CSC416 - Homework 1

Marshall Bowers

September 24, 2015

Regular Languages

- 1. Write English descriptions for the languages generated by the following regular expressions:
- (a) $(0|1|...|9|A|B|C|D|E|F)^+(x|X)$ Any combination of hexadecimal digits (0-9, A-F) one or more times, followed by either an uppercase or a lowercase x.
- (b) $(a|b)^*(a|b|\epsilon)$ A lowercase a or lowercase b zero or more times, followed by either a lowercase a, lowercase b, or nothing.
 - 2. Write regular expressions for each of the following.
- (a) All strings of lowercase letters that begin and end in a. $a[a-z]^*a$
- (b) All strings of digits that contain no leading zeros. $[1-9][0-9]^*$
- (c) All strings of digits that represent even numbers. $([1-9][0-9])^*(0|2|4|6|8)$
- (d) Strings over the alphabet $\{a,b,c\}$ with an even number of a's. $(a(b|c)^*a)|((aa)^*|b^*|c^*)$
- (e) Strings over the alphabet $\{a,b\}$ that contain an odd number of \mathbf{a} 's or an odd number of \mathbf{b} 's (or both). $a(aa)^*|b(bb)^*|a(bb^*)b(aa)^*$
 - 3. For each of the following regular expressions determine which of the strings cc, ababb, bbcab, and ccbbab matches it:

Lexical Specifications

4. Given the string abbbaacc and alphabet {a,b,c} what tokenization will the following lexical specification produce?

Token Class	Rege
Α	b+
В	ab*
C	ac*
<b, abbb=""></b,>	
<b, a=""></b,>	
<c. acc=""></c.>	

3 5. Given the string babac and alphabet {a,b,c} what tokenization will the following lexical specification produce?

Token Class	Regex
Α	a(ba)*
В	b*(ab)*
C	abc

D c+

<B, bab>

<A, a>

<D, c>

6. Given the following lexical specification and alphabet $\{0,1\}$, which of the below strings will be successfully tokenized?

Token Class	Regex
Α	(11)*
В	01+
C	10+

- 1. 1000001 **✓**
- 2. 1110010 **✓**
- 3. 01100100 🗸
- 4. 10011001 🗸

Finite Automata

7. Explain in informal English what each of these finite-state automata recognizes.

 $\boxed{5}$ (a)

A single a, optionally followed by any number of sequences consisting of 5 a's.

(b)

Any number of a's or b's, followed by an a, followed by a combination of 4 a's and b's.

[6] 8. Write a regular expression whose language is equivalent to the following NFA.

 $((a|b)^*a(a|b)^*a(a|b)^*)^+b$

9. Convert these NFAs into DFAs.

(a)

(b)

10. Construct DFA's for each of the following regular expressions. Do it in two steps: construct the NFA using Thompson's construction, then the DFA from the NFA. Let the alphabet be {a,b}.

(a) a*|b*

Figure 1: NFA

Figure 2: DFA

7 (b) a*(ab)*a*

Figure 3: NFA

Figure 4: DFA

(c) **CSC416 ONLY:**

[ab]*abab

Figure 5: NFA

Figure 6: DFA

CSC565 ONLY:

[ab] *abab[ab] *

Figure 7: NFA

Figure 8: DFA