Ecuaciones diferenciales

Sistemas de ecuaciones diferenciales por eliminación **Semana 07: Auditorio**

Profesores del curso:

Hermes Pantoja Carhuavilca Sergio Quispe Rodríguez Patricia Reynoso Quispe Cristina Navarro Flores Orlando Galarza Gerónimo César Barraza Bernaola Daniel Camarena Pérez

Índice

1 Sistemas de EDOs lineales

Objetivos

Resolver sistemas de EDOs utilizando el método de eliminación sistemática.

SISTEMAS DE EDOS LINEALES

Logros

■ **Resuelve** sistemas de ecuaciones diferenciales usando el método de eliminación sistemática. (L.5.7.1.1)

Eliminación sistemática

Este método sirve para resolver sistemas de ecuaciones diferenciales con coeficientes constantes.

El primer paso consiste en representar las ecuaciones utilizando operadores, por ejemplo, el sistema

$$\frac{dx}{dt} = 2x + 3y$$
$$\frac{dy}{dt} = 5x + 4y$$

se puede escribir como

$$Dx - 2x - 3y = 0$$
$$5x - Dy + 4y = 0,$$

si factorizamos la variables se obtiene el siguiente sistema

$$(D-2)x - 3y = 0$$

 $5x - (D-4)y = 0$

La idea es llevar el sistema que se busca resolver a esta forma y luego eliminar una de las variables.

Ejercicios

Resolver el siguiente sistema

$$\frac{dx}{dt} = 2y$$
$$\frac{dy}{dt} = 3x$$

Solución:

El sistema es equivalente a

$$Dx - 2y = 0, (1)$$

$$3x - Dy = 0, (2)$$

Multiplicando la ecuación (1) por D, la ecuación (2) por -2 y sumando los resultados se elimina la variable y, obteniéndose:

$$D^2x - 6x = 0$$

La solución de esta última ecuación homogénea de segundo orden y coeficientes constantes es

$$x(t) = c_1 e^{-\sqrt{6}t} + c_2 e^{\sqrt{6}t}.$$
(3)

Reemplazando la ecuación (3) en la ecuación (1) se obtiene

$$egin{aligned} y(x) &= rac{1}{2}Dx \ &= rac{1}{2}rac{d}{dt}\left(c_1e^{-\sqrt{6}t} + c_2e^{\sqrt{6}t}
ight), \end{aligned}$$

por lo tanto

$$y(x) = -\frac{\sqrt{6}}{2}c_1e^{-\sqrt{6}t} + \frac{\sqrt{6}}{2}c_2e^{\sqrt{6}t}$$
 (4)

Las ecuaciones (3) y (4) representan la solución del sistema inicial.

Observación: Es importante notar que las constantes c_1 y c_2 que aparecen en las ecuaciones (3) y (4) son las mismas

2 Resuelva el sistema

$$Dx + (D+2)y = 0 \tag{5}$$

$$(D-3)x - 2y = 0 (6)$$

Solución:

Multiplicando la ecuación (5) por (D-3), la ecuación (6) por D y restando los resultados se elimina la variable x, obteniéndose:

$$(D-3)(D+2)y + 2Dy = 0 \Rightarrow (D^2 + D - 6)y = 0$$

La solución de esta última ecuación es

$$y(x) = c_1 e^{2t} + c_2 e^{-3t} (7)$$

Seguidamente, se reemplaza la ecuación (7) en la ecuación (5).

$$egin{split} Dx + (D+2) \left(c_1 e^{2t} + c_2 e^{-3t}
ight) &= 0 \ rac{dx}{dt} + rac{d}{dt} \left(c_1 e^{2t} + c_2 e^{-3t}
ight) + 2 \left(c_1 e^{2t} + c_2 e^{-3t}
ight) &= 0 \ rac{dx}{dt} + 2 c_1 e^{2t} - 3 c_2 e^{-3t} + 2 c_1 e^{2t} + 2 c_2 e^{-3t} &= 0 \ rac{dx}{dt} + 4 c_1 e^{2t} - c_2 e^{-3t} &= 0 \end{split}$$

Por lo tanto,

$$x(t) = \int \left(-4c_1e^{2t} + c_2e^{-3t} \right) dt = -2c_1e^{2t} - \frac{1}{3}c_2e^{-3t}$$
 (8)

Las ecuaciones (7) y (8) representan la solución del sistema inicial. ¿Por qué no se considera la constante en la ecuación (8)? Pues de (6) se tiene que x es combinación lineal de exponenciales.

3. Resuelva el sistema

$$x' - 4x + y'' = t2$$
$$x' + x + y' = 0$$

Solución:

De forma equivalente, el sistema se puede escribir como

$$(D-4)x + D^2y = t^2 (9)$$

$$(D+1)x + Dy = 0 \tag{10}$$

Multiplicando la ecuación (9) por (D+1) y la ecuación (10) por (D-4), se obtiene

$$(D+1)(D-4)x + (D+1)D^2y = (D+1)t^2$$
$$(D-4)(D+1)x + (D-4)Dy = 0$$

Restando estas ecuaciones se elimina la variable x,

$$(D+1)D^2y - (D-4)Dy = (D+1)t^2 \Rightarrow (D^3+4D)y = 2t + t^2$$
 (11)

Para el alumno: Resuelva esta última ecuación.

La solución de la ecuación (11) está dado por

$$y(x) = c_1 + c_2 \cos(2t) + c_3 \sin(2t) + \frac{1}{12}t^3 + \frac{1}{4}t^2 - \frac{1}{8}t \tag{12}$$

Reemplazando (12) en (10) se obtiene una ecuación de primer orden para x(t):

$$\frac{dx}{dt} + x = -\frac{d}{dt} \left[c_1 + c_2 \cos(2t) + c_3 \sin(2t) + \frac{1}{12} t^3 + \frac{1}{4} t^2 - \frac{1}{8} t \right],$$

por el método de factor integrante se tiene

$$x(t) = e^{-t} \left[\int \left(2c_2 \sin(2t) - 2c_3 \cos(2t) - \frac{1}{4}t^2 - \frac{1}{2}t + \frac{1}{8} \right) e^t dt \right] + Ce^{-t},$$

de donde integrando por partes y simplificando se llega a que

$$x(t) = -\frac{1}{5}(4c_2 + 2c_3)\cos(2t) + \frac{1}{5}(2c_2 - 4c_3)\sin(2t) - \frac{1}{4}t^2 + \frac{1}{8}$$
 (13)

¿Por qué C = 0?

Pues de (9), como D-4 no anula a la exponencial e^{-t} , C=0 es necesario para que no aparezcan exponenciales al lado izquierdo.

Para el alumno

Resuelva el sistema

$$x' = 3x - 4y + 1$$
$$y' = 4x - 7y + 10t$$

Respuesta:

$$x(t) = \frac{1}{2}c_1e^{-5t} + 2c_2e^t + 8t + 5$$

 $y(t) = c_1e^{-5t} + c_2e^t + 6t + 2$

2 Resuelva el sistema

$$x' = 6y$$
$$y' = x + z$$
$$z' = x + y$$

Respuesta:

$$x(t) = c_1 e^{-t} + c_2 e^{-2t} + c_3 e^{3t}$$

$$y(t) = -\frac{1}{6} c_1 e^{-t} - \frac{1}{3} c_2 e^{-2t} + \frac{1}{2} c_3 e^{3t}$$

$$z(t) = -\frac{5}{6} c_1 e^{-t} - \frac{1}{3} c_2 e^{-2t} + \frac{1}{2} c_3 e^{3t}$$

Conclusiones

- El método de eliminación sistemática permite resolver sistemas de ecuaciones con coeficientes constantes.
- 2 Este método se basa en utilizar la linealidad del operador diferencial *D*.
- 3 Dependiendo del número de ecuaciones, el sistema se reduce a resolver una ecuación diferencial de orden superior.

Gracias UTEC UNIVERSIDAD DE INGENIERIA YTECNOLOGÍA

