2.2: The Limit of a Function

One-sided Limits

If f(x) approaches L as x approaches a from the left (x < a), then

$$\lim_{x \to a^{-}} f(x) = L.$$

If f(x) approaches L as x approaches a from the right (x > a), then

$$\lim_{x \to a^+} f(x) = L.$$

Example 1. (a) $f(x) = \sqrt{1 - x^2}$

(b)
$$H(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$$

Limit of a Function

If f(x) approaches L as x approaches a from both the left and right $(x \neq a)$, then

$$\lim_{x \to a} f(x) = L.$$

More precisely, this means that the value of f(x) can be made as close to L as we like by taking x sufficiently close to a. Notice that $\lim_{x\to a} f(x)$ exists if and only if $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$. Also, notice that f(a) need not equal $\lim_{x\to a} f(x)$ nor even be defined for $\lim_{x\to a} f(x)$ to exist.

Example 2. (a)
$$f(x) = x^3 - x$$
 (b) $g(x) = \frac{x^2 - 1}{x - 1}$ (c) $h(x) = \begin{cases} -x^2 - 1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ x^2 + 1 & \text{if } x > 0 \end{cases}$

Example 3. Sketch the graph of $f(x) = \begin{cases} 1+x & \text{if } x < -1 \\ x^2 & \text{if } -1 \le x < 1 \end{cases}$ and determine each of $2-x & \text{if } x \ge 1$

(a)
$$\lim_{x \to \frac{1}{2}} f(x) =$$

(b)
$$\lim_{x \to -1^{-}} f(x) =$$

(c)
$$\lim_{x \to -1^+} f(x) =$$

$$(d) \lim_{x \to -1} f(x) =$$

(e)
$$f(-1) =$$

(f)
$$\lim_{x \to 1^{-}} f(x) =$$

$$(g) \lim_{x \to 1^+} f(x) =$$

$$(h) \lim_{x \to 1} f(x) =$$

(i)
$$f(1) =$$

Infinite Limits

If f(x) takes arbitrarily large positive values as x approaches a (from both the left and right), then

$$\lim_{x \to a} f(x) = \infty.$$

Similarly, if f(x) takes arbitrarily large negative values as x approaches a (from both the left and right), then

$$\lim_{x \to a} f(x) = -\infty.$$

f(x) has a **vertical asymptote** at x = a if one of the following are true

$$\bullet \lim_{x \to a^{-}} f(x) = \infty$$

•
$$\lim_{x \to a^-} f(x) = -\infty$$

$$\bullet \lim_{x \to a^+} f(x) = \infty$$

•
$$\lim_{x \to a^+} f(x) = -\infty$$
.

Example 4. (a) y = ln(x) (b) $f(x) = \frac{1}{x}$ (c) $g(x) = \frac{1}{x^2}$

Example 5. Sketch the graph of $f(x) = \frac{x^2 - 2x - 8}{x^2 - 5x + 6}$ and determine each of the limits

 $(a) \lim_{x \to 2^-} f(x) =$

 $(d) \lim_{x \to 3^-} f(x) =$

 $(g) \lim_{x \to -\infty} f(x) =$

 $(b) \lim_{x \to 2^+} f(x) =$

 $(e) \lim_{x \to 2^+} f(x) =$

 $(c) \lim_{x \to 2} f(x) =$

 $(f) \lim_{x \to 3} f(x) =$

 $(h) \lim_{x \to \infty} f(x) =$