CST – 4305 Assignment – IV

I. Suppliers (sid: integer, sname: string, address: string)

Parts (pid: integer, pname: string, color: string) Catalog (sid: integer, pid: integer, cost: real)

1. Relational Algebra:

 π_{sname} (($\sigma_{\text{color='red'}}$ Parts) \bowtie Catalog \bowtie Suppliers)

Tuple Relational Calculus:

 $\{T \mid \exists S \in Suppliers \exists P \in Parts \exists C \in Catalog (P.color = 'red' \land P.pid = C.pid \land C.sid = S.sid \land T.sname = S.sname)\}$

Domain Relational Calculus:

 $\{$ <Sn> |<Si, Sn, Sa> \in Suppliers \land \exists Pi, Pn, Pc |<Pi, Pn, Pc> \in Parts \land \exists Cs, Cp, C |<Cs, Cp, C> \in Catalog \land Pc = 'red' \land Pi = Cp \land Cs = Si $\}$

2. Relational Algebra:

 $\pi_{\text{sid}}((\sigma_{\text{color='red'}} \vee \sigma_{\text{color='green'}}) \bowtie \text{Catalog})$

Tuple Relational Calculus:

 $\{T \mid \exists P \in Parts \exists C \in Catalog ((P.color = 'red' \lor P.color = 'green') \land P.pid = C.pid \land T.sid = C.sid)\}$

Domain Relational Calculus:

 $\{<$ Cs>|<Cs, Cp, C> \in Catalog \land \exists Pi, Pn, Pc |<Pi, Pn, Pc> \in Parts \land (Pn = 'red' \lor Pn = 'green') \land Pi = Cp $\}$

3. Relational Algebra:

 π_{sid} ((π_{pid} ($\sigma_{\text{color='red'}}$ Parts) \bowtie Catalog) U ($\sigma_{\text{address='221 Parker Street'}}$ Suppliers))

Tuple Relational Calculus:

 $\{T \mid \exists S \in Suppliers \exists P \in Parts \exists C \in Catalog ((P.color = 'red' \land P.pid = C.pid \land T.sid = C.sid) \lor (S.address = '221 Parker Street' \land T.sid = S.sid))\}$

Domain Relational Calculus:

 $\{<$ Cs> |<Cs, Cp, C> \in Catalog \land \exists Pi, Pn, Pc |<Pi, Pn, Pc> \in Parts \land \exists Cs, Sn, A |<Cs, Sn, Sa> \in Suppliers \land (Pc = 'red' \land Pi = Cp) \lor Sa = '221 Packer Street' $\}$

4. Relational Algebra:

 π_{sid} (($\sigma_{\text{color='red'}}$ Parts) \bowtie Catalog) U π_{sid} (($\sigma_{\text{color='red'}}$ Parts) \bowtie Catalog)

Tuple Relational Calculus:

 $\{T \mid \exists P1 \in Parts \exists C1 \in Catalog \exists P2 \in Parts \exists C2 \in Catalog (((P1.color = 'red' \land P1.pid = C1.pid)) \land (P2.color = 'green' \land P2.pid = C2.pid)) \land C1.sid = C2.sid \land T.sid = C1.sid)\}$

Domain Relational Calculus:

 $\{<Cs> \mid <Cs, Cp, C> \in Catalog \land \exists Pi, Pn, Pc \mid <Pi, Pn, Pc> \in Parts \land Pc = 'red' \land Pi = Cp \land \exists P, Q, R \mid <P, Q, R> \in Catalog \land \exists X, Y, Z \mid <X, Y, Z> \in Parts \land Z = 'green' \land X = Q \land P = Cs\}$

5. Relational Algebra:

 $(\pi_{sid, pid} Catalog) / (\pi_{pid} Parts)$

Tuple Relational Calculus:

 $\{T \mid \forall P \in Parts \exists C \in Catalog C2 \in Catalog (C2.pid = P.pid \land C2.sid = C1.sid \land T.sid = C1.sid)\}$

Domain Relational Calculus:

 $\{<Cs> \mid <Cs, Cp, C> \in Catalog \land \forall Pi, Pn, Pc \mid <Pi, Pn, Pc> \in Parts \land \exists P, Q, R \mid <P, Q, R> \in Catalog \land Q = Pi \land P = Cs\}$

6. Relational Algebra:

 $(\pi_{\text{sid, pid}} \text{ Catalog}) / (\pi_{\text{pid}} (\sigma_{\text{color='red'}} \text{ Parts}))$

Tuple Relational Calculus:

 $\{T \mid \forall P \in Parts \exists C1 \in Catalog \exists C2 \in Catalog ((P.color \neq 'red' \lor (C2.pid = P.pid \land C2.sid = C1.sid)) \land T.sid = C1.sid)\}$

Domain Relational Calculus:

 $\{<Cs> \mid <Cs, Cp, C> \in Catalog \land \forall Pi, Pn, Pc \mid <Pi, Pn, Pc> \in Parts \land Pc \neq 'red' \lor \exists P, Q, R \mid <P, Q, R> \in Catalog \land Q = Pi \land P = Cs\}$

7. Relational Algebra:

 $(\pi_{sid, pid} Catalog) / (\pi_{pid} (\sigma_{color='red' \lor color='green'} Parts))$

Tuple Relational Calculus:

 $\{T \mid \forall P \in Parts \exists C1 \in Catalog \exists C2 \in Catalog ((P.color \neq 'red' \land P.color \neq 'green') \lor (C2.pid = P.pid \land C2.sid = C1.sid) \land T.sid = C1.sid)\}$

Domain Relational Calculus:

 $\{<Cs> \mid <Cs, Cp, C> \in Catalog \land \forall Pi, Pn, Pc \mid <Pi, Pn, Pc> \in Parts \land Pc \neq 'red' \land Pc \neq 'green' \lor \exists P, Q, R \mid <P, Q, R> \in Catalog \land Q = Pi \land P = Cs\}$

8. Relational Algebra:

 $((\pi_{sid, pid} \text{ Catalog}) / (\pi_{pid} (\sigma_{color='red'} \text{ Parts}))) \cup ((\pi_{sid, pid} \text{ Catalog}) / (\pi_{pid} (\sigma_{color='green'} \text{ Parts})))$

Tuple Relational Calculus:

 $\{T \mid \forall P1 \in Parts \ \forall P2 \in Parts \ \exists \ C1 \in Catalog \ \exists \ C2 \in Catalog \ \exists \ C3 \in Catalog \ ((P1.color \neq 'red' \lor (C2.pid = P1.pid \land C2.sid = C1.sid)) \lor (P2.color \neq 'green' \lor (C3.pid = P2.pid \land C3.sid = C1.sid)) \land T.sid = C1.sid)\}$

Domain Relational Calculus:

{<Cs> | <Cs, Cp, C> \in Catalog \land \forall Pi, Pn, Pc | <Pi, Pn, Pc> \in Parts \land Pc \neq 'red' \lor \exists P, Q, R | <P, Q, R> \in Catalog \land Q = Pi \land P = Cs \lor \forall X, Y, Z | <X, Y, Z> \in Parts \land Z \neq 'green' \lor \exists M, N, L | <M, N, L> \in Catalog \land N = X \land M = Cs}

9. Relational Algebra:

ρ (T1, Catalog)

ρ (T2, Catalog)

 $\pi_{T1.sid}$, T2.sid ($\sigma_{T1.pid=T2.pid} \land T1.sid \neq T2.sid \land T1.cost > T2.cost$ ($T1 \times T2$))

Tuple Relational Calculus:

 $\{T \mid \exists \ C1 \in Catalog \ \exists \ C2 \in Catalog \ (C2.pid = C1.pid \land C2.sid \neq C1.sid \land C2.cost < C1.cost \land T.sid2 = C2.sid \land T.sid1 = C1.sid)\}$

Domain Relational Calculus:

 $\{<$ Cs, X> |<Cs, Cp, C> \in Catalog $\land \exists X$, Y, Z |<X, Y, Z> \in Catalog $\land Y =$ Cp $\land X \neq$ Cs $\land Z <$ C $\}$

10. Relational Algebra:

ρ (T1, Catalog)

ρ (T2, Catalog)

 $\pi_{\text{T1.pid}}$ ($\sigma_{\text{T1.pid}=\text{T2.pid}} \wedge \pi_{\text{11.sid}\neq\text{T2.sid}}$ (T1 × T2))

Tuple Relational Calculus:

 $\{T \mid \exists C1 \in Catalog \exists C2 \in Catalog (C2.pid = C1.pid \land C2.sid \neq C1.sid \land T.pid = C1.pid)\}$

Domain Relational Calculus:

 $\{<$ Cs>|<Cs, Cp, C> \in Catalog $\land \exists X, Y, Z | <$ X, Y, Z> \in Catalog $\land Y =$ Cp $\land X \neq Cs\}$