

What is claimed is:

1. A method of regulating meiosis in a mammalian germ cell comprising administering to a germ cell in need of such regulation, an effective amount of a compound of formula (I)

20

wherein R¹ and R², independently, are selected from the group consisting of hydrogen and branched or unbranched C₁-C₆ alkyl which may be substituted by halogen, hydroxy or cyano, or wherein R¹ and R² together designate methylene or, together with the carbon atom to which they are bound, form a cyclopropane ring, a cyclopentane ring, or a cyclohexane ring; R³ is selected from the group consisting of hydrogen, methylene, hydroxy, methoxy, acetoxy, oxo, =NOR²⁶ wherein R²⁶ is hydrogen or C₁-C₃ alkyl, halogen, and hydroxy and C₁-C₄ alkyl bound to the same carbon atom of the sterol skeleton, or R³ designates, together with R⁹ or R¹⁴, an additional bond between the carbon atoms to which R³ and R⁹ or R¹⁴ are bound; R⁴ is selected from the group consisting of hydrogen, methylene, hydroxy, methoxy, acetoxy, oxo, =NOR²⁷ wherein R²⁷ is hydrogen or C₁-C₃ alkyl, halogen, and hydroxy and C₁-C₄ alkyl bound to the same carbon atom of the sterol skeleton, or R⁴ designates, together with R¹³ or R¹⁵, an

additional bond between the carbon atoms to which R⁴ and R¹³ or R¹⁵ are bound; R⁵ is selected from the group consisting of hydrogen, C₁-C₄ alkyl, methylene, hydroxy, methoxy, oxo, and =NOR²² wherein R²² is hydrogen or C₁-C₃ alkyl, or R⁵ designates, together with R⁶, an additional bond between the carbon atoms to which R⁵ and R⁶ are bound; R⁶ is hydrogen or R⁶ designates, together with R⁵, an additional bond between the carbon atoms to which R⁵ and R⁶ are bound; R⁹ is hydrogen or R⁹ designates, together with R³ or R¹⁰, an additional bond between the carbon atoms to which R⁹ and R³ or R¹⁰ are bound; R¹⁰ is hydrogen or R¹⁰ designates, together with R⁹, an additional bond between the carbon atoms to which R¹⁰ and R⁹ are bound; R¹¹ is selected from the group consisting of hydroxy, alkoxy, substituted alkoxy, acyloxy, sulphonyloxy, phosphoryloxy, oxo, =NOR²⁸ wherein R²⁸ is hydrogen or C₁-C₃ alkyl, halogen and hydroxy and C₁-C₄ alkyl bound to the same carbon atom of the sterol skeleton, or R¹¹ designates, together with R¹², an additional bond between the carbon atoms to which R¹¹ and R¹² are bound; R¹² is selected from the group consisting of hydrogen, C₁-C₃ alkyl, vinyl, C₁-C₃ alkoxy and halogen, or R¹² designates, together with R¹¹, an additional bond between the carbon atoms to which R¹² and R¹¹ are bound; R¹³ is hydrogen or R¹³ designates, together with R⁴ or R¹⁴, an additional bond between the carbon atoms to which R¹³ and R⁴ or R¹⁴ are bound; R¹⁴ is hydrogen or R¹⁴ designates, together with R³, R⁶ or R¹³, an additional bond between the carbon atoms to which R¹⁴ and R³ or R⁶ or R¹³ are bound; R¹⁵ is selected from the group consisting of hydrogen, C₁-C₄ alkyl, methylene, hydroxy, methoxy, acetoxy, oxo, and =NOR²³ wherein R²³ is hydrogen or C₁-C₃ alkyl, or R¹⁵ designates, together with R⁴, an additional bond between the carbon atoms to which R¹⁵ and R⁴ are bound; R¹⁶ is selected from the group consisting of hydrogen, C₁-C₃ alkyl, methylene, hydroxy, methoxy, oxo and =NOR²⁴ wherein R²⁴ is hydrogen or C₁-C₃ alkyl, or R¹⁶ designates, together with R¹⁷, an additional bond between the carbon atoms to which R¹⁶ and R¹⁷ are bound; R¹⁷ is hydrogen or hydroxy or R¹⁷ designates, together with R¹⁶, an additional bond between the carbon atoms to which R¹⁷ and R¹⁶ are bound; R¹⁸ and R¹⁹ are, independently, hydrogen or fluoro; R²⁵ is selected from the group consisting of hydrogen, C₁-C₄ alkyl, methylene, hydroxy and oxo; A is a carbon atom or a nitrogen atom; when A is a carbon atom, R⁷ is selected from the group consisting of hydrogen, hydroxy and fluoro, and R⁸ is selected from the group

consisting of hydrogen, C₁-C₄ alkyl, methylene and halogen, or R⁷ designates, together with R⁸, an additional bond between the carbon atoms to which R⁷ and R⁸ are bound; R²⁰ is selected from the group consisting of C₁-C₄ alkyl, trifluoromethyl and C₃-C₆ cycloalkyl and R²¹ is selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ hydroxyalkyl, C₁-C₄ haloalkyl containing up to three halogen atoms,
5 methoxymethyl, acetoxymethyl, and C₃-C₆ cycloalkyl, or R²⁰ and R²¹, together with the carbon atom to which they are bound, form a C₃-C₆ cycloalkyl ring; and when A is a nitrogen atom, R⁷ designates a lone pair of electrons and R⁸ is selected from the group consisting of hydrogen, C₁-C₄ alkyl and oxo; R²⁰ and R²¹ are, independently, C₁-C₄ alkyl or C₃-C₆ cycloalkyl; provided that the compound of formula (I) does not have any cumulated double bonds and further provided that the compound is not one of the following
10 compounds:
Cholest-7-ene-3β-ol;
4-Methylcholest-7-ene-3β-ol;
4-Ethylcholest-7-ene-3β-ol;
4,4-Dimethylcholest-7-ene-3β-ol;
15 4α-Methyl-4β-ethylcholest-7-ene-3β-ol;
4α-Ethyl-4β-methylcholest-7-ene-3β-ol;
4,4-Diethylcholest-7-ene-3β-ol;
4-Propylcholest-7-ene-3β-ol;
4-Butylcholest-7-ene-3β-ol;
20 4-Isobutylcholest-7-ene-3β-ol;
4,4-Tetramethylenecholest-7-ene-3β-ol;
4,4-Pentamethylenecholest-7-ene-3β-ol;
Cholest-8-ene-3β-ol;
4-Methylcholest-8-ene-3β-ol;
25 4-Ethylcholest-8-ene-3β-ol;
4,4-Dimethylcholest-8-ene-3β-ol;
4α-Methyl-4β-ethylcholest-8-ene-3β-ol;
4α-Ethyl-4β-methylcholest-8-ene-3β-ol;
4,4-Diethylcholest-8-ene-3β-ol;
30 4-Propylcholest-8-ene-3β-ol;

4-Butylcholest-8-ene-3 β -ol;
4-Isobutylcholest-8-ene-3 β -ol;
4,4-Tetramethylenecholest-8-ene-3 β -ol;
4,4-Pentamethylenecholest-8-ene-3 β -ol;
5 Cholest-8(14)-ene-3 β -ol;
4-Methylcholest-8(14)-ene-3 β -ol;
4-Ethylcholest-8(14)-ene-3 β -ol;
4,4-Dimethylcholest-8(14)-ene-3 β -ol;
4 α -Methyl-4 β -ethylcholest-8(14)-ene-3 β -ol;
10 4 α -Ethyl-4 β -methylcholest-8(14)-ene-3 β -ol;
4,4-Diethylcholest-8(14)-ene-3 β -ol;
4-Propylcholest-8(14)-ene-3 β -ol;
4-Butylcholest-8(14)-ene-3 β -ol;
4-Isobutylcholest-8(14)-ene-3 β -ol;
15 4,4-Tetramethylenecholest-8(14)-ene-3 β -ol;
4,4-Pentamethylenecholest-8(14)-ene-3 β -ol;
Cholesta-8,14-diene-3 β -ol;
4-Methylcholesta-8,14-diene-3 β -ol;
4-Ethylcholesta-8,14-diene-3 β -ol;
20 4,4-Dimethylcholesta-8,14-diene-3 β -ol;
4 α -Methyl-4 β -ethylcholesta-8,14-diene-3 β -ol;
4 α -Ethyl-4 β -methylcholesta-8,14-diene-3 β -ol;
4,4-Diethylcholesta-8,14-diene-3 β -ol;
4-Propylcholesta-8,14-diene-3 β -ol;
25 4-Butylcholesta-8,14-diene-3 β -ol;
4-Isobutylcholesta-8,14-diene-3 β -ol;
4,4-Tetramethylenecholesta-8,14-diene-3 β -ol;
4,4-Pentamethylenecholesta-8,14-diene-3 β -ol;
Cholesta-8,24-diene-3 β -ol;
30 4-Methylcholesta-8,24-diene-3 β -ol;
4-Ethylcholesta-8,24-diene-3 β -ol;
4,4-Dimethylcholesta-8,24-diene-3 β -ol;

4 α -Methyl-4 β -ethylcholesta-8,24-diene-3 β -ol;

4 α -Ethyl-4 β -methylcholesta-8,24-diene-3 β -ol;

4,4-Diethylcholesta-8,24-diene-3 β -ol;

4-Propylcholesta-8,24-diene-3 β -ol;

5 4-Butylcholesta-8,24-diene-3 β -ol;

4-Isobutylcholesta-8,24-diene-3 β -ol;

4,4-Tetramethylenecholesta-8,24-diene-3 β -ol;

4,4-Pentamethylenecholesta-8,24-diene-3 β -ol;

Cholesta-8,14,24-triene-3 β -ol;

10 4-Methylcholesta-8,14,24-triene-3 β -ol;

4-Ethylcholesta-8,14,24-triene-3 β -ol;

4,4-Dimethylcholesta-8,14,24-triene-3 β -ol;

4 α -Methyl-4 β -ethylcholesta-8,14,24-triene-3 β -ol;

4 α -Ethyl-4 β -methylcholesta-8,14,24-triene-3 β -ol;

15 4,4-Diethylcholesta-8,14,24-triene-3 β -ol;

4-Propylcholesta-8,14,24-triene-3 β -ol;

4-Butylcholesta-8,14,24-triene-3 β -ol;

4-Isobutylcholesta-8,14,24-triene-3 β -ol;

4,4-Tetramethylenecholesta-8,14,24-triene-3 β -ol; and

20 4,4-Pentamethylenecholesta-8,14,24-triene-3 β -ol;

and esters and ethers thereof.

2. The method of claim 1, provided that it is not a compound of formula (II)

25

30

(II)

wherein R^{1*} and R^{2*}, independently, are selected from the group consisting of hydrogen, branched or unbranched C₁-C₆ alkyl which may be substituted by halogen or hydroxy or wherein R^{1*} and R^{2*},

5 together with the carbon atom to which they are bound, form a cyclopentane ring or a cyclohexane ring; R^{13*} and R^{14*} together designate an additional bond between the carbon atoms to which they are bound in which case R^{3*} is hydrogen and R^{6*} and R^{5*} are either hydrogen or together they designate an additional bond between the carbon atoms to which they are bound; or R^{3*} and R^{14*} together designate an additional bond between the carbon atoms to which they are bound in which case R^{13*} is hydrogen and R^{6*} and R^{5*} are either hydrogen or together they designate an additional bond between the carbon atoms to which they are bound; or R^{6*} and R^{14*} together designate an additional bond between the carbon atoms to which they are bound in which case R^{13*}, R^{3*} and R^{5*} are all hydrogen; R^{8*} and R^{7*} are hydrogen or together they designate an additional bond between the carbon atoms to which they are bound; and B* is either hydrogen or an acyl group, or a group which together with the remaining part of the molecule forms an ether.

10

15

3. The method of claim 1, wherein R¹ and R² are both hydrogen; both methyl; one is hydrogen and the other is methyl; or together designate methylene, or wherein R¹ and R², together with the carbon atom to which they are bound, form a cyclopropane ring, a cyclopentane ring, or a cyclohexane ring.

20

4. The method of claim 1, wherein R¹ is branched or unbranched C₁-C₆ alkyl, optionally substituted by halogen, hydroxy or cyano, and wherein R² is branched or unbranched C₁-C₆ alkyl, optionally substituted by halogen, hydroxy or cyano.

25

5. The method of claim 1, wherein R³ is hydrogen, methylene, hydroxy, methoxy, acetoxy, halogen, oxo, =NOH, or wherein R³ is =NOR²⁶ and R²⁶ is C₁-C₃ alkyl, or wherein R³ is hydroxy and C₁-C₄ alkyl bound to the same carbon atom of the sterol skeleton.

6. The method of claim 1, wherein R³, together with R⁹, designates an additional bond between the

carbon atoms to which R³ and R⁹ are bound, or wherein R³, together with R¹⁴, designates an additional bond between the carbon atoms to which R³ and R¹⁴ are bound.

7. The method of claim 1, wherein R⁴ is hydrogen, methylene, hydroxy, methoxy, acetoxy, oxo, =NOH,

5 =NOR²⁷, wherein R²⁷ is C₁-C₃ alkyl, or wherein R⁴ is hydroxy and C₁-C₄ alkyl bound to the same carbon atom of the sterol skeleton, or wherein R⁴, together with R¹³, designates an additional bond between the carbon atoms to which R⁴ and R¹³ are bound, or wherein R⁴, together with R¹⁵, designates an additional bond between the carbon atoms to which R⁴ and R¹⁵ are bound.

10 8. The method of claim 1, wherein R⁵ is hydrogen, C₁-C₄ alkyl, methylene, hydroxy, methoxy, oxo,

=NOH, =NOR²², wherein R²² is C₁-C₃ alkyl, wherein R⁵, together with R⁶, designates an additional bond between the carbon atoms to which R⁵ and R⁶ are bound.

9. The method of claim 1, wherein R⁶ is hydrogen, or wherein R⁶, together with R¹⁴, designates an

15 additional bond between the carbon atoms to which R⁶ and R¹⁴ are bound.

10. The method of claim 1, wherein R⁹ is hydrogen, or wherein R⁹, together with R¹⁰, designates an

additional bond between the carbon atoms to which R⁹ and R¹⁰ are bound.

20 11. The method of claim 1, wherein R¹⁰ is hydrogen.

12. The method of claim 1, wherein R¹¹ is hydroxy, alkoxy, aralkyloxy, alkoxyalkoxy or

alkanoyloxyalkyl, each group comprising a total of up to 10 carbon atoms, C₁-C₄ alkoxy, methoxy, ethoxy,

CH₃OCH₂O-, pivaloyloxymethoxy; an acyloxy group derived from an acid having from 1 to 20 carbon

25 atoms, an acyloxy group selected from the group consisting of acetoxy, benzoyloxy, pivaloyloxy,

butyryloxy, nicotinoyloxy, isonicotinoyloxy, hemi succinoyloxy, hemi glutaroyloxy, butylcarbamoyloxy,

phenylcarbamoyloxy, butoxycarbonyloxy, *tert*-butoxycarbonyloxy and ethoxycarbonyloxy,

13. The method of claim 1, wherein R¹¹ is sulphonyloxy, phosphonyloxy, oxo, =NOH, =NOR²⁸, wherein R²⁸ is C₁-C₃ alkyl, or wherein R¹¹ is halogen, hydroxy and C₁-C₄ alkyl bound to the same carbon atom of the sterol skeleton, or wherein R¹¹, together with R¹², designates an additional bond between the carbon atoms to which R¹¹ and R¹² are bound.

5

14. The method of claim 1, wherein R¹² is hydrogen, C₁-C₃ alkyl, C₁-C₃ alkoxy, or halogen.

15. The method of claim 1, wherein R¹³ is hydrogen, or R¹³, together with R¹⁴, designates an additional bond between the carbon atoms to which R¹³ and R¹⁴ are bound.

10

16. The method of claim 1, wherein R¹⁴ is hydrogen.

17. The method of claim 1, wherein R¹⁵ is hydrogen, C₁-C₄ alkyl, methylene, hydroxy, methoxy, acetoxy, oxo, =NOH, or wherein R¹⁵ is =NOR²³, and R²³ is C₁-C₃ alkyl.

15

18. The method of claim 1, wherein R¹⁶ is hydrogen, C₁-C₃ alkyl, methylene, hydroxy, methoxy, oxo, =NOH, or R¹⁶ is =NOR²⁴, wherein R²⁴ is C₁-C₃ alkyl, or R¹⁶, together with R¹⁷, designates an additional bond between the carbon atoms to which R¹⁶ and R¹⁷ are bound.

20

19. The method of claim 1, wherein R¹⁷ is hydrogen or hydroxy.

20. The method of claim 1, wherein R¹⁸ and R¹⁹ are both hydrogen, both fluoro, or one is fluoro and the other is hydrogen.

25

21. The method of claim 1, wherein R²⁵ is hydrogen, C₁-C₄ alkyl, methylene, hydroxy, or oxo.

22. The method of claim 1, wherein A is a carbon atom.

23. The method of claim 1, wherein R⁷ is hydrogen, hydroxy, fluoro, or R⁷, together with R⁸, designates an additional bond between the carbon atoms to which R⁷ and R⁸ are bound.

24. The method of claim 1, wherein R⁸ is hydrogen, C₁-C₄ alkyl, methylene, or halogen

5

25. The method of claim 1, wherein R²⁰ is C₁-C₄ alkyl, trifluoromethyl, or C₃-C₆ cycloalkyl.

26. The method of claim 1, wherein R²¹ is C₁-C₄ alkyl, C₁-C₄ hydroxyalkyl, C₁-C₄ haloalkyl containing up to three halogen atoms, methoxymethyl, acetoxyethyl, or C₃-C₆ cycloalkyl.

10

27. The method of claim 1, wherein R²⁰ and R²¹, together with the carbon atom to which they are bound, form a C₃-C₆ cycloalkyl ring.

28. The method of claim 1, wherein A is a nitrogen atom.

15

29. The method of claim 28, wherein R⁸ is hydrogen, C₁-C₄ alkyl, or oxo.

30. The method of claim 28, wherein R²⁰ and R²¹, independently, are selected from the group consisting of C₁-C₄ alkyl, cyclopropyl, cyclopentyl and cyclohexyl.

20

31. The method of claim 1, wherein the germ cell is an oocyte.

32. The method of claim 31, wherein the compound is administered to an oocyte *ex vivo*.

25

33. The method of claim 31, wherein the germ cell is a male germ cell.

34. A method of producing mature male germ cells by administration of a compound to testicular tissue, wherein the compound is a compound of formula (I)

wherein R¹ and R², independently, are selected from the group consisting of hydrogen and branched or unbranched C₁-C₆ alkyl which may be substituted by halogen, hydroxy or cyano, or wherein R¹ and R² together designate methylene or, together with the carbon atom to which they are bound, form a cyclopropane ring, a cyclopentane ring, or a cyclohexane ring; R³ is selected from the group consisting of hydrogen, methylene, hydroxy, methoxy, acetoxy, oxo, =NOR²⁶ wherein R²⁶ is hydrogen or C₁-C₃ alkyl, halogen, and hydroxy and C₁-C₄ alkyl bound to the same carbon atom of the sterol skeleton, or R³ designates, together with R⁹ or R¹⁴, an additional bond between the carbon atoms to which R³ and R⁹ or R¹⁴ are bound; R⁴ is selected from the group consisting of hydrogen, methylene, hydroxy, methoxy, acetoxy, oxo, =NOR²⁷ wherein R²⁷ is hydrogen or C₁-C₃ alkyl, halogen, and hydroxy and C₁-C₄ alkyl bound to the same carbon atom of the sterol skeleton, or R⁴ designates, together with R¹³ or R¹⁵, an additional bond between the carbon atoms to which R⁴ and R¹³ or R¹⁵ are bound; R⁵ is selected from the group consisting of hydrogen, C₁-C₄ alkyl, methylene, hydroxy, methoxy, oxo, and =NOR²² wherein R²² is hydrogen or C₁-C₃ alkyl, or R⁵ designates, together with R⁶, an additional bond between the carbon atoms to which R⁵ and R⁶ are bound; R⁶ is hydrogen or R⁶ designates, together with R⁵, an additional

bond between the carbon atoms to which R⁵ and R⁶ are bound; R⁹ is hydrogen or R⁹ designates, together with R³ or R¹⁰, an additional bond between the carbon atoms to which R⁹ and R³ or R¹⁰ are bound; R¹⁰ is hydrogen or R¹⁰ designates, together with R⁹, an additional bond between the carbon atoms to which R¹⁰ and R⁹ are bound; R¹¹ is selected from the group consisting of hydroxy, alkoxy, substituted alkoxy, acyloxy, sulphonyloxy, phosphoryloxy, oxo, =NOR²⁸ wherein R²⁸ is hydrogen or C₁-C₃ alkyl, halogen and hydroxy and C₁-C₄ alkyl bound to the same carbon atom of the sterol skeleton, or R¹¹ designates, together with R¹², an additional bond between the carbon atoms to which R¹¹ and R¹² are bound; R¹² is selected from the group consisting of hydrogen, C₁-C₃ alkyl, vinyl, C₁-C₃ alkoxy and halogen, or R¹² designates, together with R¹¹, an additional bond between the carbon atoms to which R¹² and R¹¹ are bound; R¹³ is hydrogen or R¹³ designates, together with R⁴ or R¹⁴, an additional bond between the carbon atoms to which R¹³ and R⁴ or R¹⁴ are bound; R¹⁴ is hydrogen or R¹⁴ designates, together with R³, R⁶ or R¹³, an additional bond between the carbon atoms to which R¹⁴ and R³ or R⁶ or R¹³ are bound; R¹⁵ is selected from the group consisting of hydrogen, C₁-C₄ alkyl, methylene, hydroxy, methoxy, acetoxy, oxo, and =NOR²³ wherein R²³ is hydrogen or C₁-C₃ alkyl, or R¹⁵ designates, together with R⁴, an additional bond between the carbon atoms to which R¹⁵ and R⁴ are bound; R¹⁶ is selected from the group consisting of hydrogen, C₁-C₃ alkyl, methylene, hydroxy, methoxy, oxo and =NOR²⁴ wherein R²⁴ is hydrogen or C₁-C₃ alkyl, or R¹⁶ designates, together with R¹⁷, an additional bond between the carbon atoms to which R¹⁶ and R¹⁷ are bound; R¹⁷ is hydrogen or hydroxy or R¹⁷ designates, together with R¹⁶, an additional bond between the carbon atoms to which R¹⁷ and R¹⁶ are bound; R¹⁸ and R¹⁹ are, independently, hydrogen or fluoro; R²⁵ is selected from the group consisting of hydrogen, C₁-C₄ alkyl, methylene, hydroxy and oxo; A is a carbon atom or a nitrogen atom; when A is a carbon atom, R⁷ is selected from the group consisting of hydrogen, hydroxy and fluoro, and R⁸ is selected from the group consisting of hydrogen, C₁-C₄ alkyl, methylene and halogen, or R⁷ designates, together with R⁸, an additional bond between the carbon atoms to which R⁷ and R⁸ are bound; R²⁰ is selected from the group consisting of C₁-C₄ alkyl, trifluoromethyl and C₃-C₆ cycloalkyl and R²¹ is selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ hydroxyalkyl, C₁-C₄ haloalkyl containing up to three halogen atoms,

methoxymethyl, acetoxyethyl, and C₃-C₆ cycloalkyl, or R²⁰ and R²¹, together with the carbon atom to which they are bound, form a C₃-C₆ cycloalkyl ring; and when A is a nitrogen atom, R⁷ designates a lone pair of electrons and R⁸ is selected from the group consisting of hydrogen, C₁-C₄ alkyl and oxo; R²⁰ and R²¹ are, independently, C₁-C₄ alkyl or C₃-C₆ cycloalkyl; provided that the compound of formula (I) does

5 not have any cumulated double bonds and further provided that the compound is not one of the following compounds:

Cholest-7-ene-3β-ol; 4-Methylcholest-7-ene-3β-ol; 4-Ethylcholest-7-ene-3β-ol; 4,4-Dimethylcholest-7-ene-3β-ol; 4α-Methyl-4β-ethylcholest-7-ene-3β-ol; 4α-Ethyl-4β-methylcholest-7-ene-3β-ol; 4,4-Diethylcholest-7-ene-3β-ol; 4-Propylcholest-7-ene-3β-ol; 4-Butylcholest-7-ene-3β-ol; 4-Isobutylcholest-7-ene-3β-ol; 4,4-Tetramethylenecholest-7-ene-3β-ol; 4,4-Pentamethylenecholest-7-ene-3β-ol; Cholest-8-ene-3β-ol;

10 4-Methylcholest-8-ene-3β-ol; 4-Ethylcholest-8-ene-3β-ol; 4,4-Dimethylcholest-8-ene-3β-ol; 4α-Methyl-4β-ethylcholest-8-ene-3β-ol; 4α-Ethyl-4β-methylcholest-8-ene-3β-ol; 4,4-Diethylcholest-8-ene-3β-ol; 4-Propylcholest-8-ene-3β-ol; 4-Butylcholest-8-ene-3β-ol; 4-Isobutylcholest-8-ene-3β-ol; 4,4-Tetramethylenecholest-8-ene-3β-ol; 4,4-Pentamethylenecholest-8-ene-3β-ol; Cholest-8(14)-ene-3β-ol;

15 4-Methylcholest-8(14)-ene-3β-ol; 4-Ethylcholest-8(14)-ene-3β-ol; 4,4-Dimethylcholest-8(14)-ene-3β-ol; 4α-Methyl-4β-ethylcholest-8(14)-ene-3β-ol; 4α-Ethyl-4β-methylcholest-8(14)-ene-3β-ol; 4,4-Diethylcholest-8(14)-ene-3β-ol; 4-Propylcholest-8(14)-ene-3β-ol; 4-Butylcholest-8(14)-ene-3β-ol; 4-Isobutylcholest-8(14)-ene-3β-ol; 4,4-Tetramethylenecholest-8(14)-ene-3β-ol; 4,4-Pentamethylenecholest-8(14)-ene-3β-ol; Cholesta-8,14-diene-3β-ol; 4-Methylcholesta-8,14-diene-3β-ol; 4-Ethylcholesta-8,14-diene-3β-ol; 4,4-Dimethylcholesta-8,14-diene-3β-ol; 4α-Methyl-4β-ethylcholesta-8,14-diene-3β-ol; 4α-Ethyl-4β-methylcholesta-8,14-diene-3β-ol; 4,4-Diethylcholesta-8,14-diene-3β-ol; 4-Propylcholesta-8,14-diene-3β-ol;

20 4-Butylcholesta-8,14-diene-3β-ol; 4-Isobutylcholesta-8,14-diene-3β-ol; 4,4-Tetramethylenecholesta-8,14-diene-3β-ol; 4,4-Pentamethylenecholesta-8,14-diene-3β-ol; Cholesta-8,24-diene-3β-ol; 4-Methylcholesta-8,24-diene-3β-ol; 4-Ethylcholesta-8,24-diene-3β-ol; 4,4-Dimethylcholesta-8,24-diene-3β-ol; 4α-Methyl-4β-ethylcholesta-8,24-diene-3β-ol; 4α-Ethyl-4β-methylcholesta-8,24-diene-3β-ol; 4,4-Diethylcholesta-8,24-diene-3β-ol; 4-Propylcholesta-8,24-diene-3β-ol; 4-Butylcholesta-8,24-diene-3β-ol; 4-Isobutylcholesta-8,24-diene-3β-ol;

25 4,4-Tetramethylenecholesta-8,24-diene-3β-ol; 4,4-Pentamethylenecholesta-8,24-diene-3β-ol; Cholesta-8,14,24-triene-3β-ol; 4-Methylcholesta-8,14,24-triene-3β-ol; 4-Ethylcholesta-8,14,24-triene-3β-ol; 4,4-

Dimethylcholesta-8,14,24-triene-3 β -ol; 4 α -Methyl-4 β -ethylcholesta-8,14,24-triene-3 β -ol; 4 α -Ethyl-4 β -methylcholesta-8,14,24-triene-3 β -ol; 4,4-Diethylcholesta-8,14,24-triene-3 β -ol; 4-Propylcholesta-8,14,24-triene-3 β -ol; 4-Butylcholesta-8,14,24-triene-3 β -ol; 4-Isobutylcholesta-8,14,24-triene-3 β -ol; 4,4-Tetramethylenecholesta-8,14,24-triene-3 β -ol; and 4,4-Pentamethylenecholesta-8,14,24-triene-3 β -ol;

5 and esters and ethers thereof.

36. A method of promoting meiotic maturation in an oocyte, comprising culturing the oocyte in the presence of a compound of formula (I)

wherein R¹ and R², independently, are selected from the group consisting of hydrogen and branched or unbranched C₁-C₆ alkyl which may be substituted by halogen, hydroxy or cyano, or wherein R¹ and R² together designate methylene or, together with the carbon atom to which they are bound, form a cyclopropane ring, a cyclopentane ring, or a cyclohexane ring; R³ is selected from the group consisting of hydrogen, methylene, hydroxy, methoxy, acetoxy, oxo, =NOR²⁶ wherein R²⁶ is hydrogen or C₁-C₃ alkyl, halogen, and hydroxy and C₁-C₄ alkyl bound to the same carbon atom of the sterol skeleton, or R³ designates, together with R⁹ or R¹⁴, an additional bond between the carbon atoms to which R³ and R⁹ or R¹⁴ are bound; R⁴ is selected from the group consisting of hydrogen, methylene, hydroxy, methoxy, acetoxy, oxo, =NOR²⁷ wherein R²⁷ is hydrogen or C₁-C₃ alkyl, halogen, and hydroxy and C₁-C₄ alkyl bound to the same carbon atom of the sterol skeleton, or R⁴ designates, together with R¹³ or R¹⁵, an additional bond between the carbon atoms to which R⁴ and R¹³ or R¹⁵ are bound; R⁵ is selected from the group consisting of hydrogen, C₁-C₄ alkyl, methylene, hydroxy, methoxy, oxo, and =NOR²² wherein R²² is hydrogen or C₁-C₃ alkyl, or R⁵ designates, together with R⁶, an additional bond between the carbon atoms to which R⁵ and R⁶ are bound.

atoms to which R⁵ and R⁶ are bound; R⁶ is hydrogen or R⁶ designates, together with R⁵, an additional bond between the carbon atoms to which R⁵ and R⁶ are bound; R⁹ is hydrogen or R⁹ designates, together with R³ or R¹⁰, an additional bond between the carbon atoms to which R⁹ and R³ or R¹⁰ are bound; R¹⁰ is hydrogen or R¹⁰ designates, together with R⁹, an additional bond between the carbon atoms to which R

5 10 and R⁹ are bound; R¹¹ is selected from the group consisting of hydroxy, alkoxy, substituted alkoxy, acyloxy, sulphonyloxy, phosphoryloxy, oxo, =NOR²⁸ wherein R²⁸ is hydrogen or C₁-C₃ alkyl, halogen and hydroxy and C₁-C₄ alkyl bound to the same carbon atom of the sterol skeleton, or R¹¹ designates, together with R¹², an additional bond between the carbon atoms to which R¹¹ and R¹² are bound; R¹² is selected from the group consisting of hydrogen, C₁-C₃ alkyl, vinyl, C₁-C₃ alkoxy and halogen, or R¹²

10 designates, together with R¹¹, an additional bond between the carbon atoms to which R¹² and R¹¹ are bound; R¹³ is hydrogen or R¹³ designates, together with R⁴ or R¹⁴, an additional bond between the carbon atoms to which R¹³ and R⁴ or R¹⁴ are bound; R¹⁴ is hydrogen or R¹⁴ designates, together with R³, R⁶ or R¹³, an additional bond between the carbon atoms to which R¹⁴ and R³ or R⁶ or R¹³ are bound; R¹⁵ is selected from the group consisting of hydrogen, C₁-C₄ alkyl, methylene, hydroxy, methoxy, acetoxy, oxo, and =NOR²³ wherein R²³ is hydrogen or C₁-C₃ alkyl, or R¹⁵ designates, together with R⁴, an additional bond between the carbon atoms to which R¹⁵ and R⁴ are bound; R¹⁶ is selected from the group consisting of hydrogen, C₁-C₃ alkyl, methylene, hydroxy, methoxy, oxo and =NOR²⁴ wherein R

15 24 is hydrogen or C₁-C₃ alkyl, or R¹⁶ designates, together with R¹⁷, an additional bond between the carbon atoms to which R¹⁶ and R¹⁷ are bound; R¹⁷ is hydrogen or hydroxy or R¹⁷ designates, together with R¹⁶, an additional bond between the carbon atoms to which R¹⁷ and R¹⁶ are bound; R¹⁸ and R¹⁹ are, independently, hydrogen or fluoro; R²⁵ is selected from the group consisting of hydrogen, C₁-C₄ alkyl, methylene, hydroxy and oxo; A is a carbon atom or a nitrogen atom; when A is a carbon atom, R⁷ is selected from the group consisting of hydrogen, hydroxy and fluoro, and R⁸ is selected from the group consisting of hydrogen, C₁-C₄ alkyl, methylene and halogen, or R⁷ designates, together with R⁸, an

20 additional bond between the carbon atoms to which R⁷ and R⁸ are bound; R²⁰ is selected from the group consisting of C₁-C₄ alkyl, trifluoromethyl and C₃-C₆ cycloalkyl and R²¹ is selected from the group

25

consisting of C₁-C₄ alkyl, C₁-C₄ hydroxyalkyl, C₁-C₄ haloalkyl containing up to three halogen atoms, methoxymethyl, acetoxyethyl, and C₃-C₆ cycloalkyl, or R²⁰ and R²¹, together with the carbon atom to which they are bound, form a C₃-C₆ cycloalkyl ring; and when A is a nitrogen atom, R⁷ designates a lone pair of electrons and R⁸ is selected from the group consisting of hydrogen, C₁-C₄ alkyl and oxo; R²⁰ and R²¹ are, independently, C₁-C₄ alkyl or C₃-C₆ cycloalkyl; provided that the compound of formula (I) does not have any cumulated double bonds and further provided that the compound is not one of the following compounds:

5 Cholest-7-ene-3β-ol; 4-Methylcholest-7-ene-3β-ol; 4-Ethylcholest-7-ene-3β-ol; 4,4-Dimethylcholest-7-ene-3β-ol; 4α-Methyl-4β-ethylcholest-7-ene-3β-ol; 4α-Ethyl-4β-methylcholest-7-ene-3β-ol; 4,4-

10 Diethylcholest-7-ene-3β-ol; 4-Propylcholest-7-ene-3β-ol; 4-Butylcholest-7-ene-3β-ol; 4-Isobutylcholest-7-ene-3β-ol; 4,4-Tetramethylenecholest-7-ene-3β-ol; 4,4-Pentamethylenecholest-7-ene-3β-ol; Cholest-8-ene-3β-ol;

15 4-Methylcholest-8-ene-3β-ol; 4-Ethylcholest-8-ene-3β-ol; 4,4-Dimethylcholest-8-ene-3β-ol; 4α-Methyl-4β-ethylcholest-8-ene-3β-ol; 4α-Ethyl-4β-methylcholest-8-ene-3β-ol; 4,4-Diethylcholest-8-ene-3β-ol;

20 4-Propylcholest-8-ene-3β-ol; 4-Butylcholest-8-ene-3β-ol; 4-Isobutylcholest-8-ene-3β-ol; 4,4-Tetramethylenecholest-8-ene-3β-ol; Cholest-8(14)-ene-3β-ol; 4-Methylcholest-8(14)-ene-3β-ol; 4-Ethylcholest-8(14)-ene-3β-ol; 4,4-Dimethylcholest-8(14)-ene-3β-ol; 4α-Methyl-4β-ethylcholest-8(14)-ene-3β-ol; 4α-Ethyl-4β-methylcholest-8(14)-ene-3β-ol; 4,4-Diethylcholest-8(14)-ene-3β-ol; 4-Propylcholest-8(14)-ene-3β-ol; 4-Butylcholest-8(14)-ene-3β-ol;

25 4-Isobutylcholest-8(14)-ene-3β-ol; 4,4-Tetramethylenecholest-8(14)-ene-3β-ol; 4,4-Pentamethylenecholest-8(14)-ene-3β-ol; Cholesta-8,14-diene-3β-ol; 4-Methylcholesta-8,14-diene-3β-ol; 4-Ethylcholesta-8,14-diene-3β-ol; 4,4-Dimethylcholesta-8,14-diene-3β-ol; 4α-Methyl-4β-ethylcholesta-8,14-diene-3β-ol; 4α-Ethyl-4β-methylcholesta-8,14-diene-3β-ol; 4,4-Diethylcholesta-8,14-diene-3β-ol; 4-Propylcholesta-8,14-diene-3β-ol;

30 4-Butylcholesta-8,14-diene-3β-ol; 4-Isobutylcholesta-8,14-diene-3β-ol; 4,4-Tetramethylenecholesta-8,14-diene-3β-ol; 4,4-Pentamethylenecholesta-8,14-diene-3β-ol; Cholesta-8,24-diene-3β-ol; 4-Methylcholesta-8,24-diene-3β-ol; 4-Ethylcholesta-8,24-diene-3β-ol; 4,4-Dimethylcholesta-8,24-diene-3β-ol; 4α-Methyl-4β-ethylcholesta-8,24-diene-3β-ol; 4α-Ethyl-4β-methylcholesta-8,24-diene-3β-ol; 4,4-Diethylcholesta-8,24-diene-3β-ol; 4-Propylcholesta-8,24-diene-3β-ol; 4-Butylcholesta-8,24-diene-3β-ol; 4-Isobutylcholesta-8,24-diene-3β-ol;

4,4-Tetramethylenecholesta-8,24-diene-3 β -ol; 4,4-Pentamethylenecholesta-8,24-diene-3 β -ol; Cholesta-8,14,24-triene-3 β -ol; 4-Methylcholesta-8,14,24-triene-3 β -ol; 4-Ethylcholesta-8,14,24-triene-3 β -ol; 4,4-Dimethylcholesta-8,14,24-triene-3 β -ol; 4 α -Methyl-4 β -ethylcholesta-8,14,24-triene-3 β -ol; 4 α -Ethyl-4 β -methylcholesta-8,14,24-triene-3 β -ol; 4,4-Diethylcholesta-8,14,24-triene-3 β -ol; 4-Propylcholesta-8,14,24-triene-3 β -ol; 4-Butylcholesta-8,14,24-triene-3 β -ol; 4-Isobutylcholesta-8,14,24-triene-3 β -ol; 4,4-Tetramethylenecholesta-8,14,24-triene-3 β -ol; and 4,4-Pentamethylenecholesta-8,14,24-triene-3 β -ol;
5 and esters and ethers thereof.