24Fall MATH350 Honours Discrete Mathmetics

Assignment #3: Spanning trees and bipartite graph

Shawn Cheng October 8, 2024

Problem 1.

Proof: First, let's prove the hint. $\forall v \in V(G)$, there are two cases:

- 1. There are even number of edges in $F_1 \cap F_2$ that is incident to v. Since F_1, F_2 are both even degree, we have even numbers of edges in both $F_1 F_2$ and $F_2 F_1$ that are incident to v. Thus, there are even number of edges in $F_1 \triangle F_2$ that is incident to v, i.e. $F_1 \triangle F_2$ is even-degree.
- 2. There are odd number of edges in $F_1 \cap F_2$ that is incident to v. Similarly, we have odd numbers of edges in both $F_1 F_2$ and $F_2 F_1$ that are incident to v. Thus, there are even number of edges in $F_1 \triangle F_2$ that is incident to v, i.e. $F_1 \triangle F_2$ is even-degree.

Let $F':=E(G)-E(T)=\{e_1,e_2,\ldots,e_k\}$. Let $F(e_i)$ be the edge set of the fundamental cycle $FC(T,e_i)$. Obviously, $F(e_i)$ is even-degree. By hint, $F:=F(e_1)\triangle F(e_2)\triangle\ldots\triangle F(e_k)$ is even-degree. And e_i for all $i\in\{1,2,\ldots,k\}$ is in F, as $e_i\in F(e_i)$ and $e_i\notin F(e_j)$, where $j\neq i$. Thus, $F\cup E(T)=E(G)$. Therefore, there is an even-degree set $F=F(e_1)\triangle F(e_2)\triangle\ldots\triangle F(e_k)$ with $F\cup E(T)=E(G)$. \square

Problem 2.

(a) Let N be the number of spanning tree in K_n containing e. Now, let's try to present N', the number of all spanning tree in a complete graph of n vertices with N.

$$N' = \frac{N \times \frac{n(n-1)}{2}}{n-1}$$

For numerator, the number of spanning tree containing e is N and there is a total number of $\frac{n(n-1)}{2}$ in a complete graph of n vertices. For denominator, each spanning tree containing e is counted n-1 times, as each spanning tree contains n-1 edges.

By Cayley's theorem, $N'=n^{n-2}$. Therefore, $N=2n^{n-3}$. \square (b) $2n^{n-2}$

Problem 3.

Assume without losing generality, G is connected (If it is not connected, we can discuss in each components respectively and combine them together).

Obviously, for every graph G there exist at least one bipartite subgraph H such that V(H) = V(G), as the spanning tree of G is bipartite. Let (A, B) be the bipartition of G such that the number of edges with one end in A and another in B is maximized. Let F be the edge set of edges described above. Let H' be the subgraph of G with V(H') = V(G) and E(H') = F.

For H', we have $deg_{H'}(v) \geq deg_G(v)/2$ for every $v \in V(H')$. Suppose not, there exist a v such that $deg_{H'}(v) < deg_G(v)/2$. Assume without losing generality, $v \in A$. Then in original graph G the number of vertices adjacent to v in A is more than B. Consider a new bipartition $(A - \{v\}, B + \{v\})$, the number of edges with one end in $A - \{v\}$ and another in $B + \{v\}$ is larger than |F|, which contradicts to the maximum. Therefore, we have H is a bipartite subgraph of G, such that V(H') = V(G) and $deg_{H'}(v) \geq deg_G(v)$ for every $v \in V(H')$. \square