Vector Spaces & Subspaces, Bases & Dimension

MTH1004M Linear Algebra

Examples of Vector Spaces

A vector space is a set V together with two operations: vector addition and scalar multiplication (definition in the next slide)

Some basic examples of vector spaces are:

- Real numbers: R
- lacktriangle The plane: \mathbb{R}^2
- $\ riangleright$ The space: \mathbb{R}^3
- riangleq The complex plane: $\mathbb C$
- lacktriangledown The set of matrices: $M_{2\times 2}=\left\{egin{bmatrix} a_{11}&a_{12}\a_{21}&a_{22}\end{bmatrix}:a_{11},\ldots,a_{22}\in\mathbb{R}\right\}$

Definition of Vector Spaces

A vector space is a set V together with two operations (vector addition and scalar multiplication) that satisfy:

- 1. For each x and y in V, x + y is in V (closure under addition)
- 2. $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$, for all \mathbf{x}, \mathbf{y} in V (commutativity)
- 3. (x + y) + z = x + (y + z), for all x, y, z in V (associativity)
- 4. There exists an element, called the zero vector $\mathbf{0}$, such that $\mathbf{0} + \mathbf{x} = \mathbf{x}$
- 5. For each x in V there exists an element -x, such that x + (-x) = 0
- 6. For each scalar c and x in V, cx is in V (closure under scalar multiplication)
- 7. c(x + y) = cx + cy, for all scalars c and x, y in V (distributivity)
- 8. $(c+d)\mathbf{x} = c\mathbf{x} + d\mathbf{x}$, for all scalars c,d and \mathbf{x} in V (distributivity)
- 9. $(cd)\mathbf{x} = c(d\mathbf{x})$, for all scalars c, d and \mathbf{x} in V
- 10. 1x = x for all x in V

Examples of Vector Spaces

 $\mathbb{R}^2, \mathbb{R}^3, \dots, \mathbb{R}^n$ are vector spaces, since they satisfy all the axioms in the definition of vector spaces.

 \implies We write \mathbb{R}^n as a set of vectors:

$$\mathbb{R}^n = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} : x_1, x_2, \dots, x_n \text{ in } \mathbb{R} \right\}$$

ullet The complex plane $\Bbb C$ is also a vector space, since its elements satisfy all axioms. Each element $\mathbf{z} = x + iy$ is associated to a vector $\mathbf{z} = [x, y]^T$.

Spaces and Subspaces

Definition

Let S be a subset of a vector space V. We say that S is a vector subspace S of V if

- 1. The zero vector $\mathbf{0}$ is in S.
- 2. If \mathbf{u} and \mathbf{v} are in S, then $\mathbf{u} + \mathbf{v}$ is in S. (closure under addition)
- If u is in S and c is a scalar, then cu is in S. (closure under scalar multiplication)

Any vector subspace is also a vector space itself.

Spaces and Subspaces

Examples:

- 1. Any line in the plane passing through the origin is a subspace of \mathbb{R}^2 .
- 2. Any line in the plane passing through the origin is a subspace of \mathbb{R}^n , for any n.
- 3. The x y plane is a subspace of \mathbb{R}^3 .
- 4. y z plane is also a subspace of \mathbb{R}^3 .
- 5. Any plane passing through the origin is a subspace of \mathbb{R}^3 .
- 6. The zero vector $\mathbf{0}$ is subspace of \mathbb{R}^n , for any n.

Example: The x-y plane in \mathbb{R}^3

Let S be the x-y plane in \mathbb{R}^3 . Then S is a subspace of \mathbb{R}^3 . The set S is written as:

$$S = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} : x, y \text{ in } \mathbb{R} \right\}$$

Solution:

- 1. The zero vector $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ belongs to S.
- 2. If $\mathbf{u} = \begin{bmatrix} x_1 \\ y_1 \\ 0 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} x_2 \\ y_2 \\ 0 \end{bmatrix}$ are in S, then $\mathbf{u} + \mathbf{v} = \begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \\ 0 \end{bmatrix}$ is in S.
- 3. If $\mathbf{u} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$ is in S and c is a scalar, then $c\mathbf{u} = \begin{bmatrix} cx \\ cy \\ 0 \end{bmatrix}$ is in S.

Consider the two subsets of \mathbb{R}^2 :

$$S_1 = \left\{ \begin{bmatrix} x \\ x+1 \end{bmatrix} : x \text{ in } \mathbb{R} \right\}$$

$$S_2 = \left\{ \begin{bmatrix} x \\ x \end{bmatrix} : x \text{ in } \mathbb{R} \right\}$$

While S_2 consists a vectors subspace of \mathbb{R}^2 , because satisfies all three properties, the subset S_1 is not.

The easiest way to prove that S_1 is not a vectors subspace of \mathbb{R}^2 is proving that the zero vector does not belong in S_1 .

Vector Subspaces

Proposition

Let

$$S = span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$$

be the span of k vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in V. Then S is a vector subspace of the vector space V.

ullet The span of a set of vectors in $V=\mathbb{R}^n$ guarantees the three properties which every vector subspace satisfies:

Property 1: the zero vector can be produced by $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ (if we regard zero scalars)

Properties 2 and 3: derive from the linear combinations of those k vectors

Basis and Dimension

Definition

A basis for a subspace S of V is a set of vectors in S that:

- 1. spans S and
- 2. is linearly independent*.
- * Remark: By 'linearly independent set of vectors' we mean that the vectors are linearly independent. Think of $V = \mathbb{R}^n$.

Definition

The number of vectors in a basis for a subspace S is called the *dimension* of S and is denoted by dim S.

Examples of Bases

1. The vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ span \mathbb{R}^n and are linearly independent. They are the *standard basis* of \mathbb{R}^n and $\dim(\mathbb{R}^n) = n$.

2. The two vectors

$$\textbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\textbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

span the plane and are linearly independent (can be shown). Therefore, they form a basis for \mathbb{R}^2 .

2. The two vectors

$$\mathbf{u} = egin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{v} = egin{bmatrix} -1 \\ 1 \end{bmatrix}$

do not span the plane and are linearly dependent. So, they do not form a basis for $\mathbb{R}^2.$

Remarks

Not only the vectors

$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

form a basis for \mathbb{R}^2 , but also the vectors

$$\mathbf{e}_1 = egin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{e}_2 = egin{bmatrix} 0 \\ 1 \end{bmatrix}$

form a basis for \mathbb{R}^2 .

- \blacksquare There can be infinitely many bases for \mathbb{R}^n .
- в If $u_1, u_2, ..., u_n$ are linearly independent vectors, then they form a basis for $span(u_1, u_2, ..., u_n)$.
- ullet On the other hand, if $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ are linearly dependent, they do not form a basis for $\mathrm{span}(\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n)$. A basis for $\mathrm{span}(\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n)$ will be a subset of these vectors, say k vectors where k < n and

$$\dim[\operatorname{span}(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n)]=k.$$

Show that

$$S = \left\{ \begin{bmatrix} x \\ x+y \\ -y \end{bmatrix} : x, y \text{ in } \mathbb{R} \right\}$$

is the vector subspace of \mathbb{R}^3 and find a basis for S.

Property 1: The zero vector $\mathbf{0}$ belongs to S (we get the zero vector when x = y = 0).

Property 2: Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_1 + y_1 \\ -y_1 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} x_2 \\ x_2 + y_2 \\ -y_2 \end{bmatrix}$ two vectors in S , then

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_1 + y_1 \\ -y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ x_2 + y_2 \\ -y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ (x_1 + x_2) + (y_1 + y_2) \\ -(y_1 + y_2) \end{bmatrix} = \begin{bmatrix} x \\ x + y \\ -y \end{bmatrix}$$

which is in S for $x = x_1 + x_2$ and $y = y_1 + y_2$

Property 3: Let c a scalar and $\mathbf{x} = \begin{bmatrix} x' \\ x' + y' \\ -y' \end{bmatrix}$ in S. It is

$$c\mathbf{x} = \begin{bmatrix} cx' \\ cx' + cy' \\ -cy' \end{bmatrix} = \begin{bmatrix} x \\ x + y \\ -y \end{bmatrix}$$

which is in S for x = cx' and y = cy'. So, S is a vector subspace of \mathbb{R}^3 .

An easier way to prove that S is a subspace and find its basis, is to appropriately decompose the general form of its vectors, namely

$$S = \left\{ \begin{bmatrix} x \\ x+y \\ -y \end{bmatrix} : x,y \text{ in } \mathbb{R} \right\} = \left\{ \begin{bmatrix} x \\ x \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ y \\ -y \end{bmatrix} : x,y \text{ in } \mathbb{R} \right\}$$
$$= \left\{ x \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} : x,y \text{ in } \mathbb{R} \right\} = span\left(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right)$$

By the previous proposition, S is a vector subspace of \mathbb{R}^3 .

So, we have shown that the two vectors $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\-1 \end{bmatrix}$ span the space S and remains to show that they are linearly independent. The equation

$$c_1 egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + c_2 egin{bmatrix} 0 \ 1 \ -1 \end{bmatrix} = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$$

immediadely yields $c_1=c_2=0$, therefore these vectors form a basis for S. \square

Theorem

Theorem

Any set of n linearly independent vectors in \mathbb{R}^n is a basis of \mathbb{R}^n .

Proof:

A set of n linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ in \mathbb{R}^n is a basis of \mathbb{R}^n when they span \mathbb{R}^n .

By proposition we know that $S = \mathrm{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ is a vector subspace of \mathbb{R}^n and we need to show that $S = \mathbb{R}^n$.

Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ do not form a basis for \mathbb{R}^n . There should exist m additional linearly independent vectors $\mathbf{v}_{n+1}, \mathbf{v}_{n+2}, \dots, \mathbf{v}_{n+m}$ which, together with the n vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ form a basis for \mathbb{R}^n .

But this assumption would imply dim $\mathbb{R}^n = n + m$, which is false since dim $\mathbb{R}^n = n$. Therefore $S = \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = \mathbb{R}^n$.

Determine whether the vectors

$$\textbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ \textbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \ \textit{and} \ \textbf{u}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

form a basis for \mathbb{R}^3 .

According to the Theorem, it is enough to check whether those three vectors are linearly independent. We solve the homogeneous system $c_1\mathbf{u}_1+c_2\mathbf{u}_2+c_3\mathbf{u}_3=\mathbf{0}$ in terms of the scalars c_1,c_2,c_3 . by the Gauss–Jordan elimination method:

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} R_2 + R_1 \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

From the reduced row-echelon form above, we conclude that its solution is $c_1-c_2=0$, $c_2-c_3=0$ or $c_1=c_2=c_3$, which implies that the vectors are linearly dependent, and the initial vector equation becomes:

$$\boldsymbol{u}_1 + \boldsymbol{u}_2 + \boldsymbol{u}_3 = \boldsymbol{0}$$

(since c_1 is a free parameter). Let $\mathbf{u}_3 = -\mathbf{u}_1 - \mathbf{u}_2$. Are the remaining two vectors $\mathbf{u}_1, \mathbf{u}_2$ linearly independent?

Find a basis for the set of 2×2 matrices

$$M_{2\times 2} = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} : a_{11}, \dots, a_{22} \in \mathbb{R} \right\}$$

and its dimension.

Notice that the elementary matrices

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

form a basis for $M_{2\times 2}$, since they are linearly independent and they span the space. It is $\dim M_{2\times 2}=4$.

Show that the set of 2×2 symmetric matrices

$$S_{2\times 2} = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} : a_{11}, a_{12}, a_{22} \in \mathbb{R} \right\}$$

is a vector subspace of $M_{2\times 2}$.

We can prove this by showing the three properties:

1. Closure under Matrix addition: Let A, B in $S_{2\times 2}$, then A+B is also in $S_{2\times 2}$.

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{12} + b_{12} & a_{22} + b_{22} \end{bmatrix} \text{ is symmetric}$$

- 2. Closure under Scalar multiplication:
- Let λ be a scalar and A in $S_{2\times 2}$, then λA belongs to $S_{2\times 2}$.
- 3. The zero matrix O: belongs to $S_{2\times 2}$ as well.

Challenge

Can you prove that the set of $n \times n$ symmetric matrices

$$S_{n\times n} = \left\{ A \text{ in } M_{n\times n} : A^T = A \right\}$$

is a vector subspace of $M_{n\times n}$?

Find a basis for the set of 2×2 symmetric matrices

$$S_{2\times 2} = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} : a_{11}, a_{12}, a_{22} \in \mathbb{R} \right\}$$

and determine its dimension.

Any 2 × 2 symmetric matrix $\begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$ is the linear combination of some basic matrices:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} = a_{11} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + a_{12} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + a_{22} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = a_{11}A_1 + a_{12}A_2 + a_{22}A_3.$$

Hence, we get that

1.
$$\operatorname{span}(A_1, A_2, A_3) = S_{2\times 2}$$
.

(Remark: Equivalent way to prove that $S_{2\times 2}$ is a vector subspace of $M_{2\times 2}$.)

2. But also A_1, A_2, A_3 are linearly independent elements:

Let

$$c_1 A_1 + c_2 A_2 + c_3 A_3 = O$$

then we get that

$$\begin{bmatrix} c_1 & c_2 \\ c_2 & c_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

which implies $c_1 = c_2 = c_3 = 0$.

So, we conclude that A_1, A_2, A_3 is a basis for $S_{2\times 2}$ and $\dim S_{2\times 2}=3$.

Applications to Matrices

Let A be a $n \times m$ matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{1m} \\ a_{21} & a_{22} & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{nm} \end{bmatrix}$$

We consider the rows or the columns of a matrix as vectors.

The matrix A has:

- n vectors in \mathbb{R}^m (its rows, e.g. $[a_{11}, a_{12}, \ldots, a_{1m}]^T$)
- m vectors in \mathbb{R}^n (its columns, e.g. $[a_{11}, a_{21}, \ldots, a_{n1}]^T$)
- \rightarrow Aim: Find the vector subspace of \mathbb{R}^m that is spanned by the rows of the matrix.
- \rightarrow Aim: Find the vector subspace of \mathbb{R}^n that is spanned by the columns of the matrix.
- → Aim: Determine whether the rows or the columns of the matrix are linearly independent.

Subspaces associated with matrices

Definitions for an $n \times m$ **matrix** A:

- 1. The **row space** of *A* is the subspace row(A) of \mathbb{R}^m spanned by the rows of *A*.
- 2. The **column space** of A is the subspace col(A) of \mathbb{R}^n spanned by the columns of A.
- 3. The **null space** of A, denoted by $\operatorname{null}(A)$, is the set of solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$.

Theorem

The row and column spaces of a matrix A have the same dimension.

 \blacksquare The rank of A is equal to the dimension of its row space

$$rank(A) = dim(row(A))$$

and is equal to the dimension of its column space

$$rank(A) = dim(col(A))$$

Find the subspaces row(A), col(A), null(A) for the 3 × 4 matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

and determine their dimensions.

Row space: $row(A) = span(u_1, u_2, u_3)$, where

$$\mathbf{u}_1 = [1, 0, 0, 0], \mathbf{u}_2 = [0, 1, 0, 0], \mathbf{u}_3 = [0, 0, 1, 0]$$
.

The vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are 3 vectors in \mathbb{R}^4 . They are linearly independent and they span $\mathrm{row}(A)$, therefore they consist a basis for $\mathrm{row}(A)$. Moreover, it is $\dim(\mathrm{row}(A)) = 3$.

Column space: $col(A) = span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$, where

$$\boldsymbol{v}_1 = [1,0,0], \boldsymbol{v}_2 = [0,1,0], \boldsymbol{v}_3 = [0,0,1], \boldsymbol{v}_4 = [0,0,0] \; .$$

The vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are 4 vectors in \mathbb{R}^3 , which are linearly dependent since \mathbf{v}_4 is the zero vector.

However, the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent and span $\operatorname{col}(A)$, therefore they consist a basis for $\operatorname{col}(A)$. Moreover, it is $\dim(\operatorname{col}(A)) = 3$.

Null space: null(A). The homogeneous linear system Ax = 0

$$Ax = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

has solutions x = 0, y = 0, z = 0 and w in \mathbb{R} .

So,

$$\operatorname{null}(A) = \left\{ \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} : \text{for } x = y = z = 0, \text{ } w \text{ in } \mathbb{R} \right\} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ w \end{bmatrix} : w \text{ in } \mathbb{R} \right\} = \operatorname{span}\left(\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right)$$

which is the w-axis, an one-dimensional subspace of \mathbb{R}^4

$$dim(null(A)) = 1$$

Rank: rank(A) is equal to the dimension of row or column spaces, so it is:

$$rank(A) = dim(row(A)) = dim(col(A)) = 3.$$

ightharpoonup Notice that $\dim(\operatorname{null}(A)) + \operatorname{rank}(A) = 4 = \dim(\mathbb{R}^4)$.

Nullity and Theorems

Definition

The nullity of a matrix A is the dimension of its null space null(A) and is denoted by nullity(A).

Theorem

Let A be an $n \times m$ matrix. Then $\operatorname{null}(A)$ is a subspace of \mathbb{R}^m .

Rank Theorem

Let A be an $n \times m$ matrix. Then

$$rank(A) + nullity(A) = m$$
.

ロト 4回ト 4 章 ト 4 章 ト 章 - 夕 9 (で

The fundamental Theorem of Invertible Matrices

Let A be an $n \times n$ matrix. The following statements are equivalent:

- a. A is invertible
- b. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- c. Ax = 0 has only the trivial solution.
- d. The reduced echelon row form for A is I_n .
- e. rank(A) = n
- f. $null(A) = \{\mathbf{0}\}$ (or nullity(A) = 0)
- g. The column/row vectors of A form a basis for \mathbb{R}^n .
- h. det $A \neq 0$