# Algebra II

## January 8, 2024

How To Prove a Big Theorem

- 1. Reduce to a linear algebra problem.
- 2. Solve the linear algebra problem.

### Grades

- Weekly Homework
  - For completion, graded by peers or presented. Survey to follow.
- Midterm
- Final
  - March 18, 2024
  - 4:00 PM to 7:00 PM

#### Office Hours

McHenry 4174

Monday / Wednesday from 1:05 PM to 2:05 PM.

E-mail ahead if arriving promptly at 1:05 PM.

Definition: Module

Let R be a ring.

A (left) R-module is a set M with binary operations  $: R \times M \to M$  and  $+ : M \times M \to M$  such that

- 1. (M, +) is an Abelian group.
  - (a)  $\exists 0 \in M$  such that  $\forall m \in M, m + 0 = m = 0 + m$ .
  - (b)  $\forall m \in M, \exists n \in M \text{ such that } m+n=0=n+m.$
  - (c)  $\forall m_1, m_2, m_3 \in M$ ,  $(m_1 + m_2) + m_3 = m_1 + (m_2 + m_3)$ .
  - (d)  $\forall m_1, m_2 \in M, m_1 + m_2 = m_2 + m_1.$
- 2. Distibution.

$$(r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m$$
  
 $r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2$ 

3.  $1 \cdot m = m$  where  $1 \in R$  is the multiplicative identity.

4. 
$$(r_1 \cdot r_2) \cdot m = r_1 \cdot (r_2 \cdot m)$$

• Note that • may represent scalar multiplication or multiplication in the ring.

## Example 1

 $n \in \mathbb{Z}, n = 1, 2, 3, ..., R = \mathbb{R}, M = \mathbb{R}^n$ , equipped with + vector addition and · scalar multiplication.

### Example 2

Let R be your favorite field  $\mathbb{Z}/p$ ,  $\mathbb{Q}$ ,  $\mathbb{C}$ ,  $\mathbb{F}_q$ ,  $\mathbb{Q}_p$ , and  $M = \mathbb{R}^n$ . Similarly with rings  $R = \mathbb{Z}$ ,  $R = \mathbb{Z}[x]$ , etc.

#### Example 3

Let  $R = \mathbb{Z}$  and M be your favorite Abelian group.

#### Example 4

Let R be any ring (e.g.  $\mathbb{Z}[x]$ ) and M be any left ideal (e.g.  $R \cdot x + R \cdot 3$ ).

#### Example 5

Fix 
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2}(\mathbb{R}).$$

Let  $R = \mathbb{R}[x]$ , the polynomial ring, and  $M = \mathbb{R}^2$  where + is standard addition, and  $\cdot$  is matrix multiplication.

$$x \cdot m = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot m$$

#### Example 6

Let R be any ring and M be functions  $R \to R$  where + and · are pointwise operations.

#### Example 6'

Let  $R = \mathbb{R}$  and have M require that f is continuous, differntiable, etc.

## January 10, 2024

Course website online.

Homework due Wednesday.

Today: Chapter 10 in Dummit and Foote.

#### Basic Definitions and Examples

Let R be a ring (usually abelian and with identity) and M be a left R-module.

Definition: Submodule

A subset  $N \subseteq M$  is a R-submodule if and only if

- 1. it is an additive subgroup of M and
- 2. if  $r \in R$  and  $x \in N$ , then  $rx \in N$ .

Proposition:

 $N \subseteq M$  is a submodule if and only if

- 1.  $N \neq \emptyset$  and
- 2. if  $r \in R$  and  $x, y \in N$ , then  $rx + y \in N$ .

Example 1

If  $R = \mathbb{Z}$ , this is just the definition of a subgroup.

Example 2

If  $R = \mathbb{R}$ , this is just the definition of a real vector space.

Example 3

 $\{0\}$  and M are both submodules of M.

Example 4

Let 
$$R = \mathbb{R}[t]$$
,  $M = R$ ,  $N = (t-1) \cdot R$ .

Example 5

Let 
$$R = \mathbb{Z}/4$$
,  $M = R$ ,  $N = \{0 + \mathbb{Z}/4, 2 + \mathbb{Z}/4\}$ .

Definition: R-Algebra

Let R be an abelian ring with identity and A be a ring with identitity.

An R-algebra is a ring homomorphism  $f: R \to A$  such that

- 1. f(1) = 1 and
- 2.  $f(R) \subseteq Z(A)$ , the center of A.

Example 1

If A is a ring with identity, then  $f: \mathbb{Z} \to A$  such that  $f(n) = \underbrace{1 + \dots + 1}_{n \text{ times}}$  makes A into an algebra.

Example 2

If L/K is a field extension, then the inclusion  $K \hookrightarrow L$  is a K-algebra.

Example 3

 $\mathbb{Z} \hookrightarrow \mathbb{Q}$  is a  $\mathbb{Z}$ -algebra.

## Example 4

$$f_0: \mathbb{R}[t] \to \mathbb{R}, f_0(p) = p(0).$$

Can replace  $f_0$  with  $f_1(p) = p(1)$  or any other choice.

## Example 5

 $\mathbb{H}$  are expressions of the form  $a+b\vec{i}+c\vec{j}+d\vec{k}$  with  $a,b,c,d\in\mathbb{R}$  and  $i^2=j^2=k^2=-1$ .

 $f: \mathbb{R} \to \mathbb{H}$ , f(a) = a is an  $\mathbb{R}$ -algebra.

What about  $g: \mathbb{C} \to \mathbb{H}$  with g(a+bi) = a+bi?

No, since  $g(\mathbb{C}) \not\subseteq Z(\mathbb{H})$ .

Quotient Modules and Module Homomorphisms

Definition: Module Homomorphism

Let R be a ring with identitity and  $M_1, M_2$  be left R-modules.

An R-module homomorphism  $\phi: M_1 \to M_2$  is a function that preserves + and  $\cdot$ .

## Example 1

 $R = \mathbb{Z}$  and  $\phi$  is any homomorphism of abelian groups.

#### Example 2

 $R = \mathbb{R}$  and  $\phi$  is the collection of linear transformations.

## Example 3

 $\mathrm{Id}_M:M\to M$  and  $0:M\to N$ , the identitity and zero homomorphisms, are R-module homomorphisms.

## Example 4

Let 
$$M = \underbrace{R \times \cdot \times R}_{n\text{-times}}$$
,  $N = R$  and  $\pi_i : M \to N$  such that  $\pi_i(r_i, \dots, r_n) = r_i$ .

Consider 
$$\pi_i : R \times R \to R$$
 with  $\pi_1(a_1, a_2) = a_1$ .

Then  $\ker(\pi_1) = \{(0, a_2) \mid a_2 \in R\}$  and  $\operatorname{im}(\pi_1) = R$ .

#### Example 5

Let 
$$M$$
 be column vectors  $\begin{bmatrix} x \\ y \end{bmatrix}$  with  $x, y \in \mathbb{R}$  and  $R = \mathbb{R}$ .

Fix 
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then define  $\phi : M \to N$  as  $\phi \left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ .

Definition: Module Isomorphism

An R-module isomorphism is an R-module homomorphism  $\phi: M_1 \to M_2$  such that the inverse function exists and is an R-module homomorphism.

4

Definition: Kernel

The kernel is  $\ker(\phi) = \{x \in M \mid \phi(x) = 0\}.$ 

Definition: Image

The image is  $\operatorname{im}(\phi) = \{\phi(x) \mid x \in M\}.$ 

Definition: Homomorphism R-Module

 $\operatorname{Hom}_R(M_1, M_2)$  is the set of all R-module homomorphisms  $M_1 \to M_2$ .

Equipped with pointwise addition and scalar multiplication, it forms an R-module.

Proposition:

 $\phi: M \to N$  is an R-module homomorphism if and only if

$$\phi(rx+y) = r\phi(x) + \phi(y)$$

for all  $x, y \in M$  and  $r \in R$ .

Proposition:

Pointwise addition and scalar multiplication  $\operatorname{Hom}_R(M,N)$  into an R-module.

Proposition:

Composition of R-module homomorphisms is an R module homomorphism.

$$M_1 \xrightarrow{\phi_1} M_2 \xrightarrow{\phi_2} M_3 \rightsquigarrow \phi_2 \circ \phi_1.$$

Proposition:

 $\operatorname{Hom}_R(M,M)$  is a ring under composition and an R-algebra under  $f:R\to \operatorname{Hom}_R(M,M)$  with  $f(r)=\phi_r$  and  $\phi_r(x)=rx$ .

Construction of Quotient R-Modules

Let R be a ring with identity, M be an R-module and N submodule.

We want a new module, M/N, and an R-module homomorphism  $\phi: M \to M/N$  such that  $\ker(\phi) = N$  and  $\operatorname{im}(\phi) = M/N$ .

Define an equivalence relation  $\sim$  on M by  $x \sim y$  if and only if  $x - y \in N$ .

So  $x \sim 0 \iff x \in N$ .

Define M/N as the set of equivalence classes for  $\sim$ , and write x+N the equivalence class of x.

Define  $(x+N) \oplus (y+N) = (x+y) + N$  and  $r \odot (x+N) = (rx) + N$ .

January 17, 2024

Definition: Quotient R-Modules

Let R be a ring with identity, M an R-module, and  $N \subseteq M$  a submodule.

The quotient module M/N is defined by taking the quotient additive group M/N and defining scalar multiplication by  $r \cdot (x + N) = rx + N$ .

Definition: Sum of Modules

For  $N_1, N_2 \subseteq M$  submodules,  $N_1 + N_2$  is the smallest submodule of M containing  $N_1$  and  $N_2$  (i.e. the module generated by  $N_1$  and  $N_2$ ).

Isomorphism Theorems

Let M be a module and  $A, B, N \subseteq M$  be subomdules.

## First Isomorphism Theorem

Let also  $A \subseteq B$ , then

$$(M/A)/(B/A) \simeq M/B$$

• Proof

Define  $\phi: M/A \to M/B$  as  $\phi(x+A) = x+B$ . Then, define  $\overline{\phi}: (M/A) / (B/A) \to M/B$  as  $\overline{\phi}(y+B/A) = \phi(y)$ . The inverse  $\psi: M/B \to (M/A) / (B/A)$  is defined by  $\psi(x+B) = (x+A) + B/A$ .

Second Isomorphism Theorem

$$(A+B)/B \simeq A/(A \cap B)$$

• Proof

Define  $\phi: A/(A \cap B) \to (A+B)/B$  by  $\phi(x+A \cap B) = x+B$ . Define  $\psi: (A+B)/B \to A/(A \cap B)$  by  $\psi(x+y+B) = x+A \cap B$ . Say x+y=x'+y'+b for  $b \in B$ . Then

$$\underbrace{x - x'}_{\in A} = \underbrace{y - y' - b}_{\in B}$$

and

$$x' + A \cap B = x' + (x - x') + A \cap B = x + A \cap B$$

Third Isomorphism Theorem

If  $\phi M \to N$  is an R-module homomorphism, then  $M/\ker(\phi) \simeq \operatorname{im}(\phi)$ .

• Proof

Define  $\overline{\phi}: M/\ker(\phi) \to \operatorname{im}(\phi)$  by  $\overline{\phi}(x + \ker(\phi)) = \phi(x)$ . This is surjective by construction. For injectivity, if  $0 = \overline{\phi}(x + \ker(\phi)) = \phi(x)$ , then  $x \in \ker(\phi)$ .

Fourth Isomorphism Theorem

If  $N \subseteq M$  is an R-submodule, then the map  $A \supseteq N \mapsto A/N$ 

 $\{R\text{-submodules of }M\text{ containg }N\} \simeq \{R\text{-submodules of }M/N\}$ 

is a bijection which preserves sum and intersection.

• Compare

{submodules of M contained in N} = {submodules of N}

IMAGE HERE

Generators, Direct Sums and Free Modules

Definition: Finitely Generated Submodule

If  $N_1, \ldots, N_k \subseteq M$  is a finite collection of submodules, then  $M_1 + \cdots + M_k$  is the smallest submodule containing  $M_1, \ldots, M_k$ .

Typically elements are  $x_1 + \cdots + x_k$  with  $x_i \in N_i$ .

If  $\{x_1, \ldots, x_k\} = S \subseteq M$  is a finite set, the submodule generated by S is

$$Rx_1 + \cdots + Rx_k$$

Definition: Finitely Generated Module

A module M is finitely generated if it is the submodule generated by some finite set  $S \subseteq M$ .

Example 1

R = M for any ring R (also cyclic; take  $S = \{1\}$ )

Example 2

Any finite dimensional vector space.

Example 3

 $\mathbb{R}^{n}$  for n = 1, 2, 3, ...

Example 4

 $\mathbb{Z}[i] = M$  over  $\mathbb{Z} = R$ . Then  $S = \{1, i\}$ .

Counter-example 1

Let  $M = C(\mathbb{R})$  be continuous functions  $\mathbb{R} \to \mathbb{R}$ , and  $R = \mathbb{R}$ .

Counter-example 2

Any infinite dimensional vector space.

Definition: Cyclic Module

A module M is cyclic if it the submodule generated by some one element set S.

Theorem: Chinese Remainder Theorem

When can we find a unique integer x satisfying

$$x \equiv a \pmod{m}$$
$$x \equiv b \pmod{n}$$

January 22, 2024

Definition: External Direct Product

The external direct product  $M_1 \times \cdots \times M_k$  of a collection of R-modules is the Cartesian product with  $\cdot$  and + defined componentwise.

## Proposition

Let  $M_1, \ldots, M_k \subseteq M$  be submodules. Then the following are equivalent:

1. The map  $M_1 \times \cdots \times M_k \to M_1 + \cdots + M_k$  defined as  $(x_1, \dots, x_k) \mapsto x_1 + \cdots + x_k$  is an isomorphism.

2. 
$$M_{i_0} \cap \sum_{j \neq i} M_j = \{0\}.$$

3. Every element of  $M_1 + \cdots + M_k$  can be uniquely written as  $x_1 + \cdots + x_k$  with  $x_i \in M_i$ .

#### Proof 1 Implies 2

Say that for some  $i_0$  we have  $x_0 \in M_{i_0} \cap (\sum_{i \neq i} M_i)$ .

Write  $x_0 = \sum_{j \neq i_0} x_j$  with  $x_j \in M_j$ . Consider  $(x_1, x_2, \dots, x_{i_0-1}, -x_{i_0}, x_{i_0+1}, \dots, x_k)$ , maps to  $\sum x_j - x_0 = 0$ , so  $x_j = x_i = 0$  in M.

#### Proof 2 Implies 3

Say  $x_1 + \cdots + x_k = x_1' + \cdots + x_k'$  with  $x_i, x_i' \in M_i$ . Rearrange

$$x_1 - x_1' = (x_2' - x_2) + \dots + (x_k' - x_k)$$

So  $x_1 - x_1' = 0$  and the first component is equal. Repeating the argument on all indicies completes the proof.

#### Proof 3 Implies 1

Definition: Internal Direct Product

If the equivalent conditions hold, we say  $M_1 + \cdots + M_k$  is the internal direct product of  $M_1, \ldots, M_k$ . Notation:  $M_1 \times \cdots \times M_k$  or  $M_1 \oplus \cdots \oplus M_k$ .

#### Chinese Remainder Theorem

For  $a, b, m, n \in \mathbb{Z}$ , if gcd(n, m) = 1, then there exists a solution  $x \in \mathbb{Z}$  to

$$x \equiv a \pmod{m}$$
$$x \equiv b \pmod{n}$$

which is unique  $\pmod{mn}$ .

Consider  $\mathbb{Z}/nm \to \mathbb{Z}/m \times \mathbb{Z}/n$  defined by  $x \pmod{mn} \mapsto (x \pmod{m}, x \pmod{n})$ .

Thus, the Chinese Remainder Theorem implies that the map is an isomorphism.

Can we realize  $\mathbb{Z}/mn$  as the internal direct product of a submodule of size n and a submodule of size m?

#### Definition: Basis of a Module

Suppose that  $X \subseteq M$  is a subset of an R-module M. We say that X is a basis for M if and only if

1. X is a generating set of M.

2. The elements of X are linearly independent in the sense that for all but finiately many r(x) = 0,

$$\sum_{x \in X} r(x)x = 0 \implies r(x) = 0, \ \forall x$$

Definition: Free Module

We say M is free if there exists a basis.

Example

R any ring and  $M = \mathbb{R}^3$ .

Non-example

 $R = \mathbb{Z}$  and  $M = \mathbb{Z}/3$ .

M does not admit a basis.

Example?

R any ring and  $M = \{0\}$  admits the basis  $X = \emptyset$ .

Definition: Universal Mapping Property of Free Modules

Let X be a set.

We say that an R-module F(X) and a set map  $\phi_{\operatorname{can}}: X \to F(X)$  satisfies the universal property of the free R-module on X if for all set maps  $X \to M$  into an R-module M, there exists a unique R-homomorphism.



Exsitence

When  $X = \{1, 2, ..., n\}$ , define  $F(R) = R^n$  and  $\phi_{\text{can}} : X \to R^n$  as

$$\phi_{\text{can}}(1) = (1, 0, \dots, 0)$$

$$\phi_{\text{can}}(2) = (0, 1, \dots, 0)$$

$$\vdots$$

$$\phi_{\text{can}}(n) = (0, 0, \dots, 1)$$

Why does this satisfy the universal mapping property? Let  $\phi: X \to M$  be given. We want  $\tilde{\phi}: F(X) \to M$  such that

$$\phi = \tilde{\phi} \circ \phi_{\text{can}}$$

$$r_1\phi(1) = \tilde{\phi}(r_1, 0, \dots, 0)$$

$$r_2\phi(2) = \tilde{\phi}(0, r_2, \dots, 0)$$

$$\vdots$$

$$r_n\phi(n) = \tilde{\phi}(0, 0, \dots, r_n)$$

So define  $\tilde{\phi}(r_1,\ldots,r_n) = r_1\phi(1) + \cdots + r_n\phi(n)$ 

Uniqueness

If  $\phi_{\text{can}}: X \to F(X)$  and  $\phi'_{\text{can}}: X \to F'(X)$  satisfy the universal mapping property, then there exists a unique isomorphism  $F(X) \stackrel{\sim}{\to} F'(X)$  such that



Definition: Tensor Product

Given two modules, M and N, we want a new module  $M \otimes N$  that plays the roll of multiplication. Compare with  $\oplus$  and addition.

January 24, 2024

Recall: Free Module

Given a set X, a set map  $\phi_{\text{can}}: X \to F(X)$  into an R-module F(X) is a free module on X if we can always fill in the following dotted arrow uniquely:



For  $X = \{1, 2, ..., n\}$ , take  $F(X) = \mathbb{R}^n$  and

$$\begin{split} \phi_{\text{can}}(1) &= (1, 0, \dots, 0) \\ \phi_{\text{can}}(2) &= (0, 1, \dots, 0) \\ &\vdots \\ \phi_{\text{can}}(n) &= (0, 0, \dots, 1) \end{split}$$

Definition: Universal Property of Free Module

The universal property says

$$\operatorname{Hom}_{\operatorname{set}}(X, M) = \operatorname{Hom}_R(F(X), M)$$

or a homomorphism out of F(X) is uniquely determined by what it does to the standard basis.

Definition: Torsion

Let R be an integral domain, e.g.  $\mathbb{Z}$ , and M be an R-module.

Then  $x \in M$  is torsion if  $r \cdot x = 0$  for  $r \neq 0$ .

Definition: Torsion Set

The set of torsion elements  $Tor(M) \subseteq M$  is a submodule.

Definition: Torsion-Free Quotient

The torsion-free quotient of M is M/Tor(M).

The torsion-free quotient is an example of a tensor product  $M \underset{\mathbb{Z}}{\otimes} \mathbb{Q}$ .

Definition: Universal Property of Tensor Product

A bilinear map  $\phi_{\text{can}}M \times N \to T$  is a tensor product of M and N if we can always uniquely fill in the dotted line



Said differently,

$$\operatorname{Bi}_R(M,N;P) = \operatorname{Hom}_R(T,P)$$

Example

$$\det(e_1, e_2) \in \operatorname{Bi}_{\mathbb{R}}(\mathbb{R}^2, \mathbb{R}^2; \mathbb{R}) = \operatorname{Hom}_{\mathbb{R}}(T, R) \ni \tilde{\phi}$$

Where  $\tilde{\phi}$  is defined below.

How to construct T for  $R = \mathbb{R}$  and  $M = N = \mathbb{R}^2$ ?

If  $\phi: M \times N \to P$  is bilinear, then

$$\phi(xe_1 + ye_2, x'e_1 + y'e_2) = x\phi(e_1, x'e_1 + y'e_2) + y\phi(e_2, x'e_1 + y'e_2)$$
$$= xx'\phi(e_1, e_1) + xy'\phi(e_1, e_2) + x'y\phi(e_2, e_1) + yy'\phi(e_2, e_2)$$

Define T to be a free  $\mathbb{R}$ -vector space with the basis  $e_1 \otimes e_1$ ,  $e_1 \otimes e_2$ ,  $e_2 \otimes e_1$  and  $e_2 \otimes e_2$ . Define  $\phi_{\text{can}}: M \times N \to T$  as

$$\phi_{\text{can}}(xe_1 + ye_2, x'e_1 + y'e_2) = xx'(e_1 \otimes e_1) + xy'(e_1 \otimes e_2) + x'y(e_2 \otimes e_1) + yy'(e_2 \otimes e_2)$$
$$= (xe_1 + ye_2) \otimes (x'e_1 + y'e_2)$$

So now we may construct

$$\tilde{\phi} = \begin{cases} e_1 \otimes e_1 = 0 \\ e_1 \otimes e_2 = 1 \\ e_2 \otimes e_1 = -1 \\ e_2 \otimes e_2 = 0 \end{cases}$$

such that

$$\tilde{\phi}(A(e_1 \otimes e_1) + B(e_1 \otimes e_2) + C(e_2 \otimes e_1) + D(e_2 \otimes e_2)) = B - C$$

## Tensor Product

What can we prove about the tensor product without constructing it?

- 1. T is unique up to isomorphism.
- 2. Write  $v \otimes w \in T$  for  $\phi_{\text{can}}(v, w)$ . The elements  $v \otimes w$  generate  $M \otimes N$ .

## Proof of 1

Say  $\phi_{\operatorname{can}} M \times N \to T$  and  $\phi'_{\operatorname{can}} M \times N \to T'$  satisfy the universal property. Then there exists a unique homomorphism  $\phi: T \to T'$  satisfying



Similarly, there exists a unique  $\phi':T'\to T$  satisfying the inverted diagram. How can we show that

$$T \xrightarrow{\phi} T' \xrightarrow{\phi'} T \equiv T \xrightarrow{\mathrm{id}} T$$

#### Construct

