# 实变第四章总结

Author: Tony Xiang

Full Document can be acquired here:

https://github.com/T0nyX1ang/RealAnaly-Documents/blob/master/Chapter%204/Chapter4.pdf Full Source code can be downloaded here:

https://github.com/T0nyX1ang/RealAnaly-Documents/blob/master/Chapter%204/Chapter4.tex

# 1 Lebesgue 积分的定义

分三步定义:

#### 1.1 非负简单函数的积分:

定义:设  $f(x) = \sum_{i=1}^{k} a_i \chi_{A_i}(x)$  是 E 上的非负简单函数,其中  $\{A_1, A_2, \cdots, A_k\}$  是 E 的一个可测分割, $a_i \in \mathbb{R}^n, i = 1, 2, \cdots, k$ . 定义 f 在 E 上的积分为:

$$\int_{E} f \, \mathrm{d}x = \sum_{i=1}^{k} a_{i} m(A_{i})$$

$$0 \leqslant \int_{E} f \, \mathrm{d}x \leqslant \infty$$
,若 $\int_{E} f \, \mathrm{d}x < \infty$ ,则 $f \in L(E)$ .

注意,该积分的值不依赖 f 的表达式的选取. 证明可取另一个可测分割  $\{B_i\}$ ,则有  $m(A_i) = \sum_{j=1}^l m(A_i \cap B_j), (i=1,2,\cdots,k), m(B_j) = \sum_{i=1}^k m(A_i \cap B_j), (j=1,2,\cdots,l),$   $A_i \cap B_j \neq \emptyset, a_i = b_j$ ,可得

$$\sum_{i=1}^{k} a_i m(A_i) = \sum_{i=1}^{k} \sum_{j=1}^{l} a_i m(A_i \cap B_j) = \sum_{j=1}^{l} \sum_{i=1}^{k} b_j m(A_i \cap B_j) = \sum_{j=1}^{l} b_j m(B_j)$$

注意, $\int_{[a,b]} f \, dx$  为函数 y = f(x) 的下方图形的积分. 性质(Part 1, f, g 为非负简单函数):

• (特征函数的性质)

$$A \subset E \in \mathcal{M}(\mathbb{R}^n), \int_E \chi_A(x) \, \mathrm{d}x = m(A).$$

特别地,

$$\int_{E} \chi_{E}(x) \, \mathrm{d}x = m(E).$$

• (数乘的性质)

$$\int_E cf \, \mathrm{d}x = c \int_E f \, \mathrm{d}x \quad (c \geqslant 0).$$

• (加法的性质)

$$\int_E f + g \, \mathrm{d}x = \int_E f \, \mathrm{d}x + \int_E g \, \mathrm{d}x.$$

• (单调性)

第一、二条性质的证明可以直接利用定义,第三条性质可以将两个函数的可测分割记为一样的,然后使用第一条性质,第四条性质有  $m(E_i) > 0, a_i \leq b_i$ ,然后使用定义证明.

注意,Lebesgue 积分充分利用了零测集对于积分值没有影响的特点,所以在表示不等关系的时候,一般使用"几乎处处"的条件就足够了.

#### 1.2 非负可测函数的积分

引理(证明略): 设 $\{f_n\}$ 是E上单调递增的非负简单函数列,

• 若  $g \in E$  上的非负简单函数,且  $\lim_{n\to\infty} f_n(x) \geqslant g(x)$ ,则

$$\lim_{n \to \infty} \int_E f_n \, \mathrm{d}x \geqslant \int_E g \, \mathrm{d}x$$

• 若  $\lim_{n\to\infty} f_n(x) = f(x), x \in E$ ,则

$$\lim_{n\to\infty} \int_E f_n \, \mathrm{d}x = \sup \left\{ \int_E g \, \mathrm{d}x : g \in S^+E, g \geqslant f \right\}$$

, S+(E) 表示 E 上的非负简单函数的全体.

定义:设f是E上的非负可测函数, $f_n$ 是E上的非负可测函数列,且 $f_n \nearrow f$ ,定义 f 在E上的积分为:

$$\int_{E} f \, \mathrm{d}x = \lim_{n \to \infty} \int_{E} f_n \, \mathrm{d}x$$
 
$$0 \leqslant \int_{E} f \, \mathrm{d}x \leqslant \infty, 若 \int_{E} f \, \mathrm{d}x < \infty, 則 f \in L(E).$$

同样, f 在 E 上的积分值不依赖与  $\{f_n\}$  的选取.

性质 (Part 2, f, g 为非负可测函数):

• (数乘的性质)

$$\int_E cf \, \mathrm{d}x = c \int_E f \, \mathrm{d}x \quad (c \geqslant 0).$$

• (加法的性质)

$$\int_{E} f + g \, \mathrm{d}x = \int_{E} f \, \mathrm{d}x + \int_{E} g \, \mathrm{d}x.$$

• (单调性)

$$f \leqslant g \text{ a.e.} \Rightarrow \int_E f \, \mathrm{d}x \leqslant \int_E g \, \mathrm{d}x.$$

证明:第一条性质显然成立,第二条性质可以用两个非负函数列分别逼近 f 和 g,第三条性质可以选取适当的  $\{f_n\}, \{g_n\}, f_n \leq g_n, n \geq 1$ ,且有  $f_n \nearrow f, g_n \nearrow g$ ,则有

$$\int_{E} f \, \mathrm{d}x = \lim_{n \to \infty} \int_{E} f_n \, \mathrm{d}x \leqslant \lim_{n \to \infty} \int_{E} g_n \, \mathrm{d}x = \int_{E} g \, \mathrm{d}x.$$

#### 1.3 一般可测函数的积分

定义:设 f 是 E 上的可测函数,若  $\int_E f^+ dx$ ,  $\int_E f^- dx$  至少有一个是有限值,则 f 在 E 上的积分存在,且定义为:

$$\int_E f \, \mathrm{d}x = \int_E f^+ \, \mathrm{d}x - \int_E F^- \, \mathrm{d}x.$$

若  $\int_E f^+ dx$ ,  $\int_E f^- dx$  都是有限值,则  $f \in L(E)$ . 将 [a,b] 区间上的 Lebesgue 积分记为  $\int_a^b f dx$ .

基本的可积条件 (Part 3, f, g 为一般函数):

- $g \in L(E), f(x) \leq g(x), \text{a.e.} x \in E$ 或 $f(x) \geq g(x), \text{a.e.} x \in E$ ,f 在 E 上的积分存在.
  - $g \in L(E), |f(x)| \leq g(x), \text{ a.e.} x \in E, \text{ } \emptyset \text{ } f \in L(E).$
  - $f \in L(E) \Leftrightarrow |f| \in L(E)$ .
  - $m(E) < \infty, \exists M, |f| \leqslant M, f \in L(E).$

证明:第一条性质有  $f^+(x) \leq g^+(x)$  a.e. $x \in E$ 或 $f^-(x) \leq g^-(x)$  a.e. $x \in E$ .,然后用积分的单调性可得  $\int_E f^+ \, \mathrm{d}x$ , $\int_E f^- \, \mathrm{d}x$  至少有一个是有限值.第二条性质兼具第一条性质的条件,故有可积性.第三条性质  $|f| = f^+ + f^-$ ,可得  $\int_E |f| \, \mathrm{d}x$ 是有限值  $\Leftrightarrow \int_E f^+ \, \mathrm{d}x$ , $\int_E f^- \, \mathrm{d}x$ 都是有限值.第四条性质将  $g(x) = M, x \in E$  作为控制函数即可证明.

一个通用的证明过程: 从非负简单函数到非负可测函数再到一般函数的证明方法.



积分区域的变化与特征函数的关系:设 f 在 E 上的积分存在,A 是 E 的可测子集,则 f 在 A 上的积分存在,且

$$\int_A f \, \mathrm{d}x = \int_E f \chi_A \, \mathrm{d}x$$

**同样有**  $f \in L(E) \Rightarrow f \in L(A)$ . (证明方法为以上的分三个步骤的方法,第一步按定义证明,将 E 上的可测分割限定到 A 上;第二步取  $f_n\chi_A \nearrow f\chi_A$ ;第三步利用正部和负部处理一般函数)

以上的定理常常用在证明多个积分区域不统一的问题中.

积分的平移不变性:  $f(x) \in L(\mathbb{R}^n), h \in \mathbb{R}^n, \text{则} f(x+h) \in L(\mathbb{R}^n)$ , 且有

$$\int_{\mathbb{R}^n} f(x+h) \, \mathrm{d}x = \int_{\mathbb{R}^n} f(x) \, \mathrm{d}x.$$

同样可以分三步证明,其中第一步用到测度的平移不变性.后面两步类似.

## 2 积分的初等性质

#### 2.1 线性性

若  $f, g \in L(E)$ , 则  $cf, f + g \in L(E)$ ,

$$\int_E cf \, \mathrm{d}x = c \int_E f \, \mathrm{d}x$$
 
$$\int_E (f+g) \, \mathrm{d}x = \int_E f \, \mathrm{d}x + \int_E g \, \mathrm{d}x$$

证明:  $f \in L(E) \Rightarrow |f| \in L(E)$ , 则

$$\int_E |cf|\,\mathrm{d}x = \int_E |c||f|\,\mathrm{d}x = |c|\int_E |f|\,\mathrm{d}x < \infty.$$

故  $|cf| \in L(E)$ ,  $cf \in L(E)$ , 类似有  $|f+g| \leq |f| + |g| \Rightarrow f+g \in L(E)$ . 利用

$$(cf)^{+} = \begin{cases} cf^{+} & c \geqslant 0 \\ -cf^{-} & c \geqslant 0 \end{cases}$$

$$(cf)^{-} = \begin{cases} cf^{-} & c \geqslant 0 \\ -cf^{+} & c \geqslant 0 \end{cases}$$

$$\int_E cf \, \mathrm{d}x = \int_E cf^+ \, \mathrm{d}x - \int_E cf^- \, \mathrm{d}x = c \int_E f^+ \, \mathrm{d}x - c \int_E f^- \, \mathrm{d}x = c \int_E f \, \mathrm{d}x.$$
 
$$(f+g)^+ - (f+g)^- = f + g = f^+ - f^- + g^+ - g^- \Rightarrow (f+g)^+ + f^- + g^- = f^+ + g^+ + (f+g)^-$$

$$\begin{split} \int_{E} (f+g) \, \mathrm{d}x &= \int_{E} (f+g)^{+} \, \mathrm{d}x - \int_{E} (f+g)^{-} \, \mathrm{d}x \\ &= \int_{E} f^{+} \, \mathrm{d}x - \int_{E} f^{-} \, \mathrm{d}x + \int_{E} g^{+} \, \mathrm{d}x - \int_{E} g^{-} \, \mathrm{d}x \\ &= \int_{E} f \, \mathrm{d}x + \int_{E} g \, \mathrm{d}x \end{split}$$

### 2.2 对积分域的有限可加性

设  $f \in L(E), A_1 \cap A_2 = \emptyset, E = A_1 \cup A_2,$ 则

$$\int_E f \, \mathrm{d}x = \int_{A_1} f \, \mathrm{d}x + \int_{A_2} f \, \mathrm{d}x$$

证明:  $f \in L(A_1), f \in L(A_2)$ , 得到  $f\chi_{A_1}, F\chi_{A_2} \in L(E)$ , 有

$$\int_{A_1} f \, \mathrm{d}x + \int_{A_2} f \, \mathrm{d}x = \int_E f \chi_{A_1} \, \mathrm{d}x + \int_E f \chi_{A_2} = \int_E (f \chi_{A_1} + f \chi_{A_2}) \, \mathrm{d}x = \int_E f \, \mathrm{d}x.$$

同样可证有限情况:  $f \in L(E)$ ,  $\{A_1, A_2, \dots, A_n\}$  为 E 的一个可测分割,则有:

$$\int_{E} f \, \mathrm{d}x = \sum_{k=1}^{n} \inf_{A_{k}} f \, \mathrm{d}x$$

#### 2.3 积分的单调性与不等关系

设 f, q 在 E 上的积分存在,则:

- $f \leqslant g \Rightarrow \int_E f \, dx \leqslant \int_E g \, dx$ .
- f = g a.e.  $\Rightarrow \int_E f \, dx = \int_E g \, dx$ .
- $f \geqslant 0$  a.e.  $A, B \subset E, A \subset B \Rightarrow \int_A f \, dx \leqslant \int_B f \, dx$ .
- f = 0 a.e.  $\Rightarrow \int_E f \, dx = 0$ .
- $m(E) = 0, \forall f(x), x \in E \Rightarrow \int_E f \, dx = 0$
- $f \in L(E)$ ,  $|\int_E f \, dx| \leqslant \int_E |f| \, dx$ .

证明: (1) 若在 E 上, $f \leqslant g$  a.e.,则  $f^+ \leqslant g^+, f^- \geqslant g^-$  a.e. 则

$$\int_E f^+ \, \mathrm{d}x \leqslant \int_E g^+ \, \mathrm{d}x, \int_E f^- \, \mathrm{d}x \geqslant \int_E g^+ \, \mathrm{d}x$$
 
$$\int_E f \, \mathrm{d}x = \int_E f^+ \, \mathrm{d}x - \int_E f^- \, \mathrm{d}x \leqslant \int_E g^+ \, \mathrm{d}x - \int_E g^- \, \mathrm{d}x = \int_E g \, \mathrm{d}x.$$

- (2) 由(1)的对偶性可得.
- (3) 由  $f\chi_A(x) \leq f\chi_B(x), x \in E$  使用(1)的结论即可.
- (4) 由(2) 可得.
- (5) 利用  $\int_E f = 0$  推出 f = 0 a.e. 由 (4) 可得.
- (6) 对  $-|f| \le f \le |f|$  积分即可.

#### 2.4 Lebesgue 积分的原始定义

设  $m(E) < \infty$ , f 是 E 上可测函数,  $c \le f(x) < d$ ,  $(x \in E)$ ,  $\forall n \in \mathbb{N}^+$ , 设  $c = y_0 < y_1 < \dots < y_n = d$  为 [c, d] 的一个分割,令  $\lambda = \max_{1 \le i \le n} y_i - y_{i-1}$ . 则

$$\int_{E} f \, dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} y_{i-1} \cdot m(E(y_{i-1} \leqslant f < y)).$$

证明: f 是有限测度集上的有界可测函数,则  $f \in L(E)$ ,令  $E_i = E(y_{i-1} - y_i)$ ,( $i = 1, 2, \dots, n$ ),则  $\{E_i\}$  为 E 的一个可测分割,利用积分的单调性与对积分域的有限可加性,有

$$\sum_{i=1}^{n} y_{i-1} m(E_i) = \sum_{i=1}^{n} \int_{E_i} y_{i-1} \, dx \leqslant \sum_{i=1}^{n} \int_{E_i} f \, dx = \int_{E} f \, dx.$$
$$\int_{E} f \, dx \leqslant \sum_{i=1}^{n} y_i m(E_i)$$

所以有

$$0 \leqslant \int_{E} f \, dx - \sum_{i=1}^{n} y_{i-1} m(E_i) \leqslant \sum_{i=1}^{n} y_{i} m(E_i) - \sum_{i=1}^{n} y_{i-1} m(E_i)$$
$$\sum_{i=1}^{n} y_{i} - y_{i-1} m(E_i) \leqslant \lambda m(E) \to 0.$$

picture here...

### 2.5 Chebyshev 不等式与应用

Chebyshev 不等式: 设 f 是 E 上的可测函数,则  $\forall \lambda > 0, m(E(|f| \ge \lambda)) = \frac{1}{k} \int_{E} |f| dx$ . 证明:  $x \in E(|f| \ge \lambda)$ ,有  $\frac{1}{\lambda} |f(x)| \ge 1$ .

$$m(E(|f|\geqslant \lambda)) = \int_{E(|f|\geqslant \lambda)} 1 \,\mathrm{d}x \leqslant \frac{1}{k} \int_{E(|f|\geqslant \lambda)} |f| \,\mathrm{d}x \leqslant \frac{1}{\lambda} \int_{E} |f| \,\mathrm{d}x$$

注意,有时候我们需要使用以下减弱的不等式:

$$m(E(|f| \geqslant \lambda)) \leqslant \frac{1}{k} \int_{E(|f| \geqslant \lambda)} |f| \, \mathrm{d}x.$$

应用 1:  $f \in L(E) \Rightarrow f$  在 E 上几乎处处有限.

 $f\in L(E), |f|\in L(E)$ ,  $A=E(|f|=\infty), A_k=E(|f|\geqslant k), k=1,2,\cdots.$  则  $A\subset A_k$ . 利用 Chebyshev 不等式得到:  $0\leqslant m(A)\leqslant m(A_k)\leqslant \frac{1}{k}\int_E|f|\,\mathrm{d}x\to 0, (k\to\infty)$ ,m(A)=0.

[另外也可以用测度的上连续性,在n=1的情况下使用 Chebyshev 不等式.]

应用 2:  $f \ge 0$  a.e.,  $\int_E f \, dx \Rightarrow f = 0$  a.e.

 $f\geqslant 0$  a.e.,故  $m(E(f<0))=0.A=E(f>0), A_k=E(f>\frac{1}{k}), A=\bigcup_{k=1}^{\infty}A_k$ . 利用 Chebyshev 不等式得到:  $0\leqslant m(A_k)\leqslant k\int_E f\,\mathrm{d}x=0$ .  $m(A_k)=0$ ,由测度的次可列可加性 m(A)=0,则 f=0 a.e.

[另外也可以用测度的下连续性.]

### 2.6 积分的绝对连续性

设  $f \in L(E)$ ,则  $\forall \varepsilon > 0, \exists \delta > 0, s.t.$   $A \subset E, m(A) < \delta, \int_A |f| \, \mathrm{d}x < \varepsilon.$  用泛函的方式理解:

$$\lim_{m(A)\to 0} \int_A |f| \, \mathrm{d} x = 0.$$

证明:设  $f \in L(E)$ ,则  $|f| \in L(E)$ . $\{g_k\}$  为非负简单函数列, $g_k \nearrow |f|$ .由积分定义,

$$\lim_{k \to \infty} \int_E g_k \, \mathrm{d}x = \int_E |f| \, \mathrm{d}x < \infty.$$

于是  $\forall \varepsilon > 0, \exists k_0, s.t.$ 

$$0 \le \int_{E} (|f| - g_{k_0}) \, \mathrm{d}x = \int_{E} |f| \, \mathrm{d}x - \int_{E} g_{k_0} \, \mathrm{d}x < \frac{\varepsilon}{2}$$

令  $0 \le M = \max_{x \in E} g_{k_0}(x) < \infty$ ,不妨设 M > 0 (M = 0 时显然),取  $\delta = \frac{\varepsilon}{2M}$ ,再 取  $A \subset E, m(A) < \delta$ ,则有

$$\int_{E} |f| \, \mathrm{d}x = \int_{A} (|f| - g_{k_0}) \, \mathrm{d}x + \int_{A} g_{k_0} \, \mathrm{d}x < \frac{\varepsilon}{2} + \int_{A} M \, \mathrm{d}x = \frac{\varepsilon}{2} + Mm(A) < \varepsilon$$

注意,复值可测函数的积分,除序关系以外与实值可测函数的性质一致.

# 3 积分的极限定理

#### 3.1 Levi 单调收敛定理

#### 积分符号与极限符号的运算顺序的交换.

设  $\{f_n\}$  是 E 上的单调递增的非负可测函数列,f 是 E 上的非负可测函数,且  $f_n \to f$  a.e.,则

$$\lim_{E} f_n \, \mathrm{d}x = \int_{E} f \, \mathrm{d}x.$$

证明:不妨设  $f_n(x) \to f(x)$  处处成立(因为改变一个零测集上的函数值不影响函数的整体性质,所以可以定义不收敛处的函数值为 0),由积分的单调性得到:

$$\int_{E} f_n \, \mathrm{d}x \leqslant \int_{E} f_{n+1} \, \mathrm{d}x \leqslant \int_{E} f \, \mathrm{d}x. (n \geqslant 1)$$

因此  $\lim_{n\to\infty} f_n$  存在,并且  $\lim_{n\to\infty} \int_E f_n \, \mathrm{d}x \leqslant \int_E f \, \mathrm{d}x$ .

反过来,设 $\{g_n\}$ 是非负可测函数列,且 $g_n \nearrow f$ .

 $\forall k \geqslant 1$ ,  $\lim_{n \to \infty} f_n(x) = f(x) \geqslant g_k(x), x \in E$ .

由于  $\lim_{n\to\infty}\int_E f_n dx \geqslant \int_E g_k dx$ . 令  $k\to\infty$ ,可得

$$\lim_{k \to \infty} \int_E f_n \, \mathrm{d}x \geqslant \int_E f \, \mathrm{d}x.$$

推论 1(逐项积分定理):  $\{f_n\}$  是 E 上的非负可测函数列,则

$$\int_{E} \sum_{n=1}^{\infty} f_n \, \mathrm{d}x = \sum_{n=1}^{\infty} \inf_{E} f \, \mathrm{d}x.$$

#### 积分符号与求和符号的运算顺序的交换.

证明: 令  $g_n(x) = \sum_{i=1}^n f_i(x), (n \ge 1), f(x) = \sum_{i=1}^\infty f_i(x), 则 g_n \ge 0, g_n \nearrow f, f$ 是可测的. 利用 Levi 定理,数列的替换与取极限过程,可得:

$$\int_E \sum_{n=1}^{\infty} f_n \, \mathrm{d}x = \lim_{n \to \infty} \int_E g_n \, \mathrm{d}x = \lim_{n \to \infty} \sum_{i=1}^n f_i \, \mathrm{d}x = \sum_{i=1}^{\infty} \int_E f_i \, \mathrm{d}x.$$

推论 2 (积分对积分域的可列可加性): f 在 E 上的积分存在, $\{E_n\}$  为 E 的可测分割,则

$$\int_{E} f \, \mathrm{d}x = \sum_{n=1}^{\infty} \int_{E_{n}} f \, \mathrm{d}x.$$

证明:

$$\int_{E} f^{+} dx = \int_{E} \sum_{n=1}^{\infty} f^{+} \chi_{E_{n}} dx = \sum_{n=1}^{\infty} \int_{E} f^{+} \chi_{E_{n}} dx = \sum_{n=1}^{\infty} \int_{E_{n}} f^{+} dx.$$

对负部可证类似结论,由于 f 的积分存在,  $\int_E f^+ dx$ ,  $\int_E f^- dx$  至少有一个是有限的,即原命题得证.

### 3.2 Fatou 引理

设  $\{f_n\}$  是 E 上的非负可测函数列,则

$$\int_{E} \underline{\lim}_{n \to \infty} f_n \, \mathrm{d}x \leqslant \underline{\lim}_{n \to \infty} \int_{E} f_n \, \mathrm{d}x.$$

单增条件减弱,结论随之减弱为不等关系,同时极限的顺序交换变成下极限的顺序交换.("入不敷出")

证明: 对每个  $n \geqslant 1$ , 令  $g_n = \inf_{k \geqslant n} f_k(x), (x \in E)$ . 则  $\{g_n\}$   $\nearrow$ , 且  $0 \leqslant g_n \leqslant f_n, \lim_{n \to \infty} g_n = \underline{\lim}_{n \to \infty} f_n$ . 由 Levi 定理得到:

$$\int_{E} \underline{\lim}_{n \to \infty} f_n \, \mathrm{d}x = \lim_{n \to \infty} \int_{E} g_n \, \mathrm{d}x \leqslant \underline{\lim}_{n \to \infty} \int_{E} f_n \, \mathrm{d}x.$$

推论 1: (一致有界的可积性)  $f, f_n(n \ge 1)$  是 E 上的可测函数,  $f_n \to f$  a.e.,若  $\sup_{n \ge 1} \int_E |f_n| \, \mathrm{d}x < \infty$ ,则  $f \in L(E)$ .

证明:利用 Fatou 引理:

$$\int_E |f|\,\mathrm{d}x = \int_E \lim_{n\to\infty} |f_n|\,\mathrm{d}x \leqslant \varliminf_{n\to\infty} \int_E |f_n|\,\mathrm{d}x \leqslant \sup_{n\geqslant 1} \int_E |f_n|\,\mathrm{d}x < \infty.$$

### 3.3 控制收敛定理

设  $f, f_n(n \ge 1)$  是 E 上的可测函数,且  $\exists g \in L(E), s.t.$   $|f_n| \le g$  a.e.  $(n \ge 1)$ . 若在 E 上  $f_n \to f$  a.e. 或  $f_n \xrightarrow{m} f$ ,则  $f, f_n \in L(E)$ ,并且

$$\lim_{n\to\infty}\int_E f_n\,\mathrm{d}x = \int_E f\,\mathrm{d}x.$$

证明:由于在  $E \perp |f_n| \leqslant g$  a.e.  $(n \geqslant 1)$ ,因此当  $f_n \to f$  a.e. 或  $f_n \xrightarrow{m} f$  时有  $|f| \geqslant g$  a.e. (依测度收敛要使用 Risez 定理)由于  $g \in L(E)$ ,可知  $f, f_n \in L(E)$ .由

$$\left| \int_{E} f_n \, dx - \int_{E} f \, dx \right| = \left| \int_{E} (f_n - f) \, dx \right| \leqslant \int_{E} \left| f_n - f \right| dx.$$

下面证一个更强的结论:

$$\lim_{n\to\infty} \int_E |f_n - f| \, \mathrm{d}x = 0.$$

分两种情况证明. 先考虑  $f_n \to f$  a.e. 的情形. 令  $h_n = 2g - |f_n - f|$ ,则  $h_n \ge 0$  a.e.,则  $h_n \ge 0$  a.e.  $(n \ge 1)$ . 对函数列  $\{h_n\}$  应用 Fatou 引理,可得:

$$\int_{E} 2g \, \mathrm{d}x = \int_{E} \lim_{n \to \infty} \left( 2g - |f_n - f| \right) \mathrm{d}x \leqslant \underline{\lim}_{n \to \infty} \int_{E} \left( 2g - |f_n - f| \right) \mathrm{d}x$$
$$= \int_{E} 2g \, \mathrm{d}x - \overline{\lim}_{n \to \infty} \int_{E} |f_n - f| \, \mathrm{d}x$$

又有:

$$0 \leqslant \underline{\lim}_{n \to \infty} \int_{E} |f_n - f| \, \mathrm{d}x \leqslant \overline{\lim}_{n \to \infty} \int_{E} |f_n - f| \, \mathrm{d}x \leqslant 0$$

故可得加强结论成立.

再考虑  $f_n \xrightarrow{m} f$  的情形,用反证法. 则  $\exists \varepsilon > 0, \{f_{n_k}\} \subset \{f_n\}, s.t.$   $\int_E |f_{n_k} - f| \, \mathrm{d}x \ge \varepsilon$   $(k \ge 1)$ . 由 Risez 定理,  $\exists \{f_{n_{k'}}\} \subset \{f_{n_k}\}, s.t.$   $f_{n_k'} \to f$  a.e.  $(k' \to \infty)$ ,由上一种情形可得:

$$\lim_{k'\to\infty} \int_E |f_{n'_k} - f| \, \mathrm{d}x = 0.$$

这与假设矛盾,故加强结论成立.

注意: 此处的  $\{h_n\}$  的构造思路是依据 Fatou 引理与非负构造的,为了使极限值得到夹逼,从而在反方向构造函数.

注: 若

$$\lim_{k \to \infty} \int_{F} |f_{n_k} - f| \, \mathrm{d}x = 0.$$

成立,则称  $\{f_n\}$  在  $L^1$  中收敛于 f,(或称平均收敛于 f).

推论 1: (有界收敛定理)设  $m(E) < \infty$ ,  $f, f_n(n \ge 1)$  是 E 上的可测函数,且  $\exists M, s.t. \quad |f_n| \le M$  a.e.  $(n \ge 1)$ . 若在 E 上  $f_n \to f$  a.e. 或  $f_n \xrightarrow{m} f$ ,则  $f, f_n \in L(E)$ ,并且

$$\lim_{n \to \infty} \int_E f_n \, \mathrm{d}x = \int_E f \, \mathrm{d}x.$$

证明:  $\Diamond q(x) = M$  作为  $f_n(x)$  的控制函数, 结合  $m(E) < \infty$  即可.

**推论 2:** (积分号下求导)设 f 是定义在  $D = [a,b] \times [c,d]$  上的实值函数,使得  $\forall y \in [c,d], f(x,y) \in L([a,b]), \forall (x,y) \in D, f_y'$  存在,并且存在控制函数  $g(x) \in L([a,b])$ :

$$|f_y'(x,y)| \leqslant g(x), (x,y) \in D.$$

则函数  $I(y) = \int_a^b f(x,y) \, dx$  在 [c,d] 上可导,且

$$\frac{\mathrm{d}}{\mathrm{d}y} \int_a^b f(x,y) \, \mathrm{d}x = \int_a^b f_y'(x,y) \, \mathrm{d}x. \tag{1}$$

证明: 设 $y \in [c,d]$ , 任取数列 $\{h_n\}$ , 使得 $y + h_n \subset [c,d], h_n \to 0, h_n \neq 0$ . 令

$$\varphi_n(x) = \frac{f(x, y + h_n) - f(x, y)}{h_n} \quad (x \in [a, b]).$$

則  $\lim_{n\to\infty} \varphi_n(x) = f_y'(x,y) \quad (x \in [a,b]).$ 

由微分中值定理,  $x \in [a, b], \forall n \ge 1$ ,

$$|\varphi_n(x)| = \left| \frac{f(x, y + h_n) - f(x, y)}{h_n} \right| = \left| f_y'(x, y + \theta h_n) \right| \le g(x) \quad (0 < \theta < 1).$$

对  $\{\phi_n\}$  使用控制收敛定理,可得:

$$\lim_{n \to \infty} \frac{I(y+h_n) - I(y)}{h_n} = \lim_{n \to \infty} \frac{1}{h_n} \int_a^b \left[ f(x,y+h_n) - f(x,y) \right] dx$$
$$= \lim_{n \to \infty} \int_a^b \varphi_n(x) dx = \int_a^b f_y'(x,y) dx.$$

则积分在y处可导,原命题成立.

注意: 这个问题的证明方法是一种重要的证明思路: **当遇到函数极限的问题时**,可以考虑先将其转换为数列极限(归结原理),在数列的框架下使用控制收敛定理等工具,然后在将其转换回函数形式(归结原理).

# 4 Lebesgue 积分与 Riemann 积分的关系

#### 4.1 Riemann 积分

• 分割与单调加细: [a,b] 是有界闭区间,由 [a,b] 上有限个点构成的序列  $\{P_n\}$  称为 [a,b] 的一个分割,若  $a=x_0 < x_1 < \cdots < x_n = b$ . 如果  $\{P_n\}$  是 [a,b] 的一列分割,使得  $P_n \subset P_{n-1}(n \ge 1)$ ,则称  $\{P_n\}$  是单调加细的.

• 相关记号与说明.f 是 [a,b] 上的有界实值函数, $P = \{x_i\}_{i=0}^n$  为一个分割,定义:

$$\Delta x_i = x_i - x_{i-1}$$

$$m_i = \inf_{f(x):x \in [x_{i-1}, x_i]}$$

$$M_i = \sup_{f(x):x \in [x_{i-1}, x_i]}$$

$$\lambda = \max_{1 \leqslant i \leqslant n} \Delta x_i$$
为分割  $P$  的细度.

• 上积分与下积分:

$$\int_{\underline{a}}^{b} f \, \mathrm{d}x = \sup_{\forall P} \sum_{i=1}^{n} m_{i} \Delta x_{i}, \overline{\int_{a}^{b}} f \, \mathrm{d}x = \inf_{\forall P} \sum_{i=1}^{n} M_{i} \Delta x_{i}.$$

• Riemann 可积的充要条件: 上积分等于下积分. 且若一个函数在 [a,b] 上 Riemann 可积,则:

$$\int_{a}^{b} f \, \mathrm{d}x = \int_{a}^{b} f \, \mathrm{d}x = \overline{\int_{a}^{b}} f \, \mathrm{d}x.$$

#### 4.2 正常积分的关系

Step 1: 构造 Riemann 积分与 Lebesgue 积分的桥梁.

$$\underline{\int_a^b} f \, \mathrm{d}x = \lim_{n \to \infty} \sum_{i=1}^{k_n} m_i^{(n)}, \overline{\int_a^b} f \, \mathrm{d}x = \lim_{n \to \infty} \sum_{i=1}^{k_n} M_i^{(n)}.$$

定义函数列  $\{u_n\}$ ,  $\{U_n\}$  为:  $u_n(a) = m_1^{(n)}, u_n(x) = m_i^{(n)}, x \in [x_{i-1}^{(n)}, x_i^{(n)}]$ ,  $U_n(a) = M_1^{(n)}, U_n(x) = M_i^{(n)}, x \in [x_{i-1}^{(n)}, x_i^{(n)}]$ . 则它们都是阶梯函数,且  $u_n \nearrow$ ,  $U_n \searrow$ ,  $m \leqslant u_n \leqslant f \leqslant U_n \leqslant M$ . 令  $u = \lim_{n \to \infty} u_n$ ,  $U = \lim_{n \to \infty} U_n$ . 则 u, U 为有界可测函数,且  $u(x) \leqslant f(x) \leqslant U(x), x \in [a, b]$ .

### Step 2: 寻找桥梁的性质.

设  $f \in [a,b]$  上的有界可测函数, $\{P_n\}$  是 [a,b] 的一列单调加细的分割,且  $\lambda_n \to 0$ . 若  $x_0 \in [a,b]$  且  $x_0$  不是任何  $\{P_n\}$  的分点,则  $u(x_0) = U(x_0) \Leftrightarrow f \in x_0$  处**连续.** 

证明: (⇒) 设  $u(x_0) = U(x_0)$ . 则  $\lim_{n\to\infty} (U_n(x_0) - u_n(x_0)) = U(x_0) - u(x_0) = 0.$   $\forall \varepsilon > 0, \exists n_0, s.t.$   $U_{n_0}(x_0) - u_{n_0}(x_0) < \varepsilon$ , 则在  $(x_{i-1}^{(n_0)}, x_i^{(n_0)}) \perp |f(x) - f(x_0)| \leq U_{n_0}(x_0) - u_{n_0}(x_0) < \varepsilon$ .

(秦) f 在  $x_0$  处连续,则  $\forall \varepsilon > 0$ ,  $\exists \delta > 0$ , s.t.  $x \in (x_0 - \delta, x_0 + \delta)$ ,  $f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$ . 取充分大的 n 使得  $\lambda_n < \delta$ , 设  $x_0 \in (x_{i-1}^{(n)}, x_i^{(n)})$ , 则  $[x_{i-1}^{(n)}, x_i^{(n)}] \subset (x_0 - \delta, x_0 + \delta)$ . 于是  $f(x_0) - \varepsilon \leqslant m_i^{(n)} \leqslant M_i^{(n)} \leqslant f(x_0) + \varepsilon$ ,即  $U_n(x_0) - u_n(x_0) = M_i^{(n)} - m_i^{(n)} \leqslant 2\varepsilon$ . 令  $n \to \infty$  即得证.

#### Step 3: 找到关系并证明.

设  $f \in [a,b]$  上的有界可测函数.则:

- $f \in R([a,b]) \Leftrightarrow f \times [a,b] \perp \text{a.e.}$  连续.

证明: (1) 设  $P_n = \{x_0^{(n)}, x_1^{(n)}, \cdots, x_{k_n}^{(n)}\} (n \ge 1)$  是 [a, b] 上的一列单调可测的分割,且  $\lambda_n \to 0$ . 由有界收敛定理和  $u_n, U_n$  的关系,有:

$$(L)\int_a^b U\,\mathrm{d}x = \lim_{n\to\infty}(L)\int_a^b U_n\,\mathrm{d}x = \lim_{n\to\infty}\sum_{i=1}^{k_n}M_i^{(n)}\Delta x_i^{(n)}.$$

$$(L)\int_a^b u\,\mathrm{d}x = \lim_{n\to\infty}(L)\int_a^b u_n\,\mathrm{d}x = \lim_{n\to\infty}\sum_{i=1}^{k_n} m_i^{(n)}\Delta x_i^{(n)}.$$

两式相减,可得:

$$(L) \int_a^b (U - u) \, \mathrm{d}x = \overline{\int_a^b} f \, \mathrm{d}x - \int_a^b f \, \mathrm{d}x.$$

所以  $f \in R([a,b]) \Leftrightarrow (L) \int_a^b (U-u) dx = 0 \Leftrightarrow U = u \text{ a.e.}(U-u \ge 0).$ 

设 A 是分割序列  $\{P_n\}$  的分点的全体,则 m(A)=0. 再令 B 是 f 的间断点的全体. $x \notin A, U(x)=u(x) \Leftrightarrow f$  在x 处连续. 从而  $f \in R([a,b]) \Leftrightarrow f$  在[a,b]上 a.e. 连续.

(2)首先可得 f=u a.e.,f 在 [a,b] 上是可测的. 由 f 的有界性可知  $f\in L([a,b])$ . 故有:

$$(L) \int_{a}^{b} f \, dx = (L) \int_{a}^{b} u \, dx = \lim_{n \to \infty} \sum_{i=1}^{k_{n}} m_{i}^{(n)} \Delta x_{i}^{(n)} = (R) \int_{a}^{b} f \, dx.$$

注意: Lebesgue 积分的可积函数类严格大于 Riemann 积分的可积函数类.

#### 4.3 与广义 Riemann 积分的关系

设  $\forall b > a$ , f 在 [a,b] 上有界并且几乎处处连续,则  $f \in L([a,\infty)) \Leftrightarrow (R) \int_a^b f \, \mathrm{d}x$  绝对收敛. 且当  $(R) \int_a^b f \, \mathrm{d}x$  绝对收敛时,有

$$(R) \int_{a}^{\infty} f \, \mathrm{d}x = (L) \int_{a}^{\infty} f \, \mathrm{d}x.$$

证明: $\forall b > a, f$  在 [a, b] 上有界并且几乎处处连续(正常积分),可知  $f \in R([a, b]), f \in L([a, b])$ . 因此 f 在  $[a, \infty)$  上是可测的, $\forall n \geq a, n \in \mathbb{N}^+$ ,构造 f 的**截尾函数列**  $f_n(x) = f(x)\chi_{[a,n]}(x)$ ,则 f 是可测函数列,且  $f_n(x) \to f(x)(x \in [a, \infty))$ , $f_n \nearrow$ . 由 Levi 定理与正常积分的关系,可知

$$\begin{split} (R) \int_a^\infty |f| \, \mathrm{d}x &= \lim_{n \to \infty} (R) \int_a^n |f| \, \mathrm{d}x = \lim_{n \to \infty} (L) \int_a^n |f| \, \mathrm{d}x \\ &= \lim_{n \to \infty} (L) \int_{[a,\infty)} |f_n| \, \mathrm{d}x = (L) \int_a^\infty |f| \, \mathrm{d}x. \end{split}$$

因此  $f \in L[a,\infty) \Leftrightarrow (R) \int_a^\infty f \, dx$  绝对收敛. 注意到  $|f_n| \leqslant |f| (n \geqslant 1)$ . 利用控制收敛 定理与以上的类似方法,得到:

$$(R) \int_{a}^{\infty} f \, \mathrm{d}x = (L) \int_{a}^{\infty} f \, \mathrm{d}x.$$

注意: 非绝对收敛的 Riemann 广义积分不是 Lebesgue 可积的. 如  $f(x) = \frac{\sin x}{x}$ .

 $\int_a^b f \, \mathrm{d}x$  在 Riemann 正常积分和绝对收敛的广义 Riemann 积分时与 Lebesgue 积分等价(注意 f 的有界性).

#### 4.4 应用

Lebesgue 积分用于理论证明,Riemann 积分用于计算.

应用的两种形式:

- 计算积分型函数列的极限,用控制收敛定理即可,重点在于**寻找一个合适的可**测函数,使得能够把原函数控制住,还要 Riemann 可积.
- 计算原函数无法表示的积分,先用级数展开,然后用逐项积分定理,重点在于基本级数展开式的使用与级数收敛域的控制,同时还要构造非负可测的函数列,因为逐项积分定理是由 Levi 定理推出.

## 5 Fubini 定理

Fubini 定理讨论的是累次积分的换序问题.

一般形式: 若 f(x,y) 是  $\mathbb{R}^p \times \mathbb{R}^q$  上的非负可测函数则对几乎处处的  $x \in \mathbb{R}^p, f(x,y)$  作为 y 的函数在  $\mathbb{R}^q$  上可测, $g(x) = \int_{\mathbb{R}^q f(x,y) \, \mathrm{d}y}$  在  $\mathbb{R}^p$  上可测,并且:

$$\int_{\mathbb{R}^p \times \mathbb{R}^q} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_{\mathbb{R}^p} \left( \int_{\mathbb{R}^q f(x, y)} \mathrm{d}y \right) \mathrm{d}x.$$

将非负可测函数这一条件改为可积函数,得到的可测结论改为可积,上述定理依然成立.

方体形式:  $I \subset \mathbb{R}^p, J \subset \mathbb{R}^q$  为方体. 若 f(x,y) 是  $I \times J$  上的非负可测函数或可积函数,则:

$$\int_{I\times J} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_I \mathrm{d}x \int_J f(x,y) \, \mathrm{d}y = \int_J \mathrm{d}y \int_I f(x,y) \, \mathrm{d}x.$$

上述定理一般不用在实际计算中,实际计算使用以下的推论.、 $I \subset \mathbb{R}^p, J \subset \mathbb{R}^q$  为方体.

**推论**:  $I \subset \mathbb{R}^p$ ,  $J \subset \mathbb{R}^q$  为方体. 若 f(x,y) 是  $I \times J$  上的可测函数,且以下两式中至少有一个成立:

$$\int_E \mathrm{d}x \int_J |f(x,y)| \, \mathrm{d}y < \infty, \int_J \mathrm{d}y \int_I |f(x,y)| \, \mathrm{d}x < \infty.$$

则下式成立:

$$\int_{I\times J} f(x,y)\,\mathrm{d} x\,\mathrm{d} y = \int_{I} \mathrm{d} x \int_{J} f(x,y)\,\mathrm{d} y = \int_{J} \mathrm{d} y \int_{I} f(x,y)\,\mathrm{d} x.$$