NBA 2023-24 Analysis

NBA 2023-24 시즌 데이터는 총 300개의 행과 31개의 열로 구성되어 있다. 데이터에는 각 팀의 시즌 기록과 관련된 다양한 통계 정보가 포함되어 있다. 주요 변수는 시즌(Season), 팀명(Team), 승리(W), 패리(L), 순위(Finish), 평균 연변(Age), 평균 희(Ht.), 평균 몸무게(Wt.) 등이며, 게임 수(G), 출전 시간 (MP), 야투(FG, FGA, FG%), 3점슈터(3P, 3PA, 3P%), 2점슈터(2P, 2PA, 2P%), 자유투(FT, FTA, FT%), 공격 리반드(ORB), 수비 리반드(DRB), 총 리반드(TRB), 연결(ASSIST), 스틸(STL), 블록(BLK), 터널 오버(TOV), 파운(PF), 드시(PTS) 등이 포함되어 있다. 이 데이터는 시즌별 팀 성과 분석, 선수들의 게임 기변 비교, 주요 게임 지표의 상관관계 분석 등을 수행하는 데 유용하다.

Loading Datasets

NBA 2023-24 시즌 데이터는 총 300개의 행과 31개의 열로 구성된 데이터셋으로, 각 팀의 시즌 기록과 관련된 다양한 통계 정보를 제공합니다. 주요 변수로는 시즌(Season), 팀명(Team), 승리(W), 패배(L), 순위 (Finish), 평균 연령(Age), 평균 키(Ht.), 평균 몸무게(Wt.) 등이 있으며, 경기 수(G), 출전 시간(MP), 야투 (FG, FGA, FG%), 3점슛(3P, 3PA, 3P%), 2점슛(2P, 2PA, 2P%), 자유투(FT, FTA, FT%), 공격 리바운드(ORB), 수비 리바운드(DRB), 총 리바운드(TRB), 어시스트(AST), 스틸(STL), 블록(BLK), 턴오버(TOV), 파울(PF), 득점(PTS) 등이 포함됩니다. 이 데이터는 시즌별 팀 성과 분석, 선수들의 경기력 비교, 주요 경기 지표의 상관관계 분석 등을 수행하는 데 유용합니다.

```
import pandas as pd
pd.set_option("display.max_columns", 8)

nba = pd.read_csv("NBA_2023-24.csv")
nba.info()
```

NBA. head()는 데이터프레임의 상위 5개 행을 미리보기 형태로 보여주는 함수로, 데이터의 구조와 내용을 빠르게 파악할 수 있도록 도와줍니다. 이를 통해 각 열(컬럼)의 데이터 유형, 예시 값, 범위 등을 확인할 수 있어 데이터 전처리 및 분석 계획을 수립하는 데 유용합니다. 예를 들어, NBA 2023-24 시즌 데이터의 경우, NBA.head()를 통해 팀명(Team), 시즌(Season), 승리(W), 패배(L) 등 주요 지표의 초기 데이터를 확인할 수 있으며, 데이터의 이상치나 결측치의 존재 여부를 빠르게 파악할 수 있습니다.

Data Cleaning and Preparation

Ht. 변수의 값은 6'6" 같은 문자열로 구성되어 있습니다. 이는 해석 및 회귀에 문제가 되면서 필요한 계산을 수행하기 힘들기 때문에 가능하면 해당 자료를 변환할 필요가 있습니다.

몇가지 데이터의 형태를 확인해서 데이터 예측을 진행하도록 합니다.

```
numerical_columns = ['Age', 'Wt.', 'W', 'PTS', 'AST', 'REB']
nba[numerical_columns] = nba[numerical_columns].apply(pd.to_numeric,
errors='coerce')
```

Linear Regression feature selection

Feature Selection은 선형 회귀(Linear Regression) 모델의 성능을 향상시키기 위해 중요한 변수를 선택하고 불필요한 변수를 제거하는 과정입니다. 올바른 특성(Feature)을 선택하면 모델의 복잡도를 줄이고, 과적합(Overfitting)을 방지하며, 해석 가능한 모델을 만들 수 있습니다.

종속 변수(W, 승리 수)에 가장 큰 영향을 미치는 독립 변수(Feature) 5개를 선택하도록 하겠습니다.

- SelectKBest: 피처 선택을 위해 사용되는 함수로, 가장 중요한 K개의 피처를 선택합니다.
 - score_func=f_regression: f_regression 함수를 사용하여 각 독립 변수와 종속 변수(y) 간의 통계적 관계(선형 회귀)를 측정합니다.
 - k=5: 가장 중요한 5개의 피처를 선택하라는 의미입니다.
- f_regression은 피처의 F-값을 계산하고, p-값을 바탕으로 중요한 피처를 결정합니다.

```
1  X = nba.drop(["Season", "Team", "W", "Ht."], axis=1)
2  y = nba["W"]
3
4  from sklearn.feature_selection import SelectKBest, f_regression
5  features = SelectKBest(score_func=f_regression, k=5)
6  features.fit(X, y)
7  selectedFeatures = X.columns[features.get_support()]
8
9  X = nba[selectedFeatures]
10  y = nba["W"]
```

Performing the train, test, split-linear regression style

데이터를 훈련 세트와 테스트 세트로 분할합니다.

이 코드는 X, y 데이터를 훈련 세트(80%)와 테스트 세트(20%)로 분할합니다. 훈련 세트는 모델 학습에 사용되며, 테스트 세트는 모델 성능을 평가하는 데 사용됩니다. random_state=42는 데이터의 재현성을 보장하기 위해 사용됩니다. 이 코드는 머신러닝 모델을 학습하고 평가할 때 필수적인 절차입니다.

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =0.2, random_state=42, stratify=y)
```

Making the model

LinearRegression()을 사용하여 선형 회귀 모델을 생성하고, fit() 메서드로 훈련 데이터(X_train, y_train)를 사용해 모델을 학습합니다. 각 피처의 회귀 계수를 확인하면, 특성이 종속 변수(W)와 어떻게 관계가 있는지 해석할 수 있습니다. 절편(Intercept)도 함께 출력되어, 독립 변수가 0일 때 종속 변수가 갖는 기본값을 알 수 있습니다. R^2 스코어는 모델의 설명력을 나타내며, 1에 가까울수록 더 좋은 모델입니다. MSE (평균 제곱 오차)는 예측값과 실제값 간의 차이의 제곱합을 평균한 값으로, 작을수록 더 좋은 모델입니다.

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_percentage_error

nba_model = LinearRegression()
nba_model.fit(X_train, y_train)
y_predictions = nba_model.predict(X_test)
mean_absolute_percentage_error(y_test,y_predictions)
mean_absolute_percentage_error
```

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score,

rf_model = RandomForestRegressor(random_state=42)
fr_model.fit(X_train, y_train)
fr_predictions = rf_model.predict(X_test)
mse = mean_squared_error(y_test, y_predictions)
mae = mean_absolute_error(y_test, y_predictions)
r2 = r2_score(y_test, y_predictions)
print(f'MSE: {mse}, MAE: {mae}, R^2: {r2}')
```

Finding the coefficients and intercepts of the regression model equation

```
print(nba_model.coef_)
print(nba_model.intercept_)
```

Viewing results of predictions on a scatterplot

```
import matplotlib.pyplot as plt
import numpy as np

plt.scatter(y_test, y_predictions, color="red")

plt.plot(np.arange(min(y_test), max(y_test)), np.arange(min(y_test), max(y_test)), color="blue", linestyle="dashed")

plt.xlabel('Actual values')

plt.ylabel('Predicted values')
```

```
8 plt.title('Actual vs Predicted values')
9 plt.show()
```

중요도도 함께 확인해보도록 하겠습니다.