

ML-INDIA

ML-India our attempt at spurring the machine learning and data science ecosystem in India.

Activities

Meetups: We hold ML meetups where ML enthusiasts discuss and brainstorm ideas. Read more here.

Interviews: Top ML researchers and practitioners from academia and industry discuss their work.

Read our interview with Dr. Mayank Vatsa from IIITD.

Data Sets: Open Indian data sets for researchers and practitioners to help them with easy access to data. <u>Check it out!</u>

Data Angels: Support for budding and innovative ML/AI start-ups. Read more here.

Conference Analysis: Yearly analysis from top conferences to track the performance of Indian ML research community. <u>Check out</u> NIPS 2015.

Co-founders

Shashank Srikant

<u>Varun</u> is the co-founder of Aspiring Minds, one of the world's largest machine learning driven employability assessment company.

<u>Shashank</u> is a senior research and development engineer at Aspiring Minds.

Our organizers for the Gurgaon and Bangalore chapter meetups

- Bhanu Pratap Singh: Research and Development Engineer, Aspiring Minds
- Sritulasi Edupuganti: Software Development Lead at XAMCHECK

Relevant Resources

- For an introduction to machine learning and its importance, click <u>here</u>.
- <u>Data Angels</u>: India's first angel initiative to encourage AI-backed technologies
- Read a machine learning paper on 'A Machine Learning Approach to Twitter User Classification by Pennacchiotti et al'.
- <u>Check out</u> our list of research groups and people involved in ML.
- Click here to see a list of ML companies in India.
- Do you have any questions? Write to us!

ml-india.org

Join our mailing list for the latest updates on our activities!

ML India

- * A place, an effort to catalyze the Machine Learning ecosystem in India involving students, researchers, institutions & corporations(http://ml-india.org/)
- * Maintained by a group of Machine Learning and Data Science enthusiasts

Varun Aggarwal, Co-founder, Aspiring Minds
Shashank Srikant, Researcher, Aspiring Minds
Bhanu Pratap, Researcher, Aspiring Minds
Harsh Nisar, Researcher, Aspiring Minds
Sritulasi Edpuganti(Bangalore chapter), Co-founder, Polphino

Agenda

- * Intro to ML
- * Intro to ML Algorithms used in paper
- * Paper Highlights and Summary
- * Piscussion

What is Machine Learning?

- * Herbert Simon (Turing award 1975, Nobel prize in Economics 1978)- "Learning is any process by which system improves performance from experience"
- * More formally, Tom M. Mitchell "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E"

What is Machine Learning?

- * Is disrupting Al bigtime...
- * Widely used in everyday life, without us even knowing it
- * Important to understand intuition handy cross domain skill

Applications of ML

- * Self Driving Cars (Watch: https://www.ted.com/talks/chris_urmson_how_a_driverless_car_sees_the_road?)
- * Face Recognition (Ex: Facebook Autotagging)
- * Speech Recognition(Ex: Siri, Cortana)
- * Personal Recommendations (Ex: Netflix, Amazon,...)
- * Efficient Web Search(Ex: Google, Bing,...)
- * And many more.....

Supervised Learning

Image credit: Astroml blog

ML Jargon

- * Features/Input data
- * Labels/Observed values
- * Precision
- * Recall
- * F-measure
- * Cross Validation

Supervised Learning

One key research area in machine learning is to find the right features for a given problem.

Supervised Learning

Number of different models and learning techniques for these model

- * Linear Models
- * Ridge/LASSO
- * Polynomial Models
- * Neural Networks
- * Peep/convolutional networks
- * SVMs
- * Decision trees
- * Ensemble models
 - · Boosting/bagging
 - + Gradient boosted Decision Trees (more on this later)

Unsupervised Learning

Image credit: Astroml blog

Unsupervised Learning

- * Clustering (K-means, hierarchal,...)
- * Singular value decomposition
- * Dimensionality Reduction
 - o Principal Component Analysis (PCA)

Algo/models used in paper

- * Gradient Boosted Vecision Tree (ML Algo)
- * Latent Dirichlet Allocation (LDA a kind of topic modelling technique)

Gradient Boosted Vecision Tree

Friedman 2001, Greedy function Approximation: A Gradient Boosting Machine

- * Effective, Off-the-shelf method for predictive models with high accuracy
- * Ensemble of weak learners, usually Decision Trees.
- * In gradient boosting, model assumes an additive expansion

 $F(x, \beta, \alpha) = \sum_{i=1}^{n} \beta_i h(x, \alpha_i)$

(x,y)-Input labelled features F(x) - Function to estimate h- weak learners

B- (To compute), the weight that a given classifier has in context of ensemble

Gradient Boosted Vecision Tree

- * Intuitively, we iteratively build a sequence of predictors, and our final predictor is a weighted average of these predictors
- * At each step, we focus on adding an incremental classifier that improves the performance of the entire ensemble.
- * Good resources
 - http://tullo.ch/articles/gradient-boosted-decision-treesprimer/
 - http://www.analyticsvidhya.com/blog/2015/09/ complete-guide-boosting-methods/

Gradient Boosted Vecision Tree

- * Good resource lo learn Decision Tress http:// www.r2d3.us/visual-intro-to-machine-learningpart-1/
- * A flow chart like tree structure
- * Internal node denotes test on attribute
- * Branch represent outcome of the test

* Leaf nodes represent class labels or class distributions

Source: Wikipedia

Latent Pirichlet Allocation(LPA)

- * In context of paper a variant of LDA is used to calculate linguistic features for GBDT.
- * It is a topic modeling technique
- * It is a way of automatically discovering topics from unstructured text.

Latent Virichlet Allocation(LVA)

Example: Suppose we have following sentences

- I like to eat broccoli and bananas.
- I ate a banana and spinach smoothie for breakfast.
- Chinchillas and kittens are cute.
- My sister adopted a kitten yesterday.
- Look at this cute hamster munching on a piece of broccoli.

LDA will produce result like this

- Sentences 1 and 2: 100% Topic A
- Sentences 3 and 4: 100% Topic B
- Sentence 5: 60% Topic A, 40% Topic B
- Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, ... (topicA about food)
- Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, ... (topicB cute animals)

Source: Edwin chen's Blog (He is a great ML guy to follow)!

Twitter User Classification (Marco Pennacchiotti, Ana-Maria Popescu)

Highlights

- * Problem to solve Automatically infer user attributes like Political Affiliation, Ethnicity, Affinity to a business
- * Features used
 - o Profile features (Name, location, bio,...)
 - o Tweeting behavior (Avg no of tweets per day, number of replies,....)
 - Linguistic features (Prototypical words, Prototypical Hashtags, topic modeling, sentiment words)
 - o Social network (replies, retweets,...)
- * Learning Algo used Gradient Boosted Decision Trees

* Results:

- O User Political Affiliation classified into Republicans/Democrats (Precision: 0.894 ± 0.007)
- O User Ethnicity classified into African-American/Not (Precision: 0.646 ± 0.017)
- O User classified for his affinity to starbucks (Precision: 0.763±0.021)

* Takeaways

- Linguistic features (esp, topic-based) are proved consistently reliable across these classification tasks
- o Explicit social network features are valuable

Background

How many of you use?

Significant Improvements can be made to user experience by knowing demographic attributes, interests,..etc of a user

Recommendations can be given w.r.t which users to follow, what posts to read,...etc.

Related Work

- * Twitter user attribute detection. (Rao et al. 2010)
 - o simple features like N-grams
 - O Sociolinguistic features (presence of emoticons)
 - O User network Statistics (No of followers)
 - O Communication behavior (Retweet frequency) are used for user attribute detection.

- * Learning Algo: Gradient Boosted Decision Trees (Friedman 2001)
- * Profile features (PROF)
 - o Pilot study to access direct use of profile info (for gender and ethnicity classification tasks)
 - Corpus 14M users
 - Technique 30 regular expressions on Bio field (I|i) (m|am|'m) [0-9]+(yo|year old) white (man|woman|boy|girl)
 - •Results could find ethnicity of <0.1% users, gender of 80% users. Low Accuracy
 - Though profile fields don't contain good quality data, it can be used for bootstrapping training data. Some features derived are
 - •length of username
 - •use of avatar picture
 - •no of followers...etc

- * Tweeting behavior features useful for constructing model of user. 20 BEHAV features like
 - o No of tweets
 - o No & fraction of retweets
 - o urls/tweet
 - o avg no of #
 - o avg time and std. between tweets,.....

- * Linguistic features (features extracted from a tweet)
 - o Prototypical words/ Proto words(LING-WORD)
 - classes can be described by these words
 - young people dude, lmao,...
 - •republicans healthcare,...
 - probabilistic model for automatically extracting proto words
 - 2 Features derived:
 - * score based on no of proto words used by user
 - *score based on number of proto words belonging to a class- for that user

- o Prototypical Hashtags (LING-HASH)
 - Hypothesis: users from same class might like similar topics. Topics can be derived from Hashtags they used
 - Features calculated similar to LING-Word after finding top hashtags used by users
- o Generic LDA (LING-GLDA)
 - Adaptation of original LDA; documents are replaced by users
 - Users are represented as multinomial distribution of topics
 - users = words of tweet
 - how used in classification Democrats higher prob of talking about social reforms,
 Republicans higher prob of talking about oil drilling
 - General topics returned soccer, music, politics

- o Domain-specific LPA(LING-PLPA)
 - •users from a specific domain like republicans, democrats
 - Domain specific topics returned reforms, conservative approach
- o Sentiment Words(LING-SENT)
 - Hypothesis: one class can have a majority opinion on a topic, which is different from other class
 - Ronald Reagan Republicans(+), Democrats(-)
 - Manually collect set of terms for classes and find sentiment of user w.r.t those terms

- * Social Network Features
 - Friend accounts(SOC_FRIE) Democrats following democrats
 - + Find protypical friend accounts (similar technique used for proto words)
 - + For each porto-friend account, set value to 1 if user follows, 0 otherwise
 - Prototypical replied (SOC-REP) and retweeted (SOC-RET)
 - + Hypothesis: users belonging to same class, reply/retweet messages from specific accounts
 - + Features calculated similarly as Ling-word/Ling-Hash

Experimentation Results

System	PREC	REC	F-MEAS
democrats-B1	0.989	0.183	0.308
democrats-B2	0.735	0.896	0.808
democrats-FULL	0.894^{\ddagger}	0.936 [♭]	0.915 [♭]
republicans-B1	0.920	0.114	0.203
republicans-B2	0.702	0.430	0.533
republicans-FULL	0.878 [‡]	0.805⁵	0.840 [♭]
ethnicity-B1	0.878	0.421	0.569
ethnicity-B2	0.579	0.633	0.604
ethnicity-FULL	0.646 [‡]	0.665 [♭]	0.655 [♭]
starbucks-B1	0.817	0.019	0.038
starbucks-B2	0.747	0.723	0.735
starbucks-FULL	0.762	0.756 [♭]	0.759 [♭]

Overall classification results

Lets Viscuss....