MLF

WEEKS 1-4

- @ Linear approximation of multivariable scalar function. $L_{N^*}(f](N) = f(N^*) + \nabla f(N^*)(N-N^*)$
- (3) Projection $\Rightarrow b \text{ onto } \alpha = \left(\frac{\alpha \alpha^{T}}{\alpha^{T} \alpha}\right) b$ $\Rightarrow \text{ projection watrix} \Rightarrow P = \frac{\alpha \alpha^{T}}{\alpha^{T} \alpha}$
 - → projection onto a subspace → $A^TA\hat{k} = A^Tb$ → $\hat{k} = (A^TA)^{-1}A^Tb$ → projection matrix onto a subspace → $R = A(A^TA)^{-1}A^T$
- © Eigenvalue equation → A K = 1 K eigenvalue → eigenvactor
- ② Characteristic polynomial of matrix $A \rightarrow det(A-AI)=0$ \rightarrow solutions of this polynomial gives eigenvalues $\rightarrow \mathcal{E}_{i}^{n}, \lambda_{i} = trace(A) ; \prod_{i=1}^{n} \lambda_{i} = det(A)$
- ® Eigenvectors calculated using $(A-\lambda I) \kappa = 0$, solving for κ using λ eigenvalues.
- @ Rank of matrix = # of eigenvalues = # of livearly independent eigenvectors.
- (B) 5'AS=1 symmetric notrix of eigenvalues in diagnal
- - → S is not unique because eigenvectors can be different.
 - → A2 K = 12 K
 - -> 5" A" K = /2"
- (1) A = Q/QT, where Q is orthogonal matrix.
 - $Q = \begin{bmatrix} 1 & 1 & 1 \\ u_1 & u_2 & \dots & u_n \end{bmatrix}$, where $\{u_1, u_2, \dots, u_n\}$ are orthonormal eigenvectors of matrix A

WEEKS 5-8

- 1 Complex matrices, x,y & &"
 - → x.y = x.y
 - → x·y = y·x
 - → ck·y = ~ (n·y)
 - $\rightarrow (AB)^* B^*A^*$
- D Hermitian matrices
 - → A* = A
 - → Proporties 1,, 1, 2 eigenvalues of A. 1, +12
 - 0 1,, 2 ER
 - D Ax= 1, x, Ay=12y, then x·y= Ti-y=0 i.e., x Ly
 - 3 If no eigenvalues are repeated, then A is diagonalisable
- 3 Unitary Matrices
 - → v*v = I
 - ennulas lowronottro -
 - → Properties 1,, 1,2 + eigenvalues of U
 - 0 110x11=11x11
 - @ 12,1 = 12,1 = 1
 - 3 Ux= 1, , Uy= 1, y , then v:y= 12.y=0
- 19 Any N×N matrix is similar to an upper triangle matrix
 - -> A = U T U *

 unitary ~ ~ upper triangle

 matrix
 - - O A = [...] Find eigen vactor z, corresponding to 1,
 - @ Extend z, to form orthonormal basis For R3. {2,,e,,e,}
 - → Use Gram-Schnidt process on {z,,e,,e,} → {w,, w,, w,}

 - B = [... ...] Find eigenvector z2 corresponding to A2.
 - Repeat O-3 For B.
- 3 Single Value Decomposition

 - Any real was notice A decomposed is 200 form: $A = 0, \leq 0, \leq 0, \quad \text{where } \leq = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 - Procedure:
 - O Find eigenvalues and eigenvectors of A^TA $\sigma_i = \sqrt{\lambda_i}$ $\Sigma = \begin{bmatrix} \sigma_i & O \\ O & \sigma_u \end{bmatrix}$
 - ③ { N, , ..., N, } → orthorormal eigenvectors of A²A. Q₂ = \big(\frac{1}{n_1 \cdot \cd
- 6 Positive Definite
 - -> f is +ve definite if f'(0) = 0 and f(x) > 0 H x
 - → A is the definite matrix if
 - a>0 and $ac-b^2>0$

- @ Principal Component Analysis
 - → dimensionality reduction
 - Procedure:
 - O Data: { N,,..., N, } N; ER Yi . To reduce it to m-dimensions
 - (a) Let \(\overline{\pi} = \forall n \sum_{i=1}^{\infty} \text{N} \) \(\overline{\pi} = \overline{\pi} \) \(\overline{\pi} = \overline{\pi}
 - 3 Find eigenvolues $\{\lambda_1, ..., \lambda_a\}$ $\lambda_1 \ge ... \ge \lambda_a$ and eigenvectors $\{u_1, ..., u_a\}$
 - (a) Project dota $\{u_1,...,u_n\}$ using $\widetilde{u}_i = \sum_{j=1}^{n} (u_i^T u_j)u_j + \sum_{j=m+1}^{n} (\overline{u}^T u_j)u_j$
 - B Reconstruction error: J* = 1/n Zin || Ni- ñi ||2
 - ⑤ Projected vorionce: Yn ≤ ∑i=1 (ν̄z u ν̄z u)²

If took to the eigenvalue of that PC

WEEKS 9-12

B For x* to be the aprimal solution:

$$\nabla f(x^*) = -\lambda \nabla g(x^*)$$
 where $f(x) \to \text{objective Function and } g(x) \le 0$

- @ Properties of a convex function:
 - O Sum of convex functions is a convex Function
 - a composition of convex Function with convex + non-decreasing is a convex Function.
 - 3 Composition of linear with convex is a convex Function.

@ If f. h are convex, then strong-duality holds

1 K.K.T. conditions:

O Station wity:
$$\nabla f(x^*) + \lambda^* \nabla h(x^*) = 0$$

- @ Complimentary slackness: 1 h(x*)=0
- 3 Primal feasibility: $N(N^*) \leq 0$
- @ Dual fearibility : \tau > 0

$$W,Z$$
 $X=g(W,Z)$ $Y=h(W,Z)$

$$f_{wz} = f_{xy} \left(g(w, 2), h(w, 2) \right) \mid \text{Det } J \mid \text{, where } J = \begin{bmatrix} \frac{\partial g}{\partial w} & \frac{\partial g}{\partial z} \\ \frac{\partial h}{\partial w} & \frac{\partial h}{\partial z} \end{bmatrix}$$

(3) Gradient descent for linear veg $\rightarrow w_{i+1} = w_i - \eta \nabla f(w_i)$, where $\nabla f(w_i) = (x^\intercal x) w_i - x^\intercal y$