ANOVA for a RCBD trial: PTLB199909_OXAPMP_B3C1OXA00-03

$rsimon\ using\ HIDAP$

November 19, 2015, 11:14h

Contents

Abstract	2
Materials and Methods	2
Location characterization	2
Materials	2
Trait descriptions (from ontology) \dots	2
Model specification and data description	2
Computational tools	3
Results	3
Raw data	3
Trait summaries	3
Trait analyses	3
Trait correlations	14
Variety candidate selection	14
Summary	14
References	14
Data sources	14
Literature	14
Author affiliations:	
Citation: Bonierbale, Merideth; Gastelo Manuel (1999). PTLB199909_OXAPMP_B3C1OXA00-03. Data version: 1. Dataset fingerprint (UNF): ASDFHSJKDF525423. Url: http://dataverse.cipotato.org/123456	
# This is an automatedly created report.	
# Soo more details in section on materials	

Alternate formats:

Abstract

This trial has the identifier PTLB19909_OXAPMP_B3C1OXA00-03. It was conducted under the supervision of Bonierbale, Merideth; Gastelo Manuel as a Preliminary Trial as part of a Yield Breeding Program in , PERU in 1999. A total of 26 clones (including reference clones) were evaluated for NTP, PGH, Plant_Vigor, Flower, LB1, LB2, LB3, LB4, LB5, LB6, LB7, AUDPC, rAUDPC, SAUDPC, NMTP, NoMTWP, TTWP, TTYNA, MTWP, MTYNA, ATMW, AVDM, SG, FFR, TEXFR, Chip_Color traits.

Materials and Methods

Location characterization

Installation

Geographic and climate characterization

Weather during planting season

Soil

Field management

Observations on special events

Materials

Trait descriptions (from ontology)

Model specification and data description

There is data from 26 treatments, evaluated using a randomize complete block design with 4 blocks. The statistical model is

$$y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}$$

where

- y_{ij} is the observed response with treatment i and block j.
- μ is the mean response over all treatments and blocks.
- τ_i is the effect for treatment i.
- β_i is the effect for block j.
- ϵ_{ij} is the error term.

In this model we assume that the errors are independent and have a normal distribution with common variance, that is, $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$.

The following traits are analyzed: SG, FFR, TEXFR, Chip_Color, LB3

Computational tools

This report was created using i386-w64-mingw32, i386, mingw32, i386, mingw32, , 3, 2.2, 2015, 08, 14, 69053, R, R version 3.2.2 (2015-08-14), Fire Safety on a i386-w64-mingw32/i386 (32-bit) running Windows 7 x64 (build 7601) Service Pack 1 in . The following base packages were loaded: stats, graphics, grDevices, utils, datasets, methods, base and the following additional packages: hidap, knitr, qtl, qtlcharts, fbsites, rmarkdown, leaflet, shinyBS, shinyFiles, rhandsontable, shinydashboard, shiny.

Results

Raw data

Trait summaries

Trait analyses

Analysis for trait SG

You have fitted a linear model for a RCBD. The ANOVA table for your model is:

Table 1: Table continues below

	Df	Sum Sq	Mean Sq	F value
INSTN	25	0.0062656	0.000250624	17.4424
REP	3	3.41691e-05	1.13897e-05	0.792675
Residuals	75	0.00107765	1.43687e-05	NA

	Pr(>F)
INSTN	4.98796e-22
REP	0.501768
Residuals	NA

The p-value for treatments is 0.000000000000000000000498796 which is significant at the 5% level.

INSTN	SG
CIP377744.1	1.07
CIP384866.5	1.06
CIP391004.18	1.07
CIP391011.17	1.08
CIP391046.14	1.05
CIP391047.34	1.06
CIP391065.69	1.07
CIP391580.30	1.07
CIP392617.54	1.08
CIP392634.49	1.07
CIP392637.10	1.07
CIP392639.31	1.05

INSTN	SG
CIP392639.34	1.06
CIP392640.18	1.07
CIP392657.171	1.07
CIP392657.8	1.06
CIP393077.54	1.07
CIP393079.24	1.07
CIP393227.66	1.07
CIP393248.55	1.07
CIP393339.242	1.06
CIP393371.58	1.08
CIP393385.39	1.06
CIP393385.47	1.07
CIP393453.198	1.06
CIP720064	1.05

Analysis for trait FFR

You have fitted a linear model for a RCBD. The ANOVA table for your model is:

Table 4: Table continues below

	Df	Sum Sq	Mean Sq	F value
INSTN	25	18.8385	0.753542	2.98694
REP	3	0.0820313	0.0273438	0.108387
Residuals	75	18.9209	0.252279	NA

	Pr(>F)
INSTN	0.000138696
REP	0.954949
Residuals	NA

The p-value for treatments is 0.000138696 which is significant at the 5% level.

INSTN	FFR
CIP377744.1	2.74
CIP384866.5	2.64
CIP391004.18	2.68
CIP391011.17	2.39
CIP391046.14	2.26
CIP391047.34	1.94

INSTN FFR CIP391065.69 1.46 CIP391580.30 1.89 CIP392617.54 2.36 CIP392634.49 1.87 CIP392637.10 1.65 CIP392639.31 2.58 CIP392639.34 2.24 CIP392640.18 1.4 CIP392657.8 1.24 CIP393077.54 2.16 CIP393079.24 1.66 CIP393227.66 2.26 CIP393248.55 1.73 CIP393339.242 2.81 CIP393385.39 2.23 CIP393385.47 2.18 CIP720064 1.78		
CIP391580.30 1.89 CIP392617.54 2.36 CIP392634.49 1.87 CIP392637.10 1.65 CIP392639.31 2.58 CIP392639.34 2.24 CIP392640.18 1.4 CIP392657.8 1.24 CIP393077.54 2.16 CIP393079.24 1.66 CIP393227.66 2.26 CIP393348.55 1.73 CIP393339.242 2.81 CIP393385.39 2.23 CIP3933453.198 1.96	INSTN	FFR
CIP392617.54 2.36 CIP392634.49 1.87 CIP392637.10 1.65 CIP392639.31 2.58 CIP392639.34 2.24 CIP392657.171 1.91 CIP392657.8 1.24 CIP393077.54 2.16 CIP393079.24 1.66 CIP393227.66 2.26 CIP393348.55 1.73 CIP393371.58 2.59 CIP393385.39 2.23 CIP3933453.198 1.96	CIP391065.69	1.46
CIP392634.49 1.87 CIP392637.10 1.65 CIP392639.31 2.58 CIP392639.34 2.24 CIP392640.18 1.4 CIP392657.171 1.91 CIP392657.8 1.24 CIP393077.54 2.16 CIP393079.24 1.66 CIP393227.66 2.26 CIP393248.55 1.73 CIP393339.242 2.81 CIP393385.39 2.23 CIP393385.47 2.18 CIP393453.198 1.96	CIP391580.30	1.89
CIP392637.10 1.65 CIP392639.31 2.58 CIP392639.34 2.24 CIP392640.18 1.4 CIP392657.171 1.91 CIP392657.8 1.24 CIP393077.54 2.16 CIP393079.24 1.66 CIP393227.66 2.26 CIP393248.55 1.73 CIP393339.242 2.81 CIP393385.39 2.23 CIP393385.47 2.18 CIP393453.198 1.96	CIP392617.54	2.36
CIP392639.31 2.58 CIP392639.34 2.24 CIP392640.18 1.4 CIP392657.171 1.91 CIP392657.8 1.24 CIP393077.54 2.16 CIP393079.24 1.66 CIP393227.66 2.26 CIP393248.55 1.73 CIP393339.242 2.81 CIP393371.58 2.59 CIP393385.39 2.23 CIP3933453.198 1.96	CIP392634.49	1.87
CIP392639.34 2.24 CIP392640.18 1.4 CIP392657.171 1.91 CIP392657.8 1.24 CIP393077.54 2.16 CIP393079.24 1.66 CIP393227.66 2.26 CIP393248.55 1.73 CIP393339.242 2.81 CIP393371.58 2.59 CIP393385.39 2.23 CIP3933453.198 1.96	CIP392637.10	1.65
CIP392640.18 1.4 CIP392657.171 1.91 CIP392657.8 1.24 CIP393077.54 2.16 CIP393079.24 1.66 CIP393227.66 2.26 CIP393248.55 1.73 CIP393339.242 2.81 CIP393371.58 2.59 CIP393385.39 2.23 CIP3933453.198 1.96	CIP392639.31	2.58
CIP392657.171 1.91 CIP392657.8 1.24 CIP393077.54 2.16 CIP393079.24 1.66 CIP393227.66 2.26 CIP393248.55 1.73 CIP393339.242 2.81 CIP393371.58 2.59 CIP393385.39 2.23 CIP393385.47 2.18 CIP393453.198 1.96	CIP392639.34	2.24
CIP392657.8 1.24 CIP393077.54 2.16 CIP393079.24 1.66 CIP393227.66 2.26 CIP393248.55 1.73 CIP393339.242 2.81 CIP393371.58 2.59 CIP393385.39 2.23 CIP3933453.198 1.96	CIP392640.18	1.4
CIP393077.54 2.16 CIP393079.24 1.66 CIP393227.66 2.26 CIP393248.55 1.73 CIP393339.242 2.81 CIP393371.58 2.59 CIP393385.39 2.23 CIP393385.47 2.18 CIP393453.198 1.96	CIP392657.171	1.91
CIP393079.24 1.66 CIP393227.66 2.26 CIP393248.55 1.73 CIP393339.242 2.81 CIP393371.58 2.59 CIP393385.39 2.23 CIP393385.47 2.18 CIP393453.198 1.96	CIP392657.8	1.24
CIP393227.66 2.26 CIP393248.55 1.73 CIP393339.242 2.81 CIP393371.58 2.59 CIP393385.39 2.23 CIP393385.47 2.18 CIP393453.198 1.96	CIP393077.54	2.16
CIP393248.55 1.73 CIP393339.242 2.81 CIP393371.58 2.59 CIP393385.39 2.23 CIP393385.47 2.18 CIP393453.198 1.96	CIP393079.24	1.66
CIP393339.242 2.81 CIP393371.58 2.59 CIP393385.39 2.23 CIP393385.47 2.18 CIP393453.198 1.96	CIP393227.66	2.26
CIP393371.58 2.59 CIP393385.39 2.23 CIP393385.47 2.18 CIP393453.198 1.96	CIP393248.55	1.73
CIP393385.39 2.23 CIP393385.47 2.18 CIP393453.198 1.96	CIP393339.242	2.81
CIP393385.47 2.18 CIP393453.198 1.96	CIP393371.58	2.59
CIP393453.198 1.96	CIP393385.39	2.23
	CIP393385.47	2.18
CIP720064 1.78	CIP393453.198	1.96
	CIP720064	1.78

Analysis for trait TEXFR

You have fitted a linear model for a RCBD. The ANOVA table for your model is:

Table 7: Table continues below

	Df	Sum Sq	Mean Sq	F value
INSTN	25	15.5839	0.623358	10.2469
\mathbf{REP}	3	0.0939364	0.0313121	0.514715
Residuals	75	4.56254	0.0608339	NA

	$\Pr(>F)$
INSTN	1.95109e-15
REP	0.673395
Residuals	NA

INSTN	TEXFR
CIP377744.1	1.87
CIP384866.5	1.78
CIP391004.18	1.85
CIP391011.17	1.11
CIP391046.14	1.55
CIP391047.34	1.66
CIP391065.69	1.83
CIP391580.30	1.27
CIP392617.54	1.79
CIP392634.49	1.21
CIP392637.10	1.18
CIP392639.31	1.74
CIP392639.34	1.99
CIP392640.18	1.06
CIP392657.171	1.12
CIP392657.8	2.62
CIP393077.54	1.7
CIP393079.24	1.28
CIP393227.66	1.17
CIP393248.55	1.54
CIP393339.242	1.89
CIP393371.58	1.86
CIP393385.39	1.86
CIP393385.47	1.32
CIP393453.198	2.39
CIP720064	1.78

Analysis for trait Chip_Color

You have fitted a linear model for a RCBD. The ANOVA table for your model is:

Table 10: Table continues below

	Df	Sum Sq	Mean Sq	F value
INSTN	25	13.6983	0.547932	3.50708
REP	3	0.0498749	0.016625	0.106409
Residuals	75	11.7177	0.156236	NA

	Pr(>F)
INSTN	1.40209 e - 05
REP	0.956097
Residuals	NA

The p-value for treatments is 0.0000140209 which is significant at the 5% level.

INSTN	$Chip_Color$
CIP377744.1	1.57
CIP384866.5	1.9
CIP391004.18	2.17
CIP391011.17	1.22
CIP391046.14	1.96
CIP391047.34	1.41
CIP391065.69	1.35
CIP391580.30	1.49
CIP392617.54	2.34
CIP392634.49	1.94
CIP392637.10	1.63
CIP392639.31	1.92
CIP392639.34	1.2
CIP392640.18	1.8
CIP392657.171	1.4
CIP392657.8	1.21
CIP393077.54	1.78
CIP393079.24	1.97
CIP393227.66	2.18
CIP393248.55	1.37
CIP393339.242	1.93
CIP393371.58	2.08
CIP393385.39	2.01
CIP393385.47	1.85
CIP393453.198	2.58
CIP720064	2.09

Analysis for trait LB3

You have fitted a linear model for a RCBD. The ANOVA table for your model is:

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
INSTN	25	15339.7	613.587	13.7459	5.74463e-19
\mathbf{REP}	3	458.413	152.804	3.42321	0.0214143
Residuals	75	3347.84	44.6378	NA	NA

INSTN	LB3
CIP377744.1	12.5
CIP384866.5	30
CIP391004.18	5
CIP391011.17	10
CIP391046.14	47.5
CIP391047.34	17.5
CIP391065.69	16.2
CIP391580.30	15
CIP392617.54	3.75
CIP392634.49	6.25
CIP392637.10	6.25
CIP392639.31	31.2
CIP392639.34	31.2
CIP392640.18	5
CIP392657.171	10
CIP392657.8	36.2
CIP393077.54	5
CIP393079.24	7.5
CIP393227.66	8.75
CIP393248.55	12.5
CIP393339.242	5
CIP393371.58	3.75
CIP393385.39	20
CIP393385.47	6.25
CIP393453.198	13.8
CIP720064	37.5

Trait correlations

Variety candidate selection

Summary

References

Data sources

Literature