

Lösungsblatt 9

Vorbereitungsaufgaben

Vorbereitungsaufgabe 1

Sei $\Sigma = \{a, b, c\}$ ein Alphabet. Geben Sie für jede der folgenden Sprachen L über Σ an, welche der darunter stehenden Aussagen wahr und welche falsch sind.

Erinnerung: Mit R_L bezeichnen wir die Myhill-Nerode-Äquivalenz bezüglich L.

- 1. $L = \{a^k b^\ell c^m \mid k, \ell, m \in \mathbb{N} \}$

 - (a) $abb R_L b$ (b) $aab R_L aac$ (c) $abc R_L \varepsilon$
- (d) $ba R_L cb$
- 2. $L = \{w \in \Sigma^* \mid abc \text{ ist Präfix von } w\} = \{abcu \mid u \in \Sigma^*\}$
 - (a) $ab R_L \varepsilon$
- (b) $aaa R_L a$
- (c) $abcaa R_L abc$
- (d) $abbc R_L aabc$
- 3. $L = \{ w \in \Sigma^* \mid abc \text{ ist Suffix von } w \} = \{ uabc \mid u \in \Sigma^* \}$

 - (a) $aab R_L ab$ (b) $baab R_L abba$ (c) $bbb R_L ccc$
- (d) $ac R_L a$

- 4. $L = \{ w \in \Sigma^* \mid |w|_a \le 1 \land |w|_b = 1 \land |w|_c \ge 1 \}$
 - (a) $bca R_L cab$ (b) $acb R_L bc$ (c) $bcc R_L cb$

- (d) $bc R_L ab$

- 5. $L = \{w \in \Sigma^* \mid |w|_a = |w|_b = |w|_c\}$

 - (a) $abc R_L cba$ (b) $aac R_L abcc$ (c) $\varepsilon R_L aa$
- (d) $bbc R_L abbbcc$

Lösung

1. (a) Wahr.

Für alle $w \in \Sigma^*$ gilt: $abbw \in L \iff w \in \{b\}^*\{c\}^* \iff bw \in L$.

(b) Falsch.

Für w = b gilt: $aabw \in L$, aber $aacw \notin L$.

(c) Falsch.

Für w = a gilt: $abcw \notin L$, $aber w \in L$.

(d) Wahr.

Für alle $w \in \Sigma^*$ sind die Aussagen $baw \in L$ und $cbw \in L$ beide falsch und somit äquivalent.

2. (a) Falsch.

Für w = c gilt: $abw \in L$, aber $w \notin L$.

(b) Falsch.

Für w = bc gilt: $aaaw \notin L$, aber $aw \in L$.

(c) Wahr.

Für alle $w \in \Sigma^*$ sind die Aussagen $abcaaw \in L$ und $abcw \in L$ beide wahr und somit äquivalent.

(d) Wahr.

Für alle $w \in \Sigma^*$ sind die Aussagen $abbcw \in L$ und $aabcw \in L$ beide falsch und somit äquivalent.

3. (a) Wahr.

Für alle $w \in \Sigma^*$ gilt: $aabw \in L \iff w = c \lor w \in L \iff abw \in L$.

(b) Falsch.

Für w = c gilt: $baabw \in L$, aber $abbaw \notin L$.

(c) Wahr.

Für alle $w \in \Sigma^*$ gilt: $bbbw \in L \iff w \in L \iff cccw \in L$.

(d) Falsch.

Für w = bc gilt: $acw \notin L$, aber $aw \in L$.

4. (a) Wahr.

Für alle $w \in \Sigma^*$ gilt: $bcaw \in L \iff |w|_a = |w|_b = 0 \iff cabw \in L$.

(b) Falsch.

Für w = a gilt: $acbw \notin L$, aber $bcw \in L$.

(c) Wahr.

Für alle $w \in \Sigma^*$ gilt: $bccw \in L \iff |w|_a \le 1 \land |w|_b = 0 \iff cbw \in L$.

(d) Falsch.

Für $w = \varepsilon$ gilt: $bcw \in L$, aber $abw \notin L$.

5. (a) Wahr.

Für alle $w \in \Sigma^*$ gilt: $abcw \in L \iff |w|_a = |w|_b = |w|_c \iff cbaw \in L$.

(b) Falsch.

Für w = ab gilt: $aabw \notin L$, aber $abccw \in L$.

(c) Falsch.

Für w = abc gilt: $w \in L$, aber $aaw \notin L$.

(d) Wahr.

Für alle $w \in \Sigma^*$ gilt: $bbcw \in L \iff |w|_a = |w|_b + 2 = |w|_c + 1 \iff abbbccw \in L$.

Vorbereitungsaufgabe 2

Seien \sim , \approx Äquivalenzrelationen auf einer Menge $S. \approx$ heißt Verfeinerung von \sim , falls:

$$\forall x, y \in S \colon (x \approx y \implies x \sim y).$$

In diesem Fall ist jede Äquivalenzklasse bezüglich \approx vollständig in einer Äquivalenzklasse bezüglich \sim enthalten und es gilt folglich $|S/\sim| \leq |S/\approx|$.

Seien $\Sigma = \{a,b\}$ ein Alphabet und \sim, \approx Äquivalenzrelationen auf Σ^* mit

$$x \sim y \iff |x| = |y|$$

 $x \approx y \iff (|x|_a = |y|_a \land |x|_b = |y|_b).$

- 1. Zeigen Sie, das \approx eine Verfeinerung von \sim ist.
- 2. Listen Sie alle Elemente von $[aab]_{\sim}$ auf.
- 3. Welche Äquivalenzklassen bezüglich \approx enthält $[aab]_{\sim}$?

Lösung

- 1. Seien $x, y \in \Sigma^*$ beliebig mit $x \approx y$, d. h. $|x|_a = |y|_a$ und $|x|_b = |y|_b$. Dann gilt $|x| = |x|_a + |x|_b = |y|_a + |y|_b = |y|$, d. h. $x \sim y$.
- 2. $[aab]_{\sim} = \Sigma^3$
- 3. $[aab]_{\sim}$ enthält die Klassen
 - $[aaa]_{\approx} = \{aaa\},$
 - $[aab]_{\approx} = \{aab, aba, baa\},\$

- $[abb]_{\approx} = \{abb, bab, bba\}$ und
- $[bbb]_{\approx} = \{bbb\}.$

Vorbereitungsaufgabe 3

Ein Tupel (S, \circ) bestehend aus einer Menge S und einer binären Verknüpfung $\circ: S \times S \to S$ nennen wir Magma. Ein Magma (S, \circ) heißt

• Halbgruppe, falls (S, \circ) ein Magma ist und \circ assoziativ ist, d. h.:

$$\forall x, y, z \in S : (x \circ y) \circ z = x \circ (y \circ z).$$

• Monoid, falls (S, \circ) eine Halbgruppe ist und ein neutrales Element existiert, d. h.:

$$\exists e \in S : \forall x \in S : x \circ e = x = e \circ x.$$

Das neutrale Element e ist dann eindeutig und wird oft mit 1 notiert.

• Gruppe, falls (S, \circ) ein Monoid ist und jedes Element ein Inverses hat, d. h.:

$$\forall x \in S \colon \exists y \in S \colon x \circ y = 1 = y \circ x.$$

Das Inverse y zu x ist dann eindeutig und wird oft mit x^{-1} notiert.

Ein Tupel (S, \circ) heißt kommutativ, falls gilt:

$$\forall x, y \in S \colon x \circ y = y \circ x.$$

Wie so oft in der Mathematik verwenden wir häufig ein einziges Symbol für verschiedene Verknüpfungen. Beispielsweise wird \cdot für die Multiplikation auf den natürlichen, ganzen, rationalen, reellen oder komplexen Zahlen, aber auch die Konkatenation von Wörtern $(u \cdot v = uv)$ verwendet.

Falls klar ist, um welche Verknüpfung \circ es geht, identifizieren wir ein Magma (S, \circ) mit seiner Trägermenge S. Man schreibt dann S und meint dabei (S, \circ) . In der Vorlesung wurde beispielsweise Σ^* als das freie Monoid vorgestellt, obwohl eigentlich (Σ^*, \cdot) gemeint war. Des Weiteren schreibt man oft xy statt $x \circ y$.

- 1. Welche der folgenden Tupel sind Magmen/Halbgruppen/Monoide/Gruppen? Welche davon sind kommutativ?
 - (a) $(\mathbb{N}, +)$
- (d) (\mathbb{N}, \min)
- (g) (\mathbb{Q},\cdot)
- $(j) (\mathcal{P}(\mathbb{N}), \cap)$

- (b) $(\mathbb{N}, -)$
- (e) $(\mathbb{Z},+)$
- (h) $(\mathbb{Q} \setminus \{0\}, \cdot)$
- (k) $(\mathcal{P}(\mathbb{N}), \cup)$

- (c) (\mathbb{N}, \max)
- (f) $(\mathbb{Z}, -)$
- (i) $(\{a,b\}^*,\cdot)$
- (l) $(\mathcal{P}(\mathbb{N}), \setminus)$

- 2. Sei (S, \circ) eine endliche Halbgruppe mit $S = \{a, b, c, d, e, f\}$ als Trägermenge und der rechtsstehenden Verknüpfungstafel für \circ .
 - (a) Ist (S, \circ) ein Monoid?
 - (b) Ist (S, \circ) eine Gruppe?
 - (c) Ist (S, \circ) kommutativ?

Begründen Sie Ihre Antworten kurz.

0	a	b	c	d	e	f
a	d	e	f	a	b	c
b	$ \begin{array}{c} d \\ f \\ e \\ a \\ c \\ b \end{array} $	d	e	b	c	a
c	e	f	d	c	a	b
d	a	b	c	d	e	f
e	c	a	b	e	f	d
f	b	c	a	f	d	e

Lösung

- 1. (a) $(\mathbb{N}, +)$ ist ein kommutatives Monoid, aber keine Gruppe.
 - (b) $(\mathbb{N}, -)$ ist weder ein Magma noch kommutativ.
 - (c) (N, max) ist ein kommutatives Monoid, aber keine Gruppe.
 - (d) (N, min) ist eine kommutative Halbgruppe, aber kein Monoid.
 - (e) $(\mathbb{Z}, +)$ ist eine kommutative Gruppe.
 - (f) $(\mathbb{Z}, -)$ ist ein Magma, aber weder eine Halbgruppe noch kommutativ.
 - (g) (\mathbb{Q},\cdot) ist ein kommutatives Monoid, aber keine Gruppe.
 - (h) $(\mathbb{Q} \setminus \{0\}, \cdot)$ ist eine kommutative Gruppe.
 - (i) $(\{a,b\}^*,\cdot)$ ist ein Monoid, aber weder eine Gruppe noch kommutativ.
 - (j) $(\mathcal{P}(\mathbb{N}), \cap)$ ist ein kommutatives Monoid, aber keine Gruppe.
 - (k) $(\mathcal{P}(\mathbb{N}), \cup)$ ist ein kommutatives Monoid, aber keine Gruppe.
 - (l) $(\mathcal{P}(\mathbb{N}), \setminus)$ ist ein Magma, aber weder eine Halbgruppe noch kommutativ.
- 2. (a) Ja. Das neutrale Element ist d.
 - (b) Ja. Die Inversen sind: $a^{-1} = a$, $b^{-1} = b$, $c^{-1} = c$, $d^{-1} = d$, $e^{-1} = f$ und $f^{-1} = e$.
 - (c) Nein. Es gilt beispielsweise $a \circ b = e \neq f = b \circ a$.

Vorbereitungsaufgabe 4

Eine Äquivalenzrelation \sim heißt Kongruenzrelation auf ein Monoid (S, \circ) , wenn gilt:

$$\forall x, x', y, y' \in S \colon (x \sim x' \land y \sim y') \implies x \circ y \sim x' \circ y'.$$

Ist \sim eine Kongruenzrelation auf (S, \circ) , dann ist \bullet mit

$$[x]_{\sim} \bullet [y]_{\sim} = [x \circ y]_{\sim}$$

eine wohldefinierte Verknüpfung, die zusammen mit S/\sim ein Monoid bildet, das sogenannte Quotientenmonoid $(S/\sim, \bullet)$. Wohldefiniert heißt in diesem Fall, dass das Ergebnis der Verknüpfung $[x]_{\sim} \bullet [y]_{\sim}$ nicht von der konkreten Wahl der Repräsentanten x und y abhängt.

Sei ~ eine Relation auf $\mathbb Z$ mit $x \sim y$ genau dann, wenn $x^2 = y^2$.

- 1. Zeigen Sie, dass \sim eine Äquivalenzrelation auf $\mathbb Z$ ist.
- 2. Zeigen Sie, dass \sim eine Kongruenzrelation auf (\mathbb{Z},\cdot) ist.
- 3. Zeigen Sie, dass \sim keine Kongruenzrelation auf $(\mathbb{Z}, +)$ ist.

Bemerkungen:

• Oft verwendet man dasselbe Symbol für ∘ und •, obwohl das formal zwei verschiedene Verknüpfungen sind.

• Kongruenzrelationen können auch für Magmen, Halbgruppen und Gruppen definiert werden. Die entstehende Struktur $(S/\sim, \bullet)$ wird dann entsprechend Quotientenmagma, -halbgruppe oder -gruppe genannt.

Lösung

1. Reflexivität

Für jedes $x \in \mathbb{Z}$ gilt $x^2 = x^2$. Somit ist $x \sim x$.

Symmetrie

Seien $x,y\in\mathbb{Z}$ beliebig mit $x\sim y$. Dann gilt $x^2=y^2$ und folglich auch $y^2=x^2$. Somit ist $y\sim x$.

Transitivität

Seien $x, y, z \in \mathbb{Z}$ beliebig mit $x \sim y$ und $y \sim z$. Dann gilt $x^2 = y^2$ und $y^2 = z^2$ und folglich auch $x^2 = y^2 = z^2$. Somit ist $x \sim z$.

Bemerkung: Man erkennt, dass dieser Beweis völlig analog zu dem Beweis aus Aufgabe 2, Teil 1 (b) auf Ergänzungsblatt 6 funktioniert. Tatsächlich ist eine Relation \sim auf einer Menge S mit

$$x \sim y \iff f(x) = f(y)$$

für jede Funktion f mit Definitionsbereich S eine Äquivalenzrelation. Die Äquivalenzklassen sind dann genau die Urbilder.

2. Seien $x, x', y, y' \in \mathbb{Z}$ mit $x \sim x'$ und $y \sim y'$, d. h. $x^2 = x'^2$ und $y^2 = y'^2$. Dann gilt:

$$(x \cdot y)^2 = x^2 \cdot y^2 = x'^2 \cdot y'^2 = (x' \cdot y')^2.$$

Somit ist $x \cdot y \sim x' \cdot y'$.

3. Man sieht, dass der Beweis aus Teilaufgabe 2 mit + statt · nicht funktioniert, da die Gleichung $(a+b)^2 = a^2 + b^2$ im Allgemeinen falsch ist. Dies ist jedoch noch kein Beweis dafür, dass ~ keine Kongruenzrelation auf $(\mathbb{Z}, +)$ ist. Es zeigt jediglich, dass dieser eine Ansatz fehlschlägt.

Wir zeigen, dass \sim keine Kongruenzrelation auf $(\mathbb{Z}, +)$ ist, indem wir Elemente $x, x', y, y' \in \mathbb{Z}$ mit $x \sim x', y \sim y'$ und $x \cdot x' \not\sim y \cdot y'$ angeben.

Beweis

Seien x=x'=y=1 und y'=-1. Dann gilt $x,x',y,y'\in\mathbb{Z},\ x\sim x'$ und $y\sim y'.$ Wegen

$$(x + x')^2 = 4 \neq 0 = (y + y')^2$$

gilt jedoch $x \cdot x' \not\sim y \cdot y'$.

An diesem Beispiel erkennt man den Sinn der obigen Definition einer Kongruenzrelation. Man kann keine Verknüpfung der Art

$$[x]_{\sim} + [y]_{\sim} = [x+y]_{\sim}$$

auf der Quotientenmenge \mathbb{Z}/\sim definieren. Diese wäre nämlich nicht wohldefiniert, da das Ergebnis $[x+y]_{\sim}$ der Verknüpfung abhängig von der Wahl der Repräsentanten x und y wäre.

Präsenzaufgaben

Präsenzaufgabe 1

Zeigen Sie mithilfe des Satzes von Myhill-Nerode, dass keine der folgenden Sprachen L über dem entsprechenden Alphabet Σ regulär ist.

- 1. $L = \{ w \in \Sigma^* \mid |w|_a = |w|_b \}, \ \Sigma = \{ a, b \}$
- 2. $L = a^{3^k} k \in \mathbb{N}, \ \Sigma = \{a\}$
- 3. $L = \left\{ a^{\lfloor \sqrt{k} \rfloor} b^{\ell} c^k \mid k, \ell \in \mathbb{N} \right\}, \ \Sigma = \{a, b, c\}$

Lösung

Zu zeigen ist, dass es die Myhill-Nerode-Äquivalenz R_L unendlichen Index hat, d.h. $|\Sigma^*/R_L| = \infty$. Dies kann ereicht werden, indem man die Existenz einer unendlichen Menge $M \subseteq \Sigma^*$ mit

$$\forall x, y \in M : x \neq y \implies x R_L y$$

zeigt. Dann folgt daraus, dass die Elemente von M paarweise nicht R_L -äquivalent sind, also in unterschiedlichen Klassen enthalten sind. Dann ist $\{[z]_{R_L} \mid z \in M\}$ eine unendliche Teilmenge von Σ^*/R_L , was $|\Sigma^*/R_L| = \infty$ impliziert.

- 1. Betrachte die Menge $M = \{a^n \mid n \in \mathbb{N}\}$. Dann ist $M \subseteq \Sigma^*$ mit $|M| = \infty$. Seien $x, y \in M$ beliebig mit $x \neq y$. Dann existieren $i, j \in \mathbb{N}$ mit $i \neq j$, $x = a^i$ und $y = a^j$. Für $w = b^i$ ist $xw \in L$, aber $yw \notin L$.
- 2. Betrachte die Menge $M = \{a^{3^n} \mid n \in \mathbb{N}\}$. Dann ist $M \subseteq \Sigma^*$ mit $|M| = \infty$.

Seien $x,y\in M$ beliebig mit $x\neq y$. Dann existieren $i,j\in\mathbb{N}$ mit $i\neq j,\,x=a^{3^i}$ und $y=a^{3^j}$. O. B. d. A. sei i< j. Für $w=a^{2\cdot 3^i}$ ist $xw=a^{3^i+2\cdot 3^i}=a^{3\cdot 3^i}=a^{3^{i+1}}\in L$, aber $yw=a^{3^j+2\cdot 3^i}=a^{3^i(3^{j-i}+2)}\notin L$, da $3^{j-i}+2$ nicht durch 3 teilbar und somit $3^i(3^{j-i}+2)$ keine Dreierpotenz ist.

3. Betrachte die Menge $M = \{a^n \mid n \in \mathbb{N}\}$. Dann ist $M \subseteq \Sigma^*$ mit $|M| = \infty$. Seien $x, y \in M$ beliebig mit $x \neq y$. Dann existieren $i, j \in \mathbb{N}$ mit $i \neq j$, $x = a^i$ und

 $y = a^j$. Für $w = c^{i^2}$ ist $xw \in L$, aber $yw \notin L$.

Präsenzaufgabe 2

Sei M der folgende DFA:

1. Führen Sie Minimierungsalgorithmus aus der Vorlesung durch.

Anstatt nicht äquivalente Zustände (bezüglich der Myhill-Nerode-Äquivalenz R_L) zu markieren, soll ein Zeuge eingetragen werden, der die Inäquivalenz der Zustände belegt.

Ein Wort $w \in \Sigma^*$ heißt Zeuge für die Inäquivalenz von p und q, falls gilt:

$$\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \notin F.$$

Tragen Sie in jedes Feld einen Zeugen minimaler Länge ein oder schreiben Sie " R_L ", falls die Zustände äquivalent sind.

- 2. Wie sieht der resultierende minimale DFA aus?
- 3. Geben Sie einen regulären Audruck γ mit $L(\gamma) = T(M)$ an.

Lösung

1.

0						
ba	1					
ba	R_L	2				
a	a	a	3			
aba	ba	ba	a	4		
ε	ε	ε	ε	ε	5	
aba	ba	ba	a	R_L	ω	6

2.

3. $\gamma = (a|b)b(a|b)a^*$

Knobelaufgaben

Knobelaufgabe 1

Zeigen Sie mit dem Satz von Myhill-Nerode, dass die Sprache

$$L = a^k b^\ell \operatorname{ggT}(k, \ell) = 1$$

über dem Alphabet $\Sigma = \{a, b\}$ nicht regulär ist.

Hinweis: $ggT(k, \ell)$ ist der $gr\ddot{o}\beta te$ gemeinsame Teiler von k und ℓ mit ggT(k, 0) = k und ggT(k, 1) = 1 für alle $k \in \mathbb{N}$. $ggT(k, \ell) = 1$ besagt also, dass k und ℓ teiler frem d sind.

Knobelaufgabe 2

Sei Σ ein Alphabet. In früheren Knobelaufgaben (Ergänzungblätter 3 und 8) sollten Sie zeigen, dass folgende Relationen Äquivalenzrelationen auf Σ^* sind:

- 1. $x \sim y :\iff \exists u \in \Sigma^* : xu = uy$
- 2. $x \sim y :\iff \exists u, v \in \Sigma^* : x = uv \land y = vu$

Welche davon sind Kongruenzrelationen auf (Σ^*, \cdot) ?

Beweisen Sie Ihre Antworten.