

Ayudantía 11 Álgebra Lineal

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

9 de junio de 2022

Problema 1. Sea V espacio vectorial de dimensión finita y $T:V\to W$ una aplicación lineal sobreyectiva. Demuestre que existe un subespacio $U\subseteq V$ tal que la restricción $T|_U:U\to W, u\mapsto T(u)$ es un isomorfismo.

Problema 2. Sea $\mathbf{v}_1, \dots, \mathbf{v}_n$ base del espacio vectorial \mathbf{V} y $\varphi_1, \dots, \varphi_n$ su base dual. Probar que si $\psi \in \mathbf{V}^*$ entonces

$$\psi = \psi(\mathbf{v}_1)\varphi_1 + \ldots + \psi(\mathbf{v}_n)\varphi_n$$

Problema 3. Considere las bases canónicas $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2), \mathcal{C} = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ de $\mathbb{R}^2, \mathbb{R}^3$ y $\mathcal{B}^* = \{\varphi_1, \varphi_2\}$, $\mathcal{C}^* = \{\psi_1, \psi_2, \psi_3\}$ sus bases duales respectivas. Definimos la aplicación lineal

$$T: \mathbb{R}^3 \to \mathbb{R}^2, \qquad (x, y, z) \mapsto (4x + 5y + 6z, 7x + 8y + 9z)$$

Con respecto a esta aplicación

- 1. Encuentre las bases duales mencionadas.
- 2. Calcule $T^*(\varphi_1), T^*(\varphi_2)$. Escríbalos como combinación lineal de ψ_1, ψ_2, ψ_3 . Escriba la matriz de T^* en las bases canónicas duales.
- 3. Obtenga la matriz de T^* a partir de la matriz de T.
- 4. Considere la base $C = (\mathbf{e}_1 + 5\mathbf{e}_2, \mathbf{e}_1 + 2\mathbf{e}_2)$ y encuentre la matriz de cambio de base entre las bases duales \mathcal{B}^* y \mathcal{C}^*
- 5. Defina la base $\mathcal{E} = (\mathbf{f}_1 \mathbf{f}_2, \mathbf{f}_1 + \mathbf{f}_2, \mathbf{f}_3)$. Encuentre la matriz de cambio de base entre \mathcal{D}^* y \mathcal{E}^* .
- 6. Encuentre la matriz de T^* en las bases \mathcal{C}^* y \mathcal{E}^* .

Problema 4. Sea V espacio vectorial de dimensión $\dim(V) = n$ y V^* su espacio dual.

1. Muestre que $\varphi_1, \dots, \varphi_m \in V^*$ son linealmente independientes si y solo si

$$\dim\left(\bigcap_{i=1}^{m}\ker(\varphi_i)\right) = n - m$$

2. Utilice lo anterior para concluir que toda base \mathcal{C} de V^* posee una **base predual**, es decir, existe una base \mathcal{B} de \mathbf{V} tal que $\mathcal{B}^* = \mathcal{C}$, donde \mathcal{B}^* denota la base dual.