Basic ML Terminologies

Week 03 4th-Sep-2024

Features and Labels

← Features ──→					Label
Position	Experience	Skill	Country	City	Salary (\$)
Developer	0	1	USA	New York	103100
Developer	1	1	USA	New York	104900
Developer	2	1	USA	New York	106800
Developer	3	1	USA	New York	108700
Developer	4	1	USA	New York	110400
Developer	5	1	USA	New York	112300
Developer	6	1	USA	New York	114200
Developer	7	1	USA	New York	116100
Developer	8	1	USA	New York	117800
Developer	9	1	USA	New York	119700
Developer	10	1	USA	New York	121600

Training/Validation/Testing sets

Overfitting and Underfitting

Bias-Variance Tradeoff

- Bias: The error due to overly simplistic assumptions in the learning algorithm. High bias can cause the model to underfit the data.
- **Variance:** The error due to excessive sensitivity to small fluctuations in the training data. High variance can cause the model to overfit the data.
- Tradeoff: There's a balance between bias and variance. Reducing one typically increases the other, and the goal is to find the right balance for the best model performance.

Cross Validation

Confusion Matrix

A confusion matrix is a table evaluate used to the performance of a classification model. It provides insight into the true positives, false positives, true negatives, and false negatives made by the model, helping to calculate metrics like accuracy, precision, recall, and F1 score.

Accuracy, Precision, Recall, and F1 Score

