Optimization Theory

Lecture 09

Fudan University

luoluo@fudan.edu.cn

Outline

Newton's Method

Damped Newton Method

Outline

Newton's Method

2 Damped Newton Method

Newton's Method

Recall that optimizing smooth function $f(\mathbf{x})$ by gradient descent

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t)$$

is based on minimizing RHS of

$$f(\mathbf{y}) \leq f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{y} - \mathbf{x}_t \rangle + \frac{L}{2} \|\mathbf{y} - \mathbf{x}_t\|_2^2.$$

In a local region, we can minimize the RHS of

$$f(\mathbf{y}) \approx f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{y} - \mathbf{x}_t \rangle + \frac{1}{2} \langle \mathbf{y} - \mathbf{x}_t, \nabla^2 f(\mathbf{x}_t) (\mathbf{y} - \mathbf{x}_t) \rangle.$$

Suppose $abla^2 f(\mathbf{x}_t)$ is non-singular, then we achieve Newton's method

$$\mathbf{x}_{t+1} = \mathbf{x}_t - (\nabla^2 f(\mathbf{x}_t))^{-1} \nabla f(\mathbf{x}_t).$$

Quadratic Convergence

Theorem

Suppose the twice differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ has L_2 -Lipschitz continuous Hessian and local minimizer \mathbf{x}^* with $\nabla^2 f(\mathbf{x}^*) \succeq \mu \mathbf{I}$, then the Newton's method

$$\mathbf{x}_{t+1} = \mathbf{x}_t - (\nabla^2 f(\mathbf{x}_t))^{-1} \nabla f(\mathbf{x}_t)$$

with $\|\mathbf{x}_0 - \mathbf{x}^*\|_2 \le \mu/(2L_2)$ holds that

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|_2 \le \frac{L_2}{\mu} \|\mathbf{x}_t - \mathbf{x}^*\|_2^2.$$

Newton's method has local quadratic convergence, which requires

$$T=\mathcal{O}(\ln\ln(1/\epsilon))$$

iterations to achieve $\|\mathbf{x}_T - \mathbf{x}^*\|_2 \le \epsilon$.

Standard Newton's Method

Strengths:

- 1 The quadratic convergence is very fast (even for ill-conditioned case).
- 2 The algorithm is affine invariant.

Weakness:

- 1 The convergence guarantee is local.
- ② The iteration is expensive for large d.

Outline

Newton's Method

2 Damped Newton Method

Newton's Method with Line Search

Algorithm 1 Newton's Method with Line Search

- 1: **Input:** $\mathbf{x}_0 \in \mathbb{R}^d$, $\tau \in (0,1)$, $c_1 \in (0,1)$
- 2: **for** t = 0, 1...
- 3: $\mathbf{p}_t \leftarrow -(\nabla^2 f(\mathbf{x}_t))^{-1} \nabla f(\mathbf{x}_t)$
- 4: $\alpha \leftarrow 1$
- 5: while $f(\mathbf{x}_t + \alpha \mathbf{p}_t) > f(\mathbf{x}_t) + c_1 \alpha \langle \nabla f(\mathbf{x}_t), \mathbf{p}_t \rangle$ do
- 6: $\alpha \leftarrow \tau \alpha$
- 7: end while
- 8: $\mathbf{x}_{t+1} = \mathbf{x}_t + \alpha \mathbf{p}_t$
- 9: end for
- **①** For strongly-convex $f(\cdot)$, the direction \mathbf{p}_t is a descent direction.
- What is the global convergence rate?

Damped Newton Method

The damped Newton method is based on

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{1 + M_f \lambda_f(\mathbf{x}_t)} (\nabla^2 f(\mathbf{x}_t))^{-1} \nabla f(\mathbf{x}_t),$$

where $M_f > 0$ and

$$\lambda_f(\mathbf{x}_t) = \sqrt{\left\langle \nabla f(\mathbf{x}_t), \left(\nabla^2 f(\mathbf{x}_t) \right)^{-1} \nabla f(\mathbf{x}_t) \right\rangle}.$$

This method has global convergence guarantee under mild assumptions.