The finite path integral

Arun Debray

June 2, 2021

Outline

- 1. Quick review of what we need from Tuesday's lecture
- 2. The finite path integral as modeling things in physics
- 3. Defining the finite path integral
- 4. Examples (Dijkgraaf-Witten, Yetter, Quinn's finite homotopy TFT, ...)

Goals today

Construct interesting and nontrivial examples whose partition functions and state spaces are not too hard to calculate, and which (unlike yesterday) doesn't require much homotopy theory to digest

Review

- ► If $\varphi: \Omega_n^H \to \mathbb{C}^\times$ is a bordism invariant, it defines an invertible TFT $Z_{\varphi}: \mathcal{B}ord_n^H \to s\mathcal{V}ect_{\mathbb{C}}$ with partition function φ
- Good examples of bordism invariants: integrate characteristic classes or natural cohomology classes for manifolds with *H*-structure

Path integral quantization

- Consider a gauge theory in physics
- This means: one of the fields is a principal *G*-bundle and connection Θ
- The classical theory is defined using a *Lagrangian action* $S: F \to \mathbb{R}$ (*F* the space of fields)
- ightharpoonup The system evolves along extremal trajectories under S

Path integral quantization

One computes the partition function of the quantum theory by exponentiating the action and integrating over the space of fields:

$$Z = \int_F e^{-S} \, \mathrm{d}\varphi$$

- ▶ Problem: *F* is typically infinite-dimensional, hence such a measure cannot exist (e.g. if the fields include connections on principal *G*-bundles, for *G* positive-dimensional)
- ► Today is about a setting in which this *does* exist, and can be used to give more examples of topological field theories

Making this rigorous: take *G* to be a finite group!

- ▶ When *G* is a finite group, there is a procedure "summing over the space of principal *G*-bundles which takes a TFT $Z^{c\ell}: \mathcal{B}ord_n^{\xi \times G} \to \mathcal{V}ect_{\mathbb{C}}$ and produces a new TFT $Z: \mathcal{B}ord_n^{\xi} \to \mathcal{V}ect_{\mathbb{C}}$
- Due to Freed-Quinn, Freed-Hopkins-Lurie-Teleman, Morton, Trova, Schweigert-Woike
- So examples of $Z^{c\ell}$ (e.g. invertible TFTs, e.g. by bordism invariants) give new examples of TFTs
- Notable examples: Dijkgraaf-Witten theories, indexed by $\alpha \in H^n(BG; \mathbb{R}/\mathbb{Z})$ (bordism invariant: exponentiate the "classical action" $\int \alpha(P)$)

Somewhat more general example

- Let *X* be a space with *finite total homotopy*: $\pi_i(X)$ is finite, and is zero for all but finitely many *i*
- ► Then, there is a finite path integral summing over maps to X: go from TFTs of ξ -manifolds with a map to X, to TFTs of ξ -manifolds
- Recovers TFTs such as *Quinn's finite homotopy TFT* (again, $Z^{c\ell}$ defined by integrating cohomology classes of X) and the *Yetter model* (X has only two nonzero homotopy groups)
- Can be interpreted as summing over principal bundles for a finite higher group...
- ► Can also sum over things like spin structures

Sketch of the construction

- ▶ We will give the construction in detail for summing over principal *G*-bundles, then discuss the general case more quickly and sketchily
- ► Use $Z^{c\ell}$ to build a functor $\mathfrak{B}ord_n^{\xi} \to \mathfrak{C}orr$, a category of spans of groupoids equipped with vector bundles
 - ► Idea: send *M* to the space (groupoid) of fields on *M*; bordisms induce correspondences of this data
 - The vector bundle comes from applying $Z^{c\ell}$ at each point of this space

Sketch of the construction

- ▶ Then, quantize: define a functor $Corr \rightarrow Vect_{\mathbb{C}}$ by taking sections of the vector bundle
- ► For correspondences, we need a pushforward map, which is "sum over the fibers"
- ► This crucially uses that *G* is finite, so that this sum is finite

Vector bundles over groupoids

- ▶ A vector bundle over a groupoid X is a functor $V: X \to \mathcal{V}ect_{\mathbb{C}}$. A line bundle is an invertible vector bundle (so it's valued in $\mathcal{V}ect_{\mathbb{C}}^{\times}$)
- ► That is: to every object x we assign a vector space V_x (the fiber) and to every morphism $x \to y$ we assign a linear map $V_x \to V_y$ (parallel transport)
- ► The *space of sections* of a vector bundle is its colimit
- ▶ For a line bundle, the space of sections is the free vector space on the subset of $\pi_0(X)$ such that the parallel transport maps for automorphisms act by the identity

Building the category of correspondences

- ► The objects of *Corr* are groupoids with vector bundles
- We require these groupoids are *finite*, meaning $\pi_0(X)$ is finite and all automorphism groups of objects of X are finite
- A morphism is a correspondence or span:

with vector bundles $V_i \rightarrow X_i$, together with data of an element of $\text{Hom}(\Gamma(V_1), \Gamma(V_2))$

(Well, we need to take isomorphism classes of such data, so that composition is associative on the nose)

Building the category of correspondences

- ► The identity is the correspondence $X \leftarrow X \rightarrow X$, with the vector bundle maps all equal to id
- ► Composition: given two correspondences, take the pullback

The first functor $\mathcal{B}ord_n^{\xi} \to \mathcal{C}orr$

- ► We start with $Z^{c\ell}$: $Bord_n^{\xi \times G} \to Vect_{\mathbb{C}}$
- So, given an (n-1)-manifold M, assign the groupoid $\mathcal{B}un_G(M)$ (finite because G is) with the vector bundle $P \mapsto Z^{c\ell}(M,P)$
- ▶ A bordism $X: M_0 \to M_1$ induces maps of manifolds $i_0: M_0 \hookrightarrow X$ and $i_1: X \hookleftarrow M_1$, hence pullback maps of principal bundles, giving a correspondence
- ► The element of Hom($\Gamma(V_1)$, $\Gamma(V_2)$) that we choose is the one coming from applying $Z^{c\ell}$ to the bordism

The second functor: quantization $Corr \rightarrow Vect_{\mathbb{C}}$

- ▶ On objects, send $(X, V) \mapsto \Gamma(V)$
- Given a correspondence (morphism), act by the element of $\operatorname{Hom}(\Gamma(V_1), \Gamma(V_2))$

Partition functions for the quantum theory

$$Z(M) = \sum_{P \in \pi_0(\mathcal{B}un_G(M))} \frac{Z^{c\ell}(M, P)}{\# \operatorname{Aut}(P)}$$

i.e. integrate the function $P \mapsto Z^{c\ell}(M,P)$ in the "groupoid measure"

State spaces for the quantum theory

- ► The state space on N is the space of sections of a vector bundle on $\mathbb{B}un_G(N)$
- ► The fiber at $P \to M$ is $Z^{c\ell}(N, P)$, and the parallel transport for $\varphi \in \text{Aut}(P)$ is $Z^{c\ell}$ of $M \times S^1$ with the mapping torus of P
- So the state space is free on the set of isomorphism classes of principal *G*-bundles for which these parallel transport maps are all trivial

What changes for the finite homotopy TFT?

- ightharpoonup Groupoids are replaced with the space of maps Map(M,X)
- Now we need to use the fact that $Z^{c\ell}(M,-)$ defines a vector bundle with connection over Map(M,X), where M is a closed (n-1)-manifold
 - Why? It suffices to know the parallel transports along paths in Map(M,X); a path gives a bordism of manifolds with a map to X, and $Z^{c\ell}$ turns that into a linear map, which is the parallel transport map
- Partition functions use the n-groupoid cardinality

$$\sum_{f \in \pi_0(\operatorname{Map}(M,X))} \prod_{k=1}^n \# \pi_k(\operatorname{Map}(M,X),f) \cdot Z^{c\ell}(M,f)$$

Examples

► Choose $\alpha \in H^n(BG; \mathbb{R}/\mathbb{Z})$ and let $Z^{c\ell}$ be the bordism invariant defined by

$$(M,P) \mapsto \exp(2\pi i \int_M \alpha(P)).$$

Perform the finite path integral over principal *G*-bundles to obtain *Dijkgraaf-Witten theory*

- Replace BG with a space of finite X total homotopy and obtain Quinn's finite homotopy TFT
- ► If *X* has only two nonzero homotopy groups, this is also called the *Yetter model*

Bosonization and fermionization

- ► The Jordan-Wigner transform is a tool in the statistical mechanics of 1d systems: a formal change of variables from a bosonic system with a Z/2 symmetry to a fermionic system
- ▶ Using the tools we've built so far, we can produce an analogue of this transform between 2d spin TFTs and 2d SO $\times \mathbb{Z}/2$ TFTs
- ► This has various features of a Fourier transform

The Jordan-Wigner kernel

- ▶ First: recall that spin structures inducing a chosen orientation are an $H^1(-; \mathbb{Z}/2)$ -torsor, and in fact given a spin structure s and a principal $\mathbb{Z}/2$ -bundle P, there is a way to "tensor them together" into a new spin structure s + P
- Second: recall that there is an isomorphism Arf: $\Omega_2^{\text{Spin}} \to \{\pm 1\}$ given by the *Arf invariant*
- ▶ Third: recall that a bordism invariant lifts to a invertible TFT valued in $sVect_{\mathbb{C}}$
- So we define an invertible TFT α_{JW} : $\mathfrak{B}ord_2^{\mathrm{Spin}\times\mathbb{Z}/2} \to s\mathcal{V}ect_{\mathbb{C}}$, called the *Jordan-Wigner kernel*, to lift the bordism invariant

$$(\Sigma, s, P) \mapsto \operatorname{Arf}(s + P)$$

Defining bosonization and fermionization

- ▶ Given a spin TFT $Z_f : \mathcal{B}ord_2^{\mathrm{Spin}} \to s\mathcal{V}ect_{\mathbb{C}}$, define its $bosonization\ Z_b : \mathcal{B}ord_2^{\mathrm{SO} \times \mathbb{Z}/2} \to s\mathcal{V}ect_{\mathbb{C}}$ as follows: tensor with α_{JW} , then perform the finite path integral over spin structures
- Conversely, given an SO \times $\mathbb{Z}/2$ TFT Z_b , defines its *fermionization* by tensoring with α_{JW} , then performing the finite path integral over principal $\mathbb{Z}/2$ -bundles
- ► These are *not quite inverses* doing one, then the other, amounts to tensoring with an Euler theory
- This Euler theory is like the factor of 2π in the Fourier transform: harmless, and you can sweep it under the rug, but you cannot make it go away

Some interesting features

- ► The usual tensor product on TFTs ("pointwise multiplication") is exchanged with a convolution-like operation
- ▶ If Z_f doesn't depend on the spin structure (i.e. is really an oriented TFT), Z_b doesn't depend on the principal $\mathbb{Z}/2$ -bundle, and $Z_f \cong Z_b$; the vice versa statement is also true
- ► It is possible to soup this up to extended TFTs valued in the Morita 2-category of ℂ-superalgebras
- Also, α_{JW} extends to an invertible theory of pin⁻ manifolds with a principal $\mathbb{Z}/2$ -bundle, setting up a bosonization/fermionization duality between O × $\mathbb{Z}/2$ TFTs and pin⁻ TFTs

Direct sums of TFTs

- ► In addition to the pointwise tensor product, there is a direct sum operation on TFTs
- ► If *M* is connected, $(Z_1 \oplus Z_2)(M) := Z_1(M) \oplus Z_2(M)$
- ► In order for symmetric monoidality to hold, must be different in general! On a disconnected manifold, do this on all connected components, then tensor those things together
- ▶ Likewise for bordisms: it's what you would call ⊕ on a connected bordism, and in general your hand is forced by symmetric monoidality

Direct sum as a finite path integral

- ► The space {1,2} certainly has finite total homotopy
- ▶ Given Z_1 and Z_2 , build a TFT $Z_{1,2} : \mathcal{B}ord_n^{1,2} \to \mathcal{V}ect_{\mathbb{C}}$ as follows: the function to $\{1,2\}$ is locally constant, so wherever it's equal to 1, assign $Z_1(-)$, and where it's equal to 2, assign $Z_2(-)$
- ► Then check that this is actually a TFT
- Now perform the finite path integral over maps to $\{1,2\}$, and you get $Z_1 \oplus Z_2$
- Easier to generalize (e.g. to the extended or derived setting) than the by hand definition

Gauging and ungauging

- ► The finite path integral can be interpreted as gauging a *G*-symmetry
- ▶ If G = A is finite abelian, you can "ungauge" using another finite path integral and end up back with the original theory!
- Similar Fourier-theoretic description as bosonization/fermionization, but now one side is $SO \times \mathbb{Z}/2$ and the other is $SO \times K(A^{\vee}, n-1)$
- ▶ On one side, a principal A-bundle; on the other, a "higher A^{\vee} -bundle" (representative of a degree n-1 A^{\vee} -valued cohomology class)
- $ightharpoonup A^{\vee} = \operatorname{Hom}(A, \mathbb{C})$ (the character dual)