MATH 2023 Fall 2021 Multivariable Calculus

Written By: Ljm

Chapter 13 Application of Partial Derivatives

1 Extreme Values

Recall that in single variable calculus:

 x_1 is a relative maximum point, if $f'(x_1) = 0$ and $f''(x_1) < 0$, x_2 is a relative minimum point, if $f'(x_2) = 0$ and $f''(x_2) > 0$.

Similarly, in multi-variable calculus, the critical point is where

$$\nabla f(\mathbf{r}_0) = (f_{x_1}(\mathbf{r}_0), f_{x_2}(\mathbf{r}_0), \cdots, f_{x_n}(\mathbf{r}_0)) = \mathbf{0}$$

And, if h has a **relative extremum** at a point \mathbf{r}_0 , then \mathbf{r}_0 is a **critical point**, and $\nabla f(\mathbf{r}_0) = \mathbf{0}$. However, if \mathbf{r}_0 is a critical point, we *cannot infer* that \mathbf{r}_0 is a relative extremum. The reason is similar in single variable calculus.

Different from single variable, a critical point which is not a relative extremum is a saddle point.

However, to classify the critical points, we need the **second derivative test**, or **D-test**.

Second Derivative Test

Suppose f(x,y) has a critical point at $\mathbf{r}_0 = (x_0,y_0)$ (i.e. $\nabla f(\mathbf{r}_0) = \mathbf{0}$) and the second partial derivative of f(x,y) are continuous in a disk with center $\mathbf{r}_0 = (x_0,y_0)$. Let

$$D = \begin{vmatrix} f_{xx}(\mathbf{r}_0) & f_{xy}(\mathbf{r}_0) \\ f_{yx}(\mathbf{r}_0) & f_{yy}(\mathbf{r}_0) \end{vmatrix} = f_{xx}(\mathbf{r}_0) f_{yy}(\mathbf{r}_0) - f_{xy}^2(\mathbf{r}_0)$$

D	$f_{xx}\left(\mathbf{r}_{0}\right) \text{ or } f_{yy}\left(\mathbf{r}_{0}\right)$	nature of \mathbf{r}_0
> 0	> 0	relative minimum
> 0	< 0	relative maximum
< 0		saddle point
= 0		no conclusion can be drawn

I'd like to omit the proof of D-Test here.

This example shows basic use of D-Test.

[Example.] Find the relative minima and maxima of $f(x,y) = x^3 + y^3 - 3x - 12y + 20$.

$$f_x = 3x^2 - 3$$
 and $f_y = 3y^2 - 12$

[Solution.] For critical points, $f_x = f_y = 0 \implies x = \pm 1, y = \pm 2.$

(1,2),(-1,2),(1,-2),(-1,-2) are critical points.

To apply D-Test, compute: $f_{xx} = 6x$, $f_{yy} = 6y$, $f_{xy} = 0$, hence $D = f_{xx} \cdot f_{yy} - (f_{xy})^2 = 36xy$

Point	f_{xx}	f_{yy}	f_{xy}	D	Type
(1,2)	6	12	0	72	min
(-1, 2)	-6	12	0	-72	saddle
(1, -2)	6	-12	0	-72	saddle
(-1, -2)	-6	-12	0	72	max

This example shows how to find extrema on a closed and bounded region.

[Example.] Find the absolute extrema of the function

$$z = f(x, y) = xy - x - 3y$$

on the *closed* and *bounded* set R, where R is the triangular region with vertices (0,0),(0,4) and (5,0).

[Solution.]
$$f_x = y - 1, f_y = x - 3, f_{xy} = f_{yx} = 1, f_{xx} = f_{yy} = 0, D = -1$$

For critical points, $\nabla f = (f_x, f_y) = (0, 0) \Rightarrow x = 3, y = 1.$

This point is inside the domain. But we still need to find possible extreme points on the boundary of domain.

(1) Along OA:, $\mathbf{r}_0 = (0,0)$, $\mathbf{r}_1 = (5,0)$, so the parametric representation of line OA is:

$$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1, = (5t, 0), \ t \in [0, 1]$$

hence
$$z = f(\mathbf{r}(t)) = -5t, \ t \in [0, 1]$$

So along OA, the possible extreme points are (0,0) and (5,0).

(2) Along OB:, similarly, $\mathbf{r}(t) = (0, 4t), t \in [0, 1], z = f(\mathbf{r}) = -12t$,

So along OB, the possible extreme points are (0,0) and (0,4).

(3) Along
$$AB : \mathbf{r}(t) = (5 - 5t, 4t), \ t \in [0, 1], \ z = -20t^2 + 13t - 5, \ t \in [0, 1]$$

There is one critical point on AB, when dz/dx=0, at $\left(\frac{27}{8},\frac{13}{10}\right)$.

Then we compute the value of all possible extremum points,

(x,y)	f(x,y)
(3,1)	-3
$ \left(\frac{27}{8}, \frac{13}{10}\right) $	$-\frac{231}{80}$
(0,0)	0
(5,0)	-5
(0,4)	-12

Therefore, absolute maximum value is 0 which occurs at (0,0), absolute minimum value is -12 which occurs at (0,4).

This example converts the problem to max/min problem.

[Example.] Find the points on the surface $z^2 = xy + 1$ that are closest to the origin.

[Solution.] $d^2 = (x-0)^2 + (y-0)^2 = x^2 + y^2 + xy + 1 = f(x,y)$, only need to minimize this function.

This is a more comprehensive and tricker problem.

[Example.] Find absolute minimum and maximum value of $f(x,y) = 2x^3 + y^4$ on the set $D = \{(x,y)|x^2 + y^2 \le 1\}$.

[Solution.] First, find the critical point of f(x,y) on entire xy plane.

$$f_x=6x^2, f_y=4y^3$$
, critical points: $f_x=f_y=0 \Rightarrow x=y=0$, and $f(0,0)=0$.

Then, on the circle $x^2 + y^2 = 1$, eliminate y, we have:

$$g(x) = f(x,y) = x^4 + 2x^3 - 2x^2 + 1, -1 \le x \le 1$$
$$g'(x) = 4x^3 + 6x - 4x = 0$$

the equation has solutions: $(x,y)=(0,\pm 1),\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$, to check each of them:

$$f(0,\pm 1) = g(0) = 1, \ f\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) = g\left(\frac{1}{2}\right) = \frac{13}{16}$$

Also, we need to check the *endpoints*, (since we are looking for min/max point of g(x) on $x \in [-1,1]$)

$$g(1) = 2, \ g(-1) = -2$$

Therefore, the absolute minimum is g(-1) = f(-1,0) = -2, the absolute maximum is g(1) = f(1,0) = 2.

Notice that, if you are interested in the nature of the critical point at (0,0), you may try D-test:

$$D = f_{xx}f_{yy} - f_{xy}^2 = 144xy^2 = 0$$
, at $(0,0)$

so the D-test fails, we have to use other methods to determine it:

In the plane y = 0, $f(x, 0) = 2x^3$, and in the plane x = 0, $f(0, y) = y^4$.

In the plane
$$y = 0$$
, $f(x, 0) = 2x^3$

In the plane x = 0, $f(0, y) = y^4$

Thus, the critical point is a saddle point.

2 Lagrange multipliers

Motivation: sometimes we want to maximize/minimize f(x, y) subject to g(x, y) = k.

How to find the maximum or minimum value?

1. Find all values of $\bf r$ and λ such that

$$\nabla f(\mathbf{r}) = \lambda \nabla g(\mathbf{r})$$

and

$$g(\mathbf{r}) = k$$

2. Evaluate f at all the points \mathbf{r} that arise from step (1). The largest (smallest) of these values is the maximum (min) value of f.

Remark: Lagrange's method only finds critical points, it *does not tell* whether the function is maximized or minimized.

Proof of Lagrange's method:

Notice that, maximizing or minimizing a function $f(x_1, x_2, \dots, x_n)$ subject to a constraint of $g(x_1, x_2, \dots, x_n) = k$ is to restrict the point (x_1, x_2, \dots, x_n) to lie on the *level surface* S given by $g(x_1, x_2, \dots, x_n) = k$. For example, if n = 2, maximize(or minimize) z = f(x, y) subject to constraint curve C : g(x, y) = k (shown in green) is to restrict the point (x, y) to lie on the red curve.

Suppose z has a maximum value at a point \mathbf{P} , and let C be the constraint curve with vector equation

$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$$
 be on $g(x, y) = k$.

Assume also that at the point \mathbf{P} , $t = t_0$.

Since on the constraint curve C: z(t) = f(x(t), y(t)),

and the point **P** should be a critical point. By using the chain rule,

$$\begin{aligned} \frac{dz}{dt} &= \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} \\ &= \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \cdot \left(\frac{dx}{dt}, \frac{dy}{dt}\right) \\ &= \nabla f \cdot \mathbf{r}'(t) \end{aligned}$$

Then at the point \mathbf{P} ,

$$\frac{dz}{dt}\Big|_{t=t_0} = \nabla f(x(t_0), y(t_0)) \cdot \mathbf{r}'(t_0) = 0$$
 (since **P** is critical point)

Therefore,

$$\nabla f(x(t_0), y(t_0)) \perp \mathbf{r}'(t_0)$$

Moreover, since ∇g is normal vector to the level set,

$$\nabla g(x(t_0), y(t_0)) \perp \mathbf{r}'(t_0)$$

Therefore, $\nabla f \parallel \nabla g$, $\nabla f = \lambda \nabla g$.

The number λ is called a Lagrange multiplier.

This example shows how to use Lagrange's Method.

[**Example.**] Find the extreme values of $f(x,y) = x^2 - y^2$ subject to $x^2 + y^2 = 1$.

[Solution.] Find x, y and λ such that $\nabla f = \lambda \nabla g$, where $g = x^2 + y^2 = 1$ (constant)

$$2x\mathbf{i} - 2y\mathbf{j} = \lambda(2x\mathbf{i} + 2y\mathbf{j})$$

, which gives

$$\begin{cases} 2x = \lambda \cdot 2x \\ -2y = \lambda \cdot 2y \end{cases} \Rightarrow \begin{cases} \lambda = 1 & \text{or } x = 0 \\ \lambda = -1 & \text{or } y = 0 \end{cases}$$

From $x^2 + y^2 = 1$, we have:

$$x = 0, y = \pm 1, \lambda = -1$$

 $y = 0, x = \pm 1, \lambda = 1$

Therefore, f has possible extreme values at point (0,1), (0,-1), (-1,0) and (1,0). Evaluating f at these four points, we find that

$$f(0,1) = f(0,-1) = -1$$
 (min)

$$f(1,0) = f(-1,0) = 1 \pmod{8}$$

Interpretation of λ

This will not be tested in exam.

Actually, λ has an interpretation which can be very useful.

Suppose M is the optimal value of f(x,y) subject to the constraint g(x,y)=c.

Then f(x,y) = M for some ordered pair (x,y) that satisfies the three Lagrangian equations

$$f_x - \lambda g_x = 0$$
$$f_y - \lambda g_y = 0$$
$$g = c$$

Since
$$M = f(x, y)$$

$$\frac{dM}{dc} = \frac{\partial f}{\partial x} \frac{dx}{dc} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dc}$$

$$= f_x \frac{dx}{dc} + f_y \frac{dy}{dc}$$

$$= \lambda g_x \frac{dx}{dc} + \lambda g_y \frac{dy}{dc}$$

$$= \lambda \left(g_x \frac{dx}{dc} + g_y \frac{dy}{dc} \right)$$

$$= \lambda \frac{dg}{dc} = \lambda$$

where dM/dc is evaluated at the optimal solution values. In other words, λ measures the *sensitivity* of the optimal value of f to change in c.

The example below shows the application of λ .

[**Example.**] Use Lagrangian multiplier to find the maximum and minimum values of the function $f(x,y) = 4x^3 + y^2$ subject to the constraint $2x^2 + y^2 = 1$.

If the constraint equation changes to $2x^2+y^2=0.9$, estimate how this changes will affect the maximum and minimum values of f.

[Solution.] Let $g(x,y)=2x^2+y^2=1=c$, then for $\nabla f=\lambda \nabla g$, we have $(12x^2,2y)=\lambda (4x,2y)$, i.e.,

$$12x^{2} = \lambda 4x$$
$$2y = \lambda 2y$$
$$2x^{2} + y^{2} = 1$$

From the second equation, if $y \neq 0$, then $\lambda = 1$, substitute into the other two equations, we get $(x,y) = (0,\pm 1)$ or $\left(\frac{1}{3},\pm \frac{\sqrt{7}}{3}\right)$

However, if y = 0, then from third equation, $x = \pm \frac{\sqrt{2}}{2}$, substitute to first eq, we get:

$$\lambda = \frac{3\sqrt{2}}{2} \quad \text{when} \quad x = \frac{\sqrt{2}}{2}$$
$$\lambda = -\frac{3\sqrt{2}}{2} \quad \text{when} \quad x = -\frac{\sqrt{2}}{2}$$

λ	(x,y)	f(x,y)	nature
1	$(0,\pm 1)$	1	
1	$\left(\frac{1}{3},\pm\frac{\sqrt{7}}{3}\right)$	$\frac{25}{27}$	
$\frac{3\sqrt{2}}{2}$	$\left(\frac{\sqrt{2}}{2},0\right)$	$\sqrt{2}$	max
$-\frac{3\sqrt{2}}{2}$	$\left(-\frac{\sqrt{2}}{2},0\right)$	$-\sqrt{2}$	min

Since $\frac{dM}{dc} = \lambda$, so $\Delta M \approx \lambda \Delta c$, in this case, $\Delta c = -0.1$, so at min point,

$$\Delta M = -\frac{3\sqrt{2}}{2} \cdot (-0.1) = \frac{3\sqrt{2}}{20} \quad \text{(increase)}$$

at max point,

$$\Delta M = \frac{3\sqrt{2}}{2} \cdot (-0.1) = -\frac{3\sqrt{2}}{20} \quad \text{(decrease)}$$

This is the end of Chapter 13.