Nom:

Prénom:

Note: /20

Contrôle de connaissances 6

Électrocinétique : ressort amorti (15')

/24 1 On suppose le système mécanique suivant, constitué du point M de masse m accroché à un ressort idéal (k,ℓ_0) mais subissant des frottements fluides. On travaille dans le référentiel $\mathcal{R}_{\mathrm{sol}}$ supposé galiléen, avec le repère $(O, \overrightarrow{u_x}, \overrightarrow{u_y})$. On suppose le ressort initialement étiré tel que $\ell(0) = L_0 > \ell_0$, lâché sans vitesse initiale.

Effectuer un bilan des forces puis déterminer l'équation différentielle sous forme canonique de $\ell(t)$ pour $t \geq 0$, et la réécrire en effectuant un changement de variable. Déterminer les expressions de ω_0 et Q, puis résoudre l'équation différentielle sur le changement de variable pour un régime **pseudo-périodique**. On appelle $x_0 = L_0 - \ell_0$.

Exprimer la période T des oscillations amorties en fonction de la période T_0 des oscillations harmoniques, donner sans démonstration l'approximation de t_{95} et **tracer la solution**, avec $Q \approx 3$.

Fig. 6.1 – Tracé solution $Q \approx 3$.