Compositional Stability Analysis Systems of Systems

Christoffer Sloth

ces@es.aau.dk

Department of Electronic Systems Aalborg University Denmark

Stability Analysis Stability Analysis

Stability Analysis

Stability Analysis Considered Classes of Systems

We consider two types of autonomous systems

1. Nonlinear system

$$\dot{x} = f(x)$$

where $x \in \mathbb{R}^n$ is the state and $f : \mathbb{R}^n \to \mathbb{R}^n$.

2. Linear system

$$\dot{x} = Ax$$

where $A \in \mathbb{R}^{n \times n}$ is an $n \times n$ matrix.

Definition: Stability

The equilibrium x = 0 of a dynamical system is

• *stable* if, for each $\epsilon > 0$, there is δ such that

$$||x(0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall \ t \ge 0.$$

Definition: Stability

The equilibrium x = 0 of a dynamical system is

• *stable* if, for each $\epsilon > 0$, there is δ such that

$$||x(0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall \ t \ge 0.$$

► *unstable* if it is not stable.

Definition: Stability

The equilibrium x = 0 of a dynamical system is

• *stable* if, for each $\epsilon > 0$, there is δ such that

$$||x(0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall t \ge 0.$$

- ► *unstable* if it is not stable.
- asymptotically stable if it is stable and δ can be chosen such that

$$||x(0)|| < \delta \Rightarrow \lim_{t \to \infty} x(t) = 0.$$

Definition: Stability

The equilibrium x = 0 of a dynamical system is

• *stable* if, for each $\epsilon > 0$, there is δ such that

$$||x(0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall t \ge 0.$$

- unstable if it is not stable.
- asymptotically stable if it is stable and δ can be chosen such that

$$||x(0)|| < \delta \Rightarrow \lim_{t \to \infty} x(t) = 0.$$

• exponentially stable if it is stable and there exist constants $c, k, \lambda > 0$ such that

$$||x(t)|| \le k||x(0)||e^{-\lambda t} \quad \forall ||x(0)|| < c.$$

Lyapunov Stability

Let x=0 be an equilibrium point of $\dot{x}=f(x)$, and let $V:\mathbb{R}^n\to\mathbb{R}$ be a differentiable. The equilibrium point x=0 is

► *stable* if *V* satisfies

$$V(0) = 0 (1a)$$

$$V(x) > 0 \quad \forall x \in \mathbb{R}^n \setminus \{0\}$$
 (1b)

$$\frac{\partial V}{\partial x}(x)f(x) \le 0 \quad \forall x \in \mathbb{R}^n.$$
 (1c)

Lyapunov Stability

Let x=0 be an equilibrium point of $\dot{x}=f(x)$, and let $V:\mathbb{R}^n\to\mathbb{R}$ be a differentiable. The equilibrium point x=0 is

► *stable* if *V* satisfies

$$V(0) = 0 (1a)$$

$$V(x) > 0 \quad \forall x \in \mathbb{R}^n \setminus \{0\}$$
 (1b)

$$\frac{\partial V}{\partial x}(x)f(x) \le 0 \quad \forall x \in \mathbb{R}^n.$$
 (1c)

► asymptotically stable if V satisfies (1) and

$$\frac{\partial V}{\partial x}(x)f(x) < 0 \quad \forall x \in \mathbb{R}^n \setminus \{0\}$$

Lyapunov Stability

Let x=0 be an equilibrium point of $\dot{x}=f(x)$, and let $V:\mathbb{R}^n\to\mathbb{R}$ be a differentiable. The equilibrium point x=0 is

► stable if V satisfies

$$V(0) = 0 (1a)$$

$$V(x) > 0 \quad \forall x \in \mathbb{R}^n \backslash \{0\}$$
 (1b)

$$\frac{\partial V}{\partial x}(x)f(x) \le 0 \quad \forall x \in \mathbb{R}^n.$$
 (1c)

► asymptotically stable if V satisfies (1) and

$$\frac{\partial V}{\partial x}(x)f(x) < 0 \quad \forall x \in \mathbb{R}^n \setminus \{0\}$$

► exponentially stable if V satisfies

$$k_1||x||^a \le V(x) \le k_2||x||^a \quad \forall x \in \mathbb{R}^n$$

$$\frac{\partial V}{\partial x}(x)f(x) \le -k_3||x||^a \quad \forall x \in \mathbb{R}^n$$

Stability Analysis Lyapunov Stability for Linear Systems

The system

$$\dot{x} = Ax$$

has an asymptotically stable equilibrium point x=0 *if and only if* for any positive definite Q there exists a positive definite P such that

$$A^T P + P A = -Q.$$

Stability Analysis Lyapunov Stability for Linear Systems

The system

$$\dot{x} = Ax$$

has an asymptotically stable equilibrium point x=0 *if and only if* for any positive definite Q there exists a positive definite P such that

$$A^T P + P A = -Q.$$

The solution to the Lyapunov equation is

$$P = \int_0^\infty e^{A^T t} Q e^{At} dt.$$

The following code requires the package yalmip.

```
% System matrix
A = [-1 0;2 -2];
% Lyapunov matrix
P = sdpvar(2,2,'symmetric');
Objective = 1;
Constraint1 = A'*P+P*A<=0;
Constraint2 = P>=0;
optimize([Constraint1, Constraint2], Objective)
```

Stability Analysis Reflection

Why bother about Lyapunov stability for linear systems, when we can check if A is stable via eigenvalue analysis?

Stability Analysis Reflection

Why bother about Lyapunov stability for linear systems, when we can check if A is stable via eigenvalue analysis?

The optimization-based approach allows composition of requirements - an example is $\mathcal{D}\text{-stability}.$

$\mathcal{D} ext{-Stability}$

A linear system

$$\dot{x} = Ax$$

is said to be $\mathcal D$ -stable if all eigenvalues of A lies in $\mathcal D$, and $\mathcal D$ is a subset of the complex left-half plane.

\mathcal{D} -Stability

$\mathop{\mathcal{D}\text{-Stability}}_{S(\alpha,\,r,\,\theta)}$

 $x < \alpha < 0, |x + jy| < r, \tan(\theta) < -|y|.$

$\mathcal{D}\text{-Stability}$

A linear system

$$\dot{x} = Ax$$

is \mathcal{D} -stable with LMI region $S(\alpha,r,\theta)$ if there exists symmetric matrix X such that

$$AX + XA^{T} + 2\alpha X < 0$$

$$\begin{bmatrix} -rX & AX \\ XA^{T} & -rX \end{bmatrix} < 0$$

$$\begin{bmatrix} \sin \theta (AX + XA^{T}) & \sin \theta (AX - XA^{T}) \\ \cos \theta (XA^{T} - AX) & \sin \theta (AX + XA^{T}) \end{bmatrix} < 0.$$

\mathcal{D} -Stability

A linear system

$$\dot{x} = Ax$$

is \mathcal{D} -stable with LMI region $S(\alpha,r,\theta)$ if there exists symmetric matrix X such that

$$AX + XA^{T} + 2\alpha X < 0$$

$$\begin{bmatrix} -rX & AX \\ XA^{T} & -rX \end{bmatrix} < 0$$

$$\begin{bmatrix} \sin \theta (AX + XA^{T}) & \sin \theta (AX - XA^{T}) \\ \cos \theta (XA^{T} - AX) & \sin \theta (AX + XA^{T}) \end{bmatrix} < 0.$$

Note that we can impose constraints on the *closed-loop poles*.

\mathcal{D} -Stability

A linear system

$$\dot{x} = Ax$$

is \mathcal{D} -stable with LMI region $S(\alpha,r,\theta)$ if there exists symmetric matrix X such that

$$AX + XA^{T} + 2\alpha X < 0$$

$$\begin{bmatrix} -rX & AX \\ XA^{T} & -rX \end{bmatrix} < 0$$

$$\begin{bmatrix} \sin \theta (AX + XA^{T}) & \sin \theta (AX - XA^{T}) \\ \cos \theta (XA^{T} - AX) & \sin \theta (AX + XA^{T}) \end{bmatrix} < 0.$$

Note that we can impose constraints on the *closed-loop poles*.

This can be combined with, e.g., the minimization of the quadratic cost known from linear quadratic regulation.

Sum of Squares Polynomials

Consider the polynomial

$$12x^2 - 6.3x^4 + x^6 + 3xy - 12y^2 + 12y^4$$

How can optimization be used to find the minimum value of the polynomial?

Sum of Squares Polynomials SOS Decomposition

Theorem

Fix $p \in \mathcal{R}_{n,2d}$. $p \in \Sigma_{n,2d}$ if and only if there exists a $Q \ge 0$ such that

$$p(x) = z_{n,d}(x)^T Q z_{n,d}(x).$$

Sum of Squares Polynomials Example: Decomposition

We consider the polynomial

$$p(x) = x_1^4 + x_1^2 x_2^2 + x_2^4$$

Sum of Squares Polynomials Example: Decomposition

We consider the polynomial

$$p(x) = x_1^4 + x_1^2 x_2^2 + x_2^4$$

Is it a sum of squares?

Example: Decomposition

We consider the polynomial

$$p(x) = x_1^4 + x_1^2 x_2^2 + x_2^4$$

Is it a sum of squares?

Yes,
$$p(x) = (x_1^2)^2 + (x_1x_2)^2 + (x_2^2)^2$$
.

Example: Decomposition

We consider the polynomial

$$p(x) = x_1^4 + x_1^2 x_2^2 + x_2^4$$

with n=2 and 2d=4 (the polynomial is of degree 4=2d).

Example: Decomposition

We consider the polynomial

$$p(x) = x_1^4 + x_1^2 x_2^2 + x_2^4$$

with n=2 and 2d=4 (the polynomial is of degree 4=2d).

To generate a SOS decomposition, we need the following monomials

$$z_{2,2} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}$$

Example: Decomposition

We consider the polynomial

$$p(x) = x_1^4 + x_1^2 x_2^2 + x_2^4$$

with n=2 and 2d=4 (the polynomial is of degree 4=2d).

To generate a SOS decomposition, we need the following monomials

$$z_{2,2} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}$$

We must write p(x) on the following form

$$p(x) = z_{n,d}^T Q z_{n,d}$$

with $Q \succ 0$.

Sum of Squares Polynomials Example: Decomposition

We consider the polynomial

$$p(x) = x_1^4 + x_1^2 x_2^2 + x_2^4.$$

Example: Decomposition

We consider the polynomial

$$p(x) = x_1^4 + x_1^2 x_2^2 + x_2^4.$$

A decomposition is

Sum of Squares Polynomials Example: Decomposition

We consider the polynomial

$$p(x) = x_1^4 + x_1^2 x_2^2 + x_2^4.$$

A decomposition is

Example: Decomposition

We consider the polynomial

$$p(x) = x_1^4 + x_1^2 x_2^2 + x_2^4.$$

A decomposition is

What is going on?

Example: Decomposition

Since the SOS decomposition is not unique, we must parameterize the set of SOS decompositions.

Example: Decomposition

Since the SOS decomposition is not unique, we must parameterize the set of SOS decompositions.

Given a polynomial p, let Q_0 be any symmetric matrix such that

$$p(x) = z_{n,d}^T Q_0 z_{n,d}$$

Example: Decomposition

Since the SOS decomposition is not unique, we must parameterize the set of SOS decompositions.

Given a polynomial p, let Q_0 be any symmetric matrix such that

$$p(x) = z_{n,d}^T Q_0 z_{n,d}$$

and let $\{Q_i\}_{i=1}^m$ be the set of matrices such that

$$z_{n,d}^T Q_i z_{n,d} = 0$$

Example: Decomposition

Since the SOS decomposition is not unique, we must parameterize the set of SOS decompositions.

Given a polynomial p, let Q_0 be any symmetric matrix such that

$$p(x) = z_{n,d}^T Q_0 z_{n,d}$$

and let $\{Q_i\}_{i=1}^m$ be the set of matrices such that

$$z_{n,d}^T Q_i z_{n,d} = 0$$

Combined we get the set

$$Q_p = \{Q \mid z_{n,d}^T(x)Qz_{n,d}(x) = p(x)\} = \{Q_0 + \sum_{i=1}^m \lambda_i Q_i \mid \lambda_i \in \mathbb{R}, i = 1, \dots, m\}$$

Example: Decomposition

For

$$p(x) = x_1^4 + x_1^2 x_2^2 + x_2^4$$

we have

$$\begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}^T \begin{bmatrix} q_1 & q_2 & q_3 & q_4 & q_5 & q_6 \\ q_2 & q_7 & q_8 & q_9 & q_{10} & q_{11} \\ q_3 & q_8 & q_{12} & q_{13} & q_{14} & q_{15} \\ q_4 & q_9 & q_{13} & q_{16} & q_{17} & q_{18} \\ q_5 & q_{10} & q_{14} & q_{17} & q_{19} & q_{20} \\ x_2^2 \\ x_2^2 \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}$$

Sum of Squares Polynomials Example: Decomposition

Monomial	Coefficient
1	q_1
x_1	$2q_2$
x_2	$2q_3$
x_{1}^{2}	$q_7 + 2q_4$
x_1x_2	$2q_8 + 2q_5$
x_{2}^{2}	$q_{12} + 2q_6$
x_1^3	$2q_9$
$x_1^2 x_2$	$2q_{10} + 2q_{13}$
$x_1 x_2^2$	$2q_{11} + 2q_{14}$
x_{2}^{3}	$2q_{15}$
x_{1}^{4}	q_{16}
$x_{1}^{3}x_{2}$	$2q_{17}$
$x_1^2 x_2^2$	$q_{19} + 2q_{18}$
$x_1 x_2^3$	$2q_{20}$
x_2^4	q_{21}

Sum of Squares Polynomials Example: Decomposition

Monomial	Coefficient
1	q_1
x_1	$2q_2$
x_2	$2q_3$
x_1^2	$q_7 + 2q_4$
x_1x_2	$2q_8 + 2q_5$
x_{2}^{2}	$q_{12} + 2q_6$
x_1^3	$2q_9$
$x_1^2 x_2$	$2q_{10} + 2q_{13}$
$x_1 x_2^2$	$2q_{11} + 2q_{14}$
x_{2}^{3}	$2q_{15}$
x_{1}^{4}	q_{16}
$x_1^3 x_2$	$2q_{17}$
$x_1^2 x_2^2$	$q_{19} + 2q_{18}$
$x_1 x_2^3$	$2q_{20}$
x_{2}^{4}	q_{21}

Note that the constraints are linear.

Example: Decomposition

Given polynomial p of degree 2d, find the affine subspace

$$Q_p = \{Q_0 + \sum_{i=1} \lambda_i Q_i | \lambda_i \in \mathbb{R}\}.$$

There exists a SOS decomposition of p if and only if the following LMI is feasible

$$\exists \lambda_i \\ \text{s.t. } Q_0 + \sum_{i=1} \lambda_i Q_i \succeq 0.$$

Finding a Decomposition

Propertion

Given polynomial p of degree 2d. There exists a SOS decomposition of p if and only if

$$f(x) = z(x)^T Q z(x) Q \succeq 0.$$

Finding a Decomposition

Given polynomial p of degree 2d. There exists a SOS decomposition of p if and only if

$$f(x) = z(x)^T Q z(x) Q \succeq 0.$$

To find the decomposition

► Factorize $Q = L^T L$. Then

$$f(x) = z(x)^T L^T L z(x) = \sum_i (L z(x))_i^2.$$

- ► The terms in the SOS decomposition are given by $f_i(x) = (Lz(x))_i$.
- ▶ The number of squares is equal to the rank of *Q*.

Sum of Squares Polynomials Example: Finding a Decomposition

Given polynomial

$$p(x,y) = 2x^4 + 5y^4 - x^2y^2 + 2x^3y$$

Example: Finding a Decomposition

Given polynomial

$$\begin{split} p(x,y) &= 2x^4 + 5y^4 - x^2y^2 + 2x^3y \\ &= \begin{bmatrix} x^2 \\ y^2 \\ xy \end{bmatrix}^T \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{12} & q_{22} & q_{23} \\ q_{13} & q_{23} & q_{33} \end{bmatrix} \begin{bmatrix} x^2 \\ y^2 \\ xy \end{bmatrix} \end{split}$$

Example: Finding a Decomposition

Given polynomial

$$\begin{split} p(x,y) &= 2x^4 + 5y^4 - x^2y^2 + 2x^3y \\ &= \begin{bmatrix} x^2 \\ y^2 \\ xy \end{bmatrix}^T \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{12} & q_{22} & q_{23} \\ q_{13} & q_{23} & q_{33} \end{bmatrix} \begin{bmatrix} x^2 \\ y^2 \\ xy \end{bmatrix} \\ &= q_{11}x^4 + q_{22}y^4 + (q_{33} + 2q_{12})x^2y^2 + 2q_{13}x^3y + 2q_{23}xy^3 \end{split}$$

Example: Finding a Decomposition

Given polynomial

$$\begin{split} p(x,y) &= 2x^4 + 5y^4 - x^2y^2 + 2x^3y \\ &= \begin{bmatrix} x^2 \\ y^2 \\ xy \end{bmatrix}^T \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{12} & q_{22} & q_{23} \\ q_{13} & q_{23} & q_{33} \end{bmatrix} \begin{bmatrix} x^2 \\ y^2 \\ xy \end{bmatrix} \\ &= q_{11}x^4 + q_{22}y^4 + (q_{33} + 2q_{12})x^2y^2 + 2q_{13}x^3y + 2q_{23}xy^3 \end{split}$$

The primal SDP is $\exists Q$ s.t.

$$\begin{aligned} Q \succeq 0 \\ q_{11} &= 2 \\ q_{22} &= 5 \\ 2q_{23} &= 0 \\ 2q_{13} &= 2 \\ q_{33} + 2q_{12} &= -1. \end{aligned}$$

Example: Finding a Decomposition

We obtain

$$Q = \begin{bmatrix} 2 & -3 & 1 \\ -3 & 5 & 0 \\ 1 & 0 & 5 \end{bmatrix} = L^T L$$

Example: Finding a Decomposition

We obtain

$$Q = \begin{bmatrix} 2 & -3 & 1 \\ -3 & 5 & 0 \\ 1 & 0 & 5 \end{bmatrix} = L^T L$$

Thus

$$L = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -3 & 1\\ 0 & 1 & 3 \end{bmatrix}$$

Example: Finding a Decomposition

We obtain

$$Q = \begin{bmatrix} 2 & -3 & 1 \\ -3 & 5 & 0 \\ 1 & 0 & 5 \end{bmatrix} = L^T L$$

Thus

$$L = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -3 & 1\\ 0 & 1 & 3 \end{bmatrix}$$

Finally

$$p(x,y) = \frac{1}{2}(2x^2 - 3y^2 + xy)^2 + \frac{1}{2}(y^2 + 3xy)^2$$

Example: Finding a Decomposition

We obtain

$$Q = \begin{bmatrix} 2 & -3 & 1 \\ -3 & 5 & 0 \\ 1 & 0 & 5 \end{bmatrix} = L^T L$$

Thus

$$L = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -3 & 1\\ 0 & 1 & 3 \end{bmatrix}$$

Finally

$$p(x,y) = \frac{1}{2}(2x^2 - 3y^2 + xy)^2 + \frac{1}{2}(y^2 + 3xy)^2$$

This is a certificate of positivity.

Relation between SOS and positiveness

Let $P_{n,d}$ be the set of positive polynomials in n variables of degree at most d, and let $\Sigma_{n,d}$ be the set of SOS polynomials in n variables of degree at most d. Then $\Sigma_{n,d} \subseteq P_{n,d}$, with equality holding only in the following cases:

- ▶ Bivariate forms: n = 2.
- ▶ Quadratic forms: d = 2.
- ► Ternary quartics: n = 3, d = 4.

Algorithmic Stability Analysis

Algorithmic Stability Analysis

Algorithmic Stability Analysis

Lyapunov Stability for Polynomial Systems

Consider a dynamical system

$$\dot{x} = f(x)$$

where $x \in \mathbb{R}^n$ and f_i is polynomial for $i = 1, \dots, n$.

Algorithmic Stability Analysis

Lyapunov Stability for Polynomial Systems

Consider a dynamical system

$$\dot{x} = f(x)$$

where $x \in \mathbb{R}^n$ and f_i is polynomial for i = 1, ..., n. Then the system is stable if

$$V(x) \in \Sigma_{n,d}$$
$$-\frac{\partial V}{\partial x}(x)f(x) \in \Sigma_{n,d}$$


```
% Define state variable
x = sdpvar(1,1);
% Specify maximal degree of Lyapunov function
dV = 2:
% Define the unknown Lyapunov function
[V, cV] = polynomial(x,dV);
% Define the vector field
f = -x^3:
% Specify Lyapunov conditions
con = [sos(V); sos(-jacobian(V,x)*f)];
options = sdpsettings('solver', 'mosek');
optimize (con, 1, options, [cV]);
% Get coefficients of the Lyapunov function
cV = double(cV);
X = sdpvar(1,1);
vv = monolist(X,dV);
% Compute the symbolic Lyapunov function
Vpoly = vectorize(sdisplay(cV'*vv));
```

Algorithmic Stability Analysis Local Stability for Polynomial Systems

ALOONG UNIVERSITA

Let

$$\mathbb{K} = \{ x \in \mathbb{R}^n | h_1(x) \ge 0, \dots, h_s(x) \ge 0 \}$$

Based on Putinar's Positivestellensatz, we know that the polynomial f is positive on \mathbbm{K} if

$$f - \sum_{i=1}^{s} h_i f_i \in \Sigma_n$$

where $f_0, \ldots, f_s \in \Sigma_n$.

Compositional Stability Analysis

Problem Formulation

Problem Formulation

It may be difficult to find a Lyapunov function of a system with many states. However, a compositional approach to the stability analysis may ease the computations.

Problem

Given an interconnection of subsystems, find a Lyapunov function that certifies the stability of the interconnected system by the use of distributed optimization.

Compositional Stability Analysis Example System

To ease the presentation, we consider the following interconnected system throughout the lecture.

The interconnected dynamical system is defined by

$$\begin{cases} \dot{x}_1 = f_1(x_1, w_2, w_4) \\ w_1 = h_1(x_1) \end{cases}, \begin{cases} \dot{x}_2 = f_2(x_2, w_1) \\ (w_2, w_3) = h_2(x_2) \end{cases}, \begin{cases} \dot{x}_3 = f_3(x_3, w_3) \\ w_4 = h_3(x_3) \end{cases}$$

Lyapunov Stability Condition

If there exists a positive definite continuous differentiable function $V: \mathbb{R}^{n_1+n_2+n_3} \to \mathbb{R}$ such that

$$V(0) = 0$$

$$\frac{\partial V}{\partial x}(x)f(x) < 0 \quad \forall x \in \mathbb{R}^{n_1 + n_2 + n_3} \setminus \{0\}$$

where $x = (x_1, x_2, x_3)$ then the *Example System* is internally stable.

Lyapunov Stability Condition

NEW GROUNG

33

P. Too RG UNIVERSITE

If there exist positive continuous differentiable functions $V_1: \mathbb{R}^{n_1} \to \mathbb{R}$, $V_2: \mathbb{R}^{n_2} \to \mathbb{R}$, $V_3: \mathbb{R}^{n_3} \to \mathbb{R}$ such that $V_1(0) = 0$, $V_2(0) = 0$, $V_3(0) = 0$ and positive real numbers $\gamma_{11}, \gamma_{12}, \gamma_{14}, \gamma_{21}, \gamma_{22}, \gamma_{23}, \gamma_{33}, \gamma_{34}$ such that

$$\frac{\partial V_1}{\partial x_1}(x_1)f_1(x_1, w_2, w_4) < -\gamma_{11}w_1^T w_1 + \gamma_{12}w_2^T w_2 + \gamma_{14}w_4^T w_4
\frac{\partial V_2}{\partial x_2}(x_2)f_2(x_2, w_1) < -\gamma_{22}w_2^T w_2 - \gamma_{23}w_3^T w_3 + \gamma_{21}w_1^T w_1
\frac{\partial V_3}{\partial x_3}(x_3)f_3(x_3, w_3) < -\gamma_{34}w_4^T w_4 + \gamma_{33}w_3^T w_3$$

and

$$\gamma_{21} - \gamma_{11} \le 0, \quad \gamma_{12} - \gamma_{22} \le 0$$
 $\gamma_{33} - \gamma_{23} \le 0, \quad \gamma_{14} - \gamma_{34} \le 0$

then $(x_1, x_2, x_3) = (0, 0, 0)$ is an asymptotically stable equilibrium point.

Compositional Stability Analysis Reformulation

Reformulate the problem as

$$\max_{\lambda_1,...,\lambda_4 \ge 0} \min_{\gamma_{ij},V_i} \lambda_1(\gamma_{21} - \gamma_{11}) + \lambda_2(\gamma_{12} - \gamma_{22}) + \lambda_3(\gamma_{33} - \gamma_{23}) + \lambda_4(\gamma_{14} - \gamma_{34})$$

subject to

$$\frac{\partial V_1}{\partial x_1}(x_1)f_1(x_1, w_2, w_4) < -\gamma_{11}h_1(x_1)^T h_1(x_1) + \gamma_{12}w_2^T w_2 + \gamma_{14}w_4^T w_4
\frac{\partial V_2}{\partial x_2}(x_2)f_2(x_2, w_1) < -h_2(x_2)^T \begin{bmatrix} \gamma_{22} & 0\\ 0 & \gamma_{23} \end{bmatrix} h_2(x_2) + \gamma_{21}w_1^T w_1
\frac{\partial V_3}{\partial x_3}(x_3)f_3(x_3, w_3) < -\gamma_{34}h_3(x_3)^T h_3(x_3) + \gamma_{33}w_3^T w_3$$

Distributed Optimization Distributed Computation Algorithm

Procedure:

- **0.** Initialization: Let k := 0 and $\lambda^k = \lambda_{\text{init}}$.
- 1. Solve the subproblems (example given for Subsystem 1)

minimize
$$-\lambda_1\gamma_{11} + \lambda_2\gamma_{12} + \lambda_4\gamma_{14}$$
 subject to $V_1 > 0$
$$\frac{\partial V_1}{\partial x_1}(x_1)f_1(x_1, w_2, w_4) < -\gamma_{11}h_1(x_1)^Th_1(x_1) + \gamma_{12}w_2^Tw_2 + \gamma_{14}w_4^Tw_4$$
 $\gamma_{11} > 0, \ \gamma_{12} > 0, \ \gamma_{14} > 0$

2. Update dual variables $\lambda_i^{k+1} := \lambda_i^k + \alpha_k \delta_i(\lambda^k)$, where α_k is the step size and

$$\delta_{1}(\lambda^{k}) = \gamma_{11}^{*}(\lambda^{k}) - \gamma_{21}^{*}(\lambda^{k}), \quad \delta_{2}(\lambda^{k}) = \gamma_{22}^{*}(\lambda^{k}) - \gamma_{12}^{*}(\lambda^{k})$$
$$\delta_{3}(\lambda^{k}) = \gamma_{23}^{*}(\lambda^{k}) - \gamma_{33}^{*}(\lambda^{k}), \quad \delta_{4}(\lambda^{k}) = \gamma_{34}^{*}(\lambda^{k}) - \gamma_{14}^{*}(\lambda^{k})$$