Billowing Hydrogen Simulating Turbulence in HII Regions

Eliza Canales & Trey Wenger

University of Wisconsin - Madison & National Radio Astronomy Observatory

July 31st, 2024

Outline

Introduction
HII Regions
How we see them

Motivations and Project Goals

Results

Next Steps

HII Regions

- ▶ What is an HII Region?
- ► Physical Traits
 - Powered by hot stars
 - Can range from AU to parsecs
 - ► A type of nebulae

Image of an HII region, the Trifid Nebula. Nebula image: M20 — Trifid Nebula HII Region in Sagittarius 6° from Kaus Borealis (top of the teapot) taken by R Jay GaBany

Emissions

- ► A way we observe HII regions
- ► Why use radio?
- Free-free continuum
- Radio recombination lines (RRLs)

Emissions

Velocity (km/s)

Free-free spectrum

Spectra of free-free emission and a radio recombination line with respect to doppler shift velocity.

- ► A way we observe HII regions
- ► Why use radio?
- ► Free-free continuum
- Radio recombination lines (RRLs)

Radio Imaging

- Multiple frequencies
- Doppler shift
- Velocity compared to Local Standard of Rest (VLSR)
- ► Velocity line width

Radio recombination line to discuss how velocity is mapped

Radio Imaging

- Multiple frequencies
- Doppler shift
- Velocity compared to Local Standard of Rest (VLSR)
- ► Velocity line width

First and second moment maps of an HII region.

Emission Line-Broadening

- Thermal motion
- Bulk motion
 - Outflow
 - Expansion
 - Rotation
- ► Turbulence

Motivations

- Previous work had shown what looked like rotation
- Later observations show a more complex story
- ► Can turbulence explain this behavior?

Showing the how the same object can act differently based on the beam width.

Turbulence

Image attribution: https://www.advancedsciencenews.com/wp-content/uploads/2023/07/swirl-g52ac5d4ac_1280.jpg

- ► Hard to model
- ► Not well understood
- But can be predicted to a degree!

Motivations

- ▶ Why not use existing software?
 - ► Similar programs don't use RRLs
 - Unique problem of density squared

Comparing optically thin tracers, one of density (right) and one of density squared (left).

Project Goals

- ► Simulate turbulence in HII regions
- ► Test different turbulence parameters
- Compare to reality

Results

Results

- ► Similarity to reality
 - Turbulence looking like angular momentum
 - Similar velocity scales

Future Work

- Comparing with more radio data
- Refining simulation
- ► Testing under various conditions

Conclusion

- New data has discrepencies with rotation model
- Could turbulence explain HII region behavior?
- Tested with simulation
- ► Turbulence is a potential cause for what we see

Thank you!

Any questions?

Pipeline

- Generate and truncate turbustat data
 - Creates cubes to represent density and velocity in 3d space
- ► Calculate emission measure for each physical "voxel" of HII region
- ► Calculate RRL strength for each pixel
 - Gaussian treating velocity cube as line centers
 - Add free-free emission afterwards

Resolution Dependance

