

Actuarial Pricing of Equity-Linked Insurance via Simulation

Peng Jin, Haoen Cui, Dayu Yao, Yuan Zhong, Wayne Tao

Department of Statistics University of Illinois at Urbana-Champaign

December 08, 2017

Group Member Introduction

Peng Jin (pengjin2)

Wayne Tao (gtao2)

(hcui10)

(dayuyao2)

Yuan Zhong (yzhong19)

Figure 1: Group Members

Agenda

- Variable Annuity Introduction
- Models
 - Decrement
 - Equity investment
 - (Risk-free) Discount Rate
- Methods Used
- R Shiny Demo
- Conclusion

Variable Annuity Introduction

There are a wide range of variable annuity products on the market, this project is focused on the **Guaranteed Minimum Death Benefit(GMDB)**.

- Traditional Annuity
 - An annuity is periodically payable upon survival
- Traditional Whole Life
 - A pre-determined single payment at death
- Guaranteed Minimum Death Benefit
 - the higher of ...
 - pre-determined monetary amount G
 - premiums invested into stock value (i.e. equity-linked)

Variable Annuity Introduction (Cont.)

Figure 2: Variable Annuity Introduction

Models: Mortality Decrement

• $T_{(x)}$: Remaining life time random variable of (x), a life of age x

$$_tp_x$$
 := Probability that a life (x) survive an extra t years = $\mathbb{P}(T_{(x)} > t)$

Life table (Discretized continuous model)

X	l _x	$d_{\scriptscriptstyle X}$
0	100000	637
1	99363	45
2	99318	28

- Estimator for integral ages $\widehat{tp_x} = \frac{l_{x+t}}{l_x}$
- Apply linear interpolation for fractional ages, aka UDD assumption

Models: Equity Investment Return

Geometric Brownian Motion Model A continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. [from Wiki]

Model Explanation

Let S_0 denote the last stock closing price of the training data Let S_t denote the predicted stock closing price after t periods Assume Stochastic Differential Equation (SDE):

$$d[InS_t] = \frac{dS_t}{S_t} = \mu t + \sigma dW_t$$

Solution:

$$\frac{S_t}{S_0} \sim \textit{Ignorm}(\mu - \frac{1}{2}\sigma^2, \sigma)$$

Models: (Risk-free) Discount Rate

Vasicek Short Rate Model A mathematical model describing the evolution of interest rates. It is a type of one-factor short rate model as it describes interest rate movements as driven by only one source of market risk. [from Wiki]

Model Explanation

Stochastic Differential Equation (SDE):

$$dr_t = a[b - r_t]dt + \sigma dW_t$$

- a : speed of reversion
- b : long term mean level
- σ: instantaneous volatility

Solution:
$$\mathbb{E}[r_t] = r_0 e^{-at} + b(1 - e^{-at}), Var[r_t] = \frac{\sigma^2}{2a}(1 - e^{-2at})$$

STAT 428 Methods Used (Group 1)

- Random Number Generator
 - Methods: inverse CDF, Accept-Rejection, Metropolis- Hasting
 - Use case: simulation of three sources of risks based on parameters estimated

STAT 428 Methods Used (Group 2)

- Bootstrap
 - Method: regular bootstrap, jackknife
 - Use case: errors of estimators, accuracy of fit
- Optimization:
 - Methods: Newton-Raphson, BFGS (quasi-Newton)
 - Use case: MLE parameter estimates

R Shiny Demonstration

• Presenter: Haoen Cui (hcui10)

Conclusion