Problématique de l'estimation paramétrique

▶ Famille de distributions :

On dispose d'une famille de lois de variables aléatoires, à un ou deux **paramètres** continus. (On note X une « variable modèle » de cette loi.) Par exemple, les familles de lois usuelles :

Lois discrètes à valeurs entières				Lois continues à densité			
	Loi de probabilités		Paramètre	Loi de probabilités		Paramètres	
	de Bernoulli	$\mathcal{B}(p)$	$p\in]0;1[$	uniforme	$\mathcal{U}[a;b]$	$a, b \in \mathbb{R},$	a < b
	de Poisson	$\mathcal{P}(\lambda)$	$\lambda > 0$	normale	$\mathcal{N}(\mu,\sigma^2)$	$\mu \in \mathbb{R},$	$\sigma^2 > 0$
	géométrique	$\mathcal{G}(p)$	$p \in]0;1[$	exponentielle	$\mathcal{E}(\lambda)$	$\lambda > 0$	

On suppose inconnue à estimer la vraie valeur (valeur théorique) du paramètre de la loi.

Notion d'échantillon de la loi étudiée

Un échantillon $X_1, ..., X_n$ de la loi étudiée, est une famille de variables aléatoires qui sont :

- mutuellement indépendantes,
- de même loi que la « variable modèle » X.

Les valeurs prises par l'échantillon $x_1, ..., x_n$ s'appellent l'observation.

Estimateur

Un **estimateur** est une **statistique** : une variable aléatoire $\varphi(X_1, ..., X_n)$ définie en termes de l'échantillon, qui ne dépend **pas** du paramètre à estimer, susceptible de donner,

- avec une probabilité élevée
- une valeur proche de la vraie valeur du paramètre à estimer.

▶ Biais, risque quadratique

Notion	$(Interpr\'etation)$	Formule
Biais	(erreur moyenne)	$b_a(A_n) = \mathbb{E}_a[A_n - a] = \mathbb{E}_a[A_n] - a$
Risque quadratique	(erreur quadratique moyenne)	$r_a(A_n) = \mathbb{E}_a [(A_n - a)^2]$
	-variance (méthode de calcul)	$r_a(A_n) = (b_a(A_n))^2 + \operatorname{Var}_a(A_n)$

• Exemple central : l'estimateur de moyenne empirique

C'est la moyenne arithmétique de l'échantillon, notée $\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$.

- C'est un estimateur sans biais de l'espérance de la loi : $\mathbb{E}\big[\overline{X}_n\big] = \mathbb{E}\big[X\big]$
- Sa variance (et donc aussi son risque quadratique) est : $\operatorname{Var}\left(\overline{X}_{n}\right) = \frac{1}{n}\operatorname{Var}\left(X\right)$

Autres

On utilise aussi souvent min $/\max(X_1, ..., X_n)$: savoir en calculer la fonction de répartition. (ou d'anti-répartition)

Connaître les règles de calcul sur l'espérance, et la variance (combinaison linéaire, indépendance)