LOCKHEED-CALIFORNIA CO BURBANK F/G 1/3
SUMMARY OF RESULTS FOR A TWIN-ENGINE, LOW-WING AIRPLANE SUBSTRU--ETC(U) AD-A069 171 JAN 79 G WITTLIN LR-28869 DOT-FA75WA-3707 FAA-RD-79-13 UNCLASSIFIED NL 1 OF 2 AD A069171 1111 Illn

REPORT NO: FAA-RD-79-13

Summary of Results for a Twin-Engine, Low-Wing Airplane Substructure Crash **Impact Condition Analyzed** With Program 'KRASH' AD A 0 6 9 1 7 1

Gil Wittlin

January 1979 **Final Report**

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research & Development Service Washington, D.C. 20590

79 05 24 011

FILE COPY

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

1. Report No. 2. Government Accession No.	3. Recipient's Catalog No.
FAA-RD 79-13	
4. Title and Subtitle	5. Report Date
SUMMARY OF RESULTS FOR A TWIN-ENGINE, LOW-WING AIRP	
SUBSTRUCTURE CRASH IMPACT CONDITION ANALYZED WITH	6. Performing Organization Code
PROGRAM 'KRASH'	L
The state of the s	8. Performing Organization Report No.
7. Author(s) (10) Gil/Wittlin	14 LR-28869
9. Performing Organization Name and Address 1121	10. Work Unit No. (TRAIS)
110170	IV. WORK UNIT NO. (TRAIS)
Lockheed California Co. P.O. Box 551	11. Contract or Great No.
Burbank, California 91520	DOT-FA75WA-3707
200000000000000000000000000000000000000	13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address	9 Final porti
U.S. Department of Transportation	Jul 1978 - January 1979
Federal Aviation Administration Systems Research and Development Service	14. Sponsoring Agency Code
Washington, D.C. 20590	Federal Aviation Administrat
15. Supplementary Notes	Treater Aviation Administrat
This report contains the results of using digital	
structure subjected to a 27.5 ft/sec vertical velocity performed previously by NASA-Langley as part of a jourgeneral aviation airplane crash dynamics.	int FAA-NASA effort concerning
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representations	int FAA-NASA effort concerning ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated.	int FAA-NASA effort concerning ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representations	int FAA-NASA effort concerning ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated.	int FAA-NASA effort concerning ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated.	int FAA-NASA effort concerning ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated.	int FAA-NASA effort concerning ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated.	int FAA-NASA effort concerning ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated.	int FAA-NASA effort concerning ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated.	int FAA-NASA effort concerning ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated.	int FAA-NASA effort concerning ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection
performed previously by NASA-Langley as part of a journel general aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated. Conclusions are presented based on the results of the conclusions are presented based on the conclusions are presented by the conclusions are present	ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection of the effort.
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated. Conclusions are presented based on the results of the conclusions are presented based on the conclusions are presented by the conclusions are presen	ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection of the effort. Statement t is available to the public
performed previously by NASA-Langley as part of a journel general aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated. Conclusions are presented based on the results of the comparison of	ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection of the effort. Statement t is available to the public the National Technical
performed previously by NASA-Langley as part of a journel general aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated. Conclusions are presented based on the results of the comparison of the results of the comparison of the	ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection of the effort. Statement t is available to the public the National Technical tion Service, Springfield
performed previously by NASA-Langley as part of a journel general aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated. Conclusions are presented based on the results of the comparison of the results of the comparison of the	ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection of the effort. Statement t is available to the public the National Technical tion Service, Springfield
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated. Conclusions are presented based on the results of the conclusions are presen	ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection of the effort. Stotement t is available to the public the National Technical tion Service, Springfield 51
performed previously by NASA-Langley as part of a journel general aviation airplane crash dynamics. Included in this report are the math model description of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated. Conclusions are presented based on the results of the conclusions are presented	ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection of the effort. Statement t is available to the public the National Technical tion Service, Springfield 51
performed previously by NASA-Langley as part of a journal aviation airplane crash dynamics. Included in this report are the math model described a comparison of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated. Conclusions are presented based on the results of the conclusions are presen	ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection of the effort. Stotement t is available to the public the National Technical tion Service, Springfield 51
performed previously by NASA-Langley as part of a journel general aviation airplane crash dynamics. Included in this report are the math model description of analysis versus test results and the sensitivity study using program KRASH. Floor and occacceleration responses obtained from test measurement analytical results. The effect of model representativariations on dynamic behavior are evaluated. Conclusions are presented based on the results of the conclusions are presented	ription, pertinent test data, results of a limited parameter cupant pelvis vertical t are compared to corresponding ion and input data selection of the effort. Statement t is available to the public the National Technical tion Service, Springfield 51

ness I	toerod Gudge	44431	333	14	linhi	'1	
		Hitt	1111	mi		11	- N - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
Approximate Conversions from Metric	LENGTH	13223 2	2222	0.038 2.2 1.3 VOLUME	0.00 2.1 1.06 0.28 36 1.3 1.3	22 E	02 - 03
Approximate Con		100 miles	square continues square interes square (10,000)	A BOOL			2
į	Agraniii Cilosii Fii 197	165	3232	.1.	199	۰	* 6 T 6°
 						
	١.`	1 1 '	.' ' .	.1.1.1	','',		1 inches
	į	11.1	i i		11111	٥	Publ. 286,
•]	Continuents Continuents Medical Kilomatera			adilitions militions militions files files files cobic mees	Celsius	les, see NBS Misc.
Approximate Conversions to Metric M		2.5 30 8.0 8.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZS 0.45 0.55 VOLUME	5 15 20 2,24 0,47 0,58 0,58 0,58	TEMPERATURE (exact)	12) 1 in 1 2.54 jeabcliy), for other exact conversions and more detailed tables, see NBS Misc. Publ. 28s, Units of Neights and Messures, Price \$2.25, SD Catallog No. C13.10.286.
Approximate Co.		litt		ownces pounds pounds pounds pounds (2000 lb)	Essential Control of C		abctly). For other exact con i and Massures, Price \$2.25,
ten (sil	l	1431	3333		iiirir	,	1 in ± 254 is Units of Neights

FOREWORD

This report, prepared by the Lockheed-California Company under Contract DOT-FA75WA-3707, contains a description of the effort in which program KRASH was used to model and analyze a twin-engine, low-wing airplane substructure subjected to a vertical crash impact condition. The test was performed previously by NASA-Langley as part of a joint FAA-NASA effort concerning general aviation airplane crash dynamics. The work discussed in this report was administered under the direction of the Federal Aviation Administration with H. Spicer acting as Technical Monitor.

Gil Wittlin of the Lockheed-California Company performed the analysis and correlation with test data. Bill LaBarge of the Lockheed-California Company assisted in the initial phases of the math model development. Dr. Robert Hayduk of the NASA-Langley Impact Dynamics Research Facility coordinated the effort and provided structure, test and film data. The data presented in this report are a partial input to NASA for purposes of evaluating the state of the art in light-airplane crash dynamics modeling and analysis. The Lockheed effort was performed under the supervision of J.E. Wignot.

DC BUIL SOLION DUST I CAUTEN BY DISTRIBUTION/AVA" ABURY COMES	CCESSION	Waite Section
DISTRIBUTION, AVA., VIS. M.A. CLACE	ITIS DDC	Buff Section [
DISTRIBUTION/AVA ARE NY COMES		
DISTRIBUTION/AVA" AIR NY CONCS	usti ica-i	.,
0.1	RY	
	OISTRIBUT!	ONIANY, VIETA COLCE
	BY DISTRIBUTE D	BUTANA, METAN CLUCE
И	DISTRIBUTE	BUTANA, YERIKA CLACE

SUMMARY

The results of using program KRASH to analyze the dynamic response of a twin-engine, low-wing airplane substructure subjected to a 27.5 ft/sec vertical impact velocity crash condition are presented.

Included in this report are the math model description, pertinent data from the test, a comparison of analysis versus test results and the results of a limited parameter sensitivity study using program KRASH.

The substructure is modeled symmetrically in KRASH with 32 masses, 57 member elements and 44 nonlinear beam element degrees of freedom. Floor and occupant pelvis vertical acceleration responses obtained from test measurements are compared to corresponding analytical results. Occupant chest, substructure roof, and window-ledge motions are also compared. Variations in external spring (crushable structure) load-deflection behavior, seat stiffness, occupant representation, analytical filter frequency cutoff and model size are included to ascertain their effect on dynamic behavior for the particular substructure and impact condition being evaluated. Conclusions are presented based on the results of the effort.

Pertinent math model and computer output data are presented in Appendices A and B.

TABLE OF CONTENTS

Section		Page
	FOREWORD	111
	SUMMARY	.v
	LIST OF FIGURES	viii
	LIST OF TABLES	ix
1	INTRODUCTION	1-1
2	MODEL AND TEST DATA	2-1
2.1	KRASH MODEL	2-1
2.2	TEST DATA	2-5
3	KRASH RESULTS AND COMPARISON WITH TEST DATA	3-1
3.1	ACCELERATIONS	3-1
3.2	DISPLACEMENTS	3-6
3.3	COMPUTER COST AND PERFORMANCES	3-9
4	KRASH SENSITIVITY STUDY RESULTS	4-1
4.1	EXTERNAL SPRING LOAD-DEFLECTION REPRESENTATION	4-2
4.2	OCCUPANT AXIAL STIFFNESS REPRESENTATION	4-4
4.3	SEAT MAXIMUM FORCE	4-6
4.4	ANALYTICAL FILTER CUTOFF FREQUENCY	4-8
4.5	MODEL SIZE VARIATION	4-9
5	CONCLUSIONS	5-1
	REFERENCES	
Appendices		
A	KRASH MODEL CALCULATIONS	A-1
В	ANALYSIS COMPUTER PRINT	

LIST OF FIGURES

Figure	egoport to test	Page
2-1	Twin-engine, low-wing airplane.	2-2
2-2	Lower fuselage structure for twin-engine, low-wing airplane (F.S. 135 - F.S. 181).	2-2
2-3	KRASH fuselage model.	2-3
2-4	KRASH floor-seat-occupant model.	2-3
2-5	Post-crash condition of substructure, front view	2-7
2-6	Post-crash condition of substructure, rear view	2-7
2-7	Post-crash condition of substructure, floor	2-8
2-8	Post-crash condition of substructure, partial of roof	2-8
2-9	Motion histories obtained from high-speed film analysis.	2-10
2-10	Accelerometer traces.	2-11
3-1	Comparison of occupant pelvis vertical acceleration, test versus analysis.	3-3
3-2	Comparison of fuselage floor vertical acceleration, test versus analysis.	3-4
3-3	Comparison of fuselage floor vertical acceleration, test versus analysis.	3-5
3-4	Comparison of analysis and test motions.	3-8
4-1	Normalized force versus external spring load-deflection characteristics.	4-3
4-2	Peak acceleration as a function of external spring load-deflection characteristics.	4-4
4-3	Lower torso (pelvis) response as a function of occupant axial stiffness.	4-6
4-4	Typical force-deflection curve for a light-aircraft passenger seat.	4-7
4-5	Lower torso (pelvis) response as a function of seat maximum force level.	4-8
4-6	Floor and occupant peak responses as a function of analysis filter cutoff frequency.	4-10

LIST OF FIGURES (Continued)

Figure		Page
4-7	16 mass, 32 member symmetrical math model	4-11
4-8	6 mass, 8 member symmetrical math model	4-13
4-9	5 mass, 5 member full math model	4-14

LIST OF TABLES

Table		Page
2-1	Location of Test and Analysis Data Points	2-6
2-2	Summary of Substructure Test Data	2-9
3-1	Comparison of Analysis and Test Peak Accelerations	3-2
3-2	Comparison of Analysis and Test Peak Motions	3-7
4-1	Comparison of Results for Different Size Math Models	4-15

SECTION 1

INTRODUCTION

Program KRASH has been validated with several sets of full-scale aircraft crash test data (References 1 and 2). The availability of crash test data for a twin-engine, low-wing, light-airplane substructure and an additional impact condition provided another opportunity to demonstrate KRASH's capability to represent the significant dynamic response characteristics of a survivable crash condition. In addition to KRASH, the twin-engine airplane substructure is to be modeled using two other digital computer programs, DYCAST and ACTION, designed for a structural crash dynamics evaluation. The modeling of a particular structure for a defined impact condition using three different current crash dynamics computer programs provides an opportunity to compare the requirements for: model size, input data, ease of modeling, output data, analysis versus test results, machine costs and machine time. This report concerns itself solely with the KRASH modeling results and comparison with the substructure test results.

SECTION 2

MODEL AND TEST DATA

2.1 KRASH MODEL

The substructure representing F.S. 135 to F.S. 181 for a typical twin-engine low-wing airplane (Figure 2-1) is shown in Figure 2-2.

The substructure including occupants is modeled symmetrically (about B.L. 0.0) in program KRASH. The KRASH substructure and occupant representations are shown in Figures 2-3 and 2-4. The floor masses at locations 2 through 6 and 8 through 12 have external springs to represent ground contact and crushing of the underside structure. Only half the structure is shown in Figure 2-3 since the model and impact conditions are treated symmetrically. The dash lines jutting laterally from 14 and 18 are tension-only members to represent the lateral tie rods (see Figures 2-5 and 2-6). For clarity, tension-only members representing occupant seat belts connecting mass 5 to mass 30 and mass 11 to mass 30 are not shown in Figure 2-4. Compression-only members representing the seat cushion and pan connect mass 30 to mass 29. Masses 29, 30, 31 and 32 represent the seat, occupant lower torso, occupant upper torso, and DRI, respectively. Details of the modeling including sample calculations are shown in Appendix A. Computer program input and output data are provided in Appendix B.

• KRASH Substructure model size:

Total number of masses - 32

Total number of beam elements - 57

Number of nonlinear degrees of - 44 freedom associated with beam elements

Figure 2-1. - Twin-engine, low-wing airplane.

Figure 2-2. - Lower fuselage structure for twin-engine, low-wing airplane (F.S. 135 - F.S. 181).

Figure 2-3. - KRASH fuselage model.

Figure 2-4. - KRASH floor-seat-occupant model.

• Impact conditions

Velocity = 27.5 ft/sec vertical

Pitch angle = 3/4° pitch-up

Yaw-angle = 0°

Roll angle = 0°

Table 2-1 shows the location of the test and analysis data points.

The nonlinear deflection values used as input into the KRASH model were obtained directly from KRASH calculations. The deflection values are contained as part of the 'Model Parameter Data' print, provided in Appendix B.

2.2 TEST DATA

The substructure crash test data and film analyses were provided by the NASA-Langley Impact Dynamics Research Facility. Figures 2-5 and 2-6 show the front and rear views, respectively, of the post-crash test condition of the substructure. Figures 2-7 and 2-8 show the floor structure and a portion of the roof structure, respectively. The summary of NASA-provided test data is presented in Table 2-2. Figure 2-9 shows the motion histories obtained from high-speed film analysis, performed by NASA-Langley, for the occupant chest, roof, and window-ledge locations. Figure 2-10 shows the reduced test data accelerometer histories for four floor locations and the two occupant (left and right side) pelvis locations. The channels record D.C. data. The reduced data are obtained by NASA using a least-square fit (LSF) filtering technique. All the test data are for vertical response channels and motions since this direction represents the predominant mode of response for this type of impact condition. Correspondingly, all correlation with analysis is limited to responses in the vertical direction.

The substructure test was previously performed by NASA as part of a joint general aviation crash test program initiated by the FAA and NASA. The impact dynamics test facility and test procedures are described in Reference 3.

TABLE 2-1. - LOCATION OF TEST AND ANALYSIS DATA POINTS

	Test Da	ita Points		
Channel	Location	F.S.	W.L.	B.L.
A1	Floor	140.	-16.	6L
A2	Floor	151.	-16.	24L
B2	Floor	151.	-16.	6L
D1	Floor	162.	-16.	24L
D9	Left Pelvic	sant Inack	of he france	n bandi ri
D10	Right Pelvic	-	-	-
Mass	Analysis D	F.S.	W.L.	B.L.
Strong a limit	Floor	140.	-16.	6L
2				
3	Floor	151.	-16.	6L
	Floor	151.	-16. -16.	6L 20L
3			varitana mton	and the second

⁽a) Analysis is performed with symmetrical half model, thus left side = right side.

TIE ROD

Figure 2-6. - Post-crash condition of substructure, rear view

Figure 2-5. - Post-crash condition of substructure, front view

Figure 2-7. - Post-crash condition of substructure, floor

Figure 2-8. - Post-crash condition of substructure, partial of roof

TABLE 2-2. - SUMMARY OF SUBSTRUCTURE TEST DATA

		Magnitude
Impact velocit	ty(a)	330 in/sec; 27.5 ft/sec
Rebound height	(a)	5 inches
Rebound veloci	ty (a)	62.1 in/sec; 5.2 ft/sec
Duration of gr	round contact (a)	0.058 <u>+</u> 0.0015 sec.
Attitude at in	mpact (a)(d)	0.75 degrees pitch-up
Window ledge:	peak motion(a)	1.64 in.
	final deflection (e)	0.65 in.
Roof center:	peak motion(a)	3.65 in.
	final deflection (e)	0.99 in.
Plots (a)		
- Occupant	chest motion vs. time	
- Roof mot	lon vs. time	
	edge motion vs. time	

Accelerometer traces (b) (c)

Floor structure - A1, A2, B2, D1 Occupant pelvis - D9, D10

- (a) Obtained from high speed film analysis
- (b) Least Square Fit (LSF) filtered data
- (c)D.C. Accelerometers
- (d) No significant roll or yaw motion obtained from the film analysis
- (e) Post-test measurement

Figure 2-9. - Motion histories obtained from high-speed film analysis

Figure 2-10. - Accelerometer traces

SECTION 3

KRASH RESULTS AND COMPARISON WITH TEST DATA

3.1 ACCELERATIONS

Table 3-1 shows a comparison of the analysis and test peak accelerations for the occupant pelvis and floor responses. Figures 3-1, 3-2 and 3-3 present the analysis and test response histories for the occupant pelvis and floor locations. The data in Table 3-1 show that the analytically obtained occupant pelvis peak accelerations agree within 19 percent for the initial peak and 6.8 percent for the second peak, when compared to the average of the left and right side occupant test measured responses. It is noteworthy that the left and right side measured test responses for a "symmetrical" impact condition differ by 16 percent and 2.5 percent, respectively, for the primary and secondary peaks. The difference between test results is nearly the same magnitude as the difference between the analysis and test results. The analytical data (Figure 3-1) show the same "camel hump" response phenomenon as that which is exhibited in the test data. In addition the two peaks obtained by analysis occur within 4 to 6 milliseconds of the time at which they occur during the test. The test and analysis results show a decay to zero acceleration after the secondary peak is reached. The decay rate is approximately the same for the analysis and test data, with the analytical data preceding the test data by several milliseconds. The analytical results for the occupant pelvis response presented in Table 3-1 and Figure 3-1 are based on a low-pass filter frequency cutoff of 100 Hz as noted in Section 2. The use of a higher frequency cutoff value will result in analytical results which will be higher and consequently closer to the test results. For example, a 150 Hz frequency cutoff in the analysis will increase the primary and secondary occupant response by 5 percent and 2 percent, respectively. This change will

TABLE 3-1. COMPARISON OF ANALYSIS AND TEST PEAK ACCELERATIONS

	Test Accel (Time) (a)	Analysis Accel (Time) (a)	Percent (b) Differences (Time)
Pelvis	(D9) ^(d)	(Mass 30) (e)	
1st Peak 2nd Peak	-45.4 (.018) -44.7 (.030)	-39.7 (.017) -41.1 (.026)	-12.6 (.001) - 8.1 (.004)
Pelvis	(D10)	(Mass 30)	TENER TORSE T. A.
1st Peak 2nd Peak	-52.7 (.020) -43.6 (.032)	-39.7 (.017) -41.1 (.026)	-24.7 (.003) - 5.7 (.006)
Pelvis	(Avg. of D9 & D10)	(Mass 30)	degate with tot
1st Peak 2nd Peak	-49.0 (.018020) -44.1 (.030032)	-39.7 (.017) -41.1 (.026)	-19.0 (.001003) - 6.8 (.004006)
Floor	(A1)	(Mass 2)	ofwing inaquire
Forward Inboard	-84.9 (.004) 9.3 (.010)	-89.0 (.004) 43.9 (.028)	4.8 (0) (c)
	(A2)	(Mass 9)	to the will distri-
Forward Outboard	-128.7 (.010) 69.0 (.018)	-101.0 (.011) 61.8 (.025)	-21.5 (.001) -10.4 (.007)
	(B2)	(Mass 3)	Silmen ones will
Forward Inboard	-115.7 (.004) 25.9 (.032)	-90.7 (.004) 34.9 (.026)	-21.6 (0) 34.0 (.006)
	(D1)	(Mass 10)	obballned by one
Aft Outboard	-80.8 (.008) 28.7 (.017)	-99.2 (.007) 37.1 (.018)(f)	22.8 (.001) 29.3 (.002)

a) Accelerations in G's, time in seconds after impact

NOTE: Difference between test results for right (D10) versus left (D9) side $\approx 16.1\%$ (1st peak) and 2.5% (2nd peak).

b) Percent difference = (analysis value-test value) x 100

c) Test trace shows no response after .012 seconds

d) Test channel numbers in parenthesis

e) Analysis mass numbers in parenthesis

f)Peak at .026 msec = 53.7 g

Figure 3-1. - Comparison of occupant pelvis vertical acceleration, test versus analysis.

result in closer correlation agreement with test data. A discussion of the sensitivity of analysis results to the selection of an analytical filter cut-off frequency is discussed in Section 4.4.

From Table 3-1 it can be seen that the analysis initial peak acceleration values agree within approximately +22 percent with measured test data obtained from the four floor dc channel accelerometer locations which were chosen for comparison by NASA-Langley. NASA considers dc accelerometers to be overall more reliable than ac accelerometers, particularly the behavior after the initial peak response. The time of occurrence of the initial peak values obtained by analysis agrees with the test data peak value occurrences within one (1) millisecond. Figures 3-2 and 3-3 show the similarity in response shapes for the test and analysis results, particularly in the initial response

Figure 3-2. - Comparison of fuselage floor vertical acceleration, test versus analysis.

Figure 3-3. - Comparison of fuselage floor vertical acceleration, test versus analysis

regime. The data presented in Table 3-2 show that the secondary (rebound) peak accelerations and times of occurrence of these peak values, obtained by analysis, agree within -10 to +34 percent and within 2 to 7 milliseconds, respectively, with the corresponding measured test data. The analytical floor results provided in Table 3-1 and Figures 3-2 and 3-3, like the occupant pelvis data, are based on a 100-Hz, low-pass filter cutoff frequency. For a 150-Hz cutoff frequency, the analytical results will be higher. However, the comparisons for the initial peak values show the analysis results to be within -11.7 to +34 percent of the corresponding test values. While the test ac accelerometers are not used in the base case comparisons presented in Table 3-1 and Figures 3-1, 3-2, and 3-3, it is of significance to note that the measured test values vary by as much as 16 to 55 percent between the left and right sides of the substructure when both ac and dc accelerometers are included in the data. This difference is equal or greater than the difference between analysis and test results. The effect of cutoff frequency on floor responses is discussed in Section 4.4.

3.2 DISPLACEMENTS

Table 3-2 and Figure 3-4 show the comparison of analysis and test motions for the occupant chest, the substructure roof, and the substructure window-ledge. The analytical results are based on obtaining the vertical displacement of mass 31 (Figure 2-4) for the chest motion, the average of the vertical displacement of masses 24 through 28 (Figure 2-3) for the substructure roof motion, and the average of the vertical displacements of masses 14 through 17 (Figure 2-3) for the substructure window-ledge displacements. The peak values obtained by analysis are within -13 percent, -27.4 percent and +43.3 percent of the peak displacements for the chest, roof, and window-ledge motions, respectively, obtained from analysis of high-speed films of the crash test. The time of occurrence of the peak values obtained by analysis agree with the film-analyzed test peak occurrences within 1 to 3 milliseconds. The motion histories (Figure 3-4) depict overall agreement between analysis determined and test-observed trends, even though the peak values show disagreements of between 13 and 43 percent.

TABLE 3-2. - COMPARISON OF ANALYSIS AND TEST PEAK MOTIONS

	Test Displacement (time) (a)	Analysis Displacement (time)(a)	Percent Difference (time) (b)
Occupant Chest	8.40 (.030)	7.30 (.033)	-13.1 (.003)
Roof	3.65 (.015)	2.65 (.013)	-27.4 (.002)
Window Ledge	1.64 (.01015)	2.35 (.012)	43.3 (.002003

⁽a) Displacement in inches, time in seconds after impact

The analytical results indicate that lower fuselage deformation of up to 1.4 inches occurs, which appears to be approximately twice as high as the average deformation observed in the test high-speed film review. A review of the post-crash test condition of the structure indicates that overall deformation of the structure may not have exceeded 0.6 inches based on the average of the front and rear deformation.

The analysis shows that all the elements of the structure behave linearly, except for the seat cushion and pan, the fuselage underside and several elements of the shell structure (beams 7-13, 8-14, 9-15, 10-16, 11-17 and 12-18, Figure 2-3). The postcrash condition of the substructure indicates little in the way of permanent structural deformation. The analysis results show a Dynamic Response Index (DRI) value of 28. A DRI magnitude of 28 indicates a high potential (>>50 percent) for a spinal vertebrae compression-type injury to occur. The available test data do not allow for an assessment of this type of injury potential.

Variation of the analytical filter cutoff frequency has no effect on the motion results since filtering is a post-processing procedure in KRASH and does not alter any of the basic results.

⁽b) Percent difference = analysis value - test value X 100

Figure 3-4. - Comparison of analysis and test motions.

3.3 COMPUTER COST AND PERFORMANCES

The KRASH analysis was performed on an IBM 370-3330 digital computer. For the size case and impact condition analyzed (see Section 2.0) the approximate cost per computer run is \$135. The analysis (machine) time, including all printed and plotted data, is 6.9 minutes per run.

SECTION 4

KRASH SENSITIVITY STUDY RESULTS

An analysis using program KRASH is based on the premises that:

- Nonlinear load-deflection behavior can be approximated
- Only a portion of the major structural elements need be modeled nonlinearly for post-failure behavior.

Since the use of KRASH is designed to obtain overall responses, depict significant dynamic phenomenon, and represent response trends using approximate modeling techniques, it is understandable that different users might model aircraft structure or select input data which varies in some respects. To determine the consequence, insofar as dynamic response results are concerned, of establishing a model and an analysis which might vary, a limited sensitivity investigation was performed. The base case results which best represent the estimated properties of the structure and occupant are described in Section 3.0. In this section the results of varying the following parameters are discussed:

- External spring load-deflection representation
- · Occupant axial stiffness
- Seat maximum force level
- Analytical filter cutoff frequency selection
- · Math model size

There was little in the way of nonlinear behavior, other than in the crushable lower fuselage, occupant seat cushion and pan deflection, and several elements in the airframe shell, noted in the analysis of the substructure for the defined impact condition. Consequently, the above noted parameters are considered representative of areas wherein different users may have differences of opinion with regard to modeling representations.

4.1 EXTERNAL SPRING LOAD-DEFLECTION REPRESENTATION

The representation of the crushable lower fuselage structure within the framework of KRASH's external spring input requirements is perhaps the most sensitive and critical concern for modeling. The data for the base case representation were obtained following the procedures outlined in References 4 and 5. A sample calculation is shown in Appendix A. The most likely area of variation in a user's thinking would be in the representation of the slope of the load-deflection curve in the nonlinear region. The base case assumes a constant load in the nonlinear region until bottoming occurs. This curve (condition A) is shown in Figure 4-1, along with possible user input variations. Condition B provides for a constant 20-percent increase in the assumed maximum forces associated with the crushable structure. Conditions C and D represent sloping 20-percent force changes (increasing and decreasing, respectively) up until bottoming occurs. All the curves are based on a 0.1-inch initial linear region and a 3-inch deflection before bottoming occurs. Both values are determined following the procedure outlined in References 4 and 5. The results would not be altered to any significant degree if the linear deflection value were in the range of 0.01 to as much as 0.3 inch, which leaves significant margin for modeling variation. Since the maximum deflection of the crushable structure in the base analysis does not exceed 1.6 inches the selection of 3 inches for bottoming to occur, is also of little consequence in this analysis. Thus, it is reasonable to assume that the selection of the peak force and the rate at which force varies with deflection will be most influential on the results for this analysis. The results of this parameter sensitivity investigation are shown in Figure 4-2. The 20-percent constant increase in external spring force maximum load results in an approximately 15 to 20-percent increase in peak floor accelerations at the four floor dc channel accelerometer locations. Changing the slope (conditions C and D) has a substantially less effect on the peak responses. The sloping ±20 percent change results in a variation of the peak floor accelerations of between ±3 to ±11 percent. The occupant pelvis responses are not affected by these changes because in this model and under the defined impact conditions the pelvis responses are influenced primarily by the seat and occupant

Figure 4-1. - Normalized force versus external spring load-deflection characteristics.

characteristics. As can be anticipated, the maximum deflection of the external spring decreases as the force level increases and vice versa. For the range of external spring characteristics investigated, the average floor deformation ranges from 1 to 1.5 inches. The range of test-measured peak accelerations is also shown in Figure 4-2. The analysis results for the range of load-deflection behavior investigated are within the range of the measured ac and dc accelerometer data. When considering dc accelerometer data alone the analysis peak values are no more than 30 percent different than the test peak values except at the aft outboard floor location where the difference is 50 percent and the ac and dc accelerometers differ by 75 percent (using dc accelerometer values as base values). The results presented in Figure 4-2 indicate that the sensitivity of the analysis results are comparable to the sensitivity of the test measurements. The results further indicate that all four external spring

Figure 4-2. - Peak acceleration as a function of external spring load-deflection characteristics.

load-deflection curves, which can be considered to represent four different users, "on the average" represent the dynamic behavior of the structure reasonably well.

4.2 OCCUPANT AXIAL STIFFNESS REPRESENTATION

The representation of the occupant is controlled by the user in program KRASH by the selection of mass, area, and damping properties assigned to the corresponding masses and beam elements. The lower and upper torso masses (30 to 31 in Figure 2-4) are assigned mass weight and inertia properties as described in References 5 and 6 and in Appendix A. The connecting link between masses 31 and 32 represents the properties of the upper spine. The axial stiffness of this element is determined from the area, modulus of elasticity, and length properties assigned to this element. The data in Reference 7 suggest that the human upper torso has specific frequency and damping values.

Translated into KRASH data this requires the axial frequency and the damping of the human spine to be 14 Hz and 41 percent of critical, respectively. Depending on the actual properties of the anthropomorphic dummy used in a particular test it is possible that the frequency and/or the damping can be different than the values suggested for humans. In this particular case the spinal axial stiffness is not defined for the dummies used in the test.

For the human properties defined in Reference 7, KRASH is coded to compute the desired frequency and damping. For all other spinal stiffness, the user can easily determine the proper values to input. Knowing the desired frequency, the input mass values, and the length of the spinal element, combinations of modulus of elasticity and cross section area may be determined for input into KRASH. Damping, as a percent of critical, can be user selected for any individual element.

To evaluate the consequence of different spinal axial properties on the response of the structure and occupant, a variation in upper torso axial frequency from 14 to 61 Hz was examined. The results of this investigation are presented in Figure 4-3. As shown in Figure 4-3, as the axial frequency increases the analytical results tend to reproduce the two peaks (camel hump) effect exhibited in the test data for the occupant lower torso. Using an axial frequency, of 61 Hz., a maximum seat force of 5570 pounds and 0.41 damping the analysis results are 20 to 30 percent lower than the test data. For a higher seat force, the occupant lower torso acceleration values increase. For a lower axial stiffness the occupant lower torso initial peak value increases while the second peak value decreases, until it actually goes negative at 14 Hz. Changing the damping value while holding all other parameters constant tends to affect the second peak value more than the initial peak value. During a separate study using a simplified 5-mass system, changing damping from 0.31 to 0.04 increased the occupant lower torso first peak value by 2.5 percent and the second peak value by 29 percent.

The parameter sensitivity analyses involving the occupant representation illustrates the importance of providing input data representative of the elements being modeled. It may well be that the properties of test dummies

Figure 4-3. - Lower torso (pelvis) response as a function of occupant axial stiffness

differ from the corresponding human properties. It appears from the results of this investigation that the "camel hump" effect noted in the test data means that the dummy spine is stiffer than originally anticipated in setting up a representation based on Reference 7 data. The fact that the occupant upper torso responses follow very closely the occupant lower torso responses in both magnitude and time of occurrence, supports the contention that the spinal connection of the dummies used in the substructure test are relatively stiff.

4.3 SEAT MAXIMUM FORCE

The seat-cushion and pan-stiffness properties used in the analysis are representative of those installed in the particular type of airplane used in the substructure test. Figure 4-4 shows a general force-deflection curve for a light aircraft passenger seat. Since the curve provided in Figure 4-4

Figure 4-4. - Typical force-deflection curve for a light-aircraft passenger seat.

is not the actual load-deflection for the seat installation in the substructure test, an investigation into the effect of the variation in maximum seat force on occupant response was performed. The change in cushion and pan stiffness effects the occupant response to a lesser extent than the force cutoff value in this particular situation and was not fully explored. Figure 4-5 shows the results of the force cutoff changes. The occupant pelvis responses increase as the maximum force level increases. For a maximum cutoff force of 5570 pounds the analysis results are approximately 30 to 19 percent lower than the average of the measured responses for the two peak accelerations. For the 6455 pounds used in the base analysis the analytical results are approximately 19 and 7 percent lower than the average of the measured responses for the two peak accelerations. If the cutoff force was as high as 9000 pounds, the analytical results would be 8 and 18 percent higher than the average of the

Figure 4-5. - Lower torso (pelvis) response as a function of seat maximum force level.

measured responses. The ranges investigated represent a deviation of approximately -15 to +28 percent from the nominal 6455 pounds used. For the three force levels evaluated (557%, 6455, and 9000 pounds), the initial peak acceleration level obtained by analysis for the occupant upper torso is approximately 6 percent, 17.4 percent, and 58 percent higher, respectively, than the corresponding average of the head and chest measured values. The upper torso response is more akin to the DRI value than the lower torso response. Consequently, the analysis may show a more conservative DRI value than is indicated by test response data. User-selected values of between 5500 and 6500 pounds appear to provide reasonable representations of the seat load-deflection characteristics.

4.4 ANALYTICAL FILTER CUTOFF FREQUENCY

Analysis of the current substructure test data indicated that a 100-Hz, low-pass digital filter is approximately equivalent to the least-square-fit (LSF) filtering performed by NASA-Langley. The LSF data were used for the tabulation of test results. Previous NASA evaluation of equivalent filtering

indicated that 180 Hz, low-pass filtering could be equivalent to the LSF data. Recognizing that equivalent filtering is difficult to define because of the different data reduction processes that are used and the wide range of types of structures or elements being considered, an evaluation was performed to ascertain the effects of the analytical results and subsequent correlation with test results of different analytical filter cutoff frequencies. As noted earlier, KRASH filtering is a post-processing technique and doesn't change any computed values.

Figure 4-6 shows the result of the analysis for a cutoff frequency range from 100 to 150 Hz. For the floor responses the analytically obtained peak values increase by approximately 4 to 18 percent in changing from a 100-Hz to 150-Hz cutoff frequency. However, as can be observed in Figure 4-6, the results are for the most part still within the range of recorded test values at the respective locations. The analytical responses for the occupant lower torso are less sensitive to the cutoff frequency change. The data in Figure 4-6 shows a variation of less than 5 percent for the initial lower torso peak value and less than 2 percent for the second peak value. The occupant responses exhibit lower frequency (broader response) characteristics than the floor responses and consequently are not expected to be as sensitive to the higher cutoff frequencies.

4.5 MODEL SIZE VARIATION

The base 32 mass, 57 member symmetrical math model shown in Figures 2-3 and 2-4 provides an adequate representation of the substructure and impact condition evaluated, as attested to by the close agreement with available test data. The results, analytical and test, indicate that the airframe shell structure, which accounts for approximately 28 percent of the total substructure airframe weight, did not deform appreciably, due in part to the stabilizing effect of the end closures (tension rods), during the 27.5 ft/sec vertical impact. Consequently, the occupant responses may not be altered very much from that which would be expected if the upper shell structure flexibility were ignored and the mass and inertia effects were accounted for. This situation is particularly significant since the 32 mass, 57 member model and test results show that the shell structure motion does not pose any lethal threat to the

Figure 4-6. Floor and occupant peak responses as a function of analysis filter cutoff frequency.

occupants either through failure or excessive motion. If prior to or during the analysis, the user can establish that the representation of the shell structure is not critical, insofar as the occupant and floor responses are concerned, a smaller more economical math model can be pursued. To assess the tradeoff between accuracy and model analysis cost for the substructure and impact condition described in this report the following KRASH math models were investigated:

- 16 mass, 32 member symmetrical half structure (runmod=1)
- 6 mass, 8 member symmetrical half structure (runmod=1)
- 5 mass, 5 member full structure (runmod=0)

The 16 mass, 32 member model is shown in Figure 4-7. The model is the same as the base 32 mass, 57 member model except that the mass associated with the shell structure is distributed among the floor masses. The 6 mass.

FUSELAGE

FLOOR-SEAT-OCCUPANT

Figure 4-7. 16 mass, 32 member symmetrical math model.

8 member model, shown in Figure 4-8, lumps half the airframe weight at mass locations 1 and 2. The stiffness of the seat is represented by 2 members instead of 4 as in the larger 16 mass and 32 mass models. The seat cushion, seat pan, occupant and DRI are represented in the same manner as in the larger models. The 8 mass, 16 mass and 32 mass model analyses are performed as symmetrical half-structure symmetrical impact conditions. The 5 mass, 5 member full math model, shown in Figure 4-9, treats the substructure and occupant as a series of axial members.

The results of the model size variation investigation are presented in Table 4-1, along with the test results. The average of the floor peak responses obtained from the analyses are shown to range within 0.5 to 13.7 percent of the average of the test peak values. The analytical occupant lower torso responses are within 19 to 22 percent of the test value for the first peak and between 3 and 7 percent of the test values for the second peak. The primary upper torso peak response obtained by analyses are from 15 to 24 percent higher than the corresponding test value. As is anticipated the smallest model is nearly 1/8 as expensive to run as the largest model. The 6 and 16 mass models are approximately 20 and 75 percent, respectively, as expensive to run as the 32 mass model. The results indicate that for this particular situation the use of smaller KRASH math models can be used to assess trends with sufficient accuracy and substantially lower costs.

Figure 4-8, 6 mass, 8 member symmetrical math model.

Figure 4-9. 5 mass, 5 member full math model,

TABLE 4-1. COMPARISON OF RESULTS FOR DIFFERENT SIZE MATH MODELS (a)

Location		Analysis Re	sults (Peak Acc	Analysis Results (Peak Acceleration - g)(b)		Test Results
	Masses Beams	32 57	16 32	9	5	ation - g)(b)
Floor		89(.004) 90.7(.004) 101(.011) 99.2(.004)	91.2(.005) 92.6(.007) 94(.011) 98.5(.007)	99(.005) 105(.008)	88.5(.008)	84.9(.004) 128.7(.010) 115.7(.004) 80.8(.008)
Average (Time Range)		95(.004011)	94(.005011)	102(.005008)	88.5(.008)	102.5(.004010)
Lower Torso		39.7(.017)	38.4(.018) 38.4(.027)	39.8(.017) 42. (.028)	39.7(.017)	49(.018020) 44.1(.030032)
Upper Torso		50.5(.022)	49.5(.022)	50.8(.022)	53.5(.019)	43(.020) ^(c)
Analysis Time (Machine Minutes) (d)		6.9	4.75	1.1	.67	-
Approximate Cost (d)		\$135	\$91	\$26	\$17	

Analysis results are based on 85 Hz low-pass filter, 27.5 ft/sec vertical velocity, 0.131 radian nose-up pitch, ≈ 6500 pound seat force cutoff, and integration interval = .00001 seconds (a)

Time of occurrence in seconds after impact is shown in parenthesis **(**e)

(c) Averaging of head and chest values

d) Based on IBM 370-3330 digital computer

SECTION 5

CONCLUSIONS

The analysis of a twin-engine, low-wing airplane substructure subjected to a 27.5 ft/sec vertical impact has demonstrated program KRASH's capability to quantitatively represent the significant dynamic response phenomena, namely:

- Primary floor acceleration magnitudes and times of occurrence
- Occupant response magnitudes, time of occurrence and response shape, particularly the "camel-hump" effect
- · Occupant and structure motion trends

The results of the sensitivity investigation using program KRASH indicate that for the parameters varied, the structure, and the impact condition evaluated, user-selected data for input into KRASH can vary as much as 20 percent and still provide a reasonable assessment of overall dynamic behavior. Furthermore, the range of dynamic response peak values obtained from variations in KRASH user selected input data is comparable to the spread in the measured test data between the left and right sides.

The results of the test and analysis correlation and sensitivity studies provide valuable information which can be used to enhance future modeling of crash impact conditions.

For some structural configurations and impact conditions simple approximate models are a cost-effective method of representing large structural segments with acceptable accuracy for qualitatively assessing dynamic behavior and response trends.

REFERENCES

- Wittlin, G., Gamon, M.A. "Experimental Program for the Development of Improved Helicopter Structural Crashworthiness Analytical and Design Techniques," Lockheed-California Company, USAAMRDL-TR-72, U.S. Army Air Mobility Research and Development Laboratory, Ft. Eustis, Va., May 1973.
- Wittlin, G., Gamon, M.A., LaBarge, W.L., "Full Scale Crash Test Experimental Verification of a Method of Analysis for General Aviation Airplane Structural Crashworthiness," Lockheed-California Company, FAA-RD-77-188, U.S. Dept. of Transportation, Federal Aviation Administration, System Research and Development, Wash., D.C., February 1978.
- 3. Vaughan, V., Jr., Alfaro, Bou E., "Impact Dynamics Research Facility for Full Scale Aircraft Crash Testing," NASA TN D-8179, April 1976.
- 4. Wittlin, G., Park, K.C., "Development and Experimental Verification of Procedures to Determine Nonlinear Load-Deflection Characteristics of Helicopter Substructures Subjected to Crash Forces," Lockheed-California Company, USAAMRDL TR 74-12, U.S. Army Air Mobility Research and Development Laboratory, Ft. Eustis, Va., May 1974.
- 5. Gamon, M.A., Wittlin, G., LaBarge, W.L., "General Aviation Airplane Structural Crashworthiness User's Manual, Input-Output Techniques and Applications," VOLUME II, Lockheed-California Co., FAA-RD-77-189II, Federal Aviation Administration, Wash., D.C., February 1978.
- 6. Laananen, D.H., "Development of a Scientific Basis for Analysis of Aircraft Seating Systems," FAA-RD-74-130, U.S. Dept. of Transportation, Federal Aviation Administration, Systems Research and Development Services, Wash., D.C., 1975.
- 7. Turnbow, J.W., et al, "Crash Survival Design Guide," USAAMRDL-TR-71-22 Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Va., Oct. 1971.

APPENDIX A KRASH MODEL CALCULATIONS

This appendix provides the sample calculations for determining the structure and occupant mass locations, mass properties, beam properties, and the external spring load-deflection characteristics.

Figure A-1. – Fuselage model.

Figure A-2. - Floor seat-occupant model.

SEAT-OCCUPANT-REPRESENTATION

MASS REPRESENTATIONS	SI		MEMBER REPRESENTATIONS
3, 5, 9, 11 Seat leg attachment	$\frac{\text{Weight}(1b) \overline{x}(\underline{3})}{(\underline{1})}$	1th _jth Masses	Representation
29,1, 29,2, Seat leg attachment 29,3, 29,4 at pan 30 Lower torso pelvis region	20.86 14.3 72.86© 21.8	3 - 29,1 5 - 29,2 9 - 29,3 11 - 29,4	Seat legs
Upper torso chest region	72.86② 36.9	53	Seat cushion, compression only member Seat pan
1001.0	(2) (1,0)	30 - 32	upper torso (spine) DRI
Distributed weight from floor structure 46 percent of occupant weight at each of the forward floor seat leg attachment locations.	structure at each of the ment locations.	11 - 30	Seat belt, tension only member Seat belt, tension only member
44 percent of occupant weight Height in inches above the floor		arrende arassiña	0.200 0.200 0.200 0.200

MASS MOMENT OF INERTIA OF 50-PERCENTILE MAN, 161.5 1b (Reference 6)

tia	Yaw I	8.703	2.623	0.201	0.0241	0.218	1.270	0.120	
Mass Moment of Inertia	Pitch I	4.331	2.623	0.311	0.164	0.218	1.270	1.192	
Mass Mo	Ro11 x	8.703	3.357	0.311	0.164	0.0241	0.307	1.192	
Z Z	1b sec ² in.	0.1162	0.09471	0.03313	0.01104	96800.0	0.04189	0.02526	0.41334
	Weight (1b)	44.86	36.56	12.79	4.26 (2)	3.46 (2)	16.17 (2)	9.75 (2)	161.5
Fraction of Total	Mass (m/m)	0.2778	0.2264	0.0792	0.0264	0.0214	0.1001	0.0604	
	Element	Lower Torso	Upper Torso	Head & Neck	Upper Arm	Forearm & Hand	Thigh	Leg & Foot	Total

UPPER TORSO 50-PERCENTILE MAN, 161.5 1b (Reference 6)

$$I_{x} = 3.357 + 2\{.164 + .01104 [(5.81 - 5.24)^{2} + (6.34)^{2}]\} + 2\{.0241 + .00896 [(11.99 = 5.81)^{2} + (6.34)^{2}]\}$$

+ .311 + .03313 [(5.81 + 6.06)^{2}] = 3.357 + 1.2227 + 1.4529 + 4.9789 = 11.0115

$$I_{y} = 2.623 + 2 \left\{ .164 + .01104 \left[(5.81 - 5.24)^{2} \right] \right\} + 2 \left\{ .218 + .00896 \left[(11.99 - 5.81)^{2} + (8.95)^{2} \right] \right\}$$

$$+ .311 + .03313 \left[(5.81 + 6.06)^{2} + (.75)^{2} \right] = 2.623 + .3352 + 2.5559 + 4.9976 = 10.5117$$

$$I_{z} = 2.623 + 2\left\{.0241 + .01104 \left[(6.34)^{2}\right]\right\} + 2\left\{.218 + .00896 \left[(6.34)^{2} + (8.95)^{2}\right]\right\} + .201 + .03313 (75)^{2}$$

$$= 2.623 + .93572 + 2.59174 + .21964 - 6.3701$$

For 165.6 # MAN

LOWER TORSO 50-PERCENTILE MAN, 161.5 1b

$$I_{x} = 8.703 + .1162 (5.35)^{2} + 2 \left\{ .307 + .04189 (3.39)^{2} \right\} = 8.703 + 3.3259 + 1.57681 = \underline{13.6057}$$

$$I_{y} = 4.331 + .1162 (5.35)^{2} + 2 \left\{ 1.270 + .04189 (7.09)^{2} \right\} = 4.331 + 3.3259 + 6.7515 = \underline{14.4084}$$

$$I_{z} = 8.703 + .1162 (0) + 2 \left\{ 1.270 + .04189 \left[(3.39)^{2} + (7.09)^{2} \right] \right\} = 8.703 + 0 + 7.71427 = \underline{16.4173}$$

For 165.6 1b Man

(1 (poc. 4) + "(18.2 - 68.21) | messa. + 1200) + 1 ("(mc. 4) + "(ps. 1 - 18.0)) mossa. + proje + fec. 5 - 1

MASS MOMENT OF INERTIA OF SEAT (MASS 29)

Mass = 20/386

$$I_y' = \frac{20}{12(386)} (21^2 + 16.5^2) = 3.0797$$

$$I_z' = \frac{20}{12(386)} (21^2 + 17^2) = 3.1520$$

About Top Center

$$I_x = 2.4234 + \frac{20}{386} \left(\frac{16.5}{2}\right)^2 = 5.9500$$

$$I_y = 3.0797 + \frac{20}{386} \left(\frac{16.5}{2}\right)^2 = 6.6062$$

$$I_z = 3.1520$$

SEAT BELT

Seat Belt Attaches from Mass 30 to Mass 11 and from Mass 30 to Mass 5

Estimated stiffness of seat belt = 1000 lb/in.

For the purpose of seat belt calculations assume the seat belt material to be aluminum - material #4

$$E = 10.5 \times 10^6$$

$$K = \frac{AE}{\theta}$$

$$A = \frac{K\ell}{E}$$

$$l_{5-13} = \left[(174 - 166)^2 + (6 - 13)^2 + (-16 - 4)^2 \right]^{1/2} = 22.6495$$

$$l_{11-13} = \left[(174 - 166)^2 + (20 - 13)^2 + (-16 - 4)^2 \right]^{1/2} = 22.6495$$

$$A = \frac{(1 \times 10^3)(22.6495)}{10.5 \times 10^6} = .0021571$$

SEAT CUSHION

Estimated seat cushion stiffness = 500 lb/in.

For the purpose of seat cushion calculations assume the cushion material to be aluminum - material #4 $E = 10.5 \times 10^6$.

Assume thickness of cushion to be 4"

A =
$$\frac{(500)(4)}{(10.5 \times 10^6)}$$
 = .00019 (in²)

Estimated seat pan stiffness = 2000 lb/in.

$$A = \frac{K \ell}{E} = \frac{(2000)(4)}{(10.5 \times 10^6)} = .0007619 (in^2)$$

EXTERNAL SPRING REPRESENTATION

STIFFENER AREA - MASSES 2 THROUGH 6

AREA =
$$(12)(.032) + (a + b)(.032)$$

$$= (12 + a + b)(.032)$$

REF. AREA =
$$3.376 (in^2)$$

BULKHEAD AREA - MASSES 8 THROUGH 12

Reference Area = .956 *

Area =
$$(14 - 6) (.032) = .256$$

Δ = .268

Peak load = 670 lb at a deflection = .05 inches

	T					
					Peak Load at	
e .	<u>م</u>		A	٥	= 0.1 inch	
0 2.5	2.5		0.464	0.137	7791	
2.5 0.65	9.6	5	0.645	0.191	2292	
5.65 5.65	5.6	5	0.746	0.221	2652	
5.65 5.7	5.7	_	0.747	0.221	2652	
5.7 3.5	3.		0.678	0.201	2412	
3.5 0	0		967.0	0.147	1764	
			The second second		The second secon	

^{*}Reference Area based on USAAMRDL TR 74-12 TEST SPECIMEN DATA. See Reference FAA-RD-77-18811, page 4-62.

Figure A-3. - Mass moment of inertia schematic.

MASSES 1-6

$$I_x' = \frac{m}{12} (b^2 + h^2)$$

$$I_y' = \frac{n}{12} (a^2 + h^2)$$

$$I_x = I_x' + m \left(r_z^2 + r_y^2\right)$$
 $I_y = I_y' + m \left(r_x^2 + r_z^2\right)$

$$I_z' = \frac{m}{12} (b^2 + a^2)$$

$$I_z = I_z' + m \left(r_x^2 + r_y^2 \right)$$
 h = 8

a, b, h = dimensions in inches

					-	"/ and "T at	
Mass	æ	r'x	" y	1 N	1×	1 y	z 1
*1	2.5	1.25	0	4	0.08635	0.06067	0.03649
7	8.0	1.5	0	4	0.08635	0.07491	0.05073
3	11.5	0.25	0	4	0.08635	0.08398	0.05980
4	11.5	0.25	0	4	0.08635	0.08398	0.05980
5	6	1.	0	4	0.08635	0.07534	0.05117
9	3.5	1.75	0	4	0.08635	0.06584	0.04167

*Mass 1 Location Example

MASSES 7-12

$$I_{1x}' = \frac{n}{12} \left(b_1^2 + b_1^2 \right)$$

$$I_{1y}' = \frac{m}{12} \left(a^2 + h_1^2 \right)$$

$$I_{1z}' = \frac{m}{12} (a^2 + b_1^2)$$

 $I_x = I_{1x}' + m (r_{1z}^2 + r_{1y}^2) + I_{2x}' + m (r_{1z}^2 + r_{1y}^2)$

 $I_y = I_{1y}' + m \left(r_{1x}^2 + r_{1z}^2\right) + I_{2y}' + m \left(r_{1x}^2 + r_{1z}^2\right)$

 $I_z = I_{1z}' + m (r_{1x}^2 + r_{1y}^2) + I_{2z}' + m (r_{1x}^2 + r_{1y}^2)$

$$I_{2x}' = \frac{m}{12} (b_2^2 + b_2^2)$$

$$I_{2y} = \frac{m}{12} \left(a^2 + h_2^2 \right)$$

$$I_{2z}' = \frac{m}{12} \left(a^2 + b_2^2 \right)$$

									The second secon	The state of the s
Mass	a	r _{1x}	r _{1y}	rlz	r _{2x}	r _{2y}	r 22	Mass a rlx rly rlz r2x r2y r2z lx ly	I y	z ₁
1 *	2.5	1.25	7	4	1.25	2.75	. •	0.245	* 7 2.5 1.25 2 4 1.25 2.75 6 0.245 0.19042 0.0732	0.0732
∞	00	1.5	7	4	1.5	2.75	9	0.242	8 1.5 2 4 1.5 2.75 6 0.242 0.2189 0.13808	0.13808
6	11.5	0.25	7	4	0.25	2.75	9	0.242	11.5 0.25 2 4 0.25 2.75 6 0.242 0.23705 0.11982	0.11982
10	Same	Same as 9	-							1
11	6	9 1	7	4	1	2.75	9	0.245	2 4 1 2.75 6 0.245 0.21974 0.10255	0.10255
12	3.5	1.75	,7	4	1.75	2.75	9	0.245	12 3.5 1.75 2 4 1.75 2.75 6 0.245 0.20077 0.08356	0.08356

SKETCHC

	3
	<u></u>
-	7
	C
	in-sec
	-
	w
	1
	2
	16-
	_

SKETCHD

					-	" " " " " "	
Mass	B	r'x	r	12	ı,×	l,	2 1
13	2.5	1.25	0	6.5	0.14728	0.15134	0.00675
115	11.5	11.5 0.25	0	6.5	6.5 0.14728	0.17465	0.03006
16	Same	Same as 15 -					1
14	œ	1.5	0	1	0.12829	0.14659	0.02099
11	6	1	0	1	0.12829	0.14702	0.15501
18	3.5	1.75	0	1	0.12829	0.13752	0.01193

lb-in-sec²/W

22.	22.	MASSES 19, 22, 23
		19,
	19,	

1 2	0.23272	0.23359	0.21460
l,	19 8 1.5 0 5 1.5 7.75 0 0.29064 0.13649 0.23272	22 9 1.0 0 5 1 7.75 0 0.29064 0.13736 0.23359	23 3.5 1.75 0 5 1.75 7.75 0 0.29064 0.11836 0.21460
-×	0.29064	0.29064	0.29064
r 22	0	0	0
r2y	7.75	7.75	7.75
r2x	1.5	1	1.75
rlz	5	5	2
rly	0	0	0
MASS a "Ix "Iy "Iz "2x "2y "2z	1.5	1.0	1.75
В	80	6	3.5
MASS	19	22	23

SKETCHF

O	
F	
2	
W	
š	

					1b-	1b-in sec /W	
Mass	М	r×	r _y	rz	I,	I y	I
20	11.5	0.25	6.5	0	0.16267	0.08058	0.13952
21	Same	Same as 20 —					1
54	80	1.5	7	0	0.17061	0.021	0.1889
25	11.5	0.25	1	0	0.17061	0.03006	0.19797
56	Same	Same as 25 —					1
27	6	1	1	0	0.17061	0.2143	0.18933
28	3.5	3.5 1.75	1	0	0.17061	0.01193	0.17983

MASS DISTRIBUTION BASED ON VOLUME

Masses 1-6 (Sketch A)

Volume =
$$H \times W \times L = 8 \times 12 \times (2.5 + 8 + 11.5 + 11.5 + 9 + 3.5) = 4416 \text{ in}^3$$

Masses 7-12 (Sketch B)

Volume =
$$8 \times 12 \times 46 + 2.5 \times 12 \times 46 = 5796 \text{ in}^3$$

Masses 13, 15, 16 (Sketch C)

Volume =
$$H \times W \times L = 13 \times 2.5 \times (2.5 + 11.5 + 11.5) = 828.75 \text{ in}^3$$

Masses 14, 17, 18 (Sketch D)

Volume =
$$11 \times W \times L = 24 \times 2.5 \times (8 + 9 + 3.5) = 1230 \text{ In}$$

Masses 19, 22, 23 (Sketch E)

Volume =
$$12 \times 2.5 \times 20.5 + 2.5 \times 13 \times 20.5 = 1281 \text{ in}^3$$

Masses 20, 21 (Sketch F)

Volume =
$$H \times W \times L = 2.5 \times 15.5 (11.5 + 11.5) = 891 \text{ in}^3$$

Masses 24, 28 (Sketch G)

Volume =
$$H \times W \times L = 2.5 \times 14 \times 46 = 1610 \text{ in}^3$$

Total Volume = 16053.25 in

Density of Aluminum = 0.1 lb/in

Assume 5% of volume is structure

Weight = $16053.25 \times 0.1 \times 0.05 = 80.265$ lb

Actual Weight = 86.5 lb for half

△Weight = 86.5 - 80.265 = 6.235 1b

Assume weight on floor is slightly heavier

Volume of floor structure masses 1-12 = 0.05 $[(8 \times 12 \times 46)2] = 441.6 \text{ in}^3$

 Δ Density = 6.235/441.6 = 0.014119 lb/in³

Weight Calculations

Masses 1-6

Weight = (8)(12)(0.05)(0.1 + 0.04119)a = 0.54768a

Masses 7-12

Weight = (8)(12)(0.05)(0.1 + 0.04119)a + 12(2.5)(0.5)(0.1)a = 0.69768a

Masses 13, 15, 16

Weight = 13 (0.25)(0.05)(0.1)a = 0.1625a

Masses 14, 17, 18

Weight = 2.5 (24)(0.05)(0.1)a = 0.3a

Masses 19, 22, 2

Weight = 2.5(12)(0.05) 0.1a + 13 (2.5)(0.05)(0.1)a = 0.3125a

Masses 20, 21

Weight = (15.5)(2.5)(0.05)(0.1)a = 0.19375a

Masses 24-28

Weight = 14(2.5)(0.05)(0.1)a = 0.175a

See Table V-1 for appropriate mass "a" values (lengths) and weights

TABLE V-1. – MASS LOCATIONS AND PROPERTIES

No.						•	1	
	In.	(in.)	(in.)	(in.)	L.B.		(lb-in-sec)	
1	2.5	135	9	-16	1.37	0.1183	0.0831	0.05
7	80	140	9	-16	4.38	0.3782	0.328	0.222
3*	11.5	151	9	-16	16.3	4.34	4.4	0.5
4	11.5	163	9	-16	6.3	0.544	0.529	0.377
2	6	174	9	-16	4.93	0.426	0.371	0.252
9	3.5	181	9	-16	1.91	0.165	0.126	0.0796
1	2.5	135	20	-16	1.75	0.429	0.333	0.128
80	89	140	20	-16	5.58	1.35	1.22	0.771
*6	11.5	151	20	-16	18.03	5.72	5.68	1.09
10	11.5	163	20	-16	8.02	1.94	1.9	0.961
11	6	174	20	-16	6.28	1.54	1.38	0.644
12	3.5	181	20	-16	2.44	0.598	67.0	0.204
13	2.5	135	28	6	0.41	90.0	0.062	0.0028
14	80	140	28	6	2.4	0.308	0.352	0.0504
15	11.5	151	28	6	1.87	0.275	0.326	0.056
16	11.5	163	28	6	1.87	0.275	0.326	0.056
17	6	174	28	6	2.7	0.346	0.397	0.4185
18	3.5	181	28	6	1.05	0.134	0.144	0.012
16	80	140	28	31	2.05	0.595	0.2798	0.477
20	11.5	151	28	31	2.23	0.362	0.1797	0.311
21	11.5	163	28	31	2.23	0.362	0.1797	0.311
22	6	174	28	31	2.81	0.8167	0.386	0.656
23	3.5	181	28	31	1.1	0.319	0.13	0.236
24	80	140	0	47.0	2.8	0.477	0.059	0.529
25	11.5	151	0	47.0	4.02	0.686	0.1206	0.796
76	11.5	163	0	47.0	4.02	0.686	0.1206	0.796
27	6	174	0	47.0	3.15	0.537	0.0675	0.596
28	3.5	181	0	47.0	1.23	0.21	0.0147	0.221
29	1	166	13	-1.7		Seat		
30	•	166	13	5.7		Cushion -	Cushion - Lower Torso	
31	•	166	13	20.89		Upper Torso	80	
32	•	166	13	20.89		DRI		

LONGITUDINAL BEAM ASSEMBLY AREA PROPERTIES - MEMBERS 1-2, 2-3, 3-4, 4-5, 5-6

(2)
$$c_y = \frac{(0.85)(0.032)(0.016) + (7.768)(0.032)(3.916) + (0.032)(1)(7.816)}{(0.85)(0.032) + (7.768)(0.032) + (1)(0.032)} = 3.9768$$

$$c_{z} = \frac{(0.85)(0.032)(0.425) + (7.768)(0.032)(0.016) + (1)(0.032)(0.5)}{(0.85)(0.032) + (7.768)(0.032) + (1)(0.032)} = 0.10247$$

$$A = (0.85)(0.032) + (7.768)(0.032) + (1)(0.032) = 0.30776$$

$$I_{y} = \frac{(0.85)(0.032)^{3}}{12} + (0.85)(0.032)(3.9768 - 0.016)^{2} + \frac{(0.032)(7.768)^{3}}{12}$$

$$+ (0.032)(7.768)(3.9768 - 3.916)^2 + \frac{(1)(0.032)^3}{12}$$

$$+ (1)(0.032)(7.816 - 3.9768)^2 = 2.14926$$

$$I_z = \frac{(0.032)(0.85)^3}{12} + (0.85)(0.032)(0.425 - 0.10247)^2 + \frac{(7.768)(0.032)^2}{12}$$

$$+ (0.032)(7.768)(0.1024) - 0.016)^{2} + \frac{(0.032)(1)^{3}}{1^{2}} + (1)(0.032)(0.5 - 0.10247)^{2} = 0.0140706$$

$$A = (0.888)(0.15) + (0.738)(0.15)$$

$$C_y = \frac{(0.888)(0.15)(0.444) + (0.738)(0.15)(0.813)}{0.2439}$$

$$= \frac{(0.15)(0.855)^2}{12} + (0.888)(0.15)(0.61148 - 0.444)^2 + \frac{(0.738)(0.15)^3}{12} + (0.738)(0.15)(0.813 - 0.61148)^2$$

= 0.017192

$$I_{z} = \frac{(0.885)(0.15)^{3}}{12} + (0.888)(0.15)(0.27652 - 0.075)^{2} + \frac{(0.15)(0.738)^{3}}{12} + (0.738)(0.15)(0.519 - 0.27652)^{2}$$

= 0.017192

Total

$$A_{\rm T} = 0.064 + 0.307776 + 0.2439 = 0.615674$$

$$C_y = \frac{(0.064)(7.848) + (0.307776)(3.9768) + (0.2439)(7.52348)}{0.615674} = 5.78425$$

$$= \frac{(0.064)(0) + (0.307776)(0.10247) + (0.2439)(0.30852)}{0.615674} = 0.27740$$

$$I_{y} = 5.4613 \times 10^{-6} + (0.064)(7.848 - 5.78425)^{2} + 2.14926 + (0.307776)(5.78425 - 3.9768)^{2} + 0.017192 + (0.2439)(7.52348 - 5.78425)^{2} = 4.18228$$

$$\mathbf{z} = 0.021333 + (0.064)(0.2774)^2 + 0.0140706 + (0.307776)(0.2744 - 0.10247)^2 + 0.017192 + (0.2439)(0.30852 - 0.2744)^2 = 0.0671$$

FUSELAGE STATION 135 - 181 - MEMBERS 1-7, 2-8, 3-9, 4-10, 5-11, 6-12

Average Section Height = $\frac{8+3.3}{2}$ = 5.65

= 0.21843

Area = 2(0.62)(0.032) + (5.686)(0.032)

O and O

A = 0.01984

 $c_{y} = 0.016$

 $C_{\mathbf{z}} = 0.31$

$$I_y = \frac{0.62(0.032)^3}{12} = 1.693 \times 10^{-6}$$

 $L_z = \frac{0.032(0.62)^3}{12} = 6.3554 \times 10^{-4}$

$$\bigcirc$$
 A = (5.586)(0.032) = 0.17875

$$I_y = \frac{0.032(5.586)^3}{12} = 0.46481$$

$$I_z = \frac{5.586(0.032)^3}{12} = 1.5254 \times 10^{-5}$$

Total Section

$$A = 0.21843$$

$$C_y = \frac{(0.01984)(5.634) + (0.01984)(0.016) + (0.17875)(2.825)}{0.21843} = 2.825$$

$$c_z = \frac{(2)(0.01984)(0.31) + (0.17875)(0.016)}{0.21843} = 0.06941$$

$$I_y = 1.693 \times 10^{-6} + (0.01984)(5.634 - 2.825)^2 + 0.46481 + (0.17875)(0) + 1.693 \times 10^{-6}$$

$$+ (0.01984)(2.825 - 0.016)^2 = 0.77791$$

$$= (6.3554 \times 10^{-4})(2) + (2)(0.01984)(0.31 - 0.06941)^{2} + 1.5254 \times 10^{-5} + (0.17875)(0.06941 - 0.016)^{2}$$

= 0.0040931

STRUCTURE BETWEEN RINGS - MEMBERS - 7-8, 8-9, 9-10, 10-11, 11-12

- A = (2)(2)(0.032) = 0.128
- $c_{y} = 1.65$
- $c_z = 1.0$
- $I_y = 2 \left[\frac{(2)(0.032)^3}{12} + (0.064)(1.634)^2 \right]$
- = 0.3417
- $I_z = (2) \frac{(0.032)(2)^3}{12} = 0.042667$

$$\Phi$$
 , \Im A = (0.62)(0.032) = 0.01984

$$c_{\rm s} = 0.016$$

$$c_{\mathbf{z}} = 0.31$$

$$I_y = \frac{(0.62)(0.032)^3}{12} = 1.6930 \times 10^{-6}$$

$$I_z = \frac{(0.032)(0.62)^3}{12} = 6.3554 \times 10^{-4}$$

$$\bigcirc$$
 A = (7.8)(0.032) = 0.2496

$$C_{z} = 0.016$$

$$I_y = \frac{(0.032)(7.8)^3}{12} = 1.2655$$
 $I_z = \frac{(7.8)(0.032)^3}{12} = 2.1299 \times 10^5$

Total

$$A = 2(0.01984) + 0.2496 = 0.28928$$

$$C_{y} = \frac{(0.01984)(0.016) + (0.2456)(3.932) + (0.01984)(7.848)}{0.28928} = 3.932$$

$$C_{z} = \frac{(2)(0.31)(0.01984) + (0.2496)(0.016)}{0.28928} = 0.056327$$

$$I_{y} = 1.6930 \times 10^{-6} + (0.01984)(3.932 - 0.016)^{2} + 1.2655 + (0.2496)(3.932 - 3.932)^{2}$$

$$+ 1.6930 \times 10^{-6} + (0.01984)(7.848 - 3.932)^{2} = 1.87400$$

$$I_{z} = 6.3554 \times 10^{-4} + (0.01984)(0.31 - 0.056327)^{2} + 2.1299 \times 10^{-5} + (0.2496)(0.056327 - 0.016)^{2}$$

$$+ 6.3554 \times 10^{-4} + (0.01984)(0.31 - 0.056327)^{2} = 0.0042517$$

BEAMS 7-13, 8-14, 9-15, 10-16, 12-18, 17-22, 18-23

$$A = 2 (0.62)(0.032) + (2.5 - 0.064)(0.032) = 0.11763$$

$$c_z = 1.25$$

$$c_y = \frac{2(0.62)(0.032)(0.31) + (2.5 - 0.064)(0.032)(0.016)}{0.11763} = 0.11517$$

$$I_{y} = 2 \left[\frac{(0.032)(0.62)^{3}}{12} + (0.31 - 0.11517)^{2} (0.62)(0.032) \right] + \frac{(2.5 - 0.064)(0.032)^{3}}{12}$$

$$+ (0.11517 - 0.016)^{2} (2.5 - 0.064) (0.032) = 0.0035506$$

$$I_z = 2\left[\frac{(0.62)(0.032)^3}{12} + (1.25 - 0.016)^2(0.62)(0.032)\right] + \frac{(0.032)(2.5 - 0.064)^3}{12}$$

- 0.098974

$$A = 4(0.62)(0.032) + 2(2.5 - 0.064)(0.032)$$
$$+ (0.085)(2.5) = 0.44776$$

$$c_{y} = 1.25$$

 $c_{z} = 0.6625$

$$I_y = [0.0035506 + (0.11517 + 0.0425)^2 (0.11763)] (2) + \frac{(2.5)(0.085)^3}{12} = 0.013077$$

$$I_z = 2(0.098974) + \frac{(0.085)(2.5)^3}{12} = 0.308625$$

= 3.09396

A = 2 (0.11763) = 0.23628

$$C_{z} = 1.25$$

$$I_{y(REF \ AXIS)} = (0.0035506)(2) + (0.11763)(5.5)^{2} = 3.56541$$

$$I_{z} = 2(0.098974) = 0.197948$$

$$A = 0.11763 + (0.04)(1) = 0.15763$$

$$C_y = \frac{(1)(0.04)(0.5) + (0.11763)(1 - 0.11517)}{0.11763 + 0.04} = 0.78718$$

 $c_{z} = \frac{(1)(0.04)(0.02) + (1.25 + 0.04)(0.11763)}{0.15763} = 0.96773$

BEAM 7-13 DATA
$$I_y = \frac{(0.04)(1)^3}{12} + (0.04)(1)(0.78718 - 0.5)^2 + 0.0035506 + (0.11763)(1 - 0.11517 - 0.78718)^2$$

$$I_z = \frac{(1)(0.04)^3}{12} + (1)(0.04)(0.96773 - 0.02)^2 + 0.098974 + (0.11763)(2.54 - 0.96773)^2$$

APPENDIX B ANALYSIS COMPUTER PRINT

This section contains the KRASH program print showing the math model input data, model parameter data, mass position plots and selected output data. The math input data consists of the following:

- Echo print
- Program size and control data
- Initial conditions
- Mass, mode point, external spring, and beam data

The model parameter data provides the following:

- Vechicle weight, cg, inertia and initial ground impact position
- Beam loads, deflections, uncoupled frequences, damping terms and Euler angles.

ne time-equal-zero data consists of the following:

- Mass accelerations
- Vehicle cg translational velocity
 - Energy distribution
- Mass energy deviation

The mass position plots at time = 0.0 are presented for the following:

- xz plane (aft-up)
- yz plane (side-up)

The selected output data consists of the following:

- Rupture/yield summary
- Energy summary
- Position plots at time = 0.054
 - · History plots of:

A mass filtered and unfiltered acceleration A beam force and deflection

An external spring

The DRI element

The vehicle cg translational velocity

"

9010	0200	0040	0900	070	0600	1100	1110	1120	1130	0140	150	1160	200	00	200	1210	1220	1230	1240	1250	12.70	1280	1290	300	1310	1330	1340	1350	1360	1370	1380	330	0050	0750	1430	440	1450	095	0450	00000000
0000000	020000000	10100000040 00000050	09000000	00000000	06000000	0000000	00000110	00000120	00000130	00000140	000000120	00000160	0610000	06100000	00000200	00000210	00000220	00000030	00000540	00000250	000000	000000580	000000500	00000300	01500000	02500000	00000340	00000350	00000380	00000370	00000380	00000330	000000000000000000000000000000000000000	07500000	00000430	00000440	00000450	00000460	000000410	00000480
	19012	5		•																																				
	45676	•								0.04999	0.22220	0.50000	0.3/0/4	08000	0.12772	0.77050	1.09100	0.96161	0.64403	0.20385	0.05038	0.05620	0.05620	0.41853	0.01255	0.31113	0.31113	0.65640	0.23500	0.52892	0.79584	0.79584	0.59639	3.152	16.8341	6.5318	5318			
	0123			6 1.0						•	•		.			•	-	ò		o 0		0	ö					0	ö	•	0	6	, c	, w	; %	•	•			
	3456789	•		•	100				0.0	0.08312	. 32811	40000	17171	12610	0.33230	.22150	5.68000	.90233	1.38000	0.48990	0.35180	0.32660	0.32660	9696	0.14440	0.17970	0.17970	0.38600	0.12%0	0.05880	0.12084	0.12084	0.06/04	6.6062	14.7742	10.7989	10.7989			
	ATA 9012	•			20				_		•					7	N												_						, 7					
×	. PER 0	•		85.0	01	91			0.0	0.11830	0.37822	4. 34400	4267	0.16540	0.42750	1.35040	5.72000	1.94210	1.54000	0.59700	0.30790	0.27542	0.27542	0.34639	0.134/1	0.36276	0.36276	0.81670	0.31850	0.47800	0.68585	0.68585	29/45 D	5.95	13.9511	11.3116	11.3116			
KI	S · 1F	~			•	10			•		•							_	-		, .	-	•			, ,		•	0		0		, ,	, 4	-	-	-			
SECTION DROP TEST SIMULATION	PANECUSHION S'IFF.PER DATA 567890123456789012345678901	•		0.0	•	-			0.0	-16.0	-16.0	-10.0	14.0	-16.0	-16.0	-16.0	-16.0	-16.0	-16.0	-16.0	0.6	9.0	9.0	9.0	2.5	31.0	31.0	31.0	31.0	47.0	47.0	97.0	67.0	-1.7	5.8	20.89	20.89	-1.7	-1.7	-1.7
TES	NECU 8901	•			•	10				•	•	•	'	•	•	•	•	•	•	•																				
4 DROP	34567	•		0.054	•	0	330.0	0.0	0.0	0.9	0.0	2.0		9	20.0	20.0	20.02	20.02	20.0	0.02	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	0.0	0.0	9.0		13.0	13.0	13.0	13.0	0.9	6.0	20.0
CTIO	-1-76	\$			•			•		•	•		, ,				"	~	<i>a.</i> •		. ~	~	~		•	. ~		~					, ,	, -	-	-	_	•	•	
8	R 3 (9 234567	22		100 0.00001	•	-	0.0	0.0	0.0131	135.0	140.0	0.161	174.0	181.0	135.0	140.0	151.0	163.0	174.0	135.0	140.0	151.0	163.0	174.0	140	151.0	163.0	174.0	181.0	140.0	15.0	0.591	181	166.0	166.0	166.0	166.0	151.0	174.0	151.0
	CHBE	2			•	•	_	_	_							_		_		•		_					_		_				`			_	-	1		1
SECTION DROP TEST SIMULATION	0000020 12345678901214567890123456789012345678901234567890123456789012345678901200000030	22			•	19	0.0	0.0	0.0	1.37	2	10.30	4 9 3	1.91	1.75	5.58	18.02	8.02	6.28	3.5	2.40	1.87	1.87	2.70	200	2.23	2.23	2.81	1.10	2.80	4.05	4.02	1.73	20.5	72.86	72.86	72.86	-	~ 1	٠,
-	~ m	4 10	•	- "	•	10	=	12	13	2	9	2 :	::	2	20	12	22	23	56	0 %	27	28	53	8 :	12	33	34	35	2	37	2	2 5	3	45	13	4	45	9	47	9

ECHO OF THE INPUT DATA IN CARD INAGE FORMAT

0000000	00000250	0000000	04400000	9490000	00000000	00000280	00000200	0000000	0000000	00000620	000000	0000000	0000000	0990000	0000000	0000000	000000000000000000000000000000000000000	000000	4	•	400000740	-	1000	40000070	400000780	400000490	400000810	400000820	400000830	400000040	400000820	400000860	400000880		_	400000010	400000050	-			-		400000980		_
																			5.78 .667	5.78 .667	5.78 .667				-	1.65 1.0			•	•	•	3.93 .564	•			2.82 .550	2.82 .550		~	-	٠,	٠,	22.1 599.	4 -	1115 1.25
										2290.0	-	2650.0	2410.0	1760.0	1380.	1380.	1300.	1380																											
										2290.0	2650.0	2650.0	2410.0	1760.0	1380.	1380.	1360.	1380	0.060521	0.060521	0.060521	0.060521	0.060521	0.042667	0.042667	0.042667	0.042667	0.0042517	0.0042517	0.0042517	0.0042517	0.0042517	0.0040931	0.0040931	0.0040931	0.0040931	0.0040931	0.0040931	0.098974	0.098974	0.098974	0.098974	0.308625	0.090974	0.0707/4
5.6	50000.0	20000.0	20000	2000	20000	20000 0	20000.0	20000.0	20000.0	2.5	2.5	2.5	2.5	2.5	1:1	Ξ:	::	::	4.18228	4.18228	4.18228	4.18228	4.18228	0.34176	0.34176	0.341/6	0.34176	1.874	1.874	1.874	1.874	1.874	0.77791	0.77791	0.77791	1677770	167777.0	16777.0	0.003551	0.003551	0.003551	0.003551	0.013077	0.003531	15C5 00.0
13.	0.0	0.0					0.0		0	1.000	1.000	1.000	1.000	1.000	0.15	0.15	0.15	0.15																											
30 166.	3 6.0	3 8.0	9.0			111	2 2 2	1 2 2	1 3.3	0.700	0.700	0.700	0.700	0.700	0.055	0.055	0.055	0.000	2 0.615674	3 0.615674	4 0.615674	5 0.615674	6 0.615674	8 0.128	9	11 0 128		0	0 0.28928	0 0.28928	0 0.28928	0 0.28928	7 0 21843	8 0.21843	9 0.21843	10 0.21843	11 0.21843	0	13 0.11763	0	_	•	17 0.44776	18 0.11/65	22 0.11763
-	~		• •		•	•	10	:=	12	0.100	0.100	0.100	0.100	0.100	0.045	0.045	0.045	0.040	-	. ~	•	4	.				==	-	2	m	•	1 0	-	• ~	m	*	10	•	1	•	0	10	=:	77	17
22	25	2	1 1	1	2 2	5	2	3	3	62	63	3	69	3	67	3	3	2 5	:2	12	2	2	2	1	2	2 :	3 2	85	83	40	92	9 6		8	8	6	26	93	36	95	8	44	8	66	

400001020	400001030	050100005	050100005	00010000	04010004	40001000	400001100	400001110	400001120	400001130	400001140	400001150	400001160	600001170	600001180	600001190	600001200	1000001220	400001230	400001240	400001250	400001260	100001270	00001290	00001300	00001310	00001320	00001340	00001350	00001360	00001370	00001380	10000	00001400	01410000	00001411	00001420	00001430	00001431	00001440	00001450	15510000	0001670	0/510
0004	0000	0000				000	000	000	0005	0000	0005	0005	0005	0009	0009	9000		0000	0005	0005	0000	000		000	000	000	000		000	000	000	0 0			000	000	000	000	000	000	000			500
	-	-	1				-							150			0.00	-																										
			. 62.	•	•	•	•	•								0.06 0																												
m'	-	٠.	.		: "									•		.	5																											
940	121	121	150	70	100	: 5	1 5		6	163	163	993	163	000	2	2 5	2		3																									
.197948	.003551	.003551	.003551	.003551	495491	425491	425691	425691	425691	17.74063	17.74063	17.74063	17.74063	.54000	.54000	.54000	2000	0048																										
0	0	0	0 (•	•	•	•	•	•					•	0	0 0	5 6																											
565410	098974	0.098974	98974	9,000,000	0.0707/4	011304	011104	011304	0.011304	3.798130	3.798130	3.798130	3.798130	0.18000	0.18000	0.18000	0.1000	0.0048																										
3.5	0	0		5						3.7	3.7	3.7	3.7		-																													
																																		-										
																											0.00				0.75	9.0	4	194	.054	48	2.5	.054	48	2.	.03	5 6	1	
																		4	17	17		0.					•					2 4		1	2	10	10	5	~	2	0			•
3.23526	1.11763	11763	0.11763	7.11/03	16743	15763	15763	16763	15763	33012	.33012	33012	.33012	0.188	0.188	0.188	0.100	0.009504	0.0021571	0.0021571	0.000381	0.001170	0.11045	-	-	-	. -			141	_	٦,		, m	-	2	m	7	~	m.	٠,	v 14		
	-:				100					0	•	0							0	0.0	1	0	9 6	•	_					_	_							_	_					
19	ž	52	2 6	2	9 %	-	-	•	. 12	iè	2	~	5.	1 2	2 2	3 53	*	"	M	m	8	1 3		8	8	2	200	in		31	8	1 30	10	161	22	22	22	23	23	53	52	2 4	200	
14	13	200	22	22	3 :	22	12	12	1	13	20	12	22	m	2	•:	3 5	2 2		=		62 5	1 5	2 10	=		62 5	18	90.0	30		62 5	14	14	17	17	17	18	18	9:	61	10	200	
	103	104	· ·	000		000		2	112	113	114	115	116	117	118	611	021	122	123	54			128	129	130		132	36		36		92	140	141	145	143	144	145	95	141	95	120	151	
102			-	- 1					4			= 1	_	-	-	-	2 5	. 0	10	ñ	~	Ni i			-	-			-	-	-	*							=	-	Ξ,			ê

00001480	00001490	14410000	000000000000000000000000000000000000000	00001511	00001520	00001530	00001531	00001540	00001550	00001551	0001000	01571	00001580	00001590	16510000	01900	00001610	00001611	02910000	00001631	00001640	00001650	16910000	19910000	00001662	00001663	00001664	99910000	00001667	00001668	69910000	00001670	6/910000	00010000	00010000	00001710	00001720	00001730	00001740	00001750	09/1000	2001	00001780
000	38			8	000	000	00	00	00	000		200	00	000	00	00	000			8	00	8 8			00	0	00		000	00	00	000			000	00	000	00	00	000			80
																																										•	•
																																										•	-
																																		70.0	5.0		10.		10.0		-	•	-
																																		*	3	18						•	•
1.03)	1.02	017	1.03	1.33	.037	1.03	1.03	.045	.682	103.1	.682	1.287	.045	.682	1.287	.045	239.	045	.682	1.287	. 045	1	•										 	2	16	5.	56	2.0	# c	2.0		•
10 1					10	10	9	10	2	1 0	le d		10	10	•	10	1	n u		10	10	10		•										24		14		17		30	-	2	•
m -	• •	u P		. ~	m	-	~	m	-	~ 1	٠.	• •	m	-	~	m	-	N F	-	~	m	- •		.00.	.003						3.		•	٠,		12	m	91	m	53	• 0	;	•
52	3 :	3 %	2 6	27	27	28	88	88	=	2:	1:		2	15	15	15	2	9 %	22	1	11	2:	2 5	2	75	751							35	ه د		1	1.:	S	יי	·c ·	":	:	•
20	36	1:	: :	22	22	23	23	23	1	- 1		•	•	•	•	•	2	25	2 =	12	=	12	2 2				2.5	4.51	5	•	7.	20.	2	v 6	. ~	•	m	4	~	m	v 0		•
					•		-	~	163	\$ 5	201	167	168	691	170	17	172	272	1	176	177	178		181	182	183	184	186	187	188	189	190	161	261	96	195	196	197	198	661	202	100	
153				158	159	160	3	162	2	# ;	٠.				_		~		•		_	~ -	• -	• ~	~	_	~ .			_	_	_	_	-	• -	_	-	_	~	~ (4

ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT

	0	0					0	0	0	0	0	0	0	0	0	0	0	0	0	0 .	10			0		-	2	0	0 0		0		0		0	0	0	0	0	0 0				0	
00001000	00181	00001820	00001830	00001850	00001860	00001870	00001880	00001860	00610000	00001910	00001920	00001930	00001940	00001950	00001000	00001970	00001980	00001990	00000000	00000000	00000012	00002020	0000000	00002040	00002020	0000000	00002062	000002070	00002080	00003100	0120000	0212000	00002130	00002140	00002150	00002160	00002170	00002180	00002190	0022000	0122000	00000000	00002240	00002250	20000
8	8	80	3 6	8	8	8	00	00	00	00	0	0	8	8	0	8	8	0	8	8 8	3 8	8	8	8	5 6	8	8	8	8	3 6	5 6		0	8	8	ö	8	8	8	5 6		5 6	8 8	8	-
•	•	0	•									•	•	•	•																														
-	-	٠.	•								1	~	-	-	_																														
1			,									-	1	1	-																														
	1 .											0 1	-	0	-																														
-	0 0										•	0 0		-																															
-	0 0 0		1 0 0 0									0 0 0		0		1		-		-		1	1		-																		1	-	
	•		•									0 0 0 0		0 0 0	0 0	1 1	1 1			1		1 1	1 1	1																	1		1 1	1 1	
	•		•		1	-						1 0 0 0 0 1		0 0 0	0 0 0	1 1 1	1 1 1					1 1 1	1 1 1	1 1 1		1					•			1				And the second second	The state of the s	, ,	1 1	0 1 1	1 1	0 1 1	
0 0 0 0	•		•					-			1	0 0 0	1 0 0 0 0 1	1 0 0 0 1	1 0 0 0 1	5 1 1 1	1 1 1	1 1 1		1 1 1	•	, 1 1 1	1 1	1			7 11 2	1					1		1 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					, ,	1 1	1 1 1	1 1	, 0 1 1	
	•		•	16 1	21 1	15 1	20 1	1 52 1	1 1	22 1	27 1	29 1 0 0 0 0 1 1	1 0 0 0 0 1	1 0 0 0 1	0 0 0	46 1 1 1	49 1 1 1	50 1 1 1	1	55 1 1 1	57 1	46 1 1 1	1 1	1	25 1 1 1	56 1	57 1	23 1	1 92		27 1	28 1	29 1	30 1	31 1	32 1	33 1		7 7	2 0 1 1			5 0 1 1	6 0 1 1	
5 0 0 0 0 0 1		100	•	209 19 1		211 15 1						29 1 0 0 0	30 1 0 0 0 0 1	31 1 0 0 0 0 1	32 1 0 0 0 0 1					225 55 1 1 1			49 1 1	50 1 1					236 24 1								*		1 56 742		250 3 0 1 1	251 4 0 1 1	252 5 0 1 1		

SOM OF THE ENDUT DATA IN CARD INAGE FORMAT

00002270

NASA ** NAVAJO SECTION DROP TEST SIMULATION MODEL NUMBER 3 (9-1-78) PANACUSHION STIFF.PER DATA

CONTROL DATA PROGRAM SIZE

PROGRAM SIZE DATA

STANDARD STANDARD NON- NON- NON- NO.
ACCEL. MAX. AX. ZERO STANDARD STIFFNESS NODE
TABLES DEFL. FORCE PHI'' DAMPING MATRICES PTS. ¥ ° NFB4 M . NACC NTOL3= 100% MASS VOLUME DRI MTL PENETR. CHANGE ELEMENTS TYPES F 20% ₩. NTOL2= 1 !:TOL1= 10% MON-ZERO HE OR ¥ SPRINGS BEAMS TABLES **3 3** NUMBER OF: MASSES ¥ %

ş.

2 -

PROGRAM DATA MANAGEMENT CONTROL DATA

RESTART: TITLE -CASE -TIME -

SAVE: TITLE -CASE -TIMES -

VARIABLE INTEGRATION CONTROL DATA

LOWER RATIO = 0.0 UPPER RATIO = 0.0 EU = 0.0 VAR. INT. FLAG = 0 EL = 0.0

PROGRAM CONTROL DATA

CASE TYPE INDICATOR	RUMHOD 1.000
FILTER CUTOFF FREQUENCY	FCUT 85.000
PLOW FORCE STARTING TIME	PLONT 0.0
MAX.	THAX 0.054000
INTEGRATION INTERVAL	0.000010
PRINT INTERVAL/ INTEGRATION INTERVAL	0P/DT 100

TIME HISTORY PRINT CONTROL CARDS

EXT.SPRING ENERGY STRESS ACCEL
DATA DATA DATA
0 0 0 0 STRAIN TOTAL BEAM FORCES FORCES DEFLECTIONS

PLOT PRINT FACTOR = 18 NO. OF MASS POSITION PLOTS EACH TIME=

NO. JF POINTS PLANE 1.0.

VEHICLE INTTIAL CONDITIONS

3.30000 6.0
0.0 0.0 1.310000-02

GENERALIZED SURFACE DATA

META :

MASS DATA

		METGHTS		HASS CO	MASS COORDINATES F.S., B.L., H.L.	B.L., M.L.	HASS HONENTS	HASS MONENTS OF INERTIA (LB-IN-SEC#42)	-IN-SEC##2)	
	*	*	•	×	۲۰۰۲	2	×	11	71	-
	-	1.370000 00	1.350000	0000 02	6.00000D 00	-1.600000 01	1.183000-01	8.312000-02	4.99900D-02	1
	~	4.380000 00	1.40000	20 0000	6.00000D 00	-1.600000 DI	3.78220D-01	3.281100-01	2.222000-01	~
	,	1.630000 01	1.510000	0000 02	6.000000 00	-1.600000 OI	4.34400D 00	4.40000D 00	5.000000-01	10
	•	6.300000 00	1.630000	0000 02	6.00000D DD	-1.60000D 01	5.440100-01	5.291000-01	3.767400-01	4
	5	4.93000D DD	1.740000	0000 05	6.000000 00	-1.600000 01	4.257100-01	3.714200-01	2.522700-01	v
	•	1.910000 00	1.610000	0000 05	6.00000D DO	-1.600000 01	1.654000-01	1.261000-01	8.00000D-02	9
	~	1.750000 00	1.350000	20 0000	2.000000 01	-1.600000 01	4.27500D-01	3.323000-01	1.277200-01	^
		5.580000 00	1.400000	20 0000	2.00000D 01	-1.600000 01	1.350400 00	1.22150D 00	7.70500D-01	00
	•	1.802000 01	1.51	.510000 02	2.00000D 01	-1.600000 01	5.72000D 00	5.680000 00	1.091000 00	۰
-	01	8.02000D DO	1.630000	20 0000	2.000000 01	-1.600000 01	1.94210D 00	1.902330 00	9.616100-01	91
-	11	6.280000 00	1.740000	20 0000	2.000000 01	-1.600000 01	1.540000 00	1.380000 00	6.440300-01	=======================================
-	12	2.44v00D DO	1.81	.810000 02	2.000000 01	-1.60000D 01	5.97000D-01	4.899000-01	2.038500-01	12
-		4.100000-01	1.35	1.35000D 02	2.80000D DI	9.000000 00	5.960000-02	6.13000D-02	2.73000D-03	13
_	14	2.400000 00	1.400000	0000 05	2.800000 01	9.00000D 00	3.079000-01	3.51800D-01	5.038000-02	14
-	15	1.87000D 00	1.51	.51000D D2	2.80000D 01	9.000000 00	2.754200-01	3.26600D-01	5.62000D-02	15
_	16	1.870000 00	1.63	1.630000 02	2.80000D 01	9.00000D DO	2.754200-01	3.266000-01	5.620000-02	16
_	17	2.700000 00	1.74	.74000D 02	2.800000 01	9.000000 00	3.463900-01	3.96960D-01	4.185300-01	17
_	18	1.050000 00	1.81	.81000D 02	2.80000D D1	9.000000 00	1.347100-01	1.444000-01	1.253000-02	18
-	19	2.05000D 00	1.40	.400000 02	2.800000 01	3.100000 01	5.95600D-01	2.792000-01	4.770000-01	19
,,	02	2.23000D 00	1.51	.51000D 02	2.80000D D1	3.100000 01	3.627600-01	1.797000-01	3.11130D-01	50
	21	2.230000 00	1.63	.63000C 02	2.800000 01	3.1000000 01	3.627600-01	1.797000-01	3.111300-01	21
		2.81000D DO	1.74	.74000D 02	2.800000 11	3.100000 01	8.167000-01	3.860000-01	6.564000-01	22
	23	1.100000 00	1.81	.810000 02	2.80000D 11	3.10000D 01	3.165000-01	1.296000-01	2.350000-01	23
,	52	2.800000 00	1.40	.40000D 02	0.0	4.700000 01	4.780000-01	5.880000-02	5.289200-01	54
	52	4.020000 00	7	.51000D 02	0.0	4.700000 01	6.858500-01	1.208400-01	7.958400-01	25
	58	4.020000 00		1.630000 02	0.0	4.700000 01	6.858500-01	1.208400-01	7.958400-01	56
,0	12	3.150000 00	7	.74000D D2	0.0	4.700000 01	5.374200-01	6.704000-02	5.963900-01	27
		1.230000 00	1	.810000 02	0.0	4.700000 01	2.098500-01	1.467000-02	2.211900-01	28
	62	2.050000 01	-	.660000 02	1.300000 01	-1.700000 00	5.95000D 00	6.60620D 00	3.152000 00	53
•••	30	7.296000 01	-	2r 000099-1	1.30000D	5.800000 00			1.683410 01	30
, ,	31	7.286000 01		7.660000 02	1.300000 01	2.089000 01		1.079890 01	6.531800 00	31
. ,	32	7.286000 01	_	7.660000 02	1.300000 01	2.089000 01	1.131160 01	1.079890 01	6.531800 00	35

MASS AND BEAM DATA

40

		8	8	8	8	8	8
COORDINATES F.S., B.L., W.L.	2	-1.70000D		-1.70000D	-1.70000		
		8	8	5	5	5	5
COORDINATES	٠.,	6.00000D	6.00000D	2.00000D	2.000000	1.300000	1.30000D
INT		05	05	02	05	20	05
NODE PGINT	: ×	1.510000	1.740000	1.516000	1.740000	1.669900	1.660000
Z.	E	-	~	m	•	5	-
HASS	-	62	62	53	53	53	30

EXTERNAL SPRING DATA

												SPRING AXIAL FORCES	FSPOF(IKM)	2.290000 03	2.650000 03	2.650000 03	2.410000 03	1.760000 03	1.380000 03	1.380000 03	1.380000 03	1.380000 03	1.38000D 03
GROUND	GFLEX(IKM)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	SPRING AX	FSPOI(IKM)	2.29000D 03	2.650000 03	2.650000 03	2.41000D 03	1.760000 03	1.380000 03	1.38000D 03	1.380000 03	1.38000D 03	1.380000 03
PLOWING	FORCE(IKM)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		SF(IKM)	2.50000D 00	2.50000D 00	2.50000D 00	2.500000 00	2.500000 00	1.10000D 00	1.10000D 00	1.10000D 00	1.10000D 00	1.100000 00
BOTTOMING	KELIKMI	5.000000 04	5.000000 04	5.000000 04	5.000000 04	5.000000 04	2.000000 04	2.000000 04	2.00000D 04	2.00000D 04	2.00000D 04	COORDINATES	SB(IKM)	1.00000D 00	1.000000 00	1.000000 00	1.000000 00	1.000000 00	1.500000-01	1.500000-01	1.500000-01	1.500000-01	1.500000-01
FRICTION COEFFICIENT	MUCIKM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	DEFLECTION COORDINATES	SALIKHI	7.00000D-01	7.000000-01	7.000000-01	7.000000-01	7.00000D-01	5.50000D-02	5.50000D-02	5.500000-02	5.500000-02	5.50000D-02
FR.E LENJTH	LBAR(IKM)	8.00000D 00	8.00000D 00	8.00000D 00	8.00000D DO	8.000000 00	3.30000D 00	3.300000 00	3.30000D 00	3.30000D 00	3.300000 00		SI(IKH)	1.00000001	1.000000-01	1.000000-01	1.000000-01	1.000000-1	4.50000D-02	4.50000D-02	4.50000D-02	4.500000-02	4.50000D-02
SPRING	H	9	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 0	SPRING	E ×	3 0	3 0	3 0	3 0	3 0	3	9	3 0	3 0	3 0
	-	N	m	*	10	•	0	•	10	11	12	SPR	-	~	m	4	Ŋ	9	•	•	10	11	12

MATERIAL PROPERTIES

SHEAR	37500.	80000.	36000.	22000.	17000.	17000.	17000.	17000.	17000.	
COMPRESS. STRESS	75000.	205000.	46000.	39000.	34000.	16000.	16000.	16000.	16000.	0
TENSION	75000.	205000.	70000.	47000.	35000.	16000.	16000.	16000.	16000.	B-10
MODULUS OF RIGIDITY	1.10000 07	1.1000D 07	1.25000 07	4.0000D 06	3.8000D 06	3.8000D 06	3.00000 05	0.0	3.00000 05	
MODULUS OF ELASTICITY	3.00000 07	3.00000 07	2.80000 07	1.05000 07	1.00000 07	1.00000 07	1.00000 06	1.00000 06	1.0000D 06	
MATERIAL NO.	1	2	2	•	2	9	1	•	•	

INTERNAL BEAM DATA

		Z	. 0		0	0 0	9 9	0	•	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0		0	0	٥	0 0	0	0	9 0	0	0	0 0	0	0	-	m	4
		-	: 0		0	0	•		0	•	•	0	0	0	0	0 0	•	0	0	0	9 0	0	0	0 0	0		0	00	0	0 0	0	0	9 0	0	0	0 0	0	0	0 0		0
	BEAM	-	~	m	*	n 4	•	•	9	=	~	0		0	0	9		0	0		y m	4	S	91	. 00	N	m	. 4	S	2 5	28	3 1	9	1	0	0 -		m	0 0		•
	20	-		~	m.	3 u	•	. 00	•	0	=	٠,	u m	•	n	•-	• ~	m	4	2	0 1	80	6	5 .	10	17	87	t 0		-		13	4 6	16	17	19	21 2	22 2	ME	0	11 2
		-	-	~	m.	5 u			•	6	0	٦,	u m	4	S	۰ ۱	. 40	0	0	22	23	54		26 1	28 3			32 1		34 2			300			42 1			9 6	48	69 1
		7 7				0 0					0	~ ~	, ,	0		0 0	0	0	0 2	0 0	9 0	0	20	00	2 0	0	0	9 M	0 3	M K	9 0	0	1 M	9	4	5	4	4	4 4	4	4
	903			0	0	0 0	9 0		•	0	0	0	0	0	0	0		0	•	0	0	0	0	0 0	, 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0
	P	7 1	. 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0	0	0	00	0	0 0	0	0	9 0	0	0	0 0	0	0	0 0	0	0
				3	3	*	. 4	3	3	4	4	4	1 4	3	4	3 4		4	4	3	1 4	4	4	4 4	4	4	4	3 3	4	3 3	4	4	4 4	4	4	3 3	4	4	9 4	9	9
			02	20	20	200	200	20	05	20	05	200	200	05	05	2 2	020	05	20	200	200	05	05	200	20	20	20	2 0	05	200	02	20	200	00	05	2 0	20	20	200	00	05
	RATIO	9	0000-02	0000-05	0000-05	20-0000	0000-02	0000-02	000D-02	0-0000	0000-05	0000-05	0-0000	0-0000	20-0000	0-0000	0-0000	0-0000	0-0000	0-0000	0000-05	0-0000	000D-02	0-0000	0-0000	0-0000	0-0000	0-0000	0-0000	0-0000	0-0000	20000-02	0-0000	0-0000	0-0000	0-0000	0-0000	0-0000	0-0000	0-0000	6
1	RATIO	CBAD	8	8	8	8	9 9	8	8	8	ĕ	8	8	8	8	5 6	8	8	8	8	9	8	8	8	0	8	8	8 8	8	8 8	8	8	3 8	Š	8	8	8	0	8	Š	.000D-02
	•		9	3	•	\$ 1	4	4	3	4	ġ	\$	4	4	4	3 4	•	4	4	4	4	4	4	.	3	4	ø.	3 3	4	3 4	4	ġ.	3 4	4	4	3 4	4	4	3 4	3	4
	x		6	8		3 8	3 8	6	2	2			3 6	5		5 6					3 6		-	2 2	3 6			5 6		2 2			3 2			2 2			2 5	-	
	LENGTH	a X	0000	1000	2000	1.1000		1000	2000	1000	0000	2000	2000	2000	2000	2000	4000	4000	4000	4000	6250	6250	6250	6250	6250	2000	2000	2250	2250	3.2250	2250	0000	2000	1000	.0000	.1000	1000	.0000	4300	4300	4300
	3	×	5.0		2.	1.6	2.0		1.2	=	0.	~ .	7 7	2.1	1.2	2.4	. 4	4	4.	4	2.6250	9	5.6	9 4	9	2.2	2.2	3.5	5.5	2.5	3.6	0		3	0.			.0	4 4	3	4.
			-	_	_			-	_	_					_			_							• (0		•••			., .		-, .	-								_
DISTANCES FROM NEUTRAL	PARAMETER		,							1																															
Š	3 5	X													0	0 0				0 0										0 0						0 0			0 0		0
	Z Z		6			6			0	6	ö	6	, 0		6	o 0			•	6			ö	<i>.</i>	, ,	6	6	9 9	0	à c	6					o c	6	0		6	0
FROM NEUTRAL	13		5	5	5	5 6	18	8	8	8	8	5 5	3 6	6	5	5 5	: 5	6	5	5 5	18	8	8	88	38	8	8	8 5	6	9 5	12	5	5 6	5	0			1	200	9	95
5	13	22	6700-01	6700-01	6700-01	6700-01	0000	0000	0000	0000	0000	6400-01	6400-01	6400-01	6400-01	6400-03	500D-01	5000-01	5000-01	5000-01	2500 00	2500	2500	9 8	2500	2500	8	1500-	1500-01	1500-01	.1500-01	9.6800-01	9.6800-01	9.6800-01	9.6800-01				6.0000-02	0000-02	6.0000-02
2	8 1	~	3	.6	9	0.	9	8	9	9	á	3	2	.64	49.	. A	5	5	.50	200	2500	.25	25	2500	25	. 25	.2500	1500	.15	55.	15	9.	9 4	.68	.68	0 0	. 0	0.0	8 8	8	8
2	3 7		9 0	9 0	9	9 4	9 ~	0	0	0	0	0	n w	0 5	0 5	0 0	0 0	0	0 5	0 0	10	1	7 7	~ -	•	-	~ '		10	0 0						0 0	0				
5	ZBLJ AXIS YBLJ AXIS		00		7.1.1	8 6			8			88		8		9 6					.1500-01	1500-01	1500-01	1.1500-01	500-01	1500-01	,	9 6		88		8700-01	8700-01	870D-01	10-0				6.0000-02	0000-02	6.000D-02
3	25	2	7800	7800	7800	7800	6500	6500	6500	650D	6500	9300	9300	9300	9300	9300	8200	8200	820D	8200	1500	500	200	500	500	500	500	2500	2500	2500	2500	70	707	70	8700		_	_	000	00	100
DISTANCES	38		5	5.	5.	5	1.6	1.6	1.6	1.6	7.	m .	3	3.5	3		2.6	2.8	2.8	2.0	1.5	3	Ξ	-		2	2	3.6	1.2	1.0	12	7.6		7.8	7.8	0 0		0.0	9 4	9	6.0
20	{		00	8	8	88	3 5	6	5	5	5	88	3 8	8	8	8 2	: 5	6	10	6	7 6	5	10	50	1 7	61	5	8 6	5	5 6	10	6	5 6	10	5	2 2	10	5	5 5	50	10
		×	8	20	2	2 5	3	8440-01	8440-01	8440-01	8440-03	9 9	3 3	8	8	8 8	820D-01	8	820D-01	820D-01	0250-01	0250-01	0250-01	0250-01	0250-01	0250-01		76.50 00 0250-03	0250-01	0250-01 0250-01	0250-01	3700-01	3700-01	3700-01	•				8 8	8	00
	5	-	2430	2430	2430	2430	8440	2	9	ş	8	8780	878	8780	8780	8780	82	.8200-01	.82	82	020	.02	. 02	92	02	02	.02	95	. 02	92	02	37	37	37	37	1540	1540	2.1540	.2000-01	.2000-01	.2000-01
	HOMENTS OF INERTIA		•	3	9	* 4	· m	m	m	m	m	-	4 ~	-	~			-	1	- 1	-	-	-	- r	•	-		7	7	7	-	5	4 4	4	4	a o	. ~	~			-
	Z		0520-02	0520-02	0520-02	20-0250	26.70-02	26 70-02	26.70-02	2670-02	26.70-02	2520-03	2520-03	2520-03	2520-03	2520-03	093D-03	0930-03	0930-03	0930-03	8970-02	.8970-02	8970-02	.8970-02	897D-02	8970-02	8970-02	5510-03	5510-03	5510-03 5510-03	5510-03	2570-01	2570-01	2570-01	1	2 2		2	4000-01	4000-01	4000-01
		177	520	520	220	520		129	678	670	679	520	520	520	520	520	3 6	8	930	8	3 6	970	22	26	976	970	2	510	510	510	510	27	5,70	570	570	7740	7740	7740		000	99
	2	-	9	6.0	9	9	2	4.2	4.2	4.2	4.2	2.6	. 2.	4.2	4.2	3.0	,		6.0	9	9.6	9.6	9.8	6 6	9 6	9.8	8.6	3.5	3.5	3.5	3.5	4.2	2 0	4.2	4.2	7.1		1.7	4.7	2.5	3.
	EX.		0	2	2	88	2 =	2	=	=	2	88	2 2	2	00	2 2	: 3	2	2	z :	7 2	2	33	200	3 5	3	93	9 2	20	25	25	20	25	25	35	2 5	3 8	0	2:	: =	=
	Ē		0	9			80-08	80-n	80-61	30-01		9	3	3	Q	9 6	0-0-	90-0	10-06	8-0 8-0 8-0 8-0 8-0 8-0 8-0 8-0 8-0 8-0	5 5	9	-	510-03	20	510-03	510-03	970-02	970-02	970-02	970-02	2	20-00	300-02	0	25	2 2		00-07	00-00	10-00
		2	18	.1:20		2	3	3	.41	*	418	.874		.874	8740	9	::	1	17	1	.5510-03	.5510-03	.5510-03	.551	55	. 55	.55	89	.83	689		.1300-02	1300-02	13	130	7980 00	1961	.7980	8 8	80	8
			4	4	j.	• •	m	m	m		m	-i -	-	ä	<u>-</u>	i,			7.	٠.	·m	m	m	m -	im	m	m i	90	0	0 0	0			-	i.	m H	in	m			-
			1570-01	9	3	5 5	10	Ş	-01	9	-01	5 5	5 6	9	Ş	5	-	5	-01	9	2 2		9	5	10-	-01	0	-07	-07	0	-01	-01	50	-01	-01	50	10	-01	5	5	-01
	AREA		R	1570-01	1570-01	15/0-01	280D-01	2800-01	280D-01	2800-01	2800-01	8930-01	930-01	930-01	930-01	930-01	1840-01	1640-01	6+0-01	6-0-01	7.0 31	7:0-01	700-01	760-01	760	760-01	760-01	1760-01	760-01	760-01	760-01	760-01	760-01	760-01	760-01	3010-01	3010-01	3010-01	8800-01	8800	8800
	3	•									2	æ .		80	8	ø, -	: 7		7	7	: -	-			. "	:			1			5		•	i.					. 80	
		-	9		0	0 4	9 0	-	70	-		0 0	9 0	20	0	0 0	, ~	20	2 0	0	, r	0	0	0 0	0	0	0	2 0	0	0 0	0	0	00	0		m r	9 0	-	1,	3 7	4
																																							0 0		
	5	_								_	2	0 0		-		0 1				_	u w	4	2						10				n 4	. ~			-		0 0		
	BEAM				_			_	7	-	-			_				_	2	7	13	-	-	16			(4 (7 2		26		7				202		~	2 6	1 2	
		-							5	2	=		. m	-	41			-	4	-, ,				2:		. ~	-	2 5		2 :		~	1 1 2		-	19	" "				11
		2	7	N	m .	* u		-		0	2	2:	12	14	15	9:	18	2	20	2 5	23.6	5	25	26	285	29	20	32 22	33	2 2	2 %	37	8 6	3	4	45	3	45	3 3	48	49

B-11

.

_	_	_	_	_		_	_
					2		
4.1000-01 4 0 0 0 0 50 30 31 0	0 0 21	0 0 0 52	0	0 0 0 24 29	4.000D-02 4 0 0 0 0 55 29	10000	0
1.5090 01	1.5090 01	ಕ	2	8	7.5000 00 4	5	5
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0-05 0.0	0-03 0.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0
3 1.500	3 9.600	0.0	0.0	0.0	0.0	0.0	0.0
7.5000-(4.800D-C	0.0	0.0	0.0	0.0	0.0	0.0
7.5000-03	4.800D-03	0.0		0.0	0.0	0.0	0.0
2.0000-02	7.1970-03	2.1570-03	2.1570-03	3.8100-04	1.1700-03	1.1050-01	1.1050-01
0	0	0	0	0	-	0	0
50 30 31	51 30 32	52 5 30	53 11 30	54 29 30	55 29 30	56 14 0 (57 18 0

UNSYMMETRICAL BEAM DATA

. 3	DEADBAND	89	0.0	0.0	0.0	0.0	0.0	0.0
TENSION	FLAG	TAUB	-	7	7	7	-	7
		z	0	0	•	-	•	0
		E	0	0	•	5	•	0
	¥	7	30	30	30	30	•	0
	BEAM	-	5	=	62	62	14	18
		2	25	53	54	55	26	21

MONLINEAR BEAM DATA

1			BEAM			DIRECTION	STANDARD TABLE :10.	LINEAR	BOTTOMING
29 30 0 1 0	2	-	7	E	z	٠	2	901	LOP1
29 30 5 1 0.0 14 19 0 0 1 5 6.20006-01 14 19 0 0 3 5 1.40006-01 17 22 0 0 1 5 5.40006-01 18 23 0 0 2 5 5.40006-01 18 23 0 0 3 5 5.40006-01 19 24 0 0 3 5 5.20006 0 19 24 0 0 3 5 5.20006 0 20 25 0 0 3 5 5.20006 0 20 25 0 0 3 5 5.20006 0 20 25 0 0 3 5 1.03006 0 20 25 0 0 3 5 1.03006 0 21 26 0 0 0 3 5 1.03006 0 22 </td <td>54</td> <td>53</td> <td>30</td> <td>0</td> <td></td> <td>1</td> <td>•</td> <td>7.50000E-01</td> <td>0.0</td>	54	53	30	0		1	•	7.50000E-01	0.0
14 19 0 0 1 5 6.20000E-02 14 19 0 0 2 5 4.80000E-01 17 22 0 0 1 5 5.40000E-02 17 22 0 0 2 5 5.40000E-01 18 23 0 0 3 5 5.20000E-02 19 24 0 0 2 5 5.40000E-02 19 24 0 0 3 5 5.20000E-02 19 24 0 0 3 5 5.20000E-02 19 24 0 0 3 5 5.20000E-02 19 24 0 0 3 5 1.03000E-02 20 2 0 0 3 5 1.03000E-02 20 2 0 0 3 5 1.03000E-02 21 2 0 0 0 3 5 1.03000E-02 20 2 0 <td< td=""><td>55</td><td>53</td><td>30</td><td>S</td><td>-</td><td>1</td><td>10</td><td>0.0</td><td>0.0</td></td<>	55	53	30	S	-	1	10	0.0	0.0
14 19 0 0 2 5 4.80000E-01 17 22 0 0 1 5 5.40000E-01 17 22 0 0 2 5 5.40000E-01 18 23 0 0 1 5 5.40000E-01 18 23 0 0 2 5 5.40000E-01 19 24 0 0 2 5 1.03000E-01 20 25 0 0 3 5 1.03000E-02 20 25 0 0 3 5 1.03000E-02 21 26 0 0 3 5 1.03000E-02 21 26 0 0	33	14	19	•	•	-	2	8.20000E-02	0.0
14 19 0 3 5 5,4000E-01 17 22 0 0 2 5 5,4000E-01 18 23 0 0 3 5 5,2000E-01 18 23 0 0 3 5 5,2000E-01 19 24 0 0 3 5 1,0300E-02 20 0 0 3 5 1,0300E-02 20 0 0 2 5 1,0300E-02 21 26 0 0 3 5 1,0300E-02 22 0 0 0 0 0 0 0	31	14	19	•	•	~	2	4.80000E-01	0.0
17 22 0 0 1 5 5,40000E-02 18 23 0 0 2 5 6,60000E-01 18 23 0 0 1 5 5,40000E-02 19 24 0 0 2 5 5,40000E-02 19 24 0 0 3 5 5,20000E-02 19 24 0 0 2 5 1,03000E-02 20 25 0 0 3 5 1,03000E-02 20 25 0 0 2 5 1,03000E-02 20 25 0 0 3 5 1,03000E-02 20 25 0 0 3 5 1,03000E-02 21 26 0 0 3 5 1,03000E-02 21 26 0 0 3 5 1,03000E-02 22 27 0 0 3 5 1,03000E-02 23 28 0 0	31	14	19	•	0	•	2	1.94000E-01	0.0
17 22 0 0 2 5 4.60000E-01 18 23 0 0 1 5 5.40000E-02 18 23 0 0 2 5 5.40000E-01 19 24 0 0 1 5 5.20000E-02 19 24 0 0 2 5 1.03000E-02 20 25 0 0 3 5 1.03000E-02 21 26 0 0 3 5 1.03000E-02 21 26 0 0 3 5 1.03000E-02 22 27 0 0 3 5 1.03000E-02 23 28 0 0 3 5 1.03000E-02 23 28 0 0	62	17	22	0	•	1	2	5.40000E-02	0.0
17 22 0 0 3 5 5.40000E 00 18 23 0 0 1 5 5.40000E 00 19 24 0 0 2 5 5.20000E 00 19 24 0 0 2 5 1.03000E 00 20 25 0 0 3 5 1.03000E 00 20 25 0 0 2 5 1.03000E 00 21 26 0 0 3 5 1.03000E 00 21 26 0 0 2 5 1.03000E 00 21 26 0 0 3 5 1.03000E 00 22 27 0 0 2 5 1.03000E 00 22 27 0 0 3 5 1.03000E 00 23 28 0 0 3 5 1.03000E 00 23 28 0 0 3 5 1.03000E 00 23 28 0 0	53	17	22	•	•	2	16	4.80000E-01	0.0
18 23 0 0 1 5 5,40000E-01 19 24 0 0 3 5 5,2000E-01 19 24 0 0 2 5 1,03000E-02 20 25 0 0 3 5 1,03000E-02 20 25 0 0 2 5 1,03000E-02 21 26 0 0 3 5 1,03000E-02 21 26 0 0 2 5 1,03000E-02 21 26 0 0 3 5 1,03000E-02 22 27 0 0 3 5 1,03000E-02 22 27 0 0 3 5 1,03000E-02 23 28 0 0 3 5 1,03000E-02 22 27 0 0 3 5 1,03000E-02 23 28 0 0 3 5 1,03000E-02 23 28 0 0	53	17	22	•	•		5	5.20000E 00	0.0
18 23 0 0 3 5 4.80000E-01 19 24 0 0 1 5 5.20000E-02 19 24 0 0 2 5 1.03000E-02 20 25 0 0 3 5 1.03000E-02 20 25 0 0 2 5 1.03000E-02 21 26 0 0 2 5 1.03000E-02 21 26 0 0 3 5 1.03000E-02 21 26 0 0 3 5 1.03000E-02 21 26 0 0 3 5 1.03000E-02 22 27 0 0 3 5 1.03000E-02 22 27 0 0 3 5 1.03000E-02 23 28 0 0 3 5 1.03000E-02 23 28 0 0 3 5 1.03000E-02 23 28 0 0	30	18	23	•	•	1	5	5.40000E-02	0.0
18 23 0 0 3 5 5.20000 00 19 24 0 0 1 5 3.70000 00 19 24 0 0 3 5 1.03000 00 20 25 0 0 1 5 1.03000 00 20 25 0 0 2 5 1.03000 00 21 26 0 0 3 5 1.03000 00 21 26 0 0 7 5 1.03000 00 21 26 0 0 7 5 1.03000 00 22 27 0 0 2 5 1.03000 00 22 27 0 0 3 5 1.03000 00 23 28 0 0 3 5 1.03000 00 23 28 0 0 3 5 1.03000 00 23 28 0 0 3 5 1.03000 00 23 28 0 0 3	30	18	23	0	0	2	16	4.80000E-01	0.0
19 24 0 0 1 5 3.70000E-02 19 24 0 0 2 5 1.03000E 00 20 25 0 0 1 5 1.03000E 00 20 25 0 0 2 5 1.03000E 00 21 26 0 0 3 5 1.03000E 00 21 26 0 0 7 5 1.03000E 00 22 27 0 0 3 5 1.03000E 00 22 27 0 0 3 5 1.03000E 00 22 27 0 0 3 5 1.03000E 00 23 28 0 0 3 5 1.03000E 00 24 20000E-02 0	30	18	23	•	•		5	5.20000E 00	0.0
19 24 0 0 2 5 1.03000E 00 20 25 0 0 1 5 1.03000E 00 20 25 0 0 2 5 1.03000E 00 21 26 0 0 3 5 1.03000E 00 21 26 0 0 7 5 1.03000E 00 22 27 0 0 3 5 1.03000E 00 22 27 0 0 3 5 1.03000E 00 23 28 0 0 3 5 1.03000E 00 <td< td=""><td>32</td><td>19</td><td>54</td><td>•</td><td>•</td><td>-</td><td>S</td><td>3.70000E-02</td><td>0.0</td></td<>	32	19	54	•	•	-	S	3.70000E-02	0.0
19 24 0 0 3 5 1.03000E 00 20 25 0 0 1 5 3.70000E-02 20 25 0 0 2 5 1.03000E 00 21 26 0 0 3 5 1.03000E 00 21 26 0 0 2 5 1.03000E 00 22 27 0 0 3 5 1.03000E 00 22 27 0 0 2 5 1.03000E 00 23 28 0 0 3 5 1.03000E 00 24 50000E-02 5 1.03000E 00 6 1.03000E 00	32	19	54	0	0	2		1.03000E 00	0.0
20 25 0 0 1 5 3.70000E-02 20 25 0 0 2 5 1.03000E 0 21 26 0 0 3 5 1.03000E 0 21 26 0 0 7 5 1.03000E 0 21 26 0 0 7 5 1.03000E 0 22 27 0 0 3 5 1.03000E 0 22 27 0 0 2 5 1.03000E 0 23 28 0 0 3 5 1.03000E 0 23 28 0	32	19	54	•	•	m	s	1.03000E 00	0.0
20 25 0 0 2 5 1.03000E 0 21 26 0 0 3 5 1.03000E 0 21 26 0 0 7 5 1.03000E 0 21 26 0 0 7 5 1.03000E 0 22 27 0 0 2 5 1.03000E 0 22 27 0 0 2 5 1.03000E 0 23 28 0 0 3 5 1.03000E 0 23 28 1 </td <td>33</td> <td>20</td> <td>25</td> <td>•</td> <td>•</td> <td>-</td> <td>ıs</td> <td>3.70000E-02</td> <td>0.0</td>	33	20	25	•	•	-	ıs	3.70000E-02	0.0
20 25 0 0 3 5 1.03000E 0 21 26 0 0 7 5 3.70000E 0 21 26 0 0 3 5 1.03000E 0 22 27 0 0 2 5 1.03000E 0 22 27 0 0 2 5 1.03000E 0 23 26 0 0 3 5 1.03000E 0 23 28 0 0 2 5 1.03000E 0 23 28 0 0 3 5 1.03000E 0 23 28 0 0 3 5 1.03000E 0 7 13 0 0 3 5 1.03000E 0	33	20	25	0	•	2	LA	_	0.0
21 26 0 0 7 5 3.70000E-02 21 26 0 0 6 5 1.03000E 00 22 27 0 0 1 5 1.03000E 00 22 27 0 0 2 5 1.03000E 00 23 27 0 0 3 5 1.03000E 00 23 28 0 0 1 5 1.03000E 00 23 28 0 0 3 5 1.03000E 00 23 28 0 0 3 5 1.03000E 00 23 28 0 0 3 5 1.03000E 00 7 13 0 0 1 5 4.50000E-02 00	33	20	25	•	•	•	15	03000E	0.0
21 26 0 0 5 1.03000E 00 21 26 0 0 3 5 1.03000E 00 22 27 0 0 1 5 3.70000E-02 0 23 27 0 0 3 5 1.03000E 00 23 28 0 0 1 5 3.70000E-02 23 28 0 0 2 5 1.03000E 23 28 0 0 3 5 1.03000E 7 13 0 0 1 5 4.50000E-02	34	12	56	0	•	,	w	3.70000E-02	0.0
21 26 0 0 3 5 1.03000E 00 22 27 0 0 1 5 3.70000E-02 22 27 0 0 2 5 1.03000E 00 23 28 0 0 1 5 3.70000E-02 23 28 0 0 3 5 1.03000E 00 23 28 0 0 3 5 1.03000E 00 7 13 0 0 1 5 4.50000E-02	*	21	92	•	•	44	ĸ	_	0.0
22 27 0 0 1 5 3.70000E- 22 27 0 0 2 5 1.0300E 23 28 0 0 1 5 3.70000E- 23 28 0 0 2 5 1.0300E 23 28 0 0 3 5 1.0300E- 7 13 0 0 1 5 5 4.5000E-	34	21	92	0	•	*	5	_	0.0
22 27 0 0 2 5 1.03000E 23 28 0 0 1 5 1.03000E 23 28 0 0 3 5 1.03000E 7 13 0 0 1 5 4.5000E	35	22	27	0	0	-	16	3.70000E-02	0.0
22 27 0 0 3 5 1,03000 23 28 0 0 1 5 3,70000 23 28 0 0 2 5 1,03000 23 28 0 0 3 5 1,03000 7 13 0 0 1 5 4,50000	35	22	27	•	•	~	5	_	0.0
23 28 0 0 1 5 3.70000E- 23 28 0 0 2 5 1.03000E 23 28 0 0 3 5 1.03000E 7 13 0 0 1 5 4.5000E-	35	22	27	•	•	•	10	3000E	0.0
23 28 0 0 2 5 1.03000E 23 28 0 0 3 5 1.03000E 7 13 0 0 1 5 4.5000E	36	23	82	•	•	-	5	-30000L	0.0
23 28 0 0 3 5 7 13 0 0 1 5	36	23	82		0	~	2	_	0.0
7 13 0 0 1 5	36	23	28	0	•	•	4	_	0.0
	23	1	13	•	•	-	2	4.50000E-02	0.0

8-12

-	-	-	N	m
•	-	•	•	•
•	M .	•	•	•
m 0 2 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	288	600	90 00
29 00000 00000 00000 00000	29 00000E- 00000E	14 00006 00006	14 0000E 0000E	.00000E .00000E
"	""	"	"	744000
¥ 4488844	r = ==================================	N. 2210	F 1100	H, H, H
11.1, 506-0 756-0 756 8006 8006	1.1.1.000	11,J,	1,1,1 906- 906- 900E	1.1 6.6.6.9 9.6.6.9 9.6.6.9 9.6.6.9 9.6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9
		40000	A 0 0 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.9400 1.9400 1.9400
TABLE TABLE OF SECOND S	A	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17 148 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	KR TABI
	TABLE FOR I,J,M,N,L = 29 30 0 0 1 1 0.0	TABLE FOR I,J,M,N,L = 29 30 0 1 1 0.0 1.00000E 00 2 7.50000E-01 1.00000E 00 4 1.50000E 00 -1.00000E 00 5 1.50000E 00 0.0 7 1.12500E 01 0.0 6 7.50000E 01 0.0 7 1.12500E 01 0.0 7 1.12500E 01 0.0 8 1.50000E 01 0.0 9 7.50000E 00 0.0	TABLE FOR I.J.M.M.L = 29 30 0 1 1.00000E 00 1.50000E-01 1.00000E 00 1.50000E 00 -1.00000E 00 1.50000E 00 0.0 1.50000E 00 0.0 1.50000E 00 0.0 1.50000E 01 0.0	TABLE FOR 1.J.M.M.L = 29 30 0 1 1.50000E-01 1.00000E 00 1.50000E-01 1.00000E 00 1.50000E 00 -1.00000E 00 1.50000E 00 0.0 1.50000E 00 0.0 1.50000E 01 0.0 1.50000E 01 0.0 2.50000E-01 3.00000E 00 3.51000E 00 0.0 4.50000E 00 0.0 5.50000E 00 0.0 5.50000E 00 0.0 6.50000E 00 0.0 7.50000E 00 0.0 6.50000E 00 0.0 7.50000E 00 0.0 8.50000E 00 0.0 9.51000E 00 0.0 1.0000E 00 0.0 9.51000E 00 0.0 1.0000E 00 0.0 2.0000E-01 0.0 9.50000E-01 0.0 1.0000E 00 0.0 9.50000E-01 0.0 1.00000E 00 0.0 9.50000E-01 0.0 9.50000E-01 0.0 9.50000E-01 0.0

-	~	м	-	~	м	-	N	m
•	•	•	•	•	•	•	•	•
•	•	•	•	• 22.35	• 939	•	•	•
200	200	200	60 00	200	2000	***************************************	2 0 0 2 0 0	200
KR TABLE FOR I,J,M,N,L = 17 1 0.0 2 5.40000E-02 1.00000E 3 5.40540E-02 0.0 4 5.40000E-01 0.0 5 1.08000E 00 0.0	KR TABLE FOR I, J,M,M,L = 17 1 0.0 2 4.80000E-01 1.00000E 3 4.80480E-01 0.0 4 4.80000E 00 0.0 5 9.60000E 00 0.0	KR TABLE FOR I,J,M,N,L = 17 1 0.0 2 5.20000E 00 1.00000E 3 5.20520E 00 0.0 4 5.20000E 01 0.0 5 1.04000E 02 0.0	KR TABLE FOR I,J,M,N,L = 17. 1 0.0 2 5.40000E-02 1.00000E 3 5.40540E-02 0.0 4 5.40000E-01 0.0 5 1.08000E 00 0.0	KR TABLE FOR I, J, M, K, L = 18 1 0.0 2 4.80000E-01 1.00000E 3 4.80480E-01 (.0 4 4.80000E 00 C.0 5 9.6000E 00 0.0	KR TABLE FOR I,J,M.N,L = 18 1 0.0 2 5.20000E 00 1.00000E 3 5.20520E 00 0.0 4 5.20000E 01 0.0 5 1.04000E 02 0.0	KR TABLE FOR I,J,M.N,L = 19 1 0.0 2 3.70000E-02 1.00000E 3 3.70370E-02 0.0 4 3.70000E-01 0.0 5 7.40000E-01 0.0	KR TABLE FOR I,J,F,N,L = 19 1 0.0 2 1.03000E 00 1.00000E 3 1.03103E 00 0.0 4 1.03000E 01 0.0 5 2.06000E 01 0.0	KR TABLE FOR I,J,M,N,L = 19 1 0.0 2 1.03000E 00 1.00000E 3 1.03103E 00 0.0
								11

	-	•	m	-	N	m	-	N
	• 4	•	•	•	•	•	•	•
	• *	•	• *	•	•	•	•	•
	88	888	200	288	288	288	2 8 8 2	200
::	1.00000E 1.00000E 0.0	1.00000E 1.00000E 0.0	1.00000E 1.00000E 0.0	1.00000E 1.00000E 0.0	1.0000E 1.0000E 1.0000E 0.0	,L = 21 1.00000E 1.00000E 0.0	,L = 22 1.00000F 1.00000E 0.0 0.0	1.00000E 1.00000E 0.0
1.03000E 01 2.06000E 01	ABLE FOR I, J.M.M. 0.0 3.70000E-02 3.70000E-01 7.40000E-01	FOR 1,J,M,N 0 03000E 00 03103E 00 03000E 01	H. 8822	ABLE FOR I, J.M.M. 9.0 3.70000E-02 3.70000E-01 7.40000E-01	ABLE FOR 1, J.M.M. 0.0 1.03000E 00 1.03000E 01 2.06000E 01	ABLE FOR I,J,H,H, 0.0 1.03000E 00 1.03103E 00 1.03000E 01 2.06000E 01	ABLE FOR I,J,M,M, 0.0 3.70000E-02 3.70370E-02 5.70000E-01 7.40000E-01	ABLE FOR I,J,M,N, 0.0 1.03000E 00 1.03103E 00 1.0300E 01 2.06000E 01
**	3	. Z-~~~	2	2	3	F 4 4 M 4 R	Z-um4m	2

	m					•	•					~	1				M						-						N						M						-					~)
	•						•					•	P				•						•						•						•						•					•	
	•					•	•					•					•						•						•						•						•					0	
	2	8	8			;	9	3 8	:			35	8	8			15	00	00				91	8	8				16	00	8				16	8	8				17	8	9			17	8
	•	30000	DOODE				-	100000				•	30000	30000			•	0000E	0000E				. = 10	30000	30000				10	90000	00000E				10	30000	30000				= 11	30000	BOOOD			=	00000E
		9	-									- 19	1.0	7.0	0.0	00	4.4 =	1.0	1.0	0.0	0.0	0.0	3		1.0	0.0	0.0	9.0	4,4 =	1.0	1.0	0.0			- 7'				0.0		1,1 =		-			N. L =	
E 01	3,4,6				55	•		E-02	E-02	E-01	E-01	J. H.				28	7.7			00 J			N.H. 7.		E-02	E-02	E-01	E-01	J.H.		E-01	E-01	8 6	3	J.H.				10		J.M.		20-3	20-3	10-3	7.H.	
36400E	FOR I		20/00	2002	.57400E			50000	50450	50000	.00000E-01	FOR I		82000	82682	\$2000E	FOR I		28700	28829	28700	57400E	FOR I		20000	20420	50000E-01	00000	FOR I		82000	82682	.82000E	20400	FOR I		28700	28829	.28700E	2/400	FOR I		50000	50450	.00000E-01	8	•
-	ABLE	ė.	٠.	٠,	i		1		•	•	•	ABLE	•	٠		÷ ÷	ABLE	•	-	ä	ä	e,	ABLE	•	•	4	•		ABLE	6	•	•	• -	•	ABLE	•	i	- i	-	'n	ABLE				; 0	ABLE	10
•	3	-	N .	•	• •	-	2	• •	M	4	•	KR	-	~	•	410	2	7	~	M	*	40	2	-	~	m	*	10	KR	-	~	m	4 11	0	KR 1	-	N	m .	* 1	10	KR T	-	N 1	•	. 10	KR	-

100	~		82000E	19-	1.00000E	8								
	•	•	-82682E	50	0.0									
	, rv		1.36400E 01	3 5	0.0									
	2	TABLE	8	T.J.M.N.	11 = 11	17	•							
	-				1.000	8	•							
	~	7		8	1.00000E	8								
	m	-			0.0									
	*	-		6	0.0									
	M	~			0.0									
	2	TABLE	FOR 1	, J, M, N,	_		•	Ī		-				
	-	•			1.00000E	8								
	~	4	.50000E	-05	1.00000E									
	m			-05	0.0									
	* 1		.50000E-01	ē	0.0									
	٩	•		10.	0.0									
	2	TABLE	108	I.J.M.N.L	L = 12	18	•			2				
	-				1.00000E									
	~	•		-01	1.00000E	8								
	~	•	.82682E-01	-01	0.0									
	4	•		8	0.0									
	8	-		6	0.0									
	2	TARIE	8	T. I.M. M.	- 1.		•							
	1	1		-	1000	2	•			,				
					1 00000	3 8								
				3 8	10000	3								
	, ru	. ~												
	DRI	ELEMENTS	ENTS											
	-	7												
		32												
	1,1	1,1,H,N		100000										
	-	ATRIX	8	INTERNAL	BEAM IJ									
	•	7 202	2000	•						•				
		9 0	3	•	100520 04					· •	, c			
		0				, 4	4.21574n		90				1 051940	5
		0.0		0.0		-	0.0			m	3.394240	90 0	0.0	;
		0.0		0.0					20				3.513120	0
		0.0		-	525130 05	0	0.			0.0	0		0.0	
	~	m	0 0											
		5.876	90 0689			٠	0.0			•	•		0.0	
					72926D n3	-	0.0			•	•		0.0	
				•		-,	3.959180		9	•	•		2.177550	8
		0.0		•						i.	.542840	90 0		
		0		•			2.177550		9	•	•		1.596870	9
	•			-3.	3.151090 04	-	0.0			ö	•		0.0	
	•		2750 05	•						•				
		9 0	2	3 0	.412990 03	0				9 9			90	
										•				
													B-18	

0.0 0.0 0.0 0.0 5.08376D 05 0.0 -3.15109D 04 0.0 2.31080D 05 0.0

0.0	0.0	2.116240 05		0.0	3.151090 04	0.0	0.0	0.0	5. 31000U US		0.0	0.0	0.0	0,0	3.631260 05	0.0	1.075210 05	0.0	0.0	7 E860TO OF	3.304030 03	0.0	2.221500 04	0.0	0.0	1.629100 05		0.0	0.0	0.0	0.0	1.493350 05	6	2.221500 04	0.0	0.0	0.0	1.62910D 05		5. 48576D 04	0.0	0.0	0.0	2.56002D 05		0.0	1.660120 03			1.48810D 04	
1.829750 06				0.0								5.377220 06								2.8/0/80 00																															
1.414270 06	0.0			0.0	0.0	0.0	1.542840 06	0.0	0.0	•			2.42446B 06	0.0	0.0	0.0	0.0	0.0	3.075420 05			0.0	0.0	0.0	1.397920 05			0.0	0.0	1.281420 05	0.0	0.0	•		0.0	1.39792D 05	0.0	0.0	•		0.0	2.196730 05	0.0	0.0		0.0		4 24AAAD 05	0.0	0.0	
3.049580 05	1.829750 06	0.0		0.0	0.0	3.959180 05	0.0	2.177550 06	0.0			1 536350 06	0.0	5.37722D 06	0.0	0.0	0.0	3.444940 05	0.0	6.612350 05		0.0	0.0	3.235290 04	0.0	0.0		0.0	2.492000 04	0.0	1.495200 05	0.0			3.235290 04	0.0	1.779410 05	0.0			1.255440 05	0.0	4.39406D 05	0.0		0.0	1 744640 05	1. 300000 C	A.19875D 05	0.0	
	0.0	-2.647790 04		0.0	5.729260 03	0.0	0.0	0.0	3.1510% OF	•	0.0	0.0			-7.781270 04	0.0	4.300830 04	0.0	0.0	1 075310 05	CA 0176/0.1-	0.0	4.039100 03	0.0	0.0	-2.221500 04		0.0	3.111140 03		0.0	-1.866680 04		4. 019100 DT	0.0	0.0	0.0	-2.22150D 04		1 547740 06	0.0	0.0		-5.485760 04					0.0	-1.84012D 03	
0.0		0.0	0 0 5	5.876890 05	0.0	0.0	0.0		0.0							2.688000 05	0.0	0.0	0.0	0.0							10 0 0	1.120000 05			0.0	0.0	11 0 0	1.661060 03	0.0	0.0	0.0	0.0	12 0 0	1.920000 05			0.0	0.0	0 0	2.53120D 05	0.0	0.0			

..

	:	03			90			03			90			03			90			03			2	3		03				5		03			90		0.3	3			40		7.4	3			90			03
	0.0	-1.860120			1.488100 04		0.0	-1.86012D	0.0		1.488100		0.0	-1.860120	0.0	0.0	1 488100 04		0.0	-1.860120	0.0	0.0	0.0	1.40010	0.0	-1.860120	0.0	0.0	0.0	1.400100	0.0	-1.315640	0.0	9.0	1.227930		-1.315640	0.0	0.0	0.0	1.227930 04	:	0.0	-1.515040	> c) c	1.227930 04		0.0	-1.315640
			2	2	8																																													
	0.0	0.0	8.198/50	0.0	0.0		0.0	0.0	8.198750	0.0	0.0		0.0	0.0	8.19875D	0.0	0.00655		0.0	0.0	8.198750	0.0	0.00466.0		0.0	0.0	8.198750	0.0	0.000	2	0.0	0.0	2.500430	2.333730	0.0		0.0	2.500430	0.0	2.333730	0.0		0.0	9. EADETD	0.000430	2.111730	0.0		0.0	0.0
				6						6					-	9						9						90 1						S					05						90	200				
	0.0	0.0	0.0	6.260840	0.0		0.0	0.0	0.0	6.260840			0.0	0.0	0.0	6.260840	0.0	:	0.0	0.0	0.0	6.260840		9.0	0.0	0.0	0.0	6.26084D 05	9.0	2	0.0	0.0	0.0	0.0	0.0			0.0	2.234290	0.0	0.0				0.0	0.0	0.0		0.0	c
			92		2				9		6				9		9				9		62				9		62				96	20	1			90		90				70	5	8	1			
	0.0	0.0	1.366460	0.0	8.196/50 05	:	0.0	0.0	1.366460	0.0	8.196/50 05	:	0.0	0.0	1.366460	0.0	8.198750		0.0						0.0	0.0	1.366460	0.0	8.198750		0.0	0.0	3.572040	2 5004 TD 05	0.0			3.572040	0.0	2.500430	0.0			1 E7204n	0.07070	2.500430	0.0		0.0	c
		05			1			0.5			10			02			20	3		05				2		20				2		05			03		02	;			03		60	20			03			3
	0.0	3.100200	0.0	0.0	-1 860120 67		0.0	3.10020D	0.0	0.0	-1 860120	-	0.0	3.100200	0.0	0.0	-1 840120 03		0.0	3.10020D	0.0	0.0	0 0	-1.87120 03	0.0	3.10020D	0.0	0.0	1 940135	cn natheert.	0.0	1.879480	0.0		1.315640		1.879480	0.0	0.0	0.0	-1.315640 03		1 870481	1.0/7400	, c		-1.315640 03		0.0	1 A704RII
																															9																		62	
0	2.531200	0.0	0.0	0.0		0 0	2.531200	0.0	0.0	0.0		0 0	2.53120D	0.0	0.0	0.0	0.0	0 0	2.53120D	0.0	0.0	0.0			2.531200	0.0	0.0	0.0		7 0 0	1.638230	0.0	0.0		0.0	8 0 0	0.0	0.0	0.0	0.0	0.0	0 0 6	1.638230				0.0	10 0 0	1.636230	c
~	-	•	,			M	, ,,	_	_			4		_			•	10		_		•		4	,	_	_	-		-		_		_	_	N				_	-	m						3		

..

				•			•			•												10						•						•		•				•							
0.0 0.0 1.227930 04	0.0	0.0	0.0	1.227930 0		0.0	-1.315640 0		0.0	1.227930 04	•	-9 049A70 01	0.0	0.0	0.0	1.583660 0		-0.049470	0.0	0.0	0.0	1.583660 0		-9.04987D 0	0.0	0.0	0.0	1.583660 0	6	-9.049870 0	0.0	0.0	0.0	1.583660 0	0.0	-2.821970 0	0.0	0.0	0.0	4.938220 0		-9.049870 0	0.0	0.0	0.0	1.583660 0	
2.333730 06 0.0	0.0	2.500430 05	2.111730 06	0.0						0.0			3.24692D 02	0.0	5.661860 03	0.0			3.246920 02	0.0	5.661860 03	0.0			3.24692D 02	0.0	5.68186D 03	0.0		0.0	3.246920 02	0.0	5.681860 03		0.0									0.0	5.681860 03	0.0	C BROOKE LIVE
2.234290 05 0.0 0.0	0.0	0.0	2.234290 05	0.0		0.0		2 2 TA 2 On DE	0.0	0.0				1.562360 04	0.0	0.0				1.562360 04	0.0	0.0			0.0	1.562360 04	0.0	0.0	6		0.0	1.562360 04	0.0	0.0	0.0	0.0	0.0	4.902350 04	0.0	0.0			0.0	1.562360 04	0.0	0.0	
2.50043D 05 0.0	0.0	3.572040 04	2.500440 05	0.0	,	0.0	0.0 7 570040 04	3.3/2040	2.500430 05	0.0		9.0	2.473960 01	0.0	3.246920 02	0.0			2.47194D D1	0.0	3.246920 02	0.0			2.47396D 01	0.0	3.246920 02	0.0	•		2.473960 01	0.0	3.246920 02	0.0	0.0	0.0	9.11066D	0.0	1.195720	0.0			2.473960 01	0.0	3.246920 02	0.0	
0.0 0.0 -1.315640 03	0.0	0.0	0.6	-1.315640 03		0.0	1.879480 02	2 .	0.0	-1.315640 03		0.0 4 BOEAED 02	0.0	0.0	0.0	-9.049870 03		0.0 4 eseken as	0.00		0.0	-9.049870 03		0.0 4 BOEAEN A2	0.0	0.0	0.0	-9.049870 r3		6.895450 02	0.0	0.0	0.0	-9.049870 03	0.0	2.150170 03	0.0	0.0	0.0	-2.821970 64		4 BOEAEN AS	0.0	0.0	6.0	-6.049870 03	
										0.0		4.705410 04		0.0	0.0	0.0	8 14 0 0	4.705410 04			0.0	0.0	9 15 0 0	4. /US4ID U4	0.0	0.0	0.0	0.0	10 16 0 0	0.0	0.0	0.0	0.0	0.0	1,791120 05	0.0	0.0	0.0	0.0	0.0	12 18 0 0	4.705410 04		0.0	0.0	0.0	17 22 0 0

0.0 -1.266300 04 0.0 0.0 1.889500 05	0.0 -1.268300 04 0.0 0.0 1.889500 05	0.0 -2.576600 04 0.0 0.0 3.779010 05	0.0 -2.151090 02 0.0 0.0 4.624700 03	0.0 -2.151090 02 0.0 0.0 0.0 4.624700 03	0.0 0.0 0.0 0.0 4.624700 03 0.0 0.0 0.0 4.624700 03 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 4.624700 03 0.0 -1.072740 06
6.0 4.622170 02 0.0 6.779180 03	2 5	0.0 0.0 4.640930 05 0.0 6.806690 06	0.0 0.0 5.99554D 03 0.0 1.28900D 05	0.0 0.0 5.995540 03 0.0 1.289000 05	0.0 0.0 1.289000 05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
0.0	0.0 0.0 1.864090 04 0.0	0.0 0.0 6.842470 05 0.0	0.0 0.0 0.0 1.271670 04 0.0	0.0 0.0 0.0 1.271670 04 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 1.271670 04 0.0 0.0 0.0 0.0
0.0 0.0 4.201970 01 0.0 4.622170 02	0.0 6.0 4.201970 01 0.0 4.622170 02 0.0	0.0 0.0 4.21902D 04 0.0 4.64093D 05 0.0	0.0 0.0 3.71626D 02 0.0 5.99554D 03	0.0 0.0 3.718280 02 0.0 5.99554D 03	0.0 3.718280 02 0.0 5.995540 03 0.0 0.0 3.718280 02 0.0 5.995540 03	0.0 0.0 3.718260 02 0.0 5.99554D 03 0.0 0.0 1.13944D 04
0.0 0.0 0.0 0.0	0.0 1.171160 03 3 0.0 -1.266300 04	0.0 2.342360 03 0.0 0.0 -2.576600 04	0.0 1.334050 01 0.0 0.0 -2.151090 02	0.0 1.334050 01 0.0 0.0 -2.151090 02	0.0 0.0 0.0 0.0 -2.151090 02 0.0 1.334050 01 0.0 0.0	0.0 1.33405D 01 0.0 0.0 -2.15109D 02 4.29097D 05 0.0
5.61416D 04		19 0 0.0 0.0 0.0 0.0	3.82993 0.0 0.0 0.0	20 25 0 0 3.829730 04 0.0 0.0 0.0 0.0	2.000000000000000000000000000000000000	23 28 0 0 3.82930 04 0.0 0.0 0.0 0.0 13 14 0 0 3.310230 05 0.0

3.575600 06	0.0	2.216410 05	0.0		1.625370 06		0.0	CD 004200.1-			1.489920 06		0.0	0.0 0.0	0.0	0.0	1.625370 06		9.0	50 0/15/4/5		0.0	2.554150 06		0.0 9.14.04.0 04	0.0	0.0	0.0	6.773700 07	6	-7.761530 06	0.0	0.0	0.0	6.209220 07	•	-9.274.860 OA	0.0	0.0	0.0	6.773700 07		-2 28094D 07	0.0	0.0	0.0	1.064440 08		0.0
9.495340 04	0.0										0.0			S. AASSED OT									0.0									1.661680 06		1.329350 07	0.0		ľ										0.0		0.0
•••	0.0	0.0	0.0	0.0	0.0				1 454450 05	0.00000	•		0.0		1.589070 05	•••	0.0		•••		2 407110 OK	0.0	0.0				7.832280 06	0.0	0.0			0.0	7.179590 06	0.0	0.0			0.0	7.832280 06	0.0	0.0				1.230790 07				0.0
2.04061D PA 0.0	0.0	0.0	1.070100 03	S. AASSED BY	0.0		0.0	9.0	20 006242.9	A OWEEND BY	0.0		0.0	1 070100 61	0.0	5.665550 03	0.0			0.0	4.152490 05	1.453370 04	0.0			1 5055 TD 05	0.0	1.977540 06	0.0			2.76%70 05	0.0	1.661680 06	0.0			1 5055TD 05	0.0	1.977540 06	0.0		0.0	1 106210 06	0.0	4.88331D 06	0.0		0.0
-1.072740 06	•••	4.029630 05	•		-2.216410 05		0.0	3. 104000 PA			-1.862400 05		0.0	* 059630 %		•••	-2.21641D 05		0.0	1.543760 05			-5.473170 05		9.0	1.679430 00		0.0	-9.236860 06		1 201500 04	0.0	0.0	0.0	-7.761530 06		1 4704.70 04	200	0.0	0.0	-9.236860 06		0.0	00 0140TC-0		9.0	-2.280940 07		0.0
• • • • • • • • • • • • • • • • • • • •	1.504650 05	0.0	:			15 16 0 0	1.379260 05	:			:	16 17 0 0	1.504650 05			•••	•••	17 16 0 0	2.364450 05		::		0.0	19 20 0 0	3.151150 05			0.0	0.0	20 21 0 0	CO 060000.7		0.0	0.0	0.0	21 22 0 0	3.151150 05		0.0	0.0	0.0	22 23 0 0	4.951800 05			9 0	0.0	3 29 0 1	1.37 49 05

..

		•						•																																						
		8		9			-	5		0				ĕ		90 0			90	-		5			2		02			6																
0.0		1.510490	0.0	-1.584430 05	0.0	0.0	0.0	1.5104%	0.0	-1.58443	0.0	0.0	0.0	1.5104%	0.0	-1.584430	0.0		1.510490		0.0	0.0	0.0	0.0	2.087480	0.0	-1.264780 02	0.0		1.272370		0.0	9 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0
*	9				2		2				40		05				90	a d	2			20	3	*				20	33																	
5.281430	5.034970	0.0	0.0	0.0	5.281430	0.0	5.034470		0.0	0.0	5.281430	0.0	5.034970 05		0.0	0.0	5.281430	6.07497R	0.0		0.0	2.075620	0.0	2.087480 04	0.0	0.0	0.0	1.264780	1.272370	0.0			. 0	0.0	0.0		0.0	0.0	0.0	0.0	000		0.0	0.0		0.0
95						95						9					,	6					03					:	7																	
1.913290	0.0	0.0	0.0	0.0	0.0	1.913290			0.0	0.0	0.0	1.913290	0.0	?;	0.0	0.0	0.0	0.0	0.0		0.0	0.0	3.976140	0.0	0.0	0.0	0.0	1 000550	0.0	0.0		0.0	0.0	0.0	0.0	:	0.0	0.0	0.0	9.0	0.0		0.0	0.0	0.0	0.0
03	8			1	03	2	5				03		5				60	90				20		03				7	95																	
7.386620	5.281430	0.0	0.0	0.0	7.386620	O.D.	0.0	:	0.0	0.0	7.38662D	0.0	5.281430 04	:	0.0	0.0	7.386620	5.281430	0.0		0.0	2.750200	0.0	2.07502D 03		0.0	0.0	1.6/6310 01	1.264780	0.0		0.0	0.0	0.0			0.0	0.0	0.0		0.0		0.0		0.0	0.0
	1	9		8			2	3		8			y	3		9			90					1	2		2			20																
0.0	0.0	584430	0.0	215990			EA64Th	-		215990			-1 58643n	-	0.0	215990			584430		750200			-2 07En2h nT	030610		1.67631D C1			264780							•						_			
00	0,	7	•	Ni o	· ·		•	•	•	ä	•	.	-	•	ö	ai e	.		7		• •	6	6	0 9	;	•	<u>ب</u> و			7			•	0	0	•	9.	0	9 6		0.0		2.		0	9.
			9						9						90						to					05					20						20						20			
	0.0	5 29 0 2	1.314690	0.0				29 0 3	1.314690	0.0	0.0	0.0		1 29 0 4	1.314690	0.0		0.0	0.0	-	22	0.0	0.0	0.0	30 32 0 0	4.76912D	0.0	0.0	0.0	0.0	30 0 0		0.0	0.0		30 0 0	338610	0.0	0.0	0.0	0.0	0	5.334000 0		0.0	0.0
		-												=						_																										

MODEL PARAMETERS

VEHICLE MT = 5.4366000 02

VEHICLE CG POSITION X (FS) = 1.625600 02 Y (BL) = 0.0 Z (ML) = 5.322050 00 VEHICLE INERTIAS (IN-LB-SEC##2) I(XX) = 0.15026D 02 I(YY) = 6.06355D 02 I(ZZ) = 5.13955D 02 VEHICLE CG INITIAL GROUND COORDI: ATES
XCG IS THE DISTANCE FROM SLOPE/GROUND INTERSECTION TO VEHICLE CG.+FORMARD
ZCG IS THE DISTANCE FROM GROUND PLANE TO VEHICLE CG.+DOWN
XCG = 0.0
ZCG = -2.95621D 01

BEAM LOADS

	=	•	•	•		•	0	•	•	0	0	0	0	0	•	•	•	0	0	0	•	0	0	•	0	0	0	0	0	0	•	•	0
	-	~	M		5	9				_	~							_		•		_	~	m	•		•	_	•	~	m	•	
BEAM		-	2	m	*	5	1		9 1	10	1 1	_	~	m	4	2	9	-	~		4 1		9 15	7 1		0	10 1	11		7 22	10 2	4	6
	2	-	2	2	4	8	9	1		0 1	0	-	2	2	•	2	9	1		6		_	2	2						29 17	0	ı,	32 1
	-		2	03	03	03	2	3	03	03	03 1	1 20	1 20	02 1	02 1	1 20	02 1	02 1	1 20	1 20	02 2	02 2	2 20								03 3		03 3
	2	0	0				0	00																-									
	YAM(Z)	3.53870	3.53870	3.53670	3.53870	3.53870	1.66400	1.66400	1.66400	1.66400	1.66400	2.94000	94000	94000	2.94000	84000	2000	90240	90240	90240	90240	90240	9024D	0880	08800	3.08800	3.08800	9.62910	3.08800	3.08800	3.08800	17600	1.20430
		3.5	3.5	3.5	3.5	3.5	1.6	1.6	1.6	1.6	1.6	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	3.0	m	3.0	3.0	9.6	3.0	3.0	M.	6.1	1.2
	_	2	3	2	2	4	03	03	03	03	03	4	50	50	8	8	50	20	4	5	4	50	5	03	03	03	03	20	03	03	03	30	03
¥	PITCH(Y)	8	8	8	8	8	8	8	8		8	R	2	2	2	2	2	8	8	8	8	8	8		_							1	
HOPEN	Ę	2.82200	2.82200	2.82200	2.82200	2.82200	8.07800	8.07800	6.07800	8.07800	8.07800	1.85970	1.85970	1.85970	1.85970	1.85970	1.85970	1.07580	1.07580	1.07580	1.07560	1.07580	1.07580	1.20430	1.20430	1.20430	1.20430	7.69240	1.20430	1.20430	1.20430	4.50000	3.08800
-	•	~	2	•	2	'n	•	•	ø	•	ø	ä	ä	ä	-	-i	÷	ä	4	ä	ä	ä	ä	-	ä	ä	ä		ä	ä	-	4	m
	_																																
	BOLL(X)																																
	ğ	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0.0	0.0	0.0	0.0	0.0	0.0		•	•
	_	3 0		03 0		3 0	3 0		03 0							3																	
	217	0	0 03	_		0 0	0 0	0 03	_		0 03	0 03		0 03	0 03	0	0 03	0 03	D 03	0 03							0 03		_				0 03
	ង្គ	9.07500	9.07500	.07500	.07500	9.07500	. 886 Z	. 886 7D	. 88671	.88670	1.88670	4.26400	.26400	.26400	.26400	.26400	.26400	21970	21970	21970	21970	21970	21970	73390	73390	.73390	.73390	6.60000	73390	1.73390	.73390	46770	73390
EC.	ERT	9.0	9.0	3	9.	9.0	-	1.0	-	1.8	1.0	4.2	4.2	4.2	4.2	4.2	4.2	3.2	3.2	3.2	3.5	3.5	3.5	1.7	7	1.7	1.7	6.6	1.7	1.7	1.7	3.4	1.7
SHEAR FORCE	LATERALITY) VERTICALIZ	93	93	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03	03
Z Z	¥	8	8		_					-	_																						
8	12	9.07500	.07500	.07500	.07500	.07500	.88670	.8867D	88670	.88670	88670	.26400	.26400	.26400	.26400	.26400	.26400	21970	21970	21970	21970	21970	21970	.73390	.73390	.73390	.73390	.6000D	.73390	.73390	1.73390	4677	73390
	2	•	•	•	•	6	-	-	4	-	-	3	4	3	4	4	4	m	m	m	m	m	m	-	-	ä	-	ė	ä	ä	ä	m	ä
	3	8	8	3	8	8	93	03	03	03	03	5	40	4	40	6	0	03	03	03	03	03	03	03	03	03	03			03			03
	53	110	110	110	110	40110	200	99200	99200	200	200	12820	820	820	820	820	12820	.51880	51880	51880	51880	51880	51880	58760	760	760	760	630	58760	58760	760	17510	58760
	COMPRESSION	2.40110	.40110	2.40110	40110	40	.99200	.99	4.99	.99200	.99200	.12	.12820	.1282D	12820	.12820	.12	.51	.51	.51	.51	.51	.51	. 58	4.58760	.58760	.58760	.74630	. 58	.58	.58760	.17	.58
	8	2				2	2	4			4	-	-	-	_	-	-							4		2	2	-	5	4	2	6	2
3	*	9	0	200	_		0 03	0 03	0 03		03	0 0	04	9	8	8	200	200	300	200	200	0		0 03	0 03	03	0 03		0 03	03	03		03
רב	TENSION	2.89370	2.89370	2.89370	2.89370	2.89370	6.01600	6.01600	01600	6.01600	6.01600	35960	35960	35960	35960	35960	35960	1.02660	1.02660	1.0266D	1.02660	1.02660	1.02660	5.52860	5.52860	5.52860	5.52860	2.10450	5286D	5286D	5.52860	10570	5286D
AXIAL LOAD	1	2.8	2.0	2.8	2.8	2.8	6.0	6.0	6.0	6.0	6.0	1.3	1.3	1.3	1.3	1.3	1.3	1.0	1.0		1.0	1.0	1.0	5.5	5.5	5.5	5.5	2.1	5.5	5.5	5.5	-	5.5
-		2	90	9	95	90	9	9	9	9	9	50	50	50	2	50	50	03	93	93	03	93	03	03	03	03	03	03	03	93	03	9	03
	BUCKLING	350	8	22	25	8	99	2	20	2	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	3	8	3	2	2	20	3
	ğ	003	073	742	97330	11990	07460	46170	22820	46170	60950	223	223	223	223	223	22390	6566D	6566D	65660	65660	65660	65660	13640	13640	13640	13640	86750	13540	041	04130	695	41540
		-	~	-	~	S	-	~	-	Ä	m	-	-	-	-	ä	ä	•	•	•	•	•	6	~	~	'n	'n	7	'n	m	m	ä	-
	z	0	•	0	0	0	0	0	0	0	0	0	•	0	0	0	•	0	0	•	0	•	•	0	0	0	0	0	0	0	0	0	0
	=	•	•	0	•	•	•	•	0	0	0	0	0	0	•	•	•	•	•	•	•	•	0	•	•	0	0	•	•	•	•	•	0
2	1	2	-	3	2	9		0	10	==	12	0	•	•	•	•	•	1	•	0	10	=	12	13	14	15	16	17	18	22	23	19	54
		-	2	-	3	2	1		0	10	11	7	~	m	4	2	•	-	2	m	4	2	9	1	0	0	10	=	12	17	18	14	19
	2	-	~	-	3	2	•	1	80	0	10	=	12	13	14	15	16	17	18	19	20	21	22	23	54	52	92	27	28	53	2	3	32

••••••••••••••••••••••••••••••••••••••	
••••••	
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	200
212221424212222 ms + 128 ms 1 2	243
*****************	222
2222444 NN	
20430 20430 20430 20430 771510 771510 771510 644000 644000 644000 644000	
1.204 % % % % % % % % % % % % % % % % % % %	
3.000000000000000000000000000000000000	
	000
	000
***************************************	222
73390 73390	01277
	444
	335
73390 73390 773390 773390 773390 773390 32350 32350 32350 32350 86600 86600 86600 14130 14	77510
1, 73390 1, 73390 1, 73390 1, 73390 1, 73390 1, 73390 1, 73390 1, 25350 1, 25350 1, 2540 1, 2640 1, 26	
. \$6760 . \$676	56300 28370 26370
	4.00
*********	222
232333233333888888888888888888888888888	
52860 52860 52860 52860 64080 64080	26370
さるなるでででいることにはまままるのにはは	400
22222444477777888845	
41540 41540 41540 41540 61750 61750 61750 61750 61750 64750	
444466 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W	
	000
	200
22222222222222222222222222222222222222	W W W

BEAM DEFLECTIONS

_	Z-AXTS	2.7640-02	6.1260-02	6.6820-02	6.1260-02	3.8960-02	1.8570-02	4.0850-02	4.4570-02	4.0860-02	2.6000-02	7.9030-02	7.9030-02	7.9030-02	7.9030-02	7.9030-02	7.9030-02	9.4550-02	9.4550-02	9.4550-02	9.4550-02	9.4550-02	9.4550-02	7.800D-02	7.8000-02	7.8000-02	7.8000-02	7.8000-02
ROTATION ABOUT	Y-AXIS	3.2130-03	7.0690-03	7.7110-03	7.0690-03	4.4980-03	1.1260-02	2.4760-02	2.7010-02	2.4760-02	1.5760-02	1.1340-02	1.1340-02	1.1340-02	1.1340-02	1.1340-02	1.1340-02	1.0440-02	1.8440-02	1.8440-02	1.8440-02	1.8440-02	1.8440-02	8.4780-01	8.4780-01	6.4780-01	8.4780-01	1.4710-01
æ	X-AXIS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	DH(Y)	5.3550-03	2.5920-02	3.0850-02	2.5920-02	1.0500-02	1.8760-02	9.0790-02	1.0610-01	9.0790-02	3.6770-02	4.5370-02	4.5370-02	4.5370-02	4.5370-02	4.5370-02	4.5370-02	8.6050-02	8.6050-02	8.6050-02	8.6050-02	8.6050-02	8.6050-02	7.4180 00	7.4180 00	7.4180 00	7.4180 00	1.2870 00
4 DUE TO	6H(Z)	4.6410-02	2.2460-01	2.6730-01	2.2460-01	9.0950-02	3.0950-02	1.4980-01	1.7830-01	1.4960-01	6.0670-02	3.161D-01	3.161D-01	3.1610-01	3.1610-01	3.161D-01	3.1610-01	4.4120-01	4.4120-01	4.4120-01	4.4120-01	4.4120-01	4.4120-01	6.8240-01	6.8240-01	6.6240-01	6.8240-01	6.8240-01
TRANSLATION	(2)	2.1530-03	2.2920-02	2.9760-02	2.2920-02	5.9070-03	5.4770-03	5.6320-02	7.5710-02	5.8320-02	1.5030-02	3.1200-02	3.1200-02	3.1200-02	3.1200-02	3.1200-02	3.1200-02	9.0140-02	9.0140-02	9.0140-02	9.0140-02	9.0140-02	9.0140-02	7.0080 01	7.0080 01	7.0080 01	7.0080 01	7.2440 01
	FCY	1.4660-01	1.5640 00	2.0560 00	1.5040 00	4.0820-01	4.3670-02	4.6710-01	6.0640-01	4.6710-01	1.2040-01	1.3750 01	1.3750 01	1.3750 01	1.3750 01	1.3750 01	1.3750 01	1.7130 01	1.7130 01	1.7130 01	1.7130 01	1.7130 01	1.7130 01	2.5150 00	2.5150 00	2.5150 00	2.5150 00	3.070D 00
	COMPRESSION	1.6570-02	4.0860-02	4.4570 -02	4.0860.02	2.6000 02	1.8570-02	4.0860-02	4.4570-02	4.0860-02	2.6000-02	4.4570-02	4.4570-02	4.4570-02	4.4570-02	4.4570-02	4.4570-02	5.2000-02	5.2000-02	5.2000-02	5.2000-02	5.2000-02	5.2000-02	9.7500-02	9.7500-02	9.7500-02	9.7500-02	9.7500-02
DEFLECTION	TENSION	7.2380-02	4.9240-02	5 3710-02	4.9240-02	3.1330-02	2 2380-02	4.9240-02	5.3710-02	4.924F-02	3.1337-02	5.3710-02	5.3710-02	5.3710-02	5.3710-02	5.37:0-02	5.37.D-02	6.2670-02	6.2670-02	6.2670-02	6.2670-02	6.2670-02	6.2670-02	1.1750-01	1.1750-01	1.1750-01	1.1750-01	1.1750-01
٥	BUCKLING	7.7610-01	3.5280-01	3.2340-01	3.5280-01	5.5440-01	2.632D 00	1.1960 00	1.0970 00	1.1960 00	1.680D 00	4.8350-02	4.8350-02	4.8350-02	4.8350-02	4.8350-02	4.8350-02	5.2840-02	5.2840-02	5.2840-02	5.2940-02	5.2940-02	5.2340-02	4.5+00-02	4.5400-02	4.5-00-02	4.5:00-02	4.3930-02
	=	•	•	•	•	0	•	•	•	•	•	•	0	•	•	•	•	•	•	0	0	0	•	0	0	•	0	•
	E	•	•	•	•	0	•	•	0	0	•	•	•	•	0	•	0	0	•	•	•	•	•	0	•	•	•	•
5	7	~	m	4	5	•	•	•	10	=	12	•	0	•	•	•	0	1	•	•	10	11	12	13	14	15	16	1.
36	H	-	~	m	4	5	1	•	•	97	=	-	~	m	3	5	•	-	~	m	*	5	9	1	•	0	20	==
	2	-	~	m	4	8	•	1	•	•	2	=	12	13	7	15	97	17	2	19	20	21	22	23	58			

7.8000-02	6.5370-02	6.5370-02		1.0420 00	1.0420 00	1.0420 00	1.0420 00	1.0420 00	1.9190-02	•	4.6040-02	4.2210-02	~	0.0	0.0	0.0	0.0	13.6130-01	3.8130-01		3.8130-01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
8.4780-01	7.1060-01	7.1060-01	2.6440-02	9.5830-02	9.5630-02	9.5830-02	9.5830-02	9.5830-02	2.3600-02	5.1920-02	5.6630-02	5.1920-02	3.3040-02	0.0	0.0	0.0	0.0	3.6130-61	3.6130-61	3.6130-01	3.6130-01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0		1 0.0	0.0	0.0	0.0 0			0.0 2		_			0.0	0.0	0.0	0.0	0.0 0		•		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
7.4180 0	5.2110 0	5.2110 0	1.9390-0	1.0300 0	1.0300 0	1.0300 0	1.0300 0	1.0300 0	3.9330-02	1.9040-01	2.2650-01	1.9040-01	7.7090-02	0.0	0.0	0.0	0.0	1.6160 0	1.8180 00	-	1.6160 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
6.8240-01	4.7940-01	4.7940-01	4.7940-01	1.1200 01	1.1200 01	1.1200 01	1.1200 01	1.1200 01	3.1980-02	1.5480-01	1.8420-01	1.5480-01	6.2670-02	0.0	0.0	0.0	0.0	1.8160 00	1.6180 00	1.6160 00	1.8180 00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
7.0060 01	4.1260 01	4.1260 01	8.2190-02	4.6630 00	4.6630 00	4.6630 00	4.6630 00	4.6630 00	2.0390-01	2.1710 00	2.6190 00	2.1710 00	5.5950-01	1.3530-02	1.7570-02	1.3530-02	3.4660-03	2.8990-01	2.8990-01	2.8990-01	2.8990-01	1.072D 00	4.8900 00	0.0	0.0	0.0	0.0	0.0	0.0	9 # 8
2.5150 00	1.4800 00	1.4800 00	1.4800 00	1.3000 02	1.3000 02	1.3000 02	1.3000 02	1.3000 02	5.4150-03	5.7660-02	7.4850-02	5.7660-02	1.4860-02	2.8970-03	3.7620-03	2.6970-03	7.4670-04	9.6630-02	9.6630-02	9.6630-02	9.6630-02	1.072D 00	4.8900 00	0.0	0.0	0.0	0.0	0.0	0.0	and the same
9.7500-02	8.1710-02	8.1710-02	8.1710-02	1.1960-01	1.1960-01	1.1960-01	1.1980-01	1.1980-01	1.6570-02	4.0660-02	4.4570-02	4.0860-02	2.6000-02	4.0860-02	4.4570-02	4.0860-02	2.6000-02	2.2880-02	2.2880-02	2.2880-02	2.2680-02	5.6050-02	2.4140-01	9.0090-05	9.0090-05	2.7860-02	2.7860-02	1.4000-01	1.4000-01	ŝ
1.1750-01	9.8480-02	9.8480-02	9.8480-02	1.4440-01	1.4440-01	1.4440-01	1.4440-01	1.4440-01	2.2360-02	4.9240-02	5.371D-02	4.9240-02	3.1330-02	4.9240-02	5.3710-02	4.9240-02	3.1330-02	2.2880-02	2.2880-02	2.2880-02	2.2880-02	6.7550-02	2.4140-01	1.0860-01	1.0860-01	3.3570-02	3.3570-02	1.4000-01	1.4000-01	QUENCIES (CPS)
4.5400-02	5.4170-02	5 4170-02	1 5100 00	3 6960-02	3 6960-02	3.6960-02	3.6960-02	3.6960-02	5.6620-01	2.5740-01	2.3590-01	2.5740-01	4.0440-01	4.1290 01	3.7850 01	4.1290 01	6.4890 01	2.6430 00	2.6430 00	2.6430 00	2.6430 00	9.8110-01	1.7450 00	0.0	0.0	0.0	0.0	0.0	0.0	BEAM UNCOUPLED, UNDAMPED FREG
•	•	•	•	•		•	0	•	•		0		0		0		0	0 1	0	. 0	4 0	0 0	0	0		0	5 1	0	•	UPLED, UN
20 12 10	29 17 22	30 16 23	31 14 19			34 21 26					39 15 16	40 16 17	41 17 16	42 19 20			45 22 23	46 3 29	47 5 29	48 9 29	49 11 29		51 30 32		53 11 30	54 29 30	55 29 30	56 14 0	57 16 0	BEAM UNCO

		20	20	35	25	20	20	20	2	20	20	20	2	=	10	=	5	5	31	10	=	=	7	20	20	25	20	20
	=	_	99	32	2028	50	99	30	80	R	3	00	8	8	23	09	20	50	90	8	80	3	8	8	09	9	99	9
	(9)	5.61740	1.95060	. 58030	.96820	.89150	8786D	.55930	8.60280	03430	.04640	.22800	.8248D	.88300	.47330	.4666	.70750	.30450	.24680	.01190	.38980	.1424D	.35790	.90890	.2566D	.18610	.2456D	.02210
		3 5	3 1	1 2	3 7	3 3	2	6 2	8 2	7	2	3 7	2	2	4	2	3	6 2	4	2	2	4	7	7	-	-	7	2
		0	0	000	9	9	0	8	0	9	9	0	0	ě	Ö	9	0	0	0 0	8	ö	0	ő	0	9	0	9	0
	(2)	6631	1.15100	.86030	.36140	59850	.27600	.61330	.45810	.03290	. 79030	.67600	.37310	.76570	.81540	8.83480	.41740	.98730	.47290	.54730	.72960	.21010	.75590	24550	39590	34030	.44270	32930
		m	-		-	~	S.	=	-	ď	m	-	•	~			-	~	3	-	m	4	•	3	2	~	2	3
		05	05	05	05	05	05	5	6	5	05	05	05	5	05	05	05	05	05	6	05	05	05	05	6	5	6	5
	(4)	9.76780	3.35150	2.72210	04520	.18020	.54890	.69320	.7316D	6.42070	.13730	5.17730	3.1091D	49030	.4484D	2.92220	5.01530	91750	47930	07777	16930	3906D	37560	2.26130	.44070	16070	24160	6.87340
	_	9.7	3.3	2.7	4.0	7.1	1.5	5.6	4.7	6.4	1.	6.1	3.1	9.4	2.4	2.9	5.0	2.9	1.4	4.7	7.	1.3	2.3	2.2	7.4	7.7	7.24	6.9
		03	03	20	03	03	03	20	02	05	02	03	02	05	20	20	03	02	20	05	05	05	05	07	01	5	10	7
	(3)	Ę	8	2	011	330	2	8	2	8	06.	99	2	200	99	10	8	2	2	110	20	13	09	200	09	8	80	00
	C	6.28470	1.05890	.1007	.16310	.30330	.59010	.72480	.09530	2.99690	8.35790	.39660	.81070	.04890	.51260	.36210	.18280	.74170	07277.	.02010	.14620	.55619	5.70960	.69850	.20060	.19490	.26300	.17200
3			7	8	7	2	7	7	2	2	80 2	-	1	5 1	9 1	1	7	9 1	3	2	2	2	2	2	_	_	-	2
Ū		D 02	0 0	10 0	00	000	00	0	0 0	00	00	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	000	0 0	0	0	D 02
CIES	(2)	5602D	27380	9.74470	.42320	.97370	5.61830	.6276D	.40340	.05890	.95310	.6522D	.72040	.92850	.10210	.50670	.63390	.89030	.73660	.46530	2.282.5	57950	4.14160	.42470	.33830	6.30830	.66780	1.05520
まること			-	6	-	m	S.	6	7	-	N	9	m	-	*	M	5	*	2	-	~	~		-	•		9	-
FREG		03	03	03	03	03	03	02	20	02	03	03	03	05	05	03	03	03	05	05	05	02	03	03	05	05	05	05
BEAM UNCOUPLED,UNDAMPED FREQUENCIES (CPS)	11	.48050	29010	07670	44140	.5611D	4046D	29520	4.44200	.8240D	03360	90060	.06310	.51060	8.86330	.00200	.6098D	44380	07930	4.32620	6.73770	7.61550	1.22270	1.17690	5.23590	5.2111D	5.50810	9.63060
	_	3.4	1.2	1.0	1.4	2.5	1.4	5.2	4.4	5.8	1.0	1.9	1.0	5.5	8.8	1.0	1.6	1.4	8.0	4.3	6.7	7.6	1.2	1.1	5.2	5.2	5.5	9.6
5,0	z	•	•	0	0	0	0	•	•	0	0	•	0	0	•	•	•	•	•	•	0	•	•	•	•	0	•	0
PLE	E	0	0	•	0	0	0	•	0	•	0	•	•	•	•	0	0	•	•	•	•	•	0	0	0	•	•	0
5	7	~	m	3	S	9	0	0	10	1	12	•	•	•	•	•	•	1	•	0	20	11	12	13	14	15	16	17
5 5	-	-	2	m	4		1		•	10	==	-	2	m	4		9	-	2	2	4	2	9	7		0	2	=
BEA	2	-	~	m	4	-co	•	-	•		2	=	12	=	14	15	16	17	18	19	20	21	22	23	24	52	58	27

	(6) 6.527350-05 6.527350-05 6.66600-05 6.66500-05 3.271650-05 1.31930-04 1.280020-04 1.280020-04 1.280020-04 2.28010-04 2.28010-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31610-04 1.31630-04 1.31630-04
1.97520 02 2.24650 02 2.1770 02 2.4620 01 2.4620 01 2.4620 01 2.12120 01 2.12120 01 3.53270 03 3.11560 03 3.11	1) (5) 3.475470-06 1.106240-05 1.437010-05 4.899980-06 2.413260-05 6.751390-05 6.751390-05 6.751390-05 6.751390-05 7.597110-06 1.358400-05 7.597110-06 1.358400-05 1.441160-05 1.441160-05 1.441160-05 1.62940-05 2.846550-05 6.983050-06 5.314340-04 5.314340-04 5.314340-04 5.314340-04 5.314340-04 5.314340-04
2.54670 01 2.96220 01 2.105240 03 1.10960 02 1.10960 02 1.10970 02 2.14650 02 02 2.14650 02 02 2.14650 02 02 2.14650 02 02 2.14650 03 02 7.8330 01 02 7.8330 01 03 1.93590 03 04 1.27380 03 05 1.90440 02 06 9.20620 01 07 00 00 0.00 0.00 0.00	3.659260-06 1.664130-05 2.025920-06 1.303510-05 9.669120-06 9.995460-05 1.202400-05 3.799040-05 1.182570-06 1.305510-05 3.799040-05 1.182570-06 1.305510-05 3.799040-05 1.182570-06 1.305510-05 3.799040-05 3.79900-05 3.799040-05 3.799000-05 3.799000-05 3.799000-05 3.799000-05 3.79
01 1.33000 01 4.29630 01 1.99230 01 5.13950 01 5.13950 01 6.6400 01 1.61970 02 2.55370 03 1.66400 03 1.66400 03 1.66400 03 1.66400 03 1.66400 03 1.66400 04 6.62630 06 6.62630 06 6.62630 06 0.000 0 0.000	13) 2.025920-06 1.202400-05 1.571760-05 1.671760-05 3.654460-05 4.672810-05 4.248590-05 4.248590-05 9.116820-05 9.116820-05 1.059460-05 1.056460-05 1.056460-05 1.056460-05 1.056460-05 1.056460-05 1.056460-05 1.056460-05 1.06660-05 1.06660-05 1.06660-05 1.06660-05 1.06660-05 1.06650-05 1.06650-05 1.06650-05
011 1.81 i20 011 1.72 i40 012 2.76 550 013 5.42 40 010 5.03 450 010 5.03 450 010 6.03 450 010 6.03 450 010 6.03 650 010 6.03 650 010 6.03 650 010 6.03 650 010 6.03 650 010 6.03 650 010 6.03 6.03 650	0.05 (1)-(3) AN (2) 1.664130-05 9.995460-05 1.306550-04 8.946450-05 2.266230-05 1.322490-04 1.322490-04 4.311500-06 4.311500-06 4.312500-06 6.602070-06 6.602070-06 6.602070-06 6.602070-06 6.602070-06 6.602070-06 6.60200-06 6.60200-06 6.603630-06 6.652660-06 6.65260-06 6.65260-06 6.65260-06 6.65260-06 6.65260-06 6.65260-06 6.65260-06 6.65260-06 6.6520-06 6.65260-06 6.65260-06 6.65260-06 6.65260-06 6.65260-06 6.65260-06
11650 02 • .58340 11390 02 • .11390 11390 02 • .11390 12500 02 • .53930 12500 02 • .53750 12500 02 • .53720 1260 02 • .53720 12140 02 • .37560 12140 03 • .49870 12150 03 • .49870 1220 03 • .49870 1220 03 • .49870 1220 03 • .49870 1220 03 • .49870 1220 03 • .49870 1220 03 • .49870 1220 03 • .49870 1220 03 • .49870 1220 03 • .97790 1220 03 • .977	(1) 658260-06 1869120-06 1869120-06 1833370-06 194960-06 194960-05 1969500-05 1969510-05 197720-05 1
	Z2000000000000000000000000000000000000
800 11 21 21 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	DAMPING 2 1 1 2 2 2 3 3 3 4 4 4 6 6 7 6 6 7 6 8 6 7 6 8 6 7 6 10 11 11 12 2 0 11 11 12 2 12 12 12 12 12 12 12 12 12 1

0
m
1
*

10 10 1 1 1 1 1 1 1	6.446230-05	9.076600-05	5.662670-05	5.062930-05	5.394830-04	5.171130-04	5.171130-04	6.002500-04	3.604140-04	2.152910-06	1.022760-05	1.096660-05	1.396760-05	9.521290-06	4.020010-00	4 445.010.04	3.225610-06	1.031440-04	4.102820-05	1.111610-04	7.199610-05	1.418500-02	4.360010-02	0.0	0.0	0.0	0.0	0.0	0.0																											
1. 0 0 1. 1. 1. 1. 1.	3.516540-04	4.298320-04	2.539290-04	1.209800-05	1.147450-04	1.085380-04	1.085380-04	1.268590-04	7.925220-05	5.931760-05	1.564740-04	1.625300-04	1.630010-04	4.995680-05	4 577010 04	7 254 140-04	5.219980-06	1.632210-04	6.685780-05	1.970300-04	1.204580-04	1.417600-02	4.357240-02	0.0	0.0	0.0	0.0	0.0	0.0																											
1. 0 0 1. 606330-05 1.326590-04 7 7 22 0 0 1.277740-05 1.396190-05 1.396190-05 1.396190-05 1.277740-05 0.264610-05 0.264610-05	9.573350-05	2.962200-04	6.390750-05	2.064480-05	2.394210-04	2.477370-04	2.477370-04	2.629830-04	1.523090-04	3.023470-05	7.651060-05	7.778490-05	7.860850-05	4.765610-05	1 971550-05	1 412471-06	1.091560-05	1.201470-04	6.639220-05	1.646530-04	1.337460-04	2.621000-02	9.770930-02	0.0	•••	0.0	0.0	0.0	0.0																											30
1	7.014180-04	7.371040-04	4.604070-04	2.084460-05	2.297260-04	2.529010-04	2.529010-04	2.573420-04	1.609150-04	2.257330-05	1.276130-04	1.371430-04	1.306360-04	5.4%180-05	0 1702ED -04	7 571910-04	3.065030-06	1.427650-04	9.444970-05	1.467160-04	1.038760-04	1.519030-02	4.669020-02	0.0	0.0	0.0	0.0	0.0	0.0																											
1 0 0 0 0 0 0 0 0 0	1.328590-04	1.396190-04	6.720600-05	8.846510-05	1.212820-03	1.335170-03	1.335170-03	1.356610-03	8.495360-04	3.678440-06	2.079530-05	2.234810-05	2.132050-05	8. 95 30 70 -06	3 796 790 96	1 5015 IN-04	1.418190-06	6.242510-05	5.453060-05	8.470790-05	5.997420-05	1.519030-02	4.669020-02	0.0	0.0	0.0	0.0	0.0	0.0			3.141590 00	3.141570 00	3.141530 00							_		-	-			00000	K70800	570800	570800	570800	.570800	.570800			_
# H H M M M M M M M M M M M M M M M M M	1.606330-05	2.016570-05	1.259560-05	1.277740-05	2.263530-05	2.491880-05	2.491690-05	2.535630-05	1.565520-05	4.188050-06	1.076200-05	1.060180-05	1.103380-05	70-020192. L	- 00000 T	A 084210-04	5.144890-06	3.384010-05	2.238790-05	3.477740-05	2.462280-05	2.135430-03	0.753550-03	2.863260-04	3.203920-04	7.051980-04	4.02421D-04	1.833740-05	1.212900-05	TA TO ATROUAME	THETJOCTAL	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0			0.						00	00			_
NEGACOMMUANAPECHNUMONOCOM		0	•	0							•							1 0	2 0	0 3	*		0 0				2 1		•	ES. BFAM	2		0	0	0 0	0 0	0	0			0	0 0	0 0	0	0	0						0	0 0	0 0	00	
		17	2	14	19	20	22	22	23	13	*	15	9:	3 :		; ;	22	~	*	•	=	2	30	2	=	62	62			FILEP ANGE	1 1 1	1 1 2	2 2 3	3 3 4	4 4 5	5 5 6	6 7 8	•	• :	1=	-	12 2 0	13 3 0	14 4 0	15 5 0	16 6 0	1 11	10 7 01	, 4			-	•	•	2:	=

The state of the s

70800 00 -1.570800 70800 00 0.0 91460-01 1.570800 91460-01 1.570800 91460-01 1.570800 91460-01 1.570800 91460-01 1.570800 91460-01 1.570800 91460-01 1.570800 9141590																														
12 16 0 1.261090 14 19 0 1.570600 19 24 0 1.570600 19 25 0 0 1.570600 22 22 27 0 0 5.191460- 14 15 0 0 5.191460- 15 15 0 0 5.191460- 16 17 0 0 0 0 0 17 10 0 0 0 0 18 15 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 0 19 20 0 0 0 19 20 0 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 0 19 20 0 0 19	57	0.0	0.0	0.0	570800	900	900	900	900			_	_	141590	141590	141590	141590	141590							.188300-	.188300-			570800	1.570800 00
	8	570800	570800	570800	191460-	191460-	191460-	191460-	191460-	0.0	0.0	•••	0.0	0.0	0.0	0.0	0.0	0.0	570	570800	9	100	570800		117100	2	570800	570800		
	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	~	-	•	•	•	•	•	•	-	•	•
212222222222222222222222222222222222222	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10	•	•
	97	22	23	13	54	52	92	27	82	*	15	16	17	10	02	23	22	23	53	53	62	53	31	32	30	30	30	30	•	•
202222222222222222222222222222222222222	12	17	10	14	19	20	22	22	23	13	1	15	10	11	13	20	21	22	m	10	•	=	20	2		=	62	53	14	10
	82	53	2	2	32	33	*	35	*	37	2	39	\$	3	45	3	\$	45	3	47	3	\$	20	2	25	23	Z	25	2	27

NOTE *** A MODIFIED RIGHT MAND GROUND COCRDINATE SYSTEM HAS BEEN USED FOR THIS PLOT ***

MASS MORIZ VERTICAL **												
26	NO O	HOR12 AXIS	VERTICAL			VERTICAL AXIS	MASS M	HORIZ	VERTICAL	MASS		VEPTICAL
000 02+ 000 02+ 000 02+ 000 02+ 000 02+ 000 02+ 116	4 8	9.9	71.23	2	-20.00	9.24	91	-28.00	33.23	n	_	55.
#2	0 0009	*2										
#27 #27 #27 #26 #26 #27 #27 #27 #27 #27 #27 #27 #27												
								*26				
	900	•2										
	000	. *										
		. #21										
	000	. *										
	000	*										
		*14										
8 8	000	*										
8 8												
8 8												
8	000 05	*										
8												
8												
	000 05		The second of	*10		1						
												,

NASS POSITION PLOT PLANE ** X(+AFT) - Z(+UP)
NOTE *** A MODIFIED RIGHT HAND GROUND COORDINATE SYSTEM HAS BEEN USED FOR THIS PLOT ***

0.5000 01 0.1000 02 0.1500 02 0.2000 02 0.2500 02 0.3000 02 0.3500 02

-.1500 02 -.1000 02 -.5000 01 0.0

0.0

THE-DAY

N SS O	* 2	\$ 0.7000 62+	0.6000 62+	0.5000 62+	0.4000 82	0.3000 62+	• • • •
HORIZ			ដ្			*	
VERTICAL	7.86						
35	2						
MORIZ	-19.99						
VERTICAL MASS MORIZ VERTICAL MASS MORIZ VERTICAL MASS MON AXIS AXIS NO AXIS AXIS NO AXIS	7.80						
Z S	*						
MORTZ AXTS	-27.91	\$					
VERTICAL AXTS	32.61						
25 5	ដ						
88	-28.05						
WENTICAL	7.82						

*10

6.1000 BZ+

0.0

¥ .	HORIZ VERTICAL AXIS AXIS	27.28 23.03
F *** A MODIFIED RIGHT NAND GROUND COCROINATE SYSTEM MAS BEEN USED FOR THIS PLOT ***	MASS NON	*
KEN USED FOR	VERTICAL AXIS	1.35 22.12
EN NAS B	HORIZ	. *
ION PLOT PL	E S	2
GROUND COORT	HASS HORIZ VERTICAL HD AXIS AXIS	7.7
-	MORIZ	•.33
COLFIED RIG		a
OTE *** A M	VERTICAL	7.65
•		4.4. 3.4.
	10	•#

25. *31 62# 0.3000 02+ 120 9.2000 02.0 0.5000 01 0.1000 02 0.1500 02 0.2000 02 0.2500 02 0.3000 02 0.3500 02 -.1500 62 -.1000 62 -.5000 01 0.0

==

8.1800 02·

RUPTURE	
3	-
YIELDING	
BEAM	
OF INTERNAL	
8	
PRIARY	

HEAN YIELDING AND RUPTURE I BEAN DIRECTION FOR	3													
*	5	•	•	•	•	•	0	•	•	•	•	•	•	•
"E	æ													
55														
3 6	_													
2 5	3	~	-	~	~	~	~	~	-	m	m	m	m	~
4 A	H													
2	_			_		_	_	_	_	_	_	_	_	_
9	Z	_	•	•	•	•	•	•	•	•	-	•	-	•
1	=	-	•	•	•		•	•	•	•	•	•	•	•
-														
3_	7	8	2	2	ສ	2	2	2	1	2	2	*	=	28
23	-			•		12	~	~	-	•			1	-
10														
1	2	55	3	2	33	*	35	28	27	25	26	2	23	2
A														
8													9	9
*	TIME		587	85	731	826	936	610	989	762	765	826	916	256
SUPPLARY OF INTERNAL BE	F		8	5	5	0.018260	10	.02	.02	.02	.02	.02	.02	.03
3			•	•	•	•	•	•	0	0	0	0	0	•

PERCENT	CURRENT	0.0	0.0	0.0		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	FRICTION		0.0			0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0							0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PERCENT	CURRENT	0.0	1.94	7.28	13.22	4		25.63	27.93	29.77	30.92	31.58	31.89	32.01	31.98	31.84	•	31.48	31.39	31.37	31.33	31.22	31.14	31.12	31.13	31.15	31.21	31.28	•	31.64	32.06	32.56	32.87	32.30	17.75	12.26	12.20	, -	32.16	12.00	0	32.02	32.01	32.00	32.00	31.99	31.99		31.98	
	CRUSHING	0.0				.713E	2.081E 04	.378E	2.592E 04		2.869E 04					-			2.913E 04	2.912E 04			2.891E 04	-						-		-			3.03/E 04		9000				- 1					.973E			2.973E 04	
PERCENT	CURRENT	0.0	0.01	0.04	0.08	0.12	0.16	0.21	0.25	0.29	0.32	0.35	0.37	0.40	0.45	0.53	9.0	9.76	0.89	1.00	1.08	1.12	1.16	1.19	1.24	1.28	1.33	1.39	1.46	1.53	1.61	1.69	1.7	1.0	2.7	2 24	2 62	2 50	2.76	20.0	30.5	3.16	3.25	7 7 7	3.61	3.48	3.55	3.64	3.72	
	DAMPING	0.0	9.968E 00		7.385E 01	1.115E 02				2.716E 02		3.208E 02			4.201E 02				8.245E 02														1.645E 03		8395	2 101E 03	240F	404F	2.566E 03		RAZE	9306	•				.299E			
PERCENT	CURRENT	0.0		•	0	1.13	5.09	3.19	4.72	60.9	7.58	8.81	9.90	10.92	12.08	13.72	16.18	19.61		27.96	31.99	35.63	38.58	40.80	45.47	43.77	44.56	45.02			45.36	45.43	45.30	44.90	44.65	41 40	40 40	47.42	35.95		15.57	35.78	35.88		36.40			36.18		
	STRAIN	0.0	.257E	3.005E 02		1.049E 03	0			5.656E 03						-								-	7							-	-	4.175E 04	4.1095 04														3.346E 04	B-37
PERCENT	CURRENT	17.33	17.13	16.94	16.76	16.59	16.43	16.28	16.14	16.01	15.89	15.78	15.67	15.58	15.49		15.34	15.27	15.21	15.15	15.09	15.04	14.99	14.94	14.89	14.84	14.79	14.75	14.70	14.66	14.63	14.60		14.57	14.5/	•	14.50	14.60	14.62	14.64	14.66	14.68	14.70	14.72	14.74	14.76	14.78	14.80	14.82	
	POTENTIAL ENERGY	1.607E 04	1.589E 04	277		ш	-	w		1.486E 04	1.474E 04		-						-	1.406E 04	-		_		-	-	770	-	-	_	-				1.3535 04							-		_		-	_	1.375E 04	1.377E 04	
PERCENT	CURRENT	82.67	80.79	75.41	69.11	63.70	58.89	54.70	50.95	47.83	45.29	43.49	45.17	41.09	40.00	38.49	36.19	32.82	28.70	24.52	20.51	16.99	14.14	11.94	10.26	8.95	8.10	7.55	7.14	6.82	6.34	5.72	5.48	5.70	4.0	07.0	11 30	13.21	14.52	14.05	14.67	14.36	14.16	14.90	13.46		13.29	13.40		
	KINETIC	7.669E 04	7.495E 04		₹13 €					4.436E 04		4.035E 04								2.276E 04		1.577E 04	1.312E 04	.109E				3600.	.626E		835E	.315E		2002	0.030E 03			977F		TORE		372E	315	3 75		227E			24E	
PERCENT	S m	100.00	100.02	100.04	100.04	100.04	100.03	100.03	100.03	100.03	100.03	100.03	100.03	100.04	100.04	100.04	100.05	100.00	100.06	100.07	100.01	100.07	100.08	100.08	100.09	100.00	100.09	100.10	100.10	100.10	100.11	100.11	100.11	100.11	100.11	1001	1001	1001	100.13	100	1001	1001	100.15	1001	100.17	100.18	100.19	100.21	100.22	
PERCENT	ENERGY	0.0		0.368142	0.279686	0.281395		0.640265	0.677775	0.747329	0.833982	0.959331		0.875477	0.833560		0.813562		0.799835	0.744471	0.686459	0.717363	0.647712	0.673277		0.709935		•				1.017785	1.050775	1.0/6124	1 1014804	1 111096	1 115771	1 126416	1 143449	1 151626	1 168576	1 217560	1.237304	1 SERBE	2 452375		4.318353		5.426345	
	TIME	0.	.00100	.00200	.00300	.00400	.00200	.00900	.00700	.00800	00600	.01000	.01100	.01206	.01300	.01400	.01200	.01600	.01700	.01800	.01900	.02000	.02100	.02200	.02300	.02400	.02200	.02600	.02700	.02800	.02900	.03000	.03100	00250.	03500	0750	0450	047700	03800	01000	00040	04100	04200	06300	00440	04500	04600	.04700	.04800	

```
000000
 99777
 ***
 22222
2.973E
2.973E
2.973E
2.973E
2.973E
 3.8
3.96
4.01
4.07
 222222
3.539E
3.680E
3.728E
3.787E
3.859E
28.28.88
28.38.88
28.38.88
28.38.88
 22222
3.365E
3.409E
3.43E
3.415E
3.378E
44444
22222
1.39E
1.381E
1.383E
1.385E
1.387E
13.19
12.28
12.28
12.41
12.72
22222
1.226E
1.173E
1.141E
1.154E
1.183E
1.202E
100.24
100.24
100.25
100.25
5.96435
6.181212
6.342592
6.348572
6.358683
04900
05000
05100
05200
05300
```

TINE (SEC) XACCF

		I																																	٠.																		
		SCALE FACTOR = 6.	• "			**	**	•	. 1		•	*											•	•	•									•													*		•	• •			
											•	•		•				•	• ,				*																		•			. *			•						
															•	•												•									•	•	•	•													
																	•																					*															
																		•													*	*		•			*																
																			•			•	•	•	•	•	•					•	•	* 1																			
9.999E-01 1.193E-01			0.0	1-5.990E-0C	3.588E-05	8.603E-04	6.017E-03	2.240E-02	E 2006-02	3.1005-05	10-3691-1					1.659E 00	2.414E	2.832E	2.985E 00	2.742E 00	1 9 064F-01	1-3.380E-01	0-1.625E 00	0-2.735E 00	3-3.364E 00	1-3.274E 00	1-2.400E 00	-8.331E-01	1.245E 00	5.906E 00	8.056E 00	1 9.863E 00	1.117E 01	1.177	1.150	9.405F	7.672E	5.712E	3.729E	1.928E 00	4.415E-01	1-5.089E-01	1-1.054E 00	1-1.491F 00			.467E	.397E	.319E	.240E	.164E	.093E	
9.99E-01 9.99E-01 9.99E-01 9.99E-01 9.99E-01 9.99E-01 9.99E-01 9.99E-01 9.99E-01 9.99E-01 9.99E-01 1.25E-01-1.59E-01 1.65E-01-1.59E-01 1.65E-01-1.59E-01 1.65E-01-1.95E-01 1.65E-01-1.93E-01	2. 240E-02 2. 240E-02 3. 596E-02 3. 596E-02 1. 165E-01 1. 166E-01 1. 166		-1.310E-0	-1.311E-02	-1.313E-02	.369E-0	.694E-0	690F-0	CASE-0	7 2005	0-3602.	-1.284E-0	-2.315E-0	-3.952E-01	.607E-	.050E	.559E	.126E	.666E	-3.15% U	4076	064E	.604E	-5.287E 0	-6.189E 0	-7.405E O	-8.979E 0	-1.096E 0	107	089	-2.480E C	-2.805E 0]	-3.035E 01		-		.451E								771E	652E		-					
3.35 E 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.318E 02 9.90E-06 1.318E 02 9.90E-06 1.346E-02 9.608E-05 1.366E-02 9.608E-05 1.366E-02 9.608E-05 1.366E-02 9.608E-05 1.366E-02 9.608E-05 1.366E-02 1.366E-02 1.366E-01 9.668E-01 1.368E-01 9.668E-01		•	.001	.002	.003	*00	500	200		/80	900	600	.010	.011	.012	.013	510	015	910	100	010	020	.021	.022	.023	950	025	027	028	020	.030	031	032	.033	936	036	.037	0.038	0.039	050	150.	250	990	950	950	047	950	650.	0.050	051	250.	620

RELATIVE DEFLECTIONS*J-I*(IN)

J,N = 30, 1

I.M = 29, 5

BEAN SS

COMPRESSION IN)

2. 0

EXTERNAL SPETISE 1,H =

2.99E 03 11 12 12 12 12 12 12 12 12 12 12 12 12	0.00				SCALE PACION = 2.7
	0.001 0.0	0.0	0.0	•	II
	-	0.0	0.0	•	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 200.0	0.0	w		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.003 0.0	0.0			
**************************************	0.004	0.0	w 1	•	
4	0.002				

4					
2 2 2 2 9 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9	000				
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					
0.000000000000000000000000000000000000					
4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	210				
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	210		u		
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0					
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	570.		u 1	•	•
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	910.	0.0		•	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.017	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	•	0.0	0.0	•	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	•	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0	•	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0	•	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	9.0	•	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	•	0.0		•	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	•		-		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	•	0.0	-	•	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	•	0.0	w	**	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	W	•	•
8.520E		0.0	w		
		0.0		•	
		0.0		•	
		0.0	,		
	•				
	•				
			0.0	•	
			0.0		
			0.0	•	
	•			•	
	•				
	•			•	
			0.0	•	
	0				
		0.0			
0.00					
000	•				
0.0	•				
0.0	•				

TIME (SEC.)

SCALE FACTOR = 2.685E 00

	### 1976 1976	TIME(SEC) X	> 11	N	SCALE EACTING = 4 TINE OF
-6.661E-16 3.7 3.300E -2.604E-04 3.0 3.269E -5.571E-04 3.0 3.269E -5.571E-04 0.0 3.269E -1.377E-0. 0.0 2.78E -1.378E-0. 0.0 1.39E -1.38E-0. 0.0 1.39E -1.39E-0. 0.0 1.39E	-6.661E-16 3.7 3.300E -2.604E-04 3.0 3.269E -5.571E-04 3.0 3.269E -7.74E-04 0.0 2.76E -1.101E-0. 0.0 2.76E -1.377E-0. 0.0 2.777E -1.377E-0. 2.777E -1.377E-0. 2.777E -1.377E-0. 2.777E -1.377E-0. 2.777E -1.377E-0. 2.7			•	TA 30/5 t - XOTON TO THE TANK
-2.604E-04 3.0 3.269E-05 7.146E-06 0.0 2.746E-06 0.0 2.746E-07 0.0 2.7476E-07 0.0 2.747	-5.604E-04 0.0 3.269E-65.71E-04 0.0 2.78E-04	•	0	3.300E 02	
-5.571E-04 3.0 3.171E -6.060E-04 0.0 3.044E -7.774E-04 0.0 2.794E -1.377E-02 0.0 2.049E -1.377E-02 0.0 1.349E -1.377E-03 0.0 1.379E -1.377P -1.377E-03 0.0 1.379E -1.377E-03 0.0	-5.571E-04 3.0 3.171E -6.060E-04 0.0 3.044E -7.774E-04 0.0 2.046E -1.377E-02 0.0 2.046E -1.377E-02 0.0 2.046E -1.377E-02 0.0 2.049E -2.596E-03 0.0 2.049E -3.640E-02 0.0 1.019E -3.640E-02 0.0 1.019E -3.640E-02 0.0 1.019E -3.640E-02 0.0 1.019E -3.630E-01 0.0 1.019E -4.660E-02 0.0 1.019E -5.121E-01 0.0 1.019E -6.09E-02 0.0 0.0 1.019E -7.77E-01 0.0 0.0 0.0 0.0 1.019E -7.77E-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	- 100.	2	3.269E 02	•
-6.060E-04 0.0 3.044E -7.714E-04 0.0 2.046E -1.101E-04 0.0 2.040E -1.101E-05 0.0 2.040E -2.596E-03 0.0 2.040E -3.546E-03 0.0 2.040E -3.546E-03 0.0 2.040E -3.546E-03 0.0 2.040E -3.546E-03 0.0 2.040E -3.756E-03 0.0 2.040E -3.756E-03 0.0 1.439E -4.656E-03 0.0 1.439E -4.656E-03 0.0 1.439E -5.121E-03 0.0 1.1339E -7.75E 0.0 0.0 1.131E		7	~	3.171E 02	•
-7.714E-06. 0.0 2.916E -1.377E-06. 0.0 2.536E -1.341E-05. 0.0 1.349E -1.536E-05. 0.0 1.349E -1.536E-01. 0.0 1.349E -1.547E-01. 0.0 1.349E -1.543E-01. 0.0 1.349E -1.348E-01. 0.0 1.349E -1.543E-01. 0.0 1.349E -1.5443E-01. 0.0 0.0 0.0 0	-3.774E-06. 0.0 2.916E -1.377E-0. 0.0 2.532E -1.341E-0. 0.0 2.532E -1.341E-0. 0.0 2.532E -1.341E-0. 0.0 2.532E -1.341E-0. 0.0 2.532E -1.286E-0. 0.0 2.532E -1.286E-0. 0.0 1.719E -2.772E-0. 0.0 1.719E -2.772E-0. 0.0 1.733E -2.532E-0. 0.0 1.331E -2.332E-0. 0.0 1.331E -2.332E-0. 0.0 1.333E -3.532E-0. 0.0 1.333E -4.508E-0. 0.0 1.333E -5.532E-0. 0.0 1.333E -7.73E 0. 0.0 1.333E -7.73E	T	0	3.044E 02	
		•		2.916E 02	
-1.101E-0. 0.0 2.660E -1.377E-0. 0.0 2.76E -1.596E-0.0 0.0 1.719E -2.726E-0.0 0.0 1.756E -2.7276E-0.0 0.0 1.766E -2.773E-0.0 0.0 1.769E -3.773E-0.0 0.0 1.769E -3.777E-0.0 0.0 1.769E -3.7776E-0.0 0.0 1.769E -3.777E-0.0 0.0 1.769E	-1.101E-0. 0.0 2.660E -1.377E-0. 0.0 2.75E -1.377E-0. 0.0 2.75E -1.376E-0.0 0.0 1.719E -2.726E-0.0 0.0 1.739E -3.526E-0.0 0.0 1.739E -3.536E-0.0 0.0 1.759E -3.536E-0.0 0.0 0.0 0.0 1.759E -3.536E-0.0 0.0 0.0 0.0 1	,		2.788E 02	
-1.377E-0. 0.0 2.532E-1.347E-0. 0.0 2.494E-0.0 0.0 2.394E-0.1 0.0 2.494E-0.1 0.0 2.494E-0.1 0.0 2.494E-0.1 0.0 2.494E-0.1 0.0 2.394E-0.1 2.394E	-1.377E-0. 0.0 2.532E-1.344E-0.0 0.0 2.494E-0.0 0.0 2.494E-0.0 0.0 2.494E-0.0 0.0 2.494E-0.0 0.0 2.494E-0.0 0.0 2.494E-0.0 0.0 1.554E-0.0 0.0 1.555E-0.0 0.0	,		2.660E 02	
-1.541E-0, 0.0 -3.765E-0, 0.0 -3.765E-0, 0.0 -3.765E-0, 0.0 -3.765E-0, 0.0 -3.767E-0, 0.0 -3.767	-1.594E-03 0.0 2.704E-03 0.0 -2.706E-03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	,		2.532E 02	
-5.596E-03 0.0 2.149E -5.646E-03 0.0 2.149E -1.286E-07 0.0 1.919E -1.286E-07 0.0 1.919E -5.121E-07 0.0 1.536E	-5.796E-03 0.0 2.149E-5.406E-05 0.0 1.919E-1.286E-05 0.0 1.919E-1.286E-05 0.0 1.919E-1.397E-01 0.0 1.919E-1.397E-1.397E-01 0.0 1.919E-1.397E-1.3997E-1.397F-1.397E-	,		2.404E 02	•
-5.656 - 0.0	-5.65E-03 0.0 2.1995 -5.66E-07 0.0 1.316E -1.286E-07 0.0 1.316E -2.728E-07 0.0 1.439E -5.689E-02 0.0 1.439E -1.682E-01 0.0 1.439E -2.472E-01 0.0 1.262E -2.564E -2.564E-01 0.0 1.262E -2.564E -2.564E-01 0.0 1.262E -2.664E -2.566E-01 0.0 1.262E -2.664E -2.664E-01 0.0 1.262E -2.664E -2.6	•		2.276E 02	•
-2.056 = 0.0	-2.040E-05 0.0 1.0191 -1.201E-05 0.0 1.0191 -1.201E-05 0.0 1.0191 -2.720E-05 0.0 1.0555 -2.775	,		2.149E 02	•
-8.501E-03 0.0 1.9191 -1.201E-03 0.0 1.6326 -5.726E-03 0.0 1.6326 -6.490E-02 0.0 1.6326 -6.490E-02 0.0 1.6326 -1.263E-01 0.0 1.3916 -1.263E-01 0.0 1.3916 -1.263E-01 0.0 1.3916 -1.263E-01 0.0 1.2626 -2.472E-01 0.0 1.2626 -2.472E-01 0.0 1.2626 -4.504E-01 0.0 1.2626 -4.504E-01 0.0 1.2626 -5.323E-01 0.0 1.2626 -5.323E-01 0.0 1.2626 -5.325E-01 0.0 1.2626 -5.325E-01 0.0 1.2626 -5.325E-01 0.0 1.2626 -5.325E-01 0.0 1.2626 -5.325E-01 0.0 1.2626 -5.325E-01 0.0 1.2626 -6.656E-01 0.0 1.2626 -6.656E-01 0.0 1.2626 -7.775E-01 0.0 1.2626 -7.775E-01 0.0 1.2626 -7.776E-01 0.0 1.2636 -7.776E-01 0.0 1.3676 -7.776E-01 0.0 1.3676	-8.551E-03 0.0 1.9191 -1.286E-07 0.0 1.616E -2.728E-07 0.0 1.6129E -6.490E-02 0.0 1.493E -6.490E-02 0.0 1.493E -1.263E-01 0.0 1.391E -1.263E-01 0.0 1.391E -1.263E-01 0.0 1.391E -1.263E-01 0.0 1.391E -2.472E-01 0.0 1.266E -2.131E-01 0.0 1.266E -3.23E-01 0.0 1.266E -4.50E-01 0.0 1.26E -4.50E-01 0.0 1.26E -4.50E-01 0.0 1.26E -5.359E-01 0.0 1.26E -6.691E-01 0.0 1.26E -7.23E-01 0.0 1.26E -7.23E-01 0.0 1.26E -7.23E-01 0.0 1.26E -7.23E-01 0.0 1.26E -7.23E-01 0.0 1.26E -7.25E-01 0.0 1.26E -7.25E-01 0.0 1.26E -7.26E-01 0.0 1.26E -7.26E-01 0.0 1.26E -7.79E-01 0.0 1.26E -7.7	,		2.030E 02	•
-1.286E-0. 0.0 1.616E -2.797E-0. 0.0 1.556E -3.797E-0. 0.0 1.556E -5.121E-0. 0.0 1.556E -1.053E-0. 0.0 1.556E -1.053E-0. 0.0 1.391E -1.053E-0. 0.0 1.391E -1.053E-0. 0.0 1.391E -1.053E-0. 0.0 1.391E -1.536E-0. 0.0 1.391E -2.432E-0. 0.0 1.29E -4.550E-0. 0.0 1.39E -5.356E-0. 0.0 1.39E -7.35E-0. 0.0 1.39E	-1.286E-0. 0.0 1.616E -2.797E-0. 0.0 1.556E -3.797E-0. 0.0 1.556E -5.121E-0. 0.0 1.556E -6.689E-0. 0.0 1.556E -1.283E-01 0.0 1.391E -1.283E-01 0.0 1.391E -1.283E-01 0.0 1.391E -2.372E-01 0.0 1.286E -2.373E-01 0.0 1.286E -2.373E-01 0.0 1.286E -3.231E-01 0.0 1.286E -4.569E-01 0.0 1.286E -5.359E-01 0.0 1.396E -5.359E-01 0.0 1.391E -7.366E 00 0.0 1.391E -7.367E 00 0.0 1.391E	7	0.0	1.919E 02	•
-1.901E-0: 0.0 1.719F -2.726E-0: 0.0 1.439F -5.121E-0: 0.0 1.439F -6.699E-02 0.0 1.439F -1.283E-01 0.0 1.391F -1.538E-01 0.0 1.394F -1.620E-01 0.0 1.394F -1.620E-01 0.0 1.286F -2.437E-01 0.0 1.286F -3.630E-01 0.0 1.286F -4.508E-01 0.0 1.286F -5.359E-01 0.0 1.286F -6.598E-01 0.0 1.286F -7.78E-01 0.0 1.876F -7.78E-01 0.0 1.876F -7.79E-01 0.0 1.876F	-1.901E-0: 0.0 1.719F -2.726E-0: 0.0 1.439F -5.121E-0: 0.0 1.439F -6.699E-02 0.0 1.439F -1.263E-01 0.0 1.439F -1.263E-01 0.0 1.323F -1.538E-01 0.0 1.266F -2.472E-01 0.0 1.266F -3.536E-01 0.0 1.266F -3.536E-01 0.0 1.266F -3.544E-01 0.0 1.676E -3.442E-01 0.0 1.676E -3.442E -3.442E-01 0.0 1.676E -3.442E -3.442E-01 0.0 1.676E -3.442	7		1.816E 02	•
-2.728E-0; 0.0 1.632E-1.728E-0; 0.0 0.0 1.556E-5.728E-0; 0.0 0.0 1.556E-5.728E-0; 0.0 0.0 1.556E-5.728E-0; 0.0 0.0 1.349E-1.538E-0; 0.0 0.0 1.349E-1.538E-0; 0.0 0.0 1.238E-1.538E-0; 0.0 0.0 1.238E-1.538E-0; 0.0 0.0 1.238E-1.538E-0; 0.0 0.0 1.238E-1.538E-0; 0.0 0.0 1.238E-1.5388E-1.5388E-1.5388E-1.5388E-1.5388E-1.5388E-1.5388E-1.5	-2.728E-0; 0.0 1.632E -5.121E-0; 0.0 1.493E -6.699E-C2 0.0 1.493E -6.699E-C2 0.0 1.493E -1.053E-01 0.0 1.304E -1.053E-01 0.0 1.233E -2.131E-01 0.0 1.233E -2.131E-01 0.0 1.205E -4.061E-01 0.0 1.205E -4.061E-01 0.0 1.205E -4.061E-01 0.0 1.205E -4.061E-01 0.0 1.205E -4.061E-01 0.0 1.205E -4.061E-01 0.0 1.205E -5.305E-01 0.0 1.205E -6.505E-01 0.0 1.205E -7.305E-01 0.0 1.205E -7.305E-0.006E-0.107E	7		1.719E 02	
-3.797E-0: 0.0 1.556E -6.490E-02 0.0 1.349E -1.053E-01 0.0 1.349E -1.053E-01 0.0 1.349E -1.053E-01 0.0 1.349E -1.053E-01 0.0 1.349E -1.538E-01 0.0 1.262E -2.472E-01 0.0 1.263E -2.472E-01 0.0 1.263E -2.472E-01 0.0 1.263E -3.636E-01 0.0 1.263E -4.951E-01 0.0 1.263E -4.951E-01 0.0 1.263E -5.359E-01 0.0 2.566E -5.359E-01 0.0 2.566E -5.359E-01 0.0 2.566E -5.359E-01 0.0 1.3384E -5.359E-01 0.0 1.359E -5.359E-01 0.0 1.359E -5.359E-01 0.0 1.363E	-3.797E-0: 0.0 1.556E -6.699E-0: 0.0 1.391E -1.053E-01 0.0 1.393E -1.283E-01 0.0 1.369E -1.283E-01 0.0 1.369E -1.538E-01 0.0 1.262E -2.472E-01 0.0 1.262E -2.472E-01 0.0 1.262E -2.472E-01 0.0 1.262E -4.508E-01 0.0 1.263E -4.609E-01 0.0 1.263E	-2	0	1.632E 02	•
-5.121E-0; 0.0 1493E -6.689E-C2 0.0 1.493E -1.053E-01 0.0 1.391E -1.053E-01 0.0 1.391E -1.238E-01 0.0 1.359E -2.131E-01 0.0 1.262E -2.472E-01 0.0 1.239E -2.632E-01 0.0 1.239E -3.23E-01 0.0 1.239E -4.061E-01 0.0 1.239E -4.350E-01 0.0 1.239E -5.359E-01 0.0 2.364E -5.352E-01 0.0 2.364E -5.352E-01 0.0 2.364E -7.779E 00 0.0 -2.151E -7.79E 00 0.0 -2.151E -7.79E 00 0.0 -2.151E -7.79E 00 0.0 -3.367E -3.457E 00 0.0 -3.367E -3.457E 00 0.0 -3.367E -4.957E 00 0.0 -3.555E -4.957E 00 0.0 -3.555E	-5.121E-0; 0.0 1493E -6.689E-C2 0.0 1.493E -1.63E-01 0.0 1.391E -1.653E-01 0.0 1.369E -1.238E-01 0.0 1.369E -2.131E-01 0.0 1.23E -2.672E-01 0.0 1.23E -2.632E-01 0.0 1.23E -3.632E-01 0.0 1.23E -4.508E-01 0.0 1.25E -1.678E-01 0.0 1.25E -1.678		0	1.556E 02	•
-6.689E-C2 0.0 1.439E-C3 0.0 1.538E-C3 0.0 1.331E-C3 0.0 1.331E-C3 0.0 1.331E-C3 0.0 1.338E-C3 0.0 1.3388E-C3 0.0 1.3388E-C3 0.0 1.3388E-C3 0.0 1.3388E-C3 0	-6.689E-C2 0.0 1439E -1.636E-01 0.0 1.331E -1.636E-01 0.0 1.363E -1.636E-01 0.0 1.363E -2.472E-01 0.0 1.266E -2.472E-01 0.0 1.266E -3.23E-01 0.0 1.266E -4.508E-01 0.0 1.266E -4.508E-01 0.0 1.231E -5.535E-01 0.0 1.256E -5	-5	0	1.493E 02	•
-1.051E-01 0.0 1.391E -1.051E-01 0.0 1.349E -1.0520E-01 0.0 1.206E -2.472E-01 0.0 1.206E -3.630E-01 0.0 1.129E -4.061E-01 0.0 1.129E -4.061E-01 0.0 1.129E -4.061E-01 0.0 1.129E -4.051E-01 0.0 1.129E -4.051E-01 0.0 1.129E -5.359E-01 0.0 6.406E -5.359E-01 0.0 6.406E -5.359E-01 0.0 1.137E -4.552E-01 0.0 1.137E -5.343E-01 0.0 1.137E -7.43E-01 0.0 1.137E -7.65E-01 0.0 1.137E -7.65E-01 0.0 1.137E -7.71E	-1.651E-01 0.0 1.391E-1.651E-01 0.0 1.369E-1.620E-01 0.0 1.265E-1.620E-01 0.0 1.265E-1.630E-01 0.0 1.266E-1.630E-01 0.0 1.266E-01 0.0 1.266E-0	9	0	1.439E 02	•
-1.053E-01 0.0 1.349E-1.053E-01 0.0 1.323E-1.050E-01 0.0 1.233E-1.050E-01 0.0 1.233E-1.050E-01 0.0 1.233E-01 0.0 1	-1.053E-01 0.0 1.349E -1.53E-01 0.0 1.323E -1.53E-01 0.0 1.262E -2.131E-01 0.0 1.262E -2.131E-01 0.0 1.262E -2.131E-01 0.0 1.262E -3.630E-01 0.0 1.262E -4.061E-01 0.0 1.262E -5.35E-01 0.0 2.566E -5.35E-01 0.0 2.566E -5.35E-01 0.0 2.566E -5.35E-01 0.0 1.262E -4.552E-01 0.0 1.262E -1.674E-01 0.0 1.262E -1.676E-01 0.0 1.262E -1.676	0	0	1.391E 02	•
-1.283E-01 0.0 1.323E-1.386E-01 0.0 0.0 1.304E-01 0.0 1.236E-01 0.0 1.23	-1.538E-01 0.0 1.353E-1.538E-01 0.0 0.0 1.304E-1.538E-01 0.0 1.206E-2.131E-01 0.0 1.216E-2.338E-01 0.0 1.238E-3.538E-01 0.0 1.238E-3.538E-01 0.0 1.238E-3.538E-01 0.0 1.238E-3.538E-01 0.0 1.238E-3.538E-01 0.0 1.238E-3.538E-01 0.0 1.238E-3.538E-3.538E-01 0.0 1.238E-3.5388E-3.5388E-3.5388E-3.5388E-3.5388E-3.5388E-3.5388E-3.5388E-3.5	7	0	1.349E 02	•
-1.538E-01 0.0 1.304E -2.13E-01 0.0 1.206E -2.13E-01 0.0 1.236E -2.472E-01 0.0 1.236E -2.472E-01 0.0 1.236E -3.638E-01 0.0 1.62E -4.951E-01 0.0 9.427E -4.951E-01 0.0 9.427E -5.359E-01 0.0 9.431E -5.359E-01 0.0 9.431E -7.75E 00 0.0 9.732E	-1.538E-01 0.0 1.304E-1.020E-2.472E-01 0.0 1.236E-2.33E-01 0.0 1.236E-2.33E-01 0.0 1.236E-3.23E-01 0.0 1.236E-3.23E-01 0.0 1.23E-3.23E-01 0.0 1.23E-3	7	ö	1.323E 02	•
-1.620E-01 0.0 1.266E -2.131E-01 0.0 1.262E -2.639E-01 0.0 1.169E -3.223E-01 0.0 1.129E -4.506E-01 0.0 1.129E -4.506E-01 0.0 6.126E -5.359E-01 0.0 6.1318 -5.352E-01 0.0 1.137E -4.552E-01 0.0 1.137E -4.552E-01 0.0 1.137E -5.352E-01 0.0 1.137E -5.352E-01 0.0 1.137E -5.352E-01 0.0 1.137E -6.535E-01 0.0 1.137E -7.79E 00 0.0 1.137E -7.79E 00 0.0 1.137E -7.79E 00 0.0 1.355E	-1.620E-01 0.0 1.266E -2.472E-01 0.0 1.262E -2.452E-01 0.0 1.169E -3.223E-01 0.0 1.129E -4.50E-01 0.0 1.129E -4.50E-01 0.0 1.129E -4.50E-01 0.0 6.646E -5.359E-01 0.0 6.431E -5.359E-01 0.0 1.137E -4.552E-01 0.0 1.137E -4.552E-01 0.0 1.137E -1.674E-01 0.0 -1.912E -1.676E-01 0.0 -1.912	7	0	1.304E 02	•
-2.131E-01 0.0 1.262E -2.372E-01 0.0 1.129E -3.630E-01 0.0 1.129E -4.509E-01 0.0 1.129E -4.509E-01 0.0 6.646E -5.359E-01 0.0 7.269E -5.459E-01 0.0 7.269E -7.413E-01 0.0 7.269E -7.43E-01 0.0 7.269E -7.445E-01 0.0 7.269E -7.45E-01 0.0 7.269E -7.45E-01 0.0 7.269E -7.46E-01 0.0 7.269E	-2.131E-01 0.0 1.26.E -2.472E-01 0.0 1.129E -3.630E-01 0.0 1.129E -4.061E-01 0.0 1.129E -4.061E-01 0.0 6.264E -5.509E-01 0.0 6.264E -5.509E-01 0.0 6.264E -5.509E-01 0.0 6.266E -5.509E-01 0.0 6.266E -5.509E-01 0.0 6.266E -5.509E-01 0.0 6.266E -5.709E-01 0.0 1.137E -6.509E-01 0.0 6.266E -7.719E-01 0.0 1.161E -7.719E-01 0.0 -6.441E -7.719E-01 0.0 1.161E -7.719E-01 0.0 1.161E	7	ö	1.286E 02	•
-2.472E-01 0.0 1.231E -3.636E-01 0.0 1.183E -3.630E-01 0.0 1.183E -4.061E-01 0.0 1.052E -4.061E-01 0.0 6.846E -5.359E-01 0.0 1.768E -5.43E-01 0.0 1.768E -5.43E-01 0.0 1.768E -5.43E-01 0.0 1.768E -5.43E-01 0.0 1.137E -6.45E-01 0.0 1.161E -6.43E-01 0.0 1.161E -6.43E-01 0.0 1.161E -6.43E-01 0.0 1.161E -6.43E-01 0.0 1.161E -6.446E 00 0.0 1.161E -6.45E-01 0.0 1.161E -6.46E-01 0.0 1.16	-2.472E-01 0.0 1.231E -3.630E-01 0.0 1.183E -3.630E-01 0.0 1.052E -4.061E-01 0.0 1.052E -4.061E-01 0.0 9.427E -5.08E-01 0.0 9.427E -5.359E-01 0.0 9.431E -5.359E-01 0.0 9.431E -6.252E-01 0.0 9.441E -7.452E-01 0.0 9.6441E -7.75E-01 0.0 9.6441E	-2		1.262E 02	•
-2.838E-01 0.0 1.189E -3.621E-01 0.0 0.0 1.129E -4.061E-01 0.0 0.0 1.25E -4.508E-01 0.0 9.427E -5.508E-01 0.0 9.427E -5.508E-01 0.0 9.427E -5.508E-01 0.0 9.437E -5.508E-01 0.0 9.431E -5.508E-01 0.0 9.331E	-2.838E-01 0.0 1.189E -3.621E-01 0.0 1.129E -4.061E-01 0.0 0.0 1.29E -4.508E-01 0.0 0.0 1.29E -5.908E-01 0.0 6.866E -5.325E-01 0.0 2.506E -5.325E-01 0.0 2.506E -5.325E-01 0.0 2.506E -5.43E-01 0.0 2.506E -5.43E-01 0.0 2.506E -1.874E-01 0.0 2.505E -1.875E-01 0.0 2.505E	2	ö	1.231E 02	•
-3.623E-01 0.0 1.129E -4.508E-01 0.0 0.0 1.052E -4.508E-01 0.0 0.0 1.052E -4.508E-01 0.0 0.0 6.846E -5.359E-01 0.0 6.846E -5.359E-01 0.0 0.0 5.611E -5.359E-01 0.0 1.768E -5.359E-01 0.0 1.768E -5.353E-01 0.0 1.768E -5.353E-01 0.0 1.768E -5.353E-01 0.0 1.768E -5.352E-01 0.0 1.137E -4.552E-01 0.0 1.137E -4.552E-01 0.0 1.137E -4.552E-01 0.0 1.137E -5.352E-01 0.0 1.137E -6.232E-01 0.0 1.137E -7.75E 00 0.0 -1.161E -7.79E 00 0.0 -2.351E -7.79E 00 0.0 -2.351E -7.79E 00 0.0 -3.357E -7.79E 00 0.0 -3.357E -7.79E 00 0.0 -3.357E -7.79E 00 0.0 -3.357E	-3.623E-01 0.0 1.129E -4.50E-01 0.0 0.0 1.052E -4.50E-01 0.0 0.0 1.052E -4.50E-01 0.0 0.0 6.66E -5.359E-01 0.0 6.66E -5.359E-01 0.0 5.611E -5.950E-01 0.0 7.384E -5.325E-01 0.0 7.758E -1.677E-01 0.0 7.69E -3.413E-01 0.0 7.69E -3.425E-01 0.0 7.69E -1.676E-01 0.0 7.69E	-2	0	1.188E 02	•
-3.630E-01 0.0 1.052E -4.50E-01 0.0 9.427E -4.50E-01 0.0 6.646E -5.359E-01 0.0 6.646E -5.359E-01 0.0 6.646E -5.359E-01 0.0 7.431E -5.359E-01 0.0 7.431E -5.352E-01 0.0 7.69E -5.352E-01 0.0 7.69E -5.352E-01 0.0 7.69E -5.352E-01 0.0 7.69E -7.43E-01 0.0 7.69E -7.43E-01 0.0 7.69E -7.43E-01 0.0 7.69E -7.45E-01 0.0 7.69E -7.45E-01 0.0 7.69E -7.45E-01 0.0 7.69E -7.45E-01 0.0 7.69E -7.46E-01 0.0 7.69E -7.60E	-3.630E-01 0.0 1.052E -4.506E-01 0.0 6.646E -5.359E-01 0.0 6.646E -5.359E-01 0.0 6.646E -5.359E-01 0.0 6.646E -5.359E-01 0.0 7.431E -5.950E-01 0.0 7.431E -5.950E-01 0.0 7.431E -5.352E-01 0.0 7.69E -7.73E-01 0.0 7.69E -7.43E-01 0.0 7.69E -7.49E-01 0.0 7.69E -7.79E 00 0.0 7.69E -7.79E -7.79E 00 0.0 7.69E -7.79E		0	1.129E 02	•
-4.061E-01 0.0 9 427E -4.509E-01 0.0 6.126E -5.359E-01 0.0 6.431E 5.692E-01 0.0 5.611E 5.692E-01 0.0 7.364E -5.359E-01 0.0 7.266E -5.359E-01 0.0 7.266E -5.359E-01 0.0 7.266E -5.359E-01 0.0 7.269E -5.43E-01 0.0 7.269E -7.413E-01 0.0 7.269E -7.43E-01 0.0 7.269E -7.45E-01 0.0 7.269E -7.45E-01 0.0 7.269E -7.46E-01 0.0 7.269E	-4.061E-01 0.0 9 427E -4.508E-01 0.0 6.126E -5.359E-01 0.0 6.431E -5.495E-01 0.0 5.611E -5.906E-01 0.0 3.364E -5.375E-01 0.0 3.364E -5.375E-01 0.0 1.768E -5.375E-01 0.0 1.768E -5.413E-01 0.0 1.768E -5.413E-01 0.0 1.768E -1.674E-01 0.0 1.161E -1.674E-01 0.0 1.676E -1.674E-01 0.0 1.676E -1.674E-01 0.0 1.676E -1.676E-01 0.0 1.676E		0	1.052E 02	•
-4.508E-01 0.0 6.666E -5.59E-01 0.0 6.666E -5.906E-01 0.0 3.364E -5.906E-01 0.0 5.506E	-4.508F-01 0.0 6.266F-6-5.55F-01 0.0 6.266F-6-5.55F-01 0.0 6.266F-6-5.596F-01 0.0 6.266F-6-5.596F-01 0.0 6.266F-6-5.596F-01 0.0 6.266F-6-5.596F-01 0.0 6.266F-6-5.596	4	0	9.427E 01	•
-4.951E-01 0.0 6.846E -5.359E-01 0.0 5.611E -5.950E-01 0.0 3.384E -5.950E-01 0.0 2.506E -5.773E-01 0.0 1.768E -5.523E-01 0.0 1.768E -5.43E-01 0.0 1.768E -5.43E-01 0.0 1.137E -6.207E-03 0.0 1.161E -6.43E-01 0.0 1.161E -6.43E-01 0.0 1.161E -7.43E-01 0.0 1.161E -7.43E-01 0.0 1.161E -7.43E-01 0.0 1.161E -7.43E-01 0.0 1.161E -7.45E-01 0.0 1.161E -7.75E 00 0.0 1.161E	-4.951E-01 0.0 6.846E -5.359E-01 0.0 5.611E -5.906E-01 0.0 3.384E -5.906E-01 0.0 3.384E -5.773E-01 0.0 1.768E -4.552E-01 0.0 1.37E -4.552E-01 0.0 1.37E -4.43E-01 0.0 1.37E -1.43E -1.43E -1.42E -1.43E -1	4-	0	8.126E 01	•
-5.359E-01 0.0 5.611E -5.95E-01 0.0 4.431E -5.950E-01 0.0 2.506E -5.775E-01 0.0 2.506E -5.775E-01 0.0 1.756E -5.325E-01 0.0 2.506E -5.45E-01 0.0 -1.912E -1.543E 00 0.0 -1.914E 1.938E 00 0.0 -2.915E 1.938E 00 0.0 -2.915E 2.779E 00 0.0 -2.015E 2.779E 00 0.0 -3.017E 3.656E 00 0.0 -3.555E 4.949E 00 0.0 -3.555E	-5.359E-01 0.0 5.611E -5.95E-01 0.0 4.431E -5.956E-01 0.0 2.506E -5.773E-01 0.0 2.506E -5.773E-01 0.0 1.759E -4.552E-01 0.0 1.37E -4.552E-01 0.0 1.37E -4.552E-01 0.0 1.37E -4.552E-01 0.0 1.37E -4.552E 00 0.0 -1.914E 1.543E 00 0.0 -2.151E 1.545E 00 0.0 -2.151E 1.545E 00 0.0 -2.815E 3.216E 00 0.0 -3.017E 3.656E 00 0.0 -3.017E 4.949E 00 0.0 -3.555E	4-	0	6.846E 01	•
5.692E-01 0.0 4.431E -5.306E-01 0.0 3.384E -5.325E-01 0.0 1.768E -5.325E-01 0.0 1.137E -4.552E-01 0.0 1.137E -4.552E-01 0.0 1.912E -3.443E-01 0.0 -4.691E -6.493E-01 0.0 -1.912E -1.779E 00 0.0 -2.391E 2.352E 00 0.0 -2.391E 2.352E 00 0.0 -2.391E 3.456E 00 0.0 -2.391E 4.527E 00 0.0 -3.355E 4.949E 00 0.0 -3.555E	5.692E-01 0.0 4,431E 5.906E-01 0.0 3.364E -5.773E-01 0.0 1.137E -4.552E-01 0.0 1.137E -4.552E-01 0.0 5.289E -3.413E-01 0.0 -4.691E 6.207E-03 0.0 -6.441E 5.169E-01 0.0 -1.672E 1.172E 00 0.0 -1.421E 5.169E-01 0.0 -1.421E 5.189E-01 0.0 -1.421E 5.189E-01 0.0 -1.421E 5.189E-01 0.0 -2.381E 1.552E 00 0.0 -2.381E 2.779E 00 0.0 -2.381E 2.779E 00 0.0 -2.815E 3.216E 00 0.0 -3.017E 4.949E 00 0.0 -3.017E	-5	0	5.611E 01	•
-5.906E-01 0.0 3.384E -5.950E-01 0.0 2.506E -5.373E-01 0.0 1.137E -4.552E-01 0.0 1.137E -4.552E-01 0.0 -1.912E -1.674E-01 0.0 -4.691E 6.293E-01 0.0 -1.421E 5.169E-01 0.0 -1.421E 6.293E-01 0.0 -1.421E 1.172E 00 0.0 -1.914E 1.543E 00 0.0 -2.151E 1.938E 00 0.0 -2.891E 2.375E 00 0.0 -2.891E 3.216E 00 0.0 -2.891E 4.527E 00 0.0 -3.555E 4.949E 00 0.0 -3.555E	-5.906E-01 0.0 3.384E -5.73E-01 0.0 2.506E -5.73E-01 0.0 1.137E -4.552E-01 0.0 1.137E -4.552E-01 0.0 -1.912E -1.674E-01 0.0 -9.441E 5.187E-01 0.0 -9.441E 5.189E-01 0.0 -1.67E 1.72E 00 0.0 -1.67E 1.72E 00 0.0 -2.381E 2.779E 00 0.0 -2.381E 2.779E 00 0.0 -2.815E 3.55E 00 0.0 -2.815E 3.55E 00 0.0 -3.007E 4.949E 00 0.0 -3.555E		0	4.431E 01	•
-5.950E-01 0.0 2.506E -5.773E-01 0.0 1.769E -4.552E-01 0.0 5.289E -3.413E-01 0.0 -1.912E -1.674E-01 0.0 -4.691E 2.443E-01 0.0 -4.691E 2.443E-01 0.0 -1.161E 5.169E-01 0.0 -1.161E 5.189E-01 0.0 -1.914E 1.543E-00 0.0 -1.914E 1.936E-00 0.0 -2.381E 2.352E-00 0.0 -2.381E 2.352E-00 0.0 -3.387E 4.694E-00 0.0 -3.555E 4.949E-00 0.0 -3.555E	-5.950E-01 0.0 2.506E -5.373E-01 0.0 1.768E -4.552E-01 0.0 5.269E -3.413E-01 0.0 -1.912E -1.674E-01 0.0 -4.691E 6.207E-03 0.0 -6.441E 5.169E-01 0.0 -1.61E 5.169E-01 0.0 -1.67E 1.172E 00 0.0 -1.67E 1.172E 00 0.0 -2.81E 2.352E 00 0.0 -2.81E 2.352E 00 0.0 -2.81E 3.56E 00 0.0 -2.81E 4.949E 00 0.0 -3.208E 4.949E 00 0.0 -3.37	.5	0	3.384E 01	•
-5.773E-01 0.0 1.768E -5.723E-01 0.0 1.137E -5.525E-01 0.0 5.292E -1.674E-01 0.0 -1.912E -1.674E-01 0.0 -4.691E 2.443E-01 0.0 -4.691E 5.169E-01 0.0 -1.61E 5.169E-01 0.0 -1.61E 1.72E 00 0.0 -1.914E 1.543E 00 0.0 -2.151E 2.352E 00 0.0 -2.151E 2.352E 00 0.0 -2.151E 3.216E 00 0.0 -2.151E 4.694E 00 0.0 -3.555E 4.949E 00 0.0 -3.555E	-5.773E-01 0.0 1.768E -5.23E-01 0.0 1.137E -4.552E-01 0.0 5.289E -1.874E-01 0.0 -1.912E -1.874E-01 0.0 -4.691E 8.207E-03 0.0 -4.691E 8.293E-01 0.0 -1.670E 1.172E 00 0.0 -1.914E 1.543E 00 0.0 -2.381E 2.775E 00 0.0 -2.81E 2.775E 00 0.0 -2.81E 4.945E 00 0.0 -3.208E 4.945E 00 0.0 -3.208E 4.945E 00 0.0 -3.208E		0	2.506E 01	* n
-5.523E-01 0.0 1.137E -4.552E-01 0.0 5.89E -3.413E-01 0.0 -1.912E -1.674E-01 0.0 -4.691E 8.207E-03 0.0 -9.441E 2.443E-01 0.0 -1.161E 5.169E-01 0.0 -1.161E 8.293E-01 0.0 -1.421E 1.772E 00 0.0 -2.381E 2.352E 00 0.0 -2.381E 2.352E 00 0.0 -2.381E 2.352E 00 0.0 -2.381E 4.945E 00 0.0 -3.367E 4.949E 00 0.0 -3.555E	-5.523E-01 0.0 1.137E -4.552E-01 0.0 5.289E -3.413E-01 0.0 -1.912E -1.674E-01 0.0 -4.691E 6.207E-01 0.0 -4.691E 5.189E-01 0.0 -1.161E 5.189E-01 0.0 -1.161E 1.172E 00 0.0 -1.161E 1.543E 00 0.0 -1.914E 1.543E 00 0.0 -2.151E 1.938E 00 0.0 -2.151E 2.352E 00 0.0 -2.891E 2.352E 00 0.0 -2.891E 3.216E 00 0.0 -2.891E 4.949E 00 0.0 -3.208E 4.949E 00 0.0 -3.555E	-5		1.768E 01	•
-4.552E-01 0.0 5.289E -3.413E-01 0.0 -1.912E -1.074E-01 0.0 -4.691E -2.443E-01 0.0 -1.161E 5.189E-01 0.0 -1.421E 6.293E-01 0.0 -1.421E 1.938E 00 0.0 -1.914E 1.938E 00 0.0 -2.391E 2.779E 00 0.0 -2.391E 2.779E 00 0.0 -2.015E 3.216E 00 0.0 -2.015E 4.949E 00 0.0 -3.555E 4.949E 00 0.0 -3.555E	-4.552E-01 0.0 5.289E -3.413E-01 0.0 -1.912E -1.074E-01 0.0 -4.691E 0.207E-01 0.0 -4.691E 0.243E-01 0.0 -1.161E 0.293E-01 0.0 -1.161E 0.293E-01 0.0 -1.161E 1.543E 00 0.0 -2.151E 1.938E 00 0.0 -2.151E 1.938E 00 0.0 -2.015E 2.779E 00 0.0 -2.015E 3.216E 00 0.0 -2.015E 4.949E 00 0.0 -3.508E 4.949E 00 0.0 -3.555E	.5	6	1.137E 01	*
-3.413E-01 0.0 -1.912E1.674E-01 0.0 -4.691E 6.457E-01 0.0 -4.691E 5.169E-01 0.0 -1.161E 6.293E-01 0.0 -1.421E 1.172E 00 0.0 -1.142 1.543E 00 0.0 -2.151E 1.938E 00 0.0 -2.151E 2.352E 00 0.0 -2.603E 2.779E 00 0.0 -2.603E 3.565E 00 0.0 -3.605E 4.567E 00 0.0 -3.567E 4.567E 00 0.0 -3.567E	-3.413E-01 0.0 -1.912E1.674E-01 0.0 -4.691E 6.207E-03 0.0 -4.691E 5.169E-01 0.0 -1.421E 6.293E-01 0.0 -1.421E 6.293E-01 0.0 -1.421E 1.543E 00 0.0 -2.151E 1.938E 00 0.0 -2.391E 2.352E 00 0.0 -2.391E 2.779E 00 0.0 -2.815E 3.216E 00 0.0 -2.815E 4.949E 00 0.0 -3.077E 4.949E 00 0.0 -3.555E	5		5.289E 00	+ H
-1.674E-01 0.0 6.207E-03 0.0 2.443E-01 0.0 6.293E-01 0.0 1.172E 00 0.0 1.543E 00 0.0 2.352E 00 0.0 2.352E 00 0.0 4.094E 00 0.0 4.527E 00 0.0	-1.674E-01 0.0 6.207E-03 0.0 5.497E-01 0.0 6.293E-01 0.0 1.172E 00 0.0 1.543E 00 0.0 1.543E 00 0.0 2.779E 00 0.0 3.55E 00 0.0 4.094E 00 0.0 4.949E 00 0.0	-3		912E-	•
2.443E-01 0.0 5.169E-01 0.0 6.293E-01 0.0 1.172E 00 0.0 1.936E 00 0.0 2.352E 00 0.0 3.216E 00 0.0 4.094E 00 0.0 4.527E 00 0.0	2.443E-01 0.0 5.169E-01 0.0 6.293E-01 0.0 1.172E 00 0.0 1.938E 00 0.0 2.352E 00 0.0 3.216E 00 0.0 3.656E 00 0.0 4.949E 00 0.0	7		-4.691E 00	***
2.443E-01 0.0 6.293E-01 0.0 1.172E 00 0.0 1.938E 00 0.0 2.352E 00 0.0 2.352E 00 0.0 4.094E 00 0.0 4.527E 00 0.0	2.443E-01 0.0 6.293E-01 0.0 1.172E 00 0.0 1.543E 00 0.0 2.352E 00 0.0 2.779E 00 0.0 3.216E 00 0.0 4.949E 00 0.0	80		-8.441E 00	н +
5.189E-01 0.0 1.172E 00 0.0 1.543E 00 0.0 1.938E 00 0.0 2.352E 00 0.0 2.779E 00 0.0 3.216E 00 0.0 4.527E 00 0.0	5.189E-01 0.0 1.172E 00 0.0 1.543E 00 0.0 1.938E 00 0.0 2.352E 00 0.0 3.216E 00 0.0 4.994E 00 0.0 4.949E 00 0.0	2		-1.161E 01	**************************************
8.293E-01 0.0 1.172E 00 0.0 1.938E 00 0.0 2.352E 00 0.0 3.216E 00 0.0 3.656E 00 0.0 4.527E 00 0.0	8.293E-01 0.0 1.172E 00 0.0 1.543E 00 0.0 2.352E 00 0.0 2.779E 00 0.0 3.216E 00 0.0 4.949E 00 0.0	S		-1.421E 01	*"
1.543E 00 0.0 1.543E 00 0.0 2.352E 00 0.0 2.779E 00 0.0 3.216E 00 0.0 4.094E 00 0.0 4.527E 00 0.0	1.172E 00 0.0 1.543E 00 0.0 1.938E 00 0.0 2.352E 00 0.0 3.216E 00 0.0 4.945E 00 0.0 4.949E 00 0.0	•		-1.670E 01	***
1.543E 00 0.0 2.352E 00 0.0 2.779E 00 0.0 3.216E 00 0.0 4.094E 00 0.0 4.527E 00 0.0	1.543E 00 0.0 1.938E 00 0.0 2.352E 00 0.0 3.216E 00 0.0 4.094E 00 0.0 4.949E 00 0.0	-	0	-1.914E 01	*11
1.938E 00 0.0 2.352E 00 0.0 3.216E 00 0.0 3.656E 00 0.0 4.094E 00 0.0 4.527E 00 0.0	1.938E 00 0.0 2.352E 00 0.0 2.779E 00 0.0 3.216E 00 0.0 4.094E 00 0.0 4.949E 00 0.0	-	0	-2.151E 01	***
2.352E 00 0.0 2.779E 00 0.0 3.216E 00 0.0 4.656E 00 0.0 4.527E 00 0.0	2.352E 00 0.0 2.779E 00 0.0 3.216E 00 0.0 3.656E 00 0.0 4.094E 00 0.0 4.949E 00 0.0	-		-2.381E 01	*"
2.779E 00 0.0 3.216E 00 0.0 3.656E 00 0.0 4.094E 00 0.0 4.949E 00 0.0	2.779E 00 0.0 3.216E 00 0.0 3.656E 00 0.0 4.094E 00 0.0 4.527E 00 0.0	~	0	-2.603E 01	**
3.216E 00 0.0 3.656E 00 0.0 4.094E 00 0.0 4.527E 00 0.0	3.216E 00 0.0 3.656E 00 0.0 4.094E 00 0.0 4.527E 00 0.0	2		-2.815E 01	* •
3.656E 00 0.0 4.094E 00 0.0 4.527E 00 0.0 4.949E 00 0.0	3.656E 00 0.0 4.094E 00 0.0 4.527E 00 0.0	2	0	-3.017E 01	*"
4.094E 00 0.0 4.527E 00 0.0 4.949E 00 0.0	4.094E 00 0.0 4.527E 00 0.0 4.949E 00 0.0	E	0	-3.208E 01	***
4.527E 00 0.0	4.527E 00 0.0 4.949E 00 0.0	4		-3.387E 01	***
4.949E 00 0.0	4.949E 00 0.0	4	0	-3.555E 01	* n
	B-46	3		-3.711E 01	* "