1 Sets

1.1 Definitions

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$
 natural numbers
$$\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$$
 integers
$$\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\}$$
 rationals
$$\mathbb{R} = \text{real numbers}$$

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$$
 complex numbers

$$\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}\}$$
 n-dimensional space $\mathbb{R}^* = \{(x_1, x_2, \dots) : x_i \in \mathbb{R}\}$ infinite dimensional space

1.2 Set Operations

$$A \cup B = \{x : x \in A \text{ or } x \in B\} \text{ union}$$

 $A \cap B = \{x : x \in A \text{ and } x \in B\} \text{ intersection}$
 $A \setminus B = \{x \in A : x \notin B\} \text{ set difference}$
 $A \triangle B = (A \setminus B) \cup (B \setminus A) \text{ symmetric difference}$

1.3 Venn Diagrams

[Venn diagrams would be inserted here]

2 Functions

Let $(f_n)_{n\in\mathbb{N}}$ be an indexed family of functions (where $n\in\mathbb{N}$).

Ex (1)
$$f: \mathbb{N} \to \mathbb{N}$$

 $A_n = \{k, n+1\}$
definition

(2)
$$f: \mathbb{R}^* \to \{x \in \mathbb{R} : x \ge 0\}$$

 $A_n = (x_n, \infty)$

$$\bigcup_{n\in\mathbb{N}} A_n = \{x : x \in A_n \text{ for some } n \in \mathbb{N}\}$$
$$\bigcap_{n\in\mathbb{N}} A_n = \{x : x \in A_n \text{ for every } n \in \mathbb{N}\}$$

These are called union and intersection of a family of sets $(A_n)_{n\in\mathbb{N}}$.

Let A, B be sets $(A \neq B)$. A map $f: A \to B$ is called a function or mapping or transformation.

If $A \subseteq B$ and $f: A \to B$, then f is called an *embedding* of A into B if f is injective.

Note: f maps A onto $B \Leftrightarrow f$ is surjective

If $f: A \to B$ is both injective and surjective, then f is called *bijective* (or *one-to-one*).

 f^{-1} is called the *inverse* (if it exists) of f.

If $A' \subseteq A$, then the map $f': A' \to B$ defined by f'(x) = f(x) is called the restriction of f to A' (denoted by $f|_{A'}$).

- $\mathbf{Ex} \ (1) \ f : \mathbb{R} \to \mathbb{R}, \ x \mapsto x^3$

- Ex (1) $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^{x}$ (2) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{1}{x}$ (3) $g: \mathbb{R} \to \mathbb{R}, x \mapsto e^{x}$ (4) $f: \mathbb{C} \to \mathbb{C}, z \mapsto z^{2}$ (5) $f: \mathbb{R}^{2} \to \mathbb{R}, (x, y) \mapsto x + y$ (6) $D: C^{1}(\mathbb{R}) \to C(\mathbb{R}), f \mapsto f' \text{ derivative}$