Week6 - Probabilistic view of classification: Discriminative v.s. Generative classifiers

1. Probabilistic Generative classifiers

Generative approach model the the class-conditional densities $p(\boldsymbol{x}|C_k)$ and the class prior $p(C_k)$, then use these to compute posterior probabilities $p(C_k|\boldsymbol{x})$ through Bayes' theorem.

$$p(C_k|oldsymbol{x}) = rac{p(oldsymbol{x}|C_k) \cdot p(C_k)}{p(oldsymbol{x})}$$

Note that If we calculate $p(C_k|\mathbf{x})$ in order to make prediction, we don't need to actually calculate the denominator $p(\mathbf{x})$.

$$rg \max_{C_k} p(C_k|oldsymbol{x}) = rg \max_{C_k} p(C_k|oldsymbol{w}) = rac{p(oldsymbol{x}|C_k) \cdot p(C_k)}{p(oldsymbol{x})} = rg \max_{C_k} p(oldsymbol{x}|C_k) \cdot p(C_k)$$

Hence, the model used for classification problem via Bayes' rule is also call **Bayes classifier**.

Class-Conditional Probability Density Function (PDF)

Class-Conditional Probability Density Function (PDF) is the probability of x given that the state of nature of C_k , which indicates how much probability will be for x belonging to class C_k .

Univariate Inputs (Binary class problem)

• **Assumption**: Generative learning model assuming that class-conditional PDF $p(x|C_k)$ is distributed according to a **normal (Gaussian) distribution**. (**Gaussian Bayes classifier**)

$$p(x|C_k) = rac{1}{\sigma_{C_k}\sqrt{2\pi}}exp\left(-rac{(x-\mu_{C_k})^2}{2\sigma_{C_k}^2}
ight)$$

where parameters: μ_{C_k} , $\sigma^2_{C_k}$ is the distribution mean and variance of class C_k

- Step by step
 - \circ Estimate the model parameters $\{(\mu_{C_1},\sigma_{C_1}^2),(\mu_{C_2},\sigma_{C_2}^2)\}$
 - lacksquare Divide the training set D into two class: D_1 for class C_1 and D_2 for class C_2
 - For each class C_k , we fit a Gaussian to model $p(x|C_k)$ on class C_k .
 - Using Maximum Likelihood Estimation (MLE) for a Gaussian

$$p(oldsymbol{x}|C_k) = \prod_{n=1}^N p(oldsymbol{x}_n) |C_k = \prod_{n=1}^N \left\{ rac{1}{\sigma_{C_k}\sqrt{2\pi}} exp\left(-rac{(x-\mu_{C_k})^2}{2\sigma_{C_k}^2}
ight)
ight\}$$

• Minimise the negative logarithm of the class-conditional PDF:

$$E(oldsymbol{x}) = -\ln p(oldsymbol{x}|C_k) = -\left(\sum_{n=1}^N \left\{rac{1}{\sigma_{C_k}\sqrt{2\pi}}
ight\} + \sum_{n=1}^N \left\{-rac{(x-\mu_{C_k})^2}{2\sigma_{C_k}^2}
ight\}
ight)$$

$$r \Rightarrow \sum_{n=1}^N ln(\sigma_{C_k} \sqrt{2\pi}) + \sum_{n=1}^N \left\{ rac{(x-\mu_{C_k})^2}{2\sigma_{C_k}^2}
ight\}$$

Partial differentiate with respect to μ_{C_k} and $\sigma_{C_k}^2$, respectively. let the derivates equal to zero:

$$egin{aligned} rac{\partial (-\ln p(x|C_k))}{\partial \mu_{C_k}} &= 0 \Rightarrow \mu_{C_k} = rac{1}{N} \sum_{n=1}^N x_n \ & rac{\partial (-\ln p(x|C_k))}{\partial \sigma_{C_k}^2} = 0 \Rightarrow \sigma_{C_k}^2 = rac{1}{N} \sum_{n=1}^N (x_n - \mu_{C_k})^2 \end{aligned}$$

- \circ Note: $p(x|C_k) pprox p(x|\mu_{C_k},\sigma_{C_k}^2)$
- Prediction rule: $p(C_1|x) > p(C_2|x) \Rightarrow p(x|C_1)p(C_1) > p(x|C_2)p(C_2)$
 - Class prior $p(C_k)$:

$$p=rac{\sum_{n=1}^{N}1}{N}$$
 (If $t_n=C_k$) $p(C)=egin{cases} p & C=C_k\ 1-p & otherwise \end{cases}$

using Bernoulli distribution: $p(C_k) = p^{C_k} (1-p)^{1-C_k}$

- Summary:
 - o Given the training set D , learn the parameters to fully specify the joint distribution $p({\pmb x}, C_k)$
 - Model parameters: $m{w} = (p, \{\mu_{C_k}\}, \{\sigma_{C_k}^2\})$
 - \circ Likelihood function of the joint distribution for each class C_k

$$\prod_{n=1}^{N} p(x_n, \{C_k, \mu_{C_k}, \sigma_{C_k}^2, p\}) = \prod_{n=1}^{N} p(x_n | C_k, \mu_{C_k}, \sigma_{C_k}^2) p(C_k, p)$$

- $lacksquare p(x_n|C_k,\mu_{C_k},\sigma_{C_k}^2)$: use MLE to find μ_{C_k} and $\sigma_{C_k}^2$, then calculate
- $p(C_k,p)$: count the data point to find p, then use Bernoulli distribution to find $p(C_k)$

Multivariate Inputs (Binary class problem)

• **Assumption**: assume that class-conditional PDF $p(x|C_k)$ is distributed according to a **Multivariate normal (Gaussian) distribution**.

$$p(oldsymbol{x}|C_k) pprox p(oldsymbol{x}|oldsymbol{\mu_{C_k}},oldsymbol{\Sigma}) rac{1}{|\sigma|^{1/2}(2\pi)^{D/2}} exp\left(-rac{1}{2}(x-oldsymbol{\mu_{C_k}})^T\cdot|\Sigma|^{-1}\cdot(x-oldsymbol{\mu_{C_k}})
ight)$$

- $m{\circ}$ $m{x}$: a vector-valued random variable $m{x}=(x_1,\ldots,x_D)^T$. (D imes 1 column vector)
- $\circ \;\; \pmb{\mu_{C_k}}$: D-dimensional mean vector (D imes 1) for class C_k
- $\Sigma: D \times D$ covariance matrix, $|\Sigma|$ is the determinant of Σ .
- Each class has a different μ_{C_k} , but all share the same Σ .
- Logistic sigmoid: a 'squashing function' maos the whole real axis into a finite interval.

$$\sigma(a) = \frac{1}{1 + exp(-a)}$$

we can make use of the property of logistic sigmoid to model the posterior probability for class C_k .

 \circ For real-valued x:

$$p(C_1|x) = rac{p(x|C_1) \cdot p(C_1)}{p(x|C_1) \cdot p(C_1) + p(x|C_2) \cdot p(C_2)} = rac{1}{1 + exp(-a)}$$

where:

$$a = \ln rac{p(x|C_1) \cdot p(C_1)}{p(x|C_2) \cdot p(C_2)}$$
 (the log odds)

• Then, for vector x:

$$p(C_1|oldsymbol{x}) = rac{1}{1 + exp(-a)} = \sigma(oldsymbol{w} \cdot oldsymbol{x} + w_0)$$

where:

$$oldsymbol{w} = oldsymbol{\Sigma}^{-1}(oldsymbol{\mu}_{C_1} - oldsymbol{\mu}_{C_2})$$

$$oxed{w_0 = -rac{1}{2}oldsymbol{\mu}_{C_1}^Toldsymbol{\Sigma}^{-1}oldsymbol{\mu}_{C_1} + rac{1}{2}oldsymbol{\mu}_{C_2}^Toldsymbol{\Sigma}^{-1}oldsymbol{\mu}_{C_2} + \lnrac{p(C_1)}{pC_2}}$$

• Step by step:

Given training example $\{m{x}_n,t_n\}_{n=1,\dots,N}$ with $t_n\in\{0,1\}$. (t_n =1 if $m{x}_n$ is in class C_1)

Calculate class prior:

$$p=rac{N_1}{N_1+N_2}$$

o Calculate the mean vector:

$$egin{aligned} oldsymbol{\mu}_1 &= rac{1}{N_1} \sum_{n=1}^N t_n oldsymbol{x}_n \ oldsymbol{\mu}_2 &= rac{1}{N_2} \sum_{n=1}^N \left(1 - t_n
ight) oldsymbol{x}_n \end{aligned}$$

Calculate the variance vector:

$$egin{aligned} oldsymbol{S}_1 &= rac{1}{N_1} \sum_{n \in C_1} (oldsymbol{x}_n - oldsymbol{\mu}_1)^T (oldsymbol{x}_n - oldsymbol{\mu}_1) \ oldsymbol{S}_2 &= rac{1}{N_2} \sum_{n \in C_2} (oldsymbol{x}_n - oldsymbol{\mu}_2)^T (oldsymbol{x}_n - oldsymbol{\mu}_2) \end{aligned}$$

• The covariance:

$$oldsymbol{\Sigma} = rac{N_1}{N} oldsymbol{\mathcal{S}}_1 + rac{N_2}{N} oldsymbol{\mathcal{S}}_2$$

 $\circ\;\;$ Plug the Gaussian class densities into the variable a

$$a = \boldsymbol{w}\boldsymbol{x} + w_0$$

$$\phi \Rightarrow -rac{1}{2}(m{x}-m{\mu}_2)^Tm{\Sigma}^{-1}(m{x}-m{\mu}_2) + rac{1}{2}(m{x}-m{\mu}_1)^Tm{\Sigma}^{-1}(m{x}-m{\mu}_1) + \lnrac{p(C_1)}{pC_2}$$

Note that a takes a simple linear form, which means the induced decision boundary is linear.

Summary

 Likelihood function of the joint distribution for all the data points: Bernoulli distribution

$$\prod_{n=1}^{N} [p \cdot p(\boldsymbol{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma})]^{t_n} [(1-p) \cdot p(\boldsymbol{x}_n | \boldsymbol{\mu}_2, \boldsymbol{\Sigma})]^{1-t_n}$$

o Error function: the log-likelihood function

$$egin{aligned} \ell(x_n, \mu_1, \mu_2, oldsymbol{\Sigma}) &= \log \left\{ likelihood
ight\} \ \Rightarrow \sum_{n=1}^N \left\{ t_n \cdot \ln[p \cdot p(oldsymbol{x}_n | oldsymbol{\mu}_1, oldsymbol{\Sigma})]^{t_n} + (1 - t_n) \cdot \ln[(1 - p) \cdot p(oldsymbol{x}_n | oldsymbol{\mu}_2, oldsymbol{\Sigma})]^{1 - t_n}
ight\} \end{aligned}$$

• Visualization:

• Prediction Rule:

- $\qquad \text{o Compare the posterior: } p(C_1|\boldsymbol{x}) > p(C_2|\boldsymbol{x}) \Rightarrow p(\boldsymbol{x}|C_1)p(C_1) > p(\boldsymbol{x}|C_2)p(C_2)$
- \circ Or: $a=\lnrac{p(m{x}|C_1)\cdot p(C_1)}{p(m{x}|C_2)\cdot p(C_2)}$, If a>0 then predict class C_1 , C_2 otherwise.

2. Probabilistic Discriminative Model: Logistic Regression

- Directly model the prediction of target variable y on input x as a conditional probability p(y|x).
- Compare with non-probabilistic linear regression
 - Map input to a continuous target value: $\boldsymbol{w} \cdot \boldsymbol{x}$
 - The continuous target value is constrained to [0,1] by applying logistic function as the activation function: $\sigma(\boldsymbol{w}\cdot\boldsymbol{x})$
- Error function:

$$\ell(oldsymbol{w}) = \log\left\{likelihood
ight\} = \log\prod_{n=1}^{N}y_n^{t_n}(1-y_n)^{1-t_n}$$

where:

$$\circ \ y(\boldsymbol{x}) = p(C_1|\boldsymbol{x}) = \sigma(\boldsymbol{w} \cdot \boldsymbol{x})$$

• Optimising the likelihood by using MLE:

$$abla \ell(m{w}) = rac{\partial \ell(m{w})}{\partial m{w}} = 0 \Rightarrow \sum_{n=1}^{N} \left(t_n - \sigma(m{w} \cdot m{x})
ight) m{x} = 0$$

No analytical solution o Iterative algorithm

• Gradient of the error function of w_n :

$$\ell(\boldsymbol{w}_{n}) = \log \{likelihood\} = \log y_{n}^{t_{n}} (1 - y_{n})^{1 - t_{n}} = t_{n} \log y_{n} + (1 - t_{n}) \log(1 - y_{n})$$

$$(1) \frac{\partial \ell(\boldsymbol{w}_{n})}{\partial \boldsymbol{w}} = \frac{t_{n}}{y_{n}} \cdot \frac{\partial y_{n}}{\partial \boldsymbol{w}} + \frac{1 - t_{n}}{1 - y_{n}} \cdot \frac{-\partial y_{n}}{\partial \boldsymbol{w}}$$

$$\Rightarrow \frac{\partial y_{n}}{\partial \boldsymbol{w}} \cdot (\frac{t_{n}}{y_{n}} - \frac{1 - t_{n}}{1 - y_{n}}) = \frac{\partial y_{n}}{\partial \boldsymbol{w}} \cdot \frac{t_{n} - y_{n}}{y_{n}(1 - y_{n})}$$

(2) let $u = -w^T x$, $y_n = \frac{1}{1+\exp(-\pmb\{w\}^T\pmb\{x\})} = \frac{1}{1+\exp(u)}$

\$\cfrac{\partial{y_n}}{\partial{\pmb{w}}}=\cfrac{\partial{y_n}}
{\partial{u}}\cdot\cfrac{\partial{u}}{\partial{u}}\cdot (-\pmb{x})\$

 $(3) \left(\frac{1}{1+\exp(u)}\right)^2 = \left(\frac{1}{1+\exp(u)}\right)^2 = \frac{1}{1+\exp(u)} \cdot \frac{1+\exp(u)}{1+\exp(u)} \cdot \frac$

Hence:

$$egin{aligned} &= y_n \cdot (1-y_n) \cdot (-oldsymbol{x}) \cdot rac{t_n - y_n}{y_n (1-y_n)} \ &= -(t_n - y_n) \cdot oldsymbol{x} \end{aligned}$$

• Using Gradient descent: SGD

$$egin{aligned}
abla \ell(oldsymbol{w}) &= -\eta(t_n - y(oldsymbol{w})) oldsymbol{x}_n \ oldsymbol{w}^{(t+1)} &:= oldsymbol{w}^{(t)} + \eta^{(t)} (t_n - y_n) oldsymbol{x}_n \end{aligned}$$

Pseudocode:

```
Initialise the parameters to zero
While {E(w_new)-E(w_old)} > epsilon
do {
   for each training data point {x_n, t_n}
      update w
}
```

- Advantages
 - Quick to train and Faster than probabilistic generative model in classification with Good accuracy.
 - Resistant to overfitting
 - Model parameters can be used as indicators for feature importance