Populating the interactive namespace from numpy and matplotlib

/Applications/anaconda/lib/python3.6/site-packages/IPython/html.py:14: ShimWarni ng: The `IPython.html` package has been deprecated. You should import from `note book` instead. `IPython.html.widgets` has moved to `ipywidgets`.

"`IPython.html.widgets` has moved to `ipywidgets`.", ShimWarning)

\usepackageamssymb

4.5 Prototype-based Clustering

Goal: Partitioning by assignment of N data points to K < N typical prototypes (representing the clusters)

There are two variants of the assignment:

(1.) Deterministic Assignment:

• Each data point is exactly assigned to a single prototype (hard clustering)

(2.) Probabilistic Assignment:

ullet Each data point \vec{x}_i is assigned with probability h_{ij} to the j-th prototype (soft clustering)

$$\sum_{i=1}^{K} h_{ij} = 1 \forall i \quad (normalization)$$

Remark: vectors

- The assignment (or membership) matrix H has N=nr of data points rows and K=nr. of prototypes columns.
 - each row sums to 1 (i.e. each data point is assigned)
 - each column k sums to the net mass of the kth cluster
- (1.) is a special case of (2.) with h_{i*} being the canonical basis

▼ 4.5.1. Hard Clustering by Vector Quantization

Idea: Each data point \vec{x}_i is assigned to one of K prototypes represented by $\{\vec{w}_j\}_{j=1...K}$ by using a label $l(\vec{x}_i) \in \{1, ..., K\}$

- This can be regarded as a compression for lossy transmission.
 - 1. Coding: $\vec{x} \rightarrow l \in \{1, \dots, K\}$
 - 2. Decoding: $l \rightarrow \vec{w}_l$
- Goal: Minimization of the average quantization errors E by varying the \vec{w}_i .
- Possible Error function

$$E = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{K} h_{ij} ||\vec{x}_i - \vec{w}_j||^2$$

with
$$h_{ij} = \begin{cases} 1 & j = l(x_i) \\ 0 & \text{else} \end{cases}$$

• Gradient descent is not possible because the assignment variables h_{ii} are discrete.

The following algorithm allows optimization:

- 1. Initialization of prototypes, e.g. $\vec{w}_i = \vec{x}_i, j = 1 \dots K$
- 2. While keeping prototypes fixed, choose assignment h_{ij} so that E is minimized (Voronoi cells, winnter-takes all rule)
- 3. While keeping assignments fixed, choose prototypes so that E is minimized, i.e. $\nabla_{\vec{w}}E=0$

$$\nabla_{\vec{w}_j} E = \frac{1}{N} \sum_{i=1}^N h_{ij} (2\vec{w}_j - 2\vec{x}_i) \stackrel{!}{=} 0$$

$$\Rightarrow \vec{w}_j = \frac{\sum_i h_{ij} \vec{x}_i}{\sum_i h_{ij}} \ \forall j$$

- Note that the denominator counts all data points with the jth voronoi cell
- The solution is analog to the 'principal points' before, here for each cluster
- 4. If the error decrease $|\Delta E| < \epsilon$: stop, else goto 2.

Remarks:

- ullet Convergence to local minima is certain since step 2 and 3 reduce the error and $E\geq 0$ is a lower limit.
- The result depends on the initialization. Due to the risk of getting stuck in suboptimal local minima, usually different initializations are tested and the best clustering taken.

▼ 4.5.2. Soft clustering with Mixture Models

Goal: Implementing the possibility to represent uncertainty in the assignment of data to clusters (expressed in form of assignment probabilities)

Approach:

- Description of the data distribution by a probability density $p(\vec{x})$.
- Instead of disjunct partitioning into 'hard' clusters → mixture model:
 - decomposition of $p(\vec{x})$ in additive cluster terms which may overlap and thus describe a soft cluster partitioning

$$p(\vec{x}) = \sum_{j=1}^{M} g_j \mathcal{N}(\vec{x}, \mu_j, \Sigma_j)$$

with normalization
$$\sum_{i=1}^{M} g_i = 1$$

 \bullet N is the normal distribution, but any other distribution is also possible

Interpretation:

- Each summand describes a soft cluster C_j with centroid $\vec{\mu}_j$ and a spatial extension which is determined by the covariance matrix Σ_j
- The parameter $g_j = p(j)$ represents the probability at which an arbitrary data point belongs to the j-th cluster, i.e. the a priori probability for the membership to a cluster
- Knowledge of a data point \vec{x} allows the computation of a more precise a posteriori membership probability to cluster \vec{j} :

$$p_j(\vec{x}) = \frac{g_j N(\vec{x}, \vec{\mu}_j, \Sigma_j)}{\sum_k g_k N(\vec{x}, \vec{\mu}_k, \Sigma_k)}$$

- according to the Bayes's theorem, here with $p(\vec{x}|j) = N(\vec{\mu}_i, \Sigma)$
- Note that the probabilitites $p_j(\vec{x}_i)$ replace the binary cluster memberships h_{ij} used in hard clustering.

Question: What parameters $\Theta = \{g_j, \vec{\mu}_j, \Sigma_j\}$ are the most probable ones according to the information given in the data set D?

$$P(\Theta|\underbrace{\vec{x}_1 \dots \vec{x}_n}_{=D}) = \underbrace{\frac{P(D|\Theta)P(\Theta)}{\sum_{\Theta} P(D|\Theta)P(\Theta)}}_{=P(D)}$$

- the prior distribution for Θ without prejudice: $\Rightarrow P(\Theta) = 1$
- Likelihood function L: is the Θ -dependent part of the right side of the above equation.

$$\mathcal{L} = \log L = \log P(D|\Theta) = \log \prod_{i=1}^{N} p(\vec{x}_i)$$

$$\mathcal{L}[\{\vec{g}, \vec{\mu}, \Sigma\}] = \sum_{i=1}^{N} \log p(\vec{x}_i) = \sum_{i=1}^{N} \log \left[\sum_{k=1}^{K} g_k N(\vec{x}_i, \vec{\mu}_k, \Sigma_k) \right]$$

- Note that this is a product since the data points are independent samples from the distribution.
- we seek the maximum of L regarding g_k , $\vec{\mu}_k$, Σ_k !
- side condition: $\sum_{j=1}^{K} g_j = 1$

It can be shown that a local maximization of $\mathcal L$ can be achieved by the following heuristic motivated iterative method:

- the trick is the application of Jensen's inequality $\ln(\sum_j \lambda_j q_j) \geq \sum_j \lambda_j \ln(q_j)$ to simplify the sum, e.g. see Bishop, Neural Networks for Pattern Recognition, Mixture Models, S. 67, or: http://en.wikipedia.org/wiki/Expectation-maximization_algorithm) (http://en.wikipedia.org/wiki/Expectation-maximization_algorithm)
- 1. Initialization: Starting values $t=0, g_{\nu}^0, \vec{\mu}_{\nu}^0, \Sigma_k$
 - e.g. obtained by one of the otehr cluster methods
- 2. Computation of new membership probabilities (E-Step):

$$p_j^{t+1}(\vec{x}_i) = \frac{g_j^t \mathcal{N}(\vec{x}_i; \mu_j^t, \Sigma_j^t)}{\sum_k g_k^t \mathcal{N}(\vec{x}_i; \mu_k^t, \Sigma_k^t)} \quad \text{corresponds to } h_{ij}^{(t+1)}$$

- $p_i(\vec{x}_i)$ corresponds to the (here now continuous) h_{ii} from hard clustering
- 3. Computation of new estimates for the cluster centers $\vec{\mu}_k^{t+1}$ as well as for the cluster covariances Σ_k^{t+1} :

$$g_k^{t+1} = \frac{1}{N} \sum_{i} p_k^{t+1}(\vec{x}_i)$$

(updated probability mass in cluster k)

$$\vec{\mu}_k^{t+1} = \frac{1}{g_k^{t+1}} \sum_i p_k^{t+1}(\vec{x}_i) \cdot \vec{x}_i$$

(updated centroid of cluster *k*)

$$\Sigma_k^{t+1} = \frac{1}{g_k^{t+1}} \sum_i \left(p_k^{t+1}(\vec{x}_i) \cdot (\vec{x}_i - \vec{\mu}_k) (\vec{x}_i - \vec{\mu}_k)^T \right)$$

(updated covariance of cluster k)

4. If the maximal number of iterations has not yet been reached: goto 2.

This method is known as EM algorihtm (Expectation-Maximization algorithm).

Remarks:

- EM-algorithm delivers local optima and no garantuee for finding a global optimum
- remedy: repeat with different initializations, take the best result.
- ullet Convergence problems with 'degenerated clusters', i.e. if Σ_k is almost singular
 - this can happen if too few data points < d are within a cluster
 - or is all points lie within a linear subspace
- here: special solution under the assumption of normal distributed clusters and vectorial represented data.
- The results of the clustering is similar to the Ward-clustering, but now the membership is not greedy, but globally and thus more effort, but potentially better
- Attention: minimization makes only sense for a given number of clusters c. Optimizing additionally w.r.t. c is useless: this leads always to the trivial solution of c = N clusters centered at data points.

4.6. Evaluation of Clustering results

Questions:

- How many clusters exist?
- How unique is the found clustering?

4 of 7 19-01-09, 13:56

4.6.1. The number of clusters

Basic Idea:

- ullet Compare the cluster quality for a given number of clusters c
- · choose the smallest number of clusters with acceptable quality.
- ullet this shifts the problem towards the definition of a suitable cluster quality measure.

Gap-Statistic (Tibshirani, G. Walther, T. Hastie, 2001, https://web.stanford.edu/~hastie/Papers/gap.pdf (https://web.stanford.edu/~hastie/Papers/gap.pdf)):

• compares the logarithmized intra cluster variance

$$g_c(D) = \log \text{Tr}(\mathbf{W}_c(D))$$

for c clusters with their centroid $\langle g_c(U_i) \rangle_i$ for enforced clustering of M uniform distributed random sets U_i (i = 1, ... M) into likewise c clusters.

· original formulation:

$$=\log\sum_{r=1}^{c}\frac{1}{2n_{r}}D_{r}$$

- with $n_r = |C_r|$ (size of clusters)
 and $D_r = \sum_{i,i' \in C_r} d(\vec{x}_i, \vec{x}_{i'})$ (data point distances)
- \blacksquare interestingly D_r is 2E, two times the MSE to cluster centers, if d is the squared Euclidean distance
- the first 'clear/distinct' peak of the difference

$$\operatorname{Gap}(c) = \langle g_c(U_i) \rangle - g_c(D)$$

points at the 'true' number of clusters $c_{\it opt}$:

• Example illustration from Tibshirani:

- Figure (b) depicts the gap for the data set in Figure (a)
- more accurate is $c_{opt} = \text{smallest value } c$, for which

$$\operatorname{Gap}(c) \ge \operatorname{Gap}(c+1) - s_{c+1}$$

where

$$s_c = \sqrt{\left(1 + \frac{1}{M}\right) \operatorname{Var}(g_c(U_i))}$$

- The U_i are randomly generated as equally large ($|U_i| = |D|$) random sets of a D-containing box in feature space.
- If the data distribution is longer than thick, it is recommended to align the box along the principal axes of the data distribution.

Further, more simple propositions :

· Approach by Calinsky & Harabasz:

$$c_{opt} = \arg \max_{c \ge 2} \frac{n - c}{c - 1} \frac{\operatorname{trace}(\mathbf{B}_c)}{\operatorname{trace}(\mathbf{W}_c)}$$

- Only applicable for $c \ge 2$
- performed best in a comparison of 20 alternative approaches
- Alternative approach by Hartican (1975):

$$c_{opt} = \min_{c} \left\{ c | \left(\frac{\operatorname{trace}(\mathbf{W}_{c})}{\operatorname{trace}(\mathbf{W}_{c+1})} - 1 \right) \ge 10(n - c - 1) \right\}$$

- $c_{opt} = \min_{c} \left\{ c | \left(\frac{\operatorname{trace}(\mathbf{W}_c)}{\operatorname{trace}(\mathbf{W}_{c+1})} 1 \right) \ge 10(n-c-1) \right\}$ $\blacksquare \text{ The idea is to start with 1 cluster and add more as long as } H(c) = \left(\frac{\operatorname{trace}(\mathbf{W}_c)}{\operatorname{trace}(\mathbf{W}_{c+1})} 1 \right) \frac{1}{n-c-1} \text{ is } \frac{1}{n-c-1}$ sufficiently large.
- · For mixture models the Bayes-Criterion is applicable:

$$BIC(c) = 2 \log P(D|\theta_c) - m_c \log(n)$$

- lacktriangle First term: Log-Likelihood of the data D at model parameters $heta_c$.
- Second term: penalty for models with large number of parameters m_c .
- c_{opt} = value of c at the first distinct maximum of BIC(·).

▶ 4.6.2. Uniqueness of Clustering results

[...]

- Basic Idea: Compare results of repeated clustering runs under slight variations (see below)
- Measure for comparison for two clusterings C_1 and C_2 :

Rand-Index

$$R_g = \frac{N_{++} + N_{--}}{N_{++} + N_{--} + N_{+-} + N_{-+}} = \frac{2(N_{++} + N_{--})}{N(N-1)}$$

with the following definitions:

- N_{++} is the number of data point pairs that are in the same cluster in C_1 and also in the same cluster in C_2
- ullet N_{+-} is the number of data point pairs that are in the same cluster in C_1 but in different clusters in C_2
- ullet N_{-+} is the number of data point pairs that are in different clusters in C_1 but in the same cluster in C_2
- N_{--} is the number of data point pairs that are in different clusters in C_1 and also in different clusters in C_2
- The denominator is the number of all possible point pairs, i.e. $\binom{N}{2} = N(N-1)/2$
- $R_g = 1 \Rightarrow$ both clusterings are "`the same"'.
- Possible modes of variation for the examination of clustering stability
 - different initializations
 - Repetition of the method on different data subsets (equal size)
 - ditto, but variable large data set size
 - elimination of few features should affect the result not too strongly
 - using new variables