Apuntes de análisis de variable compleja

2023

Apuntes de las clases de Análisis de variable compleja dadas por Juan Matías Sepulcre Martínez y transcritos a LATEX por Víctor Mira Ramírez durante el curso 2023-2024 del grado en Física de la Universidad de Alicante.

Índice

Capítulo 1	El cuerpo de los números complejos	Página 3
	Definiciones básicas	3

Capítulo 1

El cuerpo de los números complejos

1.1 Definiciones básicas

Definición 1.1.1: Número complejo

Un **número complejo** z es un par ordenado de números reales a, b escrito como z = (a, b) en coordenadas cartesianas. Existe una notación equivalente, la forma binómica: z = a + ib siendo i = (0, 1).

El conjunto de los número complejos se denota por: $C := \{(a, b) : a, b \in \mathbb{R}\}$

🛉 Comentario: 🖠

Siempre que a = 0 sea un número imaginario puro, y b = 0 sea un número real.

Definición 1.1.2: Conjugado

Llamamos conjugado de un número complejo al número denotado $\bar{z} = a - ib$, siendo z = a + ib. Geométricamente, podemos decir que el eje real actúa de 'espejo' del número en el plano.

Comentario:

Llamamos \mathbb{C} al cuerpo de los numeros complejos. \mathbb{C} es un cuerpo conmutativo, pero no totalmente ordenado. En cambio, cualquier ecuación algebraica tiene solución en los complejos. De todas formas, el teorema fundamental del álgebra nos asegura que tendrá n soluciones en los complejos

Comentario:

Cuando los coeficientes de una ecuación algebraica son reales, las soluciones complejas vienen por pares.

Teorema 1.1.1 Operaciones elementales

SUMA
$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

RESTA
$$(a + bi) - (c + di) = (a - c) + (b - d)i$$

PRODUCTO
$$(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i$$
 (teniendo en cuenta que $i^2 = -1$)

$$\mathbf{DIVISI\acute{O}N} \qquad \frac{a+bi}{c+di} \ = \ \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} \ = \ \frac{ac+bd}{c^2+d^2} + \left(\frac{bc-ad}{c^2+d^2}\right)i \qquad \text{(multiplicando por el conjugado)}$$

Comentario:

El elemento unidad es 1 + 0i y el elemento inverso es $\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$. Para que un número complejo tenga elemento inverso, debe ser distinto de cero. El producto de un número complejo por su elemento inverso es la unidad.

Definición 1.1.3: Componentes de los complejos

Llamamos **módulo** del número complejo z = a + bi a la cantidad $|\sqrt{a^2 + b^2}|$ denotada |z|

Llamamos **argumento** del número complejo z = a + bi al ángulo que forma el semieje positivo de abcisas con la recta que contiene el vector (a,b). Se denota Arg $z=\alpha$ y se expresa en radianes.

$$\alpha = \arctan\left(\frac{b}{a}\right) \text{ si } a \neq 0$$

Definición 1.1.4: Módulo

Llamamos **módulo** de un número complejo z = a + bi, y lo denotamos |z|, a la cantidad

$$|z| = \sqrt{a^2 + b^2}$$

Definición 1.1.5: Argumento

Llamamos **argumento** de un número complejo z = a + bi al ángula que forma el semieje positivo de abcisas con la recta que contiene al vector. El argumento de z se representa por $Arg(z) = \alpha$, y se expresa normalmente en radianes.

$$\alpha = \arctan \frac{b}{a}, \sin a \neq 0$$

$$\alpha = \frac{\pi}{2}, \sin a = 0, b > 0$$

$$\alpha = \frac{3\pi}{2}, \sin a = 0, b < 0$$

Si el ángulo se encuentra en el intervalo $[-\pi,\pi)$ lo llamaremos argumento principal.

Comentario:

lol

Comentario:

forma exponencial: el desarrollo en serie de la exponencial es: $e^x = \sum_{n=0} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$ si introducimos un número complejo en la exponencial: $e^{iy} = 1 + (iy) + \frac{(iy)^2}{2} + \frac{(iy)^3}{3!} + \dots$ Si analizamos el valor de i^n en función de n, entonces vemos como la exponencial compleja queda ahora como: $e^{iy} = 1 + iy - \frac{y^2}{2} - \frac{iy^3}{3!} + \frac{y^4}{4!} + \dots = \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} + \dots\right) + i\left(y - \frac{y^3}{3!} + \frac{y^5}{5!}\right) = \cos(y) + i\sin(y)$

$$e^z = e^x e^{iy} = e^x (\cos(y) + i\sin(y)) \cot z = x + iy$$