(1) It
$$f_{99} = f_{8ee} - \frac{i}{2h}$$
(2) It $f_{ee} = -f_{8ee} + \frac{i}{2h}$
(3) It $f_{9e} = (ih - f_{12})$
(3) It $f_{9e} = (ih - f_{12})$
(3) It $f_{9e} = f_{9e}$

2) It See = -
$$r$$
 See ex

$$\int \partial t \int_{ee} = -r \int_{ee} \int_{ee}$$

$$t=0 \rightarrow e^{0} = 1$$
(3) $\partial t fge = -\frac{1}{2} f fge$

$$\int \partial t fge = -\frac{1}{2} \gamma fge$$

t=0 ->
$$gg = e^{\circ} = ($$
 (since all extends)

ore in excited state $gg = 0$

Ot $gg = fge = fe^{-ft}$

then $\int \partial t gg = r ge = re^{-ft}$
 $gg = -e^{-ft}$

of $gg = re^{-ft}$
 $gg = -e^{-ft}$

of $gg = re^{-ft}$
 $gg = re^{-ft}$

of $gg = re^{-ft}$

f(z) = 0 f(z) = 0 f(z) = 0

 $ge = e^{-1/2}$ $dt (e^{-1/2}) = -\frac{1}{2} e^{-1/2}$

(2)
$$\partial + R_2 = -\Delta R_1 - \gamma (2 R_2 + \Delta R_3)$$

(3) $\partial + R_3 = -\gamma (R_3 + 1) - \Delta R_2$
(1) $\partial + R_1 = -\frac{1}{2} \gamma R_1 R_1 R_1 = \frac{1}{2} \gamma R_2$

①
$$\partial tR_1 = -\frac{1}{2} \gamma R_1$$
 $R_1^{(t)} R_1^{(t)} R_1^{(t)}$
② $\partial tR_2 = -\frac{1}{2} \gamma R_2$ $R_2(t) = e^{-1/2} \gamma t R_1^{(t)}$
③ $\partial tR_3 = -\gamma R_3 - \gamma$ $R_3(t) = e^{-\gamma t} C_{-1}^{(t)}$

(Ro(+)

$$C = 2e^{-8t} - 1$$

$$\int_{-1}^{1} R_3(x) = -1 + e^{-1/2} (R_3(x) + 1)$$

$$\frac{For(t)}{R_1(t)} = 2Re(f_{ge}^*(t))$$

$$R_2(t) = 2Im(f_{ge}^*(t))$$

$$R_3(t) = f_{ee}(t) - f_{ge}(t)$$

$$R_3(t) = fee(t) - fg(t)$$

At t=0

 $R_1(0) = 2 Re(e^{1/2\gamma(0)}) = 2(1) = 2$

$$R_2(0) =$$

$$R_3$$

$$R_2$$

$$R_{1}(A) = R_{1}(B) = P_{1}(B) = P_{1}(B)$$

$$R_{2}(A) = P_{2}(B) = P_{1}(B)$$

$$R_{3}(A) = -1 + e^{-ret} (R_{3}(B) + L)$$

$$R_{3} = 0$$

$$R_{3} = 1$$

$$\begin{array}{c} R_{3}(T_{1}) = 0 \\ R_{2} = 0 \\ R_{2} = -2.2 \\ 6(1 + 2.2^{2}) \end{array}$$

$$= \left(\frac{1}{1 + 2 \cdot 2^{2}} \right)$$

$$9+-0=0$$

9+
$$-\Omega = 0$$

 $R_{1}^{S} = 0$, $R_{2}^{S} = 0$, $R_{3}^{S} = -1$
9+ $-\Omega = 0$
 $R_{1}^{S} = 0$, $R_{2}^{S} = -1$
 $R_{2}^{S} = 0$, $R_{3}^{S} = -1$

$$R_1^S = 0 \quad R_2^S = 0 \quad R_3^S = 0$$

Roblem 2
$$\vec{e}_3$$
 \vec{e}_1 $R_3 = (ee - (gg = .005 \Delta T))$
 \vec{e}_1 \vec{e}_2 \vec{e}_3 \vec{e}_4 \vec{e}_4 \vec{e}_5 \vec{e}_6 \vec{e}_6 \vec{e}_6 \vec{e}_7 \vec{e}_8 \vec{e}_8

(b) $\frac{1}{2}$ $\frac{1}{2}$

