times 3$	coordinate of a point in the ESR system	BAR	ESR	km; radians

* N = any integer number greater or equal to 1.

TOPO

Function: calculates the matrix of rotation needed to transform a ESR
into a ERF and the reverse.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
PO(LD)	vector (3)	position vectors	POSSAT	ESR	km, radians
VT(LD)	number	time	POSSAT	-	min

TOPO

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
MRO(LD)	3 x 3	rotation matrix to go from ESR to ERF	POSSAT		
XD			POSSAT	ERF	km
XDR,YDR ZDR(G)		translation to go from ERT to ORR	POSSAT	ERF	km
ZD			POSSAT	ERF	km

TRECSPX

Function: transforms rectangular coordinates into spherical coordinates
(see Fig. 5) with the angle ϕ measured from the X axis.

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
FSR(LD)	$N^* \times 3$	rectangular coordinates	PRSE PRSM	rectangular	km
AREP(G)	number	angle	ANRV	-	radians

*N is an integer number greater or equal to 1.

TRECSPX

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
PSX(LR)	$N^* \times 3$	spherical coordinates	PRSE PRSM	spherical	km, radians

*N is an integer number greater or equal to 1.

TSPHREC

Function: transforms spherical coordinates (in an array)
into rectangular coordinates (see Fig. 2)

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
MC(LD)	$N^* \times 3$	spherical coordinates	BAR PRSE PRSM	-	km, radians

TSPHREC

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
MCC(LR)	$N^* \times 3$	rectangular coordinates	BAR PRSE PRSM	-	km

*N is an integer number greater or equal to 1.

TVRCSPP

Function: transforms rectangular coordinates (in a vector) into spherical coordinates (see Fig. 2).

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
PSR(LD)	vector(3)	vector in rectangular coordinates	BAR	-	-
AREP(G)	number	angle	ANGR	-	radians

TVRCSP

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
PSX(LR)	vector (3)	vector in spherical coordinates	BAR	-	-

TVSPRC

Function: transforms spherical coordinates (in a vector) into rectangular coordinates (see Fig. 2).

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
PO(3,0)	vector(3)	vector in spherical coordinates	CONTROL	-	-

TVSPRC

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
TRF(LR)	vector(3)	vector in rectangular coordinates	CONTROL	-	-

VOPOC

Function: transforms a vector MCR from the ERF system
to the SXT system

N = number of lines of the array MCR

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
MCR(LD)	N x 3	vector to be transformed	PRSE	ERF	km.
VPS(LD)	vector (3)	satellite position	PRSE	ERF	km.
P0(G)	vector (3)	satellite position	TWRCS	ESF	km., radians
MRS(G)	(1S, IN, 3, 3)	matrix of rotation to go from the SXT to the ERF system	POSSAT	-	-

VOPOC

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
MPT(LR)	N x 3	coordinate of the final vector	PRSE	SXT	km.

VOPOE

Function: transforms a vector MCR from the ERF system
to the SXT system

N = number of lines of the array MCR

Input Variables	Dimensions	Nature	Source program	System of Coordinates	Units
MCR(LD)	N x 3	vector to be transformed	PRSM	ERF	km.
VPS(LD)	vector (3)	satellite position	PRSM	ERF	km.
PO(G)	vector (3)	satellite position	TWRCSP	ESF	km., radians
MRSE(G)	(IS,IN,3,3)	matrix of rotation to go from the SXE to the ERF system	POSSAT	-	-

VOPOE

Output Variables	Dimensions	Nature	Destination program	System of Coordinates	Units
MPT(LR)	N x 3	coordinate of the final vector	PRSM	SXT	km.

Conclusions

We described two complementary software packages designed to perform studies of time of revisits of satellite system. Input and output variables of every routine were described, examples of the output were given and a block diagram of the CONTROL program of each package was presented.

References

1. I.R. Deutsch, Orbital Dynamics of Space Vehicles, Prentice Hall, 1963, p. 3-27.
2. W.R. Corliss, Scientific Satellites, NASA SP-133, 1967, p. 93-110.

APPENDIX I

LIST OF PROGRAMS

APPENDIX I

List of Programs:

The workspace TSATCO contains the following programs: The DRAW package of APL plus, ANGR, ANGROT, ANGRV, BROWNS, CONTROL, COURBE, EARTH, HISTO, OPO, POSSAT, PRSE, PRSM, RAX, RAY, RAZ, STATE, STATM, SYSVEC, TDE, TFF, TFM, TGEOSPH, TOPO, TRECSPX, TSPHREC, TVRCSP, TVSPRC, VOPOC, VOPOE.

The workspace SATCO contains the same programs as the workspace TSATCO except that the program CONTROL, STATE and STATM differs from the programs having the same name in SATCO.

APPENDIX II
LISTING OF THE PROGRAMS

TSATCO

```

    ▽ANGROT[.]▽
▽ VZ ANGROT VX;AREP
[1] →((+/ (VX×VZ))≠0)/L50
[2] →((+/ (VZ×VZ))≠1)/L51
[3] →((+/ (VX×VX))≠1)/L52
[4] CNX←VZ[1];CNY←VZ[2];CNZ←VZ[3];CAX←VX[1];CAY←VX[2];CAZ←VX[3]
[5] CBX←(CNY×CAZ)-(CAY×CNZ);CBY←(CAX×CNZ)-(CNX×CAZ);CBZ←(CNX×
    CAY)-(CAX×CNY)
[6] VY←CBX,CBY,CBZ
[7] →((|CNZ)=1)/L20
[8] →((|CAZ)=1)/L30
[9] →((|CBZ)=1)/L40
[10] →(CBZ=0)/L70
[11] →(CAZ=0)/L80
[12] VXP←VXP*((+/ (VXP×VXP))*0.5);VXP←VSX×(CBY,CBX,0);VSX←((1^-1
    0)×(CAY≥0))+((-1 1 0)×(CAY<0))
[13] DENO←((CBX×CBX)+(CBY×CBY))*0.5
[14] TYP←AREP;CBX ANGR CBY;TXP←AREP;VXP[1] ANGR VXP[2]
[15] SZ←(TYP>TXP)×(1-SZZ);SZZ←(TYP≥(3×PI‡2))∧(TYP≤(2×PI))∧(TXP≤(
    PI‡2))
[16] SZ←((TXP≥(3×PI‡2))∧(TXP≤(2×PI))∧(TYP≤(PI‡2)))+SZ
[17] P4Y←(+/((SZ=1),-(SZ=0)))×((CAZ≥0)-(CAZ<0))×PHY;PHY←^-2○(+/
    VX×VXP))
[18] P4X←((AREP×((CBZ<0)-(CBZ≥0)))×(SZ=1))+(((CBZ<0)-(CBZ≥0))×(
    PI-AREP)×(SZ=0));DENO ANGR(|CBZ)
[19] →L50;P4Z←-AREP;(VXP[1]) ANGR(VXP[2])
[20] L70:DENO←(((CAX×CAX)+(CAY×CAY))*0.5)
[21] PHY←AREP×((CAZ)×((CBX≥0)-(CBX<0))×((CAY≤0)-(CAY>0));DENO
    ANGR(|CAZ)
[22] PHX←PI×(((CNZ≥0)×0)+(CNZ<0))
[23] →L50;PHZ←-AREP;CAX ANGR CAY
[24] L80:PY←0
[25] DENO←(((CBX×CBX)+(CBY×CBY))*0.5)×(+/((CBZ≥0),-(CBZ<0)))
[26] P4X←-AREP;DENO ANGR CBZ
[27] →L60;P4Z←-AREP;CAX ANGR CAY
[28] L20:PY←(0×(CNZ=1))+(PI×(CNZ=-1));P4X←0
[29] →L60;P4Z←-(AREP-(PI‡2));CBX ANGR CBY
[30] L30:PY←((PI‡2)×(CAZ=1))-((PI‡2)×(CAZ=-1))
[31] →L60;P4Y←0;P4Z←(PI‡2)-AREP;CBX ANGR CBY
[32] L40:PHZ←0;P4X←((PI‡2)×(CBZ=-1))-((PI‡2)×(CBZ=1))
[33] →L60;PY←AREP×((CBZ=-1)-(CBZ=1));CAX ANGR CAY
[34] L50:→L91;'ERROR FROM ANGROT VZ AND VX ARE NOT PERPENDICULAR
'
[35] L51:→L91;'ERROR FROM ANGROT VZ IS NOT UNITARY'
[36] L52:→L91;'ERROR FROM ANGROT VX IS NOT UNITARY'
[37] L60:TMR←IMR;MR←(RY+.×RX+.×RZ);RAY PY;RAX PHX;R4Z P4Z
[38] →((|VT[1]|≤0.9999)/L90;VT←VX+.×IMR
[39] →((|VT[3]|≤0.9999)/L90;VT←VZ+.×IMR
[40] →L91;→((|VT[2]|≤0.9999)/L90;VT←VY+.×IMR

```

TSATCO

VANGROT[041]@
[41] L90:→L92:'ERROR FROM ANGROT IN THE ROTATION ANGLES'
[42] L92:'VX=';VX
[43] 'VY=';VY
[44] 'VZ=';VZ
[45] 'P4Y=';P4Y
[46] 'P4X=';P4X
[47] 'P4Z=';P4Z
[48] →;
[49] L91:

```

TSATCO
▼CONTROL[.]▼
▼ CONTROL;PERI;APO;LONR;LATR;B;L;RSS;XE;YE;ZE;COR;I;R;ZI2;
SCF;TMP;TOP;TDP;NLIM;NCAL;INN;IN
[1] 'STARTING TIME OF THE SIMULATION='
[2] TO←]
[3] 'TIME INCREMENT='
[4] TI←]
[5] 'DURATION OF SIMULATION='
[6] TM←TO+TD←]
[7] 'POSITION OF THE OBSERVATION POINT'
[8] 'ALTITUDE ABOVE EARTH SURFACE=0'
[9] ROB←R+HR←0;R←5370
[10] 'LONGITUDE=0'
[11] THOB←LONR×PI÷180;LONR←0
[12] 'LATITUDE=0'
[13] PHOB←(PI÷2)-(LATR×PI÷180);LATR←0
[14] PO←ROB,THOB,PHOB
[15] NS←1↑(pSYSAT)
[16] OME←0.00437;PREF[;3]←((10)-1)×PI÷18;PREF←(10 3)p6370 0 0
[17] NREV←10p0;ZI2←0;TREV←10p(TO-(3×TI)+1);TREVS←(NS,10)p0
[18] REV1←REV2←REV3←REV4←REV5←REV6←REV7←REV8←REV9←REV0←0p0
[19] BOX;WINDOW 0 6.2 0 6.2;STRAPIS 7;SCALE((-SCF),SCF,(-SCF),
SCF);SCF←(SYSAT[1;1]+SYSAT[1;2]+(2×6370))÷2
[20] EARTH;MRF←OP0 PO
[21] POR←TVSPRC PO;MT0←MRF
[22] NCAL←TD÷TI;NLIM←9;TDP←TD;INP←1;TOP←TO;TMP←TM;T←TO;IN←INN+1
[23] L30:→(NCAL≥NLIM)/L20
[24] TMP←TM;TOP←T;TDP←NCAL×TI
[25] →L25;'TOP=';TOP;' TMP=';TMP;POSSAT(TOP,TI,TDP)
[26] L20:TOP←T
[27] POSSAT(TOP,TI,TDP);TMP←TOP+(NLIM×TI);TDP←NLIM×TI
[28] L25:T←TOP;IN←1;IS←1
[29] L15:→(INN=1)/L17
[30] →(IN=1)/L50
[31] →(PSO[1;IS;IN]≤(-PO[1]))/L91
[32] →L17;0 DRAW(PSO[3;IS;IN-1],PSO[3;IS;IN])VS(PSO[2;IS;IN-1],
PSO[2;IS;IN])
[33] L50:→(PSO[1;IS;IN]≤(-PO[1]))/L91
[34] 0 DRAW(PSOZ[IS],PSO[3;IS;IN])VS(PSOY[IS],PSO[2;IS;IN])
[35] L17:→(SYSAT[IS;10]=0)/L60
[36] →L91;STATM;TM;ALD←SYSAT[IS;11];WSCAN←SYSAT[IS;12];PSG[;IS;
IN]PRSM PREF
[37] L60:ST4TE;TFE;ALD←SYSAT[IS;11];PSG[;IS;IN]PRSE PREF
[38] L91:→((IS←IS+1)≤NS)/L15
[39] L11:→((T←T+TI)≤TMP)/L15;'T=';T+TI;IN+IN+1;IS←1;INN←INN+1
[40] →(T≥TM)/L35
[41] INP←INP+1
[42] →L30;NC4L←NC4L-(NLIM+1);PSOZ←PSO[3;;(IN-1)];PSOY←PSO[2;;(
IN-1)]
[43] L35:
▼

```

TSATCO

```

▼COURBE[]]▼
▽ COURBE VV
[1] VW $\leftarrow$ ▲VV;STRAPIS 5
[2] L1 $\leftarrow$ VV[VW[1]];L2 $\leftarrow$ VV[VW[pVV]]
[3] L1 $\leftarrow$ (L1*(L1<0))+_0*(L1 $\geq$ 0))
[4] AXES;BOX;SCALE -1 10,L1,L2;WINDOW 0 6.2 0 6.2
[5] VX $\leftarrow$ (i(pVV)) $\times$ 10+(pVV)
[6] 0 DRAW VV VS VX
▽

▼EARTH[]]▼
▽ EARTH;ANG;X;Y;R;HMAR;I
[1] ANG $\leftarrow$ (0,100) $\times$ 01 $\pm$ 50;HMAR $\leftarrow$ R $\times$ 20PREF[;3];R $\leftarrow$ 3370
[2] X $\leftarrow$ R $\times$ 20ANG
[3] Y $\leftarrow$ R $\times$ 10ANG
[4] 0 DRAW Y VS X;I $\leftarrow$ 1
[5] 0 DRAW(0,R)VS(0,0)
[6] L50: $\rightarrow$ ((I $\leftarrow$ I+1) $\leq$ 10)/L50;0 DRAW(HMAR[I],HMAR[I])VS(-100,100)
▽

▼HISTO[]]▼
▽ HISTO VV
[1] NE $\leftarrow$ 10p0;STRAPIS 5
[2] VW $\leftarrow$ ▲VV
[3] RG $\leftarrow$ -VV[VW[1]]-VV[VW[pVV]]
[4] L2 $\leftarrow$ L1+INC;L1 $\leftarrow$ VV[VW[1]];J $\leftarrow$ 1;INC $\leftarrow$ RG $\pm$ 10
[5] L11: $\rightarrow$ ((J $\leftarrow$ J+1) $\leq$ 10)/L11;L2 $\leftarrow$ L2+INC;L1 $\leftarrow$ L1+INC;NE[J] $\leftarrow$ +/(VV $\geq$ L1) $\wedge$ 
(VV $<$ L2))
[6] AXES;BOX;SCALE 0 10 0,NMA;NMA $\leftarrow$ NE[pNMA];NMA $\leftarrow$ ▲NE;WINDOW 0
6.2 0 6.2
[7] N $\leftarrow$ 1
[8] L13: $\rightarrow$ ((N $\leftarrow$ N+1) $\leq$ 10)/L13;0 DRAW VY VS VX;VY $\leftarrow$ 0,NE[N],NE[V],0;
VX $\leftarrow$ (N-1),(N-1),N,N
[9] 'HISTOGRAM VALUES=';NE
[10] 'MEAN=';MEAN;MEAN $\leftarrow$ (+/NE)/(pNE)
[11] 'MEAN SQUARE ERROR=';MSQ;MSQ $\leftarrow$ (+/(((NE-MEAN) $\times$ (VE-MEAN))))/(p
NE)
▽

▼OP0[]]▼
▽ MRO $\leftarrow$ OP0 P0;OME;THR;VX;VZ
[1] VX $\leftarrow$ VZ $\leftarrow$ 3p0
[2] VX[1] $\leftarrow$ (10P0[3]) $\times$ 20P0[2];VX[2] $\leftarrow$ (10P0[3]) $\times$ 10P0[2];VX[3] $\leftarrow$ 20P0[3]
[3] VZ[1] $\leftarrow$ -(20P0[3]) $\times$ 20P0[2];VZ[2] $\leftarrow$ -(20P0[3]) $\times$ 10P0[2];VZ[3] $\leftarrow$ 10
P0[3]
[4] VZ ANGROT VX
[5] MRO $\leftarrow$ IMR
▽

```

TSATCO

▼POSSAT[.]▼

▽ POSSAT PT;R;L;I;ML;IS;PSE
 [1] MT+(NS,NT)ρMT;NS+1↑ρSYSAT;NT+ρMT;MT+PT[1],((PT[2]×1L(PT[3]:
 PT[2]))+PT[1])
 [2] R←6370;PSG←PSO+(3,NS,NT)ρ0
 [3] A←((2×R)+SYSAT[;1]+SYSAT[;2])÷2
 [4] E←(4-(R+SYSAT[;1]))÷4;MRSE←(NS,NT,3,3)ρ0
 [5] L←4×(1-(E×E))
 [6] F←BROWNS MT;I←1;MRO←(NT,3,3)ρ0;MTR←(NT,NS,3)ρ0;MRS←(NS,NT,3
 ,3)ρ0
 [7] L20:→((I+I+1)≤NT)/L20;MTR[I;;]←(NS,3)ρ(XDR,YDR,ZDR);MRO[I;;
]←MT[1;I]TOP0 P0
 [8] RSS←ML:(1+(ME×2OF));ML←(2(NT,NS)ρ4)×(1-(ME×ME))
 [9] IS+1;PSE←(NT,3)ρ0;
 [10] L10:PSF[;2]←RSS[IS;]×1OF[IS;];PSE[;1]←RSS[IS;]×2OF[IS;]
 [11] VNZ ANGROT(5+(-4+SYSAT[IS;]));VNZ+2+(-7+SYSAT[IS;])
 [12] PSG[;IS;]←QPSE+.×MR;I+1
 [13] L30:PSO[;IS;I]←(PSG[;IS;I]-MTR[I;IS;])+.×MRO[I;;];MRS[IS;I;
 ;]←MR;DU+OPO VP4+TVRCSP PSG[;IS;I]
 [14] MRSE[IS;I;;]←MR;VNZ ANGROT(VG+((+/VG×VG))*0.5));VG+PSG[;
 IS;I]
 [15] →((I+I+1)≤NT)/L30
 [15] →((IS+IS+1)≤NS)/L10

▽

▼PRSE[.]▼

▽ VPS PRSE PRS
 [1] PRS[;2]←PRS[;2]+(OME×T)
 [2] PRS←TSPHREC PRS
 [3] PRS←VPS VOPOC PRS
 [4] PSX←TRECSPE PRS
 [5] PDS←PI-PSX[;3]

▽

▼PRSM[.]▼

▽ VPS PRSM PRS
 [1] PRS[;2]←PRS[;2]+(OME×T)
 [2] PRS←TSPHREC PRS
 [3] PRS←VPS VOPOC PRS
 [4] PSX←TRECSPE PRS
 [5] PDS←PI-PSX[;3]

▽

TSATCO

```

    ▽RAX[□]▽
    ▽ RAX AR
[1] RX←3 3p1 0 0 0,(2o4R),(-1o4R),0,(1o4R),2o4R
    ▽

    ▽RAY[□]▽
    ▽ RAY AR
[1] RY←3 3p(2o4R),0,(1o4R),0 1 0,(-1o4R),0,2o4R
    ▽

    ▽R4Z[.]▽
    ▽ RAZ AR
[1] RZ←3 3p(2o4R),(-1o4R),0,(1o4R),(2o4R),0 0 0 1
    ▽

    ▽STATE[!]▽
    ▽ STATE;VPAN;VGAN;VRD;DFO;NTP;VIND;NJ;C4
[1] VPAN←10pPAN;VGAN←10pGAN;VRD←10pRDMAX
[2] DFO←(PSX[;1]≤VRD)^(PDS<VGAN)
[3] NTP++/DFO
[4] +(NTP<1)/L5
[5] TDE
[6] VIND←DFO/(DFO×10);J+1
[7] L1:NJ←VIND[J]
[8] C4←'ZI2'ΔFMT NJ
[9] +(TRES≤(5×TI))/L6;TRES←T-TREVS[IS;NJ]
[10] TREV[NJ]←T;TR5←T-TREV[NJ]
[11] NREV[NJ]←NREV[NJ]+1;TREVS[IS;NJ]←T
[12] DUMMY←ε'REV',C4[1;2],'+REV',C4[1;2],',TRE'
[13] L6:→((J+J+1)≤NTP)/L1
[14] L5:
    ▽

    ▽STATM[□]▽
    ▽ STATM;VPAN;VGAN;VRD;DFO;NTP;VIND;NJ;C4
[1] VPAN←10pPAN;VGAN←10pGAN;VRD←10pRDMAX
[2] DFO←(PSX[;1]≤VRD)^(PDS<VGAN)^((((2×PI)-PSX[;2])≤(WSCAN×PI+360))v(PSX[;2]≤(WSCAN×PI+360)))
[3] NTP++/DFO
[4] +(NTP<1)/L5
[5] TDY
[6] VIND←DFO/(DFO×10);J+1
[7] L1:NJ←VIND[J]
[8] C4←'ZI2'ΔFMT NJ
[9] +(TRES≤(5×TI))/L6;TRES←T-TREVS[IS;NJ]
[10] TREV[NJ]←T;TR5←T-TREV[NJ]
[11] NREV[NJ]←NREV[NJ]+1;TREVS[IS;NJ]←T
[12] DUMMY←ε'REV',C4[1;2],'+REV',C4[1;2],',TRE'
[13] L6:→((J+J+1)≤NTP)/L1
[14] L5:
    ▽

```

TSATCO

```

  VSYSVEC[]]v
  V SYSVEC
[1]  'INITIAL VECTOR='
[2]  V->]
[3]  'NUMBER OF VECTORS=';
[4]  N->]
[5]  'ANGLE (DEGREES) BETWEEN THE VECTORS=';
[6]  AN->]
[7]  'THE ROTATION IS AROUND THE AXIS Z'
[8]  S[1;]->V;S->(N,3)p0;I->1
[9]  L1:->((I+I+1)<N)/L1;S[(I+1);]->V+.xRZ;RAZ(4NxPIxI+180)
[10]  S
    v

```

```

  VTDE[]]v
  V TDE
[1]  CD->20xPI+180;J->1;YGTS+ZGTS+19p0
[2]  L11:COR->(XRC[J]-HS),RRC[J],0
[3]  IT->1;ZGTS[1]->COR[3];YGTS[1]->COR[2];COR+COR+.xMRO[IN;;];COR-
    COR+TRSO;COR+COR+.xMRS[IS;IN;;]
[4]  L10:ZTR+RRC[J]*10ANT;YTR+RRC[J]*20ANT;ANT+CDxIT
[5]  COR-(XRC[J]-HS),YTR,ZTR
[6]  ZGTS[IT+1]->COR[3];YGTS[IT+1]->COR[2];COR+COR+.xMRO[IN;;];
    COR+COR+TRSO;COR+COR+.xMRS[IS;IN;;]
[7]  ->((IT+IT+1)<18)/L10
[8]  +L16;->((J+J+1)<2)/L11;0 DRAW ZGTS VS YGTS
[9]  L15:'ERROR FROM TEC VX AND VZ ARE NOT PERPENDICULAR'
[10] L16:
    v

```

```

  VTDM[]]v
  V TDM
[1]  CTR+11 3p0;J->1;PTR+2 11 3p0
[2]  ANT-((111)-5)xWSC4NxPI+1800
[3]  L11:CTR[;2]->RRC[J]*20ANT;CTR[;3]->RRC[J]*10ANT;CTR[;1]->XRC[
    J]-HS
[4]  PTR[J;;]->((CTR+.xMRSE[IS;IN;;])+TRSO)+.xMRO[IN;;]
[5]  ->((J+J+1)<2)/L11
[6]  ZGTS+(PTR[1;;3]),(PTR[2;;3]),(PTR[1;1;3])
[7]  YGTS+PTR[1;;2],(PTR[2;;2]),PTR[1;1;2]
[8]  0 DRAW ZGTS VS YGTS
    v

```

TSATCO

```

    VTPE[]]▽
    ▽ TPE
[1] HS←(+/(PSG[;IS;IN]×PSG[;IS;IN]))*0.5
[2] PAN← $10(R \times (10(5 \times PI/6)) \div 7S)$ ; GAN← $10(R \times (10((PI/2) + ALD)) \div 7S)$ ;
ALD+ALD×PI/180
[3] BRC←4S×30(PAN,GAN)
[4] MRC←-30(PAN,GAN)
[5] XRC←((-BRC×MRC)+(((R×R)+(MRC×MRC×R×R)-(BRC×BRC))×0.5))÷((1+
(MRC×MRC)))
[6] RRC←(MRC×XRC)+BRC; TRSO←PSG[;IS;IN]-MTR[IN;IS;]
[7] RDMAX←(((HS-XRC[2])×(HS-XRC[2]))+(RRC[2]×RRC[2]))×0.5
    ▽

    VTPEM[]]▽
    ▽ TPEM
[1] HS←(+/(PSG[;IS;IN]×PSG[;IS;IN]))*0.5
[2] PAN← $10(R \times (10(5 \times PI/6)) \div 7S)$ ; GAN← $10(R \times (10((PI/2) + ALD)) \div 7S)$ ;
ALD+ALD×PI/180
[3] BRC←4S×30(PAN,GAN)
[4] MRC←-30(PAN,GAN)
[5] XRC←((-BRC×MRC)+(((R×R)+(MRC×MRC×R×R)-(BRC×BRC))×0.5))÷((1+
(MRC×MRC)))
[6] RRC←(MRC×XRC)+BRC; TRSO←(11,3)p(PSG[;IS;IN]-MTR[IN;IS;])
[7] RDMAX←(((HS-XRC[2])×(HS-XRC[2]))+(RRC[2]×RRC[2]))×0.5
    ▽

    VTGEOSPH[]]▽
    ▽ MRC←TGEOSPH MC
[1] MC[;2]←MC[;2]×PI/180
[2] MRC[;3]←(PI/2)-(MC[;3]×PI/180); MRC←MC
    ▽

    VTPOPO[]]▽
    ▽ MRO←VT TOPO PO; OME
[1] THR←PO[2]+(OME×VT); OME←0.004375; VX←VZ←3p0
[2] XDR←(PO[1]×(10PO[3])×2oT4R)
[3] YDR←(PO[1]×(10PO[3])×1oTHR)
[4] ZDR←(PO[1]×(20PO[3]))×(xVZ[3]); VZ[3]←1oPO[3]
[5] VX[1]←(10PO[3])×2oT4R; VX[2]←(10PO[3])×1oT4R; VX[3]←20PO[3]
[6] VZ[1]←-(20PO[3])×2oT4R; VZ[2]←-(20PO[3])×1oT4R
[7] VZ ANGROT VX
[8] MRO←IMR
    ▽

```

TSATCO

```

    ▽ VTRECSPX[]▽
    ▽ PSX+TR5CSPX FSR;MH
[1] PSX[;1]+(+/(FSR×FSR))*0.5;PSX←(ρFSR)ρ0
[2] MH←((FSR[;2]×FSR[;2])+(FSR[;3]×FSR[;3]))*0.5
[3] PSX[;2]←AREP+FSR[;2]ANGRV FSR[;3]
[4] PSX[;3]←AREP+FSR[;1]ANGRV MH
    ▽
    ▽ VTSPHREC[]▽
    ▽ MCC+TSPHREC MC
[1] MCC←(ρMC)ρ0
[2] MCC[;1]+MC[;1]×(10MC[;3])×20MC[;2]
[3] MCC[;2]←MC[;1]×(10MC[;3])×10MC[;2]
[4] MCC[;3]←MC[;1]×20MC[;3]
    ▽
    ▽ TVRCSP[]▽
    ▽ PSX+TVRCSP FSR;MH
[1] PSX[1]+(+/(FSR×FSR))*0.5;PSX←(ρFSR)ρ0
[2] MH←((FSR[2]×FSR[2])+(FSR[1]×FSR[1]))*0.5
[3] PSX[2]←AREP;FSR[1]ANGR FSR[2]
[4] PSX[3]←AREP;FSR[3]ANGR MH
    ▽
    ▽ TVSPRC[]▽
    ▽ TRF+TVSPRC PO
[1] TRF+3ρ0
[2] TRF[1]+PO[1]×(10PO[3])×20PO[2]
[3] TRF[2]+PO[1]×(10PO[3])×10PO[2]
[4] TRF[3]+PO[1]×20PO[3]
    ▽
    ▽ VOPOC[]▽
    ▽ MPT+VPS VOPOC MCR;VX;VZ;PO
[1] PO←TVRCSP VPS;VX+VZ+3ρ0;MPT←(ρMCR)ρ0
[2] MPT[;1]+MCR[;1]-VPS[1]
[3] MPT[;2]+MCR[;2]-VPS[2]
[4] MPT[;3]+MCR[;3]-(VPS[3]×(×VZ[3]));VZ[3]←10PO[3]
[5] MPT←MPT+.×(MRSE[IS;IN;])
    ▽
    ▽ VOPOE[]▽
    ▽ MPT+VPS VOPOE MCR;VX;VZ;PO
[1] PO←TVRCSP VPS;VX+VZ+3ρ0;MPT←(ρMCR)ρ0
[2] MPT[;1]+MCR[;1]-VPS[1]
[3] MPT[;2]+MCR[;2]-VPS[2]
[4] MPT[;3]+MCR[;3]-(VPS[3]×(×VZ[3]));VZ[3]←10PO[3]
[5] MPT←MPT+.×(MRSE[IS;IN;])
    ▽

```

```

SATCO
▼CONTROL[]▼
▼ CONTROL;PERI;APO;LONR;LATR;M;G;B;L;RSS;XE;YE;ZE;COR;I;R;
ZI2;SCF;TMP;TOP;TDP;NLIM;NCAL;INN;IN
[1]   'STARTING TIME OF THE SIMULATION='
[2]   TO←]
[3]   'TIME INCREMENT='
[4]   TI←]
[5]   'DURATION OF SIMULATION='
[6]   TM←TO+TD←]
[7]   'POSITION OF THE OBSERVATION POINT'
[8]   'ALTITUDE ABOVE EARTH SURFACE=0'
[9]   ROB←R+MR←0;R←6370
[10]  'LONGITUDE=0'
[11]  THOB←LONR×PI÷180;LONR←0
[12]  'LATITUDE=0'
[13]  P4OB←(PI÷2)-(LATR×PI÷180);LATR←0
[14]  PO←ROB,THOB,P4OB
[15]  NS←1+(SYSAT)
[16]  OME←0.00437;PREF[;3]←((10)-1)×PI÷18;PREF←(10 3) p 6370 0 0
[17]  NREV←10 p 0;ZI2←0;TREVS←(NS,10) p TREV;TREV←10 p (TO-(5×TI)+1)
[18]  REV1←REV2←REV3←REV4←REV5←REV6←REV7←REV8←REV9←REV0←0 p 0
[19]  MRF←OPO PO
[20]  POR←TVSPRC PO;MTO←MRF
[21]  NCAL←TD+TI;NLIM←30;TDP←TD;INP←1;TOP←TO;TMP←TM;T←TO;IN←INN+1
[22]  L30:→(NCAL≥NLIM)/L20
[23]  TMP←TM;TOP←T;TDP←NCAL×TI
[24]  →L25;'TOP=';TOP;'    TMP=';TMP;POSSAT(TOP,TI,TDP)
[25]  L20:TOP←T
[26]  POSSAT(TOP,TI,TDP);TMP←TOP+(NLIM×TI);TDP←NLIM×TI
[27]  L25:T←TOP;IN←1;IS←1
[28]  L15:→(INN=1)/L17
[29]  →(IN=1)/L50
[30]  →L17
[31]  L50:
[32]  L17:→(SYSAT[IS;10]=0)/L60
[33]  →L91;STATM;TFM;ALD←SYSAT[IS;11];WSC4N←SYSAT[IS;12];PSG[;IS;
IN]PRSM PREF
[34]  L60:STATE;TFE;ALD←SYSAT[IS;11];PSG[;IS;IN]PRSE PREF
[35]  L91:→((IS+IS+1)≤NS)/L15
[36]  L11:→((T+T+TI)≤TMP)/L15;IN←IN+1;IS+1;INN←INN+1
[37]  →(T≥TM)/L35
[38]  INP←INP+1
[39]  →L30;NCAL←NCAL-(NLIM+1);PSOZ←PSO[3;;(IN-1)];PSOY←PSO[2;;(IN-1)]
[40]  L35:'REV1=';REV1
[41]  'REV2=';REV2
[42]  'REV3=';REV3
[43]  'REV4=';REV4
[44]  'REV5=';REV5

```

SATCO

```
▼CONTROL[□45]▼
[45] 'REV6=';REV6
[46] 'REV7=';REV7
[47] 'REV8=';REV8
[48] 'REV9=';REV9
[49] 'REVO=';REVO
[50] 'SYSAT=';SYSAT
[51] ε ')WSID DATA CO'
[52] ε ')SAVE DATA CO'
```

SATCO

```

▼STAT4TE[ ]]▼
▽STATE;VPAN;VGAN;VRD;DFO;NTP;VIND;NJ;C4
[1] VPAN←10pPAN;VGAN←10pGAN;VRD←10pRDMAX
[2] DFO←(PSX[ ;1]≤VRD)∧(PDS<VGAN)
[3] NTP++/DFO
[4] →(NTP<1)/L5
[5] VIND←DFO/(DFO×10);J+1
[6] L1:NJ←VIND[J]
[7] C4←'ZI2'ΔFMT NJ
[8] →(TRES≤(5×TI))/L6;TRES←T-TREVS[IS;NJ]
[9] TREV[NJ]←T;TRE←T-TREV[NJ]
[10] NREV[NJ]←NREV[NJ]+1;TREVS[IS;NJ]←T
[11] DUMMY←ε'REV',C4[1;2],'←REV',C4[1;2],',TRE'
[12] L6:→((J←J+1)≤NTP)/L1
[13] '
[14] 'NTP=';NTP;';IS=';IS;';T=';T
[15] 'DFO=';DFO
[16] 'TREVS=';TREVS
[17] 'TREV=';TREV
[18] 'NREV=';NREV
[19] L5:
    ▽

```

```

▼STAT4M[ ]]▼
▽STATM;VP4N;VGAN;VRD;DFO;NTP;VIND;NJ;C4
[1] VP4N←10pPAN;VGAN←10pGAN;VRD←10pRDMAX
[2] DFO←(PSX[ ;1]≤VRD)∧(PDS<VGAN)∧(((2×PI)-PSX[ ;2])≤(WSCAN×PI+
360))∨(PSX[ ;2]≤(WSCAN×PI+360)))
[3] NTP++/DFO
[4] →(NTP<1)/L5
[5] VIND←DFO/(DFO×10);J+1
[6] L1:NJ←VIND[J]
[7] C4←'ZI2'ΔFMT NJ
[8] →(TRES≤(5×TI))/L6;TRES←T-TREVS[IS;NJ]
[9] TREV[NJ]←T;TRE←T-TREV[NJ]
[10] NREV[NJ]←NREV[NJ]+1;TREVS[IS;NJ]←T
[11] DUMMY←ε'REV',C4[1;2],'←REV',C4[1;2],',TRE'
[12] L6:→((J←J+1)≤NTP)/L1
[13] '
[14] 'NTP=';NTP;';IS=';IS;';T=';T
[15] 'DFO=';DFO
[16] 'TREVS=';TREVS
[17] 'TREV=';TREV
[18] 'NREV=';NREV
[19] L5:
    ▽

```

APPENDIX III

FLOW CHART OF CONTROL IN TSATCO

TSATCO
Flow chart
of CONTROL
(part IV)

APPENDIX IV
FLOW CHART OF CONTROL IN SATCO

TS4T20

```

    ▽ ANGR[]]▽
    ▽ 4X ANGR 4Y; VCA
[1] +(4X≠0)/L1
[2] +L2; AREP←((PI÷2)×(4Y>0))+(3×PI÷2)×(4Y<0)
[3] L1: VCA←((4Y≥0)∧(4X≥0)), ((4Y≥0)∧(4X<0)), ((4Y<0)∧(4X>0))
[4] AREP+AREP, (PI-AREP), (PL+AREP), ((2×PI)-AREP); AREP←~30|4Y÷4X
[5] AREP++/VCA×AREP
[6] L2:
    ▽
    ▽ ANGRV[]]▽
    ▽ AREP+AX ANGRV 4Y; VCA; LV; V; ARE
[1] AREP+(ρAX)p0; LV←ρ4X; V←1; +((ρAX)≠(ρ4Y))/L10
[2] L11:+(4X[V]≠0)/L1
[3] +L2; AREP[V]←((PI÷2)×(4Y[V]>0))+(3×PI÷2)×(4Y[V]<0)
[4] L1: VCA←((4Y[V]≥0)∧(4X[V]≥0)), ((4Y[V]≥0)∧(4X[V]<0)), ((4Y[V]<0)∧(4X[V]<0)), ((4Y[V]<0)∧(4X[V]>0))
[5] ARE←ARE, (PI-ARE), (PI+ARE), ((2×PI)-ARE); ARE←~30|4Y[V]÷4X[V]
[6] AREP[V]++/VCA×ARE
[7] L2:+L12; +(V←V+1)≤LV)/L11
[8] L10:'ERROR FROM ANGRV THE ARGUMENT DO NOT HAVE THE PROPER LENGTH'
[9] L12:
    ▽
    ▽ BROWNS[]]▽
    ▽ F+BROWNS MT; NU; G; M; NB; MNB; MB
[1] NU←G×M; G←2.4E-16; M←5.97E24
[2] NB←(NU+4×A×A)*0.5
[3] MNB←Q(NT, NS)ρNB
[4] MTP←MT-0.01; MTS←MT+0.01; MT←MT+((Q(NT, NS)ρSYSAT[:9]))
[5] ME←Q(NT, NS)ρE; MB←MNBS×MT; MBP←MTP×MNBS; MBS←MTS×MNBS
[6] CB←(10MB)*((1+(ME×ME)-(2×ME×20MB))*0.5)
[7] CBP←(10MBP)*((1+(ME×ME)-(2×ME×20MBP))*0.5)
[8] CBS←(10MBS)*((1+(ME×ME)-(2×ME×20MBS))*0.5)
[9] VC1←((CBP<CB)∧(CBS≥CB)∧(CB≥0))×1
[10] VC2←(((CBP≥CB)∧(CBS<CB)∧(CB≥0))×2)+(((CB≤1)∧(CB>1))×2)
[11] VC3←((CBP>CB)∧(CBS≤CB)∧(CB<0))×3
[12] VC4←(((CBP≤CB)∧(CBS>CB)∧(CB<0))×4)+(((CB≥-1)∧(CB<-1))×4)
[13] VC←VC1+VC2+VC3+VC4
[14] CB←~10(|CB|)
[15] CB←(CB×(VC=1))+((PI-CB)×(VC=2))+((PI+CB)×(VC=3))+(((2×PI)-CB)×(VC=4))
[16] F←~10|AR; AR←((10CB)×((1-(ME×ME))*0.5))+VDE; VC←((20CB)-ME)÷VDE; VDE+(1-(ME×20CB))
[17] F←(F×((4R≥0)∧(VC≥0)))+((PI-F)×((AR≥0)∧(VC<0)))+((PI+F)×((4R<0)∧(VC<0)))+(((2×PI)-F)×((4R<0)∧(VC>0)))
    ▽

```

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATING ACTIVITY Defence Research Establishment Ottawa Department of National Defence , Ottawa, Ontario K1A 0Z4		2a. DOCUMENT SECURITY CLASSIFICATION UNCLASSIFIED
		2b GROUP
3. DOCUMENT TITLE SIMULATION OF SPACE BASED RADAR SURVEILLANCE SYSTEMS II: SOFTWARE TO PERFORM TIME OF REVISIT STUDIES (U)		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) TECHNICAL NOTE		
5. AUTHOR(S) (Last name, first name, middle initial) BROUSSEAU, N.		
6. DOCUMENT DATE OCTOBER 1983	7a. TOTAL NO. OF PAGES 90	7b. NO. OF REFS 2
8a. PROJECT OR GRANT NO. 33Y10	9a. ORIGINATOR'S DOCUMENT NUMBER(S) DREO TN 83-7	
8b. CONTRACT NO	9b. OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)	
10. DISTRIBUTION STATEMENT [REDACTED]		
11. SUPPLEMENTARY NOTES UNLIMITED DISTRIBUTION	12. SPONSORING ACTIVITY	
13. ABSTRACT - A computer simulation of the coverage of satellite borne radars with mechanical and/or electronic scanning mode has been implemented in APL language. The number of revisits and the revisit time are calculated for a set of points of reference. The programs are producing either paper print- out or graphic displays on a Tektronic screen. This simulation is a component of a software package designed to study space based radar surveillance systems.		
<i>insert</i> <i>Approved</i> <i>for public release</i> <i>under the</i> <i>Freedom of Information Act</i>		

UNCLASSIFIED

Security Classification

KEY WORDS

COMPUTER SIMULATION

SPACE BASED RADAR

SURVEILLANCE SYSTEMS

TIME OF REVISIT

INSTRUCTIONS

1. ORIGINATING ACTIVITY Enter the name and address of the organization issuing the document.

2a. DOCUMENT SECURITY CLASSIFICATION Enter the overall security classification of the document, including special markings such as CONFIDENTIAL, SECRET, TOP SECRET, or UNCLASSIFIED, if applicable.

2b. GROUP Enter security reclassification group number. The three groups are defined in Appendix 'M' of the DRB Security Regulations.

3. DOCUMENT TITLE Enter the complete document title in all capital letters. Titles in all cases should be unclassified. If a sufficiently descriptive title cannot be selected without classification, show title classification with the usual one-capital-letter abbreviation in parentheses immediately following the title.

4. DESCRIPTIVE NOTES Enter the category of document, e.g. technical report, technical note or technical letter. If appropriate, enter the type of document, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S) Enter the name(s) of author(s) as shown on or in the document. Enter last name, first name, middle initial. If military, show rank. The name of the principal author is an absolute minimum requirement.

6. DOCUMENT DATE Enter the date (month, year) of Establishment approval for publication of the document.

7a. TOTAL NUMBER OF PAGES The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES Enter the total number of references cited in the document.

8a. PROJECT OR GRANT NUMBER If appropriate, enter the applicable research and development project or grant number under which the document was written.

8b. CONTRACT NUMBER If appropriate, enter the applicable number under which the document was written.

9a. ORIGINATOR'S DOCUMENT NUMBER(S) Enter the official document number by which the document will be identified and controlled by the originating activity. This number must be unique to this document.

9b. OTHER DOCUMENT NUMBER(S) If the document has been assigned any other document numbers (either by the originator or by the sponsor), also enter this number(s).

[REDACTED] former dissemination of this document is controlled by security classification [REDACTED]

(1) "Qualified requesters may obtain copies of this document from their defence documentation center."

(2) "Announcement and dissemination of this document is not authorized without prior approval from originating activity."

11. SUPPLEMENTARY NOTES Use for additional explanatory notes.

12. SPONSORING ACTIVITY Enter the name of the departmental project office or laboratory sponsoring the research and development. Include address.

13. ABSTRACT Enter an abstract giving a brief and factual summary of the document, even though it may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall end with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (TS), (SI), (CI), (IR), or (U).

The length of the abstract should be limited to 20 single spaced standard typewritten lines. 7 1/4 inches long.

14. KEY WORDS Key words are technically meaningful terms or short phrases that characterize a document and could be helpful in cataloging the document. Key words should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context.

END

FILMED

5-85

DTIC