Logique

Calcul des propositions et des prédicats

Olivier Nicole* DI ENS

14 septembre 2020

Table des matières

L	Calcul des propositions	1	
	1.1 Syntaxe	1	
	1.2 Sémantique	3	
	1.3 Autres connecteurs logiques	4	
	1.4 Les règles de calcul	5	
2	Calcul des prédicats 2.1 Définitions	5 5	
1	1 Calcul des propositions		
1.	1.1 Syntaxe		
4	Définition 1 – Alphabet		
	Un symbole est l'une de ces quatre entités :	1	

— une variable propositionnelle (ou proposition atomique, ou atome) :

 $A, B, C, A_0, ..., A_n;$

— une constante : \top , \bot ;

— un connecteur logique : \lor , \land , \lnot ;

— une paire de séparateurs : (,).

^{*}Ce document est repris du cours de Marc Chevalier, avec son aimable autorisation. https://teaching.marc-chevalier.com

Définition 2 – Formules

L'ensemble des formule est définie par induction par :

- les variables et constantes propositionnelles sont des formules;
- si φ_1 et φ_2 sont des formules :
 - $\varphi_1 \wedge \varphi_2$ est une formule;
 - $\varphi_1 \vee \varphi_2$ est une formule;
 - $-\neg \varphi_1$ est une formule;
 - (φ_1) est une formule.

Définition 3 – Priorité des opérateurs

Les opérateurs par ordre de priorité décroissante :

- **--** ¬:
- ∧;
- V.

Définition 4 – Taille d'une formule

Étant donné une formule φ , on définit sa taille $|\varphi|$ par :

- 1 si φ est une variable ou constante propositionnelle;
- $|\varphi_1| \operatorname{si} \varphi = (\varphi_1);$
- $-1+|\varphi_1| \text{ si } \varphi = \neg \varphi_1;$
- $-1 + \max(|\varphi_1|, |\varphi_2|)$ si $\varphi = \varphi_1 \vee \varphi_2$ ou $\varphi = \varphi_1 \wedge \varphi_2$;

où φ_1 et φ_2 sont des formules du calcul propositionnel.

Définition 5

On définit l'ensemble des variables par induction sur les formules de la manière suivante :

- $Var(A) = \{A\}$ si A est une variable propositionnelle;
- $-- \operatorname{Var}(\top) = \varnothing;$
- $-- \operatorname{Var}(\bot) = \varnothing;$
- $\operatorname{Var}(\neg \varphi) = \operatorname{Var}(\varphi)$ si φ est une formule du calcul propositionnel;
- $\operatorname{Var}(\varphi_1 \wedge \varphi_2) = \operatorname{Var}(\varphi_1) \cup \operatorname{Var}(\varphi_2)$ si φ_1 et φ_2 sont deux formules du calcul propositionnel;
- $\operatorname{Var}(\varphi_1 \vee \varphi_2) = \operatorname{Var}(\varphi_1) \cup \operatorname{Var}(\varphi_2)$ si φ_1 et φ_2 sont deux formules du calcul propositionnel.

1.2 Sémantique

Définition 6 – Environnement

Soit V un ensemble de variables propositionnelles. Un environnement sur V est une fonction de $V \to \mathcal{B}$.

Définition 7 – Évaluation

Soient φ une formule et V un sur-ensemble fini de $Var(\varphi)$. Notons $V := \{A_1, \ldots, A_n\}$. Soit σ un environnement sur V.

Nous définissons l'évaluation $[\varphi]_{\sigma}$ de φ sur l'environnement σ par induction de la manière suivante :

$$\begin{aligned} &- & [\bot]_{\sigma} = \mathbf{ff} \;; \\ &- & [\top]_{\sigma} = tt \;; \\ &- & [A_{i}]_{\sigma} = \sigma(A_{i}) \;; \\ &- & [(\varphi)]_{\sigma} = [\varphi]_{\sigma} \;; \\ &- & [(\neg \varphi)]_{\sigma} = \begin{cases} tt & \text{si } [\varphi]_{\sigma} = \mathbf{ff}, \\ \mathbf{ff} & \text{sinon} \;; \end{cases} \\ &- & [(\varphi_{1} \lor \varphi_{2})]_{\sigma} = \begin{cases} tt & \text{si } [\varphi_{1}]_{\sigma} = tt \text{ ou si } [\varphi_{2}]_{\sigma} = tt, \\ \mathbf{ff} & \text{sinon} \;; \end{cases} \\ &- & [(\varphi_{1} \land \varphi_{2})]_{\sigma} = \begin{cases} tt & \text{si } [\varphi_{1}]_{\sigma} = tt \text{ et si } [\varphi_{2}]_{\sigma} = tt, \\ \mathbf{ff} & \text{sinon}. \end{cases} \end{aligned}$$

Définition 8 – Table de vérité

Soient φ une formule et V un sur-ensemble de $\mathrm{Var}\,(\varphi)$ non vide. La sémantique de la formule φ (paramétrée par V) est une fonction associant chaque environnement σ sur V à la valeur $[\varphi]_{\sigma}$ prise par φ pour l'environnement σ . Cette fonction est aussi appelée table de vérité. Elle est notée $[\![\varphi]\!]_V$.

Définition 9 – Équivalence sémantique

Soit φ_1 et φ_2 deux formules du calcul propositionnel. Nous dirons que φ_1 et φ_2 sont équivalentes sur le point sémantique si et seulement si les deux tables de vérités coïncident ie. $[\![\varphi_1]\!]_{\operatorname{Var}(\varphi_1)\cup\operatorname{Var}(\varphi_2)}=[\![\varphi_2]\!]_{\operatorname{Var}(\varphi_1)\cup\operatorname{Var}(\varphi_2)}$. Dans ce cas, nous noterons $\varphi_1\equiv\varphi_2$.

Définition 10 – Tautologie

Soit φ une formule. Nous dirons que φ est une tautologie si et seulement si $\varphi \equiv \top$.

Définition 11 – Contradiction

Soit φ une formule. Nous dirons que φ est une contradiction si et seulement si $\varphi \equiv \bot$.

1.3 Autres connecteurs logiques

Définition 12 – Implication

On introduit le connecteur \Rightarrow : $(\varphi_1 \Rightarrow \varphi_2)$ est une formule propositionnelle. On lui donne la sémantique :

$$[(\varphi_1 \Rightarrow \varphi_2)]_{\sigma} = \begin{cases} tt & \text{si } [\varphi_1]_{\sigma} = \mathbf{ff} \text{ ou } [\varphi_2]_{\sigma} = tt \\ \mathbf{ff} & \text{sinon }; \end{cases}$$

Proposition 1

Nous avons:

$$(\varphi_1 \Rightarrow \varphi_2) \equiv ((\neg \varphi_1) \lor \varphi_2).$$

Proposition 2

Nous remarquons que $(\bot \Rightarrow \varphi_1)$ est une tautologie

Définition 13 – Équivalence

On introduit le connecteur \Leftrightarrow : $(\varphi_1 \Leftrightarrow \varphi_2)$ est une formule propositionnelle. On lui donne la sémantique :

$$[(\varphi_1 \Leftrightarrow \varphi_2)]_{\sigma} = \begin{cases} tt & \text{si } [\varphi_1]_{\sigma} = [\varphi_2]_{\sigma} \\ ff & \text{sinon }; \end{cases}$$

Proposition 3

Nous avons:

$$(\varphi_1 \Leftrightarrow \varphi_2) \equiv ((\varphi_1 \Rightarrow \varphi_2) \land (\varphi_2 \Rightarrow \varphi_1)).$$

1.4 Les règles de calcul

Proposition 4 – DE MORGAN

$$(\neg(\varphi_1 \lor \varphi_2)) \equiv ((\neg\varphi_1) \land (\neg\varphi_2))$$
$$(\neg(\varphi_1 \land \varphi_2)) \equiv ((\neg\varphi_1) \lor (\neg\varphi_2))$$

Proposition 5 – Tiers exclu

$$(\neg(\neg\varphi_1)) \equiv \varphi_1$$

Proposition 6

La relation \equiv est une relation d'équivalence, c'est à dire :

- $\varphi_1 \equiv \varphi_1$ (réflexivité);
- si $\varphi_1 \equiv \varphi_2$ et $\varphi_2 \equiv \varphi_3$ alors $\varphi_1 \equiv \varphi_3$ (transitivité);
- si $\varphi_1 \equiv \varphi_2$ alors $\varphi_2 \equiv \varphi_1$ (symétrie).

Corollaire 1

$$(\neg(\varphi_1 \Rightarrow \varphi_2)) \equiv (\varphi_1 \land (\neg \varphi_2))$$

2 Calcul des prédicats

2.1 Définitions

Définition 14 – Prédicat atomique

Un prédicat atomique est une proposition avec des variables libres.

Définition 15 – Prédicat

Un prédicat est formé à partir de prédicats atomiques, des connecteurs logiques habituels, ainsi que des quantificateurs, que nous allons introduire par la suite.

Définition 16 – Quantificateur universel

Soit P(x) un prédicat portant sur les éléments de E. Nous dirons que la propriété $(\forall x \in E, P(x))$ est vraie si et seulement si pour tout élément $x \in E$, P(x) est vrai.

Définition 17 – Quantificateur existentiel

Soit P(x) un prédicat portant sur les éléments de E. Nous dirons que la propriété $(\exists x \in E : P(x))$ est vraie si et seulement si il existe un élément $x \in E$ tel que P(x) soit vrai.

Proposition 7

Soit P un prédicat portant sur les éléments de l'ensemble vide. Alors la propriété :

$$\forall x \in \varnothing : P(x).$$

est satisfaite.

Proposition 8

Soit P un prédicat portant sur les éléments de l'ensemble vide. Alors la propriété :

$$\exists x \in \varnothing : P(x).$$

est fausse.

Proposition 9

Les propriétés suivantes sont équivalentes :

- $-- (\forall x \in X, P(x));$
- $(\neg(\exists x \in X : (\neg P(x)))).$

Proposition 10

Les propriétés suivantes sont équivalentes :

- $-- (\exists x \in X : P(x));$
- $-- (\neg(\forall x \in X, (\neg(P(x))))).$

Définition 18

Soit P(x) un prédicat portant sur les éléments de E. Nous dirons que la propriété $(\exists! x \in E : P(x))$ est vraie si et seulement si il existe un unique élément $x \in E$ tel que P(x) soit vrai.