Итоговый конспект 1 из 6

1 Определения

1.1 Локальный максимум, минимум, экстремум

Определение. $f:E\subset\mathbb{R}\to\mathbb{R}, x_0\in E$ — локальный максимум функции, если

$$\exists U(x_0) \ \forall x \in U(x_0) \cap E \ f(x) \le f(x_0)$$

Аналогично определеяется минимум.

Определение. Экстремум — точка минимума либо максимума.

1.2 ! Первообразная, неопределенный интеграл

$$F,f:\langle a,b
angle o\mathbb{R}$$
 F — первообразная f на $\langle a,b
angle$ $orall x\in\langle a,b
angle$ $F'(x)=f(x)$

Неопределенный интеграл f на $\langle a,b\rangle$ — множество всех первообразных f:

$$\{F+c,c\in\mathbb{R}\}$$
, где F — первообразная

Обозначается $\int \! f = F + c$ или $\int \! f(x) dx$

1.3 Теорема о существовании первообразной

 $f \in C(\langle a,b \rangle)$ тогда у f существует первообразная.

1.4 Таблица первообразных

$$\int x^n dx = \frac{x^{(n+1)}}{n+1}, n \neq -1$$

$$\int \frac{1}{x} dx = \ln x$$

$$\int \sin x dx = -\cos x$$

$$\int \cos x dx = \sin x$$

$$\int e^x dx = e^x$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x$$

$$\int \frac{1}{\sqrt{1+x^2}} dx = \ln(x+\sqrt{1+x^2}) -$$
длинный логарифм
$$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x$$

$$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x$$

Почему где-то нет dx? Кохась забыл?

Итоговый конспект 2 из 6

1.5 Равномерная непрерывность

 $f:\langle a,b\rangle\subset\mathbb{R}\to\mathbb{R}$ равномерно непрерывна на $\langle a,b\rangle$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in \langle a, b \rangle : |x_1 - x_2| < \delta \ |f(x_1) - f(x_2)| < \varepsilon$$

Или для метрического пространства:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \ \rho(x_1, x_2) < \delta \ \rho(f(x_1), f(x_2)) < \varepsilon$$

Отличие от непрерывности на отрезке в том, что δ зависит только от ε и подходит для всех $x_1,x_2.$

1.6 Площадь, аддитивность площади, ослабленная аддитивность

 ${\cal E}$ — множество всех ограниченных фигур в ${\Bbb R}^2$ ("фигура" = подмножество ${\Bbb R}^2$) Площадь это $\sigma: {\cal E} \to {\Bbb R}_+$, такое что:

- 1. $A \in \mathcal{E}$ $A = A_1 \sqcup A_2$ $\sigma A = \sigma A_1 + \sigma A_2$ (конечная аддитивность)
- 2. $\sigma([a, b] \times [c, d]) = (d c)(b a)$

Ослабленная площадь $\sigma: \mathcal{E} \to \mathbb{R}_+$:

- 1. Монотонна
- 2. Нормирована
- 3. Ослабленная аддитивность: $E \in \mathcal{E}$ $E = E_1 \cup E_2$ $E_1 \cap E_2$ вертикальный отрезок, E_1 и E_2 лежат каждый в своей полуплоскости относительно этого отрезка $\Rightarrow \sigma E = \sigma E_1 + \sigma E_2$

1.7 ! Определенный интеграл

 $f:[a,b]\to\mathbb{R}$, непр.

$$\int_{a}^{b} f = \int_{a}^{b} f(x)dx := \sigma \Pi \Gamma(f_{+}, [a, b]) - \sigma \Pi \Gamma(f_{-}, [a, b])$$

1.8 Положительная и отрицательная срезки

 $f:\langle a,b\rangle\to\mathbb{R}$

 $f_{+} := \max(f, 0) -$ положительная срезка

 $f_{-} := \max(-f, 0)$ — отрицательная срезка

1.9 Среднее значение функции на промежутке

Отсутствует

1.10 Кусочно-непрерывная функция

 $f:[a,b] \to \mathbb{R}$, кусочно непрерывна

f — непр. на [a,b] за исключением конечного числа точек, в которых разрывы I рода

Пример.
$$f(x) = [x], x \in [0, 2020]$$

Итоговый конспект 3 из 6

2 Теоремы

2.1 Критерий монотонности функции. Следствия

$$f\in C(\langle a,b \rangle)$$
, дифф. в (a,b) Тогда f — возрастает $\Leftrightarrow \forall x\in (a,b) \;\; f'(x)\geq 0$

Доказательство. "
$$\Rightarrow$$
" По определению $f' \frac{f(x+h)-f(h)}{h} \geq 0$ " \Leftarrow " $x_1 > x_2$, по т. Лагранжа: $\exists c: f(x_1) - f(x_2) = f'(c)(x_1 - x_2) \geq 0$

Следствие. $f:\langle a,b\rangle\to\mathbb{R}$, тогда:

$$f = \mathrm{const} \Leftrightarrow (f \in C(\langle a, b \rangle) - \mathsf{дифф}.\ \mathsf{Ha}\ \langle a, b \rangle, f' \equiv 0)$$

Cледствие. $f \in C\langle a,b \rangle$, дифф. на (a,b). Тогда:

f строго возрастает \Leftrightarrow (1) и (2)

- ① $f' \ge 0$ на (a, b)
- $(2) f' \not\equiv 0$ ни на каком промежутке

Доказательство. "⇒" очевидно

"⇐" По лемме о возрастании в отрезке

Следствие. О доказательстве неравенств

$$g, f \in C([a, b\rangle)$$
, дифф. в (a, b)

$$f(a) \le g(a); \forall x \in (a,b) \ f'(x) \le g'(x)$$

Тогда $\forall x \in [a,b) \ f(x) \leq g(x)$

Доказательство.
$$g-f$$
 — возр., $g(a)-f(a) \geq 0$

2.2 Теорема о необходимом и достаточном условиях экстремума

 $f:\langle a,b
angle o \mathbb{R}$ $x_0 \in (a,b)$ f — дифф. на (a,b) Тогда:

- 1. x_0 лок. экстремум $\Rightarrow f'(x_0) = 0$
- 2. f-n раз дифф. в x_0

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$

Если
$$f^{(n)}(x_0)>0$$
, то
$$\begin{cases} n-\text{чет.}: & x_0-\text{локальный максимум}\\ n-\text{нечет.}: & x_0-\text{не экстремум} \end{cases}$$

Если
$$f^{(n)}(x_0) < 0$$
, то
$$\begin{cases} n - \text{чет.}: & x_0 - \text{локальный минимум} \\ n - \text{нечет.}: & x_0 - \text{не экстремум} \end{cases}$$

Доказательство. 1. т. Ферма

2. ф. Тейлора

$$f(x) = T_n(f, x_0)(x) + o((x - x_0)^n)$$

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

при x, близких к x_0 :

$$sign(f(x) - f(x_0)) = sign\left(\frac{f^{(n)}(x_0)}{n!}(x - x_0)^n\right)$$

Итоговый конспект 4 из 6

Тогда при чётном n

$$\operatorname{sign}(f(x) - f(x_0)) = \operatorname{sign} f^{(n)}(x_0) \Rightarrow x_0 - \operatorname{экстр}.$$

При нечётном n

$$\mathrm{sign}(f(x) - f(x_0)) = egin{cases} f^{(n)}(x_0), & x > x_0 \\ -f^{(n)}(x_0), & x < x_0 \end{cases} \Rightarrow x_0$$
 — не экстр.

2.3 Теорема Кантора о равномерной непрерывности

 $f:X\to Y,X$ — комп., f — непр. на X Тогда f — равномерно непр.

Доказательство. От противного.

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x_{\delta}, \overline{x}_{\delta} : \rho(x_{\delta}, \overline{x}_{\delta}) < \delta \quad \rho(f(x_{\delta}), f(\overline{x}_{\delta})) \ge \varepsilon$$
$$\delta := \frac{1}{n} \ \exists x_{n}, \overline{x}_{n} : \rho(x_{n}, \overline{x}_{n}) < \delta \quad \rho(f(x_{n}), f(\overline{x}_{n})) \ge \varepsilon$$

Выберем $x_{n_k} \to \tilde{x}, \overline{x}_{n_k} \to \tilde{\tilde{x}}$

$$\rho(\tilde{x}, \tilde{\tilde{x}}) \le \lim_{n \to \infty} \delta = 0 \Rightarrow \tilde{x} = \tilde{\tilde{x}}$$

Тогда $f(x_{n_k}) \to f(\tilde{x}), f(\overline{x}_{n_k}) \to f(\tilde{x})$, противоречие с $\rho(f(x_n), f(\overline{x}_n)) \geq \varepsilon$

2.4 Теорема Брауэра о неподвижной точке

 $f:[0,1]\times [0,1]\to [0,1]\times [0,1],$ непр.

Тогда $\exists x \in [0,1]^2 : f(x) = x$, т.е. есть неподвижная точка.

Обобщенный вариант:

- 1. $f:[0,1]^m \to [0,1]^m$ непр.
- 2. $f:B(0,1)\subset\mathbb{R}^m\to B(0,1)$ непр.
- 3. $f: S(0,1) \subset \mathbb{R}^m$ непр.

Доказательство. $\rho:[0,1]^2 \to \mathbb{R}$

 $ho(x,y) = \max(|x_1-y_1|,|x_2-y_2|)$ — непр. в $[0,1]^2$

От противного — пусть $\forall x \in [0,1]^2 \quad f(x) \neq x$

Тогда $\forall x \quad \rho(f(x),x)>0 \quad x\mapsto \rho(f(x),x)$ — непр., >0

По т. Вейерштрасса $\exists \varepsilon > 0 \ \, \forall x \in [0,1] \ \, \rho(f(x),x)) \geq \varepsilon$

По т. Кантора для f: для этого $\varepsilon \;\; \exists \delta < \varepsilon :$

$$\forall x, \overline{x} : ||x - \overline{x}|| < \delta \quad ||f(x) - f(\overline{x})|| < \varepsilon$$

Можно писать не $||\cdot||$, а ρ .

Возьмём $n: \frac{\sqrt{2}}{n} < \delta$

Построим доску Hex(n+1, n+1), где n+1 — число узлов.

Логические координаты узла (v_1,v_2) $v_1,v_2\in\{0\dots n\}$ имеют физические координаты, то есть узлу сопоставляется точка на квадрате с координатами $\left(\frac{v_1}{n},\frac{v_2}{n}\right)$

$$K(V) := \min\{i \in \{1, 2\} : |f(\frac{v}{n}) - \frac{v_i}{n}| \ge \varepsilon\}$$

Продолжение на следующей лекции.

Итоговый конспект 5 из 6

2.5 Теорема о свойствах неопределенного интеграла

f,g имеют первообразную на $\langle a,b \rangle$. Тогда

1. Линейность:

$$\int (f+g) = \int f + \int g$$

$$\forall \alpha \in \mathbb{R} \quad \int \alpha f = \alpha \int f$$

2. $\varphi(c,d) \to \langle a,b \rangle$

$$\int f(\varphi(t)) \cdot \varphi'(t) dt = \left(\int f(x) dx \right)|_{x = \varphi(t)} = F(\varphi(t))$$

Частный случай: $\alpha, \beta \in \mathbb{R}$:

$$\int f(\alpha t + \beta)dt = \frac{1}{\alpha}F(\alpha t + \beta)$$

3. f, g — дифф. на $\langle a, b \rangle$; f'g — имеет первообр.

Тогда fg' имеет первообразную и

$$\int fg' = fg - \int f'g$$

Доказательство. 1. Опущено

2.
$$(F(\varphi(t)))' = f(\varphi(t)) \cdot \varphi'(t)$$

3.
$$(fg - \int f'g)' = f'g + fg' - f'g = fg'$$

2.6 Интегрирование неравенств. Теорема о среднем

 $f,g\in C[a,b]\quad f\leq g.$ Тогда

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

Доказательство.

$$\begin{split} & \Pi\Gamma(f_+) \subset \Pi\Gamma(g_+) \Rightarrow \sigma\Pi\Gamma(f_+) \leq \sigma\Pi\Gamma(g_+) \\ & \Pi\Gamma(f_-) \supset \Pi\Gamma(g_-) \Rightarrow \sigma\Pi\Gamma(f_-) \geq \sigma\Pi\Gamma(g_-) \\ & \sigma\Pi\Gamma(f_+) - \sigma\Pi\Gamma(f_-) \leq \sigma\Pi\Gamma(g_+) - \sigma\Pi\Gamma(g_-) \end{split}$$

Кто такая теорема о среднем

Итоговый конспект 6 из 6

2.7 Теорема Барроу

 $f \in C[a,b] \quad \Phi$ — интеграл с переменным верхним пределом. Тогда

$$\forall x \in [a, b] \quad \Phi'(x) = f(x)$$

Доказательство. Зафиксируем $x \in [a, b]$ $y > x, y \le b$

$$\frac{\Phi(y) - \Phi(x)}{y - x} = \frac{\int_a^y f - \left(\int_a^y f + \int_y^x f\right)}{y - x} = \frac{\int_x^y f}{y - x} \underset{\exists c \in [x,y]}{=} \frac{c(y - x)}{y - x} = c \xrightarrow[y \to x+0]{} f(x)$$

x > y

$$\frac{\Phi(y) - \Phi(x)}{y - x} = \frac{1}{x - y} \int_{y}^{x} f(x) dx dx$$

2.8 Формула Ньютона-Лейбница, в том числе, для кусочно-непрерывных функций

Теорема 1. $f \in C[a,b]$ F — первообр. f Тогда $\int_a^b f = F(b) - F(a)$

Доказательство. $\Phi(x) = \int_0^x f$ — первообр.

 $\exists C: F = \Phi + C$

$$\int_{a}^{b} f = \Phi(b) = \Phi(b) - \Phi(a) = F(b) - F(a)$$

Что с кусочно-непрерывными?