В

题目描述

数轴上有 N 个区间, 第 i 个为 $[L_i, R_i]$ 。

我们称点 x 能覆盖区间 $[L_i, R_i]$,当且仅当 $L_i \le x \le R_i$,即,其在区间内。为了维持如此的覆盖,需要支付 $abs((x-L_i)-(R_i-x))$ 的代价,即,其到区间两端的距离之差。

你需要在数轴上选中若干个点,对于每个区间需要选择恰好一个选中的点覆盖它。 问:

- 1. 至少需要选中多少个点。
- 2. 在满足选中的点最少的前提下,覆盖的代价之和至少是多少。

输入格式

第一行一个整数 N,表示区间数。

接下来 N 行,每个两个整数 L_i, R_i ,描述了第 i 个区间。

输出格式

显然, 第二问的答案一定是个整数。

输出一行两个整数, 依次表示两个问题的答案。

样例一

输人

3

1 11

2 4

6 8

输出

2 2

解释

选中的点为3与6。

第一个区间由6覆盖,代价为0。

第二个区间由3覆盖,代价为0。

第三个区间由6覆盖,代价为2。

总代价为 2。

样例二

输人

3

1 3

3 5

5 7

输出

2 4

解释

选中的点为3与6。

第一个区间由3覆盖,代价为2。

第二个区间由3覆盖,代价为2。

第三个区间由 6 覆盖, 代价为 0。

总代价为 4。

评分方式

对于每个测试点:

若输出的第一个数正确,得到该测试点 30% 的分数; 若输出文件完全正确,得到该测试点 100% 的分数。

数据范围

一共 10 个测试点,每个测试点 10 分:

测试集编号	N 的规模
1	$N \le 8$
2	$N \le 18$
3	$N \le 100$
4	$N \le 500$
5	$N \le 1000$
6	$N \le 5000$
7	$N \le 10000$
8	$N \le 50000$
9	$N \le 100000$
10	$N \le 500000$

对于所有测试数据,保证: $1 \le N$; $1 \le L_i \le R_i \le N$ 。 (众所周知,样例并不是测试数据的一部分)