LABORATORY EVALUATION OF MIL-T-83133 JP-8 FUEL IN ARMY DIESEL ENGINES

INTERIM REPORT BFLRF No. 232

Ву

W.E. Likos

E.C. Owens

S.J. Lestz

Belvoir Fuels and Lubricants Research Facility (SwRI)
Southwest Research Institute
San Antonio, Texas

Under Contract to

U.S. Army Belvoir Research, Development and Engineering Center Materials, Fuels and Lubricants Laboratory Fort Belvoir, Virginia

Contract No. DAAK70-87-C-0043

Approved for public release; distribution unlimited

January 1938

89 2 24 060

E

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE		
1a. REPORT SECURITY CLASSIFICATION	1ь. RESTRICTIVE MARKINGS None	
Unclassified	3. DISTRIBUTION/AVAILABILITY OF REPORT	
2a. SECURITY CLASSIFICATION AUTHORITY		
N/A 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE	Approved for public release;	
20. DECLASSIFICATION/DOWNGRADING SCHEDOLE	distribution unlimited	
4. PERFORMING ORGANIZATION REPORT NUMBER(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)	
Interim Report BFLRF No. 232		
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL	7a. NAME OF MONITORING ORGANIZATION	
Belvoir Fuels and Lubricants (If applicable)		
Research Facility (SwRI)		
6c. ADDRESS (City, State, and ZIP Code)	7b. ADDRESS (City, State, and ZIP Code)	
Southwest Research Institute		
San Antonio, Texas 78284		
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
ORGANIZATION Belvoir Research. (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER DAAK 70-82-C-0001, WD 29; DAAK 70-85-C-0007, WD 16;	
Development and Engineering	DAAK70-85-C-0007, WD 16; DAAK70-87-C-0043, WD 7	
OCHECT		
8c. ADDRESS (City, State, and ZIP Code)	10. SOURCE OF FUNDING NUMBERS	
Ft. Belvoir, VA 22060-5606	PROGRAM PROJECT TASK WORK UNIT LEEMENT NO. 1L26310 NO. ACCESSION NO.	
10. 2027022, 111 ================================	63104 4D150 -07(7)	
11 TITLE (Inch de Comite Charles)	45150 07(7)	
11. TITLE (Include Security Classification)	Evel In Army Diogel Engines (II)	
Laboratory Evaluation of MIL-T-83133 JP-8 I	del in Army blesel Englies (0)	
12. PERSONAL AUTHOR(S)	on- Cidnon I	
Likos, William E.; Owens, Edwin C.; and Les		
Interim FROM Oct 84 TO Jan 88	14. DATE OF REPORT (Year, Month, Day) 1988 January 15. PAGE COUNT 245	
16. SUPPLEMENTARY NOTATION		
	ncluded with all reports. Appendices may be	
	from the Defense Technical Information Center.	
	ontinue on reverse if necessary and identify by block number	
FIELD GROUP SUB-GROUP Engine Fuel Sy	stem Components Diesel Engines	
Fuel Pumps	Internal Combustion Engines	
Diesel Fuels	Engine Components (Con'd)	
19. ABSTRACT (Continue on reverse if necessary and identify by block number)	Engle 940+cs	
\mathcal{L}	7.12.6.140.423	
	el JP-8 from emergency to alternate status for	
	its use as a single-fuel concept, four Army diesel	
engines were evaluated by dynamometer tests in c	yclic endurance test procedures using JP-8 fuel and	
compared to baseline performance using diesel fuel		
Results showed the advantages for JP-8 fuel to include:		
Increased engine efficiency at the maximum power conditions		
Lower rate of cylinder combustion chamber deposit formation		
Less contamination of the engine lubricant		
Less wear of the upper ring area		
See I ower rate of depletion of the lubricant additives		
Less wear of the upper ring area Lower rate of depletion of the lubricant additives		
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	21. ABSTRACT SECURITY CLASSIFICATION	
M UNCLASSIFIED/UNLIMITED	Unclassified	
22a. NAME OF RESPONSIBLE INDIVIDUAL	22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL	
Mr. F.W. Schaekel	(703) 664–3576 STRBE-VF	
DD FORM 1473, 84 MAR 83 APR edition may be used un	til exhausted. SECURITY CLASSIFICATION OF THIS PAGE	

Block 18 - Continued

Aviation Fuels
Jet Engine Fuels
Fuel Injectors
Automotive Fuels
Compression Ignition Engines

Multifuel Engines Combustion Deposits Wear Lubricating Oils

Block 19 - Continued

- Less corrosive wear of the engine bearings, and
- Fewer deposits on the fuel injectors,

Problems discovered by the engine dynamometer tests were:

- Reduced maximum power
- Predicted reduction in the range of vehicles operating on JP-8, which is proportionate to the reduced heating value of JP-8 compared to DF-2

JP-8 was found to be satisfactory for use in all engines tested. However, there is concern for the new GM 6.2L engine that currently powers the Commercial Utility Cargo Vehicle (CUCV) and High Mobility Multi-Purpose Wheeled Vehicle (HMMWV). Abnormal wear occurred in the fuel injection pump of the GM 6.2L engine while operating on JP-8 during an engine dynamometer test. This wear resulted in higher fuel delivery rates and erratic injection timing. Later field tests did not show such wear problems.

In general, the maximum engine power among the engines tested was reduced by the use of JP-8. Increased leakage past fuel injection pump plungers due to the lower viscosity of JP-8 resulted in reduced fueling rates. This power-reducing effect was compensated to some degree by improved thermal efficiency in all but the GM 6.2L engine.

Thus, the use of JP-8 in the diesel-engine powered vehicles holds some advantages, notably for the engine and oil durability for most engines tested. The disadvantages include reduced vehicle range and reduced maximum power. Caution is required since these tests were conducted at moderate ambient fuel temperature.

French

EXECUTIVE SUMMARY

Problems and Objectives: Following the conversion of JP-4 to JP-8 for use in U.S. and NATO aircraft, the U.S. Department of Defense (DOD) has adopted the single fuel for the battlefield concept, i.e., the use of one fuel for combat in ground vehicles and equipment as well as in aircraft. However, there is significant concern within the U.S. Army/DOD and the NATO community in considering the use of JP-8/F-34 as an alternate to diesel fuel DF-2 NATO Code F-54. Once approved, combat and tactical ground vehicles would be in a position to use the same fuel as aircraft, enabling the "one fuel forward" concept to be realized.

Importance of Project: The completion of this project will evaluate the effects of using JP-8 fuel in several different high-density fielded diesel engines. If the JP-8 fuel can be successfully used in these engines, which are representative of a large portion of the Army's fleet, then JP-8 fuel can be used as an alternate fuel to DF-2 in the remainder of the U.S. military compression-ignition (CI) engine fleet.

Technical Approach: In the work reported here, laboratory engine-dynamometer tests were performed using JP-8 fuel in five different high-density fielded Army diesel engines. The engines selected for the JP-8 fuel evaluations were the naturally aspirated Detroit Diesel 6V-53N, the two-stroke Detroit Diesel 6V-53T, the Teledyne Continental Motors LDT-465-1C, General Motors 6.2L, and the Cummins NHC-250. The last four engines were each operated over either the Army/Coordinating Research Council (CRC) 240-hour cycle for tracked vehicles or the Army/CRC 210-hour cycle for wheeled vehicles, depending on the type of vehicle in which a particular engine is used. Special fuel consumption tests were conducted at partial load using the first engine, the naturally aspirated 6V-53N. All engines were operated with both DF-2 and JP-8 fuel, and the differences in engine performance and durability were compared. All these tests were conducted at moderate ambient fuel temperatures.

Accomplishments: As a result of this program, JP-8 was found to be satisfactory for use in all engines tested. There were both advantages and disadvantages to the use of this fuel in the Army's CI fleet. In general, the maximum engine power among the engines tested was reduced by the use of JP-8. Increased leakage past fuel injection pump plungers due to the lower viscosity of JP-8 resulted in reduced fueling rates. The power-reducing effect was compensated to some degree by improved thermal efficiency in all but the GM 6.2L engine. Based on measurements made in the 6V-53N engine, a predicted reduction in the range of vehicles operating on JP-8 would be expected, which is proportionate to the reduced heating value of JP-8 compared to DF-2. The use of JP-8 in the diesel-engine powered vehicles holds some advantages, notably for the engine and oil durability for most engines tested. The disadvantages include expected reduction in vehicle range and reduced maximum power.

Military Impact: The results of this test program provided data to show that aircraft kerosene-type fuels can be used in diesel-powered equipment with assurance that no catastrophic fuel-related failures will occur, although an increase in fuel consumption may be observed. A major benefit to the military will be the elimination of the need to provide more than one fuel for combat, resulting in a decrease in the DOD fuel logistics burden.

FOREWORD/ACKNOWLEDGMENTS

This work was conducted at the Belvoir Fuels and Lubricants Research Facility (BFLRF) located at Southwest Research Institute (SwRI), San Antonio, TX under Contract Nos. DAAK70-82-C-0001, DAAK70-85-C-0007, and DAAK70-87-C-0043 during the period October 1984 through June 1987. The work was funded by the U.S. Army Belvoir Research, Development and Engineering Center, Ft. Belvoir, VA, with Mr. F.W. Schaekel (STRBE-VF), the Contracting Officer's representative, and Mr. M.E. LePera, Chief of Fuels and Lubricants Division (STRBE-VF), the project technical monitor.

The authors would like to thank all the Belvoir Fuels and Lubricants Research Facility (BFLRF) technical personnel who assembled, operated, disassembled, inspected, measured, and rated the engines; and those who conducted the fuel and lubricant analyses used in this study; thanks also to the reports processing group for their typing and editorial assistance. Special acknowledgement is made of the expert consultation and assistance provided by the following BFLRF Staff:

John N. Bowden - test fuel acquisition and specification requirements

Edwin A. Frame - new/used lubricant performance

Alan F. Montemayor - engine installation/operation and data acquisition/analyses

Douglas M. Yost - engine power, performance, fuel economy assessment

Deborah A. Toles; Walter E. Butler, Jr.; and **Ruben A. Alvarez -** engine data compilation, reduction, computation, and analysis.

TABLE OF CONTENTS

Section		Page
I.	INTRODUCTION·····	1
II.	BACKGROUND·····	I
III.	DETAILS OF TEST · · · · · · · · · · · · · · · · · · ·	2
	A. Test Engines B. Test Cycles C. Test Fuels D. Test Procedures E. Test Lubricants	2 11 12 14 14
IV.	RESULTS ·····	18
	A. GM 6.2L, Initial Baseline Test Using Cat Diesel Fuel B. GM 6.2L, Repeat Baseline Test Using Cat Diesel Fuel C. GM 6.2L 210-Hour Test Using JP-8 D. GM 6.2L 400-Hour Test Using JP-8 E. Cummins NHC-250 210-Hour Test Using Cat Diesel Fuel F. Cummins NHC-250 210-Hour Test Using JP-8 G. LDT-465-1C Engine 210-Hour Test Using Cat Diesel Fuel H. LDT-465-1C Engine 210-Hour Test Using JP-8 Fuel I. GM 6V-53T Engine Operating on Cat Diesel Fuel J. GM 6V-53T Engine Operating on JP-8 Fuel K. Comparative Results Between Cat Diesel Fuel and JP-8 Fueling 1. Engine Performance 2. Fuel Consumption Comparison	19 23 26 28 33 36 36 36 38 38 39
	3. Engine Durability Effects	45 47
٧.	CONCLUSIONS ·····	48
VI.	RECOMMENDATIONS ·····	
VII.	REFERENCES ·····	
APPEND	DICES	
A. B.	Test Data and Photographs (GM 6.2L Engine, 210-Hour Test, Cat Fuel, Initial Baseline)	53
υ.	Test Data and Photographs (GM 6.2L Engine, 210-Hour Test, Cat Fuel, Repeat Baseline)	97

TABLE OF CONTENTS (CONT'D)

Section		Page
c.	Test Data (GM 6.2L Engine, 210-Hour Test, JP-8 Fuel) · · · · · · · · · · · · · · · · · · ·	119
D.	Test Data and Photographs (GM 6.2L Engine, 400-Hour NATO Test Cycle, JP-8 Fuel	133
E.	Test Data (Cummins NH-250 Engine, 210-Hour Test, Cat Fuel)	147
F.	Test Data and Photographs (Cummins NH-250 Engine, 210-Hour Test, JP-8 Fuel)	159
G.	Test Data and Photographs (LDT-465-1C Engine, 210-Hour Test, Cat Fuel)	179
Н.	Test Data and Photographs (LDT-465-1C Engine, 210-Hour Test, JP-8 Fuel)	201
Ι.	Test Data and Photographs (DD 6V-53T Engine, 240-Hour Test, Cat Fuel)	221
J.	Test Data and Photographs (DD 6V-53T Engine, 240-Hour Test, JP-8 Fuel)	249

LIST OF ILLUSTRATIONS

Figure		Page
1	Specifications and Installation of the Detroit Diesel	2
_	6V-53T Engine	3
2	Specifications and Installation of the Teledyne	4
2	Continental Motors LDT-465-1C Engines	4
3	Specifications and Installation of the Cummins NHC-250 Engine	5
4	Specifications and Installation of the General Motors	,
4	6.2L Engine · · · · · · · · · · · · · · · · · · ·	6
5	Fuel Consumption Versus Test Time, 6.2L/Baseline · · · · · · · · · · · · · · · · · · ·	21
6	Brake Horsepower Versus Test Time, 6.2L/Baseline · · · · · · · · · · · · · · · · · · ·	21
7	Brake Specific Fuel Consumption Versus Test Time,	
·	6.2L/Baseline · · · · · · · · · · · · · · · · · · ·	22
8	Photograph of Fuel Injection Pump Components	23
9	Most Worn Piston Ring Set · · · · · · · · · · · · · · · · · · ·	24
10	Fuel Consumption Versus Test Time, Repeat 6.2L Test · · · · · · · · · · · · · · · · · · ·	25
11	Fuel Consumption Versus Test Time, 6.2L/JP-8 Test ··············	27
12	Maximum Power Versus Test Time, 6.2L/JP-8 Test · · · · · · · · · · · · · · · · · · ·	29
13	Brake Specific Fuel Consumption Versus Test Time,	
	6.2L/JP-8 Test · · · · · · · · · · · · · · · · · · ·	29
14	Maximum Power Versus Test Time, 6.2L/JP-8 400-Hour Test · · · · · · · · · · · · · · · · · · ·	30
15	Fuel Flow Rate Versus Test Time, 6.2L/JP-8 400-Hour Test · · · · · · · · · · · · · · · · · · ·	30
16	Brake Specific Fuel Consumption Versus Test Time, 6.2L/JP-8	
1.7	400-Hour Test	31
17	Exhaust Gas Temperature Versus Test Time, 6.2L/JP-8 400-Hour Test	21
18	700-110di 1est	31
10	Photograph of Injection Pump Drive Shaft, 6.2L/JP-8 400-Hour Test	32
19	Kinematic Viscosity of JP-8 Versus Temperature · · · · · · · · · · · · · · · · · · ·	34
20	Fuel Consumption Versus Test Time, NHC-250/Baseline ······	34
21	Maximum Power Versus Test Time, NHC-250/Baseline ······	35
22	Brake Specific Fuel Consumption Versus Test Time.	
	NHC-250/Baseline · · · · · · · · · · · · · · · · · · ·	35
23	Fuel Consumption Versus Test Time, NHC-250/JP-8 · · · · · · · · · · · · · · · · · · ·	37
24	Full Load Brake Specific Fuel Consumption Curves,	
	NHC-250/JP-8	37
25	Photograph of Injection Pump Gears, NHC-250/JP-8 · · · · · · · · · · · · · · · · · · ·	38
26	Percent Change in the Maximum Power · · · · · · · · · · · · · · · · · · ·	40
27	Percent Change in the Volumetric Fuel Flow at the Maximum	
20	Power Condition	40
28	Percent Change of Thermal Efficiency	42
29 30	Percent Change in Projected Vehicle Range	42
31	Detroit Diesel 6V-53N Full-Load Response to JP-8	45
32	Engine Durability, JP-8 to Base Fuel Comparisons	46 48
26	- caca cu unattatatat at -a to paac t det Combattania	48

LIST OF TABLES

<u>Table</u>		Page
1	Army Combat Tactical Vehicles Powered by GM Detroit Diesel	
	Two-Cycle Engines · · · · · · · · · · · · · · · · · · ·	7
2	Army Vehicles Powered by Teledyne Continental Motors	
	LD/LDS/LDT-465 Engines · · · · · · · · · · · · · · · · · · ·	8
3	Army Vehicles Powered by the Cummins NHC-250 Engine · · · · · · · · · · · · · · · · · · ·	9
4	Army Vehicles Powered by the General Motors 6.2L	
	Diesel Engine · · · · · · · · · · · · · · · · · · ·	10
5	Army/CRC 240-Hour Tracked-Vehicle Endurance Cycle · · · · · · · · · · · · · · · · · · ·	11
6	Army/CRC 210-Hour Wheeled-Vehicle Endurance Cycle · · · · · · · · · · · · · · · · · · ·	12
7	Analysis of Reference No. 2 DF (Cat Fuel), Batch 85-2	
	(AL-14069-F)	13
8	Properties of JP-8 Test Fuel · · · · · · · · · · · · · · · · · · ·	15
9	Comparative Fuel Properties Related to Diesel	
	Engine Performance	16
10	Engine Run-In Cycle · · · · · · · · · · · · · · · · · · ·	17
11	Test Lubricant Properties ······	18
12	Army Engine-Fuel Test Summary · · · · · · · · · · · · · · · · · · ·	19
13	GM 6.2L Engine Evaluation of JP-8 ······	27
14	Detroit Diesel 6V-53N Performance Deviations Using JP-8 ········	
1 7	Detroit Diesel 94-5514 Lei formance Deviations Osing 18-8	44

I. INTRODUCTION

The NATO-wide conversion from MIL-T-5624, JP-4/NATO F-40 for aircraft and VV-F-800 DF-2/NATO F-54 for ground equipment to a single fuel for all combat and tactical equipment was officially sanctioned by the United States military through DOD directive 4140.43 dated April 1988. Prior to that issue date, much test work had been done to determine the impacts of this single fuel, MIL-T-83133 JP-8/NATO F-34, on Army combat and tactical ground equipment.

This report compiles previously unreported diesel engine test data obtained using JP-8/F-34 as a fuel. While these results have not been previously reported in this form, problems identified here have, in many cases, been investigated further. These later investigations are referenced within this text.

II. BACKGROUND

The potential conversion from aviation turbine fuel Grade JP-4/MIL-T-5624/NATO Code F-40 to aviation turbine fuel Grade JP-8/MIL-T-83133/NATO Code F-34 for all aircraft operating within NATO has resulted in a program directed towards the qualification of JP-8 aviation turbine fuel for compression-ignition (diesel) engine applications. This program was preceded by a need in the early 1970's to investigate the possibility of using aviation kerosine MIL-T-5624 JP-5/NATO Code F-44 in ground equipment powered by diesel engines. The investigation consisted of surveys of the equipment manufacturers and short-term engine dynamometer testing conducted by the Army.(1,2)* Thus, as a result of the knowledge and judgment of personnel familiar with the Army's fuel requirements and equipment and limited actual testing, JP-5 was approved as an alternative to diesel fuel as described by Federal Specification VV-F-800. The approval was reflected in Army Regulation AR 703-1 Coal and Petroleum Supply and Management Activities, dated 6 September 1978, wherein JP-5 was established as an "alternate fuel" to the "primary fuel" for all diesel fuel consuming equipment.

The U.S. Army is currently investigating the acceptability of using JP-8/F-34 aviation turbine fuel in compression-ignition engines powering ground equipment/vehicles follow-

^{*} Underscored numbers in parentheses refer to the list of references at the end of this report.

ing the same acceptance procedure adopted for JP-5. The work is being conducted under a program initiated in FY80 entitled "Development of Accelerated Fuels Qualification Procedures (AFQP)." The objective of this program was to develop more efficient and rapid military fuel qualification procedures. A basic concern in the AFQP program is to address those fuels expected to be used in the near to distant future in currently fielded military engines. Examples might include broad specification fuels, synthetic fuels, high-sulfur fuels, or the use of aviation turbine fuels in diesel-pr wered equipment/vehicle systems. Such is the case at hand, wherein there is significant concern within the U.S. Army/DOD and the NATO community to consider use of JP-8/F-34 as an alternate to diesel fuel DF-2/NATO Code F-54. Once approved, combat and tactical ground vehicles would be in a position to utilize the same fuel as aircraft, enabling a "one fuel forward" concept to be realized. In the work reported here, laboratory enginedynamometer tests were performed using JP-8 fuel in five different high-density fielded Army diesel engines.

III. DETAILS OF TEST

A. Test Engines

The engines selected for the JP-8 fuel evaluations were the two-stroke General Motors (GM) Detroit Diesel (DD)* 6V-53T (Fig. 1), the naturally aspirated (GM) Detroit Diesel (DD) 6V-53N (Fig. 1), the Teledyne Continental Motors LDT-465-1C (Fig. 2), General Motors (GM) 6.2L (Fig. 3), and the Cummins NHC-250 (Fig. 4). These engines are representative of a large portion of the Army's fleet. TABLES 1 through 4 list the fielded use of the different engines.

Previous work with these engines in the Belvoir Fuels and Lubricants Research Facility (BFLRF) was concerned mainly with lubricant performance. In these earlier tests, the 6V-53T engine was found to be intolerant of low viscosity combined with high volatility in the lubricating oil, and severely scored cylinders and burned rings resulted when the volatility was below a critical limit.(3-5) The engine's sensitivity to lubricant formulation and fuel sulfur level makes it a good choice for laboratory tests since problems can be

^{*} Since this work was completed, the General Motors Detroit Diesel name has been redesignated Detroit Diesel Corporation (DDC).

DD 6V-53T Engine Specifications

	DD 6V-53T	DD 6V-53N
Engine Type	Turbocharged, Direct Injection Uniflow Scavenged, Two-Stroke Compression Ignition	Naturally Aspirated, Direct Injection, Uni- flow Scavenged, Two- Stroke Compression Ignition
No. of Cylinders, arrangement	6, V	6, V
Displacement, liters (in.3)	5.2 (318)	5.2 (318)
Bore x Stroke, mm (in.)	98.43 x 114.30 (3.875 x 4.500)	98.43 x 114.30 (3.875 x 4.500)
Rated Power, kW (Bhp)	224 (300) at 2800 rpm	157 (210) at 2800 rpm
Rated Torque, Nm (ft-lb)	834 (615) at 2200 rpm	603 (445) at 1500 rpm
Compression Ratio	18.7:1	21:1
Oil Capacity, liters (gal.)	19 (5)	19 (5)
Engine Structure	Cast Iron Head, Block, and Liners	Cast Iron Head, Block, and Liners
Piston Material, design	Cast Iron, Trunk Type	Cast Iron, Trunk Type
Injection System	DDA N70 Unit Injectors	DDA N50 Unit Injectors

Figure 1. Specifications and installation of the Detroit Diesel 6V-53T engine

LD-465-1 and LDT-465-1C Engine Specifications

Engine Type	Turbocharged, Direct Injection
0 11	Four-Stroke, Compression Ignition
	M.A.N. Combustion Chamber Design

acity

No. of Cylinders, arrangement	6, in-line
Displacement, liters (in.3)	7.8 (478)

Bore x Stroke, mm (in.)	115.8 x 123.7 (4.56 x 4.87)
-------------------------	-----------------------------

Rated Power, kW (Bhp)	104 (140) at 2600 rpm, 15.5°C (60°F) and

29.82 in. Hg

Engine Structure Cast Iron Head, Block, and Liners;

Aluminum Pistons
Oil Capacity, liters (gal.)
21 (5.5)

Injection System Bosch Rotary Distributor With Density

Compensator

Figure 2. Specifications and installation of the Teledyne Continental Motors LDT-465-1C Engines

Cummins NHC-250 Engine Specifications

Engine Type	Direct Injected, Naturally Aspirated Four-Stroke, Compression Ignition
No. of Cylinders, arrangement	6, in-line
Displacement, liters (in.3)	14.0 (855)
Bore x Stroke, mm (in.)	139x (5.50 x 6.00)
Rated Power, kW (Bhp)	186 (250)
Rated Torque, Nm (ft-lb)	892 (658)
Oil Capacity, liters (gal.)	20.8 (5.5)
Engine Structure	Cast Iron Head, Block, and Liners; Aluminum Pistons
Injection System	Cummins PT System

Figure 3. Specifications and installation of the Cummins NHC-250 Engine

GM 6.2L Engine Specifications

Engine Type	Naturally Aspirated, Ricardo Swirl Pre-Combustion Chamber, Four-Stroke, Compression Ignition
No. of Cylinders, arrangement	8, V
Displacement, liters (in. ³)	6.2 (380)
Bore x Stroke, mm (in.)	101 x 97 (3.98 x 3.82)
Rated Power, kW (Bhp)	96.6 (130) CUCV, 107.7 (145) HMMWV
Rated Torque, Nm (ft-lb)	325 (240)
Oil Capacity, liters (gal.)	6.62 (1.75)
Engine Structure	Cast Iron Head and Block (no cylinder liners) Aluminum Pistons
Injection System	Stanadyne DB-2 F/I Pump with Bosch Pintle Injectors

Figure 4. Specifications and installation of the General Motors 6.2L Engine

TABLE 1. Army Combat/Tactical Vehicles Powered by GM Detroit Diesel Two-Cycle Engines

Designation	Description	Engine Model
M106A1, A2 M107 M108 M109A1, A2, A3 M110A1, A2 M42A1 M163A1	Mortar, Self-Propelled (SP), 107 mm Gun, Self-Propelled, 175 mm Howitzer, Self-Propelled, 105 mm Howitzer, Medium, 155 mm Howitzer, Self-Propelled, 8 inch Gun, Anti-Aircraft, SP Gun, Air Defense, SP	6V-53 8V-71T 8V-71T 8V-71T 8V-71T 6V-53 6V-53
M113A1, A2 M113A1 (Stretch) M113A2E1 M125A1, A2 M132A1	Carrier, Guided Missile, TOW; Personnel, Full-Tracked (FT) Carrier, Personnel, Stretched, FT, Armored Carrier, Personnel, FT, Armored Mortar, Self-Propelled, FT Flame Thrower, Self-Propelled	6V-53 6V-53T 6V-53T 6V-53 6V-53
M116 M548 M548 (Stretch) M551	Carrier, Cargo, Amphibious Carrier, Cargo, Tracked Carrier, Cargo, Tracked, Stretched Armored Reconnaissance/Airborne Assault Vehicle (Sheridan)	6V-53 6V-53 6V-53T
M561 M792 M577A1, A2 M578 M992, XM1050	Truck, Cargo, 1-1/4 T (Gamma Goat) Truck, Ambulance, 1-1/4 T Carrier, Command Post, Light-Tracked Recovery Vehicle, FT, SP Field Artillery Ammunition Support Vehicle (FAASV),	3-53 3-53 6V-53 8V-71T
M752, M688E1 M667 XM727 M730, A1 M730, A2	Carrier, Loader/Launcher/Transporter (Lance) Carrier, Guided Missile, (Lance) Equipment, SP, FT Carrier, Guided Missile, Equipment, SP, FT Carrier, Guided Missile (Chaparral), SP, FT Carrier, Guided Missile (Chaparral), SP, FT	6V-53 6V-53 6V-53 6V-53 6V-53T
M741, A1 M806E1 M901, A1 M981 M1015, A1	Chassis, Gun, AA (VULCAN), 20 mm, SP, FT Recovery Vehicle, FT, Armored Improved TOW Vehicle Carrier, FT Fire Support Team Vehicle, FT, SP Carrier, Electronic Shelter, FT, SP	6V-53 6V-53 6V-53 6V-53
M1059 M113A1, A2 M878, A1	Carrier, Smoke Generator, FT, SP Fitters Vehicle, FT, SP Truck, Tractor, 5 T, Yard Type	6V-53 6V-53 6V-53T
M911 M746 M977, 985 M978 M983 M984	Truck, Tractor, Heavy Equipment Transporter Truck, Tractor, Heavy Equipment Transporter Truck, Cargo, Tactical, 8 x 8 HEM Truck, Tank, FT, 2500 gal. Truck, Tractor, Tactical Truck, Wrecker, Tactical	8V-92TA 12V-71T 8V-92TA 8V-92TA 8V-92TA 8V-92TA

TABLE 2. Army Vehicles Powered by Teledyne Continental Motors LD/LDS/LDT-465 Engines*

Designation	Description	Engine Model
M44A2 M45A2 M45A2G M46A2C M621 M622 M623 M624	Chassis, Truck: 6 x 6	LD-465-1 LD-465-1 LD-465-1 LD-465-1 LD-465-1 LD-465-1 LD-465-1
M40A2 M40A2C M63A2 M63A2C	Chassis, Truck: 6 x 6	LDS-465-1A LD-465-1A LDS-465-1A LDS-465-1A
M35A2 M35A2C M36A2 M621	Truck, Cargo: 6 x 6	LD-465-1 LD-465-1 LD-465-1 LD-465-1
M54A2C M55A2 M656	Truck, Cargo: 6 x 6 Truck, Cargo: 6 x 6 Truck, Cargo: 8 x 8	LD-465-1A LD-465-1A LD-465- (TC)
M342A2 M624 M51A2	Truck, Dump: 6 x 6 Truck, Dump: 6 x 6 Truck, Dump: 6 x 6	LD-465-1 LD-465-1 LD-465-1A
M49A2C M50A2 M622	Truck, Tank: Fuel, 6 x 6, 4542 L (1200 gal.) Truck, Tank: Water, 6 x 6, 3785 L (1000 gal.) Truck, Tank: Fuel Servicing, 6 x 6, 4542 L (1200 gal.)	LD-465-1 LD-465-1 LD-465-1
M275A2 M52A2 M246A2	Truck, Tractor: 6 x 6 Truck, Tractor: 6 x 6 Truck, Tractor: Wrecker, 6 x 6	LD-465-1 LD-465-1A LDS-465
M109A3 M185A2 M185A3 M623 M291A2 M291A2C	Truck, Van: Shop, 6 x 6 Truck, Van: Shop, 6 x 6 Truck, Van: Shop Repair, 6 x 6 Truck, Van: Shop, 6 x 6 Truck, Van: Expansible, 6 x 6 Truck, Van: Expansible, 6 x 6	LD-465-1 LDS-427-2 LD-465-1 LD-465-1 LDS-465-1A LDS-465-1A
M543A2	Truck, Wrecker: Medium, 6 x 6	LDS-465-1A

^{*} Source: TM 43-0001-31, Equipment Data Sheets for TARCOM Equipment, July 1978. Note: The LDT-465-1C engine is used interchangeably in vehicles utilizing the LD-465-1 engine.

TABLE 3. Army Vehicles Powered by the Cummins NHC-250 Engine

Designation	Description	Engine Model
M815	Truck, Bolster: 5 Ton	NHC-250
M924	Truck, Cargo: 5 Ton .	NHC-250
M813	Truck, Cargo: 5 Ton	NHC-250
M926	Truck, Cargo: 5 Ton	NHC-250
M813	Truck, Cargo: 5 Ton	NHC-250
M814	Truck, Cargo: 5 Ton	NHC-250
M927	Truck, Cargo: 5 Ton	NHC-250
M928	Truck, Cargo: 5 Ton	NHC-250
M814	Truck, Cargo: 5 Ton	NHC-250
M813A1	Truck, Cargo Dropside: 5 Ton	NHC-250
M923	Truck, Cargo Dropside: 5 Ton	NHC-250
M813A1	Truck, Cargo Dropside: 5 Ton	NHC-250
M925	Truck, Cargo Dropside: 5 Ton	NHC-250
M817	Truck, Dump: 5 Ton	NHC-250
M929	Truck, Dump: 5 Ton	NHC-250
M817	Truck, Dump: 5 Ton	NHC-250
M930	Truck, Dump: 5 Ton	NHC-250
M821	Truck, Stake Bridge Trans: 5 Ton	NHC-250
M819	Truck, Trac/Wrecker: 5 Ton	NHC-250
M818	Truck, Tractor: 5 Ton	NHC-250
M931	Truck, Tractor: 5 Ton	NHC-250
M932	Truck, Tractor: 5 Ton	NHC-250
M818	Truck, Tractor: 5 Ton	NHC-250
M820	Truck, Van Expansible: 5 Ton	NHC-250
M820A2	Truck, Van Expansible: 5 Ton	NHC-250
M934	Truck, Van Expansible: 5 Ton	NHC-250
W/LFTM935	Truck, Van Expansible: 5 Ton	NHC-250
M936	Truck, Wrecker: 5 Ton	NHC-250
M816	Truck, Wrecker: 5 Ton	NHC-250

expected to develop quickly, minimizing test time.(6,7) The naturally aspirated version of this engine was used for developing partial-load fuel consumption data. This short-term testing provided a better estimate of fuel consumption changes with JP-8 than the full-power endurance testing.

The LDT-465 engine produces a high blow-by flow rate that stresses the lubricant's additive package. Experience shows this engine also tends to thermally stress the oil leading to viscosity increases.(8-11) The resultant thickened oil can cause pumpability problems at cold start, thus creating excessive wear.

TABLE 4. Army Vehicles Powered by the General Motors 6.2L Diesel Engine

Designation	Description	Engine Model
М996	Truck, Ambulance: 2 Liter, HMMWV	GM 6.2L LL4
M997	Truck, Ambulance: 4 Liter, HMMWV	GM 6.2L LL4
M1010	Truck, Ambulance: TAC, 5/4 Ton	GM 6.2L LL4
M1008	Truck, Cargo: Tactical, 5/4 Ton	GM 6.2L LL4
M1008A1	Truck, Cargo: Tactical, 5/4 Ton	GM 6.2L LL4
M1028	Truck, Cargo: Tactical, 5/4 Ton	GM 6.2L LL4
M1025	Truck, Utility: 4 x 4, 11/4 Ton	GM 6.2L LL4
M1026	Truck, Utility: 4 x 4, 11/4 Ton	GM 6.2L LL4
M1038	Truck, Utility: C60, 11/4 Ton	GM 6.2L LL4
M998	Truck, Utility: C60, 11/4 Ton	GM 6.2L LL4
M1037	Truck, Utility: S250, HMMWV	GM 6.2L LL4
M1009	Truck, Utility: Tactical, 3/4 Ton	GM 6.2L LL4
М966	Truck, Utility: Tow Carrier, HMMWV	GM 6.2L LL4

Army experience shows the Cummins NHC-250 engine to be rather insensitive in that it does not generate unusual stress on the lubricant. (12) The "PT" or pressure-time fuel injection system is unique in design and is tolerant of off-specification fuels. The GM 6.2L engine is a relatively new engine to the Army. Although it is currently being used in only two Army vehicles, the High Mobility Multi-purpose Wheeled Vehicle (HMMWV) and the Commercial Utility Cargo Vehicle (CUCV), the Army will field over 200,000 of these units. The engine testing performed during this program represents the initial experience with this engine for the BFLRF. It was chosen for the program due to the large numbers that will be fielded, rather than any known fuel or lubricant sensitivities.

Various combustion systems were represented by the engines. This was necessary in order to identify combustion-related problems that could arise due to a particular fuel/engine combination. Such effects may not have been a problem in the past since the physical properties of the petroleum-based fuels did not differ significantly. However, today, with the possibility of using a wide variation of fuels, for example, variable quality/broad specification fuels and/or emergency fuels, all aspects of the combustion

process, from the atomization of the fuel through evaporation and the chemical reactions can be quite different.

B. Test Cycles

The different engines were each operated over either the Army/Coordinating Research Council (CRC) 240-hour cycle for tracked-vehicles, or the Army/CRC 210-hour cycle for wheeled-vehicles, depending on the type of vehicle in which a particular engine is used.

A description of the 240-hour tracked-vehicle cycle is given in TABLE 5. This cycle, used for the 6V-53T tests, has been correlated to 6437 kilometers (4000 miles) of proving ground operation.(13) The 6V-53T was the only engine to use this test cycle.

TABLE 5. Army/CRC 240-Hour Tracked-Vehicle Endurance Cycle

Period*	Time, hr	Rack/Throttle Setting	Coolant Jacket-OutTemp, OC (OF)
1	0.5	Idle	38 (100)
	2.0	Maximum Power	77 (170)
	0.5	Idle	38 (100)
	2.0	Maximum Torque	77 (170)
2	0.5	Idle	38 (100)
	2.0	Maximum Power	77 (170)
	0.5	Idle	38 (100)
	2.0	Maximum Torque	77 (170)
3	0.5	Idle	38 (100)
	2.0	Maximum Power	77 (170)
	0.5	Idle	38 (100)
	2.0	Maximum Torque	77 (170)
4	0.5	Idle	38 (100)
	2.0	Maximum Power	77 (170)
	0.5	Idle	38 (100)
	2.0	Maximum Torque	77 (170)
5	4	5 min idle, followed by shutdown	

^{*} These five periods yield 20 hours of running with a 4-hour shutdown; this cycle is repeated 12 times for a total test time of 240 hours.

The other engines were operated over the 210-hour wheeled-vehicle cycle described in TABLE 6. This cycle has been correlated to 32,185 kilometers (20,000 miles) of proving ground experience.(13) The NATO AEP-5 400-hour diesel engine test procedure was used for a single evaluation in the GM 6.2L engine.

TABLE 6. Army/CRC 210-Hour Wheeled-Vehicle Endurance Cycle

Period*	Time, hr	Rack/Throttle Setting	Coolant Jacket-Out Temp, ^o C (oF)
1	2	5 min idle followed by slow acceleration to maximum power	82 (180)
2	1	Idle	38 (100)
3	2	Maximum Power	82 (180)
4	1	Idle	38 (100)
5	2	Maximum Power	82 (180)
6	1	Idle	38 (100)
7	2	Maximum Power	82 (180)
8	1	Idle	38 (100)
9	2	Maximum Power	82 (180)
10	10	5 min idle followed by shutdown	

^{*} These ten periods yield 14 hours of running with a 10-hour shutdown; this cycle is repeated 15 times for a total test time of 210 hours.

C. Test Fuels

The base fuel was reference No. 2 diesel fuel supplied by Howell Hydrocarbons, Inc. of San Antonio, TX. The specification requirements for this fuel, commonly referred to as "Cat fuel," are set forth in section 5.2, methods 354 and 355 of Federal Test Method Standard (FTMS) 791C and described in Appendix F of ASTM STP 509A, Part I and II.(14)

This test fuel is a straight-run, mid-range natural sulfur fuel manufactured under closely controlled refinery operation to minimize batch-to-batch compositional and physical property deviations. Properties of the test fuel are given in TABLE 7 and compared with requirements of Cat fuel and VV-F-800.(15)

TABLE 7. Analysis of Reference No. 2 DF (Cat Fuel), Batch 85-2 (AL-14069-F)

_	ASTM	Test Fuel	Require	
Test	Method	AL-14069-F	Cat Fuel (1)	VV-F-800D (2)
Gravity OAPI	D 287	34.5	32-35	(a)
Specific Gravity, 15.6/15.6°C	D 1298	0.8524	(a)	0.815-0.860
Viscosity, cSt at 100°F (37.8°C)	D 445	3.12	3.0-4.0	(a)
at 104°F (40°C)	D 445	2.98	(a)	1.9-4.1
Distillation, OF (OC)	D 86		• •	
Initial Boiling Point		402 (206)	Report	(a)
10% Recovered		462 (239)	Report	(a)
50% Recovered		517 (269)	500-530 (260-277)	Report
90% Recovered		611 (322)	580-620 (304-327)	675 (357) max
End Point		663 (351)	650-690 (343-366)	698 (370) max
% Recovered		99		(a)
% Residue		1		(a)
Flash Point, OF (OC)	D 93	180 (82)	100 (37.8) min	133 (56) min
Pour Point, OF (OC)	D 97	9 (-13)	20 (-7) max	0 (-18) max
Cloud Point, OF (OC)	D 2500	14 (-10)	Report	9 (-13) max
Copper Corrosion, 3 hr at 210°F,			P	
Rating	D 130	1 A	No, 2 max	1
Carbon Residue on 10% Bottoms,				
Ramsbottom wt%	D 524	0.11	0.20 max	0.20 max
Water and Sediment, vol%	D 1796	0.01	0.05 max	0.10 max
Neutralization Number,				
mg KOH/g	D 974	0.02	(a)	0.10
Total Acid No., mg KOH/g	D 664	(a)	0.15 max	(a)
Ash, wt%	D 482	10.0	0.01 max	0.02 max
Net Heat of Combustion, Btu/Ib	D 240	18,279	(a)	(a)
MJ/kg		42,516	(a)	(a)
Cetane Number	D 613	52	45-51	45 min
Cetane Index	D 976	47	(a)	(a)
Carbon, wt%	D 3178	86.24	(a)	(a)
Hydrogen, wt%	D 3178	12.19	(a)	(a)
Sulfur, wt%	D 2622	0.41	0.370-0.430	0.30 max
Cracked Stocks			None	

⁽a) No requirement.

⁽¹⁾ ASTM STP 509A, Part I and II, Appendix F.

⁽²⁾ Requirements for grade DF-2 (NATO F-54).

The special test fuel used in these endurance runs was obtained from Sun Tech and met the requirements of MIL-T-83133 Aviation Turbine Fuel, JP-8.(16) This fuel was delivered to BFLRF in bulk, at which time it was assigned a fuel designation number of AL-14216-F. The fuel properties determined at BFLRF are given in TABLE 8 and are also compared to the specification requirements for MIL-T-83133/NATO F-34. This particular fuel meets the NATO JP-8 fuel requirements critical for diesel engine performance. The cetane number, although not a specification requirement for jet fuels, was found to be 41. As shown in Table 7, the minimum cetane number requirement for VV-F-800D diesel fuel is 40. Thus, ignition/combustion-related problems would not be anticipated. A comparison of fuel properties related to diesel engine performance is provided in TABLE 9 for diesel fuel VV-F-800 grades DF-A, DF-1, and DF-2; naval distillate fuel MIL-F-16884; and JP-5 and JP-8 aviation turbine engine fuels.

D. Test Procedures

A complete description of the test procedure for each individual engine is given in the appropriate appendix. In general, prior to each test the engines were completely disassembled, critical parts were replaced with new components where necessary, and the engine was reassembled. The manufacturers rebuild specifications were followed for all parts, and measurements of the critical components were recorded.

Following the calibration of the instrumentation, the engine was run-in according to the cycle given in TABLE 10. Before-test power curves were run on both the JP-8 test fuel and the baseline Cat fuel. The oil was changed following engine run-in.

E. Test Lubricants

Two different Army reference oils were used in the engine tests. A qualified MIL-L-2104D (17) OE/HDO-30 Army reference oil, utilizing a magnesium detergent-dispersant and with a sulfated ash content of 0.84 wt%, was used in the 210-hour testing. The 6V-53T tests that were 240 hours in duration used the Coordinating Research Council (CRC) reference engine oil REO-203, an SAE 30-grade lubricant. The REO-203 oil uses a calcium detergent-dispersant and has a sulfated ash content of 0.93, similar to the MIL-L-2104D oil. A further listing of the oil properties and composition is given in TABLE 11.

TABLE 8. Properties of JP-8 Test Fuel

		MIL-T-83133B	
		JP-8/NATO F-34	Test Fuel
Property	<u>Method</u>	Requirements	AL-14216-F
Color	D 156	(a)	+15 (Saybolt)
Color Total Acid Number mg KOH/g	D 3242	0.015 max	0.005
Total Acid Number, mg KOH/g Aromatics, vol%	D 1319	25.0 max	19.0
· · · · · · · · · · · · · · · · · · ·	D 1319	5.0 max	0
Olefins, vol%	D 4294	0.3 max	<0.01
Sulfur, total wt% (XRF) Mercaptan Sulfur, wt%	D 3227	0.001 max	0.0002
	D 86	0.001 max	0.0002
Distillation, ^O C	D 86	(a)	171
Initial Boiling Point 10% Recovered		186 max	184
20% Recovered		(a)	188
50% Recovered		(a)	200
90% Recovered		(a)	222
End Point		330 max	238
Flash Point, °C	D 93	38 min	56
Gravity, OAPI	D 1298	37-51	40.3
Density, kg/L at 15°C	D 1298	0.775-0.840	0.8232
Freezing Point, °C	D 2386	-50 max	-55
Kinematic Viscosity at -20°C, cSt	D 445	8.0 max	4.14
Kinematic Viscosity at 40°C, cSt	D 445	NR*	1.26
Net Heat of Combustion, MJ/kg	D 447	INIX	1.20
(Btu/lb)		42.8 (18,400)	43.106 (18,532)
(Btd/1b)		min	+3.100 (10,732)
Hydrogen Content, wt%		13.5 min	13.69
Smoke Point, mm	D 1322	19 min	22.2
Copper Corrosion, 2 hr at 100°C	D 130	1B max	1 A.
Thermal Stability (JFTOT), Code	D 3241	<3	1
Change in Pressure Drop, mm Hg		25 max	0
Existent Gum, mg/100 mL	D 381	7 . 0 max	0.2
Particulate Matter, mg/L	D 2276	1.0 max	1.1 (b)
Water Reaction, interface rating	D 1094	lb	Īb
Water Separation Index, modified	D 2550	70 max	
Fuel System Icing Inhibitor		0.10-0.15	0.01, 0.04
Fuel Electrical Conductivity, pS/m	D 2624	200-600	170, 90
Filtration Time, minutes, Apdx A	MIL-T-5624	15 max	72
Cetane Number		(c)	41
BOCLE, scar diameter, mm		(c)	0.34

^{*} NR = Not required.

(a) Report.

(b) Underlined values outside of specification limits.

(c) No requirement.

TABLE 9. Comparative Fuel Properties Related to Diesel Engine Performance

Properties	Method	V DF-A	V-F-800 <u>DF-1</u>	D DF-2	MIL-F- 16884H NDF	MIL-T- 5624-M JP-5	MIL-T- 83133B JP-8
Flash Point, ^o C, min	D 93	38	38	52	60	60	38
Cloud Point, OC, max	D 2500	-51	*	*	-1	NR**	NR
Pour Point, °C	D 97	Rpt	Rpt	Rpt	-6	NR	NR
Freezing Point, ^o C, max	D 2386	NR	NR	NR	NR	-46	-47
Kinematic Viscosity at 40°C, cSt	D 445	1.1 to 2.4	1.3 to 2.9	1.9 to 4.4	1.7 to 4.3	NR	NR
Kinematic Viscosity at -20°C, cSt, max	D 445	NR	NR	NR	NR	8.5	8.0
Distillation, °C	D 86						
10% recovered, max		NR	NR	NR	NR	205	205
20% recovered, max		NR	NR	NR	NR	Rpt	Rpt
50% recovered, max		Rpt	Rpt	Rpt	Rpt	Rpt	Rpt
90% recovered, max		288	288	338	357	Rpt	Rpt
End Point, max		300	330	370	385	300	300
Residue, vol%, max		3	3	3	3	1.5	1.5
Carbon Residue on 10% Bottoms, wt%, max	D 524	0.10	0.15	0.35	0.20	NR	NR
Sulfur, mass%, max	D 2622	0.25	0.50	0.50	1.00	0.40	0.30
Cu Corrosivity	D 130						
3 hrs at 50°C, max		3	3	3	NR	NR	NR
2 hrs at 100°C, max		NR	NR	NR	l	1	1
Ash, wt%, max	D 482	0.01	0.01	0.01	0.005	NR	NR
Accelerated Stability, mg/100 mL, max	D 2274	1.5	1.5	1.5	1.5	NR	NR
Neutralization Number, mg KOH/g, max	D 974	0.05	NR	NR	0.3	0.015	0.015
Particulate Contamina- tion, mg/L, max	D 2276	10	10	10	NR	1.0	1.0
Cetane Number, min	D 613	40	40	40	45	NR	NR
Net Heat of Combustion, MJ/kg, min	D 2382 D 3338 ^{or}	NR	NR	NR	NR	42.6	42.8

^{*} Specified according to anticipated low ambient temperature at use location.

** NR = No requirement.

TABLE 10. Engine Run-In Cycle

Cummins NHC-250

Engine Speed, rpm	Power, Obs Bhp	Time, min.
1575	125	26
2100	188	15
2100	213	15
2100	225	15
Full Power Check	250 ± 7	15
2100	Adjusted full throttle to	
	97 lb/hr fuel flow rate	

LDT-465-1C

Engine Speed, rpm	Power, Obs Bhp	Time, min.
1000	15	30
1400	15	30
1800	35	30
2200	65	60
2400	100	60
2600	140	30
2600	Adjusted full rack to 66-67 lb/hr fuel flow rate	

GM 6V-53T

Engine Speed, rpm	Power, Obs Bhp	Time, min.
1000	10	10
2800	10	30
1800	30	15
2200	130	30
2500	200	30
2800	225	30

GM 6.2L

RPM	Torque, lb-ft	Time	Bhp Computed
1. 1000	87	30 min.	17
2. 1500	93	30 min.	27
3. 1800	98	30 min.	34
4. 2000	102	30 min.	39
5. 2200	106	30 min.	44
6. 2400	113	30 min.	52
7. 2500	117	30 min.	56
8. 2600	121	30 min.	60
9. 2700	125	30 min.	64
10. 2800	127	30 min.	68
11. 2900	129	30 min.	71
12. 3000	132	30 min.	75
13. 3100	134	30 min.	79
14. 3200	137	30 min.	83
15. 3300	140	30 min.	88
16. 3400	142	30 min.	92
17. 3500	145	30 min.	97
18. 3600	146	30 min.	100
19. 3700	147	30 min.	104
20. 3800	148	30 min.	107
21. 3900	149	<u>30 min.</u>	110
		10.5 Hrs.	

Full Load

		Time	Bhp
3000	Report	1 hr.	Max
3200	Report	1 hr.	Max
3400	Report	l hr.	Max
3600	Report	l hr.	Max
3800	Report	l hr.	Max
3900	Report	<u>l hr.</u>	Max
		6 Hrs.	

Adjust full rack to 67-68 lbs/hr. full flow rate

TABLE 11. Test Lubricant Properties

<u>Oil</u> SAE Vis. Grade	4.677.4	MIL-L-2104D 30	REO-203
Properties	ASTM Method		
K. Viscosity, 40°C, cSt	D 445	98.55	105
K. Viscosity, 100°C, cSt	D 445	11.36	11.8
Viscosity Index	D 2270	102	101
Flash Point, °C	D 92	223	241
Pour Point, °C	D 97	-17	-21
Total Acid No.	D 664	3.0	3.6
Total Base No.	D 2896	8.4	5.4
Carbon Residue		2.1	1.2
Sulfated Ash, wt%		0.84	0.93
Elemental Analysis, wt%	Method		
Ba	ICP	0.005	0.005
Ca	ICP	0.001	0.24
Mg	ICP	0.15	0.001
Zn	ICP	0.13	0.09
p	ICP	0.12	0.09
S	XRF	0.54	0.47
N	CLM	0.08	0.01

Both lubricants were chosen due to extensive experience in the particular engines and their wide acceptance as laboratory standard oils.

IV. RESULTS

A summary of the ten individual engine tests is shown in TABLE 12, and presented in this section; only significant wear or other abnormalities are discussed. Complete sets of the raw and calculated data are contained in the appendices. Following the individual test

TABLE 12. Army Engine-Fuel Test Summary

Engine	Test Fuel	Test Lubricant	Test Hours Completed/Cycle
GM 6.2L	Cat (1)	A(2)	210/CRC Wheel, Initial Baseline
GM 6.2L	Cat	Α	210/CRC Wheel, Repeat Baseline
GM 6.2L	JP-8	Α	210/CRC Wheel
GM 6.2L	JP-8	Α	400/NATO AEP-5
Cummins NHC-250	Cat	Α	210/CRC Wheel
Cummins NHC-250	JP-8	Α	210/CRC Wheel
TCM LDT-465-1C	Cat	Α	210/CRC Wheel
TCM LDT-465-1C	JP-8	Α	210/CRC Wheel
DD 6V-53T	Cat	B(3)	240/CRC Track
DD 6V-53T	JP-8	В	240/CRC Track

⁽¹⁾ Cat is Reference No. 2 diesel fuel as specified in Section 5.2, Methods 354 and 355, FTMS 791C.

results, comparisons between the different tests are made that serve to summarize the results and establish the bases for the conclusions.

A. GM 6.2L, Initial Baseline Test Using Cat Diesel Fuel

The 210-hour test on the Cat reference diesel fuel was completed without any engine component failures. However, monitoring of the lubricant during the test indicated rapid thermal degradation of the oil and high concentrations of wear metals. These problems required several unplanned oil changes during the test in order to keep the oil below an extreme viscosity. The listing below indicates the test hour of oil change, as well as the oil viscosity, iron concentrations, TAN, and TBN recorded at each oil change:

⁽²⁾ Test Lubricant A is qualified MIL-L-2104D OE/HDO-30.

⁽³⁾ Test Lubricant B is CRC REO 203 (SAE 30 Grade).

Oil Change, hours	Viscosity at 100°C, cSt	Fe, ppm	TAN	TBN
0	11.04	Less than 10	2.51	6.49
70	64.83	360	9.56	0.50
126	70.59	330	7.80	0.39
182	49.08	230	5.85	1.87

In an attempt to correct the condition resulting in the rapid oil degradation, the following changes were made; the oil cooler was cleaned at 28 hours, the exhaust crossover pipe routed away from the oil pan at 126 hours of test time, and finally the maximum power condition was set according to fuel flow rate (67 to 68 lb/hr) rather than running against the factory set rack stop. The change in fuel flow rate resulted in less power output. Operating at the reduced power setting was begun at 190 hours of test time. The rapid viscosity increase of the oil indicated that it was being exposed to high temperatures. The exposure was occurring at a hot spot since the overall oil temperature remained at the set point of the temperature controller, 240°F. The effects of these changes are shown below as the rate of oil viscosity increase. These values were calculated by dividing the change in viscosity over the time interval following the modification.

Modification	Hours Test Time of <u>Modification</u>	Viscosity Increase, cSt/hr
Oil cooler cleaning	28	0.531
Exhaust pipe change	126	0.561
Reduced power setting	190	0.096

The modification of the test cycle was the only change made that significantly reduced the rate of oil deterioration. When the engine was disassembled at the conclusion of the testing, unusually high deposits were found on the underside of the pistons. These deposits indicated that this was the hot spot responsible for the rapid oil degradation. Reducing the maximum load setting lowered the piston temperature and the thermal stress on the oil that splashed on the piston underside. The average piston WTD rating for this test was 131, which is 45 percent higher than the result obtained for the Cat diesel fuel repeat test. The second baseline test is discussed in greater detail later in this section.

Figs. 5 through 7 show the fuel consumption versus test time, brake horsepower versus test time, and the brake specific fuel consumption versus test time. Fuel consumption declined slightly during the test due to wear in the pump. The step at 190 hours was due to the setting of the maximum power conditions by fuel flow rate, rather than rack stop.

Figure 5. Fuel consumption versus test time, 6.2L/baseline

As shown in Fig. 6, power declined slightly, probably due to the lowered fuel delivery. The BSFC, as shown in Fig. 7, remained constant during most of the test. The slight upward trend in BSFC near the end of the test, while the fuel flow remained constant, cannot be conclusively explained. A similar trend, observed in the GM 6.2L JP-8 test, was attributed to fuel injection timing changes, which occurred as a result of pump drive shaft wear. As can be seen in Fig. 8, some pump shaft wear occurred during the Cat diesel fuel test. However, the wear was not as severe as that in the JP-8 test.

Figure 6. Brake horsepower versus test time, 6.2L/baseline

Figure 7. Brake specific fuel consumption versus test time, 6.2L/baseline

Figure 8. Photograph of fuel injection pump components

The only engine components that had unusual wear were the piston rings. Fig. 9 is a photograph of the most worn piston ring set. The barrel face of the top ring has been completely removed. It is apparent that the high iron concentration in the oil was due to the high ring wear, which is a consequence of high engine loading.

Due to the high rate of oil deterioration and the numerous changes made during the testing, it was felt that a good baseline set of data was not obtained. The high load factor of the test resulted in higher wear of critical engine components, increased rates of wear metals in the lubricating oil, and more deposits. Therefore, it was necessary to run a second baseline test. This first test was not used for comparison purposes.

B. GM 6.2L, Repeat Baseline Test Using Cat Diesel Fuel

The repeat test of the GM 6.2L engine, using Cat reference diesel fuel, was completed without any unusual problems. The high wear and oil thermal degradation observed

G.M. 6.2 LITER TEST # 1 FUEL EVALUATION 5

Figure 9. Most worn piston ring set

during the first test did not occur during this test. The reduced wear was due to the lower average fueling rate adopted for the second test.

During the first baseline test, the maximum power condition of the test cycle was set by running the fuel delivery rack against its stop. Near the end of the test, the practice of setting the maximum power condition by the fuel flow rate indicator was adopted. The average fuel flow rate was 76 lb/hr.

At the beginning of the second test, the engine was once again run against the rack stop. Fig. 10 shows the fuel consumption at the maximum power condition versus the test time, indicating that the fuel delivery was steadily increasing. Starting at 72 lb/hr, the fuel delivery increased to 75 lb/hr in 29 hours of the endurance test. At this point, the engine operators began setting the load condition according to the flow rate. Thus, the setting was 72 lb/hr.

Figure 10. Fuel consumption versus test time, repeat 6.2L test

During the first test, the pump delivery was seen to decrease steadily. However, the second engine test showed the fuel delivery steadily increasing. Wear in the fuel injection pump can result in either an increase or decrease in fuel delivery, depending on the location of the wear in the pump.

Operating the engine at 5.3 percent less average fuel flow rate resulted in an anticipated loss of maximum power of 4.9 percent. The reduction in the maximum power setting had a dramatic effect on the wear of the engine. For example, the total iron accumulation in the oil decreased from 0.0075 to 0.0055 kg, representing a 26.6-percent reduction. The piston ring wear, as indicated by end gap increase, was reduced by 50 percent. Thermal oil degradation was significantly reduced, as no oil changes were necessitated by high oil viscosity. The previous test required three oil changes. The oil viscosity at the end of 210 hours was 21.97 cSt at 100°C. At the higher load condition of the first test, a similar viscosity of 25.52 cSt resulted after only 70 hours.

It was concluded that this engine's wear and level of lubricant stress are quite sensitive to the operating load. This sensitivity might be expected due to the engine's high rated output of 17.4 kW per liter displacement. Both the Cummins NHC-250 and the LDT-465 engines are rated at 13.3 kW/L. The high specific loading places greater stress throughout the engine; this stress in turn produces greater wear.

Similarly, the lubricant operates under higher pressure, temperature, and shear stress. There is also less lubricant capacity in the GM 6.2L engine than the other engines tested, which serves to further aggravate the problem. The GM 6.2L engine has 0.061 liter of oil per kW brake power compared to 0.112 kW/L for the NHC-250 and 0.204 kW/L for the LDT-465. Therefore, the oil in the GM 6.2L engine is exposed to the upper cylinder area more frequently, leading to thermal degradation. As a result, the concentration of oil contaminates from wear metals and blowby can be expected to rise faster since there is less oil diluting the contaminants. Although the GM 6V-53T engine is also highly stressed, it was not included in this discussion because it is a two-stroke type engine.

Although the repeating of the baseline diesel fuel test in the GM 6.2L engine was not part of the original test plan, useful experience was gained. Understanding the sensitivity of the engine to loading provides insight into interpreting the comparative fuel studies made in this study. Furthermore, it will become apparent that the type of test cycle and its severity can produce adverse wear effects that outweigh fuel effects.

C. GM 6.2L 210-Hour Test Using JP-8

The evaluation of JP-8 in the GM 6.2L engine encountered several unplanned events. These unscheduled events are listed in TABLE 13.

Fig. 11 shows the trends in the fuel consumption versus test time. During the first 32 hours, when the engine was run against the rack stop, the fuel delivery increased during this time, as it had done during the second baseline test. At 32 hours, the injectors were replaced, and the maximum load condition was set according to the fuel flow. The pump was replaced at 168 hours, and the maximum power test condition was set against the rack stop. Between 168 and 179 test hours, the power output increased as the fuel delivery increased, the same as had happened during the first hours of the test.

TABLE 13. GM 6.2L Engine Evaluation of JP-8

Test <u>Hour</u>	List of Unscheduled Events
32	 Injectors were changed in an attempt to correct increasing fuel flow and exhaust temperatures. Test plan changed to setting maximum power point by fuel flow at 72-74 lb/hr rather than maximum rack stop.
97	2nd injector change.Oil change.
168	 Replaced fuel injection pump. Returned to setting maximum power condition by the rack stop.
179	 Set maximum power condition according to fuel flow.

Figure 11. Fuel consumption versus test time, 6.2L/JP-8 Test

Fig. 12 shows these changes in the maximum power during the test cycle. Initially, the power increased as the fuel delivery increased. However, at 15 hours into the test, the power began to fall off, despite the increasing fuel flow. Power continued to decline after 32 test hours, when the fuel flow was held constant by the engine operator. Replacing the fuel injectors at 97 hours did restore some of the lost power but not completely. Finally, replacing the fuel injection pump brought the maximum power back up to the original level.

The brake specific fuel consumption (BSFC) is plotted in Fig. 13 for the 210-hour test. There was a steady decline in the efficiency of the engine through the test. Changing the injectors at 32 hours test time did not improve the BSFC. However, the injector change at 97 hours slightly improved the efficiency of the engine. The original BSFC was restored when the injection pump was replaced. Thus, the engine itself was not affected by the fuel since the performance and efficiency returned following replacement of the pump.

D. GM 6.2L 400-Hour Test Using JP-8

The GM 6.2L engine was tested on JP-8 fuel, in accordance with the NATO Standard Diesel Engine Test Procedure AEP-5. During the 400-hour NATO cycle test, the maximum brake horsepower declined 7.2 percent, as shown in Fig. 14. The average fuel flow rate, however, remained fairly constant over the 400 hours as shown in Fig. 15. The operator set the maximum power condition by setting the pump against the rack stop. Operating in this mode had resulted in steadily increasing fuel delivery during previous endurance tests. However, no problem of this kind was observed during the 400-hour test.

As a result of the declining power, the BSFC, as plotted in Fig. 16, rose 7.3 percent during the test. The changes in efficiency were reflected in the exhaust temperature common to the cylinders, shown in Fig. 17.

Comparison of the fuel injector and pump tests performed before and after the 400-hour test did not indicate any significant changes. The drop in pop-off pressure is typical. Disassembly of the pump did reveal some significant wear on the drive shaft tang as shown in Fig. 18. This is the same wear as seen in the previous 210-hour JP-8 test;

Figure 12. Maximum power versus test time, 6.2L/JP-8 test

Figure 13. Brake specific fuel consumption versus test time, 6.2L/JP-8 test

Figure 14. Maximum power versus test time, 6.2L/JP-8 400-hour test

Figure 15. Fuel flow rate versus test time, 6.2L/JP-8 409-hour test

Figure 16. Brake specific fuel consumption versus test time, 6.2L/JP-8 400-hour test

Figure 17. Exhaust gas temperature versus test time, 6.2L/JP-8 400-hour test

Figure 18. Photograph of injection pump drive shaft, 6.2L/JP-8

however, the 400-hour test did not produce as severe a wear scar. This drive tang is a fuel-wetted component.

The difference in the amount of drive shaft wear between the tests may be attributed to two factors; the higher load factor of the 210-hour cycle, and the inlet fuel temperature effect on the fuel viscosity. Also considered as another possibility but dismissed, was fuel lubricity. Ball-on-Cylinder machine (BOCM) measurements made during the 400-hour test were the same as the earlier 210-hour test. The JP-8 produced a BOCM wear scar of 0.32 to 0.34 mm diameter. Such a scar measurement indicates that the fuel lubricity could be a contributing factor to the pump wear. However, since it was the same during both the 210- and 400-hour tests, it cannot explain why the 210-hour test produced more wear.

Other possible explanations are that the 210-hour test cycle is more severe than the 400-hour test, or the fuel temperature and its effect on fuel viscosity resulted in the different wear results of the fuel pumps during the two tests.

The 210-hour cycle contains 150 hours of full-speed and maximum power operation as opposed to 128 hours during the 400-hour NATO endurance cycle. The maximum load

condition presents the greatest loading on the fuel pump, generating the most wear. However, the difference between the two cycles does not appear to be large enough to be significant.

The average inlet fuel temperatures differed during the 210- and 400-hour tests. The inlet fuel temperature for the NATO cycle was 84°F (28.8°C) and the temperature for the 210-hour cycle was 105°F (40.5°C). Fig. 19 is a viscosity versus temperature plot for the JP-8 used during these tests. From this plot, the fuel viscosity for the NATO test can be found to be 1.50 cSt and for the 210-hour test, 1.27 cSt. General Motors cautions against the use of fuel in the pump having viscosity below 1.50 cSt.

It would appear that the combination of the higher loading and lower fuel viscosity resulted in the abnormal pump wear for the 210-hour test, as compared to the 400-hour NATO cycle test. As a result of these tests, subsequent experiments were conducted with fuel injection systems in bench tests (18) and full-scale vehicle tests (19). The injection pump wear identified was confirmed to be increased by both low fuel viscosity and high injection rates in the bench tests. However, field testing for 10,000 miles failed to produce any 6.2L engine pump wear for JP-8 compared to DF-2-fueled vehicles.

Disassembly of the engine did not reveal any unusual wear. The used oil analysis indicated that the wear metals, notably iron, were accumulating at half the rate as that observed during the 210-hour test. This decreased rate would be due to the difference in the engine loading.

E. Cummins NHC-250 210-Hour Test Using Cat Diesel Fuel

The 210-hour Cummins NHC-250 engine test using the baseline Cat reference fuel was completed without any significant problems. No changes were detected in the engine itself or the fuel injection system.

Fig. 20, the plot of fuel consumption versus test time, shows that no long-term changes occurred in the fuel flow. Pump calibration data (in Appendix E) confirmed the engine test data.

Fig. 21, the power produced during the maximum power test condition, indicates that the engine power did not vary during the test. As a result, the BSFC, plotted versus test time, in Fig. 22, did not change during the test.

Figure 19. Kinematic viscosity of JP-8 versus temperature

Figure 20. Fuel consumption versus test time, NHC-250/baseline

Figure 21. Maximum power versus test time, NHC-250/baseline

Figure 22. Brake specific fuel consumption versus test time, NHC-250/baseline

F. Cummins NHC-250 210-Hour Test Using JP-8

During the test of the Cummins NHC-250 using JP-8, no unusual events occurred. However, differences in the pre- and post-engine measurements and the used oil analysis indicated that greater wear occurred during the JP-8 test. The fuel consumption versus the test time is plotted in Fig. 23. The maximum fuel delivery was 92 lb/hr at the start of the test, and it quickly rose to 95 lb/hr at 25 hours of test time. Between 25 hours and the conclusion of the test, the maximum fuel delivery increased to 97 lb/hr. The maximum fuel delivery for this engine depends on the pressure output of the fuel pump. The pressure, in turn, is determined by a speed governor, which is a fuel-wetted mechanism. Therefore, the increased fuel delivery observed during the test may be a fuel effect. The fuel delivery did not increase during the baseline test. The overall engine performance did not change during the endurance test as seen by the BSFC versus test time plot in Fig. 24. The BSFC remained constant throughout the test.

Fig. 25 is a photograph of the injection gear pump. This gear pump develops fuel pressure, which is regulated by the governor mechanism. No unusual wear was observed. Likewise, photographs of the engine parts and injector pins do not indicate any abnormal wear.

G. LDT-465-1C Engine 210-Hour Test Using Cat Diesel Fuel

No unusual problems arose during the baseline test of the LDT-465-1C engine. As in the case of the Cummins engine, little change occurred in the engine measurements. The average change in the ring end gap was 0.0005 inches (0.0127 mm), which is well within the variation due to measurement errors. Therefore, greater importance should be placed on the wear metals in the lubricant.

H. LDT-465-1C Engine 210-Hour Test Using JP-8 Fuel

Again, the LDT-465-1C engine ran reliably on JP-8 fuel with no fuel-related problems apparent during the test. As discussed in more detail in the comparisons section, the wear in the engine upper cylinder area was less than with the Cat fuel. Also, the engine oil was not as stressed during this test.

Figure 23. Fuel consumption versus test time, NHC-250/JP-8

Figure 24. Full load brake specific fuel consumption curves, NHC-250/JP-8

Figure 25. Photograph of injection pump gears, NHC-250/JP-8

I. GM 6V-53T Engine Operating on Cat Diesel Fuel

The baseline test using the Cat reference fuel was successfully completed in the GM Detroit Diesel (DD) 6V-53T engine. It was, however, necessary to replace the No. 2 cylinder on the right side at 40 hours into the endurance cycle test. The replacement of one cylinder kit is allowed in the test procedure if a high degree of scuffing is found by inspection using a bore scope. This provision is included in the procedures since the 240-hour tracked vehicle cycle stresses the engine near the maximum of its operating limitations.

J. GM 6V-53T Engine Operating on JP-8 Fuel

No unusual problems were encountered in operating the GM DD 6V-53T engine on JP-8 fuel during the 240-hour tracked vehicle cycle. As discussed in the Comparative Results section, differences in performance between Cat fuel and JP-8 were observed.

K. Comparative Results Between Cat Diesel Fuel and JP-8 Fueling

The details of specific problems that arose during the individual engine tests are discussed in previous sections. In this section, comparisons are made between the base fuel and JP-8 engine performance and durability. The comparisons are based on the engine power, fuel consumption, thermal efficiency, specific volumetric consumption (vehicle range), wear and engine lubricant analysis.

1. Engine Performance

Various properties of JP-8 fuel can be expected to result in reduced power output. Fig. 26 illustrates the difference in maximum power developed between JP-8 and the Cat fuel for the four engines. The results are presented as the percent change from the baseline diesel engine performance. The maximum power developed by the GM 6.2L engine was reduced 11.2 percent, which represented the greatest power loss of the four engines. The LDT-465 engine actually gained power. The power increase was, as will be shown, due to both an increase in efficiency of the engine and increased fuel flow rate due to the automatic fuel density compensator incorporated into the Army's multifuel engine. The NHC-250 engine's power 'ass was near zero. Again, this was due to some compensation for the lower fuel density and viscosity of the PT (pressure-time) fuel injection system. The power loss of the 6V-53T engine was as expected for the uncompensated high-pressure fuel injection system.

The variations in the fuel delivery are shown in Fig. 27. The GM 6.2L and DD 6V-53T fuel flow rates are less than the baseline Cat fuel tests for the respective engines. The Cummins PT system's partial compensation minimized the loss, whereas the LDT-465 engine tended to over compensate. The resultant fuel flow for the LDT-465 was 2.5 percent higher than the JP-8 fuel. The differences between the engines represent the response of the various fuel injection systems. The high-pressure systems, such as the 6V-53T and the rotary distribution pump of the GM 6.2L. incurred the highest loss of fuel delivery due to JP-8's lower viscosity.

Although the Cummins PT system is not specially designed as a compensating system, it does tend to increase the fuel injected as the fuel viscosity drops. The metering principle is based on fuel flowing through an orifice. A gear-type pump develops a

Figure 26. Percent change in the maximum power

Figure 27. Percent change in the volumetric fuel flow at the maximum power condition

regulated metering pressure. The regulator output pressure is determined by the speed governor. The quantity of fuel metered at each injector is determined by the flow across an orifice in the time available between engine cycles. If a lower viscosity fuel is used, the regulated pressure should remain unchanged due to the regulator action (unless the viscosity is so low that the gear pump cannot develop sufficient pressure). The flow through the orifice will increase, however, due to the lower viscosity.

The LDT-465 engine is equipped with a density compensator. As the density of the fuel decreases, the maximum fuel delivery is automatically increased. With the use of the JP-8 fuel, the mechanism over compensated, increasing the fuel flow beyond the Cat setting. The pump itself is a rotary distribution type. The maximum fuel stop must have been raised considerably since no effect of the low viscosity, which dropped the fuel delivery of the 6.2L, is apparent.

The fuel delivery of the 6V-53T engine was substantially reduced while using JP-8 fuel. This engine has the highest pressure injection system tested. The high pressures are necessary to produce a fine atomization for use in the quiescent open combustion chamber.

The effects of JP-8 on the thermal efficiencies of the engines at maximum power are illustrated in Fig. 28. The thermal efficiencies of all the engines was increased except for the GM 6.2L engine. The LDT-465 engine demonstrated a remarkable increase of nearly 10-percent improvement. The efficiency improvements shown in this test served to offset the fuel's lower heating value and detrimental leakage effects of the engine fuel pump. The effects are due to better atomization and higher evaporation rates due to the lower boiling range of the JP-8. This is particularly true in the case of the LDT-465, which being of the MAN design, depends on fuel evaporation from the piston surface for combustion rate control. Faster burning results in increasing efficiency as the thermodynamic ideal of constant volume combustion is approached.

The net effect of the changes in thermal efficiency and the lower volumetric heating value of JP-8 resulted in improvements in the BTU per horsepower-hour of the engines. This factor would result in increased projected "vehicle range." The changes in the specific volumetric fuel consumption are given in Fig. 29. Again, these comparisons are made at the maximum power condition. The effects on the NHC-250 and 6V-53T engines were slight. On the other hand, a significant improvement of 7.4 percent was evident for

Figure 28. Percent change of thermal efficiency

Figure 29. Percent change in projected vehicle range

the LDT-465 engine. The GM 6.2L engine suffered a 5-percent loss in projected vehicle range. These comparisons were made at the maximum power condition since the data were available.

2. Fuel Consumption Comparison

However, vehicles rarely operate at maximum power continuously. A better projection of vehicle range could be made using engine dynamometer results at partial load settings. Special fuel consumption tests were conducted at partial load using a GMC 6V-53N engine. This test was conducted at a different time than the endurance tests, and as a result, a different engine was used. A 25-point matrix was run that included five loads at each of five speeds. The full-load points at each speed were run against the rack stop for both DF-2 (Cat fuel) and JP-8 fuels. However, the partial-load points for JP-8 were run at DF-2 equivalent power levels. This procedure simulated a vehicle operator extracting the same level of vehicle performance with JP-8 during part-load operation. TABLE 14 lists the changes in engine response with JP-8. The averaged partial load volumetric fuel consumption shows a 2.3-percent increase using JP-8. This increase corresponds to the 2.3-percent lower volumetric net heat of combustion of the JP-8. Thus, for the Detroit Diesel 6V-53N, overall partial-load volumetric fuel consumption increases with JP-8 can be predicted by the change in the volumetric net heat of combustion from that of DF-2. The thermal efficiency data show that the thermal efficiency improvements seen at full loads and the lower speeds with the Detroit Diesel 6V-53N engine are not seen at partial loads.

The power and thermal efficiency changes at full rack are shown in Fig. 30. The data show JP-8 operation provides a 1.5-percent improvement in brake horsepower at 1400 rpm, along with an 8.8-percent gain in thermal efficiency. The increase in power at 1400 rpm may be attributed to a fuel combustion timing effect. Thermal efficiency gains in engines have been attributed to fuels that exhibit larger amounts of constant volume combustion. Increased premixed combustion, which generally denotes a more constant volume combustion, is associated with fuels that have lower cetane numbers. The cetane number for the JP-8 used was 41, compared to 52 for the DF-2. As the engine speed increased, the timing effects for optimum combustion with JP-8 diminished, and the increases in thermal efficiency declined. These factors, along with the 8.5-percent average heat addition losses due to injection system leakages, resulted in a decrease of available full-load power at the engine's rated speed of 2800 rpm. The results at the maximum power and rpm condition agree with those obtained for the turbocharged version of this engine that were presented earlier.

TABLE 14. Detroit Diesel 6V-53N Performance Deviations Using JP-8

1	leat, ∆%	2.3	9.8 1.0 1.6 3.1	8.7 1.2 0.2 1.2	-8.5 2.0 -2.2 -2.2 0.5	8.5 0.1 1.6 0.2
	Eff	80777	≈ '-' '-'	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.8 -2.0 2.4 2.1	00-0-
Percent of DF-2 Vol.	BSVC,	-3:7 -3:7 -4:3 -2:4	6.4 -1.1 -0.9 -3.8	1.6 -1.0 -2.4 -1.0	-0.6 -4.1 -0.1 -2.8	-1.5 -2.3 -0.6 -2.5
as Percent Vol.	Flow,	-4.6 2.6 3.8 4.7 2.1	-7.7 1.2 1.0 4.0	-6.7 1.1 2.5 1.1 1.1	-6.4 4.4 0.0 0.0 2.9	-6.3 2.6 0.6 2.5 1.1
JP-8 Performance,	BSFC,	-8.8 -0.5 0.2 1.1	-9.0 -2.1 -2.0 0.9	-4.8 -2.1 -0.7 -2.0	-2.7 1.2 -3.1 -3.2	-1.4 -0.7 -2.5 -0.6 -2.0
JP-8 Per	Power,	1.5 -0.1 0.0 0.2	-1.8 0.2 0.0 0.0	-5.0 0.0 0.0 0.0	6.9 0.0 0.0 0.0	-7.7 0.2 0.0 0.0
Mass	Flow,	-7.5 -0.6 0.4 1.5	-10.6 -1.9 -2.2 0.7 2.2	-9.5 -2.1 -0.7 -2.1	-9.2 1.1 -3.1 -0.4	-9.2 -0.6 -2.5 -0.7 -1.9
	Load,	0.0	-1.8 0.0 0.0 0.0	-5.1 0.0 0.0 0.0	-7.0 0.0 0.0 0.0	-7.8 0.0 0.0 0.0
Mass	Flow, Ib/hr	57.3 35.0 26.4 19.4 13.3	68.8 47.0 35.6 26.8 18.1	77.5 58.0 44.8 33.5 23.4	427.0* 83.5 -7. 341.6 65.1 0. 256.2 51.6 0. 170.8 38.6 0. 85.4 26.8 0.	89.2 70.6 56.7 43.4 31.6
Cat Fue	Load, lb-ft	403.7* 322.9 242.2 161.4 80.7	440.0* 352.0 262.0 176.0 88.0	445.0* 356.0 267.0 178.0 89.0	427.0* 341.6 256.2 170.8 85.4	398.0* 318.4 238.8 159.2 79.6
	Speed,	1400	1800	2200	2500	2800

Figure 30. Detroit Diesel 6V-53N full-load response to JP-8

3. Engine Durability Effects

The effects of JP-8 fueling on the durability of these engines are summarized in Fig. 31. Here, the engine deposits and measurements of critical components are presented as the percent change from base diesel fuel.

Starting at the left of Fig. 31, the combustion chamber deposits were measured following the GM 6.2L and Cummins NHC-250 tests. These measurements were made by scraping the deposits off and weighing them. In both cases, the amount of deposition was half of that compared to the DF-2 Cat fuel. JP-8 would be expected to result in less deposits due to the lower boiling point range.

The piston weighted total demerits (WTD) method is a Coordinated Research Council (CRC) technique for quantifying the varnish and carbon deposits on the pistons in the ring groove and land areas. Deposits in these areas can result both from the fuel and the lubricant.

*LARGE DIFFERENCE DUE TO ROD BEARINGS — IF ONLY MAINS ARE CONSIDERED, THEN NO DIFFERENCE **NA - DATA NOT AVAILABLE

Figure 31. Engine durability, JP-8 to base fuel comparisons

With the exception of the LDT-465 engine, the JP-8 fueled engines produced more deposits. The faster combustion of the JP-8 may well lead to higher piston temperature and, therefore, greater deposits from the lubricant. The MAN combustion system of the LDT-465 may result in cooler pistons due to the faster evaporation of the JP-8 from the combustion zone of the piston. This effect is the opposite of that expected from the more conventional engines.

The amount of cylinder liner scuffing was not affected by the switch to JP-8 in three of the four engines tested. The 6V-53T engine showed an increase in scuffing. This high scuffing rating resulted from one particularly bad cylinder. Two of the six cylinders were reported as having no scuffing. It is, therefore, highly probable that the scuffing is the result of some nonuniformity in the pistons, rings or cylinder manufacture and fits, rather than a fuel effect.

Injector deposits were measured by air flow measurements through an open injector in the case of the GM 6.2L engine in accordance with an ISO standard procedure. The Cummins NHC-250 nozzles were rated for their flow characteristics by personnel at Ft.

Bliss, TX using the calibration procedures specified in the technical manual. Nozzle measurements were not made in the case of the GMC 6V-53T or LDT-465 engines.

As shown in Fig. 31, no change was detected in the nozzle deposits for the 6.2L engine. Some reduction was noted for the NHC-250 nozzles. JP-8 would be expected to produce fewer deposits (consisting primarily of varnish) due to its lower boiling point distribution. Jet turbine fuels are rated for their thermal stability, or resistance to forming such deposits, by the JFTOT, ASTM D 3241 tests. No such rating is required of diesel fuels.

Top ring end gap increase, or wear, was half that observed in the diesel fuel case for all the engines except the GM 6.2L engine. The significantly reduced wear of the top rings of the three engines would be due to less wetting of the cylinder walls by the JP-8 fuel. JP-8 will evaporate faster during the spray, resulting in less wall wetting. The cleaner burning of the JP-8 will also result in fewer solids passing the rings in the engine blowby.

It is not clear why significantly higher wear of the rings was observed for the JP-8 fuel. The GM 6.2L engine is the only prechamber design tested. As a prechamber design, it would not gain any advantage due to the faster evaporation of the JP-8. Only less wetting of the prechamber walls would result, which would not affect the top ring wear. Abnormal ring wear was not observed in the 400-hour NATO cycle test, suggesting that the test load factor is playing a role in the wear.

The rod and main bearing shells were weighed before and after the endurance test. The JP-8 fueling resulted in less weight loss for all the bearings except the NHC-250 rod bearing shells. In Fig. 31, the weight loss of both the rod bearings and mains are shown as well as just the main bearings for the NHC-250 engine.

Finally, no significant difference in scuffing was seen between the DF-2 and JP-8 injector needles. A tendency for higher scuffing would be expected due to the lower viscosity of the JP-8, especially at the elevated temperatures of the injectors.

4. Used Oil Analysis

Comparisons between the Cat fuel and JP-8 tests used oil are given in Fig. 32. In general, the lubricant analysis indicated less wear metals and improved lubricant performance for the JP-8.

Figure 32. Used oil analysis, JP-8 to base fuel comparisons

Higher iron levels were found in the oil of the Cummins NHC-250 and LDT-465 engines. The total base numbers of these two engine lubricants were also close to the base fuel figures. Recalling that these two engines also produced power close to the base fuel performance (the NHC-250) or exceeding the base fuel (LDT-465), the higher loading of the lubricant due to increased blowby and greater wear metal makes sense. The decreased power output of the other two engines compared to the base fuel may well explain the apparently improved oil performance of the other engines.

The equal or lower level of the copper found in the lubricants is indicative of the lower acid number and corresponding higher base numbers.

V. CONCLUSIONS

The conclusions that can be drawn from the collection of these tests indicate that there are some advantages to using JP-8 in these engines. Some problems were also identified, which must be addressed.

Advantages of JP-8 that have been identified:

- JP-8 fueled engines place less stress on the lubricant in terms of acid levels and contaminants.
- Significantly less wear of the critical top ring was observed, which can prolong the serviceable life of the engine.
- Less combustion chamber deposits are formed, prolonging engine life.
- No change to a slight reduction occurred in injector scuffing and deposits.
- Thermal efficiency increased at maximum power condition of three of the four engines tested. The increased thermal efficiency offsets the inherent disadvantage of JP-8, namely, lower volumetric energy content. The net effect was sufficient to result in improved projected range for vehicles powered by the NHC-250 and the LDT-465.

The disadvantages that have been observed are:

- Slightly lower maximum power was available in engines not equipped with fuel density compensation.
- Higher volumetric fuel consumption resulted at part-load conditions in the DD 6V-53N engine. The percent difference in net energy content between DF-2 and JP-8 appears to be a conservative estimate of the increase in fuel consumption or decrease in range with this engine. Logistically, this higher consumption would require a greater quantity of JP-8 be purchased as compared to DF-2. Similar fuel consumption comparisons were not made for the other engines discussed in this report.
- Severe wear problems occurred in the standard rotary fuel injection pump used on the GM 6.2L engine. Further studies of this problem are reported in References 18 and 19. It was shown that the manufacturer's "arctic" pump configuration reduced the wear observed in laboratory testing. (18) A 10,000-mile vehicle testing program in desert conditions failed to produce any such wear (19), which indicates that the laboratory testing reported here may not correlate with field operations for these components.

VI. RECOMMENDATIONS

No significant problems were identified using JP-8 in any engine other than the GM 6.2L, which was later shown not to occur in field-tested vehicles. However, fuel temperatures were in the 90° to 100°F range (32° to 38°C). Therefore, it is recommended that a study be conducted to determine the maximum fuel temperatures at which the fuel injection equipment may be exposed. Then pump stand tests should be conducted to determine the durability of the injection equipment at the elevated fuel temperatures.

VII. REFERENCES

- 1. Bowden, J.N. and Owens, E.C., "Use of JP-5 in Diesel Engines," Letter Report AFLRL No. 182, Contract DAAK70-82-C-0001, Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, San Antonio, TX, August 1984.
- 2. Bowden, J.N. and Owens, E.C. "JP-8 and JP-5 as Compression Ignition Engine Fuel," Interim Report AFLRL No. 192, AD A150796, Contract DAAK70-85-C-0007, Belvoir Fuels and Lubricants Research Facility at Southwest Research Institute, San Antonio, TX, January 1985.
- Lestz, S.J. and Bowen, T.C., "Development of Army Synthetic Automotive Engine Oils for Arctic Service," Interim Report AFLRL No. 73, AD A019113, Contract Nos. DAAD05-70-C-250 and DAAK02-73-C-0221, Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, San Antonio, TX, September 1975.
- 4. Stavinoha, L.L., Eichelberger, J.R., Lestz, S.J., and Tyler, J.C. "Lubricant Volatility Related to Two-Cycle Diesel-Engine Piston-Ring/Cylinder-Liner Wear," Presented at ASLE/ASME Lubrication Conference, San Francisco, CA, August 1980, preprint No. 80-LC-3C; also, J. ASLE, Vol. 38, 1, pp. 11-22, January 1982.
- 5. Lestz, S.J. and Bowen, T.C., "Army Experience With Synthetic Engine Oils in Mixed Fleet Arctic Service," Society of Automotive Engineers Paper No. 750685, presented at SAE Fuels and Lubricants Meeting, Houston, TX, June 1975.

- 6. Lestz, S.J., Bowen, T.C. and LePera, M.E., "Fuel and Lubricant Compatibility Studies for Army High-Output Two-Cycle Diesel Engines," Interim Report AFLRL No. 80, AD A031885, Contract Nos. DAAD05-70-C-0250, DAAK02-73-C-0002, DAAG53-76-C-0003, Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, San Antonio, TX, September 1986.
- 7. Lestz, S.J., LePera, M.E. and Bowen, T.C., "Fuel and Lubricant Effects on Army Two-Cycle Diesel Engine Performance," Society of Automotive Engineers Paper No. 760717, presented at Automobile Engineering Meeting, Dearborn, MI, October 1976.
- 8. Owens, E.C., Lestz, S.J. and Quillian, Jr., R.D., "Appraisal of Extended Oil Drain Intervals Through the Use of Engine or Lubricant Formulation Modification," Interim Report AFLRL No. 99, AD A055923, Contract No. DAAK70-78-C-0001, Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, San Antonio, TX, May 1978.
- 9. Owens, E.C., Lestz, S.J. and Quillian, Jr., R.D., and McCormick, H.E., "Approaches to Extended Oil Drain Intervals in Army Tactical Equipment," Society of Automotive Engineers Paper No. 780954, presented at SAE International Fuels and Lubricants Meeting, Toronto, Canada, November 1978.
- 10. Moon, R.B. and Montemayor, A.F., "Laboratory Evaluation of Multiviscosity Grade Engine Oils in U.S. Army Diesel Engines," Interim Report AFLRL No. 112, AD A108890, Contract No. DAAK70-80-C-0001, Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, San Antonio, TX, September 1981.
- 11. Montemayor, A.F., Owens, E.C., Frame, E.A., Lestz, S.J. and Bowen, T.C., "Laboratory Evaluation of Army Multiviscosity Grade Tactical Engine Oils," Society of Automotive Engineers Paper No. 831719, Presented at SAE Fuels and Lubricants Meeting, San Francisco, CA, November 1983.
- 12. Lestz, S.J., Wright, B.R. and Bowen, T.C., "50,000-Mile Engine-Lubricant Field Test of XM809 Series 5-Ton Vehicles," Final Report AFLRL No. 11, AD 734349,

- Contract No. DAAD05-70-C-0250, Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, San Antonio, TX, August 1971.
- 13. "Development of Military Fuel/Lubricant/Engine Compatibility Test," Final Report, Coordinating Research Council, Inc., New York, NY, January 1967.
- 14. Federal Test Method Standard 791C "Lubricants, Liquid Fuels, and Related Products; Methods of Testing," 30 September 1986.
- 15. Federal Specification VV-F-800D, "Fuel Oil, Diesel," 27 October 1987.
- 16. U.S. Military Specification MIL-T-83133B, Turbine Fuel, Aviation, Kerosine Type, Grade JP-8, 3 September 1987.
- 17. U.S. Military Specification MIL-L-2104D, "Lubricating Oil, Internal Combustion Engine, Tactical Service," April 1983.
- 18. Montemayor, A.F. and Owens, E.C., "Comparisons of 6.2L Arctic and Standard Fuel Injection Pumps Using JP-8 Fuel," Interim Report BFLRF No. 218, AD A175597, Contract DAAK70-85-C-0007, Belvoir Fuels and Lubricants Research Facility at Southwest Research Institute, San Antonio, TX, October 1986.
- 19. Goss, D.E., "10,000-Mile JP-8 Fuel Test--6.2L Diesel Engine in M1028 CUCV Vehicles," Final Report, Prepared by General Motors Technical Center, Warren, MI, January 1986.

APPENDIX A Test Data and Photographs

GM 6.2L Engine
210-Hour Test
Cat Fuel*
Initial Baseline

^{*}Use of designation "Cat 1-H" test fuel refers to Reference No. 2 Diesel Fuel, or simply Cat Fuel.

GM 6.2L CAT 1-H LOG OF UNSCHEDULED EVENTS

Test Time Hours	EVENT
28	Oil Cooler Cleaned
57	Leaking Oil; Cooler Line Replaced
70	Oil Changed
85	Oil Cooler Line Fitting Tightened
126	Oil Changed; Exhaust Routed Away From Oil Pan
141	New Air Cleaner Fitted
182	Oil Changed
190	Maximum Power Condition Set According To Fuel Flow Rate of 67-68 lb/hr

GM 6.2 1 CAT 1 H ENGINE MEASUREMENTS SERIAL NUMBER: DJ-921

-				
Cylinder Bore	Minimum	Maximum	Average	Specified Limits
Diameter Out of Round Taper-Thrust	3.977 5 0.0000 0.0000	3.9787 0.0008 0.0004	3.9779 0.0002 0.0002	3.9759 - 3.9789
Piston Clearances				0.0000
Bores 1-6 Bores 7-8	0.0043 0.0051	0.0048 0.0052	0.0045 0.0052	0.0035 - 0.0045 0.0040 - 0.0050
Piston Rings				
Groove Clearance				
2nd Oil	0.002 0.002	0.002 0.002	0.002 0.002	0.0015 - 0.0030 0.0016 - 0.0038
End Gap				
Top 2nd	0.026 0.041	0.027	0.026	0.012 - 9.022
Oil	0.025	0.042 0.028	0.042 0.026	0.029 - 0.039 0.010 - 0.020
Piston Pin				31020
Diameter	1.2203	1.2208	1.2206	1 0000
Clearance Fit in Rod	0.0004 0.0003	0.0006 0.0008	0.0005 0.0006	1.2203 - 1.2206 0.0004 - 0.0006
Camshaft			0.0000	0.0003 - 0.0012
Diameters				
Bearings 1-4	2.1659	2.1660	2.1659	2 1544 2 1000
Bearing 5 Clearance	N/A	N/A	2.0085	2.1644 - 2.1663 2.0069 - 2.0088
_	0.0019	0.0023	0.0021	0.0015 - 0.0044
Crankshaft				
Journal Diameter 1-4	• • • • •			
Diameter 5	2.9499 N/A	2.9500	2.9500	2.9495 - 2.9504
Out of Round	0.0000	N/A 0.0002	2.9499	2.9493 - 2.9502
Clearance 1-4	0.0034	0.0038	0.0001 0.0037	0.0002
Clearance 5	N/A	N/A	0.0037	0.0018 - 0.0033 0.0022 - 0.0037
Crankpin				
Diameter	2.3985	2.3986	2.3986	2 2001 0 2000
Out of Round Clearance	0.0000 0.0035	0.0005	0.0002	2.3981 - 2.3992
Valve	0.0033	0.0047	0.0038	0.0018 - 0.0039
Stem Clearance				
intake	0.0010			
Exhaust	0.0019 0.0023	0. 0022 0. 0030	0.0022 0.0028	0.001 - 0.0027
NOTE: Measurements are			0.0040	0.001 - 0.0027

56

ANALYSIS OF CAT 1-H FUEL, BATCH 85-2 (AL-14069-F)

			Howell
	AFLRL	Howell	Cat 1-H
Test	Data	Data	Limit
Gravity, *API	34.5	34.5	32.0-35.0
Specific Gravity, 15.6/15.6°C	0.8524		
Distillation, "F("C)			
ISP	402(206)	384 (196)	Report
10% recovered	462(239)	467(242)	Report
50% recovered	517 (269)	518(270)	500-530
90% recovered	611(322)	612(322)	580-620
E P	663(351)	664(351)	650-690
% recovered	9 9	-	(a)
% residue	1		(a)
Flash Point, "F("C)	180(82)	180(82)	Report
Pour Point, "F("C)	9(-13)	+5(-15)	+20 max
Cloud Point, *F(*C)	14(-10)	14(-10)	Report
Copper Corrosion, 3 hr at 210°F,			
Rating	1A	1A	2 max
Carbon Residue on 10% Bottoms,			
Remebottom wt%	0.11	0.13	0.20 max
Water and Sediment, volZ	<0.01	0.05	0.05 max
Neutralization Number, mg KOH/g	0.02	0.02	0.15 max
Ash, wt%	<0.01	0.006	0.01 max
Viscosity at 100°F (37.8°C), cSt	(b)	3.18	3.0-4.0
Viscosity at 40°C, cSt	2.98	(b)	(a)
Net Heat of Combustion, Bru/1b	18,279	(b)	(a)
4J/kg	42,516	(b)	(a)
Cetane Number	52	51	45-51
Cetane Index	47	47	(a)
Carbon, wt%	86.24		(a)
Hydrogen, wtl			
	12.19		(a)

⁽a) - No requirement

⁽b) - Not determined

GM 6.2 1 ENGINE OPERATING CONDITIONS SUMMARY LUBRICANT: AL-14080-L CAT-1H FUEL: 14069-F

		wer Mode 0 RPM)	Idle Mode (800 RPM)		
	Mean	Standard Deviation	Mean	Standard Deviation	
Engine Speed (rpm)	3600	0.504	801	4.00	
Torque (ft-lb)	210	9.32	9.53	2.21	
Fuel Consumption (lb/hr)	76.0	2.86	4.36	0.340	
Observed Power (Bhp)	144	6.39	1.48	0.343	
BSFC (lb/Bhp-hr)	0.527	0.0812	5.32	17.9	
Oil Gallery Pressure (psi)	52.7	2.35	53.4	2.16	
Temperatures (°F)					
Water Jacket Inlet	162	1.37	93.3	13.2	
Water Jacket Outlet	178	1.74	101.0	12.8	
Oil Sump	239	1.74	124.2	3.10	
Fuel Inlet	101	3 .03	86.5	3.56	
Air Inlet	91.4	5 .48	85.1	4.05	
Exhaust Temperatures (°F)					
Cylinder 1	1268	3 6.6	153.5	9.71	
Cylinder 2	1251	34.2	144.6	8.89	
Cylinder 3	1287	36.0	142.1	8 .99	
Cylinder 4	1241	40.9	160.0	6.31	
Cylinder 5	1413	28.0	193.1	14.99	
Cylinder 6	1274	3 9.8	15 9.5	5.87	
Cylinder 7	1307	3 8.9	178.0	9.35	
Cylinder 8	1289	45.2	180.7	10.56	
Common	1191	108.9	141.3	10.49	

GM 6.2L CAT 1-H WEAR METALS BY XRF LUBRICANT: AL-14080-L

Test Time	Wear Metals ppm							
Hours	Fe	Cu	<u>Cr</u>	Pb	_5%			
0	10	11	10	60	0.43			
14	65	11	10	60	0.48			
28	122	24	10	60	0.49			
42	210	22	10	60	0.50			
56	286	22	10	85	0.49			
70	360	25	10	152	0.50			
84	175	13	10	65	0.48			
98	20 5	13	01		0.49			
112	250	12	10	82	0.50			
126	330	12	10	149	0.53			
140	140	11	10	60	0.48			
154	193	01	10	92	0.51			
168	20 <i>5</i>	10	10	78	0.51			
182	230	11	10	60	0.55			
196	100	0.1	10	60	0.51			
210	132	11	10	60	0.51			

GM 6.2L CAT 1-H LUBRICANT: AL-14080

	ASTM <u>Method</u>		Test Time, Hours			
		0		140	210	
Kinematic Viscosity @ 40°C cSt	D 445	97.13	402.20		172.48	
Kinematic Viscosity @ 100°C cSt	D 445	11.04	64.83	25.52	22.59	
Total Acid Number mg KOH/g	D 664	2.51	9.56		5.85	
Total Base Number mg KOH/g	D 664	6.49	0.50		1.87	
Pentane B Insolubles wt%	D 893		9.81		4.24	
Toluene B Insolubles wt%	D 893		9.01		3.36	
Flash Point, °C	D 92	230	232		230	

GM 6.2 1 CAT 1 H WEAR MEASUREMENTS

Cylinder Bore Diameter Change

		1		3		5		7
	T-AT	<u>F-B</u>	T-AT	<u>F-B</u>	T-AT	<u>F-B</u>	T-AT	<u>F-B</u>
Тор	0.0007 0.0010	0.0005 0.0004	0.0003 0.0005	0.0010	0.0007 0.0007	0.0005 0.0004	0.0006 0.0006	0.0007
Middle Bottom	0.0010	0.0007	0.0004	0. 0005 0. 0010	0.0005	0.0004	0.0004	0.0006
		2		4		6		8
	T-AT	F-B	T-AT	<u>F-B</u>	T-AT	<u>F-B</u>	<u>T-AT</u>	<u>F-B</u>
Тор	0.0005	0.0010	0.0005	0.0007	0.0005	0.0008	0.0000	0.0002
Middle Bottom	0.0005 0.0002	0. 0006 0. 0010	0.0003 0.0002	0.0 005 0.0009	0.0004 0.0002	0.0004 0.0012	0.0 002 0.0 006	0.0003 0.0004

Average Change

	$\underline{T-AT}$	<u>F-B</u>
Top	0.0005	0.0007
Middle	0. 0005	0.0004
Bottom	0.0004	0.0008

Overall Average Change: 0.0006

Piston Ring End Gap Change

Ring	<u>1</u>	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	8	Average Change
Top	0.002	0.002	0.002	0.004	0.006	0.004	0.004	0.005	.004
2nd	0.002	0.000	0.002	0.002	0.003	0.002	0.003	0.003	.002
Oil	0.000	0.008	0.005	0.004	0.005	0.006	0.005	0.004	.005

Overall Average: 0.004

Keystone Top Ring Proudness

0.0027 -0.0001 0.0046 0.0020 0.0025 0.0024 0.0032 0.0044 0.0027

Bearing Weight Change

Upper Lower	-0.3734 -0.3178	-0.0080 -2.8641		-0.1399 -0.1809	-0.0640 -0.9169				0.7612 -0.2116
Rod Bearings Upper Lower	0.1271 0.1115	0.0545 0.1939	0.1108 0.1813	0. 0653 0.3130	0.0727 0.2168	0.0852 G.1265	0.0532 0.2638	0.0257 0.0069	0. 0743 0.1767

Overail Average: 0.1255 grams

Valve Recession

Overall Average: -0.0014

NOTE: Measurements are in inches.

GM 6.2 1 CAT 1 H
POST TEST ENGINE CONDITION AND DEPOSITS

	Cylinder Number								
	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	AVG
Cylinder Liner									
Liner Scuffing, % Area									
Thrust Anti-Thrust % Total Area	1 0 0.5	2 0 1.0	2 0 1.0	0 2 1.0	1 0 0.5	0 2 1.0	1 0 0.5	0 1 0.5 Overall:	2.25 0.63 0.75 0.75
Liner Polished, % Area Thrust Anti-Thrust % Total Area	5 0 2.5	10 0 5.0	0 0 0 .0	5 0 2.5	0 0 0 .0	5 0 2.5	0 0 0.0	10 0 5.0 Overail:	3.13 0.00 1.94 1.94
Pistons									
Ring Face Distress Demerits Top 2nd	0.0 0.5	0.5 1.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 Overall:	0.0625 0.1875 0.1250
Piston Skirt Rating Thrust Anti-Thrust	S* S	S S	N* N	S S	S S	S S	N N	N	
Piston WTD Rating	122.50	101.00	102.25	143.25	141.13	145.25	125.25	15 5.38	131.02
Exhaust Valves									
Deposits Head	1/4 ASC**								-
Face Tulip Steam	0.5***	0.5	1.0	1.0	0.5 ean -	1.0	1.0	1.0	
Surface Condition Freeness in Guide Head Face Seat Steam Tip	Free Normal Light Pitting Light to Medium Wear Normal Normal								
Other Ratings									
Prechamber Deposits (grams)	0.11	0.07	0.11	0.05	0.06	0.08	0.03	0.06	0.07
Bearing Surface	#3 Main Scratched								

S - scratched, N - normal

1/4 ASC; soft carbon, prefix indicates carbon depth with 1/4 ASC being the least to J the most.

The Higher the number the darker the lacquer, 0-9.

GM 6.2 1 CAT 1 H FUEL INJECTOR AND PUMP TESTS ENGINE SERIAL NUMBER: DJ-921

	Cylinder Number									
	1	2	3	4	<u>5</u>	<u>6</u>	7	8	AVG	
Pop-Off Pressure (psi) Before Test After Test	2200 1600	1700 1600	1800 1750	1750 1650	1500 1350	2250 1750	2200 1700	2100 1850	1938 1656	
	Overall Decrease: 282 psi									
Report Before Test After Test					es ——				-	
Fuel Pump Calibration										
(ml/min) @ 1000 RPM Before Test After Test	46.0 46.0	47.5 47.0	47.0 46.0	48.0 48.0	48.0 48.0	45.5 45.5	46.0 45.5	46.0 46.0	46.8 46.5	
	Overall Decrease: 0.2 ml/min									
(ml/min) @ 1800 RPM Before Test After Test	 9 0.9	_ 94.5	_ 92.4	<u> </u>	 89.5	_ 91.4	_ 85.8	- 9 0.4	- 91.8	

FULL LOAD FUEL CONSUMPTION

FULL LOAD POWER CURVES

FULL LOAD BSFC CURVES

TOTAL OIL CONSUMPTION

TOTAL IRON ACCUMULATION

TOTAL COPPER ACCUMULATION

TOTAL CHROMIUM ACCUMULATION

TOTAL LEAD ACCUMULATION

TOTAL SULFUR ACCUMULATION

G.M. 6.2 LITER TEST #1
FUEL EVALUATION

APPENDIX B Test Data and Photographs

GM 6.2L Engine
210-Hour Test
Cat Fuel*
Repeat Baseline

^{*}Use of designation "Cat 1-H" test fuel refers to Reference No. 2 Diesel Fuel, or simply Cat Fuel.

GM 6.2L CAT 1-H LOG OF UNSCHEDULED EVENTS

Test Time,	Event			
19	 Engine shutdown due to water leak in dynamometer 			
29	 Due to steadily rising maximum fuel delivery, the operator began to set the maximum load condition to 72 lb/hr fuel delivery. 			

GM 6.2L CAT 1-H (TEST NO. 5) ENGINE MEASUREMENTS

Cylinder Bore	Minimum	Maximum	Average	Specified Limits
Diameter Out of Round Taper-Thrust	3.9781 0.0000 0.0002	3.9790 0.0003 0.0006	3.9785 0.9002 0.0004	3.9759 - 3.9789 0.0008 0.0008
Piston Clearances				
Bores 1-6 Bores 7-8	0.0043 0.0054	0.0060 0.0061	0.0051 0.0058	0.0035 - 0.0045 0.0040 - 0.0050
Piston Rings				
Groove Clearance 2nd Oil	0.0020 0.0020	0.0025 0.0025	0.0023 0.0022	0.0015 - 0.0030 0.0016 - 0.0038
End Gap Top 2nd Oil	0.027 0.045 0.027	9.034 0.047 0.033	0.031 0.046 0.031	0.0120 - 0.0220 0.0290 - 0.0390 0.0100 - 0.0200
Piston Pin				
Diameter Clearance Fit in Rod	1.2207 0.0001 0.0004	1.2208 0.0005 0.0013	1.2208 0.0003 0.0010	1.2203 - 1.2206 0.0004 - 0.0006 0.0003 - 0.0012
Camshaft				
Diameter Bearing 1-4 Bearing 5 Clearance	2.1653	2.1658	2.1655 2.0079 0.0032	2.1644 - 2.1663 2.0069 - 2.0088 0.0015 - 0.0040
Crankshaft				
Journal Diameter 1-4 5 Out of Round Clearance	2.9496 0.0000	2.9497 0.0000	2.9497 2.9498 0.0000	2.9495 - 2.9504 2.9493 - 2.9502 0.0002
1-4	0.0035 0.0031	0.0042 0.0034	0.0039 0.0033	0.0018 - 0.0033 0.0022 - 0.0037
Crankpin				
Diameter Out of Round Clearance	2.3979 0.0000 0.0032	2.3981 0.0003 0.0042	2.3980 0.0001 0.0036	2.3981 - 2.3992 0.0002 0.0018 - 0.0039
<u>Valve</u>				
Stem Clearance Intake Exhaust	0.0018 0.0023	0.0021 0.0027	0.0020 0.0026	0.0010 - 0.0027 0.0010 - 0.0027

NOTE: Measurements are in inches.

ANALYSIS OF CAT 1-H FUEL, BATCH 85-2 (AL-14069-F)

			Howell
	AFLRL	Howell	Cat 1-H
Test	Data	Data	Limit
Gravity, *API	34.5	34.5	32.0-35.0
Specific Gravity, 15.6/15.6°C	0.8524		
Distillation, *F(*C)			
IBP	402(206)	384 (196)	Report
10% recovered	462(239)	467 (242)	Report
50% recovered	517 (269)	518 (270)	50 0- 530
90% recovered	611 (322)	612(322)	580-620
EP	663(351)	664(351)	650-690
% recovered	9 9		(a)
% residue	1		(a)
Flash Point, *F(*C)	180(82)	180(82)	Report
Pour Point, *F(*C)	9(-13)	+5(-15)	+20 max
Cloud Point, *F(*C)	14(-10)	14(-10)	Report
Copper Corrosion, 3 hr at 210°F,			
Rating	1 A	1 A	2 max
Carbon Residue on 10% Bottoms,			
Ramsbottom wt%	0.11	0.13	0.20 max
Water and Sediment, volZ	<0.01	0.05	0.05 max
Neutralization Number, mg KOH/g	0.02	0.02	0.15 max
Ash, wt%	<0.01	0.006	0.01 max
Viscosity at 100°F (37.8°C), cSt	(b)	3.18	3.0-4.0
Viscosity at 40°C, cSt	2.98	(b)	(a)
Net Heat of Combustion, Btu/1b	18,279	(b)	(a)
MJ/kg	42,516	(b)	(a)
Cetane Number	52	51	45-51
Cetane Index	47	47	(a)
Carbon, wt%	86.24		(a)
Hydrogen, wt%	12.19		(a)
Sulfur, wtX	0.41	0.40	0.37-0.43

⁽a) - No requirement

⁽b) - Not determined

GM 6.2L ENGINE OPERATING CONDITIONS SUMMARY LUBRICANT: AL-14080-L CAT 1-H FUEL AL-14069-F (TEST NO. 5)

		ower Mode 00 rpm)		e Mode 10 rpm)
	Mean	Standard Deviation	Mean	Standard Deviation
Engine Speed (rpm)	3602	3.814	926	64.730
Torque (ft-lb)	202	15.51	0.4	0.5
Fuel Consumption (lb/hr)	72.0	0.735	2.7	1.7
Observed Power (Bhp)	137	10.66		
BSFC (lb/Bhp-hr)	0.547	0.038		
Temperature (°F)				
Water Jacket Inlet	168	6.27	96	9.13
Water Jacket Outlet	179	6.62	101	3.70
Oil Sump	240	8.43	141	9.18
Fuel Inlet	86	4.7	81	8.7
Air Inlet	93	8.0	77	8.4
Exhaust Temperature (OF)				
Cylinder 1	1200	90.75	170	7.97
Cylinder 2	1289	90.18	157	12.12
Cylinder 3	1269	96.25	161	8.17
Cylinder 4	1303	94.04	179	9.01
Cylinder 5	1296	138.50	176	9.15
Cylinder 6	1232	103.68	201	9 .9 7
Cylinder 7	1184	87.51	179	13.36
Cylinder 8	1224	129.42	173	8.49
Common	1190	87 . 57	158	5.81

GM 6.2L CAT 1-H (TEST NO. 5) WEAR METALS BY XRF LUBRICANT: AL-14080-L

Test Time,		Wear Metals, ppm								
hours	Fe	Cu	Cr	Pb	5%					
0										
14	52	17	15	60	.44					
28	142	30	15	60	.60					
42	157	42	15	60	.56					
56	157	37	15	60	.51					
70	177	40	15	60	.49					
84	136	26	15	60	.51					
98	180	32	15	60	.52					
112	183	32	15	102	.53					
126	177	31	15	130	.55					
140	231	32	15	113	.54					
154	199	24	15	155	.55					
168	196	27	15	103	.54					
182	194	30	15	103	.54					
196	198	37	15	79	.55					
210	208	34	15	96	.52					

GM 6.2L CAT 1-H (TEST NO. 5) LUBRICANT: AL-14080

	AST M Method			Time, hours	
	WELLIOO	0	70	<u>140</u>	210
Kinematic Viscosity at 40°C, cSt	D 445		185.20	253.55	223.62
Kinematic Viscosity at 100°C, cSt	D 445		18.55	23.20	21.97
Total Acid Number, mg KOH/g	D 669	_	8.16	9.41	9.65
Total Base Number, mg KOH/g	D 669		1.39	1.12	1.92
Pentane B Insolubles, wt%	D 893		4.33	6 . 07	6.14
Toluene B Insolubles, wt%	D 893	-~	3.91	5 .39	5.49
Flash Point, °C	D 92		460	460	480

GM 6.2L CAT 1-H (TEST NO. 5) WEAR MEASUREMENTS

			<u>9</u>	Cylinder Bore	: Diameter C	Change			
	T-AT	I F-B	T-AT	F-B	T-AT	5 F-B	T-AT	7F-B	
Top Middle Bottom	0.0001 -0.0003 0.0001	0.0000 -0.0002 0.0000	0.0000 0.0002 -0.0001	0.0003 0.0001 0.0000	-0.0001 0.0001 -0.0001	0.0000 0.0009 0.0002	0.0001 0.0001 -0.0002	0.0002 0.0001 -0.0001	
	T-AT	2 F-B	T-AT	F-B	T-AT	F-B	T-AT	В F-В	
Top Middle Bottom	-0.0002 -0.0001 0.0000	0.0006 -0.0004 -0.0002	-0.0002 0.0002 0.0000	-0.0001 0.0000 -0.0001	-0.0001 1000.0 1000.0	0.0002 0.0000 0.0000	0.0001 0.0003 0.0001	0.0000 0.0000 0.0001	
				Average	Change				
				T-AT	<u>F-B</u>				
			Top Middle Bottom	1000.0- 1000.0 1000.0-	0.0002 0.0001 0.0000				
			Overall Av	erage Chang	e: 0.0001				
				Piston Ring	End Gap Cha	ange			
Ring		2	3	4	5	6	7		Average Change
Top 2nd Oil	0.002 0.000 0.001	0.002 0.001 0.001	0.002 0.000 0.002	0.003 0.000 0.003	0.003 0.001 0.002	0.001 0.000 200.0	0.003 0.002 0.002	0.002 0.001 0.001	0.002 0.001 0.002
				Overall A	verage: 0.00	02			
				Keystone To	p Ring Proud	iness			
	-0.0019	0.0014	o .006	0.0022	0.0048	100.0	0.0020	0.0039	0.0024
Main Bearings				Bearing \	Veight Chang	<u>{e</u>			
Upper Lower	0.1392 0.0376	0.0862 0.0562	0.0574 0.0734	0.038 0.0425	0.0724 0.0678				0.0786
Rod Bearings Upper Lower	0.1622 0.1345	0.169 0.1446	0.1643 0.1482	0.1828 0.1383	0.1788 0.1328	0.2011 0.1553	0.1743 0.1522	0.1676 0.1367	0.1750 0.1428
				Overall Avera					
				Valve	Recession				

Overall Average: -0.0012

-0.0014 0.0013

NOTE: Measurements are in inches.

Intake Exhaust 0.0021

0.0000

-0.0037

-0.0023 -0.002 0.0001 -0.0057 0.0007 -0.0013 -0.0016 -0.0027 -0.0025 -0.0010

-0.0012

GM 6.2L CAT 1-H (TEST NO. 5) POST TEST ENGINE CONDITION AND DEPOSITS

		_	_		_	,	_		
Cylinder Liner		2		4		6	7	8	Average
Liner Scuffing, % Area									
Thrust Anti-Thrust % Total Area	0 0 0	3 0 0	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 Overail:	0 0 0
Liner Polished, % Area									
Thrust Anti-Thrust % Total Area	0	0 0 0	0 0	0 0 0	0	0 0 0	0	0 0 0 Overall:	0 0 0 0
Pistons									
Ring Face Distress Demerits									
Top 2nd	0.0	0.0	0.0 9.0	0.0	o.o o.o	2.5 0.0	0.0 0.0	0.0 0.0 0.0	0.3125 0.0 0.1563
Piston Skirt Rating									
Thrust Anti-Thrust	LS*	LS LS	LS LS	LS LS	S# N*	LS LS	LS LS	LS LS	
Piston WTD Rating	94.13	85.63	83.00	95.13	99.50	83.63	39.63	87.75	89.80
Exhaust Valves									
Deposits									
Head Face					\sc**				
Tulip Stem	0.5	0.5	1.1	0.75	1.2	1.4	1.1	0.5	
Surface Condition									
Freenes in Guide Head Face Seat Stem Tip				Nor Nor Nor	mai ——— mai ———				
Other Ratings									
Prechamber Deposits (grams)	0.0033	0 .0029	0.0043	0.0042	0.0062	0.0028	0.0092	o.002	0.0043
Combustion Chamber Deposits (grams)	0.2181	0.1361	0.4007	0.2383	0.2514	0.222	0.36	0.2201	0.2558
Bearing Surface				Nor	mal				

^{*} LS - lightly scratched, S - scratched, N - normal.
** 1/4 ASC/ soft carbon, prefix indicates carbon depth with 1/4 ASC being the least to J the most.

GM 6.2L
CAT 1-H
FUEL INJECTOR AND PUMP TESTS
ENGINE SERIAL NUMBER: DJ-921

				C	ylinder h	Number			
	1	2	3	4	_5	6	7	_8	Average
Pop-Off Pressure (psi)									
Before Test	1700	1700	1700	1700	1775	1700	1700	1825	1725
After Test	1525	1640	1440	1600	1625	1500	1575	1475	1547.5
				Overall	Decreas	se: 177.	5 psi		
Fuel Pump Calibration									
mL/min at 1000 rpm									
Before Test	46.0	45.5	47.0	48.5	45.0	47.0	47.0	45.0	46.3
After Test	46.0	46.5	48.0	48.0	46.5	46.5	47.0	48.0	47.1
			C	verall D	ecrease)	: 0.8 m	L/min		
mL/min at 1800 rpm									
Before Test	40.0	44.0	44.0	48.0	42.5	44.0	43.0	43.5	43.6
After Test	47.0	48.5	50.0	53.0	47.5	48.0	47.5	48.3	48.7

Overall Decrease: 5.1 mL/min

FULL LOAD BSFC CURVES

FULL LOAD FUEL CONSUMPTION

FULL LOAD POWER CURVES

TOTAL OIL CONSUMPTION

TOTAL IRON ACCUMULATION

TOTAL COPPER ACCUMULATION

TOTAL LEAD ACCUMULATION

TOTAL SULFUR ACCUMULATION

G.M. 6.2 LITER FUEL EVALUATION TEST 5 FUEL PUMP

G.M. 6.2 LITER TEST #5 FUEL EVALUATION (T)

G.M. 6.2 LITER TEST #5 FUEL EVALUATION (AT)

G.M. 6.2 LITER TEST #5 FUEL EVALUATION

G.M. 6.2 LITER TEST # 5 FUEL EVALUATION MAIN BEARINGS UPPER

G.M. 6.2 LITER TEST # 5
FUEL EVALUATION
ROD BEARINGS
UPPER

LOWER 4

> LOWER 5

117

G.M. 6.2 LITER TEST #5 FUEL EVALUATION

APPENDIX C
Test Data

GM 6.2L Engine 210-Hour Test JP-8 Fuel

GM 6.2 1 JP-8 ENGINE MEASUREMENTS SERIAL NUMBER: DJB 1003

Cylinder Bore	Minimum	Maximum	Average	Specified Limits
Diameter Out of Round Taper-Thrust	3.9777 0.0000 0.0001	3.9786 0.0007 0.0005	3.9782 0.0003 0.0004	3.9759 - 3.9789 0.0008 0.0008
Piston Clearances				
Bores 1-6 Bores 7-8	0.0040 0.0055	0.0050 0.0046	0.0044 0.0051	0.0035 - 0.0045 0.0040 - 0.0050
Piston Rings				
Groove Clearance 2nd Oil	0.0015 0.0015	0.0020 0.0020	0.0018 0.0018	0.0015 - 0.0030 0.0016 - 0.0038
End Gap Top 2nd Oil	0.0250 0.0500 0.0250	0.0280 0.0420 0.0270	0.0270 0.0450 0.0260	0.0120 - 0.0220 0.0290 - 0.0390 0.0100 - 0.0200
Piston Pin				
Diameter Clearance Fit in Rod	1.2208 0.0001 0.0008	1.2210 0.0012 0.0014	1.2209 0.0005 0.0011	1.2203 - 1.2206 0.0004 - 0.0006 0.0003 - 0.0012
Camshaft				
Diameter Bearing 1-4 Bearing 5 Clearance	2.1655 0.0027	2.1660 0.0034	2.1657 2.0083 0.0030	2.1644 - 2.1663 2.0069 - 2.0088 0.0015 - 0.0044
Crankshaft				
Journal Diameter 1-4 5 Out of Round Clearance 1-4	2.9500 0.0000 0.0040	2.9502 0.0002 0.0038	2.9501 2.9499 0.0000	2.9495 - 2.9504 2.9493 - 2.9502 0.0002
5 Cooplesia			0.0038	0.0022 - 0.0037
Crankpin Diameter Out of Round Clearance	2.3984 0.0000 0.0033	2.3987 0.0002 0.0035	2.3986 0.0000 0.0035	2.3981 - 2.3992 0.0002 0.0018 - 0.0039
Valve Stem Clearance Intake Exhaust	0.0019 0.0023	0.0026 0.0030	0.0022 0.0028	0.0010 - 0.0027 0.0010 - 0.0027

NOTE: Measurements are in inches.

PROPERTIES OF JP-8 OBTAINED FROM SUNTECH

		· · · · · · · · · · · · · · · · · · ·	REQUIREMENTS	
PROPERTY	ŒΤ	HOD	•	AL-14216-F
INOLDRII			or mile i st	111 14210 1
Color	D	156	(a)	+15(Saybolt)
Total Acid Number, mg KOH/g		3242	0.015 max	0.005
Aromatics, volz		1319	25.0 max	19.0
Olefins, vol%		1319	5.0 max	0
Sulfur, total wt % (XRF)		2622	0.3	<0.01
Mercaptan sulfur, wt%		3227	0.001max	0.0002
Distillation, GC, *C		2887		••••
Initial boiling point	_		(a)	136.2
10 % recovered			186 max	169.3
20 % recovered			(a)	180.6
50 % recovered			(a)	205.6
90 % recovered			(a)	236.9
End point			330 max	262.6
nud point			JJO WEX	202.0
Flash Point, *C	D	93	38 min	56
Gravity, *API		1298		40.3
		1298	0.775 - 0.840	
Freezing point, *C			-50 max	-55
Kin viscosity at -20*C, cSt			8.0 max	4.14
Net heat of combustion, MJ/kg(Btu.			42.8(18,400) m	
		-,	, , , , , , , , , , , , , , , , , , , ,	(18,532)
				(10,000)
Hydrogen content, wt %			13.5 min	13.69
Smoke point, mm		1322	19 min	22.2
Copper corrosion, 2hr @ 100*C	D	130	lB max	1 A
Thermal stability (JFTOT), Code	D	3241	<3	1
Change in pressure drop, mm Hg			25 max	0
Existent gum, mg/100mL	D	381	7.0 max	0.2
Particulate matter, mg/L	D	2276	1.0 max	1.1 (b)
Water reaction, interface rating	D	1094	1 b	1 b
Water separation index, modified	D	2550	70 max	
Fuel system icing inhibitor			0.10 - 0.15	0.01,0.04
Fuel electrical conductvty, pS/m				170,90
Filtration time, minutes Apdx	A	MIL-T-562	4 15 max	72
Cetane Number			NR(c)	41
BOCLE, scar diameter, mm			NR	0.34

⁽a) Report(b) _Outside of specification limits.(c) No requirement.

GM 6.2 1 ENGINE OPERATING CONDITIONS SUMMARY LUBRICANT: AL-14080-L JP-8 FUEL: AL-14216-F

		wer Mode 0 RPM)		Mode RPM)
	Mean	Standard Deviation	Mean	Standard Deviation
Engine Speed (rpm)	3600	0.745	779	28.60
Torque (ft-lb)	186.3	22.30	8.41	1.64
Fuel Consumption (lb/hr)	74.1	3.18	5.44	1.02
Observed Power (Bhp)	127.7	15.3	1.25	0.264
BSFC (lb/Bhp-hr)	0.589	0.0720	4.41	0.687
Oil Gallery Pressure (psi)	52.9	1.99	56.5	1.44
Temperatures (OF)				
Water Jacket Inlet	161.8	1.03	93.5	3.77
Water Jacket Outlet	177.9	0.929	101.1	3.76
Oil Sump	233.4	6.82	121.8	5.71
Fuel Inlet	105.0	4.34	91.8	3.86
Air Inlet	95.4	7.11	87 . 9	4.90
Exhaust Temperatures (OF)				
Cylinder 1	1353	57.9	90¢ 4	49.0
Cylinder 2	1285	43.6	206.4 225.7	48.9 38.5
Cylinder 3	1407	66.7	212.1	30.3
Cylinder 4	1313	61.7	210.4	41.0
Cylinder 5	1410	61.2	210.4	32.5
Cylinder 6	1325	52 . 0	202.8	34.6
Cylinder 7	1290	50.0	168.9	54.0
Cylinder 8	1328	51.2	230.7	41.1
Common	1107	56.6	158.0	20.7

GM 6.2 1 JP-8 WEAR MEASUREMENTS

Cylinder Bore Diameter Change

		1		3		5		7
	T-AT	<u>F-B</u>	<u>T-AT</u>	F-B	T-AT	<u>F-B</u>	T-AT	<u>F-B</u>
Тор	0.0004	0.0002	0.0002	0.0002	0.0003	0.0001	0.0003	0.0002
Middle	0.0003	0.0002	0.0003	0.0001	0.0002	0.0001	0.0003	0.0001
Bottom	0.0004	0.0002	0.0004	0.0001	0.0003	0.0000	0.0003	0.0004
		2		4		6		8
	T-AT	2 <u>F-B</u>	<u>T-AT</u>	4 <u>F-B</u>	<u>T-AT</u>	6 <u>F-B</u>	<u>T-AT</u>	8 <u>F-B</u>
Тор	<u>T-AT</u>	2 F-B 0.0001	<u>T-AT</u>	4 F-B 0.0002	<u>T-AT</u>	6 <u>F-B</u> 0.0001	<u>T-AT</u> 0.0004	0.0001
Top Middle						<u>F-B</u>		

Average Change

	T-AT	<u>F-B</u>
Тор	0.0003	0.0002
Middle	0.0003	0.0001
Bottom	0.0004	0.0001

Overall Average Change: 0.0002

					Cylinder				
	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	AVG
				Piston Ri	ng End Ga	p Change			
Rings						-			
Top	0.007	0.006	0.008	0.005	0.007	0.006	0.007	0.006	0.007
2nd Oil	0.001 0.003	0.001 0.001	0.002 0.003	0. 001 0. 004	-0.005 -0.006	0.003 0.004	0.003 0.004	0.003 0.004	0.001 0.002
Oil	0.003	0.001	0.003	0.004	-0.006	0.004	0.004	0.004	0.002
Overall Average Change: 0.003									
			•						
				Bearin	g Weight (Change			
Main									
Upper	0.0413	0.0335	0.0248	0.0336	0.0537				0.0374
Lower	0.0417	0.0463	0.0687	0.0426	0.0824				0.0563
Rod Bearing			Overall	Average	Change:	0.0469			
Upper	0.1308	0.0888	0.1008	0.0370	0.0883	0.0838	0.0791	0.0801	0.0861
Lower	0.0290	0.4310	0.0253	0.0383	0.0239	0.0345	0.0222	0.0235	0.0810
		Ov	erali Aver	age Chang	ge: 0.0835	grams			
				Val	ve Recess	ion			
Intake	-0.0021	0.0002	-0.0009	0.0005	0.0000	0.0018		-0.0010	
Exhaust	-0.0074	0.0005	-0.0003	-0.0010	-0.0020	-0.0012	-0.0021	-0.0007	-0.0018

Overall Average Change: -0.0011

GM 6.2 1 JP-8 POST TEST ENGINE CONDITION AND DEPOSITS

				Cylin	der Nun	nber			
	<u>1</u>	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	AVG
Cylinder Liner									
Liner Scuffing, % Area									
Thrust Anti-Thrust				0.0)				0.00
% Total Area				0.0				Overall:	0.00 0.00
Liner Polished,									
% Area Thrust				0.0					0.00
Anti-Thrust % Total Area				0.0 0.0	=				0.00
Pistons								Overall:	0.00
Ring Face Distress (Demerits)									
Top 2nd	25.00 0.00	5. 00 0. 00	2.50 0.00	16.25 0.00	16.25	1.25 0.00	1.25	20.00 0.00	10.94 0.00
								Overail:	5.47
Piston Skirt Rating Thrust				и•					
Anti-Thrust				N					
Piston WTD Rating	183.625	119.625	131.750	130.625 1	33.250	137.750	158.625	147.750	142.875
Exhaust Valves									
Deposits Head				- 1/4 AS	C**				
Face Tulip	0.50	0.25	0.10	- 1/4 AH 0.20	C** -	0.10	0.75	1.0	
Steam		0.23	0.10	- "#9	0.10 -	0.10	0.75	1.0	•
Surface Conditions									
Freeness in Guide Head				F*					
Face Seat				— N	_				
Stem Tip				и					
•				· ·					
Other Ratings									
Prechamber Deposits (grams)	0.7545 (2177	0.1799	0.2637 0	.1611	0.1564	0.2366	0.1191	
Bearing Surface				No Abnorn	nalities				

N - normal, F - free 1/4 ASC, 1/4 AHC lightest coating possible of soft carbon and hard carbon respectively.

GM 6.2 1 JP-8 FUEL INJECTOR TEST

	Cylinder Number								
	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	AVG
(Set 1 replaced at 32 hou	rs.)								
Pop-Off Pressure (psi) Before Test After Test	1800 1650	2050 1850	1800 1600	1800 1650	1900 5000	1900 1700	1800 1650	1800 1600	1856 1671
		O.	verali Av	erage Exc	eluding #5	(After I	'est): 185	psi	
Report Before Test After Test	Good None	Weak Good	None None	Good Fair	Fair Seized	Good Poor	Good None	Good Poor	
(Set 2 installed at 32 hou	rs and re	placed at	97 hours	.)					
Pop-Off Pressure (psi) Before Test (CAT 1 H) After Test (CAT 1 H) After Test (JP-8)	1800 1600 1600	2000 1700 1700	1900 1700 1700	1850 1800 1700	1800 2200 1700	1850 1650 1700	1800 1650 1700	1800 1550 1650	1850 1731 1681
				Overal	1 Change:	119 bst			
Report Before Test After Test After Test (JP-8)	Weak None None	Poor None Good	Good Good Good	Good Weak Good	Fair Weak Good	Poor None Good	Fair None Good	Fair None Good	
(Set 3 installed at 97 hour	rs and ma	ade end o	f test.)						
Pop-Off Pressure (psi) Before Test After Test	1750 1700	1850 1800	1800 1700	1800 1550	1800 1600	1800 1550	1950 1650	1800 1600	1819 1644
				Overal	l Change:	175 psi			
Report Before Test After Test	Good Good	Weak Weak	Good Good	Good None	Good Fair	Weak None	Good Fair	Good Fair	
Needle Scuffing Demerits	0.0	0.0	0.30	0.70	0.25	0.0	0.70	0.60	0.95

GM 6.2 1 JP-8 PUMP TESTS

(Initial Pump Removed at 168 Hours)

Cylinder Number								
1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	AVG
49.4 54.3	51.1 5 6.8	49.6 54.2	50.1 50.5	49.1 53.4	48.6 48.0	50.1 54.5	48.6 55.0	49.6 53.3
			0	verall: 3	.7			
84.2	103.1	101.9	111.4	98.4	92.5	87.8	98.4	97.2
ours Made	End of	ſest)						
82.8 103.6 64.1	90.6 110.9 62.1	89.2 115.8 62.1	86.5 118.3 64.1	86.5 108.5 62.1	83.7 104.9 60.1	81.9 108.5 60.1	88.3 109.7 60.8	86.2 110.0 61.9
	49.4 54.3 84.2 purs Made	49.4 51.1 54.3 56.8 84.2 103.1 wars Made End of 5 103.6 110.9	49.4 51.1 49.6 54.3 56.8 54.2 84.2 103.1 101.9 Mars Made End of Test) 82.8 90.6 89.2 103.6 110.9 115.8	1 2 3 4 49.4 51.1 49.6 50.1 54.3 56.8 54.2 50.5 84.2 103.1 101.9 111.4 Mars Made End of Test) 82.8 90.6 89.2 86.5 103.6 110.9 115.8 118.3	1 2 3 4 5 49.4 51.1 49.6 50.1 49.1 54.3 56.8 54.2 50.5 53.4 Overall: 3 84.2 103.1 101.9 111.4 98.4 Mars Made End of Test) 82.8 90.6 89.2 86.5 86.5 103.6 110.9 115.8 118.3 108.5	1 2 3 4 5 6 49.4 51.1 49.6 50.1 49.1 48.6 54.3 56.8 54.2 50.5 53.4 48.0 Overall: 3.7 84.2 103.1 101.9 111.4 98.4 92.5 Mars Made End of Test) 82.8 90.6 89.2 86.5 86.5 83.7 103.6 110.9 115.8 118.3 108.5 104.9	1 2 3 4 5 6 7 49.4 51.1 49.6 50.1 49.1 48.6 50.1 54.3 56.8 54.2 50.5 53.4 48.0 54.5 Overall: 3.7 84.2 103.1 101.9 111.4 98.4 92.5 87.8 **Rurs Made End of Test** 82.8 90.6 89.2 86.5 86.5 83.7 81.9 103.6 110.9 115.8 118.3 108.5 104.9 108.5	1 2 3 4 5 6 7 8 49.4 51.1 49.6 50.1 49.1 48.6 50.1 48.6 54.3 56.8 54.2 50.5 53.4 48.0 54.5 55.0 Overall: 3.7 84.2 103.1 101.9 111.4 98.4 92.5 87.8 98.4 **Surs Made End of Test** 82.8 90.6 89.2 86.5 86.5 83.7 81.9 88.3 103.6 110.9 115.8 118.3 108.5 104.9 108.5 109.7

Overall Change @ 1800 rpm: 23.8

^{*} Pump reported to make "intermediate noises, like rotor hanging up".

FULL LOAD FUEL CONSUMPTION

FULL LOAD POWER CURVES

FULL LOAD BSFC CURVES

TOTAL OIL CONSUMPTION

TOTAL IRON ACCUMULATION

TOTAL COPPER ACCUMULATION

TOTAL SULFUR ACCUMULATION

APPENDIX D Test Data and Photographs

GM 6.2L Engine 400-Hour NATO Test Cycle JP-8 Fuel

GM 6.2L JP-8 ENGINE MEASUREMENTS SERIAL NUMBER: DJB-1003

Cylinder Bore	Minimum	Maximum	Average	Specified Limits
Diameter Out of Round Taper-Thrust	3.9772 0.0002 0.0002	3.9789 0.0011 0.0007	3.9780 0.0005 0.0004	3.9759 - 3.9789 0.0008 0.0008
Piston Clearances				
Bores 1-6 Bores 7-8	0.0026 0.0030	0.0048 0.0043	0.0034 0.0037	0.0035 - 0.0045 0.0040 - 0.0050
Piston Rings				
Groove Clearance 2nd Oil	0.0025 0.0015	0.0025 0.0025	0.0025 0.0023	0.0015 - 0.0030 0.0016 - 0.0038
End Gap Top 2nd Oil	0.028 0.047 0.024	0.032 0.049 0.033	0.031 0.048 0.029	0.012 ~ 0.022 0.029 ~ 0.039 0.010 ~ 0.020
Piston Pin				
Diameter Clearance Fit in Rod	1.2208 0.0002 0.0009	1.2208 0.0005 0.0014	1.2208 0.0004 0.0011	1.2203 - 1.2206 0.0004 - 0.0006 0.0003 - 0.0012
Camshaft				
Diameters Bearings 1-4 Bearing 5 Clearance	2.1655 2.0083 0.0022	2.1658 2.0083 0.0033	2.1656 2.0083 0.0027	2.1644 - 2.1663 2.0069 - 2.0088 0.0015 - 0.0044
Crankshaft				
Journal Diameter 1-4 Diameter 5 Out of Round Clearance 1-4 Clearance 5	2.9500 2.9497 0.0000 0.0034 0.0039	2.9501 2.9499 0.0002 0.0042 0.0042	2.9500 2.9498 0.0001 0.0037 0.0041	2.9495 - 2.9504 2.9493 - 2.9502
Crankpin				
Diameter Out of Round Clearance	2.3983 0.0000 0.0034	2.3986 0.0002 0.0044	2.3985 0.0001 0.0038	2.3981 - 2.3992 0.0002 0.0018 - 0.0039
Valve				
Stem Clearance Intake Exhaust	0.0019 0.0027	0.0027 0.0028	0.0023 0.0027	0.001 - 0.0027 0.001 - 0.0027
NOTE: Measurement	s are in inches	135		

PROPERTIES OF JP-8 OBTAINED FROM SUNTECH

PROPERTIES OF SE	- 0	OBININDO	DECUTDEMENTS	
			REQUIREMENTS	AT 1/216 E
PROPERTY	1ET	HOD	OF NATO F-34	AL-14216-F
	_			115/5 1 15
Color		156	(a)	+15(Saybolt)
Total Acid Number, mg KOH/g		3242	0.015 max	0.005
Aromatics, vol%	D	1319	25.0 max	19.0
Olefins, vol%	D	1319	5.0 max	0
Sulfur, total wt % (XRF)	D	2622	0.3	<0.01
		3227	0.001max	0.0002
Distillation, GC, *C		2887		
	-	2007	(a)	136.2
Initial boiling point			186 max	169.3
10 % recovered				
20 % recovered			(a)	180.6
50 % recovered			(a)	205.6
90 % recovered			(a)	236.9
End point			330 max	262.6
Flash Point, *C		93	38 min	56
Gravity, *API		1298	37 - 51	40.3
Density, kg/L at 15*C			0.775 - 0.840	
Freezing point, *C	D	2386	-50 max	- 55
Kin viscosity at -20*C, cSt	D	445	8.0 max	4.14
Net heat of combustion, MJ/kg(Btu.	/ 11	b)	42.8(18,400) mi	in 43.106
,,,,,,,		- •		(18,532)
				•
Hydrogen content, wt %			13.5 min	13.69
Smoke point, mm	D	1322	19 min	22.2
Copper corrosion, 2hr @ 100*C	D	130	1B max	1 A
Thermal stability (JFTOT), Code		3241	<3	1
Change in pressure drop, mm Hg			25 max	0
onengo en processo eropy and and				
Existent gum, mg/100mL	D	381	7.0 max	0.2
Particulate matter, mg/L		2276	1.0 max	1.1 (b)
Water reaction, interface rating			16	l b
Water separation index, modified			70 max	
Fuel system icing inhibitor	-		0.10 - 0.15	0.01,0.04
Fuel electrical conductivity, pS/m	n	2624	200-600	170,90
Filtration time, minutes Apdx				
Cetane Number	a	I-302	NR(c)	$\frac{72}{41}$
			NR (C)	0.34
BOCLE, scar diameter, mm			AK	U . 34

⁽a) Report(b) _Outside of specification limits.(c) No requirement.

GM 6.2L ENGINE

Operating Conditions Summary Lubricant: AL-14080-L JP-8 Fuel: AL-14216-F (400-Hour NATO Test)

	3600	RPM	2000 RPM			
	Mean	Standard Deviation	Mean	Standard Deviation		
Engine Speed, RPM	3601.2	5.23	2000.9	4.22		
Torque, ft-lb	178.7	5.65	209.6	7.60		
Fuel Consumption, lb/hr	70.8	1.44	39.4	1.05		
Observed Power, Bhp	122.5	3.94	79.8	2.95		
BSFC, lb/Bhp-hr	0.578	0.015	0.493	0.015		
Temperatures, °F						
Water In	190.9	1.33	189.9	0.94		
Water Out	200.1	1.35	199.8	1.11		
Oil Sump	250.3	3.33	208.9	3.11		
Fuel In	82.9	6.59	79.0	6.25		
Inlet Air	84.9	8.23	79.3	7.76		
Exhaust Common	1254.4	22.01	1056.4	21.35		
Pressures						
Oil, psi	41.79	0.93	45.25	2.12		
Fuel Transfer, psi	4.57	0.22	5.76	0.14		
Inlet Restriction,						
in H ₂ O	10,4	0.29	3.2	0.12		
Exhaust Back Pressure,						
in Hg	1.2	0.06	0.25	0.06		
Blowby, in H ₂ O	3.86	0.94	1.01	0.16		
Ambient Conditions						
Barometer, in Hg	29.21	0.17	29.21	0.17		
Relative Humidity	64.53	18.93	62.7	20.49		

GM 6.2L JP-8 WEAR METALS BY XRF LUBRICANT: AL-14080-L

Test Time		W	ear Metals (ppm	ı) _	
Hours	Fe	<u>Cu</u>	Cr	Pb	<u>_S</u>
20	53	29	*	*	0.43
40	68	33	*	*	0.42
60	109	50	*	*	0.46
80	128	11	*	*	0.46
100	160	20	*	*	0.47
120	80	11	8	*	0.49
140	89	16	*	*	0.48
160	113	*	*	*	0.49
180	124	10	*	*	0.48
200	143	10	*	*	0.47
220	89	25	*	*	0.48
240	102	*	*	*	0.47
260	97	*	*	*	0.48
280	119	22	*	*	0.48
300	136	*	*	*	0.48
320	54	*	*	*	0.46
340	73	*	*	*	0.45
360	90	*	*	*	0.46
380	78	*	*	*	0.47
400	111	*	*	*	0.46

^{*} Below detectable limits.

GM 6.2L JP-8 Lubricants AI -140

	Lubrio	ant: AL-	14080L			
	ASTM		Te			
	Method	0	100	200	300	400
Kinematic Viscosity @ 40°C cSt	D445	97.13	210.16	232.24	249.35	278.82
Kinematic Viscosity @ 100°C cSt	D445	11.04	18.50	19.75	20.58	22.08
Total Acid Number mg KOH/g	D 664	2.51	6.48	7.92	7.71	9.50
Total Base Number mg KOH/g	D664	6.49	2.93	2.49	2.59	2.31
Pentane B Insolubles wt %	D893		2.08	2.10	2.17	2.35
Toluene B Insolubles wt %	D893		1.89	1.91	1.97	2.22
Flash Point, OC	D92	230	249	257	257	246
		138				

GM 6.2 L JP-8 FUEL INJECTOR AND PUMP TESTS Engine Serial Number: DJ1003 Pump Serial Number: 4779193

		Cylinder Number									
	1	2	3	4	5	6	7	8	Avg.		
Pop-Off Pressure(p Before Test After Test	1700 1650	1700 1500	1675 1700	1675 1500	1700 1500	1650 1400	1850 1500	1675 1400	17 03 1519		
			-	Overall D	ecrease:	18 4 psi					
Report Before Test After Test					Yes Yes						
Fuel Pump Calibrat	tion										
(ml/min) @ 1000 RI Before Test After Test	PM 49.5 48.4	50.5 50.0	50.5 49.5	51.1 5 0. 5	49.5 47.4	48.9 47.9	48.4 47.9	48.4 47.9	49.6 48.7		
			(Overall De	crease: .9	ml/min					
(ml/min) @ 1800 RI Before Test After Test	9 <u>M</u> 88.7 84.9	90.2 89.6	90.2 92.5	88.7 90.6	8 8.3 8 8. 7	87.7 89.6	88.7 87.7	91.9 89.6	89.3 89.2		

Overall Decrease: 0.1 ml/min

TOTAL OIL CONSUMPTION

TOTAL IRON ACCUMULATION

TOTAL COPPER ACCUMULATION

TOTAL SULFUR ACCUMULATION

G.M. 6.2 LITER FUEL EVALUATION TEST 4 FUEL PUMP

G.M. 6.2 LITER TEST #4 FUEL EVALUATION (T)

G.M. 6.2 LITER TEST #4 FUEL EVALUATION (AT)

G.M. 6.2 LITER TEST # 4 FUEL EVALUATION MAIN BEARINGS UPPER

G.M. 6.2 LITER TEST #4
FUEL EVALUATION
ROD BEARINGS
UPPER

LOWER 7

G.M. 6.2 LITER TEST # 4 FUEL EVALUATION

APPENDIX E Test Data

Cummins NH-250 Engine
210-Hour Test
Cat Fuel*

^{*}Use of designation "Cat 1-H" test fuel refers to Reference No. 2 Diesel Fuel, or simply Cat Fuel.

NH-250 CAT 1 H ENGINE MEASUREMENTS

Cylinder Bore	Minimum	<u>Maximum</u>	Average	Specified Limits
Diameter Out of Round, Top Out of Round, Bottom	5.5002 0.0001 0.0000	5.5018 0.0035 0.0017	5.5010 0.0014 0.0011	0.0003 Max 0.002 Max
Piston Clearances				
Piston to Liner	0.0120	0.0130	0.0106	0.0099 - 0.0135
Piston Rings				
End Gap 1 2 3 4	0.023 0.018 0.024 0.020	0.025 0.025 0.026 0.028	0.024 0.023 0.025 0.024	0.017 - 0.027 0.013 - 0.023 0.018 - 0.032 0.015 - 0.027
Piston Pin				
Pin to Piston Bushing Pin to Rod Bushing	-0.0001 0.0020	-0.0100 0.0030	-0.0004 0.0028	$\phantom{00000000000000000000000000000000000$
Main Bearing to Journal Clearance	0.0035	0.0045	0.0040	0.0015 - 0.0050
Connecting Rod Bearing to Journal Clearance	0.0035	0.0045	0.0042	0.0015 - 0.0045

NOTE: Measurements are in inches.

ANALYSIS OF CAT 1-H FUEL, BATCH 85-2 (AL-14069-F)

			Howell
	AFLRL	Howell	Cat 1-H
Test	Data	Data	Limit
Gravity, *API	34.5	34.5	32.0-35.0
Specific Gravity, 15.6/15.6°C	0.8524		
Distillation, °F(°C)			
IBP	402(206)	384(196)	Report
10% recovered	462(239)		Report
50% recovered	517 (269)		500-530
90% recovered	611(322)	612(322)	580-620
EP	663(351)		650-690
% recovered	99		(a)
% residue	1		(a)
Flash Point, °F(°C)	180(82)	180(82)	Report
Pour Point, °F(°C)	9(-13)	+5(-15)	+20 max
Cloud Point, *F(*C)	14(-10)	14(-10)	Report
Copper Corrosion, 3 hr at 210°F,			
Rating	1 A	1 A	2 max
Carbon Residue on 10% Bottoms,			
Ramsbottom wt%	0.11	0.13	0.20 max
Water and Sediment, vol%	<0.01	0.05	0.05 max
Neutralization Number, mg KOH/g	0.02	0.02	0.15 max
Ash, wt%	<0.01	0.006	0.01 max
Viscosity at 100°F (37.8°C), cSt	(b)	3.18	3.0-4.0
Viscosity at 40°C, cSt	2.98	(b)	(a)
Net Heat of Combustion, Btu/1b	18,279	(b)	(a)
MJ/kg	42,516	(b)	(a)
Cetane Number	52	51	45-51
Cetane Index	47	47	(a)
Carbon, wt%	86.24		(a)
Hydrogen, wt%	12.19		(a)
Sulfur, wtZ	0.41	0.40	0.37-0.43

⁽a) - No requirement

⁽b) - Not determined 150

CUMMINS NH-250 ENGINE OPERATING CONDITIONS SUMMARY LUBRICANT: AL-14080-L CAT 1-H FUEL: 14069-F

	Full Power Mode (2100 RPM)			e Mode 0 RPM)
	Mean	Standard Deviation	Mean	Standard Deviation
Engine Speed (rpm)	2100	0.00	699	27.1
Torque (ft-lb)	6 29. 9	4.36	1.14	0.877
Fuel Consumption (lb/hr)	91.0	2.52	3.28	0.880
Observed Power (Bhp)	251.9	1.72	0.153	0.120
BSFC (lb/Bhp-hr)	0.3614	0.0994	37.5	44.4
Oil Gallery Pressure (psi)	46.9	3.12	81.1	1.08
Temperatures (°F)				
Water Jacket Inlet	168.9	1.76	98.3	1.68
Water Jacket Outlet	179.2	0.973	100.4	1.56
Oil Sump	245.6	2.56	136.1	2.23
Fuel Inlet	88.8	2.28	85. 7	2.61
Air Inlet	101.7	4.78	88.9	4.32
Intake Manifold	105.1	4.37	89.8	4.16
Exhaust Temperatures (°F)				
Cylinder l	1210	62.9	249.1	32.2
Cylinder 2	1242	65.0	251.5	33.0
Cylinder 3	1114	58.0	236.5	29.5
Cylinder 4	1212	62.1	245.2	32.2
Cylinder 5	1247	64.2	250.1	3 3.2
Cylinder 6	1099	57.9	230.5	28.8
Common	1014	59.4	225.1	27.6

NH-250 CAT 1 H WEAR MEASUREMENTS

			Cylinder L	iner Bore D	iameter Cha	inge		
Position	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	Aver	age
Top T-AT	0.0006	0.0004						
Top F-B	0.0012	0.0018	0.0001			0.000		003
Mid T-AT	0.0012	0.0018	0.0017 0.0001			0.000		011
Mid F-B	0.0005	0.0004	0.0001			0.000		002
Bottom T-AT		0.0001	0.0003			0.000		004
Bottom F-B	0.0000	0.0001			0.0000	0.000		
Dottom I B	0.0000	0.0004	0.0002	0.0001	0.0002	0.000	i 0.0	002
		Ove	rall Average	e Change: 0	.0004			
			Piston	Ring End G	ap Change			
Rings								
1	0.002	0.003	0.004	0.000	0.000	0.001	0.0	กกร
2	0.003	0.003	0.001		0.006	0.004		
3	0.001	0.003	0.001		0.002	0.000		
4	0.002	0.008	0.004		0.002	0.004		
		Over	all Average	Change: 0.	0003			
			Be	aring Weigh	t Loss			
Rods							<u>-</u>	
Upper	0.0005	0.0039	0.0010	-0.0005	-0.0020	0.000	<i>a</i> 0.00	
Lower	-0.0004	-0.0002	0.0005	0.0000	-0.0020			
			37 4000	0.0000	-0.0034	-0.001	3 -0.00	108
		Over	all Average	Change: -0.	8000			
Main	<u>1</u>	<u>2</u>	<u>3</u>	4	<u>5</u>	6	7	Avenera
****				÷	<u>~</u>	<u>6</u>	7	Average
Upper Lower	0.0067 0.0039	0.0009 0.0052	0.0055 0.0027	0.0042 0.0070	0.0079 0.0066	0.0029 0.0084	0.0087 0.0122	0.0053 0.0066
		Over	all Average	Change: 0.	0059 grams			
					-			

NOTE: Measurements are in inches.

NH-250 CAT 1 H POST TEST ENGINE CONDITION AND DEPOSITS

				ylino	ier Num	ber		
	1	<u>2</u>	3		4	<u>5</u>	<u>6</u>	Average
Cylinder Liner								
Liner Scuffing, % Area								
Thrust Anti-Thrust	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.2
% Total Area	0.0	0.0	0.0	•••	0.0	0.0	0.5 Overall:	0.0 0.0
Liner Polished, % Area Thrust				0.0				
Anti-Thrust % Total Area				0.0				
							Overall:	0.0
Pistons								
Ring Face Distress,								
(Demerits)	0.0	0.0	0.0		0.5	0 .0	0.0	0.10
2	0.0	0.0	0.0		0.75	0.25	0.5	0.25
3	0.0	0.0	0.0		1.25	0.0	0.75	0.33
							Overall:	0.23
Piston Skirt Rating				<u> </u>	ormal -			
Piston WTD Rating	113.495	102.333	116.550	11	3.610	174.915	125.295	124.366
Ring Sticking					None -			
Combustion Chamber Deposits (grams)	0.7005	0.8169	0.7936	0	.8247	0.7827	0.8206	0.7898
Exhaust Valves								
Deposits								
Head Face					2 AHC*			
Tulip	0.25	0.20	0.20		Clean 0.20	0.20	0.20	
Steam					AHC*			
Surface Condition								
Freeness in Guide					Free -			
Face		- Starting t	o burn one	valv	ormal - e in #2 c	vlinder, ot	her normal -	
Seat Stem				N	icemal –			
Tip								
Other Ratings				•				
Bearing Surface								
Condition Main								
Rod			N	O Abi	normalit	ies ——— ies ———		
				- 1701	····· ··· · · · · · · · · · · · · · ·	.63		

^{* 1/2} AHC; hard carbon, prefix indicates carbon depth with 1/4 AHC being the least to J the most.

NH-250 CAT 1 H FUEL INJECTOR AND PUMP EVALUATION

		Cylinder Number						
	<u>1</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>	Average	
Injector Flow Calibration (ml/100) Before After	115.6 116.2	115.1 116.4	116.1 116.5	115.2 116.5	116.1 116.5	116.0 116.5	115.7 116.4	
			Overall Char	nge: 0.7				
Injector Needle Scuffing (% Area)	0.0	0.0	0.0	0.0	0.0	0.0 Overall:	0.0 0.0	
Pump Tests								
			Standards	Pre Test	Po	st Test	Change	
Pump Fuel Pressure @ Fuel Cutoff (rpm) Throttle Leakage (cc/1 Check Point #1 @ 1500 Check Point #2 @ 1000	1000)) rpm (psi)		176-180 2130-2150 40-70 cc 101-107 psi 50-58	178 2150 50 110 62		180 2148 72 107 58	2 -2 22 -3 -4	
Idle Speed (500 rpm) Pr			35	32		32	0	

FULL LOAD BSFC CURVES

TOTAL OIL CONSUMPTION

FULL LOAD FUEL CONSUMPTION

FULL LOAD POWER CURVES

TOTAL SULFUR ACCUMULATION

APPENDIX F Test Data and Photographs

Cummins NH-250 Engine 210-Hour Test JP-8 Fuel

The second secon

NHC 250 JP-8 LOG OF UNSCHEDULED EVENTS

Test Time Hours	EVENT				
49	o Engine Shutdown Due To Electrical Power Failure In The Building				
195	o Engine Coolant Temperature Controller Failed				

NH-250 JP-8 ENGINE MEASUREMENTS

Cylinder Bore	Min.	Max.	Avg.	Specified Limits
Diameter Out of Round, Top Out of Round, Bottom	5.4999 0.0005 0.0000	5.5016 0.0016 0.0002	5.5007 0.0009 0.0001	0.0003 max 0.002 max
Piston Clearances				
Piston to Liner	0.0119	0.0129	0.0124	0.0099 - 0.0135
Piston Rings				
End Gap				
1 2	0.023	0.026	0.025	0.017 - 0.027
2 3	0.019 0.019	0.022 0.023	0.021 0.021	0.013 - 0.023 0.018 - 0.032
4	0.020	0.026	0.023	0.015 − 0.032 0.015 − 0.027
Piston Pin				
Pin to Piston Bushing	0.0000	0.0001	0.0000	0.003
Pin to Rod Bushing	0.0025	0.0029	0.0026	0.0020 - 0.0027
Main Bearing to Journal				
Clearance	0.0051	0.0062	0.0057	0.0015 - 0.0050
Connecting Rod Bearing				
to Journal Clearance	0.0047	0.0052	0.0049	0.0015 - 0.0045

Measurements are in inches.

PROPERTIES OF JP-8 OBTAINED FROM SUNTECH

		<u> </u>	REQUIREMENTS	
PROPERTY	ME	THOD	OF NATO F-34	L-14216-F
		-		
Color		156		+15(Saybol
Total Acid Number, mg KOH/g		3242	0.015 max	0.005
Aromatics, volZ	D	1319	25.0 max	19.0
Olefins, volZ	D	1319	5.0 max	0
Sulfur, total wt % (XRF)	D	2622	0.3	<0.01
Mercaptan sulfur, wt%	D	3227	0.001max	0.0002
Distillation, GC, *C	D	2887		
Initial boiling point	-		(a)	136.2
10 % recovered			186 max	169.3
20 % recovered			(a)	180.6
50 % recovered			(a)	205.6
			(a)	236.9
90 % recovered			330 max	262.6
End point			330 max	
#11 D-4-6 +C	n	93	38 min	56
Flash Point, *C		1298	37 - 51	40.3
		1298	0.775 - 0.840	7.8232
		2386	-50 max	-55
	_	445	8.0 max	4.14
Kin viscosity at -20*C, cSt			42.8(18,400) mi	
Net heat of combustion, MJ/kg(Btu	/ L) <i>)</i>	42.8(18,400) m1	(18,532)
				(10, 332)
Madanaan contont ut 9			13.5 min	13.69
Hydrogen content, wt %	n	1322	19 min	22.2
Smoke point, mm Copper corrosion, 2hr @ 100*C			lB max	l A
Copper corrosion, Anr e 100%	ט	3241	(3	1
Thermal stability (JFTOT), Code	ט	3241	25 max	5
Change in pressure drop, mm Hg			23 max	3
Existent gum, mg/100mL	מ	381	7.0 max	J.2
		2276	1.0 max	1.1 (b)
Water reaction, interface rating			l b	1 b
Water separation index, modified			70 max	
Fuel system icing inhibitor	J	2330	0.10 - 0.15	0.01,0.04
Fuel electrical conductivty, pS/m	ח	2624	200-600	170,90
Filtration time, minutes Apdx	۷	411 -T-5624		$\frac{270195}{72}$
Cetane Number	A	A16-1-1024	NR(c)	$\frac{72}{41}$
BOCLE, scar diameter, mm			NR(C) NR	0.34
books, scar drameter, mm			N A	0 • 3 •

⁽a) Report(b) _Outside of specification limits.(c) No requirement.

CUMMINS NH-250 ENGINE OPERATING CONDITIONS SUMMARY LUBRICANT: AL-14080-L JP-8 FUEL: AL-14216-F

	Full Power Mode (1200 RPM)		Idle Mode (800 RPM)	
	Mean	Standard <u>Deviation</u>	Mean	Standard Deviation
Engine Speed (rpm)	2100	0.927	67 7. 7	5.18
Torque (ft-lb)	622.9	41.1	*	
Fuel Consumption (lb/hr)	95.6	1.31	3.13	1.15
Observed Power (Bhp)	249.1	16.4		
BSFC (lb/Bhp-hr)	0.3913	0.1171		
Oil Gallery Pressure (psi)	49.1	0.960	78.0	2.04
Temperatures (°F)				
Water Jacket Inlet	166.9	0.957	100.8	13.2
Water Jacket Outlet	178.3	0.751	101.8	2.06
Oil Sump	254.8	1.97	143.4	2.39
Fuel Inlet	92.0	4.03	87.8	3.84
Air Inlet	103.8	4.74	90.7	4.01
Intake Manifold	106.5	4.28	91.8	3.84
Exhaust Temperatures (OF)				
Cylinder 1	1249	20.0	195.0	27.1
Cylinder 2	1318	24.1	219.6	27.9
Cylinder 3	1202	22.5	221.7	25.6
Cylinder 4	1258	19.3	197.7	29.3
Cylinder 5	1300	20.8	198.5	28.6
Cylinder 6	1161	20.6	200.9	24.7
Common	1060	27.2	193.3	94.4

^{*}Data not available

NHC-250 JP-8 WEAR METALS BY XRF LUBRICANT: AL-14080-L

Test Time		Wear Metals ppm							
Hours	Fe	Cu	<u>Cr</u>	<u>Pb</u>					
0	10	< 10	<15	< 60	0.42				
14	10	10	15	60	0.45				
28	10	10	15	60	0.45				
42	21	10	15	60	0.46				
56	11	10	15	60	0.46				
70	16	10	15	60	0.43				
84	10	10	15	60	0.43				
98	24	10	15	60	0.43				
112	32	10	15	60	0.43				
126	39	10.	15	60	0.43				
140	39	10	15	60	0.42				
154	24	10	15	60	0.42				
168	34	10	15	60	0.41				
182	45	10	15	60	0.43				
196	46	10	15	60	0.42				
210	53	10	15	60	0.40				

NHC-250 JP-8 LUBRICANT: AL-14080

	ASTM <u>Method</u>		Test Time, Hours				
		0	70	140	210		
Kinematic Viscosity @ 40°C cSt	D 445	97.13	95.13	102.58	111.11		
Kinematic Viscosity @ 100°C cSt	D 445	11.04	10.78	11.54	12.69		
Total Acid Number mg KOH/g	D 664	2.51	2.58	2.69	3.88		
Total Base Number mg KOH/g	D 664	6.49	4.07	3.28	2.71		
Pentane B Insolubles wt%	D 893		0.11	0.56	1.70		
Toluene B Insolubles wt%	D 893	••	0.10	0.48	1.54		
Flash Point, ^o C	D 92	230	233	233	232		

NH-250 JP-8 WEAR MEASUREMENTS

Cylinder Liner Bore Diameter Change

Avg.

Top T-A' Top F-B Mid T-A' Mid F-B Bot-T-A' Bot F-B	Т	0.0001 0.0006 0.0005 0.0002 0.0005 0.0000	0.0003 0.0004 0.0006 0.0001 0.0006 0.0000	0.0002 0.0006 0.0002 0.0003 0.0003	0.0002 0.0006 0.0003 0.0004 0.0003 0.0004	0.0002 0.0005 0.0003 0.0003 0.0003	0.0003 0.0007 0.0004 0.0003 0.0003	0.0002 0.0006 0.0004 0.0003 0.0006 0.0003
				Ove	rall: 0.0004			
				Piston Rin	g End Gap C	hange		
Ring								
1 2 3 4		0.0004 0.000 0.000 0.002	0.000 0.007 0.010 0.002	0.001 0.005 0.010 0.002	0.000 0.008 0.007 0.001	0.000 0.011 0.005 0.002	0.000 0.008 0.006 0.003	0.0001 0.0007 0.0006 0.0002
				Overall aver	age change:	0.0003		
				Bearin	g Weight Lo	ss		
Rods								
Upper Lower		0.0069 0.0087	0.0060 0.0083	0.0095 0.0091	0.0125 0.0083	0.0149 0.0077	0.01 <i>5</i> 7 0.0096	0.0109 0.0086
				Overall aver	age change:	0.0098		
Mains	_1_		3	4	5	6		Avg.
Upper Lower	0.00 <i>57</i> 0.00 <i>5</i> 7	0.0058 0.0063	0.0049 0.0080	0.0040 0.0044	0.0061 0.0061		0.0042 0.0057	0.0057 0.0063
			Overa	ll average ch	nange: 0.0060	grams		

Position

Total Overall Change: 0.0079

NH-250 JP-8 POST TEST ENGINE CONDITION AND DEPOSITS

		Cylinder Number							
Cylinder Lin er	_1_		_3_	4_	5	6	Avg.		
Liner Scuffing, % Area Thrust Anti-Thrust % Total Area	~			0.0					
Liner Polish, % Area Thrust Anti-Thrust % Total Area									
Pistons									
Ring Face Distred (demerits) 1 2 3 4				0.0 0.0 0.0					
Piston Skirt Ratings			——— No	abnormalitie	es ———				
Piston WTD Rating	157.950	122.400	138.625	120.375	17 2.750	168.250	146.725		
Ring Stretching				— None —					
Combustion Cha Deposits (grams)	mber 0.1872	0.2370	0.2412	0.4699	0.5850	0.2397	0.3267		
Exhaust Valves									
Deposits Head Face Stem				1/4 AHC* - 1/4 AHC 0.25 Clean					
Surface Condition Freeness	<u>ns</u>								
in Guide Head Face Seat Stem Tip				- Free - Normal - Nor					
Other Ratings			-	- tot mai					
Beaming Surface	Conditions	<u>.</u>							
Main Rod				abnormalitie abnormalitie					

NH-250 JP-8 FUEL INJECTOR AND PUMP EVALUATION

Injector Flow	Cylinder Number							
Calibration (m1/100)	_1_	2	3	_4_	5	6	Avg.	
Before	114.6	113.5	113.0	113.9	116.3	115.5	114.5	
After	115.2	115.3	114.3	114.6	115.8	115.2	115.1	
Change	0.6	1.8	1.3	0.7	-0.5	3	0.6	
Injector Needle				0.0				

Pump Tests	Standards	Pre	Post	Change
Pump Fuel Pressure @ 2100 rpm	176-180	176	180	4.0
Fuel Cutoff (rpm)	2130-2150	2130	2150	20
The Hie Leakage (cc/1000)	40-70	48	36	-8
Check Point #1 @1500 rpm (psi)	101-107	105	110	5
Check Point #2 @ 1000 rpm (psi)	5 0-58	60	59	-1
Idle Speed (500 rpm)	35	29	30	1

FULL LOAD BSFC CURVES

FULL LOAD FUEL CONSUMPTION

FULL LOAD POWER CURVES

TOTAL OIL CONSUMPTION

TOTAL SULFUR ACCUMULATION

-250 CUMMINS/ EVALUATION #2 FUEL PUMP

NHC - 250 TEST #2 FUEL EVALUATION (T)

NHC-250 TEST #2
FUEL EVALUATION
(AT)

9

NHC - 250 TEST #2 FUEL EVALUATION 6

NHC-250 TEST #2 FUEL EVALUATION ROD BEARINGS UPPER

APPENDIX G Test Data and Photographs

LDT-465-1C Engine 210-Hour Test Cat Fuel*

^{*}Use of designation "Cat 1-H" test fuel refers to Reference No. 2 Diesel Fuel, or simply Cat Fuel.

LDT-465-1C TEST 4 ENGINE REBUILD MEASUREMENTS

			Inches	
Cylinder Liners (Installed)	Min	Max	Avg	Specified Limits
Inside Diameter	4.5621	4.5644	4.5634	4.5630-4.5645
Out of Round	0.0002	0.0016	0.0010	0.0015 max
Piston Skirt Diameter (at bottom)	4.5554	4.5558	4.5556	4.5530-4.5580
No. 1 Ring End Gap	0.022	0.024	0.023	0.022-0.035
		••••	***************************************	***************************************
No. 2 Ring End Gap	0 021	0.025	0.000	0.022.0.025
cita dap	0.021	0.025	0.023	0.022-0.035
No. 3 Ring				
End Gap	0.018	0.021	0.020	0.010-0.028
Side Clearance	0.002	0.002	0.002	0.0025-0.0045
No. 4 Ring				
End Gap	0.018	0.022	0.020	0.010-0.028
Side Clearance	0.0015	0.0015	0.0015	0.0010-0.0035

LDT-465-1C 210-HOUR WHEELED-VEHICLE CYCLE ENDURANCE TEST TEST 4

OPERATING CONDITIONS SUMMARY

Fuel: AL-8764-F Lubricant: AL-8980-L

		<u>.</u>	Idle Mode	
	Min	Max	Avg	Avg
Engine Speed, rpm	2602	2614	2608	803
Torque, ft-lb (N-m)	308(418)	316(428)	311(422)	10(14)
Observed Power, Bhp (kW)	151 (113)	158(118)	154(115)	1.5(1.1)
Fuel Consumption, lb/hr		,		
(kg/hr)	66.2(30.1)	67.3(30.6)	66.8(30.3)	7.1(3.2)
BSFC, 1b/Bhp-hr (g/kW-hr)	0.422(268)	0.442(280)	0.433(275)	4.8(3046)
Temperatures, °F(°C)				
Exhaust before turbocharger	954(512)	978(526)	964(518)	292(144)
Water Jacket Inlet	168(76)	172(78)	170(77)	99(37)
Water Jacket Outlet	180(82)	182(83)	130(82)	104 (40)
Oil Sump	229(109)	234(112)	232(111)	129(54)
Fuel In	91 (33)	96 (36)	93(34)	84(29)
Inlet Air	80(27)	92(33)	87(31)	81(27)
Intake Manifold	220(104)	238(114)	229(109)	85(29)
Pressures				
Intake Vacuum, in. H ₂ 0 (Pa)	2.6(650)	2.7(670)	2.7(670)	0.1(20)
Exhaust Common, in. Hg (kPa)	0.7(2.4)	0.9(3.1)	0.8(2.7)	0.0(0.0)
Intake Manifold, psi (kPa)	9.6(66.1)	10.2(70.3)	9.9(68.2)	0.0(0.0)
Exhaust Manifold, psi (kPa)	12.5(86.1)	13.0(89.6)	12.8(88.2)	1.0(6.9)
Fuel Transfer Pump, psi (kPa)	69(475)	70(482)	70(482)	38 (262)
Oil Gallery, psi (kPa)	64(441)	68(469)	67(462)	76(524)
Blowby, in. H ₂ O (Pa)	0.6(140)	1.2(290)	0.8(200)	0.1(30)
Ambient Conditions			(7/10)	
Wet Bulb Temperature, °F(°C)			67(19)	
Dry Bulb Temperture, °F(°C)			75(24)	
Barometric Pressure, in. Hg (kPa)			29.08(98.6)	

LDT-465 210 HOUR WHEELED VEHICLE CYCLE

BEFORE AND AFTER TEST 4 PERFORMANCE DATA

LDT-465-1C TEST 4 LUBRICANT ANALYSIS Lubricant: AL-8980-L

	ASTM Test <u>Method</u>	0	70	140	210
Apparent Viscosity at -29°C(-20°F), cP	D 2602	> 26500	> 26500	>26500	26500 *
Apparent Viscosity at -18°C(0°F), cP	D 2602	> 9670	>9670	>9670	9670 [*]
Kinematic Viscosity at 40°C(104°F), cSt	D 445	110	199	292	297
Kinematic Viscosity at 100°C(212°F), cSt	D 445 D 2270	11.6 92	17.7 96	22 . 4 94	23.2 97
Viscosity Index Total Acid Number, mg KOH/g	D 664	5.4	4.8	5.7	6.0
Total Base Number, mg KOH/g	D 664	13.1	5.4	5.1	5.5
Pentane B Insolubles, wt%	D 893	0.02	2.80	5.62	6.71
Toluene B Insolubles, wt% Flash Point, °C(°F)	D893 D 92	0.02 214(417)	2.16 204(399)	4.74 222(432)	5.31 214(417)
Density at 16°C(60°F), g/ml Carbon Residue, wt% Sulfated Ash, wt%	D 287 D 524 D 874	0.90 1.5 1.8	0.93 4.5 2.4	0.94 6.3 3.2	0.94 7.1 3.6

^{*}The reason for unchanging viscosities with time is that the lubricant viscosity, at all test times, exceeded the limits of the viscosity standards currently available.

LDT-465-1C
TEST 4
TOTAL OIL CONSUMPTION AND WEAR METALS
Lubricant: AL-8980-L

		Wear Metals ⁺ , ppm_			
Test Time, Hours	Total Oil Consumed, lb(kg)	Fe (Iron)	Cu (Copper)		
14	6.8(3.1)	25	*		
28	19.0(8.6)	24			
42	27.4(12.4)	34	19		
56	38.2(17.3)	41			
70	49,2(22,3)	52			
84	59,2(26.9)	53			
98	71.6(32.5)	62			
112	79.2(35.9)	62			
126	87.9(39.9)	74	13		
140	99.6(45.2)	93			
154	111.1(50.4)	84	10		
168	123.9(56.2)	87	10		
182	134.6(61.1)	98	8		
196	145.4(66.0)	98	10		
210	155.8(70.7)	108			

Average Oil Consumption Rate: 0.74 lb/hr (0.34kg/hr)

⁺ No other wear metals detected.

^{* --- =} Not Detected.

LDT-465-1C TEST 4 Lubricant: AL-8980-L

LDT-465-1C TEST 4 WEAR MEASUREMENTS Lubricant: AL-8980-L

Cylinder Liner Bore Diameter, inches

		Before Test			A	fter Tes	t	Change			
		Тор	Middle	Bottom	Тор	Middle	Bottom	Тор	Middle	Bottom	
1	T-AT	4.5639	4.5642	4.5644	4.5650	4.5652	4.5653	0.0011	0.0010	0.0009	
	F-B	4.5629	4.5629	4.5629	4.5633	4.5630	4.5632	0.0004	0.0001	0.0003	
2	T-AT	4.5692	4.5638	4.5636	4.5646	4.5642	4.5639	0.0004	0.0004	0.0003	
	F-B	4.5632	4.5634	4.5638	4.5637	4.5638	4.5640	0.0005	0.0004	0.0002	
3	T-AT	4.5635	4.5636	4.5635	4.5642	4.5641	4.5641	0.0007	0.0005	0.0006	
	F-B	4.5625	4.5623	4.5625	4.5632	4.5617	4.5628	0.0007	-0.0006	0.0003	
4	T-AT	4.5640	4.5641	4.5640	4.5645	4.5644	4.5643	0.0005	0.0003	0.0003	
	F-B	4.5622	4.5625	4.5632	4.5633	4.5633	4.5636	0.0011	0.0008	0.0004	
5	T-AT	4.5635	4.5637	4.5638	4.5643	4.5642	4.5639	0.0008	0.0005	0.0001	
	F-B	4.5621	4.5623	4.5626	4.5631	4.5630	4.5632	0.0010	0.0007	0.0007	
6	T-AT	4.5633	4.5640	4.5641	4.5644	4.5646	4.5645	0.0011	0.0006	0.0007	
	F-B	4.5628	4.5633	4.5637	4.5634	4.5636	4.5639	0.0006	0.0002	0.0002	

Average Change, in.:+0.0005

LDT-465-1C TEST 4 WEAR MEASUREMENTS Lubricant: AL-8980-L

Piston Ring End Gap, inches

Piston No.	Ring No.	Before Test End Gap	After Test End Gap	Change
1	1	0.022	0.024	0.002
		0.021	0.024	0.003
	2 3	0.018	0.020	0.002
	4	0.020	0.024	0.004
2	1	0.022	0.025	0.003
	2 3	0.021	0.024	0.003
		0.019	0.020	0.001
	4	0.018	0.020	0.002
3	1	0.024	0.027	0.003
	2 3	0.023	0.024	0.001
	3	0.021	0.023	0.002
	4	0.022	Broke	
4	1	0.023	0.025	0.002
	2 3	0.025	0.028	0.003
	3	0.020	0.022	0.002
	4	0.021	0.026	0.005
5	1	0.024	0.027	0.003
	2	0.023	0.025	0.002
	3	0.020	0.021	0.001
	4	0.022	0.024	0.002
6	1	0.023	0.025	0.002
	2	0.023	0.024	0.001
	2 3	0.020	0.021	0.001
	4	0.019	0.020	0.001

Average Change, in.:+0.002

POST TEST ENGINE CONDITION AND DEPOSITS

LDT-465-1C TEST 4

Engine SN: 3904343 Lubricant: AL-8980-L

Fuel: Cat I-H

Date Started: 19 Dec 1979 Date Completed: 14 Jan 1980

Test: 210 Hour Wheeled Vehicle Cycle

A. CYLINDER RATINGS

A. CYLINDER R	ATINGS			Cylinde	r Number				
		1			2		3		
Deposits		Carb	Lacq	Carb	Lacq	Carb	Lacq		
Cylinder Head		10% AHC * 90% Soot	0	5% AHC 95% Soot	0	10% AHC 95% Soot	0		
Cylinders	ART**	15% 5AHC 10% 5AHC	10% 5	15% ½AHC 5% ½AHC	5% 5 5% 9	15% ½AHC	5% 5 5% 7 5% 9		
	RTA	0	0	0	0	0	0		
	BRT ¹	0	100% 7	0	100% 7	0	100% 7		
				Cylinder	Numbers				
5		4			5	6			
Deposits Cylinder Head		Carb	Lacq	Carb	Lacq	Carb	Lacq		
Cylinder Head		10% AHC 90% Soot	0	5% AHC 95% Soot	0	5% AHC 95% Soot	0		
Cylinders	ART**	10% 3AHC 20% 3AHC	5% 5 5% 7 5% 8	10% ¹ ₂ АНС 20% ¹ 2АНС	5% 4 5% 9	15% ½AHC 5% ಓAHC	5% 8		
	RTA	0	0	0	0	0	0		
	BRT ¹	0	100% 7	0	100% 7	0	100% 7		
Surface Condit	TON RTA	1 5% G, LS	+	LS 2		3 LS			
	BRT	N		N		N			
Surface Condit		4	_	5		6			
Cylinders	RTA	5% G, LS	-	LS		LS			
	BRT	N		N		N			

^{**} ART = Above ring travel, RTA = Ring travel area, BRT = Below ring travel.

⁺ The higher the number, the darker the lacquer (0 = lightest, 9 = darkest).

⁺⁺ V = Very, L = Light, H = Heavy, G = Glazing, P = Pitting, W = Wiping, F = Flaking, S = Scratched, T = Thrust side, AT = Anti-thrust side.

Accurate evaluation difficult due to the metal treatment given new cylinders.

B. PISTON RATINGS

· · · · · · · · · · · · · · · · · · ·			Cylinder	Number		
Ring Face Condition	1	2	3	4	5	6
No. 1	N ^a	N	N	N	N	N
No. 2	N	N	N	N	N	N
No. 3	N	N	N_	N	N	N
No. 4 (oil control)	N	N	_c	N	N	N
Oil Ring Slots, % Ope	n 100	100	100	100	100	100

Cylinder Number

Ring Deposits

Piston

riston				Cylinder	исшрет	3			
Depos	its		l		2				
		Carb	Lacq	Carb	Lacq	Carb	Lacq		
Тор	1	0	1% 5	0	1% 8	0	0		
	2	0	0	0	1% 3	0	10% 3		
	3	ŏ	80% 5	Ö	100% 7	Ō	75% 5		
	3	U		U	100% /	U	25% 7		
			20% 7				23% /		
ID	1	0	30% 3	50% AHC	15% 3	45% AHC	35% 4		
			55% 6		35% 9		20% 9		
			15% 8		3370				
	2	100% AHC	0	70% AHC	0	25% ½AHC	75% 9		
	_	100% MIO	· ·	30% 5AHC	· ·	2370 21210	. 5.6		
	3	0	100% 9	0	100% 9	0	100% 9		
	3	0	100% 9	U	100% 9	U	100% 9		
Bottom	1	0	0	0	0	0	0		
	2	0	5 % 3	0	10% 3	0	5% 3		
	3	0	100% 7	Ō	85% 6	Ō	65% 5		
	,	· ·	100% /	v	15% 7	v	35% 7		
					13%		JJ16 1		
Piston				Cylinder	Number				
Depos	its		4		5	6			
		Carb	Lacq	Carb	Lacq	Carb	Lacq		
Тор	1	0	15% 5	0	0	0	1% 5		
-04	-	· ·	2% 9	· ·	Ü	· ·			
	2	0	10% 4	0	0	0	0		
	3	Ö	85% 5	Ö	50% 4	ŭ	100% 6		
	,	U		U		U	100% 0		
			15% 7		50% 6				
ID	1	10% ½AHC	5 0% 5	0	25% 3	0	35% 4		
		40% LAHC			15% 6		65% 9		
					15% 7				
					45% 9				
	2	40% ZAHC	60% 0	100% ZAHC		100% ¼AHC	0		
	2		60% 9		0				
	3	0	100% 9	0	100% 9	0	100% 9		
Bottom	I	0	10% 5	0	0	0	0		
		Ō	0	Ö	20% 3	Ö	0		
	2 3	Ŏ	95% 6	0	80% 4	0	85% 4		
	J	U	プノル ひ	U	3U& 4	U	UJ 6 4		
			5 % 7		20% 6		15% 7		

N = Normal condition, no scuffing sc = Scuffed

 $^{^{\}mathrm{c}}$ - Ring broke while removing

Piston Surface Condition

	Piston Number								
	1	2	3	4	5	6			
Top Ring Land	N	N	N	N	N	N			
Skirt	N, LS	N, LS	N, LS	N, LS	N, LS	N, LS			
Piston Pin	N	N	N	. N	N	N			

CRC Diesel Engine Piston Rating

	Piston Number								
	1	2	3	4	5	6			
WTD ^d rating Av. WTD rating: 27	289 4	195	288	312	316	241			

C. VALVE RATINGS

		Cylinder Number										
	1		2		3 4			5		6		
	INT	EXH	INT	EXH	INT	EXH	INT	EXH	INT	EXH	INT	EXH
Freeness in Guide	$\mathbf{F}^{\mathbf{e}}$	F	F	s^{f}	F	s	F	s	F	s	F	F
Head					A	11 No	rma1					
Face				A1	1 Nor	mal,	Light	Pitt	ing-			
Seat				A1	1 Nor	mal,	Light	Pitt	ing-			
Stem	N	LGg	N	LG	N	LG	N	LG	N	LG	N	LG
Tip					A	11 No	rmal					

D. OTHER RATINGS

Bearing Surface Condition - All normal

dwTD = Weighted Total Deposits, 0 = Clean, 900 = maxinum possible deposits

e_F = Free

 f_{S} = Stuck (The stuck valves came loose with a light tap)

gLG = Light Gauling

LDT-465-1C TEST 4 Lubricant: AL-8980-L

! Anti-Thrust

1-Thrust

LDT-465-1C TEST 4 Lubricant: AL-8980-L

2 Thrust*

2 Anti-Thrust*

* No. 2 Piston had the lowest Weighted Total " posit (WTD) rating.

The second secon

LDT-465-1C TEST 4 Lubricant: AL-8980-L

3 Thrust

3 Anti-Thrust

LDT-465-1C TEST 4 Lubricant: AL-8980-L

4 Thrust

4 Anti-Thrust 195

LDT-465-1C TEST 4 Lubricant: AL-8980-L

5 Anti-Thrust*

* No. 5 Piston had the highest Weighted Total I losits (WTD) rating.

. . .

LDT-465-1C TEST 4 Lubricant: AL-8980-L

6 Thrust

6 Anti-Thrust

LDT-465-1C TEST 4 Lubricant: AL-8980-L AFTER TEST CONDITION OF PISTON RINGS

(highest valve deposit rating) No. 6 No. 5 No. 4 LDT-465-1C TEST 4 Lubricant: AL-8980-L AFTER TEST CONDITION OF INTAKE AND EXHAUST VALVES No. 2 (lowest valve deposit rating) No. 1

LDT-465-1C TEST 4 Lubricant: AL-8980-L

AFTER TEST CONDITION OF CYLINDER HEADS

Cylinders 3, 2, 1

Cylinders 6, 5, 4

APPENDIX H Test Data and Photographs

LDT-465-1C Engine 210-Hour Test JP-8 Fuel

LDT-465-1C AFQP TEST 1 ENGINE REBUILD MEASUREMENTS

			Inches	
	Min	Max	Avg	Specified Limits
Cylinder Liners (Installed) Inside Diameter Out of Round	4.5634 0.0010	4.5652 0.0020	4.5639 0.0010	4.5630 - 4.5645 0.0015 max
Piston Skirt Diameter (at bottom)	4.5576	4.5578	4.5577	4.5530 - 4.5580
No. 1 Ring End Gap	0.020	0.025	0.022	0.022 -0.035
No. 2 Ring End Gap	0.021	0.026	0.022	0.022 -0.035
No. 3 Ring End Gap Side Clearance	0.017 0.002	0.022 0.002	0.019 0.002	0.010 -0.028 0.0025 -0.0045
No. 4 Ring End Gap Side Clearance	0.015 0.002	0.019 0.002	0.017 0.002	0.010 -0.028 0.0010 -0.0035

LDT-465 ENGINE OPERATING CONDITION SUMMARY

Lubricant: AL-14248-L JP-8 Fuel: AL-14216-F

	Full Power Mode (2600 rpm)		Idle Mode (800 rpm)	
	Mean	Standard Deviation	Mean	Standard Deviation
Engine Speed (rpm) Torque (ft-lb) Fuel Consumption (lb/hr) Observed Power (Bhp) BSFC (lb/Bhp-hr) Oil Gallery Pressure (psi)	2600 301.64 64.36 149.32 0.431 59.85	1.02 5.03 0.84 2.47 0.005 0.64	788 14.92 4.04 2.19 1.856 51.41	4.19 0.54 0.15 0.08 0.064 0.42
Temperatures (OF)				
Water Jacket Inlet Water Jacket Outlet Oil Sump Fuel Inlet Air Inlet	166.29 180.22 233.90 85.97 87.12	1.65 0.79 1.84 4.78 8.67	90.80 99.33 114.07 79.63 78.00	0.58 0.54 3.20 2.13 7.77
Exhaust Temperatures (°F)				
Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4 Cylinder 5 Cylinder 6 Common	962.82 1044.27 1052.59 1019.63 1006.59 971.69 910.83	16.07 18.88 19.52 16.58 17.20 17.07	206.22 221.55 217.67 223.22 222.72 242.93 223.85	9.79 7.42 6.31 4.15 7.85 7.49

LDT-465-1C AFQP TEST 1 WEAR MEASUREMENTS Lubricant: AL-14248-L

Cylinder Liner Bore Diameter, Inches

	B	efore Te	st	After Test			Change			
	Тор	Middle	Bottom	Тор	Middle	Bottom	Тор	Middle	Bottom	
1 T-AT F-B	4.5643 4.5639	4.5648 4.5638	4.5648 4.5638	4.5647 4.5638	4.5653 4.5634	4.5651 4.5638	+0.0004	+0.0005	+0.0003	
2 T-AT	4.5638	4.5644	4.5644	4.5640	4.5643	4.5642	+0.0002	-0.0001	-0.0002	
F-B	4.5641	4.5640	4.5636	4.5645	4.5639	4.5635	+0.0004	-0.0001	-0.0001	
3 T-AT	4.5643	4.5654	4.5654	4.5643	4.5650	4.5657	0	-0.0004	+0.0003	
F-B	4.5649	4.5643	4.5638	4.5655	4.5648	4.5637	+0.0006	+0.0005	-0.0001	
4 T-AT	4.5645	4.5647	4.5641	4.5651	4.5650	4.5640	+0.0006	+0.0003	-0.0001	
F-B	4.5641	4.5643	4.5644	4.5640	4.5641	4.5646	-0.0001		+0.0002	
5 T-AT F-B	4.5643 4.5645	4.5651 4.5643	4.5646 4.5643	4.5647 4.5650	4.5654 4.5646	4.5649 4.5646	+0.0004 +0.0005	+0.0003	+0.0003	
6 T-AT	4.5644	4.5643	4.5643	4.5644	4.5641	4.5640	0	-0.0002	-0.0003	
F-B	4.5639	4.5645	4.5642	4.5646	4.5650	4.5648	+0.0007	+0.0005	+0.0006	

Average Change, in.: +0.0003

LDT-465-1C AFQP TEST 1 LUBRICANT ANALYSIS

Lubricant: AL-14248-L

	ASTM Test <u>Method</u>	0	70	140	210
Kinematic Viscosity					
at 40°C (104°F), cSt	D 445	99.10	113.89	129.95	145.99
Kinematic Viscosity					
at 100°C (212°F), cSt	D 445	11.28	12.46	13.93	15.63
Viscosity Index	D 2270	99	100	104	111
Total Acid Number,					
mg KOH/g	D 664	2.96	4 .9 6	4.87	4.16
Total Base Number,					
mg KOH/g	D 664	7.83	7 . 71	5.28	5.48
Pentane B Insolubles,					
wt%	D 893		0.31	1.23	0.35
Toluene B Insolubles,					
wt%	D 893		0.26	0.98	0.28
Flash Point, oF	D 92		450	445	460
Density at 16°C (60°F),					
g/mL	D 287		0.8982	0.9031	0.9090
Carbon Residue, wt%	D 524		2.03	2.48	2.77

LDT-465-1C AFQP TEST 1 TOTAL OIL CONSUMPTION AND WEAR METALS Lubricant: AL-14248-L

		Wear M	etals ⁺ , ppm
Test Time, Hours	Total Oil Consumed, lb (kg)	Fe (Iron)	Cu (Copper)
0	0.0	33	
14	0.0	19	
28	0.45 (0.99)	39	
42	1.58 (0.71)	44	
56	3.92 (1.76)	59	
70	5.29 (2.38)	69	
34	8.75 (3.94)	74	
98	10.16 (4.57)	76	10
112	12.69 (5.71)	92	10
126	14.79 (6.65)	91	13
140	17.36 (7.81)	96	
154	19.06 (8.58)	98	
168	22.33 (10.05)	97	
182	24.90 (11.21)	107	
196	27.30 (12.29)	104	
210	28.65 (12.89)	135	13

Average Oil Consumption Rate: 0.14 lb/hr (0.06 kg/hr)
+ No other wear metals detected. Uncorrected for oil loss and make-up oil additions.
* ---- = Not Detected.

POST TEST ENGINE CONDITION AND DEPOSITS AFOP LDT-465-1C TEST 1

Engine SN: 3904343 Lubricant: AL-14248-L Fuel: JP-8 AL-14216-L

Test: 210-Hour Wheeled Vehicle Cycle

A. CYLINDER RATINGS

A. CILII	NDER RAI	INGS		Cylinder N	ımbar							
				2	unber	3						
		Carb	Lacq	Carb	Lacq	Carb	Lacq					
Deposits												
Cylinder H	lead	50% ½AHC* 50% ¼AHC	0	100% ½AHC	0	70% ½AHC 30% ¼AHC	0					
Cylinders	ART**	80% AHC	5 - 6+	90% AHC	0	75% AHC	0					
	RTA	++	++	++	++	++	++					
	BRT	0	0	0	0	0	0					
		Cylinder Number										
		4		5	3.11.5 C.	6						
		Carb	Lacq	Carb	Lacq	Carb	Lacq					
Deposits Cylinder H	ead	10% AHC 90% %AHC	0	25% AHC 75% ½AHC	0	10% BHC 90% ½AHC	0					
Cylinders	ART**	55% AHC 10% %AHC	5-9	75% AHC	0	85% AHC	0					
	RTA	++	++	++	++	++	++					
	BRT	0	0	0	0	0	0					
Surface Co		1 N+++		2 N		3 N						
Cylinders	RTA	N+++		N		N						
	BRT	N		N		N						
Surface Co Cylinders		4		5		<u>6</u>						
Cynnders	RTA	N		N		N						
	BRT	N		N.		N						

HC = Hard carbon, and the number-letter prefix indicates carbon depth with %A = least, through the alphabet to J = most.

^{**} ART = Above ring travel, RTA = Ring travel area, BRT = Below ring travel.

⁺ The higher the number, the darker the lacquer (0 = lightest, 9 = darkest). ++ Rust-like appearance.

⁺⁺⁺ V = Very, L = Light, H = Heavy, G = Glazing, N = Normal Condition, No Scuffing, P = Pitting, W = Wiping, F = Flaking, S = Scratched, T = Thrust Side, AT = Antithrust Side.

B. 1	PIST	ON	RA	TINGS
------	------	----	----	-------

<u> </u>	1 1011111	<u>us</u>		Cylinde	er Number			
		1	2	3	4	5	6	
Ring Face	Conditi	<u>on</u>						
No. 1 No. 2 No. 3 No. 4 (oil Oil Ring S			23.	N N N N .75 56.25 N _b 00 100	16.25 8.75 56.25 N 100	N N 26.25 N 100	8.75 7.50 21.25 N 100	
Ring Deposits Cylinder Number								
		1		2	ambet	3		
		Carb	Lacq	Carb	Lacq	Carb	Lacq	
Piston Dep Top	posits 1 2 3	15% ½AHC 0 40% AHC	20% 3 20% 9	10% ½AHC 0 30% ¼AHC	15% 4 35% 6 55% 8	0 0 35% %AHC	90% 9 15% 3 10% 2	
ID	1 2 3	100% ½AHC 100% ¼AHC 100% ¼AHC	0 0 0	100% ½AHC 100% ¼AHC 0	0 0 0	100% ½AHC 100% ¼AHC 50% ¼AHC	0 0 0	
Bottom	1 2 3	0 0 0	30% 3 15% 2 35% 9	5% %AHC 0 0	30% 6 20% 4 32% 7	0 0 5% %AHC	40% 7 20% 3 20% 4	
				Cylinder Nu	ımber			
		Carb	Lacq	Carb	Lacq	Carb	Lacq	
Piston Dep Top	osits 1 2 3	80% %A 10% %AHC 50% %AHC	0 0 20% 7	35% AHC 0	10% 5 5% 3 80% 9	45% %A 0 55% %AHC	0 40% 4 25% 9	
ID	1 2 3	100% %AHC 100% %AHC 100% %AHC	0 0 0	50% ½AHC 100% ¼AHC 100% ¼AHC	0 0 0	100% ½AHC 100% ¼AHC 100% ¼AHC	0 0 0	
Bottom	1 2 3	25% A 60% %A 0	0 0 25% 7	0 0 0	10% A 0 35% 7	15% A 0 0	0 50% 4 30% 4	

a_N = Normal Condition, No Scuffing. b₌ = Ring broke while removing.

Piston Surface Condition

	Piston Number						
		2	3	4	5	6	
Top Ring Land	N	N	N	N	N	N	
Skirt	N	N	N	N	N	N	
Piston Pin	N	N	N	N	N	N	

CRC Diesel Engine Piston Rating

	Piston Number							
	11	2	3	4	5	6		
WTD ^C Rating Av. WDT Rating: 179	192	189	155	202	180	158		

C. VALVE RATINGS

	Cylinder Number												
	1			2		3		4		5		6	
	INT	EXH	INT	EXH	INT	EXH	INT	EXH	INT	EXH	INT	EXH	
Freeness in Guide Head Face Seat Stem Tip	Fq	F	F	Se	F		ormal ormal ormal	S	F	S	F	F	

D. OTHER RATINGS

Bearing Surface Condition - All normal

CWTD = Weighted Total Deposits, 0 = Clean, 900 = maximum possible deposits.

 $d_{\mathbf{F}} = \mathbf{Free}$.

eS = Stuck (The stuck valves come loose with a light tap).

LDT-465-1C TEST 4 WEAR MEASUREMENTS Lubricant: AL-8980-L

Piston Ring End Gap, inches

Piston No.	Ring No.	Before Test End Gap	After Test End Gap	Change
1	1	0.020	0.023	+0.003
	1 2 3	0.021	0.022	-0.001
	3	0.017	0.017	0.000
	4	0.015	0.015	0.000
2	1	0.022	0.025	+0.003
	2	0.021	0.023	+0.002
	2 3 4	0.018	0.018	0.000
	4	0.015	0.015	0.000
3	1	0.021	0.021	0.000
	2	0.022	0.022	0.000
	1 2 3	0.019	0.021	+0.002
	4	0.017	0.017	0.000
4	1	0.023	0.023	0.000
	2	0.021	0.021	0.000
	1 2 3	0.022	0.020	-0.002
	4	0.019	0.020	+0.001
5	1	0.025	0.025	0.000
	2	0.023	0.024	+0.001
	1 2 3	0.021	0.021	0.000
	4	0.019	0.019	0.000
6	1	0.022	0.022	0.000
	2	0.026	0.026	0.000
	2 3	0.020	0.020	0.000
	4	0.015	0.016	+0.001

Average Change, in.: +0.002

FULL LOAD FUEL CONSUMPTION

FULL LOAD POWER CURVES

FULL LOAD BSFC CURVES

TOTAL OIL CONSUMPTION

TOTAL IRON ACCUMULATION

AFQP LTD-465-1C-1 4

AFQP LTD -465-1C-1 (T)

AFQP LTD-465-1C-1 ROD BEARINGS

APPENDIX I Test Data and Photographs

DD 6V-53T Engine 240-Hour Test Cat Fuel*

^{*}Use of designation "Cat 1-H" test fuel refers to Reference No. 2 Diesel Fuel, or simply Cat Fuel.

6V-53T TEST 37

ENGINE REBUILD MEASUREMENTS*

Model Number: 5063-5395 Serial Number: 6D-178671

	Min	Max	Avg	Specified Limits
Cylinder Block Bore				
Inside Diameter (Bottom)	4.3577 (110.686)	4.3587 (110.711)	4.3580 (110.693)	4.3565 (110.655) - 4.3575 (110.681) New - 4.3595 (110.731) Max
Out-of-Round Taper	0.0000 0.0000	0.0010 (0.025) 0.0011 (0.028)	0.0006 (0.015) 0.0004 (0.010)	- 0.0015 (0.038) Max - 0.0015 (0.038) Max
Cylinder Liners (Installed) Inside Diameter Out-of-Round Taper	3.8756 (98.440) 0.0000 0.0000	3.8766 (98.466) 0.0005 (0.013) 0.0007 (0.018)	3.8760 (98.450) 0.0002 (0.005) 0.0004 (0.010)	3.8752 (98.430) - 3.8767 (98.468) - 0.0015 (0.038) Max - 0.0015 (0.038) Max
Piston Diameter (at skirt)	3.8669 (98.219)	3.8690 (98.273)	3.8683 (98.255)	3.8669 (98.219) - 3.8691 (98.775)
Piston Skirt to Cylinder Liner Clearance	0.0070 (0.178)	0.0094 (0.239)	0.0079 (0.201)	0.0061 (0.155) - 0.0098 (0.249)
Compression Rings Cap (No. 1, Fire Ring) Gap (Nos. 2, 3, 4)	0.032 (0.81) 0.030 (0.76)	0.036 (0.91) 0.036 (0.91)	0.534 (0.86) 0.023 (0.84)	0.020 (0.51) - 0.046 (1.17) 0.020 (0.51) - 0.036 (0.91)
Ring-to-Groove Clearance Top (No. 1, Fire Ring) No. 2, Compression Ring No. 3 and 4, Compression Rings	0.003 (0.08) 0.007 (0.18) 0.006 (0.15)	0.004 (0.10) 0.008 (0.20) 0.006 (0.15)	0.004 (0.10) 0.008 (0.20) 0.006 (0.15)	0.003 (0.08) - 0.006 (0.15) 0.007 (0.18) - 0.010 (0.25) 0.005 (0.13) - 0.008 (0.20)
Oil Control Rings, Nos. 5, 6, 7 Gap Ring-to-Groove Clearance	0.016 (0.41) 0.002 (0.05)	0.020 (0.51) 0.003 (0.08)	0.018 (0.46) 0.003 (0.08)	7.010 (0.25) ~ 0.025 (0.64) 0.0015 (0.038) ~ 0.0055 (0.140)
Piston Pin Pin-to-Piston Bushing Clearance Pin-to-Connecting Rod Bushing Clearance	0.0030 (0.076) 0.0015 (0.038)	0.0034 (0.086)	0.0032 (0.081)	0.0025 (0.064) - 0.0034 (0.086) 0.0013 (0.025) - 0.0019 (0.048)
Connecting Rod Bearing- to-Journal Clearance	0.0019 (0.048)	0.0028 (0.071)	0.0023 (0.058)	0.0011 (0.028) - 0.0041 (0.104)
Main Bearing-to-Journal Clearance	0.0040 (0.102)	0.0045 (0.114)	0.0043 (0.109)	0.0010 (0.025) - 0.0040 (0.102)
Camshaft Bearing-to- Journal Clearance	0.0052 (0.132)	0.0054 (0.137)	0.0053 (0.135)	0,0045 (0.114) - 0,0060 (0.152)

^{*} Measurements are in inches and (mm). All rebuild measurements include kit 2R from 40-240 hours and omit the cylinder ring kit 2R which was changed out at 40 test hours.

6V-53T 240-HOUR TRACKED VEHICLE CYCLE ENDURANCE TEST TEST 37 OPERATING CONDITIONS SUMMARY

Lubricant: AL-12411-L Fuel: Caterpillar 1-H

	Maximum Pow (2800 R		Maximum Tor (2200 R	PM)
	Mean	Standard Deviation	Mean	Standard Deviation
Engine Speed, rpm Torque, ft-lb (N-m) Fuel Consumption,	2800 554 (751)	0.368 3.7 (5.0)	2200 614 (832)	0.510 4.2 (5.7)
1b/hr (kg/hr) Observed Power, Bhp (kW) BSFC, 1b/Bhp-hr (g/kW-hr)	119.4 (54.1) 295.1 (220.0) 0.404 (245.9)	0.85 (0.38) 2.00 (1.49) 0.004 (2.43)	102.0 (46.3) 257.3 (191.9) 0.396 (241.3)	0.66 (0.30) 1.82 (1.36) 0.004 (2.43)
Temperatures, °F (°C) Exhaust before Turbo Exhaust after Turbo Water Jacket Inlet Water Jacket Outlet Oil Sump Fuel at Filter Inlet Air Airbox	894.3 (479.0) 769.4 (410.0) 162.4 (72.4) 172.2 (77.9) 244.4 (118.0) 98.1 (36.7) 98.4 (36.9) 280.3 (137.9)	24.1 (13.4) 27.5 (15.3) 2.4 (1.3) 1.8 (1.0) 2.9 (1.6) 2.4 (1.3) 3.7 (2.1) 4.8 (2.7)	889.6 (476.4) 772.2 (411.2) 160.4 (71.3) 170.0 (76.7) 231.2 (110.7) 96.7 (35.9) 97.0 (36.1) 234.6 (112.6)	22.8 (12.7) 12.0 (6.7) 2.0 (1.1) 0.9 (0.5) 2.6 (1.4) 2.4 (1.3) 3.7 (2.1) 3.6 (2.0)
Pressures Exhaust before Turbo, psi (kPa) Exhaust after Turbo,	12.4 (85.5)	0.63 (4.3)	8.63 (59.5)	0.39 (2.69)
<pre>in. Hg (kPa) Compressor Discharge, psi (kPa)</pre>	2.1 (7.1) 13.0 (89.6)	0.30 (1.0) 0.89 (6.1)	1.3 (4.4) 9.8 (67.6)	0.20 (0.68)
Blower Discharge, psi (kPa) Oil Gallery, psi (kPa) Intake Vacuum,	18.4 (126.9) 42.5 (293.0)	1.74 (12.0) 0.56 (3.9)	11.4 (78.6) 39.8 (274.4)	0.51 (3.5) 1.90 (13.1)
in. H ₂ 0 (kPa) Ambient Conditions Dry Bulb Temperature,	5.0 (1.2)	1.47 (0.36)	3.4 (0.85)	0.68 (0.17)
°F (°C) Wet Bulb Temperature, °F (°C) Barometric Pressure,	82.3 (27.9) 70.6 (21.4)	6.25 (3.5) 4.20 (2.3)	80.8 (27.1) 69.8 (21.0)	6.09 (3.38) 4.46 (2.48)
in. Hg (kPa)	29.16 (98.5)	0.11 (0.37)		

^{*68%} of the values for a given variable occur within ±1 standard deviation of the mean; 95% occur within ±2 standard deviations.

6V-53T TEST 37 INFRARED SPECTRUM

6V-53T TEST 37 LUBRICANT ANALYSIS

Lubricant: AL-12411-L

ASTM

	Test						Teat	Test Time, Hours	9					
	DOUTE		2	40	9	80	100	120	140	140	202			
Kinematic Viscosity										301	Ties	007	220	240
at 40°C (104°F) cSt	D 445	102.96	;	ł	102.56	;	ŀ	106.29	ŀ	i	. 701			
Kinematic viscosity at 100°C (212°F) _C St	D 445	11.54	11.67	11.84	11.80	50 E	76		;	ľ	100	{	1	108.41
Total Acid Number						:		12.03	(4.11	11.67	11.80	11.83	12.25	12.26
se KOH/g	799 Q	2.88	1	!	2.98	1	1	2,93	í		6			
Total Base Number	D 664	7 43								!	3,08	1	!	3.14
Pentane B Insolubles		7 0 .	l i	}	3,91	ł	{	3,30	;	ı	3.61	ł	1	2.87
wtX	D 893	0.01	1	;	0.07	}	f	0.19	ł		:			
Toluene B Insolubles											9.5	1	!	0.23
	D 893	0.01	}	1	0.04	1	1	0.17	;	1	2			
Flash Point, °C	D 92	232	}	ł	}	ſ	· ·	735	ļ			ł	;	0.19

243

6V-53T TEST 37 TOTAL CONSUMPTION AND WEAR METALS BY XRF

Lubricant: AL-12411-L

Test Time, Hours	Total Oil Cons	umed, lb (kg)	Wear Met	cals, ppm Cu
0	~			
20	7.06	(3.20)	45	13
40	13.87	(6.29)	126	15
60	20.83	(9.45)	53	14
80	35.07	(15.91)	59	< 10
100	42.04	(19.07)	62	< 10
118	48.88	(22.17)		
120	Oil Chan	ge	55	< 10
140	49.24	(22.33)	30	< 10
160	56.14	(25.46)	41	< 10
180	63.17	(28.65)	56	< 10
200	77.49	(35.15)	47	< 10
220	89.57	(40.63)	59	< 10
240	107.64	(48.82)	56	< 10

Average oil consumption rate: 0.45 lb/hr (0.20 kg/hr)

6V-53T TEST 37 WEAR MEASUREMENTS*

Lubricant: AL-12411-L

Cylinder Liner Bore Diameter Change

	8-1	0.0007 (-0.018) 0.0002 (0.005) 0.0006 (0.015)		8-8	0.0002 (0.005) 0.0006 (0.015) 0.0004 (0.010)						Average Change		0.005 (0.13)
	T-AT	(0.033) (0.018) (0.005)		T-AT	(0.036) (0.028) (0.010)						ĸ		0.006 (0.15)
	.,				0.0014			222			2R, 240 hrs		0.004 (0.10)
L.	F-B	0.0006 (0.015) 0.0007 (0.018) 0.0006 (0.015)	LI LI	F-B	0.0005 (0.013) 0.0006 (0.015) 0.0000		F-B	0.0003 (0.008) 0.0006 (0.015) 0.0006 (0.015)	0.0007 (0.018)	hange	2R, 40 hrunna		0.002 (0.05)
Cylinder Number	12-AT	0.0019 (0.048) 0.0005 (0.013) 0.0010 (0.025)	Cylinder Number	T-AT	0.0008 (0.020) 0.0005 (0.013) 0.0005 (0.013)	Average Change	T-AT	0.0016 (0.041) 0.0007 (0.018) 0.0005 (0.013)	Overall average change: 0,	Piston Ring End Gap Change	띪		0.005 (0.13)
	æí			70.1				Top Middle 0.0 Bottom 0.0	Overall av	Pist	Ä	0.005 (0.13) 0.003 (0.07) 0.004 (0.10) 0.007 (0.18) 0.006 (0.15)	
Ξ	#-J	0.0013 (0.008) 0.0004 (0.010) 0.0011 (0.028)	9	#] #]	0.0007 (0.018) 0.0009 (0.022) 0.0006 (0.015)						75	0.003 (0.07) 0.003 (0.07) 0.002 (0.05) 0.001 (0.02) 0.006 (0.15) 0.006 (0.13)	
	T-AT**	0.0012 (0.030) 0.0006 (0.015) 0.0004 (0.010)		I-AT	0.0028 (0.071) 0.0006 (0.015) 0.0003 (0.008)						#	0.006 (0.15) 0.005 (0.13) 0.002 (0.05) 0.003 (0.07) 0.006 (0.15)	
		Top Middle Bottom			Top Middle Bottom						Ring	- 10 2 2 5 5 7	

Overall average change: 0,004 (0,10)

^{*} All dimensions are given in inches (mm).
** T-AT = Thrust-Antithrust Direction; F-B + Front-Back Direction.
*** These measurements are omitted from the averages.

6V-53T TEST 37 POST TEST ENGINE CONDITION AND DEPOSITS

Lubricant: AL-12411-L

IL	21.	<u> 3L</u>	1R	2R* (0-40 hrs)	2R (40-240 hrs)	3 <u>R</u>	Averag
-1	- 1		41	-1	-1	-1	< 1
<1	<1	<1	~1	~1	-1	• •	.,
							33.67 4.17
-					_		18.92
12	10.3	10	40	, 5.5	10.7	Overall:	18.92
	1	10	٥	•	4	1	5.67
-				0	9	10	8.67
v		•	••	•			
7	6	8.5	9.5		6.5		7.17 7.17
							. • • •
5.50	9.00	2.50	3.5	51.75	5.5	5.5	5.25
.75	1.25	20.00	22.5	25	12.5	15.25	12.04
.50	8.75	26.25	27.5	25	23.75	18.75	17.58
0	6.25	20	26,25	25	23.75	ll.25 Overall:	87.50 30.59
S##	5 % \$C	S	20%SC	15%PM, 60%SC	5 7 SC	10%SC	-
20150	10 7 SC	S	S	S	S	s	
							19.5
234.500	259.750	227.500	229.000	148.75	231.000	240.000	236.90
_+							
F							
r F	F	F	r F		F	r F	
AHC,	1/2AHC,	AHC,	AHC,		AHC	AHC,	
1/4AHC	1/4AHC	L/4AHC	1/4ARC			1/4AHC	
			4AHC				
		1/	4AHC, #9	Lacquer			
			-	•			
F	F	F	F		F	F	
			rma1				
		Nc	rms 1				
		No	rma 1				
	24 0 12 8 6 7 5.50 0 5** 20%5C 19 234.500 F* SPF	<1 <1	<pre><1</pre>	1L 2L 3L 1R	1L 2L 3L 1R 2R* (0~40 hrs)	1L 2L 3L 1R 2R* 2R* (40-240 hrs)	(0-40 hrs) (40-240 hrs) (1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

D. Other Ratings

Bearing Surface Condition

Main Bearings Number 1, 2 and 3 main bearings have deep scratches (to copper).

Rod Bearings No abnormalities.

These measurements are omitted from all averages

L = Light, S = Scratches, PM = Plating Meited, N = Normal, SC = Scuffing, B = Burn

CRC Weighted Total Deposits (0 = least, 900 = most)

HS = Hot Stuck, CS = Cold Stuck, P = Pinched, F = Free, N = Normal, C = Chipped,

S = Sluggish

HC = Hard Carbon; the number-letter, prefix indicates carbon depth with 1/4A = least to j = most

HC = Hard Carbon; the darker the lacquer (0 = lightest, 9 = darkest)

6V53T(#37) 1-L

6V53T(#37) 1-R

1-R-AT

6V53T(#37) 1-L-AT

6V53T(#37) 2-L

6V53T(#17) 2-R

6V53T(#37) 2-R-AT

6V53T(#37) 2-R-T

6V53T(#37) 2-L-AT

6V53T(#37) 3-L

6V53T(#37) 3-R

6V53T(#37) 3-R-AT

6V53T(#37) 3-R-T

3-L-AT

3-L-T

6V53T(#37) 40 HRS 2-R

6V53T(#37) 40 HRS 2-R-AT

APPENDIX J Test Data and Photographs

DD 6V-53T Engine 240-Hour Test JP-8 Fuel

6V-53T TEST 39

ENGINE REBUILD MEASUREMENTS*

Model Number: 5063-5395 Serial Number: 6D-157211

	<u>Min</u>	Max	AVE	Specified Limits
Cylinder Block Bare				
Inside Diameter (Bottom)	4.3567 (110.660)	4.3578 (110.688)	(110.675)	4.3565 (110.655) - 4.3575 (110.681) New - 4.3595 (110.731) Max
Out-of ~Round Taper	0.0001 (0.0025) 0.0000	0.0008 (0.020) 0.0004 (0.010)	0.0005 (0.013) 0.0001 (0.003)	- 0.0015 (0.038) Max - 0.0015 (0.038) Max
Cylinder Liners(Installed)				
Inside Diameter	3.8754 (98.435) 0.0000	3.8766 (98.466) 9.0007 (9.018)	3.8760 (98.450) 0.0003 (0.008)	3.8752 (98.430) - 3.8767 (98.468) - 0.0015 (0.038) Max
Taper	0.0000	0.0006 (0.015)	0.0003 (0.008)	- 0.0015 (0.038) Max
Piston Diameter (at skirt)	3,8677 (98,240)	3.8686 (98.262)	1.8681 (98.250)	3.8669 (98.219) - 3.8691 (98.775)
Piston Skirt to Cylinder Liner Clearance	0.0070 (0.178)	0.0086 (0.218)	0.0082 (0.208)	0.0061 (0.155) = 0.0098 (0.249)
Ompression Rings				
ap (No. 1, Fire Ring)	0.031 (0.79)	0.035 (0.89)	0.034 (0.86)	0.020 (0.51) - 0.046 (1.17)
Sap (Nos. 2, 3, 4)	0.025 (0.64)	0.033 (0.84)	0.029 (0.74)	0.020 (0.51) - 0.036 (0.91)
Ring-to-Groove Clearance				
Top (No. 1, Fire Ring)	0.003 (0.08)	0.004 (0.10)	0.004 (0.10)	0.003 (0.08) = 0.006 (0.15)
No. 2. Compression Ring	0.008 (0.20)	0.008 (0.20)	0.008 (0.20)	0.007 (0.18) - 0.010 (0.25)
No. 3 and 4, Compression Rings	0.005 (0.13)	0.006 (0.15)	0.006 (0.15)	0.005 (0.13) - 0.008 (0.20)
Nos. 5, 5, 7				
Gao	0.013 (0.33)	0.016 (0.41)	0.014 (0.36)	1.010 (0.25) - 0.025 (0.64)
Ring-to-Groove Clearance	0.002 (0.05)	0.004 (0.10)	0.003 (0.08)	0.0015 (0.038) - 0.0055 (0.140)
Piston Pin				
Pin-to-Piston Bushing Clearance	0,0028 (0.071)	0.0030 (0.076)	0.0029 (0.074)	0.0025 (0.064) - 0.0034 (0.086)
Pin-to-Connecting Rod Bushing Clearance	0.0013 (0.033)	0.0017 (0.043)	0.0014 (0.036)	0.0010 (0.025) - 0.0019 (0.048)
onnecting Rod Bearing- to-Journal Clearance	0.0021 (0.053)	0.0032 (0.081)	1.0026 (0.066)	0.0011 (0.028) - 0.0041 (0.104)
Main Bearing-to-Journal Clearance	0.0041 (0.104)	0.0044 (0.111)	0.0042 (0.107)	0.0010 (0.025) = 0.0040 (0.102)
Camshaft Bearing-to- Journal Clearance	0,0050 (0,127)	0.0056 (0.142)	0.0053 (0.135)	0,0045 (0,114) - 0,0060 (0,152)

^{*} Measurements are in Inches and (mm). All rebuild measurements omit the data for the 2k piston-liner-rine kit removed at 25 hours, and use instead the 2R kit which completed the rest.

6V-53T 240-HOUR TRACKED VEHICLE CYCLE BEFORE AND AFTER TEST 39 PERFORMANCE DATA

6V-53T 240-HOUR TRACKED VEHICLE CYCLE ENDURANCE TEST TEST 39 OPERATING CONDITIONS SUMMARY

Lubricant: AL-12634-L Fuel: AL-12780-F (JP-8)

		Power Mode O RPM)		Torque Mode
	Mean	Standard Deviation	Mean	Standard Deviation
Engine Speed, rpm Torque, ft-lb (N-m) Fuel Consumption,	2800 481 (652)	5.38 4.50 (6.10)	2200 559 (758)	3.56 5.92 (8.03)
lb/hr (kg/hr) Observed Power,	97.7 (44.3)	0.65 (0.296)	83.9 (38.1)	0.415 (0.189)
Bhp (kW) BSFC, lb/Bhp-hr	256 (191)	2.34 (1.75)	234 (175)	2.40 (1.79)
(g/kW-hr)	0.381 (232)	0.003 (1.70)	0.359 (218)	0.004 (2.52)
Temperatures, °F (°C)				
Exhaust before Turbo	901 (483)	28.4 (15.8)	900 (482)	25.7 (14.3)
Exhaust after Turbo	747 (397)	18.4 (10.2)	793 (423)	23.8 (13.2)
Water Jacket Inlet	159 (70.4)	1.45 (0.806)	159 (70.3)	1.49 (0.826)
Water Jacket Outlet	170 (76.4)	1.62 (0.900)		
Oil Sump	234 (112)		170 (76.5)	1.56 (0.869)
Fuel at Filter		2.87 (1.60)	226 (108)	2.67 (1.49)
	97 (35.8)	9.23 (5.13)	93 (33.9)	2.25 (1.25)
Inlet Air	92 (32.9)	3.21 (1.78)	93 (33.9)	4.29 (2.38)
Airbox	263 (129)	2.76 (1.53)	221 (105)	2.59 (1.44)
Pressures				
Exhaust before Turbo, psi (kPa) Exhaust after Turbo,	9.32 (64.3)	0.318 (2.20)	5.35 (36.9)	0.176 (1.22)
in. Hg (kPa) Compressor Discharge,	2.09 (7.06)	0.093 (0.31)	1.15 (3.88)	0.070 (0.24)
psi (kPa) Blower Discharge,	9.76 (67.3)	0.435 (3.00)	6.73 (46.4)	0.873 (6.02)
psi (kPa)	16.4 (113)	0.515 (3.55)	9.05 (62.4)	0.367 (2.53)
Oil Gallery, psi (kPa) Intake Vacuum,	57.1 (394)	0.636 (4.38)	52.6 (363)	0.724 (5.00)
in. H_2^0 (kPa)	3.9 (0.97)	0.09 (0.022)	2.3 (0.57)	0.06 (0.015)
Ambient Conditions Dry Bulb Temperature,			,	
°F (°C) Wet Bulb Temperature,	56.5 (13.6)	8.92 (4.96)	54.8 (12.7)	8.44 (4.69)
°F (°C) Barometric Pressure,	46.7 (8.15)	7.41 (4.12)	47.1 (8.41)	8.33 (4.63)
in. Hg (kPa)	29.2 (98.6)	0.17 (0.58)		

6V-53T TEST 39 FUEL ANALYSIS

Fuel: AL-12780-F (JP-8)

Property	ASTM Method	
Density, kg/L	D 1298	0.7793
API Gravity	D 1298	50.0
Distillation, °F	D 86	
IBP	D 86	308
. 10%	D 86	321
20%	D 86	322
30%	D 86	324
40%	D 86	326
50%	D 86	328
60%	D 86	330
70%	D 86	332
80%	D 86	336
90%	D 86	341
End Point	D 86	394
Residue, vol%	D 86	0.3
Distillation, °C	D 2887	
IBP	D 2887	140.1
10%	D 2887	153.1
20%	D 2887	160.2
30 %	D 2887	165.9
40%	D 2887	170.1
50%	D 2887	173.0
60%	D 2887	176.7
70 %	D 2887	179.0
80%	D 2887	181.3
90%	D 2887	186.0
End Point	D 2887	215.2
Flash Point, °F	D 56	103
Freeze Point, °C	D 2386	- 59
Cetane Number	D 613	40.3
Kinematic Viscosity at 40°C, cSt	D 445	0.89
Cu Corrosion, at 100°C	D 130	1A
Total Acid Number	D 3242	0
Saturates, voi%	D 1319	80.7
Olefins, vol%	D 1319	1.4
Aromatics, vol%	D 1319	17.9
Sulfur, wt%	D 2622	<0.01
Mercaptan Sulfur, wt%	D 3227	<0.001
Saybolt Color	D 156	+26
Net Heat of Combustion, Btu/lb	D 1405	18548
Carbon, wt%	D 3178	85.49 ± 0.02
Hydrogen, wt%	D 3178	14.01 ± 0.01
Particulate Contamination, mg/L	D 2276	0.8
Existent Gum, mg/100 mL	D 381	0.4
Water Reaction	D 1094	1B
Water Separation Index, Modified	D 2550	76
Water Separation Characteristics,		
by Microseparometer	D 3948	88
Fuel System Icing Inhibitor, 7	Fed. Std. 791	0.10
Electrical Conductivity, pS/m	D 3114	17

6V-53T TEST 39 LUBRICANT ANALYSIS

Lubricant: AL-12634-L

	ASTM						Test	Test Time, Hours	oura			'		,
	Hethod	0	70	07	99	80	82	130	140	190	180	200	220	240
Kinematic Viscosity at 40°C (104°F) cSt	D 445	102.90	[1	88.70	1	i	92.44	ļ	ŀ	91.05	1	ł	93.67
Kinematic viscosity at 100°C (212°F) cSt	D 445	11.66	10.48	10.72	10.89	10.99	11.05	11.13	10,88	10.91	11.01	11.01	11.17	11.22
Total Acid Number mg KOH/8	D 664	2.71	1	ł	2.95	1	1	3.27	ŀ	;	2.97	ł	ļ	3.26
Total Rase Number mg KOH/8	799 Q	5.32	1	1	3.91	ł	ļ	3.73	1	ŀ	4.22	ŀ	ı	3.14
Pentane B Insolubles	D 893	0.02	1	{	0.14	1	!	0.23	;	!	0.14	ł	ł	0.20
Toluene B Insolubles	D 893	0.01	í	1	0.12	1	!	0.18	l	1	0.12	1	;	0.17
Flash Point, °C	D 92	238	į I	1	1	ļ	:	227	{	}	1	1	1	224

6V-53T TEST 39 INFRARED SPECTRUM

Lubricant: AL-12634-L

6V-53T TEST 39 TOTAL CONSUMPTION AND WEAR METALS BY XRF

Lubricant: AL-12634-L

Test Time, Hours	Total Oil Cons	umed, 1b (kg)	Wear Met	als, ppm <u>Cu</u>
0	0		59	11
20	6.44	(2.92)	83	< 10
40	15.03	(6.82)	97	<10
60	23.32	(10.58)	83	< 10
80	33.44	(15.17)	103	< 10
100	42.06	(19.08)	134	< 10
120	Oil chang	ge	119	< 10
140	49.16	(22.30)	45	< 10
160	58.55	(26.56)	51	< 10
180	68.35	(31.00)	49	< 10
200	78.29	(35.51)	52	< 10
220	87.99	(39.91)	46	< 10
240	101.70	(46.13)	49	<10

Average oil consumption rate: 0.42 lb/hr (0.19 kg/hr)

The second secon

6V~53T TEST 39 WEAR MEASUREMENTS*

Lubricant: AL-12634-L

Cylinder Liner Bore Diameter Change**

	Cylinder Number					<u>)R</u>		
	T-ATON	<u>18</u>	Ī	<u> </u>	<u>7-8</u>	I-AT	<u>r-a</u>	
Top Hiddle Bottom	0.0016 (0.0 0.0008 (0.0 -0.0001 (-0.0	020) 0.0021 (0	0.0003	(0.008) 0	.0050 (0.13) .0022 (0.056) .0001 (-0.002)	0.0010 (0.025) 0.0002 (0.005) 0.0010 (0.025)	-0.0004 (-0.010) 0.0002 (0.005) -0.0001 (-0.002)	
			۵	verage Change				
			1	<u>-AT</u>	<u>r-8</u>			
		H:	lddle 0.0004	(0.010)	0.0055 (0.14) 0.0015 (0.038) 0.0001 (-0.002)			
			Overali averas	e change: 0.001	4 (0.036)			
			Piston F	ling End Cap Char	ae			
Ring Number	11	<u>2L</u>	<u> 11</u>	<u>1R</u>	<u>2R</u>	<u>3Ř</u>	Average Change	
1 2 3 4 5 6 7	0,002 (0,05) 0,001 (0,02) 0,001 (0,02) 0,000 0,005 (0,13) 0,004 (0,10) 0,003 (0,08)	0.002 (0.05) 0.001 (0.02) 0.001 (0.02) 0.000 0.060 (1.52) 0.047 (1.19) 0.039 (0.99)	0.000 0.000 0.000 0.000 0.004 (0.10) 0.002 (0.05) 0.003 (0.08)	0,003 (0.08 0.000 0.000 0,001 (0.07 0.012 (0.30 0.011 (0.28 0.008 (0.20	0.002 (0.05) 0.001 (0.02) 0.002 (0.05) 0.009 (0.23) 0.004 (0.10)	0.000 0.001 (0.02)	0.002 (0.05) 0.001 (0.02) 0.001 (0.02) 0.001 (0.02) 0.016 (0.41) 0.012 (0.30) 0.010 (0.02)	
			Overall averag	ge change: 0.006	(0.15)			
			Average Pistor	Ring Radial Wid	ith Change			
Ring Number	<u>11</u>	<u>21.</u>	<u> 3L</u>	<u>1R</u>	<u>2R</u>	<u> 3R</u>	Average Change	
1 2 3 4	0.0006 (0.015) 0.0001 (0.002) 0.0004 (0.010) 0.0002 (0.005)	0.0001 (0.002) 0.0000 0.0004 (0.010) 0.0003 (0.008)	-0.0002 (-0.005) 0.0007 (0.018) 0.0001 (0.002) 0.0001 (0.002)	-0.0003 (-0.008 0.0000 -0.0003 (-0.008 -0.0004 (-0.010	-0.0002 (-0.005) -0.0013 (-0.033)	-0.0052 (0.132) -0.0012 (-0.030)	-0.0002 (-0.005) -0.0008 (-0.020) -0.0003 (-0.008) -0.0001 (-0.002)	
			Overali average	change: -0.000	04 (-0.010)			
			Bear	ring Weight Loss				
Main Bearings		<u> •</u> 1	<u>!.</u>		ប	<u>15</u>	Average Change	
Upper Lower		0.000395 (11.2)* 0.00102 (28.8)	0.000458 (13. 0.00365 (103.			000832 (23.6) 00222 (62.8)	0.000552 (15.6) 0.00222 (63.0)	
			Overall Averag	ge Change: 0.00	139 (39.3)			
Rod Bearings	<u>1L</u>	<u>2L</u>	<u>)L</u>	<u>ir</u>	<u>2R</u>	<u> 3R</u>	Average Change	
Upper Lower	0.000621 (17.6) 0.00017 (4.8)	0.000790 (22.4) 0.00015 (4.3)	0.00135 (38.4) 0.00013 (3.7)	0.000360 (10.2) 0.00011 (3.1)	0.000783 (22.2) 0.000078 (2.2)	0.000896 (25.4) 0.00016 (4.4)	0.000801 (22.7) 0.00013 (3.8)	

The control of the second of t

All dimensions are given in inches (mm).

After-test measurements not taken for cylinders it, 21 and 31,

T-AT = Thrust-Antithrust Direction; F-B = Front-Back Direction.

Heasurements are in ounces (mg).

6V-53T TEST 39 POST TEST ENGINE CONDITION AND DEPOSITS

Lubricant: AL-12634-L

	Lu	ıbricant	: AL-1	.2634-L			
				inder Numbe			
	11	2 <u>L</u>		1R	2R	3R	Avers
A. Cylinder Liner							
Intake Port Plugging, 7 restriction	<1	<1	<1	<1	<1	<1	<1
Liner Scuffing,							
Chrust	0	28.00	2.00	94.00	46.00	0	28.33
Inti-Thrust	6.00	71.00	12.00	61.00	64.00	10.00	37.33
Total Area Scuffing	3.00	44.50	7.00	77.50	55.00	5.00 Overall:	32.83
Area Bore Polished						OASLETT:	32.03
Thrust	2.00	2.00	5.00	0	2.00	10.00	3.50
Anti-Thrust Avg. Area Bore	5.00	3.00	5.00	2.00	3.00	2.00	3.33
Polished	3.50	2.50	5.00	1.00	2.50	6.00	3.42
. Pistons						Overail:	3.42
ing Face Distress.							
No. 1	7.50	9 50	10.00	25 25	12 75	16 60	16 00
No. 2	6.75	9.50 21.25	19,00 11,25	25.25 10.00	13.75 10.50	16.50 4.00	15.08
No. 3	13.75	36.25	18.75	22.50	23.75	16.25	21.88
No. 4	16.50	26.50	11.25	25.00	26.25	17.50	20.50
						Overall:	
iston Skirt Rating*							
Thrust	10%SC	35 %SC	S	LOZSC	S	5 ZS C	
Anti-Thrust	5%SC	5 7SC	S	15%SC	10%SC	10%SC	
pper Oil Control Ring							
xpander Force (lbs)	19.4	20.4	20.2	20.4	20.2	20.2	20.1
iston WTD Rating**	195.000	230.750	274.375	230.625	249.250	289.125	244.85
ing Sticking***	_	_	_				
No. l	F	F	F	P	£	F	
No. 2 No. 3	F F	F	F	F	F	F	
No. 4	F	F	F F	F F	F F	F F	
. Exhaust Valves							
eposits	+						
Head	BHC	BHC	BHC	AHC	AHC	AHC	
Face Tulip			-1/4AHC -AHC				
Stem			49 Lacquer	**			
urface Condition Freeness in Guide	F	F	F	F	F	F	
Head			-Normel				
Face			-Normai				
Seat	LL	LL	N Name 1	LL	LL	LL	
Stem Tip		~~~~~~~	-Normel				
. Other Ratings							
)						
earing Surface Condition	No abnorm	Blities					
earing Surface Condition Main Bearings		tine rod he	ering hee c	opper showl	ng (it was	this way	
	3L connec	akain)					
Main Bearings Rod Bearings	3L connec after bre	ek-in)					
Main Bearings Rod Bearings niector Needles	after bre	ak-in)	9.00	9.00	8.60	9 00	R.40
	3L connec after bre 7.60 1.50	7.20 0.90	9.00 0. 90	9.00 0.95	8.60 0.00	9.00 1.10	6.40 0.89

The state of the s

6V-53T TEST 39 FUEL INJECTOR TESTS

Fuel: AL-12780-F (JP-8)

	Cylinder Number						
	<u>lL</u>	2L	3L	1R	2R	3R	Average
Pop-Off Pressure, Psi							
Before Test	144	138	136	132	122	126	
After Test, Before Cleaning After Test, After	120	128	None	126	135	125	
Cleaning	None	130	132	127	131	130	
Spray Pattern							
Before Test			Good				
After Test, Before Cleaning	G≱	G	P	G	G	G	
After Test, After Cleaning			Good				
Atomization							
Before Test After Test, Before			Good				
Cleaning	F	G	P	G	G	G	
After Test, After Cleaning	P	G	G	G	G	G	
Injector Tip Flow Readin Relative Flow With 5 P							
Before Test	15.8	15.8	16.0	17.0	15.8	16.0	
After Test, Before Cleaning	15.7	15.05	15.05	15.5	15.5	16.0	
After Test, After Cleaning	16.0	15.6	16.0+	16.0+	15.0	15.35	
M1 Fuel Per 1000 Engine Strokes							
Before Test	98	93	95	98	98	98	97
After Test, Before Cleaning	97	92	98	97	97	98	96.5
After Test, After Cleaning	97	93	98	98	98	98	97

^{*} G = Good, F = Fair, P = Poor + Off the Flowmeter Scale

6V53T(#39) 1-L

6V53T(#39) 1-R

1-R-AT

6V53T(#39) 1-R-T

6V53T(#39) 2-L

6V53T(#39) 2-R

6V53T(#39) 2-R-AT

6V53T(#39) 2-R-T

6V53T(#39) 2-L-AT

6V53T(#39) 2-L-T

6V53T(#39) 3-L

6V53T(#39) 3-R

3-R-AT

3-L-AT

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE		CDR	
DEFENSE TECHNICAL INFORMATION CTI CAMERON STATION ALEXANDRIA VA 22314	R 12	US ARMY TANK-AUTOMOTIVE COMMANI ATTN: AMSTA-RG AMSTA-TSL (MR BURG) AMSTA-MTC (MR GAGLIO) AMSTA-RGP (MR RAGGIO)	2 1 1 1
DEPT OF DEFENSE OASD/P&L ATTN: L/EP (MR DYCKMAN) WASHINGTON DC 20301-8000	1	AMSTA-MLF (MR KELLER) AMSTA-MC AMSTA-MV WARREN MI 48397-5000	1 1 1
CDR DEFENSE FUEL SUPPLY CTR ATTN: DFSC-Q (MR MARTIN) CAMERON STATION ALEXANDRIA VA 22304-6160	i	PROJ MGR, MOBILE ELECTRIC POWER US ARMY TROOP SUPPORT COMMAND ATTN: AMCPM-MEP-TM (COL BRAMLETTE) 7500 BACKLICK ROAD SPRINGFIELD VA 22150	1
DOD ATTN: DUSDRE (RAT) (DR DIX) ROOM 3-D-1089, PENTAGON WASHINGTON DC 20301 DEPARTMENT OF THE ARMY	1	CDR THEATER ARMY MATERIAL MGMT CENTER (200TH)-DPGM DIRECTORATE FOR PETROL MGMT ATTN: AEAGD-MMC-PT-Q APO NY 09052	1
CDR US ARMY BELVOIR RESEARCH, DEVELOPMENT & ENGINEERING CTR ATTN: STRBE-VF STRBE-F STRBE-BT FORT BELVOIR VA 22060-5606	10 1 2	CDR US ARMY GENERAL MATERIAL & PETROLEUM ACTIVITY ATTN: STRGP-F (MR ASHBROOK) STRGP-FT (MR ROBERTS) NEW CUMBERLAND PA 17070-5008 CDR	1
HQ, DEPT OF ARMY ATTN: DALO-TSE DALO-TSZ-B (MR KOWALCZYK) DALO-PLA (DR WILTSHIRE) SARD-TR (MS VANNUCCI) WASHINGTON DC 20310-0561	1 1 1	US ARMY LABORATORY COMMAND ATTN: AMSLC-TP-PB (MR GAUL) ADELPHI MD 20783-1145 CDR US ARMY RES, DEVEL & STDZN GROUP	1
CDR US ARMY MATERIEL COMMAND ATTN: AMCDE-SS AMCSM-SP AMCDE-WH 5001 EISENHOWER AVE	1 1 1	(UK) ATTN: AMXSN-UK-RA (DR REICHENBACH) BOX 65 FPO NEW YORK 09510-1500 CDR	1
ALEXANDRIA VA 22333-0001 DIRECTOR US ARMY MATERIEL SYSTEMS		US ARMY FORCES COMMAND ATTN: FCSJ-SA FORT MCPHERSON GA 30330-6000	1
ANALYSIS ACTIVITY ATTN: AMXSY-CM ABERDEEN PROVING GROUND MD 21005-5006	i	HQ, EUROPEAN COMMAND ATTN: J4/7-LJPO (LTC WEIMER) VAIHINGEN, GE APO NY 09128	1

US ARMY RESEARCH OFFICE ATTN: SLCRO-EG (DR MANN) SLCRO-CB P O BOX 12211 RSCH TRIANGLE PARK NC 27709-2211	1	PROJ OFF, AMPHIBIOUS AND WATER CRAFT ATTN: AMCPM-AWC-R 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798 CDR	1
CDR US ARMY TANK-AUTOMOTIVE CMD PROGR EXEC OFF CLOSE COMBAT PM ABRAMS, ATTN: AMCPM-ABMS	1	US ARMY ENGINEER SCHOOL ATTN: ATSE-CD FORT LEONARD WOOD MO 65473-5000	1
PM BFVS, ATTN: AMCPM-BFVS PM 113 FOV, ATTN: AMCPM-M113 PM M60 FOV, ATTN: AMCPM-M60 APEO SYSTEMS, ATTN: AMCPEO-CCV-S PM LAV, ATTN: AMCPM-LA-E	1 1 1 1 1 1	HQ, US ARMY T&E COMMAND ATTN: AMSTE-TE-T ABERDEEN PROVING GROUND MD 21005-5006	1
WARREN MI 40397-5000 CDR	•	CDR US ARMY ORDNANCE CENTER & SCHOOL	
US ARMY YUMA PROVING GROUND ATTN: STEYP-MT-TL-M (MR DOEBBLER) YUMA AZ 85364-9103	1	ATTN: ATSL-CD-CS ABERDEEN PROVING GROUND MD 21005-5006	I
CDR US ARMY TANK-AUTOMOTIVE CMD PROGR EXEC OFF COMBAT SUPPORT PM LIGHT TACTICAL VEHICLES		HQ US ARMY TRAINING & DOCTRINE CMD ATTN: ATCD-SL FORT MONROE VA 23651-5000	l
ATTN: AMCPM-TVL PM MEDIUM TACTICAL VEHICLES ATTN: AMCPM-TVM PM HEAVY TACTICAL VEHICLES ATTN: AMCPM-TVH WARREN MI 40397-5000	1 1 1	CDR US ARMY QUARTERMASTER SCHOOL ATTN: ATSM-CDM ATSM-LL FSD FORT LEE VA 23801	1
PROJ MGR, LIGHT ARMORED VEHICLES ATTN: AMCPM-LA-E WARREN MI 48397 CDR, US ARMY TROOP SUPPORT	1	PROJECT MANAGER PETROLEUM & WATER LOGISTICS ATTN: AMCPM-PWL 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798	1
COMMAND ATTN: AMSTR-ME AMSTR-S AMSTR-E (MR CHRISTENSEN) 4300 GOODFELLOW BLVD	1 I I	HQ, US ARMY ARMOR CENTER ATTN: ATSB-CD-ML ATSB-TSM-T FORT KNOX KY 4012i	1
PROGRAM EXECUTIVE OFFICE, TROOP SUPPORT DEPUTY FOR SYSTEMS MGMT ATTN: AMCEPO-TRP ST LOUIS MO 63120-1798	1	CDR COMBINED ARMS COMBAT DEVELOPMENT ACTIVITY ATTN: ATZL-CAT-E FORT LEAVENWORTH KS 66027-5300	1

CDR US ARMY LOGISTICS CTR ATTN: ATCL-CD ATCL-MS FORT LEE VA 23801-6000	1	CG USMC RDA COMMAND ATTN: CODE CBAT QUANTICO VA 22134	1
CDR US ARMY INFANTRY SCHOOL ATTN: ATSH-CD-MS-M ATSH-TSM-FVS FORT BENNING GA 31905-5400	1	DEPARTMENT OF THE AIR FORCE HQ, USAF ATTN: LEYSF WASHINGTON DC 20330]
DEPARTMENT OF THE NAVY CDR NAVAL AIR PROPULSION CENTER ATTN: PE-33 (MR D'ORAZIO) P O BOX 7176 TRENTON NJ 06828-0176	1	CDR US AIR FORCE WRIGHT AERO LAB ATTN: AFWAL/POSF (MR DELANEY) WRIGHT-PATTERSON AFB OH 45433-6563 HQ AIR FORCE SYSTEMS COMMAND ATTN: AFSC/DLF (DR DUES) ANDREWS AFB MD 20334	1
CDR DAVID TAYLOR RESEARCH CTR ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 PROJ MGR, M60 TANK DEVELOPMENT ATTN: USMC-LNO US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000	1	CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SFT (MR MAKRIS) SAALC/MMPRR KELLY AIR FORCE BASE TX 78241 CDR WARNER ROBINS AIR LOGISTIC CTR ATTN: WRALC/MMVR-1] 1
DEPARTMENT OF THE NAVY HQ, US MARINE CORPS ATTN: LMM/2 WASHINGTON DC 20380	i	(MR PERAZZOLA) ROBINS AFB GA 31098 OTHER GOVERNMENT AGENCIES	1
CDR NAVAL AIR SYSTEMS COMMAND ATTN: CODE 53632F (MR MEARNS) WASHINGTON DC 20361-5360 CDR NAVY PETROLEUM OFFICE ATTN: CODE 43 (MR LONG) CAMERON STATION ALEXANDRIA VA 22304-6180	1	US DEPARTMENT OF ENERGY ATTN: MR ECKLUND MAIL CODE CE-151 FORRESTAL BLDG. 1000 INDEPENDENCE AVE, SW WASHINGTON DC 20585	1
OFFICE OF THE CHIEF OF NAVAL RESEARCH ATTN: OCNR-126 (DR ROBERTS) ARLINGTON VA 22217-5000	1		