Subject Title: Machine Learning Subject Code: 20CST-316 Semester: V

Time: 3 Hours Maximum Marks: 60

Instructions: Attempt all questions

Insti	ructions: Atte	empt all que	estions					1
Q.	Statement							CO
No								mapping
Secti	on A $5 \times 2 = 10$) marks						
1	Differentiate a missing value with an outlier							CO2
2	Define Ensemble Learning							CO2
3	List out various advantages of using Decision Trees							CO2
4	Differentiate Unsupervised Learning and Reinforcement Learning							CO3
5	Define any problems using Naive Bayes for Classification							
Secti	on B $4 \times 5 = 20$) marks						
6	Compare SVM and Logistic Regression in handling outliers							CO2
7	Is Feature Scaling required for the KNN Algorithm? Explain with proj						h proper	CO3
	justification.							
8	Explain how the Random Forests give output for Classification							CO2
	and Regression problems							
9	Differentiate Manhattan Distance and Euclidean Distance in Clustering							CO3
	with an example							
Secti	ection C 3 x 10 = 30 marks							
10	Given the data in Table, reduce the dimension from 2 to 1 using the							CO3
	Principal Cor						,	
	Timespar domponent imaryors (1 dri) argorithm.							
	Feature	Example 1	Example 2	2	Example 3	Example 4	4	
	X ₁	4	8		13	7		
11	X ₂	11	4		5	14		004
11	Find the frequent itemsets and generate the association rules using the							CO4
	Apriori algorithm using given dataset which has various transactions.							
		TII		ITEMSETS				
		T1 T2		B, D B, C		-		
		T3				-		
		T4		A, B, D		-		
		Т5		A, C B, C				
		Т6						
		T7		A, C				
		T8 T9		A, B, C, E A, B, C		-		
	13 17, 5, 6							
	Circus Minimum Cumparts 2 Minimum Confidences 500/							
	Given: Minimum Support= 2, Minimum Confidence= 50%							
12	Justify with e	Justify with elaboration the following statement:						
	The k-means algorithm is based on the strong initial condition to decide							
	the Number of clusters through the assignment of 'k' initial centre							
	means.							