COMS 4721 Assignment 3 Boosting

John Fulgoni Columbia University in the City of New York

31 March 2015

List of Figures

1	Sample Vector C for Varying N Values	2
2	Training and Testing Error for Boosted Bayes Classifier	3
3	Epsilon and Alpha over T Iterations for Boosted Bayes Classifier	4
4	W(i) for points 168, 245, and 347 over T Iterations for Boosted	
	Bayes Classifier	5
5	Training and Testing Error for Boosted Logistic Classifier	6
6	Epsilon and Alpha over T Iterations for Boosted Logistic Clas-	
	sifier	7
7	W(i) for points 7, 279, and 470 over T Iterations for Boosted	
	Logistic Classifier	8

1 Part 1

For each plot in Figure 1, it shows the CDF where the number of samples ranges from 100 to 500, with the title N being 1 to 5. The function that retrieves these values is $pick_vars.m$.

2 Part 2

By running the Bayes Classifier on the Training Set without Boosting, the accuracy on the testing set was **0.8415**.

Figure 1: Sample Vector C for Varying N Values

Figure 2: Training and Testing Error for Boosted Bayes Classifier

After 1000 iterations for T, the Training Accuracy of the Boosted Classifier was **1.0**, and the Testing Accuracy was **0.9180**. Figure 2 shows these values over time. Figure 3 shows the Epsilon and Alpha values over 1000 iterations.

For the three points to plot W(i) over T, I chose 168 (blue), 245 (red), and 347 (yellow). The variation in W(i) can be seen in Figure 4.

3 Part 3

By running the Logistic Classifier on the Training Set without Boosting, the accuracy on the testing set was **0.8251**.

After 1000 iterations for T, the Training Accuracy of the Boosted Clas-

Figure 3: Epsilon and Alpha over T Iterations for Boosted Bayes Classifier

Figure 4: W(i) for points 168, 245, and 347 over T Iterations for Boosted Bayes Classifier

Figure 5: Training and Testing Error for Boosted Logistic Classifier

sifier was **1.0**, and the Testing Accuracy was **0.9563**. Figure 5 shows these values over time. Figure 6 shows the Epsilon and Alpha values over 1000 iterations.

For the three points to plot W(i) over T, I chose 7 (blue), 279(red), and 470 (yellow). The variation in W(i) can be seen in Figure 7. (Note that I messed up the title in Figure 7, but it is still result of the Logistic Classifier)

Figure 6: Epsilon and Alpha over T Iterations for Boosted Logistic Classifier

Figure 7: W(i) for points 7, 279, and 470 over T Iterations for Boosted Logistic Classifier