

RESULT METRICS and the ANALYSIS

We have achieved 99% accuracy on our COVID-19 patient screening.

We have achieved 99% accuracy on our COVID-19 patient screening app.

What is wrong with this quote?

We have achieved 99% accuracy on our COVID-19 patient screening app.

What is wrong with this quote?

- ➤ Sample size
- ➤ Input Distribution
- ➤ Result Distribution

- ➤ Regression problem
- ➤ Classification problem
- ➤ Object Detection

- Regression problem
 - ➤ Sum of squared error (SSE)
 - ➤ Mean squared error (MSE)
 - ➤ Root mean squared error (RMSE)
- Classification problem
- ➤ Object Detection

- > Regression problem
- ➤ Classification problem
 - ➤ Confusion Matrix
 - ➤ Accuracy, Precision, Recall, F1-Score
 - ➤ ROC
- ➤ Object Detection

- > Regression problem
- ➤ Classification problem
- ➤ Object Detection (we will cover this topic in Deep Learning course)
 - ➤ Intersect over Union (IOU)
 - ➤ Mean Average Precision (mAP)

Regression Metrics

- ➤ Regression problem
 - ➤ Sum of squared error (SSE)
 - ➤ Mean squared error (MSE)
 - ➤ Root mean squared error (RMSE)
- Classification problem
- ➤ Object Detection

Regression Metrics - SSE

Sum of squared error

$$SSE = \sum (y - \hat{y})^2$$

y = real output

$$\hat{y} = h(\vec{x}) = \text{predicted output}$$

Regression Metrics - MSE

Mean squared error

$$MSE = \frac{1}{n} \sum (y - \hat{y})^2$$

y = real output

 $\hat{y} = h(\vec{x}) = \text{predicted output}$

n = number of instances

Regression Metrics - RMSE

Root mean squared error

$$RMSE = \sqrt{\frac{1}{n}}\sum_{i=1}^{n}(y-\hat{y})^2$$

y = real output

 $\hat{y} = h(\vec{x}) = \text{predicted output}$

n = number of instances

Regression Metrics

What do they tell us?

SSE, MSE, RMSE of one model?

Comparing SSE, MSE, RMSE of multiple model?

Classification Metrics

Confusion Matrix

A table that explains the result of predictions compared to the actual result.

Predict = What the algorithm predicts

Actual = The actual value

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

Confusion Matrix

A table that explains the result of predictions compared to the actual result.

Positive Actual Value = number of positive instances

Negative Actual Value = number of negative instance

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

Confusion Metrics

A table that explains the result of predictions compared to the actual result.

Positive Prediction = number of instances the algorithm predicts as positive

Negative Prediction = number of instances the algorithm predicts as negative

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

True Positive

➤ Positive value that is predicted as positive

True Negative

➤ Negative value that is predicted as negative

False Positive (Type I error)

➤ Negative value that is predicted as positive

False Negative (Type II error)

➤ Positive value that is predicted as negative

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

Type I error (false positive)

Type II error (false negative)

Classification Metrics – Acc, Pre, Rec

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

What percentage can the algorithm predict correctly?

$$Precision = \frac{TP}{TP + FP}$$

Out of all predicted positives, what percentage can the algorithm predict correctly?

$$Recall = \frac{TP}{TP + FN}$$

Out of all actual positives, what percentage can the algorithm predict correctly?

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

Classification Metrics

Let's try to understand this:

Company S has developed a test kit for screening virus C. Upon testing, its confusion matrix looks like this.

		Actual	
		Positive	Negative
Predicted	Positive	60	50
	Negative	40	850

- a) How many tests are there?
- b) How many positives?
- c) How many negatives?
- d) Accuracy?
- e) Precision?
- f) Recall?
- g) Should we use it?

Classification Metrics

Let's try to understand this:

Company S has developed a test kit for screening virus C. Upon testing, its confusion matrix looks like this.

		Actual	
		Positive	Negative
Predicted	Positive	60	50
	Negative	40	850

In medical field, scientists need more tools to analyze.

$$Sensitivity = True\ Positive\ Rate = Recall = \frac{TP}{TP + FN}$$

$$Specificity = True \ Negative \ Rate = \frac{TN}{TN + FP}$$

Classification Metrics — F1 Score

$$F_1 = \frac{2 * precision * recall}{precision + recall}$$

 F_1 score measures a test's accuracy using the combination of precision and recall.

It ranges between 0 and 1.

- ➤ 0 if either precision or recall is zero
- ➤ 1 if the prediction has perfect precision and recall

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

ROC Curve (Receiver Operating Characteristics Curve)

➤ A curve that shows relationships between TPR and FPR when discrimination threshold is varied.

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

		Actual	
		Positive	Negative
Dradiated	Positive	True Positive	False Positive
Predicted	Negative	False Negative	True Negative

Let's look at how thresholds affect results.

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

If we select threshold = 0.5, the result will look like this.

Positive Negative

Positive False Positive

Predicted Negative False Negative

Negative Negative True Negative

 $TPR = \frac{TP}{TP + FN}$ FPR

TPR = 1

FPR = 0

If we select threshold = 0.8, the result will look like this.

Positive Negative

Positive Positive False Positive

Predicted False Negative True Negative

 $TPR = \frac{TP}{TP + FN}$

 $FPR = \frac{FP}{FP + TN}$

TPR < 1

FPR = 0

What if the data distributions overlap?

TPR < 1

0 < FPR < 1

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

Perfect ROC

ROC that we will mostly get

Perfect ROC

➤ Area Under Curve (AUC) is 1

ROC that we will mostly get

➤ Area Under Curve (AUC) is < 1

Classification Metrics – AUC

Given 2 models, model with higher AUC performs better.

Back to the Quote

We have achieved 99% accuracy on our COVID-19 patient screening app.

What is wrong with this quote?

As an ML engineer, how should you train a model to NOT output the quote above?