DIALOG(R) File 347: JAPIO (c) 1999 JPO & JAPIO. All rts. reserv.

04978084 **Image available**

REAR FOCUS ZOOM LENS AND IMAGE PICKUP SYSTEM

PUB. No.: 07-270684 JP 7270684 PUBLISHED: October 20, 1995 (19951020)

INVENTOR(s): HAMANO HIROYUKI

TOCHIGI NOBUYUKI

APPLICANT(s): CANON INC [000100] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.: 06-061144 [JP 9461144] FILED: March 30, 1994 (19940330) INTL CLASS: [6] G02B-015/16; G02B-013/18

JAPIO CLASS: 29.2 (PRECISION INSTRUMENTS -- Optical Equipment)

ABSTRACT

PURPOSE: To provide a rear focus zoom lens having a back focus being long so as to have a space for a color separation prism, a high magnifying power and a large aperture ratio.

CONSTITUTION: The rear focus zoom lens is provided with a first lens group 1 having positive refractive power, a second lens group 2 having negative refractive power, a third lens group 3 having positive refractive power and a forth lens group 4 having positive refractive power in order from the object side, an aperture diaphragm SP is disposed between the second and third lens groups 2 and 3 and the second and fourth lens groups 2 and 4 are moved to vary power. Then, the fourth lens group 4 is moved to focus and composed of at least three positive lenses and one negative lens.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-270684

(43)公開日 平成7年(1995)10月20日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

G02B 15/16 13/18

審査請求 未請求 請求項の数6 OL (全 12 頁)

(21)出顧番号

特顧平6-61144

(22)出顧日

平成6年(1994) 3月30日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 浜野 博之

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(72)発明者 栃木 伸之

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(74)代理人 弁理士 丸島 俄一

(54) 【発明の名称】 リヤフォーカス式のズームレンズと撮像系

(57)【要約】

【目的】 色分解プリズムが入る程度に長いバックフォ ーカスを備え、高倍率で大口径比のリヤフォーカス式の ズームレンズを実現する。

【構成】 物体側より順に正の屈折力の第1レンズ群、 負の屈折力の第2レンズ群、正の屈折力の第3レンズ 群、正の屈折力の第4レンズ群を有し、開口絞りを該第 2レンズ群と該第3レンズ群の間に配し、該第2レンズ 群と該第4レンズ群を移動させることによって変倍を行 い、該第4レンズ群を移動させてフォーカシングを行 い、該第4レンズ群を少なくとも3枚の正レンズと1枚 の負レンズで構成した。

【特許請求の範囲】

【請求項1】 物体側より順に正の屈折力の第1レンズ 群、負の屈折力の第2レンズ群、正の屈折力の第3レン ズ群、正の屈折力の第4レンズ群を有し、開口絞りを該 第2レンズ群と該第3レンズ群の間に配し、該第2レン ズ群と該第4レンズ群を移動させることによって変倍を 行い、該第4レンズ群を移動させてフォーカシングを行 い、該第4レンズ群を少なくとも3枚の正レンズと1枚 の負レンズで構成したことを特徴とするリヤフォーカス 式のズームレンズ。

【請求項2】 第iレンズ群の焦点距離をfi、広角端 におけるレンズ全系の焦点距離とレンズ系のみによるバ ックフォーカスを各々fu、bfuとするとき、

2. 5 < b fw/fw < 6.0

1. $5 < f_3 / f_4 < 3.2$

なる条件を満足することを特徴とする請求項1記載のリ ヤフォーカス式のズームレンズ。

【請求項3】 前記第4レンズ群は物体側から順に第1 の正レンズ、負レンズ、第2の正レンズ、第3の正レン 載のリヤフォーカス式のズームレンズ。

【請求項4】 前記第3レンズ群の最も物体側に少なく とも1つの負レンズを配置することを特徴とする請求項 1乃至3記載のリヤフォーカス式のズームレンズ。

【請求項5】 前記第2レンズ群の負レンズの平均屈折 率を

【外1】

Ñ,

とするとき、 【外2】

0. $9 < |f_2/f_w| < 2$

 $N_2 > 1.75$

なる条件を満足することを特徴とする請求項1乃至4記 載のリヤフォーカス式のズームレンズ。

【請求項6】 物体側より順に正の屈折力の第1レンズ 群、負の屈折力の第2レンズ群、正の屈折力の第3レン ズ群、正の屈折力の第4レンズ群を有し、開口絞りを該 第2レンズ群と該第3レンズ群の間に配し、該第2レン 40 ズ群と該第4レンズ群を移動させることによって変倍を 行い、該第4レンズ群を移動させてフォーカシングを行 い、該第4レンズ群を少なくとも3枚の正レンズと1枚 の負レンズで構成し、該第4レンズ群の像面側に色分解 光学素子を配置したことを特徴とする撮像系。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はビデオカメラやスチルビ デオカメラ等に好適な変倍比10以上、Fナンバー1. 6の可能なずームレンブに関し *****

ムを像面側に配置するのに十分なバックフォーカスを有 した高変倍のリヤフォーカス式のズームレンズに関する ものである。

2

[0002]

【従来の技術】近年ビデオカメラの小型軽量化に伴いレ ンズに対しても小型軽量化の要請が高まってきている。 その為、従来の最も物体側の第1レンズ群を移動させて フォーカスを行ういわゆる前玉フォーカスタイプから第 **1レンズ群以外のレンズ群を移動させてフォーカスを行** 10 う所謂リヤフォーカス式を採用したものが種々提案され ている。

【0003】一般にリヤフォーカス式のズームレンズは 比較的小型軽量のレンズ群を移動させて合焦を行うので フォーカスレンズ群の駆動力が小さくなり、迅速な焦点 合わせが出来る等の特徴がある。

【0004】例えば特開昭62-24213号公報では 物体側より順に正の屈折力の第1レンズ群、負の屈折力 の第2レンズ群、正の屈折力の第3レンズ群、正の屈折 力の第4レンズ群の4つのレンズ群を有し、前記第1、 ズで構成されていることを特徴とする請求項1又は2記 20 第3レンズ群を固定とし、前記第2、第4レンズ群を移 動させて変倍を行い、前記第4レンズ群を移動させて合 焦を行うリヤフォーカス式のズームレンズが提案されて いる。

> 【0005】一方、最近の民生用高級ビデオカメラの中 には高画質化の為に固体撮像素子の3枚式を採用したも のも現れている。

【0006】3枚式ビデオカメラでは色分解の為のプリ ズムを撮影光学系の像面側に配置するために単枚式の場 合と比べて撮影光学系のバックフォーカスを十分に確保 30 しなければならない。

【0007】例えば特開平5-72474号公報では、 正負正正の屈折力配置を持つ4群リヤフォーカス方式で 第4レンズ群を1枚の負レンズと2枚の正レンズで構成 するバックフォーカスが長いズームレンズを提案してい る。

[0008]

【発明が解決しようとしている課題】しかしながら、上 記従来例では射出瞳の長さが色分解プリズムを利用する 光学系としては十分な長さを持っていない為に、プリズ ムのダイクロイック面に入射する光線の角度が中心と軸 上で異なり色シューディングの原因となってしまうとい う問題がある。

【0009】またバックフォーカスも1/3インチCC D相当で16~19ミリ程度の為、プリズムによっては 使えないものも出てくるような長さである。光学性能も 従来レンズ程度で3枚式カメラ対応としては十分な光学 性能とは言えない。

【0010】本発明は正負正正の4群構成のリヤフォー カス式で変倍比10倍以上、F1.6程度の可能な高変 バックフォーカスと射出瞳と共に、非常に良好な光学性 能を持つズームレンズの提供を目的とする。

[0011]

【課題を解決するための手段】リヤフォーカス式のズー ムレンズにおいて、物体側より順に正の屈折力の第1レ ンズ群、負の屈折力の第2レンズ群、正の屈折力の第3 レンズ群、正の屈折力の第4レンズ群を有し、好ましく は開口絞りを該第2レンズ群と第3レンズ群の間に配 し、該第2レンズ群と第4レンズ群を移動させて変倍を 行い、該第4レンズ群を移動させてフォーカシングを行 10 3.0<b f $_{\text{N}}$ / f $_{\text{H}}$ < 5.0 い、該第4レンズ群を少なくとも3枚の正レンズと1枚 の負レンズで構成するようにした。

[0012]

【実施例】図1は、本発明の実施例1の広角端における レンズ断面図である。図中1は変倍中固定の第1レンズ 群、2は変倍用の負の屈折力の第2レンズ群、3は変倍 中固定の第3レンズ群、4は変倍に伴う像面変動を補正 するとともに合焦を行う正の屈折力の第4レンズ群、S Pは固定の開口絞りで第2レンズ群と第3レンズ群の間 に配するものである。広角端から望遠端へのズーミング 20 は矢印に示す通りの軌跡(時間軸に従って展開したとす る。)を描くように光軸に沿って移動させて行ってい る。10は公知の色分解プリズムの等価物で、設けなく ても良い。11は像面で、夫々撮像素子が配される。 【0013】このようなズームタイプにおいて、例えば 色分解用のプリズムを挿入できる様にバックフォーカス を長くするには第3レンズ群の屈折力を弱くして第4レ ンズ群の屈折力をある程度以上に強くしてやるのがよ い。このとき第4レンズ群の屈折力が強まると同時にそ こに入射する光束も大きくなり、第4レンズ群で球面収 30 いバックフォーカスと射出瞳位置を確保している。 差やコマ収差が発生しやすくなる。

【0014】本発明では第4レンズ群を少なくとも3枚 の正レンズと 1 枚の負レンズで構成することにより、バ ックフォーカスを長くしたことに伴う第4レンズ群で発 生する球面収差やコマ収差を低減することを可能とし た。

【0015】望ましくは収差補正の為には第4レンズ群 は物体側より順に第1の正レンズ、負レンズ、第2の正 レンズ、第3の正レンズで構成するのが有効である。

【0016】適切なバックフォーカスを維持しつつ、例 40 えば多枚式カメラ対応レンズに必要な光学性能を達成す るには次の条件式1又は2を満足するように、第3、4 群の屈折力を設定してやるのが好ましい。

 $[0017]2.5 < bfw/fw < 6.0 \cdots (1)$ 1. $5 < f_3 / f_4 < 3. 2 \cdots (2)$

ここでfiは第iレンズ群の焦点距離、fw、bfwは広 角端における全系の焦点距離とバックフォーカス(プリ ズム、ローパスフィルター等が無い状態での)である。 【0018】条件式(1)の下限を越えると(色分解プ リズム等を配置することが出来なった。

ーカスが短くなり、射出瞳位置が短くテレセントリック 系からズレることになりプリズムに入射する光線の角度 がきつくなり色シェーディングが発生する。逆に上限を 越えてバックフォーカスが長くなると第4レンズ群の有 効径が大きくなりレンズが重くなるためスムーズにフォ ーカシングが出来なくなるなどの問題が生じる。以上述 べたように、条件式(1)はバックフォーカスや射出瞳 位置を長くしつつ小型化を満足するための条件ではある が、更に望ましい範囲は、

4

を満足するのが良い。

【0019】条件式(2)は第3レンズ群と第4レンズ 群の焦点距離に関するものであり、絞り以降のコンパク ト化を達成しつつバックフォーカスや射出瞳位置を十分 長くして良好な光学性能を維持するためのものである。 条件式(2)の下限を越えて第3レンズ群の焦点距離が 短くなると変倍に伴うあるいはフォーカシング時の球面 収差の変動の補正が困難となる。また充分なバックフォ ーカスの確保が困難となったり、ズーム中間位置での射 出瞳が短くなったり、第4レンズ群の移動量が大きくな りズーミング時やフォーカシングによる収差の変動が大 きくなるといった問題も生じる。逆に上限を越えて第3 レンズ群の焦点距離が長くなると第3レンズ群から射出 する光束の発散が大きくなり第4レンズ群の有効径が大 きくなりレンズが重くなるためスムーズにフォーカシン グが出来なくなるなどの問題が生じる。

【0020】また第3レンズ群を少なくとも1枚の負レ ンズと1枚の正レンズより構成し、該第3レンズ群の最 も物体側のレンズを負レンズとすることにより十分に長

【0021】更に前記第3レンズ群の最も物体側の負レ ンズは像側に強い凹面を有するのがよい。このようにす ることでバックフォーカスや射出瞳位置を長くする為に 最も物体側の負レンズで発散させられた光束がその次の レンズに入射するときに発生する球面収差をキャンセル する様にし得る。

【0022】一方、レンズ全長の短縮と前玉径の小型化 のため第2レンズ群の屈折力と負レンズの屈折率を以下 の条件式の1又は2を満足するように設定している。

[0023]

【外3】

0. $9 < |f_2/f_w| < 2$

 $\hat{N}_{2} > 1.75$

ここで [0024] 【外4】

 \hat{N}_2

【0025】条件式(3)は第2レンズ群の焦点距離に 関するものである。条件式 (3)の下限を越えて第2レ ンズ群の焦点距離が短くなるとペッツバール和がアンダ ーに大きくなり像面の倒れ等の収差補正が困難になる。 逆に上限を越えて第2レンズ群の焦点距離が長くなると 第2レンズ群の移動量が増え、前玉径が大きくなりすぎ るという問題が生じる。

【0026】また条件式(4)の下限を越えて第2レン ズ群の負レンズの屈折率が小さくなるとペッツバール和 がアンダーに大きくなり像面湾曲の補正が困難になって 10 方向にH軸、光の進行方向を正とし、Rを近軸曲率半

【0027】なお、上記条件式(1)~(3)を仕様に 応じて組合わせて使用することは性能上有効である。

【0028】次に本発明の数値実施例を示す。尚、数値*

(1/R)H² $X = \frac{(1/R)rT}{1 + \sqrt{1 - (1 + k)(H/R)^{2}}} + BH^{4} + CH^{5} + DH^{5} + EH^{10} + FH^{10}$

なる式で表している。

【0032】また前述の各条件式と数値実施例における 諸数値との関係を表1に示す。

*実施例において r i は物体側より順に第 i 番目の曲率半 径、diは物体側より順に第i番目のレンズ厚及び空気 間隔、niとviはそれぞれ物体側より順に第i番目のレ ンズのガラスの屈折率とアッベ数である。

6

【0029】また数値実施例1~3における r 27~r 29、数値実施例4における r 25~r 27は光学フィ ルター、フェースプレート等を示すがこれらは必要に応 じて省略し得る。 【0030】非球面形状は光軸方向にX軸、光軸と垂直

径、B、C、D、E、Fを各々非球面係数としたとき、

%【0033】

[0031]

【外5】

【外6】

Pno=

D 1=

D 2=

D 3=

D 4=

D 6=

D 7=

D 8=

D 9=

D10=

D 5= 可変

7 数值実施例1

R i=

R 2=

R 3=

R 4=

R 5=

R 6=

R 7=

R 8=

R 9=

R10=

R26=

R27=

R28=

R29=

-35. 722

œ

∞

f=1~10.00

11.304

5. 169

4. 381

11.713

6. 932

1. 184

-2. 573

5.649

3. 439

-33. 966

		8
o=1 . 65~2 . 13	2ω= 57.0°	~6. 2°
0. 24	N 1= 1. 846660	y 1= 23.8
0. 95	N 2= 1.603112	ν 2= 60.7
0. 03		
0. 56	N 3= 1.712995	ν 3=53.8
0. 10	N 4= 1. 882997	ν 4= 40.8
0. 46		- 10.0
0. 10	N 5= 1. 882997	ν 5= 40.8
0. 13		
0. 42	N 6= 1.846660	ν 6= 23.8

Kil=	-3. 091	D11=	0. 04		
R12=	-2. 453	D12=	0. 12	N 7= 1. 804000	ν 7= 46.6
R13=	-4. 999	D13= =	変	2.00200	₽ 1~ 40. 0
R14=	(被)	D14=	0. 34		
R15=	6. 451	D15=	0. 14	N 8= 1.603112	. 0_60.7
R 16≃	3. 203	D16=	0. 47	0 - 1. 000112	ν 8= 60.7
R17=	4. 027	D17=	1. 03	N 9= 1.603420	D_ 20 A
R18=	-2. 134	D18=	0. 15	N10= 1, 834807	ν 9=38.0 10=40.7
R19=	-5. 089	D19= 🗐		1.001001	ע 10= 42.7
R20=	-4. 597	D20=	0. 42	N11= 1. 516330	11 64-0
R21=	-3. 121	D21=	0. 03	111-1.010000	ν 11= 64. 2
R22=	7. 105	D22=	0. 15	N12= 1. 846660	10. 00. 0
R23=	2. 504	D23=	0. 69	N13= 1. 487490	ν 12= 23. 8
R24 =	-12, 109	D24=	0. 03	1140- 1. 401430	ע 13= 70. 2
R25=	3. 316	D25=	0. 56	N14= 1. 498999	u 14= 91 G

0. 68

0. 51

3, 22

D26=

D27=

D28=

N14= 1. 498999

N15= 1.518330

N16= 1. 603420

ν 14= 81.6

ν 15= 64. 2

ν 16= 38, 0

焦点距離 可変間隔	1. 00	4. 69	10. 00
D 5	0. 15	3. 31	4. 20
D 13	4. 31	1. 15	0. 26
D 18	2. 05	1. 40	2. 05

[0034]

* *【外7】

9 数值実施例2

4	\sim
- 1	

	6-1- 10 AT				
	f=1~12.05		Fno=1.65~2.00	2ω= 65.	2° ~6. 1°
R 1=	30. 571	D 1=	0. 36	N 1= 1. 805181	ν 1=25.4
R 2=	7. 287	D 2=	0. 40		- 1 23.4
R 3=	12. 246	D 3=	1. 00	N 2= 1.696797	ν 2≈55.5
R 4=	-32, 680	D 4=	0. 04	=======	D D 33. 3
R 5=	5. 9 45	D 5=	1. 10	N 3= 1. 698797	ν 3=55.5
R 6=	-1305. 780	D 8= i	可変		v 3- 33. 3
R 7=	8. 578	D 7=	0. 16	N 4= 1.882997	ν 4= 40.8
R 8=	1. 772	D 8=	0. 58		P 4-40.0
R 9=	-2. 647	D 9=	0. 14	N 5= 1. 698797	ν 5= 55.5
R10=	3. 033	D10=	0. 20	2. 000101	P 5- 33. 3
R11=	3. 638	D11=	0. 46	N 6= 1. 848359	ν 6= 23.8
R12=	-17. 452	D12= 7		. • 1.01000	V 0- 43. 0
R13=	(粒)	D13=	0. 30		
R14=	-14, 240	D14=	0. 14	N 7= 1,603112	ν 7=60.7
R15=	4. 595	D15=	0. 26		D 1-00.1
R16=	-9. 032	D16=	0. 40	N 8= 1.603112	ν 8=38.0
R17=	-4. 333	D17=	0. 60		P 0- 00.0
R18=	4. 101	D18=	1. 14	N 9= 1.603420	ש 9= 38.0
R19=	-2. 568	D19=	0. 18	N10= 1. 785896	ν 10= 44. 2
R20 =	-9. 589	D20= F	変	1. 1.0000) 10- 44 Z
R21=	-11. 910	D21=	0. 50	N11= 1, 516330	ν 11= 64. 2
R22 =	-4. 499	D22=	0. 03		» II- 04 2
R23-	11. 430	D23-	0. 18	N12- 1. 805181	ν 12= 25. 4
R24 =	2. 474	D24=	1. 04	N13= 1, 487490	ν 13= 70. 2
R25-	-22. 902	D25-	0. 03	11 10/100	P 10- 10, 2
R26 =	4. 228	D26=	0. 68	N14= 1. 487490	u 1.4~ 70. 2
R27=	-10. 421	D27=	0. 80		ν 14= 70. 2
R28 =	∞	D28=	0. 50	N15= 1. 516330	ν 15= 64. 2
R29=	œ	D29=	4. 00	N16= 1. 603420	
R30=	∞			1. 003250	ν 16= 38. O

無点距離 可変間隔	1. 00	5. 18	12. 05
D 6	0. 29	4. 50	5. 68
D 12	5. 70	1. 49	0. 30
D 20	1. 82	1. 07	1. 83

[0035]

* *【外8】

1 1 数値実施例3

12

	f=1~10.0		Pno=1. 65~2. 33	2ω= 56.	1° ~6. 1°
R 1=	12. 685	D 1=	0. 20	N 1= 1. 848860	
R 2=	5. 675	D 2=	0. 83	N 2= 1.603112	ν 1= 23.8
R 3=	-33. 085	D 3=	0. 03	2 1.000112	ν 2= 60.7
R 4=	4. 668	D 4=	0. 47	N 3= 1.712995	9_ F2 D
R 5=	11. 792	D 5=		. 0 1. 110000	ν 3=53.8
R 6=	6. 984	D B=	0. 10	N 4= 1.882997	ν 4= 40.8
R 7=	1. 263	D 7=	0. 47	* 1.00000)	P 4-40.8
R 8=	-3. 174	D 8=	0, 10	N 5= 1.882997	ν 5= 40.8
R 9=	8. 392	D 9=	0. 12	4 1. 404001	D 5-40.8
R10=	3. 188	D10=	0. 42	N 6= 1.846560	ν 6=23.8
R11=	-3. 671	D11=	0. 05		2 0-23.6
R12=	-2. 708	D12=	0, 10	N 7= 1,772499	ν 7=49.6
R13=	-9. 578	D13= =	可変		2 1-48.0
R14=	(校)	D14=	0. 33		
R15=	8. 699	D15=	0. 13	N 8= 1.603112	ν 8= 60.7
R16=	3. 003	D16=	0. 50		P 0-00.1
R17=	3. 874	D17=	0. 97	N 9= 1. 603420	ν 9=38.0
R18=	-2. 061	D18=	0. 15	N10= 1. 834807	ν 10= 42. 7
R19=	-5. 583	D19= 1	麼		710-12.1
R20 =	-4. 652	D20=	0. 33	N11= 1. 516330	ν 11= 64. 2
R21=	-2. 964	D21=	0. 03		> 11 - 0Z D
R22 =	7. 735	D22=	0. 15	N12= 1. 846660	ע 12= 23. 8
R23-	2. 649	D23-	0. 75	N13- 1. 487490	ν 13= 70. 2
R24 =	-10. 873	D24 =	0. 02		- 10 10. <u>2</u>
R25-	3. 494	D25=	0. 50	N14- 1. 516330	ν 14 - 64, 2
R26 =	-28. 431	D26=	0. 57		211 0EB
R27=	∞	D27=	0. 42	N15= 1. 516330	ν 15= 64. 2
R28 =	∞	D28=	4. 00	N16= 1. 603420	ν 16= 38. 0
R29=	∞				- 10 00.0

焦点距離 可変間隔	1. 00	4. 88	10. 00
D 5	0. 21	3. 72	4. 71
D 13	4. 67	1. 16	0. 17
D 18	1. 98	1. 33	1. 98

13 数值実施例4

14

	f=1~10.00		Fno=1. 65~2. 36	2 co = 57	. C° ~6. 2°
R 1=	8. 852	D 1=	0, 22	N 1= 1. 846660	
R 2=	4. 373	D 2≈	0. 22		ν 1= 23.8
R 3=	-54. 672	D 3=	0. 03	N 2= 1.603112	ν 2=60.7
R 4≈	4. 110	D 4=	0. 61	N 3= 1.712995	
R 5≈	13. 484	D 5= 1		N 3- 1. /12885	ν 3=53.8
R 6=	20. 450	D 6=	0. 10	N 4= 1. 882997	
R 7=	1. 101	D 7=	0. 36	n 4- 1. 00699!	ν 4= 40. 8
R 8=	-2. 544	D 8=	0. 10	N 5= 1. 882997	. 5 40 5
R 9=	9. 055	D 9=	0. 13	N 3- 1. 002991	ν 5= 40.8
R10=	2. 850	D10=	0. 37	N 6= 1. 846660	
R11=	-3. 522	D11=	0. 12	N 7= 1. 583126	ν 6= 23. 8
R12=	13.559 (非球面) D12= =		11 1- 1. 383120	ν 7=59.4
R13=	(較)	D13=	0. 25		
R14=	-4. 153	D14=	0. 14	N 8= 1.583126	A. B. CO. 4
R15=	2.570 (非球面) D15=	0. 72	0 1. 903120	ν 8= 59.4
R16=	4. 260	D16=	0. 59	N 9= 1.581439	. 0 40 5
R17=	-9. 497	D17= 1	· · · - •	. 0 1.001400	ν 9= 40.8
R18=	-2. 23 5	D18=	0. 37	N10= 1. 516330	10- 64 0
R19=	-3. 29 5	D19=	0. 03	110° 1. 010000	ע 10= 64. 2
R20=	1 0. 633	D20=	0. 15	N11= 1. 805181	ν 11= 25, 4
R21=	2. 709	D21=	0. 84	N12= 1. 498999	
R22 =	-8. 7 55	D22=	0. 03	1. 100000	ע 12= 81. 6
R23=	3. 858	D23=	0. 46	N13= 1. 622992	ע 13= 58. 1
R24=	œ	D24=	1, 15	1.00000	n 12= 29' I
R25=	œ	D25=	0. 51	N14= 1. 516330	14-04 0
R26=	∞	D26=	3. 22	N15= 1. 603420	ν 14= 64. 2 ν 15= 28. α
R27=	œ			11 ANAIRA	ע 15= 38.0

焦点距離 可変間隔	1. 00	4. 68	10.00
D 5	0. 16	2, 81	3. 56
D 12	3. 66	1, 00	0. 25
D 17	2. 54	1, 83	2. 57

非球面係數

デス(B) (MRX)
R12 K=1.28683e+02 B=-4.11855e-0.3 C=-2.32284e-03
R15 K=6.40035e-02 B=2.47645e-03 C=-4.51839e-04
なお、e+0 aは10*を、e-0 a=10*を表わす。

[0037]

*【表1】

実施例	1	2	3	4
bfw/fw	3.732	4.455	4.106	3.954
1./1.	1.989	2.066	2.492	1.967
f./f.	1.425	1.701	1.582	1.203
N _s	1.857	1.790	1.846	1.783

[0038]

【発明の効果】本発明によれば前述のごとく各レンズ群 のレンズ構成及び屈折力を設定すると共にフォーカスの 際に第4レンズ群を移動させるレンズ構成を採ることに より、レンズ系全体の小型化を図りつつ全変倍範囲にわ たって良好なる収差補正を達成し、かつフォーカスの際 の収差変動の少なくバックフォーカスと射出瞳位置の充 分に長い大口径比のリヤフォーカス式のズームレンズを 達成することができる

※【図面の簡単な説明】

- 【図1】数値実施例1に対応するレンズ断面図。
- 【図2】広角端の諸収差図。
- 【図3】望遠端の諸収差図。
- 【図4】数値実施例2に対応するレンズ断面図。
- 【図5】広角端の諸収差図。
- 【図6】望遠端の諸収差図。
- 【図7】数値実施例3に対応するレンズ断面図。

16

15

【図9】望遠端の諸収差図。

【図10】数値実施例4に対応するレンズ断面図。

【図11】広角端の諸収差図。

【図12】望遠端の諸収差図。

【符号の説明】

1 第1レンズ群

2 第2レンズ群

3 第3レンズ群

4 第4レンズ群

SP 絞り

【図2】

【図4】

【図3】

【図5】

【図6】

【図10】

【図11】

【図12】

