

UNIVERSIDADE DA BEIRA INTERIOR

Departamento de Ciências Aeroespaciais

Edifício 2 das Engenharias - Calçada Fonte do Lameiro, 6200-358 Covilhã (275) 329732 * Telefax (275) 329768

Mestrado Integrado em Engenharia Aeronáutica – 2022-2023

Miniprojeto II de Sistemas de Aeronaves

(Entrega da resolução por email até 12 de janeiro de 2023)

O miniprojeto deve ser realizado por grupos de 1 ou 2 pessoas.

Tarefa I

Implementar o algoritmo de filtragem dinâmica (i.e. recursiva/on-line) para processamento de sinais temporais. Encontram-se no Anexo I dados (no ficheiro Excel) que podem ser usados para testar os programas de filtragem. Cada grupo deve entregar o código-fonte do programa escrito, com exemplos de resultados gráficos do processo de filtragem.

Tarefa II (10 a 15 páginas)

- **II.1.** Descrever sucintamente o papel e os princípios de funcionamento de cada um dos seguintes sistemas:
- Sistemas elétricos;
- Sistemas hidráulicos:
- Sistemas pneumáticos;
- Trem de aterragem.
- **II.2.** Cada grupo de trabalho deve escolher um sistema no Anexo II e elaborar uma análise descritiva sucinta do sistema escolhido de acordo com o seguinte plano:
 - 1. Papel do sistema numa aeronave
 - 2. Princípios de funcionamento
 - 3. Vantagens e limitações

Tarefa III

Considera-se o seguinte diagrama de blocos do controlo da dinâmica do rolamento de uma aeronave (fig. 1):

Figura 1 - Controlo do rolamento

• Ramo direto:

$$G(s) = \frac{\delta_a(s)}{e(s)} = \frac{\alpha s + \beta}{s^3 + 2s^2 + \gamma s + \delta}, \quad \delta_a \text{ \'e a deflex\~ao dos ailerons, com } e = \phi_{ref} - \hat{\phi};$$

$$H(s) = \frac{\phi(s)}{\delta_a(s)} = \frac{s + 5}{s^2 + 8s + 1}; \quad \phi \text{ \'e o \^angulo de pranchamento da aeronave.}$$

• Ramo de realimentação (sensor): $R(s) = \frac{3}{0.5s + 3}$.

Cada grupo de trabalho deve escolher uma condição de voo no Anexo III e responder às seguintes perguntas com os correspondentes valores dos parâmetros α , β , γ e δ .

- 1. Determinar a função de transferência do ramo direto do sistema.
- 2. Analisar a estabilidade do ramo direto do sistema.
- 3. Determinar a função de transferência do sistema de malha aberta.
- 4. Determinar a função de transferência do sistema de malha fechada.
- 5. Analisar a estabilidade do sistema de malha fechada.

Bibliografia

T. Eismin, *Aircraft Electricity and Electronics*, 5th Edition, (1994).

A. Helfrick, Practical Aircraft Electronic Systems, Prentice-Hall, (1997).

D. Lombardo, Aircraft Systems, McGraw-Hill Professional; 2nd Edition, (1998).

N. D. Manring, *Hydraulic Control Systems*, John Wiley & Sons, (2005). http://www.allstar.fiu.edu/aero/

Anexo II - Sistemas de Aeronaves

Sistema	Grupo (por preencher)
S1. Ailerons	
S2. Rudder	
S3. Profundor/Elevador	
S4. Flaps	
S5. Spoilers e "Airbrake"	
S6. Slats	
S7. Atuadores PMSM	
S8. Alimentação Elétrica para UAVs	
S9. Giroscópios para aeronaves comerciais	
S10. Acelerómetros para aeronaves comerciais	
S11. INS para Mísseis	
S12. Sistema APU	
S13. Sistema de Pressurização de Aeronave	
S14. Geradores de Energia Elétrica	
S15. Sistema de Combustível	
S16. Sistema Antigelo e de Degelo	
S17. Velocímetro	
S18. Sistema RAT	
S19. Tubo de Pitot	
S20. Sistemas de Aviso de falhas	
S21. Sistemas de Proteção e Deteção de Fogo	
S22. Sistemas de Evacuação (de Passageiros)	
S23. Sistema de redução do ruido	
S24. Altímetros	
S25. Throttle	
S26. Horizonte artificial	

Anexo III - Condições de voo e valores dos parâmetros

Condições	Parâmetros	Condições	Parâmetros
C1	$\alpha = 1.2, \beta = 7.3, \gamma = 4, \delta = 5.1.$	C14	$\alpha = 8.0, \beta = 1.5, \gamma = 2.5, \delta = 1.4.$
C2	$\alpha = 0.8, \beta = 4, \gamma = 7.1, \delta = 3.8.$	C15	$\alpha = 1.7, \beta = 8.0, \gamma = 0.7, \delta = 0.1.$
С3	$\alpha = 4.9, \beta = 8.3, \gamma = 2, \delta = 1.$	C16	$\alpha = 3.6$, $\beta = 1.8$, $\gamma = 0.9$, $\delta = 7.2$.
C4	$\alpha = 3.1, \beta = 0.7, \gamma = 0.4, \delta = 8.6.$	C17	$\alpha = 1.3, \beta = 1.0, \gamma = 3.7, \delta = 2.0.$
C5	$\alpha = 5.1, \beta = 7.2, \gamma = 1.1, \delta = 0.7.$	C18	$\alpha = 1.2, \beta = 6.6, \gamma = 3.0, \delta = 1.1.$
C6	$\alpha = 0.7, \beta = 1.9, \gamma = 2.8, \delta = 0.7.$	C19	$\alpha = 2.0, \beta = 1.1, \gamma = 4.7, \delta = 4.0.$
C7	$\alpha = 4.4, \beta = 6.0, \gamma = 1.5, \delta = 3.3.$	C20	$\alpha = 1.6, \beta = 0.8, \gamma = 3.5, \delta = 0.7.$
C8	$\alpha = 5.6, \beta = 2.2, \gamma = 3.7, \delta = 4.3.$	C21	$\alpha = 1.3, \beta = 1.7, \gamma = 0.4, \delta = 4.9.$
С9	$\alpha = 7.0, \beta = 8.7, \gamma = 0.9, \delta = 1.4.$	C22	$\alpha = 0.1, \beta = 7.9, \gamma = 1.6, \delta = 0.7.$
C10	$\alpha = 1.1, \beta = 4.8, \gamma = 6.5, \delta = 7.7.$	C23	$\alpha = 1.8, \beta = 7.3, \gamma = 3.4, \delta = 5.5.$
C11	$\alpha = 3.1, \beta = 2.8, \gamma = 2.4, \delta = 3.9.$	C24	$\alpha = 9.3, \beta = 5.3, \gamma = 1.3, \delta = 4.2.$
C12	$\alpha = 3.7, \beta = 2.6, \gamma = 5.2, \delta = 6.3.$	C25	$\alpha = 2.8, \beta = 5.2, \gamma = 7.3, \delta = 1.6.$
C13	$\alpha = 8.8, \beta = 1.6, \gamma = 3.2, \delta = 3.5.$	C26	$\alpha = 3.6$, $\beta = 2.8$, $\gamma = 6.1$, $\delta = 1.3$.