

Asymmetric cryptography for SEcube

Cybersecurity for Embedded Systems

Brignone Giovanni Castagneri Dario Licastro Dario September 13, 2021

Politecnico di Torino

Outline

- 1. Introduction
- 2. Development
- 3. Demo

Introduction

Cryptography

- · Science behind multiple aspects of information security
- · Central operations:
 - Encryption
 - Decryption
- · Two approaches:
 - Symmetric
 - Asymmetric

RSA algorithm

- · Asymmetric key algorithm published in 1977
- Keys are derived from two prime numbers
- · Security relies on the difficulty of factorizing large numbers
 - \cdot Increase key size to improve encryption strength
- Applications:
 - · Key distribution
 - Digital signature

Digital certificates

- · Check identity and guarantee secure communications
- Signed by a certificate authority or self-signed
- X.509 is a standard format for public key certificates

Goal of the project

- Extends the SEcube SDK
 - RSA-based asymmetric cryptosystem
 - Key storage
 - Symmetric key distribution
 - · Digital signature
 - · Digital certificates based on X.509 format

Development

HW/SW partitioning

- · Initial idea:
 - · HW: RSA functionality
 - · SW: Drivers and APIs
- Issue: Resource constraints: small FPGA (7000 LUTs) and long keys (1024+ bits)
- Design exploration: Map to HW most critical parts of design only:
 Encryption/Decryption → Modular exponential → Modular multiplication

HW/SW partitioning

- · Initial idea:
 - · HW: RSA functionality
 - · SW: Drivers and APIs
- Issue: Resource constraints: small FPGA (7000 LUTs) and long keys (1024+ bits)
- **Design exploration**: Map to HW most critical parts of design only: Encryption/Decryption \rightarrow Modular exponential \rightarrow Modular multiplication
- Solution: No suitable architecture in literature \Rightarrow Full SW implementation

Firmware side: RSA and X.509 library

- · Compatible with STM32F4429 micro controller:
 - · Written in C
 - · Low resources usage
- · Compatible with SEcube Open Source project:
 - Permissive license
- · Secure:
 - · Reliable developer
 - Widely used

Firmware side: RSA and X.509 library

- · Compatible with STM32F4429 micro controller:
 - · Written in C
 - Low resources usage
- Compatible with SEcube Open Source project:
 - · Permissive license
- · Secure:
 - · Reliable developer
 - Widely used

 \Rightarrow mbedtls by ARM

Firmware side: Flash memory

RSA keys:

- Problem: Share same ID space of symmetric keys
- Solution:
 - · Pack RSA keys (multiple fields) into symmetric keys nodes (single field)
 - · Reuse symmetric keys code

Firmware side: Flash memory

RSA keys:

- · Problem: Share same ID space of symmetric keys
- Solution:
 - · Pack RSA keys (multiple fields) into symmetric keys nodes (single field)
 - Reuse symmetric keys code

X.509 certificates:

- · Problem: No previous support for any kind of certificate
- Solution: Dedicated node type and functions

Firmware side: Dispatcher

- · Problem:
 - Manage RSA/X.509 requests from host without cluttering the Dispatcher Core
- Solution:

RSA Dispatcher receives all the related requests and calls specific functions

Firmware side: Dispatcher

- · Problem:
 - Manage RSA/X.509 requests from host without cluttering the Dispatcher Core
- · Solution:
 - RSA Dispatcher receives all the related requests and calls specific functions
- Security enhancement:
 - Each key has a type (generic, crypto-only, sign-only)
 - · Forbidden operations are blocked before execution

Host side: L1 API

· Problem:

- Expose RSA and X.509 functionalities through APIs
- Integrate new APIs with pre-existing ones

Solution:

- · Reuse existing APIs (e.g. L1FindKey)
- Extend existing APIs (e.g. L1KeyEdit, L1Encrypt, L1Decrypt...)
- · Add new APIs (e.g. L1Sign, L1Verify...)

Demo