5. 행렬

개요

학습목표

- 실세계의 데이터를 행렬로 표현할 수 있다.
- 행렬의 합, 차, 스칼라 곱, 행렬곱 그리고 전치연산을 수행할 수 있다.
- 가우스 소거법을 통해 일차연립방정식을 풀 수 있다.
- 행렬의 유형을 판별할 수 있다.
- 특수한 값을 가지는 부울행렬의 연산을 수행할 수 있다.

주요용어

- 행렬
- 행렬의 연산(합, 차, 스칼라 곱, 행렬곱, 전치)
- 기본행연산
- 행제형 행렬
- 소거행제형 행렬
- 정방행렬
- 대각행렬
- 단위행렬
- 대칭행렬
- 비대칭행렬
- 삼각행렬
- 전치행렬
- 역행렬
- 부울행렬
- 부울행렬의 연산(합, 교차, 부울곱)

1. 기본사항 [113]

행렬 사용처

- 프로그래밍 언어와 자료구조
- 수치해석, 패턴인식
- 컴퓨터 그래픽스
- 인공지능-기계학습
- **선형대수학**

행렬(matrix)

- · m, n이 양의 정수일 때, m개의 행과 n개의 열로 구성된 직사각형 배열 A
 - └ A행렬의 i번째 행의 j번째 열의 수
 - 행렬의 (i, j) 원소
- 행벡터(row vector)
- 행렬의 행
- 열벡터(column vector)
 - 행렬의 열
- 영행렬(zero matrix)
- 모든 원소가 0인 행렬
- 2. 행렬의 연산 [116]
- └ (1) 기본연산
 - 행렬의 합
 - └ A+B: 같은 위치의 A와 B의 원소를 더해서 구해지는 행렬
 - 행렬의 차
 - └ A-B: 같은 위치의 A와 B의 원소를 더해서 구해지는 행렬
 - 행렬의 스칼라 곱
 - kA는 A의 각 원소에 k를 곱해서 구해지는 행렬로서, (i, j) 원소의 값은 ka _{ij}
 - 행렬의 합과 스칼라 곱의 연산법칙 [117]

행렬의 곱

A가 m x n 행렬이고 B가 n x l 행렬일 때, 행렬의 곱 AB는 자신의 (i,j) 원소가 다음과 같이 정의되는 m x l 행렬이다. A의 i행과 B의 i열의 각 항들의 곱의 합

· 행렬 A의 열의 개수와 행렬 B의 행의 개수가 같을 때에만 행렬의 곱 AB를 계산할 수 있음

두 행렬의 곱의 크기는 (A의 행의 개수) X (B의 열의 개수)가 된다.

AB 곱의 (i, j) 원소는 A의 i번째 행벡터와 B의 j번째 열벡터의 내적(inner product)이다.

행렬의 곱 AB의 (2, 3) 원소는 행렬 A의 두 번째 행벡터 (-4, 0)과 행렬 B의 세 번째 열벡터(3, 1)의 내적(-4X3+0X1=-12)이다.

예제

5-5.

^{_} 5-7.

행렬의 곱에서는 교환법칙이 성립하지 않는다.

- 행렬곱에서는 행렬곱에 참여하는 행렬이 모두 영행렬이 아니더라도 그 결과가 영행렬이 되는 경우가 있다.

행렬곱의 연산법칙

2. 행렬의 연산(2) [120]

└ (2) 가우스 소거법(Gauss elimination)

다음 일차연립방정식에서

-2x - 5y + 2z = -3x + 3y = 4y + 3z = 6

행렬과 벡터를 이용해 나타내기

계수행렬(coefficient matrix)

└ 왼쪽 3 x 3 크기 행렬

상수행렬(constant matrix)

(-3, 4, 6)

해(solution)

└ (x, y, z)

└ 확대행렬(augmented matrix)

기본행연산(elementary row operation)

일차연립방정식에서 해를 구하기 위해 식을 변형하는 작업

· 행 교환 연산(row interchange)

└ 어떤 두 개의 행 위치를 서로 바꾼다

두 행렬 사이 ~가 의미하는것

└ 두 개의 연립방정식이 동일한 해를 가진다는 뜻

행 스케일링 연산(row scaling)

어떤 하나의 행에 0이 아닌 상수를 곱한다

└ 연립방정식에서 0이 아닌 식에 상수를 곱하더라도 해는 변하지 않음 (좌변 우변 동일곱이므로 해는 동일하게 유지)

행 대체 연산(row replacement)

└ 하나의 행에 상수를 곱한 뒤 다른 행에 더한 식으로 대체한다

행에 스칼라 곱을 수행한 결과를 다른 행에 더하는 작업

가우스 행렬 연산

기존의 행렬을 변형해 새로운 확대행렬을 만들기

해를 구하기 위해 행렬의 기본행연산을 이용하여 확대행렬을 먼저 행제형 행렬로 만들고

- 소거행제형 행렬로 변환하기

행제형 행렬(row echelon matrix)

1. 영행이 아닌 행은 영행의 위에 있다.

2. 행렬의 각 행에서 0이 아닌 가장 처음 나타나는 원소를 선도원소(leading entry)라고 하는데, 모든 선도원소는 1이다.

- 3. 주어진 행의 선도원소는 그 아래 행의 선도원소보다 왼쪽에 있다.

소거행제형 행렬(reduced row echelon matrix)

└ 4. 선도원소가 포함된 열에서 선도원소를 제외한 모든 원소는 0이다.

예제5-10.

예제 5-13.

3. 행렬의 종류

정방행렬

정방행렬(square matrix)

- 행의 수와 열의 수가 같은 n X n 행렬을 n차 정방행렬이라 하며,
- n을 정방행렬의 차수(order)라 한다.
- 대각원소(diagonal entry)
 - └ 정방행렬의 a11, a22, ... a_nn 원소

주대각선(main diagonal)

대각행렬(diagonal matrix)

- n차 정방행렬에서 대각원소 이외의 모든 원소가 0인 행렬을 대각행렬이라 한다.
- 스칼라 행렬(scalar matrix)
 - └ n개의 대각원소가 모두 같은 값인 대각행렬

단위행렬(unit matrix)

 $^{f L}$ n차 정방행렬에서 대각원소가 모두 1이고 나머지 원소는 모두 0인 행렬을 n차 단위행렬이라 하고, 기호는 l_n

대칭행렬(symmetric matrix)

└ n차 정방행렬에서 a_ij = a_ji인 행렬을 대칭행렬이라 한다.

삼각행렬(triangular matrix)

n차 정방행렬에서 주대각선 아래에 있는 모든 원소들이 0일 경우 상삼각행렬(upper triangular matrix)이라 하고, 주대각선 - 위에 있는 모든 원소들이 0일 경우 하삼각행렬(lower triangular matrix)이라 한다. 상삼각행렬 또는 하삼각행렬을 삼각행렬 이라 부른다.

전치행렬(transpose matrix)

m x n 크기의 행렬 A가 주어졌을 때, A의 행과 열을 서로 교환한 행렬을 A의 전치행렬이라 하며, 기호로 A<sup>T</sub>라고 표시한다. 이 때 n x m이 전치행렬의 크기가 된다.

역행렬(inverse matrix)

n차 정방행렬 A, B가 주어졌을 때, AB = BA = I_n 인 행렬 B가 존재하는 경우 행렬 A를 역행렬(inverse matrix)이라고 하고, 기호로 A⁻¹라고 표시한다.

예제 5-18 [132]

4. 부울행렬 [133]

- 부울행렬(boolean matrix)
- └ 행렬의 모든 원소가 부울값(0 또는 1)으로만 구성된 행렬
- 부울행렬의 합, 교차, 부울곱(join, meet, boolean product)
 - 부울행렬의 합
 - 부울행렬의 교차
 - 부울행렬의 부울곱

연습문제

- 07.
- 08.