March 17, 2016 @RIKEN BSI

Statistical Analysis on Order Structures Appendix

Mahito Sugiyama (ISIR, Osaka University)

(杉山麿人;大阪大学産業科学研究所)

Event Combinations of 4 Events

$$\log p(\mathbf{x}) = \sum_{i=1}^{4} \theta^{i} x_{i} + \sum_{i < j} \theta^{ij} x_{i} x_{j} + \dots + \theta^{1234} x_{1} x_{2} x_{3} x_{4} - \psi$$

Event Combinations of 4 Events

$$\log p(\mathbf{x}) = \sum_{i=1}^{4} \theta^{i} x_{i} + \sum_{i < j} \theta^{ij} x_{i} x_{j} + \dots + \theta^{1234} x_{1} x_{2} x_{3} x_{4} - \psi$$

Background

- Amari's orthogonal decomposition of probability distributions on the complete hierarchy of events
 - Theoretical basis for analyzing higher-order interactions
 - e.g. firing patterns of neurons, gene interactions, word associations in documents, ...
- Problem: The hierarchy is often incomplete
 - Some combinations might never occur
 - Combination of a person being male and a person having ovarian cancer can never occur
 - Lack of data; Estimating probabilities for 2^n combinations for n events is almost impossible

Main Results

- We build information geometry for a poset (partially ordered set) of variables
- Natural connection between the information geometric dual coordinates and the partial order structure
 - $-\theta$ -coordinates → (principal ideal) → p-coordinates
 - $-\theta$ -coordinates \to (principal filter) \to η-coordinates
- An efficient algorithm to decompose KL divergence and entropy on an incomplete hierarchy
 - For arbitrary probability distributions p and q on a poset,

$$D_{KL}(p,q) = D_{KL}(p,r) + D_{KL}(r,q)$$

for a mixed distribution r of (p, q)

p-coordinate system

- Let $S = \{x_0, x_1, \dots, x_n\}$
 - Assume that x_0 is the least element \perp and $S^+ = S \setminus \{\perp\}$
- A discrete probability distribution p on S can be viewed as a vector:

$$\mathbf{p} = (p(x_1), p(x_2), \dots, p(x_n))$$
 (p-coordinate system)

- This corresponds to a "point" on n-dimensional space
 - There is a condition $\sum_{x \in S} p(x) = 1$
- A probability distribution forms an n-dimensional manifold

$$S = \left\{ \boldsymbol{p} \mid \forall x \in S. \, p(x) > 0, \sum_{x \in S} p(x) = 1 \right\}$$

Dual Coordinates on ${\cal S}$

- In information geometry, dual coordinate systems: θ -coordinate and η -coordinate, are known
 - − They are realized as mappings θ : $S \to \mathbb{R}$, η : $S \to \mathbb{R}$
 - $-\theta$ (η) determines p, and vice versa
 - Analog to 2-dimensional Euclidean space:

• θ and η are dually orthogonal on S

$$\mathbb{E}\left[\frac{\partial}{\partial \theta(s)}\log p(x,\theta)\frac{\partial}{\partial \eta(s')}\log p(x,\eta)\right] = \delta(s,s')$$

Exponential Family

• For a mapping $\theta:S \to \mathbb{R}$, the exponential family is

$$p(x;\theta) = \exp\left(\sum_{s \in S^+} \theta(s)F_s(x) - \psi(\theta)\right)$$

- In Gaussian distribution, $\theta^1 = -\frac{1}{2\sigma^2}$, $\theta^2 = \frac{\mu^2}{\sigma^2}$
- Given a poset S, we propose to define $F_s(x)$ as

$$F_s(x) = \begin{cases} 1 & \text{if } s \leq x, \\ \text{o otherwise} \end{cases}$$
 and $\psi(\theta) = -\log p(\perp)$.

We obtain the following log-linear model:

$$\log p(x) = \sum_{s \le x} \theta(s)$$

θ - and η -coordinate systems

• Given a probability distribution $p \in \mathcal{S}$, the θ -coordinate system is recursively computed as

$$\theta(x) = \log p(x) - \sum_{s < x} \theta(s)$$

starting from the bottom $\theta(\bot) = \log p(\bot)$

• η is given as the expectation of $F_s(x)$:

$$\eta(s) = \mathbb{E}[F_s(x)] = \sum_{s \leq x} p(x) = \Pr(X \geq s)$$

- $\eta(x)$ is the support of x in pattern mining!

θ - and η -coordinate systems

Mixed Coordinate System

- A mixed coordinate system of θ and η
 - The key to decomposition of the KL divergence and entropy
- A mixed distribution $r \in S$ of (p, q) w.r.t. $I \subseteq S^+$:

$$\begin{cases} \eta_r(x) = \eta_p(x) & \text{if } x \in S^+ \setminus I, \\ \theta_r(x) = \theta_q(x) & \text{if } x \in I, \end{cases}$$

and $r(\bot) = 1 - \sum_{s \in S^+} r(x)$

- θ_p and η_p are θ and η -coordinates of p, resp.
- e.g.: $S^+ = \{1, 2, 3\}, I = \{1, 2\}, \text{ then}$ $\eta_p = (\eta_p(1), \eta_p(2), \eta_p(3)),$ $\theta_a = (\theta_a(1), \theta_a(2), \theta_a(3)),$

mixed coordinate $r = (\theta_q(1), \theta_q(2), \eta_p(3))$

KL divergence decomposition

• [Theorem] For two distributions p, q and any $l \subseteq S^+$,

$$D_{KL}(p,q) = D_{KL}(p,r) + D_{KL}(r,q)$$

for the mixed distribution r of (p, q) w.r.t. I

• [corollary] A hierarchical set $\{I_0, I_1, \dots, I_k\}$ with $\emptyset = I_0 \subseteq I_1 \subseteq \dots \subseteq I_k = S^+$,

$$D_{KL}(p,q) = D_{KL}(r_0,r_1) + D_{KL}(r_1,r_2) + \cdots + D_{KL}(r_{k-1},r_k)$$

- r_i is the mixed dist. of (p, q) w.r.t I_i
- $-r_{o}=q, r_{k}=q$

KL divergence decomposition

$$E_{I}(r) := \{ v \in \mathcal{S} \mid \forall x \in I. \ \theta_{v}(x) = \theta_{r}(x) \}$$

$$M_{S^{+} \setminus I}(r) := \{ v \in \mathcal{S} \mid \forall x \in S^{+} \setminus I. \ \eta_{v}(x) = \eta_{r}(x) \}$$

Entropy Decomposition

- Let p_0 be the uniform distribution
 - The origin of θ -coordinate ($\forall x \in S. \theta(x) = o$)
- The entropy H(X) of X is

$$H(X) = -\sum_{x \in S} p(x) \log p(x) = -D_{KL}(p, p_o) + \log |S|$$

If we apply the KL divergence decomposition:

$$H(X) = -(D_{KL}(p, r) + D_{KL}(r, p_o)) + \log |S|$$

- r is the mixed dist. of (p, p_0) w.r.t. I

The Statistical Significance of θ

- θ is coefficients of the log-linear model: $\log p(x) = \sum_{s < x} \theta(s)$
 - We can assess the statistical significance of each $\theta(x)$
- Null and alternative hypotheses are

$$H_0: \theta_p(x) = 0, \forall x \in I, \quad H_1: \theta_p(x) \neq 0, \forall x \in I,$$

- This corresponds to knocking down elements in I
- The statistics $\lambda = 2ND_{KL}(p, r)$
 - N: Sample size
 - r: The mixed dist. of (p, p_o) w.r.t. I
 - λ follows the χ^2 dist. with the degree of freedom |S| 1, thus we can compute the *p*-value

Orthogonal Decomp. of Interactions

- Given *n* events e_1, e_2, \ldots, e_n
- p(x): the probability of the combination (pattern) $\bigcap_{i \in x} e_i$ for each subset $x \subseteq [n] = \{1, 2, ..., n\}$
- Objective: Decompose $\log p(x)$ to the sum of $\theta(s)$ ($s \subseteq x$)
 - $\theta(s)$ shows the "pure" contribution of interactions $\bigcap_{j \in s} e_j$
 - They are independent of their frequencies $\eta(s)$
 - The order ≤ is given according to the inclusion relationship: $x \le s$ if $x \subseteq s$

Constructing S from Data

- Given N samples t_1, t_2, \ldots, t_N
 - Each t_i is a set of events
- Estimate p(x) by the natural estimator

$$\hat{p}(x) = |\{i \in [n] \mid t_i = x\}|/N$$

- For \perp , $\hat{p}(\perp) = 1 \sum_{x \in S^+} \hat{p}(x)$
- We exclude combinations that do not frequently appear in the dataset and set S as

$$S^{+} = \{ x \subseteq [n] \mid \hat{p}(x) \ge \sigma \}$$

 $-\sigma$ is a real-valued threshold

Example (1/2)

	Events
t_1	e_2
t_2	e_2
t_3	e_4, e_5
t_4	e_1, e_2, e_4, e_5
<i>t</i> ₅	e_1, e_2, e_4, e_5
<i>t</i> ₆	e_3
<i>t</i> ₇	e_1, e_2, e_4, e_5
t_8	e_4, e_5
t_9	e_1, e_2, e_4, e_5
t ₁₀	e_2

Example (2/2)

- $\theta_{\hat{p}}(\perp) = -2.303$, $\theta_{\hat{p}}(\{2\}) = 1.099$, $\theta_{\hat{p}}(\{4,5\}) = 0.693$, $\theta_{\hat{p}}(\{1,2,4,5\}) = -0.405$ $-p(x) = 1.099x_2 + 0.693x_4x_5 0.405x_1x_2x_4x_5 2.303$
- Let r_x be the mixed distribution of (p, p_0) with $\{x\} \in S$:

$$D_{\text{KL}}(\hat{p}, \hat{r}_{X_1}) = \text{0.0523},$$
 $p\text{-value of } x_1 = \text{0.79},$ $D_{\text{KL}}(\hat{p}, \hat{r}_{X_2}) = \text{0.0170},$ $p\text{-value of } x_2 = \text{0.95},$ $D_{\text{KL}}(\hat{p}, \hat{r}_{X_2}) = \text{0.0040},$ $p\text{-value of } x_3 = \text{0.99}.$

- Note that these large p-values are due to small N = 10
- If N = 100, for example, the p-value of x_1 becomes 0.015 and it is significant under the significance level $\alpha = 0.05$

Conclusion & Current Progress

- Theoretical results on information decomposition
 - Can be applied to measuring importance of patterns

Future work:

- Apply significant pattern mining to other data (e.g. large-scale graphs)
- Further analyze IG and posets from theory to practice
- FS project; analyzing brain MRI data (with Dr. Morishima)