Gradient Descent

03 January 2023 15:42

	Obs	š	Fat	Salt	Acceptance	
/ '	4/	1	0.2	0.9	like	. 1
	4	2	0.1	0.1	dislike	(
	4	3	0.2	0.4	dislike	(
	1	4	0.2	0.5	dislike	Ć
	4	5	0.4	0.5	like	ı
	*	6	0.3	0.8	like	7

epoch = Traversal of entire dataset on the perceptron

$$y = \frac{1}{-(\omega_0 + \omega_1 fat + \omega_2 Salt)}$$

$$+ e$$

$$f(x) = \frac{1}{1 + e^{-x}}$$

Single Layer Perceptron

Bias

$$wt_{sum} = 0.2(0.8) + 0.9(-0.2) + 1(0.5)$$

$$= 0.48$$

$$Act = \frac{1}{1 + e^{-0.48}} = 0.6177$$
 $= P(y=1)$

$$y = 1$$
 $\hat{y} = 0.6177$

In case of Reg \rightarrow coror = $(1-0.6177)^2$ to l=0.000) Class \rightarrow log loss = $\log(0.6177)$

 $Sum(O_1)$ = $Act(H_1) * (-0.1)$ + $Act(H_2) * (0.7)$

Obs.	Fat	Salt	Acceptance				
1	0.2	0.9	like				
2	0.1	0.1	dislike				
3	0.2	0.4	dislike				
4	0.2	0.5	dislike				
5	0.4	0.5	like				
6	0.3	0.8	like				

$$sum(H_1) = 0.2(0.8) + 0.5(0.1) + 1(0.4)$$

Act (Sum (H1)) = Forward Pass

Backpropogation Backward Pass